Chem 1142—Exam 3A Spring 2011

Name: KEY

0-20M

Multiple Choice. [5 pts. Each] Circle the best response.

- Q1. A Brønsted acid is:
- a) a proton acceptor
- b) a proton donor
- c) an electron-pair donor

- d) an electron-pair acceptor
- e) a substance that ionizes to produce H₃O⁺ ions.

Q2. The pH of 0.20 M Sr(OH)2(aq) is: Doit found to account for the fact that I false 2 rot ion for every to Sr(OH)2 of - Sr (OH)2 of - Sr (OH)

d) 13.30

- a) 0.70 b) 0.40
- Q3. A weak acid: a) Has a high pH
- b) Has a low pH

c) 1.00

c) Has a pH close to 7.00

- d) Partially ionizes in water
- e) Is chemically unreactive
- Q4. Which of the following has the greatest molar solubility?
- a) PbF₂; $K_{sp} = 4.1 \times 10^{-8}$
- b) CaF₂; $K_{\rm sp} = 4.0 \times 10^{-11}$
- c) BaF₂; $K_{sp} = 1.7 \times 10^{-6}$
- d) Ag₂SO₄; $K_{sp} = 1.4 \times 10^{-5}$
- Q5. An aqueous solution of NH₄Br is:
- a) Acidic
- b) Basic
- c) Neutral
- d) Not enough information to give an answer

e) 13.60

- Q6. K_{sp} for PbCl₂ is 2.4 x 10⁻⁴. What is the molar solubility of PbCl₂?
- a) $6.2 \times 10^{-2} \text{ M}$
- b) 3.9 x 10⁻² M
- c) 2.4 x 10⁻⁴ M

d) 7.7×10^{-3}

e) $6.0 \times 10^{-5} \text{ M}$

Short Response Questions. Show ALL work to receive credit.

Q7. [10 pts.] Calculate the pH of a 0.10 M aqueous solution of NaF(aq), given K_a (HF) = 7.1 x 10⁻⁴.

$$K_{6} = K_{10} \implies K_{6} = \frac{K_{10}}{K_{10}} = \frac{1.0 \times 10^{-14}}{7.1 \times 10^{-14}} = 1.41 \times 10^{-11}$$
(conj. pair)

$$\Rightarrow |\cdot \frac{1}{4}|_{x}|_{0}^{-1} = \frac{(x)(x)}{0.10-x} \approx \frac{x^{2}}{0.10} \quad (assuming \ x << 0.10)$$

$$\Rightarrow |x^{2}|_{0} = |0.10 \times 1.\frac{1}{4}|_{x}|_{0}^{-1}$$

$$\Rightarrow x = |\cdot| q \times 10^{-4}$$

% ionization =
$$\frac{x}{0.10} \times 100$$
 (<5))

POH = $-\log [OH]$
= $-\log (x) = 5.926$

Q8. [10 pts.] Identify (and explain how you identified) the Lewis acid and base in the following reaction:

$$AlCl_3 + Cl^- \rightarrow AlCl_4^-$$

Be sure to write valid Lewis structures as part of your answer.

(Al is e deficient, like B)

Q9. [6 pts.] The pK_as of two monoprotic acids, HA and HB, are 5.9 and 8.1 respectively. Which of the two is the stronger acid?

- Q10. [10 pts.] Write formulas for the following compounds:
 - a) lithium phosphate $L_1^+ PD_4^{3-} = L_{13}PD_4$
 - b) ammonium bicarbonate $NH_4^+ HCO_3^- = NH_4 HCO_3$
- c) sulfuric acid
 d) calcium sulfate dihydrate
 e) trisulfur heptabromide $C_{\alpha}^{2+} \leq O_{+}^{2-} \cdot 2H_{L}O = C_{\alpha} \leq O_{+} \cdot 2H_{L}O$ $C_{\alpha}^{2+} \leq O_{+}^{2-} \cdot 2H_{L}O = C_{\alpha} \leq O_{+} \cdot 2H_{L}O$ $C_{\alpha}^{2+} \leq O_{+}^{2-} \cdot 2H_{L}O = C_{\alpha} \leq O_{+} \cdot 2H_{L}O$

Q11. [15 pts.] Calculate the pH of a buffer with an acetic acid concentration of 0.900 M, and a sodium acetate concentration of 0.500 M. What will the pH of the buffer change to if 5.00 mL of 12.0 M HCl is added to 125 mL of this buffer? K_a (HC₂H₃O₂) = 1.8 x 10⁻⁵.

Q12. [10 pts.] 15.4 g of H₂(g) is reacted with 18.3 g of N₂(g) and forms 10.9 g of NH₃(g). Calculate the percent yield of this reaction.

