

Big Data Assignment #4 Multinomial Logistic Regression: Student Grade

Multinomial Logistic Regression

Regresi logistik merupakan salah satu metode yang dapat digunakan untuk mencari hubungan variabel respon yang bersifat dichotomous (berskala nominal atau ordinal dengan dua kategori) atau polychotomous (mempunyai skala nominal atau ordinal dengan lebih dari dua kategori) dengan satu atau lebih variabel prediktor dan variabel respon bersifat kontinyu atau kategorik. Regresi logistik multinomial atau disebut juga model logit politomus adalah model regresi yang digunakan untuk menyelesaikan kasus regresi dengan variabel dependen berupa data kualitatif berbentuk multinomial (lebih dari dua kategori) dengan satu atau lebih variabel independen.

Student Grade Dataset

Info

Dataset berisi sekumpulan data terkait kebiasaan dari siswa sekolah menengah atas dengan mata pelajaran Matematika dan hasil nilai akhir mata pelajaran dimaksud.

Sumber Dataset:

https://www.kaggle.com/uciml/student-alcohol-consumption

Business Understanding

Ruang Lingkup Bisnis: Education

Suatu sekolah menengah atas akan melakukan perhitungan atau prediksi terkait kelulusan nilai yang akan didapatkan oleh siswanya. Dengan memperhatikan variabel-variabel yang dapat mempengaruhi nilai kelulusan, terutama pengaruh penggunaan alkohol di kehidupan sehari-hari. Output dari perhitungan ini akan menghasilkan formula untuk dapat memprediksi kelulusan dari siswa pada sekolah dimaksud.

UB

Field Name	Description	Data Type
school	Nama sekolah	object
sex	Jenis kelamin	object
age	Usia	int64
address	Alamat siswa	object
famsize	Jumlah saudara	object
Pstatus	Hubungan kedua orang tua	object
Medu	Pendidikan ibu	int64
Fedu	Pendidikan ayah	int64
Mjob	Pekerjaan ibu	object
Fjob	Pekerjaan ayah	object

00

Field Name	Description	Data Type
reason	Alasan memilih sekolah	object
guardian	Wali siswa	object
traveltime	Waktu tempuh dari rumah ke sekolah	int64
studytime	Waktu belajar mingguan	int64
failures	Jumlah mengalami kegagalan	int64
schoolsup	Support pendidikan tambahan	object
famsup	Support keluarga	object
paid	Biaya ekstra	object
activities	Mengikuti ekstrakulikuler	object
nursery	Mengikuti sekolah keperawatan	object

Field Name	Description	Data Type
higher	Keinginan untuk mengambil pendidikan tinggi	object
internet	Akses internet dirumah	object
romantic	Memiliki hubungan romantis	int64
famrel	Kualitas hubungan keluarga	int64
freetime	Waktu luang setelah sekolah	int64
goout	Menghabiskan waktu bersama teman	int64
Dalc	Konsumsi alkohol harian	int64
Walc	Konsumsi alkohol mingguan	int64
health	Kondisi kesehatan	int64
absences	Jumlah absen	int64

Field Name	Description	Data Type
G1	Nilai grade 1	int64
G2	Nilai grade 2	int64
G3	Nilai grade 3 - Kelulusan	int64

Data Preparation

Melakukan pengecekan data

Data dilakukan pengecekan terhadap informasi seperti jumlah data (baris) dan kolom, tipe data dari setiap kolom, data yang memuat nilai null.

Menghapus kolom dan mengecek deskripsi data

Penghapusan kolom dilakukan terhadao kolom dengan tipe data object. Dari total 32 kolom variabel independen, menjadi hanya 8 kolom variabel independen. Pengecekan deskripsi data dilakukan dengan menggunakan fungsi describe(). Hasil yang ditampilkan jumlah data, nilai min, max, standar deviasi, median, mean, kuartil bawah, kuartil tengah, dan kuartil atas.

Melakukan normalisasi

Normalisasi dilakukan dengan menggunakan fungsi **StandardScaler()**, dimana nilai *mean* dijadikan 0 dan *variance* 1. Normalisasi dilakukan terhadap seluruh data independen variabel.

Modeling (Training)

Mengecek data setiap kategori

Pengecekan terhadap koefisien dan intercept yang didapatkan dengan menggunakan menggunakan fungsi MNLogit().

Menghitung Nilai Intercept

Menghitung nilai intercept dengan menggunakan fungsi LogisticRegression(). Pada proses ini menghasilkan nilai intercept setiap kategori yang akan digunakan dalam perhitungan.

Menghitung Nilai Koefisien

Nilai koefisien didapatkan dengan fungsi coef_ pada pemodelan LogisticRegression() dengan parameter multi_class='multinomial'. Fungsi ini menghasilkan nilai koefisien pada setiap variabel independen pada setiap kategori.

Evaluation (Testing and Accuracy)

Pemodelan Manual

Pada tahap ini, pemodelan dilakukan secara manual dengan menggunakan rumus multinomial logistic regression, dimana dalam perhitungan ini membutuhkan nilai intercept, nilai koefisien variabel independen, dan nilai setiap variabel independen.

Penghitungan Akurasi

Pengecekan akurasi dengan menggunakan fungsi classification_report dan menghasilkan nilai akurasi 0.81. Nilai ini menunjukan bahwa akurasi pemodelan yang telah dibuat sebesar 81%.

UB

Deployment

Tahap ini dilakukan menggunakan bahasa pemrograman Python dengan IDE Kaggle.

Code secara keseluruhan terdapat pada link Github:

https://github.com/dyanaagustina/Learn-BigData/tree/Big-Data/Multinomial%20LR

Thank You