Chapter 12. Electrodynamics and Relativity

12.1	The Sp	ecial Theory of Relativity	477
	12.1.1	Einstein's Postulates	477
	12.1.2	The Geometry of Relativity	483
		The Lorentz Transformations	493
		The Structure of Spacetime	500
12.2	Relativ	istic Mechanics	507
	12.2.1	Proper Time and Proper Velocity	507
	12.2.2	Relativistic Energy and Momentum	509
	12.2.3	Relativistic Kinematics	511
	12.2.4	Relativistic Dynamics	516
12.3		istic Electrodynamics	522
	12.3.1	Magnetism as a Relativistic Phenomenon	522
		How the Fields Transform	525
	12.3.3	The Field Tensor	535
	12.3.4	Electrodynamics in Tensor Notation	537
	12.3.5	Relativistic Potentials	541

Does the principle of relativity apply to the laws of electrodynamics?

12.2 Relativistic Mechanics

12.2.1 Proper Time and Proper Velocity

proper time (τ): (The word suggests a mistranslation of the French *propre*, meaning "own.")

- → The elapsed time between two events as measured by a clock that passes through both events.
- → The proper time depends not only on the events but also on the motion of the clock between the events.

(i)
$$\bar{x} = \gamma(x - vt)$$
,

(ii)
$$\bar{y} = y$$
,

(iii)
$$\bar{z} = z$$

(i)
$$\bar{x} = \gamma(x - vt)$$
,
(ii) $\bar{y} = y$,
(iii) $\bar{z} = z$,
(iv) $\bar{t} = \gamma \left(t - \frac{v}{c^2}x\right)$
(iv) $\bar{t} = \gamma \left(t - \frac{v}{c^2}x\right)$
(iv) $\bar{t} = \gamma \left(\bar{t} + \frac{v}{c^2}\bar{x}\right)$.

$$(i') x = \gamma(\bar{x} + v\bar{t}),$$

$$(ii')$$
 $y = \bar{y}$

(iii')
$$z = \bar{z}$$

(iv')
$$t = \gamma \left(\bar{t} + \frac{v}{c^2}\bar{x}\right)$$
.

$$d\overline{t} = \gamma \left(1 - \frac{u}{c^2} \frac{dx}{dt} \right) dt = \gamma \left(1 - \frac{u^2}{c^2} \right) dt = \frac{1}{\gamma} dt$$

$$dt = \gamma \left(1 - \frac{u}{c^2} \frac{d\overline{x}}{d\overline{t}} \right) d\overline{t} = \gamma \left(1 - \frac{u^2}{c^2} \right) d\overline{t} = \frac{1}{\gamma} d\overline{t}$$

$$d\tau = \sqrt{1 - u^2/c^2} \, dt$$

- \rightarrow In some cases τ may be a more relevant or useful quantity than t.
- → For one thing, proper time is invariant, whereas "ordinary" time depends on the particular reference frame you have in mind.

Proper Time and Proper Velocity

Ordinary velocity (u) \Rightarrow $\mathbf{u} = \frac{d\mathbf{l}}{dt}$: distance measured on the ground, over time measured in the ground

Proper velocity $(\eta) \rightarrow \eta \equiv \frac{d\mathbf{l}}{d\tau}$: distance (*I*) measured on S, over the proper time (hybrid combination)

$$d\tau = \sqrt{1 - u^2/c^2} \, dt$$

$$\eta = \frac{1}{\sqrt{1 - u^2/c^2}} \mathbf{u}$$
: proper velocity 4-vector (4-velocity)

$$\rightarrow \eta^{\mu} \equiv \frac{dx^{\mu}}{d\tau}$$

whose zeroth component is
$$\eta^0 = \frac{dx^0}{d\tau} = c\frac{dt}{d\tau} = \frac{c}{\sqrt{1-u^2/c^2}}$$

