

Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Departamento de Engenharia Elétrica Laboratório de Instrumentação Eletrônica e Controle Disciplina de Sistemas a Eventos Discretos

Sistema de Controle de Tráfego

Alexsandra Macedo Souto
Gabriel Araújo Miranda
Leticia Rebecca Medeiros de Lucena

Campina Grande Abril de 2024

1. Introdução

1.1. Definição do problema

O problema consiste em desenvolver um sistema de controle de tráfego eficiente para gerenciar um cruzamento de quatro vias, com o objetivo de minimizar o tempo de espera e evitar congestionamentos, garantindo a segurança de veículos e pedestres. Os requisitos incluem o controle de semáforos para veículos e pedestres em todas as quatro vias, uma lógica de controle que priorize segurança e eficiência, capacidade de adaptação a diferentes fluxos de tráfego e consideração de horários de pico.

Foram levantadas algumas definições para desenvolvimento do sistema, baseados no modelo abaixo.

Figura 1 : Cruzamento considerado para criação do modelo de controle.

1.2. Regras do sistema

- Direção dos Veículos: Os veículos podem seguir apenas em linha reta no cruzamento, garantindo que os semáforos paralelos estejam em sincronismo, necessitando então de apenas 4 semáforos para realizar o controle, dois para controlar os veículos e dois para controlar os pedestres.
- Prioridade para Pedestres: Quando um semáforo estiver verde para veículos, os semáforos perpendiculares estarão vermelhos para os veículos, permitindo a passagem de pedestres com segurança.
- Funcionamento do Sistema: O sistema funcionará com dois estados principais: Horário de Pico e Horário Normal.
- Temporização dos Semáforos:

- No Horário Normal, o semáforo permanecerá 35 segundos no verde, 5 segundos no amarelo e 40 segundos no vermelho.
- No Horário de Pico, o semáforo passará 20 segundos no verde, 5 segundos no amarelo e 25 segundos no vermelho.
- Tempo de Transição para Pedestres: O tempo de transição para passagem de pedestres será de 5 segundos no verde e 5 segundos no amarelo.
- Solicitação de Passagem por Pedestres:
 - No Horário Normal, quando o pedestre solicitar passagem, será verificado o tempo restante do semáforo aberto. Se o tempo restante for maior que o tempo de transição, o tempo de transição será aplicado. Caso contrário, a solicitação será ignorada.
 - Durante o Horário de Pico, o botão de solicitação de passagem pelo pedestre será desabilitado.
- Tempo de Segurança: Quando acontecer uma mudança entre os semáforos, será adicionado um tempo de segurança de 2 segundos para garantir uma transição segura.

2. Desenvolvimento

2.1. Modelagem do sistema

Para desenvolvimento do autômato capaz de realizar o controle de tráfego, foram definidos os seguintes estados do autômato que ilustram o comportamento dos semáforos:

- Vermelho_Todos: Indica que os todos os semáforos estão em vermelho brevemente para a troca de estados.
- Verde_Veículos: Indica que os veículos têm permissão para avançar.
- Vermelho_Veículos: Indica que os veículos estão aguardando o sinal verde para avançar.
- Amarelo Veículos: Indica que os veículos devem se preparar para o sinal Vermelho.
- Vermelho_Pedestres: Indica que os pedestres estão aguardando o sinal verde para atravessar.
- Verde_Pedestres: Indica que os pedestres têm permissão para atravessar.

Além disso, foram criados os eventos do sistema, responsáveis pelas transições entre os estados.

• Eventos controláveis:

- o t vt vd: transição de Vermelho Todos para Verde Veiculos.
- o t vd am: transição de Verde Veiculos para Amarelo Veiculos.
- o t am vt: transição de Amarelo Veiculos para Vermelho Todos.
- o t_vt_vm: transição de Vermelho_Todos para Vermelho_Veiculos

• Eventos não controláveis:

o botao pedestre: Quando o pedestre pressiona o botão, solicitando passagem.

Com os estados e eventos definidos, a estratégia de desenvolvimento da solução para o problema descrito, foi definir quatro autômatos representando os semáforos de veículos e de pedestres para cada via. Em seguida, foi construído um autômato supervisório através da operação de composição entre os quatro modelos de semáforos, responsável pelo controle do sistema.

