```
pip install ucimlrepo
    Collecting ucimlrepo
      Downloading ucimlrepo-0.0.6-py3-none-any.whl (8.0 kB)
    Installing collected packages: ucimlrepo
    Successfully installed ucimlrepo-0.0.6
from ucimlrepo import fetch_ucirepo
# fetch dataset
wine = fetch_ucirepo(id=109)
# data (as pandas dataframes)
X = wine.data.features
y = wine.data.targets
# metadata
print(wine.metadata)
# variable information
print(wine.variables)
    {'uci_id': 109, 'name': 'Wine', 'repository_url': 'https://archive.ics.uci.edu/dataset/109/wine', 'data_url': 'https://archive.ics.uci.edu/static/public/109/data.csv', 'abstract': 'U:
                                        role
                                                     type demographic \
                               name
    0
                              class Target Categorical
                                                                None
                            Alcohol Feature
                                              Continuous
                                                                None
    2
                          Malicacid Feature Continuous
                                                                None
    3
                                Ash Feature Continuous
                                                                None
    4
                   Alcalinity_of_ash Feature
                                              Continuous
                                                                None
                          Magnesium Feature
                                                 Integer
                                                                None
                       Total_phenols Feature
    6
                                              Continuous
                                                                None
                         Flavanoids Feature
                                              Continuous
                                                                None
    8
                Nonflavanoid_phenols Feature Continuous
                                                                None
    9
                    Proanthocyanins Feature
                                              Continuous
                                                                None
    10
                     Color_intensity Feature
                                              Continuous
                                                                None
    11
                                Hue Feature
                                              Continuous
                                                                None
    12
        0D280_0D315_of_diluted_wines Feature
                                              Continuous
                                                                None
                                                 Integer
    13
                            Proline Feature
                                                                None
       description units missing_values
    0
              None None
    1
              None None
    2
              None None
                                    no
    3
              None None
                                    no
    4
              None None
                                    no
              None
                   None
                                    no
    6
              None
                   None
                                    no
              None None
                                    no
    8
              None None
                                    no
    9
              None None
                                    no
    10
              None None
                                    no
    11
              None None
                                    no
    12
              None None
                                    no
    13
              None None
```

```
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to Load in
import numpy as np # Linear algebra
import pandas as pd # data processing, CSV file I/0 (e.g. pd.read_csv)
import matplotlib.pyplot as plt # data visualization
import seaborn as sns # statistical data visualization
%matplotlib inline
# Input data files are available in the " .. /input/" directory.
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
 print(os.path.join(dirname, filename))
# Any results you write to the current directory are saved as output.
import warnings
warnings.filterwarnings('ignore')
from ucimlrepo import fetch_ucirepo
# fetch dataset
wine = fetch_ucirepo(id=109)
# data (as pandas dataframes)
X = wine.data.features
y = wine.data.targets
# metadata
print(wine.metadata)
# variable information
print(wine.variables)
x1 = pd.DataFrame(X)
y1 = pd.DataFrame(y)
df = pd.concat([x1, y1], axis= 1)
df
```

	Alcohol	Malicacid	Ash	Alcalinity_of_ash	Magnesium	Total_phenols	Flavanoids	Nonflavanoid_phenols	Proanthocy
0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	
1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	
3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	
4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	
•••									
173	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	
174	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	
175	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	
176	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	
177	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	
178 rows × 14 columns									

Next steps: View recommended plots

df.shape

(178, 14)

df.head()

