INITIATION À L'ALGÈBRE - A

TD#2: Fonctions

Généralités sur les fonctions

Exercice 1.

1. Dans les exemples ci-dessous, lorsqu'il s'agit d'applications, dire si elles sont injectives, surjectives et/ou bijectives.

2. On considère les applications f et g suivantes :

- Les applications f et g sont-elles injectives, surjectives, bijectives?
- Déterminer $g \circ f$.
- $g \circ f$ est-elle injective, surjective, bijective?

Exercice 2. Soient a, b, c, d quatre éléments distincts et soit $X = \{a, b, c, d\}$. Soit $f: X \longrightarrow X$ l'application définie par :

$$f(a) = d$$
, $f(b) = a$, $f(c) = c$, $f(d) = a$.

- 1. L'application f est-elle injective? surjective? bijective?
- 2. Quels sont les ensembles $f(\{a, b, c\}), f(\{b, d\}), f(\{a, d\})$?
- 3. Quels sont les ensembles $f^{-1}(\{a\}), f^{-1}(\{b\}), f^{-1}(\{a, c, d\})$?

Exercice 3. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto x^2$.

- 1. Déterminer $f^{-1}(\{2\})$, $f^{-1}(\{0\})$, $f^{-1}(\{-1\})$, $f^{-1}(\{3,4\})$.
- $2. \ \ \text{D\'eterminer graphiquement les ensembles suivants}: f([-3,-1]), \ f([-2,1]), \ f([-3,-1]\cup[-2,1]) \ \text{et} \ f([-3,-1]\cap[-2,1]). \ \text{Les comparer.}$
- 3. Mêmes questions avec les ensembles $f^{-1}(]-\infty,2]$, $f^{-1}([1,+\infty[),f^{-1}(]-\infty,2]\cup[1,+\infty[)$ et $f^{-1}(]-\infty,2]\cap[1,+\infty[)$.

Exercice 4. Soient E et F deux ensembles et soit $f: E \longrightarrow F$ une application.

- 1. Montrer que, si A et A' sont des parties de E vérifiant $A \subset A'$, alors $f(A) \subset f(A')$.
- 2. Pour les sous-ensembles A, A', B, B' de E, comparer
 - (a) $f(A \cup A')$ et $f(A) \cup f(A')$
 - (b) $f(B \cap B')$ et $f(B) \cap f(B')$ (illustrer la non égalité).
- 3. Montrer que $f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$ où U et V sont deux parties de F.

Exercice 5. Les fonctions suivantes sont-elles injectives ? surjectives ? bijectives ?

Lorsque la fonction est bijective, déterminer sa bijection réciproque.

- 1. $\mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto -5x + 1$.
- 2. $\mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto x^2$.
- 3. $\mathbb{R}_+ \longrightarrow \mathbb{R}_+, x \longmapsto x^2$.
- 4. $\mathbb{Z} \longrightarrow \mathbb{Z}, n \longmapsto 2n$.

Exercice 6. Soient $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $g: \mathbb{R} \longrightarrow \mathbb{R}$ telles que f(x) = 3x + 1 et $g(x) = x^2 - 1$.

- 1. Calculer $f \circ g$, $g \circ f$, $f \times g$ et f + g.
- 2. A-t-on $f \circ g = g \circ f$?

Exercice 7. Montrer que l'application $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ définie par

$$f(x, y) = (2x + y, x + 3y)$$

et bijective et déterminer sa bijection réciproque f^{-1} .

Langage des fonctions réelles : domaine de définition, antécédents, ...

Exercice 8. Déterminer le domaine de définition des fonctions suivantes :

$$x \mapsto \ln(1+x+x^2), \qquad x \mapsto \sqrt[3]{x(x-2)}, \qquad x \mapsto e^{\frac{x^2-3x+2}{x+1}}, \qquad x \mapsto \frac{1}{\sqrt{\cos(x)+1}},$$

$$x \mapsto \sqrt{x+\frac{1}{x}}, \qquad x \mapsto \sqrt{\log_2\left(\frac{x}{x^2-1}\right)}, \qquad x \mapsto \ln(x-\sqrt{x}), \qquad x \mapsto \sqrt{\sqrt{x^2+1}-2},$$

$$x \mapsto \sqrt{4x-x^3}, \qquad x \mapsto |4x-7|, \qquad x \mapsto \frac{\sqrt{2-x}}{4x-x^2-3}, \qquad x \mapsto \log_{1/2}\left(\frac{1+\sin x}{1-\sin x}\right).$$

Exercice 9. Soient $f(x) = \sqrt{\frac{1}{x} - 1}$, $g(x) = -x^2 + 1$ et $h(x) = \frac{1}{x^2}$.

- 1. Déterminer le domaine de définition de f, g et h.
- 2. Déterminer le domaine de définition de la fonction $g \circ f$, puis son expression. Déterminer le domaine de définition de la fonction $x \mapsto 2 \frac{1}{x}$. Qu'en concluez vous ?
- 3. Déterminer le domaine de définition des fonctions $f \circ g$, $g \circ h$, $h \circ g$, $f \circ h$, $h \circ f$, puis leurs expressions.

Exercice 10.

