Une feuille A4 manuscrite recto-verso est autorisée. Tout autre document et appareils électroniques (calculatrices, téléphones, tablettes, ...) sont interdits. Lisez bien les énoncés.

Barème indicatif : Qu. $1 \rightarrow 8,5$ pts, Qu. $2 \rightarrow 7$ pts, Qu. $3 \rightarrow 4,5$ pts. La note tiendra compte de l'orthographe et de la présentation de la copie.

- **Qu.** 1 Soient $E = \{a, b, c\}$ et $F = [1, .., 4]_{\mathbb{N}}$.
 - a) Qu'est-ce que précisément $E \times F$? Combien d'éléments $E \times F$ contient-il? Donner trois de ces éléments.

Soit \mathcal{R} une relation binaire dans $E \times F$ définie par $(x,y)\mathcal{R}(z,t)$ ssi y < t ou (x,y) = (z,t).

- b) Donnez 2 éléments de $E \times F$ en relation par \mathcal{R} et 2 éléments qui ne sont pas en relation par \mathcal{R} .
- c) Montrez que \mathcal{R} est une relation d'ordre sur $E \times F$.
- d) Est-ce un ordre partiel ou total? Justifiez.
- e) Dessinez le diagramme de Hasse de la relation \mathcal{R} sur $E \times F$.
- f) L'ensemble $E \times F$ admet-il un maximum pour la relation \mathcal{R} ? Si oui, lequel?
- g) L'ensemble $E \times F$ admet-il des éléments maximaux pour la relation \mathcal{R} ? Si oui, lesquels?
- h) Donnez les minorants et la borne inférieure, si elle existe, de $\{(a,2),(b,2)\}$ dans $E \times F$ pour la relation \mathcal{R} .

Soit S une relation binaire dans $E \times F$ définie par (x, y)S(z, t) ssi x = z.

- i) Montrez que S est une relation d'équivalence sur $E \times F$.
- j) Combien la relation S définit-elle de classes d'équivalences? Proposez une expression en compréhension de chacune de ces classes, que vous nommerez c_1 à c_n .
- k) Montrez que $C = \{c_1, c_2, \dots, c_n\}$ est une partition de $E \times F$.
- **Qu. 2** Soit $A = \{a, b, c, d\}$. On note A^* l'ensemble des mots construits avec l'alphabet A, y compris le mot vide ϵ . On définit $E \subseteq A^*$ par l'induction suivante :

Base: $\{\epsilon, a, b\}$

Règles:

R1. si $u \in E$, alors $u.a \in E$

 $R2. \text{ si } u \in E, \text{ alors } u.b \in E$

- a) Donnez tous les mots de E de longueur ≤ 3 . Donnez un élément de A^* n'appartenant pas à E.
- b) Donnez la séquence de construction du mot $abbaa \in E$, c.-à-d. l'élément de la base et la suite de règles qui ont servi à le construire.
- c) Définissez par induction l'application nba qui à chaque élément de E associe son nombre d'occurrence de a. Par exemple, nba(a) = 1, nba(bbb) = 0, nba(abababa) = 4.
- d) Montrez par induction structurelle que tous les mots de E sont dans $\{a,b\}^*$ l'ensemble des mots de l'alphabet $\{a,b\}$.
- e) Montrez par récurrence sur la longueur des mots que tout mot de $\{a,b\}^*$ est dans E.
- f) Quelle est la relation entre E et $\{a,b\}^*$? Justifiez.
- **Qu. 3** Soit F un ensemble de 44 fleurs et V un ensemble de 10 vases.
 - a) Si on associe à **chaque** fleur de F un vase de V, quel objet mathématique est-on en train de construire?
 - b) Qu'est-ce que cela signifierait sur la répartition des fleurs si cet objet était injectif? surjectif? Est-ce possible?

 Justifiez.
 - c) Peut-on être sûr qu'au moins un vase contient au moins
 - i. 4 fleurs?
 - ii. 5 fleurs?
 - iii. 6 fleurs?

Justifiez.

- d) Combien existe-t-il de façons de répartir les fleurs dans les vases? Justifiez.
- e) Parmi celles-ci, combien mettent exactement 30 fleurs dans un vase? Détaillez votre raisonnement.

Une feuille A4 manuscrite recto-verso est autorisée. Tout autre document et appareils électroniques (calculatrices, téléphones, tablettes, ...) sont interdits. Lisez bien les énoncés.

Barème indicatif : Qu. $1 \rightarrow 8,5$ pts, Qu. $2 \rightarrow 7,25$ pts, Qu. $3 \rightarrow 4,5$ pts. La note tiendra compte de l'orthographe et de la présentation de la copie.

