

Introdução à Computação (I.C)

Unidade 02

Prof. Daniel Caixeta in

Conteúdo programático

Representação da Informação: Dos bits aos bytes [...]

- 4.1. Conceito de bit e byte.
- 4.2. Possibilidades de representação.

Conversão numérica: Como o computador pensa e executa.

5.1. Sistema posicional.

6

- 5.2. As bases [...].
- 5.3. Conversão entre bases 2, 8 e 16.
- 5.4. Conversão de base b para base 10.
- 5.5. Conversão de base 10 para base b.
- 5.6. Números binários negativos.
- 5.7. Aritmética binária.

A lógica binária: Circuitos lógicos e operadores.

- 6.1. Sistemas dicotômicos e a Álgebra de Boole.
- 6.2. Interruptores.
- 6.3. A lógica binária.
- 6.4. A soma em um computador.

Referências

4.1. CONCEITO DE BIT E BYTE

• Um bit ou dígito binário (binary digit), é:

[...] a unidade básica que os computadores e sistemas digitais utilizam para trabalhar, e pode assumir apenas dois valores, 0 ou 1. (FARIAS, 2013).

- Já um byte é uma sequência de 8 bits.
- Portanto, o byte é a menor unidade de armazenamento utilizada pelos computadores. Isto quer dizer, que nunca conseguiremos salvar menos do que 8 bits em uma informação.

• Todo dispositivo de armazenamento indica o número de *bytes* (8 *bits*) que ele pode conter.

Tabela 1. Principais unidades de medidas e sua base exponencial.

Unidade	Símbolo	Número de <i>bytes</i>	Base exponencial
Kilobyte	KB	1.024	2 ¹⁰
Megabyte	MB	1.048.576	2 ²⁰
Gigabyte	GB	1.073.741.824	2 ³⁰
Terabyte	TB	1.099.511.627.776	2 ⁴⁰
Petabyte	PB	1.125.899.906.842.624	2 ⁵⁰
Exabyte	EB	1.152.921.504.606.846.976	2 ⁶⁰
Zettabyte	ZB	1.180.591.620.717.411.303.424	2 ⁷⁰
Yottabyte	YB	1.208.925.819.614.629.174.706.176	2 ⁸⁰

4.2. POSSIBILIDADES DE REPRESENTAÇÃO

• Um *bit* só pode assumir dois valores (0 ou 1), portanto, só será possível representar exatamente dois estados distintos. (FARIAS, 2013).

Tabela 2. Representação com um bit.

Bit	Porta	Lâmpada	Detector de movimento	Estado civil
0	Fechada	Desligada	Sem movimento	Solteiro
1	Aberta	Ligada	Com movimento	Casado

 Por exemplo, em um sistema com trava eletrônica, o valor 0 poderia indicar que a porta estava fechada, enquanto 1 indicaria que a porta estaria aberta.

 Para representar mais de dois valores distintos precisamos de uma sequência de bits maior. Na Tabela 2, é apresentado exemplos utilizando uma sequência de 2 bits, obtendo assim 4 possibilidades.

Tabela 3. Representação com dois bit.

Sequência de <i>bit</i> s	Semáforo
00	Desligado
r 01 ←	Pare
10	Atenção
└→ 11 ─	Siga

 Segundo Farias (2013), o número de possibilidades diferentes que podemos representar depende do tamanho da sequência que estamos utilizando, mais precisamente:

 $P = 2^n$, onde n = tamanho de bits.

Exemplos:

$$2^1 = 2$$

$$2^2 = 4$$

$$2^3 = 8$$

$$2^4 = 16$$

$$2^5 = 32$$

$$2^6 = 64$$

$$2^7 = 128$$

$$2^8 = 256$$
 (1 *byte*)

$$16 \text{ bits} = 65.535$$

5.1. SISTEMA POSICIONAL

- O método de numeração de quantidades que adotamos, utiliza um sistema de numeração posicional.
- Significa que a posição ocupada por cada algarismo em um número altera seu valor de uma potência decimal (base 10) para cada casa à esquerda. Vejamos o exemplo abaixo:

$$125_{10} = 1 \times 10^{2} + 2 \times 10^{1} + 5 \times 10^{0}$$

$$100 \qquad 20 \qquad 5$$
Centena Dezena Unidade

5.2. AS BASES [...]

- A base de um sistema é a quantidade de algarismos disponíveis em sua representação.
- A base 10 (decimal) é hoje a mais utilizada, mas não é a única. Por exemplo, temos:
 - ✓ A dúzia (base 12).
 - ✓ O minuto = 60 segundos (base 60).
 - ✓ 1 polegada = 2,54 cm.
- Em computadores usamos outras bases como a binária (base 2), octal (base 8) e hexadecimal (base 16).

Portanto, temos:

(10 algarismos + 6 símbolos)

$$N_b = a_0 \times b^n + a_1 \times b^{n-1} + ... + a_n \times b^0$$

5.3. CONVERSÃO ENTRE BASES 2, 8 E 16.

- As conversões mais simples são as que envolvem bases que são potências entre si. (FARIAS, 2013).
- Leva-se em consideração que $2^3 = 8$ (octal) e $2^4 = 16$ (hexadecimal).
- Exemplifiquemos a conversão 2³, que funciona da seguinte forma:
 - 1º. Separa-se os algarismos de um número binário em grupos de três (começando sempre da direita para a esquerda).
 - o 2º. Converta cada grupo de três algarismos por seu equivalente em octal.
- Vejamos:

Olhando a tabela de conversão direta temos:

$$010_2 = 2_8 \quad 101_2 = 5_8 \quad 001_2 = 1_8 \quad 251_8$$

$$10101001_2 = 251_8$$

Tabela 4. Conversão direta de binário para octal e vice-versa.

Binário		Octal
000		0
001	\longrightarrow	1
010	→	2
011		3
100		4
101	→	5
110		6
111		7

- Agora a conversão entre as bases 2 e 16.
- Como 2⁴ = 16, seguimos o mesmo processo anterior, bastando agora separarmos em grupos com <u>quatro</u> algarismos e converter cada grupo seguindo a Tabela 5. Por exemplo:

11010101101₂ = 0110 . 1010 . 1101₂

$$0110_2 = 6_{16}$$

$$1010_2 = A_{16}$$

$$1101_2 = D_{16}$$
11010101101₂ = 6AD₁₆

Tabela 5. Conversão direta de binário para hexadecimal e vice-versa.

Bin.	Hexa.	Bin.	Hexa.
0000	0	1000	8
0001	1	1001	9
0010	2	1010	A
0011	3	1011	В
0100	4	1100	C
0101	5	1101	D
0110	6	1110	Е
0111	7	1111	F

5.4. CONVERSÃO DE BASE b PARA BASE 10

Lembremos da expressão geral descrita na página 14.

$$N_b = a_0 \times b^n + a_1 \times b^{n-1} + ... + a_n \times b^0$$

 A melhor forma de fazer a conversão é usando essa expressão. Como exemplo usemos o valor 101101₂.

$$101101_2 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 45_{10}$$

Outros exemplos:

$$125_5 = 1 \times 5^3 + 0 \times 5^2 + 0 \times 5^1 + 0 \times 5^0 = 100_{10}$$
$$485_9 = 4 \times 9^2 + 8 \times 9^1 + 5 \times 9^0 = 324 + 72 + 5 = 401_{10}$$

5.5. CONVERSÃO DE BASE 10 PARA BASE b

• Exemplo: Converta o numero 19₁₀ para a base 2.

Usando a conversão anterior como prova real, temos:

$$10011_2 = (1 \times 2^4) + (0 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 19_{10}$$

5.6. NÚMEROS BINÁRIOS NEGATIVOS

- Segundo Farias (2013), os computadores operam com números positivos (+) e negativos (-), sendo necessário encontrar uma representação para números com sinal negativo.
- Existem uma grande variedade de opções. Apresentemos aqui as três formas mais usuais:
 - 1. Sinal e amplitude/magnitude (S + M).
 - 2. Complemento de 1.
 - 3. Complemento de 2.

