Mostafa Touny Mtouny Dimsa.edu.eg.

Salma Abdelhalim Salmaemad Daucegypt.edu

Ali Nadeem nadim II Daucegypt.edu

Omar Shadan Shadan Daucegypt.edu

	Exercise	1				
Def. A graph is finite if Vi Assumption 191=111, V fin	s finite,		order	is finit	te.	
An edge is defined by 2 ver they we at the form & u, v / u finite	tices. Sin	ce & Co , Therebo	utains a	ll edge es num	ber is	
ii). Assumption. & Prinite.					• •	
Assumption. & finite.	h Pinit	to			• •	
a graph h can have a finite se can be infinite as we can have the vertices can be infinite.	t of cold	ges E.	However un Conne	eted ve	ardinali entices, a	
False.	Exercise.	2				
· 61 = 11 · 1611 = 18		• •				
· V= { V0, V1,, Vn}.					•	
f= Lei, ezi1en-13						
The least possible $\delta(h)$ the Can be sound in Complete go to N-1 Ventices	at can exapple with					
We can re-write this con as $0 \le 2 E / V \le$	ellay.	8(6)	2/8/	/V/	< D(G)	
		• •	• • •		• •	

i.e.	-1 -/									
! t	·//	<	1-1		• •	٠	• •			
	-//: //V/		2.		• •	•	• •		• •	•
	•									
We can r	eplace /l	/ with	h. the	real	Carol	inuli	74. u	Mich	is.	•
• • •	! /E/: <	<u>n-1</u>	/.	• •	• •	•	• •	• •	• •	•
	. - (2	/·H ·	•		•	•		•	•
		11 (N-1)	/			•	• •		• 1	•
			٠ _ ٠			•	• •		• •	
		• •	. txer	cise. 3	• •	•	• •	• •	• •	•
	ou. Any									
. Assumpti	ou. Thy g	maph h	has as	. even	nuw	ber 4	Ver	Jices	of.	•
	odd de									
Lale Kus	iw . E.	leg (V)	=21	El		•	•		• •	
	·vGV									
						•				
			· Exe	rcise	[•	• •		• •	
	the set of							• •	• •	•
		• •	• •			•	• •	 L	 // .	
	. NC Eu,			of a	4. Ver	W) ICES	that	1 are	ad joi.	it.
	ntices u a			• •	 -) 1	,	· ·		. 1	•
· jo · j kow	· N(- f 1	ハルタノニ	=· <i>N</i> ·(Luju.	<i>3) / 1</i>	Ve U)	ie do	use i	inclus	104
(- >)	·/				• •				•	
$w \in \mathcal{N}$	(\du, \v\z\).	Then i	N is ao	boint	to ei	ther i	1 or v	·it.	allar	٤.
it's adjo	({u,u}). int to both	u and	r. So	WE	N([u, i	13)		• •	
						•			• •	

(-) let w EN ([u,v]). Then w is adjoint to both u and v. Hence WEN({u,v}). Q.f.D