Package 'circlizePlus'

April 22, 2025

Title Using 'ggplot2' Feature to Write Readable R Code for Circular

```
Visualization
Version 0.9.0
Description A wrapper for 'circlize'. All components are based on classes and ob-
     jects. Users can use the addition symbol (+) to combine components for a circular visualiza-
     tion with 'ggplot2' style. The package is de-
     scribed in Zhang Z, Cao T, Huang Y and Xia Y (2025) <doi:10.3389/fgene.2025.1535368>.
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2
Collate 'track.R' 'heatmap.R' 'cell-geom.R' 'track-geom.R' 'link.R'
     'param.R' 'utils.R' 'initialize.R' 'add.R'
     'circlizePlus-package.R' 'data.R'
Depends circlize (>= 0.4.16), R (>= 4.4.0)
Imports methods, stats
Suggests png, ape, dendextend, ComplexHeatmap, testthat (>= 3.0.0),
     knitr, rmarkdown
Config/testthat/edition 3
URL https://github.com/TianzeLab/circlizePlus,
     https://tianzelab.github.io/circlizePlus/,
     https://doi.org/10.3389/fgene.2025.1535368
BugReports https://github.com/TianzeLab/circlizePlus/issues
VignetteBuilder knitr
NeedsCompilation no
Author Tianze Cao [aut, cre] (<a href="https://orcid.org/0000-0003-4308-1878">https://orcid.org/0000-0003-4308-1878</a>),
     Zheyu Zhang [aut]
Maintainer Tianze Cao <hnrcao@qq.com>
Repository CRAN
```

Date/Publication 2025-04-22 14:30:02 UTC

2 Contents

Contents

addition-rules	
ccArrow	
ccBarplot	
ccBoxplot	
ccCell	
ccCell-class	
ccCellGeom-class	
ccCells	
ccCells-class	
ccDendrogram	
ccGenomicAxis	
ccGenomicCellGeom-class	
ccGenomicDensity	
ccGenomicHeatmap	
ccGenomicIdeogram	
ccGenomicLabels	
ccGenomicLines	
ccGenomicLink	
ccGenomicLink-class	
ccGenomicPoints	
ccGenomicRainfall	
ccGenomicRect	
ccGenomicText	
ccGenomicTrack	
ccGenomicTrack-class	
ccHeatmap	
ccHeatmap-class	
ccHeatmapLink	
ccHeatmapLink-class	
ccLines	
ccLink	
ccLink-class	
ccPar	
ccPar-class	
ccPlot	
ccPlot-class	
ccPoints	
ccPolygon	
ccRaster	
ccRect	
ccSegments	
ccText	
ccTrack	
ccTrack-class	
ccTrackGeom-class	
ccTrackHist	4

addition-rules 3

	addition-rules Addition rules in circlizePlus				
Index		61			
	show,ccPlot-method	59			
	show,ccHeatmap-method				
	data-set				
	ccYaxis				
	ccXaxis	54			
	ccViolin				
	ccTrackText				
	ccTrackPoints				
	ccTrackLines	50			

Description

ccPlot(contain n ccTracks)+ccTrack=ccPlot(contain n+1 ccTracks),n>=0 ccPlot(contain n ccLinks)+ccLink=ccPlot(contain n+1 ccLinks),n>=0 ccTrak(contain n ccTrakGeoms)+ccTrackGeom=ccTrack(contain n+1 ccTrack-Geoms),n>=0 ccTrack(contain n ccCells)+ccCell=ccTrack(contain n+1 ccCells),n>=0 ccCell(contain n+1 ccCellGeoms)+ccCellGeom=ccCell(contain n+1 ccCellGeoms),n>=0

```
## S4 method for signature 'ccPlot,ccPar'
e1 + e2

## S4 method for signature 'ccPlot,ccTrack'
e1 + e2

## S4 method for signature 'ccPlot,ccLink'
e1 + e2

## S4 method for signature 'ccTrack,ccTrackGeom'
e1 + e2

## S4 method for signature 'ccTrack,ccCells'
e1 + e2

## S4 method for signature 'ccTrack,ccCell'
e1 + e2

## S4 method for signature 'ccCell,ccCellGeom'
e1 + e2

## S4 method for signature 'ccCells,ccCellGeom'
e1 + e2
```

4 ccArrow

```
## S4 method for signature 'ccHeatmap,ccPar'
e1 + e2
## S4 method for signature 'ccHeatmap,ccTrack'
e1 + e2
## S4 method for signature 'ccHeatmap,ccLink'
e1 + e2
```

Arguments

e1 A object defined in circlizePlus

e2 A object defined in circlizePlus

Value

A object defined in circlizePlus

Examples

NULL

ccArrow

Draw an arrow

Description

Object ccCellGeom will call the function circlize::circos.arrow while drawing.

```
ccArrow(
   x1,
   x2,
   y,
   width,
   arrow.head.length = NULL,
   arrow.position = c("end", "start"),
   tail = c("normal", "point"),
   border = "black",
   col = "#FFCCCC",
   lty = par("lty"),
   ...
)
```

ccBarplot 5

Arguments

x1	Start position of the arrow on the x-axis.
x2	End position of the arrow on the x-axis. Note $x2$ should be larger than $x1$. The direction of arrows can be controlled by arrow.position argument.
У	Position of the arrow on the y-axis. Note this is the center of the arrow on y-axis.
width	Width of the arrow body.
arrow.head.leng	gth
	Length of the arrow head. Note the value should be smaller than the length of the arrow itself (which is $x2$ – $x1$).
arrow.head.widt	ch
	Width of the arrow head.
arrow.position	Where is the arrow head on the arrow. If you want to the arrow in the reversed direction, set this value to "start".
tail	The shape of the arrow tail (the opposite side of arrow head).
border	Border color of the arrow.
col	Filled color of the arrow.
lty	Line style of the arrow.
	Pass to polygon.

Value

Object ccCellGeom

Examples

```
library(circlizePlus)
cc <- ccPlot(sectors = letters[1:4], xlim = c(0, 10))
track <- ccTrack(ylim = c(0, 1))
cell <- ccCell(sector.index = "a") + ccArrow(x1 = 1, x2 = 9, y=0.5, width=0.5)
track <- track + cell
cc + track</pre>
```

ccBarplot

Draw barplots

Description

Object ccCellGeom will call the function circlize::circos.barplot while drawing.

6 ccBoxplot

Usage

```
ccBarplot(
  value,
  pos,
  bar_width = 0.6,
  col = NA,
  border = "black",
  lwd = par("lwd"),
  lty = par("lty")
)
```

Arguments

value A numeric vector or a matrix. If it is a matrix, columns correspond to the height

of bars.

pos Positions of the bars.

bar_width Width of bars. It assumes the bars locating at x = 1, 2, ...

col Filled color of bars.
border Color for the border.

lwd Line width.lty Line style.

Value

Object ccCellGeom

Examples

```
library(circlizePlus)
cc <- ccPlot(sectors = letters[1:4], xlim = c(0, 10))
track <- ccTrack(ylim = c(0, 1))
cell <- ccCell(sector.index = "a") + ccBarplot(value = runif(10), pos = 1:10 - 0.5, col = 1:10)
track <- track + cell
cc + track</pre>
```

ccBoxplot

Draw boxplots

Description

Object ccCellGeom will call the function circlize::circos.boxplot while drawing.

ccBoxplot 7

Usage

```
ccBoxplot(
  value,
  pos,
  outline = TRUE,
  box_width = 0.6,
  col = NA,
  border = "black",
  lwd = par("lwd"),
  lty = par("lty"),
  cex = par("cex"),
  pch = 1,
  pt.col = par("col")
)
```

Arguments

value A numeric vector, a matrix or a list. If it is a matrix, boxplots are made by

columns (each column is a box).

pos Positions of the boxes.

outline Whether to draw outliers.

box_width Width of boxes.

col Filled color of boxes.

border Color for the border as well as the quantile lines.

lwd Line width.lty Line stylecex Point size.pch Point type.pt.col Point color.

Value

Object ccCellGeom

Examples

```
library(circlizePlus)
cc <- ccPlot(sectors = letters[1:4], xlim = c(0, 10))
track <- ccTrack(ylim = c(0, 1))
cell <- ccCell(sector.index = "a") + ccBoxplot(value = replicate(runif(10),
n = 10, simplify = FALSE), pos = 1:10 - 0.5, col = 1:10)
track <- track + cell
cc + track</pre>
```

8 ccCell-class

ccCell

Generate a cell container that belongs to a particular sector

Description

Generate a cell container that belongs to a particular sector

Usage

```
ccCell(sector.index = NULL)
```

Arguments

sector.index character. It is the index that corresponds to the sector.

Value

Object ccCell

Examples

ccCell-class

S4 class ccCell

Description

A cell container that belongs to a particular sector.

Slots

```
sector.index character. It is the index that corresponds to the sector. geoms list. The elements in the list should all be of type ccCellGeom or ccGenomicCellGeom.
```

Examples

NULL

ccCellGeom-class 9

ccCellGeom-class

S4 class ccCellGeom

Description

Objectified representation of the R package circlize's plotting functions and corresponding parameters at the cell level.

Slots

func character. The name of the plot function in the R package circlize.

params list. When the function corresponding to the parameter param is called, it represents the argument of this function.

Examples

NULL

ccCells

Generate a list of multiple object ccCell-class

Description

Generate a list of multiple object ccCell-class

Usage

```
ccCells(sector.indexes = list())
```

Arguments

sector.indexes list. A list of indexs that corresponds to the sectors.

Value

Object ccCells

Examples

10 ccDendrogram

```
track1 <- ccTrack(sectors = sectors, x = x1, y = y1)
track1 <- track1 + cells
cc + track1</pre>
```

ccCells-class

S4 class ccCells

Description

A list of multiple ccCell. Any ccCellGeom and ccCells are added together as if they were added to each ccCell contained in the ccCells.

Examples

NULL

ccDendrogram

Draw dendrogram plots in a track

Description

Object ccCellGeom will call the function circlize::circos.dendrogram while drawing.

