

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 46: Normalization

CONCEPTS COVERED

Concepts Covered:

- ☐ Deep Neural Network
 - ☐ Gradient Descent Challenges
 - Normalization
 - Batch Normalization
 - ☐ Layer Normalization
 - Instance Normalization
 - ☐ Group Normalization

Normalization

Local Response Normalization (Inter-Channel)

$$b_{x,y}^{i} = \frac{a_{x,y}^{i}}{\left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^{j})^{2}\right)^{\beta}}$$

Local Response Normalization (Intra-Channel)

$$b_{x,y}^{i} = \frac{a_{x,y}^{i}}{\left(k + \alpha \sum_{p=\max(0, x-n/2)}^{\max(W, x+n/2)} \sum_{q=\max(0, y-n/2)}^{\min(H, y+n/2)} (a_{p,q}^{i})^{2}\right)^{\beta}}$$

Normalizatio

- n
- ☐ Normalization that address the problem of covariate shift.
- ☐ Makes learning process faster.
- ☐ Different layers learn independently of others.

What does a classifier learn?

Why normalization

Batch 1

Thank you

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 47

Why normalization

Batch 1

Normalization In Hidden Layers

Different normalization techniques

- Batch Normalization
- □ Layer Normalization
- Instance Normalization
- ☐ Group Normalization

Batch Normalization

Batch Normalization

Normalizatio

n

CHANNEL

N BATCH $W \times H$

Batch Normalization

Batch Normalization

$$x \in \mathbb{R}^{N \times C \times W \times H}$$

$$\mu_C = \frac{1}{NWH} \sum_{i=1}^{N} \sum_{j=1}^{W} \sum_{k=1}^{H} x_{iCjk}$$

$$\sigma_C^2 = \frac{1}{NWH} \sum_{i=1}^{N} \sum_{j=1}^{W} \sum_{k=1}^{H} (x_{iCjk} - \mu_C)^2$$

$$\hat{x} = \frac{x - \mu_C}{\sqrt{\sigma_C^2 + \epsilon}}$$

N

Normalization Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output:
$$\{y_i = BN_{\gamma,\beta}(x_i)\}$$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$

// mini-batch mean

// mini-batch variance

// normalize

// scale and shift

$$\begin{split} & \underset{\partial \widehat{x}_{i}}{\text{Normalization}} \\ & \underset{\partial \widehat{x}_{i}}{\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot (x_{i} - \mu_{\mathcal{B}}) \cdot \frac{-1}{2} (\sigma_{\mathcal{B}}^{2} + \epsilon)^{-3/2} \\ & \underset{\partial \mu_{\mathcal{B}}}{\frac{\partial \ell}{\partial \mu_{\mathcal{B}}}} = \left(\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} \right) + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{\sum_{i=1}^{m} -2(x_{i} - \mu_{\mathcal{B}})}{m} \\ & \underset{\partial \ell}{\frac{\partial \ell}{\partial x_{i}}} = \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{2(x_{i} - \mu_{\mathcal{B}})}{m} + \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m} \\ & \underset{\partial \ell}{\frac{\partial \ell}{\partial \beta}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_{i}} \cdot \widehat{x}_{i} \\ & \underset{\partial \ell}{\frac{\partial \ell}{\partial \beta}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_{i}} \end{split}$$

Thank you

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 48: Normalization - III

CONCEPTS COVERED

Concepts Covered:

- ☐ Deep Neural Network
 - Normalization
 - Batch Normalization
 - ☐ Layer Normalization
 - Instance Normalization
 - ☐ Group Normalization

Normalization

Why normalization

Batch 1

Normalization In Hidden Layers

Different normalization techniques

- Batch Normalization
- □ Layer Normalization
- Instance Normalization
- ☐ Group Normalization

Batch Normalization

Batch Normalization

Normalizatio

n

CHANNEL

N BATCH $W \times H$

Batch Normalization

Batch Normalization

$$x \in \mathbb{R}^{N \times C \times W \times H}$$

$$\mu_C = \frac{1}{NWH} \sum_{i=1}^{N} \sum_{j=1}^{W} \sum_{k=1}^{H} x_{iCjk}$$

$$\sigma_C^2 = \frac{1}{NWH} \sum_{i=1}^{N} \sum_{j=1}^{W} \sum_{k=1}^{H} (x_{iCjk} - \mu_C)^2$$

$$\hat{x} = \frac{x - \mu_C}{\sqrt{\sigma_C^2 + \epsilon}}$$

N

Normalization Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output:
$$\{y_i = BN_{\gamma,\beta}(x_i)\}$$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$

