Reusing existing trained Al models in WIPP

Antoine Meyer, Mylene Simon, Timothee Kheyrkhah, Peter Bajcsy

Overview

- 1 Background
 - Problem statement
 - Related work
 - No common APIs
 - Our approach
 - Plugin concept
- 2 WIPP plugins for Al models reuse
 - Public Al repositories
 - Unlock these repositories
 - Evaluate results

- 3 Benchmarks
 - 2-steps workflow
 - Data 'cell boundary'
 - Accuracy for 'cell boundary'
 - Data 'nuclei segmentation'
 - Accuracy for 'nuclei segmentation'
- 4 Conclusion
 - New WIPP plugins
 - Fine-tuning plugin

Background Problem statement

Problem

▶ Lower the barriers for reusing trained AI models available in AI models repositories

Challenges

- Scattered models in a lot of different repositories and stored in many formats
- It is not trivial to setup and execute AI models for non-technical researchers
- Re-training models from scratch take a lot of time and money

Motivations

- Accelerate applications of AI models to scientific problems
- Save computation time by reusing pre-trained models from diverse repositories

Background Related work

Already existing APIs or tools to download, inference (and train) AI models

- ► Transformers (Hugging Face API)*
- Cellpose API**
- Biolmage.IO Core (Python libraries)
- ► SAM2 repositorv***

```
*https://aclanthology.org/2020.emnlp-demos.6/
```

^{**}https://www.biorxiv.org/content/10.1101/2020.02.02.931238v1

^{***}https://arxiv.org/abs/2408.00714

No common APIs/CLIs/no standard for 'download API'

```
# BioImage.IO
          model = load_description(args.model)
          # Hugaina Face
          pipe = pipeline(task="mask-generation", model=args.model,
            points_per_batch=32, device=device)
          # SAM2
          mask_generator = SAM2AutomaticMaskGenerator.from_pretrained(
            args.model, device=device)
10
          # Cellpose
          python -m cellpose --pretrained_model cyto3
```

Same problem with 'inference API', 'train API', etc

Background Our approach

Our approach

- Using existing API of AI repositories
- ► Leverage WIPP
- ► Use AI model card

Contributions

- ► Analyze API of AI repositories
- Implement them for containerized plugin that run in WIPP without learning the API
- Trained/Retrained AI model will comes with proper AI model card

Web Image Processing Pipelines

- Purpose: Measurements based on terabyte-sized images
- ► Goal: Lower the barrier to execute image analyses

WIPP workflow

Sequence of plugins

WIPP plugin

 Piece of code taking inputs/outputs and executing code

- 2 WIPP plugins for AI models reuse
 - Public Al repositories
 - Unlock these repositories
 - Evaluate results

WIPP plugins for Al models reuse Public Al repositories

Many public Al models on lots of public Al repositories

Al repositories	Image classification models	Segmentation + MG* models	
Hugging Face	15,593	1,160 + 176	
BioImage.10	1	4 + 32	
Cellpose	×	21	
SAM2	×	8	
PyTorch Hub	20	5	

Table: Number of models per repository

*MG: Mask Generation

WIPP plugins for Al models reuse Unlock these repositories

Goal: Access external AI models in WIPP

Work:

Create one plugin per public repository

Question:

How to assess the relevance of results?

WIPP plugins for Al models reuse Evaluate results

Goals

- ► Mesure accuracy of external AI results
- ► Select the most accurate/fastest one

Work:

Plugin to compute the Dice-Sørensen coefficient*

$$Dice = \frac{2*TP}{2*TP + FP + FN}$$

*Statistic used to gauge the similarity of two images

- 3 Benchmarks
 - 2-steps workflow
 - Data 'cell boundary'
 - Accuracy for 'cell boundary'
 - Data 'nuclei segmentation'
 - Accuracy for 'nuclei segmentation'

Benchmarks 2-steps workflow

WIPP 2-steps workflow

- Inference the model
- Compute the accuracy

Hardware

- ► AMD Ryzen 9 3950X 16-Core Processor
- NVIDIA GeForce RTX 3090
- ► 64G RAM

Benchmarks Data 'cell boundary'

Name: Retinal Pigment Epithelium

Number: 1032 images (822/210)

Image

Type: Cell microscopy

Size: 256x256

Mask

Source: https://doi.org/doi:10.18434/T4/1503229

Benchmarks Accuracy for 'cell boundary'

Task: Segments cell edges

Repository	Model	Accuracy	Time per image
WIPP	unet-cnn*	$95.11\% \pm 0.78\%$	8.56s + 2.35s
Biolmage.10	10.5281/zenodo.5869899	$89.30\% \pm 0.84\%$	0.31s
Hugging Face	facebook/sam-vit-huge	$86.01\% \pm 2.50\%$	4.16s
SAM2	facebook/sam2.1-hiera-large	$80.18\% \pm 5.02\%$	2.0s
Cellpose	cyto3	$78.51\% \pm 2.35\%$	1.08s

Table: Models accuracy after inference on data 'cell boundary'

^{*}Trained with data, then inferenced (in WIPP)

Benchmarks Data 'nuclei segmentation'

Name: Data Science Bowl 2018 Number: 497 images (447/50)

Image

Type: Cell microscopy

Size: 256x256 and 696x520

Mask

Source: https://bbbc.broadinstitute.org/BBBC038/

Task: Segments nuclei of cells

Repository	Model	Accuracy
BioImage.IO	10.5281/zenodo.5764892	$93.73\% \pm 3.98\%$
WIPP	Stardist 2D paper DSB 2018*	90.67% ± 4.42%
Cellpose	cyto3	$82.31\% \pm 17.25\%$
Cellpose	nuclei	$81.00\% \pm 21.00\%$
SAM2	facebook/sam2.1-hiera-small	$48.18\% \pm 32.41\%$
BioImage.IO	10.5281/zenodo.5869899	$29.47\% \pm 8.32\%$
Hugging Face	facebook/sam-vit-huge	$21.63\% \pm 15.37\%$

Table: Models accuracy after inference on data 'nuclei segmentation'

^{*}Trained with data, then inferenced (in WIPP)

- 4 Conclusion
 - New WIPP plugins
 - Fine-tuning plugin

Conclusion New WIPP plugins

Inference plugins

- wipp/wipp-huggingface-maskgeneration-inference
- ▶ wipp/wipp-bioimage-io-inference-plugin
- wipp/wipp-sam2-inference-plugin
- ► wipp/wipp-cellpose-inference-plugin

Accuracy plugin

wipp/wipp-dice-segmentationaccuracy

Conclusion Fine-tuning plugin

Goal

Improve already existing AI models

Work

- ► Identify if models can be retrain/fine-tune
- Plugin to fine-tune an Al model

WIPP enhancements CSV viewer

Issue: Impossible to view CSV content without downloading

Solution: Content directly in the user interface

WIPP enhancements Multi-dialogs workflow

Issue: Difficult to navigate between different plugins in a workflow

Solution: Allows user to open one modal per plugin

