CORRIGÉ DU DS°2

SUJET n°1 (3 exercices)

EXERCICE 1 (extrait de CCP MP 2011)

- 1. C(A) est une partie de $\mathcal{M}_3(\mathbb{R})$, qui contient la matrice nulle (car $O_n \times A = A \times O_n = O_n$!), donc est non vide.
 - Si M et N sont dans C(A) et $\lambda \in \mathbb{R}$ on a :

$$A(\lambda M + N) = AM + \lambda AN = MA + \lambda NA = (M + \lambda N)A,$$

donc $M + \lambda N$ appartient à C(A).

Cela prouve que C(A) est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.

2. A est la matrice dans la base canonique $\mathscr{B} = (e_1, e_2, e_3)$ de \mathbb{R}^3 d'un certain endomorphisme $u \in \mathscr{L}(\mathbb{R}^3)$. Dire que A et T sont semblables signifie que T est la matrice de u dans une autre base $\mathcal{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$. Cela revient donc à chercher des vecteurs ε_i , linéairement indépendants, tels que :

$$u(\varepsilon_1) = 3\varepsilon_1$$
 , $u(\varepsilon_2) = 2\varepsilon_2$ et $u(\varepsilon_3) = \varepsilon_2 + 2\varepsilon_3$.

Place aux calculs:

– En notant $\varepsilon_1 = (x, y, z)$:

$$u(\varepsilon_1) = 3\varepsilon_1 \Longleftrightarrow \begin{cases} x + 4y - 2z = 3x \\ 6y - 3z = 3y \iff \begin{cases} -2x + 4y - 2z = 0 \\ y = z \iff \begin{cases} x = y = z \\ -x + 4y - 3z = 0 \end{cases} \end{cases}$$

On peut donc choisir $\varepsilon_1 = (1, 1, 1)$.

- En notant $\varepsilon_2 = (x, y, z)$:

$$u(\varepsilon_2) = 2\varepsilon_2 \iff \begin{cases} x + 4y - 2z = 2x \\ 6y - 3z = 2y \iff \begin{cases} -x + 4y - 2z = 0 \\ 4y - 3z = 0 \end{cases}.$$

L'ensemble des solutions de ce système est une droite de \mathbb{R}^3 (intersection de deux plans distincts). On peut par exemple choisir $\varepsilon_2 = (4, 3, 4)$.

- Enfin, en notant $\varepsilon_3 = (x, y, z)$:

$$u(\varepsilon_3) = \varepsilon_2 + 2\varepsilon_3 \iff \begin{cases} x + 4y - 2z = 4 + 2x \\ 6y - 3z = 3 + 2y \iff \begin{cases} -x + 4y - 2z = 4 \\ 4y - 3z = 3 \end{cases}.$$

On peut alors choisir $\varepsilon_3 = (-2, 0, -1)$.

La famille $\mathscr{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est bien libre, et si l'on note P la matrice de passage de \mathscr{B} à \mathscr{B}' on a :

$$T = P^{-1}AP$$
 avec $P = \begin{pmatrix} 1 & 4 & -2 \\ 1 & 3 & 0 \\ 1 & 4 & -1 \end{pmatrix}$.

Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 et $Y = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$. Alors:

$$Y = PX \iff \begin{cases} x + 4y - 2z = x' \\ x + 3y = y' \iff \begin{cases} x + 3y = y' & (L_2) \\ y - 2z = x' - y' & (L_1 - L_2) \\ z = z' - x' & (L_3 - L_1) \end{cases}$$
$$\iff \begin{cases} x = 3x' + 4y' - 6z' \\ y = -x' - y' + 2z' \iff X = P^{-1}Y \\ z = -x' + z' \end{cases}$$

donc
$$P^{-1} = \begin{pmatrix} 3 & 4 & -6 \\ -1 & -1 & 2 \\ -1 & 0 & 1 \end{pmatrix}$$
.

