

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International Advanced Level
In Mechanics M1 (WME01)
Paper 01

Question Number	Scheme	Marks
1(a)	→ 2 <i>u</i> 3 <i>u</i> ←	
1(")	$A (4 \text{ kg}) \qquad B (2 \text{ kg})$	
	—— —	
	\sim	
	CLM: $(4 \times 2u) + (-3u \times 2) = 4v + (2 \times 2u)$) / (I
	OR	M1 A1
	Equating impulses: $2(2u3u) = 4(-v2u)$	AI
	$\frac{1}{2}u(\text{m s}^{-1})$	A1
		(3)
1(b)	The direction of motion is reversed.	B1
		(1)
1(-)	For B: $I = \pm 2(2u3u)$	M1
1(c)	OR For A : $I = \pm 4\left(\frac{u}{2}2u\right)$	M1 A1
	$I = 10u \mathrm{Ns} \mathrm{or} 10u \mathrm{kgms^{-1}}$	A1
		(3)
		(7)
	Notes	
(a)		
M 1	Dimensionally correct CLM equation or equating of impulses equation.	
A 1	Allow consistent extra g's. Ignore sign errors. May be $+v$ or $-v$	
A1 A1	Correct unsimplified equation	
(b)	Cao. Must be positive.	
B1	Accept opposite direction. Do not accept changed or to the left or	
	backwards, away from B	
	N.B. This mark is dependent on correctly obtaining $\frac{1}{2}u$ or $-\frac{1}{2}u$ in (a)	
(c)	_	
M1	Dimensionally correct impulse-momentum equation using A or B .	
	Condone sign errors with appropriate velocities. M0 if g is included	
<u>A1</u>	Correct unsimplified equation	
<u>A1</u>	Cao with units. Accept kg m/s	

Question Number	Scheme	Marks
2(a)	$\mathbf{F_3} + (3c\mathbf{i} + 4c\mathbf{j}) + (-14\mathbf{i} + 7\mathbf{j}) = 0$ oe	M1
. ,	$\mathbf{F}_3 = (14 - 3c)\mathbf{i} + (-7 - 4c)\mathbf{j}$	A1
		(2)
2(1-)	Resultant force	
2(b)	$\mathbf{F}_1 + \mathbf{F}_2 = (6-14)\mathbf{i} + (8+7)\mathbf{j}$	M1
	$(=-8\mathbf{i}+15\mathbf{j})$	
	15 8	
	Find any relevant angle for their (even if they've subtracted) resultant (need not be acute nor positive)	M1
	any of $\tan^{-1}\left(\pm\frac{8}{15}\right)$, $\tan^{-1}\left(\pm\frac{15}{8}\right)$, $\sin^{-1}\left(\pm\frac{8}{17}\right)$, $\cos^{-1}\left(\pm\frac{8}{17}\right)$,	A1ft
	120° or better (118.0724) OR 240° or better (241.9276)	A1
	In radians 2.1 or better (2.0607) OR 4.2 or better (4.2224)	711
		(4)
2(c)	Use of Pythagoras on their resultant : $\sqrt{(-8)^2 + 15^2}$	M1
	or their acceleration: $\sqrt{\left(\frac{-8}{m}\right)^2 + \left(\frac{15}{m}\right)^2}$	IVI I
	Use of their \mathbf{R} = 8.5 m or their Resultant = $m\mathbf{a}$	M1
	A correct equation in m only eg $17 = m \times 8.5$	A1 ft
	m = 2	A1
	N. B. $\sqrt{\left(\frac{-8}{8.5}\right)^2 + \left(\frac{15}{8.5}\right)^2} $ M1	
	$-8\mathbf{i} + 15\mathbf{j} = 8.5m \qquad M1$ $\sqrt{\left(\frac{-8}{8.5}\right)^2 + \left(\frac{15}{8.5}\right)^2} = m \qquad \text{A1ft}$	
	2 = m A1	
		(4)
		(10)