1. Sinal e Amplitude/Magnitude (S + M)

- Como o próprio nome indica, a representação sinal e amplitude utiliza um bit para representar o sinal.
- Por exemplo, no bit mais à esquerda incluem-se 0 para indicar um valor positivo, 1 para indicar um valor negativo.

$$+10_{10} = 01010_2$$
 $-10_{10} = 11010_2$

2. Complemento de 1

- Na representação em complemento de 1 invertem-se todos os bits de um número para representar o seu complementar.
- Converte-se um valor positivo por um negativo, e vice-versa.
- Quando o bit mais à esquerda é 0, esse valor é positivo; se for 1, então é negativo. Por exemplo:

$$100_{10} = 01100100_2$$
 (com 8 *bits*)

O problema desta representação é que existem 2 padrões de *bits* para o 0, havendo assim desperdício de representação:

$$0_{10} = 00000000_2 = 111111111_2$$

3. Complemento de 2

 Para determinar o negativo de um número na forma de complemento de 2, basta inverter todos os bits e somar 1 unidade.

Representação binária
 101₁₀ = 01100101₂ (com 8 *bits*)

Aritmética binária

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 0$$
 (sobe 1)

2. Invertendo todos os *bits*
$$01100101_2 \rightarrow 10011010_2$$

3. Somando 1 unidade 10011010₂ + 1

+ 1

$$10011011_2 = -101_{10}$$

EXERCÍCIO

1. Determine o número binário negativo de 120₁₀ em 8 *bits* usando a representação de complemento 1.

Solução:

1. Converte dec. para bin. $120_{10} = 01111000_2$

2. Inverte os bits binários $10000111_2 = -120_{10}$

2. Qual o número representado por 11100100₂ (com 8 *bits*)? Este número é negativo ou positivo?

Solução:

1. Verifique se o *bit* mais a esquerda é 0 (para positivo) ou 1 para negativo).

2. Inverte todos os bits e soma 1 unidade

$$00011100_2 = 28_{10}$$

$$11100100_2 = -28_{10}$$

Aritmética binária

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$

$$1 + 1 = 0$$
 (sobe 1)

5.7. ARITMÉTICA BINÁRIA

 Como o computador manipula dados (números) através de uma representação binária, veremos a partir de agora como a aritmética do sistema binário, a mesma usada pela ULA (Unidade Lógica Aritmética) dos processadores, processa esses dados.

Figura 2. Arquitetura proposta por John von Neumann (1946).

Soma e Subtração Binária

Tabela 6. Tabuada de soma binária.

Operação	Valor	Obs.
0 + 0 =	0	
0 + 1 =	1	
1 + 0 =	1	
1 + 1 =	0	"vai um" ^(*)
1 + 1 + 1 =	1	"vai um" ^(*)

Tabela 7. Tabuada de subtração binária.

Operação	Valor	Obs.
0 - 0 =	0	
0 - 1 =	1	"vem um"(**)
1 - 0 =	1	
1 - 1 =	0	

^{(*) –} Vai um para a ordem superior ou seja, sobe 1, como na aritmética tradicional.

^{(**) –} Vem um do próximo

• Exemplo 01: Efetue $011100_2 + 011010_2$

• Exemplo 02: Efetue 11100₂ - 01010₂

Como não é possível tirar 1 de 0, o artifício é "pedir emprestado" 1 da casa de ordem superior, ou seja, na realidade o que se faz é subtrair 1₂ de 10₂ e encontramos 1₂ como resultado, devendo então subtrair 1 do dígito de ordem superior. Este modo é o mesmo da subtração em decimal.

Subtrai-se a direita para a esquerda.

APRENDA MAIS Q

• Dica bacana [...].

