Teoría de juegos en forma normal

Microeconomía III

Facultad de Ciencias Económicas y Administración

Licenciatura en Economía

Objetivos

- 1. Definir juegos
- 2. Presentar juegos en forma normal y las nociones de equilibrio
- 3. Determinar estrategias mixtas

Introducción

Representación
Solución: dominancia

Estrategias dominantes Estrategias racionalizables Equilibrio de Nash Estrategias mixtas Un juego es la representación formal de una situación estratégica

Interacción estratégica

el bienestar del agente depende de sus acciones y de la de los otros jugadores

- Pueden representar rivalidad o problemas de coordinación
- Representación: en forma normal (o estratégica) o extensiva
- Etapas: representación solución

Componentes

- 1. Jugadores: ¿quién está involucrado?
- 2. **Reglas**: ¿cómo mueven?; ¿qué saben cuando mueven?; ¿qué pueden hacer?
- 3. Resultados: para cada conjunto posible de acciones de los jugadores: ¿cuáles son los resultados del juego?
- 4. **Pagos:** ¿cuáles son las preferencias de los jugadores sobre los posibles resultados?

Información

- Información perfecta: cuando todos los jugadores tienen toda la información relacionada con las acciones previas de los restantes jugadores que afectan la decisión de éste sobre la acción a tomar en un momento particular.
- 2. Información completa: cuando todos los jugadores conocen la estructura del juego y los pagos de los restantes jugadores, pero no necesariamente sus acciones.

Introducción

Representación

Solución: dominancia

Ljemplo

Estrategias dominantes Estrategias racionalizables Equilibrio de Nash

Presentación

Definición

Un juego en forma normal es una terna

$$G = \{I; (S_i)_{i=1}^n; u_i(s_i, s_{-i})\}, \text{ donde: }$$

I es el conjunto de jugadores; I = 1, ..., n

 S_i que es el espacio de acciones para cada jugador $(s_i \in S_i)$ u_i es la función de utilidad asociada a cada resultado del juego para cada jugador.

Ejemplo

- Ejemplo: Dilema del prisionero
 - Jugadores: prisionero 1, prisionero 2
 - Acciones (estrategias): $S_i = \{c, \overline{c}\}, i = 1, 2$, donde c es confesar y \overline{c} no confesar
 - Estructura: juegan sin saber lo que hace el otro
 - Pagos: a- si ambos confiesan tienen una pena de 5 años; b- si el prisionero 1 no confiesa pero el 2 si, el primero obtiene una pena de 10 años y el segundo una pena de 1 año por colaborar con la justicia; c- si ninguno confiesa ambos son procesados por un delito menor y obtienen una pena de 2 años

Representación

Prisionero 2
$$\begin{array}{c|c}
c & \overline{c} \\
\hline
\text{Prisionero 1} & c & -5, -5 & -1, -10 \\
\hline
\overline{c} & -10, -1 & -2, -2 \\
\end{array}$$

Introducción Representación

Solución: dominancia

Ejemplo

Estrategias dominantes Estrategias racionalizables Equilibrio de Nash Estrategias mixtas

Dominancia (I)

Definición

Decimos que una estrategia $s_i^{'}$ está **estrictamente dominada** si independientemente de la acción que pueda tomar el otro jugador, la utilidad asociada a esta estrategia es estrictamente menor a alguna otra estrategia que pueda jugar el jugador i. Formalmente, s_i es una estrategia estrictamente dominada si existe $s_i^{''}$ tal que $\forall s_{-i} \in S_{-i}$ se cumple que:

$$u_{i}\left(s_{i}^{''}, s_{-i}\right) > u_{i}\left(s_{i}^{'}, s_{-i}\right)$$

- Un jugador racional no jugaría nunca una estrategia estrictamente dominada
- Si la racionalidad es conocimiento común (o de dominio público), se puede proceder a la Eliminación Iterativa de Estrategias Estrictamente Dominadas

Introducción Representación

Solución: dominancia

Ejemplo

Estrategias dominantes Estrategias racionalizables Equilibrio de Nash Estrategias mixtas

Ejemplo

• ¿Cuál sería el equilibrio por eliminación iterativa de estrategias estrictamente dominadas?

