Floating Point

- Representation for non-integral numbers
 - •Including very small and very large numbers
- Like scientific notation

■
$$-2.34 \times 10^{56}$$
 normalized

 $+0.002 \times 10^{-4}$ $\Rightarrow +9.8702 \times 10^{9}$ not normalized

 $\Rightarrow +9.8702 \times 10^{9}$

- In binary
 - $=\pm 1.xxxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

CSULB

Floating Point Standard

- ■Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - ■Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

Exponent Fraction

 $x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent - Bias)}$

- •S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point I bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "I." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

SULB

Single-Precision Range

Exponents 00000000 and IIIIIII reserved

Smallest absolute value

■ Exponent: 0000000 \Rightarrow actual exponent = 1 - |27| = -|26|

• Fraction: $000...00 \Rightarrow$ significand = 1.0 x 2-126

Largest absolute value

SULB

Double-Precision Range

- Exponents 0000...00 and IIII...II reserved
- Smallest absolute value
 - Exponent: $0000 \sim 000$ | \Rightarrow actual exponent = 1 (0)
 - Fraction: $000...00 \Rightarrow \text{ significand} = (.0)$

Largest absolute value

- Exponent: $1111 \sim 1110$ ⇒ actual exponent = 2046 - (023 = 1023)
- Fraction: $| | | | | | | \Rightarrow$ significand ≈ 20

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent - Bias)}$$

CSULB

Denormal Numbers

- ■Exponent = 000...0 ⇒ hidden bit is 0
 - Denormal with fraction = 000...0

$$X = (-1)^{S} \times (0 + 0) \times 2^{-Bias} = \pm 0.0$$
Two representations

of 0.0!

Sign	Exponent (e)	Fraction (f)	Value	
0	00…00	00…00	+0	4
1	00…00	00…00	-0	L

Denormal Numbers

■Exponent = 000...0 ⇒ hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

Smaller than normal numbers

(-1) x (+ Fract) x2E

 allow for gradual underflow, with diminishing precision

_				
	Sign	Exponent (e)	Fraction (f)	Value
	0	00…00	00···01 : 11···11	Positive Denormalized Real $0.f \times 2^{(-b+1)}$
	1	00…00	00···01 : 11···11	Negative Denormalized Real $-0.f \times 2^{(-b+1)}$

CSULB

Infinities and NaNs

- ■Exponent = III...I, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- •Exponent = III...I, Fraction ≠ 000...0
 - ■Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - \bullet e.g., 0.0 / 0.0, 0.0 * ∞
 - Can be used in subsequent calculations

Floating-Point Precision

- Relative precision
- all fraction bits are significant

lag 103

- ■Single: approx 2²³
 - Single: approx (2^{23}) = $3 \log (0 = 3)$ = Equivalent to $\log (0 = 3)$ decimal digits of precision
- ■Double: approx 2⁵²
 - ■Equivalent to 6902 16 decimal digits of precision

SULB

Floating-Point Example

What number is represented by the single-precision float

$$|0|.0|_{2} = 1 \times 2 + 0 \times 2 + 1 \times 2$$

$$+ 0 \times 2^{-1} + 1 \times 2^{-2}$$

$$= 1 + 1 + \frac{1}{4} = 5 + 0.25$$

•Exponent =
$$|\circ\circ\sim\circ(=129)$$

■Exponent =
$$|000 \sim 0| = |29|$$

■ $\mathbf{x} = (-1)^{1} \times (1 + 0.010 \sim 00) \times 2^{129 - 127} = -(1.012) \times 2^{129 - 127} = -(1.25) \times 2^{129 - 127}$

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent - Bias)}$$

Floating-Point Example

- •Fraction = $1000 \sim 00$
- •Exponent = (x-(27)=-)=126=0111110(single)
 - Single:
 - Double: 0 11 ~ 11 0
- Single:
- Double: 0

SULB

Floating-Point Addition

- Consider a 4-digit decimal example
 - $-9.999 \times (10^{-1}) + 1.610 \times (10^{-1})$
- Align decimal points
 - Shift number with smaller exponent

Add significands

Normalize result & check for over/underflow

•Round and renormalize if necessary $[0.02 \times 10^{1} = 1.002 \times 10^{2}]$

Floating-Point Addition

- Now consider a 4-digit binary example
 - $-1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- Align binary points

• Shift number with smaller exponent
$$1.000 \times 2^{-1} + 0.111 \times 2$$

Normalize result & check for over/underflow

Round and renormalize if necessary

SULB

FP Adder Hardware

- •Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - •Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

Floating-Point Multiplication

- Consider a 4-digit decimal example
 - $-1.110 \times 10^{10} \times 9.200 \times 10^{-5}$

Add exponents

$$(0^{\circ} \times (0^{-5} = 10^{5}))$$

Multiply significands

•Normalize result & check for over/underflow

Round and renormalize if necessary

Determine sign of result from signs of operands

SULB

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- •Add exponents
 Unbiased: $2^{-1} \times 2^{-2} = 2^{-3}$
 - Biased: 2 124-127
- Multiply significands

•Normalize result & check for over/underflow

$$|.||_0 \times 2^{-3}$$

•Round and renormalize if necessary

•Determine sign: +ve × -ve \Rightarrow -ve \rightarrow -1. Ilo χ \searrow -3

$$-1.110 \times 2^{-3}$$

FP Arithmetic Hardware

- •FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- •FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
- Operations usually takes several cycles
 - Can be pipelined

CSULB

FP Instructions in MIPS

- •FP hardware is coprocessor I
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPs ISA supports 32 × 64-bit FP reg's
- •FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- •FP load and store instructions
 - lwc1, ldc1, swc1, sdc1
 - e.g., ldc1 \$f8, 32(\$sp)

FP Instructions in MIPS

Single-precision arithmetic
add.s, sub.s, mul.s, div.s
e.g., add.s \$f0, \$f1, \$f6
Double-precision arithmetic
add.d, sub.d, mul.d, div.d
e.g., mul.d \$f4, \$f4
\$f6
Single- and double-precision comparison
c. xx.s, c. xx.d (xx is eq, lt, le,...)
Sets or clears FP condition-code bit
e.g. c.lt.s \$f3, \$f4
Branch on FP condition code true or false
bc1t, bc1f
e.g., bc1t TargetLabel

CSULB

FP Example: °F to °C

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

C code:

```
f2c: lwc1  $f16, const5($gp)
    lwc2  $f18, const9($gp)
    div.s  $f16, $f16, $f18
    lwc1  $f18, const32($gp)
    sub.s  $f18, $f12, $f18
    mul.s  $f0, $f16, $f18
    jr  $ra
```

CSULB

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
Х	-1.50E+38		-1.50E+38
у	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism

CSULB

Who Cares About FP Accuracy?

- Important for scientific code
 - •But for everyday consumer use?
 - ■"My bank balance is out by 0.0002¢!" ⊗
- ■The Intel Pentium FDIV bug
 - $\begin{array}{c} -\frac{4195835}{3145727} = 1.33382044 \neq 1.33373902 \end{array}$
 - The market expects accuracy
 - •See Colwell, The Pentium Chronicles

Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - •Finite range and precision
 - Need to account for this in programs

CSULB

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - •Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent

