CHAPTER 1: FOURIER SERIES

REAL FOURIER SERIES Orthonormal Basis: The set of functions $\{\frac{\sin(k\pi x/a)}{\sqrt{\pi}}, \frac{1}{\sqrt{2\pi}}, \frac{\cos(k\pi x/a)}{\sqrt{\pi}}\}$ with $k=1,2,\ldots$, is an orthonormal set of functions in $L^2([-a,a])$. Fourier Coefficients: If $f(t)=a_0+\sum_{k=1}^\infty a_k\cos(k\pi t/a)+\sum_{k=1}^\infty b_k\sin(k\pi t/a)$ on the interval $-a\leq t\leq a$, then $a_0=\frac{1}{2a}\int_{-a}^a f(t)dt,\ a_k=\frac{1}{a}\int_{-a}^a f(t)\cos(k\pi t/a)dt$ and $b_k=\frac{1}{a}\int_{-a}^a f(t)\sin(k\pi t/a)dt$.

COMPLEX FOURIER SERIES Orthonormal Basis: The set of functions $\{\frac{1}{\sqrt{2a}}e^{i\frac{n\pi}{a}t}, n=0,\pm 1,\pm 2,\dots\}$ is an orthonormal basis for $L^2([-a,a])$. Fourier Coefficients: If $f(t) = \sum_{n=-\infty}^{\infty} \alpha_n e^{i\frac{n\pi}{a}t}$, then $\alpha_n = \frac{1}{2a} \int_{-a}^{a} f(t) e^{-i\frac{n\pi}{a}t} dt$ CONVERGENCE THEOREMS Riemann-Lebesgue **Lemma:** Suppose f is a piecewise continuous function on the interval [a,b]. Then $\lim_{k\to\infty} \int_a^b f(x)\cos(kx)dx =$ $\lim_{k\to\infty} \int_a^b f(x) \sin(kx) dx = 0$. Convergence at a **Point of Continuity:** Suppose f is a continuous and 2π periodic function. Then for each point x, where the derivative of f is defined, the Fourier series of f converges to Convergence at a Point of Discontinuity: Suppose f is periodic function and piecewise continuous. Suppose x is a point where f is left and right differentiable (but not necessarily continuous). Then the Fourier series of f at x converges to $\frac{f(x-0)+f(x+0)}{2}$, i.e., converges to the average of the left and right limits of f. form Convergence: The Fourier series of a continuous, piecewise smooth 2π -periodic function f(x) converges uniformly to f(x) on $[-\pi, \pi]$. Lemma 1.33: Suppose $f(x) = a_0 + \sum_{k=1}^{\infty} a_k \cos(kx) + \sum_{k=1}^{\infty} b_k \sin(kx)$ with $\sum_{k=1}^{\infty} |a_k| + |b|$: $k < \infty$. Then the Fourier series converges uniformly and absolutely to the function f(x). Convergence in the Mean: Suppose f is an element of $L^2([-\pi,\pi])$. Let $f_N(x) = a_0 + \sum_{k=1}^N a_k \cos(kx) + \sum_{k=1}^N b_k \sin(kx)$, where a_k and b_k are the Fourier coefficients of f. Then f_N converges to f in $L^2([-\pi,\pi])$, that is, $||f_N - f||_{L^2} \to 0$ as $N \to \infty$. **Parseval's Equation - Real Version:** Suppose $f(x) = a_0 + \sum_{k=1}^{\infty} a_k \cos(kx) + \sum_{k=1}^{\infty} b_k \sin(kx) \in L^2[-\pi, \pi]$. Then $\frac{1}{\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = 2|a_0|^2 + \sum_{k=1}^{\infty} (|a_k|^2 + |b_k|^2)$. **Parse**val's Equation - Complex Version: Suppose f(x) = $\sum_{k=-\infty}^{\infty} \alpha_k e^{ikx} \in L^2[-\pi,\pi]$. Then $\frac{1}{2\pi} ||f||^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \sum_{k=-\infty}^{\infty} |\alpha_k|^2.$

CHAPTER 2:FOURIER TRANSFORM

Definition: If f is a continuously differentiable function with $\int_{-\infty}^{\infty} |f(t)| dt < \infty$, then $f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\lambda) e^{i\lambda t} d\lambda$, where $\hat{f}(\lambda)$ is the Fourier transform of f(t) given by $\hat{f}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\lambda t} dt$. **Properties:**

