An analysis of the performance and benefit of execution of the Open Porous Media (OPM) Reservoir Simulator in the Cloud

Agnaldo Silva Lima

Advisor: Prof. Edson Borin

Summary

- Context and Motivations
- Experimentation and Results
- Conclusion
- Future Work

Context and Motivations

Cloud Computing

- Infrastructure-as-a-Service
- Elasticity of use
- Pay-for-use model
- Format of economies of scale

Cloud Computing Challenge

- It is expected 92% of workloads to run in the cloud by 2020
- Growing interest in running HPC applications
- ... Many jobs running benchmarks to measure Cloud availability for HPC

Cloud Computing Challenge

- The Cloud consumes about **8%** of the energy produced around the world.
- ... And it will grow

What can we do?

Search for new ways to scale scientific applications in the Cloud taking into account **cost** and **energy consumption**

Our Contribution

- The Suggestion of how best to run an Open Source Reservoir Simulator in the Cloud
- Performance measurement of RS in the Cloud
- Comparison of RS performance on traditional machines of HPC and Virtual Machine in the Cloud

Reasons Why Using Reservoir Simulator

- More and more challenges in this area:
 - Depletion of oil reserves
 - Simulations of CO2 storage
 - The conscious use of aquifers
 - The oil field PRE-SAL

Reasons Why Using OPM

Community

SINTEF ICT, Statoil, IRIS, etc.

Data

SPE test cases, Norne model, etc.

OPEN

Source Code

www.github.com/OPM/

License

General Public License (GPL 3.0)

Experimentation and Results

Methodology

Cloud vs local machine

- Machine Comparison:
 - 2 similar machines
 - Same computational environment
 - Even simulation parameters

Machine	CPU	RAM	Storage	Payment for use
Local machine - node06	Xeon E5-2630 v2 2.60GHz	32 GB	2 TB	?
Azure - F16s - v2	Xeon Platinum 8168 2,7 GHz	32 GB	128 GB	2,258

Cloud vs local machine

H	PC Machine Pri	ce - nodeub	
	Unit	Unit price	Total
Xeon E5-2630 2.60GHz	2	2024,25	4048,5
Memory 32 GB	4	370,3	1481,2
Motherboard	1	2279,2	2279,2
Cooler	2	193,2	386,4
HD 2TB	1	424,15	424,15
Power Source	1	744	744
Cabinet	1	679,15	679,15
			10042,6

Annual consumption - local machine			
Kwh/month	R\$/month	R\$/year	
460,66	211,76	2541,16	

Annual Price - machine F16s - v2			
R\$/h	R\$/month	R\$/year	
2,26	1625,76	19509,12	

Machine in the Cloud

Machine	CPU	RAM	Storage	Payment for use
A8-v2	Xeon E5-2673 v4 2.30GHz	16 GB	80 GB	1,106
A8m-v2	Xeon E5-2673 v4 2.30GHz	64 GB	80 GB	1,451
B8ms	Xeon E5-2673 v4 2.30GHz	32 GB	64 GB	1,236
D32s-v3	Xeon E5-2673 v3 2.4GHz (Haswell)	128 GB	64 GB	1,236
Ds15-v2	Xeon E5-2673 v3 2.4GHz (Haswell)	140 GB	280 GB	4,964
E16-v3	Core i7-5820K (Haswell) 3.30GHz	16 GB	400 GB	3,533
F16s - v2	Xeon Platinum 8168 2,7 GHz	32 GB	128 GB	2,258
F64s - v2	Core i7-5820K (Haswell) 3.30GHz	128 GB	512 GB	9,031
Н8	Core i7-5820K (Haswell) 3.30GHz	56 GB	1 GB	2,643
H8m	Core i7-5820K (Haswell) 3.30GHz	112 GB	1 GB	3,54
L32	Core i7-5820K (Haswell) 3.30GHz	256 GB	5630 GB	8,287
NC6	Core i7-5820K (Haswell) 3.30GHz	56 GB	340 GB	2,988
Cluster D2S-v3	8 x Xeon E5-2673 v4 2.30GHz	64 GB	16 GB	2,552
Cluster DS11 v2	4 x Xeon E5-2673 v3 2.4GHz (Haswell)	84 GB	28 GB	1,98
Cluster E2 - v3	4 x Xeon E5-2673 v4 2.30GHz	84 GB	50 GB	1,768
Cluster F2S v2	8 x Xeon E5-2673 v3 2.4GHz (Haswell)	256 GB	16 GB	2,264

Machine Comparison

- 16 different virtual machines on Azure
- Same computational environment
- Even simulation parameters

Cost vs Time

Energy consumption

Conclusion

Conclusion

- Best time in the Cloud
- Low cost of simulations using the Cloud
- OPM simulator makes little use of energy
- Better time with less energy machines

Research proposal

Search interest

Use system metrics to measure system performance for **inside** that helps **reduce energy consumption**

UNICAMP

Referencias

- Christos K. Filelis-Papadopoulos, George A. Gravvanis, Panagiotis E. Kyziropoulos, A framework for simulating large scale cloud infrastructures, Future Generation Computer Systems, Volume 79, Part 2, 2018, Pages 703-714, ISSN 0167-739X, https://doi.org/10.1016/j.future.2017.06.017.
- Cisco, Cisco Global Cloud Index: Forecast and Methodology, 2015–2020, 2016.
 http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/w hite-paper-c11-738085pdf. (Accessed 14 December 2016).
- OPM: url: https://opm-project.org/ (Acessado em 05/10/2018 às 11:30)
- Alves, Maicon Melo, Drummond, Lúcia Maria de Assumpção, Análise de Desempenho de um Simulador de Reservatórios de Petróleo em um Ambiente de Computação em Nuvem.

Thank you! Questions?

