Регрессионный анализ, часть 2 Математические методы в зоологии с использованием R

Марина Варфоломеева

Вы сможете

- Подобрать модель множественной линейной регрессии
- Протестировать значимость модели и ее коэффициентов
- Интерпретировать коэффициенты множественной регрессии при разных предикторах
- Проверить условия применимости простой и множественной линейной регрессии при помощи анализа остатков

Множественная линейная регрессия

Пример: птицы Австралии

Зависит ли обилие птиц в лесах Австралии от характеристик леса? (Loyn, 1987, пример из кн. Quinn, Keough, 2002)

56 лесных участков в юго-восточной Виктории, Австралия

- 110area Площадь леса, га (логарифм)
- l10dist Расстояние до ближайшего леса, км (логарифм)
- l10ldist Расстояние до ближайшего леса большего размера, км (логарифм)
- yr.isol Год начала изоляции
- abund Обилие птиц

Читаем данные из файла одним из способов

Чтение из xlsx

```
library(readxl)
bird <- read_excel(path = "data/loyn.xlsx", sheet = 1)</pre>
```

Чтение из csv

```
bird <- read.table("data/loyn.csv", header = TRUE, sep = "\t")</pre>
```

Все ли правильно открылось?

```
str(bird)
              # Структура данных
  'data.frame': 56 obs. of 21 variables:
                  5.3 2 1.5 17.1 13.8 14.1 3.8 2.2 3.3 3 ...
   $ abund
             : num
   $ area
             : num
                   0.1 0.5 0.5 1 1 1 1 1 1 1 ...
   $ yr.isol : int 1968 1920 1900 1966 1918 1965 1955 1920 1965 1900 ...
#
   $ dist
             : int 39 234 104 66 246 234 467 284 156 311 ...
   $ ldist : int 39 234 311 66 246 285 467 1829 156 571 ...
   $ graze : int 2553535545...
                  160 60 140 160 140 130 90 60 130 130 ...
   $ alt
             : int
#
   $ 110dist : num 1.59 2.37 2.02 1.82 2.39 ...
  $ l10ldist: num 1.59 2.37 2.49 1.82 2.39 ...
   $ l10area : num -1 -0.301 -0.301 0 0 ...
#
   $ cyr.isol: num
                   18.2 - 29.8 - 49.8 16.2 - 31.8 . . .
   $ cl10area: num
                   -1.932 -1.233 -1.233 -0.932 -0.932 ...
#
                   -0.9821 2.0179 2.0179 0.0179 2.0179 ...
   $ cgraze : num
#
   $ resid1 : num
                    -4.22 -1.03 -1.86 2.28 7.14 ...
#
   $ predict1: num
                   9.52 3.03 3.36 14.82 6.66 ...
#
   $ arearesv: num
                   -16.49 -3.28 -6.69 -1.78 4.71 ...
#
   $ arearesx: num
                   -1.642 -0.3 -0.647 -0.543 -0.326 ...
#
   $ grazresy: num
                    -1.318 -0.805 -1.425 2.459 6.157 ...
   $ grazresx: num
                    -1.741 -0.137 -0.258 -0.108 0.589 ...
```

Знакомимся с данными

Есть ли пропущенные значения?

```
colSums(is.na(bird))
```

```
# abund area yr.isol dist ldist graze alt
# 0 0 0 0 0 0 0 0 0
# ll0dist ll0ldist ll0area cyr.isol cl10area cgraze resid1
# 0 0 0 0 0 0 0 0
# predict1 arearesy arearesx grazresy grazresx yrresy
# 0 0 0 0 0 0 0 0
```

Каков объем выборки?

```
nrow(bird)
```

[1] 56

Задача

- Подберите модель множественной линейной регрессии, чтобы описать, как зависит обилие птиц от характеристик леса
- Проверьте значимость ее коэффициентов при помощи t-критерия

- abund Обилие птиц
- 110area Площадь леса, га
- 110dist Расстояние до ближайшего леса, км (логарифм)
- l10ldist Расстояние до ближайшего леса большего размера, км (логарифм)
- yr.isol Год изоляции лесного массива

Решение

```
bird lm <- lm(abund ~ l10area + l10dist + l10ldist + yr.isol, data = bird)
summarv(bird lm)
# Call:
 lm(formula = abund \sim l10area + l10dist + l10ldist + vr.isol.
     data = bird)
# Residuals:
               10 Median
      Min
                               30
                                      Max
 -16.6635 -3.5460 0.0859 2.8838 16.5300
# Coefficients:
              Estimate Std. Error t value
                                          Pr(>|t|)
# (Intercept) -224.42456 74.85040 -2.998
                                           0.00419 **
               l10area
 l10dist
            -0.70464 2.70766 -0.260
                                           0.79573
 l10ldist
           -1.59350 2.09538 -0.760
                                           0.45047
 yr.isol
             0.12358
                        0.03794 3.257
                                           0.00201 **
# ---
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 6.577 on 51 degrees of freedom
# Multiple R-squared: 0.6519, Adjusted R-squared: 0.6246
# F-statistic: 23.88 on 4 and 51 DF, p-value: 3.622e-11
```

Можно привести результаты t-теста для коэффициентов в виде таблицы

 Обилие птиц увеличивалось с увеличением площади леса, и с уменьшением продолжительности изоляции (Табл. 1).

Table 1: Коэффициенты линейной регрессии обилия птиц от различных характеристк леса: 110area - логарифм площади леса, 110dist — логарифм расстояния до ближайшего леса, 110ldist — логарифм расстояния до ближайшего большого леса, yr.isol — год изоляции лесного массива. t — значение t-критерия, P — уровень значимости.

	Оценка	Ст.ошибка	t	Р
Отрезок	-224.42	74.85	-3.00	< 0.01
l10area	9.23	1.28	7.24	< 0.01
l10dist	-0.70	2.71	-0.26	0.80
l10ldist	-1.59	2.10	-0.76	0.45

Задача

Запишите уравнение множественной линейной регрессии

Решение

Коэффициенты модели:

coef(bird_lm)

```
# (Intercept) l10area l10dist l10ldist yr.isol
# -224.4245557 9.2347571 -0.7046391 -1.5934969 0.1235795
```

Уравнение регрессии:

Более формальная запись:

$$Y = -224.42 + 9.23 X1 - 0.70 X2 - 1.59 X3 + 0.12 X4$$

Интерпретация коэффициентов регрессии

```
coef(bird_lm)
```

```
# (Intercept) l10area l10dist l10ldist yr.isol
# -224.4245557 9.2347571 -0.7046391 -1.5934969 0.1235795
```

Интерпретация коэффициентов регрессии

```
coef(bird_lm)
```

```
# (Intercept) l10area l10dist l10ldist yr.isol
# -224.4245557 9.2347571 -0.7046391 -1.5934969 0.1235795
```

Обычные коэффициенты

- Величина обычных коэффициентов зависит от единиц измерения
- $ullet b_0$ Отрезок (Intercept), отсекаемый регрессионной прямой на оси y. Значение зависимой переменной Y, если предикторы равны нулю.
- Коэффициенты при предикторах показывают, на сколько изменяется Y, когда данный предиктор меняется на единицу, при условии, что остальные предикторы не меняют своих значений.

Для сравнения влияния разных факторов стандартизованные коэффициенты

3, 1613396

Для сравнения влияния разных факторов стандартизованные коэффициенты

Стандартизованные коэффициенты

3,1613396

- Стандартизованные коэффициенты измерены в стандартных отклонениях. Их можно сравнивать друг с другом, поскольку они дают относительную оценку влияния фактора.
- b_0 Отрезок (Intercept), отсекаемый регрессионной прямой на оси y. Значение зависимой переменной Y, если предикторы равны нулю. Для стандартизованных величин среднее значение равно нулю, поэтому b_0 это значение зависимой переменной при средних значениях всех предикторов.
- Коэффициенты при предикторах показывают, на сколько изменяется Y, когда предиктор меняется на одно стандартное отклонение, при условии, что остальные предикторы не меняют своих значений. Это относительная оценка влияния фактора.

