

Date .: for 1st input vedor: Enclédian distance: $\frac{1}{2} \left(\frac{0.9 - 0}{0.9 - 0} \right)^{2} + \left(\frac{0.7 - 0}{0.7 - 0} \right)^{2} + \left(\frac{0.5 - 1}{0.5 - 1} \right)^{2} + \left(\frac{0.5 - 1}{0.5$ thence, winning cluster writ is 4 ire. J= Now, we update weight on winning cluster unit J=1.

wit (nuw) = w; (obd) + x(x; -w; cold) w: ((now) = w; (old + 0.5 (n; -w; (old) $\omega_{1}(n\omega) = \omega_{1}(0) + 0.5(0-0.2)$ = 0.2+0.5(0-0.2) $= \omega (0) + 0.5 (1 - \omega_{2}(0))$ = 0.4 + 0.5 (0-0.4)W3 (n) = W3, (0) + 03 (n3 - 6, (0)) = 6.6 + 0.5 (1-0.6)

(a) = 0.7 + 0.5 (0-0.7) = 0.25 (b) = 0.5 + 0.5 (0-0.7) = 0.25 (c) = 0.2 + 0.5 (0-0.7) = 0.17 (c) Dolated weight matrix after second imporporation? (c) Dolated weight matrix after 3.70 Proper particular.			(Page No.)	9	
D(1) = 0.2 + 0.3 (0-0.1) = 0.4 D(2) = 0.2 + 0.3 (5-0.2) = 0.1 D(3) = 0.2 + 0.3 (5-0.2) = 0.1 D(3) = 0.1 0 9 d Cudidual distance in the second input putting and and input putting and input p		(b) = 0.5 + 0.5 (0-0.5) = 0.55 (b) = 0.3 + 0.5 (0-0.1) = 0.11 (c) (b) = 0.3 + 0.5 (0-0.1) = 0.11			
D(1) = 0.2 +0.3 (0 0.3) D(2) = 0.1 0.9 O.2 0.35 O.8 0.25 O.9 0.25 O.1 0.9 Qualidara distance D(1) = (0.1 - 0.) + (0.3 - 1.) + (0.8 - 1.) + (0.9 - 0.) = 1.91 D(2) = (0.9 - 0.) + (0.3 - 1.) + (0.2 - 1.) + (0.8 - 0.) Euclidara distance D(2) = (0.9 - 0.) + (0.3 - 1.) + (0.2 - 1.) + (0.8 - 0.) = 1.91 D(1) = (0.2) = 0.1 is min ² Hence, winning clusto and + is 4, i.e. J = 1. Wy, (n) = 0.1 + 0.3 (0-0.1) = 0.03 Wy, (n) = 0.2 +0.3 (1-0.3) - 0.6 Wy, (n) = 0.9 + 0.3 (1-0.3) = 0.1 Wy, (n) = 0.9 + 0.3 (0-0.9) = 0.4 Updahd weight matrix alter 3 rd Proput parton: Updahd weight matrix alter 3 rd Proput parton: Updahd weight matrix alter 3 rd Proput parton:					
Description of the second input pathon: Description of the second input pathon: Description of the second input pathon					
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0					
1 0 1 0 1 0 1 0 1 0 0					
3rd Japed rector: (0.7 0.4) Gudidua distance = (0.1-0) + (0.2-1) + (0.8-1) + (0.9-0) = (0.9-0		1.00 = 0.1	())		
2 rd Input rector: Jor 2 [0] 1 0 U Cudiduan distance in the control of the cont		7 6-7 0-32		1	
2rd Input rector: Jor n= [0] 110] Euclidua ditanu D(1) = (0.1-0) + (0.3-1) + (0.8-1) + (0.9-0) = 1.5 D(2) = (0.9-0) + (0.3-1) + (0.3-1) + (0.8-0) = 1.91 i. D(1) < b(2) = D(1) is min 1 Hena, winning clusto enit is 4, i.e. 5 = 1 W, (n) = 0.1 + 0.5(0-0.1) = 0.05 W, (n) - 0.2 + 0.5(1-0.3) = 0.1 Wy, (n) - 0.9 + 0.5(1-0.3) = 0.1 Wy, (n) = 6.9 + 0.5(0-0.9) = 0.4 Opdated weight matrix after 3rd Enput patter: W, - 6.05 0.35		0.8. 0.75			
