WE CLAIM:

1. A method of transmitting information through a data switching apparatus connected to a plurality of input line end devices (ILE₀₀, ILE₀₁, ILE_{0m}) and output line end devices (ELE₀₀, ELE₀₁, ELE_{0m}), said input line end devices (ILE₀₀, ILE₀₁, ILE₀₁, ILE_{0m}) transmitting protocol information packets to the data switch for transmission to specific output line end devices (ELE₀₀, ELE₀₁, ELE_{0m}),

the data switching apparatus comprising a plurality of input traffic manager units (ITM $_0$, ITM $_1$, ITM $_n$) a plurality of output traffic manager units (ETM $_0$, ETM $_1$, ... ETM $_n$) and a data switch (SW), the data switch (SW) comprising a plurality of input routers (SRI $_0$, SRI $_1$, ... SRI $_p$), a plurality of output routers (SRE $_0$, SRE $_1$, ... SRE $_p$), and a memory-less cyclic switch fabric (SCM), and a switch controller (SM), said switch fabric being controlled by said switch controller (SM), said input traffic manager units (ITM $_0$, ITM $_1$, ITM $_n$) being connected to one or more of said input line end devices (ILE $_{00}$, ILE $_{01}$, ILE $_{0m}$), and said output traffic manager units (ETM $_0$, ETM $_1$, ... ETM $_n$) being connected to one or more of said output line end devices (ELE $_{00}$, ELE $_{01}$, ELE $_{0m}$),

each input traffic manager unit (ITM₀, ITM₁, ITM_n) being arranged to convert the protocol information packets it receives from the respective input line end devices (ILE₀₀, ILE₀₁, ILE_{0m}) into fixed length cells having a header (UH), said header (UH) indicating the output traffic manager unit (ETM₀₁ ETM₁, ... ETM_n) connected to the output line end device (ELE₀₀, ELE₀₁, ELE_{0m}) to which the cell should be sent,

each input router (SRI_{01} , SRI_{1} , ... SRI_{p}) being arranged to receive cells from a respective group of said input traffic manager units (ITM_{0} , ITM_{1} , ... ITM_{n}), and to

NY02:330996.1 -37-

maintain virtual output queues for each output traffic manager unit (ETM₀, ETM₁, ... ETM_n);

each output router (SRE₀, SRE₁, ...SRE_p) being arranged to transmit cells to a respective group of said output traffic manager units (ETM₀, ETM₁, ... ETM_n);

the method comprising, on the arrival of a cell from an input traffic manager unit (ITM $_0$, ITM $_1$, ITM $_n$) the input router (SRI $_0$, SRI $_1$, ... SRI $_p$) examining the cell header (UH), placing it in a virtual output queue for the output traffic manager unit (ETM $_0$, ETM $_1$, ...ETM $_n$) indicated by the cell header (UH), generating a transfer request (RFT) including the address of the output traffic manager unit (ETM $_0$, ETM $_1$, ... ETM $_n$) indicated by the header (UH) of that cell, and passing said request (RFT) to the switch controller (SM),

characterized in that:

said cell headers (UH) include message priority information, and said transfer requests (RFT) include a priority code;

the switch fabric (SCM) is controlled by the switch controller (SKI) to connect ones of said input routers (SRI₀, SRI₁, ... SRI_p) to ones of said output routers (SRE₀, SRE₁, ... SRE_p);

the switch controller (SM) schedules the passage of the cells across the switch fabric (SCM) at each switch cycle, by using a first arbitration process to select which of said input routers (SRI_0 , SRI_1 , ... SRI_p) to connect to which of said output routers (SRE_0 , SRE_1 , ... SRE_p), and controls the switch fabric to connect the selected input routers (SRI_0 , SRI_1 , ... SRI_p) to the corresponding selected output routers (SRE_0 ,

NY02:330996.1 -38-

 $SRE_1, ... SRE_p$); and

upon it being determined that a given input router (SRI₀, SRI₁, ... SRI_p) is to be connected to a given output router (SRE₀, SRE₁, ... SRE_p):

that given input router (SRI_0 , SRI_1 , ... SRI_p) performs a second arbitration process to select a single virtual output queue, from among the virtual output queues for the output traffic manager units (ETM_0 , ETM_1 , ... ETM_n) to which the given output router (SRE_0 , SRE_1 , ... SRE_p) sends cells, and transmits the cell at the head of the selected virtual output queue across the switch fabric (SCM) to the given output router (SRE_0 , SRE_1 , ... SRE_p),

and the given output router (SRE_0 , SRE_1 , ... SRE_p) transmits the cell to the output traffic manager unit (ETM_0 , ETM_1 , ... ETM_n) indicated by the cell header (UH).

