Report Mini-Project

Guitar Tuner using MATLAB

วิชาสัญญาณและระบบเบื้องต้น (Introduction to Signals and Systems) รหัสวิชา 010123106

จัดทำโดย

นายวัชรวิทย์ ประสาทไทย	6101012630151
นายปริญญา ใจหาญ	6201012620155
นายธนากร บริบูรณ์	6201012630045

เสนอ

อาจารย์เรวัต ศิริโภคาภิรมย์

ภาคเรียนที่ 1 ปีการศึกษา 2565 มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

คำนำ

รายงานฉบับนี้เป็นส่วนหนึ่งของรายวิชาสัญญาณและระบบเบื้องต้น รหัสวิชา 010123106 จัดทำขึ้นเพื่อเป็นแนวทางในการสร้างและศึกษาการสร้างแอปพลิเคชัน Guitar Tuner จาก MATLAB โดยทางคณะผู้จัดทำได้ทำการออกแบบ และพัฒนาขึ้น

ทางคณะผู้จัดทำคาดหวังว่ารายงานฉบับนี้จะเป็นประโยชน์แก่ผู้ที่ต้องการศึกษา หรือพัฒนาแอปพลิเคชันที่เกี่ยวข้องกับ MATLAB โดยใช้รายงานฉบับนี้เป็นแหล่งอ้างอิง ข้อมูล หรือเพื่อศึกษาแนวทางการพัฒนาแอปพลิเคชัน หากพบข้อผิดพลาดประการใด ต้องขออภัยมา ณ ที่นี้

คณะผู้จัดทำ

สารบัญ

บทที่ 1	4
บทนำ	4
ที่มาและความสำคัญ	4
วัตถุประสงค์	4
ขอบเขตในการทำงาน	4
ประโยนชน์ที่คาดว่าจะได้รับ	4
บทที่ 2	5
ทฤษฎีที่เกี่ยวข้อง	5
เครื่องปรับเสียงกีตาร์ (Guitar Tuner)	5
คลื่นเสียง	5
เฮิรตซ์ (Hertz)	6
การหาความถี่ฐาน (Fundamental Frequency) โดยใช้ Fast Fourier Transform	7
บทที่ 3	8
การออกแบบและหลักการทำงาน	8
Requirement	8
Design	8
หลักการทำงาน	9
บทที่ 4	10
ผลลัพธ์	10
บรรณานุกรม	12

บทน้ำ

ที่มาและความสำคัญ

เนื่องจากในคณะผู้จัดทำมีผู้ที่ชื่นชอบในการเล่นกีตาร์อยู่เป็นประจำ ทางคณะ ผู้จัดทำจึงเล็งเห็นถึงโอกาสและช่องทางในการสร้างแอปพลิเคชันสำหรับการปรับเสียง กีตาร์ (Guitar Tuner) เพื่อใช้ในการปรับสายกีตาร์ให้มีเสียงตรง และถูกต้อง โดยได้ทำ การสร้างและพัฒนาออกมาเป็น GUI แอปพลิเคชัน ที่สามารถรับ Input เป็นเสียงผ่าน ทางไมโครโฟน จากนั้นจะทำการนำสัญญาณไปเปรียบเทียบกับค่าความถี่ของแต่ละตัว โน้ต และแสดงผลออกมาทาง GUI เพื่อให้ผู้ใช้งานได้ทำการปรับจูนสายกีตาร์ให้ถูกต้อง นั่นเอง

วัตถุประสงค์

- 1. เพื่อออกแบบ GUI และสร้างแอปพลิเคชันสำหรับการปรับเสียงกีตาร์
- 2. เพื่อศึกษาและเรียนรู้แนวทางในการสร้างแอปพลิเคชันจาก MATLAB

ขอบเขตในการทำงาน

- 1. แอปพลิเคชันสามารถแสดงผลลัพธ์ของสัญญาณเสียง Input ได้อย่างถูกต้อง
- 2. แอปพลิเคชันสามารถเปรียบเทียบค่าความถี่ของสัญญาณเสียงแต่ละตัวโน้ตได้ อย่างเหมาะสม

ประโยนชน์ที่คาดว่าจะได้รับ

- 1. คณะผู้จัดทำได้ศึกษาและสร้างประสบการณ์ในการสร้างแอปพลิเคชันจาก MATLAB
- 2. สามารถสร้างแอปพลิเคชันที่นำไปพัฒนาหรือปรับปรุงต่อยอดได้

ทฤษฏีที่เกี่ยวข้อง

เครื่องปรับเสียงกีตาร์ (Guitar Tuner)