Usage

```
ccDendrogram(
  dend,
  facing = c("outside", "inside"),
  max_height = NULL,
  use_x_attr = FALSE
)
```

Arguments

dend A dendrogram object.

facing Is the dendromgrams facing inside to the circle or outside?

max_height Maximum height of the dendrogram. This is important if more than one den-

drograms are drawn in one track and making them comparable. The height of a

dendrogram can be obtained by attr(dend, "height").

use_x_attr Whether use the x attribute to determine node positions in the dendrogram, used

internally.

Value

Object ccCellGeom

ccGenomicAxis 11

Examples

```
library(ape)
suppressPackageStartupMessages(library(dendextend))
library(circlizePlus)
data(bird.orders)
hc <- as.hclust(bird.orders)</pre>
labels <- hc$labels</pre>
ct <- cutree(hc, 6)
n <- length(labels)</pre>
dend <- as.dendrogram(hc)</pre>
par1 <- ccPar(cell.padding = c(0, 0, 0, 0))
cc \leftarrow ccPlot(sectors = "a", xlim = c(0, n)) # only one sector
dend <- color_branches(dend, k = 6, col = 1:6)
dend_height <- attr(dend, "height")</pre>
t1 <- ccTrack(ylim = c(0, dend_height), bg.border = NA, track.height = 0.4)
cell1 <- ccCell(sector.index = "a") + ccDendrogram(dend = dend)</pre>
cc + par1 + (t1 + cell1)
```

ccGenomicAxis

Add genomic axes

Description

Object ccGenomicCellGeom will call the function circlize::circos.genomicAxis while drawing.

Usage

```
ccGenomicAxis(
  h = "top",
  major.at = NULL,
  labels = NULL,
  major.by = NULL,
  tickLabelsStartFromZero = TRUE,
  labels.cex = 0.4 * par("cex"),
  ...
)
```

Arguments

h Position of the axes. "top" or "bottom".

major.at Major breaks. If major.at is set, major.by is ignored.

labels labels corresponding to major.at. If labels is set, major.at must be set.

major.by Increment of major ticks. It is calculated automatically if the value is not set

(about every 10 degrees there is a major tick).

tickLabelsStartFromZero

Whether axis tick labels start from 0? This will only affect the axis labels while not affect x-values in cells.

```
labels.cex The font size for the axis tick labels.
... Other arguments pass to circos.axis.
```

Value

Object ccGenomicCellGeom

Examples

```
library(circlizePlus)
cc <- ccPlot(initMode = "initializeWithIdeogram",
chromosome.index = paste0("chr", 1:4), plotType = NULL)
track <- ccTrack(ylim = c(0, 1))
cell <- ccCell(sector.index = "chr1") + ccGenomicAxis()
e <- track + cell
cc + e</pre>
```

ccGenomicCellGeom-class

S4 class ccGenomicCellGeom

Description

It is a subclass of ccCellGeom. It only works if the plotted data is genomic data. Objectified representation of the R package circlize's plotting functions and corresponding parameters at the cell level.

Slots

func character. The name of the plot function in the R package circlize.

params list. When the function corresponding to the parameter param is called, it represents the argument of this function.

Examples

NULL

ccGenomicDensity 13

ccGenomicDensity

Create a track of density plot

Description

Object ccGenomicTrack will call the function circlize::circos.genomicDensity while drawing.

Usage

```
ccGenomicDensity(
  data,
  ylim.force = FALSE,
  window.size = NULL,
  overlap = TRUE,
  count_by = c("percent", "number"),
  col = ifelse(area, "grey", "black"),
  lwd = par("lwd"),
  lty = par("lty"),
  type = "l",
  area = TRUE,
  area.baseline = NULL,
  baseline = 0,
  border = NA,
  ...
)
```

Arguments

data	A bed-file-like data frame or a list of data frames. If the input is a list of data frames, there will be multiple density plot in one same track.
ylim.force	Whether to force upper bound of ylim to be 1. Ignored if count_by is set to number.
window.size	Pass to genomicDensity.
overlap	Pass to genomicDensity.
count_by	Pass to genomicDensity.
col	Colors. It should be length of one. If data is a list of data frames, the length of col can also be the length of the list. If multiple sets of genomic regions are visualized in one single track, you should set the colors with transparency to distinguish them.
lwd	Width of lines, the same setting as col argument.
lty	Style of lines, the same setting as col argument.
type	Type of lines, see circos.lines.
area	See circos.lines.
area.baseline	Deprecated, use baseline instead.

14 ccGenomicHeatmap

```
baseline See circos.lines.
border See circos.lines.
... Pass to circos.trackPlotRegion.
```

Value

Object ccGenomicTrack

Examples

```
library(circlizePlus)
load(system.file(package = "circlize", "extdata", "DMR.RData"))
cc = ccPlot(initMode="initializeWithIdeogram", chromosome.index = paste0("chr", 1:22))
t2 = ccGenomicDensity(DMR_hyper, col = c("#FF000080"), track.height = 0.1)
t3 = ccGenomicDensity(DMR_hypo, col = c("#0000FF80"), track.height = 0.1)
cc + t2 + t3
circos.clear()
```

ccGenomicHeatmap

Define a heatmap track for genomic graph

Description

Object ccGenomicTrack will call the function circlize::circos.genomicHeatmap while drawing.

```
ccGenomicHeatmap(
  bed,
  col,
  na_col = "grey",
  numeric.column = NULL,
  border = NA,
  border_lwd = par("lwd"),
  border_lty = par("lty"),
  connection_height = mm_h(5),
  line_col = par("col"),
  line_lwd = par("lwd"),
  line_lty = par("lty"),
  heatmap_height = 0.15,
  side = c("inside", "outside"),
  track.margin = circos.par("track.margin")
)
```

ccGenomicIdeogram 15

Arguments

A data frame in bed format, the matrix should be stored from the fourth column.

Col Colors for the heatmaps. The value can be a matrix or a color mapping function

generated by colorRamp2.

na_col Color for NA values.

numeric.column Column index for the numeric columns. The values can be integer index or

character index. By default it takes all numeric columns from the fourth column.

border Border of the heatmap grids.

border_lwd Line width for borders of heatmap grids.
border_lty Line style for borders of heatmap grids.

connection_height

Height of the connection lines. If it is set to NULL, no connection will be drawn.

Use mm_h/cm_h/inches_h to set a height in absolute unit.

line_col Color of the connection lines. The value can be a vector.

line_lwd Line width of the connection lines.
line_lty Line style of the connection lines.

heatmap_height Height of the heatmap track

side Side of the heatmaps. Is the heatmap facing inside or outside?

track.margin Bottom and top margins.

Value

Object ccGenomicTrack

Examples

```
library(circlizePlus)
cc = ccPlot(initMode = "initializeWithIdeogram")
bed = generateRandomBed(nr = 100, nc = 4)
col_fun = colorRamp2(c(-1, 0, 1), c("green", "black", "red"))
t1 = ccGenomicHeatmap(bed, col = col_fun, side = "inside", border = "white")
cc + t1
circos.clear()
```

ccGenomicIdeogram

Define an ideograms track for genomic graph

Description

Object ccGenomicTrack will call the function circlize::circos.genomicIdeogram while drawing.

16 ccGenomicLabels

Usage

```
ccGenomicIdeogram(
  cytoband = system.file(package = "circlize", "extdata", "cytoBand.txt"),
  species = NULL,
  track.height = mm_h(2),
  track.margin = circos.par("track.margin")
)
```

Arguments

cytoband A data frame or a file path, pass to read.cytoband. species Abbreviations of the genome, pass to read.cytoband.

track.height Height of the ideogram track.

track.margin Margins for the track.

Value

Object ccGenomicTrack

Examples

```
library(circlizePlus)
cc = ccPlot(initMode = "initializeWithIdeogram",chromosome.index = "chr1", plotType = NULL)
human_cytoband = read.cytoband(species = "hg19")$df
t2=ccGenomicIdeogram(human_cytoband)
cc+t2
circos.clear()
```

ccGenomicLabels

Add labels to specific genomic track

Description

Object ccGenomicTrack will call the function circlize::circos.genomicLabels while drawing.

```
ccGenomicLabels(
  bed,
  labels = NULL,
  labels.column = NULL,
  facing = "clockwise",
  niceFacing = TRUE,
  col = par("col"),
  cex = 0.8,
  font = par("font"),
```

ccGenomicLabels 17

```
padding = 0.4,
connection_height = mm_h(5),
line_col = par("col"),
line_lwd = par("lwd"),
line_lty = par("lty"),
labels_height = NULL,
side = c("inside", "outside"),
labels.side = side,
track.margin = circos.par("track.margin"))
```

Arguments

bed A data frame in bed format.

labels A vector of labels corresponding to rows in bed.

labels.column If the label column is already in bed, the index for this column in bed.

facing fFacing of the labels. The value can only be "clockwise" or "reverse.clockwise".

niceFacing Whether automatically adjust the facing of the labels.

col Color for the labels.
cex Size of the labels.
font Font of the labels.

padding Padding of the labels, the value is the ratio to the height of the label.

connection_height

Height of the connection track.

line_col Color for the connection lines.
line_lwd Line width for the connection lines.
line_lty Line type for the connection lines.

labels_height Height of the labels track.

side Side of the labels track, is it in the inside of the track where the regions are

marked?

labels.side Same as side. It will replace side in the future versions.

track.margin Bottom and top margins.

Value

Object ccGenomicTrack

Examples

18 ccGenomicLines

ccGenomicLines

Add lines for genomic data visualization

Description

Object ccGenomicCellGeom will call the function circlize::circos.genomicLines while drawing.

Usage

```
ccGenomicLines(
  region = NULL,
  value = NULL,
  numeric.column = NULL,
 posTransform = NULL,
  col = ifelse(area, "grey", "black"),
  lwd = par("lwd"),
  lty = par("lty"),
  type = "1",
  area = FALSE,
  area.baseline = NULL,
 border = "black",
  baseline = "bottom",
  pt.col = par("col"),
  cex = par("cex"),
  pch = par("pch"),
)
```

Arguments

region	A data frame contains 2 column which correspond to start positions and end positions.
value	A data frame contains values and other information.
numeric.column	Which column in value data frame should be taken as y-value. If it is not defined, the whole numeric columns in value will be taken.
posTransform	Self-defined function to transform genomic positions, see ${\tt posTransform.default}$ for explaination.
col	col of lines/areas. If there are more than one numeric column, the length of col can be either one or number of numeric columns. If there is only one numeric column and type is either segment or h, the length of col can be either one or number of rows of region. pass to circos.lines
lwd	Settings are similar as col. Pass to circos.lines.
lty	Settings are similar as col. Pass to circos.lines.
type	There is an additional option segment which plot segment lines from start position to end position. Settings are similar as col. Pass to circos.lines.

ccGenomicLink 19

```
Settings are similar as col. Pass to circos.lines.
area
area.baseline
                  Deprecated, use baseline instead.
border
                  Settings are similar as col. Pass to circos.lines.
                  Settings are similar as col. Pass to circos.lines.
baseline
pt.col
                  Settings are similar as col. Pass to circos.lines.
                  Settings are similar as col. Pass to circos.lines.
cex
                  Settings are similar as col. Pass to circos.lines.
pch
                  Mysterious parameters.
. . .
```

Value

Object ccGenomicCellGeom

Examples

```
library(circlizePlus)
data <- generateRandomBed(nr = 30, nc = 2)
all_chr <- c("chr1", "chr2", "chr3", "chr4", "chr5", "chr6", "chr7", "chr8",
"chr9", "chr10", "chr11", "chr12", "chr13", "chr14", "chr15", "chr16",
"chr17", "chr18", "chr19", "chr20", "chr21", "chr22", "chrX", "chrY")
cc <- ccPlot(initMode = "initializeWithIdeogram", plotType = NULL)
t1 <- ccGenomicTrack(data = data, numeric.column = 4)
cells1 <- ccCells(sector.indexes = all_chr) +
ccGenomicLines(numeric.column = 2)
t1 <- t1 + cells1
show(cc + t1)</pre>
```

ccGenomicLink

Add links between two sets of genomic positions

Description

Object ccGenomicLink will call the function circlize::circos.genomicLink while drawing.

```
ccGenomicLink(
  region1,
  region2,
  rou = get_most_inside_radius(),
  rou1 = rou,
  rou2 = rou,
  col = "black",
  lwd = par("lwd"),
  lty = par("lty"),
  border = col,
  ...
)
```

20 ccGenomicLink-class

Arguments

region1	A data frame in bed format.
region2	A data frame in bed format.
rou	Pass to circos.link.
rou1	Pass to circos.link.
rou2	Pass to circos.link.
col	Pass to circos.link, length can be either one or nrow of region1.
lwd	Pass to circos.link, length can be either one or nrow of region1.
lty	Pass to circos.link, length can be either one or nrow of region1.
border	Pass to circos.link, length can be either one or nrow of region1.
	Pass to circos.link.

Value

Object ccGenomicLink

Examples

```
library(circlizePlus)
set.seed(123)

bed1 = generateRandomBed(nr = 100)
bed1 = bed1[sample(nrow(bed1), 20), ]
bed2 = generateRandomBed(nr = 100)
bed2 = bed2[sample(nrow(bed2), 20), ]
par1 = ccPar("track.height" = 0.1, cell.padding = c(0, 0, 0, 0))
cc = ccPlot(initMode="initializeWithIdeogram")

link1 = ccGenomicLink(bed1, bed2, col = sample(1:5, 20, replace = TRUE), border = NA)
cc + par1 + link1
```

ccGenomicLink-class S4 class ccGenomicLink

Description

S4 class ccGenomicLink

Slots

func character. Normally it is "circos.genomicLink".

params list. A **named** list that stores the parameters of the function circlize::circos.genomicLink called by the backend.

Examples

NULL

ccGenomicPoints 21

	,	ccGenomicPoints	Add points for genomic data visualization
--	---	-----------------	---

Description

Object ccGenomicCellGeom will call the function circlize::circos.genomicPoints while drawing.

Usage

```
ccGenomicPoints(
  region = NULL,
  value = NULL,
  numeric.column = NULL,
  posTransform = NULL,
  pch = par("pch"),
  col = par("col"),
  cex = par("cex"),
  bg = par("bg"),
  ...
)
```

Arguments

region	A data frame contains 2 columns which correspond to start positions and end positions.
value	A data frame contains values and other information.
numeric.column	Which column in value data frame should be taken as y-value. If it is not defined, the whole numeric columns in value will be taken.
posTransform	Self-defined function to transform genomic positions, see ${\tt posTransform.default}$ for explanation
pch	Type of points. Settings are similar as col. Pass to circos.points.
col	Color of points. If there is only one numeric column, the length of col can be either one or number of rows of region. If there are more than one numeric column, the length of col can be either one or number of numeric columns. Pass to circos.points.
cex	Size of points. Settings are similar as col. Pass to circos.points.
bg	Background colors for points.
	Mysterious parameters.

Value

Object ccGenomicCellGeom

22 ccGenomicRainfall

Examples

```
library(circlizePlus)
data <- generateRandomBed(nr = 30, nc = 2)
all_chr <- c("chr1", "chr2", "chr3", "chr4", "chr5", "chr6", "chr7", "chr8",
"chr9", "chr10", "chr11", "chr12", "chr13", "chr14", "chr15", "chr16",
"chr17", "chr18", "chr19", "chr20", "chr21", "chr22", "chrX", "chrY")
cc <- ccPlot(initMode = "initializeWithIdeogram", plotType = NULL)
t1 <- ccGenomicTrack(data = data, numeric.column = 4)
cells1 <- ccCells(sector.indexes = all_chr) +
ccGenomicPoints(region = \((region, value)\){
    region
}, value = \((region, value)\){
    value
}, numeric.column = 2)
t1 <- t1 + cells1
show(cc + t1)</pre>
```

ccGenomicRainfall

Create a rainfall plot

Description

Object ccGenomicTrack will call the function circlize::circos.genomicRainfall while drawing.

Usage

```
ccGenomicRainfall(
  data,
  mode = "min",
  ylim = NULL,
  col = "black",
  pch = par("pch"),
  cex = par("cex"),
  normalize_to_width = FALSE,
  ...
)
```

Arguments

data	A bed-file-like data frame or a list of data frames.
mode	How to calculate the distance of two neighbouring regions, pass to rainfallTransform.
ylim	ylim for rainfall plot track. If normalize_to_width is FALSE, the value should correspond to log10(dist+1), and if normalize_to_width is TRUE, the value should correspond to log2(rel_dist).
col	Color of points. It should be length of one. If data is a list, the length of col can also be the length of the list.
pch	Style of points.

ccGenomicRect 23

```
cex Size of points.

normalize_to_width

If it is TRUE, the value is the relative distance divided by the width of the region.

Pass to circos.trackPlotRegion.
```

Value

Object ccGenomicTrack

Examples

```
library(circlizePlus)
load(system.file(package = "circlize", "extdata", "DMR.RData"))
cc = ccPlot(initMode="initializeWithIdeogram", chromosome.index = paste0("chr", 1:22))
bed_list = list(DMR_hyper, DMR_hypo)
t1 = ccGenomicRainfall(bed_list, pch = 16, cex = 0.4, col = c("#FF000080", "#0000FF80"))
cc + t1
circos.clear()
```

ccGenomicRect

Draw rectangle for genomic data visualization

Description

Object ccGenomicCellGeom will call the function circlize::circos.genomicRect while drawing.

```
ccGenomicRect(
  region = NULL,
  value = NULL,
  ytop = NULL,
  ybottom = NULL,
  ytop.column = NULL,
  ybottom.column = NULL,
  posTransform = NULL,
  col = NA,
  border = "black",
  lty = par("lty"),
  ...
)
```

24 ccGenomicText

Arguments

region	A data frame contains 2 column which correspond to start positions and end positions.
value	A data frame contains values and other information.
ytop	A vector or a single value indicating top position of rectangles.
ybottom	A vector or a single value indicating bottom position of rectangles.
ytop.column	If ytop is in value, the index of the column.
ybottom.column	If ybottom is in value, the index of the column.
posTransform	Self-defined function to transform genomic positions, see ${\tt posTransform.default}$ for explaination.
col	The length of col can be either one or number of rows of region. Pass to circos.rect.
border	Settings are similar as col. Pass to circos.rect.
lty	Settings are similar as col. Pass to circos.rect.

Value

Object ccGenomicCellGeom

Mysterious parameters.

Examples

```
library(circlizePlus)
par1 <- ccPar("track.height" = 0.1, cell.padding = c(0, 0, 0, 0))
cc <- ccPlot(initMode = "initializeWithIdeogram", plotType = NULL)
bed1 <- generateRandomBed(nr = 100)
bed2 <- generateRandomBed(nr = 100)
bed_list <- list(bed1, bed2)
f <- colorRamp2(breaks = c(-1, 0, 1), colors = c("green", "black", "red"))
track1 <- ccGenomicTrack(data = bed_list, stack = TRUE)
all_chr <- c("chr1", "chr2", "chr3", "chr4", "chr5", "chr6", "chr7", "chr8",
"chr9", "chr10", "chr11", "chr12", "chr13", "chr14", "chr15", "chr16",
"chr17", "chr18", "chr19", "chr20", "chr21", "chr22", "chrX", "chrY")
rect1 <- ccGenomicRect(col = 1, border = NA)
cells1 <- ccCells(sector.indexes = all_chr) + rect1
cc + par1 + (track1 + cells1)</pre>
```

ccGenomicText

Add text for genomic data visualization

Description

Object ccGenomicCellGeom will call the function circlize::circos.genomicText while drawing.

ccGenomicText 25

Usage

```
ccGenomicText(
  region = NULL,
  value = NULL,
  y = NULL,
  labels = NULL,
  labels.column = NULL,
  numeric.column = NULL,
 posTransform = NULL,
 direction = NULL,
  facing = "inside",
  niceFacing = FALSE,
  adj = par("adj"),
  cex = 1,
  col = "black",
  font = par("font"),
  padding = 0,
  extend = 0,
 align_to = "region",
)
```

Arguments

extend

region	A data frame contains 2 column which correspond to start positions and end positions.
value	A data frame contains values and other information.
У	A vector or a single value indicating position of text.
labels	Labels of text corresponding to each genomic positions.
labels.column	If labels are in value, index of column in value.
numeric.column	Which column in value data frame should be taken as y-value. If it is not defined, only the first numeric columns in value will be taken.
posTransform	Self-defined function to transform genomic positions, see posTransform.default for explanation.
direction	Deprecated, use facing instead.
facing	Passing to circos.text. Settings are similar as col.
niceFacing	Should the facing of text be adjusted to fit human eyes?
adj	Pass to circos.text. Settings are similar as col.
cex	Pass to circos.text. Settings are similar as col.
col	Pass to circos.text. The length of col can be either one or number of rows of region.
font	Pass to circos.text. Settings are similar as col.
padding	pass to posTransform if it is set as posTransform.text.

pass to posTransform if it is set as posTransform. text.

