1	ACDC_TinySwitch- III_032514; Rev.1.27; Copyright Power Integrations 2014	INPUT	INFO	ОИТРИТ	UNIT	ACDC_TinySwitch- III_032514_Rev1-27.xls; TinySwitch-III Continuous/Discontinuous Flyback Transformer Design Spreadsheet	~
2	ENTER APPLICATION VARIABLES					Customer	
3	VACMIN	195			Volts	Minimum AC Input Voltage	
4	VACMAX	265			Volts	Maximum AC Input Voltage	☑
5	fL	50			Hertz	AC Mains Frequency	
6	VO	16.00			Volts	Output Voltage (at continuous power)	
7	10	0.65			Amps	Power Supply Output Current	
8	Power	0.03		10.4	Watts	(corresponding to peak power) Continuous Output Power	
9	n	0.80		10.4	vvalls	Efficiency Estimate at output terminals.	
10	Z	0.50				Under 0.7 if no better data available Z Factor. Ratio of secondary side losses to the total losses in the power supply. Use 0.5 if no better data available	✓
11	tC	3.00			mSeconds	Bridge Rectifier Conduction Time Estimate	$\overline{\mathbf{V}}$
12	CIN	22.00		22.00	uFarads	Input Capacitance	$\overline{\mathbf{V}}$
13							✓
14	ENTER TinySwitch-III VARIABLES						
15	TinySwitch-III	TNY2 \$		TNY275P		User defined TinySwitch-III	$\overline{\mathbf{V}}$
16	Chosen Device		TNY275P				$\overline{\mathbf{V}}$
17	Chose Configuration	STD \$		Standard Current Limit		Enter "RED" for reduced current limit (sealed adapters), "STD" for standard current limit or "INC" for increased current limit (peak or higher power applications)	Y
18	ILIMITMIN			0.256	Amps	Minimum Current Limit	
19	ILIMITTYP			0.275	Amps	Typical Current Limit	V
20	ILIMITMAX fSmin			124000	Amps Hertz	Maximum Current Limit Minimum Device Switching Frequency	✓
22	I^2fmin			8.98425	A^2kHz	l^2f (product of current limit squared and frequency is trimmed for tighter tolerance)	✓
23	VOR	125.00		125.00	Volts	Reflected Output Voltage (VOR < 135 V Recommended)	
24	VDS			10.00	Volts	TinySwitch-III on-state Drain to Source Voltage	\square
25	VD	1.00		1.00	Volts	Output Winding Diode Forward Voltage Drop	
26	KP			0.83		Ripple to Peak Current Ratio (KP < 6)	✓
27	KP_TRANSIENT			0.57		Transient Ripple to Peak Current Ratio. Ensure KP_TRANSIENT > 0.25	✓
28							✓
29	ENTER BIAS WINDING VARIABLES						$\overline{\mathbf{Q}}$
30	VB			22.00	Volts	Bias Winding Voltage	
31	VDB			0.70	Volts	Bias Winding Diode Forward Voltage Drop	$\overline{\mathbf{Z}}$
32	NB			19.41		Bias Winding Number of Turns	✓
33	VZOV			28.00	Volts	Over Voltage Protection zener diode voltage.	☑
34							✓
35	UVLO VARIABLES						✓
36	V_UV_TARGET			286.37	Volts	Target DC under-voltage threshold, above which the power supply with start	

37	V_UV_ACTUAL			277.20	Volts	standard value of RUV_ACTUAL	
38	RUV_IDEAL			11.37	Mohms	Calculated value for UV Lockout resistor	\square
39	RUV_ACTUAL			11.00	Mohms	Closest standard value of resistor to RUV IDEAL	$\overline{\mathbf{Q}}$
40						_	$\overline{\mathbf{Z}}$
41	ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES						$\overline{\mathbf{A}}$
42	Core Type	(EFD2 \$		EFD20		Enter Transformer Core	✓
43	Core		EFD20		P/N:	EFD20-3F3	\square
44	Bobbin		EFD20_BOBBIN		P/N:	EFD20_BOBBIN	$\overline{\mathbf{A}}$
45	AE			0.31	cm^2	Core Effective Cross Sectional Area	$\overline{\mathbf{Q}}$
46	LE			4.70	cm	Core Effective Path Length	$\overline{\mathbf{A}}$
47	AL			1200.00	nH/T^2	Ungapped Core Effective Inductance	$\overline{\mathbf{Z}}$
48	BW			13.20	mm	Bobbin Physical Winding Width	$\overline{\mathbf{Q}}$
49	М	3.00		3.00	mm	Safety Margin Width (Half the Primary to Secondary Creepage Distance)	
50	L			3.00		Number of Primary Layers	$\overline{\mathbf{Z}}$
51	NS	15		15		Number of Secondary Turns	$\overline{\mathbf{Z}}$
52	110	10		10		Trainer or occordary runio	
53	DC INPUT VOLTAGE						
	PARAMETERS						-
54	VMIN			260.34	Volts	Minimum DC Input Voltage	✓
55	VMAX			374.77	Volts	Maximum DC Input Voltage	$\overline{\mathbf{Q}}$
56							$\overline{\mathbf{A}}$
