VE281

Data Structures and Algorithms

Recitation Class

Oct.22 2018

VE281 TA Group

Bloom Filter Implementation: Components

- An array of *n* bits. Each bit 0 or 1
 - n=b|S|, where b is small real number. For example, $b\approx 8$ for 32-bit IP address (That's why it is space efficient)
- k hash functions $h \downarrow 1$,..., $h \downarrow k$, each mapping inside $\{0, 1,...,n-1\}$.
 - *k* usually small.

Bloom Filter Insert

- Initially, the array is all-zero.
- Insert x: For i=1,2,...,k, set $A[h \downarrow i(x)]=1$
 - No matter whether the bit is 0 or 1 before

Example: n=17, 3 hash functions

$$h \downarrow 1 (x) = 7, h \downarrow 2 (x) = 3, h \downarrow 3 (x) = 12$$

$$h \downarrow 1 \ (y) = 11, h \downarrow 2 \ (y) = 14, h \downarrow 3 \ (y) = 7$$

Bloom Filter Find

• Find x: return true if and only if $A[h \downarrow i(x)]=1, \forall i=1,...,k$

Suppose
$$h \downarrow 1$$
 (x)=7, $h \downarrow 2$ (x)=3, $h \downarrow 3$ (x)=12. Find x ?

Yes!

Suppose
$$h \downarrow 1$$
 (z)=3, $h \downarrow 2$ (z)=11, $h \downarrow 3$ (z)=5. Find z?

No!

- No false negative: if \mathcal{X} was inserted, find(\mathcal{X}) guaranteed to return true
- False positive possible: consider $h \downarrow 1$ (w)=11, $h \downarrow 2$ (w)=12, $h \downarrow 3$ (w)=7 in the above example

Heuristic Analysis of Error Probability

- <u>Intuition</u>: should be a trade-off between space (array size) and false positive probability
 - Array size decreases, more reuse of bits, false positive probability increases
- Goal: analyze the false positive probability
- Setup: Insert data set S into the Bloom filter, use k hash functions, array has n bits
- <u>Assumption</u>: All *k* hash functions map keys uniformly random and these hash functions are independent

Probability of a Slot Being 1

• For an arbitrary slot *j* in the array, what's the probability that the slot is 1?

- Consider when slot j is 0
 - Happens when $h \downarrow i$ (x) $\neq j$ for all i=1,...,k and $x \in S$
 - $\Pr\Box(h\downarrow i(x)\neq j)=1-1/n$
 - $\Pr\Box(A[j]=0) = (1-1/n) \uparrow k |S| \approx e \uparrow k |S|/n = e \uparrow k/b$
 - b=n/|S| denotes # of bits per object
- $\Pr\Box(A[j]=1) \approx 1-e \uparrow -k/b$

False Positive Probability

- For x not in S, the false positive probability happens when all $A[h \downarrow i(x)] = 1$ for all i=1,...,k
 - The probability is $\epsilon \approx (1-e\hat{1}-k/b)\hat{1}k$
- For a fixed b, ϵ is minimized when $k=(\ln \Box 2) \cdot b$
- The minimal error probability is $\epsilon \approx (1/2) \ln \Box 2 \cdot b \approx 0.6185 \ln b$
 - Error probability decreases exponentially with b
- Example: b=8, could choose k as 5 or 6. Min error probability $\approx 2\%$

Depth, Level, and Height of a Node

- The **depth** or **level of a node** is the length of the unique path from the **root** to the node.
 - E.g., depth(b)=1, depth(a)=0.
- The **height of a node** is the length of the **longest** path from the node to a **leaf**.
 - E.g., height(b)=2, height(a)=3.
 - All leaves have height zero.

Binary Tree Traversal Methods

- Depth-first traversal
 - Pre-order
 - Center Left -Right
 - Post-order
 - Left Right -Center
 - In-order
 - Left-Center-Right
- Level-order traversal
 - Use the queue structure

Level-Order Traversal

Code and Example

```
void levelOrder(node *root) {
queue q; // Empty queue
q.enqueue(root);
while(!q.isEmpty()) {
  node *n = q.dequeue();
  visit(n);
  if(n->left) q.enqueue(n->left);
  if(n->right) q.enqueue(n->right);
                   Queue: a b b c d e
                  Output: a b c d e f
```

