# Rolling Swarm

### Camera Tracking

Tobias Völkel, Hans-Martin Wulfmeyer, Josefine Zeller 11. März 2020





## Problemstellung



### Status quo

- Erkennung der Spheros an bestimmten Positionen zu instabil
  - Ziel: Erkennungsrate verbessern
- nur 6 Farben möglich
  - Ziel: mehr erkennbare Farben identifizieren
- Trainingspipeline spärlich dokumentiert / unklar
  - Ziel: Anzahl an separaten Skripten reduzieren, Trainingsvorgehen dokumentieren
- Code teilweise deprecated
  - Ziel: nach aktuellen Framework Versionen implementieren



# Änderung der Belichtungszeit

Belichtungszeit: 100000µs







# Änderung der Belichtungszeit

Belichtungszeit: 14000µs







# Änderung der Belichtungszeit

Belichtungszeit: 3000µs







## Datenbeschaffung

Aufnahmen von Spheros in der Arena

 Mittiges Ausschneiden der Spheros in 25x25 Crops





## Datenbeschaffung

2. Rundes Ausschneiden der Crops für Transparenten Hintergrund





## Datenbeschaffung

3. Drehen der Crops in 0° Lage





### Compositor

- Ziel:
  - Nachstellung der Live-Daten so gut wie möglich
- Problem:
  - ungenügend Daten (benötigt extremen Zeitaufwand)
    - Unser Datenbestand: 17 Crops/Farbe
  - o Im Live-Fall mehrere Unterschiede vorhanden
    - Helligkeit, Skalierung, Rotation, (Translation), \*Horizontales Spiegeln
- Lösung: Data Augmentation



## Helligkeit und Skalierung

• zufällig zwischen ±10%







### Rotation

Alle möglichen 360 Winkel





## First Stage & Second Stage Compositor

- Hintergründe mit Rauschen (uniform zwischen 0 und 5)
- Zufällige Position, Helligkeit, Rotation, Skalierung der Crops, Spiegeln
- First Stage:
  - o auf einem beliebig großen Hintergrund (400x300, ..., 1600x1200)
  - o automatische Skalierung der Spheros an Hintergrundgröße
- Second Stage:
  - Hintergründe sind 35x35 groß mit jeweils einem Sphero
  - Alle 360 Winkel werden X mal wiederholt (Rotation nicht zufällig)





- Input: Originalbild
- Output: Bounding Boxen für Second Stage
- Tensorflow Object Detection Framework

### Status quo

- ungenaue Detektion am Rand der Arena (Reflexionen)
- keine kontinuierliche Erkennung (Aussetzer)
- Minimaler Abstand zwischen Spheros



Quelle: Github Tensorflow Object Detection



### Trainingsdaten

- 5000 / 1000 Training-Test-Split
- Zufällige (4 12) Anzahl Spheros auf schwarzem Hintergrund
- zufällige Rotation
- gleiche Größenverhältnisse wie Originalbild
- 400 x 300 Pixel Auflösung





### **Single Shot Detector**

- Basis: Mobilenet v2
- Anpassungen:
  - lediglich 1:1 bounding boxes
  - Minimum scale
  - Loss-Funktion
  - Optimizer
- Probleme:
  - Overfitting
  - schlechte Performance bei kleinen (im Verhältnis zum Gesamtbild) Objekten



Quelle: https://arxiv.org/abs/1512.02325



#### **Faster R-CNN**

- Basis: Inception v2
- Größe der Objekte hat geringen Einfluss auf Performance

- Probleme:
  - durch 2 CNNs größerer Speicherbedarf
  - langsamer (ca. 95% langsamer als SSD Ansatz mit Mobilenet)



#### Quelle:

https://towardsdatascience.com/deep-learning-for-object-detection-a-comprehensive-review-73930816d8d9



## First Stage - Evaluation

#### No-detection-rate

- Abfahren eines festen Kurses mit einem Sphero
  - 5x den Rand der Arena abfahren
- Logging jedes Kamerabildes
- "No-detection" = kein Sphero im Bild erkannt

