DIJITAL ELEKTRONIK DERS NOTLARI

Analog sinyal

 Sonsuz sayıda ara değer alabilen, devamlılık arz eden büyüklük, analog büyüklük olarak tanımlanır.

Dünyadaki çoğu büyüklük analogdur.

- Analog sinyal aslında yaşadığımız hayat demektir.
- Görme, işitme, tat alma, dokunma, koklama duyularımızın tümü analog algılama biçimlerine birer örnektir.
- Analog sinyal kesintisiz ve süreklidir.

- Bir amfiden çıkıp hoparlöre giden elektriksel ses sinyali ve
- hoparlörden çıkıp kulaklarımıza ulaşan akustik ses sinyali analog sinyal formundadır.

Dünyadaki çoğu büyüklük analogdur.

- Havanın sıcaklığı birdenbire örneğin 27°C'den 28°C'ye çıkmaz, bu iki derece arasında sonsuz sayıdaki bütün değerleri alarak değişir.
- Analog büyüklüklere diğer örnekler, zaman, basınç, uzaklık ve sestir.
- Bununla beraber dijital elektroniğin analog elektroniğe göre belirgin üstünlükleri vardır.

- En başta dijital bilgi analog bilgiden daha etkin, daha güvenli işlenebilir ve iletilebilir.
- Ayrıca bilginin saklanması gerektiğinde dijital bilgi çok kolay kayıt altına alınır.
- Örneğin müzik dijitalleştirildiğinde, çok daha kolay depolanıp büyük bir hassasiyetle yeniden üretilebilir ve analog biçime dönüştürülebilir.

Analog sinyal yumuşak geçişli ve devamlı iken dijital sinyal basamaklı ve kare şeklindedir.

SAYISAL BÜYÜKLÜK, SAYISAL SİNYAL, SAYISAL SİSTEM VE SAYISAL GÖSTERGE

- Yalnızca iki değer alabilen (var-yok, kapalı-açık, vb.) büyüklük, 'sayısal büyüklük' olarak isimlendirilir.
- Sayısal büyüklüğü göstermek için kullanılan 0 ve 1 rakamları 'sayısal sinyal (işaret)' olarak adlandırılır.
- Sayısal sinyalin aldığı değerler zıplayarak değişir.

a) Sayısal İşaret

b) Sayısal Sistem

c) Saynsal Gösterge

SAYISAL VE ANALOG TEKNİKLERİN KARŞILAŞTIRILMASI

- Sayısal sistemlerin tasarımı daha kolaydır.
- Sayısal sistemlerde bilgi saklaması kolaydır: Sayısal sistemlerde kullanılan yöntemlerle bilgilerin bir yere konması, onun alınması ve gerektiği kadar elde tutulması mümkündür.
- sayısal devrelerde daha çok sayıda devrenin birbiriyle irtibatı mümkündür.

- Sayısal devrelerde işlemler programlanabilir: Sayısal sistemleri tasarlamak, sistemdeki işlemler saklanabilen komutlar (program) tarafından kontrol edildiğinden kolaydır.
- Sayısal devreler gürültüden daha az etkilenir.
- Sayısal sistemlerde bir entegre içerisine daha fazla sayıda sayısal devre elemanı yerleştirilebilir.

sayısal sistemlerin dezavantajı

- Bütün bu avantajların yanında sayısal sistemlerin dezavantajı,
- günlük hayatımızda kullandığımız büyüklüklerin büyük bir kısmının analog olmasıdır.
- Bundan dolayıdır ki analog sinyalin dijitale çevrilmesi,
- İşleme tabi tutulmuş dijital bilgilerin ise dış dünyaya aktarılması için tekrar analoğa dönüştürülmesi gereklidir.

Analogdan dijitale ve dijitalden analoğa çevirme

- Dünyada, pek çok büyüklük analogdur, demiştik.
- Örneğin ısı, basınç, ağırlık gibi büyüklükler hep analog olarak değişirler.
- Bunlarda sadece 0 ve 1 gibi iki değer değil,
- minimum ile maksimum arasında çok geniş bir yelpazede çeşitli değerler söz konusudur.

- Bununla beraber; bilgi işleyen cihazlar (dijital sistemler, mikroişlemciler, bilgisayarlar) dijitaldir.
- Çünkü, dijital sistemler, bilgiyi daha güvenli, daha hızlı işler ve değerlendirir. Elde edilen bilginin tekrar dış dünyaya aktarılması da analog veya dijital biçimde olabilir.
- Bütün bu nedenlerle analog değerlerin dijitale, dijital değerlerin de analog değerlere çevrilmesi gerekir.

Analog sinyali dijitale, dijital sinyali ise analoğa çevirmek için ADC ve DAC kullanılır.

- ADC (Analog to Digital Converter) analog bir sinyali dijital sinyale çevirmeye yarayan ünitenin adıdır.
- DAC (Digital to Analog Converter) ise dijital sinyali analog sinyale çevirmeye yarayan ünitenin adıdır.

Bilgisayar ile ses sinyallerinin işlenmesi

Ses Kartı Bileşenleri

- Dijital Sinyal İşlemcisi
- Giriş sesleri için Analog-Dijital çevirici (ADC)
- Çıkış sesleri için Dijital-Analog çevirici (DAC)
- Veri depolaması için Flash bellek (eeprom)
- Harici müzik aygıtlarına bağlantı arayüzü
- Hoparlör, mikrofon, Line-In ve Line-Out
- Joystick, gamepad...

