Introducción al Análisis Matemático (BORRADOR)

Índice general

1 Funciones medibles	2
1.1 Introducción	2
1.2 Funciones medibles sobre una σ -álgebra	2
1.3 Sucesiones de funciones medibles	4
1.4 Funciones simples	5
1.5 Partes positiva y negativa	6
1.6 Propiedades verdaderas en casi todo punto	6
1.6 Propiedades verdaderas en casi todo punto	7
1.8 Función singular de Cantor	9
2 Integral de Lebesgue	10
2.1 Definición y propiedades inmediatas	10
2.2 Integral de funciones simples	11
2.3 Paso al límite bajo el signo de integral	14
2.4 Integrales de funciones de distinto signo	16
2.5 Convergencia Mayorada	17
2.6 La integral y los conjuntos de medida nula	18
2.7 Invariancia bajo traslaciones	19
2.8 La integral como función de conjunto	20
2.9 Comparación con la integral de Ŕiemann	21
2.10 Integración parcial: Teorema de Fubini	22
Bibliografía	27

1 Funciones medibles

1.1 Introducción

Definición 1.1.1 Definimos la recta extendida $\overline{\mathbb{R}}$ como el conjunto $\mathbb{R} \cup \{\infty, -\infty\}$. Diremos que $H \subset \overline{\mathbb{R}}$ es boreliano de la recta extendida si $H - \{-\infty, \infty\} \in \mathscr{B}(\mathbb{R})$.

Si $f:\mathbb{R}^d o \overline{\mathbb{R}}$, y $a \in \mathbb{R}$, definimos

$${f > a} = {x \in \mathbb{R}^n : f(x) > a} = f^{-1}((a, \infty]).$$

Análogamente se definen los conjuntos

$$\{f \ge a\}, \{f < a\}, \{f \le a\},$$

que corresponden, respectivamente, a las desigualdades $f(x) \geq a, f(x) < a$ y $f(x) \leq a$. El símbolo $\{f = a\}$ indica el conjunto formado por todos los puntos donde f toma el valor a.

Definición 1.1.2 Diremos que $f:\mathbb{R}^d \to \overline{\mathbb{R}}$ es una función medible si $\{f \geq a\}$ es un subconjunto medible del espacio \mathbb{R}^d es decir, si para cada número real a, se verifica que $f^{-1}([a,\infty]) \in \mathscr{M}$.

Teorema 1.1.1 Si H es boreliano de $\mathbb R$ y f es medible, entonces $f^{-1}(H)$ es medible.

$$\begin{array}{l} \textit{Dem. Sea } \mathscr{M}^{'} = \{H: f^{-1}(H) \text{ es medible}\}. \\ \mathscr{M}^{'} \text{ es } \sigma\text{-\'algebra y } \mathscr{I} \subset \mathscr{M}^{'}. \text{ Por lo tanto, } \mathscr{B}(\mathbb{R}^{n}) \subset \mathscr{M}. \end{array} \qquad \square$$

Teorema 1.1.2 Si $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ es medible si y sólo si $f^{-1}(H) \in \mathscr{M}$ cada vez que H es boreliano de $\overline{\mathbb{R}}$.

Dem. ←) Inmediata a partir de la definición de función medible. ⇒) Se tiene que

$$\{f=+\infty\}=\bigcap_{k=1}^\infty\{f\geq k\}\quad \mathbf{y}\quad \{f=-\infty\}=\bigcap_{k=1}^\infty\{f\leq -k\}.$$

Si H es boreliano de $\overline{\mathbb{R}}$, supongamos que $H=H^{'}\cup\{+\infty\}$ y $H^{'}$ es conjunto medible Borel de \mathbb{R} . Luego, $f^{-1}(H)=f^{-1}(H^{'})\cup\{f=+\infty\}$ es medible.

1.2 Funciones medibles sobre una σ -álgebra

Definición 1.2.3 Si Σ es una σ -álgebra de \mathbb{R}^n , diremos que $f:\mathbb{R}^n\to\overline{\mathbb{R}}$ es Σ medible si

$$\{f > a\} \in \Sigma \quad \forall a \in \mathbb{R}.$$

Proposición 1.2.1 $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ es Σ -medible si y sólo si $f^{-1}(H) \in \Sigma$ cuando Hes boreliano de $\overline{\mathbb{R}}$.

Cuando $\Sigma = \mathcal{M}$, decimos que f es medible.

Cuando $\Sigma = \mathscr{B}$, llamamos a f medible Borel o función boreliana.

Ejercicio 1.2.1 Si f es semicontinua inferiormente, entonces f es medible.

Ahora, estudiaremos $g \circ f$ cuando $\mathbb{R}^n \xrightarrow{f} \overline{\mathbb{R}} \xrightarrow{g} \overline{\mathbb{R}}$.

Definición 1.2.4 Diremos que $g: \overline{\mathbb{R}} \to \overline{\mathbb{R}}$ es boreliana si $g^{-1}(M)$ es boreliano de $\overline{\mathbb{R}}$ cuando M lo es.

Luego, si $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ es medible y $g:\overline{\mathbb{R}} \to \overline{\mathbb{R}}$ es boreliana, entonces $g\circ f$ es

También, se tiene que si f es medible entonces |f|, $|f|^2$, $\log |f|$ y e^f son medibles. Si f y g son medibles, entonces $\{f < g\}$ es medible pues

$$\{f < g\} = \bigcup_{q \in \mathbb{Q}} \{f < q\} \cap \{g > q\}.$$

Teorema 1.2.3 Si f y g son medibles con respecto a Σ y finitas y si $c \in \mathbb{R}$, entonces f+g, cf y fg son medibles.

Dem. Supondremos que todas las funciones son finitas.

Veamos que

$$\{f+g>a\}=\bigcup_{r\in\mathbb{Q}}\{f>r\}\cap\{g>a-r\}.$$

Si f(x) + g(x) > a, entonces existe $r \in \mathbb{Q}$ tal que

$$f(x) > r > a - g(x)$$
, es decir $f(x) > r$ y $g(x) > a - r$.

Recíprocamente, si para algún $r \in \mathbb{Q}$ se tiene que f(x) > r y g(x) > a - r, luego f(x)+g(x)>a. Si $c\in\mathbb{R}$, entonces

$$\{cf > a\} = \begin{cases} \{f > \frac{a}{c}\} & c > 0\\ \{f < \frac{a}{c}\} & c < 0\\ \varnothing & \mathbf{\acute{o}} \ \mathbb{R}^n & c = 0. \end{cases}$$

Ahora, como

$$fg = \frac{1}{4} \left[(f+g)^2 - (f-g)^2 \right],$$

luego fg es medible con respecto a Σ .

Para estudiar el cociente entre funciones medibles, denotamos por $rac{1}{f}$ la función que toma el valor $\frac{1}{f(x)}$ si $f(x) \neq 0$ y el valor 0 si f(x) = 0.

Ahora, como

$$\left\{\frac{1}{f} > a\right\} = \left\{ \begin{array}{ll} \{f > 0\} \cap \{f < \frac{1}{a}\} & a > 0 \\ \{f > 0\} \cup (\{f < \frac{1}{a}\} \cap \{f < 0\}) \cup \{f = 0\} & a < 0, \end{array} \right.$$

a partir de que f es medible se tiene que 1/f es medible.

1.3 Sucesiones de funciones medibles

Proposición 1.3.2 Si $\{f_k\}$ es una sucesión de funciones medibles con respecto a Σ , entonces

$$g(x) = \inf_k f_k(x) \quad \text{y} \quad h(x) = \sup_k f_k(x)$$

son Σ -medibles.

La demostración se deduce de las fórmulas

$$\{h>a\} = \bigcup_{k=1}^{\infty} \{f_k>a\} \quad \mathbf{y} \quad \{g< a\} = \bigcup_{k=1}^{\infty} \{f_k< a\}.$$

Proposición 1.3.3 Si $\{f_k\}$ es una sucesión de funciones Σ -medibles, entonces

$$g(x) = \liminf_{k \to \infty} f_k(x) \quad \text{y} \quad h(x) = \limsup_{k \to \infty} f_k(x)$$

son medibles con respecto a Σ .

La prueba resulta de aplicar la Proposición 1.3.2 a las relaciones

$$g(x) = \sup_{j} \inf_{k \geq j} f_k(x) \quad \text{y} \quad h(x) = \inf_{j} \sup_{k \geq j} f_k(x).$$

Corolario 1.3.1 Si $f_k(x) \to f(x)$ y $\{f_k\}$ es una sucesión de funciones Σ -medibles, entonces f es medible con respecto a Σ .

A continuación, completamos la demostración del Teorema 1.2.3 que se relizó suponiendo que tanto f como g son finitas. Para evitar esa restricción, ahora consideramos la sucesión de funciones $\varphi_k:\overline{\mathbb{R}}\to\overline{\mathbb{R}}$ definidas por

$$\varphi_k(t) = \left\{ \begin{array}{cc} t & \mathrm{Si} \; |t| \le k \\ k & \mathrm{Si} \; t > k \\ -k & \mathrm{Si} \; t < -k. \end{array} \right.$$

Cada φ_k es una función boreliana pues la restricción de φ a $\mathbb R$ es continua. Además, para cada $t \in \overline{\mathbb R}$, se tiene que $\varphi_k \to t$ cuando $k \to \infty$. Entonces, las funciones

$$f_k = \varphi_k \circ f \quad \mathbf{y} \quad g_k = \varphi_k \circ g,$$

son medibles con respecto a Σ , finitas y convergen puntualmente a f y g respectivamente, cuando $k \to \infty$. Luego, las funciones

$$f+g=\lim_{k\to\infty}(f_k+g_k)$$
 y $fg=\lim_{k\to\infty}f_kg_k$

resultan medibles a partir de la aplicación de la Proposición 1.3.3.

1.4 Funciones simples

Definimos la función característica χ_E de un conjunto $E \subset \mathbb{R}^n$ mediante

$$\chi_E(x) = \begin{cases} 1 & \text{si } x \in E \\ 0 & \text{si } x \notin E. \end{cases}$$

Se tiene la siguiente propiedad

• χ_E es medible si y sólo si E es medible.

Definición 1.4.5 Una función medible y finita $\varphi:\mathbb{R}^n\to\mathbb{R}$ se llama *simple* si el conjunto de todos sus valores es finito, es decir, si φ es medible y la imagen $\varphi(\mathbb{R}^n)$ es un subconjunto finito de \mathbb{R} .

A partir de la Definición 1.4.5, se tiene que si φ, ψ son funciones simples y $c \in \mathbb{R}$, entonces $\varphi + \psi$, $c\varphi$, $\varphi\psi$ son simples.

Si
$$\varphi(\mathbb{R}^n)=\{\alpha_1,\ldots,\alpha_N\}$$
, entonces $E_i=\varphi^{-1}(\{\alpha_i\})$ son medibles y

$$\varphi = \sum_{i=1}^{N} \alpha_i \chi_{E_i}.$$

Las funciones simples desempeñan un papel muy importante en la teoría de integración en virtud del siguiente teorema.

Teorema 1.4.4 Si $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ es una función medible no negativa, entonces existe una sucesión $\{\varphi_k\}$ de funciones simples tal que

$$\varphi_1 \leq \varphi_2 \leq \varphi_3 \leq \dots$$
 y $f(x) = \lim_{k \to \infty} \varphi_k(x)$

en cada punto $x \in \mathbb{R}^n$.

Dem. Para $k \in \mathbb{N}$, dividimos [0, k) en $k2^k$ intervalos disjuntos

$$\left[\frac{i-1}{2^k}, \frac{i}{2^k}\right), i = 1, 2, \dots, k2^k.$$

Definimos $g_k:\overline{\mathbb{R}}\to\overline{\mathbb{R}}$ por

$$g_k(x) = \begin{cases} & \frac{i-1}{2^k} & \text{si } 0 \le t \le k, & (i-1)/2^k \le t < i/2^k, \\ & k & \text{si } t \ge k \\ & 0 & \text{si } t < 0. \end{cases}$$

Las funciones g_k son borelianas, no negativas y verifican

$$0 \leq g_1 \leq g_2 \leq \dots, \ \ \mathbf{y} \quad \lim_{k \to \infty} g_k(t) = t, \quad \text{en } [0, +\infty].$$

Las funciones $\varphi_k = g_k \circ f$ son simples y verifican el teorema.

Observacion 1.4.1

1. Si f es medible con respecto a una σ -álgebra Σ , entonces las funciones φ_k del Teorema 1.4.4 son también medibles con respecto a Σ .

- 2. Multiplicando a las φ_k por $\chi_{B(0,k)}$ se obtiene una sucesión de funciones ψ_k que verifican las hipótesis del Teorema 1.4.4 y que tienen soporte compacto.
- 3. Si f es acotada y positiva, la convergencia es uniforme.

1.5 Partes positiva y negativa

Si f es medible, también lo son

$$f^+ = \sup\{0, f\}$$
 y $f^- = \sup\{0, -f\}$

llamadas parte positiva y parte negativa de f.

Se verifica que

$$f = f^+ - f^-$$
 y $|f| = f^+ + f^-$.

Teorema 1.5.5 Si f es medible y $f=f_1-f_2$, con $f_i\geq 0$ para i=1,2, entonces $f^+\leq f_1$ y $f^-\leq f_2$.

Dem. Se tiene que
$$f \le f_1$$
 de donde $f^+ = \sup\{f,0\} \le f_1$. Además, $-f \le f_2$. Luego, $f^- \le f_2$

Si f es medible, aplicando el Teorema 1.4.4 a f^+ y f^- , existen funciones simples φ_k, ψ_k tales que $\varphi_k \to f^+$ y $\psi_k \to f^-$. Luego, $\varphi_k - \psi_k \to f$, y además, $|\varphi_k - \psi_k| \le \varphi_k + \psi_k \le f^+ + f^- = |f|$.

1.6 Propiedades verdaderas en casi todo punto

Si P es una propiedad sobre puntos de \mathbb{R}^n (P(x)) diremos que P es verdadera en casi todo punto si P(x) es verdadera excepto, posiblemente, en un conjunto de medida cero.

Así, por ejemplo:

- 1. Casi todo número es irracional.
- 2. Si f y g son funciones definidas sobre todo \mathbb{R}^n , diremos que f=g en casi todo punto si f(x)=g(x) para todo $x\notin E$ siendo la m(E)=0.

Teorema 1.6.6 Si h = 0 en c.t.p., entonces h es medible.

Dem. Sea
$$Z=\{h\neq 0\}.$$
 Si $a\geq 0$, entonces $\{h>a\}\subset Z$ y por tanto $m(\{h>a\})=0.$ Luego, $\{h>a\}\in \mathcal{M}.$

Si a<0, se tiene que $\{h\leq a\}\subset Z$. Ahora, como $\{h>a\}=\mathbb{R}^n-\{h\leq a\}$, entonces $\{h>a\}\in \mathscr{M}$ por ser complemento de un conjunto medible.

Corolario 1.6.2 Si f es medible y f = g en c.t.p., entonces g es medible.

Será frecuente decir que $f_k(x) \to f(x)$ en c.t.p.

Teorema 1.6.7 Si $f_k \to f$ en c.t.p. y las funciones f_k son medibles, entonces f es medible.

Dem. La función
$$g=\liminf_{k\to\infty}f_k$$
 es medible y $g=f$ en c.t.p. $\hfill\Box$

Si f y g son medibles, definimos $f\sim g$ si f=g en c.t.p. Entonces, \sim es una relación de equivalencia. Además, si $f_1\sim f_2$ y $g_1\sim g_2$, entonces $f_1+g_1\sim f_2+g_2$ y $f_1g_1\sim f_2g_2$. Si f=g en c.t.p., entonces f es esencialmente igual a g.

