DETERMINATION OF ERRORS IN A SERIES TRANSFORMER

BY

E. M. BEATY and V. F. VACEK

Armour Institute of Technology
1908

Illinois Institu**te**of Technology
UNIVERSITY LIBRARIES

AT 103
3eatty, E. M.
Determination of errors in a series transformer

For Use in Library Only

DETERMINATION OF ERRORS

IN A

SERIES TRANSFORMER

A THESIS

PRESENTED BY

E M. BEATY

V. F. VACEK

TO THE

PRESIDENT AND FACULTY

OF

ARMOUR INSTITUTE OF TECHNOLOGY

FOR THE DEGREE OF

BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

HAVING COMPLETED THE PRESCRIBED COURSE OF STUDY IN

ELECTRICAL ENGINEERING

JUNE 1908

ILLINOIS INSTITUTE OF TECHNOLOGY PAUL V GALVIN LIBRARY 35 WEST 33RD STREET CHICAGO II 60616

Approved

Albert A. Swither.

To 19 Page 7 Elie 76.

It was intended at the output to run a test of deveral transformers of various types, but it was later found that the budg of took a great deal more time than was anticipated. For this lease a full set of data was obtained on a loop one transformer.

The calculated lite and the curves arounds this this is are those for a deneral Electric Teries Transformer, The T, Form D, "50286; built for 185% volts on the main. Tatio 70 to 1. Full load 7% amperes, Thirty Limits load 100 amperes.

Further date on a filterest frame one six included in this thesis but if is not each form.

A series transformer is a device commonly used in high potential power lines for supplying current to an agreeter or the series coil of a wattmeter.

It being undesirable to bring the mide obtained feeders directly to the switch board on account of the danger thus involved the series transformer was developed.

It occupies the same place in alternating current work as does the shunt in direct current lines, namely; that of supplying a definite ratio of the total current flowing through the lines to instruments whose scales are so calibrated that the total amount of current flowing is read, instead, of just that portion which flows through them.

The transformer is essentially a few turns of heavy wire, are wound on a porcelain core, which is connected in series with the line, in which the current is to be measured. The secondary consists of a large number of smaller turns wound around the primary winding. The measuring instruments connect directly to these secondary terminals.

If the transformer is designed for some particular instrument with its known length of leads from the transformer to the switch board it can be so constructed that the percent error on all loads is very small.

As the above is very seldom the case, since certain types of transformers are used on different types of instruments and different lengths of leads, an error is introduced which depends upon the nature of the secondary circuit and the size of the load.

The commonly recognized error of these transformers is that of variation of the ratio of transformation. Another source of

error, which is seldom mentioned is that of the phase relations of the currents in the primary and secondary of the transformer. The error caused by this latter is practically neglegible at unity power factor but rapidly increases for lower power factors.

In a transformer the primary and secondary currents are nearly always assumed to be 180° apart. This is very seldom the case but does not make much difference in general cases.

In a series transformer where its sole function is to supply current for power measuring instruments an error, however small, causes a loss where large amounts of power are measured.

The current in the secondary of a transformer of the series type instead of being just 180° behind the current in the primary, (the 180° position) lags it by a small angle which will be called alpha (a) in this work.

The object of the following work is to find the value of that angle and also the ratio of transformation under different characters of secondary circuits for loads varying from light loads to over loads. The value of the ratio of transformation is a very easy quantity to obtain since it is just the ratio of the primary to the secondary current and these values can be obtained very readily. The method of obtaining the phase angle was a harder matter as the literature on that subject was of very meagre nature. The only reference found was that in the transactions of the American Institute of Electrical Engineers of 1906.

An oscillograph was thought of, but as the angle to be measured was so small compared to the scale of the oscillograms which could be obtained, that another method was thought more applicable.

The method used is a rather simple one and consists of two sensitive dynamometers, the stationary coils of which are connected in parallel, one of them first going through an ammeter.

These coils are then connected through a bank of lamps to the secondary of a three phase, squirrle cage, induction motor, the secondaries of each phase being open and connected to sliprings. By supplying current to the primary of the induction motor a revolving field is set up and by moving the rotor the desired amount and clamping it in place, a current which varies from the primary current by an amount equal to from zero to 120, depending upon the position of rotor, can be obtained.

The moving coil of one dynamometer was connected to a shunt in the primary circuit. The moving coil of the other dynamometer was connected through an analyter to the secondary of the transformer to be tested. A double pole switch was placed in each circuit so that the instruments could be cut cut when desired. A single fole switch was placed across the secondary terminals of the transformer so it could be short—med when the other switches were open. This was necessary recouse if it was left open a high e.m.f. would be set up in the secondary due to the primary current. This e.m.f. would be limite to functure the insulation.

As a large current was needed the most convenient way of obtaining it was decided to be that, of using a high current transformer, which had a ratio of eleven, twenty-two, forty-four, depending upon the way of connecting. A current as high as three thousand angenes could be obtained with this if disired but as only one hundred was a eded if was connected up with the twenty-two ratio and by various the current in the primary by means of a lamp rack and some carron shoostats the value of the secondary current of this transformer could be charted at vill.

The second ry of this transformer was contest d die only through the primary of the series transformer and the sount s oken of before.

A frequency meter was also supplied, as were double-throw switches for balancing the dynamometrs a sinst each other if desired. The scheme of wiring can easily be seen from the accome paning blue print.

Current is sent through both coils of the dynamorator by mand;—
ulation of the law; make. Then by moving the handle connected
to the rotor of the induction notor the phase relation of the
current in the stationary coils is adjusted to 50° difference
from that in the moving coil of the dynamorator connected onto
the shunt. The current in the coil connected to the shunt is in
phase with the primary current of the transformer. A 90° difference in phase relation of the currents will cause the dynamorator
connected to the shunt to read zero.

If the current in the secondary of the transformer is just 180° out of phase with the primary current the dynamemeter across it will read zero. If it does not read zero, the deflection is noted and the values of the currents in each of its coils are taken. The deflection obtained is proportional to the sine of the engle of lag since the deflection of the dynamemeter is equal to the products of the currents through each coil times the cosine of the angle between them or D=KII, cos €. By adjusting the dynamement reaches the shunt for zero deflection € becomes 90° so the angle between the currents in the second dynamement is (90°-a). Therefor D=KII, cos(90°-a)aKII, sin(a).

The dynamometer was calibrated as an annater on direct current so the value of the cosine is one and as the two coils were in series I=1, then D=KI. This enabled one to determine the value of K for different deflections and a curve was plotted so these values could be taken off. The ammeters were calibrated and curves plotted for them as was also done for all the instruments used.

When the experiment first started an ammeter was placed in the circuit of the moving coil connected across the shunt so by ratio of the resistance of these two circuits and the reading of the ammeter in the secondary of the transformer the ratio of transformation could be obtained directly. This cut down the sensibility of the dynamometer so much that it was taken out and the ratio obtained separately by means of a not wire ammeter connected across the shunt. Ly plotting a curve for these ratio readings the value of the primary current corresponding to the secondary current taken during the phase angle readings could be obtained and the ratio obtained by their division.

In order to obtain the impedance of the secondary circuit a special instrument had to be used because there was no low reading alternating current voltmeter obtainable. In order to obtain an instrument, a Whitney hot wire anneter which is commonly used across a shunt was calibrated as a voltmeter as follows:

If was placed across the shunt and readings taken of current flowing through the shunt and the reading of ambeter. A millivoltmeter was then placed across the shunt and readings of it taken corresponding to line current. By plotting a curve against anneter readings and milli-volt readings the calibration of the ambeter as a voltmeter was obtained.

In obtaining the impedance drops, the drop had to be taken over the ammeter which was in the circuit or the true value of current flowing through the circuit could not be obtained. As this could not always be done it was necessary to calibrate the instrument as an ammeter without its shunt. Then by subtracting the current flowing through it from the ammeter reading the true value of the current in the circuit was obtained and then $Z = \overline{I}$ where E is the voltage as indicated by the instrument and I is the corrected current. This was necessary because the instrument had such a low resistance that more current flowed through it, than did through the circuit to be measured. The resistance of the circuit was obtained by the fall of potential method using a calibrated anmeter and voltmeter.

