Algorithmen und Datenstrukturen

Jonas Milkovits

Last Edited: 1. Mai 2020

Inhaltsverzeichnis

1	Ein	leitung	
	1.1	Probleme in der Informatik	
	1.2	Definitionen für Algorithmen	
2	Sor	tieren	
	2.1	Einführung ins Sortieren	
	2.2	Analyse von Algorithmen - Teil 1	
	2.3	Analyse von Algorithmen - Teil 2	
	2.4	Analyse von Algorithmen - Teil 3	
	2.5	Insertion Sort	
	2.6	Bubble Sort	
3	\mathbf{Pse}	udocode in der Vorlesung AuD	1

1 Einleitung

1.1 Probleme in der Informatik

- Problem im Sinne der Informatik
 - Enthält eine Beschreibung der Eingabe
 - Enthält eine Beschreibung der Ausgabe
 - Gibt keinen Übergang von Eingabe und Ausgabe an
 - z.B.: Finde den kürzesten Weg zwischen zwei Orten
- Probleminstanzen
 - Probleminstanz ist eine konkrete Eingabenbelegung, für die entsprechende Ausgabe gewünscht ist
 - z.B.: Was ist der kürzeste Weg vom Audimax in die Mensa?

1.2 Definitionen für Algorithmen

- Begriff des Algorithmus
 - Endliche Folge von Rechenschritten, der eine Ausgabe in eine Eingabe verwandelt
- Anforderungen an Algorithmen
 - Spezifizierung der Eingabe und Ausgabe
 - Anzahl und Typen aller Elemente ist definiert
 - Eindeutigkeit
 - Jeder Einzelschritt ist klar definiert und ausführbar
 - Die Reihenfolge der Einzelschritte ist festgelegt
 - Eindlichkeit
 - Notation hat eine endliche Länge
- Eigenschaften von Algorithmen
 - Determiniertheit
 - Für gleiche Eingabe stets die gleiche Ausgabe (andere mögliche Zwischenzustände)
 - Determinismus
 - Für gleiche Eingabe stets identische Ausführung und Ausgabe
 - Terminierung
 - Algorithmus läuft für jede Eingabe nur endlich lange
 - Korrektheit
 - Algorithmus berechnet stets die spezifizierte Ausgabe (falls dieser terminiert)
 - Effizienz
 - Sparsamkeit im Ressourcenverbrauch (Zeit, Speicher, Energie,...)

2 Sortieren

2.1 Einführung ins Sortieren

• Das Sortierproblem

- Ausgangspunkt: Folge von Datensätzen $D_1, D_2, ..., D_n$
- Zu sortierende Elemente heißen auch Schlüssel(werte)
- Ziel: Datensätze so anzuordnen, dass die Schlüsselwerte sukzessive ansteigen/absteigen
- Bedingung: Schlüsselwerte müssen vergleichbar sein
- Durchführung:
 - Eingabe: Sequenz von Schlüsselwerten $\langle a_1, a_2, ..., a_n \rangle$
 - Engabe ist eine Instanz des Sortierproblems
 - Ausgabe: Permutation $\langle a'_1, a'_2, ..., a'_n \rangle$ derselben Folge mit Eigenschaft $a'_1 \leq ... \leq a'_n$
- Algorithmus korrekt, wenn dieser das Problem für alle Instanzen löst

• Exkurs: Totale Ordnung

- Sei M eine nicht leere Menge und $\leq \subseteq MxM$ eine binäre Relation auf M
- Das Paar (M, \leq) heißt genau dann totale Relation auf der Menge M, wenn Folgendes erfüllt ist:
 - Reflexivität: $\forall x \in M : x \leq x$
 - Transitivität: $\forall x, y, z \in M : x \leq y \land y \leq z \Rightarrow x \leq z$
 - Antisymmetrie: $\forall x,y \in M: x \leq y \land y \leq x \Rightarrow x = y$
 - Totalität: $\forall x, y \in M : x \leq y \lor y \leq x$
- z.B.: \leq Ordnung auf natürlichen Zahlen bildet eine totale Ordnung $(1 \leq 2 \leq 3...)$
- z.B.: Lexikographische Ordnung \leq_{lex} ist eine totale Ordnung $(A \leq B \leq C...)$

