

1.1 Groupes

1.1.1 Généralités

Définition 1.1 Soit G un ensemble non vide muni d'une loi de composition interne *. On dit que (G,*) est un groupe lorsque

1. l'opération * est associative, c'est à dire

$$\forall x, y, z \in G, \quad (x * y) * z = x * (y * z),$$

2. l'opération * admet un élément neutre (noté e), c'est à dire

$$\exists e \in G, \forall x \in G, x*e = e*x = x,$$

3. et que tout élément admet un symétrique, c'est à dire

$$\forall x \in G, \exists y \in G, \quad x * y = y * x = e.$$

Un groupe (G,*) est dit commutatif ou abélien lorsque l'opération * est commutative.

Notation. Étant donné un groupe, sa loi de composition interne est souvent notée +, quand elle est commutative. Dans ce cas le symétrique d'un élément $g \in G$ est appelé son opposé et noté -g.

Remarque Dans un groupe (G, \cdot) , on note en général ab le produit $a \cdot b$ de a et b dans G. Dans ce cas le symétrique d'un élément $g \in G$ est appelé son inverse et noté g^{-1} et on a

$$\forall a, b \in G, (ab)^{-1} = b^{-1}a^{-1}.$$

Théorème 1.1 Dans un groupe (G, \cdot) d'élément neutre e, tout élément est simplifiable, c-à-dire

$$\forall a, b, c \in G, \ ac = bc \implies a = b \text{ et } ca = cb \implies a = b.$$

Preuve soient a, b et c dans G tels que ac = bc et soit c' le symétrique de c. Nous avons

$$(ac)c' = (bc)c'.$$

Utilisons l'associativité de la loi interne, il vient a(cc') = b(cc'), d'où ae = be et donc a = b.

Exemples 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Q}^*, \mathbb{R}^*$ et \mathbb{C}^* munis de la loi + usuel, sont des groupes commutatifs.

- 2. $(\mathbb{N},+)$ et (\mathbb{R},\times) ne sont pas des groupes car il y'a des éléments qui n'ont pas de symétrique.
- 3. $(\mathscr{V}_2,+)$ l'ensemble des vecteurs du plan, est un groupe commutatif.

Exercice 1.1 Dans un groupe d'élément neutre e, montrer que

$$(a^{-1}ba = b^{-1} \ et \ b^{-1}ab = a^{-1}) \implies a^4 = b^4 = e.$$

Exercice 1.2 Soient a et b deux éléments d'un groupe (G, \cdot) d'élément neutre e et n un entier naturel non nul tels que $(ab)^n = e$. Montrer que $(ba)^n = e$.

Exercice 1.3 Sur $G = \mathbb{R}_+^* \times \mathbb{R}$, on définit l'opération * par

$$(x,y)*(x',y') = (xx',xy'+y).$$

Montrer que (G,*) est un groupe.

1.1.2 Sous groupes

Définition 1.2 Soit (G,\cdot) un groupe. Une partie $H \neq \emptyset$ de G est un sous-groupe de (G,\cdot) lorsque

1. le produit d'éléments de H est dans H, c'est à dire

$$\forall x, y \in H, xy \in H,$$

2. tout élément de H a son inverse (symétrique) dans H, c'est à dire

$$\forall x \in H, x^{-1} \in H.$$

Remarque On dit alors qu'une partie non vide H de G est un sous-groupe de (G, \cdot) si elle est stable pour le produit et par le passage au symétrique.

Théorème 1.2 Une partie non vide H de G est un sous-groupe de (G,\cdot) si et seulement si

$$\forall x, y \in H, xy^{-1} \in H.$$

Preuve Soit H un sous-groupe de (G,\cdot) et $(x,y) \in H^2$. Comme $y \in H$, alors $y^{-1} \in H$. Puis, puisque

1.1 Groupes 7

 $(x,y^{-1}) \in H^2$, il vient $xy^{-1} \in H$. Inversement, supposons que

$$\forall x, y \in H, xy^{-1} \in H.$$

Comme $H \neq \emptyset$, il existe un élément $h \in H$ et donc $hh^{-1} = e \in H$ où e est l'élément neutre de (G,\cdot) . De plus, pour tout $x \in H$, puisque $(e,x) \in H^2$, on obtient $ex^{-1} = x^{-1} \in H$. Finalement, étant donné $ext{t}$ et $ext{t}$ deux éléments de $ext{H}$, on a $ext{t}$ $ext{t}$

Corollaire 1.1 Si (G, \cdot) est un groupe d'élément neutre e, tout sous-groupe H de G contient e.

Remarque 1. $e \in H$ assure que $H \neq \emptyset$ et $e \notin H$ donne que H ne peut pas être un sous-groupe.

2. Soit (G,\cdot) un groupe, les sous-ensembles $\{e\}$ et G sont des sous-groupes de G. Tout sous-groupe H de (G,\cdot) , autre que $\{e\}$ ou G, est appelé un sous-groupe propre.

