数学建模

王艳Tina

理学院计算数学系

Tel: 15165204612

Email: yanwangupc@163.com

参加全国大学生数学建模竞赛的意义和作用

- ·1992年中国工业与应用数学学会(CSIAM)开始组织
- ·1994年起教育部高教司和CSIAM共同举办(每年9月)

为什么受到大学生的青睐呢?

- > 数学建模使数学走向应用
 - 实际问题 一 数学问题
- > 竞赛题目的实用性,打开了创新的空间

题目与时代与现实紧密相连(如,2010年上海世博会影响力的定量评估;2012年太阳能小屋的设计;2013车道被占用对城市道路通行能力的影响;2014年嫦娥三号软着陆轨道设计与控制策略;2015年"互联网+"时代的出租车资源配置)

- >培养团队协作精神,自学能力
 - 3人一组,相互配合,各有所长 新问题、新知识,需要快速自学

全国大学生数学建模竞赛 http://mcm.edu.cn

内容

- 赛题:工程技术、管理科学中简化的实际问题.
- 答卷:包含模型假设、建立、求解计算方法设计和计算机实现、结果分析和检验、模型改进等方面的论文.

形式

- 3名大学生组队,在3天内完成的通讯比赛.
- ·可使用任何"死"材料(图书、计算机、软件、互联网等),但不能抄袭.

标准

假设的合理性,建模的创造性,结果的正确性,表述的清晰性.

宗旨

创新意识 团队精神 重在参与 公平竞争

竞赛培养创新精神和综合素质

- 赛题紧密结合科技和社会热点问题,培养理论联系实际的学风和实践能力.
- •综合运用学过的数学知识和计算机技术(选择合适的数学软件)通过数学建模分析、解决实际问题的能力.
- •解决方法没有任何限制,培养主动学习、独立研究的能力.
- 没有事先设定的标准答案,留有充分余地供同学们发挥聪明才智和创造精神.

竞赛培养创新精神和综合素质

- 三天内自由地使用图书馆和互联网,培养同学在短时间内获取与赛题有关知识的能力.
- 完成一篇用数学建模方法解决实际问题的完整的科技论文,培养同学的文字表达能力.
- 分工合作、取长补短、求同存异、同舟共济,培养同学的团队精神和组织协调能力.
- 在三天开放型竞赛中自觉遵守纪律,培养诚信意识和自律精神.

多位中国科学院和中国工程院院士以及教育界的 专家参加数学建模竞赛举办的活动,为竞赛题词, 对这项活动给予热情关心和很高评价.

数学要真正 得到应用, 数学建模是 取得成功的 最重要 途径之一。 兴之度

200/1,/1

性质与任务:

将数学知识、实际问题与计算机应用有机地结合起来; 提高学生的综合素质与分析问题、解决问题的能力。

授课方法:

案例式教学,选学1-15章内容。

平时40%: 出勤+平时表现+作业。

期末60%:大作业(3人一组)。

要求和希望:

注重自身建模能力的培养;常用算法和Matlab实现熟练掌握。 教材:司守奎等编,数学建模算法与应用(第2版),国防工业出版社

网址: 数模竞赛网: mcm. edu. cn 中国数模网: www. shumo. com 美国数模竞赛网: www. comap. com

一、优化模型

第1章 线性规划 第2章 整数规划

第3章 非线性规划

二、微分方程模型

第6章 微分方程建模 第15章 预测方法

三、数据处理方法

第5章 插值与拟合 第7章 数理统计

第9章 支持向量机 第10章 多元分析

第14章 综合评价与决策方法

四、离散模型

第4章 图与网络模型及方法

前 言

- 1.1 从现实对象到数学模型
- 1.2 数学建模的重要意义
- 1.3 数学建模示例
- 1.4 数学建模的方法和步骤
- 1.5 数学模型的特点和分类
- 1.6 怎样学习数学建模

1.1 从现实对象到数学模型

我们常见的模型

玩具、照片、飞机、火箭模型...~实物模型

水箱中的舰艇、风洞中的飞机...

~物理模型

地图、电路图、分子结构图...

~符号模型

模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物.

模型集中反映了原型中人们需要的那一部分特征.

你碰到过的数学模型——"航行问题"

甲乙两地相距750km,船从甲到乙顺水航行需30h, 从乙到甲逆水航行需50h, 问船的速度是多少?

用 x 表示船速, y 表示水速, 列出方程:

$$(x + y) \times 30 = 750$$
 $\implies x=20$ $(x - y) \times 50 = 750$ 求解

答: 船速为20km/h.

航行问题建立数学模型的基本步骤

- •作出简化假设(船速、水速为常数);
- •用符号表示有关量(x, y表示船速和水速);
- 用物理定律(匀速运动的距离等于速度乘以时间)列出数学式子(二元一次方程);
- 求解得到数学解答 (x=20, y=5);
- ·回答原问题(船速为20km/h).

数学模型 (Mathematical Model) 和 数学建模 (Mathematical Modeling)

数学模型

对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学表述.

数学 建模 建立数学模型的全过程(包括表述、求解、解释、检验等)

1.2 数学建模的重要意义

- 电子计算机的出现及飞速发展;
- 数学以空前的广度和深度向一切领域渗透.

数学建模作为用数学方法解决实际问题的第一步,越来越受到人们的重视.

- 在一般工程技术领域, 数学建模仍然大有用武之地;
- 在高新技术领域, 数学建模几乎是必不可少的工具;
- 数学进入一些新领域,为数学建模开辟了许多处女地.

数学建模的重要意义

"数学是一种关键的、普遍的、可以应用的技术".

数学"由研究到工业领域的技术转化,对加强 经济竞争力具有重要意义".

"计算和建模重新成为中心课题,它们是数学科学技术转化的主要途径".

数学建模的具体应用

·分析与设计

· 预报与决策

· 控制与优化

·规划与管理

数学建模

如虎添翼

计算机技术

知识经济

1.3 数学建模示例

如何施救药物中毒

诉说两小时前孩子一次误吞下11片治疗哮喘病、剂量100mg/片的氨茶碱片,已出现呕吐、头晕等不良症状.

按照药品使用说明书,氨茶碱的成人用量是100~200mg/次,儿童是3~5 mg/kg.

过量服用可使血药浓度(单位血液容积中的药量)过高, 100μg/ml浓度会出现严重中毒, 200μg/ml浓度可致命.

医生需要判断:孩子的血药浓度会不会达到100~200 μg/ml;如果会达到,应采取怎样的紧急施救方案.

调查与分析

认为血液系统内药物的分布,即血药浓度是均匀的,可以将血液系统看作一个房室,建立"一室模型".

血液系统对药物的吸收率 (胃肠道到血液系统的转移率)和排除率可以由半衰期确定.

半衰期可以从药品说明书上查到.

调查与分析

血药浓度=药量/血液总量

通常,血液总量约为人体体重的7~8%,体重50~60 kg的成年人有4000ml左右的血液.

目测这个孩子的体重约为成年人的一半,可认为其血液总量约为2000ml.

临床施救的办法:

- 口服活性炭来吸附药物,可使药物的排除率增加到原来(人体自身)的2倍.
- 体外血液透析,药物排除率可增加到原来的 6倍,但是安全性不能得到充分保证.

模型假设

胃肠道中药量x(t),血液系统中药量y(t),时间t以孩子误服药的时刻为起点(t=0).

- 1. 胃肠道中药物向血液的转移率与x(t) 成正比,比例系数 $\lambda(>0)$,总剂量1100mg药物在t=0瞬间进入胃肠道.
- 2. 血液系统中药物的排除率与y(t) 成正比,比例系数 $\mu(>0)$,t=0时血液中无药物.
- 3. 氨茶碱被吸收的半衰期为5小时,排除的半衰期为6小时.
- 4. 孩子的血液总量为2000ml.

x(t)下降速度与x(t)成正比(比例系数 λ), 总剂量1100mg药物在t=0瞬间进入胃肠道.

$$\frac{dx}{dt} = -\lambda x, \quad x(0) = 1100$$

y(t)由吸收而增长的速度是 λx ,由排除而减少的速度与y(t)成正比(比例系数 μ), t=0时血液中无药物.

