which, by regrouping terms to obtain a linear combination of the v_i , yields

$$f(x) = (\sum_{j=1}^{n} a_{1j}x_j)v_1 + \dots + (\sum_{j=1}^{n} a_{mj}x_j)v_m.$$

Thus, letting $f(x) = y = y_1v_1 + \cdots + y_mv_m$, we have

$$y_i = \sum_{j=1}^n a_{ij} x_j \tag{1}$$

for all $i, 1 \leq i \leq m$.

To make things more concrete, let us treat the case where n=3 and m=2. In this case,

$$f(u_1) = a_{11}v_1 + a_{21}v_2$$

$$f(u_2) = a_{12}v_1 + a_{22}v_2$$

$$f(u_3) = a_{13}v_1 + a_{23}v_2,$$

which in matrix form is expressed by

$$f(u_1) \quad f(u_2) \quad f(u_3)$$

$$v_1 \quad \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix},$$

and for any $x = x_1u_1 + x_2u_2 + x_3u_3$, we have

$$f(x) = f(x_1u_1 + x_2u_2 + x_3u_3)$$

$$= x_1f(u_1) + x_2f(u_2) + x_3f(u_3)$$

$$= x_1(a_{11}v_1 + a_{21}v_2) + x_2(a_{12}v_1 + a_{22}v_2) + x_3(a_{13}v_1 + a_{23}v_2)$$

$$= (a_{11}x_1 + a_{12}x_2 + a_{13}x_3)v_1 + (a_{21}x_1 + a_{22}x_2 + a_{23}x_3)v_2.$$

Consequently, since

$$y = y_1 v_1 + y_2 v_2,$$

we have

$$y_1 = a_{11}x_1 + a_{12}x_2 + a_{13}x_3$$

$$y_2 = a_{21}x_1 + a_{22}x_2 + a_{23}x_3.$$

This agrees with the matrix equation

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

We now formalize the representation of linear maps by matrices.