

CÁLCULO ESTEQUIOMÉTRICO

Professor: Manoel Lima

Disciplina: Química

Estequiometria

Estequiometria é o campo de estudo que examina as quantidades das substâncias produzidas e consumidas em uma reação química.

Preparação de alimentos

Produção de energia

Produção de materiais de construção

Princípio Básico da Estequiometria

CÁLCULO ESTEQUIOMÉTRICO

Mol é a unidade de contagem para número de átomos, íons ou moléculas em uma amostra. UM mol contém exatamente $6,02214076 \times 10^{23}$ (arredondando $6,02 \times 10^{23}$) entidades elementares. Constante de Avogadro ou Número de Avogadro

RELAÇÃO MOL/MASSA

Um mol de um átomo ou molécula apresenta massa correspondente a sua massa atômica ou massa molecular expressa em g/mol (massa molar)

RELAÇÃO MOL/MASSA

ELEMENTOS	Massa da	Nº de ótomos
	amostra (g)	átomos
Alumínio	26,98	$6,02 \times 10^{23}$
Ouro	196,97	$6,02 \times 10^{23}$
Ferro	55,85	$6,02 \times 10^{23}$
Enxofre	32,05	$6,02 \times 10^{23}$
Boro	10,81	$6,02 \times 10^{23}$

MASSA MOLAR

A massa molar de qualquer substância é a massa (em gramas) de 1 mol de substância, e essa massa é obtida pela soma das massas dos átomos do componente.

EXEMPLOS

 H_2O

 $2 \mod H + 1 \mod O$

 $(2 \times 1.0 \text{ g}) + 16.0 \text{ g}$ = 18 g/mol CaCO₃

 $1 \mod Ca + 1 \mod C + 3 \mod O$

 $40,1 g + 12,0 g + (3 \times 16,0 g)$ = 100,0 g /mol C_2H_5OH

2 mol C + 6 mol H + 1 mol O

 $(2 \times 12,0 \text{ g}) + (6 \times 1,0 \text{ g}) + 16,0 \text{ g}$ = 46,0 g/mol

RELAÇÃO MOL/VOLUME (VOLUME MOLAR)

O volume de um mol de átomos ou moléculas depende do estado físico da substância.

Para líquidos e sólidos:

$$d = \frac{m}{v}$$

Sabendo que a densidade do ferro é 7,874 g/cm³ a 25 °C, indique qual o volume de 2,5 mol deste composto.

Para gases:

$$PV = n R T$$

O volume costuma ser **independente** da natureza do gás (gás ideal) e nas CNTPs usamos o seguinte valor: **22,4** L que corresponde a **6,02** × **10**²³ entidades elementares.

Estequiometria

A predição das massas de substâncias ou volumes de soluções envolvidos nas reações químicas é um dos procedimentos quantitativos mais fundamentais na química.

participantes da reação

Exemplo

Os ingredientes necessários para preparar um bolo de 1 kg são: 480 gramas de farinha de trigo; 400 gramas de açúcar; 225 gramas de manteiga; 4 ovos; 240 mililitros de leite e 10 gramas de fermento em pó.

Reação química

Trigo + açúcar + manteiga + ovos + leite + fermento → BOLO

Proporção entre os participantes da reação

 $480g + 400 g + 225 g + 4 unidades + 240 mL + 10 g \longrightarrow 1000 g$

Exemplo

Qual a quantidade de matéria de O_2 será produzida pela decomposição de 5,8 mol de água?

Qual é a reação química envolvida?

$$H_2O_{(g)} \longrightarrow H_{2(g)} + O_{2(g)}$$

Como fica essa reação após o balanceamento?

$$\mathbf{2} \, \mathbf{H}_2 \mathbf{O}_{(g)} \quad \longrightarrow \quad \mathbf{2} \, \mathbf{H}_{2(g)} + \mathbf{1} \, \mathbf{O}_{2(g)}$$

(Dados: massas molares: $H_2 = 2 \text{ g mol}^{-1}$, $O_2 = 32 \text{ g mol}^{-1}$, $H_2O = 18 \text{ g mol}^{-1}$)

Reconhecendo as reações químicas

EXEMPLO 1: Existem diferentes processos de obtenção do ácido sulfúrico, entre eles pela reação de hidratação do trióxido de enxofre. Qual a massa de ácido sulfúrico (H₂SO₄), em gramas, que pode ser obtida a partir de 16 gramas de trióxido de enxofre (SO_3) ? Dados: H= 1 g mol⁻¹; O = 16 g mol⁻¹; S = 32 g mol⁻¹.

