河澄響矢『トポロジーの基礎 (上)』読書記録

最終更新: 2022 年 9 月 21 日

注意: 記述の正確性は保証しません。ややこしいことになりたくないので、本文の引用は最小限にしています。

誤植と思われるもの (2022/6/15 初版第1刷)

頁	行	誤	正
20	1	$f_{\#} :=$	$f_* :=$
32	7	$;X \to X$:X o X
51	4	$\mathbb{R}P^{n-1} \to \mathbb{R}V$	$\mathbb{R}P^{n-1} \to V$
85	5	$\partial_{n-1}: C'_{n-1} \to C'_{n-2}$	$\partial'_{n-1}:C'_{n-1}\to C'_{n-2}$
87	1	$\partial_{n+1}(C_{n+1}'')$	$\partial_{n+1}^{\prime\prime}(C_{n+1}^{\prime\prime})$
105	2	$\beta_{\sigma} \mathrm{Sd}_n(\partial_n \sigma)$	$\beta_{\sigma} \mathrm{Sd}_{n-1}(\partial_n \sigma)$
107	-8	$\partial_{n-1}(\sigma)$	$\partial_n(\sigma)$
118	11	$f \circ p \simeq f \circ p'$	$f\circ p\simeq f'\circ p$
119	8	$p \circ 1_{S^1} = \varphi_1 \circ \varphi_1$	$1_{S^1} \circ p = \varphi_1 \circ p$
121	11	I の閉集合	Iの開集合
121	11	F(x,0) = F'(x,0) = 0	F(x,0) = F'(x,0)
121	-4	$\{x\} \times \left[\frac{i-1}{N}, \frac{i}{N}\right] \subset W_i$	$\{x\} \times \left[\frac{i-1}{N}, \frac{i}{N}\right] \subset \overline{F}^{-1}(W_i)$
133	2	$ l_1 = lpha \circ \lambda_1 $ および $l_2 = lpha \circ \lambda_2 $	$l_1=eta\circ\lambda_1$ および $l_2=eta\circ\lambda_2$
137	-8	準同型定理により	補題 A.3.3 により
144	10	$\mathbb{C}\setminus\{z_1,z_2,\ldots,z_n\}$	$X_n := \mathbb{C} \setminus \{z_1, z_2, \dots, z_n\}$
146	4	$1 \le i \le n$	$1 \leq i \leq g$
153	-11	$1-\theta_{\#}\partial_{1}$	$1 + \theta_{\#} \partial_1$
153	-9	(全体)	0 と 1 を入れ替える.
153	-7	[u-0]	[u+0]
169	4	(X, A; M)	(X,A)
169	4	$(X_{\lambda}, A \cap X_{\lambda}; M)$	$(X_{\lambda}, A \cap X_{\lambda})$
173	-3	$d_n \circ r$	$r \circ d_n$
174	2	$r \circ d_n$	$d_n \circ r$
176	-8	$H_n(X\setminus\{p\})\cong\mathbb{Z}$	$H_n(X, X \setminus \{p\}) \cong \mathbb{Z}$
176	-10	$\sum_{i=1}^{m} a_i \sigma_i$	$\left[\sum_{i=1}^{m} a_i \sigma_i\right]$
180	-2	$U_i \subset X$	$U_i \overset{^{\mathrm{open}}}{\subset} X$
200	8	(3.2.1)	(4.1.3)
205	-11	$\{z_n = 0\} \cong \mathbb{C}P^{n-1}$	$\{z_n \neq 0\} \cong \mathbb{C}^n$
207	9	Hausodorff	Hausdorff
208	1	$(\varphi_{\lambda}(y),t)$	$\varphi_{\lambda}(y)$

第1章

- ■4,4 $(A_i \ \text{に入っている})$ 相対位相の定義より, $f^{-1}(C)$ は Y の閉集合.
- ■9,6 接着空間 $C \cup_q B$ の絵を描いた(図 1).

図 1 接着空間 $C \cup_a B$.

