

Meta Learning with Relational Information for Short Sequences

Yujia Xie, Haoming Jiang, Feng Liu, Tuo Zhao, Hongyuan Zha Georgia Institute of Technology

Introduction

- Event sequences important and informative
- The timestamps of tweets of a twitter user
- The job hopping history of a person
- Short sequences widely appeared
 - The event sequences are short in nature
 - Job hopping histories
- The observation window is narrow
 - The criminal incidents after a regulation is published
- Short sequences hard to infer
 - MLE for each sequence
 - Their lengths are insufficient for reliable inference.
 - Treat the collection of short sequences as i.i.d.
 - Highly biased against certain individuals.

Background - Hawkes Process

• A Hawkes processes is a doubly stochastic temporal point process $\mathcal{H}(\theta)$ with conditional intensity function $\lambda = \lambda(t;\theta, {\pmb{ au}})$ defined as

$$\lambda(t; \theta, \boldsymbol{\tau}) = \mu + \sum_{\tau^{(m)} < t} \delta \omega e^{-\omega(t - \tau^{(m)})},$$

where $\theta = \{\mu, \delta, \omega\}$,

 μ is the base intensity,

 $au = \{ au^{(1)}, au^{(2)}, \cdots, au^{(M)}\}$ are the timestamps of the events occurring in a time interval $[0, t_{\mathrm{end}}]$.

- Self-exciting
 - The past events always increase the chance of arrivals of new events
- Widely used in many areas
 - behavior analysis
 - financial analysis
 - social network analysis

Background - Meta Learning

- Meta Learning
- Given a set of tasks $\Gamma = \{\mathcal{T}_1, \mathcal{T}_2, \cdots, \mathcal{T}_N\}$
- Each task contains a very small amount of data
- Model-Agnostic Meta Learning (MAML)
- Train a common model for all tasks,

$$\min_{\theta} \sum_{\mathcal{T}_i \in \Gamma} \mathcal{F}_{\mathcal{T}_i}(\theta - \eta \nabla_{\theta} \mathcal{F}_{\mathcal{T}_i}(\theta))$$

where $\mathcal{F}_{\mathcal{T}_i}$ is the loss function of task \mathcal{T}_i , θ is the parameter of the common model, η is the step size.

– Find the common model that is expected to produce maximally effective behavior on that task after performing update $\theta - \eta \mathcal{D}(\mathcal{F}_{\mathcal{T}_i}, \theta)$.

- Variants to alleviate the computational burden:
 - First Order MAML (FOMAML)
 - Reptile

HARMLESS – HAwkes Relational Meta LEarning for Short Sequence

- Given: a collection of sequences $T = \{ \boldsymbol{\tau}_1, \boldsymbol{\tau}_2 \cdots, \boldsymbol{\tau}_N \}$ extra relational information, described as a graph with adjacency matrix as \boldsymbol{Y} .
- Key idea: identify and incorporate the relational information between tasks
 - Social graphs often exhibit community patterns
 - Each subject may belong to multiple communities and thus have multiple identities
 - \to Assign each subject i a sum-to-one **identity proportion vector** $\pi_i \in [0,1]^K$, where K is the number of communities
- Identity determines the user's event sequence Mixture of Hawkes process model

For the k-th identity of subject i, we adopt Hawkes process $\mathcal{H}(\widetilde{\theta}_k^{(i)})$ to model the timestamps of the associated events. The likelihood for the i-th sequence τ_i is

$$p(\boldsymbol{\tau}_i) = \sum_{k=1}^K \pi_{i,k} \mathcal{L}_i(\widetilde{\theta}_k^{(i)}). \tag{1}$$

- Identity determines the user's connection to other users Mixed Membership stochastic Blockmodel (MMB)
 - $-z_{i\rightarrow j}$: the identity of subject i when subject i approaches subject j
 - $-z_{i\leftarrow j}$: the identity of subject j when j is approached by i
 - $-z_{i\rightarrow j}^T \mathbf{B} z_{i\leftarrow j}$: the probability of whether subject i and j have a connection

- Generative process:
- For each node i,
- Draw a K dimensional identity proportion vector $\pi_i \sim \mathsf{Dirichlet}(\alpha)$.
- Sample the *i*-th sequence τ_i from the mixture of Hawkes processes in (1).
- For each pair of nodes i and j,
 - Draw identity indicator for the initiator $z_{i \rightarrow j} \sim \mathsf{Categorical}(\pi_i)$
 - Draw identity indicator for the receiver $z_{i\leftarrow j} \sim \mathsf{Categorical}(\pi_j)$
 - Sample whether there is an edge between i and j, $Y_{ij} \sim \text{Bernoulli}(z_{i \to j}^T \mathbf{B} z_{i \leftarrow j})$.