Qu. 1 8,5 pts Soient $E = \{a, b, c\}$ et $F = [1, ..., 4]_{\mathbb{N}}$.

a) 1 pt Qu'est-ce que précisément $E \times F$? Combien d'éléments $E \times F$ contient-il? Donner trois de ces éléments. $E \times F$ est le produit cartésien de E par F ou ensemble des couples dont le premier élément est élément de E et le second de F. $|E \times F| = 12$. (a, 1), (b, 2) et (c, 4) sont dans $E \times F$.

Soit \mathcal{R} une relation binaire dans $E \times F$ définie par $(x,y)\mathcal{R}(z,t)$ ssi y < t ou (x,y) = (z,t).

- b) 0.5 pt Donnez 2 éléments de $E \times F$ en relation par \mathcal{R} et 2 éléments qui ne sont pas en relation par \mathcal{R} . $(a, 2)\mathcal{R}(a, 4)$ et (a, 2) \mathcal{R} (a, 1)
- c) 1 pt Montrez que \mathcal{R} est une relation d'ordre sur $E \times F$. \mathcal{R} est réflexive car par définition $(x,y)\mathcal{R}(z,t)$ si (x,y)=(z,t). \mathcal{R} est antisymétrique, en effet si $(x,y)\mathcal{R}(z,t)$ et $(x,y)\neq(z,t)$ alors y< t et donc (z,t) \mathcal{R} (x,y). \mathcal{R} est transitive car si $(x,y)\mathcal{R}(z,t)$ et $(z,t)\mathcal{R}(u,v)$ alors soit
 - soit (x, y) = (z, t) et (z, t) = (u, v) donc (x, y) = (u, v) et $(x, y)\mathcal{R}(u, v)$
 - soit (x,y) = (z,t), d'où y = t, et t < v donc y < v et $(x,y)\mathcal{R}(u,v)$
 - soit $(y < t \text{ et } (z, t) = (u, v), \text{ d'où } t = v, \text{ donc } y < v \text{ et } (x, y)\mathcal{R}(u, v)$
 - soit y < t et t < v donc y < v et $(x, y)\mathcal{R}(u, v)$
- d) 0.5 pt Est-ce un ordre partiel ou total? Justifiez. Partiel car (a,1) et (b,1) ne sont pas comparables par exemple
- e) 1 pt Dessinez le diagramme de Hasse de la relation \mathcal{R} sur $E \times F$.

- f) 0.5 pt L'ensemble $E \times F$ admet-il un maximum pour la relation \mathcal{R} ? Si oui, lequel? Pas de maximum
- g) **0.5 pt** L'ensemble $E \times F$ admet-il des éléments maximaux pour la relation \mathcal{R} ? Si oui, lesquels ? $\{(a,4),(b,4),(c,4)\}$
- h) **0.5 pt** Donnez les minorants et la borne inférieure, si elle existe, de $\{(a,2),(b,2)\}$ dans $E \times F$ pour la relation \mathcal{R} . $\{(a,1),(b,1),(c,1)\}$, pas de borne inf.

Soit S une relation binaire dans $E \times F$ définie par (x, y)S(z, t) ssi x = z.

- i) 1 pt Montrez que S est une relation d'équivalence sur $E \times F$. S est réflexive car $\forall (x,y) \in E \times F$ (x,y)S(x,y). S est symétrique, en effet si (x,y)S(z,t) alors x=z et donc (z,t)S(x,y). S est transitive car si (x,y)S(z,t) et (z,t)S(u,v) alors x=z et z=u donc x=u et (x,y)S(u,v).
- j) **1 pt** Combien la relation S définit-elle de classes d'équivalences? Proposez une expression en compréhension de chacune de ces classes, que vous nommerez c_1 à c_n . Autant de classes que d'élément dans E c.-à-d. 3. $c_1 = \{(a,n) \mid n \in F\}$; $c_2 = \{(b,n) \mid n \in F\}$; $c_3 = \{(c,n) \mid n \in F\}$.
- k) 1 pt Montrez que $C = \{c_1, c_2, ..., c_n\}$ est une partition de $E \times F$. Aucun des c_i n'est vide. Les c_i sont deux à deux disjoints, chaque classe ayant comme premier élément de leurs couples des lettres différentes. L'union des c_i est égale à $E \times F$ puisque par définition chaque élément de $E \times F$ est dans une classe d'équivalence.
- **Qu. 2** 7,25 pts Soit $A = \{a, b, c, d\}$. On note A^* l'ensemble des mots construits avec l'alphabet A, y compris le mot vide ϵ . On définit $E \subseteq A^*$ par l'induction suivante :

Base : $\{\epsilon, a, b\}$

Règles:

R1. si $u \in E$, alors $u.a \in E$

 $R2. \text{ si } u \in E, \text{ alors } u.b \in E$

a) 1.75 pts Donnez tous les mots de E de longueur ≤ 3 . Donnez un élément de A^* n'appartenant pas à E. $\{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb\} \subseteq E$ et $ad \notin E$.

