7.1 判断题图 7.1(a)~7.1(d)所示电路反馈的极性和组态。

解 根据题图容易判断: (a) 电流并联负反馈; (b) 电流串联负反馈; (c) 电压串联负反馈; (d) 电压并联负反馈。

7.2 电路如题图 7.2 所示。

- (1)为使电路构成负反馈,试标出运算放大器的同相端与反相端;
- (2)指出该电路的反馈类型。
- 解(1)上负下正;(2)容易判断该电路为:电压串联负反馈。
- 7.3 反馈放大电路如题图 7.3 所示。说明电路中有哪些反馈(包括级间反馈和本级反馈)? 各具什么作用?

解 R_{F1} 上得电流并联负反馈, R_{F2} 上的电压串联负反馈等。提高放大倍数的稳定性,减小输出曲线的非线性失真等。

7.4 试判断题图 7.4 各电路中反馈的极性和组态。

题图 7.4

解 根据题图容易判断:(a)电压并联负反馈;(b)电压并联负反馈、正反馈;(c)电压并联负反馈;(d)电流串联负反馈;(e)正反馈;(f)电流并联负反馈。

7.5 题图 7.5 为两个反馈放大电路。试指出在这两个电路中,哪些元器件组成了放大电路?哪些组成了反馈通路?是正反馈还是负反馈?设放大器 A_1 、

 A_2 为理想集成运放,试写出电压放大倍数 u_0/u_i 的表达式。

解(a) A₁等组成放大电路, A₂等组成反馈通路, 为负反馈。

根据虚短和虚断, 由图可得

$$\frac{u_{1}-u_{-}}{R_{1}}=\frac{u_{-}-u_{-}}{R_{3}}, \quad u_{-}=u_{+}=0$$

$$u'_{+} = u_{o}$$
, $u'_{-} = u'_{+}$

所以,
$$A_{\rm u} = -\frac{R_3}{R_1}$$

(b) A_2 等组成放大电路, A_1 等组成反馈通路,为正反馈。

根据虚短和虚断, 由图可得

$$u_{\scriptscriptstyle -} = u_{\scriptscriptstyle +} = u_{\scriptscriptstyle i}$$

$$\frac{u_{+} - u_{-}^{'}}{R_{3}} = \frac{u_{-}^{'} - u_{0}}{R_{2}}, \quad u_{+}^{'} = u_{-}^{'} = 0$$

所以,
$$A_{\rm u} = -\frac{R_2}{R_3}$$

7.6 说明题图 7.6 所示的两个电路中有哪些反馈支路,它们属于什么类型的反馈。写出图(a)电路在深度反馈条件下得差模电压放大倍数的近似表达式。

解图(a)中有通过 R_F 构成的电压并联负反馈,图(b)中有通过 R_F 构成的正反馈。根据电压并联负反馈有,

$$\frac{u_{\rm i1} - u_{-}}{R_{\rm B}} = \frac{u_{-} - u_{\rm o1}}{R_{\rm F}} \; , \quad \frac{u_{\rm o2} - u_{-}}{R_{\rm F}} = \frac{u_{-} - u_{\rm i2}}{R_{\rm B}} \label{eq:RB}$$

$$u_{\scriptscriptstyle +}=u_{\scriptscriptstyle -}=0$$

$$u_{o} = u_{o1} - u_{o2}$$
, $u_{i} = u_{i1} - u_{i2}$

所以,
$$A_{\rm ud} = -\frac{R_{\rm F}}{R_{\rm B}}$$

7.7 判断题图 7.7 所示电路的反馈类型,并写出反馈系数与反馈网络元件的关系式。

解 题图属于电压串联负反馈。 $F_{\rm u}=1+\frac{R_{\rm l}R_{\rm E}}{R_{\rm 2}(R_{\rm D}+R_{\rm E})}$

7.8 设题图 7.8 所示的运放是理想的,试问电路中存在何种极性和组态的级间 反馈? 推导出 $A_{\rm uf} = u_{\rm o}/u_{\rm i}$ 的表达式。

解 题图属于电压串联负反馈。

由题图,可得

$$\frac{u_{03} - u_{-3}}{R_8} = \frac{u_{-3}}{R_9} , \quad u_{+3} = u_0'$$

$$\frac{u_{\rm o3}-u_{\rm +1}}{R_7}=\frac{u_{\rm +1}}{R_{\rm l}}\;,\quad u_{\rm -1}=u_{\rm i}$$

$$\frac{u_{o} - u_{o}'}{R_{5}} = \frac{u_{o}'}{R_{6}}$$

解得,

$$A_{\text{uf}} = (1 + \frac{R_7}{R_1})(1 + \frac{R_5}{R_6})(\frac{R_9}{R_8 + R_9})$$

- 7.9 分析题图 7.9 所示的电路。
- (1) 估算静态 $(u_i = 0)$ 时的 T_2 管电流 I_{C2} ,设 $U_{BE1} = U_{BE2} = 0.6$ 、电阻 R_{B1} 和 $R_{R2}(1k\Omega)$ 上得压降可忽略;
- (2) $\Re R_{C2} = 10 \text{k}\Omega$, $U_{BE3} = -0.68 \text{V}$, $\beta_3 = 100$, $\Re I_{C3}$;
- (3)如果 $u_i = 0$ V时, $u_o > 0$ V,现要求 u_o 也为 0,问 R_{C2} 应如何调节(增大或减小)?
- (4) 若要求输入电阻高、输出电阻低,图中反馈的接线应做出哪些变动?
- (5) 若满足深度负反馈条件,则接线变动后电压放大倍数 u_{o}/u_{i} 是否也有变化?估计出其前后的大致数值。

题图 7.9

解(1)差动电路静态工作时,

$$V_{\rm E1Q} = V_{\rm E2Q} = -U_{\rm BEQ} = -0.6 {
m V}$$

$$I_{\text{EE}} = \frac{V_{\text{EQ}} - (-15)}{R_{\text{E}}} = 2\text{mA}$$

由差动放大电路的对称性知,

$$I_{\text{C1Q}} = I_{\text{C2Q}} = \frac{1}{2}I_{\text{EE}} = 1\text{mA}$$

(2)由已知条件,有

$$V_{\text{C2O}} = 15\text{V} - I_{\text{C2O}}R_{\text{C2}} = 5\text{V}$$

$$V_{\rm E3O} = V_{\rm C2O} - U_{\rm BE3} = 5.68 \text{V}$$

所以,
$$I_{\text{C3Q}} = I_{\text{E3Q}} = \frac{15 - V_{\text{E3Q}}}{R_{\text{E3}}} = 3.1 \text{mA}$$

- (3) 依题意, u_0 减小, V_{C3Q} 减小, $I_{C3Q} = I_{E3Q}$ 减小, V_{E3Q} 增大, V_{C2Q} 增大,而 I_{C2Q} 不变,所以,要减小 I_{C2Q} 来补偿。
- (4) 由图知, 应该由"电压并联负反馈"转为"电压串联负反馈", $R_{\rm F}$ 由 ${\bf b}_{\rm 1}$ 接至 ${\bf b}_{\rm 2}$, ${\bf c}_{\rm 3}$ 接至 ${\bf c}_{\rm 1}$
- (5) 变动前为电压并联负反馈,则

$$\frac{u_{\rm i}}{R_{\rm B1}} = \frac{-u_{\rm o}}{R_{\rm F}}$$

所以,
$$A_{\rm uf} = -10$$

变动后位电压串联负反馈,则由差动电路的对称性有,

$$\frac{u_{\rm i}}{R_{\rm B2}} = \frac{u_{\rm o} - u_{\rm i}}{R_{\rm F}}$$

所以,
$$A_{\rm uf} = 11$$

7. 10 当负反馈放大电路的开环放大倍数|A|变化25%时,若要求闭环放大倍数 |A| 变化|A| ,为 100,且其变化不超过1%,问|A| 至少应选多大?这时反馈系数|E| 又应选多大?

