Summer Online Course

Digital Logic Design

Flip Flops Summary of Flip

Sequential Logic Circuit Design Module III (Lec-3,4)

Flip Flop

Digital Logic Design

Flip Flops
Summary of F

■ Flip flop is a basic memory element, which can store one bit of data.

Flip Flop

Digital Logic Design

Flip Flops
Summary of Fli
Flops

- Flip flop is a basic memory element, which can store one bit of data.
- Flip flop have two stable states, that's why it is called ad bistable multivibrator.

Flip Flops
Summary of Fli
Flops

- Flip flop is a basic memory element, which can store one bit of data.
- Flip flop have two stable states, that's why it is called ad bistable multivibrator.
- Flip flop is an edge triggered circuit.

Flip Flop

Digital Logic Design

Flip Flops

- Flip flop is a basic memory element, which can store one bit of data.
- Flip flop have two stable states, that's why it is called ad bistable multivibrator.
- Flip flop is an edge triggered circuit.

Flip Flops Classification

- [1] SR Flip Flop
- [3] D Flip Flop

- [2] JK Flip Flop
- [4] T Flip Flop

Flip Flop

Digital Logic Design

Flip Flops Summary of F Flops

- Flip flop is a basic memory element, which can store one bit of data.
- Flip flop have two stable states, that's why it is called ad bistable multivibrator.
- Flip flop is an edge triggered circuit.

Flip Flops Classification

- [1] SR Flip Flop
- op [2] JK Flip Flop
- [3] D Flip Flop

[4] T Flip Flop

Procedure for Designing of Flip Flops

[1] Truth Table

[2] Characteristic Table

- [3] Characteristic Equation
- [4] Excitation Table

Digital Logic Design

Flip Flops
Summary of Flip
Flops

Table: Truth Table for SR Flip Flop

Clk	S	R	Q
0	×	×	Previous state
1	0	0	Previous state
1	0	1	0 (Reset State)
1	1	0	1 (Set State)
1	1	1	Invalid state

Digital Logic Design

Flip Flops
Summary of Fli
Flops

Table: Truth Table for SR Flip Flop

Clk	S	R	Q
0	×	×	Previous state
1	0	0	Previous state
1	0	1	0 (Reset State)
1	1	0	1 (Set State)
1	1	1	Invalid state

■ The control input (E or Clk) acts as an enable signal or clocked pulse for the two inputs.

Digital Logic Design

Flip Flops Summary of Fl Flops

Table: Truth Table for SR Flip Flop

Clk	S	R	Q
0	×	×	Previous state
1	0	0	Previous state
1	0	1	0 (Reset State)
1	1	0	1 (Set State)
1	1	1	Invalid state

- The control input (E or Clk) acts as an enable signal or clocked pulse for the two inputs.
- When **E=0**, the circuit remains in the previous state.
- When **E** goes to **1**, information from the S or R input is allowed to get the output.

Digital Logic Design

Flip Flops
Summary of Flip
Flops

Table: Characteristic Table for SR Flip Flop

S	R	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	×
1	1	1	×

Table: Characteristic Table for SR Flip Flop

S	R	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	×
1	1	1	×

Table: **Excitation Table** for SR Flip Flop

Q_n	Q_{n+1}	S	R
0	0	0	×
0	1	1	0
1	0	0	1
1	1	×	0

Digital Logic Design

Flip Flops
Summary of Fli

Table: Characteristic Table for SR Flip Flop

S	R	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	×
1	1	1	×

Table: **Excitation Table** for SR Flip Flop

Q_n	Q_{n+1}	S	R
0	0	0	×
0	1	1	0
1	0	0	1
1	1	×	0

К Мар

Flip Flops
Summary of Fli
Flops

Table: Characteristic Table for SR Flip Flop

S	R	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	×
1	1	1	×

Characteristic Equation

$$Q_{n+1} = S + \bar{R}Q_n$$

Table: **Excitation Table** for SR Flip Flop

Q	n	$\overline{Q_{n+1}}$	S	R
0	(0	0	×
0		1	1	0
1	(0	0	1
1		1	×	0

К Мар

JK Flip Flop

Digital Logic Design

Flip Flops
Summary of Flip
Flops

Table: Truth Table for JK Flip Flop

Clk	J	K	Q
0	×	×	Hold (Q_n)
1	0	0	Hold (Q_n)
1	0	1	0
1	1	0	1
1	1	1	Toggle (\bar{Q}_n)

JK Flip Flop

Digital Logic Design

Flip Flops
Summary of Flip
Flops

Table: Truth Table for JK Flip Flop

Clk	J	K	Q
0	×	×	Hold (Q_n)
1	0	0	Hold (Q_n)
1	0	1	0
1	1	0	1
1	1	1	Toggle $(ar{Q}_n)$

■ The JK FF is used to avoid the invalid state in the SR FF.

