Long short-term memory

Neural Networks that remember

What we know so far?

What we know so far?

Convolutional Neural Networks (CNNs)

What we know so far?

Convolutional Neural Networks (CNNs)

What we know so far?

Convolutional Neural Networks (CNNs)

What we know so far?

Convolutional Neural Networks (CNNs)

More generally

What we know so far?

Convolutional Neural Networks (CNNs)

More generally

What we know so far?

Convolutional Neural Networks (CNNs)

More generally

Generative Adversarial Networks (GANs)

OR

What we know so far?

Convolutional Neural Networks (CNNs)

More generally

Generative Adversarial Networks (GANs)

OR Neural Network(Data) = Result

What we know so far?

Convolutional Neural Networks (CNNs)

More generally

Generative Adversarial Networks (GANs)

OR

Neural Network(Data) = Result
$$f (x) = y$$

They are universal function approximators

They are universal function approximators

(Given enough data, they can approximate any function)

They are universal function approximators

(Given enough data, they can approximate any function)

True for images

They are universal function approximators

(Given enough data, they can approximate any function)

True for images and classifiers

They are universal function approximators

(Given enough data, they can approximate any function)

True for images and classifiers

but

They are universal function approximators

(Given enough data, they can approximate any function)

True for images and classifiers

but

What about text?

They are universal function approximators

(Given enough data, they can approximate any function)

True for images and classifiers

but

What about text?

... and speech?

... and music?

They are universal function approximators

(Given enough data, they can approximate any function)

True for images and classifiers

but

What about text?

... and speech?

... and music?

What about time/context dependent data?

Input in relation with the output

- Output

Recurrent Neural Networks

Recurrent Neural Networks

Recurrent Neural Networks

Input in relation with the output

Input in relation with the output

Explained

Explained

Explained

$$h_{t+1} = \tanh(W_{hh}h_t + W_{xh}x_t)$$

$$h_{t+1} = \tanh(W_{hh}h_t + W_{xh}x_t)$$

$$h_{t+1} = \tanh(W_{hh}h_t + W_{xh}x_t)$$

$$h_{t+1} = \tanh(W_{hh}h_t + W_{xh}x_t)$$

The problem

Vanishing gradient

$$h_{t+1} = \tanh(W_{hh}h_t + W_{xh}x_t)$$

Long short-term memory cell

Long short-term memory cell

Long short-term memory cell

Legend

unweighted connection

weighted connection

connection with time-lag

- branching point
- mutliplication
- sum over all inputs
- gate activation function (always sigmoid)
- input activation function (usually tanh)
- output activation function (usually tanh)

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \text{sigm} \\ \text{sigm} \\ \text{sigm} \\ \text{tanh} \end{pmatrix} W^l \begin{pmatrix} h_t^{l-1} \\ h_{t-1}^l \end{pmatrix}$$
$$c_t^l = f \odot c_{t-1}^l + i \odot q$$

$$\begin{aligned} c_t^l &= f \odot c_{t-1}^l + i \odot g \\ h_t^l &= o \odot \tanh(c_t^l) \end{aligned}$$

Code example

[Github]

Sources

[1] "LSTM: A Search Space Odyssey" -- https://arxiv.org/pdf/1503.04069.pdf

[2] "RNN Escapades" -- London ML meetup 09/2015 Andrej Karpathy https://docs.google.com/presentation/d/1qs2luSdZvbNfzw217kH5-1Z9DjG0Ng6fJiabaLNQVaY