

i	1.	A method of data transmission comprising the steps of:
2		dividing a data packet into a plurality of data sub-packets;
3		transmitting a first control information associated with one of the plurality of
4		data sub-packets over a time slot x of a control channel; and
5		transmitting the associated one of the plurality of data sub-packets over a time
6		slot y of a data channel.
1	2.	The method of claim 1, wherein the first control information indicates a manner of
2		decoding the associated one of the plurality of data sub-packets.
1	3.	The method of claim 1 comprising the additional step of:
2		channel coding the data packet prior to the step of dividing the data packet into
3		the plurality of data sub-packets.
1	4.	The method of claim 1 comprising the additional step of:
2		channel coding the associated one of the plurality data sub-packets prior to the
3		step of transmitting the associated one of the plurality of data sub-packets.
1	5.	The method of claim 1, wherein the time slot x of the control channel and the time slot y
2		of the data channel are time synchronized to each other.
1	6.	The method of claim 1, wherein time slot x-z of the control channel and the time slot y of
2		the data channel are time synchronized to each other and z is an integer.
1	7.	The method of claim 1, wherein the time slot x of the control channel and the time slot y
2		of the data channel are not time synchronized to each other and the control information
3		includes an indication of the associated one of the plurality of data sub-packets.
1	8.	The method of claim 1 comprising the additional step of:
2		transmitting a second control information associated with a second of the
3		plurality of data sub-packets over a time slot x+1 of the control channel; and

4		means for transmitting the associated second of the plurality of data sub-packets
5		over a time slot y+1 of the data channel.
1	26.	The transmitter of claim 25, wherein the first and second control information are
2		identical.
1	27.	The transmitter of claim 23 further comprising of:
2		means for transmitting a new/continuation flag in a time slot q of a new/continue
3		channel to indicate whether the associated one of the plurality data sub-packets is a
4		beginning of a new data packet transmission or a continuation of a data packet
5		transmission in progress.
1	28.	The transmitter of claim 23 further comprising of:
2		means for transmitting a sequence identifier in a time slot q of a communication
3		channel parallel to the data or control channel to indicate a sequence of the associated
4		one of the plurality data sub-packets.
1	29.	The transmitter of claim 22 further comprising of:
2		means for channel coding the first control information.
1	30.	The transmitter of claim 22 further comprising of:
2		means for transmitting user specific flags over a time slot q of a user identity
3		channel to indicate one or more users to whom the associated one of the plurality of data
4		sub-packets is intended.
1	31.	The transmitter of claim 22, wherein the transmitter is a base station belonging to a
2		wireless communication system.
1	32.	The transmitter of claim 22 further comprising of:
2 .		means for adjusting a power of the means for transmitting the first control
3		information over the control channel.
l	33.	The transmitter of claim 32 further comprising of:
2		means for receiving control channel quality feedback.