01RMHNG-03RMHPF-01RMING Network Dynamics Week 9 - Part I Introduction to Strategic Games

Giacomo Como and Fabio Fagnani DISMA, Politecnico di Torino {giacomo.como,fabio.fagnani}@polito.it Torino, November 28, 2024

Non-cooperative strategic games

- ▶ Historical remarks
- ► Fundamental examples
- ► Formal definitions (strategy, best response, Nash equilibrium)
- ▶ More discrete and continuous examples

The birth of Game Theory

- ▶ 1713: Waldegrave, card games
- ▶ 1838: Cournot, theory of duopolies
- ▶ 1913: Zermelo, chess optimal strategy
- ► 1928: Von Neumann, dominant strategy
- ► 1944: Von Neumann and Mongenstern Theory of games and economic behavior
- ▶ game theory develops during cold war

Game Theory

John Forbes Nash (1928-2015)

- ► 1950: *Non-cooperative games* PhD Thesis (Princeton)
- ▶ 1950: Equilibrium points in n-person games PNAS
- ▶ 1950: The bargaining problem Econometrica
- ► 1951: Non-cooperative games Annals of Mathematics
- ▶ 1953: *Two-person Cooperative Games* Econometrica

. . .

▶ 1994 Nobel Price for Economics: Harsanyi, Nash, and Salten

Impact of Game Theory

in Economics:

- ▶ 1994 Nobel Price for Economics: Harsanyi, Nash, and Salten
- ▶ 2005 Nobel Price for Economics: Shelling and Aumann
- ▶ 2007 Nobel Price for Economics: Hurwicz, Maskin, and Myerson
- ▶ 2012 Nobel Price for Economics: Roth and Shapley
- ▶ 2014 Nobel Price for Economics: Tirole
- ▶ 2021 Nobel Price for Economics: Milgrom and Wilson

and many other fields:

- ▶ Political Sciences: Downs (1957), Cuban missile crisis (1962)
- ▶ Biology: evolutionary game theory, John Maynard Smith (1970s)
- ► Computer Science: semantics, algorithmic mechanism design,
- ► Engineering: multi-agent systems, Internet, networks
- ▶ Machine Learning, Artificial Intelligence: GANs, AI planning, ...

The Prisoner Dilemma

Frank and Cora get arrested and are accused of a crime.

They get questioned separately and offered the same deal:

- ▶ if they both confess, each of them gets sentenced to 3 years
- ▶ if only one confesses (s)he gets free, the other one gets 5 years
- ▶ if neither of them confesses, they get 1 year each (a minor crime)

Formalizing the Prisoner Dilemma

Cora's choice

	CONFESS	SILENT	
C O N F E S	-3	0	
S I L E N	-55 -	-1	

	CONFESS	SILENT
C O N F E S	-3	-5
S I L E N	0	-1

Dominant Strategies in Prisoner Dilemma

CONFESS	SILENT
-3	-5
-3	
0	-1
-5	-1
	-3 -3

- ▶ whatever Cora does, Frank is better off confessing
- ► Confess is a dominant strategy for Frank

Dominant Strategies in Prisoner Dilemma

FC	CONFESS	SILENT
C O N	-3	-5
F E S	-3	
S		
I L	0	-1
E N T	-5	-1

- ▶ whatever Frank does, Cora is better off confessing
- ► Confess is a dominant strategy for Cora

Nash Equilibrium in Prisoner Dilemma

FC	CONFESS	SILENT
C O N	-3	-5
F E S	-3	
S		
I L	0	-1
E N	-5	-1
Т		

- ▶ for both confessing is dominant strategy
- ▶ both have no incentive to deviate unilaterally
- ▶ if both remained silent, both would be better off

Nash Equilibrium in Prisoner Dilemma

FC	CONFESS	SILENT
C O N	-3	_5
F E S	-3	0
S		
I L	0	-1
E N T	-5	-1

Key assumptions:

- ▶ game played only once
- ► Cora and Frank do not communicate
- ▶ their interest is just to minimize their time in prison