	Notes	
	Accept column vectors throughout apart from answer for (a)	
(a)		
M1	Uses the vector sum of all 3 forces being equal to zero oe	
	N.B. $\mathbf{F_3} = \mathbf{F_1} + \mathbf{F_2}$ is M0	
A1	cao Must be in terms of c , \mathbf{i} and \mathbf{j} but allow uncollected \mathbf{i} 's and \mathbf{j} 's and apply isw if	
	necessary.	
(b)		
M1	Finds the resultant using $\mathbf{F}_1 + \mathbf{F}_2$ or – their \mathbf{F}_3	
M1	Uses trig to find a relevant angle for their resultant	
A1ft	Any correct relevant angle (does not need to be acute), ft on their resultant	
A1	Cso.	
(c)		
M1	Use of Pythagoras to find the magnitude of their resultant force or their acceleration	
M1	Allow their $\mathbf{R} = 8.5 \ m$	
A1ft	A correct scalar equation in m only eg $17 = m \times 8.5$, ft on their resultant	
A1	cso	

Question Number	Scheme	Marks
2(2)	$1.5 = 0 + \frac{1}{2} g t^2$	M1 A1
3(a)	2 0	
	t = 0.55 or 0.553(s)	A1
		(3)
	$1.5 - 0 + \frac{1}{2} a (0.6)^2$	M1
3(b)	$1.5 = 0 + \frac{1}{2}a \left(0.6\right)^2$	A1
	0.2g - R = 0.2a	M1
		A1
	R = 0.293, 0.29	A1
		(5)
		(8)
	Notes for Question 3	
(a)		
M1	Complete method to find the time taken using $a = g$	
A1	Correct unsimplified equation in t only	
A1	Cao	
(b)		
M1	Complete method to form an equation in a only, $a \neq g$, using $t = 0$.	6
A1	Correct unsimplified equation in a only	
M1	Use $F = ma$ to form an equation of motion with correct terms, cond	lone sign
	errors, $a \neq g$	
A1	Correct unsimplified equation	
A1	Cao	
	N.B. Allow consistent use of $(-a)$ instead of a and penalise in the se	cond
	equation if inconsistent.	
	N.B. Penalise use of $g = 9.81$ once for the whole question.	
	Also penalise once for the whole question, answers as fractions, pen	alise the
	first one, if both answers are fractions.	

Question Number	Scheme	Marks
	T and 4T correctly placed	B1
4(a)	Vertical resolution $T + 4T = pmg + mg$ OR a moments equation, see below.	M1 A1
	$M(A): (4T \times 0.6) + (T \times 1.8) = (mg \times 1)$ $M(A): (4T \times 0.6) + (T \times 1.8) = (mg \times 1)$ $M(B): (4T \times 0.6) + (T \times 1.8) = (mg \times 1)$ $M(B): (4T \times 0.6) + (T \times 1.8) = (mg \times 1)$ $M(B): (4T \times 1.4) + (T \times 0.8) = (4T \times 1.2)$ $M(B): (4T \times 1.4) + (T \times 0.2) = (pmg \times 2) + (mg \times 1)$	M1 A1
	Eliminate T $5\left(\frac{5mg}{21}\right) = pmg + mg$ $p = \frac{4}{21} \text{ (exact ratio of 2 positive integers)}$	M1
	$p = \frac{1}{21}$ (exact ratio of 2 positive integers)	A1
		(7)
	Tension at D is zero, seen or implied.	B1
4(b)	$M(C)$: $(qmg \times 0.6) = (mg \times 0.4)$	M1 A1
	$q = \frac{2}{3}$ (exact ratio of 2 positive integers), accept 0.666 or 0.6	A1
		(4)
4(c)	The centre of mass (or gravity) of the beam is in the middle; the mass (weight) of the beam acts at the middle, mass at centre, centre of mass at the centre. Penalise incorrect extras.	B1
		(1)
		(12)
()	Notes for Question 4	1 4.
(a)	N.B. Full marks can be scored if <u>consistent</u> omission of g 's in a complete s but otherwise penalise omission of g 's	solution,
B1	Correct relationship between the tensions and placed correctly, seen or imp	olied
M1	Vertical resolution. Condone forces at C and D the wrong way round or with T_C and T_D .	
	This equation may be replaced with a moments equation.	

