UNIT 4

Redox titrations

Redox titrations are a class of volumetric titrations that involve **oxidation-reduction reactions**, where electrons are transferred from one species to another. These titrations are widely used for the quantitative determination of reducing and oxidizing agents in pharmaceutical and chemical analysis.

Basic Concepts of Oxidation and Reduction

1. Oxidation

Originally, oxidation referred to the combination of a substance with oxygen. However, in modern chemistry, oxidation is defined as:

- Loss of electrons by a substance
- Increase in oxidation number
- Addition of oxygen or removal of hydrogen

Example:

Fe2+ \rightarrow Fe3++e-\text{Fe}^{2+} \rightarrow \text{Fe}^{3+} + e^-Fe2+ \rightarrow Fe3++e-Here, iron (Fe²⁺) **loses an electron** and is oxidized to Fe³⁺.

2. Reduction

Reduction is the opposite of oxidation:

- Gain of electrons by a substance
- Decrease in oxidation number
- Addition of hydrogen or removal of oxygen

Example:

Cl2+2e-→2Cl⁻

Chlorine (Cl₂) gains electrons and is reduced to Cl⁻.

3. Oxidizing Agent

A substance that accepts electrons and gets reduced itself.

It causes **oxidation** of the other reactant.

Examples: KMnO₄, K₂Cr₂O₇, I₂, H₂O₂

4. Reducing Agent

A substance that **donates electrons** and gets oxidized itself.

It causes **reduction** of the other reactant.

Examples: FeSO₄, Na₂S₂O₃, oxalic acid, SnCl₂

5. Redox Reaction

A redox reaction involves simultaneous oxidation and reduction.

Example:

 $MnO4-+5e-+8H+\rightarrow Mn2++4H2O(Reduction)$

 $Fe2+\rightarrow Fe3++e-(Oxidation)$

Overall:

 $MnO4-+5Fe2++8H+\rightarrow Mn2++5Fe3++4H2O$

MnO4-+5Fe2++8H+→Mn2++5Fe3++4H2O

Significance in Titrations

Redox titrations are used to:

- Determine the **oxidizing or reducing strength** of substances
- Analyze iron salts, peroxides, sulphides, ascorbic acid, etc.
- Quantify pharmaceutical substances like hydrogen peroxide, potassium permanganate, iodine, and sodium thiosulphate

Types of Redox Titrations

Redox titrations may involve:

- Potassium permanganate titrations (permanganometry)
- Potassium dichromate titrations (dichrometry)
- Iodine titrations (iodometry and iodimetry)
- Ceric sulphate titrations

Indicators Used

- **Self-indicator**: KMnO₄ (purple to colorless)
- External indicator: Potassium ferricyanide (in Fe²⁺ titration)
- Starch indicator: For iodine-based titrations (blue complex with iodine)

Cerimetry is a type of redox titration that involves the use of ceric ammonium sulfate (Ce⁴⁺) as the oxidizing agent. It is commonly carried out in acidic medium (usually dilute H₂SO₄ or HNO₃) where Ce⁴⁺ (yellow) is reduced to Ce³⁺ (colorless or faint blue-green).

Principle of Cerimetry

Ceric ion (Ce^{4+}) acts as a strong **oxidizing agent** and accepts **one electron** to form cerous ion (Ce^{3+}):

$$Ce4++e-\rightarrow Ce3+\text\{Ce\}^{4+}+e^-\text\{Ce\}^{3+}Ce4++e-\rightarrow Ce3+$$

During titration, Ce⁴⁺ oxidizes the analyte (a reducing agent), and itself gets reduced to Ce³⁺. The titration is usually performed in acidic medium to maintain the stability and reactivity of Ce⁴⁺ ions.

Standard Cerimetry Reaction Example

1. With Fe²⁺ (ferrous ions):

Ce4++Fe2+→Ce3++Fe3+

This reaction is fast, stoichiometric, and does not require a catalyst.

Indicators Used in Cerimetry

- 1. **Self-indicating titration**: The yellow color of Ce⁴⁺ disappears at end-point as it converts to colorless Ce³⁺.
- 2. **External Indicator**: Potassium ferricyanide (for Fe²⁺ estimation).
- 3. Internal Indicators:
 - o Ferroin
 - Methylene blue
 - o o-Phenanthroline

Applications of Cerimetry

Cerimetry is used for the **quantitative estimation** of a variety of reducing agents. Some common pharmaceutical and chemical applications include:

1. Estimation of Iron (Fe²⁺)

• Ferrous salts such as **ferrous sulfate** or **ferrous fumarate** in pharmaceutical formulations can be titrated with standard ceric ammonium sulfate solution.