Proposition 1.1 Soit (G, \cdot) est un groupe et H un de ces sous-groupes. Pour la restriction de la loi interne \cdot à $H \times H$, notée encore \cdot , on a (H, \cdot) est un groupe.

Exemple — Centre d'un groupe. On appelle centre du groupe (G, \cdot) , l'ensemble suivant

$$C = \{c \in G; \ \forall x \in G, \ cx = xc\}$$

Le centre C du groupe G est un sous-groupe de (G, \cdot) . En effet, on a

- soit e l'élément neutre de G, alors pour tout $x \in G$, on a ex = xe, d'où $e \in C$ et donc $C \neq \emptyset$.
- soit $(c,c') \in C$, avec l'associativité de la loi interne \cdot , il vient que $cc' \in C$, puisque on a

$$\forall x \in G$$
, $(cc')x = c(c'x) = c(xc') = (cx)c' = (xc)c' = x(cc')$.

- soit $c \in C$, alors pour tout $x \in G$, on a cx = xc et en multipliant à gauche et à droite par c^{-1} , on obtient $c^{-1}(cx)c^{-1} = c^{-1}(xc)c^{-1}$, d'où $xc^{-1} = c^{-1}x$ et ceci montre que $c^{-1} \in C$.

Remarque De cet exemple, on déduit qu'un groupe (G, \cdot) est commutatif si et seulement si

$$C = G$$
.

Proposition 1.2 Soient $(H_i)_{i\in I}$ une famille de sous-groupes de (G,\cdot) , l'intersection $\bigcap_{i\in I} H_i$ est encore un sous-groupe de (G,\cdot) .

Preuve À faire en exercice.

Définition 1.3 Soient (G,\cdot) un groupe et A une partie de G. L'intersection de tous les sous-groupes contenant A est appelé le sous-groupe engendré par A, noté gr(A) ou < A >. Et lorsque gr(A) = G, on dit que A est une partie génératrice de (G,\cdot)

Remarque 1. $A \subset G$ est un sous-groupe de G si et seulement si A = gr(A), et on a le cas particulier

$$gr(\emptyset) = \{e\}.$$

2. Au sens de l'inclusion, gr(A) est le plus petit sous-groupe de G qui contient A.

Définition 1.4 Un groupe (G, \cdot) est dit monogène quand il admet une partie génératrice réduite à un seul élément. Et un groupe (G, \cdot) est dit cyclique quand il est monogène et fini.

Exemple Les racines $n^{\text{ème}}$ de l'unité dans $\mathbb C$ forment un groupe multiplicatif (U,\times) de cardinal n engendré par l'élément $\omega=e^{\frac{2i\pi}{n}}$. En effet, on a

$$U = \left\{ e^{\frac{2ki\pi}{n}}, \ k = 0, \cdots, n-1 \right\} = <\omega>.$$

Par conséquent, le groupe (U, \times) est cyclique, puisque il est monogène et fini.

Proposition 1.3 Le sous-groupe engendré par la partie A du groupe (G, \cdot) est l'ensemble des produits d'un nombre fini d'éléments de A ou d'inverses d'éléments de A.

Preuve $Si A = \emptyset$, on n'a rien à montrer $car gr(\emptyset) = \{e\}$. Supposons $A \neq \emptyset$ et notons Γ , l'ensemble des produits d'un nombre fini d'éléments de A ou d'inverses d'éléments de A. Il est clair que tout sous-groupe de G qui contient A, contient nécessairement Γ . Alors, il reste seulement à montrer que Γ est un sous-groupe de G. On a

- Γ contient l'élément neutre e de G car si h est un élément de $A \neq \emptyset$, alors $hh^{-1} = e \in \Gamma$,
- $si \ x = a_1 a_2 \cdots a_n \in \Gamma \ et \ y = b_1 b_2 \cdots b_p \in \Gamma \ (c\text{-}\grave{a}\text{-}dire \ a_i, b_j \in A \cup A^{-1}), \ alors \ xy \in \Gamma, \ puisque$ $xy = c_1 c_2 \cdots c_{n+p} \ avec \ c_i = a_i \ pour \ 1 \leqslant i \leqslant n \ et \ c_i = b_{i-n} \ pour \ n+1 \leqslant i \leqslant n+p.$
- $si \ x = a_1 a_2 \cdots a_n \in \Gamma$ (c-à-dire $a_i \in A \cup A^{-1}$), $alors \ x^{-1} \in \Gamma$, puisque $x^{-1} = a_n^{-1} a_{n-1}^{-1} \cdots a_1^{-1} \in \Gamma \ (car \ a_i^{-1} \in A \cup A^{-1}).$

Exercice 1.4 Soit (G,\cdot) un groupe et $a \in G$. Montrer que $H_a = \{x \in G, xa = ax\}$ est un sous-groupe de G.

Exercice 1.5 Soient (G,\cdot) un groupe commutatif, 1 son élément neutre et $n \in \mathbb{N}^*$ un entier donné. Montrer que $R_n = \{a \in G, a^n = 1\}$ est un sous-groupe de (G,\cdot) .

