Ejercicios de Introducción a las partículas elementales y Teoría Cuantica de Campos

Amaro A. Díaz Concha y Fernanda C. Mella Alvarez

Departamento de Física Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción

Índice general

0.0.1. Preguntas clase 1

Pregunta 1

Escriba la ecuación de Schödinger para el àtomo de hidrógeno, incluyendo las contribuciones cinéticas tanto del protón como del electrón, además de la energía potencial de la interacción.

Solución:

Pregunta 2

Argumente que la formulación standard de la mecácnia cuántica no-relativista considera un número fijo de partículas y no permite describir transiciónes entre estados con número distinto de partículas.

Solución:

Pregunta 3

Describa el efecto Compton y diga por qué razón el resultado clásico es distinto al observado. Calcule la longitud de Compton del electrón.

Solución:

Pregunta 4

Describa el decaimiento beta ¿Cuál es la vida media de un neutrón? ¿Cómo interpreta tal número?

Solución:

Pregunta 5

Deduzca las ecuaciones de Euler-Lagrange, argumentando cláramente cada uno de sus pasos. Explique porqué nunca es necesario preguntarse si la variación δ conmuta o no con la derivada temporal $\frac{d}{dt}$. Encuentre las ecuaciones de Euler-Lagrange para un Lagrangiano que dependec de un número arbitrario de coordenadas generalizadas $q_i(t)$ con $i=1,\ldots,N$.

Solución: Sea la acción

$$S = \int_{t_1}^{t_2} dt L(\dot{q}^i, q^i, t)$$
 (0.1)

Para lo cual $q^i(t)$, $i=1,\ldots,N$ son las coordenadas generalizadas las cuales están bien definidas en el intervalo de $t\in[t_1,t_2]$ en los cuales se tiene que las condiciones de borde homogéneas (shell) tal que, aunque las funcion pueda cambiar dentro del intervalo (t_1,t_2) los valores en los extremos t_1 y t_2 no cambiará. Así, consideraremos una variacion del camino infinitesimal del camino que tomará, la cual denotaremos por $\delta q^i = \Phi^i(t)$ que al igual que las coordenadas, será dependiente del tiempo, la variación de la acción ante esta variacion infinitesimal de camino es denotada por

$$\begin{split} \delta S &= S[q^{i}(t) + \Phi^{i}(t)] - S[q^{i}(t)] \\ &= \int_{t_{i}}^{t_{2}} L\left[q^{i}(t) + \Phi^{i}(t), \frac{d}{dt}\left(q^{i}(t) + \Phi^{i}(t)\right), t\right] - \int_{t_{i}}^{t_{2}} dt L(q^{i}(t), \dot{q}^{i}, t) \end{split}$$

Ahora, se tiene la siguiente dependencia en el Lagrangiano $L\left[q^i(t)+\Phi^i(t),\frac{d}{dt}\left(q^i(t)+\Phi^i(t)\right),t\right]$ para lo cual se tomará una serie de Taylor con respecto al origen como sigue

$$L\left[q^{i}+\Phi^{i},\frac{d}{dt}\left(q^{i}+\Phi^{i}\right)\right]=L+\partial_{q^{i}}L\;\Phi^{i}+\partial_{\dot{q}^{i}}L\;\dot{\Phi}+\mathcal{O}(\Phi^{i^{2}},\dot{\Phi^{i}}^{2},\Phi^{i},\dot{\Phi}^{i})$$

Con lo cual, si introducimos (??) sin tomar en cuenta los términos de $\mathcal{O}(\Phi^{i^2}, \dot{\Phi^{i}}^2, \Phi^{i}, Phi^{i})$ se tiene lo siguiente

$$\delta S = \int_{t_1}^{t_2} dt \left(L + \partial_{q^i} L \ \Phi^i + \partial_{\dot{q}^i} L \ \dot{\Phi} \right) - \int_{t_1}^{t_2} L(q^i, \dot{q}^i, t)$$

