Parallel Computing with GPUs: Sorting Assignment Project Exam Help

https://eduassistpro.github.io/

Dr Paul Ric http://paulrichmond.shef.ac edu_assist_pro_ http://paulrichmond.shef.ac

Last Week

- ☐ We learnt about Performance optimisation
- ☐APOD cycle
- ☐ Use of guided analysis to find important kernels

 Assignment Project Exam Help

 Outes for code

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Important Reminder

□Guest lecture next week
□MOLE Quiz next week 9.00am
□Followed by 1 hour lab (assignment help and lab catchup)
□Week 11:
□No lecture (bank holid https://eduassistpro.github.io/□Lab for assignment he
□Week 12:
□Ne lecture or lab

☐ Sorting Networks

- ☐ Merge and Bitonic sort
- □ Thrust Parallel Primitives Library

 Assignment Project Exam Help

 □ Applications of sortin

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Serial Sorting Examples

```
☐Insertion Sort
    ☐ Insert a new element into a sorted list.
         □E.g. [163425]
             [1] -> [1 6] -> [1 3 6].-> [1 3 4 6] -> [1 2 3 4 6] -> [1 2 3 4 5 6]
Assignment Project Exam Help
☐Bubble Sort
    □ Exchange and Sweep thttps://eduassistpro.@lthuebtiel/ements
    \square O(n^2) worst-case and average case, O(\text{Add WeChat edu\_assist\_pro})
         □E.g. [163425]
             \square [1 6 3 4 2 5] -> [1 3 6 4 2 5] -> [1 3 4 6 2 5] -> [1 3 4 2 6 5] -> [1 3 4 2 5 6]
             □ [1 3 2 4 5 6]
             □ [1 2 3 4 5 6]
```


Classifying Sort Techniques/Implementations

□Data driven		
☐ Each step of the algori☐ Highly serial	ithm depends on the prev	ious step version
□Data independent <mark>Ass</mark> :	ignment Project Exam	ı Help
☐The algorithms perfor based on data	https://eduassistpro.g	ot change its processing github.io/
☐Well suited to parallel	implementation edu_as	sist pro
☐Can be expressed as a	sorting networ	0.01_p.0

- ☐A sorting network is a comparator network that sorts <u>all</u> input sequences
 - ☐ Following the same execution of stages
- Consider the previous grubble Project Exam2He]p

https://eduassistpro.github.io/ 34625] -> [134265] -> [134256] Aldd Welchiz edu_assist 50] o [132456] [132456] -> [123456] [123456]

Not considered
Compared not swapped
Compared and swapped

Sweeps

Sorting Networks

☐And Insertion Sort...

Not considered

Compared not swapped

Compared and swapped

Sweeps

Parallel Sorting Networks

Assignment Project Exam Help

https://eduassistpro.github.io/

Bubble

Add WeChat edu_assist_3 [25]

☐ Parallel Bubble and Insertion sorting network is still not very efficient

 $\Box 2n - 3$ sweeps

 $\Box n(n-1)/2$ comparisons - $O(n^2)$ complexity

[1 3 4 6 2 5] Sweeps = 9 [1 3 4 2 6 5]

[1 3 2 4 5 6]

[1 **2 3** 4 5 6]

[1 2 3 4 5 6]

[1 2 3 4 5 6]

[1 2 3 4 5 6]

- ☐ Sorting Networks
- ☐ Merge and Bitonic sort
- □ Thrust Parallel Primitives Library

 Assignment Project Exam Help

 □ Applications of sortin

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Merge Sort

- \square To reduce the $O(n^2)$ overhead we need a better sorting network
- \Box The odd-even merge sort network (for power of 2 n)
 - \square Sort all odd and even keys separately and then merge m values of a stage

 \square Each merge requires l https://eduassistpro.github.io/ \square Total complexity of O(

Add WeChat edu_assist !p

pass 1

Merging of two sorted sequences (n=4)

Merge Sorting (n=8)

Merge Sorting (n=8)

Merge Sorting (n=8) example

Input	put Stage 1 Add WeChat edu_assist_pro						Output							
8		1		1			1							1
1		8			5	3			3				2	2
5		3		3		5		5			2		3	3
3		5			8					8		4	4	4
6		2		2			2				5		5	5
2		6			6	4			4			8	6	6
4		4		4		6	·	6	·	·		·	8	8
9		9			9					9				9

☐ What is potentially wrong with a merge sort GPU implementation?

