Class 13 - RNAseq mini project

Hetian Su

```
# load the DESeq2 package
  library(DESeq2)
Warning: package 'matrixStats' was built under R version 4.2.2
  # load count and metadata for DEseq analysis
  metaFile <- 'GSE37704_metadata.csv'</pre>
  countFile <- 'GSE37704_featurecounts.csv'</pre>
  colData <- read.csv(metaFile, row.names = 1)</pre>
  head(colData)
              condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369
               hoxa1 kd
SRR493370
               hoxa1_kd
SRR493371
               hoxa1_kd
  countData <- read.csv(countFile, row.names = 1)</pre>
  head(countData)
                length SRR493366 SRR493367 SRR493368 SRR493369 SRR493370
ENSG00000186092
                    918
                                0
                                           0
                                                     0
                                                                0
                                                                          0
                   718
                                           0
                                                                          0
ENSG00000279928
                                0
                                                     0
                                                                0
                   1982
                               23
                                                    29
                                                               29
ENSG00000279457
                                          28
                                                                         28
ENSG00000278566
                  939
                                0
                                           0
                                                     0
                                                                0
                                                                          0
```

ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR493371					
ENSG00000186092	0					
ENSG00000279928	0					
ENSG00000279457	46					
ENSG00000278566	0					
ENSG00000273547	0					
ENSG00000187634	258					

Q1

```
# remove the first length column from count data
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Q2

```
# remove gene entries that have 0 in each sample
countData <- countData[rowSums(countData)!=0, ]
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

PCA quality control on the dataset to see if different conditions are separable.

```
pca <- prcomp(t(countData), scale. = T)
plot(pca$x[,1], pca$x[,2], col=as.factor(colData$condition))</pre>
```


Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)
```

estimating size factors

estimating dispersions

gene-wise dispersion estimates

```
mean-dispersion relationship
final dispersion estimates
fitting model and testing
  dds
class: DESeqDataSet
dim: 15975 6
metadata(1): version
assays(4): counts mu H cooks
rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345
  ENSG00000271254
rowData names(22): baseMean baseVar ... deviance maxCooks
colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371
colData names(2): condition sizeFactor
Q3
  res <- results(dds)</pre>
  summary(res)
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)
                  : 4349, 27%
LFC < 0 (down)
                   : 4396, 28%
outliers [1]
                  : 0, 0%
low counts [2]
                   : 1237, 7.7%
(mean count < 0)</pre>
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
```

Visualization

Q4

```
mycols <- rep('gray', nrow(res))
mycols[abs(res$log2FoldChange) > 2] <- 'red'
inds <- (res$padj<0.01)&(abs(res$log2FoldChange)>2)
mycols[inds] <- 'blue'
plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(</pre>
```


Add Annotation

Q5

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
[1] "ACCNUM"
[6] "ENTREZID"
```

```
"ALIAS"
                                   "ENSEMBL"
                                                  "ENSEMBLPROT"
                                                                  "ENSEMBLTRANS"
                    "ENZYME"
                                   "EVIDENCE"
                                                  "EVIDENCEALL"
                                                                  "GENENAME"
[11] "GENETYPE"
                    "GO"
                                   "GOALL"
                                                  "IPI"
                                                                  "MAP"
[16] "OMIM"
                                   "ONTOLOGYALL" "PATH"
                                                                  "PFAM"
                    "ONTOLOGY"
[21] "PMID"
                                   "REFSEQ"
                                                                  "UCSCKG"
                    "PROSITE"
                                                  "SYMBOL"
[26] "UNIPROT"
  res$symbol = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
                      keytype="ENSEMBL",
                      column='SYMBOL',
                      multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez = mapIds(org.Hs.eg.db,
                      keys=row.names(res),
```

```
keytype="ENSEMBL",
column="ENTREZID",
multiVals="first")
```

