N74-10731

MARINER VENUS/MERCURY 1973

Mariner Venus/Mercury 1973
Rocket Engine Assembly
Final Report

ROCKET ENGINE ASSEMBLY

PREPARED FOR

JET PROPULSION LABORATORY

PASADENA, CALIFORNIA

BY

TRW

ONE SPACE PARK . REDONDO BEACH . CALIFORNIA

Mariner Venus/Mercury 73 Rocket Engine Assembly Index Number 2010 November 10, 1972

CASE FILE

Mariner Venus/Mercury 1973 Rocket Engine Assembly Final Report

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100.

Prepared for Jet Propulsion Laboratory, Pasadena, California by TRW Systems, Redondo Beach, California Under Contract Number 953361

Prepared by D. R. Snoke, R. S. Williams

Approved by

D. R. Snoke MV/M 73 REA TRW Project Manager

Approved by

D. H. Lee, Manager Combustion Systems Laboratory TRW Systems

Approved by

Dwight U. Phillips REA JPL Cognizant Engineer

CASE FILE

COPY

CONTENTS

		Page
1.	SUMMARY	. 1
2.	ORGANIZATION	. 6
3.	HARDWARE INTEGRITY	. 8
4.	FABRICATION AND ASSEMBLY DATA	. 9
	4.1 Catalyst Summary	. 9
	4.2 Weight Summary	. 16
5.	FLIGHT ACCEPTANCE NONREACTIVE TESTS	. 17
• .	5.1 Water Flow Tests	. 17
	5.1.1 Visual Water Flow Test	. 17
	5.1.5 Valve-Injector Combination Flow Calibration	. 22
	5.2 Proof and Leak Test	. 54
	5.3 Vibration Tests	. 54
6.	FLIGHT ACCEPTANCE HOT FIRE TESTS	. 96
	6.1 Test Requirement	. 96
	6.2 Test Installation	. 96
	6.3 Flight Acceptance Test Data	. 97
	6.4 Start-up/Shutdown Analysis	. 115
	6.5 Hot Fire Test Instrumentation Uncertainties	. 124
	6.5.1 Thrust Measurement Uncertainties 6.5.2 Low Temperature Measurement	. 127
	Uncertainties	. 140
	Uncertainties	. 142
	6.6 Data Acquisition/Reduction Procedures	. 146
7.	PROBLEM AREAS	. 148
8.	PROBLEM/FAILURE REPORTS	. 150
Ω	NEW TECHNOLOGY	152

CONTENTS (Continued)

			Page
API	PEND	ICES	
	A	WATER FLOW BENCH UNCERTAINTY ANALYSIS	155
	В	OSCILLOGRAPHS OF START-UP AND SHUTDOWN FOR EACH FLIGHT ENGINE	171
	С	THRUST MEASUREMENT UNCERTAINTY PLAN	211
	D _.	LOW TEMPERATURE MEASUREMENT UNCERTAINTY ANALYSIS	215
	E	CALIBRATION DATA FOR PRESSURE TRANSDUCERS AND FLOWMETERS USED ON THE WATER FLOW TESTS ON MV/M '73 REA PROJECT	235

ILLUSTRATIONS

		Page
1 - 1	MV/M 73	. 2
1-2	MV/M 73 REA with JPL Furnished Marquardt Valve	4
2-1	MV/M 734REA Project Organization	7
4-1	Parts List for All Flight REA	10
4-2	Rocket Engine Assembly Test Flow Chart	13
4-3	Catalyst Weight Summary	15
5-1	Visual Observation Injector Flow Pattern Test Setup	18
5 - 2	Photograph of Visual Pattern Test	18
5 - 3	Injector Flow Distribution Test Setup	19
5 - 4	Photograph of Injector Flow Distribution Test	19
5 - 5	Water Flow Patternation Test Results (Deviation %)	20
5-6	Orifice Size and Injector Pressure Drop	21
5-7	Valve Water Calibration	23
5-8	Valve S/N 0003 Water Flow First Calibration Data (April 21, 1972)	24
5-9	Valve S/N 0003 Water Flow First Calibration Data	25
5-10	Valve S/N 0004 Water Flow First Calibration Data (June 23, 1972)	26
5-11	Valve S/N 0004 Water Flow First Calibration Data	27
5-12	Valve S/N 0003 Water Flow Second Calibration Data (August 18, 1972)	28
5-13	Valve S/N 0003 Water Flow Second Calibration Data	29
5-14	Valve S/N 0004 Water Flow Second Calibration Data (September 8, 1972)	30

		Page
5-15	Valve S/N 0004 Water Flow Second Calibration Data	31
5-16	Valve S/N 0003 Water Flow Third Calibration Data (September 8, 1972)	32
5 - 17	Valve S/N 0003 Water Flow Third Calibration	33
5-18	Valve-Injector Combination Calibration Test Setup	35
5-19	Valve-Injector Calibration Data, Injector S/N 201, Valve S/N 0003	36
5-20	Valve-Injector Calibration Data, Injector S/N 201, Valve S/N 0003	37
5-21	Valve-Injector Calibration Data, Injector S/N 203, Valve S/N 0003	38
5-22	Valve-Injector Calibration Data, Injector S/N 203, Valve S/N 0003	39
5 -2 3	Valve-Injector Calibration Data, Injector S/N 204, Valve S/N 0003	40
5-24	Valve-Injector Calibration Data, Injector S/N 204, Valve S/N 0003	41.
5-25	Valve-Injector Calibration Data, Injector S/N 205, Valve S/N 0003	42
5-26	Valve-Injector Calibration Data, Injector S/N 205, Valve S/N 0003	43
5-27	Valve-Injector Calibration Data, Injector S/N 206, Valve S/N 0004	44
5-28	Valve-Injector Calibration Data, Injector S/N 206, Valve S/N 0004	45
5-29	Valve-Injector Calibration Data, Injector S/N 207, Valve S/N 0004	46
5-30	Valve-Injector Calibration Data, Injector S/N 207, Valve S/N 0004	47
5-31	Valve-Injector Calibration Data, Injector S/N 208, Valve S/N 0004 (First Calibration)	48

		Page
5-32	Valve-Injector Calibration Data, Injector S/N 208, Valve S/N 0004 (First Calibration)	49
5-33	Valve-Injector Calibration Data, Injector S/N 208, Valve S/N 0004 (Second Calibration)	50
5-34	Valve-Injector Calibration Data, Injector S/N 208, Valve S/N 0004 (Second Calibration)	51
5-35	Water Flow Bench Pressure Measurement Calibration	52
5-36	Engine Proof and Leak Test	55
5-37	Axis Designation and Test Configuration	56
5-38	Sinusoidal Vibration Spectrum	57
5 - 39	Random Vibration Spectrum	58
5-40	Sinusoidal Vibration Spectrum	59
5-41	Random Vibration Spectrum	60
5 - 42	Engine S/N 203 Mounted in Vibration Fixture	61
5-43 thru 5-67	Sinusoidal and Random Vibration Plots for Engine S/N 203	62-74
5-68 thru 5-74	Sinusoidal and Random Vibration Plots for Engine S/N 201	74-77
5-75 thru 5-83	Sinusoidal and Random Vibration Plots for Engine S/N 204	78-82
5-84 thru 5-92	Sinusoidal and Random Vibration Plots for Engine S/N 205	82-86
5-93 thru 5-101	Sinusoidal and Random Vibration Plots for Engine S/N 206	87-91
5-102 thru 5-110	Sinusoidal and Random Vibration Plots for Engine S/N 207	91-95

		Page
6-1	Test Sctup for Engine Hot Fire Tests	99
6-2	Instrumentation Used for MV/M73 REA FA Tests	99
6-3	MV/M 73 Thrust Stand	100
6-4	MV/M 73 REA Thrust Stand in HA3A Test Cell	101
6-5	MV/M REA Hydrazine Analysis	102
6-6	MV/M 73 Flight Acceptance Test Data Summary	103
6-7	MV/M 73 Flight Acceptance Test Data Summary	104
6-8	MV/M 73 Flight Acceptance Test Data Summary	105
6-9	MV/M 73 Flight Acceptance Test Data Summary	106
6-10	MV/M 73 Flight Acceptance Test Data Summary	107
6-11	MV/M 73 Flight Acceptance Test Data Summary	108
6-12	Flight Acceptance Engine Data	111
6-13	Flight Acceptance Engine Data	112
6-14	Flight Acceptance Engine Data	113
6-15	Statistical Summary of MVM'73 Engine Performance	114
6-16	Flight Acceptance Engine Data	116
6-17	MVM'73 Summary of Start-Up/Shutdown Integration	117
6-18	MVM'73 Summary of Start-Up/Shutdown Integration	118
6-19	MVM'73 Summary of Start-Up/Shutdown	119

		Page
6-20	MVM'73 Summary of Start-Up/Shutdown Integration	120
6-21	MVM'73 Summary of Start-Up/Shutdown Integration	121
6-22	MVM'73 Summary of Start-Up/Shutdown Integration	122
6-23	MVM'73 Statistical Summary of Start-Up/ Shutdown Integration	123
6-24	Summary of MVM 73 Start-Up Response Characteristics	125
6-25	MVM'73 Instrumentation and Performance Uncertainties	126
6-26	Overall Thrust Measurement Uncertainty	128
6-27	Summary of End-to-End Calibrations	131
6-28	Summary of End-to-End Calibrations	132
6-29	Summary of End-to-End Calibration Statistics	134
6-30	Summary of Pre/Post Test Zero Shift Data	135
6-31	Summary of Channel Deviation Data	136
6-32	Summary of Thrust Measurement Uncertainties	139
6-33	Summary of Instrumentation Uncertainties of the Platinum Resistance Transducers	142
6-34	Summary of Throat Temperature Measurements	144
6-35	Thermocouple Uncertainty-Summary-Range 150-2000°F	145
6-36	MVM 73 Key Instrumentation Channel Assignments	147

1. SUMMARY

This final report covers the work conducted by TRW Systems for the Jet Propulsion Laboratory on Contract 953361 for the Fabrication and Test of Rocket Engine Assemblies (REA) for Mariner Venus/Mercury 1973.

The contract covered fabrication, assembly and Flight Acceptance (FA) test of seven (7) REA's including the Type Approval (TA) test of one engine and fabrication of one (1) additional kit consisting of detail parts for an engine ready for catalyst loading.

This report will not cover the engine (S/N 202) selected for TA testing since this engine is covered in the Type Approval Test Summary Report.

This report covers the flight engines S/N 201, 203, 204, 205, 206 and 207. The kit engine is S/N 208 and only the water flow calibration data is included for this engine.

The MV/M '73 Rocket Engine Assembly (REA) as shown in Figure 1-1 is a nominal 51 lbs thrust monopropellant engine. The injector assembly consists of a shower head type injector having eighteen (18) 0.026 in diameter injector holes. A 60 mesh screen is downstream of the injector with one layer of 20-30 fine mesh Shell 405 catalyst packed under pressure. Following the catalyst is a retention plate having circular annular areas enclosed with 60 mesh screens on each side. The main catalyst bed (also packed under pressure) consists of a uniform mixture of 75 percent Shell 405, 1/8 inch cylindrical pellets and 25 percent HA-3, 1/8 inch cylindrical pellets. The catalyst bed is retained by a 10 mesh screen and a baffle plate. The nozzle has a nominal throat area of 0.15 in ² and a nozzle expansion ratio of 44:1.

A plug orifice is used on the inlet side of the injector as a trim orifice to calibrate the engine pressure drop.

Under steady state operation the specific impulse is not less than 228 lb-sec at 55 lb_f and 218.5 lb-sec at 10 lb_f thrust varying linearly between these limits. The characteristic velocity is not less than 4100 ft/sec at any thrust level.

Figure 1-1. MV/M 73

Photographs of the MV/M 73 REA complete with the JPL-Furnished Marquardt value is shown in Figure 1-2.

All TA and FA testing were conducted as per the JPL Specification TS506207 entitled "Detail Specification for Rocket Engine Propulsion Subsystem Mariner Venus/Mercury 1973 Flight Equipment Type Approval and Flight Acceptance Tests." During the length of the contract the above specification was revised to a "A" revision and finally to a "B" revision.

A complete list of all software prepared by TRW Systems for the MV/M 73 REA Contract in addition to this final report is as follows:

MV/M 73 REA Quality Assurance & Reliability Program Plan

MV/M 73 REA Manufacturing Plan

MV/M 73 REA Configuration Control Plan

MV/M 73 REA TA Test Plan

MV/M 73 REA FA Test Plan

MV/M 73 REA Type Approval Test Summary Report

CTSP-1 Data Reduction and Performance Analysis
Computer Program

Complete data package for each flight engine

TEST PROCEDURES

<u>Title</u>	Procedure Number
Rocket Engine Injector Water Flow Test, Flight Acceptance	JPL-EP507020
Injector Assembly, Rocket Engine, 1001319?	JPL-EP50 7 021
Assembly of Rocket Engine Welded Assembly, 10013198	JPL-EP507022
Rocket Engine, 10013199 or 10013198 Proof and Leak Test, Flight Acceptance	JPL-EP507023
MV/M '73 Rocket Engine 10013199 Vibration Test, Flight Acceptance	/ JPL-EP507024
MV/M '73 Rocket Engine 10013199 Vibration Test, Type Approval	JPL-EP507025

Figure 1-2. MV/M73 REA with JPL Furnished Marquardt Valve

TEST PROCEDURES (Continued)

Title	Procedure Number
Hot Firing Tests of Rocket Engine, 10013199 Flight Acceptance	JPL-EP507026
Hot Firing Tests of Rocket Engine, 10013199 Type Approval	JPL-EP507027

2. ORGANIZATION

The Mariner Venus/Mercury 1973 Rocket Engine Assemblies were fabricated, assembled, tested and delivered by a project organization specifically established for this activity within the Applied Technology Division (ATD) of TRW Systems. ATD is managed by A. F. Grant.

The MV/M73 project was conducted in the Combustion Systems
Laboratory under the Energy Systems Operation headed by G. W. Elverum,
Jr.

The key organization for the MV/M73 REA project is shown in Figure 2-1.

Figure 2-1. MV/M 73 REA Project Organization

3. HARDWARE INTEGRITY

The production and test program for the MV/M73 Rocket Engine was conducted in a manner to ensure a high level of product integrity. The quality assurance and reliability was conducted in accordance with the "MV/M 73 REA Quality Assurance and Reliability Program Plan" dated March 24, 1972. The methods utilized encompassed the use of approved assembly and test procedures used in conjunction with drawings and specifications. Specific events were preplanned and sequenced with reference to particular specification requirements on TRW standard shop work orders. Inspections were conducted at the conclusion of key events. Problems as they occurred were analyzed by the cognizant manufacturing, test and quality engineer for the improvement of methods to ensure conformance. As a result of these techniques the program quantities were manufactured and tested with no attrition. Defects were primarily of the cosmetic type during fabrication and minor test anomalies which were mostly due to test equipment malfunctions. None of the defects or anomalies resulted in the degradation of the rocket engine structural or functional characteristics.

4. FABRICATION AND ASSEMBLY DATA

The manufacturing of the REA's were carried out in accordance with the following plans which were prepared at the beginning of the contract and approved by JPL:

"MV/M 73 REA Manufacturing Plan" dated April 21, 1972
"MV/M 73 REA Configuration Control Plan" dated March 17, 1972

The REA's were fabricated and assembled at TRW Systems between February and August 1972. The parts list for all engines is shown in Figure 4-1.

The fabrication, assembly, and test flow chart used for the engines is shown in Figure 4-2.

The test procedures listed in Section 1 of this report were used for fabrication, assembly and test of all flight engines.

4.1 CATALYST SUMMARY

The injector on each flight engine was loaded with 19.0 to 19.3 grams of 20-30 mesh Shell 405. After loading the catalyst, a gap of $0.004 \pm .001$ inches remained between the injector body and retention plate. This gap was closed by applying a torque of 70 ± 10 inch-pounds on the JPL furnished weld fixture. A final torque of 85-90 in-lbs was then applied prior to welding.

Each shell was loaded with 201.5 to 211.9 grams of 75% Shell 405 1/8 inch cylindrical pellets and 25% HA-3 1/8 inch cylindrical pellets. After loading the catalyst into the shell a gap of 0.010 inches was measured between the injector and shell. A torque of 25 to 30 inchpounds was then used on the weld fixture to close this gap and a final torque of 35 inch-pounds was used prior to welding.

Figure 4-3 indicates the amount of catalyst and torque used for each of the flight engines.

Part Number	Description	Qty	Next Assembly	Drawing Number
10013199-1	Rocket Engine Propulsion Subsystem		10040180	10013199 F
10013198-1	Rocket Engine Welded Assembly	1	10013199-1	10013198 H
10013191-1	Shell Welded Assembly Rocket Engine	-	10013198-1	10013191 G
10013187-1	Shell	-	10013191-1	10013187 C
10013188-1	Baffle	1	10013191-1	10013188 B
10013190-1	Tube Transducer	1	10013191-1	10013190 C
10013194-5	Screen Square Weave	1	10013191-1	10013194 C
AN 818-3C	Nut Coupling (3J Used)	1	10013191-1	
NS 20819-3C	Sleeve (3J Used)	-	10013191-1	;
10013197-1	Injector Assembly Rocket Engine	-	10013198-1	10013197 K
10013194-6	Screen Square Weave	-	10013197-1	10013194 C
10013194-8	Screen Square Weave	1	10013197-1	10013194 C
10013194-9	Screen Square Weave	-	10013197-1	10013194 C
10013195-1	Body Injector	7	10013197-1	10013195 E
10013196-1	Orifice Plate Injector		10013197-1	10013196 C
10041433-1	Plate Retention Fine Catalyst	–	10013197-1	10041433 C
10045402-1	Plug, Orifice, Injector Propulsion Subsystem	-	10013197-1	10045402 A

Figure 4-1. Parts List for All Flight REA

Drawing Number	!	:	!!!
Next Assembly	10013197-1	10013198-1	10013198-1
Qty	A/R	A/R	A/R
Description	Catalyst ABSG 20-30 Mesh	Catalyst 1/8 Pellets	Catalyst HA-3 1/8 x 1/8 Pellets
Part Number	Shell 405	Shell 405	BS 506210

Figure 4-1. Parts List for All Flight REA (Continued)

Page Intentionally Left Blank

Figure 4-2. Rocket Engine Assembly Test Flow Chart

Page Intentionally Left Blank

	Inje	Injector		Sh	Shell		ì
		Torque	Torque in-lbs		Torque in-lbs	in-Ibs	
Engine S/N	Catalyst Weight Grams	Close Gap	Final	Catalyst Weight Grams	Close Gap	Final	
201	19.3	80	85	211.9	25	35	
203	19.0	N.A.	85	201,5	N. A.	35	-
204	19.0	75	06	203.4	56	35	•
205	19.1	09	85	203.0	56	35	
206	19.2	.08	06	204.4	30	. 35	
207	19.2	70	06	208.1	28	35	
							l

Figure 4-3. Catalyst Weight Summary

4.2 WEIGHT SUMMARY

Weight losses due to hot fire acceptance test and final weights of each flight engines are listed below:

	Engine S/N	Weight Loss Due to FA Tests Grams	Final Weight Grams*
	201	16.5	1181.1
	203	10.6	1173.0
· .	204	12.9	1168.1
	205	13.6	1169.8
	206	12.8	1163.0
	207	14.3	1169.2

^{*}Final weight prior to shipment; all plugs and closures removed.

5. FLIGHT ACCEPTANCE NONREACTIVE TESTS

5.1 WATER FLOW TESTS

The following water flow tests were conducted on the injectors prior to catalyst loading.

5.1.1 Visual Water Flow Test

The visual water flow test was conducted as per Procedure JPL EP-507020. The injectors were flowed at a water flow rate of 0.22 ± 0.005 lb/sec to visually verify that no holes were plugged and that no burrs are causing distorted flow. The test setup conformed to Figure 5-1 and is shown in the photograph in Figure 5-2.

5.1.2 Water Flow Patternation Test

The water flow patternation test was conducted on all injectors as per Procedure JPL EP-507020. The injectors were flowed with the orifice spray separator, JPL Drawing 10041448, at 0.16 ± 0.005 lb/sec. The test setup conformed to Figure 5-3 and is shown in the photograph in Figure 5-4. The separator outlet tubes were connected to 18 collector tubes of sufficient size to allow at least 5 seconds of continuous flow. The discharge volumes were measured and recorded in Figure 5-5. Maximum deviation of any tube both above and below the average volume was recorded. (The maximum allowable deviation from the average volume must be less than 20 percent.)

5.1.3 Injector Orifice Sizing

The orifice sizing was performed in accordance with Procedure JPL EP-507020. After installing the screen Part No. 10013194-6 three orifices were flowed for each injector and from this data an orifice size was selected. The plug orifice (JPL Drawing 10045402) was to be sized to have a pressure drop across the injector of 95^{-0}_{+10} psi at a flow rate of 0.22 ± 0.002 lb/sec water. The size of orifice selected for each engine and the flow rate and pressure drop is shown in Figure 5-6.

5.1.4 Valve Calibration

Two flight type solenoid valves Part No. 10039802 were furnished by JPL. The valves were water flow calibrated several times during the program to check for performance changes.

Figure 5-1. Visual Observation Injector Flow Pattern Test Setup

Figure 5-2. Photograph of Visual Pattern Test

Figure 5-3. Injector Flow Distribution Test Setup

Figure 5-4. Photograph of Injector Flow Distribution Test

	•						
Burrette Graduate No.	S/N 201	S/N 203	S/N 204	S/N 205	S/N 206	S/N 207	S/N 208
1	3.1	8.3	7.2	2	2	2	1.6
2	3.1	6.6	9.3	2	2	2	1.6
3	3.1	6.6	9.3	2	4	2	1.6
4	11.1	10.1	7.2	2	6	2	5.7
5	11.1	8.3	9.3	2	6	4	1.6
6	11.1	6.6	5.2	2	2	2	7.7
7	4.7	5.5	2.8	0	2	2	4.5
8	4.7	2	4.8	2	2	2	.004
9	12.6	2	4.8	4	2	0	2.4
10	3.1	5.5	10.9	2	2	2	.004
11	4.7	5.5	5.2	2	2	6	2.4
12	4.7	2	4.8	2	2	6	1.6
13	4.7	2	4.8	2	0	2	1.6
14	4.7	3.84	6.8	2	2	4	2.4
15	4.7	2	.8	3	2	0	2.4
16	3.1	3.8	4.8	0	2	2	2.4
17	4.7	5.5	2.8	2	2	2	2.4
18	3.1	3.8	2.8	10.2	4	4	2.4

Figure 5-5. Water Flow Patternation Test Results (Deviation %)

Engine S/N	Orifice Diameter (in.)	Pressure Drop
201	0.0951	103.54 psi @ 0.215 lb/sec
203	0.0985	101.88 psi @ 0.22 lb/sec
204	0.0982	99.0 psi @ 0.22 lb/sec
205	0.1047	100.9 psi @ 0.22 lb/sec
206	0.0982	102.9 psi @ 0.22 lb/sec
207	0.0978	97.5 psi @ 0.22 lb/sec
208	0.0982	100.5 psi @ 0.22 lb/sec

Figure 5-6. Orifice Size and Injector Pressure Drop

The valves were S/N 0003 and 0004 and the test sequence and engine S/N used with each valve are as follows:

A. Valve S/N 0003 first calibration

Engine S/N 203	Valve S/N 0003	FA Test
Engine S/N 202	Valve S/N 0003	FA Test
Engine S/N 201	Valve S/N 0003	FA Test
Engine S/N 202	Valve S/N 0003	TA Test

- B. Valve S/N 0003 second calibration
- C. Valve S/N 0004 first calibration

Engine S/N 206	Valve S/N 0004	FA Test
Engine S/N 207	Valve S/N 0004	FA Test
Engine S/N 204	Valve S/N 0003	FA Test
Engine S/N 205	Valve S/N 0003	FA Test

- D. Valve S/N 0003 third calibration
- E. Valve S/N 0004 second calibration

Injector S/N 208 was water flowed with valve S/N 0004 twice, after both calibrations of valve S/N 0004.