3 *[.*]

The symbols and letters used in this work have the following meanings:

R. : Resistance of secondary circuit.

L = Reactance of secondary circuit.

Ipp = Current in phase-shifter.

Is: Surrent in transformer secondary.

Ip = Current in transformer primary.

Defl.: Dynamometer deflection.

H = Dynamoreter constant.

R = Patio of primary current to secondary current.

= Corrected values of above symbols.

The circuits used are composed of the following; as taken from the data sheets on resistance and impedance.

No.	Character.
3	(b) + (c)
4	(a) ÷ (c)
5	(c) - (l.)
ŝ	(c) + (i)
7	(e)
8	(1)
10	(()
11	(h)+(e)

1)

The nature of the secondary circuits used are as follow:

MO.	• 1.	Τ,
4 5 11 15 3	.35400 "" ""	. 078450 000500 000510 0000110 0000 110
1 7 1 8 10	.09030 .12870 .21200 .22900	•(1003400 n n n
3	.11 060	. 010740

F

		(a)		Resistan	.ce.		(h)		
I 2 3 4 5	E 0.270 0'.530 0'.795 1'.050 1.300	#I 0.99 1.98 2.96 3.89 4.86	#E 0.260 0.520 0.790 1.035 1.270	R 0'.263 0'.263 0'.267 0.266 0.262	I 1 2 3 4 5	E 0.135 0.265 0.392 0.520 0.640	#I 0.99 1.98 2.95 3.89 4.85	#8 0.130 0.265 0.380 0.510 0.625	R 0.1715 0.1837 0.1885 0.1278 0.1286
I	E	(c) #I	#E	R	I	E	(d) #I	#E	R
1 2 3 4 5	0.090 0/180 0.275 0.368 0.455	0.99 1.98 2.96 3.89 4.86	0.090 0.175 0.070 0.360 0.445	0.0910 0.0885 0.0913 0.0903 0.0917	1 2 3 4 5	0'.105 0'.210 0'.230 0'.425 0.525	0.99 1.98 2.96 3.89 4.83	0.105 0.205 0.510 0.415 0.510	0.1060 0.1055 0.1047 0.1040 0.1050
I	E	(e) #I	#E	R	I	E	(f) #I	#E	R
1 3 4 5	0.238 0.465 0.690 0.920 1.135	0.99 1.98 2.96 3.80 4.86	0,237 0,455 0,670 0,900 1,100	0.2495 0.2300 0.2265 0.2310 0.2290	1 2 3 4 5	0.132 0.258 0.392 0.513 0.640	0.99 1.93 2.96 3.89 4.86	0.130 0.250 0.380 0.500 0.605	0.1315 0.1265 0.1285 0.1285 0.1285

(g)
I E #I #E R

1 0.262 0.99 0.26 0.263
2 0.520 1.98 0.51 0.257
3 0.775 2.96 0.76 0.257
4 1.035 3.89 1.01 0.260
5 1.283 4.86 1.25 0.257

1

1)

.

Impedance.

1)

(a)

1.423 2.153 2.808 5.150 3.478	40.0 60.0 80.0 90.0	Alt. 50/50	#I2 1.430 2.165 2.830 3.185 3.525	I HW 1.245 1.860 2.440 2.750 5.000	712 0.185 0.305 0.390 0.455 0.525	E 0.117 0.171 0.229 0.257 0.266	2 0.635 0.562 0.566 0.565 0.545
			(d)				
1.890 2.800 3.758 4.600	80.0 100.0	Alt. 50.50	#I2 1:115 2.825 3.745 4.65	I,w 1.: 45 1.860 2.440 3.000	1. 0.370 0.965 1.545 1.650	0.117 0.171 0.229 0.235	Z 0.1750 0.1773 0.1700 0.1755
			(c)				
1. 0.530 1.600 2.148 2.375 2.650 1.075 1.600 2.185 2.455 2.455	E _H 20.0 40.0 60.0 80.0 90.0 100.0 40.0 60.0 90.0	Alt. 50.50 "" "" "" "" "" "" "" "" "" "" "" "" ""	#I. 0.530 1.085 1.600 2.165 2.675 1.075 1.010 2.205 2.470 2.750	I H.W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.00.530 1.085 1.600 2.165 2.405 2.675 1.075 1.610 8.235 2.470 2.750	E 0.06. 0.117 0.171 0.229 0.257 0.286 0.117 0.171 0.229 0.257 0.286	Z 0.121 0.108 0.107 0.106 0.106 0.107 0.1088 0.106 0.103 0.104 0.104

•

.

Impedance.

(d)

I2 0'.875 1.335 1.818 2.028 2.26	40.0 60.0 80.0 90.0 100.0	Alt. 51.0	#I ₂ 0.875 1.339 1.835 2.040 2.290	Пн w О О О О	I. 0.275 1.359 1.855 2.040 2.290	0.117 0.171 0.229 0.257 0.286	2 0.1340 0.1275 0.1250 0.1400 0.1250
			(h)				
1.545 1.960 2.550 3.165	40.0 50/0 80/0 100.0	Alt. 50.50	# I ₂ 1.345 1.980 5.556 3.200	I.w 1.245 1.850 2.440 3.000	I. 0.100 0.120 0.110 0.200	0.117 0.171 0.229 0.283	Z 1.170 1.425 2.80 1.430
			(i)				
I2 0.790 1.275 1.870 2.445 3.030	E _A 24.0 40.0 60.0 20.0	Alt. 50.25	#I2 0.780 1.275 1,900 2.460 3.060	1,0 0.760 1.245 1.860 2.440 3.000	0.02 0.030 0.04 0.020 0.060	0.076 0.117 0.171 0.229 0.28	Z 3.80 3.90 4.50 1.44 4.75
			(k)				
I; 1:320 2:050 2169) 3:310	40'.0 30'.0 30'.0 100'.0	Alt. 50.50	#I2 1.370 2.060 2.710 3.350	I, 1.245 1.860 2.440 3,000	T. 0.115 0.200 0.070 0.350	0.117 0.171 0.229 0.286	2 1.017 0.830 0.850 0.820

j

Ratio Readings.

IH	I,	Ιρ	Is	IH	I,	\mathbf{I}_{P}	Is
8.0	0.50	11.5	0.50	12.0	0.60	15.5	0.60
19.9	1.13	22.8	1.13	22.0	1.21	24.5	1.21
31.0	1.63	3 2.5	1.65	32.0	1.62	33.5	1.64
40.0	2.08	41.0	2.10	40.0	2.08	41.0	2.10
50.0	2.56	51.0	2.56	50.0	2.55	51.0	2.55
60.0	3.07	61.2	3.11	60',0	3.09	61.2	3,13
70.0	3.63	71.8	3.68	70.0	3.68	71.8	3.73
80.0	4.10	82.0	4,15	80.0	4,14	82.0	4.20
90.0	4.60	91.3	4.65	90.0	4,65	91.3	4.70
96.8	4.98	97.8	4,98	95.2	4.97	96.5	4.92

 Γ_{1}

Circuit #4

I,H	$\Gamma_{\mathbf{a}}$	Ip	$_{/}\mathrm{I}_{s}$
10.0	0.58	13.5	0.58
22.0	1.20	24.5	1.21
30.0	1,55	31.7	1.56
40.0	2.08	41.0	2.09
50.0	2.55	51.0	2.31
60.0	3.09	81.2	3.13
70.0	3.65	71.8	3.70
0.08	4.11	82.0	4.16
90.0	4.63	91.3	4.68
95.0	4.95	96.2	4.97

