HAlg Note

Basic Knowledge

Def of Matrix: A mapping from $\{1, ..., n\} \times \{1, ..., m\}$ to a field F is called a $n \times m$ matrix over F.

- · The set of all $n \times m$ matrices over F is denoted by $Mat(n \times m; F) := Maps(\{1, ..., n\} \times \{1, ..., m\}, F)$.
- · If n = m, we sill speak of a **Square Matrix** and shorten the notation to Mat(n; F).

Solution Sets of Inhomogeneous Systems of Linear Equations: Solution = 特解 (Particular Solution) + 通解 (Homogeneous solution)

Def of Group (G, *): A set G with a operator * is a group if: Closure: $\forall g, h \in G, g * h \in G$; Associativity: $\forall g, h, k \in G, (g * h) * k = g * (h * k)$; **Identity**: $\exists e \in G, \forall g \in G, e * g = g * e = g$; **Inverse**: $\forall g \in G, \exists g^{-1} \in G, g * g^{-1} = g^{-1} * g = e$.

• **Properties of Group**: If G, H are groups, then $G \times H$ also.

Field (F): A set F is a field with two operators: (addition) $+: F \times F \to F$; (λ, μ) $\to \lambda + \mu$ (multiplication) $: F \times F \to F$; (λ, μ) $\to \lambda \mu$ if: (F,+) and $(F \setminus \{0_F\}, \cdot)$ are abelian groups with identity $0_F, 1_F$. and $\lambda(\mu + \nu) = \lambda\mu + \lambda\nu$

Vector Spaces

F-Vector Space (V): A set *V* over a field *F* is a vector space if: *V* is an abelian group $V = (V, \dot{+})$ and $\forall \vec{v}, \vec{w} \in V$ $\lambda, \mu \in F$

a map $F \times V \to V : (\lambda, \vec{v}) \to \lambda \vec{v}$ satisfies: I: $\lambda(\vec{v} \dotplus \vec{w}) = (\lambda \vec{v}) \dotplus (\lambda \vec{w})$ II: $(\lambda + \mu)\vec{v} = (\lambda \vec{v}) \dotplus (\mu \vec{v})$ III: $\lambda(\mu\vec{v}) = (\lambda\mu)\vec{v}$ IV: $1_F\vec{v} = \vec{v}$ ps:I,II are Distributive Laws; III is Associative Law.

• **Properties of** *F*-**Vector Space**: **a**. $0_F \vec{v} = \vec{0}$ **b**. $(-1_F)\vec{v} = -\vec{v}$ **c**. $\lambda \vec{0} = \vec{0}$ **d**. If $\lambda \vec{v} = \vec{0}$, then $\lambda = 0$ or $\vec{v} = \vec{0}$ or both.

Component: An individual entry x_i of an **n-tuple** $(x_1, ..., x_n)$ is called a component.

Projections (pr_i **)**: $pr_i: X_1 \times X_2 \times \cdots \times X_n \to X_i$ with $(x_1, ..., x_n) \mapsto x_i$

Vector Subspace (U): $U \subseteq V$ is a subspace of V if: $\vec{I} \cdot \vec{0} \in U$ $\vec{I} \cdot \vec{I} \cdot \vec{0} \in U$, $\forall \vec{u}, \vec{v} \in U, \forall \lambda \in F : \vec{u} + \vec{v} \in U$ and $\lambda \vec{u} \in U$ (or: $\lambda \vec{u} + \mu \vec{v} \in U$)

Trivial Vector Space: $V = \vec{0}$

- 1. If U_1 , U_2 are subspaces of V. Then $U_1 \cap U_2$ and $U_1 + U_2$ are also. ps: $U_1 + U_2 := \{\vec{u} + \vec{v} : \vec{u} \in U_1, \vec{v} \in U_2\}$
- 2. **Vector Subspace Generated by T** $(\langle T \rangle)$: If T is a subset of a F-vector space V. $\Rightarrow \langle T \rangle$ is the smallest subspace of V containing T. $\langle T \rangle = span(T)$ $\forall \vec{v} \in \langle T \rangle, \langle T \cup \{\vec{v}\} \rangle = \langle T \rangle$ ps: other notation of $\langle T \rangle$: span(T), lin(T)(Finitely Generated: V has finite generating set.) **Generating/Spanning Set**: *V* is a vector space. If $T \subseteq V$ and $\langle T \rangle = V$. $\Rightarrow T$ is a generating set of *V*. \Uparrow

Power of Set $\mathcal{P}(X)$: If X is a set, then $\mathcal{P}(X) := \{U : U \subseteq X\}$ (set of all subsets) ps: $\mathcal{U} \subseteq \mathcal{P}(X) \Rightarrow U$ is called a **system of subsets of** X.

- 1. **Empty System of subsets of X**: Empty System of subsets of $X := \emptyset \in \mathcal{P}(X)$ (NOT $\{\emptyset\}$) $\star \cap \emptyset = X$ and $\bigcup \emptyset = \emptyset \star$
- 2. **Def of Union**: For $\mathcal{U} \subseteq \mathcal{P}(X)$, $\bigcup_{U \in \mathcal{U}} U := \{x \in X : \exists U \in \mathcal{U} \text{ s.t. } x \in U\}$
- 3. **Def of Intersection**: For $\mathcal{U} \subseteq \mathcal{P}(X)$, $\bigcap_{U \in \mathcal{U}} U := \{x \in X : \forall U \in \mathcal{U}, x \in U\}$