26 ccGenomicTrack

```
align_to pass to posTransform if it is set as posTransform.text.
... Mysterious parameters.
```

Value

Object ccGenomicCellGeom

Examples

```
library(circlizePlus)
cc <- ccPlot(initMode = "initializeWithIdeogram", plotType = NULL)
bed <- generateRandomBed(nr = 20)
track1 <- ccGenomicTrack(data = bed, ylim = c(0, 1))
all_chr <- c("chr1", "chr2", "chr3", "chr4", "chr5", "chr6", "chr7", "chr8",
"chr9", "chr10", "chr11", "chr12", "chr13", "chr14", "chr15", "chr16",
"chr17", "chr18", "chr19", "chr20", "chr21", "chr22", "chrX", "chrY")
text1 <- ccGenomicText(y = 0.5, labels = "text")
cells1 <- ccCells(sector.indexes = all_chr) + text1
cc + (track1 + cells1)</pre>
```

ccGenomicTrack

Define a track for genomic data visualization

Description

Object ccGenomicTrack will call the function circlize::circos.genomicTrackPlotRegion while drawing.

Usage

```
ccGenomicTrack(
  data = NULL,
  ylim = NULL,
  stack = FALSE,
  numeric.column = NULL,
  jitter = 0,
  panel.fun = function(region, value, ...) {
     NULL
  },
  ...
)
```

Arguments

data	A bed-file-like data frame or a list of data frames
ylim	If it is NULL, the value will be calculated from data. If stack is set to TRUE, this value is ignored.
stack	whether to plot in a "stack" mode.

27 ccGenomicTrack-class

numeric.column Columns of numeric values in data that will be used for plotting. If data is a data frame list, numeric.column should be either length of one or length of data. If value of numeric.column is not set, its value will depend on the structure of data. If data is a data frame, the default value for numeric.column is all the numeric column starting from the fourth column. If data is a list of data frame, the default value for numeric.column is a vector which have the same length as data and the value in default numeric.column is the index of the first numeric column in corresponding data frame.

jitter

Numeric. Only works for adding points in circos.genomicTrackPlotRegion under stack mode

panel.fun

Self-defined function which will be applied on each sector. Please not it is different from that in circos.trackPlotRegion. In this function, there are two arguments (region and value) plus In them, region is a two-column data frame with start positions and end positions in current genomic category (e.g. chromosome). value is a data frame which is derived from data but excluding the first three columns. Rows in value correspond to rows in region. ... is mandatory and is used to pass internal parameters to other functions. The definition of value will be different according to different input data (data frame or list of data frame) and different settings (stacked or not), please refer to 'details' section and vignettes to detailed explanation.

Pass to circos.trackPlotRegion.

Value

Object ccGenomicTrack

Examples

```
library(circlizePlus)
cc = ccPlot(initMode = "initializeWithIdeogram",chromosome.index = "chr1", plotType = NULL)
bed = generateRandomBed(nr = 300)
t1 = ccGenomicTrack(bed, panel.fun = function(region, value, ...) {
  circos.genomicPoints(region, value, pch = 16, cex = 0.5, ...)
})
cc+t1
circos.clear()
```

ccGenomicTrack-class S4 class ccGenomicTrack

Description

S4 class ccGenomicTrack

28 ccHeatmap

Slots

func character. Normally it is "circos.genomicTrack" or "circos.genomicIdeogram" or "circos.genomicHeatmap" or "circos.genomicLabels" or "circos.genomicRainfall" or "circos.genomicDensity".

params list. A named list that stores the parameters of the function called by the backend.

trackGeoms list. A list where ccTrackGeom are stored.

cells list. A list where ccCell are stored.

Examples

```
library(circlizePlus)
cc = ccPlot(initMode = "initializeWithIdeogram",chromosome.index = "chr1", plotType = NULL)
bed = generateRandomBed(nr = 300)
t1 = ccGenomicTrack(bed, panel.fun = function(region, value, ...) {
   circos.genomicPoints(region, value, pch = 16, cex = 0.5, ...)
})
cc+t1
circos.clear()
```

ccHeatmap

Object generator for S4 class ccHeatmap

Description

Object ccHeatmap will call the function circlize::circos.heatmap while drawing.

```
ccHeatmap(
  mat,
  split = NULL,
  col,
  na.col = "grey",
  cell.border = NA,
  cell.lty = 1,
  cell.lwd = 1,
  bg.border = NA,
  bg.lty = par("lty"),
  bg.lwd = par("lwd"),
  ignore.white = is.na(cell.border),
  cluster = TRUE,
  clustering.method = "complete",
  distance.method = "euclidean",
  dend.callback = function(dend, m, si) reorder(dend, rowMeans(m)),
  dend.side = c("none", "outside", "inside"),
  dend.track.height = 0.1,
  rownames.side = c("none", "outside", "inside"),
```

ccHeatmap 29

```
rownames.cex = 0.5,
rownames.font = par("font"),
rownames.col = "black",
show.sector.labels = FALSE,
cell_width = rep(1, nrow(mat)),
clear = TRUE,
...
)
```

Arguments

٤	Guineirus				
	mat	A matrix or a vector. The vector is transformed as a one-column matrix.			
	split	A categorical variable. It splits the matrix into a list of matrices.			
	col	If the values in the matrices are continuous, the color should be a color mapping generated by colorRamp2. If the values are characters, the color should be a named color vector.			
	na.col	Color for NA values.			
	cell.border	Border color of cells. A single scalar.			
	cell.lty	Line type of cell borders. A single scalar.			
	cell.lwd	Line width of cell borders. A single scalar.			
	bg.border	Color for background border.			
	bg.lty	Line type of the background border.			
	bg.lwd	Line width of the background border.			
	ignore.white	Whether to draw the white color?			
	cluster	whether to apply clustering on rows. The value can also be a dendrogram/hclust object or other objects that can be converted to with as.dendrogram.			
	clustering.method				
		Clustering method, pass to hclust.			
	distance.method	Distance method, pass to dist.			
	dend.callback	A callback function that is applied to the dendrogram in every sector.			
	dend.side	Side of the dendrograms relative to the heatmap track.			
	dend.track.heig	•			
	dend. or dent. Heig	Track height of the dendrograms.			
	rownames.side	Side of the row names relative to the heatmap track.			
	rownames.cex	Cex of row names.			
	rownames.font	Font of row names.			
rownames.col Color of show.sector.labels		Color of row names.			
		Whether to show sector labels.			
	cell_width	Relative widths of heatmap cells.			
	clear	Whether to call circlize::circos.clear before drawing.			

Pass to circos. track which draws the heatmap track.

30 ccHeatmap-class

Value

Object ccHeatmap

Examples

```
library(circlizePlus)
set.seed(123)
mat1 <- rbind(</pre>
  cbind(
    matrix(rnorm(50 * 5, mean = 1), nr = 50),
    matrix(rnorm(50 * 5, mean = -1), nr = 50)
  ),
  cbind(
    matrix(rnorm(50 * 5, mean = -1), nr = 50),
    matrix(rnorm(50 * 5, mean = 1), nr = 50)
  )
)
rownames(mat1) <- paste0("R", 1:100)</pre>
colnames(mat1) <- paste0("C", 1:10)</pre>
mat1 <- mat1[sample(100, 100), ] # randomly permute rows</pre>
split <- sample(letters[1:5], 100, replace = TRUE)</pre>
split <- factor(split, levels = letters[1:5])</pre>
col_fun1 \leftarrow colorRamp2(c(-2, 0, 2), c("blue", "white", "red"))
ccHeatmap(mat = mat1, split = split, col = col_fun1)
```

ccHeatmap-class

S4 class ccHeatmap

Description

ccHeatmap is a special class. It can be used not only as a single track but also as the result of adding a heatmap track to a ccPlot

Slots

func character. Normally it is "circos.heatmap".

params list. A **named** list that stores the parameters of the function circlize::circos.heatmap called by the backend.

trackGeoms list. A list where ccTrackGeom are stored.

cells list. A list where ccCell are stored.

tracks list. A list where ccTrack or ccGenomicTrack or ccHeatmap are stored.

links list. A list where ccLink or ccGenomicLink or ccHeatmapLink are stored.

pars list. A list where ccPar are stored.

clear logical. Whether to call circlize::circos.clear before drawing.

ccHeatmapLink 31

ccl			

Draw a link between two matrix rows in the circular heatmap

Description

Object ccHeatmapLink will call the function circlize::circos.heatmap.link while drawing.

