사이킷런의 기반 프레임 워크 익히기 - 주요 API/모듈 및 내장 예제 데이터 세트 소개

[붓꽃 데이터 분류 예측 프로세스]

[사이킷런 기반 프레임워크 - Estimator와 fit(), predict()]

모든 구현 클래스를 통틀어서 사이킷런에서는 Estimator라고 부름 [사이킷런의 주요 모듈]

분류 모듈명		설명		
예제 데이터	sklearn.datasets	사이킷런에 내장되어 예제로 제공하는 데이터 세트		
데이터 분리, 검증 & 파라미터 튜닝	sklearn.model_selection	교차 검증을 위한 학습용/테스트용 분리, 그리드 서치(Grid Search)로 최적 파라미터 추출 등의 API 제공		
피쳐 처리	sklearn.preprocessing	데이터 전처리에 필요한 다양한 가공 기능 제공(문자열을 숫자형 코드 값으로 인코팅, 정규화 스케일링 등)		
	sklearn.feature_selection	알고리즘에 큰 영향을 미치는 피처를 우선순위 대로 셀렉션 작업을 수행하는 다양한 기능 제공		
	sklearn.feature_extraction	텍스트 데이터나 이미지 데이터의 벡터화된 피처를 추출하는 데 사용됨.		
		예를 들어 텍스트 데이터에서 Count Vectorizer 나 Tf- ldf Vectorizer 등을 생성하는 기능 제공.		
		테스트 데이터의 피처 추출은 sklearn.feature_extraction.text 모듈에, 이미지 데이터의 피처 추출은 sklearn.feature_extraction.image 모듈에 지원 API가 있음.		
피처 처리 & 차원 축소	sklearn.decomposition	차원 축소와 관련한 알고리즘을 지원하는 모듈임. PCA, NMF, Truncated SVD 등을 통해 차원 축소 기능을 수행할 수 있음		

분류	모듈명	설명		
평가	sklearn.metrics	분류, 회귀, 클러스터링, 페어와이즈(Pairwise)에 대한 다양한 성능 측정 방법 제공		
		Accuracy, Precision, Recall, ROC-AUC, RMSE 등 제공		
ML 알고리즘	sklearn.ensemble	앙상블 알고리즘 제공		
		랜덤 포레스트, 에이다 부스트, 그래디언트 부스팅 등을 제공		
	sklearn.linear_model	주로 선형 회귀, 릿지(Ridge), 라쏘(Lasso) 및 로지스틱 회귀 등 회귀 관련 알고리즘을 지원. 또한 SGD(Stochastic Gradient Descent) 관련 알고리즘도 제공		
	sklearn.naive_bayes	나이브 베이즈 알고리즘 제공. 가우시안 NB , 다 분포 NB 등.		
	sklearn.neighbors	최근접 이웃 알고리즘 제공. K-NN 등		
	sklearn.svm	서포트 벡터 머신 알고리즘 제공		
	sklearn.tree	의사 결정 트리 알고리즘 제공		
	sklearn.cluster	비지도 클러스터링 알고리즘 제공		
		(K-평균, 계층형, DBSCAN 등)		
유틸리티 sklearn.pipeline		피처 처리 등의 변환과 ML 알고리즘 학습, 예측 등을 함께 묶어서 실행할 수 있는 유틸리티 제공		

[사이킷런 내장 예제 데이터 셋 - 분류 및 회귀용]

API 명	설명		
<pre>datasets.load_boston()</pre>	회귀 용도이며, 미국 보스턴의 집 피처들과 가격에 대한 데이터 세트		
<pre>datasets.load_breast_cancer()</pre>	분류 용도이며, 위스콘신 유방암 피처들과 악성/음성 레이블 데이터 세트		
<pre>datasets.load_diabetes()</pre>	회귀 용도이며, 당뇨 데이터 세트		
<pre>datasets.load_digits()</pre>	분류 용도이며, 0에서 9까지 숫자의 이미지 픽셀 데이터 세트		
<pre>datasets.load_iris()</pre>	분류 용도이며, 붓꽃에 대한 피처를 가진 데이터 세트		

[내장 예제 데이터 셋 구성]

feature_names, data, target_names, target

					target_names
feature_names	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	setosa, versicolor, virginica (0 , 1 , 2)
	5.1	3.5	1.4	0.2	0
	4.9	3.0	1.4	0.2	1
data					> target
	4.6	3.1	1.5	0.2	2
Ų.	5.0	3.6	1.4	0.2	0

- 키는 보통 data, target, target_name, feature_names, DESCR로 구성
 - data: 피처의 데이터 세트
 - target: 분류-레이블 값, 회귀-숫자 결과값 데이터 세트
 - target_names: 개별 레이블의 이름
 - feature_names: 피처 이름
 - DESCR: 데이터 세트에 대한 설명과 각 피처의 설명