2.2. Validação do modelo

Na ferramenta *Supremic*a, foi realizada a simulação do modelo descrito, com a criação dos respectivos autômatos. O semáforo de veículos 1 é responsável por controlar o fluxo de veículos das vias 1 e 2.

Figura 2 : Autômato do semáforo de veículos 1

O semáforo de pedestres 1 é responsável por controlar a passagem de pedestres nas vias 1 e 3.

Figura 3: Autômato do semáforo de pedestres responsável por controlar as vias 1 e 3.

O semáforo de veículos 2 é responsável pelo controle de tráfego dos veículos nas vias 2 e 4.

Figura 4 : Autômato do semáforo de veículo responsável por controlar as vias 2 e 4.

O semáforo de pedestres 2 é responsável por controlar a passagem de pedestres nas vias 2 e 4.

Figura 5 : Autômato do semáforo de pedestres responsável por controlar as vias 2 e 4.

O autômato supervisório é o responsável por fazer o controle de veículos e pedestres em todas as vias, garantindo seu sincronismo e segurança.

Figura 6 : Autômato supervisório.

3. Simulação

Com todos os autômatos desenvolvidos, o próximo passo foi a realização de simulações, possibilitando observar o comportamento do sistema para cada evento definido.

Como foi definido anteriormente, o estado inicial do sistema é o estado "Vermelho_Todos", no qual todos os quatro semáforos estão em vermelho. Foi utilizada uma *flag* de segurança, chamada *cont* para garantir o funcionamento cíclico do sistema, ou seja, permitindo a passagem de veículos no semáforo 1 e em seguida no 2, repetidamente. Dessa forma, quando *cont* for igual a zero, o semáforo 1 entrará em funcionamento, e quando *cont* for igual a 1, o semáforo 2 funcionará. O sistema inicial com *cont* igual a zero.

O primeiro evento simulado foi o "t_vt_vd" que leva o semáforo de veículos 1 para o estado "Verde_Veículos" e o semáforo de pedestres 1 para "Vermelho_Pedestres".

Figura 7: Evento "t vt vd".

Em seguida, ocorre o evento "t_vd_am" que leva o semáforo de veículos 1 para o estado "Amarelo_Veículos".

Figura 8: "t_vd_am"

O próximo evento simulado é o "t_am_vt" que leva os semáforos de veículos 1 e pedestres 1 para vermelho.

Figura 9: Evento "t_am_vt".

Nesse momento, todos os semáforos voltam para o estado vermelho, a variável *cont* passa a ser 1 e ciclo irá se repetir para os semáforos de veículos 2 e pedestres 2.

Figura 10: Evento "t vt vm".

Figura 11: Evento "t vd am".

Figura 11: Evento "t am vt".

Figura 12: Evento não controlável "botao pedestre".

4. Conclusão

O projeto do sistema de controle de tráfego apresenta uma abordagem eficaz para gerenciar o fluxo de veículos e pedestres em um cruzamento. Ao seguir as regras estabelecidas, o sistema busca garantir a segurança de todos os usuários da via, otimizando o tempo de espera e evitando congestionamentos. Alguns desafios foram encontrados no processo de modelagem do sistema e diversas considerações tiveram que ser tomadas visando a simplificação do problema para garantir uma implementação eficaz e robusta.

Com a implementação de dois estados principais, Horário de Pico e Horário Normal, que irão alterar os valores de tempo de transição entre os estados, o sistema adapta-se de forma dinâmica às variações no fluxo de tráfego, ajustando os tempos dos semáforos para atender às demandas específicas de cada período.

A priorização da segurança dos pedestres é evidenciada pela estratégia de permitir a passagem apenas quando os semáforos veiculares estão vermelhos, enquanto a temporização cuidadosamente planejada dos semáforos proporciona uma transição suave entre os estados, incluindo um tempo de segurança adicional para garantir a segurança dos usuários da via.

Em suma, o projeto do sistema de controle de tráfego oferece uma solução satisfatória para o gerenciamento eficiente do tráfego em cruzamentos, promovendo a segurança e fluidez do trânsito para todos os envolvidos.