TIC (Incomplet)

Chapitre 1 : Communication Numérique

Remarques importantes:

$$\delta(t-t_0)\otimes f(t)=f(t-t_0)$$

$$\delta(t-t_0).f(t)=f(t_0).\delta(t-t_0)$$

Translation en temps : $TF(x(t+t_0)) = X(f)e^{2j\pi t_0 f}$

Translation en fréquence : $TF(x(t)e^{2j\pi f_0 t}) = X(f - f_0)$

Dérivation en temps : $TF(\frac{d\times(t)}{dt}) = 2j\pi f X(f)$;

$$TF(\frac{d^m \times (t)}{dt}) = (2j\pi f)^m X(f)$$

Dilatation ou compression en temps : $TF(x(at)) = \frac{1}{|a|}X(\frac{f}{a})$

Inversion du temps : TF(x(-t)) = X(-f)

Conjugaison : $TF(x^*(t)) = X^*(-f)$

Dualité : soit X(f) = TF(x(t)) alors on a :

$$TF(X(t)) = x(-f)$$
 et $TF(X(-t)) = x(f)$

 $TF(Acos(2pif_0t)) = A/2(Dirac(f-f_0) + Dirac(f+f_0))$

 $TF(Asin(2pif_0t)) = A/2j(Dirac(f-f_0) - Dirac(f+f_0))$

Cos(a+b) = cosa cosb - sina sinb...

Chaine de transmission:

Avantages de la transsmission numérique:

- -Meilleure qualité de transmission: Une information analogique ne sera jamais retrouvé intégralement.
- -Codage de source : Compression des données.
- -Codage Canal : Codage correcteur et/ou detecteur d'erreurs.
- -Chiffrement : Coder l'information par une clé secréte pour qu'elle ne puisse etre dechiffré que par les détenteurs de la clé.

Conversion analogique numérique:

-Echantillonnage : (REVOIR EXERCICE COURS ET CORRECTION)

Théoreme de Shanon:

Fe >= 2 fmax

- -Quantification
- -Codage

Chapitre 2 : Codage Source

Entropie d'une source :

$$H(X) = \sum_{i=1}^{M} p_i \log_2 \left(\frac{1}{p_i}\right).$$

Taux de codage source :

$$R_{s} = \frac{n}{\log_{2}(M)} = \frac{\sum_{i=1}^{M} p_{i} l_{i}}{\log_{2}(M)}$$
 (8)

où $p_i = p(E = E_i) = p(U = U_i)$ et l_i est la longueur en nombre de bits de E_i . Bien évidemment, plus R_s est faible, plus la compression est forte.

Théoremes:

Théorème

Le théorème de Mac Millan

Ce théorème donne une condition nécessaire que doivent vérifier les longueurs l_i des étiquettes E_i pour que le codeur soit u.d.

Un code est u.d. alors $\sum_{i=1}^{M} 2^{-l_i} \leq 1$ où M est le cardinal de la source.

Théorème

Le théorème de Kraft

Si $\sum_{i=1}^{M} 2^{-l_i} \le 1$ alors on peut construire un code instantané dont les étiquettes ont pour longueur $\{l_i\}_i$.

Ud = uniquement déchiffrable : toute concaténation d'étiquettes ne peut être interprétée que d'une seule façon

Propriété: Un code est instantané s'il vérifie la condition du préfixe : aucune étiquette ne doit être le début d'une autre. Un code instantané n'entraine pas de retards lors du décodage du moment qu'aucune étiquette n'est le début d'une autre.

Exemple:

- $E = \{E_1 = 0, E_2 = 10, E_3 = 100, E_4 = 101\}$ est ambigu.
- $E = \{E_1 = 10, E_2 = 00, E_3 = 11, E_4 = 110\}$ est u.d.
- $E = \{E_1 = 0, E_2 = 10, E_3 = 110, E_4 = 111\}$ est instantané.

Condition pour que le codeur soit optimal :

$$\frac{H(U)}{\log_2(M)} \le R_s < \frac{H(U)}{\log_2(M)} + \frac{1}{\log_2(M)}$$

La partie a gauche de cette inégalité s'appelle limite de shanon

Exple:

On considère une source de cardinal 7 ayant la distribution de probabilité suivante :

$$p = \{0.35, 0.2, 0.2, 0.15, 0.05, 0.025, 0.025\}.$$

- 1- En utilisant l'algorithme de Huffman, déterminer les étiquettes E
- 2- Est ce que ce codeur est optimal?
- 3- Vérifier si le théorème de shannon pour le codage de source est vérifié ou non.

