实验报告

一、算法说明

基因算法

基因算法有一套公共的完整的框架,伪代码如下。

```
1
   begin
 2
      set time t = 0 # first generation
      initGeneration() # initialize the population P(t)
3
      while the termination condition is not met do
4
5
      begin
6
        fitness() # evaluate fitness of each member of the population P(t);
8
        select() # select members from population P(t) based on fitness;
9
10
        # produce the offspring of these pairs using genetic operators(cross,mutate);
11
        # replace candidates of P(t), with these offspring;
12
        cross() #
13
        mutate() #
14
15
        set time t = t + 1 # new generation
16
      end
17
    end
```

结合以上代码来分析一下基因算法:

- 1. 第3行,首先要初始化第一代种群。这里涉及到一个个体是如何编码的,这一点对于不同的具体问题,要做出不同的实现。
- 2. 第4~16行, 在终止条件到来之前, 种群一代代循环进化, 具体如下:
 - 1. 第7行,计算种群个体的适应度,这里可以评估最优秀个体和平均适应度等。这一点上适应度对于不同的 具体问题,其个体适应度计算方法不同,要做出不同实现。
 - 2. 第8行,根据个体的适应度不同,选出优秀的个体。这一点有多种不同的策略,例如轮盘赌策略和随机二 选一的策略。
 - 3. 12~13行,选出优秀的个体之后,我们要用这些个体产生新一代的种群。具体方法则是交叉和变异。这里有两点需注意,一是交叉或变异的个体的选择有多种不同的策略,二是针对于不同的具体问题,交叉或变异的具体方法不同。
 - 4. 第15行,经过以上操作产生了新的一代,在这里做出标记。
- 3. 当达到终止条件时,则结束进化。

代码设计

根据上述描述分析可以看出,基因算法有一套公用的框架。但有两点值得注意,一是选择,交叉,变异的个体选择有多种不同的策略;二是针对于不同的具体问题,个体的基因编码、交叉和变异的具体方式可能不同。所以在设计框架时,要为这两点留出余地,以便: 1. 方便复用代码扩展新策略的基因算法, 2. 复用代码实现针对于具体问题的基因算法。

设计图如下:

如设计图所示,GeneralGeneticAlgorithm已经实现了基因算法的基本框架,选择,交叉,变异的个体选择都有默认实现。

其默认的选择个体的策略时轮盘赌的策略。 默认的交叉是以一定概率挨个询问个体是否交叉,凑够两个时将两个个体进行交叉。 默认的变异是以一定概率挨个询问个体是否要变异。

其次使用该框架时,必须传入一个继承IGeneticAssistant接口的assistant,assistant决定个体的编码,交叉和变异方式。

使用如下:

```
IGeneticAssistant assistant = new BasicKnapSack(); //以背包问题为例
GeneralGeneticAlgorithm algorithm =
new GeneralGeneticAlgorithm(iterationMax, scale,
assistant, crossP, mutateP);//其他参数是迭代次数,种群规模,交叉概率,变异概率
algorithm.start(true); //调用此函数开始迭代,true表示迭代过程中打印出每代信息
// 结束后可以取出最好的个体
System.out.println(algorithm.getBestIndividual().toString());
```

然后也可以继承GeneralGeneticAlgorithm复用代码来实现新策略的基因算法,如图SequenceCross和RandomCross都是复写了父类cross算法,采用不通的策略来选择要交叉的个体。

背包问题

这时候解决背包问题就简单了,只要实现IGeneticAssistant决定个体的编码,适应度评估,交叉,变异和拷贝方式。如上设计图所示的BasicKnapsack类采用如下具体设计。

- 1. 个体编码:用一个byte数组表示DNA,个体DNA的长度就是所有物品的数目,然后每一个位置的基因设置为0或1,表示不拿或拿当前的物品
- 2. 适应度评估:评估方式很简单,就是将选择的个体的价值都加起来,作为适应度;但如果其总重量超过背包容量,就将其适应度置为0(为防止小概率的种群总适应度为0的情况,可以将此适应度置为接近0,如1e-10)
- 3. 交叉: 交叉方式是随机选一个起点和终点, 然后将两个个体在起点和终点之间的基因段进行交换。
- 4. 变异: 变异方式是随机选一个起点和终点, 然后将该个体在起点和终点之间的基因段中0变1, 1变0
- 5. 拷贝:由于编码采用数组,所以复制产生新个体时,要将数组中每个值都拷贝一份,才能避免使用相同地址空间。

然后设计图中RandomCrossMute复写交叉和变异的方法:

- 1. 交叉: 随机生成要改变基因数, 然后挑选随机位置的基因进行互换。
- 2. 变异: 随机生成要改变基因数, 然后挑选随机位置的基因0, 1倒置。

设计图中的SequenceCrossMute顾名思义就是沿用了默认的方法,将其单独写出来,只是使得结构清新一点。

扩展其它策略的便签是指也可以继承BasicKnapsack来复写特定方法更改策略。

旅行商问题

旅行商问题也是要实现IGeneticAssistant决定个体的编码,评估,交叉,变异和拷贝方式。如上设计图所示的BasicTSP类采用如下具体设计(首先将所有地点存在一个数组里)。

- 1. 个体编码:用一个int数组表示DNA,DNA是地点访问顺序的一个序列,也就地点数组下标的一个序列。
- 2. 适应度评估: 首先计算出旅行商按该个体DNA序列出发再回到起点的总路程,取其倒数作为适应度。也就是距离越短适应度越高
- 3. 交叉: 交叉的方式比教复杂, 举个列子:

```
1 // 这是为交叉之前的两个DNA序列,先随机选取两个点将其分成三份。
2 p1 = (192 | 4657 | 83)
3 p2 = (459 | 1876 | 23)
4 // 然后将p2从第三部分开始得到临时的新序列tmp2
5 tmp2 = 234591876
6 // 这时候p1的三部分中的中间那部分(记为p12)保持不动,
7 // 然后将第一部分和第三部分依此用tmp2中不在p12区间内的元素替换
8 // 然后就可以得到p1交叉后的结果c2
9 c1 = (239 | 4657 | 18)
10 // 同样,也可以得到p2交叉后的c2
11 c2 = (392 | 1876 | 45)
```

4. 变异:变异比较简单,举个列子:

```
1  // 同样将待变异p1随机分成三部分
2  p1 = ( 1 9 2 | 4 6 5 7 | 8 3 )
3  // 然后将中间部分颠倒顺序就得到变异后的c1
4  c1 = ( 1 9 2 | 7 5 6 4 | 8 3 )
```

5. 拷贝:由于编码采用数组,所以复制产生新个体时,要将数组中每个值都拷贝一份,才能避免使用相同地址空间。

最后扩展其它策略的便签是指也可以继承BasicTSP来复写特定方法更改策略,我没有实现其它策略。

二、背包问题实验分析

实验设计

```
1
         static double[] mutatePs = {0.05,0.1,0.15,0.2,0.3,0.5,0.8};
 2
         static double[] crossPs = {0.3,0.5,0.7,0.85};
 3
         static int[] scales = {500,1000,1500};
 4
 5
         for (int i = 0; i < crossPs.length; i++) {</pre>
           for (int j = 0; j < mutatePs.length; j++) {</pre>
 6
             for (int j2 = 0; j2 < scales.length; <math>j2++) {
 7
 8
               doTrain(crossPs[i], mutatePs[j],
 9
                        scales[j2], 10000);
10
             }
11
           }
12
         }
```

实验设计就像如上代码所示,分别以一定的区间来跑完所有的测试,然后将每组测试输入的到对应的文件中。实验跑完之后,对实验结果进行分析,然后缩小区间再进行实验。

实验输出模式

实验过程中每隔300代输出一次,模式如下:

```
1 // 当前代数,当前代最佳适应度,当前代平均适应度,所有代中最佳适应度
2 g: 9901,best: 106.299999999999998,average: 82.61720000001445,best in total: 106.299999999998
```

最终会输出最佳个体, 以及最佳个体最早出现的代数

实验结果分析

实验结果从以下角度来衡量

- 1. 最佳个体适应度:参数优良性
- 2. 最佳个体最早出现代数: 收敛速度
- 3. 最终几代最佳适应度和平均适应度:参数对种群特征的影响。

实验参数会从种群规模,交叉概率,变异概率,交叉变异算法来分析,实验结果见附件部分,具体分析如下以下结果默认是随机选择交叉个体,具体的交叉变异方法是连续一段的交叉变异。

1. 种群规模影响

实验 序号	交叉 概率	变异 概率	种群 规模	最佳最早出现 代数	最佳个体适 应度	最终代最高 / 平均 适应度
1	0.3	0.05	1000	4985	101.39	96.599/91.689
2	0.3	0.05	1500	6039	104.69	102.99/98.249
3	0.3	0.05	500	7199	103.29	99.399/95.099
4	0.3	0.15	1000	5167	104.69	103.39/88.305
5	0.3	0.15	1500	2543	106.29	104.69/87.514
6	0.3	0.15	500	5384	106.29	104.79/85.406
16	0.3	0.5	1000	4934	106.29	101.69/56.033
17	0.3	0.5	1500	1759	106.29	102.49/55.495
18	0.3	0.5	500	5568	106.29	99.699/58.009
19	0.3	0.8	1000	8131	103.39	93.5/39.687
20	0.3	0.8	1500	2565	106.29	95.399/38.583
21	0.3	0.8	500	4590	102.89	88.099/39.505

从以上数据每三组对比分析, 可得

- 1. 种群规模较大的1500每次都取得最好的结果,而且除了第1、2、3组之外其它都是种群规模大的更快得到最优的个体。
- 2. 但是种群规模大会导致训练速度变慢。

2. 交叉变异概率的影响

实验 序号	交叉 概率	变异 概率	种群 规模	最佳最早出现 代数	最佳个体适 应度	最终代最高 / 平均 适应度
1	0.3	0.05	1000	4985	101.39	96.599/91.689
2	0.3	0.05	1500	6039	104.69	102.99/98.249
3	0.3	0.05	500	7199	103.29	99.399/95.099
19	0.3	0.8	1000	8131	103.39	93.5,a/39.687
20	0.3	0.8	1500	2565	106.29	95.399/38.583
21	0.3	0.8	500	4590	102.89	88.099/39.505
22	0.5	0.05	1000	4222	106.29	103.99/98.414
23	0.5	0.05	1500	0	1.0E-1	1.0E-1/9.9999
24	0.5	0.05	500	0	1.0E-1	1.0E-1/1.0000
43	0.7	0.05	1000	0	1.0E-1	1.0E-1/9.9999
44	0.7	0.05	1500	0	1.0E-1	1.0E-1/9.9999
45	0.7	0.05	500	0	1.0E-1	1.0E-1/1.0000
73	0.85	0.2	1000	3235	106.29	106.29/82.733
74	0.85	0.2	1500	351	106.29	106.29/82.617
75	0.85	0.2	500	0	1.0E-1	1.0E-1/1.0000
76	0.85	0.3	1000	569	106.29	104.79/69.521
77	0.85	0.3	1500	386	106.29	104.59/71.282
78	0.85	0.3	500	6896	106.29	104.79/72.296
79	0.85	0.5	1000	2752	106.29	103.09/56.570
80	0.85	0.5	1500	340	106.29	101.89/56.360
81	0.85	0.5	500	6702	106.29	94.599/54.731