- $\mathcal{F}[\alpha f + \beta g] = \alpha \mathcal{F}[f] + \beta \mathcal{F}[g] // \mathcal{F}^{-1}[\alpha f + \beta g] = \alpha \mathcal{F}^{-1}[f] + \beta \mathcal{F}^{-1}[g]$
- $\mathcal{F}[t^n f(t)](\lambda) = i^n \frac{d^n}{d\lambda^n} \{ \mathcal{F}[f](\lambda) \}$
- $\mathcal{F}^{-1}[\lambda^n f(\lambda)](t) = (-i)^n \frac{d^n}{dt^n} \{\mathcal{F}^{-1}[f](t)\}$
- $\mathcal{F}[f^{(n)}(t)](\lambda) = (i\lambda)^n \mathcal{F}[f](\lambda)$
- $\mathcal{F}^{-1}[f^{(n)}(\lambda)](t) = (-it)^n \mathcal{F}^{-1}[f](t)$
- $\mathcal{F}[f(t-a)](\lambda) = e^{-i\lambda a}\mathcal{F}[f](\lambda)$
- $\mathcal{F}[f(bt)](\lambda) = \frac{1}{b}\mathcal{F}[f](\frac{\lambda}{b})$
- If f(t < 0) = 0, then $\mathcal{F}[f](\lambda) = \frac{1}{\sqrt{2\pi}} \mathcal{L}[f](i\lambda)$, where $\mathcal{L}[f](s) = \int_0^\infty f(t)e^{-ts}dt$.

Convolution: Suppose f and g are two square integrable functions. The convolution of f and g is defined by $(f * g)(t) = \int_{-\infty}^{\infty} f(t-x)g(x)dx = \int_{-\infty}^{\infty} f(x)g(t-x)dx$. Fourier Transform of the Convolution: $\mathcal{F}[f * g] = \sqrt{2\pi}\mathcal{F}[f] \cdot \mathcal{F}[g], \quad \mathcal{F}^{-1}[\hat{f} \cdot \hat{g}] = \frac{1}{\sqrt{2\pi}}(f * g).$

Pancherel Theorem: The Fourier transform, and its inverse, preserves the L^2 inner product.

 $\langle \mathcal{F}[f], \mathcal{F}[g] \rangle_{L^2} = \langle f, g \rangle_{L^2} \text{ and } \langle \mathcal{F}^{-1}[f], \mathcal{F}^{-1}[g] \rangle_{L^2} = \langle f, g \rangle_{L^2}.$

LINEAR FILTERS Time Invariance: A transformation L (mapping signals to signals) is said to be time-invariant if for any signal f and any real number a, $L[f_a](t) = (Lf)(t-a)$ for all t. In other words, L is time-invariant if the time shifted input signal f(t-a) is transformed by L into the time shifted output signal (Lf)(t-a). Lemma 2.16: Let L be a linear, time-invariant transformation and let λ be any fixed real number. Then, there is a function h with $L(e^{i\lambda t}) = \sqrt{2\pi} h(\lambda) e^{i\lambda t}$. In other words, the output signal from a time-invariant filter of a sinusoidal input is also sinusoidal with the same frequency. Convolution in Filters: Let L be a linear, time-invariant transformation on the space of signals that are piecewise continuous functions. Then there exists an integrable function, h, such that L(f) = f * hCausal Filters: A causal filter is one for which the output signal begins after the input signal has started to arrive. Let L be a time-invariant filter with response function h (i.e., Lf = f * h). L is a causal filter if and only if h(t) = 0 for all t < 0. **Theorem 2.20:** Suppose L is a causal filter with response function h. Then the system function associated with L is $\hat{h}(\lambda) = \frac{\mathcal{L}[h](i\lambda)}{\sqrt{2\pi}}$.

THE SAMPLING THEOREM Definition 2.22: A function f is said to be frequency band limited if there exists a constant $\Omega > 0$ such that $f(\lambda) = 0$ for $|\lambda| > \Omega$. Note: Ω is the smallesq frequency for which the preceding equation is true. Shannon-Whittaker Sampling Theorem: Suppose that $\hat{f}(\lambda)$ is piecewise smooth and continuous and that $\hat{f}(\lambda) = 0$ for $|\lambda| > \Omega$, where Ω is some fixed, positive frequency. Then $f = \mathcal{F}^{-1}[f]$ is completely determined by its values at the points $t_j = \frac{j\pi}{\Omega}, j = 0, \pm 1, \pm 2, \ldots$ More precisely, f has the following series expansion: $f(t) = \sum_{j=-\infty}^{\infty} f\left(\frac{j\pi}{\Omega}\right) \frac{\sin(\Omega t - j\pi)}{\Omega t - j\pi}$, where the series converges uniformly.

