ЛАБОРАТОРНАЯ РАБОТА №5

ИЗМЕРЕНИЕ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ГАЗОВ С ПОМОЩЬЮ ИНТЕРФЕРОМЕТРА РЭЛЕЯ

Поляков Даниил, 19.Б23-фз

Цель работы: ознакомиться с принципом работы интерферометра Рэлея, исследовать зависимость показателя преломления воздуха от давления, оценить показатель преломления воздуха при нормальных условиях.

Схема установки

- 1 источник света сплошного спектра;
- 2 узкая щель;
- 3 объектив;
- 4 двойная щель, образующая интерференционные полосы;
- 5 объектив;
- 6 цилиндрическая линза;
- 7 призма;
- 8 компенсатор;
- A_1 камера, открытая на атмосферу;
- A₂ камера с переменным давлением.

Расчётные формулы

• Разность показателей преломления воздуха в кювете и в атмосфере:

$$\Delta n = \frac{N\lambda}{L}$$

N — количество периодов сдвига интерференционной картины; λ — длина волны наиболее яркой составляющей спектра лампы;

L — длина кюветы.

• Разность давлений в кювете и в атмосфере:

$$\Delta p = \rho g (h_a - h_\kappa)$$

 ρ — плотность масла в манометре;

g — ускорение свободного падения;

 $h_{\rm a}$ — высота плеча манометра, открытого

на атмосферу;

 $h_{\rm K}$ — высота плеча манометра, связанного с кюветой.

• Закон Лоренц-Лорентца при $n \approx 1$:

$$n = 1 + \beta p$$
$$\Delta n = \beta \Delta p$$

n — показатель преломления газа;

p — давление газа;

 β — постоянный коэффициент;

 Δn — разность показателей преломления

воздуха в кювете и в атмосфере;

 Δp — разность давления в кювете и

атмосферного давления.

- Формулы для вычисления погрешностей:
 - Абсолютная погрешность косвенных измерений:

$$\Delta_{f(x_1,x_2,\ldots)} = \sqrt{\left(\frac{\partial f}{\partial x_1}\cdot \Delta_{x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2}\cdot \Delta_{x_2}\right)^2 + \ldots}$$

 \circ Δ_N

Сдвиг интерференционной картины на один период выполняется на глаз, из-за чего у N имеется некоторая погрешность. Более того, после каждого сдвига картины выполняется его возвращение в исходное положение вращением компенсатора, и таким образом возникает накопление абсолютной погрешности с увеличением N. Предположим, что погрешность одиночного сдвига равна $\Delta_{N=1}$. Значение N является суммой сдвигов, поэтому его погрешность находится следующим образом:

$$\Delta_N = \sqrt{\sum_{N=1}^{|N|} \Delta_{N=1}^2} = \sqrt{|N|} \Delta_{N=1}$$

Порядок измерений

- 1. Устанавливаем давление в кювете равным атмосферному, т. е. выравниваем высоту столбиков масляного манометра. Вращаем барабанчик компенсатора и совмещаем максимумы интенсивностей верхней и нижней интерференционных картин, наблюдаемых через окуляр.
- 2. Изменяем давление в кювете так, чтобы интерференционные картины сместились друг относительно друга на одну полосу. С помощью компенсатора возвращаем интерференционные картины в исходное положение, т. е. снова совмещаем максимумы интенсивностей. Делаем это после каждого смещения интерференционной картины.
- 3. Снимаем значения высоты $h_{\rm a}$ плеча манометра, открытого на атмосферу, и высоты $h_{\rm k}$ плеча, связанного с кюветой. В случае, когда $h_{\rm k} < h_{\rm a}$, давление в кювете больше атмосферного, $p_{\rm k} > p_{\rm a}$. В таком случае сдвиг картины N считаем положительным, чтобы коэффициент пропорциональности зависимости $\Delta n(\Delta p)$ был положительным. Тогда в противоположном случае, при $h_{\rm k} > h_{\rm a}$, сдвиг картины считаем отрицательным.
- 4. Продолжаем изменять давление кюветы, пока не достигнем максимального и минимального значений давления, записывая суммарный сдвиг картины N и значения высоты плеч манометра $h_{\rm a}$ и $h_{\rm k}$. Выполним серию измерений 2 раза.
- 5. В конце измерений снимаем с барометра значение давления p в комнате.