Usage

```
ccHeatmapLink(row_from, row_to, ...)
```

Arguments

```
row_from The row index where the link starts. The value should be length 1. If you want to draw multiple links, put the function in a for loop.

row_to The row index where the link ends.

... Pass to circos.link.
```

Value

Object ccHeatmapLink

Examples

```
library(circlizePlus)
set.seed(123)
mat = matrix(rnorm(100*10), nrow = 100)
rownames(mat) = paste0("R", 1:100)
col_fun = colorRamp2(c(-2, 0, 2), c("blue", "white", "red"))
cc = ccHeatmap(mat, col = col_fun, rownames.side = "outside")
link1 = ccHeatmapLink(10, 60)
cc + link1
```

ccHeatmapLink-class

S4 class ccHeatmapLink

Description

S4 class ccHeatmapLink

Slots

```
func character. Normally it is "circos.heatmap.link".
```

params list. A **named** list that stores the parameters of the function circlize::circos.heatmap.link called by the backend.

32 ccLines

Examples

NULL

ccLines

Draw lines in a region

Description

Object ccCellGeom will call the function circlize::circos.lines while drawing.

Usage

```
ccLines(
 x = NULL
 y = NULL,
 col = ifelse(area, "grey", par("col")),
 lwd = par("lwd"),
 lty = par("lty"),
  type = "1",
  straight = FALSE,
  area = FALSE,
  area.baseline = NULL,
  border = "black",
 baseline = "bottom",
 pt.col = par("col"),
 cex = par("cex"),
 pch = par("pch")
)
```

Arguments

X	Data points on x-axis, measured in "current" data coordinate.
У	Data points on y-axis, measured in "current" data coordinate.
col	Line color.
lwd	Line width.
lty	Line style.
type	Line type, similar as type argument in lines, but only in $c("1", "o", "h", "s")$
straight	Whether draw straight lines between points.
area	Whether to fill the area below the lines. If it is set to TRUE, col controls the filled color in the area and border controls color of the line.
area.baseline	deprecated, use baseline instead.
border	color for border of the area.

ccLink 33

The base line to draw areas. By default it is the minimal of y-range (bottom).

It can be a string or a number. If a string, it should be one of bottom and top.

This argument also works if type is set to h.

pt.col If type is "o", point color.

cex If type is "o", point size.

pch If type is "o", point type.

Value

Object ccCellGeom

Examples

```
library(circlizePlus)
sectors <- letters[1:9]
par <- ccPar(points.overflow.warning = FALSE)
cc <- ccPlot(sectors = sectors, xlim = c(0, 10))
cc <- cc + par
track <- ccTrack(sectors = sectors, ylim = c(0, 10), track.height = 0.5)
cells <- ccCell(sector.index = "a") + ccLines(sort(x = runif(10) * 10), y = runif(10) * 10)
track <- track + cells
cc + track</pre>
```

ccLink

Add a link

Description

Object ccLink will call the function circlize::circos.link while drawing.

```
ccLink(
  sector.index1,
  point1,
  sector.index2,
  point2,
  rou = get_most_inside_radius(),
  rou1 = rou,
  rou2 = rou,
  h = NULL,
  h.ratio = 0.5,
  w = 1,
  h2 = h,
  w2 = w,
  inverse = FALSE,
  col = "black",
```

34 ccLink

```
lwd = par("lwd"),
lty = par("lty"),
border = col,
directional = 0,
arr.length = ifelse(arr.type == "big.arrow", 0.02, 0.4),
arr.width = arr.length/2,
arr.type = "triangle",
arr.lty = lty,
arr.lwd = lwd,
arr.col = col,
reduce_to_mid_line = FALSE
)
```

Arguments

sector.index1 Index for the first sector where one link end locates

point1 A single value or a numeric vector of length 2. If it is a 2-elements vector, then

the link would be a belt/ribbon.

sector.index2 Index for the other sector where the other link end locates

point2 A single value or a numeric vector of length 2. If it is a 2-elements vector, then

the link would be a belt/ribbon.

rou The position of the the link ends (if rou1 and rou2 are not set). It is the percent-

age of the radius of the unit circle. By default its value is the position of bottom

margin of the most inner track.

rou1 The position of end 1 of the link. rou2 The position of end 2 of the link.

h Height of the link, measured as percent to the radius to the unit circle. By default

it is automatically infered.

h.ratio systematically change the link height. The value is between 0 and 1.

W Since the link is a Bezier curve, it controls the shape of Bezier curve.

Height of the bottom edge of the link if it is a ribbon.

W2 Shape of the bottom edge of the link if it is a ribbon.

inverse Whether the link is inversed.

col Color of the link. If the link is a ribbon, then it is the filled color for the ribbon.

lwd Line (or border) widthlty Line (or border) style

border If the link is a ribbon, then it is the color for the ribbon border.

directional 0 for no direction, 1 for direction from point1 to point2, -1 for direction from

point2 to point1. 2 for two directional. The direction is important when arrow

heads are added.

arr.length Length of the arrows, measured in 'cm', pass to Arrowhead. If arr.type is set

to big.arrow, the value is percent to the radius of the unit circle.

arr.width Width of the arrows, pass to Arrowhead.

ccLink-class 35

arr.type	Type of the arrows, pass to Arrowhead. Default value is triangle. There is an additional option big.arrow.			
arr.lty	Line type of arrows, pass to Arrowhead.			
arr.lwd	Line width of arrows, pass to Arrowhead.			
arr.col	Color of the arrows, pass to Arrowhead.			
reduce_to_mid_line				

Only use the middle points of point1 and point2 to draw the link.

Value

Object ccLink

Examples

```
library(circlizePlus)
set.seed(999)
n = 1000
df = data.frame(sectors = sample(letters[1:8], n, replace = TRUE), x = rnorm(n), y = runif(n))
cc = ccPlot(initMode = "initialize", sectors = df$sectors, x = df$x)
track1 = ccTrack(df$sectors, y = df$y)
col = rep(c("#FF0000", "#00FF00"), 4)
tPoint1 = ccTrackPoints(df$sectors, df$x, df$y, col = col, pch = 16, cex = 0.5)
link1 = ccLink("a", 0, "b", 0, h = 0.4)
link2 = ccLink("c", c(-0.5, 0.5), "d", c(-0.5, 0.5), col = "red",border = "blue", h = 0.2)
link3 = ccLink("e", 0, "g", c(-1,1), col = "green", border = "black", lwd = 2, lty = 2)
cc + (track1 + tPoint1) + link1 + link2 + link3
```

ccLink-class

S4 class ccLink

Description

S4 class ccLink

Slots

func character. Normally it is "circos.link".

params list. A **named** list that stores the parameters of the function circlize::circos.link called by the backend.

Examples

NULL

36 ccPar-class

ccPar

Parameters for the circular layout

Description

Object ccPar will call the function circlize::circos.par while drawing.

Usage

```
ccPar(...)
```

Arguments

```
Arguments passed on to circlize::circos.par
RESET reset to default values
READ.ONLY please ignore
LOCAL please ignore
ADD please ignore
```

Value

Object ccPar

Examples

```
library(circlizePlus)
set.seed(999)
n = 1000
df = data.frame(sectors = sample(letters[1:8], n, replace = TRUE), x = rnorm(n), y = runif(n))
par1 = ccPar("track.height" = 0.1)
cc = ccPlot(initMode = "initialize", sectors = df$sectors, x = df$x)
track1 = ccTrack(df$sectors, y = df$y)
col = rep(c("#FF0000", "#00FF00"), 4)
tPoint1 = ccTrackPoints(df$sectors, df$x, df$y, col = col, pch = 16, cex = 0.5)
cc + par1 + (track1 + tPoint1)
```

ccPar-class

Object generator for S4 class ccPar

Description

Object generator for S4 class ccPar

Slots

params params list. A **named** list that stores the parameters of the function circlize::circos.par called by the backend.

ccPlot 37

Examples

NULL

ccPlot Object generator for S4 class ccPlot

Description

Object ccPlot calls one of the following functions based on the value of initMode: circlize::circos.initialize, circlize::circos.genomicInitialize, circlize::circos.initializeWithIdeogram, circlize::circos.heatmap.initialize. The correct way to call it is as follows: ccPlot(initMode = 'initialize', clear = TRUE, sectors = NULL,x = NULL,xlim = NULL,sector.width = NULL,factors = sectors,ring = FALSE) ccPlot(initMode = 'genomicInitialize',clear = TRUE,data=NULL,sector.names = NULL,major.by = NULL,plotType = c("axis", "labels"),tickLabelsStartFromZero = TRUE,axis.labels.cex = 0.4*par("cex"),labels.cex = 0.8*par("cex"),track.height = NULL,...) ccPlot(initMode = 'initializeWithIdeogram',clear = TRUE, cytoband = system.file(package = "circlize", "extdata", "cytoBand.txt"), species = NULL,sort.chr = TRUE,chromosome.index = usable_chromosomes(species),major.by = NULL,plotType = c("ideogram", "axis", "labels"),track.height = NULL,ideogram.height = convert_height(2, "mm"),...) ccPlot(initMode = 'heatmap.initialize',clear = TRUE,mat=NULL, split = NULL, cluster = TRUE, clustering.method = "complete", distance.method = "euclidean", dend.callback = function(dend, m, si) reorder(dend, rowMeans(m)), cell_width = rep(1, nrow(mat)))

Usage

```
ccPlot(initMode = "initialize", clear = TRUE, ...)
```

Arguments

initMode It can only be the following values: "initialize", "genomicInitialize", "initialize-

WithIdeogram", "heatmap.initialize".

clear Whether to call circlize::circos.clear before drawing.

Arguments passed on to circlize::circos.initialize, circlize::circos.genomicInitialize, . . . circlize::circos.initializeWithIdeogram,circlize::circos.heatmap.initialize

sectors A factor variable or a character vector which represent data cate-

factors The same as sectors. It will be removed in future versions.

x Data on x-axes, a vector

xlim Ranges for values on x-axes, see "details" section for explanation of the format

sector. width Width for each sector. The length of the vector should be either 1 which means all sectors have same width or as same as the number of sectors. Values for the vector are relative, and they will be scaled by dividing their summation. By default, it is NULL which means the width of sectors correspond to the data range in sectors.