Dinamik mikrofon çalışma prensibi

- Dinamik mikrofon içerisinde hareketli bobin mevcuttur.
- Ses dalgaları bu bobini hareket ettirince ses sinyali elektrik sinyaline dönüştürülür.
- Dinamik mikrofonların içerisinde ince ve hafif metalden yapılan diyafram bulunur.
- Bu diyafram hareketli bobine tutturulmuştur.

Dinamik mikrofon çalışma prensibi

- Mikrofona gelen ses dalgaları diyaframa çarpar.
- Diyafram hareket ederken beraberinde bobini de hareket ettirir.
- Mıknatıs içinde hareket eden bobin ise elektrik akımı (gerilimi) oluşmasına sebep olur.
- Oluşan elektrik gerilimi hareketin hızıyla doğru orantılıdır.

Elektrik sinyaline nasıl dönüştürülüre bir örnek daha.

- İki farklı metal birer uçlarından birbirine bağlanır ve bağlantı noktasına ısı uygulanırsa metallerin soğuk uçlarında elektrik sinyali (çok küçük bile olsa) üretildiği görülür.
- Bu mantıkla endüstride $5000 \ C^o$ sıcak fırınların sıcaklığı ölçülebilir.

Çeviricileri(konvertörleri)daha iyi anlayalım

- Isi, basınç, ağırlık gibi değişkenler sensör ve transduser'ler kullanılarak elektrik gerilimine çevrilir.
- Bu gerilim analog bir gerilimdir.
- Daha sonra bu analog gerilim Analog/Dijital çevirici (ADC) yardımı ile dijitale çevrilir.
- Dijital sistem bu bilgiyi istenilen bir biçimde işler ve bir sonuç elde eder.

- Bu sonuç dijital veya analog olarak değerlendirilmek istenebilir.
- Eğer elde edilen sonuç analog olarak değerlendirilecekse tekrar analoğa çevrilmesi gerekebilir.
- Dijital işareti analog işarete çevirme işlemini Dijital/Analog çeviriciler (DAC) yapar.

Analog to Dijital Dönüşüm İşlemleri

- Bir analog sinyalin dijital karşılığının alınmasında iki önemli kriter vardır;
- örnekleme ve her örnek için kaç bit kullanılacağı.
 Örnekleme ne kadar sık olursa kayıp o kadar az, dosya boyutu da o kadar büyük olur.
- Şekildeki örnekte her örnekleme için 3 bit kullanılmış ve belirli aralıklarla örnekleme alınmıştır.
- Gördüğünüz gibi kırmızı renkli dijital kopya analog eşdeğerine pek benzememektedir.
- Bunun için hem kullanılan bit sayısı ve hem de örnekleme sıklığı arttırılmalıdır.

Analog to Dijital Dönüşüm İşlemleri

Örnek: 8 bitlik analogdan dijitale çevir entegresi

örnek: AD 557 entegresi, 8 bitlik D/A

çeviricidir.

İKİLİ (BINARY) SAYI SİSTEMİ

- Bilgisayarlar için sadece 'var-yok' 'evet-hayır' veya 'kapalı-açık' ifadeleri geçerlidir.
- Yani bilgisayarlar sadece 0 ve 1 rakamlarından oluşan ikili sayı sistemini kullanırlar.
- Bit ismi Binary Digit yani ikilik rakamdan türetilmiştir.
- 8 bite bir byte denilir.

- 1 varlığı temsil eder, 0 ise yokluğu temsil eder. 1 gerilim var (5Volt), 0 ise gerilim yok demektir.
- Peki nasıl oluyor da sadece 0 ve 1 rakamlarını bilen bilgisayarlar
- klavyeden yazdığımız diğer rakamları ve harfleri anlayabiliyor?

- İşte burada ikili sayı sistemi devreye giriyor.
- Her sayı ve harf ikili sisteme bilgisayarın anlayacağı şekle çevrilir.

Decimal	0	1	2	3	4	5	6	7	8	9	10
Binary	0	1	10	11	100	101	110	111	1000	1001	1010

Binary (İkili Sistem) Nedir?

- Binary sayı sistemi, Türkçesi ikili sayı sistemi anlamına gelen kavramdır. İkili sayılar 2 tabanında yazılarak elde edilir. Dolayısı ile ikilik sistemdeki tüm sayılar 1 ve 0'dan ibarettir.
- Günümüz bilgisayarlarının neredeyse tamamında kullanılmaktadır.

- Günlük hayatımızda kullandığımız rakamlar ise onluk tabanda, bir başka ismiyle decimaldir.
- Decimal sistemi oluşturan rakamlar bildiğimiz gibi 0,1,2,3,4,5,6,7,8,9 şeklindedir.