				•	-		
					4		
	PE	*	-	+	•	*	-4
			-				
			•				

			atio nea	din <i>r</i> s.			
I'H 10.0 22.0 40'.0 60'.0 80.0 93.0	Circuit I, 0.61 1.24 2.12 3.10 4.16 4.88	#5 Is.5 24.5 41.0 61.2 82.0 94.2	Is 0.61 1.24 2.12 3.13 4.22 4.92	I# 10.0 22.0 40.0 60.0 80.0 92.0	2.10 3.08 4.11	#6 Ir 13.5 24.5 41.0 31.2 82.0 93.3	I. 0.59 1.22 2.10 3.11 4.16 4.78
	Circuit	#7			Circuit	<u></u> #8	
17, 10.0 20.0 40.0 60.0 80.0 95.0	XI, 0.65 1.23 2.12 3.13 4.18 5.0	I _P 13.5 24.5 41.0 61.2 82.0 96.2	I, 0.65 1.23 2.12 3.15 4.25 5.01	I H 10.0 22.0 40.0 60.0 80.0 95.0	1.25 2.09 3.09 4.17	Ip 13.5 24.5 41.0 61.2 82.0 96.3	I. 0.60 1.23 2:10 3.12 4.23 4.98
	Circuit	#10			Circuit	411	
I'H 10.0 20.0 40.0 50'.0 90.0 95.0	1, 0.60 1.09 2.08 3.05 4.05 4.64 4.95	I, 13.5 22.8 41.0 61.2 62.0 91.3 95.2	I, 0.60 1.09 2.10 3.09 4.10 4.69 4.97	I # 20.0 40.0 60.0 80.0 90.0 95.0	I. 1.08 2.08 3.09 4.14 4.64 4.95	I, 22,8 41.0 61.2 82.0 91.3 96.2	Is. 1.08 2.10 3.13 4.17 4.69 4.97

					-		
	,						
	,	+	•	,		•	
~		4					7
	*						
,				7	√		
	*	7		•			,
4							~
4						*	
		*		*		•	
						•	1

		u		7			
٦.	3					,	*
				*	a .	19	~
		,		4			
~			~	7		*	
*					<i>p</i>		
4			1	*			*
		•		-		*	
				-			
			, a	4			
			-		-		**
_							
					,		
	*					-	i2
					*		
							-

Latic Leadin ..

	Circuit	#1f.			Diret il	14.	
Ιμ	I_{2}	Ip.	I_s	I"	I,	Ip	\mathbf{I}_s
20.0	0.500 1.145 2.100 3.06: 4.070 4.000	12.80 A1180 61.20 82.00	1.175 2.100 3.003 4.120	.:.0 40.0 60.0 50.0	0.600 1.200 .050 1.050 4.010	41.00 1.20 92.00	1. 10 2.050 5.080 4.110

esist nee #1 .

I	1	= T	12	T
1	0.12	0.19	0.10	. 1:0
	0.450			. 120
3	0.655	: ,96	0.625	. 2110
4	0.347	3.81	0.930	. 130
5	1.035	4,90	1.430	120

Impodence -14.

I.	Εμ	Alt.	# I,	I HW	I_	.2	Z_{-}
0.105	24.0	50.50	0.790	0.700	0.030	0.076	2.05
						.117	
						0.200	
						0.23	

Circuit #1

R_s=.0906 L=.001340

1) Iph	I_2	Defl.	K	I#ph	$\#\mathtt{I}_{\mathcal{S}}$	Sin.a	Ip	R	Alpha
4.5486472145398888150251 4.44444444444444444444444444444444444	0.20 0.50 0.625 1.08 1.33 1.43 1.73 1.73 1.73 1.57 2.22 2.25 2.37	4.0 7.5 12.0 14.0 16.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18	76.10 79.00 80.80 81.40 81.80 82.70 83.70 83.65 83.65 84.05 84.35 84.45 84.45 84.45	4.50 4.52 4.53 4.53 4.53 4.53 4.53 4.53 4.53 4.53	0.180 0.288 0.5%5 0.850 1.000 1.190 1.338 1.476 1.650 1.738 1.850 1.960 2.350	.0643 .0717 .06:3 .04485 .04485 .0428 .0428 .0428 .0417 .0408 .0417 .0408 .0417 .0408 .0417 .0408 .041	1.8 6.0 21.0 21.1 25.2 31.0 34.4 36.0 42.1 46.0 48.0 55.6 572.0 78.0	10.00 20.83 21.32 21.16 21.10 21.10 21.00 20.84 20.70 20.58 20.45 20.30 20.45 20.41 20.30 20.10 20.07 20.04 20.07 20.04 20.07 20.08	3 41.2 3 406.3 3 406.3 3 406.3 3 406.3 3 29.5 2 25.0 2
4.45	4.23	61.5 65.4	84.33 84.50	4.48	4.235		95.0 91.3	1.70	2 07.2

					-				
									-
									t
*		75							
~				,		*	٠		
					7			-	
	-	4						4	
	77			•		н	-	*	
		•	*		4		*		4
		4	_				7	м	
-	+			,	-		70		
			*	Α .	π		*1		•
**	*		,	_				4	-
				4	7		*		*
	3	*					*	7	-
	*						-		
				et.	_	700	•		
	+						•	•	~
*						~	7		
			7	7	7	_	•		•
		~					•		4
91									
		•					٤		
	-								
		*					*		•
							,	•	
		•	•			•	•		
							•	-	
	+								
			-						•
		4						•	•
					*		•		
			*				-		
								-	
					•	•			

'irc it #3

 $I_{11}.$

	F.	. DO6			a) = . 0 161						
. I _{Ph}	I	Defl	·	# I _{Ph}	/ I.	Sin.c.	I_p	- ,	ıı, a		
4.45 4.45 4.46 4.46 4.47 4.47 4.49 4.49 4.49 4.49 4.49 4.49	20 0.40 0.37 1.20 0.45 1.25 0.59 4.65 7.05 5.90 5.90 5.90 5.90 5.90 5.90 5.90 5	0.0 11.0 14.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	78.20 80.40 81.82 82.40 82.70 87.40 87.40 87.40 87.40 87.40 87.40 87.40 87.40 87.40 87.40 87.40 87.40 87.40	4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50	0.160 0.390 0.35 0.670 1.111 1.285 1.511 1.390 2.000 2.450 2.675 5.070 3.000	.094. .0779 .0311 .0478 .0450 .0445 .0465 .0406 .0574 .0564	2.00 13.8 10 27.1 31.2 40.0 49.0 63.0 71.0		5 25.0 2 3 5 0 4 5 0 2 3 5 0 2 3 5 0 2 3 5 0 2 3 5 9 0 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5		
4.37 4.45 4.40	4.30 4.17 0.00	50.0 57.0	84.50	4.45		.0337 .0336 .0334	64.5 00.3 00.5	19.40 1.37 1:30	1 54.0		

					-	(19.)	
					•		
,							
				-			
	4						
		ē					
			4				

Circuit #4.

	The	. 3 4J			I. =. 00881						
Iph	I ₂ ,	Defl.	12	Ph	-"I3	71 .c.	$I_{oldsymbol{ ho}}$		Al ja		
4.60 4.62 4.62 4.60 4.60 4.71 4.72 4.72	0.75 0.75 0.98 0.58 1.58 1.58 0.20 0.20 0.40	9.0 14.8 16.5 21.0 24.5 51.5 57.5 57.5 57.5 57.5 57.5 57.5 57	79.75 81.40 81.80 82.00 83.05 83.50 83.90 84.00 84.66 84.58	4.7000000000000000000000000000000000000	5.8/5 5.140 5.975	.0843 .05%5 .0407 .0400 .0378 .0346 .0346 .0346 .0348	0.5.0.2.0.0.5.1.5.1.0.0 15.0.2.0.0.5.1.5.1.0.0 15.0.2.0.0.5.1.0.0 15.0.2.0.0.5.1.5.1.0.0	.20.84 20.61 21.02 51.16 20.50 50.25 20.16 14.69 20.00 16.71 16.64	4 50.2 5 00.5 2 50.3 2 17.5 2 17.5 2 17.6 2 05.8 1 50.0 2 01.0 1 52.6 1 54.2		
4.73	4.42 4.75	52.0 62.5	84.25 84.35	4.75		.0724 .0725	93.0	10.44 19.57	1 51.4		

÷

			_			
	•					
	~					

Circuit 75.