Modified Prisoner Dilemma

F^{C}	CONFESS	SILENT
C O N	-3	_5
F E S	-3	-2
S		
I L E	-2	-1
E N T	-5	-1

- ▶ if Cora confesses, Frank is better off confessing
- ▶ if Cora remains silent, Frank is better off remaining silent
- ▶ no dominant strategy, best response depends on Cora's choice

Modified Prisoner Dilemma

FC	CONFESS	SILENT
C O N	-3	-5
F E S	-3	-2
S		
I L E	-2	-1
N T	-5	-1

- ▶ if Frank confesses, Cora is better off confessing
- ▶ if Frank remains silent, Cora is better off remaining silent
- ▶ no dominant strategy, best response depends on Frank's choice

Modified Prisoner Dilemma

FC	CONFESS	SILENT
C O N	-3	-5
F E S	-3	-2
S I	-2	-1
L E N	-5	-1
Т		

- ▶ no dominant strategy
- best responses depend on the other player's choice
- ▶ 2 Nash equilibria: both have no incentive to deviate unilaterally

The Game of Chicken

- two cars in collision course
- each driver can go straight or swerve
- ▶ the one that swerves while the other goes straight is the "chicken"
- ► the one that goes straight while the other swerves is the brave
- ▶ if both go straight they both die
- ▶ if both swerve they both lose some appeal but avoid main damage

The Game of Chicken

	SWERVE	STRAIGHT
S W E	0	1
R V	0	-1
S T	1	-100
R A I G	1	-100
H T		

- ▶ if the other one goes straight better swerve
- ▶ if the other one swerves better go straight
- best response depends on the other player's choice
- ▶ 2 Nash equilibria: both have no incentive to deviate unilaterally

The Game of Chicken

	SWERVE	STRAIGHT
S W E	0	1
R V	0	-1
S T R	_1	-100
A I G H	1	-100
Т		

- ▶ 1959 B. Russell "Common Sense and Nuclear Warfare"
- ▶ 1973 Maynard Smith and Price, "The logic of animal conflict"
- ▶ 1964 S. Kubrik "Dr. Strangelove"

Basic definitions

- $\triangleright \mathcal{V}$ finite set of players
- \triangleright A_i set of actions (a.k.a. strategies) for player i
- $\blacktriangleright \mathcal{X} = \prod_{i \in \mathcal{V}} \mathcal{A}_i$ set of configurations (a.k.a. strategy profiles)
- $ightharpoonup u_i: \mathcal{X}
 ightarrow \mathbb{R}$ utility function
- $\triangleright x \in \mathcal{X}$ configuration (a.k.a. action/strategy profile, or outcome)
- $\triangleright x_i$ action played by player i
- \triangleright x_{-i} vector of actions played by everyone but i
- ▶ utility of player i when each player j plays action x_j :

$$u_i(x_i, x_{-i}) = u_i(x)$$

- $(\mathcal{V}, \{\mathcal{A}_i\}_{i \in \mathcal{V}}, \{u_i\}_{i \in \mathcal{V}})$ is called a strategic (a.k.a. normal form) game
 - ▶ game is zero-sum if $\sum_i u_i(x) = 0$ for all $x \in \mathcal{X}$

Two-player games

- \triangleright when $\mathcal{V} = \{1, 2\}$: two utility functions $u_i(r, s)$, for i = 1, 2(r = action played by i and s = action played by opponent of i)
- ▶ Two-player symmetric game: $u_1(r,s) = u_2(r,s) = \phi(r,s)$ (the role of the two players is exchangeable).
- ▶ Table representation for finite action spaces: rows \leftrightarrow actions of player 1, columns \leftrightarrow action of player 2, (r,s)-th entry displays the pair $u_1(r,s), u_2(s,r)$
- \triangleright 2 × 2 (nonsymmetric) game

	-1	+1
-1	a,e	d,h
$\overline{+1}$	c,g	b,f

d.c b,b

 2×2 symmetric game

c,d

-1

+1

► Ex.matching penny: 2 × 2 nonsymmetric zero-sum

$$\begin{array}{c|ccccc} & -1 & +1 \\ \hline -1 & +1, -1 & -1, +1 \\ \hline +1 & -1, +1 & +1, -1 \end{array}$$

