

TEST REPORT – EMC Emissions

Report Number: 100320162DEN-001 Project Number: G100320162

Report Issue Date: 02/28/2011

Product Designation: Model: Magic Closer (Base and Remote)

Standards: FCC 47 CFR Part 15.247

Tested by:

Intertek Testing Services NA, Inc. 1795 Dogwood Street, Suite 200 Louisville, CO 80027 Client:

JCV Enterprises 1490 East Mineral Place Centennial, CO 80122

Report prepared by

Randy Thompson Senior EMC Project Engineer Report reviewed by

Michael Spataro Engineering Team Leader

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Report Number: 100320162DEN-001 Issued: 02/28/2011

TABLE OF CONTENTS

Sed	ction	Page
1	Introduction and Conclusion	4
2	Test Summary	4
3	Description of Equipment Under Test	6
4 dia	System setup including cable interconnection details, support equipment and simplifications are supported in the control of th	
5 Fui	Radiated Emissions – Intentional Radiators: Output Power - Fundamental & Harmonic ndamental	
6	Radiated Emissions – Unintentional and Spurious	26
7	6dB Bandwidth	41
8	Power Spectral Density (PSD)	48
9	Band Edge Measurements	57
10	Duty Cycle & Duty Cycle Correction Factor	64
11	AC Conducted Emissions	71
12	Measurement Uncertainty	79
13	Revision History	80

Product Tested:

Magic Closer (Automatic Garage Door Closer)

Base Product

Remote Product

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 3.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded **the product tested complies with the requirements of the standard(s) indicated.** The results obtained in this test report pertain only to the item(s) tested.

2 Test Summary

Section	Test full name	Test date	Result
5	Radiated Emissions – Output Power of the Fundamental & Harmonics of the Fundamental - FCC 247(b)(3) (d)/15.205	02/07/2011 02/08/2011 02/11/2011	Pass
6	Radiated Emissions – Unintentional & Spurious - FCC 15.209/ 15.247(d)	02/07/2011 02/08/2011 02/11/2011	Pass
7	6dB Bandwidth – FCC 15.247 (a)(2)	02/08/2011	Pass
8	Power Spectral Density (PSD) – FCC 15.247(e)	02/08/2011	Pass
9	Band Edge Measurements – FCC 15.247(d) / 15.209	02/08/2011	Pass
10	Duty Cycle & Duty Cycle Correction Factor	02/07/2011	N/A
11	AC Conducted Emissions – FCC 15.107/15.207	04/01/2011	Pass

Notes:

1) Both the Base and Remote product have integral antennas – therefore, all measurements are radiated field strength.

Report Number: 100320162DEN-001	Issued: 02/28/2011

General Remarks:

The following remarks are to be considered as "where applicable" and are taken into account while completing any FCC/IC/ETSI Radio tests at Intertek-Louisville.

Testing was performed in 3 different orthogonal axes to determine the worst-case emissions from the device. The worst-case axis and emissions are shown in this report.

FCC CFR47 Part 15.31: Measurement Standards: In any case where the device is powered off a battery, a fresh battery was used during testing. In cases where the device is powered of an AC Supply, voltage was varied per Part 15.31 to find worst-case emissions.

FCC CFR Part 15.35: Measurement Detector Functions and Bandwidths: FCC Part 15.35 was utilized when performing measurements within this report.

Whenever possible the approved test procedures specified in FCC KDB 558074 for DTS devices was used for testing.

The products tested were configured with integral antennas – therefore all measurements are radiated field strength measurements. If antenna conducted port tests cannot be performed, radiated field strength measurements may be taken to demonstrate compliance with the various conducted port power requirements of FCC 15.247. When applicable, the following equation was utilized to covert measurements from conducted port power to radiated field strength for a given test distance.

Limit Calculation:

$$P = (E x d)^2 / (30 x G)$$

Whereby:

P = Power in watts

E= measured maximum field strength in Volts/meter

d = test distance in meters from which the field strength was measured

G = numeric gain of the transmitting antenna over an isotropic radiator

If the antenna gain is not known (declared by the client) at the time of testing, unity gain is assumed in all calculations for worst-case.

Report Number: 100320162DEN-001	Issued: 02/28/2011

3 Description of Equipment Under Test

Equipment Under Test							
Description	Model Number	Serial Number					
Automatic Garage Door Closer	JCV Enterprises	Magic Closer Base	28				
Automatic Garage Door Closer	JCV Enterprises	Magic Closer Remote	29				

Receive Date:	02/08/2011
Received Condition:	Good
Туре:	Production Samples

Description of Equipment Under Test (provided by client)

The Magic Closer is an automated/ programmable garage door closer.

The following products were tested:

- 1. Base unit
- 2. Remote unit

Both products operate in the frequency range of: $2.425~\mathrm{GHz} - 2.475~\mathrm{GHz}$. Both products are DTS utilizing digital modulation.

The products will be marketed initially in the US.

Equipment Under Test Power Configuration						
Rated Voltage Rated Current Rated Frequency Number of Phases						
Remote unknown 3.0 VDC Battery						
Base ac adapter Input: 120Vac Output: 12Vdc	unknown 200mA	60Hz 	1			

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	Tx - Product set up in transmit mode at full power, CW mode (for testing only)
2	Rx – Product set up in "standby" receive mode

Clock Frequencies of the EUT:

No.	Descriptions of Product Clocks
1	Transmit Frequency: 2.425 GHz, 2.450GHz and 2.475GHz (Low, Mid and High Channels)
2	Lowest Frequency Utilized: 16 MHz

4 System setup including cable interconnection details, support equipment and simplified block diagram

4.1 Method:

Record the details of EUT cabling, document the support equipment, and show the interconnections in a block diagram.

4.2 EUT Block Diagram:

I	n	t	е	rt	e	k
---	---	---	---	----	---	---

Report Number: 100320162DEN-001	Issued: 02/28/2011

4.3 Data:

ID	Cable Description	Length	Shielding	Ferrites
1	None			
				-

Support Equipment										
Description	Manufacturer	Model Number	Serial Number							
AC Adapter Base Product Only	Radio Shack	Cat No. 43-1008	06945							

General notes:

1. Product did not require any support equipment other than the above ac adapter

5 Radiated Emissions – Intentional Radiators: Output Power - Fundamental & Harmonics of the Fundamental

Unless otherwise stated no deviations were made from ANSI C63.10 and FCC publication KDB 558074 for DTS devices.

Intertek Louisville's emissions testing facility is located at 1795 Dogwood Street, Suite 200, Louisville, CO 80027. The emissions testing facility is ISO17025:2005 accredited.

5.1 Test Equipment Used:

Asset ID:	Description:	Manufacturer:	<u>Model:</u>	<u>Serial:</u>	Cal Date	Cal Due
18882	Spectrum Analyzer (dc-22 GHz) Spectrum Analyzer Display	Hewlett-Packard	8566B	2410A00154	12/06/2010	12/06/2011
18660	Section (set 1)	Hewlett-Packard	85662A	2318A04983	12/06/2010	12/06/2011
18880	Q.P Adapter	Hewlett-Packard	85650A	2811A01300	12/06/2010	12/06/2011
18913	Spectrum Analyzer	Hewlett-Packard	E7405A	My44211889	05/07/2010	05/07/2011
18906 18900 18901	Pre-Amplifier (1-4 GHz) RF Pre-Amplifier (4-8 GHz) RF Pre-Amplifier (8-18 GHz)	Mini-Circuits Lab Avantek Avantek	ZHL-42 AFT97-8434- 10F AWT-18037	N052792-2 1007 1002	06/11/2010 06/07/2010 06/07/2010	06/11/2011 06/07/2011 06/07/2011
18886	Ridged Guide Antenna 1-18GHz	TENSOR	4105	2020	10/08/2010	10/08/2011
18805	HF Antenna/Harmonic Mixer 18 GHz to 26.5 GHz	Hewlett-Packard	11970K	2332A01280	10/04/2010	10/04/2011

5.2 Results:

The sample tested was found to Comply.

FCC 247(b)(3) (d)/15.205

5.3 Setup Photographs – Base Product:

Test setup – Front View

Photo:

Test setup – Rear View

Photo:

Worst-Case Axis 1 (EUT Flat on Table)

Axis 3 (EUT Vertical & Rotated 90 degrees)

5.4 Setup Photographs – Remote Product:

Test setup – Front View

Photo:

Test setup – Rear View

Photo:

Worst-Case Axis 1 (EUT Flat on Table)

Axis 3 (EUT Vertical & Rotated 90 degrees)

Photo: Antenna Setups

Ridge Guide Horn (1 GHz to 18GHz)

HF Harmonic Mixer (antenna/pre-amp/cables (18 GHz to 26.5 GHz)

Report Number: 100320162DEN-001	Issued: 02/28/2011

5.5 Test Data - Base Product:

Fundamental and Spurious of the Transmitter

Test	t Report #:	100320162	Test Area:	CC1 Radiated (3m)	Temperature:	22.4	°C
Te	st Method:	FCC 15.247	Test Date:	08-Feb-2011	Relative Humidity:	27.1	%
EU	T Model #:	Magic Closer - Base	EUT Power:	12 VDC AC Adapter	VDC AC Adapter Air Pressure		kPa
	EUT	Serial #: 29			_		
Manu	facturer:	JCV Enterprises			Leve	l Key	
EUT Des	scription:	Garage Door Closer			Pk – Peak	Nb – Nar	row Band
Notes: Testing Base Product – Product transmitting full power CW					Qp – QuasiPeak	Bb – Broa	ad Band
-	Note: Pro	oduct configured specifically for	Av - Average				
-							

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit FCC 15.247	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)

The following Duty Cycle was determined from actual measurements by Intertek:

5.2%

Averaging method for pulsed signals and calculation in accordance to FCC CFR47 Part 15.35 utilized to calculate field strength emissions.

The testing performed in accordance to FCC CFR47 Part 15.205 (restricted bands of operation) and 15.247 emissions and delta limits were calculated as follows:

Final Corrected Peak Measurement - Duty Cycle Correction Factor* = Final Calculated Emission

The Final Calculated Emission was then compared to the Limits in CFR47 Part 15.209 and 15.247 and the emission/limit delta was calculated.

DTCF is calculated as follows 20*log₁₀(duty cycle in 100mS).