1.7 Convergencia en medida

Si para cada $x \in \mathbb{R}^n$ tenemos una propiedad, enunciado o afirmación P(x) que puede ser tildada de verdadera o falsa, escribiremos E(P) para denotar $E \cap \{x : P(x)\}$.

Definición 1.7.6 Sean f_k y f medibles sobre E. Se dice que f_k converge en medida a f si $\forall \delta > 0$ se tiene que

$$m(E(|f_k - f| \ge \delta)) \xrightarrow[k \to \infty]{} 0.$$

Notaremos: $f_k \xrightarrow{m} f$.

Teorema 1.7.8 Si $f_k \xrightarrow{m} f$ y $f_k \xrightarrow{m} g$, entonces f = g en c.t.p.

Dem. A partir de que

$$\{|f-g| \ge \delta\} \subset \left\{|f-f_k| \ge \frac{\delta}{2}\right\} \cup \left\{|f_k-g| \ge \frac{\delta}{2}\right\},$$

se tiene que

$$m\left(E\left(|f-g| \ge \delta\right)\right) \le$$

$$m\left(E\left(|f-f_k| \ge \frac{\delta}{2}\right)\right) + m\left(E\left(|f_k-g| \ge \frac{\delta}{2}\right)\right) \xrightarrow[k \to \infty]{} 0.$$

Luego,

$$m(\lbrace f \neq g \rbrace) = m\left(\bigcup_{k=1}^{\infty} \left\{ |f - g| \ge \frac{1}{k} \right\} \right) = 0.$$

Así, f = g en c.t.p.

Teorema 1.7.9 Si $m(E) < \infty$ y $f_k \to f$ en c.t.p. de E, entonces $f_k \xrightarrow{m} f$.

Dem. Sea Z el conjunto de puntos donde f_k no tiende a f. Entonces m(Z)=0. Dado $\delta>0$, definimos

$$B_j = \bigcup_{k=j}^{\infty} E(|f_k - f| \ge \delta).$$

y se tiene que $\bigcap\limits_{j=1}^{\infty}B_{j}\subset Z.$ Luego, $m(B_{j})\rightarrow 0$ cuando $j\rightarrow \infty.$

Como si $k \geq j$, se tiene que $E(|f_k - f| \geq \delta) \subset B_j$. Luego $m(E(|f_k - f| \geq \delta)) \to 0$ cuando $k \to \infty$ y por lo tanto $f_k \xrightarrow{m} f$.

Observacion 1.7.2

- 1. Si $m(E)=+\infty$, el Teorema 1.7.9 no es cierto. Por ejemplo, $f_k=\chi_{B(0,k)}\to 1$ en c.t.p., mientras que $m(E(|f_k-1|=1))=m(\mathbb{R}^n-B(0,k))=+\infty$ $\forall k\in\mathbb{N}.$
- 2. La recíproca del Teorema 1.7.9 no es cierta. Basta tomar $f_{k_n}=\chi_{\left[\frac{k}{2^n},\frac{k+1}{2^n}\right)}$ con $k = 0, 1, \dots, 2^{n-1}$ y $n = 1, 2, \dots$

Definición 1.7.7 Diremos que f_k es fundamental en medida sobre E si $\forall \delta > 0$ se tiene que

 $m\left(E\left(|f_k - f_j| \ge \delta\right)\right) \xrightarrow[k,j \to \infty]{} 0.$

Observacion 1.7.3 Si $f_k \xrightarrow{m} f$ y f es finita, entonces f_k es fundamental en medida.

Teorema 1.7.10 Si f_k es fundamental en medida sobre E, entonces existe una subsucesión k_j y una función f medible sobre E tal que $f_{k_j} \to f$ en c.t.p. de E. Además, f es finita y $f_k \xrightarrow{m} f$.

Dem. Para cada i > 0, existe $k_i \in \mathbb{N}$ tal que

$$m\left(E\left(|f_k - f_j| \ge \frac{1}{2^i}\right)\right) \le \frac{1}{2^i},$$

para $k, j \geq k_i$. Podemos suponer que $k_1 < k_2 < \dots$ Sea

$$E_i = E\left(|f_{k_i} - f_{k_{i+1}}| \ge \frac{1}{2^i}\right)$$

y tenemos que $m(E_i) < \frac{1}{2^i}$.

Sea

$$Z = \bigcap_{j=1}^{\infty} \bigcup_{i=j}^{\infty} E_i = \limsup_{i \to \infty} E_i.$$

Ahora, m(Z)=0. Si $x\in E-Z$, existe un j tal que $x\notin E_i$ para $i\geq j$, es decir,

$$x \in E\left(\left|f_{k_i} - f_{k_{i+1}}\right| < \frac{1}{2^i}\right).$$

Luego, la serie

$$f_{k_1}(x) + (f_{k_2}(x) - f_{k_1}(x)) + \dots$$
 (1.1)

converge absolutamente en E-Z.

Sea f(x) la suma de (1.1) en E-Z y sea f(x)=0 en Z. A partir de la definición de f es claro que f es finita. Además, pasando a sumas parciales, tenemos

$$f(x) = \lim_{i \to \infty} f_{k_i}(x)$$
 en c.t.p. de E .

A continuación, veamos que $f_{k_i} \stackrel{m}{\longrightarrow} f$.

Sea $\delta > 0$ y elijamos j tal que $\frac{1}{2j-1} < \delta$. Si $x \notin Z$, entonces

$$f(x) = f_{k_i}(x) + (f_{k_{i+1}}(x) - f_{k_i}(x)) + \dots$$

Así

$$E(|f(x) - f_{k_j}(x)| \ge \delta) \subset Z \cup \left(\bigcup_{i \ge j} E_i\right)$$

de donde

$$m\left(E\left(\left|f(x)-f_{k_j}(x)\right|\geq\delta\right)\right)\leq\sum_{i\geq j}m(E_i)=\frac{1}{2^{j-1}}.$$

De este modo, obtenemos $f_{k_j} \stackrel{m}{\longrightarrow} f$. Por último, a partir de

$$E(|f_k - f| \ge \delta) \subset E\left(|f_k - f_{k_j}| \ge \frac{\delta}{2}\right) \cup E\left(|f_{k_j} - f| \ge \frac{\delta}{2}\right),$$

tomando k y k_i grandes, deducimos

$$m\left(E\left(|f_k - f| \ge \delta\right)\right) < \varepsilon$$

para valores de k grandes. En consecuencia, $f_k \xrightarrow{m} f$.

1.8 Función singular de Cantor

El conjunto de Cantor se define como

$$P = \bigcap_{n=1}^{\infty} F_n,$$

donde F_n es la unión de 2^n intervalos cerrados y disjuntos contenidos en el [0,1]. El conjunto $[0,1]-F_n$ es la unión de 2^n-1 intervalos abiertos disjuntos. Si los numeramos de izquierda a derecha, formamos los intervalos abiertos $J_{n,i}$, para $i\,=\,$ $1, 2, \ldots, 2^n - 1$ y se tiene la relación

$$J_{n,i} = J_{n+1,2i}.$$

Sea φ_n la función que toma los siguientes valores $\varphi_n(0)=0$, $\varphi_n(1)=1$, $\varphi_n(x)=1$ $\frac{i}{2^n}$ en $J_{n,i}$, es lineal entre los F_n y es continua.

Tenemos que $\varphi_{n+1} = \varphi_n$ en $J_{n,i}$ y además

$$|\varphi_{n+1} - \varphi_n| < \frac{1}{2^{n+1}},$$

en cada punto de [0, 1]. Luego, la serie

$$\varphi_1 + (\varphi_2 - \varphi_1) + (\varphi_3 - \varphi_2) + \dots$$

converge uniformemente a una función continua φ que se llama función singular de Can-

Es claro que φ es monótona creciente y su restricción a cualquiera de los intervalos $J_{n,i}$ es constante.