■10,6(自然な写像 $\coprod_{i=1}^n A_i \to Y$ が等化写像であること) 部分集合 $O \subset Y$ が $p^{-1}(O) = \coprod (O \cap A_i) \overset{\text{close}}{\subset} \coprod A_i$ を満たすと仮定する. 任意の i で $O \cap A_i \overset{\text{close}}{\subset} A_i \overset{\text{close}}{\subset} Y$, つまり $O \cap A_i \overset{\text{close}}{\subset} Y$ が成り立つ. ゆえに $O \cap (\cup A_i) = O \cap Y = O \overset{\text{close}}{\subset} Y$ となり条件 (a) が示された.

■23.1 (定理 1.2.1 証明) 図 2.

図 2 x_0, x_1 が第一の部分集合から来ている場合. N=9, m=4.

■21,-8($\varpi_X^{-1}(\ker \varepsilon_{\pi_0(X)})/\ker \varpi_X \cong \ker \varepsilon_{\pi_0(X)}$ がなりたつこと) 一般に $f: X \to Y$ を全射準同形, A を 0 を含む Y の部分集合とする. $f(f^{-1}(A)) = A$ (f の全射性より)と準同形定理より $f^{-1}(A)/\ker f \cong A$ がなりたつ.

■44,8(補題 1.4.5)

- 1. ι が等化写像であることを示すために, ι が補題 1.1.13(a) の条件を満たすことを示す。部分集合 $O \subset X \vee Y$ をとり, $\iota^{-1}(O) \overset{\text{close}}{\subset} X \coprod Y$ と仮定する。言い換えると, $\iota^{-1}(O) = U \coprod V$, $U \overset{\text{close}}{\subset} X$, $V \overset{\text{close}}{\subset} Y$. ι の全射性より, $O = \iota(\iota^{-1}(O)) = \iota(U \coprod V) \overset{\text{close}}{\subset} X \vee Y$.
- 2. $\iota(x_0) = (x_0, y_0) = \iota(y_0) \implies x_0 \sim y_0$ であり、逆に ι の値が等しい点の組は (x_0, y_0) のみである. よって補題 $1.1.13(a) \implies (c)$ より $X \vee Y$ は $X \coprod Y$ において x_0, y_0 を同一視して得られる空間と同相.
- 3. $(f \lor g) \mid_{X \times \{y_0\}} = f$ と $(f \lor g) \mid_{\{x_0\} \times Y} = g$ は連続写像. また $X \times \{y_0\} \stackrel{\text{close}}{\subset}, \{x_0\} \times Y$ かつ $(X \times \{y_0\}) \cup (\{x_0\} \times Y) = X \lor Y$ であるから貼り合わせの補題が適用できて $f \lor g$ は連続.
- ■44,-6 余積のイメージ図を描いた(図3).

図3 余積

■44,-10 $g \cdot f = (f \vee g) \circ \mu$ のイメージ図を描いた (図 4) .

図 4 $g \cdot f = (f \lor g) \circ \mu$ の図示.

■52,6 (命題 1.4.13) ? 表現論やってから戻ってくる.

第2章

- ■65,-4 ($H_0(X)$ が ∂_1 の余核であること) p_X が全射であることと, $\ker p_X = B_0(X) = \operatorname{Im} \partial_1$ より.
- ■66,4 商加群の普遍性より、以下の準同形 φ, ψ がただ一つずつ存在する:

$$\exists ! \varphi : H_0(X) \to \mathbb{Z}\pi_0(X), \ \varphi p_X = \varpi_X \varphi_{0\#}, \quad \exists ! \psi : \mathbb{Z}\pi_0(X) \to H_0(X), \ \psi \varpi_X = p_X \varphi_{0\#}^{-1}.$$

 $arphi,\psi$ は互いの逆写像になっている.実際, $arphi\psi\varpi_Xarphi_{0\#}=\varpi_Xarphi_{0\#}$ であることと, $\varpi_Xarphi_{0\#}$ が全射であることより $arphi\psi=\mathrm{id}_{\mathbb{Z}\pi_0(X)}$ である.同様に $\psiarphi=\mathrm{id}_{H_0(X)}$.

- ■66,9 ϖ_X と p_X が自然変換であることに注意して $\varpi_Y \varphi_{0\#} f_* = \varpi_Y f_* \varphi_{0\#}$ を変形すると, $\varphi f_* p_X = f_* \varphi p_X$ を得る. p_X は全射なので $\varphi f_* = f_* \varphi$ を得る.
- ■75.14 プリズム分解のイメージ図を描いた(図5).