57	CURRENT WAVEFORM SHAPE PARAMETERS						
58	DMAX			0.33		Duty Ratio at full load, minimum primary inductance and minimum input voltage	
59	IAVG			0.05	Amps	Average Primary Current	$\overline{\mathbf{V}}$
60	IP			0.26	Amps	Minimum Peak Primary Current	$\overline{\mathbf{A}}$
61	IR			0.21	Amps	Primary Ripple Current	$\overline{\mathbf{A}}$
62	IRMS			0.11	Amps	Primary RMS Current	
63 64	TRANSFORMER PRIMARY						☑
04	DESIGN PARAMETERS					T : 15:	V
65	LP			2982	uHenries	Typical Primary Inductance. +/- 10% to ensure a minimum primary inductance of 2683 uH	☑
66	LP_TOLERANCE			10	%	Primary inductance tolerance	$\overline{\mathbf{Z}}$
67	NP			110		Primary Winding Number of Turns	$\overline{\mathbf{A}}$
68	ALG			245	nH/T^2	Gapped Core Effective Inductance	$\overline{\mathbf{A}}$
69	ВМ			2564	Gauss	Maximum Operating Flux Density, BM<3000 is recommended	☑
70	BAC			1062	Gauss	AC Flux Density for Core Loss Curves (0.5 X Peak to Peak)	\square
71	ur			1448		Relative Permeability of Ungapped Core	
72	LG			0.13	mm	Gap Length (Lg > 0.1 mm)	$\overline{\mathbf{A}}$
73	BWE			21.6	mm	Effective Bobbin Width	$\overline{\mathbf{A}}$
74	OD			0.20	mm	Maximum Primary Wire Diameter including insulation	☑
75	INS			0.04	mm	Estimated Total Insulation Thickness (= 2 * film thickness)	$\overline{\mathbf{A}}$
76	DIA			0.15	mm	Bare conductor diameter	$\overline{\mathbf{A}}$
77	AWG			35	AWG	Primary Wire Gauge (Rounded to next smaller standard AWG value)	☑
78	СМ			32	Cmils	Bare conductor effective area in circular mils	☑
79	СМА			298	Cmils/Amp	Primary Winding Current Capacity (200 < CMA < 500)	$\overline{\mathbf{A}}$
80							✓
	TRANSFORMER	and the second s				·	

81	SECONDARY DESIGN PARAMETERS				
82	Lumped parameters				$\overline{\mathbf{Z}}$
83	ISP	1.88	Amps	Peak Secondary Current	
84	ISRMS	1.12	Amps	Secondary RMS Current	$\overline{\mathbf{V}}$
85	IRIPPLE	0.91	Amps	Output Capacitor RMS Ripple Current	$\overline{\mathbf{A}}$
86	CMS	223	Cmils	Secondary Bare Conductor minimum circular mils	$\overline{\mathbf{A}}$
87	AWGS	26	AWG	Secondary Wire Gauge (Rounded up to next larger standard AWG value)	$\overline{\mathbf{A}}$
88					✓
89	VOLTAGE STRESS PARAMETERS				$\overline{\mathbf{A}}$
90	VDRAIN	657	Volts	Maximum Drain Voltage Estimate (Assumes 20% zener clamp tolerance and an additional 10% temperature tolerance)	\square
91	PIVS	67	Volts	Output Rectifier Maximum Peak Inverse Voltage	$\overline{\mathbf{A}}$
92					$\overline{\mathbf{A}}$
93	TRANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS)				$\overline{\mathbf{Z}}$
94	1st output				$\overline{\mathbf{A}}$
95	VO1	16.00	Volts	Main Output Voltage (if unused, defaults to single output design)	$\overline{\mathbf{A}}$
96	IO1	0.65	Amps	Output DC Current	$\overline{\mathbf{A}}$
97	PO1	10.4	Watts	Output Power	$\overline{\mathbf{V}}$
98	VD1	1.00	Volts	Output Diode Forward Voltage Drop	$\overline{\mathbf{V}}$
99	NS1	15.00		Output Winding Number of Turns	$\overline{\mathbf{Z}}$
100	ISRMS1	1.117	Amps	Output Winding RMS Current	
101	IRIPPLE1	0.91	Amps	Output Capacitor RMS Ripple Current	$\overline{\mathbf{Y}}$
102	PIVS1	67	Volts	Output Rectifier Maximum Peak Inverse Voltage	☑
103	Recommended Diodes	BYV27-100		Recommended Diodes for this output	$\overline{\mathbf{V}}$
104	CMS1	223	Cmils	Output Winding Bare Conductor minimum circular mils	$\overline{\mathbf{A}}$
105	AWGS1	26	AWG	Wire Gauge (Rounded up to next larger standard AWG value)	$\overline{\mathbf{Q}}$
106	DIAS1	0.41	mm	Minimum Bare Conductor Diameter	$\overline{\mathbf{A}}$
107	ODS1	0.48	mm	Maximum Outside Diameter for Triple Insulated Wire	$\overline{\mathbf{A}}$
108					\square
109	2nd output				$\overline{\mathbf{A}}$
110	VO2		Volts	Output Voltage	$ \mathbf{\nabla} $
111	IO2		Amps	Output DC Current	☑
112	PO2	0	Watts	Output Power	$\overline{\mathbf{V}}$
