Ban học tập Khoa Kỹ thuật máy tính

Training cuối học kỳ II năm học 2021-2022 NHẬP MÔN MẠCH SỐ

Email : bht.ktmt@gmail.com

Fanpage: www.facebook.com/bht.ktmt

MUC LUC

I. MACH TỔ HỢP

NỘI DUNG

Mux

Biểu thức Shannon

Mạch so sánh

a. Mạch cộng bán phần

Là **mạch** tổ hợp số học **cộng** hai số tạo ra một bit tổng (S) và bit nhớ (C) làm đầu ra.

Biểu thức tính:

$$S = x \oplus y$$

$$\rightarrow$$
 c = x.y

Sơ đồ mạch:

Bảng chân trị:

X	y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

b. Mạch cộng toàn phần Bảng chân trị

X	Υ	Cin	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Biểu thức tính:

$$S = x \oplus y \oplus cin$$

$$C_{out} = x.y + x.c_{in} + y.c_{in}$$

Sơ đồ mạch:

b. Mạch cộng toàn phần

Có thể sử dụng lại mạch cộng bán phần để tạo ra mạch cộng toàn phần

$$S_i = x_i \oplus y_i \oplus c_i$$

c. Mạch cộng Carry Riple (có nhớ)

carry xuất hiện ở bit i => cộng thêm ở bit thứ i+1

Yếu điểm: Tốc độ bị giới hạn bởi quá trình truyền số nhớ.

Độ trễ phụ thuộc vào số lượng bit:

$$C_n = n \cdot \Delta t$$

=>Sử dụng mô hình carry look ahead (CLA) để cải thiện tốc độ

VD: Mạch cộng song 4 bit

$$X = 1001$$

 $Y = 0011$ => $X + Y = S = 1100$

BAN Học TẬP BICA KŸ THUẬT YMAY TIBH

2. Mạch trừ

Với X, Y là 2 số không dấu n-bit

Phép cộng: S = X + Y

Phép trừ: D = X - Y

$$= X + (-Y)$$

$$= X + (Bù 2 của Y)$$

$$= X + (Bù 1 của Y) + 1$$

$$= X + Y' + 1$$

Mạch cộng Carry Ripple có thể được dùng để xây dựng mạch trừ Carry Ripple bằng cách đảo Y và đặt số nhớ đầu tiên là 1

2. Mạch trừ

Mạch giải mã nhị phân

3. Decoder

Mạch giải mã (Decoder)

Nhiều inputs / nhiều outputs

Inputs < outputs

1 mã input chỉ tạo ra 1 mã output

Các mã ngõ vào: binary, Code

Các mã ngõ ra: 1-trong-m, Gray Code, BCD Code

Mạch giải mã **n-ra-2**ⁿ: n ngõ vào và 2ⁿ ngõ ra

- input: n bit nhị phân

- output: 1-trong-2ⁿ

Mạch giải mã (Decoder)

Ví dụ: n=2, mạch giải mã 2-ra-4

li	Inputs			Outputs			
EN	l1	lo	Υз	Y2	Y1	Y0	
0	Х	Х	0	0	0	0	
1	0	0	0	0	0	1	
1	0	1	0	0	1	0	
1	1	0	0	1	0	0	
1	1	1	1	0	0	0	

Chú ý: "x" (kí hiệu ngõ vào don't care)

3. Decoder

Ứng dụng Decoder

- ✓ Giải mã địa chỉ cho các chip nhớ
- ✓ Dùng trong LED 7 đoạn, LED 7 đoạn là cách phổ biến để hiển thị số thập phân hoặc số thập lục phân
 - Sử dụng LED cho mỗi đoạn
 - Điều khiển dòng điện qua mỗi LED => một số đoạn sẽ sáng và một số tắt => hiển thị số mong muốn

3. Decoder

MUX truyền một trong những inputs tới output dựa trên tín hiệu Select

MUX 2-to-1

Ký hiệu Jout out sel

4. Mạch dồn kênh (MUX)

Biểu thức đại số

Sel	Out
0	I ₀
1	l ₁

Out =
$$\overline{Sel} * I_0 + Sel * I_1$$

MUX 4-to-1

Từ 4 inputs, xuất ra 1 output dựa vào 2 tín hiệu select

Thiết kế mạch logic sử dụng MUX

- Cách hiện thực LUT (Look-up table)
 - Sử dụng MUX để chọn một giá trị (hằng số) từ 1 LUT