The test setup for calibrating the valves conformed to Figure 5-7. The data and plots for the valve calibrations are shown in the following figures:

First calibration	Valve S/N 0003	Figures 5-8 and 5-9
First calibration	Valve S/N 0004	Figures 5-10 and 5-11
Second calibration	Valve S/N 0003	Figures 5-12 and 5-13
Second calibration	Valve S/N 0004	Figures 5-14 and 5-15
Third calibration	Valve S/N 0003	Figures 5-16 and 5-17

The change in slope of the valve calibration curves is apparently a characteristic of the valve. See Appendix E for the calibration data and sizes of flow meters and pressure transducers used on the water flow tests.

5.1.5 Valve-Injector Combination Flow Calibration

The valve-injector combination for each engine was water flow calibrated in accordance with Procedure JPL EP-507020. The solenoid

Figure 5-7. Valve Water Calibration

Water Flow Rate	Inlet Water	Pressure Drop
lb/sec	Temp. OF	psig
.0397*	69	1.55
.0597*	69	3.71
.0802*	69	6.67
.1003	68	10.18
.1201	68	14.65
.1402	68	19.78
.1603	68	25.73
.1813	68	33.68
.2024	68	43.16
.2202	68	52.34
.2401	68	63.80
.2601	68	76.53
.2702	68	83.25
.2598	68	76.46
.2400	68	63.70
.2200	68	52.20
.2007	68	42.35
.1801	68	33.10
.1600	68	25.68
.1400	68	19.77
.1200	68	14.65
.1002	68	10.22
.0805*	69	6.72
.0605*	69	3.80
.0395*	69	1.58

*Flow Meter S/N Space T-MF-1 (Potter)
All others with Flow Meter S/N 32997 (Foxboro)
All pressures measured with Alinco S/N 34814

Figure 5-8. Valve S/N 0003 Water Flow First Calibration Data (April 21, 1972)

Figure 5-9. Valve S/N 0003 Water Flow First Calibration Data

Water Flow Rate lb/sec	Inlet Water Temp. ^O F	Pressure Drop psig
0.04*	72.8	1.6
0.06*	72.8	3.4
0.08*	72.8	6.1
0.10	72.8	9.4
0.12	72.8	13.3
0.14	72.8	18.0
0.16	72.8	23.1
0.18	72.8	29.8
0.20	72.8	37.8
0.22	72.8	48.8
0.24	72.8	60.1
0.26	72.8	71.4
0.27	72.8	78.3
0.26	72.8	71.2
0.24	72.8	59.0
0.22	72.8	49.2
0.20	72.8	38.5
0.18	72.8	30.0
0.16	72.8	23.3
0.14	72.8	18.0
0.12	72.8	13.6
0.10	72.8	10.1
0.08*	72.8	6.1
0.06*	72.8	3.5
0.04*	72.8	1.6

*Flow Meter S/N Space T-MF-1 (Potter)
All others with Flow Meter S/N 32997 (Foxboro)
All pressures measured with Alinco S/N 34814

Figure 5-10. Valve S/N 0004 Water Flow First Calibration Data (June 23, 1972)

Figure 5-11. Valve S/N 0004 Water Flow First Calibration Data

Water Flow Rate lb/sec	Inlet Water Temp. ^O F	Pressure Drop psig
.0403*	74	1.77**
.0603*	74	3.89**
.0801*	74	6.84**
.1005*	74	10.80**
.120	73	15.06**
.140	73	20.46**
.160	73	26.63**
.180	73	34.30**
.200	73	43.46**
.221	73	53.70
.240	73	64.20
.260	73	74.40
.270	73 .	83.85
.260	73	76.90
.240	73	64.45
.220	73	54.00
.201	73	43.94**
.181	73	34.42**
.161	. 73	26.75**
.141	73	20.55**
.121	73	15.28**
.1010*	74	11.00**
.0808*	74	7.05**
.0600*	74	3.92**
.0406*	74	1.83**

^{*}Flow Meter S/N Space T-MF-1 (Potter)
All other flows with Flow Meter S/N 32997 (Foxboro)

Figure 5-12. Valve S/N 0003 Water Flow Second Calibration Data (August 18, 1972)

^{**}Pressure measured with Taber S/N 661433 - All others with Alinco S/N 34814

Figure 5-13. Valve S/N 0003 Water Flow Second Calibration Data

Water Flow Ra lb/sec	te Inlet Water Temp. oF	Pressure Drop psig
.03953*	60	1.76**
.06031*	60	4.00**
.08014*	60	6.86**
.10094*	60	10.77**
.12005	60	14.49
.14218	60	19.95
.16106	60	25.34
.18203	60	32.86
.20096	60	41.16
.21906	60	50.85
.24120	60	63.2
.25954	60	74.5
.26943	60	81.6
.26089	60	75.3
.24105	63	63.0
.22101	63	52.5
.19982	60	41.55
.18097	60	33.20
.16103	60	25.33
.14114	60	19.81
.12086	60	14.52
.10064*	60.	10.40**
.08036*	60	6.89**
.06042*	60	3.97**
.04096*	60	1.88**

*Flow Meter S/N Space T-MF-1 (Potter)
All other flows with Flow Meter S/N 32997 (Foxboro)

Figure 5-14. Valve S/N 0004 Water Flow Second Calibration Data (September 8, 1972)

^{**}Pressure measured with Taber S/N 661433 All others with Alinco S/N 34814

Figure 5-15. Valve S/N 0004 Water Flow Second Calibration Data

Water Flow Rate 1b/sec	Inlet Water Temp. ^O F	Pressure Drop psig
.03924*	71.8	1.56**
.06001*	~ 71.8	3.90**
.08182*	71.8	7.23**
.10327*	71.8	11.60**
.12061	71.8	15.46
.14246	71.8	21.24
.16237	71.8	27.28
.18147	71.7	34.52
.20208	71.7	44.00
.22186	71.7	55.20
.24092	71.6	65.60
.25959	71.6	77.50
.26979	71.5	85.10
.26011	71.5	77.70
.24067	71.5	65.57
.22001	71.5	54.20
.20141	71.5	43.95
.18144	71.6	35.00
.16173	71.6	26.98
.14136	71.7	20.48
.12027	71.7	14.98
.10173*	71.7	11.25**
.08056*	71.8	7.18**
.06017*	71.9	3.94**
.04159*	72.4	1.87**

^{*}Flow Meter S/N Space T-MF-1 (Potter)
All other flows with Flow Meter S/N 32997 (Foxboro)

Figure 5-16. Valve S/N 0003 Water Flow Third Calibration Data (September 8, 1972)

^{**}Pressures measured with Taber S/N 661433 All other with Alino S/N 34814

Figure 5-17. Valve S/N 0003 Water Flow Third Calibration

valve assembly Part No. 10039802 supplied by JPL with a propellant valve inlet adapter was attached to the injector-orifice combination. The combination was flowed over the range of 0.04 to 0.25 lb/sec with water. The total pressure drop versus flow rate was measured for each combination at a minimum of 12 points during increasing flow rate and at a minimum of 12 points during decreasing flow rate. The test setup was as shown in Figure 5-18. The data for each injector (201, 203, 204, 205, 206, 207 and two different tests on 208) is tabulated and plotted in Figures 5-19 through Figure 5-34.

5.1.6 Water Flow Bench - Instrumentation

During the water flow bench calibration of the MV/M '73 valves and injectors two error analyses were conducted. The first for pressure measurement and the second for flow measurement. The error analyses are presented in detail in Appendix "A" and will be summarized herein.

5.1.6.1 Pressure Measurement

The pressure measurement uncertainty estimate was obtained from five system level end to end calibrations conducted in a manner to simulate a worst-case test condition (i.e., comparison of transducer output to the calibration standard sixteen hours after initial adjustment of transducer zero and full scale output).

The results of this calibration shown in Figure 5-35 indicate a maximum nonlinearity of nearly 1 percent at 4 psia decreasing to approximately 0.2 percent at the full scale level. While these levels are within the specification requirement of \pm 1 percent a second (0 to 50 psia) transducer was installed for lower range pressure measurements thereby assuring uncertainty of measurement well within specification requirements.

Two notes of significance regarding this data are warranted. First, the discontinuity in nonlinearity between 15 and 20 psi is attributed to the fact that two calibration standards were employed (0 to 15 psia and 0 to 300 psia). Second, the hysteresis exhibited is atypical of strain gauge transducers and the inconsistency of the hysteresis at low pressures relative to the full scale of the two calibration gauges is attributed to the calibration standards.

Figure 5-18. Valve-Injector Combination Calibration Test Setup

Water Flow Rate 1b/sec	Inlet Water Temp. ^O F	Pressure Drop psig
.040	67	5.79
.061	67	12.52
.080	67	21.93
.100	67	34.43
.120	67	48.08
.140	67	64.51
.160	67	83.96
.180	67	105.48
.200	67	130.54
.220	67	157.32
.240	67	186.62
.260	67	225.64
.270	67	243.85
.260	67	224.42
.240	. 67	188.74
.220	67	158.87
,200	67	131.70
.180	67	106.22
.160	67	84.58
.140	67	64.50
.120	67	47.74
.100	67	34.38
.080	67	22.19
.060	67	12.38
.040	67	5.83

Flow Meter S/N 32997 (Foxboro)
Pressure Transducer Alinco S/N 34814

Figure 5-19. Valve-Injector Calibration Data, Injector S/N 201 Valve S/N 0003

Figure 5-20. Valve-Injector Calibration Data, Injector S/N 201 Valve S/N 0003

Water Flow Rate lb/sec	Inlet Water Temp. ^O F	Pressure Drop psig
.0399	74	5.17
.0599	72	11.32
.0795	70	20.26
.100	69	31.89
.120	68	44.95
.140	68	61.09
.160	67	79.70
.180	67	99.89
.201	67	125.45
.219	67	148.67
.240	67	178.50
.260	67	211.79
.270	67	232.73
.260	67	214.55
.240	67	181.40
.220	67	152.24
.200	67	126.15
.180	68	101.67
.160	68	80.71
.120	68	45.81
.100	69	33.17
.080	69	20.66
.059	69	11.58
.040	69	5.47

Flow Meter S/N 32997 (Foxboro)
Pressure Transducer Alinco S/N 34814

Figure 5-21. Valve-Injector Calibration Data, Injector S/N 203 Valve S/N 0003

Figure 5-22. Valve-Injector Calibration Data, Injector S/N 203 Valve S/N 0003

Water Flow Rate lb/sec	Inlet Water Temp. ^O F	Pressure Drop psig
.040 *	73	4.9
.060*	73	11.0
.080 *	73	19.9
.100 *	73	31.3
.12	73	43.4
.14	73	59.6
.16	73	77.1
.18	73	98.3
.20	73	121.8
.22	73	148.3
.24	73	176.4
.26	73	209.0
.27	73	226.0
.26	73	209.5
.24	· 73	177.2
.22	73	148.6
.20	73	121.0
.18	73	98.2
.16	73	77.7
.14	73	59.5
.12*	73	44.5
.10*	73	31.4
.08*	73	20.5
.06*	73	11.5
.04 *	73	4.8

^{*}Flow Meter S/N Space T-MF-1 (Potter)

Figure 5-23. Valve-Injector Calibration Data, Injector S/N 204, Valve S/N 0003

All other flows with Flow Meter S/N 32997 (Foxboro)

All pressures with Alino S/N 34814

Figure 5-24. Valve-Injector Calibration Data, Injector S/N 204 Valve S/N 0003

Water Flow Rate lb/sec	Inlet Water Temp. OF	Pressure Drop psig
.04 *	73	4.6
.·06 *	73	11.5
.08 *	73	19.8
.10 *	73	31.0
.12	73	43.5
.14	73	58.4
.16	73	77.0
.18	73	96.5
.20	73	120.0
.22	73	148.7
. 24	73	175.2
.26	73	208.0
.27	73	221.0
.26	73	206.0
.24	73	175.5
.22	73	148.0
.20	73	123.5
.18	73	97.4
.16	73	78.0
.14	73	60.0
.12	73	43.0
.10 *	73	31.0
.08 *	73	19.7
.06 *	73	11.6
.04 *	73	4.8

^{*}Flow Meter S/N Space T-MF-1 (Potter)

All other flows with Flow Meter S/N 32997 (Foxboro)

All pressures with Alino S/N 34814

Figure 5-25. Valve-Injector Calibration Data, Injector S/N 205 Valve S/N 0003

Figure 5-26. Valve-Injector Calibration Data, Injector S/N 205, Valve S/N 0003

Water Flow Rate 1b/sec	Inlet Water Temp. ^O F (Avg.)	Pressure Drop psig
.041 *	73.8	4.8
.061 *	73.8	10.85
.080 *	73.8	19.11
.100 *	73.8	30.68
.120	73.4	42.7
.140	73.4	57.6
.160	73.4	76.2
.180	73.4	96.0
.200	73.4	118.8
.220	73.4	145.0
.240	73.4	171.0
.260	73.4	200.5
.270	73.4	220.5
.260	73.4	201.9
.240	73.4	170.5
.220	73.4	145.5
.200	73.4	119.6
.180	73.4	97.2
.160	73.4	77.5
.140	73.4	58.4
.121	73.4	43.85
.101 *	73.4	31.1
.080 *	73.8	19.3
.060 *	73.8	10.60
.041 *	73.8	4.75

*Flow Meter S/N Space T-MF-1 (Potter)

All other flows with Flow Meter S/N 32997 (Foxboro)

All pressures with Alino S/N 34814

Figure 5-27. Valve-Injector Calibration Data, Injector S/N 206 Valve S/N 0004

Figure 5-28. Valve-Injector Calibration Data, Injector S/N 206 Valve S/N 0004

Water Flow Rate lb/sec	Inlet Water Temp. ^O F (Avg.)	Pressure Drop psig
.040 *	73.2	4.50
.060 *	73.2	10.53
.080 *	73.2	19.04
.100 *	73.2	29.56
.119	73.0	41.06
.140	73.0	56.50
.160	73.0	73.60
.180	73.0	92.80
.200	73.0	114.50
.220	73.0	139.76
.240	73.0	165.12
.260	73.0	192.88
.270	73.0	209.30
.260	73.0	193.39
.240	73.0	165.50
.220	73.0	140.50
.200	73.0	115.10
.181	73.0	94.50
.160	73.0	74.19
.140	73.0	56.60
.120	73.0	41.80
.100*	73.2	29.60
.080 *	73.2	18.59
.061 *	73.2	10.57
.040 *	73.2	4.65

*Flow Meter S/N Space T-MF-1 (Potter)
All other flows with Flow Meter S/N 32997 (Foxboro)

All pressures with Alino S/N 34814

Figure 5-29. Valve-Injector Calibration Data, Injector S/N 207 Valve S/N 0004

Figure 5-30. Valve-Injector Calibration Data, Injector S/N 207 Valve S/N 0004

Water Flow Rate lb/sec	Inlet Water Temp. ^O F (Avg.)	Pressure Drop psig
.040 *	70.8	4.75
.060 *	70.8	10.70
.080 *	70.8	18.93
.100 *	70.8	30.62
.120 *	70.8	43.61
.140	71.0	57.97
.159	71.0	75.71
.181	71,0	95.86
.200	71.0	117.50
.220	71.0	144.49
.240	71.0	169.39
.260	71.0	198.85
.270	71.0	216.75
.260	71.0	200.41
.240	71.0	169.45
.220	71.0	143.55
.200	71.0	119.30
.181	71.0	95.45
.160	71.0	76.00
.141	71.0	58.75
.120 *	70.8	43.61
.100 *	70.8	30.45
.080 *	70.8	19.72
.060 *	70.8	10.79
.041 *	70.8	4.89

^{*}Flow Meter S/N Space T-MF-1 (Potter)
All other flows with Flow Meter S/N 32997 (Foxboro)
All pressures with Alino S/N 34814

Figure 5-31. Valve-Injector Calibration Data, Injector S/N 208 Valve S/N 0004 (First Calibration)

Figure 5-32. Valve-Injector Calibration Data, Injector S/N 208 Valve S/N 0004 (First Calibration)

Water Flow Rate 1b/sec	Inlet Water Temp. ^O F	Pressure Drop psig
.03865*	67	4.71**
.06019*	67	11.0 **
.08148*	67	20.3 **
.10046*	67	31.1 **
.12097	66	43.82
.14130	66	59.80
.16015	66	76.50
.18067	67	97.1
.19994	67	118.8
.22225	67	146.7
.24119	67	171.6
.26066	67	202.3
.26950	67	218.9
.26040	68	202.3
.24056	68	172.5
.22069	68	147.0
.20111	68	120.8
.18119	68	97.9
.16064	68	77.2
.14065	68	59.5
.12056	68	43.57
.10134*	67	31.6 **
.08063*	67	19.8 **
.06076*	67	11.2 **
.04114*	67	5.2 **

*Flow Meter S/N Space T-MF-1 (Potter)
All others with Flow Meter S/N 32997 (Foxboro)
**Pressures measured with Taber S/N 661433
All others with Alinco S/N 34814

Figure 5-33. Valve-Injector Calibration Data, Injector S/N 208 Valve S/N 0004 (Second Calibration)

Figure 5-34. Valve-Injector Calibration Data, Injector S/N 208 Valve S/N 0004 (Second Calibration)

Figure 5-35. Water Flow Bench Pressure Measurement Calibration

5.1.6.2 Flow Measurement

The analysis of water flow measurement was also made on a worst case basis. The components of uncertainty developed as a percent of the lowest flow rate (0.04 lbm/sec) are: flow meter calibration conversion factor (K-Bar) shift, electronic counter accuracy and the effect of temperature variations on the volume to mass conversion factor (K-Bar).

The flowmeters calibrations were conducted at a maximum of 3 month intervals by an independent firm using NBS certified equipment and MIL Standard Procedures. A value of 0.5 percent, which actually represents greater than twice the maximum shift in any point occurring in consecutive three month calibrations, was assigned for this uncertainty source. In general, the shifts observed are less than 0.25 percent for flow rates greater than 35 percent of full range. Since TRW used two flowmeters for flow measurement and neither was used below the 35 percent point the estimate of ± 0.5 percent can be considered conservative.

The uncertainty attributed to the electronic counter has two components. These are (1) time base stability which over the TRW 12 week calibration cycle is 0.0024 percent and (2) a ± 1 count error in the display which constitutes an error of ± 0.025 percent at the 0.04 lbm/sec flow rate. The sum of these two components, 0.027 percent, represents the total uncertainty attributable to this source.

Finally, the conversion factor for volume to mass units was based on a 70° F water temperature, thereby introducing an error, if the water temperature is allowed to vary over the specification range of \pm 5 degrees. This error source, which is simply the difference in water density from 70° F at the two extremes amounts to \pm 0.064%.

The sum of the components of uncertainty for each source results in an overall estimate of \pm 0.591 percent at the 0.04 lbm/sec flow rate. Since the major contributer to the total (i.e., flowmeter calibration uncertainty) decreases with increasing flow rate the specification requirement for flow measurement is asserted to be satisfied over the entire flowmeter range.

5.2 PROOF AND LEAK TEST

The proof test was conducted on each engine as per Procedure JPL EP-507023 after engine assembly and flange machining. The engine assemblies were subjected to a proof pressure test using GN₂. Pressure test fixture, Part No. 10001238-2, and injector inlet adapter fitting, was installed as shown in Figure 5-36. A pressure of 450 psig was applied and held for 5 minutes then reduced to 0 psig. This cycle was repeated a total of three times for each engine.

The leak test was conducted prior to and after vibration tests as per Procedure JPL EP-507023. The engines were subjected to a leak cycle check using Helium as a pressurizing agent. Pressure test fixture, Part No. 10001238-2 and injector inlet fitting, was installed as shown on Figure 5-36. The leak check was performed for 12 minutes at 300 psig using a helium leak detector, and leakage was to not exceed 10^{-6} scc/sec on the injector to shell interface and the PC tube to shell weld joint. All the engines passed this test.

5.3 VIBRATION TESTS

All flight engines were subjected to the TA vibration requirements and were conducted as per Procedure JPL EP-507025. Each engine was mounted and instrumented as shown in Figure 5-37 and the tests were conducted under ambient conditions.

The first flight engine to be vibrated was S/N 203 and the vibration requirements were as per JPL Spec TS506207A. The specified sinusoidal vibration spectrum and random vibration spectrum for this first engine is shown in Figure 5-38 and 5-39 respectively.

The remaining of the engines were vibrated as per JPL Spec TS506207B. The senusoidal vibration spectrum as per the "B" revision specification is shown in Figure 5-40. Sweep rate was 3 octaves per minute and the frequency sweep was 5 to 2000 Hz and back to 5 Hz. The amplitude levels specified were applied separately to each of the three mutually perpendicular axes, one of which lies along the longitudinal axis of the engine. The random vibration spectrum is shown in Figure 5-41. The vibration was applied to the three mutually perpendicular axis one of which lies on the longitudinal axis of the engine. Duration of the test was 20 seconds per axis.

Figure 5-36. Engine Proof and Leak Test

Figure 5-37. Axis Designation and Test Configuration

Figure 5-38. Sinusoidal Vibration Spectrum

Figure 5-39. Random Vibration Spectrum

Figure 5-40. Sinusoidal Vibration Spectrum

Figure 5-41. Random Vibration Spectrum

A photograph of an engine mounted in the vibration fixture is shown in Figure 5-42.

The sinusoidal and random vibration data plots for the various flight approval engines are shown in the following figures:

Engine S/N 203	Figures 5-43 through 5-67
Engine S/N 201	Figures 5-68 through 5-74
Engine S/N 204	Figures 5-75 through 5-83
Engine S/N 205	Figures 5-84 through 5-92
Engine S/N 206	Figures 5-93 through 5-101
Engine S/N 207	Figures 5-102 through 5-110

All above tests were performed in Building M-1 Environmental Laboratory of TRW Systems Group between May and August of 1972.