Note: the particle velocities under Lorentz transformations

 υ : \overline{S} frame velocity with respect to S frame

$$u = \frac{dx}{dt}$$
: velocity of the *particle* with respect to *S* frame

$$\overline{u} = \frac{d\overline{x}}{d\overline{t}}$$
 : velocity of the *particle* with respect to \overline{S} frame

$$\bar{u}_{x} = \frac{d\bar{x}}{d\bar{t}} = \frac{u_{x} - v}{(1 - vu_{x}/c^{2})},$$

$$\bar{u}_{y} = \frac{d\bar{y}}{d\bar{t}} = \frac{u_{y}}{\gamma(1 - vu_{x}/c^{2})},$$

$$\bar{u}_{z} = \frac{d\bar{z}}{d\bar{t}} = \frac{u_{z}}{\gamma(1 - vu_{x}/c^{2})}.$$

$$\Rightarrow \text{ The transformation rule for ordinary velocities}$$

$$\Rightarrow \text{ It is extremely cumbersome!}$$

$$\eta = \frac{dl}{d\tau}$$
: proper velocity of the *particle*: $\eta = \frac{1}{\sqrt{1 - u^2/c^2}} \mathbf{u}$
 $\eta = \frac{dx}{d\overline{t}}$
 $\overline{\eta} = \frac{d\overline{x}}{dt}$

$$\bar{\eta}^0 = \gamma(\eta^0 - \beta\eta^1),$$

$$\bar{\eta}^1 = \gamma(\eta^1 - \beta\eta^0),$$
 Proper velocity has all enormous advantage over ordinary velocity:
$$\bar{\eta}^2 = \eta^2,$$

$$\bar{\eta}^3 = \eta^3.$$
 \Rightarrow it transforms simply, when you go from one inertial system to another.

- \rightarrow it transforms simply, when you go from one inertial

12.2.2 Relativistic Energy and Momentum $\eta = \frac{1}{\sqrt{1 - u^2/c^2}} \mathbf{u}$

$$\eta = \frac{1}{\sqrt{1 - u^2/c^2}} \mathbf{u}$$

Relativistic Momentum:

$$\mathbf{p} \equiv m\mathbf{\eta} = \frac{m\mathbf{u}}{\sqrt{1 - u^2/c^2}} \longrightarrow p^{\mu} \equiv m\eta^{\mu}$$
 (*m*: rest mass)

$$m_{\rm rel} \equiv \frac{m}{\sqrt{1 - u^2/c^2}}$$
 : Einstein called **relativistic mass**

→ Relativistic momentum is conserved!

(Prove: Prob. 12.29)

The conservation law of momentum would be inconsistent with the principle of relativity if we were to define momentum as mu.

Problem 12.2: In inertial frame S, particle A (mass m_A , velocity u_A) hits particle B (mass m_B , velocity u_B). In the course of the collision some mass rubs off A and onto B. and we are left with particles C (mass m_C , velocity u_C) and D (mass m_D , velocity u_D).

(a) Prove that momentum is also conserved in inertial frame S-bar, which moves with velocity v relative to S.

If we use Galileo's velocity addition rule of $v_{AC} = v_{AB} + v_{BC}$

Assuming mass is conserved, $(m_A + m_B) = (m_C + m_D)$, it follows that momentum is conserved.

$$m_A \mathbf{u}_A + m_B \mathbf{u}_B = m_C \mathbf{u}_C + m_D \mathbf{u}_D;$$
 $\mathbf{u}_i = \bar{\mathbf{u}}_i + \mathbf{v}.$

$$m_A(\bar{\mathbf{u}}_A + \mathbf{v}) + m_B(\bar{\mathbf{u}}_B + \mathbf{v}) = m_C(\bar{\mathbf{u}}_C + \mathbf{v}) + m_D(\bar{\mathbf{u}}_D + \mathbf{v})$$

$$m_A \bar{\mathbf{u}}_A + m_B \bar{\mathbf{u}}_B + (m_A + m_B) \mathbf{v} = m_C \bar{\mathbf{u}}_C + m_D \bar{\mathbf{u}}_D + (m_C + m_D) \mathbf{v}$$
Assuming mass is conserved, $(m_A + m_B) = (m_C + m_D),$

$$m_A \bar{\mathbf{u}}_A + m_B \bar{\mathbf{u}}_B = m_C \bar{\mathbf{u}}_C + m_D \bar{\mathbf{u}}_D, \text{ so momentum is conserved in } \bar{\mathcal{S}}.$$

Relativistic Momentum conservation

$$\mathbf{p} \equiv m\mathbf{\eta} = \frac{m\mathbf{u}}{\sqrt{1 - u^2/c^2}}$$

(Prob. 12.29)

(a) The conservation law of momentum would be inconsistent with the principle of relativity if we were to define momentum as $p = m\mathbf{u}$, but with the (correct) Einstein velocity addition rule.

