

수학 계산력 강화

(1)등비수열

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2019-02-13
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

01 / 등비수열

- (1) 등비수열 : 첫째항부터 차례로 일정한 수를 곱하여 만든
- (2) 등비: 등비수열에서 곱하는 일정한 수
- (3) 등비수열의 관계식 : 공비가 r인 등비수열 $\{a_n\}$ 에서 $a_{n+1} = r a_n$ 또는 $\frac{a_{n+1}}{a_n} = r$ (단, $n=1,\ 2,\ 3,\ \cdots$)
- (4) 등비수열의 일반항: 첫째항이 a, 공비가 r인 등비수열의 일반항 $a_n \in a_n = ar^{n-1}$ (단, $n=1, 2, 3, \cdots$)

\blacksquare 다음 등비수열 $\{a_n\}$ 의 일반항 a_n 을 구하여라.

- **1.** 3, $\sqrt{3}$, 1, $\frac{1}{\sqrt{3}}$, ...
- **2.** $2, 2\sqrt{2}, 4, 4\sqrt{2}, \cdots$
- **3.** $2, -2, 2, -2, 2, \cdots$
- **4.** 3, 6, 12, 24, 48, ...
- 5. 0.1, 0.01, 0.001, 0.0001, ...
- **6.** 64, -32, 16, -8, ···
- **7.** 11, 121, 1331, 14641, ...

- **8.** 2, 6, 18, 54, ···
- **9.** $2, -4, 8, -16, 32, \cdots$
- **10.** 9, 3, 1, $\frac{1}{3}$, $\frac{1}{9}$, ...

$oldsymbol{\square}$ 첫째항 a와 공비 r가 다음과 같은 등비수열 $\{a_n\}$ 의 일 반항 a_n 을 구하여라.

11.
$$a = 32$$
, $r = -\frac{3}{2}$

12.
$$a = -2$$
, $r = -2$

13.
$$a=3, r=-2$$

14.
$$a=16, r=\frac{1}{2}$$

15.
$$a=2, r=\frac{1}{2}$$

16.
$$a=2, r=4$$

\blacksquare 다음 등비수열 $\{a_n\}$ 의 공비를 구하여라.

19.
$$a_1 = 2$$
, $a_6 = 486$

20.
$$a_1 = 1, a_4 = -8$$

21.
$$a_3 = -\frac{8}{27}$$
, $a_4 = \frac{32}{243}$

22.
$$a_4 = 45$$
, $a_7 = 1215$

23.
$$a_3 = 2\sqrt{2}$$
, $a_4 = 4$

24.
$$a_1 = \frac{2}{27}, \ a_4 = 2$$

25.
$$a_1 = 1$$
, $a_5 = \frac{1}{81}$

$oldsymbol{\square}$ 등비수열이 다음과 같을 때, $\{a_n\}$ 과 제10항을 구하시오.

27. 2,
$$2\sqrt{3}$$
, 6, $6\sqrt{3}$, ...

29. 4, 2, 1,
$$\frac{1}{2}$$
, ...

30.
$$2, 2\sqrt{2}, 4, \cdots$$

31.
$$a_3 = 2$$
, $a_6 = 4\sqrt{2}$

32.
$$a_3 = 12$$
, $a_6 = -96$

33.
$$a_1 = \frac{2}{27}, \ a_4 = 2$$

34.
$$a_4 = 12$$
, $a_7 = 96$

ightharpoonup 다음을 만족하는 등비수열 $\{a_n\}$ 의 첫째항 a와 공비 r를 각각 구하여라. (단, r > 0)

35.
$$a_3 = 6$$
, $a_8 = 192$

36.
$$a_2 = 10$$
, $a_5 = 80$

37.
$$a_4 = 8$$
, $a_7 = 1$

38.
$$a_4 = 18$$
, $a_6 = 162$

39.
$$a_3 = 6$$
, $a_5 = 96$

 $oldsymbol{\square}$ 모든 항이 양수인 등비수열 $\{a_n\}$ 에 대하여 다음을 구하 여라.