Figure 5-42. Engine S/N 203 Mounted in Vibration Fixture

Figure 5-43

Figure 5-44

Figure 5-45

Figure 5-46

Figure 5-47

Figure 5-48

Figure 5-49

Figure 5-50

Figure 5-51

Figure 5-52

Figure 5-53

Figure 5-54

Figure 5-55

Figure 5-56

Figure 5-57

Figure 5-58

Figure 5-59

Figure 5-60

Figure 5-61

Figure 5-62

Figure 5-63

Figure 5-64

Figure 5-65

Figure 5-66

Figure 5-67

Figure 5-68

Figure 5-69

Figure 5-70

Figure 5-71

Figure 5-72

Figure 5-73

Figure 5-74

Figure 5-75

Figure 5-76

Figure 5-77

Figure 5-78

Figure 5-79

Figure 5-80

Figure 5-81

Figure 5-82

Figure 5-83

Figure 5-84

Figure 5-85

Figure 5-86

Figure 5-87

Figure 5-88

Figure 5-89

Figure 5-90

Figure 5-91

Figure 5-92

Figure 5-93

Figure 5-94

Figure 5-95

Figure 5-96

Figure 5-97

Figure 5-98

Figure 5-99

Figure 5-100

Figure 5-101

Figure 5-102

Figure 5-103

Figure 5-104

Figure 5-105

Figure 5-106

Figure 5-107

Figure 5-108

Figure 5-109

Figure 5-110

6. FLIGHT ACCEPTANCE HOT FIRE TESTS

6.1 TEST REQUIREMENT

The engine flight acceptance test requirement is as follows with the transition period from one thrust level to the next not greater than 5 seconds and with the engine at ambient temperature for start-ups:

Test Dur (sec)	ration 10	Chamber Pressure (psia) 200 <u>+</u> 5
Continuous Test	40	200 ± 5
	20	150 <u>+</u> 5
	20	100 <u>+</u> 5
	20	50 <u>+</u> 5
Continuous Test	40	50 ± 5
	. 20	100 <u>+</u> 5
	20	150 <u>+</u> 5
	20	200 <u>+</u> 5

To be accepted, in addition to structural survival of the tests, the engine must demonstrate characteristics of performance as specified as follows:

- a) Specific impulse (F/W: Shall not be less than 228 lb_f - s/lb_m at 55 lb_f and 218.5_f - s/lb_m at 10 lb_f thrust, minimum specific impulse shall vary linearly between these limits.
- b) Characteristic velocity (P_c. AT. G/W): Not less than 4100 ft/sec at any thrust level.
- c) Engine roughness: Engine roughness shall not be greater than 10 percent of chamber pressure for chamber pressure oscillations of less than 50 Hz at any thrust level; and shall not be greater than 5 percent of chamber pressure for chamber pressure oscillations of 50 Hz or greater at any thrust level.

6.2 TEST INSTALLATION

The FA hot firing tests were conducted at the TRW Systems Capistrano Test Site in the High Energy Propellant Test Stand (HEPTS). The HA3A test cell was used and the testing was conducted in accordance with Procedure JPL EP-507026.

Each engine was assembled with insulation (Part No. 10000908-1 and 10000908-2), thrust vector control support (Part No. 10000936-2), propulsion subsystem thrust plate (Part No. 10040182) and mounted in the altitude test cell. The pressure in the test cell was maintained continuously at less than 0.16 lb/in² one hour before, during, and at least 10 hours after each test. The test setup schematic for the acceptance test is shown in Figure 6-1. The instrumentation used for the test is shown in Figure 6-2.

A pictorial view of the thrust stand used for the engine tests is shown in Figure 6-3. Photos of the thrust stand with an engine installed is shown in Figure 6-4.

Three JPL furnished drums of hydrazine were used throughout the entire TA and FA test program. The hydrazine analysis for each of these drums is shown in Figure 6-5. Prior to each engine start fuel samples were taken and filed for future analysis if required.

6.3 FLIGHT ACCEPTANCE TEST DATA

Presented in Figures 6-6 through 6-11 is a summary of the steady state hot fire acceptance test data obtained from each flight engine. The parameters included in the summary are: inlet pressure, vacuum thrust, chamber pressure, fuel flow rate, propellant temperature, characteristic exhaust velocity (C-star) vacuum specific impulse and vacuum thrust coefficient. In addition, engine roughness (peak-to-peak high range chamber pressure) and catalyst bed resistance are also presented as a measure of overall engine operation during each test. The parameters presented, with the exception of roughness, for each data slice were averaged over a five second span with the midpoint at the indicated slice time.

A number of adjustments were made to the "as measured" data. These include: correction of thrust and chamber pressure for transducer zero shift, correction of measured throat area for thermal expansion, correction of valve and injector water flow calibration data for differences between water and hydrazine density, differences between calibration and hot fire test propellant temperature conditions, and an adjustment for an apparent bias in the water flow calibration data indicated by the re-water flowing of injector S/N 208. The adjustments were made to the "as measured" data by the following procedures:

- Zero shift The zero levels for thrust (uncorrected) and chamber pressure were determined by averaging the posttest levels over a five second span beginning 10 seconds after the end of each test. These values were then subtracted from the thrust (vacuum) and chamber pressure to correct for zero shift.
- Throat area correction The as measured throat area was corrected for thermal expansion by a JPL supplied equation as a function of measured throat temperature.

$$A_{T} = 0.9925 A_{TC} + 2 [(0.9925 A_{TC})(B + CT_{T} + DT_{T}^{2})(T_{T} - 70)]$$

where:

 A_T = throat area A_{TC} = throat area calculated with temperature of 70° F $B = 6.67 \times 10^{-6}$ $C = 1.19 \times 10^{-9}$ $D = 1.75 \times 10^{-13}$ T_T = throat temperature, $^{\circ}$ F

- Water flow calibration correction The water flow bench pressure drop data were corrected to the actual hot fire test conditions by multiplying the water flow pressure drop by the ratio of the density of water at 70°F to the density of hydrazine at the hot fire test conditions.
- Water flow measurement bias correction The "as measured" water flow pressure drop data for all valve injector combinations were adjusted by an equation developed from the two series of calibrations conducted with injector S/N 208. The pressure drop correction equation is:

$$\Delta P_{\text{corr}} = -0.10898 \text{ w} + 1.0324$$

w = water flow rate, lbm/sec

This factor represents the change observed for S/N 208 valve/injector combination and was used as a multiplier to adjust all the valve/injector pressure drops.

Figure 6-1. Test Setup for Engine Hot Fire Tests

Parameter	Range	Recorder
Pressure Fuel Tank (P _f)	0-750 psig	Speedomax/Oscillograph/Digital
Pressure Fuel Valve Inlet (P _v)	0-750 psig	Speedomax/Oscillograph/Digital
Chamber Pressure (P _{c-1})	0-300 psig	Speedomax/Oscillograph/Digital
Chamber Pressure (P _{c-2})	0-20 psig	Speedomax/Oscillograph/Digital
Thrust (F ₁)	0-75 1ь	Speedomax/Oscillograph/Digital
Thrust (F ₂)	0-75 1Ь	Speedomax/Oscillograph/Digital
Fuel Flow Rate (w-1)	0-0.4 lb/sec	<pre>\$peedomax/0scillograph/Digital</pre>
Fuel Flow Rate (w-2)	0-0.4 lb/sec	Speedomax/Oscillograph/Digital
Cell Pressure (P _{alt-l})	O-1 psia	Speedomax/Oscillograph/Digital
Cell Pressure (Palt-2)	0-5 psia	Speedomax/Oscillograph/Digital
Throat Temperature (T ₊)	32-2000°F	Speedomax/Digital
Chamber Temperature (T _c)	32-2000°F	Speedomax/Digital
Fuel Temperature (T _f)	32-150°F	Speedomax/Digital
Valve Temperature (T _v)	32-150°F	Speedomax/Digital
Thrust Plate Temperature (T _n)	32-500°F	Speedomax/Digital
Injector Temperature (T ₁)	32-1800°F	Speedomax/Digital
Injector Temperature (T ₂)	32-1000°F	Speedomax/Digital
Injector Temperature (T ₃)	32-1000°F	Speedomax/Digital
Injector Temperature (T _i)	32-1000°F	Speedomax/Digital

Figure 6-2. Instrumentation Used for MV/M 73 REA FA Tests

Figure 6-3. MV/M 73 Thrust Stand

Figure 6-4. MV/M 73 REA Thrust Stand in HA3A Test Cell

Sample Source		DRUM NO. H. 3077	DRUM NO. H. 2581	DRUM NO. H. 2011
Sample Code No.		10-852	10-858	None
Sampling Date		4-18-72	5-11-72	7-31-72
Date Received	·	4-18-72	5-11-72	7-31-72
•				
Results	Spec. Limits			
Density at 77°F, g/ml	NR	1.0042	1.0044	1.0047
Water, % by G. L. P. C.	1.5 max	Trace	Trace	0.51
Hydrazine Assay, %	98 min	100.0	100.0	99.25
Particulate, mg/l	10 max	<0.5	<0.5	<0.5
Particle Size Distri- bution per 100 ml	NR*			
6 - 10 micron		210	418	420
11 - 25 micron		85	290	280
26 - 50 micron		20	140	115
51 - 100 micron		5	15	27
101 - 250 micron		0	1	1
Fibers		0	0	0
		1		

NR* = Not Required

Figure 6-5. MV/M REA Hydrazine Analysis

ENGINE S/N 201

TEST NO./	NOTTAGIN	SLICE	INLET	THRUST	CHAMBER	FUEL FI ON DATE	ROUGHNESS	PROP.	THROAT	CATALYST	C-STAR	ISP	۳۰
321 CE 100.	sec		psia	$^{1b}_{ m f}$	psia	lbm/sec	% pc*	deg. F	in	RESISTANCE	ft/sec	lbf/sec lbm	
80	100			CHECK OUT	TEST - NO	OUT TEST - NO PERFORMANCE DATA	ATA			,			
81-1	07	37.4	410	52.79	202.26	0.2294	9/9	71.8	0.1523	0.0515	4320	230.1	1.714
81-2	20	56.9	270	38.62	148.39	0.1687	1/4	71.7	0.1522	0.0519	4307	228.9	1.710
81-3	50	75.3	166	26.24	101.63	0.1160	8/4	71.8	0.1521	0.0529	4287	226.2	1.698
81-4	20	97.9	78	13.59	53.42	0.0617	10/5	72.0	0.1519	0.0575	4231	220.3	1.675
82-1	55	37.8	83	14.20	55.68	0.0642	10/5	6.69	0.1518	0.0600	4236	221.2	1.680
83-1	07	36.4	173	26.86	104.67	0.1194	7/6	69.5	0.1521	0.0537	4290	225.0	1.687
83-2	20	56.9	- 272	38.66	149.43	0.1698	8/4	7.69	0.1522	0.0520	4309	227.7	1.700
83-3	20	76.35	607	52.63	202.09	0.2295	5/4	69.5	0.1524	0.0508	4318	229.3	1.709

*PIRST VALUE IS FOR FREQUENCIES LESS THAN 50 CPS, SECOND VALUE IS FOR FREQUENCIES GREATER THAN 50 CPS.

Figure 6-6. MVM'73 Flight Acceptance Test Data Summary

							·		•		
C _F			1.706	1.696	1.680	1.664		1,675	1.693	1.702	1.710
$^{ m I}_{ m SP}$	1bf/sec. 1bm		230.1	228.5	225.6	220.6		221.1	226.5	229.0	230.8
C-STAR	ft/sec		4341	4336	4316	4564		4245	4304	4329	4342
CATALYST BED	RESISTANCE		0.0382	0.0423	0.0446	0.0525		0.0513	0.0445	0.0413	0.0359
THROAT	in		0.1525	0.1524	0.1523	0.1521		0.1520	0.1522	0.1524	0.1526
PROP. TEMP.	deg. F	_	9.02	9.02	70.7	70.4		69.1	70.2	9.07	71.0
ROUGHNESS	% pc	TA T	3.0	4.0	5.6	9.5		6.8	6.9	4.5	3.2
FUEL FLOW RATE	lbm/sec	PERFORMANCE DATA	0.2299	0.1746	0.1186	0.0579	PERFORMANCE DATA	0.0617	0.1172	0.1743	0.2330
CHAMBER PRESSURE	psia	TEST - NO	203.42	154.39	104.48	50.46	NO -	53.56	103.00	153.87	206.06
THRUST	$^{1b}_{ m f}$	CHECK OUT	52.91	39.90	26.74	12.77	TEST ABORTED	13.64	26.54	39.92	53.78
INLET PRESS.	psia		401	277	168	72		77	166	276	407
SLICE	sec		35.7	57.2	75.7	97.2	_	37.8	57.2	7.77	97.2
RUN DURATION	вес	10	67	20	20	20	01	07	20	20	20
TEST NO./ SLICE NO.		73	74-1	74-2	74-3	74-4	. 52	76-1	76-2	76-3	76-4

Figure 6-7. MVM'73 Flight Acceptance Test Data Summary

ENGINE S/N 204

TEST NO./ SLICE NO.	DURATION	SLICE TIME Sec	INLET PRESS. psia	THRUST 1bf	CHAMBER PRESSURE psia	FUEL FLOW RATE 1bm/sec	ROUGHNESS % pc*/cps	PROP. TEMP. deg. F	THROAT AREA in	CATALYST BED RESISTANCE	C-STAR ft/sec	I _{SP}	ن <mark>بنا</mark>
106	10			CHECK OUT TEST	IT TEST - NO	PERFORMANCE DATA	DATA						
107-1	07	37.4	397	52.05	206.06	0.2284	3/20 3/120	9.89	0.1524	0.0386	4337	227.9	1.690
107-2	20	56.9	569	38.64	150.81	0.1707	7/30 3/130	68.7	0.1522	0.0439	4326	226.4	1.683
107-3	20	75.3	167	26.31	103.51	0.1175	9/20 3/140	68.7	0.1521	0.0484	4311	223.9	1.671
107-4	20	97.9	7.4	12.72	51.09	0.0586	12/15 5/130	6.89	0.1519	0.0596	4261	217.1	1.639
108-1	07	37.4	73	12.72	50.79	0.0584	10/15 5/120	68.7	0.1518	0.0584	4247	217.8	1.650
108-2	20	56.9	169	26.84	104.88	0.1190	8/20 4/130	68.7	0.1521	0.0461	4313	225.5	1.682
108-3	20	75.3	263	38.38	148.35	0.1682	9/25 3/140	68.7	0.1523	0.0421	4322	228.2	1.699
108-4	20	97:9	399	52.77	202.91	0.2291	6/30 3/130	68.8	0.1524	0.0381	4343	230.4	1.706

*FIRST VALUE IS FOR FREQUENCIES LESS THAN 50 CPS, SECOND VALUE IS FOR FREQUENCIES GREATER THAN 50 CPS.

Figure 6-8. MVM'73 Flight Acceptance Test Data Summary

ENGINE S/N 205

TEST NO./ SLICE NO.	DURATION SEC	SLICE TIME sec	INLET PRESS. psia	THRUST	CHAMBER PRESSURE psia	FUEL FLOW RATE lbm/sec	ROUGHNESS % pc*/cps	PROP. TEMP. deg. F	THROAT AREA In	CATALYST BED RESISTANCE	C-STAR ft/sec	ISP 1bf/sec 1bm	$^{C_{\mathbf{F}}}$
109	10			CHECK OU	T TEST - NO	CHECK OUT TEST - NO PERFORMANCE	DATA						
110-1	07	37.4	396	53.72	205.44	0.2320	3/40 2/120	70.0	0.1521	0.0277	4334	231.6	1.719
110-2	20	6.95	270	39.98	153.74	0.1739	4/35 2/120	70.0	0.1520	0.0348	4323	229.9	1.711
110-3	20	75.3	165	26.79	103.87	0.1179	5/30 3/120	70.1	0.1519	0.0420	4305	227.2	1.699
110-4	20	97.9	02	12.50	49.53	0.0568	8/25 5/120	70.0	0.1517	0.0536	4256	220.2	1.664
111-1	07	37.4	73	12.85	51.07	0.0589	10/25 5/130	67.9	0.1515	0.0516	4226	218.1	1,661
111-2	20	56.9	164	26.72	103.92	0.1183	5/35 3/120	68.3	0.1519	0.0386	4293	225.9	1.692
111-3	20	75.3	266	39.60	152.58	0.1729	0/40 4/140	68.5	0.1521	0.0321	4318	229.1	1.707
111-4	20	97.9	394	53.65	205.13	0.2322	4/45 2/120	68.8	0.1522	0.0244	4324	231.1	1.720

*FIRST VALUE IS FOR FREQUENCIES LESS THAN 50 CPS, SECOND VALUE IS FOR FREQUENCIES GREATER THAN 50 CPS.

Figure 6-9. MVM'73 Flight Acceptance Test Data Summary

ENGINE S/N 206

TEST NO./ SLICE NO.	DURATION sec	SLICE TIME sec	INLET PRESS. psia	THRUST 1b _f	CHAMBER PRESSURE psia	FUEL FLOW RATE 1bm/sec	ROUGHNESS % pc*	PROP. TEMP.	THROAT AREA in	CATALYST BED RESISTANCE	C-STAR ft/sec	I _{SP}	Ji,
100	10			CHECK OU	T TEST - NO	CHECK OUT TEST - NO PERFORMANCE DATA	ATA						
100-1	0,7	37.4	707	52.98	203.56	0.2305	4/2	8.69	0.1517	0.0463	4310	229.9	1.716
101-2	20	56.9	267	38.81	148.96	0.1690	8/4	8.69	0.1516	0.0503	4299	229.6	1.718
101-3	20	75.3	165	26.26	101.68	0.1158	7/4	8.69	0.1515	0.0533	4280	226.8	1.705
101-4	50	97.9	7.4	12.79	50.53	0.0583	9/2	6.69	0.1513	0.0631	4219	219.4	1.673
102-1	07	37.4	69	12.11	47.94	0.0554	10/5	70.5	0.1512	0.0610	4209	218.6	1.670
1022	20	56.9	163	26.06	101.30	0.1152	5/4	70.3	0.1515	0.0540	4286	226.2	1.698
102-3	20	75.3	267	38.96	149.96	0.1698	8/4	70.1	0.1517	0.0478	4310	229.4	1.712
102-4	20	97.9	377	50.73	194.43	0.2200	5/4	70.0	0.1518	0.0444	4310	230.6	1.719

*FIRST VALUE IS FOR FREQUENCIES LESS THAN 50 CPS, SECOND VALUE IS FOR FREQUENCIES GREATER THAN 50 CPS.

Figure 6-10. MVM'73 Flight Acceptance Test Data Summary

ENGINE S/N 207

TEST NO./ SLICE NO.	DURATION sec	SLICE TIME 8ec	INLET PRFSS. psia	THRUST 1bf	CHAMBER PRESSURE psia	FUEL FLOW RATE lbm/sec	ROUGHNESS % pc*	PROP. TEMP. deg. F	THROAT AREA in	CATALYST BED RESISTANCE	C-STAR ft/sec	I _{SP} 1bf/sec	J.
103	10			CHECK OU	T TEST - NO	OUT TEST - NO PERFORMANCE DATA	ATA						
104-1	. 07	37.4	400	53.28	203.75	0.2306	6/3	69.05	0.1515	0.0495	4307	231.0	1.726
104-2	20	56.9	262	38.50	148.08	0.1678	7/4	60.69	0.1514	0.0521	4299	229.4	1.717
104-3	20	75.3	161	25.83	100.16	0.1139	7/9	69.13	0.1512	0.0561	4278	226.8	1.706
104-4	20	97.9	72	12.60	69.67	0.0572	10/5	68.98	0.1510	0.0629	4220	220.3	1.679
105-1	07	37.4	89	11.81	47.01	0.0543	12/5	70.13	0.1509	0.0636	4203	217.4	1.664
105-2	20	56.9	162	25.96	101.10	0.1150	5/4	76.69	0.1512	0.0547	4277	225.8	1.698
105~3	20	75.3	261	38.29	147.66	0.1673	7/3	69.93	0.1514	0.0517	4299	228.9	1.713
105-4	20	97.9	400	53.25	203.75	0.2304	5/3	69.93	0.1516	0.0495	4313	231.1	1.724

*PIRST VALUE IS FOR FREQUENCIES LESS THAN 50 CPS, SECOND VALUE IS FOR FREQUENCIES GREATER THAN 50 CPS.

Figure 6-11. MVM'73 Flight Acceptance Test Data Summary

The final correction to the catalyst bed resistance was initiated by a concern over the results of the water flow calibrations conducted on both S/N 0003 and S/N 0004 propellant valves. The results from both tests indicated a change in slope at the lower propellant flow rates (0.15 to 0.04 lbm/sec). This change in slope also corresponded to a change in slope of the calibration of the pressure transducer used for the original water flow calibrations of both valves and the valve/injector combinations through Engine S/N 207. A change to the water flow bench instrumentation and calibration method was then incorporated to improve the accuracy of the lower range data. A lower range (0 to 50 psia) pressure transducer was installed and was recorded for the lower range flow rates.

Then, following the calibration and hot fire testing of the final two units, a special calibration series using both propellant valves and injector S/N 208 was conducted to resolve any biases in the determination of pressure drop in either the valve or valve/injector water flow calibrations. In addition to using a lower range pressure transducer, the sensitivity of both the flow rate measurement and pressure measurement were expanded to gain significant digits. The results of the special calibration series on valve S/N 0004 shown in Figures 5-14 and 5-15 indicated the same change in slope observed in the original data. It is concluded, on the basis of this calibration that the change in slope observed during the valve calibrations was not due to instrumentation errors but is apparently a characteristic of the valve. This conclusion is further supported by the results of the valve/injector combination calibration which did not show a change in slope over the full range of flow rate. The recalibration of injector S/N 208 with valve S/N 0004 shown in Figures 5-33 and 5-34 did, however, exhibit a different pressure drop characteristic from the original calibration series. The increase in pressure drop ranged from approximately 3 percent at the low flow rates (0.05 lbm/sec) to 0.8 percent at the high flow rate (0.24 lbm/sec).

The final resistance correction, then, was achieved by recalculation of the original valve/injector combination pressure drop during the ing the hot fire tests and correcting it by the observed change in injector S/N 208. The correction factor was applied for all the hot fire test data including the last two units (S/N 204 and S/N 205) even though some

improvement to data acquisition was made prior to these tests. This is justified by the assertion that the final improvements to the recording system, initiated for the special calibration series, were the primary cause for the differences observed between the original and final calibrations conducted on injector S/N 208.