根据以上数据,可以看出交叉变异会严重影响种群,有以下几点

- 1. 由于初始值是随机二选一,平均会选一半物品,导致一般一开始都会超过背包容积,这时,如果变异概率很小,会导致种群难以进化,根据上表,可以看到这一点再种群规模小,交叉概率大的时候更加显著。
- 2. 交叉变异的概率增大,会使得种群的收敛速度变快,种群1500的基础上,上表74、77、80都是在500次以内收敛,而交叉变异概率小的3、20则收敛较慢。3和20内部对比,后者变异概率大,收敛也相对快许多。
- 3. 交叉变异概率变大会导致种群不稳定。上图3和20对比,可以看到20虽然很快遇到更好的个体。但是种群很不稳定,最优解无法维持下去,种群平均适应度很低。后面74-81虽然结果很好,但也有相同问题。

根据以上分析,可以得出一个结论,在背包问题情况下,对于种群平均适应度要求不高,当种群最佳适应度和平均适应度保持一定距离时,结果会更好。

3. 交叉变异方法对比。

附件中第二部分的实验结果采用的交叉,变异方法是基因的位置为每一个都随机选择,根据实验结果可以看出效果整体都很差,种群不稳定,收敛速度也慢。

4. 交叉个体选择方法

附件中第三部分为实验数据,交叉个体的选择方法是顺序选取,这个使得种群更加稳定一定,相比于前者,他 更适合于交叉变异概率较小的,收敛速度较慢。

三、旅行商问题实验分析

实验设计

```
static double[] mutatePs = {0.02,0.025,0.35};
1
2
         static double[] crossPs = {0.065,0.075,0.85};
 3
         static int[] scales = {4000,5000,6000};
4
         for (int i = 0; i < crossPs.length; i++) {</pre>
                  for (int j = 0; j < mutatePs.length; j++) {</pre>
                       for (int j2 = 0; j2 < scales.length; <math>j2++) {
6
7
                            doTrain(crossPs[i], mutatePs[j],
8
                                     scales[j2], 18000);
9
                       }
10
11
              }
```

实验设计就像如上代码所示,分别以一定的区间来跑完所有的测试,然后将每组测试输入的到对应的文件中。实验 跑完之后,对实验结果进行分析,然后缩小区间再进行实验。上述代码为调整后的小区间,全部实验见附件第5部 分。

实验输出模式

实验过程中每隔300代输出一次,模式如下:

```
1 // 当前代数,当前代最佳适应度,当前代平均适应度,所有代中最佳适应度(适应度为路径长度的倒数)
2 g: 17701,best: 0.002321846556641697,average: 0.0021039901608931526,best in total: 0.0023259620846458728
```

最终会输出最佳个体,以及最佳个体最早出现的代数

```
      1
      // 代数: 适应度, 个体编码

      2
      17089:429.9296220695918,47 22 6 42 23 13 24 12 40 39 18 41 43 14 44 32 38 9 48 8 29 33 49 20

      28 15 1 19 34 35 2 27 30 25 7 21 0 31 10 37 4 36 16 3 17 46 11 45 50 26 5
```

实验结果分析

实验结果从以下角度来衡量

- 1. 最佳个体适应度:参数优良性
- 2. 最佳个体最早出现代数: 收敛速度

3. 最终几代最佳适应度和平均适应度:参数对种群特征的影响。

实验参数会从种群规模,交叉概率,变异概率,交叉变异算法来分析,实验结果见附件部分,具体分析如下以下结果默认是随机选择交叉个体,具体的交叉变异方法为前述默认方法。最佳个体适应度是路径长度,而后面最终代最高/平均适应度是路径长度的倒数。

1. 种群规模影响

实验 序号	交叉 概率	变异 概率	种群 规模	最佳最早出现 代数	最佳个体适 应度	最终代最高 / 平均 适应度
10	0.06	0.03	1000	13507	445.50	0.0022/0.0020
11	0.06	0.03	2500	11020	445.39	0.0022/0.0020
12	0.06	0.03	500	17860	476.76	0.0020/0.0018
13	0.06	0.03	5000	15618	435.16	0.0022/0.0021

从以上数据四组对比分析(更多数据参考附件第四部分),可得

- 1. 种群规模较大的5000每次都取得最好的结果,种群规模最小的500效果最差也最慢。
- 2. 种群规模大会导致训练速度变慢。

2. 交叉变异概率的影响

实验 序号	交叉 概率	变异 概率	种群 规模	最佳最早出现 代数	最佳个体适 应度	最终代最高 / 平均 适应度
71	0.15	0.3	1000	563	946.01	8.2668/6.9977
72	0.15	0.3	2500	16398	842.64	9.7658/7.7972
73	0.15	0.3	500	13847	976.77	8.3581/7.1739
103	0.85	0.025	4000	9200	1080.3	7.6112/6.1638
104	0.85	0.025	5000	16642	1093.1	7.7736/6.1849
105	0.85	0.025	6000	11123	1112.4	7.6321/6.1895
4	0.065	0.02	4000	17088	446.83	0.0021/0.0020
5	0.065	0.02	5000	17537	435.80	0.0022/0.0020
6	0.065	0.02	6000	12531	442.49	0.0022/0.0020
22	0.075	0.025	4000	13851	446.72	0.0022/0.0020
23	0.075	0.025	5000	17823	445.51	0.0022/0.0019
24	0.075	0.025	6000	17089	429.92	0.0023/0.0021

根据上表数据可得

- 1. 首先TSP问题没有前述背包问题所说的,无法跳出初始值的问题。
- 2. 与背包问题不同,TSP问题更适合较小的交叉变异概率,当种群很稳定的时候才更容易得到更好的解

- 3. 交叉变异概率对收敛速度的影响不显著。 由以上分析,旅行商问题再训练过程中要保持大量的优良个体才能很好进化。从分析数据来看平均适应 度总是与最佳适应度很接近。
- 3. 交叉变异方法对比。

