Complex Variables: Assignment 2

MTH 483

Worked with Lucy Huffman and Connor Edwards

Date: April 25, 2018

John Waczak

2.17

Where are the following functions differentiable? Where are they holomorphic? Determine their derivatives at points where they are differentiable

Recall that from Theorem 2.13 (b) if f is a complex function such that the partial derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ are continuous at z and satisfy the Cauchy-Riemann equations at z, then f is differentiable at z. Furthermore if f is differentiable for all points in some open disc around z then f is holomorphic at z. The derivative of f is given as:

$$f'(z) = u_x + iv_x$$

$$a) f(z) = e^{-x}e^{-iy}$$

Observe that we can rewrite $f(z) = e^{-x}(\cos(y) - i\sin(y))$ and thus identify $u(x,y) = e^{-x}\cos y$ and $v(x,y) = -e^{-x}\sin(y)$. Then the Cauchy Riemann equations yield:

$$u_x = -e^{-x}\cos y$$

$$u_y = -e^{-x}\sin y$$

$$v_x = e^{-x} \sin y$$

$$v_y = -e^{-x}\cos y$$

$$u_x = v_y \Rightarrow -e^{-x}\cos y = -e^{-x}\cos y$$

$$u_y = -v_x \Rightarrow -e^{-x}\sin y = -e^{-x}\sin y$$

All of the partials are continuous functions and the C-R relations are satisfied for all choices of x and y. Thus we have the f(z) is differentiable for all $z \in \mathbb{C}$ and therefore is holomorphic on \mathbb{C} . At these points we have that $f'(z) = -e^{-x} \cos y + ie^{-x} \sin y = -f(z)$.

b)
$$f(z) = 2x + ixy^2$$
.

Identify u(x,y) = 2x and $v(x,y) = xy^2$. Then the C-R relations give:

$$u_x = 2$$

$$u_y = 0$$

$$v_x = y^2$$

$$v_y = 2xy$$

$$u_x = v_y \Rightarrow 2 = 2xy$$

$$\Rightarrow xy = 1$$

$$u_y = -v_x \Rightarrow 0 = y^2$$

$$\Rightarrow y = 0$$

As it is impossible to have both y = 0 and xy = 1 we have that f is nowhere differentiable and therefore not holomorphic.

$$c) f(z) = x^2 + iy^2$$

Identify $u(x,y) = x^2$ and $v(x,y) = y^2$. Then the C-R relations give:

$$u_x = 2x$$

$$u_y = 0$$

$$v_x = 0$$

$$v_y = 2y$$

$$u_x = v_y \Rightarrow 2x = 2y$$

$$u_y = -v_x \Rightarrow 0 = 0$$

The C-R relations are satisfied only on the line x=y. Thus, f(z) is only differentiable when x=y with derivative f'(z)=2x. Because our differentiable points form a curve and not an area we cannot construct an open disc around any z such that all points in the disc are differentiable. This implies that f(z) is not holomorphic for any $z \in \mathbb{C}$

$$d) f(z) = e^x e^{-iy}$$

Rewrite $f(z) = e^x(\cos y - i\sin y)$ and identify $u(x,y) = e^x\cos y$ and $v(x,y) = -e^x\sin y$. The C-R

relations then give:

$$u_x = e^x \cos y$$

$$u_y = -e^x \sin y$$

$$v_x = -e^x \sin y$$

$$v_y = -e^x \cos y$$

$$u_x = v_y \Rightarrow e^x \cos y = -e^x \cos y$$

$$\Rightarrow \cos y = 0$$

$$u_y = -v_x \Rightarrow -e^x \sin y = e^x \sin y$$

$$\Rightarrow \sin y = 0$$

Since $\nexists z \in \mathbb{R}$ such that $\sin y = 0$ and $\cos y = 0$ we have that f(z) is nowhere differentiable and therefore is not holomorphic.

f)
$$f(z) = \operatorname{Im}(z)$$
.

Let z=x+iy then $f(z)=y\in\mathbb{R}$. Thus we can identify u(x,y)=y and v(x,y)=0. The C-R relations give:

$$u_x = 0$$

$$u_y = 1$$

$$v_x = 0$$

$$v_y = 0$$

$$u_x = v_y \Rightarrow 0 = 0$$

$$u_y = -v_x \Rightarrow 1 = 0$$

This is impossible and therefore f(z) is nowhere differentiable and thus nowhere holomorphic.

$$g) f(z) = x^2 + y^2$$

Identify $u(x,y) = x^2 + y^2$ and v(x,y) = 0. Then the C-R relations give the following:

$$u_x = 2x$$

$$u_y = 2y$$

$$v_x = 0$$

$$v_y = 0$$

$$u_x = v_y \Rightarrow x = 0$$

$$u_y = -v_x \Rightarrow y = 0$$

Thus f(z) is only differentiable when x = y = 0 i.e. at the origin. Here it has derivative $f'(z) = 2x \Rightarrow f'(0) = 0$.

