A	55	ig	n	2	e	2	+	-	2
м.	-	-	_	_	77	7			

Assignment - 2

1)
$$x(n) = x(n-1)+5$$
 for not $x(1)=0$

$$x(n) = x(n-1)+5 \rightarrow 0$$

$$x(n) = (x(n-2)+1)+5$$

$$x(n) = (x(n-2)+1)+5$$

$$x(n-2)+6 \rightarrow 0$$

$$x(n) = (x(n-3)+1)+6$$

$$x(n) = (x(n-3)+1)+6$$

$$x(n) = (x(n-3)+1)+6$$

$$x(n) = (x(n-3)+1)+6$$

$$x(n) = x(n-k)+(h+4)$$

$$x(n-n) + (n+4)$$

X(n) = 3X(n-1) for n>1, x(1) = 916) $\times (n) = 3 \times (n-1)$ $X(n) = 3 \times (n-1) \rightarrow \bigcirc$ $\times (n-1) = 3 \times (n-1-1)$ Sub X(n-1) in O $=3\times(n-2)$ X (n-2)-3x(n-2-1) $X(n) = 3/3 \times (n-2)$ x (n-2).3x/n-2-1) $= 9 \times (n-2) \rightarrow (2)$. 3 x (n-3) $X(n) = 9.3 \times (n-3)$ = 27 x (n-3) -) 3 $X(K) = K.3 \times (n-K)$ n.3 x (n-n) n3.0 = n = 0(n) -) linear 12)

(a)	$T(n) = T(n/2) + 1 \rightarrow n \cdot 210$ $T(n) = T(n/2) + 1$ $T(n) = T(n/4) + 1 \rightarrow 1$ $= T(n/4) + 1 \rightarrow 1$ $= T(n/4) + 1 \rightarrow 1$ $T(n) = T(n/8) + 1 \rightarrow 2$	
	$= + (n/8) + 3$ $+ (n) = + (n/2^{k}) + 15$ $+ (n/2^{k}) + (n/2^{k}) + 15$ $+ (n/2^{k}) + (n/$	
(6)	$T(n) = dog_{2}^{n} + 1$ $T(n) = T(n/3) + T(2n/3) + (n)$ $T(n) = (dog_{2} (n/3) + 1) + (dog_{2}(2n/3) + 1) + (n)$ $= dog_{2}(n/3) + dog_{2}(2n/3) + 2 + (n)$ $= dog_{2}^{n} + dog_{2}^{3} + dog_{2}^{2} + dog_{2}^{2} + (n)$ $= dog_{2}^{n} - dog_{2}^{3} + dog_{2}^{n} - dog_{2}^{3+2} + (n)$	
	$T(n) = 2 \log_2 n - 2 \log_2 3 + 3 + (n)$ $T(n) = 0(n)$ 3	

F(n) = 2n2 +5 9/11=71 = (2+5) m2 = 7n2 (=7 g(n) =7n f(n)= 91n =) $F(n) = \Omega g(n)$ Hence Pusove Fun Tower of Hanoi (n, source, destination, assx); move dist pean queue to destination if n == 1; Tower of Haroi (n-1, source, vouse, destination) else: move dis peur source to der disation. Toules of Hanoi (n-1, ours, destination, source) => T/n) - 2+(n-1)+1 T(n-1).2T(n-2)+1 T(n) = 2(2 + (n-2) + 1) + 1= 4 + (n-2) + 3 $T(n) = 2^2 + (n-2) - (2^2 - 1)$ $T(n) = 2^{n-1} + /2^{n-1}$ T(n) = 0(27) 14)

5) (0)	$T(n) = 3T(n)z) + n^{2}$ $A = 3 \qquad b = 2$ $f(n) = n^{2}$ $=) n \log_{2} 3$ $f(n) \ge n \log_{2} 3$ $T(n) \ge n \log_{2} 3$ $T(n) = \Theta(f(n))$ $= \Theta(n^{2})$	
(b)	T(n) = T(n/2)/2" mateix Thereon can't be applied.	
	5	