

Ecrit intermédiaire du lundi 5 novembre 2018

Durée de l'épreuve : 2 heures.

Aucun document, ni calculatrice ne sont autorisés. Les téléphones portables doivent être impérativement éteints. Il sera tenu compte du soin apporté à la présentation des résultats et à la rédaction.

Les différents exercices sont indépendants.

Barême indicatif: exercice 1: 3 points, exercice 2: 6 points, exercice 3: 9 points, 2 points pour la rédaction.

Exercice 1: Calcul indiciel

- 1.1 Rappeler les expressions en écriture indicielle des composantes du gradient $\underline{\operatorname{grad}} f$ d'une fonction scalaire $f(\underline{x})$, des composantes du rotationnel $\underline{\operatorname{rot}} \underline{v}$ d'un vecteur $\underline{v}(\underline{x})$, de celles du produit vectoriel \wedge de deux vecteurs $\underline{u}(\underline{x})$ et $\underline{v}(\underline{x})$ et des composantes du tenseur gradient grad \underline{v} d'un vecteur $\underline{v}(\underline{x})$.
- 1.2 Etablir, en utilisant le calcul indiciel, la relation suivante pour un vecteur $\underline{v}(\underline{x})$:

$$(\underline{\underline{\operatorname{grad}}}\,\underline{v}\,)\,\underline{v}\,=\,\frac{1}{2}\,\underline{\operatorname{grad}}\,\underline{v}^2\,+\,\underline{\operatorname{rot}}\,\underline{v}\,\wedge\,\underline{v}$$

On rappelle la formule : $\epsilon_{ijk} \, \epsilon_{pqk} = \delta_{ip} \, \delta_{jq} - \delta_{iq} \, \delta_{jp}$, où ϵ_{ijk} désignent les composantes du tenseur de permutation et δ_{ij} le symbole de Krönecker.

1.3 En déduire que dans le cas d'un champ de vitesse $v(\underline{x},t)$ irrotationnel, l'accelération associée dérive d'un potentiel $\Phi(\underline{x},t)$. On notera $V(\underline{x},t)$ le potentiel dont dérive le champ de vitesse.

Exercice 2 : Déformations

On étudie la déformation de la pièce qui occupe à l'instant t=0 le domaine géométrique :

$$\Omega_0 = \{ X / 0 \le X_1 \le L, 0 \le X_2 \le L, 0 \le X_3 \le H \},$$

où α, L et H sont des grandeurs données positives sous la transformation suivante :

$$x_1 = X_1 + \alpha X_2 X_3, \quad x_2 = X_2 - \alpha X_1 X_3, \quad x_3 = X_3.$$

2.1 Calculer les composantes du tenseur gradient de la transformation $\underline{\underline{F}}(\underline{X},t)$ à un instant t donné en un point M_0 de coordonnées \underline{X} à l'instant t=0.

La transformation est-elle toujours définie?

La transformation est-elle homogène?

- 2.2 Etudier la transformation de la base $X_3 = 0$ de la pièce, puis celle de la section terminale $X_3 = H$. Représenter la déformée de cette section. Identifier la nature de la transformation.
- 2.3 Déterminer la variation relative de volume subie par la pièce.
- 2.4 Calculer les composantes des tenseurs de dilatation $\underline{C}(\underline{X},t)$ et de Green-Lagrange $\underline{e}(\underline{X},t)$.
- 2.5 En déduire les dilatations subies par des vecteurs infinitésimaux de matière portés par les trois directions \underline{e}_i , pour i = 1, 2, 3.

Décrire les variations angulaires subies par des vecteurs infinitésimaux de matière portés par les trois directions \underline{e}_i , pour i=1,2,3.

2.6 Former le vecteur déplacement $\underline{\xi}(\underline{X})$, ainsi que les composantes du tenseur gradient de déplacement $\underline{\nabla}\,\xi$.

A quelles conditions sur le paramètre $\eta(t) = \alpha \operatorname{Max}(L, H)$, l'hypothèse des petites transformations est-elle satisfaite ?

2.7 Calculer les composantes du tenseur de déformations linéarisées $\underline{\varepsilon}(\underline{X})$.

Calculer les allongements relatifs subis par les vecteurs infinitésimaux de matière portés par les trois directions \underline{e}_i , pour i = 1, 2, 3, ainsi que les variations angulaires.

Comparer les résultats obtenus à ceux de la question 2.5. Commenter.

Exercice 3 : Cinématique - Taux de déformations

On considère le mouvement défini par sa vitesse eulérienne :

$$\underline{v}(\underline{x},t) = \alpha x_1 \underline{e}_1 + \beta x_2 \underline{e}_2,$$

où \underline{x} désigne la position d'une point quelconque à l'instant t et où α et β sont deux constantes données telles que $\alpha \neq 0$ et $\beta > 0$

- 3.1 Calculer le champ d'accélération $\gamma(\underline{x},t)$ en description eulérienne de deux manières.
- 3.2 Déterminer les équations des lignes de courant à l'instant $t = t^*$.

Etudier la nature de ces lignes, les représenter et préciser le sens de parcours dans les quatre cas :

Cas 1:
$$\alpha = \beta$$
, Cas 2: $\alpha = -\beta$, Cas 3: $\alpha = \beta/2$, Cas 4: $\alpha = -\beta/2$.

On rappelle que $\alpha \neq 0$ et $\beta > 0$.

3.3 Déterminer la représentation lagrangienne du mouvement.

On notera \underline{X} la position à l'instant t = 0 d'un point situé en \underline{x} à l'instant t.

3.4 Donner l'équation de la trajectoire d'une particule située à t=0 en \underline{X} .

Commenter la nature de la trajectoire dans les cas explicités en question 3.2.

- 3.5 Calculer par deux manières les champs de vitesse $\underline{V}(\underline{X},t)$ et d'accélération $\underline{\Gamma}(\underline{X},t)$ en description lagrangienne.
- 3.6 On considère le domaine défini à l'instant t = 0 par $\Omega_0 = \{\underline{X}/X_1^2 + X_2^2 \le R^2, \ 0 \le X_3 \le H\}$, où R et H sont des grandeurs données positives et on note V(0) son volume.

On désigne par $\Omega(t)$ la transformée de ce domaine à l'instant t et par V(t) son volume.

Calculer $\frac{d}{dt}V(t)$. En déduire l'expression du volume V(t) en fonction du temps et des grandeurs α, β R et H.

Tracer et commenter l'évolution de V(t) en fonction du temps dans les deux cas 1 et 2.

3.7 Donner l'expression des points du domaine $\Omega(t)$ à un instant t donné. Préciser la nature géométrique du domaine $\Omega(t)$.

Comment évolue ce domaine au cours du temps?

Que devient ce domaine dans le Cas 1 : $\alpha = \beta$? Commenter son évolution temporelle dans ce cas.

3.8 Calculer les composantes du tenseur des taux de déformations $\underline{d}(x,t)$.

Interpréter mécaniquement les expressions de ces composantes.

3.9 Rappeler l'équation locale de conservation de la masse du domaine matériel $\Omega(t)$.

En déduire l'expression de sa masse volumique $\rho(\underline{x},t)$ en supposant qu'à l'instant t=0 la masse volumique ρ_0 du domaine est uniforme.