МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики

Направление подготовки: «Фундаментальная информатика и информационные технологии» Магистерская программа: «Компьютерная графика»

Образовательный курс «Глубокое обучение»

ОТЧЕТ

по лабораторной работе №2

Разработка полностью связанной нейронной сети

Выполнили:

студенты группы 381706-2м

Привалов Даниил Бабаев Иван Зубарева Екатерина Фадеев Алексей

Нижний Новгород 2018

Содержание

Цели	3
Задачи	4
Решаемая задача	5
Выбор библиотеки	6
Метрика качества решения задачи	6
Тренировочные и тестовые наборы данных	6
Конфигурации нейронных сетей	7
Разработанные программы/скрипты	14
Результаты экс периментов	14
Анализ результатов	16

Цели

Цель настоящей работы состоит в том, чтобы получить базовые навыки работы с одной из библиотек глубокого обучения (Caffe, Torch, TensorFlow, MXNet или какая-либо другая библиотека на выбор студента) на примере полностью связанных нейронных сетей.

Задачи

Выполнение практической работы предполагает решение следующих задач:

- 1. Выбор библиотеки для выполнения практических работ курса.
- 2. Установка выбранной библиотеки на кластере (параметры аутентификации и инструкция по работе с кластером выложена в отдельной задаче в системе redmine).
- 3. Проверка корректности установки библиотеки. Разработка и запуск тестового примера сети, соответствующей логистической регрессии, для решения задачи классификации рукописных цифр набора данных MNIST (пример разобран в лекционных материалах).
- 4. Выбор практической задачи компьютерного зрения для выполнения практических работ.
- 5. Разработка программ/с криптов для подготовки тренировочных и тестовых данных в формате, который обрабатывается выбранной библиотекой.
- 6. Разработка нескольких архитектур полностью связанных нейронных сетей (варьируются количество слоев и виды функций активации на каждом слое) в формате, который принимается выбранной библиотекой.
- 7. Обучение разработанных глубоких моделей.
- 8. Тестирование обученных глубоких моделей.
- 9. Публикация разработанных программ/скриптов в репозитории на GitHub.
- 10. Подготовка отчета, содержащего минимальный объем информации по каждому этапу выполнения работы.

Решаемая задача

Была выбрана задача классификации дорожных знаков. Количество классов - 43. Датасет: http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset

Архив обучающего набора имеет следующую структуру:

- Один каталог на класс
- Каждый каталог содержит один CSV-файл с аннотациями («GT- <ClassID> .csv») и обу чающими изобр ажениями.
- Обу чающие изобр ажения сгруппир ованы по набор ам
- Каждый набор содер жит 30 изобр ажений одного дор ожного знака

Формат изображения

- Каждое изобр ажение содер жит один дор ожный знак
- Изображения содержат границу в 10% вокруг фактического дорожного знака (не менее 5 пикселей), чтобы обеспечить подходы по краям
- Изображения хранятся в формате PPM (Portable Pixmap, P6)
- Размеры изображения варыируются от 15х15 до 250х250 пикселей.
- Изображения не обязательно имеют квадратную форму
- Дорожный знак необязательно находится по центру изображения.
- Ограничительная рамка дорожного знака является частью описания.

Описания предоставляются в файлах CSV. Поля разделены знаком ";" (точка с запятой). Описания содержат следующую информацию:

- Имя файла: Имя файла соответству ющего изображения
- Шир ина: шир ина изображения
- Высота: высота изобр ажения
- ROI.x1: X-коор дината вер хнего левого угла ограничительной рамки дорожного знака
- ROI.y1: Y-коор дината вер хнего левого угла ограничительной рамки дорожного знака
- ROI.x2: X-коор дината нижнего правого угла ограничительной рамки дорожного знака
- ROI.y2: У-координата нижнего правого угла ограничительной рамки дорожного знака
- ClassId: номер класса дор ожного знака

Предобработка данных

- Автоматическое выравнивание яркости (histogram equalization).
- Обрезка по центру.
- Пер евод в чер но-белое изобр ажение.
- Увеличение до заданного размера (48х48).

Commented [IB1]:

Commented [ΠW2R1]:

Выбор библиотеки

Для выполнения лабораторных работ выбрана библиотека Keras для языка программирования Python.

На этапе проверки корректности установки библиотеки выполнена разработка и запуск тестового примера сети для решения задачи классификации рукописных цифр набора данных MNIST. Достигнута точность 0.89.

Метрика качества решения задачи

В качестве метрики точности решения используется отношение правильно классифицированных знаков ко всем знакам в тестовой выборке:

$$Accuracy = \frac{Correct\ answers\ count}{Images\ count}$$

Тренировочные и тестовые наборы данных

39203 изображений различных знаков для тренировочных данных. 12630 изображений используется при финальном тестировании модели.

Конфигурации нейронных сетей

В данной работе были рассмотрены шесть конфигураций полностью связанных нейронных сетей с 3-мя и 4-мя скрытыми слоями.

Активационная функция на слоях выбирается из следующих:
• $\tanh, f = \frac{e^{S} - e^{-S}}{e^{v} + e^{-S}}$ • $sigmoid, f = \frac{1}{e^{v} + e^{-S}}$ • $relu, f = \max(x, 0)$

На выходном слое:

• softmax,
$$f = \frac{e^{s_j}}{\sum_{j=1}^n e^{s_j}}$$

Для обучения использован модифицированный метод градиентного спуска. Adam — adaptive moment estimation, оптимизационный алгоритм. Он сочетает в себе и идею накопления движения и идею более слабого обновления весов для типичных признаков. Его реализация имеется в библиотеке Keras.

Рисунок 1. Сеть 1

Рисунок 2. Сеть 2

Рисунок 3. Сеть 3

Рисунок 4. Сеть 4

Рисунок 5. Сеть 5

Рисунок 6. Сеть 6

Разработанные программы/скрипты

В репозитории в папке lab2 находится скрипт seq_all.py, в нем содержится функция seq_model(model_num) генерирующая вышеописанные модели и запускающая их обучение и тестирование в цикле.

Подготовка файлов датасета к работе подробно описана в README репозитория.

Результаты экспериментов

Параметры обучения: Функция ошибки='categorical_crossentropy', Оптимизационный алгоритм ='adam' - https://keras.io/optimizers/, batch_size=128, Количество эпох -10, Скорость обучения -0.001.

Параметры РС:

OS: Windows 10

CPU: Intel Core i5-5200U(2.2 GHz)

GPU: NVidia 920M(1 GB)

RAM: 4 GB

Commented [IB3]:

№	Количество скрытых слоев	Количество нейронов на скрытых слоях	Функции активации	Результат		
				Точность на тренировочном множестве	Точность на тестовом множестве	Время эпохи, с
1	3	1152-500-250	tanh-tanh-sigmoid	0.84	0.795	46
2	3	1152-1000-500	relu-relu-sigmoid	0.91	0.832	62
3	4	1152-1152-500-500	tanh-tanh-tanh- sigmoid	0.721	0.723	69
4	4	2304 -230-23-14	relu-relu-relu- relu	0.582	0.684	82
5	3	1152-500-500	relu-relu-sigmoid	0.91	0.80	50
6	3	2304-1152-512	relu-relu-sigmoid	0.907	0.847	123

Анализ результатов

Лучший результат 0.85% точности был получен в 6 модели, получен он был за счет подбора оптимального количества нейронов для данных параметров обучения. Если взять большее количество нейронов, то результат по времени обучения и проценту ошибок сильно падал.

Результат полностью связанных сетей сильно лучше не сделать, так как когда мы преобразуем изображение в линейную цепочку байт, мы что-то безвозвратно теряем. Причем с каждым слоем эта потеря только усугубляется. Мы теряем топологию изображения, т.е. взаимосвязь между отдельными его частями. Кроме того, задача распознавания подразумевает умение нейросети быть устойчивой к небольшим сдвигам, поворотам и изменению масштаба изображения, т.е. она должна извлекать из данных некие инварианты, не зависящие от углов под которым сделано фото знака.

При тестировании с большим количеством нейронов было немного проще использовать ReLU функцию активации, но в целом на время данная функция не сильно влияет, время обучения сильно зависит от количества нейронов в сети.

Все же стоит отметить преимущества ReLU:

- 1. Вычисление сигмоиды и гиперболического тангенса требует ресурсоёмких операций, таких как возведение в степень, в то времякак ReLU не подвержен насыщению.
- 2. Применение ReLU существенно повышает скорость стохастического градиентного спуска по сравнению с сигмоидой и гиперболическим тангенсом. Это обусловлено линейным характером и отсутствием насыщения данной функции.