Задача

Определите по значениям стандартизованных коэффициентов, какие факторы сильнее всего влияют на обилие птиц

```
summary(scaled bird lm)
#
# Call:
 lm(formula = abund ~ scale(l10area) + scale(l10dist) + scale(l10ldist) +
     scale(vr.isol). data = bird)
# Residuals:
      Min
                10
                    Median
                                 30
                                        Max
 -16.6635 -3.5460
                             2.8838
                    0.0859
                                     16.5300
# Coefficients:
                 Estimate Std. Error t value
                                               Pr(>|t|)
                  19.5143
                             0.8789 22.203
  (Intercept)
                                                < 2e-16 ***
 scale(l10area) 7.5024 1.0366 7.237 0.0000000023 ***
 scale(l10dist) -0.2916 1.1204 -0.260
                                                0.79573
  scale(l10ldist) -0.9161
                             1.2046 -0.760
                                                0.45047
                             0.9707 3.257
                                                0.00201 **
  scale(yr.isol) 3.1613
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 Signif. codes:
# Residual standard error: 6.577 on 51 degrees of freedom
 Multiple R-squared: 0.6519, Adjusted R-squared: 0.6246
# F-statistic: 23.88 on 4 and 51 DF, p-value: 3.622e-11
```

Оценка качества подгонки модели

summary(bird_lm)\$adj.r.squared

[1] 0.6246181

Обычный \mathbb{R}^2 — доля объясненной изменчивости

$$R^2 = \frac{SS_r}{SS_t} = 1 - \frac{SS_e}{SS_t}$$

Не используйте обычный R^2 для множественной регрессии!

$$R_{adi}^2$$
 — скорректированный R^2

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n - 1}{n - p}$$

где
$$n - p = df_{ef} \, n - 1 = df_{ef}$$

 R^2_{adj} учитывает число переменных в модели, вводится штраф за каждый новый параметр.

Используйте R^2_{adi} для сравнения моделей с разным числом параметров.

Условия применимости линейной регрессии

Условия применимости линейной регрессии

Условия применимости линейной регрессии должны выполняться, чтобы тестировать гипотезы

- Независимость
- Пинейность
- Нормальное распределение
- Томогенность дисперсий
- Отсутствие коллинеарности предикторов (для множественной регрессии)

1. Независимость

- ullet Значения y_i должны быть независимы друг от друга
- берегитесь псевдоповторностей и автокорреляций (например, временных)
- Контролируется на этапе планирования
- Проверяем на графике остатков

Регрессионный анализ, часть 2

2. Линейность связи

- проверяем на графике рассеяния исходных данных
- проверяем на графике остатков

Из кн. Diez et al., 2010, стр. 332, рис. 7.8

Что бывает, если неглядя применять линейную регрессию

Квартет Энскомба - примеры данных, где регрессии одинаковы во всех случаях (Anscombe, 1973)

$$y_i = 3.0 + 0.5x_i$$

$$r^2 = 0.68$$

$$H_0: \beta_1 = 0, t = 4.24, p = 0.002$$

Из кн. Quinn, Keough, 2002, стр. 97, рис. 5.9

3. Нормальное распределение остатков

Нужно, т.к. в модели $Y_i=\beta_0+\beta x_i+\epsilon_i$ зависимая переменная $Y\sim N(0,\sigma^2)$, а значит $\epsilon_i\sim N(0,\sigma^2)$

- Нужно для тестов параметров, а не для подбора методом наименьших квадратов
- Нарушение не страшно тесты устойчивы к небольшим отклонениям от нормального распределения
- Проверяем распределение остатков на нормально-вероятностном графике

Из кн. Watkins et al., 2008, стр. 743, рис. 11.4

4. Гомогенность дисперсий

Нужно, т.к. в модели $Y_i=\beta_0+\beta x_i+\epsilon_i$ зависимая переменная $Y\sim N(0,\sigma^2)$ и дисперсии $\sigma_1^2=\sigma_2^2=...=\sigma_i^2$ для каждого Y_i

Но, поскольку $\epsilon_i \sim N(0,\sigma^2)$, можно проверить равенство дисперсий остатков ϵ_i

- Нужно и важно для тестов параметров
- Проверяем на графике остатков по отношению к предсказанным значениям
- Есть формальные тесты, но они очень чувствительны (тест Бройша-Пагана, тест Кокрана)

Из кн. Watkins et al., 2008, стр. 743, рис. 11.4

Диагностика регрессии по графикам остатков

- (а)все условия выполнены
- (b)разброс остатков разный (wedge-shaped pattern)
- (с)разброс остатков одинаковый, но нужны дополнительные предикторы
- (d)к нелинейной зависимости применили линейную регрессию

Задача: Проанализируйте графики остатков

Скажите пожалуйста

- какой регрессии соответствует какой график остатков?
- все ли условия применимости регрессии здесь выполняются?
- назовите случаи, в которых можно и нельзя применить линейную регрессию?

