ЛАБОРАТОРНАЯ РАБОТА №10

ИССЛЕДОВАНИЕ ГЕНЕРАТОРА ЭЛЕКТРИЧЕСКОГО ТОКА

Поляков Даниил, Б07-Ф3

Цель работы: ознакомление с принципом эквивалентной цепи, исследование работы эквивалентного генератора электрического тока при различной нагрузке, нахождение параметров данного генератора, проверка теоремы Тевенина.

Оборудование:

- Источник ЭДС;
- Вольтметр;
- Амперметр;
- Реостат 33 Ом;
- Реостат 100 Ом;
- Реостат 330 Ом;
- Ключ цепи;
- Набор проводов.

Расчётные формулы:

• Напряжение, приложенное к нагрузке (измеряется вольтметром):

 $U = \varepsilon_{\text{\tiny 3KB}} - iR_{\text{\tiny 3KB}}$

 $arepsilon_{\scriptscriptstyle \mathsf{ЭKB}}$ – ЭДС эквивалентного

генератора тока;

i — сила тока, протекающего через нагрузку (измеряется амперметром);

 $R_{\scriptscriptstyle {
m 9KB}}$ — сопротивление эквивалентного

генератора тока.

• Сопротивление нагрузки:

$$R = \frac{U}{i}$$

U — напряжение, приложенное к нагрузке (измеряется вольтметром); i — сила тока, протекающего через нагрузку (измеряется амперметром).

Полезная мощность схемы №1:

$$W = Ui$$

U — напряжение, приложенное к нагрузке (измеряется вольтметром); i — сила тока, протекающего через нагрузку (измеряется амперметром).

• Полная мощность схемы №1:

$$W_0 = \varepsilon_{\scriptscriptstyle \mathsf{9KB}} i$$

 $\varepsilon_{_{
m ЭКВ}}$ — ЭДС эквивалентного генератора тока; i — сила тока, протекающего через нагрузку (измеряется амперметром).

• КПД генератора:

$$\eta = \frac{W}{W_0}$$

W — полезная мощность схемы №1; W_0 — полная мощность схемы №1.

• Формулы для вычисления погрешностей:

Абсолютная приборная погрешность:

$$\Delta f_{\rm np} = \frac{\theta A}{3}$$

 θ – класс точности прибора;

A — предел измерения шкалы.

Метод проведения измерений и схемы цепей

1. Изучение работы генератора в зависимости от нагрузки.

1.1. Соберём схему:

 $R_1 - 100 \text{ OM}$

 $R_2 - 33 \text{ OM}$

 $R_3 - 330 OM$

 $\varepsilon - 10 B$

 $\mathbf{r} \approx 0.9 \mathbf{R}_1 \approx 90 \text{ Om}$

ЭДС источника тока и \mathbf{r} выбраны таким образом, чтобы максимальный ток, проходящий через \mathbf{R}_2 и \mathbf{R}_3 при \mathbf{R}_2 = \mathbf{R}_3 =0 был равен 1 А, т.е. предельно допустимый ток через реостат \mathbf{R}_3 .

Пунктиром выделен эквивалентный генератор тока, который необходимо исследовать

1.2. Выставим сопротивления \mathbf{R}_2 и \mathbf{R}_3 на максимум и замкнём ключ. Будем постепенно понижать сопротивление \mathbf{R}_3 и снимать показания амперметра i и вольтметра U с шагом в 0.05 А. После уменьшения сопротивления \mathbf{R}_3 до нуля будем уменьшать сопротивление \mathbf{R}_2 . Будем увеличивать силу тока, пока она не станет равна 1, либо сопротивление обоих реостатов не станет равно нулю.

- 2. Прямое измерение выходного сопротивления генератора
 - 2.1. Соберём схему:

 ${\bf r}$ и ${\bf \epsilon}$ не изменялись.

Схема №2

2.2. С помощью данной схемы убедимся, что эквивалентное сопротивление выделенной пунктиром схемы не изменилось. Проводить измерения будем так же, как описано в п. 1.2.

Таблицы и обработка данных

Погрешности амперметра и вольтметра:

$$\Delta i = \frac{\theta A}{3} = \frac{0.005 \cdot 1A}{3} = 0.002 \text{ A}$$

$$\Delta U = \frac{\theta A}{3} = \frac{0.015 \cdot 10B}{3} = 0.05 B$$

Коэффициенты наклона графиков (и их погрешности) каждой прямой зависимости найдём по методу наименьших квадратов.

1. Изучение работы генератора в зависимости от нагрузки

i, A	<i>U</i> , B	R, Om	<i>W</i> , Вт	W_0 , Вт	η,%
0.05	9.4	188	0.47	0.50	94
0.10	9.0	90.0	0.90	1.00	90
0.15	8.4	56.0	1.26	1.49	85
0.20	8.0	40.0	1.60	1.99	80
0.25	7.6	30.4	1.90	2.49	76
0.30	7.0	23.3	2.10	2.99	70
0.35	6.6	18.9	2.31	3.49	66
0.40	6.0	15.0	2.40	3.98	60
0.45	5.6	12.4	2.52	4.48	56
0.50	5.0	10.0	2.50	4.98	50
0.55	4.6	8.4	2.53	5.48	46
0.60	4.2	7.0	2.52	5.98	42
0.65	3.6	5.5	2.34	6.47	36
0.70	3.0	4.3	2.10	6.97	30
0.75	2.6	3.5	1.95	7.47	26
0.80	2.0	2.5	1.60	7.97	20
0.85	1.6	1.9	1.36	8.47	16
0.90	1.2	1.3	1.08	8.96	12