$$\frac{dy}{dt} = \lambda x - \mu y, \quad y(0) = 0$$

模型求解

$$\frac{dx}{dt} = -\lambda x, \quad x(0) = 1100 \quad | \quad x(t) = 1100e^{-\lambda t}$$

$$1100e^{-5\lambda} = 1100/2$$
 $\lambda = (\ln 2)/5 = 0.1386(1/h)$

$$\frac{dy}{dt} = \lambda x - \mu y = -\mu y + 1100 \lambda e^{-\lambda t}$$
$$y(0) = 0$$

药物排除的半衰期为6小时 只考虑血液对药物的排除

$$\begin{vmatrix} \frac{dy}{dt} = -\mu y & y(t) = ae^{-\mu(t-\tau)} \\ y(\tau) = a, & y(\tau+6) = a/2 \end{vmatrix} \mu = (\ln 2)/6 = 0.1155(1/h)$$

结果及分析

胃肠道药量 $x(t) = 1100e^{-0.1386}$

血液系统药量
$$y(t) = 6600(e^{-0.1155} - e^{-0.1386})$$

血液总量2000ml 血药浓度100µg/ml

$$\langle | y(t) = 200 \text{mg} \rangle$$

一严重中毒

血药浓度200µg/ml

$$y(t) = 400 \text{mg}$$

□ 致命

孩子到达医院前已严重中毒,如不及时施救,约3小时后将致命!

施救方案

·口服活性炭使药物排除率μ增至原来的2倍.

孩子到达医院(t=2)就开始施救,血液中药量记作z(t)

$$\frac{dz}{dt} = \lambda x - \mu z, \quad t \ge 2, \quad x = 1100e^{-\lambda t}, \quad z(2) = 236.5$$

$$\lambda$$
=0.1386 (不变), μ =0.1155*2=0.2310

$$z(t) = 1650e^{-0.1386} - 1609.5e^{-0.2310}, \quad t \ge 2$$

施救方案

- · 施救后血液中药量 z(t)显著低于y(t).
- z(t)最大值低于 致命水平.
- 要使z(t)在施救后立即下降,可算出 μ至少应为0.4885.

若采用体外血液透析,μ可增至0.1155*6=0.693,血液中药量下降更快;临床上是否需要采取这种办法,当由医生综合考虑并征求病人家属意见后确定.

1.4 数学建模的方法和步骤

数学建模的基本方法

•机理分析

根据对客观事物特性的认识,

找出反映内部机理的数量规律.

•测试分析

将对象看作"黑箱",通过对量测数据的 统计分析,找出与数据拟合最好的模型.

•二者结合

用机理分析建立模型结构,

用测试分析确定模型参数.

机理分析没有统一的方法,主要通过实例研究 (Case Studies)来学习。以下建模主要指机理分析.

数学建模的一般步骤

模型准备

了解实际背景 明确建模目的

搜集有关信息 掌握对象特征

形成一个 比较清晰 的"问题"

模型假设

数学建模的一般步骤

针对问题特点和建模目的

作出合理的、简化的假设

在合理与简化之间作出折中

模型构成

用数学的语言、符号描述问题

发挥想像力

使用类比法

尽量采用简单的数学工具

数学建模的一般步骤

模型求解

各种数学方法、软件和计算机技术.

模型 分析 如结果的误差分析、统计分析、模型对数据的稳定性分析.

模型 检验 与实际现象、数据比较, 检验模型的合理性、适用性.

模型应用

数学建模的全过程

现实世界

实践 □ 理论□ 实践

1.5 数学模型的特点和分类

数学模型的特点

模型的逼真性和可行性

模型的非预制性

模型的渐进性

模型的条理性

模型的强健性

模型的技艺性

模型的可转移性

模型的局限性

数学模型的分类

应用领域 人口、交通、经济、生态、...

数学方法 初等数学、微分方程、规划、统计、...

表现特性 确定和随机 静态和动态

离散和连续 线性和非线性

建模目的 描述、优化、预报、决策、...

了解程度 白箱 灰箱 黑箱

1.6 怎样学习数学建模

数学建模与其说是一门技术,不如说是一门艺术

技术大致有章可循 艺术无法归纳成普遍适用的准则

想像力

洞察力

判断力

- 学习、分析、评价、改进别人作过的模型.
 - 亲自动手,认真作几个实际题目.

Summary

- 数学模型的定义;
- 数学建模的基本方法;
- 数学建模的一般步骤;
- 数学建模的分类。