EXEMPLO 2: A reação de combustão completa do etanol (C₂H₆O) tem como produtos CO₂ e H₂O. Qual a massa de CO₂, em gramas, que pode ser obtida a partir da combustão de 230 gramas de etanol puro? Dados: H = 1 g mol⁻¹; C = 12 g mol⁻¹; O = 16 g mol^{-1} .

EXEMPLO 3: Suponha que 200 g de uma panela de alumínio tenha sido **oxidado**. Se assumirmos que toda a oxidação ocorreu na forma de óxido de alumínio (Al₂O₃), qual a quantidade de óxido formado? Dados: $Al = 27 \text{ g mol}^{-1}$; $O = 16 \text{ g mol}^{-1}$.

EXEMPLO 4: Qual a massa de NaOH necessária para **neutralizar** totalmente 200 mL de uma solução 0,01 mol L⁻¹ de H_2SO_4 ? Dados: H= 1 g mol⁻¹; O = 16 g mol⁻¹; Na= 23 g $\text{mol}^{-1} S = 32 \text{ g mol}^{-1}$.

A obtenção de etanol utilizando a cana-de-açúcar envolve a fermentação dos monossacarídeos formadores da sacarose contida no melaço. Um desses formadores é a glicose (C₆H₁₂O₆), cuja fermentação produz cerca de 50 g de etanol a partir de 100 g de glicose, conforme a equação química descrita.

Em uma condição específica de fermentação, obtém-se 80% de conversão em etanol que, após sua purificação, apresenta densidade igual a 0,80 g/mL. O melaço utilizado apresentou 50 kg de monossacarídeos na forma de glicose.

O volume de etanol, em litro, obtido nesse processo é mais próximo de

- (A) 16
- B 20
- **(c)** 25
- (D) 64
- E 100

Ano: 2021 Banca: INEP Órgão: ENEM

Um marceneiro esqueceu um pacote de pregos ao relento, expostos à umidade do ar e à chuva. Com isso, os pregos de ferro, que tinham a massa de 5,6 g cada, acabaram cobertos por uma camada espessa de ferrugem (Fe₂O₃ H₂O), uma substância marrom insolúvel, produto da oxidação do ferro metálico, que ocorre segundo a equação química:

2 Fe (s) + 3/2 O₂ (g) + H₂O (l)
$$\rightarrow$$
 Fe₂O₃ . H₂O (s)

Considere as massas molares (g/mol): H = 1; O = 16; Fe = 56.

Qual foi a massa de ferrugem produzida ao se oxidar a metade (50%) de um prego?

A - 4,45 g

B - 8,90 g

C - 17,80 g

D - 72,00 g

E - 144,00 g

Ano: 2022 Banca: INEP Órgão: ENEM

Métodos de balanceamento

Tentativa

Algébrico

Oxirredução - (Redox)

Sequência:

Metais

Ametais

Carbono

Hidrogênio

Oxigênio

Incógnitas

Equação matemática

Encontre a incógnitas

É baseada na Lei da conservação das massas, também chamada de Lei de Lavoisier, que afirma: "Em uma reação química feita em recipiente fechado, a soma das massas dos reagentes é igual à soma das massas dos produtos."

Método Algébrico

Siga as etapas:

- 1º Coloque incógnitas como coeficientes;
- 2º Multiplique as incógnitas pelos coeficientes;
- 3º Monte uma equação matemática;
- 4º Resolva o sistema e ache os valores das incógnitas.

$$SO_2 + O_2 + H_2O \rightarrow H_2SO_4 + calor$$

$$\mathbf{a} SO_2 + \mathbf{b} O_2 + \mathbf{c} H_2O \rightarrow \mathbf{d} H_2SO_4 + \text{calor}$$

$$1 \text{ SO}_2 + 1/2 \text{ O}_2 + 1 \text{ H}_2\text{O} \rightarrow 1 \text{ H}_2\text{SO}_4 + \text{calor}(X2)$$

$$2 SO_2 + 1 O_2 + 2 H_2O \rightarrow 2 H_2SO_4 + calor$$

$$S \to a = d \to a = 1 / d = 1$$

$$O \rightarrow 2a + 2b + c = 4d \rightarrow$$

$$2 + 2b + 1 = 4 \rightarrow 3 + 2b = 4$$

$$2b = 4-3 \rightarrow 2b = 1 \rightarrow b = 1/2$$

$$H \rightarrow 2c = 2d \rightarrow c = 1$$

Oxirredução - (Redox)

$$Zn_{(s)} + 2H^{+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + H_{2(g)}$$

O Zn foi oxidado +2

H+ foi reduzido

O

Os elétrons foram transferidos do zinco para os íons hidrogênio.

- → Zn foi oxidado, portanto ele é o agente redutor
- → H⁺ foi reduzido, portanto ele é o agente oxidado

Oxirredução - (Redox)

Exemplos:

Foi feito um no quadro;

Um em vídeo, disponível no moodle;

Um na lista de exercícios (lista 2).