Exercice 1.6 Soit $A \neq \emptyset$ une partie d'un groupe G. Montrer que $N(A) = \{x \in G, x^{-1}Ax = A\}$ un sous-groupe de G.

Exercice 1.7 *Soit* A *et* B *deux sous-groupes d'un groupe* (G, \cdot) *. Montrer que* $A \cup B$ *est un sous-groupe de* G *si et seulement si* $A \subset B$ *ou* $B \subset A$.

1.2 Morphismes de groupes

Définition 1.5 Soient (G_1, \cdot) et $(G_2, *)$ deux groupes et f une application de G_1 dans G_1 . On dit que f est un morphisme (ou encore un homomorphisme) de (G_1, \cdot) dans $(G_2, *)$ si on a

$$\forall (x, y) \in G_1 \times G_1, \ f(x \cdot y) = f(x) * f(y).$$

Un isomorphisme est morphisme bijectif.

- Un endomorphisme est morphisme d'un groupe dans lui-même.
- Un automorphisme est un endomorphisme bijectif.

Notation. Soient (G,\cdot) et (G',*) deux groupes, on adopte les notations suivantes

- Hom(G,G') est l'ensemble des morphismes de (G,\cdot) dans (G',*).
- On note $G \cong G'$ s'il existe un isomorphisme de (G,\cdot) dans (G',*).
- End(G,G') est l'ensemble des endomorphismes de (G,\cdot) .
- Aut(G,G') est l'ensemble des automorphismes de (G,\cdot) .

Proposition 1.4 Soient (G_1, \cdot) et $(G_2, *)$ deux groupes d'éléments neutres respectifs e_1 et e_2 . Pour tout morphisme f de (G_1, \cdot) dans $(G_2, *)$, on a

$$f(e_1) = e_2$$
 et $\forall x \in G_1, f(x^{-1}) = (f(x))^{-1}$.

Preuve Comme $e_1 = e_1 e_1$, on déduit $f(e_1) = f(e_1 e_1) = f(e_1) * f(e_1)$, d'où

$$f(e_1) * e_2 = f(e_1) = f(e_1) * f(e_1).$$

Simplifions avec $f(e_1)$, il vient $e_2 = f(e_1)$. D'autre part, de $xx^{-1} = e_1$ et $x^{-1}x = e_1$, on déduit

$$f(x) * f(x^{-1}) = f(e_1) = e_2$$
 et $f(x^{-1}) * f(x) = f(e_1) = e_2$.

Par suite, on obtient $f(x^{-1}) = (f(x))^{-1}$.

Proposition 1.5 Soient (G_1,\cdot) et $(G_2,*)$ deux groupes et f un morphisme de (G_1,\cdot) dans $(G_2,*)$. Si H_1 est un sous-groupe de (G_1,\cdot) , alors $f(H_1)$ est un sous-groupe de $(G_2,*)$.

Preuve Comme H_1 est non vide, il en est de même pour $f(H_1)$. De plus, soient y_1 et y_2 dans $f(H_1)$ et x_1 et x_2 dans H_1 tels que $y_1 = f(x_1)$ et $y_2 = f(x_2)$, alors il vient

$$y_1 * y_2^{-1} = f(x_1) * (f(x_2))^{-1} = f(x_1) * f(x_2^{-1}) = f(x_1 x_2^{-1}).$$

Comme H_1 est un sous-groupe, on a $x_1x_2^{-1} \in H_1$ et donc on a $y_1 * y_2^{-1} = f(x_1x_2^{-1}) \in f(H_1)$. Par conséquent, on obtient que $f(H_1)$ est un sous-groupe de $(G_2,*)$.

Proposition 1.6 Si H_2 est un sous-groupe de $(G_2,*)$, alors son image réciproque $f^{-1}(H_2)$ est un sous-groupe de (G_1,\cdot) .

Preuve On a $f(e_1) = e_2$ et $e_2 \in H_2$ donnent $e_1 \in f^{-1}(H_2)$, d'où $f^{-1}(H_2)$ est non vide. De plus, soient x_1 et x_2 dans $f^{-1}(H_2)$, alors $f(x_1)$ et $f(x_2)$ sont dans H_2 et donc il vient

$$f(x_1x_2^{-1}) = f(x_1) * (f(x_2))^{-1} \in H_2.$$

Par suite, on obtient $x_1x_2^{-1} \in f^{-1}(H_2)$ et donc $f^{-1}(H_2)$ est un sous-groupe de (G_1,\cdot) .

Définition 1.6 — Noyau et image d'un morphisme. Soit f un morphisme de (G_1, \cdot) dans $(G_2, *)$, alors f(G) est appelé l'image du morphisme f, notée Im f, et $f^{-1}(\{e_2\})$ est appelé le noyau du morphisme f, notée Ker f.

Théorème 1.3 Le morphisme de groupes f est injectif si et seulement si $Ker f = \{e_1\}$.