		Jugador 2		
		Bueno	Regular	Malo
Jugador 1	Alto	1, 1	2, 0	1, 1
	Medio	0, 0	0, 1	0, 0
	Bajo	2, 1	1, 0	2, 2

• J1: Medio está estrictamente dominada

		Jugador 2		
		Bueno	Regular	Malo
Jugador1	Alto	1, 1	2, 0	1, 1
	Medio	0, 0	0, 1	0, 0
	Bajo	2, 1	1, 0	2, 2

• J2: Regular está estrictamente dominada

		Jugador 2		
		Bueno	Regular	Malo
	Alto	1, 1	$\frac{2}{}$	1, 1
Jugador 1	Medio	0, 0	0, 1	0, 0
	Bajo	2, 1	1, 0	2, 2

• J1: Alto está estrictamente dominada

		Jugador 2		
		Bueno	Regular	Malo
	Alto	1, 1	2, 0	1, 1
Jugador 1	Medio	0, 0	0, 1	0, 0
	Bajo	2, 1	1, 0	2, 2

J2: Bueno está estrictamente dominada

		Jugador 2		
		Bueno	Regular	Malo
	Alto	1, 1	2, 0	1, 1
Jugador 1	Medio	0, 0	0, 1	0, 0
	Bajo	2, 1	1, 0	2, 2

• $EEIEED = \{bajo, malo\}$

		Jugador 2		
		Bueno	Regular	Malo
Jugador 1	Alto	1, 1	2, 0	1, 1
	Medio	0, 0	0, 1	0, 0
	Bajo	2, 1	1, 0	2, 2

Introducción Representación

Solución: dominancia

Ejemplo

Estrategias dominantes

Estrategias racionalizables Equilibrio de Nash Estrategias mixtas

Estrategias dominantes

Definición

Decimos que una estrategia s_i es una **estrategia estrictamente dominante** para el jugador i en un juego en forma normal G si $\forall s'_i \neq s_i$, se cumple que:

$$u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i}) \qquad \forall s_{-i} \in S_{-i}$$

 Una estrategia dominante para el jugador i maximiza su pago para cualquier estrategia que el rival pueda jugar.

Estrategias dominantes

Definición

Decimos que una estrategia s_i es una **estrategia estrictamente dominante** para el jugador i en un juego en forma normal G si $\forall s_i' \neq s_i$, se cumple que:

$$u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i}) \qquad \forall s_{-i} \in S_{-i}$$

 Una estrategia dominante para el jugador i maximiza su pago para cualquier estrategia que el rival pueda jugar.

Introducción Representación Solución: dominancia Ejemplo

Estrategias racionalizables
Equilibrio de Nash

Mejor respuesta

Definición

En el juego en forma normal G, la estrategia s_i es una **mejor respuesta** del jugador i a las estrategias s_{-i} de sus rivales si se cumple que:

$$u_{i}(s_{i}, s_{-i}) > u_{i}(s'_{i}, s_{-i}), \quad \forall s'_{i} \in S_{i}$$

Definición

En el juego en forma normal G, la estrategia s_i no es **nunca una mejor respuesta** si no existe s_{-i} para el cual s_i sea una mejor respuesta.

- Un jugador racional no jugaría nunca una estrategia que no es nunca una mejor respuesta
- Una estrategia estrictamente dominada no es nunca una mejor respuesta (no se cumple recíproco)
- Si la racionalidad es de conocimiento común ⇒
- Se puede eliminar en forma iterativa las estrategias que <u>no son</u> <u>nunca una mejor respuesta</u> (por lo anterior)

Estrategias racionalizables (cont.)

Definición

En el juego G en forma normal, las estrategias en S_i que sobreviven la eliminación de estrategias que no son nunca una mejor respuesta son las estrategias del jugador i que son **racionalizables**

- El conjunto de estrategias racionalizables no puede ser mayor que el conjunto de estrategias que sobrevive la eliminación iterativa de estrategias estrictamente dominadas
- Una estrategia racionalizable es aquella que el jugador *i* puede justificar o racionalizar, en base a las acciones de sus rivales

Introducción Representación Solución: dominancia Ejemplo Estrategias dominantes
Estrategias racionalizables
Equilibrio de Nash
Estrategias mixtas

Equilibrio de Nash

Definición

Un conjunto de estrategias (s_1^*, \ldots, s_n^*) es un **Equilibrio de Nash** (EN) si $\forall i = 1, \ldots, n$, se cumple que

$$u_i(s_i^*, s_{-i}^*) > u_i(\widetilde{s}_i, s_{-i}^*), \quad \forall \widetilde{s}_i \in S_i$$

- De otra forma: s_i^* resuelve $\max_{s_i \in S_i} u_i\left(s_i, s_{-i}^*\right)$
- En un EN cada jugador esta jugando la mejor respuesta a las mejor respuesta de sus rivales.

