There's a house, away there to the left.

Let's go.- said Sylvie

It looks a very comfable house!- said Bruno

Alice's Adventures in Wonderland. Lewis Carroll

3. Espaços Vectoriais

- O Espaço IRⁿ.
- Definição de Espaço Vectorial
- Subespaço Vectorial
- Combinação linear
- Subespaço Gerado
- Independência Linear
- Base e dimensão
- Espaço das colunas de A, R(A)
- Espaço nulo ou núcleo, N(A)

Seja n um n^{O} natural. Recorde-se que

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_1, x_2, \dots, x_n, \in \mathbb{R}\}$$

 $\acute{\mathrm{e}}$ o conjunto das sequências ordenadas de n números reais.

As sequências
$$x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$$
 representam-se por matrizes colunas de n números reais $x=\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}$. que se designam por vectores.

Este conjunto *algebrizado* com uma operação de **adição** e uma operação de **multiplicação por um escalar** constitui um **espaço vectorial.**

Os elementos de um espaço vectorial chamam-se vectores. Os números reais são por vezes chamados escalares.

Seja n um n^{O} natural. Recorde-se que

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_1, x_2, \dots, x_n, \in \mathbb{R}\}$$

é o conjunto das sequências ordenadas de n números reais. As sequências $x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$ representam-se por matrizes colunas de n números reais $x=\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}$. que se designam por vectores.

Este conjunto *algebrizado* com uma operação de **adição** e uma operação de **multiplicação por um escalar** constitui um **espaço vectorial.**

Os elementos de um espaço vectorial chamam-se vectores. Os números reais são por vezes chamados escalares. Seja n um n^{O} natural. Recorde-se que

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_1, x_2, \dots, x_n, \in \mathbb{R}\}$$

é o conjunto das sequências ordenadas de n números reais. As sequências $x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$ representam-se por matrizes

colunas de
$$n$$
 números reais $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. que se designam por vectores.

Este conjunto *algebrizado* com uma operação de **adição** e uma operação de **multiplicação por um escalar** constitui um **espaço vectorial**.

Os elementos de um espaço vectorial chamam-se vectores. Os números reais são por vezes chamados escalares.

- conjunto das matrizes de ordem $m \times n$,
- conjunto das matrizes colunas $\begin{pmatrix} x_1 \\ 0 \\ -x_1 \end{pmatrix}$,
- conjunto dos polinómios de coeficientes reais,

$$P = \{p(x) = a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n : a_i \in \mathbb{R}\}\$$

- conjunto das funções reais e contínuas,
- $A = \{(x, y) : x, y \in \mathbb{R}\}$
- $B = \{(x,0) : x \in \mathbb{R}\}$
- $C = \{(x, y, z) : x = y = z, x, y, z \in \mathbb{R}\}$

- conjunto das matrizes de ordem $m \times n$,
- conjunto das matrizes colunas $\begin{pmatrix} x_1 \\ 0 \\ -x_1 \end{pmatrix}$,
- conjunto dos polinómios de coeficientes reais,

$$P = \{p(x) = a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n : a_i \in \mathbb{R}\}\$$

- conjunto das funções reais e contínuas,
- $A = \{(x, y) : x, y \in \mathbb{R}\}$
- $B = \{(x,0) : x \in \mathbb{R}\}$
- $C = \{(x, y, z) : x = y = z, x, y, z \in \mathbb{R}\}$

- conjunto das matrizes de ordem $m \times n$,
- conjunto das matrizes colunas $\begin{pmatrix} x_1 \\ 0 \\ -x_1 \end{pmatrix}$,
- conjunto dos polinómios de coeficientes reais,

$$P = \{p(x) = a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n : a_i \in \mathbb{R}\}\$$

- conjunto das funções reais e contínuas,
- $A = \{(x, y) : x, y \in \mathbb{R}\}$
- $B = \{(x,0) : x \in \mathbb{R}\}$
- $C = \{(x, y, z) : x = y = z, x, y, z \in \mathbb{R}\}$

- conjunto das matrizes de ordem $m \times n$,
- conjunto das matrizes colunas $\begin{pmatrix} x_1 \\ 0 \\ -x_1 \end{pmatrix}$,
- conjunto dos polinómios de coeficientes reais,

$$P = \{p(x) = a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n : a_i \in \mathbb{R}\}\$$

- conjunto das funções reais e contínuas,
- $A = \{(x, y) : x, y \in \mathbb{R}\}$
- $B = \{(x,0) : x \in \mathbb{R}\}$
- $C = \{(x, y, z) : x = y = z, x, y, z \in \mathbb{R}\}$

Definição de Espaço Vectorial

Seja V um conjunto.

Diz-se que V é um espaço vectorial real se estão definidas duas operações:

- adição, +, que associa a $x, y \in V$ um elemento $x + y \in V$,
- multiplicação por um escalar, ., que associa a $\alpha \in \mathbb{R}$, e a cada $x \in V$ um elemento $\alpha x \in V$,

que gozam das seguintes propriedades:

- (i) x + y = y + x, $\forall x, y \in V$, [comutatividade da +]
- (ii) x + (y + z) = (x + y) + z, $\forall x, y, z \in V$,[associatividade da +]
- (iii) existe um único elemento, representado por ${\bf 0}$, em V, tal que: $x+0=0+x=x, \quad \forall x\in V, \quad [0 \text{ \'e el}^{\sf to} \text{ neutro para} +]$
- (iv) para todo $x \in V$ existe um único elemento em V, representado por -x tal que: x + (-x) = (-x) + x = 0, $\forall x \in V$, $[-x \text{ é el}^{to} \text{ simétrico de } x]$
- (v) $\alpha(x+y) = \alpha x + \alpha y$, $\forall x, y \in V, \forall \alpha \in \mathbb{R}$,
- (vi) $(\alpha + \beta)x = \alpha x + \beta x$, $\forall x \in V, \forall \alpha, \beta \in \mathbb{R}$,
- (vii) $(\alpha\beta)x = \alpha(\beta x), \forall x \in V, \forall \alpha, \beta \in \mathbb{R},$
- (viii) $\mathbf{1}.x = x.\mathbf{1} = x, \quad \forall x \in V,$ [1 é el^{to} neutro para ·]

- (i) $x+y=y+x, \quad \forall x,y\in V$, [comutatividade da +]
- (ii) x + (y + z) = (x + y) + z, $\forall x, y, z \in V$,[associatividade da +]
- (iii) existe um único elemento, representado por ${\bf 0}$, em V, tal que: $x+0=0+x=x, \quad \forall x\in V, \quad [0 \text{ \'e el}^{\sf to} \text{ neutro para} +]$
- (iv) para todo $x \in V$ existe um único elemento em V, representado por -x tal que: $x + (-x) = (-x) + x = 0, \ \forall x \in V, \ [-x \text{ \'e el}^{to} \text{ sim\'etrico de } x$
- (v) $\alpha(x+y) = \alpha x + \alpha y$, $\forall x, y \in V, \forall \alpha \in \mathbb{R}$,
- (vi) $(\alpha + \beta)x = \alpha x + \beta x$, $\forall x \in V, \forall \alpha, \beta \in \mathbb{R}$,
- (vii) $(\alpha\beta)x = \alpha(\beta x), \forall x \in V, \forall \alpha, \beta \in \mathbb{R},$
- (viii) $\mathbf{1}.x = x.\mathbf{1} = x, \quad \forall x \in V,$ [1 é el^{to} neutro para ·]

- (i) x + y = y + x, $\forall x, y \in V$, [comutatividade da +]
- (ii) x + (y + z) = (x + y) + z, $\forall x, y, z \in V$,[associatividade da +]
- (iii) existe um único elemento, representado por ${\bf 0}$, em V, tal que: $x+0=0+x=x, \quad \forall x\in V, \quad [0 \text{ \'e el}^{\sf to} \text{ neutro para} +]$
- (iv) para todo $x \in V$ existe um único elemento em V, representado por -x tal que: $x + (-x) = (-x) + x = 0, \ \forall x \in V, \ [-x \text{ \'e el}^{to} \text{ sim\'etrico de } x$
- (v) $\alpha(x+y) = \alpha x + \alpha y$, $\forall x, y \in V, \forall \alpha \in \mathbb{R}$,
- (vi) $(\alpha + \beta)x = \alpha x + \beta x$, $\forall x \in V, \forall \alpha, \beta \in \mathbb{R}$,
- (vii) $(\alpha\beta)x = \alpha(\beta x), \forall x \in V, \forall \alpha, \beta \in \mathbb{R},$
- (viii) $\mathbf{1}.x = x.\mathbf{1} = x, \quad \forall x \in V,$ [1 é el^{to} neutro para ·]

