Elementary Functions Logarithmic Functions

Logarithmic Functions

Complex Logarithm

- In real analysis, the natural logarithm function $\ln x$ is often defined as an inverse function of the real exponential function e^x . We use $\log_e x$ to represent the real logarithmic function.
- The situation is different in complex analysis because the complex exponential function e^z is not a one-to-one function on its domain \mathbb{C} .
- Given a fixed nonzero complex number z, the equation $e^w=z$ has infinitely many solutions e.g., $\frac{1}{2}\pi i$, $\frac{5}{2}\pi i$, and $-\frac{3}{2}\pi i$ are all solutions to $e^w=i$.
- In general, if w = u + iv is a solution of $e^w = z$, then $|e^w| = |z|$ and $\arg(e^w) = \arg(z)$. Thus, $e^u = |z|$ and $v = \arg(z)$, or, equivalently, $u = \log_e |z|$ and $v = \arg(z)$. Therefore, given a nonzero complex number z we have shown that: if $e^w = z$, then $w = \log_e |z| + i \arg(z)$.
- This set of values defines a multiple-valued function w = G(z), called the **complex logarithm** of z and denoted by $\ln z$.

Definition of the Complex Logarithmic Function

Definition (Complex Logarithm)

The multiple-valued function $\ln z$ defined by:

$$\ln z = \log_e |z| + i \arg(z)$$

is called the complex logarithm.

- The notation ln z will always be used to denote the multiple valued complex logarithm.
- By switching to exponential notation $z = re^{i\theta}$, we obtain the following alternative description of the complex logarithm:

$$\ln z = \log_e r + i(\theta + 2n\pi), \ n = 0, \pm 1, \pm 2, \dots$$

• The complex logarithm can be used to find all solutions to the exponential equation $e^w = z$, when z is a nonzero complex number.

Solving Exponential Equations I

• Find all complex solutions to the equation $e^w = i$.

For each equation $e^w=z$, the set of solutions is given by $w=\ln z$, where $w=\log_e|z|+i{\rm arg}(z)$. For z=i, we have |z|=1 and ${\rm arg}(z)=\frac{\pi}{2}+2n\pi$. Thus, we get $w=\ln i=\log_e 1+i(\frac{\pi}{2}+2n\pi)$, whence

$$w = \frac{(4n+1)\pi}{2}i, \ n = 0, \pm 1, \pm 2, \dots$$

Therefore, each of the values: $w = \dots, -\frac{7\pi}{2}i, -\frac{3\pi}{2}i, \frac{\pi}{2}i, \frac{5\pi}{2}i, \dots$ satisfies the equation $e^w = i$.

Solving Exponential Equations II

- Find all complex solutions to the equation $e^w = 1 + i$ and to the equation $e^w = -2$.
- For z=1+i, we have $|z|=\sqrt{2}$ and $\arg(z)=\frac{\pi}{4}+2n\pi$. Thus, we get

$$w = \ln(1+i) = \log_e \sqrt{2} + i(\frac{\pi}{4} + 2n\pi)$$

= $\frac{1}{2}\log_e 2 + \frac{(8n+1)\pi}{4}i$, $n = 0, \pm 1, \pm 2, ...$

• Since z=-2, we have |z|=2 and $\arg(z)=\pi+2n\pi$. Thus, $w=\ln{(-2)}=\log_e{2}+i(\pi+2n\pi)$. That is,

$$w = \log_e 2 + (2n+1)\pi i, \ n = 0, \pm 1, \pm 2, \dots$$

Logarithmic Identities

 Complex logarithm satisfies the following identities, which are analogous to identities for the real logarithm:

Theorem (Algebraic Properties of $\ln z$)

If z_1 and z_2 are nonzero complex numbers and n is an integer, then

- (i) $\ln(z_1z_2) = \ln z_1 + \ln z_2$;
- (ii) $\ln \frac{z_1}{z_2} = \ln z_1 \ln z_2$;
- (iii) $\ln z_1^n = n \ln z_1$.
 - $\ln z_1 + \ln z_2 = \log_e |z_1| + i \operatorname{arg}(z_1) + \log_e |z_2| + i \operatorname{arg}(z_2) = \log_e |z_1| + \log_e |z_2| + i (\operatorname{arg}(z_1) + \operatorname{arg}(z_2)).$ The real logarithm satisfies $\log_e a + \log_e b = \log_e (ab)$, for a > 0 and b > 0, so $\log_e |z_1 z_2| = \log_e |z_1| + \log_e |z_2|$. Also, $\operatorname{arg}(z_1) + \operatorname{arg}(z_2) = \operatorname{arg}(z_1 z_2)$. Therefore, $\ln z_1 + \ln z_2 = \log_e |z_1 z_2| + i \operatorname{arg}(z_1 z_2) = \ln (z_1 z_2)$.
 - Parts (ii) and (iii) are similar.