Part 15.247 and 15.205 Respectively

Fundamental Measurements

Fundamental -	LOW	Channel -	Avic 1	/FIIT	Flat on	Tabl

2475.4	96.5 Pk	3.6 / 28.4 / 37.7	90.7	V / 2.1 / 168.0	0.0	90.7	125.2	-34.5	
2475.4	107.5 Pk	3.6 / 28.4 / 37.7	101.8	H / 1.6 / 145.0	0.0	101.8	125.2	-23.4	
Axis 2 (EUT Vertical)									
2475.4	98.2 Pk	3.6 / 28.4 / 37.7	92.4	H / 2.2 / 140.0	0.0	92.4	125.2	-32.8	
2475.4	97.2 Pk	3.6 / 28.4 / 37.7	91.4	V / 1.4 / 158.0	0.0	91.4	125.2	-33.8	
Axis 3 (EU	T Vertical &	Rotated 90 degrees)	_						
2475.4	102.4 Pk	3.6 / 28.4 / 37.7	96.6	V / 2.4 / 98.0	0.0	96.6	125.2	-28.6	
2475.4	103.2 Pk	3.6 / 28.4 / 37.7	97.4	H / 1.6 / 148.0	0.0	97.4	125.2	-27.8	

Fundamental -	Mid Channel -	Avis 1 /FI	IT Flat or	Table)
Fullualliellai -	Wild Challier -	AXIS I (E)	JI FIAL UI	i iabie;

2450.4	106.5 Pk	3.6 / 28.3 / 37.7	100.6	H / 1.7 / 142.0	0.0	100.6	125.2	-24.6	
2450.4	99.0 Pk	3.6 / 28.3 / 37.7	93.2	V / 2.1 / 202.0	0.0	93.2	125.2	-32.0	
Axis 2 (EUT Vertical)									
2450.4	96.2 Pk	3.6 / 28.3 / 37.7	90.4	V / 1.4 / 146.0	0.0	90.4	125.2	-34.8	
2450 4	94 9 Pk	36/283/377	89 1	H / 1 9 / 146 0	0.0	89 1	125.2	-36.1	

Report Number: 100320162DEN-001	Issued: 02/28/2011

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit FCC	DELTA
							15.247	
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
Axis 3 (EU	T Vertical &	Rotated 90 degrees)						
2450.4	100.8 Pk	3.6 / 28.3 / 37.7	95	H / 1.7 / 159.0	0.0	95.0	125.2	-30.2
2450.4	101.0 Pk	3.6 / 28.3 / 37.7	95.2	V / 2.4 / 92.0	0.0	95.2	125.2	-30.0
Fundamer	ntal - High Ch	nannel – Axis 1 (EUT I	Flat on Tab	le)				
2425.4	96.3 Pk	3.5 / 28.3 / 37.7	90.5	V / 2.2 / 184.0	0.0	90.5	125.2	-34.7
2425.4	102.7 Pk	3.5 / 28.3 / 37.7	96.9	H / 1.5 / 254.0	0.0	96.9	125.2	-28.3
Axis 2 (EU	T Vertical)							
2425.4	93.3 Pk	3.5 / 28.3 / 37.7	87.5	H / 1.9 / 142.0	0.0	87.5	125.2	-37.7
2425.4	96.6 Pk	3.5 / 28.3 / 37.7	90.8	V / 1.4 / 152.0	0.0	90.8	125.2	-34.4
Axis 3 (EU	T Vertical &	Rotated 90 degrees)						
2425.4	99.7 Pk	3.5 / 28.3 / 37.7	93.9	V / 2.4 / 96.0	0.0	93.9	125.2	-31.3
2425.4	99.8 Pk	3.5 / 28.3 / 37.7	93.9	H / 1.7 / 164.0	0.0	93.9	125.2	-31.3

Electric Field to Power Conversion - Base Product

From FCC KDB 558074 - Alternative Test Procedures.

If antenna conducted tests cannot be performed on this device, radiated tests to show compliance with the peak output power limit specified in Section 15.247(b) and the spurious RF conducted emission limit specified in Section 15.247(c) are acceptable. As stated previously, a pre-amp, and, in the latter case, a high pass filter, are required for the following measurements.

1) Calculate the transmitter's peak power using the following equation:

$$E = \frac{\sqrt{30PG}}{d}$$

Where: E is the measured maximum fundamental field strength in V/m, utilizing a RBW ≥ the 20 dB bandwidth of the emission, VBW > RBW, peak detector function. Follow the procedures in C63.4-1992 with respect to maximizing the emission.

G is the numeric gain of the transmitting antenna with reference to an isotropic radiator.

d is the distance in meters from which the field strength was measured.

P is the power in watts for which you are solving:

$$P = \frac{(E*d)^2}{30G}$$

In this case:

E = 101.8 dB/uV (from above low channel - axis 1) = 0.1230 V/m

D = 3 meters

G = 1 (unity, worst-case)

P = 0.0045 W

Limit from 15.247(b)(3) = 1.0 W

Delta = 0.0045 - 1.0 = -0.9955 W

Report Number: 100320162DEN-001 Issued: 02/28/2011

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit FCC 15.247	DELTA		
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
Harmonics of the Fundamental - Worst-Case Axis 1 – FCC Restricted Bands are Highlighted in Yellow										
Harmonics	s - Low Char	nnel								
4850.81	57.1 Pk	5.2 / 33.3 / 39.2	56.4	H / 1.3 / 140.0	25.7	30.7	54.0	-23.3		
4850.81	51.1 Pk	5.2 / 33.3 / 39.2	50.4	V / 1.6 / 218.0	25.7	24.7	54.0	-29.3		
7276.21	45.5 Pk	6.4 / 36.3 / 39.6	48.6	H / 1.5 / 212.0	25.7	22.9	54.0	-31.1		
7276.21	46.0 Pk	6.4 / 36.3 / 39.6	49.1	V / 1.6 / 218.0	25.7	23.4	54.0	-30.6		
9701.6	46.1 Pk	7.6 / 37.7 / 47.9	43.6	V / 1.7 / 1.4	25.7	17.9	81.8	-63.9		
9701.63	39.1 Pk	7.6 / 37.7 / 47.9	36.5	H / 1.4 / 164.0	25.7	10.8	81.8	-71.0		
12127	46.0 Pk	8.8 / 40.1 / 45.4	49.4	V / 1.3 / 156.0	25.7	23.7	54.0	-30.3		
12127	32.5 Pk	8.8 / 40.1 / 45.4	35.9	H / 1.4 / 164.0	25.7	10.2	54.0	-43.8		
14552.4	31.1 Pk	9.5 / 49.2 / 47.5	42.3	V / 1.3 / 156.0	25.7	16.6	81.8	-65.2		
14552.4	31.4 Pk	9.5 / 49.2 / 47.5	42.6	H / 1.4 / 212.0	25.7	16.9	81.8	-64.9		
16977.8	48.8 Pk	10.5 / 41.5 / 47.2	53.7	V / 1.3 / 156.0	25.7	28.0	81.8	-53.8		
16977.8	27.6 Pk	10.5 / 41.5 / 47.2	32.5	H / 1.3 / 192.0	25.7	6.8	81.8	-75.0		
19400	35.2 Pk	0.0 / 22.2 / 0.0	57.4	V / 1.0 / 0.0	25.7	31.7	54.0	-22.3		
21825.1	36.4 Pk	0.0 / 21.4 / 0.0	57.8	V / 1.0 / 0.0	25.7	32.1	81.8	-49.7		
24250	35.9 Pk	0.0 / 21.4 / 0.0	57.3	V / 1.0 / 0.0	25.7	31.6	81.8	-50.2		
	- Mid Chan									
4900.81	49.1 Pk	5.2 / 33.4 / 39.2	48.6	V / 1.8 / 210.0	25.7	22.9	54.0	-31.1		
4900.81	59.3 Pk	5.2 / 33.4 / 39.2	58.7	H / 1.4 / 138.0	25.7	33.0	54.0	-21.0		
7351.24	47.4 Pk	6.5 / 36.4 / 39.4	50.8	V / 1.6 / 224.0	25.7	25.1	54.0	-28.9		
7351.24	47.6 Pk	6.5 / 36.4 / 39.4	51	H/1.5/182.0	25.7	25.3	54.0	-28.7		
9801.65	39.9 Pk	7.7 / 37.8 / 48.0	37.3	H / 1.5 / 176.0	25.7	11.6	80.6	-69.0		
9801.65	41.6 Pk	7.7 / 37.8 / 48.0	39.1	V / 1.3 / 210.0	25.7	13.4	80.6	-67.2		
12252	32.0 Pk	8.8 / 41.0 / 45.2	36.6	H / 1.4 / 210.0 V / 1.4 / 216.0	25.7	10.9	54.0	-43.1		
12252	30.6 Pk	8.8 / 41.0 / 45.2	35.1		25.7	9.4	54.0	-44.6		
14702.4	33.0 Pk	9.5 / 46.7 / 47.4	41.8	H / 1.4 / 198.0	25.7	16.1	80.6	-64.5		
14702.4 17152.8	31.4 Pk	9.5 / 46.7 / 47.4	40.1	V / 1.3 / 154.0	25.7	14.4	80.6	-66.2		
	34.8 Pk 33.9 Pk		42.1	H / 1.3 / 168.0	25.7	16.4	80.6	-64.2		
17152.8		10.6 / 43.2 / 46.6	41.2	V / 1.3 / 154.0	25.7	15.5	80.6	-65.1		
19600	35.0 Pk		57	V/1.0/0.0	25.7	31.3	54.0	-22.7		
22050 24500	36.7 Pk 36.1 Pk	0.0/21.3/0.0	58 57.8	V / 1.0 / 0.0 V / 1.0 / 0.0	25.7 25.7	32.3 32.1	54.0 80.6	-21.7 -48.5		
24000	30.1 PK	0.0 / 21.7 / 0.0	31.0	v / 1.0 / 0.0	23.1	32.1	00.0	-4 0.3		
]				
<u> </u>										