• Vergleichskriterien von Sortieralgorithmen

- Berechnungsaufwand O(n)
- Effizient: Best Case vs Average Case vs Worst Case
- Speicherbedarf:
 - in-place (in situ): Zusätzlicher Speicher von der Eingabegröße unabhängig
 - out-of-place: Speichermehrbedarf von Eingabegröße abhängig
- Stabilität: Stabile Verfahren verändern die Reihenfolge von äquivalenten Elementen nicht
- Anwendung als Auswahlfaktor:
 - Hauptoperationen beim Sortieren: Vergleiche und Vertausche
 - Diese Operationen können sehr teuer oder sehr günstig sein, je nach Aufwand
 - Anpassung des Verfahrens abhängig von dem Aufwand dieser Operationen

2.2 Analyse von Algorithmen - Teil 1

• Schleifeninvariante (SIV)

- Sonderform der Invariante
- Am Anfang/Ende jedes Schleifendurchlaufs und vor/nach jedem Schleifendurchlauf gültig
- Wird zur Feststellung der Korrektheit von Algorithmen verwendet
- Eigenschaften:
 - Initialisierung: Invariante ist vor jeder Iteration wahr
 - Fortsetzung: Wenn SIV vor der Schleife wahr ist, dann auch bis Beginn der nächsten Iteration
 - Terminierung: SIV liefert bei Schleifenabbruch, helfende Eigenschaft für Korrektheit
- Beispiel für Umsetzung: Insertion Sort SIV

• Laufzeitanalyse

- Aufstellung der Kosten und Durchführungsanzahl für jede Zeile des Quelltextes
- Beachte: Bei Schleifen wird auch der Aufruf gezählt, der den Abbruch einleitet
- Beispiel für Umsetzung: Insertion Sort Laufzeit
- Zusätzliche Überprüfung des Best Case, Worst Case und Average Case

• Effizienz von Algorithmen

- Effizienzfaktoren
 - Rechenzeit (Anzahl der Einzelschritte)
 - Kommunikationsaufwand
 - Speicherplatzbedarf
 - Zugriffe auf Speicher
- Laufzeit hängt von versch. Faktoren ab
 - Länge der Eingabe
 - Implementierung der Basisoperationen
 - Takt der CPU

2.3 Analyse von Algorithmen - Teil 2

Komplexität

- Abstrakte Rechenzeit T(n) ist abhängig von den Eingabedaten
- Übliche Betrachtungsweise der Rechenzeit ist asymptotische Betrachtung

• Asymptotik

- Annäherung an einer sich ins Unendliche verlaufende Kurve
- z.B.: $f(x) = \frac{1}{x} + x$ | Asymptote: g(x) = x | $(\frac{1}{x}$ läuft gegen Null)

• Asymptotische Komplexität

- Abschätzung des zeitlichen Aufwands eines Algorithmus in Abhängigkeit einer Eingabe
- Beispiel für Umsetzung: Insertion Sort Laufzeit Θ

• Asymptotische Notation

- Betrachtung der Laufzeit T(n) für sehr große Eingaben $n \in \mathbb{N}$
- Komplexität ist unabhängig von konstanten Faktoren und Summanden
- Nicht berücksichtigt: Rechnergeschwindigkeit / Initialisierungsauswände
- Komplexitätsmessung via Funktionsklasse ausreichend
 - Verhalten des Algorithmus für große Problemgrößen

• Veränderung der Laufzeit bei Verdopplung der Problemgröße

• Gründe für die Nutzung der theoretischen Betrachtung statt der Messung der Laufzeit

- Vergleichbarkeit
 - Laufzeit abhängig von konkreter Implementierung und System
 - Theoretische Betrachung ist frei von Abhängigkeiten und Seiteneffekten
 - Theoretische Betrachtung lässt direkte Vergleichbarkeit zu
- Aufwand
 - Wieviele Testreihen?
 - In welcher Umgebung?
 - Messen führt in der Ausführung zu hohem, praktischen Aufwand
- Komplexitätsfunktion
 - Wachstumsverhalten ausreichend
 - Praktische Evaluation mit Zeiten nur für Auswahl von Systemen mögliche
 - Theoretischer Vergleich (Funktionsklassen) hat ähnlichen Erkenntnisgewinn

