Tarih: 01/09/2022 Saat: 10:30-11:40

ADI SOYADI:

ÖĞRENCİ NO:

İŞLEM YAPILMADAN VERİLEN CEVAPLAR DİKKATE ALINMAYACAKTIR

1) $y'' + 2y' + y = 3e^{-x}\sqrt{1+x}$ denkleminin genel çözümünü elde ediniz.

$$y_{p} = C_{1}(x)e^{x} + C_{1}(x)xe^{x}$$

$$c_{1}^{1}e^{x} + C_{1}^{1}xe^{x} = 0$$

$$-C_{1}^{1}e^{x} + C_{1}^{1}(e^{x}-xe^{x}) = 3e^{x}\sqrt{1+x}$$

$$c_{2}^{1} = 3\sqrt{1+x} \Rightarrow c_{1} = 2(1+x)$$

$$c_{1}^{1} = -3x\sqrt{1+x} \Rightarrow c_{1} = 2(1+x)$$

2) $(x^2+1)y^2-2xy^2+2y=6(x^2+1)^2$ denkleminin genel çözümünü basamağın indirilmesi metodu yardımıyla elde ediniz.

Der Memde xy'-y halibi var $y_i=x$ ötel Gotton $y = u \times ile der Mem$ $u'' + \frac{2}{v(v_0^2)} u' = \frac{6(x^2+1)}{x}$

 $\frac{U'+\frac{2}{x(x^21)}}{\sqrt{(x^21)}} = \frac{6(x^21)}{x}$ derblemine indirpair. u'=v' ile

 $V + \frac{2}{x(x^2+1)}V = \frac{6(x^2+1)}{x}$ \linear \frac{2}{x(x^2+1)} dx

 $V = 3(x^{2}+1) + \frac{C_{1}(x^{2}+1)}{x^{2}}$ $U = \int (3(x^{2}+1) + \frac{C_{1}(x^{2}+1)}{x^{2}}) dx + C$

 $U = x^3 + 3x + C_1x - \frac{C_1}{x} + C_2$

y= x+3x'+(1(x'-1)+(1x)

elle edilir.

3) $y'' + x^2y' - 4xy = 0$ denkleminin genel çözümünü x = 0 noktası civarında kuvvet serileri yardımıyla elde

3)
$$y'' + x^2y' - 4xy = 0$$
 denkleminin genel çözümünü $x = 0$ noktası civarında kuvvet serileri ya ediniz.

 $X = 0$ adı nokta olup $y = \sum_{n=0}^{\infty} a_n x^n$
 $y'' = \sum_{n=1}^{\infty} n_n x^{n-1}$
 $$2a_{2} + 6a_{3} \times -4a_{0} \times + \sum_{n=2}^{\infty} \left\{ (n+1)(n+2)a_{n+2} + (n-5)a_{n-1} \right\} x^{n} = 0$$

etale editir.

$$6 a_3 - 4 a_5 = 0$$
 $a_3 = \frac{2}{3} a_5$
 $a_{n+1} = -\frac{(n-r)}{(n+1)(n+2)} a_{n-1}$

$$\alpha_1 \qquad \alpha_2 = \frac{1}{4\pi} \alpha_2$$

$$\alpha_3 = 0$$

$$\alpha_4 = 0$$

$$\Lambda = \Gamma \Rightarrow \alpha_{7} = C$$

$$y = a_0 \left(1 + \frac{2}{3} x^3 + \cdots \right) + a_1 \left(x + \frac{x^4}{4} \right)$$

$$2a_{1}+(6a_{3}-4a_{5})\times+(12a_{4}-3a_{1})\times^{2}+(20a_{5}-2a_{1})\times^{2}+\cdots=0$$

$$2a_{1} + (6a_{3} - 4a_{0}) + (6a_{3} - 4a_{0$$

$$y = a_0(x + \frac{2}{3}x^3 + \cdots) + a_1(x + \frac{x^4}{4})$$

4)
$$y'' + 2y' + y = 3xe^{-x}$$

 $y(0) = 4, y'(0) = 2$

Probleminin çözümünü Laplace dönüşümü yardımıyla bulunuz.

$$L\{y^{(n)}\} = s_{+}^{n}Y(s) - s_{-}^{n-1}y(0) - s_{-}^{n-2}y'(0) - \dots - y_{-}^{(n-1)}(0)$$

$$L\left\{e^{ax}f\left(x\right)\right\} = F\left(s-a\right)$$

$$L\{e^{y}(x)\} = F(s-a)$$

$$L\{y'' + 2y' + y\} = L\{3xe^{-x}\}$$

$$(5+25+1)$$
 $+(5)$ $-45-10 = \frac{3}{(5+1)^2}$

$$\Rightarrow y(x) = L^{-1} \left\{ \frac{\zeta}{(s+1)^2} + \frac{\delta}{(s+1)^2} \right\}$$

$$\Rightarrow y(x) = 4e^{-x} + 6xe^{-x} + \frac{1}{2}x^{3}e^{-x}$$