AULA 9: CONDUÇÃO DE CALOR EM REGIME TRANSIENTE

FORMULAÇÃO DO PROBLEMA

CONDUÇÃO DE CALOR EM REGIME TRANSIENTE

- Em muitos casos, a temperatura de um corpo variará ao longo do tempo: basta para isso que haja uma alteração das condições de fronteira num dado instante
- O regime de transferência de calor deixa de ser qualificado como permanente (ou estacionário) e pode ser classificado como transiente
- Esta é uma situação contemplada na equação geral da difusão de calor:

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + q = \rho c_p \frac{\partial T}{\partial t}$$

MÉTODOS DE RESOLUÇÃO DE PROBLEMAS DE TRANSFERÊNCIA DE CALOR EM REGIME TRANSIENTE

- Método da análise global, capacitância ou resistência interna desprezável (lumped heat capacity)
- Métodos analíticos
- Métodos numéricos

Fernando Neto

O MÉTODO DA CAPACITÂNCIA OU DA ANÁLISE GLOBAL

TRANSFERÊNCIA DE CALOR EM REGIME TRANSIENTE: PRINCÍPIO E APLICABILIDADE DO **MÉTODO DE**ANÁLISE GLOBAL

- Princípio: ignoram-se os gradientes espaciais de temperatura que possam existir num sólido: todo o sólido, num dado instante, se encontra à mesma temperatura
- Em que problemas se aplica normalmente?: sólido que sofre uma alteração brusca das condições ambientais a que se encontra exposto

FORMULAÇÃO DO MÉTODO DE ANÁLISE GLOBAL

Considere-se um corpo que se encontra a uma temperatura inicial T_i e que é subitamente imerso num ambiente à temperatura T_{∞} de tal forma que $T_i > T_{\infty}$.

Ao longo do tempo, o corpo irá arrefecendo: a sua energia irá sendo cedida ao ambiente por convecção e a sua temperatura diminuirá progressivamente

28/11/2022 Fernando Neto

FORMULAÇÃO DO MÉTODO DE ANÁLISE GLOBAL

Um balanço energético conduzido no corpo permitirá concluir que a sua variação de energia interna (medida pela temperatura do corpo) irá diminuindo progressivamente de acordo com

$$\dot{E} = q_{\mathrm{conv}}$$

FORMULAÇÃO DO MÉTODO DE ANÁLISE GLOBAL

Atendendo à definição da variação da energia interna e à lei de Newton da convecção, a igualdade $\Delta \dot{E} = q_{conv}$ pode ser traduzida por

$$\rho . V. c \frac{dT}{dt} = -h. A. (T - T_{\infty})$$

Definindo uma variável θ , como θ =T-T $_{\infty}$, a equação anterior adquire a forma

$$\rho.V.c\frac{d\theta}{dt} = -h.A.\theta$$

28/11/2022 Fernando Neto

SOLUÇÃO DA EQUAÇÃO DIFERENCIAL ASSOCIADA AO MÉTODO DE ANÁLISE **GLOBAL**

$$\left| \rho.V.c \frac{d\theta}{dt} = -h.A.\theta \right|$$

Esta equação diferencial pode ser resolvida pelo método de separação de variáveis

$$\frac{d\theta}{\theta} = -\frac{h.A}{\rho.V.c}dt$$

Integrando ao logo do intervalo de tempo compreendido entre t =0 e t = t, vem:

$$\theta(t) = \theta_i \cdot e^{\left[-\left(\frac{h \cdot A}{\rho \cdot V \cdot c}\right)t\right]} \quad \text{onde:} \quad \theta(t) = T(t) - T_{\infty}$$

 $\theta_i = T_i - T_{\infty}$

A CONSTANTE TEMPORAL

ernando Neto 28/11/2022

A CONSTANTE **TEMPORAL**

$$\theta(t) = \theta_{i}.e^{\left[-\left(\frac{h.A}{\rho.V.c}\right)t\right]}$$

 $\theta(t) = \theta_i.e^{\left[-\left(\frac{h.A}{\rho.V.c}\right)t\right]} \quad \begin{array}{l} \text{As unidades de (h.A/p.V.c) são s-1.} \\ \text{O que significa que (p.V.c/h.A) \'e medido em s. Esta constante \'e designada por constante to designada por constante de la constante designada por constante de la constante de la constante de la const$ ζ. Assim, uma forma alternativa da equação anterior é:

$$\theta = \theta_i.e^{-\frac{t}{\zeta}}$$

SIGNIFICADO FÍSICO DA CONSTANTE **TEMPORAL**

$$\frac{\theta}{\theta_i} = e^{-\frac{t}{\zeta}}$$

$$\zeta = \frac{\rho . V. C}{h. A_{s}}$$

Quanto maior o valor da constante temporal, menor será a variação da temperatura ao longo do tempo

CÁLCULO DA QUANTIDADE DE CALOR TROCADA ENTRE O SÓLIDO E O AMBIENTE

A quantidade de calor trocada entre o sólido e o ambiente, entre t=0 e t=t é dada por:

$$Q = \int_{0}^{t} qdt = \int_{0}^{t} h.A.\theta(t)dt$$

Substituindo o valor de θ e integrando entre 0 e t, virá:

$$Q = \rho.V.c.\theta_i.\left[1 - e^{\left(\frac{-t}{\zeta}\right)}\right]$$

PRÉ-REQUISITOS E VALIDADE DO MÉTODO DE ANÁLISE GLOBAL

Fernando Neto 28/11/2022

TRANSFERÊNCIA DE CALOR EM REGIME TRANSIENTE: PRÉ-REQUISITOS DO **MÉTODO DE ANÁLISE GLOBAL**

- Pré-requisitos: como a temperatura é a mesma em qualquer ponto do sólido, então dT/dx→0. No entanto, como a transferência de calor existe, o sólido deverá ter uma condutibilidade térmica infinita.
- Isto significa que a resistência à condução é muito menor que a resistência à convecção

$$q'' \approx -k \frac{\Delta T}{L} \approx h \left(T_S - T_{\infty} \right) \Leftrightarrow -\frac{\Delta T}{\left(\frac{L}{k} \right)} \approx \frac{\left(T_S - T_{\infty} \right)}{\frac{1}{h}}$$

• Como $\Delta T \rightarrow 0$, então:

$$\frac{L}{k} << \frac{1}{h}$$

VALIDADE DO MÉTODO DE ANÁLISE GLOBAL

Atenção!!!: o método de análise global só pode ser aplicado se:

$$Bi = \frac{h.L_c}{k} < 0,1$$

Nesta equação:

Bi – número de Biot (grandeza adimensional).

h – coeficiente de transferência de calor por convecção

 $L_{\rm C}$ – dimensão característica do sólido (normalmente será a relação entre o volume e a área do sólido)

k – condutibilidade térmica do sólido

COMPRIMENTO CARATERÍSTICO

Para qualquer sólido a dimensão utilizada na definição do número de Biot é designada por comprimento caraterístico.