3. Une matrice $M=\begin{pmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{pmatrix}$ appartient à C(T) si et seulement si MT=TM soit

$$MT = \begin{pmatrix} 3a & 2b & b+2c \\ 3a' & 2b' & b'+2c' \\ 3a'' & 2b'' & b''+2c"" \end{pmatrix} = TM = \begin{pmatrix} 3a & 3b & 3c \\ 2a'+a'' & 2b'+b'' & 2c'+c'' \\ 2a'' & 2b'' & 2c'' \end{pmatrix}$$

ce qui conduit à : b=c=a'=a''=b''=0 et b'=c''. Les matrices M qui conviennent sont donc celles de la forme :

$$M = \begin{pmatrix} a & 0 & 0 \\ 0 & b' & c' \\ 0 & 0 & b' \end{pmatrix} = aE_{11} + b'(E_{22} + E_{33}) + c'E_{23}.$$

Il s'agit donc du sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ engendré par les 3 matrices E_{11} , $E_{22} + E_{33}$ et E_{23} ; cest trois matrices étant linéairement indépendantes, la dimension de C(T) est égale à 3.

4. L'application $M \mapsto P^{-1}MP$ est facilement linéaire : c'est un endomorphisme de $\mathcal{M}_3(\mathbb{R})$.

Cet endomorphisme est injectif puisque $P^{-1}MP = O_3 \Rightarrow M = O_3$; par suite c'est un automorphisme de $\mathcal{M}_3(\mathbb{R})$ (espace vectoriel de dimension finie).

L'image de ${\cal C}(A)$ par cet automorphisme n'est autre que ${\cal C}(T)$ puisque :

$$M \in C(A) \iff AM = MA \iff PTP^{-1}M = MPTP^{-1} \iff T(P^{-1}MP) = (P^{-1}MP)T \iff P^{-1}MP \in C(T)$$
.

Par conséquent, dim $C(A) = \dim C(T) = 3$.

5. a) On calcule $A^2=\begin{pmatrix}3&20&-14\\3&24&-18\\-1&20&-10\end{pmatrix}$. Il est alors facile de montrer que :

$$aI_2 + bA + cA^2 = O_3 \Longrightarrow a = b = c = 0$$

c'est-à-dire que la famille $\left\{I_3,A,A^2\right\}$ est libre.

- b) Évidemment, les matrices I_3 , A et A^2 commutent avec A; elles appartiennent donc à C(A). Comme elles forment un système libre dans un espace vectoriel de dimension 3, elles en forment une base.
- c) Ce résultat ne subsiste pas pour toute matrice A de $\mathcal{M}_3(\mathbb{R})$. Si l'on prend par exemple $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,

de sorte que $A^2 = O_3$, alors $\text{Vect}(I_3, A, A^2) = \text{Vect}(I_3, A)$ est un sous-espace vectoriel de dimension 2, alors qu'un calcul similaire à celui de la question 3. montre que le commutant de A est un sous-espace vectoriel de dimension 6.

EXERCICE 2 (extrait de E3A PSI 2017, Maths 1)

- **1.** Soit l'application : $T: P \mapsto (P(a_1), \dots, P(a_n))$.
 - Linéarité.

D'après le cours, les applications $P \mapsto P(a_i)$ sont des formes linéaires. Ainsi T est une application linéaire de E vers \mathbb{R}^n .

Injectivité.

Soit $P \in \text{Ker}(T)$. On a T(P) = 0 donc $(P(a_1), \ldots, P(a_n)) = (0, 0, \ldots, 0)$ et P s'annule en au moins n réels distincts. Puisque P est un polynôme de degré inférieur ou égal à n-1, c'est le polynôme nul. On en déduit $\text{Ker}(T) = \{0_E\}$, T est injective.

Bijectivité.

On a $\dim(E) = n = \dim(\mathbb{R}^n)$. Comme T est une application injective de E vers \mathbb{R}^n , par caractérisation des isomorphismes en dimension finie, T est un isomorphisme de E sur \mathbb{R}^n .

- 2. T est un isomorphisme de E sur \mathbb{R}^n donc sa bijection réciproque, T^{-1} est un isomorphisme de \mathbb{R}^n vers E. Or \mathcal{B}' est l'image de \mathcal{E} par T^{-1} . Comme l'image par un isomorphisme d'une base de l'espace de départ est une base de l'espace d'arrivée , on en déduit que $\mathcal{B}' = (L_1, \dots, L_n)$ est une base de E.
 - Remarquons d'abord que, par définition, pour tout $i \in [1; n]$:

$$T(L_i) = (L_i(a_1), \dots, L_i(a_n)) = e_i = (0, \dots, 0, 1, 0, \dots, 0)$$
 (avec le 1 à la *i*-ème place)

ce qui signifie que $L_i(a_j) = \delta_{ij}$.

