RIEMANN INTEGRAL OF $f\alpha'$ IS EQUAL TO RIEMANN-STIELTJES INTEGRAL OF f WITH INTEGRATOR α

Let $\alpha:[a,b]\to\mathbb{R}$ be a differentiable monotonic function such that $\alpha'\in\mathscr{R}$. Let $f:[a,b]\to\mathbb{R}$ be a bounded function. Then $f\in\mathscr{R}(\alpha)$ if and only if $f\alpha'\in\mathscr{R}$. And

$$\int_{a}^{b} f d\alpha = \int_{a}^{b} f(x)\alpha'(x)dx$$

Proof

Let $\varepsilon > 0$ and choose a partition P such that

$$U(P, \alpha') - L(P, \alpha') < \varepsilon$$

If we pick any points $s_i, t_i \in [x_{i-1}, x_i]$, we have that

$$\sum_{i=1}^{n} |\alpha'(s_i) - \alpha'(t_i)| \Delta x_i \le \varepsilon$$

Let $|f(x)| \leq M$, then

$$\sum_{i=1}^{n} |\alpha'(s_i)\Delta x_i - \alpha'(t_i)\Delta x_i||f(s_i)| \le M\varepsilon$$

Pushing the $f(s_i)$ in,

$$\sum_{i=1}^{n} |f(s_i)\alpha'(s_i)\Delta x_i - f(s_i)\alpha'(t_i)\Delta x_i| \le M\varepsilon$$

By the mean value theorem, we can choose t_i such that

$$\Delta \alpha_i = \alpha'(t_i) \Delta x_i$$

Then

$$\sum_{i=1}^{n} |f(s_i)\alpha'(s_i)\Delta x_i - f(s_i)\Delta \alpha_i| \le M\varepsilon$$

By the triangle inequality,

$$\left| \sum_{i=1}^{n} [f(s_i)\alpha'(s_i)\Delta x_i - f(s_i)\Delta \alpha_i] \right| \leq \sum_{i=1}^{n} |f(s_i)\alpha'(s_i)\Delta x_i - f(s_i)\Delta \alpha_i| \leq M\varepsilon$$

So

$$\left| \sum_{i=1}^{n} f(s_i) \alpha'(s_i) \Delta x_i - \sum_{i=1}^{n} f(s_i) \Delta \alpha_i \right| \leq \sum_{i=1}^{n} |f(s_i) \alpha'(s_i) \Delta x_i - f(s_i) \Delta \alpha_i| \leq M \varepsilon$$

In particular, letting $f(s_i)$ be M_i and m_i respectively,

$$|U(P, f\alpha') - U(P, f, \alpha)| \le M\varepsilon$$

$$|L(P, f\alpha') - L(P, f, \alpha)| \le M\varepsilon$$

Since the triangle inequality holds for sup, consider the reverse triangle inequality (for sup)

$$\left|\sup_{P} |U(P, f\alpha')| - \sup_{P} |U(P, f\alpha')|\right| \le \sup_{P} |U(P, f\alpha') - U(P, f, \alpha)| \le M\varepsilon$$

Then

$$\left| \overline{\int_a^b} f\alpha' dx - \overline{\int_a^b} f d\alpha \right| \le M\varepsilon$$

Similarly,

$$\left| \int_{\underline{a}}^{\underline{b}} f \alpha' dx - \int_{\underline{a}}^{\underline{b}} f d\alpha \right| \le M \varepsilon$$

Hence, if one integral exists, the other does. Moreover, their integrals are equal.

CHANGE OF VARIABLE

Theorem

INTEGRATION BY PARTS

Theorem