SJF vs. Max-Min vs. Mixed Strategy – The Ultimate Battle!

The Battle Begins!

We pit Shortest Job First (SJF), Maximum-Minimum (Max-Min), and a Mixed Strategy against each other in a CPU scheduling showdown!

- SJF \mathbb{Z} : Prioritizes small jobs first, perfect for quickly clearing short tasks but big jobs might
- Max-Min &: Gives priority to big jobs, ensuring heavy processes don't wait but small jobs can get delayed.
- Mixed Strategy 4: Aims for balance, preventing both small and large jobs from starving, but adds complexity.

Jump to Battle Scenarios!

- 1 Scenario 1: SJF Small Jobs Rule!
- 2 Scenario 2: Max-Min VIP Jobs First!
- 3 Scenario 3: Mixed Strategy The Best of Both Worlds!

Scenario 1: SJF vs. Max-Min: The Ultimate Restaurant Serve 🖴

Welcome to CPU Diner – Where Scheduling Can Make or Break Your Hunger!

At CPU Diner, three customers arrive simultaneously (AT = 0) and order different meals. Let's see how our two chefs handle their orders!

The Customers Arrive

Customer 🛉	Order Type	Burst Time (BT) 🛣	Arrival Time (AT) 🧿
Alex ୱ	Fries 🍟	2 mins	0
Bob 😂	Burger 🖴	5 mins	0
Charlie =	Pizza 🭕	10 mins	0

Chef SJF's Strategy (Shortest Job First)

SJF Says: "Yo, let's get the fastest orders done first!"

Execution Order in SJF:

- 1 Fries (2 mins)
- **2** Burger (5 mins)
- 3 Pizza (10 mins)

Customer	Order ©	BT	Start Time	Completion Time (CT) ***	Turnaround Time (TAT = CT - AT) \(\textstyle{\Z}	Waiting Time (WT = TAT - BT) ∑
Alex 😂	Fries	2	0	2	2 - 0 = 2	2 - 2 = 0
Bob 😂	Burger	5	2	7	7 - 0 = 7	7 - 5 = 2
Charlie =	Pizza	10	7	17	17 - 0 = 17	17 - 10 = 7

Total Values for SJF:

- ✓ Total Finish Time (TFT) = 17 mins
- ✓ Total Waiting Time (TWT) = 0 + 2 + 7 = 9 mins
- ✓ Total Turnaround Time (TAT) = 2 + 7 + 17 = 26 mins

Execution Order:

- 1 Fries (2 mins) → (Done! Alex is happy (5)
- 2 Burger \triangleq (5 mins) \rightarrow (Done! Bob is satisfied \bigcirc)
- 3 Pizza **4** (10 mins) → (Finally! Charlie eats **2**)

Chef Max-Min's Strategy (Longest Job First)

Amax-Min Says: "Naaaah, let's tackle the BIGGEST meal first. Let's make 'em wait!

Execution Order in Max-Min:

- 1 Pizza (10 mins)
- **2** Burger (5 mins)
- 3 Fries (2 mins)

Customer	Order	BT	Start Time	Completion Time (CT) ***	Turnaround Time (TAT = CT - AT) \(\textstyle{\Z}	Waiting Time (WT = TAT - BT)
Charlie =	Pizza	10	0	10	10 - 0 = 10	10 - 10 = 0
Bob 😂	Burger	5	10	15	15 - 0 = 15	15 - 5 = 10
Alex 😂	Fries	2	15	17	17 - 0 = 17	17 - 2 = 15

Total Values for Max-Min:

- **X** Total Finish Time (TFT) = 17 mins (same as SJF, but less efficient!)
- X Total Turnaround Time (TAT) = 10 + 15 + 17 = 42 mins (MUCH worse! •••)

Execution Order:

- 1 Pizza (10 mins) → (Charlie is happy, but Alex & Bob are starving! 😲)
- 3 Fries (2 mins) → (Alex could've eaten long ago... now he's fuming! (2)

🚺 SJF vs. Max-Min: The Ultimate Scoreboard

Metric 📊	SJF Q (Fastest First)	Max-Min (Slowest First)	Winner
Execution Time (TET)	Same (Depends on BT)	Same (Depends on BT)	🤝 Tie
Waiting Time (TWT)	✓ 9 mins	× 25 mins	SJF
Turnaround Time (TAT)	✓ 26 mins	× 42 mins	SJF
Finish Time (TFT)	✓ 17 mins	× 17 mins	SJF

o final verdict: SJF wins! 🞉

- Max-Min leaves people STARVING! 💿 💧
- Short jobs should NEVER have to wait behind long jobs!

Who Wins?

✓ Winner: SJF!

- SJF keeps everyone happy because orders are served in a balanced way.
- Max-Min is a disaster for small orders—short tasks suffer!
- Lesson: In CPU scheduling (or in real life), serving small tasks first speeds up the whole system!
- Moral of the Story:

"If you want efficiency, always serve short tasks first. Don't make people wait for no reason!" 🚀

🗱 Scenario 2: The CPU Olympics – A High-Priority Race! 🏃 🐠

Imagine a coding competition where three teams submit programs for execution. The judge (CPU) schedules them based on execution time.