Soit alors $P \in E$ et $(\lambda_1, \lambda_2, \dots, \lambda_n)$ ses coordonnées dans la base \mathcal{B}' .

On a $P = \sum_{k=1}^{n} \lambda_k L_k$. En évaluant cette relation en a_j , compte tenu du calcul précédent, on obtient

 $P\left(a_{j}\right)=\lambda_{j}$ ce qui donne la coordonnée sur L_{j} . Ainsi, $P=\sum_{k=1}^{n}P\left(a_{k}\right)L_{k}$.

3. a) Comme les L_k sont de degré ≤ 2 , s'annulent en a_j pour $j \neq k$ et valent 1 en a_k , on trouve :

$$L_1 = \frac{(X-1)(X-2)}{2} = 1 - \frac{3}{2}X + \frac{1}{2}X^2, \ L_2 = -X(2-X) = 0 + 2X - X^2 \text{ et } L_3 = \frac{X(X-1)}{2} = 0 - \frac{1}{2}X + \frac{1}{2}X^2.$$

On en déduit la matrice M de (L_1, L_2, L_3) dans $(1, X, X^2)$:

$$M = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 2 & -\frac{1}{2} \\ \frac{1}{2} & -1 & \frac{1}{2} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 \\ -3 & 4 & -1 \\ 1 & -2 & 1 \end{pmatrix}.$$

b) Soit $P \in \mathbb{R}_2[X]$. Dire que $P = P(0) + P(1)X + P(2)X^2$ équivaut à dire que les coordonnes de P dans la base $\mathcal{B} = (1, X, X^2)$ sont (P(0), P(1), P(2)), c'est-à-dire sont les mêmes que ses coordonnées dans la base $\mathcal{B}' = (L_0, L_1, L_2)$.

Or si $V = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ est la matrice colonne des coordonnées de P dans \mathscr{B} et $V' = \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix}$ celles dans \mathscr{B}' ,

M étant la matrice de passage de \mathscr{B} à \mathscr{B}' , les <u>formules du cours</u> donnent la relation V=MV'. Les polynômes cherchés sont donc ceux dont les coordonnées vérifient la relation V=MV soit :

$$\begin{cases} a = a \\ b = -\frac{3}{2}a + 2b - \frac{1}{2}c \\ c = \frac{1}{2}a - b + \frac{1}{2}c \end{cases}$$
 soit
$$\begin{cases} 3a - 2b + c = 0 \\ a - 2b - c = 0 \end{cases}$$
.

L'ensemble des solutions de ce système est une droite vectorielle, de base (1,1,-1) et par conséquent, les polynômes P de $\mathbb{R}_2[X]$ vérifiant : $P(X) = P(0) + P(1)X + P(2)X^2$ sont les polynômes : $\lambda \left(1 + X - X^2\right)$ lorsque λ décrit \mathbb{R} .

4. a) M est la matrice de passage d'une base vers une autre donc M est inversible.

 M^{-1} est la matrice de passage de \mathcal{B}' à \mathcal{B} ; ses colonnes sont donc formées des coordonnées dans \mathcal{B}' des vecteurs X^j de la base \mathcal{B} ; or d'après la question $\mathbf{2}$, les coordonnées de X^j dans \mathcal{B}' sont (a_1^j,\ldots,a_n^j) donc:

$$M^{-1} = \begin{pmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{n-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{n-1} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & a_n & a_n^2 & \dots & a_n^{n-1} \end{pmatrix}.$$

C'est une matrice de Vandermonde...

b) Les coordonnées du polynôme constant égal à 1 dans la base \mathcal{B}' sont toutes égales à 1 (question 2.); cela signifie que $\sum_{i=1}^{n} L_i = 1$.

c) Par définition de M, on a pour tout $j \in [1; n]$, $L_j = \sum_{i=1}^n m_{i,j} X^{i-1}$. Ainsi :

$$1 = \sum_{j=1}^{n} L_j = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} m_{i,j} \right) X^{i-1}.$$

En particulier, pour tout $i \in [1; n]$, la somme $\sum_{j=1}^{n} m_{i,j}$ représente le coefficient en X^{i-1} du polynôme constant égal à 1. Donc :

$$\sum_{i=1}^{n} m_{1,j} = 1 \quad \text{et, si } i \in [2; n], \quad \sum_{i=1}^{n} m_{i,j} = 0.$$

d) On reprend l'expression $L_j = \sum_{i=1}^n m_{i,j} X^{i-1}$.

