DATA VISUALIZATION

WEEK 2

GGPLOT2 - Part 2

1. Theme

options(scipen=999)

library(ggplot2)

data("midwest", package = "ggplot2")

theme_set(theme_bw())

gg <- ggplot(midwest, aes(x=area, y=poptotal)) + geom_point(aes(col=state, size=popdensity)) + geom_smooth(method="loess", se=F) + $x\lim(c(0, 0.1)) + y\lim(c(0, 500000)) + labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest")$

plot(gg)

// Use theme_set() to completely override the current theme. Here we have the old theme so we can later restore it

2. Adding plot and axis titles

gg <- ggplot(midwest, aes(x=area, y=poptotal)) + geom_point(aes(col=state, size=popdensity)) + geom_smooth(method="loess", se=F) + $x\lim(c(0, 0.1)) + y\lim(c(0, 500000)) + labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest")$

gg + theme(plot.title=element_text(size=20, face="bold", family = "American Typewriter", color="tomato", hjust=0.5, lineheight=1.2), plot.subtitle=element_text (size=15, family = "American Typewriter", face="bold", hjust=0.5), plot.caption = element_text(size=15) , axis.title.x = element_text(vjust=10, size=15), axis.title.y = element_text(size=15), axis.text.x = element_text(size=10, angle = 30, vjust = .5), axis.text.y = element_text(size=10))

3. Modifying legend title (using labs)

library(ggplot2)

gg + labs(color="State", size="Density")

//labs()function is used to specify the labels

4. Change legend labels and print colours for categories

gg + scale_color_manual(name="State", labels = c("Illinois", "Indiana", "Michigan", "Ohio", "Wisconsin"), values = c("IL"="blue", "IN"="red", "MI"="green", "OH"="brown", "WI"="orange"))

// scale_color_manual() allows you to specify you own set of mappings from levels in the data to aesthetic values.

5. Changing the order of the legend

library(ggplot2)

gg + guides(colour = guide_legend(order = 1), size = guide_legend(order = 2))

// Legend type guide shows key (i.e., geoms) mapped onto values. Legend guides for various scales are integrated if possible.

6. Remove the legend and change legend positions

NO LEGEND

gg + theme(legend.position="None") + labs(subtitle="No Legend")

Area Vs Population

Source: midwest

LEFT LEGEND

gg + theme(legend.position="left") + labs(subtitle="Legend on the Left")

BOTTOM-RIGHT LEGEND (INSIDE THE PLOT)

gg + theme(legend.title = element_text(size=12, color = "salmon", face="bold"), legend.justification=c(1,0), legend.position=c(0.95, 0.05), legend.background = element_blank(), legend.key = element_blank()) + labs(subtitle="Legend: Bottom-Right Inside the Plot")

Source: midwest

7. Adding text and label around the points

midwest_sub <- midwest[midwest\$poptotal > 300000] midwest_sub\$large_county <- ifelse(midwest_sub\$poptotal > 300000, midwest_sub\$county, "")

gg <- ggplot(midwest, aes(x=area, y=poptotal)) + geom_point(aes(col=state, size=popdensity)) + geom_smooth(method="loess", se=F) + $x\lim(c(0, 0.1)) + y\lim(c(0, 500000)) + labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest")$

gg + geom_text(aes(label=large_county), size=2, data=midwest_sub) + labs(subtitle="With ggplot2::geom_text") + theme(legend.position = "None") gg + geom_label(aes(label=large_county), size=2, data=midwest_sub, alpha=0.25) + labs(subtitle="With ggplot2::geom_label") + theme(legend.position = "None")

Area Vs Population

PLOT AND TEXT LABEL REPELS EACH OTHER

library(ggrepel)

gg + geom_text_repel(aes(label=large_county), size=2, data=midwest_sub) + labs(subtitle="With ggrepel::geom_text_repel") + theme(legend.position = "None")

gg + geom_label_repel(aes(label=large_county), size=2, data=midwest_sub) + labs(subtitle="With ggrepel::geom_label_repel") + theme(legend.position = "None")

//We can repel the text labels away from each other by loading ggrepel and using geom_text_repel // geom_label_repel draws a rectangle underneath the text, making it easier to read.

Area Vs Population

0.050

Area

Source: midwest

0.100

0.075

8. Adding annotations inside the plot

0.000

Population

100000

0

gg <- ggplot(midwest, aes(x=area, y=poptotal)) + geom_point(aes(col=state, size=popdensity)) + geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) + labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest") library(grid)

0.025

my_text <- "This text is at x=0.7 and y=0.8!" my_grob = grid.text(my_text, x=0.7, y=0.8, gp = gpar(col="firebrick", fontsize=14, fontface="bold")) gg + annotation_custom(my_grob)

//annotation_custom() is a special geom intended for use as static annotations that are the same in every panel. These annotations will not affect scales.

9. Flipping the X and Y axis

 $gg \leftarrow ggplot(midwest, aes(x=area, y=poptotal)) + geom_point(aes(col=state, size=popdensity)) + geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) + labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest", subtitle="X and Y axis Flipped") + theme(legend.position = "None")$

gg + coord_flip()

//coord_flip() flips cartesian coordinates so that horizontal becomes vertical, and vertical, horizontal.

