עוד אלגוריתמים מגלי-אמת

More Truthful Algorithms

אראל סגל-הלוי

(knapsack) בעיית התרמיל

- נתון תרמיל המסוגל לשאת עד 100 ק"ג (= 100 שניות המיועדות לפירסום).
- נתונים חפצים עם משקלים שונים וערכים שונים (= לכל מפרסם יש מודעה באורך אחר וערך אחר).
- צריך למלא את התרמיל בחפצים במשקל כולל עד 100, כך שסכום הערכים גבוה ככל האפשר
 צריך למלא את הזמן בפרסומות באורך כולל עד 100, כך שסכום הערכים גבוה ככל האפשר).
 - הבעיה היא NP-קשה, אבל יש לה אלגוריתמי-קירוב טובים.

אלגוריתמי קירוב למילוי תרמיל

:אלגוריתם חמדני א

- סדר את החפצים בסדר יורד של הערך.
- •בחר חפצים לפי הסדר עד שהתרמיל מתמלא.

הקירוב עלול להיות גרוע (גודל התרמיל = 100): \$100/100k, \$20/2k, \$20/2k, \$20/2k ...

אלגוריתמי קירוב למילוי תרמיל

:אלגוריתם חמדני ב

- סדר את החפצים בסדר יורד של **ערך/משקל**.
- •בחר חפצים לפי הסדר עד שהתרמיל מתמלא.

:הקירוב עלול להיות גרוע

\$3/2k, \$100/100k.

אלגוריתמי קירוב למילוי תרמיל

אלגוריתם א+ב: הפעל את שני האלגוריתמים החמדניים. בחר את התוצאה עם הסכום הגבוה.

משפט: אלגוריתם א+ב נותן קירוב 1/2.

הוכחה: נניח שאלגוריתם ב נתקע אחרי k חפצים. עם החפץ ה-k+1 – הסכום הוא מקסימלי++. הסכום של אלגוריתם א הוא לפחות החפץ ה-k+1. --> הסכום של אלגוריתמים א+ב מקסימלי++. --> הסכום של א או ב הוא מקסימלי++ \ 2.

מכרז ויקרי-קלארק-גרובס לתרמיל

.VCG אלגוריתם א+ב **לא אמיתי**, גם עם תשלומי

דוגמה:

\$54/52k, \$52/51k, \$49/49k. הראשון יזכה וישלם \$101 – יותר מהערך שלו!

איפה ההוכחה "נופלת"?

מכרז מיירסון (Myerson)

נתונים:

- כלל-בחירה הקובע לכל שחקן אם נבחר או לא:
 - "בחר את השלושה עם הערכים הגבוהים"•
 - "בחר את המסלול הזול ביותר"•
 - "בחר בעזרת אלגוריתם חמדני א"•
 - לכל משתתף יש ערך ל"היבחרות".

מ כלל-בחירה נתון

כלל-תשלום-צריך למצוא **דרוש**: כלל-תשלום, שאיתו המכרז יהיה אמיתי.

> האם לכל כלל-בחירה קיים כלל-תשלום אמיתי?

כלל-בחירה מונוטוני

- הגדרה: כלל-בחירה נקרא מונוטוני אם, עבור כל שחקן i, הכלל הוא פונקציה מונוטונית-עולה של \cdot 0. כלל-בחירה בינארי הוא מונוטוני אם עבור כל שחקן \cdot 1, אם הוא נבחר כשהערך שלו \cdot 2, אז הוא נבחר גם \cdot 3, אם הוא נבחר כשהערך שלו \cdot 4, אז הוא נבחר כשהערך שלו \cdot 5.
 - דוגמאות לכללים מונוטוניים:
 - •בחר את 3 הערכים הגדולים ביותר.
- בחר את הערך הגדול ביותר, בתנאי שהוא מעל 10.
 - בחר בעזרת אלגוריתם חמדני א / ב / א+ב.
 - דוגמאות לכללים לא מונוטוניים:
 - בחר את הערך השני מלמעלה.
 - בחר את הערך הגדול ביותר, אם הוא מתחת ל-7.

משפט מיירסון

- **משפט מיירסון**: מונוטוניות היא תנאי הכרחי ומספיק לאמיתיות. כלומר:
 - א) לכל כלל-בחירה לא-מונוטוני)

אין כלל-תשלום אמיתי.

(ב) לכל כלל-בחירה מונוטוני -

קיים כלל-תשלום אמיתי, והוא יחיד.

בשקפים הבאים:

- •נוכיח את משפט מיירסון.
- •נגדיר במדוייק את כלל-התשלומים.

הוכחת משפט מיירסון

סימונים:

- כלל-הבחירה -c פונקציה המקבלת כקלט את הערכים של כל המשתתפים, ומחזירה וקטור בינארי c "ברכותיי, נבחרת!"). c נתון וקבוע.
- כלל התשלום p פונקציה המקבלת כקלט את הערכים של כל המשתתפים, ומחזירה וקטור מספרי של תשלומים. את p אנחנו מחפשים.

