CS171: Cryptography

Lecture 20

Sanjam Garg

Zero-Knowledge Proof System

- **Syntax**: Two algorithms, $P(1^n, x, w)$ and $V(1^n, x)$.
- ▶ Completeness: Honest prover convinces an honest verifier with overwhelming probability.

$$\Pr[V \text{ outputs } 1 \text{ in the interaction } P(1^n, x, w) \leftrightarrow V(1^n, x)] = 1 - \operatorname{neg}(n)$$

▶ Soundness: A PPT cheating prover P^* cannot make a Verifier accept a false statement. For all PPT P^* , x such that $\forall w$, C(x, w) = 0then we have that

$$\Pr[V \text{ outputs } 1 \text{ in the interaction } P^*(1^n, x) \leftrightarrow V(1^n, x)] = \operatorname{neg}(n)$$

▶ Zero-Knowledge: The proof doesn't leak any information about the witness w. \exists a simulator \mathcal{S} that for all PPT V^* , x, w such that C(x, w) = 1, we have that \forall PPT D:

$$\left| \Pr[D(V^* \text{'s view in } P(1^n, x, \textcolor{red}{\textbf{w}}) \leftrightarrow V^*(1^n, x)) = 1] - \Pr[D(\mathcal{S}^{V^*}(1^n, x)) = 1] \right| \leq \frac{1}{2} + \mathsf{neg}(n)$$

Graph Three Coloring Problem

- ▶ Graph G = (V, E).
- ▶ Task: Show a coloring function $c: V \to \{R, B, G\}$ such that such that $\forall (u, v) \in E$, we have that $c(u) \neq c(v)$.

Not every graph is three-colorable. Figuring out whether a graph is three-colorable is believed to be computationally hard.

Zero-Knowledge Proof System for Graph Three Coloring Problem

Completeness: Note $c(u) \neq c(v)$. Thus, $\pi(c(u)) \neq \pi(c(v))$ and verifier accepts.

Soundness: Let $com_v = Com(col_v; r_v)$. Since the graph is not three colorable $\exists e = (u, v) \in E$ such that $col_u = col_v$. Verifier challenges on this edge e with probability 1/|E|. Thus, rejects with probability at least $\frac{1}{|E|}$

Verifier outputs 1 if $com_u = Com(col_u; r_u)$, $com_v = Com(col_v; r_v)$ and $col_u \neq col_v$ and 0 otherwise.

Soundness Amplification

- ightharpoonup Repeat the protocol n|E| times.
- A malicious prover succeeds in the i^{th} execution with probability $\leq (1 \frac{1}{|E|})$.
- ► A malicious prover succeds in all *n*|*E*| execution with probability

$$\leq \left(1-rac{1}{|E|}
ight)^{n|E|}pprox e^{-n}$$
 which is negligible in n .

Zero Knowledge (Simulator)

- ► The verifier is now malicious and can have arbitrary behavior and output.
- Simulator attempts to generate an indistinguishable output — without the witness's knowledge.

- ▶ $Pr[e = e^*] = 1/|E|$. Furthermore, when this happens, the output of the adversary is indistinguishable from the case with an honest prover. (Note that commitment is hiding.)
- ► Simulator runs the malicious verifier roughly |*E*| times to get an output.

Zero Knowledge - Simulation by Cropping Undesirable Parts

- ► Great skill?
- ► Took 156 attempts.
- ► Hard to distinguish.

Zero Knowledge — Simulator output is Indistingusiable

Hybrid H_0 .

Hybrid H_1 . (Information theoretically indistinguishable from H_0 . Cropping Argument.)

Hybrid H_2 . (Indistinguishable from H_1 using the hiding property of the commitment scheme.)

Hybrid H_3 . (Only renaming things from H_3 . Not using c anymore.)

Thank You!