TENEMOS MUCHO QUE HACER JUNTOS

1- Introducción a Hyperledger Fabric: Conceptos Básicos

Tecnología Blockchain diseñada para el ámbito empresarial

Open source
collaborative effort to
advance cross-industry
blockchain
technologies

Hosted by
The Linux Foundation,
fastest-growing project in
LF history

Global collaboration spanning finance, banking, IoT, supply chains, healthcare, manufacturing, technology and more.

Miembros Hyperledger

Premier Members

General Members

Associate Members

Objetivos Hyperledger

Diferentes aproximaciones open-source de sistemas basados en tecnologías Blockchain para el ámbito empresarial

Create enterprise grade, open source, distributed ledger frameworks & code bases

to support business transactions

Provide neutral, open, & community-driven infrastructures

supported by technical and business governance

Build technical communities

to develop blockchain and shared ledger POCs, use cases, field trials and deployments

Educate the public

about the market opportunity for blockchain technology

Promote our community of communities

taking a toolkit approach with many platforms and frameworks

Proyectos Hyperledger

Infrastructure

Technical, Legal, Marketing, **Organizational**

Ecosystems that accelerate open development and commercial adoption

Frameworks

Meaningfully differentiated approaches to business blockchain frameworks developed by a growing community of communities

Tools

Typically built for one framework, and through common license and community of communities approach, ported to other frameworks

Frameworks Blockchain Hyperledger

Hyperledger Fabric

- O Base para el desarrollo de aplicaciones o soluciones Blockchain permisionadas con arquitectura modular.
- O Permite agregar como componentes pluq-and-play funcionalidades tales como el consenso o la membresía.
- Es el proyecto Hyperledger más activo.
- Impulsada por IBM.

Hyperledger Sawtooth

- Plataforma modular para la construcción, desarrollo y ejecución de ledgers distribuidos tanto permisionadas como no permisionadas.
- Utiliza un algoritmo de consenso PoET (Proof of Elapsed Time), que persigue el soporte de grandes redes con el mínimo consumo de recursos.
- Impulsada por Intel.

Hyperledger Indy

- Herramientas, librerías y componentes reusables para la provisión de identidades digitales originadas en redes Blockchain (u otro tipo de redes de ledgers distribuidos), de modo que puedan ser interoperables a través de dominios administrativos, aplicaciones, etc.
- Impulsada por la Sovrin Foundation.

Hyperledger Burrow

- Intérprete permisionado de Smart Contracts construido sobre la especificación de la Ethereum Virtual Machine (EVM).
- Está desarrollado en Solidity.

Hyperledger Iroha

- Framework Blockchain diseñado para ser sencillo y fácil de incorporar en proyectos de infraestructura que requieren tecnología de ledgers distribuidos.
- Optimizado para dispositivos móviles.
- O Desarrollado en C++.

- Blockchain privada y permisionada de ámbito empresarial
- Arquitectura modular
- Soporta canales para compartir información confidencial entre organizaciones.
- El Ordering Service entrega adecuadamente las transacciones a los nodos de la red.
- Las endorsement policies definen el proceso de aprobación de las transacciones.
- El world state soporta un abanico amplio de consultas (cuando se utiliza CouchDB).
- Abstracción de los procesos de autenticación y firma a través de un Membership Service Provider (MSP) plug-and-play.

Hyperledger Fabric: Componentes

Membership Service Provider (MSP)

- Provee credenciales y certificados de usuarios y nodos
- Abstrae de los procesos de autenticación y firma

Registro (ledger)

- Inmutabilidad
- Eficiencia en el coste (con respecto a blockchains públicas clásicas)
- Un ledger por canal
- Distribuida para las organizaciones del canal

Ordering Service

- Consenso intercambiable (plug-and-play)
- Ordenación de las transacciones en bloques
- Ordering System Channel:
 - Definición de consorcios
 - Constitución de nuevos canales

Red de nodos (Organizaciones)

- o 2 tipos de nodos:
 - Endorsers
 - Ejecutan y aprueban las transacciones
 - Committers (todos)
 - Verifican los endorsements
 - Validan los resultados de las transacciones
 - Almacenan el ledger
- Características
 - Garantía de origen
 - Acceso permisionado
 - Nodos distribuidos
 - Descentralización

Smart Contracts (Chaincode)

- Reglas de negocio
- Instalado en los peers asociados al canal
- Instanciados sobre el canal
- Lenguaje Go (entre otros)

Tipología de nodos

Orderers

- Encargados de la creación de canales y de la suscripción a los mismos → Ordering System Channel
- Ordenan las transacciones en bloques
- Orquestan la comunicación
- Consenso

Endorsers

- Ejecutan el chaincode
- Aprueban las transacciones
- Todos los endorsers son también committers (no necesariamente al revés)
- Endorsement policies: Indican las organizaciones cuyos endorsers han de aprobar las transacciones (AND, OR...)

Committers

- Verifican los endorsements
- Validan los resultados de las transacciones
- Almacenan el ledger (Blockchain + World State)

Membership Service Provider I

- Pluggable interface que soporta distintas arquitecturas de credenciales de autenticación y control de acceso.
- El MSP abstrae:
 - Formato de identidad concreto
 - Validación de las credenciales de usuario
 - Revocación de las credenciales de usuario
 - Generación y verificación de firmas
- La implementación por defecto del MSP en Fabric está basada en el modelo jerárquico PKI (Public Key Infrastructure):
 - o Identidad → Certificado X.509

Membership Service Provider II

- ECA (Enrollment CA) → Certificados de usuario
- TLSCA (TLS CA) → Securización de los canales de comunicación

Register

- Registro de una identidad
 - hf.Registrar.Roles: peer, app, user
 - Afiliación
 - Atributos
- Enrollment password

Enroll

 Generación de ECert, clave privada y cadena de certificación de una identidad previamente registrada

Smart Contracts

- Se les conoce como Chaincode
- Lenguajes:
 - Golang
 - Java
 - Python (incubation)
 - NodeJS (incubation)
- SDK:
 - Operaciones permitidas:
 - Register
 - Enroll
 - Create channel
 - Join channel
 - Install
 - Instantiate
 - Upgrade
 - Invoke
 - Query

Ledger

- Registro de transacciones.
- Un registro por canal:
 - Compartido por las organizaciones suscritas al canal.
 - Almacenado en committer nodes.
- 2 componentes:
 - World State: Guarda los valores actuales del estado del ledger.
 - Blockchain: Log de transacciones que recoge cada cambio que determina el world state actual.

Ledger: World State

- Guarda los valores actuales del estado del ledger.
- BBDD:
 - LevelDB → Clave-valor
 - CouchDB → Documentos JSON → Soporta consultas más complejas.

Ledger: Blockchain

- Log con todas las transacciones efectuadas sobre el canal, estructuradas en bloques enlazados criptográficamente mediante hashes.
- Inmutable.
- Implementado como un fichero (no como una BBDD).
- Se puede determinar el World State a partir de las transacciones de la Blockchain.

1. Transaction Proposal

El cliente firma una **Transaction Proposal** y la envía a los Endorser Peers.

2. Ejecución del chaincode

Los Endorser Peers verifican la firma y ejecutan la transacción.

3. Proposal Response

Los Endorser Peers firman las **Proposal Response** y las devuelven al cliente, que verifica las firmas requeridas para

4. Ordering Service

El cliente construye un único **Transaction Message** con todos los endorsements y hace un broadcast al Ordering Service.

5. Devolución del bloque

El Ordering Service envía el bloque a todos los committers de organizaciones suscritas al canal.

6. Inserción en el ledger

Los commiters verifican las endorsement policies, agregan el bloque a la Blockchain y actualizan el World State en consecuencia.

7. Fin.

El ledger del canal queda actualizado.

El SDK notifica al cliente que su transacción ha sido procesada.

Consenso

- Entre orderers del Ordering Service
- Pluggable
- Actualmente 3 posibilidades:
 - Solo
 - Testing
 - Un único orderer
 - Sin consenso
 - Kafka-based
 - Kafka: Sistema de mensajería publish-suscribe distribuido
 - Zookeeper: Servicio de coordinación de aplicaciones distribuidas de alto rendimiento
 - ZAB (Zookeeper Atomic Broadcast): PoC (Proof of Correctness)
 - PBFT
 - Practical Byzantine Fault Tolerance
 - En desarrollo

Hyperledger Fabric: Ventajas

- Gobernanza: Linux Foundation
- Amplia documentación y comunidad de desarrollo
- Plataforma modular (identidad, consenso...)
- Lenguajes de programación estándar: Go, Java, NodeJS y Python
 - Variables nativas
 - Clases
- Concepto de organización
- Canales privados
- Permisionado detallado
- BBDD modular:
 - LevelDB: Key-value
 - CouchDB: JSON documents
- Interledger (a través de Hyperledger Quilt)

Hyperledger Fabric: Desventajas

- Infraestructura compleja
 - Despliegue
 - Escalabilidad
- No incorpora una divisa nativa
- Privacidad de alto nivel (no llega a nivel de operación):
 - Canales privados
 - Lógica del propio chaincode
 - TLS → Comunicaciones punto a punto
 - Fabric 1.2:
 - Private Data Collections
 - Access Control Lists