Problem 1 Tour Planning - Part I (4%)

You are given an $n \times m$ grid map with 0 and 1. The grid with 1 means an obstacle (a wall) is on that spot while a grid with 0 means that the cell is empty.

Due: March 24, 2019

The scientist of the grid world (SoGW) is currently at position (x_1, y_1) and wants to travel to position (x_2, y_2) , where $1 \le x_1, x_2 \le n$, $1 \le y_1, y_2 \le m$, $(x_1, y_1) \ne (x_2, y_2)$.

Please determine for him if this is possible.

Input

The first line contains two integers n and m, $(1 \le n, m \le 50)$, the size of the grid map.

Each of the next n lines contain m integers that are either 0 or 1, the map of the grid world.

Then two lines follow. The first line contains the starting position x_1 and y_1 and the second line contains the destination x_2 and y_2 .

Note that, $1 \le x_1, x_2 \le n, 1 \le y_1, y_2 \le m$, and it is guaranteed that both (x_1, y_1) and (x_2, y_2) are empty cells and $(x_1, y_1) \ne (x_2, y_2)$.

Output

Print "Yes" if it is possible to move from (x_1, y_1) to (x_2, y_2) . Otherwise, print "No".

Example 1

Inpu	ıt
3 4	
1 0	0 1
0 1	0 1
1 1	0 0
1 2	
3 4	

Output

Yes

Example 2

Ir	ıp	ut	
3	4		
1	0	0	1
0	1	0	1
1	1	0	0
2	1		
3	4		

Sample Output

No

Problem 2 Tour Planning - PartII (6%)

Thanks to your help in the previous problem, the scientist of the grid world (SoGW) is now aware of his travel destination. Please write a program that computes a path for him.

Due: March 24, 2019

Input

The first line contains two integers n and m, $(1 \le n, m \le 50)$, the size of the grid map.

Each of the next n lines contain m integers that are either 0 or 1, the map of the grid world.

Then two lines follow. The first line contains the starting position x_1 and y_1 and the second line contains the destination x_2 and y_2 .

Note that, $1 \le x_1, x_2 \le n, 1 \le y_1, y_2 \le m$, and it is guaranteed that both (x_1, y_1) and (x_2, y_2) are empty cells and $(x_1, y_1) \ne (x_2, y_2)$.

Output

Print a path from (x_1, y_1) to (x_2, y_2) , inclusive. Since the scientist has a short memory, he could make mistakes asking for a destination that is unreachable. In case it is not possible to reach the destination, print the integer -1.

Example 1

Ir	ıput	,
3	4	
1	0 0	1
0	1 0	1
1	1 0	0
1	2	
3	4	

Output 1 2 1 3 2 3 3 3 3 4

Example 2

Sample Output
-1

Note

You may want to write (design) a recursive (遞迴) function with a right prototype to solve this problem. In order to record the path, you need another array to record the incoming position of each spot.

Due: March 24, 2019

你需要宣告另一個陣列來紀錄:

對於每一個可以到達的每個位置,它的上一格是來自哪裡。