2.19

Prove that if f is holomorphic the tregion $G \subseteq \mathbb{C}$ and always real valued, then f is constant in G.

Define f(x,y) = u(x,y) + iv(x,y). Since f is always real valued we have that $v(x,y) = 0 \quad \forall z \in G$. Then it follows from the C-R relations that $u_x = v_y \Rightarrow u_x = 0$ and $v_x = 0$ since v = 0. Then $f'(z) = u_x + iv_x = 0 + i0 = 0$. Since the derivative of f(z) is zero $\forall z \in G$ then f(z) must be a constant in G.

2.20

Prove that if f(z) and $\overline{f(z)}$ are holomorphic in the region $G \subseteq \mathbb{C}$ then f(z) is constant in G.

let f(z) = u(x,y) + iv(x,y). Then $\overline{f(z)} = u(x,y) - iv(x,y)$. Applying the C-R relations to both functions gives the following:

$$f(z) \begin{cases} u_x = v_y \\ u_y = -v_x \end{cases}$$

$$\frac{1}{f(z)} \begin{cases} u_x = -v_y \\ u_y = v_x \end{cases}$$

If we add the first equation from each case we get:

$$u_x = 0$$

If we subtract the second equations from each case we get:

$$v_r = 0$$

Thus because $u_x = v_x = 0$ we have that f'(z) = 0 + i0 = 0 for all $z \in G$. This implies that f(z) is constant in G.

2.24

For each of the following functions u, find a function v such that u + iv is holomorphic in some region. Maximize that region.

a)
$$u(x,y) = x^2 - y^2$$

The C-R relations give that $u_x = v_y$ and $u_y = -v_x$. Thus differentiating u gives the following:

$$v_y = 2x$$
$$v_x = -(-2y) = 2y$$

Thus if we integrate either equation with respect to the type of derivative it represents we should be able to determine a functional form for v.

$$\int v_y dy = \int 2x dy = 2xy + C$$
$$\int v_x dx = \int 2y dx = 2xy + c$$

Thus it appears that v(x,y) = 2xy as both integrals agree. The domain of this function is maximized as it is all of \mathbb{C} .

d)
$$u(x,y) = \frac{x}{x^2 + y^2}$$

Following the same pattern as for the previous part we have that:

$$v_y = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$
$$v_x = -\left(-\frac{2xy}{(x^2 + y^2)^2}\right) = \frac{2xy}{(x^2 + y^2)^2}$$

Now we can integrate both equations to determine v.

$$\int v_y dy = \int \frac{x^2 - y^2}{(x^2 + y^2)^2} dy = \frac{-y}{x^2 + y^2} + C$$
$$\int v_x dx = \int \frac{2xy}{(x^2 + y^2)^2} dx = \frac{-y}{x^2 + y^2} + c$$

Since both equations agree we have the $v(x,y) = \frac{-y}{x^2+y^2}$. This function is defined for all $z \in \mathbb{C} \setminus \{0\}$ and is therefore maximized.

3.7

Show that the Mobius transformation $f(z) = \frac{1+z}{1-z}$ maps the unit circle onto the imaginary axis

Recall that in polar form all z s.t. |z| = 1 can be written as $z = e^{i\phi}$. Then using this in f(z) yields the following.

$$f(z) = \frac{1 + e^{i\phi}}{1 - e^{i\phi}}$$

$$= \frac{1 + e^{i\phi}}{1 - e^{i\phi}} \left(\frac{1 - e^{i\phi}}{1 - e^{i\phi}} \right)$$

$$= \frac{(1 + e^{i\phi})(1 - e^{-i\phi})}{|1 - e^{i\phi}|^2}$$

$$= \frac{e^{i\phi} - e^{-i\phi}}{|1 - e^{i\phi}|^2}$$

$$= \frac{2i\sin\phi}{|1 - e^{i\phi}|^2}$$

$$= i\frac{2\sin\phi}{|1 - e^{i\phi}|^2}$$

Thus we see that f(z) is just i times the transformation that maps the unit circle to the real line. Since $i = e^{i\pi/2}$, this is just a rotation by $\pi/2$ of the aforementioned transformation. When you rotate the real line by $\pi/2$ you get the imaginary axis and therefore this transformation must map the unit circle to the imaginary axis.