40.
$$a_4 = 24$$
, $a_8 = 384$ 일 때, a_2 의 값

41.
$$a_4 = 12$$
, $a_7 = 96$ 일 때, a_{10} 의 값

42.
$$a_1 + a_2 = 8$$
, $a_1 a_3 = 36$ 일 때, a_1 의 값

43.
$$a_3 = 9$$
, $a_6 = 27\sqrt{3}$ 일 때, a_9 의 값

44.
$$a_3 + a_4 = 24$$
, $a_3 : a_4 = 2 : 1$ 일 때, a_9 의 값

45.
$$a_2 = 6, a_7 = 192$$
일 때, a_5 의 값

46.
$$a_5 = 21$$
, $a_7 = 84$ 일 때, a_{10} 의 값

47.
$$a_3 = 36$$
, $a_4 + a_5 = 40$ 을 만족할 때, a_7 의 값

48.
$$a_1 + a_2 = 15$$
, $a_3 + a_4 = 60$ 일 때, a_5 의 값

49.
$$a_3 + a_5 = 10$$
, $a_4 + a_6 = 20$ 일 때, a_{10} 의 값

50.
$$a_3 = 2a_4$$
, $a_3 + a_5 = 25$ 일 때, a_6 의 값

51.
$$a_2 + a_3 = 4$$
, $a_4 + a_5 = 36$ 일 때, $a_6 + a_7$ 의 값

52.
$$a_1 + a_2 = 5$$
, $a_3 + a_4 = 10$ 일 때, $a_5 + a_6$ 의 값

53.
$$a_3 = 12$$
, $\frac{a_4 + a_5}{a_1 + a_2} = 8$ 일 때, a_6 의 값

54.
$$a_3 = 9$$
, $a_2 : a_5 = 8 : 1$ 일 때, a_7 의 값

55.
$$a_1 = 3$$
, $a_4 : a_6 = 1 : 4$ 일 때, a_5 의 값

56.
$$a_1=2,\ a_2:a_5=1:27$$
일 때, a_3 의 값

57.
$$a_2 = 6$$
이고 $a_3 : a_5 = 1 : 9$ 일 때, $\frac{a}{r}$ 의 값

58.
$$a_5 = 56$$
, $a_9 = 224$ 일 때, $\frac{r^2}{a}$ 의 값

59.
$$\frac{a_5}{a_2} = 27, a_1 + a_2 = 8$$
일 때, a_4 의 값

60.
$$a_4 = 4$$
, $a_2 : a_5 = 8 : 1일 때, a_6 의 값$

61.
$$\frac{a_3a_4}{a_5}$$
=2, $\frac{a_3}{a_1}$ - $3 \times \frac{a_5}{a_4}$ =4일 때, a_3 의 값

☑ 다음을 구하여라.

62. 두 수 $\frac{1}{8}$ 과 32사이에 세 양수 a, b, c를 넣어 전 체가 등비수열을 이루도록 할 때, abc의 값을 구하 여라.

63. 6과 48 사이에 두 개의 실수를 넣어서 전체가 등 비수열을 이룰 때, 공비를 구하여라.

64. 1과 1024 사이에 n개의 수 $x_1, x_2, x_3, \dots, x_n$ 을 넣어 전체가 공비가 2인 등비수열을 이루도록 할 때, n의 값을 구하여라.

- **65.** $\frac{2}{3}$ 와 54 사이에 세 양수 a, b, c를 넣어 전체가 등비수열을 이루도록 할 때, abc의 값을 구하여라.
- **71.** 각 항이 양수인 등비수열 $\{a_n\}$ 에 대하여 $a_2 + a_4 = 30$, $a_3 + a_5 = 15$ 일 때, 처음으로 1보다 작 아지는 항은 제 몇 항인지 구하여라.

- **66.** $\frac{3}{2}$ 과 24 사이에 세 양수 a, b, c를 넣어 전체가 등비수열을 이루도록 할 때, a+b+c의 값을 구하여
- **72.** 각 항이 양수인 등비수열 $\{a_n\}$ 에 대하여 $a_3 = 3$, $a_6 = 81$ 일 때, 처음으로 1000보다 커지는 항 은 제 몇 항인지 구하여라.

- **67.** 수열 16, 8, 4, 2, 1, …에서 처음으로 $\frac{1}{1000}$ 보다 작게 되는 항은 제 몇 항인지 구하여라.
- **73.** 두 수 2와 162 사이에 세 양수 a, b, c를 넣은 5 개의 수 2, a, b, c, 162가 이 순서로 등비수열을 이 룰 때, 2a+b-c의 값을 구하여라.

- **68.** $\frac{1}{4}$ 과 4 사이에 세 양수 a, b, c를 넣어 전체가 등 비수열을 이루도록 할 때, a, b, c의 값을 구하여라.
- **74.** 각 항이 실수인 등비수열 $\{a_n\}$ 에 대하여 $a_2 + a_3 = 2$, $a_5 + a_6 = -16$ 을 만족할 때, a_{10} 을 구하여

- **69.** -4와 32 사이에 두 개의 수를 넣어 그 순서로 등비수열을 이루도록 할 때, 이 두 수의 곱을 구하 여라.
- **75.** 등비수열 $\{a_n\}$ 에서 $a_1 \cdot a_8 = 8$ 일 때, 수열 $\{a_n\}$ 의 첫째항부터 제 8항까지의 곱을 구하여라.

- **70.** 두 수 2와 162사이에 세 양수 a, b, c를 넣어서 전체가 등비수열을 이루게 할 때, a+b+c의 값을 구하여라.
- **76.** 첫째항이 2이고 제 2항이 6인 등차수열 $\{a_n\}$ 과 등비수열 $\{b_n\}$ 에 대하여 $\frac{a_{50}}{b_r}$ 의 값을 구하여라.

