

844

*	
minimalny/opty	F (mm)
malny wymiar	600

E (mm) D (mm) C (mm)

8

8 8 1200/1500*| 1200/1900*

978 60

1186

200

Szerokość maszyny

- WYŁĄCZNIK GŁÓWNY
- LISTWA OCHRONNA
- KORYTO DOLNE
- WYLOT OPARÓW TYLNY
- WYLOT OPARÓW PRAWY
- ZASILANIE ELEKTRYCZNE
- WYLOT RESZTKOWEGO CIEPŁA TABLICZKA ZNAMIONOWA

LEGENDA:

- PANEL STERUJĄCY
- KORBA NAPĘDU RĘCZNEGO
- KORYTO GÓRNE PASY WPROWADZAJĄCE
- SRUBA OCHRONNA
- PODŁĄCZENIE GAZU

SPECYFIKACJA TECHNICZNA

Przekrój przewodów zasilaj	Zabezpieczenie elektryczne	Moc zainstalowana (kW)	System zasilania elektr.	Moc reszty elementów (kW)	Moc wentylatora (kW)	Moc silnika napędu (kW)	Zużycie gazu* (m3/godz)	Moc palnika	Podłączenie gazu	Gaz – rodzaj	ciśnienia na rurociągu	Dozwolona strata	Temperatura oparów °C	Wylot powietrza (mm)	Przepływ powietrza (m3/h)	Prędkość prasowania (m/min)	Wydajność (kg/godz)	Masa netto (kg)	Średnica walca (mm)	Szerokość max – B (mm)	Szerokość – A (mm)	MODEL	OI FOILINAMIA IFO		
3x1,5/5x1,5	10A 10A 10A	0,	230/400V 1AC/3AC+N 50Hz	0,	0,095/0,125	0,1	2,34	23 kW	3/4"	G20, 25, 30, 31, 110		150 Pa	85	ø150	480 - 655	1,0 - 6,0	58	410	320	2195	2084	133–160	ILCITATORIA		
5 mm2 Cu		5	3AC+N 50Hz	0,17		5/0,125	5/0,125	0,18),18	0,18	2,82	28 kW	4.	10, 31, 110		P	85	ø150	500 - 700	1,0 - 6,0	72	465	320	2610	2500

^{*} Określone dla 100% używania zgodnie z ISO9381-1

PODGRZEW GAZOWY

PRASOWNICA	(primus)
PRASOWNICA Z PODGRZEWANYM V	133 G
WALCEM	07.06.

07.06.2011

Nie wolno instalować gazowych podgrzewaczy wody lub innych grawitacyjnie zasilanych urządzeń w tym samym pomieszczeniu. Używać przewodów wydotowych wykonanych z blachy lub innych niepalnych materiałów z gładką powierzchnią wewnętrzną. Prasownica potrzebuje do pracy powietrza, które jest wyrzucane z niej podczas prasowania. Otwór doprowadzający świeże powietrze do pomieszczenia musi znajdować się możliwie jak najbliżej prasownicy. Minimalna powierzchnia tego otworu wynosi 0,18 m²na każdą prasownicę.

Prasownica wytwarza gorące wilgotne powietrze (temp.60°C) i łatwopalny prusz (pył tkaninowy). Każda maszyna musi być podłączona do kanału wylotowego. zgodnie z obowiązującymi przepisami oraz musi być ustawiona w dobrze wentylowanym pomieszczeniu. Wykonanie kanału wylotowego powinno być takie, aby para wodna powstojąca podczas pracy urządzenia i skraplająca się była albo zatrzymywana i odprowadzana wykonanie kanału wylotowego powinno być takie, aby para wodna powstojąca podczas pracy urządzenia i skraplająca się była albo zatrzymywana i odprowadzana

SYSTEM ODPROWADZENIA OPARÓW

lub wyrzucana na zewnątrz.

Na tylnej ścianie lewego stojaka znajduje się wyłot (kratka) resztkowego ciepła. Nie wolno przykrywać tego wyłotu ponieważ grozi to przegrzaniem i uszkodzeniem maszyny. Temperatura wyłotowego powietrza może chwilowo przekraczać 100°C. Niebezpieczeństwo zapalenia.