Inhaltsverzeichnis

Vo	rwort	5
1	Der Körper $\mathbb C$ der komplexen Zahlen	7
2	Topologische Grundbegriffe	9
3	Konvergente Folgen komplexer Zahlen	13
4	Konvergente und absolut konvergente Reihen	17
5	Stetige Funktionen	21
6	Zusammenhängende Räume, Gebiete in $\mathbb C$	25
7	Komplexe Differentialrechnung	31
8	Holomorphe Funktionen	35
9	Konvergenzbegriffe der Funktionentheorie	39
10	Potenzreihen	41
	10.1 Konvergenzkriterien	41
	10.2 Beispiele konvergenter Potenzreihen	44
	10.3 Holomorphie von Potenzreihen	45

10 Potenzreihen

10.1 Konvergenzkriterien

Definition 10.1.1

Ist $c \in \mathbb{C}$ fixiert, so heißt jede Funktionenreihe $\sum_{0}^{\infty} a_{\nu}(z-c)^{\nu}$, $a_{\nu} \in \mathbb{C}$, eine (formale) Potenzreihe mit Entwicklungspunkt c und Koeffizienten $a\nu$.

Um bequem formulieren zu können, nehmen wir häufig c = 0 an. Wir schreiben B_r anstelle von $B_r(0)$.

Man nennt eine Potenzreihe konvergent, wenn es noch einen weiteren Punkt $z_1 \neq c$ gibt, wo sie konvergiert.

Lemma 10.1.2 Konvergenzlemma von Abel

Zur Potenzreihe $\sum a_{\nu}(z-c)^{\nu}$ gebe es positive reelle Zahlen s,M, so dass stets gilt:

$$|a_{\nu}|s^{\nu} \leq M$$

Dann ist die Potenzreihe konvergent in der offenen Kreisscheibe $B_s(c)$.

Beweis: Sei c = 0. Sei r mit 0 < r < s beliebig. Setzt man $q := rs^{-1}$, so gilt

$$|\alpha_{\nu}z^{\nu}|_{B_r}=|\alpha_{\nu}|r^{\nu}\leq Mq^{\nu},\quad \nu\in\mathbb{N}$$

Da $\sum q^{\nu} < \infty$ wegen 0 < q < 1, so folgt

$$\sum |\alpha_{\nu}z^{\nu}|_{B_r} \leq M \sum q^{\nu} < \infty$$

Da dies für alle r < s gilt, folgt die normale Konvergenz in B_s .

Korollar 10.1.3

Konvergiert die Reihe $\sum a_{\nu}z^{\nu}$ in $z_0 \neq 0$, so ist $\sum a_{\nu}z^{\nu}$ normal konvergent in der offenen Kreisscheibe $B_{|z_0|}$.

Satz 10.1.4 Konvergenzsatz für Potenzreihen

Es sei $\sum a_{\nu}(z-c)^{\nu}$ eine Potenzreihe. Sei R das Supremum aller reellen Zahlen $t \ge 0$, so dass die Folge $|a_{\nu}|t^{\nu}$ beschränkt ist. Dann gilt:

- i) In der Kreisscheibe $B_R(c)$ ist die Reihe normal konvergent.
- ii) In jedem Punkt $x \in \mathbb{C} \setminus \overline{B_R(c)}$ ist die Reihe divergent.

Beweis: Sei c = 0. Es gilt $0 \le R < \infty$. Im Fall R = 0 ist nichts zu zeigen. Sei also R > 0. Für jedes s, 0 < s < R, ist die Folge $|a_v|s^v$ beschränkt. Nach dem Konvergenzlemma konvergiert $\sum a_v z^v$ mithin normal in B_s . Da s < R beliebig nah bei R wählbar ist, folgt die normale Konvergenz in B_R .

Für jedes w mit |w| > R ist die Folge $|a_v||w|^v$ unbeschränkt und die Reihe $\sum a_v w^v$ notwendig divergent.

Bemerkung

Die Grenzfunktion von $\sum a_{\nu}(z-c)^{\nu}$ ist stetig in $B_{R}(c)$. Wir bezeichnen diese Funktion durchweg mit f.

Die durch den Konvergenzsatz eindeutig bestimmte Größe R mit $0 \le R \le \infty$ heißt der Konvergenzradius, die Menge $B_R(c)$ heißt die Konvergenzkreisscheibe der Potenzreihe.