4

정답 및 해설

$$1) \ a_n = \left(\frac{1}{\sqrt{3}}\right)^{n-3}$$

$$\Rightarrow$$
 첫째항이 3 , 공비가 $\frac{1}{\sqrt{3}}$ 이므로 $a_n=3\cdot\left(\frac{1}{\sqrt{3}}\right)^{n-1}=\left(\frac{1}{\sqrt{3}}\right)^{n-3}$

2)
$$a_n = (\sqrt{2})^{n+1}$$

$$\Rightarrow$$
 첫째항이 2, 공비가 $\sqrt{2}$ 이므로 $a_n=2\cdot(\sqrt{2})^{n-1}=(\sqrt{2})^{n+1}$

3)
$$a_n = 2 \times (-1)^{n-1}$$

$$ightharpoonup$$
 첫째항이 $2, \ \frac{-2}{2} = -1$ 에서 공비가 -1 이므로
$$a_n = 2 \times (-1)^{n-1}$$

4)
$$a_n = 3 \times 2^{n-1}$$

$$ightharpoonup$$
 첫째항이 3, $\frac{6}{3} = 2$ 에서 공비가 2이므로 $a_n = 3 \times 2^{n-1}$

5)
$$a_n = 0.1^n$$

$$\Rightarrow$$
 첫째항이 0.1 , 공비가 0.1 이므로 $a_n = 0.1 \cdot (0.1)^{n-1} = 0.1^n$

6)
$$a_n = (-1)^{n-1} \cdot \left(\frac{1}{2}\right)^{n-7}$$

$$\Rightarrow$$
 첫째항이 64 , 공비가 $-\frac{1}{2}$ 이므로
$$a_n = 64 \cdot \left(-\frac{1}{2}\right)^{n-1} = (-1)^{n-1} \cdot \left(\frac{1}{2}\right)^{n-7}$$

7)
$$a_n = 11^n$$

$$\Rightarrow$$
 첫째항이 11, 공비가 11이므로 $a_n = 11 \cdot 11^{n-1} = 11^n$

8)
$$a_n = 2 \cdot 3^{n-1}$$

$$\Rightarrow$$
 첫째항이 2, 공비가 3이므로 $a_n = 2 \cdot 3^{n-1}$

9)
$$a_n = 2 \times (-2)^{n-1}$$

$$\Rightarrow$$
 첫째항이 2, 공비가 -2 이므로 $a_n = 2 \times (-2)^{n-1}$

10)
$$a_n = \left(\frac{1}{3}\right)^{n-3}$$

$$\Rightarrow$$
 첫째항이 9 , $\frac{3}{9} = \frac{1}{3}$ 에서 공비가 $\frac{1}{3}$ 이므로 $a_n = 9 \times \left(\frac{1}{3}\right)^{n-1} = \left(\frac{1}{3}\right)^{n-3}$

11)
$$a_n = 32 \cdot \left(-\frac{3}{2}\right)^{n-1}$$

12)
$$a_n = (-2)^n$$

$$\Rightarrow a_n = (-2) \times (-2)^{n-1} = (-2)^n$$

13)
$$a_n = 3 \cdot (-2)^{n-1}$$

14)
$$a_n = \left(\frac{1}{2}\right)^{n-5}$$

$$\Rightarrow a_n = 16 \cdot \left(\frac{1}{2}\right)^{n-1} = \left(\frac{1}{2}\right)^{n-5}$$

15)
$$a_n = \left(\frac{1}{2}\right)^{n-2}$$

$$\implies a_n = 2 \times \left(\frac{1}{2}\right)^{n-1} = \left(\frac{1}{2}\right)^{n-2}$$

16)
$$a_n = 2^{2n-1}$$

$$\Rightarrow a_n = 2 \cdot 4^{n-1} = 2^{2n-1}$$

17)
$$-2$$

18) 6

19) 3

$$\Rightarrow$$
 공비를 r 라고 하면 $a_6 = 486$ 에서 $2 \times r^{6-1} = 486$ $r^5 = 243 = 3^5$ \therefore $r = 3$

$$20) -2$$

다 공비를
$$r$$
라고 하면
$$a_4 = -8$$
에서 $1 \times r^{4-1} = -8$
$$r^3 = -8 = (-2)^3 \qquad \therefore \ r = -2$$

21)
$$-\frac{4}{9}$$

$$\Rightarrow r = a_4 \div a_3 = \frac{32}{243} \div \left(-\frac{8}{27} \right) = \frac{32}{243} \times \left(-\frac{27}{8} \right) = -\frac{4}{9}$$

$$Arr$$
 첫째항을 a_1 , 공비를 r 이라 하면 $a_4=a_1r^3=45,\ a_7=a_1r^6=1215$ 두 식을 연립하면 $r^3=27$ 에서 $r=3$ 이다.

23)
$$\sqrt{2}$$

$$\Rightarrow r = a_4 \div a_3 = 4 \div 2\sqrt{2} = \sqrt{2}$$

$$\Rightarrow$$
 공비를 r 라 하면 $a_1=\frac{2}{27},\ a_4=2$ 에서 $\frac{2}{27}\cdot r^3=2,\ r^3=27$ $\therefore r=3$

- 25) $\frac{1}{3}$
- ightharpoonup 공비를 r라 하면 $a_1=1,\ a_5=rac{1}{81}$ 에서 $1\cdot r^4=rac{1}{81} \qquad \qquad \therefore \ r=rac{1}{3}$
- 26) $a_n = 2 \cdot (-3)^{n-1}, \ a_{10} = 2 \cdot (-3)^9$
- ightharpoonup 첫째항이 2, 공비가 -3이므로 $a_n=2\cdot (-3)^{n-1}$ $\therefore \ a_{10}=2\cdot (-3)^9$
- 27) $a_n = 2 \times (\sqrt{3})^{n-1}$, $a_{10} = 162\sqrt{3}$
- ightharpoonup 주어진 수열 2 , $2\sqrt{3}$, 6 , $6\sqrt{3}$, …은 첫째항이 2이고, 공비가 $\sqrt{3}$ 인 등비수열이다. $\therefore a_n = 2 \times (\sqrt{3})^{n-1}$

 $\therefore a_{10} = 2 \times (\sqrt{3})^9 = 2 \times 81 \sqrt{3} = 162 \sqrt{3}$

- 28) $a_n = 3^{n-1}$, $a_{10} = 3^9$
- \Rightarrow 첫째항이 1, 공비가 3이므로 $a_n=1\cdot 3^{n-1}=3^{n-1}$ $\therefore a_{10}=3^9$
- 29) $a_n = \left(\frac{1}{2}\right)^{n-3}, \ a_{10} = \frac{1}{128}$
- 30) $a_n = 2^{\frac{n+1}{2}}$, $a_{10} = 32\sqrt{2}$
- \Rightarrow 첫째항이 2, 공비가 $\sqrt{2}$ 에서 $a_n=2^{rac{n+1}{2}}$ 이므로 $a_{10}=2^{rac{11}{2}}=32\sqrt{2}$
- 31) $a_n = (\sqrt{2})^{n-1}$, $a_{10} = 16\sqrt{2}$
- 지 첫째항을 a, 공비를 r라고 하면 $a_3 = ar^2 = 2$ \cdots \bigcirc $a_6 = ar^5 = 4\sqrt{2}$ \cdots \bigcirc
 - ① ÷ ①에서 $r^3=2\sqrt{2}=(\sqrt{2})^3$ 이고, r는 실수이므로 $r=\sqrt{2}$
 - 이것은 \bigcirc 에 대입하면 2a=2 $\therefore a=1$
 - $\therefore a_n = (\sqrt{2})^{n-1}$ $\therefore a_{10} = (\sqrt{2})^9 = 16\sqrt{2}$
- 32) $a_n = 3 \times (-2)^{n-1}$, $a_{10} = -1536$
- \Rightarrow 첫째항을 a, 공비를 r라고 하면

 $a_3 = ar^2 = 12$ ①

 $a_6 = ar^5 = -96$ ①

① \div ①에서 $r^3 = -8$ 이고, 공비 r는 실수이므로

- r=-2이것을 \bigcirc 에 대입하면 4a=12 $\therefore a=3$ $\therefore a_n=3\times (-2)^{n-1}$ $\therefore a_{10}=3\times (-2)^9=-1536$
- 33) $a_n = 2 \times 3^{n-4}$, $a_{10} = 1458$
- 그 장비를 r라 하면 $a_1 = \frac{2}{27}, \ a_4 = 2$ 에서 $\frac{2}{27} \cdot 4^3 = 2, \ r^3 = 27$ $\therefore \ r = 3$ $\therefore \ a_n = \frac{2}{27} \times 3^{n-1} = 2 \times 3^{n-4}$
 - $\therefore \ a_{10} = 2 \times 3^6 = 1458$
- 34) $a_n = 3 \times 2^{n-2}$, $a_{10} = 768$
- 35) $a = \frac{3}{2}$, r = 2 $\Rightarrow \frac{a_8}{a_3} = \frac{ar^7}{ar^2} = r^5$ 이므로 $r^5 = \frac{192}{6} = 32$ $\therefore r = 2$ $ar^2 = 6$ 에서 $a = \frac{3}{2}$
- 36) a=5, r=2 \Rightarrow 등비수열의 첫째항을 a, 공비를 r이라 하자. $a_2=ar=10$, $a_5=ar^4=80$ $\frac{a_5}{a_9}=\frac{ar^4}{ar}=\frac{80}{10}, \ r^3=8 \quad \therefore r=2$

따라서 첫째항 a=5이고, 공비는 2이다.