2. Estimation of Ascorbic Acid (Vitamin C)

- Ascorbic acid is a reducing agent that is titrated directly with Ce⁴⁺ in sulfuric acid medium.
- C6H8O6+2Ce4+→C6H6O6+2Ce3++2H+

3. Estimation of Sulphur Dioxide (SO₂)

Used in food and pharmaceutical preservatives.

4. Estimation of Hydroquinone and Paracetamol

 Compounds having phenolic or reducing groups can also be estimated using cerimetry.

Advantages of Cerimetry

- Ceric ammonium sulfate is stable in acidic solution.
- Titrations are rapid and quantitative.
- Suitable for **colorimetric or potentiometric detection**.
- One electron transfer per molecule makes calculations straightforward.

lodometry and lodimetry

Overview

lodimetry and **lodometry** are two important types of redox titrations that involve **iodine** (I₂) or **iodide** (I⁻) as reactants. Both are widely used in pharmaceutical analysis due to the versatility and moderate strength of iodine as a redox agent.

Iodimetry

Definition:

lodimetry is a direct titration method in which a standard solution of iodine (I₂) is used as the oxidizing agent to titrate reducing substances.

Principle:

Iodine (I_2) acts as a mild oxidizing agent and accepts electrons to form iodide (I^-):

A reducing agent donates electrons and gets oxidized.

Example Reaction:

Estimation of ascorbic acid:

C6H8O6+I2→C6H6O6+2HI

Indicators:

• **Starch solution** is used as an **internal indicator**, forming a **blue complex** with free iodine near the end-point.

Applications of Iodimetry:

- Estimation of ascorbic acid (vitamin C)
- Estimation of arsenites, hypophosphorous acid
- Drugs that act as reducing agents like **phenol**, **quinones**, and **thiols**

Iodometry

Definition:

lodometry is an indirect titration method in which an oxidizing agent reacts with excess potassium iodide (KI) to liberate iodine (I_2), which is then titrated with standard sodium thiosulfate ($Na_2S_2O_3$) solution.

Principle:

The oxidizing agent oxidizes iodide (I^-) to iodine (I_2), which is then reduced back to iodide by thiosulfate:

Oxidizing Agent+2I−→I2+Reduced Product

Then:

I2+2S2O32-→2I-+S4O62-

Indicators:

• Starch is used near the end-point, added after most of the iodine has reacted, forming a blue complex. Disappearance of blue color indicates end-point.

Applications of Iodometry:

- Estimation of copper(II) sulfate
- Estimation of chloramine-T, hydrogen peroxide
- Estimation of potassium permanganate and potassium dichromate
- Analysis of sulphur dioxide, hypochlorites, and chlorinated water

Key Differences:

Feature	lodimetry	lodometry
Role of iodine	Used as a standard oxidizing agent	Liberated during reaction with oxidant
Type of titration	Direct	Indirect
I ₂ reacts with	Reducing agent	Sodium thiosulfate
Example analyte	Ascorbic acid	Copper sulfate, KMnO ₄ , K ₂ Cr ₂ O ₇

Advantages

- Moderate redox potential of iodine makes the reactions selective
- Titrations can be performed under mild conditions
- Applicable to a wide range of pharmaceuticals and water analysis

Precautions

- Iodine is volatile; keep solutions covered and in cool, dark conditions
- Use freshly prepared starch indicator
- Avoid exposure to air to prevent iodine loss by evaporation

Bromatometry

Definition:

Bromatometry is a type of redox titration in which **bromine** acts as the **oxidizing agent**. In practice, bromine is not added directly but is **generated in situ** from a solution of **potassium bromate** (KBrO₃) and **potassium bromide** (KBr) in **acidic medium**.

Principle:

When KBrO₃ is treated with KBr and an acid like HCl, **bromine is liberated**:

KBrO3+5KBr+6HCl→3Br2+3H2O+6KCl

The liberated bromine **oxidizes the analyte** (usually organic substances like phenols, anilines, or alkaloids). The reaction involves **electrophilic substitution or oxidation** depending on the substrate.

