HW 2A - ENGR 4399: Machine Learning

Instructor: Dr. Gonzalo D. Parra

Problem 1 (Linear Regression with One Coefficient and an Intercept) Solve the following optimization problem:

$$\min_{a,b} \sum_{i=1}^{n} (y_i - ax_i - b)^2.$$

Hint: Set the derivatives with respect to a and b to zero to get two equations that you have to solve. This is similar to linear regression with two variables.

Problem 2 (Orthogonality) Two vectors v_1 and v_2 are defined to be orthogonal if

$$\langle v_1, v_2 \rangle = v_1^T v_2 = 0.$$

- 1. Show that the unit vectors in the Euclidean space \mathbb{R}^3 , [1,0,0], [0,1,0], and [0,0,1] are orthogonal.
- 2. Recall that a set of vectors v_1, v_2, \dots, v_n are called linearly independent if for constants c_1, \dots, c_n

$$c_1v_1 + \cdots + c_nv_n = 0$$
 implies $c_i = 0$, for all i .

Show that orthogonal vectors are linearly independent.

Hint: Start with the linear combination $c_1v_1 + \cdots + c_nv_n$ and take its inner product with v_1 (then v_2 , etc.).

Problem 3 (Projection) The projection of a vector v_1 over another vector v_2 is defined by the inner product $\langle v_1, v_2 \rangle = v_1^T v_2$.

- 1. Verify that for the orthogonal vectors provided in the previous problem, the projection of one over the other is zero.
- 2. Consider the 3-dimensional vector x = [2, 5, 3]. Find the projection of x on the unit vectors $e_1 = [1, 0, 0]$, $e_2 = [0, 1, 0]$, and $e_3 = [0, 0, 1]$. Verify that every such vector x can be written as

$$x = \langle x, e_1 \rangle e_1 + \langle x, e_2 \rangle e_2 + \langle x, e_3 \rangle e_3.$$

In vector space terminology, we say that the vectors e_1 , e_2 , and e_3 span the vector space \mathbb{R}^3 .

Problem 4 (Gradient Calculations) *Obtain the gradient* ∇_{β} *of the following function.*

$$f(\beta) = \beta^T ABC \ \beta + b^T \beta + \beta^T a + (c + d + e)^T \beta + \lambda \beta^T \beta.$$

Here, A, B, C are appropriate matrices, a, b, c, d, e are column vectors, and λ is a constant.

Hint: Use the gradient identities studied in the class.

Problem 5 (Convex Functions (30 Points)) Let $f_1(x)$ and $f_2(x)$ be two convex functions. Let $\lambda_1 > 0$ and $\lambda_2 > 0$ are two positive real numbers. Then show that $\lambda_1 f_1(x) + \lambda_2 f_2(x)$ is convex.

Hint: Use the definition of convex functions.