ЛАБОРАТОРНА РОБОТА № 2

ПОРІВНЯННЯ МЕТОДІВ КЛАСИФІКАЦІЇ ДАНИХ

Mema: використовуючи спеціалізовані бібліотеки та мову програмування Руthon дослідити різні методи класифікації даних та навчитися їх порівнювати.

Хід роботи

Завдання 2.1. Класифікація за допомогою машин опорних векторів (SVM)

Назва	Опис	Тип значень
age	Вік	Числове
workclass	Вид парцевлаштування	Категоріальне
fnlwgt	Клькість осіб, які мають такі ж ознаки	Числове
education	Освіта	Категоріальне
education-num	Років навчання	Числове
marital-status	Сімейне положення	Категоріальне
occupation	Професія	Категоріальне
relationship	Відносини	Категоріальне
race	Paca	Категоріальне
sex	Стать	Категоріальне
capital-gain	Приріст капіталу	Числове
capital-loss	Втрата капіталу	Числове
hours-per-week	Кількість робочих годин на тиждень	Числове
native-country	Країна походження	Категоріальне

Accuracy score: 62.64% Precision score: 69.18%

Recall score: 38.24% F1 score: 56.15%

Тестова точка - <=50К. Отже тестова точка має дохід менше 50 тисяч в рік.

		-						
Змн.	Арк.	№ докум.	Підпис	Дата				
Розр	0 δ.	Горбенко Д.С.				Лim.	Арк.	Аркушів
Пере	евір.	Пулеко І.В			Звіт з		1	
Керіє	вник							
Н. ко	нтр.				лабораторної роботи №2	ФІК	Т Гр. І	ΠI-59(I)
3ame	зерд.						-	

```
import numpy as np
input file = 'income data.txt'
X = []
max datapoints = 25000
             X.append(data)
X = np.array(X)
label encoder = []
X encoded = np.empty(X.shape)
X = X encoded[:, :-1].astype(int)
y = X encoded[:, -1].astype(int)
classifier = OneVsOneClassifier(LinearSVC(random state=0))
X train, X test, y train, y test = train test split(X, y, test size=0.2, ran-
classifier.fit(X train, y train)
y test pred = classifier.predict(X test)
accuracy = cross_val_score(classifier, X, y, scoring='accuracy', cv=3)
print("Accuracy score: " + str(round(100 * accuracy.mean(), 2)) + "%")
precision = cross_val_score(classifier, X, y, scoring='precision', ev=3)
print("Precision score: " + str(round(100 * precision.mean(), 2)) + "%")
```

		Горбенко Д.С.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання 2.2. Порівняння якості класифікаторів SVM з нелінійними ядрами

3 поліноміальним ядром:

Accuracy score: 58.41%

Precision score: 41.6%

Recall score: 33.05%

F1 score: 46.5%

З гаусовим ядром:

Accuracy score: 78.61%

Precision score: 98.72%

Recall score: 14.26%

F1 score: 71.95%

3 сигмоїдальним ядром:

Accuracy score: 63.89%

Precision score: 27.01%

Recall score: 26.48%

		Горбенко Д.С.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

F1 score:63.77%

Найбільш точним виявився CVM класифікатор з гаусовим ядром.

Завдання 2.3. Порівняння якості класифікаторів на прикладі класифікації сортів ірисів

рис.1 Код для ознайомлення зі структурою даних та результати Графіки

		Горбенко Д.С.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

рис.2 Одновимірні графіки характеристик

рис.3 Діаграма розмаху атрибутів

		Горбенко Д.С.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

рис.4 Матриця розсіювання

рис.5 Графік порівняння алгоритмів

Проаналізувавши ортиманий графік, я обрав метод класифікації CVM, тому що він показав найвищу якість.

