Mathematics Methods for Computer Science

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structure

Mathematics Methods for Computer Science

Instructor: Xubo Yang

SJTU-SE DALAB

Mathematics Methods for Computer Science

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structure

Lecture

Designing and Analyzing Linear Systems

Theorist's Dilemma

Motivation

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

Special Structur

"Find a nail for this really interesting hammer."

$$A\vec{x} = \vec{b}$$

Today's Lesson

Motivation

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

Special Structure

Linear systems are insanely important.

Linear Regression

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

$$f(\vec{x}) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n = \vec{a}^T \vec{x}$$

Find
$$\{a_1, \cdots, a_n\}$$

n Experiments

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

$$\vec{x}^{(k)} \mapsto y^{(k)} \equiv f\left(\vec{x}^{(k)}\right)$$

$$y^{(1)} = f\left(\vec{x}^{(1)}\right) = a_1 x_1^{(1)} + a_2 x_2^{(1)} + \dots + a_n x_n^{(1)}$$
$$y^{(2)} = f\left(\vec{x}^{(2)}\right) = a_1 x_1^{(2)} + a_2 x_2^{(2)} + \dots + a_n x_n^{(2)}$$
$$\vdots$$

Linear System for \vec{a}

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

$$\begin{pmatrix} - \vec{x}^{(1)\top} & - \ - \vec{x}^{(2)\top} & - \ \vdots \ - \vec{x}^{(n)\top} & - \end{pmatrix} \begin{pmatrix} a_1 \ a_2 \ \vdots \ a_n \end{pmatrix} = \begin{pmatrix} y^{(1)} \ y^{(2)} \ \vdots \ y^{(n)} \end{pmatrix}$$

General Case

Motivation

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

Special Structure

$$f(\vec{x}) = a_1 f_1(\vec{x}) + a_2 f_2(\vec{x}) + \dots + a_m f_m(\vec{x})$$

$$\begin{pmatrix} f_1\left(\vec{x}^{(1)}\right) & f_2\left(\vec{x}^{(1)}\right) & \cdots & f_m\left(\vec{x}^{(1)}\right) \\ f_1\left(\vec{x}^{(2)}\right) & f_2\left(\vec{x}^{(2)}\right) & \cdots & f_m\left(\vec{x}^{(2)}\right) \\ \vdots & \vdots & \ddots & \vdots \\ f_1\left(\vec{x}^{(m)}\right) & f_2\left(\vec{x}^{(m)}\right) & \cdots & f_m\left(\vec{x}^{(m)}\right) \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{pmatrix}$$

f can be nonlinear!

Two Important Cases

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

$$f(\vec{x}) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
"Vandermonde system"

$$f(x) = acos(x + \phi)$$

Mini-Fourier

Something Fishy

otivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structur

Why should you have to do exactly n experiments?

What if $y^{(k)}$ is measured with error?

Mathematics Methods for Computer Science

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structure

Over fitting

Overfitting

Finding patterns in statistical noise

Interpretation of Linear Systems

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structure

$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} - & \vec{r}_1^\top & - \\ - & \vec{r}_2^\top & - \\ \vdots & \cdots & \vdots \\ - & \vec{r}_n^\top & - \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \vec{r}_1 \cdot \vec{x} \\ \vec{r}_2 \cdot \vec{x} \\ \vdots \\ \vec{r}_n \cdot \vec{x} \end{pmatrix}$$

"Guess \vec{x} by observing its dot products with $\vec{r_i}$'s."

What happens when m > n?

otivatior

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structur

Rows are likely to be incompatible.

Next best thing:

$$A\vec{x} \approx \vec{b}$$

An over-determined least-squares problem.

Least Squares

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Charaita

$$A\vec{x} \approx \vec{b} \iff \min_{\vec{x}} ||A\vec{x} - \vec{b}||_2$$
$$\iff A^{\top} A \vec{x} = A^{\top} \vec{b}$$

Normal Equations

Notivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structure

$$A^T A \vec{x} = A^T \vec{b}$$

 A^TA is the Gram matrix.

Regularization

Mativation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structur

Tikhonov regularization ("Ridge Regression;" Gaussian prior):

$$\min_{\vec{x}} \|A\vec{x} - \vec{b}\|_2^2 + \alpha \|\vec{x}\|_2^2$$

Lasso (Laplace prior):

$$\min_{\vec{x}} \|A\vec{x} - \vec{b}\|_2^2 + \beta \|\vec{x}\|_1$$

Elastic Net:

$$\min_{\vec{x}} \|A\vec{x} - \vec{b}\|_2^2 + \alpha \|\vec{x}\|_2^2 + \beta \|\vec{x}\|_1$$

Regularization

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structure

Tikhonov regularization ("Ridge Regression;" Gaussian prior):

$$\min_{\vec{x}} \|A\vec{x} - \vec{b}\|_2^2 + \alpha \|\vec{x}\|_2^2$$

Least-Squares "In the Wild"

 $\it \Lambda$ otivation

Parametric Regression

Least Squares

Cholesky Factorization

parsity

Special Structure

Make lots of expressions approximately zero.

$$\sum_{i} [f_i(\vec{x})]^2$$

Mathematics Methods for Computer Science

Example: Image Alignment

 $\vec{y}_k \approx A\vec{x}_k + \vec{b}$ $A \in \mathbb{R}^{2 \times 2} \quad \vec{b} \in \mathbb{R}^2$

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

(b) Input images with keypoints

(c) Aligned images

Example: Robotics

Planar Serial Chain Manipulator

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structur

Problem: How to change redundant joint angles \vec{q} to move toward goal position?

