1)
$$\int_{\mathcal{O}\mathcal{A}} (f + g) \cdot s ds = \int_{\mathcal{Q}\mathcal{A}} f \mathcal{Q}_s g ds \rightarrow \int_{\mathcal{A}} f$$

2)
$$X = \frac{3}{2} Y_{ij} \vec{e}_{i} \otimes \vec{e}_{i}$$
, $\vec{E} = E\vec{e}_{i}$

Winkel X; Zw. Janden

Fiktive Stromvert, an allen Flächen Sowie im Inneven

7)
$$\vec{A} = \text{Re} \underbrace{\begin{cases} \text{MoV} \\ 2\pi \end{cases}} \underbrace{\left(\vec{L}_1 + \vec{L}_2 + \vec{L}_3 \right) \ln \left(\vec{\varphi} \right)} - \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right) \underbrace{\begin{cases} \text{Cos}(x) \\ \text{Fe} \end{cases}}} \underbrace{\left(\vec{L}_1 + \vec{L}_2 + \vec{L}_3 \right) \ln \left(\vec{\varphi} \right)} - \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right) \underbrace{\begin{cases} \text{Cos}(x) \\ \text{Fe} \end{cases}}} \underbrace{\left(\vec{L}_1 + \vec{L}_2 + \vec{L}_3 \right) \ln \left(\vec{\varphi} \right)} - \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right) \underbrace{\begin{cases} \text{Cos}(x) \\ \text{Fe} \end{cases}}} \underbrace{\left(\vec{L}_1 + \vec{L}_2 + \vec{L}_3 \right) \ln \left(\vec{\varphi} \right)} - \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right) \underbrace{\begin{cases} \text{Cos}(x) \\ \text{Fe} \end{cases}}} \underbrace{\left(\vec{L}_1 + \vec{L}_2 + \vec{L}_3 \right) \ln \left(\vec{\varphi} \right)} - \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right) \underbrace{\begin{cases} \text{Cos}(x) \\ \text{Fe} \end{cases}}} \underbrace{\left(\vec{L}_1 + \vec{L}_2 + \vec{L}_3 \right) \ln \left(\vec{\varphi} \right)} - \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right) \underbrace{\begin{cases} \text{Cos}(x) \\ \text{Fe} \end{cases}}} \underbrace{\left(\vec{L}_1 + \vec{L}_2 + \vec{L}_3 \right) \ln \left(\vec{\varphi} \right)} - \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right) \underbrace{\begin{cases} \text{Cos}(x) \\ \text{Fe} \end{cases}}} \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right) \underbrace{\begin{cases} \text{Cos}(x) \\ \text{Fe} \end{cases}}} \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right) \underbrace{\begin{cases} \text{Cos}(x) \\ \text{Fe} \end{cases}}} \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right) \underbrace{\begin{cases} \text{Cos}(x) \\ \text{Fe} \end{cases}}} \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right) \underbrace{\begin{cases} \text{Cos}(x) \\ \text{Fe} \end{cases}}} \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right) \underbrace{\begin{cases} \text{Cos}(x) \\ \text{Fe} \end{cases}}} \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right) \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right) \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right)}}} \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right) \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right) \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right)}}} \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right) \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right)}}} \underbrace{\left(\vec{L}_1 - \vec{L}_3 \right) \underbrace$$

EG nav V. & alahångig Kapazitatsbelag:

- 6) $\vec{B} = \frac{B_0}{\alpha} (\lambda \vec{e_x} y \vec{e_y})$
 - (i) Maxwell-geerichtes A
 - (ii) Feldbild V. B (Skrizze)
 - (in) Leiteranordning?
- 3) $\vec{H} = \hat{P}_0$ Joins Cos(w+-kv) \vec{E}_{∞} $\vec{E} = \vec{F}_0 + \vec{F}_0$ Mittelwert Strahlungsleist.
- 10) Mo, 80 () geg. TEM-Modus
 Zw?
 - 8) Körper im Lab-Sgs mit V bewegt V, B, H, J, E, H - Größen im Lab-Sgs DiH-al L. A' im Dew Sgs (Ballard-al.)?