

AP80 系列开发指南

版本 V1.0 2014年8月

目录

概述		. 1
	AP80 系列最小系统	
二、	AP80 系列开发板	.2
	SDK 套件及 IDE 环境	
	SDK 套件	4
	IDE 环境	
四、	辅助工具集	

概述

AP80 系列音频处理器是面向音频应用领域设计的新一代 SoC 平台产品。采用 ARM Cortex-M3 核,具有良好的开发生态环境。同时,上海山景集成电路公司为 AP80 系列处理器的开发提供完整的设计支持和辅助工具集。

AP80 系列的开发指南分为四部分。第一部分介绍 AP80 系列最小系统,第二部分介绍 AP80 系列开发板,第三部分介绍 SDK 套件及 IDE 环境(集成开发环境),第四部分介绍辅助工具集。

在阅读本文之前,建议先阅读《AP 系列处理器概览》一文。

一、AP80 系列最小系统

图 1 基于 AP 处理器的最小系统

AP80 处理器、SPI Flash、32.768K 晶体和少量电容即可构成基于 AP80 处理器的最小系统之一。SPI Flash(简称 Flash)作为存储元件,整个空间可以划分为 3 个主要的存储区域,总容量不超过 16MB。如下图所示:

图 2 Flash 存储区域划分

■ Code Bank (程序区)

程序区存放由编译器产生的代码,最大支持到8MB。程序的下载有3种方式:第1种是通过调试器在IDE环境下下载(见第三节);第2种是使用山景工具烧录或更新Flash(见第四节);第3种是通过山景工具(MVAssistant)将程序加工后,使用第三方Flash烧录器烧录(见第四节)。

■ Const Bank (常数区)

常数区通常用于存放提示语音等数据文件,这些文件通过山景工具(MVAssistant)有序组织在常数区内,应用程序通过 API 接口查询常数区索引表(类似文件索引表),读取文件内容。该方法不限于只实现语音提示功能。

■ User Bank (信息存取区)

信息存储区是能够擦除和写入的区域,可以实现断电信息保存等功能。SPI Flash 对擦除和写入的基本要求是:擦除最小单位 4KB;擦除之前,相同地址禁止覆盖写入。建议用户开发类似功能时,参考 SDK 中的方法。

片外 Flash 作为存储元件的一个好处是,用户可以根据实际产品,灵活选择 Flash 容量。另外,程序的保密和安全性十分重要,AP80 系列设计了强化的加密机制,可请参考针对加密机制、流程的说明文档。

Code Bank 和 Const Bank 建议在批量生产时做加锁处理, 防止不良因素导致的代码被修改可能。Const Bank 和 User Bank 的区域偏移地址定义在 startup.c 文件内,详见 SDK 套件说明。

Flash 数据更新(或称为固件升级),是系统灵活和可维护的重要手段。山景提供多种形式的 Flash 更新方式和接口形式。该功能与 AP80 系列处理器 boot 版本有关,目前量产的 boot 4.2.1 支持 U 盘和卡的更新方式。具体请参考专门的 Flash 数据更新说明文档。

二、AP80 系列开发板

图 3 AP80 系列的基本开发方式

AP80 系列开发板是 AP80 系列基本开发方式的重要组成,为 AP80 系列处理器的开发提供便利的硬件环境,具有以下目的和特点:

- 引出 AP80 系列处理器的所有引脚、资源
- 配合山景 SDK (MVs18 01 及以上版本)的使用
- 展现 AP80 系列优秀的音频性能
- 为目标系统的设计提供原理图到 PCB 参考
- 方便用户进行代码下载和调试活动

下图展示了 AP80 系列开发板的结构。在匹配的原理图和 PCB 图纸中,对各模块和功能的设计、注意事项做了一些说明,可以作为用户目标系统硬件设计的参考。值得一提,使用 APx525 音频测试仪测试 AP80 系列开发板的音频性能指标,与 AP80 系列 Datasheet 上的标称值是一致的。

图 4 AP80 系列开发板

标号	区域用途		
1	AP80 系列最小系统及所有引脚资源接口		
2	音频输入及输出部分		
3	FM 收音模块		
4	SW 调试接口,用于连接 ARM ULINK 调试器		
5	蓝牙(BT)模块		
6	USB 转串口模块,用于 UART log 信息输出		
7	主供电电源		
8	OTG 接口和卡设备接口		
9	ADC 按键区		