D.	$^{\prime}$	(in)		ES.
B.a= ⋅	U	U	4	\cup

L= .0053

Iph	I_2	Defl.	π.χ. + π	"Iph	#I	Cin.a	Tp	Γ	Al lie
4.87 4.91 4.90 4.90 4.90 4.88 4.87 4.83 4.82	0.30 0.85 1.27 1.80 2.35 3.14 3.58 4.12 4.40 4.75	14.5 19.5 25.0 32.2 40.0 49.6 55.5 61.0 63.8	81.28 82.3 83.18 85.0 84.42 84.00 84.50 84.40 84.20	4.87 4.90 4.89 4.89 4.89 4.80 4.80 4.80 4.80	0.29 0.85 1.27 1.80 2.30 2.10 3.02 4.17 4.45 4.78	.1265 .0270 .0483 .0435 .0412 .0379 .0372 .0358 .0385	6.0 10.00 20.30 35.00 41.20 31.50 70.30 81.00 89.00	20.05 19.78 19.75 19.50 19.50 19.40 19.30	7 13.0 3 14.0 2 29.0 2 22.0 2 22.0 2 10.0 0 03.8 2 06.0

Circuit #6.

R,+.504	Ŧ C	2
---------	-----	---

L=.0328

Inch.	I_{2}	Defl.	\mathbf{K}	FIPA	$\#\mathbf{I_3}$	Sin.a	In	R	Alpha.
4.90	0.50	8.5	79.40	4.89		.0729	€.5	2: .40	4 11.0
4.92	0.78	12.0	80.70	4.91	0.77	.0390	16.5	21.20	2 15.0
4.83	1.37	15.0	81.48	4.87	1.37	.0:70		20.10	1 35.0
4.98	1.82	18.8	3: .1.5	4.87	1.82	.0158	30.0	19.78	1 79.0
4.89	0.15	22.0	3: 7.	4,99	: .15	.n25	4:	10.53	1 36.8
4.29	2.64	28.8	83.65	4.37	.65	.0537	5 .0	19.8	1.32.0
4.88	3.08	5113	83,95	4.27	3.10	.0050	61.0	19.65	1 26.0
4.83	3.53	36.0	84.15	4.93	3,50	.0243	70.	19.70	1 55.0
4.83	4.00	41.	84.50	4.87	4.05	.0849	79.7	19.65	1 26.0
4.85	4.48	47.0	84.58	4.83	4.50	.0254	9.3.3	19,52	1 7.3
1 95	1 27	0	94 60	1 25	1.70	6:55	91.5	70.45	1 :7.6

\mathbb{R}	1	2	5	7	

I = .000343

$^{\mathrm{I}}$ Ph	I	Defl.	77	"Iph #Is	Min.a	Ipo	R	Alma
4.91 4.90 4.89 4.88 4.87 4.88 4.80 4.80 4.80 4.80	0.35 0.88 1.67 2.00 2.38 2.90 3.32 3.70 4.00 4.48 4.88	11.5 21.0 31.0 35.5 41.5 49.0 54.0 59.5 69.5 73.5	80.60 82.62 83.85 84.25 84.50 84.60 84.55 84.25 84.25	4.900 0.35 4.290 1.38 4.980 1.66 4.975 2.00 4.865 2.40 4.875 2.95 4.820 3.37 4.805 3.75 4.805 4.05 4.605 4.52 4.850 4.90	.0835 .0497 .0430 .0430 .0406 .0398 .0383 .0380 .0379	7.3 25.6 35.3 59.0 46.5 57.0 65.5 72.5 87.2 94.5	20.90 20.00 19.80 19.50 19.35 19.45 19.40 19.32 19.30 19.28 19.20	4 48.0 2 51.0 2 35.0 2 29.0 2 25.0 2 19.5 2 15.1 2 13.0 2 10.6 2 10.51 2 05.9

Circuit #8

	P_{σ}	.2292					L:.000346			
I_{Ph}	I2	Defl.	K	#IP4	#13	Sin.a	I_{p}	R	Alpha	
4.93 4.88 4.91 4.91 4.91 4.90 4.89 4.89 4.90	0.35 0.88 1.33 1.70 2.15 2.55 5.00 5.50 4.00 4.50 4.90	13.0 19.0 25.0 31.0 37.5 41.0 46.8 54.5 62.0 73.5	81.00 82.28 .83.15 83.85 84.53 84.58 84.53 84.53 84.25 84.25	4.915 4.675 4.900 4.900 4.900 4.900 4.890 4.890 4.890 4.890	0.35 0.88 1.33 1.70 2.14 2.56 3.02 5.54 4.05 4.95 4.94	.0931 .0538 .0461 .0444 .0424 .0387 .0373 .0373 .0371 .0355	7.8 18.2 27.0 34.0 42.0 50.2 59.0 59.3 78.8 95.5 95.6	22.30 20.70 20.30 20.00 19.60 19.54 12.55 1.35	5 21.0 3 05.0 2 38.0 2 33.0 2 26.0 2 13.0 2 09.0 2 07.0 1 55.0 2 04.0	

Circuit #10

R. 259	L4.000348

I_{Ph}	I_2	Dekl.	K	#IP4	≝I _s Sin.a	Ip	R	Alpha
5.00	0.35	16.0	81.70	4.98	0.350.1121	7.5	21.40	8 20.0
4.95	0.62	01.2	82.65	4.94	0.61 .03-7	13.2	21.40	4 59.5
4.92	1.04	27.0	85.40	4.91	1.04 .0635	0.0	01.20	3 33.5
4.94	1.22	23.0	83.55	4.93	1.23 .0554	.5.0	21.30	3 10.5
4.91	1.52	53.0	84.05	4.90	1.50 .0505	31.5	20.60	3 00.5
4.85	1.32	35,3	84.33	4.85	1.80 .0481	57.0	£0.50	2 40.0
4.91	2.03	:8.5	84.40	4.90	2.04 .0457	42.0	20.53	3 57.0
4.93	2.25	40/2	84.45	4.91	2,29 .0423	46.5	20.30	2 3 .6
4.91	2.51	43.5	84.55	4.90	.5041	01.0	20.15	2: 0
4.92	2.7'	48.3	84.78	4.91	2.79 .0799	50.0	20.05	2 17.0
4.95	2,93	19.5	84.30	4.90	3.02 .038	.0.0	19.90	2 13.0
4.92	.3 3.3	50	84.55	4.91	3.8.0389	60.3	11.90	2 13.7
4.91	3.50	54.5	84.50	4.90	3.57 .0309	70/8	185	2 07.0
3.96	3.50	44.6	84.55	4.09	3.55 .0368	70.5	11.8	0.c0 S
5.95		48.3	84.60	4.09	3.81 .0F30	75.2	1.70	0 03.0
7.92	4.01	50.0	84.58	4.00	4.05 .03 0	79.5	10.66	2 05.3
3.90	4.30	59.0	84.55	4.04	4.15 .0358	8 5	105	2 03.0
3.88	4.50	54.	84.51	4.02	4.55 .0750	a0	19.55	2 00.0
3.9%	4.57	57.0	84.40	4.06	4.725.0351	90	12.45	2 01.0
3.92	4.95	59.0	84.40	4.06	4.99 .0346	9%,0	10.40	1 59.

