§ 24.

Lineare Differentialgleichungen n-ter Ordnung

In diesem Paragraphen sei $n \in \mathbb{N}, I \subseteq \mathbb{R}$ ein Intervall und $a_0, \dots, a_{n-1}, b: I \to \mathbb{R}$ stetig. Für $y \in C^n(I, \mathbb{R})$ setze $Ly \coloneqq y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0y$. Die Dgl

$$Ly = b(x) \tag{D}$$

heißt eine lineare Dgl n-ter Ordnung. Sie heißt homogen, falls $b \equiv 0$, anderenfalls inhomogen.

Setze $b_0(x) := (0, \dots, 0, b(x))^\mathsf{T} (\in \mathbb{R}^n)$ und

$$A(x) := \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \dots & \dots & 0 & 1 \\ -a_0(x) & \dots & \dots & \dots & -a_{n-1}(x) \end{pmatrix}$$

Damit erhalten wir das System:

$$z' = A(x)z + b_0(x) \tag{S}$$

Satz 24.1 (Lösungen)

- (1) Ist $y: I \to \mathbb{R}$ eine Lösung von (D) auf I, so ist $z := (y, y', \dots, y^{(n-1)})$ eine Lösung von (S) auf I.
- (2) Ist $z := (z_1, \dots, z_n)$ eine Lösung von (S) auf I, so ist $y := z_1$ eine Lösung von (D) auf I

Beweis

Nachrechnen!

Wir betrachten auch noch die zu (D) gehörende homogene Gleichung

$$Ly = 0 (H)$$

Sind $y_0, \ldots, y_{n-1} \in \mathbb{R}$ und $x_0 \in I$, so heißt

$$\begin{cases} Ly = b \\ y(x_0) = y_0, \dots, y^{(n-1)}(x_0) = y_{n-1} \end{cases}$$
 (A)

ein Anfangswertproblem (AwP).

Die folgenden Sätze 24.2 und 24.3 folgen aus 24.1 und den Sätzen aus §22.

Satz 24.2 (Lösungsmenge als Vektorraum)

- (1) Das AwP (A) hat auf I genau eine Lösung.
- (2) (D) hat Lösungen auf I.
- (3) Sei y_s eine spezielle Lösung von (D) auf I. Für $y: I \to \mathbb{R}$ gilt: y ist eine Lsg von (D) auf I, genau dann wenn eine Lösung y_h von (H) existiert:

$$y = y_h + y_s$$

- (4) Ist $J \subseteq I$ ein Intervall, $\hat{y}: J \to \mathbb{R}$ eine Lsg von (D) auf J, so existiert eine Lsg $y: I \to \mathbb{R}$ mit $\hat{y} = y|_{J}$.
- (5) Sei \mathbb{L} die Menge aller Lösungen von (H) auf I. Dann ist \mathbb{L} ein reeller Vektorraum und $\dim \mathbb{L} = n$.

Für $y_1, \ldots, y_k \in \mathbb{L}$ sind äquivalent:

- (i) y_1, \ldots, y_k sind linear unabhängig in \mathbb{L} .
- (ii) Für alle $x \in I$ sind die Vektoren $(y_j(x), y_j'(x), \dots, y_j^{(n-1)}(x))(j = 1, \dots, k)$ linear unabhängig im \mathbb{R}^n .
- (iii) Es existiert ein $\xi \in I$ sodass die Vektoren $(y_j(\xi), \dots, y_j^{(n-1)}(\xi))(j = 1, \dots, k)$ linear unabhängig sind im \mathbb{R}^n .

Definition

Seien $y_1, \ldots, y_n \in \mathbb{L}$.

$$W(x) := \det \begin{pmatrix} y_1(x) & \cdots & y_n(x) \\ \vdots & & \vdots \\ y_1^{(n-1)}(x) & \cdots & y_n^{(n-1)}(x) \end{pmatrix}$$

heißt Wronskideterminante. Sind y_1, \ldots, y_n linear unabhängig in \mathbb{L} , so heißt y_1, \ldots, y_n ein Fundamentalsystem (FS) von (H). I.d. Fall lautet die allgemeine Lösung von (H):

$$y = c_1 y_1 + \dots + c_n y_n \quad (c_1, \dots, c_n \in \mathbb{R})$$

Aus 24.2 folgt für $y_1, \ldots, y_n \in \mathbb{L}$:

 $y_1, \ldots, y_n \in \mathbb{L}$ ist genau dann ein FS von (H), wenn gilt:

$$\forall x \in I : W(x) \neq 0 \iff \exists \xi \in I : W(\xi) \neq 0$$

Satz 24.3 (Spezielle Lösung)

Sei y_1, \ldots, y_n ein FS von (H) und W wie oben. Für $k = 1, \ldots, n$ sei $W_k(x)$ die Determinante die entsteht, wenn man die k-te Spalte von W(x) ersetzt durch $(0, \ldots, 0, b(x))^T$. Setze

$$y_s(x) := \sum_{k=1}^n \left(y_k(x) \cdot \int \frac{W_k(x)}{W(x)} dx \right)$$

Dann ist y_s eine spezielle Lösung von (D).

