Real Analysis 605 MT Review

Hui Sun

October 6, 2024

Contents

1	Definitions	3
2	Theorems	8

Chapter 1

Definitions

Definition 1.1 (sequence of sets). Let $\{E_k\} \subset \mathbb{R}^n$ be a sequence of sets is said to increase to $\bigcup_k E_k$ if $E_k \subset E_{k+1}$ for all k, and decrease to $\bigcap_k E_k$ if $E_k \supset E_{k+1}$ for all k.

Definition 1.2 (limsup, liminf of sets). Let $\{E_k\}_{k=1}^{\infty}$ be a sequence of sets, we define

$$\limsup E_k = \bigcap_{j=1}^{\infty} \left(\bigcup_{k=j}^{\infty} E_k \right), \quad \liminf E_k = \bigcup_{j=1}^{\infty} \left(\bigcap_{k=j}^{\infty} E_k \right)$$

Definition 1.3 (metric). Let d be a metric on \mathbb{R}^n , let $x, y \in \mathbb{R}^n$, then

- 1. d(x, y) = d(y, x)
- 2. $d(x,y) \ge 0$, and d(x,y) = 0 if and only if x = y.
- 3. $d(x,y) \le d(x,z) + d(y,z)$.

Definition 1.4 (limsup, liminf of sequences). Let $\{a_k\}$ be a sequence of points in \mathbb{R} , then

$$\limsup_{k \to \infty} a_k := \lim_{j \to \infty} \{ \sup_{k \ge j} a_k \}$$

and

$$\liminf_{k \to \infty} a_k := \lim_{j \to \infty} \{\inf_{k \ge j} a_k\}$$

Definition 1.5 (distance between sets). Let $E_1, E_2 \subset \mathbb{R}^n$, then the distance between E_1 and E_2 is defined as

$$d(E_1, E_2) = \inf\{|x - y| : x \in E_1, y \in E_2\}$$

Definition 1.6 (open set). Let $E \subset \mathbb{R}^n$, then E is called open if for each $x \in E$, there exists δ such that $B_{\delta}(x) \subset E$.

A subset E_1 of E is said to be relatively open with respect to E if it can be written as $E_1 = E \cap G$ for some open set G.

Definition 1.7 (A_{δ} , A_{σ} sets). A set A is said to be of type A_{δ} if it can be written as a countable intersection of sets and to be of type A_{σ} if it can be written as a countable union of sets. Then G_{δ} implies a countable intersection of open sets, and F_{σ} implies the countable union of closed sets.

Definition 1.8 (perfect set). C is called a perfect set if it is a closed set such that every point in C is a limit point.

Definition 1.9 (compact set). A set *E* is compact if and only if every open cover of *E* has a finite subcover.

Definition 1.10 (monotone function). A function f defined on $I \subset \mathbb{R}$ is monotone increasing if $f(x) \leq f(y)$ whenever x < y. Similarly defined for monotonically decreasing.

Definition 1.11 (continuous). Let f be defined on a neighborhood of x_0 , then f is said to be continuous at x_0 if $f(x_0)$ is finite and $\lim_{x\to x_0} f(x) = f(x_0)$.

Definition 1.12 (continuous relative to a set). Let f be defined in only a set E containing x_0 , f is said to be continuous at x_0 relative to E if $f(x_0)$ is finite and either x_0 is an isolated point of E or x_0 is a limit point of E and for $x \in E$.

$$\lim_{x \to x_0} f(x) = f(x_0)$$

If $E_1 \subset E$, a function is continuous in E_1 relative to E if it is continuous relative to E at every point in E_1 .

Definition 1.13 (uniform convergence). A sequence $\{f_k\}$ defined on E is said to uniformly convergence on E to a finite f if given $\varepsilon > 0$, there exists K such that for all $k \ge K$, $x \in E$,

$$|f_k(x) - f(x)| < \epsilon$$

Definition 1.14 (Riemann integral). Let f be bounded on an interval I, partition I into a finite collection Γ of nonoverlapping intervals, denote $|\Gamma| = \max_k diam(I_k)$, select points $\xi_k \in I_k$, let

$$R_{\Gamma} = \sum_{k=1}^{N} f(\xi_k) |I_k|$$

and

$$U_{\Gamma} = \sum_{k=1}^{N} (\sup_{x \in I_k} f(x)) |I_k|, \quad L_{\Gamma} = \sum_{k=1}^{N} (\inf_{x \in I_k} f(x)) |I_k|$$