这一点没有实现多终交叉变异方法, 暂时没有数据。

4. 交叉个体选择方法

附件第五部分为顺序选择交叉个体的方法,换用这种方法影响不是很显著,同样要求较小的交叉变异概率。性 能略差一点。

四、附实验结果

1. 背包问题, 随机选择交叉个体算法; 交叉变异基因为连续一段

实验序 号	交叉概 率	变异概 率	种群规 模	最佳最早出现 代数	最佳个体适 应度	最终代最高 / 平均适 应度
1	0.3	0.05	1000	4985	101.39	96.599/91.689
2	0.3	0.05	1500	6039	104.69	102.99/98.249
3	0.3	0.05	500	7199	103.29	99.399/95.099
4	0.3	0.15	1000	5167	104.69	103.39/88.305
5	0.3	0.15	1500	2543	106.29	104.69/87.514
6	0.3	0.15	500	5384	106.29	104.79/85.406
7	0.3	0.1	1000	5313	105.79	104.29/92.617
8	0.3	0.1	1500	0	1.0E-1	1.0E-1/9.9999
9	0.3	0.1	500	9992	103.09	100.39/89.534
10	0.3	0.2	1000	5965	106.29	106.29/85.317
11	0.3	0.2	1500	636	106.29	106.29/85.634
12	0.3	0.2	500	8019	105.79	103.29/81.738
13	0.3	0.3	1000	9397	106.29	103.19/72.396
14	0.3	0.3	1500	2860	106.29	106.29/71.079
15	0.3	0.3	500	419	106.29	106.29/75.727
16	0.3	0.5	1000	4934	106.29	101.69/56.033
17	0.3	0.5	1500	1759	106.29	102.49/55.495
18	0.3	0.5	500	5568	106.29	99.699/58.009
19	0.3	0.8	1000	8131	103.39	93.5,a/39.687
20	0.3	0.8	1500	2565	106.29	95.399/38.583
21	0.3	0.8	500	4590	102.89	88.099/39.505
22	0.5	0.05	1000	4222	106.29	103.99/98.414
23	0.5	0.05	1500	0	1.0E-1	1.0E-1/9.9999
24	0.5	0.05	500	0	1.0E-1	1.0E-1/1.0000
25	0.5	0.15	1000	6060	106.29	104.79/87.962
26	0.5	0.15	1500	2571	106.29	102.89/86.541
27	0.5	0.15	500	1542	104.6,	103.1,/89.511
28	0.5	0.1	1000	3938	104.79	103.29/93.434

29	0.5	0.1	1500	4393	106.29	106.29/94.621
30	0.5	0.1	500	0	1.0E-1	1.0E-1/1.0000
31	0.5	0.2	1000	7809	106.29	106.29/85.163
32	0.5	0.2	1500	3757	104.69	103.39/82.550
33	0.5	0.2	500	2265	106.29	106.29/83.629
34	0.5	0.3	1000	7812	106.29	106.29/73.506
35	0.5	0.3	1500	1536	106.29	106.29/71.245
36	0.5	0.3	500	0	1.0E-1	1.0E-1/1.0000
37	0.5	0.5	1000	2948	106.29	100.29/55.762
38	0.5	0.5	1500	1235	106.29	100.79/57.799
39	0.5	0.5	500	3052	106.29	98.499/58.568
40	0.5	0.8	1000	9313	104.79	96.599/41.264
41	0.5	0.8	1500	8394	104.79	97.399/40.271
42	0.5	0.8	500	9418	103.69	97.399/37.026
43	0.7	0.05	1000	0	1.0E-1	1.0E-1/9.9999
44	0.7	0.05	1500	0	1.0E-1	1.0E-1/9.9999
45	0.7	0.05	500	0	1.0E-1	1.0E-1/1.0000
46	0.7	0.15	1000	1389	106.29	104.29/88.335
47	0.7	0.15	1500	6355	104.69	103.39/85.504
48	0.7	0.15	500	0	1.0E-1	1.0E-1/1.0000
49	0.7	0.1	1000	9427	102.89	101.99/91.870
50	0.7	0.1	1500	1553	106.29	104.79/94.321
51	0.7	0.1	500	0	1.0E-1	1.0E-1/1.0000
52	0.7	0.2	1000	2405	106.29	106.29/85.934
53	0.7	0.2	1500	1403	106.29	106.29/85.484
54	0.7	0.2	500	2526	106.29	106.29/85.170
55	0.7	0.3	1000	696	106.29	104.6,/73.263
56	0.7	0.3	1500	6709	106.29	106.29/73.064
57	0.7	0.3	500	3546	106.29	105.79/73.133

58	0.7	0.5	1000	2175	106.29	101.49/54.312
59	0.7	0.5	1500	2247	106.29	98.699/54.269
60	0.7	0.5	500	8570	106.29	97.699/56.563
61	0.7	0.8	1000	3233	103.89	95.599/39.389
62	0.7	0.8	1500	4964	105.79	94.099/39.547
63	0.7	0.8	500	4966	104.79	95.599/36.744
64	0.85	0.05	1000	0	1.0E-1	1.0E-1/9.9999
65	0.85	0.05	1500	6533	101.6	97.5,a/92.037
66	0.85	0.05	500	0	1.0E-1	1.0E-1/1.0000
67	0.85	0.15	1000	6378	106.29	106.29/88.827
68	0.85	0.15	1500	1306	106.29	105.79/89.643
69	0.85	0.15	500	3931	106.29	106.29/89.689
70	0.85	0.1	1000	6697	104.79	103.29/93.269
71	0.85	0.1	1500	2893	106.29	103.99/93.249
72	0.85	0.1	500	2996	104.6,	103.1,/92.126
73	0.85	0.2	1000	3235	106.29	106.29/82.733
74	0.85	0.2	1500	351	106.29	106.29/82.617
75	0.85	0.2	500	0	1.0E-1	1.0E-1/1.0000
76	0.85	0.3	1000	569	106.29	104.79/69.521
77	0.85	0.3	1500	386	106.29	104.59/71.282
78	0.85	0.3	500	6896	106.29	104.79/72.296
79	0.85	0.5	1000	2752	106.29	103.09/56.570
80	0.85	0.5	1500	340	106.29	101.89/56.360
81	0.85	0.5	500	6702	106.29	94.599/54.731
82	0.85	0.8	1000	3644	104.79	96.999/38.306
83	0.85	0.8	1500	4584	106.29	93.399/39.997
84	0.85	0.8	500	8873	103.29	93.4/35.783

