Cryptographie Symétrique Moderne

Partie 1

Dr. Noureddine Chikouche

noureddine.chikouche@univ-msila.dz

https://sites.google.com/view/chikouchenoureddine

Plan du cours

- Introduction
- •Les catégories de chiffrement symétriques modernes
 - Chiffrement par flot
 - Chiffrement par bloc
- DES

Introduction

Cryptographie symétrique

Chiffrement par bloc

- Chiffrement de flux / chiffrement par flot / stream cipher
- On chiffre chaque bit/octet du message clair avec une nouvelle clé appelée clé de flot (keystream).
- Neystream (s) est une séquence des bits générée à partir de la clé symétrique (K).

- Pour générer une keystream, on utilise un générateur pseudo-aléatoire (GPA).
- La taille de la clé générée est égale à celle du texte clair.
- Pour chiffrer un message, on utilise le principe de masque jetable (One Time Pad).
- Fonction de chiffrement:
 - $c_i = E_{s_i}(m_i) = m_i \oplus s_i$
- Fonction de déchiffrement:

Chiffrement par Flot: Exemple

- Exemple:
- Texte clair (m): 01010011 01000001
- Keystream (s) = 01110111 01110111
- Chiffrement

01010011 01000001

 \bigoplus

01110111 01110111

00100100 00110110

- ► Importance du chiffrement par flot:
 - ▶ Il est très rapide.
 - ▶ Implémentation matériel et logiciel facile.
 - ▶ Il est adaptés aux applications temps réel.
- **Limitation:**
 - ▶ Problème de propagation d'erreur (synchronisation).

- ► RC4, utilisé notamment par le protocole WEP pour sécuriser les réseaux sans fils.
- ► A5/1, utilisé dans les téléphones mobiles de type GSM pour chiffrer la communication par radio entre le mobile et l'antenne-relais la plus proche,
- ▶ E0, utilisé par le protocole Bluetooth.
- Autres:

FISH - Helix · ISAAC · LEVIATHAN · MUGI · Panama · SEAL · SOBER · WAKE

Chiffrement par Bloc

Principe:

- 1. Le message est découpé en blocs de taille constante,
- 2. On utilise la clé pour chiffrer chaque bloc.
- 3. Chaque bloc est chiffré indépendamment de la valeur des autres blocs.
- 4. Il utilise: chiffrement par substitution (confusion) / transposition (diffusion) / produit (plus robuste).

Chiffrement par Bloc

- C. Shannon a prouvé que la combinaison de confusion et diffusion permet d'obtenir une sécurité convenable.
 - ► Confusion (S-Box): masquer la relation entre le texte clair et le texte chiffré.
 - Diffusion (P-Box): cacher la redondance en répartissant l'influence d'un bit de clé sur tout le chiffré.

Structure de chiffrement de Feistel

- Inventé par Horst Feistel en 1973 (IBM).
- La longueur de l'entrée est 2w (bits),
 celle de la clé est K.
- Diviser l'entrée en 2 moitiés L₀ et R₀.
- Pour chaque ronde, on calcule les nouveaux, L_i et R_i .

$$L_{i} = R_{i-1},$$

$$R_{i} = L_{i-1} \bigoplus F_{K}(R_{i-1})$$

- Conçu par IBM en 1973.
- DES adapté comme standard en 1977.
- ▶ DES a été l'algorithme officiel de l'administration américaine jusqu'en 1999.
- ▶ DES est basée sur le chiffrement de Feistel légèrement modifié avec l'alphabet {0,1} et la longueur des blocs 64.

Exemple de bloc:

133457799BBCDFF1

```
      0
      0
      0
      1
      0
      0
      1
      1

      0
      0
      1
      1
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
```


DES: Permutation initiale

Les 64 bits du texte clair sont soumis à la permutation initiale (PI ou IP) pour produire le texte brouillé selon le tableau suivant:

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

- ightharpoonup Li = R_{i-1}
- ► Ki = G(K,i)

Expansion/Permutation (E table):

Calcul la fonction de développement E:
 32 bits → 48 bits.

Certains bits de l'entrée sont dupliqués.

32		2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	(1)

► Ensuite, on calcule E(R) ⊕ K et le résultat est découpé en 8 blocs Bi de longueur 6, ce qui donne:

$$E(R) \oplus K = B_1B_2B_3B_4B_5B_6B_7B_8$$

E: Expansion , **P**: permutation

Expansion/permutation (E table) 48 Ki F XOR 48 Substitution/choice (S-box) 32 Permutation (P)

DES: Calcul médian

- Substitution/choice (S-Box)
- •Dans l'étape suivante, on utilise 8 fonctions:

$$S_{i}: \{0,1\}^{6} \rightarrow \{0,1\}^{4}$$

i: 1... 8

On les appelles S-box:

•On calcule Ci = Si (Bi) ,

Pour $b_1b_2b_3b_4b_5b_6 \rightarrow$

b₁b₆ → ligne

 $b_2b_3b_4b_5 \rightarrow colonne$

•on obtient:

 $C = C_1C_2C_3C_4C_5C_6C_7C_8$

C est une suite binaire de longueur 32 bits.