Binary sayı sisteminden decimala çevirme

Binaryden decimala çevirme örnekleri

• Örnek:

- (1010)2 = (?)10
- $(1010)2 = 1x2^3 + 0 \times 2^2 + 1 \times 2^1 \times 0x2^0$
- (1010)2 = 8 + 0 + 2 + 0
- (1010)2 = 10

• Örnek:

- (11001)2 = (?)10
- $(11001)2 = 1x2^4 + 1x2^3 + 0 \times 2^2 + 0x2^1 + 1x2^0$
- (11001)2 = 16 + 8 + 0 + 0 + 1
- (11001)2 = 25

Binaryden decimala çevirme örnekleri

- Örnek:
- (111,101)2 = (?)10
- (111,101)2 =
- $1x2^2 + 1x2^1 + 1 \times 2^0 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$
- (111,101)2 =
- $1x4+1x2+1x1+1x\frac{1}{2}+0x\frac{1}{4}+1x\frac{1}{8}$
- (111,101)2 = 4+2+1+0,5+0+0,125
- (111,101)2 = (7,625)10

- Örnek:
- $(100111,01)_2 = (?)_{10}$
- $(100111,01)_2 = (39,25)_{10}$

Binary sayılarda toplama-çıkarma işlemleri

Aşağıda verilen toplama işlemlerini gerçekleştirin.

a-
$$(11)_2$$
 3 b- $(100)_2$
 $+ (11)_2$ + 3 + $(11)_2$
 $(110)_2$ 6 $(111)_2$

$$\frac{c-(111)_2}{+(1010)_2}$$

Aşağıda verilen çıkarma işlemlerini gerçekleştirin.

Decimal sayı sisteminden binary sayı sistemine çevirme

Decimal sayı sisteminden binary sayı sistemine çevirme örnekleri

•
$$(217)_{10}$$
=(?)₂

•
$$(54)_{10}$$
=(?)₂

•
$$(217)_{10}$$
= $(11011001)_2$

- Sağlaması:
- 128+64+16+8+1=217

•
$$(54)_{10}$$
= $(110110)_2$

Virgüllü ondalık sayıyı binary sayıya çevirme

- 10 tabanında verilen sayının tamsayı kısmı sürekli olarak istenen tabana bölünerek kalanlar sağdan sola doğru yazılır.
- 10 tabanında verilen sayının kesir kısmı için ise, bu kısım sürekli olarak istenen taban ile çarpılır ve çarpımın sonucu istenen basamağa erişene kadar (ya da 0 çıkana kadar) işlemin tamsayı kısmı alınır.
- Örnek: (121.125)10 sayısını 2 tabanına dönüştürünüz.

•
$$60/2 = 30$$

Kesirli kısmı dönüştürelim.

•
$$0.125 * 2 = 0.250$$

$$0.250 * 2 = 0.500$$

Sonuç = 1111001.001

16 bitten yani 2 bayttan oluşan sayılara 1 word adı verilir.

1100101100011000

8 bitten oluşan sayılara 1 byte adı verilir.

Bir binary sayının en solundaki bit MSB, en sağındaki bit de LSB olarak isimlendirilir.

İşaretli binary sayılar

- İkili sayı sistemlerinde 1 byte ile (8 bit) 0-255 arası pozitif sayıları ifade edebiliriz, fakat
- negatif sayıları ifade etmek için kullanıldığında en soldaki bit işaret bitidir.
- Eğer işaret biti 1 ise sayı negatif,
 0 ise sayı pozitiftir.

(signed char olarak tanımlamalarda)

(unsigned char olarak tanımlamalarda)

İŞARETLİ BINARY SAYILARIN İŞARET-BÜYÜKLÜK BİÇİMİNDE GÖSTERİMİ

İşaret-Büyüklük biçimindeki bu sayı: -75 sayısını temsil eder.

11001011 büyüklük işaret İşaret-Büyüklük biçimindeki bu sayı: +75 sayısını temsil eder.

0100101 büyüklük işaret

İşaretli (signed) binary sayıların bir gösterim şekli de işaret-büyüklük biçiminde gösterimdir.

- ÖRNEK: +19 ve -19 decimal sayılarını işaret-büyüklük formunda 1 byte binary sayı ile ifade ediniz.
- Çözüm:
- $(19)_{10}$ = $(10011)_2$
- +19= 00010011
- -19= 10010011

- ÖRNEK: +35 ve -35 decimal sayılarını işaret-büyüklük formunda 1 byte binary sayı ile ifade ediniz.
- Çözüm:
- $(35)_{10}$ = $(100011)_2$
- +35= 00100011
- -35= 10100011

C# programlama dilinde kullanılan veri tiplerine 4 örnek

- byte: 1 byte işaretsiz tamsayı 0-255 arası
- sbyte: 1 byte işaretli tamsayı -128 ila +127 arası
- (signed byte:işaretli bayt)
- short: 2 byte işaretli tamsayı -32768 ila +32767 arası
- ushort: 2 byte işaretsiz tamsayı 0-65535 arası
- (unsigned:işaretsiz)

Heksadesimal Sayı Sistemi Nedir?

- Binary ve desimal sistemden sonra mantık olarak aynı ancak fark olarak 16 lık tabana sahip sayılar hexadesimal sayılardır.
- Heksadesimal sistemde kullanabileceğimiz rakamlar benzer mantıkla yine 0,1,2,3,4,5,6,7,8,9,10,11,12,13,1 4,15 şeklindedir.
- Ancak hexadesimal sisteme göre yazılan sayılar 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F, şeklindedir.

