Vulnerabilities

"To know your Enemy, you must become your Enemy."

Sun Tzu

© André Zúquete

Security

Information security: Vulnerabilities & attacks threats difficult Discouragement generate measures potentiate elude Deception measures Attacks exploit discover Detection measures vulnerabilities cause protect trigger Prevention measures increases reduce depends Recuperation measures Impact value © André Zúquete Security

Measures (and some tools)

- Discouragement
 - Punishment
 - Legal restrictions
 - Forensic evidences
 - Security barriers
 - Firewalls
 - Authentication
 - Secure communication
 - Sandboxing
- Detection system
 - Intrusion detection system
 - e.g. Snort
 - Auditing
 - Forensic break-in analysis

- Deception
 - Honeypots / honeynets
 - Forensic follow-up
- Prevention
 - Enforcement of the Principle of Least Privilege
 - Vulnerability scanning
 - e.g. OpenVAS
 - Vulnerability patching
- Recuperation
 - Backups
 - Redundant systems
 - Forensic recuperation

© André Zúquete Security 3

Security readiness (1/3)

- Discouragement, deception and detection measures tackle (mostly) known issues
 - Reconnaissance attempts (e.g. port scanning)
 - Generic attacks (e.g. network eavesdropping)
 - Specific attacks (e.g. buffer overflows)
- Prevention measures tackle well-known and unknown vulnerabilities
 - Generic vulnerabilities
 - e.g. reaction to malformed messages (protocol scrubbers)
 - e.g. stealth attacks (normalization to canonical formats)
 - Specific vulnerabilities
 - e.g. a particular software bug

Security readiness (2/3)

- Measure enforcement requires knowledge about:
 - Known vulnerabilities
 - Problem, exploitation mode, impact, etc.
 - Activity patterns used in attacks
 - Modus operandi
 - Attacks' signatures
 - Abnormal activity patterns
 - Abnormal is the opposite of normal ..
 - ...but what's normal?
 - Hard to define in heterogeneous environments

© André Zúquete

Security

5

source: flickr

Security readiness (3/3)

- Computer network threats are not like other threats
 - They can be launched anytime, anywhere
 - They can be easily coordinated
 - e.g. Distributed Denial of Service attacks (DDoS)
 - They are cheap to deploy
 - They can be automated
 - They are fast
- Thus, they require a permanent, 24x7 capacity to react to attacks:
 - Teams of security experts
 - Just-in-time attack alerts
 - Security measurement and evaluation
 - Immediate reaction procedures

© André Zúquete

Securit

Zero-day (or zero-hour) attack or threat

- Attack using vulnerabilities which are:
 - Unknown to others
 - Undisclosed to the software vendor
- Occurs at the day zero of the knowledge about those vulnerabilities
 - □ For which no security fix is available

© André Zúquete

Security

7

Vulnerability detection

- Specific tools can detect vulnerabilities
 - Exploiting known vulnerabilities
 - Testing known vulnerability patterns
 - e.g. buffer overflow, SQL injection, XSS, etc.
- Vital to assert the robustness of production systems and applications
 - Service often provided by third-party companies

© André Zúquete

Security

Vulnerability detection

- Can be applied to:
 - Source code (static analysis)
 - OWASP LAPSE+, RIPS, Veracode, ...
 - Running application (dynamic analysis)
 - Valgrind, Rational, AppScan, ...
 - Externally as a remote client:
 - OpenVAS, Metasploit, ...
- Should not be blindly applied to production systems!
 - Potential data loss/corruption
 - Potential DoS

© André Zúquete

Security

9

Survivability

- How can we survive a zero-day attack?
- How can we react to a massive zero-day attack?
- Diversity could be an answer ...
 - but software production, distribution and update goes on the opposite direction!
 - And the same happens with hardware architectures
 - Why is MS Windows such an interesting target?
 - And Apple Mac OS not so much?
 - Are you using an Android cell phone?
 - What are the odds of being in the battlefront?

CVE (Common Vulnerabilities and Exposures)

- <u>Dictionary</u> of publicly known information security vulnerabilities and exposures
 - For vulnerability management
 - For patch management
 - For vulnerability alerting
 - For intrusion detection
- CVE's common identifiers
 - Enable data exchange between security products
 - Provide a baseline index point for evaluating coverage of tools and services.