จูนเนอร์กีตาร์ที่เชื่อถือได้เป็นอุปกรณ์เสริมที่ต้องมีสำหรับนักดนตรีที่เล่นกีตาร์ แม้ว่าอุปกรณ์เหล่านี้จะดูเรียบง่าย วิธีการตรวจจับระดับเสียงและระบุว่าสายมีความคม หรือแบนเป็นกระบวนการที่ซับซ้อน เพื่อให้เข้าใจถึงวิธีการทำงานของเครื่องตั้งสายกีตาร์ ก่อนอื่นเราต้องเข้าใจวิธีการวัดระดับเสียง และรายละเอียดเล็กน้อยเกี่ยวกับวิธีการสร้าง เสียง เริ่มต้นด้วย เสียงทั้งหมดเป็นชุดของการสั่น การสั่นสะเทือนเหล่านี้สร้างคลื่นบีบอัด (Compression Waves) ที่เคลื่อนที่ผ่านอากาศทำให้เกิดพื้นที่ที่มีความดันสูงที่เรียกว่า การบีบอัด (Compressions) และการแยกส่วนอนุภาคของอากาศที่กระจายออกจากกัน (Rarefactions)

คลื่นเสียง

เมื่อคลื่นเสียงเดินทาง จะเกิดปฏิกิริยากับโมเลกุลของอากาศรอบตัว ทำให้วัตถุ เกิดการสั่นพ้อง เช่น สิ่งที่สั่นที่ทำให้วัตถุอีกชิ้นสั่นด้วยความถี่เดียวกัน ตัวอย่างนี้คือแก้ว หูของเรา ซึ่งเป็นส่วนหนึ่งของกระบวนการได้ยินในที่สุดผ่านการถ่ายโอนการสั่นสะเทือน ทำให้ขนเล็กๆ ภายในคอเคลีย (หูชั้นใน) สั่นสะเทือน สร้างสัญญาณไฟฟ้าที่สมองของเรา ตีความว่าเป็นเสียง

ลักษณะเสียงของโน้ต รวมถึงระดับเสียงและระดับเสียง ถูกกำหนดโดยคุณลักษณะของ คลื่นเสียง ความสูงของคลื่นเสียงจะเป็นตัวกำหนดแอมพลิจูด (ความดัง) และความถึ่ เช่น จำนวนคลื่นเสียงภายในระยะเวลาที่กำหนด (เช่น ต่อวินาที) เป็นตัวกำหนดระดับ เสียง ซึ่งหมายความว่ายิ่งคลื่นเสียงเข้าใกล้มากเท่าใด ระดับเสียงของโน้ตก็จะยิ่งสูงขึ้น เท่านั้น อีกทางหนึ่งคือ ยิ่งคลื่นเสียงห่างกันเท่าไร ระดับเสียงของโน้ตก็จะยิ่งต่ำลงเท่านั้น

HIGH PITCH

LOW PITCH

เฮิรตซ์ (Hertz)

ความถี่ของโน้ตวัดเป็นเฮิรตซ์ (Hz) ซึ่งเป็นจำนวนคลื่นเสียงที่สมบูรณ์ต่อวินาทีที่ เกิดขึ้นเมื่อเล่นโน้ต Middle C บน Keyboard มีความถี่ 262Hz ซึ่งหมายความว่า 262 คลื่นเสียงผ่านไปภายใน 1 วินาทีเมื่อเล่นโน้ต Middle C

ตารางด้านล่างนี้คือความถี่ของสายเปิดของกีตาร์เมื่อปรับเป็นระดับเสียงคอนเสิร์ต สำหรับความถี่ที่เกิน 1,000 Hz เราสามารถใช้หน่วยเป็น กิโลเฮิรตซ์ (kHz) 1kHz เท่ากับ 1,000Hz

Guitar String	Frequency
6 th String (Low E)	82.4 Hz
5 th String (A)	110 Hz
4 th String (D)	146.8 Hz
3 rd String (G)	196.0 Hz
2 nd String (B)	246.9 Hz
1 st String (high E)	329.6 Hz

