Exercise 0

Yuval Paz

Thursday 6th June, 2024

Exercise 1. Trees

Part 1.1.

We shall prove the general fact that transitivity is absolute between transitive models of ZFC, and because well-foundness of trees correspond to well-foundness of their reverse partial order we will finish. The upward direction is the interesting one, so let $\leq M \subseteq N$ be (well-founded)^M partial order on $X \in M$.

Let r be the rank function of < in M.

Assume that < is not well-founded in N, that is: there exists $(x_i \in X \mid i \in \omega) \in N$ <-descending sequence, in particular N can talk about the r-image sequence $(r(x_i) \in Ord^M \mid i \in \omega)$, this is a descending sequence of M-ordinals.

We shall show that $Ord^M \subseteq Ord^N$ and hence reach a contradiction. Look at $\min(Ord^M \setminus Ord^N)$, this is an ordinal in M, hence it is a set in N, but N knows that it is a transitive set of transitive sets, which is impossible as it is not an ordinal in N.

Part 1.2.

Let W be any transitive class of ZFC such that $M, N \in W$ and $W \models M$ is countable. Enumerate $M = \{m_i \mid i \in \omega\}$ and define T to be the tree of all $n = (n_i) \in N^{<\omega}$ such that for all φ in the language of M, N with less than |n| + 1 parameters $M \models \varphi(m_0, \ldots m_k) \iff N \models \varphi(n_0, \ldots, n_k)$.

Note that a branch of T correspond to an elementary embedding $M \to N$ and vice versa, furthermore because W is a transitive class of ZFC we have $W^{<\omega} \subseteq W$, in particular $T \in W$.

From the previous part, if T is ill-founded in V (which it is, as witnessed by the branch $(j(m_i))$) it is ill-founded in W as well, in particular there is a branch of T in W which witness $\tilde{j}: M \prec N$.

To finish the proof just note that L[A] is a transitive class satisfying all of conditions from above.

Exercise 2. Ineffable Cardinals

Part 2.1.

Assume κ is not strongly inaccessible, because it is regular we have that κ is not a strong limit. Let $\lambda < \kappa \leq 2^{\lambda}$ and let $\overline{A} = (A_i \in \mathcal{P}(\lambda) \mid i \in \kappa)$ be arbitrary injective sequence with $A_i = i$ for $i < \lambda$.

This sequence satisfy $A_i \subseteq i$, in particular let $\mathfrak{L} \subseteq \kappa$ be such that $\mathfrak{L}^{\overline{A}} = \{\alpha \mid \alpha \cap \mathfrak{L} = A_{\alpha}\}$ is stationary.

But because each A_i is bounded by λ we must have that $\alpha \mapsto \mathfrak{A} \cap \alpha$ is constant above λ , but we started with injective sequence \overline{A} , contradiction.

To see κ is Mahlo, first note that we can replace the sequence in the definition of ineffable with a sequence indexed by a club instead of κ itself, so let $\overline{A} = (A_{\eta} \subseteq \eta \mid \eta \in \kappa \cap Card)$ be a sequence such that A_{η} is cofinal subset of η with cardinality cof (η) .

Let $\subseteq \kappa$ is such that $\bigcirc^{\overline{A}}$ is stationary, if the regular cardinals in $\bigcirc^{\overline{A}}$ are not stationary then $\operatorname{cof} \upharpoonright_{\square^{\overline{A}} \cap Singular}$ is regressive over a stationary set, hence constant λ over a stationary set $\bigcirc^* \subseteq \bigcirc^*$, that is impossible as $|A_{\eta}| = \operatorname{cof}(\eta) = \lambda$ for all $\eta \in \bigcirc^*$ but the λ^+ -th element of $\overline{A} \upharpoonright \bigcirc^*$ must have cardinality at least λ^+ .

To finish the proof we just note that the strong limit cardinals are a club in any strong limit cardinal, and in particular in κ , and intersecting this club with the stationary set of regular cardinals results with a stationary set of inaccessible cardinals.

Part 2.2.

Lemma 2.1. If κ is ineffable and $\overline{A} = (A_{\alpha} \subseteq \alpha^2 \mid \alpha \in \kappa)$ is any sequence, then there is $\widehat{A} \subseteq \kappa^2$ such that $\widehat{A} \cong \widehat{A}$ is stationary.

