$D \sim$	C
C	
S	#4-201
C	
S	
- 64	O O O O O O O O O O O O O O O O O O O
1	

College... D. S. Senanayake College.. D. S. Senanayake College... D. S. Senanayake Ollege... D

Third Term Test - 2018 July

Combined	l Mathema	atics- II

Grade 12

2 h 30 min

Name:	•••••

Instructions

This question paper consists of two parts.

Part A (Questions 1-8) and **Part B** (Questions 9-13)

Part A

Answer all questions. Write your answer in the space provided.

Part B

Answer only 4 questions.

- At the end of the time allocated, time the answers of the two parts together so that Part A is on top of Part B before handing them over to the supervisor.
- You are permitted to remove only **Part B** of the question paper from the Examination Hall.

Part	Question NO.	Marks Awarded
	01	
	02	
	03	
A	04	
	05	
	06	
	07	
	08	
	09	
	10	
В	11	
В	12	
	13	
	Total	

Final	Mark	

P	art	A
_	aıı	

01	A cyclist rides a at rest. At the sa acceleration a velocity-time gr	ame instant, until it attain	the motor c s its greates	ar starts to	move in the $v > u$. Dr	same directi aw, in the sar	on with uniform
				h the moto	r car is behi	ind the cyclis	t, the maximum
	distance between	n them is $\frac{u^2}{2a}$	- .				
02).			-			_	oint P on the ground.
02).	Its horizontal range and horizontal vel	e is \mathbf{R} and the ocity compor	e maximum nent of the p	height is H	Draw the v	elocity time g	oint P on the ground.
02).	Its horizontal range	e is \mathbf{R} and the ocity compor	e maximum nent of the p	height is H	Draw the v	elocity time g	_
02).	Its horizontal range and horizontal vel	e is \mathbf{R} and the ocity compor	e maximum nent of the p	height is H	Draw the v	elocity time g	_
02).	Its horizontal range and horizontal vel	e is \mathbf{R} and the ocity compor	e maximum nent of the p	height is H	Draw the v	elocity time g	_
02).	Its horizontal range and horizontal vel	e is \mathbf{R} and the ocity compor	e maximum nent of the p	height is H	Draw the v	elocity time g	_
02).	Its horizontal range and horizontal vel	e is \mathbf{R} and the ocity compor	e maximum nent of the p	height is H	Draw the v	elocity time g	_
02).	Its horizontal range and horizontal vel	e is \mathbf{R} and the ocity compor	e maximum nent of the p	height is H	Draw the v	elocity time g	_
02).	Its horizontal range and horizontal vel	e is \mathbf{R} and the ocity compor	e maximum nent of the p	height is H	Draw the v	elocity time g	_
02).	Its horizontal range and horizontal vel	e is \mathbf{R} and the ocity compor	e maximum nent of the p	height is H	Draw the v	elocity time g	_
02).	Its horizontal range and horizontal vel	e is \mathbf{R} and the ocity compor	e maximum nent of the p	height is H	Draw the v	elocity time g	_
02).	Its horizontal range and horizontal vel	e is \mathbf{R} and the ocity compor	e maximum nent of the p	height is H	Draw the v	elocity time g	_
02).	Its horizontal range and horizontal vel	e is \mathbf{R} and the ocity compor	e maximum nent of the p	height is H	Draw the v	elocity time g	_
02).	Its horizontal range and horizontal vel	e is \mathbf{R} and the ocity compor	e maximum nent of the p	height is H	Draw the v	elocity time g	_
02).	Its horizontal range and horizontal vel	e is \mathbf{R} and the ocity compor	e maximum nent of the p	height is H	Draw the v	elocity time g	_
02).	Its horizontal range and horizontal vel	e is \mathbf{R} and the ocity compor	e maximum nent of the p	height is H	Draw the v	elocity time g	_
02).	Its horizontal range and horizontal vel	e is \mathbf{R} and the ocity compor	e maximum nent of the p	height is H	Draw the v	elocity time g	_