การหาความถี่ฐาน (Fundamental Frequency) โดยใช้ Fast Fourier Transform

ความถี่มูลฐาน (Fundamental Frequency) นิยามว่าเป็นความถี่ต่ำสุดของ รูปคลื่นแบบเป็นคาบ ในดนตรี ความถี่มูลฐานก็คือเสียงสูงต่ำของโน้ตดนตรีที่ได้ยินโดย เป็นคลื่นรูปไซน์ (partial) ที่ความถี่ต่ำสุดซึ่งได้ยิน ถ้าดูการซ้อนทับของคลื่นรูปไซน์ (เช่น อนุกรม Fourier) ความถี่มูลฐานก็คือคลื่นรูปไซน์ความถี่ต่ำสุดในผลรวม ในบาง กรณี ความถี่มูลฐานจะเขียนเป็นเครื่องหมาย f_0 (หรือ FF) ซึ่งระบุความถี่ต่ำสุดจาก 0 ใน บางกรณี ก็จะเขียนเป็นเครื่องหมาย f_1 ซึ่งหมายถึงฮาร์มอนิกแรก (ฮาร์มอนิกที่สองก็จะ เป็น $f_2 = 2 \cdot f_1$ เป็นต้น และในบริบทนี้ ฮาร์มอนิกที่ 0 ก็จะเป็น 0 Hz)

Fast Fourier transform (FFT) เป็นวิธีการคำนวณการแปลง Fourier แบบไม่ ต่อเนื่อง (DFT) ของลำดับ (Sequence) หรือ inverse (IDFT) โดยจะแปลงสัญญาณ จากโดเมนเดิม (ซึ่งมักเป็นเวลา) เป็นตัวแทนในโดเมนความถี่ ซึ่งหลักการนี้สามารถ นำมาใช้ในการหา Fundamental Frequency ที่จำเป็นสำหรับการทำงานของแอป พลิเคชัน

การออกแบบและหลักการทำงาน

Requirement

สามารถปรับและเปรียบเทียบความถี่ของสัญญาณเสียงครอบคลุมตัวโน้ตทั้งหกได้ ซึ่ง เป็นดังตาราง

Guitar String	Frequency
6 th String (Low E)	82.4 Hz
5 th String (A)	110 Hz
4 th String (D)	146.8 Hz
3 rd String (G)	196.0 Hz
2 nd String (B)	246.9 Hz
1 st String (high E)	329.6 Hz

Design

ทางคณะผู้จัดทำได้ทำการออกแบบหน้าตา GUI ของแอปพลิเคชันไว้ดังนี้

หลักการทำงาน

- 1. ทำการ Record เสียงกีตาร์จากไมโครโฟน
- 2. ทำการ Take Fast Fourier Transform คลิปเสียง
- 3. เปรียบเทียบกับรายการความถี่ของโน้ตที่กำลังปรับแต่ง
- 4. หากความถี่ยังไม่ใกล้เคียง ให้แสดงผล เกจค่าที่ผิดเพี้ยนไป แล้วกลับไปที่ขั้นตอน ที่ 1
- 5. สามารถเปลี่ยนไปปรับโน้ตอื่นๆต่อได้
- 6. เสร็จสิ้นการทำงาน หากทำการปรับจูนเรียบร้อยแล้ว

ผลลัพธ์

ส่วนสำหรับ Setting Input ที่ต้องการ

ส่วนหน้าจอหลักสำหรับ Display การปรับเทียบ

โค้ดทั้งหมดสามารถเข้าถึงได้ที่:

https://github.com/PARINYA-JAIHARN/Basic-Guitar-Tuner

ไฟล์ "Tuner" ใช้สำหรับการตั้งสายกีตาร์ ซึ่งเมื่อเปิดขึ้นมา จะเรียกไฟล์ "TunerSetting" ขึ้นมาแสดงด้วย ซึ่งใช้สำหรับการตั้งค่าอุปกรณ์รับเสียงและอุปกรณ์ส่งออกเสียง วิธีการใช้งานสามารถดูได้จาก Demo:

บรรณานุกรม

How Guitar Tuners Work [ออนไลน์] เข้าถึงได้จาก

https://theacousticguitarist.com/how-guitar-tuners-work/

Detecting fundamental frequency of a signal using Fast Fourier transform [ออนไลน์] เข้าถึงได้จาก https://www.mathworks.com/matlabcentral/answers/429279-detecting-fundamental-frequency-of-a-signal-using-fast-fourier-transform

MATLAB audiorecorder [ออนไลน์] เข้าถึงได้จาก

https://www.mathworks.com/help/matlab/ref/audiorecorder.html

5 นาที เข้าใจ FFT ในโปรแกรมวัดเสียง [ออนไลน์] เข้าถึงได้จาก

https://www.atprosound.com/fast-fourier-transform/

Digital Guitar Tuner Using MATLAB [ออนไลน์] เข้าถึงได้จาก

https://www.mathworks.com/matlabcentral/fileexchange/14759-digital-guitar-tuner