- 2. A method according to claim 1 in which each input router (SRI₀, SRI₁, ... SRI_p) maintains a virtual output queue for each output traffic manager unit (ETM₀, ETM₁,... ETM_n) and priority level, and upon receipt of a cell the input router (SRI₀, SRI₁, ... SRI_p) places the cell in the virtual output queue for the priority and output traffic manager unit (ETM₀, ETM₁, ... ETM_n) indicated by the cell header (UH).
- 3. A method according to claim 1 or 2 in which each output router $(SRE_0, SRE_1, ... SRE_p)$ maintains an output queue for each of the group of output manager units $(ETM_0, ETM_1, ... ETM_n)$ to which it transmits cells.

NY02:330996.1 -39-

- 4. A method according to any preceding claim in which each input router (SRI_0 , SRI_1 , ... SRI_p) maintains an input buffer for each of the group of input traffic manager units (ITM_0 , ITM_1 , ... ITM_n) from which it receives signals.
- 5. A method according to any preceding claim in which said second arbitration process performed by the given input router (SRI_0 , SRI_1 , ... SRI_p) is a weighted round-robin arbitration process based upon: the length of said output virtual queues of the given input router (SRI_0 , SRI_1 , ... SRI_p); an aggregate queue packet urgency; and a backpressure from said output traffic manager units (ETM_0 , ETM_1 , ... ETM_n).
- 6. A method according to any preceding claim in which the first arbitration process selects which input routers (SRI₀, SRI₁, ... SRI_p) and output routers (SRE₀, SRE₁, ... SRE_p) to connect, to maximise the number of said requests (RIFT) which can be satisfied.
- 7. A data switching apparatus for connection to a plurality of input line end devices (ILE₀₀, ILE₀₁, ILE_{0m}) and output line end devices (ELE₀₀, ELE₀₁, ELE_{0m}) to transmit protocol information packets received from said input line end devices (ILE₀₀, ILE₀₁, ILE_{0m}) to specific output line end devices (ELE₀₀, ELE₀₁, ELE_{0m}),

the data switching apparatus comprising a plurality of input traffic manager units (ITM₀, ITM₁, ITM_n), a plurality of output traffic manager units (ETM₀, ETM₁, ... ETM_n) and a data switch (SW), the data switch (SW) comprising a plurality of input routers (SRI₀, SRI₁, ... SRI_p), a plurality of output routers (SRE₀, SRE₁, ... SRE_p), a

NY02:330996.1 -40-

memory-less cyclic switch fabric (SF), and a switch controller (SM), said switch fabric being controlled by said switch controller, each of said input traffic manager units (ITM₀, ITM₁, ITM_n) being for connection to one or more of said input line end devices (ILE₀₀, ILE₀₁, ILE_{0m}), and each of said output traffic manager units (ETM₀, ETM₁,... ETM_n) being for connection to one or more of said output line end devices (ELE₀₀, ELE₀₁, ELE_{0m}),

each input traffic manager unit (ITM₀, ITM₁, ITM_n) being arranged to convert the protocol information packets it receives from the respective input line end devices (ILE₀₀, ILE₀₁, ILE_{0m}) into fixed length cells having a cell header (UH), said cell header (UH) indicating the output traffic manager unit (ETM₀₀, ETM₀₁ ... ETM_n) connected to the output line end device (ELE₀₀, ELE₀₁, ELE_{0m}) to which the cell should be sent,

