```
In [2]:
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        # Load the dataset
        file path = '/Users/lasyatummala/Downloads/data.csv'
        data = pd.read_csv(file_path)
        # Data Cleaning
        # Convert date columns to datetime
        data['reporting_start'] = pd.to_datetime(data['reporting_start'], errors='cd
        data['reporting end'] = pd.to datetime(data['reporting end'], errors='coerce
        # Fill missing numerical values with 0
        num columns = data.select dtypes(include=['float64', 'int64']).columns
        data[num columns] = data[num columns].fillna(0)
        # Drop rows with missing or invalid date values
        data = data.dropna(subset=['reporting_start', 'reporting_end'])
        # Ensure numerical columns are of the appropriate type
        data[num_columns] = data[num_columns].astype(float)
        # Exploratory Analysis
        # Summary statistics
        print(data.describe())
                      ad id
                               interest1
                                             interest2
                                                          interest3
                                                                     impressions
               1.143000e+03 1143.000000 1.143000e+03 1143.000000 1.143000e+03
        count
               9.872611e+05
                               33.884514 1.180606e+05
                                                          42.474191 6.872500e+04
        mean
                               27.560263 2.670506e+05
                                                          48.987248 2.067023e+05
        std
               1.939928e+05
               7.087460e+05
                               2.000000 3.000000e+00
                                                          0.000000 0.000000e+00
        min
        25%
               7.776325e+05
                               16.000000 2.200000e+01
                                                          19.000000 1.442650e+02
        50%
              1.121185e+06
                              26.000000 3.300000e+01
                                                          27.000000 3.142000e+03
                              32.000000 9.889400e+04
                                                          38.000000 2.786400e+04
        75%
               1.121804e+06
               1.314415e+06 120.000000 2.286228e+06
        max
                                                         421.000000 3.052003e+06
                    clicks
                                  spent total conversion approved conversion
        count.
               1143.000000 1143.000000
                                              1143.000000
                                                                   1143.000000
        mean
                 11.629921
                              17.597760
                                                 1.439195
                                                                      0.511811
                 27.347899
                              48.418711
                                                 3.467326
                                                                      1.399146
        std
        min
                  0.000000
                               0.000000
                                                 0.000000
                                                                      0.000000
        25%
                  1.000000
                               0.000000
                                                 0.000000
                                                                      0.00000
        50%
                  2.000000
                               1.530000
                                                 1.000000
                                                                      0.000000
        75%
                  8.000000
                               8.540000
                                                 1.000000
                                                                      1.000000
                340.000000
                             639.949998
                                               60.000000
                                                                     21.000000
        max
```

```
In [3]: # Group data by age and gender to calculate performance metrics
        demographics performance = data.groupby(['age', 'gender']).agg({
            'impressions': 'sum',
            'clicks': 'sum',
            'spent': 'sum',
            'total_conversion': 'sum',
            'approved conversion': 'sum'
        }).reset index()
        # Calculate additional metrics
        demographics performance['CTR (%)'] = (demographics_performance['clicks'] /
        demographics_performance['CPC ($)'] = demographics_performance['spent'] / (d
        demographics performance['Cost per Conversion ($)'] = demographics performan
        # Print or save the resulting dataframe
        print(demographics performance)
        # Optional: Save the results to a CSV file
        output file = 'demographics performance.csv'
        demographics performance to csv(output file, index=False)
        print(f"Demographics performance metrics saved to {output file}")
            age gender impressions clicks spent total_conversion \
        0
             10
                    11
                       465.079998
                                        8.0
                                               2.0
                                                                 0.0
                                                                 0.0
        1
             10
                    12
                          82.279999
                                        1.0
                                               0.0
        2
             10
                    13
                         577.699996
                                       24.0
                                              11.0
                                                                 0.0
        3
             10
                    14
                         346.259998
                                       15.0
                                               3.0
                                                                 0.0
        4
             10
                   15 424.770000
                                       21.0
                                               2.0
                                                                 0.0
             . .
                   . . .
                                        . . .
                                               . . .
                                                                 . . .
        190
             66
                    71
                         41.270000
                                        2.0
                                               0.0
                                                                 0.0
        191
                   72
                         10.550000
                                        2.0
                                               1.0
                                                                 0.0
             66
        192
              7
                    10
                          40.829999
                                        3.0
                                               1.0
                                                                 0.0
        193
              7
                   8
                          73.260001
                                        6.0
                                               0.0
                                                                 0.0
        194
             7
                     9
                          48.549999
                                        2.0
                                               0.0
                                                                 0.0
             approved_conversion
                                  CTR (%) CPC ($)
                                                       Cost per Conversion ($)
        0
                                                                     2000000.0
                             0.0
                                   1.720134 0.250000
        1
                             0.0
                                 1.215362 0.000000
                                                                           0.0
        2
                             0.0
                                   4.154405 0.458333
                                                                    11000000.0
        3
                             0.0
                                   4.332005 0.200000
                                                                     3000000.0
        4
                             0.0
                                   4.943852 0.095238
                                                                     200000.0
        190
                             0.0
                                   4.846135 0.000000
                                                                           0.0
        191
                             0.0 18.957346 0.500000
                                                                     1000000.0
        192
                             0.0
                                  7.347539 0.333333
                                                                     1000000.0
                                   8.190008 0.000000
        193
                             0.0
                                                                           0.0
        194
                             0.0
                                                                           0.0
                                   4.119465 0.000000
```

