BOLETÍN DE EJERCICIOS DE CONTINUIDAD DE FUNCIONES Y DE TANGENCIAS

Problemas de cotinuidad

1º) Estudiar la continuidad de la función

$$f(x) = \begin{cases} \frac{-1}{x} & si \quad x < 0 \\ 1 & si \quad 0 \le x < 1 \\ x & si \quad 1 < x < 2 \\ -x + 1 & si \quad x \ge 2 \end{cases}$$

en los puntos de abscisa $x_0 = 0$, $x_1 = 1$ y $x_2 = 2$

Sol: Punto $x_0 = 0$, discontinuidad asintótica. Punto $x_1 = 1$, discontinuidad evitable. Punto $x_2 = 2$, discontinuidad de salto finito.

2º) Estudiar la continuidad de la función:

$$f(x) = \begin{cases} \frac{1}{x^2 + 1} & si \ x \le 1\\ \frac{x^2 - x}{x^2 - 2x + 1} & si \ 1 < x < 2\\ x & si \ x > 2 \end{cases}$$

en los puntos de abscisa $x_0 = 1$ y $x_1 = 2$

Sol: Punto $x_0 = 1$, discontinuidad asintótica. Punto $x_1 = 2$, discontinuidad evitable.

3º) Determina a y b para que esta función sea continua en $x_0 = -2$ y $x_1 = 3$

$$f(x) = \begin{cases} 3x + b & si & x < -2 \\ 4 & si & -2 \le x \le 3 \\ ax - 2 & si & x > 3 \end{cases}$$

. ol: b=10 y a=2

Problemas de tangencia

- 4º) Calcula la ecuación de la recta tangente a $f(x) = \frac{x+1}{x-1}$ en el punto x = 2. (Sol: y = -2x + 7)
- 5º) Halla la ecuación de la recta de pendiente 7 que es tangente a la curva $y = 3x^2 + x 1$. (Sol: y = 7x 4)
- 6º) Dada la curva de ecuación $y = -x^3 + 26x$, calcula las rectas tangentes a la misma, que sean paralelas a la recta de ecuación y = -x. (Sol: y = -x 54, y = -x + 54.)