In [19]:	<pre>import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline</pre>
In [18]:	<pre>#reading data from the given url url='http://bit.ly/w-data' b_data=pd.read_csv(url) b_data.head(10)</pre>
Out[18]:	Hours Scores 0 2.5 21 1 5.1 47
	2 3.2 27 3 8.5 75 4 3.5 30
	 5 1.5 20 6 9.2 88 7 5.5 60
In [20]:	 8 8.3 81 9 2.7 25
	#getting the shape of the data b_data.shape (25, 2)
In [21]:	# check for the descrpition of the data b_data.describe()
Out[21]:	Hours Scores count 25.000000 25.000000 mean 5.012000 51.480000 std 2.525094 25.286887
	min 1.100000 17.000000 25% 2.700000 30.000000 50% 4.800000 47.000000
Tr. [00].	75% 7.400000 75.000000 max 9.200000 95.000000
<pre>In [22]: Out[22]:</pre>	# check for the information about the given data b_data.info <bound 0="" 2.5="" 21<="" dataframe.info="" hours="" method="" of="" scores="" th=""></bound>
	1 5.1 47 2 3.2 27 3 8.5 75 4 3.5 30 5 1.5 20
	6 9.2 88 7 5.5 60 8 8.3 81 9 2.7 25 10 7.7 85 11 5.9 62
	12 4.5 41 13 3.3 42 14 1.1 17 15 8.9 95 16 2.5 30 17 1.9 24
	18 6.1 67 19 7.4 69 20 2.7 30 21 4.8 54 22 3.8 35
In [3]:	23 6.9 76 24 7.8 86> #plotting the data scores vs study hours b_data.plot(x='Hours', y='Scores', style='*') plt_ylabel('study Hours')
	<pre>plt.xlabel('study_Hours') plt.ylabel('percentage-Scores') plt.show()</pre>
	90 - * Scores * * * * * * * * * * * * * * * * * * *
	50 - ** * * * * * * * * * * * * * * * * *
	20 - * * * * * * * * * * * * * * * * * *
In [4]:	<pre>#prepare the data x=b_data.iloc[:,:-1].values y=b_data.iloc[:,1].values</pre>
In [24]:	<pre>#split the data into test data from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test= train_test_split(x,y,test_size=0.2,random_state=0)</pre>
In [25]:	<pre>#Training the algorithm for the model from sklearn.linear_model import LinearRegression regressor1=LinearRegression() regressor1.fit(x,y)</pre>
In [6]:	<pre>print("TRAINING COMPLETED") TRAINING COMPLETED #plotting the regression line</pre>
	<pre>line=regressor1.coef_*x+regressor1.intercept_ plt.scatter(x,y) plt.plot(x,line) plt.show()</pre>
	90 - 80 - 70 -
	60 - 50 - 40 -
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
In [7]:	<pre>#testing data print(x_test) #predicting the scores y_pred=regressor1.predict(x_test)</pre>
	[[1.5] [3.2] [7.4] [2.5]
In [26]:	[5.9]] y_pred array([17.14737849, 33.76624426, 74.8246185 , 26.92318188, 60.16091341])
In [8]:	<pre># Comparing actual and predicted data df=pd.DataFrame({'actual':y_test , 'predicted':y_pred}) df</pre>
Out[8]:	actual predicted 0 20 17.147378
	 27 33.766244 69 74.824618 30 26.923182 62 60.160913
In [9]:	<pre>print('training score:', regressor1.score(x_train,y_train)) print('testing score:', regressor1.score(x_test,y_test))</pre>
In [14]:	training score: 0.9512837351709387 testing score: 0.9491748734859172 df.plot(kind='bar', figsize=(6,6))
Out[14]:	<pre><axessubplot:> actual predicted</axessubplot:></pre>
	60
	50 - 40 -
	30 - 20 - 30
_	
In [16]:	hours=9.25 test=np.array([hours]) test=test.reshape(-1,1) own_pred= regressor1.predict(test)
	<pre>print('no of hours={}'.format(hours)) print('predicted scores={}'.format(own_pred[0])) no of hours=9.25 predicted scores=92.9098547701573</pre>
In [17]:	<pre>#checking the efficiency of the model import numpy as np from sklearn import metrics print('mean absolute error:', metrics.mean_absolute_error(y_test, y_pred))</pre>
	<pre>print('mean squared error:',metrics.mean_squared_error(y_test,y_pred)) print('root mean squared error:',np.sqrt(metrics.mean_squared_error(y_test,y_pred))) print('explained variance score:',metrics.explained_variance_score(y_test,y_pred)) mean absolute error: 4.071877793635605</pre>
	mean squared error: 20.138948129940175 root mean squared error: 4.487643939746131 explained variance score: 0.9515224335188082