This print-out should have 21 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

If f is a differentiable function such that

$$f'(x) = (x^2 - 9)g(x),$$

where g(x) > 0 for all x, at which value(s) of x does f have a local minimum?

- 1. only at x = -3
- **2.** at both x = -9, 9
- 3. only at x = -9
- **4.** at both x = -3, 3
- 5. only at x = 9
- **6.** only at x = 3

002 10.0 points

Let f be the function defined by

$$f(x) = 5 - x^{2/3}.$$

Consider the following properties:

- A. has local maximum at x = 0;
- B. derivative exists for all x;
- C. concave up on $(-\infty, 0) \cup (0, \infty)$;

Which does f have?

- 1. A and C only
- 2. B only
- **3.** A and B only
- **4.** C only
- **5.** All of them
- **6.** A only

- 7. B and C only
- 8. None of them

003 10.0 points

Let f be the function defined by

$$f(x) = 1 + x^{2/3}$$
.

Consider the following properties:

- A. has local maximum at x = 0
- B. concave up on $(-\infty, 0) \cup (0, \infty)$

Which does f have?

- 1. B only
- 2. neither of them
- **3.** A only
- 4. both of them

004 10.0 points

Use the graph

of the derivative of f to locate the critical points x_0 at which f has a local minimum?

- 1. none of a, b, c
- **2.** $x_0 = c, a$
- 3. $x_0 = c$

4.
$$x_0 = a$$

5.
$$x_0 = b$$

6.
$$x_0 = a, b$$

7.
$$x_0 = b, c$$

8.
$$x_0 = a, b, c$$

005 10.0 points

Locate all the critical points of

$$f(x) = (x+3)^4(2-x)^3$$
.

1.
$$x = -2, -3, -\frac{1}{7}$$

2.
$$x = 2, -3, -\frac{1}{7}$$

3.
$$x = 2, -3, \frac{1}{7}$$

4.
$$x = 2, 3, -\frac{1}{7}$$

5.
$$x = 2, 3, \frac{1}{7}$$

6.
$$x = -2, 3, \frac{1}{7}$$

006 10.0 points

The derivative, f', of f has graph

graph of f'

Use it to locate the critical point(s) x_0 at which f has a local minimum?

1.
$$x_0 = b, c$$

2.
$$x_0 = b$$

3. none of
$$a$$
, b , c

4.
$$x_0 = a$$

5.
$$x_0 = a, b, c$$

6.
$$x_0 = c$$

7.
$$x_0 = a, b$$

8.
$$x_0 = c, a$$

007 10.0 points

The graph of a twice-differentiable function f is shown in

Which one of the following sets of inequalities is satisfied by f and its derivatives at x = 1?

1.
$$f''(1) < f'(1) < f(1)$$

2.
$$f(1) < f''(1) < f'(1)$$

3.
$$f''(1) < f(1) < f'(1)$$

4.
$$f'(1) < f(1) < f''(1)$$

5.
$$f'(1) < f''(1) < f(1)$$

6.
$$f(1) < f'(1) < f''(1)$$

008 10.0 points

Ted makes a chart to help him analyze the continuous function y = f(x):

	y	y'	y''
x < -1		+	_
x = -1	2	0	
-1 < x < 0		_	_
x = 0	1	-1	
0 < x < 2		_	+
x=2	-2	DNE	
x > 2		+	+

Consider the following statements:

- A. f has a local minimum at x = 2.
- B. f has a local maximum at x = 0.
- C. f has a local maximum at x = -1.

Which are correct?

- 1. all are true
- 2. A and B only
- **3.** B and C only
- **4.** C only
- **5.** A and C only
- **6.** B only
- **7.** A only
- 8. none are true

009 10.0 points

When Sue uses first and second derivatives to analyze a particular continuous function y = f(x) she obtains the chart

	y	y'	y''
x < -3		+	-
x = -3	4	0	
-3 < x < 0		_	_
x = 0	1	-1	
0 < x < 2		_	+
x = 2	-1	DNE	
x > 2		+	+

Which of the following can she conclude from her chart?

- A. f has a point of inflection at x = 2.
- B. f is concave up on (0, 2).
- C. f is concave up on $(-\infty, 0)$.
- 1. all of them
- 2. B only
- **3.** B and C only
- **4.** C only
- 5. none of them
- **6.** A only
- 7. A and C only
- **8.** A and B only

010 10.0 points

If f is a continuous function on (-5, 3) whose graph is

which of the following properties are satisfied?

- A. f has exactly 2 inflection points,
- B. f has exactly 1 local maximum,
- C. f'(x) < 0 on (-1, 1).
- 1. B only
- **2.** C only
- 3. none of them
- **4.** A and C only
- **5.** A and B only
- 6. all of them
- 7. B and C only
- **8.** A only

011 10.0 points

On which interval(s) is

$$f(x) = x^4 + 2x^2 - 5$$

decreasing?