1. Déterminer les antécédents de y_0 par f où

$$(1) \ f: x \longmapsto x^2, \ y_0 = 4, \quad (2) \ f: x \longmapsto x^2, \ y_0 = -2, \quad (3) \ f: [1, +\infty[\longrightarrow \mathbb{R}, x \longmapsto x^2, \ y_0 = 3.$$

2. Déterminer l'ensemble des réels dont l'image est 4 par la fonction

(1)
$$f: x \longmapsto x^2$$
, (2) $f: x \longmapsto |3-x|$

Exercice 11. Soient f, g deux fonctions de \mathbb{R} dans \mathbb{R} .

Traduire en termes de quantificateurs les expressions suivantes :

- 1. f est inférieure à g
- 2. f est impaire
- 3. f ne s'annule jamais
- 4. *f* est croissante
- 5. *f* n'est pas la fonction nulle
- 6. *f* est constante
- 7. f est majorée.

Bijectivité et fonction réciproque

Exercice 12. Soit f définie sur $I = \left[0, \frac{\pi}{2}\right]$ par $f(x) = \frac{\sqrt{x^2 + 1}}{\cos x}$.

- 1. Quel est le sens de variation de f?
- 2. Déterminer J = f(I) et montrer que f est une bijection de I sur J.

Exercice 13. Soit f la fonction définie par $f(x) = \frac{x}{1 + |x|}$.

- 1. Étudier la parité de f.
- 2. Montrer, sans dériver, que la fonction f est strictement croissante.
- 3. Montrer que f est une bijection de \mathbb{R} sur] 1,1[. Quelle est sa réciproque?

Exercice 14. Soit f la fonction définie sur $\mathbb{R} \setminus \{0,1\}$ par $f(x) = \frac{1}{1-x} - \frac{1}{x}$

- 1. Montrer que f est strictement croissante sur]0,1[. En déduire que la restriction g de f sur]0,1[définit une bijection sur \mathbb{R} .
- 2. Résoudre l'équation f(x) = 0.
- 3. Pour tout $y \in \mathbb{R}^*$, résoudre l'équation y = f(x) d'inconnue $x \in \mathbb{R}$.
- 4. Soit $x \in]0,1[$ et $y \in \mathbb{R}$ tels que y = f(x).
 - (a) Montrer que, si y > 0 alors $x > \frac{1}{2}$. En déduire que $x = \frac{y - 2 + \sqrt{4 + y^2}}{2y}$.
 - (b) Montrer que, si y < 0 alors $x < \frac{1}{2}$. En déduire que $x = \frac{y 2 + \sqrt{4 + y^2}}{2y}$.
 - (c) Ecrire la définition complète de la réciproque de *g*.

Exercice 15. Soit f la fonction définie sur \mathbb{R}^* par $f(x) = e^{1-\frac{2}{x}}$.

- 1. Étudier la continuité puis le sens de variation de f (SANS dériver).
- 2. Montrer que f réalise une bijection de \mathbb{R}_+^* sur un intervalle que l'on précisera.
- 3. En déduire le tableau de variations de f^{-1} .
- 4. Déterminer la réciproque f^{-1} explicitement.

Comment montrer qu'une application $f: X \longrightarrow Y$ est injective?

- On se donne deux éléments quelconque $x, x' \in X$, f(x) = f(x') et on montre que x = x'. Autrement dit, on montre que tout élément Y a **au plus** un antécédent par f.
- On se donne deux éléments quelconque $x, x' \in X, x \neq x'$ et on montre que $f(x) \neq f(x')$.
- On cherche une application $g: Y \longrightarrow X$ telle que $g \circ f = \operatorname{Id}_X$.

Comment montrer qu'une application $f: X \longrightarrow Y$ est surjective?

- On se donne un élément quelconque $y \in Y$ et on cherche à montrer qu'il existe $x \in X$ tel que y = f(x). Autrement dit, on montre que tout élément a **au moins** un antécédent par f.
- On montre que f(X) = Y.
- On cherche une application $g: Y \longrightarrow X$ telle que $f \circ g = \operatorname{Id}_Y$.

Comment montrer qu'une application $f: X \longrightarrow Y$ est bijective?

- On montre que f est injective et surjective.
- On cherche une application $g: Y \longrightarrow X$ telle que $f \circ g = \operatorname{Id}_Y$ et $g \circ f = \operatorname{Id}_X$.
- Point de vue équation. On montre que, pour tout $y \in F$, il existe un **unique** élément $x \in E$ tel que y = f(x).
- Lorsque que X est un intervalle de \mathbb{R} et $Y = \mathbb{R}$, on peut montrer que f est strictement monotone.

Comment montrer que $y \in f(A)$?

Par définition, $f(A) = \{f(a) : a \in A\} = \{z \in Y : \exists a \in A, f(a) = z\}$. C'est l'ensemble des éléments de Y qui ont au moins un antécédent dans A. Il suffit donc de montrer qu'il existe un élément $a \in A$ tel que f(a) = y.

Comment montrer que $x \in f^{-1}(B)$?

Par définition, $f^{-1}(B) = \{x \in X : f(x) \in B\}$. C'est l'ensemble des éléments de X dont l'image est dans B. Il suffit donc de montrer que $f(x) \in B$.