The Inverted Pendulum

Calculus skills in this example:

- · Derivatives
- · Integrals
- · Fundamental theorem
- · Taylor Series
- . Tangent Line
- . Linear Approximation
- · Numerical Methods
- . Polar Coorlinates

The Inverted Pendulum Y Y Y Y Y FAY 1 FAX Conservation of linear momentum $\Sigma f_{x} = ma_{x}$ $\Sigma f_{y} = ma_{y}$ $F_{Ax} = ma_{x}$ $F_{Ay} - W = ma_{y}$ $\Gamma f_{Ax} = 0$ $\Gamma f_{Ax} = ma_{x}$ $\Gamma f_{Ax} = 0$ $\Gamma f_{Ax} = 0$ $\Gamma f_{Ax} = 0$ $\Gamma f_{Ax} = 0$ $\Gamma f_{Ax} = 0$ Conservation of Angular Momentum

2 TA = IX -Wb = IK $-W \frac{L}{Z} cas \phi = I \frac{d^{2} \phi}{dt^{2}}$ Loso = 1/L/z 7b= = 2000

Strategy:

The following relationship is the same for both translation and rotation!

Scott (Acceleration) d/dt

 $\Theta = \Theta(t)$ $\omega = d\Theta/\Delta t$ $\Delta = d^2\Theta/\Delta t^2 = -\frac{W}{I} = \cos[\Theta(t)]$

We know this From Force/torque analysis on previous pege. Integrate twice to obtain position as a Function of time.

For a solid rad, with axis of rotation at the end, W L COS & I = 1 m L 2 Weight: W=mg $-\frac{d^2\theta}{dt^2} = -\frac{mq}{s} \frac{k}{z} \cos\theta = -\frac{q}{2} \frac{3}{1} \frac{1}{z} \cos\theta$ note: the length matters, but not the weight. This is surprising $\frac{d^2\theta}{dt^2} = -\frac{3}{2} \frac{1}{L} \cos\theta$ $\int \frac{d^2\theta}{dt^2} dt = \int -\frac{3}{2} \int \cos\theta dt = \frac{3}{\sin^2\theta} \cos\theta$ An unknown trapped the first decode in the cost in the Tcan we solve this? $\frac{d\theta}{dt} = \omega(t) = -\frac{3}{2} \cdot \frac{9}{2} \cdot \int \sin \theta \, dt$ if we know $\theta(t)$ $\int \frac{d\theta}{dt} dt = \left[\left[-\frac{3}{2} \frac{9}{L} \right] \sin \theta dt \right] dt$ $\Theta(t) = \left[-\frac{3}{2} \cdot \frac{9}{L} \right] \sin \theta dt dt$ Without differential equations, we're stuck!

Could we integrate numerically?

$$\frac{d^2\theta}{dt^2} = \kappa(t) = -\frac{W}{H} \frac{C}{Z} \cos \left[\frac{\Theta(t)}{2} \right] \frac{1}{\Theta(t=0)} = \frac{\Theta_0}{Q_0}$$
 $\frac{dt^2}{dt^2} = \kappa(t) = -\frac{W}{H} \frac{C}{Z} \cos \left[\frac{\Theta(t)}{Q_0} \right] \frac{1}{\Theta(t=0)} = \frac{\Theta_0}{Q_0}$

Consider a Taylor Series:

 $\frac{d^2\theta}{dt^2} = \frac{1}{Q_0} \frac{1}{Q_0} \cos \frac{$

with
$$\frac{1}{2}$$
 with $\frac{1}{2}$ dw $\frac{1}{2}$

Head over to my Git Hub to
Play with the code For yourself!

https://github.com/Dr-F-Research