2.4 Analyse von Algorithmen - Teil 3

• Θ-Notation

- \bullet Θ -Notation beschränkt eine Funktion asymptotisch von oben und unten
- Funktionen $f, g: \mathbb{N} \to \mathbb{R}_{>0}$ (N: Eingabelänge, \mathbb{R} : Zeit)

- $\Theta(g)$ enthält alle f, die genauso schnell wachsen wie g
- Schreibweise: $f \in \Theta(g)$ (korrekt), manchmal auch $f = \Theta(g)$
- g(n) ist eine asymptotisch scharfe Schranke von f(n)
- $f(n) = \Omega(g(n))$ gilt, wenn f(n) = O(g(n)) und $f(n) = \Omega(g(n))$ erfüllt sind

Abbildung 1: Veranschaulichung

- z.B.: $f(n) = \frac{1}{2}n^2 3n \mid f(n) \in \Theta(n^2)$?
- Aus $\Theta(n^2)$ folgt, dass $g(n) = n^2$
- Vorgehen:
 - Finden eines n_0 und c_1, c_2 , sodass
 - $c_1 * g(n) \le f(n) \le c_2 * g(n)$ erfüllt ist
 - Konkret: $c_1 * n^2 \le \frac{1}{2}n^2 3n \le c_2 * n^2$
 - Division durch n^2 : $c_1 \le \frac{1}{2} \frac{3}{n} \le c_2$
 - Ab n=7 positives Ergebnis: $0,0714 \mid n_0=7$
 - Deswegen setzen wir $c_1 = \frac{1}{14}$
 - Für $n \to \infty$: $0,5 \mid c_2 = 0,5$
 - · Natürlich auch andere Konstanten möglich

• O-Notation

• O-Notation beschränkt eine Funktion asymptotisch von oben

- Für alle n größer gleich n_0
- O(g) enthält alle f, die höchstens so schnell wie g wachsen
- Schreibweise: f = O(g)
- $f(n) = \Theta(g) \to f(n) = O(g) \mid \Theta(g(n)) \subseteq O(g(n))$
- Ist f in der Menge $\Theta(g)$, dann auch in der Menge O(g)

- z.B.: f(n) = n + 2 | f(n) = O(n)?
- Ja f(n) ist Teil von O(n) für z.B. c=2 und $n_0=2$

Abbildung 2: Veranschaulichung

• O-Notation Rechenregeln

- Konstanten:
 - $f(n) = a \text{ mit } a \in \mathbb{R} \text{ konstante Funktion} \to f(n) = O(1)$
 - z.B. $3 \in O(1)$
- Skalare Multiplikation:
 - f = O(g) und $a \in \mathbb{R} \to a * f = O(g)$
- Addition:

•
$$f_1 = O(g_1)$$
 und $f_2 = O(g_2) \to f_1 + f_2 = O(\max\{g_1, g_2\})$

- Multiplikation:
 - $f_1 = O(g_1)$ und $f_1 = O(g_2) \to f_1 * f_2 = O(g_1 * g_2)$

• Ω -Notation

 \bullet Ω -Notation beschränkt eine Funktion asymptotisch von unten

Für alle n größer gleich n_0

• Ω -Notation enthält alle f, die mindestens so schnell wie g wachsen

• Schreibweise: $f = \Omega(g)$

Abbildung 3: Veranschaulichung

• Komplexitätsklassen

 \bullet n ist hier die Länge der Eingabe

Klasse	Bezeichnung	Beispiel
Θ(1)	Konstant	Einzeloperation
$\Theta(\log n)$	Logarithmisch	Binäre Suche
$\Theta(n)$	Linear	Sequentielle Suche
$\Theta(n \log n)$	Quasilinear	Sortieren eines Arrays
$\Theta(n^2)$	Quadratisch	Matrixaddition
$\Theta(n^3)$	Kubisch	Matrixmultiplikation
$\Theta(n^k)$	Polynomiell	
$\Theta(2^n)$	Exponentiell	Travelling-Salesman*
$\Theta(n!)$	Faktoriell	Permutationen