Harmonics	s - High Cha	nnel						
4950.82	57.7 Pk	5.2 / 33.5 / 39.1	57.3	H / 1.4 / 138.0	25.7	31.6	54.0	-22.4
4950.82	48.9 Pk	5.2 / 33.5 / 39.1	48.4	V / 1.7 / 208.0	25.7	22.7	54.0	-31.3
7426.22	45.9 Pk	6.5 / 36.4 / 39.4	49.4	H / 1.4 / 188.0	25.7	23.7	54.0	-30.3
7426.24	47.5 Pk	6.5 / 36.4 / 39.4	51	V / 1.6 / 236.0	25.7	25.3	54.0	-28.7
9901.6	39.5 Pk	7.7 / 37.8 / 48.1	36.9	V / 1.3 / 198.0	25.7	11.2	76.9	-65.7
9901.6	37.8 Pk	7.7 / 37.8 / 48.1	35.2	H / 1.4 / 198.0	25.7	9.5	76.9	-67.4
12377	25.2 Pk	8.9 / 41.9 / 45.0	31.1	V / 1.3 / 168.0	25.7	5.4	54.0	-48.6
12377	24.2 Pk	8.9 / 41.9 / 45.0	30.1	H / 1.4 / 204.0	25.7	4.4	54.0	-49.6
14852.4	30.2 Pk	9.6 / 45.0 / 47.4	37.4	V / 1.3 / 168.0	25.7	11.7	76.9	-65.2
14852.4	31.2 Pk	9.6 / 45.0 / 47.4	38.4	H / 1.4 / 204.0	25.7	12.7	76.9	-64.2
17327.8	36.7 Pk	10.7 / 44.7 / 45.9	46.1	V / 1.3 / 170.0	25.7	20.4	76.9	-56.5
17327.8	35.5 Pk	10.7 / 44.7 / 45.9	45	H / 1.3 / 204.0	25.7	19.3	76.9	-57.6
19800	35.2 Pk	0.0 / 21.8 / 0.0	57	V / 1.0 / 0.0	25.7	31.3	54.0	-22.7
22275	36.3 Pk	0.0 / 21.1 / 0.0	57.4	V / 1.0 / 0.0	25.7	31.7	54.0	-22.3
24750	35.9 Pk	0.0 / 21.6 / 0.0	57.5	V / 1.0 / 0.0	25.7	31.8	76.9	-45.1
								_

Example calculation for Intentional Radiated Emissions:

Measured Level	+	Transducer, Cable Loss Pre- Amplifier	=	Corrected Reading	-	Duty Cycle Correction	=	FINAL Measurement	-	Specification Limit	=	Delta from Specification Limit
(dBμV)		(dB)		(dBµV/m)		(dBµV/m)		(dBµV/m)		(dBµV/m)		
24.0		14.9		38.9		10.0		28.9		40.0		-11.1

Notes:

- 1. All above measurements are peak detector measurements
- Worst-Case Harmonic Duty-Cycle Corrected Measurement Mid Channel @ 4900.81 MHz, 33.0 dBuV/m (21.0 dB below Limit). This signal was within the FCC Restricted Band, where the limit is 54dBuV/m.
- 3. Worst-Case Harmonic outside the FCC Restricted Band High Channel @ 24750MHz, 31.8 dBuV/m (- 45.1 dBc). The limit is -20 dBc

Deviations, Additions, or Exclusions: None

Report Number: 100320162DEN-001	Issued: 02/28/2011
-	·

5.6 Test Data – Remote Product:

Fundamental and Spurious of the Transmitter

Test	t Report #:	100320162	Test Area:	CC1 Radiated (3m)	Temperature:	21.2	°C
Te	st Method:	FCC 15.247	Test Date:	07-Feb-2011	Relative Humidity:	25.8	%
EU	T Model #:	Magic Closer - Remote	EUT Power:	3 VDC Battery	Air Pressure:	81.2	kPa
	EUT	Serial #: 28					_
Manu	facturer:	JCV Enterprises			Level	Key	
EUT Des	scription:	Garage Door Closer			Pk – Peak	Nb – Nar	row Band
Notes:	Testing F	Remote Product – Product trai	nsmitting full powe	r CW	Qp – QuasiPeak	Bb – Broa	ad Band
-	Note: Pro	duct configured specifically for t	his test – not norma	operation	Av - Average		
-							

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit FCC 15.247	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)

The following Duty Cycle was determined from actual measurements by Intertek:

3.2%

Averaging method for pulsed signals and calculation in accordance to FCC CFR47 Part 15.35 utilized to calculate field strength emissions.

The testing performed in accordance to FCC CFR47 Part 15.205 (restricted bands of operation) and 15.247 emissions and delta limits were calculated as follows:

Final Corrected Peak Measurement – Duty Cycle Correction Factor* = Final Calculated Emission

The Final Calculated Emission was then compared to the Limits in CFR47 Part 15.209 and 15.247 and the emission/limit delta was calculated. the DTCF is calculated as follows 20*log₁₀(duty cycle in 100mS).

Part 15.247 and 15.205 Respectively

Fundamental Measurements

Fundamental - Low Channel - Axis 1 (EUT Flat on Table)

2425.37	105.3 Pk	3.5 / 28.3 / 37.7	99.5	H / 1.7 / 124.0	0.0	99.5	125.2	-25.7			
2425.37	100.5 Pk	3.5 / 28.3 / 37.7	94.7	V / 2.1 / 204.0	0.0	94.7	125.2	-30.5			
Axis 2 (EUT Vertical)											
2425.37	97.3 Pk	3.5 / 28.3 / 37.7	91.5	V / 2.1 / 144.0	0.0	91.5	125.2	-33.7			
2425.37	92.8 Pk	3.5 / 28.3 / 37.7	86.9	H / 1.7 / 148.0	0.0	86.9	125.2	-38.3			
Axis 3 (EU	T Vertical &	Rotated 90 degrees)									
2425.37	100.3 Pk	3.5 / 28.3 / 37.7	94.5	H / 1.5 / 145.0	0.0	94.5	125.2	-30.7			
2425.37	100.1 Pk	3.5 / 28.3 / 37.7	94.3	V / 1.9 / 98.0	0.0	94.3	125.2	-30.9			

Fundamental	- Mid	Channel -	– Axis	1 (EUT	Flat on	Table)
--------------------	-------	-----------	--------	--------	---------	--------

2450.4	101.1 Pk	3.6 / 28.3 / 37.7	95.3	V / 2.0 / 210.0	0.0	95.3	125.2	-29.9		
2450.4	105.8 Pk	3.6 / 28.3 / 37.7	100	H / 1.7 / 125.0	0.0	100.0	125.2	-25.2		
Axis 2 (EUT Vertical)										
2450.4	96.6 Pk	3.6 / 28.3 / 37.7	90.8	H / 1.7 / 212.0	0.0	90.8	125.2	-34.4		
2450 4	98 7 Pk	36/283/377	92.8	V / 2 3 / 210 0	0.0	92.8	125.2	-32 4		

Report Number: 100320162DEN-001	Issued: 02/28/2011

FREQ	LEVEL	CABLE / ANT /	FINAL	POL / HGT / AZ	Duty Cycle	Final Corrected	Limit	DELTA
		PREAMP			Correction		FCC	
							15.247	
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
Avic 2 (El	IT Vertical 8	Rotated 90 degrees)						
•	1					1		
2450.4	100.0 Pk	3.6 / 28.3 / 37.7	94.2	V / 1.9 / 98.0	0.0	94.2	125.2	-31.0
2450.4	100.4 Pk	3.6 / 28.3 / 37.7	94.6	H / 1.5 / 142.0	0.0	94.6	125.2	-30.6
	•					•		
Fundame	ntal - High Cl	nannel – Axis 1 (EUT	Flat on Tab	le)				
2475.4	106.0 Pk	3.6 / 28.4 / 37.7	100.3	H / 1.7 / 120.0	0.0	100.3	125.2	-24.9
2475.4	101.8 Pk	3.6 / 28.4 / 37.7	96	V / 1.9 / 212.0	0.0	96.0	125.2	-29.2
Axis 2 (El	T Vertical)							
2475.4	100.3 Pk	3.6 / 28.4 / 37.7	94.6	V / 2.3 / 210.0	0.0	94.6	125.2	-30.6
	100.3 Pk 96.3 Pk	3.6 / 28.4 / 37.7 3.6 / 28.4 / 37.7	94.6 90.6	V / 2.3 / 210.0 H / 1.7 / 217.0	0.0	94.6 90.6	125.2 125.2	-30.6 -34.6
2475.4 2475.4	96.3 Pk							
2475.4 2475.4	96.3 Pk	3.6 / 28.4 / 37.7						

Electric Field to Power Conversion - Remote Product

From FCC KDB 558074 - Alternative Test Procedures.

If antenna conducted tests cannot be performed on this device, radiated tests to show compliance with the peak output power limit specified in Section 15.247(b) and the spurious RF conducted emission limit specified in Section 15.247(c) are acceptable. As stated previously, a pre-amp, and, in the latter case, a high pass filter, are required for the following measurements.

1) Calculate the transmitter's peak power using the following equation:

$$E = \frac{\sqrt{30PG}}{d}$$

Where: E is the measured maximum fundamental field strength in V/m, utilizing a RBW ≥ the 20 dB bandwidth of the emission, VBW > RBW, peak detector function. Follow the procedures in C63.4-1992 with respect to maximizing the emission.

G is the numeric gain of the transmitting antenna with reference to an isotropic radiator.

d is the distance in meters from which the field strength was measured.