Hexadecimal	Binary	Decimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
A	1010	10
В	1011	11
С	1100	12
D	1101	13
E	1110	14
F	1111	15

Binary Sayının Hexadecimal 'e Çevrilmesi

- Dijital Elektronikte binary sayıların heksadesimala çevrilip bellekte kodlanması sağlanır.
- Sayılar binary 'den heksadesimale çevrilirken sağdan sola doğru dörder basamak olmak üzere gruplandırılır.
- Çünkü heksadecimal sayı sisteminin tabanı 16 dır ve binary sayı sisteminde 0-15 sayıları, 4 bit ile ifade edilebilmektedir.

Binary	Hexadecimal
0000	이
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	A
1011	В
1100	С
1101	D
1110	E
1111	F

Binary Sayının Hexadecimal 'e Çevrilmesi

Binary - Hexadecimal çevirme örnekleri

- $(011011110101)_2 = (?)_{16}$
- $(0110)_2 = (6)_{16}$ $(1111)_2 = (F)_{16}$ $(0101)_2 = (5)_{16}$
- $(011011110101)_2 = (6F5)_{16}$

- $(1A6)_{16} = (?)_2$
- $(1)_{16} = (0001)_2$ $(A)_{16} = (1010)_2$ $(6)_{16} = (0110)_2$
- $(1A6)_{16} = (000110100110)_2$

Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimal	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F

Decimalden hexadecimale çevirme örneği

Tam kısmın Sonuç = 7B

Kesirli kısım;

- (0.025)10 sayısını onaltılık sisteme çevirelim.

Verilen sayı devamlı 16 ile çarpılıp, oluşan tam sayılar yazılır

$$0.025 \times 16 = 0.4$$
 $\rightarrow 0$ $0.400 \times 16 = 6.4$ 6

Sonuç olarak; (123.025) 10 = (7B.066)16 eşitliği bulunur.

Hexadecimal sayıların toplanması

•
$$(21A)_{16}$$
 + $(452)_{16}$ = $(?)_{16}$

•
$$(21A)_{16}$$
 + $(452)_{16}$ = $(66C)_{16}$

•
$$(73C)_{16}$$
 + $(A2F)_{16}$ = $(?)_{16}$

•
$$C + F = B + X$$

 $3 + 2 = 5 = 5 + X = 5 + 1 = 6$
 $7 + A = 1 + X$

•
$$(73C)_{16}$$
 + $(A2F)_{16}$ = $(116B)_{16}$

Kodlamalar

- Genel olarak kodlama,
- görülebilen, okunabilen, yazı, sayı ve işaretlerin değiştirilmesi olarak tanımlanır.
- Bu değiştirme şekli, belli yöntemlere göre yapılır.
- Kullanılan bir çok kodlama sistemi mevcuttur.

Binary Coded Decimal Kodlaması(BCD)

 Bu kod sisteminde her decimal sayı karakteri için, dört bitlik binary karakteri kullanılır.

Decimal Sayıları	BCD Kodu
О	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Bu kod sisteminde her desimal sayı karakteri için, dört bit kullanılır.

Decimal		B	CD	
25			0010	0101
32			0011	0010
679		0110	0111	1001
2571	0010	0101	0111	0001

BCD kodlama örnekleri

- Örnek: $(10100110)_2$ sayısını BCD koduna çeviriniz.
- Çözüm:
- Binary sayıyı ilk olarak desimale çevirelim;
- 2+4+32+128=166
- $(10100110)_2 = (166)_{10}$
- BCD koduna çevirirsek
- $(0001\ 0110\ 0110)_{BCD}$

- Örnek: $(1010110101)_2$ sayısını BCD koduna çeviriniz.
- Çözüm:
- Binary sayıyı ilk olarak desimale çevirelim;
- 1+4+16+32+128+512=693
- $(1010110101)_2 = (693)_{10}$
- BCD koduna çevirirsek
- $(0110\ 1001\ 0011)_{BCD}$ bulunur.

Gray Kodu

- Gray kodunun, sütun taraması esasına göre çalışan cihazlarda oldukça geniş bir kullanım alanı vardır.
- Geçişler sırasında hatayı minimuma indirmek için geliştirilmiş bir koddur. İsmini mucidi Frank GRAY'den alır.
- Özelliği, Ard arda iki sayı arasında sadece tek bit değişikliğidir.

- Normal Binary kodunda ardışık sayılarda çoğu kez birden fazla bit değişikliği söz konusudur. Devrelerde 0-1 durumları arasındaki değişim sırasında okuyucu farklı değerler okuyabilir.
- Gray kodunda sadece tek bit değiştiğinden, ve binary sayı olduğundan, gray kodunda bu hata ortadan kaldırılmıştır.

0 - 12 Decimal sayıları için Gray kodlaması

- Birinci bit aynen aşağıya indirilir,
- ikinci bit aşağıya indirilen bit ile toplanır ve sonuç hemen aşağıya indirilen birinci bitin sağına yazılır.
- Üçüncü bit, aşağıya yazılan ikinci bit ile toplanır ve ikinci bit 'in yanına yazılır.
- son bite kadar işlem böyle devam ettirilir.

Decimal	Binary	Gray
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010

Gray kodlaması örnekleri

- Örnek: $(011010111101)_2$ sayısını gray koduna çeviriniz.
- Çözüm: İlk rakam aynen alınır,
- Diğer basamaklarda sayı değişiyorsa 1, sayı değişmiyorsa 0 alınarak sonuca ulaşılır.
- $(011010111101)_2$
- $(010111100011)_{gray}$

- Örnek: $(1110001101101)_2$ sayısını gray koduna çeviriniz.
- Çözüm: İlk rakam aynen alınır,
- Diğer basamaklarda sayı değişiyorsa 1, sayı değişmiyorsa 0 alınarak sonuca ulaşılır.
- $(1110001101101)_2$
- $(1001001011011)_{gray}$

297 decimal sayısını gray kodu ile kodlayınız?