	Alcohol	Malicacid	Ash	Alcalinity_of_ash	Magnesium	Total_phenols	Flavanoids	Nonflavanoid_phenols	Proanthocyan
0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	1
1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	
2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	1
3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	1
4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	

```
View recommended plots
Next steps:
```

```
col_names = df.columns
col_names
    Index(['Alcohol', 'Malicacid', 'Ash', 'Alcalinity_of_ash', 'Magnesium',
            'Total_phenols', 'Flavanoids', 'Nonflavanoid_phenols',
            'Proanthocyanins', 'Color_intensity', 'Hue',
           '0D280_0D315_of_diluted_wines', 'Proline', 'class'],
           dtype='object')
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 178 entries, 0 to 177
    Data columns (total 14 columns):
     # Column
                                      Non-Null Count Dtype
     0
         Alcohol
                                      178 non-null
                                                      float64
         Malicacid
                                      178 non-null
                                                      float64
         Ash
                                      178 non-null
                                                      float64
                                      178 non-null
         Alcalinity_of_ash
                                                      float64
         Magnesium
                                      178 non-null
                                                      int64
     4
         Total phenols
                                      178 non-null
                                                      float64
     6
         Flavanoids
                                      178 non-null
                                                      float64
         Nonflavanoid_phenols
                                      178 non-null
     7
                                                      float64
     8
         Proanthocyanins
                                      178 non-null
                                                      float64
         Color_intensity
                                      178 non-null
                                                      float64
     10 Hue
                                      178 non-null
                                                      float64
         OD280_OD315_of_diluted_wines 178 non-null
     11
                                                      float64
     12 Proline
                                      178 non-null
                                                      int64
     13 class
                                      178 non-null
                                                      int64
    dtypes: float64(11), int64(3)
    memory usage: 19.6 KB
numerical = [var for var in df.columns if df[var].dtype != '0']
print('There are {} numerical variables\n'.format(len(numerical)))
print('The numerical variables are :', numerical)
    There are 14 numerical variables
    The numerical variables are : ['Alcohol', 'Malicacid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intens
print(round(df[numerical].describe()),2)
           Alcohol Malicacid
                                Ash Alcalinity of ash Magnesium Total phenols \
            178.0
                       178.0 178.0
                                                 178.0
                                                           178.0
                                                                          178.0
    count
              13.0
                         2.0
                                2.0
                                                  19.0
                                                            100.0
                                                                            2.0
    mean
              1.0
                         1.0
                                0.0
                                                  3.0
                                                            14.0
                                                                            1.0
    std
                                                             70.0
    min
              11.0
                         1.0
                                1.0
                                                  11.0
                                                                            1.0
    25%
              12.0
                         2.0
                                2.0
                                                  17.0
                                                            88.0
                                                                            2.0
    50%
              13.0
                         2.0
                                2.0
                                                  20.0
                                                             98.0
                                                                            2.0
    75%
              14.0
                         3.0
                                3.0
                                                  22.0
                                                            107.0
                                                                            3.0
              15.0
                                                  30.0
                                                           162.0
                         6.0
                                3.0
                                                                            4.0
    max
           Flavanoids Nonflavanoid_phenols Proanthocyanins Color_intensity \
                178.0
                                     178.0
                                                      178.0
                                                                      178.0
    count
                  2.0
                                      0.0
                                                       2.0
                                                                        5.0
    mean
    std
                  1.0
                                       0.0
                                                       1.0
                                                                        2.0
                  0.0
                                       0.0
                                                        0.0
                                                                        1.0
    min
                                                        1.0
                                                                        3.0
    25%
                  1.0
                                       0.0
    50%
                  2.0
                                       0.0
                                                        2.0
                                                                        5.0
    75%
                  3.0
                                       0.0
                                                        2.0
                                                                        6.0
                                       1.0
                                                        4.0
                                                                       13.0
    max
             Hue 0D280 0D315 of diluted wines Proline class
           178.0
                                        178.0
                                                 178.0
                                                       178.0
    count
    mean
             1.0
                                          3.0
                                                 747.0
                                                          2.0
    std
             0.0
                                          1.0
                                                 315.0
                                                          1.0
                                                 278.0
                                                          1.0
    min
             0.0
                                          1.0
    25%
                                          2.0
                                                 500.0
                                                         1.0
             1.0
```

```
50%
             1.0
                                          3.0 674.0 2.0
    75%
             1.0
                                          3.0 985.0
                                                         3.0
    max
             2.0
                                          4.0 1680.0
                                                         3.0 2
    Index([1, 13, 14, 50, 59, 73, 121, 122, 127, 157], dtype='int64')
plt.figure(figsize=(15,10))
plt.subplot(2, 3, 1)
fig = df.boxplot(column='Malicacid')
fig.set_title('')
fig.set_ylabel('Malicacid')
plt.subplot(2, 3, 2)
fig = df.boxplot(column='Alcalinity_of_ash')
fig.set_title('')
fig.set_ylabel('Alcalinity_of_ash')
plt.subplot(2, 3, 3)
fig = df.boxplot(column='Magnesium')
fig.set title('')
fig.set_ylabel('Magnesium')
plt.subplot(2, 3, 4)
fig = df.boxplot(column='Proanthocyanins')
fig.set_title('')
fig.set_ylabel(' Proanthocyanins')
plt.subplot(2, 3, 5)
fig = df.boxplot(column='Color intensity')
fig.set_title('')
fig.set_ylabel('Color_intensity')
plt.subplot(2, 3, 6)
fig = df.boxplot(column='Hue')
fig.set_title('')
fig.set_ylabel('Hue')
```



```
plt.figure(figsize=(15,6))
plt.subplot(2, 3, 1)
fig = df.Malicacid.hist(bins=10)
fig.set_xlabel('Malicacid')
fig.set_ylabel('')
plt.subplot(2, 3, 2)
fig = df.Alcalinity_of_ash.hist(bins=10)
fig.set_xlabel('Alcalinity_of_ash')
fig.set_ylabel('')
plt.subplot(2, 3, 3)
fig = df.Magnesium.hist(bins=10)
fig.set_xlabel('Magnesium')
fig.set_ylabel('')
plt.subplot(2, 3, 4)
fig = df.Proanthocyanins.hist(bins=10)
fig.set_xlabel('Proanthocyanins')
fig.set_ylabel('')
plt.subplot(2, 3, 5)
fig = df.Color_intensity.hist(bins=10)
fig.set_xlabel('Color_intensity')
fig.set_ylabel('')
plt.subplot(2, 3, 6)
fig = df.Hue.hist(bins=10)
fig.set_xlabel('Hue')
fig.set_ylabel('')
```



```
# since all 4 are skewed, next step would be interquartile range to find the outliers
IQR = df['Malicacid'].quantile(0.75) - df['Malicacid'].quantile(0.25)
Lower_fence = df['Malicacid'].quantile(0.25) - (IQR * 1.5)
Upper_fence = df['Malicacid'].quantile(0.75) + (IQR * 1.5)
print(f"Malicacid outliers are values < {Lower_fence} or > {Upper_fence}")
     Malicacid outliers are values < -0.61749999999999 or > 5.3025
IQR = df['Alcalinity_of_ash'].quantile(0.75) - df['Alcalinity_of_ash'].quantile(0.25)
Lower_fence = df['Alcalinity_of_ash'].quantile(0.25) - (IQR * 1.5)
Upper_fence = df['Alcalinity_of_ash'].quantile(0.75) + (IQR * 1.5)
print(f"Alcalinity_of_ash outliers are values < {Lower_fence} or > {Upper_fence}")
     Alcalinity_of_ash outliers are values < 10.7499999999999 or > 27.95000000000000003
IQR = df['Magnesium'].quantile(0.75) - df['Magnesium'].quantile(0.25)
Lower_fence = df['Magnesium'].quantile(0.25) - (IQR * 1.5)
Upper_fence = df['Magnesium'].quantile(0.75) + (IQR * 1.5)
print(f"Magnesium outliers are values < {Lower_fence} or > {Upper_fence}")
     Magnesium outliers are values < 59.5 or > 135.5
```

```
IQR = df['Magnesium'].quantile(0.75) - df['Magnesium'].quantile(0.25)
Lower_fence = df['Magnesium'].quantile(0.25) - (IQR * 1.5)
Upper_fence = df['Magnesium'].quantile(0.75) + (IQR * 1.5)
print(f"Magnesium outliers are values < {Lower_fence} or > {Upper_fence}")
     Magnesium outliers are values < 59.5 or > 135.5
IQR = df['Proanthocyanins'].quantile(0.75) - df['Proanthocyanins'].quantile(0.25)
Lower_fence = df['Proanthocyanins'].quantile(0.25) - (IQR * 1.5)
Upper fence = df['Proanthocyanins'].quantile(0.75) + (IQR * 1.5)
print(f"Proanthocyanins outliers are values < {Lower_fence} or > {Upper_fence}")
     Proanthocyanins outliers are values < 0.2000000000000018 or > 3.0
IQR = df['Color_intensity'].quantile(0.75) - df['Color_intensity'].quantile(0.25)
Lower_fence = df['Color_intensity'].quantile(0.25) - (IQR * 1.5)
Upper_fence = df['Color_intensity'].quantile(0.75) + (IQR * 1.5)
print(f"Color_intensity outliers are values < {Lower_fence} or > {Upper_fence}")
     Color_intensity outliers are values < -1.250000000000000 or > 10.670000000000000
IQR = df['Hue'].quantile(0.75) - df['Hue'].quantile(0.25)
Lower_fence = df['Hue'].quantile(0.25) - (IQR * 1.5)
Upper_fence = df['Hue'].quantile(0.75) + (IQR * 1.5)
print(f"Hue outliers are values < {Lower_fence} or > {Upper_fence}")
     Hue outliers are values < 0.276249999999999 or > 1.626250000000000000
X = df.drop(['class'], axis=1)
y = df['class']
# split X and y into training and testing sets
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
# check the shape of X_train and X_test
X_train.shape, X_test.shape
     ((142, 13), (36, 13))
# check data types in X train
X train.dtypes
     Alcohol
                                     float64
     Malicacid
                                     float64
                                     float64
     Ash
     Alcalinity_of_ash
                                     float64
     Magnesium
                                      int64
     Total phenols
                                     float64
     Flavanoids
                                     float64
```

```
Nonflavanoid_phenols
                                     float64
    Proanthocyanins
                                     float64
    Color_intensity
                                     float64
                                     float64
    Hue
    0D280_0D315_of_diluted_wines
                                     float64
    Proline
                                       int64
    dtype: object
# display categorical variables
categorical = [col for col in X_train.columns if X_train[col].dtypes == '0']
categorical
    []
# display numerical variables
numerical = [col for col in X_train.columns if X_train[col].dtypes != '0']
numerical
     ['Alcohol',
      'Malicacid',
      'Ash',
      'Alcalinity_of_ash',
      'Magnesium',
      'Total_phenols',
      'Flavanoids',
      'Nonflavanoid_phenols',
      'Proanthocyanins',
      'Color_intensity',
      'Hue',
      '0D280_0D315_of_diluted_wines',
      'Proline']
X_train.isnull().sum()
    Alcohol
                                     0
    Malicacid
                                     0
    Ash
                                     0
    Alcalinity_of_ash
    Magnesium
    Total_phenols
    Flavanoids
    Nonflavanoid phenols
    Proanthocyanins
    Color_intensity
                                     0
     0D280_0D315_of_diluted_wines
                                     0
     Proline
    dtype: int64
X_test.isnull().any()
     Alcohol
                                     False
    Malicacid
                                     False
                                     False
                                     False
    Alcalinity_of_ash
```

```
Magnesium
                                     False
     Total phenols
                                    False
     Flavanoids
                                    False
     Nonflavanoid_phenols
                                    False
     Proanthocyanins
                                    False
     Color_intensity
                                    False
                                    False
     0D280_0D315_of_diluted_wines
                                    False
     Proline
                                     False
     dtype: bool
def max_value(df3, variable, top):
    return np.where(df3[variable]>top, top, df3[variable])
for df3 in [X_train, X_test]:
    df3['Malicacid'] = max_value(df3, 'Malicacid', 5.30)
    df3['Alcalinity of ash'] = max value(df3, 'Alcalinity of ash', 27.95)
    df3['Magnesium'] = max_value(df3, 'Magnesium', 135.5)
    df3['Proanthocyanins'] = max_value(df3, 'Proanthocyanins', 3)
    df3['Color intensity'] = max value(df3, 'Color intensity', 10.67)
    df3['Hue'] = max_value(df3, 'Hue', 1.63)
X_train['Malicacid'].max(), X_test['Malicacid'].max()
     (5.3, 5.3)
X train['Alcalinity of ash'].max(), X test['Alcalinity of ash'].max()
     (27.95, 27.95)
X_train['Magnesium'].max(), X_test['Magnesium'].max()
     (135.5, 132.0)
X_train['Proanthocyanins'].max(), X_test['Proanthocyanins'].max()
     (3.0, 2.45)
X_train['Color_intensity'].max(), X_test['Color_intensity'].max()
     (10.67, 10.67)
X_train['Hue'].max(), X_test['Hue'].max()
     (1.63, 1.38)
X train.describe()
```

	Alcohol	Malicacid	Ash	Alcalinity_of_ash	Magnesium	Total_phenols	Flavanoids	Nonflavanoid_phenols
count	142.000000	142.000000	142.000000	142.000000	142.000000	142.000000	142.000000	142.000000
mean	12.984859	2.368662	2.366901	19.536620	99.739437	2.258662	1.949155	0.363521
std	0.807175	1.104345	0.269684	3.392529	13.154391	0.611691	0.975921	0.127709
min	11.030000	0.740000	1.360000	10.600000	70.000000	1.100000	0.470000	0.130000
25%	12.347500	1.602500	2.222500	17.250000	89.000000	1.705000	1.037500	0.270000
50%	13.040000	1.895000	2.360000	19.500000	98.000000	2.210000	2.035000	0.340000
75%	13.637500	3.222500	2.560000	21.500000	106.750000	2.735000	2.760000	0.450000
max	14.750000	5.300000	3.220000	27.950000	135.500000	3.880000	3.740000	0.660000

cols = X_train.columns

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

X_train = pd.DataFrame(X_train, columns=[cols])

X_test = pd.DataFrame(X_test, columns=[cols])

X_train.describe()

	Alcohol	Malicacid	Ash	Alcalinity_of_ash	Magnesium	Total_phenols	Flavanoids	Nonflavanoid_phenols
count	142.000000	142.000000	142.000000	142.000000	142.000000	142.000000	142.000000	142.000000
mean	0.525500	0.357163	0.541345	0.515079	0.454037	0.416785	0.452341	0.440606
std	0.216983	0.242181	0.144991	0.195535	0.200830	0.220033	0.298447	0.240960
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.354167	0.189145	0.463710	0.383285	0.290076	0.217626	0.173547	0.264151
50%	0.540323	0.253289	0.537634	0.512968	0.427481	0.399281	0.478593	0.396226
75%	0.700941	0.544408	0.645161	0.628242	0.561069	0.588129	0.700306	0.603774
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

```
# Model training
# train a logistic regression model on the training set
from sklearn.linear model import LogisticRegression
# instantiate the model
logreg = LogisticRegression(solver='liblinear', random state=0)
#fit the model
logreg.fit(X_train, y_train)
                        LogisticRegression
     LogisticRegression(random_state=0, solver='liblinear')
# Predicting results
y pred test = logreg.predict(X test)
y_pred_test
     array([1, 3, 2, 1, 2, 2, 1, 3, 2, 2, 3, 3, 1, 2, 3, 2, 1, 1, 3, 1, 2, 1,
           1, 2, 2, 2, 2, 2, 3, 1, 1, 2, 1, 1, 1])
# predict proba: predicts possibilities for the target variable
logreg.predict_proba(X_test)[:,0]
     array([0.84608661, 0.08048314, 0.33554459, 0.80152316, 0.22039744,
           0.24522358, 0.87468447, 0.03848718, 0.15948773, 0.05898538,
           0.14507607, 0.0358635, 0.93262766, 0.47681744, 0.07875799,
           0.12976804, 0.79007758, 0.95638587, 0.08820506, 0.84199176,
           0.47786966, 0.67550962, 0.47265773, 0.23584062, 0.08901126,
           0.15152147, 0.20646317, 0.04988917, 0.07608428, 0.07232845,
           0.83715721, 0.86643051, 0.0791357, 0.81872064, 0.87889396,
           0.67623076])
logreg.predict_proba(X_test)[:,1]
     array([0.10773965, 0.04382495, 0.65481533, 0.1525236, 0.66114073,
           0.74433276, 0.07438344, 0.12116596, 0.78373262, 0.80051396,
           0.1289791 , 0.07885248, 0.03352518, 0.51535383, 0.06169256,
           0.85700534, 0.14896474, 0.01820935, 0.40806803, 0.14198268,
           0.51407897, 0.25405006, 0.43617131, 0.73190936, 0.59297914,
           0.78249892, 0.7421782 , 0.86155799, 0.73512681, 0.0449725 ,
           0.12680024, 0.09818553, 0.64410061, 0.05781283, 0.08848967,
           0.30025453])
logreg.predict_proba(X_test)[:,2]
     array([0.04617374, 0.87569191, 0.00964009, 0.04595323, 0.11846182,
            0.01044366, 0.05093209, 0.84034686, 0.05677965, 0.14050066,
           0.72594482, 0.88528401, 0.03384715, 0.00782873, 0.85954945,
           0.01322662, 0.06095768, 0.02540478, 0.50372691, 0.01602556,
           0.00805136, 0.07044032, 0.09117095, 0.03225002, 0.31800959,
           0.06597962, 0.05135863, 0.08855284, 0.18878891, 0.88269905,
           0.03604255, 0.03538396, 0.27676368, 0.12346652, 0.03261637,
           0.02351471])
```

```
# Check accuracy score
from sklearn.metrics import accuracy_score
print('Model accuracy score: {0:0.4f}'.format(accuracy_score(y_test, y_pred_test)))
     Model accuracy score: 0.9722
train_score = logreg.score(X_train, y_train)
test_score = logreg.score(X_test, y_test)
print(f'Train set score: {train_score}')
print(f'Test set score: {test_score}')
     Train set score: 0.9788732394366197
     Test set score: 0.972222222222222
# Print the Confusion Matrix and slice it into four pieces
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred_test)
print('Confusion matrix\n\n', cm)
print('\nTrue Positives(TP) = ', cm[0,0])
print('\nTrue Negatives(TN) =', cm[1,1])
print('\nFalse Positives(FP) =', cm[0,1])
print('\nFalse Negatives(FN) =', cm[1,0])
     Confusion matrix
     [[14 0 0]
     [ 0 15 1]
     [ 0 0 6]]
     True Positives(TP) = 14
    True Negatives(TN) = 15
     False Positives(FP) = 0
     False Negatives(FN) = 0
cm matrix = pd.DataFrame(data=cm, columns=['Actual Class:1', 'Actual Class:2', 'Actual Class:3'],
                        index=['Predit Class:1', 'Predit Class:2', 'Predit Class:3'])
sns.heatmap(cm_matrix, annot=True, fmt='d', cmap='YlGnBu')
```


classification metrices
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred_test))

	precision	recall	f1-score	support
1	1.00	1.00	1.00	14
2	1.00	0.94	0.97	16
3	0.86	1.00	0.92	6
accuracy			0.97	36
macro avg	0.95	0.98	0.96	36
weighted avg	0.98	0.97	0.97	36

```
y_pred_prob = logreg.predict_proba(X_test)[0:10]
y_pred_prob
```

print the first 10 predicted probabilities
logreg.predict_proba(X_test)[0:10, 1]

```
array([0.10773965, 0.04382495, 0.65481533, 0.1525236 , 0.66114073, 0.74433276, 0.07438344, 0.12116596, 0.78373262, 0.80051396])
```

```
# store the predicted probabilities
y_pred1 = logreg.predict_proba(X_test)[:,1]

# plot histogram of predicted probabilities
# adjust the font size
plt.rcParams['font.size'] = 12

# plot histogram with 10 bins
plt.hist(y_pred1, bins=10)

# set the title of predicted probabilities
plt.title('Histogram of predicted probabilities of class')

# set the x-axis limit
plt.xlim(0,1)

plt.xlabel('Predicted probabilities of class')
plt.ylabel('Frequecy')
```

Text(0, 0.5, 'Frequecy')


```
# compute Average cross-validation score
score mean = scores.mean()
print(f'Average cross-validation score: {score_mean}')
     Avenage choss-validation scope: 0 96503/6305/18719
# Hyperparameter Optimization using GridSearchCV
from sklearn.model_selection import GridSearchCV
parameters = [{'penalty': ['11', '12']},
             {'C':[1, 10, 100, 100]}]
grid search = GridSearchCV(estimator = logreg,
                          param_grid = parameters,
                          scoring = 'accuracy',
                           cv = 5,
                           verbose=0)
grid_search.fit(X_train, y_train)
                GridSearchCV
      ▶ estimator: LogisticRegression
           ▶ LogisticRegression
# examine the best model
# best score achieved during the GridSearchCV
print('GridSearch CV best score : {:.4f}\n\n'.format(grid_search.best_score_))
# print parameters that give the best results
print('Parameters that give the best results :', '\n\n', (grid_search.best_params_))
# print estimator that was chosen by the GridSearch
print('\n\nEstimator that was chosen by the search :', '\n\n', (grid_search.best_estimator_))
    GridSearch CV best score : 0.9650
    Parameters that give the best results :
     {'C': 1}
    Estimator that was chosen by the search :
     LogisticRegression(C=1, random_state=0, solver='liblinear')
# calculate Gridsearch CV score on test set
print('Gridsearch CV score on test set: {0:0.4f}'.format(grid_search.score(X_test, y_test)))
    Gridsearch CV score on test set: 0.9722
```