Hipoteza Zmodyfikowanej Czasoprzestrzeni (zmCP)

Arkadiusz Okupski

August 16, 2025

Abstract

Proponujemy model, w którym efekty przypisywane ciemnej materii emergują z sprzężenia między rozkładem pierwiastków chemicznych a geometrią czasoprzestrzeni poprzez pole skalarne $\phi(x)$.

1 Kluczowe Równanie Bilansu

Dla reakcji jądrowych:

$$Materia \leftrightarrow Energia + \Delta CP \tag{1}$$

• Dla $A_i < 56$ (np. fuzja H \rightarrow He):

$$\Delta CP > 0$$
 (CP jest "rozciągana") (2)

• Dla $A_i \geq 56$ (np. tworzenie Ni z Fe):

$$\Delta CP < 0$$
 (CP jest "ściskana" lub "zużywana") (3)

2 Konsekwencje Fizyczne

2.1 Efekt ciemnej materii

Obszary bogate w żelazo (jądra galaktyk, gwiazdy stare) generują **lokalne zaburzenia CP**, które manifestują się jako dodatkowa "ciemna" siła grawitacji.

2.2 Brak ciemnej materii w galaktykach ubogich w metale

Tam gdzie dominuje wodór $(A_i \ll 56), \ \phi \approx 0$ i obowiązuje standardowa OTW.

3 Model Matematyczny

3.1 Pole skalarne sprzężone z materią

$$\mathcal{L} = \sqrt{-g} \left[\frac{R}{16\pi G} + \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - V(\phi) + f(\phi) \mathcal{L}_m \right]$$
 (4)

gdzie:

- $f(\phi) = 1 + \lambda \phi(x)$ funkcja sprzężenia
- $\phi(x) = \phi_0 \frac{\sum X_i(x)(A_i/A_{Fe})}{1+\sum X_i(x)(A_i/A_{Fe})}$ pole zależne od składu chemicznego

3.2 Równania pola

$$G_{\mu\nu} = 8\pi G \left[T_{\mu\nu}^{(\phi)} + f(\phi) T_{\mu\nu}^{(m)} \right]$$
 (5)

$$\Box \phi = \frac{\partial V}{\partial \phi} - \frac{\partial f}{\partial \phi} \mathcal{L}_m \tag{6}$$

4 Interpretacja Mikroskopowa

4.1 Fundamentalne pole Ψ

Zakładamy istnienie uniwersalnego pola kwantowego Ψ , z którego emergują zarówno materia, jak i czasoprzestrzeń. W tej interpretacji:

• Stan materialny (Ψ_m) :

 $\Psi_{\rm m} \sim {\rm stany}$ związane o wysokiej gęstości energii (np. fermiony) (7)

Przykład: Protony/neutrony w jądrach żelaza ($A_{Fe}=56$) reprezentują "skondensowaną" fazę Ψ .

• Stan czasoprzestrzenny (Ψ_{CP}):

$$\Psi_{\rm CP} \sim \text{fluktuacje geometryczne o niskiej entropii}$$
 (8)

Przykład: Obszary międzygwiezdne bogate w wodór $(A_H = 1)$ przejawiają "rozproszoną" fazę Ψ .

4.2 Przejścia fazowe

Zmiana składu chemicznego wywołuje przejście między stanami:

$$\Psi_{\rm m} \rightleftharpoons \Psi_{\rm CP} + E_{\rm wiazania}$$
 (9)

gdzie:

- Dla $A_i < A_{Fe}$ (egzotermiczna nukleosynteza): $\Delta \Psi \to \Psi_{\rm CP}$ (ekspansja CP)
- \bullet Dla $A_i \geq A_{Fe}$ (endotermiczna): $\Psi_{\rm m} \rightarrow \Psi_{\rm m}'$ + absorpcja CP

4.3 Związek z modelem $\phi(x)$

Pole skalarne $\phi(x)$ mierzy lokalny stosunek faz:

$$\phi(x) \equiv \frac{|\Psi_{\rm CP}|^2}{|\Psi_{\rm m}|^2 + |\Psi_{\rm CP}|^2} \in [0, 1]$$
(10)

- $\phi \to 0$: Dominacja materii (obszary metaliczne)
- $\phi \to 1$: Dominacja CP (obszary ubogie w metale)

5 Żelazo jako krytyczny punkt odniesienia

5.1 Nukleosynteza i bilans energetyczny

Kluczowe znaczenie żelaza ($A_{Fe}=56$) wynika z fundamentalnych własności reakcji jądrowych:

$$\phi(x) = \phi_0 \frac{\sum X_i(x) (A_i / A_{Fe})}{1 + \sum X_i(x) (A_i / A_{Fe})}$$
(11)

gdzie:

- $\bullet~X_i(x)$ udział masowy pierwiastka i w punkcie x
- A_i liczba masowa pierwiastka i
- $A_{Fe} = 56$ liczba masowa żelaza

5.2 Fizyka procesów jądrowych

Żelazo stanowi granicę między:

• Reakcjami egzotermicznymi (A < 56):

$$^{4}He + ^{52}Cr \rightarrow ^{56}Fe + \gamma + 8.6 \,\text{MeV}$$
 (12)

• Reakcjami endotermicznymi $(A \ge 56)$:

$$^{56}Fe + ^{4}He \rightarrow ^{60}Ni - 2.6 \,\text{MeV}$$
 (13)