Proof. We shall restrict ourselves to the club of cardinals, so WLOG dom $(\overline{A}) = Card$. Let $G: Ord^2 \to Ord$ be Godel's pairing function, so $G \upharpoonright \eta^2$ is the pairing function on η^2 , and let $\overline{B} = (B_{\alpha})$ defined as $B_{\alpha} = G(A_{\alpha})$, there is a set \mathfrak{B}^* that witness the fact κ is ineffable over \overline{A} , and $\mathfrak{B} = G^{-1}$ is the set we wanted.

Assume that κ is Ineffable and and let $T \subseteq 2^{<\kappa}$ be a slim tree, and let B be the set of branches of T.

Let $\overline{B^{\alpha}} = (B^{\alpha}_{\beta} \mid \beta \in \alpha)$ be enumeration of $\{b \mid \alpha \mid b \in B\}$ and encode each $\overline{B^{\alpha}}$ with $L_{\alpha} = \{(x,\beta) \mid B^{\alpha}_{\beta}(x) = 1\}$ and define the sequence $\overline{L} = (L_{\alpha})$. From the lemma we have $\subseteq \kappa^2$ such that $\mathbb{R}^{\overline{L}}$ is stationary.

For $\nu < \kappa$ define the following $b_{\nu} : \kappa \to 2$, as

$$b_{\nu}(x) = \begin{cases} 1 & \text{if } (x, \nu) \in \\ 0 & \text{otherwise} \end{cases}$$
 (2.1)

Let $B' = \{b_{\nu} \mid \nu \in \kappa\}$, we shall show that $B \subseteq B'$ and hence restrict the size of B to κ .

Assume $b \in 2^{\kappa} \setminus B'$, define $g : \kappa \to \kappa$ be such that g(x) is the least such that g(x) > g(z) for z < x and $b \neq b_x$ (that is, $b \upharpoonright g(x) \neq b_x \upharpoonright g(x)$). This is a normal function, hence the set C of fixed points is a club in κ .

Let $\alpha \in C \cap \mathfrak{B}^{\overline{L}}$, because $\alpha \in C$ we have that for all $\beta < \alpha$ $(b \upharpoonright \alpha \neq b_{\beta} \upharpoonright \alpha)$ but $b_{\beta} \upharpoonright \alpha = B_{\beta}^{\alpha}$, in particular $b \upharpoonright \alpha \notin \text{range}(\overline{B_{\alpha}})$, in other words $b \upharpoonright \alpha \notin T$ hence $b \notin B$.

Part 2.3.

First we note that κ is regular, indeed if $\operatorname{cof}(\kappa) = \nu < \kappa$ let $(x_{\alpha} \mid \alpha \in \nu)$ be such witness, this witness is in $H(\mu)$ hence there exists some $\overline{y} = (y_{\alpha} \mid \alpha \in \nu) \in M$ that is cofinal in κ , but $j(\overline{y}) = \overline{y}$ as it is a short sequence of small ordinals, in particular $\kappa = \sup \operatorname{range}(\overline{y}) = \sup \operatorname{range}(j(\overline{y})) = j(\kappa)$.

Now, let $\overline{A} \in M$ be any sequence such that $A_{\alpha} \subseteq \alpha$ for all $(\alpha \in \kappa)^M$.

Let $\overline{B} = j(\overline{A})$ and note that $B_{\alpha} = A_{\alpha}$ for $(\alpha < \kappa)^{M}$. Let $\mathfrak{B} = B_{\kappa}$ and let $C \in M$ be a (club of $\kappa)^{M}$, in particular j(C) is a club of $j(\kappa)$ and $j(\mathfrak{B}^{\overline{A}}) = j(\mathfrak{B})^{\overline{B}}$.

Because j(C) is a club and $C \subseteq j(C)$ we must have $\kappa \in j(C)$ as it is a limit point, and furthermore $x \in \mathfrak{A} \iff x \in j(\mathfrak{A})$ for all $(x \in \kappa)^M$, in particular $j(\mathfrak{A}) \cap \kappa = \mathfrak{A} \iff \kappa \in j(\mathfrak{A})^{\overline{B}} = j(\mathfrak{A}^{\overline{A}})$, combining the 2 we get $j(\mathfrak{A}^{\overline{A}} \cap C) \neq \emptyset$ $\Longrightarrow \mathfrak{A}^{\overline{A}} \cap C \neq \emptyset$, because C was arbitrary we have $(\mathfrak{A}^{\overline{A}} \cap C)$ is stationary)M.