Ví dụ: Thiết kế mạch XOR sử dụng MUX

a	b	f	_
0	0	0	
0	0 1 0 1	1	
1	0	1	
1	1	0	

Thiết kế mạch logic sử dụng MUX

> XOR 3 ngõ vào có thể hiện thực bằng 2 MUX 2-to-1

5. Biểu thức Shannon

Bất kì hàm Boolean $f(w_1, w_2, ..., w_n)$ đều có thể được viết: $f(w_1, w_2, ..., w_n) = \overline{w_1} * f(0, w_2, ..., w_n) + w_1 * f(1, w_2, ...w_n)$

VD1:

$$f(w_1, w_2, w_3) = w_1 w_2 + w_1 w_3 + w_2 w_3$$

Phân tích hàm này theo biến w₁:

$$f(w_1, w_2, w_3) = w_1(w_2 + w_3) + \overline{w_1}(w_2w_3)$$

 $f \text{ khi } w_1 = 1$
 $f \text{ khi } w_1 = 0$

5. Biểu thức Shannon

X	У	Z	f
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

VD2:
$$f=x'y'z'+x'y'z+x'yz+xy'z'+xy'z$$

Chọn x làm biến mở rộng

$$f=x'(y'z'+y'z+yz)+x(y'z'+y'z)$$

 $f=x'(y'+z)+x(y')$

5. Biểu thức Shannon

VD2:
$$f=x'y'z'+x'y'z+x'yz+xy'z'+xy'z$$

Chọn z làm biến mở rộng

6. Mạch so sánh

Mạch so sánh 2 số A và B

- Xuất 1 nếu A = B
- Xuất 0 nếu A ≠ B
- Dùng cổng XOR (= 0 nếu ngõ vào giống nhau và =1 nếu khác nhau)
- Dùng cổng XNOR (=1 nếu ngõ vào giống nhau và =0 nếu khác nhau)

6. Mạch so sánh

Mạch so sánh 1 bit

а	b	gt	eq	lt
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

6. Mạch so sánh

Mạch so sánh 4 bit

Câu 1: Cần ít nhất bao nhiêu mạch cộng toàn phần để thực hiện thao tác cộng 5 bit

A. 2

B.3

C. 4 (ít nhất 4 mạch cộng toàn phần với 1 mạch cộng bán phần)

D.5

Câu 2: Mạch giải mã nhị phân (Binary Decoders) với n ngõ vào sẽ có bao nhiều ngõ ra

A. 2^{n-1}

B. 2 ⁿ

 $C.n^2$

 $D.2^{n} - 1$

Bài tập

Câu 3: Mạch sau thực hiện thao tác gì

A. cộng 5-bit

B. trừ 5-bit

C. cộng 4-bit

D.trù 4-bit

Câu 4: Sơ đồ sau là mạch gì?

(A.) FA

B.HA

C.MUX 2-1

D.Decoder

7.Bài tập

Câu 5: Mạch mã hoá nhị phân (Binary Encoder) với 16 ngõ vào sẽ có bao nhiêu ngõ ra ?

Câu 6: MUX 16:1 cần ít nhất bao nhiêu ngõ vào điều khiển?

A, 8

B.)4

C. 2

D. 6

(A.)

B. 2

C. 3

D.5

2ⁿ ngõ vào có n ngõ ra => 24 ngõ vào → 4 ngõ ra.

Bài tập

Câu 7: cho hàm F(A,B,C)= SOP(1,2,6,7). Chỉ dùng MUX và cổng NOT. Thiết kế mạch F?