2 Integral de Lebesgue

2.1 Definición y propiedades inmediatas

Definición 2.1.1 Sean $E\subset \mathbb{R}^n$, $f:E\to \overline{\mathbb{R}}$ y $f\geq 0$ sobre E medible. La integral de Lebesgue de f se define mediante

$$\int_{E} f(x)dx = \sup \left\{ \sum_{i=1}^{N} \alpha_{i} m(E_{i}) \right\},$$

donde el supremo se toma sobre toda descomposición del conjunto E en unión de conjuntos medibles E_i y mutuamente disjuntos, siendo

$$\alpha_i = \inf_{E_i} f.$$

Se usa la convención $0.(+\infty)=+\infty.0=0.$ De la Definición 2.1.1 se deduce que si $f\equiv c\in\mathbb{R}$ sobre E, entonces

$$\int f \, dx = cm(E).$$

Teorema 2.1.1 Si $E=A\cup B$, $A\cap B=\varnothing$ y $f\geq 0$ en E, entonces

$$\int_{E} f = \int_{A} f + \int_{B} f.$$

 $\begin{array}{l} \textit{Dem. Sean } E = \bigcup\limits_{i=1}^{N} E_i \text{ y } \alpha_i = \inf\limits_{E_i} f. \ A_i = A \cap E_i \text{ y } B_i = B \cap E_i \text{ y llamamos } \beta_i = \inf\limits_{A_i} f \\ \textit{y } \gamma_i = \inf\limits_{B_i} f. \text{ Entonces } \alpha_i \leq \beta_i \text{, } \alpha_i \leq \gamma_i \text{ y} \end{array}$

$$\sum_{i=1}^{N} \alpha_i m(E_i) = \sum_{i=1}^{N} \alpha_i (m(A_i) + m(B_i))$$

$$\leq \sum_{i=1}^{N} \beta_i m(A_i) + \sum_{i=1}^{N} \gamma_i m(B_i)$$

$$\leq \int_A f \, dx + \int_B f \, dx.$$

Luego

$$\int_{E} f \le \int_{A} f + \int_{B} f.$$

Sean $A = igcup_{i=1}^N A_i$, $B = igcup_{i=1}^M B_i$, β_i y γ_i como antes. Entonces

$$\sum_{i=1}^{N} \beta_i m(A_i) + \sum_{i=1}^{M} \gamma_i m(B_i) \le \int_E f.$$

Luego

$$\int_A f + \int_B f \le \int_E f.$$

■ Si $0 \le f \le g$, entonces

$$\int_{E} f \le \int_{E} g,$$

 $\operatorname{pues}\inf_{E_i}f\leq\inf_{E_i}g.$

 $\quad \blacksquare \ \, \mathrm{Si} \,\, f \geq 0 \,\, \mathrm{sobre} \,\, E \,\, \mathrm{y} \,\, A \subset E \mathrm{, \,entonces}$

$$\int_{A} f \le \int_{E} f,$$

pues $\int_E f = \int_A f + \int_{E-A} f$.

• Si m(E)=0 y $f\geq 0$ sobre E, entonces

$$\int_{E} f = 0.$$

lacksquare Si f=g en c.t.p. de E, entonces

$$\int_{E} f = \int_{E} g.$$

 $\textit{Dem. Sea } A = \{f \neq g\} \text{ entonces } m(A) = 0 \text{ y}$

$$\int_E f = \int_{E-A} f = \int_{E-A} g = \int_E g.$$

lacksquare Si $f\geq 0$ en E, entonces

$$\int_E f = \int_{\mathbb{R}^n} f \chi_E \, dx.$$

lacksquare Cuando $E=\mathbb{R}^n$, escribimos

$$\int_{\mathbb{R}^n} f = \int f.$$

• Si $E=(a,b)\subset\mathbb{R}$, ponemos

$$\int_{E} f = \int_{a}^{b} f.$$

2.2 Integral de funciones simples

Teorema 2.2.2 Sean $E=E_1\dot{\cup}E_2\dot{\cup}\ldots\dot{\cup}E_N$ y $\beta_i\in\mathbb{R},\ i=1,2,\ldots,N$, $\beta_i\geq0$. Luego,

$$\int_{E} \sum_{i=1}^{N} \beta_{i} \chi_{E_{i}} = \sum_{i=1}^{N} \beta_{i} m(E_{i})$$

Dem.

$$\int_{E} \sum_{i=1}^{N} \beta_{i} \chi_{E_{i}} = \sum_{j=1}^{N} \int_{E_{j}} \sum_{i=1}^{N} \beta_{i} \chi_{E_{i}} = \sum_{j=1}^{N} \beta_{j} m(E_{j}).$$

Teorema 2.2.3 Si φ y ψ son funciones simples no negativas y $c \in \mathbb{R}^+$, entonces

$$\int_E (\varphi + \psi) = \int_E \varphi + \int_E \psi \quad \mathbf{y}$$

$$\int_E c\varphi = c \int_E \varphi.$$

Dem. Sean $\varphi=\sum\limits_{i=1}^N \alpha_i\chi_{E_i}$ y $\psi=\sum\limits_{j=1}^M \beta_j\chi_{F_j}.$ Tenemos

$$\varphi + \psi = \sum_{i=1}^{N} \sum_{j=1}^{M} (\alpha_i + \beta_j) \chi_{E_i \cap F_j},$$

y entonces

$$\int_{E} \varphi + \psi = \sum_{i=1}^{N} \sum_{j=1}^{M} (\alpha_{i} + \beta_{j}) m(E_{i} \cap F_{j})$$

$$= \sum_{i=1}^{N} \alpha_{i} \sum_{j=1}^{M} m(E_{i} \cap F_{j}) + \sum_{j=1}^{M} \beta_{j} \sum_{i=1}^{N} m(E_{i} \cap F_{j})$$

$$= \int_{E} \varphi + \int_{E} \psi.$$

Como $carphi = \sum\limits_{i=1}^N c lpha_i \chi_{E_i}$, luego

$$\int_{E} c\varphi = \sum_{i=1}^{N} c\alpha_{i} m(E_{i}) = \alpha \int_{E} \varphi.$$

Teorema 2.2.4 Si $f \ge 0$, entonces

$$\int_E f = \sup_{0 \le \varphi \le f} \int_E \varphi.$$

Dem. Sean $E=E_1\cup E_2\cup\ldots\cup E_N$ y $\alpha_i=\inf_{E_i}f$. Supongamos que $\alpha_i<\infty$. Luego, si $\varphi=\sum\limits_{i=1}^N\alpha_i\chi_{E_i}$ tenemos

$$\int_{E} \varphi = \sum_{i=1}^{N} \alpha_{i} m(E_{i}) \quad \mathbf{y} \quad 0 \le \varphi \le f.$$

En general, para $k \in \mathbb{N}$ definamos

$$\alpha_{ik} = \min\{k, \alpha_i\}$$

у

$$\varphi_k = \sum_{i=1}^n \alpha_{ik} \chi_{E_i}.$$

Ahora, $0 \le \varphi_k \le f$ y $\alpha_{i1} \le \alpha_{i2} \le \ldots \nearrow \alpha_i$. LUego

$$\begin{split} \sum_{i=1}^N \alpha_i m(E_i) &= \lim_{k \to \infty} \sum_{i=1}^N \alpha_{ik} m(E_i) \\ &= \lim_{k \to \infty} \int_E \varphi_k \leq \sup_{0 \leq \varphi \leq f} \int_E \varphi. \end{split}$$

Luego

$$\int_E f \le \sup_{0 \le \varphi \le f} \int_E \varphi.$$

La otra desigualdad es inmediata.

Lema 2.2.1 Sean $f_1 \leq f_2 \leq \ldots$ funciones no negativas y φ función simple no negativa tal que

$$\varphi \leq \lim_{k \to \infty} f_k$$
.

