### B-fa

# Építés:

- -> beszúrúnk az alapba ameddig fér
- -> ha túlcsordul akkor beillesztjük a sorba és úgy vágjuk ketté hogy ha ugyanannyi legyen mindkét oldalon ÉS fentre rakunk pointert, ami a másodikra mutat
- -> ha a legfelső csordul túl akkor is ugyanaz DE nem kell pointer mutasson a második sorba elég a harmadik sorba a kisebb

## **Bitmap**

#### Index készítés:

| Neptun | Kar | Felvétel éve |
|--------|-----|--------------|
| ABC123 | IK  | 2018         |
| XYZ789 | TTK | 2019         |
| ASD135 | IK  | 2020         |
| GOT999 | IK  | 2019         |

| Kar = "IK" | Kar = "TTK" |  |  |
|------------|-------------|--|--|
| 1          | 0           |  |  |
| 0          | 1           |  |  |
| 1          | 0           |  |  |
| 1          | 0           |  |  |

| Felvétel = 2018 | Felvétel = 2019 | Felvétel = 2020 |
|-----------------|-----------------|-----------------|
| 1               | 0               | 0               |
| 0               | 1               | 0               |
| 0               | 0               | 1               |
| 0               | 1               | 0               |

-> ahol igaz az állitás 1 kerül, ahol hamis 0

#### Lekérdezés:

SELECT \* FROM HALLGATOK
 WHERE KAR="IK" AND FELVÉTEL\_ÉVE IN (2018, 2019);

| Kar = "IK" | AND | Felvétel = 2018 |    | Felvétel = 2019 |   | Eredmény |
|------------|-----|-----------------|----|-----------------|---|----------|
| 1          |     | 1               | OR | 0               |   | 1        |
| 0          |     | 0               |    | 1               | = | 0        |
| 1          |     | 0               | 0  |                 | 0 |          |
| 1          |     | 0               |    | 1               |   | 1        |
|            | ' I |                 |    |                 |   |          |

-> a logikai szabályok érvényesek

#### Tömörítés:

- -> megszámoljuk hány db 0-ás van az 1-ig
- -> a darabszámot átalakítjuk binárissá
- -> a bináris szám számjegyei legyenek n >> unárisan felírva ez n-1 db 1-es és mögé egy 0
- -> ez a szakasz átkodolva: unáris + bináris

-> repeat

#### Visszafejtés:

- -> megszámoljuk hány db 1-es van a 0-ig
- -> leolvasunk a fenti szám + 1 db számjegyet és az lesz a bináris változat
- -> a bináris számot visszafejtve megkapjuk hány db 0-ás van a bitmap elején
- -> a 0-ások után kerül egy 1-es

```
|VISSZAFEJTÉS|
111101010101011

(az első nulláig nézzük)
11110 => 5 bit => a kövi 5 bit binárisan visszafejthető
10101 => 21 db 0
```

-> repeat

!! ha 0db 1-es van az pont 0 tehát 1-et kell leolvasni a és azt kell bitből visszaalakítani AKA:

```
00 = 0 és 01 = 1 db 0-ást jelent
```

### Hashelés

- -> i = kosárindexhez használt bitek száma, n = kosarak száma
- -> vesszük az indexeket és megnézzük az utolsó i számjegyet
- -> az alapján betesszük az indexeket a kosarakba >> r+=1

-> ha r/n nagyobb mint a határérték akkor beszúrúnk még egy kosarat, ilyenkor az i száma változhat !! beszúrásnál ha az adott rekordhoz nincs kosárindex, akkor nézett számjegyekből a legelső eltérhet !! lehet túlcsordulás blokk ha az r/n nem lépi át a határértéket