Результаты

<u>Примечание</u>: построение графика и аппроксимация зависимости выполнена с помощью ПО MATLAB. Погрешность коэффициента аппроксимации рассчитана с доверительной вероятностью P = 95%.

Перечислим известные параметры экспериментальной установки:

• Длина волны наиболее яркой составляющей спектра лампы:

$$\lambda = 555 \pm 10 \text{ HM}$$

Точное значение данной величины зависит от спектральной чувствительности зрения конкретного человека, в связи с чем и выбрана такая погрешность. Тем не менее, она влияет только на определение конкретной величины показателя преломления, но не должна влиять на форму зависимости $\Delta n(\Delta P)$, если закон Лоренц-Лорентца справедлив.

• Длина кюветы:

$$L = 1 \pm 0.001 \text{ M}$$

• Плотность масла в манометре:

$$\rho = 864 \pm 5 \, \text{kg/m}^3$$

• Ускорение свободного падения:

$$g = 9.819 \pm 0.001 \text{ m/c}^2$$

• Погрешность отсчёта высоты оценим как цену деления шкалы манометра:

$$\Delta_h = 1 \text{ MM}$$

• Давление в лаборатории:

$$p = 102.3 \pm 0.1 \ к \Pi a$$

погрешность одиночного сдвига $\Delta_{N=1}$. После каждого сдвига интерференционной картины производился её возврат в начальное положение с помощью компенсатора, у которого имеется своя шкала. Теоретически, каждое значение сдвига N должно однозначно соответствовать значению на этой шкале. В ходе измерений снимались показания этой шкалы, и хотя в работе они не требуются, их можно использовать для оценки погрешности $\Delta_{ ext{N}}.$ При компенсации интерференционной картины в начальном положении, когда N=0, в 1-ой серии измерений отсчёт шкалы компенсатора $k_{N=0}=19.82$. При компенсации после 18-го сдвига отсчёт составил $k_{N=18} = 10.35$. Таким образом, сдвиг картины на 18 полос повлёк собой вращение компенсатора на $\Delta k_{N=18} = 10.35 - 19.82 = -9.47$. Во 2-ой серии измерений соответствующие отсчёты компенсатора изменились: $k_{N=0}=19.80$, $k_{N=18}=10.46$, $\Delta k_{N=18}=-9.34$. изменилось. Его среднеквадратичное отклонение Значение $\Delta k_{N=18}$ результатам двух измерений: $\sigma_{\Delta k_{\rm min}} = 0.09$, т. е. 1%. Таким образом, будем считать, что погрешность 18 сдвигов равна 1% ($\Delta_{N=18}=0.18$). Отсюда оцениваем погрешность одного сдвига:

$$\Delta_{N=1} = \frac{\Delta_{N=18}}{\sqrt{18}} = 0.042$$

Таблица. Зависимость изменения показателя преломления воздуха от изменения давления

N	$\Delta n, \times 10^{-6}$	Серия №1			Серия №2		
		$h_{\rm a}$, мм	<i>h</i> _к , мм	Δp , к Π а	$h_{\rm a}$, мм	$h_{\scriptscriptstyle m K}$, мм	Δp , кПа
-9	-5.00	198	415	-1.84	197	413	-1.83
± 0.12	± 0.11	130	413	± 0.02	197	415	± 0.02
-8	-4.44	210	402	-1.63	210	400	-1.61
± 0.12	± 0.10			± 0.02			± 0.02
-7	-3.89	223	390	-1.417	222	387	-1.400
± 0.11	± 0.09			± 0.015			± 0.014
-6	-3.33	235	376	-1.196	234	375	-1.196
± 0.10	± 0.08			± 0.014			± 0.014
-5	-2.77	247	364	-0.993	245	363	-1.001
± 0.09	± 0.07			± 0.013			± 0.013
-4	-2.22	260	352	-0.780	256	352	-0.814
± 0.08	± 0.06			± 0.013			± 0.013
-3	-1.67	271	340	-0.585	267	340	-0.619
± 0.07	± 0.05			± 0.012			± 0.013
-2	-1.11	283	328	-0.382	279	328	-0.416
± 0.06	± 0.04			± 0.012			± 0.012
-1	-0.55	295	315	-0.170	290	315	-0.212
± 0.04	± 0.03			± 0.012			± 0.012

