Faichi Uemur

Introduction

Space-valued models of type theory

Relative induction principle

Synthetic Ta

Coherence theorem

Conclusio

References

Normalization for initial space-valued models of type theories

Taichi Uemura

May 21, 2022 WG6 kick-off meeting

aichi Uemu

Introduction

Space-valued models of typ theory

Relative induction principle

Synthetic Tai computability

Coherence theorem

Conclusio

Reference

Coherence problem

Fix a type theory \mathfrak{T} .

Construction

- ightharpoonup I(T) the initial set-valued model of T
- ightharpoonup $I_{\infty}(\mathfrak{T})$ the initial space-valued model of \mathfrak{T}

aichi Uemı

Introduction

Space-valued models of typ theory

Relative induction principle

Synthetic Tai computability

Coherence

Conclusio

D (

Coherence problem

Fix a type theory \mathfrak{T} .

Construction

- ightharpoonup I(T) the initial set-valued model of T
- $ightharpoonup I_{\infty}(\mathfrak{T})$ the initial space-valued model of \mathfrak{T}

Question (Coherence problem)

 $I_{\infty}(\mathfrak{T}) \simeq I(\mathfrak{T})$? Equivalently, is $I_{\infty}(\mathfrak{T})$ set-valued?

Then $I(\mathfrak{T}) \simeq I_{\infty}(\mathfrak{T}) \to \mathfrak{M}$ for an arbitrary space-valued model \mathfrak{M} .

Taichi Uemur

Introduction

Space-valued models of typ theory

Relative induction principle

Synthetic Tai computability

Coherence theorem

Conclusio

Solution to the coherence problem

Want to calculate path spaces of $I_{\infty}(\mathfrak{I})$ and see the truncation levels of them.

Problem

 $I_{\infty}(\mathfrak{T})$ is to be a higher inductive type (Altenkirch and Kaposi 2016), so direct calculation of its path spaces is hard.

Taichi Uemur

Introduction

Space-valued models of type theory

Relative induction principle

Synthetic Tai computability

Coherence theorem

Conclusion

Solution to the coherence problem

Want to calculate path spaces of $I_{\infty}(\mathfrak{T})$ and see the truncation levels of them.

Problem

 $I_{\infty}(\mathfrak{I})$ is to be a higher inductive type (Altenkirch and Kaposi 2016), so direct calculation of its path spaces is hard.

Idea (Higher normalization)

Show that every type or term in $I_{\infty}(\mathfrak{T})$ has a unique normal form.

- ightharpoonup Path spaces of $I_{\infty}(\mathfrak{T})$ become equivalent to ones between normal forms.
- ▶ The space of normal forms is an (non-higher) inductive type.
- ► Calculation of path spaces of inductive types is straightforward.
- ▶ Cf. Decidability of judgmental equality by normalization.

Talahi Hamon

Introduction

Space-valued models of type theory

Relative induction principle

Synthetic Tait computability

Coherence

Conclusio

Reference

How does normalization work?

Some recent developments in normalization (and more)

- ▶ Relative induction principles of Bocquet, Kaposi, and Sattler (2021): a universal property of the *category of renamings*.
- Synthetic Tait computability of Sterling (2021) and his collaborators: type theory for constructing *logical predicates*.

Observation

These are suitable for higher-dimensional analogue/generalization.

Γaichi Uemι

Introduction

Space-valued models of typ theory

Relative inductior principle

Synthetic Tait computability

Cohorance

Conclusio

Conclusio

On construction of higher objects

We often have to construct an object with infinite tower of coherent homotopies. To avoid coherence issues, either

- 1. spell out a universal property and apply the adjoint functor theorem; or
- 2. use the internal language of some ∞ -topos.

Theorem (Shulman 2019)

Any ∞ -topos admits an interpretation of type theory with univalent universes and a lot of type constructors.

Taichi Uemu

Introduction

Space-valued models of typ theory

Relative inductio principle

Synthetic Tait computability

theorem

Conclusion

Reference

Outline of normalization proof

- 1. The initial space-valued model $I_{\infty}(\mathfrak{T})$ is given.
- 2. Go to an ∞ -topos X where we define normal forms inductively.
- 3. Do something in **X**.
- 4. Going back outside, we get a normalization model $\mathbf{N}_{\infty}(\mathfrak{T})$ and then a morphism $\mathbf{I}_{\infty}(\mathfrak{T}) \to \mathbf{N}_{\infty}(\mathfrak{T})$ by initiality. This shows the existence of normal forms.
- 5. Go to another ∞ -topos $Y \supset X$ to prove the *uniqueness* of normal forms.
- 6. Go back to X and show the type of normal forms is 0-truncated.
- 7. Going back outside, we get the coherence theorem.

