Week 1

Introduction to the Human Visual System and the Eye-tracking Method

Yiling Huo

August 9, 2023

Eye-tracking is a very popular tool in psychological research, and is becoming more and more popular in research on language, as well. Although eye-tracking does not provide direct measurements of neural activity, it allows researchers to gain insight into human cognition and attention.

Figure 1: Total number of publications per year from 1968 to 2018 using the search term TOPIC: ("eye tracking" OR "eye-tracking" OR "eye-tracking") in Web of Science.

In these few weeks, I will give you a detailed introduction to the eye-tracking method and its application in research on reading as well as spoken language processing. In week 4 I will invite Kayla to talk about pupillometry, eye-tracking's cousin method, and its application to language research. In week 5, we will have the opportunity to go to the lab and I will show you a demo eye-tracking experiment.

1 How eye-tracking works

1.1 The human visual system

Let's start with some basics about human vision. The human eye collects and filters light energy in the environment. The light energy then hits the retina and gets transformed into neural signals by specialized receptor cells on the retina. What's important for us here is that the receptor cells are not equally distributed across the retina: receptors responsible for detailed vision in light (called cones) are the most densely distributed at the fovea, where vision is the clearest/sharpest (i.e. where visual acuity is the highest). Only a small proportion of the visual field lands on the fovea (about 1-2 degrees of vision), and visual acuity falls off rapidly the further away from the fovea. Lessened acuity outside the fovea means that we must frequently move our eyes - and therefore the direction of gaze - to different positions in the visual space to have a good visual perception.

1.2 Types of eye movements

Eye movements can be classified into three types: fixations, saccades, and pursuit.

Fixation is the maintaining of the gaze on a single location, during which the brain processes the current visual

focus in detail¹. Saccades refer to the rapid movements that shift the center of gaze from one part of the visual field to another, aligning the fovea with the saccade target. Saccades are considered ballistic, because they always have a pre-determined target which cannot be changed once the saccade is initiated. Regular eye movements alternate between fixations and saccades. Smooth pursuit or pursuit is a special case of eye movement where the gaze tracks a moving object smoothly.

A modern eye-tracker can classify these eye movements on the fly during data collection, and researchers can choose to subsequently analyse data from specific type(s) of eye movements of their interest.

1.3 Modern eye-tracking techniques

The device used to track eye movements is called an eye tracker. In general, there are two types of eye movement monitoring techniques: those that measure the position of the eye relative to the head, and those that measure the orientation of the eye in space (the point of regard). The latter measurement is typically used when the concern is the identification of elements in a visual scene and is the more relevant one to language research.

Today, the most popular (laboratory) eye movement measurement technique is the video-based corneal reflection eye tracker². Video-based corneal reflection eye trackers use corneal reflection of a light source (usually infra-red) and the pupil center to disambiguate head movement from eye rotation, in order to measure the point of regard.

Figure 2: The desktop mount set-up of an Eyelink 1000 Plus eye tracker.

Figure 3: A screen showing the image captured by an Eyelink 1000 Plus eye tracker camera.

Eye tracking is the measurement of eye movements, but modern eye trackers can often provide more data than that. A good example is pupil size. Although not part of eye movements, pupil size is closely associated with various psychological constructs such as arousal, emotion, cognitive load, and memory. The measurement of pupil size is called pupillometry, and is being used in psychology-related research fields including language.

¹The gaze is not completely still during fixation, but rather characterised by fixational eye movements such as microsaccades and ocular drifts. These small movements help prevent sensory adaptation (i.e. they help prevent the retina from getting "too used to" the input), thus help maintain sharp visual perception.

²The eye trackers in the Chandler House labs are all of this type.

Outside the laboratories, eye-tracking techniques have evolved to enable eye-tracking using cameras incorporated in laptops, cell phones, and glasses. These techniques are being applied in online/real-world research as well as in various industries such as marketing and gaming.

2 Eye-tracking and visual attention

Why is eye-tracking important? In simple words, our eye movements are highly correlated with our visual attention. Attention allows us to selectively process the vast amount of information that confronts us. By tracking eye movements, we follow along the path of attention deployed by the observer, and get insights into how the observer is processing the scene. Note that visual attention is not always at the center of the visual field. Planning a saccade usually requires shifting visual attention to the saccade target first. It's also possible for humans to deliberately attend to something in our peripheral vision. Nevertheless, during natural, unconstrained eye movement, there is a strong link between visual attention and eye movements [1].

How are these coupled mechanisms of attention and eye movement deployed when a scene is viewed? First, fixations usually center on interesting/informative areas of an image, while blank or uniform areas are usually uninspected. Wooding and colleagues collected real-life eye movement data from a large number of participants viewing artworks in a public museum, and discovered that fixations are not spread evenly or randomly over the stimulus images, but cluster into regions of interest according to the features of the stimulus [2] (Figure 4). Regions of interest are determined by both bottom-up factors such as spatial frequency and contrast, and top-down factors such as the viewer's knowledge, memory, beliefs, or goals.

