Valószínűségszámítás

10. gyakorlat

Nemkin Viktória $\label{eq:nemkin} $$ $ $ \text{http://cs.bme.hu/\sim } $ viktoria.nemkin/$ $ 2016. nov. 16.$

- 10.1 Feldobunk 2 db 4 oldalú kockát. Jelölje X valószínűségi változó a kapott számok minimumát, Y valószínűségi változó pedig a páros dobások darabszámát.
 - Adja meg az együttes eloszlás táblázatát és a peremeloszlásokat.
 - Független-e X és Y?
 - \bullet Adjuk meg X és Y várható értékét és szórását!
- 10.2 Legyen $X \in B(10, \frac{1}{3})$ és $Y \in G(\frac{1}{2})$ független valószínűségi változók. Számoljuk ki a következő mennyiségeket: $E(3X+2Y), E(X+3)^2, \sigma(2X-3Y+4), \sigma^2(2Y-1)!$ Ugyanez a kérdés az 1. feladat d) részeként volt feltéve konzin. Szemfülesen észrevettétek, hogy X és Y nem függetlenek, így a $\sigma(X+Y)$ jellegű kérdésekre még nem tudunk válaszolni. Ezért itt javítottam.
- 10.3 Az X és Y együttes sűrűségfüggvénye $f_{X,Y}(x,y) = a(x^2 + xy + y^2)$ ha 0 < x < 1 és 0 < y < 1 Mennyi a értéke? Mennyi X várható értéke? Függetlenek-e X és Y? Fgy. III.14
- 10.4 Legyenek $X,Y \in E(1)$ függetlenek. Bizonyítsa be, hogy $\max\{X,Y\}$ eloszlása megegyezik $X+\frac{1}{2}Y$ eloszlásával! Fqy. III.3
- 10.5 Legyen $X \in U(0,4)$ és $Z = (X-2)^2$. Bizonyítsa be, hogy $P(Z \ge 6) \le \frac{1}{2}!$ Fgy. III.203
- 10.6 Egy pályaudvaron az újságárus X lapot ad el óránként, ahol $X \in Po(64)$. Mennyi a valószínűsége annak, hogy 48-nál több és 80-nál kevesebb lapot tud eladni egy órában? Fgy.~III.~192
- 10.7 Legyenek $X \in Po(0,5)$ és $Y \in Po(0,1)$ függetlenek! Mennyi $\mathbf{P}(X+Y=2)$? Fgy. III.29
- 10.8 Legyenek $X \in N(5,2)$ és $Y \in N(4,3)$ függetlenek. Adja meg a $\mathbf{P}(X < Y)$ valószínűséget! $(\Phi(0.5774) = 0.7182)$ Fqy. III.37