the end B tied to a a point C on the wa as shown in the figure	its end A touches a small inextensible string, which all such that the rod income. Show that $\alpha =$	both vertical wall and which is connected to clined 60^{0} to the wall	C α	
			•••	
				B
			• • • • • • • • • • • • • • • • • • • •	
			• • • • • • • • • • • • • • • • • • • •	
•••••				
	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	
				•••••
). It is given that \overrightarrow{OA}				
For these two vector	$= \underline{a} + 2\underline{b}$, $\overrightarrow{OB} = 3\underline{a}$ rs \underline{a} and \underline{b} , show		OB are perpe $\left -3 \right \underline{a}^2 \right $.	
For these two vector	$= \underline{a} + 2\underline{b}$, $\overrightarrow{OB} = 3\underline{a}$ rs \underline{a} and \underline{b} , show	$\underline{a} - \underline{b}$ and OA and O that $5\underline{a} \cdot \underline{b} = 2 \underline{b}^2$	OB are perpe $\left -3 \right \underline{a}^2 \right $.	
For these two vector	$= \underline{a} + 2\underline{b}$, $\overrightarrow{OB} = 3\underline{a}$ rs \underline{a} and \underline{b} , show	$\underline{a} - \underline{b}$ and OA and O that $5\underline{a} \cdot \underline{b} = 2 \underline{b}^2$	OB are perpe $\left -3 \right \underline{a}^2 \right $.	
For these two vector	$= \underline{a} + 2\underline{b}$, $\overrightarrow{OB} = 3\underline{a}$ rs \underline{a} and \underline{b} , show	$\underline{a} - \underline{b}$ and OA and O that $5\underline{a} \cdot \underline{b} = 2 \underline{b}^2$	OB are perpe $\left -3 \right \underline{a}^2 \right $.	
For these two vector	$= \underline{a} + 2\underline{b}$, $\overrightarrow{OB} = 3\underline{a}$ rs \underline{a} and \underline{b} , show	$\underline{a} - \underline{b}$ and OA and O that $5\underline{a} \cdot \underline{b} = 2 \underline{b}^2$	OB are perpe $\left -3 \right \underline{a}^2 \right $.	
For these two vector	$= \underline{a} + 2\underline{b}$, $\overrightarrow{OB} = 3\underline{a}$ rs \underline{a} and \underline{b} , show	$\underline{a} - \underline{b}$ and OA and O that $5\underline{a} \cdot \underline{b} = 2 \underline{b}^2$	OB are perpe $\left -3 \right \underline{a}^2 \right $.	
For these two vector	$= \underline{a} + 2\underline{b}$, $\overrightarrow{OB} = 3\underline{a}$ rs \underline{a} and \underline{b} , show	$\underline{a} - \underline{b}$ and OA and O that $5\underline{a} \cdot \underline{b} = 2 \underline{b}^2$	OB are perpe $\left -3 \right \underline{a}^2 \right $.	
For these two vector	$= \underline{a} + 2\underline{b}$, $\overrightarrow{OB} = 3\underline{a}$ rs \underline{a} and \underline{b} , show	$\underline{a} - \underline{b}$ and OA and O that $5\underline{a} \cdot \underline{b} = 2 \underline{b}^2$	OB are perpe $\left -3 \right \underline{a}^2 \right $.	
For these two vector	$= \underline{a} + 2\underline{b}$, $\overrightarrow{OB} = 3\underline{a}$ rs \underline{a} and \underline{b} , show	$\underline{a} - \underline{b}$ and OA and O that $5\underline{a} \cdot \underline{b} = 2 \underline{b}^2$	OB are perpe $\left -3 \right \underline{a}^2 \right $.	
For these two vector	$= \underline{a} + 2\underline{b}$, $\overrightarrow{OB} = 3\underline{a}$ rs \underline{a} and \underline{b} , show	$\underline{a} - \underline{b}$ and OA and O that $5\underline{a} \cdot \underline{b} = 2 \underline{b}^2$	OB are perpe $\left -3 \right \underline{a}^2 \right $.	
For these two vector	$= \underline{a} + 2\underline{b}$, $\overrightarrow{OB} = 3\underline{a}$ rs \underline{a} and \underline{b} , show	$\underline{a} - \underline{b}$ and OA and O that $5\underline{a} \cdot \underline{b} = 2 \underline{b}^2$	OB are perpe $\left -3 \right \underline{a}^2 \right $.	
For these two vector	$= \underline{a} + 2\underline{b}$, $\overrightarrow{OB} = 3\underline{a}$ rs \underline{a} and \underline{b} , show	$\underline{a} - \underline{b}$ and OA and O that $5\underline{a} \cdot \underline{b} = 2 \underline{b}^2$	OB are perpe $\left -3 \right \underline{a}^2 \right $.	
For these two vector	$= \underline{a} + 2\underline{b}$, $\overrightarrow{OB} = 3\underline{a}$ rs \underline{a} and \underline{b} , show	$\underline{a} - \underline{b}$ and OA and O that $5\underline{a} \cdot \underline{b} = 2 \underline{b}^2$	OB are perpe $\left -3 \right \underline{a}^2 \right $.	
For these two vector	$= \underline{a} + 2\underline{b}$, $\overrightarrow{OB} = 3\underline{a}$ rs \underline{a} and \underline{b} , show	$\underline{a} - \underline{b}$ and OA and O that $5\underline{a} \cdot \underline{b} = 2 \underline{b}^2$	OB are perpe $\left -3 \right \underline{a}^2 \right $.	
For these two vector	$= \underline{a} + 2\underline{b}$, $\overrightarrow{OB} = 3\underline{a}$ rs \underline{a} and \underline{b} , show	$\underline{a} - \underline{b}$ and OA and O that $5\underline{a} \cdot \underline{b} = 2 \underline{b}^2$	OB are perpe $\left -3 \right \underline{a}^2 \right $.	