Preuve Supposons f est injectif et considérons $x \in Ker f$. On a $f(x) = e_2$ et comme $f(e_1) = e_2$, il vient $f(x) = f(e_1)$ puis $x = e_1$. Ainsi, $\{e_1\} \subset Ker f \subset \{e_1\}$, soit $Ker f = \{e_1\}$. Inversement, supposons $Ker f = \{e_1\}$, et considérons x_1 , x_2 dans G_1 tels que $f(x_1) = f(x_2)$. Il vient alors que $f(x_1) * (f(x_2))^{-1} = e_2$, c'est-à-dire $f(x_1x_2^{-1}) = e_2$ et donc $x_1x_2^{-1} \in Ker f$. Il s'ensuit $x_1x_2^{-1} = e_1$ et en multipliant à droite par x_2 , on obtient $x_1 = x_2$. Ainsi, le morphisme f est injectif.

Proposition 1.7 — Composition de morphismes. Soient (G_1, \cdot) , (G_2, \cdot) et (G_3, \cdot) des groupes. Si $f_1 \in Hom(G_1, G_2)$ et $f_2 \in Hom(G_2, G_3)$, alors $f_2 \circ f_1 \in Hom(G_1, G_3)$.

Remarque L'ensemble End(G) des endomorphisme de (G,\cdot) est stable par composition.

Proposition 1.8 — Ensemble des permutations. Si S(E) est l'ensemble des permutations d'un ensemble E, c'est-à-dire l'ensemble des bijections de E dans E, alors $(S(E), \circ)$ est un groupe.

Preuve L'ensemble S(E) n'est pas vide car il contient Id_E . La composée de bijections est une bijection, la composition des applications est associative et Id_E est un élément neutre. Enfin, une bijection de E dans E admet une réciproque, qui est elle-même une permutation de E.

Théorème 1.4 Soient (G, \cdot) un groupe et $f \in Aut(G)$, alors f^{-1} est un automorphisme de G.

Preuve f est bijective par hypothèse et soit f^{-1} sa permutation réciproque. Soit x, y des éléments de G et x' et y' leurs uniques antécédents par f, on a

$$f^{-1}(xy) = f^{-1}(f(x')f(y')) = f^{-1}(f(x'y')) = x'y' = f^{-1}(x)f^{-1}(y).$$

Ainsi, f^{-1} est un endomorphisme de (G, \cdot) .

Corollaire 1.2 Soit (G, \cdot) un groupe, alors $(Aut(G), \circ)$ est groupe.

Preuve *C'est un sous-groupe du groupe des bijections de G.*

Exercice 1.8 Soit (G, \times) un groupe et S un sous-groupe de G. Montrer que, pour tout élément a de G, l'ensemble $a^{-1}Sa = \{a^{-1}sa \mid s \in S\}$ est un sous-groupe de G.

Exercice 1.9 — Commutateurs d'un groupe (G,\cdot) . Étant donné $(a,b) \in G^2$, l'élément $aba^{-1}b^{-1}$ est appelé le commutateur de a et b. On note C l'ensemble des commutateurs du groupe (G,\cdot) et Gr(C) le sous-groupe qu'il engendre. Soit (G',\cdot) un groupe et $f \in Hom(G,G')$. Montrer que le sous-groupe f(G) de (G',\cdot) est commutatif si et seulement si $Gr(C) \subset Ker f$.

Exercice 1.10 — Automorphismes intérieurs d'un groupe (G,\cdot) . Étant donné $a \in G$, on considère l'application $\varphi_a : G \to G$, $x \mapsto axa^{-1}$.

- 1. Montrer que $\varphi_a \in Aut(G)$ (c'est l'automorphisme intérieur associé à a).
- 2. Montrer que l'ensemble $\mathscr{I}(G)$ des automorphismes intérieurs de (G,\cdot) , est un sous-groupe de $(Aut(G),\circ)$.

3. Montrer que $\varphi: G \to Aut(G)$, $a \mapsto \varphi_a$ est un morphisme de groupes et déterminer $Ker \varphi$.

1.3 Groupe produit

Proposition 1.9 Soient (G_1, \cdot) et (G_2, \cdot) deux groupes d'éléments neutres respectifs e_1 et e_2 , alors l'ensemble $G_1 \times G_2$ muni de la loi produit définie par

$$(x_1,x_2)\cdot(y_1,y_2)=(x_1\cdot y_1,x_2\cdot y_2).$$

est un groupe, dit groupe produit de G_1 et G_2 et noté $G_1 \times G_2$. L'élément neutre du groupe produit $G_1 \times G_2$ est (e_1, e_2) et l'inverse de tout élément $(x_1, x_2) \in G_1 \times G_2$ est $(x_1^{-1}, x_2^{-1}) \in G_1 \times G_2$.

