

WEBENCH® Design Report

VinMin = 6.5V VinMax = 8.0V Vout = 5.0V lout = 2.0A

Device = TPS5420DR Topology = Buck Created = 6/11/13 11:50:47 AM BOM Cost = \$2.96 Total Pd = 0.98W Footprint = 352.0mm2 BOM Count = 8

Design : 3729827/1 TPS5420DR TPS5420DR 6.5V-8.0V to 5.0V @ 2.0A

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cboot	Kemet	C0805C103K5RACTU Series= X7R	Cap= 10.0 nF ESR= 1.739 Ohm VDC= 50.0 V IRMS= 411.0 mA	1	\$0.01	0805 13mm2
2.	Cin	TDK	C3216X5R1C106M Series= X5R	Cap= 10.0 μF ESR= 4.6 mOhm VDC= 16.0 V IRMS= 2.7 A	1	\$0.06	1206 19mm2
3.	Cout	Nippon Chemi-Con	APXE6R3ARA391MH70G Series= PXE	Cap= 390.0 µF ESR= 14.0 mOhm VDC= 6.3 V IRMS= 3.95 A	1	\$0.90	CAPSMT_62_H70 110mm2
4.	D1	Diodes Inc.	B130-13-F	VF@lo= 500.0 mV VRRM= 30.0 V	1	\$0.06	SMA 37mm2
5.	L1	Bourns	SRN8040-100M	L= 10.0 μH DCR= 50.0 mOhm	1	\$0.21	SRN8040 100mm2
6.	Rfbb	Vishay-Dale	CRCW04023K24FKED Series= CRCWe3	Res= 3.24 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 8mm2
7.	Rfbt	Vishay-Dale	CRCW040210K0FKED Series= CRCWe3	Res= 10.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 8mm2
8.	U1	Texas Instruments	TPS5420DR	Switcher	1	\$1.70	

R-PDSO-G8 57mm2

Operating Values

Operating values								
#	Name	Value	Category	Description				
1.	Cin IRMS	709.068 mA	Current	Input capacitor RMS ripple current				
2.	Cout IRMS	114.989 mA	Current	Output capacitor RMS ripple current				
3.	IC lpk	2.199 A	Current	Peak switch current in IC				
4.	lin Avg	1.372 A	Current	Average input current				
5.	L lpp	398.334 mA	Current	Peak-to-peak inductor ripple current				
6.	M1 Irms	1.63 A	Current	Q lavg				
7.	BOM Count	8	General	Total Design BOM count				
8.	FootPrint	352.0 mm2	General	Total Foot Print Area of BOM components				
9.	Frequency	500.0 kHz	General	Switching frequency				
10.	IC Tolerance	18.315 mV	General	IC Feedback Tolerance				
11.	M Vds Act	215.487 mV	General	Voltage drop across the MosFET				
12.	Mode	CCM	General	Conduction Mode				
13.	Pout	10.0 W	General	Total output power				
14.	Total BOM	\$2.96	General	Total BOM Cost				
15.	D1 Tj	114.028 degC	Op_Point	D1 junction temperature				
16.	Vout OP	5.0 V	Op_Point	Operational Output Voltage				
17.	Cross Freq	13.753 kHz	Op_point	Bode plot crossover frequency				
18.	Duty Cycle	66.389 %	Op_point	Duty cycle				
19.	Efficiency	91.104 %	Op_point	Steady state efficiency				
20.	IC Tj	61.337 degC	Op_point	IC junction temperature				
21.	ICThetaJA	75.0 degC/W	Op_point	IC junction-to-ambient thermal resistance				
22.	IOUT_OP	2.0 A	Op_point	lout operating point				
23.	Phase Marg	51.831 deg	Op_point	Bode Plot Phase Margin				
24.	VIN_OP	8.0 V	Op_point	Vin operating point				
25.	Vout p-p	5.583 mV	Op_point	Peak-to-peak output ripple voltage				
26.	Cin Pd	2.313 mW	Power	Input capacitor power dissipation				
27.	Cout Pd	185.115 μW	Power	Output capacitor power dissipation				
28.	Diode Pd	336.111 mW	Power	Diode power dissipation				
29.	IC Pd	417.822 mW	Power	IC power dissipation				
30.	L Pd	220.0 mW	Power	Inductor power dissipation				
31.	Total Pd	976.496 mW	Power	Total Power Dissipation				

Design Inputs

#	Name	Value	Description
1.	lout	2.0 A	Maximum Output Current
2.	lout1	2.0 Amps	Output Current #1
3.	VinMax	8.0 V	Maximum input voltage
4.	VinMin	6.5 V	Minimum input voltage
5.	Vout	5.0 V	Output Voltage
6.	Vout1	5.0 Volt	Output Voltage #1
7.	base_pn	TPS5420	Base Product Number
8.	source	DC	Input Source Type
9.	Та	30.0 degC	Ambient temperature

Design Assistance

- 1. Feature Highlights: 2A, 500kHz Fixed Switching Frequency, Internal Compensation
- 2. TPS5420 Product Folder: http://www.ti.com/product/tps5420: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.