CHAPTER 3: DISCRETE FOURIER TRANSFORM

Set of n-periodic sequences: Let S_n be the set of n-periodic sequences of complex numbers. Each element $y=y_{j_{j=-\infty}^{\infty}}$ in S_n , can be thought of as a periodic discrete signal where y_j is the value of the signal at a time node $t=t_j$. The sequence y_j is n-periodic if $y_{k+n}=y_k$ for any integer k. Definition: Suppose $y=y_k$ is an element of S_n . Let $\mathcal{F}_n(y)=\hat{y}$. That is, $\hat{y}_k=\sum_{j=0}^{n-1}y_j\overline{w}^{jk}$, where $w=e^{\frac{2\pi}{n}i}$. Then $y=\mathcal{F}^{-1}(\hat{y})$ is given by $y_j=\frac{1}{n}\sum_{k=0}^{n-1}\hat{y}_kw^{jk}$. Properties:

- Shifts or translations. If $y \in \mathcal{S}_n$ and $z_k = y_{k+1}$, then $\mathcal{F}[z]_j = w^j \mathcal{F}[y]_j$
- Convolutions. If $y \in \mathcal{S}_n$ and $z \in \mathcal{S}_n$, then the sequence $[y*z]_k := \sum_{j=0}^{n-1} y_j z_{k-j}$ is also in \mathcal{S}_n . The sequence y*z is called the convolution of the sequences y and z.
- The Convolution Theorem. $\mathcal{F}[y*z]_k = \mathcal{F}[y]_k \mathcal{F}[z]_k$
- If $y \in \mathcal{S}_n$ is a sequence of real numbers, then $\mathcal{F}[y]_{n-k} = \overline{\mathcal{F}[y]}_k$, for $k \in [0, n-1]$, or $\hat{y}_{n-k} = \overline{\hat{y}}_k$

CHAPTER 4: HAAR WAVELET ANALYSIS

Haar Scaling function: The Haar scaling function is defined as $\phi(x) = 1$ if $x \in [0,1]$. **Definition:** Suppose j is any nonnegative integer. The space of step functions at level j, denoted by V_j , is defined to be the space spanned by the set $\{\ldots, \phi(2^j+1), \phi(2^j), \phi(2^j-1), \phi(2^j-2), \ldots\}$. Theo**rem 4.5:** A function f(x) belongs to $V_0//V_j$ if and only if $f(2^{j}x)//f(2^{-j}x)$) belongs to $V_{j}//V_{0}$. Theorem 4.6: The set of functions $\{2^{j/2}\phi(2^jx-k); k\in\mathbb{Z}\}$ is an orthonormal basis of V_j . Haar Wavelet: The Haar wavelet is function $\psi(x) = \phi(2x) - \phi(2x - 1)$. **Theorem 4.8:** Let W_i be the space of functions of the form $\sum_{k\in\mathbb{Z}} a_k \psi(2^j x - k), \ a_k \in \mathbb{R}$ (only a finite number of a_k are nonzero). W_j is the orthogonal complement of V_j in V_{j+1} and $V_{j+1} = V_j \bigoplus W_j$. **Theorem 4.9:** The space $L^2(\mathbb{R})$ can be decomposed as an infinite orthogonal direct sum $L^2(\mathbb{R}) = V_0 \oplus W_0 \oplus W_1 \dots$ In particular, each $f \in L^2(\mathbb{R})$ can be written as $f = f_0 + \sum_{i=0}^{\infty} w_i$, where $f_0 \in V_0$ and $w_i \in W_i$.

SAMPLE If the signal is continuous, y = f(t), where t represents time, choose the top level j = J so that 2^j is larger than the Nyquist rate for the signal. Let $a_k^J = f(k/2^J)$. The top level a_k^J is set equal to the kth term in the sampled signal, and 2^J is taken to be the sampling rate. In any case, we have the highest-level approximation to f given by $f_J = \sum_{k \in \mathbb{Z}} a_k^j \phi(2^J x - k)$.