© André Zúquete Security 11

CVE Vulnerability

- A mistake in software
 - that can be directly used by a hacker to gain access to a system or network
- A mistake is a vulnerability if it allows an attacker to use it to violate a reasonable security policy for that system
 - This excludes entirely "open" security policies in which all users are trusted, or where there is no consideration of risk to the system
- A CVE vulnerability is a state in a computing system (or set of systems) that either:
 - Allows an attacker to execute commands as another user
 - Allows an attacker to access data that is contrary to the specified access restrictions for that data
 - Allows an attacker to pose as another entity
 - Allows an attacker to conduct a denial of service

CVE Exposure

- A system configuration issue or a mistake in software
 - that allows access to information or capabilities that can be used by a hacker as a stepping-stone into a system or network
- A configuration issue or a mistake is an exposure if it does not directly allow compromise
 - But could be an important component of a successful attack, and is a violation of a reasonable security policy
- An exposure describes a state in a computing system (or set of systems) that is not a vulnerability, but either:
 - Allows an attacker to conduct information gathering activities
 - Allows an attacker to hide activities
 - Includes a capability that behaves as expected, but can be easily compromised
 - Is a primary point of entry that an attacker may attempt to use to gain access to the system or data
 - Is considered a problem by some reasonable security policy

© André Zúquete Security 13

CVE benefits

- Provides common language for referring to problems
- Facilitates data sharing among
 - Intrusion detection systems
 - Assessment tools
 - Vulnerability databases
 - Researchers
 - Incident response teams
- Will lead to improved security tools
 - More comprehensive, better comparisons, interoperable
 - Indications and warning systems
- Will spark further innovations
 - Focal point for discussing critical database content issues (e.g. configuration problems)

CVE pitfalls

Useless against zero-day attacks!

© André Zúquete

15

CVE identifiers

- Aka CVE names, CVE numbers, CVE-IDs, or CVEs
- Unique, common identifiers for publicly known information security vulnerabilities

 - Have "candidate" or "entry" status

 - Candidate: under review for inclusion in the list
 - Entry: accepted to the CVE List
- Format
 - CVE identifier number (CVE-Year-Order)
 - Status (Candidate or Entry)
 - Brief description of the vulnerability or exposure
 - References to extra information

© André Zúquete

Creation of a CVE identifier

- 1. Discovery of a potential security vulnerability or exposure
 - The information assigned a CVE candidate number by a CVE Candidate Numbering Authority (CNA)
 - CVE identifier is posted on the CVE Web site
 - Which publishes the CVE List
 - This list contains both candidate and entry CVE identifiers
 - CVE Editor proposes the CVE identifier to the Board
 - MITRE Corporation functions as Editor and Primary CAN
- 2. CVE Editorial Board discusses candidates and votes on whether or not they should become CVE entries
 - If rejected, the reason for rejection is noted in the Editorial Board Archives posted on the CVE Web site
 - If accepted, its status is updated to "entry"

© André Zúquete Security 17

CWE (Common Weakness Enumeration)

- Common language of discourse for discussing, finding and dealing with the causes of software security vulnerabilities
 - Found in code, design, or system architecture
 - Each individual CWE represents a single vulnerability type
 - Currently maintained by the MITRE Corporation
 - A detailed CWE list is currently available at the MITRE website
 - The list provides a detailed definition for each individual CWE
- Individual CWEs are held within a hierarchical structure
 - CWEs located at higher levels provide a broad overview of a vulnerability type
 - Can have many children CWEs associated with them
 - CWEs at deeper levels in the structure provide a finer granularity
 - Usually have fewer or no children CWEs

Seven Pernicious Kingdoms

K. Teipenyuk, B. Chess, & G. McGraw Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors IEEE Security & Privacy, 2005

- Input validation and representation
- API abuse
- Security features
- Time and state
- Errors
- Code quality
- Encapsulation
- Environment

© André Zúquete

Security

19

Vulnerability databases

- NIST <u>NVD</u> (National Vulnerability Database)
- CERT Vulnerability Card Catalog
- US-CERT <u>Vulnerability Notes Database</u>

© André Zúquete

Security

CERT (Computer Emergency Readiness Team)

- Organization devoted to ensuring that appropriate technology and systems' management practices are used to
 - Resist attacks on networked systems
 - Limit damage, ensure continuity of critical services
 - In spite of successful attacks, accidents, or failures
- CERT/CC (Coordination Center) @ CMU
 - One component of the larger CERT Program
 - A major center for internet security problems
 - Established in November 1988, after the "Morris Worm"
 - It demonstrated the growing Internet exposure to attacks

© André Zúquete Security 21

CSIRT (Computer Security Incident Response Team)

- A service organization that is responsible for receiving, reviewing, and responding to computer security incident reports and activity
 - Provides 24x7 Computer Security Incident Response Services to users, companies, government agencies or organizations
 - Provides a reliable and trusted single point of contact for reporting computer security incidents worldwide
 - CSIRT provides the means for reporting incidents and for disseminating important incident-related information
- Portuguese CSIRTs
 - CERT.PT
 - Managed by FCCN
 - CSIRT.FEUP
 - Managed by FEUP
 - CERT-IPN
 - Managed by Lab. de Informática e Sistemas of Inst. Pedro Nunes

Security alerts & activity trends

- Vital to the fast dissemination of knowledge about new vulnerabilities
 - US-CERT Technical Cyber Security Alerts
 - US-CERT (non-technical) Cyber Security Alerts
 - SANS Internet Storm Center
 - Aka <u>DShield</u> (Defense Shield)
 - Microsoft <u>Security Response Center</u>
 - Cisco <u>Security Center</u>

And many others ...