図 5 プリズム分解 (n=1, i=0).

■75,-3(補題 2.2.8) 任意の $\sigma \in X^{\Delta^n}$ に対し, $(f \times 1)_* \Phi_n^X(\sigma) = \sum (-1)^i (f \times 1) \circ (\sigma \times 1) \circ s_i^{n+1} = \sum (-1)^i ((f \circ \sigma) \times 1) \circ s_i^{n+1} = \Phi_n^Y f_*(\sigma)$ であるから.

■77,8 $u\in Z_n(S_*(X))$ とすると, $u=(-1)^{n+1}\partial_{n+1}\Phi_nu+(-1)^n\Phi_{n-1}\partial_nu=\partial_{n+1}\left((-1)^{n+1}\Phi_nu\right)\in \operatorname{Im}\partial_{n+1}$ ゆえ $H_n(X)=0$.

■79,7 (定理 2.2.11)

■99,-8 (定理 2.4.3) 補題 2.1.9 証明と類似の図式

$$\begin{array}{c|cccc}
\mathbb{Z}X^{\Delta^{1}} & \xrightarrow{\partial_{1}} \mathbb{Z}X^{\Delta^{0}} & \xrightarrow{\partial_{0}} \mathbb{Z} \\
\varphi_{1\#} & & & & & & & & \downarrow \sim \\
\downarrow^{\varphi_{1\#}} & & & & & & \downarrow^{\varphi_{0\#}} & & & & \downarrow^{\varphi_{1}} \downarrow^{\varphi_{1}} \\
\mathbb{Z}X^{I} & \xrightarrow{D_{X}} \mathbb{Z}X & \xrightarrow{\varepsilon_{X}} \mathbb{Z}
\end{array}$$

より、 $\ker \partial_0 / \operatorname{Im} \partial_1 \cong \ker \varepsilon_X / \operatorname{Im} D_X$ を得る.一方、補題 1.2.10 より $\ker \varepsilon_X / \operatorname{Im} D_X \cong \ker \varepsilon_{\pi_0(X)}$ であるから証明が完了する.

■104,-1 ($\operatorname{mesh}(\partial_n \sigma) \leq \operatorname{mesh}(\sigma)$ がなりたつこと) $\partial_n \sigma = \sum (-1)^i (\sigma \circ d_i^{n-1})$ を思い出す. 任意の i で $(\sigma \circ d_i^{n-1})(\Delta^{n-1}) \subset \sigma(\Delta^n)$ ゆえ $\delta((\sigma \circ d_i^{n-1})(\Delta^{n-1})) \leq \delta(\sigma(\Delta^n))$ であることと、 $\operatorname{mesh}(\sigma)$ の定義より従う.

■105,-3 ? なぜ $(\mathrm{Sd}_n)^m(\sigma) = \sigma_*(\mathrm{Sd}_n)^m(1_n)$?

■107,1 ? なぜ $m(\sigma \circ d_i^{n-1}) \leq m(\sigma)$?

■102,-4 (重心細分の計算)

ω₁ の計算

$$\begin{split} \omega_1 &:= \beta_{1_1}((d_0^0)_*\omega_0) - \beta_{1_1}((d_1^0)_*\omega_0) \\ &= \beta_{1_1}(d_0^0) - \beta_{1_1}(d_1^0) \\ &= (e_{01}e_1) - (e_{01}e_0) \quad ((e_0 + e_1)/2 := e_{01}, 以下同樣.). \end{split}$$

ω₂ の計算

$$\begin{split} \omega_2 &:= \beta_{1_2}((d_0^1)_*\omega_1) - \beta_{1_2}((d_1^1)_*\omega_1) + \beta_{1_2}((d_2^1)_*\omega_1) \\ &= \beta_{1_2}((e_{12}e_2) - (e_{12}e_1)) - \beta_{1_2}((e_{20}e_2) - (e_{20}e_0)) + \beta_{1_2}((e_{01}e_1) - (e_{01}e_0)) \\ &= (e_{012}e_{12}e_2) - (e_{012}e_{12}e_1) - (e_{012}e_{20}e_2) + (e_{012}e_{20}e_0) + (e_{012}e_{01}e_1) - (e_{012}e_{01}e_0). \end{split}$$

まとめると、図6のようになる.