The Riemann integral exists if $\lim_{|\Gamma| \to 0} R_{\Gamma}$ exists and the limit A is the Riemann integral. That is, given $\varepsilon > 0$, there exists $\delta > 0$ such that if $|\Gamma| < \delta$, we have $|A - R_{\Gamma}| < \varepsilon$ for any Γ and any chosen $\{\xi_k\}$. This is equivalent to the statement:

$$\inf_{\Gamma} U_{\Gamma} = \sup_{\Gamma} L_{\Gamma} = A$$

Definition 1.15 (variation). Let f be defined on [a, b], the variation of f over [a, b] is

$$V(f) = \sup_{\Gamma} \sum_{i=1}^{m} |f(x_i) - f(x_{i-1})|$$

where Γ is any partition $\{x_0, x_1, \ldots, x_m\}$ of [a, b].

Definition 1.16 (Lipschitz). Let f be defined on [a,b], then f is said to be Lipschitz if there exists an absolute constant C such that

$$|f(x) - f(y)| \le C|x - y|$$

for all $x, y \in [a, b]$.

Definition 1.17 (splitting). For any $x \in \mathbb{R}$, we can write

$$x^+ = \begin{cases} x, x > 0 \\ 0, x \le 0 \end{cases}$$

$$x^{-} = \begin{cases} 0, x > 0 \\ -x, x \le 0 \end{cases}$$

then $|x| = x^+ + x^-, x = x^+ - x^-.$

Definition 1.18 (P_{Γ} , N_{Γ}). For any f and any partition Γ, define

$$P_{\Gamma} = \sum_{i=1}^{m} [f(x_i) - f(x_{i-1})]^{+}$$

and

$$N_{\Gamma} = \sum_{i=1}^{m} [f(x_i) - f(x_{i-1})]^{-}$$

similarly, we define

$$P = \sup_{\Gamma} P_{\Gamma}, N = \sup_{\Gamma} N_{\Gamma}$$

Definition 1.19 (rectifiable curve). Let *C* be a curve, i.e.

$$C: \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$

Let Γ be any partition, define

$$L = \sup_{\Gamma} \sum_{i=1}^{m} ((\phi(t_i) - \phi(t_{i-1}))^2 + (\psi(t_i) - \psi(t_{i-1}))^2)^{1/2}$$

then C is rectifiable if $L < +\infty$.

Definition 1.20 (Riemann-Stieltjes integral). Let f, ϕ be finite on an interval [a, b], let $\Gamma = \{a = x_0 = \dots < x_m = b\}$ be any partition, define

$$R_{\Gamma} = \sum_{i=1}^{m} f(\xi_i) \left[\phi(x_i) - \phi(x_{i-1}) \right]$$

If $\lim_{|\Gamma|\to 0} R_{\Gamma}$ exists, then we call this the Riemann-Stieltjes integral. That is, given any $\varepsilon>0$, there is $\delta>0$ such that when $|\Gamma|<\delta$ we have $|I-R_{\Gamma}|<\varepsilon$. We denote it as

$$I = \int_{a}^{b} f(x)d\phi(x) = \int_{a}^{b} fd\phi$$

Definition 1.21 (upper, lower R-S sum). Let f be bounded and ϕ be monotonically increasing. Let

$$m_i = \inf_{[x_{i-1}, x_i]} f(x), M_i = \sup_{[x_{i-1}, x_i]} f(x)$$

then we define the lower and upper Riemann-Stieltjes sums L_{Γ}, U_{Γ} as follows:

$$L_{\Gamma} = \sum_{i=1}^{m} m_i [\phi(x_i) - \phi(x_{i-1})], U_{\Gamma} = \sum_{i=1}^{m} M_i [\phi(x_i) - \phi(x_{i-1})]$$

Definition 1.22 (Lebesgue outer measure). For let S be a collection of n-dimensional intervals that cover E, then the Lebesgue outer measure of E is given by

$$|E|_e = \inf \sigma(S)$$

where $\sigma(S) = \sum_{I_k \in S} |I_k|$.

Definition 1.23 (Lebesgue measurable). A subset E of \mathbb{R}^n is called Lebesgue measurable if and only if given any $\varepsilon > 0$, there exists an open set G such that

$$E \subset G, |G - E|_e < \varepsilon$$

If *E* is measurable, then $|E| = |E|_e$.

Definition 1.24 (σ -algebra). A σ -algebra is a collection of sets that is closed under taking complement, countable union, and countable intersection.

The σ -algebra generated by containing all the open sets is called the Borel σ -algebra.

Definition 1.25 (Lebesgue measurable functions). Let E be a measurable set in \mathbb{R}^n , f is a measurable function if for all finite a, the set

$$\{x \in E : f(x) > a\}$$

is measuarble.

Definition 1.26 (upper,lower semicontinuous). Let f be defined on E, then f is use at x_0 if for every $M > f(x_0)$, there exists $\delta > 0$ such that when $|x - x_0| < \delta$, we have f(x) < M. f is called use relative to E if it is use at every limit point of E.

Definition 1.27 (convergence in measure). Let f, $\{f_k\}$ be defined and a.e. on E, then $f_k \to f$ in measure if for every $\varepsilon > 0$,

$$\lim_{k \to \infty} |\{x \in E : |f(x) - f_k(x)| > \varepsilon\} = 0$$

Chapter 2

Theorems

Proposition 2.1. $\limsup_{k\to\infty} a_k = L$ if and only if there exists a subsequence $\{a_{k_j}\}$ that converges to L.

Proposition 2.2. For closed and open sets, we have the following:

- 1. The arbitrary unions of open sets is open, and finite intersections of open sets is open.
- 2. The arbitrary intersections of closed sets is closed, and finite unions of closed sets is closed.

Proposition 2.3. A set $E_1 \subset E$ is relatively closed with respect to E if and only if

$$E_1 = E \cap \overline{E_1}$$

Proposition 2.4. Every open set in \mathbb{R}^1 can be written as a countable union of disjoint open intervals. Moreover, every open set in \mathbb{R}^n can be written as a countable union of nonoverlapping closed cubes.

Theorem 2.1 (Heine-Borel). A set $E \subset \mathbb{R}^n$ is compact if and only if it is closed and bounded. (A set E is compact iff every sequence of points of E has a subsequence that converges to a point of E, i.e., compact implies sequentially compact).

Proposition 2.5. $M = \limsup_{x \to x_0}$ if and only if there exists $\{x_k\}$ in $E - \{x_0\}$ such that $x_k \to x_0$ and $f(x_k) \to M$ and if M' > M, there exists $\delta > 0$ such that f(x) < M' for $x \in B(x_0, \delta) \cap E$.

Theorem 2.2. If E is compact and f is continuous in E relative to E, then the following hold:

- 1. f is bounded on E, $\sup_{x \in E} |f(x)| < \infty$.
- 2. f attains supremum and infimum on E.
- 3. F is uniformly continuous on E relative to E.

Theorem 2.3. Let $\{f_k\}$ be a sequence of functions that are continuous in E and converge uniformly to f, then f is continuous on E.

Proposition 2.6. Let y = Tx be a transformation of \mathbb{R}^n that is continuous in E. If E is compact, then the image TE is also compact.

Proposition 2.7. A bounded f is Riemann integral on I if and only if given any $\varepsilon > 0$, there is a partition Γ of I, such that

$$0 \le U_{\Gamma} - L_{\Gamma} < \varepsilon$$

Proposition 2.8. Let f, g be of bounded variation on [a, b], then for any real constant c, we have

$$f + g, fg, cf$$

are of bounded variation. If g is nonvaishing, then f/g is also of bounded variation.

Proposition 2.9. If [a', b'] is a subinterval of [a, b], then

$$V[a',b'] \leq V[a,b]$$

Moreover, if a < c < b, then

$$V[a,b] = V[a,c] + V[c,b]$$

Proposition 2.10. Let P, N be positive and negative variation defined above, if any of P, N, V is finite, then all three are finite. We have

$$P + N = V$$
, $P - N = f(b) - f(a)$

and

$$P = \frac{1}{2}[V + f(b) - f(a)], \quad N = \frac{1}{2}[V - f(b) + f(a)]$$

Theorem 2.4 (Jordan's theorem). A function f is of bounded variation on [a, b] if and only if it can be written as the difference of two bounded increasing functions on [a, b].