Reagente em excesso e reagente limitante

Situação 1

$$2 CO_{(g)} + 2O_{2(g)} \longrightarrow 2 CO_{2(g)} + O_{2(g)}$$

$$+ \cdots + \cdots + \cdots + \cdots$$

Reagente em excesso e reagente limitante

Denomina-se **reagente limitante** o reagente consumido totalmente em uma reação química. Após o consumo do reagente limitante não se pode formar mais produto na reação, ou seja, a reação termina.

Denomina-se **reagente em excesso** o reagente presente numa quantidade superior à necessária para reagir com a quantidade presente do reagente limitante.

Como saber se um reagente está em excesso ou não?

- 1) considerar um dos reagentes como limitante e determinar quanto de produto seria formado;
- 2) repetir o procedimento para o outro reagente;

3) a menor quantidade de produto encontrada corresponderá ao reagente limitante e indicará a quantidade de produto formado.

Exemplo

Foram misturados 40 g de hidrogênio (H_2) com 40 g de oxigênio (O_2) com a finalidade de produzir água, segundo a equação:

$$2 H_{2(g)} + 1 O_{2(g)} \longrightarrow 2 H_2 O_{(v)}$$

Determine:

- a) o reagente limitante;
- b) a massa do produto formado;
- c) a massa do reagente em excesso.

(Dados: massas molares: $H_2 = 2 \text{ g mol}^{-1}$, $O_2 = 32 \text{ g mol}^{-1}$, $H_2O = 18 \text{ g mol}^{-1}$)

Resolução do exemplo

Primeiramente, o $H_{2(g)}$ será considerado o reagente limitante da reação;

então:

$$x = \frac{40 \text{ g. 2. 18 g'}}{2.2 \text{ g'}} = 360 \text{ g de } \mathbf{H_2O_{(v)}}$$

Em seguida, o $O_{2(g)}$ será considerado o reagente limitante da reação;

Qual a menor quantidade de H₂O produzida?

Resolução do exemplo

Assim, temos:

- a) o reagente limitante: $O_{2(g)}$;
- b) a massa de $H_2O_{(v)}$: 45 g;
- c) a massa de $H_{2(g)}$ em excesso:

Finalmente, vamos calcular a massa de $H_{2(g)}$ que será consumida e também calcular o excesso deste gás:

então:

$$x = \frac{40 g \cdot 2 \cdot 2 g'}{32 g'} = 5 g de H_{2(g)}$$

Excesso de
$$\mathbf{H}_{2(g)} = 40g - 5g = 35 \ \mathbf{g}$$
.

Não existe reagente 100% puro!

Os químicos dizem que um reagente é 100% puro, quando esse número está próximo ou maior que 99% de pureza. Em geral, os reagentes apresentam o grau de pureza no rótulo dos frascos.

Grau de impureza = 100% – grau de pureza

A queima completa de etanol gera gás carbônico e água. Ao queimar 500 mL de etanol com 90% de pureza, qual a massa de água e volume de CO₂ gerado (CNTP).

Dados: densidade do etanol 90%: 0,85 g/mL

(UFRGS-RS) O gás hilariante, N2O(g), pode ser obtido pela decomposição térmica do nitrato de amônio, NH4NO3(s), conforme mostra a reação a seguir:

$$NH_4NO_{3(s)} \rightarrow N_2O_{(g)} + 2 H_2O_{(\ell)}$$

Se de 4,0 g do $NH_4NO_{3(s)}$ obtivemos 2,0 g de gás hilariante, podemos prever que a pureza do sal é de ordem:

(Osec-SP) A massa de 28 g de ferro impuro, atacada por ácido clorídrico em excesso, produziu 8,96 litros de hidrogênio, nas CNTP. Sendo as massas atômicas Fe = 56, H = 1 e $C\ell = 35,5$, pode-se dizer que o teor de ferro no material atacado era de:

Rendimento

É uma medida da eficiência de uma reação química. Ele expressa a quantidade de produto obtido em relação à quantidade teoricamente esperada, com base nas proporções estequiométricas dos reagentes.

Rendimento (%) =
(Quantidade real de produto /
Quantidade teórica de produto) × 100

Motivos

ambiente reacional inadequado

reações secundárias

evaporação

pureza dos reagentes

Rendimento

Giraldys, ao produzir amônia, misturou 56 gramas de nitrogênio e 15000 miligramas de hidrogênio, dando um produto com massa de 51 g. Qual o rendimento da reação do analista?

... considere a reação abaixo:

$$N_2 + H_2 --> NH_3$$

resposta: 75% de rendimento