図 6 左: ω_1 のイメージ図, 右: ω_2 のイメージ図.

第3章

■118,-2 (回転数 τ の定義) 混乱してしまった. 写像度 deg の定義域は $(S^1,1)$ から $(S^1,1)$ への連続関数の集合 であるから, 回転数 τ の定義を標準射影 π を用いて以下のように修正する:

$$\tau: \pi_1(S_1, 1) \xrightarrow{(p^*)^{-1}} [(S^1, 1), (S^1, 1)] \xrightarrow{\pi^{-1}} (S^1, 1)^{(S^1, 1)} \xrightarrow{\deg} \mathbb{Z}$$

写像度のホモトピー不変性により τ は well-defined.

■119,7 (τ が群の準同型であること) $[l_1], [l_0] \in \pi_1(S^1, 1)$ をとると,

$$\tau([l_1] \cdot [l_0]) = \deg \circ \pi^{-1} \circ (p^*)^{-1}([l_1] \cdot [l_0])$$

$$= \deg([\overline{l_1} \cdot l_0]) \quad (\overline{l_1} \cdot \overline{l_0} \circ p = l_1 \cdot l_0. \text{ cf. } 補題 3.1.7)$$

$$= \deg([l_1 \cdot_{(1.4.2)} \circ_{\widehat{\mathbb{S}} \oplus k} l_0])$$

$$= \deg[l_1] + \deg[l_0] \quad (補題 1.4.4)$$

$$= \tau([l_1]) + \tau([l_0])$$

となるから τ は群の準同型. 以下, τ のホモトピー不変性を理由に記号を濫用して $\tau([l])$ を $\tau(l)$ と書いているみたい.

■119,8 $(\tau(l_0) = \deg(\varphi_1) = 1)$ 直前の式がよく分からなかったけど、こういうことかな: $l_0 = p = 1_{S^1} \circ p = \varphi_1 \circ p$ ゆえ $[l_0] = p^*[\varphi_1]$ だから、 $\tau(l_0) = \deg \circ \pi^{-1} \circ (p^*)^{-1} \circ p^*([\varphi_1]) = \deg(\varphi_1) = 1$.

■128,-9 ($\alpha^{-1} = (\Pi F \circ (l \times 1_I))[j_0]^{-1}$ がなりたつこと)

$$(\Pi F \circ (l \times 1_I))[j_0]^{-1} \cdot (\Pi F \circ (l \times 1_I))[j_0] = (\Pi F \circ (l \times 1_I))([j_0]^{-1} \cdot [j_0])$$

$$= (\Pi F \circ (l \times 1_I))[c_{(0,0)}] \quad (\text{cf. p.125,l.2})$$

$$= [F \circ (l \times 1_I) \circ c_{(0,0)}]$$

$$= [c_{x_0}] = e_{x_0}.$$

同様に $(\Pi F \circ (l \times 1_I))[j_0] \cdot (\Pi F \circ (l \times 1_I))[j_0]^{-1} = e_{x_0}$ も成立する.

van Kampen の定理の証明

■139,-4(P**が**l**に関して開被覆** $\{U_+,U_-\}$ **に適合していること)** l に関して開被覆 $\{U_+,U_-\}$ に適合している分割 P の例を図 7 に示した.

図 7 l に関して開被覆 $\{U_+, U_-\}$ に適合している分割 P の例.

■142,-9 $I \times I$ の開集合 $L^{-1}((U_+)^\circ)$ と $L^{-1}((U_-)^\circ)$ を図 8 に示した.

図 8 $I \times I$ の開集合 $L^{-1}((U_+)^{\circ})$ と $L^{-1}((U_-)^{\circ})$.

■143,-10 $l_{k-1}^{P_k,j}=\alpha_j^{-1}l_k^{P_k,j}\alpha_{j-1}$ が成り立つ様子を図 9 に示した.