- Sonuç:
- $(297)_{10} = (100101001)_2$
- $(100101001)_2 = (110111101)_{gray}$

Gray kodu ile kodlanmış sayıyı tekrar elde etme örnekleri

- Örnek: $(01011101)_{gray}$
- gray kodlu sayıyı binary'e çevirelim.
- Çözüm: $(01011101)_{gray}$
- $(01101001)_2$
- İlk sayı aynen aşağı alınır,
- Sağındaki diğer sayılar
- yukarıdaki sayı 1 olduğunda rakamın değiştiğine,
- 0 olduğunda değişmediğine alamet olarak değerlendirilir.

- Örnek: $(10101100111)_{gray}$
- gray kodlu sayıyı binary'e çevirelim.
- Çözüm:
- $(10101100111)_{gray}$
- $(11001000101)_2$

Karekod (barkod)

- Karekod, kare veya dikdörtgen biçimlerde basılabilen 2 boyutlu barkodun ismidir. Kare veya dikdörtgen şeklinde olan bu yapının genel adı ise Data Matrixtir.
- Karekod kelimesi ilk olarak, Beşeri Tıbbi Ürünler Barkod Uygulama Kılavuzunda kullanılmıştır.
- Ülkemizdeki ilk uygulama alanı, ilaç sektörüdür.

Türkiye'de, ilaç sektöründe uygulanan karekod yapısının içinde, şu bilgiler bulunmaktadır:

- GTIN: 14 rakamdan oluşan barkod numarasıdır. EAN barkodunun başına "0" konulmasıyla elde edilmektedir.
- Sıra Numarası: Her birim ilacı temsil etmesi için, benzersiz bir şekilde (aynısı olamayacak şekilde) üreticiler tarafından oluşturulmaktadır. Seri numarası özelliğinde bir numaradır.
- Son Kullanma Tarihi: Yıl, ay, gün formatında, 6 rakamla yazılır.
- Parti Numarası: İlacın üretim aşamasındaki parti, lot, batch veya bilinen bir ifadeyle serisini ifade eden bir rakamdır.
- Bu bilgilerin varlığıyla, her ürün izlenebilir hale gelmektedir.

karekod barkodların çok çeşitleri mevcuttur.

- Başlıcaları;
- QR Kod
- Data Matrix Kod
- Aztek Kod

Aztec

Trillcode Qu

Quickmark

Shotcode

mCode

QR Kod (Quick Response: Hızlı Tepki)

- 2 boyutlu bir barkottur.
- Akıllı telefonların barkod okuma kabiliyetlerinin artması
- ve yaygın olarak kullanılmaya başlanmasıyla önemi artan bu barkod türünün içine
- metin, resim, çeşitli görseller, video ya da link yerleştirilebilmektedir.

ASCII Kodu

- Ascii kodu bizim bilgisayarda görsel olarak girdiğimiz karakter,harf ve rakamların bilgisayar dilindeki temsil edilme şeklidir diyebiliriz.
- Yani bilgisayarımızın o karakteri, harfi veya rakamı belleğinde saklama biçimidir,
- Açılımı ASCII (American Standard Code for Information Interchange) olan
- bu kodlama sistemi ilk olarak telgraf kodlarında kullanılmıştır

ASCII	SYMBOL
00110000	0
00110001	1
00110010	2
00110011	3
00110100	4
00110101	5
00110110	6
00110111	7
00111000	8
00111001	9
01000001	Α
01000010	В
01000011	C
01000100	D
01000101	E
01000110	F
01000111	G
01001000	H
01001001	
01001010	J
01001011	K
01001100	ALS:
01001101	M

ASCII	SYMBOL
01001110	N
01001111	0
01010000	P
01010001	Q
01010010	R
01010011	S
01010100	T
01010101	U
01010110	V
01010111	W
01011000	X
01011001	Y
01011010	Z
00100001	
00100010	n
00100011	#
00100100	\$
00100101	%
00100110	&
00101000	
00101001	
00101010	*
00101011	+

ASCII	SYMBOL	ASCII	SYMBOL
00110000	0	01001110	N
00110001	1	01001111	0
00110010	2	01010000	P
00110011	3	01010001	Q
00110100	4	01010010	R
00110101	5	01010011	S
00110110	6	01010100	T
00110111	7	01010101	U
00111000	8	01010110	V
00111001	9	01010111	W
01000001	Α	01011000	X
01000010	В	01011001	Υ
01000011	C	01011010	Z
01000100	D	00100001	
01000101	E	00100010	" "
01000110	F	00100011	#
01000111	G	00100100	\$
01001000	Н	00100101	%
01001001		00100110	&
01001010	J	00101000	
01001011	K	00101001)
01001100		00101010	*
01001101	M	00101011	+

ASCII Kodu

- Bilgisayarda her harf ve sembolün bir sayısal karşılığı mevcuttur.
- Bu sayının da bilgisayar belleğinde veya depolama aygıtlarında saklanan bir binary karşılığı mevcuttur.