Equilibrio de Nash

Definición

Un conjunto de estrategias $(s_1^*, ..., s_n^*)$ es un **Equilibrio de Nash** (EN) si $\forall i = 1, ..., n$, se cumple que

$$u_i\left(s_i^*, s_{-i}^*\right) > u_i\left(\widetilde{s}_i, s_{-i}^*\right), \quad \forall \widetilde{s}_i \in S_i$$

- De otra forma: s_i^* resuelve $\max_{s_i \in S_i} u_i\left(s_i, s_{-i}^*\right)$
- En un EN cada jugador esta jugando la mejor respuesta a las mejor respuesta de sus rivales.

Ejemplo

- En el ejemplo: no confesar es una estrategia estrictamente dominada
- En el ejemplo: confesar es una estrategia estrictamente dominante
- $\{c, c\}$ es un EN en el Dilema del prisionero.

Representación

Problema: múltiples equilibrios

• Juego de "Encontrarse en Montevideo"

• Hay dos EN!

Introduccion Representación Solución: dominancia Ejemplo Estrategias dominantes Estrategias racionalizables Equilibrio de Nash Estrategias mixtas

Presentación

- No todos los juegos tienen equilibrios en estrategias puras
- Jugar una estrategia -pura- implica asignar probabilidad 1 a esa acción y 0 al resto
- Una alternativa es aleatorizar las acciones
- Una estrategia mixta asigna una probabilidad a cada estrategia pura

Ejemplos

- Piedra, papel y tijera
- "Matching pennies" (monedas que se igualan)
- Fútbol, básquetbol
- <u>Característica</u>: me conviene adivinar la jugada del otro, pero que el no adivine la mía ⇒ no existe EN en estrategias puras

Definiciones

Definición

Sea $S_i = (s_{i1}, ..., s_{iK})$ el conjunto de K estrategias puras del jugador i. Definimos a P_i como el **simplex** de S_i que es el conjunto de todas las distribuciones de probabilidad sobre S_i .

Definición

una **estrategia mixta** es un elemento $p_i \in P_i$ tal que $p_i = (p_{i1}, ..., p_{iK})$ en la que p_{ik} es la probabilidad de que el jugador i elija la estrategia s_{ik} para k=1,...,K. Se cumple que $0 \le p_{ik} \le 1$ $\nabla \sum_{k=1}^{k=K} p_{ik} = 1.$

Definiciones (cont.)

Definición

Una **creencia o conjetura** (belief) para el jugador i es una distribución de probabilidades $\pi_i \in P_{-i}$ sobre las estrategias de su oponente. Escribimos $\pi_i(s_{-i})$ a la probabilidad que el jugador i asigna a que su oponente juegue $s_{-i} \in S_{-i}$.

Definición

La **utilidad esperada** del jugador i cuando elije jugar la estrategia pura $s_i \in S_i$ y su oponente elije la estrategia mixta $p_{-i} \in P_{-i}$ es

$$v_i(s_i, p_{-i}) = E[u_i(s_i, p_{-i})] = \sum_{s_{-i} \in S_{-i}} p_{-i}(s_{-i}) u_i(s_i, s_{-i})$$

Definiciones (cont.)

 La utilidad esperada del jugador i cuando elije jugar la estrategia mixta p_i ∈ P_i y su oponente elije p_{-i} ∈ P_{-i} es

$$v_{i}(p_{i}, p_{-i}) = \sum_{s_{i} \in S_{i}} \left(\sum_{s_{-i} \in S_{-i}} p_{i}(s_{i}) p_{-i}(s_{-i}) u_{i}(s_{i}, s_{-i}) \right)$$

Definición

El perfil de estrategias $p^* = (p_1^*, ..., p_n^*)$ es un **equilibrio de Nash** en estrategias mixtas si para cada jugador i, p_i^* es la mejor respuesta a p_{-i}^* . Esto es, si para cada $i \in I$,

$$v_i\left(p_i^*, p_{-i}^*\right) \geq v_i\left(p_i, p_{-i}^*\right), \quad \forall p_i \in P_i$$

Ejemplo

- Juego: "Matching pennies" (monedas que se igualan)
- Jugadores: {1, 2}
- Estrategias: {cara, cruz} de una moneda
- Si coinciden \Rightarrow gana J2 la moneda de J1; si se cruzan \Rightarrow gana J1 la moneda de J2

Representación

No hay EN en estrategias puras (verifiquen!)