each of the input routers (SRI₀, SRI₁, ... SRI_p) being arranged to receive cells from a respective group of said input traffic manager units (ITM₀, ITM₁, ITM_n), to maintain a set of virtual output queues for each output traffic manager unit (ETM₀, ETM₁, ... ETM_n), and, on the arrival of a cell from an input traffic manager unit (ITM₀, ITM₁, ITM_n), to examine the cell header (UH), to place it in a virtual output queue for the output traffic manager unit (ETM₀, ETM₁, ... ETM_n) indicated by the cell header (UH), to generate a transfer request (RFT) including the address of the output traffic manager unit (ETM₀, ETM₁,...ETM_n) indicated by the header (UH) of that cell, and to pass said request (RIFT) to the switch controller,

each output router (SRE₀, SRE₁, ... SRE_p) being connected to a

NY02:330996.1 -41-

respective group of said output traffic manager units (ETM₀, ETM₁, ... ETM_n); characterized in that:

each output router (SRE_0 , SRE_1 , ... SRE_p) is arranged, upon receipt of a cell having a header (UH) which indicates one of that group of output traffic manager units (ETM_0 , ETM_1 , ... ETM_n), to transmit the cell to that indicated output traffic manager unit (ETM_0 , ETM_1 , ... ETM_n);

said input traffic manager units (ITM₀, ITM₁, ITM_n) are arranged to include message priority information in said cell headers (UH), and said input routers (SRI₀, SRI₁, ... SRI_p) are arranged to include a priority code in said transfer requests (RFT);

the switch fabric (SCM) is arranged, under the control of the switch controller (SM), to connect ones of said input routers (SRI₀, SRI₁, ... SRI_p) to ones of said output routers (SRE₀, SRE₁, ... SRE_p);

the switch controller (SM) is arranged to schedule the passage of the cells across the switch fabric at each switch cycle, by using a first arbitration process to select which of said input routers (SRI_0 , SRI_1 , ... SRI_p) to connect to which of said output routers (SRE_0 , SRE_1 , ... SRE_p), and control the switch fabric to connect the selected input routers (SRI_0 , SRI_1 , ... SRI_p) to the corresponding selected output routers (SRE_0 , SRE_1 , ... SRE_p); and

each input router (SRI₀, SRI₁, ... SRI_p) is arranged, upon it being determined that that input router (SRI₀, SRI₁, ... SRI_p) is to be connected to a given output router (SRE₀, SRE₁, ... SRE_p), to perform a second arbitration process to select a single

NY02:330996.1 -42-

virtual output queue from among the virtual output queues for the output traffic manager units (ETM_0 , ETM_1 , ... ETM_n) to which the given output router (SRE_0 , SRE_1 , ... SRE_p) is connected, and to transmit the cell at the head of the selected virtual output queue across the switch fabric (SF) to the given output router (SRE_0 , SRE_1 , ... SRE_p).

- 8. A data switching apparatus according to claim 7 in which, each input router (SRI_0 , SRI_1 , ... SRI_p), is arranged to maintain a virtual output queue for each output traffic manager unit (ETM_0 , ETM_1 , ... ETM_n) and priority level, and the input router (SRI_0 SRI_1 ... SRI_p) is arranged to place a received cell in the virtual output queue for the priority and output traffic manager unit (ETM_0 , ETM_1 , ... ETM_n) indicated by the cell header (UH).
- 9. A data switching apparatus according to claim 7 or 8 in which each output router (SRE₀, SRE₁, ... SRE_p) is arranged to maintain an output queue for each of the group of output manager units (ETM₀, ETM₁, ... ETM_n) to which it can send cell.
- 10. A data switching apparatus according to any of claims 7 to 9 in which each input router (SRI₀, SRI₁, ... SRI_p) is arranged to maintain an input buffer for each of the group of input traffic manager units (ITM₀, ITM₁, ITM_n) from which it receives signals.
- 11. A data switching apparatus according to any of claims 7 to 10 in which said second arbitration process is a weighted round-robin arbitration process based upon: the length of said output virtual queues of the given input router (SRI₀, SRI₁, ...

NY02:330996.1 -43-

 SRI_p); an aggregate queue packet urgency; and a backpressure from said output traffic manager units (ETM_0 , ETM_1 , ... ETM_n).

12. A data switching apparatus according to any of claims 7 to 11 in which the first arbitration process selects which input routers (SRI_0 , SRI_1 , ... SRI_p) and output routers (SRE_0 , SRE_1 , ... SRE_p) to connect, to maximise the number of said requests (RIFT) which can be satisfied.

NY02:330996.1 -44-