'select()' returned 1:many mapping between keys and columns

```
mapIds(org.Hs.eg.db,
res$name =
                    keys=row.names(res),
                    keytype='ENSEMBL',
                    column='GENENAME',
                    multiVals="first")
```

'select()' returned 1:many mapping between keys and columns

```
head(res, 10)
```

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 10 rows and 9 columns

	baseMean	log2FoldChange	lfcSH	E stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<pre> <numeric></numeric></pre>	<numeric></numeric>
ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.188076	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.979750	0.5428105	0.5215598	1.040744	2.97994e-01
ENSG00000188290	108.922128	2.0570638	0.1969053	3 10.446970	1.51282e-25
ENSG00000187608	350.716868	0.2573837	0.1027266	2.505522	1.22271e-02
ENSG00000188157	9128.439422	0.3899088	0.0467163	8.346304	7.04321e-17
ENSG00000237330	0.158192	0.7859552	4.0804729	0.192614	8.47261e-01
	padj	symbol	entrez		name
	<numeric></numeric>	<character> <ch< td=""><td>naracter></td><td>•</td><td><pre><character></character></pre></td></ch<></character>	naracter>	•	<pre><character></character></pre>
ENSG00000279457	6.86555e-01	NA	NA		NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alph	na motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like nu	ıcleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like	family me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstrin h	nomology
ENSG00000187642	4.03379e-01	PERM1	84808	${\tt PPARGC1} \ {\tt and} \\$	ESRR ind
ENSG00000188290	1.30538e-24	HES4	57801	hes family h	oHLH tran
ENSG00000187608	2.37452e-02	ISG15	9636	ISG15 ubiqu	itin like
ENSG00000188157	4.21963e-16	AGRN	375790		agrin
ENSG00000237330	NA	RNF223	401934	ring finger	protein

Q6

```
# reorder the annotated gene data by adjusted p-values
res <- res[order(res$padj),]
write.csv(res, 'deseq_results.csv')</pre>
```

Pathway Analysis

```
# BiocManager::install( c("pathview", "gage", "gageData") )
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

```
library(gage)
```

```
library(gageData)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  kegg.sets.hs <- kegg.sets.hs[sigmet.idx.hs]</pre>
  head(kegg.sets.hs,3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
              "1066"
 [1] "10"
                       "10720" "10941"
                                        "151531" "1548"
                                                            "1549"
                                                                     "1551"
 [9] "1553"
              "1576"
                       "1577"
                                "1806"
                                         "1807"
                                                  "1890"
                                                            "221223" "2990"
[17] "3251"
                       "3615"
                                                            "54575"
              "3614"
                                "3704"
                                         "51733"
                                                  "54490"
                                                                     "54576"
[25] "54577"
              "54578" "54579"
                                "54600"
                                         "54657"
                                                  "54658"
                                                            "54659"
                                                                     "54963"
[33] "574537" "64816" "7083"
                                                                     "7365"
                                "7084"
                                         "7172"
                                                  "7363"
                                                            "7364"
[41] "7366"
                                         "7378"
              "7367"
                       "7371"
                                "7372"
                                                  "7498"
                                                            "79799"
                                                                     "83549"
[49] "8824"
              "8833"
                       "9"
                                "978"
$`hsa00230 Purine metabolism`
  [1] "100"
               "10201"
                        "10606"
                                 "10621"
                                          "10622"
                                                   "10623"
                                                             "107"
                                                                      "10714"
  [9] "108"
               "10846"
                        "109"
                                 "111"
                                          "11128"
                                                   "11164"
                                                             "112"
                                                                      "113"
 [17] "114"
               "115"
                        "122481" "122622" "124583" "132"
                                                            "158"
                                                                      "159"
 [25] "1633"
             "171568" "1716"
                                 "196883" "203"
                                                   "204"
                                                            "205"
                                                                      "221823"
```