Circuit #11

R. . . 7546

Iph	I	Defl.	K	$\#I_{Ph}$	$\#I_s$	Sin.a	\mathbb{I}_{p}	R	Alpha
4.91	0.58	13.5	81.10	4.90	0,578	5.0592	15.0	22.60	3 23.6
4.92	1.00	19.2	82,30	4.91	1.000	.0475	21.5	21.50	2 43.3
4.87	1.53	23.5	82.99	4.87	1.463	.0398	30.8	21.05	2 16.9
4.94	2,03	29.5	83.70	4.93	2.040	.0350	41.8	20/50	202.0
4.96	2.55	37.0	84.30	4.95	2.550	.0513	51.	20.20	1 59.6
4.96	2.95	-1.5	84.50	4.95	2.938	.05%2	59.8	2 0. 00	1 54.3
4.80	3.54	48.0	84.60	4.86	3.585	.0306	71.0	19.80	1 50.0
4.90	4.00	52.0	84.57	1.80	4.060	.0309	79.8	12.65	1 46.2
4.88	4.50	59.5	84.40	1.88	4.505	,0519	88.5	19.55	1 49.7

L=.009626

							,		
2				*	*		~	`	
				•				,	
			T	•	4	^			
		-4		4	~			¥	
			n			,	г		-
			-						
	2		¥		4	-	4.		
						-			•
		v .	*			^			
		*			-				
						-			^
ζ,	^								
		•				7	, ,		
		ı						P	
					,	7		4	-
				h	*	-	4	A	*
		4						4	-
				0					
			-						
			>		*				
								10	•
		٠							
•									
						-			
Po					*		-		
									**
						~	~		
			w					,	÷
						r		•	*
						×	-	*	*
		ч						,	

Circ it +1 .

R.:.212	F .	0346
---------	-----	------

Iph	I_{s}	Defl.	Ī.	TIPH	11-5	Sin.a	\perp_{\wp}	THE TAIL	Theta
4.92	0.35	10.0	80.13	4.90	0.35	.0728	7.5	21.40	4 10.0
4.90	0.80	16.5	31.80	4.89	0.80	.0518	15.7	1.00	2 38.0
4.39	1.32	23.5	81.98	4.88	1.32	.0440	7.2	10.62	2 31.0
4.9%	1.67	28.5	83.60	4.90	1.69	.0411	34.5	20.40	2 21.0
4.90	2.00	33.0	84.03	4.89	2,00	.0401	40.5	10.55	2.18.
4.91	2.57	40.0	84.44	4.90	2.58	.0375	51.8	.0.08	2 09.0
4.90	3.00	46.0	94.58	4.89	3.00	.0366	00.2	19.95	2 06.5
4.91	3.51	51.5	84.58	4.90	3.55	.0350	76.5	19.33	~ 01.0
4.80	4.02	57.0	24.49	4.80	4.07	.0345	36.8	19.95	1 58.5
4.90	4.50	65.0	84.30	4.89	4.55	.0340	59.6	19.39	1 59.0
4.88	4.97	70.0	P4.89	4.27	4.99	.0340	97.0	19.30	1 57.5

Jircuit#13.

.rij=,3546	⊥₁ ÷ •	ŨΊ	Üć	3
------------	--------	----	----	---

$\perp_{p'_n}$	I	Defl.	- & ac	In	- I e.	sin.a	Ip	٠.	rheta.
4.91	6.35	7.3	79.00	4.90	0.35	.0538	7.5	1.40	5 03.
4.86	0.83	13.8	81. 0	4.86	U.85	.041.3	12.0	01.18	3 12.6
4.88	1.28	19.5	82.37	4.87	1.29	.3378	16.8	20.85	0 10.0
4.88	1.28	22.5	80.80	4.87	1.65	.0338	34.0	20.62	1 55.0
4.8	1.98	26.0	23.30	4.27	2.00	.03/1	40.8	20.40	1 50.0
4.87	8.41	FO.5	83.81	4.80	0.40	.0310	48.8	20.22	1 47.0
4.88	3.03	38.5	84.40	4.87	3.05	.0308	C1.0	20.00	1 40.0
4.88	3.55	43.5	84.60	4.87	3 58	.0:95	70	19.55	1 41.0
4.87	3.98	50.8	84.59	4.75	4 03	.0307	79.5	19.70	1 15.0
4.85	4.50	54.5	84.52	4.85	4.55	.0191	P.C. ()	10.56	1 40.0
4.81	4.80	57.5	23.96	4.81	4.8	.0296	94.0	19.50	1 4

Circuit , 1.

10 20 30 40 50 7 80 90	Aatio 21.30 21.15 20.95 20.95 20.15 20.00 19.90 19.78 19.50	Alpar 3 27.0 2 54.0 2 18.0 2 19.0 2 18.5 2 13.5 2 17.0	.atio Lrror 6.50 5.75 4.75 3.00 1.75 -0.30 -1.40 50	An 100,1 PF. .161 .100 .083 .083 .075 .075 .088	3.70 3.70 3.70 3.70 3.50 3.50 3.50 3.50 5.50	7.45 5.35 5.35 5.20 4.75 4.10 4.50	0t. 100 6.881 5.880 4.887 3.781 0.888 0.888 0.888 0.887 -0.487 -1.381 -1.381	10.1	13.95 11.30 10.00 6.75 4.7 4.20 5.00
			,	Jiroui	t 3.				
10 20 30 40 50 60 70 80 90	22.84 21.60 20.92 20.50 20.20 19.92 19.70 10.50 19.36 19.28	3 54.0 2 56.0 2 30.0 2 19.0 2 10.0 2 03.5 1 59.0 1 55.5 1 57.0 1 51.0	14. 5	51.	4.30 3.10 2.70 2.50 2.40 2.15 2.20 2.00	5.55 5.35 4.90 4.50 4.30 4.20 4.10 5.90	14.481 8.134 4.198 2.582 1.071 337 -1.440 -2.444 -3.146 -3.548	155 11.10 7.30 5.00 3.40 1.85 0.70 -0.35 -1.15	14.55 9.95 7.40 5.50 3.90 2.70 1.60 0.70
			{	Circui	t ::4.				
16 20 30 40 50 60 70 90 100	23.02 20.70 20.41 20.16 10.95 19.79 14.03 19.62 19.62	3 36.5 2 44.0 2 20.5 2 08.5 2 01.0 1 56.0 1 54.0 1 52.0 1 52.0	10.10 7.50 0.90 -0.23 -1.07 -1.60 -1.86 -1.90	.198 .114 .083 .069 .057 .055 .055	4.00 3.90 3.50 3.20 3.15 3.10 5.05 3.05	7.65 6.50 5.00 4.50 4.20 4.10 3.90 3.90	5.09 3.614 2.135 0.869 -0.188 -1.015 -1.97 -1.847 -1.847	9.10 7.40 5.55 4.10 2.95 2.08 1.50 1.15	10.00 7.05 5.30 4.05 3.13 2.50 2.05 2.00

irci.