 $\boxtimes 9 \quad l_{k-1}^{P_k,j} = \alpha_j^{-1} l_k^{P_k,j} \alpha_{j-1}.$

- ■144,-7 ? $\mathbb{C}\setminus\{z_1,\ldots,z_s\}\simeq U$ を直接示すのは難しいのだろうか. (考えてない)
- ■145,-8 (**曲面群の話**) ? 基本群の表示が分かってないので後回しにする.

■148,11 (式 (3.3.1)) 式 (1.4.4) の両辺に $p^*[\cdot]$ を作用した後,

$$p^*[f] \cdot p^*[g] = [f \circ p] \cdot [g \circ p]$$

= $[(f \circ p) \cdot (g \circ p)] \quad (1.4.2) \ \mathcal{O}$ 積 ·
= $[(f \cdot g) \circ p] \quad (3.1.2) \ \mathcal{O}$ 積 ·
= $p^*[f \cdot g]$

を用いる.

■150,1 ($h_{lpha}(e_{x_0})=0$ であること)

$$\begin{split} h_{\alpha}(e_{x_0}) &= c_{x_0,*}([\tilde{\alpha}]) \quad ([\tilde{\alpha}] := \alpha, \tilde{\alpha} := \Sigma_l a_l \sigma_l \in Z_q(Z), a_l \in \mathbb{Z}, \sigma_l \in Z^{\Delta^q}) \\ &= [c_{x_0,*}(\tilde{\alpha})] \\ &= \left(\sum_l a_l\right) [\tilde{c}_{x_0}] \quad (\tilde{c}_{x_0} : \Delta^q \to X, x \mapsto x_0 \ (\text{定值写像})) \\ &= 0 \quad (\tilde{c}_{x_0} \in Z_q(\{x_0\}) \subset B_q(\{x_0\}) \subset B_q(X)). \end{split}$$

- ■151,-10(ホモロジー類 [p] が定義できること) 上述の同一視 $\Delta^1 \approx I_1, \Delta^0 \approx *$ のもとで, $\partial_1 p = p(1) p(0) = 1 1 = 0$ より従う.
- **■152,11** x_0 を基点とするループ $\theta(l(1)) \cdot (l \cdot \theta(l(0))^{-1})$ の例を図 10 に示した.

図 10 x_0 を基点とするループ $\theta(l(1)) \cdot (l \cdot \theta(l(0))^{-1})$.

■152,-3 $(\sigma \circ d_0^1) \cdot (\sigma \circ d_2^1) \simeq (\sigma \circ d_1^1) : I \to X \text{ rel } \partial$ が成り立つ様子を図 11 に示した.

 $\ensuremath{\,\,\boxtimes\,} 11 \quad (\sigma \circ d^1_0) \cdot (\sigma \circ d^1_2) \simeq (\sigma \circ d^1_1) : I \to X \ensuremath{\text{ rel }} \partial.$

■153.-9 ?

■154,-9 ?

第4章

■159,-11 (j_* がチェイン写像であること) $\partial_n j_*(u) = \partial_n (u + i_* S_n(A)) = \partial_n u + i_* S_{n-1}(A) = j_* \partial_n (u)$.

$$S_n(X) \xrightarrow{j_*} S_n(X, A)$$

$$\begin{array}{ccc} \partial_n & & & \partial_n \\ & & & \downarrow \\ S_{n-1}(X) \xrightarrow{j_*} S_{n-1}(X, A) \end{array}$$

■160,-8 ($H_0(X,A)=0$ であること) 完全性と i_* の全射性より $\ker j_*=\operatorname{Im} i_*=H_0(X)$ であるから j_* は零写像. j_* の全射性 $\operatorname{Im} j_*=H_0(X,A)$ とあわせて $0=\operatorname{Im} j_*=H_0(X,A)$.

■160,-2 ? 最後の i_* はどういう写像?

■166,3(\overline{F} が連続であること) $\overline{F} \circ (p \mid_{U} \times 1_{[0,1]}) = p \circ F$ である. 右辺が連続写像であることと $p \mid_{U} \times 1_{[0,1]}$ が等化写像であることより補題 1.1.13(b) が使えて \overline{F} は連続写像.

■167-1 $p \in X$ のまわりで定義された X の座標近傍 (U, φ, V) のイメージ図を描いた(図 12).