38 ccPlot

ring Whether the sector represented as a ring. If yes, there should only be one sector in the circle.

data A data frame in bed format.

sector.names Labels for each sectors which will be drawn along each sector. It will not modify values of sector index.

major.by Increment of major ticks. It is calculated automatically if the value is not set (about every 10 degrees there is a major tick).

plotType If it is not NULL, there will create a new track containing axis and names for sectors. This argument controls which part should be drawn, axis for genomic axis and labels for chromosome names

tickLabelsStartFromZero Whether axis tick labels start from 0? This will only affect the axis labels while not affect x-values in cells.

axis.labels.cex The font size for the axis tick labels.

labels.cex The font size for the labels.

track.height If PlotType is not NULL, height of the annotation track.

cytoband A path of the cytoband file or a data frame that already contains cytoband data. By default it is cytoband for hg19. Pass to read.cytoband.

species Abbreviations of species. e.g. hg19 for human, mm10 for mouse. If this value is specified, the function will download cytoBand.txt.gz from UCSC website automatically. If there is no cytoband for user's species, it will keep on trying to download chromInfo file. Pass to read.cytoband or read.chromInfo.

chromosome.index subset of chromosomes, also used to reorder chromosomes.

sort.chr Whether chromosome names should be sorted (first sort by numbers then by letters). If chromosome.index is set, this argumetn is enforced to FALSE

ideogram.height Height of the ideogram track

mat A matrix or a vector. The vector is transformed as a one-column matrix.

split A categorical variable. It splits the matrix into a list of matrices.

cluster whether to apply clustering on rows. The value can also be a dendrogram/hclust object or other objects that can be converted to with as.dendrogram.

 ${\tt clustering.method}. \\ {\tt Clustering} \ {\tt method}, \\ {\tt pass} \ {\tt to} \ {\tt hclust}. \\$

distance.method Distance method, pass to dist.

dend.callback A callback function that is applied to the dendrogram in every sector.

cell_width Relative widths of heatmap cells.

Value

Object ccPlot

Examples

ccPlot-class 39

```
library(circlizePlus)
cc=ccPlot(initMode = 'initialize', sectors = df$sectors, x = df$x)
```

ccPlot-class

S4 class ccPlot

Description

S4 class ccPlot

Slots

initMode character. It can only be the following values: "initialize", "genomicInitialize", "initializeWithIdeogram", "heatmap.initialize".

initParams list. A **named** list that stores the parameters of the function called by the backend. Based on the value of initMode, the backend function will be one of the following four:circlize::circos.initialize, circlize::circos.genomicInitialize, circlize::circos.initializeWithIdeogram, circlize::circos.heatmap.initialize.

tracks list. A list where ccTrack or ccGenomicTrack or ccHeatmap are stored.

links list. A list where ccLink or ccGenomicLink or ccHeatmapLink are stored.

pars list. A list where ccPar are stored.

clear logical. Whether to call circlize::circos.clear before drawing.

Examples

ccPoints

Draw points in a region

Description

Object ccCellGeom will call the function circlize::circos.points while drawing.

```
ccPoints(
    x = NULL,
    y = NULL,
    pch = par("pch"),
    col = par("col"),
    cex = par("cex"),
    bg = par("bg")
)
```

40 ccPolygon

Arguments

X	Data points on x-axis, measured in "current" data coordinate
У	Data points on y-axis, measured in "current" data coordinate
pch	Point type
col	Point color
cex	Point size
bg	backgrond of points

Value

Object ccCellGeom

Examples

```
library(circlizePlus)
cc <- ccPlot(sectors = letters[1:8], xlim = c(0, 1))
track1 <- ccTrack(ylim = c(0, 1), panel.fun = function(x, y) {
   circos.points(runif(10), runif(10))
})
cells <- ccCell(sector.index = "a") + ccPoints(
   x = runif(10), y = runif(10),
   pch = 16, col = "red"
)
track1 <- track1 + cells
cc + track1</pre>
```

ccPolygon

Draw polygon

Description

Object ccCellGeom will call the function circlize::circos.polygon while drawing.

Usage

```
ccPolygon(x = NULL, y = NULL, ...)
```

Arguments

Χ	Data points on x-axis
У	Data points on y-axis
	pass to polygon

Value

Object ccCellGeom

ccRaster 41

Examples

```
library(circlizePlus)
cc <- ccPlot(sectors = letters[1:8], xlim = c(0, 1))
track <- ccTrack(ylim = c(0, 10))
cell <- ccCell(sector.index = "a") + ccPolygon(x = c(0.5, 0.7, 1), y = c(2, 6, 8))
track <- track + cell
cc + track</pre>
```

ccRaster

Add raster image

Description

Object ccCellGeom will call the function circlize::circos.raster while drawing.

Usage

```
ccRaster(
  image,
  x,
  y,
  width,
  height,
  facing = c("inside", "outside", "reverse.clockwise", "clockwise", "downward",
      "bending.inside", "bending.outside"),
  niceFacing = FALSE,
  scaling = 1
)
```

Arguments

image	A raster object, or an object that can be converted by as.raster.
X	Position of the center of the raster image, measued in the data coordinate in the cell.
У	Position of the center of the raster image, measued in the data coordinate in the cell.
width	Width of the raster image. When facing is one of "inside", "outside", "clockwise" and "reverse.clockwise", the image should have absolute size where the value of width should be specified like 20mm, 1cm or 0.5 inche. When facing is one of bending.inside and bending.outside, the value of width is measured in the data coordinate in the cell.
height	Height of the raster image. Same format as width. If the value of height is omit, default height is calculated by taking the aspect ratio of the original image. But when facing is one of bending.inside and bending.outside, height is mandatory to set.
facing	Facing of the raster image.

42 ccRect

niceFacing Facing of text. Please refer to vignette for different settings.

scaling Scaling factor to resize the raster image.

Value

Object ccCellGeom

Examples

```
library(circlizePlus)
library(png)
image <- system.file("extdata", "Rlogo.png", package = "circlize")
image <- as.raster(readPNG(image))
library(circlizePlus)
cc <- ccPlot(sectors = letters[1:4], xlim = c(0, 10))
track <- ccTrack(ylim = c(0, 1))
cell <- ccCell(sector.index = "a") + ccRaster(image = image, x = 5, y = 0.5, width = "2cm", height = "2cm", facing = "inside", niceFacing = TRUE)
track <- track + cell
cc + track</pre>
```

ccRect

Draw rectangle in a region

Description

Object ccCellGeom will call the function circlize::circos.rect while drawing.

Usage

```
ccRect(xleft = NULL, ybottom = NULL, xright = NULL, ytop = NULL, rot = 0, ...)
```

Arguments

```
xleft x for the left bottom points
ybottom y for the left bottom points
xright x for the right top points
ytop y for the right top points
```

rot Rotation of the rectangles. The value is measured clockwise in degree. Rotation

is relative to the center of the rectangles.

... pass to polygon

Value

Object ccCellGeom

ccSegments 43

Examples

```
library(circlizePlus)
cc <- ccPlot(sectors = letters[1:8], xlim = c(0, 1))
track <- ccTrack(ylim = c(0, 1), track.height = 0.3)
cell <- ccCell(sector.index = "a") + ccRect(xleft = 0.7, ybottom = 0.1, xright = 0.8, ytop = 0.9)
track <- track + cell
cc + track</pre>
```

ccSegments

Draw segments connecting points in a region

Description

Object ccCellGeom will call the function circlize::circos.segments while drawing.

Usage

```
ccSegments(
  x0 = NULL,
  y0 = NULL,
  x1 = NULL,
  y1 = NULL,
  straight = FALSE,
  col = par("col"),
  lwd = par("lwd"),
  lty = par("lty"),
  ...
)
```

Arguments

```
x coordinates for starting points.
x0
y0
                   y coordinates for ending points.
                   x coordinates for starting points.
х1
у1
                   y coordinates for ending points.
straight
                   Whether the segment is a straight line.
col
                   Color of the segments.
lwd
                   Line width of the segments.
lty
                   Line type of the segments.
                   Pass to lines.
. . .
```

Value

Object ccCellGeom

44 ccText

Examples

```
library(circlizePlus)
cc <- ccPlot(sectors = letters[1:8], xlim = c(0, 1))
track <- ccTrack(ylim = c(0, 1), track.height = 0.3)
cell <- ccCell(sector.index = "a") + ccSegments(x0 = 0.7, y0 = 0.1, x1 = 0.7, y1 = 0.9)
track <- track + cell
cc + track</pre>
```

ccText

Draw text in a cell

Description

Object ccCellGeom will call the function circlize::circos.text while drawing.

Usage

```
ccText(
  x = NULL,
  y = NULL,
  labels,
  direction = NULL,
  facing = c("inside", "outside", "reverse.clockwise", "clockwise", "downward",
      "bending", "bending.inside", "bending.outside"),
  niceFacing = FALSE,
  adj = par("adj"),
  cex = 1,
  col = par("col"),
  font = par("font"),
  ...
)
```

Arguments

X	Data points on x-axis
У	Data points on y-axis
labels	Labels for each points
direction	deprecated, use facing instead.
facing	Facing of text. Please refer to vignette for different settings
niceFacing	Should the facing of text be adjusted to fit human eyes?
adj	offset for text. By default the text position adjustment is either horizontal or vertical in the canvas coordinate system. The "circular horizontal" offset can be set as a value in degree unit and the value should be wrapped by degree.
cex	Font size
col	Font color
font	Font style
• • •	Pass to text

ccTrack 45

Value

Object ccCellGeom

Examples

```
library(circlizePlus)
n <- 1000
df <- data.frame(</pre>
  sectors = sample(letters[1:8], n, replace = TRUE),
  x = rnorm(n), y = runif(n)
)
par1 <- ccPar("track.height" = 0.1)</pre>
cc \leftarrow ccPlot(sectors = df\$sectors, x = df\$x) + par1
track1 <- ccTrack(</pre>
  sectors = df$sectors, y = df$y,
  panel.fun = function(x, y) {
    circos.text(
      {\tt CELL\_META\$xcenter},
      CELL_META$cell.ylim[2] + mm_y(5),
      CELL_META$sector.index
    circos.axis(labels.cex = 0.6)
  }
)
cell1 <- ccCell(sector.index = "a") + ccText(-1, 0.5, "text")</pre>
track1 <- track1 + cell1
cc <- cc + track1
СС
```

ccTrack

Define a generic track

Description

Object ccTrack will call the function circlize::circos.trackPlotRegion while drawing.

```
ccTrack(
  sectors = NULL,
  x = NULL,
  y = NULL,
  ylim = NULL,
  force.ylim = TRUE,
  track.index = NULL,
  track.height = circos.par("track.height"),
  track.margin = circos.par("track.margin"),
  cell.padding = circos.par("cell.padding"),
  bg.col = NA,
```

46 ccTrack

```
bg.border = "black",
bg.lty = par("lty"),
bg.lwd = par("lwd"),
panel.fun = function(x, y) {
    NULL
},
factors = sectors
)
```

Arguments

sectors	A factor or a character vector which represents categories of data, if it is NULL, then it uses all sector index.
x	Data on x-axis. It is only used if panel. fun is set.
У	Data on y-axis
ylim	Range of data on y-axis
force.ylim	Whether to force all cells in the track to share the same ylim. Normally, all cells on a same track should have same ylim.
track.index	Index for the track which is going to be created/updated. If the specified track has already been created, this function just updated corresponding track with new plot. If the specified track is NULL or has not been created, this function just creates it. Note the value for this argument should not exceed maximum track index plus 1.
track.height	Height of the track. It is the percentage to the radius of the unit circles. The value can be set by uh to an absolute unit. If updating a track (with proper track.index value), this argument is ignored.
track.margin	only affect current track
cell.padding	only affect current track
bg.col	Background color for the plotting regions. It can be vector which has the same length of sectors.
bg.border	Color for the border of the plotting regions. It can be vector which has the same length of sectors.
bg.lty	Line style for the border of the plotting regions. It can be vector which has the same length of sectors.
bg.lwd	Line width for the border of the plotting regions. It can be vector which has the same length of sectors.
panel.fun	Panel function to add graphics in each cell, see "details" section and vignette for explanation.
factors	The same as sectors. It will be removed in future versions.

Value

Object ccTrack

ccTrack-class 47

Examples

```
library(circlizePlus)
n = 1000
df = data.frame(sectors = sample(letters[1:8], n, replace = TRUE),
                x = rnorm(n), y = runif(n))
library(circlizePlus)
par1=ccPar("track.height" = 0.1)
cc=ccPlot(sectors = df$sectors, x = df$x) + par1
track1 = ccTrack(sectors = df$sectors, y = df$y,
                 panel.fun = function(x, y) {
                   circos.text(CELL_META$xcenter,
                               CELL_META$cell.ylim[2] + mm_y(5),
                               CELL_META$sector.index)
                   circos.axis(labels.cex = 0.6)
                 })
cc=cc+track1
СС
circos.clear()
```

ccTrack-class

S4 class ccTrack

Description

S4 class ccTrack

Slots

func character. Normally it is "circos.track" or "circos.trackHist".

params list. A **named** list that stores the parameters of the function called by the backend.

trackGeoms list. A list where ccTrackGeom are stored.

cells list. A list where ccCell are stored.

Examples

48 ccTrackHist

```
cc=cc+track1
cc
circos.clear()
```

ccTrackGeom-class

S4 class ccTrackGeom

Description

Objectified representation of the R package circlize's plotting functions and corresponding parameters at the track level.

Slots

func character. The name of the plot function in the R package circlize.

params list. A **named** list that stores the parameters of the function called by the backend.

Examples

NULL

ccTrackHist

Define a track of histograms

Description

Object ccTrack will call the function circlize::circos.trackHist while drawing.

```
ccTrackHist(
  sectors,
  x,
  track.height = circos.par("track.height"),
  track.index = NULL,
  ylim = NULL,
  force.ylim = TRUE,
  col = ifelse(draw.density, "black", NA),
  border = "black",
  lty = par("lty"),
  lwd = par("lwd"),
  bg.col = NA,
  bg.border = "black",
  bg.lty = par("lty"),
  bg.lty = par("lty"),
  bg.lwd = par("lwd"),
  breaks = "Sturges",
```

ccTrackHist 49

```
include.lowest = TRUE,
  right = TRUE,
  draw.density = FALSE,
  bin.size = NULL,
  area = FALSE,
  factors = sectors
)
```

Arguments

sectors A factor or a character vector which represents the categories of data

x Data on the x-axis

track.height Height of the track. It is the percentage to the radius of the unit circle. If to

update a track, this argument is disabled.

track.index Index for the track which is going to be updated. Setting it to NULL means

creating the plotting regions in the next newest track.

ylim Ranges on y-direction. By default, ylim is calculated automatically.

force.ylim Whether to force all cells in the track to share the same ylim.

col Filled color for histogram
border Border color for histogram
lty Line style for histogram

lwd Line width for histogrambg.col Background color for the plotting regions

bg.border Color for the border of the plotting regions

bg.lty Line style for the border of the plotting regions
bg.lwd Line width for the border of the plotting regions

breaks see hist

include.lowest see hist

right see hist

draw.density whether draw density lines instead of histogram bars.

bin.size size of the bins of the histogram

area whether to fill the area below the density lines. If it is set to TRUE, col controls

the filled color in the area and border controls color of the line.

factors The same as sectors. It will be removed in future versions.

Value

Object ccTrack

50 ccTrackLines

Examples

ccTrackLines

Add lines on all sections of a single track.

Description

Object ccTrackGeom will call the function circlize::circos.trackLines while drawing.

Usage

```
ccTrackLines(
  sectors,
  х,
 у,
  col = par("col"),
  lwd = par("lwd"),
  lty = par("lty"),
  type = "1",
  straight = FALSE,
  area = FALSE,
  area.baseline = NULL,
 border = "black",
 baseline = "bottom",
 pt.col = par("col"),
  cex = par("cex"),
 pch = par("pch"),
  factors = sectors
)
```

Arguments

sectors A factor or a character vector which represents the categories of data.

x Data points on x-axis.y Data points on y-axis.col Line color.

ccTrackPoints 51

1wd Line width.1ty Line style.

type Line type, similar as type argument in lines, but only in c("1", "o", "h",

"s").

straight Whether draw straight lines between points.

area Whether to fill the area below the lines. If it is set to TRUE, col controls the filled

color in the area and border controls the color of the line.

area.baseline Deprecated, use baseline instead.

border Color for border of the area.

baseline The base line to draw area, pass to circos.lines.

pt.col If type is "o", points color.

cex If type is "o", points size.

pch If type is "o", points type.

factors The same as sectors. It will be removed in future versions.

Value

Object ccTrackGeom

Examples

NULL

ccTrackPoints

Add points on all sections of a single track.

Description

Object ccTrackGeom will call the function circlize::circos.trackPoints while drawing.

```
ccTrackPoints(
   sectors,
   x,
   y,
   pch = par("pch"),
   col = par("col"),
   cex = par("cex"),
   bg = par("bg"),
   factors = sectors
)
```

52 ccTrackText

Arguments

sectors	A factor or a character vector which represents the categories of data
x	Data points on x-axis
У	Data points on y-axis
pch	Point type
col	Point color
cex	Point size
bg	backgrond color
factors	The same as sectors. It will be removed in future versions.

Value

Object ccTrackGeom

Examples

NULL

ccTrackText

Add texts on all sections of a single track.

Description

Object ccTrackGeom will call the function circlize::circos.trackText while drawing.

```
ccTrackText(
   sectors,
   x,
   y,
   labels,
   direction = NULL,
   facing = c("inside", "outside", "reverse.clockwise", "clockwise", "downward",
        "bending", "bending.inside", "bending.outside"),
   niceFacing = FALSE,
   adj = par("adj"),
   cex = 1,
   col = par("col"),
   font = par("font"),
   factors = sectors
)
```

ccViolin 53

Arguments

A factor or a character vector which represents the categories of data sectors Data points on x-axis Data points on y-axis У Labels labels direction deprecated, use facing instead. facing Facing of text niceFacing Should the facing of text be adjusted to fit human eyes? Adjustment for text adj Font size cex col Font color font Font style factors The same as sectors. It will be removed in future versions.

Value

Object ccTrackGeom

Examples

NULL

ccViolin

Draw violin plots

Description

Object ccCellGeom will call the function circlize::circos.violin while drawing.

```
ccViolin(
  value,
  pos,
  violin_width = 0.8,
  col = NA,
  border = "black",
  lwd = par("lwd"),
  lty = par("lty"),
  show_quantile = TRUE,
  pt.col = par("col"),
  cex = par("cex"),
  pch = 16,
  max_density = NULL
)
```

54 ccXaxis

Arguments

value A numeric vector, a matrix or a list. If it is a matrix, boxplots are made by

columns.

pos Positions of the boxes.

violin_width Width of violins.

col Filled color of boxes.

border Color for the border as well as the quantile lines.

lwd Line width.lty Line style

show_quantile Whether to show the quantile lines.

pt.col Point color cex Point size. pch Point type.

max_density The maximal density value across several violins. It is used to compare between

violins.