On a alors, pour tout $j \in [1; n]$, $\sum_{i=1}^{n} m_{i,j} = L_j(1) = L_j(a_1)$ (car ici $a_1 = 1$). Ainsi :

$$\sum_{i=1}^{n} m_{i,1} = 1 \quad \text{et, si } j \in [2; n], \quad \sum_{i=1}^{n} m_{i,j} = 0.$$

- 5. L'énoncé affirme que u est un endomorphisme de E, donc inutile de le vérifier!
 - a) Noyau.

Soit $P \in E$. $P \in \text{Ker}(u) \iff P(0) = P(1) = P(2) = 0$ car (L_1, L_2, L_3) est libre. Ainsi Ker u est formé des multiples du polynôme X(X-1)(X-2) dans $\mathbb{R}_{n-1}[X]$ soit encore :

$$Ker(u) = \{X(X-1)(X-2)Q \mid Q \in \mathbb{R}_{n-4}[X]\},\$$

ce qui implique dim Ker $u = \dim \mathbb{R}_{n-4}[X] = n-3$.

- Image.

D'après le théorème du rang, $\operatorname{Im}(u)$ est de dimension $\dim(E) - \dim(\operatorname{Ker}(u)) = n - (n-3) = 3$. Or on a clairement $\operatorname{Im}(u) \subset \operatorname{Vect}(L_1, L_2, L_3)$ qui est de dimension 3 car (L_1, L_2, L_3) est libre. Ainsi $\operatorname{Im}(u) = \operatorname{Vect}(L_1, L_2, L_3) = \mathbb{R}_2[X]$.

- Supplémentaires.

Soit $P \in \text{Ker}(u) \cap \text{Im}(u)$. Puisque P est combinaison linéaire de L_1, L_2, L_3 , on a $\deg(P) \leq 2$. Mais P est aussi multiple de X(X-1)(X-2), donc $P=0_E$: Im(u) et Ker(u) sont en somme directe. Et puisque la somme de leurs dimensions est $\dim(E)$ par le théorème du rang, on en déduit que Im(u) et Ker(u) sont supplémentaires dans E.

b) Si $Q = u(P) = P(0)L_1 + P(1)L_2 + P(2)L_3$, on a Q(0) = P(0), Q(1) = P(1) et Q(2) = P(2) (puisque $L_i(j) = \delta_{ij}$). On en déduit u(Q) = Q c'est-à-dire $u^2 = u$. u est donc un projecteur; d'après le cours, c'est la projection sur Im u parallèlement à Ker u.

EXERCICE 3 (extrait de E3A PSI 2017, Maths 2)

Questions de cours

- 1. \mathcal{E} est un espace vectoriel de dimension n^2 ; une base en est la famille $(E_{i,j})_{1 \leq i,j \leq n}$.
- **2.** Notons $A = E_{i,j} \times E_{k,\ell}$. Alors, pour tout $(p,q) \in [1;n]^2$:

$$A_{p,q} = \sum_{r=1}^{n} \left(E_{i,j} \right)_{p,r} \left(E_{k,\ell} \right)_{r,q} = \sum_{r=1}^{n} \delta_{i,p} \delta_{j,r} \delta_{k,r} \delta_{\ell,q} = \delta_{i,p} \delta_{\ell,q} \left(\sum_{r=1}^{n} \delta_{j,r} \delta_{k,r} \right) = \delta_{i,p} \delta_{\ell,q} \delta_{k,j} = \delta_{k,j} \left(E_{i,\ell} \right)_{p,q}$$

donc $E_{i,j} \times E_{k,\ell} = \delta_{j,k} E_{i,\ell}$.

I. Propriétés élémentaires

- 1. Puisqu'il existe p tel que $A^p = O_n$, on a $\det(A^p) = (\det A)^p = 0$ donc $\det A = 0$ et A n'est pas inversible.
- **2.** Si $A^p = 0$ alors pour tout scalaire λ , $(\lambda A)^p = 0$, donc $\lambda A \in \mathcal{N}$. Ainsi $\operatorname{Vect}(A) \subset \mathcal{N}$.
- 3. $({}^tA)^p = {}^tA^p = O_n \text{ donc } {}^tA \in \mathcal{N}.$
- **4.** Si $M = P^{-1}AP$ avec $P \in GL_n(\mathbb{R})$ alors $M^p = P^{-1}A^pP = O_n$ donc $M \in \mathcal{N}$.
- **5.** a) Si $\lambda_0, \lambda_1, \dots, \lambda_{p-1}$ sont des scalaires tels que

$$\lambda_0 X_0 + \lambda_1 A X_0 + \dots + \lambda_{p-1} A^{p-1} X_0 = 0$$

alors en multipliant à gauche par A^{p-1} , puisque $A^k=O_n$ dès que $k\geqslant p$ on obtient $\lambda_0A^{p-1}X_0=0$, donc $\lambda_0=0$ puisque $A^{p-1}X_0\neq 0$.