$\sqrt{3}u$ m					_	_			
distance	e more tha	in d meters.	. Show	that	$u^2 > \frac{2}{1}$	$\frac{\sqrt{3}}{15}gd$			
						•••••			
		• • • • • • • • • • • • • • • • • • • •							
inclin	ed 30^0 to	l cross sec horizontal.	tion of a	fixed so	of mass 2	2 <i>m</i> is			 В О
incline place pass	ed 30^0 to d on the inthrough a	l cross sec horizontal. clined surf	tion of a A partic ace with h pulley	fixed since P of the help	of mass 2 lp of a s a movea	2 <i>m</i> is string able		Р	 В
place pass smoo	ed 30° to d on the ir through a through a	l cross sec horizontal.	tion of a A particate with h pulley m, as sho	fixed since P of the help	of mass 2 lp of a s a movea	2 <i>m</i> is string able		P •	В
place pass	ed 30° to d on the ir through a through a	l cross sectorizontal. Inclined surflight smoot C of mass	tion of a A particate with h pulley m, as sho	fixed since P of the help	of mass 2 lp of a s a movea	2 <i>m</i> is string able	30		В
place pass	ed 30° to d on the ir through a through a	l cross sectorizontal. Inclined surflight smoot C of mass	tion of a A particate with h pulley m, as sho	fixed since P of the help	of mass 2 lp of a s a movea	2 <i>m</i> is string able	30		В
place pass	ed 30° to d on the ir through a through a	l cross sectorizontal. Inclined surflight smoot C of mass	tion of a A particate with h pulley m, as sho	fixed since P of the help	of mass 2 lp of a s a movea	2 <i>m</i> is string able	30		B
place pass	ed 30° to d on the ir through a through a	l cross sectorizontal. Inclined surflight smoot C of mass	tion of a A particate with h pulley m, as sho	fixed since P of the help	of mass 2 lp of a s a movea	2 <i>m</i> is string able	30		С
place pass	ed 30° to d on the ir through a through a	l cross sectorizontal. Inclined surflight smoot C of mass	tion of a A particate with h pulley m, as sho	fixed since P of the help	of mass 2 lp of a s a movea	2 <i>m</i> is string able	30		В
place pass	ed 30° to d on the ir through a through a	l cross sectorizontal. Inclined surflight smoot C of mass	tion of a A particate with h pulley m, as sho	fixed since P of the help	of mass 2 lp of a s a movea	2 <i>m</i> is string able	30'		В
place pass	ed 30° to d on the ir through a through a	l cross sectorizontal. Inclined surflight smoot C of mass	tion of a A particate with h pulley m, as sho	fixed since P of the help	of mass 2 lp of a s a movea	2 <i>m</i> is string able	30'		С
place pass	ed 30° to d on the ir through a through a	l cross sectorizontal. Inclined surflight smoot C of mass	tion of a A particate with h pulley m, as sho	fixed since P of the help	of mass 2 lp of a s a movea	2 <i>m</i> is string able	30'		B C
place pass	ed 30° to d on the ir through a through a	l cross sectorizontal. Inclined surflight smoot C of mass	tion of a A particate with h pulley m, as sho	fixed since P of the help	of mass 2 lp of a s a movea	2 <i>m</i> is string able	30		С
place pass smoo	ed 30° to d on the ir through a through a	l cross sectorizontal. Inclined surflight smoot C of mass	tion of a A particate with h pulley m, as sho	fixed since P of the help	of mass 2 lp of a s a movea	2 <i>m</i> is string able	30		В
place pass smoo	ed 30° to d on the ir through a through a	l cross sectorizontal. Inclined surflight smoot C of mass	tion of a A particate with h pulley m, as sho	fixed since P of the help	of mass 2 lp of a s a movea	2 <i>m</i> is string able	30'		В
place pass	ed 30° to d on the ir through a through a	l cross sectorizontal. Inclined surflight smoot C of mass	tion of a A particate with h pulley m, as sho	fixed since P of the help	of mass 2 lp of a s a movea	2 <i>m</i> is string able	30'		B C