Ahora, usando regla de Leibniz en el tercer término en la primera integral, se obtiene

$$\begin{split} \frac{d}{dt} \left(\partial_{\dot{q}^i} L \; \Phi^i \right) &= \frac{d}{dt} \partial_{\dot{q}^i} \Phi^i + \partial_{\dot{q}^i} (L) \; \dot{\Phi}^i \\ \frac{d}{dt} (\partial_{\dot{q}^i} L \; \Phi^i) &- \frac{d}{dt} (\partial_{\dot{q}^i} L) \; \Phi^i = & \partial_{\dot{q}^i} \dot{\Phi}^i \end{split}$$

Con lo cual, introduciendo (??) en el desarollo, obtenemos lo que sigue

$$\delta S = \int_{t_1}^{t_2} dt \left[L + \partial_{q^i} L \, \Phi^i + \frac{d}{dt} (\partial_{\dot{q}^i} L \, \Phi^i) - \frac{d}{dt} (\partial_{\dot{q}^i} L) \, \Phi^i \right] - \int_{t_1}^{t_2} L(q^i, \dot{q}^i, t)$$

$$= \int_{t_1}^{t_2} dt \left[L - L + \partial_{\dot{q}^i} L \, \Phi^i - \frac{d}{dt} (\partial_{\dot{q}^i} L) \Phi^i \right] + \int_{t_1}^{t_2} \frac{d}{dt} (\partial_{\dot{q}^i} L \, \Phi^i)$$

Notese que el ùltimo término será igual a cero ya que este está evaluado en los los extremos, veamos que, por el teorema fundamental del cálculo:

$$\int_{t_1}^{t_2} dt \frac{d}{dt} (\partial_{\dot{q}^i} L \, \Phi^i) = \left[\partial_{\dot{q}^i} L \, \Phi^i \right]_{t_1}^{t_2} = 0$$

Ya que, como sabemos $\Phi^i(t_1) = \Phi^i(t_2) = 0$ son las condiciones de borde impuestas, así sigue que

$$\delta S = \int_{t_1}^{t_2} dt \left(\partial_{q^i} L + \frac{d}{dt} (\partial_{\dot{q}^i} L) \right) \Phi^i$$

Luego, se sume que el princpio de acción es estacionaro, con lo cual $S\delta \stackrel{!}{=} 0$ con lo cual se obtiene

$$\delta S \stackrel{!}{=} 0 = \int_{t_1}^{t_2} dt \left(\partial_{q^i} L - \frac{d}{dt} (\partial_{\dot{q}^i} L) \right) \Phi^i$$

Ahora, como se ha realizado para un intervalo de tiempos cualesquiera, entonces el integrando será cero para todo tiempo, lo cual es

$$\begin{split} 0 &= \left[\partial_{q^i} L - \frac{d}{dt} (\partial_{\dot{q^i}} L)\right] \Phi^i \\ &= \partial_{q^i} L - \frac{d}{dt} (\partial_{\dot{q}^i} L) \end{split}$$

En donde se ha obviado el caso trivial en el cual $\Phi^i=0$ ya que esta es una función arbitraria. Con lo cual, finalmente se llega a las ecuaciones de Euler-Lagrange para $q^i(t)$, $i=1,\ldots,N$ las cuale están dadas por

$$\partial_{q^i} L - \frac{d}{dt} (\partial_{\dot{q}^i} L) = 0$$

$$(0.2)$$

0.1. Ejercicios clase 2

0.1.1. Pregunta 1

Manipulando la segunda ley de Newton para una partícula en presencia de una energía potencial U(x(t)), muestre que la energía es conservada.

Solución:

0.1.2. Pregunta 2

Deduzla la transformación infinitesimal que representa una traslación en el tiempo actuando sobre un grado de libertad q(t).

Solución:

0.1.3. Pregunta 3

Deduzla la transformación infinitesimal que representa una traslación espacial del grado de libertad $\vec{r}(t)$.

Solución:

0.1.4. Pregunta 4

Deduzca la transformación infinitesimal que representa una rotación en el plano (x, y), actuando sobre la posición de una partícula $\vec{r}(t) = x\hat{x} + y\hat{y} + z\hat{z}$.

Solución:

0.1.5. Pregunta 5

Demuestre, explicando cada paso, que una transformación infinitesimal que deja quasi-invariante la acción de un conjunto de grados de libertad q_A con $A=1,\ldots,N$, permite construir una cantidad conservada Q. Construya tal cantidad conservada para los siguientes casos

$$\begin{split} S[q(t)] &= \int dt \left[\frac{m}{2} \dot{q}^2 - U(q) \right] \quad \text{invariancia bajo traslaciones temporales} \\ S[q(t)] &= \int dt \left[\frac{m}{2} \frac{dx^i}{dt} \frac{dx^i}{dt} \right] \quad \text{invariancia bajo traslaciones espaciales} \\ S[q(t)] &= \int dt \left[\frac{m}{2} \frac{d\vec{r}}{dt} \cdot \frac{d\vec{r}}{dt} - U(|\vec{r}|) \right] \quad \text{invariancia bajo rotaciones en el plano } (x,y) \end{split}$$

Extienda el último caso a al invariancia bajo rotaciones generales, cuya acción finita está dada por $\vec{r}_{\text{transformado}} = O\vec{r}$ con O una matriz ortogonal de determinante 1.

Solución: Para resolver este problema usaremos el teorema de Noether, el cual nos dice que una transformación infinitesimal deja la acción quasi-invariante, entones podemos construir una cantidad conservada Q como veremos a continuación para los siguientes casos.

Traslación temporal: Se nos pide encontrar la cantidad conservada ante la invariancia sobre traslaciones temporales de la siguiente acción, dada por

$$S[q(t)] = \int_{t_1}^{t_2} dt \left[\frac{m}{2} \dot{q}^2 - U(q) \right]$$

tenemos que la traslación temporal infinitesimal está dada por $\delta q = \epsilon \dot{q}$ en lo cual ϵ es un término arbitrario y muy pequeño, ahora, para encontrar que la acción es invariante bajo dicha transforación es necesario variar la acción, esto será como sigue

$$\begin{split} \delta S[q(t)] &= S[q(t) + \delta q(t)] - S[q(t)] \\ &= \int_{t_1}^{t_2} dt \; L[q(t) + \delta q(t), \frac{d}{dt}(q(t) + \delta q(t))] - L[q(t), \dot{q}(t)] \end{split}$$

Para lo cual, luego de tomar una serie de Taylor en dos dimensiones, nótese en el enunciado, que en la acción dada no es dependiente explícitamente del tiempo, con lo cual el término extra dependiente del tiempo en la

serie de Taylor multivariable se neglecta, así se llega a que la variación de la acción, cuando el Lagrangiano es independiente explícitamente del tiempo, está dada por

$$\delta S[q(t)] = \int_{t_1}^{t_2} dt \left(\partial_q L \, \delta q + \partial_{\dot{q}L} \, \delta \dot{q} \right) \tag{0.3}$$

Con lo cual solo queda calcular los términos involucrados en la variación del Lagrangiano, tal que

$$\delta S[q(t)] = \int_{t_1}^{t_2} dt \left[-\partial_q U \,\epsilon \dot{q} + m \dot{q} \epsilon \right] = \int_{t_1}^{t_2} dt \frac{dB}{dt}$$
 (0.4)

Con lo cual es necesario expresar la variación del Lagrangiano como la derivada total de un cantidad, tal que

$$\frac{d}{dt}(-U(q)\epsilon + mq\epsilon) = \frac{dB}{dt} \tag{0.5}$$

Con lo cual hemos encontrado la cantidad B la cual es

$$B = -U(q)\epsilon + mq\epsilon \tag{0.6}$$

Así, por teorema de Noether, podemos construir una canidad conservada Q, cuya expresión es

$$\partial_{\dot{q}}L \, \delta q - B = Q$$

0.1.6. Pregunta 6

Partícula conforme: Calcule la cantidad conservada asociada a la transformación de simetría $\delta x(t) = \frac{\epsilon}{2}x(t) - \epsilon t \frac{dx(t)}{dt}$, para la acción de la partícula conforme

$$I[x(t)] = \int_{t_1}^{t_2} dt \left(\frac{m}{2} \left(\frac{dx}{dt}\right)^2 - \frac{\alpha}{x^2}\right). \tag{0.7}$$

Considerando la cantidad conservada asociada esta simetría, además de la conservación de la energía, encuentre la trayectoria de la partícula x(t) de forma alebraica.

