Trabalho I - Processos e Threads

Vinícius Takeo Friedrich Kuwaki

16 de Julho de 2020

1 Diagrama

O diagrama apresentado a seguir representa o tempo ocupado por cada programa no cpu e no disco. O programa A está representado em azul, o B em roxo e o C em verde. As colunas em vermelho e laranja, logo abaixo da linha que apresenta os instantes de tempo, representa as filas de alta (FA) e baixa prioridade (FB) respectivamente.

													A – Disco							
CPU	C (8)		C (8) C (7)		B (3)		B (2)		A (1)		A (0)		C (6)		C (5)		C (4)		C (3)	
t	t 0		1		2		3		4		5		6		7		8		9	
	FA	FB	FA	FB	FA	FB	FA	FB	FA	FB	FA	FB	FA	FB	FA	FB	FA	FB	FA	FB
			В			С	Α	С		С		С		В		В		В		В
										В		В								

											B – Disco									
CPU	A (4) F	Pr:C	Α(3)	C ((2)	В (1)	В (0)	Α(2)	Α([1)	A (0) –	FIM	C ([1)	B (1) F	Pr:C
t	1	0	1	1	1	2	1:	3	1	4	1	5	1	6	1	7	1	8	1	9
	FA	FB	FA	FB	FA	FB	FA	FB	FA	FB	FA	FB	FA	FB	FA	FB	FA	FB	FA	FB
		C1		C1		В		Α		Α		С		С		С				C 4
		В		В		Α		С		С										

					C – Disco															
OPLI	D (0)	F11.4	0.0	0)	l No		No.		NO.		NO		0.0	(A)	0.0	(0)	0.4	(4)	0 (0)	- T. 1
CPU	B (0) – FIM C (0)		NC	P	NOP		NOP		NOP		C (3)		C (2)		C (1)		C (0) – FIM			
t	20		21		22		23		24		25		26		27		28		29	
	FA	FB	FA	FB	FA	FB	FA	FB	FA	FB	FA	FB	FA	FB	FA	FB	FA	FB	FA	FB
		C 4																		

Figura 1: Diagrama de tempo de uso dos processos pelo CPU

A célula destacada com NOP significa que a CPU não realizou nenhum processamento durante aquele instante de tempo. Os números destacados entre

parênteses ao lado do nome do programa executado no CPU em dado instante é a quantidade de tempo que ainda falta para o processador terminar aquela tarefa. Já a notação Pr: X, indica que a tarefa X acabou de ser preemptada. Também, o número ao lado de uma tarefa em uma célula da fila indica o quantum restante que uma determinada tarefa ainda possui no momento que foi preemptada.

2 Tempo média de espera e retorno

Para calcular o tempo média de retorno e espera dos programas A,B e C, vamos analisar as tabelas a seguir:

Programa A	Programa B	Programa C
1 + 3 = 4	1 + 9 = 10	4 + 2 + 5 + 2 = 13

Tabela 1: Tempo total de espera para cada um dos programas. Os valores foram retirados levando em conta os instantes de tempo que os programas ficaram em uma das filas.

Para o programa A, temos uma espera nos instantes de tempo [3,4] (já que ele chega no instante 3 e já entra consegue o CPU no 4) e [12,15], logo o periodo total de espera é de 4 segundos, como pode ser observado na linha do tempo da Figura 1. Já para o B, temos esperas em: [1,2] e [4,13]. Para o programa C, temos: [2,6] (ele é o programa que começa ocupando o CPU, logo não há espera no início), [10,12] (ele é preemptado no instante 9 pelo processo A), [13,18] e por fim [19,21] (novamente preemptado no instante 19 por B). É possível notar que durante o periodo [22,26], o processador fica ocioso, já que não há processos em nenhuma das filas e o C está utilizando o disco no momento.

Por fim é possível determinar que o tempo média de espera para os programas A,B e C é de 9u.t. Basta realizar a média aritmética do somatório dos tempos de espera dos processos.

Programa A	Programa B	Programa C
18	21	30

Tabela 2: Tempo total de retorno para cada um dos programas

Já para o calculo do tempo médio de retorno do programas, é possível ver na Figura 1 que, o programa A termina de fazer tudo o que precisava no instante 18, o B no 21 e o C no 30 (veja os valores na Tabela 2. Logo chega-se ao valor de 23u.t. de espera média. Novamente, através da média aritmética, mas dessa vez dos tempos de retorno.

3 Throughput

Para podermos determinar a vazão dos programas A,B e C, precisamos ver quanto tempo leva para se terminar a execução dos três. Para isso, somamos o tempo de retorno dos três programas, obtendo-se 69. Ao considerar que cada unidade de tempo equivale a 0.1 segundos, temos que, para executar os três programas A,B e C, leva-se 6.9 segundos. Isto é, em 6.9 segundos realizamos um job. Como o fator throughput, leva em consideração a quantidade de jobs executados em 1 hora, precisamos dividir a quantidade segundos que 1 hora possui (i.e 3600) pela quantidade de tempo que 1 job gasta. O resultado obtido então é 521.73~jobs/hora.

4 Inanição

Se levarmos em consideração que, ao chegar, um processo logo é escalonado a CPU, se o processo que estava utilizando-a estava na fila de baixa prioridade, então pode-se afirmar sim que este algoritmo está sujeito a inanição. Se a todo momento forem jogados novos processos para o escalonador, eventualmente algum dos processos podem ficar aguardando adeternum para serem executados, já que a única forma de subirem de volta a fila de alta prioridade é reentrando no escalonador. Uma solução para eliminar isso seria adicionar um fator de envelhecimento ao algoritmo, assim, se o processo ficar muito tempo na fila de baixa prioridade, ele deveria ser jogado novamente para a fila de alta prioridade.