				An	le ur	ror ,	, m	otal ur	ron
H 1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.5° 20.15 19.90 19.70 19.50 19.40 19.25 19.00	Alpha . / 51 3 Co 2 38 2 25 2 18 2 18 2 08 2 08 1 56 1 52	Ratio Error 2.80 1.75 -0.30 -1.50 -2.70 -3.70 -3.70 -5.00	100 1 150 1 150 1 100 0 100 0 10	8607 P.F. 6.50 3.40 2.70 2.40 2.40 2.20 2.20 2.10 2.00	5.7 5.7 5.7 5.7 4.5 4.0 4.0	1001 P.F. 1.12 .000 -0.79 -1.41 -2.07 -2.42 -2.94 -3.94 -3.95	56.7, 1.F. 4.15 2.50 0.35 -0.10 -0.40 -0.80 -1.05 00	64.8 P.E. 13.40 7.55 3.80 3.80 3.05 2.05 2.00 1.50 0.55 -1.00
		,		Circui	τ, -' δ				
10 20 30 40 50 60 90 100	21.95 20.76 19.90 10.70 19.63 19.65 19.65 12.50 19.30	3 20 1 54 1 33 1 20 1 20 1 20 1 20 1 20 1 20 1 20	7.75 -Q.50 1.60 -1.85 -1.75 -1.50 -1.75 50 -3.50	0.1 0.04 0.03 0.03 0.03 0.03 0.03 0.03	1.70 2.00 1.30 1.70 1.30 1.30 1.30 1.30	7.3.0.00 3.0.00 3.0.00 3.0.00 3.0.00	10.5 3.1 -0.43 -1.72 -1.72 -1.72 -1.72 -1.72 -1.72	154 5.75 1.30 6.10 -0.25 -0.16 0.10 -0.15 -0.50 0	17.08 05 3.00 1.70 1.15 1.25 1.50 1.25 0.07 -0.20
		,		Circhi	/ T a				
10 20 30 40 50 70 90 100	20.70 20.15 10.80 19.65 19.52 19.41 19.35 10.25 19.22 19.18	. / 4 24 3 12 41 2 23 2 2 14 2 06 2 06	3.30 0.73 -0.75 -1.75 -2.40 -2.55 -3.25 -3.26 -3.60 -4.60	0.10 0.10 0.00 0.00 0.00 0.07 0.07	1.00 3.10 1.70 1.00 2.30 1.30 2.30 2.20	9.0785.2195.5195.44.675	3.7: 0.91 -0.04 -1.00 -2.31 -3.13 -3.53 -3.53 -4.50	6.30 4.126 6.96 7.96	13. 0 5.40 5.76 3. 6 2.05 +1.65 1.20 0.80 -0.10
		o /		Circui	t #8.				
10 20 30 40 50 60 70 90 100	21.7 20.62 20.08 19.95 19.56 19.48 19.45 19.45	4 27 3 01 2 37 1 15 2 15 2 07 2 06 2 04	3.10 0.40 -0.20 -2.30 -2.60 -2.75 -3.00 -1.50	0.17 0.10 0.09 0.08 0.07 0.07 0.07	4.80 3.80 2.80 2.80 2.30 2.30 2.20 2.20 2.20 2.20	557590700 4444444444444444444444444444444444	9.03 0.25 0.12 -0.12 -2.05 -2.	13.35 .30 3.20 2.16 .10 -0.20 -0.40 -0.35 \rightarrow .50	18.25 9.60 3.10 5.00 1.70 2.30 2.10 1.50 0.90

Circuit #10.

					ngle D	rro	770	al arro	**
1 10 20 30 40 50 60 70 80 90	21.50 00.99 20.65 20.37 20.10 11.97 19.80 19.65 19.50 10.35	A1. 1. 5. 6. 7. 9. 5. 6. 7. 9. 5. 1. 4. 7. 7. 9. 5. 1. 4. 7. 9. 5. 1. 4. 7. 9. 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Ratio drror 7.50 90 3.75 1.85 0.90 -0.15 -1.00 -1.75 -2.50 -3.25	100 P.E. .500 .148 .107 .075 .060 .062 .060	3.87 3.87 4.00 5.15 2.73 1.40 1.25 1.20 2.20 2.20	64.5 1 6 7 6 7 6 7 6 4 4 4 4 4 4	100 1.F. 1.000 3.189 3.309 1.037 0.87 -0.075 -0.971 -1.057 -8.438 -3.100	15.70 15.70 10.00 4.60 3.20 2.10 1.23 0.47 -0.30 -1.05	19. 0 13.50 10.45 7.55 5. 0 4.50 2.00 1.90 1.05
				Circui	t -"ll.				
10 20 30 40 50 70 90 90	25.00 21.84 21.06 20.57 20.73 19.99 19.81 10.65 19.35 12.44	. 48 2 40 2 19 2 19 4 50 1 54 1 50 1 49	15.00 9.0 5.30 2.85 1.15 -0.05 -0.95 -1.75 -2.25 -2.80	.10 .121 .084 .057 .055 .051 .050 .050	4.00 0.95 0.45 0.20 2.1 0.10 2.00 2.00 2.00	8.10 3.00 4.55 4.00 5.00	15.010 9.321 5.82 2.813 1.207 0.005 -0.899 -1.700 -1.200 -2.750	19.00 12.15 7.75 5.05 7.30 0.07 1.1 0.25 -0.23 -0.80	3.10 15.20 10.30 7.30 5.45 4.11 3.05 2.11 1.35
				Circui	5 4412.				
10 20 30 40 50 60 70 90 100	21.29 20.85 20.55 20.25 20.08 19.97 19.80 19.60 19.57	3 47 2 16 1 8 03 00 15 3 8 1 5 7	6.45 4.23 2.60 1.25 0.40 -0.15 -0.70 -1.00 -1.50 -2.15	.203 .118 .090 .077 .069 .065 .061 .060 .059	4.00 2.95 2.55 2.35 2.10 2.10 2.05 2.00	7.000 ° 5.35.200 1 4.44.44.4	0.053 4.368 2.600 1.317 0.469 -0.080 -0.080 -0.080 -1.441 -1.090	10.45 7.30 5.15 3.70 2.75 2.05 1.45 1.10 0.55 -0.15	14.15 10.15 7.75 6.00 4.90 4.15 3.85 3.20 6.65 1.95
				Circui	t #1.7.				
10 20 30 40 50 60 70 80 100	11.37 21.09 20.71 20.40 20.13 19.98 19.80 14.38 19.53 11.40	2 20 2 00 1 50 1 44 1 44 1 44 1 44	6.30 5.45 3.55 2.00 0.80 -0.20 -1.70 -2.20 -3.00	.155 .017 .011 .051 .047 .045 .044 .047	3.00 8.50 1.30 1.80 1.75 1.77 1.70	0.9366055555	5.573 5.573 5.011 0.051 0.04 -0.154 -0.954 -1.605 -2.307	1.80 7.00 0.70 3.00 0.80 1.85 0.74 0.05 -0.88	10.40 7.00 5.30 4.40 2.54 1.57 0.30

Ratio Readings. Constant Res**is**tance.

Circu	11: 4	5	11	13	0
1 p 20 40 50 80 100	00/70 20.10 19.79 10.63 19.62	20.1 19.70 19.50 19.40 19.00	RATIO		.0.70 19.70 19.65 11.65
		Constan	t Rea	ctance.	
Circu 20 40 60 30 100	21.15 20.60 20.15 11.90 12.50	20.1 19.35 13.41 19.25 19.18	12 20.48 20.25 19.85 19.0	20.62 19.95 19.00 12.45 19.30	10 20.98 20.37 1:.97 15.05 19.55

Angle Readings.

Constant Resistance.

Circui	t <u>4</u>	5	11	15	<u> </u>
20	. 44	3 05	0	٠ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	0 /
40	~ OU		04	₋ 50	1 17
60	1 50	10	1 04	1 45	1 20
80	1 52	2 0%	1 40	1 43	1 27
100	1 52	1 5%	1 49	1 42	1 18
		Constant	Rea	ctalice.	
	• 1 /	。 7 ,	0/2/	. 8 ,	0101
20	- 24	12	2 47	3 01	3 57
40	20	12 AB	2 15	2 24	- : y
60	2 16	2 10	2 04	2 21	14
80	2 11	11	1 50	- 07	. 04
100	2 07	200	1 55	2 04	1 59

Errole for 80 / Power Eactor.

