Caracterización Geoespacial del COVID-19 en Antioquia

Alvin Garcia Chaves Especialización en Analítica

Objetivo

Este proyecto busca caracterizar la distribución espacial y el comportamiento de la Tasa de Fatalidad (*CFR*) en casos confirmados de COVID-19 en los municipios de Antioquia, mediante un análisis geoespacial.

Introducción

La pandemia de Coronavirus (COVID-19), causada por el SARS-CoV-2, inició a finales de 2019 en Wuhan, China.

Declarada pandemia por la OMS en marzo de 2020 debido a su largo período de incubación, alta infectividad y dificultad de detección.

El Análisis Geoespacial y los SIG han sido herramientas indispensables para comprender la dinámica del COVID-19, informar la toma de decisiones y facilitar la respuesta global a la pandemia.

Varios estudios se han centrado en variables objetivo como el número de casos confirmados, la incidencia acumulada, el riesgo de mortalidad y patrones de agrupación espacial entre otros.

Algunas de la variables predictivas más utilizadas:

- factores socioeconómicos y demográficos
- factores de movilidad y contacto
- factores ambientales y climáticos
- factores de salud y comorbilidades
- Implementación de políticas de control como confinamientos.

Datos & Metodología

Localización, distribución y frecuencia de datos

Variables

Las variables predictoras consideradas para este estudio son:

- Area del municipio
- Altitud media
- Temperatura media anual
- Humedad Relativa media anual
- Indice de Urbanización
- Densidad poblacional

La variable objetivo corresponde a la *Tasa o Razón de Letalidad* (CFR, por sus siglas en inglés Case Fatality Rate)

$$CFR = \frac{\text{No. de muertes por la enfermedad}}{\text{No. de muertes por la enfermedad} + \text{No. de casos recuperados de la enfermedad}} \times 100$$

Fuentes de Datos

La información demográfica y de casos positivos de personas con COVID-19, proviene del Instituto Nacional de Salud Colombia y los datos de población de los municipios de Antioquia provienen del DANE, ambos datasets están publicados en el portal Datos Abiertos Colombia.

Los datos de **altitud media**, **temperatura media anual** y **humedad relativa media anual** de los municipios de Antioquia se obtuvieron de Google Earth Engine:

- NASA SRTM Digital Elevation 30m.
- WorldClim BIO Variables V1.
- ERA5-Land Monthly ECMWF Climate Reanalysis.

Resultados

Tabla comparativa de los GML

Modelo	R² /Pseudo R²	Variables Predictivas (p < 0.05)		
OLS	0.199	Ninguna		
Logit	0.1701	Ninguna		
Poisson	0.545	Altitud, Temperatura, HR		
Binomial Negativo	0.03499	Ninguna		

Graficas Valores Residuales OLS

Graficas Valores Residuales Logit

Autocorrelación Espacial (Queen)

Autocorrelación Espacial (Queen)

Modelos SAR vs GWR

Modelo	Pseudo R ² / R ²	AIC / AICc	Variable Predictiva (P<0.05)
SLX	0.2723	-695.553	Densidad, Altitud, Temperatura
SEM	0.2458	-704.025	Densidad, Altitud, Temperatura
SAR	0.2504	N/D	Densidad
GWR	0.197	81.277	Densidad, Altitud
MGWR	0.205	82.192	Densidad, Altitud

Resultados del modelo SEM

SUMMARY OF OUTPUT:	ML	SPATIAL ERROR (METHO)D = full)			
Data set		unknown				
Weights matrix	:	unknown				
Dependent Variable	:1	og_density_cfr_rec		Number of Obse	rvat	tions:
Mean dependent var	:	0.0146	Numbe	r of Variables	:	6
S.D. dependent var	:	0.0161	Degre	es of Freedom	:	119
Pseudo R-squared	:	0.2458				
Log likelihood	:	358.0124				
Sigma-square ML	:	0.0002	Akaik	e info criterion	:	-704.025
S.E of regression	:	0.0137	Schwa	rz criterion	:	-687.055
Variabl	е е	 Coefficient	Std.Error	z-Statistic	 F	Probability
CONSTAN	т	-0.13108	0.09551	-1.37239		0.16994
altitu	d	0.00003	0.00001	2.16836		0.03013
temperatur	a	0.00561	0.00289	1.94133		0.05222
humedad_relativ	a	-0.00026	0.00034	-0.74815		0.45437
urbanizacio	n	0.00879	0.00733	1.19882		0.23060
densida	d	0.00000	0.00000	3.18338		0.00146
lambd	а	0.05508	0.02323	2.37076		0.01775