Bảng chân trị

BC A	00	01	11	10
0		1		1
1			1	1

=> A là tín hiệu điều khiển

*Xét hàm I1: Lấy B là tín hiệu điều khiển

ВС	0	1
0	0	1
1	0	1

Ta thấy với B = 0 | B = 1 thì | 1 = B

*Xét hàm IO: B là tín hiệu điều khiển

В	0	1
C		
0	0	1
1	1	0

Câu 8 : Cho mạch như hình bên dưới, ngõ ra Z = 0

khi ng \tilde{o} vào S1SO = 10 và I3I2I1I0 là

A. 1101

B. 0110

(c.) 1010

D.1000

II. MẠCH TUẦN TỰ

O.Phân biệt mạch tổ hợp và mạch tuần tự

MẠCH TUẦN TỰ

inputs

outputs trước đó

thay đôi

Mạch có tính chất nhớ

NỘI DUNG

Latch

S-R latch

D latch

Bộ đếm bất đồng bộ

Bộ đếm đồng bộ

Flip-flop

D flip-flop

S-R flip-flop

T flip=flop

J-K flip-flop

Chuyển đổi giữa các FF

BAN HOC TÂP BHOA AF THUẬT MAY THEN

1. Latch (Chốt)

Bảng sự thật

Chốt S - R

	S	R	Q	QN
	0	0	last Q	last QN
	0	1	0	1
_	1	0	1	0
	1	1	0	0

Cấm sử dụng

1. Latch (Chốt)

Chốt S-R với ngõ vào cho phép

Bảng sự thật QN SRC last QN last Q last Q last QN

Cấm sử dụng

1. Latch (Chốt)

Chốt D

С	D	Q	QN	Κý	hiệu
1	0	0	1	 D	Q
1	1	1	0	 С	ماه_
0	Х	last Q	last QN		
	, ,	_	^ .		

Bảng sự thật

Loại bỏ những hạn chế trong chốt S-R khi **S** và **R** cùng chuyển từ 1 xuống 0 Ngõ vào điều khiển **C** giống với ngõ vào cho phép (enable) C tích cực, $Q = D \rightarrow chốt mở$ C không tích cực, Q giữ giá trị ¦trước đó → chốt đóng

Flip-flop D kích cạnh lên

Gồm **2 D-latch** kết nối sao cho có dữ liệu truyền từ ngõ D ra ngõ Q mỗi khi CLK tích cực cạnh lên

D-latch thứ 1 là Chủ (master), hoạt động khi CLK ở mức 0

D-latch thứ 2 là Tớ (slave), hoạt động khi CLK ở mức 1

Flip-flop D kích cạnh xuống

FF-D kích cạnh xuống thiết kế giống FF-D kích cạnh lên, nhưng **đảo** ngõ vào xung Clock của 2 chốt D

Flip-flop D với ngõ vào điều khiển

Thêm vào ngõ vào Enable cho mỗi FF (ký hiệu **EN** hoặc **CE)**

=> Giúp FF-D có lưu giữ dữ liệu sau cùng tốt hơn là nạp vào

dữ liệu mới.

Flip-flop S-R kích cạnh lên

FF S-R kích cạnh lên

Hoạt động của **FF-S_R** kích cạnh lên

Flip-flop T

Hoạt động của FF-T tích cực cạnh lên

Flip-flop đảo trạng thái tại cạnh lên của xung Clock chỉ khi ngõ vào **EN** và **T** tích cực.

Flip-flop J-K kích cạnh lên

Thiết kế chuyển đổi giữa các FF Tổng quan

Thiết kế chuyển đổi giữa các FF

D-ff sang T-ff

Т	Q	Q+	D
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

Thiết kế chuyển đổi giữa các FF

D-ff sang SR-ff

S	R	Q	Q+	D
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	1	1
1	0	1	1	1
1	1	0	Х	X
1	1	1	Х	Х

Thiết kế chuyển đổi giữa các FF D-ff sang JK-ff

J	K	Q	Q+	D
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0
	0 0 0 1 1	0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0	0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1

Thiết kế chuyển đổi giữa các FF

JK-ff sang SR-ff

0	RQ	K	J	Q+	Q	R	S
00 01	L s	Х	0	0	0	0	0
0 0 X		0	X	1	1	0	0
1 1 X	_	X	0	0	0	1	0
± <u> </u>	•	1	X	0	1	1	0
	RQ	Х	1	1	0	0	1
00 01	S	0	Х	1	1	0	1
0 X 0	0	X	Χ	Х	0	1	1
1 X 0	1	X	Χ	Х	1	1	1
	_			/ ^ \		<u></u>	