Remarque 1. Par définition de la loi produit, les projections $p_1: G_1 \times G_2 \to G_1$, $(x_1, x_2) \mapsto x_1$ et $p_2: G_1 \times G_2 \to G_2$, $(x_1, x_2) \mapsto x_2$ sont des morphismes de groupes surjectifs. Et les injections $q_1: G_1 \to G_1 \times G_2$, $x_1 \mapsto (x_1, e_2)$ et $q_2: G_2 \to G_1 \times G_2$, $x_2 \mapsto (e_1, x_2)$ sont des morphismes de groupes injectifs.

2. Le groupe produit $G_1 \times G_2$ est commutatif si et seulement si G_1 et G_2 le sont aussi.

Proposition 1.10 Soient I une famille non vide et $(G_i, \cdot)_{i \in I}$ une famille de groupes d'éléments neutres respectifs $(e_i)_{i \in I}$. L'ensemble $\prod_{i \in I} G_i$ muni de la loi de composition interne

$$(x_i)_{i \in I} \cdot (y_i)_{i \in I} = (x_i \cdot y_i)_{i \in I},$$

est un groupe, noté $\prod_{i \in I} G_i$ et appelé le groupe produit des groupes $(G_i)_{i \in I}$, dont l'élément neutre est $(e_i)_{i \in I}$ et dans lequel l'élément inverse de $(x_i)_{i \in I}$ est l'élément $(x_i^{-1})_{i \in I}$.

Exercice 1.11 Établir la preuve de la proposition 1.9

Exercice 1.12 Soient (G_1, \cdot) et (G_2, \cdot) deux groupes, et H_1 et H_2 des sous-groupes de G_1 et G_2 , respectivement. Montrer que $H_1 \times H_2$ est un sous-groupe du groupe produit $(G_1 \times G_2, \cdot)$.

1.4 Groupe symétrique S_n

Soit $n \in \mathbb{N}^*$, rappelons dans cette section qu'on note $\mathbb{N}_n = [\![1,n]\!] = \{1,2,\cdots,n\}$

1.4.1 Permutations d'un ensemble fini

Définition 1.7 Soit $n \in \mathbb{N}^*$, l'ensemble $S(\mathbb{N}_n)$ muni de l'opération \circ est appelé le groupe symétrique d'ordre n, et noté S_n . Un élément σ de S_n se note :

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

Théorème 1.5 Si E est fini de cardinal $n \in \mathbb{N}^*$, alors $(S(E), \circ)$ est un groupe de cardinal n!.

Exemple Dans l'ensemble S_4 , soient $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$ et $\sigma' = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$. Alors, on a

$$\sigma' \circ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} \quad \text{et} \quad \sigma \circ \sigma' = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}$$

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$$
 et $\sigma'^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$

Définition 1.8 On appelle support d'une permutation $\sigma \in S_n$, l'ensemble des éléments de \mathbb{N}_n qui ne sont pas invariants par σ . On le note $Supp(\sigma)$.

Exemple Pour
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix} \in S_4$$
 et $\sigma' = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} \in S_4$, on a $Supp(\sigma) = \{1, 2, 3, 4\}$ et $Supp(\sigma') = \{1, 3, 4\}$.

1.4.2 Permutations remarquables

Définition 1.9 — Transpositions. Une transposition est une permutation qui échange deux éléments de $\mathbb{N}_n = [\![1,n]\!]$ et laisse les autres invariants. La transposition qui échange i et j se note (i,j) ou τ_{ij} .

Remarque On a $C_n^2 = \frac{n(n-1)}{2}$ paires $\{i, j\}$ dans \mathbb{N}_n et donc $\frac{n(n-1)}{2}$ transpositions dans S_n .

Définition 1.10 — Permutations circulaires. Soit E un ensemble fini de cardinal $n \in \mathbb{N}^*$. On dit que $\sigma \in S(E)$ est une permutation circulaire lorsque il existe $a \in E$ tel que

$${a, \sigma(a), \sigma^2(a), \cdots, \sigma^{n-1}(a)} = E.$$

Proposition 1.11 Si σ est une permutation circulaire de l'ensemble fini E (card(E) = n), alors

$$\forall x \in E, \{x, \sigma(x), \sigma^2(x), \cdots, \sigma^{n-1}(x)\} = E.$$

Preuve On considère une permutation circulaire de $\sigma \in S(E)$ et soit $a \in E$ tels que

$${a, \sigma(a), \sigma^2(a), \cdots, \sigma^{n-1}(a)} = E,$$

alors $\sigma^n(a) = a$. En effet, on a $\sigma(E) = E$ car σ est une bijection de E. Avec

$$\sigma(E) = {\sigma(a), \sigma^2(a), \cdots, \sigma^n(a)},$$

il vient que $\sigma^n(a) = a$. En conséquence, pour tout $k \in \mathbb{N}$, on a $\sigma^{n+k}(a) = \sigma^k(a)$. Par ailleurs, pour tout $x \in E$, il existe $p \in [0, n-1]$ tel que $x = \sigma^p(a)$. Pour tout $k \in [0, n-1]$, on a donc $\sigma^k(x) = \sigma^{p+k}(a)$. Il s'ensuit donc que