On a donc ensuite :

$$\lambda_1 A X_0 + \dots + \lambda_{p-1} A^{p-1} X_0 = 0$$

puis en multipliant par A^{p-2} on obtient $\lambda_1 A^{p-1} X_0 = 0$ et $\lambda_1 = 0$ etc...

Finalement, tous les λ_i sont nuls, et la famille $\{X_0, AX_0, \dots, A^{p-1}X_0\}$ est libre dans $\mathcal{M}_{n,1}(\mathbb{R})$.

Son cardinal est donc inférieur à la dimension de l'espace vectoriel $\mathcal{M}_{n,1}(\mathbb{R})$, c'est-à-dire $p \leq n$.

- b) si M est nilpotente, soit p le plus petit entier tel que $M^p = O_n$ (il existe!). Alors $p \leq n$ d'après la question précédente, donc $M^n = M^p M^{n-p} = O_n$.
 - réciproquement, si $M^n = O_n$, M est nilpotente!

On a donc démontré l'équivalence demandée.

- **6.** a) Si BC est nilpotente, alors $(BC)^n = O_n$. Donc $(CB)^{n+1} = C(BC)^n B = O_n$, et ainsi CB est nilpotente.
 - b) si A et B commutent, alors $(AB)^n = A^nB^n$, donc si l'une des deux matrices A ou B est nilpotente, AB l'est aussi.
 - D'après la formule du binôme, utilisable pusique A et B commutent :

$$(A+B)^{2n-1} = \sum_{k=0}^{2n-1} {2n-1 \choose k} A^k B^{2n-1-k}$$

$$= \sum_{k=0}^{n-1} {2n-1 \choose k} A^k B^{2n-1-k} + \sum_{k=n}^{2n-1} {2n-1 \choose k} A^k B^{2n-1-k}$$

$$= \underbrace{B^n}_{=O_n} \left(\sum_{k=0}^{n-1} {2n-1 \choose k} A^k B^{n-1-k} \right) + \underbrace{A^n}_{=O_n} \left(\sum_{k=n}^{2n-1} {2n-1 \choose k} A^{k-n} B^{2n-1-k} \right)$$

$$= O_n ,$$

donc A + B est nilpotente.

Rem: les deux résultats ci-dessus peuvent tomber en défaut si les matrices A et B ne commutent pas. Je vous laisse trouver des contre-exemples...

7. On calcule:

$$(I_n + \alpha A)(I_n - \alpha A + (\alpha A)^2 - \dots + (-1)^{n-1}(\alpha A)^{n-1}) = I_n + (-1)^{n-1}(\alpha A)^n$$

après télescopage.

Et puisque αA est nilpotente on obtient :

$$(I_n + \alpha A)(I_n - \alpha A + (\alpha A)^2 - \dots + (-1)^{n-1}(\alpha A)^{n-1}) = I_n$$

ce qui signifie que la matrice $I_n + \alpha A$ est inversible (à droite, mais l'on a vu en cours que cela suffit), et :

$$(I_n + \alpha A)^{-1} = (I_n - \alpha A + (\alpha A)^2 - \dots + (-1)^{n-1} (\alpha A)^{n-1}).$$

II. Exemples

1. a) Notons u l'endomorphisme canoniquement associé à M dans la base canonique (e_1, \ldots, e_n) de \mathbb{R}^n . Alors par définition de la matrice d'une application linéaire dans une base on a :

$$u(e_1) = 0$$
, $u(e_2) = e_1$, $u(e_2) = e_1$, ..., $u(e_n) = e_1 + \dots + e_{n-1}$.

