Closure under regular operation

Lin Chen

Email: Lin.Chen@ttu.edu

Grader: zulfi.khan@ttu.edu

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}.$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}.$
- Star: $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}.$

```
• Union: A \cup B = \{x | x \in A \text{ or } x \in B\}.
• Concatenation: A \circ B = \{xy | x \in A \text{ and } y \in B\}.
• Star: A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}.
   A = \{\text{good}, \text{bad}\}, B = \{\text{boy}, \text{girl}\}
A \cup B = \{ \text{good}, \text{bad}, \text{boy}, \text{girl} \},
A \circ B = \{ \text{goodboy}, \text{goodgirl}, \text{badboy}, \text{badgirl} \}, \text{ and } \}
A^* = \{ \varepsilon, \text{good}, \text{bad}, \text{goodgood}, \text{goodbad}, \text{badgood}, \text{badbad},
```

goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, . . . }.

• The class of regular languages is closed under: Union

What does the statement mean? If languages A and B are both regular, then $A \cup B$ is also regular.

• The class of regular languages is closed under: Union

What does the statement mean? If languages A and B are both regular, then $A \cup B$ is also regular.

What does regular language mean? A language is regular if and only if a DFA (NFA) recognizes it

• The class of regular languages is closed under: Union

What does the statement mean? If languages A and B are both regular, then $A \cup B$ is also regular.

What does regular language mean? A language is regular if and only if a DFA (NFA) recognizes it

How to prove? If I have automata for A and B, construct automaton for $A \cup B$

• The class of regular languages is closed under: Union

If I have automata for A and B, construct automaton for $A \cup B$

• The class of regular languages is closed under: Union

If I have automata for A and B, construct automaton for $A \cup B$

Is every string accepted by N_1 or N_2 accepted by N?

Is every string accepted by N accepted by N_1 or N_2 ?

• The class of regular languages is closed under: Union

Formal proof: state the construction of N using the 5-tuple definition.

Let
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$.

- 1. $Q = \{q_0\} \cup Q_1 \cup Q_2$. The states of N are all the states of N_1 and N_2 , with the addition of a new start state q_0 .
- **2.** The state q_0 is the start state of N.
- 3. The accept states $F = F_1 \cup F_2$. The accept states of N are all the accept states of N_1 and N_2 . That way N accepts if either N_1 accepts or N_2 accepts.
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q,a) = egin{cases} \delta_1(q,a) & q \in Q_1 \ \delta_2(q,a) & q \in Q_2 \ \{q_1,q_2\} & q = q_0 ext{ and } a = oldsymbol{arepsilon} \ \emptyset & q = q_0 ext{ and } a
eq oldsymbol{arepsilon}. \end{cases}$$

• The class of regular languages is closed under: Concatenation

What does the statement mean? If languages A and B are both regular, then $A \circ B$ is also regular.

What does regular language mean? A language is regular if and only if a DFA (NFA) recognizes it

How to prove? If I have automata for A and B, construct automaton for $A \circ B$

• The class of regular languages is closed under: Concatenation

If I have automata for A and B, construct automaton for $A \circ B$

Is every string accepted by N_1 or N_2 accepted by N?

Is every string accepted by N accepted by N_1 or N_2 ?

• The class of regular languages is closed under: Concatenation

Let
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize A_1 , and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ recognize A_2 .

Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$.

- 1. $Q = Q_1 \cup Q_2$. The states of N are all the states of N_1 and N_2 .
- **2.** The state q_1 is the same as the start state of N_1 .
- **3.** The accept states F_2 are the same as the accept states of N_2 .
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q,a) = egin{cases} \delta_1(q,a) & q \in Q_1 ext{ and } q
otin F_1 \ \delta_1(q,a) & q \in F_1 ext{ and } a
eq arepsilon F_2(q,a) & q
otin Q_2. \end{cases}$$

• The class of regular languages is closed under: (Kleene-)star

What does the statement mean? If language A is regular, then A^* is also regular.

What does regular language mean? A language is regular if and only if a DFA (NFA) recognizes it

How to prove? If I have automata for A, construct automaton for A^*

$$A^* = \{w_1 w_2 \cdots w_k : k \ge 0, w_i \in A\}$$

• The class of regular languages is closed under: Star

If I have automata for A, construct automaton for A^*

If I concatenate any k strings accepted by N_1 will it be accepted by N?

If a string is accepted by N, is it a concatenation of k strings acceptable by N_1 for some k?

• The class of regular languages is closed under: Star

PROOF Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* .

- 1. $Q = \{q_0\} \cup Q_1$. The states of N are the states of N_1 plus a new start state.
- **2.** The state q_0 is the new start state.
- **3.** $F = \{q_0\} \cup F_1$. The accept states are the old accept states plus the new start state.
- **4.** Define δ so that for any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$,

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\ \{q_1\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon. \end{cases}$$

 The class of regular languages is closed under: Complement and intersection (why?)