Solución: Para encontrar la cantidad conservada es necesario variar la acción con respecto a al transformaciñon de simetría infinitesimal $\delta x(t) = \frac{\epsilon}{2}x(t) - \epsilon t \frac{dx(t)}{dt}$, para lo cual, tenemos el siguiente Lagrangiano

$$L = \frac{m}{2} \left(\dot{x} \right)^2 - \frac{\alpha}{r^2} \tag{0.8}$$

Ahora, para ver si la acción es invariante o quasi-invariante, variamos la acción y por tanto, el Lagrangiano, la variación de la accion es la siguiente

$$\delta I[x(t)] = I[x(t) + \delta x(t)] - I[x(t)]$$
$$= \int_{t_1}^{t_2} dt \left(L[x(t) + \delta x(x)] - L[x(t)] \right)$$

Lo cual, como ya sabemos, luego de una serie de Taylor se reduce a

$$\delta I[x(t)] = \int_{t_1}^{t_2} dt \left(\partial_x L \, \delta x + \partial_{\dot{x}} L \, \delta \dot{x}\right)$$

Ahora, sabemos la expresión para el Lagrangiano y para la transformación de simetría, con lo cual solo queda calcular las derivadas parciales que aparecen el la variación y el álgebra subsiguiente

$$\delta I[x(t)] = \int_{t_1}^{t_2} dt \left[\frac{2\alpha}{x^3} \left(\frac{\epsilon}{2} x - \epsilon t \dot{x} \right) - m \dot{x} \left(\frac{\epsilon}{2} \dot{x} + \epsilon t \ddot{x} \right) \right]$$
$$= \int_{t_1}^{t_2} dt \epsilon \left[\frac{\alpha}{x^2} - \frac{2\alpha t \dot{x}}{x^3} - \frac{m \dot{x}^2}{2} - m t \dot{x} \ddot{x} \right]$$

Ahora, para usar el teorema de Noether, que nos dice que, una cantidad conservada B será tal que

$$\delta I[(t)] = \int_{t_1}^{t_2} dt \delta L = \int_{t_1}^{t_2} \frac{dB}{dt}$$
 (0.9)

Para ello, es necesario dejar a la expresión anterior como una derivada total, con lo cual notamos que el primer término de la integral corresponde a

$$\frac{\alpha}{x^2} - \frac{2\alpha t\dot{x}}{x^3} = \frac{d}{dt} \left(\frac{\alpha t}{x^2}\right)$$

Y además el segundo término es tal que

$$-\frac{m\dot{x}^2}{2} - mt\dot{x}\ddot{x} = -\frac{d}{dt}\left(\frac{mt\dot{x}^2}{2}\right)$$

Con lo cual es posible reescribir la variación del Lagrangiano tal que

$$\delta I[x(t)] = \int_{t_1}^{t_2} dt \epsilon \frac{d}{dt} \left(\frac{\alpha t}{x^2} - \frac{mt \dot{x}^2}{2} \right) = \int_{t_1}^{t_2} \frac{dB}{dt}$$