Area Vs Population

Source: midwest

10. Reversing the scale of an axis

gg <- ggplot(midwest, aes(x=area, y=poptotal)) + geom_point(aes(col=state, size=popdensity)) + geom_smooth(method="loess", se=F) + xlim(c(0, 0.1)) + ylim(c(0, 500000)) + labs(title="Area Vs Population", y="Population", x="Area", caption="Source: midwest", subtitle="Axis Scales Reversed") + theme(legend.position = "None")

gg + scale_x_reverse() + scale_y_reverse()

// scale_x_reverse() reverse the x axis scale. Similarly, scale_y_reverse() for the y axis.

Area Vs Population

11. Faceting – drawing multiple plots in one figure

data(mpg, package="ggplot2")

g <- ggplot(mpg, aes(x=displ, y=hwy)) + geom_point() + labs(title="hwy vs displ", caption = "Source: mpg") + geom_smooth(method="lm", se=FALSE) + theme_bw()

plot(g)

Source: mpg

FACET WRAP

g <- ggplot(mpg, aes(x=displ, y=hwy)) + geom_point() + geom_smooth(method = "lm", se=FALSE) + theme_bw()

Common scales:

g + facet_wrap(~ class, nrow=3) + labs(title="hwy vs displ", caption = "Source: mpg", subtitle="Ggplot2 - Faceting - Multiple plots in one figure")

// facet_wrap wraps a 1d sequence of panels into 2d

hwy vs displ

Ggplot2 - Faceting - Multiple plots in one figure

Source: mpg

Free scales:

g + facet_wrap($^{\sim}$ class, scales = "free") + labs(title="hwy vs displ", caption = "Source: mpg", subtitle="Ggplot2 - Faceting - Multiple plots in one figure with free scales")

// facet_wrap wraps a 1d sequence of panels into 2d

hwy vs displ

Ggplot2 - Faceting - Multiple plots in one figure with free scales

displ

Source: mpg

12. Facet grid

Variation with manufacturer

g <- ggplot(mpg, aes(x=displ, y=hwy)) + geom_point() + labs(title="hwy vs displ", caption = "Source: mpg", subtitle="Ggplot2 - Faceting - Multiple plots in one figure") + geom_smooth(method="lm", se=FALSE) + theme_bw()

g1 <- g + facet_grid(manufacturer ~ class)

plot(g1)

// facet_grid forms a matrix of panels defined by row and column facetting variables. It is most useful when you have two discrete variables

hwy vs displ

Ggplot2 - Faceting - Multiple plots in one figure

Source: mpg

Variation with cylinder

g <- ggplot(mpg, aes(x=displ, y=hwy)) + geom_point() + geom_smooth(method="Im", se=FALSE) + labs(title="hwy vs displ", caption = "Source: mpg", subtitle="Ggplot2 - Facet Grid - Multiple plots in one figure") + theme_bw()

g2 <- g + facet_grid(cyl ~ class)

plot(g2)

// facet_grid forms a matrix of panels defined by row and column facetting variables. It is most useful when you have two discrete variables

hwy vs displ

Ggplot2 - Facet Grid - Multiple plots in one figure

Source: mpg

Drawing multiple plots in the same figure library(gridExtra)

gridExtra::grid.arrange(g1, g2, ncol=2)

//The grid package provides low-level functions to create graphical objects (grobs), and position them on a page in specific viewports.

Source: mpg Source: mpg

13. Modifying plot background, major and minor axes

g <- ggplot(mpg, aes(x=displ, y=hwy)) + geom_point() + geom_smooth(method="Im", se=FALSE) + theme_bw()

g + theme(panel.background = element_rect(fill = 'khaki'), panel.grid.major = element_line (colour = "burlywood", size=1.5), panel.grid.minor = element_line (colour = "tomato", size = .25, linetype = "dashed"), panel.border = element_blank(), axis.line.x = element_line(colour = "darkorange", size=1.5, lineend = "butt"), axis.line.y = element_line(colour = "darkorange", size=1.5)) + labs(title="Modified Background", subtitle="How to Change Major and Minor grid, Axis Lines, No Border")

Modified Background

Changed plot margin

g + theme(plot.background=element_rect(fill="salmon"), plot.margin = unit(c(2, 2, 1, 1), "cm")) + labs(title="Modified Background", subtitle="How to Change Plot Margin")

14. Removing major and minor grid, change border, axis title, text and ticks

g <- ggplot(mpg, aes(x=displ, y=hwy)) + geom_point() + geom_smooth(method="lm", se = FALSE) + theme_bw()

g + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), axis.title = element_blank(), axis.text = element_blank(), axis.ticks = element_blank()) + labs(title="Modified Background", subtitle="How to remove major and minor axis grid, border, axis title, text and ticks")

Modified Background

How to remove major and minor axis grid, border, axis title, text and ticks

15. Adding an image in the background

```
library(grid)
library(png)
```

img <- png::readPNG("Desktop/rlogo.png")
g pic <- rasterGrob(img, interpolate=TRUE)</pre>

g <- ggplot(mpg, aes(x=displ, y=hwy)) + geom_point() + geom_smooth(method="Im", se=FALSE) + theme_bw()

g + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.title = element_text(size = rel(1.5), face = "bold"), axis.ticks = element_blank()) + annotation_custom(g_pic, xmin=5, xmax=7, ymin=30, ymax=45)

//Takes the argument as source - either name of the file to read from or a raw vector representing the PNG file content.