P is the power in watts for which you are solving:

$$P = \frac{(E*d)^2}{30G}$$

In this case:

E = 100.3 dB/uV (from above high channel - axis 1) = 0.1035 V/m

D = 3 meters

G = 1 (unity, worst-case)

P = 0.0032 W

Limit from 15.247(b)(3) = 1.0 W

Delta = 0.0032 - 1.0 = -0.9968 W

Report Number: 100320162DEN-001 Issued: 02/28/2011

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit FCC 15.247	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
Harmonics	of the Fund	l damental - Worst-Cas	e Axis 1 <mark>– F</mark>	CC Restricted Band	s are Highlighted	in Yellow		
Harmonics	s - Low Char	nnel						
4850.8	51.0 Pk	5.2 / 33.3 / 39.2	50.3	V / 2.0 / 208.0	29.9	20.4	54.0	-33.6
4850.8	59.2 Pk	5.2 / 33.3 / 39.2	58.5	H / 1.4 / 136.0	29.9	28.6	54.0	-25.4
7276.2	45.6 Pk	6.4 / 36.3 / 39.6	48.8	V / 1.7 / 220.0	29.9	18.9	54.0	-35.1
7276.2	47.2 Pk	6.4 / 36.3 / 39.6	50.3	H / 1.6 / 192.0	29.9	20.4	54.0	-33.6
9701.57	36.6 Pk	7.6 / 37.7 / 47.9	34	H / 1.5 / 212.0	29.9	4.1	79.5	-75.4
9701.57	38.6 Pk	7.6 / 37.7 / 47.9	36	V / 1.4 / 204.0	29.9	6.1	79.5	-73.4
12127	29.2 Pk	8.8 / 40.1 / 45.4	32.7	H / 1.4 / 210.0	29.9	2.8	54.0	-51.2
12127	32.1 Pk	8.8 / 40.1 / 45.4	35.6	V / 1.3 / 194.0	29.9	5.7	54.0	-48.3
14552.4	32.1 Pk	9.5 / 49.2 / 47.5	43.3	H / 1.4 / 210.0	29.9	13.4	79.5	-66.1
14552.4	31.9 Pk	9.5 / 49.2 / 47.5	43.1	V / 1.3 / 190.0	29.9	13.2	79.5	-66.3
16977.8	32.5 Pk	10.5 / 41.5 / 47.2	37.5	H / 1.3 / 188.0	29.9	7.6	79.5	-71.9
16977.8	32.4 Pk	10.5 / 41.5 / 47.2	37.3	V / 1.3 / 190.0	29.9	7.4	79.5	-72.1
19398	35.6 Pk	0.0 / 22.2 / 0.0	57.8	V / 1.0 / 0.0	29.9	27.9	54.0	-26.1
21824	35.8 Pk	0.0 / 21.4 / 0.0	57.2	V / 1.0 / 0.0	29.9	27.3	79.5	-52.2
24249	35.1 Pk	0.0 / 21.4 / 0.0	56.6	V / 1.0 / 0.0	29.9	26.7	79.5	-52.8
Harmonics	s - Mid Chan	nel	_					
4900.8	60.5 Pk	5.2 / 33.4 / 39.2	60	H / 1.3 / 140.0	29.9	30.1	54.0	-23.9
4900.8	48.0 Pk	5.2 / 33.4 / 39.2	47.5	V / 1.9 / 204.0	29.9	17.6	54.0	-36.4
7351.2	46.1 Pk	6.5 / 36.4 / 39.4	49.6	H / 1.6 / 188.0	29.9	19.7	54.0	-34.3
7351.2	45.5 Pk	6.5 / 36.4 / 39.4	49	V / 1.6 / 228.0	29.9	19.1	54.0	-34.9
9801.61	40.4 Pk	7.7 / 37.8 / 48.0	37.8	V / 1.5 / 184.0	29.9	7.9	80.0	-72.1
9801.61	42.1 Pk	7.7 / 37.8 / 48.0	39.6	H / 1.4 / 216.0	29.9	9.7	80.0	-70.3
12252	32.3 Pk	8.8 / 41.0 / 45.2	36.9	V / 1.4 / 202.0	29.9	7.0	54.0	-47.0
12252	31.4 Pk	8.8 / 41.0 / 45.2	36	H / 1.3 / 212.0	29.9	6.1	54.0	-47.9
14702.4	32.4 Pk	9.5 / 46.7 / 47.4	41.2	V / 1.4 / 202.0	29.9	11.3	80.0	-68.7
14702.4	33.2 Pk	9.5 / 46.7 / 47.4	42	H / 1.3 / 212.0	29.9	12.1	80.0	-67.9
17152.8	33.0 Pk	10.6 / 43.2 / 46.6	40.3	V / 1.3 / 198.0	29.9	10.4	80.0	-69.6
17152.8	34.0 Pk	10.6 / 43.2 / 46.6	41.3	H / 1.3 / 204.0	29.9	11.4	80.0	-68.6
19598	36.1 Pk	0.0 / 22.0 / 0.0	58.1	V / 1.0 / 0.0	29.9	28.2	54.0	-25.8
22050	36.7 Pk	0.0 / 21.3 / 0.0	58.1	V / 1.0 / 0.0	29.9	28.2	54.0	-25.8
24499	35.6 Pk	0.0 / 21.7 / 0.0	57.3	V / 1.0 / 0.0	29.9	27.4	80.0	-52.6

|--|

4950.8	51.7 Pk	5.2 / 33.5 / 39.1	51.3	V / 2.0 / 208.0	29.9	21.4	54.0	-32.6
4950.8	61.5 Pk	5.2 / 33.5 / 39.1	61.1	H / 1.4 / 143.0	29.9	31.2	54.0	-22.8
7426.2	44.9 Pk	6.5 / 36.4 / 39.4	48.4	V / 1.6 / 220.0	29.9	18.5	54.0	-35.5
7426.2	47.8 Pk	6.5 / 36.4 / 39.4	51.3	H / 1.6 / 179.0	29.9	21.4	54.0	-32.6
9901.6	39.4 Pk	7.7 / 37.8 / 48.1	36.8	H / 1.5 / 201.0	29.9	6.9	80.3	-73.4
9901.6	32.4 Pk	7.7 / 37.8 / 48.1	29.8	V / 1.6 / 211.0	29.9	-0.1	80.3	-80.4
12377	30.4 Pk	8.9 / 41.9 / 45.0	36.2	H / 1.4 / 187.0	29.9	6.3	54.0	-47.7
12377	27.6 Pk	8.9 / 41.9 / 45.0	33.4	V / 1.4 / 168.0	29.9	3.5	54.0	-50.5
14852.4	33.5 Pk	9.6 / 45.0 / 47.4	40.7	H / 1.4 / 187.0	29.9	10.8	80.3	-69.5
14852.4	33.0 Pk	9.6 / 45.0 / 47.4	40.2	V / 1.3 / 212.0	29.9	10.3	80.3	-70.0
17327.8	37.3 Pk	10.7 / 44.7 / 45.9	46.7	H / 1.3 / 196.0	29.9	16.8	80.3	-63.5
17327.8	35.8 Pk	10.7 / 44.7 / 45.9	45.2	V / 1.3 / 210.0	29.9	15.3	80.3	-65.0
19799.1	35.8 Pk	0.0 / 21.8 / 0.0	57.6	V / 1.0 / 0.0	29.9	27.7	54.0	-26.3
22274.2	37.0 Pk	0.0 / 21.1 / 0.0	58.1	V / 1.0 / 0.0	29.9	28.2	54.0	-25.8
24749.8	35.9 Pk	0.0 / 21.7 / 0.0	57.5	V / 1.0 / 0.0	29.9	27.6	80.3	-52.7

Example calculation for Intentional Radiated Emissions:

Measured Level	+	Transducer, Cable Loss Pre- Amplifier	=	Corrected Reading	_	Duty Cycle Correction	II	FINAL Measurement	_	Specification Limit	=	Delta from Specification Limit
(dBμV)		(dB)		(dBμV/m)		(dBµV/m)		(dBμV/m)		(dBμV/m)		
24.0		14.9		38.9		10.0		28.9		40.0		-11.1

Notes:

- 1. All above measurements are peak detector measurements.
- Worst-Case Harmonic Duty-Cycle Corrected Measurement High Channel @ 4950.80 MHz, 31.2 dBuV/m (22.8 dB below Limit). This signal was within the FCC Restricted Band, where the limit is 54dBuV/m.
- 3. Worst-Case Harmonic outside the FCC Restricted Band Low Channel @ 21824MHz, 27.3 dBuV/m (- 52.2 dBc). The limit is -20 dBc

Deviations, Additions, or Exclusions: None

Report Number: 100320162DEN-001	Issued: 02/28/2011

Conversion of Output Power of the Fundamental Limit to Field Strength Limit

When limits are defined as conducted port power measurements and the product has an integral antenna, radiated field strength tests to demonstrate compliance are acceptable per FCC 15.247.

The following equation was used to convert power (Watts) limit into field strength (dBuV/m) limit:

$$P = \frac{(E*d)^2}{30G}$$

Therefore:

$$E = \frac{\sqrt{30PG}}{d}$$

Power Limit Fundamental Frequency = 1 W = 1.82574 V/m = 125.23 dBuV/m

Where:

E = Measured Field Strength in V/m (converted to dBuV/m in test data)

P = 1 Watt Fundamental Limit

G = Numeric Gain of transmitting antenna over an ideal isotropic radiator = 1

d = EUT-to-Antenna Test Distance = 3-meters

6 Radiated Emissions - Unintentional and Spurious

6.1 Method

Unless otherwise stated no deviations were made from ANSI C63.10 and FCC publication KDB 558074 for DTS devices.

Intertek Louisville's emissions testing facility is located at 1795 Dogwood Street, Suite 200, Louisville, CO 80027. The emissions testing facility is ISO17025:2005 accredited.

6.2 Test Equipment Used:

Asset ID:	Description:	Manufacturer:	Model:	<u>Serial:</u>	Cal Date	Cal Due
18882	Spectrum Analyzer (dc-22 GHz) Spectrum Analyzer Display	Hewlett-Packard	8566B	2410A00154	12/06/2010	12/06/2011
18660	Section (set 1)	Hewlett-Packard	85662A	2318A04983	12/06/2010	12/06/2011
18880	Q.P Adapter	Hewlett-Packard	85650A	2811A01300	12/06/2010	12/06/2011
18913	Spectrum Analyzer	Hewlett-Packard	E7405A	My44211889	05/07/2010	05/07/2011
18912	9 kHz- 1.3GHz Pre Amp	Hewlett-Packard	8447F	3113A05545	06/04/2010	06/04/2011
18906	Pre-Amplifier (1-4 GHz)	Mini-Circuits Lab	ZHL-42 AFT97-8434-	N052792-2	06/11/2010	06/11/2011
18900	RF Pre-Amplifier (4-8 GHz)	Avantek	10F	1007	06/07/2010	06/07/2011
18901	RF Pre-Amplifier (8-18 GHz)	Avantek	AWT-18037	1002	06/07/2010	06/07/2011
	Magnetic loop antenna					
18897	10kHz-30MHz	EMCO	6502	9205-2738	11/18/2010	11/18/2011
19936	Bilog Antenna 30 MHz - 6GHz	Sunol Sciences	JB6	A050707-1	10/11/2010	10/11/2011
18886	Ridged Guide Antenna 1-18GHz HF Antenna/Harmonic Mixer	TENSOR	4105	2020	10/08/2010	10/08/2011
18805	18 GHz to 26.5 GHz	Hewlett-Packard	11970K	2332A01280	10/04/2010	10/04/2011

6.3 Results:

The sample tested was found to Comply.