הוכחת משפט מיירסון - המשך

:התועלת של משתתף עם ערך ν שאומר

$$v*c(x) - p(x)$$

במכרז אמיתי, חייב להתקיים:

$$v^*c(v) - p(v) \ge v^*c(x) - p(x)$$

התועלת של משתתף עם ערך x שאומר ν היא:

$$x*c(v) - p(v)$$

במכרז אמיתי חייב להתקיים:

$$x*c(x) - p(x) \ge x*c(v) - p(v)$$

מחברים את המשוואות ומקבלים:

$$v*[c(v)-c(x)] \ge p(v)-p(x) \ge x*[c(v)-c(x)]$$

הוכחת משפט מיירסון - המשך

:p אמיתי בתון: כלל-בחירה c דרוש: כלל-תשלום אמיתי $v[c(v)-c(x)] \ge p(v)-p(x) \ge x[c(v)-c(x)]$

$$c(v)=c(x): X$$
 מצב

$$0 \geq p(v)-p(x) \geq 0$$

מכאן: p(v) = p(x) - התשלום על בחירה לא תלוי בערך.

$$c(x)=0$$
 וגם $c(x)=1$, כלומר $c(x)=1$ וגם, $c(x)>c(x)$

$$v \geq p(v)-p(x) \geq x$$

מכאן: v>x – הפונקציה c חייבת להיות מונוטונית.

נשים את x קצת מתחת ל"סף" ואת v קצת מעל

!ל"סף", ונקבל: p(v)-p(x) חייב להיות שווה לערך הסף

משפט מיירסון – ערך הסף

c ערך הסף = הערך שבו הפונקציה 2.1-1 מתחלפת מ-1

ערך-הסף יכול להיות שונה משחקן לשחקן. דוגמאות:

אם הכלל הוא "בחר את כל הערכים הגדולים
מ-10", אז ערך-הסף לכל השחקנים הוא 10.

אם הכלל הוא "בחר את הערך הגבוה ביותר", אז
ערך-הסף של הנבחר הוא המחיר השני.

אם הכלל הוא "הרץ אלגוריתם חמדני ב", אז
ערך-הסף של כל שחקן יהיה תלוי במשקל שלו.

הוכחת משפט מיירסון - סיום

מצאנו כלל-תשלום אחד ויחיד המועמד להיות אמיתי:

- .c יש ערך-סף מסויים $.t_i$ נקבע לפי
 - t_i אם $v_i > t_i$ אז השחקן נבחר ומשלם.
 - •אחרת, השחקן לא נבחר ולא משלם.

הוכחה שכלל-תשלום זה הוא אמיתי:

- אם נבחרת ותכריז מעל t_i , או לא נבחרת ותכריז \bullet מתחת ל t_i כלום לא ישתנה.
- אם נבחרת, ותכריז מתחת ל- t_i לא תיבחר, ותכריז מתחת ל- t_i לא תיבחר, שלך והתועלת שלך עהיה 0, אבל קודם התועלת שלך היתה חיובית (כי $v_i > t_i$).
 - t_i אם לא נבחרת, ותכריז מעל תיבחר ותשלם + *** . $(v_i < t_i \circ t_i)$ והתועלת שלך תהיה שלילית

מכרז מיירסון למילוי תרמיל

הנחה: המשקל של כל משתתף ידוע. כל משתתף צריך להגיד רק את הערך שלו.

:אלגוריתם חמדני א

- סדר את החפצים בסדר יורד של הערך.
- •בחר חפצים לפי הסדר עד שהתרמיל מתמלא.

\$100/100k, \$20/2k, \$20/2k, \$20/2k ...

.\$20 - הראשון נבחר ומשלם את ערך הסף שלו

:אלגוריתם חמדני ב

- סדר את החפצים בסדר יורד של **ערך/משקל**.
- •בחר חפצים לפי הסדר עד שהתרמיל מתמלא.

\$20/2k, \$5/1k, \$100/100k.

שני הראשונים נבחרים:

הראשון משלם \$2, השני משלם \$1.

מכרז מיירסון למילוי תרמיל

•אלגוריתם א+ב: הפעל את שני האלגוריתמים החמדניים. בחר את התוצאה עם הסכום הגבוה.

\$54/52k, \$52/51k, \$49/49k.

הראשון זוכה ומשלם: \$52 (52k/51k) * הראשון אוכה ומשלם:

\$100/100k, \$20/2k, \$20/2k.

הראשון זוכה ומשלם \$40.

\$100/100k, \$60/2k, \$60/2k.

שני האחרונים זוכים ומשלמים: ?

ויקרי-קלארק-גרובס לעומת מיירסון

מיירסון	וק״ג	
אחד	הרבה (למשל: בחירת מסעדה)	פרמטרים לכל שחקן
כל כלל מונוטוני (למשל: קירוב בעיית התרמיל, מיקסום רווח)	מיקסום סכום ערכים	כלל בחירה