ALGEBRAIC GEOMETRY - LOTHAR GÖTTSCHE LECTURE 07

WANG YUNLEI

Theorem 1. Let X, Y be varieties, assume $Y \subset \mathbb{A}^m$ be a closed affine variety. Then there is a bijection between morphisms $X \to Y$ and k-algebra homomorphisms $A(Y) \to \mathcal{O}_X(X)$:

Proof. \Rightarrow : Let $\varphi: X \to Y$ be a morphism, then $\varphi^*: A(Y) \to \mathcal{O}_X(X)$ is a k-algebra homomorphism.

 \Leftarrow : Let $\phi: A(Y) \to \mathcal{O}_X(X)$ be a k-algebraic homomorphism, let $y_1, \ldots, y_n \in A(Y)$ be the coordinate functions. We set

$$f_i = \phi(y_i) \in \mathcal{O}_X(X).$$

Let $\varphi=(f_1,\ldots,f_m):X\to\mathbb{A}^m$. This is a morphism from X to Y. To see it is a morphism we have to show $\varphi(X)\subset Y$. Let $h\in I(Y),\ h\circ\varphi=h(f_1,\ldots,f_m)=h(\phi(y_1),\ldots,\phi(y_m))=\phi(h(y_1,\ldots,y_m))$. The second equality is based on the homomorphic property of ϕ , for example, if $h(x_1,x_2)=x_1^2-x_2^3$, then $h(\phi(y_1),\phi(y_2))=\phi(y_1)^2-\phi(y_2)^3=\phi(y_1^2)-\phi(y_2^3)=\phi(y_1^2-y_2^3)=\phi(h(y_1,y_2))$. So $h(y_1,\ldots,y_m)\in A(Y)$, we choose an arbitrary element $p=(a_1,\ldots,a_m)\in Y$, then $h(y_1,\ldots,y_m)(p)=h(a_1,\ldots,a_m)=0$ because $h\in I(Y)$. So for arbitrary $h\in I(Y)$, we get $h\circ\varphi=0$, it implies $\varphi(X)\subset \cap_{h\in I(Y)}Z(h)=Y$.

Example 1. A bijective polynomial map need not to be an isomorphism. For example, let $X = \mathbb{A}^1$, $Y = Z(x_2^2 - x_1^3) \subset \mathbb{A}^2$. Then

$$\varphi = (t^2, t^3) : X \to Y$$

is a morphism and bijective and the inverse is

$$\varphi^{-1}(a,b) = \begin{cases} \frac{b}{a} & \text{if } a \neq 0\\ 0 & \text{if } (a,b) = 0 \end{cases}$$

 φ is not an isomorphism (φ^{-1} is not a morphism). To show this we see the pull back:

$$\varphi^*: A(Y) \to \mathcal{O}_X(X)$$

where $A(Y) = k[x_1, x_2]/\langle x_2^2 - x_1^3 \rangle$ and A(X) = k[t]. φ^* makes $x_1 \to t^2$ and $x_2 \to t^3$. Since φ^* is not surjective(there is no element maps into t), φ^* is not an isomorphism. By theorem 1 we know φ is not an isomorphism. So bijective morphism is not necessary to be an isomorphism.

Definition 1. Let $X \subset \mathbb{A}^n$ be a closed variety, $F \in k[x_1, \dots, x_n] \setminus I(X)$. The principal open defined by F is $X_F := X \setminus Z(F)$.

Date: June 19, 2017.

Proposition 1. X_F is an affine variety.

Proof. Let $Z := Z(\langle I(X), F \cdot x_{n+1} - 1 \rangle) \subset \mathbb{A}^{n+1}$. We need to prove Z is a closed subvariety of \mathbb{A}^{n+1} isomorphic to X_F . Let $\varphi:(x_1,\ldots,x_n,\frac{1}{F}):X_F\to\mathbb{A}^{n+1}$, it is a bijective morphism and $\varphi(X_F) = Z$. As X_F is irreducible, Z is also irreducible. So Z is closed variety of \mathbb{A}^{n+1} . On the other hand, the inverse of φ is

$$\varphi^{-1} = (x_1, \dots, x_n) : Z \to X_F$$

is a morphism, so φ is an isomorphism.

Definition 2. Let $X \subset \mathbb{P}^n, Y \subset \mathbb{P}^m$ be quasi-projective algebraic sets. A map $\varphi: X \to Y$ is called a polynomial map if there exists homogeneous polynomials $F_0, \ldots, F_m \in k[x_0, \ldots, x_n]$ of the same degree with no common zero on X s.t. $\varphi(p) = [F_0(p), \dots, F_m(p)], \forall p \in X, \text{ write } \varphi = [F_0, \dots, F_m].$

Definition 3. The homogenization of $F \in k[x_0, \ldots, x_n]$ is:

$$F_a := F(1, x_1, \dots, x_n).$$

Theorem 2. $\varphi_i = (\frac{x_0}{x_i}, \dots, \frac{\hat{x_i}}{x_i}, \dots, \frac{x_n}{x_i}) : U_i \to \mathbb{A}^n$ is an isomorphism.

Proof. We can assume $i=0, \ \varphi:=\varphi_0, \ U:=U_0$, then $\varphi=(\frac{x_1}{x_0},\dots,\frac{x_n}{x_0})$. $\frac{x_i}{x_0}$ is a regular function in $\mathcal{O}_{\mathbb{P}^n}(\mathbb{P}^n)$, so φ is a morphism. We need to show that $u=\varphi^{-1}(x_1,\dots,x_n)=[1,x_1,\dots,x_n]$ is a morphism.

(a) $u=\varphi^{-1}$ is continuous. Let $W=Z(F_1,\dots,F_m)\cap U$ be closed in $U,F_i\in \mathcal{O}$

 $k[x_0, \ldots, x_n]$ are homogeneous, then

$$u^{-1}(W) = \{(a_1, \dots, a_n) \in \mathbb{A}^n | [1, a_1, \dots, a_n] \in W\}$$

$$= \{(a_1, \dots, a_n) \in \mathbb{A}^n | F_i(1, a_1 \dots, a_n) = 0, \forall i = 1, \dots, m\}$$

$$= Z(F_{1a}, \dots, F_{ma})$$

where F_{ia} is homogenization of F_i , it shows that $u^{-1}(W)$ is closed in \mathbb{A}^n .

(b) Let $V \subset U$ be open, $h \in \mathcal{O}_U(V)$, we need to show $u^*h \in \mathcal{O}_{\mathbb{A}^n}(u^{-1}(V))$. Making V smaller necessary, we can assume $h = \frac{F}{G}$, $F, G \in k[x_0, \dots, x_n]$ are homogeneous polynomials of the same degree.

$$u^*h = h \circ u = \frac{F \circ u}{G \circ u} = \frac{F(1, x_1, \dots, x_n)}{G(1, x_1, \dots, x_n)}.$$

Thus $u^*h \in \mathcal{O}_{\mathbb{A}^n}(u^{-1}(V))$, $phi: \mathbb{A}^n \to u$ is an isomorphism.

Remark. From theorem 2 we find that if we identify \mathbb{A}^n with $u_0 \subset \mathbb{P}^n$, the Zariski topology on \mathbb{A}^n is equivalent to the induced topology of u_0 from \mathbb{P}^n .

E-mail address: wcghdpwyl@126.com