	杭州日	电子科技	大学学生	E考试卷	(A)卷		
考试课程	高等数学 A2		考试日期 2015年		6月21日 成 绩			
课程号	A0714202	教师号	T	任课教师姓名				
考生姓名		学号(8 位)		年级		专业		
題号	- =	=	===		四	五	六	
得分								
得分		colore ()						
471	一、填	【空題 (本	题共 4 小題	1, 每小题 3	分,共	12分)		
平面Π ₁ :x	-y + 2z - 6	=0和平面	$\Pi_2: 2x + y$	+z-5=0 H	为夹角为.	<u> </u>	;	
设L是从	A(1, 1/2) 沿曲:	线 $2y = x^2$	到 B(2,2) 的	孤段,则〔-	$\frac{2x}{v}dx - \frac{x}{v}$	$\frac{1}{\sqrt{2}}dy = $	<u>O</u> ;	
设 D= kr	$ y x^2 + y^2 \le$	(2x}、则	$\int \int (1+2y)dx dx$	$t_{v} = \Pi$				
×2 (13)	<i>y</i> , <i>y</i> –	, / / / ,)	,				
若级数∑	b_ sin nx 在	(0,π) 内的	内和函数为	S(x) = 1 + x	x , 则出	2级数在	x = 3π 处收敛	(
n=	i "	, , ,						
()							
分	二、选技	泽题(本 题	[共8小题,	每小题 3分	分, 共 2	4分)		
设 L 是从 A(I,0)到B(-1,	2)的直线段	ξ ,则 $\int_{\mathcal{L}}(x+$	$y)ds = (\int_{-\infty}^{\infty}$	3)			
(A)√2		(D) 2 /2	(C)2		(D)0.			

(A) $\sum_{n=0}^{\infty} \frac{x^{2n}}{n!}$; (B) $\sum_{n=0}^{\infty} \frac{x^{n+2}}{n!}$; (C) $\sum_{n=0}^{\infty} \frac{x^{2(n+1)}}{n!}$; (D) $\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n-1}}{(2n-1)!}$.

函数z = z(x, y)由方程F(xy, z) = x所确定,其中F(u, v)具有连续的一阶偏导数 z_x+z_y等于(**入**) (A) $\frac{1 - yF_1 - xF_1}{F_2}$; (B) $\frac{1 - yF_2 - xF_2}{F_2}$; (C) 0; (D) 1. 设 L 是圆域 $D: x^2 + y^2 \le -2x$ 的正向周界,则 $\oint (x^3 - y)dx + (x - y^3)dy$ 等于(\bigcap) (B) 0; (C) $\frac{3}{2}\pi$; (D) 2π . (A) -2π ; 设 Σ 为柱面 $x^2+y^2=1$ 及平面 z=0 与 z=1 所图 立体的外侧,则 $\iint z dx dy=$ (B(B) π : 若幂级数 $\sum_{n=1}^{\infty} a_n(x+1)^n$ 在 x=1 处发散,则该级数在 x=-4 处的敛散性为(\bigcap) (A) 绝对收敛; (B) 条件收敛; (C) 发散; (D) 敛散性无法判定. [3分]下列级数中收敛的是(👂) (A) $\sum_{n=1}^{+\infty} \frac{n+1}{n(n+2)}$; (B) $\sum_{n=1}^{+\infty} \frac{3^n}{n2^n}$; (C) $\sum_{n=1}^{+\infty} \frac{1}{n^{q} \sqrt{n}}$; $(D \sum_{n=1}^{\infty} \frac{\sin na}{n^{2}}, \mathcal{H}_{c} | | 10 < a < 1.$ 3. 设f(x,y)是连续函数,则 $\int\limits_{x-x}^{y}dx\int_{x-x}^{2x-x^2}f(x,y)dy$ 的积分次序交换后为($\int\limits_{x-x}^{y}dx\int\limits_{x-x}^{y}dx$) $(\mathsf{A}) \ \int_{\mathsf{I}} dy \int_{2-y}^{2} f(x,y) dx \, ; \qquad (\mathsf{B}) \ \int_{\mathsf{I}} dy \int_{2-y}^{4-y^2} f(x,y) dx \, ;$ (C) $\int dy \int_{1-y^2}^{1-y^2} f(x,y)dx$: (D) $\int dy \int_{1-y}^{2-y} f(x,y)dx$.

3. 计算
$$\int_{D}^{xy} xy dx dy$$
, 其中 D 是由曲线 $y^{2} = x$ 及自线 $y = x - 2$ 所用成的组 x 是 $y^{2} = x$ 是 $y^$

 $\frac{1}{2}$ 2. 判定级数 $\sum_{n=1}^{\infty} \frac{\sin(n^2)}{n\sqrt{n}}$ 的敛散性,并给出理由(若是收敛,要说明是条件收得分

敛还是绝对收敛)。

5. *
$$\int dy \int_{1-y^2}^{1-y^2} e^{x^2+y^2} dx$$
.

$$= \iint e^{y^2} e^{x^2+y^2} dx dy$$

$$= \iint e^{y^2} e^{y^2} dy dy$$

$$= \iint e^{y^2} e^{y^2} dy dy$$

$$= \iint e^{y^2} e^{y^2} dy dy$$

$$= \iint e^{y^2} e^{y^2} dx dy$$

$$= \iint e$$

 $\int_{-6}^{\infty} 6.$ 求级数 $\sum_{n=0}^{\infty} (2n+1)x^n$ 的收敛域和它的和函数.

四、应用题[本题共15分]

2. (10 分) 设曲面 $S: \frac{x^2}{2} + y^2 + \frac{z^2}{4} = 1$ 和平面 $\pi: 2x + 2y + z + 5 = 0$.

(1) 试求曲面S上平行于平面 π 的切平面方程;