CS & IT

ENGINEERING

DIGITAL Logic

MINIMIZATION

Lecture No. 06

By- CHANDAN SIR

TOPICS TO BE COVERED 01 Prime Implicants

02 Essential Prime Implicants

03 Question Practice

03 Discussion

.

$$F = (A+B) \cdot (\overline{A}+\overline{B}) \cdot (A+\overline{C}) \cdot (A+\overline{$$

Method 2

$$F = \overline{AB+AB+AC}$$

$$F = (A+B).(\overline{A+B}).(A+\overline{C}) (A+\overline{C}) (A+\overline{C})$$

$$= \prod M(.2,4,5,8,9,12,13)|4,15)$$

$$= f(A_1B_1C_1D) = \sum m(0,1,3,6,7,10,11)$$

minimize It in Posform ?

$$F = (\overline{G} + C) \cdot (\overline{A} + \overline{G}) \cdot (\overline{A} + C) \cdot (\overline{A} + C$$

$$= (A+(+0)\cdot (B+(+\overline{0})\cdot (\overline{B}+\overline{C}+\overline{0})\cdot (\overline{A}+\overline{D})$$

$$f(A_1B) = \overline{AB} + \overline{AB}$$

$$= \overline{AB} \cdot 1 + \overline{AB} \cdot 1$$

Variable inside the K-MAP

EX. AO I C

$$f(A_1B_1C) = \overline{AB.1} + \overline{ABC}$$

$$= \overline{A[B+BC]}$$

$$= \overline{A[B+B).(B+C)}$$

$$= \overline{A.(B+C)}$$

$$= \overline{A.(B+C)}$$

Case (1)
$$C=0$$
 $R > 0$
 $A >$

Method (1) Boolean algebra

$$f(A_1G_1C) = \overline{A} \left[\overline{B} + \overline{B} C \right]$$

$$= \overline{A} \left(\overline{B} + \overline{B} \right) \left(\overline{B} + C \right) \right]$$

$$= \overline{A} \cdot \left(\overline{B} + C \right)$$

$$= \sum m(0,1,3) = \prod M(2,4,5,6,7)$$

12/	36	00	BC 01	BC 11	Bc 10	Bec	Btc Btc	Stē Bc 01.	Btc Bc	B+C BC
4	0	1	L	1	0	OĀA	1	1	1	Ò
A	1	0	0	0	0	A A!	0	0	0	O

Sop
$$f = \overline{AB+AC}$$

= $\overline{A(B+C)}$

Q f(ABC) = AB+ ABC = AB-1+ AB-C

$$f = \overline{A} + \overline{A} + \overline{B} = \overline{A$$

$$B \cdot C + \bar{A} \cdot (\bar{B} + c)$$

C=0

C=

$$(\bar{A}+B)C$$

$$\bar{A}(\bar{g}+c)+BC(\bar{A}9)$$

Pw

$$AC+B(\bar{A}+c)$$

ACTABTBC

$$\overline{ABC} + AC+BC$$
 $AC+B(\overline{AC+C}) = AC+B(\overline{A+C})$

HO

Q

PE	00	01	11	10
0	1	R	R	
1			R	1

Thank you

Soldiers!

