#### **AMENDMENTS TO THE CLAIMS**

1. (Currently Amended) A DNA participating in biological transformation of a macrolide compound (hereinafter referred to as a macrolide compound 11107B) represented by the formula (I):

$$H_3C$$
 O  $OH$   $CH_3$   $CH_3$ 

into a 16-position hydroxy macrolide compound represented by the formula (II):

$$H_3C$$
 O OH  $CH_3$   $H_3C$  O OH  $CH_3$   $I1107D$  (II),

the DNA being an isolated and pure DNA comprising a DNA encoding a protein having 16-position hydroxylating enzymatic activity or ferredoxin, partly or entirely or its variant which is characterized by the following (a), (b), or (c):

(a) a DNA encoding a protein having the enzymatic activity to hydroxylate the 16-position of the macrolide compound 11107B, wherein the DNA is selected from the group consisting of (1) a continuous nucleotide sequence from base 1322 to base 2548 of SEQ ID NO: 1; (2) a continuous nucleotide sequence from base 420 to base 1604 of SEQ ID NO: 2; and a continuous nucleotide sequence from base 172 to base 1383 of SEQ ID NO: 3;

Reply to Office Action of January 8, 2009

(b) a DNA which has a nucleotide sequence having 90% or more identity with the DNA described in (a);

(c) a DNA encoding a protein having the same amino acid sequence as the protein encoded by the DNA described in (a) or (b) though it does not have 90% or more identity with the DNA described in (a) because of the degeneracy of a gene codon.

### 2. (Canceled)

- 3. (Withdrawn, Currently Amended) A protein encoded by the DNA as claimed in Claim [[2]] <u>1</u>.
- (Currently Amended) A self-replicative or integrating replicative recombinant plasmid carrying the DNA as claimed in Claim 1 [[2]].
- 5. (Original) A transformant into which the recombinant plasmid as claimed in Claim 4 transforms.
- 6. (Withdrawn, Currently Amended) A method of isolating a DNA encoding a protein having enzymatic activity in hydroxylating the 16-position of the macrolide compound 11107B, the method characterized by using the DNA as claimed in Claim [[2]] 1 or a DNA constituted of a part of the DNA as a probe or a primer.

#### 7-11. (Canceled)

12. (Withdrawn, Currently Amended) A method of producing a 16-position hydroxy macrolide compound, the method comprises the steps of culturing the transformant as claimed in Claim 5 or 10 in a medium; bringing the proliferated transformant into contact with a macrolide compound represented by the formula (III):

$$R^{21c} \xrightarrow{R^{21b}} R^{20b} \xrightarrow{R^{17b}} W \xrightarrow{R^{17a}} R^{16b} \xrightarrow{R^{12}} G^{m}$$
 (III)

(wherein W represents or. 
$$H \longrightarrow R^{18}$$

 $R^{12}$ ,  $R^{16b}$ ,  $R^{17a}$ ,  $R^{17b}$ ,  $R^{18}$ ,  $R^{20a}$ ,  $R^{20b}$ ,  $R^{21a}$  and  $R^{21b}$ , which may be the same as or different from, respectively represent:

- (1) hydrogen atom;
- (2) a C<sub>1-22</sub> alkyl group which may have a substituent;
- (3) -OR (wherein R represents:
- 1) hydrogen atom; or
- 2) a C<sub>1-22</sub> alkyl group;
- 3) a C<sub>7-22</sub> aralkyl group;
- 4) a 5-membered to 14-membered heteroaryloxyalkyl group;
- 5) a C<sub>2-22</sub> alkanoyl group;
- 6) a C<sub>7-15</sub> aroyl group;
- 7) a  $C_{3-23}$  unsaturated alkanoyl group;

- 8) -COR<sup>co</sup> (wherein R<sup>co</sup> represents:
  - 8-1) a 5-membered to 14-membered heteroaryloxyaryl group;
  - 8-2) a  $C_{1-22}$  alkoxy group;
  - 8-3) an unsaturated  $C_{2-22}$  alkoxy group;
  - 8-4) a  $C_{6-14}$  aryloxy group;
  - 8-5) a 5-membered to 14-membered heteroaryloxy group; or
- 8-6) a 3-membered to 14-membered nitrogen-containing non-aromatic heterocyclic group, each of which may have a substituent);
  - 9) a  $C_{1-22}$  alkylsulfonyl group;
  - 10) a  $C_{6-14}$  arylsulfonyl group; or
- 11)  $-SiR^{s1}R^{s2}R^{s3}$ , (wherein  $R^{s1}$ ,  $R^{s2}$  and  $R^{s3}$ , which may be the same as or different from, respectively represent a  $C_{1-6}$  alkyl group or a  $C_{6-14}$  aryl group), each of which may have a substituent);
- (4) a halogen atom; or
- (5) -R<sup>M</sup>-NR<sup>N1</sup>R<sup>N2</sup>, {wherein R<sup>M</sup> represents a single bond or -O-CO-; and R<sup>N1</sup> and R<sup>N2</sup>
- 1) may be the same as or different from, respectively represent:
  - 1-1) hydrogen atom; or
  - 1-2)
  - (i) a  $C_{1-22}$  alkyl group;
  - (ii) an unsaturated C<sub>2-22</sub> alkyl group;
  - (iii) a C<sub>2-22</sub> alkanoyl group;
  - (iv) a C<sub>7-15</sub> aroyl group;

- (v) an unsaturated C<sub>3-23</sub> alkanoyl group;
- (vi) a  $C_{6-14}$  aryl group;
- (vii) a 5-membered to 14-membered heteroaryl group;
- (viii) a C<sub>7-22</sub> aralkyl group;
- (ix) a C<sub>1-22</sub> alkylsulfonyl group; or
- (x) a C<sub>6-14</sub> arylsulfonyl group, each of which may have a substituent, or
- 2) and R<sup>N1</sup> and R<sup>N2</sup> may be combined with the nitrogen atom to which they bound, to form a 3-membered to 14-membered nitrogen-containing non-aromatic heterocyclic group}, provided that

 $R^{21a}$  and  $R^{21b}$  may be combined with each other to form (i) a ketone structure (=O) or (ii) an oxime structure {=NOR<sup>ox</sup> (wherein  $R^{ox}$  represents a  $C_{1-22}$  alkyl group, an unsaturated  $C_{2-22}$  alkyl group, a  $C_{6-14}$  aryl group, a 5-membered to 14-membered heteroaryl group or a  $C_{7-22}$  aralkyl group, each of which may have a substituent)};

R<sup>16a</sup> represents hydrogen atom;

R<sup>21c</sup> represents:

- (1) hydrogen atom; or
- **(2)**

$$R^{22c} \xrightarrow{R^{22b}} \stackrel{}{\searrow}_{R}$$

(wherein  $R^{22a}$ ,  $R^{22b}$  and  $R^{22c}$ , which may be the same as or different from, respectively represent:

- 1) hydrogen atom;
- 2) a C<sub>1-6</sub> alkyl group;

Application No. 10/577,655 Reply to Office Action of January 8, 2009

- 3) -OR (wherein R has the same meaning as the above);
- 4) -R<sup>M</sup>-NR<sup>N1</sup>R<sup>N2</sup> (wherein R<sup>M</sup>, R<sup>N1</sup> and R<sup>N2</sup> have the same meanings as the above); or
- 5) a halogen atom, or

any one of  $R^{21a}$  and  $R^{21b}$  may be combined with any one of  $R^{22a}$  and  $R^{22b}$  to form the partial structure;

$$(R^{22a} \text{ or } R^{22b})$$
 $(R^{21a} \text{ or } R^{21b})$ 

); and

G<sup>m</sup> represents:

# (1) a group represented by the formula (GM-I):

$$R^{7b}$$
 $R^{7a}$ 
 $R^{6b}$ 
 $R^{6a}$ 
 $R^{5b}$ 
 $R^{5a}$ 
 $R^{5a}$ 
 $R^{3a}$ 
 $R^{2a}$ 
 $R^{3a}$ 

{wherein

 $R^2$  and  $R^{10}$ , which may be the same as or different from , respectively represent hydrogen atom or a  $C_{1-22}$  alkyl group;

R<sup>3a</sup>, R<sup>3b</sup>, R<sup>5a</sup>, R<sup>5b</sup>, R<sup>6a</sup> and R<sup>6b</sup>, which may be the same as or different from, respectively represent:

## 1) hydrogen atom;

## 2) hydroxyl group;

3)

- 3-1) a  $C_{1-22}$  alkyl group;
- 3-2) a  $C_{1-22}$  alkoxy group;
- 3-3) a  $C_{6-14}$  aryloxy group;
- 3-4) a 5-membered to 14-membered heteroaryloxy group;
- 3-5) a  $C_{2-22}$  alkanoyloxy group;
- 3-6) a  $C_{7-15}$  aroyloxy group;
- 3-7) a C<sub>3-23</sub> unsaturated alkanoyloxy group;
- 3-8) -OCOR<sup>co</sup> (wherein R<sup>co</sup> has the same meaning as the above);
- 3-9) a C<sub>1-22</sub> alkylsulfonyloxy group;
- 3-10) a  $C_{6-14}$  arylsulfonyloxy group; or
- 3-11) -OSiR<sup>s1</sup>R<sup>s2</sup>R<sup>s3</sup> (wherein R<sup>s1</sup>, R<sup>s2</sup> and R<sup>s3</sup> have the same meanings as the above), each of which may have a substituent;
- 4) a halogen atom; or
- 5)  $-R^M-NR^{N1}R^{N2}$  (wherein  $R^M$ ,  $R^{N1}$  and  $R^{N2}$  have the same meanings as the above); or

R<sup>5a</sup> and R<sup>5b</sup> may be combined with each other to form a ketone structure (=O); or

R<sup>6a</sup> and R<sup>6b</sup> may be combined with each other to form a spirooxysilanyl group or an exomethylene group; or

 $R^{7a}$  and  $R^{7b}$ , which may be the same as or different from, respectively represent hydrogen atom or  $-OR^H$  (wherein  $R^H$  represents hydrogen atom, a  $C_{1-22}$  alkyl group or a  $C_{2-22}$  alkanoyl group)};

# (2) a group represented by the formula (GM-II):

$$R^{7b}$$
 $R^{7a}$ 
 $R^{6a}$ 
 $R^{10}$ 
 $R^{10}$ 
 $R^{10}$ 
 $R^{10}$ 
 $R^{10}$ 
 $R^{3a}$ 
 $R^{3a}$ 

(wherein R<sup>2</sup>, R<sup>3a</sup>, R<sup>3b</sup>, R<sup>6a</sup>, R<sup>6b</sup>, R<sup>7a</sup>, R<sup>7b</sup> and R<sup>10</sup> have the same meanings as those in the formula (GM-I));

### (3) a group represented by the formula (GM-III):

$$\begin{array}{c|c}
R^{7b} & R^{7a} \\
R^{6b} & R^{6a} \\
R^{5b} & R^{5a}
\end{array}$$
(GM-III)

(wherein R<sup>2</sup>, R<sup>5a</sup>, R<sup>5b</sup>, R<sup>6a</sup>, R<sup>6b</sup>, R<sup>7a</sup>, R<sup>7b</sup> and R<sup>10</sup> have the same meanings as those in the formula (GM-I));

# (4) a group represented by the formula (GM-IV):

$$R^{7b}$$
 $R^{7a}$ 
 $R^{6a}$ 
 $R^{10}$ 
 $R^{10}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{2}$ 

(wherein R<sup>2</sup>, R<sup>6a</sup>, R<sup>7a</sup>, R<sup>7b</sup> and R<sup>10</sup> have the same meanings as those in the formula (GM-I)); or (5) a group represented by the formula (GM-V):

$$R^{10}$$
 $R^{10}$ 
 $R^{10}$ 

(wherein R<sup>2</sup>, R<sup>3a</sup>, R<sup>6a</sup>, R<sup>6b</sup> and R<sup>10</sup> have the same meanings as those in the formula (GM-I))) during or after culturing, to convert it into a 16-position hydroxy macrolide compound represented by the formula (IV):

$$R^{21c} \xrightarrow{R^{21b}} R^{20b} \xrightarrow{R^{17b}} W \xrightarrow{R^{16b}} G^{m} \qquad (IV)$$

(wherein W, R<sup>12</sup>, R<sup>16b</sup>, R<sup>17a</sup>, R<sup>17b</sup>, R<sup>20a</sup>, R<sup>20b</sup>, R<sup>21a</sup>, R<sup>21b</sup>, R<sup>21c</sup> and G<sup>m</sup> have the same meanings as those in the formula (III)); and then collecting the 16-position hydroxy macrolide compound thus converted.

### 13. (Canceled)

14. (Withdrawn) The production method according to Claim 12, the method comprises the step of converting a compound represented by the formula (III-a):

(wherein 5===4 represents a double bond or a single bond; W' represents a double bond or

; R<sup>5</sup> represents hydrogen atom or an acetoxy group; R<sup>6</sup> represents hydrogen atom or hydroxyl group; and R<sup>7</sup> represents hydrogen atom or acetyl group) into a compound represented by the formula (IV-a):

(wherein  $^{5}=4$ , W',  $R^{5}$ ',  $R^{6}$ ' and  $R^{7}$ ' have the same meanings as those in the formula (III-a)).

- 15. (Withdrawn) The production method according to Claim 14, wherein, in the conversion of the compound of the formula (III-a) into the compound of the formula (IV-a), the compound to be subjected is a compound selected from the group consisting of:
- (1) a compound in which 5=4 is a single bond; W' is ; and R<sup>5'</sup>, R<sup>6'</sup> and R<sup>7'</sup> are respectively hydrogen atom;
- (2) a compound in which 5=4 is a single bond, W' is ; R<sup>5</sup>'and R<sup>6</sup>' are respectively hydrogen atom; and R<sup>7</sup>' is acetyl group;
- (3) a compound in which 5=4 is a single bond, W' is ;  $R^{5}$ ' and  $R^{7}$ ' are respectively hydrogen atom; and  $R^{6}$ ' is hydroxyl group;

(4) a compound in which 5=4 is a single bond, W' is is hydroxy group; and R<sup>7</sup> is acetyl group;

- (5) a compound in which 5=4 is a single bond; W' is a double bond; and R' are respectively hydrogen atom;
- (6) a compound in which 5=4 is a single bond; W' is a double bond; R<sup>5'</sup> and R<sup>6'</sup> are respectively hydrogen atom; and R<sup>7</sup> is acetyl group;
- (7) a compound in which  $5^{---}4$  is a single bond; W' is a double bond; R<sup>5'</sup> and R<sup>7'</sup> are respectively hydrogen atom; and R<sup>6</sup> is hydroxyl group;
- (8) a compound in which 5=4 is a single bond; W' is a double bond; R<sup>5'</sup> is hydrogen atom; R<sup>6</sup> is hydroxy group; and R<sup>7</sup> is acetyl group;
- (9) a compound in which 5=4 is a double bond; W' is respectively hydrogen atom; and R<sup>6</sup> is hydroxyl group;
- (10) a compound in which  $\frac{5}{2}$  4 is a double bond; W' is R<sup>5</sup> is hydrogen atom; R<sup>6</sup> is hydroxy group; and R<sup>7</sup> is acetyl group;
- (11) a compound in which 5=4 is a single bond; W' is R<sup>6</sup> is hydroxyl group; and R<sup>7</sup> is hydrogen atom; and

(12) a compound in which 
$$5=4$$
 is a single bond; W' is ;  $R^{5'}$  is an acetoxy group;  $R^{6'}$  is hydroxyl group; and  $R^{7'}$  is acetyl group.

- 16. (Withdrawn, Currently Amended) Use of the transformant as claimed in Claim 5 or 10 for producing a 16-position hydroxy macrolide compound.
- 17. (New) The DNA according to claim 1, wherein the DNA comprises bases 1322-2548 of SEQ ID NO: 1.
- 18. (New) The DNA according to claim 1, wherein the DNA encodes a polypeptide comprising amino acids 1-409 of SEQ ID NO: 1.
- 19. (New) The DNA according to claim 1, wherein the DNA consists of bases 1322-2548 of SEQ ID NO: 1.
- 20. (New) The DNA according to claim 1, wherein the DNA encodes a polypeptide consisting of amino acids 1-409 of SEQ ID NO: 1.
- 21. (New) The DNA according to claim 1, wherein said identity in (b) and (c) of claim 1 is 95% or more.

## 22. (New) A DNA comprising

- (a) a DNA encoding a protein, wherein the DNA is selected from the group consisting of (1) a continuous nucleotide sequence from base 1322 to base 2548 of SEQ ID NO: 1; (2) a continuous nucleotide sequence from base 420 to base 1604 of SEQ ID NO: 2; and a continuous nucleotide sequence from base 172 to base 1383 of SEQ ID NO: 3;
- (b) a DNA which has a nucleotide sequence having 90% or more identity with the DNA described in (a); or
- (c) a DNA encoding a protein having the same amino acid sequence as the protein encoded by the DNA described in (a) or (b) though it does not have 90% or more identity with the DNA described in (a) because of the degeneracy of a gene codon.
- 23. (New) The DNA according to claim 22, wherein said identity in (b) and (c) of claim 22 is 95% or more.
- 24. (New) The DNA according to claim 1, wherein the DNA comprises bases 420-1604 of SEQ ID NO: 2.
- 25. (New) The DNA according to claim 1, wherein the DNA encodes a polypeptide comprising amino acids 1-395 of SEQ ID NO: 2.
- 26. (New) The DNA according to claim 1, wherein the DNA consists of bases 420-1604 of SEQ ID NO: 2.

Docket No.: 0425-1257PUS1

- 27. (New) The DNA according to claim 1, wherein the DNA encodes a polypeptide consisting of amino acids 1-395 of SEQ ID NO: 2.
- 28. (New) The DNA according to claim 1, wherein the DNA comprises bases 172-1383 of SEQ ID NO: 3.
- 29. (New) The DNA according to claim 1, wherein the DNA encodes a polypeptide comprising amino acids 1-404 of SEQ ID NO: 3.
- 30. (New) The DNA according to claim 1, wherein the DNA consists of bases 172-1383 of SEQ ID NO: 3.
- 31. (New) The DNA according to claim 1, wherein the DNA encodes a polypeptide consisting of amino acids 1-404 of SEQ ID NO: 3.