Euclidean dipland $(0.1-0)^2 + (0.2-1)^2 + (0.8-1)^2 + (0.9-0)^2$ $= (0.1-0)^2 + (0.2-1)^2 + (0.3-1)^2 + (0.8-1)^$		1 0.0			
Euclidean dipland $(0.1-0)^2 + (0.2-1)^2 + (0.8-1)^2 + (0.9-0)^2$ $= (0.1-0)^2 + (0.2-1)^2 + (0.3-1)^2 + (0.8-1)^$		- rd 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, by 1		
Euclidean distance $D(1) = (0.1 - 0)^{2} + (0.2 - 1)^{2} + (0.8 - 1)^{2} + (0.9 - 0)^{2}$ $= 1.5$ $D(2) = (0.95 - 0)^{2} + (0.25 - 1)^{2} + (0.25 - 1)^{2} + (0.15 - 0)^{2}$ $= 1.91$ $\therefore D(1) < b(2) = 3 D(1) \text{ is min}^{2}$ Hence, winning clusto unit is U_{1} is $e. 5 = 1$ $W_{1} = 0.1 + 0.5(0 - 0.1) = 0.025$ $W_{2}(h) = 0.2 + 0.5(1 - 0.1) \cdot 0.7$ $W_{3}(h) = 0.9 + 0.5(1 - 0.8) = 0.9$ $W_{4}(b) = 0.9 + 0.5(0 - 0.9) = 0.41$ $W_{1}(b) = 0.9 + 0.5(0 - 0.9) = 0.41$ $W_{2}(b) = 0.9 + 0.5(0 - 0.9) = 0.41$ $W_{3}(b) = 0.9 + 0.5(0 - 0.9) = 0.41$ $W_{4}(b) = 0.9 + 0.5(0 - 0.9) = 0.41$ $W_{5}(b) = 0.9 + 0.5(0 - 0.9) = 0.41$ $W_{7}(b) = 0.9 + 0.$		Euclidean distance $D(1) = (0.1 - 0)^{2} + (0.3 - 1)^{2} + (0.8 - 1)^{2} + (0.9 - 0)^{2}$ $= 1.5$ $D(2) = (0.95 - 0)^{2} + (0.35 - 1)^{2} + (0.35 - 1)^{2} + (0.55 - 0)^{2}$ $= 1.91$ $D(1) < D(2) = 3$ $D(1) \text{ is min}^{2}$			
Euclidean distance $D(1) = (0.1 - 0)^{2} + (0.2 - 1)^{2} + (0.8 - 1)^{2} + (0.9 - 0)^{2}$ $= 1.5$ $D(2) = (0.95 - 0)^{2} + (0.25 - 1)^{2} + (0.25 - 1)^{2} + (0.15 - 0)^{2}$ $= 1.91$ $\therefore D(1) < b(2) = 3 D(1) \text{ is min}^{2}$ Hence, winning clusto unit is U_{1} is $e. 5 = 1$ $W_{1} = 0.1 + 0.5(0 - 0.1) = 0.025$ $W_{2}(h) = 0.2 + 0.5(1 - 0.1) \cdot 0.7$ $W_{3}(h) = 0.9 + 0.5(1 - 0.8) = 0.9$ $W_{4}(b) = 0.9 + 0.5(0 - 0.9) = 0.41$ $W_{1}(b) = 0.9 + 0.5(0 - 0.9) = 0.41$ $W_{2}(b) = 0.9 + 0.5(0 - 0.9) = 0.41$ $W_{3}(b) = 0.9 + 0.5(0 - 0.9) = 0.41$ $W_{4}(b) = 0.9 + 0.5(0 - 0.9) = 0.41$ $W_{5}(b) = 0.9 + 0.5(0 - 0.9) = 0.41$ $W_{7}(b) = 0.9 + 0.$					
$D(1) = (0.1-0) + (0.3-1) + (0.3-1)^{2} + (0.5-0)^{2}$ $= 1.91$ $D(1) \leq b(2) \Rightarrow D(1) \text{ is min}^{n}$ Hence, winning clusto unit is U_{1} i.e. $J = 1$ W. Update weight on winning clusterwise $J = 1$ W. J_{1} J_{2} J_{3} J_{4} J_{5}					
$D(2) = (0.95 - 0)^{2} + (0.35 - 1)^{2} + (0.15 - 0)^{2}$ $= 1.91$ $P(1) < b(2) = 0 $ $P(1) $					