図 12 $p \in X$ のまわりで定義された X の座標近傍 (U, φ, V) .

■167.4 (集合の包含関係について)

- 1. $B_n(a,r) \subset \overline{B_n(a,r)}$ క్రి $X \setminus \varphi^{-1}(\overline{B_n(a,r)}) \subset X \setminus \varphi^{-1}(B_n(a,r))$. $X \setminus \varphi^{-1}(B_n(a,r))$ ్రి $X \setminus \varphi^{-1}(\overline{B_n(a,r)}) \subset X \setminus \varphi^{-1}(B_n(a,r))$.
- 2. $\varphi^{-1}(B_n(a,r)) \ni p$.
- 3. X it Hausdorff tor $\{p\} \stackrel{\text{close}}{\subset} X$.

■172,10(空間の三対 (X, A, A') の連結準同型の自然性) 4.4.1 節で用いる. 以下のように定式化しておく. 連続写像 $f:(X,A,A')\to (Y,B,B')$ について図式

$$H_{n}(X,A) \xrightarrow{\partial_{*}} H_{n-1}(A,A')$$

$$f_{*} \downarrow \qquad 0 \qquad f_{*} \downarrow \qquad H_{n}(Y,B) \xrightarrow{\partial_{*}} H_{n-1}(B,B')$$

は可換.

■172,-3(系 4.1.11) 補題 4.1.1 と同相 $D^n \approx \Delta^n$, $S^n \approx \partial \Delta^{n+1}$ より

$$H_{n+1}(\Delta^{n+1}, \partial \Delta^{n+1}) \stackrel{\partial_*}{\cong} H_n(\partial \Delta^{n+1}) \cong \mathbb{Z}$$

であるから、 $H_n(\partial \Delta^{n+1})$ の生成元は $H_{n+1}(\Delta^{n+1},\partial \Delta^{n+1})$ の生成元 $[1_{n+1}]$ を ∂_* で写した $[\partial 1_{n+1}]$ である. (cf. p.160, l.4)

■180,-5 ($f^{-1}(q)$ が有限集合であること)

- 1. Y の Hausdorff 性より $\{q\}$ $\stackrel{\text{close}}{\subset} Y$.
- 2. f の連続性と 1. より $f^{-1}(q) \stackrel{\text{close}}{\subset} X$.
- 3. f の局所同相性より $f^{-1}(q)$ は離散的.
- 4. X のコンパクト性と 2. より補題 A.1.7 が使えて $f^{-1}(q) \subset X$ はコンパクト.
- 5. p.268, l.12 と 3., 4. より $f^{-1}(q)$ は有限集合.

■181,2 (*ι** が同型であること) 定理 4.1.9 (5) より

$$\bigoplus_{i=1}^{m} H_n(U_i, U_i \setminus \{p_i\}) = H_n \left(\bigcup_{i=1}^{m} U_i, \bigcup_{i=1}^{m} U_i \setminus f^{-1}(q) \right).$$

ここで

$$X \setminus \left(\bigcup_{i=1}^{m} U_i\right) = \overline{X \setminus \left(\bigcup_{i=1}^{m} U_i\right)} \subset \left(X \setminus f^{-1}(q)\right)^{\circ} = X \setminus f^{-1}(q)$$

が成り立つから切除定理が使える. よって ι_* は同型.

- ■184,5($B_n(x,r)$ の上で $\deg_x f$ が一定であること)
- ■185,14(可換図式がなりたつこと, $S_{c*}\mu_x = \mu_{x+c}$ がなりたつこと) ? そうっぽい感じはするけど厳密にできてない. 所々で同一視が行われていて混乱している.

