Scientific Programming Practical 3

Introduction

Ordered collections of (homogeneous) objects

Mutable objects

Defined using the []

```
my first list = [1,2,3]
print("first:", my first list)
my second list = [1,2,3,1,3] #elements can appear several times
print("second: ", my second list)
fruits = ["apple", "pear", "peach", "strawberry", "cherry"] #elements can be strings
print("fruits:", fruits)
an empty list = []
print("empty:" , an empty list)
another empty list = list()
print("another empty:", another empty list)
a list containing other lists = [[1,2], [3,4,5,6]] #elements can be other lists
print("list of lists:", a list containing other lists)
my final example = [my first list, a list containing other lists]
print("a list of lists of lists:", my final example)
first: [1, 2, 3]
second: [1, 2, 3, 1, 3]
fruits: ['apple', 'pear', 'peach', 'strawberry', 'cherry']
empty: []
another empty: []
list of lists: [[1, 2], [3, 4, 5, 6]]
a list of lists of lists: [[1, 2, 3], [[1, 2], [3, 4, 5, 6]]]
```

Operators and functions

NOTE: as in strings, list indexing starts from 0!

Result	Operator	Meaning
bool	=, !=	Check if two lists are equal or different
int	len(list)	Return the length of the list
list	list + list	Concatenate two lists (returns a new list)
list	list * int	Replicate the list (returns a new list)
list	list[int:int]	Extract a sub-list

The whole element must be there!

Lists are mutable
so now we can
change values!

Result	Operator	Meaning
bool	obj in list	Check if an element is present in a list

Result	Operator	Meaning
obj	list[int]	Read/write an element at a specified index

Operators and functions

NOTE: as in strings, list indexing starts from 0!

```
A = [1, 2, 3]
B = [1, 2, 3, 1, 2]
print("A is a ", type(A))
print(A, " has length: ", len(A))
print("A[0]: ", A[0], " A[1]:", A[1], " A[-1]:", A[-1])
print(B, " has length: ", len(B))
print("Is A equal to B?", A == B)
C = A + [1, 2]
print(C)
print("Is C equal to B?", B == C)
D = [1, 2, 3]*8
print(D)
E = D[12:18] #slicing
print(E)
print("Is A*2 equal to E?", A*2 == E)
```

```
A is a <class 'list'>
[1, 2, 3] has length: 3
A[0]: 1 A[1]: 2 A[-1]: 3
[1, 2, 3, 1, 2] has length: 5
Is A equal to B? False
[1, 2, 3, 1, 2]
Is C equal to B? True
[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]
[1, 2, 3, 1, 2, 3]
Is A*2 equal to E? True
```

Operators and functions

NOTE: as in strings, list indexing starts from 0!

IN operator: the whole element must be there!

Lists are **mutable objects** so now we can **change values**!

```
A = [1, 2, 3, 4, 5, 6]
B = [1, 3, 5]
print("A:", A)
print("B:", B)

print("Is B in A?", B in A)
print("A\'s ID:", id(A))
A[5] = [1,3,5] #we can add elements
print(A)
print("A\'s ID:", id(A))
print("A\'s ID:", id(A))
print("A has length:", len(A))
print("Is now B in A?", B in A)
```

```
A: [1, 2, 3, 4, 5, 6]

B: [1, 3, 5]

Is B in A? False

A's ID: 140419415368200

[1, 2, 3, 4, 5, [1, 3, 5]]

A's ID: 140419415368200

A has length: 6

Is now B in A? True
```

ERROR: do not exceed boundaries!

```
A = [1, 2, 3, 4, 5, 6]
print("A has length:", len(A))
print("First element:", A[0])
print("7th-element: ", A[6])
A has length: 6
First element: 1
IndexError
                                          Traceback (most recent call last)
<ipython-input-5-699e5f04cae0> in <module>()
      4 print("First element:", A[0])
----> 5 print("7th-element: ", A[6])
IndexError: list index out of range
```

Methods

Return	Method	Meaning
None	list.append(obj)	Add a new element at the end of the list
None	list.extend(list)	Add several new elements at the end of the list
None	<pre>list.insert(int,obj)</pre>	Add a new element at some given position
None	list.remove(obj)	Remove the first occurrence of an element
None	list.reverse()	Invert the order of the elements
None	list.sort()	Sort the elements
int	list.count(obj)	Count the occurrences of an element

Note that lists are **mutable objects** and therefore virtually all the previous methods (except *count*) do not have an output value, but they **modify** the list

