Successioni e Serie numeriche

Si definisce successione numerica ogni funzione f: N->R.

Il dominio di una successione può essere $A \subset N$, in genere di cardinalità infinita.

Gli elementi di Im(N) sono detti termini della successione

$$a_0$$
, a_1 , a_2 , ... $a_n = f(n)$, ...

Limite di una successione

L'unico punto di accumulazione per il dominio è + ∞

 $\rightarrow 1$

Cosa accade al valore di an al crescere di n?

- Cresce/decresce in modo indeterminato?
- Si attesta su un valore finito?
- Non sono in grado di stabilirlo.

Limite di una successione

$$\lim_{n\to\infty}a_n=\infty$$

$$\lim_{n\to\infty} a_n = l$$

$$\lim_{n\to\infty}a_n=\; \nexists$$

Le definizioni sono analoghe a quelle fornite per i limiti di funzione, per $x \rightarrow \infty$.

Limite di una successione Metodo di Esaustione

 $f: N \rightarrow R$.

Ad ogni numero naturale associa l'area del poligono regolare <u>inscritto</u>, con quel numero di lati

Ad ogni numero naturale associa l'area del poligono regolare <u>circoscritto</u>, con quel numero di lati

Definizione analitica
Viene fornita una
espressione algebrica che
definisce il termine
generico della successione

$$a_n = n+3$$

Definizione analitica

$$a_n = 1/n$$

$$a_n = (-1)^n$$

Definizione ricorsiva

Vengono definiti un certo numero di termini della successione (in genere il primo o i primi due) e la legge che permette di determinare gli altri elementi in termini dei precedenti

$$a_0 = 0$$

Successione di Fibonacci $a_1 = 1$
 $a_n = a_{n-1} + a_{n-2}$

Definizione ricorsiva

Successione di Fibonacci

$$a_0 = 0$$
 $a_1 = 1$
 $a_n = a_{n-1} + a_{n-2}$

Definizione ricorsiva

Successione di Fibonacci

$$\frac{a_{n+1}}{a_n} \to \varphi \text{ (il numero aureo)}$$

Definizione ricorsiva

Successione di Erone

$$a_0 = p$$

$$a_{n+1} = \frac{a_n + \frac{p}{a_n}}{2}$$

Descrive un processo per il calcolo delle radici quadrate infatti -> \sqrt{p}

Il numero di Nepero

$$a_n = (1 + 1/n)^n$$

$$\downarrow$$

$$e \sim 2,71828 ...$$

Successioni limitate

Una successione $f:A \subseteq N \rightarrow R$ si dice limitata superiormente se $\forall n \in A, a_n \le L \in R$

Una successione $f:A \subseteq N \rightarrow R$ si dice limitata inferiormente se $\forall n \in A, a_n \ge \ell \in R$

Una successione $f:A \subseteq N \rightarrow R$ si dice limitata se è limitata inferiormente e superiormente, cioè se esistono $L, \ell \in R$ tali che $\forall n \in A, \ell \leq a_n \leq L$

Successioni monotòne

Una successione $f: A \subseteq N \rightarrow R$ si dice crescente se $\forall i, j \in A$, $i < j \Rightarrow a_i \le a_j$

Una successione $f: A \subseteq N \rightarrow R$ si dice decrescente se $\forall i, j \in A$, $i \nmid j \Rightarrow a_i \geq a_j$

Una successione $f:A \subseteq N \rightarrow R$ si dice monotòna se è crescente o decrescente. Si dice oscillante se non è monotòna.

Date le seguenti successioni dire se sono limitate, monotòne o oscillanti

$$a_n = \frac{2}{2-n}$$
 Attenzione: n $\neq 2$

$$a_n = (-1)^n$$

$$\begin{cases} a_0 = 1 \\ a_{n+1} = 3 a_n \end{cases}$$

Teoremi importanti

- 1) Unicità del limite
- 2) Permanenza del segno
- 3) Operazioni tra limiti
- 4) Confronto tra infiniti e infinitesimi

Vedi limiti di funzioni

- 1) Ogni successione monotòna e limitata converge.
- 2) Ogni successione crescente (decrescente) e illimitata superiormente (inferiormente) diverge positivamente (negativamente)