Introduction

Introduction

Space-valued models of type theory

models of type theory

Relative induction principle

induction principle

Synthetic Tait computability

Coherence theorem

Coherence theorem

Poforoncor

Conclusion

Introduction

Introduction

Space-valued models of type theory

Relative inductior principle

Synthetic Tait computability

Coherence theorem

Conclusio

References

Space-valued models of type theory

Relative induction principle

Synthetic Tait computability

Coherence theoren

Conclusion

∞ -CwFs

laichi Uemi

Introduction

Space-valued models of type theory

principle
Synthetic Tai

Synthetic Tait computability

Coherence

Conclusion

Reference:

Definition

An ∞ -category with families (∞ -CwF) $\mathbb M$ consists of:

- ▶ an ∞ -category $Ctx_{\mathcal{M}}$ with a terminal object;
- ▶ a map $p_{\mathcal{M}}: Tm_{\mathcal{M}} \to Ty_{\mathcal{M}}$ of (space-valued) presheaves over $Ctx_{\mathcal{M}}$ (such that $p_{\mathcal{M}}$ is representable).

Definition

A space-valued model of ${\mathfrak T}$ is an $\infty\text{-CwF }{\mathfrak M}$ equipped with some maps of presheaves over $\mathbf{Ctx}_{\mathfrak M}$ and homotopies between them to model type-theoretic operators.

∞ -CwFs

Taichi Uemi

Introduction

Space-valued models of type theory

induction principle

Synthetic Tail computability

Coherence theorem

Conclusio

Reference

► This definition is an ∞-version of natural models (Awodey 2018; Fiore 2012), which are equivalent to CwFs.

- ► The theory of CwFs is generalized/essentially algebraic, as presented originally by Dybjer (1996).
- The "∞-theory" of ∞-CwFs is to be generalized/essentially algebraic. In particular:

Fact

The initial space-valued model $I_{\infty}(\mathfrak{T})$ of \mathfrak{T} exists.

aichi Uemı

Introduction

Space-valued models of type theory

Relative induction principle

Synthetic Tai computability

Coherence theorem

Conclusion

Reference

CwFs

Definition

A 1-category with families (1-CwF) is an ∞ -CwF $\mathcal M$ such that $\mathbf C \mathbf t \mathbf x_{\mathcal M}$ is a 1-category and $\mathrm{Ty}_{\mathcal M}$ and $\mathrm{Tm}_{\mathcal M}$ are set-valued presheaves.

Definition

A *set-valued model of* \mathcal{T} is a space-valued model of \mathcal{T} whose underlying ∞ -CwF is a 1-CwF.

Fact

The initial set-valued model $I(\mathfrak{T})$ of \mathfrak{T} exists. By definition, we have a unique morphism $I_{\infty}(\mathfrak{T}) \to I(\mathfrak{T})$.

aichi Uemu

Introduction

Space-valued models of type theory

induction principle

Synthetic Tait computability

Coherence

Conclusion

Reference

Coherence problem

Proposition

The following are equivalent.

- 1. $I_{\infty}(\mathfrak{T}) \to I(\mathfrak{T})$ is an equivalence.
- 2. $I_{\infty}(\mathfrak{I})$ is set-valued.
- 3. The presheaves $\mathrm{Ty}_{\mathbf{I}_{\infty}(\mathfrak{I})}$ and $\mathrm{Tm}_{\mathbf{I}_{\infty}(\mathfrak{I})}$ are set-valued.

Slightly simplified.

Question (Coherence problem)

Are $\mathrm{Ty}_{\mathrm{I}_{\infty}(\mathfrak{I})}$ and $\mathrm{Tm}_{\mathrm{I}_{\infty}(\mathfrak{I})}$ 0-truncated in the ∞ -topos $\mathrm{Psh}(\mathrm{Ctx}_{\mathrm{I}_{\infty}}(\mathfrak{I}))$ of presheaves over $\mathrm{Ctx}_{\mathrm{I}_{\infty}(\mathfrak{I})}$?

aichi Uemu

Introducti

Space-valued models of type theory

Relative induction principle

Synthetic Tait computability

Coherence

Conclusi

Reference

Inside an ∞ -topos $\mathfrak{X} \supset Psh(Ctx_{I_{\infty}(\mathfrak{I})})$, $I_{\infty}(\mathfrak{I})$ looks like a *logical framework encoding* (Harper, Honsell, and Plotkin 1993; Nordström, Petersson, and Smith 1990).

$$\mathtt{Ty}:\mathcal{U}$$

$$\mathtt{Tm}:\mathtt{Ty}\to\mathcal{U}$$

:

This can be axiomatized in type theory. Let us call such a structure an internal model of \mathfrak{T} in \mathfrak{X} .

aichi Uemur

Introducti

Space-valued models of type theory

Relative induction principle

Synthetic Tait computability

Coherence

Conclus

Externalizing internal models

Conversely, given an internal model (Ty, Tm, ...) in \mathcal{X} , we have a space-valued model \mathcal{M} by Yoneda.

$$\begin{aligned} \mathbf{Ctx}_{\mathfrak{M}} &\subset \mathfrak{X} \\ \mathrm{Ty}_{\mathfrak{M}}(\Gamma) &= \mathrm{Map}_{\mathfrak{X}}(\Gamma, \mathtt{Ty}) \\ \mathrm{Tm}_{\mathfrak{M}}(\Gamma) &= \mathrm{Map}_{\mathfrak{X}}(\Gamma, \sum_{A:\mathtt{Ty}} \mathtt{Tm}(A)) \\ &\vdots \end{aligned}$$

Cf. Voevodsky's universe method (Voevodsky 2015). (We can choose for $Ctx_{\mathcal{M}}$ an arbitrary full subcategory of \mathcal{X} closed under context comprehension.)

