群體智慧期末報告

多重影分身之PSO

B093040068 黃梓濤 授課老師 蔡崇煒老師

BUG 解決

錯誤程式碼

```
// update Global Best
if (currentFitness <= gBestFitness)

{
    gBest = X[i];
    gBestFitness = currentFitness;
}</pre>
```

全局最佳解gBest 和 粒子 X[i] 共享相同的記憶體地址 當粒子X[i] 更新時 gBest 也會跟著更新

修正程式碼

```
// update Global Best
if (currentFitness < gBestFitness)
{
    for (int j = 0; j < _numDim; j++)
        {
            gBest[j] = X[i][j];
        }
        gBestFitness = currentFitness;
}</pre>
```

全局最佳解gBest 複製粒子 X[i]值

多重影分身是s級禁術,使用這招需要累積足夠的查克拉,因為吸收大自然的查克拉需要集中精神,所以只有gBest 沒有變化時才能開始蓄力

忍者做任務需要十分謹慎,每次只會隨機安排10名忍者發動技能。

忍村會根據任務難度分派對應水平的忍者,因此忍者的多重影分身數量剛好是任務維度的50%,分出來的分身會在隨機維度上移動隨機的距離[0,1]

本體能感應到所有分身的記憶,當本體感應到分身的位置是他到過的地方中最 接近暗殺目標時,本體便會瞬移過去。

實驗環境

g++ 編譯器版本 Apple clang version 15.0.0

g++ flags -Wall -Wextra -std=c++11

CPU Apple silicon M2

OS macOS 14.4.1

執行指令

./run.sh <function_type> <run> <dimension> <k> <c1> <c2> <numParticle>

實驗參數

評估次數 維度*10000

維度 2,10,30

個體數量 50

收歛表現

收歛表現

實驗結果

原來版本

ACKLEY_2D 4.441E-16 4.441E-16 4.441E-16 ACKLEY_10D 4.441E-16 4.441E-16 4.441E-16	L6
ACKLEY_10D 4.441E-16 4.441E-16 4.441E-1	
	16
ACKLEY_30D 4.441E-16 4.441E-16 4.441E-1	
BENTCIGAR_2D 0.000E+00 0.000E+00 0.000E+0	00
BENTCIGAR_10D 6.667E+02 1.000E+04 0.000E+0	00
BENTCIGAR_30D 6.667E+02 1.000E+04 0.000E+0	00
DROPWAVE_2D	00
DROPWAVE_10D	00
DROPWAVE_30D	00
HAPPYCAT_2D 8.854E-03 4.474E-02 2.759E-0)5
HAPPYCAT_10D 1.498E-01 3.072E-01 4.384E-0)2
HAPPYCAT_30D 5.046E-01 7.084E-01 3.339E-0)1
MICHALEWICZ_2D -1.801E+00 -1.801E+00 -1.801E+	00
MICHALEWICZ_10D -8.059E+00 -5.846E+00 -9.438E+	00
MICHALEWICZ_30D -2.440E+01 -1.861E+01 -2.779E+	01

加入局部搜索版本

FILE_NAME	AVG	WORST	BEST
Ackley_2D	4.441E-16	4.441E-16	4.441E-16
Ackley_10D	4.441E-16	4.441E-16	4.441E-16
Ackley_30D	4.441E-16	4.441E-16	4.441E-16
BentCigar_2D	0.000E+00	0.000E+00	0.000E+00
BentCigar_10D	5.997E-54	1.799E-52	0.000E+00
BentCigar_30D	5.376E-03	1.198E-01	0.000E+00
DropWave_2D	0.000E+00	0.000E+00	0.000E+00
DropWave_10D	0.000E+00	0.000E+00	0.000E+00
DropWave_30D	0.000E+00	0.000E+00	0.000E+00
HappyCat_2D	8.700E-03	4.418E-02	1.208E-06
HappyCat_10D	1.248E-01	2.027E-01	5.168E-02
HappyCat_30D	3.478E-01	4.480E-01	2.230E-01
Michalewicz_2D	-1.801E+00	-1.801E+00	-1.801E+00
Michalewicz_10D	-9.644E+00	-9.551E+00	-9.660E+00
Michalewicz_30D	-2.814E+01	-2.603E+01	-2.930E+01

實驗結果

原來版本

FILE_NAME	AVG	WORST	BEST
Rastrigin_2D	0.000e+00	0.000e+00	0.000e+00
Rastrigin_10D	8.290e-01	2.487e+01	0.000e+00
Rastrigin_30D	2.428e+01	8.677e+01	0.000e+00
Rosenbrock_2D	0.000e+00	0.000e+00	0.000e+00
Rosenbrock_10D	1.203e-08	3.608e-07	0.000e+00
Rosenbrock_30D	2.384e+01	2.663e+01	2.055e+01
Schwefel_2D	3.947e+01	1.184e+02	2.546e-05
Schwefel_10D	5.981e+02	1.192e+03	1.273e-04
Schwefel_30D	2.753e+03	5.136e+03	1.421e+03
Step_2D	0.000e+00	0.000e+00	0.000e+00
Step_10D	0.000e+00	0.000e+00	0.000e+00
Step_30D	0.000e+00	0.000e+00	0.000e+00
Zakharov_2D	0.000e+00	0.000e+00	0.000e+00
Zakharov_10D	0.000e+00	0.000e+00	0.000e+00
Zakharov_30D	2.393e+01	2.009e+02	0.000e+00

加入局部搜索版本

FILE_NAME	AVG	WORST	BEST
Rastrigin_2D	0.000e+00	0.000e+00	0.000e+00
Rastrigin_10D	0.000e+00	0.000e+00	0.000e+00
Rastrigin_30D	6.632e+00	2.487e+01	0.000e+00
Rosenbrock_2D	0.000e+00	0.000e+00	0.000e+00
Rosenbrock_10D	4.834e-30	6.163e-29	0.000e+00
Rosenbrock_30D	1.335e+01	1.693e+01	1.509e-05
Schwefel_2D	3.157e+01	1.184e+02	2.546e-05
Schwefel_10D	7.049e+02	1.190e+03	2.369e+02
Schwefel_30D	2.167e+03	3.813e+03	1.306e+03
Step_2D	0.000e+00	0.000e+00	0.000e+00
Step_10D	0.000e+00	0.000e+00	0.000e+00
Step_30D	0.000e+00	0.000e+00	0.000e+00
Zakharov_2D	0.000e+00	0.000e+00	0.000e+00
Zakharov_10D	0.000e+00	0.000e+00	0.000e+00
Zakharov_30D	0.000e+00	0.000e+00	0.000e+00

結果分析

通過對該算法在多個標準測試函數上的實驗驗證,發現改進後的PSO算法相對於經典 PSO算法具有更好的全局搜索能力和收斂速度。改進後的算法能夠在大多數情況下取 得更好的平均、最差和最佳解,特別是在高維度問題上顯示出明顯的優勢。

此外,實驗結果還表明,改進後的PSO算法能夠更穩定地接近最優解,避免了陷入局部最優解的情況。總的來說,基於局部搜索改進的PSO算法在解決複雜優化問題時表現出顯著的優越性。

