MAF 105 - Iniciação à Estatística

Prof. Fernando de Souza Bastos

Instituto de Ciências Exatas e Tecnológicas Universidade Federal de Viçosa Campus UFV - Florestal

17 de outubro de 2018

Sumário

- Distribuições Contínuas
- Distribuição Uniforme
- Oistribuição Normal
- Uso da Tabela

Distribuições Contínuas

Iremos estudar dois modelos probabilísticos para variáveis aleatórias contínuas, ou seja, variáveis para as quais os possíveis valores pertencem a um intervalo de números reais.

Distribuições Contínuas

Iremos estudar dois modelos probabilísticos para variáveis aleatórias contínuas, ou seja, variáveis para as quais os possíveis valores pertencem a um intervalo de números reais.

Definição: Uma função X, definida sobre o espaço amostral Ω e assumindo valores num intervalo de números reais, é dita uma variável aleatória contínua.

Distribuição Uniforme

O modelo uniforme é o modelo mais simples para v.a. contínuas.

Distribuição Uniforme

O modelo uniforme é o modelo mais simples para v.a. contínuas.

Definição: Uma v.a. X tem distribuição uniforme no intervalo $[\alpha, \beta]$ se sua f.d.p. é dada por:

$$f(x; \alpha, \beta) = \begin{cases} \frac{1}{\beta - \alpha}, & \text{se } \alpha \leq x \leq \beta; \\ 0, & \textit{Caso contrio.} \end{cases}$$

Figura: Distribuição uniforme no intervalo $[\alpha, \beta]$

Momentos:

$$E(X) = \frac{\alpha + \beta}{2}$$
 e $Var(X) = \frac{(\beta - \alpha)^2}{12}$

A função de distribuição acumulada da uniforme é fácil de ser encontrada e é dada por:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx = \begin{cases} 0, & \text{se } x < \alpha; \\ \frac{x - \alpha}{\beta - \alpha}, & \text{se } \alpha \le x < \beta; \\ 1, & \text{se } x \ge \beta. \end{cases}$$

Figura: f.d.a. de uma v.a. uniforme no intervalo $[\alpha, \beta]$

Vamos introduzir, agora, um modelo fundamental em probabilidades e inferência estatística. Suas origens remontam a Gauss em seus trabalhos sobre erros de observações astronômicas, por volta de 1810, donde o nome de distribuição gaussiana para tal modelo.

Distribuição Normal

Considere o peso, em kg, de 2000 jovens selecionados ao acaso entre todos os alunos da UFV, cujo histograma é apresentado:

A análise do histograma indica que:

- a distribuição dos valores é aproximadamente simétrica em torno de 70 kg;
- a maioria dos valores encontra-se no intervalo (60;80);
- existe uma pequena proporção de valores abaixo de 55kg e acima de 85kg.

A distribuição normal (algumas vezes chamada de distribuição de Gauss) é a distribuição contínua mais habitualmente utilizada no campo da estatística. Ela é de vital importância na estatística, por três razões principais:

 Inúmeras variáveis contínuas comuns no mundo dos negócios possuem distribuições que se assemelham estreitamente à distribuição normal.

A distribuição normal (algumas vezes chamada de distribuição de Gauss) é a distribuição contínua mais habitualmente utilizada no campo da estatística. Ela é de vital importância na estatística, por três razões principais:

- Inúmeras variáveis contínuas comuns no mundo dos negócios possuem distribuições que se assemelham estreitamente à distribuição normal.
- A distribuição normal pode ser utilizada para fazer aproximações para várias distribuições de probabilidades discretas.

A distribuição normal (algumas vezes chamada de distribuição de Gauss) é a distribuição contínua mais habitualmente utilizada no campo da estatística. Ela é de vital importância na estatística, por três razões principais:

- Inúmeras variáveis contínuas comuns no mundo dos negócios possuem distribuições que se assemelham estreitamente à distribuição normal.
- A distribuição normal pode ser utilizada para fazer aproximações para várias distribuições de probabilidades discretas.
- A distribuição normal proporciona a base para a inferência estatística clássica, em razão de sua relação com o Teorema do Limite Central.

A distribuição normal é representada pelo clássico formato de sino. Na distribuição normal, você pode calcular a probabilidade de que venham a ocorrer valores dentro dos limites de determinadas amplitudes ou intervalos. No entanto, uma vez que a probabilidade para variáveis contínuas é mensurada como uma área abaixo da curva, a probabilidade exata de um valor específico, a partir de uma distribuição contínua tal como a distribuição normal, é zero.

A distribuição normal possui várias propriedades teóricas importantes:

- Ela é simétrica, sua média aritmética, sua mediana e sua moda são, consequentemente, iguais.
- Em sua aparência, ela tem o formato de um sino.
- Sua amplitude interquartil é igual a 1,349 desvio-padrão.
 Consequentemente, os 50% valores centrais estão contidos dentro dos limites de um intervalo que tem como valores fronteiriços dois terços de um desvio-padrão abaixo da média aritmética e dois terços de um desvio-padrão acima da média aritmética.
- Possui uma amplitude infinita ($\infty \le X \le \infty$).

Função Densidade para a probabilidade normal

$$f(X) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(X-\mu)^2}{2\sigma^2}\right], X \in \mathbb{R},$$
 (1)

em que μ é a média aritimética e σ é o desvio-padrão.

Embora a Equação possa parecer complicada, as probabilidades da variável aleatória X dependem somente de dois parâmetro, a média aritmética, μ , e o desvio-padrão, σ . Todas as vezes que você determina valores específicos para μ e σ , é gerada uma distribuição de probabilidade normal diferente.

Comparação de distribuições normais

Densidade de Probabilidade

Cálculo de Probabilidades

$$P(a \le X \le b)$$

Se
$$X \sim \textit{N}(\mu, \sigma^2)$$
 então $Z = \frac{X - \mu}{\sigma} \sim \textit{N}(0, 1)$.

A variável $Z \sim N(0,1)$ denomina-se normal padrão ou normal reduzida. Notemos que:

$$P(a \le X \le b) = P\left(\frac{a-\mu}{\sigma} \le \frac{X-\mu}{\sigma} \le \frac{b-\mu}{\sigma}\right)$$

e, dado a variável $Z \sim N(0,1)$, podemos obter $X \sim N(\mu, \sigma^2)$ através da transformação inversa:

$$X = \mu + Z\sigma$$

Exemplos

Dado $Z \sim N(0,1)$, calcule $P(Z \le 0.5)$

Calcule:

- $P(0 < Z \le 1.71) = ?$
- $P(1.32 \le Z \le 1.79) = ?$
- $P(Z \ge 1.5) = ?$
- P(Z < -1.3) = ?
- $P(-1.5 \le Z \le 1.5) = ?$
- P(-1.32 < Z < 0) = ?
- $P(-2.3 < Z \le -1.49) = ?$
- $P(-1 \le Z \le 2) = ?$
- $P(Z \le z) = 0.975$, qual o valor de z?
- $P(0 < Z \le z) = 0.4975$, qual o valor de z?
- $P(Z \ge z) = 0.3, \text{ qual o valor de } z?$
- $P(Z \ge z) = 0.975$, qual o valor de z?

- $P(0 < Z \le 1.71) = 0.4564$
- $P(1.32 \le Z \le 1.79) = 0.0567$
- $P(Z \ge 1.5) = 0.0668$
- $P(Z \le -1.3) = 0.0968$
- $P(-1.5 \le Z \le 1.5) = 0.8664$
- P(-1.32 < Z < 0) = 0.4066
- $P(-2.3 < Z \le -1.49) = 0.0574$
- $P(-1 \le Z \le 2) = 0.8186$
- **9** $P(Z \le z) = 0.975$, o valor de z é 1.96.
- **1** $P(0 < Z \le z) = 0.4975$, o valor de z é 2.81.
- **1** $P(Z \ge z) = 0.3$, o valor de z é 0.53.
- $P(Z \ge z) = 0.975$, o valor de z é -1.96.

