

Can CT Radiomics Predict Recurrence in Head and Neck Cancer? Early Results from a Prospective Imaging Trial

<u>Hasan Shaikh</u>^{1,2}, Amal Joseph Varghese^{1,2}, Balu Krishna S^{1,2}, Ezhil Sindhanai², Jino Wilson Victor², Simon Pavamani^{1,2}, Praveenraj C^{1,2}, Julia Priyadarshini Rao ^{1,2}, Rajesh I², Manu Mathew², Swathi B², Hannah Mary Thomas T^{1,2}

¹Quantitative Imaging Research and Artificial Intelligence Lab (QIRAIL), ²Department of Radiation Oncology, Christian Medical College (CMC), Vellore.

Abstract No: OT 21

INTRODUCTION

- Head and Neck Cancers have a high risk of disease recurrence despite curative treatments, impacting survival and quality of life.1
- Clinical factors such as tumor size, subsite, and stage provide limited predictive power for recurrence, making it challenging to identify highrisk recurrence patients.2
- Radiomics extracts quantitative image descriptors or features (e.g tumor texture, shape, and intensity) from radiological images and when integrated with ML techniques has shown to improve outcome prediction. 1,2

AIM

Evaluate the potential of CT-based radiomics to identify individual risk of locoregional recurrence (LRR) at one-year post-treatment in head and neck cancer.

KEY FINDING

- Naive Bayes model provided the best balance between training and testing performance in predicting locoregional recurrence (LRR) in head and neck cancer patients.
- The performance of the models may be limited by the small sample size, which will be evaluated further as the data matures.

METHOD Prospective patients Dataset **Features** recruited from Feature Selection Metrics 2020 - 2024X (N = 445)Clinical Features Clinical Data Radiomics Data split 80:20 Test cohort (n=26) **Patients excluded** Training cohort (n=102) No Recurrence=65 (64%) No Recurrence=16 (62%) 1- year follow-up not Recurrence=37 (36%) Recurrence=10 (38%) available ROC_AUC Curve Modelling Lost to follow-up Texture (N = 317)Accuracy **Logistic Regression** Specificity **Support Vector Machine** Sensitivity Naïve Bayes Intensity 2000 **Cross validation** Final Cohort (N=128) **Bootstrap Estimates** Planning CT Hyperparameter Optimization **No Recurrence = 81 (63%)** Shape **Recurrence = 47 (37%)** varian |Eclipse™ **PyRadiomics** Scikit <u>fearn</u> 💨 python" + HIS

RESULTS

Top 5 Features

2.Shape_Maximum2DDiameterRow

1.GLCM_Imc1

3. NGDTM_Coarseness

4.Shape_Maximum2DDiameterSlice

5. Shape_Sphericity

Model **Test Accuracy Training ROC AUC Training Accuracy Test ROC AUC** Logistic Regression 0.74 (0.66-0.84) 71.57% 0.54 (0.30-0.78) 57.69% 57.69% Support Vector Machine 0.73 (0.63-0.83) 69.61% 0.55 (0.30-0.80) 72.55% 61.54% Naïve Bayes 0.72 (0.61-0.83) 0.60 (0.38-0.81)

Dell Precision 5820 Tower Workstation

CONCLUSION

- Due to the limited dataset, we used simple machine learning models, but as the outcome data matures, we may be able to improve results.
- Future work will focus on enhancing predictive accuracy by including clinical and radiomics features.

REFERENCES

- 1. Varghese AJ, et al. Multi-centre radiomics for prediction of recurrence following radical radiotherapy for head and neck cancers: Consequences of feature selection, machine learning classifiers and batch-effect harmonization. Phys Imaging Radiation Oncol. 2023;26:100450.
- 2. Devakumar D, et al. Framework for Machine `Learning of CT and PET Radiomics to Predict Local Failure after Radiotherapy in Locally Advanced Head and Neck Cancers. *J Med Phys.* 2021;46(3):181-188.

CONTACT US

Dr HANNAH THOMAS /
Dr BALU KRISHNA S

Quantitative Imaging Research and Artificial Intelligence Lab (QIRAIL)

ACKNOWLEDGEMENT

