HX8358 用户手册

8W、防失真、7V 耐压、AB/D 类可选、单声道、带过热保护功能音频功放 芯片功能主要特性

芯片功能说明

HX8358 是一款超低 EMI, 无需滤波器, AB/D 类可选式音频功率放大器。6V 工作电压时, 最大驱动功率为 8W (VDD=6V,2Ω BTL 负载, THD<10%), 音频范围内总谐波失真噪声小于 1% (20Hz~20KHz);

HX8358 的应用电路简单,只需极少数外围器件;

HX8358 输出不需要外接耦合电容或上举电容和 缓冲网络;

HX8358 采用 ESOP8 封装, 特别适合用于小音量、 小体重的便携系统中;

HX8358 可以通过控制进入关断模式,从而减少功耗;

HX8358 内部具有过热自动关断保护机制;

HX8358 工作稳定,通过配置外围电阻可以调整放大器的电压增益,方便应用。

】 超低 EMI,高效率,音质优

- AB/D 类切换、单通道
- VDD=6V,RL=2Ω,Po=8W,THD+N≤10% VDD=6V,RL=4Ω,Po=5W,THD+N≤10% (防失真关断模式)
- 宽工作电压范围 2.5V—7V
- 优异的上掉电 POP 声抑制
- 采用 ESOP8 封装

芯片的基本应用

- 手提电脑、台式电脑
- 扩音器

1

蓝牙音箱

HX8358 原理框图

芯片定购信息

表 1 订购信息表

芯片型号	封装类型	包装类型	最小包装数量(PCS)	备注
HX8358	ESOP8	管装	100/管	

典型应用电路

默认为ON; D类模式; 防失真开启

图 1 HX8358 典型应用电路

注: 以上应用图中元件说明:

Ci: 隔直电容,采用 0.1µF 或更小的,进一步消除咔嗒-噼噗声和从输入端耦合进入的噪声。

Cs: 电源去耦电容,采用足够低 ESR 的电容(小于 1μ F),当 VDD=5V 时,为更好的滤除低频噪声,建议另加一个低 ESR 电容(不小于 10μ F)。去耦电容离 VDD 管脚越近越好,保持 1.5mm 之内。

 C_B : BYPASS 端口输出 VDD/2 电压,通过电容 C_B (1 μ F)接地以保证稳定性。

引脚分布图

图 2 HX8358 管脚定义

HX8358 管脚描述

管脚号 符号 描述 关断控制端, 高电平关断,防失真控制端 1 SD 2 BYP 偏置电压输出端 3 MODE 工作模式控制端,高电平选择 D 类,低电平选择 AB 类 4 IN 音源输入端 5 VON 负相输出端 6 VDD 电源 7 **GND** 地 8 VOP 正相输出端

表 2 HX8358 管脚描述

芯片特性说明

芯片最大极限值

表 3 芯片最大物理极限值

参数	最小值	最大值	单位	说明
电源电压	2.5	7	V	
储存温度	-65	150	°C	
输入电压	-0.3	VDD	V	
耐 ESD 电压 1	2000		V	НВМ
耐 ESD 电压 2	250		V	ММ
节温	150		°C	典型值 150
推荐工作温度	-40	85	°C	
推荐工作电压	2.5	6.0	V	
		热阻		
JC(SOP)		35	°C/W	
JA(SOP)		140	°C/W	

参数	最小值	最大值	单位	说明
焊接温度		220	°C	15 秒内

芯片数字逻辑特性

表 4 AB/D 类模式脚控制信号数字逻辑特性

参数	最小值	典型值	最大值	单位	说明
		电源	电压为 5V		
VIH		1.8		V	
VIL		1.4		V	

表 5 关断信号数字逻辑特性

参数	最小值	典型值	最大值	单位	说明
		电源	电压为 5V		
VIH		1.6		V	
VIL		1.3		V	

芯片性能指标特性

表 6 HX8358 芯片电气特性参数表

		芯片特性 TA = 25°C (Unless otherwise	noted)				
<i>5/1</i> ; □.	⇔ ₩r	湖山平及山	最小	典型	值	最大	单
符号	参数	测试条件	值	AB 类	D类	值	位
VDD	输入电压范围		2.5	6.0)	6.5	V
Vout	输出电压范围					6.5	V
Vuvlo	VDD 迟滞启动电压		2.5				V
fosc	振荡器频率				300		KHz
Rdson	导通阻抗	VDD=5V		120)		mΩ
I(Q)	静态电流	VDD= 5V, no load		6	5		mA
I(SD)	关断电流	V(关断)=2.5V, VDD= 2.5V to 5.0V		5			μA
vos	输出失调电压	VIN = 0V		10	10		mV

	芯片特性 TA = 25°C (Unless otherwise noted)							
符号	参数	测试条件		最小	标准	值	最大	单
11) 5	多奴	视风水门		值	AB 类	D类	值	位
		THD+N=10%,f=1kHz, RL=2Ω	6V		8	8		
		THD+N=10%,f=1kHz, RL=2Ω			5.2	5.5		
		THD+N=1%,f=1kHz, RL=2Ω	5V		3.5	3.5		
Ро	Po 输出功率	THD+N=10%,f=1kHz, RL=4Ω	- 5V		3.2	3.2		W
		THD+N=1%,f=1kHz, RL=4Ω			2.5	2.2		
		THD+N=10%,f=1kHz, RL=4Ω	3.7V		1.8	1.8		
		THD+N=1%,f=1kHz, RL=4Ω	3.7 V		1.4	1.4		
THD+	总谐波失真和噪声	VDD=5V,PO=1W, RL=4Ω, f=1	LU⇒		0.03	0.03		%
N	心咱似不具他紫尸	VDD-3V,FO-1VV, RL-4Ω, 1-1	NI IZ		0.03	0.03		70

