Operadores y funciones matemáticas en Gmsh Gmsh 4.6.0

Steven Vanegas Giraldo Universidad Nacional de Colombia - Sede Manizales

1. Comentarios y comandos

Para realizar los comentarios de una o para varias líneas de comandos se usa la siguiente sintaxis.

```
// comentario de una linea

// comentarios de

/* comentarios de

varias lineas */
```

2. Constantes

La constante π se puede obtener con Pi.

3. Comandos

Cada comando debe terminar siempre en un ;

4. Operadores

Algunos operadores matemáticos que pueden ser usados en el programa Gmsh son presentados a continuación:

4.1. Operadores generales

Operador	Acción	Ejemplo	Resultado
=	Asignación	x = 7	x toma el valor de 7
+	Adición	x = 7 + 5	x toma el valor de 12
_	Sustracción	x = 7 - 5	x toma el valor de 2
*	Multiplicación	x = 7 * 7	x toma el valor de 49
/	División	x = 8 / 2	x toma el valor de 4
%	Módulo	x = 8 % 3	x toma el valor de 2
^	Potenciación	x = 8 ^ 2	x toma el valor de 64
+=	Asigna suma	x = 7 ; x += 7	x toma el valor de 14
-=	Asigna resta	x = 7 ; x = 7	x toma el valor de 0
*=	Asigna multiplicación	x = 7 ; x *= 7	x toma el valor de 49
/=	Asigna división	x = 7; x /= 7	x toma el valor de 1

4.2. Operadores de relación

Operador	Tipo de relación
==	Igualdad
!=	Desigualdad
>	Mayor
>=	Mayor o igual
<	Menor
<=	Menor o igual

4.3. Operadores booleanos

Operador	Operación booleana
!	NOT lógico
&&	AND lógico
11	OR lógico

5. Algunas funciones

Algunas funciones de programación en le programa G
msh son presentados a continuación : $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left$

Función	Operación	Consideraciones
Sin(x)	Seno de x	x en radianes
Cos(x)	Coseno de x	x en radianes
Tan(x)	Tangente de x	x en radianes
Asin(x)	Seno inverso de x	x comprendido entre $[-1,1]$. Retorna un valor entre $[-\pi/2,\pi/2]$
Acos(x)	Coseno inverso de x	x comprendido entre $[-1,1]$. Retorna un valor entre $[0,\pi]$
Atan(x)	Tangente inversa de x	Retorna un valor entre $[-\pi/2, \pi/2]$
Atan2(y, x)	Tangente inversa de y/x	Retorna un valor entre $[-\pi, \pi]$
Exp(x)	e^x	Retorna el valor de e^x
Fabs(x)	Valor absoluto de x	Retorna el valor de $ x $
Log(x)	Logaritmo natural de x	Retorna $ln(x)$, con $x > 0$
Log10(x)	Logaritmo en base 10 de x	Retorna $log(x)$, con $x > 0$
Sqrt(x)	Raíz cuadrada de x	Retorna \sqrt{x} con $x \ge 0$
Max(x1, x2)	Máximo de 2 argumentos	Retorna el máximo de x1 y x2
Min(x1, x2)	Mínimo de 2 argumentos	Retorna el mínimo de x1 y x2
Sinh(x)	Seno hiperbólico de x	
Cosh(x)	Coseno hiperbólico de x	
Tanh(x)	Tangente hiperbólico de x	
Rand(x)	Número aleatorio entre 0 y x	
Hypot(x1, x2)	$\sqrt{x1^2 + x2^2}$	
Floor(x)	Redondea x	Redondea al entero más cercano inferior
Round(x)	Redondea x	Redondea al entero más cercano
Ceil(x)	Redondea x	Redondea al entero más cercano superior

6. Ciclos y condicionales

6.1. Condicional if

La estructura del condicional if se presenta a continuación:

```
If (condicion1)
1
2
        // segmento de codigo cuando condicion1 es verdadera
4
    ElseIf (condicion2)
        // segmento de codigo cuando condicion1 es falsa y condicion2 es verdadera
5
6
7
8
9
    Else
10
          segmento codigo cuando son falsas las condiciones anteriores
11
12
   EndIf
```

6.2. Condicional for

La estructura del condicional for y sus variaciones se presenta a continuación:

```
For i In {x1:x2} // itera i desde el valor de x1 al valor de x2 con un incremento de uno
1
2
3
       // segmento de codigo dentro del ciclo
4
  EndFor
   For i In {x1:x2:paso} // itera i desde el valor de x1 al valor de x2 con un incremento de paso
1
2
                            paso puede ser positivo o negativo
3
       // segmento de codigo dentro del ciclo
4
5
  EndFor
```

7. Listas

La expresión de las listas tienen la siguiente sintaxis:

```
cadena = \{elemento1, elemento2, ..., elementon\};
```

Para hacer referencia algún elemento de una lista se puede realizar de la siguiente manera: cadena[#elemento]

La numeración de los elementos empieza desde cero.

Para realizar la indexación se puede usar el operador : en las listas.

```
{pi : pf : paso}
Donde:
```

- pi punto inicial (número entero)
- **pf** punto final (número entero)
- paso número que me indica el salto de índice en la lista

Un ejemplo de esta indexación es lo siguiente:

```
lista = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // se crea una lista cualquiera

quinto_elemento = lista[4]; // se obtiene el quinto elemento (5 en este caso)

lista_2 = lista[{1:8:2}]; // indexacion de lista se obtiene --> {2, 4, 6, 8}
```

Si se requiere hacer énfasis en una serie de etiquetas numéricas de entidades se puede usar la siguiente estructura: eti_ini:eti_final

Un ejemplo de esto es si se desea referirse a las etiquetas numéricas 1, 2, 3, 4, 5, 8. esto puede simplificarse a través de la siguiente manera: 1:8

8. Definir variables en ciclos For

Se puede usar la siguiente expresión para definir variables dentro de ciclos for con la concatenación de cadenas de texto.

$cadena {variable} = cadena_variable$

Un ejemplo de esto es nombrar variables a través de un ciclo for:

El anterior código es equivalente a:

```
1 x_{-1} = 1;
2 x_{-2} = 2;
3 x_{-3} = 3;
```