Applied Machine Learning

Classification - Support Vector Machines

Support Vector Machine

- Overview
- Training Error Cost Hinge Loss
- Regularization Constant

- Binary linear classifier
 - $Class \in \{+1, -1\}$
- Easy to train
- Fast classification
- Hinge Loss
 - *Cost*(prediction, true label)

- Real-valued features
- No missing feature values
- Classes separable through a linear function
- Need enough features

- $Class \in \{+1, -1\}$
- Decision Boundary:
 - $\mathbf{a}^\mathsf{T}\mathbf{x} + b$
- Classification:

•
$$f(\mathbf{x}) = sign(\mathbf{a}^{\mathsf{T}}\mathbf{x} + b)$$

- Cost function
 - Training error cost $+ \lambda$ penalty

f(x): 1 feature

$$f(\mathbf{x}) = sign(\mathbf{a}^{\mathsf{T}}\mathbf{x} + b)$$
$$= sign(ax + b)$$

Boundary

$$ax + b = 0$$

$$x = -\frac{b}{a}$$

Classification

$$y = \begin{cases} 1 & \text{if } x \ge -\frac{b}{a} \\ -1 & \text{if } x < -\frac{b}{a} \end{cases}$$

f(x): 2 features

$$f(\mathbf{x}) = sign(\mathbf{a}^{\mathsf{T}}\mathbf{x} + b)$$

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} \qquad \mathbf{a} = \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} \qquad b$$

Boundary

$$[a_0 \ a_1] \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} + b = 0$$

$$a_0 x_0 + a_1 x_1 + b = 0$$

$$x_1 = -\frac{a_0}{a_1} x_0 - \frac{b}{a_1}$$

Classification

$$y = \begin{cases} 1 & \text{if } x_1 \ge -\frac{a_0}{a_1} x_0 - \frac{b}{a_1} \\ -1 & \text{if } x_1 < -\frac{a_0}{a_1} x_0 - \frac{b}{a_1} \end{cases}$$

f(x): k features

Training with N pairs (\mathbf{x}_i, y_i) to find a and b

Classification

$$f(\mathbf{x}) = sign(\mathbf{a}^{\mathsf{T}}\mathbf{x} + b)$$

$$\mathbf{x} = \begin{bmatrix} x_0 \\ \vdots \\ x_{k-1} \end{bmatrix} \qquad \mathbf{a} = \begin{bmatrix} a_0 \\ \vdots \\ a_{k-1} \end{bmatrix} \qquad b$$

Cost function

Training error cost $+ \lambda$ penalty

Training cost

- Classification of example i
 - $\gamma_i = \mathbf{a}^\mathsf{T} \mathbf{x}_i + b$
 - $sign(\gamma_i)$
- Cost of classification: $C(y_i, \gamma_i)$
 - $y_i \neq sign(\gamma_i)$: incorrect: $C(y_i, \gamma_i)$ large
 - $y_i = sign(\gamma_i)$: correct:
 - γ_i close: $C(y_i, \gamma_i)$ medium
 - γ_i away: $C(y_i, \gamma_i)$ no cost

Training cost: Hinge Loss

- Classification of example i
 - $\gamma_i = \mathbf{a}^\mathsf{T} \mathbf{x}_i + b$
 - $sign(\gamma_i)$
- Cost of classification: $C(y_i, \gamma_i) = \max(0, 1 y_i * \gamma_i)$
 - $y_i \neq sign(\gamma_i)$: incorrect: $C(y_i, \gamma_i) = |\gamma_i| + 1$: large
 - $y_i = sign(\gamma_i)$: correct:
 - $\gamma_i < 1$ close: $C(y_i, \gamma_i) = |\gamma_i| + 1$: medium
 - $\gamma_i \ge 1$ away: $C(y_i, \gamma_i) = 0$: no cost

Finding a and b

- find a and b that minimize Hinge Loss cost
 - all training examples at the right side of boundary
 - Training error:

$$\frac{1}{N} \sum_{i=1}^{N} C(y_i, \gamma_i) = \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i * \gamma_i)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i * (a^T \mathbf{x} + b))$$

margin around boundary to reduce errors on new examples

Finding a, b, and λ

- find ${\bf a}$ and b that minimize Hinge Loss cost
 - all training examples at the right side of boundary
 - margin around boundary to reduce errors on new examples
 - Correct classification:
 - hinge loss: 0 away from the boundary, [0-1], close to the boundary
 - Incorrect classification
 - hinge loss: > 1, far from the boundary
 - . keep $||\mathbf{a}||$ low: penalize large values of $\frac{1}{2}\mathbf{a}^{\mathsf{T}}\mathbf{a}$
 - Regularization term:
 - $\lambda \frac{1}{2} \mathbf{a}^{\mathsf{T}} \mathbf{a}$

Finding a and b

- find ${\bf a}$ and b that minimize Hinge Loss cost
 - all training examples at the right side of boundary
 - margin around boundary to reduce errors on new examples
- Cost Function

$$S(\mathbf{a}, b; \lambda) = \frac{1}{N} \sum_{i=1}^{N} \left[\max(0, 1 - y_i * (\mathbf{a}^\mathsf{T} \mathbf{x} + b)) \right] + \lambda \frac{1}{2} \mathbf{a}^\mathsf{T} \mathbf{a}$$

- Easy to train
- Fast classification
- adding features may allow to apply it

Support Vector Machines

- Overview
- Training Error Cost Hinge Loss
- Regularization Constant

Applied Machine Learning

Classification - Support Vector Machines