A1	Correct unsimplified equation (even if <i>T</i> and 4 <i>T</i> are the wrong way round on their
	diagram)
M1	Moments equation. Correct forces multiplied by a length. Condone consistent forces
	at C and D the wrong way round or written as T_C and T_D
A1	Correct unsimplified equation, in a variable consistent with their first equation.
M1	Eliminate T to give an equation in p only allow extra m's or g's or both
A1	Cao. Must be exact.
	N.B . If they write down more than two equations, award the marks for those
	equations which they use to solve the problem.
(b)	
B1	Recognise tension at D is 0, seen or implied
M1	Complete method to obtain an equation q only.
	e.g. Moments about C equation.
A1	Correct unsimplified equation in q only.
AI TO (1)	Cao. Must be exact.
ALT (b)	
M1	Two other equations could be used and solved to find q .
	M0 if tension at D is never zero.
A1	Correct unsimplified equation in q only.
A1	Cao. Must be exact.
	T' $T = 0$
	↑
	$A \leftarrow 0.6 \rightarrow C \leftarrow 0.4 \rightarrow 0.2 \rightarrow D \leftarrow 0.2 \rightarrow B$
	0.6 0.4 0.8 0.2 0.2
	↓
	qmg mg
	◆ 2 m
	Alternative equations:
	vert: $T' = qmg + mg$
	$\mathbf{M}(A)\colon (T'\times 0.6) = (mg\times 1)$
	$M(G)$: $(qmg \times 1) = (T \times 0.4)$
	$M(D): (qmg \times 1.8) + (mg \times 0.8) = (T \times 1.2)$
	$M(B): (qmg \times 2) + (mg \times 1) = (T' \times 1.4)$
(c)	
B1	Any appropriate comment
1 1	appropriate comment

Question number	Scheme	Marks
5(a)	For car: $\left(\frac{T+T-30}{2}\right)V$	M1
	V(T-15) (metres) * Allow $(T-15)V$	A1*
5(b)		(2)
3(u)	speed (ms ⁻¹) V O 10 30 50 60 T time (s)	B1 shape B1 Horiz labels (10,50,60)
		(2)
5(c)	$\frac{speed}{40} = \frac{V}{30}$	M1
	$\left(\text{speed}\right) = \frac{4V}{3} \left(\text{m s}^{-1}\right)^*$	A1*
5 (d)	For motorbike	(2)
5(d)	OR: $\frac{1}{2} \left(\frac{4V}{3} \times 40 \right) + \left(\frac{4V}{3} \times 10 \right) + \frac{1}{2} \left(\frac{4V}{3} + V \right) (T - 60)$ OR:	M1
	$\frac{1}{2} \left(\frac{4V}{3} \times 40 \right) + \left(\frac{4V}{3} \times 10 \right) + \frac{1}{2} \left(\frac{4V}{3} - V \right) (T - 60) + V(T - 60)$ OR: $\frac{1}{2} \times \frac{4V}{3} \times (10 + 50) + \frac{1}{2} \left(\frac{4V}{3} + V \right) (T - 60)$	A1 A1
	(Simplified: $\frac{7VT}{6} - 30V$)	
	Equate their motorbike distance to $V(T-15)$ to give an equation in T only	M1
	T = 90	A1
	ALT: Find area of upper trapezium and parallelogram (differences in areas)	M1
	$\frac{1}{2} \left(\frac{V}{3} \right) (T - 40 + 10)$	A1
		A1
	and $10V$ Equate to give an equation in T only $(V \text{ cancels})$	M1
	T = 90	A1 (5)
		(11)