Principal Value of Complex Logarithm

- The complex logarithm of a positive real has infinitely many values.
- Example: $\ln 5$ is the set of values $\log_e 5 + 2n\pi i$, where n is any integer, whereas $\log_e 5$ has a single value $\log_e 5 = 1.6094$. The unique value of $\ln 5$ corresponding to n=0 is the same as $\log_e 5$.
- In general, this value of the complex logarithm is called the **principal** value of the complex logarithm since it is found by using the principal argument Arg(z) in place of the argument arg(z).
- We denote the principal value of the logarithm by the symbol Lnz, which, thus, defines a function, whereas lnz is multi-valued.

Definition (Principal Value of the Complex Logarithm)

The complex function Lnz defined by:

$$Lnz = \log_e |z| + iArg(z)$$

is called the principal value of the complex logarithm.

Computing the Principal Value of the Complex Logarithm

• Compute the principal value of the complex logarithm Lnz for

(a)
$$z = i$$
 (b) $z = 1 + i$ (c) $z = -2$

(a) For z = i, we have |z| = 1 and $Arg(z) = \frac{\pi}{2}$. So we get

$$\operatorname{Ln} i = \log_{\mathrm{e}} 1 + \frac{\pi}{2} i = \frac{\pi}{2} i.$$

(b) For z = 1 + i, we have $|z| = \sqrt{2}$ and $Arg(z) = \frac{\pi}{4}$. Thus,

$$\operatorname{Ln}(1+i) = \log_e \sqrt{2} + \frac{\pi}{4}i = \frac{1}{2}\log_e 2 + \frac{\pi}{4}i.$$

- (c) For z=-2, we have |z|=2 and $\operatorname{Arg}(z)=\pi$, whence $\operatorname{Ln}(-2)=\log_{e}2+\pi i$.
 - Warning! The algebraic identities for the complex logarithm are not necessarily satisfied by the principal value of the complex logarithm.

Lnz as an Inverse Function

- Because Lnz is one of the values of the complex logarithm lnz, it follows that: $e^{\text{Ln}z} = z$, for all $z \neq 0$.
- This suggests that the logarithmic function Lnz is an inverse function of e^z .
- Because the complex exponential function is not one-to-one on its domain, this statement is not accurate.
- The relationship between these functions is similar to the relationship between the squaring function z^2 and the principal square root function $z^{1/2} = \sqrt{|z|} e^{i \operatorname{Arg}(z)/2}$.
- The exponential function must first be restricted to a domain on which it is one-to-one in order to have a well-defined inverse function.
- In fact, e^z is a one-to-one function on the fundamental region $-\infty < x < \infty, -\pi < y \leq \pi$.

Lnz as an Inverse Function (Cont'd)

• We show that if the domain of e^z is restricted to the fundamental region, then Lnz is its inverse function.

Consider a point z=x+iy, $-\infty < x < \infty$, $-\pi < y \le \pi$. We have $|e^z|=e^x$ and $\arg(e^z)=y+2n\pi$, n an integer. Thus, y is an argument of e^z . Since z is in the fundamental region, we also have $-\pi < y \le \pi$, whence y is the principal argument of e^z , i.e., $\arg(e^z)=y$. In addition, for the real logarithm we have $\log_e e^x=x$, and so $\operatorname{Ln} e^z=\log_e |e^z|+i\operatorname{Arg}(e^z)=\log_e e^x+iy=x+iy$. Thus, we have shown that $\operatorname{Ln} e^z=z$, if $-\infty < x < \infty$ and $-\pi < y \le \pi$.

Lnz as an Inverse Function of e^z

If the complex exponential $f(z)=e^z$ is defined on the fundamental region $-\infty < x < \infty$, $-\pi < y \le \pi$, then f is one-to-one and the inverse function of f is the principal value of the complex logarithm $f^{-1}(z)=\operatorname{Ln} z$.

Discontinuities of Lnz

- The principal value of the complex logarithm Lnz is discontinuous at z=0 since this function is not defined there.
- Lnz turns out to also be discontinuous at every point on the negative real axis.
- This may be intuitively clear since the value of $\operatorname{Ln} z$ for a point z near the negative x-axis in the second quadrant has imaginary part close to π , whereas the value of a nearby point in the third quadrant has imaginary part close to $-\pi$.

• The function Lnz is, however, continuous on the set consisting of the complex plane excluding the non-positive real axis.