☐ Hint: Think about workload per thread

Limitations of Merge Sort

- ☐ What is potentially wrong with a merge sort GPU implementation?
 - ☐ Irregular memory accesses
 - □Not all values are compared in each pass (uneven workload per thread)

Solution: Bitonic Sort

☐ Bitonic sorting network ☐ Iterative splitting and merging of inputs into increasing large bionic sequences \square A sequence is bitonic if Assignment Project Exam Help \square There is an i, such that a, a, a is monotonically increasing and a_i , a, a is monotonically decreas https://edwassistpro.github.io/ Add WeChatedu_assist_pro

increasing

decreasing

Bitonic Sorting Network

Assignment Project Exam Help

https://eduassistpro.github.io/

- Sorting and Merging increasing the edu_assisquences
 - \square When $n = 2^k$ there are k levels with $\frac{1}{2}$ comparisons each
- ☐GPU Implementation
 - ☐ Regular access strides :-)
 - ☐ Efficiently balanced workload :-)
 - \square Requires multiple kernel launches to merge over n > block size

☐ Sorting Networks

☐ Merge and Bitonic sort

□ Thrust Parallel Primitives Library
Assignment Project Exam Help
□ Applications of sortin

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

CUDA libraries

- □ Abstract CUDA model away from programmer
- ☐ Highly optimised implementations of common tools
 - ☐ Mainly focused on linear algebra

Thrust

☐Template Library for	CUDA
□Implements many pa etc.)	rallel primitives (scan, sort, reduction
☐ Part of standard CUD ☐ Level of Abstraction v	A release signment Project Exam Help s and
memcpy's	https://eduassistpro.github.io/
Template Library (STL	•
☐Only a small amount	of C++ required

Thrust containers

```
☐ Thrust uses only high level vector containers
                   □ host vector: on host
                                                                                                                                                                                                                     #include <thrust/host vector.h>
                   ☐ device vector: on GPU
                                                                                                                                                                                                                     #include <thrust/device vector.h>
 ☐Other STL containers include
                                                                                                                                                                                                                     int main()
                   Uqueue
                                                                                                                        Assignment Project Examo Helpe host
                                                                                                                                                                                                                            thrust::host_vector<int> h_vec(10);
                   □list
                   □tack
                                                                                                                                                  https://eduassistpro.githubeid/ice
                   queue
                   □priority_queue
                                                                                                                                                   Add WeChatedu_assist as in the contract of the
                   □set
                                                                                                                                                                                                                                     d \text{ vec}[i] = i;
                   □ multiset
                                                                                                                                                                                                                             //vector memory automatically released
                   ∟map
                                                                                                                                                                                                                             return 0;
                    □multimap
                    □ bitset
```

□STL containers can be used to initialise a Thrust vector

Thrust Iterators

- ☐ They point to regions of a vector
- ☐ Can be used like pointers
 - □ Explicit cast when dereferencing very important

Assignment Project Exam Help

```
thrust::device_vector<int> https://eduassistpro.gethub;io/
printf("d_vec at begin=%d", (int)*begin)
begin++;//move on a single Acd tweChat edu_assist_pro
printf("d_vec at begin++=%d", (int)*begi
*end = 88;
printf("d_vec at end=%d", (int)*end);
```

```
d_vec at begin=0
d_vec at begin++=1
d_vec at end=88
```


Thrust Iterators

☐ Can be converted to a raw pointer

```
int * d_ptr = thrust::raw_pointer_cast(begin);
int * d_ptr = thrust::raw_pointer_cast(begin[0]);

kernel<BLOCKS, TPB>(d_ptr),

https://eduassistpro.github.io/
```

- Raw pointers can be useddir Welchst edu_assist_pro
 - ☐BUT not exactly the same as a vector

```
int* d ptr;
cudaMalloc((void**)&d ptr, N);
thrust::device_ptr<int> d_vec = thrust::device_pointer_cast(d_ptr);
//or
thrust::device ptr<int> d_vec = thrust::device_ptr<int>(d_ptr)
cudaFree(d_ptr);
```


Thrust Algorithms

□ Transformations
$egin{array}{cccccccccccccccccccccccccccccccccccc$
□Reduction
☐ Reduction of a setAofsignescota Ringlecta Executing to pary associative operator
Can also be used to co https://eduassistpro.github.io/
Prefix Sum
☐Both inclusive and exclusive Warshat edu_assist_pro
□Sort
☐Can sort keys or key value pairs
☐Binary Search
☐Position of a target value