Vídeo sobre vídeo sobre a Representação da informação.

https://www.youtube.com/watch?v=y_eCltEibHl

A subtração nos computadores

- Na eletrônica digital a construção de circuitos simples custa menos e operam mais rápido do que circuitos mais complexos.
- Portanto, os números utilizados na aritmética em <u>Complemento de 2</u> (pág. 23), permitem a implementação e uso de circuitos mais simples, baratos e rápidos.
- Uma característica é que tanto os números com sinal quanto os números sem sinal podem ser somados pelo mesmo circuito.
- Por exemplo, suponha que você deseja somar os números sem sinal 132₁₀ e 14₁₀.

- O microprocessador tem um circuito na ULA que pode somar números binários sem sinal.
- Surge então a pergunta: como a ULA sabe que os padrões de bits nas entradas representam número sem sinal e não em complemento de 2?
- A resposta é: NÃO SABE! A ULA sempre soma como se as entradas fossem números binários sem sinal. Sempre produzirá o resultado correto, mesmo se as entradas forem números em complemento de 2. É um circuito/instrução corretiva.

- A ULA realiza operações de soma tratando os bits como números binários sem sinal, cabendo à nossa interpretação definir se os valores são com ou sem sinal.
- Essa abordagem permite utilizar o mesmo circuito para ambos os casos, otimizando o design do hardware.
- Além disso, a aritmética de complemento de 2 simplifica a implementação da subtração, eliminando a necessidade de um circuito específico para essa operação. Assim, a CPU pode utilizar o mesmo <u>circuito-somador</u> tanto para soma quanto para subtração, reduzindo a complexidade e os custos do microprocessador.

Multiplicação binária

Tabela 8. Tabuada multiplicação binária.

Operação	Valor
0 x 0 =	0
0 x 1 =	0
1 x 0 =	0
1 x 1 =	1

O processo é idêntico à multiplicação entre números decimais.

• Exemplo: Efetue 101₂ x 110₂

$$\begin{array}{c}
 5_{10} \\
 \hline
 6_{10} \\
 \hline
 30_{10}
\end{array} = 1 1 1 1 0_{2}$$

6.1. SISTEMAS DICOTÔMICOS E A ÁLGEBRA DE BOOLE

 Segundo Daghlian (2008), o mundo em que vivemos apresenta situações dualísticas em sua grande maioria, ou seja, com dois estados que mutuamente se excluem.

Tabela 9. Situações dualísticas.

Valor 1	Valor 2
1	0
Sim	Não
Dia	Noite
Preto	Branco
Ligado	Desligado

 Existem situações como morno, tépido, diferentes tons de cores que não apresentam estritamente como dicotômicas, i.e., com dois estados excludentes bem definidos.

- Segundo Daghlian (2008) a Lógica começou a se desenvolver no século IV a.C., com Aristóteles.
- Neste período os filósofos gregos passaram a usar em suas discussões sentenças lógicas enunciadas nas formas afirmativas e negativas, resultando assim em grande simplificação da realidade no dia a dia [...]. E quase 2.000 anos depois, por volta de 1666, Leibniz usou em vários trabalhos o que chamou de Calculus ratiotinator. Essas ideias nunca foram teorizadas, porém seus escritos trazem a ideia do que seria a Lógica Matemática.

Aristóteles (384 – 322 a.C.)

Gottfried W. Leibniz (1646 – 1716)

William Rowan Hamilton (1805 – 1865) Após décadas/séculos de discussões entre filósofos e matemáticos, com críticas por ambas as partes, ao ponto do filósofo William Rowan Hamilton dizer:

A Matemática congela e embota a mente; um excessivo estudo da Matemática incapacita a mente para as energias que a filosofia e a vida requerem.

• Em 1854, George Boole introduz o formalismo que até hoje usamos para o tratamento sistemático da lógica, chamada de Álgebra Booleana.

- A álgebra booleana pode ser definida como um conjunto de operadores e de axiomas, que são assumidos verdadeiros sem a necessidade de prova. (Güntzel & Nascimento, 2001).
- Em 1938, C. E. Shannon aplicou esta álgebra para mostrar que as propriedades de circuitos elétricos de chaveamento podem ser representadas por uma álgebra booleana com dois valores. (*ibidem*).
- Para Güntzel & Nascimento (2001), diferentemente da álgebra ordinária dos números reais, onde as variáveis podem assumir valores no intervalo (-∞; +∞), as variáveis booleanas só podem assumir um número finito de valores.

0 ou 1

 Em particular, na álgebra booleana, cada variável pode assumir um dentre dois valores possíveis. Por exemplo:

Tabela 10. Exemplo de operadores.

Operador	Valores	
F ou V	Falso ou Verdadeiro	
C ou E	Certo ou Errado	
H ou L	High ou Low	
0 ou 1	-	

 Portanto são sistemas dicotômicos. Computacionalmente dizendo 0 e 1, a qual é também utilizada na eletrônica digital de circuitos.

6.2. INTERRUPTORES

- Chamamos interruptor ao dispositivo ligado a um ponto de um circuito elétrico, o que pode assumir um dos dois estados, *e.g.*, Fechado (1) e Aberto (0). (DAGHLIAN, 2008).
- Quando fechado, o interruptor permite que a corrente passe através do ponto, enquanto aberto nenhuma corrente passa.

• Por conveniência, representaremos os interruptores da seguinte forma (DAGHLIAN, 2008):

• Sejam a e b dois interruptores ligados em paralelo, só passará corrente se pelo menos um dos interruptores estiver fechado. Então denotaremos a ligação de dois interruptores em paralelo por a + b. (*ibidem*). Então:

 Mas se dois interruptores estão ligados em série, só passará corrente se ambos estiverem fechados, i.e., a = b = 1. Portanto denotaremos a ligação de dois interruptores a e b por a . b ou simplesmente ab. (DAGHLIAN, 2008):

Então temos:

Paralelo	Série
0 + 0 = 0	0.0=0
0 + 1 = 1	0 . 1 = 0
1 + 0 = 1	1 . 0 = 0
1 + 1 = 1	1 . 1 = 1

Tabela 11. Possíveis ligações em interruptores.

- Observações importantes segundo Daghlian (2008):
 - Conhecendo o estado de um interruptor <u>a</u>, podemos compreender que qualquer outro interruptor tenha o mesmo estado de <u>a</u>, i.e., aberto quando <u>a</u> está aberto e fechado quando <u>a</u> está fechado.
 - Chamamos de complemento quando um interruptor <u>aberto</u> está <u>fechado</u> e viceversa. Isso se chama de <u>inversão</u> ou <u>negação</u>.
 - Por exemplo: $a \neq a' \longrightarrow 1 \neq 0$
 - É possível criar inúmeras operações/expressões lineares na lógica digital compreendendo suas ligações nos circuitos apresentados.

Apresentamos abaixo algumas equações baseadas em circuitos lógicos.

Outro exemplo:

• Exercício 1. Determine a ligação do seguinte circuito:

Solução: (a + b) . c + (n . p)

• Exercício 2. Desenhe os circuitos cujas as ligações são:

b)
$$(x + y') \cdot (x' + y)$$

6.3. A LÓGICA BINÁRIA

- George Boole publicou a Álgebra Booleana em 1854, como sendo um sistema completo que permitia a construção de modelos matemáticos para o processamento computacional.
- O interessante é que a partir de três operadores básicos (NOT, AND e OR), podemos construir <u>circuitos lógicos</u> capazes de realizar diversas operações em um computador.
- Como o número de valores que cada variável pode assumir é finito (e pequeno), o número de estados que uma função booleana pode assumir também será finito, o que significa que podemos descrevê-las completamente utilizando tabelas.

• Essa tabela recebe o nome de <u>Tabela Verdade</u>, e nela são listadas todas as combinações de valores que as variáveis de entrada podem assumir e os correspondentes valores da função (saídas).

1. Operador NOT (Negação Binária)

No operador unário NOT, inverte o valor do operando, produzindo seu complemento, i.e., o resultado será 1 se o operando for 0 e 0 se o operando for 1. A Tabela 12 ilustra esse comportamento, onde A representa o *bit* de entrada e S corresponde ao *bit* de saída.