2. 背包问题, 随机选择交叉个体算法; 交叉变异基因为随机选择的

实验序 号	交叉概 率	变异概 率	种群规 模	最佳最早出现 代数	最佳个体适 应度	最终代最高 / 平均适 应度
1	0.3	0.05	1000	2227	102.3	92.699/88.606
2	0.3	0.05	1500	4206	102.29	91.0/86.834
3	0.3	0.05	500	4652	86.899	74.0,a/68.711
4	0.3	0.15	1000	4382	88.899	75.6,a/62.574
5	0.3	0.15	1500	2371	101.49	86.899/72.841
6	0.3	0.15	500	5905	103.89	97.999/83.583
7	0.3	0.1	1000	4908	99.699	89.499/80.327
8	0.3	0.1	1500	9488	104.69	101.29/91.262
9	0.3	0.1	500	5898	101.39	88.5,a/79.481
10	0.3	0.2	1000	613	106.29	104.79/86.058
11	0.3	0.2	1500	1099	102.59	98.099/79.895
12	0.3	0.2	500	4164	100.29	90.5,a/73.228
13	0.3	0.3	1000	4133	103.59	101.49/71.145
14	0.3	0.3	1500	668	106.29	106.29/74.033
15	0.3	0.3	500	762	106.29	101.79/72.667
16	0.3	0.5	1000	1335	106.29	101.69/53.328
17	0.3	0.5	1500	1692	106.29	103.99/53.314
18	0.3	0.5	500	1175	106.29	103.79/52.869
19	0.3	0.8	1000	273	106.29	100.89/21.714
20	0.3	0.8	1500	1640	106.29	101.89/19.128
21	0.3	0.8	500	9036	106.29	100.39/20.058
22	0.5	0.05	1000	5506	81.4,0	59.2,a/56.048
23	0.5	0.05	1500	9556	92.399	75.999/64.312
24	0.5	0.05	500	9958	90.499	74.8,a/70.312
25	0.5	0.15	1000	6274	95.699	88.0,a/73.908
26	0.5	0.15	1500	1319	91.899	81.999/65.415
27	0.5	0.15	500	7669	97.6,0	88.599/77.501
28	0.5	0.1	1000	7911	95.599	82.199/74.228

29	0.5	0.1	1500	9143	98.599	74.799/67.240
30	0.5	0.1	500	8097	97.799	84.8,a/73.737
31	0.5	0.2	1000	6718	103.49	99.999/80.305
32	0.5	0.2	1500	7884	94.1,0	84.699/67.193
33	0.5	0.2	500	4296	103.79	99.599/80.246
34	0.5	0.3	1000	1233	104.79	101.89/69.945
35	0.5	0.3	1500	894	106.29	103.59/72.517
36	0.5	0.3	500	6754	101.39	95.699/67.157
37	0.5	0.5	1000	1473	106.29	106.29/55.273
38	0.5	0.5	1500	9653	105.79	103.19/50.581
39	0.5	0.5	500	1426	106.29	105.79/50.664
40	0.5	0.8	1000	1196	106.29	102.3,/19.792
41	0.5	0.8	1500	1485	106.29	102.29/20.401
42	0.5	0.8	500	773	106.29	101.49/23.543
43	0.7	0.05	1000	1652	89.099	72.399/65.661
44	0.7	0.05	1500	1637	89.6,0	75.300/66.431
45	0.7	0.05	500	7170	75.7,0	57.5,a/53.299
46	0.7	0.15	1000	5089	98.999	88.9,a/70.745
47	0.7	0.15	1500	8045	94.1,0	78.8,a/62.290
48	0.7	0.15	500	6351	87.8,0	68.5,a/57.397
49	0.7	0.1	1000	7342	98.899	89.799/80.907
50	0.7	0.1	1500	6410	101.89	94.199/86.834
51	0.7	0.1	500	6860	87.799	71.999/60.879
52	0.7	0.2	1000	2412	104.59	94.399/76.778
53	0.7	0.2	1500	1293	106.29	101.69/82.088
54	0.7	0.2	500	7535	92.399	76.999/63.471
55	0.7	0.3	1000	2445	100.89	93.899/60.903
56	0.7	0.3	1500	2625	103.69	100.29/70.770
57	0.7	0.3	500	5596	100.29	90.999/62.727

58	0.7	0.5	1000	2253	106.29	103.99/53.481
59	0.7	0.5	1500	1602	106.29	101.49/50.137
60	0.7	0.5	500	427	106.29	103.79/53.504
61	0.7	0.8	1000	1078	106.29	101.1,/19.991
62	0.7	0.8	1500	1887	106.29	98.499/19.363
63	0.7	0.8	500	1689	106.29	96.1,a/20.355
64	0.85	0.05	1000	8871	77.1,0	53.699/51.248
65	0.85	0.05	1500	5625	86.199	65.5,a/57.612
66	0.85	0.05	500	6158	84.6,0	55.099/52.775
67	0.85	0.15	1000	8047	97.999	81.6,a/69.476
68	0.85	0.15	1500	1810	90.999	64.0,a/53.601
69	0.85	0.15	500	9666	98.599	79.6,a/67.560
70	0.85	0.1	1000	9543	102.49	89.299/79.724
71	0.85	0.1	1500	9313	96.799	82.299/70.985
72	0.85	0.1	500	4771	79.7,0	50.6/46.549
73	0.85	0.2	1000	9374	89.799	66.999/54.277
74	0.85	0.2	1500	4280	99.199	89.6/72.226
75	0.85	0.2	500	5548	83.699	61.8/45.642
76	0.85	0.3	1000	8296	99.899	93.199/62.980
77	0.85	0.3	1500	530	99.799	89.899/60.062
78	0.85	0.3	500	4178	100.79	85.799/59.842
79	0.85	0.5	1000	2748	105.79	102.99/48.664
80	0.85	0.5	1500	375	106.29	106.29/53.665
81	0.85	0.5	500	3256	106.29	106.29/55.009
82	0.85	0.8	1000	1076	106.29	100.79/18.212
83	0.85	0.8	1500	1026	106.29	99.799/17.357
84	0.85	0.8	500	3547	106.29	98.799/19.219

3. 背包问题,顺序选择交叉个体算法;交叉变异基因为连续一段

实验序 号	交叉概 率	变异概 率	种群规 模	最佳最早出现 代数	最佳个体适 应度	最终代最高 / 平均适 应度
1	0.3	0.05	1000	0	1.0E-1	1.0E-1/9.9999
2	0.3	0.05	1500	0	1.0E-1	1.0E-1/9.9999
3	0.3	0.05	500	0	1.0E-1	1.0E-1/1.0000
4	0.3	0.15	1000	3760	106.29	106.29/91.432
5	0.3	0.15	1500	597	106.29	106.29/91.369
6	0.3	0.15	500	7026	106.29	106.29/89.787
7	0.3	0.1	1000	3378	104.69	103.39/92.859
8	0.3	0.1	1500	3839	106.29	106.29/96.837
9	0.3	0.1	500	0	1.0E-1	1.0E-1/1.0000
10	0.3	0.2	1000	3291	106.29	106.29/85.683
11	0.3	0.2	1500	3984	106.29	106.29/84.381
12	0.3	0.2	500	6216	106.29	106.29/82.546
13	0.3	0.3	1000	4993	106.29	104.79/73.038
14	0.3	0.3	1500	4880	106.29	106.29/71.597
15	0.3	0.3	500	0	1.0E-1	1.0E-1/1.0000
16	0.3	0.5	1000	3322	106.29	97.799/55.437
17	0.3	0.5	1500	2144	106.29	102.29/56.235
18	0.3	0.5	500	484	106.29	101.09/54.627
19	0.3	0.8	1000	4542	104.1,	92.1,a/39.286
20	0.3	0.8	1500	2619	106.29	92.7,a/40.538
21	0.3	0.8	500	4261	105.79	88.899/37.666
22	0.5	0.05	1000	0	1.0E-1	1.0E-1/9.9999
23	0.5	0.05	1500	7742	104.29	103.29/98.806
24	0.5	0.05	500	0	1.0E-1	1.0E-1/1.0000
25	0.5	0.15	1000	4001	106.29	106.29/91.453
26	0.5	0.15	1500	2323	105.79	104.69/88.914
27	0.5	0.15	500	0	1.0E-1	1.0E-1/1.0000
28	0.5	0.1	1000	5872	106.29	106.29/93.651

29	0.5	0.1	1500	681	106.29	106.29/95.037
30	0.5	0.1	500	0	1.0E-1	1.0E-1/1.0000
31	0.5	0.2	1000	4985	106.29	106.29/83.875
32	0.5	0.2	1500	8047	106.29	104.79/82.026
33	0.5	0.2	500	631	106.29	106.29/84.867
34	0.5	0.3	1000	5875	106.29	102.59/72.934
35	0.5	0.3	1500	5946	106.29	106.29/73.111
36	0.5	0.3	500	0	1.0E-1	1.0E-1/1.0000
37	0.5	0.5	1000	4691	106.29	101.09/55.391
38	0.5	0.5	1500	1791	106.29	102.29/57.943
39	0.5	0.5	500	4664	105.79	99.899/57.756
40	0.5	0.8	1000	9308	103.79	91.099/37.646
41	0.5	0.8	1500	7539	105.79	98.899/38.566
42	0.5	0.8	500	6502	105.79	89.699/36.866
43	0.7	0.05	1000	4050	101.09	97.799/92.741
44	0.7	0.05	1500	1198	106.29	106.29/100.62
45	0.7	0.05	500	0	1.0E-1	1.0E-1/1.0000
46	0.7	0.15	1000	661	106.29	106.29/90.585
47	0.7	0.15	1500	3500	106.29	106.29/90.165
48	0.7	0.15	500	0	1.0E-1	1.0E-1/1.0000
49	0.7	0.1	1000	5052	104.29	101.49/90.294
50	0.7	0.1	1500	956	106.29	104.79/92.021
51	0.7	0.1	500	0	1.0E-1	1.0E-1/1.0000
52	0.7	0.2	1000	1151	106.29	106.29/84.617
53	0.7	0.2	1500	1275	106.29	106.29/85.197
54	0.7	0.2	500	5786	106.29	106.29/84.322
55	0.7	0.3	1000	3680	106.29	103.39/70.758
56	0.7	0.3	1500	1595	106.29	106.29/72.647
57	0.7	0.3	500	2139	106.29	103.69/73.611