- (i) x + y = y + x, $\forall x, y \in V$, [comutatividade da +]
- (ii) x + (y + z) = (x + y) + z, $\forall x, y, z \in V$,[associatividade da +]
- (iii) existe um único elemento, representado por ${f 0}$, em V, tal que: $x+0=0+x=x, \quad \forall x\in V$, $[0\ {\rm \'e}\ {\rm e}^{{
 m to}}\ {\rm neutro}\ {
 m para}\ +]$
- (iv) para todo $x \in V$ existe um único elemento em V, representado por -x tal que: x + (-x) = (-x) + x = 0, $\forall x \in V$. $[-x \notin el^{to}]$ simétrico de
- (v) $\alpha(x+y) = \alpha x + \alpha y$, $\forall x, y \in V, \forall \alpha \in \mathbb{R}$,
- (vi) $(\alpha + \beta)x = \alpha x + \beta x$, $\forall x \in V, \forall \alpha, \beta \in \mathbb{R}$,
- (vii) $(\alpha\beta)x = \alpha(\beta x), \forall x \in V, \forall \alpha, \beta \in \mathbb{R},$
- (viii) $\mathbf{1}.x = x.\mathbf{1} = x, \quad \forall x \in V,$ [1 é el^{to} neutro para ·]

- (i) x + y = y + x, $\forall x, y \in V$, [comutatividade da +]
- (ii) x + (y + z) = (x + y) + z, $\forall x, y, z \in V$,[associatividade da +]
- (iii) existe um único elemento, representado por ${\bf 0}$, em V, tal que: $x+0=0+x=x, \quad \forall x\in V$, $[0\ {\rm \'e}\ {\rm e}^{{
 m to}}\ {\rm neutro}\ {\rm para}\ +]$
- (iv) para todo $x \in V$ existe um único elemento em V, representado por -x tal que: x + (-x) = (-x) + x = 0, $\forall x \in V$, $[-x \text{ \'e el}^{to} \text{ sim\'etrico de x}]$
- (v) $\alpha(x+y) = \alpha x + \alpha y$, $\forall x, y \in V, \forall \alpha \in \mathbb{R}$,
- (vi) $(\alpha + \beta)x = \alpha x + \beta x$, $\forall x \in V, \forall \alpha, \beta \in \mathbb{R}$,
- (vii) $(\alpha\beta)x = \alpha(\beta x), \forall x \in V, \forall \alpha, \beta \in \mathbb{R},$
- (viii) $\mathbf{1}.x = x.\mathbf{1} = x, \quad \forall x \in V,$ [1 é el^{to} neutro para ·]

- (i) x + y = y + x, $\forall x, y \in V$, [comutatividade da +]
- (ii) x + (y + z) = (x + y) + z, $\forall x, y, z \in V$,[associatividade da +]
- (iii) existe um único elemento, representado por ${\bf 0}$, em V, tal que: $x+0=0+x=x, \quad \forall x\in V$, $[0\ {\rm \'e}\ {\rm e}^{{
 m to}}\ {\rm neutro}\ {\rm para}\ +]$
- (iv) para todo $x \in V$ existe um único elemento em V, representado por - \mathbf{x} tal que: $x + (-x) = (-x) + x = 0, \ \forall x \in V, \ [-x \notin el^{to} \text{ simétrico de } x]$
- (v) $\alpha(x+y) = \alpha x + \alpha y$, $\forall x, y \in V, \forall \alpha \in \mathbb{R}$,
- (vi) $(\alpha + \beta)x = \alpha x + \beta x$, $\forall x \in V, \forall \alpha, \beta \in \mathbb{R}$,
- (vii) $(\alpha\beta)x = \alpha(\beta x), \forall x \in V, \forall \alpha, \beta \in \mathbb{R},$
- (viii) $\mathbf{1}.x = x.\mathbf{1} = x, \quad \forall x \in V,$ [1 é el^{to} neutro para ·]

- (i) x + y = y + x, $\forall x, y \in V$, [comutatividade da +]
- (ii) x + (y + z) = (x + y) + z, $\forall x, y, z \in V$,[associatividade da +]
- (iii) existe um único elemento, representado por ${f 0}$, em V, tal que: $x+0=0+x=x, \quad \forall x\in V$, $[0\ {\'e}\ {\rm e}^{{
 m to}}\ {\rm neutro}\ {
 m para}\ +]$
- (iv) para todo $x \in V$ existe um único elemento em V, representado por - \mathbf{x} tal que: $x + (-x) = (-x) + x = 0, \ \forall x \in V, \ [-x \notin el^{to} \text{ simétrico de } x]$
- (v) $\alpha(x+y) = \alpha x + \alpha y$, $\forall x, y \in V, \forall \alpha \in \mathbb{R}$,
- (vi) $(\alpha + \beta)x = \alpha x + \beta x$, $\forall x \in V, \forall \alpha, \beta \in \mathbb{R}$,
- (vii) $(\alpha\beta)x = \alpha(\beta x), \forall x \in V, \forall \alpha, \beta \in \mathbb{R},$
- (viii) $\mathbf{1}.x = x.\mathbf{1} = x$, $\forall x \in V$, [1 é el^{to} neutro para

- (i) x + y = y + x, $\forall x, y \in V$, [comutatividade da +]
- (ii) x + (y + z) = (x + y) + z, $\forall x, y, z \in V$,[associatividade da +]
- (iii) existe um único elemento, representado por ${f 0}$, em V, tal que: $x+0=0+x=x, \quad \forall x\in V$, $[0\ {\'e}\ {\rm e}^{{
 m to}}\ {\rm neutro}\ {
 m para}\ +]$
- (iv) para todo $x \in V$ existe um único elemento em V, representado por -**x** tal que: $x + (-x) = (-x) + x = 0, \ \forall x \in V, \ [-x \notin el^{to} \text{ simétrico de } x]$
- (v) $\alpha(x+y) = \alpha x + \alpha y$, $\forall x, y \in V, \forall \alpha \in \mathbb{R}$,
- (vi) $(\alpha + \beta)x = \alpha x + \beta x$, $\forall x \in V, \forall \alpha, \beta \in \mathbb{R}$,
- (vii) $(\alpha\beta)x = \alpha(\beta x), \forall x \in V, \forall \alpha, \beta \in \mathbb{R},$
- (viii) $\mathbf{1}.x = x.\mathbf{1} = x, \quad \forall x \in V,$ [1 é el^{to} neutro para ·

- (i) x + y = y + x, $\forall x, y \in V$, [comutatividade da +]
- (ii) x + (y + z) = (x + y) + z, $\forall x, y, z \in V$,[associatividade da +]
- (iii) existe um único elemento, representado por ${f 0}$, em V, tal que: $x+0=0+x=x, \quad \forall x\in V$, $[0\ {\'e}\ {\rm e}^{{
 m to}}\ {\rm neutro}\ {
 m para}\ +]$
- (iv) para todo $x \in V$ existe um único elemento em V, representado por -**x** tal que: $x + (-x) = (-x) + x = 0, \ \forall x \in V, \ [-x \notin el^{to} \text{ simétrico de x}]$
- (v) $\alpha(x+y) = \alpha x + \alpha y$, $\forall x, y \in V, \forall \alpha \in \mathbb{R}$,
- (vi) $(\alpha + \beta)x = \alpha x + \beta x$, $\forall x \in V, \forall \alpha, \beta \in \mathbb{R}$,
- (vii) $(\alpha\beta)x = \alpha(\beta x), \forall x \in V, \forall \alpha, \beta \in \mathbb{R},$
- (viii) $\mathbf{1}.x = x.\mathbf{1} = x, \quad \forall x \in V,$ [1 é el^{to} neutro para ·]

um muito importante espaço vectorial real $-\mathbb{R}^n$

Como se definem as operações?

adição: $x = (x_i), y = (y_i)$, elementos de \mathbb{R}^n

$$x + y = (x_1, ..., x_n) + (y_1, ..., y_n) = (x_1 + y_1, ..., x_n + y_n)$$

multiplicação por um escalar: $x = (x_i) \in \mathbb{R}^n$ e $\alpha \in \mathbb{R}$,

$$\alpha x = \alpha(x_1, \ldots, x_n) = (\alpha x_1, \ldots, \alpha x_n)$$

que gozam das propriedades apresentadas no Teorema seguinte.

Teorema

Sejam $x, y, z \in \mathbb{R}^n$, e $\alpha, \beta \in \mathbb{R}$. Então:

(i)
$$x + y = y + x$$
,

(ii)
$$x + (y + z) = (x + y) + z$$
,

(iii)
$$x + 0 = 0 + x = x$$
,

(iv)
$$x + (-x) = (-x) + x = 0$$
,

(v)
$$\alpha(x+y) = \alpha x + \alpha y$$
,

(vi)
$$(\alpha + \beta)x = \alpha x + \beta x$$
,

(vii)
$$(\alpha\beta)x = \alpha(\beta x)$$
,

(viii)
$$1.x = x.1 = x$$
,

Diz-se que \mathbb{R}^n é um espaço vectorial real.

