Lógica para computação

Cálculo de predicados

Toda proposição que vimos até agora pode ser decomposta até certo ponto:

A = 5 'e impar

Toda proposição que vimos até agora pode ser decomposta até certo ponto:

A = 5 'e impar

B = 3 'e impar

Toda proposição que vimos até agora pode ser decomposta até certo ponto:

A = 5 'e impar

B = 3 'e impar

C = Todos os homens são mortais

Toda proposição que vimos até agora pode ser decomposta até certo ponto:

A = 5 'e impar

B = 3 'e impar

C = Todos os homens são mortais

D = Eu sou mortal

Toda proposição que vimos até agora pode ser decomposta até certo ponto:

A = 5 'e impar

B = 3 é ímpar

C = Todos os homens são mortais

D = Eu sou mortal

E = Não existe x tal que x é ímpar e par ao mesmo tempo

Ideia: separar sujeito de predicados e adicionar quantificadores

4 é um número par

Ideia: separar sujeito de predicados e adicionar quantificadores

6 é um número par

Ideia: separar sujeito de predicados e adicionar quantificadores

7 não é um número par

Ideia: separar sujeito de predicados e adicionar quantificadores

x é um número par

Ideia: separar sujeito de predicados e adicionar quantificadores

y não é um número par

Ideia: separar sujeito de predicados e adicionar quantificadores

Eu sou mortal

Ideia: separar sujeito de predicados e adicionar quantificadores

Todos os homens são mortais

Ideia: separar sujeito de predicados e adicionar quantificadores

Para qualquer homem x, x é mortal

Ideia: separar sujeito de predicados e adicionar quantificadores

Existem homens mortais

Ideia: separar sujeito de predicados e adicionar quantificadores

Existe x tal que x é mortal

Ideia: separar sujeito de predicados e adicionar quantificadores

Não existem homens mortais

Ideia: separar sujeito de predicados e adicionar quantificadores

Todos os homens são imortais

Ideia: separar sujeito de predicados e adicionar quantificadores

x é divisível por 2

Ideia: separar sujeito de predicados e adicionar quantificadores

x é divisível por 2 x é par

Ideia: separar sujeito de predicados e adicionar quantificadores

x é divisível por 2 x é par Todo número divisível por 2 é par

Ideia: separar sujeito de predicados e adicionar quantificadores

Alguém estuda aqui

Ideia: separar sujeito de predicados e adicionar quantificadores

Alguém estuda aqui Ninguém estuda aqui

Ideia: separar sujeito de predicados e adicionar quantificadores

x é um cachorro

Ideia: separar sujeito de predicados e adicionar quantificadores

A = ser um cachorro

B = ser manso

Ideia: separar sujeito de predicados e adicionar quantificadores

A = ser um cachorro B = ser manso Todo cachorro é manso

Ideia: separar sujeito de predicados e adicionar quantificadores

A = ser um cachorro
B = ser manso
Todo cachorro é manso
Nem todo cachorro é manso

Ideia: separar sujeito de predicados e adicionar quantificadores

$$A(x) = x ext{ \'e divisível por 2}$$

 $B(x) = x ext{ \'e divisível por 3}$

Proposições	Tradução
$(\exists x)(A(x))$	Existe um número natural divisível por 2.
(∃x)(¬A(x))	Existe um número natural que não é divisível por 2.
(∀x)(A(x))	Todo número natural é divisível por 2.
$[\neg((\forall x)(A(x))]$	Não é verdade que todo número natural seja divisível por 2.
(∀x)(¬A(x))	Todo número natural não é divisível por 2.ouNenhum número natural é divisível por 2.ouNão existe número natural divisível por 2.
$(\exists x)(A(x) \wedge B(x))$	Existe um número natural divisível por 2 e divisível por 3.
$(\exists x)(A(x) \vee B(y))$	Existe um número natural divisível por 2 ou divisível por 3.

