

Fuente

Esta charla fue altamente influenciada por el trabajo de Ottar N. Bjornstad y su libro "Epidemics: Models and data using R"

Para mas detalles y modelos mas complejos, referirse a este trabajo. El cual lo pueden descargar desde este link.

UseR!

Ottar N. Bjørnstad

Epidemics

Models and Data using R

Modelos Epidemiológicos

Modelos matemáticos que tratan de modelar la evolución de una epidemia en sus diferentes etapas, teniendo en cuenta una lista *presunciones*

Ayudan a científicos determinar la duración de una epidemia y entender formas de disminuir su impacto en la población en general

Características de los modelos

Define ecuaciones diferenciales evaluadas en la escala temporal

Poseen parámetros que logran definir la naturaleza de la enfermedad, la distribución de la población y/o intervenciones en salud publica

2 tipos

- Deterministas
- Estocásticas

Susceptibles: S(t)

Modelo SIR

El numero de personas que pueden adquirir la enfermedad

El numero de personas que están contagiados

Modelo de compartimientos con 3 espacios

Infectados: I(t)

1. El tamaño de la población es constante

2. La velocidad de contagio es proporcional al contacto

3. Los infectados son removidos a una velocidad constante

Removidos: R(t)

Personas que ya no pueden contraer el contagio

Explicación

Susceptibles

$$rac{dS}{dt} = -eta I rac{S}{N} + \mu (N-S)$$

SIR

Infectados

$$rac{dI}{dt} = eta I rac{S}{N} - (\mu - \gamma) I$$

Removidos

$$rac{dR}{dt} = \gamma I - \mu R$$

Implementación en R

```
sirmod <- function(t, v, parms) {</pre>
  # Condiciones iniciales
  S <- v[1]
  I \leftarrow y[2]
  R \leftarrow \sqrt{3}
  # Parametros del modelo
  beta <- parms["beta"]</pre>
  mu <- parms["mu"]</pre>
  gamma <- parms["gamma"]</pre>
  N <- parms["N"]</pre>
  # Ecuaciones
  dS \leftarrow mu * (N - S) - beta * S * I/N
  dI \leftarrow beta * S * I/N - (mu + gamma) * I
  dR \leftarrow gamma * I - mu * R
  res \leftarrow c(dS, dI, dR)
  # Resultados del gradiente
  list(res)
```

```
tiempo <- seq(0, 26, by = 1/10)
parms <- c(mu = 0, beta = 2, gamma = 1/2, N = 1)
inic <- c(S = 0.999, I = 0.001, R = 0)

df <- ode(y=inic, times=tiempo, func=sirmod, parms=parms)
df <- as_tibble(out)</pre>
```

Definimos las ecuaciones diferenciales usando una función de 3 parámetros

- Tiempo
- Condiciones iniciales
- Parámetros de las e.d. μ , eta, γ , N

Para la integración, usaremos la función ode del paquete de Solve

Definimos los vectores para empezar la simulación

Simulación

3 parámetros que necesita un Epidemiólogo

La velocidad de recuperación/remoción *Fatality rate*

 α

La velocidad de infección Infection rate

 β

Numero de susceptibles
Susceptible Population

S

 α

Depende de muchos parámetros y presunciones

Siempre necesitara recoger datos

Hay que convivir con alta incertidumbre

'Todos modelos están mal, pero algunos son útiles' - E.P. Box, FRS

Epidemiología es compleja...

Mas lecturas

- Bjørnstad, O., 2018. Epidemics: models and data with R. Springer Science+Business Media, New York, NY.
- D'Souza, G., 2020. Fighting COVID-19 with Epidemiology: A Johns Hopkins Teach-Out. URL https://www.coursera.org/learn/covid19-epidemiology
- Koerth, M., Bronner, L., Mithani, J., n.d. Why It's So Freaking Hard To Make A Good COVID-19 Model. URL https://fivethirtyeight.com/features/why-its-so-freaking-hard-to-make-a-good-covid-19-model/
- Rock, T., n.d. Oxford Mathematician explains SIR disease model for COVID-19 (Coronavirus). URL https://www.youtube.com/watch?v=NKMHhm2Zbkw