### Recitation 5

Alex Dong

CDS, NYU

Fall 2020

## Concept Review: Orthogonal Matrices

- ▶ Orthogonal matrices have *orthonormal* columns
  - ▶ Stronger condition than having orthogonal columns
  - ▶ Bad terminology thats grandfathered in
- ▶ We will see a lot of these matrices
- ▶ Orthogonal matrices preserve angles and norms
  - ► This leads to a very natural *change of basis* more later

# Questions: Orthogonal Matrices

- 1. Let  $Q, U \in \mathbb{R}^{n \times n}$  be an orthogonal matrix. Let  $x, y \in \mathbb{R}^n$ .
  - i. Show that  $\langle Qx, Qy \rangle = \langle x, y \rangle$ .
  - ii. Show that ||Qx|| = ||x||.
  - iii. Show that QU is orthogonal.

# Solutions 1: Orthogonal Matrices

1. Let  $Q, U \in \mathbb{R}^{n \times n}$  be an orthogonal matrix. Let  $x, y \in \mathbb{R}^n$ . ii. Show that  $\langle Qx, Qy \rangle = \langle x, y \rangle$ .

### Solution

$$\langle Qx,Qy\rangle = x^TQ^TQy = x^TIy = x^Ty = \langle x,y\rangle$$

# Solutions 2: Orthogonal Matrices

1. Let  $Q, U \in \mathbb{R}^{n \times n}$  be an orthogonal matrix. Let  $x, y \in \mathbb{R}^n$ . ii. Show that ||Qx|| = ||x||.

### Solution

$$\|Qx\| = \langle Qx,Qx\rangle = x^TQ^TQx = x^TIx = x^Tx = \langle x,x\rangle = \|x\|$$

# Solutions 3: Orthogonal Matrices

1. Let  $Q, U \in \mathbb{R}^{n \times n}$  be an orthogonal matrix. Let  $x, y \in \mathbb{R}^n$ . iii. Show that QU is orthogonal.

### Solution

Start by noticing that  $(QU)^T = U^T Q^T$ .

Now,

$$(QU)^T(QU) = U^TQ^TQU = U^TIU = I$$

and

$${l \over (QU)(QU)^T} = QUU^TQ^T = QIQ^T = I$$

Then QU is orthogonal.

# Concept Review: Gram-Schmidt Process

- ► Gram-Schmidt Process turns a basis of linearly independent vectors into orthonormal vectors
- ▶ Understanding the GS process is important, but we will mainly only use its existence
  - ▶ Let  $v_1, ..., v_n$  be a basis ... ... and by GS process, let  $u_1, ..., u_n$  be orthonormal with  $Span(v_1, ..., v_n) = Span(u_1, ..., u_n)$ :
  - ▶ Let  $u_1, ..., u_n$  be an orthonormal basis of  $\mathbb{R}^n$
- ► Related to QR Factorization

# Questions: GS Process and QR Factorization

1. Let  $A \in \mathbb{R}^{n \times n}$  have linearly independent columns. Show that there is a matrix  $Q \in \mathbb{R}^{n \times n}$  and  $R \in \mathbb{R}^{n \times n}$  s.t that A = QR, where Q has orthonormal columns and R is upper triangular.

(Hint: Recall the "linear combination of columns interpretation of matrix multiplication").

# Solutions: GS Process and QR Factorization

1. Let  $A \in \mathbb{R}^{m \times n}$  have linearly independent columns. Show that there is a matrix  $Q \in \mathbb{R}^{n \times n}$  and  $R \in \mathbb{R}^{n \times n}$  s.t that A = QR, where Q has orthonormal columns and R is upper triangular.

### Solution

```
First, let v_1, ..., v_n be the columns of A.

Apply the GS process to get u_1, ..., u_n.

Now, let Q have u_1, ..., u_n as its columns.

Note that by the GS process, we have

Span(v_1, ..., v_i) = Span(u_1, ..., u_i) \ \forall i \in \{1, ..., n\}.

Then each column v_i is a linear combination of the columns u_1, ..., u_i.

Then this exactly saying that A = QR, where R contains the coefficients that transforms u_1, ..., u_i into v_1, ..., v_i \ \forall i \in \{1, ..., n\}!
```

(!Check the next slide!)

