CS3334 Data Structures Lec-3 Program Complexities

Review: Objective of Lec 2

- Stack Abstract Data Type
- Sequential Allocation
- Linked Allocation
- Applications

Review: Stack

- Stack is a list with the restriction that insertions and deletions (usually all the accesses) can only be performed at one end of the list
- Also known as: Last-in-first-out (LIFO) list

Review: ADT of Stack

Value:

A sequence of items that belong to some data type ITEM TYPE

Operations for a stack s:

1. Boolean IsEmpty()

Postcondition: If the stack is empty, return true, otherwise return false

2. Boolean IsFull()

Postcondition: If the stack is full, return true, otherwise return false

3. ITEM_TYPE Pop() /*take away the top one and return its value*/

Precondition: s is not empty

Postcondition: The top item in s is removed from the sequence and returned

4. ITEM_TYPE top() /*return the top item's value*/

Precondition: s is not empty

Postcondition: The value of the top item in s is returned

5. Void Push(ITEM_TYPE e) /*add one item on top of the stack*/

Precondition: s is not full

Postcondition: e is added to the sequence as the top one

Review: Array Implementation of Stack

```
// MyStack.h
#include "stdlib.h"
     public class MyStack
          public:
                    MyStack( int );
                    bool IsEmpty();
                    bool IsFull();
                    void push(int );
                    int pop();
                    int top();
          private:
                    int* data;
                    int top;
                    int MAXSize;
     };
```

```
// MyStack.cpp
#include "MyStack.h"
MyStack::MyStack(int size)
         data=new int[size];
         top=-1;
         MAXSize=size;
bool MyStack::IsEmpty()
         return (top==-1);
bool MyStack::IsFull()
         return (top==MAXSize-1);
```

Review: Array Implementation of Stack: push

```
private:
   int* data;
   int top;
   int MAXSize;
void MyStack::push(int x)
   if (!IsFull() )
      top=top+1;
       data[top] = x;
   else
```

To "push" an item onto the stack

- Check whether not yet full.
- Increase the top indicator (slot number) of the stack.
- Copy the item to the top position immediately.

```
Slot #0: filled
Slot #1: filled
Slot #2: filled
Slot #3: to be filled
Slot #4: not yet filled

Top of stack: slot #2 => 3
...
Slot #99: not yet filled
```

Review: Array Implementation of Stack: pop

```
private:
   int* data;
     int top;
     int MAXSize;
int MyStack::pop()
   int rtn value;
   if (!IsEmpty())
       rtn value=data[top];
       top=top-1;
      return rtn_value;
   else
```

To "pop" an item from the stack (to take away the top one and return its value)

- Check whether it is empty.
- Save the value of item at the top position (to return it later)
- Decrease the top indicator (slot #)
- Return the saved value.
- No need to clear any slot.

```
Slot #0: filled
Slot #1: filled
Slot #2: filled
Slot #3: to be popped
Slot #4: not yet filled

Slot #99: not yet filled
```

Review: Array Implementation of Stack: top

```
private:
   int* data;
     int top;
     int MAXSize;
int MyStack::top()
   if (!IsEmpty())
          return (data[top]);
   else
```

To return the value of an item from the stack (the top item)

- Check whether it is empty.
- Return the value of the item at the top position.

```
Slot #0: filled
Slot #1: filled
Slot #2: filled
Slot #3: to be returned
Slot #4: not yet filled

Top of stack: slot #3
(no change)

Slot #99: not yet filled
```

Review: Stacks: Use Dynamic Array

- How to choose the size of array data[]?
 - > As we insert more and more, eventually the array will be full
- Solution: Use a dynamic array
 - ➤ Maintain capacity of data[]
 - Double capacity when size=capacity (i.e. full)
 - \triangleright Half capacity when size \leq capacity/4
- Question: What if we change capacity/4 to capacity/2?
 - ➤ E.g., initial cap is 4; I, I, I, I (expand; cap=8, size=5), D (shrink; cap=4, size=4), I (expand; cap=8, size=5), D (shrink; cap=4, size=4), I (expand), D (shrink),

Review: Stacks: Another implementation

```
class Stack
     public:
      Stack(int initCap=100);
      Stack(const Stack& rhs);
      ~Stack();
      void push(Item x);
      void pop(Item& x);
     private:
      void realloc(int newCap);
      Item* data;
      int size;
      int cap;
};
```

```
// An internal func. to support resizing of array
void Stack::realloc(int newCap) {
   if (newCap < size) return;
   //oldarray "point to" data
   Item *oldarray = data;
   //create new space for data with size newCap
   data = new Item[newCap];
   for (int i=0; i < size; i++)
          data[i] = oldarray[i];
   cap = newCap;
   delete [] oldarray;
void Stack::push(Item x) {
   if (size==cap) realloc(2*cap);
   array[size++]=x;
```

Review: Stacks: Another implementation

```
void Stack::pop(Item& x)
   // assume EmptyStack is a special value
   if (size = 0)
         x=EmptyStack;
   else
         x=array[--size];
         if (size \leq cap/4)
                  realloc(cap/2);
```

Review: Linked Implementation of Stack

Stack can also be implemented with **linked list**.

- Typically, a pointer points to the top of the stack. (T)
- When the stack is empty, this pointer will be NULL.
- Each slot is allocated only when it is needed to store an item.

Review: Linked Implementation of Stack

```
// MyStack.h
#include "stdlib.h"
#include "ListNode.h"
   class MyStack
   public:
       MyStack();
       Pop();
       IsEmpty();
       Push(int );
   private:
       ListNode *Top;
   };
```

```
// ListNode.h
#include "stdlib.h"
{
     class ListNode
     public:
           ListNode( int );
           ListNode( int, ListNode *);
           ListNode *get Next()
                return next;
     private:
           int data;
           ListNode *next;
     };
```

Review: Linked Implementation of Stack: push

Push: To insert new information onto the top of the stack

- Allocate memory for an auxiliary pointer p
- Put new item into p->data
- p->next = T
- T=p

```
void MyStack::Push (int new_item)
{
    ListNode* p;
    p=new ListNode(new_item, Top);
    // p->data = new_item;
    // p->next = Top;
    Top = p;
}
```


Review: Linked Implementation of Stack: pop

Pop: To take away (and delete) the top item and return its value.

- Check whether the stack is empty.
- Store the value of the item so that we can return it later.
- Update the T pointer to point to the next item.
- Return the value of the top item.

```
int MyStack::Pop () {
  ListNode* p;  //a pointer to point to original top node
  int rtn_value;  //the value of the item to be returned

if (IsEmpty())  //check whether the stack is empty
  { //Exception handling }

rtn_value=Top->data;  //save the value to be returned

Top= Top->next;  //update the T pointer

return (rtn_value);  //return the original top node value
}
```


Review: Linked Implementation of Stack: pop

```
int MyStack::Pop () {
                         //a pointer to point to original top node
          ListNode* p;
          int rtn value; //the value of the item to be returned
          if (IsEmpty()) //check whether the stack is empty
           { //Exception handling }
          rtn value=Top->data; //save the value to be returned
          ListNode* temp = Top;
                                //update the T pointer
           Top= Top->next;
           delete temp;
          return (rtn_value);
                                //return the original top node value
```

Review: Application1: Backtracking

Generating a maze

Start (0, 0)

Using stacks (simplest way)

- 1. Start from the entrance cell
- 2. Randomly select an unvisited neighbor cell of the stack top and break the wall, then push the new cell onto the stack
- 3. If all the neighbors are already visited, then go back by popping cells from the stack
- 4. Until the exit is reached

End (width-1, heigh-1)

Try by yourself on a 4*4 maze!

Review: Application 2: Balancing Symbols

- When writing programs, we use
 - ➤ () parentheses [] brackets {} braces
- A lack of one symbol may cause the compiler to emit a hundred lines without identifying the real error
- Using stack to check the balance of symbols
 - > [()] is correct while [(]) is incorrect
- Read the code until end of file
 - ➤ If the character is an opening symbol: ([{, then push it onto the stack
 - ➤ If the character is a closing symbol:)] }, then pop one (if the stack is not empty) from the stack to see whether it is the correct correspondence
 - ➤ Output error in other cases

Review: Application 3 Evaluation of Postfix Expression

Infix Expression Example: (A+B)*((C-D)*E+F)
We need to add "(" and ")" in many cases.

Postfix Expression Example: AB+CD-E*F+*

Each operator follows the two operands.

The order of the operators (left to right) determines the actual order of operations in evaluating the expression.

Prefix expression Example: *+AB+*-CDEF
 Each operator precedes the two operands.

Review: Application 3 Evaluation of Postfix Expression

The method:

- Scan the expression from left to right.
- For each symbol, if it is an operand, we store them for later operation (LIFO) push
- If the symbol is an operator, take out the latest 2 operands stored and compute with the operator.
 - Treat the operation result as a new operand and store it. push
- Finally, we can obtain the result as the only one operand stored. pop

Review: Application 4 Infix expression->postfix expression

Define the precedence relation of some of the operators:

is the special symbol to denote the bottom of stack.

Operators	priority no.
#	0
(1
+ or -	2
* or /	3

Review: Application 5: Identify the boundary of lines

 Given several lines, identify which parts of the lines can been seen if you look from the above

Identify the boundary of lines

• Example:

Given a balanced expression that can contain opening and closing parenthesis, check if it contains any duplicate parenthesis or not.

Examples:

```
Input: ((x+y))+z
Output: true

Input: (x+y)
Output: false
```

```
bool findDuplicateparenthesis(string str)
          stack<char> Stack;
          for (char ch : str) {
                    if (ch == ')') {
                               char top = Stack.pop();
                               int elementsInside = 0;
                               while (top != '(') {
                                         elementsInside++;
                                         top = Stack. pop();
                               if(elementsInside < 1)
                                         return true;
                    else
                               Stack.push(ch);
          return false;
```

Given a non-negative integer num represented as a string, remove k digits from the number so that the new number is the smallest possible.

Examples:

```
Input: num = "1432219", k = 3
Output: "1219"

Input: num = "10200", k = 1
Output: "200"
```

```
int removeKdigits(string num, int k) {
 int stringLength = num.size();
 if (stringLength == k)
  return "0";
 stack < char > S;
 int n = k, idx = 0;
 while (idx < stringLength) {
  int currentNumber = num[idx] - '0';
  while(n > 0 \&\& !S.empty() \&\& (S.top()-'0') > currentNumber) {
   n--;
   S.pop();
  S.push(num[idx]);
  idx++;
 while(n>0) {
  S.pop();
  n--;
 string result;
 while (!S.empty())
  result += S.pop();
 reverse(result.begin(), result.end());
 int number = stringToDigit(result);
 return number;
```

Objectives

- Algorithms
- Asymptotic Notation
- Asymptotic Performance
- Analyze program complexities

Algorithms

What is an algorithm?

A sequence of elementary computational steps that transform the input into the output

• What for?

A tool for solving well-specified computational problems, e.g., Sorting, Matrix Multiplication

- What do we need to do with an algorithm?
 - Correctness Proof:

for every input instance, it halts with the correct output

Performance Analysis (1 second or 10 years?):

How does the algorithm behave as the problem size gets large

both in running time and storage requirement

A Sorting Problem

Input: $< a_0, a_1, ..., a_{n-1} >$

Output: A permutation (re-ordering) $<a'_0$, a'_1 , ..., $a'_{n-1}>$ of the input sequence such that $a'_0 \le a'_1 \le ... \le a'_{n-1}$

Example:

<22, 51, 34, 44, 67, 11> becomes <11, 22, 34, 44, 51, 67>

Insertion Sort

- **5**, **3**, 1, 2, 6, 4
- **3**, **5**, **1**, **2**, **6**, **4**
- **1**, 3, 5, **2**, 6, 4
- 1, 2, 3, 5, 6, 4
- 1, 2, 3, 5, 6, 4
- 1, 2, 3, <u>4</u>, 5, 6
- Currently Sorted part part

- To sort *A*[0,1,...,*n*-1] in place
- Steps:
 - Pick element A[j]
 - Move A[j-1,...,0] to the right until proper position for A[j] is found
- Example 1 3 5 2 6 4

Insertion Sort (cont.)

Insertion-Sort (A)

- 1. for j=1 to n-1
- 2. key=A[j]
- 3. i=j-1
- 4. while i>=0 and A[i]>key
- 5. A[i+1]=A[i]
- 6. i=i-1
- 7. A[i+1]=key

A[0] A[1] A[2] A[3] A[4] A[5]

Insertion Sort (cont.)

Note that when we are dealing with kth number, the first k-1 numbers are already sorted.

The kth number is inserted in the correct position.

Correctness of Algorithm

- Why can the algorithm correctly sort?
- We only consider algorithms with loops
 - > Find a property as loop invariant
- How to show something is loop invariant?
 - ➤ Initialization:

It is true prior to the first iteration of the loop

➤ Maintenance:

If it is true before an iteration, it remains true before the next iteration

>Termination:

When the loop terminates, the invariant gives a useful property that helps to show the algorithm is correct

Running time of Insertion Sort

Insertion-Sort(A)

- 1 for j = 1 to n-1
- $2 \quad \text{key} = A[j]$
- i = j-1
- 4 while $i \ge 0$ and $A[i] \ge key$
- $5 \qquad A[i+1] = A[i]$
- i = i 1
- 7 A[i+1] = key

Cost times

 $\mathbf{c_1}$ n

 c_2 n-1

 c_3 n-1

 $c_4 \qquad \sum_{j=1..n-1} (t_j+1)$

 $c_5 \qquad \sum_{j=1..n-1} t_j$

 $c_6 \qquad \sum_{j=1..n-1} t_j$

 $\mathbf{c}_7 \qquad \mathbf{n-1}$

 $c_1, c_2, ... =$ running time for executing line 1, line 2, etc.

 t_i = no. of times that line 5,6 are executed, for each j.

The running time T(n)

$$=c_1*n+c_2*(n-1)+c_3*(n-1)+c_4*(\Sigma_{j=1..n-1}(t_j+1))+c_5*(\Sigma_{j=1..n-1}t_j)+c_6*(\Sigma_{j=1..n-1}t_j)+c_7*(n-1)$$

Analyzing Insertion Sort

$$T(n) = c_1 * n + c_2 * (n-1) + c_3 * (n-1) + c_4 * (\Sigma_{j=1..n-1} (t_j+1)) + c_5 * (\Sigma_{j=1..n-1} t_j) + c_6 * (\Sigma_{j=1..n-1} t_j) + c_7 * (n-1)$$

Worse case:

Reverse sorted: for example, 6,5,4,3,2,1

- inner loop body executed for all previous elements.
- \rightarrow t_j=j.

T(n) =
$$c_1*n+c_2*(n-1)+c_3*(n-1)+c_4*(\Sigma_{j=1..n-1}(j+1))+c_5*(\Sigma_{j=1..n-1}j)+c_6*(\Sigma_{j=1..n-1}j)+c_7*(n-1)$$

$$\rightarrow$$
 T(n) = An²+Bn+C

Note:
$$\Sigma_{j=1..n-1} j = n(n-1)/2$$

 $\Sigma_{j=1..n-1} (j+1) = (n+2)(n-1)/2$

Analyzing Insertion Sort

$$T(n) = c_1^* n + c_2^* (n-1) + c_3^* (n-1) + c_4^* (\Sigma_{j=1..n-1} (t_j+1))$$

$$+ c_5^* (\Sigma_{j=1..n-1} t_j) + c_6^* (\Sigma_{j=1..n-1} t_j) + c_7^* (n-1)$$

Worst case

Reverse sorted \rightarrow inner loop body executed for all previous elements. So, t_i =j.

 \rightarrow T(n) is quadratic: T(n)=An²+Bn+C

Average case

Half elements in A[0..j-1] are less than A[j]. So, $t_i = j/2$

 \rightarrow T(n) is also quadratic: T(n)=A'n²+B'n+C'

Best case

Already sorted \rightarrow inner loop body never executed. So, $t_i=0$.

 \rightarrow T(n) is linear: T(n)=An+B

Kinds of Analysis

(Usually) Worst case Analysis:

T(n) = max time on any input of size nKnowing it gives us a guarantee about the upper bound.In some cases, worst case occurs fairly often

(Sometimes) Average case Analysis:

T(n) = average time over all inputs of size *n*Average case is often as bad as worst case.

(Rarely) Best case Analysis:

Cheat with slow algorithm that works fast on some input. Good only for showing bad lower bound.

Kinds of Analysis

- Worst Case: maximum value
- Average Case: average value
- Best Case: minimum value

Order of Growth

Examples:

Running time of algorithm in microseconds

✓(in term of data size n)

Algorithm	Α
Algorithm	В
Algorithm	С
Algorithm	D
Algorithm	Ε
Algorithm	F
Algorithm	G
Algorithm	Н

f(n)	n=20	n=40	n=60
Log ₂ n	4.32 * 10 ⁻⁶ sec	5.32 * 10 ⁻⁶ sec	5.91 * 10 ⁻⁶ sec
Sqrt(n)	4.47 * 10 ⁻⁶ sec	6.32 * 10 ⁻⁶ sec	7.75 * 10 ⁻⁶ sec
n	20 * 10 ⁻⁶ sec	40 * 10 ⁻⁶ sec	60 * 10 ⁻⁶ sec
n log ₂ n	86 * 10 ⁻⁶ sec	213 * 10 ⁻⁶ sec	354 * 10 ⁻⁶ sec
n ²	400 * 10 ⁻⁶ sec	1600 * 10 ⁻⁶ sec	3600 * 10 ⁻⁶ sec
n ⁴	0.16 sec	2.56 sec	sec
2 ⁿ	1.05 sec	12.73 days	years
n!	77147 years	2.56 * 10 ³⁴ years	2.64 * 10 ⁶⁸ years

Order of Growth

Assume: an algorithm can solve a problem of size n in f(n) microseconds (10⁻⁶ seconds).

Note: for example, for all f(n) in $\Theta(n^4)$, the shapes of their curves are nearly the same as $f(n)=n^4$.

Asymptotic Notation

- How can we indicate running times of algorithms?
- Need a notation to express the growth rate of a function
- A way to compare "size" of functions:
 - \triangleright O-notation ("Big-oh") $\approx \leq$ (upper bound)
 - $\triangleright \Omega$ -notation ("Big-omega") $\approx \ge$ (lower bound)
 - $\triangleright \Theta$ -notation ("theta") \approx = (sandwich)

O -notation (1/2)

- O-notation provides an asymptotic upper bound of a function.
- For a given function g(n), we denote O(g(n)) (pronounced "big-oh" of g of n) by the set of functions:

 $O(g(n)) = \{ f(n) : \text{ there exist$ **positive** $constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$

O -notation (2/2)

- We write f(n) = O(g(n)) to
 - \triangleright Indicate that f(n) is a member of the set O(g(n))
 - \triangleright Give that g(n) is an upper bound for f(n) to within a constant factor
- Example: $2n^2 = O(n^3)$, with c = 1 and $n_0 = 2$
 - \rightarrow When $n = 1: 2(1)^2 = 2 \le (1)^3 = 1$
 - ightharpoonup When n = 2: $2(2)^2 = 8 \le (2)^3 = 8$
 - ightharpoonup When n = 3: $2(3)^2 = 18 \le (3)^3 = 27$

Ω -notation (1/2)

- Ω -notation provides an **asymptotic lower bound** of a function.
- For a given function g(n), we denote $\Omega(g(n))$ (pronounced "big-omega" of g of n) by the set of functions:

 $\Omega(g(n)) = \{ f(n) : \text{ there exist positive }$ constants c and n_0 such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0 \}$

Ω -notation (2/2)

- We write $f(n) = \Omega(g(n))$ to
 - \triangleright Indicate that f(n) is a member of the set $\Omega(g(n))$
 - \triangleright Give that g(n) is a lower bound for f(n) to within a constant factor
- Example: $n^2 + n = \Omega(n^2)$, with c = 1 and $n_0 = 1$
 - \rightarrow When n = 1: $(1)^2 + 1 = 2 \ge (1)^2 = 1$
 - ightharpoonup When n = 2: $(2)^2 + 2 = 6 \ge (2)^2 = 4$
 - \rightarrow When n = 3: $(3)^2 + 3 = 12 \ge (3)^2 = 9$

Θ -notation (1/2)

- Θ -notation provides an **asymptotically tight bound** of a function.
- For a given function g(n), we denote $\Theta(g(n))$ (pronounced "theta" of g of n) by the set of functions:

 $\Theta(g(n)) = \{f(n): \text{ there exist positive constants} \ c_1, c_2 \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

Θ -notation (2/2)

Theorem

```
f(n) = \Theta(g(n)) if and only if f(n) = O(g(n)) and f(n) = \Omega(g(n))
```

- Example: $n^2/2 2n = \Theta(n^2)$, with $c_1 = 1/4$, $c_2 = 1/2$, and $n_0 = 8$
 - When n = 7: $1/4[(7)^2] = 12.25 \le (7)^2/2 2(7) = 10.5 \le 1/2[(7)^2] = 24.5$

 - When $n = 9: 1/4[(9)^2] = 20.25 \le (9)^2/2 2(9) = 22.5 \le 1/2[(9)^2] = 40.5 \ \blacksquare$

O versus o

Little-o Notation

```
ightharpoonup f(n) = o(g(n)): a strict upper bound for a function f(n)

ightharpoonup o(g(n)) = \{ f(n): there exist positive constants c and n0 such that 0 ≤ f(n) 

<math>
ightharpoonup c cg(n) for all n ≥ n0 \}
```

 \triangleright o versus O : o means better e.g. n=o(n²)

• Why 100n=O(n)?

- > nearly the same

• Why $n=o(n^2)$?

- ➤ Differ a lot!

Asymptotic Notation

- Relationship between typical functions
 - \triangleright log n = o (n)
 - \triangleright n = o (n log n)
 - $> n^c = o(2^n)$ where n^c may be n^2 , n^4 , etc.
 - \rightarrow If f(n)=n+log n, we call log n lower order terms

 $\log n < \sqrt{n} < n < n \log n < n^2 < n^4 < 2^n < n!$

Asymptotic Notation

- When calculating asymptotic running time
 - Drop low-order terms
 - Ignore leading constants
- Example 1: $T(n) = An^2 + Bn + C$
 - > An²
 - $ightharpoonup T(n) = O(n^2)$
- Example 2: T(n) = Anlogn+Bn²+Cn+D
 - ➤ Bn²
 - $ightharpoonup T(n) = O(n^2)$

Exercise 1

Order the following functions by growth rate: $N, N^2, N \log N, N \log \log N, N \log (N^2), 2/N, 2^{N/2}, 37, N^2 \log N.$ Indicate which functions grow at the same rate (it they are).

 $2/N < 37 < N < NloglogN < NlogN \leq Nlog(N²) < N² < N²logN < 2^{N/2}$

Very often the algorithm complexity can be observed directly from simple algorithms

```
O(n^2)
Insertion-Sort(A)
    for j = 1 to n-1
       key = A[j]
       i = j-1
       while i \ge 0 and A[i] \ge key
           A[i+1] = A[i]
           i = i - 1
6
       A[i+1] = key
```

There are 4 very useful rules for such Big-Oh analysis ...

General rules for Big-Oh Analysis:

Rule 1. FOR LOOPS

The running time of a *for* loop is at most the running time of the statements inside the *for* loop (including tests) times no. of iterations

Rule 3. CONSECUTIVE STATEMENTS

Count the maximum one.

Rule 2. NESTED FOR LOOPS

The total running time of a statement inside a group of nested loops is the running time of the statement multiplied by the product of the sizes of all the loops.

Rule 4. IF / ELSE

For the fragment:

take the test + the maximum for S1 and S2.

Example of Big-Oh Analysis:

```
void function1(int n)
{    int i, j;
    int x=0;

for (i=0;i<n;i++)
        x++;

for (i=0;i<n;i++)
    for (j=0;j<n;j++)
        x++;
}</pre>
```

This function is O(___)

```
void function2(int n)
{    int i;
    int x=0;

    for (i=0;i<n/2;i++)
        x++;
}</pre>
```

This function is O(___)

Example of Big-Oh Analysis:

```
void function3(int n)
{ int i;
  int x=0;
  if (n>10)
     for (i=0;i< n/2;i++)
       X++;
  else
  { for (i=0;i<n;i++)
       for (j=0;j< n/2;j++)
          X--;
```

This function is O(___)

```
void function4(int n)
{ int i;
 int x=0;

for (i=0;i<10;i++)
    for (j=0;j<n/2;j++)
        x--;
}</pre>
```

This function is O(___)

Example of Big-Oh Analysis:

```
void function5(int n)
{ int i;
  for (i=0;i<n;i++)
    if (IsSignificantData(i))
        SpecialTreatment(i);
}</pre>
```

This function is O(_____

Suppose

- IsSignificantData is O(n)
- SpecialTreatment is O(n log n)

Comparison of Good and Bad

- Coin Flipping
 - > There are N rows of coins
 - > Each row consists of 9 coins
 - > They formulate a matrix of size N*9
 - Some coins are heads up and some are tails up
 - > We can flip a whole row or a whole column every time
 - ➤ Your program need to find a flipping method that can make the number of "heads up" coins maximum

Recursion

```
int Power(int base,int pow)
      if (pow==0) return 1;
      else return base*Power(base,pow-1);

    Example

   3^2 = 9
   Power(3,2)=3*Power(3,1)
   Power(3,1)=3*Power(3,0)
   Power(3,0)=1
   T(n): the number of multiplications needed to compute Power(3,n)
   T(n)=T(n-1)+1; T(0)=0
   T(n)=n
   Function T(n) is O(n)
```

- Why recursion?
 - ➤ Can't we just use iteration (loop)?
- The reason for recursion
 - Easy to program in some situations
- Disadvantage
 - ➤ More time and space required
- Example:
 - ➤ Tower of Hanoi Problem

Tower of Hanoi

Given some rods for stacking disks. Rules:

The problem:

Use fewest steps to move all disks from the source rod to the target without violating the rules through the whole process (given one intermediate rod for buffering)?

- (1) The disks must be stacked in order of size.
- (2) Each time move 1 disk.

Tower of Hanoi

- Suppose you can manage the n-1 disks
- How do you solve the n disks case?
- A recursive solution:
 - ➤ Step 1: Move the top n-1 disks from source rod to intermediate rod via target rod
 - > Step 2: Move the largest disk from source rod to target rod
 - ➤ Step 3: Move the n-1 disks from intermediate rod to target rod via source rod

Tower of Hanoi

```
void Towers (int n, int Source, int Target, int Interm)
 if (n==1)
      cout<<"From"<<Source<<"To"<<Target<<endl;
 else
      Towers(n-1, Source, Interm, Target);
      Towers(1, Source, Target, Interm);
      Towers(n-1, Interm, Target, Source);
```

How many "cout" are executed?

• T(n)=2T(n-1)+1

Recursive Relation

- T(n)=T(n-1)+A; T(1)=1
 - \rightarrow T(n)=O(n)
- T(n)=T(n-1)+n; T(1)=1
 - \rightarrow T(n)=O(n²)
- T(n)=2T(n/2) + n; T(1)=1
 - \rightarrow T(n)=O(n log n), why???
- More general form: T(n)=aT(n/b)+cn
 - Master's Theorem (You are not required to know)

Learning Objectives

- 1. Understand the meaning of O and o and able to use
- 2. Analyze program complexities for simple programs
- 3. Able to compare which function grows faster
- 4. Able to do worst case analysis

D:1; C:1,2; B:1,2,3; A:1,2,3,4

Exercise 1

Give an analysis of the running time (Big-Oh will do).

```
(1) \quad sum = 0;
     for( i = 0; i < n; ++i)
         ++sum;
(2) \quad sum = 0;
     for( i = 0; i < n; ++i)
        for (j = 0; j < n; ++j)
             ++sum:
(3) sum = 0;
     for( i = 0; i < n; ++i )
        for(j = 0; j < n * n; ++j)
             ++sum:
(4) \quad sum = 0;
     for( i = 0; i < n; ++i)
         for(j = 0; j < i; ++j)
             ++sum:
(5) sum = 0;
     for(i = 0; i < n; ++i)
         for( j = 0; j < i * i; ++j)
             for(k = 0; k < j; ++k)
                 ++sum:
(6) \quad sum = 0;
     for( i = 1; i < n; ++i )
         for (j = 1; j < i * i; ++j)
             if( i % i == 0 )
                 for(k = 0: k < i: ++k)
                     ++sum;
```

Exercise 2

Give an analysis of the running time (Big-Oh will do).

```
int Search(int arr[], int 1, int r, int x) {
    if (r >= 1) {
        int mid = 1 + (r - 1) / 2;
        if (arr[mid] == x)
            return mid;
        if (arr[mid] > x)
            return Search(arr, 1, mid - 1, x);
        else
               return Search(arr, mid + 1, r, x);
    return -1;
```