Dem. Sean $0 \le \alpha_1 < \alpha_2 < \ldots < \alpha_N$ los distintos valores ordenados que toma φ y sea

$$A_i = \{ \varphi = \alpha_i \}.$$

Supongamos probado el lema cuando $\alpha_1>0$. Entonces, sale para $\alpha_1=0$, pues aplicando el caso probado en $E-A_1$ tenemos

$$\int_{E} \varphi = \int_{E-A_1} \varphi \leq \lim_{k \to \infty} \int_{E-A_1} f_k \leq \lim_{k \to \infty} \int_{E} f_k.$$

Supongamos ahora que $\alpha_1 > 0$.

Sea $0<\varepsilon$ con $0<\varepsilon<\alpha_1$. Luego $\varphi-\varepsilon$ es una función simple que toma los valores $\alpha_i-\varepsilon$ sobre A_i . Poniendo

$$E_k = \{ \alpha \in E : f_k(x) > \varphi(x) - \varepsilon \}.$$

Por hipótesis

$$E_k \subset E_{k+1}$$
 y $\bigcup_{k=1}^{\infty} E_k = E$.

Luego $m(E_k) \to m(E)$ cuando $k \to \infty$. Se presentan dos casos 1. Si $m(E) < \infty$, tenemos $m(E-E_k) \xrightarrow{k \to \infty} 0$ y

$$\int_{E} f_{k} \ge \int_{E_{k}} f_{k} \ge \int_{E_{k}} \varphi(x) - \varepsilon$$

$$= \int_{E} \varphi(x) - \varepsilon - \int_{E - E_{k}} \varphi(x) - \varepsilon$$

$$\ge \int_{E} \varphi - \varepsilon m(E) - (\alpha_{N} - \varepsilon) m(E - E_{k}).$$

Luego

$$\lim_{k\to\infty}\int_E f_k \geq \int_E \varphi - \varepsilon m(E).$$

Como ε es arbitrario, se obtiene la desigualdad del lema.

2. Si $m(E)=\infty$, consideramos $m(E_k)\nearrow +\infty$ y obtenemos

$$\int_{E} f_{k} \ge \int_{E_{k}} f_{k} \ge \int_{E_{k}} \varphi - \varepsilon \ge (\alpha_{1} - \varepsilon) m(E_{k}) \nearrow +\infty,$$

lo cual lleva a la desigualdad del lema.

2.3 Paso al límite bajo el signo de integral

Teorema 2.3.5 [Beppo-Levi] Sea $0 \le f_1 \le f_2 \le \ldots \nearrow f$. Entonces

$$\int_E f = \lim_{k \to \infty} \int_E f_k.$$

Dem. Sea φ función simple tal que $0 \le \varphi \le f$. Luego

$$\varphi \leq \lim_{k \to \infty} f_k$$

y por tanto

$$\int_E \varphi \leq \lim_{k \to \infty} \int_E f_k.$$

Así, llegamos a

$$\int_E f = \sup_{0 \leq \varphi \leq f} \int_E \varphi \leq \lim_{k \to \infty} \int_E f_k.$$

La otra desigualdad es inmediata.

Teorema 2.3.6 Si $f,g\geq 0$ y $c\in\mathbb{R}$, entonces

$$\int_E (f+g) = \int_E f + \int_E g \quad \mathbf{y} \quad \int_E cf = c \int_E f.$$

Dem. Sean φ_k y ψ_k funciones simples tales que $\varphi_k\nearrow f$ y $\psi_k\nearrow g$. Luego $\varphi_k+\psi_k\nearrow f+g$ y entonces

$$\begin{split} \int_E f + g &= \lim_{k \to \infty} \int_E \varphi_k + \psi_k \\ &= \lim_{k \to \infty} \int_E \varphi_k + \lim_{k \to \infty} \int_E \psi_k \\ &= \int_E f + \int_E g. \end{split}$$

Corolario 2.3.1 Si $f_k \geq 0$, $k = 1, 2, \ldots$, entonces

$$\int_{E} \sum_{k=1}^{\infty} f_k = \sum_{k=1}^{\infty} \int_{E} f_k.$$

Dem. Sean $S_N=\sum\limits_{k=1}^N f_k$ y $s=\sum\limits_{k=1}^\infty f_k=\lim\limits_{N\to\infty} S_N.$ Luego $0\leq S_1\leq S_2\leq\ldots\nearrow s.$ De este modo,

$$\begin{split} \int_E s &= \lim_{N \to \infty} \int_E S_N \\ &= \lim_{N \to \infty} \sum_{k=1}^N \int_E f_k = \sum_{k=1}^\infty \int_E f_k. \end{split}$$

Lema 2.3.2 [Lema de Fatou] Si $f_k \geq 0$, entonces

$$\int_E \liminf_{k\to\infty} f_k \leq \liminf_{k\to\infty} \int_E f_k.$$

Dem. Sean

$$g(x) = \liminf_{k \to \infty} f_k$$
 y $g_k(x) = \inf_{j \ge k} f_j$.

Así, $g_1 \leq g_2 \leq \ldots \nearrow g$ y

$$g(x) = \sup_{k} g_k(x) = \lim_{k \to \infty} g_k(x).$$

Por el Teorema 2.3.5 y como $g_k \leq f_k$, se tiene

$$\int_E g = \lim_{k \to \infty} \int_E g_k = \liminf_{k \to \infty} \int_E g_k \leq \liminf_{k \to \infty} \int_E f_k.$$

Corolario 2.3.2 Si $f_k o f$ en E, entonces

$$\int_E f \leq \liminf_{k \to \infty} \int_E f_k.$$

2.4 Integrales de funciones de distinto signo

Definición 2.4.2 Si $f = f^+ - f^-$, diremos que f es integrable sobre E si y sólo si

$$\int_E f^+$$
 y $\int_E f^-$

son finitas.

En este caso, escribimos

$$\int_E f = \int_E f^+ - \int_E f^-.$$

Teorema 2.4.7 f es integrable sobre E si y sólo si |f| lo es. Y, en este caso, vale

$$\left| \int_{E} f \right| \le \int_{E} |f|.$$

 $extit{Dem.} \Rightarrow)$ Como $|f| = f^+ + f^-$, si f es integrable entonces |f| también los es. $\Leftarrow)$ Si |f| es integrable, como $f^+ \leq |f|$ y $f^- \leq |f|$, entonces f también resulta integrable. \Box

Teorema 2.4.8 Si $f_1, f_2 \ge 0$ son integrables sobre E y $f = f_1 - f_2$, entonces f es integrable y

$$\int_{E} f_1 - f_2 = \int_{E} f_1 - \int_{E} f_2.$$

Dem. A partir de que $f^+ \le f_1$ y f^-f_2 se deduce que f es integrable. Como $f=f^+-f^-=f_1-f_2$ entonces $f^++f_2=f_1+f^-$ y

$$\int_{E} f^{+} + \int_{E} f_{2} = \int_{E} f_{1} + \int_{E} f^{-}.$$

Teorema 2.4.9 Si $f \ge 0$ es integrable y $|g| \le f$, entonces g es integrable.

Dem. La prueba sale a partir de que $g^+ \leq f$ y $g^- \leq f$.

Teorema 2.4.10 Si f y g son integrables sobre E y $c \in \mathbb{R}$, entonces f + g y cf son integrables sobre E. Además,

$$\int_E f + g = \int_E f + \int_E g \quad \mathbf{y} \quad \int_E c f = c \int_E f.$$

Dem. Como $f+g=f^++g^+-(f^-+g^-)$, aplicando el Teorema 2.4.8 se obtiene que f+g es integrable y

$$\int_{E} f + g = \int_{E} f^{+} + g^{+} - \int_{E} f^{-} + g^{-}$$

$$= \int_{E} f^{+} + \int_{E} g^{+} - \int_{E} f^{-} - \int_{E} g^{-}$$

$$= \int_{E} f + \int_{E} g.$$

Si $c \ge 0$, entonces $cf = cf^+ - cf^-$ y el resultado se obtiene por el Teorema 2.4.8. Si c < 0, el resultado se obtiene a partir de que $cf = (-c)f^- - (-c)f^+$.