But this time, longer tasks are more important (e.g., Al training, simulations).

The Competitors & Their Programs

Team 🥞	Program Name 💂	Burst Time (BT) 🏅	Arrival Time (AT) 🧿
Fast Coders 🔸	Simple Calculator ■	2 mins	0
Code Lords 🛣	Machine Learning Model 🖃	8 mins	0
Lazy Devs 2	Data Processing 📊	4 mins	0

Chef SJF's Strategy (Shortest Job First)

SJF Says: "Let's finish small programs first, THEN handle the big guys!"

Execution Order in SJF:

- 1 Simple Calculator (2 mins)
- 2 Data Processing (4 mins)
- 3 Machine Learning Model (8 mins)

Team 🥞	Program	BT	Start Time	Completion Time (CT) ***	Turnaround Time (TAT = CT - AT) 🛣	Waiting Time (WT = TAT - BT)
Fast Coders	Simple Calculator a	2	0	2	2 - 0 = 2	2 - 2 = 0

Team 🥞	Program	BT	Start Time	Completion Time (CT) ***	Turnaround Time (TAT = CT - AT) 🛣	Waiting Time (WT = TAT - BT)
Lazy Devs	Data Processing	4	2	6	6 - 0 = 6	6 - 4 = 2
Code Lords	ML Model	8	6	14	14 - 0 = 14	14 - 8 = 6

Total Values for SJF:

- X Total Finish Time (TFT) = 14 mins (Big task delayed! ₩)
- \times Total Waiting Time (TWT) = 0 + 2 + 6 = 8 mins
- X Total Turnaround Time (TAT) = 2 + 6 + 14 = 22 mins
- Chef Max-Min's Strategy (Longest Job First)
- Max-Min Says: "Screw the tiny tasks, let's start with the BIG BOYS! 6."

Execution Order in Max-Min:

- 1 Machine Learning Model (8 mins)
- 2 Data Processing (4 mins)
- 3 Simple Calculator (2 mins)

Team ĕ	Program	BT	Start Time	Completion Time (CT) ***	Turnaround Time (TAT = CT - AT)	Waiting Time (WT = TAT - BT)
Code Lords	ML Model	8	0	8	8 - 0 = 8	8 - 8 = 0
Lazy Devs	Data Processing	4	8	12	12 - 0 = 12	12 - 4 = 8
Fast Coders	Simple Calculator •	2	12	14	14 - 0 = 14	14 - 2 = 12

Total Values for Max-Min:

- ✓ Total Finish Time (TFT) = 14 mins (Same, but ML model finished EARLIER! 🚀)
- ✓ Total Waiting Time (TWT) = 0 + 8 + 12 = 20 mins (More waiting, but worth it! 🥩)
- **▼ Total Turnaround Time (TAT)** = 8 + 12 + 14 = 34 mins (Worse for small tasks, but ML finishes FIRST!)

SJF vs. Max-Min: The Ultimate Scoreboard

Metric 📊	SJF Q (Fastest First)	Max-Min (Slowest First)	Winner
Execution Time (TET)	Same	Same	🤝 Tie
Waiting Time (TWT)	✓ 8 mins	X 20 mins	SJF
Turnaround Time (TAT)	✓ 22 mins	× 34 mins	SJF
Finish Time (TFT)	✓ 14 mins	✓ 14 mins	🤝 Tie
Priority (Big Tasks Finish Early)	X ML Model takes too long!	✓ ML Model Done Faster!	Max- Min

FINAL VERDICT: MAX-MIN WINS! * (For Priority Tasks)

- If your goal is to finish BIGGER, more important tasks EARLIER, Max-Min is the KING!
- If you just want the smallest tasks done fast, go for SJF.

Moral of the Story:

- SJF is better for getting everything done faster.
- Max-Min is better when HIGH-priority tasks MUST finish first.

★ Scenario 3: The Grand Hotel CPU

Imagine a hotel with a single elevator that serves VIP guests (big jobs) and regular guests (small jobs).

- VIP guests (long burst time) pay more 6, so they need priority.
- Regular guests (short burst time) just want to reach their rooms quickly.
- Some guests arrive later than others (different arrival times).

Guest List (Processes)

Guest 🖺	Task 🔼	Burst Time (BT) 🗶	Arrival Time (AT)
⇒ Speedy Coder	Debugging Small Script	3 mins	0
Al Researcher	Training Large Model	10 mins	2
📊 Data Analyst	Processing Reports	4 mins	1
Gamer	Running Heavy Graphics	6 mins	3

🔻 SJF Says: "Short jobs first, always!"