Também possível com múltiplas entradas (constantes/variáveis)

x é maior que y

Também possível com múltiplas entradas (constantes/variáveis)

x é maior que y

Z é pai de Y

Também possível com múltiplas entradas (constantes/variáveis)

x é maior que y

Z é pai de Y

X é mãe de Y

Também possível com múltiplas entradas (constantes/variáveis)

x é maior que y

Z é pai de Y

X é mãe de Y

x está entre y e z

Também possível com múltiplas entradas (constantes/variáveis)

x é maior que y

Z é pai de Y

X é mãe de Y

x está entre y e z

Podemos adicionar quantificadores e constantes

$$A(x) \equiv x \text{ é um animal.}$$

 $B(x) \equiv x \text{ é um mamífero.}$
 $C(x) \equiv x \text{ é um homem.}$

$$[\ (\forall x)(C(x) \rightarrow B(x)\)\ \land\ (\forall x)(B(x) \rightarrow A(x)\)\] \rightarrow [\ (\forall x)(C(x) \rightarrow A(x)\)\]$$

Subfórmulas

Definição 4 (Subfórmula). Seja A uma fórmula.

- 1. Se A é uma fórmula atômica $p(t_1, ..., t_n)$, então $p(t_1, ..., t_n)$ é uma subfórmula de A.
- 2. Se A é do tipo $\neg B$, então B é uma subfórmula de A.
- 3. Se A é do tipo $B \vee C$, então B e C são subfórmulas de A.
- 4. Se A é do tipo $B \wedge C$, então B e C são subfórmulas de A.
- 5. Se A é do tipo $B \rightarrow C$, então B e C são subfórmulas de A.
- 6. Se A é do tipo $\forall xB$, então B é subfórmula de A.
- 7. Se A é do tipo $\exists xB$, então B é subfórmula de A.
- Se B é subfórmula de A e C é subfórmula de B, então C é subfórmula de A.
- As únicas subfórmulas de A são definidas pelas regras (1 a 8) acima, além da própria fórmula A.

Subfórmulas

Definição 4 (Subfórmula). Seja A uma fórmula.

- 1. Se A é uma fórmula atômica $p(t_1, ..., t_n)$, então $p(t_1, ..., t_n)$ é uma subfórmula de A.
- 2. Se A é do tipo $\neg B$, então B é uma subfórmula de A.
- 3. Se A é do tipo $B \vee C$, então B e C são subfórmulas de A.
- 4. Se A é do tipo $B \wedge C$, então B e C são subfórmulas de A.
- 5. Se $A \in \text{do tipo } B \to C$, então $B \in C$ são subfórmulas de A.
- 6. Se A é do tipo $\forall xB$, então B é subfórmula de A.
- 7. Se A é do tipo $\exists xB$, então B é subfórmula de A.
- 8. Se B é subfórmula de A e C é subfórmula de B, então C é subfórmula de A.
- 9. As únicas subfórmulas de A são definidas pelas regras (1 a 8) acima, além da própria fórmula A.

$$\forall x \exists y (\neg p(x) \rightarrow z(q(z) \rightarrow \neg p(z)))$$

Escopo de quantificadores

Definição 5 (Escopo de quantificadores). Se x é uma variável individual e A é uma fórmula, definimos o escopo do quantificador $\forall x$, na fórmula $\forall xA$, como sendo a fórmula A. Analogamente, o escopo do quantificador $\exists x$, na fórmula $\exists xA$, é a fórmula A.

Escopo de quantificadores

Definição 5 (Escopo de quantificadores). Se x é uma variável individual e A é uma fórmula, definimos o escopo do quantificador $\forall x$, na fórmula $\forall xA$, como sendo a fórmula A. Analogamente, o escopo do quantificador $\exists x$, na fórmula $\exists xA$, é a fórmula A.

uma variável individual x é livre em uma fórmula A, se essa ocorrência de x não se dá no escopo de um quantificador ($\forall x$ ou $\exists x$) em uma subfórmula de A (do tipo $\forall xB$ ou $\exists xB$). Caso contrário, dizemos que a ocorrência dessa variável x é ligada.

Termo livre para uma variável

Definição 7 (Termo livre para uma variável). Dizemos que um termo t é livre para a variável x em uma fórmula A, se nenhuma ocorrência livre de x está no escopo de um quantificador ($\forall y$ ou $\exists y$), onde y é uma variável que ocorre em t.