Space-valued models of type theory

Constructing space-valued models

Useful construction of space-valued models.

- 1. Regard $I_{\infty}(\mathfrak{T})$ as an internal model in $Psh(Ctx_{I_{\infty}(\mathfrak{T})})$.
- 2. Embed $Psh(Ctx_{I_{\infty}(\mathfrak{I})})$ into another ∞ -topos \mathfrak{X} if necessary.
- 3. Do something in \mathcal{X} to get an internal model in \mathcal{X} .
- Externalize the internal model.

Introduction

. . . .

Introductio

Space-valued models of type theory

Relative induction principle

Synthetic Tait computability

Coherence theorem

Conclusio

References

Space-valued models of type theory

Relative induction principle

Synthetic Tait computability

Coherence theorem

Conclusion

ichi Uemu

Introduction

Space-valued models of type theory

Relative induction principle

Synthetic Tair computability

Coherence

Conclusio

Reference

Non-stability of normal forms

Where should normal forms live?

Observation

Normal forms are NOT stable under substitution, so they cannot live in $Psh(Ctx_{\mathbf{I}(\mathfrak{I})})$.

Example

fa is in normal form when f is a variable and a is in normal form, but $(fa)[f := \lambda x.b] \equiv (\lambda x.b)a$ is not.

Taichi Uemur

Introduction

Space-valued models of typ theory

Relative induction principle

Synthetic Tait computability

Coherence theorem

Conclusior

Reference

Category of renamings

Observation

Normal forms are, however, stable under renaming of variables, so they live in another presheaf topos $Psh(Ctx_{R_{\mathrm{syn}}(\mathfrak{T})})$.

 $\mathbf{R}_{\mathrm{syn}}(\mathfrak{T})$ is a CwF of *renamings* and syntactically defined.

- $lackbox{Objects of } Ctx_{R_{\mathrm{syn}}(\mathfrak{I})}$ are the same as $Ctx_{I(\mathfrak{I})}$, but morphisms are only renamings of variables.
- $ightharpoonup \operatorname{Tm}_{\mathbf{R}_{\operatorname{syn}}(\mathfrak{T})}(\Gamma)$ is the set of variables in Γ.

(There is also an inductive definition (Altenkirch and Kaposi 2017).)

Taichi Uemur

Introduction

Space-valued models of typ theory

Relative induction principle

Synthetic Taicomputability

Coherence theorem

Conclusior

Category of renamings

Observation

Normal forms are, however, stable under renaming of variables, so they live in another presheaf topos $Psh(Ctx_{R_{\mathrm{syn}}(\mathfrak{I})})$.

 $\mathbf{R}_{\mathrm{syn}}(\mathfrak{T})$ is a CwF of *renamings* and syntactically defined.

- $lackbox{ Objects of } Ctx_{R_{\mathrm{syn}}(\mathfrak{I})}$ are the same as $Ctx_{I(\mathfrak{I})}$, but morphisms are only renamings of variables.
- $ightharpoonup \operatorname{Tm}_{\mathbf{R}_{\text{syn}}(\mathfrak{I})}(\Gamma)$ is the set of variables in Γ.

(There is also an inductive definition (Altenkirch and Kaposi 2017).)

Problem

The syntactic construction is not suitable for ∞ -analogue.

Conclusion

Deference

Category of renamings, categorically

Definition (Bocquet, Kaposi, and Sattler 2021)

We define $R(\mathfrak{T})$ to be the initial CwF equipped with a morphism $\epsilon: R(\mathfrak{T}) \to I(\mathfrak{T})$ such that $\mathrm{Ty}_{R(\mathfrak{T})}(\Gamma) \cong \mathrm{Ty}_{I(\mathfrak{T})}(\epsilon(\Gamma))$.

- Intuitively, terms of $\mathbf{R}(\mathfrak{T})$ are variables because they are only constructed by structural rules.
- ▶ We actually do not care whether $\mathbf{R}_{\mathrm{syn}}(\mathfrak{T}) \simeq \mathbf{R}(\mathfrak{T})$. The latter exists by the adjoint functor theorem, and all we need in the normalization proof follow from the universal property.

∞ -category of renamings, ∞ -categorically

Relative induction principle

Definition

We define $\mathbf{R}_{\infty}(\mathfrak{T})$ to be the initial ∞ -CwF equipped with a morphism $\epsilon: R_{\infty}(\mathfrak{T}) \to I_{\infty}(\mathfrak{T})$ such that $\mathrm{Ty}_{R_{\infty}(\mathfrak{T})}(\Gamma) \simeq \mathrm{Ty}_{I_{\infty}(\mathfrak{T})}(\epsilon(\Gamma))$.