Display 3.84 Four scatterplots.

Display 3.85 Four residual plots.

Из кн. Watkins et al. 2008, стр. 177, рис. 3.84-3.85

Решение

- А-І нелинейная связь нельзя;
- B-II все в порядке, можно;
- С-III все в порядке, можно;
- D-IV синусоидальный паттерн в остатках, нарушено условие независимости или зависимость нелинейная - нельзя.

Рис. из кн. Watkins et al. 2008, стр. 177, рис. 3.84-3.85

Какие наблюдения влияют на ход регрессии больше других?

Влиятельные наблюдения, выбросы, outliers

- большая абсолютная величина остатка
- близость к краям области определения (leverage - рычаг, сила; иногда называют hat)

На графике точки и линии регрессии построенные с их включением:

- 1 не влияет на ход регрессии, т.к. лежит на прямой
- 2 умеренно влияет (большой остаток, малая сила влияния)
- 3 очень сильно влияет (большой остаток, большая сила влияния)

Из кн. Quinn, Keough, 2002, стр. 96, рис. 5.8

Как оценить влиятельность наблюдений?

Paccтояние Кука (Cook's d, Cook, 1977)

- Учитывает одновременно величину остатка и близость к краям области определения (leverage)
- Условное пороговое значение: выброс, если $d \geq 4/(n-p)$, где n объем выборки, p число параметров модели.

Из кн. Quinn, Keough, 2002, стр. 96, рис. 5.8

Как оценить влиятельность наблюдений?

Paccтояние Кука (Cook's d, Cook, 1977)

- Учитывает одновременно величину остатка и близость к краям области определения (leverage)
- Условное пороговое значение: выброс, если $d \geq 4/(n-p)$, где n объем выборки, p число параметров модели.

Из кн. Quinn, Keough, 2002, стр. 96, рис. 5.8

 Дж. Фокс советует не обращать внимания на пороговые значения (Fox, 1991)

Что делать с влиятельными точками и с выбросами?

- Проверить, не ошибка ли это.
 Если нет, не удалять обсуждать!
- Проверить, что будет, если их исключить из модели

Из кн. Quinn, Keough, 2002, стр. 96, рис. 5.8

коллинеарность предикторов

коллинеарность

коллинеарные предикторы коррелируют друг с другом, т.е. не являются взаимно независимыми

Последствия

- Модель неустойчива к изменению данных
- При добавлении или исключении наблюдений может меняться оценка и знак коэффициентов

Что делать с коллинеарностью?

- Удалить из модели избыточные предикторы
- Получить вместо скоррелированных предикторов один новый комбинированный при помощи метода главных компонент

Проверка на коллинеарность

Показатель инфляции для дисперсии

(коэффициент распространения дисперсии, Variance inflation factor, VIF)

$$VIF = 1/(1 - R^2)$$

Здесь в знаменателе используется \mathbb{R}^2 регрессии данного предиктора от всех других.

Хорошо, если VIF < 10 (по Marquardt, 1970), но лучше VIF < 3, а иногда и VIF < 2. Если больше — коллинеарность.

Проверка условий применимости линейной регрессии

Как проверить условия применимости?

- VIF коллинеарность предикторов (для множественной регрессии)
- График расстояния Кука для разных наблюдений проверка на наличие выбросов
- График остатков от предсказанных значений величина остатков, влиятельность наблюдений, отсутствие паттернов, гомогенность дисперсий.
- График квантилей остатков распределение остатков

1. Проверим, есть ли в этих данных коллинеарность предикторов

```
library(car)
vif(bird_lm) # variance inflation factors

# ll0area ll0dist ll0ldist yr.isol
# 1.366278 1.596165 1.844939 1.197991
```

1. Проверим, есть ли в этих данных коллинеарность предикторов

```
library(car)
vif(bird_lm) # variance inflation factors

# ll0area ll0dist ll0ldist yr.isol
# 1.366278 1.596165 1.844939 1.197991

Все в порядке, предикторы независимы
```