• FCC 15.209/ 15.247(d)

6.4 Setup Photographs – Base Product and Remote Product:

Test setup - Front View

Photo:

Test setup – Rear View

Photo: Antenna Setups

Active Loop (9kHz to 30MHz)

BiLog (30MHz to 1000MHz)

Ridged Guide Horn (1 GHz to 18GHz)

HF Harmonic Mixer (antenna/pre-amp/cables) (18 GHz to 26.5 GHz)

6.5 Plot Summary: PreScan Plots - Not Final Data - Reference Only

Peak Measurements plotted against QP Limit

Plot - PreScan Plots - Not Final Data - Reference Only

Peak Measurements plotted against QP Limit

Plot: PreScan Plots - Not Final Data - Reference Only

Peak Measurements plotted against Average Limit

Plot: PreScan Plots - Not Final Data - Reference Only

Peak Measurements plotted against Average Limit

Plot: PreScan Plots - Not Final Data - Reference Only

Peak Measurements plotted against Average Limit

6.6 Plot Summary - Final Plot 16 MHz to 25 GHz

Report Number: 100320162DEN-001	Issued: 02/28/2011

6.7 Test Data – Base Product and Remote Product

Radiated Electromagnetic Emissions - Unintentional

Tes	st Report #:	Unintentional Run 1	Test Area:	CC1 Radiated	Temperature:	22.3	°C
Te	est Method:	FCC Part 15.209	Test Date:	08-Feb-2011	Relative Humidity:	34.8	%
EU	T Model #:	Magic Closer	EUT Power:	3VDC Battery/ 12VDC Adapter	Air Pressure:	80.8	kPa
	EUT	Serial #: 28 & 29					
Manu	ufacturer:	JCV Enterprises			Leve	l Key	
EUT De	scription:	Garage Door Closer			Pk – Peak	Nb – Nar	row Band
Notes:	Products	tested include: Base & Remote			Qp – QuasiPeak	Bb – Bro	ad Band
	Both pro	ducts tested simultaneously o	on table		Av - Average		
		·					

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	15.209 >1GHz
Loop Antenna	a Parallel - 16	MHz to 30MHz				
16.10	6.2 Qp	0.3 / 10.6 / 0.0	17.0	H / 1.0 / 186.0	-52.5	N/A
20.28	6.0 Qp	0.3 / 10.4 / 0.0	16.6	H / 1.0 / 212.0	-52.9	N/A
27.94	6.0 Qp	0.4 / 8.7 / 0.0	15.1	H / 1.0 / 212.0	-54.4	N/A
Loop Antonn	- Porpondicula	ar – 16MHz to 30MHz				
16.00	13.7 Qp	0.3 / 10.6 / 0.0	24.6	V / 1.0 / 212.0	-44.9	N/A
20.38	5.0 Qp	0.3 / 10.4 / 0.0	15.6	V / 1.0 / 210.0	-53.9	N/A
24.29	5.0 Qp	0.4 / 9.7 / 0.0	15.1	V / 1.0 / 210.0	-54.4	N/A
Bilog Vertical	30MHz to 100	00MHz				
31.50	21.9 Qp	0.4 / 19.9 / 28.1	14.1	V / 1.0 / 18.0	-25.9	N/A
32.00	21.7 Qp	0.4 / 19.5 / 28.1	13.5	V / 1.0 / 18.0	-26.5	N/A
48.02	21.9 Qp	0.8 / 8.9 / 28.0	3.5	V / 1.0 / 164.0	-36.5	N/A
64.04	21.8 Qp	0.8 / 7.7 / 27.9	2.4	V / 1.0 / 147.0	-37.6	N/A
89.21	22.3 Qp	0.8 / 8.0 / 27.8	3.3	V / 1.0 / 116.0	-40.2	N/A
117.53	21.7 Qp	0.8 / 13.5 / 27.7	8.2	V / 1.0 / 228.0	-35.3	N/A
360.17	22.3 Qp	1.3 / 14.9 / 27.4	11.1	V / 1.1 / 186.0	-34.9	N/A
450.47	22.2 Qp	1.5 / 17.0 / 27.9	12.7	V / 2.4 / 212.0	-33.3	N/A
Bilog Horizon	ital 30MHz to 1	1000MHz				
31.50	21.8 Qp	0.4 / 19.9 / 28.1	14.0	H / 2.2 / 36.0	-26.0	N/A
32.00	21.8 Qp	0.4 / 19.5 / 28.1	13.5	H / 2.4 / 136.0	-26.5	N/A
112.00	22.0 Qp	0.8 / 13.0 / 27.7	8.1	H / 2.1 / 12.0	-35.4	N/A
Horn Vertical	1GHz to 4GH	lz				
1885.18	38.2 Av	3.1 / 27.3 / 37.1	31.5	V / 1.3 / 176.0	N/A	-22.5

Report Number: 100320162DEN-001	Issued: 02/28/2011
---------------------------------	--------------------

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL/HGT/AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	15.209 >1GHz
2399.15	38.5 Av	3.5 / 28.3 / 37.6	32.6	V / 1.5 / 221.0	N/A	-21.4
Upper Band B	Edge Signal-R	estricted Band				
2485.52	38.5 Av	3.6 / 28.4 / 37.7	32.7	V / 1.4 / 96.0	N/A	-21.3
1906.00	35.2 Av	3.1 / 27.5 / 37.2	28.6	V / 1.4 / 216.0	N/A	-25.4
2421.00	34.9 Av	3.5 / 28.3 / 37.6	29.1	V / 1.4 / 88.0	N/A	-24.9
3562.20	35.3 Av	4.4 / 31.6 / 37.6	33.7	V / 1.4 / 88.0	N/A	-20.3
Horn Horizon	tal 1GHz to 4	GHz				
1885.18	37.1 Av	3.1 / 27.3 / 37.1	30.4	H / 1.4 / 208.0	N/A	-23.6
1906.00	35.1 Av	3.1 / 27.5 / 37.2	28.6	H / 1.4 / 222.0	N/A	-25.4
2421.00	35.4 Av	3.5 / 28.3 / 37.6	29.5	H / 1.3 / 164.0	N/A	-24.5
3562.20	35.4 Av	4.4 / 31.6 / 37.6	33.8	H / 1.3 / 36.0	N/A	-20.2
Horn Vertical	4GHz to 8GH	lz				
4426.00	34.4 Av	4.9 / 32.4 / 39.0	32.7	V / 1.5 / 68.0	N/A	-21.3
5313.39	33.5 Av	5.4 / 34.2 / 39.1	34.0	V / 1.4 / 232.0	N/A	-20.0
5745.45	32.9 Av	5.6 / 34.1 / 39.0	33.7	V / 1.4 / 74.0	N/A	-20.3
4626.64	33.6 Av	5.1 / 32.5 / 39.1	32.1	V / 1.4 / 74.0	N/A	-21.9
5314.27	32.4 Av	5.4 / 34.2 / 39.1	33.0	V / 1.3 / 147.0	N/A	-21.0
5745.45	32.4 Av	5.6 / 34.1 / 39.0	33.1	V / 1.3 / 136.0	N/A	-20.9
Horn Horizon	tal 4GHz to 8	GHz				
5313.39	34.0 Av	5.4 / 34.2 / 39.1	34.6	H / 1.4 / 65.0	N/A	-19.4
5745.45	34.0 Av	5.6 / 34.1 / 39.0	34.8	H / 1.5 / 134.0	N/A	-19.2
7248.10	33.0 Av	6.4 / 36.2 / 39.6	35.9	H / 1.5 / 112.0	N/A	-18.1
4426.00	34.4 Av	4.9 / 32.4 / 39.0	32.7	H / 1.5 / 216.0	N/A	-21.3
5745.45	32.1 Av	5.6 / 34.1 / 39.0	32.9	H / 1.3 / 136.0	N/A	-21.1
5313.39	32.7 Av	5.4 / 34.2 / 39.1	33.3	H / 1.3 / 33.0	N/A	-20.7
Horn Vertical	8GHz to 18GI	Hz				
13220.6	40.6 Av	9.0 / 47.4 / 45.9	51.0	V / 1.2 / 31.0	N/A	-3.0
14494.9	35.5 Av	9.4 / 50.5 / 47.5	47.9	V / 1.2 / 31.0	N/A	-6.1
17773.6	35.2 Av	10.9 / 45.9 / 45.4	46.5	V / 1.2 / 31.0	N/A	-7.5
13220.7	40.5 Av	9.0 / 47.4 / 45.9	50.8	V / 1.3 / 12.0	N/A	-3.2
14375.2	36.0 Av	9.4 / 52.3 / 47.6	50.1	V / 1.3 / 12.0	N/A	-3.9
17766.5	37.9 Av	10.9 / 45.9 / 45.4	49.2	V / 1.1 / 46.0	N/A	-4.8
13219.6	41.2 Av	9.0 / 47.4 / 45.9	51.7	V / 1.2 / 14.0	N/A	-2.3
14494.9	35.5 Av	9.4 / 50.5 / 47.5	47.8	V / 1.2 / 17.0	N/A	-6.2
17766.9	40.4 Av	10.9 / 45.9 / 45.4	51.7	V / 1.2 / 43.0	N/A	-2.3
Horn Horizon	tal 8GHz to 1	BGHz				
13219.6	40.2 Av	9.0 / 47.4 / 45.9	50.7	H / 1.2 / 17.0	N/A	-3.3
14375.2	35.9 Av	9.4 / 52.3 / 47.6	49.9	H / 1.2 / 17.0	N/A	-4.1
14375.2	35.9 Av	9.4 / 52.3 / 47.6	50.0	H / 1.2 / 16.0	N/A	-4.0
13220.6	35.3 Av	9.0 / 47.4 / 45.9	45.7	H / 1.2 / 16.0	N/A	-8.3