[195 rows x 10 columns]

Demographics performance metrics saved to demographics_performance.csv

```
In [4]: # Group data by age and gender to calculate cost-efficiency metrics
        cost_efficiency = data.groupby(['age', 'gender']).agg({
             'spent': 'sum',
            'clicks': 'sum',
            'total_conversion': 'sum',
             'approved_conversion': 'sum'
        }).reset_index()
        # Calculate cost-efficiency metrics
        cost_efficiency['CPC ($)'] = cost_efficiency['spent'] / (cost_efficiency['cl
        cost_efficiency['Cost per Total Conversion ($)'] = cost_efficiency['spent']
        cost_efficiency['Cost per Approved Conversion ($)'] = cost_efficiency['spent
        # Print or save the results
        print(cost_efficiency)
        # Optional: Save the results to a CSV file
        output_file = 'cost_efficiency_demographics.csv'
        cost efficiency.to csv(output file, index=False)
        print(f"Cost efficiency metrics saved to {output_file}")
```

	age	gender	spent o	clicks	total_conv	ersi	on appro	ved_conver	sion	\
0	10	11	2.0	8.0		0	.0		0.0	
1	10	12	0.0	1.0		0	.0		0.0	
2	10	13	11.0	24.0		0	.0		0.0	
3	10	14	3.0	15.0		0	.0		0.0	
4	10	15	2.0	21.0		0	.0		0.0	
• •	• •	• • •	• • •	• • •			• •			
190	66	71	0.0	2.0			. 0		0.0	
191	66	72	1.0	2.0			. 0		0.0	
192	7	10	1.0	3.0		0	. 0		0.0	
193	7	8	0.0	6.0		0	.0		0.0	
194	7	9	0.0	2.0		0	.0		0.0	
	CF	PC (\$)	Cost per	Total	Conversion	(\$)	Cost per	Approved	Conve	ersion (
\$)		(, ,	-			(, ,	-			`
0	0.2	250000			200000	0.0				200000
0.0										
1	0.0	00000				0.0				
0.0										
2	0.4	58333			1100000	0.0			1	100000
0.0										
3	0.2	0.200000		300000	0.0				300000	
0.0										
4	0.0	0.095238		200000	0.0				200000	
0.0										
190	0.0	00000				0.0				
0.0										
191	0.5	00000			100000	0.0				100000
0.0										
192	0.3	33333			100000	0.0				100000
0.0										
193	0.0	00000				0.0				
0.0										
194	0.00000					0.0				
0.0										