113	VD2	0.70	Volts	Output Diode Forward Voltage Drop	$\overline{\mathbf{A}}$
	NS2	0.62		Output Winding Number of Turns	$\overline{\mathbf{V}}$
114	NSZ			0 1 1145 5 0140 0 1	
114 115	ISRMS2	0	Amps	Output Winding RMS Current	$\overline{\mathbf{A}}$
		0.00	Amps Amps	Output Capacitor RMS Ripple Current	✓
115	ISRMS2	-		-	✓
115 116	ISRMS2 IRIPPLE2	0.00	Amps	Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage Recommended Diodes for this output	☑
115 116 117	ISRMS2 IRIPPLE2 PIVS2	0.00	Amps	Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage Recommended Diodes for this output Output Winding Bare Conductor minimum circular mils	✓
115 116 117 118	ISRMS2 IRIPPLE2 PIVS2 Recommended Diode	0.00	Amps Volts	Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage Recommended Diodes for this output Output Winding Bare Conductor	
115 116 117 118 119	ISRMS2 IRIPPLE2 PIVS2 Recommended Diode CMS2	0.00	Amps Volts Cmils	Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage Recommended Diodes for this output Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
115 116 117 118 119 120	ISRMS2 IRIPPLE2 PIVS2 Recommended Diode CMS2 AWGS2	0.00 2 0 N/A	Amps Volts Cmils AWG	Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage Recommended Diodes for this output Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value)	
115 116 117 118 119 120 121	ISRMS2 IRIPPLE2 PIVS2 Recommended Diode CMS2 AWGS2 DIAS2	0.00 2 0 N/A N/A	Amps Volts Cmils AWG mm	Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage Recommended Diodes for this output Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter Maximum Outside Diameter for Triple	
115 116 117 118 119 120 121 122	ISRMS2 IRIPPLE2 PIVS2 Recommended Diode CMS2 AWGS2 DIAS2	0.00 2 0 N/A N/A	Amps Volts Cmils AWG mm	Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage Recommended Diodes for this output Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter Maximum Outside Diameter for Triple	
115 116 117 118 119 120 121 122	ISRMS2 IRIPPLE2 PIVS2 Recommended Diode CMS2 AWGS2 DIAS2 ODS2	0.00 2 0 N/A N/A	Amps Volts Cmils AWG mm	Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage Recommended Diodes for this output Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter Maximum Outside Diameter for Triple	
115 116 117 118 119 120 121 122 123 124	ISRMS2 IRIPPLE2 PIVS2 Recommended Diode CMS2 AWGS2 DIAS2 ODS2 3rd output	0.00 2 0 N/A N/A	Amps Volts Cmils AWG mm mm	Output Capacitor RMS Ripple Current Output Rectifier Maximum Peak Inverse Voltage Recommended Diodes for this output Output Winding Bare Conductor minimum circular mils Wire Gauge (Rounded up to next larger standard AWG value) Minimum Bare Conductor Diameter Maximum Outside Diameter for Triple Insulated Wire	

127	PO3		0	Watts	Output Power	
128	VD3		0.70	Volts	Output Diode Forward Voltage Drop	$\overline{\mathbf{A}}$
129	NS3		0.62		Output Winding Number of Turns	$\overline{\mathbf{Q}}$
130	ISRMS3		0	Amps	Output Winding RMS Current	$\overline{\mathbf{A}}$
131	IRIPPLE3		0.00	Amps	Output Capacitor RMS Ripple Current	$\overline{\mathbf{A}}$
132	PIVS3		2	Volts	Output Rectifier Maximum Peak Inverse Voltage	☑
133	Recommended Diode				Recommended Diodes for this output	$\overline{\mathbf{A}}$
134	CMS3		0	Cmils	Output Winding Bare Conductor minimum circular mils	☑
135	AWGS3		N/A	AWG	Wire Gauge (Rounded up to next larger standard AWG value)	$\overline{\mathbf{Z}}$
136	DIAS3		N/A	mm	Minimum Bare Conductor Diameter	$\overline{\mathbf{A}}$
137	ODS3		N/A	mm	Maximum Outside Diameter for Triple Insulated Wire	☑
138						$\overline{\mathbf{A}}$
139	Total power		10.4	Watts	Total Output Power	$\overline{\mathbf{A}}$
140						$\overline{\mathbf{A}}$
141	Negative Output	€N/A 🗘	N/A		If negative output exists enter Output number; eg: If VO2 is negative output, enter 2	\square