Tabela 12. Tabela verdade operador NOT.

A	S ou A'
0	1
1	0

Figura 3. Representação gráfica do operador lógico NOT, com seus valores de entrada e saída.

2. Operador AND (Conjunção Binária)

O operador binário AND devolve um *bit* 1 sempre que ambos operandos sejam 1, conforme podemos confirmar na Tabela 13, onde A e B são *bit*s de entrada, e S é o *bit*-resposta, ou *bit* de saída.

Tabela 13. Tabela verdade operador AND.

Α	В	S
0	0	0
0	1	0
1	0	0
1	1	1

(A . B)

Figura 4. Representação gráfica do operador lógico AND, com seus valores de entrada e saída.

3. Operador OR (Disjunção Binária)

O operador binário OR devolve um *bit* 1 sempre que pelo menos um dos operandos seja 1, conforme podemos confirmar na Tabela 14, onde A e B são os *bit*s de entrada, e S é o *bit*-resposta, ou *bit* de saída.

Tabela 14. Tabela verdade operador OR.

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	1

$$(A + B)$$

Figura 5. Representação gráfica do operador lógico OR, com seus valores de entrada e saída.

6.4. A SOMA EM UM COMPUTADOR

- Neste módulo, aprendemos sobre a representação numérica, dando ênfase ao sistema binário.
- Aprendemos como funciona a aritmética binária (soma, subtração, multiplicação, etc.), representação negativa dos números, entre outros.
- Mas como um computador soma?
- Primeiro, precisamos abordar as portas lógicas, elas são a base para as outras operações.

- A construção de uma porta lógica, utiliza conhecimentos de circuitos eletrônicos formados por diodos, resistências, resistores, capacitores entre outros que são abordados em cursos avançados da Eletrônica Analógica/Digital.
- O importante é sabermos que existem portas lógicas que seguem a lógica binária já apresentada e que estas portas podem ser combinadas, formando os <u>circuitos digitais</u>.
- A Figura 6 apresenta um circuito digital somador de 2 bits.

Tabela 15. Tabela de valores da operação de Soma de 2 bits.

- Para entendermos o passo a passo do circuito digital proposto, torna-se necessário criarmos uma tabela verdade para que em caso de dúvidas sobre os valores, revisarmos a operação binária (SOMA) dos dois bits, e constatar se a saída corresponde ao esperado, considerando que a saída CARRY é a operação "vai um" da aritmética binária, neste caso a soma.
- E uma dica bem legal. Vejam o vídeo abaixo:

Circuito digital somador de 2 bits:

https://www.youtube.com/watch?v=E5yDNF2clQw

REFERÊNCIAS

DAGHLIAN, Jacob. Lógica e Álgebra de Boole. 4ª ed. 12ª reimpr. São Paulo : Atlas, 2008.

FARIAS, Gilberto. Introdução à computação. UFPB, 2013.

GÜNTZEL, José Luís; NASCIMENTO, Francisco de Assis. Introdução aos Sistemas Digitais (v.2001/1). Disponível in: https://www.inf.ufsc.br/~j.guntzel/isd/isd.html.

TANENBAUM, Andrew S. Sistemas Operacionais Modernos. 3ª ed. Pearson, 2010.

TANENBAUM, Andrew S. AUSTIN, Todd. Organização Estruturada de Computadores. 6ª ed. Pearson, 2013.

MONTEIRO, Mário A. Introdução à Organização dos Computadores. 5ª ed. LTC. 2014.

TANENBAUM, Andrew S. VAN STEEN, Maarten. Sistemas Distribuídos. Princípios e Paradigmas. 2ª ed. Pearson, 2007.

TEDESCO, Kennedy. Bits, bytes e unidades de medida. Disponível in: http://twixar.me/Fgjm . Acessado em: 10.mar.2021.

RIBEIRO, Carlos; DELGADO, José. Arquitetura de Computadores. 2ª ed. Rio de Janeiro: LTC, 2009.

