ARCHITECTURE AND TRAINING

$$w_1 = w_1 + \eta * \frac{\partial J}{\partial f} \frac{\partial f}{\partial q_1} \frac{\partial q_1}{\partial w_1}$$

$$F_i \leftarrow F_i - \eta \frac{\partial J}{\partial F_i} \qquad \frac{\partial J}{\partial F_i} = \sum_{k=1}^M \frac{\partial J}{\partial o_k} \frac{\partial o_k}{\partial F_i}$$

$$o[n] = (x \circledast F)[n] = \sum_{i=-\omega}^{\omega} x[i+n+\omega] * F[i+\omega]$$

 $F_1 \mid F_2 \mid F_3$

$$F_i \leftarrow F_i - \eta \frac{\partial J}{\partial F_i} \qquad \qquad \frac{\partial J}{\partial F_i} = \sum_{k=1}^M \frac{\partial J}{\partial o_k} \frac{\partial o_k}{\partial F_i}$$

$$o[n] = (x \circledast F)[n] = \sum_{i=-\omega}^{\omega} x[i+n+\omega] * F[i+\omega]$$

$$\frac{\partial J}{\partial F_1} = \frac{\partial J}{\partial o_0} \frac{\partial o_0}{\partial F_1} + \frac{\partial J}{\partial o_1} \frac{\partial o_1}{\partial F_1}$$

$$F_{i} \leftarrow F_{i} - \eta \frac{\partial J}{\partial F_{i}}$$

$$\partial J \qquad \stackrel{M}{\longrightarrow} \partial J \partial o$$

$$\frac{\partial J}{\partial F_i} = \sum_{k=1}^{M} \frac{\partial J}{\partial o_k} \frac{\partial o_k}{\partial F_i}$$

$$o[n] = (x \circledast F)[n] = \sum_{i=-\omega}^{\omega} x[i+n+\omega] * F[i+\omega]$$

$$\frac{\partial J}{\partial F_1} = \frac{\partial J}{\partial o_0} \frac{\partial o_0}{\partial F_1} + \frac{\partial J}{\partial o_1} \frac{\partial o_1}{\partial F_1}$$

$$F_i \leftarrow F_i - \eta \frac{\partial J}{\partial F_i}$$

$$\frac{\partial J}{\partial F_i} = \sum_{k=1}^{M} \frac{\partial J}{\partial o_k} \frac{\partial o_k}{\partial F_i}$$

$$o[n] = (x \circledast F)[n] = \sum_{i=-\omega}^{\omega} x[i+n+\omega] * F[i+\omega]$$

$$\frac{\partial J}{\partial F_1} = \frac{\partial J}{\partial o_0} \frac{\partial o_0}{\partial F_1} + \frac{\partial J}{\partial o_1} \frac{\partial o_1}{\partial F_1}$$

$$o_0 = F_0 x_0 + F_1 x_1$$
$$o_1 = F_0 x_1 + F_1 x_2$$

$$F_{i} \leftarrow F_{i} - \eta \frac{\partial J}{\partial F_{i}}$$

$$\frac{\partial J}{\partial F_{i}} = \sum_{k=1}^{M} \frac{\partial J}{\partial o_{k}} \frac{\partial o_{k}}{\partial F_{i}}$$

$$o[n] = (x \circledast F)[n] = \sum_{i=-\omega}^{\omega} x[i+n+\omega] * F[i+\omega]$$

$$\frac{\partial J}{\partial F_1} = \frac{\partial J}{\partial o_0} \frac{\partial o_0}{\partial F_1} + \frac{\partial J}{\partial o_1} \frac{\partial o_1}{\partial F_1}$$

$$o_0 = F_0 x_0 + F_1 x_1$$
$$o_1 = F_0 x_1 + F_1 x_2$$

$$\frac{\partial o_0}{\partial F_1} = x_1$$
$$\frac{\partial o_1}{\partial F_1} = x_2$$

$$F_{i} \leftarrow F_{i} - \eta \frac{\partial J}{\partial F_{i}}$$

$$\partial J = \frac{M}{2} \partial J \partial \sigma$$

$$\frac{\partial J}{\partial F_i} = \sum_{k=1}^{M} \frac{\partial J}{\partial o_k} \frac{\partial o_k}{\partial F_i}$$

$$o[n] = (x \circledast F)[n] = \sum_{i=-\omega}^{\omega} x[i+n+\omega] * F[i+\omega]$$

POOLING

1	1	2	4
5	6	9	3
3	2	4	4
1	2	0	7

max pool with 2x2 filters and stride 2

6	9	
3	7	

CHRISTIAN SZEGEDY ET. AL. GOING DEEPER WITH CONVOLUTIONS.

CHOOSING AN ARCHITECTURE

HOW MANY LAYERS?

HOW MANY NODES PER LAYER?

LEARNING RATE

DROPOUT?

WHAT ACTIVATION FUNCTION(S)?

HOW MANY CONVOLUTION LAYERS?

FILTER SIZE?

STRIDE?

POOLING?

PRE-TRAINED MODELS

PRE-TRAINED MODELS

PRETRAINED MODELS

J. Z. TAYLOR, HONOR'S THESIS, DAVIDSON COLLEGE

EXAMPLE WORKFLOW

EXAMPLE WORKFLOW

