4 אלגברה לינארית 1א \sim תרגיל בית

שחר פרץ

2025 באפריל 2025

.....(1)

 $\mathbb R$ מעל ש־ ש'ז הנתונים הנתונים בצירוף בצירוף בצירוף בצירוף או נפריך על ב

- $\lambda v=1\sqrt{2}\notin$ אז $\sqrt{2}=\lambda\in\mathbb{R}$, וב־V=0, וב־V=0, אז ענסמן V=0, אז ענסמן V=0, אז אינו מ"ו מעל V=0, אז שנירות לכפל בסקלר. $\lambda v\neq V$ וסתירה לכפל בסקלר. $\lambda v\neq V$
- ב) אפר \mathbb{R} שי \mathbb{R} תת־שדה שלו, הוא מ"ו מעל \mathbb{R} . כדי להראות זאת, נוכיח למה יותר חזקה: כל שדה \mathbb{F} שי \mathbb{R} תת־שדה שלו, הוא מ"ו מעל \mathbb{R} . כאשר הפעולות מושרות מהשדה \mathbb{R} .

 $\mathbb F$ קיים ל $\mathbb F$ מסגירות $+,\cdot$ מסגירות השדה $\mathbb F$ כך שי $\mathbb F$ אז לכל $\mathbb F$ אז לכל $\mathbb F$, $v,w\in\mathbb F$ מתקיים $\lambda\cdot v,v+w\in\mathbb F$ מתקיים $\lambda\cdot v,w+w\in\mathbb F$ מסגירות השדה $\mathbb F$ עבור 0 כלשהו (בפרט נבחין שהוא 0). דיסטרבוטיביות, קומטטיביות, אסוציאטיביות, נטרליות כפל עבור 0 כלשהו (בפרט נבחין שהוא 0). דיסטרבוטיביות, שדה גם כן.

 $\mathbb R$ הוא מ"ו מעל $\mathbb R$, נבחין כי הפעולות של $\mathbb R$ הן הפעולות המושרות מ- $\mathbb C$, ולכן ע"פ המשפט שהוכח הוא מ"ו מעל בעבור

 $(\mathbb{F}$ נסמנו \mathbb{R} (נסמנו \mathbb{R} הוא מ"ו מעל \mathbb{R} החסמות החסמות מ־

 $\mathbb{R} o \mathbb{R}$ הוכחה. נראה סגירות של פעולות החיבור והכפל בסקלר. יהיו $f,g\in\mathbb{F}$ ו־ $f,g\in\mathbb{F}$ ויכר כי הפעולות האלו סגורות ב־ $f,g\in\mathbb{F}$ אך יש להראות שהפונקציה נותרת חסומה. מהיות $f,g\in\mathbb{F}$ ידוע ש־ $f,g\in\mathbb{F}$ נחסמות החל מ־ $f,g\in\mathbb{F}$ בהתאמה (כלומר $f,g\in\mathbb{F}$ באופן דומה על $f,g\in\mathbb{F}$

$$\begin{cases} \forall n \ge n_f \colon \alpha f(n) \le \alpha C_f \\ \forall n \ge n_g \colon \beta g(n) \le \beta C_g \end{cases} \implies \alpha f + \beta g \le \alpha C_f + \beta C_g$$

. $lpha C_f + eta C_g$ כי היא פונקציה מ־ $\mathbb R$ ל־ $\mathbb R$ שחסומה בקבוע מי $lpha f + eta g \in \mathbb F$ סה"כ

לכן הפונקציות החסומות במ"ו הפונקציות הממשיות הוא תמ"ו של $\mathbb{R} o \mathbb{R}$ ובפרט מ"ו.