Report Number: 100320162DEN-001	Issued: 02/28/2011

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	15.209 >1GHz
14494.9	35.5 Av	9.4 / 50.5 / 47.5	47.9	H / 1.2 / 16.0	N/A	-6.1
17773.6	35.2 Av	10.9 / 45.9 / 45.4	46.6	H / 1.2 / 16.0	N/A	-7.4
13220.6	40.8 Av	9.0 / 47.4 / 45.9	51.1	H / 1.2 / 32.0	N/A	-2.9
14375.2	36.0 Av	9.4 / 52.3 / 47.6	50.1	H / 1.2 / 12.0	N/A	-3.9
17766.5	37.9 Av	10.9 / 45.9 / 45.4	49.2	H / 1.2 / 62.0	N/A	-4.8
HF Horn/Mixe	er 18GHz to 2	5GHz		•		
18710.1	17.56 Av	0.0 / 22.4 / 0.0	39.96	V / 1.0 / 0.0	N/A	-14.0
19380.2	17.66 Av	0.0 / 22.2 / 0.0	39.76	V / 1.0 / 0.0	N/A	-14.2
20650.3	18.26 Av	0.0 / 21.7 / 0.0	39.96	V / 1.0 / 0.0	N/A	-14.0
21250.7	18.76 Av	0.0 / 21.5 / 0.0	40.26	V / 1.0 / 0.0	N/A	-13.7
22180.3	17.46 Av	0.0 / 21.2 / 0.0	38.66	V / 1.0 / 0.0	N/A	-15.3
23560.1	17.46 Av	0.0 / 21.4 / 0.0	38.86	V / 1.0 / 0.0	N/A	-15.1
24910.8	17.66 Av	0.0 / 21.6 / 0.0	39.26	V / 1.0 / 0.0	N/A	-14.7
18532.0	18.46 Av	0.0 / 22.4 / 0.0	40.86	V / 1.0 / 0.0	N/A	-13.1
19342.0	18.36 Av	0.0 / 22.2 / 0.0	40.56	V / 1.0 / 0.0	N/A	-13.4
20538.0	17.86 Av	0.0 / 21.8 / 0.0	39.66	V / 1.0 / 0.0	N/A	-14.3
21648.0	19.36 Av	0.0 / 21.4 / 0.0	40.76	V / 1.0 / 0.0	N/A	-13.2
22749.0	18.16 Av	0.0 / 21.1 / 0.0	39.26	V / 1.0 / 0.0	N/A	-14.7
23845.0	18.16 Av	0.0 / 21.3 / 0.0	39.46	V / 1.0 / 0.0	N/A	-14.5
24964.0	18.26 Av	0.0 / 21.6 / 0.0	39.86	V / 1.0 / 0.0	N/A	-14.1

Report Number: 100320162DEN-001	Issued: 02/28/2011

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL/HGT/AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	15.209 >1GHz
		****** Mo	easurem	ent Summary	y ******	
13219.6	41.2 Av	9.0 / 47.4 / 45.9	51.7	V / 1.2 / 14.0	N/A	-2.3
17766.9	40.4 Av	10.9 / 45.9 / 45.4	51.7	H / 1.2 / 43.0	N/A	-2.3
13220.6	40.8 Av	9.0 / 47.4 / 45.9	51.1	H / 1.2 / 32.0	N/A	-2.9
14375.2	35.9 Av	9.4 / 52.3 / 47.6	50.0	H / 1.2 / 16.0	N/A	-4.0
14494.9	35.5 Av	9.4 / 50.5 / 47.5	47.9	H / 1.2 / 16.0	N/A	-6.1
17773.6	35.2 Av	10.9 / 45.9 / 45.4	46.6	H / 1.2 / 16.0	N/A	-7.4
18532.0	18.5 Av	0.0 / 22.4 / 0.0	40.9	V / 1.0 / 0.0	N/A	-13.1
21648.0	19.4 Av	0.0 / 21.4 / 0.0	40.8	V / 1.0 / 0.0	N/A	-13.2
19342.0	18.4 Av	0.0 / 22.2 / 0.0	40.6	V / 1.0 / 0.0	N/A	-13.4
21250.7	18.8 Av	0.0 / 21.5 / 0.0	40.3	V / 1.0 / 0.0	N/A	-13.7
18710.1	17.6 Av	0.0 / 22.4 / 0.0	39.9	V / 1.0 / 0.0	N/A	-14.0
20650.3	18.3 Av	0.0 / 21.7 / 0.0	39.9	V / 1.0 / 0.0	N/A	-14.0
24964.0	18.3 Av	0.0 / 21.6 / 0.0	39.8	V / 1.0 / 0.0	N/A	-14.1
19380.2	17.7 Av	0.0 / 22.2 / 0.0	39.8	V / 1.0 / 0.0	N/A	-14.2
20538.0	17.9 Av	0.0 / 21.8 / 0.0	39.7	V / 1.0 / 0.0	N/A	-14.3
23845.0	18.2 Av	0.0 / 21.3 / 0.0	39.5	V / 1.0 / 0.0	N/A	-14.5
24910.8	17.7 Av	0.0 / 21.6 / 0.0	39.3	V / 1.0 / 0.0	N/A	-14.7
22749.0	18.2 Av	0.0 / 21.1 / 0.0	39.3	V / 1.0 / 0.0	N/A	-14.7
23560.1	17.5 Av	0.0 / 21.4 / 0.0	38.9	V / 1.0 / 0.0	N/A	-15.1
22180.3	17.5 Av	0.0 / 21.2 / 0.0	38.7	V / 1.0 / 0.0	N/A	-15.3
7248.1	33.0 Av	6.4 / 36.2 / 39.6	35.9	H / 1.5 / 112.0	N/A	-18.1
5745.5	34.0 Av	5.6 / 34.1 / 39.0	34.8	H / 1.5 / 134.0	N/A	-19.2
5313.4	34.0 Av	5.4 / 34.2 / 39.1	34.6	H / 1.4 / 65.0	N/A	-19.4
3562.2	35.4 Av	4.4 / 31.6 / 37.6	33.8	H / 1.3 / 36.0	N/A	-20.2
5314.3	32.4 Av	5.4 / 34.2 / 39.1	33.0	V / 1.3 / 147.0	N/A	-21.0
2485.5	38.5 Av	3.6 / 28.4 / 37.7	32.7	V / 1.4 / 96.0	N/A	-21.3
4426.0	34.4 Av	4.9 / 32.4 / 39.0	32.7	V / 1.5 / 68.0	N/A	-21.3
2399.1	38.5 Av	3.5 / 28.3 / 37.6	32.6	V / 1.5 / 221.0	N/A	-21.4
4626.6	33.6 Av	5.1 / 32.5 / 39.1	32.1	V / 1.4 / 74.0	N/A	-21.9
1885.1	38.2 Av	3.1 / 27.3 / 37.1	31.5	V / 1.3 / 176.0	N/A	-22.5
2421.0	35.4 Av	3.5 / 28.3 / 37.6	29.5	H / 1.3 / 164.0	N/A	-24.5
1906.0	35.1 Av	3.1 / 27.5 / 37.2	28.6	H / 1.4 / 222.0	N/A	-25.4
31.50	21.9 Qp	0.4 / 19.9 / 28.1	14.1	V / 1.0 / 18.0	-25.9	N/A
32.00	21.8 Qp	0.4 / 19.5 / 28.1	13.5	H / 2.4 / 136.0	-26.5	N/A
450.47	22.2 Qp	1.5 / 17.0 / 27.9	12.7	V / 2.4 / 212.0	-33.3	N/A
360.17	22.3 Qp	1.3 / 14.9 / 27.4	11.1	V / 1.1 / 186.0	-34.9	N/A
117.53	21.7 Qp	0.8 / 13.5 / 27.7	8.2	V / 1.0 / 228.0	-35.3	N/A
112.00	22.0 Qp	0.8 / 13.0 / 27.7	8.1	H / 2.1 / 12.0	-35.4	N/A
48.02	21.9 Qp	0.8 / 8.9 / 28.0	3.5	V / 1.0 / 164.0	-36.5	N/A
64.04	21.8 Qp	0.8 / 7.7 / 27.9	2.4	V / 1.0 / 147.0	-37.6	N/A

Report Number: 100320162DEN-001	Issued: 02/28/2011

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL/HGT/AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	15.209 >1GHz
89.21	22.3 Qp	0.8 / 8.0 / 27.8	3.3	V / 1.0 / 116.0	-40.2	N/A
16.00	13.7 Qp	0.3 / 10.6 / 0.0	24.6	V / 1.0 / 212.0	-44.9	N/A
20.28	6.0 Qp	0.3 / 10.4 / 0.0	16.6	H / 1.0 / 212.0	-52.9	N/A
24.29	5.0 Qp	0.4 / 9.7 / 0.0	15.1	V / 1.0 / 210.0	-54.4	N/A
27.94	6.0 Qp	0.4 / 8.7 / 0.0	15.1	H / 1.0 / 212.0	-54.4	N/A

Example calculation:

Measured Level	+	Transducer, Cable Loss & Amplifier corrections	_	Corrected Reading	Specification Limit	_	Corrected Reading	=	Delta Specification
(dBµV)		(dB)		(dBµV/m)	(dBµV/m)		(dBµV/m)		
14.0		14.9		28.9	40.0		28.9		-11.1

Notes:

- (1) All measurements 16 MHz to 18 GHz are field strength measurements taken at 3-meter product-to-antenna.
- (2) All measurements 18GHz to 25GHz are field strength measurements taken at 1-meter product-toantenna. The measured value was then extrapolated to a 3-meter measurement for reference to the limit.
- (3) Quasi-peak detector measurements up to 1GHz Average detector measurements above 1 GHz.

Deviations, Additions, or Exclusions: None

Report Number: 100320162DEN-001	Issued: 02/28/2011

7 6dB Bandwidth

7.1 Method

Unless otherwise stated no deviations were made from ANSI C63.10 and FCC publication KDB 558074 for DTS devices.

Intertek Louisville's emissions testing facility is located at 1795 Dogwood Street, Suite 200, Louisville, CO 80027. The emissions testing facility is ISO17025:2005 accredited.

