

Universidade Federal de Pernambuco Centro de Informática

Improvements in a Gaussian Mixture Models based Speaker Verification System using Fractional Covariance Matrix

Eduardo Martins Barros de Albuquerque Tenório

Abstract

TODO EDITAR Abstract goes here

Dedication

TODO EDITAR To mum and dad

Declaration

TODO EDITAR I declare that..

Acknowledgements

I am thankful to my parents, for the support and patience during the graduation, To my adviser, Tsang Ing Ren, for the guidance, To Cleice Souza, for the previous readings and help.

Contents

1	Introduction	7
2	Speaker Recognition System	8
3		9 9
4	Gaussian Mixture Models	10
5	Fractional Covariance Matrix	11
6	Experiments	12
7	Conclusion	13
${f A}$	Codes	14

Chapter 1 Introduction

Chapter 2
Speaker Recognition System

Chapter 3

Feature Extraction

TODO referenciar Davis and Mermelstein [1], mostrando que seus experimentos colocam o MFCC como uma técnica de representação de características melhor que as demais (LFCC, LPC, RC e LPCC).

TODO durante a escrita, refazer os "main" dos módulos Python. Deixar somente o necessário e gerar como output as figuras utilizadas (como o banco de filtros, a escala mel e etc.).

3.1 Mel Frequency Cepstral Coefficient

3.1.1 The Mel Scale

Chapter 4 Gaussian Mixture Models

Chapter 5 Fractional Covariance Matrix

Chapter 6 Experiments

Chapter 7

Conclusion

Appendix A Codes

Bibliography

[1] Steven B. Davis and Paul Mermelstein. "Comparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken Sentences". In: *IEEE Transactions on Acoustics, Speech, and Signal Processing* ASSP-28.4 (1980), pp. 357–366.