Beispiel (Spezialfall n=2)

Die homogene Gleichung hat die Form

$$y'' + a_1(x)y' + a_0(x)y = 0 (H)$$

Sei y_1 eine Lsg von (H) mit $y_1 \neq 0 \ \forall x \in I$. Sei $z \not\equiv 0$ eine Lsg von

$$z' = -\left(a_1(x) + \frac{2y_1'(x)}{y_1(x)}\right)z$$
, so ist

$$y_2(x) \coloneqq y_1(x) \cdot \int z(x) \, \mathrm{d}x$$

eine weitere Lsg von (H) und y_1, y_2 ist ein FS von (H).

Beweis

Nachrechnen: y_2 ist Lsg von (H).

Aus $y_2' = y_1' \cdot \int z(x) dx + y_1 z(x)$ folgt:

$$W(x) = \det \begin{pmatrix} y_1(x) & y_1(x) \cdot \int z(x) \, \mathrm{d}x \\ y_1'(x) & y_1'(x) \int z(x) \, \mathrm{d}x + y_1 z(x) \end{pmatrix}$$
$$= y_1 y_1' \cdot \int z(x) \, \mathrm{d}x + y_1^2 z(x) - y_1 y_1' \cdot \int z(x) \, \mathrm{d}x$$
$$= y_1^2 z(x)$$

Da $z \not\equiv 0$ ist, existiert ein $\xi \in I$ mit $z(\xi) \not= 0$, also $W(\xi) \not= 0$. D.h. y_1, y_2 sind linear unabhängig in \mathbb{L} .

Beispiele:

(1) Bestimme die allg. Lösung der Gleichung (mit $I = (1, \infty)$)

$$y'' + \frac{2x}{1 - x^2}y' - \frac{2}{1 - x^2}y = 0 \tag{*}$$

Offensichtlich ist $y_1(x) = x$ eine Lsg von (*) auf I. Die Gleichung erster Ornung lautet:

$$z' = -\left(\frac{2x}{1-x^2} + \frac{2}{x}\right)z = \frac{2}{x(x^2-1)}z\tag{**}$$

Es ist $\int \frac{2}{x(x^2-1)} dx = \log(1-\frac{1}{x^2})$, daraus ergibt sich die allgemeine Lösung von (**):

$$z(x) = ce^{\log(1 - \frac{1}{x^2})} = c(1 - \frac{1}{x^2}) \quad (c \in \mathbb{R})$$

Sei also:

$$y_2(x) := y_1(x) \cdot \int 1 - \frac{1}{x^2} dx = 1 + x^2$$

Damit ist y_1, y_2 ein Fundamentalsystem von (*) und die allgemeine Lösung lautet:

$$y(x) = c_1 x + c_2 (1 + x^2) \quad (c_1, c_2 \in \mathbb{R})$$

(2) Bestimme die allg. Lösung der Gleichung

$$y'' + \frac{2x}{1 - x^2}y' - \frac{2}{1 - x^2}y = x^2 - 1 \tag{+}$$

Die allg. Lösung der homogenen Gleichung lautet

$$y(x) = c_1 x + c_2 (1 + x^2)$$

Es ist also $y_1(x) = x$ und $y_2(x) = 1 + x^2$. Damit gilt:

$$W(x) = \det \begin{pmatrix} x & 1+x^2 \\ 1 & 2x \end{pmatrix} = 2x^2 - (1+x^2) = x^2 - 1$$

$$W_1(x) = \det \begin{pmatrix} 0 & 1+x^2 \\ x^2 - 1 & 2x \end{pmatrix} = -(1+x^2)(x^2 - 1)$$

$$W_2(x) = \det \begin{pmatrix} x & 0 \\ 1 & x^2 - 1 \end{pmatrix} = x^3 - x$$

Es folgt:

$$\frac{W_1(x)}{W(x)} = -1 - x^2$$
 $\frac{W_2(x)}{W(x)} = x$

Daraus ergibt sich nun eine spezielle Lösung von (+):

$$y_s(x) = y_1(x) \cdot \int (-1 - x^2) dx + y_2(x) \cdot \int x dx = \frac{1}{6}x^4 - \frac{1}{2}x^2$$

Die allgemeine Lösung von (+) lautet:

$$y(x) = c_1 x + c_2 (1 + x^2) + \frac{1}{6} x^4 - \frac{1}{2} x^2 \quad (c_1, c_2 \in \mathbb{R})$$

(3) Löse das AwP:

$$\begin{cases} y'' + \frac{2x}{1-x^2}y' - \frac{2}{1-x^2}y = x^2 - 1\\ y(0) = 0, y'(0) = 1 \end{cases}$$

Die allgemeine Lösung der Dgl lautet:

$$y(x) = c_1 x + c_2 (1 + x^2) + \frac{1}{6} x^4 - \frac{1}{2} x^2 \quad (c_1, c_2 \in \mathbb{R})$$

Also ist:

$$y'(x) = c_1 + 2c_2x + \frac{2}{3}x^3 - x$$

Außerdem gilt:

$$0 \stackrel{!}{=} y(0) = c_2$$
 $1 \stackrel{!}{=} y'(0) = c_1$

Daraus folgt für die Lösung des AwPs:

$$y(x) = x + \frac{1}{6}x^4 - \frac{1}{2}x^2$$