获得的答案

Undecidability of the Turing machine problem:

• The given problem is defined as the following language:

$$USELESS_{TM} = \{ \langle T, q \rangle \mid q \text{ is a useless state in } TM \text{ T } \}.$$

- Show that $\textit{USELESS}_{\textit{TM}}$ is undecidable by reducing $E_{\textit{TM}}$ to $\textit{USELESS}_{\textit{TM}}$, where $E_{\textit{TM}} = \left\{ \langle T1 \rangle \mid T1 \text{ is a TM and } L(T1) = \varnothing \right\}$.
- \bullet Using the Theorem 5.2. it is already proved that $\,E_{\rm TM}^{}\,$ is undecidable
- ullet Suppose that $\emph{USELESS}_{\emph{TM}}$ is decidable and that $\emph{TM R}$ decides it.
- Note that for any Turing machine M with accept state q_{accept} , q_{accept} is useless if and only if $L(T1) = \varnothing$.
- Accordingly, since TM R solves $extit{USELESS}_{ au M}$, R can be used to check if $extit{q}_{accept}$ is a useless state to decide $extit{E}_{TM}$.

Specifically, below is a TMS that decides E_{TM} by using the decider R for $USELESS_{TM}$ as a subroutine:

- $S = "On input \langle T \rangle$, where M is a TM:
- 1. Run TM R on input $\langle T, q_{accept} \rangle$, where q_{accept} is the accept state of T.
- 2. If R accepts, accept. If R rejects, reject."

However, since it is known E_{TM} is undecidable and there cannot be a TM that decides $\textit{USELESS}_{TM}$.

Hence it is proved, that the given problem is undecidable.