6 Второе сопряженное пространство. Рефлексивные пространства

Опр. Пусть X – нормированное пространство. Пространство $X^{**}=(X^*)^*$ называется вторым сопряженным к X пространством.

Фиксируем элемент $x \in X$ и введем на X^* функционал $\pi x \in X^{**}$ формулой

$$\langle \pi x, x^* \rangle_{X^{**} \times X^*} = \langle x^*, x \rangle_{X^* \times X} \quad \forall \, x^* \in X^*$$

$$(6.1)$$

Заметим, что формула (6.1) действительно задает линейный функционал на X^* , причем этот функционал ограниченный, так как

$$|\langle \pi x, x^* \rangle_{X^{**} \times X^*}| = |\langle x^*, x \rangle_{X^{*} \times X}| \leqslant ||x^*||_{X^*} ||x||_X \quad \forall x^* \in X^*. \tag{6.2}$$

Опр. Отображение π , ставящее в соответствие элементу $x \in X$ функционал $\pi x \in X^{**}$, называется *оператором естественного вложения* пространства X во второе сопряженное пространство X^{**} .

Ясно, что оператор естественного вложения линеен.

Теорема 6.1. Оператор естественного вложения X в X^{**} – изометрический.

Доказательство. Фиксируем $x \in X, x \neq 0$. Из неравенства (6.2) следует, что

$$\|\pi x\|_{X^{**}} \leqslant \|x\|_X.$$

В силу следствия 4.1 из теоремы Хана-Банаха существует $x^* \in X^*$ такой, что $\langle x^*, x \rangle_{X^* \times X} = \|x\|_X$ и $\|x^*\|_{X^*} = 1$. Но

$$\|\pi x\|_{X^{**}} = \sup_{\|x^*\|_{X^*}=1} |\langle x^*, x \rangle_{X^* \times X}| \geqslant \|x\|_X.$$

Таким образом, $\|\pi x\|_{X^{**}} = \|x\|_X$.

Теорема доказана.

Следствие 6.1. Отождествляя X с $\pi(X) \subset X^{**}$ можно считать, что $X \subset X^{**}$.

Опр. Пространство X называется peфлексивным, если $\pi(X) = X^{**}$. Другими словами, пространство X называется рефлексивным, если для всякого функционала $x^{**} \in X^{**}$ существует элемент $x \in X$ такой, что

$$\langle x^{**}, x^* \rangle_{X^{**} \times X^*} = \langle x^*, x \rangle_{X^{*} \times X} \quad \forall x^* \in X^*.$$

Примеры рефлексивных пространств.

1. Всякое гильбертово пространство H рефлексивно. Действительно, в силу теоремы Рисса-Фреше для всякого $x^{**} \in H^{**}$ существует единственный элемент $h^* \in H^*$ такой, что

$$\langle x^{**}, x^* \rangle_{H^{**} \times H^*} = (x^*, h^*)_{H^*} = (Sh^*, Sx^*)_H \quad \forall x^* \in H^*.$$

Одновременно в силу той же теоремы

$$\langle x^*, x \rangle_{H^* \times H} = (x, Sx^*)_H.$$

Поэтому, взяв $x = Sh^*$, имеем

$$\langle x^{**}, x^* \rangle_{H^{**} \times H^*} = (x^*, h^*)_{H^*} = (Sh^*, Sx^*)_H = \langle x^*, x \rangle_{H^* \times H} \quad \forall x^* \in H^*.$$

2. Пространство $L_p(E)$ при 1 является рефлексивным. Из теоремы 5.3 следует, что

$$(L_p(E))^* \approx L_{p'}(E) \Rightarrow (L_p(E))^{**} \approx (L_{p'}(E))^* \approx L_p(E).$$

Замечание 6.1. Пространства $L_1(E)$ и $L_{\infty}(E)$ не являются рефлексивными.

Теорема 6.2. Любое рефлексивное пространство является банаховым.

Доказательство. Пространство X^{**} полно как сопряженное к нормированному пространству X^* . В силу рефлексивности X пространство X^{**} изометрически изоморфно X. Следовательно X также полно.

Теорема доказана.