- Kodlama sistemi her sembol için
 8 bit kullanmaktadır.
- Sekiz bit kullanarak 0 ila 255 rakamları ile toplam 256 adet sembol temsil edilebilmektedir.

Klavyeden girilen her karakter bilgisayara ASCII kodu ile giriş yapar.

İSİM: R A M A Z A N

Klavyeden girilen isim bilgisayara <u>aşçii</u> kodu ile giriş yapar ve işleme tabi tutulur. İşlemlerin sonucu yine ters kodlama ile bizim anlayacağımız şekle getirilir.

Parity Kodu (denklik,eşitlik kodu)

- Bir çok manyetik teyp ve diskler, parity denklik (kontrol) koduna sahiptir.
- Böylece bilgisayarlara bilgi, teyplerden veya disklerden aktarılırken,
- oluşabilecek hatalar, parity kodu sayesinde düzeltilerek doğru okunması sağlanır.

- Parity tek veya çift olabilir.
- İşlemlerde parity bit 'i binary sayılarındaki 1 veya 0 ile ifade edilir.
- BCD kodunun sağındaki birinci basamağa ilave edilir.
- Bu BCD kodundaki kelime karakterinin sağına ilave edilirken, ayrı veya bitişik yazılabilir.

Decimal	BCD Kodu	BCD ile Tek Parity	BCD ile Çift Parity
0	0000	0000 1 veya 00001	0000 0 veya 00000
1	0001	0001 0 veya 00010	0001 1 veya 00011
2	0010	0010 0 veya 00100	0010 1 veya 00101
3	0011	0011 1 veya 00111	0011 0 veya 00110
4	0100	0100 0 veya 01000	0100 1 veya 01001
5	0101	0101 1 veya 01011	0101 0 veya 01010
6	0110	0110 1 veya 01101	0110 0 veya 01100
7	0111	0111 0 veya 01110	0111 1 veya 01111
8	1000	1000 0 veya 10000	1000 1 veya 10001
9	1001	1001 1 veya 10011	1001 0 veya 10010

Parity kodu, digital sinyallerin iletilmesinde doğabilecek hataların tespitinde de kullanılır.

Örnek:2023

İletilecek Sayı	BCD kodu	Tek parity kont.biti
2	0010	1
0	0000	0
2	0010	1
3	0011	0

Örnek:12437

İletilecek Sayı	BCD kodu	Çift parity kont.biti
1	0001	0
2	0010	0
4	0100	0
3	0011	1
7	0111	0

IP adresi, İnternet Kontrol Protokolü

- IP adresi, İnternet Kontrol Protokolü (İnternet Protokolü) standardı bir ağdaki cihazların birbirini tanımak, birbirleriyle iletişim kurmak
- ve veri alışverişinde bulunmak için kullandıkları eşsiz(unique) bir numaradır.
- İnternet bağlantısı bulunan her cihazın bu cihaza tahsis edilen bir adresi olması gerekir.

- Bu adres ya da numara, iletilen bilginin doğru adrese gönderilmesini,
- ya da verinin doğru adresten alınmasını sağlar.
- Bugün halen kullanılmakta ve test edilmekte olan iki tür İnternet Protokolü bulunmaktadır:
- IPv4 ve IPv6:

IPv4

 Bu, halen kullanılmakta olan standart İnternet protokolüdür ve 32 bitten, yani 4 byte'dan oluşur. Bu rakamlar, 0 ila 255 arasında değişir. IPv4 protokolündeki bir adres 1.0.0.0 ila 255.255.255.255 arasında herhangi bir numara olabilir. Bu protokol kullanılarak 4 milyardan fazla adres üretilebilmektedir.

Örnek bir IPv4 adresi: Noktalı decimal gösterim(notation), 4 byte=32 bit

Örnek bir IPv4 adresi: Noktalı decimal gösterim(notation), 4 byte=32 bit

Bir IPv4 adresi (noktalı decimal)

172.16.254.1

Örnekler:

- 123.45.67.89 ipv4 adresini binary'ye çeviriniz.
- Çözüm:
- 01111011.00101101.01000011.01011001

- Aşağıda verilen ipv4 adresini noktalı decimal gösterime çeviriniz.
- 01011110.01100010.10011011.00010000
- Çözüm:
- 94.98.155.16

IPv6

- Artan ağ kullanıcısı sayısına bağlı olarak, daha büyük bir IP adresine ihtiyaç duyulmaktadır.
- IPv6 bu ihtiyaçtan doğmuştur.
- IPv4'ten farklı olarak IPv6, 128 bit genişliğindedir,
- bu da 2¹²⁸ adet, başka bir ifadeyle 3 x 10³⁸ adet unique (eşsiz) adres demektir.

- 8 adet 4'lü hexadecimal sayıdan oluşur.
- (::) adreste 0 olan yerlerde kullanılarak adres kısaltılır.

Örnek bir IPv6 adresi (hexadecimal)

ipv6 adresleme biçimine örnek:

IPv6 adresleme biçimi

2041:0000:130F:0000:0000:07C0:853A:140B

global prefix S

subnet

interface ID

MAC adresi (Media Access Control)

- MAC adresi
- yani Medya Erişim Kontrolü bir bilgisayar ağında, cihazların ağ donanımını tanımaya yarar.
- Örneğin, bilgisayarınızda modeminizin ve ağ kartınızın kendine özel birer MAC adresi vardır.