Con lo cual tenemos que, la cantidad conservada B es igual a

$$B = \frac{\alpha t}{x^2} - \frac{mt\dot{x}^2}{2} \tag{0.10}$$

Por tanto, la acción será quasi-invariante con un término de borde B. Ahora, para interpretar esta cantidad conservada B y encontrar mediante ella las ecuaciones de movimiento, tendremos en cuenta lo siguiente, B es muy parecido a la energía del sistema, de hecho, la energía del sistema en este caso estará dada por

$$E = \frac{m\dot{x}^2}{2} + \frac{\alpha}{r^2}$$

Con lo cual manipularemos alegebraicamente la expresión de la cantidad conservada B para meterlo en la energía E

$$B = \frac{\alpha t}{x^2} - \frac{mt\dot{x}^2}{2} \quad , \quad / \cdot \frac{1}{t}$$

$$\frac{B}{t} = \frac{\alpha}{x^2} - \frac{m\dot{x}^2}{2}$$

$$\frac{m\dot{x}^2}{2} = \frac{\alpha}{x^2} - \frac{B}{t}$$

Así, tenemos una expresión para la energía cinética en términos de la energía potencial y la constante del movimiento B, así reemplazamos esto en E

$$E = \frac{\alpha}{x^2} - \frac{B}{t} + \frac{\alpha}{x^2}$$

$$E + \frac{B}{t} = \frac{2\alpha}{x^2}$$

$$\frac{2\alpha}{E + \frac{B}{t}} = x^2$$

$$\sqrt{\frac{2\alpha}{E + \frac{B}{t}}} = x$$

Con lo cual hemos obtenido las ecuaciones de movimiento a partir de una cantidad conservada B y la energía E y está dada por

$$x(t) = \sqrt{\frac{2\alpha}{E + \frac{B}{t}}} \quad , \quad \forall t > 0$$
 (0.11)

0.1.7. Pregunta 7

Lagrangiano para la partícula cargada en el campo electromagnetico. En este ejercicio utilice notación de índices, y la convención de Einstein. Considere una partícula cargada eléctricamente, de carga q, en presencia de un campo electromagnetico externo descrito por los potenciales $\phi(t, \vec{x})$ y $\vec{A}(t, \vec{x})$. Recuerde que el campo eléctrico y el campo magnético se obtienen a partir de estos potenciales mediante las siguientes expresiones

$$\vec{E} = -\nabla\phi - \partial_t \vec{A} \to E_i = -\frac{\partial\phi}{\partial x^i} - \frac{\partial A_i}{\partial t}$$
$$\vec{B} = \nabla \times \vec{A} \to B_i = \epsilon_{ijk} \frac{\partial A_k}{\partial x^j}$$

La partícula está descrita por el siguiente Lagrangiano

$$L = \frac{m}{2}|\vec{v}|^2 - q\phi + q\vec{A} \cdot \vec{v} = \frac{m}{2}\dot{x}^i\dot{x}^i - q\phi(t, x) + qA_i(t, x)\frac{dx_i}{dt}.$$

Muestre que el Lagrangiano lleva a la expresión corrrecta para la fuerza de Lorentz, es decir

$$m\vec{a} = q(\vec{E} + \vec{v} \times \vec{B}) \tag{0.12}$$

Asumiendo que los potenciales no dependen del tiempo, muestre que la acción es invariante bajo traslaciones temporales

$$\delta x^i = \epsilon \dot{x}^i \tag{0.13}$$

y calcule la energía como cantidad conservada en el sistema.

Finalmente, para potenciales generales que dependen tanto de t, como de \vec{x} , muestre que el Hamiltoniano toma la forma

$$H = \frac{1}{2m} \left(\vec{p} - q\vec{A}(t, \vec{x}) \right)^2 + q\phi(t, \vec{x})$$
 (0.14)

Discuta la diferencia entre H, y la energía calculada en el paso anterior.

Solución: Para mostrar que dicho Lagrangiano lleva a la fuerza de Lorentz, usaremos las ecuaciones de Euler-Lagrange para x^i , $i=1,\ldots,N$ coordenadas, las cuales está dadas por

$$\partial_{x^i} L - \frac{d}{dt} \partial \dot{x}^i L = 0 \tag{0.15}$$

Con lo cual, calculemos dichos términos

$$\begin{split} \partial_{x^i} L &= \partial_{x^i} \left(\frac{m}{2} \dot{x}^i \dot{x}^i - q\phi + q A_i \dot{x}^i \right) \\ &= -q \partial_{x^i} \phi + q \partial_{x^i} A_j \dot{x}^j \end{split}$$

y además

$$\partial_{\dot{x}^i} L = \partial_{\dot{x}^i} \left(\frac{m}{2} \dot{x}^i \dot{x}^i - q\phi + qA_i \dot{x}^i \right)$$
$$= m\dot{x}^i + qA_i$$

Ahora este último término lo diferenciamos en el tiempo tal que

$$\frac{d}{dt}\partial_{\dot{x}^{i}}L = \frac{d}{dt}\left(m\dot{x}^{i} + qA_{i}\right)$$
$$= m\ddot{x} + q\left(\partial_{t}A_{i} + \partial_{x^{j}}A_{i}\dot{x}^{j}\right)$$

Ahora reemplazamos esto en las ecuaciones de Euler-Lagrange como sigue

$$\begin{split} m\ddot{x} &= -\partial_{x^i}\phi + q\partial_{x^j}A_i\dot{x}^j - q\partial_tA_i - \partial_{x^j}A_i\dot{x}^j \\ &= q\left(-\partial_{x^i}\phi - \partial_tA_i\right) + q\left(\partial_{x^i}A_j - \partial_{x^j}A_i\right)\dot{x}^j \\ &= qE_i + q\epsilon_{ijk}\dot{x}^jB^k \end{split}$$

Con lo cual, esto puede ser escrito de la siguiente forma

$$qE_i + q\epsilon_{ijk}\dot{x}^j B^k = q\vec{E} + q(\vec{v} \times \vec{B}) \tag{0.16}$$

Con lo cual hemos confirmado que el Lagrangiano para una partícula inmersa en un campo electromagnético, este llevará a las ecuaciones de movimiento que es la fuerza de Lorentz.

Para la siguiente parte se asumirá que los potenciales ϕ y A_i son independientes del tiempo. Se tiene la acción

$$S[x^{i}(t)] = \int_{t_{1}}^{t_{2}} dt \ L[\dot{x}^{i}, x^{i}, t]$$
 (0.17)

Luego se tiene la siguiente transformación infinitesimal. La cual corresponde a una traslación temporal

$$\delta x^i = \epsilon \dot{x}^i \tag{0.18}$$

Ahora, para mostrar que la acción es invariante, variamos la acción

$$\delta S[x^{i}(t)] = S[x^{i}(t) + \delta x^{i}(t)] - S[x^{i}(t)] = \int_{t_{1}}^{t_{2}} dt \left(L\left[\frac{d}{dt}(x^{i}(t) + \delta x^{i}(t), x^{i}(t) + \delta x^{i}(t), t)\right] - L[\dot{x}^{i}, x^{i}, t] \right)$$

$$(0.19)$$

Ahora, tomando una serie de Taylor, obtenemos que la variación del Lagrangiano es igual a

$$\delta L = \partial_{x^i} L \, \delta x^i + \partial_{\dot{x}^i} L \, \delta \dot{x}^i \tag{0.20}$$

Con lo cual calculamos esta expresión usando la transformación dada y el Lagrangiano para una partícula sumida en un campo electromagnético.

$$\begin{split} \delta L &= \left(-q \partial_{x^i} \phi + q \partial_{x^i} A_i \dot{x}^i \right) \epsilon \dot{x}^i + \left(m \dot{x}^i + q A_i \right) \epsilon \ddot{x}^i \\ &= -q \epsilon \dot{x}^i \partial_{x^i} \phi + q \epsilon (\dot{x}^i)^2 \partial_{x^i} A_i + \epsilon m \dot{x}^i \ddot{x}^i + q \epsilon A_i \ddot{x}^i \end{split}$$

Ahora bien, el Lagrangiano es independiente del tiempo podemos escribir lo siguiente

$$\delta L = \epsilon \left(\partial_{x^i} L \, \dot{x} + \partial_{\dot{x}^i} L \, \ddot{x}^i + \partial_t \mathcal{L}^0 \right) = \epsilon \, D_t L$$

Con lo cual, la cantidad B será

$$B = \epsilon L = \epsilon \left(\frac{m}{2} \dot{x}^i \dot{x}^i - q\phi + qA_i \dot{x} \right)$$

y por tanto, mediante el teorema de Noether podemos encontrar una cantidad conservada Q la cual está dada por lo que sigue

$$\partial_{\dot{x}^i} L \, \delta x^i - B = Q$$

reemplazando el valor que encontramos para la cantidad B y la traslación temporal, se obtiene

$$\partial_{\dot{x}^i} L \, \epsilon \dot{x}^i - \epsilon L = Q \tag{0.21}$$

Ahora desarollamos esta expresión para encontrar la cantidad Q conservada

$$\epsilon \left(m\dot{x}^i \dot{x}^i + qA_i \dot{x}^i - \frac{m}{2} \dot{x}^i \dot{x}^i + q\phi - qA_i \dot{x}^i \right) = Q$$

$$\epsilon \left(\frac{m}{2} \dot{x}^i \dot{x}^i + q\phi \right) = Q$$

$$\epsilon E = Q$$

Con lo cual, hemos identificado la cantidad conservada Q como la energía del sistema y por tanto, la energía de una partícula sumida en un campo electromagnético cuyos potenciales son idependientes del tiempo es conservada ante traslaciones espaciales.

Ahora para el cálculo del Hamiltoniano tenemos que, la definición del Hamiltoniano involucra una transformación de Legendre, lo que se representa de la siguiente forma

$$H(p_i, x^i, t) = p_i \dot{x}^i - L(\dot{x}^i, x^i, t)$$
(0.22)

En lo cual, p_i son los momenta generalizados, cuya expresión está dada por

$$p_i = \partial_{\dot{x}^i} L$$

con lo cual, solo queda calcular, los momenta están dados por

$$\begin{split} \partial_{\dot{x}^i} L &= m \dot{x}^i + q A_i = p_i \\ \dot{x}^i &= \frac{p_i}{m} - \frac{q}{m} A_i \end{split}$$

Con lo cual, reescribimos el Lagrangiano usando los momenta

$$L = \left(\frac{p_i}{2m} - \frac{q}{2m}A_i\right)^2 - q\phi + qA_i\left(\frac{p_i}{m} - \frac{q}{m}A_i\right)$$

Con lo cual, solo queda calcular el Hamiltoniano

$$\begin{split} H &= p_i \left(\frac{p_i}{m} - \frac{q}{m} A_i \right) - \frac{1}{2m} \left(p_i - q A_i \right)^2 + q \phi - q A_i \left(\frac{p_i}{m} - \frac{q}{m} A_i \right) \\ &= \frac{p_i^2}{m} - \frac{q p_i A_i}{m} - \frac{p_i^2}{2m} + \frac{q p_i A_i}{m} - \frac{q^2 A_i^2}{2m} + q \phi - \frac{q p_i A_i}{m} + \frac{q A_i^2}{m} \\ &= \frac{p_i^2}{2m} - \frac{q p_i A_i}{m} + \frac{q^2 A_i^2}{2m} + q \phi \\ &= \frac{(p_i - q A_i)^2}{2m} + q \phi \end{split}$$

Con lo cual el Hamiltoniano para una particula sumida en un campo electromagnético está dado por

$$H(p_i, x^i, t) = \frac{(p_i - qA_i)^2}{2m} + q\phi$$
 (0.23)

Ahora, la diferencia entre la energía y el Hamiltoniano recae en que, el Hamiltoniano incluye términos cinéticos, el potencial magnético, y la energía no, lo que permite que la enegía sea una cantidad conservada en traslaciones temporales, o sea, la energía se conserva en el tiempo.

0.2. Preguntas clase 3

0.2.1. Pregunta 1

Deduzca la relación de dispersión de la partícula libre no-relativista. **Solución:**

0.2.2. Pregunta 2

Enuncie y explique los principios de la Relatividad Especial.

Solución:

0.2.3. Pregunta 3

Siga la discusión que aparece en Landau y Lifshitz V2, acerca de cómo los principios de la Relatividad Especial implican la invariancia del intervalo.

Solución:

0.2.4. Pregunta 4

Escriba las siguietes transformaciones de manera explícita: Traslación temporal, traslació espacial en x, traslación espacial en y, traslación espacial en z, rotación en el plano (x, y), rotación en el plano (z, x), boost a lo largo del eje x, boost a lo largo del eje y, boost a lo largo del eje z. Dé una interpretación clara de cada una de las transformaciones y muestre que el intervalo es invariante.

Solución:

0.3. Preguntas clase 4

Pregunta 1

Demuestre que la acción

$$S[x(t)] = -mc^2 \int dt \sqrt{1 - \frac{1}{c^2} \left(\frac{dx}{dt}\right)^2}$$

$$\tag{0.24}$$

reproduce la acción de la partícula libre no-relativista, módulo una constante aditiva.

Solución: Para volver a la acción de la partícula libre no-relativista, se define a la velocidad como $v=\frac{dx}{dt}$ y además se considera a $\frac{v^2}{c^2}$, o sea, estamos condiserando a la velocidad de la luz como muy grande. Así, tomando la expansión el Taylor alrededor del origen, para v obtenemos lo siguiente:

$$\sqrt{1-\frac{v^2}{c^2}}\approx 1-\frac{v^2}{2c^2}-\mathcal{O}\left(\frac{v^4}{c^4}\right)$$

Considerando que $\mathcal{O}\left(\frac{v^4}{c^4}\right)$ es muy pequeño, entonces

$$S[x(t)] \approx -mc^2 \int_{t_1}^{t_2} dt \left(1 - \frac{v^2}{2c^2}\right)$$

$$\approx -mc^2 \int_{t_1}^{t_2} dt + \frac{m}{2} \int_{t_1}^{t_2} dt \ v^2$$

$$\approx -mc^2 (t_2 - t_1) + \frac{m}{2} \int_{t_1}^{t_2} dt \ v^2$$

Así se obtiene que, la acción para la partícula no-relativista, derivada de la acción S[x(t)] se divide en dos contribuciones, la energía cinética clásica de la partícula y una constante aditiva, ahora, el segundo término de la acción obtenida

$$\frac{m}{2} \int_{t_1}^{t_2} dt \ v^2 = \int_{t_1}^{t_2} dt \frac{m}{2} v^2 \tag{0.25}$$

Corresponde a la dicha acción de la partícula libre no relativista

$$S[x(t)] = \int_{t_1}^{t_2} dt \frac{m}{2} v^2 \tag{0.26}$$

en lo cual su término de dentro, corresponde al Lagrangiano para la partícula libre no-relativista

$$L_{no-rel} = \frac{m}{2}v^2 \tag{0.27}$$

0.3.1. Pregunta 2

Muestre que la acción es invariante bajo boost

Solución:

Hola

0.3.2. Pregunta 3

Muestre que la acción anterior es invariante bajo traslaciones temporales, y muestre que el teorema de Noether implica que tal invariancia es la responsable de la conservación de la energía relativa, dada por

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}\tag{0.28}$$

Solución:

0.3.3. Pregunta 4

Muestre que la acción anterior es invariante bajo traslaciones espaciales, y muestre que el teorema de Noether implica que tal invariancia es la responsable de la conservación del momento lineal relativista, dado por

$$p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} \tag{0.29}$$

Solución:

0.3.4. Pregunta 5

A partir de las expresiones anteriores, muestre la relación de dispersión relativista

$$E = \sqrt{p^2 c^2 + m^2 c^4} \tag{0.30}$$

Solución:

0.3.5. Pregunta 6

Imagine que un estudiante que ya pasó por mecánica clásica, le pregunta ¿qué siginfica la expresión $E=mc^2$ y de donde viene? ¿ Qué respondería ?

Solución:

0.4. Preguntas clase 5

0.5. Símbolo de Christoffel

Peo 2