	Notes for Question 5
(a)	
M1	Uses total area under graph to find an expression for the distance in terms of V and T only May use: Trapezium: $\left(\frac{T+T-30}{2}\right)V$ triangle + rectangle : $\frac{1}{2}(30V)+V(T-30)$
	a triangle subtracted from a rectangle: $VT - \frac{1}{2}(30 \times V)$ OR use of <i>suvat</i> : $\frac{1}{2}(30V) + V(T - 30)$
A1*	Given answer correctly obtained (allow omission of 'metres'.
(b)	•
	N.B. If graph is not done on either of the given graphs on the question paper, they score B0B0.
B 1	Correct shape with acceleration lines parallel and meeting at (T, V) B0 if continuous vertical line at $t = T$
B1	Correct horizontal labels. Accept appropriately labelled delineators. N.B. This mark is independent of the first B1.
(c)	
M1	Correct method using gradients or <i>suvat</i> to obtain an equation in <i>V</i> only
A1*	Given answer correctly obtained
<u>(d)</u>	
M1	For motorbike: find an expression for the TOTAL area under the graph (or use <i>suvat</i>) to find the total distance travelled in terms of V and T only. N.B. $\frac{1}{2} \left(\frac{4V}{3} \times 40 \right) + \left(\frac{4V}{3} \times 10 \right) + \frac{1}{2} \left(\frac{4V}{3} - V \right) (T - 60)$ is M0 as it omits a part of the area.
A1	Correct unsimplified expression with at most one error/slip
A1	Correct unsimplified expression Correct unsimplified expression
M1	Clear attempt to equate their distance to the given distance in part (a) to give an equation in T only i.e. the V's must cancel but they do not need to be cancelled for this mark. N.B. This is an independent mark.
A1	cao

Question Number	Scheme	Marks
6	Vertical	M1
	$R - P\sin\alpha = W$	A1
	Horizontal	
	$F = P\cos\alpha$	M1
	OR $F_{MAX} \geqslant P \cos \alpha$	A1
	$F \leqslant \frac{1}{4}R$ or $F = \frac{1}{4}R$ seen or implied	M1
	Produce a dimensionally correct inequality or equation in P and W only, trig does not need to be substituted	M1
	Reach the given answer, with exact working.	A 1 4
	$P \leqslant \frac{5W}{8} * \text{ or } \frac{5W}{8} \geqslant P$	A1* cso
		(7)
		(7)
	Notes for Question 6	
M1	Equation for vertical equilibrium. Correct number of terms, forces resolved where appropriate, condone sign errors and sin/cos confusion. M0 for an inequality	
A1	Correct unsimplified equation.	
M1	Equation for horizontal equilibrium. Correct number of terms, forces where appropriate, condone sign errors and sin/cos confusion. N.B. Allow $F \ge P \cos \alpha$	resolved
A1	Either $F = P\cos\alpha$	
	or $F_{MAX} \ge P \cos \alpha$ where F_{MAX} may be implied by use of $\frac{1}{4}R$	
M1	M0 for $F < \frac{1}{4}R$ or $F > \frac{1}{4}R$ or $F \geqslant \frac{1}{4}R$	
M1	Eliminate F and R to form an inequality or equation in P and W only trig to be unsubstituted.	but allow
	e.g. $\frac{1}{4}(W + P\sin\alpha) \geqslant P\cos\alpha$ or $\frac{1}{4}(W + P\sin\alpha) = P\cos\alpha$	
	M0 for use of $F < \frac{1}{4}R$ or $F > \frac{1}{4}R$ or $F \geqslant \frac{1}{4}R$ to form their inequ	ality
A1* cso	Reach the given answer with at least one line of working. Must come exact working and correct use of the inequality	from