 \mathbb{R} מעל **שהיא מ"ו** מעל ב־ \mathbb{F} את קבוצת הפונקציות שאם מציבים בהם 17, ונראה שהיא מ"ו מעל

 $.lpha f + eta g \in \mathbb{F}$ נראה, $f,g \in \mathbb{F}$, ו $lpha,eta \in \mathbb{R}$, יהיו הוכחה. באופן דומה לסעיף הקודם, גם כאן יש להוכיח סגירות בלבד. יהיו

$$(\alpha f + \beta g)(17) \stackrel{\text{by definition}}{=} (\alpha f)(17) + (\beta g)(17) \stackrel{\text{by definition}}{=} \alpha f(17) + \beta g(17) = \alpha \cdot 0 + \beta \cdot 0 = 0 + 0 = 0$$

. מכאן סגירות. ב־ \mathbb{F} כדרוש. מכאן פונקציה עם שורש ב־17, ולכן היא מ $\alpha f + \beta g$

(ה) נראה ש־f(17)=1, עבורן \mathbb{R} ל־ \mathbb{R} עבורן הפונקציות מ"ו.

הוכחה. נתבונן בפונקציות הבאות:

$$f(x) = 17, \ g(x) = \begin{cases} 1 & x = 17 \\ 0 & \text{else} \end{cases} \quad f, g \in \mathbb{R}^{\mathbb{R}}$$

נניח בשלילה $\mathbb F$ אכן מ"ו, אזי מסגירות:

$$\mathbb{F} \ni f + g, \ (f + g)(17) = f(17) + g(17) = 1 + 1 = 2 \neq 1$$

 \mathbb{F} בסתירה להגדרת

- . $\mathbb R$ מעל א", $\forall n\in\{1,2,3\}\colon f^{(n)}(17)=0$ בראה בעבורה הפונקציות בעבורה הפונקציות גבורה פרוכחה הערכחה. בדומה לסעיפים הקודמים, גם כאן יש להוכיח תמ"ו בלבד שכן $\mathbb R\to\mathbb R$ מ"ו.
- . מאדטיביות $f^{(1)}(17)=f^{(2)}(17)=f^{(3)}(17)=g^{(1)}(17)=f^{(2)}(17)=f^{(3)}(17)=0$ אירות לחיכור: יהיו $f^{(1)}(17)=f^{(2)}(17)=f^{(3)}(17)=f^{(3)}(17)=0$ מאדטיביות לחיכור:

$$(f+g)'(17) = (f+g)^{(1)}(17) = f^{(1)}(17) + g^{(1)}(17) = 0 + 0 = 0$$
$$(f+g)''(17) = (f+g)^{(2)}(17) = f^{(2)}(17) + g^{(2)}(17) = 0 + 0 = 0$$
$$(f+g)'''(17) = (f+g)^{(3)}(17) = f^{(3)}(17) + g^{(3)}(17) = 0 + 0 = 0$$

 $f+g\in\mathbb{F}$ וסה"כ בהתאם לעקרון ההפרדה

נגזרת: נגזרת לכפל: יהיו $f^{(1)}(17)=f^{(2)}(17)=f^{(3)}(17)=0$ אז היי לכפל: יהיו לכפל: יהיו $f^{(1)}(17)=f^{(2)}(17)=0$

$$(\lambda f)'(17) = (\lambda f)^{(1)}(17) = \lambda f^{(1)}(17) = \lambda \cdot 0 = 0$$
$$(\lambda f)''(17) = (\lambda f)^{(2)}(17) = \lambda f^{(2)}(17) = \lambda \cdot 0 = 0$$
$$(\lambda f)'''(17) = (\lambda f)^{(3)}(17) = \lambda f^{(3)}(17) = \lambda \cdot 0 = 0$$

.כלומר $\lambda f \in \mathbb{F}$ כדרוש

• סיום איבר 0: מסגירות לכפל.

. פה"כ מ"ו מ"ו של $\mathbb{R} \to \mathbb{R}$ של מ"ו כדרוש סה"כ \mathbb{F}

 \mathbb{R}^3 נתבונן בקבוצה הבאה עם חיבור וכפל בסקלר ב־ \mathbb{R} ונראה שהיא תמ"ו ובפרט מ"ו של

$$\mathcal{A} := \left\{ \begin{pmatrix} a \\ b \\ a - b \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$

 \mathbb{R}^3 הוכחה. נוכיח שזהו תמ"ו של

כך ש־ $a_v,b_v,a_u,b_u\in\mathbb{R}$ סגירות חיכור. יהיו $v,u\in\mathcal{A}$ כד ש

$$v = \begin{pmatrix} a_v \\ b_v \\ a_v - b_v \end{pmatrix}, \ u = \begin{pmatrix} a_u \\ b_u \\ a_u - b_u \end{pmatrix} \implies a + b = \begin{pmatrix} (a_v + a_u) \\ (b_v + b_u) \\ (a_v + a_u) - (b_v + b_u) \end{pmatrix} = \begin{pmatrix} a \\ b \\ a - b \end{pmatrix}$$

. בעבור הסימון ההחלפה כך ש־ $a+b\in\mathcal{A}$. סה"כ הראינו קיום a,b מתאימים מעקרון ההחלפה כך ש־ $a+b\in\mathcal{A}$ כדרוש.

 $\lambda v\in\mathcal{A}$ היי $\lambda\in\mathbb{R}$ יהי $\lambda\in\mathbb{R}$. יהי $\lambda\in\mathbb{R}$ יהי λ בך ש־ λ כך ש־ λ כך ש־ λ כך ש־ λ נראה λ

$$\lambda v = \lambda \begin{pmatrix} a \\ b \\ a - b \end{pmatrix} = \begin{pmatrix} \lambda a - \lambda b \\ \lambda b \\ \lambda a - \lambda b \end{pmatrix} = \begin{pmatrix} \tilde{a} \\ \tilde{b} \\ \tilde{a} - \tilde{b} \end{pmatrix}$$

. כדרוש, א $c\in\mathcal{A}$ מתקיים שמעקרון מתאימים כך שמעקרון מתאימים מתקיים מתקיים מתקיים מה"כ בעבור $ilde{a}:=\lambda a,\ ilde{b}=\lambda b$

- $\lambda=0$ מסגירות כפל ובפרט בעבור כפל ב־ $\lambda=0$
 - .ובפרט מ"ו של \mathbb{R}^3 ובפרט מ"ו
- (ח) נסתור את היות הקבוצה הבאה מ"ו מעל $\mathbb R$ עם חיבור וכפל בסקלר של וקטורים:

$$\mathcal{A} := \left\{ \begin{pmatrix} a \\ a^2 \\ a \end{pmatrix} \mid a \in \mathbb{R} \right\}$$

הפרכה. $\,$ נסתור סגירות לכפל בסקלר. ניכר כי בעבור a=1 מתקיים ש־ \mathcal{A} (1,1,1). אזי מסגירות כפל בסקלר נקבל $a\in\mathcal{A}$ כלומר קיים $a\in\mathbb{R}$ כך ש־ $a\in\mathbb{R}$

$$\mathcal{A}\ni 2\cdot \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} 2\\2\\2 \end{pmatrix} = \begin{pmatrix} a\\a^2\\a \end{pmatrix}$$

וסה"כ קיבלנו $a=a=a^2$ אז סתירה כי a=a, אחרת נחלק ב־a=a ונקבל $a=a=a^2$ ואז סתירה גם.

 $1\cdot S=S,\ 0\cdot S=arnothing$ ו־ $S_1+S_2:=S_1\triangle S_2$ עם הפעולות \mathbb{Z}_2 עם המעולות כל הת"ק של [n], הוא מ"ו מעל [n], הוא מ"ו מעל [n], הוא מ"ו:

 $\forall S_1, S_2 \in \mathcal{P}([n]) \colon S_1 + S_2 = S_1 \triangle S_2 \subseteq S_1 \cup S_2 \subseteq [n] \implies S_1 + S_2 \in \mathcal{P}([n])$.1

$$\forall S_1 \in \mathcal{P}([n]) \colon egin{cases} S_1 \cdot 0 = \varnothing \subseteq [n] \\ S_1 \cdot 1 = S \subseteq [n] \end{cases} \implies orall \lambda \in \mathbb{Z}_2 \colon \lambda S_1 \in [n] \implies \lambda S_1 \in \mathcal{P}([n]) \quad \top$$
 .2

