Prosesler ve Proses Yönetimi

Hafta 4

Prosesler

- bilgisayar sisteminde birden fazla iş aynı anda etkin olabilir
 - kullanıcı programı
 - diskten okuma işlemi
 - yazıcıdan çıkış alma
- farklı işler farklı programlar tarafından yürütülürler
- ⇒sistemde aynı anda etkin olan bir dizi program: PROSES

Proses nedir?

Tanım:

Program: bir fonksiyonu gerçeklemek üzere tasarlanan ardışıl kod

Proses: yürütülmekte olan bir program:

program + yürütme durumu

Farklı prosesler aynı programın farklı örneklerini yürütüyor olabilirler.

proses ⇔ görev (task)

Proses nedir?

- Bir prosesin etkin olabilmesi için gereken minimum kaynaklar şunlardır:
 - program kod ve data (yerel ve global değişkenler) alanı için bellek
 - Yürütmeyi desteklemek üzere <mark>saklayıcı kümesi</mark>

program sayacı
donanım saklayıcıları proses bağlamı

Proses nedir?

- bilgisayarda yer alan tüm yazılım prosesler olarak düzenlenmiştir
 - kullanıcı prosesleri
 - işletim sistemi prosesleri
- · bir programa ilişkin birden fazla proses var olabilir
- · prosesler sistem çağrıları ile
 - sistem kaynaklarını kullanır
 - birbirleri ile etkileşir
 - dış dünya ile haberleşir

Program ⇔ Proses

Örnek: Yemek yapmayı seven bir bilgisayarcı bir tarife göre kek yapıyor.

 $\begin{array}{ll} \mbox{yemek tarifi} & \rightarrow \mbox{program} \\ \mbox{malzeme} & \rightarrow \mbox{girişler} \\ \mbox{bilgisayarcı} & \rightarrow \mbox{işlemci} \end{array}$

Proses → bilgisayarcının malzemeleri elde ettikten sonra yemek tarifini okuyup, istenilen sonuç için işlemleri adım adım yerine getirmesi.

Program ⇔ Proses

(örnek devam) O sırada oğlu "arı soktu" çığlıkları ile içeri girer. Bilgisayarcı yemek tarifinde kaldığı yere işaret koyar, işini bırakır, ilk yardım kitabını alır ve ilgili tedaviye başlar.

 $\begin{array}{ll} \text{tedavi yolu} & \rightarrow \text{program} \\ \text{ilaçlar} & \rightarrow \text{girişler} \\ \text{bilgisayarcı} & \rightarrow \text{işlemci} \end{array}$

Proses → kitaptaki tedavi yöntemi uygulanarak ilk yardım işleminin yapılması

Program ⇔ Proses

(örnek devam)

<u>Sonuç:</u> işlemci iki proses arasında zamana göre paylaşıldı

- proses
 - bir etkinlik
 - bir program, girişler, çıkışlar ve zaman içinde farklı durumlara sahip
- işlemcinin hangi prosese hizmet vereceği işletim sistemi tarafından bir algoritma ile belirlenir.

Prosesler • sistemde MİB tek — proseslerin görüntü MİB'leri • sistem saklayıcıları tek — program sayacı, yığın işaretçisi, durum saklayıcısı, genel amaçlı saklayıcılar, sıra saklayıcısı, ... • Bu durumda zaman paylaşımlı çalışma nasıl gerçekleştirilir? zaman paylaşımlı çalışma — zaman dilimi (time slice/quantum) kavramı

Zaman Paylaşımlı Çalışma

- proseslerin işlemciye ne zaman sahip olacakları önceden kestirilemez!!
 - program kodu çalışma sırası veya zamanlamaya dayalı işlemler içermemelidir

Proses Durum Modeli

- prosesler sistemde var oldukları sürece farklı durumlarda bulunurlar
- üç temel durum söz konusudur:
 - çalışır: MİB'ne sahip ve yürütülmekte
 - hazır: MİB'ini elde etmek için beklemekte
 - <u>askıda</u>: bir olayın gerçekleşmesini bekliyorçalışması engellenmiş durumda

Proses Durum Modeli

Durum geçişleri:

- 1. olay beklemeye geç (askıda durumuna) örneğin prosesin G/Ç isteği hemen karşılanamazsa
- 2. prosesin MİB'i kullanma süresi dolmuş, sıra başka prosesin olabilir
- 3. prosesin tekrar sırası gelmiş, MİB'ini kullanabilir
- 4. beklenen olay gerçekleşir, proses çalışmaya hazır

Proseslerin Gerçeklenmesi

- işletim sistemi her proses ve kaynak için bir dizi denetim bilgisi saklar
 - yönetilen her <u>varlık</u> için <u>tablo</u>
 - G/Ç tabloları
 - bellek tabloları
 - dosya tabloları
 - proses tabloları

Proseslerin Gerçeklenmesi

- prosese ilişkin bilgiler proses tanımlayıcı alanında
 - proses kontrol bloğu (PCB)
 - proses ile ilgili bilgileri içeren veri yapısı
- prosesler ile ilgili tüm işlemler PCB üzerinden gerçekleşir:
 - PCB'ye erişim hızlı olmalıdır
 - bazı sistemlerde o an yürütülen prosese ait PCB'ye işaret eden saklayıcı (donanım)

Proses Kontrol Bloğunda Taşınan Bilgiler

- 1. proses kimlik bilgileri
 - prosesin kimlik numarası: pid
 - prosesin annesinin kimlik numarası
 - prosesin sahibi
- 2. prosesin o anki durumu ve varsa beklediği olay (hazır, askıda, vs..)
- 3. prosesin önceliği
- 4. iş sıralama ile ilgili bilgiler

Proses Kontrol Bloğu (PCB)

- 5. prosesin kullandığı kaynaklara işaretçiler
 - örneğin açık dosyaları
- 6. prosese ayrılmış sanal bellek bölgesine işaretçi
- sistem saklayıcılarının ve kullanıcıya açık (makina dili ile erişilebilen işlemci saklayıcıları) saklayıcıların içeriklerinin saklandığı alan
 - genel amaçlı sakayıcılar, program sayacı, durum saklayıcısı, sıra saklayıcısı, yığın göstergesi,
 - ⇒ işlemci bağlamı

Prosesler Üzerinde Gerçekleştirilebilen İşlemler

- Proses yaratma (create)
 - bir prosesi ancak bir başka proses yaratır (UNIX tipi sistemlerde)
 - prosesler arası hiyerarşi
 - yaratan proses: anne (parent) proses
 - yaratılan proses: çocuk (child) proses
 - bir proses birden fazla çocuk proses yaratabilir

Prosesler Üzerinde Gerçekleştirilebilen İşlemler

- proses yaratılırken yapılan işlemler:
 - proses tablosunda yer yoksa proses yaratılmaz
 - proses tablosu her zaman ana bellekte yer alır
 - proses tablosunda yer varsa,
 - PCB oluşturulur
 - prosese kimlik numarası atanır (sistemde tek)
 - başlangıç öncelik değeri atanır
 - başlangıç kaynakları sağlanır (bellek, vs)
 - hazır prosesler kuyruğuna eklenir

Prosesler Üzerinde Gerçekleştirilebilen İşlemler

- Proses yok etme (destroy)
 - proses sistemden silinir
 - · kaynakları iade edilir
 - · kimlik numarası iade edilir
 - PCB ve proses tablosu kaydı silinir
 - · çocukları varsa ilgili işlemler yapılır
 - ya tüm çocuklar da yok edilene kadar kaydı tamamen silinmez
 - ya da çocuklar başka prosese atanır
 - » örneğin UNIX'te init prosesine

Prosesler Üzerinde Gerçekleştirilebilen İşlemler

- · Askıya alma (suspend)
 - kısa süreli askıya almada kaynakları elinden alınmaz
 - uzun süreli askıya almada kaynakları elinden alınır (kaynağın türüne bağlı)
- Tekrar başlatma (resume)
 - prosesi kaldığı noktadan yeniden başlatma
- · Önceliğinin değiştirilmesi

Proseslerin Durum Değiştirmesi Sırasında Yapılan İşlemler

- işlemci bağlamı saklanır
- koşmakta olan prosesin PCB'u güncellenir
- koşmakta olan proses uygun kuyruğa (hazır / askıda) alınır
- koşacak yeni proses belirlenir
- seçilen prosesin PCB'u güncellenir
- bellek yönetimi ile ilgili bilgiler güncellenir
- seçilen prosesin bağlamı saklayıcılara yüklenir