DataSci 420

lesson 10: deep learning (part 2)

Seth Mottaghinejad

today's agenda

convolutional neural networks

- applications
- motivations
- basic architecture

recurrent neural networks

- applications
- motivations
- basic architecture

image processing applications

- facial recognition
- satellite image analysis in farming or environmental studies
- optical character recognition
- sound analysis through audiogram
- sentiment analysis can rely on 1-d convolutions
- image tagging
- anomaly detection in video images

why use CNNs

- convolutional neural networks (CNNs) have dethroned all other image segmentation benchmarks
- image segmentation = image localization + classification
- CNNs preserve **locality** of pixels in an image
- CNNs reduce the connections so we can go deeper: this is done though shared weights used by filters (aka kernels)
- using transfer learning, we can directly use features learned from a pre-trained model, or fine-tune them

image source: wikipedia.org

image source: <u>Visualizing and Understanding Convolutional Neural</u>
Networks

image processing with NNs

- we use **convolutional filters** to process images: blur, sharpen, invert, detect lines and edges, detect colors, etc.
- CNNs learn the convolutional filters that should be applied layer
 by layer in order to detect what's in an image
- deeper layers can detect more complex shapes, allowing for a deeper levels of feature abstraction
- new models architectures are tested against benchmark datasets such as <u>ImageNet</u> (~15 million labeled images from 22K categories)

Image Classification on ImageNet

image source: paperswithcode.com

break time

natural language processing (NLP) applications

- machine translation
- speech recognition for virtual assistants
- question answering / conversation modeling
- named entity recognition and extraction
- generating image caption
- word or sentence completion (called **language modeling**): in this case the data labels itself: **word + context**

Leaderboard

SQuAD2.0 tests the ability of a system to not only answer reading comprehension questions, but also abstain when presented with a question that cannot be answered based on the provided paragraph.

Rank	Model	EM	F1
	Human Performance	86.831	89.452
	Stanford University		
	(Rajpurkar & Jia et al. '18)		
1	SA-Net on Albert (ensemble)	90.724	93.011
Apr 06, 2020	QIANXIN		
2	Retro-Reader (ensemble)	90.578	92.978
Apr 05, 2020	Shanghai Jiao Tong University		
	http://arxiv.org/abs/2001.09694		
3	ALBERT + DAAF + Verifier (ensemble)	90.386	92.777
Mar 12, 2020	PINGAN Omni-Sinitic		
4	Retro-Reader on ALBERT (ensemble)	90.115	92.580
Jan 10, 2020	Shanghai Jiao Tong University		
	http://arxiv.org/abs/2001.09694		
5	ALBERT + DAAF + Verifier (ensemble)	90.002	92.425
Nov 06, 2019	PINGAN Omni-Sinitic		
6	ALBERT (ensemble model)	89.731	92.215
Sep 18, 2019	Google Research & TTIC		
	https://arxiv.org/abs/1909.11942		

image source: The Stanford Question Answering Dataset

why use RNNs

- recurrent neural networks (RNNs) can work well with sequential
 data where order matters
- we unroll it for n steps and end up with regular a deep neural network, whose weights are shared across time steps
- we can teach them to learn long term information, solving the vanishing gradient problem (see LSTMs or GRUs)
- we can improve performance by using dense representations (like word2vec) instead of sparse ones (one-hot encoding)

An unrolled recurrent neural network.

image source: <u>Understanding LSTMs</u>

GRUs

- gated recurrent units can combine new information x_t with internal state h_{t-1} from the previous time step
- $ullet z_t = \sigma(W_z x_t + U_z h_{t-1})$ is the update gate
- ullet $r_t = \sigma(W_r x_i + U_r h_{t-1})$ is the **reset gate**
- gates use sigmoid activation σ and element-wise product \odot
- $oldsymbol{ ilde{h}} = anh(Wx_t + r_t \odot Uh_{t-1})$ is the current memory
- $h_t = z_t \odot h_{t-1} + (1-z_t) \odot \tilde{h}_t$ is the **internal state** (output)

GRU architecture

image source: <u>Understanding LSTMs</u>

the end