A review of the engine performance data (C-star, specific impulse, and thrust coefficient) presented in Figures 6-12 through 6-14 revealed that at least one specific impulse value for engines 204, 205, 206, and 207 fell below the minimum specification limit for the lowest inlet pressure (80 psia). Both values of specific impulse for engine S/N 204, however, were observed to be below the minimum specification limit. All of the characteristic exhaust velocity (C-star) values exceeded the specification minimum of 4100 ft/sec. Two out of specification roughness values were also observed. The first occurred during test 105 (engine 207) at the lowest inlet pressure level and exceeded the low frequency roughness specification (+ 10 percent) by 2 percent. The second occurred during test 107 (engine 204) also at the lowest inlet pressure level and exceeded the specification by the same amount. On the basis of the above it is recommended that a review of the specific impulse minimum requirement be initiated to determine if a lower specific impulse can be tolerated within the expected mission duty cycle constraints. If not, then engines S/N 205, 206, and 207 can only marginally be recommended based on the average of the two low inlet pressure tests. For flight use Engine S/N 204, which exhibited below average specific impulse throughout, can not be recommended for flight use.

A statistical summary of the steady state performance is shown in Figure 6-15. Included are the mean values and 3 sigma engine to engine scatter demonstrated by the six flight engines. Comparison of the engine-to-engine variations in specific impulse, thrust, C-star, chamber pressure and thrust coefficient demonstrated by the Mariner '69 flight engines to the MV/M '73 flight engines indicated, in general, a reduction in scatter from the Mariner '69 engines. The only exception being the scatter in vacuum thrust, which increased from 3.1 percent to 3.8 percent. The vacuum specific impulse scatter, however decreased from 1.7 to 1.1 percent.

Figure 6-12. Flight Acceptance Engine Data

Figure 6-13. Flight Acceptance Engine Data

Figure 6-14. Flight Acceptance Engine Data

	D.F.*		വ	വ	ഹ	വ
UST EE	D.F. MEAN 30*	<i>%</i> 2	1.68	1.65	1.76	50.90 13.0 5 1.666 2.16 5
THE	NE AN	٠	1.714	1.706	1.692	1.666
	D.F.		വ	r2	Ω	2
MBER	MEAN 30*	%	3.32	4.90	4.23	13.0
			4325 0.99 5 203.28 3.32 5 1.714 1.68	4314 0.89 5 150.60 4.90 5 1.706 1.65	4295 0.99 5 102.85 4.23 5 1.692 1.76	50.90
	D.F.		വ	വ	വ	rs
TAD	30*	%	0.99	0.89	0.99	4235 1.32 5
	MEAN 30* D.F.		4325	4314	4295	4235
	D.F.		م	22	വ	2
TSI	30*	%	3.85	5.10	3.75	12.86 14.2 5
THD	MEAN 30* D.F.	1bf	52.88 3.85 5	39.02 5.10 5	26.43 3.75 5	12.86
	D.F.**		2	ഹ	Z)	2
T.MDIII CE	30*	%	1.06	1.12	06.0	1.78
SPECIETS	MEAN	1bf-sec %	230.3	228.8	225.9	219.3
TUBILITY	LEVEL		20	40	25	12

*Engine to engine variability **Degrees of freedom

Figure 6-15. Statistical Summary of MVM'73 Engine Performance

A summary of the corrected catalyst bed resistance as a function of flow rate for all the flight engines is shown in Figure 6-16. Review of the data indicates a fairly wide range of resistances across the engine set especially at the high flow rate. Closer inspection reveals that the engines can be partitioned on the basis of catalyst bed resistance into like sets (e.g., S/N 203 and S/N 204). The only exception being S/N 205 which exhibited a grossly lower catalyst bed resistance especially at the middle to high flow rate range.

6.4 START-UP/SHUTDOWN ANALYSIS

Presented in Figures 6-17 to 6-22 are the results of the integration of the start-up thrust and chamber pressure and shutdown chamber pressure for all the Flight Acceptance engines. The integration was obtained digitally at a maximum sample rate of 2500 samples per second over the first 5 seconds and from shutdown to shutdown plus 10 seconds for each test. In addition, the shutdown integration of chamber pressure was obtained from both the high range pressure transducer and the low range transducer. The high range transducer was used from full steady state operation to the point where chamber pressure had decayed to 19 psia. The low range transducer was then used for integration until either chamber pressure decayed to less than capsule pressure or the time interval of approximately 40 seconds was reached. This technique was used to provide the maximum accuracy available for shutdown integration. The only corrections that were applied to these results were to adjust for thrust or chamber pressure zero shift and to correct the integration data to the true shutdown time recorded to the nearest millisecond by a digital voltmeter.

The oscillographs for each start-up and shutdown of every flight engine is shown in appendix B.

A statistical summary of the start-up and shutdown integration for all six flight engines is shown in Figure 6-23. A direct comparison of the start-up mean value and scatter at 50 pounds thrust to those demonstrated by the Mariner '69 engines is not possible due to the difference in defining the interval for start-up integration. The Mariner '69 start-up interval was defined as the time from valve signal to steady state chamber pressure minus 10 percent which averaged approximately one second. An

2	
Engine S/N O 201 D 203 O 204 D 205 D 205 O 207	
201 202 203 204 205 206 206 207	
	- C
	i i i i i i i i i i i i i i i i i i i
	77.
O OO I	89 🗆 📗
	00,000
● □ □	
))) ()) ()
	♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦
O 0 0 0 0	B A A B 6
	8000
& DOWN DOWN	
F .	0.04
6 6	

Figure 6-16. Flight Acceptance Engine Data

ENGINE S/N 201

			STARTUP				S	SHUTDOWN	
TEST NO.	LEVEL 16f	PTF* psia	INT. PC psia sec	INT. F 1bf-sec	DUR. sec	TIME	LEVEL 1bf	INT. PC psia sec	DUR. sec
080	50	767	6.796	252.0	5.082	9.992	50	16.38	42.975
081	50	767	7.796	249.0	5.082	92.66	12	9.17	37.864
082	12	92	248.3	63.3	5.082	ı	ı	ı	l
083	26	495	456.8	117.5	5.069	80.004	50	15.73	35.797

*LOCKUP PRESSURE

Figure 6-17. MVM'73 Summary of Start-Up/Shutdown Integration

Engine S/N 203

SHUT DOWN	TIME LEVEL INT. PC DUR. sec lbf psia sec	9.997 50 17.59 37.683	99.904 12 10.14 49.037	99.968 50 14.73 47.849
IT DOWN	INT. PC psia sec	17.50	10.14	14.73
SHC	LEVEL 1bf	50	12	20
	TIME sec	9.997	706.66	896.66
	, DUR, sec	5.005	5.005	5.005
	INT, F 1bf-sec	251.4	243.2	60.22
	INT. PC psia sec	973.8	947.3	234.8
START UP	PTF* psia	200	067	85
	LEVEL 1bf	50	50	12
	TEST NO.	073	074	920

* Lock-up pressure

Figure 6-18. MVM'73 Summary of Start. Up/Shutdown Integration

ENGINE S/N 204

		START UP					SHUTDOWN	OWN	
TEST NO.	LEVEL 1bf	PTF* psia	INT, PC psia sec	INT. F lbf-sec	DUR. sec	TIME	LEVEL 1bf	INT. PC psia sec	DUR. sec
106		BAD DI	BAD DIGITAL TAPE - N	NO INTEGRATION DATA AVAILABLE	N DATA AVAI	LABLE			
107	50	495	972.4	246.9	5.082	100.001	12	11.40	40.914
108	12	80	226.4	57.3	5.082	100.001	50	15.93	40.914

*Lock-up pressure

Figure 6-19. MVM'73 Summary of Start-Up/Shutdown Integration

ENGINE S/N 205

		START UP					OHS	SHUTDOWN	
TEST NO.	LEVEL 1bf	PTF* psia	INT. PC psia sec	INT. F 1bf-sec	DUR. sec	TIME	LEVEL 1bf	INT. PC psia sec	DUR. sec
109	50	. 485	974.8	252.2	5.082	686.6	50	16.68	39.906
110	50	485	985.7	254.3	5.082	926.66	12	9.10	40.939
0.	12	80	228.0	57.6	582	100.001	20	13.76	38.866

* Lock-up pressure

Figure 6-20. MVM'73 Summary of Start-Up/Shutdown Integration

ENGINE S/N 206

			START UP				SHUTDOWN	N	
TEST NO.	LEVEL 1bf	PTF* psia	INT. PC psia sec	INT. F 1bf-sec	DUR. sec	TIME	LEVEL 1bf	INT. PC psia sec	DUR. sec
100	95	495	7.586	255.1	5.082	066.6	20	13.61	28.628
101	50	767	981.3	253.0	5.082	77.6.66	12	7.49	35.793
102	12	92	211.1	53.6	5.982	100.015	50	17.77	28.646

*LOCK UP PRESSURE

Figure 6-21. MVM'73 Summary of Start-Up/Shutdown Integration

	STA	START-UP				īS	SHUTDOWN		
TEST NO.	LEVEL 1bf	PTF* psia	INT. PC psia sec	INT, F 1bf-sec	DUR. sec	TIME sec	LEVEL 1bf	INT. PC psia sec	DUR. sec
103	50	495	981.6	253.6	5.082	10.002	950	18.35	28.639
104	50	492	975.3	251.6	5.082	066.66	12	8.95	28.629
105	12	7.5	207.2	52.2	5.082	066.66	20	12.50	28.629

*LOCKUP PRESSURE

Figure 6-22, MVM'73 Summary of Start-Up/Shutdown Integration

			START-UP	d			SHUT	SHUTDOWN	
THRUST	Integral of	f Chamber Press	Press	ч	Impulse		Integral of Pc	. Pc	
LEVEL	Mean, x	3 Ф	d. f.	Mean, x	3 Ф	d.f.	Mean, 🛣	3 d	d. f.
lbf	psia-sec	%		ldf-sec	%		psia-sec	%	
20	973.8	2.6	5	250.8	3.7	r.	15.74	6.9	r.
12	226.0	20.2	ហ	57.4	21.5	ĸ	9.38	41.8	ស

Figure 6-23. MVM '73 Statistical Summary of Start-up/Shutdown Integration

integration interval defined in this manner will produce a larger amount of scatter in startup impulse and chamber pressure integral. The close agreement of the percentage scatter of the startup impulse to the chamber pressure integral, for the MV/M '73 testing does, however, indicate a very precise determination of the mean values especially for the 50 pound thrust starts.

A direct comparison of the 50 pound thrust shutdown integration to that measured during the Mariner '69 testing is possible because the integration intervals are defined the same and the results indicate a very close agreement. The shutdown integration mean for the Mariner '69 engines was 14.6 psia-sec, this compares to a value of 15.7 psia-sec for the MV/M '73 engines. The variability from engine to engine, however, was approximately one tenth of that demonstrated by the Mariner '69 engines.

Presented in Figure 6-24 is a summary of valve and engine startup response times for all six flight engines. The valve opening time is measured from the receipt of valve signal to the first indication of poppet travel. The chamber pressure response times are measured from the receipt of valve opening signal to the first indication of chamber pressure rise. The valve opening times are not available for tests 101 and 102 because an apparent electrical saturation of both current and voltage signals.

6.5 HOT FIRE TEST INSTRUMENTATION UNCERTAINTIES

Presented in Figure 6-25 is an overall summary of the assessment of instrumentation and performance calculation uncertainties for the hot fire testing conducted on the MV/M '73 Flight Acceptance engines. Also included is a summary of the affects of these uncertainties on the key performance parameters (i.e., specific impulse, C-star, and thrust coefficient). As is clearly evident from a review of the results a satisfactory compliance to the specification requirement was achieved for nearly every measurement type. The slightly higher than specification value for chamber pressure at the low thrust level is compensated by the lower than required uncertainty in thrust and flow rate. As a result the uncertainties in the key performance parameters are within desired goals.

The analysis of the thrust uncertainty was based on data acquired from a special calibration and hot fire test series conducted prior to the

ENGINE NO.	TEST	VALVE VOLTAGE VOLTS	PROPELLANT TEMPERATURE	INLET PRESSURE psia	VALVE OPENING TIME	CHAMBER PRESSURE RISE LOW RANGE HIGH RANG	RESSURE RISE HIGH RANGE
			. A		sec	Sec	sec
201	080	23.5	75.3	408	. 0271	. 0468	. 0552
201	981	23.7	71.8	410	. 0334	. 0611	.0654
201	082	24.7	6.69	. 83	.0074	. 0627	. 0705
201	083	24.7	69.5	173	. 0378	. 0581	6590.
203	73.	24,5	69.5	412	. 0256	0,0456	. 0536
203	74	. 23.9	70.6	401	0300	0.0569	. 0628
203	75	N.A.	N.A.	N.A.	. 0074	0.0577	6990.
203	. 91	23.5	69.1	7.7	. 0077	0.0592	. 0674
204	106	31.3	70.3	404	. 0101	. 0255	. 0392
204	107	31.2	9.89	397	. 0102	. 0329	. 0372
204	108	31.4	68.7	. 73	. 0058	.0527	.0612
502	109	. 31.3	69.3.	396	.0110	. 0276	.0401
205	110	31, 4	70. Ó	396	. 0107	. 0333	. 0391
205	111	31.2	6.79	73	6500	. 0554	.0610
506	101	N.A.*	8.69	404		. 0359	9680.
506	102	N. A.*	70.5	. 69	1	.0650	.0738
207	103	29.7	70.6	403	.0120	. 0310	. 0383
207	.104	30.0	.1.69	400	.0110	. 0360	. 0400
207	105	30.0	70.1	89	. 0053	. 0601	. 0674
*							

*Valve opening time cannot be determined due to amplifier saturation.

Figure 6-24. Summary of MVM 73 Start-up Response Characteristics

PARAMETER	ACTUAL 3σ%	SPECIFICATION 3σ%
THRUST	(0.6 - 1.17)*	1.75
PRESSURES	(0.33 - 1.1)*	1.0
FLOW RATE	0.7	1.0
TEMPERATURES (0-150°F)	0.5 - 0.8	1.0
TEMPERATURES (150-2000°F)	1.9	2.0
ISP	0.9 - 1.4*	2.0**
C*	0.8 - 1.3*	1,4**
CF	0.7 - 1.6*	2.0**

^{*}First value applies to high thrust operation (50 pounds thrust) second value applies to low thrust operation (12 pounds thrust).

Figure 6-25. MVM '73 Instrumentation and Performance Uncertainties

^{**}These values are desired goals not specification requirements.

start of Flight Acceptance testing and is presented in detail in this report. The analysis of the low range temperature measurements was based on a previous error analysis conducted at the CTS facility by TRW and is summarized in this report. The high range temperature measurement analysis was based on actual hot fire test data (i.e., throat temperature measurement) from MV/M '73 Flight Acceptance testing and is also presented in this report. The assessment of the remaining two measurement types pressure and flowrate was based on the results documented from the Mariner '69 Flight Acceptance Test Program (see appendix).

6.5.1 Thrust Measurement Uncertainties

This section presents the results of an error analysis conducted as part of the MV/M '73 program to assure that the instrumentation uncertainty associated with the measurement of thrust satisfies the specification requirement of \pm 1.75 percent at all thrust levels. In addition to satisfying the requirement, it was also the intent of the plan to reduce the individual sources of uncertainty where possible by modifying the test stand or changing the methods of thrust reduction toward a goal of \pm 0.5 percent (3 sigma). The approach taken for the development of each uncertainty is in accordance with the procedures developed in References 1 through 3 and is formally documented in Reference 4. (See appendix C). The development and presentation of each uncertainty estimate, therefore, is both consistent with previous TRW error analyses and with generally accepted standardized statistical techniques.

6.5.1.1 Summary

A summary of the thrust measurement uncertainties at 10 pound increments from 10 to 50 pounds thrust is presented in Figure 6-26. The precision estimates (3 times the sample standard deviation) and bias estimates are stated as percentages of each thrust level. Each precision and bias estimate was developed by combining the appropriate components of static and dynamic uncertainties. The degrees of freedom associated with each precision estimate was developed from the Welch-Satterthwaite formula (Reference 1) and is a weighted average of the degrees of freedom of each uncertainty component based on the magnitude of each precision estimate.

Thrust Level (1bf)	Precision 3S, % of Level	Bias % of Level	Total % of Level	Degrees* of Freedom	Spec. % of Level
10	1.17	0.11	1.28	30	1.75
20	0.70	0.10	0.80	38	1.75
30	0.71	0.11	0.82	33	1.75
40	0.57	0.10	0.67	29	1.75
50	0.56	0.10	0.66	29	1.75
				,	

^{*}Calculated from the Welch-Satterthwaite formula.

Figure 6-26. Overall Thrust Measurement Uncertainty

A review of the overall estimates of uncertainty indicates that the specification requirement was met at every thrust level. In addition, the uncertainty estimate at the 40 and 50 pound thrust level are very close to the desired goal of \pm 0.5 percent as a result of the changes made to both the stand and the reduction procedures. The continued review of the thrust data during the testing program maintained the measurement of thrust within the limits stated in this report.

6.5.1.2 Approach

The approach taken to develop the thrust uncertainty at each thrust level has been documented in detail in Reference 4 and is attached as an appendix. Briefly, however, the approach was to partition the components of uncertainty into static and dynamic modes. The static components are those associated with the end to end calibrations of the test load cell and reference load cell. The dynamic components are those associated with the difference (channel deviation) between the redundant thrust measurement channels and the difference (shift) between the pre and post test thrust zero level obtained from actual hot fire test data.

6.5.1.3 Statistical Model

The general statistical model which applies for the development of total thrust uncertainty is a combination of bias estimates and precision indices and can be expressed by the following equation:

$$U = (B + nS)$$

where:

B = bias estimate, non-random component of uncertainty

S = total precision index, random component of uncertainty

n = multiplying factor to establish desired confidence level, in this case n = 3.

The bias estimate (B) is identified as the sum of the non-random components that relate the measured value to the true value and are obtained from the mean statistic. The precision index (S) is identified as the sum of the random components of uncertainty and is developed from the standard deviation statistic.

The statistical model developed for the analysis of thrust measurement uncertainty can be expressed by the following equation:

$$S_{F} = \sqrt{S_{CAL}^{2} + S_{STD}^{2} + S_{CD}^{2} + S_{ZS}^{2}}$$

$$B_{F} = \sqrt{\frac{\Delta_{CAL}^{2} + \Delta_{STD}^{2}}{CAL}}$$

$$df = \frac{S_{F}^{4}}{\frac{S_{CAL}}{df_{CAL}} + \frac{S_{STD}}{df_{STD}} + \frac{S_{CD}}{df_{CD}} + \frac{S_{ZS}}{df_{ZS}}} \left(Welch-Satterthwaite \right)$$

where:

S_{CAL} = Calibration to calibration precision index of test load cell (% level)

S_{STD} = Precision index of standard load cell (% level)

S_{CD} = Run to run precision index of the thrust channel deviation (% level)

S_{ZS} = Run to run precision index of the thrust measurement zero shift (% level)

CAL = Calibration to calibration bias estimate of the test load cell (% level)

 Δ_{STD} = Bias estimate of the standard load cell

df_{CAL}, df_{CD}, df_{ZS} = degrees of freedom associated with each corresponding precision index

6.5.1.4 Development of Estimates

The static mode calibration to calibration precision index and bias of the test load cell were developed from a series of end to end calibrations. The precision and bias estimates for each thrust level were obtained from the differences (residuals) between the applied load and the least squares line through the data. A summary of the calibration data and resulting precision and bias estimates for each load cell are shown in Figures 6-27 and 6-28. Included are the thrust calibrations conducted

(LOAD CELL A)

								ASC	ASCENDING	DESC	DESCENDING -							
		10	2	20	ñ	30	7	07	50	1	07		3	30	2	20		10
TEST NO.	ACTUAL LOAD 1bf	DIFF. LOAD 1bf	ACTUAL LOAD 1bf	DIFF. LOAD 1bf	ACTUAL LOAD 1bf	DIFF. LOAD 15f	ACTUAL LOAD 1bf	DIFF. LOAD 16f	ACTUAL LOAD 15f	DIFF. LOAD 1bf	ACTUAL LOAD 1bf	DIFF. LOAD 1bf	ACTUAL LOAD 15 f	DIFF. LCAD 1bf	ACTULL LOAD 18.5	DIEF. LOAD 16f	ACTUAL LOAD 15 f	DIFF. LOAD 18.f
057	11.575	-,02775	21.142	03695	29.840	02986	42.491	01217	51.700	.00327	41.322	.02113	31.806	.01471	21.013	.03915	9.631	.03748
058	10.239	05306	20.575	05123	29.651	05403	41.531	00074	50.703	.00426	41.965	.02139	31.162	.01085	21.590	.05186	9.016	.07072
650	10.982	02215	21.179	01826	30.008	02647	40.086	00853	51.742	.00287	41.134	.01105	31.241	.01437	21.722	.02155	9.384	.02524
090 ,	10.317	10.31701251 20.92702814	20.927	02814	29.888	04918	40.654	00758	51.047	.01278	40.856	.02094	31.140	.00466	21.089	.02137	10.245	.03754
190	11.238	02035	22.338	01328	29.992	03683	39.637	00152	50.219	.00374	40.023	.01249	29.827	.00941	20.710	.02350	10.156	.02285
062	0.530	06505	20.878	04299	29.651	06966	39.736	00399	49.584	00718	39.869	.03408	30.308	.32565	20.475	.05914	10.417	66690.
053-67	10.331	06310 21.113	21.113	02305 29.643		04327	39.074	01628	50.206	00199	40.194	.02853	30.469	.01187	20.497	.05178	10,338	05350.
028-070	10.591		00604 21.031	03727 31.266	31.266	.00200	41.680	03665	52.044	01644	42.077	.01918	31.588	.01422	21.472	.03027	10.918	69000.
071	10.318		04004 20.677	00129 30.912		01440	41.393	05712	51.980	.02738	39.001	.03964	30.991	00057	20.830	01667	10.043	.06307
672	676.6	02155	20.686	03275	29.692	00199	39.969	00648	51.238	69000.	40.515	.01818	30.714	00200	19.958	.00665	9.258	.03925
073	10.315		20.311	03528 20.31103163 29.351		03022	39.642	00516	50.502	00947	41.165	.03153	31.278	.00725	21.113	.02816	19.034	.04481
074	10.296	.01102	.01102 20.644	.01945 30.026		03058	40.162	00138	50.619	20500.	40.622	.01731	30.573	01277	20.245	00261	10,163	00545
\$ E.	10.473	10.47302966 20.958	20.958	02478 29.990	29.990	03238	40.595	01063-50.943	50.943	.00208 40.729	40.729	.02295	30.925	.00814	20.901	.02546	0.057	35860.
STD. DEV.		.02292		.01941		.02021		.01532		.01109		.00872		06600.		.02241		.02477
MEAN Z		-0.283		-0.118		-0.108		-0.026		0.004		0.056		0.026		0.122		0.385
3X STD. DEV. Z		0.656		0.278		0.202		0.113		0.065		0.063		0.096		0.322		0.746