$$\frac{1}{1+|A||F|}$$
. 25

且有
$$|A_f| = \frac{|A|}{1+|A||F|}$$
 190

所以,|A| = 2500,|F| = 0.0096

7.11 已知负反馈放大电路的开环增益 $\overset{.}{A}$ 为 10^5 ,若要求获得 100 倍的闭环增益,问其反馈系数 $\overset{.}{F}$ 应取多大?如果由于制造误差,其开环增益 $\overset{.}{A}$ 减小为 10^3 ,则此时的闭环增益 $\overset{.}{A_f}$ 变为多少?相应的闭环增益的相对变化量 $\frac{\Delta A_f}{A_f}$ 是多

少?

解 由
$$|\dot{A}_{f}| = \frac{|\dot{A}|}{1 + |\dot{A}||\dot{F}|}$$
 190,得

$$|F| = 0.00999$$

· |*A*|减小为10³,则

$$|\dot{A}_{f}| = \frac{|\dot{A}|}{1 + |\dot{A}||\dot{F}|}$$
 ^0.99

相应的闭环增益的相对变化量 $\frac{\Delta | A_{\rm f}|}{|A_{\rm f}|}$ $\frac{90.99-100}{100} = -9.01\%$

7.12 放大电路如题图 7.12 所示。

- (1)为稳定电路的输出电压 u_0 ,应怎样引级间反馈?标明反馈路径,并写出深度负反馈条件下闭环增益 A_{nr} 的表达式。
- (2) 为稳定电路的输出电流,应怎样引级间反馈?标明反馈路径,并写出深度负反馈条件下闭环增益 $A_{\rm nf}$ 的表达式。
- 解(1)引入电压负反馈, R_f 接在 T_3 射极和 T_1 射极之间。
- (2)引入电流负反馈, R,接在T,集电极和T,基极之间。
- 7.13 在题图 7.13 所示电路中:
- (1) 计算在未接入 T_3 且 $u_i = 0$ 时, T_1 管的 U_{CIO} 和 U_{EIO} 。
- (2) 计算当时 $u_i = 5 \text{mV}$, u_{C1} 、 u_{C2} 各是多少? 给定 $r_{be} = 10.8 \text{k}\Omega$ 。
- (3) 如接入 T_3 并通过 c_3 经 R_F 反馈到 b_2 ,试说明 b_3 应与 c_1 还是 c_2 相连才能实现负反馈。
- (4) 在第(3) 小题的情况下,若 $|AF\rangle$,试计算 $R_{\rm F}$ 应是多少才能使引入负反馈后的电压放大倍数 $A_{\rm uf}=10$ 。

解(1)由题意,计算静态工作点。 根据差动电路的对称性,有

$$I_{\text{C1Q}} = I_{\text{C2Q}} = \frac{1}{2} \times 0.5 \text{mA} = 0.25 \text{mA}$$

所以,
$$U_{\text{CIQ}} = V_{\text{CC}} - I_{\text{CIQ}} R_{\text{CI}} = 7V$$

$$U_{\text{E1O}} = U_{\text{E2O}} = -U_{\text{BEO}} = -0.7 \text{V}$$

(2) 微变等效电路如图 7.13(1) 所示。

图 7.13(1)

$$u_{\rm i} = 5 {
m V \, B}^{\dagger}$$
 , $i_{\rm bl} = \frac{\frac{u_{\rm i}}{2}}{1 + 10.8 {
m k} \Omega} = 0.212 {
m \mu A}$