End Point Detection:

Potentiometrically or

- Using **indicators** like methyl orange or starch (depending on the substrate)
- External or internal indicators may be used based on reaction type.

Applications of Bromatometry:

- Estimation of **phenol**, **aniline**, and related compounds.
- Analysis of **alkaloids** such as morphine and codeine.
- Used in assay of reserpine, chlorpromazine, and sulphadiazine.
- Useful in determining compounds that undergo bromination or oxidation.

2. Dichrometry (Potassium Dichromate Titrations)

Definition:

Dichrometry is a redox titration method that employs **potassium dichromate** ($K_2Cr_2O_7$) as a **standard oxidizing agent**.

Principle:

In acidic medium, $K_2Cr_2O_7$ acts as a strong oxidizing agent and **accepts 6 electrons**, getting reduced to Cr^{3+} :

$$Cr2O72-+14H^++6e-\rightarrow 2Cr3++7H2O$$

The analyte (typically **Fe²⁺**, **Sn²⁺**, or other reducing agents) donates electrons and gets oxidized.

Reaction with Fe²⁺ (Ferrous ion):

$$Cr_2O_7^{2-}+6Fe^{2+}+14H^+\rightarrow 2Cr^{3+}+6Fe^{3+}+7H_2O$$

Indicators Used:

- External Indicator: Potassium ferricyanide spot test with a drop of reaction mixture
- Internal Indicator: Diphenylamine, N-phenylanthranilic acid change in color at endpoint

Applications of Dichrometry:

- Estimation of **iron (Fe²⁺) salts** (e.g., ferrous sulfate, ferrous fumarate)
- Assay of hydrogen sulfide, tin(II) chloride
- Standardization of reducing agents like Mohr's salt and sodium thiosulfate

Advantages of Potassium Dichromate:

- **Primary standard** (highly pure, stable)
- Sharp end-point with suitable indicators
- Useful over wide range of redox potentials

TITRATION WITH POTTASIUM IODATE

Definition:

Potassium iodate (KIO_3) is a **strong oxidizing agent** used in **iodometric titrations**. In acidic medium, it oxidizes **potassium iodide (KI)** to liberate **iodine (I_2)**, which is then titrated with **standard sodium thiosulfate (Na_2S_2O_3)** solution.

Principle:

In the presence of excess potassium iodide and dilute acid (typically HCl or H₂SO₄), KIO₃ liberates iodine:

$$10_3^- + 51^- + 6H^+ \rightarrow 31_2 + 3H_2O$$

The liberated iodine is then titrated with sodium thiosulfate:

$$I_2+2S_2O3^{2-} \rightarrow 2I-+S_4O_6^{2-}$$

Thus, KIO₃ indirectly oxidizes reducing substances by generating a known amount of iodine.

Procedure Summary:

- 1. Add excess KI and acid to the analyte solution.
- 2. Add standard KIO₃ solution (or allow KIO₃ to react with KI to liberate I₂).
- 3. Titrate liberated iodine with standard Na₂S₂O₃ solution.
- 4. Use **starch indicator** towards the end point (blue color \rightarrow colorless).

Indicator:

- Starch is used as an internal indicator.
- Added near the endpoint, forms a deep blue complex with iodine.
- The disappearance of blue color indicates the endpoint.

Applications of KIO₃ Titrations:

- 1. Estimation of reducing agents:
 - Ascorbic acid
 - Sulfur dioxide
 - Hydrazine derivatives

2. Assay of certain pharmaceuticals:

- Potassium iodide (KI)
- o Sodium thiosulfate

- Sulfites and metabisulfites
- 3. Standardization of sodium thiosulfate:
 - o KIO₃ is a **primary standard** and can be used to standardize Na₂S₂O₃.
- 4. **Estimation of chlorine content** in bleaching powders and disinfectants.

Why KIO₃ is preferred:

- It is a **primary standard**: pure, stable, and easily weighed.
- It gives **stoichiometric and reproducible** reactions.
- It allows accurate indirect iodometric analysis.

Stoichiometry:

From the reaction:

$$10_3^- + 51^- + 6H^+ \rightarrow 31_2 + 3H_2O$$

1 mole of KIO₃ gives 3 moles of I₂ Which reacts with 6 moles of Na₂S₂O₃

So:

1 mole of KIO₃ ≡ 6 moles of Na₂S₂O₃