Struktogramme (Nassi-Shneiderman-Diagrams) und das Latexpaket nassi.sty

Herbert Voß

28.11.2000

Zusammenfassung

Struktogramme sind **eine** mögliche Form zur Beschreibung eines Algorithmus. Ein Aufsatz oder ein Programmablaufplan (PAP) andere Möglichkeiten. Entwckelt von Nassi und Shneiderman sind Struktogramme eine elegante Form der **strukturierten Programmierung** um Algorithmen anschaulich darstellen zu können.

1.1 Sequenz

Block (Anweisung)

1 \ACTION{ -Block-}

Befehl:

den.

Nassi-Shneiderman — Sequenz-Symbol

Jede Anweisung, die keine logische Bedingung darstellt oder mit einem anderen Schlüsselwort beginnt, muss in einen Action-Block geklammert wer-

Inhaltsverzeichnis

1	Dar	Darstellung			
	1.1	Sequenz	1		
	1.2	If-Verzweigung	1		
	1.3	While (For)-Schleife	1		
	1.4	Repeat (Do) - Until (While)	2		
	1.5	Case-Anweisung	2		
2	2.1	spiele 2 Quadratische Gleichung	2		

$\frac{2}{2}$ 1.2 If-Verzweigung

Nassi-Shneiderman — If-Verzweigung

J logische Bedingung N Then-Block Else-Block

Befehl:

```
1 \IF{logische Bedingung}%
2 \THEN{\ACTION{Then-Block}%
3 }
4 \ELSE{\ACTION{Else-Block}%
5 }%
6 \ENDIF%
```

1 Darstellung

Latex stellt mit dem Macro nassflow¹ eine mehr oder weniger elegante Methode zum Erstellen derartiger Struktogramme zur Verfügung.

Achtung: Die Bezeichnung Block steht für jede mögliche Kombination aus allen im folgenden angegebenen Struktogrammblöcke. Diese können beliebig kombiniert werden, müssen allerdings mit einem Schlüsselwort beginnen.

1.3 While (For)-Schleife

Nassi-Shneiderman — While(Do)-Schleife

Befehlsfolge:

1.4 Repeat (Do) - Until (While)

Nassi-Shneiderman — Repeat (Do)-Until (While) Schleife

Schleifen-Block
logische Bedingung

Befehlsfolge:

```
1 \REPEAT{%
2 \ACTION{Schleifen-Block}
3 }\UNTIL{\quad logische Bedingung}%
```

1.5 Case-Anweisung

Aus praktischen Gründen weicht die Case-Anweisung ⁴ erheblich von den sonst allgemein üblichen Darstellungen in Treppenform ab. ⁵

Nassi-Shneiderman — Case-Anweisung

case in	case item					
condition 1	condition 2	condition 3				
statement to do	statement 1 to do	statement to do				
	statement 2 to do					

Befehlsfolge:

```
7 \ACTION{statement 2 to do}%
8 }%
9 \WHEN{condition 3}{%
10 \ACTION{statement to do}%
11 }%
12 }\ENDCASE%
```

2 Beispiele

2.1 Quadratische Gleichung

Als einführendes Beispiel sei die Lösung einer quadratischen Gleichung angegeben:

Mathematische Algorithmen — pq-Formel

Einlesen der Koeffizienten a, b, c der quadratischen Gleichung $ax^2 + bx + c = 0$

Diskriminate bestimmen: $D = \left(\frac{b}{2a}\right)^2 - \frac{c}{a}$ (entspricht dem Radikanden)

```
J (D \ge 0) ? N x_{1/2} = -\frac{b}{2a} \pm \sqrt{D} keine Lösung in \mathbb R
```

Befehlsfolge:

```
\nassiwidth=\columnwidth\setiftext{J}{N}
1
   \STRUCT{Mathematische Algorithmen}{pq-
3
       Formel}{
      \ACTION{Einlesen der Koeffizienten $a,b,c
         $ der quadratischen Gleichung $ax
         \{2\}+bx+c=0
     \ACTION{Diskriminate bestimmen: ${\
5
         displaystyle D=\left(\frac{b}{2a}\
         right)^{2}-frac\{c\}{a}}\qquad (
         entspricht dem Radikanden)}
     \IF{($D\geq0$) ?}
       \THEN{\ACTION{${\displaystyle x}
            _{1/2}=-frac{b}{2a}\pm\sqrt{D}}
       \ELSE{\ACTION{keine Lösung in $\mathds{
9
           R}$
10
      }\ENDIF
11
12
   }
```

2.2 Bubble Sort

 ${\bf Sortier verfahren - Optimiertes \ Bubble \ Sort}$

Fel	Feld mit n zufälligen Zahlen füllen				
sortiert = false					
$oxed{\mathrm{ende} = \mathrm{n-2}}$					
Solange wie "nicht sortiert"					
	sortiert = true				
	für i=0 bis ende				
	$_{ m J} \qquad { m feld[i] > feld[i+1]} \ ?$	N			
	Tausche feld[i] mit feld[i+1]				
	${ m sortiert} = { m false}$				
	$\mathrm{ende} = \mathrm{ende}$ -1				

 \sim voss/nassi.tex