Os elementos de \mathbb{R}^n chamam-se vectores e, são normalmente representados por matrizes, tendo-se o

vector coluna
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Teorema

Sejam $x, y, z \in \mathbb{R}^n$, e $\alpha, \beta \in \mathbb{R}$. Então:

(i)
$$x + y = y + x$$
,

(ii)
$$x + (y + z) = (x + y) + z$$
,

(iii)
$$x + 0 = 0 + x = x$$
,

(iv)
$$x + (-x) = (-x) + x = 0$$
,

(v)
$$\alpha(x+y) = \alpha x + \alpha y$$
,

(vi)
$$(\alpha + \beta)x = \alpha x + \beta x$$
,

(vii)
$$(\alpha\beta)x = \alpha(\beta x)$$
,

(viii)
$$1.x = x.1 = x$$
,

Diz-se que \mathbb{R}^n é um espaço vectorial real.

Os elementos de \mathbb{R}^n chamam-se vectores e, são normalmente representados por matrizes, tendo-se o

vector coluna
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Demonstração: Demonstração apenas de (v)

Denotando $x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$ e $y=(y_1,y_2,\ldots,y_n)\in\mathbb{R}^n)$ e tendo-se $\alpha\in\mathbb{R}$, deduz-se

$$\alpha(x+y) = \alpha(x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

$$= (\alpha(x_1 + y_1), \alpha(x_2 + y_2), \dots, \alpha(x_n + y_n))$$

$$= (\alpha x_1 + \alpha y_1, \alpha x_2 + \alpha y_2, \dots, \alpha x_n + \alpha y_n)$$

$$= (\alpha x_1, \alpha x_2, \dots, \alpha x_n) + (\alpha y_1, \alpha y_2, \dots, \alpha y_n)$$

$$= \alpha x + \alpha y$$

Demonstração: Demonstração apenas de (v)

Denotando $x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$ e $y=(y_1,y_2,\ldots,y_n)\in\mathbb{R}^n)$ e tendo-se $\alpha\in\mathbb{R}$, deduz-se

$$\alpha(x+y) = \alpha(x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

$$= (\alpha(x_1 + y_1), \alpha(x_2 + y_2), \dots, \alpha(x_n + y_n))$$

$$= (\alpha x_1 + \alpha y_1, \alpha x_2 + \alpha y_2, \dots, \alpha x_n + \alpha y_n)$$

$$= (\alpha x_1, \alpha x_2, \dots, \alpha x_n) + (\alpha y_1, \alpha y_2, \dots, \alpha y_n)$$

$$= \alpha x + \alpha y$$

outros importantes espaços vectoriais reais

$$R^2 = \left\{ \left(\begin{array}{c} x \\ y \end{array} \right), \quad x, y \in \mathbb{R} \right\}$$

$$R^3 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad x, y, z \in \mathbb{R} \right\}$$

- \hookrightarrow Verificar que R^2 e R^3 são espaços vectoriais reais.
- \hookrightarrow Verificar que alguns dos espaços vectoriais apresentados anteriormente são de facto espaços vectoriais.

Definição de Subespaço Vectorial

Definição

Seja U um subconjunto, <u>não vazio</u>, de um espaço vectorial real V. **U** diz-se um **subespaço vectorial** de V, se:

• $x + y \in U$, $\forall x, y \in U$,

 $[\mathsf{U} \ \mathsf{\acute{e}} \ \mathsf{fechado} \ \mathsf{para} \ +]$

• $\alpha x \in U$, $\forall x \in U, \forall \alpha \in \mathbb{R}$.

[U é fechado para ·]

Exemplos

- O conj^{to} dos vectores $x = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}$ é um subespaço vectorial real, de \mathbb{R}^2 .
- ullet O conj^{to} dos vectores $x=\left(egin{array}{c} x_1 \\ x_1 \\ x_1 \end{array}
 ight)$ é um subespaço vectorial real, de

 \mathbb{R}^3

Definição de Subespaço Vectorial

Definição

Seja U um subconjunto, <u>não vazio</u>, de um espaço vectorial real V. **U** diz-se um **subespaço vectorial** de V, se:

• $x + y \in U$, $\forall x, y \in U$,

[U é fechado para +]

• $\alpha x \in U$, $\forall x \in U, \forall \alpha \in \mathbb{R}$.

[U é fechado para ·]

Exemplos

- O conj^{to} dos vectores $x = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}$ é um subespaço vectorial real, de \mathbb{R}^2 .
- ullet O conj^{to} dos vectores $x=\left(egin{array}{c} x_1 \\ x_1 \\ x_1 \end{array}
 ight)$ é um subespaço vectorial real, de

 \mathbb{R}^3

Definição de Subespaço Vectorial

Definição

Seja U um subconjunto, <u>não vazio</u>, de um espaço vectorial real V. **U** diz-se um **subespaço vectorial** de V, se:

• $x + y \in U$, $\forall x, y \in U$,

[U é fechado para +]

• $\alpha x \in U$, $\forall x \in U, \forall \alpha \in \mathbb{R}$.

[U é fechado para ·]

Exemplos

- O conj^{to} dos vectores $x = \begin{pmatrix} x_1 \\ 0 \end{pmatrix}$ é um subespaço vectorial real, de \mathbb{R}^2 .
- O conj^{to} dos vectores $x = \begin{pmatrix} x_1 \\ x_1 \\ x_1 \end{pmatrix}$ é um subespaço vectorial real, de

 \mathbb{R}^3

Teorema

A intersecção de subespaços vectoriais de um espaço vectorial V é um subespaço de V.

- Sejam X e Y dois subespaços de V, então, uma vez que X e Y são subespaços contêm o vector nulo, ou seja, $0 \in X$ e $0 \in Y$, logo $0 \in X \cap Y$: donde $X \cap Y \neq \varnothing$
- Sejam $x,y\in (X\cap Y)$. Então $x,y\in X$ e $x,y\in Y$ e logo, porque X e Y são subespaços, $x+y\in X$ e $x+y\in Y$. Assim, por definição de intersecção de conjuntos, $x+v\in (X\cap Y)$, como queríamos mostrar.
- Seja $x \in (X \cap Y)$ e $\alpha \in \mathbb{R}$. Então $x \in X$ e $x \in Y$ e logo, porque X e Y são subespaços, $\alpha x \in X$ e $\alpha x \in Y$. Assim, por definição de intersecção de conjuntos, $\alpha x \in (X \cap Y)$, como queríamos mostrar.

Teorema

A intersecção de subespaços vectoriais de um espaço vectorial V é um subespaço de V.

- Sejam X e Y dois subespaços de V, então, uma vez que X e Y são subespaços contêm o vector nulo, ou seja, $0 \in X$ e $0 \in Y$, logo $0 \in X \cap Y$; donde $X \cap Y \neq \emptyset$.
- Sejam $x,y \in (X \cap Y)$. Então $x,y \in X$ e $x,y \in Y$ e logo, porque X e Y são subespaços, $x+y \in X$ e $x+y \in Y$. Assim, por definição de intersecção de conjuntos, $x+y \in (X \cap Y)$, como queríamos mostrar.
- Seja $x \in (X \cap Y)$ e $\alpha \in \mathbb{R}$. Então $x \in X$ e $x \in Y$ e logo, porque X e Y são subespaços, $\alpha x \in X$ e $\alpha x \in Y$. Assim, por definição de intersecção de conjuntos, $\alpha x \in (X \cap Y)$, como queríamos mostrar.

Teorema

A intersecção de subespaços vectoriais de um espaço vectorial V é um subespaço de V.

- Sejam X e Y dois subespaços de V, então, uma vez que X e Y são subespaços contêm o vector nulo, ou seja, $0 \in X$ e $0 \in Y$, logo $0 \in X \cap Y$; donde $X \cap Y \neq \emptyset$.
- Sejam $x, y \in (X \cap Y)$. Então $x, y \in X$ e $x, y \in Y$ e logo, porque X e Y são subespaços, $x + y \in X$ e $x + y \in Y$. Assim, por definição de intersecção de conjuntos, $x + y \in (X \cap Y)$, como queríamos mostrar.
- Seja $x \in (X \cap Y)$ e $\alpha \in \mathbb{R}$. Então $x \in X$ e $x \in Y$ e logo, porque X e Y são subespaços, $\alpha x \in X$ e $\alpha x \in Y$. Assim, por definição de intersecção de conjuntos, $\alpha x \in (X \cap Y)$, como queríamos mostrar.

Teorema

A intersecção de subespaços vectoriais de um espaço vectorial V é um subespaço de V.

