

Project 2: Survival data

Introduction

This project studies the effect of **azidothymidine** (AZT) on the development of **AIDS** in patients with HIV.

Analysis of Binary Dataset

Binary dataset from a randomized study with two groups (AZT=yes vs. AZT=no) and two possible outcomes (AIDS=yes vs. AIDS=no)

AZT	AIDS	Total
Yes	25	170
No	44	168

AIDS	AZT	Control	Total
Yes	x=25	y=44	t=69
No	m-x=145	n-y=124	N-t=269
Total	m=170	n=168	N=338

Binomial Distribution

We fit binomial models on the full population and separately on the two groups and find that they are different.

Chi-squared test on proportions p-value: 0.012

Model of two binomial proportions

Using the log-odds ratio as difference parameter:

$$\beta_1 = log(\frac{\frac{prop_{AZT}}{1 - prop_{AZT}}}{\frac{prop_{ct}}{1 - prop_{ct}}}) \tag{1}$$

We built a model that accounts for the groups and optimized its likelihood function:

$$L(\beta_0, \beta_1) = e^{\beta_0 x} e^{\beta_1 (x+y)} (1 + e^{\beta_0 + \beta_1})^{-m} (1 + e^{\beta_1})^{-\beta_1}$$
 (2)

Finding MLEs at:

Parameter	MLE	SE
$eta_{ extsf{0}}$	-1.0361	0.1754
eta_{1}	-0.7218	0.2787

Model of two binomial proportions

We calculated the 95% Wald confidence intervals for this model:

Parameter Lower CI		MLE	Upper CI	
β_0	-1.38	-1.0361	-0.69	
β_1	-1.27	-0.7218	-0.18	

And also checked the interval in the profile likelihood plot:

The interval does not include 0, thus the groups are different.

Logistic Regression Model

We fit a General Linear Model with a logistic link function:

$$\log(L(\beta_0, \beta_1)) = \log \frac{y_i}{1 - y_i} = \beta_0 + x_i \beta_1 \tag{3}$$

And find parameter estimates and their CIs at:

Parameter	Estimate	SE	95% CI
β_0	-1.0361	0.1755	[-1.39; -0.70]
β_1	-0.7218	0.2787	[-1.27; -0.18]

Odds ratio

We calculate the odds ratio of the effect on AZT on AIDS:

$$OR = \frac{x/(m-x)}{y/(n-y)} = 0.4859$$
 (4)

And find its confidence intervals:

$$CI_{OR} = [0.2815, 0.8387]$$
 (5)

The interval does not contain 1, thus the groups have different odds of developing AIDS. More specifically, the chances of AZT-treated HIV patients developing AIDS is 28-84% of those in the control.

Hypothesis Testing

$$H_0: \beta_1 = 0 \quad H_1: \beta_1 \neq 0$$

Likelihood ratio test

$$P\left(\chi_1^2 > -2\log\frac{L(0)}{L(\beta_1)}\right) = 0.0085$$

Wald test

$$P\left(z > \left| \frac{\beta_1}{SE_{\beta_1}} \right| \right) = 0.0096$$

Score test

$$P\left(\chi_1^2 > S(\beta)^T I(\beta)^{-1} S(\beta)\right) = 0.0088$$

Analysis of survival time dataset

Survival time dataset from a double-blind, placebo-controlled trial with two groups (old treatment vs. new treatment)

Variable	Meaning	
id	Identification Code	
time	Time to AIDS diagnosis or Death	
event	Indicator for AIDS or Death	
tx	Treatment indicator	
sex	Sex	
raceth	Race/Ethnicity	
karnof	Karnofsky Performance Scale	
cd4	Baseline CD4 count	
age	Age at Enrollment	

Descriptive Statistics

- 1151 Participants (577 in control and 574 in treatment group)
- 96 Patients with 0.083 proportion died or got AIDS in both groups
- 33 Patients with 0.058 proportion died or got AIDS in treatment group
- 63 Patients with 0.109 proportion died or got AIDS in control group
- Median follow-up time in control group was 251 days
- Median follow-up time in treatment group was 263 days

An important feature of this dataset is that some data is censored: we consider the probability density function for non-censored data and the cumulative probability function for the censored data.

Kaplan-Meier Survival Functions

Log-rank test shows curves are different with p-value 0.001

Cumulative Incidence Functions

Cumulative incidence functions

Exponential Models 1 + 2 - Groups together and separated

We fitted exponential models to the full population and accounting for groups and optimized their likelihood functions:

$$L_1(\beta) = \frac{\beta e^{-\beta x_1}}{1 - e^{\beta x_0}} \tag{6}$$

$$L(\beta_0, \beta_1) = L_1(\beta_0)L_1(\beta_1) \tag{7}$$

To find the following MLEs and AICs:

Model	Parameters (1/rate)	AIC
Groups together	2759.8	1715
Groups separated	2052.1, 4017.2	1706

Likelihood ratio test proves a significant difference between the two, with p-value = 0.0008

Exponential Model 3 - Single parameter for treatment effect

We also build a model where a single parameter represents the difference between the groups (the treatment effect):

$$L(\beta_0, \beta_1) = L_1(\beta_0)L_1(\beta_0 + \beta_1)$$
 (8)

And find MLEs and Wald CIs:

Parameter	Estimate	Sd. error	95% CI
$eta_{f 0}$	2047.5	257.96	
eta_{1}	2072.2	762.13	[578.5; 3566.0]

With an AIC of 1706, the likelihood ratio test proves there is no difference between this model and Model 2.

Exponential Model 3 - Single parameter for treatment effect

Looking at the CIs and the profile log-likelihood, we see that β_1 is different than 0 and conclude that there is a difference between the groups:

Parametric Survival Models - tx + cd4

Finally, we fitted a series of parametric survival models - containing treatment (tx) and CD4 count (cd4) as explanatory variables:

Model	Intercept - β_0	tx - β_1	cd4 - β_2	log(scale)	AIC
Exponential	6.71	0.66	0.01		1645.8
Weibull	7.05	0.84	0.02	0.24	1640.7
Log-Logistic	6.83	0.84	0.02	0.20	1639.7

And found the log-logistic was the best fit:

$$\log(T) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \sigma \epsilon \quad \epsilon \sim Logistic(0, 1)$$
 (9)

The 95% Wald CIs of the estimated parameters were: $\beta_1 = [0.27 - 1.41]$ and $\beta_2 = [0.01 - 0.03]$

Parametric Survival Models - tx + cd4

We estimated the time ratio of the treatment effect and of an increased cd4 count effect:

	Time Ratio	2.5 CI	97.5 CI
tx	2.32	1.32	4.10
cd4 + 50	2.83	1.96	4.09

Both recieving treatment and increasing the cd4 count by 50 generates a 2.5x fold in the survival time.

Parametric Survival Models - Goodness of fit

Parametric Survival Models - Graphical Representation

