ELETROMAGNETISMO EE - MIEBIOL & MIEBIOM

Constantes que podem ser úteis na resolução dos problemas:

$$e = 1.6x10^{-19} \text{ C};$$
 $m_e = 9.1x10^{-31} \text{ kg};$ $K = 9x10^9 \text{ Nm}^2/\text{C}^2;$ $m_p = 1.7x10^{-27} \text{ kg};$ $G = 6.7x10^{-11} \text{ N m}^2/\text{kg}^2$:

- 1. Considere um campo eléctrico uniforme: $\vec{E}=2\hat{\imath}~\mathrm{kN/C}$
 - a) Qual o fluxo deste campo através de um quadrado, paralelo ao plano yz, de 10 cm de lado? (20 N m²/c)
 - b) Qual o fluxo deste campo através do mesmo quadrado, mas agora orientado paralelamente ao plano xz? (0)
 - c) Qual o fluxo deste campo através de um quadrado, com as mesmas dimensões, mas cuja normal faça um ângulo de 30° com o eixo xx? (17.4 Nm²/C)
- 2. A figura mostra um corte transversal de duas superfícies esféricas e duas cúbicas que têm no seu centro uma carga pontual positiva.
 - a) Ordene por ordem crescente o fluxo do campo eléctrico através das quatro superfícies.
 - b) Ordene por ordem crescente a intensidade de campo eléctrico nas quatro superfícies e indique em quais a intensidade é uniforme.

 $(E_{\rm D} < E_{\rm C} < E_{\rm B} < E_{\rm A} - {\rm Repare}$ que nas superfícies B e D o módulo do campo eléctrico não tem o mesmo valor em todos os pontos)

- 3. Considere a distribuição de quatro cargas positivas ilustradas na figura. Considere uma superfície, que envolve parte da distribuição de cargas (curva a tracejado na figura).
 - a) Quais são as cargas que contribuem para o campo eléctrico no ponto P.
 - b) Qual o fluxo do campo eléctrico através da superfície representada.
 - c) Desenhe uma nova superfície que inclua as quatro cargas e passe no ponto *P*. O fluxo através dessa nova superfície seria maior, menor ou igual do que o calculado na alínea anterior? O campo eléctrico calculado em *P* seria maior, menor ou igual do que o calculado na alínea anterior? Justifique.

- 4. Considere uma superfície cúbica, de lado d, imersa num campo eléctrico uniforme, \vec{E} , com direcção paralela a uma das arestas do cubo. Calcule, em função de E e d, o fluxo do campo eléctrico através de cada uma das faces e o fluxo através de toda a superfície do cubo.
- 5. Considere uma superfície cilíndrica, de comprimento $d=15\,\mathrm{cm}$ e raio $r=3\,\mathrm{cm}$, imersa num campo eléctrico uniforme ($E=5\,\mathrm{N/C}$) paralelo ao eixo do cilindro. Calcule o fluxo do campo eléctrico através da superfície cilíndrica.

Departamento de Física 2018/19

6. A figura mostra em corte transversal, uma esfera central metálica e duas cascas esféricas, também metálicas. Na mesma figura estão representadas três superfícies gaussianas concêntricas, SG_1 , SG_2 e SG_3 de raios R, 2R e 3R. A esfera interior tem carga Q, a casca menor 3Q e a exterior 5Q. Ordene as superfícies gaussianas por ordem crescente da magnitude do campo eléctrico nas suas superfícies.

 $(E_1 = E_2 = E_3)$

7. A figura mostra quatro esferas sólidas, cada uma delas com carga total *Q* uniformemente distribuída por todo o volume. Em todas as esferas a distância do ponto *P* ao centro da esfera é a mesma.

- a) Ordene as esferas por ordem crescente da sua densidade de carga.
- b) Ordene as esferas, por ordem crescente, tendo em consideração o módulo do campo eléctrico no ponto P.

(a)
$$\rho_D < \rho_C < \rho_B < \rho_A$$
 (b) $E_D < E_C < E_B = E_A$)

8. Um plano não condutor, infinito tem uma densidade de carga de $\sigma = -25\,\mu c/m^2.$ Calcule o fluxo do campo eléctrico através da superfície gaussiana cilíndrica, com eixo perpendicular ao plano de raio A e comprimento B (ver figura).

- 9. Uma esfera condutora de 10 cm de raio possui uma carga de valor desconhecido. Sabendo-se que o campo eléctrico à distância de 15 cm do centro da esfera é radial, aponta para o centro e tem módulo igual a 3.0 x 10³ N/C, qual é a carga da esfera? (-7.5 nC)
- 10. Um filamento uniformemente carregado, de espessura desprezável, com a densidade linear de carga λ = 3.5 nC/m, estende-se de x = 0 até x = 5 m.
 - a) Qual é a carga total do filamento?

(17.5 nC)

- b) Calcular o campo eléctrico num ponto fora do filamento, a uma distância de 1 cm do centro do filamento
- 11. Considere o sistema da figura constituído por duas superfícies metálicas cilíndricas, concêntricas de raios R_1 e R_2 ($R_2 > R_1$). Estas superfícies são carregadas com cargas simétricas de igual módulo (Q_1 =+ Q e Q_2 = -Q). Admita que L >> R_2 e que pode, portanto, ignorar o efeito de bordos.

- a) Calcule o campo eléctrico em função da distância r ao eixo de simetria das superfícies cilíndricas.
- b) Represente o campo eléctrico em função da distância ao eixo de simetria.

12. Uma casca metálica fina tem um raio de 25 cm e uma carga 2.0×10^{-7} C. Determine o campo eléctrico num ponto:

(a) dentro da esfera;

(0)

(b) imediatamente fora da esfera;

 $(28.8 \times 10^3 \text{ N/C})$

(c) a 3.0 m do centro da esfera.