Для анализа остатков выделим нужные данные в новый датафрейм

```
library(ggplot2) # там есть функция fortify()
bird_diag <- fortify(bird_lm)
# вот, что записано в диагностическом датафрейме
head(bird_diag, 2)
# abund ll0area ll0dist ll0ldist yr.isol .hat .sigma</pre>
```

```
# 1 5.3 -1.00000 1.591065 1.591065 1968 0.16621067 6.641837 # 2 2.0 -0.30103 2.369216 2.369216 1920 0.08525566 6.631126 # .cooksd .fitted .resid .stdresid # 1 0.0003830847 5.888692 -0.5886922 -0.09802371 # 2 0.0032420786 4.623396 -2.6233963 -0.41704702
```

Для анализа остатков выделим нужные данные в новый датафрейм

```
library(ggplot2) # там есть функция fortify()
bird diag <- fortify(bird lm)</pre>
# вот, что записано в диагностическом датафрейме
head(bird diag, 2)
   abund l10area l10dist l10ldist yr.isol .hat .sigma
# 1 5.3 -1.00000 1.591065 1.591065 1968 0.16621067 6.641837
# 2 2.0 -0.30103 2.369216 2.369216 1920 0.08525566 6.631126
         .cooksd .fitted .resid .stdresid
# 1 0.0003830847 5.888692 -0.5886922 -0.09802371
# 2 0.0032420786 4.623396 -2.6233963 -0.41704702
  .cooksd - расстояние Кука
  fitted - предсказанные значения

    resid - остатки

    .stdresid - стандартизованные остатки
```

2. График расстояния Кука для разных наблюдений

```
ggplot(data = bird_diag, aes(x = 1:nrow(bird_diag), y = .cooksd)) +
  geom_bar(stat = "identity")
```


Задача

Постройте график зависимости стандартизованных остатков от предсказанных значений

Используйте данные из bird_diag

3. График зависимости стандартизованных остатков от предсказанных значений

```
gg_resid <- ggplot(data = bird_diag, aes(x = .fitted, y = .stdresid)) +
   geom_point()
gg_resid</pre>
```


3. График зависимости стандартизованных остатков от предсказанных значений

```
gg_resid <- ggplot(data = bird_diag, aes(x = .fitted, y = .stdresid)) +
   geom_point()
gg_resid</pre>
```


Разброс остатков не совсем одинаков, но большая часть стандартизованных остатков в пределах двух стандартных отклонений. Есть отдельные влиятельные наблюдения, которые нужно проверить. Тренда среди остатков нет

4. Квантильный график стандартизованных остатков

Используется, чтобы оценить форму распределения. По оси X — квантили теоретического распределения, по оси Y — квантили остатков модели.

Если точки лежат на одной прямой — все в порядке.

```
library(car)
qqPlot(bird_lm, id = FALSE) # из πακετα car
```


Интерпретируем квантильный график

Какие выводы можно сделать по квантильному графику?

Интерпретируем квантильный график

Какие выводы можно сделать по квантильному графику?

Отклонений от нормального распределения нет

Внимание!

Только если все условия выполняются, можно приступить к интерпретации результатов.

Take-home messages

- Для сравнения влияния разных предикторов можно использовать бета-коэффициенты
- Условия применимости линейной регрессии должны выполняться, чтобы можно было тестировать гипотезы
 - Независимость
 - Пинейность
 - Нормальное распределение
 - Ф Гомогенность дисперсий
 - 5 Отсутствие коллинеарности предикторов (для множественной регрессии)

Дополнительные ресурсы

- Кабаков Р.И. R в действии. Анализ и визуализация данных на языке R.
 М.: ДМК Пресс, 2014
- Diez, D.M., Barr, C.D. and Çetinkaya-Rundel, M., 2015. OpenIntro Statistics.
 OpenIntro.
- Zuur, A., Ieno, E.N. and Smith, G.M., 2007. Analyzing ecological data.
 Springer Science & Business Media.
- Quinn G.P., Keough M.J. 2002. Experimental design and data analysis for biologists
- Logan M. 2010. Biostatistical Design and Analysis Using R. A Practical Guide