# Political cost (cost)

Na cidade onde moras existem N ruas que vão de este para oeste (da rua 0 à rua N-1) e M avenidas que vão de norte para sul (da avenida 0 para a avenida M-1). TOdas as ruas e avenidas têm um dado peso político, que é a importância do mais importante cidadão que aí vive. Representamos os pesos políticos com dois arrays A[0...N-1] e B[0...M-1] com inteiros de 1 até K. A figura seguinte representa uma cidade com 2 ruas e 3 avenidas, com pesos políticos de A=[1,4] e B=[2,1,4], respetivamente:



O presidente da câmara quer organizar um cortejo pela cidade. Se o cortejo atravessar a intersecção da rua x com a avenida y, o tráfego de ambas as ruas será perturbado, e o presidente irá sofrer um peso político de  $\max(A[x], B[y])$ . Se o cortejo atravessar múltiplas intersecções, o custo político será o máximo do peso político de cada intersecção. Nota que os custos não são somados: o que interessa não é quantas pessoas o cortejo incomoda, mas quão importante é o mais importante cidadão incomodado.

A distância política entre duas intersecções é o menor peso político de um cortejo que sai da primeira intersecção e chega à segunda intersecção. A tua tarefa é calcular a soma das distâncias políticas entre todos os pares de intersecções na cidade.

# Implementação

Deves submeter um único ficheiro de código .cpp.

Entre os ficheiros do problema encontrarás um template cost.cpp com um exemplo de implementação.

Tens de implementar a seguinte função:

```
C++ | int solve(int N, int M, int K, vector<int> A, vector<int> B);
```

- $\bullet$  O inteiro N representa o número de ruas de este para oeste.
- O inteiro M representa o número de avenidas de norte para sul.
- O array A, indexado de 0 até N-1, contém os valores  $A_0, A_1, \ldots, A_{N-1}$ , onde  $A_i$  é o peso político da rua i.
- O array B, indexado de 0 até M-1, contém os valores  $B_0, B_1, \ldots, B_{N-1}$ , onde  $B_i$  é o peso político da avenida i.
- A função deve devolver a soma das distâncias políticas entre todos os possíveis pares de intersecções, modulo 1000003.

O avaliador irá chamar a função solve e irá escrever o valor devolvido no ficheiro de output.

#### Avaliador Padrão

O diretório do problema contém uma versão simplificada do avaliador oficial, que podes usar para testar o teu problema localmente. O avaliador exemplo lê os dados de input de stdin, chama as funções que deves implementar, e finalmente escreve o output para stdout.

cost Página 1 de 3

O input é feito de 3 linhas, contendo:

- Linha 1: os inteiros N,  $M \in K$ .
- Linha 2: os inteiros  $A_i$ , separados por espaços.
- Linha 3: os inteiros  $B_i$ , separados por espaços.

O output é feito de uma única linha, contendo o valor devolvido pela função solve.

### Restrições

- $1 \le N \le 3 \times 10^5$ .
- $1 < M < 3 \times 10^5$ .
- $1 \le K \le N + M$ .
- $1 \le A_i \le K \text{ para } i = 0 \dots N 1.$
- $1 \le B_i \le K \text{ para } i = 0 \dots M 1.$

# Pontuação

O teu program será testado num conjunto de casos de teste agrupados por subtarefa. Para obteres a pontuação associada a uma subtarefa, tens de resolver corretamente todos os casos de teste dessa subtarefa.

- Subtarefa 1 [ 0 pontos]: Casos de exemplo.
- Subtarefa 2 [10 pontos]:  $N \le 10^1, M \le 10^1$
- Subtarefa 3 [10 pontos]:  $N \le 10^2, M \le 10^2$ .
- Subtarefa 4 [10 pontos]:  $N = 1, M \le 10^4$ .
- Subtarefa 5 [10 pontos]:  $N = 1, M \le 10^5$ .
- Subtarefa 6 [10 pontos]:  $N \le 10^3, M \le 10^3$ .
- Subtarefa 7 [10 pontos]:  $N \le 10^4, M \le 10^4$ .
- Subtarefa 8 [10 pontos]:  $N \le 10^5, M \le 10^5$  e os arrays A e B são não decrescentes, isto é, se i < j, então  $A_i \le A_j$  e  $B_i \le B_j$ .
- Subtarefa 9 [10 pontos]:  $N \le 10^5, M \le 10^5, K \le 10^1$ .
- Subtarefa 10[10 pontos]:  $N \le 10^5, M \le 10^5$ .
- Subtarefa 11[10 pontos]: Nenhuma restrição adicional.

cost Página 2 de 3

#### **Exemplos**

| stdin   | stdout |
|---------|--------|
| 2 2 4   | 48     |
| 3 3     |        |
| 3 3     |        |
| 1 3 4 2 | 25     |
| 2 3 1   |        |
| 2 3 5   | 135    |
| 1 4     |        |
| 2 1 4   |        |

# Explicação

No **primeiro caso de exemplo**, temos uma cidade com 2 ruas e 2 avenidas, todas com um peso político de 3:



Existem 16 diferentes pares de intersecções. Como a distância política entre cada para de intersecções é 3, a solução é  $3 \cdot 16 = 48$ .

No segundo caso de exemplo existem 1 rua e 3 avenidas, com pesos políticos A=[2] e B=[2,3,1] respetivamente:



Existem 9 pares de intersecções. Três destes pares começam e terminam na mesma intersecção, e têm distâncias políticas de 2, 3 e 2 respetivamente (a avenida mais à direita tem peso político de 1, mas o peso político da única rua é 2, pelo que a distância política de qualquer cortejo é pelo menos de 2). Para cada um dos restantes pares de intersecções, o cortejo que as junta deve atravessar a avenida do meio, e por isso tem de ter distância política de 3. Portanto, a soma total é  $2 + 3 + 2 + 6 \cdot 3 = 25$ .

O **terceiro caso de exemplo** corresponde ao exemplo dado no enunciado do problema. Aqui existem 2 ruas e 3 avenidas. Com alguma paciência, podes verificar que a soma das distâncias políticas dos 36 pares de intersecções é de 135.

cost Página 3 de 3