Definition 10.1.5

Für eine Folge $\{\alpha_n\}_{n=0}^\infty$ reeller Zahlen ist

$$\limsup \alpha_n \coloneqq \lim_{N \to \infty} \sup(\alpha_N, \alpha_{N+1}, \alpha_{N+2}, ...)$$

Satz 10.1.6 Formel von Cauchy-Hadamard

Die Potenzreihe $\sum a_{\nu}(z-c)^{\nu}$ hat den Konvergenzradius

$$R = \frac{1}{\limsup \sqrt[V]{|a_v|}}$$

Beweis: Wir setzen $L := (\limsup \sqrt[r]{|a_v|})^{-1}$. Es ist zu zeigen: Für jedes r, 0 < r < L, gilt $r \le R$ und für jedes s, $L < s < \infty$, gilt $s \ge R$.

Sei zunächst 0 < r < L, also $r^{-1} > \limsup \sqrt[r]{|a_v|}$. Nach Definition von $\limsup gibt$ es ein $v_0 \in \mathbb{N}$, so dass gilt:

$$\sqrt[\nu]{|a_v|} < r^{-1} \forall v \ge v_0$$

Mithin ist die Folge $|a_{\nu}|r^{\nu}$ beschränkt, d.h. $r \leq R$.

Sei nun $L < s < \infty$, also $s^{-1} < \limsup \sqrt[r]{|a_v|}$. Nach Definition von lim sup existiert eine unendliche Teilmenge $M \subset \mathbb{N}$, so dass für alle $m \in M$ gilt:

$$s^{-1} < \sqrt[m]{|a_m|}$$

Das heißt $|a_m|s^m > 1$, also ist $|a_v|s^v$ keine Nullfolge und somit $s \ge R$.

Satz 10.1.7 Quotientenkriterium

Es sei $\sum a_{\nu}(z-c)^{\nu}$ eine Potenzreihe mit Konvergenzradius R. Es sei $a_{\nu} \neq 0$ für alle ν . Dann gilt:

$$\liminf \frac{|a_{\nu}|}{|a_{\nu+1}|} \le R \le \limsup \frac{|a_{\nu}|}{|a_{\nu+1}|}$$

Speziell:

$$R = \lim \frac{|a_{\nu}|}{|a_{\nu+1}|}$$

falls der Limes existiert.

Beweis: Setzt man

$$S\coloneqq \liminf \frac{|a_{\scriptscriptstyle V}|}{|a_{\scriptscriptstyle V+1}|}, \quad T\coloneqq \liminf \frac{|a_{\scriptscriptstyle V}|}{|a_{\scriptscriptstyle V+1}|}$$

so genügt es zu zeigen: Für jedes s, 0 < s < S, gilt $s \le R$ und für jedes $t, T < t < \infty$, gilt $t \ge R$. Sei zunächst 0 < s < S. Nach Definition von liminf gibt es ein $l \in \mathbb{N}$, so dass gilt: $a_v \ne 0$ und $|a_v a_{v+1}^{-1}| > s$, d.h. $|a_{v+1}| s < |a_v|$ für alle $v \ge l$. Setzt man $A := |a_l| s^l$, so folgt sofort $|a_{l+m}| s^{l+m} \le A$ für alle $m \ge 0$ durch Induktion. Die Folge $|a_v| s^v$ ist mithin beschränkt, d.h. $s \le R$.

Sei nun $T < t < \infty$. Dann gibt es laut Definition von lim sup ein $l \in \mathbb{N}$, so dass gilt: $a_v \neq 0$

und $|a_{V}a_{V+1}^{-1}| < t$, d.h. $|a_{V+1}|t > |a_{V}|$ für alle $v \ge l$. Setzt man $B := |a_{l}|t^{l}$, so folgt jetzt induktiv $|a_{l+m}|t^{l+m} \ge B$ für alle $m \ge 0$. Da $B \ge 0$, so ist also $|a_{V}|t^{V}$ keine Nullfolge, d.h. $t \ge R$.

10.2 Beispiele konvergenter Potenzreihen

Exponentialreihe und trigonometrische Reihen, Eulersche Formel

Die Exponentialreihe definiert man als

$$e^z = \exp z = \sum_{k=0}^{\infty} \frac{z^k}{k!} = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots$$

Ihr Konvergenzradius bestimmt sich nach dem Quotientenkriterium mit $a_n u \coloneqq \frac{1}{v!}$ zu

$$R = \lim \frac{|a_v|}{|a_{v+1}|} = \lim (v+1) = \infty$$

d.h. die Reihe konvergiert normal überall in C.

Die Cosinusreihe und die Sinusreihe

$$\cos z = \sum_{0}^{\infty} (-1)^{\nu} \frac{z^{2\nu}}{(2\nu)!} = 1 - \frac{z^{2}}{2!} + \frac{z^{4}}{4!} - \frac{z^{6}}{6!} + \dots \quad \sin z = \sum_{0}^{\infty} (-1)^{\nu} \frac{z^{2\nu+1}}{(2\nu+1)!} = z - \frac{z^{3}}{3!} + \frac{z^{5}}{5!} - \dots$$

konvergieren ebenfalls überall in \mathbb{C} , denn $\cos z$ und $\sin z$ sind Teilreihen der konvergenten Reihe $\exp z$.

Satz 10.2.1 Eulersche Formel

$$\exp iz = \cos z + i \sin z \, \forall z \in \mathbb{C}$$

Beweis:

$$\exp iz = \sum_{k=0}^{\infty} \frac{(iz)^k}{k!} = \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu}}{(2\nu)!} z^{2\nu} + i \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu} z^{2\nu+1}}{(2\nu+1)!} = \cos z + i \sin z$$

cos z ist eine gerade Funktion, sin z eine ungerade Funktion:

$$\cos(-z) = \sum \frac{(-1)^{\nu}}{(2\nu)!} (-z)^{2\nu} = \sum \frac{(-1)^{\nu}}{(2\nu)!} z^{2\nu} = \cos z$$

Analog für $\sin -z = -\sin z$.

Weiter gilt:

$$\cos z = \frac{1}{2}(\exp iz + \exp -iz), \quad \sin z = \frac{1}{2i}(\exp iz - \exp -iz)$$

Logarithmische Reihe und Arcustangens-Reihe

Die Logarithmische Reihe definiert man als

$$\lambda(z) = \sum_{1}^{\infty} \frac{(-1)^{\nu - 1}}{\nu} z^{\nu} = z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + \dots$$

R = 1, da

$$\frac{|a_{v}|}{|a_{v+1}|} = \frac{v+1}{v} \xrightarrow{v \to \infty} 1$$

Die Arcustangens-Reihe definiert man als

$$a(z) = \sum_{1}^{\infty} \frac{(-1)^{v-1}}{2v-1} z^{2v-1} = z - \frac{z^3}{3} + \frac{z^5}{5} - \dots$$

10.3 Holomorphie von Potenzreihen

Formale gliedweise Differentiation und Integration

Satz 10.3.1

Hat $\sum a_{\nu}(z-c)^{\nu}$ den Konvergenzradius R, so haben auch die durch gliedweise Differentiation bzw. Integration entstehenden Reihen $\sum \nu a_{\nu}(z-c)^{\nu-1}$ und $\sum \frac{1}{\nu+1}a_{\nu}(z-c)^{\nu+1}$ den Konvergenzradius R.

Beweis:

i) Für den Konvergenzradius R' der differenzierten Reihe gilt:

$$R' = \sup\{t \ge 0 \mid v \mid a_v \mid t^{v-1} \text{ ist beschränkt}\}$$

Da mit $v|a_v|t^{v-1}$ erst recht die Folge $|a_v|t^v$ beschränkt ist, folgt $R' \le R$. Um $R \le R'$ einzusehen, genügt es zu sehen, dass für jedes r > R gilt: $r \le R'$. Man wähle zu r ein s mit r < s < R. Dann ist die Folge $|a_v|s^v$ beschränkt. Es gilt:

$$v|a_v|r^{v-1} = (r^{-1}|a_v|s^v)vq^v$$

mit $q := \frac{r}{s}$. Da vq^v wegen 0 < q < 1 eine Nullfolge ist, so ist auch $v|a_v|r^{v-1}$ eine Nullfolge. Es folgt $r \le R' \Rightarrow R' = R$.

ii) Analog.