Flip Flops
Summary of Flip
Flops

Table: Truth Table for JK Flip Flop

Clk	J	K	Q
0	×	×	Hold (Q_n)
1	0	0	Hold (Q_n)
1	0	1	0
1	1	0	1
1	1	1	Toggle $(ar{Q}_n)$

- The JK FF is used to avoid the invalid state in the SR FF.
- When **Clk=0**, the circuit remains in the previous state.
- When **Clk goes to 1**, information from the J and K input is allowed to get the output.

JK Flip Flop

Digital Logic Design

Flip Flops
Summary of Fli
Flops

Table: Characteristic Table for JK Flip Flop

J	K	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0 1	0
0	1	1	0
1	0	0	1
1 1	0	0 1	1
1	1	0	1
1	1	1	0

Flip Flops Summary of Fli Flops

Table: Characteristic Table for JK Flip Flop

J	K	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Table: **Excitation Table** for JK Flip Flop

Q_n	Q_{n+1}	J	K
0	0	0	×
0	1	1	×
1	0	×	1
1	1	×	0

JK Flip Flop

Digital Logic Design

Flip Flops Summary of Fli Flops

Table: Characteristic Table for JK Flip Flop

J	K	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Table: **Excitation Table** for JK Flip Flop

Q_n	Q_{n+1}	J	K
0	0	0	×
0	1	1	×
1	0	×	1
1	1	×	0

K Map

Flip Flops Summary of Fli Flops

Table: **Characteristic Table** for JK Flip Flop

J	K	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Characteristic Equation

$$Q_{n+1} = J\bar{Q}_n + \bar{K}Q_n$$

Table: **Excitation Table** for JK Flip Flop

Q_n	Q_{n+1}	J	K
0	0	0	×
0	1	1	×
1	0	×	1
1	1	×	0

К Мар

D Flip Flop

Digital Logic Design

Flip Flops
Summary of Flip

Delayed Flip Flop is one of the simple FF to store data. It is also called transparent FF.

D Flip Flop

Digital Logic Design

Flip Flops
Summary of Flip

- Delayed Flip Flop is one of the simple FF to store data. It is also called transparent FF.
- One way to eliminate the undesirable condition of the invalid state in the SR latch.

D Flip Flop

Digital Logic Design

Flip Flops
Summary of Flip
Flops

- Delayed Flip Flop is one of the simple FF to store data. It is also called transparent FF.
- One way to eliminate the undesirable condition of the invalid state in the SR latch.
- Ensure that inputs S and R are never equal to 1 at the same time.

Flip Flops
Summary of Fli

- Delayed Flip Flop is one of the simple FF to store data. It is also called transparent FF.
- One way to eliminate the undesirable condition of the invalid state in the SR latch.
- Ensure that inputs S and R are never equal to 1 at the same time.

Flip Flops
Summary of Fli

- Delayed Flip Flop is one of the simple FF to store data. It is also called transparent FF.
- One way to eliminate the undesirable condition of the invalid state in the SR latch.
- Ensure that inputs S and R are never equal to 1 at the same time.

Flip Flops
Summary of Flip

Table: Truth Table for D Latch

Ε	D	Q
0	×	Previous state
1	0	0; Reset
1	1	1; Set

Flip Flops
Summary of Flip

Table: Truth Table for D Latch

Ε	D	Q
0	×	Previous state
1	0	0; Reset
1	1	1; Set

Table: **Characteristic Table** for D Flip Flop

D	Q_n	Q_{n+1}
0	0	0
0	1	0
1	0	1
1	1	1

Flip Flops Summary of Fli Flops

Table: Truth Table for D Latch

Ε	D	Q
0	×	Previous state
1	0	0; Reset
1	1	1; Set

Characteristic Equation

$$Q_{n+1} = D$$

Therefore it is also called as transparent latch or flip flop.

Table: Characteristic Table for D Flip Flop

D	Q_n	Q_{n+1}
0	0	0
0	1	0
1	0	1
1	1	1

Flip Flops
Summary of Fli
Flops

Table: Truth Table for D Latch

Е	D	Q
0	×	Previous state
1	0	0; Reset
1	1	1; Set

Table: **Characteristic Table** for D Flip Flop

D	Q_n	Q_{n+1}
0	0	0
0	1	0
1	0	1
1	1	1

Characteristic Equation

$$Q_{n+1} = D$$

Therefore it is also called as transparent latch or flip flop.

Table: **Excitation Table** for D Flip Flop

Q_n	Q_{n+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

T Flip Flop

Digital Logic Design

Flip Flops

■ T- FF is also known as toggle FF.