In particular $M \models \kappa$ is ineffable, by elementary $H(\mu)$ also thinks so, but every sequence $(Q_{\alpha} \subseteq \alpha \mid \alpha \in \kappa)$ and every κ -club are in $H(\mu)$, so V agrees with $H(\mu)$ about stationary sets and hence about ineffability for cardinals bellow μ .

Part 2.4.

Let $\overline{M} = (M_{\alpha})_{\alpha \in \kappa \cap Card}$ be a list of structures in the language \mathcal{L} and assume WLOG that the domain of each M_{α} is an ordinal. We shall further assume that the domain of each M_{α} is exactly α (if the domain is not a arbitrary we can just attach to each model an isomorphism f_{α} into α to get a sequence \overline{N} of models and work with \overline{N}), and show separately at the end what happens if the domain of M_{α} is less than α .

Encode each M_{α} in $\alpha^{<\omega}$, just like Lemma 2.1 we have $\mathfrak{L} \subseteq \kappa^{<\omega}$ stationary such that $\mathfrak{L}^{\overline{M}}$ is stationary. In particular, \mathfrak{L} can be decoded as a model M_{κ} of \mathcal{L} such that for each $\alpha \in \mathfrak{L}^{\overline{M}}$ we have that M_{α} is substructure of M_{κ} .

Let $(p_{\alpha+1}(x))_{\alpha\in\kappa}$ be enumeration of $\varphi(x,\overline{a})$ the \mathcal{L} -formulaes with parameters from M_{κ} and 1 free variable such that $M_{\kappa} \models \exists x \varphi(x,\overline{a})$ with the property that if $p_{\alpha+1}(x) = \varphi(x,\overline{a})$ then $\alpha+1 < |\max \overline{a}|^+$.

Define $g: \kappa \to \kappa$ as follows: for $x = \alpha + 1$ let g(x) be the first $\beta > g(\alpha)$ such that $\exists y \in M_{\beta}(M_{\kappa} \models p_x(y))$. Otherwise let $g(x) = \sup_{w < x} g(w)$. g is a normal function hence C the set of fixed points of g is a club.

Let $\alpha \in C$, $\overline{a} \in M_{\alpha}^{<\omega}$ and $\varphi(x,y)$ such that $M_{\kappa} \models \exists x \varphi(x,\overline{a})$, we know that $\varphi(x,\overline{a}) = p_{\beta+1}(x)$ for some β with $\beta+1 < |\max \overline{a}|^+ \le \alpha$, in particular $g(\beta+1) < g(\alpha) = \alpha$ as $\alpha \in C$.

By construction there is $\eta < \alpha$ such that $\exists y \in M_{\eta}(M_{\kappa} \models p_{\beta+1}(y))$ so $\exists y \in M_{\alpha}(M_{\kappa} \models p_{\beta+1}(y))$, in other words $\exists y \in M_{\alpha}(M_{\kappa} \models \varphi(y, \overline{a}))$.

By Tarski-Vaught criterion if $\alpha \in \mathbb{R}^{\overline{M}}$ then $M_{\alpha} \prec M_{\kappa}$ is elementary.

Finally, we shall show that the limit steps are direct limit of the previous steps, but that is obvious as our embeddings are the inclusion functions.

To handle the case that $|M_{\alpha}| \neq \alpha$ for all α note that either $|M_{\alpha}| < \alpha$ on a stationary set \mathfrak{A}^* , or $|M_{\alpha}| = \alpha$ on a club, in the later case the above proof works by restricting our \overline{M} to that club.

Assume $|M_{\alpha}| < \alpha$ for all $\alpha \in \mathfrak{S}^*$ stationary. By Fodor we can assume WLOG that $|M_{\alpha}| = \eta$ for all $\alpha \in \mathfrak{S}^*$. Because κ is uncountable strong limit, our language is countable and the club filter on κ is $2^{\eta} \times \aleph_0$ -complete, we can WLOG assume that $M_{\alpha} \cong M_{\beta}$ for all $\alpha, \beta \in \mathfrak{S}^*$. Like before we can encode each M_{α} to have domain η , again we note that the club filter on κ is 2^{η} -complete to be able to assume WLOG that $M_{\alpha} = M_{\beta}$ for all $\alpha, \beta \in \mathfrak{S}^*$, let $M_{\kappa} = M_{\alpha}$ for some $\alpha \in \mathfrak{S}^*$ to get the system we wanted.