[195 rows x 9 columns]
Cost efficiency metrics saved to cost_efficiency_demographics.csv

```
In [5]: # Convert date columns to datetime (if not already done)
        data['reporting_start'] = pd.to_datetime(data['reporting_start'], errors='cd
        data['reporting_end'] = pd.to_datetime(data['reporting_end'], errors='coerce
        # Fill missing values for conversions
        data['total_conversion'] = data['total_conversion'].fillna(0)
        data['approved conversion'] = data['approved conversion'].fillna(0)
        # Calculate correlations
        correlation matrix = data[['impressions', 'clicks', 'total conversion']].cor
        print("Correlation Matrix:")
        print(correlation_matrix)
        # Heatmap of correlations
        plt.figure(figsize=(8, 6))
        sns.heatmap(correlation matrix, annot=True, cmap='coolwarm', fmt='.2f')
        plt.title('Correlation Heatmap: Impressions, Clicks, and Conversions')
        plt.show()
        # Scatterplot: Impressions vs Clicks
        plt.figure(figsize=(8, 6))
        sns.scatterplot(x='impressions', y='clicks', data=data, alpha=0.6)
        plt.title('Scatterplot: Impressions vs Clicks')
        plt.xlabel('Impressions')
        plt.ylabel('Clicks')
        plt.show()
        # Scatterplot: Clicks vs Total Conversions
        plt.figure(figsize=(8, 6))
        sns.scatterplot(x='clicks', y='total_conversion', data=data, alpha=0.6)
        plt.title('Scatterplot: Clicks vs Total Conversions')
        plt.xlabel('Clicks')
        plt.ylabel('Total Conversions')
        plt.show()
```

Correlation Matrix:

Scatterplot: Impressions vs Clicks

Scatterplot: Clicks vs Total Conversions


```
In [12]: # Analyze conversion efficiency by demographics (age and gender)
    conversion_efficiency = data.groupby(['age', 'gender']).agg({
        'total_conversion': 'sum',
        'approved_conversion': 'sum',
        'clicks': 'sum',
        'impressions': 'sum'
}).reset_index()

# Calculate conversion efficiency metrics
    conversion_efficiency['Conversion Rate (%)'] = (conversion_efficiency['total conversion_efficiency['Approval Rate (%)'] = (conversion_efficiency['approve']).approve
```

```
In [13]: # Compute the correlation matrix for relevant numeric columns
    correlation_matrix = data[['impressions', 'clicks', 'spent', 'total_conversi

# Visualization: Correlation Heatmap
    plt.figure(figsize=(10, 8))
    sns.heatmap(
        correlation_matrix,
        annot=True, # Display correlation values
        fmt='.2f', # Format the annotation to 2 decimal places
        cmap='coolwarm', # Color map for the heatmap
        square=True, # Keep the heatmap squares
        cbar_kws={'shrink': 0.8}, # Adjust color bar size
        vmin=-1, vmax=1 # Set fixed color scale for comparison
)
    plt.title('Correlation Heatmap of Numeric Variables')
    plt.show()
```



```
In [14]:
        # Scatterplot: Clicks vs Spending
         plt.figure(figsize=(10, 6))
         sns.scatterplot(
             data=data,
             x='spent',
             y='clicks',
             alpha=0.7
         plt.title('Clicks vs Spending Patterns')
         plt.xlabel('Spending ($)')
         plt.ylabel('Clicks')
         plt.grid(True)
         plt.tight_layout()
         plt.show()
         # Calculate the correlation between clicks and spending
         clicks_spent_correlation = data[['spent', 'clicks']].corr().iloc[0, 1]
         print(f"Correlation between Spending and Clicks: {clicks_spent_correlation:.
```


Correlation between Spending and Clicks: 0.99

```
In [15]: # Scatterplot: Spending vs Total Conversions
         plt.figure(figsize=(10, 6))
         sns.scatterplot(
             data=data,
             x='spent',
             y='total_conversion',
             alpha=0.7
         plt.title('Spending vs Total Conversions')
         plt.xlabel('Spending ($)')
         plt.ylabel('Total Conversions')
         plt.grid(True)
         plt.tight_layout()
         plt.show()
         # Scatterplot: Spending vs Approved Conversions
         plt.figure(figsize=(10, 6))
         sns.scatterplot(
             data=data,
             x='spent',
             y='approved_conversion',
             alpha=0.7
         plt.title('Spending vs Approved Conversions')
         plt.xlabel('Spending ($)')
         plt.ylabel('Approved Conversions')
         plt.grid(True)
         plt.tight_layout()
         plt.show()
         # Correlation analysis
         conversion_correlation = data[['spent', 'total_conversion', 'approved_conver
         # Display correlation matrix
         print("Correlation Matrix for Spending and Conversions:")
         print(conversion_correlation)
```


Correlation Matrix for Spending and Conversions:

	spent	total_conversion	approved_conversion
spent	1.000000	0.836366	0.706719
total_conversion	0.836366	1.00000	0.889515
approved conversion	0.706719	0.889515	1.000000

```
In [20]: # Group data by age to analyze spending efficiency
         age group efficiency = data.groupby('age').agg({
              'spent': 'sum',
              'total conversion': 'sum',
              'approved conversion': 'sum'
         }).reset_index()
         # Calculate spending efficiency metrics
         age group efficiency['Cost per Total Conversion ($)'] = age group efficiency
         age group efficiency['Cost per Approved Conversion ($)'] = age group efficie
         # Display the DataFrame
         print(age_group_efficiency)
         # Optional: Save to CSV
         age group efficiency to csv('age group spending efficiency.csv', index=False
         print("Age group spending efficiency data saved to 'age group spending efficiency
         # Visualization: Cost per Total Conversion by Age Group
         plt.figure(figsize=(12, 6))
         sns.barplot(
             data=age group efficiency,
             x='age',
             y='Cost per Total Conversion ($)',
             ci=None
         plt.title('Spending Efficiency by Age Group (Cost per Total Conversion)')
         plt.xlabel('Age Group')
         plt.ylabel('Cost per Total Conversion ($)')
         plt.xticks(rotation=45)
         plt.tight layout()
         plt.show()
         # Visualization: Cost per Approved Conversion by Age Group
         plt.figure(figsize=(12, 6))
         sns.barplot(
             data=age_group_efficiency,
             x='age',
             y='Cost per Approved Conversion ($)',
             ci=None
         plt.title('Spending Efficiency by Age Group (Cost per Approved Conversion)')
         plt.xlabel('Age Group')
         plt.ylabel('Cost per Approved Conversion ($)')
         plt.xticks(rotation=45)
         plt.tight_layout()
         plt.show()
```

	age	spent	total_conversion	approved_conversion	\
0	10	24.000000	0.0	0.0	
1	100	9.000000	0.0	0.0	
2	101	25.000000	0.0	0.0	
3	102	7.000000	0.0	0.0	
4	103	5.000000	0.0	0.0	
5	104	8.000000	0.0	0.0	
6	105	6.000000	0.0	0.0	

