Name: 5chn

ID #:__

Fill in all the gaps

Q1) For the AM
$$\begin{pmatrix} 1 & 0 & 0 & 3 & 4 & 5 \\ 1 & 1 & 3 & 4 & 6 & 5 \\ 3 & 0 & 2 & 1 & 4 & 1 \\ 0 & 0 & 2 & 1 & 1 & 4 \end{pmatrix}$$
the sol is $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \\ -5 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$

$$\begin{pmatrix} 1 & 0 & 0 & 3 & 4 & 5 \\ 0 & 1 & 3 & 1 & 2 & 0 \\ 0 & 0 & 2 & -8 & -9 & -1/4 \\ 0 & 0 & 2 & 1 & 1 & 4 \end{pmatrix}$$
row₂ row₃ + (-1 row₁)
$$\begin{pmatrix} 1 & 0 & 0 & 3 & 4 & 5 \\ 0 & 1 & 3 & 1 & 2 & 0 \\ 0 & 0 & 2 & -8 & -8 & -14 \\ 0 & 0 & 0 & 9 & 9 & 18 \end{pmatrix}$$
row₄ row₄ row₄ + (-1 row₃)
$$\begin{pmatrix} 1 & 0 & 0 & 3 & 4 & 5 \\ 0 & 1 & 3 & 1 & 2 & 0 \\ 0 & 0 & 2 & -8 & -8 & -14 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$
row₂ row₃ row₄ + (-1 row₄)
$$\begin{pmatrix} 1 & 0 & 0 & 1 & -1 \\ 0 & 1 & 3 & 0 & 1 & -2 \\ 0 & 0 & 2 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$
row₃ row₄ row₄ (8 row₄)
$$\begin{pmatrix} 1 & 0 & 0 & 1 & -1 \\ 0 & 1 & 3 & 0 & 1 & -2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \end{pmatrix}$$
row₄ row₃ row₃ + (8 row₄)
$$\begin{pmatrix} 1 & 0 & 0 & 1 & -1 \\ 0 & 1 & 3 & 0 & 1 & -2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 \end{pmatrix}$$
row₂ row₃ - row₃ + (8 row₄)
$$\begin{pmatrix} 1 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 2 \end{pmatrix}$$
row₄ row₂ row₂ + (-3 row₃) $x_3 = 1$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 2 \end{pmatrix}$$
row₄ row₄ row₂ + (-3 row₃) $x_3 = 1$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$
row₄ row₄ row₂ + (-3 row₃) $x_3 = 1$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$
row₄ row₄ row₂ + (-3 row₃) $x_3 = 1$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$
row₄ row₄ row₂ row₂ + (-3 row₃) $x_3 = 1$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$
row₄ row₄ row₂ row₂ + (-3 row₃) $x_3 = 1$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$
row₄ row₄ row₂ row₂ + (-3 row₃) $x_3 = 1$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$
row₄ ro

Q2) Is $\{1, 2, 3\}$ in the span of $\{3, 1, 2\}$ and $\{1, -4, 2\}$. You do not need to show arithmetic. You do need to show your set up and explain what you are doing using standard terminology.

what you are doing using standard terminology.

$$\begin{bmatrix}
3 & 1 & 1 \\
1 & -4 & 2 \\
2 & 2 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$
no solution
$$\begin{bmatrix}
2 & 1 & 2 \\
2 & 2 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$
no solution
$$\begin{bmatrix}
2 & 1 & 2 \\
2 & 2 & 3
\end{bmatrix}$$
is not in the span of $\{3, 1, 2\}$ and $\{1, 4, 3\}$