Value

Object ccCellGeom

Examples

```
library(circlizePlus)
cc <- ccPlot(sectors = letters[1:4], xlim = c(0, 10))
track <- ccTrack(ylim = c(0, 1))
cell <- ccCell(sector.index = "a") + ccViolin(value = replicate(runif(10),
n = 10, simplify = FALSE), pos = 1:10 - 0.5, col = 1:10)
track <- track + cell
cc + track</pre>
```

ccXaxis

Draw x-axis

Description

Object ccCellGeom will call the function circlize::circos.axis while drawing.

ccXaxis 55

Usage

```
ccXaxis(
 h = "top",
 major.at = NULL,
 labels = TRUE,
 major.tick = TRUE,
 labels.font = par("font"),
 labels.cex = par("cex"),
 labels.facing = "inside",
 labels.direction = NULL,
 labels.niceFacing = TRUE,
 direction = c("outside", "inside"),
 minor.ticks = 4,
 major.tick.length = NULL,
 lwd = par("lwd"),
  col = par("col"),
  labels.col = par("col"),
  labels.pos.adjust = TRUE
)
```

Arguments

lwd

col

h	Position of the x-axis, can be "top", "bottom" or a numeric value	
major.at	If it is numeric vector, it identifies the positions of the major ticks. It can exceed $x1$ im value and the exceeding part would be trimmed automatically. If it is NULL, about every 10 degrees there is a major tick.	
labels	labels of the major ticks. Also, the exceeding part would be trimmed automatically. The value can also be logical (either an atomic value or a vector) which represents which labels to show.	
major.tick	Whether to draw major tick. If it is set to FALSE, there will be no minor ticks neither.	
labels.font	Font style for the axis labels.	
labels.cex	Font size for the axis labels.	
labels.facing labels.direction		
	Deprecated, use facing instead.	
labels.niceFacing		
	Should facing of axis labels be human-easy.	
direction	Whether the axis ticks point to the outside or inside of the circle.	
minor.ticks	Number of minor ticks between two close major ticks.	
major.tick.length		
	Length of the major ticks, measured in "current" data coordinate. convert_y can be used to convert an absolute unit to the data coordinate.	

Line width for ticks.

Color for the axes.

56 ccYaxis

```
labels.col Color for the labels. labels.pos.adjust
```

Whether to adjust the positions of the first label and the last label so that the first label align to its left and the last label align to its right if they exceed the range on axes. The value can be a vector of length two which correspond to the first label and the last label.

Value

Object ccCellGeom

Examples

```
library(circlizePlus)
cc <- ccPlot(sectors = letters[1:8], xlim = c(0, 1))
track <- ccTrack(ylim = c(0, 10))
cell <- ccCell(sector.index = "a") + ccXaxis()
track <- track + cell
cc + track</pre>
```

ccYaxis

Draw y-axis

Description

Object ccCellGeom will call the function circlize::circos.yaxis while drawing.

Usage

```
ccYaxis(
   side = c("left", "right"),
   at = NULL,
   labels = TRUE,
   tick = TRUE,
   labels.font = par("font"),
   labels.cex = par("cex"),
   labels.niceFacing = TRUE,
   lwd = par("lwd"),
   col = par("col"),
   labels.col = par("col")
)
```

Arguments

at

side add the y-axis on the left or right of the cell

If it is numeric vector, it identifies the positions of the ticks. It can exceed ylim value and the exceeding part would be trimmed automatically.

data-set 57

labels of the ticks. The exceeding part would be trimmed automatically. The

value can also be logical (either an atomic value or a vector) which represents

which labels to show.

tick Whether to draw ticks.

labels.font font style for the axis labels

font size for the axis labels

labels.niceFacing

Should facing of axis labels be human-easy

lwd line width for ticks col color for the axes labels.col color for the labels

Value

Object ccCellGeom

Examples

```
library(circlizePlus)
cc <- ccPlot(sectors = letters[1:8], xlim = c(0, 1))
track <- ccTrack(ylim = c(0, 10))
cell <- ccCell(sector.index = "a") + ccYaxis(side = "left")
track <- track + cell
cc + track</pre>
```

data-set

Data set in circlizePlus

Description

Example can be found in "4.2 Example 2: comparison of two pieces of code that use circlizePlus and circlize to implement the same requirements, respectively" allele_frequency: A dataframe with 25,000 rows and 4 columns copy_number: A dataframe with 24,788 rows and 5 columns junctions: A dataframe with 2414 rows and 28 columns r1: A dataframe with 2414 rows and 3 columns r2: A dataframe with 2414 rows and 3 columns

```
data(example2)
data(example2)
data(example2)
data(example2)
data(example2)
```

Format

```
An object of class data. frame with 25000 rows and 4 columns.
```

An object of class data. frame with 24788 rows and 5 columns.

An object of class data. frame with 2414 rows and 28 columns.

An object of class data. frame with 2414 rows and 3 columns.

An object of class data. frame with 2414 rows and 3 columns.

Source

```
https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2025.1535368/full#h5
```

Examples

```
data(example2)
allele_frequency
copy_number
junctions
r1
r2
```

show, ccHeatmap-method Draw the figures described by ccHeatmap

Description

Draw the figures described by ccHeatmap

Usage

```
## S4 method for signature 'ccHeatmap'
show(object)
```

Arguments

object Object of ccHeatmap

Value

No return information

show,ccPlot-method 59

Examples

```
library(circlizePlus)
set.seed(123)
mat1 <- rbind(</pre>
  cbind(
    matrix(rnorm(50 * 5, mean = 1), nr = 50),
    matrix(rnorm(50 * 5, mean = -1), nr = 50)
  ),
  cbind(
    matrix(rnorm(50 * 5, mean = -1), nr = 50),
    matrix(rnorm(50 * 5, mean = 1), nr = 50)
  )
)
rownames(mat1) <- paste0("R", 1:100)</pre>
colnames(mat1) <- paste0("C", 1:10)</pre>
mat1 <- mat1[sample(100, 100), ] # randomly permute rows</pre>
split <- sample(letters[1:5], 100, replace = TRUE)</pre>
split <- factor(split, levels = letters[1:5])</pre>
col_fun1 \leftarrow colorRamp2(c(-2, 0, 2), c("blue", "white", "red"))
show(ccHeatmap(mat = mat1, split = split, col = col_fun1))
```

show,ccPlot-method

Draw the figures described by ccPlot

Description

Draw the figures described by ccPlot

Usage

```
## S4 method for signature 'ccPlot'
show(object)
```

Arguments

object

Object of ccPlot

Value

No return information

Examples

show,ccPlot-method

Index

24,26 cGenomicCellGeom-class,12 cGenomicDensity,13 cGenomicHeatmap,14
cGenomicIdeogram, 15 cGenomicLabels, 16 cGenomicLines, 18 cGenomicLink, 19, 19, 20, 30, 39
cGenomicLink-class, 20 cGenomicPoints, 21 cGenomicRainfall, 22 cGenomicRect, 23 cGenomicText, 24 cGenomicTrack, 13-17, 22, 23, 26, 26, 27, 30, 39 cGenomicTrack-class, 27 cHeatmap, 28, 28, 30, 39, 58 cHeatmap-class, 30 cHeatmapLink, 30, 31, 31, 39
cHeatmapLink-class, 31 cLines, 32 cLink, 30, 33, 33, 35, 39 cLink-class, 35 cPar, 30, 36, 36, 39 cPar-class, 36 cPlot, 37, 37, 38, 59 cPlot-class, 39 cPoints, 39 cPolygon, 40 cRaster, 41 cRect, 42 cSegments, 43 cTrack, 30, 39, 45, 45, 46, 48, 49 cTrack-class, 47

62 INDEX

ccTrackGeom, 28, 30, 47, 50–53	circlize::circos.trackPlotRegion, 45
ccTrackGeom-class, 48	circlize::circos.trackPoints, <i>51</i>
ccTrackHist, 48	circlize::circos.trackText, 52
ccTrackLines, 50	circlize::circos.violin, 53
ccTrackPoints, 51	circlize::circos.yaxis, 56
ccTrackText, 52	circos.axis, 12
ccViolin, 53	circos.lines, 13, 14, 18, 19, 51
	circos.link, 20, 31
ccXaxis, 54	circos.points, 21
ccYaxis, 56	circos.rect, 24
circlize::circos.arrow, 4	circos.text, 25, 55
circlize::circos.axis, 54	circos.text, 29, 33
circlize::circos.barplot,5	
circlize::circos.boxplot,6	circos.trackPlotRegion, 14, 23, 27
circlize::circos.clear, 29, 30, 37, 39	cm_h, 15
circlize::circos.dendrogram, 10	colorRamp2, 15, 29
circlize::circos.genomicAxis, 11	convert_y, 55
circlize::circos.genomicDensity, <i>13</i>	copy_number (data-set), 57
circlize::circos.genomicHeatmap, 14	data-set, 57
circlize::circos.genomicIdeogram, 15	degree, <i>44</i>
<pre>circlize::circos.genomicInitialize, 37,</pre>	dendrogram, 10
39	dist, 29, 38
circlize::circos.genomicLabels, 16	4130, 22, 30
circlize::circos.genomicLines, 18	factor, 37, 46, 49, 50, 52, 53
circlize::circos.genomicLink, 19, 20	
circlize::circos.genomicPoints, 21	genomicDensity, <i>13</i>
circlize::circos.genomicRainfall, 22	hclust, 29, 38
circlize::circos.genomicRect, 23	hist, 49
circlize::circos.genomicText, 24	11200, 12
circlize::circos.genomicTrackPlotRegion,	inches_h, <i>15</i>
26	imatiana (data aat) 57
	junctions (data-set), 57
circlize::circos.heatmap, 28, 30	lines, 32, 43, 51
circlize::circos.heatmap.initialize,	
37, 39	mm_h, <i>15</i>
circlize::circos.heatmap.link, 31	nolygon 5 40 42
circlize::circos.initialize, 37, 39	polygon, 5, 40, 42
circlize::circos.initializeWithIdeogram,	posTransform.default, 18, 21, 24, 25
37, 39	posTransform.text, 25, 26
circlize::circos.lines, 32	r1 (data-set), 57
circlize::circos.link, 33, 35	r2 (data-set), 57
circlize::circos.par, 36	rainfallTransform, 22
circlize::circos.points,39	read.chromInfo, 38
circlize::circos.polygon,40	read.cytoband, 16, 38
circlize::circos.raster, 41	read. cy cobana, 10, 50
circlize::circos.rect, 42	show,ccHeatmap-method,58
circlize::circos.segments, 43	show,ccPlot-method,59
circlize::circos.text, 44	1
circlize::circos.trackHist, 48	text, <i>44</i>
circlize::circos.trackLines, 50	uh, 46