MULTIDIMENSIONAL EXTENSION OF BUFFON'S NEEDLE PROBLEM

Get rid of all "we". I'm a bit conflicted on whether it's supposed to be active or passive voice, but most seem to be passive?

A PREPRINT

Alexander Choi alexander.e.choi@gmail.com

September 22, 2023

ABSTRACT

Consider a line segment randomly placed on a two-dimensional plane ruled with a set of regularly spaced parallel lines. The classical Buffon's needle problem asks what the probability is that the line segment intersects at least 1 of these lines. This paper extends this problem by considering a line segment randomly placed in \mathbb{R}^D and its probability of intersection with a set of regularly spaced parallel hyperplanes.

Keywords Buffon's needle problem · Geometric Probability

1 Introduction

Buffon's needle problem was originally posed in the 18th century with the following premise. Given a line segment, or "needle", of length r randomly dropped on a two-dimensional plane ruled with a set of parallel lines regularly spaced s units apart, what is the probability that the needle crosses at least 1 of the lines? The solution, it turns out, is $\frac{2r}{s\pi}$ when r < s. Variations and extensions of this problem have been investigated as well, including

- Laplace's Extension Investigating when the plane is gridded with 2 orthogonal sets of parallel lines with spacings s₁ and s₂.
- Buffon's Noodle Instead of being rigidly straight, the needle is permitted to bend (a "noodle").
- Pivot Needle The needle is constructed of two line segments that hinge together. Each crossing is considered.

In this paper, we investigate a particular extension that allows the needle to be dropped into a space with dimension greater than 2. In these higher dimensions, we will rule the space with parallel hyperplanes rather than lines. Additionally, we will look at gridding the space with orthogonal sets of hyperplanes, thereby extending Laplace's extension into higher dimensions.

Given $D \in \mathbb{N}_{>0}$ and $N \in [1, 2, \dots, D]$, consider a grid on \mathbb{R}^D formed by N orthogonal sets of regularly spaced hyperplanes where each set of hyperplanes has a potentially unique spacing of S_i . For example, if $D=2, N=1, S_1=2$, the grid would match the original Buffon Needle problem and would have only a single set of parallel lines 2 units apart. If D=2, N=2, S=[1,2], the grid would have 2 sets of parallel lines that are orthogonal to each other, matching the problem in Laplace's extension. One set of lines would have a spacing of 1 unit and the other would have a spacing of 2 units.

A line segment of length $r \in \mathbb{R}^+$ is randomly located in the space such that one of its end points, P_0 , is uniformly distributed across the entire domain. The line segment's orientation is independently distributed such that when considering P_0 as the center of a (D-1)-sphere of radius r, the other point, P_1 , is uniformly distributed on the surface of that hypersphere. This line segment may intersect with $C \in \mathbb{N}$ unique hyperplanes. This paper studies the probability that the line segment intersects with at least c hyperplanes, $P(C \ge c | r, D, N, S)$. From there, solutions for crossing less than c hyperplanes and exactly c hyperplanes can be derived.

We will define the coordinates of line segment using $\vec{x} \in \mathbb{R}^D$ for the location of P_0 and spherical coordinates for the location of P_1 with respect to P_0 .

$$y_{1} = r \cos \phi_{1}$$

$$y_{2} = r \sin \phi_{1} \cos \phi_{2}$$

$$\vdots$$

$$y_{D-1} = r \sin \phi_{1} \dots \sin \phi_{D-2} \cos \phi_{D-1}$$

$$y_{D} = r \sin \phi_{1} \dots \sin \phi_{D-2} \sin \phi_{D-1}$$

$$P_{1} = \vec{x} + \vec{y}$$

$$\phi_{j} \in \begin{cases} [0, \pi] & j < D - 1 \\ [0, 2\pi] & j = D - 1 \end{cases}$$

Translational symmetry of the grid of hyperplanes allows us to consider the domain of P_0 to be $x_i \in [0, S_i]$ as the origin can be moved to any point on the grid. Reflectional symmetry of the grid also allows us to consider the domain of \vec{y} to be a single orthant of the hypersphere. For convenience, we will pick the orthant where $\phi_i \in [0, \pi/2]$.

The rest of the paper is organized as follows. A derivation of the joint probability density function for P_0 and P_1 will be provided in §2. The derivation and validation of the crossing probabilities for N=1 will be given in §3. The derivation and validation of the crossing probabilities for any N and $r < \min(S)$ will be given in §4. Analysis of the limits and extrema of the probabilities is explored in §4.

2 Joint Probability Density of the Line Segment

Each coordinate for P_0 can be defined as a uniformly distributed random variable $X_i \sim \mathrm{Uniform}(0,S_i)$. Due to independence, the joint PDF for P_0 is the product $\prod_{i=1}^D \frac{1}{S_i}$. By the definition of the problem, the coordinates \vec{x} do not influence the orientation of the line segment defined by $\vec{\phi}$. The probability density function for the uniform distribution of points on an orthant of the hypersphere can be determined by calculating the area element in terms of spherical coordinates.

Proposition 1. In spherical coordinates, the probability density function for a uniform distribution on an orthant of a hypersphere is $\frac{2^D}{A_{D-1}} \prod_{j=1}^{D-1} r \sin^{D-1-j} \phi_j$ where A_{D-1} is the surface area of a (D-1)-sphere.

