Outline

- Partition-based clustering
- Hierarchical clustering
- Density-based clustering
- Model-based clustering

Density based clustering

- Clusters are regions of high density surrounded by regions of low density (noise)
- Clustering based on density (local cluster criterion), such as density-connected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)
 - OPTICS: Ankerst, et al (SIGMOD'99).
 - DENCLUE: Hinneburg & D. Keim (KDD'98)
 - CLIQUE: Agrawal, et al. (SIGMOD'98) (more grid-based)

The notion of density

- Density:
 - Density is measured locally in the Eps-neighborhood (or ε-neighborhood) of each point
 - Density = number of points within a specified radius Eps (point itself included)

- Density depends on the specified radius
 - □ In an extreme small radius, all points will have a density of 1 (only themselves)
 - □ In an extreme large radius, all points will have a density of N (the size of the dataset)

DBSCAN basic concepts

- Consider a dataset D of objects to be clustered
- Two parameters:
 - Eps (or ε): Maximum radius of the neighbourhood
 - MinPts: Minimum number of points in an Eps-neighbourhood of that point
- Eps-neighborhood of a point p in D
 - N_{Eps}(p): {q belongs to D | dist(p,q) <= Eps}</pre>

The Eps-neighborhood of p

Core points vs border points vs noise points

- Let D be a dataset. Given a radius parameter Eps and a density parameter MinPts we can distinguish between:
 - Core points

A point is a core point if it has more than a specified number of points (MinPts) within a specified radius Eps, i.e.,:

$$|N_{Eps}(p)=\{q \mid dist(p,q) \le Eps \}| \ge MinPts$$

- These are points that are at the interior of a cluster
- Border points

A border point has fewer than MinPts within Eps radius, but it is in the neighborhood of a core point

neither a core point nor a border point.

Example

Core, Border and Noise points

Eps = 10, MinPts = 4

Direct reachability

- Directly density-reachable: A point p is directly density-reachable from a point q w.r.t. Eps, MinPts if
 - p belongs to $N_{Eps}(q)$
 - q is a core point, i.e.,: $|N_{Eps}(q)| >= MinPts$

Reachability

- Density-reachable:
 - A point p is density-reachable from a point q w.r.t. Eps, MinPts if there is a chain of points p_1 , ..., p_n , $p_1 = q$, $p_n = p$ such that p_{i+1} is directly density-reachable from p_i

Connectivity

Density-connected

□ A point *p* is density-connected to a point *q* w.r.t. *Eps, MinPts* if there is a point *o* such that both, *p* and *q* are density-reachable from *o* w.r.t. *Eps* and *MinPts*

Cluster

A cluster is a maximal set of density-connected points

DBSCAN algorithm (from Lecture 11)

- Arbitrary select a point p
- Retrieve all points density-reachable from p w.r.t. Eps and MinPts.
- If p is a core point, a cluster is formed.
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

DBSCAN pseudocode I

```
DBSCAN(Dataset DB, Real Eps, Integer MinPts)

// initially all objects are unclassified,

// o.ClId = unclassified for all o ∈ DB

ClusterId := nextId(NOISE);

for i from 1 to |DB| do

Object := DB.get(i);

if Object.ClId = unclassified then

if ExpandCluster(DB, Object, ClusterId, Eps, MinPts)

then ClusterId:=nextId(ClusterId);
```

DBSCAN pseudocode II

```
ExpandCluster(DB, StartObject, ClusterId, Eps, MinPts): Boolean
 seeds:= RQ(StartObjekt, Eps);
 if |seeds| < MinPts then // StartObject is not a core object</pre>
    StartObject.ClId := NOISE;
        return false;
 else // else: StartObject is a core object
        forall o ∈ seeds do o.ClId := ClusterId;
       remove StartObject from seeds;
    while seeds ≠ Empty do
        select an object o from the set of seeds;
               Neighborhood := RQ(o, Eps);
               if |Neighborhood| ≥ MinPts then // o is a core object
                          for i from 1 to |Neighborhood| do
                              p := Neighborhood.get(i);
                              if p.ClId in {UNCLASSIFIED, NOISE} then
                                 if p.ClId = UNCLASSIFIED then
                                    add p to the seeds;
                                   p.ClId := ClusterId;
                end if:
            end for;
               end if;
               remove o from the seeds;
    end while:
 end if
return true;
```

DBSCAN: An example*

- 1. Check the ε -neighborhood of p;
- 2. If p has less than MinPts neighbors then mark p as outlier and continue with the next object
- 3. Otherwise mark p as processed and put all the neighbors in cluster C₁

- 1. Check the unprocessed objects in C₁
- 2. If no core object, return C₁
- 3. Otherwise, randomly pick up one core object p_1 , mark p_1 as processed, and put all unprocessed neighbors of p_1 in cluster C_1

Source: http://www.cse.buffalo.edu/ faculty/azhang/cse601/dens ity-based.ppt

Complexity

- For a dataset D consisting of n points, the time complexity of DBSCAN is O(n x time to find points in the Eps-neighborhood)
- Worst case O(n²)
- In low-dimensional spaces O(nlogn);
 - efficient data structures (e.g., kd-trees) allow for efficient retrieval of all points within a given distance of a specified point

When DBSCAN works well?

- Resistant to noise
- Can handle clusters of different shapes and sizes

When DBSCAN does not work well?

Original points

- Varying densities
- High-dimensional data

(MinPts=4, Eps=9.92).

(MinPts=4, Eps=9.75)

DBSCAN: determining Eps and MinPts

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor

