Exercícios - 3

Teorema da sobreposição, transformação de fontes, Teoremas de Thévenin e Norton

(adaptados de Engineering Circuit Analysis, Hayt, Kemmerly, Durbin, 8ª Edição, 2012)

- **1- a)** Usando o teorema da sobreposição determine, em percentagem, o contributo da fonte de tensão do circuito da fig. 1, para a corrente *i*.
- **b)** Que valor deveria ter a fonte de corrente para que o seu contributo para a corrente *i* fosse igual ao da fonte de tensão.

- **2- a)** Usando o teorema da sobreposição calcule o contributo individual de cada uma das fontes para a corrente i_x .
- **b)** Calcule o valor que a fonte de corrente da direita deveria ter para que o seu contributo para i_x fosse igual ao da outra fonte.

3- Com base no teorema da sobreposição, determine o valor que a fonte de tensão à esquerda do circuito da fig.3 deve ter, para que a corrente i_I duplique em relação ao seu valor original.

4- Calcule *i* no circuito da fig.4. Comece por simplificar o circuito usando transformações de fontes.

5- Calcule o equivalente de Thévenin do circuito da fig. 5.

- **6-** Suponha uma resistência R_L ligada entre os terminais do circuito da fig.6.
- a) Para que valor de R_L é que a potência dissipada nesta resistência é máxima?
- **b)** Qual é o valor da corrente que flúi entre os terminais do circuito para o caso em que $R_L=0$.

7- Determine o equivalente de Norton do circuito da fig. 7.

- **8- a)** No circuito da fig.8, calcule a potência dissipada pela resistência de 3.3Ω .
- **b)** Suponha que pretende substituir a resistência de 3.3Ω por outra que absorva a máxima potência do circuito. Que valor deverá ter esta nova resistência.

9- Considere uma resistência R_L ligada entre os terminais do circuito da fig.9. Para que valores de R_L é que a potência dissipada nesta resistência tem o valor de 50mW.

Nota: Comece por obter o equivalente de Thévenin do circuito dado.

10- Calcule o equivalente de Thévenin entre os terminais a e b do circuito da fig. 10.

Respostas

1- a) 1.1%; **b)** (1/9)A;

2- a) -1.75A, -1.04A; **b)** 8.4A;

3- -5.33A;

4- -0.58μA;

5- $v_{th} = 32.9V$, $R_{th} = 327.9\Omega$;

6- a) 1.77Ω; **b)** 0.36A;

7- $i_{th} = -0.12A$, $R_{th} = 1k\Omega$;

8- a) 0.58W; **b)** 10Ω;

9- 1.46Ω e 15.3Ω ;

10- $v_{th} = 0V$, $R_{th} = 13.2\Omega$.