(200 N/C)

13. Uma superfície esférica de raio 6 cm tem uma densidade superfícial de carga uniforme σ = 9 nC/m².

a) Qual é a carga total na superfície?

$$(4.1 \times 10^{-10} \text{ C})$$

b) Calcule o campo eléctrico em r = 2 cm, r = 5.9 cm, r = 6.1 cm, r = 10 cm.

- 14. Uma esfera de raio 6 cm, com uma distribuição contínua de carga, possui uma densidade volúmica de carga $\rho = 450 \, \text{nC/m}^3$.
 - a) Calcule a carga total da esfera.

$$(4.1 \times 10^{-10} \text{ C})$$

- b) Calcule o campo eléctrico a r = 2 cm, r = 5.9 cm, r = 6.1 cm, r = 10 cm.
- (341 N/C; 1007 N/C; 984 N/C; 369 N/C)
- c) Compare os resultados com os que obteve no problema anterior.
- 15. Considere uma placa horizontal, isoladora, infinita, carregada em que a densidade superficial de carga é 8 nC/m².
 - a) Calcule o campo eléctrico num ponto situado 10 cm acima da placa.
- (452 N/C)
- b) Imagine agora que uma segunda placa horizontal, igual à primeira mas com uma densidade superficial de carga de -8 nC/m² é colocada a uma distância 20 cm da primeira. Calcule o campo eléctrico num ponto situado:
 - i) a meia distância entre as duas placas;

(904 N/C)

ii) a 5 cm da primeira placa e a 15 cm da segunda.

- (904 N/C)
- 16. O campo eléctrico no interior de um condensador plano é constante e de magnitude $E=\sigma/\varepsilon_0$, sendo σ a densidade de carga das placas. Demonstre este resultado usando a lei de Gauss.

- 17. A figura mostra a variação da magnitude do campo eléctrico no interior e no exterior de uma esfera, carregada positivamente, em função da distância ao centro da esfera. Na escala vertical, $E_S = 5 \times 10^7 \text{ N/C}$.
 - a) A esfera é condutora ou isoladora? Justifique.
 - b) Calcule a carga da esfera?
- $(Q \approx + 2.2 \mu C)$

- 18. O gráfico da figura mostra a variação da intensidade do campo eléctrico em função da distância (r) ao centro de uma esfera electricamente carregada de raio 2 cm.
 - a) Diga se a esfera é isoladora ou condutora. Justifique.
 - b) Calcular a carga eléctrica da esfera.
 - c) Calcule o fluxo do campo eléctrico através de uma superfície gaussiana esférica de raio 4 cm.

- 19. Considere uma casca esférica metálica inicialmente descarregada. Suponha agora que uma carga positiva +Q é colocada no centro da casca, sem tocar na parede interior da casca. Como se distribui a carga na superfície metálica interior e na superfície exterior da casca? Justifique
- 20. Considere uma esfera condutora de carga 2Q e raio a=0.05 m. Considere uma casca esférica condutora de carga -4Q, de raio interior b e raio exterior c, concêntrica com a esfera.
 - a) Demonstre, partindo da Lei de Gauss, que a magnitude do campo eléctrico no ponto A é dada pela seguinte expressão $E=\frac{1}{4\pi\varepsilon_0}\frac{2Q}{r^2}$.

- b) Qual o distribuição de carga na casca, quando todo o sistema se encontra em equilíbrio electrostático? Justifique
- c) Considere que Q=2.5 nC. Caracterize o campo eléctrico no ponto B (magnitude, direcção e sentido), que se encontra a uma distância d=3a, do centro da esfera
- 21. Uma pequena esfera carregada está localizada no centro geométrico de duas cascas condutoras (ver figura (a) que mostra um corte transversal do sistema). Na figura (b) mostra-se a variação do fluxo do campo eléctrico através de uma superfície gaussiana esférica, centrada na pequena esfera central, em função do raio dessa esfera gaussiana. A escala do eixo vertical é tal que $\phi_5 = 5 \times 10^5 \text{ N m}^2/\text{C}$. Todo o sistema se encontra no vazio.

a) Calcule a carga da esfera central.

$$(Q_{\rm esf} \approx -8~\mu\text{C})$$

b) Calcule as cargas de cada uma das cascas esféricas A e B.

$$(Q_{\rm A} \approx + 11.5 \ \mu{\rm C}; \ Q_{\rm B} \approx - 5.3 \ \mu{\rm C})$$

- c) Explique a razão por que é que há duas regiões em que o fluxo do campo eléctrico é nulo. (R: *E* no interior de um condutor em equilíbrio electrostático é nulo)
- d)Qual o distribuição de carga nas cascas, quando todo o sistema se encontra em equilíbrio electrostático? Justifique. (Q (Sup. Int. A) \approx + 8 μ C; Q (Sup. Ext. A) \approx + 3.5 μ C); Q (Sup. Int. B) \approx 3.5 μ C; Q (Sup. Ext. B) \approx 1.8 μ C)
- 22. Considere uma casca esférica metálica, centrada no ponto O, com raio R = 1 m e com uma carga 8.85 μ C. Considere $R_A = R/2$ e $R_B = 3R/2$.
 - a) Calcule o fluxo eléctrico através duma superfície gaussiana esférica centrada em O e que passe por B.

- b) Descreva o que acontece ao fluxo do campo eléctrico, através da superfície gaussiana, se for substituída por uma superfície cúbica de volume 10 vezes maior.
- c) Compare o campo eléctrico, provocado por esta casca, nos pontos A e B.