Homework 5 David Yang

Chapter 9 (The Fundamental Group) Problems.

Section 53 (Covering Spaces), 53.3

Let x_0 and x_1 be points of the path-connected space X. Show that $\pi_1(X, x_0)$ is abelian if and only if every pair α and β of paths from x_0 to x_1 , we have $\hat{\alpha} = \hat{b}$.

Solution. We begin with the forward implication. Let $[f] \in \pi_1(X, x_0)$ and let α and β be two paths from x_0 to x_1 . Since $[\bar{\alpha}] * [\alpha] = e_{x_1}$ and $[\beta] * e_{x_1} * [\bar{\beta}] = e_{x_0}$, it follows that

$$[f] = [\beta] * [\bar{\alpha}] * [\alpha] * [\bar{\beta}] * [f].$$

Equivalently,

$$[f] = [\beta * \bar{\alpha}] * [\alpha * \bar{\beta}] * [f].$$

Furthermore, note that $[\alpha * \bar{\beta}]$ is a loop based at x_0 , so it is in $\pi_1(X, x_0)$, which is abelian. Consequently, $[\alpha * \bar{\beta}]$ commutes with [f], so $[\alpha * \bar{\beta}] * [f] = [f] * [\alpha * \bar{\beta}]$. This gives us

$$\begin{split} [f] &= [\beta * \bar{\alpha}] * [\alpha * \bar{\beta}] * [f] \\ &= [\beta * \bar{\alpha}] * [f] * [\alpha * \bar{\beta}] \\ &= [\beta] * [\bar{\alpha}] * [f] * [\alpha] * [\bar{\beta}] \end{split}$$

Finally, multiplying both sides by $[\bar{\beta}]$ on the left and by $[\beta]$ on the right and simplifying, we get that

$$[\bar{\beta}]*[f]*[\beta] = [\bar{\alpha}]*[f]*[\alpha]$$

and this is equivalent to

$$\hat{\alpha}([f]) = \hat{\beta}([f]).$$

We conclude that for any two paths α and β from x_0 to x_1 , $\hat{\alpha} = \hat{\beta}$, as desired.

It remains to show the reverse implication. Suppose that for any two paths α and β of paths from x_0 to x_1 , $\hat{\alpha} = \hat{b}$. Let $[f_1]$ and $[f_2]$ be distinct path homotopy classes in $\pi_1(X, x_0)$. To show that $\pi_1(X, x_0)$ is abelian, we will show that $[f_1] * [f_2] = [f_2] * [f_1]$.

Note that $f_1 * \alpha$ and $f_2 * \alpha$ are two paths from x_0 to x_1 , so we know that $\widehat{f_1 * \alpha} = \widehat{f_2 * \alpha}$. It follows that $\widehat{f_1 * \alpha}([f_1]) = \widehat{f_2 * \alpha}([f_1])$, so

$$[\overline{f_1 * \alpha}] * [f_1] * [f_1 * \alpha] = [\overline{f_2 * \alpha}] * [f_1] * [f_2 * \alpha].$$

Simplifying, we have that

$$\overline{[f_1 * \alpha]} * [f_1] * [f_1 * \alpha] = \overline{[f_2 * \alpha]} * [f_1] * [f_2 * \alpha]
\Longrightarrow [\bar{\alpha} * \bar{f}_1] * [f_1] * [f_1 * \alpha] = [\bar{\alpha} * \bar{f}_2] * [f_1] * [f_2 * \alpha]
\Longrightarrow [\bar{\alpha}] * [\bar{f}_1] * [f_1] * [f_1] * [\alpha] = [\bar{\alpha}] * [\bar{f}_2] * [f_1] * [f_2] * [\alpha].$$

Multiplying both sides on the left by $[\alpha]$ and on the right by $[\bar{\alpha}]$ and simplifying further, we have that

$$[\bar{\alpha}] * [\bar{f}_1] * [f_1] * [f_1] * [\alpha] = [\bar{\alpha}] * [\bar{f}_2] * [f_1] * [f_2] * [\alpha].$$

 $\implies [f_1] = [\bar{f}_2] * [f_1] * [f_2].$

Finally, multiplying both sides on the left by $[f_2]$, we get that

$$[f_2] * [f_1] = [f_1] * [f_2]$$

as desired. Thus, we conclude that for any two elements $[f_1]$ and $[f_2]$ in $\pi_1(X, x_0)$, $[f_1] * [f_2] = [f_2] * [f_1]$, so $\pi_1(X, x_0)$ is abelian, as desired.

Let $p: E \to B$ be a covering map.

b) If B is compact and $p^{-1}(b)$ is finite for each $b \in B$, then E is compact.