Fact

 $\mathbf{R}_{\infty}(\mathfrak{T})$ exists.

aichi Uemı

Introduction

Space-valued models of type theory

Relative induction principle

Synthetic Tait

Coherence

Conclusion

Referenc

Relative induction principle

Remark

The universal properties of $I_{\infty}(\mathfrak{T})$ and $R_{\infty}(\mathfrak{T})$ are packed into a *relative induction principle* (Bocquet, Kaposi, and Sattler 2021).

Introduction

Introductio

Space-valued models of type theory

models of tyl

Relative induction principle

Synthetic Tait computability

Synthetic Tait computability

Coherence theorem

Coherence theorem

References

Conclusion

Reference

Type theory for multiple ∞ -topoi?

We now have two ∞-topoi:

- ▶ $Psh(Ctx_{I_{\infty}(\mathfrak{I})})$ where $I_{\infty}(\mathfrak{I})$ is internalized;
- ▶ $Psh(Ctx_{R_{\infty}(\mathfrak{I})})$ where the type of normal forms is to be defined.

The morphism $\epsilon:R_{\infty}(\mathfrak{I})\to I_{\infty}(\mathfrak{I})$ induces the base change

$$\varepsilon^* : Psh(Ctx_{I_{\infty}(\mathfrak{I})}) \rightarrow Psh(Ctx_{R_{\infty}(\mathfrak{I})}).$$

The construction of a normalization model will use objects from both sides.

Problem

What is an internal language for multiple ∞ -topoi related to each other?

Taichi Uemur

Introduction

Space-valued models of type theory

Relative induction principle

Synthetic Tait computability

theorem

Conclusio

Reference

Artin gluing

Fact (cf. SGA4, Elephant A4.5)

Let $F^*: \mathcal{X} \to \mathcal{Y}$ be a functor between ∞ -topoi preserving finite limits and small colimits.

- 1. The Artin gluing $Gl(F^*)$ is an ∞ -topos.
- 2. $Gl(F^*)$ has a special subterminal object $P \in Gl(F^*)$.
- 3. $\mathfrak{X} \xrightarrow{\cong} \mathbf{Gl}(\mathsf{F}^*)_{/\mathsf{P}} \xrightarrow{\overset{\smile}{\smile}} \mathbf{Gl}(\mathsf{F}^*)$ (open subtopos)
- 4. $y \xrightarrow{\simeq} \{A \in \mathbf{Gl}(F^*) \mid A^P \simeq 1\} \xrightarrow{\hookrightarrow} \mathbf{Gl}(F^*)$ (closed subtopos)
- 5. The composite $\mathfrak{X} \hookrightarrow \mathbf{Gl}(\mathsf{F}^*) \to \mathfrak{Y}$ is equivalent to F^* .

 F^* is reconstructed from the subterminal $P \in \mathbf{Gl}(F^*)$.

Artin gluing, internally

Taichi Uemu

Introduction

Space-valued models of typ theory

principle

Synthetic Ta

Synthetic Tait computability

theorem

Conclusio

Referenc

In univalent type theory, let P be a proposition. Define subuniverses.

$$\mathcal{U}_{\mathfrak{O}} \equiv \{A: \mathcal{U} \mid \lambda x. \lambda_{-}.x: A \to (P \to A) \text{ is an equivalence} \}$$
 (open subuniverse)
$$\mathcal{U}_{\mathfrak{C}} \equiv \{A: \mathcal{U} \mid (P \to A) \text{ is contractible} \}$$
 (closed subuniverse)

They have reflectors $\mathfrak{O}(A) \equiv (P \to A)$ and $\mathfrak{C}(A) \equiv (A +_{A \times P} P)$.

Observation

 $\mathbf{Gl}(\mathsf{F}^*)$ internally sees the diagram $\mathfrak{X} \xrightarrow{\mathsf{F}^*} \mathfrak{Y}$ through the internal diagram $\mathfrak{U}_{\mathfrak{D}} \hookrightarrow \mathfrak{U} \xrightarrow{\mathfrak{C}} \mathfrak{U}_{\mathfrak{C}}$.

Artin gluing, internally

In univalent type theory, let P be a proposition. Define subuniverses.

$$\mathcal{U}_{\mathfrak{D}} \equiv \{A : \mathcal{U} \mid \lambda x. \lambda_{-}.x : A \to (P \to A) \text{ is an equivalence} \}$$
 (open subuniverse)
$$\mathcal{U}_{\mathfrak{C}} \equiv \{A : \mathcal{U} \mid (P \to A) \text{ is contractible} \}$$
 (closed subuniverse)

They have reflectors $\mathfrak{O}(A) \equiv (P \to A)$ and $\mathfrak{C}(A) \equiv (A +_{A \times P} P)$.