表 1 AP80 系列开发板各区域用途

三、SDK 套件及 IDE 环境

SDK 套件

AP80 系列的 SDK 套件(适用于 MVs18_01 及以上版本)包含以下主要内容(如欲详细了解 SDK 套件内的文件树布局,请阅读 SDK 套件的说明):

- a. 库文件集(驱动、文件系统、音频编解码、蓝牙、OS 等库)。
- b. 示例工程集。通过各独立工程,演示芯片硬件模块或者库功能的标准使用方法。
- c. 音频应用方案的源文件和 IDE 工程
- d. 资源包和部分辅助工具。

AP80 系列处理器的软件开发方式要求适用范围宽广。因此,库文件集(a)和示例工程集(b),设计成了不依赖于任何 OS 系统的形式,可以支持开发者基于已经熟悉的 OS 系统和上层架构来使用这些内容。当然,音频应用产品当下流行的大部分功能,则已经在近乎Turnkey 程度的音频应用方案(c)中得以实现,方案中使用了 Free RTOS 操作系统,是迅速实现音频类产品的首选和重要参考。

IDE 环境

目前,业内对 ARM Cortex-M3 能够很好支持的 IDE (集成开发环境),有 ARM MDK 和 IAR 两种。下面以 ARM MDK 为例,说明用户使用或自建 IDE 工程文件时,需要注意的事项。

ARM MDK

- 建议使用 MDK 4.72 (含)以上版本。
- 工程 'Options for Target' 的配置。
 - 1) Device 栏: 选择 ARM Cortex-M3。
 - 2) Target 栏:默认**不勾选** "Use MicroLIB" 选项,如果使用 MicroLIB 会影响运算效率。
 - 3) User 栏: 在 Run User Programs After Build/Rebuild 框内, 勾选 "Run #1", 并在随后的输入框填入

fromelf.exe --bin -o "#L.bin" "#L"

程序编译后,会在 Output 路径下生成与 axf 文件对应的二进制 bin 文件,该 bin 文件可以被山景 MVAssistant 工具使用(见第四节)。

- 4) C/C++栏: 在 Language/Code Generation 框内,勾选 "One ELF Section per Function",有助于减少编译后的代码量。对于时序要求严格的程序,在优化级别 "Optimization" 选项中,不宜选择过高的 'Level'。在 Include Paths 输入框中,选择适当的头文件包含路径(可以参考音频应用方案中的设置)。
- 5) Linker 栏: 首先**不勾选** "Use Memory Layout from Target Dialog" 选项。AP 处理器的 Memory Layout(存储布局)采用自定义方式,由文件 MVs18.sct(位于音频方案 IDE 工程文件夹内)来配置。该配置文件也可以适用于大多数用户自建工程,如欲详细了解 sct 配置文件与 Memory Layout 的关系,请

咨询山景。

在 Misc controls 输入框,填入

--keep *.o(.driver*.isr) --keep *.o(CACHE.4KBMEM)

控制指令,第1条 keep 指令是保障用户可以重定义中断服务函数,第2条 keep 指令是将频繁调用或者时间要求精准的函数放在 Cache 的 4KB 常驻内存中。

图 5 Linker 栏配置

1) - 5) 栏目配置完后,可以进行程序的编译。如果编译成功,将在 Output 路径下 生成 axf 文件,该文件将被用于程序的下载和调试。

■ 程序下载和调试

AP80 系列处理器支持 2 线 SW 调试接口。调试器可以选用 ARM 公司的 ULINK 系列,下面以 ULINK2 调试器为例,说明程序的下载和调试。

首先,将 ULINK2 通过 USB 线连接 PC。第一次使用时,会要求安装驱动(位于 MDK 目录内)。确认 ULINK2 被 PC 正确识别后,将 ULINK2 的 20pin 接头连接到 AP80 系列开发板的 SW 接口(图 4 的④)。SW 信号在 ULINK 调试器接头上的定义如下图,

- TCLK is SWCLK (Serial Wire Clock)
- TMS is SWDIO (Serial Wire debug Data Input/Output)
- TDO is SWO (Serial Wire trace Output)

