

planetmath.org

Math for the people, by the people.

many-sorted structure

Canonical name ManysortedStructure
Date of creation 2013-03-22 17:45:17
Last modified on 2013-03-22 17:45:17

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 9

Author CWoo (3771)
Entry type Definition
Classification msc 03B70
Classification msc 03B10
Classification msc 03C07

Synonym many sorted structure Synonym many sorted algebra

Defines many-sorted interpretation

Defines many-sorted algebra

Let L be a many-sorted language and S the set of sorts. A many-sorted structure M for L, or simply an L-structure consists of the following:

- 1. for each sort $s \in S$, a non-empty set A_s ,
- 2. for each function symbol f of sort type (s_1, \ldots, s_n) :
 - if n > 1, a function $f_M : A_{s_1} \times \cdots \times A_{s_{n-1}} \to A_{s_n}$
 - if n = 1 (constant symbol), an element $f_M \in A_{s_1}$
- 3. for each relation symbol r of sort type (s_1, \ldots, s_n) , a relation (or subset)

$$r_M \subseteq A_{s_1} \times \cdots \times A_{s_n}$$
.

A many-sorted algebra is a many-sorted structure without any relations. **Remark**. A many-sorted structure is a special case of a more general concept called a many-sorted interpretation, which consists all of items 1-3 above, as well as the following:

4. an element $x_M \in A_s$ for each variable x of sort s.

Examples.

- 1. A left module over a ring can be thought of as a two-sorted algebra (say, with sorts $\{s_1, s_2\}$), for there are
 - there are two non-empty sets M (corresponding to sort s_1) and R (corresponding to sort s_2), where
 - M has the structure of an abelian group (equipped with three operations: 0, -, +, corresponding to function symbols of sort types $(s_1), (s_1, s_1),$ and (s_1, s_1, s_1))
 - R has the structure of a ring (equipped with at least four operations: $0, -, +, \times$, corresponding to function symbols of sort types $(s_2), (s_2, s_2)$ and (s_2, s_2, s_2) for + and \times , and possibly a fifth operation 1 of sort type (s_2))
 - a function $\cdot : R \times M \to M$, which corresponds to a function symbol of sort type (s_2, s_1, s_1) . Clearly, \cdot is the scalar multiplication on the module M.

For a right module over a ring, one merely replaces the sort type of the last function symbol by the sort type (s_1, s_2, s_1) .

- 2. A deterministic semiautomaton $A=(S,\Sigma,\delta)$ is a two-sorted algebra, where
 - S and Σ are non-empty sets, corresponding to sorts, say, s_1 and s_2 ,
 - $\delta: S \times \Sigma \to S$ is a function corresponding to a function symbol of sort type (s_1, s_2, s_1) .
- 3. A deterministic automaton $B = (S, \Sigma, \delta, \sigma, F)$ is a two-sorted structure, where
 - (S, Σ, δ) is a semiautomaton discussed earlier,
 - σ is a constant corresponding to a nullary function symbol of sort type (s_1) ,
 - F is a unary relation corresponding to a relation symbol of sort type (s_1) .

Because F is a relation, B is not an algebra.

- 4. A complete sequential machine $M=(S,\Sigma,\Delta,\delta,\lambda)$ is a three-sorted algebra, where
 - (S, Σ, δ) is a semiautomaton discussed earlier,
 - Δ is a non-empty sets, corresponding to sort, say, s_3 ,
 - $\lambda: S \times \Sigma \to \Delta$ is a function corresponding to a function symbol of sort type (s_1, s_2, s_3) .

References

[1] J. D. Monk, Mathematical Logic, Springer, New York (1976).