Theorem 2.5. Every function of bounded variation has at most a countable number of discontinuities, and they are all jump or removable discontinuities.

Proposition 2.11. If f is continuous on [a, b], then

$$V = \lim_{|\Gamma| \to 0} S_{\Gamma}$$

If f has a conitnuous derivative f' on [a, b], then

$$V = \int_{a}^{b} |f'|, P = \int_{a}^{b} \{f'\}^{+}, N = \int_{a}^{b} \{f'\}^{-}$$

Proposition 2.12. Let $C:=\begin{cases} \varphi(t) \\ \psi(t) \end{cases}$ be a curve, then it is rectifiable if and only if both φ,ψ are of bounded variations.

Proposition 2.13. If \int_a^b exists,

1. For any constant c, we have

$$\int_a^b cf d\phi = \int_a^b f d(c\phi) = c \int_a^b f d\phi$$

2. If $\int_a^b g d\phi$ also exists, then

$$\int_{a}^{b} (f+g) = \int f d\phi + \int g d\phi$$

3. If $\int_a^b f d\phi$ exists and a < c < b, then two intermediate integrals also exist

$$\int_{a}^{b} f d\phi = \int_{a}^{c} f d\phi + \int_{c}^{b} f d\phi$$

4. $\int_a^b \phi df$ also exists,

$$\int_a^b f d\phi = [f(b)\phi(b) - f(a)\phi(a)] - \int_a^b \phi df$$

Proposition 2.14. Let f be bounded and ϕ be increasing on [a, b],

1. If Γ' is a refinement of Γ , then

$$L_{\Gamma'} \ge L_{\Gamma}, U_{\Gamma'} \le U_{\Gamma}$$

2. If Γ_1, Γ_2 are two partitions, then

$$L_{\Gamma_1} \leq U_{\Gamma_2}$$

Proposition 2.15. If f is continuous on [a,b] and ϕ is of bounded variation on [a,b], then $\int_a^b f d\phi$ exists, and

$$\left| \int_{a}^{b} f \phi \right| \leq \sup_{[a,b]f} V[\phi, [a,b]]$$

Theorem 2.6 (Mean-Value Theorem). If f is continuous on [a,b] and ϕ is bounded and increasing on [a,b], there exists $\xi \in [a,b]$ such that

$$\int_{a}^{b} d\phi = f(\xi)[\phi(b) - \phi(a)]$$

Proposition 2.16. For an interval I, the exterior measure $|I|_e$ is the volume of I.

Proposition 2.17. If $E_1 \subset E_2$, then $|E_1|_e \leq |E_2|_e$, and if $E = \bigcup_k E_k$ is a countable union of sets, then

$$|E|_e \le \sum_k |E_k|_e$$

Theorem 2.7. If $E \subset \mathbb{R}^n$, then given $\varepsilon > 0$, there exists an open set G such that $E \subset G$ and $|G|_e \le |E|_e + \varepsilon$. Hence

$$|E|_e = \inf |G|_e$$

where \inf is taken over all open sets G containing E.

Proposition 2.18. Every open set is measurable, and every set of outer measure zero is measurable. Any interval I is measurable. Let $\{E_k\}$ be measurable sets, then $E = \bigcup_k E_k$ is also measurable, and

$$|E| \le \sum_{k} |E_k|$$

Similarly, $\bigcap_k E_k$ is also measurable. If E_1, E_2 are measurable, then $E_1 - E_2$ is measurable.

Proposition 2.19. If $\{I_k\}_{k=1}^N$ is a finite collection of nonoverlapping intervals, then $\bigcup_k I_k$ is also measurable, and

$$\left| \bigcup_k I_k \right| = \sum_k |I_k|$$

If $d(E_1, E_2) > 0$, then

$$|E_1 \cup E_2|_e = |E_1|_e + |E_2|_e$$

Proposition 2.20. The collection of measurable sets of \mathbb{R}^n is σ -algebra.