Corolario 2.4.3 Si f y g son integrables tales que $f \leq g$, entonces

$$\int_{E} f \le \int_{E} g.$$

Así,

$$L(E) = \{f : f \text{ es integrable sobre } E\}$$

es un espacio vectorial y la aplicación

$$f \longmapsto \int_E f$$

es una aplicación lineal.

2.5 Convergencia Mayorada

Si f_k son integrables sobre E y $f_k \to f$ en c.t.p. de E siendo f integrable en E, en general no es cierto que

$$\int_E f_k \to \int_E f.$$

Ejemplo 2.5.1 Si $f_k=k\chi_{(0,\frac{1}{r})}$ entonces $f_k\to 0$ puntualmente en (0,1). Sin embargo,

$$\int_{(0,1)} f_k = 1, \ \forall k \in \mathbb{N}.$$

y por lo tanto

$$\int_{(0,1)} f_k \nrightarrow \int_{(0,1)} f.$$

Teorema 2.5.11 [Convergencia Mayorada de Lebesgue] Sea Φ funcíon integrable sore E. Si f_k son funciones integrables tales que

$$|f_k| \leq \Phi$$
 en E ,

entonces $g=\liminf f_k$, $h=\limsup f_k$ son integrables sobre E y

$$\int_E \liminf f_k \leq \liminf \int_E f_k \leq \limsup \int_E f_k \leq \int_E h.$$

Dem. Por hipótesis se tiene que $-\Phi \leq f_k \leq \Phi$, a partir de lo cual se deduce que $-\Phi \leq g \leq \Phi$ y $-\Phi \leq h \leq \Phi$ y por lo tanto g y h resultan integrables sobre E. Por otra parte, $f_k + \Phi \geq 0$ y $\Phi - f_k \geq 0$ y

Ahora, por el Lema de Fatou (Lema 2.3.2) tenemos

$$\int_E g + \int_E \Phi = \int_E g + \Phi \leq \liminf_{k \to \infty} \int_E f_k + \Phi = \liminf_{k \to \infty} \int_E f_k + \int_E \Phi.$$

Luego

$$\int_E g \leq \liminf \int_E f_k.$$

La otra desigualdad se obtiene de manera análoga.

Corolario 2.5.4 Si $f_k \to f$ en cada punto de E y $|f_k| \le \Phi \in L(E)$, entonces $f \in L(E)$ y

 $\lim_{k\to\infty}\int_E f_k = \int_E f.$

2.6 La integral y los conjuntos de medida nula

Si $f,g \ge 0$ y f=g en c.t.p de E, entonces

$$\int_{E} f = \int_{E} g.$$

En particular, sobre un conjunto de medida nula cualquier f medible e integrable con integral que vale 0.

 $\check{\text{Usare}}\text{mos}$ la **desigualdad de Chebyshev** que establece que si f es medible sobre E se cumple

$$m\left(\left\{x \in E : |f(x)| > \lambda\right\}\right) \le \frac{1}{\lambda} \int_{E} |f|.$$

La prueba de la desigualdad de Chebyshev es sencilla, a saber,

$$\int_{E} |f| \ge \int_{\{|f| \ge \lambda\}} |f| \ge \lambda m \left(\{|f| \ge \lambda\}\right).$$

Teorema 2.6.12 Si $f \geq 0$ sobre E y $\int_E f = 0$, entonces f = 0 en c.t.p. de E.

Dem. Sean $Z_k = \{f > \frac{1}{k}\}$ y $Z = \{f > 0\}$, entonces

$$Z = \bigcup_{k=1}^{\infty} Z_k.$$

Ahora,

$$m(Z_k) = m\left(\left\{f > \frac{1}{k}\right\}\right) \le k \int_E f = 0,$$

y en consecuencia m(Z) = 0.

2.7 Invariancia bajo traslaciones

Teorema 2.7.13 Sea $f \geq 0$, entonces $\forall h \in \mathbb{R}^n$ se tiene

1.
$$\int f(x+h) = \int f(x)$$
,

2.
$$\int_{E} f(x+h) = \int_{E+h} f(x)$$
.

Dem.

1. \blacksquare Si $f=\chi_E$, entonces $f(x+h)=\chi_E(x+h)=\chi_{E-h}(x)$. Así,

$$\int f(x+h) = \int \chi_{E-h}(x) = m(E-h)$$

у

$$\int f(x) = \int \chi_E(x) = m(E),$$

y son iguales

■ Si f es simple, entonces

$$f = \sum_{i=1}^{N} \alpha_i f_i, \quad \alpha_i \ge 0, \ f_i = \chi_{E_i}.$$

Luego,

$$\int f(x+h) = \sum_{i=1}^{N} \alpha_i \int f_i(x+h) = \sum_{i=1}^{N} \alpha_i \int_{E_i} f_i = \int f.$$

■ Sea f arbitraria no negativa y sean φ_k funciones simples no negativas tales que $\varphi_k \nearrow f$. Luego,

$$\varphi_k(x+h) \to f(x+h), \ \forall x \in \mathbb{R}^n.$$

Por el Teorema de Beppo-Levi (Teorema 2.3.5), se tiene

$$\int f(x+h) \, dx = \lim_{k \to \infty} \int \varphi_k(x+h) \, dx = \lim_{k \to \infty} \int \varphi_k(x) = \int f(x) \, dx.$$

Así queda demostrado el item 1.

2. es consecuencia del item 1. En efecto,

$$\int_{E} f(x+h) dx = \int \chi_{E+h}(x+h) f(x+h) dx$$
$$= \int \chi_{E+h}(x) f(x) dx$$
$$= \int_{E+h} f(x) dx.$$

Por último, los item 1 y 2 son ciertos para $f \in L(E)$, a partir de la usual descomposición de f dada por $f = f^+ - f^-$.

2.8 La integral como función de conjunto

FALTA DEFINIR ${\cal M}$ o RECORDARLO!!!

Sea $f \in L(\mathbb{R})$ y definimos $\Phi : \mathcal{M} \to \mathbb{R}$ por

$$\Phi(E) = \int_E f.$$

 Φ se llama integral indefinida de f.

Teorema 2.8.14 Si $E_j \in \mathcal{M}$ son mutuamente disjuntos y sea $E = \bigcup_{j=1}^\infty E_j$, entonces

$$\Phi(E) = \sum_{j=1}^{\infty} \Phi(E_j).$$

Dem. Si $f \geq 0$, tenemos $\sum\limits_{j=1}^{\infty} \chi_{E_j} = \chi_E$ y luego

$$\Phi(E) = \int_E f = \int f \chi_E = \int \sum_j f \chi_{E_j} = \sum_j \int f \chi_{E_j} = \sum_j \Phi(E_j).$$

Si $f \in L(E)$, trabajamos con $f = f^+ - f^-$ donde f^+ y f^- son funciones medibles no negativas. \Box

Definición 2.8.3 Si X es un conjunto y Σ es una sigma-álgebra de subconjuntos de X. Una función $\mu:\Sigma\to\mathbb{R}^+$ se llama medida si

- 1. $\mu(\emptyset) = 0$,
- 2. $\mu(\bigcup_j E_j) = \sum_j \mu(E_j)$, donde $E_j \in \Sigma$ y son mutuamente disjuntos.

Para una medida valen los teoremas de convergencia monótona de conjuntos, se puede definir una integral y casi todo lo visto para la medida de Lebesgue es válido. Una propiedad que no siempre es cierta es la invariancia por traslaciones.

Ahora bien, Φ es una medida. La pregunta que surge es ¿será toda medida sobre $\mathcal M$ de la forma de Φ para alguna f?

La respuesta a esta pregunta será dada por el Teorema de Radom-Nikodim.

La siguiente propiedad se llama continuidad absoluta.

