ANALISI E SIMULAZIONE DI SISTEMI DINAMICI

Lezione IX: Analisi Modale

- Evoluzione libera dei sistemi lineari TC e TD
- Modi reali TC.
- Modi complessi coniugati TC
- Modi positive TD
- Modi complessi coniugati TC (e negativi)
- Classificazione dei modi

Evoluzione libera dei sistemi lineari TC

Nel dominio della variabile s si ha:

$$X_l(s) = (sI - A)^{-1} x(0)$$

• Introducento il cambio di coordinate z = Tx si ha:

$$Z_l(s) = (sI - TAT^{-1})^{-1} z(0)$$

ullet Se ho autovalori distinti o più in generale se molteplicità geometrica = molteplicità algebrica posso diagonalizzare A scegliendo T opportunamente:

$$Z_l(s) = (sI - \Lambda) z(0)$$

con
$$\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$$

• Dunque:

$$Z_l(s) = \operatorname{diag}\left(\frac{1}{s - \lambda_1}, \dots, \frac{1}{s - \lambda_n}\right) z(0)$$

• Antitrasformando:

$$z_l(t) = \operatorname{diag}\left(e^{\lambda_1 t} z_1(0), \dots, e^{\lambda_n t} z_n(0)\right) = \sum_{i=1}^n e^{\lambda_i t} z_i(0) \ e_i$$

dove e_i è l'elemento i-esimo della base canonica.

- Il sistema lineare è disaccoppiato; ogni modo evolve indipendentemente dagli altri.
- il modo j-esimo si dice eccitato se $z_j(0) \neq 0$.
- Ritornando in coordinate originali:

$$x_l(t) = \sum_{i=1}^n e^{\lambda_i t} z_i(0) v_i$$

Dunque la risposta libera del sistema è una sommatoria finita di modi che evolvono nelle direzioni degli autovettori di A.

Modi reali TC: $t^m e^{\lambda t}$

Andamento qualitativo in funzione di m e di λ :

	m = 0	m = 1	m=2
$\lambda < 0$	0.5	0.4	0.5 0.5 0.4 0.3 0.2 0.1 0.2 0.3 0.2 0.3 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
$\lambda = 0$			28 20 15 10 8
$\lambda > 0$	5 6 6 5 4 4 3 2 2 1 0 0 1 2 3 3 4 5	110 10 10 10 10 10 10 10 10 10 10 10 10	70 60 50 40 40 20 10 0 1 2 3 4 5

Modi complessi coniugati TC: $t^m e^{\lambda t}$

Andamento qualitativo in funzione di m e di Re [λ]:

Evoluzione libera dei sistemi lineari TD

Nel dominio della variabile z si ha:

$$X_l(z) = z(zI - A)^{-1} x(0)$$

• Introducento il cambio di coordinate z = Tx si ha:

$$Z_l(s) = z(zI - TAT^{-1})^{-1} z(0)$$

ullet Se ho autovalori distinti o più in generale se molteplicità geometrica = molteplicità algebrica posso diagonalizzare A scegliendo T opportunamente:

$$Z_l(z) = z(zI - \Lambda) z(0)$$

con
$$\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$$

Dunque:

$$Z_l(z) = \operatorname{diag}\left(\frac{z}{z - \lambda_1}, \dots, \frac{z}{z - \lambda_n}\right) z(0)$$

• Antitrasformando (se $\lambda_i \neq 0$):

$$z_l(t) = \operatorname{diag}\left(\lambda_1^t z_1(0), \dots, \lambda_n^t z_n(0)\right) = \sum_{i=1}^n \lambda_i^t z_i(0) \ e_i$$

dove e_i è l'elemento i-esimo della base canonica.

- Il sistema lineare è disaccoppiato; si noti che ogni modo evolve indipendentemente dagli altri.
- il modo j-esimo si dice eccitato se $z_j(0) \neq 0$.
- Ritornando in coordinate originali:

$$x_l(t) = \sum_{i=1}^n \lambda_i^t z_i(0) \ v_i$$

Dunque la risposta libera del sistema è una sommatoria finita di modi che evolvono nelle direzioni degli autovettori di ${\cal A}$

Modi reali positivi TD: $t^m \lambda^t$

Per $\lambda=0$ si ottiene un modo che converge a zero in tempo finito. La molteplicità indica dopo quanti passi si ha convergenza.

Modi complessi coniugati TD: $t^m e^{\lambda t}$

Andamento qualitativo in funzione di m e di Re [λ]:

	m = 0	m = 1	m=2
$ \lambda < 1$			15 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$ \lambda =1$		20 15 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	430 300 200 100 -100 -200 -200 -200 -200 -200
$ \lambda >1$	60 40 20 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0	1500 1030 500 -1000 -1500 2 4 6 8 10 12 14 16 18 20	2 f 10° 2 2 10° 2 2 10° 2 2 10° 2 2 10° 2

Classificazione dei modi

• Un modo di un sistema lineare TC $t^m e^{\lambda t}$ si dice convergente se:

$$\lim_{t \to +\infty} t^m e^{\lambda t} = 0$$

• Un modo (TC) si dice limitato se:

$$\exists c > 0 : |t^m e^{\lambda t}| < c \qquad \forall t \ge 0$$

- Un modo TC si dice illimitato se non è limitato
- Un modo di un sistema lineare TD $t^m \lambda^t$ si dice convergente se:

$$\lim_{t\to +\infty} t^m \lambda^t = 0$$

• Un modo (TD) si dice limitato se:

$$\exists c > 0 : |t^m \lambda^t| < c \qquad \forall t \ge 0$$

• Un modo TD si dice illimitato se non è limitato

Caratterizzazione algebrica dei modi

• TEOREMA 1:

Il modo di un sistema lineare TC $t^m e^{\lambda t}$ è convergente se e solo se

$$Re[\lambda] < 0.$$

• TEOREMA 2:

Il modo di un sistema lineare TC $t^m e^{\lambda t}$ è limitato se e solo se

$$Re[\lambda] < 0$$
 o $(Re[\lambda] = 0$ purchè $m = 0)$

• TEOREMA 3:

Il modo di un sistema lineare TD $t^m \lambda^t$ è convergente se e solo se

$$|\lambda| < 1$$
.

• TEOREMA 4:

Il modo di un sistema lineare TD $t^m \lambda^t$ è limitato se e solo se

$$|\lambda| < 1$$
 o ($|\lambda| = 1$ purchè $m = 0$)