(a)
$$m_A u_A + m_B u_B = m_C u_C + m_D u_D;$$
 $u_i = \frac{\bar{u}_i + v}{1 + (\bar{u}_i v/c^2)}.$
$$m_A \frac{\bar{u}_A + v}{1 + (\bar{u}_A v/c^2)} + m_B \frac{\bar{u}_B + v}{1 + (\bar{u}_B v/c^2)} = m_C \frac{\bar{u}_C + v}{1 + (\bar{u}_C v/c^2)} + m_D \frac{\bar{u}_D + v}{1 + (\bar{u}_D v/c^2)}.$$

This time, because the denominators are all different, we cannot conclude that $m_A \bar{u}_A + m_B \bar{u}_B = m_C \bar{u}_C + m_D \bar{u}_D$.

(b) Now do the same using the correct definition, $p = m\eta$.

(b)
$$m_A \eta_A + m_B \eta_B = m_C \eta_C + m_D \eta_D$$
; $\eta_i = \gamma (\bar{\eta}_i + \beta \bar{\eta}_i^0)$. (The inverse Lorentz transformation.) $m_A \gamma (\bar{\eta}_A + \beta \bar{\eta}_A^0) + m_B \gamma (\bar{\eta}_B + \beta \bar{\eta}_B^0) = m_C \gamma (\bar{\eta}_C + \beta \bar{\eta}_C^0) + m_D \gamma (\bar{\eta}_D + \beta \bar{\eta}_D^0)$.

The gamma's cancel:

$$m_A \bar{\eta}_A + m_B \bar{\eta}_B + \beta (m_A \bar{\eta}_A^0 + m_B \bar{\eta}_B^0) = m_C \bar{\eta}_C + m_D \bar{\eta}_D + \beta (m_C \bar{\eta}_C^0 + m_D \bar{\eta}_D^0).$$

But
$$m_i \eta_i^0 = p_i^0 = E_i/c$$
, so if energy is conserved in \bar{S} ($\bar{E}_A + \bar{E}_B = \bar{E}_C + \bar{E}_D$),

$$m_A \bar{\eta}_A + m_B \bar{\eta}_B = m_C \bar{\eta}_C + m_D \bar{\eta}_D.$$

Relativistic Energy

Relativistic energy:
$$E \equiv \frac{mc^2}{\sqrt{1 - u^2/c^2}}$$

→ Relativistic energy is conserved!

$$E_{\rm rest} \equiv mc^2 \rightarrow {\rm Rest\ energy}\,(u=0)$$

→ The relativistic energy is nonzero even when the object is stationary!

$$E_{\rm kin} \equiv E - mc^2 = mc^2 \left(\frac{1}{\sqrt{1 - u^2/c^2}} - 1 \right) = \frac{1}{2} mu^2 + \frac{3}{8} \frac{mu^4}{c^2} + \dots$$
 : kinetic energy

Note:
$$p^0 = m\eta^0 = \frac{mc}{\sqrt{1 - u^2/c^2}} = \frac{E}{c}$$

The scalar product of p^{μ} with itself: $p^{\mu}p_{\mu} = -(p^0)^2 + (\mathbf{p} \cdot \mathbf{p}) = -m^2c^2$

This result is extremely useful, for it enables you to calculate E (if you know p), or p (knowing E), without ever having to determine the velocity.

Total relativistic energy and momentum are conserved.

Relativistic Momentum:
$$\mathbf{p} \equiv m \mathbf{\eta} = \frac{m \mathbf{u}}{\sqrt{1 - u^2/c^2}} = m_{rel} \mathbf{u}$$

Relativistic energy:
$$E \equiv \frac{mc^2}{\sqrt{1 - u^2/c^2}} = m_{rel}c^2$$

$$E^2 - p^2 c^2 = m^2 c^4$$

Note the distinction between an invariant quantity (same value in all inertial systems) and a **conserved** quantity (same value before and after some process).

- → rest mass is invariant, but not conserved;
- **energy** is conserved but not invariant;
- → electric charge is both conserved and invariant;
- → velocity is neither conserved *nor* invariant.

(Example 12.7)

Two lumps of clay, each of (rest) mass m, collide head-on at (3/5)c. They stick together. What is the mass (M) of the composite lump?

$$\bigcirc \xrightarrow{3/5 c} \xrightarrow{3/5 c} \bigcirc$$

The energy of each lump:
$$\frac{mc^2}{\sqrt{1-(3/5)^2}} = \frac{5}{4}mc^2$$

Conservation energy: $\frac{5}{4}mc^2 + \frac{5}{4}mc^2 = Mc^2$.

$$M = \frac{5}{2}m.$$

M is greater than the sum of the initial masses! Mass was not conserved.

