spezielle Definitionen von Vektorräumen, Matrizen und Endomorphismen

H. Haustein, P. Lehmann

6. August 2018

1 Vektorräume

Definition	Erklärung	Bemerkungen
unitär / euklidisch	Es gibt ein Skalarprodukt.	Man kann Abstände und Winkel messen.
		$\cos \sphericalangle(a,b) = \frac{\langle a,b \rangle}{\ a\ \cdot \ b\ }$

2 Matrizen

Definition	Erklärung	Bemerkungen
hermitesch / symmetrisch	$A^T = \overline{A}$	diagonalisierbar
unitär / orthogonal	$A^{-1} = (\overline{A})^T$	
normal	$A(\overline{A})^T = (\overline{A})^T A$	Jede selbstadjungierte oder hermitesche oder unitäre
		Matrix ist normal.
selbstadjungiert	$A = (\overline{A})^T$	

3 Endomorphismen

Definition	Erklärung	Bemerkungen
selbstadjungiert	$\langle f(v), w \rangle = \langle v, f(w) \rangle$	$\Leftrightarrow A \text{ symmetrisch}$
unitär / orthogonal	$\langle v, w \rangle = \langle f(v), f(w) \rangle$	
normal	$\langle (f \circ f^{adj})(v), w \rangle = \langle (f^{adj} \circ f)(v), w \rangle$	