- Sejam X e Y dois subespaços de V, então, uma vez que X e Y são subespaços contêm o vector nulo, ou seja, $0 \in X$ e $0 \in Y$, logo $0 \in X \cap Y$; donde $X \cap Y \neq \emptyset$.
- Sejam $x,y\in (X\cap Y)$. Então $x,y\in X$ e $x,y\in Y$ e logo, porque X e Y são subespaços, $x+y\in X$ e $x+y\in Y$. Assim, por definição de intersecção de conjuntos, $x+y\in (X\cap Y)$, como queríamos mostrar.
- Seja $x \in (X \cap Y)$ e $\alpha \in \mathbb{R}$. Então $x \in X$ e $x \in Y$ e logo, porque X e Y são subespaços, $\alpha x \in X$ e $\alpha x \in Y$. Assim, por definição de intersecção de conjuntos, $\alpha x \in (X \cap Y)$, como queríamos mostrar.

Teorema

A intersecção de subespaços vectoriais de um espaço vectorial V é um subespaço de V.

- Sejam X e Y dois subespaços de V, então, uma vez que X e Y são subespaços contêm o vector nulo, ou seja, $0 \in X$ e $0 \in Y$, logo $0 \in X \cap Y$; donde $X \cap Y \neq \emptyset$.
- Sejam $x,y \in (X \cap Y)$. Então $x,y \in X$ e $x,y \in Y$ e logo, porque X e Y são subespaços, $x+y \in X$ e $x+y \in Y$. Assim, por definição de intersecção de conjuntos, $x+y \in (X \cap Y)$, como queríamos mostrar.
- Seja $x \in (X \cap Y)$ e $\alpha \in \mathbb{R}$. Então $x \in X$ e $x \in Y$ e logo, porque X e Y são subespaços, $\alpha x \in X$ e $\alpha x \in Y$. Assim, por definição de intersecção de conjuntos, $\alpha x \in (X \cap Y)$, como queríamos mostrar.

Em \mathbb{R}^2 , sejam X be Y dois subespaços reais definidos por:

$$X = \left\{ \left(\begin{array}{c} x \\ y \end{array} \right) : y = 0 \right\}$$

$$Y = \left\{ \left(\begin{array}{c} x \\ y \end{array} \right) : x = 0 \right\}$$

O conjunto $X \cup Y$ não é um subespaço vectorial real de \mathbb{R}^2 .

Note-se que, por exemplo

$$a = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in X$$

$$e \ b = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \in Y,$$

$$mas \ a + b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

 $\max a + b = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \notin X \cup Y$

 $X \cup Y$ não é fechado relativamente à adição.

Em \mathbb{R}^2 , sejam X be Y dois subespaços reais definidos por:

$$X = \left\{ \left(\begin{array}{c} x \\ y \end{array} \right) : y = 0 \right\}$$

$$Y = \left\{ \left(\begin{array}{c} x \\ y \end{array} \right) : x = 0 \right\}$$

O conjunto $X \cup Y$ não é um subespaço vectorial real de \mathbb{R}^2 . Note-se que, por exemplo,

$$a = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in X$$

e
$$b = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \in Y$$
,

$$\mathsf{mas}\ a+b=\left(\begin{array}{c}1\\1\end{array}\right)\notin X\cup Y$$

 $X \cup Y$ não é fechado relativamente à adição.

... uma definição muito importante

Em
$$\mathbb{R}^2$$
 sejam $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ e $x = \begin{pmatrix} 5 \\ 7 \end{pmatrix}$. Note-se que:

$$x = 5e_1 + 7e_2$$
.

Diz-se que x é **combinação linear dos vectores** e_1 e e_2 .

Definição

Sejam $x_1, x_2 ... x_n$ vectores de um espaço vectorial real V. Diz-se que $x \in V$ é **combinação linear** dos vectores dos $x_1, x_2 ... x_n$ se

$$x = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n,$$

com $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R}$.

... uma definição muito importante

Em
$$\mathbb{R}^2$$
 sejam $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ e $x = \begin{pmatrix} 5 \\ 7 \end{pmatrix}$.

Note-se que:

$$x = 5e_1 + 7e_2$$
.

Diz-se que x é **combinação linear dos vectores** e_1 e e_2 .

Definição

Sejam $x_1, x_2 ... x_n$ vectores de um espaço vectorial real V. Diz-se que $x \in V$ é **combinação linear** dos vectores dos $x_1, x_2 ... x_n$ se

$$x = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n,$$

 $com \ \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}.$

Exemplo Se
$$x=\begin{pmatrix}4\\-3\end{pmatrix}$$
, $f_1=\begin{pmatrix}1\\1\end{pmatrix}$ e $f_2=\begin{pmatrix}1\\-1\end{pmatrix}$ tem-se que:
$$x=\frac{1}{2}f_1+\frac{7}{2}f_2,$$

ou seja

x é combinação linear dos vectores f_1 e f_2 .

Se $x_1, x_2, \dots x_n$ vectores de um espaço vectorial V.

Então U, o conjunto formado por todas as combinações lineares destes vectores, é um subespaço de V.

- U não é vazio, $0 = 0x_1 + 0x_2 + \cdots + 0x_n$
- se $u, v \in U$ tem-se

$$u=lpha_1x_1+lpha_2x_2+\cdots+lpha_nx_n$$
 $v=eta_1x_1+eta_2x_2+\cdots+eta_nx_n$

$$u + v = (\alpha_1 + \beta_1)x_1 + (\alpha_2 + \beta_2)x_2 + \dots + (\alpha_n + \beta_n)x_n$$

• Tem-se também que

$$\alpha u = (\alpha \alpha_1)x_1 + (\alpha \alpha_2)x_2 + \cdots + (\alpha \alpha_n)x_n$$

é o subespaço gerado por $x_1, x_2, \dots x_n$

$$J = \langle x_1, x_2, \dots x_n \rangle$$

Se $x_1, x_2, \dots x_n$ vectores de um espaço vectorial V.

Então U, o conjunto formado por todas as combinações lineares destes vectores, é um subespaço de V.

- *U* não é vazio, $0 = 0x_1 + 0x_2 + \cdots + 0x_n$
- se $u, v \in U$ tem-se

$$u = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n \qquad v = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

$$u + v = (\alpha_1 + \beta_1)x_1 + (\alpha_2 + \beta_2)x_2 + \dots + (\alpha_n + \beta_n)x_n$$

• Tem-se também que

$$\alpha u = (\alpha \alpha_1)x_1 + (\alpha \alpha_2)x_2 + \dots + (\alpha \alpha_n)x_n$$

é o subespaço gerado por $x_1, x_2, \dots x_n$

$$J=< x_1, x_2, \dots$$

15 / 43

Se $x_1, x_2, \dots x_n$ vectores de um espaço vectorial V.

Então U, o conjunto formado por todas as combinações lineares destes vectores, é um subespaço de V.

- *U* não é vazio, $0 = 0x_1 + 0x_2 + \cdots + 0x_n$
- se $u, v \in U$ tem-se

$$u = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n \qquad v = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

então

$$u + v = (\alpha_1 + \beta_1)x_1 + (\alpha_2 + \beta_2)x_2 + \dots + (\alpha_n + \beta_n)x_n$$

Logo u + v é combinação linear de $x_1, x_2, \dots x_n$, logo u + v pertence a U.

Tem-se também que

$$\alpha u = (\alpha \alpha_1)x_1 + (\alpha \alpha_2)x_2 + \cdots + (\alpha \alpha_n)x_n$$

donde $\alpha u \in U$.

U é um subespaço vectorial de V é o subespaço gerado por $x_1, x_2, \dots x_n$

$$U = \langle x_1, x_2 \rangle$$

Se $x_1, x_2, \dots x_n$ vectores de um espaço vectorial V.

Então U, o conjunto formado por todas as combinações lineares destes vectores, é um subespaço de V.

- *U* não é vazio, $0 = 0x_1 + 0x_2 + \cdots + 0x_n$
- se $u, v \in U$ tem-se

$$u = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n$$
 $v = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$ então

$$u + v = (\alpha_1 + \beta_1)x_1 + (\alpha_2 + \beta_2)x_2 + \cdots + (\alpha_n + \beta_n)x_n$$

Logo u + v é combinação linear de $x_1, x_2, \dots x_n$, logo u + v pertence a U.

• Tem-se também que

$$\alpha u = (\alpha \alpha_1)x_1 + (\alpha \alpha_2)x_2 + \dots + (\alpha \alpha_n)x_n$$

é o subespaço gerado por $x_1, x_2, \dots x_n$

DMat

Se $x_1, x_2, \dots x_n$ vectores de um espaço vectorial V.

Então U, o conjunto formado por todas as combinações lineares destes vectores, é um subespaço de V.

- *U* não é vazio, $0 = 0x_1 + 0x_2 + \cdots + 0x_n$
- se $u, v \in U$ tem-se

$$u = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n$$
 $v = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$ então

$$u + v = (\alpha_1 + \beta_1)x_1 + (\alpha_2 + \beta_2)x_2 + \dots + (\alpha_n + \beta_n)x_n$$

Logo u + v é combinação linear de $x_1, x_2, \dots x_n$, logo u + v pertence a U.

Tem-se também que

$$\alpha u = (\alpha \alpha_1)x_1 + (\alpha \alpha_2)x_2 + \cdots + (\alpha \alpha_n)x_n$$

donde $\alpha u \in U$.