Observation

 $\mathbf{Gl}(\mathsf{F}^*)$ internally sees the diagram $\mathfrak{X} \xrightarrow{\mathsf{F}^*} \mathfrak{Y}$ through the internal diagram $\mathfrak{U}_{\mathfrak{D}} \hookrightarrow \mathfrak{U} \xrightarrow{\mathfrak{C}} \mathfrak{U}_{\mathfrak{C}}$.

Idea (Higher synthetic Tait computability)

Use univalent type theory + (P : Prop) as an internal language of $Gl(F^*)$.

Taichi Uemu

Introduction

Space-valued models of typ theory

Relative induction principle

Synthetic Tait computability

computability

Conclusio

STC vs higher STC

Some difference from Sterling's synthetic Tait computability.

- ➤ Sterling uses *extensional* type theory for glued 1-topoi, while we use *intensional* type theory for glued ∞-topoi.
- Strict equality xor univalence.

Example

- ▶ Univalence implies $(\mathcal{U}_i)_{\mathfrak{C}} \in (\mathcal{U}_{i+1})_{\mathfrak{C}}$.
- ▶ In extensional type theory, we can still find a closed universe of closed types, using *realignment*.

Synthetic Tait computability

First working ∞-topos

Recall

$$\epsilon^* : Psh(Ctx_{I_{\infty}(\mathfrak{I})}) \rightarrow Psh(Ctx_{R_{\infty}(\mathfrak{I})}).$$

Our first working ∞ -topos is $X := Gl(\varepsilon^*)$.

Axiom

1. P: Prop

2. Ty: Un

3. Tm: Ty $\rightarrow \mathcal{U}_{\mathfrak{O}}$

4. IsVar: $\prod_{A:Tv} \mathtt{Tm}(A) \to \mathfrak{U}_{\mathfrak{C}}$

Taichi Uemu

Introduction

Space-valued models of typ theory

Relative induction principle

Synthetic Tait computability

Coherence

Conclusior

Referenc

Normalization model, internally

TODO

Construct in X

- three mutually inductive types
 - ► IsNfTy(A) (a type A is in normal form)
 - ▶ IsNfTm(α) (a term α is in normal form)
 - ▶ IsNeTm(α) (a term α is neutral)

in Uc;

an internal normalization model

following e.g. Gratzer (2021) and Sterling and Angiuli (2021).

Normalization model

ichi Uemu

Introduction

Space-valued models of typ theory

Relative induction principle

Synthetic Tait computability

Coherence theorem

Conclusion

Reference

We have an externalization $\mathbf{N}_{\infty}(\mathfrak{T})$ of the internal normalization model. By initiality,

(The relative induction principle gives us some additional structure).

induction principle

Synthetic Tait computability

Coherence theorem

Conclusio

Second working ∞-topos

 $N_{\infty}(\mathfrak{T})$ and S have enough structure to compute normal forms of types and terms. For the *uniqueness* of normal forms, we will use induction on normal forms and neutral terms in another ∞ -topos $Y \supset X$.

- ▶ $N_{\infty}(\mathfrak{I})$ and S are NOT internalized to X, so we need a proper extension $X \subset Y$.
- ▶ The construction of Y depends on $N_{\infty}(\mathfrak{T})$ and S, so we cannot work in Y from the beginning.
- (If the notion of a morphism of ∞ -CwFs could be internalized, then we could stay in X.)

(The construction of Y is in the appendix. We use oplax limits.)

ichi Uemu

Introduction

Space-valued models of typ theory

induction principle

Synthetic Tait computability

Coherence

Conclusio

Reference

Uniqueness of normal forms

Using the section S, we have *normalization maps*

$$normalize_{Ty}: \prod_{A:Ty} IsNfTy(A)$$

$$\texttt{normalize}_{\texttt{Tm}}: \textstyle\prod_{A:\texttt{Ty}} \textstyle\prod_{\alpha:\texttt{Tm}(A)} \texttt{IsNfTm}(\alpha).$$

TODO

Show

$$\begin{split} &\prod_{A: Ty} \prod_{A^{\mathrm{nfty}}: \mathtt{IsNfTy}(A)} \mathtt{normalize}_{Ty}(A) = A^{\mathrm{nfty}} \\ &\prod_{A: Ty} \prod_{\alpha: \mathtt{Tm}(A)} \prod_{\alpha^{\mathrm{nftm}}: \mathtt{IsNfTm}(\alpha)} \mathtt{normalize}_{\mathtt{Tm}}(\alpha) = \alpha^{\mathrm{nftm}} \end{split}$$

by induction on normal forms and neutral terms.

Synthetic Tait computability

Normalization theorem

Theorem

IsNfTy(A) and $IsNfTm(\alpha)$ are contractible.

This is proved in Y but stated in X. Since $X \subset Y$ is full, this holds also in X.

Introduction

. . . .