• Ausführungsdauer, falls eine Operation n genau $1\mu s$ dauert

Eingabe- ${f g}$ röße ${m n}$	$\log_{10} n$	n	n^2	n^3	2 ⁿ
10	1µs	10µs	100µs	1ms	~1ms
100	2µs	100µs	10ms	1s	~4x10 ¹⁶ y
1000	3µs	1ms	1s	16min 40s	?
10000	4µs	10ms	1min 40s	~11,5d	?
10000	5µs	100ms	2h 46min 40s	~31,7y	?

• Asymptotische Notationen in Gleichungen

•
$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

• $\Theta(n)$ fungiert hier als Platzhalter für eine beliebige Funktion f(n) aus $\Theta(n)$

• z.B.:
$$f(n) = 3n + 1$$

• o-Notation

- -Notation stellt eine echte obere Schranke dar
- Ausschlaggebend ist, dass es für alle $c \in \mathbb{R}_{>0}$ gelten muss
- Außerdem < statt \leq
- z.B.: $2n = o(n^2)$ und $2n^2 \neq o(n^2)$

$$o(g) = \{ f: \forall c \in \mathbb{R}_{>0}, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le f(n) < cg(n) \}$$

Gilt für **alle** Konstanten c > 0. In 0-Notation gilt es für eine Konstante c > 0

• ω -Notation

- ω -Notation stellt eine echte untere Schranke dar
- Ausschlaggebend ist, dass es für alle $c \in \mathbb{R} > 0$ gelten muss
- Außerdem > statt \ge
- z.B.: $\frac{n^2}{2} = \omega(n)$ und $\frac{n^2}{2} \neq \omega(n^2)$

$$\omega(g) = \{ f : \forall c \in \mathbb{R}_{>0}, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le cg(n) < f(n) \}$$

2.5 Insertion Sort

- Idee
 - Halte die linke Teilfolge sortiert
 - Füge nächsten Schlüsselwert hinzu, indem es an die korrekte Position eingefügt wird
 - Wiederhole den Vorgang bis Teilfolge aus der gesamten Liste besteht

• Code

```
FOR j = 1 TO A.length - 1
  key = A[j]
  // Füge A[j] in die sortierte Sequenz A[0...j-1] ein
  i = j - 1
  WHILE i >= 0 and A[i] > key
        A[i + 1] = A[i]
        i = i - 1
  A[i + 1] = key
```

• Schleifeninvariante von Insertion Sort

• Zu Beginn jeder Iteration der for-Schleife besteht die Teilfolge A[0...j-1] aus den Elementen der ursprünglichen Teilfolge A[0...j-1] enthaltenen Elementen, allerdings in sortierter Reihenfolge.

• Korrektheit von Insertion Sort

- Initialisierung:
 - Beginn mit j=1, also Teilfeld A[0...j-1] besteht nur aus einem Element A[0].
 Dies ist auch das ursprüngliche Element und Teilfeld ist sortiert.
- Fortsetzung:
 - Zu zeigen ist, dass die Invariante bei jeder Iteration erhalten bleibt. Ausführungsblock der for-Schleife sorgt dafür, dass A[j-1], A[j-2],... je um Stelle nach rechts geschoben werden bis A[j] korrekt eingefügt wurde. Teilfeld A[0...j] besteht aus ursprünglichen Elementen und ist sortiert. Inkrementieren von j erhält die Invariante.
- Terminierung:
 - Abbruchbedingung der for-Schleife, wenn j > A.length 1. Jede Iteration erhöht j. Dann bei Abbruch ist j = n und einsetzen in Invariante liefert das Teilfeld A[0...n-1] welches aus den ursprünglichen Elementen besteht und sortiert ist. Teilfeld ist gesamtes Feld.
- Algorithmus Insertion Sort arbeitet damit korrekt.