Here, the observed variables are τ_i and Y_{ij} . The parameters are α , $\widetilde{\theta}_k^{(i)}$, and \boldsymbol{B} . The latent variables are π_i , z_i , $z_{i\to j}$ and $z_{i\leftarrow j}$.

• Meta inference for θ and $\widetilde{\theta}$. Instead of specifying that $\widetilde{\theta}_k^{(i)}$ is sampled from a prior distribution, we adapt the k-th common model $\mathcal{H}(\theta_k)$ to sequence i using MAML-type updates, $\widetilde{\theta}_k^{(i)} = \theta_k - \eta \mathcal{D}(\log \mathcal{L}_i, \theta_k)$.

The gradient descent step on the log-likelihood of θ can then be written as

$$\theta_k \leftarrow \theta_k + \eta_{\theta} \nabla_{\theta_k} \left(\sum_{i=1}^N \gamma_{i,k} \log \mathcal{L}_i(\theta_k - \eta \mathcal{D}(\log \mathcal{L}_i, \theta_k)) \right).$$

Experiment – Synthetic Graphs

- ullet Data generation: 50 Nodes, 6 Communities, S: Sparsity of the Graph, K_0 : Number of Specified Communities
- Experiment: Community Assignment

Experiment: Likelihood

Experiment – Real Graphs

Dataset	911-Calls	LinkedIn	MathOverflow	StackOverflow
MLE-Sep	4.0030 ± 0.3763	0.8419 ± 0.0251	0.5043 ± 0.0657	0.2862 ± 0.0177
MLE-Com	4.5111 ± 0.3192	0.8768 ± 0.0028	1.7805 ± 0.0345	1.5594 ± 0.0134
DMHP	4.4812 ± 0.3434	0.8348 ± 0.0030	1.5394 ± 0.0347	N ackslash A
MTL	4.4621 ± 0.3173	0.9270 ± 0.0027	1.7225 ± 0.0336	1.4910 ± 0.0089
HARMLESS (MAML)	4.5208 ± 0.3256	1.4070 ± 0.0105	1.8563 ± 0.0345	1.3886 ± 0.0082
HARMLESS (FOMAML)	4.6362 ± 0.3241	1.0129 ± 0.004	1.8344 ± 0.0348	1.5988 ± 0.0083
HARMLESS (Reptile)	4.4929 ± 0.3503	0.9540 ± 0.0082	1.8663 ± 0.0342	1.6017 ± 0.0097

Experiment – Ablation Study

Method	Log-Likelihood
HARMLESS (MAML)	1.4070 ± 0.0105
HARMLESS (FOMAML)	1.0129 ± 0.0042
HARMLESS (Reptile)	0.9540 ± 0.0082
Remove inner heterogeneity $(K = 3)$	0.9405 ± 0.0032
Remove inner heterogeneity $(K=5)$	0.9392 ± 0.0032
Remove grouping (MAML)	0.9432 ± 0.0031
Remove grouping (FOMAML)	0.9376 ± 0.0031
Remove grouping (Reptile)	0.9455 ± 0.0041
Remove graph (MAML)	0.9507 ± 0.0032
Remove graph (FOMAML)	0.9446 ± 0.0032
Remove graph (Reptile)	0.9489 ± 0.0072

Reference

- HAWKES, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes. *Biometrika*fg, 58 83?90.
- FINN, C., ABBEEL, P. and LEVINE, S. (2017). Modelagnostic meta-learning for fast adaptation of deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org.
- AIROLDI, E. M., BLEI, D. M., FIENBERG, S. E. and XING, E. P. (2008). Mixed membership stochastic blockmodels. Journal of machine learning research, 9 1981?2014.