DECOMPOSITION Lemma 4.10: The following relations hold for all $x \in \mathbb{R}$. $\phi(2^{j}x) = (\phi(2^{j-1}x) + \psi(2^{j-1}x))/2$. $\phi(2^{j}x - 1) = (\phi(2^{j-1}x) - \psi(2^{j-1}x))/2$. **Theorem 4.12:** Suppose $f_{j}(x) = \sum_{k \in \mathbb{Z}} a_{k}^{j} \phi(2^{j}x - k) \in V_{j}$. Then f_{j} can be decomposed as $f_{j} = w_{j-1} + f_{j-1}$, where $w_{j-1} = \sum_{k \in \mathbb{Z}} b_{k}^{j-1} \psi(2^{j-1}x - k) \in W_{j-1}$ and $f_{j-1} = \sum_{k \in \mathbb{Z}} a_{k}^{j-1} \phi(2^{j-1}x - k) \in V_{j-1}$, with $b_{k}^{j-1} = \frac{a_{jk}^{j} - a_{jk+1}^{j}}{2}$ and $a_{k}^{j-1} = \frac{a_{jk}^{j} + a_{jk+1}^{j}}{2}$.

RECONSTRUCTION Theorem 4.12: If $f = f_0 + w_0 + w_1 + \cdots + w_{j-1}$ with $f_0(x) = \sum_{k \in \mathbb{Z}} a_k^0 \phi(x - k) \in V_0$ and $w_j = \sum_{k \in \mathbb{Z}} b_k^j \psi(2^j x - k) \in W_j$ for $0 \le j \le J$, then $f(x) = f_J(x) = \sum_{k \in \mathbb{Z}} a_k^J \phi(2^J x - k) \in V_J$. The a_k^J are determined recursively by $a_k^J = a_l^{J-1} + b_l^{J-1}$ if k = 2l is even and $a_k^J = a_l^{J-1} - b_l^{J-1}$ if k = 2l + 1 is odd.

CHAPTER 5: MULTIRESOLUTION ANALYSIS

Definition: Let $V_j, j = \cdots -1, 0, 1 \ldots$, be a sequence of subspaces of cuntions in $L^2(\mathbb{R})$. The collection of spaces $\{V_j, j \in \mathbb{Z}\}$ is called a multiresolution analysis with scaling function ϕ if the following conditions hold. 1. (Nested) $V_j \subset V_{j+1}$. 2. (Density) $\overline{\cup V_j} = L^2(\mathbb{R})$. 3. (Separation) $\cap V_j = \{0\}$ 4. (Scaling) See Theorem 4.5(b) 5. (Orthonormal basis) The function ϕ belongs to V_0 and the set $\{\phi(x-k); k \in \mathbb{Z}\}$ is an orthonormal basis for V_0 . Theorem 5.5: Suppose $\{V_j; j \in \mathbb{Z}\}$ is a multiresolution analysis with scaling function ϕ . Then for any $\in \mathbb{Z}$, the set of functions $\{\phi_{jk}(x) = 2^{j/2}\phi(2^jx - k); k \in \mathbb{Z}\}$ is an orthonormal basis for V_i .

THE SCALING RELATION Theorem 5.6: Suppose

 $\{V_j; j \in \mathbb{Z}\}$ is a multiresolution analysis with scaling function ϕ . Then the following scaling relation holds: $\phi(x) = \sum_{k \in \mathbb{Z}} p_k \phi(2x-k)$, where $p_k = 2 \int_{-\infty}^{\infty} \phi(x) \overline{\phi(2x-k)} dx$. Moreover, we also have $\phi_{j-1,l} = 2^{-1/2} \sum_{k \in \mathbb{Z}} p_{k-2l} \phi_{jk}$.

