Finite Elements for Engineers

Lecture 6: Modeling and Convergence Issues

S. D. Rajan

Case Study 1: Plane Stress Analysis of a Cantilever Beam

Thin Cantilever Beam

$$t = 0.1 in$$

$$E = 30 \times 10^6 \text{ psi}$$

$$V = 0.3$$

$$\nu = 0.3$$

Simple Beam Theory Results

$$\Delta = \frac{PL^3}{3EI} = \frac{(10)(6)^3}{3(30 \times 10^6) \left(\frac{0.1 \times 0.8^3}{12}\right)} = 0.005625 \text{ in} \qquad \sigma = \frac{Mc}{I} = \frac{(10)(6)(0.4)}{\left(\frac{0.1 \times 0.8^3}{12}\right)} = 5625 \text{ psi}$$

$$\sigma = \frac{Mc}{I} = \frac{(10)(6)(0.4)}{\left(\frac{0.1 \times 0.8^3}{12}\right)} = 5625 \ psa$$

Thin Cantilever Beam: FE Model

Thin Cantilever Beam: FE Model

Mesh-1 (51 nodes)

Mesh-2 (165 nodes)

Mesh-3 (567 nodes)

Mesh-4 (2091 nodes)

Mesh-1 (8019 nodes)

Thin Cantilever Beam: Q4 Model

Thin Cantilever Beam: T3 Model

Thin Cantilever Beam: Q8 Model

Comparison of Models

Comparison of Models

Case Study 2: Plane Strain Model of Buried Pipes

72" Pipe Crossing

72" Pipe Crossing

Loading Cases

FE Model: Coarse Mesh

FE Model: Fine Mesh

Load Case 1: Sig1

Load Case 1: Sig3

Load Case 2: Sig1

Load Case 2: Sig3

Failure Criteria

Principal Stress

$$\begin{vmatrix} \sigma_{x} - \sigma & \tau_{xy} & \tau_{zx} \\ \tau_{xy} & \sigma_{y} - \sigma & \tau_{yz} \\ \tau_{zx} & \tau_{yz} & \sigma_{z} - \sigma \end{vmatrix} = 0 \implies \sigma_{1} \le \sigma_{2} \le \sigma_{3}$$

von Mises

$$\sigma_{e} = \frac{1}{\sqrt{2}} \left[\left(\sigma_{x} - \sigma_{y} \right)^{2} + \left(\sigma_{y} - \sigma_{z} \right)^{2} + \left(\sigma_{z} - \sigma_{x} \right)^{2} + 6 \left(\tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{zx}^{2} \right) \right]^{1/2}$$

Failure Criteria

Tresca

$$\tau_{\text{max}} = |\sigma_3 - \sigma_1|$$

Mohr's

$$\frac{\sigma_3}{\sigma_t} - \frac{\sigma_1}{\sigma_c} \ge 1$$

Case Study 3: Global-Local Analysis

Planar Steel Frame

Bending Moment Diagram

Bending Moment Diagram. Load Case 1

Shear Force Diagram

Shear Force Diagram. Load Case 1

Largest Shear 2612.88 lb (Element 4)

GS-USA V8.20

Deflected Shape

Plane Stress: Local Analysis

Plane Stress: Local Analysis

Loading

Plane Stress: Local Analysis

Modeling Project 1-1

For the steel plate with a hole shown in the figure below, determine the following:

- (a) the deformed shape of the hole, and
- (b) maximum von Mises stress.

Modeling Project 1-2-1

Problem 1: For the torque arm shown in Figure 1, determine the following:

- (a) the maximum displacement, and
- (b) maximum von Mises stress.

Figure 1

Modeling Project 1-2-2

Problem 2: A large, flat surface of a steel body is subjected to a line load of 100 lb/in. Consider an enclosure as shown in Fig. 2 and determine the largest deformation of the surface and the maximum von Mises stress.

Figure 2

Modeling Project 1-3-1

Problem 1: A syringe-plunger is shown in Figure 1. Model the glass syringe assuming that the 4 mm hole end is closed under test conditions. Obtain the deformation and stresses and compare the maximum principal stress with the ultimate tensile strength of glass.

Modeling Project 1-3-2

Problem 2: A Belleville spring is a conical disk spring. For the spring shown in Figure 2, determine the axial load required to flatter the spring. Solve the problem using the incremental approach and plot the load-deflection curve as the spring flattens.

Modeling Project 1-3-3

Problem 3: A half-symmetric model of a plain concrete culvert (E=32 $\underline{\text{GPa}}$, v=0.15) is shown in Figure 3. The pavement load is a uniformly distributed load of 5000 N/m². Determine the location and magnitude of the largest and the smallest principal stress.

Figure 3