Лабораторная работа 1

Вычисление определённых интегралов методом Монте-Карло

Выполнил: студент гр. Р4106 Игнашов Иван Максимович Вариант 8

1. Цель работы

Изучение метода Монте-Карло, определение точности вычисления определенных интегралов методом Монте-Карло.

Порядок работы:

1. Записать математически анализируемую функцию

$$f_{res} = \begin{cases} 5 * sin(2\pi t) + 1 & t < 1\\ 5 * sin(2\pi (t - 1)) + 1 & 1 \le t \le 2\\ 2, 5 * \frac{2}{(t - 2) + 1} & t > 2 \end{cases}$$
 (1)

- 2. Вычислить аналитически определенный интеграл $F=\int_0^3 f_{res}(t)dt$
- 3. Разработать программу, вычисляющую величину F методом Монте-Карло при заданном числе экспериментов
- 4. При помощи разработанной программы вычислить определенный интеграл \hat{F} при $N=2^i$ экспериментах, где $\mathbf{i}=0\dots 14$

2. График функции $f_{res}(t)$

Рис. 1: График функции $f_{res}(t)$

Можно заметить, что на интересующей области t=[0,3] функция принимает значения от 0 до 10

3. Аналитический расчет величины F

Проинтегрируем кусочно-заданную функцию отдельно для каждого участка

	$f_1(t)$	$f_2(t)$	$f_3(t)$
Функция	$5*sin(2\pi t)+1$	$5*sin(2\pi(t-1))+1$	$2,5*\frac{2}{(t-2)+1}$
Неопр. интеграл	$5t - \frac{5\cos(2\pi t)}{2\pi}$	$5t - \frac{5\cos(2\pi t)}{2\pi}$	
Область	$0 \le t \le 1$	$1 \le t \le 2$	$2 \le t \le 3$
Значение	5.0	5.0	3.46

Просуммировав получим F = 13.46574

4. Описание разработанной программы

```
x piecewise_func_lab1.m
   lab1.m 💥 MKsolve.m
      % Лабораторная работа 1
2
      % Вычисление определённых интегралов методом Монте-Карло
3
4 🖃
      function lab1
          %x = linspace(0, 3);
           %plot(x, arrayfun(@(x) piecewise_func_lab1(x), x));
 8
           MK_params = 1:14;
           [results_S, results_P] = arrayfun(@(i) MKsolve(2^i), MK_params)
9
10
           real_val = 5 + 5 + 3.46574;
11
12
           plot(MK_params,results_S,'r', ...
13
               MK_params, results_P, 'g', ...
14
               MK_params, real_val*ones(size(MK_params)), 'm');
15
           title('Сравнение методов')
16
           legend('Простой МК', 'Точный МК', 'Реальная величина');
17
           xlabel('log(Количества точек)')
           ylabel('Вычисленное значение')
18
19
20
       end
```

Рис. 2: Код сценария перебора экспериментов

Скрипт-сценариий lab1.m - точка входа программы, предназначен для запуска всех остальных функции и скриптов, а так же для вывода графика результатов работы.

Основные переменные lab1.m:

- $results_S$ результаты оценки интеграла простым методом Монте-Карло для разных количеств экспериментов
- \bullet results_ P результаты оценки интеграла методом Монте-Карло с повышенной точностью для разных количеств экспериментов
- real val реальное значение интеграла

```
lab1.m
1 🗐
      % Функция для Варианта 8
2
      % Кусочно-заданная функция:
      % веса 5; 5; 2,5
% номера 1; 1; 4
3
4 L
5
6 🖵
      function y = piecewise_func_lab1(t)
7 百
          function y = f1(t)
8
             y = \sin(2 * pi * t) + 1;
9
          end
10
11 🗀
          function y = f2(t)
             y = 2 * t - 1;
12
13
          end
14
15 🖨
          function y = f3(t)
             y = 4 * t^2 - 1;
16
17
18
19 🖨
          function y = f4(t)
20
             y = 2 / (t + 1);
21
22
23
24
          if (t < 1)
25
             y = 5 * f1(t);
26
          elseif (1 <= t && t <= 2)
27
             y = 5 * f1(t - 1);
28
29
             y = 2.5 * f4(t - 2);
30
          end
31 L
      end
```

Рис. 3: Код кусочно-заданной функции для Варианта 8

Скрипт-функция $piecewise_func_lab1.m$ - записанная в MatLab функция $f_{res}(t)$, интеграл которой и необходимо проанализировать.

Основные переменные $piecewise_func_lab1.m$:

• f1(t), f2(t), f3(t), f4(t) - функции расчёта из перечня для вариантов лабораторной работы

```
| labl.m | MKsolve.m | | piecewise_func_labl.m | | + |
 1 🗔
       % Методы Монте-Карло для вычисления интеграла кусочно-заданной функции
 2
      % Принимает: N - количество экспериментов
 3 L
      % Возвращает: simple, precise - вычисленные значения для различных способов
 4
 5 🗐
       function [simple, precise] = MKsolve(N)
 6
           x_min = 0;
 7
           x_max = 3;
 8
 9
           % Простой способ
10
           y_min = 0;
11
           y_max = 10;
           xs = rand(1, N) * (x_max - x_min) + x_min;
12
13
           ys = rand(1, N) * (y_max - y_min) + y_min;
14
15
           [n_pos, n_neg] = deal(0, 0);
16
           for i = 1:N
17
               func_yi = piecewise_func_lab1(xs(i));
18
               if func_yi < ys(i) && ys(i) < 0
19
                   n_neg = n_neg + 1;
20
               elseif 0 <= ys(i) && ys(i) <= func_yi
21
                   n_pos = n_pos + 1;
22
23
           end
24
           points_portion = (n_pos - n_neg)/N;
25
26
           simple = points_portion * (x_max - x_min) * (y_max - y_min);
27
28
           % Повышенная точность
29
           xs = rand(1, N) * (x_max - x_min) + x_min;
30
           func_ys = arrayfun(@(x) piecewise_func_lab1(x), xs);
31
32
           precise = sum(func_ys)*(x_max - x_min) / N;
33 L
       end
```

Рис. 4: Код функции вычисления интеграла

Скрипт-функция MKsolve.m - функция реализующая методы Монте-Карло для нахождения интеграла функции $piecewise_func_lab1$ Основные переменные MKsolve.m:

- $[x_min, x_max]$ область определения функции f_{res} , задаваемая задачей
- $[y_min, y_max]$ область значений функции f_{res} , необходимая для простого метода Монте-Карло
- *xs* случайные точки, сгенерированные равномерным распределением на области определения (используются в обоих методах)

- ys случайные значения для точек xs в простом методе
- $func_yi$ значение функции f_{res} в точке из xs
- *simple, precise* найденные значения интеграла методами "простым"и "более точным"соответственно

5. Табличное представление результатов моделирования ${\cal F}(N)$

Рис. 5: Вывод программы

Получим талицу значений для двух подходов:

$log_2(N)$	"Простой"	"Точный"
1	0.00	20.58
2	7.50	10.55
3	7.50	12.82
4	16.87	14.07
5	13.12	15.02
6	15.47	12.43
7	11.95	13.34
8	13.48	13.14
9	15.12	13.12
10	14.00	13.33
11	13.88	13.20
12	13.62	13.27
13	13.60	13.45
14	13.35	13.55

6. График по рассчитанной таблице

Рис. 6: Сравнение графиков методов

На графике можно увидеть более быструю сходимость значений точного метода Монте-Карло к реальной величине интеграла

7. Выводы

Целью данной лабораторной работы было изучение метода Монте-Карло и его применение. В процессе выполнения были реализованы 2 метода оценки интеграла функции:

- простой основанный на площадях фигур
- ullet с повышенной точностью вычисление функции на случайных величинах $a_1 \dots a_N$

На основе вывода программы были получены оценки инеграла функции двумя методами для различного количества случайных точек; построен график сравнения оценок с исходным, вычисленым аналитически, значением интеграла функции.