- $\forall S_1, S_2 \in \mathcal{P}([n]) \colon S_1 + S_2 = S_1 \triangle S_2 = (S_1 \cup S_2) \setminus (S_1 \cap S_2) = (S_2 \cup S_1) \setminus (S_2 \cap S_1) = S_2 \triangle S_1 \quad \top$.3
 - .1 אסוציאטיביות \triangle הוכחה בבדידה.

$$\forall S_1 \in \mathcal{P}([n]) \colon S_1 + \varnothing = S_1 \triangle \varnothing = (S_1 \cup \varnothing) \setminus (S_1 \cap \varnothing) = S_1 \setminus \varnothing = S_1 \quad \top$$
 געום ניטרלי לחיבור:

 $S_1+(-S_1)=\varnothing$ ניטרלי לחיבור: ראינו ש־ $S_1\in\mathcal{P}([n])$ פרים שלכל לחיבור. נראה שלכל ניטרלי לחיבור: ראינו ש־

$$\forall S_1 \in \mathcal{P}([n]) \longrightarrow S_1 + \underbrace{S_1}_{:=-S_1} = S_1 \triangle S_1 = (S_1 \cup S_1) \setminus (S_1 \cap S_1) = S_1 \setminus S_1 = \varnothing \quad \top$$

7. דיסטרבוטיביות מהסוג הראשון:

$$\forall S_1, S_1 \in \mathcal{P}([n]), \ \lambda \in \mathbb{Z}_2 \colon \begin{cases} \lambda = 0 \colon & \lambda(S_1 + S_2) = \varnothing = \varnothing \triangle \varnothing = \lambda S_1 + \lambda S_2 \\ \lambda = 1 \colon & \lambda(S_1 + S_2) = S_1 + S_2 = \lambda S_1 + \lambda S_2 \end{cases}$$

8. **דיסטרבוטיביות מהסוג השני:** יהיו $\lambda, \mu \in \mathbb{Z}_2$ סקלרים ו־ $S \in \mathcal{P}([n])$ וקטור, אז אם $\lambda, \mu \in \mathbb{Z}_2$ אז אחד מהם 1 והשני $\lambda, \mu \in \mathbb{Z}_2$ אם שניהם 1. גסיק $\lambda, \mu \in \mathbb{Z}_2$ נסיק $\lambda, \mu \in \mathbb{Z}_2$ אם שניהם $\lambda, \mu \in \mathbb{Z}_2$ כדרוש. אחרת $\lambda, \mu \in \mathbb{Z}_2$ ולכן שניהם $\lambda, \mu \in \mathbb{Z}_2$ אם שניהם 0:

$$(\lambda + \mu)S = 0 \cdot S = \emptyset = \emptyset + \emptyset = \lambda S + \mu S$$

אחרת שניהם 1:

$$(\lambda + \mu)S = 0 \cdot S = \varnothing = S - S = S \triangle S = S + S = \lambda S + \mu S$$

- $A(\mu S)=\emptyset=\mu(\lambda S)$ אז A=0 בה"כ A=0 בה"כ A=0 הוא מהם הוא מהם הוא $B\in\mathcal{P}([n])$ סקלרים ו־A=0 סקלרים A=0 וקטור. אם אחד מהם הוא A=0 סקלרים ו־A=0 סקלרים וA=0 סקלרים וA=0
 - $\forall S \in \mathcal{P}([n]) \colon 1 \cdot S = S$ ניטרליות כפל ביחידה: נתון ישירות ש-10.

סה"כ הוכחנו את כל אקסיומות המ"ו כדרוש.

יהי U מ"ו מעל \mathbb{F} ו־ $U\subseteq V$ ת"ק לא ריקה כך ש־U סגורה לחיבור.