Space-valued models of type theory

models of tyl

Relative induction principle

Relative induction principle

Synthetic Tait computability

Coherence theorem

Coherence theorem

References

Conclusion

shi Homi

Space-valued models of ty theory

Relative induction principle

Synthetic Tai computability

Coherence theorem

Conclusion

Reference

Coherence problem

Question

 $\textit{Are } \mathrm{Ty}_{\mathbf{I}_{\infty}(\mathfrak{I})} \textit{ and } \mathrm{Tm}_{\mathbf{I}_{\infty}(\mathfrak{I})} \textit{ 0-truncated in the } \infty \textit{-topos } \mathbf{Psh}(\mathbf{Ctx}_{\mathbf{I}_{\infty}}(\mathfrak{I})) \textit{?}$

Third working ∞-topos

raichi Gen

Introduction

Space-valued models of typ theory

Relative induction principle

Synthetic Tai computability

Coherence theorem

Conclusio

Referenc

We go back to $X = Gl(\epsilon^*)$, the Artin gluing for $\epsilon^* : Psh(Ctx_{I_{\infty}(\mathfrak{T})}) \to Psh(Ctx_{R_{\infty}(\mathfrak{T})})$. From the previous result, we can assume:

Axiom

IsNfTy(A) and IsNfTm(a) are contractible.

(At this point we can forget about the normalization model.)

Coherence theorem, internally

aichi Uemu

Introduction

Space-valued models of typ theory

Relative induction principle

Synthetic Taccomputability

Coherence theorem

Conclusior

Reference

TODO

Show

$$\begin{split} &\prod_{A: \mathsf{Ty}} \mathtt{IsNfTy}(A) \to \mathtt{IsContr}(\mathfrak{C}(A=A)) \\ &\prod_{A: \mathsf{Ty}} \prod_{\alpha: \mathtt{Tm}(A)} \mathtt{IsNfTm}(\alpha) \to \mathtt{IsContr}(\mathfrak{C}(\alpha=\alpha)). \end{split}$$

by induction on normal forms and neutral terms.

Theorem

 $\mathfrak{C}(Ty)$ and $\mathfrak{C}(Tm(A))$ are 0-truncated.

aichi Uem

Introduction

Space-valued models of type theory

Relative induction principle

Synthetic Ta computabilit

Coherence theorem

Conclusio

Referenc

Theorem

The object $\epsilon^* \mathrm{Ty}_{I_\infty(\mathfrak{I})}$ and the map $\epsilon^* \mathrm{Tm}_{I_\infty(\mathfrak{I})} \to \epsilon^* \mathrm{Ty}_{I_\infty(\mathfrak{I})}$ are 0-truncated in $Psh(Ctx_{R_\infty(\mathfrak{I})})$.

Lemma

 $\varepsilon: Ctx_{R_{\infty}(\mathfrak{I})} \to Ctx_{I_{\infty}(\mathfrak{I})}$ is essentially surjective.

Theorem

The object $\mathrm{Ty}_{\mathbf{I}_{\infty}(\mathfrak{I})}$ and the map $\mathrm{Tm}_{\mathbf{I}_{\infty}(\mathfrak{I})} \to \mathrm{Ty}_{\mathbf{I}_{\infty}(\mathfrak{I})}$ are 0-truncated in $Psh(\mathbf{Ctx}_{\mathbf{I}_{\infty}(\mathfrak{I})})$.

Taichi Uemu

Introducti

Space-valued models of type theory

Relative inductio principle

Synthetic Tai computability

Coherence

Conclusion

Reference

Conclusion

Summary

Coherence via normalization, using ∞ -analogue of relative induction principles and synthetic Tait computability.

- It will work for most type constructors (I checked for Π and some inductive types). How general?
- ▶ Part of the proof can/should be formalized in proof assistants. No need to extend/modify type theory: postulating univalence, HITs, and STC axioms is enough.

Taichi Uemu

Introduction

Space-valued models of type theory

induction principle

Synthetic Tait computability

theorem

Conclusion

Related topics

- ➤ Coherence theorem (Bidlingmaier 2020; Bocquet 2020, 2021; Curien 1993; Hofmann 1995; Lumsdaine and Warren 2015; Nguyen and Uemura 2022)
- Normalization by evaluation (Altenkirch, Hofmann, and Streicher 1995; Altenkirch and Kaposi 2017; Coquand 2019)
- ➤ Synthetic Tait computability¹ (Gratzer 2021; Sterling 2021; Sterling and Angiuli 2021; Sterling and Harper 2021)
- ▶ Relative induction principles (Bocquet, Kaposi, and Sattler 2021)
- ▶ ∞-topoi and their localizations (Anel et al. 2022; Lurie 2009)
- ▶ Internal languages for ∞-topoi (Kapulkin and Lumsdaine 2021; Shulman 2019)
- ▶ Modalities in homotopy type theory (Rijke, Shulman, and Spitters 2020)
- Formalization in Coq-HoTT, UniMath, Cubical Agda