### More M.M.M: Linear Combination of Columns

### (From Recitation 2)

Each column of the AB is a linear combination of the columns of A.

$$= \begin{bmatrix} & & \dots & & \\ \sum_{i=1}^k \mathbf{a_i} b_{i,1} & \dots & \sum_{i=1}^k \mathbf{a_i} b_{i,m} \\ & & \dots & & \end{bmatrix}$$

### A Note About Determinants

- ▶ Eigenvalues of a matrix can be determined by using determinants
- ▶ Not covered in this course!
  - ▶ "too long to define, a bit complex, and slightly useless in data science..." Léo
- ▶ Determinants lead to a lot of cool things
  - ightharpoonup Trace(A) = sum of eigenvalues of A (with multiplicity)
  - ▶ (&) A matrix satisfies it's own *characteristic polynomial* Cayley Hamilton Theorem
  - ► (&) Matrix polynomial rabbit hole runs deep (Jordan Normal Form)
- ▶ Interesting from a pure math perspective

<sup>&</sup>lt;sup>0</sup>(&) denotes extra material not covered in this course

## Etymology

- ightharpoonup eigenvalues and eigenvectors
- $\blacktriangleright$  What does *eigen* mean anyway?
- ▶ German word for...
  - 1. own
  - 2. innate
  - 3. peculiar
  - 4. intrinsic
- ▶ A square matrix 'owns' certain vectors... or there are certain vectors that are intrinsic to a matrix.

## Importance of Eigenvalues and Eigenvectors

#### !!! SERIOUSLY IMPORTANT !!!

- ► Eigen-val/vec will show up *continuously* throughout this course
- ► Connections to...
  - ▶ Projections and Orthogonal Projections (Lec 4)
  - ► Markov Chains (Lec 6)
  - ► Spectral Theorem (HW 6, Lec 7)
  - ▶ SVD (Lec 7)
  - ► Spectral Clustering (!!??) (Lec 8)
  - ▶ Positive definite and positive semi-definite matrices (Lec 10,11)
- ▶ Many other applications not covered in this course

# $Av = \lambda v$ . So what's the big deal?

- ► Square matrices get their own name *operators*.
  - ightharpoonup Can construct powers of operators  $(A^k)$
  - ▶ Operators can be invertible
  - ▶ Operators can be symmetric
- ▶ Sometimes an matrix A 'prefers' certain directions
- ▶ (!!!) These directions act as *anchors* for understanding the action of a matrix.
- ▶ We will see how to exploit these directions in order to simplify our understanding of matrices. (Diagonalizability, Lec 7)

## Questions: Eigen

Let  $A \in \mathbb{R}^{n \times n}$  have eigenvalue  $\lambda$  associated to eigenvector v. Show that:

- 1.  $\forall \alpha \in \mathbb{R}, \lambda + \alpha$  is an eigenvalue of  $A + \alpha I$  w/ eigenvector v.
- 2.  $\forall k \in \mathbb{N}, \lambda^k$  is an eigenvalue of  $A^k$  w/ eigenvector v.
- 3. Let  $A \in \mathbb{R}^{n \times n}$  have eigenvalue-vector pairs  $\lambda_1, ..., \lambda_n$  and  $v_1, ..., v_n$ . Also, assume that  $\lambda_1 > ... > \lambda_n$ .

Prove that  $v_1, ..., v_n$  are linearly independent.

Hint: First assume transform all  $\lambda_i$  to be positive.

# Solutions 1: Eigen

Let  $A \in \mathbb{R}^{n \times n}$  have eigenvalue  $\lambda$  associated to eigenvector v. Show that: 1.  $\forall \alpha \in \mathbb{R}, \ \lambda + \alpha$  is an eigenvalue of  $A + \alpha I$  w/ eigenvector v.

### Solution

Let  $\alpha \in \mathbb{R}$ , and v be an eigenvector of A.