over, we also have $\phi_{j-1,l} = 2^{-1/2} \sum_{k \in \mathbb{Z}} p_{k-2l} \phi_{jk}$. **Remark:** When the support of ϕ is compact, only a finite number of p_k are nonzero, because when |k| is large enough, the support of $\phi(2x-k)$ will be outside of the support of $\phi(x)$. Theorem 5.9: Suppose $\{V_i; j \in \mathbb{Z}\}$ is a multiresolution analysis with scaling function ϕ . Then, provided the scaling relation can be integrated termwise, the following equalities hold: 1. $\sum_{k\in\mathbb{Z}}p_{k-2l}\overline{p_k}=2\delta_{l0}$. 2. $\sum_{k\in\mathbb{Z}}|p_k|^2=2$. 3. $\sum_{k\in\mathbb{Z}}p_k=2$. 4. $\sum_{k\in\mathbb{Z}}p_{2k}=1$ and $\sum_{k\in\mathbb{Z}}p_{2k+1}=1$. Theorem 5.10: Suppose $\{V_j; j\in\mathbb{Z}\}$ \mathbb{Z} is a multiresolution analysis with scaling function $\phi =$ $\sum_{k} p_k \phi(2x-k)$. Let W_j be the span of $\{\psi(2^j x-k); k \in \mathbb{Z}\}$ where $\psi(x) = \sum_{k \in \mathbb{Z}} (-1)^k \overline{p_{1-k}} \phi(2x-k)$. Then, $W_j \subset V_{j+1}$ is the orthogonal complement of V_j in V_{j+1} . Furthermore, $\{\psi_{jk}(x):=2^{j/2}\psi(2^jx-k);k\in\mathbb{Z}\}$ is an orthonormal basis for the W_i . Theorem 5.11: Let $\{V_i, j \in \mathbb{Z}\}$ be a multiresolution analysis with scaling function ϕ . Let W_i be the orthogonal complement of V_j in V_{j+1} . Then $L^2(\mathbb{R}) =$ $\cdots \bigoplus W_{-1} \bigoplus W_0 \bigoplus W_1 \bigoplus \cdots$ In particular, each $f \in L^2(\mathbb{R})$ can be uniquely expressed as a sum $\sum_{k\in\mathbb{Z}} w_k$ with $w_k \in W_k$ and where the w_k 's are mutually orthogonal. Equivalently, the set of all wavelets, $\{\psi_{jk}\}_{j,k\in\mathbb{Z}}$, is an orthonormal basis for $L^2(\mathbb{R})$.

 $\begin{array}{lll} \underline{\mathbf{DECOMPOSITION}} & \underline{\mathbf{Orthogonal}} & \underline{\mathbf{Form:}} & a_l^{j-1} = \\ 2^{-1} \sum_{k \in \mathbb{Z}} \overline{p_{k-2l}} a_k^j & \mathrm{and} & b_l^{j-1} = 2^{-1} \sum_{k \in \mathbb{Z}} (-1)^k p_{1-k+2l} a_k^j \\ \mathbf{ON} & \underline{\mathbf{Form:}} & \langle f, \phi_{j-1,l} \rangle = 2^{-1/2} \sum_{k \in \mathbb{Z}} \overline{p_{k-2l}} \langle f, \phi_{jk} \rangle & \mathrm{and} \\ \langle f, \psi_{j-1,l} \rangle = 2^{-1/2} \sum_{k \in \mathbb{Z}} (-1)^k p_{1-k+2l} \langle f, \phi_{jk} \rangle & \end{array}$

APPENDIX

Identities: $\sin^2 x = (1 - \cos 2x)/2, \cos^2 x = (1 + \cos 2x)/2,$ $e^{ix} = \cos x + i \sin x, e^{-ix} = \cos x - i \sin x,$ $e^{ix} + e^{-ix} = 2 \cos x,$

 $e^{ix} - e^{-ix} = 2i\sin x.$

Sum and Difference Formula: $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$. $\cos(A \mp B) = \cos A \cos B \pm \sin A \sin B$. $\tan(A \pm B) = (\tan A \pm \tan B)/(1 \mp \tan A \tan B)$.

Double Angle Formula: $\sin(2A) = 2\sin A \cos A$. $\cos(2A) = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$. $\tan(2A) = (2\tan A)/(1 - \tan^2 A)$.

Sum to Product: $\sin A \pm \sin B = 2\sin((A \pm B)/2)\cos((A \mp B)/2)$. $\cos A - \cos B = -2\sin((A + B)/2)\sin((A - B)/2)$. $\cos A + \cos B = 2\cos((A + B)/2)\cos((A - B)/2)$.

 $\cos A + \cos B = 2\cos((A+B)/2)\cos((A-B)/2).$ Geometric Sum: $\sum_{k=0}^{N} z^k = \frac{1-z^{N+1}}{1-z}.$ $\sum_{k=0}^{\infty} z^k = \frac{1}{1-z}.$ Integrals:

$$\int (a+bx)\cos(kx)dx = \frac{(a+bx)\sin(kx)}{k} + \frac{b\cos(kx)}{k^2} + C$$

$$\int (a+bx)\sin(kx)dx = \frac{b\sin(kx)}{k^2} - \frac{(a+bx)\cos(kx)}{k} + C$$

$$\int (a+bx)e^{ikx}dx = \frac{e^{ikx}(b-ik(a+bx))}{k^2} + C$$