Question Number	Scheme	Marks
1 (0111001	Whole system:	M1
7(a)	$3000 - 1200g \sin \alpha - 600g \sin \alpha - 2R - R = 1800(0.75)$	A1 A1
	From exact working	A1*
	R = 60 *	cso
	K = 00	(4)
	Trailer: $T = 600 a \sin \alpha = 60 = 600(0.75)$	M1 A1
7(b)	Trailer: $T - 600g \sin \alpha - 60 = 600(0.75)$	
` ,	OR	
	Car: $3000 - 1200g \sin \alpha - 2(60) - T = 1200(0.75)$	
	(T could be replaced by $(-T)$ in either equation, leading to	
	T = -1000, so tension is 1000)	
	T = 1000(N)	A1
		(3)
	Equation of motion	(3)
7(c)	$-60-600g \sin \alpha = 600a \text{ (or } -600a)$	M1
()		A1
	$a = -\frac{11}{12} = -0.9166$	
	$0.12^{2} \cdot 2(11)$	
	$0 = 12^2 + 2\left(-\frac{11}{12}\right)d$	M1
	d = 78.5, 79 (m)	A1
	<i>u</i> – 78.3 ,79 (III)	
		(4)
	Notes for question 7	(11)
(a)	Notes for question 7 Equation of motion for the whole system (or for car AND trailer with T elitation of the whole system).	iminated) to give
(a)	an equation in R only.	inimated) to give
M1	$\sin \alpha$ does not need to be substituted	
	Correct number of terms, forces resolved where appropriate, condone sign	errors and
	sin/cos confusion.	
A1	Correct equation with at most one error.	
	$\sin \alpha$ does not need to be substituted	
A1	Correct equation.	
	$\sin \alpha$ does not need to be substituted	
A1*	Reach the GIVEN answer with at least one intermediate line of working ar	nd must come
	from exact working.	
(b)	Equation of motion for the trailer or for the car. Correct number of terms,	forces resolved
M1	where appropriate, condone sign errors and sin/cos confusion.	
M1	$\sin \alpha$ does not need to be substituted but $R = 60$ does	
A1	Correct unsimplified equation.	
A 1	$\sin \alpha$ does not need to be substituted	
A1 (c)	Correct answer for T Form an equation of motion for the trailer to find the new acceleration. Co	rrect number of
(c)	terms, forces resolved where appropriate, condone sign errors and sin/cos	
M1	$\sin \alpha$ does not need to be substituted but $R = 60$ does	comusion.
A1	Correct unsimplified equation.	
111	$\sin \alpha$ does not need to be substituted	
M1	Complete method, with a calculated acceleration that is not <i>g</i> , to find the d	istance travelled
A1	Cao 2 or 3sf Must be positive.	

Question Number	Scheme	Marks
	Allow working in column vectors and penalise answers to (a) and (b) in column vector form ONCE at the first time it occurs.	
8(a)	$\mathbf{v} = \frac{(9\mathbf{i} + 23\mathbf{j}) - (-2\mathbf{i} + \mathbf{j})}{11}$	M1
	Expression for r with correct structure	M1
	$\mathbf{r} = (-2\mathbf{i} + \mathbf{j}) + t(\mathbf{i} + 2\mathbf{j}) \text{or} \mathbf{r} = (t-2)\mathbf{i} + (2t+1)\mathbf{j}$	A1 cao
	- (· J) · · (- · - J)	(3)
8(b)	$\mathbf{s} = (25\mathbf{i} + 25\mathbf{j}) + t(-\mathbf{i} - \mathbf{j})$ Or	B1
	$\mathbf{s} = (25 - t)\mathbf{i} + (25 - t)\mathbf{j}$	
	. , , , , ,	(1)
8(c)	Either r-s Or s-r	M1
	with their r and s substituted	
	$\overrightarrow{SR} = \left[(2t - 27)\mathbf{i} + (3t - 24)\mathbf{j} \right] \text{m} *$	A1*
	- 1	(2)
8(d)	7: (7) (7) (7)	M1
o(u)	Distance $(d) = \sqrt{(2t - 27)^2 + (3t - 24)^2}$	IVII
	$(d^2) = (2t - 27)^2 + (3t - 24)^2$	
	$(d^2) = 13t^2 - 252t + 1305$	A1
	$t = \frac{126}{13} = 9.7$ (s) or better	A1
		(3)
		(9)
	Notes for Question 8	
(a)		
M1	Use of displacement/time to find velocity. Allow the difference either way	
M 1	Expression for \mathbf{r} with correct structure using <i>their</i> \mathbf{v} and the correct initial	position
A 1	vector.	
A1 (b)	Correct expression in terms of t , \mathbf{i} and \mathbf{j}	
(b) B1	Any correct expression for \mathbf{s} in terms of t , \mathbf{i} and \mathbf{j}	
(c)	They correct expression for s in terms of t, I and J	
M1	(Their r – their s) or vice versa, unsimplified	
A1*	Correct answer correctly obtained. Allow missing square brackets and m, but rest must be identical to given answer.	
(d)	must be recitical to given answer.	
M1	Use of Pythagoras to find an expression for distance (or distance squared)	
A1	Correct 3 term quadratic expression N.B. If no 3 term quadratic expression is seen but a correct derivative is, award this mark.	
A1	9.7 or better. N.B. If a fraction is given as the answer, it must be the ratio of two positive or a mixed fraction.	integers