Proof. The area element of an (D-1)-sphere of radius r can be expressed as

$$d\Omega = \left(\prod_{j=1}^{D-1} r \sin^{D-1-j} \phi_j\right) d\phi_1 \dots d\phi_{D-1} \tag{1}$$

The probability that a point lies in this differential element can be expressed as follows.

$$f_{\Omega}(\Omega)d\Omega = f_{\vec{\phi}}(\phi_1, \dots, \phi_{D-1})d\phi_1 \dots d\phi_{D-1}$$
(2)

The points are uniformly distributed over the surface of an orthant of the hypersphere implying that $f_{\Omega}(\Omega) = \frac{2^{D}}{A_{D-1}}$. Substituting this and 1 into 2 yields

$$\frac{2^{D}}{A_{D-1}} \prod_{j=1}^{D-1} r \sin^{D-1-j} \phi_j = f_{\vec{\phi}}(\phi_1, \dots, \phi_{D-1})$$
(3)

Then by independence, the joint probability density function for the entire line segment can be expressed as

$$f_{\vec{X},\vec{\phi}}(x_1,\dots,x_D,\phi_1,\dots,\phi_{D-1}) = \frac{2^D}{A_{D-1}} \left(\prod_{i=1}^D \frac{1}{S_i} \right) \left(\prod_{j=1}^{D-1} r \sin^{D-1-j} \phi_j \right)$$
(4)

3 Probability of crossing N=1

In general, the probability of meeting some number of crossings given any set of parameters can be described as follows.

$$P(C \ge c|r, D, N, S) = \int \cdots \int_{V} f_{\vec{\phi}}(\phi_1, \dots, \phi_{D-1}) dx_1 \dots dx_D d\phi_1 \dots d\phi_{D-1}$$

$$(5)$$

$$= \frac{2^{D} r^{D-1}}{A_{D-1} \prod_{i=1}^{D} S_{i}} \int \cdots \int_{V} \prod_{j=1}^{D-1} \sin^{D-1-j} \phi_{j} dx_{1} \dots dx_{D} d\phi_{1} \dots d\phi_{D-1}$$
 (6)

Where V is the hypervolume in which some sort of crossing condition is met. The definition of these crossing conditions and the solution to the above equation will be explored for a variety of parameters.

We start with a simplified set of parameters where there is only a single set of parallel hyperplanes. We are interested in the condition where at least c crossings happen. That is, in this section we are interested in the probability $P(C \ge c | r, D, N = 1, S)$. For brevity, we will refer to this as $P_1(c)$.

Due to rotational symmetry of the line segment, it should not matter in which direction the hyperplanes extend. Without loss of generality we assume the planes are in the direction of x_1 .

Because P_0 is constrained to be within the gridcell at the origin and because the orthant we are investigating is in the direction of x_1 , we know that a crossing occurs whenever the following condition is met

$$x_1 + r\cos\phi_1 > S_1c \tag{7}$$

$$r > \frac{S_1 c - x_1}{\cos \phi_1} \tag{8}$$

$$x_1 > S_1 c - r \cos \phi_1 \tag{9}$$

$$\phi_1 < \arccos \frac{S_1 c - x_1}{r} \tag{10}$$

The minimum of $\frac{S_1c-x_1}{\cos\phi_1}$ occurs at $x_1=S_1, \phi_1=0$ with a value of $S_1(c-1)$. Therefore if $r < S_1(c-1)$ we can guarantee that the crossing condition cannot be satisfied. This results in

$$P(C > c | r < S_1(c-1), N = 1) = 0$$
(11)

The domains of x_1 can then be used to define the space in which a valid crossing has occurred

$$m(\phi_1) < x_1 < S_1 \tag{12}$$

$$m(\phi_1) = \max(0, S_1 c - r \cos \phi_1) \tag{13}$$

Probably
need to elaborate and
define what
I mean by
"crossing
condition"

The domain of x_1 also provides a maximum bound for the maximum acceptable value of ϕ_1 when $x_1 = S_1$.

$$\phi_1 < \arccos \frac{S_1(c-1)}{r} \tag{14}$$

We can now express our volume integral in terms of these conditions and solve for the location dimensions. Because our probability density function is finite across the entire domain, we may arbitrarily choose the order of integration except for x_1 and ϕ_1 whose bounds are dependent and will require the bounds of integration to change if their order is swapped.

Maybe call out Fubini directly here?

In general with the math, no idea if I'm too hand-holdy or not hand holdy enough

$$P_{1}(c) = \int_{0}^{\pi/2} \dots \int_{0}^{\pi/2} \int_{0}^{\arccos \frac{S_{1}(c-1)}{r}} \int_{0}^{S_{D}} \dots \int_{0}^{S_{2}} \int_{m(\phi_{1})}^{S_{1}} f_{\vec{\phi}}(\phi_{1}, \dots, \phi_{D-1}) dx_{1} dx_{2} \dots dx_{D} d\phi_{1} d\phi_{2} \dots d\phi_{D-1}$$

$$(15)$$

$$= \int_0^{\pi/2} \dots \int_0^{\pi/2} \int_0^{\arccos \frac{S_1(c-1)}{r}} \left(\prod_{i=2}^D S_i \right) (S_1 c - m(\phi_1)) f_{\vec{\phi}}(\phi_1, \dots, \phi_{D-1}) d\phi_1 d\phi_2 \dots d\phi_{D-1}$$
 (16)