- 37) a = 64, $r = \frac{1}{2}$ $\Rightarrow \frac{a_7}{a_4} = \frac{ar^6}{ar^3} = r^3$ 이므로 $r^3 = \frac{1}{8}$ $\therefore r = \frac{1}{2}$ $ar^3 = 8$ 이라 a = 64
- 38) $a = \frac{2}{3}$, r = 3 $\Rightarrow a_4 = ar^3 = 18 \qquad \cdots \qquad \bigcirc$ $a_6 = ar^5 = 162 \qquad \cdots \qquad \bigcirc$ $\bigcirc \div \bigcirc \Rightarrow \text{ 하면}$ $r^2 = 9 \qquad \therefore \quad r = 3 \ (\because \ r > 0)$ $\bigcirc \text{에서} \quad a = \frac{2}{2}$
- 39) $a = \frac{3}{8}, r = 4$ $\Rightarrow a_3 = ar^2 = 6 \qquad \cdots \qquad \bigcirc$ $a_5 = ar^4 = 96 \qquad \cdots \qquad \bigcirc$ $\bigcirc \div \bigcirc \cong \text{ 하면}$ $r^2 = 16 \qquad \therefore r = 4 \ (\because r > 0)$ $\bigcirc \cap \bowtie A = \frac{3}{8}$

40) 6

- \Rightarrow 첫째항을 a, 공비를 r라고 하면 $a_4 = ar^3 = 24$

 $a_{\circ} = ar^7 = 384$

- $\square \div \bigcirc$ 에서 $r^4 = 16$ $\therefore r = \pm 2$
- 그런데 r > 0이므로 r = 2
- 이것을 \bigcirc 에 대입하면 8a=24
- 따라서 $a_n = 3 \times 2^{n-1}$ 이므로 $a_2 = 3 \times 2^{2-1} = 6$
- 41) 768
- \Rightarrow 첫째항을 a, 공비를 r이라 하면 $a_4 = 12$, $a_7 = 96$ 에서

$$ar^3 = 12$$
, $ar^6 = 96$

두 식을 연립하여 풀면 $a=\frac{3}{2}, r=2$

따라서
$$a_n=rac{3}{2} \, \cdot \, 2^{n-1}$$
이므로 $a_{10}=rac{3}{2} \, \cdot \, 2^9=768$

- 42) 2
- \Rightarrow 등비수열 a_n 에 대하여 $a_1 + a_2 = a_1(1+r) = 8$, $a_1a_2 = a_1^2r^2 = 36 \Rightarrow a_1r = 6$ 을 만족한다. 따라서 $a_1 = 2, r = 3$ 을 만족한다.
- 43) 243
- \Rightarrow 첫째항을 a, 공비를 r라 하면

$$\frac{a_6}{a_3} = \frac{ar^5}{ar^2} = r^3$$
이므로

$$r^3 = \frac{27\sqrt{3}}{2} = 3\sqrt{3} \qquad \therefore r = \sqrt{3}$$

$$\therefore r = \sqrt{3}$$

$$ar^2 = 9$$
에서 $a = 3$

$$\therefore a_0 = 3 \cdot (\sqrt{3})^8 = 243$$

- 44) $\frac{1}{4}$
- $\Rightarrow a_3 = ar^2, \ a_4 = ar^3$ 이므로 $a_3 : a_4 = 2 : 1$ 일 때, $r = \frac{1}{2}$

$$a_3 + a_4 = ar^2 + ar^3 = \frac{3}{8}a = 24$$

$$\therefore a = 64$$

$$a_n = 64 \times \left(\frac{1}{2}\right)^{n-1} = \left(\frac{1}{2}\right)^{n-7}$$

$$a_9 = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

- \Rightarrow 등비수열의 첫째항을 a, 공비를 r이라 하자.

$$\frac{a_7}{a_2} = \frac{ar^6}{ar} = \frac{192}{6}, \ r^5 = 32 \ \therefore r = 2, \ a = 3$$

$$\therefore a_5 = ar^4 = 3 \cdot 2^4 = 48$$

- 46) 672
- \Rightarrow 첫째항을 a, 공비를 r라 하면

$$a_5 = ar^4 = 21$$

$$a_7 = ar^6 = 84$$

 \bigcirc ÷ ①을 하면 $r^2 = 4$

이때, 각 항이 모두 양수이므로 r=2

$$\bigcirc$$
에서 $16a = 21$ $\therefore a = \frac{21}{16}$

$$\therefore a = \frac{21}{16}$$

$$a_{10} = \frac{21}{16} \cdot 2^9 = 672$$

- 47) $\frac{64}{9}$
- \Rightarrow 등비수열 $\{a_n\}$ 의 첫째항을 a, 공비를 r라 하면

$$a_3=ar^2=36\quad\cdots\bigcirc$$

$$a_4 + a_5 = ar^3 + ar^4 = 40$$
 ... ©

⊙을 ⓒ에 대입하면

$$36r + 36r^2 = 40$$

$$9r^2 + 9r - 10 = 0$$

$$(3r-2)(3r+5)=0$$

$$r > 0$$
 이므로 $: r = \frac{2}{3}$, $a = 81$

$$\therefore a_7 = ar^6 = 81 \times \left(\frac{2}{3}\right)^6 = \frac{64}{9}$$

- 48) 80
- $\Rightarrow a_1 + a_2 = 15$ 에서

$$a+ar=15$$
 $\therefore a(1+r)=15$ \cdots

$$a_3 + a_4 = 60$$
에서

$$ar^2 + ar^3 = 60$$

$$ar^2 + ar^3 = 60$$
 $\therefore ar^2(1+r) = 60$ \cdots

$$\bigcirc$$
 ÷ ①을 하면 $r^2=4$ \therefore $r=2$ $(\because r>0)$

$$\therefore r=2 \ (\because r>0)$$

$$\bigcirc$$
에서 $a=5$

따라서
$$a_n = 5 \cdot 2^{n-1}$$
이므로 $a_5 = 5 \cdot 2^4 = 80$

- 49) 256
- $\Rightarrow a_3 + a_5 = 10$ 에서

$$ar^2 + ar^4 = 10$$

$$\therefore ar^2(1+r^2) = 10 \cdots \bigcirc$$

$$a_4 + a_6 = 20$$
에서

$$ar^3 + ar^5 = 20$$

$$\therefore ar^3(1+r^2) = 20 \cdots \bigcirc$$

$$\bigcirc$$
에서 $a = \frac{1}{2}$

따라서
$$a_n = \frac{1}{2} \cdot 2^{n-1} = 2^{n-2}$$
이므로 $a_{10} = 2^8 = 256$

- 50) $\frac{5}{2}$
- \Rightarrow 첫째항을 a, 공비를 r이라 하면

$$a_3 = 2a_4$$
에서 $ar^2 = 2ar^3$: $r = \frac{1}{2}$

$$\therefore r = \frac{1}{2}$$

$$a_3 + a_5 = ar^2(1+r^2) = \frac{a}{4}\left(1+\frac{1}{4}\right) = 25$$
이므로 $a = 80$

따라서
$$a_n = 80 \cdot \left(\frac{1}{2}\right)^{n-1}$$
이므로

$$a_6 = 80 \cdot \left(\frac{1}{2}\right)^5 = \frac{5}{2}$$

51) 324

첫째항을
$$a$$
, 공비를 r $(r>0)$ 라 하면 $a_2+a_3=4$ 에서 $ar+ar^2=4$ $\therefore ar(1+r)=4$ \cdots \bigcirc $a_4+a_5=36$ 에서 $ar^3+ar^4=36$ $\therefore ar^3(1+r)=36$ \cdots \bigcirc \bigcirc \div \bigcirc \ominus 하면 $r^2=9$ $\therefore r=3$ $(\because r>0)$ $\therefore a_6+a_7=ar^5+ar^6=ar^5(1+r)$ $=r^2\times ar^3(1+r)=9\times 36=324$

52) 20

첫째항을
$$a$$
, 공비를 r 라고 하면 $a_1 + a_2 = a + ar = 5$ ① $a_3 + a_4 = ar^2 + ar^3 = r^2(a + ar) = 10$ ②① : ①에서 $r^2 = 2$... $a_5 + a_6 = ar^4 + ar^5 = r^2(ar^2 + ar^3)$ $= r^2(a_3 + a_4) = 2 \times 10 = 20$

53) 96

첫째항을
$$a_1$$
, 공비를 r 이라 하면 $a_3 = a_1 r^2 = 12 \cdots$
$$\frac{a_4 + a_5}{a_1 + a_2} = \frac{a_1 r^3 (1 + r)}{a_1 (1 + r)} = 8$$
에서 $r^3 = 8$, $r = 2$ 이다.③에 대입하면 $a_1 = 3$ 이므로 $a_6 = a_1 r^5 = 3 \cdot 32 = 96$ 이다.