Methods

```
print(fruits)
                                  fruits.sort()
[1, 2, 3]
                                  fruits.reverse()
[1, 2, 3, 72]
                                  print(fruits)
[1, 2, 3, 72, 1, 5, 124, 99]
                                  fruits.remove("banana")
[99, 124, 5, 1, 72, 3, 2, 1]
                                  print(fruits)
[1, 1, 2, 3, 5, 72, 99, 124]
Min value: 1
                                  print(fruits)
Max value: 124
Number 1 appears: 2 times
While number 837: 0
Done with numbers, let's go strings...
['apple', 'banana', 'pineapple', 'cherry', 'pear', 'almond', 'orange']
['pineapple', 'pear', 'orange', 'cherry', 'banana', 'apple', 'almond']
['pineapple', 'pear', 'orange', 'cherry', 'apple', 'almond']
['pineapple', 'pear', 'orange', 'cherry', 'apple', 'wild apple', 'almond']
```

```
#A numeric list
A = [1, 2, 3]
print(A)
A.append(72) #appends one and only one object
print(A)
A.extend([1, 5, 124, 99]) #adds all these objects, one after the other.
print(A)
A.reverse()
print(A)
A.sort()
print(A)
print("Min value: ", A[0]) # In this simple case, could have used min(A)
print("Max value: ", A[-1]) #In this simple case, could have used max(A)
print("Number 1 appears:", A.count(1), " times")
print("While number 837: ", A.count(837))
print("\nDone with numbers, let's go strings...\n")
#A string list
fruits = ["apple", "banana", "pineapple", "cherry", "pear", "almond", "orange"]
#Let's get a reverse lexicographic order:
fruits.insert(5, "wild apple") #put wild apple after apple.
```

Some important things on lists

1. append is different from extend

2. to remove an object it must exist

```
A = [1, 2, 3]

A.extend([4, 5])
print(A)
B = [1, 2, 3]
B.append([4,5])
print(B)

[1, 2, 3, 4, 5]
[1, 2, 3, [4, 5]]
```

Some important things on lists

3. a list is sortable if all its elements are (i.e. it's homogeneous)

```
A = [4,3, 1,7, 2]
print(A)
A.sort()
print(A)
A.append("banana")
A.sort()
print(A)
[4, 3, 1, 7, 2]
[1, 2, 3, 4, 7]
TypeError
                                          Traceback (most recent call last)
<ipython-input-10-5ee3935792e2> in <module>()
     4 print(A)
      5 A.append("banana")
---> 6 A.sort()
     7 print(A)
TypeError: unorderable types: str() < int()
```

REMEMBER:

Lists are MUTABLE objects...

... hence they hold references

to objects rather than objects.

```
A = ["hi", "there"]
B = A
print("A:", A)
print("B:", B)
A.extend(["from", "python"])
print("A now: ", A)
print("B now: ", B)
print("\n---- copy example -----")
#Let's make a distinct copy of A.
C = A[:] #all the elements of A have been copied in C
print("C:", C)
A[3] = "java"
print("A now:", A)
print("C now:", C)
print("\n---- be careful though -----")
#Watch out though that ...
D = [A, A]
E = D[:]
print("D:", D)
print("E:", E)
D[0][0] = "hello"
print("D now:", D)
print("E now", E)
A: ['hi', 'there']
B: ['hi', 'there']
A now: ['hi', 'there', 'from', 'python']
B now: ['hi', 'there', 'from', 'python']
---- copy example -----
C: ['hi', 'there', 'from', 'python']
A now: ['hi', 'there', 'from', 'java']
C now: ['hi', 'there', 'from', 'python']
---- be careful though -----
D: [['hi', 'there', 'from', 'java'], ['hi', 'there', 'from', 'java']]
E: [['hi', 'there', 'from', 'java'], ['hi', 'there', 'from', 'java']]
D now: [['hello', 'there', 'from', 'java'], ['hello', 'there', 'from', 'java']]
E now [['hello', 'there', 'from', 'java'], ['hello', 'there', 'from', 'java']]
```

The split method

Example Recall the protein seen in the previous practical:

chain_a = """SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKM
FCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVV
RRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFR
HSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILT
IITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKG EPHHELPPGSTKRALPNNT"""