¹https://www.jonmsterling.com/stc-bibliography.html

Taichi Uemur

Introducti

Space-valued models of typ theory

induction principle

Synthetic Tai computability

Conclusio

References

References I

- T. Altenkirch, M. Hofmann, and T. Streicher (1995). "Categorical reconstruction of a reduction free normalization proof". In: *Category Theory and Computer Science*. Ed. by D. Pitt, D. E. Rydeheard, and P. Johnstone. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 182–199. DOI: 10.1007/3-540-60164-3_27.
- T. Altenkirch and A. Kaposi (Jan. 2016). "Type Theory in Type Theory Using Quotient Inductive Types". In: *SIGPLAN Not.* 51.1, pp. 18–29. DOI: 10.1145/2914770.2837638.
- (Oct. 2017). "Normalisation by Evaluation for Type Theory, in Type Theory". In: Logical Methods in Computer Science 13 (4). DOI: 10.23638/LMCS-13(4:1)2017.
- M. Anel, G. Biedermann, E. Finster, and A. Joyal (2022). "Left-exact localizations of ∞-topoi I: Higher sheaves". In: *Adv. Math.* 400, Paper No. 108268, 64. DOI: 10.1016/j.aim.2022.108268.

Taichi Uemu

Introduction

Space-valued models of type theory

Relative induction principle

computability

theorem

References

References II

- M. Artin, A. Grothendieck, and J. L. Verdier (1972-1973). Théorie des topos et cohomologie étale des schémas. Vol. 269,270,305. Lecture Notes in Mathematics. Springer.
- S. Awodey (2018). "Natural models of homotopy type theory". In: *Mathematical Structures in Computer Science* 28.2, pp. 241–286. DOI: 10.1017/S0960129516000268.
- M. E. Bidlingmaier (2020). An interpretation of dependent type theory in a model category of locally cartesian closed categories. arXiv: 2007.02900v1.
- R. Bocquet (2020). Coherence of strict equalities in dependent type theories. arXiv: 2010.14166v1.
- (2021). Strictification of weakly stable type-theoretic structures using generic contexts. arXiv: 2111.10862v1.
- R. Bocquet, A. Kaposi, and C. Sattler (2021). *Relative induction principles for type theories.* arXiv: 2102.11649v2.

Taichi Uemu

Introduction

Space-valued models of typ theory

induction principle

Synthetic Tai computability

Conclusi

References

References III

- T. Coquand (2019). "Canonicity and normalization for dependent type theory". In: *Theor. Comput. Sci.* 777, pp. 184–191. DOI: 10.1016/j.tcs.2019.01.015.
- P.-L. Curien (1993). "Substitution up to Isomorphism". In: *Fundam. Inform.* 19.1/2, pp. 51–85.
- P. Dybjer (1996). "Internal Type Theory". In: Types for Proofs and Programs: International Workshop, TYPES '95 Torino, Italy, June 5–8, 1995 Selected Papers. Ed. by S. Berardi and M. Coppo. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 120–134. DOI: 10.1007/3-540-61780-9_66.
- M. Fiore (2012). Discrete Generalised Polynomial Functors. Talk at ICALP 2012. URL: http://www.cl.cam.ac.uk/~mpf23/talks/ICALP2012.pdf.
- D. Gratzer (2021). *Normalization for multimodal type theory*. arXiv: 2106.01414v1.

Taichi Uemur

Introduction

Space-valued models of type theory

principle
Synthetic Ta

computability

Conclusio

References

References IV

- D. Gratzer, G. A. Kavvos, A. Nuyts, and L. Birkedal (2020). "Multimodal Dependent Type Theory". In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '20. Saarbrücken, Germany: Association for Computing Machinery, pp. 492–506. DOI: 10.1145/3373718.3394736.
- R. Harper, F. Honsell, and G. Plotkin (Jan. 1993). "A Framework for Defining Logics". In: *J. ACM* 40.1, pp. 143–184. DOI: 10.1145/138027.138060.
- M. Hofmann (1995). "On the interpretation of type theory in locally cartesian closed categories". In: Computer Science Logic. Ed. by L. Pacholski and J. Tiuryn. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 427–441. DOI: 10.1007/BFb0022273.
- P. T. Johnstone (2002). Sketches of an Elephant: A Topos Theory Compendium Volume 1. Vol. 43. Oxford Logic Guides. Oxford University Press.

Taichi Uemur

Introducti

Space-valued models of typ theory

Relative induction principle

computability

Coherence

Conclusion

References V

- K. Kapulkin and P. L. Lumsdaine (2021). "The simplicial model of Univalent Foundations (after Voevodsky)". In: Journal of the European Mathematical Society. DOI: 10.4171/JEMS/1050.
- P. L. Lumsdaine and M. A. Warren (July 2015). "The Local Universes Model: An Overlooked Coherence Construction for Dependent Type Theories". In: *ACM Trans. Comput. Logic* 16.3, 23:1–23:31. DOI: 10.1145/2754931.
- J. Lurie (2009). *Higher Topos Theory*. Vol. 170. Annals of Mathematics Studies. Princeton University Press. URL: https://www.math.ias.edu/~lurie/papers/HTT.pdf.
- H. K. Nguyen and T. Uemura (2022). ∞-type theories. arXiv: 2205.00798v1.
- B. Nordström, K. Petersson, and J. M. Smith (1990). *Programming in Martin-Löf's Type Theory: An Introduction*. Oxford University Press. URL: http://www.cse.chalmers.se/research/group/logic/book/.