Seja $X \sim N(10, 64)$. Calcule:

- $P(6 < X \le 12) = ?$
- ② $k \text{ tal que } P(X \ge k) = 0.05$
- **1** k tal que $P(X \le k) = 0.025$
- $P(Z \le -1.3) = ?$
- $P(-1.5 \le Z \le 1.5) = ?$
- P(-1.32 < Z < 0) = ?
- $P(-2.3 < Z \le -1.49) = ?$
- $P(-1 \le Z \le 2) = ?$
- **9** $P(Z \le z) = 0.975$, qual o valor de *z*?
- $P(0 < Z \le z) = 0.4975$, qual o valor de z?
- $P(Z \ge z) = 0.3$, qual o valor de z?
- $P(Z \ge z) = 0.975$, qual o valor de z?

```
> dir.create("exemplos")
> png(file="exemplos/qnorm%1d.png", width=500,
+ height=250)
> par(mar=c(4,4,1,1))
```

```
> for(q in seq(0, 4, 1=100)){
    curve(dnorm(x, 0, 1), -5, 5, ylab="f(z)", xlab="z")
+
    x \leftarrow seq(0, q, by=0.01)
+
+ fx \leftarrow dnorm(x, 0, 1)
   polygon(c(x, rev(x)),
+
             c(fx, rep(0, length(fx))),
+
             col="gray90")
+
    abline(v=0, lty=2)
+
+
    Pr \leftarrow round(pnorm(q, 0, 1)-0.5, digits=3)
    qq <- round(q, digits=3)</pre>
+
+
    legend("topleft", bty="n", fill="gray90",
            legend=substitute(P(0<^{\sim}Z<=^{\sim}q)==Pr,
+
                                 list(q=qq, Pr=Pr)))}
> dev.off()
```

```
> require(xtable)
> options(OutDec=",")
> q < - seq(0,3.99,by=0.01)
> p <- pnorm(q) - 0.5
> m <- matrix(p, byrow=TRUE, ncol=10)
> rownames(m) <- gsub("\\.", ",",
                       formatC(seq(0,3.9,0.1),
                               dig=1, format="f"))
> colnames(m) <- 0:9/100
```

	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,00000	0,00399	0,00798	0,01197	0,01595	0,01994	0,02392	0,02790	0,03188	0,03586
0,1	0,03983	0,04380	0,04776	0,05172	0,05567	0,05962	0,06356	0,06749	0,07142	0,07535
0,2	0,07926	0,08317	0,08706	0,09095	0,09483	0,09871	0,10257	0,10642	0,11026	0,11409
0,3	0,11791	0,12172	0,12552	0,12930	0,13307	0,13683	0,14058	0,14431	0,14803	0,15173
0,4	0,15542	0,15910	0,16276	0,16640	0,17003	0,17364	0,17724	0,18082	0,18439	0,18793
0,5	0,19146	0,19497	0,19847	0,20194	0,20540	0,20884	0,21226	0,21566	0,21904	0,22240
0,6	0,22575	0,22907	0,23237	0,23565	0,23891	0,24215	0,24537	0,24857	0,25175	0,25490
0,7	0,25804	0,26115	0,26424	0,26730	0,27035	0,27337	0,27637	0,27935	0,28230	0,28524
0,8	0,28814	0,29103	0,29389	0,29673	0,29955	0,30234	0,30511	0,30785	0,31057	0,31327
0,9	0,31594	0,31859	0,32121	0,32381	0,32639	0,32894	0,33147	0,33398	0,33646	0,33891
1,0	0,34134	0,34375	0,34614	0,34849	0,35083	0,35314	0,35543	0,35769	0,35993	0,36214
1,1	0,36433	0,36650	0,36864	0,37076	0,37286	0,37493	0,37698	0,37900	0,38100	0,38298
1,2	0,38493	0,38686	0,38877	0,39065	0,39251	0,39435	0,39617	0,39796	0,39973	0,40147
1,3	0,40320	0,40490	0,40658	0,40824	0,40988	0,41149	0,41309	0,41466	0,41621	0,41774
1,4	0,41924	0,42073	0,42220	0,42364	0,42507	0,42647	0,42785	0,42922	0,43056	0,43189
1,5	0,43319	0,43448	0,43574	0,43699	0,43822	0,43943	0,44062	0,44179	0,44295	0,44408
1,6	0,44520	0,44630	0,44738	0,44845	0,44950	0,45053	0,45154	0,45254	0,45352	0,45449
1,7	0,45543	0,45637	0,45728	0,45818	0,45907	0,45994	0,46080	0,46164	0,46246	0,46327
1,8	0,46407	0,46485	0,46562	0,46638	0,46712	0,46784	0,46856	0,46926	0,46995	0,47062
1,9	0,47128	0,47193	0,47257	0,47320	0,47381	0,47441	0,47500	0,47558	0,47615	0,47670

	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
2,0	0,47725	0,47778	0,47831	0,47882	0,47932	0,47982	0,48030	0,48077	0,48124	0,48169
2,1	0,48214	0,48257	0,48300	0,48341	0,48382	0,48422	0,48461	0,48500	0,48537	0,48574
2,2	0,48610	0,48645	0,48679	0,48713	0,48745	0,48778	0,48809	0,48840	0,48870	0,48899
2,3	0,48928	0,48956	0,48983	0,49010	0,49036	0,49061	0,49086	0,49111	0,49134	0,49158
2,4	0,49180	0,49202	0,49224	0,49245	0,49266	0,49286	0,49305	0,49324	0,49343	0,49361
2,5	0,49379	0,49396	0,49413	0,49430	0,49446	0,49461	0,49477	0,49492	0,49506	0,49520
2,6	0,49534	0,49547	0,49560	0,49573	0,49585	0,49598	0,49609	0,49621	0,49632	0,49643
2,7	0,49653	0,49664	0,49674	0,49683	0,49693	0,49702	0,49711	0,49720	0,49728	0,49736
2,8	0,49744	0,49752	0,49760	0,49767	0,49774	0,49781	0,49788	0,49795	0,49801	0,49807
2,9	0,49813	0,49819	0,49825	0,49831	0,49836	0,49841	0,49846	0,49851	0,49856	0,49861
3,0	0,49865	0,49869	0,49874	0,49878	0,49882	0,49886	0,49889	0,49893	0,49896	0,49900
3,1	0,49903	0,49906	0,49910	0,49913	0,49916	0,49918	0,49921	0,49924	0,49926	0,49929
3,2	0,49931	0,49934	0,49936	0,49938	0,49940	0,49942	0,49944	0,49946	0,49948	0,49950
3,3	0,49952	0,49953	0,49955	0,49957	0,49958	0,49960	0,49961	0,49962	0,49964	0,49965
3,4	0,49966	0,49968	0,49969	0,49970	0,49971	0,49972	0,49973	0,49974	0,49975	0,49976
3,5	0,49977	0,49978	0,49978	0,49979	0,49980	0,49981	0,49981	0,49982	0,49983	0,49983
3,6	0,49984	0,49985	0,49985	0,49986	0,49986	0,49987	0,49987	0,49988	0,49988	0,49989
3,7	0,49989	0,49990	0,49990	0,49990	0,49991	0,49991	0,49992	0,49992	0,49992	0,49992
3,8	0,49993	0,49993	0,49993	0,49994	0,49994	0,49994	0,49994	0,49995	0,49995	0,49995
3,9	0,49995	0,49995	0,49996	0,49996	0,49996	0,49996	0,49996	0,49996	0,49997	0,49997