$$\{x, \sigma(x), \sigma^{2}(x), \cdots, \sigma^{n-1}(x)\} = \{\sigma^{p}(a), \sigma^{p+1}(a), \cdots, \sigma^{p+n-1}(a)\}$$

et puisque, pour tout $k \in \mathbb{N}$, on a $\sigma^{n+k}(a) = \sigma^k(a)$, il vient donc

$$\{\sigma^{p}(a), \sigma^{p+1}(a), \cdots, \sigma^{n+p-1}(a)\} = \{\sigma^{p}(a), \cdots, \sigma^{n-1}(a), a, \sigma(a), \cdots, \sigma^{p-1}(a)\}$$
$$= \{a, \sigma(a), \cdots, \sigma^{p-1}(a), \sigma^{p}(a), \cdots, \sigma^{n-1}(a)\}$$
$$= E,$$

c'est-à-dire

$$\{x, \sigma(x), \sigma^2(x), \cdots, \sigma^{n-1}(x)\} = E.$$

Notation. Une telle permutation circulaire est notée $(x, \sigma(x), \sigma^2(x), \cdots, \sigma^{n-1}(x))$.

Lemme 1.1 Soit σ une permutation de $[\![1,n]\!]$. Si $I \subset [\![1,n]\!]$ est inclus dans l'ensemble des éléments invariants par σ , alors σ induit une permutation de $J = [\![1,n]\!] \setminus I$, notée σ_J .

Remarque En particulier, toute permutation de [1, n] induit une permutation de son support.

Définition 1.11 — Cycle. On dit que $\sigma \in S_n$ de support J, est un cycle si σ_J est une permutation circulaire de J. Si σ est un cycle de support J, alors Card(J) est appelé longueur de cycle.

Remarque On convient que Id_{S_n} est cycle de longueur 0.

Exemple Montrons que deux cycles de support disjoints commutent. En effet, soient σ et σ' deux cycles de supports S et S' tels que $S \cap S' = \emptyset$. On distingue les trois cas suivants

- $-\sin x \notin S \cup S'$, alors x est invariant par σ et σ' , et donc invariant par $\sigma \circ \sigma'$ et $\sigma' \circ \sigma$,
- si $x \in S$ et $x \notin S'$, alors x est invariant par σ' , d'où $\sigma \circ \sigma'(x) = \sigma(x)$. De plus, par définition d'un cycle, pour $x \in S$, on a $\sigma(x) \in S$ et donc $\sigma(x) \notin S'$ d'où $\sigma' \circ \sigma(x) = \sigma(x)$, c'est-à-dire

$$\sigma' \circ \sigma(x) = \sigma \circ \sigma'(x)$$
,

- de la même manière, on vérifie que si $x \in S'$ et $x \notin S$, alors on a $\sigma' \circ \sigma(x) = \sigma \circ \sigma'(x)$.

En conclusion, on a $\sigma' \circ \sigma(x) = \sigma \circ \sigma'(x)$, pour tout $x \in \mathbb{N}_n$ et donc $\sigma' \circ \sigma = \sigma \circ \sigma'$.

Théorème 1.6 Le groupe S_n est engendré par les $\frac{n(n-1)}{2}$ transpositions τ_{ij} .

Preuve On procède par récurrence sur $n \in \mathbb{N}^*$. D'abord, l'identité sur \mathbb{N}_n est la composé $\tau \circ \tau$ où τ est une transposition quelconque. La propriété est vraie si n=2 (les permutations de \mathbb{N}_2 sont $Id_{\mathbb{N}_2}$ et τ_{12}). Supposons-la vraie pour n-1 avec $n \geq 3$, et considérons $\sigma \in S_n$.

- Si $\sigma(n) = n$, la restriction σ' de σ à \mathbb{N}_{n-1} est une permutation de \mathbb{N}_{n-1} . Elle se décompose en produit de transpositions :

$$\sigma'=\tau_1'\circ\tau_2'\circ\cdots\circ\tau_s'.$$

À toute transposition τ' de \mathbb{N}_{n-1} , associons la transposition τ de \mathbb{N}_n telle que $\tau(n) = n$ et $\tau(k) = \tau'(k)$ pour tout $k \in \mathbb{N}_{n-1}$. Il s'ensuit alors que

$$\sigma = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_s$$
.