 $E = \{00, 10, 11, 010, 0110, 01110, 01111\}$

Selon les étiquettes obtenues, on a :

$$E = \{E_i\}_{1 \le i \le 7} = \{11, 01, 00, 101, 1001, 10001, 10000\}$$

$$I = \{I_i\}_{1 \le i \le 7} = \{2, 2, 2, 3, 4, 5, 5\}$$

$$p = \{p_i\}_{1 \le i \le 7} = \{0.35, 0.2, 0.2, 0.15, 0.05, 0.025, 0.025\}$$

Après calcul, on a :

$$\frac{H(U)}{\log_2(M)} = 0.538$$

$$R_s = \frac{\sum_{i=1}^{M} p_i I_i}{\log_2(M)} = 0.857$$

$$\left(\frac{H(U)}{\log_2(M)} + \frac{1}{\log_2(M)}\right) = 0.895$$

Le taux de compression obtenu $R_s=0.857$ est optimal parceque :

$$\frac{H(U)}{\log_2(M)} \le R_s < \left(\frac{H(U)}{\log_2(M)} + \frac{1}{\log_2(M)}\right)$$

1

Chapitre 3: Codage canal

Correction par redondance cyclique

Exemple

Au niveau de l'émission

Prenons M = 1101011011. Le polynôme associé est noté par M(x):

$$M(x) = x^9 + x^8 + x^6 + x^4 + x^3 + x + 1$$

- C = 10011, soit $C(x) = x^4 + x + 1$
- Multiplions M par x⁴ (revient à ajouter 4 "0" à la séquence M), soit:

$$M' = 11010110110000$$

- Divisons M'(x) par C(x) en utilisant l'opération XOR (OU exclusif)
- Le reste obtenu correspond au FCS donné par 1110
- Le message envoyé est : M' R = 110101101111110

A la réception,

- · La station effectue la division par le même CRC de la séquence entière.
- Si le reste est 0, pas d'erreur

Codage correcteur d'erreurs :

A l'émission

- M=[m₁,..., m_k] est le mot d'information à transmettre
- C=[c₁,..., c_n] est le mot de code donné par :

$$C = M G \text{ où } G = [id_k P]$$

- G: matrice génératrice du code de dimension (k, n)
- · P: matrice de parité

A la réception

Soit R le vecteur ligne représentant le mot de code de n éléments reçu:

$$R = C + E$$

- E est un vecteur ligne dont les composantes binaire représentent les éventuelles erreurs de transmission.
- **Vecteur Erreur:** Les erreurs subies par un mot code peuvent être représentées par un vecteur $E=[e_1, e_2, ..., e_n]$, où e_i prends la valeur 0 s'il n'y pas d'erreur sur le bit d'indice i du mot code et la valeur 1 dans le cas contraire.

Méthode de décodage

1ere étape: Calcule du vecteur syndrome S

$$S = R H^T = (C + E)H^T$$
 avec $H = [P^T Id_{n-k}]$ matrice de contrôle de parité

2eme étape: Détermination des vecteurs d'erreurs e possibles

- Calculer la distance de Hamming minimal d_m
- Déduire les capacités de détection et de correction données respectivement par:

$$(d_m-1)$$
 et $x \le (d_m-1)/2$

- Déduire les vecteurs erreurs possibles de poids x

3eme étape: Détermination du vecteur erreur correspondant au syndrome S

- Relier chaque syndrome à l'erreur correspondante

$$S = e H^T$$

- Déduire à partir du mot de code reçu le mot code envoyé
- **Distance de Hamming:** Étant donné deux mots de n bits m1 et m2, le nombre de bits dont ils diffèrent est appelé leur distance de Hamming.
- Le poids de Hamming d'un vecteur binaire est le nombre d'éléments "1" qu'il contient.

■ A l'émission

Exemple

Mot d'information: M= [m1 m2 m3] = [1 1 0] • Matrice génératrice du code: $G = [Id_3P]$ avec P donnée par: $P = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ • Mot code C correspondant au mot information M: C = MG

$$C = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 \\ \text{Mot info} & \text{Bits de} & \text{redendance} \end{bmatrix}}_{\text{Mot info}}$$

■ A la réception

Le mot de code reçu R :
$$R = \begin{bmatrix} 1 & 1 & \boxed{1} & 0 & 1 & 1 \end{bmatrix}$$

Calcule de la distance de Hamming minimale d_m:

Mots informations $x_1 \ x_2 \ x_3$	Mots de codes x ₁ x ₂ x ₃ a ₁ a ₂ a ₃	Poids de Hamming
0 0 0	00000	0
0 0 1	001011	3
010	010110	3
011	011101	4
100	100101	3
101	101110	4
110	110011	4
111	111000	3

Dans cet exemple, le code de bloc ne peut corriger qu'une seule erreur

Relier chaque syndrome à l'erreur correspondante

Vecteur erreurs	Syndrome	
100000	101	
010000	110	
001000	011	
000100	100	
000010	010	
000001	001	

Déduire à partir du mot de code reçu le mot code envoyé:

Chapitre 4 : Modulations numériques