Основы машинного обучения

Лекция 2 Метод k ближайших соседей

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2025

Напоминание

- \mathbb{X} пространство объектов, \mathbb{Y} пространство ответов
- $x = (x_1, ..., x_d)$ признаковое описание
- $X = (x_i, y_i)_{i=1}^{\ell}$ обучающая выборка
- a(x) алгоритм, модель
- Q(a,X) функционал ошибки алгоритма a на выборке X
- Обучение: $a(x) = \arg\min_{a \in \mathcal{A}} Q(a, X)$

Типы ответов

Регрессия

- Вещественные ответы: $\mathbb{Y} = \mathbb{R}$
- (вещественные числа числа с любой дробной частью)
- Пример: предсказание роста по весу

Классификация

- Конечное число ответов: $|\mathbb{Y}| < \infty$
- Бинарная классификация: $\mathbb{Y} = \{-1, +1\}$

Классификация

• Многоклассовая классификация: $\mathbb{Y} = \{1, 2, ..., K\}$

Классификация

- Классификация с пересекающимися классами: $\mathbb{Y} = \{0,1\}^K$
 - (multi-label classification)
- Ответ набор из К нулей и единиц
- i-й элемент ответа принадлежит ли объект i-му классу

- Какие темы присутствуют в статье?
- (математика, биология, экономика)

Ранжирование

- Набор документов d_1 , ..., d_n
- Запрос q
- Задача: отсортировать документы по релевантности запросу
- a(q,d) оценка релевантности

Ранжирование

Кластеризация

- ¥ отсутствует
- Нужно найти группы похожих объектов
- Сколько таких групп?
- Как измерить качество?

• Пример: сегментация пользователей мобильного оператора

Обучение с подкреплением

Типы задач

- Регрессия
- Классификация
- Кластеризация
- Много других: ранжирование, поиск аномалий и т.д.

Типы признаков

Типы признаков

• D_j — множество значений признака

Бинарные признаки

- $D_j = \{0, 1\}$
- Доход клиента выше среднего по городу?
- Цвет фрукта зеленый?

Вещественные признаки

- $D_j = \mathbb{R}$
- Возраст
- Площадь квартиры
- Количество звонков в колл-центр

Категориальные признаки

- D_i неупорядоченное множество
- Цвет глаз
- Город
- Образование (может быть упорядоченным)

• Очень трудны в обращении

Порядковые признаки

- D_i упорядоченное множество
- Воинское звание
- Роль в фильме (первого плана, второго плана, массовка)
- Тип населенного пункта

Типы признаков

- Бинарные
- Числовые
- Категориальные и порядковые
- Есть и более сложные: тексты, изображения, звук и т.д.

Гипотеза компактности и knn

Ель:

- Ветки смотрят вверх
- Ствол не видно
- Густые иголки
- Цвет ближе к зелёному

Сосна:

- Ветки параллельны земле
- Ствол видно
- Иголки более редкие
- Цвет ближе к жёлтому

Ветки вверх Ствол не видно Густые иголки Цвет ближе к синему

Что такое обучение?

- Запоминаем примеры (объекты и ответы)
- Когда приходит новый объект, сравниваем с запомненными примерами
- Выдаём ответ от наиболее похожего примера

Гипотеза компактности

Гипотеза компактности

Гипотеза компактности

Если два объекта похожи друг на друга, то ответы на них тоже похожи

kNN: обучение

- Дано: обучающая выборка $X = (x_i, y_i)_{i=1}^{\ell}$
- Задача классификация (ответы из множества $\mathbb{Y} = \{1, ..., K\}$)

- Обучение модели:
 - Запоминаем обучающую выборку X

Дано: новый объект x

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Дано: новый объект x

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Дано: новый объект x

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Дано: новый объект x

- Сортируем объекты обучающей выборки по расстоянию до нового объекта: $\rho(x,x_{(1)}) \leq \rho(x,x_{(2)}) \leq \cdots \leq \rho(x,x_{(\ell)})$
- Выбираем k ближайших объектов: $x_{(1)}$, ..., $x_{(k)}$
- Выдаём наиболее популярный среди них класс:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{i=1}^{k} [y_{(i)} = y]$$

Сравнение объектов и метрики

Числовые данные

Сколько раз в день вызывает такси	Средние расходы на такси в день	Как часто вызывал комфорт	Возраст	Согласился повысить категорию?
2	400	0.3	29	да
0.3	80	0	28	нет

Числовые данные

- Каждый объект описывается набором из d чисел **вектором**
- Если x вектор, то x_i его i-я координата
- Если x_i вектор, то x_{ij} его j-я координата

Числовые данные

• Каждый объект описывается набором из d чисел — ${f sektopom}$

• Что, если d = 2?

Метрика

Метрика — обобщение расстояния на многомерные пространства

Метрика — это функция ρ с двумя аргументами, удовлетворяющая трём требованиям:

- ho(x,z)=0 тогда и только тогда, когда x=z
- $\rho(x,z) = \rho(z,x)$
- $\rho(x,z) \le \rho(x,v) + \rho(v,z)$ неравенство треугольника

Евклидова метрика

Манхэттенская метрика

Сравнение

Обобщение

$$\rho(x,z) = \sqrt[p]{\sum_{j=1}^d |x_j - z_j|^p}$$

- Метрика Минковского
- Можно подбирать p под конкретную задачу