

Creating Vectors
manually entering the elements
how to build an array in a fast way
:
linspace, logspace

lingo

- MATLAB has two different types of arithmetic operations: array operations and matrix operations.
 - · Matrix operations follow the rules of linear algebra.
 - Array operations execute element by element operations and support multidimensional arrays.

KU LEUVEN

5

lingo

- · array:
 - a collection of numbers, (elements or entries) referenced by one or more indices running over different index sets.
 - most basic data structure in MATLAB
- dimension of the array: the number of indices needed to specify an element.
 - MATLAB also supports data structures that have more than two dimensions.

KU LEUVEN

KU LEUVEN

4

lingo

6

8

- matrix is a two-dimensional array with special rules for addition, multiplication, and other operations. (*linear algebra* world).
- vector is a matrix for which one dimension has only the index 1
- In MATLAB, the index sets are always sequential integers starting with 1.

KU LEUVEN

Creating vectors: enumeration

- Create an array: use the square brackets []
- Specify each element explicitly
- Numbers (or variables) inside the brackets can be separated by blanks, commas or semicolons
 - blank or comma separator: separate elements in a row
 - semicolon: separate rows

```
vec1 = [1, 2, 3, 4.6, 8, 9]

vec1 = 1×6

1.0000 2.0000 3.0000 4.6000 8.0000 9.0000

vec2 = [1 2 33.6i]

vec2 = 1×3 complex

1.0000 + 0.0000i 2.0000 + 0.0000i 0.0000

+33.6000i

vec3 = [1.1; 1.2; 66.78; -9.31e9]

vec3 = 4×1

10° ×

0.0000

0.0000

0.0000

0.0000

-9.3100
```

Creating Vectors

- Different ways:
 - Enumeration: specify each element explicitly,
 - Use the colon: operator,
 - Use the commands linspace or logspace
 - · Elementary (built-in) arrays

KU LEUVEN

Creating Vectors: Colon Operator

- Create vectors, array subscripting, and for iterations
- The colon (:) is one of the most useful operators in MATLAB: from : in increments of : to
- The colon operator uses the following rules to create regularly spaced vectors:
 - j:k is the same as [j,j+1,...,k]
 - j:k is empty if j > k

9

- j:i:k is the same as [j,j+i,j+2i, ...,k]
- j:i:k is empty if i > 0 and j > k or if i < 0 and j < k

KU LEUVEN

Vec1 = [1, 2, 3, 4.6, 8, 9] vec1 = 1×6 1.0000 2.0000 3.0000 4.6000 8.0000 9.0000 vec2 = [1 2 33.6i] vec2 = 1×3 complex 1.0000 + 0.0000i 2.0000 + 0.0000i 0.0000 +33.6000i vec3 = [1.1; 1.2; 66.78; -9.31e9] vec3 = 4×1 109 × 0.0000 0.0000 0.0000 0.0000 -9.3100

10

Demo

- · Creating vectors
- File: create_vectors.mlx used in screencast matlab_array_create_vectors

KULEUVEN

Creating Vectors

- linspace
 - syntax: x = linspace(first, last, n)
 - creates linearly spaced row vector starting with first, ending at last, having n elements
- logspace
 - syntax: x = logspace(first, last, n)
 - creates logarithmically spaced row vector starting with $10^{\it first}$, ending at $10^{\it last}$, having n elements

KU LEUVEN

11