Thiết kế chuyển đổi giữa các FF JK-ff sang T-ff

Т	Q	Q+	J	K
0	0	0	0	X
0	1	1	Х	0
1	0	1	1	X
1	1	0	Х	1
		1		

Thiết kế chuyển đổi giữa các FF JK-ff sang D-ff

_					
	D	Q	Q+	J	K
	0	0	0	0	Х
	0	1	0	Х	1
	1	0	1	1	Х
	1	1	0	Х	0
_					

Thiết kế chuyển đổi giữa các FF SR-ff sang JK-ff

			1	\leftarrow	
J	K	Q	Q+	S	R
0	0	0	0	0	X
0	0	1	1	Х	0
0	1	0	0	0	Х
0	1	1	0	0	1
1	0	0	1	1	Х
1	0	1	1	Х	0
1	1	0	1	1	0
1	1	1	0	0	1
			•		

KQ					
J	00	01	11	10	
0	0	X	0	0	
1	1	X	0	1	

$$S = J'Q$$

$$R = KQ$$

Thiết kế chuyển đổi giữa các FF SR-ff sang D-ff

D	Q	Q+	S	R
0	0	0	0	Х
0	1	0	0	1
1	0	1	1	0
1	1	0	Х	0

Là bộ đếm mà các FF không chung ngõ CLK FF có trọng số thấp nhất: cổng CLK nối trực tiếp với xung

MOD (hệ số bộ đếm)

- ✓ Là số trạng thái trong một chu kì của bộ đếm
- √ Bộ đếm 4 bit có 16 trạng thái khác nhau => mod 16
- √ Số FF thay đổi sẽ làm MOD thay đổi
- ✓ MOD = $< 2^N (N: số FF)$

Một vài ví dụ bộ đếm lên/đếm xuống bất đồng bộ

Chú ý: Q0 có trọng số nhỏ nhất (LSB) Q2 có trọng số lớn nhất (MSB)

- ✓ Clock nối chân CLK của FF A => A trọng số thấp nhất
- ✓ J và K của tất cả FF đều bằng 1
- ✓ Q của FF A nối CLK của B, tương tự với B,C,D
- ✓ Ngõ ra Q của các FF là kết quả đếm 4-bit

Nghĩa là, nếu ta có kết quả đếm là 10 thì biểu diễn: $Q_DQ_CQ_BQ_A = 1010_2$

Đối với bộ đếm có $MOD < 2^N$

VD: vẽ giản đồ chuyển trạng thái của bộ đếm MOD-6(đếm từ 0 đến 5)

Vòng tròn nét liền: trạng thái thực sự

Vòng tròn nét đứt: trạng thái tạm

Mũi tên nét liền: chuyển trạng thái giữa

2 trạng thái thực

Mũi tên nét đứt: chuyển từ trạng thái thực -> trạng thái tạm hoặc ngược lại

Delay của FF trước được tích lũy đến FF sau

Delay

- → Delay của toàn mạch khá lớn
- > không phù hợp cho các mạch hoạt động ở tần số cao hoặc khi dùng nhiều FF

Để mạch hoạt động đúng thì $T_{\text{clock}} \geq N \times t_{\text{pd}}$

T_{clock}: chu kì xung Clock

N: số FF của mạch

T_{pd}: delay của một FF

- \rightarrow Tần số tối đa của mạch: $F_{\text{max}} = 1 / (N \times t_{\text{pd}})$
- \rightarrow Tần số ngõ ra: : $F_{\text{rap}} = Tần số xụng / Số MOD$

Tần số xung = Tần số ngõ vào tại FF đầu

Là bộ đếm mà tín hiệu clock được kết nối tới ngõ vào CLK của tất cả các FF → delay của mạch = delay của mỗi FF

Khác với bộ đếm bất đồng bộ, **bộ đếm đồng bộ** có thể được thiết kế để tạo ra **chuỗi đếm bất kì**. Thuộc tính đếm lên/xuống chỉ phụ thuộc vào **trạng thái hiện tại** và **trạng thái kế tiếp** mà *không quan tâm* đến FF kích cạnh lên/xuống