how can we split it into several lines?

```
chain a = """SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKM
FCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVV
RRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFR
HSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILT
IITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKG
EPHHELPPGSTKRALPNNT""
lines = chain a.split('\n')
print("Original sequence:")
print( chain_a, "\n") #some spacing to keep things clear
print("line by line:")
print("1st line:" ,lines[0])
print("2nd line:" ,lines[1])
print("3rd line:" ,lines[2])
print("4th line:" ,lines[3])
print("5th line:" ,lines[4])
print("6th line:" ,lines[5])
print("Split the 1st line in correspondence to FRL:\n",lines[0].split("FRL"))
Original sequence:
SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKM
FCOLAKTCPVOLWVDSTPPPGTRVRAMAIYKOSOHMTEVV
RRCPHHERCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFR
HSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILT
IITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKG
EPHHELPPGSTKRALPNNT
line by line:
1st line: SSSVPSQKTYQGSYGFRLGFLHSGTAKSVTCTYSPALNKM
2nd line: FCOLAKTCPVOLWVDSTPPPGTRVRAMAIYKOSOHMTEVV
3rd line: RRCPHHERCSDSDGLAPPOHLIRVEGNLRVEYLDDRNTFR
4th line: HSVVVPYEPPEVGSDCTTIHYNYMCNSSCMGGMNRRPILT
5th line: IITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKG
6th line: EPHHELPPGSTKRALPNNT
Split the 1st line in correspondence to FRL:
 ['SSSVPSQKTYQGSYG', 'GFLHSGTAKSVTCTYSPALNKM']
```

Tuples

Tuples are the IMMUTABLE version of lists (ordered sequence of objects)

```
first tuple = (1,2,3)
print(first tuple)
second tuple = (1,) #this contains one element only, but we need the comma!
var = (1) #This is not a tuple!!!
print(second_tuple, " type:", type(second_tuple))
print(var, "type:", type(var))
empty tuple = () #fairly useless
print(empty tuple)
third tuple = ("January", 1 ,2007) #heterogeneous info
print(third tuple)
days = (third tuple, ("February", 2, 1998), ("March", 2, 1978), ("June", 12, 1978))
print(days, "\n")
#Remember tuples are immutable objects...
print("Days has id: ", id(days))
days = ("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun")
#...hence reassignment creates a new object
print("Days now has id: ", id(days))
(1, 2, 3)
(1.) type: <class 'tuple'>
1 type: <class 'int'>
()
('January', 1, 2007)
(('January', 1, 2007), ('February', 2, 1998), ('March', 2, 1978), ('June', 12, 1978))
Days has id: 140419415813880
Days now has id: 140419416147240
```

Tuples Functions

working as in lists...

Result	Operator	Meaning
bool	=, !=	Check if two tuples are equal or different
int	len(tuple)	Return the length of the tuple
tuple	tuple + tuple	Concatenate two tuples (returns a new tuple)
tuple	tuple * int	Replicate the tuple (returns a tuple)
tuple	tuple[int]	Read an element of the tuple
tuple	<pre>tuple[int:int]</pre>	Extract a sub-tuple

Tuples

Functions

```
practical1 = ("Thursday", "28/09/2017")
practical2 = ("Monday", "02/10/2017")
practical3 = ("Thursday", "05/10/2017")
lectures = (practical1, practical2, practical3)
                                                      #A tuple containing 3 tuples
mergedLectures = practical1 + practical2 + practical3 #One tuple only
print("The first three lectures:\n", lectures, "\n")
print("mergedLectures:\n", mergedLectures)
print("1st lecture was on: ", lectures[0], "\n") #This returns the whole tuple
print("The first lecture was on ", mergedLectures[0], ", ", mergedLectures[1], "\n") #2 elemes from the same tuple
print("3rd lecture was on: ", lectures[2]) # Return type is tuple!
print("The third lecture was on ", mergedLectures[4:], "\n") #2 elemes from the same tuple returned in tuple
The first three lectures:
 (('Thursday', '28/09/2017'), ('Monday', '02/10/2017'), ('Thursday', '05/10/2017'))
mergedLectures:
 ('Thursday', '28/09/2017', 'Monday', '02/10/2017', 'Thursday', '05/10/2017')
1st lecture was on: ('Thursday', '28/09/2017')
The first lecture was on Thursday , 28/09/2017
3rd lecture was on: ('Thursday', '05/10/2017')
The third lecture was on ('Thursday', '05/10/2017')
```

Tuples Methods

working as in lists...

Return	Method	Meaning
int	list.count(obj)	Count the occurrences of an element
int	<pre>list.index(obj)</pre>	Return the index of the first occurrence of an object

Tuples

Methods

```
practical1 = ("Thursday", "28/09/2017")
practical2 = ("Monday", "02/10/2017")
practical3 = ("Thursday", "05/10/2017")
mergedLectures = practical1 + practical2 + practical3 #One tuple only
print(mergedLectures.count("Thursday"), " lectures were on Thursday")
print(mergedLectures.count("Monday"), " lecture was on Monday")
print("Index:", practical2.index("Monday"))
print("Index:", practical2.index("Tuesday"))
2 lectures were on Thursday
1 lecture was on Monday
Index: 0
                                         Traceback (most recent call last)
ValueError
<ipython-input-61-8df8230c6030> in <module>()
      9 print("Index:", practical2.index("Monday"))
---> 10 print("Index:", practical2.index("Tuesday"))
ValueError: tuple.index(x): x not in tuple
```