$$u_{R_{C1}} = u_{R_{C2}} = \beta i_{b1} R_{C1} = 0.424 \text{V}$$

$$u_{\rm C1} = U_{\rm C1Q} - u_{R_{\rm C1}} = 6.576 \text{V}$$

$$u_{\rm C2} = U_{\rm C2Q} + u_{R_{\rm C2}} = 7.424 \text{V}$$

- (3) b_3 接 c_1
- (4) 由差动电路的对称性知,

$$\frac{u_{\rm i}}{1{\rm k}\Omega} = \frac{u_{\rm o} - u_{\rm i}}{R_{\rm F}}$$

要使
$$A_{\rm uf} = \frac{u_{\rm o}}{u_{\rm i}} = 10$$

则
$$R_{\rm F} = 9$$
k Ω

7.14 由差动放大电路和运算放大器组成的反馈放大电路如题图 7.14 所示。回答下列问题:

- (1) 当时 $u_{\rm i}=0$, $U_{\rm Cl}=U_{\rm C2}=$? (设 $U_{\rm BE}=0.7{
 m V}$)
- (2) 要使由 u_0 到 b_2 的反馈为电压串联负反馈,则 c_1 和 c_2 应分别接至运放的哪个输入端(在题图 7. 14 中+、-号标出)?
- (3) 引入电压串联负反馈后,闭环电压放大倍数 $A_{\rm uf} = u_{\rm o}/u_{\rm i}$ 是多少?设 A 为理想运放。
- (4) 若要引入电压并联负反馈,则 \mathbf{c}_1 、 \mathbf{c}_2 又应分别接至运放的哪个输入端(在题图 7.14 中标出)? R_F 应接到何处?若 R_F 、 R_{B1} 、 R_{B2} 数值不变,则 A_{uf} =? 解(1) u_i = 0 时,分析电路的静态工作点。

$$U_{R_2} = \frac{R_2}{R_1 + R_2} (V_{CC} + V_{EE}) = 6V$$

$$I_{\rm EE} = \frac{U_{R_2} - 0.7}{R_{\rm E3}} = 1 \text{mA}$$

根据差动放大电路的对称性,有

$$I_{\text{C1Q}} = I_{\text{C2Q}} = \frac{1}{2}I_{\text{EE}} = 0.5\text{mA}$$

所以,

$$U_{\text{C1Q}} = U_{\text{C2Q}} = V_{\text{CC}} - I_{\text{EE}} R_{\text{C1}} = 5 \text{V}$$

- (2) 根据电压串联负反馈的特点知, c1接反相端, c2接同相端。
- (3)根据差动电路的对称性,知 $u_{b_2} = u_i$

根据虚短和虚断的特性,有 $\frac{u_{o}-u_{b_{2}}}{R_{F}}=\frac{u_{b_{2}}}{R_{B2}}$

解得,
$$A_{\rm uf} = -\frac{R_{\rm F}}{R_{\rm B2}} = 10$$

(4)根据电压并联负反馈的特点知,c1接同相端,c2接反相端, R_F 接 b_1 。

$$\frac{u_{\rm i}}{R_{\rm B1}} \approx \frac{-u_{\rm o}}{R_{\rm F}}$$

解得,
$$A_{\rm uf} = -9$$

7.15 负反馈放大电路如题图 7.15 所示,含有理想运放。试问电路具有何种类型的反馈。并求出深度负反馈时闭环增益 u_{0}/u_{i} 的表达式。

题图 7.15

解 电路经 R_4 、 R_5 构成电压串联负反馈。根据虚短和虚断的特性有,

$$\frac{u_{o} - u_{+}}{R_{1}} = \frac{u_{+}}{R_{2}}, \quad \frac{u_{o} - u_{-}}{R_{5}} = \frac{u_{-}}{R_{4}}$$

根据差动放大电路的对称性,可知, $u_o' = u_i$

解得,

$$\frac{u_{\rm o}}{u_{\rm i}} = \frac{(R_1 + R_2)R_4}{(R_4 + R_5)R_2}$$