07).	A smooth uniform rod AB of length $2a$ is placed over a fixed smooth cylinder of radius a , which its axis is horizontal. The end B of the rod touches the cylinder tangentially, while the other end A contact with a rough horizontal floor as shown in the figure. In the position of equilibrium, the rod inclined α to horizontal. Show that $tan\alpha = \frac{4}{3}$.
	If the rod is just to slip, find the angle of friction. A
	А
08).	With respect to the OXY plane, two forces $\frac{1}{2}\underline{i} - 4j$ and $4\underline{i} - 5j$ are acts at the points
08).	With respect to the OXY plane, two forces $\frac{1}{2}\underline{i} - 4\underline{j}$ and $4\underline{i} - 5\underline{j}$ are acts at the points $i-2i$ and $-2i+j$ respectively. Find the resultant of these forces and the coordinate where
08).	With respect to the OXY plane, two forces $\frac{1}{2}\underline{i} - 4\underline{j}$ and $4\underline{i} - 5\underline{j}$ are acts at the points $\underline{i} - 2\underline{j}$ and $-2\underline{i} + \underline{j}$ respectively. Find the resultant of these forces and the coordinate where the resultant cuts the x-axis.
08).	$\underline{i} - 2\underline{j}$ and $-2\underline{i} + \underline{j}$ respectively. Find the resultant of these forces and the coordinate where
08).	$\underline{i} - 2\underline{j}$ and $-2\underline{i} + \underline{j}$ respectively. Find the resultant of these forces and the coordinate where
08).	$\underline{i} - 2\underline{j}$ and $-2\underline{i} + \underline{j}$ respectively. Find the resultant of these forces and the coordinate where
08).	$\underline{i} - 2\underline{j}$ and $-2\underline{i} + \underline{j}$ respectively. Find the resultant of these forces and the coordinate where
08).	$\underline{i} - 2\underline{j}$ and $-2\underline{i} + \underline{j}$ respectively. Find the resultant of these forces and the coordinate where
08).	$\underline{i} - 2\underline{j}$ and $-2\underline{i} + \underline{j}$ respectively. Find the resultant of these forces and the coordinate where
08).	$\underline{i} - 2\underline{j}$ and $-2\underline{i} + \underline{j}$ respectively. Find the resultant of these forces and the coordinate where
08).	$\underline{i} - 2\underline{j}$ and $-2\underline{i} + \underline{j}$ respectively. Find the resultant of these forces and the coordinate where
08).	$\underline{i} - 2\underline{j}$ and $-2\underline{i} + \underline{j}$ respectively. Find the resultant of these forces and the coordinate where
08).	$\underline{i} - 2\underline{j}$ and $-2\underline{i} + \underline{j}$ respectively. Find the resultant of these forces and the coordinate where
08).	$\underline{i} - 2\underline{j}$ and $-2\underline{i} + \underline{j}$ respectively. Find the resultant of these forces and the coordinate where
08).	$\underline{i} - 2\underline{j}$ and $-2\underline{i} + \underline{j}$ respectively. Find the resultant of these forces and the coordinate where
08).	$\underline{i} - 2\underline{j}$ and $-2\underline{i} + \underline{j}$ respectively. Find the resultant of these forces and the coordinate where
08).	$\underline{i} - 2\underline{j}$ and $-2\underline{i} + \underline{j}$ respectively. Find the resultant of these forces and the coordinate where