Kinetic energy was converted into rest energy,

→ the mass increased.

12.2.3 Relativistic Kinematics

$$\mathbf{p} \equiv m\mathbf{\eta} = \frac{m\mathbf{u}}{\sqrt{1 - u^2/c^2}}$$
 $E \equiv \frac{mc^2}{\sqrt{1 - u^2/c^2}}$ $E^2 - p^2c^2 = m^2c^4$

$$E \equiv \frac{mc^2}{\sqrt{1 - u^2/c^2}}$$

$$E^2 - p^2 c^2 = m^2 c^4$$

For a massless particle (m = 0): photon

- \rightarrow If u = c,
 - → then (zero) over (zero), leaving p and E indeterminate.
 - → therefore, that a massless particle could carry energy and momentum at the speed of light.
 - $\rightarrow E = pc$
- → What distinguishes a photon with a *lot* of energy from one with very little? "they just have the same mass (zero) and the same speed (c)!"
 - → Relativity offers no answer to this question.
 - \rightarrow Quantum mechanics does, according to the Planck formula, E = hv

(Example 12.8) A pion at rest decays into a muon and a neutrino. Find the energy of the outgoing muon,

in terms of the two masses, m_{π} and m_{μ} (assume m_{ν} = 0).

$$E_{\text{before}} = m_{\pi}c^{2}$$

$$E_{\text{after}} = E_{\mu} + E_{\nu}$$

$$E_{\mu} + E_{\nu} = m_{\pi}c^{2}$$

$$\mathbf{p}_{\text{before}} = 0$$

$$\mathbf{p}_{\text{after}} = \mathbf{p}_{\mu} + \mathbf{p}_{\nu}$$

$$\mathbf{p}_{\nu} = -\mathbf{p}_{\mu}$$

$$\mathbf{p}_{\mathrm{before}} = 0$$
 $\mathbf{p}_{\mathrm{after}} = \mathbf{p}_{\mu} + \mathbf{p}_{\nu}$
 $\mathbf{p}_{\nu} = -\mathbf{p}_{\mu}$

$$\begin{aligned} \mathbf{p}_{v} &= -\mathbf{p}_{\mu} \\ E_{v} &= |\mathbf{p}_{v}|c \\ |\mathbf{p}_{\mu}| &= \sqrt{E_{\mu}^{2} - m_{\mu}^{2}c^{4}}/c \end{aligned} \qquad E_{\mu} + \sqrt{E_{\mu}^{2} - m_{\mu}^{2}c^{4}} = m_{\pi}c^{2} \qquad E_{\mu} = \frac{(m_{\pi}^{2} + m_{\mu}^{2})c^{2}}{2m_{\pi}}$$

$$E_{\mu} + \sqrt{E_{\mu}^2 - m_{\mu}^2 c^4} = m_{\pi} c^2$$

$$E_{\mu} = \frac{(m_{\pi}^2 + m_{\pi}^2)^2}{2m_{\pi}^2}$$

 $\blacksquare \pi$

(Example 12.9) Compton scattering: $\lambda = \lambda_0 + \frac{h}{mc}(1 - \cos\theta)$

Conservation of momentum:

vertical
$$p_e \sin \phi = p_p \sin \theta$$
 $p_p = E/c$ \longrightarrow $\sin \phi = \frac{E}{p_e c} \sin \theta$

horizontal
$$\frac{E_0}{c} = p_p \cos \theta + p_e \cos \phi = \frac{E}{c} \cos \theta + p_e \sqrt{1 - \left(\frac{E}{p_e c} \sin \theta\right)^2}$$
$$\longrightarrow p_e^2 c^2 = (E_0 - E \cos \theta)^2 + E^2 \sin^2 \theta = E_0^2 - 2E_0 E \cos \theta + E^2$$

Conservation of energy:

$$E_0 + mc^2 = E + E_e = E + \sqrt{m^2c^4 + p_e^2c^2} = E + \sqrt{m^2c^4 + E_0^2 - 2E_0E\cos\theta + E^2}$$

$$E = \frac{1}{(1 - \cos \theta) / mc^2 + (1/E_0)} \longrightarrow E = hv = \frac{hc}{\lambda} \qquad \lambda = \lambda_0 + \frac{h}{mc} (1 - \cos \theta)$$

(h/mc) is called the **Compton wavelength** of the electron

12.2.4 Relativistic Dynamics

Newton's first law is built into the principle of relativity.