7.2 Test Equipment Used:

Asset ID:	Description:	Manufacturer:	Model:	<u>Serial:</u>	Cal Date	Cal Due
18913	Spectrum Analyzer with Pre-Amp	Hewlett-Packard	E7405A	My44211889	05/11/2010	05/11/2011
18886	Ridged Guide Antenna 1-18GHz	TENSOR	4105	2020	10/08/2010	10/08/2011

7.3 Results:

The sample tested was found to Comply.

• FCC 15.247 (a)(2)

7.4 Test Data: Base Product

6 dB Bandwidth – Base Product FCC 15.247(a)(2) / RSS-210 A8.2(a)

Channel 1 - 2.425 GHz

Specification: 6dB Bandwidth > 500 kHz

6 dB Bandwidth

FCC 15.247(a)(2) / RSS-210 A8.2(a)

Channel 2 - 2.450 GHz

Specification: 6dB Bandwidth > 500 kHz

6 dB Bandwidth

FCC 15.247(a)(2) / RSS-210 A8.2(a)

Channel 3 - 2.475 GHz

Specification: 6dB Bandwidth > 500 kHz

Notes:

- (1) All measurements are Radiated Field Strength
- (2) Worst-case High Channel 6dB Bandwidth 525 kHz

7.5 Test Data: Remote Product

6 dB Bandwidth - Remote Product

FCC 15.247(a)(2) / RSS-210 A8.2(a)

Channel 1 - 2.425 GHz

Specification: 6dB Bandwidth > 500 kHz

6 dB Bandwidth

FCC 15.247(a)(2) / RSS-210 A8.2(a)

Channel 2 - 2.450 GHz

Specification: 6dB Bandwidth > 500 kHz

6 dB Bandwidth

FCC 15.247(a)(2) / RSS-210 A8.2(a)

Channel 3 - 2.475 GHz

Specification: 6dB Bandwidth > 500 kHz

Notes:

- (1) All measurements are Radiated Field Strength
- (2) Worst-case Mid Channel 6dB Bandwidth 520 kHz

Deviations, Additions, or Exclusions: None

Report Number: 100320162DEN-001	Issued: 02/28/2011

8 Power Spectral Density (PSD)

8.1 Method

Unless otherwise stated no deviations were made from ANSI C63.10 and FCC publication KDB 558074 for DTS devices.

Intertek Louisville's emissions testing facility is located at 1795 Dogwood Street, Suite 200, Louisville, CO 80027. The emissions testing facility is ISO17025:2005 accredited.

8.2 Test Equipment Used:

Asset ID:	Description:	Manufacturer:	<u>Model:</u>	<u>Serial:</u>	Cal Date	Cal Due
18913	Spectrum Analyzer with Pre-Amp	Hewlett-Packard	E7405A	My44211889	05/11/2010	05/11/2011
18886	Ridged Guide Antenna 1-18GHz	TENSOR	4105	2020	10/08/2010	10/08/2011

8.3 Results:

The sample tested was found to Comply.

• FCC 15.247(e)

8.4 Test Data: Base Product

Power Spectral Density (PSD) - Base Product

FCC 15.247(e)

Measured field strength + antenna factor + cable loss = Final corrected field strength (dBuV/m) 58.40 + 28.4 + 3.6 = 90.40 dBuV/mP dBm = 90.40 - 95.2289 = -4.83 dBm

Power Spectral Density (PSD)

FCC 15.247(e)

Channel 2 - 2.450 GHz

Measured field strength + antenna factor + cable loss = Final corrected field strength (dBuV/m) 60.72 + 28.4 + 3.6 = 92.72 dBuV/mP dBm = 92.72 - 95.2289 = -2.51 dBm

Power Spectral Density (PSD)

FCC 15.247(e)

Channel 3 - 2.475 GHz

Measured field strength + antenna factor + cable loss = Final corrected field strength (dBuV/m) 61.13 + 28.4 + 3.6 = 93.13 dBuV/m P dBm = 93.13 - 95.2289 = -2.10 dBm

Report Number: 100320162DEN-001	Issued: 02/28/2011

Notes:

- (1) All measurements are Radiated Field Strength worst-case maximized signal
- (2) Worst-case High Channel PSD: 2.10 dBm
- (3) The following equation was used to convert field strength (dBuV/m) into power (dBm). This calculation assumes ideal isotropic radiation from the source and a test distance of 3-meters.

P = 20*log(E)-95.2289

P is power in dBm E is uV/m

Deviations, Additions, or Exclusions: None

Test Data: Remote Product 8.5

Power Spectral Density (PSD) - Remote Product

FCC 15.247(e)

Measured field strength + antenna factor + cable loss = Final corrected field strength (dBuV/m) $59.05 + 28.4 + 3.6 = 91.05 \, dBuV/m$ P dBm = 91.05 - 95.2289 = -4.12 dBm

Power Spectral Density (PSD)

FCC 15.247(e)

Channel 2 - 2.450 GHz

Measured field strength + antenna factor + cable loss = Final corrected field strength (dBuV/m) 61.51 + 28.4 + 3.6 = 93.51 dBuV/m P dBm = 93.51 - 95.2289 = -1.72 dBm

Power Spectral Density (PSD) FCC 15.247(e)

Channel 3 - 2.475 GHz

Measured field strength + antenna factor + cable loss = Final corrected field strength (dBuV/m) 62.08 + 28.4 + 3.6 = 94.08 dBuV/mP dBm = 94.08 - 95.2289 = -1.15 dBm

Report Number: 100320162DEN-001	Issued: 02/28/2011

Notes:

- (1) All measurements are Radiated Field Strength worst-case maximized signal.
- (2) Worst-case High Channel PSD: 1.15 dBm (PSD Limit = +8dBm)
- (3) The following equation was used to convert field strength (dBuV/m) into power (dBm). This calculation assumes ideal isotropic radiation from the source and a test distance of 3-meters.

P = 20*log(E)-95.2289

P is power in dBm E is uV/m

Deviations, Additions, or Exclusions: None

Report Number: 100320162DEN-001	Issued: 02/28/2011
---------------------------------	--------------------

9 Band Edge Measurements

9.1 Method

Unless otherwise stated no deviations were made from ANSI C63.10 and FCC publication KDB 558074 for DTS devices.

Intertek Louisville's emissions testing facility is located at 1795 Dogwood Street, Suite 200, Louisville, CO 80027. The emissions testing facility is ISO17025:2005 accredited.

9.2 Test Equipment Used:

Asset ID:	Description:	Manufacturer:	Model:	<u>Serial:</u>	Cal Date	Cal Due
18913	Spectrum Analyzer with Pre-Amp	Hewlett-Packard	E7405A	My44211889	05/11/2010	05/11/2011
18886	Ridged Guide Antenna 1-18GHz	TENSOR	4105	2020	10/08/2010	10/08/2011

9.3 Results:

The sample tested was found to Comply.

■ FCC 15.247(d) / 15.209

9.4 Plots: Band Edge - Base Product

Low Channel Band Edge

Specification: Spurious - 20dBc

Plots: Band Edge - Base Product

High Channel Band Edge

Specification: Spurious - 20dBc

Plots: Band Edge Remote Product

Low Channel Band Edge

Specification: Spurious - 20dBc

Plots: Band Edge Remote Product

High Channel Band Edge

Specification: Spurious - 20dBc

9.5 Band Edge Base Product – Tx in Restricted Bands

Note: Above charts are peak detector scans relative to average limit

2300.0

2400.0

2500.0

Freq. MHz

2600.0

2700.0

2800.0

2900.0

FCC Tx Band 2400 MHz to 2483.5 MHz

2200.0

2100.0

30

2000.0

3000.0

9.6 Band Edge Remote Product - Tx in Restricted Bands

Note: Above charts are peak detector scans relative to average limit

Report Number: 100320162DEN-001	Issued: 02/28/2011
---------------------------------	--------------------

10 Duty Cycle & Duty Cycle Correction Factor

10.1 Method

Unless otherwise stated no deviations were made from ANSI C63.10 and FCC publication KDB 558074 for DTS devices.

Intertek Louisville's emissions testing facility is located at 1795 Dogwood Street, Suite 200, Louisville, CO 80027. The emissions testing facility is ISO17025:2005 accredited.

10.2 Test Equipment Used:

Asset ID:	Description:	Manufacturer:	Model:	Serial:	Cal Date	Cal Due
18913	Spectrum Analyzer with Pre-Amp	Hewlett-Packard	E7405A	My44211889	05/11/2010	05/11/2011
18886	Ridged Guide Antenna 1-18GHz	TENSOR	4105	2020	10/08/2010	10/08/2011

10.3 Results:

Base Product worst-case measured Duty Cycle: 5.2 mS

Base Product Duty Cycle Correction Factor: - 25.7 dB

Remote Product worst-case measured Duty Cycle: 3.2 mS

Remote Product Duty Cycle Correction Factor: - 29.9 dB

10.4 Test Data: Base Product - Low Channel

Duty Cycle: 4.8 ms

Test Data: Base Product - Mid Channel

Duty Cycle: 5.0 ms

Test Data: Base Product - High Channel

Duty Cycle: 5.2 ms

10.5 Test Data: Remote Product - Low Channel

Duty Cycle: 2.4 ms

Test Data: Remote Product - Mid Channel

Duty Cycle: 3.2 ms

Test Data: Remote Product - High Channel

Duty Cycle: 2.4 ms

Report Number: 100320162DEN-001	Issued: 02/28/2011

11 AC Conducted Emissions

11.1 Method

Unless otherwise stated no deviations were made from ANSI C63.10 and FCC publication KDB 558074 for DTS devices.

Intertek Louisville's emissions testing facility is located at 1795 Dogwood Street, Suite 200, Louisville, CO 80027. The emissions testing facility is ISO17025:2005 accredited.

11.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
18909	EMI Test Receiver	RHODE & SCHWARZ	ESHS 30	842806/001	06/15/2010	06/15/2011
18914	Single Phase LISN	EMCO	3816/NM	9408-1003	06/08/2010	06/08/2011
18730	Transient Limiter	Hewlett-Packard	11947A	2820A00277	04/27/2010	04/27/2011

11.3 Results:

The sample tested was found to Comply.