	. N		**	a marker of the		
	Const	tart R.	Vai	riable L.		
$\overline{\Gamma}$.0050	.0075	.0100	.0150	.0175	.0200
Ratio Alpha Total	1.25 4.20 5.45		Anper. 8.10 7.70 11.05	2.00 7.0 2.00	5.40 5.00	4.50 2.30 7.30
Ratio Alpha Total	-0.50 3.10 2.10	40 -0.50 3.00 ≿.50	Amper - 2.20 2.70 5.30	2.35 2.50	1.60 2.40 4.00	-1.50 2.00 0.30
Ratio Alpha Total	-1.40 2.80 1.40	-0.11 2.70 1.45	Amp. 198 0.00 2.50 2150	0.25 2.40 2.60	-0.25 2.30 2.05	-1.75 2.00 0.25
Ratio Alpha Total	-2.90 2.60 -0.30	80 -2.65 2.50 -0.15	Ampere -1.90 2.40 0.50	-1.60 2.30	-1.60 2.30 0.70	-1.75 2.00 0.25
Ratio Alpha Total	-3.40 +0.90 -0.90	100 -3.60 2.50 -1.10	Ampere -2.95 2.40 -0.55	-2.85 2.30	-2.95 2.30 -0.65	-3.45 2.00 -1.45
	Cons	stallt L.	Va	ariacle R	•	
R	0.09	0.12	0.1	0.2	10	.024
Patio Alpha Total	5.65 3.50 9.1	1.50 4.30 5.80	-0.50 4. (3.70	4.8	80	3115 4.00 7.70
Ratio Alpha Total	4.00 3.20 7.20	40 -1.25 3.30 2.05	Ampera -2.33 2.20 0.85	5 -1.5	00	0.50 5.30 2.50
Matio Alpha Motal	0.73 3.00 3.75	60 -2.25 7.20 0.95	Amper: -3.50 2.80 0.70) -3.3) ~.5	70	1.75 2.90 1.25
Ratio Alpha Total	-0.50 +2.90 2.40	50 -5.10 3.00 -0.10	Amper. 2.70 -1.88	2.6	60	.30 2.80 0.30

Data for Calibra ion Curves.

Hot Wir	e with Shunt.		Hot Wire n Shu	no unt.	Not W Agai	lir: Inst I ₂
13.2 23.0 31.0 41.5 51.0 631255 71.5 81.75 92.0	10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0	0 0 0 1 1 2 2 2	.54 .85 .15 .43	10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0	I2 0.70 1.25 1.655 2.00 E.413 2.97	Inu. 0.70 1.25 1.70,5 2.005 2.45 2.98
102.0 Hot Wir	100.0 e as Voltmeter		.98 l Calibratio of E _m			meter 03.
14.3 25.2 35.0 41.6 56.8 39.5 78.2 93.0 101.0	.037 .061 .095 .111 .150 .184 .215 .2255	•	E,,, 030 060 100 130 140 200 250 260	.032 .063 .105 .132 .165 .208 .255 .267	F. F. C. 30 0.40 0.60 0.80 1.00 1.50 2.00	0.31 0.41 0.61 0.62 1.015 1.515
	eter again and I _{ph}	st	Dyntag Anm e		A3	etur 0.
D. 13.5 15.0 17.0 20.0 21.6 24.0 27.0 29.0 31.30 33.5	1, 7 2.915 3.150 3.340 3.630 3.860 4.050 4.230 4.490 4.700 4.850	I,4 2.90 3.13 3.34 5.62 5.84 4.29 4.69 4.69 4.64	5.50 7.00 10.20 10.35 14.50 16.56 19.70 20.20 20.30 20.30	2.00 2.25 2.75 3.00 3.37 00 5.75 4.00 4.50 4.50 4.50	1.00 2.00 3.00 4.00 4.85	I 1.00 2.03 3.06 4.10 3.00

Matio Readings for Transformer 2.

			25 Ai	mpara h	int us	led.			
#	1.	#	3.		4.	/1	.0.	#1	1.
	I ₂			I H					
3.0	0.70	2.5	0.65	2 2.5	0.5	3.0	0.74	2.5	.61
5.0	1.17	5.5	1.44	5.0	1.13	5.0	1.16	5.0	1.13
10.0	2.13	10.0	2.12	1.0.0	2.09	10.0	2.13	10.0	2.09
12.5	2.62	12.5	2.59	12.5	2.59	12.5	2.62	12.5	2.59
75.0	3.15	15.0	3.13	15.0	3.12	15.0	3.17	15.0	3.11
-	3.35	17.5		17.4	3.65			16.0	
	3.73	_	3,80						-
_	4.20		•						

ata on Transform r f. 's Ar .

7.5	rcuit	-1.	7 4	remit	₹ •	Ji.	re it	A_{\bullet}
Iph	T 2	Defi.	Iph	I	Dell.	T ph	- 2 .	efl.
4.90 4.90 4.90 4.90 4.90 4.90 4.90 9.90 9	0.92782782782 1.927827730777 1.22707367774 4.33	3.0 13.9 19.0 26J8 30.5 22.0 20.4 42.3 45.5 40.0 48.8 47.9	5.00 4.31 5.00 4.00 4.00 4.00 4.00 5.00 4.00 5.00 5	1.14		00000000000000000000000000000000000000	1.40 1.40 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.5	11.1 10.0 30.0 31.0 3.2 43.0

Circuit all. Circuit 710.

Iph	I,	Defl.	I ph	I .	Defl.
4.01	0.	₫.0	4.90	0.00	7.0
4.95	0.3	14.3	4.8.	0.75	15.0
4.05	1.02	19.5	4.90	1.90	21.5
4.8.	1.30	11.F	5.00	1.55	51.5
4.85	1.54	25.0	4.90	1.19	17.5
4.07	1.00	30.8	4.9:	200	34.8
4.01	: .25	50.5	5.00	2.4=	40.0
4.95	2.50	35.8	4.93	3.30	43.3
4.95	2.75	32.5	4.98	3,211	46.5
4.90	F.00	42.0	4.00	.51	50.5
4.20	7.30	45.5	5.00	3.87	56.0
2 94	3.50	39.5	5.00	4.00	50.4

By means of the calibration curves of the various instruments used in the test, the data was corrected, the corrected values being used as the basis of all the curves. The preliminary curves were then drawn for each circuit with the primary current as absolutes and the ratio and the angle alpha as ordinates. From these curves values were licked for additional curves, and for convenience these values were taken for every ten amperes as slowe ordata sheets pp.00-25.

error were determined. Evidently the ratio error in percent is equal to 100(apparent ratio - true ratio)/(true ratio), and since the true ratio is 20, the formula resolves itself into ratio error 100(apparent ratio=20)/20. A study of the ratio relations betwoen the primary and the secondary of the series transformer, and the above equation shows that necessarily positive values of error are in favor of the consumer, since more current is flowing than is measured, and hence regative values are in favor of the station.

The percentage of the error may be determined from the formula percent error $100(1-\cos(a\frac{16}{\epsilon})/\cos\frac{6}{\epsilon})$, where alpha is the error angle as determined in precedic late, and theta is the shale of phase difference between the princip s.m.f. and current. The above equation was determined in the scalar in manner:

Let D = M. N. F. or mains, and I = current in main , or 1 cos = cover factor. Then the potent supplied = ELCOSO. In the series transformer E, of the pricary = KE, and I, of the primary = K I, and cos O is conson,

thus E.I. $\cos\theta$ = K.E.I. $\cos\theta$, that is, the power in the primary of the transfer ar is proportional to the power in the dine.

