CSULB CECS225 Lab1

Either type your lab in a word document and upload as a pdf Or write neatly, scan the file and upload as a pdf.

Show your work, no work no credit even if the answer is correct

When you are done, click on quizzes and convert your answers to the quiz.

Make sure to follow the instructions on how to enter the answer (for grading purposes)

- 1- Find the decimal values of the following numbers using the digit position and the base of the system.
 - a. 365₁₀
 - a. 365, already in base decimal
 - b. 11₂
 - a. $1*2^1 + 1*2^0 = 3_{10}$
 - c. 117
 - a. $1 * 7^1 + 1 * 7^0 = 8_{10}$
 - d. 1001₂

a.
$$1*2^3 + 0*2^2 + 0*2^1 + 1*2^0 = 9_{10}$$

e. 1010101₂

a.
$$1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 1*2^2 + 0*2^1 + 1*2^0 = 85_{10}$$

f. **21**₃

a.
$$2*3^1 + 1*3^0 = 7_{10}$$

g. 122₃

a.
$$1*3^2 + 2*3^1 + 2*3^0 = 17_{10}$$

- 2- Convert the following unsigned binary numbers to decimal, Hexadecimal, and Octal. Show your work.
 - a. 1110₂
 - a. Decimal

i.
$$1*2^3 + 1*2^2 + 1*2^1 + 0*2^0 = 14_{10}$$

- b. Hexadecimal
 - i. Using decimal 13_{10} , 10 = A, 14 = E
- c. Octal
 - i. Using decimal 14₁₀

2.
$$1/8 = 0$$
, $R = 1$

- 3. 16₈
- b. 100100₂
 - a. Decimal

i.
$$1*2^5 + 0*2^4 + 0*2^3 + 1*2^2 + 0*2^1 + 0*2^0 = 36_{10}$$

- b. Hexadecimal
 - i. Using decimal 36₁₀,

1.
$$36/16 = 2$$
, R = 4

- 2. 2/16 = 0, R = 2
- 3. 24₁₆
- c. Octal
 - i. Using decimal 36₁₀
 - 1. 36/8 = 4, R = 4
 - 2. 4/8 = 0, R = 4
 - 3. 448
- c. 11010111₂
 - a. Decimal

i.
$$1*2^0 + 1*2^1 + 1*2^2 + 0*2^3 + 1*2^4 + 0*2^5 + 1*2^6 + 1*2^7 = 215_{10}$$

- b. Hexadecimal
 - i. Using decimal 215₁₀
 - 1. 215 / 16 = 13, R = 7
 - 2. 13 / 16 = 0, R = 13 = D
 - 3. D7₁₆
- c. Octal
 - i. Using decimal 215₁₀
 - 1. 215 / 8 = 26, R = 7
 - 2. 26 / 8 = 3, R = 2
 - 3. 3/8 = 0, R = 3
 - 4. 3278
- d. 011101010100100₂
 - a. Decimal

i.
$$0*2^0 + 0*2^1 + 1*2^2 + 0*2^3 + 0*2^4 + 1*2^5 + 0*2^6 + 1*2^7 + 0*2^8 + 1*2^9 + 0*2^{10} + 1*2^{11} + 1*2^{12} + 1*2^{13} + 0*2^{14} = 15012_{10}$$

- b. Hexadecimal
 - i. Using decimal 15012₁₀
 - 1. 15012 / 16 = 938, R = 4
 - 2. 938 / 16 = 58, R = 10
 - 3. 58 / 16 = 3, R = 10
 - 4. 3/16 = 0, R = 3
 - 5. 3AA4₁₆
- c. Octal
 - i. Using decimal 15012₁₀
 - 1. 15012 / 8 = 1876, R = 4
 - 2. 1876 / 8 = 234, R = 4
 - 3. 234 / 8 = 29, R = 2
 - 4. 29 / 8 = 3, R = 5
 - 5. 3/8 = 0, R = 3
 - 6. 35244₈
- 3- Convert the following hexadecimal numbers to decimal, to unsigned Binary Show your work.
 - a. 4E₁₆
 - a. Decimal

i.
$$E = 14 * 16^0 + 4 * 16^1 = 14 + 64 = 78_{10}$$

- b. Unsigned Binary
 - i. Using 78₁₀

3.
$$19/2 = 9$$
, $R = 1$

4.
$$9/2 = 4$$
, $R = 1$

5.
$$4/2 = 2$$
, $R = 0$

6.
$$2/2 = 1$$
, $R = 0$

7.
$$1/2 = 0$$
, $R = 1$

- b. 7C₁₆
 - a. Decimal

i.
$$C = 12 * 16^0 + 7*16^1 = 12 + 112 = 124_{10}$$

- b. Unsigned Binary
 - i. Using 124₁₀

1.
$$124/2 = 62$$
, R = 0

2.
$$62/2 = 31$$
, R = 0

3.
$$31/2 = 15$$
, R = 1

4.
$$15/2 = 7$$
, R = 1

5.
$$7/2 = 3$$
, $R = 1$

6.
$$3/2 = 1$$
, $R = 1$

7.
$$1/2 = 0$$
, $R = 1$

- 8. 01111100₂
- c. ED3A₁₆
 - a. Decimal

i.
$$A = 10*16^0 + 3*16^1 + 13*16^2 + 14*16^3 = 60730_{10}$$

- b. Unsigned Binary
 - i. Using 60730₁₀

3.
$$15182 / 2 = 7591$$
, R = 0

6.
$$1897 / 2 = 948$$
, R = 1

7.
$$948 / 2 = 474$$
, R = 0

8.
$$474/2 = 237$$
, R = 0

9.
$$237/2 = 118$$
, R = 1

13.
$$14/2 = 7$$
, $R = 0$

d. 403FB001₁₆

a. Decimal

i.
$$1*16^{0} + 0*16^{1} + 0*16^{2} + 11*16^{3} + 15*16^{4} + 3*16^{5} + 0*16^{6} + 4*16^{7} = 1077915649_{10}$$

- b. Unsigned Binary
 - i. 1077915649₁₀

9.
$$4210608 / 2 = 2105304$$
, R = 0

$$28.8/2 = 4, R = 0$$

$$30.2/2 = 1, R = 0$$

$$31.1/2 = 0, R = 1$$

32. 01000000011111111011000000000012

4- How many different numbers can be represented with 23 bits?

Unsigned: 0 to $2^k - 1$; Signed: -2^{k-1} to $2^{k-1} - 1$