

Instituto Federal de Educação, Ciência e Tecnologia do Ceará Curso de Tecnologia em Telemática Disciplina: Sistemas de Rádio Enlace

Disciplina: Sistemas de Rádio Enlace Prof.: Fábio Alencar Mendonca

Aluno:

AV1 - 2024.1

- 1. Qual das seguintes estruturas NÃO pode ser classificada como uma linha de transmissão? (5 esc.)
 - a) Cabo coaxiai
 - -b) Fibra óptica
 - c) A trilha de uma placa de circuito impresso (microfita)
 - d) Par de fios paralelos
- O coeficiente de reflexão em uma carga resistiva desconhecida Z_L alimentada por uma linha de transmissão com Z₀-50Ω é Γ=0,5e^{i180°}. Qual a razão de onda estacionária na linha e o valor de Z_L? Apresente o procedimento para chegar ao resultado. (10 esc.)
 - a) ROE=1 e Z_L =150 Ω
 - b) ROE=2 e Z_L =100 Ω
 - c) ROE=2 e Z_L =75 Ω
 - d) ROE=3 e Z_L=33,33Ω
 - e) ROE=3 e $Z_1 = 16.66\Omega$
 - 3. Uma linha de transmissão de 50Ω é conectada a uma carga composta de um resistor de 75Ω em série com um capacitor de capacitância desconhecida. Se em 10MHz a razão de onda estacionária foi medida na linha como sendo 3, determine o valor aproximado da capacitância desconhecida. Apresente a procedimento para chegar ao resultado (15 esc.)

- 4. Um transmissor e um receptor estão conectados utilizando um par de linhas de transmissão em cascata. Na frequência de operação, o transmissor é conectado à linha 1 que tem impedância característica 50Ω, comprimento 20m e taxa de atenuação estimada em 0,1dB/m. Esta última é conectada à linha 2 que tem 75Ω, 25m e 0,2dB/m. Na junção entre as duas linhas e nas conexões do transmissor e do receptor com as linhas há uma perda estimada de 2dB em cada uma. Sabendo que a sensibilidade do receptor é -10dBm e impedância 75Ω, especifique a potência mínima em dBm que o transmissor deve inserir no conjunto. Apresente a procedimento para chegar ao resultado. (10 esc.)
 - a) 1,17
 - b) 2,17
 - c) 3,17
 - d) 4,17
 - e) 5.17
- 5. Considere uma LT sem perda com Z₀=50Ω que é terminada por uma carga puramente resistiva (Z_L). Qual a faixa de valores que Z_L deve ter para que a potência dissipada na carga seja de, no mínimo, 95% da potência incidente. Apresente a procedimento para chegar ao resultado. (10 esc.)
 - a) 31,72Ω apenas
 - b) 78,8Ω apenas
 - c) 0 a 31,72Ω

- d) 31,72Ω a 78,8Ω
- e) Maior que 78,8Ω
- 6. Uma estação de radiodifusão FM de 100MHz usa uma linha de transmissão de 300Ω entre o transmissor e a antena dipolo de meia onda montada na torre. A impedância da antena é 73Ω. Você recebe uma solicitação para projetar um transformador de ¼ de onda para casar a impedância da antena com a linha. Qual o comprimento elétrico mínimo (em função de λ) e a impedância característica que o transformador deve ter para que a solicitação seja atendida? Apresente a procedimento para chegar ao resultado. (10 esc.)
 - a) 0,25λ e 148Ω
 - b) 0,25λ e 100Ω
 - c) 0,75λ e 148Ω
 - d) λ e 100Ω
 - e) Não é possível atender à solicitação
- Considere o seguinte circuito com linhas de transmissão sem perdas. Quai a impedância de entrada Zin a partir dos pontos AB? Apresente a procedimento para chegar ao resultado. (15 esc.)
 - a) 0 (curto circuito)
 - b) ∞ (circuito aberto)
 - c) 10002
 - d) 50Ω
 - e) 80-j60 Ω

- 8. Equivocadamente uma antena com impedância de 100Ω foi alimentada com uma linha de transmissão de 50Ω. Qual é aproximadamente o percentual de potência efetivamente absolvida pela antena? Apresente a procedimento para chegar ao resultado. (10 esc.)
 - a) 99%
 - b) 89%
 - c) 79%
 - d) 69%
 - e) 59%
- 9. Linhas de transmissão podem ser usadas para construir elementos de circuitos, tais como capacitores e indutores que operam nas frequências de micro-ondas (>1GHz). Projete o comprimento l mínimo que uma linha transmissão de microfita com Z₀=50Ω deve ter para que sua impedância de entrada seja equivalente à de um capacitor de 0.2pF operando na frequência de 5 GHz. Considere v=0,8c e que c=3x10⁸m/s. (15 esc.)