Dominant actions

▶ Action $x_i \in A_i$ is dominant for player i if

$$u_i(x_i, x_{-i}) \ge u_i(y_i, x_{-i})$$
 $\forall y_i \in A_i, \ \forall x_{-i} \in \mathcal{X}_{-i}$

▶ Def.: A dominant action equilibrium is a configuration x in \mathcal{X} s.t.

 x_i is a dominant action for every player $i \in \mathcal{V}$

Dominant actions

▶ Action $x_i \in A_i$ is dominant for player i if

$$u_i(x_i, x_{-i}) \ge u_i(y_i, x_{-i})$$
 $\forall y_i \in A_i, \ \forall x_{-i} \in \mathcal{X}_{-i}$

▶ Def.: A dominant action equilibrium is a configuration x in \mathcal{X} s.t.

 x_i is a dominant action for every player $i \in \mathcal{V}$

► Example: (Confess, Confess) is dominant action equilibrium in the original prisoner dilemma game

	Confess	Silent
Confess	-3,-3	0,-5
Silent	-5,0	-1,-1

▶ not so common for a game to admit dominant action equilibrium

Dominance Solvable Games

▶ Action x_i in A_i is strictly dominated for player i if $\exists y_i \in A_i$

$$u_i(x_i, x_{-i}) < u_i(y_i, x_{-i}) \qquad \forall x_{-i} \in \mathcal{X}_{-i}$$

- ► common knowledge of utilities and rationality result in iterated elimination of strictly dominated actions
- ightharpoonup game is dominance solvable if iterated elimination of strictly dominated actions converges to configuration x^*
- ► Example: extended prisoner dilemma

	Confess	Silent	Suicide
Confess	-3,-3	0,-5	-3,-10
Silent	-5,0	-1,-1	-1,-10
Suicide	-10,-3	-10,-1	-10,-10

COIIICSS	Silent
-3,-3	0,-5
-5,0	-1,-1
	-3,-3

Best response and pure strategy Nash equilibrium

- ▶ each player i to be interpreted as a rational agent choosing action x_i so as to maximize her utility $u_i(x_i, x_{-i})$
- ▶ player *i*'s utility $u_i(x_i, x_{-i})$ depends not only on her action x_i but also on the actions of the rest of the players x_{-i}
- rational choice for a player: best response

$$\mathcal{B}_i(x_{-i}) = \operatorname*{argmax}_{x_i \in \mathcal{A}_i} u_i(x_i, x_{-i})$$

Best response and pure strategy Nash equilibrium

- ▶ each player i to be interpreted as a rational agent choosing action x_i so as to maximize her utility $u_i(x_i, x_{-i})$
- ▶ player *i*'s utility $u_i(x_i, x_{-i})$ depends not only on her action x_i but also on the actions of the rest of the players x_{-i}
- rational choice for a player: best response

$$\mathcal{B}_i(x_{-i}) = \underset{x_i \in \mathcal{A}_i}{\operatorname{argmax}} u_i(x_i, x_{-i})$$

Definition: A pure strategy (P) Nash equilibrium (NE) for the game $(\mathcal{V}, \mathcal{A}, \{u_i\}_{i \in \mathcal{V}})$ is a configuration $x^* \in \mathcal{X}$ such that

$$x_i^* \in \mathcal{B}_i(x_{-i}^*), \quad \forall i \in \mathcal{V}.$$

- ightharpoonup PNE x^* is a configuration from which no player has strict incentive to unilaterally change her action
- ▶ PNE x^* is said strict if $|\mathcal{B}_i(x_{-i}^*)| = 1$ for every player $i \in \mathcal{V}$

Example 1: Coordination game

$$|\mathcal{V}| = 2, \ \mathcal{A}_1 = \mathcal{A}_2 = \{\pm 1\}$$

$$a > c, \qquad b > d$$

▶ Best response for both: copy the other player

$$\mathcal{B}_i(-1) = -1$$
, $\mathcal{B}_i(+1) = +1$, $i = 1, 2$

- ▶ Two PNE: $\mathcal{N} = \{(-1, -1), (+1, +1)\}$
- Positive externality
- ▶ Two PNE not equally good: $a > b \Rightarrow (-1, -1)$ payoff dominant