En considérant alors les sous-espaces vectoriels suivants :

$$F_0 = \{0\}, F_1 = \text{Vect}(e_1), F_2 = \text{Vect}(e_1, e_2), \dots, F_k = \text{Vect}(e_1, \dots, e_k), \dots, F_n = \text{Vect}(e_1, \dots, e_n) = \mathbb{R}^n,$$

on a, pour tout $k \in [1; n] : u(F_k) \subset F_{k-1}.$

On aura donc, pour $k \in [2; n]$: $u^2(F_k) \subset F_{k-2}$ etc... et finalement $u^n(F_n) \subset F_0$ c'est-à-dire $u^n(\mathbb{R}^n) = \{0\}$. Donc $u^n = 0$ et u est nilpotent.

$$\mathbf{b)} \ \det S = \begin{vmatrix} 0 & 1 & \dots & \dots & 1 \\ 1 & 0 & 1 & \dots & \dots & 1 \\ 1 & \ddots & & \ddots & \ddots & 1 \\ \vdots & \ddots & \ddots & & \ddots & \vdots \\ 1 & 1 & \ddots & \ddots & 0 & 1 \\ 1 & 1 & \dots & 1 & 1 & 0 \end{vmatrix} = \begin{vmatrix} n-1 & 1 & \dots & \dots & 1 \\ n-1 & 0 & 1 & \dots & \dots & 1 \\ n-1 & 1 & 0 & \ddots & \ddots & 1 \\ \vdots & \ddots & \ddots & & \ddots & \vdots \\ n-1 & 1 & \ddots & \ddots & 0 & 1 \\ n-1 & 1 & \dots & 1 & 1 & 0 \end{vmatrix}$$

en ayant additionné toutes les colonnes à la 1ère, ce qui ne change pas le déterminant.

Puis en soustrayant la 1ère ligne à toutes les autres :

$$\det S = \begin{vmatrix} n-1 & 1 & \dots & \dots & 1 \\ 0 & -1 & 0 & \dots & \dots & 0 \\ 0 & 0 & -1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & -1 & 0 \\ 0 & 0 & \dots & 0 & 0 & -1 \end{vmatrix} = (-1)^{n-1}(n-1).$$

La matrice S étant inversible car de déterminant non nul, elle ne peut pas être nilpotente.

En écrivant $S = J - I_n$ où J est la matrice carrée d'ordre n dont tous les éléments sont égaux à 1, on a $S^2 = J^2 - 2J + I_n$ et, puisque $J^2 = nJ$, on trouve :

$$S^{2} = I_{n} + (n-2)J = I_{n} + (n-2)(S + I_{n}) = (n-1)I_{n} + (n-2)S.$$

Cela montre que $S^2 \in \text{Vect}(I_n, S)$.

- c) \mathcal{N} n'est pas un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ car, par exemple, M et tM sont dans \mathcal{N} mais pas $M + {}^tM$.
- **2. a)** Dire que la matrice M, carrée d'ordre 2, est de rang 1 signifie que ses deux colonnes appartiennent à la même droite vectorielle de $\mathcal{M}_{2,1}(\mathbb{R})$, donc sont de la forme aU et bU où $U \neq 0 \in \mathcal{M}_{2,1}(\mathbb{R})$ et où a, b sont des réels non tous deux nuls : $M = \begin{pmatrix} a\alpha & b\alpha \\ a\beta & b\beta \end{pmatrix}$.

La relation $M^2 = tr(M)M$ se vérifie alors sans peine.

Rem : voir une généralisation et une solution plus astucieuse dans la feuille d'exercices n°3....

Si M est nilpotente, puisqu'elle est d'ordre 2, on a nécessairement $M^2=O_2$ (question **I.5**) donc ${\rm tr}(M)=0$ d'après la relation précédente (M est non nulle car de rang 1).

La réciproque est immédiate. La condition nécessaire et suffisante cherchée est donc : tr(M) = 0.

- b) La matrice $M = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$ convient (pas de calcul à faire, utiliser directement le résultat de la question précédente).
- c) La matrice nulle est nilpotente.
 - Si $M \in \mathcal{M}_2(\mathbb{R})$ est de rang 2 elle est inversible donc n'est pas nilpotente.
 - Si $M \in \mathcal{M}_2(\mathbb{R})$ est de rang 1 elle est nilpotente si et seulement si sa trace est nulle.

On peut en conclure que les matrices nilpotentes de $\mathcal{M}_2(\mathbb{R})$ sont exactement celles de la forme $\begin{pmatrix} a & b \\ c & -a \end{pmatrix}$ avec $a^2 + bc = 0$.