Calcolare, se esiste, il limite delle seguenti successioni

•
$$a_n = \frac{2}{2-n}$$

•
$$a_n = (-1)^n$$

$$\begin{cases} a_0 = 1 \\ a_{n+1} = 3 a_n \end{cases}$$

Calcolare, se esiste, il limite delle seguenti successioni

•
$$a_n = -n + \log n$$

•
$$a_n = (2)^n - n$$

$$\begin{bmatrix} a_n = 0 \text{ se n pari} \\ a_n = \frac{1}{n} \text{ se n dispari} \end{bmatrix}$$

•
$$a_n = \frac{n-1}{n}$$

•
$$a_n = (2)^{-n}$$

•
$$a_n = \frac{n^2}{n!}$$

Data una successione numerica a_0 , a_1 , ... $a_{n_1, \dots}$ si chiama **serie numerica** la somma dei termini della successione

$$a_0 + a_1 + \dots + a_n + \dots = \sum_{i=0}^{+\infty} a_i$$

Termini della serie

Termine generale della serie

La serie può partire da 0 o da qualsiasi altro numero naturale.

L'obiettivo è comprendere quale è il risultato di questa somma di infiniti termini (carattere della serie)

$$\sum_{i=0}^{+\infty} a_i = s$$

$$\sum_{i=0}^{+\infty} a_i = \infty$$

$$\sum_{i=0}^{+\infty} a_i = \nexists$$

convergente

divergente

indeterminata o oscillante

Si chiamano <u>somme parziali</u> quelle ottenute sommando solo i primi n termini della successione

$$a_0 = \sum_{i=0}^{0} a_i$$

$$a_0 + a_1 = \sum_{i=0}^{1} a_i$$
 ...

$$a_0 + a_1 + \dots + a_n = \sum_{i=0}^{n} a_i$$

$$\sum_{i=0}^{+\infty} a_i = \lim_{n \to +\infty} \sum_{i=0}^{n} a_i$$

$$\sum_{i=0}^{+\infty} a_i = \lim_{n \to +\infty} \sum_{i=0}^{n} a_i$$

Si chiamano <u>serie telescopiche</u> quelle del tipo

$$\sum_{i=1}^{+\infty} (a_{i+1} - a_i)$$

Si chiamano serie telescopiche quelle del tipo

$$\sum_{i=0}^{+\infty} (a_{i+1} - a_i) = \lim_{n \to +\infty} s_n$$

$$a_1 - a_0 + a_2 - a_1 + a_3 - a_2 + \dots + a_{n+1} - a_n$$

Si chiamano serie geometriche quelle del tipo

$$\sum_{i=0}^{+\infty} q^i$$
Ragione della serie

$$q = 1$$

$$\sum_{i=0}^{+\infty} q^i = 1 + 1 + \dots + 1 = +\infty$$

$$q = -1$$

$$\sum_{i=0}^{+\infty} q^i = 1 - 1 + 1 - 1 \dots + 1 = oscillante$$

Si chiamano serie geometriche quelle del tipo

$$\sum_{i=0}^{+\infty} q^i$$

$$|q| < 1 \qquad \sum_{i=0}^{+\infty} q^i = \lim_{n \to +\infty} s_n = \frac{1}{1-q}$$

Si chiama serie armonica

$$\sum_{n=1}^{+\infty} \frac{1}{n}$$

La serie armonica è divergente

Criteri di convergenza

Condizione necessaria per la convergenza di

una serie
$$\sum_{i=0}^{\infty} a_i$$
 , è che $\lim_{n o +\infty} a_n = 0$

... ma non è condizione sufficiente

Criteri di convergenza

Criterio di Cauchy

Condizione necessaria e sufficiente per la

convergenza di una serie $\sum_{i=0}^{\infty} a_i$, è che

$$\forall \epsilon > 0, \exists \delta > 0 \mid \sum_{i=n+1}^{n+p} a_i < \epsilon, \forall n > \delta \in \forall p \in \mathbb{N}.$$

Criteri di convergenza

Criterio del confronto

Siano a_n e b_n due successioni tali che $0 < a_n < b_n$ allora

$$\sum_{i=0}^{+\infty} b_i = B \qquad \qquad \sum_{i=0}^{+\infty} a_i = A$$

$$\sum_{i=0}^{+\infty} a_i = +\infty \qquad \qquad \sum_{i=0}^{+\infty} b_i = +\infty$$

Criteri di convergenza

Criterio del confronto

Siano a_n , b_n , c_n successioni tali che $a_n < b_n < c_n$

se
$$\sum_{i=0}^{+\infty} a_i = S$$
 e $\sum_{i=0}^{+\infty} c_i = S$ allora $\sum_{i=0}^{+\infty} b_i = S$

Proprietà

$$1. \quad \sum_{i=0}^{\infty} a_i = s$$

$$\sum_{i=0}^{\infty} c \cdot a_i = c \cdot s$$

2.
$$\sum_{i=0}^{+\infty} a_i = a \wedge \sum_{i=0}^{+\infty} b_i = b \implies \sum_{i=0}^{+\infty} (a_i + b_i) = a + b$$

Proprietà

3.
$$\sum_{i=0}^{+\infty} a_i = s \wedge \sum_{i=0}^{k} a_i = a \implies \sum_{i=k+1}^{+\infty} a_i = s - a$$

4. La proprietà commutativa è valida per serie a termini non negativi. In generale non vale perché non si conosce il segno dei termini.

Determinare il carattere delle seguenti serie numeriche e, se possibile, calcolarne la somma

$$\sum_{n=0}^{+\infty} \frac{1}{(n+2)(n+3)}$$

$$\sum_{n=0}^{+\infty} \sin\left[(2n+1)\frac{\pi}{2}\right]$$

$$\sum_{n=0}^{+\infty} \left(\frac{2}{3}\right)^n$$

$$\sum_{m=0}^{+\infty} \left(\sin\frac{\pi}{2}\right)^m$$

Determinare il carattere delle seguenti serie numeriche e, se possibile, calcolarne la somma

$$\sum_{n=0}^{+\infty} 2\left(\frac{1}{3}\right)^n$$

$$\sum_{n=0}^{+\infty} \frac{2^n + 3^n}{6^n}$$

Dato un quadrato di lato a si costruisca un secondo quadrato congiungendone i punti medi e così via. Quanto vale la somma delle aree degli infiniti quadrati che si ottengono?

 a^2

$$\frac{a^2}{2}$$

$$\frac{a^2}{4}$$

$$\sum_{n=0}^{+\infty} a^2 \left(\frac{1}{2}\right)^n \longrightarrow 2a^2$$

. . .

Da una torta viene prima tagliata una porzione p<1 del totale, poi una porzione p della parte rimasta, e così via, asportando ogni volta una porzione p del rimanente. Supponendo di iterare il processo all'infinito, quanta torta resterà alla fine?

1-p
$$\longrightarrow$$
 1-p- (1-p)p = (1-p)²
1-p - (1-p)p - (1-p - (1-p)p)p
=1-p[1+(1-p) + (1-p)²]
 $1-p\sum_{n=0}^{+\infty} (1-p)^n \longrightarrow 0$

Achille e la Tartaruga

d

$$t_N - t_{N-1} = \left(\frac{v_T}{v_A}\right)^n t_1$$

$$t_1 + \sum_{k=1}^{+\infty} (t_{k+1} - t_k) = t_1 + \sum_{k=1}^{+\infty} \left(\frac{v_T}{v_A}\right)^k t_1 = t_1 \sum_{k=0}^{+\infty} \left(\frac{v_T}{v_A}\right)^k = \frac{d}{v_A - v_T}$$

Serie di Taylor

Sia $f: A \subset R \to R$ e a $\in A$. Sia f definita e derivabile infinite volte in a, allora

$$f(x) = \sum_{k=0}^{+\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k \quad \forall x \in \mathbf{I}(a)$$

$$f(x) = f(a) + f'(a)(x - a) + f''(a)(x - a)^{2} + \dots$$

Serie di Taylor

Serie di Taylor

$$sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \quad \forall x \in I(0)$$

Serie di Fourier

Sia f: $A \subset R \rightarrow R$ periodica e $a \in A$.

$$f(x) = a_0 + \sum_{k=1}^{+\infty} (a_k \cos kx + b_k \sin kx)$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx$$

Serie di Fourier

