Markov Chain Monte Carlo

TP 4: Méthode de Rejet. Version 19-20.

Théorie

- Idées de Méthode de Rejet
 - On sait simuler la v.a. $Y \Rightarrow Y = \{Y_1, Y_2, Y_3, ..., Y_{mc}\}$
 - ullet On connaît la fonction de densité $g_Y(y)$ de v.a. Y
 - ullet On connaît la fonction de densité $f_X(x)$ de v.a. X
 - On utilise quelques réalisations de Y_i pour former X.
- Théorème 3
 - X est la variable aléatoire à valeurs dans R avec la fonction de densité f_X
 - Y est la variable aléatoire à valeurs dans R avec la fonction de densité g_Y
 - Il existe une constante $C(\geq 1)$ satisfaisant

$$C \cdot g_Y(x) \ge f_X(x) \quad x \in \mathbb{R}$$

- ullet U une variable aléatoire de loi uniforme sur [0, 1] indépendante de Y .
- Alors la loi de Y sachant $\{U < \frac{f_X(Y)}{C \cdot g_Y(Y)}\}$ est la loi de X.

Visualisation de Rejet

Théorie

• Il faut montrer que la fonction de densité de v.a. X est bien $f_X(x)$:

$$\mathbb{P}(X \le x) = \int_{-\infty}^{x} f_X(x) dx.$$

Plus précisément en posant l'évènement

$$A = \{U \cdot C \cdot g_Y(Y) < f_X(Y)\}\$$

il faut montrer que

$$\mathbb{P}(Y \le x | \mathbf{A}) = \int_{-\infty}^{x} f_X(x) dx.$$

Théorie

En posant l'évènement

$$A = \{U \cdot C \cdot g_Y(Y) < f_X(Y)\}\$$

il faut montrer que

$$\mathbb{P}(Y \le x | \mathbf{A}) = \int_{-\infty}^{x} f_X(x) dx.$$

 Partons de la définition de la probabilité conditionnelle:

$$\mathbb{P}(Y \le x | A) = \frac{\mathbb{P}((Y \in A) \cap A)}{\mathbb{P}(A)}$$

Demonstration

$$A = \{ U < f_X(Y) / (C \cdot g_Y(Y)) \}$$

$$\mathbb{P}((Y \le x) \bigcap A) =$$

$$\int_{0}^{1} \int_{-\infty}^{+\infty} 1_{\{(y \le x), u < f_X(y)/(C \cdot g_Y(y))\}} \quad f_U(u) \cdot g_Y(y) du dy = 0$$

$$\int_{0}^{\frac{f_X(Y)}{C \cdot g_Y(Y)}} \int_{-\infty}^{x} g_Y(y) dy du =$$

ullet On utilise l'independence des variables aléatoires U et Y

$$f_{U,Y}(u,y) = f_U(u) \cdot g_Y(y)$$

Demonstration

$$\int_{-\infty}^{x} g_Y(y)dy \int_{0}^{\frac{f_X(y)}{Cg_Y(y)}} du = \int_{-\infty}^{x} \frac{f_X(y)}{Cg_Y(y)} g_Y(y)dy =$$

$$\int_{-\infty}^{x} \frac{1}{C} f_X(y)dy = \frac{F_X(x)}{C}.$$

Demonstration

Si $(x = +\infty)$ on peut calculer en répétant le raisonnement précédant que

$$\mathbb{P}(A) = \mathbb{P}(U < \frac{f_X(Y)}{Cg_Y(Y)}) = \int_{-\infty}^{+\infty} \frac{1}{C} f_X(y) dy = \frac{1}{C}$$

Donc

$$\mathbb{P}(Y \le x | A) = \int_{-\infty}^{x} f_X(x) dx = F_X(x)$$

ce qu'il fallait démontrer.

Algorithme de Rejet

- Quelles realisations de Y choisir, les quelles rejeter?
 - function[X]=Rejet()
 - $\circ k = 1;$
 - \circ for n=1: N_{mc}
 - ∘ Simuler v.a. *Y*
 - \circ Simuler U[0,1]
 - \circ if $U \leq \frac{f_X(Y)}{C \cdot g_Y(Y)}$
 - $\circ X(k) = Y; \quad k = k + 1;$
 - o endif
 - endfor
 - endfunction
- La constante C vérifie la condition:

$$\forall x \in [a, b], \quad \frac{f_X(x)}{g_Y(x)} \le C$$

Simulation de v.a. Normale par Rejet

- On veut simuler v.a. Normale de densité $f_X(y) = \frac{e^{-y^2/2}}{\sqrt{2\pi}}$
- On sait simuler le loi de Laplace de densité $g_Y(y) = \frac{1}{2}e^{-|y|}$
- On calcule la constante $C = \sqrt{\frac{2e}{\pi}}$:

$$\frac{f_X(y)}{g_Y(y)} \le \sqrt{\frac{2e}{\pi}} \quad \forall y \in \mathbb{R}$$

Simulation de v.a. Laplace

V. a. Laplace est définie par sa fonction de densité ou de repartition:

$$g_Y(y) = \begin{cases} \frac{1}{2}e^{-y}, & y \ge 0\\ \frac{1}{2}e^y, & y < 0 \end{cases} \qquad F_Y(y) = \begin{cases} 1 - \frac{1}{2}e^{-y} & y \ge 0\\ \frac{1}{2}e^y & y < 0 \end{cases}$$

• Inversion de $F_Y(y)$:

$$\begin{cases} u < 1/2 \\ y = ln(2u) \end{cases} \qquad \begin{cases} u \ge 1/2 \\ y = -ln(2(1-u)) \end{cases}$$