Taichi Uemu

Introduction

Space-valued models of typ theory

Relative induction principle

Synthetic Tai computability

theorem

References

References VI

- E. Rijke, M. Shulman, and B. Spitters (2020). "Modalities in homotopy type theory". In: Log. Methods Comput. Sci. 16.1, Paper No. 2, 79. DOI: 10.23638/LMCS-16(1:2)2020.
- M. Shulman (2015). "Univalence for inverse diagrams and homotopy canonicity". In: *Mathematical Structures in Computer Science* 25.05, pp. 1203–1277. DOI: 10.1017/s0960129514000565.
- (2019). All $(\infty, 1)$ -toposes have strict univalent universes. arXiv: 1904.07004v2.
- J. Sterling (2021). "First Steps in Synthetic Tait Computability. The Objective Metatheory of Cubical Type Theory". PhD Thesis. Carnegie Mellon University. URL: https://www.jonmsterling.com/pdfs/sterling:2021:thesis.pdf.
- J. Sterling and C. Angiuli (2021). "Normalization for Cubical Type Theory". In: 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–15. DOI: 10.1109/LICS52264.2021.9470719.

References VII

raiciii ociii

Introducti

Space-valued models of typ theory

Relative induction principle

Synthetic Tair computability

Coherence

Conclusio

References

- J. Sterling and R. Harper (2021). "Logical Relations as Types: Proof-Relevant Parametricity for Program Modules". In: *J. ACM* 68.6, 41:1–41:47. DOI: 10.1145/3474834.
- V. Voevodsky (2015). "A C-system defined by a universe category". In: *Theory and Applications of Categories* 30.37, pp. 1181–1214.

Normalization model

Taichi Uemı

STC for inverse diagrams

Misc

We have an externalization $\mathbf{N}_{\infty}(\mathfrak{T})$ of the internal normalization model, and it is equipped with a projection $\pi: \mathbf{N}_{\infty}(\mathfrak{T}) \to \mathbf{I}_{\infty}(\mathfrak{T})$ and a section $Y: \mathbf{Ctx}_{\mathbf{R}_{\infty}(\mathfrak{T})} \to \mathbf{Ctx}_{\mathbf{N}_{\infty}(\mathfrak{T})}$ over ε . The relative induction principle gives

Oplax limits over inverse categories

Oplax limits over inverse categories (Shulman 2015) are generalized/iterated gluing.

Example (cf. Elephant A4.5.5)

Let I be a finite poset and \mathcal{X} an ∞ -topos. \mathcal{X}^I is the oplax limit of $I^{op} \ni _ \mapsto \mathcal{X} \in \mathbf{Cat}$.

- 1. $\mathfrak{X}^{\mathbf{I}}$ is an ∞ -topos.
- 2. For any upward-closed subset $J \subset I$, we have a subterminal $P_J \in \mathfrak{X}^I$ defined by $P_J(\mathfrak{i}) = 1$ if $\mathfrak{i} \in J$ and $P_J(\mathfrak{i}) = 0$ otherwise.
- 3. χ^{J} is the open subtopos associated to P_{J}
- 4. $\mathcal{X}^{I\setminus J}$ is the closed subtopos associated to P_J .

So any object of $\mathfrak{X}^{\mathrm{I}}$ can be fractured into subdiagrams.

Second working ∞-topos

aichi Uemu

STC for inverse diagrams

Misc

Our second working ∞-topos Y is the oplax limit of

Y contains a lot of modalities, and everything we need can be axiomatized.

Taichi Uem

STC for inverse diagram

Misc

Bocquet, Kaposi, and Sattler (2021) use *multimodal type theory* (Gratzer et al. 2020) to explain normalization proof.

- Interpretation of MTT in diagrams of ∞ -topoi is not clear. We would have to strictify functors and natural transformations as well as ∞ -topoi.
- ▶ I don't know if MTT has been implemented. STC is ready to formalize in existing proof assistants.

Normalization vs higher normalization

:hi Uemı

STC for inverse diagram

Misc

Normalization for $I_{\infty}(\mathcal{T})$ does not directly imply normalization for $I(\mathcal{T})$.

- ▶ After proving $I_{\infty}(\mathfrak{T}) \simeq I(\mathfrak{T})$, we have normalization for $I(\mathfrak{T})$.
- ▶ The normalization model $N_{\infty}(\mathfrak{T})$ constructed using higher STC is not set-valued, so we don't have $I(\mathfrak{T}) \to N_{\infty}(\mathfrak{T})$ before the coherence theorem.