

Useful References

- <u>www.Kaggle.com</u> (Analytics Competition site, which gives you ideas on how companies are leveraging data analytics to solve business problems)
- http://www.informationisbeautiful.net/ (Visualization)
- http://flowingdata.com/ (Visualization)
- https://github.com/d3/d3/wiki/Gallery (Visualization)
- https://appsource.microsoft.com/en-us/marketplace/apps?product=power-bi-visuals&page=1&src=office&corrid=4b40ed50-9a49-424b-89b8-5438c04a1707&omexanonuid=efea02b2-6e57-4066-a723-998c1c3484a8

Terminologies in the Data Science World

Car Industry - Examples of business requirements

- To improve car sales you want to understand your customer better and personalize your incentives
- You have made various marketing investments and you would like to understand how effective they
 were in boosting sales
- You would like to understand about customers talking about you on social media
- You want to improve customer loyalty by providing better customer experience
- You have to improve our predictions for requirements of Aftermarket (spare and services)
- You would like to build a driverless car
- You would like to understand how customers use your cars (local, city, long distance)

These are all nice business requirements, but ...

... do we even know if we have a problem?

Example of a business problem statement

We have a problem of customer churn!

Data Analytics Methodology

Data Analytics Stages – Deeper Look

Data Exploration

Visualization

Supervised Analytical modelling Techniques

Unsupervised Analytical Techniques

DATA \rightarrow

- Mean, Median, Mode, Var, SD
- Data Distribution
- Summary tables
- Outliers Analysis

- Time series, geo map, heatmaps
- Bar, scatter, boxplots

- Regression

 (Example: What will be my sales if I open a branch in this location)
- Classification
 (Example: How can
 I predict the
 probability of a
 particular car
 having a parts issue
 within 1 year of
 purchase)

When you have a specific question on an interest variable

- Clustering –
 Example: How can I profile my customers using segmentation
- Market Basket
 Analysis How can
 I cross sell/up sell
 other products
 (insurance/accessor
 ies) when they
 purchase a specific
 car model

When you are fishing for information

Align our exercises to these techiques

Inferences - Keep the explanation simple

Business Requirement	Hypothesis	Data Sourcing & Sampling / Clean-up	Data Exploration / Visualization	Analytical Modelling	Recommendations
Target Variable(s)	Input Variables V1 V2 V3	V1 V2 V4 V7 V13 V15	V1 V2 V4 V7 V13 V15	V1 V2 V7 V15 V21 V24	V1 V2 V15
	Imagine every possible contributing variables using business intuition and structured design thinking process	Practicality of data collection process eliminates some insights	Hotspots are identified (probable causes)	Variables not correlated with Target Variables are eliminated	80-20 Models prioritise important variables

Guide to Data Preparation

Type of Data

Data Sources

Internal Data from the systems (e.g. Sales, Payroll, Attrition, Earnings Data)

from other sources (e.g. Census Data, Journals, Publications)

Survey (e.g. Feedback on the new feature)

Observed
Data (e.g.
Traffic
Pattern at an intersection)

Experimental
Study Data
(e.g.
Experiment
and Control
group for
new drug)

Existing

Generated

Sampling

Why should we perform Data Sampling?

Because ...

- Getting data for full population is simply not possible
- It is very expensive
- It is time consuming
- It takes a lot of effort

Sampling Types

What is the average age of male who participated in the 10K Run in Mumbai marathon in 2018

44	155	123	49	148	73	157	195	98	54
48	112	6	171	116	185	175	181	136	135
53	163	120	194	123	192	119	113	48	106
62	11	80	140	10	137	90	9	22	183

SIMPLE RANDOM

Data is selected completely in Random from original population.

Sampling Types - continued

What is the average age of male who participated in the 10K Run in Mumbai marathon in 2018

Randomly Chosen column

6	6	9	9	10	10	10	11
22	22	26	44	48	48	48	49
22	22	20	44	40	40	40	49
53	54	54	62	73	73	80	80
90	90	98	98	106	106	112	113
113	116	116	116	116	119	119	120
120	123	123	123	123	135	135	136
136	137	137	137	140	140	148	148
155	157	157	163	171	171	171	175
175	181	181	183	183	185	185	185
185	192	192	192	194	194	195	195

SYSTEMATIC RANDOM

Data is selected in Random from original population within a systematic process.

Sampling Types - continued

If you are selling a product, how do you ensure that you have marketed to a variety of folks in different age group?

STRATIFIED RANDOM

A heterogeneous data sample is created from homogeneous groups

Sampling Types – cont.

If you are running for election, how do you ensure that you have campaigned to a good sample of cities, villages and towns?

CLUSTER RANDOM

A heterogeneous data sample is created from heterogeneous groups

Sampling Types – cont.

You are opening a new shop in a new geography, but you have no idea about local preferences

Expert Opinion

Take opinion of a few experts to determine your hypothesis.

You do not have time to do an expensive survey for a product. You decide to partner with a local grocer

Convenience Sampling

You talk to only those customers who come into the store.

Missing Data Treatment

How do we treat missing values?

