MOT 2312

Research Methods

Hypothesis Testing, z-Test, and t-Test

JASP Examples _

Laurens Rook (Delft University of Technology)

NHST

H₀ and H_a: two forms

- One-tailed: Your H_a is formulated in terms of "higher / lower" (thus directional); same follows for the H₀
- Two-tailed: Your H_a is formulated in terms of "differences that exist between groups" (nondirectional); the H₀ then states that no differences exist

In JASP

The (single sample) z-test and t-test

Interpretation of a z-test vs. t-test

What are the different assumptions underlying the two tests of variable "CPerson" in the JASP output?

One Sample T-Test

One Sample T-Test ▼						
	Test	Statistic	df	р		
CPerson	Student	37.51	119	< .001		
	Z	36.83		< .001		

- * Assumptions z-test: (1) we have a known CPerson population variance elsewhere; (2) CPerson is normally distributed, (3) the sample size is bigger than 30 (but the output for the z-test itself does not tell us)
- * Assumptions (Student) t-test: (1) we do NOT know the CPerson population variance, (2) Cperson must be an interval/ratio measure, (3) Cperson is symmetrical in distribution but not normally distributed

Interpretation of a z-test vs. t-test

Do you have any idea about the sample size of the Cperson dataset?

One Sample T-Test

One Sample T-Test ▼						
	Test	Statistic	df	р		
CPerson	Student	37.51	119	< .001		
	Z	36.83		< .001		

❖ 120 (degrees of freedom + 1)

Interpretation t-test (two-tailed)

❖ I ran a single-sample t-test on CPerson, NPS and Gender. The p-values for all three variables are < .05. They clearly fall in the region of rejection for the H₀. Should I be happy, now?

- * Yes for Cperson: that variable is at interval/ratio scale, and suits this type of t-test. Congrats!
- No for NPS: that variable is at ordinal scale, which does not fit this type of t-test. You should have run a nonparametric test, instead. Alas!
- ❖ No for Gender: that variable is at nominal scale, which does not fit this type of t-test. You should have run a nonparametric test, instead. Alas!

Follow-up question

Let's assume the previous single-sample t-test output on CPerson was based on the following hypotheses:

H₀: The sample mean for CPerson is not significantly different from the CPerson population mean

H_a: The sample mean for CPerson is significantly different from the CPerson population mean

Did we conduct a one-tailed t-test or a two-tailed ttest, and what makes you say so?

❖ Two-tailed: the H₀ and H_a were formulated in nondirectional manner. All they predicted was significant vs. nonsignificant differences between sample and population means.

Final follow-up question

So, the t-test output on CPerson was based on the following hypotheses:

H₀: The sample mean for CPerson is not significantly different from the CPerson population mean

H_a: The sample mean for CPerson is significantly different from the CPerson population mean

Do we accept or reject the null hypothesis, and what makes you say so?

❖ The result was: t(119) = 37.51, p < .001. This result is lower than probability value .05, where we had set our critical value. Our result thus falls within the rejection region for H_0 . We reject H_0 and accept H_a .