Simulation de v.a. Laplace

Simulation par l'inversion:

$$\begin{cases} U = rand() \\ if \quad U < 1/2 \\ Y = ln(2U) \\ else \\ Y = -ln(2(1-U)) \end{cases}$$

On remarque que $2U \in [0,1]$ et Y = ln(2U) est une v.a. exponentielle multipliée par (-1), on remarque aussi que $2(1-U) \in [0,1]$, Y = -ln(2(1-U)) suit la loi exponentielle. Donc on peut simuler Y par l'algorithme suivant

$$\begin{cases} if \quad rand() < 1/2 \\ Y = -V.A.exponentielle \quad (Y = ln(rand()) \\ else \\ Y = V.A.exponetielle \quad (Y = -ln(rand()) \end{cases}$$

Simulation 1 de v.a. Normale par Rejet

- Simulation d'un échantillon de v.a. Normale $X \in \mathbb{R}$ à l'aide de v.a. Laplace Y.
 - function[X]=Rejet_Normale_1()

$$\circ C = \sqrt{\frac{2e}{\pi}}$$

- $\circ k = 1;$
- \circ for n=1: N_{mc}
- \circ *U*=rand()
- \circ if U < 1/2

$$Y = -ln(2U)$$

else
$$Y = -ln(2(1 - U))$$

- o endif
- Simuler U[0,1] (indépendante)

$$\circ f = (\frac{e^{-Y^2/2}}{\sqrt{2\pi}}); \quad g = \frac{1}{2}e^{-|Y|}$$

- $\circ \text{ if } U \leq \frac{f}{(C \cdot g)}$
- $\circ X(k) = Y; \quad k = k + 1;$
- o endif
- o endfor
- endfunction

Simulation 2 de v.a. Normale par Rejet

- Simulation d'un échantillon de v.a. Normale $X \in \mathbb{R}$ à l'aide de v.a. Laplace Y.
 - function[X]=Rejet_Normale_2()

$$\circ C = \sqrt{\frac{2e}{\pi}}$$

- $\circ k = 1;$
- o for n=1: N_{mc}
- if rand() <1/2</p>

$$Y = - V_A = Exp(1)$$

else
$$Y = V_A = Exp(1)$$

- o endif
- Simuler U[0,1] (indépendante)

$$\circ f = (\frac{e^{-Y^2/2}}{\sqrt{2\pi}}); \quad g = \frac{1}{2}e^{-|Y|}$$

$$\circ$$
 if $U \leq \frac{f}{(C \cdot g)}$

$$\circ X(k) = Y; \quad k = k + 1;$$

- o endif
- endfor
- endfunction

Travail à faire pour v.a. Normale

• Montrer que $C = \sqrt{\frac{2e}{\pi}}$

Pour cela considerer deux $y \ge 0$ et y < 0. Pour $y \ge 0$ introduire la fonction

$$h(y) = \frac{f_X(y)}{g_Y(y)} = (\frac{2e^{-y^2/2}}{\sqrt{2\pi}})/(e^{-y}),$$

deriver cette fonction par rapport à y, trouver un point de max et montrer que $C = h(y_{max})$.

- Verifier les simulations
 - Soient $N_{mc} = 10000$
 - Tracer les fonctions de repartition de X:

$$[a, b] = [-5, 5], \Delta = 0.1, N_x = 100$$

• Tracer les fonctions de densité de X :

$$[a, b] = [-5, 5], \Delta = 0.1, N_x = 100$$

Simulation de la loi Beta (α, β)

■ Une variable aléatoire de loi Beta $B(\alpha, \beta)$ (avec $\alpha > 0$ et $\beta > 0$) a pour densité

$$f_X(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} 1_{0 \le x \le 1}$$

- On utilise la méthode de rejet avec Y = U([0,1]) (loi uniforme) dont la fonction de densité est egale $g_Y(x) = 1$.
- La constante de rejet vaut

$$C = \sup_{0 \le x \le 1} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

lacksquare En dérivant la fonction $f_X(x)$ pour trouver le point de max x_0 on montre

$$x_0 = \frac{\alpha - 1}{\alpha + \beta - 2}$$

et

$$C = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x_0^{\alpha - 1} (1 - x_0)^{\beta - 1}.$$

Simulation de la loi Beta (α, β)

lacksquare On forme le vecteur X sans les 'zeros' par l'introduction d'un nouveau indice k.

```
• function[X ]=Rejet_Beta(\alpha, \beta)

• Calculer x_0 = \frac{\alpha - 1}{\alpha + \beta - 2},

• Calculer C=Beta(x_0, \alpha, \beta)
```

$$\circ k = 1;$$

$$\circ \text{ for } n = 1: N_{mc}$$

$$\circ$$
 Y=rand();

$$\circ$$
 Simuler $U[0,1]$ indépendant de Y

$$\circ$$
 Simuler f =Beta (Y, α, β) ;

$$\circ \text{ if } U \leq \frac{\mathring{f}}{C}$$

$$\circ X(k) = Y; \quad k = k + 1;$$

- o endif
- o endfor
- endfunction

• function[f]=Beta
$$(x, \alpha, \beta)$$

$$f = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\cdot\Gamma(\beta)} \cdot x.^{(\alpha-1)} \cdot (1-x).^{(\beta-1)}$$

endfunction

Travail à faire pour v.a. Beta (α, β)

- Simuler la v.a. Beta (2,2), Beta (2,5), Beta (1.5,3.5),
- Soient $N_{mc} = 10000$
- **●** Tracer les fonctions de repartition de X: $[a,b] = [0,1], \Delta = 0.01, N_x = 100$
- **●** Tracer les fonctions de densité de X : $[a,b] = [0,1], \Delta = 0.01, N_x = 100$
- Vous confirmez que v.a. $X \in [0, 1]$