- MAC, 48 bit'lik bir adres olduğuna göre
- 2⁴⁸ = 281,474,976,710,656 değişik ağ kartını tanımlamak için kullanılabilir.
- MAC Adresi (Fiziksel Adres veya Donanım Adresi de denir), ağ donanımının tanımlanmasını sağlar.

MAC adresi 48 bit,6 oktet

- MAC adresi, bilgisayarın ethernet kartına üretici tarafından kodlanan bir bilgidir.
- Her donanım eşsiz(unique) bir adrese sahiptir.
- Aynı MAC adresine sahip birden fazla ağ cihazı yoktur.
- Aynı ağda iki ağ cihazının birbiriyle haberleşmesi MAC adresiyle mümkündür.

 MAC adresi 6 oktetten (bölümden) oluşur. İlk 3 oktet donanımı üreten firmayı işaret eder. Son 3 oktet donanımı işaret eder.

MAC Adresi (Media Access Control Address)

İkili sistemde bir Mac adresi şöyle:

- 000100100011010001010110011110001001000010101011
- Ancak ikili sistemde bu sayıyı söylemek ve yazmak oldukça zor olduğundan 16'lık (hexadecimal) sistemde yazılır yani;
- > 12:34:56:78:90:AB
- şeklinde gösterilebilir.

- Tekrar etmek gerekirse;
- MAC adresleri, aralarına ":" işareti konarak 16'lı tabanda yazılır:
- Örnek:
- 01:23:45:67:89:AB.

İşlemciler (CPU) Nasıl Çalışır?

 Klavyedeki tuşlara her basışınız, yaptığınız her fare hareketi bile bir şekilde işlemciye uğrar.

- Hangi işlemciyi kullanırsanız kullanın çalışma prensibi aynıdır:
- İşlemci elektriksel sinyalleri 0 ve 1 şeklinde alır ve verilen komuta göre bunları değiştirerek sonucu yine 0'lardan ve 1'lerden oluşan çıktılar halinde verir.
- 3.3 voltla çalışan bir sistemde 3.3 voltluk sinyal 1, 0 voltluk sinyal de 0 değerini üretir.

- İşlemciler aldıkları sinyallere göre karar verip çıktı oluştururlar.
- Karar verme işlemi her biri en az bir transistörden oluşan mantık kapılarında yapılır.
- Transistörler, girişlerine uygulanan akım kombinasyonlarına göre devreyi açıp kapayabilen yani elektronik anahtar görevi gören devre elemanlarıdır.
- Modern işlemcilerde bu transistörlerden milyonlarca tanesi aynı anda çalışarak çok komplike mantık hesaplarını yapabilirler.

- Günümüz işlemcileri mikroskobik boyuttaki milyonlarca mantık kapısından oluşur.
- Mantık kapıları entegre devreleri oluşturur.
- Entegre devreler de elektronik sistemleri oluşturur.

Bilgisayarların Temel Donanım Elementleri: MANTIK KAPILARI-Logic Gates

- Lojik kapılar dijital elektronik devrelerin temelini oluştururlar.
- Lojik kapılar Boolean fonksiyonlarını gerçekleştirmek için imal edilmişlerdir.
- Ve böylece birden fazla sinyal girişinden tek bir çıkış sinyali elde ederler.

- Yani Boolean cebiri işlemleri bu
- mantık kapıları ile gerçekleştirilir.

DİJİTAL MANTIK KAPILARI LOGIC GATES

DEĞİL KAPISI (NOT GATE, INVERT)

- Çıkış, girişteki değişkenin DEĞİL'idir. Bu işlemde bir değişken vardır.
- *A'* ya da
- \bar{A} şeklinde simgelenir.
- A'nın değili ya da A'nın bar'ı şeklinde okunur.

DEĞİL KAPISI (NOT GATE, INVERT)

- $\overline{Yagmur\ yagmiyor}$ =Yagmur yagiyor
- \overline{Dogru} = Yanlış
- $\overline{0} = 1$

VE KAPISI (AND GATE)

- Çıkış A x B (A çarpı B) olarak ifade edilir. Bu işlemde temelde iki değişken olmakla beraber, daha fazla değişken de kullanılabilir.
- A ve B değişkenlerinin en az bir tanesinin 0 olması durumunda sonuç daima 0'dır.
- A ve B değişkenlerinin her ikisinin de 1 olduğu durumda sonuç 1'dir.

VE KAPISI (AND GATE)

- Altı büyüktür dörtten VE filler büyüktür kedilerden=DOĞRU
- Yanlış . Doğru= YANLIŞ
- (7 < 8).(2 > 1) = DOĞRU
- (8 > 0).($\overline{19} = 20$) = DOĞRU

AND (VE) KAPISI DOĞRULUK TABLOSU		
GİRİ	ŞLER	ÇIKIŞ
Α	В	Q
0	0	0
0	1	0
1	0	0
1	1	1

VEYA KAPISI (OR GATE)

- Çıkış A + B (A artı B) olarak ifade edilir. Bu işlemde de isteğe bağlı olarak ikiden fazla değişken kullanılabilir.
- A ve B değişkenlerinin en az birinin 1 olması durumunda sonuç 1 olur.
- A ve B değişkenlerinin her ikisinin de 0 olduğu durumda sonuç 0 olur.

