Decision Tree – Classification & Regression Tree

Learn How to Use Decision Tree for Predictive Modeling

Contents

- 1. Classification and Regression Trees
- 2. ID3 Algorithm
 - i. Entropy
 - ii. Information Gain
- 3. CART Algorithm
 - i. Gini Impurity
- 4. Package "rpart" in R
- 5. Classification Tree Using Gini Impurity
- 6. Classification Tree Using Information Gain
- 7. Regression Tree in Package "rpart"

Entropy

- Entropy measures the homogeneity of a sample or the degree of uncertainty. It is used as a parameter for checking the amount of uncertainty associated with a set of probabilities.
- Entropy lies between 0 and 1

 If the sample is completely homogeneous the entropy is 0 and if the sample is equally divided it has entropy of 1
- Entropy can be of two types, for each category and at the variable level
- Entropy of a category is calculated as:

$$- P1 * log_2(P1) - P2 * log_2(P2)$$

where,

P1 is the proportion of class 1

P2 is the proportion of class 2

Entropy of a Category

Let us consider survey data from three cities depicting shopper's preferred brand

City	Brand A Voters	Brand B Voters	Number of Voters	% of votes for Brand A	
Delhi	90	310	400	22.5%	77.5%
Chennai	10	90	100	10%	90%
Mumbai	100	100	200	50%	50%

Entropy for each city is calculated as:

Delhi:
$$-0.225 * \log_2(0.225) - 0.775 * \log_2(0.775) = 0.76919$$

Chennai:
$$-0.1 * log_2(0.1) - 0.9 * log_2(0.9) = 0.46900$$

Mumbai:
$$-0.5 * log_2(0.5) - 0.5 * log_2(0.5) = 1$$

Entropy at the Variable Level

- Entropy at the variable level can be derived by adding weighted averages of all classes
- Weights are the proportion of respondents in each class to total respondents
 In the example under consideration,

Weights for the categories are

Delhi: 400/700 = 0.5714

Chennai: 100/700 = 0.1428

Mumbai: 200/700 = 0.2857

Entropy at the variable level is

0.57 * 0.76919 + 0.14 * 0.46900 + 0.29 * 1 = 0.79225

Information Gain

- Information Gain is based on the decrease in entropy after a dataset is split on an attribute
- Constructing a decision tree is about finding attribute that returns the highest information gain

Information Gain =

Entropy of Sample (Dependent Variable)

Average Entropy of Any of the Independent Variable

• Information gain can be interpreted as ability of reducing the uncertainty (Entropy) and hence increase predictability

Information Gain

City	Brand A Voters	Brand B Voters	Number of Voters	% of votes for Brand A	% of votes for Brand B
Delhi	90	310	400	22.5%	77.5%
Chennai	10		100	10%	90%
Mumbai				50%	50%

Entropy for complete sample is calculated as follows:

P1 = (Total Brand A Voters/Total Voters)

P2 = (Total Brand B Voters/Total Voters)

Entropy =
$$-(0.286) * \log_2(0.286) - (0.714) * \log_2(0.714) = \mathbf{0.86312}$$

Information Gain

Entropy at the variable level (Weighted average)

$$0.86312 - 0.79225 = 0.070868$$

Information Gain and ID3 Algorithm

 Let us now go back to the basic ID3 algorithm; Step 1 of which is 'Identify the Best Attribute'

- Information Gain value is used to determine which attribute is the "best" – the attribute with most information gain is chosen
- Information gain for a variable is high when that variable has the low entropy at the variable level (Weighted average)
- Low entropy for a variable implies the classification based on that attribute is fairly homogenous, hence this attribute is selected as the first best attribute
- The same process is repeated till no attributes remain

CART Algorithm

- Classification and Regression Tree (CART) algorithm generates a binary decision tree, by splitting a node into two branches
- Root node contains the complete sample (training data)
- The splits are univariate each split depends on the value of only one predictor variable

The algorithm can be divided into three steps:

Gini impurity is used as the splitting criteria in CART

CART Algorithm

 As the name suggests, this algorithm can be used for both classification and regression purposes. Splitting criteria for the dependent variable depends on its format:

	Categorical	Continuous
Dependent Variable	Gini Impurity, Twoing Criterion and Ordered Twoing Criterion (When it is ordinal)	Least Squares Deviation for the impurity measures

• Splits are determined as follows:

	Nominal	Ordinal or Continuous
Independent Variable		

Gini Impurity

• **Gini Impurity** is a measure of how often a randomly chosen element from the set would be incorrectly labeled if it was randomly labeled according to the distribution of labels in the subset

Gini (t) =
$$1 - \sum_{i=0}^{c-1} [p(i|t)]^2$$

where

p(i|t) : Fraction of records belonging to class i at node t

- It reaches its minimum (zero) when all cases in the node fall into a single target category
- Attribute with the smaller Gini index is considered for the split

Package "rpart" in R

- Package "rpart" uses methods which implement many ideas found in the CART algorithm proposed by Breiman, Friedman, Olshen and Stone.
- Recursive splitting in "rpart" is based on the concept of impurity and the package offers two methods for quantifying impurity:
 - Entropy (Also called Information Gain)
 - Gini impurity

The algorithm works by making the best possible choice at each particular stage, without any consideration of whether those choices remain optimal in future stages. That is, it makes a locally optimal decision at each stage. Such a choice may turn out to be sub-optimal in the overall scheme of things. The algorithm does not find a globally optimal tree.

Case Study – Predicting Loan Defaulters

Background

• The bank possesses demographic and transactional data of its loan customers. If the bank has a robust model to predict defaulters it can undertake better resource allocation.

Objective

 To predict whether the customer applying for the loan will be a defaulter

Available Information

- Sample size is 700
- Age group, Years at current address, Years at current employer, Debt to Income Ratio, Credit Card Debts, Other Debts are the independent variables
- Defaulter (=1 if defaulter, 0 otherwise) is the dependent variable

Data Snapshot

SN AGE EMPLOY ADDRESS DEBTINC CREDDEBT OTHDEBT DEFAULTER						
Column	Description	Type	Measurement	Possible Values		
SN	Serial Number	Numeric	-	-		
AGE	Age Groups	Categorical	1(<28 years),2(28- 40 years),3(>40 years)	3		
EMPLOY	Number of years customer working at current employer	Continuou s	-	Positive value		
ADDRESS	Number of years customer staying at current address	Continuou s	-	Positive value		
DEBTINC	Debt to Income Ratio	Continuou s	-	Positive value		
CREDDEBT	Credit to Debit Ratio	Continuou S	-	Positive value		
OTHDEBT	Other Debt	Continuou	_	Positive value		

Package "rpart" in R

```
# Install & load Package "rpart"
# Import Data
install.packages("rpart")
library(rpart)
         The package name stands for Recursive Partitioning and Regression Trees.
         It can generate both classification and regression trees in R.
         The package uses CART algorithm by default and can implement the algorithm
          using information gain or Gini impurity as the splitting criteria.
bankloan<-read.csv("BANK LOAN.csv",header=T)</pre>
str(bankloan)
# Convert Defaulter & Age variables to factor
bankloan$DEFAULTER<-as.factor(bankloan$DEFAULTER)</pre>
bankloan$AGE<-as.factor(bankloan$AGE)</pre>
```

Classification Tree Using Gini Impurity

Classification Tree in "rpart" Using Gini Impurity

Classification Tree Using Gini Impurity

Classification Tree in "rpart" Using Gini Impurity

```
par(mfrow=c(1,1),xpd=NA)
plot(rpart_c)
text(rpart_c,splits=T,use.n=T,all=T,cex=0.75)
```

- □ par() is used to ensure the plot fits with correct margins.
- □ **xpd=NA** clips all plotting to the device region.
- □ **plot()** produces an unlabelled plot.
- □ **text()** command is used for adding labels.
- □ **splits=**, **use.n=**, **all=** are logical arguments which tell R which values to show in the plot.
- □ **cex**= controls text proportion.

Classification Tree Interpretation

Interpretation:

- Due to a large number of continuous predictors, a tree with several nodes and branches is generated.
- Tree starts with all 700 observations. 517 are non-defaulters (0) and the remaining 183 are defaulters (1).
- DEBTINC is the first split variable, left branch is <14.75 and right branch is >14.75. 542/700 have DEBTINC<14.75.
- EMPLOY is the second split on left branch, which further divides 542 obs. into 446 non-defaulters (0) and the remaining 96 are defaulters (1).
- The algorithm progresses till no further variable split is left.