5.3 Interpretacja w modelu zmCP

Typ obszaru	Wartość ϕ
Ubogi w metale $(A_i \ll 56)$ Bogaty w żelazo $(A_i \approx 56)$	$ \begin{array}{c} \phi \to 0 \\ \phi \to \phi_0 \end{array} $
Bogaty w pierwiastki ciężkie $(A_i > 56)$	$\phi \rightarrow \phi_0/2$

Table 1: Zależność parametru ϕ od składu chemicznego

5.4 Konsekwencje obserwacyjne

- Galaktyki młode (dominacja H, He): $\phi \approx 0$ minimalna modyfikacja CP
- Galaktyki dojrzałe (bogate w Fe): $\phi \approx 0.5 1.0$ silne efekty DM
- Gwiazdy populacji III (tylko H/He): $\phi \approx 0$ zgodność z OTW

$$\frac{d\phi}{dt} \sim \frac{dZ}{dt} \approx \psi(t) - Z(t)\psi(t) + \dot{Z}_{in} \tag{14}$$

gdzie $\psi(t)$ to tempo tworzenia gwiazd, a Z to metaliczność.

$$\frac{d\phi}{dt} \sim \frac{dZ}{dt} \approx \psi(t) - Z(t)\psi(t) + \dot{Z}_{in} \tag{15}$$

gdzie $\psi(t)$ to tempo tworzenia gwiazd, a Z to metaliczność.

5.5 Dynamika zużytej czasoprzestrzeni

Proponowana modyfikacja czasoprzestrzeni nie jest procesem lokalnym – zużyta CP przemieszcza się i rozprasza w kosmicznej skali. Można to przyrównać do systemu rzecznego, gdzie:

- Źródła (obszary bogate w żelazo) "zasilają" globalny ocean CP
- Prądy kosmicznej ekspansji roznoszą zmodyfikowaną CP
- Efekty obserwowane jako ciemna materia zależą zarówno od lokalnej produkcji ϕ , jak i transportu z otoczenia

Matematyczny opis tego zjawiska wymagałby równań transportu.

6 Interpretacja Fizyczna

- Dla $\phi \approx 0$ (obszary ubogie w metale): $f(\phi) \approx 1$ (standardowa OTW)
- Dla $\phi \to 1$ (obszary bogate w żelazo): $f(\phi) \approx 1 + \lambda$ (zmodyfikowana grawitacja)
- Efekt: Zmienna efektywna stała sprzężenia materii z geometria

7 Zalety Formalne

- Zachowuje kowariantność równań pola
- Spełnia zasadę równoważności (materia minimalnie sprzężona z ϕ)
- Automatycznie zachowuje $\nabla^{\mu} T_{\mu\nu}^{(m)} = 0$

8 Krytyczna analiza hipotezy zmCP

• Silne strony:

- 1. **Šmiałość koncepcji:** +10 pkt za oryginalność. Łączenie nukleosyntezy z geometrią to mocny ruch.
- 2. **Testowalność:** Rzuca wyzwanie ΛCDM w konkretnych obserwacjach (kształt halo, pustki).
- 3. **Elegancja:** Wymyka się problemowi ciemnej materii jako "luku teorii".

• Słabe strony:

- 1. **Problem z energią:** Brak zachowania energii w obecnym sformułowaniu. Gdzie znika "zużyta" CP?
- 2. Fine-tuning: Stałe ϕ_0 , Z_0 , λ są dobrane "na oko".

• Śmiertelne grzechy:

- 1. Nielokalność: Jak "prąd CP" wie, gdzie płynąć? Brak równań pola dla transportu ϕ .
- 2. **Ignorowanie kwantów:** Jeśli CP jest aktywna, gdzie są jej fluktuacje kwantowe? A gdzie sprzężenie z polem Higgsa?
- 3. **Selektywność danych:** Wybiera tylko wygodne anomalie (np. AGC 114905), ale milczy o sukcesach ΛCDM (soczewkowanie w gromadach, CMB).

• Ocena końcowa:

Kryterium	Ocena (1-10)
Spójność matematyczna	4
Zgodność z obserwacjami	6
Rewolucyjny potencjał	9
Prawdopodobieństwo bycia prawdziwą	2
Wartość zabawy intelektualnej	11

Podsumowanie: "zmCP to kosmicznie odjechany pomysł, który prawdopodobnie jest błędny, ale **absolutnie warto** go gonić. Nawet jeśli upadnie, może wyprowadzić nas z epistemicznego klinczu DM vs. MOND. Tylko proszę nie udawać, że OTW jest 'przestarzała' - ona po prostu **nie bawi się w poezję**."

References

- [1] Verlinde, E. (2016) "Emergent Gravity and the Dark Universe", arXiv:1611.02269
- [2] McGaugh, S. et al. (2016) "The Radial Acceleration Relation in Rotationally Supported Galaxies", ApJ 830, 1
- [3] Damour, T., & Nordtvedt, K. (1993) "Tensor-scalar cosmological models", PRL 70, 2217
- [4] Porto, R.A. (2016) "The Tuning Fork: A New Plot to Study Galaxy Evolution", ApJ 832, 2
- [5] Tinsley, B.M. (1980) "Evolution of the Stars and Gas in Galaxies", FCPh 5, 287
- [6] Sanders, R.H. (2003) "Modified Newtonian dynamics as an alternative to dark matter", ARA&A 40, 263
- [7] Peebles, P.J.E. (2002) "The Standard Cosmological Model", in "Modern Cosmology in Retrospect", Cambridge UP