Figure 6-27. Summary of End-to-End Calibrations

								ASC	ASCENDING	DESC	DESCENDING -							
	-	10		26		30	7	07	Ş	50	07		ñ	30.	7	20		10
TEST NO.	ACTUAL LOAD 18f	DIFF. LOAD	ACTUAL LOAD 15f	DIFF. LOAD 15f	ACTUAL LOAD 1bf	DIFF. LOAD 1bf	ACTUAL LOAD 1bf	DIFF. LOAD 1bf	ACTUAL LOAD 16f	DIFF. LOAD	ACTUAL LOAD 15f	DIFF. LOAD 1bf	ACTUAL LOAD 1bf	DIFF. LOAD 15f	ACTUAL LOAD 1bf	DIFF. 194D 185	ACTUAL LOAD 18f	01FF. LCAD 13f
250,	11.575	02796	21.142	04194	29.840	66080	42.491	01202	51,790	99800.	41.322	.03860	31.805	.01912	21.013	31080	4.632	%08€C*
058	10.239	04209	20.575	04271	29.651	05017	41.531	39000.	50.73	.00585	41.965	.01718	31.162	.00627	21.690	.04713	9.00.6	(6573)
659	10.982	02259 21.17901866	21.179	01866	30.008	02627	40.086	00821	51.472	.00357	41.134	.00993	31.241	.01237	21.722	.02520	9.384	,02466
090	10.317	01723	20.927	03041	29.888	03949	40.654	01023	51.047	.01134	40.856	.01793	31.140	.00626	21.089	.02440	10.248	.03742
061	11.238	02408	22.338	01314	29.992	05234	39.637	00121	50.219	.00746	40.023	.01366	29.827	.01182	20.710	.02984	10.155	66270.
062	9.530	06864 20.87804123	20.878	04123	29.651	07066	39.736	00406	49.584	00699	39.869	.03357	30.308	.02451	20.475	.06202	10.417	.07147
063-067	10.331	04797 21.11301434	21.113	01434	29.643	03559	39.074	01750	50.206	00115	40.194	.02738	30.469	.00839	20.497	06850.	10,338	.04187
068-070	10.591	10.59102435 21.03104749	21.031	04749	31.226	01890	41.680	.00588	52.044	01999	42.077	.02078	31.588	.01772	21.472	.04516	10.913	.02119
071	10.318	04493 20.677		00571	30.912	01892	41.393	02676	51.980	.01561	39.001	.03209	30.991	01323	20.830	00075	10.043	.05262
072	676.6	02642 20.686	20.686	03077 29.695	29.695	01116	39.969	01830	51.238	.01193	40.515	.01110	30.714	.00303	19.958	.02271	9.258	.03788
074	10.296	00249 20.644	20.644	.01234	30.026	03452	40.162	00354	50.619	,00292	40.622	.02030	30.573	0503	20.245	.00283	10.163	81700.
920	10.891	02606	21.294	02850	30.528040	04054	41.516	00815	51.811	.01886	42.240	.00525	31.672	00151	21.497	.04005	11.027	.04151
							- ! !											
MEAN	10.521	03131		21.04002521	30.08	03580	40.661	00862	51.052	.00442	40.818	.01898	30.958	.00750	.00750 20.933	.03089	.03089 10.050	.03914
STD. DEV.		.01714		.01785		.01658		.00912		.01049	,	99800.		.01074		.01789		.01820
MEAN Z		-0.298		-0.120		-0.119		-0.021		0.008		0.046		0.024		0.143		0.389
3X STD. DEV. %		0.489		0.254		0.165		0.067		0.062		0.064		0.104		0.256		0.543
d.f.		Ħ		1		11		11 ,		11		11		11		11		11

Figure 6-28. Summary of End-to-End Calibrations

during the thrust uncertainty development testing and those conducted during the acceptance testing of the First Flight Acceptance (FA) engine. A summary of the overall thrust calibration uncertainty associated with the test load cell calibration is shown in Figure 6-29. The overall estimates (S_{CAL} and Δ_{CAL}) were obtained by first statistically combining the corresponding ascending and descending thrust level values for each load cell bridge and then pooling across the two independent load cell bridges.

A metrology calibration of the reference load cell was conducted prior to the start of the thrust uncertainty development testing. As with the test cell the bias estimate was developed from the residuals from the least squares line through the data and in order to be conservative the largest residual (0.1%) was selected to be applied over the full thrust range. An estimate of calibration to calibration precision was not available from this single calibration and, therefore, a conservatively large value of 0.2 percent was assumed. This estimate is approximately 5 times that indicated by the manufacturer's specification and is considered to be reasonable based on previous analyses.

A summary of the dynamic mode zero shift precision index (S_{ZS}) developed from actual hot firing of a JPL supplied test engine and the FA engines is shown in Figure 6-30. During the initial phases of the hot fire testing, however, modifications of the stand to reduce the pre to post test zero shift were incorporated and therefore only the data starting with Test 068 is applicable to the precision index and bias estimate. Later testing of the Flight Acceptance Engines resulted in a still further change in zero shift and therefore only the Flight Acceptance data was used to develop the final zero shift precision index. The overall zero shift bias estimate of 0.028 pounds is accounted for in the reduction of test data by applying a linearly varying zero adjustment with time to the individual thrust data slice averages and therefore this bias is reduced to zero.

A summary of the dynamic mode precision index (S_{CD}) associated with the differences (channel deviation) between the two load cell bridges is shown in Figure 6-31. Again, as with the development of the other dynamic components of uncertainty, the data from both the thrust uncertainty hot fire tests and the FA tests are included.

THRUST	1040	LOAD CELL A	LOAD	LOAD CELL B	POOLED	LED
LEVEL (15s)	bIAS ∆,%	PRECISION 3S, %	BIAS A, %	PRECISION 3S, %	B1AS △, %	PRECISION 3S, %
01	0.052	0.702	970.0	0.517	0.049	0.616
20	0.002	0.301	0.014	0.255	0.008	0.279
30	-0.041	0.158	-0.048	0.138	-0.046	0.148
. 40	0.015	. 0.091	0.012	990.0	0.013	0.079
. 05	0.004	0.065	0.008	0.062	900.0	0.064

Figure 6-29. Summary of End-to-End Calibration Statistics

DURATION sec	L O PRE TEST 1bf	A D C E L L POST TEST 1bf	A DIFFERENCE 1bf	L (PRE TEST 1bf	ADCEL POST TEST 1bf	L B DIFFERENCE 1bf
30 30 60 60 100	0.104 -0.354 0.126 -0.216 -0.244	-0.287 -0.849 -0.411 -0.704 -0.611	0.391 0.495 0.537 0.488 0.367	0.111 -0.262 0.189 -0.272 -0.271	0.237 -0.732 -0.380 -0.798 -0.624	0.398 0.470 0.569 0.526 0.353 0.198
10 *60 *50 *50 10	-0.332 -0.323 -0.335	- - -	- - - -	-0.312 0.263 -0.262	- - - -	- - - -
30 30 30 30 30	-0.044 -0.108 0.018 -0.200 -0.064	-0.270 -0.240 -0.086 -0.374 -0.219	0.226 0.132 0.104 0.174 0.155	-0.148 -0.082 -0.043 -0.151 -0.061	-0.271 -0.230 -0.184 -0.285 -0.207	0.123 0.148 0.141 0.134 0.146
10 100 ABORT 100 10	-0.175 - - -0.870	-0.309 - - -0.940	0.134 - - 0.070	-0.148 - - -0.830	-0.309 - - - -0.910	0.161 - - 0.080 0.040
80 10 100 100 10	-0.830 -0.180 -0.210	-0.780 - -0.140 -0.190	-0.050 -0.040 -0.020	-0.690 -0.150 -0.190	-0.780 -0.100 -0.150	0.090 -0.050 -0.040 -0.030
100 10 100 100 100	-0.150 -0.140 0.010	-0.160 -0.060 0.180	0.010 - -0.080 -0.070	-0.200 - -0.210 0.070	-0.180 -0.120 0.250 -0.003	-0.020 -0.090 -0.180 -0.047
100 A), 1bf RD DEVIATION S OF FREEDOM MEAN STANDARD DE	0.0 (S), lbf (d.f.) V(S _p), lbf	-0.020	0.020 0.007 0.060 12	0.020 0.028 0.073 25	0.0 0.048 0.083 13	0.020
	Sec 30 30 60 60 100 100 100 **50 **50 **50 **50 10 30 30 30 30 30 30 10 100 100 100 10	DURATION Sec 1bf 30 0.104 30 -0.354 60 0.126 60 -0.216 100 -0.244 100 -0.578 10 - *60 -0.332 *50 -0.323 *50 -0.335 10 - 30 -0.044 30 -0.108 30 -0.108 30 -0.108 30 -0.064 10 - 100 -0.175 ABORT - 100 - 100 -0.870 55 -0.720 80 -0.830 10 - 10 - 100 -0.180 100 -0.180 100 -0.180 100 -0.150 10 - 100 -0.150 10 - 100 -0.150 10 - 100 -0.140 100 -0.150 10 - 100 -0.140 100 0.060 100 0.00 4), 1bf RD DEVIATION (S), 1bf SOF FREEDOM (d.f.)	DURATION Sec 1bf 1bf 1bf 30 0.104 -0.287 30 -0.354 -0.849 60 0.126 -0.411 60 -0.216 -0.704 100 -0.244 -0.611 100 -0.578 -0.768 10	Sec 1bf 1bf 1bf 1bf 30 0.104 -0.287 0.391 30 -0.354 -0.849 0.495 60 0.126 -0.411 0.537 60 -0.216 -0.704 0.488 100 -0.244 -0.611 0.367 100 -0.578 -0.768 0.190 10	DURATION Sec	DURATION Sec

^{*}These tests did not have sufficient post test data to obtain a compatible post test zero level.

Figure 6-30. Summary of Pre/Post Test Zero Shift Data

LEVEL 1bf	TEST NO.	DURATION sec.	CHANNEL DEV (E), %
50	057 058 059 060 061 062 066 068 069 070 071 072 074 081 101 102 104 105 107 108 110 111 STANDARD DEVIATION, % DEGREES OF FREEDOM	30 30 60 60 100 100 50 30 30 30 30 100 100 100 100 100 100 10	-0.004 -0.240 -0.079 0.150 0.013 0.183 -0.170 -0.077 -0.151 0.021 -0.242 -0.077 -0.106 -0.096 0.027 -0.165 0.013 0.095 -0.041 -0.049 -0.079 0.084 22
40	064 065 066 074 081 101 102 104 105 107 108 110 111 STANDARD DEVIATION, % DEGREES OF FREEDOM	60 50 50 100 100 100 100 100 100 100	-0.101 -0.169 -0.204 -0.099 -0.108 -0.131 -0.028 -0.213 0.045 0.150 -0.075 -0.047 -0.107 0.089

Figure 6-31. Summary of Channel Deviation Data

LEVEL 1bf	TEST NO.	DURATION sec.	CHANNEL DEV
25	064 065 066 074 081 101 102 104 105 107 108 110 111 STANDARD DEVIATION, % DEGREES OF FREEDOM	60 50 50 100 100 100 100 100 100 100	-0.176 -0.244 -0.299 -0.160 -0.148 -0.231 -0.098 -0.352 0.057 0.250 -0.180 -0.081 -0.191 0.141
12	064 066 074 081 101 102 104 105 107 108 110 111 STANDARD DEVIATION, % DEGREES OF FREEDOM	60 50 100 100 100 100 100 100 100 100	-0.313 -0.611 -0.422 -0.309 -0.401 -0.412 -0.624 0.268 0.500 -0.440 -0.142 -0.334 0.285 13

Figure 6-31. Summary of Channel Deviation Data (Continued)

A summary of the individual static and dynamic sources of uncertainty for each thrust level are shown in Figure 6-32. Note that for the reference load cell the precision and bias estimates are assumed to be constant with respect to thrust level. This is justified by the fact that the estimates for the reference cell were inflated from those quoted by the manufacturer. Additional inflation to account for lower thrust levels was not considered necessary. In addition, the precision estimate of the thrust zero shift data were available only for tests conducted over the full thrust range. For the thrust levels other than 50 pounds, it was assumed that the precision was constant. This assumption is based primarily on previous analyses and is considered to be reasonable for this measurement system.

REFERENCES

- 1. "ICRPC Handbook for Estimating the Uncertainty in Measurements Made with Liquid Propellant Rocket Engine Systems," published by the Chemical Propulsion Information Agency, CPIA No. 180, 30 April 1969.
- 2. S.H. Oki, "Measurement Assurance Procedures for Conducting Error Analyses of Test Facility Instrumentation," TRW Report 1176-6069-R0-00, January 1970.
- 3. C.H. Oki and G.E. Urner, "LEMDE Instrumentation Error Analysis," TRW Report 01827-6002-R0-00, 31 August 1966.
- 4. R.S. Williams to D. Snoke, "MVM '73 Thrust Measurement Uncertainty Plan," TRW Report 4783.4.72-13, 29 March 1972.

	IFT	d.f.	25	25	. 25	25	25
DYNAMIC UNCERTAINTIES (% LEVEL) NNEL DEVIATIONS ZERO SHIFT CISION	(% SE)	0.45	0.45	0.45	0.45	0.45	
UNCERTAIN	VIATIONS	d.f.	12	13	13	13	22
DYNAMIC	CHANNEL DEVIATIONS PRECISION	(38 %)	0.86	0.423	0.49	0.27	0.25
	AD CELL BIAS	(%)	0.1	0.1	0.1	0.1	0.1
(% LEVEL)	STATIC UNCERTAINTIES (% LEVEL) ID CALIBRATION STANDARD LOAD CELL BIAS	(38 %)	0.2*	0.2*	0.2*	0.2*	0.2*
RTAINTIES		d.f.	1.1	Ε	-	L	
STATIC UNCERTY END TO END CALIBRATION ISION BIAS	(%)	0.049	0.008	-0.046	0.013	900.0	
END TO	END TO PRECISION	(38 %)	0.616.	0.279	0.148	0.079	0.064
NOMINAL	THRUST	(1bf)	10	50	30	40	20

*Precision is assumed to be a constant percentage over the thrust range.

Figure 6-32. Summary of Thrust Measurement Uncertainties

6.5.2 Low Temperature Measurement Uncertainties

The type of transducers, platinum resistance emersion probes, used to measure propellant temperatures in the range of 40 to 150 degrees Farenheit have been analyzed by TRW during previous testing programs. The previous analysis which involved special calibration tests conducted at each of the three separate testing facilities at CTS is documented in detail in Appendix "D". For convenience a short summary of the approach, statistical model and results are presented in this section.

6.5.2.1 Approach

The development of the data for an overall uncertainty estimate for resistance emersion probes was carried out by a series of special calibration tests. A known resistance was placed in the temperature lines at the test stand and the output recorded at a digital voltmeter located in the control room. The resistance was varied from a minimum value corresponding to a temperature of 30°F to a value corresponding to 130°F. The tests were conducted with nine triple bridge unit-sensor. Sets utilizing four lines at each stand and a variety of amplifiers.

6.5.2.2 Statistical Model

Based upon the method by which the platinum resistance transducers are used, the instrumentation uncertainties were conveniently partitioned into three components of error. These are the uncertainties of the digital acquisition system, the uncertainties of the calibration data, and the uncertainty due to installation and systems effects. Based upon this consideration, the following statistical models were established to facilitate the error analysis.

FIXED UNCERTAINTY

$$_{\rm T}^{\epsilon} = _{\rm DS}^{\epsilon} + _{\rm CAL}^{\epsilon} + _{\rm CAL}^{\epsilon}$$
 installation and system (1)

Where,

EDS = the fixed uncertainty of the digital system, % FS

 ϵ_{CAL} = fixed uncertainty of the sensor calibration, % FS

instal. & system = fixed uncertainty due to installation and system effects, % FS

RANDOM UNCERTAINTY

$$\sigma_{\rm T}^2 = \sigma_{\rm DS}^2 + \sigma_{\rm CAL}^2 + \sigma_{\rm CAL}^2$$
 installation and system (2)

Where,

 $\sigma_{\rm DS}$ = the fixed uncertainty of the digital system, % FS

σ_{CAL} = fixed uncertainty of the sensor calibration, % FS

oninstal. & system = fixed uncertainty due to installation and system effects, % FS

TOTAL UNCERTAINTY

$$E_{T} = \epsilon_{T} + k \sigma_{T}$$
 (3)

Where,

k = tolerance factor

6.5.2.3 Results

The uncertainties associated with the sensor calibration and installation/system effects defined by equations 1 and 2 were developed from examining the differences between a true input load and the output of the measurement device. The method and resulting statistics are described in detail in the appendix. The digital system was assigned a value of 0.1

percent fixed uncertainty based on the digital acquisition rate. The overall results of the analysis are presented in Figure 6-33. The values for total uncertainty were converted to percent of reading by multiplying by the ratio of the output voltage corresponding to $130^{\circ}F$ to the voltage corresponding to each temperature level. The values of uncertainty, then were averaged to produce an estimate over the range of 30 to $110^{\circ}F$ of 0.55 percent. The value for the range between 110 and $150^{\circ}F$ was taken to be the estimate of $130^{\circ}F$.

Since no changes have occurred to degrade the measurement system at CTS from the date of the original analysis no further testing to develop additional data was conducted. The results from this original analysis, then are asserted to be valid for the MV/M '73 testing conducted at the CTS Hepts facility.

6.5.3 High Temperature Measurement Uncertainties

As part of the overall instrumentation error analysis, an evaluation of the thermocouple data acquired from the Flight Acceptance Tests was conducted to develop the estimates of uncertainty for temperatures in the range of 150 to 2000 F. The data, specifically the two throat temperatures, from each hot fire acceptance tests were utilized for the analysis

Temperature Level	Fixed Uncertainty % FS	Random Uncertainty (3σ) % FS	Total Uncertainty (3 ₀) % Reading
30	0.167	0.249	0.50
50	0.146	0.324	0.54
70	0.244	0.270	0.50
90	0.205	0.357	0.60
110	0.156	0.354	0.53
130	0.394	0.438	0.83

Figure 6-33. Summary of Instrumentation Uncertainties of the Platinum Resistance Transducers

because the use of actual data from testing conducted during this program was preferred over estimating the uncertainty from manufacturer's specifications.

6.5.3.1 Approach

The approach taken to develop the thermocouple temperature uncertainty was based primarily on the assumption that the distribution of the difference between the two thermocouples located in the throat section is an indicator of the precision of thermocouple measurement. For this specific test series, however, and additional assumption was necessary because the order of the injection pressure levels was reversed after the first acceptance test. It was assumed that this had no effect on the differences between the two throat temperatures. This approach is similar to the approach used to evaluate truly redundant measurements. It differs by the fact that for redundant measurements the bias or difference between the two outputs is assumed to be zero whereas for this case the bias is assumed to be not zero but constant from test to test on the same engine. The procedure then was to first calculate the standard deviation of the average of differences between the outputs of the two throat temperature measurements for consecutive tests with the same engine. The standard deviation for each pair of tests was then pooled across all the acceptance engines to develop the overall statistic.

6.5.3.2 Analysis

A summary of the throat temperature measurements from all of the 100 second flight acceptance tests as well as the differences in percent for each pair of measurements is shown in Figure 6-34. A review of the temperature differences indicated that tests 107 and 108 were significantly different from the rest of the data set. Closer inspection revealed that the data from thermocouple TTH-2 was non repeatible and therefore the data from this series was not used for statistical analysis. The estimates of uncertainty based on the remainder of the data set are shown in Figure 6-35. The three sigma uncertainty of approximately 2 percent may or may not be conservative because of the assumptions involved in the development of this statistic. Because of the absence of dual temperature data at other locations on the engine this estimate is asserted to be valid over the range of 150 to 2000°F.

TEST	THRUST LEVEL	TT11-1	ТТТ1-2	DIFF.	DIFF.
NO,	LBS.	· . °F		ο ^{F,}	%
74-1	50	1582. 3	1579.9	2.4	0.152
- 2	40	1554, 9	1563.7	-8.8	56
-3	25	1516, 6	1529.4	-12.8	-0.83
-4	12	1456.3	1473.5	-17.2	-1.17
76-I	12	1416.6	1406,6	10.0	0.71
-2	25	1494.1	1489.7	4.4	0.29
-3	40	1550.4	1553.3	-2.9	-0.18
-4	50	1593.1	1600.5	-7.4	-0.462
81 1	50	1573.6	1517.6	56 ·	3.69
-2 ·	40	1537.7	1485.7	52	3.50
- 3	. 25	1498.3	1447.9	50,4	3.48
-4	12	1442.3	1396.5	45.8	3.28
82 - 1	12	1419.2	1370.8	48.4	3,53
83 - I	25	1486.1	1438.2	47.9	3,33
- 2	40	1533.4	1486.0	47.4	3.19
- 3	50	1576.3	1528.9	47.4	3,10
101-1	50	1442.4	1480.0	-37,6	-2,54
-2	40	1411.3	1461.4	-50, 1	-3.43
-3	25	1373.7	1426.3	-52.6	-3.69
-4	12	1306.9	1350.1	-43.2	-3,20
102-1	12	1260.7	1296.0	-35.3	-2.72
-2	25	1357.7	1404.0	-46.3	-3.30
-3	40	1419.8	1470.5	-50.7	-3,45
-4	50	1468.6	1516.7	-48.1	-3,17
104-1	50	1548.4	1512.1	36.3	2,40
-2	40	1509.8	1481.3	28.5	1.92
-3	25	1466.1	1440.8	25.3	1.76
-4	12	1402.7	1378.3	24.4	1.77
105-1	12	1366.6	1325.5	41.1	3.10
-2	25	1462.3	1423.3	39.0	2.74
- 3	40	1517.5	1483.8	33.7	2,27
-4	50	1567.9	1536. 1	31.8	2.07
107-1	50	1523.4	1435.5	87.9	6.12
-2	40	1488.9	1424.8	64. 1	4.50
- 3	25	1448.8	1393.7	55.1	3.95
-4	12	1381.0	1342.4	38.6	2.88
108-1	12	1360.8	1235.0	125.8	10.19
-2	25	1449.2	1352.7	96.5	7.14
-3	40	1497. 1	1421.4	75.7	5.32
-4	50	1545.5	1480.6	64.9	4.38
110-1	50	1517.3	1516.9	0.4	0.026
-2	40	1492.6	1492.8	-0.2	-0.013
-3	25	1453.6	1492.8	0.2	0.014
-4	12	1388.2	1387.6	0.6	0.043
111-1	12	1336.7	1319.6	17.1	1.29
-2	25	1436.7	1319.6		1.29
-3	40	1496.0		17.3	
	70	1770.0	1485.2	10.8	0.73

Figure 6-34. Summary of Throat Temperature Measurements

Engine S/N	Precision σ(%)	Degrees of Freedom
201	0.177	1
203	0.615	1
205	0.760	1
206	0.049	, 1
207	0.516	1

Figure 6-35. Thermocouple Uncertainty-Summary-Range 150-2000°F

6.6 DATA ACQUISITION/REDUCTION PROCEDURES

The digital data acquired during the hot fire acceptance testing conducted during the MV/M '73 program was processed by means of the Capistrano Test Site Program one (CTSP1) data reduction program. The program has the capability to process 50 input channels at sample rate ranging from 39.2 to 2500 samples per second at the maximum system sampling rate. The minimum sampling rate channel utilized for MV/M '73 testing, however, was 78 samples per second thereby allowing for printout of all channels every 0.0128 seconds during startup and shutdown. A summary of the channel assignments (i.e., sampling rate) for each key performance parameter recorded during MV/M '73 hot fire testing is shown in Figure 6-36.

