Tổng hợp lý thuyết MAS291 (Phần 3)

Chương 8:

- 1. Point estimate and confidence interval
 - Point estimate điểm để ước lượng khoảng tin cậy trong 1 giả thuyết
 - Confidence interval khoảng tin cậy: dùng để ước lượng độ tin cậy của một tham số nằm trong khoảng
 - Ví dụ về confidence interval -z_{a/2} tới z_{a/2}

- Critical value z_a (percentage point) là điểm giới hạn khoảng tin cậy trong giả thuyết. Trong hình trên có 2 critical value là $-z_{a/x}$ và $z_{a/2}$
- 2. Confidence interval for μ (Khoảng tin cậy của gái trị trung bình)
 - Khoảng tin cậy trong bài toán tìm khoảng tin cậy dành cho μ được chặn trên bởi l và chặn dưới bởi u với P(l <= μ <= u) = 1 α (phần không tô đậm trong hình trên)
 - 1. Trong bài toán tìm khoảng tin cậy dành cho giá trị trung bình với phương sai cho trước (C.I. for μ if σ is known):
 - Khi khoảng tin cậy bị giới hạn hai đầu (Two-sided confidence bound)

$$\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

ii. Khi khoảng tin cậy bị chặn trên (Upper confidence bound)

$$\mu \le \bar{x} + z_{\infty} \frac{\sigma}{\sqrt{n}}$$

iii. Khi khoảng tin cậy bị chặn dưới (Lower confidence bound)

$$\mu \geq \bar{x} - z_{\infty} \frac{\sigma}{\sqrt{n}}$$

 \Rightarrow Với \bar{x} là mean của sample, z_{\propto} là Critical value hay điểm giới hạn khoảng tin cậy, σ là độ lệch chuẩn (căn phương sai) đã cho biết trước và n là số lượng của sample

- 2. Trong bài toán tìm khoảng tin cậy dành cho giá trị trung bình với phương sai chưa cho trước (C.I. for μ if σ is unknown):
 - i. Two-sided $100(1-\alpha)\%$ confidence interval on μ

$$\bar{x} - t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}$$

ii. Upper confidence bound for μ

$$\mu \le \bar{x} + t_{\alpha; n-1} \frac{s}{\sqrt{n}}$$

iii. Lower confidence bound for μ is

$$\mu \geq \bar{x} - t_{\alpha;n-1} \frac{s}{\sqrt{n}}$$

- \Rightarrow Với \bar{x} là mean của sample, $t_{\propto;n-1}$ là điểm giới hạn khoảng tin cậy trong t-distribution, σ không được biết trước nên ta thay bằng s là độ lệch chuẩn của sample và n là số lượng của sample
- Thường các bài toán sử dụng t distribution sẽ có số lượng n > 30 và, $t_{\alpha;n-1}$ cho biết trước. Việc cần làm là xác định bài toán thuộc trường hợp nào (2-sided, upper hay lower) sau đó tính point estimate $t=\frac{\bar{X}-\mu}{s/\sqrt{n}}$ và số sánh t với $t_{\alpha;n-1}$ hoặc $t_{\alpha/2,n-1}$ đã cho trước để đưa ra kết luận về khoảng tin cậy
- 3. Confidence interval for p (Bài toán kiểm định giả thuyết với xác suất)
 - a. Two-sided $100(1-\alpha)\%$ confidence interval

$$\hat{p} - z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

b. Upper confidence bound for μ

$$p \ge \hat{p} - z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

c. Lower confidence bound for μ is

$$\mathsf{p} \leq \hat{p} + z_{\alpha} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

- \Rightarrow Với $\hat{p} = \frac{x}{n}$ là ước lượng điển (point estimate) của phân phối xác suất p, z_{α} là điểm giới hạn khoảng tin cậy trong z-distribution và n là số lượng của sample
- \Rightarrow Cách làm: Tính $z = \frac{\hat{p} p}{\sqrt{\frac{p(1-p)}{n}}}$ là standard normal z- distribution. So sánh z với

 $z_{lpha/2}$ (với bài toán 2 phía) hoặc z_{lpha} với bài toán 1 phía rồi đưa ra kết luận về khoảng tin cậy