- Joint angles: $\vec{q} = (q_1, q_2, \cdots, q_n)^T$
- End-effector position: $\vec{p} = \begin{pmatrix} x \\ y \end{pmatrix}$
- $\bullet \ \ {\rm Kinematic \ model:} \ \vec{p} = \vec{f}(\vec{q}) \ \stackrel{\rm Linearize}{\longrightarrow} \ \Delta \vec{p} = J \Delta \vec{q}$
- An under-determined linear least-squares problem.
- Minimum-norm solution for $\Delta \vec{q}$ given $\Delta \vec{p}$.

A Ridiculously Important Matrix

otivation

Parametric Regression

Least Squares

Cholesky Factorization

parsity

Special Structure

$$A^T A$$

 A^TA is the Gram matrix.

Properties of A^TA

Notivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structure

Symmetric

B is symmetric if $B^T = B$.

Properties of A^TA

Motivation

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

Special Structure

Symmetric

B is symmetric if $B^T = B$.

Positive (Semi-)Definite

B is positive semidefinite if for all $\vec{x} \in \mathbb{R}^n$, $\vec{x}^T B \vec{x} \geq 0$. B is positive definite if $\vec{x}^T B \vec{x} > 0$ whenever $\vec{x} \neq \vec{0}$.

Pivoting for SPD ${\cal C}$

lotivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structur

Goal:

Solve $C\vec{x} = \vec{d}$ for symmetric positive definite C.

$$C = \left(\begin{array}{cc} c_{11} & \vec{v}^{\top} \\ \vec{v} & \tilde{C} \end{array} \right)$$

Forward Substitution

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

$$E = \begin{pmatrix} 1/\sqrt{c_{11}} & \overrightarrow{0}^{\top} \\ \overrightarrow{r} & I_{(n-1)\times(n-1)} \end{pmatrix}$$

Symmetry Experiment

 $\it A$ otivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Special Structure

Try post-multiplication:

$$ECE^{T}$$

Motivation

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

Special Structure

. Positive definite \Rightarrow existance of $\sqrt{c_{11}}$

Symmetry \Rightarrow apply E to both sides

Cholesky Factorization

otivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

$$C = LL^T$$

Mathematics Methods for Computer Science

Observation about Cholesky

Motivatio

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

$$L = \begin{pmatrix} L_{11} & 0 & 0 \\ \vec{\ell}_k^{\top} & \ell_{kk} & 0 \\ L_{31} & L_{32} & L_{33} \end{pmatrix}$$

$$LL^{\top} = \begin{pmatrix} \times & \times & \times \\ \vec{\ell}_k^{\top} L_{11}^{\top} & \vec{\ell}_k^{\top} \vec{\ell}_k + \ell_{kk}^2 & \times \\ \times & \times & \times \end{pmatrix}$$

Observation about Cholesky

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

c ...

эригэгсу

$$\ell_{kk} = \sqrt{c_{kk}} - \left\| \vec{\ell}_k \right\|_2^2$$

$$L_{11}\vec{\ell}_k = \vec{c}_k$$

Mathematics Methods for Computer Science

Harmonic Parameterization

Motivation

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

E.g., mesh Laplacian matrices.

Storing Sparse Matrices

lotivation

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

Special Structur

Want O(n) storage if we have O(n) nonzeros!

Examples:

- List of triplets (r,c,val)
- For each row r, matrix[r] holds a dictionary c \rightarrow A[r][c]

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Storing Sparse Matrices

Motivation

Parametric Regression

Least Square

Cholesky Factorization

Sparsity

- Common strategy: Permute rows/columns
- Mostly heuristic constructions
 Minimizing fill in Cholesky is NP-complete!
- Alternative strategy:
 Avoid Gaussian elimination altogether
 Iterative solution methods only need
 matrix-vector multiplication! More in a few weeks.

Banded Matrices

Motivation

Parametric Regression

Least Squares

Cholesky Factorization

Sparsity

Cyclic Matrices

Motivation

Parametric Regression

Least Squares

Cholesky Factorizatior

Sparsity

$$\left(\begin{array}{cccc}
a & b & c & d \\
d & a & b & c \\
c & d & a & b \\
b & c & d & a
\end{array}\right)$$