Regra geral, o comprimento caraterístico, L_C , é dado pela relação entre o volume V e a área superficial do sólido, A: L_C =V/A

O NÚMERO DE FOURIER

ernando Neto 28/11/2022

O NÚMERO DE FOURIER (FO)

Se $L_C=V/A$, então:

$$\theta(t) = \theta_{i}.e^{\left[-\left(\frac{h.A}{\rho.V.c}\right)t\right]} = \theta_{i}.e^{\left[-\left(\frac{h.L_{c}}{k}.\frac{\alpha.t}{L_{c}^{2}}\right)\right]} = \theta_{i}.e^{\left[-BiFo\right]}$$

Número de Fourier:

$$Fo = \frac{\alpha . t}{L_c^2}$$

 α – difusividade térmica, α =k/(ρ .C)

MÉTODO GLOBAL DE ANÁLISE - EXEMPLO

MÉTODO GLOBAL DE ANÁLISE - EXEMPLO

Uma junção de um termopar (cuja configuração pode ser aproximada por uma esfera) é utilizada para medir a temperatura de um gás. Sabendo que h=400 W.m⁻².K⁻¹, k=20 W.m⁻¹.K⁻¹, c=400 J.kg⁻¹.K⁻¹ e ρ =8500 kg.m⁻³, determine:

- a) O diâmetro que a junção deverá ter para se obter uma constante temporal de I s;
- b) O tempo que a junção demorará a atingir os 199°C quando é imersa num escoamento gasoso a 200°C a partir de uma temperatura inicial de 25°C.

Fernando Neto

MÉTODO GLOBAL DE ANÁLISE – SOLUÇÃO E COMENTÁRIOS

- a) D = 0,7 mm. O método de análise global pode ser utilizado neste caso, uma vez que Bi= $2.4 \times 10^{-3} < 0,1$
- b) t = 5.2 s.

O MÉTODO ANALÍTICO

MÉTODO ANALÍTICO

MÉTODO ANALÍTICO: TRANSFERÊNCIA DE CALOR UNIDIMENSIONAL, AUSÊNCIA DE GERAÇÃO DE CALOR, CONDUTIBILIDADE TÉRMICA CONSTANTE

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + q = \rho c_p \frac{\partial T}{\partial t}$$

Caso particular: nas condições acima indicadas, a equação da difusão reduz-se a:

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

A PLACA PLANA

MÉTODO ANALÍTICO, CASO PARTICULAR DE UMA PLACA PLANA: CONDIÇÕES INICIAIS E DE FRONTEIRA

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

Uma condição inicial, duas condições fronteira

Exemplo de condições iniciais e condições fronteira para uma placa plana

Condição inicial:
$$T(x,0) = T_i$$

$$1^{a} \ Condição \ fronteira: \frac{\partial T}{\partial x}\bigg|_{x=0} = 0$$

$$2^{a} \ Condição \ fronteira: -k\frac{\partial T}{\partial x}\bigg|_{x=L} = h\big[T(L,t) - T_{\infty}\big]$$

MÉTODO ANALÍTICO, CASO PARTICULAR DE UMA PLACA PLANA: ADIMENSIONALIZAÇÃO DE VARIÁVEIS

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

A solução da equação diferencial será uma função T = T(x,t).

No entanto, a solução depende ainda dos valores de T_i , T_∞ , L, k, h e α (o que com x e t perfaz um total 2 varáveis independentes e 5 parâmetros), que se encontram presentes quer na equação da condução, quer nas condições de fronteira.

A redução do número de variáveis/parâmetros implica a Adimensionalização de Variáveis

$$\theta^* = \frac{T(t) - T_{\infty}}{T_i - T_{\infty}} \quad 0 \le \theta^* \le 1$$

$$x^* = \frac{x}{L}$$

$$t^* = \frac{\alpha t}{L^2} = Fo$$

MÉTODO ANALÍTICO, CASO PARTICULAR DE UMA PLACA PLANA: FORMA FINAL DA EQUAÇÃO DA CONDUÇÃO

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t} \qquad \longrightarrow \qquad \frac{\partial^2 \theta^*}{\partial x^{*2}} = \frac{\partial \theta^*}{\partial Fo}$$

$$CI: T(x,0) = T_{i}$$

$$1^{a} CF: \frac{\partial T}{\partial x}\Big|_{x=0} = 0$$

$$2^{a} CF: -k\frac{\partial T}{\partial x}\Big|_{x=L} = h[T(L,t) - T_{\infty}]$$

$$2^{a} Condição inicial: \Theta^{*}(x^{*},0) = 1$$

$$1^{a} Condição fronteira: \frac{\partial \Theta^{*}}{\partial x^{*}}\Big|_{x^{*}=0} = 0$$

$$2^{a} Condição fronteira: \frac{\partial \Theta^{*}}{\partial x^{*}}\Big|_{x=1} = -Bi.\Theta^{*}(1,t)$$

Nesta forma, a solução depende apenas de x*, t, (variáveis independentes) e Fo e Bi (parâmetros), num total de 4 grandezas.