Comment: HCl almost neutralized all the base in our buffer! Since ratio of base acid is almost 1:100, H-Heo is @ limit of weightness!

Balana & eq:
$$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$$

(85)
$$15.4g H_2 \times \frac{1 \text{ mol } H_2}{2.025 \text{ Hz}} \times \frac{2 \text{ mol } NH_3}{3 \text{ mol } H_2} \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 86.6g \text{ NH}_3$$

(P)
$$18.3g N_2 \times \frac{1 \text{ mol } N_2}{28.025 N_2} \times \frac{2 \text{ mol } NH_5}{1 \text{ mol } N_2} \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{ NH}_3}{1 \text{ mol } NH_3} = 22.3g \text{ NH}_5 \times \frac{17.045 \text{$$

C

F.

Q13. [10 pts.] How many grams of CaCO₃ will dissolve in 300. mL of 0.050 M Ca(NO₃)₂(aq)? $K_{\rm sp}$ (CaCO₃) = 8.7 x 10⁻⁹.

$$C_{a}(NO_{3})_{2}(Oq) \longrightarrow C_{a}^{2+}(Oq) + 2NO_{3}^{-}(Oq) \qquad [Remember solubility who from Gen Chem 1!]$$

$$O.050M \qquad O.050M \qquad O.10M$$

$$K_{cp} \text{ rxn}: \qquad C_{a}CO_{3}(S) \Longrightarrow C_{a}^{2+}(Oq) + CO_{3}^{2-}(Oq)$$

$$I \longrightarrow \qquad O.050M \qquad O$$

$$C \stackrel{''-S'}{=} + S \qquad + S$$

$$E \longrightarrow \qquad (0.050+S) \qquad (5)$$

$$K_{cp} = [C_{a}^{2+}][(O_{3}^{2-}]_{eQ} \qquad assume S<<0.050$$

$$\Longrightarrow 8.7 \times 10^{-9} = (0.050+S)(S) \cong (0.050)(S)$$

$$\Longrightarrow S = \frac{8.7 \times 10^{-9}}{0.050} = [.7 \times 10^{-7}M]$$
assumption was valid.

BONUS QUESTION.

 H_3PO_4 is a triprotic acid. Write out the chemical reactions corresponding to K_{a1} , K_{a2} , and K_{a3} .

$$\begin{array}{lll} \text{Ka}_{1}: & \text{H}_{3}\text{PO}_{4}\left(a_{1}\right) + \text{H}_{2}\text{O}\left(u\right) \Longrightarrow & \text{H}_{3}\text{D}^{+}\left(a_{1}\right) + \text{H}_{2}\text{PO}_{4}^{-}\left(a_{1}\right) \\ \text{Ka}_{2}: & \text{H}_{2}\text{PO}_{4}^{-}\left(a_{1}\right) + \text{H}_{2}\text{O}\left(u\right) \Longrightarrow & \text{H}_{2}\text{D}^{+}\left(a_{1}\right) + \text{HPO}_{4}^{2-}\left(a_{1}\right) \\ \text{Ka}_{3}: & \text{HPO}_{4}^{2-}\left(a_{1}\right) + \text{H}_{2}\text{O}\left(u\right) \Longrightarrow & \text{H}_{3}\text{D}^{+}\left(a_{1}\right) + \text{PO}_{4}^{3-}\left(a_{2}\right) \end{array}$$

300 mLx 1L x 1.7x10-7ml Ca(03) x 100.09g Ca(03) = 5.1x10-6g Ca(03)

Useful Information

$$N_{\rm A} = 6.022 \text{ x } 10^{23} \text{ mol}^{-1}$$

Given:
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$K_{\rm w} = [{\rm H_3O^+}][{\rm OH^-}] = 1.0 \ {\rm x} \ 10^{-14} \ {\rm at} \ 25 \ {\rm ^{\circ}C}.$$

$$pH = -log[H_3O^+]$$

$$K_aK_b = K_w$$

$$R = 8.314 \text{ J/mol} \cdot \text{K} = 0.08206 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$$

$$pH = pK_a + log \frac{Base}{Acid}$$

$$M_1V_1 = M_2V_2$$

Periodic Table of the Elements

		renductable of the Elements															
IA 1	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA 18
1	1																2
H																	He
1.01	2											13	14	15	16	17	4.00
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	P	s	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ı	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	w	Re	Os	l Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
		57	58	59	60	61	62	63	64	65	66	67	68	69	70		
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb		

	57	58	59	60	61	62	63	64	65	66	67	68	69	70
*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]