Newton's second law:
$$\mathbf{F} = \frac{d\mathbf{p}}{dt}$$
 \leftarrow $\mathbf{p} \equiv m\eta = \frac{m\mathbf{u}}{\sqrt{1 - u^2/c^2}}$

Newton's third law does not, in general, extend to the relativistic domain.

- → the third law is incompatible with the relativity of simultaneity:
- → If the two objects in question are separated in space, a moving observer will report the reaction force at different time, therefore, the third law is *violated*.

work-energy theorem: the net work done on a particle equals the increase in its kinetic energy

$$W \equiv \int \mathbf{F} \cdot d\mathbf{l} = \int \frac{d\mathbf{p}}{dt} \cdot d\mathbf{l} = \int \frac{d\mathbf{p}}{dt} \cdot \frac{d\mathbf{l}}{dt} dt = \int \frac{d\mathbf{p}}{dt} \cdot \mathbf{u} dt$$

$$\frac{d\mathbf{p}}{dt} \cdot \mathbf{n} = \frac{d}{dt} \left(\frac{m\mathbf{u}}{\sqrt{1 - u^2/c^2}} \right) \cdot \mathbf{n} = \frac{m\mathbf{u}}{(1 - u^2/c^2)^{3/2}} \cdot \frac{d\mathbf{u}}{dt} = \frac{d}{dt} \left(\frac{mc^2}{\sqrt{1 - u^2/c^2}} \right) = \frac{dE}{dt}$$

$$W = \int \frac{dE}{dt} dt = E_{\text{final}} - E_{\text{initial}}$$

Relativistic Dynamics: *Newton's second* law $\mathbf{F} = \frac{d\mathbf{p}}{dt}$ $\mathbf{p} = m\eta = \frac{m\mathbf{u}}{\sqrt{1 - u^2/c^2}}$

$$\mathbf{F} = \frac{d\mathbf{p}}{dt} \quad \mathbf{p} \equiv m\mathbf{\eta} = \frac{m\mathbf{u}}{\sqrt{1 - u^2/c^2}}$$

Example 12.10 Motion under a constant force. A particle of mass m is subject to a constant force F. If it starts from rest at the origin, at time t = 0, find its position x(t), as a function of time.

Classically, it is a parabola function $x(t) = (F/2m)t^2$.

In relativistic,

$$\frac{dp}{dt} = F \implies p = Ft + \text{constant.}$$
but since $p = 0$ at $t = 0$,
$$p = \frac{mu}{\sqrt{1 - u^2/c^2}} = Ft$$

$$u = \frac{(F/m)t}{\sqrt{1 + (Ft/mc)^2}}$$

$$x(t) = \frac{F}{m} \int_0^t \frac{t'}{\sqrt{1 + (Ft'/mc)^2}} dt'$$

$$= \frac{mc^2}{F} \sqrt{1 + (Ft'/mc)^2} \Big|_0^t$$

$$= \frac{mc^2}{F} \left[\sqrt{1 + (Ft/mc)^2} - 1 \right] \implies \text{hyperbolic motion}$$

Relativistic Dynamics: Newton's Third law

$$\mathbf{F} = \frac{d\mathbf{p}}{dt} \quad \mathbf{p} \equiv m\mathbf{\eta} = \frac{m\mathbf{u}}{\sqrt{1 - u^2/c^2}}$$

The third law is incompatible with the relativity of simultaneity:

- → If the two objects in question are separated in space, a moving observer will report the reaction force at different time, therefore, the third law is *violated*.
- → Only in the case of contact interactions, where the two forces are applied at the *same physical point* (and in the trivial case where the forces are *constant*), can the third law be retained.

Consider the transformation of force F between S and S-bar frames with velocity v in x:

Because **F** is the derivative of (relativistic) momentum with respect to *ordinary* time,

$$\begin{split} \tilde{F}_{y} &= \frac{d\,\bar{p}_{y}}{d\,\bar{t}} \longrightarrow = \frac{d\,p_{y}}{\gamma\,d\,t - \frac{\gamma\beta}{c}\,d\,x} = \frac{d\,p_{y}/d\,t}{\gamma\left(1 - \frac{\beta}{c}\frac{d\,x}{d\,t}\right)} \longrightarrow \tilde{F}_{y} = \frac{F_{y}}{\gamma\left(1 - \beta u_{x}/c\right)} \\ &\tilde{\eta}^{0} = \gamma(\eta^{0} - \beta\eta^{1}), &\text{(i) } \bar{x} = \gamma(x - vt), \\ &\tilde{\eta}^{1} = \gamma(\eta^{1} - \beta\eta^{0}), &\text{(ii) } \bar{y} = y, \\ &\tilde{\eta}^{2} = \eta^{2}, &\text{(iii) } \bar{z} = z, \\ &\tilde{\eta}^{3} = \eta^{3}. &\text{(iv) } \bar{t} = \gamma\left(t - \frac{v}{c^{2}}x\right) \end{split}$$