Phân tích mạch đếm

Ví dụ: Phân tích mạch đếm ở hình bên dưới

Bước 1: Tìm phương trình ngõ vào của các FF

$$S_1 = Q'_1 Q'_0 \qquad S_0 = Q'_0$$

$$S_0 = Q'_0$$

$$R_1 = Q_1$$

$$R_0 = Q'_1 Q_0$$

Phân tích mạch đếm

Bước 2: Lập bảng chuyển trạng thái

$$S_1 = Q'_1 Q'_0$$

$$R_1 = Q_1$$

$$S_0 = Q'_0$$

$$R_0 = Q'_1 Q_0$$

S	R	CLK	Q	Q'
0	0	£	last Q	last Q'
0	1	₹	0	1
1	0	£	1	0
1	1	₹	×	×

Bảng chuyển trạng thái

Bảng sự thật FF-S_R

TTHT	Ngõ	TTKT	
$Q_1 Q_0$	S_1R_1	$S_0 R_0$	$Q_{1}^{+} Q_{0}^{+}$
0 0			
0 1			
1 0			
1 1	-		_

Các kiểu mô tả của FF-D

Q	Q(next)	D
0	0	0
0	1	1
1	0	0
1	1	1

Phương trình đặc tính

Các kiểu mô tả của FF-T

Т	CLK	Q	Q'
0	£	last Q	last Q'
1	£	Q'	Q
	2		

T Q(next)	
0	Q
1	Q'

Ký hiệu

Bảng sự thật

Q	Q(next)	T
0	0	0
0	1	1
1	0	1
1	1	0

Bảng đặc tính

T	Q	Q +
0	0	0
0	1	1
1	0	1
1	1	0

$$\mathbf{Q}_{(\text{next})} = \mathbf{TQ'} + \mathbf{T'Q}$$

$$Q^+ = T \oplus Q$$

Phương trình đặc tính

Các kiểu mô tả của FF-SR

S	R	ÇLK	Q	Q'
0	0	£	last Q	last Q'
0	1	₹	0	1
1	0	£	1	0
1	1	₹	×	X

S	R	Q(next)
0	0	Q
0	1	0
1	0	1
1	1	?

Κý	hi	ê	u
,		•	

Bảng sự thật

Q	Q(next)	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

Bảng đặc tính

$$\mathbf{Q}_{(\text{next})} = \mathbf{S} + \mathbf{R'Q}$$

Phương trình đặc tính

Bảng sự thật

Các kiểu mô tả của FF-JK

J	K	CLK	Q	QN
0	0		last Q	last QN
0	1	⋰	0	1
1	0	ⅎ	1	0
1	1	᠆	last QN	last Q

Q	Q(next)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

	0	0	Q	
\	0	1	0	
7	1	0	1	
	1	1	O'	

J	K	Q	Q +
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Bảng đặc tính

Q(next)

$$\mathbf{Q}_{(next)} = \mathbf{J}\mathbf{Q'} + \mathbf{K'Q}$$

Phương trình đặc tính

Thiết kế bộ đếm đồng bộ

VD: Sử dụng FF-J_K để thiết kế một bộ đếm có chuỗi đếm như bảng

□ Bước 1: Tìm số FF nhỏ nhất

Chu trình đếm 0-1-2-3-4-0-... => MOD = 5

 $M \grave{a} MOD = < 2^{N} = > N = 3$

С	В	Α			
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0 0				
0	0				
etc.					

Thiết kế bộ đếm đồng bộ

- Bước 2: Vẽ biểu đồ chuyển trạng thái
- ✓ Vẽ tất cả các trạng thái có thể
- ✓ Những trạng thái không có trong chu trình đếm, có thể cho chuyển đến một trạng thái trong chu trình đếm

С	В	Α			
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
0	0				
etc.					

Thiết kế bộ đếm đồng bộ

Bước 3: Lập bảng trạng thái

Dùng biểu đồ chuyển trạng thái để lập một bảng bao gồm các trạng thái hiện tại và trạng thái kế

CLK		TTHT	•			
CLK	C	В	A	Ċ	\mathbf{B}^{+}	\mathbf{A}^{+}
1	0	0	0		1	
2	0	0	1		1	
3	0	1	0		I	
4	0	1	1		1	
5	1	0	0			
6	1	0	1		ı	
7	1	1	0		1	
8	1	1	1			

Bảng trạng thái của mạch

Thiết kế bộ đếm đồng bộ

Bước 4: Lập bảng kích thích của mạch

Dựa vào trạng thái hiện tại và trạng thái kế tiếp, thêm các cột giá trị ngõ vào mỗi FF vào bên phải bảng chuyển trạng thái

