Data Mining and Machine Learning

Assignment Project Exam Help

Topic Ana https://eduassistpro.github.io/Add WeChat edu_assist_pro

Peter Jančovič

Objectives

- Statistical modelling of topics
- Identifying topics in a document
 Assignment Project Exam Help
 Latent Dirichlet Allocation (LDA)
- Topic Spotti https://eduassistpro.github.io/
 - Salience and Usefwhee hat edu_assist_pro
 - Example: The AT&T "Ho You?" system

Motivation

- Example 1: You are responsible for competitor analysis in a large company. You need to monitor all media for press-releases, news items and other articles relating to your company Assergement Project Exam Help
- Example 2: ou are given the task of monit https://eduassistpro.github.in/onths. You have to identify calls on these drug trafficking.
- Example 3: You manage a call centre. You are concerned that some staff are being rude to the people that they are calling. You need to monitor all calls for a period of 6 months and detect all instances of 'rudeness'.

Topics

- "your company's product range", "illegal drug trafficking" and "rudeness" are all examples of topics
- A typical document Project Exam Help
 A typical document typically covers multiple topics
- Topic Analy https://eduassistpro.gitlgubdocument into its component topics Add WeChat edu_assist_pro
- <u>Topic Spotting</u> is about id ocuments that are relevant to a particular topic
- The previous slide is a list of Topic Spotting problems

Topics as "bundles of words"

- For any term w, P(w) is the probability of w
 - Choose a document at random, and then choose a term at random from the document, P(w) is the Assignment Project Exam Help probabilit
 - We know https://eduassistpro.githubwio/
- If T is a topic AR(W) Other edu_assistal probability of w given the topic T
 - Choose a document about topic T at random, then choose a term at random from the document,
 P(w|T) is the probability that the term is w

Statistical modelling of topics

- The conditional distribution P(w/T) is a "bundle of words" model of the topic T
- A typical document is made up of multiple topics Assignment Project Exam Help
 - Example: e London
 Marathon https://eduassistpro.github.io/
- Latent Dirichled A Wordshipt edu_assistpresses a document as a combination of topics
- The simplest way to understand LDA is to see how the LDA model generates a document

Documents have multiple topics

Topics include: London, marathons, fund-raising

The race was founded by the former Olympic champion and journalist <u>Chris Brasher</u> and athlete <u>John Disley</u>. It is organised by Hugh Brasher (son of Chris) as Race Director and Nick Bitel as Chief Executive. Set over a largely flat course around the <u>River Thames</u>, the race begins at three separate points around <u>Blackheath</u> and finishes in <u>The Mall</u> alongside <u>St. James's Park</u>. Since the first marathon, the **constitution** ______ truction works. It remained there

In addition to being one of https://eduassistpro.github.io/
In addition to being one of 26 miles and originally used for the 1908

London Olympics, the London Shields and Great in Manchester in terms of the number of participants. The event has raised over £450 million for charity since 1981, [2][3] and holds the Guinness world record as the largest annual fund raising event in the world, with the 2009 participants raising over £47.2 million for charity. In 2007, 78% of all runners raised money. In 2011 the official charity of the London Marathon was Oxfam. In 2014, the official charity was Anthony Nolan, and in 2015, it will be Cancer Research UK.

Overview of the London Marathon, Wikipedia, January 2017

Latent Semantic Analysis

- Latent Semantic Analysis can be seen as a method for automatically discovering topics in a corpus
- $W = USV^T$ Assignment Project Exam Help
- In LSA the t lumns of V
- So, a topic is https://eduassistpro.github.io/ent vector
- If d is a document wire Chatsedu_assistion of V), then

$$vec(d) \cdot v_i$$

is a measure of the contribution of the i^{th} topic to d

- Consider the document *d*:
 - "I eat sandwiches in a deck-chair on the sand by the sea" → "eat sandwiches deck-chair sand sea"
- Intuitively d cs, A and B:
 - A: food, c https://eduassistpro.github.io/ and sandwiches"
 - B: seaside, Add WeChat edu_assist_pro; "sand" and "sea"
- It looks like d is made up approximately of 40% topic A (food) and 60% topic B (seaside)

- According to LDA, d might be generated as follows:
 - Decide number of topics: N=2 "food" (A) and "seaside" (B) ment Project Exam Help
 - Decide the
 - Decide the https://eduassistpro.github.io/
 Decide the topics:

$$P_T(A)dd$$
 W.c.Chat_edu_assist_pro

- For i=1 to M
 - -Choose the topic T_i randomly according to P_T
 - -Choose word w_i randomly according to P(w/T)

- So, according to this model the document *d* was generated as follows:
 - $-i=1, T_1 = A$ (food), w = Exam Help
 - -i=2, T_2 = https://eduassistpro.githiubeig/
 - -i=3, $T_3 = B_1$ ("a existed by a edu_assisted by a edu_assist
 - -i=4, $T_4 = B$ ("seaside"), $w_4 =$ "sand"
 - $-i=5, T_5 = B$ ("seaside"), $w_5 =$ "sea"

- This is simple because we know the two topics and their associated word probability distributions
- Given a corpus C and a number of topics N, a much bigger probl https://eduassistpro.githuppics that cover C in s Cover C in s
 Add WeChat edu_assist_pro
 This is the clever part of L
- LDA uses an "E-M" type algorithm to do this

- Basically:
 - 1. Make an initial estimate of N topics (remember, a topic is just a probability distribution over words)
 - 2. Decomphttps://eduassistpro.github.jo/componentltppieChat edu_assist_pro
 - 3. Use this decomposition to re-estimate the topic word probability distributions
 - 4. Go back to 2.

- See Edwin Chen's blog "Introduction to Latent Dirichlet Analysis" for an explanation
- The method is called "Latent Dirichlet Allocation" because the https://eduassistpro.githdifferent topics, $P_T(A)$, is ass

 Add WeChat edu_assist_pro

Topic Spotting

- Topic Spotting is a type of 'dedicated' IR
 - The task is to find documents that are <u>about</u> a particular topic
 - Corpus Arssignmenta Rraigetr Exems Helamic
- Other example https://eduassistpro.github.io/
 - Detect all w
 adio 4 broadcasts
 - Find all documents written
 - Find all requirements in new EU railway legislation
- Topic Spotting vs IR
 - Because a topic is richer than a query we can calculate probabilities P(t/T) and not just IDF(t)

Topic spotting

Accepted documents – "On Topic"

Assignment Project Exam Help

Data

https://eduassistpro.github.io/

stream

Add WeChat edu_assist_pro

Rejected documents – "Off Topic"

TF-IDF weights

• Recall the definition of the TF-IDF weight for a term *t* relative to a document *d*:

$$w_{t,d} = f_{t,d} \times NDT(t)$$
, where, is $F(t) = \log \frac{1}{ND_t}$

- https://eduassistpro.github.io/minating bet
 documents Add WeChat edu_assist_pro
- $f_{t,d}$ ensures that t occurs sufficiently often to be useful
- For Topic Spotting we can define a more sophisticated criterion to identify words that are indicative of a given topic

Usefulness

• Given a term t and a topic T, define the <u>usefulness</u> of t (relative to T) by:

Assignment (Projetog Exam Help
$$P(t)$$

• If $\log \frac{P(t|T)}{P(t)}$ is large t is edu_assistic of the topic

• If P(t/T) is large, then t occurs sufficiently often "on topic" to be useful for topic spotting

Usefulness and IDF

• Recall $IDF(t) = \log \left(\frac{ND}{ND} \right)$ Assignment Project Exam Help

- Given a set $= \bar{S}_t \, \mathbf{u} \, S_t$, where S_t is the set ohttps://eduassistpro.github.jo/set of documental that dbm' edu_assist_pro
- Then $P(t) = P(t \mid S_t)P(S_t) + P(_{t'})$

$$= P(t \mid S_t)P(S_t) = P(t \mid S_t)\frac{ND_t}{ND}$$

Usefulness and IDF

Hence

$$\frac{P(t \mid S_t^{\mathbf{A}})}{P(t)} = \frac{ND}{ND}, \text{ and } IDF(t) = \log \left(\frac{P(t \mid S_t)}{P(t)}\right)$$

$$\frac{P(t \mid S_t^{\mathbf{A}})}{P(t)} = \frac{ND}{ND}, \text{ and } IDF(t) = \log \left(\frac{P(t \mid S_t)}{P(t)}\right)$$

Add WeChat edu_assist_pro

Usefulness and IDF

■ $IDF(t) = log\left(\frac{P(t|S_t)}{P(t)}\right)$ is a measure of how useful the term t is for general information retrieval (or for retrieving do t?)

https://eduassistpro.github.io/

• So, $\log \left(\frac{P(t \mid T_{A})}{P(t)} \right) dt$ is a substitution of the state of the sta

for retrieving documents about topic T

'Salience'

Similarly, given a term t and a topic T, define the salience of t (relative to T) by:

Assignment Project Exam Help
$$S(t) = P(T \mid t) \log \frac{P(T \mid t)}{P(T \mid t)}$$
https://eduassistofo.github.io/

Using Bayes' A The weight edu_assistapy to establish a relationship between sali sefulness

$$P(T \mid t) = \frac{p(t \mid T)P(}{p(t)}$$

Salience and Usefulness

$$S(t) = P(T | t) \log \left(\frac{P(T | t)}{t} \right)$$
Assignment Project Exam Help
$$= \frac{p(t | T)P(T)}{p(t)} \log \frac{P(T)P(T)}{p(t)} \log \frac{P(T)P(T)}{p(t)} \log \frac{P(T)P(T)}{p(t)} = \frac{P(T)}{p(t)} U(t)$$

$$= \frac{P(T)}{p(t)} p(t | T) \log \left(\frac{P(t | T)}{p(t)} \right) = \frac{P(T)}{p(t)} U(t)$$

Salience and Usefulness

$$S(t) = \frac{P(T)}{P(t)}U(t)$$
Assignment Project Exam Help

Now, T is th https://eduassistpro.githqhiφefore

Add WeChat edu_assist_pro

$$S \qquad \frac{1}{}$$

Salience and Usefulness

- So, main difference between Salience and Usefulness is that to have high usefulness, a term must occur signment Project Exam Help
- Sometimes t https://eduassistpro.gtthsef.ind/words for a topic are n suspect:
 Add WeChat edu_assist_pro
 - E.G. For Weather Forecast spotting, "north", "south", "east" and "west" turned out to be more 'useful' than "rain" and "sun" why?

Example

- A term w occurs:
 - $-t_1$ times in documents about topic T
 - $-t_2$ times in documents which are not about topic T
- Total numbers
 og transmit Project Exam Help
 - in documen

https://eduassistpro.github.io/

- in documen
- The corpus containd W and E documents not about T
- Then

-
$$P(w/T) = t_1/N_1$$
, $P(w/not-T) = t_2/N_2$

$$P(w) = P(w/T)P(T) + P(w/not-T)P(not-T)$$

$$= \frac{t_1C_1}{N_1(C_1 + C_2)} + \frac{t_2C_2}{N_2(C_1 + C_2)} = \frac{t_1N_2C_1 + t_2N_1C_2}{N_1N_2(C_1 + C_2)}$$

Example

- A term w occurs:
 - $-t_1 = 150$ times in documents about topic T
 - $-t_2 = 230$ times in documents which are not about topic T
- Total number of terms.

 Project Exam Help
 - in documenhttps://eduassistpro.github.io/
- in documents not about topi
 Add WeChat edu_assist_pro
 Suppose that only 10% of are "on topic"
- So:
 - $-P(w/T)=0.012, P(w)=0.0102, \log(P(w/T)/P(w))=0.0706$
 - U(w) = 0.000847
 - $S(w) = (P(T)/P(w)) \times U(w) = (0.1/0.0102) \times 0.000847 = 0.0083$

Application to Topic Spotting

- 2. For each n -topic (T) or off-topic (not-Thttps://eduassistpro.github.io/
- 3. Apply stemping who stat edu_assistopabif required
- 4. Identify the set of terms (the vocabulary) in the corpus: $w_1, ..., w_V$.
- 5. For each v, calculate $U(w_v)$ the usefulness of w_v for the topic T.

Application (continued)

- 6. If required, choose a threshold *X* and discard any terms with usefulness less than *X*
- 7. For each document d in the training set:
 - Let v₁,..., https://eduassistpro.github.io/
 - Calculate $AU(d_n) = \frac{\text{Add WeChat}_{edu_assist_pro}^{I(n)}}{I(n)} \underbrace{\sum_{i=1}^{I(n)} U(v_i)}^{I(n)}$
 - $AU(d_n)$ is the average usefulness of terms in d_n

Application (continued)

- 8. For a threshold *W* define a classification rule by:
 - If $AU(d_n) > W$, then d_n is classified as "topic"
 - If AUAssignment Projects Fixian a Help-topic"
- 9. Choose a suit https://eduassistpro.github.fo/ For example https://eduassistpro.github.fo/ qual Error Rate
- 10. Classification Acto Washedu_assist_pro
 - Calculate AU(d)
 - Classify d as "topic" if AU(d) > W, otherwise d is "nottopic"

Topic Spotter

Spotting topics in speech

- First convert audio stream into a text stream using automatic speech recognition
- Consider overlapping sections of text corresponding to, say, 30 sehttps://eduassistpro.gittlsio.jo/he application)
 Add WeChat edu_assist_profulness or
- Calculate the Average (or fulness or Average (or Total) Salience of words in the section of text for the topic

Signal whenever this value exceeds a threshold

Example

- The AT&T "How May I Help You?" system
- Task: to understand what AT&T customers'
 Assignment Project Exam Help
 messages are about sufficiently well to connect them
 to the correc https://eduassistpro.github.io/
- Services can be human op specific problem or speak language) or automated services.
- Look HMIHY? Up on the web

AT&T How May I Help You?

Assignment Project Exam Helj

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Salient word list

Service 1

Service 2

Service 3

Service 15

AT&T How May I Help You?

- HMIHY? Treats telephone network services as <u>topics</u> or <u>documents</u>, to be detected or retrieved
- Example salight words oject Exam Help

Word			Salience
Difference	https://ed	luassistpro.githu	Jb.i0 <mark>∕.2</mark> 9
Cost	3.39		1,28
Rate	Add We(Chat edu_assist	pro1.23
Much	3.24		1.23
Emergency	2.23	Charge	1.22
Misdialed	1.43	Home	1.13
Wrong	1.37	Information	1.11
code	1.36	credit	1.11

Allen Gorin, "Processing of semantic information in fluent spoken language, Proc. ICSLP 1996

HMIHY Demonstrations

See http://www.research.att.com/~algor/hmihy/samples.html

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Summary

- Topics
- Modelling a document as a mixture of topics Assignment Project Exam Help Latent Diric
- Topic spotti https://eduassistpro.github.io/
- Salience and Askfulheeshat edu_assist_pro
- How May I Help You?