Execution Order:

- 1 Speedy Coder (3 mins)
- 2 Data Analyst (4 mins)
- 3 Gamer (6 mins)
- 4 Al Researcher (10 mins)

Guest 🖺	Task 🔼	BT	Start Time	Completion Time (CT) ***	Turnaround Time (TAT = CT - AT) 🛣	Waiting Time (WT = TAT - BT)
Speedy Coder	Debugging	3	0	3	3 - 0 = 3	3 - 3 = 0
Data Analyst	Reports	4	3	7	7 - 1 = 6	6 - 4 = 2
M Gamer	Graphics	6	7	13	13 - 3 = 10	10 - 6 = 4
Al Researcher	ML Training	10	13	23	23 - 2 = 21	21 - 10 = 11

Total Values for SJF:

- ✓ Total Finish Time (TFT) = 23 mins (Not bad! 🥙)
- **✓** Total Waiting Time (TWT) = 0 + 2 + 4 + 11 = 17 mins
- **✓** Total Turnaround Time (TAT) = 3 + 6 + 10 + 21 = 40 mins
- BUT WAIT... The VIP AI Researcher waited 11 mins before even starting!! BAD for priority jobs.

- Case 2: Max-Min Big First, Everyone Waits!
- Max-Min Says: "BIG jobs get priority, sorry small fries!"

Execution Order:

- 1 Al Researcher (10 mins)
- 2 Gamer (6 mins)
- 3 Data Analyst (4 mins)
- Speedy Coder (3 mins)

Guest 🖺	Task <u>F</u>	BT	Start Time	Completion Time (CT) ***	Turnaround Time (TAT = CT - AT) 🛣	Waiting Time (WT = TAT - BT)
Al Researcher	ML Training	10	0	10	10 - 2 = 8	8 - 10 = -2 (???)
Gamer	Graphics	6	10	16	16 - 3 = 13	13 - 6 = 7
Data Analyst	Reports	4	16	20	20 - 1 = 19	19 - 4 = 15
Speedy Coder	Debugging	3	20	23	23 - 0 = 23	23 - 3 = 20

Total Values for Max-Min:

- X Total Finish Time (TFT) = 23 mins (Same, but worse TAT!)
- \times Total Waiting Time (TWT) = -2 + 7 + 15 + 20 = 40 mins (WHAT!? •)
- \times Total Turnaround Time (TAT) = 8 + 13 + 19 + 23 = 63 mins (Yikes!)
- **BAD NEWS: Speedy Coder waited FOREVER.** Al Researcher finished early, but **short jobs suffered** HARD.
- Case 3: MIXED STRATEGY Balance Both!
- New Rule:
 - Biggest job shouldn't starve.
 - Shortest jobs should get quick wins.
 - Medium jobs? Let's balance!

Execution Order:

- **1** Speedy Coder (3 mins) **☑** (Quick win!)
- 2 Al Researcher (10 mins) ✓ (Gets priority!)
- 3 Data Analyst (4 mins)
- Gamer (6 mins)

Guest 🖺	Task 🔼	BT	Start Time	Completion Time (CT) ***	Turnaround Time (TAT = CT - AT)	Waiting Time (WT = TAT - BT)
Speedy Coder	Debugging	3	0	3	3 - 0 = 3	3 - 3 = 0
Al Researcher	ML Training	10	3	13	13 - 2 = 11	11 - 10 = 1
Data Analyst	Reports	4	13	17	17 - 1 = 16	16 - 4 = 12
Gamer	Graphics	6	17	23	23 - 3 = 20	20 - 6 = 14

Total Values for Mixed Strategy:

- **✓** Total Finish Time (TFT) = 23 mins (Same! But better balance!)
- ✓ Total Waiting Time (TWT) = 0 + 1 + 12 + 14 = 27 mins (WAY better!)
- **✓** Total Turnaround Time (TAT) = 3 + 11 + 16 + 20 = 50 mins (Better than Max-Min!)

BEST OF BOTH WORLDS!

- Al Researcher doesn't wait forever.
- Speedy Coder gets fast service.
- Medium jobs don't get bullied.

FINAL SHOWDOWN: The Scoreboard

Metric 📊	SJF Q	Max-Min	Mixed Strategy	Winner
Execution Time (TET)	Same	✓ Same	✓ Same	🤝 Tie
Waiting Time (TWT)	✓ 17 mins	X 40 mins	✓ 27 mins	SJF

Metric 📊	SJF Q	Max-Min	Mixed Strategy	Winner
Turnaround Time (TAT)	✓ 40 mins	× 63 mins	✓ 50 mins	Z SJF & Mixed
Big Jobs Finish Early?	× No	✓ Yes	✓ Yes	Max-Min & Mixed

FINAL VERDICT: MIXED STRATEGY WINS!

- Best balance for ALL tasks.
- VIP jobs get priority without starving small tasks.
- Still maintains a good finish time.

FINAL WORDS:

- "Sometimes, life isn't all about the smallest or biggest... it's about BALANCE!"
- SJF wins for small jobs, Max-Min wins for big jobs, but Mixed Strategy wins for EVERYTHING!

Conclusion:

- **ó** For small & quick tasks → Use SJF!
- **l** For high-priority long tasks → Use Max-Min!
- For an all-round solution → Mixed Strategy WINS!