Data-Driven Marketing Analysis with Python

架空の小売店の課題定義とビジネス背景

毎週金曜日に土曜日から翌金曜日までの売上予測をしたい

6 Jun	MON	TUE	WED	THU	FRI	2025 SAT
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	1	2	3	4	5

解決に向けたフローチャート

① 過去のデータから法則を理解した頭脳を作る

②未来の予測データを用意する

③ ①の頭脳に②を見せてさらに予測させる

①過去のデータから法則を理解した頭脳を作る

用意できたデータ:3店舗の1年半ほどの売上データ

12070000
1397000.0
6743300.0
640300.0
838800.0
4728000.0

年月日 → 2024年1月1日 ~ 2025年6月26日

店舗→東京、横浜、さいたま

変数(列)が少なすぎるので追加する

人間の意思決定は**カレンダーと 天候にかなり左右される**と仮定

特徴量を追加

	年月日	店舗	売上	祝日フラグ	祝日名	lag_1	前日比	前月同日売上	前日祝日	翌日祝日	連休フラグ	月初フラグ	月末フラグ
0	2024-01-01	さいたま	1397000.0	1	元日	NaN	NaN	NaN	0.0	0.0	0	1	0
1	2024-01-02	さいたま	838800.0	0		397000.0	-0.399571	NaN	1.0	0.0	0	0	0
2	2024-01-03	さいたま	629000.0	0		838800.0	-0.250119	NaN	0.0	0.0	0	0	0
3	2024-01-04	さいたま	2067100.0	0		629000.0	2.286328	NaN	0.0	0.0	0	0	0
4	2024-01-05	さいたま	894000.0	0		2067100.0	-0.567510	NaN	0.0	0.0	0	0	0

年月日を加工し7個の特徴量を作成

売上を元に3個の特徴量を作成

気象庁から過去の天候データを取得

前ページのデータに結合

LightGBMで機械学習モデルを作る

店舗×売上×カレンダー×天候

1年半分の法則を 理解した頭脳

②未来の予測データを用意する

6月28日以降の天気予報を取得する

オープンソースの天気予報APIから取得

平均気温、日照時間、平均風速は存在しないため、計算して作成

6月28日以降の天気予報の可視化

6月28日以降のカレンダーと天気予報と結合

6月28 ~ 7月4日のカレンダー

★ 6月28~7月4日の天気予報

③ ①の頭脳に②を見せてさらに予測させる

6月28日以降の売上予測

店舗× カレンダー× 天気予報

売上予測

	年月日	店舗	売上	曜日
0	2025-06-28	さいたま	1.853241e+06	土曜日
1	2025-06-28	東京	4.355993e+06	土曜日
2	2025-06-28	横浜	9.653012e+05	土曜日
3	2025-06-29	さいたま	1.371005e+06	日曜日
4	2025-06-29	東京	4.099978e+06	日曜日
5	2025-06-29	横浜	1.001737e+06	日曜日
6	2025-06-30	さいたま	1.533408e+06	月曜日
7	2025-06-30	東京	4.668431e+06	月曜日
8	2025-06-30	横浜	8.934429e+05	月曜日
9	2025-07-01	さいたま	1.321039e+06	火曜日

6月28日以降の売上予測の可視化

この後、リアルデータで行いたいこと (売上アップ)

サンプルデータでは**店舗と売上のデータしか無かった**ので**商品名と売上個数**を用意し再予測

天候×店舗ごとの売れる商品予想 TOP10

- 入口に「本日のおすすめ品」としてポスター
- ■陳列を変更
- ■在庫不足を発注
- ■併売パターンを抽出し、陳列に反映
- #今日のおすすめ10選 をSNSで自動投稿

悪天候(雨)の場合

- ■ホット商品の割引を自動反映
- 会員アプリにプッシュ通知で「本日雨だからコーヒー20%OFF!」を配信など

That's a Wrap