N	$\Delta n, \times 10^{-6}$	Серия №1			Серия №2		
		$h_{\rm a}$, мм	$h_{\scriptscriptstyle \rm K}$, мм	Δp , к Π а	$h_{\rm a}$, мм	$h_{\scriptscriptstyle \mathrm{K}}$, mm	Δp , кПа
0	0	303	303	0.000 ± 0.012	303	303	0.000 ± 0.012
1 ± 0.04	0.55 ± 0.03	316	292	0.204 ± 0.012	315	291	0.204 ± 0.012
2 ± 0.06	1.11 ± 0.04	327	287	0.339 ± 0.012	326	280	0.390 ± 0.012
3 ± 0.07	1.67 ± 0.05	340	268	0.611 ± 0.013	338	268	0.594 ± 0.012
4 ± 0.08	2.22 ± 0.06	350	256	0.797 ± 0.013	349	257	0.780 ± 0.013
5 ± 0.09	2.77 ± 0.07	361	245	0.984 ± 0.013	361	244	0.993 ± 0.013
6 ± 0.10	3.33 ± 0.08	373	232	1.196 ± 0.014	373	231	1.205 ± 0.014
7 ± 0.11	3.89 ± 0.09	385	220	1.400 ± 0.014	384	220	1.391 ± 0.014
8 ± 0.12	4.44 ± 0.10	398	206	1.63 ± 0.02	396	207	1.60 ± 0.02
9 ± 0.12	4.99 ± 0.11	409	194	1.82 ± 0.02	408	195	1.81 ± 0.02
10 ± 0.13	5.55 ± 0.12	420	184	2.00 ± 0.02	420	184	2.00 ± 0.02
11 ± 0.14	6.11 ± 0.13	433	170	2.23 ± 0.02	431	171	2.21 ± 0.02
12 ± 0.14	6.66 ± 0.14	445	158	2.43 ± 0.02	442	160	2.39 ± 0.02
13 ± 0.15	7.2 ± 0.2	456	146	2.63 ± 0.02	450	147	2.57 ± 0.02
14 ± 0.2	7.8 ± 0.2	469	133	2.85 ± 0.02	467	135	2.82 ± 0.02
15 ± 0.2	8.3 ± 0.2	482	120	3.07 ± 0.02	479	122	3.03 ± 0.02
16 ± 0.2	8.9 ± 0.2	494	107	3.28 ± 0.02	491	109	3.24 ± 0.02
17 ± 0.2	9.4 ± 0.2	506	94	3.50 ± 0.02	502	98	3.43 ± 0.02
18 ± 0.2	10.0 ± 0.2	517	83	3.68 ± 0.02	514	85	3.64 ± 0.02

График. Зависимость изменения показателя преломления воздуха от изменения давления

Зависимость хорошо аппроксимируется прямой. Таким образом, закон Лоренц-Лорентца справедлив в условиях данной работы.

Значение коэффициента пропорциональности:

$$\beta = (2.744 \pm 0.009) \cdot 10^{-6} \text{ kH a}^{-1}$$

Стоит отметить, что здесь указана дисперсия коэффициента, а не его реальная погрешность. Основной вклад в погрешность вносит систематическая погрешность установки, которая составляет порядка 2%.

Воспользовавшись полученным значением коэффициента пропорциональности и измеренным значением давления в лаборатории, оценим значение показателя преломления воздуха в лаборатории:

$$n = 1.000281(6)$$

Выводы

В ходе работы проведено ознакомление с принципом работы интерферометра Рэлея. Успешно проведена проверка закона Лоренц-Лорентца при $n\approx 1$.

Точность измерения Δn и Δp на данной лабораторной установке ограничена. Для N=10 погрешность измерения Δn составляет порядка 2%, а Δp — порядка 1%.

Полученное значение показателя преломления воздуха в лаборатории:

$$n = 1.000281(6)$$