// mini-batch mean

// mini-batch variance

// normalize

// scale and shift

$$\begin{split} & \underset{\partial \widehat{x}_{i}}{\text{Normalization}} \\ & \underset{\partial \widehat{x}_{i}}{\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot (x_{i} - \mu_{\mathcal{B}}) \cdot \frac{-1}{2} (\sigma_{\mathcal{B}}^{2} + \epsilon)^{-3/2} \\ & \underset{\partial \mu_{\mathcal{B}}}{\frac{\partial \ell}{\partial \mu_{\mathcal{B}}}} = \left(\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} \right) + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{\sum_{i=1}^{m} -2(x_{i} - \mu_{\mathcal{B}})}{m} \\ & \underset{\partial \ell}{\frac{\partial \ell}{\partial x_{i}}} = \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{2(x_{i} - \mu_{\mathcal{B}})}{m} + \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m} \\ & \underset{\partial \ell}{\frac{\partial \ell}{\partial \beta}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_{i}} \cdot \widehat{x}_{i} \\ & \underset{\partial \ell}{\frac{\partial \ell}{\partial \beta}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_{i}} \end{split}$$

Effect of Batch Normalization

- ☐ Inception: A network, trained with the initial learning rate of 0.0015.
- **BN-Baseline:** Same as Inception with Batch Normalization before each nonlinearity.
- ☐ BN-x5: The initial learning rate was
- ☐ increased by a factor of 5, to 0.0075.
- **BN-x30:** Like BN-x5, but with the initial learning rate 0.045 (30 times that of Inception).
- **BN-x5-Sigmoid:** Like BN-x5, but with sigmoid nonlinearity instead of ReLU.

Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." arXiv preprint arXiv:1502.03167 (2015)

Thank you

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 49: Normalization - IV

CONCEPTS COVERED

Concepts Covered:

- ☐ Deep Neural Network
 - Normalization
 - Batch Normalization
 - ☐ Layer Normalization
 - Instance Normalization
 - ☐ Group Normalization

Normalization

Layer Normalization

Layer Normalization

Layer Normalization

$$x \in \mathbb{R}^{N \times C \times W \times H}$$

$$\mu_{N} = \frac{1}{CWH} \sum_{i=1}^{C} \sum_{j=1}^{W} \sum_{k=1}^{H} x_{Nijk}$$

$$\sigma_N^2 = \frac{1}{CWH} \sum_{i=1}^C \sum_{j=1}^W \sum_{k=1}^H (x_{Nijk} - \mu_N)^2$$

$$\hat{x} = \frac{x - \mu_N}{\sqrt{\sigma_N^2 + \epsilon}}$$

N

Instance Normalization

Instance Normalization

Instance Normalization

$$x \in \mathbb{R}^{N \times C \times W \times H}$$

$$\mu_{NC} = \frac{1}{WH} \sum_{j=1}^{W} \sum_{k=1}^{H} x_{Nijk}$$

$$\sigma_{NC}^{2} = \frac{1}{WH} \sum_{j=1}^{W} \sum_{k=1}^{H} (x_{Nijk} - \mu_{N})^{2}$$

$$\hat{x} = \frac{x - \mu_{NC}}{\sqrt{\sigma_{NC}^2 + \epsilon}}$$

Group Normalization

Group Normalization

Normalization

$$x \in \mathbb{R}^{N \times C \times W \times H} \to \mathbb{R}^{N \times G \times C' \times W \times H}$$
 $C = G.C'$

G=number of groups C'=number of channel per group

$$\mu_{NG} = \frac{1}{C'WH} \sum_{i=1}^{C'} \sum_{j=1}^{W} \sum_{k=1}^{H} x_{NGijk}$$

$$\sigma_{NG}^{2} = \frac{1}{C'WH} \sum_{i=1}^{C'} \sum_{j=1}^{W} \sum_{k=1}^{H} (x_{NGijk} - \mu_{NG})^{2} \qquad \hat{x} = \frac{x - \mu_{NG}}{\sqrt{\sigma_{NG}^{2} + \epsilon}}$$

$$\hat{x} = \frac{x - \mu_{NG}}{\sqrt{\sigma_{NG}^2 + \epsilon}}$$

BN/LN/IN/GN Normalization

Model Name: Resnet-50, Dataset: Imagenet, Batch size: 32

Wu, Yuxin, and Kaiming He. "Group normalization." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

Batch/Group Normalization

Model Name: Resnet-50, Dataset: Imagenet

Wu, Yuxin, and Kaiming He. "Group normalization." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

Batch/Group Normalization

Wu, Yuxin, and Kaiming He. "Group normalization." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

NPTEL ONLINE CERTIFICATION COURSES

Thank you

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 50: Training Tricks

CONCEPTS COVERED

Concepts Covered:

- ☐ Deep Neural Network
 - Normalization
 - ☐ Underfitting/Ovefitting
 - Regularization
 - Dropout
 - ☐ Early Stopping

Regularization Early stopping

Overfitting/Underfitting

- Overfitting occurs when a statistical model or machine learning algorithm captures the noise of the data.
- ☐ Intuitively, overfitting occurs when the model or the algorithm fits the data too well.

A statistical model or a machine learning algorithm is said to have underfitting when it cannot capture the underlying trend of the data.

Overfitting/Underfitting:

Degree: 1 Regression Degree: 4

Overfitting/Underfitting: Classification

Regularizati on

- ☐ Regularization is a way to prevent overfitting.
- ☐ L1 and L2 are the most common types of regularization used in training deep models.
- ☐ General cost function with regularization for training is defined as: Cost function = Loss + Regularization term
- Due to this regularization term, the numerical values of weights decrease because it assumes that a neural network with smaller weights leads to simpler models.
- ☐ So this helps to reduce overfitting.

Neguianzation. Li o

L2

- \square L1 regularizer: Cost function = Loss + $\lambda \sum |w|$
 - ☐ It penalizes absolute value of weights
 - ☐ It can make some weights to zero. So useful for model compression.
 - $f \lambda$ is a regularization hyper parameter. Controls the relative weight.
- \square L2 regularizer: Cost function = Loss + $\lambda \sum ||w||^2$
 - ☐ It penalizes second norm of weights.
 - ☐ It is also termed as weight decay as it pushes the weights near to zero. But it does not make exactly zero always.

Data Augmentation

- ☐ Increasing the size of training data is a way to prevent overfitting.
- ☐ It is difficult and costly to increase the training data.
- ☐ Data augmentation is a way to create a different image from one image while keeping the context same.
- ☐ There are a few ways of augmenting training data—rotating, flipping, scaling, shifting, contrast enhancement, brightness control, etc.

Dropout

Dropout

During Training

During Testing

features

Features learned by an autoencoder on MNIST with a single hidden layer of 256 rectified linear units with/ without dropout.

Without dropout

With dropout

Size

- ☐ While model complexity is fixed, dropout does not generalize the model for very small amount of data
- ☐ As the size of the data set is increased, the gain from doing dropout increases up to a point and then declines.
- ☐ There is a sweet spot where amount of data is large enough.

Earry Stopping

- Hyperparameters need to be tuned for good performance while training neural networks.
- Number of iteration is a hyperparameter to be tuned. Lesser iteration may lead to underfit and more iteration may lead to overfit.
- ☐ Early stopping attempts to remove the need of manually setting this value.
- ☐ It can also be considered a type of regularization method.

Earry Stopping

- ☐ Hyperparameters need to be tuned for good performance while training neural networks.
- Number of iteration is a hyperparameter to be tuned. Lesser iteration may lead to underfit and more iteration may lead to overfit.
- Early stopping attempts to remove the need of manually setting this value.
- ☐ It can also be considered a type of regularization method.

Stopping

Early stopping algorithm is as follows:

- ☐ Split data into train, validation and test set
- ☐ After each training epoch:
 - ☐ Evaluate the model performance using validation data
 - ☐ Save the best model evaluated on validation data
- ☐ Use final model that has the best validation performance for testing.

NPTEL ONLINE CERTIFICATION COURSES

Thank you