Matching, Graphs and Matroids

Harry Huang

University of Wisconsin Madison

Apr.23.2025

Table of Contents

- Bipartite Matching
- Network Flow
- Non-Bipartite Matching
- Matroid

• A graph G = (V, E) consists of a set of vertices V and a set of edges E.

- A graph G = (V, E) consists of a set of vertices V and a set of edges E.
- Each edge connects two vertices. For example: $E = \{(u, v)\}$ with $u, v \in V$.

- A graph G = (V, E) consists of a set of vertices V and a set of edges E.
- Each edge connects two vertices. For example: $E = \{(u, v)\}$ with $u, v \in V$.
- A bipartite graph is a graph where vertices can be divided into two disjoint sets L and R such that every edge connects a vertex from L to a vertex from R.

- A graph G = (V, E) consists of a set of vertices V and a set of edges E.
- Each edge connects two vertices. For example: $E = \{(u, v)\}$ with $u, v \in V$.
- A bipartite graph is a graph where vertices can be divided into two disjoint sets L and R such that every edge connects a vertex from L to a vertex from R.
- Example: $L = \{u\}, R = \{v\}, E = \{(u, v)\}$

- A graph G = (V, E) consists of a set of vertices V and a set of edges E.
- Each edge connects two vertices. For example: $E = \{(u, v)\}$ with $u, v \in V$.
- A bipartite graph is a graph where vertices can be divided into two disjoint sets L and R such that every edge connects a vertex from L to a vertex from R.
- Example: $L = \{u\}, R = \{v\}, E = \{(u, v)\}$
- No edges exist between vertices within the same set.

• A **matching** in a bipartite graph is a set of edges with no shared endpoints.

- A **matching** in a bipartite graph is a set of edges with no shared endpoints.
- Given a bipartite graph $G = (L \cup R, E)$, a matching $M \subseteq E$ pairs vertices from L to R.

- A **matching** in a bipartite graph is a set of edges with no shared endpoints.
- Given a bipartite graph $G = (L \cup R, E)$, a matching $M \subseteq E$ pairs vertices from L to R.
- Each vertex is incident to at most one edge in the matching.

- A matching in a bipartite graph is a set of edges with no shared endpoints.
- Given a bipartite graph $G = (L \cup R, E)$, a matching $M \subseteq E$ pairs vertices from L to R.
- Each vertex is incident to at most one edge in the matching.
- Example: $L = \{u\}, R = \{v\}, M = \{(u, v)\}$ is a valid matching.

- A matching in a bipartite graph is a set of edges with no shared endpoints.
- Given a bipartite graph $G = (L \cup R, E)$, a matching $M \subseteq E$ pairs vertices from L to R.
- Each vertex is incident to at most one edge in the matching.
- Example: $L = \{u\}, R = \{v\}, M = \{(u, v)\}$ is a valid matching.
- Goal: Find a matching of maximum size—i.e., the largest possible set of such edges.

Introduction to Network Flow

- A **flow network** is a directed graph G = (V, E) with:
 - A **source** node s and a **sink** node t
 - Each edge (u, v) has a non-negative capacity c(u, v)

Introduction to Network Flow

- A **flow network** is a directed graph G = (V, E) with:
 - A source node s and a sink node t
 - Each edge (u, v) has a non-negative **capacity** c(u, v)
- A **flow** assigns a value f(u, v) to each edge such that:
 - Capacity constraint: $0 \le f(u, v) \le c(u, v)$
 - ullet Flow conservation: For all $v \in V \setminus \{s,t\}$,

$$\sum_{u} f(u,v) = \sum_{w} f(v,w)$$

Introduction to Network Flow

- A **flow network** is a directed graph G = (V, E) with:
 - A source node s and a sink node t
 - Each edge (u, v) has a non-negative **capacity** c(u, v)
- A **flow** assigns a value f(u, v) to each edge such that:
 - Capacity constraint: $0 \le f(u, v) \le c(u, v)$
 - ullet Flow conservation: For all $v \in V \setminus \{s,t\}$,

$$\sum_{u} f(u,v) = \sum_{w} f(v,w)$$

 The maximum flow problem seeks the greatest total flow from s to t

Reducing Bipartite Matching to Flow

- Given bipartite graph $G = (L \cup R, E)$, construct a flow network:
 - Add source s and sink t
 - Add edges from s to all nodes in L
 - Add edges from all nodes in R to t
 - ullet Keep original edges between L and R

Reducing Bipartite Matching to Flow

- Given bipartite graph $G = (L \cup R, E)$, construct a flow network:
 - Add source s and sink t
 - Add edges from s to all nodes in L
 - Add edges from all nodes in R to t
 - Keep original edges between L and R
- Assign capacity 1 to all edges

Reducing Bipartite Matching to Flow

- Given bipartite graph $G = (L \cup R, E)$, construct a flow network:
 - Add source s and sink t
 - Add edges from s to all nodes in L
 - Add edges from all nodes in R to t
 - Keep original edges between L and R
- Assign capacity 1 to all edges
- Solve max-flow from s to t

- After computing max-flow:
 - Each unit of flow corresponds to a matched edge between L and R

- After computing max-flow:
 - Each unit of flow corresponds to a matched edge between L and R
- Since all capacities are 1:
 - No vertex in L or R is matched more than once

- After computing max-flow:
 - Each unit of flow corresponds to a matched edge between L and R
- Since all capacities are 1:
 - No vertex in L or R is matched more than once
- The set of edges with flow = 1 between L and R gives a maximum matching

- After computing max-flow:
 - Each unit of flow corresponds to a matched edge between L and R
- Since all capacities are 1:
 - No vertex in L or R is matched more than once
- The set of edges with flow = 1 between L and R gives a maximum matching
- This method solves bipartite matching in polynomial time using flow algorithms (e.g., Edmonds–Karp)

• In general graphs, we are given an undirected graph G = (V, E).

- In general graphs, we are given an undirected graph G = (V, E).
- A **matching** is a set of edges $M \subseteq E$ such that no two edges in M share a common vertex.

- In general graphs, we are given an undirected graph G = (V, E).
- A **matching** is a set of edges $M \subseteq E$ such that no two edges in M share a common vertex.
- A maximum matching is a matching of the largest possible size.

- In general graphs, we are given an undirected graph G = (V, E).
- A **matching** is a set of edges $M \subseteq E$ such that no two edges in M share a common vertex.
- A maximum matching is a matching of the largest possible size.
- Unlike bipartite graphs, non-bipartite graphs may contain odd cycles, which require special handling.

• In bipartite graphs, alternating paths are sufficient to find augmenting paths.

- In bipartite graphs, alternating paths are sufficient to find augmenting paths.
- In non-bipartite graphs, odd cycles (called **blossoms**) can prevent simple alternating path searches.

- In bipartite graphs, alternating paths are sufficient to find augmenting paths.
- In non-bipartite graphs, odd cycles (called blossoms) can prevent simple alternating path searches.
- Edmonds' Blossom Algorithm (1965) was the first polynomial-time algorithm for finding maximum matchings in general graphs.

- In bipartite graphs, alternating paths are sufficient to find augmenting paths.
- In non-bipartite graphs, odd cycles (called blossoms) can prevent simple alternating path searches.
- Edmonds' Blossom Algorithm (1965) was the first polynomial-time algorithm for finding maximum matchings in general graphs.
- It works by:
 - Searching for **augmenting paths**
 - **Shrinking** blossoms (odd-length cycles) into single vertices
 - Recursively finding matchings in the contracted graph

Start with an empty matching M

- Start with an empty matching M
- While there exists an augmenting path:
 - Use BFS or DFS to find alternating paths from unmatched vertices
 - If an odd cycle is detected, contract it into a single pseudo-vertex

- Start with an empty matching M
- While there exists an augmenting path:
 - Use BFS or DFS to find alternating paths from unmatched vertices
 - If an odd cycle is detected, contract it into a single pseudo-vertex
- If an augmenting path is found, augment the matching along it

- Start with an empty matching M
- While there exists an **augmenting path**:
 - Use BFS or DFS to find alternating paths from unmatched vertices
 - If an odd cycle is detected, contract it into a single pseudo-vertex
- If an augmenting path is found, augment the matching along it
- Expand any contracted blossoms and update the matching accordingly

- Start with an empty matching M
- While there exists an augmenting path:
 - Use BFS or DFS to find alternating paths from unmatched vertices
 - If an odd cycle is detected, contract it into a single pseudo-vertex
- If an augmenting path is found, augment the matching along it
- Expand any contracted blossoms and update the matching accordingly
- Repeat until no more augmenting paths exist

Introduction to Matroids

• A **matroid** is a combinatorial structure that generalizes the concept of independence in vector spaces and graphs.

Introduction to Matroids

- A matroid is a combinatorial structure that generalizes the concept of independence in vector spaces and graphs.
- Formally, a matroid is a pair $M = (E, \mathcal{I})$ where:
 - *E* is a finite set (called the **ground set**)
 - $\mathcal{I} \subseteq 2^E$ is a collection of **independent sets**

Introduction to Matroids

- A matroid is a combinatorial structure that generalizes the concept of independence in vector spaces and graphs.
- Formally, a matroid is a pair $M = (E, \mathcal{I})$ where:
 - *E* is a finite set (called the **ground set**)
 - $\mathcal{I} \subseteq 2^E$ is a collection of **independent sets**
- ullet The sets in ${\mathcal I}$ must satisfy specific axioms.

Matroid Axioms

The collection $\ensuremath{\mathcal{I}}$ of independent sets must satisfy:

• (I1) Non-empty: $\emptyset \in \mathcal{I}$

Matroid Axioms

The collection \mathcal{I} of independent sets must satisfy:

- (I1) Non-empty: $\emptyset \in \mathcal{I}$
- (I2) Hereditary: If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$

These axioms ensure a well-behaved notion of independence, similar to linear independence or forest edges in graphs.

Matroid Axioms

The collection \mathcal{I} of independent sets must satisfy:

- (I1) Non-empty: $\emptyset \in \mathcal{I}$
- (I2) Hereditary: If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$
- (13) Exchange: If $A, B \in \mathcal{I}$ and |A| < |B|, then there exists $e \in B \setminus A$ such that $A \cup \{e\} \in \mathcal{I}$

These axioms ensure a well-behaved notion of independence, similar to linear independence or forest edges in graphs.

Examples of Matroids

• Uniform Matroid: $E = \{1, 2, ..., n\}$, independent sets are all subsets of size $\leq k$

Examples of Matroids

- Uniform Matroid: $E = \{1, 2, ..., n\}$, independent sets are all subsets of size $\leq k$
- **Graphic Matroid:** *E* is the set of edges in a graph, and a set is independent if it forms a forest (acyclic)

These examples help unify different domains—graphs, algebra, and combinatorics—under the same framework.

Examples of Matroids

- Uniform Matroid: $E = \{1, 2, ..., n\}$, independent sets are all subsets of size < k
- **Graphic Matroid:** *E* is the set of edges in a graph, and a set is independent if it forms a forest (acyclic)
- **Linear Matroid:** *E* is a set of vectors, and a set is independent if the vectors are linearly independent

These examples help unify different domains—graphs, algebra, and combinatorics—under the same framework.

 A partition matroid is a type of matroid where the ground set is divided into disjoint parts, each with a capacity.

- A partition matroid is a type of matroid where the ground set is divided into disjoint parts, each with a capacity.
- Let E be partitioned into k disjoint subsets: $E = E_1 \cup E_2 \cup \cdots \cup E_k$

- A partition matroid is a type of matroid where the ground set is divided into disjoint parts, each with a capacity.
- Let E be partitioned into k disjoint subsets: $E = E_1 \cup E_2 \cup \cdots \cup E_k$
- Each part E_i has an integer bound r_i

- A partition matroid is a type of matroid where the ground set is divided into disjoint parts, each with a capacity.
- Let E be partitioned into k disjoint subsets: $E = E_1 \cup E_2 \cup \cdots \cup E_k$
- Each part E_i has an integer bound r_i
- A set $S \subseteq E$ is **independent** if for all i, $|S \cap E_i| \le r_i$

- A partition matroid is a type of matroid where the ground set is divided into disjoint parts, each with a capacity.
- Let E be partitioned into k disjoint subsets: $E = E_1 \cup E_2 \cup \cdots \cup E_k$
- Each part E_i has an integer bound r_i
- A set $S \subseteq E$ is **independent** if for all $i, |S \cap E_i| \le r_i$
- That is, we can select at most r_i elements from each group E_i

• Consider bipartite graph $G = (L \cup R, E)$

- Consider bipartite graph $G = (L \cup R, E)$
- Goal: Find the largest matching a subset of edges $M \subseteq E$ with no shared endpoints

- Consider bipartite graph $G = (L \cup R, E)$
- Goal: Find the largest matching a subset of edges $M \subseteq E$ with no shared endpoints
- Idea: Model the matching problem as an intersection of two matroids on the ground set E

- Consider bipartite graph $G = (L \cup R, E)$
- Goal: Find the largest matching a subset of edges $M \subseteq E$ with no shared endpoints
- Idea: Model the matching problem as an intersection of two matroids on the ground set E
- This allows us to use polynomial-time algorithms for matroid intersection

Two Partition Matroids from Matching Constraints

We define two matroids over the edge set E in a bipartite graph $G = (L \cup R, E)$:

- Matroid $\mathcal{M}_L = (E, \mathcal{I}_L)$:
 - $I \in \mathcal{I}_L$ if no two edges in I share a vertex in L
 - Partition E by vertex in L: edges incident to $u \in L$ form a part
 - Each part has capacity $1 \rightarrow$ at most one edge per $u \in L$

Two Partition Matroids from Matching Constraints

We define two matroids over the edge set E in a bipartite graph $G = (L \cup R, E)$:

- Matroid $\mathcal{M}_L = (E, \mathcal{I}_L)$:
 - $I \in \mathcal{I}_L$ if no two edges in I share a vertex in L
 - Partition E by vertex in L: edges incident to $u \in L$ form a part
 - Each part has capacity 1 o at most one edge per $u \in L$
- Matroid $\mathcal{M}_R = (E, \mathcal{I}_R)$:
 - $I \in \mathcal{I}_R$ if no two edges in I share a vertex in R
 - Partition E by vertex in R: edges incident to $v \in R$ form a part
 - ullet Each part has capacity 1 o at most one edge per $v \in R$

Two Partition Matroids from Matching Constraints

We define two matroids over the edge set E in a bipartite graph $G = (L \cup R, E)$:

- Matroid $\mathcal{M}_L = (E, \mathcal{I}_L)$:
 - $I \in \mathcal{I}_L$ if no two edges in I share a vertex in L
 - Partition E by vertex in L: edges incident to $u \in L$ form a part
 - Each part has capacity $1 \rightarrow$ at most one edge per $u \in L$
- Matroid $\mathcal{M}_R = (E, \mathcal{I}_R)$:
 - $I \in \mathcal{I}_R$ if no two edges in I share a vertex in R
 - Partition E by vertex in R: edges incident to $v \in R$ form a part
 - Each part has capacity 1 o at most one edge per $v \in R$
- Both \mathcal{M}_L and \mathcal{M}_R are partition matroids.

- A subset $I \subseteq E$ is a **matching** if:
 - No two edges in I share a vertex (either in L or in R)

- A subset $I \subseteq E$ is a **matching** if:
 - No two edges in I share a vertex (either in L or in R)
- This is exactly the condition:

$$I \in \mathcal{I}_L \cap \mathcal{I}_R$$

- A subset $I \subseteq E$ is a **matching** if:
 - No two edges in I share a vertex (either in L or in R)
- This is exactly the condition:

$$I \in \mathcal{I}_L \cap \mathcal{I}_R$$

ullet So a matching is an edge set that is independent in both \mathcal{M}_L and \mathcal{M}_R

- A subset $I \subseteq E$ is a **matching** if:
 - No two edges in I share a vertex (either in L or in R)
- This is exactly the condition:

$$I \in \mathcal{I}_L \cap \mathcal{I}_R$$

- ullet So a matching is an edge set that is independent in both \mathcal{M}_L and \mathcal{M}_R
- Thus, maximum bipartite matching = maximum-size common independent set in \mathcal{M}_L and \mathcal{M}_R

- A subset $I \subseteq E$ is a **matching** if:
 - No two edges in I share a vertex (either in L or in R)
- This is exactly the condition:

$$I \in \mathcal{I}_L \cap \mathcal{I}_R$$

- ullet So a matching is an edge set that is independent in both \mathcal{M}_L and \mathcal{M}_R
- Thus, maximum bipartite matching = maximum-size common independent set in \mathcal{M}_L and \mathcal{M}_R
- We can solve it using matroid intersection algorithms

• Given two matroids $\mathcal{M}_1=(E,\mathcal{I}_1)$ and $\mathcal{M}_2=(E,\mathcal{I}_2)$ over the same ground set E

- Given two matroids $\mathcal{M}_1=(E,\mathcal{I}_1)$ and $\mathcal{M}_2=(E,\mathcal{I}_2)$ over the same ground set E
- Goal: Find the largest set $I \subseteq E$ such that $I \in \mathcal{I}_1 \cap \mathcal{I}_2$

- Given two matroids $\mathcal{M}_1=(E,\mathcal{I}_1)$ and $\mathcal{M}_2=(E,\mathcal{I}_2)$ over the same ground set E
- Goal: Find the largest set $I \subseteq E$ such that $I \in \mathcal{I}_1 \cap \mathcal{I}_2$
- Lawler's Algorithm:

- Given two matroids $\mathcal{M}_1=(E,\mathcal{I}_1)$ and $\mathcal{M}_2=(E,\mathcal{I}_2)$ over the same ground set E
- Goal: Find the largest set $I \subseteq E$ such that $I \in \mathcal{I}_1 \cap \mathcal{I}_2$
- Lawler's Algorithm:
 - **1** Start with $I = \emptyset$

- Given two matroids $\mathcal{M}_1=(E,\mathcal{I}_1)$ and $\mathcal{M}_2=(E,\mathcal{I}_2)$ over the same ground set E
- Goal: Find the largest set $I \subseteq E$ such that $I \in \mathcal{I}_1 \cap \mathcal{I}_2$
- Lawler's Algorithm:
 - **1** Start with $I = \emptyset$
 - While there exists an augmenting path in the exchange graph:
 - Use a shortest path search to find an element $e \notin I$ and $f \in I$ that can be exchanged

- Given two matroids $\mathcal{M}_1=(E,\mathcal{I}_1)$ and $\mathcal{M}_2=(E,\mathcal{I}_2)$ over the same ground set E
- Goal: Find the largest set $I \subseteq E$ such that $I \in \mathcal{I}_1 \cap \mathcal{I}_2$
- Lawler's Algorithm:
 - **1** Start with $I = \emptyset$
 - While there exists an augmenting path in the exchange graph:
 - Use a shortest path search to find an element $e \notin I$ and $f \in I$ that can be exchanged
 - Augment I by replacing f with e

- Given two matroids $\mathcal{M}_1=(E,\mathcal{I}_1)$ and $\mathcal{M}_2=(E,\mathcal{I}_2)$ over the same ground set E
- Goal: Find the largest set $I \subseteq E$ such that $I \in \mathcal{I}_1 \cap \mathcal{I}_2$
- Lawler's Algorithm:
 - **1** Start with $I = \emptyset$
 - While there exists an augmenting path in the exchange graph:
 - Use a shortest path search to find an element $e \notin I$ and $f \in I$ that can be exchanged
 - Augment I by replacing f with e
 - Repeat until no more augmenting paths exist

- Given two matroids $\mathcal{M}_1=(E,\mathcal{I}_1)$ and $\mathcal{M}_2=(E,\mathcal{I}_2)$ over the same ground set E
- Goal: Find the largest set $I \subseteq E$ such that $I \in \mathcal{I}_1 \cap \mathcal{I}_2$
- Lawler's Algorithm:
 - **1** Start with $I = \emptyset$
 - While there exists an augmenting path in the exchange graph:
 - Use a shortest path search to find an element $e \notin I$ and $f \in I$ that can be exchanged
 - Augment I by replacing f with e
 - Repeat until no more augmenting paths exist
- Runs in polynomial time using independence oracles for both matroids

• Use the matroid intersection algorithm to find the largest set $I \subseteq E$ that is independent in both \mathcal{M}_L and \mathcal{M}_R

- Use the **matroid intersection algorithm** to find the largest set $I \subseteq E$ that is independent in both \mathcal{M}_L and \mathcal{M}_R
- This gives a maximum matching in the bipartite graph

- Use the matroid intersection algorithm to find the largest set $I \subseteq E$ that is independent in both \mathcal{M}_L and \mathcal{M}_R
- This gives a maximum matching in the bipartite graph
- Time complexity: O(nm) using augmenting path methods, where n = |V|, m = |E|

- Use the matroid intersection algorithm to find the largest set $I \subseteq E$ that is independent in both \mathcal{M}_L and \mathcal{M}_R
- This gives a maximum matching in the bipartite graph
- Time complexity: O(nm) using augmenting path methods, where n = |V|, m = |E|
- Conceptually unifies matching and matroid theory!

 Matching is a fundamental concept in graph theory with applications in scheduling, resource allocation, and optimization.

- Matching is a fundamental concept in graph theory with applications in scheduling, resource allocation, and optimization.
- Bipartite matching can be solved efficiently using:
 - Network flow, by modeling matching as a maximum flow problem
 - Matroid intersection, by capturing vertex constraints using partition matroids

- Matching is a fundamental concept in graph theory with applications in scheduling, resource allocation, and optimization.
- Bipartite matching can be solved efficiently using:
 - Network flow, by modeling matching as a maximum flow problem
 - Matroid intersection, by capturing vertex constraints using partition matroids
- Non-bipartite matching is more complex and requires the Edmonds' Blossom Algorithm to handle odd-length cycles.

- Matching is a fundamental concept in graph theory with applications in scheduling, resource allocation, and optimization.
- Bipartite matching can be solved efficiently using:
 - Network flow, by modeling matching as a maximum flow problem
 - Matroid intersection, by capturing vertex constraints using partition matroids
- Non-bipartite matching is more complex and requires the Edmonds' Blossom Algorithm to handle odd-length cycles.
- Matroids provide a unifying framework for understanding independence across different domains and lead to elegant algorithmic solutions.

- Matching is a fundamental concept in graph theory with applications in scheduling, resource allocation, and optimization.
- Bipartite matching can be solved efficiently using:
 - Network flow, by modeling matching as a maximum flow problem
 - Matroid intersection, by capturing vertex constraints using partition matroids
- Non-bipartite matching is more complex and requires the Edmonds' Blossom Algorithm to handle odd-length cycles.
- Matroids provide a unifying framework for understanding independence across different domains and lead to elegant algorithmic solutions.
- These concepts are not only theoretically rich, but also practically powerful in solving real-world discrete optimization problems.