Part – B

11. (a). A train P pass a station X with a velocity u and an uniform retardation f, until its velocity is ku (k < 1) and then travels a certain distance with this constant velocity. Then it moves with an uniform acceleration f and acquires the velocity u, when it reaches the station Y.

At the same instant when the train P leaves the station X, another train Q starts from test from the station X and moves with an uniform acceleration f until it reaches its maximum velocity.

Then immediately it retardates uniformly with f^{-} , until it become rest at the station Y.

If both trains become rest at the station Y together after time t,

Draw the velocity time graph for the motion of both trains in same diagram.

Hence show that
$$\frac{u^2}{f}(1-k^2) + kut - \frac{2u^2k}{f}(1-k) = \frac{1}{4}f/t^2$$

If
$$f = 3f$$
 and $k = \frac{1}{3}$ Deduce that $\frac{u}{f} = \frac{3t}{8} (\sqrt{13} - 1)$

(b). A particle P is projected under gravity with velocity u, from a point O on the ground.

After a time $\frac{u}{2g}$, another particle Q projected with a velocity $\frac{5u}{4}$ from the same point O.

Using kinematic equations,

- (i) Find the time taken by the particle P to reach its maximum height.
- (ii) Find the vertical height from O, to the point where the two particles P and Q meet. Deduce that they meet at the maximum height of P.
- 12. A stone is projected with an initial speed u, at an acute angle α to the horizontal, from a point P, which is at a height h from a point O on the ground.

A bird rests on a top of a tree of height b, which is at a horizontal distance 2a from O. If this stone just pass near by the bird

Show that
$$2a^2g.tan^2\alpha - 2u^2a.tan\alpha + 2a^2g + u^2(b-h) = 0$$

If there exist two different paths to complete the above motion with the given speed,

Deduce that
$$u^2 > g\left\{ (b-h) + \sqrt{4a^2 + (b-h)^2} \right\}$$

Further if $u = 2\sqrt{ga}$, 2b = 5a and h = a,

- (i) Deduce that there exist only one angle of projection and show that its magnitude is $tan^{-1} 2$.
- (ii) Find the maximum height attained by the stone with respect to the ground level.
- (iii) Show that the time taken by the stone to just pass near by the bird and reach the ground within the time $T = \left(4 + \sqrt{26}\right) \sqrt{\frac{a}{5g}}$
- (iv) Find the horizontal distance from O, to the point where the stone reach the ground.

13. (a). A and B are two points with position vectors such that $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OB} = \underline{b}$ respectively.

With respect to above three points O, A and B, the position vectors of another three points C, D and E are as follows.

$$\overrightarrow{OC} = \underline{a} + \underline{b}$$
, $\overrightarrow{OD} = \frac{1}{2}\underline{a} + \underline{b}$ and $\overrightarrow{OE} = \frac{1}{3}\underline{b}$

Mark all these points with respect to $\mathbf{0}$ in a rough diagram.

Given that F is the mid point of the side OD.