```
[33] "2272"
               "22978"
                        "23649"
                                  "246721" "25885"
                                                    "2618"
                                                              "26289"
                                                                       "270"
 [41] "271"
               "27115"
                        "272"
                                  "2766"
                                           "2977"
                                                    "2982"
                                                              "2983"
                                                                       "2984"
                                 "3000"
                                                             "318"
 [49] "2986"
               "2987"
                        "29922"
                                           "30833"
                                                    "30834"
                                                                       "3251"
 [57] "353"
               "3614"
                        "3615"
                                  "3704"
                                           "377841" "471"
                                                              "4830"
                                                                       "4831"
 [65] "4832"
               "4833"
                        "4860"
                                  "4881"
                                           "4882"
                                                    "4907"
                                                              "50484"
                                                                       "50940"
[73] "51082"
               "51251"
                        "51292"
                                 "5136"
                                           "5137"
                                                    "5138"
                                                             "5139"
                                                                       "5140"
 [81] "5141"
               "5142"
                        "5143"
                                  "5144"
                                           "5145"
                                                    "5146"
                                                             "5147"
                                                                       "5148"
 [89] "5149"
               "5150"
                        "5151"
                                  "5152"
                                           "5153"
                                                    "5158"
                                                              "5167"
                                                                       "5169"
[97] "51728"
               "5198"
                        "5236"
                                  "5313"
                                           "5315"
                                                    "53343"
                                                             "54107"
                                                                       "5422"
[105] "5424"
                                                    "5431"
                                                             "5432"
               "5425"
                        "5426"
                                 "5427"
                                           "5430"
                                                                       "5433"
[113] "5434"
               "5435"
                                  "5437"
                                           "5438"
                                                    "5439"
                                                              "5440"
                                                                       "5441"
                        "5436"
[121] "5471"
               "548644" "55276"
                                 "5557"
                                           "5558"
                                                    "55703"
                                                             "55811"
                                                                       "55821"
[129] "5631"
                                                    "57804"
                                                             "58497"
                                                                       "6240"
               "5634"
                        "56655"
                                  "56953"
                                           "56985"
[137] "6241"
                        "646625" "654364"
                                           "661"
                                                    "7498"
                                                              "8382"
                                                                       "84172"
               "64425"
[145] "84265"
                                                    "87178"
                                                              "8833"
                                                                       "9060"
               "84284"
                        "84618"
                                  "8622"
                                           "8654"
[153] "9061"
               "93034"
                        "953"
                                  "9533"
                                           "954"
                                                    "955"
                                                              "956"
                                                                       "957"
[161] "9583"
               "9615"
```

extract a named vector of fold changes to use as input to pathway mapping
foldchanges = res\$log2FoldChange
names(foldchanges) = res\$entrez
head(foldchanges)

```
1266 54855 1465 51232 2034 2317 -2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
```

map the extracted fold changes to pathways defined in the kegg.sets.hs, a portion of pat
keggres = gage(foldchanges, gsets=kegg.sets.hs)

head(keggres\$less)

```
p.geomean stat.mean
hsa04110 Cell cycle
                                      8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                      9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                      1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
                                      3.784520e-03 -2.698128 3.784520e-03
hsa04114 Oocyte meiosis
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                            q.val set.size
hsa04110 Cell cycle
                                      0.001448312
                                                       121 8.995727e-06
```

```
0.007586381
hsa03030 DNA replication
hsa03013 RNA transport
                                                       144 1.375901e-03
                                      0.073840037
hsa03440 Homologous recombination 0.121861535
                                                        28 3.066756e-03
hsa04114 Oocyte meiosis
                                      0.121861535
                                                       102 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                       53 8.961413e-03
  # we find that the cell cycle pathway is the most down-regulated, map gene fold changes to
  pathview(gene.data=foldchanges, pathway.id="hsa04110")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/hp/BGGN213/week7
Info: Writing image file hsa04110.pathview.png
Try to process the 5 most upregulated pathways
  keggrespathways <- row.names(keggres$greater)[1:5]</pre>
  keggresids <- substr(keggrespathways, start=1, stop=8)</pre>
  keggresids
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
  pathview(gene.data = foldchanges, pathway.id = keggresids, species = 'hsa')
Q7 Repeat for the 5 most down regulated pathways
  keggresdownpathways <- row.names(keggres$less)[1:5]</pre>
  keggresdownids <- substr(keggresdownpathways, start=1, stop=8)</pre>
  pathview(gene.data = foldchanges, pathway.id = keggresdownids, species = 'hsa')
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/hp/BGGN213/week7
```

36 9.424076e-05

Info: Writing image file hsa04110.pathview.png