V מתקיים ש־U מתקיים של $\mathbb{F}=\mathbb{Z}_p$ מתקיים של (א)

 $nv \in U$ ונראה סגירות לחיבור. יהי (נציג אז א $n \in \mathbb{F}_p$ יהי לחיבור. ונראה הוכחה. נראה

ידוע קיום איבר יחידה ב \mathbb{Z}_p השדה (שדה כי נתון p ראשוני). אזי אוי בתוך בתוך בתוך \mathbb{Z}_p בתוך \mathbb{Z}_p הביטוי n פעמים" מוגדר רק כי n עובדים בתוך \mathbb{Z}_p שדה סופי כלומר $n \in \mathbb{N}$. מדיסטריבטיביות:

$$nv = \underbrace{(1+1+\cdots+1)}_{n \text{ times}} v = \underbrace{1v+\cdots+1v}_{n \text{ times}} \stackrel{(1)}{=} v+\cdots+v \in \mathbb{F}$$

מוכל בו U ש־V נובעת מסגירות המ"ו $v+\cdots+v\in\mathbb{F}$ מאקסיומות הטענה ש־ $v+\cdots+v\in\mathbb{F}$ מוכל בו משרה פעולות ממנו.

הראינו סגירות לכפל. נותר להראות קיום איבר 0, שנובע מהזהות $v\cdot 0_{\mathbb{Z}_p}=0_U$ שנכונה ב־U, ביחד עם הסגירות לכפל. סה"כ ישנה סגירות לחיבור ולכפל וקיום איבר 0, ולכן U תמ"ו כדרוש.

.ב) נראה שהטענה לעיל לא נכונה לכל \mathbb{F} שדה.

 $V=\mathbb{Z}$ כבחין כי $\mathbb{F}=V\subseteq\mathbb{F}$ שכן \mathbb{F} שכן של \mathbb{F} שכן בחין כי $\mathbb{F}=\mathbb{R}$ נבחין כי $V=\mathbb{R}$ בחין כי $V=\mathbb{R}$ וב־ $V=\mathbb{R}$ וב־ $V=\mathbb{R}$ וב־ $V=\mathbb{R}$ ולכן סגירות הכפל בסקלר גורר מקיים ע $V=\mathbb{R}$ ולכן סגירות הכפל בסקלר גורר אך נבחין שאיננו מ"ו שכן לכל עבר אר מתקיים שי $V=\mathbb{R}$ ולכן סגירות הכפל בסקלר גורר ווא סגור לחיבור, אך של בחילה מעירה.

המשך בעמוד הכא

נגדיר:

$$\operatorname{Sym}_n(\mathbb{F}) = \{ A \in M_n(\mathbb{F}) \mid \forall i, j \colon A_{ij} = A_{ji} \}, \ \operatorname{ASym}_n(\mathbb{F}) = \{ A \in M_n(\mathbb{F}) \mid \forall i, j \colon A_{ij} = -A_{ji} \}$$

 $\mathrm{ASym}:=\mathrm{ASym}_n(\mathbb{F})$ בא $\mathrm{Sym}:=\mathrm{Sym}_n(\mathbb{F})$ נראה ש־ $\mathrm{ASym}_n(\mathbb{F})+\mathrm{Sym}(\mathbb{F})=M_n(\mathbb{F})$ נראה ש

(א) נבחין ש־ $\mathrm{Sym}_n(\mathbb{F}),\mathrm{ASym}_n(\mathbb{F})\subseteq M_n(\mathbb{F})$ מעקרון ההפרדה. עתה נראה בשניהם סגירות לחיבור ולכפל:

• סגירות לכפל:

- - $. \forall i,j \in [n] \colon (\lambda M)_{ij} = \lambda(M)_{ij} = -\lambda(M)_{ji} = -(\lambda M)_{ji}$ עבור אדיין מתקיים אדיין מתקיים אדיין עדיין $\lambda \in \mathbb{F}, \ M \in \mathrm{ASym}$ עבור אבור אבור

• סגירות לחיבור:

$$M,P \in \mathrm{Sym}$$
, יהיו $M,P \in \mathrm{Sym}$, יהיו $M,P \in \mathrm{Sym}$, יהיו אינו $M,P \in \mathrm{Sym}$

$$M,P \in ASym$$
 ואכן $M,P \in ASym$ אבור אבור אנור אנור $M,P \in ASym$ ואכן $M,P \in ASym$ עבור

