CS224n: NLP with deep learning Week 7	Tukun J a nya shanghai
Lecture 13: Contextual word Embeddings	
· up till now • ue have one representation of words:	
j.e. Word 2 Vec, Glo Ve, fast lext	
Pre-trained word vectors in most cases, use of word vectors helps, because we can train & test of	f pre-trained n more data
for more words, the performance more robust.	
· 2 problems : always the same representation re	gardless context
· want fine-grained word sense d	lis combigation
2 words have different aspects, semon connectation	
· In our LSTM,	15.
models are producing context-specific word representation.	esentation at
use different layers to represent different aspects of weighting of LSTM	word meanings.
- neighting of LSTM	
. 1 layer for lower-lever syntax	
· 1 layer for high-level semantic	
Transformer models	
· Molivation: ae uent parallelization,	
but RNNs are inherently sequential	
need attention for long legath	
· Dot-Product oftention	
7 () () () () () () () () () (
· Dot-Product aftention $A(q, k, V) = \sum_{i} \frac{e^{q \cdot k_i}}{\sum_{j} e^{q \cdot k_j}} Vi$	
output is neighted sum of values	

need normalizations
· Multi-head attention
Bert (Bidirectional Encoder Representation from Transformer)
· Mask out k% of the input words, and then predict the masked words.
-15%, 1 out of 7.
Bert complication: next sentence prediction
· simply learn a classifier built on top layer for each task
TIGT VOA I/ha tiine to
Lecture 14: Transformers and Self-attentation for generative
ve want model hierarchy.
No explicit method for long / short dependence range
CNN? long-distance dependencies require many layers.
Use Attention for representation.
· Text generation: seff-attention: constant path length'
· Seff-similarity images music
· Probabilistic image generation
· Non-local mean: de-blurring ve can combine locality with selfattention Music generation using relative attention
Music generation using relative attention
Multihead + convolution?