Two Pointers Technique

- Pointer = index
 - No relationship to C++ pointers int **x;
- It is not a specific algorithm. Just easy idea that might be effective for specific problems
- You probably coded it before, but don't know a name for it
- In 2010, with a Codeforces tag, the name become more popular
- I will utilize this tutorial

Two Pointers Technique

- Technique that uses 2 **constrained** indices (move of one **can** be limited by the another)
 - Typically each pointer iterates on O(N) array positions.
 - Hence overall increment/decrement is O(N)
- Applications
 - In sorted arrays, where we want to find some positions
 - Or cumulative array of positive numbers array (sorted)
 - Variable size sliding window, where we search for a window (range) of specific property (max sum)
 - Ad Hoc cases

- It is one of the best problems to clarify the 2-pointers technique
- Given a sorted array A, having N integers. You need to find any pair(i,j) having sum as given number X.
 - $O(N^2)$: 2 nested loops and compare the sum
 - O(Nlogn): For each array value V, binary search for X-V
 - O(N) using 2-pointers!

- 2-pointers based on the sortedness of array
 - Let pointer(index) p1 on the first element of array
 - Let p2 on the last element of the array
 - Let Y = the sum of these 2 numbers
 - If Y > X => shift p2 to the left => decrease Y
 - If Y < X => shift p1 to the right => increase Y
 - Keep doing so untill Y == X or no way
 - Then each pointer moves O(N), total O(N)

- Let $A = \{2, 4, 5, 7, 8, 20\}, X = 11$
 - P1 = 0, P2 = 5, Y = 2 + 20 = 22 > 11
 - The only thing we can do is to move p2 left
 - P1 = 0, P2 = 4, Y = 2 + 8 = 10 < 11
 - Now we need bigger sum => move p1 right
 - P1 = 1, P2 = 4, Y = 4 + 8 = 12 > 11
 - Again, move p2 left to decrease sum
 - P1 = 1, P2 = 3, Y = 4 + 7 = 11 == 11 (Found)

```
#define lli long long
bool f(lli sum) {
    int l = 0, r = n - 1; //two pointers
    while ( l < r ) {
       if ( A[l] + A[r] == sum ) return 1;
       else if ( A[l] + A[r] > sum ) r--;
       else l++;
    return 0;
```

Sliding Windows

- A window is a range with start/end indices
 - So by definition, we have a point for its start & end
 - Fixed size window of length K
 - In this windows, we have specific range and searching for a range with specific property. Easy to handle
 - Variable size window
 - In this windows, the window can be of any size. More tricky