SDR for matrix predictors

Chanwoo Lee, May 24, 2020

1 SDR for matrix

For a vector predictor $X \in \mathbb{R}^d$, sufficient dimension reduction assumes that

$$Y \perp \!\!\! \perp X | \boldsymbol{B}^T X, \tag{1}$$

where $\boldsymbol{B} \in \mathbb{R}^{d \times k}$. We define with $\mathcal{X}_{N} \mathcal{Y}$ a sequence of contracted products between the (K+N)-order tensor $\mathcal{X} \in \mathbb{R}^{J_1 \times \cdots \times J_K \times I_1 \times \cdots \times I_N}$ and the (N+M)-order tensor $\mathcal{Y} \in \mathbb{R}^{I_1 \times \cdots \times I_N \times H_1 \times \cdots \times H_M}$. Entry-wise, it is defined as

$$(\mathcal{X} \bar{\times}_N \mathcal{Y})_{j_1,\dots,j_K,h_1,\dots,h_M} = \sum_{i_1=1}^{I_1} \cdots \sum_{i_N=1}^{I_N} \mathcal{X}_{j_1,\dots,j_K,i_1,\dots,i_N} \mathcal{Y}_{i_1,\dots,i_N,h_1,\dots,h_M}.$$

For a matrix predictor $X \in \mathbb{R}^{m \times n}$, sufficient dimension reduction assumes that

$$Y \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \mid \!\!\! \Sigma_2 X,$$
 (2)

where $\mathcal{B} \in \mathbb{R}^{k \times m \times n}$. If we define $\mathcal{B}_{i..} = \mathbf{B}_i$, we have

$$\mathcal{B} \bar{\times}_2 \mathbf{X} = (\langle \mathbf{B}_1, \mathbf{X} \rangle, \dots, \langle \mathbf{B}_k, \mathbf{X} \rangle)^T$$
.

Remark 1. The predictor matrix X is a vector where n = 1, (2) is reduced down to $(1)(\mathbf{B} \times 1X)$. In addition, we can extend to tensor case with order d as

$$Y \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \mid \mathcal{X} \mid \mathcal{B} \bar{\times}_d \mathcal{X},$$

where $\mathcal{X} \in \mathbb{R}^{I_1 \times \dots \times I_d}$ and $\mathcal{B} \in \mathbb{R}^{k \times I_1 \times \dots \times I_d}$. If this holds for B —> this also holds for B\text{times_1 P, where P is an orthonormal matrix (i.e. applying rotation to mode 1 of B)}

Remark 2. If we do not assume low rank matrix structure on B_i , (2) is equivalent to (1) with predictor X replaced by Vec(X).

Remark 3. My guess of defining the central subspace in matrix case as follows. First, define span of tensor \mathcal{B} as intuition? Is this Span(B) invariant to orthogonal rotations on mode 1 of B?

$$\mathrm{span}(\mathcal{B}) = \{ \boldsymbol{U}\boldsymbol{V}^T : \boldsymbol{U} = \sum_{i=1}^k \alpha_i \boldsymbol{U}_i, \quad \boldsymbol{V} = \sum_{i=1}^k \beta_i \boldsymbol{V}_i \quad \text{ where } \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{R}^k \text{ and } \mathcal{B}_{i\cdot\cdot\cdot} = \boldsymbol{U}_i \boldsymbol{V}_i^T \}$$

From this span of the tensor, the central subspace in matrix case is defined as

$$S_{Y|X} = \bigcap_{\{\mathcal{B}:Y \perp \parallel X \mid \mathcal{B}\bar{\times}_2 X\}} \operatorname{span}(\mathcal{B}),$$

How about this modification?

Span(B) = {U \otimes V: U is the column space of B_(2), V is the column space of B_(3)}

We extended weighted SVM to SMM to find the best hyperplane that separate $S_{\pi} = \{ \boldsymbol{X} : \mathbb{P}(\boldsymbol{X}|y=1) > \pi \}$ and $S_{-\pi} = \{ \boldsymbol{X} : \mathbb{P}(\boldsymbol{X}|y=1) < \pi \}$ The weighted SMM finds a matrix $\boldsymbol{B} \in \mathbb{R}^{m \times n}$ that optimizes the following problem.

$$\min_{\boldsymbol{B} \in \mathbb{R}^{m \times n}} \|\boldsymbol{B}\|^2 + \frac{\lambda}{N} \sum_{i=1}^{N} \omega_{\pi}(Y_i) \left(1 - Y_i f(\boldsymbol{X}_i; \boldsymbol{B}, \alpha)\right)_{+},$$

where $f(X_i; B, \alpha) = \alpha + \langle B, X_i \rangle$. We make distinction from SVM assuming low rank structure to $B = UV^T$ where $U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}$.

By the similar way, we can extend the linear principal weighted vector machine to the matrix case with a pair of random variables $(X,Y) \in \mathbb{R}^{m \times n} \times \{+1,-1\}$. We look for optimizer that minimizes

$$\Lambda_{\pi}(\boldsymbol{B}, \alpha) = \operatorname{Vec}(\boldsymbol{B})^{T} \operatorname{cov}(\operatorname{Vec}(\boldsymbol{X})) \operatorname{Vec}((\boldsymbol{B}) + \lambda \mathbb{E}\left[\omega_{\pi}(Y) \left(1 - Y f(\boldsymbol{X}; \boldsymbol{B}, \alpha)\right)_{+}\right]$$
(3)

Denote the observed data by $\{(\boldsymbol{X}_i, Y_i) : \boldsymbol{X}_i \in \mathbb{R}^{m \times n}, Y_i \in \{+1, -1\}, i = 1, \dots, N\}$. The sampled version of Λ_{π} in (3) is,

$$\hat{\Lambda}_{n,\pi} = \operatorname{Vec}(\boldsymbol{B})^{T} \hat{\boldsymbol{\Sigma}}_{\mathbf{N}} \operatorname{Vec}((\boldsymbol{B}) + \frac{\lambda}{n} \sum_{i=1}^{N} \left[\omega_{\pi}(Y_{i}) \left(1 - Y_{i} \hat{f}_{n}(\boldsymbol{X}_{i}; \boldsymbol{B}, \alpha) \right)_{+} \right], \tag{4}$$

where $\hat{f}_n(\boldsymbol{X}_i, \boldsymbol{B}, \alpha) = \alpha + \langle \boldsymbol{X}_i - \bar{\boldsymbol{X}}_n, \boldsymbol{B} \rangle$, $\bar{\boldsymbol{X}}_n$ is the sample mean, and $\boldsymbol{\Sigma}_n$ denotes the sample covariance matrix of $\{\operatorname{Vec}(\boldsymbol{X}_i)\}_{i=1}^N$. With transformations $\operatorname{Vec}(\boldsymbol{D}) = \hat{\boldsymbol{\Sigma}}_{\mathbf{N}}^{\frac{1}{2}}\boldsymbol{B}$ and $\boldsymbol{Z}_i = \hat{\boldsymbol{\Sigma}}_{\mathbf{N}}^{-\frac{1}{2}}(\boldsymbol{X}_i - \bar{\boldsymbol{X}}_n)$, (4) becomes

$$\hat{\Lambda}'_{n,\pi} = \|\boldsymbol{D}\|^2 + \frac{\lambda}{n} \sum_{i=1}^{N} \left[\omega_{\pi}(Y_i) \left(1 - Y_i \hat{f}_n(\boldsymbol{Z}_i; \boldsymbol{D}, \alpha) \right)_+ \right]$$
 (5)

Denote the optimizer of (5) as $\hat{D}_{n,\pi}$, then the optimizer of (3) is $\hat{B}_{n,\pi} = \hat{\Sigma}_{\mathbf{N}}^{-\frac{1}{2}} \hat{D}_{n,\pi}$

Remark 4. If we assumes B as full rank, then all the procedures are reduced down to the linear principal weighted vector machine with sample $\{\operatorname{Vec}(X_i)\}_{i=1}^N$

Remark 5. Since the transformation $\text{Vec}(\boldsymbol{D}) = \hat{\boldsymbol{\Sigma}}_{\mathbf{N}}^{\frac{1}{2}} \boldsymbol{B}$ does not change the rank. we can assume the low rank structure as $\boldsymbol{D} = \boldsymbol{U}\boldsymbol{V}^T$ and solve the weighted SMM problem.

Given a grid $0 < \pi_1 < \dots < \pi_H < 1$, we obtained H-candidates $\{\hat{\boldsymbol{B}}_{n,\pi_h}\}_{h=1}^H$ of the central subspace. We can perform principal component analysis to get the k basis elements of $S_{Y|\boldsymbol{X}}$ with the following procedure.

1. Obtain column part matrices $\{\hat{\boldsymbol{U}}_h\}_{h=1}^H$ and row part matrices $\{\hat{\boldsymbol{V}}_h\}_{h=1}^H$ through SVD such that

$$\hat{B}_{n,\pi_h} = \hat{m{U}}_h \hat{m{\Sigma}}_h \hat{m{V}}_h^T \quad h = 1,\dots,H.$$
 you could simplify your algorithm using your tensor B

2. Calculate row-candidate matrix \hat{M}_n^r and column-candidate matrix \hat{M}_n^c as

$$\begin{split} \hat{\boldsymbol{M}}_{n}^{r} &= \sum_{h=1}^{H} \operatorname{Vec}\left(\hat{\boldsymbol{V}}_{h}\right) \operatorname{Vec}\left(\hat{\boldsymbol{V}}_{h}\right)^{T} & \text{construct tensor B by } \\ \boldsymbol{B}(\mathbf{h},..) &= \operatorname{matrix} \mathbf{B}, \ \mathbf{h} = 1, ... \mathbf{H} \\ \hat{\boldsymbol{M}}_{n}^{c} &= \sum_{h=1}^{H} \operatorname{Vec}\left(\hat{\boldsymbol{U}}_{h}\right) \operatorname{Vec}\left(\hat{\boldsymbol{U}}_{h}\right)^{T}. & \text{Estimated U: column space of B}_{(2)} \\ & \text{Estimated V: column space of B}_{(3)} \end{split}$$

3. The first k eigenmatrices (folded from eigenvectors) of \hat{M}_n^r , denoted by $\{\tilde{V}_1, \dots, \tilde{V}_k\}$, estimates the row-part basis. By the same way, The first k eigenmatrices $\{\tilde{U}_1, \dots, \tilde{U}_k\}$ of \hat{M}_n^c estimates the column-part basis

4. Estimate the central subspace as

$$S_{Y|oldsymbol{X}} = \left\{ \left(\sum_{i=1}^k lpha_i ilde{oldsymbol{U}}_i
ight) \left(\sum_{i=1}^k eta_i ilde{oldsymbol{V}}_i
ight)^T : oldsymbol{lpha}, oldsymbol{eta} \in \mathbb{R}^k
ight\}.$$

Remark 6. These principal component procedures can be reduced down to the vector case if we standardize the estimated normal vectors as $\{\beta_h/\|\beta_h\|\}_{h=1}^H$.

2 Generating matrix valued training data for SDR

We can consider simple model that can show matrix valued SDR performance. First, generate matrix valued $\{X_i\}_{i=1}^N \in \mathbb{R}^{m \times n}$ whose entries are from i.i.d. N(0,1). Next, we generate $\mathcal{B} \in \mathbb{R}^{2 \times m \times n}$ such that

$$\mathcal{B}_{1\cdot\cdot\cdot} = oldsymbol{u}_1 oldsymbol{v}_1^T, \quad \mathcal{B}_{2\cdot\cdot\cdot} = oldsymbol{u}_2 oldsymbol{v}_2^T,$$

where $u_i \in \mathbb{R}^{m \times r}$ and $v_i \in \mathbb{R}^{n \times r}$, i = 1, 2. Denote $Z_{1i} = \langle \mathcal{B}_{1 \dots}, X_i \rangle$ and $Z_{2i} = \langle \mathcal{B}_{2 \dots}, X_i \rangle$. We assign the label $Y_i \in \{+1, -1\}$ as

$$Y_i = \operatorname{sign}(2\mathbf{Z}_{1i} + \mathbf{Z}_{2i} + 0.2\epsilon)$$
 where $\epsilon \sim N(0, 1)$.

In this way, we can generate the training data $\{(X_i, Y_i)\}_{i=1}^N$ and check whether estimated the central subspace is close to true one.

If we set the rule of labeling Y_i as

sounds reasonable.

$$Y_i = \operatorname{sign}(\mathbf{Z}_{1i}^2 + \mathbf{Z}_{2i}^2 - 1)$$

We can check weather the kernel method works well with good visualization which we considered in the last meeting.