28/11/2022

MÉTODO ANALÍTICO, CASO PARTICULAR DE UMA PLACA PLANA

A solução exata para a equação diferencial

$$\frac{\partial_{\mathbf{\acute{e}:}}^{2} \theta^{*}}{\partial x^{*2}} = \frac{\partial \theta^{*}}{\partial Fo}$$

$$\theta^* = \sum_{n=1}^{\infty} C_n \exp(-\zeta_n^2 F_0) \cos(\zeta_n x^*)$$

Nesta equação:

$$C_n = \frac{4\sin\zeta_n}{2\zeta_n + \sin(2\zeta_n)} \qquad \zeta_n \tan\zeta_n = Bi$$

Dadas as dificuldades de utilização da equação anterior, uma solução aproximada e válida para Fo>0,2 é dada abaixo, sendo $T_0(t)$ a temperatura no centro da placa:

$$\theta^* = \theta_o^* \cos(\zeta_1 x^*)$$

$$\theta^* = \theta_o^* \cos(\zeta_1 x^*) \quad \text{com} \quad \theta_o^* \equiv \frac{(T_o - T_\infty)}{(T_i - T_\infty)} \approx C_1 \exp(-\zeta_1^2 F_O)$$

Felizmente C_1 e ζ_1 são dados em função de Bi!!!

VALOR DOS COEFICIENTES $C_1 \in \Xi_1 \in M$ FUNÇÃO DE BI (INCROPERA)

TABLE 5.1 Coefficients used in the one-term approximation to the series solutions for transient one-dimensional conduction

Bi ^a	Plane Wall		Infinite Cylinder		Sphere	
	ζ ₁ (rad)	C_1	ζ_1 (rad)	C_1	ζ ₁ (rad)	C ₁
0.01	0.0998	1.0017	0.1412	1.0025	0.1730	1.0030
0.02	0.1410	1.0033	0.1995	1.0050	0.2445	1.0030
0.03	0.1732	1.0049	0.2439	1.0075	0.2989	1.0060
0.04	0.1987	1.0066	0.2814	1.0099	0.3450	1.0120
0.05	0.2217	1.0082	0.3142	1.0124	0.3852	
0.06	0.2425	1.0098	0.3438	1.0148	0.4217	1.0149
0.07	0.2615	1.0114	0.3708	1.0173	0.4217	1.0179
0.08	0.2791	1.0130	0.3960	1.0197	0.4860	1.0209
0.09	0.2956	1.0145	0.4195	1.0222	0.5150	1.0239
0.10	0.3111	1.0160	0.4417	1.0246	0.5423	1.0268
0.15	0.3779	1.0237	0.5376	1.0365	0.6608	1.0298
0.20	0.4328	1.0311	0.6170	1.0483	0.7593	1.0445
0.25	0.4801	1.0382	0.6856	1.0598	0.7393	1.0592
0.30	0.5218	1.0450	0.7465	1.0712	0.9208	1.0737
0.4	0.5932	1.0580	0.8516	1.0932	1.0528	1.0880
0.5	0.6533	1.0701	0.9408	1.1143		1.1164
0.6	0.7051	1.0814	1.0185	1.1346	1.1656	1.1441
0.7	0.7506	1.0919	1.0873	1.1539	1.2644	1.1713
0.8	0.7910	1.1016	1.1490	1.1725	1.3525	1.1978
0.9	0.8274	1.1107	1.2048	1.1723	1.4320	1.2236
1.0	0.8603	1.1191	1.2558	1.1902	1.5044	1.2488
2.0	1.0769	1.1795	1.5995	1.3384	1.5708	1.2732
3.0	1.1925	1.2102	1.7887	1.4191	2.0288	1.4793
4.0	1.2646	1.2287	1.9081	1.4698	2.2889	1.6227
5.0	1.3138	1.2402	1.9898	1.5029	2.4556	1.7201
6.0	1.3496	1.2479	2.0490	1.5029	2.5704	1.7870
7.0	1.3766	1.2532	2.0937		2.6537	1.8338
8.0	1.3978	1.2570	2.1286	1.5411	2.7165	1.8674
9.0	1.4149	1.2598	2.1566	1.5526	2.7654	1.8921
10.0	1.4289	1.2620	2.1795	1.5611	2.8044	1.9106
20.0	1.4961	1.2699	2.1793	1.5677	2.8363	1.9249
30.0	1.5202	1.2717	2.3261	1.5919	2.9857	1.9781
0.0	1.5325	1.2723	2.3455	1.5973	3.0372	1.9898
50.0	1.5400	1.2727	2.3433	1.5993	3.0632	1.9942
0.00	1.5552	1.2731	2.3809	1.6002	3.0788	1.9962
00	1.5707	1.2733		1.6015	3.1102	1.9990
	r the plane well as d	1.2133	2.4050	1.6018	3.1415	2.0000

Fernando Neto

MÉTODO ANALÍTICO, CASO PARTICULAR DE UMA PLACA PLANA: CÁLCULO DO CALOR TRANSFERIDO

O calor transferido a partir da (ou para a) parede pode ser dado por:

$$Q = Q_o \left(1 - \frac{\sin \zeta_1}{\zeta_1} \theta_o^* \right)$$

com

$$Q_o = \rho c \forall (T_i - T_\infty)$$

CILINDRO DE COMPRIMENTO INFINITO

MÉTODO ANALÍTICO, SISTEMAS RADIAIS, CILINDRO DE COMPRIMENTO INFINITO: DISTRIBUIÇÃO DE TEMPERATURAS

$$\theta^* = \sum_{n=1}^{\infty} C_n \cdot \exp(-\varsigma_n^2 \cdot Fo) J_0(\varsigma_n \cdot r^*)$$

$$C_{n} = \frac{2}{\varsigma_{n}} \cdot \frac{J_{1}(\varsigma_{n})}{J_{0}^{2}(\varsigma_{n}) + J_{1}^{2}(\varsigma_{n})}$$

Os valores de ς_n são as raízes positivas da equação

$$\varsigma_n \cdot \frac{J_1(\varsigma_n)}{J_0(\varsigma_n)} = Bi$$

Onde J_1 e J_0 são as funções de Bessel

MÉTODO ANALÍTICO, SISTEMAS RADIAIS, CILINDRO DE COMPRIMENTO INFINITO: DISTRIBUIÇÃO DE TEMPERATURAS

$$r^* = \frac{r}{r_o}$$

$$T(r, 0) = T_i$$

$$T_{\infty}, h$$

$$\theta^* = \sum_{n=1}^{\infty} C_n \cdot \exp(-\varsigma_n^2 \cdot Fo) J_0(\varsigma_n \cdot r^*)$$

