Agrointensidade dos COREDEs Agropecuários do RS

Rafael Pentiado Poerschke

Resultado parciais (TESE) - Orientação: Prof. Dr. Claílton Ataídes de Freitas¹

¹Pós-Graduação em Economia e Desenvolvimento - Centro de Ciências Sociais e Humans (CCSH) Universidade Federal de Santa Maria (UFSM)

31 de outubro de 2025

Roteiro

Referências

Referências

Referências

Referências Principais

- JOLLIFFE, Ian T. (1990). Principal component analysis: a beginner's guide—I. Introduction and application. Weather, v. 45, n. 10, p. 375-382.
- JOHNSON, R. A.; WICHERN, D. W. and others. (2002) Applied multivariate statistical analysis, Prentice hall Upper Saddle River, NJ.
- MARDIA KANTI V.; KENT, J.; BIBBY, J. M. Multivariate Analysis. [S.l.]: Academic Press, 1st edition, 1979.

Referências Complementares

- HOFFMANN, R.; KAGEYAMA, A. A. Modernização da agricultura e distribuição de renda no Brasil. Pesquisa e Planejamento Econômico, v.15, n.1, p.171–208, 1985.
- FREITAS, C. A.; PAZ, M. V.; NICOLA, D. S. Analisando a modernização da agropecuária gaúcha: uma aplicação de análise fatorial e cluster, Análise Econômica, Porto Alegre, v.25, n.47, 2007.
- HOFFMANN, R. Dinâmica da modernização da agricultura em 157 microrregiões homogêneas do Brasil, Revista de Economia e Sociologia Rural, v.30, n.4, p.172–190, 1992.

Roteiro

Referências

Introdução

Pesquisa Exploratória: Componentes Principai

Aplicação

Considerações Finais

- O objetivo geral da pesquisa é analisar a evolução da estrutura socioeconômica e produtiva dos COREDEs Agro do Rio Grande do Sul.
- entre 1995/1996, 2006 e 2017,
- de modo a compreender como os diferentes graus de agrointensidade se relacionam com os padrões de desigualdade socioeconômica e com a heterogeneidade regional expressa na clusterização.

Problema de Pesquisa

Como **evoluíram** a estrutura socioeconômica e produtiva dos COREDEs Agro do Rio Grande do Sul, e em que medida essa evolução revela padrões de desigualdade associados aos diferentes graus de agrointensidade e à persistência ou mudança nos padrões de heterogeneidade e clusterização regional?

Problema de Pesquisa

Em um universo de 127 municípios e 15 variáveis, agregados em 8 COREDEs predominantemente agropecuários, questiona-se o quão homogêneo será esse grupo, isto é, em que medida a agregação por contiguidade, garantiria a homogeneidade dos COREDEs.

Hipótese

A agregação de um grupo de municípios no estado do RS por contiguidade - na forma dos COREDEs - não é suficiente para garantir a homogeneidade entre os municípios que fazem parte dos COREDEs agropecuários.

Pesquisa Exploratória: Componentes Principais

Componentes Principais

A Análise de Componentes Principais é um problema no qual busca-se estimar um subespaço de dimensão inferior m de um conjunto de pontos em um espaço de dimensão maior \mathbb{R}^p dispostos em uma matriz $\mathbf{X}_{(n \times p)} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_p]$ formada por p variáveis aleatórias correlacionadas entre si.

Pesquisa Exploratória: Componentes Principais

Componentes Principais

Esse problema pode ser modelado como uma questão estatística ou **geométrica**. Existe uma terceira abordagem, no qual ACP é vista como um problema de aproximação de uma matriz de menor posto em relação original.

Gráfico de Dispersão: duas variáveis aleatórias

Pesquisa Exploratória: Componentes Principais

Figura: Eixos Coordenados

Componentes Principais

Teorema: Componentes Principais de Variáveis Aleatórias¹

Pesquisa Exploratória: Componentes Principais

Assuma que posto $(S_X) = p$. Então os p componentes principais de uma variável aleatória multivariada $\mathbf{X} \in \mathbb{R}^p$, denotados por \mathbf{w}_i para j = 1, 2, ..., p, são dados pela combinação linear

$$\mathbf{w}_j = \mathbf{u}_j^T \mathbf{X},$$

onde $\mathbf{u} \in \mathbb{R}^p$ e $\{\mathbf{u}_j\}_{j=1}^p$ são os p autovetores de \mathbf{S}_X associados aos maiores autovalores λ_i . Além disso, $\lambda_i = \text{Var}(\mathbf{w}_i)$ para $j = 1, 2, \ldots, p$.

¹A demonstração do teorema pode ser consultada em Jolliffe (1990).

