====第一章练习====

1	1、观测了某地区三角网120个三角形内角和的直误差如下	(角台"॥"	, \
_1	1、 观测 呆地区 用网1ZUT 用形区用和时具法差如下	(里1))

+0.11	-0.20	+0.18	-0.27	+0.41	-0.50	+0.32	-0.32
-0.02	+0.51	-0.44	+0.62	-0.52	+0.65	-0.34	+0.50
+0.15	-1.18	+0.16	-0.13	+0.44	-0.62	-0.73	+0.71
-0.18	+0.21	+0.45	-0.41	+0.03	-0.13	+0.30	-0.28
+0.35	-0.32	+0.70	-0.68	+0.01	+0.43	-0.41	+0.70
-0.05	+0.42	-1.31	+0.30	-0.63	+0.89	+0.17	-0.18
+0.14	-0.52	+0.05	-0.71	+0.55	-0.07	+0.28	-0.17
-0.08	+0.22	-0.65	+0.44	-0.82	+0.64	-0.94	+0.30
+0.31	-0.95	+0.38	-1.03	+0.09	-0.82	+0.46	-0.48
-0.23	+0.22	+0.17	-0.64	+0.48	-0.03	+0.16	-0.15
-0.21	+0.45	-0.70	+1.22	-0.46	+0.90	-0.52	+1.18
+0.06	-0.19	+0.30	-0.25	+0.84	-1.08	+0.08	-0.09
-0.09	+0.10	-0.27	+0.66	-0.31	+1.15	-0.28	+0.86
+0.17	-0.16	+0.80	-0.53	+0.26	-0.34	+1.10	-0.30
-0.32	+0.87	-0.46	+1.05	-0.50	+1.30	-1.38	+1.56

试分析该组误差是否符合偶然误差的特性。

2、 观测了某一等三角锁43个三角形的内角,得三角形的内角和的真误差见下表,试计算三角形内角和的中误差 δ 及其平均误差 $\hat{\theta}$ 和极限误差 Δ **限**。

+1.14	-0.69 +0.28	+1.72	+0. 58	+1.13 -0.30	-1.23 +0.16
-0. 47	-0. 27 +2. 87	-0.03	-2.01	-2.14 +0.18	+1. 42 -0. 06
-0. 12	-0.05 +0.18	-0.29	+0.77	+0.14 -0.05	+0. 52 -0. 22
+1.21	-1.86 -1.20	-1.49	+1.61	-0.50 +1.12	-1.10 +0.09
-0. 56	-0 . 13	+0.64	-0.30	-1.17	+1.60

- 3、有两段距离 S_1 和 S_2 ,经多次观测得观测值及其中误差分别为300.00m \pm 2cm和600.00m \pm 2cm,试问哪段距离观测精度高?二距离各次观测值真误差是否相同?
- 4、1. 2. 08 在相同的观测条件下,作了4条线路的水准测量,它们的中误差分别为 σ_1 = \pm 2mm, σ_2 = \pm 1.5mm, σ_3 = \pm 1mm, σ_4 = \pm 0.5mm,令单位权中误差为 σ_0 = \pm 1mm,试求各线路观测高差的权 P_i (i=1, 2, 3, 4)。
- 5、设有观测值 L_1 的权 P_1 =2,其方差为 σ_1 2,又知观测值 L_2 的方差 σ_2 2=1,试求其权 P_2 及协因数 Q_{11} 和 Q_{22} 。