11.29-12.06 一周工作总结

罗海文

2021.12.06

H部分prune_sparse_from_density上从核并dma优化并测试各种数据

512进程RBD	bwu	IPC	flops(Gflops)	浮点部件利用率
/J\kernel tab_atom	65%	0.36	4.6	0.19%
/Jvkernel collect_batch	34%	0.57	0.004	
/J\kernel prune_density_from_sparse	17%	0.25	0.001	
/J\kernel prune_sparse_from_density	64%	0.45		
大kernel rho	28%	0.13	4	0.16%
大kernel H	26%	0.11	4.3	0.17%
64进程RBD	bwu	IPC	flops	
64进程RBD 小kernel tab_atom	bwu 65%			0.19%
		0.38		0.19%
/J\kernel tab_atom	65%	0.38 0.64	4.6 0.0008	0.19%
/J\kernel tab_atom /J\kernel collect_batch	65% 9%	0.38 0.64 0.23	4.6 0.0008	0.19%
/Jvkernel tab_atom /Jvkernel collect_batch /Jvkernel prune_density_from_sparse	65% 9% 19%	0.38 0.64 0.23 0.43	4.6 0.0008	0.19%
/Jvkernel tab_atom /Jvkernel collect_batch /Jvkernel prune_density_from_sparse /Jvkernel prune_sparse_from_density	65% 9% 19% 65%	0.38 0.64 0.23 0.43 0.14	4.6 0.0008 0.004	

计算wave矩阵的循环上从核遇到的bug

- 1.xmath和从核数学库同时链接会导致计算log时出问题
- 2.dist_tab、dist_tab_sq、dir_tab参数传递有问题,未解决

计算wave矩阵的循环打表

```
for(int i_my_batch=0;i_my_batch<n_batches_work;i_my_batch++)
{
    for(i_point=0;i_point<n_points;i_point++)
    {
        .
        .
        evaluate_waves();
    }
}</pre>
```

```
integer,dimension(:),allocatable :: n_points
integer,dimension(:,:),allocatable :: n_compute_fns
integer,dimension(:,:),allocatable :: n_compute_atoms
integer,dimension(:,:,:),allocatable :: rad_index
integer,dimension(:,:,:),allocatable :: wave_index
integer,dimension(:,:,:),allocatable :: l_index
integer,dimension(:,:,:),allocatable :: l_count
integer,dimension(:,:,:),allocatable :: fn_atom
integer,dimension(:,:,:),allocatable :: zero_index_point
real*8, dimension(:,:,:), allocatable :: ylm_tab!
real*8, dimension(:,:,:), allocatable :: one_over_dist_tab
real*8,dimension(:,:,:), allocatable :: radial_wave!
```

这些数组的空间扩大 n_my_batches_work * n_points倍

(512进程) n_compute_atom: 20-40 n_max_compute_atoms:60 n compute atom fns:170

访存优化-依赖数据先收集然后复用

- 1.每个batch对atom_radius_sq、species_center的访存都是一样的且不规则,先收集起来然后复用,并且保证了连续的访存
- 2.每次访问atom_index的访存模式都是 atom_index(species_center(i_atom)), atom_index可以只保存这个 值,使每次访问atom_index的时候不再访问species_center
- 3.减少i_basis_fns_inv(n_basis_fns,n_center)的空间为 (n_basis_fns,n_compute_atoms)

划分方案