HX8358 应用说明

防失真功能

HX8358 具有防失真功能。通过 SD 引脚设置可进入防失真工作模式。放大器自动检测输出削顶失真,自动调整放大器的增益,达到防失真效果。如下图所示:

图 4 普通工作模式下的音频输出信号

图 5 防失真工作模式下的音频输出信号

SD 脚三种模式设置:

SD脚设置: 1、0V-0.7V 防失真启动,芯片工作

2、0.7V-1.6V 防失真关断,芯片工作

3、1.7V-VDD 防失真关断,芯片关断

输入电阻(Ri)

HX8358 内部设有两级的放大,第一级增益可通过外置电阻进行配置,而第二级增益是内部固定的。通过选择输入电阻的参数值可以配置放大器的增益:

$$Gain = \frac{2 \times 200 K\Omega}{6 K\Omega + Ri}$$

输出与反馈的平衡取决于电路的阻抗匹配情况,CMRR,PSRR 和二次谐波失真的消除也可以得到优化。 因此采用精度为 1%的电阻优化的效果更为显著。在 PCB 布局时,输入电阻应尽量的靠近芯片的输入引脚以获 得更好的信噪比效果和更高的输入阻抗。低增益和大电压信号可以使得芯片的性能更为突出。

退耦电容 Cs

在放大器的应用中,电源的旁路设计很重要,特别是对应用方案的噪声性能及电源电压纹波抑制性能。

HX8358 是一款高性能的音频功率放大器,需要适当的电源退耦以确保它的高效率和低谐波失真。退耦电容采用低阻抗陶瓷电容,尽量靠近芯片电源供电引脚,因为电路中任何电阻,电容和电感都可能影响到功率转换的效率。一个 220uF 或更大的电容放置在功率电源的附近会得到更好的滤波效果。典型的电容为 220uF 的电解电容并上 1uF 的陶瓷电容。

输入电容 Ci

HX8358 用在单端输入系统中,输入端是个高通滤波器,输入电容是必须的。输入端作为高通滤波器时,

滤波器截止频率的计算公式如下:

$$f_c = \frac{1}{2pRiCi} \tag{2}$$

输入电阻和输入电容的参数直接影响到滤波器的下限频率,从而影响放大器的性能。输入电容的计算公式如下:

$$Ci = \frac{1}{2pRifc} \tag{3}$$

如果信号的输入频率在音频范围内,输入电容的精度可以是**±10**%或者更高,因为电容不匹配会影响滤波器的性能。

过大的输入电容,增加成本、增加面积,这对于成本、面积紧张的应用来讲,非常不利。显然,确定使用多大的电容来完成耦合很重要。实际上,在很多应用中,扬声器(Speaker)不能够再现低于 100Hz-150Hz 的低频语音,因此采用大的电容并不能够改善系统的性能。

除了系统的成本和尺寸外,噪声性能被输入耦合电容大小影响,一个大的输入耦合电容需要更多的电荷以达到静态直流电压(通常为电源中点电压即 1/2V_{DD}),这些电荷来自于反馈的输出,往往在器件使能时产生噪声。因此,基于所需要的低频响应的基础上最小化输入电容,开启噪声能够被最小化。

旁路电容 (CBYP)

在 HX8358 应用电路中,另一电容 C_B (接 BYP 管脚)也是非常关键, C_B 会影响 PSRR、开关/切换噪声性能。一般选择 $0.1 uF \sim 1 uF$ 的陶瓷电容。

除了最小化输入输出电容尺寸,旁路电容的尺寸也应该详细考虑。旁路电容 C_B 是最小化开启噪声最重要的元器件,它决定了开启的快慢及输出达到静态直流电压(通常为电源中点电压即 $1/2V_{DD}$)的过程,过程越缓慢,开启噪声越小。选择 1.0uF 的 C_B 和一个小的 Ci(在 0.033uF ~ 0.1 uF)将实现实质上没有噪声的关断功能。在器件功能正常(没有振荡或者噼啪声)且 C_B 为 0.1uF 时,器件会更多的受到开启噪声的影响。因此,在所有的除了最高成本敏感的设计中推荐使用 1.0uF 或者更大的 C_B 。

HX8358 出滤波器

在不加输出滤波器的情况下使用 HX8358, 放大器到扬声器的连线的长度一般在 100mm 以下。在手机等便携式通信设备应用中,都可以不用输出滤波器。在一些环境等条件不允许和一些特殊的情况下,要加入输出低通滤波器,比如 LC 滤波器。

7

图 4 输出加 LC 滤波器典型应用电路(截止频率为 27KHz)

保护功能模式概述

HX8358 是一款 AB/ D 类音频功率放大器,内置了过热保护功能。有效地保护芯片在异常工作状况下不被损坏。

封装尺寸

ESOP8

Symbol	Dimensions I	n Millimeters	Dimensions In Inche			
	Min	Max	Min	Max		
Α	1. 350	1. 750	0. 053	0.069		
A1	0. 100	0. 250	0.004	0. 010		
A2	1. 350	1. 550	0. 053	0.061		
b	0. 330	0. 510	0.013	0. 020		
С	0. 170	0. 250	0.006	0. 010		
D	4. 700	5. 100	0. 185	0. 200		
E	3. 800	4. 000	0. 150	0. 157		
E1	5. 800	6. 200	0. 228	0. 244		
е	1. 27	O (BSC)	0. 050	(BSC)		
L	0. 400	1. 270	0. 016	0. 050		
θ	0°	8°	0°	8°		

当本手册内容改动及版本更新将不再另行通知,本公司保留所有权利。