Show that
$$\overrightarrow{EF} = \frac{1}{4}\underline{a} + \frac{1}{6}\underline{b}$$

Find \overrightarrow{EC} in terms of a and b.

Hence show that E, F and C points lie on a straight line.

Deduce the ratio EF: FC

(b). ABCD is a trapezium of which AB and CD are parallel, $\angle ABC = \frac{\pi}{2}$ and AB is horizontal. It is given that AB = 16m, BC = 12m and CD = 11m. Forces of magnitude 8, x, 13, 3 and 7 Newtons acts along the sides $\angle AB$, $\angle CA$, $\angle AD$, $\angle BC$, and $\angle DC$, respectively.

Show that this system cannot be in equilibrium.

If the system reduce to a single force of 15N, parallel to CA,

- (i) Find the magnitude of x.
- (ii) If this resultant cuts AB at E, find the length AE.

Now two forces of Newton λ and μ , introduce to the reduced system in the directions

 \overrightarrow{AB} and \overrightarrow{BC} respectively, such that the new system reduce to a couple.

Find the magnitude of λ and μ , and the magnitude and the sense of the couple.

14. (a). Two particle A and B of mass 2m and m respectively, are attached to the two ends of a light

inextensible string as shown in the figure. ${\bf P}$ and ${\bf R}$ are smooth light pulleys and ${\bf Q}$ is a smooth

movable pulley of mass 4m.

Initially the particle A on a smooth horizontal table,

is at a distance d from P, while the pulley Q is at a

vertical height h from the floor.

When the system is released from rest,

Show that the tension of the string is $\frac{6mg}{5}$.

When Q reaches the floor, if the particle A does not reach **P**, then show that 2d > 3h.

(Assume that in this instant, B does not reach R)

(b). ABC is a vertical cross section of a smooth wedge of mass λm through its center of mass, such that $A\hat{B}C = \alpha$. A particle **P** of mass m is placed on the incline surface as shown in the figure. This wedge is free to move along the smooth horizontal table.

A force of kmg, (k > 0) is applied horizontally

on the above plane ABC, in the direction of \overrightarrow{CB} .

Write down suitable equations of motion to determine the acceleration of the wedge.

Hence show that the acceleration of the wedge

is
$$\frac{g(k-\sin\alpha.\cos\alpha)}{\lambda+\sin^2\alpha}$$
.

Find the acceleration of the particle ${\bf P}$ relative to the

If the relative motion of the particle **P** is in uniform venous, according $\kappa = \sqrt{\kappa + 1}$ pure

15. (a). A smooth hemispherical bowl of radius r, is fixed on a horizontal floor, with its rim is uppermost and horizontal. A rod of length a and weight w is rest, with end A on the inner surface of the bowl and the end B extending outside of the rim.

The center of gravity G , of the rod is on the rod such that $AG = \lambda a$, $(0 < \lambda < 1)$.

In the position of equilibrium, the rod inclined an acute angle θ to the horizontal.

Show that
$$4r\cos^2\theta - \lambda a.\cos\theta - 2r = 0$$

If the rod is uniform, and the radius and the length of the rod are in the ratio of r^2 : $a^2 = 3:16$, deduce the value of θ .

Find the magnitude of the reaction on the rod at A In terms of w.

(b). A uniform ladder of weight w rest with one end A in contact with a rough horizontal floor and the other end B in contact with a rough vertical wall. The vertical plane through the ladder AB is perpendicular to the wall. An inextensible string is connected to the $mid\ point$ of the ladder and to a point C at the corner, such that $A\hat{C}B = \frac{\pi}{2}$.

In the position of equilibrium the ladder makes an acute angle α with the wall and the coefficient of friction at the both ends A and B is μ , $\left(<\tan^{\alpha}/2\right)$.

When the ladder is just to slip downward, show that the tension of the string is

$$T = \frac{w}{2\mu} \left[\left(1 - \mu^2 \right) \sin \alpha - 2\mu \cos \alpha \right]$$

If λ is the angle of friction, deduce that $T = \frac{w.\sin(\alpha - 2\lambda)}{\sin 2\lambda}$