SOLUÇÃO APROXIMADA

$$\theta^* = C_1 \cdot \exp(-\varsigma_1^2 \cdot Fo) J_0(\varsigma_1 \cdot r^*)$$

FUNÇÕES DE BESSEL (INCROPERA)

$x J_0(x)$		$J_1(x)$	
0.0	1.0000	0.0000	
0.1	0.9975	0.0499	
0.2	0.9900	0.0995	
0.3	0.9776	0.1483	
0.4	0.9604	0.1960	
0.5	0.9385	0.2423	
0.6	0.9120	0.2867	
0.7	0.8812	0.3290	
0.8	0.8463	0.3688	
0.9	0.8075	0.4059	
1.0	0.7652	0.4400	
1.1	0.7196	0.4709	
1.2	0.6711	0.4983	
1.3	0.6201	0.5220	
1.4	0.5669	0.5419	
1.5	0.5118	0.5579	
1.6	0.4554	0.5699	
1.7	0.3980	0.5778	
1.8	0.3400	0.5815	
1.9	0.2818	0.5812	
2.0	0.2239	0.5767	
2.1	0.1666	0.5683	
2.2	0.1104	0.5560	
2.3	0.0555	0.5399	
2.4	0.0025	0.5202	

MÉTODO ANALÍTICO, SISTEMAS RADIAIS, CILINDRO DE COMPRIMENTO INFINITO: CALOR TRANSFERIDO

$$\frac{Q}{Q_0} = 1 - \frac{2\theta_0^*}{\zeta_1} J_1(\zeta_1)$$

ESFERA

MÉTODO ANALÍTICO, SISTEMAS RADIAIS, ESFERA: DISTRIBUIÇÃO DE TEMPERATURAS

SOLUÇÃO EXATA

$$\theta^* = \sum_{n=1}^{\infty} C_n \cdot \exp(-\varsigma_n^2 \cdot Fo) \cdot \frac{1}{\varsigma_n \cdot r^*} sen(\varsigma_n \cdot r^*)$$

$$C_n = \frac{4[sen(\varsigma_n) - \varsigma_n.\cos(\varsigma_n)]}{2\varsigma_n - sen(2.\varsigma_n)}$$

Os valores de ς_n são as raízes positivas da equação

$$1 - \varsigma_n \cdot \cot g(\varsigma_n) = Bi$$

SOLUÇÃO APROXIMADA

$$\theta^* = C_1 \cdot \exp(-\varsigma_1^2 \cdot Fo) \cdot \frac{1}{\varsigma_1 \cdot r^*} sen(\varsigma_1 \cdot r^*)$$

MÉTODO ANALÍTICO, SISTEMAS RADIAIS, ESFERA: CALOR TROCADO

$$\frac{Q}{Q_0} = 1 - \frac{3\theta_0^*}{\xi_1^3} \left(sen \xi_1 - \xi_1 \cos \xi_1 \right)$$

AS CARTAS DE HEISLER

CARTAS DE HEISLER

- Na prática...
- ...Recorre-se à representação gráfica das soluções obtidas através do método analítico com a solução <u>aproximada</u>

Cartas de Heisler:

- representação gráfica das equações da distribuição de temperatura no centro do sólido.
- representação gráfica das equações da distribuição de temperatura em qualquer ponto do sólido
- representação gráfica do calor trocado pelo sólido em função de Fo, Bi e de uma dimensão relativa

CARTAS DE HEISLER: TEMPERATURA NO EIXO DE SIMETRIA DE UMA PAREDE PLANA $[T_0=T_0(T)]$ (DOWNLOAD DO E-LEARNING)

FIGURE 58.1 Midplane temperature as a function of time for a plane wall of thickness 2L [1]. Used with permission.

remando Neto ZO/11/ZUZZ

CARTAS DE HEISLER: TEMPERATURA EM QUALQUER PONTO NO INTERIOR DE UMA PAREDE PLANA [T=T(T₀,X)]

$$\frac{\theta}{\theta_o} = \frac{T - T_{\infty}}{T_o - T_{\infty}}$$

FIGURE 5S.2 Temperature distribution in a plane wall of thickness 2L [1]. Used with permission.

Fernando Neto

CARTAS DE HEISLER: TROCA DE CALOR NUMA PAREDE PLANA $Q=Q(BI, FO, Q_0)$

CARTAS DE HEISLER: CILINDRO INFINITO

Temperatura no centro

Temperatura em qualquer raio r

FIGURE 58.5 Temperature distribution in an infinite cylinder of radius r_o [1]. Used with

Calor trocado

CARTAS DE HEISLER: ESFERA

Temperatura no centro

FIGURE 58.7 Center temperature as a function of time in a sphere of radius r_o [1]. Used with permission.

Temperatura em qualquer raio r

Calor trocado

EXEMPLO DE APLICAÇÃO

MÉTODO ANALÍTICO, EXEMPLO DE APLICAÇÃO

As paredes de aço ligado da conduta de escape de uma câmara de testes de turbinas a gás, de configuração cilíndrica, possuem uma espessura de 25 mm.

As paredes da conduta encontram-se isoladas pelo exterior. A densidade, capacidade calorífica e condutibilidade da liga utilizada no fabrico da conduta são, respetivamente, 8000 kg.m⁻³, 500 J.kg⁻¹.K⁻¹ e 25 W.m⁻¹.K⁻¹. Durante um teste, a parede, que se encontra inicialmente a 25°C, é exposta a gases quentes para os quais h=500 W.m⁻².K⁻¹ e T_∞=1750°C. A temperatura limite de utilização da liga é de 1600°C. Admitindo que o diâmetro da conduta é muito superior à espessura da mesma, qual poderá ser a duração máxima de cada teste?

e – espessura da parede

D - diâmetro da conduta

MÉTODO ANALÍTICO, EXEMPLO DE APLICAÇÃO: SIMPLIFICAÇÕES POSSÍVEIS

- Se D>>e, então o comportamento das paredes da conduta pode ser aproximado pelo comportamento de uma parede plana em que metade da espessura é e e a fronteira adiabática funciona como um plano de simetria.
- A parede está sujeita a convecção forçada no interior e a condução unidimensional em regime transiente
- Não há geração de calor
- Bi=h.L/k=0,5; logo o método de análise global não pode ser utilizado (Bi>0,1)

MÉTODO ANALÍTICO, EXEMPLO DE APLICAÇÃO: RESOLUÇÃO

- Pretende-se saber o tempo requerido para que a temperatura na parede exposta à convecção alcance os 1600°C.
- Para o problema em questão, vem Bi=0,5, ou seja Bi-1=2.
- O método da análise global não pode ser utilizado (Bi>0, I)
- O tempo requerido para que a temperatura na parede alcance os 1600°C é dado pelo número de Fourier, Fo= α .t/L².
- No entanto a carta de Heisler de que dispomos para determinar Fo apenas o permite fazer sabendo a temperatura no centro da placa...