### Verarbeitungszeit

16.14 ms

Status quo: 19.14 ms

Eigenständiges Abfahren des Kurses nicht möglich

| Farbe      | %     |  |  |
|------------|-------|--|--|
| purple     | 4.73  |  |  |
| blue       | 4.96  |  |  |
| green      | 6.27  |  |  |
| magenta    | 6.34  |  |  |
| dark_blue  | 8.29  |  |  |
| red        | 13.38 |  |  |
| dark_green | 22.70 |  |  |
| lime_green | 6.79  |  |  |
| light_blue | 8.04  |  |  |
| yellow     | 11.05 |  |  |



### Second Stage

### Status quo

- Identifikationsnetz
  - o 6/8 Farben nutzbar
  - helligkeitsabhängig
  - schlechte Erkennung mit Orientierungs LED

- Rotationsnetz
  - unzuverlässig





### Auswahl der Farben

- Unterscheidbarkeit
- maximaler Abstand der RGB-Werte



| Farbe      | r   | g   | b   |
|------------|-----|-----|-----|
| red        | 255 | 0   | 0   |
| orange     | 255 | 85  | 0   |
| yellow     | 255 | 170 | 0   |
| limegreen  | 255 | 255 | 0   |
| magenta    | 255 | 0   | 128 |
| purple     | 255 | 0   | 255 |
| green      | 0   | 255 | 0   |
| lightgreen | 0   | 255 | 85  |
| bluegreen  | 0   | 255 | 170 |
| lightblue  | 0   | 255 | 255 |
| blue       | 0   | 0   | 255 |



### **Confusion Matrix**











## Konfigurationsparameter

- Trainingsdaten
  - Aufteilung
  - Anzahl Variationen
- Größe MobileNet
  - trade-off: Performance / Verarbeitungsdauer
- Größe Input Daten
- batch size
- dropout
- early stopping

→ Tests in Arena





## **Optimierung**

- 17 crops: 11 Training + 6 Test
- 10 \* 11 \* 360 \* 9 Variationen = 356400
- 35\*35 crops statt 128\*128
- alpha = 0.75
- gaussian noise
- batch size: 1024
- 24 epochs
- loss: categorical crossentropy

avg F1 = 0.9974, val loss = 0.00864







### **Evaluation**

- 5 Runden
- feste Helligkeit
- fester Startpunkt

avg: 0.0403s → 0.0385s







# Evaluation - Farbverteilung









### **Evaluation - Rotation**









### **Evaluation - Rotation**

### Fehlerquellen

- Bounding Box nicht mittig
  - → schlechte Abstraktion der Rotation von der Second Stage



 Back-LED Sichtbarkeit eingeschränkt





### **Plattformwechsel**

### **Google Colaboratory**

- + leistungsstarke GPUs
- + flexibles Training
- bessere Teamarbeit durch Online Verfügbarkeit
- eingeschränkte Versionsverwaltung über Git
- Zeit- und Ressourcenbeschränkung



### Probleme

- Kamera
  - Farbdarstellung der Kamera
  - Auflösung der Kamera
  - Farbe abhängig von Position in Arena
- Sphero
  - Mischfarben nicht uniform
  - Geringer Farbumfang
- Verdecken der LEDs
  - Bild und Ring auf dem Sphero
  - Winkel des Spheros zur Kamera
- Helligkeitsunterschiede durch Fenster / offene Tür
- Automatische Datengenerierung







### Ausblick: Alternative zu MobileNet

unsere Daten und die Anwendung sind "relativ" simpel

#### **Custom Netz**

- komplett anpassungsfähig
- ... dadurch besser optimierbar
- Besser und schneller ?
  - → Regression

#### Beispielnetz:

```
Convolution2D(32, (3,3))
  BatchNormalization()
      MaxPool2D()
Convolution2D(64, (3,3))
  BatchNormalization()
      MaxPool2D()
Convolution2D(128, (3,3))
  BatchNormalization()
     MaxPool2D()
      Dense(512)
      Dense(512)
         Output
```



## Ausblick: Verbesserungsmöglichkeiten

- höhere Auflösung → mehr Bildinformationen SecondStage
- semi-automatisierte Datenbeschaffung für SecondStage
- Bessere Grafikkarte für größere Netze (Faster R-CNN)
- gleichmäßige Ausleuchtung der Arena