Flip Flops

- T- FF is also known as toggle FF.
- This is the another way to eliminate the undesirable condition of the invalid state in the SR latch.

Flip Flops
Summary of Fli

- T- FF is also known as toggle FF.
- This is the another way to eliminate the undesirable condition of the invalid state in the SR latch.
- We can design the T-FF by making simple modifications to the JK FF.

- T- FF is also known as toggle FF.
- This is the another way to eliminate the undesirable condition of the invalid state in the SR latch.
- We can design the T-FF by making simple modifications to the JK FF.
- The T- FF is a single input device and hence by connecting J and K inputs together we can convert a JK FF into T-FF.

Flip Flops Summary of F Flops

- T- FF is also known as toggle FF.
- This is the another way to eliminate the undesirable condition of the invalid state in the SR latch.
- We can design the T-FF by making simple modifications to the JK FF.
- The T- FF is a single input device and hence by connecting J and K inputs together we can convert a JK FF into T-FF.

Flip Flops
Summary of Fl
Flops

- T- FF is also known as toggle FF.
- This is the another way to eliminate the undesirable condition of the invalid state in the SR latch.
- We can design the T-FF by making simple modifications to the JK FF.
- The T- FF is a single input device and hence by connecting J and K inputs together we can convert a JK FF into T-FF.

Flip Flops
Summary of Fl

Table: Truth Table for T FF

Ε	Т	Q
0	×	Previous state
1	0	Q_n
1	1	$ar{Q}_n$

Digital Logic Design

Flip Flops
Summary of Fli

Table: Truth Table for T FF

E	T	Q
0	×	Previous state
1	0	Q_n
1	1	$ar{Q}_n$

Table: **Characteristic Table** for T Flip Flop

Т	Q_n	Q_{n+1}
0	0	0
0	1	1
1	0	1
1	1	0

T Flip Flop

Digital Logic Design

Flip Flops
Summary of F

Table: Truth Table for T FF

E	T	Q
0	×	Previous state
1	0	Q_n
1	1	$ar{Q}_n$

Table: **Characteristic Table** for T Flip Flop

Т	Q_n	Q_{n+1}
0	0	0
0	1	1
1	0	1
1	1	0

Characteristic Equation

$$Q_{n+1} = \bar{T}Q_n + T\bar{Q}_n = T \oplus Q_n$$

Table: **Excitation Table** for T Flip Flop

Q_n	Q_{n+1}	Т
0	0	0
0	1	1
1	0	1
1	1	0

Digital Logic Design

Digital Logic Design

Digital Logic Design

Digital Logic Design

Figure: Logic Diagram of Flip flops

Digital Logic Design

Flip Flops Summary of Fl Table: SR Flip Flop

S	R	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	Invalid

Digital Logic Design

Flip Flops Summary of Flip Table: SR Flip Flop

S	R	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	Invalid

Table: JK Flip Flop

J	K	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	\bar{Q}_n

Digital Logic Design

Flip Flops Summary of Flip

Table: SR Flip Flop

S	R	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	Invalid

Table: D Flip Flop

D	Q_{n+1}
0	0
1	1

Table: JK Flip Flop

J	K	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	\bar{Q}_n

Digital Logic Design

Flip Flops Summary of Flip Flops

Table: SR Flip Flop

S	R	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	Invalid

Table: JK Flip Flop

J	K	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	$ar{Q}_n$

Table: D Flip Flop

D	Q_{n+1}
0	0
1	1

Table: T Flip Flop

Т	Q_{n+1}
0	Q_n
1	\bar{Q}_n

Digital Logic Design

Flip Flops Summary of Flip Flops

Table: SR Flip Flop

S	R	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	Invalid

Table: JK Flip Flop

J	K	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	\bar{Q}_n

All tables are inside the JK FF

Table: D Flip Flop

D	Q_{n+1}
0	0
1	1

Table: T Flip Flop

Т	Q_{n+1}
0	Q_n
1	\bar{Q}_n

Universal FF.

Excitation Table and Characteristic Equations

Digital Logic Design

Flip Flops Summary of Fl Flops

Table: Excitation Table for all Flip Flop

Q_n	Q_{n+1}	S	R	J	K	D	Т
0	0	0	×	0	×	0	0
0	1	1	0	1	×	1	1
1	0	0	1	×	1	0	1
1	1	×	0	×	0	1	0

Characteristic Equations

 $SR FF: Q_{n+1} = S + R'Q_n$

JK FF: $Q_{n+1} = JQ'_n + K'Q_n$

D FF: $Q_{n+1} = D$

TFF: $Q_{n+1} = T \oplus Q_n$