• קיום אפס:

- $(0_M)_{ij}=0_{\mathbb{F}}=(0_M)_{ji}$ עבור Sym עבור -
- $(0_M)_{ij}=0_{\mathbb{F}}=-0_{\mathbb{F}}=-(0_M)_{ji}$ נבחין ש־: ASym עבור

 $A \in \mathrm{Sym} \cap \mathrm{ASym}$. יהי $\mathrm{Sym} \cap \mathrm{ASym}$ סה"כ הראינו ש־ $\mathrm{Sym} \cap \mathrm{ASym}$ תמ"וים. נראה ש־

$$-(A)_{ij} \stackrel{\text{Sym}}{=} -(A)_{ji} \stackrel{\text{ASym}}{=} (A)_{ij}$$

אם $0_{ij}\neq 0$, אז נוכל לחלק בו ולקבל 1=1 וזו סתירה. סה"כ $0_{ij}=0$, ולכן $0_{ij}\neq 0$, ולכן אכן $0_{ij}\neq 0$ אם $0_{ij}\neq 0$, אז נוכל לחלק בו ולקבל $0_{ij}\neq 0$ וזו סתירה. סה"כ $0_{ij}\neq 0$

 $A=A_s+A_{as}$ כך ש־ $A_s,\ A_{as}\in \mathrm{ASym}$ שתי מטריצות שתי $A\in M_n(\mathbb{F})$ כך שלכל (ב)

:אזי:
$$A_{as}=rac{A-A^T}{2}$$
 בממן $A_s=rac{A+A^T}{2}$, נסמן ג'א אזי: אזי: אזי: אזי

 $i,j \in [n]$ יהיי: $A_s \in \mathrm{Sym}$

$$(A_s)_{ij} = \left(\frac{A + A^T}{2}\right)_{ij} = \underbrace{\frac{(A^T)_{ji}}{(A)_{ij}} + \underbrace{(A^T)_{ij}}_{2}}_{(A^T)_{ij}} = \underbrace{\frac{(A)_{ji} + (A^T)_{ji}}{2}}_{2} = (A_s)_{ji} \quad \top$$

 $i,j \in [n]$ יהיי : $A_{as} \in \mathrm{Sym}$

$$(A_{as})_{ij} = \left(\frac{A - A^T}{2}\right)_{ij} = \underbrace{\overbrace{(A)_{ij}}^{(A^T)_{ji}} - \overbrace{(A^T)_{ij}}^{(A)_{ji}}}_{2} = \underbrace{\frac{(A^T)_{ji} - (A)_{ji}}{2}}_{2} = -\underbrace{\frac{(A)_{ji} + (A^T)_{ji}}{2}}_{2} = -(A_s)_{ji} \quad \top$$

 $:A_s+A_{as}=A$ •

$$A_s + A_{as} = \frac{A + A^T}{2} + \frac{A - A^T}{2} = \frac{A + A + A^T - A^T}{2} = \frac{2A}{2} = A \quad \top$$

סכום ישר. $\mathrm{ASym}_n(\mathbb{F}) \oplus \mathrm{Sym}_n(\mathbb{F}) = M_n(\mathbb{F})$ סכום ישר.

. על החיבור ש־ $\mathbb Q$ של מעל ש־ $\mathbb Q$ היזכר בכך ש־ $\mathbb R$ הוא מ"ו מעל שלו. מעל מיזכר איזכר מיזכר מעל ש

הוכחה. נראה סגירות וקיום 0

ע שקיימים $\lambda_1q_1+\lambda_2q_2\in\mathbb{Q}=V$. צ.ל. $q_1,q_2\in\mathbb{Q}=V,\ \lambda_1,\lambda_2\in\mathbb{Q}=\mathbb{F}$ אזיי שקיימים \bullet סגירות: יהיו $\frac{\alpha_1}{\beta_1}=\lambda_1,\ \frac{\alpha_2}{\beta_2}=\lambda_2$ כך ש־ $\alpha_1,\alpha_2,\beta_1,\beta_2\in\mathbb{Z}$ באופן דומה קיימים $a_1,a_2,b_1,b_2\in\mathbb{Z}$

$$\lambda_1 q_1 + \lambda_2 q_2 = \frac{\alpha_1}{\beta_1} \cdot \frac{a_1}{b_1} + \frac{\alpha_2}{\beta_2} \cdot \frac{a_2}{b_2} = \frac{\alpha_1 a_1 \beta_2 b_2 + \alpha_2 a_2 \beta_1 \beta_2}{\beta_1 b_1 \beta_2 b_2} =: \frac{n}{m}$$