Similarly for the Z component:

$$\rightarrow \bar{F}_z = \frac{F_z}{\gamma (1 - \beta u_x/c)}$$

The *x* component is even worse:

$$\bar{F}_{x} = \frac{d\bar{p}_{x}}{d\bar{t}} = \frac{\gamma dp_{x} - \gamma \beta dp^{0}}{\gamma dt - \frac{\gamma \beta}{c} dx} = \frac{\frac{dp_{x}}{dt} - \beta \frac{dp^{0}}{dt}}{1 - \frac{\beta}{c} \frac{dx}{dt}} = \frac{F_{x} - \frac{\beta}{c} \left(\frac{dE}{dt}\right)}{1 - \beta u_{x}/c} \longrightarrow \bar{F}_{x} = \frac{F_{x} - \beta (\mathbf{u} \cdot \mathbf{F})/c}{1 - \beta u_{x}/c}$$

Relativistic Dynamics: Newton's Third law

$$\mathbf{F} = \frac{d\mathbf{p}}{dt} \quad \mathbf{p} \equiv m\mathbf{\eta} = \frac{m\mathbf{u}}{\sqrt{1 - u^2/c^2}}$$

The third law is incompatible with the relativity of simultaneity:

Only in one special case are these equations reasonably tractable:

If the particle is (instantaneously) at rest in S, for example, so that if $\mathbf{u} = 0$,

$$\bar{\mathbf{F}}_{\perp} = \frac{1}{\gamma} \mathbf{F}_{\perp}, \quad \bar{F}_{\parallel} = F_{\parallel} \Rightarrow \text{ the component of } F \text{ parallel to the motion of } S \text{ is unchanged,}$$
Perpendicular components are divided by γ .

We could avoid the bad transformation behavior of **F** by introducing **a "proper" force**, analogous to proper velocity, which would be **the derivative of momentum with respect to** *proper* **time**:

→ Minkowski force: the derivative of momentum with respect to *proper* time:

$$K^{\mu} \equiv \frac{dp^{\mu}}{d\tau}$$
 The spatial components $\Rightarrow K = \left(\frac{dt}{d\tau}\right)\frac{d\mathbf{p}}{dt} = \frac{1}{\sqrt{1 - u^2/c^2}}\mathbf{F}$
The zeroth component $\Rightarrow K^0 = \frac{dp^0}{d\tau} = \frac{1}{c}\frac{dE}{d\tau}$

Minkowski force $K^{\mu} \equiv \frac{dp^{\mu}}{dz}$

$$K^{\mu} \equiv \frac{dp^{\mu}}{d\tau}$$

When we wish to generalize some classical force law, such as Lorentz's force, to the relativistic domain, the question arises: "Does the classical formula correspond to the *ordinary* force or to the Minkowski force?"

$$\mathbf{F} = q(\mathbf{E} + \mathbf{u} \times \mathbf{B})$$
? $\mathbf{F} = \frac{d\mathbf{p}}{dt}$ $\mathbf{p} = m\mathbf{\eta} = \frac{m\mathbf{u}}{\sqrt{1 - u^2/c^2}}$

$$\mathbf{K} = q(\mathbf{E} + \mathbf{u} \times \mathbf{B})?$$
 $\mathbf{K} = \left(\frac{dt}{d\tau}\right) \frac{d\mathbf{p}}{dt} = \frac{1}{\sqrt{1 - u^2/c^2}} \mathbf{F}$

By defining the Field tensor:
$$F^{\mu\nu} = \left\{ \begin{array}{cccc} 0 & E_x/c & E_y/c & E_z/c \\ -E_x/c & 0 & B_z & -B_y \\ -E_y/c & -B_z & 0 & B_x \\ -E_z/c & B_y & -B_x & 0 \end{array} \right\}$$

$$K^{\mu} = q \eta_{\nu} F^{\mu \nu}$$

$$\mathbf{K} = \frac{q}{\sqrt{1 - u^2/c^2}} \left[\mathbf{E} + (\mathbf{u} \times \mathbf{B}) \right]$$

$$\longrightarrow$$
 F = q [**E** + (**u** × **B**)]