MÉTODO ANALÍTICO, EXEMPLO DE APLICAÇÃO: RESOLUÇÃO

- Para que se conheça Fo, é necessário saber qual o valor de Bi (=0,5) e qual o valor do parâmetro $\Theta^*_0 = \theta_0/\theta_i = (T_0 T_\infty)/(T_i T_\infty)$
- O problema é que não se sabe qual a temperatura no centro da parede, T_0 , quando a temperatura na parede exposta à convecção, T_L , é 1600°C

MÉTODO ANALÍTICO, EXEMPLO DE APLICAÇÃO: RESOLUÇÃO

• Não se conhece θ_0 , mas $\frac{\theta_0}{\theta_i} = \frac{\theta_0.\theta_L}{\theta_L.\theta_i} = \frac{\frac{\theta_L}{\theta_i}}{\frac{\theta_L}{\theta_0}} = \frac{\frac{r_L-r_\infty}{T_{i-T_\infty}}}{\frac{T_L-T_\infty}{T_{0-T_\infty}}}$

A figura permite saber que para Bi=0,5 e para x/L=1 (parede interior

da conduta) vem $\theta_L/\theta_0=0.8$

Donde $\frac{\theta_0}{\theta_i} = \frac{\frac{\theta_L}{\theta_i}}{0.8} = \frac{\frac{1600 - 1750}{25 - 1750}}{0.8} = 0.11$

FIGURE D.2 Temperature distribution in a plane wall thickness 2L [1]. Used with permission.

MÉTODO ANALÍTICO, EXEMPLO DE APLICAÇÃO: RESOLUÇÃO

- Para $\theta_0/\theta_i = 0,11$ e Bi⁻¹=2 vem Fo=0,42
- Daqui, tiramos t=Fo.L $^2/\alpha$ = 42 s

28/11/2022

CONDUÇÃO DE CALOR EM SÓLIDOS SEMI-INFINITOS

SÓLIDOS SEMI-INFINITOS

Sólido semi-infinito: "sólido que se estende até ao infinito em todas as direções, exceto uma"

Sólido semi-infinito: sólido em que a temperatura a uma dada distância da superfície não se altera como resultado de um processo de condução de calor

SÓLIDOS SEMI-INFINITOS: UTILIZAÇÃO

Os sólidos semi-infinitos são utilizados na modelação de processos de transferência de calor em alguns casos:

... modelação da transferência de calor através do solo;

... aproximação da resposta transiente de um sólido de baixa condutibilidade a uma mudança de temperatura à superfície;

... etc.

O MÉTODO ANALÍTICO EM SÓLIDOS SEMI-INFINITOS: FORMULAÇÃO

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

 $CI: T(x,0) = T_i$ $1^{\mathbf{a}} \ CF : T(x \to \infty, t) = T_i$ Case (1) $T(x, 0) = T_i$ $T(0, t) = T_s$ $T(0,t) = T_s -$ Case (2) $2^{\mathbf{a}} CF \left\{ \begin{array}{c} -k \frac{\partial T}{\partial x} \Big|_{x=0} = q_0 \text{''} \\ -k \frac{\partial T}{\partial x} \Big|_{x=0} = h [T_{\infty} - T(0, t)] \end{array} \right.$ $T(x, 0) = T_i$ $-k \frac{\partial T}{\partial x}\Big|_{r=0} = q_0''$ $-k \frac{\partial T}{\partial x}\Big|_{x=0} = h[T_{\infty} - T(0, t)]$ $\vdash x$ T_{∞} , h

A temperatura não varia a distâncias afastadas da superfície

Case (3) $T(x, 0) = T_i$

SÓLIDOS SEMI-INFINITOS: SOLUÇÃO DE ACORDO COM CADA UMA DAS CONDIÇÕES DE FRONTEIRA: TEMPERATURA CONSTANTE À SUPERFÍCIE

Equação diferencial:

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

Condições inicial e fronteira

$$CI: T(x,0) = T_i$$

$$1^{a} CF : T(x \rightarrow \infty, t) = T_{i}$$

$$2^{a} CF : T(0,t) = T_{s}$$

Solução

$$\frac{T(x,t) - T_s}{T_i - T_s} = \operatorname{erf}\left(\frac{x}{2\sqrt{\alpha t}}\right)$$

$$q_{s}'' = \frac{k(T_{s} - T_{i})}{\sqrt{\pi \alpha t}}$$

Função-erro

Representação gráfica

Fernando Neto

VALORES DA FUNÇÃO ERRO GAUSSIANA (INCROPERA, ANEXO B)

w	erf w	w	erf w	w	erf w
0.00	0.00000	0.36	0.38933	1.04	0.85865
0.02	0.02256	0.38	0.40901	1.08	0.87333
0.04	0.04511	0.40	0.42839	1.12	0.88679
0.06	0.06762	0.44	0.46622	1.16	0.89910
0.08	0.09008	0.48	0.50275	1.20	0.91031
0.10	0.11246	0.52	0.53790	1.30	0.93401
0.12	0.13476	0.56	0.57162	1.40	0.95228
0.14	0.15695	0.60	0.60386	1.50	0.96611
0.16 .	0.17901	0.64	0.63459	1.60	0.97635
0.18	0.20094	0.68	0.66378	1.70	0.98379
0.20	0.22270	0.72	0.69143	1.80	0.98909
0.22	0.24430	0.76	0.71754	1.90	0.99279
0.24	0.26570	0.80	0.74210	2.00	0.99532
0.26	0.28690	0.84	0.76514	2.20	0.99814
0.28	0.30788	0.88	0.78669	2.40	0.99931
0.30	0.32863	0.92	0.80677	2.60	0.99976
0.32	0.34913	0.96	0.82542	2.80	0.99992
0.34	0.36936	1.00	0.84270	3.00	0.99998

¹The Gaussian error function is defined as

$$\operatorname{erf} w = \frac{2}{\sqrt{\pi}} \int_0^w e^{-v^2} \, dv$$

The complementary error function is defined as

$$\operatorname{erfc} w \equiv 1 - \operatorname{erf} w$$

SÓLIDOS SEMI-INFINITOS: SOLUÇÃO DE ACORDO COM CADA UMA DAS CONDIÇÕES DE FRONTEIRA: FLUXO DE CALOR CONSTANTE À SUPERFÍCIE

Equação diferencial:

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

Condições inicial e fronteira

 $CI: T(x,0) = T_i$ $1^{a} CF: T(x \to \infty, t) = T_i$ $2^{a} CF: -k \frac{\partial T}{\partial x} \Big|_{x=0} = q_0$

Solução

Representação gráfica

$$T(x,t) - T_i = \frac{2q''_o (\alpha t / \pi)^{\frac{1}{2}}}{k} \exp\left(-\frac{x^2}{4\alpha t}\right)$$
$$-\frac{q''_o x}{k} \operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}}\right)$$

SÓLIDOS SEMI-INFINITOS: SOLUÇÃO DE ACORDO COM CADA UMA DAS CONDIÇÕES DE FRONTEIRA: FLUXO DE CALOR CONVECTIVO À SUPERFÍCIE

Equação diferencial:

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

Condições inicial e fronteira

28/11/2022

Solução

Fernando Neto

Representação gráfica

$$CI: T(x,0) = T_{i}$$

$$1^{a} CF: T(x \to \infty, t) = T_{i}$$

$$2^{a} CF: -k \frac{\partial T}{\partial x}\Big|_{x=0} = h [T_{\infty} - T(L, t)]$$

$$\frac{T(x,t) - T_{i}}{T_{\infty} - T_{i}}$$

$$= erfc \left(\frac{x}{2\sqrt{\alpha} t}\right) - \left[exp\left(\frac{h.x}{k} + \frac{h^{2}.\alpha.t}{k^{2}}\right)\right] \left[erfc\left(\frac{x}{2\sqrt{\alpha.t}} + \frac{h\sqrt{\alpha.t}}{k}\right)\right]$$

Case (3) $T(x, 0) = T_{i}$ $-k \frac{\partial T}{\partial x}\Big|_{x=0} = h[T_{\infty} - T(0, t)]$ T_{∞}, h T_{∞}

DIFERENÇAS FINITAS EM CONDUÇÃO TRANSIENTE

Condução de calor multidimensional em regime transiente: o método das diferenças finitas

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + q = \rho c_p \frac{\partial T}{\partial t}$$

CONDUÇÃO DE CALOR MULTIDIMENSIONAL EM REGIME TRANSIENTE: EXEMPLO PARA CONDUÇÃO BI-DIMENSIONAL SEM GERAÇÃO DE CALOR

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \frac{\partial}{\partial z} = \rho c_p \frac{\partial T}{\partial t}$$

Para o caso de condutibilidade térmica constante, então:

Como se expressa a derivada temporal em termos de diferenças finitas?

α - difusividade térmica

CONDUÇÃO DE CALOR MULTIDIMENSIONAL EM REGIME TRANSIENTE: APROXIMAÇÃO À DERIVADA TEMPORAL

Para o caso de condução bi-dimensional em regime transiente, a discretização do domínio ocorre não espacialmente mas também temporalmente.

Assim, a aproximação por diferenças finitas à derivada temporal $\partial T/\partial t$ é dada, para o nodo (m,n) por:

$$\frac{\partial T}{\partial t}\Big|_{m,n} \approx \frac{T_{m,n}^{p+1} - T_{m,n}^{p}}{\Delta t}$$

onde T^{P+1} representa a temperatura no instante $t+\Delta t$ e T^P representa a temperatura no instante t

/2022

CONDUÇÃO DE CALOR MULTIDIMENSIONAL EM REGIME TRANSIENTE: AS METODOLOGIAS EXPLÍCITA E IMPLÍCITA

- A aproximação por diferenças finitas à equação da difusão de calor em regime transiente recorre a duas metodologias possíveis:
 - A metodologia explícita
 - As temperaturas de um ponto nodal são calculadas no instante t+∆t recorrendo às temperaturas dos nodos vizinhos e do próprio nodo, conhecidas no instante t anterior
 - Desvantagem: a sua aplicabilidade depende da satisfação de um critério de estabilidade
 - Vantagem: de fácil implementação numérica
 - A metodologia implícita
 - As temperaturas de um ponto nodal são calculadas no instante t+Δt recorrendo às temperaturas dos nodos vizinhos no instante t+Δt e do próprio nodo no instante t

A METODOLOGIA EXPLÍCITA

CONDUÇÃO DE CALOR MULTIDIMENSIONAL EM REGIME TRANSIENTE: A METODOLOGIA EXPLÍCITA

Aproximação por diferenças finitas à equação da difusão de calor bi-dimensional em regime transiente

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

$$\frac{T_{m+1,n}^{p} + T_{m-1,n}^{p} - 2T_{m,n}^{p}}{\Delta x^{2}}$$

$$\frac{T_{m,n+1}^{p} + T_{m,n-1}^{p} - 2T_{m,n}^{p}}{\Delta y^{2}}$$

$$=\frac{1}{\alpha}\frac{T_{m,n}^{(p+1)}-T_{m,n}^{p}}{\Delta t}$$

CONDUÇÃO DE CALOR MULTIDIMENSIONAL EM REGIME TRANSIENTE: A METODOLOGIA EXPLÍCITA

Se a grelha espacial bidimensional cartesiana tiver sido construída de forma a que $\Delta x = \Delta y$, então, expressando a temperatura de um nodo central (m,n) no instante t+ Δt (representado pelo índice p+1) em função das temperaturas dos nodos vizinhos e da temperatura do próprio nodo no instante anterior, vem:

$$T_{m,n}^{p+1} = Fo(T_{m+1,n}^p + T_{m-1,n}^p + T_{m,n+1}^p + T_{m,n-1}^p) + (1 - 4.Fo)T_{m,n}^p$$

Onde o número de Fourier, Fo é dado por:

$$Fo = \frac{\alpha . \Delta t}{\Delta x^2}$$

2022

CONDUÇÃO DE CALOR MULTIDIMENSIONAL EM REGIME TRANSIENTE: DESVANTAGEM DA METODOLOGIA EXPLÍCITA

A aplicabilidade da metodologia explícita, embora de fácil implementação	
computacional, encontra-se condicionada pela satisfação de alguns critérios	de
estabilidade	

- ☐ Critério de estabilidade para um nodo interior
 - ☐ Sistema bidimensional: Fo≤1/4
 - \square Sistema unidimensional : Fo $\le 1/2$
- ☐ Critério de estabilidade para um nodo de fronteira:

☐ Critério de estabilidade para outros nodos...

CONDUÇÃO DE CALOR MULTIDIMENSIONAL EM REGIME TRANSIENTE: CONSEQUÊNCIAS DAS LIMITAÇÕES DA METODOLOGIA EXPLÍCITA

- Por exemplo, para um nodo interior de um sistema bi-dimensional, o critério de estabilidade é: Fo=α.Δt/Δx²<0,25, ou seja, Δt<0,25.Δx²/α.
 Isto significa que Δt e Δx estão dependentes um do outro: não há qualquer
- Isto significa que Δt e Δx estão dependentes um do outro: não há qualquer possibilidade de os fixar independentemente
- Limitações na obtenção da solução (espaçamento da grelha condicionado, intervalo temporal condicionado)
- \square Regra geral para o método explícito, o critério de estabilidade é o de que o coeficiente do termo $T_{m,n}^{P}$ seja sempre maior ou igual a 0.

CONDUÇÃO DE CALOR MULTIDIMENSIONAL EM REGIME TRANSIENTE: METODOLOGIA DE APLICAÇÃO DA APROXIMAÇÃO POR DIFERENÇAS FINITAS USANDO A METODOLOGIA EXPLÍCITA

- Divisão do domínio através de uma malha
- 2. Para cada tipo de nodo definido no domínio, construir, através de um balanço energético, a aproximação por diferenças finitas à equação da difusão do calor (incluir as condições fronteira para os nodos localizados na fronteira)
- 3. Definir para a malha escolhida e para os respectivos valores de Δx e Δy , qual o Δt a adoptar para que o critério de estabilidade seja satisfeito em todos os pontos do domínio
- 4. Utilizar a condição inicial para o instante p=0
- 5. Utilizar o método explícito determinando o valor de $T_{m,n}$ para o instante p+1 a partir dos valores de $T_{m,n}$ e dos valores das temperaturas dos nodos vizinhos em p
- 6. Prosseguir o cálculo até se alcançar o instante t cuja situação se pretende retratar

Fernando Neto

ALGUMAS FORMULAÇÕES PARA A METODOLOGIA EXPLÍCITA E RESPECTIVO CRITÉRIO DE ESTABILIDADE (HOLMAN, 1993)

A METODOLOGIA IMPLÍCITA

CONDUÇÃO DE CALOR MULTIDIMENSIONAL EM REGIME TRANSIENTE: A METODOLOGIA IMPLÍCITA

De acordo com o método implícito, a aproximação à equação da difusão do calor é dada por

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

$$\frac{T_{m+1,n}^{(p+1)} + T_{m-1,n}^{(p+1)} - 2T_{m,n}^{(p+1)}}{\Delta x^2}$$

$$-\frac{T_{m,n+1}^{p+1} + T_{m,n-1}^{p+1} - 2T_{m,n}^{p+1}}{\Delta y^2} =$$

$$= \frac{1}{\alpha} \frac{T_{m,n}^{p+1} - T_{m,n}^{p}}{\Delta t}$$

COMPARAÇÃO DAS APROXIMAÇÕES À EQUAÇÃO DA DIFUSÃO DE CALOR EM REGIME BIDIMENSIONAL, SEM GERAÇÃO DE CALOR, OBTIDAS COM AS DIFERENTES METODOLOGIAS

/11/2022

CONDUÇÃO DE CALOR MULTIDIMENSIONAL EM REGIME TRANSIENTE: A METODOLOGIA IMPLÍCITA

De acordo com a metodologia implícita, para uma grelha em que $\Delta x = \Delta y$, a temperatura do nodo interior (m,n) no instante $t+\Delta t$ (representado pelo índice p+1) é dada em função das temperatura dos nodos vizinhos no mesmo instante e da temperatura do próprio nodo no instante anterior por:

$$(1+4.Fo).T_{m,n}^{p+1} = Fo(T_{m+1,n}^{p+1} + T_{m-1,n}^{p+1} + T_{m,n+1}^{p+1} + T_{m,n-1}^{p+1}) + T_{m,n}^{p}$$

Recorde-se que a formulação para a metodologia explícita fora:

$$\left| T_{m,n}^{p+1} = Fo(T_{m+1,n}^p + T_{m-1,n}^p + T_{m,n+1}^p + T_{m,n-1}^p) + (1 - 4.Fo)T_{m,n}^p \right|$$

8/11/2022

Fernando Neto

ALGUMAS FORMULAÇÕES PARA A METODOLOGIA IMPLÍCITA (HOLMAN, 1993)

EXEMPLO DE APLICAÇÃO

1 Too, & A placa representada ma fijua à strucció ini es-procuse tempuetura T(x,t) = T(x,0) = To Détermine as equações que lhe permitere calcular a temperatura dos modos 1,2 e 3 eu percai do tempo quado a pieca é subitamente exporta a uma situases de traveleira de calo. por convecção caracterizada por Tos, ho de acordo com os vertodos explícito e implicito.

EXEMPLO DE APLICAÇÃO: DEFINIÇÃO DOS VOLUMES DE CONTROLE

EXEMPLO RESOLVIDO COM A METODOLOGIA EXPLÍCITA

EXEMPLO DE APLICAÇÃO: BALANÇO ENERGÉTICO PARA O NODO I (METODOLOGIA EXPLÍCITA)

$$q_{conv} + q_2 = \Delta \dot{E}$$

$$q_{conv} = h.A(T_{\infty}^{P} - T_{1}^{P})$$

$$q_{2} = \frac{k.A}{\Delta y}(T_{2}^{P} - T_{1}^{P})$$

$$\Delta \dot{E} = \rho V c_{P} \frac{(T_{1}^{P+1} - T_{1}^{P})}{\Delta t}$$

EXEMPLO DE APLICAÇÃO: OBTENÇÃO DA EQUAÇÃO PARA A TEMPERATURA DO NODOI (METODOLOGIA EXPLÍCITA)

$$\frac{k.A}{\Delta y}(T_2^P - T_1^P) + h.A(T_\infty^P - T_1^P) = \rho V c_P \frac{(T_1^{P+1} - T_1^P)}{\Delta t}$$

Atendendo a que

$$Bi = \frac{h.\Delta y}{k} e Fo = \frac{\alpha.\Delta t}{\Delta y^2}$$

fica:

$$2.Bi.Fo(T_{\infty}^{P} - T_{1}^{P}) + 2.Fo(T_{2}^{P} - T_{1}^{P}) = (T_{1}^{P+1} - T_{1}^{P})$$

Resolvendo em ordem a T_1^{P+1} , vem:

$$T_1^{P+1} = 2.Bi.Fo(T_{\infty}^P - T_1^P) + 2.Fo(T_2^P - T_1^P) + T_1^P$$

EXEMPLO DE APLICAÇÃO: OBTENÇÃO DA EQUAÇÃO PARA A TEMPERATURA DO NODOI (METODOLOGIA EXPLÍCITA)

$$T_1^{P+1} = 2.Bi.Fo(T_{\infty}^P - T_1^P) + 2.Fo(T_2^P - T_1^P) + T_1^P$$

Atendendo ao critério de convergência (o coeficiente de T_1^P tem de ser positivo), então:

$$1 - 2.Fo.(Bi + 1) \ge 0 \iff Fo(1 + Bi) \le \frac{1}{2}$$

EXEMPLO DE APLICAÇÃO: OBTENÇÃO DA EQUAÇÃO PARA A TEMPERATURA DO NODO 2 DE ACORDO COM A METODOLOGIA EXPLÍCITA E CRITÉRIO DE ESTABILIDADE

$$q_{1} = \frac{k.A}{\Delta y} (T_{1}^{P} - T_{2}^{P})$$

$$q_{3} = \frac{k.A}{\Delta y} (T_{3}^{P} - T_{2}^{P})$$

$$\Delta \dot{E} = \rho V c_{P} \frac{(T_{2}^{P+1} - T_{2}^{P})}{\Delta t}$$

$$T_2^{P+1} = Fo(T_1^P + T_3^P) + T_2^P(1 - 2.Fo)$$

Critério de convergência:

$$1-2.Fo \ge 0$$

EXEMPLO DE APLICAÇÃO: OBTENÇÃO DA EQUAÇÃO PARA A TEMPERATURA DO NODO 3 DE ACORDO COM A METODOLOGIA EXPLÍCITA

$$q_2 = \frac{k \cdot A}{\Delta y} (T_2^P - T_3^P)$$

$$\Delta \dot{E} = \rho V c_P \frac{(T_3^{P+1} - T_3^P)}{\Delta t}$$

$$T_3^{P+1} = 2.Fo.T_2^P + T_3^P(1-2.Fo)$$

EXEMPLO RESOLVIDO COM A METODOLOGIA IMPLÍCITA

EXEMPLO DE APLICAÇÃO: OBTENÇÃO DA EQUAÇÃO PARA A TEMPERATURA DO NODO I DE ACORDO COM A METODOLOGIA IMPLÍCITA

$$q_{conv} = h.A(T_{\infty}^{P+1} - T_{1}^{P+1})$$

$$q_{2} = \frac{k.A}{\Delta y}(T_{2}^{P+1} - T_{1}^{P+1})$$

$$\Delta \dot{E} = \rho V c_{P} \frac{(T_{1}^{P+1} - T_{1}^{P})}{\Delta t}$$

$$T_1^{P+1} = \frac{2.Fo(Bi.T_{\infty}^{P+1} + T_2^{P+1}) + T_1^P}{1 + 2.Fo(Bi + 1)}$$

EXEMPLO DE APLICAÇÃO: OBTENÇÃO DA EQUAÇÃO PARA A TEMPERATURA DO NODO 2 DE ACORDO COM A METODOLOGIA IMPLÍCITA

$$T_2^{P+1} = \frac{Fo(T_1^{P+1} + T_3^{P+1}) + T_2^P}{1 - 2.Fo}$$

EXEMPLO DE APLICAÇÃO: OBTENÇÃO DA EQUAÇÃO PARA A TEMPERATURA DO NODO 3 DE ACORDO COM A METODOLOGIA IMPLÍCITA

$$T_3^{P+1} = \frac{2.Fo.T_2^{P+1} - T_3^P}{1 + 2.Fo}$$

EXEMPLO DE APLICAÇÃO: SÚMULA DOS RESULTADOS OBTIDOS

Metodologia explícita (e critério de convergência)

$$T_1^{P+1} = 2.Bi.Fo(T_\infty^P - T_1^P) + 2.Fo(T_2^P - T_1^P) + T_1^P$$

$$Fo(1+Bi) \le \frac{1}{2}$$

$$T_2^{P+1} = Fo(T_1^P + T_3^P) + T_2^P(1 - 2.Fo)$$

 $1 - 2.Fo > 0$

$$T_3^{P+1} = 2.Fo.T_2^P + T_3^P (1 - 2.Fo)$$

$$1-2.Fo \geq 0$$

Metodologia implícita

$$T_1^{P+1} = \frac{2.Fo(Bi.T_{\infty}^{P+1} + T_2^{P+1}) + T_1^P}{1 + 2.Fo(Bi + 1)}$$

$$T_2^{P+1} = \frac{Fo(T_1^{P+1} + T_3^{P+1}) + T_2^P}{1 - 2.Fo}$$

$$T_3^{P+1} = \frac{2.Fo.T_2^{P+1} - T_3^P}{1 + 2.Fo}$$