Computer Security

Infrastructure Security

Prof. Jean-Noël Colin <u>jean-noel.colin@unamur.be</u>
Office #306

University of Namur Computer Science Faculty

This work is licensed under a <u>Creative Commons</u> Attribution-ShareAlike 4.0 International License.

Agenda

- Introduction
- Component-level security
- System-level security
- Network security
- Hosting
- Site redundancy
- Monitoring
- Contracts

Infrastructure

- What is infrastructure?
 - computers, smartphones, tablets, microcontrollers
 - storage
 - backup devices
 - printers, scanners
 - network devices
 - IoT devices
 - ...
 - hosting facilities
- Murphy's law
 - "if something can go wrong, it eventually will!" (most likely Fri. 4.00pm)

Introduction

Infrastructure getting more and more complex

- Moore's law
 - Kryder dans Scientific American, 2005:

	Annual growth (%)
CPU complexity	50%
Memory capacity	60%
Memory access speed	10%
Disk capacity	60%
Disk access speed	25%
Network speed	40%

 capacity and performance of components grow at different pace, with impact on the global architectures (software and hardware)

Infrastructure security objectives

- Confidentiality? Integrity?
 - not the first concern (more important at higher levels)
- Availability
 - business continuity
 - IT supports business ⇒ IT continuity
 - avoid unexpected downtime
 - reliable hardware
 - maintainable hardware: hot swappable devices, non-disruptive firmware upgrade
 - error detection and correction (ex: Single Error Correcting, Double Error Detecting)
 - automatic reconfiguration

Availability

- Risk-based approach to define expected availability level
- Disruption can be caused by
 - planned maintenance (upgrade)
 - failure
- How to measure availability?
 - MTBF Mean Time Between Failure
 - MTTR Mean Time To Repair
 - availability = $\frac{MTBF}{MTBF+MTTR}$
 - easier to improve MTTR then MTBF
 - high quality hardware/reseller
 - support/maintenance contract
 - what does MTBF mean? 1.2Mhrs MTBF (136 years!)

Availability

- How to measure availability? (cont'd)
 - AFR Annualized Failure Rate: proportion of devices of the same type that are expected to fail yearly, on a global scale
 - $\lambda_{annualized} = \lambda.8760$
 - $\lambda = \frac{1}{MTRF}$ (the failure rate)
 - 8760 = number of hours in one year
 - ex. Seagate Barracuda ES.2 Serial ATA:
 - MTBF: 1.2 Million hours
 - AFR: $\lambda_{annualized} = \frac{1}{1.200.000}$. 8760 = 0,73%

Threats

- Voluntary damage
- Failure
- Human error
- Natural disaster

General principles

Robustness

- do not make things over-complex: as simple as possible, as complex as necessary
- minimize failure likelihood
- keep system manageable

Redundancy

- avoid 'Single Points of Failure'
- at all levels: environment, system, component, device, connection...
- It is not enough to duplicate...
 - failure detection and management
 - failover management
 - replicate state to allow fast restart

Component-level security

Hardware reliability

Simplified view of a computer

Component redundancy

CPU

- multiple CPU/CPU boards
- hot swappable

Memory

- detection/correction mechanisms
- "memory scrubbing"

I/O interface

- multiple interfaces provide higher bandwith (i.e. trunking)
- in case of failure, transfer in degraded mode
- manual or automatic failover

Cabling

length, labeling, placement

Cabling

Component redundancy

- Power supply
 - redundant power supply: n + 1, n + 2
 - up to power source
 - Uninterruptible Power Supply (UPS) for temporary outage
 - multiple providers and paths
 - generator
- Hardware interventions...
 - ...can cause more trouble than they aim to solve
 - require
 - care
 - training
 - tools (ex: anti-static mat and wristband)

Data storage

- Different types of support
 - variable capacity
 - variable durability
 - variable security
 - mobile parts ⇒ higher failure rate
- Same redundancy principle
 - Duplicate units, devices, support types, connections, localization
- Disk-level: RAID
 - Redundant Array of Inexpensive Disks (vs. SLED Single Large Expensive Disk)
 - defines logical (virtual) volumes on top of physical disks
 - several raid levels
 - combines 3 mechanisms
 - mirroring
 - striping
 - parity control

RAID

- Raid 0 Striping
 - no redundancy
 - load spread over multiple physical disks
 - allows to create volumes larger than single physical disk
 - two parameters
 - #disks (stripe width)
 - #Bytes per chunk (stripe size)
 - hard to optimize
 - too small: load spread over all disks, but files split across multiple chunks
 - too large: overhead for file access is low, but disk load is not even
 - one disk fails \Rightarrow data lost

Raid 0 - Striping

RAID

- Raid 1 Mirroring
 - data redundancy
 - disks 1 and 2 are in perfect sync
 - possible concurrent read
 - slower write
 - storage efficiency: 50% (two way mirror)
 - in case of failure: replace defective disk and rebuild mirror

Raid 1 - Mirroring

RAID

- Raid 5 Striping + parity check
 - n-way RAID 5:
 - n-1 data chunk + 1 parity chunk
 - possible concurrent read
 - slow write
 - write data chunk + parity chunk (requires data chunks read)
 - storage efficiency: (n-1)/n
 - in case of failure: replace defective unit and rebuild lost chunks (requires reading entire stripe)

Raid 5 – Striping + parity check

RAID 5: data + control block

RAID

Other RAID levels

- Raid 0+1 mirror of stripes
- Raid 1+0 stripe of mirrors
- RAID 6 extension of RAID 5 to allow loss of 2 disks (uses 2 blocks of parity)

RAID controllers

- software vs hardware controller
- different performance level/cost
- ex. Veritas Volume Manager, LVM, DiskSuite...

Storage units

- Dedicated solutions (CPU, RAM, storage)
- Advanced functionality
 - snapshot
 - Split mirror or Copy on write
 - Remote copy
- EMC, Oracle/StorageTek,...

EMC Isilon X210: up to 48TB

Storage units

Oracle ZS5- series up to 11.5PB (10¹⁵B)

Storage units

Virtualization

- Virtualization is a very old concept
 - idea: share a physical resource between multiple clients by creating virtual resources on top of it
 - i.e. timesharing, virtual memory, logical volumes, VLAN...
- Motivations
 - cost-effectiveness
 - consolidation
 - hosting space
 - manageability
 - energy saving

High availability

- System redundancy
 - solution to failure that affect more than one component or SPOF (sub-system, OS...)
 - possible DRP solution
- Service virtualization: service is running on top of a logical host that sits on top of a cluster of physical machines. In case of a machine failure, others in the cluster take over
- Cluster types
 - Failover
 - service fails over from the failed node to a healthy one
 - Load balancing
 - service executed on a pool of similar systems; in case of a machine failure, others in the pool take over

Failover

Failover

- Cluster configuration
 - shared state
 - inter-node communication
 - heartbeat
 - quorum device
- Service integration
 - provide scripts to start/stop/check service
 - define necessary resources: logical volumes, IP address...
 - preferred node
- Failover
 - manage timeout, ping-pong
- Identify service dependencies

Load-balancing

- For stateless services: webservers, directory services (LDAP, AD, DNS...)
- Based on server farm
- Spread the load across the farm nodes
- Load distribution algorithm can be as simple as round-robin or more complex, for instance taking into account machine or request characteristics
 - DNS Load balancing, IP load balancing, reverse proxies

Load-balancing

Network security

Availability

- once again: redundancy
 - NIC network interface card
 - network segment
 - providers
 - connection channels

Access control

- Network is the gateway to the server and the organization
- Firewall
 - packet filtering
 - stateful packet inspection (SPI)
 - deep packet inspection (encrypted channel?)
 - application firewall
- Control connecting devices

Network security

- Confidentiality, integrity
 - use encrypted channels
 - according to network layer
 - PGP/gpg (email), DomainKeys Framework (SMTP), DNSSEC
 - SSL/TLS
 - IPSec
 - Authentification (AH Authentication Header) et confidentialit´e (ESP Encapsulation Security Payload)
 - Mode transport : paquet initial enrichi des informations AH ou ESP
 - Mode tunnel: encapsulation IP-dans-IP
 - VPN: secure tunnel between workstation and organization network
 - nomad users
 - third-party access

Network security

- Network isolation
 - split internal networks into several isolated sub-networks
 - network segregation: DMZ
 - 3 networks
 - LAN (internal)
 - WAN (external internet)
 - DMZ (demilitarized zone)
 - 3 flows
 - LAN → WAN
 - WAN → DMZ
 - LAN → DMZ
 - use multiple firewalls to separate networks
- Integrated solution: CASB Cloud Access Security Broker
 - "CASBs provide a consistent and convenient point of control over user activity and user data in a growing set of SaaS and other cloud-based applications." (Gartner Magic Quadrant for Cloud Access Security Brokers)

