Integrali

Somma superiore e inferiore

 $a=x_0 < x_1 < \ldots < x_{N-1}=b$ $D=\{x_0,x_1,\ldots,x_{N-1}\}$ qualunque partizione di [a,b] $m_i:=\inf_{x\in[x_{i-1},x_i]}f(x)$ $M_i:=\sup_{x\in[x_{i-1},x_i]}f(x)$

Le somme superiore e inferiore

$$S^-(D,f) := \sum_{i=1}^N m_i \cdot (x_i - x_{i-1}) \ \ S^+(D,f) := \sum_{i=1}^N M_i \cdot (x_i - x_{i-1})$$

sono approssimazioni dell'area sottesa al grafico per difetto e per eccesso Pertanto

$$(b-a)\inf_{x\in[a,b]}f(x)\leq S^-(D,f)\leq S^+(D,f)\leq (b-a)\sup_{x\in[a,b]}f(x)$$

Le approssimazioni migliori sono la più grande per difetto e la più piccola per eccesso

$$\sup_D S^-(D,f) := \sup \{S^-(D,f) : D \text{ partizione di } [a,b] \}$$

$$\inf_D S^+(D,f) := \inf\{S^+(D,f) : D \text{ partizione di } [a,b]\}$$

Funzione integrabile

 $f:[a,b] o\mathbb{R}$ limitata

$$\sup_D S^-(D,f) = \inf_D S^+(D,f) \implies$$

f è integrabile secondo Riemann

Il valore comune è detto integrale di Riemann di f in $\left[a,b\right]$ e si indica con

$$\int_a^b f(x) \, dx$$

Criteri di integrabilità

- $f:[a,b] o\mathbb{R}$ è continua $\implies f$ è integrabile
- $f:[a,b] o \mathbb{R}$ è monotona $\implies f$ è integrabile
- $f_1:[a,b] o\mathbb{R}$, $f_2:[b,c] o\mathbb{R}$ sono integrabili \Longrightarrow

$$f(x)=egin{cases} f_1(x),\;x\in[a,b]\ f_2(x),\;x\in(b,c] \end{cases}$$

è integrabile

Proprietà dell'integrale

 $f,g:[a,b] o\mathbb{R}$ integrabili in [a,b]

• linearità: $\forall \alpha, \beta \in \mathbb{R} \ \alpha f + \beta g$ è integrabile e

$$\int_a^b (lpha f(x) + eta g(x)) \, dx = lpha \int_a^b f(x) \, dx + eta \int_a^b g(x) \, dx$$

• addittività rispetto al dominio di integrazione: $r \in (a,b)$

$$\int_a^b f(x)\,dx = \int_a^r f(x)\,dx + \int_r^b f(x)\,dx$$

- positività: se $f \geq_0$ in $[a,b] \implies \int_a^b f(x) \, dx \geq 0$
- monotonia: se $f \geq g$ in $[a,b] \implies \int_a^b f(x) \, dx \geq \int_a^b g(x) \, dx$

$$\bullet \quad \int_a^b f(x) \, dx \ \leq \int_a^b |f(x)| \, dx$$

$$ullet \int_b^a f(x)\,dx = -\int_a^b f(x)\,dx \implies \int_a^a f(x)\,dx = 0$$

Teorema della media

 $f:[a,b] o\mathbb{R}$ limitata

$$m:=\inf_{x\in[a,b]}f(x) \quad M:=\sup_{x\in[a,b]}f(x)$$

$$m(b-a) \le S^-(D,f) \le S^+(D,f) \le M(b-a)$$

Se f è integrabile in $[a,b] \implies m(b-a) \leq \int_a^b f(x) \, dx \leq M(b-a)$

Se f è continua in $[a,b] \implies \exists x_0 \in [a,b]: rac{1}{b-a} \int_a^b f(x) \, dx = f(x_0)$

Funzione integrale

 $f:[a,b] o\mathbb{R}$ integrabile, $x_0\in[a,b]$

La funzione integrale di f con punto base x_0 è $F:[a,b] o \mathbb{R}$

$$F(x) = \int_{x_0}^x f(t) \, dt \ \ orall x \in [a,b]$$

Teorema fondamentale del calcolo integrale

 $f:[a,b] o\mathbb{R}$ integrabile, $x_0\in[a,b]$ $F(x)=\int_{x_0}^x f(t)\,dt$ funzione integrale di $f\implies$

- F è continua in [a, b]
- se f è continua in $\bar{x} \in (a,b)$ allora F è derivabile in \bar{x} e $F'(\bar{x}) = f(\bar{x})$

Dimostrazione:

• F è continua in [a, b]

$$F(x) - F(ar{x}) = \int_{x_0}^x f(t) \, dt - \int_{x_0}^{ar{x}} f(t) \, dt = \int_{ar{x}}^x f(t) \, dt$$

$$|0 \le |F(x) - F(ar{x})| = \int_{ar{x}}^x f(t) \, dt \ \le \int_{ar{x}}^x |f(t)| \, dt \ *$$

siccome f è limitata, allora $orall t \in [a,b] \;\; \exists M: |f(t)| \leq M$

$$* \leq \int_{ar{x}}^x M \, dt = M(x - ar{x})$$

per il teorema dei due carabinieri $\lim_{x o ar{x}} F(x) - F(ar{x}) = 0$

• se f è continua in $\bar{x}\in(a,b)$ allora F è derivabile in \bar{x} e $F'(\bar{x})=f(\bar{x})$ supponendo f continua in [a,b]

$$\lim_{h o 0}rac{F(ar x+h)-F(ar x)}{h}=f(ar x)\quad rac{F(ar x+h)-F(ar x)}{h}=rac{\int_{ar x}^{ar x+h}f(t)\,dt}{h}$$

$$rac{1}{h} \int_{ar{x}}^{ar{x}+h} f(t) \, dt - f(ar{x}) = rac{1}{h} \int_{ar{x}}^{ar{x}+h} f(t) \, dt - rac{1}{h} \int_{ar{x}}^{ar{x}+h} f(ar{x}) \, dt = rac{1}{h} \int_{ar{x}}^{ar{x}+h} f(t) - f(ar{x}) \, dt$$

f è continua in \bar{x}

$$orall \epsilon > 0 \;\; \exists \delta > 0 : 0 < |t - ar{x}| < \delta \;\; |f(t) - f(ar{x})| < \epsilon$$

supponendo $h < \delta$

$$|f(t)-f(ar{x})|<\epsilon \ \ orall t\in [ar{x},ar{x}+h]$$
, quindi

$$rac{1}{h}\int_{ar{x}}^{ar{x}+h}f(t)-f(ar{x})\,dt \leq rac{1}{h}\int_{ar{x}}^{ar{x}+h}|f(t)-f(ar{x})|\,dt \leq \epsilon$$

$$f \in \mathrm{C}^k([a,b]) \implies F \in \mathrm{C}^{k+1}([a,b])$$

Primitiva

 $I \subset \mathbb{R}$ intervallo, $f: I \to \mathbb{R}$

Si dice primitiva di f in I una qualunque funzione $G:I\to\mathbb{R}$ derivabile e tale che G'(x)=f(x) $\ \forall x\in I$

Ogni funzione continua ammette una primitiva e

- ullet Se G è una primitiva di $f \implies G+c$ è una primitiva di $f \ orall c \in \mathbb{R}$
- Se G_1 e G_2 sono primitive di $f \implies G_1 G_2 = c \in \mathbb{R}$

Integrale indefinito

L'integrale indefinito di f è l'insieme di tutte le primitive di f $\int f(x) dx := \{G : G'(x) = f(x)\}$

Formula fondamentale del calcolo integrale

 $f:[a,b] o\mathbb{R}$ continua, G primitiva di f

$$\int_{a}^{b} f(x) \, dx = [G]_{a}^{b} = G(b) - G(a)$$

Dimostrazione:

per il teorema fondamentale del calcolo integrale $F(x)=\int_a^x f(t)\,dt$ è una primitiva di f, anche G è una primitiva di f

$$\exists c \in \mathbb{R}: G(x) = F(x) + c$$

$$G(b) - G(a) = (F(b) + c) - (F(a) + c) = F(b) - F(a) = \int_a^b f(x) \, dx - \int_a^a f(x) \, dx = \int_a^b f(x) \, dx$$

Primitive fondamentali

$$\int lpha \, dx = lpha x + c$$

$$\int x^{lpha} dx = rac{x^{lpha+1}}{lpha+1} + c$$

$$\int rac{1}{x} \, dx = \ln|x| + c$$

$$\int e^x \, dx = e^x + c$$

$$\int a^x \, dx = rac{a^x}{\ln(a)} + c$$

$$\int \sin(x) \, dx = -\cos(x) + c$$

$$\int \cos(x) \, dx = \sin(x) + c$$

$$\int \frac{1}{\cos^2(x)} \, dx = \tan(x) + c$$

$$\int 1 + an^2(x) \, dx = an(x) + c$$

$$\int \frac{1}{1+x^2} \, dx = \arctan(x) + c$$

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \arcsin(x) + c$$

Formula di integrazione per sostituzione

$$f:I o\mathbb{R},\,F$$
 primitiva di f in I $arphi:[a,b] o I,\,arphi\in\mathrm{C}^1([a,b])$ $(F\circarphi)'(x)=F'(arphi(x))\cdotarphi'(x)=f(arphi(x))\cdotarphi'(x)$ $\int f(arphi(x))\cdotarphi'(x)\,dx=F(arphi(x))+c=\int f(t)\,dt\,\mathrm{con}\,arphi(x)=t,\,arphi'(x)\,dx=dt$

