Лабораторная работа 6

Модель «хищник-жертва»

Беличева Д. М.

Российский университет дружбы народов, Москва, Россия

Докладчик

- Беличева Дарья Михайловна
- студентка
- Российский университет дружбы народов
- · 1032216453@pfur.ru
- https://dmbelicheva.github.io/ru/

Цель работы

Реализовать модель "хищник-жертва" в *хсо*s.

Задание

- 1. Реализовать модель "хищник-жертва" в хсоз;
- 2. Реализовать модель "хищник-жертва" с помощью блока Modelica в xcos;
- 3. Реализовать модель "хищник-жертва" в OpenModelica

Выполнение лабораторной работы

$$\begin{cases} \dot{x} = ax - bxy \\ \dot{y} = cxy - dy, \end{cases}$$

где x — количество жертв; y — количество хищников; a,b,c,d — коэффициенты, отражающие взаимодействия между видами.

Реализация модели в хсоѕ

Рис. 1: Задание переменных окружения в хсоз для модели

Реализация модели в xcos

Рис. 2: Задание переменных окружения в хсоз для модели

Реализация модели в xcos

Рис. 3: Задание начальных значений в блоках интегрирования

Реализация модели в хсоѕ

▼ Параметры моделирования ÷	
Конечное время интегрирования	3.0E01
Количество секунд в единице времени	0.0E00
Абсолютная погрешность интегрирования	1.0E-06
Относительная погрешность интегрирования	1.0E-06
Погрешность по времени	1.0E-10
Максимальный временной интервал интегрирования	1.0E05
Вид программы решения	Sundials/CVODE - BDF - NEWTON
Максимальный размер шага (0 означает "без ограничения")	o
Установить контекст	
	ОК Отменить По умолчанию

Рис. 4: Задание начальных значений в блоках интегрирования

Реализация модели в хсоѕ

Рис. 5: Динамика изменения численности хищников и жертв модели Лотки-Вольтерры при a=2,b=1,c=0.3,d=1,x(0)=2,y(0)=1

Реализация модели в xcos

Рис. 6: Фазовый портрет модели Лотки-Вольтерры при

$$a = 2, b = 1, c = 0.3, d = 1, x(0) = 2, y(0) = 1$$

Рис. 7: Модель «хищник-жертва» в хсоз с применением блока Modelica

Рис. 8: Параметры блока Modelica для модели "хищник–жертва"

Рис. 9: Параметры блока Modelica для модели "хищник-жертва"

Рис. 10: Динамика изменения численности хищников и жертв модели Лотки-Вольтерры при a=2,b=1,c=0.3,d=1,x(0)=2,y(0)=1

Рис. 11: Фазовый портрет модели Лотки-Вольтерры при

$$a = 2, b = 1, c = 0.3, d = 1, x(0) = 2, y(0) = 1$$

```
parameter Real a = 2:
 parameter Real b = 1;
 parameter Real c = 0.3;
 parameter Real d = 1;
 parameter Real x0 = 2:
 parameter Real y0 = 1;
 Real x(start=x0);
 Real v(start=v0);
equation
   der(x) = a*x - b*x*y;
   der(v) = c*x*v - d*v:
```


Рис. 12: Динамика изменения численности хищников и жертв модели Лотки-Вольтерры при a=2,b=1,c=0.3,d=1,x(0)=2,y(0)=1

Рис. 13: Фазовый портрет модели Лотки-Вольтерры при

$$a=2, b=1, c=0.3, d=1, x(0)=2, y(0)=1$$

В процессе выполнения данной лабораторной реализована модель "хищник-жертва" в xcos.