- $Si\ \sigma(n) \neq n$, en introduisons la transposition $\tau = (\sigma(n), n)$, il vient que $\tau \circ \sigma$ laisse n invariant et on est ramené au cas précédent. En conséquence, $\tau \circ \sigma$ est produit de transpositions

$$\tau \circ \sigma' = \tau_1 \circ \tau'_2 \circ \cdots \circ \tau'_r$$

et avec $\tau^{-1} = \tau$, on obtient

$$\sigma = \tau \circ \tau_1 \circ \tau_2' \circ \cdots \circ \tau_r'.$$

Théorème 1.7 Toute permutation autre que l'identité peut se décomposer d'une manière unique (à l'ordre près des termes) en produit de cycles de supports deux à deux disjoints

Exemple Décomposer en produit de cycles disjoints la permutation de \mathbb{N}_{10} suivantes

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 10 & 6 & 4 & 2 & 1 & 7 & 5 & 8 & 9 \end{pmatrix}$$

On a $\sigma(1) = 3$, $\sigma(3) = 6$ et $\sigma(6) = 1$, soit σ_1 le cycle (1,3,6). En prenant $2 \notin \{1,3,6\}$, on a

$$\sigma(2) = 10$$
, $\sigma(10) = 9$, $\sigma(9) = 8$, $\sigma(8) = 5$ et $\sigma(5) = 2$.

Soit le cycle $\sigma_2 = (2, 10, 9, 8, 5)$. Les autres éléments 4 et 7 sont invariants par σ . On vérifie que

$$\sigma = \sigma_1 \circ \sigma_2$$
.

En effet, 4 et 7 sont invariant par σ_1 et σ_2 et donc par leur composé $\sigma = \sigma_1 \circ \sigma_2$. Pour les autres éléments, étudions par exemple les images de 3 et 9, on a

$$\sigma_2(3) = 3$$
, $\sigma_1(3) = 6 \implies \sigma_1 \circ \sigma_2(3) = 6 = \sigma(3)$

$$\sigma_2(9) = 8$$
, $\sigma_1(8) = 8 \implies \sigma_1 \circ \sigma_2(9) = 8 = \sigma(9)$.

Proposition 1.12 Un cycle $\sigma = (a_1, a_2, \dots, a_{p-1}, a_p)$ se décompose en produit de p-1 transpositions avec

$$\boldsymbol{\sigma} = (a_1, a_p) \circ (a_1, a_{p-1}) \circ \cdots \circ (a_1, a_2)$$

ou

$$\boldsymbol{\sigma} = (a_1, a_2) \circ (a_2, a_3) \circ \cdots \circ (a_{p-1}, a_p).$$

Remarque La décomposition d'une permutation en produit de transpositions n'est pas unique.

Exemple Reprenons l'exemple précédent, nous avons

$$\sigma_1 = (1,3,6) = (1,6) \circ (1,3)$$
 et $\sigma_2 = (2,10,9,8,5) = (2,5) \circ (2,8) \circ (2,9) \circ (2,10)$,

et donc

$$\sigma = \sigma_1 \circ \sigma_2 = (1,6) \circ (1,3) \circ (2,5) \circ (2,8) \circ (2,9) \circ (2,10).$$

D'autre part, nous avons aussi

$$\sigma_1 = (3,6,1) = (3,1) \circ (3,6)$$
 et $\sigma_2 = (8,5,2,10,9) = (8,9) \circ (8,10) \circ (8,2) \circ (8,5)$,

et donc

$$\sigma = \sigma_1 \circ \sigma_2 = (3,1) \circ (3,6) \circ (8,9) \circ (8,10) \circ (8,2) \circ (8,5).$$

Définition 1.12 — Inversion d'une permutation. Une paire $\{i, j\}$ est une inversion pour $\sigma \in S_n$ lorsque $(i - j)(\sigma(i) - \sigma(j)) < 0$. On note $Inv(\sigma)$ le nombre d'inversions pour σ .

Définition 1.13 — Signature d'une permutation. La signature d'une permutation σ est le nombre $\varepsilon(\sigma)=(-1)^{Inv(\sigma)}$. Et selon que la signature $\varepsilon(\sigma)=1$ ou $\varepsilon(\sigma)=-1$, on dit que la permutation σ est paire ou impaire.

15

Exemple — Méthode pratique de recherche de $Inv(\sigma)$. Soit

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 10 & 6 & 4 & 2 & 1 & 7 & 5 & 8 & 9 \end{pmatrix}$$

Pour chacun des nombres de la $2^{\text{ème}}$ ligne, on compte combien il y en a de plus petits qui sont écrit après lui. La somme de ces nombres est le nombre d'inversions de la permutation considérée. Sur la permutation σ , on a

La somme des nombres associés est $Inv(\sigma) = 18$ et $\varepsilon(\sigma) = (-1)^{18} = 1$, et donc σ est paire.

Théorème 1.8 Pour tout transposition τ , sa signature est $\varepsilon(\tau) = -1$.

Preuve Soient $(i, j) \in [1, n]^2$ tels que i < j, on considère la transposition

$$\tau = \begin{pmatrix} 1 & \cdots & i & \cdots & k & \cdots & j & \cdots & n \\ 1 & \cdots & j & \cdots & k & \cdots & i & \cdots & n \end{pmatrix}$$

En deuxième ligne

- $-il\ y\ a\ j-i\ termes\ plus\ petits\ que\ j,\ écris\ après\ j.$
- tout entier k tel que i < k < j, a i comme seul terme plus petit que lui et écris après lui.