Solution. ¹ Let $U = \bigcup_{\alpha \in J} U_{\alpha}$ be an open cover of E. Since p is a covering map, it is both an open map, so that $p(U_{\alpha})$ is open, and surjective onto B. Consequently, $\bigcup_{\alpha \in J} p(U_{\alpha})$ is a union of open sets which covers E; equivalently, $\bigcup_{\alpha \in J} p(U_{\alpha})$ is an open cover of B. Let $b \in B$. Since p is a covering map, b has a neighborhood V_b that is openly covered by p. For each $b \in B$, pick an arbitrary $p(U_{\alpha}^b)$ containing it; we denote this as \tilde{V}_{α}^b . It follows that the collection of

$$\{V_b \cap \tilde{V}_\alpha^b \mid b \in B\}$$

is an open covering of B – each element is the intersection of open sets which is open, and this set contains every point $b \in B$. Since B is compact, this open covering has a finite subcovering, which we will describe as

$$\{V_{b_i} \cap \tilde{V}_{\alpha}^{b_i} \mid i \in \{1, \dots, n\}\}$$

for each $b_i \in B$.

Consider now

$$p^{-1}\left(\bigcup_{i\in\{1,\dots,n\}} V_{b_1} \cap \tilde{V}_{\alpha}^{b_1}\right) = \bigcup_{i\in\{1,\dots,n\}} p^{-1}(V_{b_1}) \cap p^{-1}(\tilde{V}_{\alpha}^{b_1})$$
$$= \bigcup_{i\in\{1,\dots,n\}} p^{-1}(V_{b_1}) \cap U_{\alpha}^{b_1}$$

which is an open cover of E – each element is an intersection of open sets in E and it covers E. Furthermore, it has a finite number of open sets, as $p^{-1}(b)$ is finite for any $b \in B$.²

It follows that we can pick the set $U_{\alpha}^{b_i}$ for $i \in \{1, ..., n\}$ to be an finite subcovering of the open cover U^3 . Thus, any open cover of E has a finite subcovering, and so E is compact.

¹constructed with Zoe's help. Also, I think there are a few steps that are not quite correct in the proof but I have tried for quite a while to fix them to no avail. Will be at Office Hours to talk about it.

²I don't think is quite true as I'm working with an open set and using the fact that the inverse image of a point in E is finite.

³Also not sure about this, as I feel that I am neglecting the $p^{-1}(V_{b_1})$ part of the construction

Suppose X is contractible. Prove that there is a bijection between [X,Y] and the set of path components of Y.

Solution. ⁴ Since X is contractible, the identity map i_X is homotopic to a constant map. Let F be this homotopy, the continuous map $F: X \times I \to X$ satisfying

$$F(x,0) = i_X(x) = x$$
 and $F(x,1) = x_0$

for all $x \in X$ and some fixed $x_0 \in X$.

Let f be a continuous map from X into Y where $f(x_0) = y_0$ for some $y_0 \in Y$. It follows that f is homotopic to the constant map from X to Y sending any element in X to y_0 . The homotopy between these two maps, which we will denote as $G: X \times I \to Y$, is defined by G(x,t) = f(F(x,t)) and satisfies

$$G(x,0) = f(F(x,0)) = f(x)$$
 and $G(x,1) = f(F(x,1)) = f(x_0) = y_0$.

Furthermore, let $y_1 \in Y$ be in the same path component as y_1 . We claim that f is homotopic to the constant map from X to Y sending any element of X to y_0 . Since y_0 and y_1 are in the same path component of Y, there is some path p connecting them. Let us parametrize p so that $p: I \to Y$ satisfies $p(0) = y_0$ and $p(1) = y_1$. The homotopy between f and the constant map from X to Y sending any element of X to y_1 is $H: X \times I \to Y$ defined by

$$H(x,t) = \begin{cases} G(x,2t) & \text{if } t \le \frac{1}{2} \\ p(2t-1) & \text{if } t > \frac{1}{2} \end{cases}.$$

H is continuous, as $H\left(x,\frac{1}{2}\right)=G(x,1)=p(0)=y_0$; furthermore,

$$H(x,0) = G(x,0) = f(x)$$
 and $H(x,1) = p(1) = y_1$.

Thus, the maps f of X into Y correspond directly to the constant maps from X to Y. Furthermore, if two constant maps yield values in the same path component of Y, they are in the same homotopy class. Thus, we conclude that there is a bijection between [X,Y], the set of homotopy classes of maps of X into Y and the path components of Y, as desired.

⁴constructed with Phil's help.