■187,2 (補題 4.2.11 証明)

- 線形同型 $A: \mathbb{R}^n \to \mathbb{R}^n$ を $A = (g(e_1), \dots, g(e_n))$ とすればよい.
- p.186, l.-12 と g の定義より

$$\varepsilon(f) = (\operatorname{sgn} \circ \operatorname{det})(f(e_1) - f(e_0), \dots, f(e_n) - f(e_0))
= (\operatorname{sgn} \circ \operatorname{det})(f(e_1) - f(b), \dots, f(e_n) - f(b))
= (\operatorname{sgn} \circ \operatorname{det})(g(e_1), \dots, g(e_n))
= (\operatorname{sgn} \circ \operatorname{det})(g(e_1) - g(b), \dots, g(e_n) - g(b))
= (\operatorname{sgn} \circ \operatorname{det})(g(e_1) - g(e_0), \dots, g(e_n) - g(e_0))
= \varepsilon(g).$$

- g(b) = 0 だから, $0 = g(b) = \frac{1}{n+1}g(e_0) + \frac{1}{n+1}\sum_{k=1}^n g(e_k)$ すなわち $g(e_0) = -\sum_{k=1}^n g(e_k)$. いっぽう, $\iota_n(e_0) = (-1, \dots, -1)^{\mathsf{T}} \in \mathbb{R}^n$ だから $A(\iota_n(e_0)) = -\sum_{k=1}^n g(e_k)$. 以上より, $A(\iota_n(e_0)) = g(e_0)$.
- ■188,8 $\overline{f}_z=\overline{f_{\overline{z}}},\overline{f}_{\overline{z}}=\overline{f_z}$ に注意.

■196,10 (補題 4.3.1(0))

- N' の生成系を $\{x'_1,\ldots,x'_{n'}\}$, N'' の生成系を $\{x''_1,\ldots,x''_{n''}\}$ とおく.
- \underline{g} が全射の場合: N の有限部分集合であって、その \underline{g} による像が N'' の生成系となるものを \tilde{N} とおく、任意の $\underline{x} \in N$ をとる。 $\underline{g}(x) = \sum_{i=1}^{n''} a_i'' x_i''$ とかけることと、各 $1 \leq i \leq n''$ に対し $x_i \in \tilde{N}$ があって $\underline{g}(x_i) = x_i''$ となることより $\underline{g}(x \sum_{i=1}^{n''} a_i'' x_i) = 0$ すなわち $x \sum_{i=1}^{n''} a_i'' x_i \in \ker \underline{g} = \operatorname{Im} f$ がなりたつ。 ゆえに $x \sum_{i=1}^{n''} a_i'' x_i = f\left(\sum_{j=1}^{n'} a_j' x_j'\right) = \sum_{j=1}^{n'} a_j' f(x_j')$ となり結局 $x = \sum_{i=1}^{n''} a_i'' x_i + \sum_{j=1}^{n'} a_j' f(x_j')$ を得る.これは N が有限生成であることを示している.

- g が一般の場合:
 - 部分加群 $g(N) \subset N''$ が有限生成であることを示せばよいこと: 任意の $x \in N$ をとる. g(N) が有限生成であるから $x_i \in N, 1 \le i \le n_{g(N)}$ を用いて $g(x) = \sum_{i=1}^{n_{g(N)}} a_i''g(x_i)$ とかける. $x \sum a_i''x_i \in \ker g$ と Im $f = \ker g$ より $f\left(\sum_{j=1}^{n'} a_j'x_j'\right) = x \sum a_i''x_i$ つまり $x = \sum a_i''x_i + \sum_{j=1}^{n'} a_j'f(x_j')$. これは N が有限生成であることを示している.
- •? これ以降わからない. 行間広すぎ~
- ■202,3 ($\chi(P) = -1$ となること)
 - 1. $P \simeq P \backslash \partial P \ \ \ \ \ \ \chi(P) = \chi(P \backslash \partial P).$
 - 2. S^2 から取り除いた 3 つの 2 次元閉円板を $D_i^2, i=1,2,3$ とおくと, $\chi(S^2) \stackrel{(4.2.5)}{=} \chi(S^2 \setminus \bigcup_{i=1}^3 \partial D_i^2) = \chi(P \setminus \partial P) + 3\chi(*)$.
- 1., 2. より $\chi(P) = \chi(P \setminus \partial P) = \chi(S^2) 3\chi(*) = 2 3 = -1$ がなりたつ.
- ■203,12 $(\varphi(D^m) = \overline{e}$ がなりたつこと) 一般に $\varphi\varphi^{-1}(\overline{e}) \subset \overline{e}$. すでに示した $\varphi(D^m) \supset \overline{e}$ と $D^m = \varphi^{-1}(\overline{e})$ を用いると, $\varphi(D^m) = \varphi\varphi^{-1}(\overline{e}) \supset \overline{e}$. あわせて $\varphi\varphi^{-1}(\overline{e}) = \overline{e}$. ゆえに $\varphi(D^m) = \overline{e}$ がなりたつ.
- ■204,-3 ($\varphi_{\lambda}^{-1}(C)$ の φ_{λ} による像が $C \cap \varphi_{\lambda}(D^{n_{\lambda}})$ となること) $\varphi_{\lambda}(D^{n_{\lambda}}) \stackrel{(203,12)}{=} \overline{e_{\lambda}}$ ゆえ $\varphi_{\lambda}^{-1}(C) = \varphi_{\lambda}^{-1}(C \cap \overline{e_{\lambda}})$ であるから, $\varphi_{\lambda}\varphi_{\lambda}^{-1}(C) = C \cap \overline{e_{\lambda}} = C \cap \varphi_{\lambda}(D^{n_{\lambda}})$ がなりたつ.
- ■207,-10 変位レトラクト F の図を描いた(図).
- ■207,-3 (F の連続性が $F \circ (\varphi_{\lambda} \times 1_{[0,1]})$ の連続性からしたがうこと)