Chương 9: Test of hypotheses for a single sample (Kiểm định giả thuyết 1 mẫu)

- 1. Một số khái niệm trong bài toán kiểm định giả thuyết
 - H₀: null hypothesis (phát biểu đang được mặc định)
 - H₁: alternative hypothesis (phát biểu người thu thập dữ liệu muốn c/m)
 - Purpose: Nếu điểm z (point estimate) nằm trong khoảng tin cậy $\left(-z_{\frac{\alpha}{2}} \leq z \leq z_{\frac{\alpha}{2}}\right)$ hoặc $z \leq z_{\alpha}$ hoặc $z \geq -z_{\alpha}$ (khoảng màu trắng của hình dưới đây) -> fail to reject H_0 -> fail to reject hoặc reject claim tuỳ từng trường hợp cụ thể
 - Một số lỗi thường gặp trong bài toán kiểm định giả thuyết
 - Type 1 error: H₀ true but reject H₀
 - Type 2 error: H₀ false but fail to reject H₀

Decisions in Hypothesis Testing

Decision	H_0 Is True	H_0 Is False
Fail to reject H_0	no error	type II error
Reject H_0	type I error	no error

p - value: smallest α that would lead to rejection of H₀

- 2. Kiểm định giả thuyết với giá trị trung bình và xác suất
 - Xem cách làm và công thức trong slides

Chương 10: Test of hypotheses for a two sample (Kiểm định giả thuyết 2 mẫu)

Vẫn tiếp tục tham khảo slides

Chương 11: Simple linear regression and Correlation (Hồi qui tuyến tính đơn giản và Hệ số tương quan)

- 1. Simple linear regression Khái niệm về hồi qui tuyến tính
 - Phương trình tổng quát: $Y = \beta_0 + \beta_1 x$
 - Trong một mẫu có n điểm dữ liệu (x_i, y_i):
 - Xấp xỉ điểm (point estimates) của β_0 , β_1 , σ^2 được ký hiệu là $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\sigma}^2$ (giống với xấp xỉ điểm của xác suất p được ký hiệu là \hat{p})
 - Đường hồi qui tuyền tính có dạng $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$
- 2. Một số công thức tính xấp xỉ điểm trong hồi qui tuyến tính

$$\circ \quad \hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$$

$$\circ \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\circ$$
 Với $S_{xx} = \sum (x_i - \overline{x})^2 = \sum x_i^2 - \frac{(\sum x_i)^2}{n}$ và

$$\circ S_{xy} = \sum (x_i - \overline{x})(y_i - \overline{y}) = \sum x_i y_i - \frac{(\sum x_i)(\sum y_i)}{n}$$

ANOVA					
	df	SS	MS	F	Significance F
Regression	1	18934.9348	18934.9348	11.0848	0.01039
Residual	8	13665.5652	1708.1957		
Total	9	32600.5000			

o SS Regression –
$$SS_R = \sum (\hat{y}_i - \overline{y})^2 = \hat{\beta}_1 S_{xy}$$

o SS Residual –
$$SS_E = \sum (y_i - \hat{y}_i)^2 = SS_T - SS_R$$

$$\circ \quad SS \text{ Total - } SS_T = \sum (y_i - \overline{y})^2 = \sum y_i^2 - \frac{(\sum y_i)^2}{n}$$

• Unbiased estimator:
$$\hat{\sigma}^2 = \frac{SS_E}{n-2}$$

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

- o Coeficients slope β_1 is $\hat{\beta}_1$ (0.10977)
- \circ Coeficients intercept eta_0 is \hat{eta}_0 (98.24833)
- Estimated standard error of the slope is $se(\hat{\beta}_1) = \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}$ (0.03297)
- Estimated standard error of the intercept is (58.03348)

$$se(\hat{\beta}_0) = \sqrt{\hat{\sigma}^2(\frac{1}{n} + \frac{\bar{x}^2}{S_{\chi\chi}})}$$

Regression Statistics			
Multiple R	0.76211		
R Square	0.58082		
Adjusted R Square	0.52842		
Standard Error	41.33032		
Observations	10		

○ Sample correlation coefficient R= $\frac{S_{xy}}{\sqrt{S_{xx}SS_T}}$