3.9

Fix $a \in \mathbb{C}$ with |a| < 1 and consider $f_a(z) = \frac{z-a}{1-\overline{a}z}$

a) Show that $f_a(z)$ is a Mobius transformation

Recall that a Mobius transformation is a function of the form $f(z) = \frac{az+b}{cz+d}$ such that $ad - bc \neq 0$. Here we have a = 1, b = -a, $c = -\overline{a}$, d = 1. Thus $ad - bc = 1 - a\overline{a} = 1 - |a|^2$. Since |a| < 1 this can never evaluate to zero and therefore we have that $f_a(z)$ is a Mobius transformation.

b) Show that $f_a^{-1}(z) = f_{-a}(z)$

Recall from class that if $f(z) = \frac{az+b}{cz+d}$ is a Mobius transformation, it is invertible with inverse: $f^{-1}(z) = \frac{dz-b}{-cz+a}$. Using this and the results from a we have that:

$$f_a^{-1}(z) = \frac{z+a}{\overline{a}z+1}$$
$$= \frac{z-(-a)}{1-(-\overline{a})z}$$
$$= f_{-a}(z)$$

b) Prove that f(z) maps the unit disc $D_1(0)$ to itself

We must show that if |z| < 1 then |f(z)| < 1. Observe the following:

$$|f(z)| = \frac{|z - a|}{|1 - \overline{a}z|} < 1$$

$$\Rightarrow |z - a|^2 < |1 - \overline{a}z|^2$$

$$(z - a)(\overline{z} - \overline{a}) < (1 - \overline{a}z)(1 - a\overline{z})$$

$$|z|^2 - a\overline{z} - \overline{a}z + |a|^2 < 1 - a\overline{z} - \overline{a}z + |az|$$

$$|z|^2 + |a|^2 < 1 + |az| = 1 + |a||z|$$

$$\Rightarrow 0 < 1 + |a||z| - |z|^2 - |a|^2$$

$$= 1 + (|z| - |a|)^2 - |a||z|$$

I am not sure how exactly to continue from here. We know that |a| < 1 by hypothesis.

3.14

Find Mobius transformations satisfying each of the following...

First recall from class that the Mobius transformation that sends $\alpha_1 \mapsto 0$, $\alpha_2 \mapsto 1$ and $\alpha_3 \mapsto \infty$ is given by $f(z) = \frac{(z-\alpha_1)(\alpha_2-\alpha_3)}{(z-\alpha_3)(\alpha_2-\alpha_1)}$.

a) $1 \mapsto 0$, $2 \mapsto 1$, $3 \mapsto \infty$.

$$f(z) = \frac{(z-1)(2-3)}{(z-3)(2-1)} = \frac{1-z}{z-3}$$

b) $1 \mapsto 0$, $1 + i \mapsto 1$, $2 \mapsto \infty$.

$$f(z) = \frac{(z-1)(1+i-2)}{(z-2)(1+i-1)} = \frac{(i-1)z + (1-i)}{iz-2i}$$

c)
$$0 \mapsto i, 1 \mapsto 1, \infty \mapsto -i$$

In oder to solve this final transformation we will first find the reverse mapping and then take the inverse.

$$f^{-1}(z) = \frac{(z-i)(1+i)}{(z+i)(1-i)} = \frac{(1+i)z - (i-1)}{(1-i)z + (i+1)}$$

$$a = 1+i, \quad b = 1-i, \quad c = 1-i, \quad d = 1+i$$
thus
$$f(z) = \frac{(1+i)z - (1-i)}{(-1-i)z + (1+i)}$$

3.16

Let γ be the unit circle. Find a Mobius transformation that transforms γ to γ and transforms 0 to $\frac{1}{2}$.

First, we know that $f(z) = \frac{az+1}{cz+2}$ in order to send 0 to $\frac{1}{2}$. Now in order to map the unit circle to

itself let's try f(1) = 1 and f(-1) = -1.

$$f(1) = 1 = \frac{a+1}{c+2}$$

$$f(-1) = -1 = \frac{-a+1}{-c+2}$$
adding eqns: $0 = \frac{a+1}{c+2} + \frac{-a+1}{-c+2}$

$$\frac{a-1}{-c+2} = \frac{a+1}{c+2}$$

$$(a+1)(-c+2) = (a-1)(c+2)$$

$$2a - ac - c + 2 = ac + 2a - c - 2$$

$$-ac + 2 = ac - 2$$

$$ac = 2$$

$$\Rightarrow a = \frac{2}{c}$$

$$f(1) = 1 = \frac{\frac{2}{c} + 1}{c+2}$$

$$c + 2 = \frac{2}{c} + 1$$

$$c^2 + 2c = 2 + c$$

$$c^2 + c - 2 = 0 \Rightarrow c = -2, \quad c = 1$$

$$c \neq -2 \text{ since } f(1) \text{ would equal } 0$$

$$\Rightarrow c = 1 \Rightarrow a = \frac{2}{c} = 2$$
thus $f(z) = \frac{2z+1}{z+2}$

Now to check that this does indeed send the unit circle to itself we need to show that |f(z)| = 1 when |z| = 1. Let $z = e^{i\phi}$. Then

$$\begin{split} |f(z)| &= \frac{|2e^{i\phi} + 1|}{|e^{i\phi} + 2|} \\ &= \frac{|2\cos\phi + 1 + i2\sin\phi|}{|\cos\phi + 2 + i\sin\phi|} \\ &= \frac{\sqrt{(2\cos\phi + 1)^2 + 4\sin^2\phi}}{\sqrt{(\cos\phi + 2)^2 + \sin^2\phi}} \\ &= \frac{\sqrt{1 + 4\cos\phi + 4\cos^2\phi + 4\sin^2\phi}}{\sqrt{4 + 4\cos\phi + \cos^2\phi + \sin^2\phi}} \\ &= \frac{\sqrt{5 + 4\cos\phi}}{\sqrt{5 + 4\cos\phi}} = 1 \end{split}$$

3.19

Show that if f = u + iv is holomorphic then the Jacobian equals $|f'(z)|^2$.

Because we have that f is holomorphic, the C-R relations apply and give us that $u_x = v_y$ and $u_y = -v)x$. Thus the Jacobian becomes:

$$J = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix}$$

$$= \begin{vmatrix} u_x & -v_x \\ v_x & u_x \end{vmatrix}$$

$$= u_x^2 + v_x^2 = |f'(z)|^2 \text{ since } f'(z) = u_x + iv_x$$

3.21

Find each Mobius transformation f such that

a) $f maps 0 \mapsto 1, 1 \mapsto \infty, \infty \mapsto 0$

First, recall Corollary 3.8 which extends the Mobius transformations to include infinities in a way such that:

$$\begin{cases} \frac{az+b}{cz+d} & if \quad z \in \mathbb{C} \setminus \{-\frac{d}{c}\} \\ \infty & if \quad z = -\frac{d}{c} \\ \frac{a}{c} & if \quad z = \infty \end{cases}$$

Using this corollary we see that

$$\begin{split} f(\infty) &= 0 = a/c \Rightarrow a = 0 \\ f(1) &= \infty \to 1 = -d/c \to -c = d \\ f(0) &= 1 = -b/c \Rightarrow c = -b \end{split}$$
 thus $f(z) = \frac{b}{-bz+b}$ is the desired trans.

b) f maps $1 \mapsto 1, -1 \mapsto i, -i \mapsto -1$

We will solve this transformation by creating a composition of two transformations of the form

used in problem 3.14.

let
$$f(\alpha_1) = \beta_1$$
, $f(\alpha_2) = \beta_2$, $f(\alpha_3) = \beta_3$
define $g_1 = \frac{(z - \alpha_1)(\alpha_2 - \alpha_3)}{(z - \alpha_3)(\alpha_2 - \alpha_1)}$
 $g_2 = \frac{(z - \beta_1)(\beta_2 - \beta_3)}{(z - \beta_3)(\beta_2 - \beta_1)}$
then $g_1 = \frac{(z - 1)(-1 + i)}{(z + i)(-1 - 1)} = \frac{(-1 + i)z + (1 - i)}{-2z - 2i}$
 $g_2 = \frac{(z - 1)(i + 1)}{(z + 1)(i - 1)} = \frac{(i + 1)z + (-1 - i)}{(i - 1)z + (i - 1)}$
 $g_2^{-1} = \frac{(i - 1)z + (1 + i)}{(1 - i)z + (1 + i)}$
 $\Rightarrow g_2^{-1} \circ g_1 = \frac{(i - 1)\frac{(z - 1)(-1 + i)}{(z + i)(-1 - 1)} + (1 + i)}{(1 - i)\frac{(z - 1)(-1 + i)}{(z + i)(-1 - 1)} + (1 + i)}$

And some further simplification with Mathematica leads to:

$$f(z) = \frac{4}{(-1+2i)+z} + (1+2i)$$

This works as we can verify f(1) = -2i + 1 + 2i = 1 and so on.

c) f maps x-axis to y = x and y-axis to y = -x, and the unit circle to itself

Recall from linear algebra that the map that obeys the first two transformations above is a simple rotation counter-clockwise by $\pi/4$. Thus if we define the Mobius transformation with $a=e^{i\pi/4}$, b=c=d=0 then we have the simple rotation desired. To make sure that the unit circle maps to itself observe that $|e^{i\pi/4}|=1$ and thus |f(z)|=1|z|=1 whenever |z|=1.