The methods you need to edit include print_fundamental_matrix, calculate_alignment, align_images (and if you choose Level 2, detect_feature_points).

Problem 0

Method(s) to edit: calculate_alignment

Goal: Create two arrays of matched points using orb_detection_result.

Problem 1

Method to edit: print_fundamental_matrix

Goal: Compute the fundamental matrix using RANSAC.

Problem 2

Method to edit: calculate_alignment

Goal: Calculate homography using RANSAC.

Problem 3

Method to edit: align_images

Goal: Warp image1 using given h and dimensions of image2.

Problem 4 (Level 2 only)

Method to edit: detect_feature_points

- 1. Create a new ORB detector.
- 2. Use the ORB detector to produce two pairs of keypoints and descriptors.
- 3. Compute the orb_matches parameter (*Hint:* use cv2.BFMatcher).

Optional

Create a method named crop_black that inputs an image and outputs a modified image that crops off the "black" parts of the warped image.

Hints The code in function preprocess_crop_black returns a list of points that represent the convex hull of the largest contour (which is image itself) inside the warpped image. You can exhaustively enumerate all possible rectangles within the largest contour and find the one with the largest area to completely crop off parts of the image that contain the black parts. There are only $\binom{n}{2}$ which is $O(n^2)$ possible rectangles to try.