Teorema 2.8.15 Sea $f \in L(\mathbb{R}^n)$, entonces $\forall \varepsilon > 0 \ \exists \delta > 0$ tal que

$$m(E) < \delta \Longrightarrow |\Phi(E)| < \varepsilon$$
.

Dem. Se puede suponer que $f \geq 0$.

Sea $f_k=\min\{f,k\}$, entonces $f_k\nearrow f$. Por el Teorema de Beppo-Levi (Teorema 2.3.5) se tiene que $\int_E f_k\nearrow \int_E f$ y por tanto $\int_E f-f_k\to 0$. Así, existe $k\in\mathbb{N}$ tal que

$$\int_{E} f - f_k < \frac{\varepsilon}{2}.$$

Sea $\delta < \frac{\varepsilon}{2k}$. Luego, si $m(E) < \delta$ entonces

$$\int_{E} f = \int_{E} f - f_k + \int_{E} f_k < \frac{\varepsilon}{2} + km(E) < \varepsilon.$$

Comparación con la integral de Riemann 2.9

Sea f acotada en $[a,b] \subset \mathbb{R}$. Si $a=x_0 < x_1 < x_2 < \ldots < x_N = b$, llamamos suma inferior de Riemann s y suma superior de Riemann S a

$$s = \sum_{i=1}^{N} m_i (x_i - x_{i-1}) \quad \text{y} \quad S = \sum_{i=1}^{N} M_i (x_i - x_{i-1}),$$

respectivamente, donde

$$m_i = \inf_{[x_{i-1},x_i]} f \quad \mathbf{y} \quad M_i = \sup_{[x_{i-1},x_i]} f.$$

Una función f se llama integrable según Riemann si y sólo si $\forall \varepsilon > 0$ existe una partición para la cual

$$S-s<\varepsilon$$
.

La integral de Riemann se define

(R)
$$\int_a^b f = \sup s = \inf S.$$

Teorema 2.9.16 Si f es integrable Riemann sobre [a, b], entonces f es medible e integrable Lebesgue. Además,

(R)
$$\int_{a}^{b} f = \int_{a}^{b} f$$
.

Dem. Si $a = x_0 < x_1 < x_2 < \ldots < x_N = b$, definimos las funciones escalonadas

$$\varphi(x) = \sum_{i=1}^{N} m_i \chi_{J_i} \quad \mathbf{y} \quad \psi(x) = \sum_{i=1}^{N} M_i \chi_{J_i}$$

donde $J_i=[x_{i-1},x_i]$. Entonces $\varphi\leq f\leq psi$ en c.t.p. de [a,b]. Si f es integrable Riemann, existen dos sucesiones de funciones escaleras φ_k y ψ_k tales que $\varphi_k \leq f \leq \psi_k$ y

$$\int_{a}^{b} \psi_{k} - \varphi_{k} < \frac{1}{k}.$$

Además, si $g=\sup \varphi_k$ y $h=\inf \psi_k$, entonces g y h son borelianas y $g\leq f\leq h$. Además

$$\int_{a}^{b} \varphi_{k} \leq \int_{a}^{b} f \leq \int_{a}^{b} \psi_{k}$$

у

$$(\mathrm{R}) \, \int_a^b \varphi_k \leq \, (\mathrm{R}) \, \int_a^b f \leq \, (\mathrm{R}) \, \int_a^b \psi_k,$$

de donde

$$\left| \int_a^b f - \ (\mathsf{R}) \ \int_a^b f \right| \leq \int_a^b \psi_k - \varphi_k < \frac{1}{k}.$$

2.10 Integración parcial: Teorema de Fubini

Si $u\in\mathbb{R}^{n+m}$, pondremos u=(x,y) con $x\in\mathbb{R}^n$ e $y\in\mathbb{R}^m$. Si $E\subset\mathbb{R}^{n+m}$ e $y\in\mathbb{R}^n$, entonces

$$E_x = \{ y \in \mathbb{R}^m : (x, y) \in E \},$$

se llama la sección de E en x. Análogamente, se define $E_y.$ Se puede demostrar que

$$\left(\bigcup_{k=1}^{\infty} E_k\right)_x = \bigcup_{k=1}^{\infty} \left(E_k\right)_x$$

у

$$\left(\bigcap_{k=1}^{\infty} E_k\right)_x = \bigcap_{k=1}^{\infty} \left(E_k\right)_x,$$

para cualquier sucesión de conjuntos E_k contenidos en \mathbb{R}^{n+m} . Si $E_1 \subset E_2$ entonces

$$(E_1)_x \subset (E_2)_x \ \ \text{y} \ \ (E_1-E_2)_x = (E_1)_x - (E_2)_x \, .$$

Teorema 2.10.17 [Principio de Cavalieri] Sea E medible en \mathbb{R}^{n+m} , entonces

- 1. E_x es medible de \mathbb{R}^{n+m} en c.t.p. $x \in \mathbb{R}^n$;
- 2. $m(E_x)$ es medible como función de x;
- 3. $m(E) = \int m(E_x) dx$.

Dem. Primer Paso) Si E es un intervalo de \mathbb{R}^{n+m} , supongamos que $E=I\times J$ con I intervalo de \mathbb{R}^n , J intervalo de \mathbb{R}^m , entonces $E_x=J\ \forall x\in I$ y $E_x=\varnothing$ si $x\notin I$. Así, E_x es conjunto medible $\forall x\in I$, $m(E_x)=\chi_I m(J)$ es función medible en x y

$$\int m(E_x) dx = m(J)m(I) = m(E).$$

Segundo Paso) Si E es abierto, entonces $E_x = \bigcup_{k=1}^{\infty} (I_k)_x$ con I_k intervalos mutuamente

disjuntos y donde $E_x = \bigcup\limits_{k=1}^{\infty} \left(I_k\right)_x$. Así E_x es conjunto medible. Además,

$$m(E_x) = \sum_{k=1}^{\infty} m\left((I_k)_x\right)$$

es una función medible de x y

$$\int m(E_x) = \sum_{k=1}^{\infty} \int m((I_k)_x) \ dx = \sum_{k=1}^{\infty} m(I_k) = m(E).$$

Tercer Paso) Si E es un conjunto acotado y de tipo G_δ , entonces existe una bola B y una sucesión de conjuntos abiertos G_k tales que

$$E \subset B$$
 y $E = \bigcap_{k=1}^{\infty} G_k$.

Tomando $G_k^{'} = B \cap G_1 \cap \ldots \cap G_k$, podemos suponer

$$B\supset G_1\supset\ldots\supset E$$
.

Ahora, se tiene que

$$E_x = \bigcap_{k=1}^{\infty} \left(G_k \right)_x$$

es conjunto medible y

$$m(E_x) = \lim_{k \to \infty} m\left((G_k)_x \right)$$

es función medible de x. Además,

$$m\left((G_k)_x\right) \le m(B_x) \in L(\mathbb{R}^n).$$

A continuación, por aplicación de Convergencia Mayorada (Corolario 2.5.4), se obtiene

$$\int m(E_x) dx = \lim_{k \to \infty} \int m((G_k)_x) dx = \lim_{k \to \infty} m(G_k) = m(E).$$

Cuarto Paso) Supongamos que E es un conjunto de tipo G_δ . Sean $B_k=B(0,k)$ y $E_k=E\cap B_k\in G_\delta$, entonces $E=\bigcup_{k=1}^\infty E_k$ y $E_1\subset E_2\subset\dots$ Luego

$$E_x = \bigcup_{k=1}^{\infty} (E_k)_x$$
 y $(E_1)_x \subset (E_2)_x \subset \dots$

De este modo, resulta que E_x es conjunto medible y

$$m(E_x) = \lim_{k \to \infty} m((E_k)_x).$$

Como $m((E_k))_x$ es una sucesión monótona creciente de funciones medibles, por el Teorema de Beppo-Levi (Teorema 2.3.5) llegamos a

$$\int m(E_x) dx = \lim_{k \to \infty} \int m((E_k)_x) dx = \lim_{k \to \infty} m(E_k) = m(E).$$

Quinto Paso) Sea E un conjunto de medida nula. Luego, existe $H\in G_\delta$ tal que $E\subset H$ y m(H)=0. A partir de

$$\int m(H_x) \, dx = m(H) = 0,$$

se tiene que $0 \le m(E_x) \le m(H_x) = 0$ en c.t.p. x. Luego, $m(E_x) = 0$ en c.t.p. x y por lo tanto es función medible en x. Además,

$$\int m(E_x) dx \le \int m(H_x) dx = 0 = m(E).$$

Sexto Paso) Sea E medible. Entonces existen $H \in G_\delta$ y Z de medida nula tal que E = H - Z. Luego

$$E_x = H_x - Z_x$$

y $m(Z_x)=0$ en c.t.p. x, de donde E_x es un conjunto medible en c.t.p. X y

$$m(E_x) = m(H_x) - m(Z_x) = m(H_x)$$
 en c.t.p. x .