Simmetrie negli integrali

$$f:[-a,a] o \mathbb{R}$$

• Se
$$f$$
 è pari, cioè $f(-x) = f(x) \ \ \forall x \in [-a,a]$

$$\int_{-a}^a f(x) \, dx = \int_{-a}^0 f(x) \, dx + \int_0^a f(x) \, dx = -\int_0^{-a} f(x) \, dx + \int_0^a f(x) \, dx = = \int_0^a f(-x) \, dx + \int_0^a f(x) \, dx = 2 \int_0^a f(x) \, dx$$

• Se f è dispari, cioè $f(-x) = -f(x) \ \ orall x \in [-a]$

$$\int_{-a}^a f(x) \, dx = \int_{-a}^0 f(x) \, dx + \int_0^a f(x) \, dx = -\int_0^{-a} f(x) \, dx + \int_0^a f(x) \, dx = = = \int_0^a f(-x) \, dx + \int_0^a f(x) \, dx = 0$$

Integrazione per parti

$$\int f'(x)g(x)\,dx = f(x)g(x) - \int f(x)g'(x)\,dx$$

$$\int_a^b f'(x)g(x)\,dx = [f(x)g(x)]_a^b - \int_a^b f(x)g'(x)\,dx$$

Integrazione di funzioni razionali

 $n \geq 0$, $m \geq 1$

Se $n \ge m$:

$$\int rac{P_n(x)}{Q_m(x)}\,dx = \int S_{n-m}(x)\,dx + \int rac{R(x)}{Q_m(x)}\,dx$$

Se n < m:

• n = 0, m = 1:

$$\int rac{A}{ax+b} \, dx = rac{A}{a} \int rac{a}{ax+b} = rac{A}{a} \ln |ax+b| + c$$

• $n \in \{0,1\}, m=2$:

$$\int \frac{\alpha x + \beta}{ax^2 + bx + c} dx \ \Delta = b^2 - 4ac$$

• $\Delta > 0$:

$$ax^2 + bx + c = a(x - x_1)(x - x_2) \quad \frac{\alpha x + \beta}{ax^2 + bx + c} = \frac{A}{x - x_1} + \frac{B}{x - x_2}$$

• $\Delta = 0$:

$$ax^2 + bx + c = a(x - x_0)^2$$
 $t = x - x_0$ $dt = dx$

• $\Delta < 0$: portare alla forma dell' \arctan

Integrale generalizzato in un intervallo limitato

 $f:(a,b] o\mathbb{R}$ integrabile in $[a+\epsilon,b]$ $\ orall\epsilon>0$

L'integrale improprio o generalizzato di f in (a,b) è

$$\int_a^b f(x)\,dx := \lim_{\epsilon o 0^+} \int_{a+\epsilon}^b f(x)\,dx$$

Se il limite esiste finito f è integrabile in senso generalizzato in (a,b) e l'integrale improprio è convergente, se il limite vale $\pm \infty$ l'integrale improprio è divergente

Integrale generalizzato in un intervallo illimitato

 $f:[a,+\infty) o \mathbb{R}$ integrabile in [a,M] $\ orall M>a$

L'integrale improprio o generalizzato di f in $(a, +\infty)$ è

$$\int_a^{+\infty} f(x) \, dx := \lim_{M o +\infty} \int_a^M f(x) \, dx$$

Se il limite esiste finito f è integrabile in senso generalizzato in $(a, +\infty)$ e l'integrale improprio è convergente, se il limite vale $\pm \infty$ l'integrale improprio è divergente

Criterio del confronto

 $f,g:[a,b] o\mathbb{R}$, $b\in(a,+\infty)$, f,g integrabili in $[a,c]\ \ orall c\in(a,b)$ Se $0 \le f(x) \le g(x) \ \forall x \in [a,b)$ si ha che:

$$egin{array}{l} igltar_a^b g(x) \, dx < +\infty & \Longrightarrow \int_a^b f(x) \, dx < +\infty \ igltar_a^b f(x) \, dx = +\infty & \Longrightarrow \int_a^b g(x) \, dx = +\infty \end{array}$$

•
$$\int_a^b f(x) \, dx = +\infty \implies \int_a^b g(x) \, dx = +\infty$$

Criterio del confronto asintotico

$$f,g:[a,b) o \mathbb{R},\,b\in(a,+\infty],\,f,g$$
 integrabili in $[a,c]$ $\ orall c\in(a,b)$ Se $f(x)>0,\,g(x)>0,\,f(x)\sim g(x)$ per $x o b^-\Longrightarrow\int_a^b f(x)\,dx$ converge $\iff\int_a^b g(x)\,dx$ converge

Criterio di convergenza assoluta

 $\int_a^b |f(x)|\,dx$ converge $\implies \int_a^b f(x)\,dx$ converge Inoltre $\int_a^b f(x) dx \le \int_a^b |f(x)| dx$