获得的答案

Let $M = (Q, \Sigma, \delta, q_0, F)$ be the DFA that recognizes A,

Now we build a NFA M' for A^R as follows:

- \bullet Reverse all the arrows of M
- Add a new start state q_0' for M', and from q_0' , add \in -transitions to each state of M' corresponding to accept states of M.

M

M':

Here $q_0' = q_{accept}'$

- For any $w \in \Sigma^*$, there is a path following w from the start state to an accept sate in M iff there is a path following w^R from q_0' to q_{accept}' in M'
- That means that $w \in A$ iff $w^R \in A^R$.