Holomorphie von Potenzreihen, Vertauschungssatz

Satz 10.3.2 Vertauschbarkeit von Differentiation und Summation bei Potenzreihen

Die Potenzreihe $\sum a_{\nu}|z-c|^{\nu}$ habe den konvergenzradius R>0. Dann ist ihre Grenzfunktion f in $B_R(c)$ beliebig oft komplex differenzierbar, also insbesondere holomorph in $B_R(c)$. Es gilt:

$$f^{(k)}(z) = \sum_{v \ge k} (k!) \begin{pmatrix} v \\ k \end{pmatrix} a_v (z - c)^{v - k}, \quad z \in B_R(c), n \in \mathbb{N}$$

Speziell: $\frac{f^{(k)}}{k!} = a_k$ (Taylorsche koeffizientenformeln).

Beweis: Es genügt, den Fall k = 1 zu behandeln; hieraus der Allgemeinfall durch Iteration. Wir setzen $B := B_R(c)$. Zunächst ist auf Grund von obigem Satz klar, dass durch

$$g(z) := \sum_{v \ge 1} v \alpha_v (z - c)^{v - 1}$$

eine Funktion $g: B \to \mathbb{C}$ definiert wird. Unsere Behauptung ist: f' = g. Wir nehmen wieder c = 0 an. Sei $b \in B$ fixiert. Um f'(b) = g(b) zu zeigen, setzen wir:

$$q_{v}(z) := z^{v-1} + z^{v-2}b + z^{v-2}b^{2} + \dots + b^{v-1}, \quad z \in \mathbb{C}, v = 1, 2, \dots$$

Dann gilt stets:

$$z^{\nu} - b^{\nu} = (z - b)q_{\nu}(z)$$

und also

$$f(z) - f(b) = \sum_{v \ge 1} a_v(z^v - b^v) = (z - b) \sum_{v \ge 1} a_v q_v(z), \quad z \in B$$

Sei nun $f_1(z) := \sum_{v \ge 1} a_v q_v(z)$. Dann folgt (beachte: $q_v(b) = vb^{v-1}$):

$$f(z) = f(b) = (z - b)f_1(z), z \in B$$

und

$$f_1(b) = \sum_{v \ge 1} v a_v b^{v-1} = g(b)$$

Es ist daher nur noch zu zeigen, dass f_1 stetig in b ist. Dazu genügt es nachzuweisen, dass die Reihe $\sum_{v\geq 1} a_v q_v(z)$ in B normal konvergiert. Das aber ist klar, denn für jede kreisscheibe B_r , |b|| < r < R, gilt

$$|\alpha_{\nu}q-\nu|_{B_r}\leq \alpha_{\nu}\nu r^{\nu-1}$$

also

$$\sum_{v\geq 1}|\alpha_vq_v|_{B_r}\leq \sum_{v\geq 1}v|\alpha_v|r^{v-1}<\infty$$

nach Satz oben.

Beispiele holomorpher Funktionen

i) Geometrische Reihe:

$$\sum_{v=0}^{\infty} z^v = \frac{1}{1-z} \Rightarrow \frac{1}{(1-z)^{k+1}} = \sum_{v \ge k} {v \choose k} z^{v-k}, \quad z \in \mathbb{E}$$

ii) Exponentialfunktion:

$$\exp' z = \left(\sum_{v \ge 0} \frac{z^v}{v!}\right)' = \sum_{v \ge 1} \frac{z^{v-1}}{(v-1)!} = \exp z$$

iii) Cosinusfunktion:

$$\cos' z = \left(\sum_{\nu=0}^{\infty} \frac{(-1)^{\nu} z^{2\nu}}{(2\nu)!}\right)' = \sum_{\nu=1}^{\infty} \frac{(-1)^{\nu} z^{2\nu-1}}{(2\nu-1)!} = -\sin z$$

iv) Sinusfunktion:

$$\sin' z = \cos z$$

v) Logarithmische Reihe:

$$\lambda(z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \dots \Rightarrow \lambda'(z) = 1 - z + z^2 - z^3 + \dots = \frac{1}{1+z}$$

vi) Arcustangens-Reihe:

$$a(z) = z - \frac{z^3}{3} + \frac{z^5}{5} - \dots \Rightarrow a'(z) = \frac{1}{1 + z^2}$$