In addition, the program has the capability to calculate 40 higher order "Performance Parameters," (e.g. resistances, corrected throat area, specific impulse). The only restriction is that a maximum of 70 parameters can be printed out for a single pass through the tape. The program is arranged to printout the first 10 requested channels plus time for the first 30 time slices, and then print the remaining parameters in groups of 10 until all requested parameters have been printed. The program will then return to the first requested group of parameters and continue this scheme until all requested data has been printed.

The processing of the hot fire data is conducted in the following manner. The zero and calibration files are processed first and a summary is printed out of the channel assignments, parameter equivalents and the zero and calibration count levels. From the calibration and zero files a table of engineering unit conversion constants are established for all the input parameters. The actual hot fire data file is then processed using these constants to completion.

The integration of the thrust and chamber pressure is achieved by summing the average times the interval of each data slice both at the start and shutdown of each test. The cutoff criteria for startup integration is defined at 5 seconds and is input as a constant. The shutdown integration is initiated at a time input prior to the test and is cutoff either at the point

Parameter	Program Mnemonic	Sample Rate (Samples/Sec)
Inlet Pressure	PVIN	1250.0
Chamber Pressure	PC HR	1250.0
Chamber Pressure	PC LR	1250.0
Flowrate	WF1	156.8
Flowrate	WF2	156.8
Thrust	Fl	2500.0
Thrust	F2	2500.0

Figure 6-36. MVM 73 Key Instrumentation Channel Assignments

at which low range chamber pressure has decayed to less than capsule pressure or at the end of the data file (approximately 40 seconds after the end of the test).

There is no capability for adjusting for zero drift during the reduction of the data. The printout of the zero levels prior to and after the engine firing are used for an adjustment of the data for zero shift after processing.

7. PROBLEM AREAS

The major problem uncovered during fabrication and assembly of the flight engines was the pressure transducer tube on JPL Drawing 10013190C.

The original pressure transducer tubes were fabricated of L-605 material by machining the outside of the tube, eloxing the 0.064 inch I.D. and then forming the tube. The tube was welded on to the shell and a leak check of the weld was not made until the engine was completed.

Engine S/N 203 had the pressure transducer tube eloxed and the engine passed all leak checks and completed FA testing at CTS. However, on engine S/N 202 (TA Engine see TA Summary Report) the tube to shell weld indicated a leak. The tube was welded on engine S/N 201 and a fixture was constructed to leak check the weld prior to catalyst loading. After checking the tube to shell weld a leak was found on engine S/N 201.

A thorough investigation was conducted which resulted in the following:

- a) Eloxing the 0.064 I.D. of the L605 0.125 inch O.D. tube embrittles the inside of the tube. During welding there is a high possibility of the tube cracking with a resultant weld crack.
- b) Hastelloy W filler rod is recommended for welding the tube onto the shell rather than the L605 filler as called out on JPL Drawing 10013191.

The eloxed tube was removed on engine S/N 203 after FA tests by maintaining the engine nozzle in the downward position and maintaining a suction on the nozzle to remove all chips.

The eloxed tube was also removed on engine S/N 201, however since this engine was not catalyst loaded the same precautions used on S/N 203 were not used.

New pressure transducer tubes were then fabricated by drilling the I.D. of the tube and welding with a Hastelloy W filler rod. All engines fabricated for MV/M73 program have the drilled pressure transducer tube and Hastelloy W filler weld.

During vibration and FA testing at CTS several test facility anomalies occurred. The vibration response was out of tolerance due to the amplification of the JPL furnished vibration fixture. As more experience was gained with the fixture the response was maintained in tolerance.

The FA testing anomalies were due to unforeseen minor failures of supporting or controlling test components. These failures caused extra starts and longer FA test times on several engines.

All the above vibration and testing anomalies are called out in Section 8 under the Problem/Failure Reports.

8. PROBLEM/FAILURE REPORTS

PFR #5651

Engine S/N 203

During random FA vibration response shows engine was subjected to levels below and above tolerance limits due to amplification of vibration fixture.

PFR #5652

Vibration Fixture

This PFR written against vibration fixture (See PFR #5652).

PFR #5653

Engine S/N 203

During second 100 sec acceptance test facility throttle valve timer anomaly caused engine to be subjected to 200 psi chamber pressure versus a required start pressure of 50 psi. Test was terminated after 10 seconds.

PFR #5654

Engine S/N 203

Engine roughness exceeded 5% of chamber pressure as required by JPL Spec TS 506207A at the following data points

Test 74-3 5.6% of Pc Pc=104.48 psi Test 74-4 9.5% of Pc Pc=50.46 psi Test 76-1 8.9% of Pc Pc=53.56 psi

PFR #5658

Engine S/N 201

During random vibration FA vibration response plots indicate engine was subjected to levels below and above 1.5 db tolerance limits due to fixture amplification and sensitivity of equipment controls.

Engine S/N 201

During second throttle point on the pressure increase acceptance test the facility tank pressure regulator failed. Test was aborted and repeated successfully. Engine S/N 201 had thirty five (35) seconds of additional run time.

PFR #5663

PFR #5659

Engine S/N 204

During random vibration of 22-axis the response was out of specification at 1400 to 1800 Hz. Maximum deviation is 10 db.

PFR #5665

Engine S/N 205

During random vibration of 22-axis the response was out of tolerance at 1300 to 1800 Hz.

PFR #5673

Engine S/N 206

During firing run HA3A-102 equipment failed to maintain Pc at 200 ±5 psia. Pc degraded in final 10 seconds to 193.5 psia.

PFR #5674

Engine S/N 206

Run HA3A-101, Specific Impulse was 218.6 at Pc of 50 psi. JPL spec indicated specific impulse should be 218.9.

PFR #5675

Engine S/N 207

Run HA3A=105 Specific Impulse was 217.4 at Pc of 50 psi. JPL spec indicated specific impulse should be 218.9.

PFR #5676

Engine S/N 207

Run HA3A-105-1. Engine roughness was 12% of Pc for frequencies less than 50 CPS. JPL spec indicated roughness should not be over 10% of Pc.

PFR #5677

Engine S/N 204

Firing Runs HA3A-107 and HA3A-108 Specific Impulse below JPL specification Run HA3A-107 Impulse was 217.1 @ 50 Pc, should be 219.1 Run HA3A-108 Impulse was 217.8 @ 50 Pc, should be 219.1.

PFR #5678

Engine S/N 204

On firing run HA3A-107 engine roughness was 12%. JPL spec indicated roughness should not exceed 10%.

PFR #5679

Engine S/N 205

During firing run HA3A-111 Specific Impulse was 218.1 at 50 Pc. JPL spec indicated Specific Impulse should be 219.1.

TRW SYSTEMS

INTEROFFICE CORRESPONDENCE

MV/M 73-021 4780.12-44

H. S. Dobbie

cc: See Below

DATE: 7 November 1972

SUBJECT:

New Technology Reporting on JPL Contract 953361 Fabrication and Test of Rocket Engine Assemblies for Mariner Venus/ Mercury 1973.

FROM:

D. R. Snoke

BLDG. 01

ROOM 2281

EXT. 61530

As TRW Project Manager on Contract 953361, I certify that a complete search has been made with all project people working on the contract and no reportable items of New Technology have become apparent during the length of this contract. This is not unusual since this contract covered the fabrication and test of Rocket Engine Assemblies to JPL furnished drawings and specifications.

> D. R. Snoke MV/M 73 REA

Project Manager

cc: Herbert H. Rosen

Section 9.0 Final Report

APPENDIX A

WATER FLOW BENCH UNCERTAINTY ANALYSES

INTEROFFICE CORRESPONDENCE

72.4702.38-009

TO: G. J. Geier

See Distribution

DATE: 18 May 1972

SUBJECT:

Pressure Measurement System Uncertainty on MVM'73 Program (water flow test)

1. D. Dorma

BLDG. M2 MAIL STA. 2115C EXT. 61690

Reference: JPL Specification TS506207 Rev. A. Specification for MVM 73 Equipment Flight

Acceptance Tests

A study of the subject measurement uncertainty has been made in accordance with your request. Uncertainty was determined using data from five system level calibrations. A summary of all data is given in Figure 1. It is concluded that these data demonstrate conformance to the System Uncertainty requirements of Section 4.3.7 of the referenced document.

The procedures used in obtaining these calibrations simulate those which would occur in worst-case test conditions. Transducer zero and full-scale output were initially adjusted. Some sixteen hours later the data of Figure 3 were taken. Transducer cutput was balanced to zero (full-scale output was not adjusted) prior to the calibration of Figure 4. Data of Figures 5 and 6 were subsequently taken without adjustment. Figure 6 data occured 20 hours after the last zero adjustment and 40 hours after full scale had been set. Transducer zero and full scale were then reset and Figure 7 data taken. Close correlation between Figures 3 and 7 is evident.

Some comment regarding interpretation of the data is warranted. First, the effect of errors in the standard calibration gauge is evident in two ways. These are:

- a) The non-linearity of the curves is not characteristic for a strain-gauge type transducer. Such transducers always exhibit smooth output curves between zero and full scale. The discontinuity found between 15 and 20 psi points is therefore due entirely to differences in the calibration gauges.
- b) The hysteresis exhibited is also atypical of strain-gauge transducers which always yield lower output at increasing pressure than at decreasing pressure. The polarity of the indicated hysteresis is that of the gauge and is associated with frictional forces. The general inconsistency of the hysteresis, at pressures which are low with respect to the range of each of the two gauges, also indicates that the hysteresis is that of the calibration standards.

72.4702.38-009 18 May 1972 Page 2

Significant improvement in the uncertainty at low pressures could be effected through use of a Bridge Balance Unit having a finer potentiometer than is contained in the balance unit used currently. It is now virtually impossible to achieve initial zero balance to better than \pm 20 microvolts. At one psi this offset represents an uncertainty \pm 2 percent of the reading. The measured zero offsets were not used to correct calibration data since this practice is not part of the normal operating procedure.

Recent MVM-73 pressure data did not range below 3.4 psi. Inspection of Figure 1 indicates a high probability that all pressure data is within the required + 1 percent uncertainty limit. An improved Bridge Balance Unit will be utilized in fiture testing on this program.

J. D. Dorman

JDD:se

Distribution

- E. Bouckaert
- P. Brown
- J. Ethington
- E. Kacian
- L. Kent
- D. Snoke

PRESSURE MEASUREMENT SYSTEM INCLUDING CALIBRATION GAUGES

INTEROFFICE CORRESPONDENCE

ro G. Geier

cc. Distribution

DATE

June 21, 1972

FLOW MEASUREMENT SYSTEM UNCERTAINTY
ON MV/M '73 PROGRAM WATER FLOW TEST

FROM: J. D. Dorman

BLDG. M2 MAIL STA. 2715 EXT.6

Reference: JPL Specification TS506207 Revision A,

Detail Specification for MV/M '73 Equipment Flight Acceptance Tests

A study of the subject flow measurement uncertainty has been made in response to your request. A worst case analysis demonstrates that the system uncertainty is less than + 0.6 percent of reading at 0.04 pounds per second flowrate (the MVM '73 minimum) and diminishes with increasing flowrate. This is well within the + 1.0 percent required by Section 4.3.7 of the referenced document.

Components of the flowmeter uncertainty are:

Flowmeter Calibration	± 0.5 %
Electronic Counter Accuracy	<u>+</u> 0.027%
Temperature Effect on Water Density	<u>+</u> 0.064%

Deriviation of these values is described below:

Flowmeter Calibration - Flowmeters are calibrated at maximum three month intervals or more frequently when in continuous use. Calibration is performed by an independent firm using NBS certified or traceable equipment and Mil Standard procedures. The ± 0.5% value assigned is actually greater than twice the maximum shift in any point occurring in consecutive three month calibrations.

Total

+ 0.591%

In comparing points from these consecutive calibrations, variations in calibration factor in excess of \pm 0.25% (but generally less than \pm 0.5%) occur frequently at flowrates below 35 percent of full range. This results from the fact that, at low flowrates, the frictional forces in the meters turbine mechanism are not completely cancelled by the viscous forces of the fluid. TRW is currently using two flowmeters of different ranges in this program. Neither meter is used below its 35% FS point thus further assuring conservatism in the \pm 0.5% estimated uncertainty value for the flowmeter performance.

Electronic Counter Accuracy - The uncertainty value for the Electronic Counter has two amponents. These are, according to the Hewlett-Packard specification;

o Time Base Stability of + 0.0002% per week. Over TRW 12 week calibration cycle for this equipment this error would amount to 0.0024% maximum.

Continued -

o A + 1 count error in the display. Using five digits in the display, this would constitute an error of \pm 0.025% at the minimum flowrate of 0.04 pounds per second.

Water Density Variation - Turbine flowmeters are volumetric devices. Conversion of data from a volume to mass basis is effected during flowmeter calibration data reduction and is based on 70° F water temperature. If the temperature ranges between 65°F and 75°F, as allowed by section 3.7 of the referenced specification, the maximum reading uncertainty arising from density variation is + 0.064%.

J. D. Dorman

JDD:ddj

cc: E. Bouckaert

P. Brown

J. Ethington

E. Kacian

L. Kent

D. Snoke

Systems Grown

APPERDIX

INTEROFFICE CORRESPONDENCE

D. R. Snoke

cc: W. M. Ping

DATE: 29 March 1972

C. H. Oki

A. W. Parnell

MVM '73 Thrust Measurement Uncertainty Plan

FROM R. S. Williams
HIDG 01 MALESTA 1051 EXT. 640%

As part of the MVA '73 contract a requirement exists to develop the instrumentation uncertainty associated with the measurement of vacuum thrust prior to the start of reactive testing. In addition, it is understood and agreed that all reasonable modifications to the thrust measurement system and methods for reduction of calibration data in order to reduce the instrumentation uncertainty towards a goal of £ 0.5 per cent (3 sigma) will be implemented. This report documents the general approach to be used to develop the thrust measurement uncertainty.

Patters Control Control of the pattern of the first control of the control of the

The development of the thrust measurement uncertainty can be separated into static components and dynamic components. The static components consist of the random (precision) and fixed (bias) uncertainty estimates associated with the test load cell calibrations and the random and fixed uncertainty estimates associated with the reference or standard load cell. The dynamic components consist of the random estimates associated with the difference (channel deviation) between the redundant thrust measurement channels and the random and fixed uncertainties associated with the pre-to-post test thrust zero level shift.

The random and fixed estimates associated with the test load cell will be obtained from a series (15 to 20)—end to end calibrations using the load cell calibrator. The calibrations will be conducted with the engine and instrumentation installed, propellant lines attached and pressurized, and at altitude cell pressure to duplicate the actual pre-test condition. Each calibration will consist of the application of loads from zero to 100 per cent full scale in increments of 25 per cent full scale and then decreasing back to zero in increments of 25 per cent full scale. The calibration data for each thrust channel will then be reduced by a straight line fit through all calibration levels in the same manner as that to be used for the reactive test calibrations.

Each measured colibration level will then be analyzed to develop the repeatability (random component) of the output load and the average bias (fixed component) between the applied load (reference cell) and the measured load (test cell). It is recognized that this does not represent a true end to end calibration of the thrust stand in that the alignment of the thrust stand is not verified. This approach, however, is preferred in view of the difficulties involved and questionable results derived from a

true end to end calibration and has been found to be acceptable by JPL assigned instrumentation engineers. The alignment of thrust stand will be verified, hewever, by the normal test facility procedures. The development of the rendom and fixed uncertainties of the reference cell, will be developed from existing laboratory calibration history for this reference load cell.

The dynamic uncertainty estimates (channel deviation and pre/post zero shift) will be developed from a series of ten thruster firings (approximately 100 seconds duration). Before these data are obtained, however, a series of thruster firings to investigate the reduction of the pre to post test zero shift due to temperature sook back will be conducted. The thrust data from each test will be reviewed to determine the magnitude of the zero shift and, depending upon the magnitude of the shift, modifications to the stand to reduce the shift will be incorporated. It is expected that the pre to post test zero shift random and fixed uncertainties can be reduced to approximately 0.2 per cent (3 sigma) based on MMBPS experience.

The overall thrust uncertainty will be developed by statistically combining the static and dynamic random and fixed uncertainties. In addition, the end to end load cell calibration data, pre to post zero shift data, and the channel deviation data will be used to establish control limits for continuous monitoring of the thrust measurement system throughout the reactive testing program.

RSW/hk

R. S. Williams, Member Data Analysis Section

DISTRIBUTION:

D.	L.	Byrd	01/2281
L.	L.	Gassert	41A/1048
н.		Jankowski	41A/1048
c.	F.	Vaughan	01/2261

APPENDIX B

OSCILLOGRAPHS OF START-UP AND SHUTDOWN FOR EACH FLIGHT ENGINE

	and war work of the state of th	 FLOW RATE 2	1000 - 575 675
		VALVE VOLTAGE VALVE CURRENT	
·····	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		FORCE CHANNEL 2
		ENGINE NO. 201 TEST NO. HA3A082 START	, FORCE CHANNEL 1
		LOW RANGE CHAMBER PRESS.	·
		HIGH RANGE CHAMBER PRESS.	
		LOW RANGE CELL PRESS.	

and the second s	The state of the second of the	en e	FLOW RATE 1	•	
			TECH INTE I promise as the contract of the con	e de la companya del companya de la companya del companya de la co	anticonomica por nazione i independente e colonidario i prima e i independente i independente i independente i
				•	
n againg an early and a second and a second	The second secon	. \	VALVE VOLTAGE		
		Plate	VALVE CURRENT		and the same of th
		•	Stan of 073-10.	ele.	
		,			•
			ENGINE NO. 203 TEST NO. HA3A073 START	•	
			FORCE CHANNEL 2 +		
· · · · · · · · · · · · · · · · · · ·		L 000	FORCE CHANNEL 1		· · · · · · · · · · · · · · · · · · ·
	~ · · · · ·	PVI	N INLET PRESS.		See See Company
				. •	
PC					
	- / /			· .	
	/ / /				
	, ,		•		•
,	\ \		LOW RANGE CHAMBER PRESS.		
•	PC	PC	Load PVI	Start of 073-10. Start of 073-10. FINE NO. 203 TEST NO. HASA073 START FORCE CHANNEL 2+ Cold Chamber FORCE CHANNEL 1: PVIN INLET PRESS.	Stand of 073-10 alle. The Engine No. 203 TEST No. HABADO73 START FORCE CHANNEL 2 Load Coll James FORCE CHANNEL 1 PVIN INLET PRESS.

FLOW RATE 2 FLOW RATE 1 VALVE VOLTAGE VALVE CURRENT . ENGINE NO. 203 TEST NO. HA3A075 SHUTDOWN FORCE CHANNEL 2 FORCE CHANNEL 1 INLET PRESS. QUALVE w. LOW RANGE CHAMBER PRESS. HIGH RANGE CHAMBER PRESS. HIGH RANGE CELL PRESS. LOW RANGE CELL PRESS. 100 CPS TIMING SIGNAL

FIGURE DATE 2 FIGURE PRISS. THE PRISS. TO RESERVE THE STATE OF THE		riandroi de Laidre Louis de La grillière e grillère.						
WALVE COURSETT IV WALVE COURSETT IV CHICKLE ON 202 TEST NO. MAJANGE SULTIONAM From 200 PST PRICE CHANNEL 2 076 PRICE CHANNEL 1 PVIN INLET PRESS. PC2 LOW RANGE CHANNEL PRESS. HIGH RANGE COLL PRESS.	er en	FLOW RATE 2	•		ستنده بید بیده در	·		
VALVE CURRENT ENGRIE NO. 2033 TEST NO. 482A976 SUITOOM Suitoom FORCE CHANNEL 2 076 FORCE CHANNEL 1 PVIN INLET PRESS. INCH RANGE CHANGER PRESS. INCH RANGE CHANGER PRESS. INCH RANGE CHANGER PRESS.		FLOW RATE 1	>	mander of the second of the se		<i>!</i>		
VALVE CURRENT ENGINE NO. 203 TEST NO. HEADYS SUITCOM FORCE CHANNEL 2 076 FORCE CHANNEL 1 PVIN INLET PRESS. INCH RANGE CHANGE PRESS. HIGH RANGE CHANGE CLU PRESS. HIGH RANGE CLU PRESS.								
TOTAL PRESS. VALVE CURRENT TOTAL TEST NO. MOJOJG SHUTDOM FORCE CHANNEL 2 FORCE CHANNEL 1 FORCE CHANNEL 2 FORCE CHANNEL		VALVE VOLTAGE		.√v	·	:		namen i de de la companie de la comp
ENGINE MD. 2023 TEST NO. MASHAY/6 SINTODIAN FORCE CHANNEL 2 FORCE CHANNEL 1 PVIN INLET PRESS. FIGH RANGE CHAMBER PRESS. RICH RANGE CHAMBER PRESS. RICH RANGE CHAMBER PRESS.				Iv			•	
FORCE CHANNEL 1 PVIN INLET PRESS. LOW RANGE CHAMBER PRESS. HIGH RANGE CELL PRESS. HIGH RANGE CELL PRESS.			NGINE NO. 203 EST NO. HA3A076 HUTDOWN					
PVIN INLET PRESS. PC2 LON RANGE CHAMBER PRESS. HIGH RANGE CHAMBER PRESS. HIGH RANGE CELL PRESS.		FORCE CHANNEL 2					Shutdown f	vom 200 PSI
PVIN INLET PRESS. PC1 LOW RANGE CHAMBER PRESS. RIGH RANGE CHAMBER PRESS. HIGH RANGE CELL PRESS.							076	,
INLET PRESS. PC2 LOW RANGE CHAMBER PRESS. HIGH RANGE CHAMBER PRESS. HIGH RANGE CELL PRESS.		FORCE CHANNEL 1			·		·	
LOW RANGE CHAMBER PRESS. HIGH RANGE CELL PRESS. HIGH RANGE CELL PRESS.		·						
LOW RANGE CHAMBER PRESS. HIGH RANGE CHAMBER PRESS. HIGH RANGE CELL PRESS.	•				e e e e e e e e e e e e e e e e e e e	F	°C1	
HIGH RANGE CHAMBER PRESS. HIGH RANGE CELL PRESS.				per		/		
HIGH RANGE CELL PRESS.		LOW RANGE CHAM	BER PRESS.					
			HIGH RANGE CHAP	MBER PRESS.	DDECC			
LOW MANGE CELL FACIST.			LOW RANGE CI	ELL PRESS.	rress.			
100 CPS TIMING SIGNAL	The stage comments and another contract. So therefore the stage of the		100 CPS TIMI		e e est que parapor decembra e una e e	ng elektron meneng b	Baserbergh" y product syym Annadon'ny districtiony majoritr	ngage provide of spinished of spinished of spinished of spinished of spinished spinished of spinished spin

APPENDIX C

THRUST MEASUREMENT UNCERTAINTY PLAN

SYSTEMS GROUP

INTEROFFICE CORRESPONDENCE

D. R. Snoke

cc: W. M. King

DATE: 29 March 1972

C. H. Oki

A. W. Parnell

SUBJECT: MVM '73 Thrust Measurement Uncertainty Plan

FROM: R. S. Williams

BLDG. 01 MAIL STA. 1051 EXT. 64083

As part of the MVM '73 contract a requirement exists to develop the instrumentation uncertainty associated with the measurement of vacuum thrust prior to the start of reactive testing. In addition, it is understood and agreed that all reasonable modifications to the thrust measurement system and methods for reduction of calibration data in order to reduce the instrumentation uncertainty towards a goal of \pm 0.5 per cent (3 sigma) will be implemented. This report documents the general approach to be used to develop the thrust measurement uncertainty.