11.4 Setup Photographs:

Front View

Photo:

Side View

11.5 Prescan Plots: Not Final Data

Neutral - 150kHz to 30MHz

Line - 150kHz to 30MHz

11.6 Final Plots:

Report Number: 100320162DEN-001	Issued: 02/28/2011

11.7 Test Data:

Conducted Electromagnetic Emissions

Test Report #	: 100320162 Run 01	Test Area:	CC1 Conducted	Temperature:	23.1	°C
Test Method	l: FCC Part 15.107 Class B	Test Date:	01-Apr-2011	Relative Humidity:	22.4	%
EUT Model #	: Magic Closer	EUT Power:	115VAC/60Hz	Air Pressure:	82.1	kPa
EUT Serial #	÷					
Manufacture	r: JCV Enterprises			Lev	el Key	
EUT Description	: Garage Door Closer			Pk – Peak	Nb – N	arrow Band
Notes: Test o	f Base Product with AC Adapter			Qp – QuasiPeak	Bb – B	road Band
				Av - Average		

FREQ	LEVEL	CABLE / LISN / ATTEN	FINAL	TEST POINT	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB)	(dBuV)		AV15.107B	QP15.107B
0.150	-7.0 Av	0.1 / 0.2 / -9.9	3.2	Line 1	-52.8	N/A
0.150	-1.1 Qp	0.1 / 0.2 / -9.9	9.1	Line 1	N/A	-56.9
0.470	-8.3 Av	0.1 / 0.1 / -10.0	1.9	Line 1	-44.6	N/A
0.470	-2.1 Qp	0.1 / 0.1 / -10.0	8.1	Line 1	N/A	-48.4
0.680	-8.1 Av	0.1 / 0.1 / -10.0	2.1	Line 1	-43.9	N/A
0.680	-2.8 Qp	0.1 / 0.1 / -10.0	7.4	Line 1	N/A	-48.6
1.02	-8.0 Av	0.2 / 0.1 / -10.0	2.3	Line 1	-43.7	N/A
1.02	-2.4 Qp	0.2 / 0.1 / -10.0	7.9	Line 1	N/A	-48.1
1.54	-8.0 Av	0.2 / 0.1 / -10.0	2.3	Line 1	-43.7	N/A
1.54	-2.0 Qp	0.2 / 0.1 / -10.0	8.3	Line 1	N/A	-47.7
3.66	-8.1 Av	0.3 / 0.1 / -10.0	2.3	Line 1	-43.7	N/A
3.66	-1.5 Qp	0.3 / 0.1 / -10.0	8.9	Line 1	N/A	-47.1
7.38	-7.9 Av	0.4 / 0.1 / -10.0	2.6	Line 1	-47.4	N/A
7.38	-1.0 Qp	0.4 / 0.1 / -10.0	9.5	Line 1	N/A	-50.5
10.16	-7.7 Av	0.6 / 0.1 / -10.0	3.0	Line 1	-47.0	N/A
10.16	-1.6 Qp	0.6 / 0.1 / -10.0	9.1	Line 1	N/A	-50.9
16.12	-7.7 Av	1.1 / 0.2 / -10.0	3.6	Line 1	-46.4	N/A
16.12	0.0 Qp	1.1 / 0.2 / -10.0	11.3	Line 1	N/A	-48.7
21.06	-7.2 Av	1.1 / 0.5 / -10.0	4.4	Line 1	-45.6	N/A
21.06	-0.6 Qp	1.1 / 0.5 / -10.0	11.0	Line 1	N/A	-49.0
27.48	-7.3 Av	1.3 / 0.7 / -10.0	4.7	Line 1	-45.3	N/A
27.48	-0.7 Qp	1.3 / 0.7 / -10.0	11.3	Line 1	N/A	-48.7
29.91	-7.1 Av	1.4 / 0.8 / -10.0	5.1	Line 1	-44.9	N/A
29.91	-0.7 Qp	1.4 / 0.8 / -10.0	11.5	Line 1	N/A	-48.5
	•					
0.150	-7.2 Av	0.1 / 0.2 / -9.9	3.0	Neutral	-53.0	N/A
0.150	0.0 Qp	0.1 / 0.2 / -9.9	10.2	Neutral	N/A	-55.8
0.470	-8.1 Av	0.1 / 0.1 / -10.0	2.1	Neutral	-44.4	N/A
0.470	-1.7 Qp	0.1 / 0.1 / -10.0	8.5	Neutral	N/A	-48.0
0.680	-7.9 Av	0.1 / 0.1 / -10.0	2.3	Neutral	-43.7	N/A

Report Number: 100320162DEN-001 Issued: 02/28/2011

FREQ	LEVEL	CABLE / LISN / ATTEN	FINAL	TEST POINT	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB)	(dBuV)		AV15.107B	QP15.107B
0.680	-2.3 Qp	0.1 / 0.1 / -10.0	7.9	Neutral	N/A	-48.1
1.02	-8.0 Av	0.2 / 0.1 / -10.0	2.3	Neutral	-43.7	N/A
1.02	-2.6 Qp	0.2 / 0.1 / -10.0	7.7	Neutral	N/A	-48.3
1.54	-8.2 Av	0.2 / 0.1 / -10.0	2.1	Neutral	-43.9	N/A
1.54	-2.2 Qp	0.2 / 0.1 / -10.0	8.1	Neutral	N/A	-47.9
3.66	-7.8 Av	0.3 / 0.1 / -10.0	2.6	Neutral	-43.4	N/A
3.66	-2.4 Qp	0.3 / 0.1 / -10.0	8.0	Neutral	N/A	-48.0
7.38	-7.7 Av	0.4 / 0.1 / -10.0	2.8	Neutral	-47.2	N/A
7.38	-2.1 Qp	0.4 / 0.1 / -10.0	8.4	Neutral	N/A	-51.6
10.16	-7.7 Av	0.6 / 0.1 / -10.0	3.0	Neutral	-47.0	N/A
10.16	-1.9 Qp	0.6 / 0.1 / -10.0	8.8	Neutral	N/A	-51.2
16.12	-7.6 Av	1.1 / 0.2 / -10.0	3.7	Neutral	-46.3	N/A
16.12	-2.1 Qp	1.1 / 0.2 / -10.0	9.2	Neutral	N/A	-50.8
21.06	-7.2 Av	1.1 / 0.5 / -10.0	4.4	Neutral	-45.6	N/A
21.06	-1.5 Qp	1.1 / 0.5 / -10.0	10.1	Neutral	N/A	-49.9
27.48	-7.3 Av	1.3 / 0.7 / -10.0	4.7	Neutral	-45.3	N/A
27.48	-1.3 Qp	1.3 / 0.7 / -10.0	10.7	Neutral	N/A	-49.3
29.91	-7.2 Av	1.4 / 0.8 / -10.0	5.0	Neutral	-45.0	N/A
29.91	-0.9 Qp	1.4 / 0.8 / -10.0	11.3	Neutral	N/A	-48.7

Report Number: 100320162DEN-001

FREQ	LEVEL	CABLE / LISN / ATTEN	FINAL	TEST POINT	DELTA1 (dB)	DELTA2 (dB)		
(MHz)	(dBuV)	(dB)	(dBuV)		AV15.107B	QP15.107B		
	******** Measurement Summary *******							
3.66	-7.8 Av	0.3 / 0.1 / -10.0	2.6	Neutral	-43.4	N/A		
0.680	-7.9 Av	0.1 / 0.1 / -10.0	2.3	Neutral	-43.7	N/A		
1.02	-8.0 Av	0.2 / 0.1 / -10.0	2.3	Neutral	-43.7	N/A		
1.54	-8.0 Av	0.2 / 0.1 / -10.0	2.3	Line 1	-43.7	N/A		
0.470	-8.1 Av	0.1 / 0.1 / -10.0	2.1	Neutral	-44.4	N/A		
29.91	-7.1 Av	1.4 / 0.8 / -10.0	5.1	Line 1	-44.9	N/A		
27.48	-7.3 Av	1.3 / 0.7 / -10.0	4.7	Neutral	-45.3	N/A		
21.06	-7.2 Av	1.1 / 0.5 / -10.0	4.4	Neutral	-45.6	N/A		
16.12	-7.6 Av	1.1 / 0.2 / -10.0	3.7	Neutral	-46.3	N/A		
10.16	-7.7 Av	0.6 / 0.1 / -10.0	3.0	Neutral	-47.0	N/A		
7.38	-7.7 Av	0.4 / 0.1 / -10.0	2.8	Neutral	-47.2	N/A		
0.150	-7.0 Av	0.1 / 0.2 / -9.9	3.2	Line 1	-52.8	N/A		

Example calculation:

Measured Level	+	Transducer, Cable Loss & Amplifier corrections	=	Corrected Reading	Specification Limit	_	Corrected Reading	_	Delta Specification
(dBµV)		(dB)		(dBµV/m)	(dBµV/m)		(dBµV/m)		
14.0		14.9		28.9	40.0		28.9		-11.1

Notes:

(1) Remote product is battery only – no conducted emissions applicable.

Report Number: 100320162DEN-001	Issued: 02/28/2011

12 Measurement Uncertainty

The measured value related to the corresponding limit will be used to decide whether the equipment meets the requirements.

The measurement uncertainty figures were calculated and correspond to a coverage factor of k = 2, providing a confidence level of respectively 95.45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian).

Measurement uncertainty Table

Parameter	Uncertainty ±	Notes
Radiated emissions, 10kHz to 1000 MHz	4.8 dB	
Radiated emissions, 1 to 18 GHz	4.9 dB	
AC mains Conducted emissions, 150kHz to 30 MHz	3.14 dB	

Report Number: 100320162DEN-001 Issued: 02/28/2011

13 Revision History

Revision Level	Date	Report Number	Notes
0	02/28/2011	100320162DEN-001	Original Issue
1	04/04/2011	100320162DEN-001	Revised report per TCB reviewer requests 1. added conducted emissions data – pg 70 2. removed duty cycle correction from fundamental measurements – pg 17-18 & 21-22. 3. revised conversion from field strength (dBuV/m) to power (W) to demonstrate compliance to fundamental output power limit – pg 18 & 22. 4. added plots for Tx spurious in restricted bands – pg 62. Randy Thompson
			Kandy Thompson
2	04/07/2011	100320162DEN-001	Added remote band edge plots- pg 63 Added ac adapter details – pg 8 per TCB
			Kili