Figure 4: Figure 2 in [2]. Original caption: (A) The original image N0931 (copyright the National Gallery Co. Ltd). (B) Map of fixations of 131 traces. (C) The contour plot corresponding to the map in panel B. (D) The image redrawn with areas receiving higher numbers of fixations appearing brighter.

Eye movements have not only contributed to our understanding of attentional mechanisms, but also provided insight into abnormal brain functioning. For example, it is shown that in schizophrenia, patients may have difficulty maintaining smooth pursuit as well as performing anti-saccade tasks³; but they launch more predictive saccades than healthy controls [1]. These eye-movement differences can be used in clinical diagnosis and treatment.

³Anti-saccade tasks demand participants to inhibit eye movements toward a suddenly appearing stimulus and make a saccade in the opposite direction.

3 Applications of the eye-tracking method in language research

3.1 Reading

Linguistics is the scientific study of language. The modern day scientific study of linguistics takes all aspects of language into account — i.e., the cognitive the social, the cultural, the psychological, the environmental, the biological, the literary, the grammatical, the pareographical, and the structural.

Linguistics is based on the theoretical as well as descriptive study of language, and is also interlinked with the applied fields of language studies and language learning, which entails the study of specific languages. Before the 20th century, linguistics evolved in an informal manner that did not employ scientific methods.

 $\{$ width= $45\%\}$

Reading is perhaps the first instance anyone can think of where vision is required for language, and indeed eye-tracking is widely used in research on reading.

During reading, a saccade usually spans over seven to nine letter spaces. On an individual word, fixation usually lands between the beginning and the middle of the word. Chances of an individual word being fixated on depend on many factors, such as parts of speech (content vs. function words) and word length. While fixating on a word, the reader also gathers information about surrounding words. This perceptual span usually extends around 18 letters, about 3-4 letters to the left and 14-15 letters to the right (when the language is written left to right).

Fixation pattern during reading is also affected by factors such as legibility and syntactic and conceptual difficulty. Although readers typically move their eyes forward during reading, a proportion of saccades move backwards as well. These regressive saccades are associated with processing difficulties during reading.

There is a large individual difference in terms of eye movement patterns during reading. This individual difference means that reading eye-tracking has many practical applications in education psychology, including distinguishing successful and unsuccessful students and the diagnosis of reading disorders such as dyslexia.

3.2 Spoken language processing in a visual scene

 $\{$ width= $45\%\}$

The use of eye tracking as a tool to study spoken language comprehension was pioneered by Roger Cooper in 1974, who found that listeners initiated saccades to pictures that were named in spoken stories. In 1995, Tanenhaus and colleagues initiated what's called the visual world paradigm, where participants are presented with objects in a visual display while listening to instructions to interact with these objects or simply listening to sentences for comprehension.

In the visual world paradigm, data analysis usually involves analysing the proportion of fixations over time for each object in the visual display. The assumption providing the link between word recognition and eye movements is that the activation of the name of a picture determines the probability that a subject will shift attention to that picture and thus make a saccadic eye movement to fixate it. The visual world paradigm provides a (quasi-)continuous measure of cognition that has a fine temporal resolution, and has contributed a lot to our understanding of the time course of language comprehension.

The visual world paradigm has been used to study lexical activation during spoken word recognition, and has provided evidence for listeners sensitivity to lexical stress, duration of acoustic sequences, pitch accents, lexical tones, etc. At the sentence level, the visual world paradigm is widely used to study syntactic parsing, semantic integration, discourse processing, and most importantly predictive processing during language comprehension.

3.3 Combining eye-tracking with neuroimaging

Experimental research benefits from the complementarity of its research methods: each method has its strengths and limitations, so the results obtained from multiple techniques are more compelling than results derived from only a single approach.

Eye-tracking is a good stand-alone research method. However,

References

- [1] Richardson DC, Spivey MJ. Eye tracking: Research areas and applications. Encyclopedia of Biomaterials and Biomedical Engineering 2004;573:582.
- [2] Wooding DS. Eye movements of large populations: II. Deriving regions of interest, coverage, and similarity using fixation maps. Behavior Research Methods, Instruments, & Computers 2002;34:518–28.
- [3] Rayner K. Eye movements in reading and information processing: 20 years of research. Psychological Bulletin 1998;124:372.
- [4] Tanenhaus MK. Chapter 20 eye movements and spoken language processing. In: Van Gompel RPG, Fischer MH, Murray WS, Hill RL, editors. Eye movements, Oxford: Elsevier; 2007, p. 443–II. https://doi.org/https://doi.org/10.1016/B978-008044980-7/50022-7.
- [5] Duchowski TA. Eye tracking: Methodology theory and practice. Springer; 2017.
- [6] Carrasco M. Visual attention: The past 25 years. Vision Research 2011;51:1484–525.
- [7] Carter BT, Luke SG. Best practices in eye tracking research. International Journal of Psychophysiology 2020;155:49–62.