Consider the matrix  $A + \alpha I$ .

$$(A + \alpha I)v = Av + \alpha Iv$$
$$= \lambda v + \alpha v$$
$$= (\lambda + \alpha)v$$

So  $\lambda + \alpha$  is an eigenvalue of  $A + \alpha I$  with eigenvector v.

# Solutions 2: Eigen

Let  $A \in \mathbb{R}^{n \times n}$  have eigenvalue  $\lambda$  associated to eigenvector v. Show that: 2.  $\forall k \in \mathbb{N}$ ,  $\lambda^k$  is an eigenvalue of  $A^k$  w/ eigenvector v.

#### Solution

Let  $k \in \mathbb{N}$ , and v be an eigenvector of A. Consider the matrix  $A^k$ .

$$A^k v = A...Av$$
  $k \text{ times}$   
 $A^k v = A...A(\lambda v)$   $k\text{-}1 \text{ times}$   
 $A^k v = \lambda^k v$ 

So  $\lambda^k$  is an eigenvalue of  $A^k$  with eigenvector v.

### Solutions 3: Eigen

3. Let  $A \in \mathbb{R}^{n \times n}$  have eigenvalue-vector pairs  $\lambda_1, ..., \lambda_n$  and  $v_1, ..., v_n$ . Also, assume that  $\lambda_1 > ... > \lambda_n$ . Prove that  $v_1, ..., v_n$  are linearly independent.

#### Solution

```
Let B = A + |\lambda_n|I. (This is so all eigenvalues of B are \geq 0.)

Let \gamma_i = \lambda_i + |\lambda_n| (Problem 1, eigenvecs of B are also eigenvecs of A).

Let \alpha_1, ..., \alpha_n \in \mathbb{R} s.t \sum_{i=1}^n \alpha_i v_i = 0. We will show that all \alpha_i = 0.

Consider 0 = B^k(\sum_{i=1}^n \alpha_i v_i).

0 = B^k(\sum_{i=1}^n \alpha_i v_i)

0 = \sum_{i=1}^n B^k \alpha_i v_i

0 = \sum_{i=1}^n \gamma_i^k \alpha_i v_i

0 = \gamma_1^k \sum_{i=1}^n (\frac{\gamma_i}{\gamma_1})^k \alpha_i v_i

0 = \lim_{k \to \infty} \gamma_1^k \sum_{i=1}^n (\frac{\gamma_i}{\gamma_1})^k \alpha_i v_i

0 = \alpha_1 v_1 since \frac{\gamma_i}{\gamma_1} < 1 for i \neq 1
```

Then  $0 = (\sum_{i=2}^{n} \alpha_i v_i)$ . Repeat the previous logic to find that each  $\alpha_i v_i = 0$ . Then all  $\alpha_i = 0$ . So  $v_1, ..., v_n$  are linearly independent.

# Questions 2: Properties of Orthogonal Matrices

Let  $Q \in \mathbb{R}^{n \times n}$  be orthogonal.

1. Does Q necessarily have eigenvalues and eigenvectors?

Assume that Q has eigenvalues  $\lambda_1, ..., \lambda_k$ .

2. Describe the eigenvalues of Q.

# Solutions 2: Properties of Orthogonal Matrices

Let  $Q \in \mathbb{R}^{n \times n}$  be orthogonal.

1. Does Q necessarily have eigenvalues and eigenvectors?

### Solution

No, consider the matrix 
$$Q = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 (90 deg CCW rotation in  $\mathbb{R}^2$ ).

Assume that Q has eigenvalues  $\lambda_1, ..., \lambda_k$ .

2. Describe the eigenvalues of Q.

#### Solution

Since 
$$Q$$
 is orthogonal then  $\forall x \in \mathbb{R}^n$   
 $\|Qx\| = \langle Qx, Qx \rangle$   
 $\|Qx\| = x^T Q^T Qx$   
 $\|Qx\| = xIx$   
 $\|Qx\| = \|x\|$ 

Now, if x is an eigenvector of Q with eigenvalue  $\lambda$ , then we have  $||x|| = ||Qx|| = ||\lambda x|| = |\lambda|||x||$ . So  $\lambda = \pm 1$ .