Solución: jugador 1

- Creencias: J1 cree que J2: $p_2(cara)=q$ y $p_2(cruz)=1-q\Rightarrow$ J2 juega mixta (q,1-q)
- $v_1(cara, q) = p_2(cara) u(cara, cara) + p_2(cruz) u(cara, cruz)$ = q(-1) + (1-q)1 = 1 - 2q
- $v_1(cruz, q) = p_2(cara) u(cruz, cara) + p_2(cruz) u(cruz, cruz)$ = q1 + (1 - q)(-1) = 2q - 1
- \Rightarrow elije *cara* si $1-2q>2q-1\iff 4q<2\iff q<1/2\Rightarrow$ elije *cruz* $\iff q>1/2$
- Si q = 1/2 es indiferente entre cara y cruz

Solución: jugador 1 (cont.)

- Ahora el J1: $p_1(cara) = r$ y $p_1(cruz) = 1 r \Rightarrow J1$ juega mixta (r, 1 r)
- \Rightarrow Utilidad J1 juegue mixta $(p_1) = (r, 1-r)$ a mixta de J2 $(p_2) = (q, 1-q)$
- $v_1(p_1, p_2) =$ $p_1(cara)[p_2(cara)u(cara, cara) + p_2(cruz)u(cara, cruz)]$ $+p_1(cruz)[p_2(cara)u(cruz, cara) + p_2(cruz)u(cruz, cruz)]$
- = r[q(-1)+(1-q)1]+(1-r)[q1+(1-q)(-1)]
- = r[1-2q]+(1-r)[2q-1]=(2q-1)+r(2-4q)

Solución: jugador 1 (cont.)

• $v_1(p_1, p_2) = (2q-1) + r(2-4q) \Rightarrow$

$$\frac{\partial v_1(p_1, p_2)}{\partial r} = \begin{cases} > 0 & \text{si } 2 - 4q > 0 \\ < 0 & \text{si } 2 - 4q < 0 \end{cases}$$

- \Rightarrow si $2-4q>0 \iff q<1/2 \Rightarrow r=1$ (utilidad crece con r) $\Rightarrow J1$ juega cara
- \Rightarrow si $2-4q < 0 \iff q > 1/2 \Rightarrow r = 0$ (utilidad cae con r) $\Rightarrow J1$ juega cruz
- \Rightarrow si $2-4q=0 \iff q=1/2 \Rightarrow r$ está indeterminado $\Rightarrow J1$ juega cualquier cosa
- Gráficamente

Solución: jugador 1 (gráfica)

Solución: jugador 2

- Repetimos el mismo procedimiento para el J2
- Creencias: el J2 cree que J1: $p_1(cara) = r$ y $p_1(cruz) = 1 r$ $\Rightarrow J1$ juega mixta (r, 1 - r)
- J2: $p_2(cara) = q$ y $p_2(cruz) = 1 q \Rightarrow J1$ juega mixta (q, 1 q)
- $v_2(p_2, p_1) = q[r1 + (1-r)(-1)] + (1-q)[r(-1) + (1-r)1]$ = (1-2r) + q(4r-2)
- \Rightarrow creciente en $q \iff r > 1/2$; decreciente en $q \iff r < 1/2$
- Gráficamente

Solución: jugador 2 (gráfica)

Solución: EN

Solución: EN

- El único EN en estrategias mixtas es $(p_1^*,p_2^*)=\left(\frac{1}{2},\frac{1}{2}\right)$
- Notas:
 - la estrategia mixta del jugador j es una representación de la incertidumbre del jugador i respecto a la estrategia pura de j
 - es como si j tuviera información privada que determina que estrategia pura elija, pero i no conoce esa información y, por tanto, la estrategia mixta representa su incertidumbre (de i)
- Más sobre el tema en "Juegos bayesianos"