- Complete hosting solution offering all required facilities
 - elevated ground, cabling, access control
- HVAC Heat, Ventilation, Air Conditioning
 - system density increases heating
 - rack placement
 - optimize air flow in the room (cool corridor)
 - temperature (American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
 - 20° to 24°C (2005)
 - 18 to 27°C (2011)
 - Class A2 (35°C) or even A3 (40°C) and A4 (45°C)
- HVAC system is of critical importance: proper sizing and redundancy!

- Fire
 - detect: (redundant) probes
 - CO₂, Halon, FM-200, Inergen
- Power supply
 - redundant connections (and providers?)
 - UPS for short interruptions
 - diesel generators for long outage
 - do not power all systems at once
 - test the full procedure regularly
- Identify system dependencies for root cause analysis (what is the impact of...?)

- Management procedures
 - ITIL Information Technology Infrastructure Library
 - IT Service Delivery
 - IT Service Support
 - Service desk, Incident Management, Problem Management, Configuration Management, Change Management, Release Management
- Dedicated staff

- DRP or BCP?
- Goal: handle major incident
 - natural disaster (flooding, typhoon, earthquake...)
 - accident, fire
 - attack, sabotage, terrorism
 - massive data or system corruption
- Solution: duplicate operation site
 - and define procedures...
- Identify scope of DRP
 - not all services are concerned!
 - risk-based approach
 - prioritize services
 - identify resources required

Incident, recovery, RTO, RPO

Disaster Recovery vs High Availability

- DR is business driven: strong involvement of business side: not an IT problem only!
- Longer outage
- Larger impact
 - number and size of components/systems
- Higher risk and cost
- DR requires extensive procedures
- DR is not a fully automatic process

- General approach
 - Objective and scope definition
 - System identification
 - Definition of parameters (RTO, RPO), staff and responsibilities
 - High-level design of the solution (principles)
 - Technical design of the solution (technologies)
 - Implementation of the solution
 - Elaboration of procedures
 - Training
 - Test, Test, Test!
 - Evaluate and improve

- Primary and backup (DR) site
 - owned by the organization?
 - partner's location via mutual agreement?
 - outsourced?
 - where to place DR site?
 - not too close, not too far!
 - avoid similar risks
- Site synchronization
 - hot stand-by
 - DR site is an exact copy of primary site
 - cold stand-by
 - requires data restore on DR infrastructure
 - hint: store backups on DR site for quicker restore
 - hybrid approach: activity split on primary and backup sites; in case of incident, the healthy site takes over

- Long distance synchronization
 - asynchronous mirroring
 - backup/restore
 - log shipping
 - long distance cluster
 - file synchronization (rsync)

Monitoring & alerting

Monitoring and alerting

- Should something (seem to) go wrong? Make sure you get informed!
 - decide what to monitor
 - decide where to put the probes to avoid impact the system performance
 - fine tune the monitoring system to avoid false positive/false negative; adapt threshold
 - many existing tools
 - Patrol, OpenView, Nagios...
- Send alert
 - email
 - SMS
 - organize support team
 - define and document reporting and escalation procedures

Contracts ...

- Vendor selection: check the following
 - re. products
 - flexible, modular, up-to-date product line
 - credible roadmap
 - Interoperability
 - site visit
 - re. organization
 - existing partnerships
 - local team/resources
 - support organization
- Support contract
 - with hardware and software vendors
 - different levels of support and price
 - of critical importance for business-critical systems

SLA – Service Level Agreement

- defines the service
- defines requirements in terms of availability
 - incl. performance aspects
 - max. outage duration over the period
 - max. cumulative outage duration over the period
 - max. outage per incident
 - max. number of incident over the period
- differentiate between failure severity (minor/major outage)
- define planned maintenance slots
- define responsibility and procedures
- define communication and escalation mechanisms
- define penalties in case of failure to meet requirements
- can be concluded with external partners or internally between departments
- do not over- (under-)estimate your needs

Conclusion

- Protecting the infrastructure requires a manifold approach
 - Technical
 - Organizational
 - Contractual
- Redundancy as the main way of ensuring availability
- Refer to ISO 27002 Clauses 11-13, 16