Componentes Principais: Motivação

0000000000000000

Dados em elevada dimensão:

- Histórico das 400 Empresas na B3
 - Categorias?
- Imagens: 9x13 cm
 - Matriz menor? Sistema RGB: (729x553)x3.

Pesquisa Exploratória: Componentes Principais

- Histórico de buscas na Internet
 - Ranqueamento de páginas.

Figura: 3 Componentes

UFSM

Figura: 3 Componentes

Figura: 29 Componentes

Figura: 100 Componentes

Figura: 291 Componentes

Figura: 291 Componentes

Figura: Original (729cols)

UFSM

Componentes Principais

Definimos cada novo \mathbf{w}_i , com dimensão $(n \times 1)$, em função linear dos autovetores de S, combinados com os vetores que compõe X do seguinte modo

$$\mathbf{w}_{j} = \mathbf{u}_{j}^{\mathsf{T}} \mathbf{X} = u_{j1} \mathbf{x}_{1} + u_{j2} \mathbf{x}_{2} + \dots + u_{jp} \mathbf{x}_{p}, \quad \forall j = 1, 2, \dots, p.$$
 (1)

Por exemplo, \mathbf{u}_1 é um vetor dado por $\mathbf{u}_1 = [u_{11} \ u_{12} \ \dots \ u_{1p}]$. Portanto, o primeiro componente principal será a combinação linear

$$\mathbf{w}_1 = \mathbf{u}_1^T \mathbf{X} = u_{11} \mathbf{x}_1 + u_{12} \mathbf{x}_2 + \cdots + u_{1p} \mathbf{x}_p.$$

$$\operatorname{Var}(\mathbf{X}^{T}\mathbf{u}_{k}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T}\mathbf{u}_{k})^{2} = \mathbf{u}^{T} \frac{\mathbf{X}^{T}\mathbf{X}}{n} \mathbf{u} = \mathbf{u}^{T} \mathbf{S} \mathbf{u} = \operatorname{Var}(\mathbf{w}_{i}),$$
(2)

Qual a direção que maximiza a variância dos dados?

00000000000000

Solução: para a primeira direção

Temos o seguinte problema de maximização de (2):

000000000000000

Pesquisa Exploratória: Componentes Principais

$$\begin{cases} \max_{\mathbf{u}} & (\mathbf{u}^T \mathbf{S} \mathbf{u}) \\ \text{sujeito a:} & ||\mathbf{u}|| = \mathbf{u}^T \mathbf{u} = 1. \end{cases}$$

Resposta: Multiplicadores de Lagrange.

$$\nabla f(\mathbf{x}_0) = \alpha_0 \nabla g_0(\mathbf{x}_0).$$

Componentes Principais: truncamento

000000000000000

Corolário: Redefinindo os Componentes Principais de Variáveis Aleatórias

Seja $m \leq p$. Assuma que posto $(\mathbf{S}_X) \geq m$. Então os primeiros m componentes principais de uma variável aleatória multivariada $\mathbf{X} \in \mathbb{R}^p$ são dados por $\mathbf{w}_j = \mathbf{u}_i^T \mathbf{X}$, onde $\mathbf{u} \in \mathbb{R}^p$ e $\{\mathbf{u}_i\}_{i=1}^m$ são os mautovetores de \mathbf{S}_X associados aos maiores autovalores $\lambda_i > 0$.

Roteiro

Aplicação

COREDEs: Origem

Definição: Conselhos Regionais de Desenvolvimento

Os Conselhos Regionais de Desenvolvimento - COREDEs, criados oficialmente pela Lei 10.283 de 17 de outubro de 1994, são um fórum de discussão para a promoção de políticas e ações que visam o desenvolvimento regional.

Temos 28 COREDEs e 497 municípios no estado - comecou com 21.

COREDEs: Localização

COREDEs Agropecuários

Dados utilizados

Sigla	Nome da Variável	Referência	Unidade de Medida	Fonte
fin_veg	Financiamento (Prod. Vegetal)	Tabela 6895	N. de Estabelecimentos	IBGE
fin_pec	Financiamento (Prod. Pecuária)	Tabela 6895	N. de Estabelecimentos	IBGE
ass_veg	Assistência Técnica (Prod. Vegetal)	Tabela 6844	N. de Estabelecimentos	IBGE
ass_pec	Assistência Técnica (Prod. Pecuária)	Tabela 6844	N. de Estabelecimentos	IBGE
colhe	Colheitadeiras	Tabela 6874	Unidades	IBGE
trat	Tratores	Tabela 6869	Unidades	IBGE
gado	Rebanho Bovino	Tabela 6907	Rebanho	IBGE
pea	População Economicamente Ativa	Tabela 6887	Pessoas	IBGE
pop	População Residente	Tabela 6579	Pessoas	IBGE
rec_veg	Receitas com Lavouras	Tabela 6897	Mil R\$	IBGE
val_pec	Valor da Produção Pecuária	Tabela 6898	Mil R\$	IBGE
val_veg	Valor da Produção Vegetal	Tabela 6897	Mil R\$	IBGE
irriga	Irrigação	Tabela 6857	N. de Estabelecimentos	IBGE
adubo	Adubação	Tabela 6847	N. de Estabelecimentos	IBGE
area_rela	Área Explorada/Área Total	15761**	Área (km²)	IBGE
area_exp	Área Total Explorada	Tabela 6878	Área (ha)	IBGE
idese	IDESE	Bloco Renda	Numero Índice	FEE***

^{* -} Os dados são referentes ao Censo Agropecuário 2017, exceto pela Área Total dos Municípios e IDESE Bloco Renda.

Tabela: Variáveis utilizadas*

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ · 壹 · かへで

POERSCHKE, Rafael P. UFSM

^{** -} Áreas Territoriais (Instituto Brasileiro de Geografia e Estatística).

^{*** -} Fundação de Economia e Estatística (FEE).

Correlação das Variáveis com os Autovetores					
Autovalores	$\lambda_1^R = 8,98$	$\lambda_2^R = 2,62$	$\lambda_3^R = 1,47$		
	Autovetor 1	Autovetor 2	Autovetor 3		
val_veg	0,277	0,000	0,421		
fin_veg	0,143	-0,507	-0,008		
rec_veg	0,277	0,019	0,412		
ass_veg	0,149	-0,509	-0,201		
fin_pec	0,239	0,147	-0,418		
val_pec	0,289	0,245	-0,135		
gado	0,277	0,303	-0,119		
ass_pec	0,284	0,203	-0,280		
adubo	0,214	-0,390	-0,328		
colhe	0,267	-0,169	0,353		
trat	0,308	-0,124	0,169		
pea	0,311	-0,087	-0,209		
рор	0,280	0,020	0,141		
area_exp	0,297	0,249	0,028		
irriga	0,174	0,053	-0,042		
area_rela	_	_	_		
idese	_	_	_		

Tabela: Correlação das Variáveis com os Autovetores (Matriz \mathbf{R}_X)

Resultados: da variância

Juntos, os três primeiros autovalores responderam por cerca de 87% da variância do conjunto original de dados.

A proporção explicada da variância original é a soma dos autovalores dos componentes retidos dividido pelo traço da matriz no qual os autovalores foram extraídos:

Total Explicado =
$$\frac{13,07}{15}$$
 = 0,8715.

Grupos - COREDEs Agropecuários em três dimensões

Grupo 2

Código	Município	Componente 1	Componente 2	Componente 3
3	Alegrete	15,39	5,23	-2,64
15	Cachoeira do Sul	10,94	-3,24	1,47
87	Rosário do Sul	6,60	3,46	-1,47
95	Santana do Livramento	11,57	4,71	-4,82
100	São Gabriel	9,98	0,79	1,46
121	Uruguaiana	9,59	2,78	3,53

Tabela: Escores dos municípios do Grupo 2

POERSCHKE, Rafael P. UFSM
Agrointensidade dos COREDEs Agro 32

Média dos Escores por Grupos (de uma matriz 127×15)

Municípios Agrupados	Grupo	Autovetor 1	Autovetor 2	Autovetor 3
69	1	-1,62	0,71	0,15
6	2	10,68	2,29	-0,41
34	3	-011	-0,91	-0,75
18	4	2,81	2,86	-1,75

Tabela: Média dos Escores dos Municípios de cada Grupo

POERSCHKE, Rafael P. UFSM Agrointensidade dos COREDEs Agro 33

Roteiro

Considerações Finais

Com os **três autovetores** estimados, foi possível a identificação de quatro agrupamentos potenciais de municípios dentro dos COREDEs Agro, e esse resultado tem implicações práticas significativas.

Essa segmentação pode servir como uma ferramenta estratégica para políticas agrícolas e de desenvolvimento regional, permitindo a adaptação de estratégias específicas às características distintas de cada grupo.

Mostramos que ainda assim, dentro de alguns COREDEs existe certa heterogeneidade

Agrointensidade dos COREDEs Agropecuários do RS

Rafael Pentiado Poerschke

Resultado parciais (TESE) - Orientação: Prof. Dr. Claílton Ataídes de Freitas¹

¹Pós-Graduação em Economia e Desenvolvimento - Centro de Ciências Sociais e Humans (CCSH) Universidade Federal de Santa Maria (UFSM)

31 de outubro de 2025