é o subespaço gerado por $x_1, x_2, \dots x_n$

DMat

15 / 43

Se $x_1, x_2, \dots x_n$ vectores de um espaço vectorial V.

Então U, o conjunto formado por todas as combinações lineares destes vectores, é um subespaço de V.

- *U* não é vazio, $0 = 0x_1 + 0x_2 + \cdots + 0x_n$
- se $u, v \in U$ tem-se

$$u = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n$$
 $v = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$

então

$$u + v = (\alpha_1 + \beta_1)x_1 + (\alpha_2 + \beta_2)x_2 + \cdots + (\alpha_n + \beta_n)x_n$$

Logo u + v é combinação linear de $x_1, x_2, \dots x_n$, logo u + v pertence a U.

Tem-se também que

$$\alpha u = (\alpha \alpha_1)x_1 + (\alpha \alpha_2)x_2 + \cdots + (\alpha \alpha_n)x_n$$

donde $\alpha u \in U$.

U é um subespaço vectorial de V é o subespaço gerado por $x_1, x_2, \dots x_n$

$$U = \langle x_1, x_2, \dots x_n \rangle$$

Exemplo

O espaço gerado pelo vector

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

é

$$U = \left\{ \left(\begin{array}{c} x_1 \\ 0 \end{array} \right) : x_1 \in \mathbb{R} \right\}$$

subespaço de \mathbb{R}^2 cujos vectores têm a segunda componente nula.

Escrevemos:
$$U = < \begin{pmatrix} 1 \\ 0 \end{pmatrix} >$$

Que vectores constituem um sistema de geradores de \mathbb{R}^2 ?

Seja
$$\begin{pmatrix} x \\ y \end{pmatrix} \in R^2$$
 temos que:

$$\left(\begin{array}{c} x \\ y \end{array}\right) = x \left(\begin{array}{c} 1 \\ 0 \end{array}\right) + y \left(\begin{array}{c} 0 \\ 1 \end{array}\right), \qquad x,y \in \mathbb{R}$$

logo

$$\begin{split} \mathbb{R}^2 = < \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right) > = < e_1, e_2 > \\ \text{considerando } e_1 = \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \text{ e } e_2 = \left(\begin{array}{c} 0 \\ 1 \end{array} \right). \end{split}$$

Que subespaço geram os vectores $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ e $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$?

$$S = < \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right), \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right) > \\ = \left\{\alpha \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right) + \beta \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right), \alpha, \beta \in \mathbb{R} \right\}$$

$$tendo-se \ S = \left\{ \left(\begin{array}{c} \alpha \\ 0 \\ \beta \end{array} \right), \alpha, \beta \in \mathbb{R} \right\}$$

Que subespaço geram os vectores $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ e $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$?

$$S = < \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} > = \left\{ \alpha \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \alpha, \beta \in \mathbb{R} \right\}$$

$$\mbox{tendo-se } S = \left\{ \left(\begin{array}{c} \alpha \\ \mathbf{0} \\ \beta \end{array} \right), \alpha, \beta \in \mathbb{R} \right\}$$

Que subespaço geram os vectores $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ e $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$?

$$S = < \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right), \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right) > \\ = \left\{\alpha \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array}\right) + \beta \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right), \alpha, \beta \in \mathbb{R} \right\}$$

$$\mbox{tendo-se } S = \left\{ \left(\begin{array}{c} \alpha \\ \mathbf{0} \\ \beta \end{array} \right), \alpha, \beta \in \mathbb{R} \right\}$$

Que subespaço geram os vectores
$$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$$
 e $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$?

$$S = < \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) > \\ = \left\{ \alpha \left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right) + \beta \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right), \alpha, \beta \in \mathbb{R} \right\}$$

tendo-se
$$S = \left\{ \begin{pmatrix} \alpha \\ 0 \\ \beta \end{pmatrix}, \alpha, \beta \in \mathbb{R} \right\}$$

Se $a_1, a_2, \ldots a_n$ são vectores de um espaço vectorial V e se $b \in V$ é combinação linear de $a_1, a_2, \ldots a_n$, então o subespaço gerado pelos vectores $a_1, a_2, \ldots a_n$ coincide com o espaço gerado pelos vectores $a_1, a_2, \ldots a_n, b$.

Demonstração:

Seja
$$U = \langle a_1, a_2, \dots a_n \rangle$$
 e $U' = \langle a_1, a_2, \dots a_n, b \rangle$.

Vejamos que U=U', ou seja que, $U\subset U'$ e $U'\subset U$.

•
$$U \subset U'$$

seja $x \in U$ então
 $x = \alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n$
 $= \alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n + 0b$

Se $a_1, a_2, \ldots a_n$ são vectores de um espaço vectorial V e se $b \in V$ é combinação linear de $a_1, a_2, \ldots a_n$, então o subespaço gerado pelos vectores $a_1, a_2, \ldots a_n$ coincide com o espaço gerado pelos vectores $a_1, a_2, \ldots a_n, b$.

Demonstração:

Seja
$$U = \langle a_1, a_2, \dots a_n \rangle$$
 e $U' = \langle a_1, a_2, \dots a_n, b \rangle$.

Vejamos que U=U', ou seja que, $U\subset U'$ e $U'\subset U$.

•
$$U \subset U'$$

seja $x \in U$ então
 $x = \alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n$
 $= \alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n + 0b$

Se $a_1, a_2, \ldots a_n$ são vectores de um espaço vectorial V e se $b \in V$ é combinação linear de $a_1, a_2, \ldots a_n$, então o subespaço gerado pelos vectores $a_1, a_2, \ldots a_n$ coincide com o espaço gerado pelos vectores $a_1, a_2, \ldots a_n, b$.

Demonstração:

Seja
$$U = \langle a_1, a_2, \dots a_n \rangle$$
 e $U' = \langle a_1, a_2, \dots a_n, b \rangle$.

Vejamos que U=U', ou seja que, $U\subset U'$ e $U'\subset U$.

U ⊂ U'

seja
$$x \in U$$
 então

$$x = \alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n$$

= $\alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n + 0b$

Se $a_1, a_2, \ldots a_n$ são vectores de um espaço vectorial V e se $b \in V$ é combinação linear de $a_1, a_2, \ldots a_n$, então o subespaço gerado pelos vectores $a_1, a_2, \ldots a_n$ coincide com o espaço gerado pelos vectores $a_1, a_2, \ldots a_n, b$.

Demonstração:

Seja
$$U = \langle a_1, a_2, \dots a_n \rangle$$
 e $U' = \langle a_1, a_2, \dots a_n, b \rangle$.

Vejamos que U=U', ou seja que, $U\subset U'$ e $U'\subset U$.

U ⊂ *U'*

seja
$$x \in U$$
 então

$$x = \alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n$$

= $\alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n + 0b$

Seja
$$U = \langle a_1, a_2, \dots a_n \rangle$$
 e $U' = \langle a_1, a_2, \dots a_n, b \rangle$.

seja
$$x \in U'$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + \alpha_{n+1} b$

mas b é combinação linear de $a_1, a_2, \dots a_n$

donde, se pode escrever

$$x = \alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n + \alpha_{n+1} (\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_n a_n)$$

= $(\alpha_1 + \alpha_{n+1} \beta_1) a_1 + (\alpha_2 + \alpha_{n+1} \beta_2) a_2 + \dots + (\alpha_n + \alpha_{n+1} \beta_n) a_n$

Seja
$$U = \langle a_1, a_2, \dots a_n \rangle$$
 e $U' = \langle a_1, a_2, \dots a_n, b \rangle$.

seja
$$x \in U'$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + \alpha_{n+1} b$

mas b é combinação linear de $a_1, a_2, \ldots a_n$,

ou seja
$$b = \beta_1 a_1 + \beta_2 a_2 + \cdots + \beta_n a_n$$

donde, se pode escrever

$$x = \alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n + \alpha_{n+1} (\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_n a_n)$$

= $(\alpha_1 + \alpha_{n+1} \beta_1) a_1 + (\alpha_2 + \alpha_{n+1} \beta_2) a_2 + \dots + (\alpha_n + \alpha_{n+1} \beta_n) a_n$

Seja
$$U = \langle a_1, a_2, \dots a_n \rangle$$
 e $U' = \langle a_1, a_2, \dots a_n, b \rangle$.

seja
$$x \in U'$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + \alpha_{n+1} b$

mas b é combinação linear de $a_1, a_2, \ldots a_n$,

ou seja
$$b = \beta_1 a_1 + \beta_2 a_2 + \cdots + \beta_n a_n$$

donde, se pode escrever

$$x = \alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n + \alpha_{n+1} (\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_n a_n)$$

= $(\alpha_1 + \alpha_{n+1} \beta_1) a_1 + (\alpha_2 + \alpha_{n+1} \beta_2) a_2 + \dots + (\alpha_n + \alpha_{n+1} \beta_n) a_n$

Seja
$$U = \langle a_1, a_2, \dots a_n \rangle$$
 e $U' = \langle a_1, a_2, \dots a_n, b \rangle$.

seja
$$x \in U'$$
 então $x = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n + \alpha_{n+1} b$

mas b é combinação linear de $a_1, a_2, \ldots a_n$,

ou seja
$$b = \beta_1 a_1 + \beta_2 a_2 + \cdots + \beta_n a_n$$

donde, se pode escrever

$$x = \alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n + \alpha_{n+1} (\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_n a_n)$$

= $(\alpha_1 + \alpha_{n+1} \beta_1) a_1 + (\alpha_2 + \alpha_{n+1} \beta_2) a_2 + \dots + (\alpha_n + \alpha_{n+1} \beta_n) a_n$

... uma definição mesmo muito importante.

