Practice problems for ECE 432/532 - Sp2016

Several areas are covered:

- a) Matching problems using lumped elements and microstrip components
- b) Transistor/amplifier stability

Here are some problems from Pozar (4th edition): 12.1, 12.2, 12.3, 12.5, 12.6,

The following problems are taken (some are modified) from 2nd edition of Gonzalez' book:

- 1. Prob . 2.2 a) and c).
 - a. Show that impedances having a negative real part (i.e., z = -r + jx) have a reflection coefficient whose magnitude is greater than 1
- 2. Prob. 2.11. Design the matching network in figure below that provides $YL = (4 j4) \times 10^{-3} \text{ S}$ to the transistor. Find the element values at 700 MHz.

3. Prob. 2.12. Two types of Ell matching networks are shown below. Select one that can match the load $Y_{LOAD} = (8 - j12) \times 10^{-3} \text{ S}$ to a 50 Ohm transmission line. Find the element values at f = 1 GHz.

4. Prob. 2.22. Design the matching networks shown below to produce the source reflection coefficient Γ_s = 0.5 \angle 90°. In part b) of the figure, the appropriate length for the short-circuited stub must be selected (i.e., λ /8 or 3 λ /8). In addition, try to design a balanced version of the shunt stubs. (Warning: figure b) that has λ /4 line in it is a little bit different than the "usual" matching circuits we used. However, you should be able to figure out how to do this on your own).

5. Prob. 3.3. A microwave amplifier diagram is shown below. Determine G_T , G_A , and G_p if $\Gamma_S = 0.49 \angle -150^\circ$, $\Gamma_L = 0.56 \angle 90^\circ$, and the S parameters of the transistor are: $S_{11} = 0.54 \angle 165^\circ$, $S_{12} = 0.09 \angle 20^\circ$, $S_{21} = 2 \angle 30^\circ$, $S_{22} = 0.5 \angle -80^\circ$. Calculate P_{AVS} , P_{IN} , P_{AVN} , and P_L if source voltage $E_1 = 10 \angle 30^\circ$, source impedance $Z_1 = 50$ Ohm and load impedance $Z_2 = 50$ Ohm.

6. Prob. 3.4: The S parameters of transistor are: $S_{11} = 0.7 \angle 30^{\circ}$, $S_{12} = 0$, $S_{21} = 4 \angle 90^{\circ}$, $S_{22} = 0.5 \angle 0^{\circ}$. Amplifier is shown in figure below where output matching network produces $\Gamma_L = 0.5 \angle 90^{\circ}$. Determine the values of G_T , G_P

and G_A.

reflection coeff.)

7. Prob. 3.5. In each of the stability circles shown below indicate clearly the possible locations for stable Γ_S (source

- 8. Prob. 3.7.: The scattering parameters for three different transistors are given below. Determine the stability in each case and in a potentially unstable case, draw the input and output stability circles.
 - a. $S_{11} = 0.674 \angle -152^{\circ}$, $S_{12} = 0.075 \angle 6.2^{\circ}$, $S_{21} = 1.74 \angle 36.4^{\circ}$, $S_{22} = 0.6 \angle -92.6^{\circ}$
 - b. $S_{11} = 0.385 \angle -55^{\circ}$, $S_{12} = 0.045 \angle 90^{\circ}$, $S_{21} = 2.7 \angle 78^{\circ}$, $S_{22} = 0.89 \angle -26.5^{\circ}$
 - c. S_{11} = 0.7 \angle -50° , S_{12} = 0.27 \angle 75° , S_{21} = 5 \angle 120° , S_{22} = 0.6 \angle 80°
- 9. Prob. 3.14: Show how resistive loading can stabilize a transistor whose S parameters at f=750 MHz are: $S_{11} = 0.69 \angle -78^{\circ}$, $S_{12} = 0.033 \angle 41.4^{\circ}$, $S_{21} = 5.67 \angle 123^{\circ}$, $S_{22} = 0.84 \angle -25^{\circ}$.

You should also be quite familiar with all the examples given in the notes. For LNA design, check out his example 12.5 (unilateral design).