•Exemple:

On veut calculer $C_1 = ? S_1 (B_1)$

Etant donnée $B_1 = 001001$

 $b_1b_2b_3b_4b_5b_6 \rightarrow 011001$

 $b_1b_6 \rightarrow 01$ ligne (1)

 $b_2b_3b_4b_5 \rightarrow 1100 \text{ colonne (12)}$

Lignes							-	•	Color	nnes	\$				-	
	[0]	[1]	[2]	[3]	[4]	[15]	[6]	[7]	[8]	[9]	[10]	[[11]	[[12]	[13]	[14]	[13
	50,000.00						93 - 8	S	2		35				5186	1997
[0]	14	4	13	1	2	15	1.2	8	3	10	6	12	5	9	0	7
[1]	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
[2]	4	1	14	8	13	6	2	111	15	12	9	7	3	10	5	0
[3]	15	12	8	2	4	9	1	7	5	111	3	14	10	0	6	13

•on obtient:

$$C_1 = 9 = 1001$$

- Permutation (P)
- La permutation *P* est appliquée à la séquence de bits *C*.
- ► Fonction P : permutation de 32 bits

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

 \triangleright On obtient à cet instant le cryptogramme $F(R_{i-1}, K_i)$

DES: Permutation finale

► Selon le tableau PI⁻¹(la Permutation Inverse de la permutation initiale):

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

Le résultat obtenu est le bloc chiffré.

- La clé a une longueur de 64 bits, c'est-à-dire 8 caractères, mais dont seulement 56 bits sont utilisés (dans l'algorithme).
- ► Le nombre de clés possibles du DES est 2⁵⁶ ≈ 7.2*10¹⁶

Réduction à 56 bits Division en sousclés de 28 bits Rotation de la clé Réduction à 48 bits

Le calcul a lieu en 4 étapes:

•Réduction à 56 bits: on utilise la fonction PC1:

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

- Division en sous-clés de 28 bits: le résultat de l'étape précédente (56 bits) est divisée en deux sousclés de 28 bits.
- **®** Rotation de la clé: à chaque ronde, on applique la fonction rotation vers la gauche d'1 ou 2 bits pour chaque sous-clé de 28 bits selon la table suivante:

Round number																	ı
Bits	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1	

rofated

• Réduction: après concaténation des deux sous-clés précédentes, on applique la fonction PC2 pour la réduire la sous- clé de 56 bits à une sous-clé de 48 bits:

Le résultat de cette réduction est la sous-clé K_i additionnée avec $E(R_{i-1})$.

14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
1526415134	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

DES: Déchiffrement

- On applique le même algorithme mais on inverse seulement les étapes.
- ▶ Pour la structure de Feistel, on utilise:
 - $ightharpoonup R_{i-1} = L_i$

Cryptanalyse du DES

- Cryptanalyse différentielle (1991, 2⁴⁷)
- Cryptanalyse linéaire (1994, 2⁴³)
- ▶ DES Possède des clés faibles.
- ► Recherche exhaustive (2⁵⁶)

Cryptanalyse du DES: Clés faibles

- Les clés qui sont considérées comme des clés faibles dans DES sont:
 - 01010101 01010101
 - FEFEFEFE FEFEFEFE
 - ► E0E0E0E0 F1F1F1F1
 - ► 1F1F1F1F 0E0E0E0E
- > Solution: Il faut éviter génère ces clés dans la phase de génération de clé.

Cryptanalyse du DES: Recherche exhaustive

► En 1999, distributed.net et Deep Crack ont pu casser la clé en 22 heures et 15 minutes.

Triple DES (3DES)

- Il est développé par W. Tuchman (IBM) en 1999.
- ► Il applique 3 opérations successifs du cryptosystème DES en utilisant des clés différentes.

$$E(k_3,D(k_2,E(k_1,m))).$$

Déchiffrement:

Triple DES (3DES)

- ▶ Il existe deux versions:
 - ► K₁=K₃, espace de clés 112 bits.

 $K_1 \neq K_3$, espace de clés 168 bits.

Déchiffrement:

Déchiffrement:

Triple DES (3DES)

Caractéristiques:

- La longueur de la clé est augmentée.
- ► Il résiste toutes les attaques connues (force brute, analytiques, différentielles).
- ▶ Il est plus lent par rapport le DES parce que les opérations sont triplées.

Quiz

- ▶ Le chiffrement par flot utilise le principe de:
 - ► Structure de Feistel
 - Masque jetable
 - Analyse fréquentiel
 - Aucune réponse correcte
- Les tailles possibles des clés dans 3DES sont:
 - **112**
 - **128**
 - **168**
 - **64**

Références

- A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996. (Chapter 7)
 www.cacr.math.uwaterloo.ca/hac
- ► E. Bersson, Cryptographie, Laboratoire de cryptographie. https://docplayer.fr/5870683-Cryptographie-chiffrement-symetrique.html
- R. Dumont, Cryptographie et Sécurité informatique, 2010.
 http://www.montefiore.ulg.ac.be/~dumont/pdf/crypto09-10.pdf
- NIST Special Publication 800-67 Revision 2, Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher, 2017.
 - https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-67r2.pdf