CS 188: Artificial Intelligence Fall 2010

Lecture 14: Bayes' Nets 10/12/2010

Dan Klein - UC Berkeley

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 George E. P. Box
- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - · Example: value of information

Model for Ghostbusters

- Reminder: ghost is hidden, sensors are noisy
- T: Top sensor is red B: Bottom sensor is red G: Ghost is in the top
- Queries:

P(+g) = ?? P(+g | +t) = ?? P(+g | +t, -b) = ??

• Problem: joint distribution too large / complex

0	
0	

+t	+b	+g	0.16
+t	+b	¬g	0.16
+t	$\neg b$	+g	0.24
+t	$\neg b$	¬д	0.04
$\neg t$	+b	+g	0.04
⊸t	+b	¬g	0.24
$\neg t$	$\neg b$	+g	0.06
¬t	$\neg b$	¬д	0.06

G P(T,B,G)

Independence

• Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

- $\bullet \ \ \text{We write} \colon X \! \perp \!\!\! \perp \!\!\! Y$
- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence N fair, independent coin flips: $P(X_1)$ $P(X_2)$ $P(X_n)$ 0.5 0.5 $P(X_1, X_2, \ldots X_n)$

Example: Independence?

 $P_1(T, W)$

W 0.4 warm sun warm rain 0.1 sun cold rain 0.3

P(T)warm 0.5

> P(W)W Р

0.6 0.4 rain

W 0.3 warm sun warm rain 0.2 sun 0.3 cold rain 0.2

 $P_2(T, W)$

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, ¬cavity) = P(+catch | ¬cavity)
- Catch is conditionally independent of Toothache given Cavity:

 P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

 $X \perp \!\!\! \perp Y | Z$

- What about this domain:
- Umbrella
- Raining
- What about fire, smoke, alarm?

10

The Chain Rule

 $P(X_1, X_2, \dots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$

Trivial decomposition:

 $P(\mathsf{Traffic}, \mathsf{Rain}, \mathsf{Umbrella}) =$

P(Rain)P(Traffic|Rain)P(Umbrella|Rain, Traffic)

• With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =

P(Rain)P(Traffic|Rain)P(Umbrella|Rain)

 Bayes' nets / graphical models help us express conditional independence assumptions

Ghostbusters Chain Rule

Each sensor depends only on where the ghost is

That means, the two sensors are conditionally independent, given the ghost position

T: Top square is red B: Bottom square is red G: Ghost is in the top

Givens:

P(+g) = 0.5

P(+t | +g) = 0.8 P(+t | ¬g) = 0.4 P(+b | ¬g) = 0.4 P(+b | ¬g) = 0.8

Т	В	G	P(T,B,G)
+t	+b	+g	0.16
+t	+b	−g	0.16
+t	¬b	+g	0.24
+t	¬b	¬g	0.04
$\neg t$	+b	+g	0.04
−t	+b	−g	0.24

+g

⊸g

0.06

0.06

 $\neg b$

⊸b

⊸t

P(T,B,G) = P(G) P(T|G) P(B|G)

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be vague about how these interactions

Example Bayes' Net: Insurance ExtraCar

- Arcs: interactions
 - Similar to CSP constraints
 Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)

16

Example: Coin Flips

N independent coin flips

 No interactions between variables: absolute independence

17

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic

- Model 1: independence
- Model 2: rain causes traffic
- Why is an agent using model 2 better?

10

Example: Traffic II

- Let's build a causal graphical model
- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

Example: Alarm Network

- Variables
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!

20

Bayes' Net Semantics

- Let's formalize the semantics of a
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1 \dots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities 21

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | \mathsf{parents}(X_i))$$

 $P(+cavity, +catch, \neg toothache)$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Coin Flips

P(h, h, t, h) =

Only distributions whose variables are absolutely indeperant be represented by a Bayes' net with no arcs.

Example: Traffic

 $P(+r, \neg t) =$

Example: Alarm Network

–a +j 0.05 ¬a ¬j 0.95

			⊸е	0.99	8					
	Alarm									
\				В	Е	Α	P(A B,E)			
Mary			+b	+e	+a	0.95				
	(wary) calls			+b	+e	¬а	0.05			
				+b	⊸е	+a	0.94			
	Α	M	P(M A)		+b	⊸е	¬а	0.06		
	+a	+m	0.7		$\neg b$	+e	+a	0.29		
	+a	⊸m	0.3		$\neg b$	+e	¬а	0.71		
	⊸а	+m	0.01		$\neg b$	¬е	+a	0.001		
	⊸а	⊸m	0.99		$\neg b$	¬е	¬а	0.999		

Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution

 Key idea: conditional independence

 Last class: assembled BNs using an intuitive notion of conditional independence as causality
- Today: formalize these ideas
- Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

26