Alors, le nombre d'inversion pour τ est

$$Inv(\tau) = (j-i) + ((j-1)-i) = 2(j-i) - 1.$$

Cet entier est impair et donc la transposition τ est impaire.

Proposition 1.13 Pour tout permutation σ , on a

$$\varepsilon(\sigma) = \prod_{i < j} \frac{\sigma(i) - \sigma(j)}{i - j} = \prod_{i > j} \frac{\sigma(i) - \sigma(j)}{i - j}$$

Théorème 1.9 L'application $\varepsilon : \sigma \mapsto \varepsilon(\sigma)$ est un morphisme de (S_n, \circ) dans $(\{-1, 1\}, \times)$:

$$\forall \sigma_1, \sigma_2 \in S_n, \ \varepsilon(\sigma_1 \circ \sigma_2) = \varepsilon(\sigma_1) \times \varepsilon(\sigma_2)$$

Preuve Nous avons

$$\varepsilon(\sigma_1 \circ \sigma_2) = \frac{\displaystyle\prod_{i < j} \left(\sigma_1 \circ \sigma_2(i) - \sigma_1 \circ \sigma_2(j)\right)}{\displaystyle\prod_{i < j} \left(\sigma_2(i) - \sigma_2(j)\right)} \times \frac{\displaystyle\prod_{i < j} \left(\sigma_2(i) - \sigma_2(j)\right)}{\displaystyle\prod_{i < j} (i - j)}.$$

Comme σ_2 est une permutation de \mathbb{N}_n , alors on a

$$rac{\displaystyle\prod_{i < j} \left(\sigma_1 \circ \sigma_2(i) - \sigma_1 \circ \sigma_2(j)
ight)}{\displaystyle\prod_{i < j} \left(\sigma_2(i) - \sigma_2(j)
ight)} = \mathcal{E}(\sigma_1).$$

Finalement, il vient que $\varepsilon(\sigma_1 \circ \sigma_2) = \varepsilon(\sigma_1) \times \varepsilon(\sigma_2)$.

Théorème 1.10 Si une permutation σ est la composée de s transpositions, alors sa signature est

$$\varepsilon(\sigma) = (-1)^s$$
.

Corollaire 1.3 Si σ est un cycle de longueur p, alors sa signature est

$$\varepsilon(\sigma) = (-1)^{p-1}$$
.

On utilise pour prouver ce corollaire la décomposition

$$(a_1, a_2, \cdots, a_{p-1}, a_p) = (a_1, a_p) \circ (a_1, a_{p-1}) \circ \cdots \circ (a_1, a_2).$$

Définition 1.14 — Groupe alterné. Le groupe alterné \mathcal{A}_n est le sous-ensemble de S_n formé des permutations paires de \mathbb{N}_n .

Proposition 1.14 Le groupe \mathcal{A}_n est un sous-groupe de S_n de cardinal $\frac{n!}{2}$.

Preuve C'est en effet le noyau du morphisme ε de (S_n, \circ) dans $(\{-1, 1\}, \times)$.

Exercice 1.13 1- Déterminer la signature de la permutation suivante

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 5 & 6 & 2 & 4 & 3 & 1 \end{pmatrix}.$$

 $2\text{-} \textit{D\'eterminer } \sigma \circ \sigma' \textit{ et } \sigma' \circ \sigma \textit{ pour } \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 2 & 5 & 1 \end{pmatrix} \textit{ et } \sigma' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 2 & 3 \end{pmatrix}.$

Exercice 1.14 Décomposer en produit de cycles disjoints la permutation de S7 suivante

$$\sigma = (1,3,7,2) \circ (4,5,1) \circ (6,1,5,3,7) \circ (1,3,5,7,2).$$

Calculer de plusieurs manière sa signature.

Exercice 1.15 Soient τ_1 et τ_2 deux transpositions de [1,n]. Montrer que

soit
$$\tau_1 \circ \tau_2 = Id$$
, soit $(\tau_1 \circ \tau_2)^2 = Id$, soit $(\tau_1 \circ \tau_2)^3 = Id$.

Exercice 1.16 On considère la permutation suivante

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 9 & 4 & 3 & 8 & 7 & 10 & 1 & 2 & 5 & 6 \end{pmatrix}$$

17

1- Vérifier que

$$\sigma = (1,9,5,7) \circ (2,4,8) \circ (6,10).$$

- 2- En déduire un calcul de $\varepsilon(\sigma)$ et une décomposition de σ en produit de transpositions.
- 3- Procéder de la manière pour la permutation suivante

$$\sigma' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 2 & 7 & 4 & 9 & 6 & 1 \end{pmatrix}$$

Exercice 1.17 *Utiliser la méthode du théorème d'existence de décomposition d'une permutation en produit de transpositions pour décomposer :*

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 9 & 4 & 3 & 8 & 7 & 10 & 1 & 2 & 5 & 6 \end{pmatrix}$$

Comparer avec l'exercice précédent.