Definição

Os vectores x_1, x_2, \dots, x_n de um espaço vectorial V são linearmente independentes se

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0_V$$

se verifica apenas quando $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$.

Exemplo Os vectores $e_1=\begin{pmatrix}1\\0\end{pmatrix}$ e $e_2=\begin{pmatrix}0\\1\end{pmatrix}$ de \mathbb{R}^2 são linearmente independentes.

... uma definição mesmo muito importante.

Definição

Os vectores x_1, x_2, \dots, x_n de um espaço vectorial V são linearmente independentes se

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0_V$$

se verifica apenas quando $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$.

Exemplo Os vectores $e_1=\begin{pmatrix}1\\0\end{pmatrix}$ e $e_2=\begin{pmatrix}0\\1\end{pmatrix}$ de \mathbb{R}^2 são linearmente independentes.

Exemplo Os vectores $f_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ e $f_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ e $f_3 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ de \mathbb{R}^2 não são linearmente independentes.

Note-se que : $-2f_1 - 3f_2 + f_3 = \bar{0}$.

→ Os vectores de um espaço vectorial que n\u00e3o sejam linearmente independentes dizem-se linearmente dependentes.

Isto é, os vectores x_1, x_2, \ldots, x_n dizem-se linearmente dependentes se existem escalares reais $\alpha_1, \alpha_2, \ldots, \alpha_n$ não todos nulos tais que $\alpha_1 x_1 + \alpha_2 x_2 + \ldots, \alpha_n x_n = 0$.

Exemplo

1. Os vectores e_1, e_2, e_3 de \mathbb{R}^3 são linearmente independentes. De facto, tem-se para $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$,

$$\begin{aligned} \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3 &= 0 \quad \Rightarrow \quad \alpha_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \alpha_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \Rightarrow \quad \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\ \Rightarrow \quad \alpha_1 = \alpha_2 = \alpha_3 = 0 \end{aligned}$$

2. Os vectores e_1, e_2 e $f=\left(egin{array}{c} 2 \\ -5 \\ 0 \end{array}
ight)$ de \mathbb{R}^3 são linearmente

dependentes. De facto, tem-se $2e_1 - 5e_2 - f = \overline{0}$

Exemplo

1. Os vectores e_1, e_2, e_3 de \mathbb{R}^3 são linearmente independentes. De facto, tem-se para $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$,

$$\alpha_{1}e_{1} + \alpha_{2}e_{2} + \alpha_{3}e_{3} = 0 \quad \Rightarrow \quad \alpha_{1}\begin{pmatrix} 1\\0\\0 \end{pmatrix} + \alpha_{2}\begin{pmatrix} 0\\1\\0 \end{pmatrix} + \alpha_{3}\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

$$\Rightarrow \quad \begin{pmatrix} \alpha_{1}\\\alpha_{2}\\\alpha_{3} \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}$$

$$\Rightarrow \quad \alpha_{1} = \alpha_{2} = \alpha_{3} = 0$$

2. Os vectores e_1, e_2 e $f = \begin{pmatrix} 2 \\ -5 \\ 0 \end{pmatrix}$ de \mathbb{R}^3 são linearmente

dependentes. De facto, tem-se $2e_1 - 5e_2 - f = \overline{0}$

Os vectores x_1, x_2, \ldots, x_n de um espaço vectorial V são linearmente dependentes se e só se um dos vectores pode ser escrito como combinação linear dos restantes.

Demonstração:

 $(\Rightarrow$

Sejam x_1, x_2, \dots, x_n vectores linearmente dependentes. Então tem-se

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0$$

com, pelo menos um, dos coeficientes diferente de zero.

Suponhamos que $\alpha_1 \neq 0$.

Então podemos escrever:

$$x_1 = -\frac{\alpha_2}{\alpha_1} x_2 - \dots - \frac{\alpha_n}{\alpha_1} x_n$$

logo x_1 é combinação linear dos restantes vectores.

Os vectores x_1, x_2, \ldots, x_n de um espaço vectorial V são linearmente dependentes se e só se um dos vectores pode ser escrito como combinação linear dos restantes.

Demonstração:

 (\Rightarrow)

Sejam x_1, x_2, \dots, x_n vectores linearmente dependentes. Então tem-se

$$\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n = 0$$

com, pelo menos um, dos coeficientes diferente de zero.

Suponhamos que $\alpha_1 \neq 0$.

Então podemos escrever:

$$x_1 = -\frac{\alpha_2}{\alpha_1} x_2 - \dots - \frac{\alpha_n}{\alpha_1} x_n$$

logo x_1 é combinação linear dos restantes vectores.

 (\Leftarrow)

Sejam x_1, x_2, \ldots, x_n vectores e, consideremos que pelo menos um deles, por exemplo x_1 é combinação linear dos restantes vectores; isto é:

$$x_1 = \alpha_2 x_2 + \dots + \alpha_n x_n$$

tendo-se então

$$x_1 - \alpha_2 x_2 - \cdots - \alpha_n x_n = 0$$

donde, se tem uma combinação linear nula com pelo menos um dos coeficientes (o de x_1) não nulo. Os vectores x_1, x_2, \ldots, x_n são portanto linearmente dependentes.

algumas observações importantes.

1. Qualquer conjunto de vectores $\{0, x_1, x_2, \dots, x_n\}$, que contenha o vector nulo, é linearmente dependente uma vez que

$$0 = 1 \cdot 0 + 0x_1 + 0x_2 + \cdots + 0x_n.$$

- 2. Um vector x é linearmente independente se e só se $x \neq 0$.
- **3** . Se $A = \{x_1, x_2, \dots, x_n\}$ é um conjunto de vectores linearmente independentes, então qualquer subconjunto de A é também linearmente independente.
- **4** . Se $A=\{x_1,x_2,\ldots,x_n\}$ é um conjunto de vectores linearmente dependentes, então qualquer conjunto contendo A é também linearmente dependente.

algumas observações importantes.

Para matrizes $m \times n$, em escada de linhas tem-se:

- 1. as linhas não nulas são linearmente independentes em \mathbb{R}^n ,
- 2. o número de linhas independentes e o número de colunas independentes são ambos iguais à característica da matriz.

Uma definição muito importante.

Procurando combinar as noções de conjunto de vectores linearmente independentes e geradores obtemos a seguinte definição.

Definição

Os vectores x_1, x_2, \dots, x_n de um espaço vectorial V formam uma base de V se são linearmente independentes e geram V.

• O conjunto
$$\left\{ \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \right\}$$
 constitui uma base de \mathbb{R}^2 .

• O conjunto $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$ constitui uma base de \mathbb{R}^3 .

• O conjunto $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ constitui uma base de \mathbb{R}^2 .

Uma definição muito importante.

Procurando combinar as noções de conjunto de vectores linearmente independentes e geradores obtemos a seguinte definição.

Definição

Os vectores x_1, x_2, \dots, x_n de um espaço vectorial V formam uma base de V se são linearmente independentes e geram V.

Exemplos:

- O conjunto $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ constitui uma base de \mathbb{R}^2 .
- O conjunto $\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$ constitui uma base de \mathbb{R}^3 .
- O conjunto $\left\{ \left(\begin{array}{c} 1 \\ 1 \end{array} \right), \left(\begin{array}{c} 1 \\ -1 \end{array} \right) \right\}$ constitui uma base de \mathbb{R}^2 .

Se um espaço vectorial V possui uma base com um número finito de elementos, então todas as bases de V têm o mesmo número de elementos.

Ao número de vectores de uma base de um espaço V, chama-se dimensão do espaço V e denota-se por $\dim(V)$.

- $dim(\mathbb{R}^2) = 2$
- $dim(\mathbb{R}^3) = 3$
- $dim(\mathbb{R}^n) = n$
- se $V = \{0\}$ então dim(V) = 0.
- se $V = \left\{ \left(\begin{array}{cc} \alpha & \beta \\ -\beta & \alpha \end{array} \right), \alpha, \beta \in \mathbb{R} \right\}$ então $\dim(V) = 2$.

note-se que
$$V=<\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)>$$
 e que a e b , com $a=\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), b=\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$, são linearmente independentes.