- Replace with zero
- Replace with Mean or Median
- Delete entire Observation
- Replace with alternate source
- Business logic based data update
- Manual correction from source

Data Awareness

Central Region - Mean

Term	Definition	Example
Mean	Arithmetic Mean or Average is Σ Values / (No. of Values)	X = 8,1,2,4,6,0,7 Mean(x) = 28 / 7 = 4

Central Region - Median

Term	Definition	Example
	Mid point of a sequence of numbers arranged	X = 1,2,4,6,7,8,10 Median (x) = 6
Median	in alphabetical order (or average of mid 2 points if even)	X = 1,2,4,6,7,8,10, 11 Median (x) = (6 + 7) / 2 = 6.5

Central Region - Mode

Term	Definition	Example
Mode	Number that occurs in maximum frequency in a given sequence of numbers	X = 1,2,2,3,2,4,5,4,4,4,5 Mode (x) = 4

Central Region - Percentiles

Term	Definition	Example
		Revenue for Car Dealers (in crores) are as follows 7.2, 1.2, 4.8, 1.5, 1.8, 2.1, 4.3, 6.2, 4.3, 1.7, 1.9, 2.2, 4.3
	Divide the data into 100 parts and "Percentile" indicates what % of data	Which revenue represents 30% percentile?
	observations are below that value	Arrange the data in ascending order
Percentiles	<pre>i = (P / 100) * n i = Percentile Location</pre>	1.2 1.5 1.7 1.8 1.9 2.1 2.2 4.3 4.3 4.3 4.8 6.2 7.2
	P = Percentile	i = 30 / 100 * 13 = 3.9
	n = sample size	The 4 th element represents the revenue at 30 th percentile which is 1.8
		1.2 1.5 1.7 1.8 1.9 2.1 2.2 4.3 4.3 4.3 4.8 6.2 7.2

Central Region - Quartile

	Q1 C)2 C	23
25%	25%	25%	25%

Term	Definition	Example
	Divide the group into 4 parts each with 25% of the data Q1 represents the point where you find 25% of the data below it (same as 25 th percentile) Q1 = Value at (n + 1)/4	X = 100, 105, 107, 120, 125, 135, 145, 147, 150, 152, 152,154, 156, 165, 168, 170 There are n=16 values
Quartile	Q2 represents the point where you find 50% of the data below it (also same as median and 50^{th} percentile) Q2 = Value at 2^* (n + 1)/4	Q1 = Value at $(16+1)/4$ = Value at 4.5 Which is average of 120 and 125 = 122.5 Q2 = Median = $(147 + 150)/2 = 148.5$
	Q3 represents the point where you find 75% of the data below it (same as 75^{th} percentile) Q2 = Value at $3*$ (n + 1)/4	Q3 = Value at 3 * (16 + 1)/4 = Value at 12.75 which is average between 154 & 156 = 155

Measure of Variability - Variance

Term	Definition
Variance	Variance is a measure of spread of the values Variance = Σ (Xi – Mean)^2 / No. of Values (where i = 1 to No. of Values)

х	Mean	Diff	Squared Difference
60	86.33	-26.33	693.2689
70	86.33	-16.33	266.6689
83	86.33	-3.33	11.0889
92	86.33	5.67	32.1489
101	86.33	14.67	215.2089
112	86.33	25.67	658.9489
			· · · · · · · · · · · · · · · · · · ·
		Total Sum	
		Squared	1877.333
		Variance	312.8889
		SD	17.68867

Measure of Variability – Standard Deviation

Term	Definition
Standard Deviation	$SD = \sqrt{Variance}$

			Squared
X	Mean	Diff	Difference
60	86.33	-26.33	693.2689
70	86.33	-16.33	266.6689
83	86.33	-3.33	11.0889
92	86.33	5.67	32.1489
101	86.33	14.67	215.2089
112	86.33	25.67	658.9489

Total Sum	
Squared	1877.333
Variance	312.8889
SD	17.68867

Population versus Statistic

- Population is entire data set and Parameter is a variable of the population (like age, weight)
- Sample is a subset of Population and Statistic is a variable of the Sample (like age, weight)

Population	Sample
Population size = N Mean $\mu = \Sigma x_i / N$	Sample Size = n Mean $x = \Sigma x_i / n$
Variance $\sigma^2 = (\Sigma(x_i - \mu)^2 / N)$	Variance $\sigma^2 = \Sigma(x_i - \mu)^2 / (n-1)$
Standard Deviation = $\sigma = \sqrt{(\Sigma(x_i - \mu)^2 / N)}$	Standard Deviation $\sigma = \sqrt{(\Sigma(x_i - \mu)^2 / n - 1)}$
	Standard Error of the sample mean = σ / \forall n

Quick Question: What should be a minimum sample size as a general rule of thumb?

Measure of Variability – Coefficient of Variation

Term	Definition
CV	$CV = \sigma \div \mu * 100$
	Standard Deviation / Mean * 100

			Squared
X	Mean	Diff	Difference
60	86.33	-26.33	693.2689
70	86.33	-16.33	266.6689
83	86.33	-3.33	11.0889
92	86.33	5.67	32.1489
101	86.33	14.67	215.2089
112	86.33	25.67	658.9489

Total Sum	
Squared	1877.333
Variance	312.8889
SD	17.68867
CV	20.47

Outliers in Data

What is an outlier?

• Outlier is an extreme value in your observations. Its an observation point that is distant from other observations in that group of data

Identifying Outliers with Box Plots

20

Q4

Outlier Treatment

How to deal with outlier?

- Remove entire observation
- Replace with mean/median
- Manually correct errors
- Apply Log transformation or scaling
- Retain outlier as-is
- Analyse only the outliers

Measure of Shape

Skewness: Measure of absence of Symmetry

Kurtosis: Peakedness of a distribution

Measure of Association

Correlation: Measure of degree relatedness of Numeric Data It varies between -1 to +1

Correlation = -0.84679

Correlation = -0.14989

Correlation = 0.828728

Key considerations in Visualization

- Every aspect of the chart should tell a separate story
- Colour is not just for visual appeal, but should indicate a data characteristic
- Use the right chart for the right purpose
- Its not always readymade charts:- Use your creativity in drawing your own analytics story

When to use a bar chart

When you are comparing values of categorical variables

When to use a histogram

When you are looking at frequency distribution

When to use a scatter chart

When you are identifying correlation between 2 variables

When to use a boxplot

When you are looking for outliers

When to use a Line chart

When you are comparing values as a function of Time

Inferential Statistics

- You are aware of a descriptive statistics -You have a sample and you can identify the mean, median, mode, standard deviation, variance, quartiles...etc
- Now based on this, when you draw conclusion about a population, it becomes inferential statistics
- The important question is how "confident are you?" when you make a statement about the population

Mean, Median, Mode,

Var, SD, IQR, Percentile

for the sample

described as-is

Customers switch

insurance company

after the first year

Lets take up an example to understand this

The average rent in a particular locality is generally assumed to be INR 25,000 for a 2 BHK apartment with a standard deviation of 6000.

You set out to "disprove" this

The total number of house is in excess of 10,000 in that locality. Because its very difficult to reach out all houses, you perform a random sampling technique to collect data from 50 houses.

Descriptive Statistics: You analyze the data and find that the mean is 23,000.

Inferential Statistics: Can you make a "confident" statement that you can "disprove" the myth of 25,000?

Confidence Interval

- When you are pushed to make a "confident statement" you become a bit defensive
- So, instead of stating that the rent 23000 (called as Point Estimate), you are better off saying 23000 +/something (called as Confidence Interval)

Statistically it is written as Point Estimate of Sample +/- Confidence Interval $CI = Z * SE = Z * (SD / \sqrt{n})$ Z takes the value of 1.96 @ 95% confidence level n = sample size $CI = 1.96 * 6000 / \sqrt{50} = 1663$ Rent is 23000 +/- 1663

If the situation is critical and you need to provide an answer @ 99% confidence, then use a Z value of 2.58

$$CI = 2.58 * 6000 / \sqrt{50} = 2189$$

You could say with "95% confidence" the rent is between 21337 and 24663 and challenge the current belief 25000 (which is outside this range)

Then the range is between 20811 and 25189 which includes the current belief. You just failed to "disprove" the current belief

Hypothesis Test

What we just did can be called as a Hypothesis Test

When to use different statistical tests

Hypothesis Tests using distribution	When to use	Example/Use Case
Z-Distribution	 When you are comparing means between sample and population (or) 2 sets of samples and you have known population mean and Standard Deviation 	• The mean monthly cell phone bill in a city is μ = 400
T-Distribution	 When you are comparing means between sample and population (or) 2 sets of samples, but you have unknown population standard deviation. When sample size is high, the t-> Z 	Is there a difference in average dividend yield between stocks listed on the NYSE & NASDAQ?
F Distribution	 Testing hypotheses about the equality of two population Variances 	 A new drug is evaluated for different dosage for different age group.
Chi-Square Tests	X2 Test for the Difference Between Two Proportions	 Proportion of females who are left handed is equal to the proportion of males who are left handed
Anova	 The one-way analysis of variance (ANOVA) is used to determine whether there are any statistically significant differences between the means of three or more independent (unrelated) groups 	Measure if three or more different golf clubs yield different distance

Truth Table

Evaluating what may go wrong with hypothesis testing

Court Case		Hypothesis Testing based Decision	
		Do not Reject H0 (Innocent Verdict)	Reject H0 and select Ha (Guilty Verdict)
Actual Situation /	Do not Reject H0 (Innocent)	✓ Okay	
Reality / Truth	Reject H0 and select Ha (Guilty)		✓ Okay

Which is costly to make Type 1 or Type 2

Regression Analysis

The *regression* equation attempts to explain the relationship between the Y and X variables through *linear* association.

Represented as $Y = a + b_1X_1 + b_2X_2 + ...b_nX_n$.

Where "b_i" represents slope or angle and "a" represents Intercept

Example

MPG of a CAR = 9.6 + 1.2*(time to reach .5KM) - 3.9*weight in tonnes

Steps in Regression Analysis