Classification Tree Using Information Gain

Classification Tree in "rpart" Using Information Gain

Classification Tree Using Information Gain

Interpretation:

- Tree starts with all 700 observations. 517 are non-defaulters (0) and the remaining 183 are defaulters (1).
- DEBTINC is the first split variable, left branch is <12.45 and right branch is >12.45.
- 2 477/700 have DEBTINC<12.45 which further divides into 403 non-defaulters (0) and the remaining 74 are defaulters (1).

Case Study – Modeling Motor Insurance Claims

Background

 A car insurance company collects range of information from their customers at the time of buying and claiming insurance. The company wishes to check if any of the information gathered can be used to model and predict the claim amounts

Objective

 To model motor insurance claim amount based on vehicle related information collected at the time of registering and claiming insurance

Available Information

- Sample size is 1000
- Independent Variables: Vehicle Information Vehicle Age, Engine Capacity, Length and Weight of the Vehicle
- Dependent Variable: Claim Amount

Data Snapshot

Motor Claims

	[Independent v	ariables De		pendent variable		
	vehage	CC	Length	Weight	cla	imamt	
	4	1495	4250 3495 3675	1023	72000 72000 50400		
	2	1061 1405		875			
	2			980			
w	7	1298	4090	930		9960	
/ations	2	1495	4250	1023		06800	
<u>a</u>	1	1086	3565	854	0:	9592.8	
Columns Descriptio		cription	Type	Measureme	ent	Possi valu	
vehage		Age of the vehicle at the time of claim		Years		positive values	
CC	Engine	Engine capacity		CC		positive values	
Length	Length o	Length of the vehicle		mm		positive values	
Weight	Weight o	Weight of the vehicle		kg		positive	values
claimamt	Claim	Claim amount		INR	INR pos		values

Regression Tree in Package "rpart"

```
# Regression Tree in "rpart"
# Since we intend to plot a regression tree, new data having
# continuous dependent variable is imported.
motor<-read.csv("Motor Claims.csv",header=T)</pre>
str(motor)
rpart r<-rpart(claimamt~vehage+CC+Length+Weight,</pre>
                data=motor, method="anova",
                parms = list(split="information"))
         method="anova" ensures R generates a
         regression tree in rpart().
par(mfrow--c(1)1), Apa-NA)
plot(rpart r)
text(rpart r,splits=T,use.n=T,all=T,cex=0.75)
```

Regression Tree in Package "rpart"

Interpretation:

Tree starts with all 1000 observations, 5.981e+04 is the average claim amount of these observations.

8.998e+04

- vehage is the first split variable, left branch is >=3.5 and right branch is <3.5.
- 411 have vehage >= 3.5 which has 4.545e+04 average claim amount.
- The process continues till there is no variable left for splitting.

Get an Edge!

Simple plot of an rpart object isn't the most efficient in terms of understanding and interpretation. Use package "rpart.plot" for a better visualisation of rpart trees.

```
install.packages("rpart.plot")
library(rpart.plot)
rpart.plot(rpart_r,type=1,extra=1,branch=0,cex=0.8)
```

type= the function gives five possible types of plots. 0 is default, 1 labels all nodes, not just leaves

extra= gives extra information about the nodes. 1 displays the number of observations that fall in the node

branch= controls the shape of the branch lines. 0 plots V shaped branches

cex= controls text proportion

Get an Edge!

Quick Recap

In this session, we learnt about two major splitting criteria in decision tree, Information Gain and Gini Impurity:

Decision Tree Algorithms

- ID3 uses top-down, greedy search method to build a classification decision tree
- CART algorithm generates a binary decision tree, by splitting a node into two branches. Root node contains the complete sample.

Entropy, Information Gain and Gini Impurity

- Entropy measures the homogeneity of a sample
- Information Gain is based on the decrease in entropy after a dataset is split on an attribute
- Information Gain= Entropy of Sample Average Entropy of Any of the Independent Variable
- Gini Impurity measures how often a randomly chosen element from the set would be incorrectly labeled

CART in R

- rpart() in package "rpart" generates CART trees
- Use **method=** to specify whether to generate classification or regression tree