O próximo resultado mostra que, ao indicar uma base de um espaço vectorial, pode interessar também a ordem em que os vectores aparecem. **Teorema:**

Seja (v_1, v_2, \dots, v_n) uma base ordenada de um espaço vectorial real V. Cada vector $v \in V$ pode ser escrito de uma única forma

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n$$

como combinação linear dos vectores v_1, v_2, \ldots, v_n . Os coeficientes $\alpha_1, \alpha_2, \ldots, \alpha_n$ são chamados as coordenadas de v relativamente à base (v_1, v_2, \ldots, v_n) .

Demonstração: Seja $v \in V$ Como (v_1, v_2, \ldots, v_n) é uma base de V, tem-se $\langle v_1, v_2, \ldots, v_n \rangle = V$ e, consequentemente, $v \in \langle v_1, v_2, \ldots, v_n \rangle$. Suponhamos que

$$v=lpha_1v_1+lpha_2v_2+\cdots+lpha_nv_n=eta_1v_1+eta_2v_2+\cdots+eta_nv_n$$
. Então

$$(\alpha_1 - \beta_1)v_1 + \cdots + (\alpha_n - \beta_n)v_n = 0$$

e, dado que $\{v_1, v_2, \dots, v_n\}$ é linearmente independente, conclui-se que $(\alpha_i - \beta_i) = 0$ para todo o $i = 1, \dots, n$. Portanto $\alpha_1 = \beta_1, \dots, \alpha_n = \beta_n$

O próximo resultado mostra que, ao indicar uma base de um espaço vectorial, pode interessar também a ordem em que os vectores aparecem. **Teorema:**

Seja (v_1, v_2, \dots, v_n) uma base ordenada de um espaço vectorial real V. Cada vector $v \in V$ pode ser escrito de uma única forma

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n$$

como combinação linear dos vectores v_1, v_2, \ldots, v_n . Os coeficientes $\alpha_1, \alpha_2, \ldots, \alpha_n$ são chamados as coordenadas de v relativamente à base (v_1, v_2, \ldots, v_n) .

Demonstração: Seja $v \in V$ Como (v_1, v_2, \ldots, v_n) é uma base de V, tem-se $\langle v_1, v_2, \ldots, v_n \rangle = V$ e, consequentemente, $v \in \langle v_1, v_2, \ldots, v_n \rangle$. Suponhamos que

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + \dots + \beta_n \mathbf{v}_n.$$
 Então

$$(\alpha_1 - \beta_1)v_1 + \cdots + (\alpha_n - \beta_n)v_n = 0$$

e, dado que $\{v_1, v_2, \dots, v_n\}$ é linearmente independente, conclui-se que $(\alpha_i - \beta_i) = 0$ para todo o $i = 1, \dots, n$. Portanto $\alpha_1 = \beta_1, \dots, \alpha_n = \beta_n$.

Maria Antónia Forjaz. ()

DMat

11 de Novembro de 2009

3

Exemplo:

- 1. As coordenadas do vector $v=\begin{pmatrix} -2\\7 \end{pmatrix}$ relativamente à base canónica (e_1,e_2) de R^2 são -2,7. Por outro lado, as coordenadas de v em relação à base $\left(\begin{pmatrix} 1\\2 \end{pmatrix},\begin{pmatrix} 1\\1 \end{pmatrix}\right)$ são 9,-11.
- 2. As coordenadas do vector $\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ de \mathbb{R}^n relativamente à base canónica (e_1, e_2, \dots, e_n) de \mathbb{R}^n são a_1, a_2, \dots, a_n .

Note-se que dada uma base de um espaço vectorial V, qualquer vector de V fica bem determinado se conhecermos as suas coordenadas relativamente a essa base.

algumas observações importantes.

Teorema:

Seja V um espaço vectorial real de dimensão n > 0.

(i) Se v_1, \ldots, v_n são vectores linearmente independentes de V, então $\{v_1, \ldots, v_n\}$ é uma base de V.

[Ou seja, qualquer conjunto de n vectores linearmente independentes de V constitui uma base de V.]

(ii) Se v_1, \ldots, v_k são vectores linearmente independentes de V em que $k \neq n$, então k < n e existem vectores v_{k+1}, \ldots, v_n tais que $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ é uma base de V.

 $[{\sf Em}\ V,\ {\sf todo}\ {\sf o}\ {\sf conjunto}\ {\sf de}\ {\sf vectores}\ {\sf linearmente}\ {\sf independentes}\ {\sf pode}\ {\sf ser}\ {\sf estendido}\ {\sf a}\ {\sf uma}\ {\sf base}.]$

algumas observações importantes.

Teorema:

Seja V um espaço vectorial real de dimensão n > 0.

(i) Se v_1, \ldots, v_n são vectores linearmente independentes de V, então $\{v_1, \ldots, v_n\}$ é uma base de V.

[Ou seja, qualquer conjunto de n vectores linearmente independentes de V constitui uma base de V.]

(ii) Se v_1, \ldots, v_k são vectores linearmente independentes de V em que $k \neq n$, então k < n e existem vectores v_{k+1}, \ldots, v_n tais que $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ é uma base de V.

[Em V, todo o conjunto de vectores linearmente independentes pode ser estendido a uma base.]

- (iii) Se $\langle v_1, \ldots, v_n \rangle = V$, então $\{v_1, \ldots, v_n\}$ é uma base de V.
- [Qualquer conjunto de n vectores que geram V é uma base de V.]
- (iv)Se $\langle v_1, \ldots, v_k \rangle = V$ em que $k \neq n$, então k > n e existe um subconjunto próprio B de $\{v_1, \ldots, v_k\}$ tal que B é uma base de V
- $[\mathsf{Em}\ V,\ \mathsf{todo}\ \mathsf{o}\ \mathsf{conjunto}\ \mathsf{de}\ \mathsf{geradores}\ \mathsf{pode}\ \mathsf{ser}\ \mathsf{reduzido}\ \mathsf{a}\ \mathsf{uma}\ \mathsf{base}.]$

- (iii) Se $\langle v_1, \ldots, v_n \rangle = V$, então $\{v_1, \ldots, v_n\}$ é uma base de V.
- [Qualquer conjunto de n vectores que geram V é uma base de V.]
- (iv)Se $\langle v_1, \ldots, v_k \rangle = V$ em que $k \neq n$, então k > n e existe um subconjunto próprio B de $\{v_1, \ldots, v_k\}$ tal que B é uma base de V.
- [Em V, todo o conjunto de geradores pode ser reduzido a uma base.]

Espaço das Linhas e Espaço das Colunas de uma matriz

Seja $A = (a_{ij})$ uma matriz de ordem $m \times n$ e designemos por c_1, c_2, \ldots, c_n as colunas da matriz A e por l_1, l_2, \ldots, l_m as linhas de A.

Definição:

Designa-se por espaço das colunas da matriz A, R(A), o subespaço de \mathbb{R}^m gerado pelas colunas da matriz A, isto é

$$R(A) = \langle c_1, c_2, \dots c_n \rangle$$

O espaço das linhas de A é o subespaço de R^n gerado por I_1, I_2, \ldots, I_m . Note-se que o espaço das linhas de A é o espaço das colunas da matriz transposta de A e, por isso, é representado por $R(A^T)$. Portanto

$$R(A^T) = \langle I_1, I_2, \dots, I_m \rangle.$$

Espaço das Linhas e Espaço das Colunas de uma matriz

Seja $A = (a_{ij})$ uma matriz de ordem $m \times n$ e designemos por c_1, c_2, \ldots, c_n as colunas da matriz A e por l_1, l_2, \ldots, l_m as linhas de A.

Definição:

Designa-se por espaço das colunas da matriz A, R(A), o subespaço de \mathbb{R}^m gerado pelas colunas da matriz A, isto é

$$R(A) = \langle c_1, c_2, \dots c_n \rangle$$

O espaço das linhas de A é o subespaço de R^n gerado por I_1, I_2, \ldots, I_m . Note-se que o espaço das linhas de A é o espaço das colunas da matriz transposta de A e, por isso, é representado por $R(A^T)$. Portanto

$$R(A^T) = \langle I_1, I_2, \dots, I_m \rangle.$$

Exemplo:

Seja
$$A = \begin{pmatrix} 1 & -2 & -1 & 0 \\ 4 & -8 & 0 & 4 \\ -2 & 4 & 1 & -1 \end{pmatrix}$$
 matriz de ordem 3×4 .

