Boolean Logic

Building a Modern Computer From First Principles
www.nand2tetris.org

Boolean algebra

Some elementary Boolean functions:

- \blacksquare Not(x)
- \blacksquare And(x,y)
- Or(x,y)
- \blacksquare Nand(x,y)

x	Not(x)
0	1
1	0

x	У	And(x,y)
0	0	0
0	1	0
1	0	0
1	1	1

x	У	Or(x,y)
0	0	0
0	1	1
1	0	1
1	1	1

x	У	Nand(x,y)
0	0	1
0	1	1
1	0	1
1	1	0

Boolean functions:

x	y	Z	$\int f(x)$	$,y,z)=(x+y)\overline{z}$
0	0	0	0	
0	0	1	0	■ A Boolean f
0	1	1	0	functional e
1	0	0	1	■ <u>Important</u>
1	0	1	0	Every Boole
1	1	0	1	And, Or, N
1	1	1	0	

- A Boolean function can be expressed using a functional expression or a truth table expression
- Important observation: Every Boolean function can be expressed using And, Or, Not.

All Boolean functions of 2 variables

Function	х	0	0	1	1
runction	y	0	1	0	1
Constant 0	0	0	0	0	0
And	$x \cdot y$	0	0	0	1
x And Not y	$x \cdot \overline{y}$	0	0	1	0
x	x	0	0	1	1
Not x And y	$\overline{x} \cdot y$	0	1	0	0
y	y	0	1	0	1
Xor	$x \cdot \overline{y} + \overline{x} \cdot y$	0	1	1	0
Or	x + y	0	1	1	1
Nor	$\overline{x+y}$	1	0	0	0
Equivalence	$x \cdot y + \overline{x} \cdot \overline{y}$	1	0	0	1
Not y	\overline{y}	1	0	1	0
If y then x	$x + \overline{y}$	1	0	1	1
Not x	\overline{x}	1	1	0	0
If x then y	$\overline{x} + y$	1	1	0	1
Nand	$\overline{x \cdot y}$	1	1	1	0
Constant 1	1	1	1	1	1

Boolean algebra

Given: Nand(a,b), false

We can build:

- Not(a) = Nand(a,a)
- true = Not(false)
- And(a,b) = Not(Nand(a,b))
- Or(a,b) = Not(And(Not(a),Not(b)))
- Xor(a,b) = Or(And(a,Not(b)),And(Not(a),b)))
- Etc.

George Boole, 1815-1864 ("A Calculus of Logic")

Gate logic

- Gate logic a gate architecture designed to implement a Boolean function
- Elementary gates:

■ Composite gates:

Gate interface

a _____ out

If a=b=c=1 then out=1 else out=0

Gate implementation

Important distinction: Interface (what) VS implementation (how).

Gate logic

Interface

а	b	out
0	0	0
0	1	1
1	0	1
1	1	0

Claude Shannon, 1916-2001

("Symbolic Analysis of Relay and Switching Circuits")

Implementation

Xor(a,b) = Or(And(a,Not(b)),And(Not(a),b)))

Circuit implementations

From a computer science perspective, physical realizations of logic gates are irrelevant.

Project 1: elementary logic gates

Given: Nand(a,b), false

Build:

- Not(a) = ...
- true = ...
- \blacksquare And(a,b) = ...
- \blacksquare Or(a,b) = ...
- Mux(a,b,sel) = ...
- Etc. 12 gates altogether.

a	b	Nand(a,b)
0	0	1
0	1	1
1	0	1
1	1	0

Q: Why these particular 12 gates?

A: Since ...

- They are commonly used gates
- They provide all the basic building blocks needed to build our computer.

Multiplexer

a	b	sel	out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

sel	out
0	a
1	b

Proposed Implementation: based on Not, And, Or gates.

Example: Building an And gate

And.cmp

			L
a	b	out	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Contract:

When running your .hdl on our .tst, your .out should be the same as our .cmp.

And.hdl

```
CHIP And
{
    IN a, b;
    OUT out;
    // implementation missing
}
```

And.tst

```
load And.hdl,
output-file And.out,
compare-to And.cmp,
output-list a b out;
set a 0,set b 0,eval,output;
set a 0,set b 1,eval,output;
set a 1,set b 0,eval,output;
set a 1, set b 1, eval, output;
```



```
CHIP And
{ IN a, b;
OUT out;
// implementation missing
}
```



```
CHIP And
{ IN a, b;
OUT out;
// implementation missing
}
```

Building an And gate


```
CHIP And
{ IN a, b;
OUT out;
// implementation missing
}
```

Building an And gate

Hardware simulator (demonstrating Xor gate construction)

Hardware simulator

Hardware simulator

Project materials: www.nand2tetris.org

Project 1 tips

- Read the Introduction + Chapter 1 of the book
- Download the book's software suite
- Go through the hardware simulator tutorial
- Do Project O (optional)
- You're in business.

Perspective

- Each Boolean function has a canonical representation
- The canonical representation is expressed in terms of And, Not, Or
- And, Not, Or can be expressed in terms of Nand alone
- Ergo, every Boolean function can be realized by a standard PLD consisting of Nand gates only
- Mass production
- Universal building blocks, unique topology
- Gates, neurons, atoms, ...

End notes: Canonical representation

Whodunit story: Each suspect may or may not have an alibi (a), a motivation to commit the crime (m), and a relationship to the weapon found in the scene of the crime (w). The police decides to focus attention only on suspects for whom the proposition Not(a) And $(m \ Or \ w)$ is true.

<u>Truth table of the "suspect" function</u> $s(a, m, w) = \overline{a} \cdot (m + w)$

а	m	w	minterm	suspect(a,m,w)= not(a) and (m or w)
0	0	0	$m_0 = \overline{a} \overline{m} \overline{w}$	0
0	0	1	$m_1 = \overline{a} \overline{m} w$	1
0	1	0	$m_2 = \overline{a}m\overline{w}$	1
0	1	1	$m_3 = \overline{a}mw$	1
1	0	0	$m_4 = a \overline{m} \overline{w}$	0
1	0	1	$m_5 = a\overline{m}w$	0
1	1	0	$m_6 = am\overline{w}$	0
1	1	1	$m_7 = a m w$	0

Canonical form: $s(a, m, w) = \overline{a} \overline{m} w + \overline{a} m \overline{w} + \overline{a} m w$

End notes: Canonical representation (cont.)

$$s(a, m, w) = \overline{a} \cdot (m + w)$$

$$s(a, m, w) = \overline{a} \overline{m} w + \overline{a} m \overline{w} + \overline{a} m w$$

End notes: Programmable Logic Device for 3-way functions

PLD implementation of $f(a,b,c)=a \overline{b} c + \overline{a} b \overline{c}$

(the on/off states of the fuses determine which gates participate in the computation)

End notes: universal building blocks, unique topology

