

Interprétation comme un graphe.

- Un graphe non-orienté G est :
 - Un ensemble V (noeuds);
 - Un sous-ensemble $E \subset V \times V$ t.q.

Cliques.

■ Un sous-ensemble $C \subset V$ est une clip ssi: \forall (c,c') \in C \times C, (c,c') \in E.

• On définit $Q(G) \subset 2^{V}$ comme l'ensemble de toutes les cliques dans le graphe G.

Graphes image

- V est l'ensemble des pixels.
- Deux graphes symétriques:
 - Vert: G = (E, V).
 - Rouge: G = (E, V).
- Il existe une bijection entre E et E.

homogénéisation locale des étiquettes (lissage).

Conditions à satisfaire:

V(a,b)=0 ssi a=bV(a,b)=V(b,a)>=0

 $V(a,c) \le V(a,b)+V(b,c)$ Inégalité triangulaire

Idée : segmenter successivement tous les sites étiquetés α à partir des sites étiquetés β , et itérer le procédé sur les combinaisons α - β jusqu'à la convergence

- Choix d'un site s : balayage déterministe.
- Remise à jour de s par la valeur qui provoque la plus forte augmentation de probabilité.
- Echantillonneur de Gibbs à T=0.

- Caractéristiques :
 - Algorithme déterministe ;
 - Convergence vers un minimum local;
 - Initialisation et mode de balayage influent le résultat;
 - Convergence en ~10 itérations
 - Très utilisé.

HCF (Chou 1988).

- Highest Confidence First
- Mesure de stabilité de la valeur f_p à un site s (U_0 est l'énergie de la configuration courante):

$$\operatorname{stab}(s) = \left(\min_{c \in C} U(f_s = c)\right) - U_0 \le 0$$

 Les sites sont classés dans une pile d'instabilités.

HCF (Chou 1988).

- À chaque itération le point s₀ le plus instable (sommet de la pile) est remis à jour.
- s₀ devient stable.
- Les stabilités des points de N(s₀) sont réevaluées.
- La pile est réordonnée. Répétez.
- Caractéristiques :
 - Algorithme déterministe ;
 - Convergence en ~1 itération.

Autres choses.

- Algorithmes multi-grilles :
 - Pyramide des étiquettes ;Pyramide des données.

- Algorithmes multi-échelles :
 - Pyramide des étiquettes ;
 - Pyramide des étiquettes ;Données mono-résolution.

Approximation du champs moyen.

Paramètres.

- Tous les modèles ont des paramètres.
- Normalement, ils sont inconnus.
- Qu'est-ce qu'on peut faire ?
- Deux approches :
 - Bayesien : marginaliser ;
 - Estimation.

4

Quelques questions.

Qualifier les algorithmes 1-variationnels, 2stochastiques, 3-combinatoires par les termes suivants:

optimaux / locaux / rapides / lents / restreints par rapport à la forme énergétique / restreints à un étiquetage discret