Termo livre para uma variável

Definição 7 (Termo livre para uma variável). Dizemos que um termo t é livre para a variável x em uma fórmula A, se nenhuma ocorrência livre de x está no escopo de um quantificador ($\forall y$ ou $\exists y$), onde y é uma variável que ocorre em t.

Exemplo 7. Sejam t_1 o termo x, t_2 o termo y, t_3 o termo f(x, y, z) e as fórmulas

 $A: \forall z(p(z) \rightarrow q(x)) \rightarrow \exists xr(w),$

 $B: p(x) \to \exists x (r(x) \land q(z))$ e

 $C: \forall y(p(y) \lor q(y)).$

Termo livre para uma variável

Definição 7 (Termo livre para uma variável). Dizemos que um termo t é livre para a variável x em uma fórmula A, se nenhuma ocorrência livre de x está no escopo de um quantificador ($\forall y$ ou $\exists y$), onde y é uma variável que ocorre em t.

Exemplo 7. Sejam t_1 o termo x, t_2 o termo y, t_3 o termo f(x, y, z) e as fórmulas

$$A: \forall z(p(z) \rightarrow q(x)) \rightarrow \exists xr(w),$$

 $B: p(x) \to \exists x (r(x) \land q(z))$ e

$$C: \forall y(p(y) \lor q(y)).$$

 t_2 é livre para x em A

 t_1 é livre para y em C

 t_3 não é livre para w em A

Processo dedutivo na linguagem de predicados

Sócrates é homem.
Todo homem é mortal.
Logo, Sócrates é mortal.

Particularização universal

Particularização existencial

Generalização universal

Generalização existencial

De	Podemos Deduzir	Nome/Abreviatura para a Regra	Restrições sobre o Uso
(∀ <i>x</i>) <i>P</i> (<i>x</i>)	P(t), em que t é uma variável ou um símbolo constante	Particularização universal — pu	Se t for uma variável, não deve estar dentro do escopo de um quantificador para t.
(∃x)P(x)	P(a) em que a é um símbolo constante não utilizado anteriormente na sequência de demonstração	Particularização existencial — pe	É necessário que seja a primeira regra a usar a.
P(x)	(∀ <i>x</i>) <i>P</i> (<i>x</i>)	Generalização universal — gu	P(x) não pode ter sido deduzida de nenhuma hipótese na qual x é uma variável livre, nem pode ter sido deduzida, através de pe, de uma fbf na qual x é uma variável livre.
P(x) ou P(a) em que a é um símbolo constante	$(\exists x)P(x)$	Generalização existencial — ge	Para ir de $P(a)$ a $(\exists x)P(x)$, x não pode aparecer em $P(a)$.

Exercícios

$$(\forall x)(P(x)) \equiv (\forall x) ((P(x) \vee Q(x))$$

$$(\forall x)(P(x)), (\exists x)(Q(x)) \equiv (\exists x)(P(x) \land Q(x))$$

$$(\forall x)(P(x)), (\exists x) (\sim P(x)) \equiv (\exists x)(Q(x))$$

Paulo é estudioso e simpático. Se alguém é simpático ou inteligente, então é popular. Portanto, existe alguém estudioso e popular.

REGRAS DE INFERÊNCIA			
De	Podemos Deduzir	Nome/Abreviatura para a Regra	
$P, P \rightarrow Q$	Q	Modus ponens — mp	
$P \rightarrow Q, Q'$	P'	Modus tollens — mt	
P, Q	PAQ	Conjunção — conj	
PAQ	P, Q	Simplificação — simp	
P	PVQ	Adição — ad	
$P \rightarrow Q, Q \rightarrow R$	$P \rightarrow R$	Silogismo hipotético — sh	
P v Q, P'	Q	Silogismo disjuntivo — sd	
$P \rightarrow Q$	$Q' \rightarrow P'$	Contraposição — cont	
$Q' \rightarrow P'$	$P \rightarrow Q$	Contraposição — cont	