58	0.7	0.5	1000	2154	106.29	101.99/59.084
59	0.7	0.5	1500	6718	106.29	103.09/56.684
60	0.7	0.5	500	5024	106.29	97.599/50.578
61	0.7	0.8	1000	6387	106.29	96.599/40.926
62	0.7	0.8	1500	7798	104.6,	96.6,a/39.596
63	0.7	0.8	500	9081	104.69	88.999/35.515
64	0.85	0.05	1000	5029	104.29	100.69/93.158
65	0.85	0.05	1500	9738	103.99	103.49/96.426
66	0.85	0.05	500	0	1.0E-1	1.0E-1/1.0000
67	0.85	0.15	1000	6507	106.29	103.79/89.389
68	0.85	0.15	1500	7129	106.29	104.79/87.170
69	0.85	0.15	500	951	106.29	106.29/88.782
70	0.85	0.1	1000	669	106.29	106.29/95.184
71	0.85	0.1	1500	9196	106.29	103.19/92.961
72	0.85	0.1	500	2571	106.29	106.29/95.421
73	0.85	0.2	1000	4645	106.29	106.29/82.197
74	0.85	0.2	1500	1898	106.29	106.29/84.104
75	0.85	0.2	500	7453	106.29	105.79/81.303
76	0.85	0.3	1000	3455	106.29	103.59/69.239
77	0.85	0.3	1500	1919	106.29	106.29/73.412
78	0.85	0.3	500	2854	106.29	104.59/72.612
79	0.85	0.5	1000	2615	106.29	99.799/54.608
80	0.85	0.5	1500	1341	106.29	100.79/54.746
81	0.85	0.5	500	4064	106.29	100.49/58.421
82	0.85	0.8	1000	2942	103.99	94.499/38.860
83	0.85	0.8	1500	6671	103.99	93.3,a/40.284
84	0.85	0.8	500	7575	103.99	91.499/38.636

^{4.} 旅行商问题,随机选择交叉个体,交叉变异方法默认

实验序 号	交叉概 率	变异概 率	种群规 模	最佳最早出现 代数	最佳个体适 应度	最终代最高 / 平均适 应度
1	0.065	0.025	4000	14614	443.69	0.0022/0.0020
2	0.065	0.025	5000	14829	432.23	0.0022/0.0020
3	0.065	0.025	6000	10241	456.18	0.0021/0.0019
4	0.065	0.02	4000	17088	446.83	0.0021/0.0020
5	0.065	0.02	5000	17537	435.80	0.0022/0.0020
6	0.065	0.02	6000	12531	442.49	0.0022/0.0020
7	0.065	0.35	4000	12893	749.35	0.0010/8.0311
8	0.065	0.35	5000	9315	739.86	0.0010/8.5105
9	0.065	0.35	6000	10414	775.17	0.0011/8.4818
10	0.06	0.03	1000	13507	445.50	0.0022/0.0020
11	0.06	0.03	2500	11020	445.39	0.0022/0.0020
12	0.06	0.03	500	17860	476.76	0.0020/0.0018
13	0.06	0.03	5000	15618	435.16	0.0022/0.0021
14	0.06	0.06	1000	17913	459.77	0.0021/0.0018
15	0.06	0.06	2500	16826	441.73	0.0022/0.0019
16	0.06	0.06	500	17501	515.00	0.0018/0.0016
17	0.06	0.06	5000	17747	434.56	0.0022/0.0020
18	0.06	0.08	1000	14049	446.96	0.0021/0.0018
19	0.06	0.08	2500	15902	439.36	0.0022/0.0019
20	0.06	0.08	500	16238	545.68	0.0016/0.0014
21	0.06	0.08	5000	17836	440.37	0.0022/0.0019
22	0.075	0.025	4000	13851	446.72	0.0022/0.0020
23	0.075	0.025	5000	17823	445.51	0.0022/0.0019
24	0.075	0.025	6000	17089	429.92	0.0023/0.0021
25	0.075	0.02	4000	17476	441.52	0.0022/0.0020
26	0.075	0.02	5000	15679	438.29	0.0022/0.0020
27	0.075	0.02	6000	17477	442.60	0.0022/0.0020
28	0.075	0.35	4000	7528	783.76	0.0010/8.1426

29	0.075	0.35	5000	8132	763.77	0.0012/8.9255
30	0.075	0.35	6000	17917	760.50	0.0011/8.6827
31	0.08	0.03	1000	17634	473.58	0.0020/0.0018
32	0.08	0.03	2500	16047	446.92	0.0021/0.0019
33	0.08	0.03	500	17943	463.33	0.0021/0.0018
34	0.08	0.03	5000	12038	430.88	0.0023/0.0020
35	0.08	0.06	1000	16924	445.96	0.0022/0.0018
36	0.08	0.06	2500	17732	432.16	0.0022/0.0020
37	0.08	0.06	500	7864	599.34	0.0014/0.0012
38	0.08	0.06	5000	15750	437.94	0.0022/0.0019
39	0.08	0.08	1000	17349	465.93	0.0020/0.0017
40	0.08	0.08	2500	10728	455.08	0.0021/0.0018
41	0.08	0.08	500	16878	586.23	0.0014/0.0012
42	0.08	0.08	5000	9275	445.36	0.0022/0.0019
43	0.12	0.03	1000	17857	449.05	0.0022/0.0019
44	0.12	0.03	2500	14048	440.42	0.0022/0.0019
45	0.12	0.03	500	11996	545.93	0.0012/0.0011
46	0.12	0.03	5000	12799	438.78	0.0022/0.0019
47	0.12	0.06	1000	17770	520.20	0.0018/0.0015
48	0.12	0.06	2500	17336	457.30	0.0021/0.0017
49	0.12	0.06	500	17307	683.22	0.0012/0.0010
50	0.12	0.06	5000	10160	448.12	0.0022/0.0018
51	0.12	0.08	1000	8671	559.33	0.0015/0.0012
52	0.12	0.08	2500	13787	436.80	0.0022/0.0018
53	0.12	0.08	500	17679	740.26	0.0011/9.6734
54	0.12	0.08	5000	11571	441.66	0.0022/0.0018
55	0.15	0.05	1000	17570	552.99	0.0016/0.0013
56	0.15	0.05	2500	17395	451.57	0.0022/0.0017
57	0.15	0.05	500	2479	752.13	0.0010/9.0707