ומסגירות חיבור וכפל ב־ \mathbb{Z} , \mathbb{Z} בדרוש. ולכן $n,m\in\mathbb{Z}$ כדרוש.

ullet קיוס אפס: כי $\mathbb{Q}=\mathbb{Q}$ ו־ $\mathbb{Q}=\mathbb{Q}$ כי $\mathbb{Q}=0$

 $1\cdot\sqrt{2}\notin\mathbb{Q}$ אך $\sqrt{2}\in\mathbb{R}=\mathbb{F}$ ו ווויש פחלרים מי \mathbb{R} ו וויש מעל \mathbb{R} אלנו סגור לכפל בסקלרים מי \mathbb{R} וויש הוא תמ"ו של \mathbb{R} מעל \mathbb{R} מעל \mathbb{R} . אינו סגור לכפל בסקלרים מי \mathbb{R} וויש הוא תמ"ו של \mathbb{R} אך \mathbb{R} אך \mathbb{R} הוא תמ"ו של \mathbb{R} ארנו סגור לכפל בסקלרים מי \mathbb{R} הוא תמ"ו של \mathbb{R} ארנו סגור לכפל בסקלרים מי \mathbb{R} הוא תמ"ו של \mathbb{R} ארנו סגור לכפל בסקלרים מי \mathbb{R} הוא תמ"ו של \mathbb{R} ארנו סגור לכפל בסקלרים מי \mathbb{R} הוא תמ"ו של \mathbb{R} ארנו סגור לכפל בסקלרים מי \mathbb{R} הוא תמ"ו של \mathbb{R} מעל \mathbb{R} הוא תמ"ו של \mathbb{R} מעל \mathbb{R} הוא מעל \mathbb{R} הוא תמ"ו של \mathbb{R} מעל \mathbb{R} הוא מעל \mathbb{R} הוא תמ"ו של \mathbb{R} מעל \mathbb{R} הוא מעל \mathbb{R} הוא תמ"ו של \mathbb{R} מעל \mathbb{R} הוא מעל \mathbb{R} מעל \mathbb{R} הוא מעל \mathbb{R} הוא מעל \mathbb{R} הוא מעל \mathbb{R} מעל \mathbb{R} הוא מעל \mathbb

יהי את הטענות ונפריך את פופי. נוכיח מגודל קבוצות קבוצות הבאות: $S,T\subseteq V$ יהי יהי

 $\operatorname{span}(S \cap T) \subseteq \operatorname{span} S \cap \operatorname{span} T$ א) נוכיח ש

הוכחה. יהי וקטור $v\in \mathrm{span}(S\cap T)$, נראה $S\wedge v\in \mathrm{span}(S\cap T)$. משום ש־ $v\in \mathrm{span}(S\cap T)$ אזי הוא ניתן לביטוי כקומבינציה $v\in \mathrm{span}(S\cap T)$ ולכן $w_1\dots w_k\in S$ ולכארית של הוקטורים $w_1\dots w_k\in S\cap T$. בפרט, הוא ניתן לביטוי כקומבינציה לינארית של אותם $v\in \mathrm{span}(S\cap T)$ וקטורים כך ש־ $v\in \mathrm{span}(S\cap T)$ מהגדרה, וסה"כ מהגדרת $v\in \mathrm{span}(S\cap T)$ שר כדרוש. $v\in \mathrm{span}(S\cap T)$

 $\operatorname{span}(S \cap T) \supseteq \operatorname{span}(S) \cap \operatorname{span}(T)$ ב) (ב)