```
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/hp/BGGN213/week7
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/hp/BGGN213/week7
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/hp/BGGN213/week7
Info: Writing image file hsa03440.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/hp/BGGN213/week7
Info: Working in directory C:/Users/hp/BGGN213/week7
```

GO Term Analysis

```
data(go.sets.hs) #all GO terms
data(go.subs.hs) #GO terms realted to BP, CC, MF

gobpsets <- go.sets.hs[go.subs.hs$BP]
gobpres <- gage(foldchanges, gsets = gobpsets, same.dir = T)

lapply(gobpres, head)</pre>
```

\$greater

0	_
60 000 5 4 5 0 1 111 11 11 11 11	p.geomean stat.mean p.val
GO:0007156 homophilic cell adhesion	8.519724e-05 3.824205 8.519724e-05
GO:0002009 morphogenesis of an epithelium	
GO:0048729 tissue morphogenesis	1.432451e-04 3.643242 1.432451e-04
GO:0007610 behavior	2.195494e-04 3.530241 2.195494e-04
GO:0060562 epithelial tube morphogenesis	5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development	5.953254e-04 3.253665 5.953254e-04
	q.val set.size exp1
GO:0007156 homophilic cell adhesion	0.1951953 113 8.519724e-05
GO:0002009 morphogenesis of an epithelium	
GO:0048729 tissue morphogenesis	0.1951953 424 1.432451e-04
GD:0007610 behavior	0.2243795 427 2.195494e-04
GO:0060562 epithelial tube morphogenesis	0.3711390 257 5.932837e-04
GO:0035295 tube development	0.3711390 391 5.953254e-04
\$less	
	p.geomean stat.mean p.val
GO:0048285 organelle fission	1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division	4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis	4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle	
GO:0007059 chromosome segregation	2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase	1.729553e-10 -6.695966 1.729553e-10
	q.val set.size exp1
GO:0048285 organelle fission	5.841698e-12 376 1.536227e-15
GO:0000280 nuclear division	5.841698e-12 352 4.286961e-15
GD:0007067 mitosis	5.841698e-12 352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle	1.195672e-11 362 1.169934e-14
GO:0007059 chromosome segregation	1.658603e-08 142 2.028624e-11
GO:0000236 mitotic prometaphase	1.178402e-07 84 1.729553e-10
\$stats	
	stat.mean exp1
GO:0007156 homophilic cell adhesion	3.824205 3.824205
GO:0002009 morphogenesis of an epithelium	3.653886 3.653886
GO:0048729 tissue morphogenesis	3.643242 3.643242
GO:0007610 behavior	3.530241 3.530241
GO:0060562 epithelial tube morphogenesis	3.261376 3.261376
GO:0035295 tube development	3.253665 3.253665

Reactome Analysis

```
siggene <- res[res$padj<=0.05 & !is.na(res$padj), 'symbol']
print(paste('Total number of significantly changed genes is:', length(siggene)))

[1] "Total number of significantly changed genes is: 8147"

write.table(siggene, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quote</pre>
```

Q8

The Endosomal/Vacuolar pathway has the most significant entities p-value. The results do not match well the KEGG results. It seems that Reactome Database has overall a more detailed definition of "reaction", such that the same general type reaction in KEGG could have more versions, or subcategories, in Reactome. Here, KEGG analysis was restricted to signaling and metabolism pathways, whereas we seems to have not restricted the search in Reactome.

see how many significantly changed genes are there in total