54) $\frac{9}{16}$

$$a_3=9$$
에서 $ar^2=9$ ····· \bigcirc
 $a_2:a_5=8:1$ 에서 $a_2=8a_5$
 $ar=8ar^4,\ r^3=\frac{1}{8}$ $\therefore \ r=\frac{1}{2}$
 $r=\frac{1}{2}$ \bigcirc \bigcirc 에 대입하면 $a=36$
따라서 $a_n=36\cdot\left(\frac{1}{2}\right)^{n-1}=9\cdot 2^{3-n}$ 이므로 $a_7=9\cdot 2^{-4}=\frac{9}{16}$

 \Rightarrow 첫째항을 a, 공비를 r (r>0)라 하면

55) 48

56) 18

$$\Rightarrow$$
 공비를 r $(r>0)$ 라 하면

$$a_2:a_5=1:27$$
에서 $27a_2=a_5$
$$27\cdot 2r=2r^4,\ r^3=27$$
 $\therefore\ r=3$ 따라서 $a_n=2\cdot 3^{n-1}$ 이므로 $a_3=2\cdot 3^2=18$

57)
$$\frac{2}{3}$$

$$\Rightarrow$$
 $a_2=ar=6$, $a_5=9a_3$ 이므로 $ar^4=9ar^2$, $r^2=9$ $ar=6$ 의 양변을 r^2 으로 나누면 $\frac{a}{r}=\frac{6}{r^2}=\frac{6}{9}=\frac{2}{3}$

58)
$$\frac{1}{7}$$

$$a_5 = ar^4 = 56 \quad \cdots \quad \bigcirc$$

$$a_9 = ar^8 = 224 \quad \cdots \quad \bigcirc$$

$$\bigcirc, \quad \bigcirc \Rightarrow \quad \bigcirc \Rightarrow \quad \bigcirc \Rightarrow \quad \Rightarrow \Rightarrow$$

$$\therefore r^4 = 4 \quad , \quad a = 14$$

$$\therefore \frac{r^2}{a} = \frac{2}{14} = \frac{1}{7}$$

59) 54

$$ightharpoonup 등비수열의 첫째항을 a , 공비를 r 이라 하자.
$$\frac{a_5}{a_2} = \frac{ar^4}{ar} = r^3 = 27, \ r = 3$$

$$a_1 + a_2 = a + ar = 8, \ 4a = 8, \ a = 2$$

$$\therefore a_4 = ar^3 = 2 \cdot 3^3 = 54$$$$

60)

 $ightharpoonup 등비수열 <math>\left\{a_n
ight\}$ 의 첫째항을 a, 공비를 r이라 하자. $a_4=ar^3=4$ \cdots ① $a_2:a_5=8:1$ \Rightarrow $8a_5=a_2$ $8ar^4=ar$ $8r^3=1$ $\therefore r=\frac{1}{2}$

61) 8

62) 8

 \Rightarrow 공비를 r라 하면 수열 $\frac{1}{8}$, a, b, c, 32는 첫째항이 $\frac{1}{\varrho}$, 제5항이 32인 등비수열이므로 $32 = \frac{1}{9} \cdot r^4$ 에서 $r^4 = 256$ $r^2 = 16$ $\therefore r = 4 \ (\because r > 0)$ $a = \frac{1}{8} \cdot r = \frac{1}{2}, b = \frac{1}{8} \cdot r^2 = 2, c = \frac{1}{8} \cdot r^3 = 80$

63) 2

 \Rightarrow 등비수열의 공비를 r이라 하면 첫째항이 6, 제 4항이 48이므로 $a_4=6 \cdot r^3=48$ $\therefore r=2$

64) 9

 \Rightarrow 수열 $1, x_1, x_2, x_3, \dots, x_n$ 1024는 첫째항이 1,제n+2항이 1024인 등비수열이고, 공비가 2이므 로 $1024 = 1 \cdot 2^{n+1}$ 에서 $2^{n+1} = 1024$ 이때, $1024 = 2^{10}$ 이므로 n+1=10 $\therefore n = 9$

65) 216

 \Rightarrow 공비를 r라 하면 수열 $\frac{2}{3}$, a, b, c, 54는 첫째항이 $\frac{2}{2}$, 제5항이 54인 등비수열이므로 $54 = \frac{2}{3} \cdot r^4$, $r^4 = 81$, $r^2 = 9$ $\therefore r = 3 \ (\because r > 0)$ 따라서 $a = \frac{2}{3} \cdot r = 2$, $b = \frac{2}{3} \cdot r^2 = 6$, $c = \frac{2}{3} \cdot r^3 = 18$ 이므로 $abc = 2 \times 6 \times 18 = 216$

 \Rightarrow 공비를 r라 하면 수열 $\frac{3}{2},\;a,\;b,\;c,\;24$ 는 첫째항이 $\frac{3}{2}$, 제5항이 24인 등비수열이므로 $24 = \frac{3}{2} \cdot r^4$ 에서 $r^4 = 16, \ r^2 = 4$ $\therefore r=2 \ (\because r>0)$ 따라서 $a = \frac{3}{2} \cdot r = 3$, $b = \frac{3}{2} \cdot r^2 = 6$, $c = \frac{3}{2} \cdot r^3 = 12$ 이므로 a+b+c=3+6+12=21

