Compito di Matematica Discreta e Algebra Lineare

6 Novembre 2019	
Cognome e nome:	
Numero di matricola:	
$\underline{\text{IMPORTANTE:}} \text{ Scrivere il nome su ogni foglio. Mettere } \underline{\textbf{TASSATIVAN}} \\ \text{risposte, e nel resto del foglio o sul retro lo svolgimento.}$	IENTE nei riquadri le
Esercizio 1. Si trovino tutte le soluzioni del sistema di congruenze	
$\begin{cases} x^2 \equiv 4 \pmod{15} \\ x \equiv 8 \pmod{30} . \end{cases}$	
	Risposta

Esercizio 2. Sia $p(x) = x^3 + 2x^2$

- ercizio 2. Sia $p(x) = x^3 + 2x^2 + 3x + 4$.

 (1) Si trovi la fattorizzazione completa di p(x) tra i polinomi a coefficienti interi modulo 7.
- (2) Si trovi la fattorizzazione completa di p(x) tra i polinomi a coefficienti interi modulo 5.

Risposta 1)	Risposta 2)	

Esercizio 3. Consideriamo le matrici

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{pmatrix}$$

- (1) Stabilire se A è diagonalizzabile.
- (2) Stabilire se B è diagonalizzabile.

Risposta 1)	Risposta 2)

Esercizio 4. Sia $f: \mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione lineare la cui matrice nella base standard è

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

 $A=\begin{pmatrix}1&2\\3&4\end{pmatrix}$ Si trovino due vettori non nulli $u\in\mathbb{R}^2$ e $v\in\mathbb{R}^2$ tali che f(u) è ortogonale a f(v).

	Risposta	