$$= \frac{2^{D} r^{D-1} \prod_{i=2}^{D} S_{i}}{A_{D-1} \prod_{i=1}^{D} S_{i}} \int_{0}^{\pi/2} \dots \int_{0}^{\pi/2} \int_{0}^{\arccos \frac{S_{1}(c-1)}{r}} (S_{1}c - m(\phi_{1})) \prod_{j=1}^{D-1} \sin^{D-1-j} \phi_{j} d\phi_{1} d\phi_{2} \dots d\phi_{D-1}$$

$$(17)$$

$$= \frac{2^{D} r^{D-1}}{A_{D-1} S_{1}} \int_{0}^{\pi/2} \dots \int_{0}^{\pi/2} \int_{0}^{\arccos \frac{S_{1}(c-1)}{r}} (S_{1}c - m(\phi_{1})) \prod_{j=1}^{D-1} \sin^{D-1-j} \phi_{j} d\phi_{1} d\phi_{2} \dots d\phi_{D-1}$$
(18)

The value of $m(\phi_1)$ depends on the value of r. If $r < S_1 c$, then $m(\phi_1) = S_1 c - r \cos \phi_1 \forall \phi_1$. If $r > S_1 c$ we will need to partition the interval of integration into two regions, one where $S_1 c - r \cos \phi_1$ is greater than 0 and one where it is less than zero. The transition occurs at the value $\phi_1 = \arccos \frac{S_1 c}{r}$.

$$m(\phi_1) = \begin{cases} 0 & \frac{S_1 c}{\cos \phi_1} > r > S_1 c\\ S_1 c - r \cos \phi_1 & \text{otherwise} \end{cases}$$
 (19)

3.1 $S_1(c-1) < r < S_1c$

When $r < S_1 c$ we have the following expression by substituting $S_1 c - r \cos \phi_1$ for $m(\phi_1)$.

$$P_{1}(c) = \frac{2^{D}r^{D-1}}{A_{D-1}S_{1}} \int_{0}^{\pi/2} \dots \int_{0}^{\pi/2} \int_{0}^{\arccos \frac{S_{1}(c-1)}{r}} (S_{1}(1-c) + r\cos\phi_{1}) \prod_{j=1}^{D-1} \sin^{D-1-j}\phi_{j}d\phi_{1}d\phi_{2} \dots d\phi_{D-1}$$
(20)
$$= \frac{2^{D}r^{D-1}}{A_{D-1}S_{1}} \int_{0}^{\pi/2} \dots \int_{0}^{\pi/2} \int_{0}^{\arccos \frac{S_{1}(c-1)}{r}} (S_{1}(1-c) + r\cos\phi_{1}) \sin^{D-2}\phi_{1} \prod_{j=2}^{D-1} \sin^{D-1-j}\phi_{j}d\phi_{1}d\phi_{2} \dots d\phi_{D-1}$$
(21)

$$= \frac{2^{D} r^{D}}{A_{D-1} S_{1}} \int_{0}^{\pi/2} \dots \int_{0}^{\pi/2} \prod_{j=2}^{D-1} \sin^{D-1-j} \phi_{j} \left(\frac{S_{1} (1-c)}{r} \int_{0}^{\arccos \frac{S_{1} (c-1)}{r}} \sin^{D-2} \phi_{1} d\phi_{1} + \int_{0}^{\arccos \frac{S_{1} (c-1)}{r}} \cos \phi_{1} \sin^{D-2} \phi_{1} d\phi_{1} \right) d\phi_{2} \dots d\phi_{D-1}$$

$$(22)$$

The two interior integrals can be solved via integration by reduction and u-substitution respectively. It is convenient if we first define the following proposition.

Proposition 2. When given the ratio (k-1)!!/k!! where the double exclam represents the double factorial function, it is equivalent the following.

$$= \begin{cases} \frac{1}{\pi} B(\frac{k+1}{2}, \frac{1}{2}) & k \mod 2 = 0\\ \frac{1}{2} B(\frac{k+1}{2}, \frac{1}{2}) & k \mod 2 = 1 \end{cases}$$
 (23)

This prop can be condensed by maybe just citing the gamma representation of a multifactorial *Proof.* We start by deriving a value for n!! in terms of factorials. If $n \mod 2 = 0$

$$n!! = n(n-2)\dots(4)(2) \tag{24}$$

$$= 2^{n/2} \frac{n}{2} \frac{n-2}{2} \dots \frac{4}{2} \frac{2}{2}$$

$$= 2^{n/2} \frac{n}{2}!$$
(25)
$$= 2^{n/2} \frac{n}{2}!$$
(26)

$$=2^{n/2}\frac{n}{2}!$$
 (26)

If $n \mod 2 = 1$

$$n!! = n(n-2)\dots(3)(1) \tag{27}$$

$$=\frac{n!}{(n-1)!!}$$
 (28)

$$=\frac{n!}{2^{(n-1)/2}(\frac{n-1}{2})!}\tag{29}$$

Using 26 and 29 we can simplify (k-1)!!/k!!. First, assuming that k is even

$$\frac{(k-1)!!}{k!!} = \frac{(k-1)!}{2^{(k-2)/2}(\frac{k-2}{2})!} \frac{1}{2^{k/2}(\frac{k}{2})!}$$
(30)

$$= \frac{\Gamma(\frac{1}{2})}{\Gamma(\frac{1}{2})} \frac{\frac{1}{2} \frac{2}{2} \dots \frac{k-2}{2} \frac{k-1}{2}}{\frac{2}{2} \frac{4}{2} \dots \frac{k-4}{2} \frac{k-2}{2} (\frac{k}{2}!)}$$
(31)

$$= \frac{\Gamma(\frac{1}{2})}{\Gamma(\frac{1}{2})} \frac{\frac{1}{2} \cdot \frac{3}{2} \cdot \dots \cdot \frac{k-3}{2} \cdot \frac{k-1}{2}}{\frac{k}{2}!}$$
(32)

Now using the property $n\Gamma(n) = \Gamma(n+1)$ and $n! = \Gamma(n+1)$, we get the following.

$$\frac{(k-1)!!}{k!!} = \frac{\Gamma(\frac{k+1}{2})}{\Gamma(\frac{1}{2})\Gamma(\frac{k+2}{2})}$$
(33)

Finally, using $B(x,y) = \Gamma(x)\Gamma(y)/\Gamma(x+y)$ and $\Gamma(1/2) = \sqrt{\pi}$ we get

$$\frac{(k-1)!!}{k!!} = \frac{1}{\pi} B\left(\frac{k+1}{2}, \frac{1}{2}\right) \tag{34}$$

We now repeat the process for the case where k is odd.

$$\frac{(k-1)!!}{k!!} = \left(\frac{k-1}{2}\right)!2^{(k-1)/2} \frac{\left(\frac{k-1}{2}\right)!2^{(k-1)/2}}{k!} \tag{35}$$

$$=\frac{2\Gamma(\frac{1}{2})}{2\Gamma(\frac{1}{2})}\frac{2^{k-1}(\frac{k-1}{2})!^2}{k!}$$
(36)

$$= \frac{\Gamma(\frac{1}{2})}{2\Gamma(\frac{1}{2})} \frac{\frac{2}{2} \frac{4}{2} \dots \frac{k-3}{2} \frac{k-1}{2} (\frac{k-1}{2}!)}{\frac{1}{2} \frac{2}{2} \dots \frac{k-1}{2} \frac{k}{2}}$$
(37)

$$= \frac{\Gamma(\frac{1}{2})}{2\Gamma(\frac{1}{2})} \frac{\frac{k-1}{2}!}{\frac{1}{2}\frac{3}{2}\dots\frac{k-2}{2}\frac{k}{2}}$$
(38)

$$=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{k+1}{2})}{2\Gamma(\frac{k+2}{2})}\tag{39}$$

$$= \frac{1}{2}B\left(\frac{k+1}{2}, \frac{1}{2}\right) \tag{40}$$

We now define the following proposition for the initial integral in 22.

Proposition 3. Any integral of the form $\int_0^{\arccos(\gamma)} \sin^m \phi d\phi$ has two possible solutions depending on the parity of m.

$$= \frac{B(\frac{m+1}{2}, \frac{1}{2})}{2} \left(g(\gamma, m) - \gamma (1 - \gamma^2)^{(m+1)/2} \sum_{i=1}^{\lfloor m/2 \rfloor} \frac{B(\frac{m+2-2i}{2}, \frac{1}{2})}{\pi (1 - \gamma^2)^i} \right)$$
(41)

$$g(\gamma, m) = \begin{cases} \frac{2}{\pi} \arccos \gamma & m \bmod 2 = 0\\ 1 - \gamma & m \bmod 2 = 1 \end{cases}$$
 (42)

Proof. We start with the following integration by reduction identity

$$\int_0^{\arccos \gamma} \sin^m \phi d\phi = -\frac{1}{m} \sin^{m-1} \phi \cos \phi \Big|_0^{\arccos \gamma} + \frac{m-1}{m} \int_0^{\arccos \gamma} \sin^{m-2} \phi d\phi$$
 (43)

$$= -\frac{1}{m} (1 - \gamma^2)^{(m-1)/2} \gamma + \frac{m-1}{m} \left(-\frac{1}{m-2} \sin^{m-3} \phi \cos \phi \Big|_0^{\arccos \gamma} + \frac{m-3}{m-2} \int_0^{\arccos \gamma} \sin^{m-4} \phi d\phi \right)$$
(44)

This pattern continues until the \sin in the final integrand is raised to either the first or zeroth power. This depends on whether m is even or odd. If m is even

$$= -\frac{1}{m} (1 - \gamma^2)^{(m-1)/2} \gamma - \frac{m-1}{m(m-2)} (1 - \gamma^2)^{(m-3)/2} \gamma - \dots$$

$$-\frac{(m-1)(m-3)\dots(3)}{(m)(m-2)\dots(2)} (1 - \gamma^2)^{1/2} \gamma + \frac{(m-1)!!}{m!!} \int_0^{\arccos \gamma} d\phi$$
(45)

$$= \frac{(m-1)!!}{m!!} \left(-\frac{(m-2)!!}{(m-1)!!} (1-\gamma^2)^{(m-1)/2} \gamma - \frac{(m-4)!!}{(m-3)!!} (1-\gamma^2)^{(m-3)/2} \gamma - \dots - \frac{0!!}{1!!} (1-\gamma^2)^{1/2} + \arccos \gamma \right)$$
(46)

$$= \frac{(m-1)!!}{m!!} \left(\arccos \gamma - \gamma \sum_{i=1}^{m/2} \frac{(m-2i)!!}{(m+1-2i)!!} (1-\gamma^2)^{(m+1-2i)/2} \right)$$
(47)

$$= \frac{(m-1)!!}{m!!} \left(\arccos \gamma - \gamma (1-\gamma^2)^{(m+1)/2} \sum_{i=1}^{m/2} \frac{(m-2i)!!}{(m+1-2i)!!} (1-\gamma^2)^{-i} \right)$$
(48)

Using 2 we can reduce to the following.

$$= \frac{B(\frac{m+1}{2}, \frac{1}{2})}{\pi} \left(\arccos \gamma - \gamma (1 - \gamma^2)^{(m+1)/2} \sum_{i=1}^{m/2} \frac{B(\frac{m+2-2i}{2}, \frac{1}{2})}{2} (1 - \gamma^2)^{-i} \right)$$
(49)

$$= \frac{B(\frac{m+1}{2}, \frac{1}{2})}{2} \left(\frac{2}{\pi} \arccos \gamma - \gamma (1 - \gamma^2)^{(m+1)/2} \sum_{i=1}^{m/2} \frac{B(\frac{m+2-2i}{2}, \frac{1}{2})}{\pi (1 - \gamma^2)^i} \right)$$
 (50)

Repeating for the case where m is odd

$$= -\frac{1}{m} (1 - \gamma^2)^{(m-1)/2} \gamma - \frac{m-1}{m(m-2)} (1 - \gamma^2)^{(m-3)/2} \gamma - \dots$$

$$- \frac{(m-1)(m-3)\dots(3)}{(m)(m-2)\dots(2)} (1 - \gamma^2)^{1/2} \gamma + \frac{(m-1)!!}{m!!} \int_0^{\arccos \gamma} \sin \phi d\phi$$
(51)

$$= \frac{(m-1)!!}{m!!} \left(1 - \gamma - \gamma (1-\gamma^2)^{(m+1)/2} \sum_{i=1}^{(m-1)/2} \frac{(m-2i)!!}{(m+1-2i)!!} (1-\gamma^2)^{-i} \right)$$
 (52)

$$= \frac{B(\frac{m+1}{2}, \frac{1}{2})}{2} \left(1 - \gamma - \gamma (1 - \gamma^2)^{(m+1)/2} \sum_{i=1}^{\lfloor m/2 \rfloor} \frac{B(\frac{m+2-2i}{2}, \frac{1}{2})}{\pi (1 - \gamma^2)^i} \right)$$
 (53)

We can substitute the solution from 3 int 22 to get the following.

$$P_{1}(c) = \frac{2^{D} r^{D}}{A_{D-1} S_{1}} \int_{0}^{\pi/2} \dots \int_{0}^{\pi/2} \prod_{j=2}^{D-1} \sin^{D-1-j} \phi_{j} \left(\frac{-\gamma}{2} B \left(\frac{D-1}{2}, \frac{1}{2} \right) \left(g(\gamma, D-2) - \gamma (1-\gamma^{2})^{(D-1)/2} \sum_{k=1}^{\lfloor \frac{D-2}{2} \rfloor} \frac{B(\frac{D-2k}{2}, \frac{1}{2})}{\pi (1-\gamma^{2})^{k}} \right) + \int_{0}^{\arccos \gamma} \cos \phi_{1} \sin^{D-2} \phi_{1} d\phi_{1} d\phi_{2} \dots d\phi_{D-1}$$
(54)

Where $\gamma = S_1(c-1)/r$.

Applying u-substitution where $u = \sin \phi_1$ we get the following

$$P_1(c) = \frac{2^D r^D \xi}{A_{D-1} S_1} \int_0^{\pi/2} \dots \int_0^{\pi/2} \prod_{j=2}^{D-1} \sin^{D-1-j} \phi_i d\phi_2 \dots d\phi_{D-1}$$
 (55)

$$\xi = \frac{-\gamma}{2} B\left(\frac{D-1}{2}, \frac{1}{2}\right) \left(g(\gamma, D-2) - \gamma(1-\gamma^2)^{(D-1)/2} \sum_{k=1}^{\lfloor \frac{D-2}{2} \rfloor} \frac{B(\frac{D-2k}{2}, \frac{1}{2})}{\pi(1-\gamma^2)^k}\right) + \frac{1}{D-1} (1-\gamma^2)^{(D-1)/2}$$
(56)

To solve the remaining D-2 integrals, we start by noting that we can simplify the result from 3 by noting that the remaining upper bounds of integration are all $\pi/2$.

Restating the result, we have the following

$$\int_0^{\arccos \gamma} \sin^m \phi d\phi = \frac{1}{2} B\left(\frac{m+1}{2}, \frac{1}{2}\right) \left(g(\gamma, m) - \gamma \sum_{i=1}^{\lfloor m/2 \rfloor} \frac{B(\frac{m+2-2i}{2}, \frac{1}{2})}{\pi} (1 - \gamma^2)^{(m+1)/2-i}\right)$$
(57)

$$\int_0^{\arccos 0} \sin^m \phi d\phi = \frac{1}{2} B\left(\frac{m+1}{2}, \frac{1}{2}\right) (1-0)$$
 (58)

$$= \frac{1}{2}B\left(\frac{m+1}{2}, \frac{1}{2}\right) \tag{59}$$

For every integral in 55 we get the following product.

$$P_1(c) = \frac{2^D r^D \xi}{A_{D-1} S_1} \prod_{j=2}^{D-1} \frac{1}{2} B\left(\frac{D-j}{2}, \frac{1}{2}\right)$$
(60)

$$= \frac{2^D r^D \xi}{A_{D-1} S_1} \frac{\Gamma(\frac{1}{2})}{\Gamma(\frac{D-1}{2})} \left(\frac{\sqrt{\pi}}{2}\right)^{D-2}$$
 (61)

We can now substitute in an expression of A_{D-1} as follows

$$A_{D-1} = \frac{2\pi^{D/2}r^{n-1}}{\Gamma(\frac{D}{2})} \tag{62}$$

$$P_1(c) = \frac{2^D r^D \xi}{2\pi^{D/2} r^{D-1} S_1} \frac{\Gamma(\frac{D}{2}) \Gamma(\frac{1}{2})}{\Gamma(\frac{D+1}{2})} \left(\frac{\sqrt{\pi}}{2}\right)^{D-2}$$
 (63)

$$=\frac{2r}{\pi S_1} \frac{\xi \pi}{B(\frac{D-1}{2}, \frac{1}{2})} \tag{64}$$

Figure 1: Domain of integration when $r < S_1c$

We get a solution reminiscent of the original Buffon needle problem $(2r/\pi S)$ with an extra factor that is dependent on the dimension of the space. Substituting in our function for ξ in 56 and simplifying, we get

$$P_{1}(c) = \frac{2r}{\pi S_{1}} \left(-\frac{\gamma \pi B(\frac{D-1}{2}, \frac{1}{2})}{2B(\frac{D-1}{2}, \frac{1}{2})} \left(g(\gamma, D-2) - \gamma (1-\gamma^{2})^{(D-1)/2} \sum_{k=1}^{\lfloor \frac{D-2}{2} \rfloor} \frac{B(\frac{D-2k}{2}, \frac{1}{2})}{\pi (1-\gamma^{2})^{k}} \right)$$

$$+ \frac{\pi}{B(\frac{D-1}{2}, \frac{1}{2})(D-1)} (1-\gamma^{2})^{(D-1)/2} \right)$$

$$= \frac{2r}{\pi S_{1}} \left(-\frac{\gamma \pi}{2} \left(g(\gamma, D-2) - \gamma (1-\gamma^{2})^{(D-1)/2} \sum_{k=1}^{\lfloor \frac{D-2}{2} \rfloor} \frac{B(\frac{D-2k}{2}, \frac{1}{2})}{\pi (1-\gamma^{2})^{k}} \right) + \frac{B(\frac{D}{2}, \frac{1}{2})}{2} (1-\gamma^{2})^{(D-1)/2} \right)$$

$$= \frac{r}{S_{1}} \left(\frac{(1-\gamma^{2})^{(D-1)/2}}{\pi} \left(B(\frac{D}{2}, \frac{1}{2}) + \gamma^{2} \sum_{k=1}^{\lfloor \frac{D-2}{2} \rfloor} \frac{B(\frac{D-2k}{2}, \frac{1}{2})}{(1-\gamma^{2})^{k}} \right) - \gamma g(\gamma, D-2) \right)$$

$$(65)$$

3.2 $r > S_1 c$

When $r>S_1c$, the value of $m(\phi_1)$ is no longer constant for all ϕ_1 . Normally this would require the splitting of the bounds of integration for the conditions where $\phi_1<\arccos\frac{S_1}{r}$ and $\phi_1>\arccos\frac{S_1}{r}$. However, there is an alternative method which can avoid additional integration.

Other than the double integral involving x_1 and ϕ_1 , all other terms stay the same. Because we are able to change the order of integration, we can claim the following.

$$P_1(c) = \frac{2r}{S_1 B(\frac{D-1}{2}, \frac{1}{2})} \iint_A \sin^{D-2} \phi_1 dA$$
 (68)

There are now two things to note. First, the integrand only varies with ϕ_1 . Second, the formula for $P_1(c)$ calculated for when $r < S_1c$ took the integral from the curve $S_1c - r\cos(\phi_1)$ to the line S_1c and resulted in ξ . This is shown in figures 1 and 2 as the blue shaded region.

When r exceeds the value of S_1c , the region enclosed by the curve exceeds the domain of interest. Specifically, the region where $x_1 < 0$. One way to correct for this is to realize that the area between the curve and the axis is identical to the area between $x_1 = S_1$ and the same curve translated up by S_1 . This is convenient as we have an expression for the integrals in the region between curves of the form $S_1c - r\cos\phi_1$ and S_1 . Because the integrand is invariant to changes in x_1 , we can guarantee that the integrals evaluate to the same value.

This section feels pretty loosy goosy. Seems like need to be more rigorous

fix figure spacing, maybe put the figs side by side instead

Figure 2:

As such, the result is simply

$$P_1(c|r > S_1c) = \frac{2r}{S_1B(\frac{D-1}{2}, \frac{1}{2})} (\xi(c) - \xi(c+1))$$
(69)

$$= P_1(c|r < S_1c) - P_1(c+1|r < S_1c)$$
(70)

3.3 Numeric Validation of Crossing N=1

To summarize, the probability that a randomly placed line segment will cross at least c hyperplanes given that there is 1 set of parallel hyperplanes with spacing S_1 is as follows

$$P(C \ge c | r, D, N = 1, S) = \begin{cases} 0 & r < S(c - 1) \\ \frac{2r}{S_1 B(\frac{D - 1}{2}, \frac{1}{2})} \xi(c) & S_1(c - 1) < r < S_1 c \\ \frac{2r}{S_1 B(\frac{D - 1}{2}, \frac{1}{2})} (\xi(c) - \xi(c + 1)) & r > S_1 c \end{cases}$$
(71)

$$\xi(c) = \frac{-\gamma}{2} B\left(\frac{D-1}{2}, \frac{1}{2}\right) \left(g(\gamma, D-2) - \gamma(1-\gamma^2)^{(D-1)/2} \sum_{k=1}^{\lfloor \frac{D-2}{2} \rfloor} \frac{B(\frac{D-2k}{2}, \frac{1}{2})}{\pi(1-\gamma^2)^k}\right) + \frac{1}{D-1} (1-\gamma^2)^{(D-1)/2}$$
(72)

$$\gamma = \frac{S_1(c-1)}{r} \tag{73}$$

To compare this against numeric simulation, we must generate many samples with uniform spherical distribution. We use the method proposed by Marsaglia of normalizing rotationally symmetric distribution (such as a D-dimensional gaussian variable).

4 Probability of crossing $N \ge 1$

When there is only a single set of parallel hyperplanes, there is only one way for a needle to make c intersections. The needle would have to go through c hyperplanes in a single direction. When we increase the number of orthogonal sets of hyperplanes then we must deal with the fact that there are now many ways to cross c hyperplanes due to the many combinations of directions available.

For instance, if N=2 and we want to know when C=2, then a valid number of crossings occurs if the needle crosses 2 hyperplanes in x_1 and 0 in x_2 , or 1 hyperplane in each direction, or 0 hyperplanes in x_1 and 2 in x_2 .

For simplicity, we begin with the assumption that $r < \min(S)$ to ensure that the needle can never cross more than 1 hyperplane in any given direction. We will then investigate what happens as r grows in size.

Single Hyperplane Crossing Probabilities — Dimensions 2-10

Figure 3: Comparison of numerically simulated crossing probability and modeled probabilities for $c \in [1, 2, 3, 4]$. A hyperplane spacing of 1 is used. Solutions are shown for dimensions 2 through 10. 10,000 samples were used in the numeric simulation.

4.1 $N > 1, r < \min(S)$

Let $P_{1\cap 2\cap ...\cap n}(C=n|r,D,N,S)=P_{1\cap ...\cap n}$ be the probability that the needle crosses at least 1 hyperplane in each of the directions $x_1,x_2,...,x_n$. Similarly, let $P_{1\cup 2\cup ...\cup n}(C\geq 1|r,D,N,S)=P_{1\cup ...\cup n}(1)$ be the probability that the needle crosses at least 1 hyperplane in direction x_1 or x_2 or so on. This probability is equivalent to the probability that $P(C\geq 1|r,D,N,S)$ as crossing a hyperplane in any direction is sufficient to meet the condition $C\geq 1$. Using the inclusion-exclusion principle, this probability can be written as the following sum.

$$P(C \ge 1 | r, D, N, S) = P_{1 \cup 2 \cup \dots \cup N} = \sum_{k=1}^{N} (-1)^{k+1} \left(\sum_{1 \le i_1 < \dots < i_k \le N} P_{i_1 \cap \dots \cap i_k} \right)$$
(74)

Similarly, for $C \geq c$, we can define the set of events E_c^N which consists of each of the $\binom{N}{c}$ hyperplane crossing combinations. For example, $E_2^3 = \{(1,2),(1,3),(2,3)\}$. If the needle crosses hyperplanes in all of the directions listed in any element of E_c^N , then the crossing condition for the criteria $C \geq c$ has been met.

$$P(C \ge c | r, D, N, S) = P_{(\cap E_c^N[1]) \cup (\cap E_c^N[2]) \cup \dots \cup (\cap E_c^N[\binom{N}{c}])} = \sum_{k=1}^{N} (-1)^{k+1} \left(\sum_{1 \le i_1 < \dots < i_k \le N} P_{E_c^N[i_1] \cap \dots \cap E_c^N[i_k]} \right)$$
(75)

This expression requires an equation for the probability of having at least 1 crossing in multiple hyperplane directions. **Proposition 4.** For any given set of hyperplane directions, H, the probability that a needle would cross at least 1 hyperplane in each of the specified directions can be represented as follows.

$$P_{H_1 \cap \dots \cap H_h} = \frac{r^h \Gamma(\frac{D}{2})}{(\prod_{i=1}^h S_{H,i}) \pi^{h/2} \Gamma(\frac{D+h}{2})}$$
(76)

Proof. The set of of hyperplane directions, H, with spacings S_H is a subset of all the hyperplanes that grid the space. Without loss of generalization, the axes can be relabeled to align H_1 with x_1 , H_2 with x_2 and so on. All other hyperplanes that are not included in the set H can be ignored as any intersections with them are irrelevant.

The necessary conditions for crossings to occur in each direction specified in H is as follows

$$S_1 \le x_1 + r\cos\phi_1 \tag{77}$$

$$S_2 \le x_2 + r\sin\phi_1\cos\phi_2 \tag{78}$$

$$\vdots (79)$$

$$S_{h-1} \le x_{h-1} + r \sin \phi_1 \sin \phi_2 \dots \sin \phi_{h-2} \cos \phi_{h-1}$$
(80)

$$S_h \le x_h + \begin{cases} r \sin \phi_1 \dots \sin \phi_{h-1} \cos \phi_h & h < D \\ r \sin \phi_1 \dots \sin \phi_{h-2} \sin \phi_{h-1} & h = D \end{cases}$$

$$(81)$$

These conditions, along with the domain of $x_i \forall i \in 1, ..., h$, define the bounds of the volume where the needle crosses a hyperplane in each direction H.

$$S_1 \ge x_1 \ge m_1(\phi_1) = \max\{0, S_1 - r\cos\phi_1\}$$
(82)

$$S_2 \ge x_2 \ge m_2(\phi_2) = \max\{0, S_2 - r\sin\phi_1\cos\phi_2\}$$
(83)

$$S_{h-1} \ge x_{h-1} \ge m_{h-1}(\phi_{h-1}) = \max\{0, S_{h-1} - r\sin\phi_1 \dots \sin\phi_{h-2}\cos\phi_{h-1}\}$$
(85)

$$S_h \ge x_h \ge m_h(\phi_h) = \max \left\{ 0, S_h - \begin{cases} r \sin \phi_1 \dots \sin \phi_{h-1} \cos \phi_h & h < D \\ r \sin \phi_1 \dots \sin \phi_{h-2} \sin \phi_{h-1} & h = D \end{cases} \right\}$$
(86)

Starting with 15, the crossing conditions above are encoded into the bounds of integration. Using [REF], the integrals with respect to the spatial dimensions in dimensions greater than h are reduced to a single coefficient.

turn the "any integration order" thing into a prop

$$P_{H_1 \cap \dots \cap H_h} = \frac{2^D r^{D-1}}{A_{D-1} \prod_{i=1}^h S_i} \int \dots \int_{\phi} \int_{m_h(\phi_h)}^{S_h} \dots \int_{m_1(\phi_1)}^{S_1} \prod_{i=1}^{D-1} \sin^{D-1-j} \phi_j dx_1 \dots dx_h d\phi_1 \dots d\phi_{D-1}$$
(87)

The lower bounds of integration for the remaining spatial dimensions functions $m_i(\phi_i)$

5 Headings: first level

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula. See Section 5.

5.1 Headings: second level

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

$$\xi_{ij}(t) = P(x_t = i, x_{t+1} = j | y, v, w; \theta) = \frac{\alpha_i(t) a_{ij}^{w_t} \beta_j(t+1) b_j^{v_{t+1}}(y_{t+1})}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i(t) a_{ij}^{w_t} \beta_j(t+1) b_j^{v_{t+1}}(y_{t+1})}$$
(88)

Figure 4: Sample figure caption.

5.1.1 Headings: third level

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Paragraph Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

6 Examples of citations, figures, tables, references

6.1 Citations

Citations use natbib. The documentation may be found at

http://mirrors.ctan.org/macros/latex/contrib/natbib/natnotes.pdf

Here is an example usage of the two main commands (citet and citep): Some people thought a thing [Kour and Saabne, 2014a, Hadash et al., 2018] but other people thought something else [Kour and Saabne, 2014b]. Many people have speculated that if we knew exactly why Kour and Saabne [2014b] thought this...

6.2 Figures

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi. See Figure 4. Here is how you add footnotes. ¹ Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

6.3 Tables

See awesome Table 1.

The documentation for booktabs ('Publication quality tables in LaTeX') is available from:

¹Sample of the first footnote.

Table 1: Sample table title

	Part	
Name	Description	Size (μm)
Dendrite Axon Soma	Input terminal Output terminal Cell body	$\begin{array}{c} \sim \! 100 \\ \sim \! 10 \\ \text{up to } 10^6 \end{array}$

https://www.ctan.org/pkg/booktabs

6.4 Lists

- Lorem ipsum dolor sit amet
- consectetur adipiscing elit.
- Aliquam dignissim blandit est, in dictum tortor gravida eget. In ac rutrum magna.

References

George Kour and Raid Saabne. Real-time segmentation of on-line handwritten arabic script. In *Frontiers in Handwriting Recognition (ICFHR), 2014 14th International Conference on*, pages 417–422. IEEE, 2014a.

Guy Hadash, Einat Kermany, Boaz Carmeli, Ofer Lavi, George Kour, and Alon Jacovi. Estimate and replace: A novel approach to integrating deep neural networks with existing applications. *arXiv preprint arXiv:1804.09028*, 2018.

George Kour and Raid Saabne. Fast classification of handwritten on-line arabic characters. In *Soft Computing and Pattern Recognition (SoCPaR)*, 2014 6th International Conference of, pages 312–318. IEEE, 2014b. doi:10.1109/SOCPAR.2014.7008025.