$$F$$
 が連続 $\iff orall O \overset{ ext{open}}{\subset} X^{(k)} \setminus \Phi(S), F^{-1}(O) \overset{ ext{open}}{\subset} \left(X^{(k)} \setminus \Phi(S) \right) \times [0,1].$ $\iff orall O \overset{ ext{open}}{\subset} X^{(k)} \setminus \Phi(S), orall \lambda \in \Lambda, \left(\varphi_{\lambda} \times 1_{[0,1]} \right)^{-1} \circ F^{-1}(O) \overset{ ext{open}}{\subset} D^{n_{\lambda}}.$ (補題 $4.3.6(4)$ より) $\iff orall \lambda \in \Lambda, F \circ (\varphi_{\lambda} \times 1_{[0,1]})$ が連続.

- ■211,14($|K|=\coprod_{\sigma\in\Sigma}e_{\sigma}$ となること) |K| の定義より $|K|=\cup_{\sigma\in\Sigma}e_{\sigma}$ である. さらに $\sigma\neq\sigma'$ のとき $\sigma(x)=\sigma$ と $\sigma(x)=\sigma'$ が同時になりたつことはないから $e_{\sigma}\cap e_{\sigma'}=\varnothing$. ゆえに $|K|=\coprod_{\sigma\in\Sigma}e_{\sigma}$ がなりたつ.
- ■212,8($\varphi_{\sigma} \circ d_i$ は $(a_0 \cdots a_{i-1} a_{i+1} \cdots a_n)$ の定める胞体の特性写像であること) $(a_0 \cdots a_{i-1} a_{i+1} \cdots a_n)$ の定める特性写像 φ は

$$\varphi: \Delta^{n-1} \to \Delta^N, \ (t_0, \dots, t_{n-1}) \mapsto t_0 a_0 + \dots + t_{i-1} a_{i-1} + t_i a_{i+1} + \dots + t_{n-1} a_n$$

で定義される. 一方, $\varphi_{\sigma} \circ d_i(t_0, \dots, t_{n-1}) = \varphi_{\sigma}(t_0, \dots, t_{i-1}, 0, t_i, \dots, t_{n-1}) = t_0 a_0 + \dots + t_{i-1} a_{i-1} + t_i a_{i+1} + \dots + t_{n-1} a_n$ であるから φ は $\varphi_{\sigma} \circ d_i$ に等しい.

■216,5 周辺 $\ker \partial_q \cong H_q(X^{(q)}, X^{(q-2)})$, $\operatorname{Im} \partial_* \cong \operatorname{Im} \partial_{q+1}$ により,

$$H_q(X) \cong H_q\left(X^{(q+1)}, X^{(q-2)}\right) \cong H_q(X^{(q)}, X^{(q-2)}) / \operatorname{Im} \partial_* \cong \ker \partial_q / \operatorname{Im} \partial_{q+1} = H_q(C_*(X))$$

がなりたつ.

参考文献

[1] 河澄響矢『トポロジーの基礎(上)』第1刷