Segundo Parcial de Geometría y Álgebra Lineal 2

Jueves 4 de julio de 2019.

_	NT 1 11:1		
	Nombre y apellido	Cédula de Identidad	
No. Parcial			

Ejercicios de multiple opción

(Respuesta correcta 7 puntos, incorrecta -2, sin responder 0)

Respuestas					
1	2	3	4	5	

pleja tal que $A^* + A = \mathbf{0}$ (donde $A^* = \overline{A^t}$). Se onal. Considere las siguientes afirmaciones: puede asegurar que:

- (A) iA es Hermítica.
- (B) A es unitaria.
- (C) rango(iA) < n.
- (D) A es triangular.

Ejercicio 2. Sea $T: \mathbb{C}^2 \to \mathbb{C}^2$ el operador lineal sobre \mathbb{C}^2 , con el producto interno usual, definido

$$T(z, w) = (z + (1+i)w, (1-i)z + 2w),$$

para todo $(z, w) \in \mathbb{C}^2$. Considere las siguientes afirmaciones:

- (I) T es unitario.
- (II) T es autoadjunto.
- (III) Hay una base ortonormal de \mathbb{C}^2 formada por vectores propios de T.

Las afirmaciones verdaderas son:

- (A) Todas.
- (B) (I) y (III).
- (C) (I) y (II).
- (D) (II) y (III).

Ejercicio 1. Sea $A \in M_{n \times n}(\mathbb{C})$ una matriz com- Ejercicio 3. Sea $A \in M_{n \times n}(\mathbb{R})$ una matriz ortog-

- (I) A es diagonalizable.
- (II) $\det(A) = \pm 1$.
- (III) A^t es ortogonal.

Las afirmaciones verdaderas son:

- (A) (III).
- (B) (II) y (III).
- (C) (I) y (II).
- (D) (I) y (III).

Ejercicio 4. La forma cuadrática $Q: \mathbb{R}^3 \to \mathbb{R}$ dada

$$Q(x, y, z) = x^2 - z^2 + 2xy + 2axz + 2yz$$

con $a \in \mathbb{R}$ es:

- (A) Semidefinida positiva.
- (B) Semidefinida negativa.
- (C) Indefinida.
- (D) Depende del valor de a.

Ejercicio 5. Para un número complejo fijo $b \in \mathbb{C}$ se define el funcional lineal $f: \mathbb{C}^3 \to \mathbb{C}$ dado por

$$f(z, w, u) = z + bw - 3u,$$

para todo $(z, w, u) \in \mathbb{C}^3$. Se considera \mathbb{C}^3 con el producto interno usual. El valor de b para el cual el vector (1, -i, -3) es el representante de Riesz de f es:

- (A) -i.
- (B) -1.
- (C) i.
- (D) 1.

Ejercicio 6. Sean V y W espacios vectoriales con producto interno y de dimensión finita, y sea $T\colon V\to W$ una isometría lineal. Se consideran las siguientes afirmaciones:

- (I) Si T es invertible, entonces T^{-1} es una isometría lineal.
- (II) $\dim(V) > \dim(W)$.
- (III) La restricción $T|_S \colon S \to W$ es una isometría lineal para todo subespacio no nulo $S \subseteq V$.

Las afirmaciones verdaderas son:

- (A) (I) y (III).
- (B) (II) y (III).
- (C) (III).
- (D) Todas.

Ejercicio de desarrollo

(Justifique detalladamente todas sus respuestas)

1. Defina valores singulares de una matriz real.

- (2 puntos)
- 2. Enuncie el Teorema de Descomposición en Valores Singulares para matrices reales.
- (6 puntos)
- 3. Halle la descomposición en valores singulares de la matriz $M = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -1 \end{pmatrix}$. (10 puntos)