Thrust Transformations

☐ Some examples of the many transformations

```
thrust::copy(d_vec.begin(), d_vec.begin() + 10, d_vec_cpy.begin());

thrust::fill(d_vec.begin(), Assignment Project Exam Help

thrust::generate(d_vec.begin(),

//rand is a predefined Thrust ge https://eduassistpro.github.io/

thrust::generate(d_vec.begin(), d_vec.begin() + 10

// fill d_vec with {0, 1, 2, 3}Add, WeChat edu_assist_pro

thrust::sequence(d_vec.begin(), d_vec.begin() + 10);

//all occurrences of the value 1 are replaced with the value 10

thrust::replace(d_vec.begin(), d_vec.end(), 1, 10);
```


Thrust Algorithms

☐ Either in-place or to output vector

```
thrust::device vector<int> d vec(10);
thrust::device vector<int> d vec out(10);
//fill d_vec with {Assignment Project Exam Help
thrust::sequence(d_vec.begin(), d_vec.begin() + 10);
//inclusive scan to outp https://eduassistpro.github.io/
thrust::inclusive scan(d
d vec out.begin());
                         Add WeChat edu_assist_pro
//inclusive scan in place
thrust::inclusive scan(d vec.begin(), d vec.end(),
d vec.begin());
//generate random data (actually a transformation)
thrust::generate(d vec.begin(), d vec.end(), rand);
//sort in place
thrust::sort(d vec.begin(), d vec.end());
```


Custom Transformations

```
thrust::device vector<int> d vec(10);
thrust::device vector<int> d vec out(10);
//fill d vec with {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
d vec = thrust::sequence(d_vec.begin(), d_vec.begin() + 10);
                      Assignment Project Exam Help
//declare a custom operator
struct add 5{
 host device int oper https://eduassistpro.github.io/
    return a + 5;
                            Add WeChat edu_assist_pro
add 5 func;
//apply custom transformation
thrust::transform(d vec.begin(), d vec.end(), d vec out.begin(), func);
//d vec is now {5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
```


Thrust Fusion

☐ For best performance it is necessary to fuse operations

```
struct absolute{
   __host__ __device__ int operator()(int a){
     return a < 0 ? -a : a ;
   }
};
absolute func;

//apply transform reduction maximum binary associate operator
int result = thrust::transform_reduce(d_vec.begin(), d_vec.end(), func, 0, thrust::maximum<int>());
```


☐ Sorting Networks

☐ Merge and Bitonic sort

□ Thrust Parallel Primitives Library

Assignment Project Exam Help

□ Applications of sortin

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Sorting and parallel primitives

☐ Can be very useful for building data structures ☐ We can use prefix sum for writing multiple values per element ☐ Remember Gather vs Scatter What if our outputssaignmente Brojoct per am Help ☐ Very common in parti Outputs might represe https://eduassistpro.github.io/ Chat edu_assist_pro ThreadIdx.x Scatter operation ☐ Write to a number of locations ☐ Random access write? Memory Values/Locations ☐ How to read multiple values afterwards?

Binning and Sorting

i.e. how many threads want to write to this index

- ☐ We can now read varying values from each bin
 - ☐ E.g. for location 5
 - □inclusive_scan gives starting index of 4
 - ☐ Iterate from index 4 for a count of 2 to find all values of write_index 5

Particle interaction example

0	1	1 2	3
3 4	15 5	6	7
8	9	1 ⁷ 0	11
12	1 %	14	15

Partition	First	Last
Partition	agent	agent
0		
1		
2	1	2
3		
4	3	4
5	5	6
6		
7		
8		
9		
10	7	7
11		
12		
13	8	8
14		
15		

Summary

Sorting networks allow data independent easily parallel architectures	t sort algorithms to map
Choice of a sorting network will dictate the and hence the performigmore on Paragett Example of the performigmore on Paragett Example 1.	,
☐Merge sort and Bitoni https://eduassistpr	ices for GPUs o.github.io/
□Thrust implements many parallel pr Add WeChat edu_ □Thrust is based on the idea of conta	acciet pro
☐Thrust is based on the idea of conta and algorithms	ators, transformation
☐Sorting can be used to improve complex systems over a fixed range	problems such as particle

Acknoledgements and Further Reading

- □ Comparison on sorting approaches on GPU
 - http://arxiv.org/ftp/arxiv/papers/1511/1511.03404.pdf
- https://devblogs.n\sisignmen\toProjectdExt\mx\delpsive-algorithmic-programming-thrust/

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