O espaço das colunas de A é o subespaço de \mathbb{R}^3 , tal que

$$R(A) = \langle c_1, c_2, c_3, c_4 \rangle$$

$$= \langle c_1, c_3 \rangle \text{ pois } c_2 = -2c_1 \text{ e } c_4 = c_1 + c_3$$

$$= \{\alpha c_1 + \beta c_3 : \alpha, \beta \in \mathbb{R}\}$$

$$= \left\{\alpha \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} : \alpha, \beta \in \mathbb{R}\}$$

$$= \left\{\begin{pmatrix} \alpha - \beta \\ 4\alpha \\ -2\alpha + \beta \end{pmatrix} : \alpha, \beta \in \mathbb{R}\right\}$$

Note-se que $dim(R(A) = 2 (c_1, c_3 \text{ são l.i. e por isso formam uma base de } R(A)).$

Dada uma matriz A, seja U a matriz em escada que se obtém quando se aplica a A o algoritmo de eliminação de Gauss. Então,

- $dim(R(A)) = dim(R(A^T)) = dim(R(U)) = dim(R(U^T)) = c(A) = c(A^T)$
- Uma base de R(A) é formada pelas colunas de A correspondentes às colunas de U que contêm os pivots.
- Uma base de $R(A^T)$ é formada pelas linhas não nulas de U.

Dada uma matriz A, seja U a matriz em escada que se obtém quando se aplica a A o algoritmo de eliminação de Gauss. Então,

- $dim(R(A)) = dim(R(A^T)) = dim(R(U)) = dim(R(U^T)) = c(A) = c(A^T)$
- Uma base de R(A) é formada pelas colunas de A correspondentes às colunas de U que contêm os pivots.
- Uma base de $R(A^T)$ é formada pelas linhas não nulas de U.

Dada uma matriz A, seja U a matriz em escada que se obtém quando se aplica a A o algoritmo de eliminação de Gauss. Então,

- $dim(R(A)) = dim(R(A^T)) = dim(R(U)) = dim(R(U^T)) = c(A) = c(A^T)$
- Uma base de R(A) é formada pelas colunas de A correspondentes às colunas de U que contêm os pivots.
- Uma base de $R(A^T)$ é formada pelas linhas não nulas de U.

Exemplo

Seja
$$A = \begin{pmatrix} 1 & -2 & -1 & 0 \\ 4 & -8 & 0 & 4 \\ -2 & 4 & 1 & -1 \end{pmatrix}$$
 a matriz do exemplo anterior e U , a matriz

em escada obtida de
$$A$$
 dada por $U = \left(\begin{array}{cccc} 1 & -2 & -1 & 0 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 \end{array}\right)$

- Dado que os pivots de U estão na primeira e terceira colunas, conclui-se que uma base de R(A), subespaço de \mathbb{R}^3 , é formada pelas primeira e terceira colunas de A, como vimos no exemplo anterior.
- ullet As linhas não nulas de U são a primeira e a segunda. Logo, uma base de

$$R(A^T)$$
, subespaço de \mathbb{R}^4 , é $\left\{ \begin{pmatrix} 1\\-2\\-1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\4\\4 \end{pmatrix} \right\}$.

• $dim(R(A)) = dim(R(A^T) = c(A) = 2$.

Aplicações a sistemas de equações lineares

Definição

Seja A uma matriz de ordem $m \times n$. Designa-se por espaço nulo , ou nulidade de A, o espaço das soluções do sistema homogéneo Ax = 0.

Teorema

Seja Ax = 0 um sistema homogéneo de m equações a n incógnitas. O con^{junto} das soluções deste sistema, ou núcleo de A, constitui um subespaço linear de R^n .

- (i) provar que o subconjunto das soluções é não vazio.Se o sistema é homogéneo, tem pelo menos a solução trivial, a solução
- (ii) sejam x e y soluções do sistema homogéneo, e vejamos se x+y ainda é solução.

$$A(x + y) = Ax + Ay = 0 + 0 = 0$$

donde x + y pertence ao con das soluções do sistema homogéneo

(ii) seja x solução do sistema homogéneo, e vejamos se αx ainda é solução

$$A(\alpha x) = \alpha A x = \alpha 0 = 0$$

- (i) provar que o subconjunto das soluções é não vazio. Se o sistema é homogéneo, tem pelo menos a solução trivial, a solução nula.
- (ii) sejam x e y soluções do sistema homogéneo, e vejamos se x + y ainda é solução.

$$A(x + y) = Ax + Ay = 0 + 0 = 0$$

donde x+y pertence ao con^{junto} das soluções do sistema homogéneo. (ii) seja x solução do sistema homogéneo, e vejamos se αx ainda é

$$A(\alpha x) = \alpha A x = \alpha 0 = 0$$

- (i) provar que o subconjunto das soluções é não vazio. Se o sistema é homogéneo, tem pelo menos a solução trivial, a solução nula.
- (ii) sejam x e y soluções do sistema homogéneo, e vejamos se x+y ainda é solução.

$$A(x + y) = Ax + Ay = 0 + 0 = 0$$

donde x+y pertence ao con^{junto} das soluções do sistema homogéneo. (ii) seja x solução do sistema homogéneo, e vejamos se αx ainda é solução.

$$A(\alpha x) = \alpha A x = \alpha 0 = 0$$

- (i) provar que o subconjunto das soluções é não vazio. Se o sistema é homogéneo, tem pelo menos a solução trivial, a solução nula.
- (ii) sejam x e y soluções do sistema homogéneo, e vejamos se x+y ainda é solução.

$$A(x + y) = Ax + Ay = 0 + 0 = 0$$

donde x + y pertence ao con^{junto} das soluções do sistema homogéneo.

(ii) seja x solução do sistema homogéneo, e vejamos se αx ainda é solução.

$$A(\alpha x) = \alpha A x = \alpha 0 = 0$$

- (i) provar que o subconjunto das soluções é não vazio. Se o sistema é homogéneo, tem pelo menos a solução trivial, a solução nula.
- (ii) sejam x e y soluções do sistema homogéneo, e vejamos se x+y ainda é solução.

$$A(x + y) = Ax + Ay = 0 + 0 = 0$$

donde x + y pertence ao con^{junto} das soluções do sistema homogéneo.

(ii) seja x solução do sistema homogéneo, e vejamos se αx ainda é solução.

$$A(\alpha x) = \alpha Ax = \alpha 0 = 0$$

- (i) provar que o subconjunto das soluções é não vazio. Se o sistema é homogéneo, tem pelo menos a solução trivial, a solução nula.
- (ii) sejam x e y soluções do sistema homogéneo, e vejamos se x+y ainda é solução.

$$A(x + y) = Ax + Ay = 0 + 0 = 0$$

donde x + y pertence ao con^{junto} das soluções do sistema homogéneo.

(ii) seja x solução do sistema homogéneo, e vejamos se αx ainda é solução.

$$A(\alpha x) = \alpha Ax = \alpha 0 = 0$$

Aplicações a sistemas de equações lineares

Tem-se então válido o seguinte teorema:

Teorema

Seja A uma matriz de ordem $m \times n$. A soma da característica de A com a dimensão do núcleo ou espaço nulo de A é igual a n isto é:

$$n = \dim(N(A)) + c(A)$$

Exemplo

Consideremos o sistema homogéneo
$$\begin{cases} x_1 - x_2 + x_4 = 0 \\ 2x_2 + x_3 = 0 \end{cases}$$
 obtemos:
$$\begin{cases} x_2 = \frac{-1}{2}x_3 = -0.5x_3 \\ x_1 = -0.5x_3 - x_4 \end{cases}$$

Escolhendo valores para x_3 e x_4 , por exemplo $x_3 = \alpha$ e $x_4 = \beta$ temos:

$$\begin{cases} x_1 = -0.5\alpha - \beta \\ x_2 = -0.5\alpha \\ x_3 = \alpha \\ x_4 = \beta \end{cases} \qquad \alpha, \beta \in \mathbb{R}$$
 ou seja
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \alpha \begin{pmatrix} -0.5 \\ -0.5 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

donde, qualquer solução do sistema dado pode escrever-se como combinação linear dos vectores \mathbf{a} e \mathbf{b} .

Estes vectores, **a** e **b** são linearmente independentes, são por isso base, sendo a dimensão do subespaço das soluções do sistema homogéneo 2.

Seja Ax = b um sistema de equações lineares, sendo A uma matriz de ordem $m \times n$. Então são válidas as seguintes afirmações:

- O sistema Ax = b é impossível se e só se b não pertence ao espaço das colunas de A,
- O sistema Ax = b é indeterminado se e só se b pertence ao espaço das colunas de A e estas são linearmente dependentes, isto é, a característica de A é inferior a n:
- O sistema Ax = b tem solução única se e só se b pertence ao espaço das colunas de A e estas são linearmente independentes, isto é, a característica de A é igual a n.

Proposição

Seja A uma matriz de ordem $n \times n$. então as seguintes afirmações são equivalentes:

- (i) A é invertível,
- (ii) a característica de A é máxima (igual a n),
- (iiii) as colunas de A geram \mathbb{R}^n ,
- (iv) as colunas de A são independentes,
- (v) as linhas de A geram R^n ,
- (vi) as linhas de A são independentes.
- (vii) $N(A) = \{0\};$
- (viii) O sistema Ax = 0 é possível e determinado.