CLK		TTHT			TTKT			Ng	gõ vào	các i	FF		
CLK	C	В	A		C ⁺	\mathbf{B}^{+}	\mathbf{A}^{+}	J_C	$\mathbf{K}_{\mathbf{C}}$	J_{B}	$\mathbf{K}_{\mathbf{B}}$	J_A	$\mathbf{K}_{\mathbf{A}}$
1	0	0	0			1			ı				
2	0	0	1					_		_			
3	0	1	0			I	ı		ı			_	
4	0	1	1			I	ı						_
5	1	0	0										
6	1	0	1										_
7	1	1	0									_	
8	1	1	1										

Bảng kích thích của mạch

Thiết kế bộ đếm đồng bộ

Bước 5: Sử dụng bìa K để tìm phương trình ngô vào

Thiết kế bộ đếm đồng bộ

□ **Bước 6**: Vẽ mạch

So sánh hai bộ đếm

Bộ đếm bất đồng bộ	Bộ đếm đồng bộ					
Kích lần lượt các xung CLK	Kích các xung CLK cùng 1 lúc					
Đếm theo thứ tự lên/xuống	Đếm bất kì không theo thứ tự					
Các trạng thái của bộ đếm không được thay đổi đồng thời	Cùng lúc các trạng thái của bộ đếm đều thay đổi					

CỦNG CỐ KIẾN THỨC

Bài tập

Câu 1

Xác định hệ số bộ đếm (MOD number) của mạch dưới:

A. 16

B. 12

C) 14

D. 10

- * Khi D C B bằng 1 (đếm tới 1110 -14) thì clear về giá trị đầu.
- * Bộ đếm đếm từ 0-13 => có 14 MOD

Câu 2

Một bộ đếm bất đồng bộ Ripple Counter được xây dựng từ các Flip Flop JK có thời gian trì hoãn của mỗi FF tpd=12ns, hệ số MOD ít nhất của bộ đếm mà bộ đếm vẫn hoạt động được ở tần số 10MHz là:

A. 1024

(B) 256

C. 512

D. 64

* Để mạch hoạt động đúng thì chu kỳ của xung clock phải lớn hơn tổng Delay của mạch: $T_{clock} \geq N * t_{pd}$

Bài tập

Câu 3

Cho bộ đếm đồng bộ như hình bên dưới, chuỗi đếm lặp vòng của bộ đếm là:

- A. 0,1,2,3,4,5,6
- B. 6,5,4,3,2,1,0
- C. 0,1,2,3,4,5,6,7
- D. 7,6,5,4,3,2,1,0

*Phương trình đầu vào :

$$J_0 = 1$$

$$J_1 = A$$

$$J_0 = 1$$
 $J_1 = A$ $J_2 = A.B$

$$K_0 = 1$$

$$K_1 = A$$

$${}^{1}_{1}K_{0} = 1$$
 $K_{1} = A$ $K_{2} = A.B$

¦*chuyển trạng thái:

$$|1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 0 \rightarrow 1 \rightarrow \dots$$

Bài tập

Câu 4

Cho giản đồ xung như hình bên dưới, Giá trị của DCBA ngay sau cạnh xuống xung clock thứ 2022 là:

- B. 0011
- C. 0010
- D. 1100

- √ bộ đếm có 16 trạng thái => MOD 16
- √ 2022/16 = 126 dư 6 => trạng thái 0110

Câu 5

Phát biểu nào sau đây về mạch tuần tự và tổ hợp là sai :

- A. Mạch tổ hợp là mạch có ngõ ra thay đổi ngay lập tức khi ngõ vào thay đổi
- B) Mạch tuần tự là mạch có ngõ ra thay đổi ngay lập tức khi ngõ vào thay đổi
 - C. Mạch tuần tự là mạch có thể chứa các thành phần là mạch tổ hợp
 - D. Chốt là một phần tử có tính chất nhớ

Bài tập

Câu 6

Tính tần số ngõ ra của bộ đếm dưới đây:

- A. 4 Hz
- (B) 1 Hz
 - C. 5 Hz
 - D. 3.5 Hz

ASK & ANSWER