Conclusiones

- SEM es el modelo más robusto, al considerar dependencias espaciales específicas y errores espaciales.
- OLS aunque alcanza el mayor R² (0.2723; Ajustado: 0.2085), su validez se ve comprometida por multicolinealidad (cn >30), errores no normales y heterocedasticidad (p-value = 0.000).
- MGWR (R² = 0.205) mejora marginalmente sobre GWR (R² = 0.197), con mejor AIC (82.192 vs. 82.234), gracias al uso de anchos de banda variables.
- La Densidad poblacional y la Altitud resultaron ser predictores adecuados, mientras que variables como la humedad relativa y la urbanización no mostraron efectos significativos.

- El modelo no está incluyendo algunas variables explicitas que puedan explicar adecuadamente la variabilidad del CFR.
- Varios estudios han buscado correlaciones entre factores climáticos (temperatura, humedad, latitud) y la propagación de COVID-19. Mientras que algunos estudios como el de (Sajadi et al., 2020; Wang et al., 2020) sugiere que "las altas temperaturas y la alta humedad relativa parecían reducir la transmisión del virus". Otros trabajos como el de (Mollalo et al., 2020; Baker et al., 2020) concluyen que "aunque el clima y la geografía son factores que pueden modular la transmisión del COVID-19, estos no son factores determinantes en la trayectoria de la pandemia" (Franch-Pardo et al., 2020, p. 8).

Referencias

Adelaide Yeboah Forkuo, Tunde Victor Nihi, Opeyemi Olaoluawa Ojo, Collins Nwannebuike Nwokedi, & Olakunle Saheed Soyege. (2025). A conceptual model for geospatial analytics in disease surveillance and epidemiological forecasting. *International Medical Science Research Journal*, *5*(2), 30–57. https://doi.org/10.51594/imsrj.v5i2.1831

Bherwani, H., Anjum, S., Kumar, S., Gautam, S., Gupta, A., Kumbhare, H., Anshul, A., & Kumar, R. (2021). Understanding COVID-19 transmission through Bayesian probabilistic modeling and GIS-based Voronoi approach: a policy perspective. *Environment, Development and Sustainability*, 23(4), 5846–5864. https://doi.org/10.1007/s10668-020-00849-0

Chaparro-Narváez, P. E. (2021). Boletín Técnico Interactivo Mortalidad por COVID-19 en Colombia. 2021.

Chatterjee, P., Tiwari, M. K., Chakraborty, S., & Yazdani, M. (n.d.-a). *Disruptive Technologies and Digital Transformations for Society 5.0 Series Editors*. https://link.springer.com/bookseries/16676

Chen, Y., Jiang, N., Cao, Y., Yang, Z., & Zhao, X. (2021). Visual method of analyzing COVID-19 case information using spatio-temporal objects with multi-granularity. *Journal of Geographical Sciences*, *31*(7), 1059–1081. https://doi.org/10.1007/s11442-021-1885-1

Cuomo, R. E., Purushothaman, V., Li, J., Cai, M., & Mackey, T. K. (2020). Sub-national longitudinal and geospatial analysis of COVID-19 tweets. *PLoS ONE*, *15*(10 October). https://doi.org/10.1371/journal.pone.0241330

Das, P., Igoe, M., Lenhart, S., Luong, L., Lanzas, C., Lloyd, A. L., & Odoi, A. (2022). Geographic disparities and determinants of COVID-19 incidence risk in the greater St. Louis Area, Missouri (United States). *PLoS ONE*, 17(9 September).

https://doi.org/10.1371/journal.pone.0274899

Díaz Pinzón, J. E. (2020). Estimación de la prevalencia del COVID-19 en Colombia. *Revista Repertorio de Medicina y Cirugía*, 99–102. https://doi.org/10.31260/repertmedcir.01217372.1115

Dutta, I., Basu, T., & Das, A. (2021). Spatial analysis of COVID-19 incidence and its determinants using spatial modeling: A study on India. *Environmental Challenges*, 4. https://doi.org/10.1016/j.envc.2021.100096

Franch-Pardo, I., Napoletano, B. M., Rosete-Verges, F., & Billa, L. (2020). Spatial analysis and GIS in the study of COVID-19. A review. *Science of the Total Environment*, 739. https://doi.org/10.1016/j.scitotenv.2020.140033

