

华中科技大学 2022~2023 学年第一学期 "线性代数"课程考试试卷(A卷)

	考试》	方式: _ 系): _	闭卷	考试日期:	专业	3.02.17 ′班级:	_考试时长:	_150_分钟
	学	号:_			姓	名:		
2	2. 存	A为n阶 在二阶矩	要丰满、不可逆矩阵, 百逆矩阵, 拒阵A,使得	$16分$)(判断是要使用划线、打 $P(x)$ 为非 0 多項 $A^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.	勾、打	「叉等错i 则P(A) -	(古式绘献品	铅笔规范填
	. 若	1的门户件	A 满足 $A^2 =$	O,则A的秩r(A)最大	为 2.		
2	. 设/	1.X = U;	式 有 零 解 , 则	则非齐次线性方程	星组AX	K = b有哨	一解.	
200	5. 设 A 为 n 阶方阵,则它一定可以表达成两个可逆矩阵之和. 6. 设 $A = [\alpha_1, \alpha_2,, \alpha_n] = [\beta_1, \beta_2,, \beta_n]^T$ 为 n 阶 方 阵,则由 n 维列向量							
	. 设A	ι ₂ ,,α, l, B均为	n生成的问道 实对称正定	= $[\beta_1, \beta_2, \dots, \beta_n]$ 量空间与由 n 维列 矩阵,则 AB 正定 定,并且 $A^2 = I$,	向量β	$_{1},\beta_{2},\cdots,\beta_{n}$	n生成的向量	量空间相同.
	1、 填	空题(4分×5=20	分)(请将答案	填写在	E答题卡扎	6定位置上)	
1.	己知	$A = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 3 \end{bmatrix}$	0 1 0 3 1 0 4 2	『齐次线性方程组	AX =	0的解空	间N(A) =	
2.	设A)	bn阶可:	逆阵, A =	= 2, A*是A的伴随	拒阵	010	A*7 ⁻¹ _	
3.	给定]	R3中两	组基 $\{\alpha_1, \alpha_2,$	α_3 }和 $\{\beta_1, \beta_2, \beta_3\}$ α_3 ,则 $\alpha = 2\beta_1 - 1$	<i>,若8</i>	$a = \alpha_{\bullet} - 1$	a B - 2 ~	
4.	若A =	$= \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, 矩阵 <i>B</i> =	A^3-I ,则 B 的特	寺征值	为		
5.	己知二	二次型f 值范围	(x_1, x_2, x_3) :	$= x_1^2 + 4x_2^2 + 4x_3^2$	$\frac{2}{3} + 2a$	$x_1x_2 - 2$	$x_1x_3 + 4x_2x_3$	₃正定,则

三、(10分)(请将答案填写在答题卡指定位置上)

计算
$$n(n \ge 1)$$
阶行列式 $D_n = \begin{vmatrix} 3 & -2 \\ -1 & 3 & -2 \\ & -1 & 3 & \ddots \\ & & \ddots & \ddots & -2 \\ & & & -1 & 3 \end{vmatrix}$.

四、(10分)(请将答案填写在答题卡指定位置上) 设A为n阶矩阵, α_1 为n维非 0 列向量. 若

$$A\alpha_1 = 3\alpha_1, A\alpha_2 = 3\alpha_2 + 2\alpha_1, A\alpha_3 = 3\alpha_3 + 2\alpha_2,$$

- (1) $\alpha_1,\alpha_2,\alpha_3$ 能否由 $A\alpha_1,A\alpha_2,A\alpha_3$ 线性表出?请说明理由.
- (2) 证明: α₁, α₂, α₃线性无关.

五、(12分) (请将答案填写在答题卡指定位置上)

讨论a, b取何值时线性方程组 $\begin{cases} ax_1+x_2+x_3=4\\ x_1+bx_2+x_3=3\\ x_1+2bx_2+x_3=4 \end{cases}$ 有解,并求解该方程组.

六、(12分) (请将答案填写在答题卡指定位置上) 设三阶实矩阵A使得

$$A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ -3 \\ -3 \end{bmatrix}, \ A \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \ A \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ -4 \end{bmatrix}$$

- (1) 给出A的特征值.
- (2) 计算A²⁰²² 2.

七、(10分)(请将答案填写在答题卡指定位置上)

已知实二次型 $f(x_1,x_2,x_3)=ax_1^2+2x_2^2+3x_3^2+2x_1x_2$ 通过正交变换 X = CY 化为标准形 $by_1^2 + 3y_2^2 + y_3^2$,求参数 a, b 及正交矩阵 C.

八、(10分)(请将答案填写在答题卡指定位置上) 设A为n阶实矩阵,向量 α , $\beta \in \mathbb{R}^n$,

- (1)讨论 $\alpha\beta^T$ 的秩.
- (2)证明:存在 $a,b \in \mathbb{R}$,使得行列式

 $|A + s\alpha\beta^T| = a + bs$

对任意的实数s∈R都成立.