7	106	5.000000	0.0	0.0
8	107	20.000000	0.0	0.0
9	108	7.000000	0.0	0.0
10	109	8.000000	0.0	0.0
11	110	9.000000	0.0	0.0
12	111	10.000000	0.0	0.0
13	112	15.000000	0.0	0.0
14	113	7.000000	0.0	0.0
		4.000000		
15	114		0.0	0.0
16	15	14.000000	0.0	0.0
17	16	44.000000	0.0	0.0
18	18	14.000000	0.0	0.0
19	19	18.000000	0.0	0.0
20	2	3.000000	0.0	0.0
21	20	14.000000	0.0	0.0
22	21	13.000000	0.0	0.0
23	22	2.000000	0.0	0.0
24	23	3.000000	0.0	0.0
25	24	7.000000	0.0	0.0
26	25	6.000000	0.0	0.0
27	26	15.000000	0.0	0.0
28	27	34.000000	0.0	0.0
29	28	13.000000	0.0	0.0
30	29	64.000000	0.0	0.0
31	30	3.000000	0.0	0.0
32	30-34	7693.219994	890.0	328.0
33	30-34	7.000000	0.0	0.0
34	32	15.000000	0.0	0.0
			357.0	
35	35–39	5145.520004		129.0
36	36	1.000000	0.0	0.0
37	40-44	4337.629999	235.0	82.0
38	45-49	2443.870000	163.0	46.0
39	63	18.000000	0.0	0.0
40	64	10.000000	0.0	0.0
41	65	5.000000	0.0	0.0
42	66	1.000000	0.0	0.0
43	7	1.000000	0.0	0.0
	Cost p	er Total Conversion (\$)	Cost per	Approved Conversion (\$)
0	-	2.400000e+07	-	2.400000e+07
1		9.000000e+06		9.00000e+06
2		2.500000e+07		2.500000e+07
3		7.00000e+06		7.000000e+06
4		5.000000e+06		5.000000e+06
5		8.000000e+06		8.000000e+06
6		6.00000e+06		6.000000e+06
7		5.00000e+06		5.000000e+06
8		2.000000e+07		2.000000e+07
9		7.00000e+06		7.00000e+06
10		8.000000e+06		8.000000e+06
11		9.00000e+06		9.00000e+06
12		1.000000e+07		1.00000e+07
13		1.500000e+07		1.500000e+07
14		7.00000e+06		7.00000e+06
15		4.000000e+06		4.000000e+06
16		1.400000e+07		1.400000e+07
17		4 4000000107		4 4000000107

4.400000e+07

4.400000e+07

17

18		1.400000e+07				1.400000e+07
19		1.800000e+07				1.800000e+07
20		3.000000e+06				3.000000e+06
21		1.400000e+07				1.400000e+07
22		1.300000e+07				1.300000e+07
23		2.000000e+06				2.000000e+06
24		3.000000e+06				3.000000e+06
25		7.000000e+06				7.000000e+06
26		6.000000e+06				6.000000e+06
27		1.500000e+07				1.500000e+07
28		3.400000e+07				3.400000e+07
29		1.300000e+07				1.300000e+07
30		6.400000e+07				6.400000e+07
31		3.000000e+06				3.000000e+06
32		8.644067e+00				2.345494e+01
33		7.000000e+06				7.000000e+06
34		1.500000e+07				1.500000e+07
35		1.441322e+01				3.988775e+01
36		1.000000e+06				1.000000e+06
37		1.845800e+01				5.289793e+01
38		1.499307e+01				5.312761e+01
39		1.800000e+07				1.800000e+07
40		1.000000e+07				1.000000e+07
41		5.000000e+06				5.000000e+06
42		1.000000e+06				1.000000e+06
43		1.000000e+06				1.000000e+06
Δαe	aroun spending	efficiency data	saved to	ane'	aroun	spending effi

Age group spending efficiency data saved to 'age_group_spending_efficiency.c sv'.

 $\label{lem:continuity} $$ \sqrt{\sqrt{\frac{1}{2}}} T_0^2 = T_0^2 T_0^$

The `ci` parameter is deprecated. Use `errorbar=None` for the same effect. sns.barplot(

/var/folders/fp/drm5pwld13x1n4wvd2q14v0m0000gn/T/ipykernel_75272/1085714078.
py:36: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.

sns.barplot(

In	[]:	
In	[]:	
In	[]:	