В этой работе W_t — винеровский процесс.

- 1. На 6 гранях кубика написаны буквы a (3 раза), b (два раза), c (один раз). Кубик подбрасывается один раз. Случайная величина X равна 3, если выпало a, двум если b, и одному если c.
 - (a) Найдите минимальную σ -алгебру \mathcal{F} содержащую множество $A = \{a, c\}$
 - (b) Найдите $\mathbb{E}(X|\mathcal{F})$
 - (c) Найдите $\mathbb{E}(Z)$ если $Z = X \mathbb{E}(X|\mathcal{F})$
- 2. Пусть S_n симметричное случайное блуждание с началом в нуле, а σ -алгебра \mathcal{F}_n содержит всю доступную к моменту времени n информацию. Найдите $\mathbb{E}(S_{30}|S_{18})$, $\mathbb{E}(S_{18}|S_{30})$, $\mathbb{E}(S_{18}S_{30}|\mathcal{F}_{25})$.
- 3. Найдите $\mathbb{P}(W_1 + 2W_2 > W_3)$ и $\mathbb{E}(W_1W_2W_3)$
- 4. Случайный процесс Z_t задан выражением $Z_t = \exp(a + bt + 6W_t)$, где a и b это константы.
 - (a) Найдите dZ_t
 - (b) Выпишите формулу для dZ_t в полной записи (с интегралами)
 - (c) При каких a и b процесс Z_t будет мартингалом?
- 5. Пусть $X_t = W_t^5 4W_t^2 t^2$
 - (a) Найдите dX_t
 - (b) Является ли процесс X_t мартингалом?

нормальной случайной величины F().

- (c) Найдите $\mathbb{E}(X_t)$
- 6. В рамках модели Блэка-Шоулса положим $S_0=100,\ r=0.1,\ \mu=0.2,\ \sigma=0.3.$ Найдите текущую цену актива, который в момент времени T=2 выплачивает Вам 1 рубль, если через год цена актива превысит 120 рублей. Подсказка: в ответе может фигурировать функция распределения стандартной