Example 2: Prisoner's dilemma

$$|\mathcal{V}| = 2, \ \mathcal{A}_1 = \mathcal{A}_2 = \{\pm 1\}$$

$$a > c, \qquad b < d$$

- ▶ Interpretation: Action $-1 \leftrightarrow$ Betraying, Action $+1 \leftrightarrow$ Silent
- ▶ NOT a coordination game!
- ▶ Best response for both:

$$\mathcal{B}_i(+1) = \mathcal{B}_i(-1) = -1$$
 $i = 1, 2$

- ightharpoonup Betraying = -1 is a dominant action for both
- ▶ One PNE: $x^* = (-1, -1)$

Example 3: Anti-coordination game

$$ightharpoonup |\mathcal{V}| = 2$$
, $\mathcal{A}_1 = \mathcal{A}_2 = \{\pm 1\}$
$$a < c \,, \qquad b < d \,.$$

▶ Best response for both: do the opposite of the other player

$$\mathcal{B}_i(-1) = +1$$
, $\mathcal{B}_i(+1) = -1$, $i = 1, 2$

- ▶ Two PNE: $\mathcal{N} = \{(-1, +1), (+1, -1)\}$
- ▶ Popular anti-coordination game: Game of Chicken (a.k.a. Hawk-Dove game) where a>d. (-1= Swerve, +1= Straight)

Example 4: Discoordination game

$$|\mathcal{V}| = 2, \ \mathcal{A}_1 = \mathcal{A}_2 = \{\pm 1\}$$

$$a>c$$
, $d>b$

	-1	+1
-1	a,b	c,d
+1	c,d	a,b

- ▶ Discoordination game is not symmetric
- ▶ Best response

$$\mathcal{B}_1(-1) = \mathcal{B}_2(1) = -1$$
, $\mathcal{B}_1(+1) = \mathcal{B}_2(-1) = +1$.

- ► No PNE!
- ▶ Popular example of a discoordination game is the matching penny game where a = d = 1 and b = c = -1.

Example 5: Rock-Scissor-Paper

$$\blacktriangleright |\mathcal{V}| = 2, \ \mathcal{A}_1 = \mathcal{A}_2 = \{R, S, P\}$$

	R	S	Р
R	0,0	1,-1	-1,1
S	-1,1	0,0	1,-1
Р	1,-1	-1,1	0,0

- ▶ Zero-sum game
- ► No PNE!

Example 6: Majority game

 $ightharpoonup |\mathcal{V}| = n$, $\mathcal{A}_i = \{\pm 1\}$ for all i

- ▶ Graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, $\{nodes\} = \mathcal{V}$, $\{links\} = \mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$
- ► Adjacency matrix $A \in \mathbb{R}^{\mathcal{V} \times \mathcal{V}}$: $A_{ij} = \begin{cases} 1 & \text{if} \quad (i,j) \in \mathcal{E} \\ 0 & \text{if} \quad (i,j) \notin \mathcal{E} \end{cases}$
- $ightharpoonup \mathcal{G}$ undirected if A' = A
- ▶ Utilities:

$$u_i(x_i,x_{-i})=\sum_i A_{ij}x_ix_j$$

Example 6: Majority game (cont'd)

Utilities:

$$u_i(x_i, x_{-i}) = \sum_i A_{ij} x_i x_j$$

▶ Best response: follow majority of (out-)neighbors

$$\mathcal{B}_{i}(x_{-i}) = \begin{cases} -1 & \text{if } \sum_{j} A_{ij} x_{j} < 0\\ \{\pm 1\} & \text{if } \sum_{j} A_{ij} x_{j} = 0\\ +1 & \text{if } \sum_{i} A_{ij} x_{i} > 0 \end{cases}$$

- ▶ Consensus configurations $x^* = \pm 1$ are PNE on every \mathcal{G}
- ▶ Does the majority game admit any coexistent PNE $x^* \neq \pm 1$?

Example 6: Majority game (cont'd)

- $\triangleright \mathcal{G} = (\mathcal{V}, \mathcal{E})$, adjacency matrix A
- ▶ Subset of nodes $\mathcal{U} \subseteq \mathcal{V}$ cohesive if $\sum_{i \in \mathcal{U}} A_{ij} \geq 1/2$, $\forall i \in \mathcal{U}$
- **Proposition** [Morris, '00]: For majority game on \mathcal{G}

$$x^* = \mathbb{1}_{\mathcal{U}} - \mathbb{1}_{\mathcal{V} \setminus \mathcal{U}} \text{ is a PNE} \qquad \Longleftrightarrow \qquad \mathcal{U} \text{ and } \mathcal{V} \setminus \mathcal{U} \text{ both cohesive}$$

Example 7: Minority game

- $ightharpoonup |\mathcal{V}| = n$, $\mathcal{A}_i = \{\pm 1\}$ for all i
- $ightharpoonup \mathcal{G} = (\mathcal{V}, \mathcal{E})$, adjacency matrix A
- Utilities:

$$u_i(x_i, x_{-i}) = -\sum_j A_{ij} x_i x_j$$

▶ Best response: follow minority of out-neighbors

$$\mathcal{B}_{i}(x_{-i}) = \begin{cases} +1 & \text{if} \quad \sum_{j} A_{ij} x_{j} < 0\\ \{\pm 1\} & \text{if} \quad \sum_{j} A_{ij} x_{j} = 0\\ -1 & \text{if} \quad \sum_{j} A_{ij} x_{j} > 0 \end{cases}$$

NO PNEs for general directed \mathcal{G}

Example 7: Minority game (cont'd)

- $ightharpoonup \mathcal{G} = (\mathcal{V}, \mathcal{E})$, adjacency matrix A
- ▶ Utilities:

$$u_i(x_i, x_{-i}) = -\sum_i A_{ij} x_i x_j$$

▶ Best response: follow minority of out-neighbors

$$\mathcal{B}_{i}(x_{-i}) = \begin{cases} +1 & \text{if} \quad \sum_{j} A_{ij} x_{j} < 0\\ \{\pm 1\} & \text{if} \quad \sum_{j} A_{ij} x_{j} = 0\\ -1 & \text{if} \quad \sum_{j} A_{ij} x_{j} > 0 \end{cases}$$

- \blacktriangleright NO PNEs for general directed ${\cal G}$
- ▶ Proposition: \mathcal{G} undirected \Rightarrow Minority game has at least 1 PNE

Example 7: Minority game (cont'd)

- $ightharpoonup \mathcal{G} = (\mathcal{V}, \mathcal{E})$, adjacency matrix A
- ► Utilities:

$$u_i(x_i, x_{-i}) = -\sum_i A_{ij} x_i x_j$$

▶ Best response: follow minority of out-neighbors

$$\mathcal{B}_{i}(x_{-i}) = \begin{cases} +1 & \text{if} \quad \sum_{j} A_{ij} x_{j} < 0\\ \{\pm 1\} & \text{if} \quad \sum_{j} A_{ij} x_{j} = 0\\ -1 & \text{if} \quad \sum_{j} A_{ij} x_{j} > 0 \end{cases}$$

- \blacktriangleright NO PNEs for general directed \mathcal{G}
- ▶ Proposition: \mathcal{G} undirected \Rightarrow Minority game has at least 1 PNE
- ▶ Proof: Define $\Phi(x) = \frac{1}{2} \sum_{j,k \in \mathcal{V}} A_{jk} x_j x_k$. Observe that $x_{-i} = y_{-i}$

$$\Rightarrow \Phi(y) - \Phi(x) = (y_i - x_i) \frac{1}{2} \left(\sum_k A_{jk} x_k + \sum_j A_{ji} x_j \right) = u_i(y) - u_i(x)$$

Then, $x^* \in \operatorname{argmax}\{\Phi(x) : x \in \mathcal{X}\}\$ is a PNE. (will be generalized)

Example 8: Quadratic Game

▶ *n* players with action space $A_i = \mathbb{R}$ and utilities

$$u_i(x) = h_i x_i - \frac{1}{2} x_i^2 + \beta x_i \sum_{i \neq i} W_{ij} x_j$$

▶ The best response of player *i* is linear

$$\mathcal{B}_i(x_{-i}) = h_i + \beta \sum_{j \neq i} W_{ij} x_j$$

▶ Nash equilibria are the solutions of linear system

$$x = h + \beta Wx$$

▶ If $\beta \rho(W) < 1$, the game has a unique Nash equilibrium given by

$$x^* = (I - \beta W)^{-1} h$$
 $x_i^* = \sum_{k>0} \beta^k \sum_j (W^k)_{ij} h_j$

Example 9: Cournot oligopoly

- ▶ A. A. Cournot (1801-1877) philosopher and mathematician
- ▶ $n \ge 2$ firms producing a homogeneous good for the same market
- ▶ $x_i \in A_i = [0, +\infty)$ quantity of good produced by firm i
- $ightharpoonup c_i(x_i) = \text{production cost for firm } i$
- $ightharpoonup p\left(\sum_j x_j\right)$ market price of good (a.k.a. inverse demand function)

▶ profit for firm *i*

$$u_i(x_1, x_2, \ldots, x_n) = x_i \cdot p\left(\sum_j x_j\right) - c_i(x_i)$$

Cournot duopoly with linear costs and affine price

- ▶ n = 2 firms with same linear costs $c_i(x_i) = cx_i$
- ▶ affine inverse demand (market price) function

$$p(q) = [K - q]_{+} = \max\{K - q, 0\}$$

utilities

$$u_i(x_1, x_2) = x_i[K - x_1 - x_2]_+ - cx_i$$
 $i = 1, 2$

▶ Best response: $\mathcal{B}_i(x_{-i}) = \frac{1}{2} [K - c - x_{-i}]_+$

Cournot duopoly with linear costs and affine price

- ightharpoonup n = 2 firms with same linear costs $c_i(x_i) = cx_i$
- ▶ affine inverse demand (market price) function

$$p(q) = [K - q]_{+} = \max\{K - q, 0\}$$

utilities

$$u_i(x_1, x_2) = x_i[K - x_1 - x_2]_+ - cx_i$$
 $i = 1, 2$

- ▶ Best response: $\mathcal{B}_i(x_{-i}) = \frac{1}{2} [K c x_{-i}]_+$ ▶ Unique PNE: $x_1^* = x_2^* = \frac{1}{3} [K c]_+$
- ▶ Price: lower than monopoly one $c < p^c = \frac{1}{2}[K + 2c]_+ < \frac{1}{2}[K + c] = \overline{p}$
- ▶ Equilibrium profits: $u_i(x_i, x_{-i}) > 0$

Example 10: Bertrand oligopoly

- ▶ J. Bertrand (1822-1900) mathematician (number theory, probability, mechanics...)
- ▶ $n \ge 2$ firms producing a homogeneous good for the same market
- $ightharpoonup c_i(x_i) = \text{production cost for firm } i$
- $ightharpoonup x_i \in \mathcal{A}_i = [0, +\infty)$ unit price fixed by firm i
- ightharpoonup q(p) market demand function (quantity bought at price p)
- ▶ Consumers buy at the smallest price $p^*(x) = \min_i x_i$ from the $k(x) = |\operatorname{argmin}_i x_i|$ firms offering such price
- profit for firm i

$$u_{i}(x_{1}, x_{2}, \dots, x_{n}) = \begin{cases} 0 & \text{if } x_{i} > p^{*}(x) \\ \frac{q(p^{*}(x))}{k(x)} p^{*}(x) - c_{i} \left(\frac{q(p^{*}(x))}{k(x)}\right) & \text{if } x_{i} = p^{*}(x) \end{cases}$$

Bertrand duopoly with linear costs and affine price

$$u_i(x_i, x_{-i}) = \begin{cases} 0 & \text{if } x_i > x_{-i} \\ (x_i - c)[K - x_i]_+ / 2 & \text{if } x_i = x_{-i} \\ (x_i - c)[K - x_i]_+ & \text{if } x_i < x_{-i} \end{cases}$$

- ▶ There is a unique PNE $x_1^* = x_2^* = c$
- ▶ Equilibrium price is $p^b = c$
- ► Firms make zero utility! (Bertrand paradox)