67) 제15항

 \Rightarrow 첫째항이 16, 공비가 $\frac{1}{2}$ 이므로 $a_n = 16 \cdot (\frac{1}{2})^{n-1} = 2^{-n+5}$ or

$$\frac{1}{1024} \! = \! 2^{-10} < \frac{1}{1000} \text{ 이므로 } n \! = \! 15 \text{ 이다}.$$

68)
$$a = \frac{1}{2}$$
, $b = 1$, $c = 2$

 \Rightarrow 공비를 r라 하면 수열 $\frac{1}{4}$, a, b, c, 4는 첫째항이 $\frac{1}{4}$, 제5항이 4인 등비수열이므로 $4 = \frac{1}{4} \cdot r^4$ 에서 $r^4 = 16$ $r^2 = 4$ $\therefore r = 2 \ (\because r > 0)$ $\therefore a = \frac{1}{4} \cdot r = \frac{1}{2}, b = \frac{1}{4} \cdot r^2 = 1, c = \frac{1}{4} \cdot r^3 = 2$

69) -128

 □ → -4와 32 사이에 넣은 두 개의 수를 x, y라고 하 면 -4, x, y, 32이때, 공비를 r라고 하면 첫째항이 a=-4, 제4항 이 32이므로 $a_4 = ar^3 = 32$ $-4r^3 = 32$ 이므로 $r^3 = -8$ $\therefore xy = ar \times ar^2 = a^2r^3 = (-4)^2 \times (-8) = -128$

70) 78

 \Rightarrow 첫째항 $a_1 = 2$, 공비를 r이라 하면 $a_1 r^4 = 162$ 이므로 r = 3이다. 따라서 $a = a_1 r = 6$, $b = a_1 r^2 = 18$, $c = a_1 r^3 = 54$ 이 므로 a+b+c=78이다.

71) 제7항

 $\Rightarrow a_2 + a_4 = 30$ 에서

 $ar + ar^3 = 30$ \therefore $ar(1+r^2) = 30$ \cdots $a_3 + a_5 = 15$ 에서 $ar^2 + ar^4 = 15$ $\therefore ar^2(1+r^2) = 15 \cdots$ \bigcirc ÷ \bigcirc 을 하면 $r = \frac{1}{2}$ Э에서 a = 48 $\therefore a_n = 48 \cdot \left(\frac{1}{2}\right)^{n-1} = 3 \cdot 2^{5-n}$ $a_6=rac{3}{2},\;a_7=rac{3}{4}$ 이므로 처음으로 1보다 작아지는 항은 제7항이다.

72) 제9항

 \Rightarrow 첫째항을 a, 공비를 r라 하면 $\frac{a_6}{a_3} = \frac{ar^5}{ar^2} = r^3$ 이므로 $r^3 = \frac{81}{3} = 27$: r = 3 $ar^2 = 3$ 에서 $a = \frac{1}{3}$ $\therefore a_n = \frac{1}{2} \cdot 3^{n-1} = 3^{n-2}$

$$3^{n-2}>1000$$
에서 $3^6=729,\ 3^7=2187$ 이므로 $n-2=7$ 즉, $n=9$ 일 때, 처음으로 1000 보다 커진다. 따라서 처음으로 1000 보다 커지는 항은 제9항이다.

73)
$$-24$$

$$ightharpoonup
ightharpoonup
ig$$

$$74) -512$$

ightharpoonup 등비수열 $\{a_n\}$ 의 첫째항을 a, 공비를 r 이라고 하자.

$$a_2 + a_3 = ar + ar^2 = 2$$
 ··· ①
$$a_5 + a_6 = ar^4 + ar^5 = -16$$
 ··· © ①을 하면 $r^3 = -8$ $\therefore r = -2$ ①에 $r = -2$ 를 대입하면
$$-2a + 4a = 2, \ 2a = 2$$
 $\therefore a = 1$
$$\therefore a_n = (-2)^{n-1}$$

$$\therefore a_{10} = (-2)^9 = -512$$

75)
$$2^{12}$$

$$ightharpoonup a_n$$
은 공비가 r 인 등비수열이므로 $a_n=ar^{n-1}$ 이다.
$$a_1 \cdot a_8 = ar^{1-1} \times ar^7 = 8 \ , \ a^2r^7 = 8$$
이다.
$$\vdots \ a_1 \times \dots \times a_8 = a \times ar \times \dots \times ar^7 = a^8 \times r^{28} = (a^2r^7)^4$$

$$= 8^4 = (2^3)^4 = 2^{12}$$

76)
$$\frac{11}{9}$$

당
$$a_1=2,\ a_2=6$$
 이므로
$$a_n=2+(n-1)\cdot 4=4n-2,\quad b_n=2\cdot 3^{n-1} \text{ 이다.}$$
 따라서 $a_{50}=4\cdot 50-2=198,\quad b_5=2\cdot 3^{5-1}=162$ 가 되어 $\frac{a_{50}}{b_5}=\frac{198}{162}=\frac{11}{9}$ 이다.