Tuesday, November 2

1. Explore the theme of Picard iteration a bit more. Suppose you want to find a solution of

$$\frac{dx}{dt} = x$$
, $x(0) = 1$.

You know the solution, of course:

$$x(t) = e^t$$
.

Suppose though that you wrote the initial value problem as a fixed point equation:

$$x(t) = \int_0^t x(s)ds + 1.$$

Suppose you started with the guess

$$x^{(0)}(t) = 0$$
 for all t .

What would be $x^{(1)}(t)$? $x^{(2)}(t)$? $x^{(3)}(t)$? $x^{(k)}(t)$ in general? Is it true that

$$\lim_{k\to\infty} x^{(k)}(t) = e^t ?$$

(Hint: Look up the Taylor expansion of e^t around t = 0.)

2. In problem 1, what if we start with something crazy, like

$$x^{(0)}(t) = \cos t$$
 for all t ?

What would be $x^{(1)}(t)$? $x^{(2)}(t)$? $x^{(3)}(t)$? $x^{(k)}(t)$ in general? Is it true that

$$\lim_{k\to\infty} x^{(k)}(t) = e^t ?$$

(Hint: Look up the Taylor expansions of $\sin t$ and $\cos t$ around t = 0.)

3. (for those with more mathematical training) Suppose that f is a continuous function from \mathbb{R} into \mathbb{R} . Think about initial value problems of the form

$$\frac{dx}{dt} = f(x), \quad x(t) = x_0.$$

(a) Explain why this is equivalent to

$$x = F(x)$$

where F(x) is the function defined by

$$F(x(t)) = \int_{t_0}^t f(x(s))ds + x_0.$$

(b) Introduce the following way of measuring the distance between two continuous functions, x = x(t) and y = y(t), defined for $t \in [a,b]$:

$$d_{[a,b]}(x,y) = \max_{a \le t \le b} |x(t) - y(t)|.$$

Assume that f is Lipschitz continuous, meaning: There is a constant $L \ge 0$ so that

$$|f(x)-f(y)| \le L|x-y|$$
 for all x and y .

Let $T > t_0$. (Think of T as the "target time" up to which we want to compute the solution x(t).) Prove:

$$d_{[t_0,T]}(F(x),F(y)) \le (T-t_0)Ld_{[t_0,T]}(x,y). \tag{1}$$

- (c) Explain why (1) implies that there can be no more than one solution of x = F(x) when $(T t_0)L < 1$, so $T < t_0 + \frac{1}{L}$.
- (d) In fact (1) implies that there is exactly one solution of x = F(x) when $T < t_0 + \frac{1}{L}$. Ask me if you want to know why.
- (e) Try to deduce from part (d) that

$$\frac{dx}{dt} = 1.2 + \cos x, \quad x(0) = 0,$$

has exactly one solution x = x(t) defined for all $t \ge 0$. (You have to still do some work. Part (d) only tells you that there is exactly one solution on a small interval [0,T].)