- b) **1 pt** Donnez la séquence de construction du mot $abbaa \in E$, c.-à-d. l'élément de la base et la suite de règles qui ont servi à le construire. $a \xrightarrow{R_2} ab \xrightarrow{R_2} abb \xrightarrow{R_1} abba \xrightarrow{R_1} abbaa$
- c) **1 pt** Définissez par induction l'application nba qui à chaque élément de E associe son nombre d'occurrence de a. Par exemple, nba(a) = 1, nba(bb) = 0, nba(abababa) = 4.

Base:

```
Base: nba(\epsilon) = 0, nba(a) = 1, nba(b) = 0.
```

Règles:

```
R1. nba(u.a) = 1 + nba(u)
```

$$R2. \ nba(u.b) = nba(u)$$

- d) **1.5 pts** Montrez par induction structurelle que tous les mots de E sont dans $\{a,b\}^*$ l'ensemble des mots de l'alphabet $\{a,b\}$. Soit $P(e)="e"e"e"e"e"e"e dans <math>\{a,b\}^*$ ". Montrons que P(e) est vraie $\forall e \in E$.
 - Base : ϵ , a et b sont bien dans $\{a,b\}^*$
 - $-R_1$: Soit $u \in E$ tel que P(u) vrai, c.-à-d. que $u \in \{a,b\}^*$. $R_1(u) = u.a$ or $u \in \{a,b\}^*$ et $a \in \{a,b\}^*$ donc $u.a \in \{a,b\}^*$
 - On montrerait de même pour R_2 .

Conclusion, par le principe d'induction structurelle, P(e) est vraie $\forall e \in E$.

- e) 1.5 pts Montrez par récurrence sur la longueur des mots que tout mot de $\{a,b\}^*$ est dans E. Soit P(n)="Tout mot de $\{a,b\}^*$ de longueur n est dans E". Montrons que P(n) est vraie $\forall n \in \mathbb{N}$.
 - Base: pour n = 0, un seul mot de $\{a, b\}^*$ de longueur $0 : \epsilon$ qui est bien dans E. Donc P(0) vraie.
 - Récurrence : Montrons que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 0$.

```
HR : On suppose P(n) vraie pour un n \ge 0
```

Considérons un mot $w \in \{a,b\}^*$ de longueur $n+1 \ge 1$. La dernière lettre de w est forcément un a ou un b. Supposons que ce soit un a (resp. b), alors w=v.a (resp. w=v.b) avec v un mot de $\{a,b\}^*$ de longueur n. Par \mathbf{HR} , $v \in \{a,b\}^*$. Or $w=R_1(v)$ (resp. $w=R_2(v)$), donc $w \in \{a,b\}^*$. D'où P(n+1) vraie.

- Conclusion : on a montré que P(0) est vraie et que $P(n) \Rightarrow P(n+1) \ \forall n \geqslant 0$, donc par le principe de récurrence on a P(n) vraie $\forall n \geqslant 0$
- f) **0.5 pt** Quelle est la relation entre E et $\{a,b\}^*$? Justifiez. On a montré dans 2d que $E \subseteq \{a,b\}^*$ et dans 2e que $\{a,b\}^* \subseteq E$, donc $E = \{a,b\}^*$.
- **Qu. 3** 4,5 pts Soit F un ensemble de 44 fleurs et V un ensemble de 10 vases.
 - a) 0.75 pt Si on associe à **chaque** fleur de F un vase de V, quel objet mathématique est-on en train de construire? Une application de F dans V.
 - b) 1 pt Qu'est-ce que cela signifierait sur la répartition des fleurs si cet objet était injectif? surjectif? Est-ce possible? Justifiez. L'application ne peut pas être injective car |F| > |V|, d'après le théorème vu en cours. Si l'application est surjective, alors aucun vase n'est vide
 - c) 1 pt Peut-on être sûr qu'au moins un vase contient au moins
 - i. 4 fleurs? oui
 - ii. 5 fleurs? oui
 - iii. 6 fleurs? non

Justifiez. D'après le principe des tiroirs au moins 1 vase contient au moins $\left\lceil \frac{44}{10} \right\rceil = 5$

- d) 0.75 pt Combien existe-t-il de façons de répartir les fleurs dans les vases? Justifiez. Autant que d'applications de F dans V, c.-à-d. $|V|^{|F|} = 10^{44}$
- e) 1 pt + bonus Parmi celles-ci, combien mettent exactement 30 fleurs dans un vase? Détaillez votre raisonnement. Choisir les 30 fleurs : $\binom{30}{44}$, choisir le vase : $\binom{1}{10}$ puis affecter les 14 fleurs restantes dans les 9 vases restant (= "applications de 14 fleurs vers 9 vases") : 9^{14} . Il ne reste plus qu'à multiplier ces quantités