Теоретически прямая графика задана формулой:

$$U = \varepsilon_{\text{SKB}} - iR_{\text{SKB}}$$

Из графика можно найти значение $\varepsilon_{_{9 \mathrm{KB}}}$ по пересечению прямой с ординатой, $R_{_{9 \mathrm{KB}}}$ – по тангенсу угла наклона прямой.

$$\varepsilon_{_{2KB}} = 9.96 \pm 0.03 \text{ B}$$

$$R_{_{
m 9KB}} = 9.80 \pm 0.06 \, {
m Om}$$

Рассмотрим зависимость полезной мощности от тока:

На графике можно наблюдать максимум мощности при силе тока около 0.5 А. Выведем теоретическую зависимость W(i):

$$W = Ui = (\varepsilon_{\text{9KB}} - iR_{\text{9KB}})i = \varepsilon_{\text{9KB}}i - i^2R_{\text{9KB}}$$

Найдём максимум из данной зависимости:

$$\frac{\partial W}{\partial i} = \varepsilon_{\text{\tiny 3KB}} - 2iR_{\text{\tiny 3KB}} = 0 = > i = \frac{\varepsilon_{\text{\tiny 3KB}}}{2R_{\text{\tiny 3KB}}} \approx 0.51 \,\text{A}$$

Теоретически найденный максимум совпадает с экспериментальным.

Рассмотрим зависимость полной мощности от тока:

Зависимость получилась линейной.

Рассмотрим зависимость КПД от тока:

Зависимость получилась линейной. Выведем теоретическую зависимость $\eta(i)$:

$$\eta = \frac{W}{W_0} = \frac{Ui}{\varepsilon_{\scriptscriptstyle \mathsf{9KB}} i} = \frac{\varepsilon_{\scriptscriptstyle \mathsf{9KB}} - i R_{\scriptscriptstyle \mathsf{9KB}}}{\varepsilon_{\scriptscriptstyle \mathsf{9KB}}} = 1 - i \frac{R_{\scriptscriptstyle \mathsf{9KB}}}{\varepsilon_{\scriptscriptstyle \mathsf{9KB}}}$$

Теоретическая зависимость совпадает с экспериментальной.

Рассмотрим зависимость напряжения на нагрузке от сопротивления нагрузки:

Теоретическая зависимость U(R) имеет вид:

$$U = \frac{\varepsilon_{\text{\tiny 3KB}} R}{R + R_{\text{\tiny 3KB}}}$$

Теоретическая зависимость совпадает с экспериментальной.

Рассмотрим зависимость силы тока, протекающего через нагрузку, от сопротивления нагрузки:

Теоретическая зависимость i(R) имеет вид:

$$i = \frac{\varepsilon_{\text{\tiny 9KB}}}{R + R_{\text{\tiny 9KB}}}$$

Теоретическая зависимость совпадает с экспериментальной.

Рассмотрим зависимость полезной мощности от сопротивления нагрузки:

Теоретическая зависимость W(R) имеет вид:

$$W = \frac{\varepsilon_{\text{\tiny 3KB}}^2 R}{(R + R_{\text{\tiny 3KB}})^2}$$

Как было найдено ранее при рассмотрении графика W(i), полезная мощность максимальна при $i=\frac{\varepsilon_{_{9{\rm KB}}}}{2R_{_{9{\rm KB}}}}$. Так как $i=\frac{\varepsilon_{_{9{\rm KB}}}}{R_{_{9{\rm KB}}}+R}$, то полезная мощность максимальна (нагрузка согласована с генератором) при $R=R_{_{9{\rm KB}}}$, что подтверждается экспериментальными данными.

Рассмотрим зависимость полной мощности от сопротивления нагрузки:

Теоретическая зависимость $W_0(R)$ имеет вид:

$$W = \frac{\varepsilon_{\scriptscriptstyle 3KB}^2}{R + R_{\scriptscriptstyle 3KB}}$$

Экспериментальная зависимость совпадает с теоретической.

Рассмотрим зависимость КПД от сопротивления нагрузки:

Теоретическая зависимость $\eta(R)$ имеет вид:

$$\eta = \frac{W}{W_0} = \frac{R}{R + R_{\text{\tiny 9KB}}}$$

Экспериментальная зависимость совпадает с теоретической.

2. Прямое измерение выходного сопротивления генератора (проверка теоремы Тевенина)

i, A	<i>U</i> , B	i, A	<i>U</i> , B
0.05	0.48	0.55	5.4
0.10	0.98	0.60	5.8
0.15	1.38	0.65	6.4
0.20	1.86	0.70	6.8
0.25	2.34	0.75	7.2
0.30	2.82	0.80	7.8
0.35	3.2	0.85	8.2
0.40	3.8	0.90	8.8
0.45	4.4	0.95	9.2
0.50	4.8	1.00	9.8

Как тангенс угла наклона, находим:

$$R_{\scriptscriptstyle {
m 9KB}} = 9.82 \pm 0.05~{
m Om}$$

Эквивалентное сопротивление рассматриваемой части цепи в пределах погрешности не изменилось, что подтверждает теорему Тевенина и говорит о возможности упростить часть схемы, заменив её на один элемент с некоторыми характеристиками.