图 6 ULINK 接头上 SW 信号的定义

实际与开发板连接的是, SWCLK, SWDIO, GND, VCC, 四根线。

然后,打开 MDK 工程,配置 'Options for Target'中 Debug 和 Utilities 两个栏目。

6) Debug 栏:如下图所示,选择调试器的类型为 ULINK2/ME Cortex Debugger。

图 7 Debug 栏配置

确认连接好 ULINK2 调试器与开发板,将开发板上电,点击上图中的 Settings 按钮,将弹出 Cortex-M Target Driver Setup 窗口。

图 8 Cortex-M Target Driver Setup 窗口 1

因为 AP 处理器只支持 SW 调试接口,先在红色区域选择 "Port" 为 'SW'。正常情况下,桔色区域 SW Device 框内,会立刻发现该 SWDIO 设备。如果没有显示该设备,请检查所有连线,并重复上述步骤。

至此,AP80 系列处理器已经与 MDK 通过 ULINK 成功连接。

程序下载,是指 MDK 将编译后的 axf 文件通过 ULINK 下载到 AP 处理器的外部 Flash 存储器内。首先,要在 MDK 上装载适合于 AP 处理器使用的 Flash下载驱动程序(MV18X_16MB_V1.x.x.FLM)。该驱动文件位于 SDK 套件内(路径: MDK\Flash\),请将其拷贝到 MDK 安装目录 \Keil\ARM\Flash\) 路径

下。然后,打开图 8 中 Flash Download 栏,点击 'Add' 按钮添加该驱动文件。 并更改 RAM for Algorithm 的 "Start" 为 0x20000000,"Size" 为 0x6000。如 下图所示,点击 OK 完成配置。

图 9 Cortex-M Target Driver Setup 窗口 2

7) Utilities 栏:按照下图所示,选择 ULINK2/ME Cortex Debugger,对应的"Init File"选择适合 AP80 处理器的初始化文件(MVs18_download.ini),该文件位于 SDK 套件内(路径: MDK\)。

图 10 Utilities 栏配置

至此,与程序下载和调试相关的配置工作全部完成。程序编译后,点击 MDK 菜单 Flash -> Download 将程序下载到 AP80 处理器的外部 Flash 存储器内。下载成功后,可以使用 Debug 菜单进行调试工作。

四、辅助工具集

围绕 AP80 系列处理器有一系列的辅助工具,服务于设计和生产。这些工具分为不同的 软体和硬体,包括 PC 软件、手机软件、烧录器和量产测试夹具等。下面简要罗列辅助工具 Shanghai Mountain View Silicon Co., Ltd http://www.mvsilicon.com

集及其主要用途。

MVAssistant (软体)

系统设计和生产的必备工具。

服务对象	主要用途
	Code Bank (程序区)的加密和烧录
	Const Bank(常数区)数据文件的组织。增加、删除、修改数据
Flash	文件
FidSii	生成 Flash 更新(升级)文件 MVA 或者供第三方烧录器使用的
	bin(二进制)文件
	Flash 加锁区域设定(仅适用于 MVA 文件或者山景量产夹具)
蓝牙 (BT)	配合量产夹具,实现指定蓝牙地址段,蓝牙地址自动增量烧录

注意, MVA 文件为山景自定义格式, Flash 数据的更新(或称为固件升级),必须依赖于该文件。

密钥烧录器 (硬体)

配合 MVAssistant 软件,实现 AP80 系列 Code Bank(程序区)密钥的烧录。

ACPWorkbench(软体)

专为 DU 系列 Codec 芯片开发。可以用来仿真 AP 系列的大部分音效和声学处理功能。 其突出特点是 Parametric EQ 的图形化调节界面。

服务对象	主要用途
音频通路演示	DU 系列的各种音频通路
音效	Parametric EQ、VB、3D、Treble & Bass 等
声学处理	AEC、变速、变调等

蓝牙量产测试夹具 (硬体)

带蓝牙功能的产品,生产和测试必备工具,分为不同的型号。

服务对象	主要用途
蓝牙邮票小板	测试蓝牙邮票小板的连通性
BQB 邮票板	Flash 数据更新、密钥烧录、蓝牙功能测试一体化
成品蓝牙测试	以非接触方式测试产品成品的蓝牙通路

另外,随着蓝牙协议栈的丰富,山景也提供了一些面向手机的 APP,如 Android APK。