- 1. $(-\infty, -1), (1, \infty)$
- **2.** $(0, \infty)$
- **3.** $(-\infty, 0)$

- **4.** (-1, 1)
- 5. $(-\infty, -1), (0, 1)$
- **6.** $(-1, 0), (1, \infty)$

012 10.0 points

When the graph of f is

which of the following is the graph of f''?

3.

5.

013 10.0 points

If the graph of

$$f(x) = ax^3 + bx^2 + cx + d$$

has a local maximum at (0, 1) and a local minimum at (2, -7), compute the value of f(1).

1.
$$f(1) = -4$$

2.
$$f(1) = -3$$

3.
$$f(1) = -1$$

4.
$$f(1) = -5$$

5.
$$f(1) = -2$$

01410.0 points

Find all values of x at which the graph of

$$f(x) = \frac{1}{3}x^3 + 3x^2 + 7$$

has a point of inflection.

1.
$$x = 0, 6$$

2.
$$x = -3$$

3.
$$x = 0, 2$$

4.
$$x = 0, -6$$

5.
$$x = -2$$

6.
$$x = 3$$

01510.0 points

Find all values of x at which the graph of

$$f(x) = 4x^2 - 7x + 3$$

is decreasing faster than the graph of

$$g(x) = \frac{x^3}{3}.$$

1.
$$(-7, 1)$$

3.
$$(-\infty, -1), (7, \infty)$$

4.
$$(-\infty, -7)$$
, $(1, \infty)$

5.
$$(-1, 7)$$

6.
$$(-\infty, 1), (7, \infty)$$

016 10.0 points

Find all intervals on which

$$f(x) = \frac{x^2}{(x-3)^3}$$

6

is decreasing.

- 1. [-6, 0]
- **2.** [0, 6]
- 3. (-3, 3)
- **4.** $(-\infty, -6]$, [0, 3), $(3, \infty)$
- **5.** $(-\infty, -3), (-3, 0], [6, \infty)$
- **6.** $(-\infty, 0], [6, \infty)$
- 7. $(-\infty, -6], [0, \infty)$

017 10.0 points

Determine the interval(s) on which

$$f(x) = \frac{x+1}{(x-1)^3}$$

is decreasing.

- 1. $(-2, 1), (1, \infty)$
- **2.** (-2, 1)
- 3. $(-\infty, -1)$, (-1, 1)
- 4. $(-\infty, -2)$
- 5. $(-2, \infty)$
- **6.** $(-2, -1), (1, \infty)$

018 10.0 points

Find the interval(s) where

$$f(x) = x^3 + 12x^2 + 7$$

is increasing.

- 1. (-8, 0)
- **2.** $(-\infty, -8)$, $(8, \infty)$
- 3. $(-\infty, -8)$, $(0, \infty)$
- **4.** $(-\infty, -4)$, $(0, \infty)$

- 5. (-4, 0)
- **6.** $(-\infty, -4)$, $(4, \infty)$

019 10.0 points

Find all points x_0 at which

$$f(x) = \frac{2+x}{(x-1)^2}$$

has a local maximum.

- 1. $x_0 = -5$
- 2. $x_0 = 5, -5$
- **3.** no such x_0 exist
- **4.** $x_0 = -2, 1$
- 5. $x_0 = 5$
- 6. $x_0 = 1, -5$
- 7. $x_0 = 1$
- 8. $x_0 = -2$

020 10.0 points

Let f be the function defined by

$$f(x) = \tan(x) - 2x$$

on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Find all interval(s) on which f is increasing?

- **1.** $\left(\frac{\pi}{2}, -\frac{\pi}{4}\right), \quad \left(0, \frac{\pi}{4}\right)$
- **2.** $\left(-\frac{\pi}{2}, -\frac{\pi}{4}\right), \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
- **3.** $\left(-\frac{\pi}{4}, 0\right), \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
- **4.** $\left(-\frac{\pi}{2}, -\frac{\pi}{6}\right), \left(\frac{\pi}{6}, \frac{\pi}{2}\right)$
- **5.** $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$

021 10.0 points

Determine the interval(s) in $[-\pi, \pi]$ on which

$$f(x) = x + 2\cos x$$

is decreasing.

1.
$$\left(-\pi, \frac{\pi}{3}\right), \left(\frac{2\pi}{3}, \pi\right)$$

2.
$$\left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$$

3.
$$\left(-\frac{5\pi}{6}, -\frac{\pi}{6}\right)$$

4.
$$\left(\frac{\pi}{3}, \frac{2\pi}{3}\right)$$

5.
$$\left(-\pi, \frac{\pi}{6}\right), \left(\frac{5\pi}{6}, \pi\right)$$

6.
$$\left(-\pi, -\frac{2\pi}{3}\right), \left(-\frac{\pi}{3}, \pi\right)$$