58	0.15	0.05	5000	9550	444.93	0.0022/0.0018
59	0.15	0.15	1000	16207	816.78	0.0010/8.4039
60	0.15	0.15	2500	7308	663.57	0.0011/9.2080
61	0.15	0.15	500	10509	867.26	9.7517/7.8680
62	0.15	0.15	5000	4906	575.47	0.0015/0.0011
63	0.15	0.1	1000	5753	712.81	0.0011/9.6629
64	0.15	0.1	2500	16068	543.71	0.0017/0.0013
65	0.15	0.1	500	2746	656.60	0.0010/8.3858
66	0.15	0.1	5000	14404	435.66	0.0021/0.0016
67	0.15	0.2	1000	16145	847.45	9.5506/7.7630
68	0.15	0.2	2500	6435	763.46	0.0011/8.8676
69	0.15	0.2	500	3560	931.15	9.4965/7.8220
70	0.15	0.2	5000	10484	686.18	0.0012/9.5366
71	0.15	0.3	1000	563	946.01	8.2668/6.9977
72	0.15	0.3	2500	16398	842.64	9.7658/7.7972
73	0.15	0.3	500	13847	976.77	8.3581/7.1739
74	0.15	0.3	5000	14262	818.78	0.0010/7.7550
75	0.1	0.05	1000	16415	458.54	0.0021/0.0018
76	0.1	0.05	2500	17757	449.22	0.0022/0.0019
77	0.1	0.05	500	17776	511.99	0.0018/0.0016
78	0.1	0.05	5000	7574	439.92	0.0022/0.0019
79	0.1	0.15	1000	7280	717.19	0.0011/9.5669
80	0.1	0.15	2500	17861	566.03	0.0016/0.0013
81	0.1	0.15	500	8327	799.33	0.0010/8.9440
82	0.1	0.15	5000	16136	440.13	0.0022/0.0017
83	0.1	0.1	1000	7140	527.27	0.0014/0.0012
84	0.1	0.1	2500	16904	458.82	0.0021/0.0017
85	0.1	0.1	500	7663	720.98	0.0011/9.5457
86	0.1	0.1	5000	16178	438.59	0.0022/0.0018

87	0.1	0.2	1000	8091	783.17	9.8503/8.2363
88	0.1	0.2	2500	3862	692.41	0.0012/9.3888
89	0.1	0.2	500	15881	850.45	9.6596/8.1267
90	0.1	0.2	5000	12757	565.44	0.0014/0.0011
91	0.1	0.3	1000	12445	874.03	9.6724/7.8296
92	0.1	0.3	2500	16123	810.13	0.0010/7.9321
93	0.1	0.3	500	14625	924.36	9.0194/7.5651
94	0.1	0.3	5000	13230	674.58	0.0010/7.8925
95	0.1	0.5	1000	9504	908.99	8.9805/6.9308
96	0.1	0.5	2500	16516	949.85	9.0347/6.9883
97	0.1	0.5	500	6073	991.62	8.5611/6.9454
98	0.1	0.5	5000	3240	915.21	9.1122/6.9476
99	0.1	0.8	1000	8494	1007.8	7.6070/6.5249
100	0.1	0.8	2500	9774	1019.6	8.2451/6.5762
101	0.1	0.8	500	835	1062.1	7.9353/6.6638
102	0.1	0.8	5000	10601	989.88	8.4705/6.6346
103	0.85	0.025	4000	9200	1080.3	7.6112/6.1638
104	0.85	0.025	5000	16642	1093.1	7.7736/6.1849
105	0.85	0.025	6000	11123	1112.4	7.6321/6.1895
106	0.85	0.02	4000	17962	1079.0	8.4245/6.1990
107	0.85	0.02	5000	11666	1075.2	7.7231/6.1773
108	0.85	0.02	6000	9899	1080.4	8.1077/6.1932
109	0.85	0.35	4000	8878	1111.2	7.7423/6.1686
110	0.85	0.35	5000	12532	1072.7	7.5296/6.1738
111	0.85	0.35	6000	9934	1076.6	7.7069/6.1643

^{5.} 旅行商问题,顺序选择交叉个体,交叉变异方法默认

实验序 号	交叉概 率	变异概 率	种群规 模	最佳最早出现 代数	最佳个体适 应度	最终代最高 / 平均适 应度
1	0.065	0.025	4000	10223	440.68	0.0022/0.0020
2	0.065	0.025	5000	11598	436.68	0.0022/0.0021
3	0.065	0.025	6000	17646	434.46	0.0022/0.0020
4	0.065	0.02	4000	17472	454.76	0.0021/0.0020
5	0.065	0.02	5000	17025	443.31	0.0022/0.0020
6	0.065	0.02	6000	9995	443.89	0.0022/0.0020
7	0.065	0.35	4000	11817	774.53	0.0010/8.0710
8	0.065	0.35	5000	11144	769.55	0.0010/8.2835
9	0.065	0.35	6000	11745	748.65	0.0011/8.4933
10	0.075	0.025	4000	16996	445.88	0.0022/0.0020
11	0.075	0.025	5000	17161	438.01	0.0022/0.0020
12	0.075	0.025	6000	10908	449.83	0.0022/0.0019
13	0.075	0.02	4000	16352	436.46	0.0022/0.0020
14	0.075	0.02	5000	16196	442.23	0.0022/0.0020
15	0.075	0.02	6000	10715	437.49	0.0022/0.0020
16	0.075	0.35	4000	9593	727.09	0.0010/7.7911
17	0.075	0.35	5000	9132	795.94	0.0010/8.2917
18	0.075	0.35	6000	14348	812.68	0.0010/8.4874
19	0.85	0.025	4000	6052	1112.8	7.7484/6.1796
20	0.85	0.025	5000	10644	1066.2	7.7750/6.1791
21	0.85	0.025	6000	2473	1091.7	7.7044/6.1711
22	0.85	0.02	4000	1629	1092.2	7.8626/6.1960
23	0.85	0.02	5000	15103	1065.9	7.8524/6.1656
24	0.85	0.02	6000	5232	1113.9	7.7526/6.1754
25	0.85	0.35	4000	6282	1117.8	7.9990/6.1732
26	0.85	0.35	5000	12813	1125.6	7.9161/6.1742
27	0.85	0.35	6000	12483	1059.0	7.7509/6.1608