

Densely Connected Convolutional Networks

作者: Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger

来源: CVPR17

汇报人: 黄波 19210240246

Background

Create short paths from early layers to later layers

Background

ResNet

$$\mathbf{x}_{\ell} = H_{\ell}(\mathbf{x}_{\ell-1}) + \mathbf{x}_{\ell-1}$$

An advantage of ResNets is that the gradient can flow directly through the identity function from later layers to the earlier layers.

However, the identity function and the output are combined by summation, which may impede the information flow in the network.

Dense Connectivity

The ℓ^{th} layer receives the feature-maps of all preceding layers, $\mathbf{x}_0, \dots, \mathbf{x}_{\ell-1}$ as input:

$$\mathbf{x}_{\ell} = H_{\ell}([\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{\ell-1}])$$

where $[\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{\ell-1}]$ refers to the concatenation of the feature-maps produced in layers $0, \dots, \ell-1$

Dense Connectivity

DenseNet

Dense Block

The concatenation operation used in the equation is not viable when the size of feature-maps changes

$$\mathbf{x}_{\ell} = H_{\ell}([\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{\ell-1}])$$

An essential part of convolutional networks is down-sampling layers that change the size of feature-maps

To facilitate down-sampling in our architecture we divide the network into multiple densely connected dense blocks

Dense Block

Transition Layer

Growth Rate

If each function H_{ℓ} produces k feature-maps, it follows that ℓ^{th} the layer has $k_0 + k \times (\ell - 1)$ input feature-maps, where k_0 is the number of channels in the input layer.

Bottleneck Layers

$$k_0 + k \times (\ell - 1)$$

DenseBlock3 in DenseNet-169:

$$(32 - 1) \times 32 + k0 > 1000$$

BN-ReLU-Conv(1×1)-BN-ReLU-Conv(3×3)

DenseNet-B

Compression

We can reduce the number of feature-maps at transition layers

DenseNet with Compression: DenseNet-C

DenseNet with Bottleneck and Compression: DenseNet-BC

DenseNet architectures

DenseNet architectures for ImageNet. The growth rate for all the networks is k = 32.

Layers	Output Size	DenseNet-121 DenseNet-169 DenseNet-201		DenseNet-264						
Convolution	112 × 112	7×7 conv, stride 2								
Pooling	56 × 56	3×3 max pool, stride 2								
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 6 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$					
(1)	30 × 30	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3}$					
Transition Layer	56 × 56	$1 \times 1 \text{ conv}$								
(1)	28×28	2×2 average pool, stride 2								
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$					
(2)	20 × 20	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$					
Transition Layer	28×28	$1 \times 1 \text{ conv}$								
(2)	14×14	2×2 average pool, stride 2								
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 24 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 48 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 64 \end{bmatrix}$					
(3)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} ^{32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$					
Transition Layer	14 × 14	$1 \times 1 \text{ conv}$								
(3)	7 × 7	2 × 2 average pool, stride 2								
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 48$					
(4)	/ × /	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 10}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 46}$					
Classification	1 × 1	7 × 7 global average pool								
Layer		1000D fully-connected, softmax								

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	-	-	10.41	8.81	35.68	-	2.35
All-CNN [32]	-	-	9.08	7.25	-	33.71	-
Deeply Supervised Net [20]	-	-	9.69	7.97	-	34.57	1.92
Highway Network [34]	-	-	-	7.72	-	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7M	-	6.61	-	-	-
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	-	-	-
Wide ResNet [42]	16	11.0M	-	4.81	-	22.07	-
	28	36.5M	-	4.17	-	20.50	-
with Dropout	16	2.7M	-	-	-	-	1.64
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	35.58*	24.33	-
	1001	10.2M	10.56*	4.62	33.47*	22.71	-
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k=24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k = 24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46		17.18	-

Error rates (%) on CIFAR and SVHN datasets.

Without data augmentation, DenseNet performs better by a large margin.

Comparison of the parameter efficiency on C10+ between DenseNet variations

Comparison of the parameter efficiency between DenseNet-BC and (pre-activation)
ResNets

Training and testing curves of the 1001-layer pre-activation ResNet and a 100-layer DenseNet

The feature-maps learned by any of the DenseNet layers can be accessed by all subsequent layers. This encourages feature reuse throughout the network, and leads to more compact models.

- alleviate the vanishing-gradient problem
- strengthen feature propagation
- encourage feature reuse
- substantially reduce the number of parameters

Thanks!