 \mathbb{R} מעל נתבונן בדוגמה הנגדית הבאה, מעל

$$S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}, \ T = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ \begin{pmatrix} 0 \\ 2 \end{pmatrix} \right\}$$

 $\operatorname{span} T \cap \operatorname{span} S = \mathbb{R}^2$. אזי, $\operatorname{span} T = \operatorname{span} S = \mathbb{R}^2$ אד, $\operatorname{span} T \cap \operatorname{span} S = \mathbb{R}^2$. אזי, $\operatorname{span} T \cap \operatorname{span} S \cap \operatorname{span} T = S$. $\operatorname{span} T \cap \operatorname{span} S \cap \operatorname{span} T = S \cap \operatorname{span} T \cap \operatorname{span} T \cap \operatorname{span} S \cap \operatorname{span} T = S \cap \operatorname{span} T \cap \operatorname{span} T \cap \operatorname{span} T \cap \operatorname{span} T = S \cap \operatorname{span} T \cap \operatorname{span}$

 $\operatorname{span}(S \cup T) = \operatorname{span} S \cup \operatorname{span} T$ (ג) נפריך ש

הפרכה. נתבונן בדוגמה הבאה:

$$S = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}, \ T = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} \implies S \cup T = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

$$\operatorname{span} S = \left\{ \begin{pmatrix} 0 \\ \alpha \end{pmatrix}, \mid \alpha \in \mathbb{R} \right\}, \operatorname{span} T = \left\{ \begin{pmatrix} \alpha \\ 0 \end{pmatrix} \mid \alpha \in \mathbb{R} \right\}$$

אך אף אחת מהקורדינאטות של $\binom{1}{1}$ אינה 0, וזו סתירה לטענה.

יהי את הטענות סופיות. נוכיח קבוצות הבאות: $S,T\subseteq V$ יהי מ"ו ו־V

 $\operatorname{span} S \subseteq \operatorname{span} T$ אז $S \subseteq T$ (א) נוכיח שאם

 $\operatorname{span} S = \operatorname{span} T \iff (S \subseteq \operatorname{span} T \wedge T \subseteq \operatorname{span} S)$ נוכיח (ב)

הוכחה. נוכיח את שני כיווני הגרירה.

:יאת כי: $S\subseteq\operatorname{span} T\wedge T\subseteq\operatorname{span} S$ ונוכיח $S=\operatorname{span} T$ אאת כי:

 $S \subseteq \operatorname{span} S \subseteq \operatorname{span} T \wedge T \subseteq \operatorname{span} T \subseteq \operatorname{span} S \implies S \subseteq \operatorname{span} T \wedge T \subseteq \operatorname{span} S \quad \top$

נניח $S=\operatorname{span} T\wedge T\subseteq\operatorname{span} S$ ונכיח $S=\operatorname{span} T$ ונכיח $S\subseteq\operatorname{span} T\wedge T\subseteq\operatorname{span} S$ ונכיח $S=\operatorname{span} T$ ונכיח $S\subseteq\operatorname{span} T\wedge T\subseteq\operatorname{span} S$ וניח $S=\operatorname{span} T$ וניח $S\subseteq\operatorname{span} T$ ווכיח $S\subseteq\operatorname{span} T$ ווכיח $S\subseteq\operatorname{span} T$ וומסגירות חיבור וכפל בסקלר, הוקטור $S=\operatorname{span} T$ ומסגירות חיבור וכפל בסקלר, הוקטור $S=\operatorname{span} T$ ומסגירות חיבור וכפל בסקלר, הוקטור $S=\operatorname{span} T$ ומסגירות חיבור וכפל בסקלר, באופן סמטרי לחלוטין (שכן הנתונים סימטריים) נבחין ש $S=\operatorname{span} T\subseteq\operatorname{span} T$ וסה"כ מהכלה בחיביוונית $S=\operatorname{span} T\subseteq\operatorname{span} T$ באופן סמטרי לחלוטין (שכן הנתונים סימטריים) נבחין ש $S=\operatorname{span} T$ בחרוש.

.....