Assuming ideal transfer ar relations and a patic of 1 to 1, the latter marely for convertue as any ratio of 1 to 1, the sense result, the I.*I. and is 100 degrees out of phase with it, above E.B. and is 100 degrees out of phase with it, hence, U.I. $\cos\theta$ = E.I. $\cos\theta$ = F.E.I. $\cos\theta$ = F.E.I. $\cos\theta$, which states that D.I. $\cos\theta$ is about of the true gover supplied, hased on ideal conditions. Due to the resistance and the reactance of the transfer are the Gross and a difference in the primary and the secondary ray differ an some small angle alpha, and hence the power resistance on the secondary side would be E.I. $\cos(\theta + a)$, and since E. = E. and I. = I. the power registered would be E.I. $\cos(\theta + a)$. The error would tree be $\theta = 100$ (L.I. $\cos\theta = 1$) I. $\cos\theta = 100$ (L.I. $\cos\theta = 1$) I. $\cos\theta = 100$ (L.I. $\cos\theta = 100$) and $\theta = 100$ (L.I. $\cos\theta = 100$) and $\theta = 100$ (L.I. $\cos\theta = 100$) and $\theta = 100$ (L.I. $\cos\theta = 100$) and $\theta = 100$ (L.I. $\cos\theta = 100$) and $\theta = 100$ (L.I. $\cos\theta = 100$) and $\theta = 100$ (L.I. $\cos\theta = 100$) and $\theta = 100$ (L.I. $\cos\theta = 100$) and $\theta = 100$ (L.I. $\cos\theta = 100$) and $\theta = 100$ (L.I. $\cos\theta = 100$) and $\theta = 100$ (L.I. $\cos\theta = 100$) and $\theta = 100$ (L.I. $\cos\theta = 100$) and $\theta = 100$ (L.I. $\theta = 100$) and $\theta =$

As the angle is a lateral, the error caused thereby is always in favor of the consumer, and is therefore considered a positive error. The alletraic sum of the ratio error and the angle error cives the total error. It is this total error which, is used as ordinates in curves 13-24. A study of the data for these error curves shows that the total error for 100% power factor and the ratio error differ only slightly, so that only the ratio error curve for 100% power factor was letted.

A series of angle and ratio values were taken from the circuit curve, for 25%, 50%, 75%, 100%, and 125% of full load, crouping those results with the same resistance and variable reactiones, and also those with the same reactions and variable resistance. In the first case the angle algle and the ratio were dictted actions the reactance, while in the latter case they were plotted accinst the resistance.

)
			7.

For points on these curves, the error was calculated in the constant apparent resistance and inductance. Circuit 10, the nearest apparatch to practical conditions, with a perinteres and to that of 100 feet of 114 m. A. wire and a low inductance, what ensures selected, and the total error for different or massaces detted against power factor, for different loads. A simple or lastice of the above is shown in the following:

Sircuit (10 on page 50 is taken as the stand received it is the nearest to actual conditions.

From ratio reading to on past 15 a curve was plotted outrean the primary and secondary currents. Then by taking Ip corresponding to secondary current I;0.75, a value of I;7.5 was obtained. This rives a ratio of 7.5/3.5=21.40. These values of ratio and alpha are plotted against Ipon curve sheet 79. Points picked off of these curves for every ten amperes are tabulated on page 04.

From this data take Tp200. Then ratio is 20.08 and perform is 100(-20.98-20.00)/20 or 4.90%. Alpha for sa \times Tp is 7.57.0.

/Srror=100 = 100cos($\frac{\theta}{\theta}$ + ϵ)/cos $\frac{\theta}{\theta}$. For an 80.7, we ex-factor $\frac{\theta}{\theta}$ =30° and ($\frac{\theta}{\theta}$ + a)=38° 87.0°. JosFO=8 7 GosFS°. ($\frac{\epsilon}{\theta}$.9295).

This gives an error of 4.9 . Fotal error is 4.9 + 4.0=9.1. Values obtained as above are letted against I, on curves each 0.0.

Page 05 gives the values of ratio and alpha for the different circuits there I is constant and L is variable and also where L is constant and R is variable. These plotted a minst R and L give curve sheets 14 mm 15. The errors for the same for 50% power-factor are tabulated on page of and the curves plotted from this data are on curve sheets 06 and 07.

A mentral consideration of the contract of the allegaindicates conclusions;

Hatio, Angl , - Ip lum as.

The ratio and the angle decrease five incress deload is oselvethe error one to these.

Angl - Resistance I'm F.

The angle opproaches zero for zero resistance. A selection occurs at all obtains. A minimum at all of increase of local straightens out the curves and tends to make the angle array constant for all resistancess. It also decreas a term in the

Ratio - Resistance Jury s.

Pransfer or circuit has a critical resistance dich rives withing value to the ratio either decreas or increase in the resistance reising to ratio. For an resistance an increase in load decreases the value of a ratio. Curves show that there are two resistances that ill ive the true value to the ratio for any load.

Ancle - Inductance Curves.

The abile decreases with load. The critical talue of inductance at which all a is a mariner in .000 h area. And incurace or decrees in the inductance decrees the area.

Ratio - Inductares.

Ar increase in the inductance lowers the ratio and while it more constant. For him, leads the ratio is mauric constant for all values of L. The curves indicate a critical action, and a minimum.

Power factor - Error.

The error decreases will an iron ased power dector.

Resistance - Error Curves.

The total error varies kiructl inversely as the load and ray we negative. There is a critical value of Rambiel gives a similar ferror.

Inductance - Error Curves.

The total error varies inversely as to load and may be negative. A critical value of R gives a maximum error.

A consideration of the resistance and that the inductable and resistance in the secondary play an injurtant part in the correct operation of the social transformer for swite encounture. There the instrument heads and transformer as a calibrated trajether and used together the errors shown in the curves are eliminated. But this is not the practice as the position of the instruments agrice changed or the resistance of the laboratory distormines at the time of calibration.

That this is an important consideration is shown of the ract that the errors in some of the circuits approach very large values on light loads and values that cannot be replacted ever on the usual operating loads. The approach error lift introduce a loss to any station sufficiently large to make it worth titls for them to investigate this error.

It is customary in multing a surius transformer test to morely test the ratio of transformation. This of course is the entropy of the same sumption that the current and number in the successful transformer bear the same relation to each other that the current and e.m.f. in the primary do, or of mor, that the arrow introduced thereby is neally fille. That this is a serious mist and if I a saturation of the current and the really is neally filled.

after a study of the curves a stand ...

It will be noted that it about the usual cost it. I hastonate light loads, the error are to the properties difference of the contains that at a carrent and contains that succedant of the equal to the state ratio, while at normal operations loads it is equal to the shift greater then the ratio error. For full loads the shift error is usually smaller than the ratio error, and some power factors of 100. Or rearly so, the shift except character, and some power factors of 100. Operation power factor is writer and colors 100%, the arror are to the phase as the another also be considered in the contained in that due to the ratio.

E.M.B

K.F.

Wedlich of abornorsex Trioas

Ridden or and agent remember of

Armony Therittle of trounology

portrained and relieves a

()

annoge Anstoum organicher Alsolas

STOCKED STOCKES AND STOCKES AN

ARMODE

ARMODE

ARMODE

ARMODE

ARMODE

AND OTE
ENSTERVED OF SPORMOLOGY

PLEASTERA PLEASTERA PLEASTERA E. OTA ELEC. TE COUCEMOLDER LLE CLEX

.

ANGULE ANGUE OF THE OFFICE OF THE STREET OF

ARMOUR

LINE SOURCEMOLOGY

reper solution against a

SERVICE OF SERVICE OF

LEGROUS
LEGROUS OF TECHNOLOGY
LEGROUS.

77677 - 2 2 772 <u>pa - 2062</u> - 2777

AMERICAL.

THOUSENESS OF THE STATE OF THE

ARMOTE

Company of the Compan

E M.B

LETTO THE LETTE AND THE CONTROLOGIES.

E.M.B

VEV

ប្រ

Land the said of the

THEE TRUE OF LEGISLES OF THE PROPERTY OF THE P

3.0 (1.2 m/m) #3.2

LITE A SUBCLEANAGE A SMA

per production of

E.M B

V.F.

ARMOUR INSULTED OF TROUNOLOGY

property and make of

THE CHARLES OF TROUNDLOCK

District Contraction of

MARCHETTE OF THE CHICAGE

Metalike of Tecenorogy

a Limenson L.

EMB

VF.V.

AGMOOR

A STATE OF TROUDOLOGY

A STATE OF TROUBOLOGY

E.M.B .

TG10 0 A

thater - e. of upunolity

of the form of the state of the state of

ARMOUTE

ANSLE OF TOPINOLOGY

unget in province when complete of the

THE THOUSE OF TECHNOLOGY

D

		9

	- 5		
		21	
			Jugo-