The development of the thrust measurement uncertainty can be separated into static components and dynamic components. The static components consist of the random (precision) and fixed (bias) uncertainty estimates associated with the test load cell calibrations and the random and fixed uncertainty estimates associated with the reference or standard load cell. The dynamic components consist of the random estimates associated with the difference (channel deviation) between the redundant thrust measurement channels and the random and fixed uncertainties associated with the pre to post test thrust zero level shift.

The random and fixed estimates associated with the test load cell will be obtained from a series (15 to 20)—end to end calibrations using the load cell calibrator. The calibrations will be conducted with the engine and instrumentation installed, propellant lines attached and pressurized, and at altitude cell pressure to duplicate the actual pre test condition. Each calibration will consist of the application of loads from zero to 100 per cent full scale in increments of 25 per cent full scale and then decreasing back to zero in increments of 25 per cent full scale. The calibration data for each thrust channel will then be reduced by a straight line fit through all calibration levels in the same manner as that to be used for the reactive test calibrations.

Each measured calibration level will then be analyzed to develop the repeatability (random component) of the output load and the average bias (fixed component) between the applied load (reference cell) and the measured load (test cell). It is recognized that this does not represent a true end to end calibration of the thrust stand in that the alignment of the thrust stand is not verified. This approach, however, is preferred in view of the difficulties involved and questionable results derived from a

true end to end calibration and has been found to be acceptable by JPL assigned instrumentation engineers. The alignment of thrust stand will be verified, however, by the normal test facility procedures. The development of the random and fixed uncertainties of the reference cell will be developed from existing laboratory calibration history for this reference load cell.

The dynamic uncertainty estimates (channel deviation and pre/post zero shift) will be developed from a series of ten thruster firings (approximately 100 seconds duration). Before these data are obtained, however, a series of thruster firings to investigate the reduction of the pre to post test zero shift due to temperature soak back will be conducted. The thrust data from each test will be reviewed to determine the magnitude of the zero shift and, depending upon the magnitude of the shift, modifications to the stand to reduce the shift will be incorporated. It is expected that the pre to post test zero shift random and fixed uncertainties can be reduced to approximately 0.2 per cent (3 sigma) based on MMBPS experience.

The overall thrust uncertainty will be developed by statistically combining the static and dynamic random and fixed uncertainties. In addition, the end to end load cell calibration data, pre to post zero shift data, and the channel deviation data will be used to establish control limits for continuous monitoring of the thrust measurement system throughout the reactive testing program.

RSW/hk

R. S. Williams, Member Data Analysis Section

DISTRIBUTION:

D.	L.	Byrd	01/2281
L.	L.	Gassert	41A/1048
н.		Jankowski	41A/1048
С.	F.	Vaughan	01/2261

APPENDIX D

LOW TEMPERATURE MEASUREMENT UNCERTAINTY ANALYSIS

INTEROFFICE RESPONDENCE

J. Miller /J. Champion

cc: Distribution

DATE: 27 November 1967

SUBJECT: Instrumentation Uncertainty of the Platinum

FROM: C. H. Oki

Resistance Transducers Used to Measure Propellant

BLDG 0-1 MAIL STA. 2180 EXT.54361

Temperatures

LMDE Instrumentation Error Analysis dated 31 August 1966,

01827-6002-K000 by C. H. Oki/G. E. Urner

SUMMARY

A re-evaluation of the instrumentation uncertainties of the platinum resistance transducers used to measure propellant temperatures was made because the previous analysis (reference) was considered to be incomplete. The previous study was based upon a small sample size (degrees of freedom of 8) and did not include the increase in uncertainty due to installation effects. However, the results of this current study indicate good agreement.

The total instrumentation uncertainty of the propellant temperature measurements using platinum resistance transducers were computed to vary between 0.416% FS to 0.562% FS for the range of temperature between 30 and 110 degrees Farenheit. As was determined in the previous study, there was a marked increase in the uncertainty at a temperature of 130 degrees (0.832% FS).

DISCUSSION

A re-evaluation of the instrumentation uncertainties associated with the platinum resistance transducer used to measure the propellant temperature was made because there was a possibility that all of the uncertainties were not properly accounted for in the previous study presented in the reference. Therefore, additional effort which included special tests as well as additional analysis was conducted.

It was proposed that a significant amount of error might be induced into the system due to the installation of the sensors and the triple bridge units. Therefore, special tests were conducted to determine the installation effects by making total system tests. A known resistance was placed in the temperature lines at the test stand and the output was recorded on a digital voltmeter which was located in the control room. The resistance was varied from a minimum value which corresponds to a nominal temperature of 30°F to a value which corresponds to 130°F. These tests were conducted at the HATS, VETS and HEPTS facilities. These tests were conducted with 9 truple bridge unit-sensor sets utilizing four lines at each stand and a variety of amplifiers to transmit and amplify signals. In addition to this test data, calibration data that is determined routinely in the laboratory was analyzed to provide additional statistical data to facilitate the error analysis.

Method of Acquisition

The propellant temperatures during static engine fire tests are presently monitored with a platinum resistance transducer. These transducers consist of a sensor

and a triple bridge unit (TBU). The units are calibrated separately, but are calibrated in such a manner that they must be used as a unit. The sensors are calibrated by experimentally determining the variation of the resistance with temperature. Based upon these resistances the TBU's are adjusted to provide zero milivolt output for an input temperature of 30° and 4 milivolt output at 70°F. For further detail of the calibration method the reader is referred to the reference.

Prior to a given static engine firing test the calibration signals for the temperature measurements are developed independently of the temperature measurement system. For example, in the VETS and MATS test area, a standard input of 5 milivolts (50°F) is used to establish the sensitivity of the temperature system. An open circuit is used for the 30° level and a linear relationship is used to obtain the temperature in degrees farenheit. For acquisition of data at HEPTS the standard signal of 10 milivolts is used.

Statistical Model

Based upon the method by which the platinum resistance transducers are used, it is apparent that the instrumentation uncertainties can be conveniently partitioned into three components of error. These are the uncertainties of the digital acquisition system, the uncertainties of the calibration data, and the uncertainty due to installation and systems effects. Based upon this consideration, the following statistical models were established to facilitate the error analysis. As was done in previous cases the model was broken into fixed and random uncertainties.

. FIXED UNCERTAINTY

$$\epsilon_{\rm T} = \epsilon_{\rm DS} + \epsilon_{\rm CAL} + \epsilon_{\rm instal.~\&~system}$$
 (1)

Where,

 $\epsilon_{_{
m DS}}$ = the fixed uncertainty of the digital system, % FS

fixed uncertainty of the sensor calibration, % FS

fixed uncertainty due to installation and system effects, % FS

RANDOM UNCERTAINTY

$$\sigma_{\rm T}^2 = \sigma_{\rm DS}^2 + \sigma_{\rm CAL}^2 + \sigma_{\rm instal. \& system}^2$$
 (2)

Where,

of the digital system, % FS

 $\sigma_{\rm CAL}$ = random fixed uncertainty of the sensor calibration, % FS

of instal. & system = random uncertainty due to installation and system effects, % FS

TOTAL UNCERTAINTY

$$E_{_{TP}} = \epsilon_{_{TP}} + k \sigma_{_{TP}}$$
 (3)

Where,

k = tolerance factor

Analysis and Results

In the analysis discussed in the reference it was reported that the fixed and random uncertainties of the digital system were respectively 0.1% FS and 0.168% FS. These uncertainties included all of the system uncertainties which included the non-linearity of the amplifiers. The approach taken for this most recent analysis was that of including the instrumentation uncertainties due to electronic errors as part of the uncertainty associated with the installation and system effects. Therefore, for the purpose of this study the fixed uncertainty was taken to be .1% FS (due to the least count of the system) and the random uncertainty of the digital system was taken to be zero.

In order to determine the uncertainty due to the installation and variability of the system, special calibration tests were conducted. The statistics of these calibrations are presented in Tables 1 and 2. The basic data that was determined from the calibration tests are presented in Table 3.

The uncertainty due to the installation and total system effects was developed by analyzing the deviation between the measured output and the expected standard output which would correspond to the known resistance input. Due to the variations in the resistances of the sensors, the standard outputs were developed from the calibration data of the individual sensors. These values along with the measured output are recorded in Table 3. Based upon the deviations that were determined between the standard output and the measured output, a mean and estimate of standard deviation was computed. The resulting statistics are presented in Table 1. Review of the data presented in Table 1 indicate no significant differences between the mean or the estimates of standard deviations for the increasing and decreasing cases. The values were therefore pooled to obtain the statistics presented in Table 2.

Based upon the degrees of freedom the unbiased estimate of standard deviation (sigma) were developed. The fixed uncertainty is given by the grand mean of the data and one sigma random uncertainty is given by the unbiased estimate of standard deviation.

The uncertainty of the sensor resistance was developed by examining consecutive calibrations of 13 gensors. In a manner similar to the installation and systems uncertainties, the deviations in the resistant determined in consecutive calibrations were examined. The calibration data that were used for the analysis are presented in Table 4. The statistics developed from the deviations observed from consecutive calibrations are presented in Table 5. The mean deviation together with the estimate of standard deviation were computed and are summarized in Table 5. The unbiased estimate was developed based upon the associated degrees of freedom. The fixed and random uncertainties of the sensor calibration is given by the mean deviation and the unbiased estimate of the deviations.

In order to compute the fixed and random uncertainties of the temperature measurements, the individual contribution in accordance with the statistical model defined by equations 1, 2 and 3 were developed and are summarized in Tables 6 and 7.

The total three sigma uncertainty is summarized in Table 8. As indicated in this table, the total uncertainties varied randomly between 0.416 to 0.562% FS in the range of temperature measurements from 30° to 110° F. For temperatures greater than 110° F (the uncertainty is increased markedly) to 0.832% FS at a temperature of 130° F.

A. W. Parnell, Head

Performance Analysis Section

AWP:sc

TABLE 1
INSTALLATION AND SYSTEM CALIBRATION STATISTICS

LEV	I E L			
Resistance ohms	Temperature °F	d % FS	s % FS	d.f.
200	32	0.059	0.073	20
208	50	0.040	0.097	20
216	68	0.139	0.078	20
224	. 86	0.100	0.109	20
232	104	-0.058	0.105	20
240	122	-0.285	0.137	20
232	104	-0.055	0.106	20
2 24	86	0.103	0.110	20
216	68	0.136	0.081	20
208	50	0.041	0.100	20
200	32	0.058	0.070	20

TABLE 2
INSTRUMENTATION UNCERTAINTY OF TRANSDUCER AND ACQUISITION SYSTEM

LEV	E L				
Resistance	Temperature	d	sp	d.f.	o
Ohms	°F	% FS	% FS		% FS
200	32	0.058	0.072	40	0.072
208	50	0.040	0.098	40	0.097
21.6	68	0.138	0.080	40	0.080
224	86	0.102	0.110	40	0.111
232	104	-0.056	0.106	40	0.107
240	122	0.285	0.137	20	0.139

TABLE 3

INSTALLATION AND ACQUISITION SYSTEM CALIBRATION DATA

			Deviation	-
	. :		Measured Output my	
ON DATA	-	-	Deviation	0.027 0.058 0.168 0.196 0.033 0.196 0.168 0.027
AND ACQUISITION SYSTEM CALIBRATION DATA	145	HEPTS RTT3 AMP 59	Measured Output	0.202 2.019 3.844 5.668 7.481 7.481 7.481 5.668 3.844 2.019 0.202
COUISITION SYS	TBU SERIAL NO. 145		Deviation ${\mathscr K}$	0.047 0.108 0.136 0.136 -0.209 0.003 0.146 0.108 0.047
INSTALLATION AND A	I	HATS RTT3 AMP 52	Measured Cutput mv	0.204 2.014 3.838 5.662 7.477 7.478 5.663 2.015 0.204
INSTA			Standard Output mv	0.1993 2.0113 3.8272 5.6484 7.4777 9.3119 7.4777 5.6484 5.6484 5.0113
	·	Stand Designation fier No.	Resistance ()	208 216 216 227 232 240 232 232 200 200
		Test Stand Line Desig Amplifier	Test No.	12を455000011

TABLE 3 (Continued)

					
		Deviation %	0.046 0.117 0.131 0.112 0.079 0.102 0.101 0.066		6.024 6.023 6.068 6.239 6.239 6.021 6.013
	HEPTS RTT3 AMP 59	Measured Output mv	0.210 2.023 3.845 5.666 7.474 7.474 7.474 5.665 0.212	HATS RTT2 AMP 51	0.203 2.009 3.828 7.648 7.458 9.269 7.460 5.649 2.010
		Deviation %	0.026 0.027 0.027 0.002 -0.1445 -0.159 0.012 0.037		0.046 0.127 0.191 0.132 -0.335 -0.039 0.132 0.127
NO. 156	HATS RTT3 AMP 52	Measured Output mv	0.208 2.014 3.834 5.655 7.465 9.275 7.466 2.015 0.208	HEPTS RTT1 AMP 55	0.210 2.024 3.846 5.668 7.478 8.286 7.478 7.478 2.024 0.210
TBU SERIAL NO		Deviation %	0.046 0.107 0.171 0.092 0.079 0.079 0.171 0.107		0.016 0.047 0.111 0.032 0.119 0.119 0.042 0.037
	HETS RTT2 AMP 56	Measured Output my	0.210 2.022 3.844 5.664 7.474 9.285 7.474 5.664 3.844 5.022	HATS RTT1 AMP 50	0.207 2.016 3.838 7.470 9.282 7.470 5.659 3.837 0.209
		Standard Output mv	0.2054 2.0113 3.6269 5.6548 7.4819 7.4819 5.6548 3.6269 2.0113 0.2054		0.2054 2.0113 3.8269 5.6548 7.4819 9.3195 7.4819 5.6548 3.8269 2.0113 0.2054
	Stand Designation fier No.	Resistance Ω	200 232 232 232 232 233 233 234 235 236 236 237 236 237 237 237 237 237 237 237 237 237 237	Stand Designation fier No.	203 203 224 227 227 227 227 227 227 227 227 227
	Test Stand Line Designation	ည်း (၁)	1004v0r8001	Test St Line De	よるるようら てきらむは

TABLE 3 (Continued)

			TBU SERIAL NO.	NO. 156				Transfer of the second	
Test Stand Line Dosig Amplifier	Stend Dosignation fier No.		HATS RTT4 AYP 53					VETS RTT2 AMP 34	
Most Mos	Fesistance Ω	Standard Cutout mv	Measured Output mv	Deviation	Test No.	Resistance \?	Standard Output my	Measured Output mv	Deviation %
100.40000011	203 224 232 232 232 232 232 203 203 203	0.2054 2.0113 3.8269 5.6548 7.4819 7.4819 5.6548 2.0113 0.2054	0.212 2.019 3.838 5.658 7.469 7.469 5.658 2.018	0.066 0.077 0.0111 0.032 0.032 0.032 0.067	40m4n0ra0011	200 216 232 240 232 240 224 200 200 200 200 200	0.1674 1.9773 3.7929 5.6154 7.4433 9.2790 7.4433 5.6164 3.7929 1.9773	0.159 1.987 3.808 5.527 7.438 7.439 5.528 3.808 1.987 0.159	0.016 0.097 0.151 0.053 0.053 0.043 0.051 0.097

TABLE 3 (Continued)

		Deviation %	
		Measured Output mv	
SENSOR SERIAL NO. 1210		Deviation %	-0.021 -0.041 0.114 0.005 -0.294 -0.103 0.005 0.104 -0.041
SENSOR SERI	HEPTS RTT4 AMP 58	Weasured Output my	0.154 1.962 3.780 5.595 7.403 7.402 5.595 1.962 0.154
		Deviation %	-0.091 -0.171 -0.046 -0.155 -0.464 -0.333 -0.165 -0.056
	HATS RTT4 AMP 53	Measured Output my	0.147 1.949 3.764 9.191 7.382 5.578 3.763 1.949
10. 5130		Standard Output mv	0.1561 1.9561 3.7585 5.5945 7.4123 9.2374 7.4123 5.5945 1.9561 0.1561
TBU SERIAL NO. 5130	Test Stand Line Designation Amplifier No.	Recistance Ω	200 208 208 216 232 240 232 216 216 208 208
	Test Stand Line Designat Amplifier No	Hest. No.	1004000001

TABLE 3 (Continued)

	1214		Deviation %	0.225 0.146 0.146 0.130 0.130 0.136 0.136
	SERIAL NO.	VETS RTT3 AMP 35	Measured I Output my	0.185 1.983 3.798 5.610 7.416 9.217 7.418 5.509 1.982 0.178
	134 SENSOR		Standard Output mv	0.1525 1.9684 3.7775 5.5970 7.4181 9.2457 7.4181 5.5970 3.7776 1.9684 0.1625
	SERIAL NO. 5134		Resistance (/	200 232 232 232 232 233 233 233 233 233
ea)	TBU		Test No.	1004000001
3 (Continued)	213		Deviation %	-0.067 -0.055 -0.053 -0.220 -0.220 -0.220 -0.050 -0.050 -0.057
TABLE 3	SERIAL NO. 1213	HATS RTT3 AMP 52	Measured Output mv	0.223 2.026 3.843 5.659 7.466 7.467 7.467 5.660 3.844 2.025
	33 SENSOR SERIA		Standard Output mv	0.2297 2.0316 3.8433 5.6650 7.4880 9.3196 7.4880 5.6650 3.8433 2.0316 0.2297
	TEU SERIAL NO. 5133	Stand Dosignation fier No.	Resistance ()	208 216 216 224 232 240 232 224 232 224 232 208 208
	TB	Test Stand Line Designat Amplifier No.	Test No.	- (V M - 4 V) V M M A 검

TABLE 3 (Continued)

-		· 		
	<u>.</u>	-	Deviation Ž	0.093 0.205 0.205 0.028 0.028 0.174 0.103
	NO. 1218	HEPTS RTT4 AMP 53	Measured Output mv	0.230 2.039 3.857 5.675 7.482 9.288 7.482 5.674 5.674 0.231
	SENSOR SERIAL NO.	·	Deviation %	0.093 0.154 0.195 0.192 0.012 0.195 0.195 0.098
	33	HEPTS RTT2 AMP 56	Measured Output mv	0.230 2.038 3.856 7.673 7.478 7.478 5.672 0.230
			Deviation %	0.113 0.134 0.145 0.132 0.132 0.052 0.152 0.144 0.133
	36	HATS RTT2 AMP 51	Measured Output my	0.232 2.036 3.851 5.667 7.474 7.474 5.669 2.037 0.234
	SERIAL NO. 5136		Standard Output mv	0.2207 2.0226 3.8365 5.6538 7.4792 9.3074 7.4792 5.6538 3.8365 0.2207
	TBL	Stand Designation fier No.	Resistance Ω	200 224 232 232 234 235 235 236 236 236 236 236 236 236 236 236 236
		Test Stand Linc Desig Amplifier	Test No.	10.64.000

TABLE 3 (Continued)

Action (Contention)	SENSOR SERIAL NO. 1220	VETS VETS RITA RITA AMP 36	d Deviation Measured Deviation Measured Deviation Output & mv & mv	0.164 0.193 0.104 0.200 0.176 -0.096 2.004 0.209 2.005 -0.076 0.219 3.821 0.229 3.822 0.239 0.250 5.635 0.200 5.639 0.240 0.094 7.441 0.004 7.447 0.054 0.094 7.443 0.024 7.447 0.054 0.094 7.443 0.024 7.447 0.054 0.250 5.637 0.220 5.640 0.259 0.229 3.822 0.239 3.823 0.249 0.096 2.006 -0.096 -0.096 -0.096 0.164 0.194 0.114 0.200 0.174
1		VETS RITI AMP 33		0.199 2.004 3.820 5.640 7.450 7.450 7.450 9.264 7.450 9.254 7.450 9.250 9.250 9.29 9.29 9.29 9.29 9.29 9.29 9.29 9.29 9.29
	TBU SERIAL NO. 5140	VETC RIT AMP	Standard Measum Output Outpu	0.1826 2.0136 3.7981 5.6150 7.4406 7.4406 7.4406 7.445 5.6150 3.7981 2.0136 0.1926 0.1926
	TBU SE	Stand Designation fier No.	Resistance Ω	208 216 232 240 232 232 232 232 232 232 232 232 232 23
		Test Stand Line Designat Amplifier No.	Test No.	- N 5 4 N 0 C 0 0 0 H

IABLE 3 (Continued)

			Deviation %	
			Measured Output mv	
			Deviation %	
			Measured Output mv	
IABLE 3 (Continued)	640		Deviation %	0.081 0.091 0.142 0.178 0.046 0.056 0.056 0.091
נ הואו. כ	SERIAL NO. 1340	VETS RIT4 AMP 36	Measured Output mv	0.225 2.034 3.853 5.674 7.484 9.294 7.485 5.674 2.034 0.226
	42 SENSOR		Standard Output mv	0.2169 2.0249 3.8388 5.6562 7.4794 7.4794 7.4794 7.4794 0.2169
	SERIAL NO. 5142	Stend Designation fier No.	Resistance Ω	200 200 200 200 200 200 200 200 200 200
	TBU	Test Stand Line Desig	≘est No.	127457860H