• Laufzeitanalyse von Insertion Sort

Zeile	Kosten	Anzah
1	c_1	n
2	c_2	n-1
3	0	n-1
4	C_A	n-1
5		n-1
-	-3	$\sum_{j=1}^{n-1} t_j$
		<i>j</i> =1
6	c ₆	$\sum_{i=1}^{n-1}$
		$\sum_{j=1}^{\infty} (t_j - 1)$
7	<i>c</i> ₇	$\sum_{j=1}^{n-1} (t_j - 1)$
	1 2 3 4 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

- Festlegung der Laufzeit für jede Zeile
- Jede Zeile besitzt gewissen Kosten c_i
- \bullet Jede Zeile wird x mal durchgeführt
- Laufzeit = Anzahl * Kosten jeder Zeile
- Schleifen: Abbruchüberprüfung zählt auch
- t_i : Anzahl der Abfragen der While-Schleife

- Warum n in Zeile 1?
 - Die Überprüfung der Fortführungsbedingung beinhaltet auch die letze Überprüfung
 - Quasi die Überprüfung, durch die die Schleife abbricht
- Warum $\sum_{j=1}^{n-1}$ in Zeile 5?
 - Aufsummierung aller einzelnen t_i über die Anzahl der Schleifendurchläufe
 - \bullet Diese ist allerdings n-1 und nicht n, da die Abbruchüberprüfung dort auch enthalten ist
- Warum $t_i 1$ in Zeile 6?
 - Selbes Argument wie oben, bei t_j ist die Abbruchüberprüfung enthalten
 - Deswegen wird die while-Schleife nur t_i 1-mal ausgeführt

• Best Case

- zu sortierendes Feld ist bereits sortiert
- t_i wird dadurch zu 1, da die While-Schleife immer nur einmal prüft (Abbruch)
- Die zwei Zeilen innerhalb der While-Schleife werden nie ausgeführt
- \bullet Durch Umformen ergibt sich, dass die Laufzeit eine lineare Funktion in n ist

• Worst Case

- zu sortierendes Feld ist umgekehrt sortiert
- t_i wird dadurch zu j+1, da die While-Schleife immer die gesamte Länge prüft
- Durch Umformen ergibt sich, dass die Laufzeit eine quadratische Funktion in n ist (n^2)

• Average Case

- im Mittel gut gemischt
- t_i wird dadurch zu j/2
- Die Laufzeit bleibt aber eine quadratische Funktion in n (n^2)

• Asymptotische Laufzeitbetrachtung Θ

- T(n) lässt sich als quadratische Funktion $an^2 + bn + c$ betrachten
- \bullet Terme niedriger Ordnung sind für große n irrelevant
- Deswegen Vereinfachung zu n^2 und damit $\Theta(n^2)$

2.6 Bubble Sort

• Idee

- Vergleiche Paare von benachbarten Schlüsselwerten
- Tausche das Paar, falls rechter Schlüsselwert kleiner als linker

• Code

• Analyse von Bubble Sort

- Anzahl der Vergleiche:
 - Es werden stets alle Elemente der Teilfolge miteinander verglichen
 - \bullet Unabhängig von der Vorsortierung sind Worst und Best Case identisch
- Anzahl der Vertauschungen:
 - Best Case: 0 Vertauschungen
 - Worst Case: $\frac{n^2-n}{2}$ Vertauschungen
- Komplexität:
 - Best Case: $\Theta(n)$
 - Average Case: $\Theta(n^2)$
 - Worst Case: $\Theta(n^2)$

3 Pseudocode in der Vorlesung AuD

- Datentypen
 - String
 - Aufbau:

```
"Die Summe ist"
```

• Konkatenation:

```
"Die Summe ist" summe
```

- Array
 - A: Bezeichung eines Arrays A
 - A[i] Zugriff auf (i+1)-tes Element des Arrays
- Methoden
 - $\bullet\,$ Rückgabe:

```
return summe
```

- Schleifen
 - While-Schleife

```
WHILE summe <= n // Falls j = 1 to A.length -1: to ist dasselbe wie <= summe = summe + 1 ENDWHILE
```

- Variablen
 - Initialisierung

```
summe := 0
```