		Горбенко Д.С.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
rom sklearn.datasets import load iris
from matplotlib import pyplot
import numpy as np
url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv"
names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
dataset = read_csv(url, names=names)
print(dataset.shape)
print(dataset.head(20))
print(dataset.describe())
print(dataset.groupby('class').size())
dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
pyplot.show()
dataset.hist()
pyplot.show()
# Матриця діаграм розсіювання
scatter matrix(dataset)
pyplot.show()
array = dataset.values
X = array[:, 0:4]
X train, X validation, Y train, Y validation = train test split(X, y,
# Завантажуємо алгоритми моделі
models.append(('LR', LogisticRegression(solver='liblinear', multi class='ovr')))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC(gamma='auto')))
```

		Горбенко Д.С.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
results.append(cv results)
  names.append(name)
pyplot.boxplot(results, labels=names)
pyplot.title('Algorithm Comparison')
pyplot.show()
model = SVC(gamma='auto')
model.fit(X_train, Y_train)
predictions = model.predict(X validation)
print(accuracy score(Y validation, predictions))
print(confusion matrix(Y validation, predictions))
print(classification report(Y validation, predictions))
X_{new} = np.array([[5, 2.9, 1, 0.2]])
print("Форма масиву X new: {}".format(X new.shape))
prediction = model.predict(X new)
print("Прогноз: {}".format(prediction))
print("Спрогнозована мітка: {}".format(prediction[0]))
```

рис. 5 Результат виконання

		Горбенко Д.С.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання 2.4. Порівняння якості класифікаторів для набору даних завдання 2.1

```
from sklearn import preprocessing
from matplotlib import pyplot
from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier
X = []
count_class1 = 0
max datapoints = 25000
       X.append(data);
X = np.array(X)
label encoder = []
     label encoder.append(current label encoder)
X = X encoded[:, :-1].astype(int)
```

		Горбенко Д.С.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
y = X_encoded(:, -1].astype(int)

# Разделение X и у на обучающую и контрольную выборки
X_train, X_test, Y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=5)

# Завантажуемо алгоритми моделі
models = []
models.append(('LR', LogisticRegression(solver='liblinear', multi_class='ovr')))
models.append(('NDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('NB', GaussianNB()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC(gamma='auto')))

# оцінюємо модель на кожній ітерації
results = []
for name, model in models:
    kfold = StratifiedKFold(n_splits=10, random_state=1, shuffle=True)
    cv results = cross_val_score(model, X_train, Y_train, cv=kfold, scoring='accura-cvy')
    results.append(cv_results)
names.append(name)
    print('%s: %f (%f)' % (name, cv_results.mean(), cv_results.std()))

# Порівняння алгоритмів
pyplot.boxplot(results, labels=names)
pyplot.title('Algorithm Comparison')
pyplot.show()
```

		Горбенко Д.С.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

рис.6 Результат виконання

Завдання 2.5. Класифікація даних лінійним класифікатором Ridge

```
import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import RidgeClassifier
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, ran-
dom_state = 0)
clf = RidgeClassifier(tol = 1e-2, solver = "sag")
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
```

		Горбенко Д.С.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
print('Accuracy:', np.round(metrics.accuracy_score(y_test,y_pred),4))
print('Precision:', np.round(metrics.precision_score(y_test, y_pred, average =
'weighted'),4))
print('Recall:', np.round(metrics.recall_score(y_test, y_pred, average =
'weighted'),4))
print('Fl Score:', np.round(metrics.fl_score(y_test, y_pred, average =
'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(y_test, y_pred),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(y_test, y_pred),4))
print('\t\tClassification Report:\n', metrics.classification_report(y_pred,
y_test))

mat = confusion_matrix(y_test, y_pred)
sns.heatmap(mat.T, square = True, annot = True, fmt = 'd', cbar = False)
plt.xlabel('true label')
plt.ylabel('predicted label');
plt.savefig("Confusion.jpg")
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format = "svg")
```


рис. 7 Результат виконання

		Горбенко Д.С.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Класифікатор має наступні параметри:

- tol точність класифікації
- solver алгоритм, який виконує класифікацію

На зображені Confusion.jpg наведені результати класифікації. На вертикалькій шкалі відкладені наявні класи ірису в числовій репрезентації, а на горизонтальній передбаченя класи ірису. Цифра на перетині — кількість результатів системи при справжньому і передбаченому класі.

Коефіцієнт кореляції Метьюза — коефіцієнт, який на основі матриці помилок вираховує коефіцієнт від -1 до 1, де 1 — є результатом ідеальної класифікації, а 0 — рівень випадкового вибору.

$$ext{MCC} = rac{TP imes TN - FP imes FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Коефіцієнт Коена Каппа — коефіцієнт, якй також за основу бере матрицю помилок, але замість загальної якості, звертає увагу на нерівноцінне розподілення класів.

Висновки: на даній лабораторній роботі я дослідив різні методи класифікації даних та навчився їх порівнювати, використовуючи спеціалізовані бібліотеки та мову програмування Python.

		Горбенко Д.С.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата