Sequence Assembly-II

Hammad Naveed

hammad.naveed@nu.edu.pk

Graph Basics

• A graph (G) consists of vertices (V) and edges (E) G = (V,E)

• Edges can either be directed (directed graphs)

or undirected (undirected graphs)

Vertex degrees

- The *degree* of a vertex: the # of edges incident to that vertex
- For directed graphs, we also have the notion of
 - *indegree:* The number incoming edges
 - *outdegree:* The number of outgoing edges

Overlap graph

- For a set of sequence reads S, construct a directed weighted graph G = (V,E,w)
 - with one vertex per read (v_i corresponds to s_i)
 - edges between all vertices (a complete graph)
 - $w(v_i, v_j) = overlap(s_i, s_j) = length of longest suffix of s_i that is a prefix of s_j$

Overlap graph example

• Let S = {AGA, GAT, TCG, GAG}

Assembly as Hamiltonian Path

• Hamiltonian Path: path through graph that visits each vertex exactly once

Path: AGAGATCG

Shortest superstring as TSP

minimize superstring length → minimize hamiltonian path length in

overlap graph with edge weights negated

Path: GAGATCG

Path length: -5

String length: 7

This is essentially the Traveling Salesman Problem (also NP-complete)

Greedy Algorithms

- **Definition**: An algorithm that always takes the best immediate, or local, solution while finding an answer.
- Greedy algorithms find the overall, or globally, optimal solution for some optimization problems, but may find less-than-optimal solutions for some instances of other problems.

Greedy Algorithm Examples

- Kruskal's Algorithm for Minimum Spanning Tree
 - Minimum spanning tree: a set of n-1 edges that connects a graph of n vertices without any cycles and that has minimal total weight
 - Kruskal's algorithm adds the edge that connects two components with the smallest weight at each step without introducing a cycle

Greedy Algorithm Examples

Weight	Src	Dest
1	7	6
2	8	2
2	6	5
4	0	1
4	2	5
6	8	6
7	2	3
7	7	8
8	0	7
8	1	2
9	3	4
10	5	4
11	1	7
14	3	5

Greedy Algorithm Examples

- Traveling Salesman Problem
 - Greedy algorithm chooses to visit closest vertex at each step

Can give far-from-ontimal answers

The Greedy Algorithm

- Let G be a graph with fragments as vertices, and no edges to start
- Create a queue, Q, of overlap edges, with edges in order of increasing weight
- While G is disconnected
 - Pop the next possible edge e = (u,v) off of Q
 - If outdegree(u) = 0 and indegree(v) = 0
 and e does not create a cycle
 - Add *e* to *G*

The Greedy Algorithm

- While G is disconnected
 - Pop the next possible edge e = (u,v) off of Q
 - If outdegree(u) = 0 and indegree(v) = 0 and e does not create a cycle
 - Add *e* to *G*
- GAG -> AGA
- AGA -> GAG
- AGA -> GAT -2
- GAG -> GAT
- TCG -> GAT -1
- TCG -> GAG
- GAT -> TCG -1

Path length: -5

String length: 7