$D(2) = (0.95 - 0)^{2} + (0.35 - 1)^{2} + (0.15 - 0)^{2}$ $= 1.91$ $P(1) < b(2) = 3 D(1) \text{ is min}^{n}$ $P(1) < b(2) = 3 D(1) \text{ is min}^{n}$ $P(1) < b(2) = 3 D(1) \text{ is min}^{n}$ $P(1) < b(2) = 3 D(1) \text{ is min}^{n}$ $P(1) < b(2) = 3 D(1) \text{ is min}^{n}$ $P(1) < b(2) = 3 D(1) \text{ is min}^{n}$ $P(1) < b(2) = 3 D(1) \text{ is min}^{n}$ $P(1) < b(2) = 3 D(1) \text{ is min}^{n}$ $P(1) < b(2) = 3 D(1) \text{ is min}^{n}$ $P(1) < b(2) = 3 D(1) \text{ is min}^{n}$ $P(1) < b(2) = 3 D(1) \text{ is min}^{n}$ $P(1) < b(2) = 3 D(1) \text{ is min}^{n}$ $P(2) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(2) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ $P(3) < b(3) = 3 D(1) \text{ is min}^{n}$ P					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
Hence, winning clusto anit is 4, i.e. 3=1 1. Dodak weight on winning clustorist 5=1 1. W, (h) = 0.1 + 0.5 (0-0.1) = 0.05 1. W, (h) - 0.2 + 0.5 (1-0.3) - 0.6 1. W, (h) = 0.9 + 0.5 (1-0.8) = 0.1 1. Wy, (b) = 0.9 + 0.5 (0-0.9) = 0.4 1. Opdated weight matrix after 3 rd Proput patters: 1. Opdated weight matrix after 3 rd Proput patters: 1. Opdated weight matrix after 3 rd Proput patters: 1. Opdated weight matrix after 3 rd Proput patters: 1. Opdated weight matrix after 3 rd Proput patters: 1. Opdated weight matrix after 3 rd Proput patters:					
Hence, winning clusto anit is 4, i.e. 3=1 1. Dodak weight on winning clustorist 5=1 1. W, (h) = 0.1 + 0.5 (0-0.1) = 0.05 1. W, (h) - 0.2 + 0.5 (1-0.3) - 0.6 1. W, (h) = 0.9 + 0.5 (1-0.8) = 0.1 1. Wy, (b) = 0.9 + 0.5 (0-0.9) = 0.4 1. Opdated weight matrix after 3 rd Proput patters: 1. Opdated weight matrix after 3 rd Proput patters: 1. Opdated weight matrix after 3 rd Proput patters: 1. Opdated weight matrix after 3 rd Proput patters: 1. Opdated weight matrix after 3 rd Proput patters: 1. Opdated weight matrix after 3 rd Proput patters:	18-18-18				
18. Update weight on winning distribusing 5= 1. W (h) = 0.1 + 0.5 (0-0.1) = 0.05 W, (h) - 0.2 + 0.5 (1-0.1) · 0.6 W, (h) = 0.9 + 0.5 (1-0.8) = 0.1 Wy (h) = 0.9 + 0.5 (0-0.9) = 0.41 . Updated weight matrix after 3 rd Propert pattern: Win = 0.05 0.95					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 1) 1. 4 words on winnis duty to the 1-				
ω ₃ , (n) = 0.8 + 0.5(1-08) = 0.4 ω ₄ , (b) = 6.9 + 0.5 (0-0.9) = 0.4 · Opdated weight matrix after 3 rd Proport patters: ω ₅ = 6.05 0.95 0.95		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
wy, (b) = 6.9+0.5 (0-0.9) = 0.00 . Opdated weight matrix after 3 rd Proport patters: ω ₁ = 6.05 0.95 0.6 0.35					
· Opdand weight matrix after 3th Proport patters: with - 6.05 0.95 1					
wi = 6.05 0.95 m					
0.60 0.35 0000					
	V kare	mi - 0.05 0.95	N 3/1)	C	
		。 第二十二章 10章 10章 10章 10章 10章 10章 10章 10章 10章 10		C	
0.45 0.15			(1) 11	C	
Scanned with CamScanner				E	

Scanned with CamScanner