TABLE 4

LABORATORY CALIBRATION DATA OF SENSOR

Sensor No.	.571		951		ÖL"	
Calibration Date	Resistance 5/23/67 8/26/67 obms obms	Deviation	Resistance 72/2/67 7/29/67 obms obms	Deviation obma	Resistance 5/23/67 8/26/67 obms obms	Devjation orms
<u>Jevel</u> 30	11	0.0	,	0.02		0.02
70 90 90	207.95 207.95 216.76 216.76 225.57 225.54	00.00	207.92 207.95 216.75 216.76 225.58 225.51	0.03	207.93 207.93 216.73 216.72 225.46 225.49	0.00 0.01 0.03
1,0 130	325	0.06		0.01		-0.21
Sensor No.	177		702		1210	
Calibration Date	Resistance 5/8/67 8/28/67 obms obm	Deviation ohms	Resistance 5/8/67 8/26/67 obms obms	Deviation ohme	Resistance 6/17/67 9/26/67 olms	Deviation orms
Level 30 50 70 90 110	199.23 199.26 208.11 208.10 216.90 216.91 225.72 225.68 234.46 234.43 243.15 243.14	0.03 0.01 0.03 0.03	199.26 199.29 208.12 208.18 216.95 216.95 225.77 225.74 234.52 234.47 243.23 243.21	0.00 0.00 0.00 0.00 0.00 0.00 0.00	199.27 179.31 208.16 208.15 216.98 217.02 225.78 225.78 234.54 234.58 243.27 243.34	0.04 0.04 0.00 0.00 0.07

TABLE 4 (Continued)

		·											
		Deviation		0.00	0.00 0.00 10.00			Deviation		0.0	0 0 0	0.00	
	1214	Resistance 3/29/67 8/29/67 ohns ohns		27 199. 13 208. 94 216.	225.75 225.77 234.52 234.55 243.29 243.30		1220	Resistance 5/3/67 8/29/67		199	216	234.39 234.45 243.17 243.21	•
		Deviation on one		0.00	0.00			Deviation		0.01	 70 %	0,00	
/ Popumo Inc.	5121	Resistance 2/9/67 7/29/67 otms otms		98	225.42 225.47 234.19 234.24 242.88 242.97		1218	Resistance 6/7/57 9/26/67 ohns ohns		199.01 199.02 207.85 207.90	58 216. 46 225.	26 234. 37 243.	
		Deviation ohms		0.05	0.00			Deviation		0.01	70.0	-0.0 0.03 0.03	
	1211	Resistance 5/8/67 8/26/67 ohms ohms		199.42 199.44 208.32 203.31 217.16 217.16	53		1217	Resistance 5/8/67 8/26/67 olms olms		199.48 199.49	8,4	\$2	
	Sensor Mo.	Calibration Date	Level	30 07 07	90 110 130		Sensor No.	Jalibration Date	Level	5,53	200	110	
-						230							-:

FABLE 1 (Continued)

Deviation Resistance ohms 0.05 -0.01 0.00 0.00 0.00	the state was recovered to	Sensor No.	0761					
Level 30 198.99 199.04 50 207.90 207.89 70 216.71 216.71 50 225.51 225.51 234.26 130 243.03 243.03		Calibration Date	13 0	Deviation ohms	Resistance	Deviation	Resistance	Deviațion
30 198.99 199.04 50 207.90 207.89 70 216.71 216.71 90 225.51 225.51 110 234.26 130 243.03 243.03	2	Level						
207.90 207.89 216.71 216.71 225.51 225.51 234.26 234.26 243.03 243.03	31	30		0.05				
216.71 216.71 225.51 225.51 234.26 234.26 243.03 243.03		0.0		-0.01				•
225.51 225.51 234.26 234.26 243.03 243.03		. 02		0.0			·	
234.26 234.26 243.03 243.03		05		0.00				
243.03 243.03		OTT		0.02				
				0.00				

TABLE 5

CALIBRATION UNCERTAINTY OF SENSOR RESISTANCE

Level	. d		S	Degrees		ď
	ohms	% FS	ohms	of Freedom	ohms	% FS
30	0.0215	0.009	0.014	12	0.014	0.006
50	0.0138	0.006	0.028	12	0.029	0.012
70	0.0138	0.006	0.018	12	0.018	0.007
90	0.0085	0.003	0.030	12	0.031	0.013
110	0.000	0.000	0.071	12	0.073	0.030
130	0.022	0.009	0.041	11	0,042	0.017

TABLE 6
SUMMARY OF FIXED UNCERTAINTIES

Level	Digital System EDS % FS	Sensor Calibration CAL % FS	Installation And Electrical System Electrical System & STS % FS	Total C _T % FS
30	0.1	0.009	0.058	0.167
50	0.1	0.006	0.040	0,140
70	0.1	0.006	0,138	0,241.
90	0,1	0.003	0.102	0.205
110	0.1	0.000	-0.056	0.156
130	0.1	0.009	0.285	0.391

TABLE 7
SUMMARY OF RAPDON UNCERTAINTIES

Level.	Sensor Calibration	Transducer And Flectrical System	Calibration Instruments $\sigma_{ ext{INST}}$	Total ${m extstyle C}_{ m T}$
30	0.006	0.072	0.041	0.083
50	0.012	0.099	0.041	0.108
70	0.007	0.080	0.041	0.090
90	0.013	0.111	0.041	0.119
110	0.030	0.107	0.041	0.118
130	0.017	0.139	0.041	0.146

TABLE 8

SUMMARY OF INSTRUMENTATION UNCERTAINTIES
OF THE PLATINUM RESISTANCE TRANSDUCERS

Temperature Level	Fixed Uncertainty % FS	Random Uncertainty (30) % FS	Total Uncertainty (30) % FS
30	0.167	0.249	0.416
50	0.146	0.324	0.470
70	0.244	0.270	0.514
90	0.205	0.357	0.562
110	0.156	0.354	0.510
130	0.394	0.438	0.832

APPENDIX E

CALIBRATION DATA FOR PRESSURE TRANSDUCERS AND FLOWMETERS USED ON THE WATER FLOW TESTS ON MV/M '73 REA PROJECT

THANSDUCER CALIBRATION REPORT

01/12/71

	d										N, R		*	1	: :		*	*
ָרָרָרָ בַּרָרָרָרָרָרָרָרָרָרָרָרָרָרָרָרָרָרָרָ	75 DEG. F TEMP									e/ e.			ELS		2700	5000	*	•
-0 -1 A GNO C T	CALIBRATED AT 75 DEG.									•			RAM ZERO LEVELS		וווו ארוווו	1	CAL TO SPEC	0203
DUE DATE	SATED AT							,			. i.		RAM		PKE-CAL		F CAL TO	
0106 DI	CALIB									** **:			DATA *	# -	2×	**	1.8 *	36 #1
CAL DATE 720106 DESIGNAL	PCT FS	.057	024	047	036	006	- 082	900*-	026	020	015	-042	SQUARES CURVE DATA		11 = 1-0/132		L EST = .0218	
RANGE 50.0PSIA	LOAD, PST	02848	20.01.76	20.0234 1	30.01817	40.00290	49.95921	40.00290	30.01315	20.01003	10.00775	02079	** LEAST SU		TATES ALS)		* STO ERROR	** PCT FULL SCALE =
5/N 661433 RANGE	LOAD, PSI	0.00000	10.0000	20.0000	30.0000	40.00000	50.0000	40.0000	30.0000	20.00000	10.0000	0.0000	R-CAL EQUIV		17.99652 26.01660	* 19769-17	51.94545	000000
03 54 (0 5)	OUTPUT, NV	.00170		्रि वि '	et sa	23.94500	29.90000	23.94500	L7.97003	11.98700	6.00450	06900	R-CAL, MV R		15 57000	24.91500	31.08800	-0.0000
MFR. TABER		dD	dn.	a d	9	đ	FS	ON	NO	Z	Z	DN			c	3	4	'n

41.631 ***** NO. 3 R-CAL IS CHECKED AGAINST PREVIDUS CAL VALUE =

DN = DECREASING LOAD

UP = INCREASING LUAD
OFFSET = .05010

FS = FULL SCALE LOAD

PRODUCT ASSURANCE

					Procedure N	ο.
	REPORT O	F CALIBRATI	ON			
	Transduc	er/Load ce	11			
ItemPRESSURE TRANSI	DULEMER ALIN	CO Mo	d_15/-B	<i>AA-1</i> S/N	34814	•
Combined Linearity and Hy						
Excitation /0,000 V DC	Pins (+)_	<u>B_(-)</u>	Balance	Wiper /0	0	kΩ
Output	Pins <u>E</u> (+)_	A (-)	Balance	Pot	5	kΩ
Shunt	Pins F	K	Zero Off	set_ (+) ; /	171 .	
Insulation Resistance 20	000 MEG 12 at	50 V DC	Excitati	on Line Resi	stanceO	<u>.</u> Ω
Balance Mode Pins	_, <u>E</u> , _	\mathcal{B}_{-}	Shunt Li	ne Resistanc	e	Ω
Applied Load (in PS/G)	Instrument Re	sponse (in	MY.)	Shunt Resi	stance (in	Ω)
<u>(%)</u>	Increase	Decrea	se		•	
<u> </u>	0.000	(+).00	4			_
10 25	(+) 2.967	2.9	7 <i>4</i>			_
20 50	5.946	5.95	54	147,3	360	_
30 7.5	8.935	8.94	<u>3</u>	·	·	
40 100	11.926	11.93	6	73,3	<u>73</u>	_
50 125	14.921	14.93	3 <i>0</i>	·		_
60 150	17.915	17.9	24	48,7	72	
70 / 75	20.906	20.9	16		• •	_
80 ZOO	23.894	23.9	00	36,51	/3	_
90 ZZ5	26.878	26.8	3 <i>80</i>	<u> </u>	· 	- -
100 250	29.848		`	29,186	<u>6</u>	
Fixed R-Cal Ou	tput Fixed R-0	Cal Outp	ut			
R1 112,200 Ω :(+) 7.8	907 500kΩ	:(+) 1.7	54			
R2 56,000 Ω : 15.	61Z 100kΩ	: B. 7	157			
$R3 34,940 \Omega : 24$	96/ 50kn	: 17.4	77			
$R4 = 27,950 \Omega : 3/./$	<u>157</u> 25kΩ	: 34.8	02		,	
R5Ω :						
Comments						
						_
						_
						_
00 05 72		Tech	nician ,	RAL	726	
Date 09-05-72			proved (2/-	, (20)	_
		Λþ	Mea		indards	- .
			Met	rology	ICC 234	_
					Rev. 4-17-7	1

									-	1
			D D	HOMER	Z,	DOLIN	OO Z	o.	•	
DAVISION: PEDONDO BEACH			CAL	CALIBRATION		DATA	SHEET	_		
	FLUID CORR.		INDICATED	TIME	ИE	TOTAL	, JOL ,			
FL. MTR. S/NC L - 016246	TEMP R. FACTOR	. S	FLOW	SECONDS	MINUTES					
MFRS. S/N: FOXBORO			H2			V04	646	Wd D	17	-
32997	3.8		9.8501	28.97	0.4829	0.230.0	230.00 9957	2.061	31982	
	318			34.88		0.230.00.9957	0.9957	1.712	9 9	
ELONT: LUNBINE	7 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		806,0	39,74	0.6629	1.000	1.000	1,509	32,047	
7			2070	45,40	0.7568	1-1.5	1,0065	1.329	31 518	İ
FLUID: HEO	63.6-		604.6 53.12		0.8855	1-1.5	1.0065	1,136	31, 933	
EQUIP. NO. :			505.2	505, 2 63. 85 1.0643	1.0643	1-2.0	1,006	0.947	32,008	į
TECHNICIAN: 1. R &	84.	.,	400.6	80.38	1.3399	1-15	1.0065	ø.75/	32005	
3			302.4	27.71	0.4619	989	0.2612	0,565	32,113	
ORTE: 5-31-72	259		202,0	41.48	5/59.0	994	0.2626	0.379	31,978	
6 MOS			102.6	60.90	1.0152	760	0.2007 0.197	0.197	31.249	
PRICE: \$ 80 82		,	0.101	47,31	0.7886	585	6.1537	0.194	31,237	
			300.1	28.08	0.4680	1000	0.26.42	0.564	31,925	
	7.80		504.3	63,80	63,80 1.0635	1-1,5	1,0865	0.946	31,985	
P.O. NO. : / O.O. O.T. 0.A.			805.3	39.78 0663	6663/	1-1,0	1.0043	1,5/4	31 914	
25-6			1005,5	31,70	31,70 0,5284	1-000	1,000	1.892	31887	,
	Flowmeter Certified	With Homer F	L.Dulin Co. Eq.	Willi Honzer R. Dulin Co. Equip No. 11601 A	DIA Colon	Colbrated 8-11	Catib. Due	Calib. Due 8-12 Accura	Lecurecy O. O. 2%	
Peb Wo			rified By C	county of Los Division	of Los Angeles Seater vision of Metrological	of Ser		of Medsures	e e	• • ,
BENCH NO. :		0 o	Standards Standards.	Are Certifie Equipment o	Standards Are Certified By Or Are Traceable Standards. Equipment and procedure	Traceable	to The Nati	To The National Bureau	7 -6	
DEN ADKE			:	 						T
NEW PRINCE	CALIB IN	HEO	- 1	@ INDUCATED		EMP				T
										T
			· 1							

MERS. S./ MERS. S./ MERS. S./ MERS. S./ MERS. S./ MECALL: MERKS. MECALL: MERKS. MEMARKS.		. V		CH	HOMER R. DULIN CO.	K. L		ンス			٠
THE SALIC L OLEZAL TEAR RACTOR BRIG. "WORNERS TOTAL VOL. THE SALIC L OLEZAL TEAR RACTOR BRIG. "WORNERS TOTAL VOL. THE SALIC L OLEZAL TEAR RACTOR HZ SOUTH NO. L. 2. 8 - 107 80 60 60 60 60 60 60 60	1 4). 		CA	LIBRAT	ł)ATA	SHEE	 		,
## 15 3/11 C L - 0/6246 Fam R FACTOR 131 S SCOONS WHITES Late		FLUID		1	TIA	∄E					
##8. 5N'; EONBORO ##8. 5N'; EONBORO ##8. 5N'; EONBORO ##8. 5N'; EONBORO ##8. 72. 61. 12 6.6654 964 6.45.6.280 ##8. 72. 61. 12 6.6654 964 6.45.6.280 ##8. 72. 61. 12 6.6654 964 6.45.6.280 ##8. 72. 61. 12 6.6654 964 6.45.8.2 ##8. 72. 61. 12 6.6654 964 6.45.8.2 ##8. 72. 61. 12 6.6654 964 6.45.8.2 ##8. 72. 62. 62. 72. 6.6521 7.1.0 1.0043 1.280 ##8. 72. 72. 62. 72. 6.6521 7.1.0 1.0043 1.280 ##8. 72. 72. 62. 72. 62. 72. 6.73 1.130 ##8. 72. 72. 72. 62. 72. 6.73 1.130 ##8. 72. 72. 72. 62. 72. 6.73 1.130 ##8. 72. 72. 72. 62. 72. 6.73 1.130 ##8. 72. 72. 72. 62. 72. 6.73 1.130 ##8. 72. 72. 72. 62. 72. 6.73 1.130 ##8. 72. 72. 72. 62. 72. 6.73 1.130 ##8. 72. 72. 72. 62. 72. 6.73 1.130 ##8. 72. 72. 72. 62. 72. 6.73 1.130 ##8. 72. 72. 72. 72. 6.73 1.130 ##8. 72. 72. 72. 72. 72. 6.73 1.130 ##8. 72. 72. 72. 72. 72. 72. 6.73 1.130 ##8. 72. 72. 72. 72. 72. 6.73 1.130 ##8. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72		TEMP R.		:		MINUTES					
SCORTING				42			701	GA1.	62 P.F.	17	
TURBLUE TURBLUE TURBLUE TURBLUE TURBLUE TURBLUE TOLE 8 45. 48 0.7581 1-10 1.0043 1.138 706.8 45. 48 0.7581 1-2 0.0043 1.138 706.8 45. 48 0.7581 1-2 0.0043 1.887 706.8 45. 48 0.7581 1-10 1.0043 1.887 FEDINGLAN WITE: 5-31-72 FEDINGLAN TOTA 31. 72. 0.5321 1-10 1.0043 1.887 TOTA 31. 72. 0.0043 1.887 TOTA 31.	32997 32997	1. 8		202.4		0.6854	786	0.2605	0,380	3/ 95	0
TOUR WEINE TOUR HED TOUR HED TOUR HED TOUR HEST TO	12-2-81-		ica*	402.0	80, 19	1.3367	0-1-1	1.0043	6.751	22 11	
FOUNT: 1420 FOUNT: NO.: 114014 FOUNT: NO.: 114014 FOUNT: NO.: 114014 FOUNT: S.				605,5	52,92	0.8821	1-1.0	1,0043	1,138	26 15	7
FOUNT: HEO. FEDUIT. NO.: 16014 FEDUIT. NO.: 16017 FEDUIT. NO.:	1	43.7		706.8	45.48	0.7581	1-2	10086	1,330	31,88	ہا
EQUIF. NO. 1601 A RET 1007731.9201 1-1.0 (2043 1867) TECHNICIAN: 1.8 & G.S. DATE: 5-31-72 RECUL: 6 MOS MICE: \$60.00: 40.500 P.O. NO.: 683-SF-2C E.O. NO.: 683-SF-2C E.O. NO.: 683-SF-2C REMANS: CALCULATIONS: REMANS: CALL A LO. @ LADIGATED FRIP	Fulle: A			906.9		0.5939	111-1	1.0065	1.694	32 12	
ТЕСИИСІАН 1 1601 4 ТЕСИИСІАН 1 8 € G S DATE: 5-31-72 RECUIR. 6 MOS MICE: \$60 € € RECUIR. 6 MOS RECUIR. 6 MOS RECUIR. 6 MOS RECUIR. 6 MOS CALCULATIONS: BENCH NO:: REWARNS: CALLIB IN H2O © INDICATED TEMP	- ON June	Wo.		1000		7637	0	1,000	100	27.04	
DATE: 5-31-72 RECALL: 6 MOS ACCURACY: 4 0.5 % RECALL: 6 MOS RECALL: 6 MOS CALCULATIONS: REMARKS: CALCULATIONS: CALCULATIONS: REMARKS: CALCULATIONS: CALCULATIONS: REMARKS: CALCULATIONS: C	TECHNICIAN:	7 00		7 2 2	.	2002			7557)	
WE ECALL: 6 MOS WE CALL: 6 MOS WE CALL: 6 MOS WE CALL: 6 MOS RECALL: 6 MOS RECALL NO: 1 REMARKS: 0 MOS RECALL: 6 MOS	10 C										
3-SF-2C CALUB IN H20 @ INDICATED TEMP	ATE:										
3-SF-2C CALULATIONS: CALULB IN HED @ INDICATED TEMP	MOS		San								
683-SF-2C CALUTIONS:	0.5%										
683-SF-2C CALUATIONS: CALUB IN 420 @ INDICATED TEMP	7										
683-SF-2C CALULATIONS: (ALLIB IN 420 @ INDICATED											
683-SF-2C CALCULATIONS: (ALLIB IN H20 @ INDICATED											
CALLIB IN HOO @ INDICATED	683-SF-2										
CALIB IN HOU @ INDICATED		CALCULATION	18:								
CALIB IN HEO @ INDICATED											
CALIB IN HED @ INDICATED	DEPT. NO. :				•						
CALIB IN HEU @ LNDICATED	BENDEKS:			1							
		CALIB	_		LNDICA	TED	IENP				

一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一				
		HOMER R. DUI	DULIN CO.	
DIVISION: REDONDO BEACH		CALIBRATION DATA	SHEET	*
	FLUID CORR.	INDICATED	דסדקר עפר.	
FL. MTR. S/N: CL - 032156	TEMP R. FACTOR POLICE	FLOW SECONDS MINUTES	-	
MFRS. S/N: POTTER		HZ	CAL GPM	14
الما	416	1202,3 55.81.0.9363 1-1.	1-1,0 1,0043 1,079	66,856
MF-90-4/35		60.1010000	201,0086 0.996	66385
FLOAT: / VRBINE	35 %	1005.7 66.19 1.1025 1-1.5 1.0065	51,0065 0912	69199
		903.4 73.49 (, 2250 1-1,	1-1,5 1,0065 0 821	66,022
FLUID: 420	200	82.30 13719	1-1,01,0043 0.732	65 835
EQUIP, NO. :		27, 24 0 4074	0,645	64893
TECHNICIAN: / P £ 2 S	90 5	27.97.0 4662	0.565	64 895
2	who		0.2631 0 973	64.059
CATE: 5-31-72	2,24	41.50.06918	0,2631 0.380	63.647
ر دا		54.18.0.0031	0.26/5 0.289	62 86
PRICE: \$ 00. 50		57.42.0 9932	66-0-186-0	101 105
2		7730 0 00 17	20, 0	1,000
		3 1.31 0. 1366	0,100 0,101	36,773
	. (4)			
P.O. NO: 683-SF-2				
	Flowmeter Certified With He	mer R. Dulin Co. Equip, No. 111601 A. Colòrate d. 9	- Ì -	Accuracy 0.009
		Certified By County of Los Angeles Sealer of Weights and Measures Division of Metrological Services NS 3129	of Weights and Measures Services (18, 3129	
BENCH NO. :		Our Standards Are Certified By Or Are Traceable To of Standards. Equipment and procedure	ble To The National Bureau Comply with MIL-C-45662-A	Δ
REMARKS:	S 120 @	INDICATED TERIS		

	•	:	,	\					
			HO	HOMER R. DULIN CO.	R. D) CLI	Ŭ Z	Ö	
E DOND			CAL	CALIBRATION		DATA	SHEET	1	
8.	FLUID CORR.		INDICATED	TIME	3	TOTAL	VOL.		
FEMTR S/N: 21- 032156	TEMP R. FACTOR	3.1.c.	FLOW	SECONDS	MINUTES				
			17			701	GAL	G P M	17
POTTER			111						Į
Spacer -MF-1	258		8.001	59.38	59.32 0.989R	402	27010	1010	575 75
ME-90-4135			1011	74 //	54 11 0 9020	1 .	0 1793	201.00	
FLOW: /URBING	%2°P	F 100 mile	307.0	54 25	54 25 0 9043	200	0.470	0000	1 .
			404.2	4/.3/	4/.3/ 0.6886		996 0.2631	286	63 487 ×
			502.6	33.45	0.5576	992	0.2620	6.469	64298
EQUIP. NO.: /// / /	- 98	1.75	T		0 4640		0.2615	0,563	64,433
TECHNICIAN: LREGS	i di	12.79	706.0	92.911.5404	1.5404	/- D, S	1-0,51,0021	0.650	65.169
	2.6	14.劳种	805,7	81.23	1,3541	00'	1.0000	0 738	65504
5-31-72			902, (1.2189	1-1.0	1.0043	0.823	~ 79259
7:0	88 F		1005,4	65.72	65.72 1.0988	0/-/	1.0043	0 9/3	66 072 ~
			1107.9	50.02 1,000 5	1,000 5	01-1	1.0043	1.003	66 275
			1202.7	55.690.9283	9.9283	1-1,5	1,0065	1.084	66 570

685-5t- 7C									
	CALCULATIONS:								
								•	
DEPT. NO.			•			٠			
BENCH NO. :		•							•
REMARKS:	,								