Es así que, $m(E_x)$ es función medible siempre que E_x sea medible y definimos $m(E_x)=0$ para el caso en que E_x no sea medible. Por último,

$$\int m(E_x) dx = \int m(H_x) dx = m(H) = m(E).$$

Ejemplo 2.10.2

1. Sea H un hiperplano de ecuación $a_1x_1 + \ldots + a_nx_n = a$. Veamos por inducción que m(H) = 0.

El caso n=1 es trivial. Supongamos que $(a_2,a_3,\ldots,a_n)\neq 0$, luego

$$H_{x_1} = \{(x_2, \dots, x_n) | a_2 x_2 + \dots + a_n x_n = a - a_1 x_1 \}$$

у

$$m(H) = \int m(H_{x_1}) dx_1 = 0.$$

2. El simple S de altura a es $x_1 + x_2 + \ldots + x_n \le a$ con $x_i \ge 0$. Veamos por inducción que $m(S) = \frac{a^n}{n!}$.

El caso n=1 es trivial. Para n>1, se tiene que $S_{x_1}=\varnothing$ si $x_1\notin [0,a]$ y si $x_1\in [0,a]$ entonces $S_{x_1}=\{(x_2,\ldots,x_n)|x_2+\cdots+x_n\leq a-x_1\}$ es el simple de altura $a-x_1$. Luego,

$$m(S) = \int_0^a m(S_{x_1}) dx_1 = \int_0^a \frac{(a - x_1)^{n-1}}{(n-1)!} dx_1 = \frac{a^n}{n!}.$$

Teorema 2.10.18 [Fubini-Tonelli] Si f(u)=f(x,y) es medible no negativa sobre \mathbb{R}^{n+m} , entonces

- 1. f(x,y) es medible en y para c.t.p. x;
- 2. $g(x) = \int_{\mathbb{R}^n} f(x,y) \, dy$ es medible sobre \mathbb{R}^n ;

3.

$$\int g(x) dx = \int dx \int f(x, y) dy = \int f(u) du.$$

Dem. Paso 1) Si $f = \chi_E$, vale

$$\chi_E(x,y) = \chi_{E_x}(y).$$

 E_x es medible en c.t.p. x. Así, f es medible en y para c.t.p. x. Además

$$\int dx \int \chi_{E_x}(y) dy = \int m(E_x) dx = m(E) = \int f(u) du.$$

Paso 2) Si f es simple, entonces

$$f(x,y) = \sum_{k=1}^{N} \alpha_k f_k(x,y),$$

donde $\alpha_k \geq 0$ y f_k son funciones características χ_{E_k} .

Por el Paso 1), $f_k(x,y)$ es medible en y y x está en un conjunto de la forma \mathbb{R}^n-Z_k , donde $m(Z_k)=0$. Ahora, llamando $Z=\bigcup\limits_{k=1}^N Z_k$, f es medible en y siempre que $x\in\mathbb{R}^n-Z$. O sea, f resulta medible en g para c.t.p. $g\in\mathbb{R}^n$. Si $g\in\mathbb{R}^n-Z$, la función

$$g(x) = \int f(x,y) \, dy = \sum_{k=1}^{N} \alpha_k \int f_k(x,y) \, dy$$

es medible. Además, por el Paso 1),

$$\int g(x) \, dx = \sum_{k=1}^{N} \alpha_k \int \, dx \int f_k(x, y) \, dy = \sum_{k=1}^{N} \alpha_k \int f_k(u) \, du = \int f(u) \, du.$$

Paso 3) Si f es medible no negativa, existe una sucesión de funciones simples $f_k:\mathbb{R}^{n+m}\to\mathbb{R}$ tales que $0\leq f_1\leq f_2\leq\dots$ y $f_k(u)\nearrow f(u)$ $\forall u\in\mathbb{R}^{n+m}$. Dado que f_k es simple, existe Z_k tal que $f_k(x,y)$ es medible en y si $x\notin Z_k$.

Sea $Z=\bigcup\limits_{k=1}^{N}Z_k$, entonces m(Z)=0 y cada $f_k(x,y)$ es medible en y si $x\notin Z$. Así, f es medible en y $\forall x\notin Z$. Aplicando el Teorema de Beppo-Levi (Teorema 2.3.5), si $x\notin Z$

$$g(x) = \int f(x,y) \, dy = \lim_{k \to \infty} \int f_k(x,y) \, dy,$$

y g es medible tomando la precaución de definir g=0 en Z. Por último, aplicando nuevamente el Teorema de Beppo-Levi (Teorema 2.3.5), obtenemos

$$\int g(x)\,dx = \lim_{k\to\infty} \int\,dx \int f_k(x,y)\,dy = \lim_{k\to\infty} \int f_k(u)\,du = \int f(u)\,du.$$

Teorema 2.10.19 [Fubini] Si $f(u) = f(x,y) \in L(\mathbb{R}^{n+m})$, entonces

- 1. para casi todo x, f(x, y) es integrable en y;
- 2. la función $g(x) = \int f(x,y) dy$ es integrable en x;

3.

se tiene que

$$\int g(x) dx = \int dx \int f(x, y) dy = \int f(u) du$$

Dem. Por aplicación del Teorema de Fubini-Tonelli (Teorema 2.10.18) se tiene que

$$\int dx \int f^+(x,y) \, dy = \int f^+(u) \, du < \infty$$

у

$$\int dx \int f^{-}(x,y) \, dy = \int f^{-}(u) \, du < \infty.$$

Las funciones no negativas

$$g_1(x) = \int f^+(x,y) \, dy \, \mathbf{y} \, g_2(x) = \int f^-(x,y) \, dy$$

son integrables y por ende finitas en casi todo punto. Luego,

$$g(x) = \int f(x,y) dy = g_1(x) - g_2(x)$$

es integrable en y para casi todo x. Además, $g \in L(\mathbb{R}^n)$ y

$$\int g(x) dx = \int g_1(x) dx - \int g_2(x) dx$$
$$= \int f^+(u) du - \int f^-(u) du = \int f(u) du.$$

Corolario 2.10.5 Si f satisface que

$$\int dx \int |f(x,y)| dy < \infty \text{ ó } \int dy \int |f(x,y)| dx < \infty,$$

vale el Teorema de Fubini.

Si f es integrable sobre un conjunto $E\subset\mathbb{R}^{n+m}$, la integral de f sobre E se calcula por medio de la fórmula

$$\int_{E} f(u) du = \int dx \int_{E_{\sigma}} f(x, y) dy.$$

En efecto, $f\chi_E$ es integrable sobre todo el espacio \mathbb{R}^{n+m} y por consiguiente

$$\int_{E} f(u) du = \int \int_{E} f(x, y) dx dy$$

$$= \int \int \chi_{E}(x, y) f(x, y) dx dy$$

$$= \int dx \int \chi_{E_{x}(y)} f(x, y) dy$$

$$= \int dx \int_{E_{x}} f(x, y) dy.$$

BIBLIOGRAFÍA 27

Bibliografía