Continuity

- Recall that a complex function f(z) = u(x, y) + iv(x, y) is continuous at a point z = x + iy if and only if both u and v are continuous real functions at (x, y).
- The real and imaginary parts of Lnz are $u(x,y) = \log_e |z| = \log_e \sqrt{x^2 + y^2}$ and $v(x,y) = \operatorname{Arg}(z)$, respectively.
- From calculus, we know that the function $u(x,y) = \log_e \sqrt{x^2 + y^2}$ is continuous at all points in the plane except (0,0) and the function $v(x,y) = \operatorname{Arg}(z)$ is continuous on |z| > 0, $-\pi < \operatorname{arg}(z) < \pi$.
- Therefore, it follows that Lnz is a continuous function on the domain |z|>0, $-\pi<\arg(z)<\pi$, i.e., f_1 defined by: $f_1(z)=\log_e r+i\theta$ is continuous on the domain where r=|z|>0 and $-\pi<\theta=\arg(z)<\pi$.

Analyticity

- Since the function f_1 agrees with the principal value of the complex logarithm $\operatorname{Ln} z$ where they are both defined, it follows that f_1 assigns to the input z one of the values of the multiple-valued function $F(z) = \operatorname{ln} z$.
- I.e., we have shown that the function f_1 is a branch of the multiple-valued function $F(z) = \ln z$.
- This branch is called the **principal branch of the complex logarithm**. The nonpositive real axis is a branch cut for f_1 and the point z = 0 is a branch point.
- The branch f_1 is an analytic function on its domain:

Theorem (Analyticity of the Principal Branch of $\ln z$)

The principal branch f_1 of the complex logarithm is an analytic function and its derivative is given by: $f_1'(z) = \frac{1}{z}$.

• We prove that f_1 is analytic by using polar coordinates.

Analyticity (Proof)

- Because f_1 is defined on the domain r>0 and $-\pi<\theta<\pi$, if z is a point in this domain, then we can write $z=re^{i\theta}$, with $-\pi<\theta<\pi$. Since the real and imaginary parts of f_1 are $u(r,\theta)=\log_e r$ and $v(r,\theta)=\theta$, respectively, we find that: $\frac{\partial u}{\partial r}=\frac{1}{r}$, $\frac{\partial v}{\partial \theta}=1$, $\frac{\partial v}{\partial r}=0$, and $\frac{\partial u}{\partial \theta}=0$. Thus, u and v satisfy the Cauchy-Riemann equations in polar coordinates $\frac{\partial u}{\partial r}=\frac{1}{r}\frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r}=-\frac{1}{r}\frac{\partial u}{\partial \theta}$. Because u, v, and the first partial derivatives of u and v are continuous at all points in the domain, it follows that f_1 is analytic in this domain. In addition, the derivative of f_1 is given by: $f_1'(z)=e^{-i\theta}(\frac{\partial u}{\partial r}+i\frac{\partial v}{\partial r})=\frac{1}{re^{i\theta}}=\frac{1}{z}$.
- Because $f_1(z) = \operatorname{Ln} z$, for each point z in the domain, it follows that $\operatorname{Ln} z$ is differentiable in this domain, and that its derivative is given by f_1' . That is, if |z| > 0 and $-\pi < \operatorname{arg}(z) < \pi$ then:

$$\frac{d}{dz}$$
Ln $z = \frac{1}{z}$.

Derivatives of Logarithmic Functions I

• Find the derivatives of the function z Lnz in an appropriate domain. The function z Lnz is differentiable at all points where both of the functions z and Lnz are differentiable. Because z is entire and Lnz is differentiable on the domain $|z| > 0, -\pi < \arg(z) < \pi, \ z Lnz$ is differentiable on the domain defined by $|z| > 0, -\pi < \arg(z) < \pi$:

$$\frac{d}{dz}[z\mathsf{Ln}z] = \frac{d}{dz}z \cdot \mathsf{Ln}z + z\frac{d}{dz}\mathsf{Ln}z = \mathsf{Ln}z + z\frac{1}{z} = \mathsf{Ln}z + 1.$$

Derivatives of Logarithmic Functions II

• Find the derivatives of the function Ln(z+1) in an appropriate domain.

The function Ln(z + 1) is a composition of the functions Lnz and z+1. Because the function z+1 is entire, it follows from the chain rule that Ln(z + 1) is differentiable at all points w = z + 1 such that |w| > 0 and $-\pi < \arg(w) < \pi$. To determine the corresponding values of z for which Ln(z + 1) is not differentiable, we first solve for z in terms of w to obtain z = w - 1. The equation z = w - 1 defines a linear mapping of the w-plane onto the z-plane given by translation by -1. Under this mapping the non-positive real axis is mapped onto the ray emanating from z = -1 and containing the point z = -2. Thus, Ln(z+1) is differentiable at all points z that are not on this ray.

$$\frac{d}{dz}\operatorname{Ln}(z+1) = \frac{1}{z+1} \cdot 1 = \frac{1}{z+1}.$$