OR (VEYA) KAPISI DOĞRULUK TABLOSU		
inp	uts	output
А	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

VEYA KAPISI (OR GATE)

- Kediler dört ayaklıdır VEYA filler sekiz ayağa sahiptir = DOĞRU
- Yanlış + Doğru = DOĞRU
- (9 > 2) + (2 > 1) = DOĞRU
- ($\overline{20} = 20$) + (5 > 6) = YANLIŞ

OR (VEYA) KAPISI DOĞRULUK TABLOSU		
inp	uts	output
А	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

VEDEĞİL KAPISI (NAND GATE)

 VE kapısı ile DEĞİL kapılarının kombinasyonu ile elde edilir.

VEDEĞİL KAPISI (NAND GATE)

NAND KAPISI DOĞRULUK TABLOSU		
inp	uts	output
Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

VEYADEĞİL KAPISI (NOR GATE)

 VEYA kapısı ile DEĞİL kapısının kombinasyonu ile elde edilir.

NOR KAPISI DOĞRULUK TABLOSU

NOR KAPISI DOĞRULUK TABLOSU		
inp	uts	output
Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

Peki bu mantık kapılarını nerede bulacağız?

Örneğin 4068 entegresi:

- Yan tarafta 14 ayaklı entegrenin içinde 8 girişli 1 çıkışlı nand kapısı görülmekte.
- Girişler A,B,C,D,E,F,G,H
- Çıkış Y ,13 numaralı ayak.
- 14 numaralı ayaktan 5VDC yani giriş gerilimi uygulanır.
- 7 nolu Vss den toprak(şase)bağlantısı yapılır.
- N.C: Not Connected yani bir yere bağlı değil.

Doğruluk tablosu nedir?

- Doğruluk tabloları, sayısal devrenin analizinde kullanılan en basit ve faydalı yöntemdir.
- n sayıda giriş değeri varken, 2ⁿ sayıda çıkış değeri bulunabilir. Örneğin 2 giriş değeri varsa çıkış değeri 4 farklı değerden birisidir.

Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

Örnek: Q = A + B ifadesinin lojik devresini çizelim.

Örnek: Q = A.B.C ifadesinin lojik devresini çizelim

• Eğer elimizde 3 girişli AND kapısı var ise;

 Eğer elimizde 2 girişli AND kapıları var ise;

Örnek: Q = A.B+B ifadesinin lojik devresini çizelim

Örnek: Aşağıda verilen lojik devrenin çıkış ifadesini bulalım.

Örnek: Aşağıda verilen lojik devrenin çıkış ifadesini bulalım.

Soru: Aşağıda verilen lojik devrenin çıkış ifadesini bulunuz.

Soru: Aşağıda verilen lojik devrenin çıkış ifadesini bulunuz.

Örnek: Aşağıda verilen lojik devrenin çıkış ifadesini bulunuz.

Örnek: Aşağıda verilen lojik devrenin çıkış ifadesini bulunuz.

Özel VEYA Kapısı (XOR Gate),

- girişleri aynı olmadığında 1 çıkışını veren mantıksal kapıdır.
- A ve B farklıysa 1, aynıysa 0 çıkışını verir
- A ve B girişleri için 4 ayrı durum vardır. Bu durumlar aşağıdaki doğruluk tablosunda görülüyor:

Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	0

XOR KAPISI

XOR kapısı mesela nerede kullanılıyor?

- Endüstriyel servolarda motor miline bağlı encoder yada potansiyometre bulunmaktadır. Encoder li tiplerde referans noktası yada başlangıç noktasında encoder değeri sıfır alınarak dönüşlerde encoderden gelen palslar sayılarak uygun değerde motorun durdurulması
- veya dönen motorda uygun pozisyon yakalandıktan sonra durdurulması sağlanabilir.

- encoder den gelen A ve B girişleri kullanılır.
- Bu iki giriş bir birinden yarım faz farkı olan iki sinyal üretirler.

birbirinden yarım faz farkı olan iki sinyal

Yön tayini ilk okumanın (OLD) A biti ile son okumanın (NEW) B biti nin XOR yapılması ile bulunur.

- Yukarıdan aşağı doğru çizilen kesikli çizgiler encoderin okuma noktalarını gösterir.
- Bu noktalarda soldan sağa doğru gidişte (diyelimki motor sağ a dönüyor olsun) okunacak bilgi çiftleri şöyle olacaktır;
- 00 10 11 01 00

- Bu seferde motor sağdan sola yani sola dönerken aynı bilgilere bir göz atalım.
- 00 01 11 10 00 şeklinde olacaklardır.
- Yön tayini ilk okumanın (OLD) A biti ile son okumanın (NEW) B biti nin XOR yapılması ile bulunur.

Dikkat edin yön biti daima aynı değeri alıyor

- bir yönde dönüşlerde ilgili bitler XOR yapılırsa yön biti daima aynı değeri alıyor.
- Sola dönüşte 0 , sağa dönüşte ise
 1 olmaktadır.
- Bu şekilde motorun dönüp dönmediğini ne tarafa döndüğü belirlenebilir. Otomasyon sistemlerinde kullanılır.
- (Burası sadece bir fikir olsun diye anlatıldı, tabii ki sorumlu değiliz.)

 Mantık kapıları karar verirken yani akımın geçip geçmeyeceğini belirlerken Boolean Mantığı'nı kullanırlar.