Proposition 2.21. A set $E \subset \mathbb{R}^n$ is measurable if and only if given $\varepsilon > 0$, there exists a closed set $F \subset E$, such that

$$|E - F|_e < \varepsilon$$

Theorem 2.8. If $\{E_k\}$ is a countable collection of disjoint measurable sets, then

$$\left| \bigcup_k E_k \right| = \sum_k |E_k|$$

Proposition 2.22. If E_1, E_2 measurable, and $E_2 \subset E_1, |E_2| < \infty$, then

$$|E_1 - E_2| = |E_1| - |E_2|$$

Theorem 2.9. Let $\{E_k\}_{k=1}^{\infty}$ be a sequence of measurable sets, then

- 1. If $E_k \nearrow E$, then $\lim_{k\to\infty} |E_k| = |E|$.
- 2. If $E_k \searrow E$, and $|E_k| < \infty$, then $\lim_{k \to \infty} |E_k| = |E|$.

Theorem 2.10 (Caratheodory). A set E is measurable if and only if for every set A, we have

$$|A|_e = |A \cap E|_e + |A - E|_e$$

Theorem 2.11. If y = Tx is a Lipschitz transformation of \mathbb{R}^n , then T maps measurable sets into measurable sets. Recall a Lipschitz transformation is such that there exists a constant c such that

$$|Tx - Ty| \le c|x - y|$$

where

$$c = \sup_{x \neq y} \frac{|Tx - Ty|}{|x - y|}$$

Theorem 2.12. Let T be a linear transformation of \mathbb{R}^n , and let E be a measurable set, then

$$|TE| = \frac{1}{|\det(T)|}|E|$$

Proposition 2.23. Any set in \mathbb{R}^n with positive outer measurable contains a nonmeasurable set.

Proposition 2.24. *f* is measurable if and only if any of the following statements holds for any finite *a*:

- 1. $\{f \ge a\}$ is measurable.
- 2. $\{f < a\}$ is measurable.
- 3. $\{f \leq a\}$ is measurable.

Proposition 2.25. If f is measurable, then $\{f > -\infty\}, \{f < \infty\}, \{f = \infty\}, \{a \leq f \leq b\}, \{f = a\}$ is measurable.

Moreover, if $\{f=\infty\}$ or $\{f=-\infty\}$ is measurable, then f is measurable if for every finite a, $\{a< f<\infty\}$ is measurable.

Theorem 2.13. If f is measurable, then for every open G, $f^{-1}(G)$ is measurable. Conversely, if $f^{-1}(G)$ is measurable for every open $G \subset \mathbb{R}^n$ and either $\{f = \infty\}$ or $\{f = -\infty\}$ is measurable.

Theorem 2.14. Let ϕ be continuous on \mathbb{R}^1 and let f be finite a.e. in E, in particular, $\phi(f)$ is defined a.e. in E, then $\phi(f)$ is measurable if f is.

Proposition 2.26. If f,g are measurable, then $\{f>g\}$ is measurable. If f is measurable, and λ is any real number, then $f+\lambda$ and λf are measurable. If f,g are measurable, then f+g,fg is measurable. If $g\neq 0$ a.e., then f/g also measurable.

If $\{f_k\}$ is a sequence of measurable functions, then $\sup_k f_k(x)$, $\inf_k f_k(x)$ are measurable.

Proposition 2.27. If $\{f_k\}$ is a sequence of measurable functions, then $\limsup_{k\to\infty} f_k$, $\liminf_{k\to\infty} f_k$ are measurable. In particular, if $f=\lim_{k\to\infty} f_k(x)$, then f is measurable.

Proposition 2.28. We have

- 1. Every function f can be written as the limit of a sequence $\{f_k\}$ of simple functions.
- 2. If $f \ge 0$, the sequence can be chosen to increase to f.
- 3. If f in either 1 or 2 is measurable, then f_k can be chosen to be measurable.

Proposition 2.29. A function f is use relative to E if and only if $\{x \in E : f(x) \ge a\}$ is relatively closed for all finite a.

A function *F* is lsc relative to *E* if and only if $\{x \in E : f(x) \le a\}$ is relatively closed for all finite *a*.

Proposition 2.30. A finite function f is continuous relative to E if and only if all sets of the form $\{x \in E : f(x) \ge a\}$ and $\{x \in E : f(x) \le a\}$ are relatively closed. (or equivalently $\{f > a\}$ and $\{f < a\}$ are relatively open).

Proposition 2.31. Let E be measurable, then f is use relative to E, then f is measurable.

Theorem 2.15 (Egorov's theorem). Suppose that $\{f_k\}$ is a sequence of measurable functions that converges a.e. to a finite limit f. The given $\varepsilon > 0$, there is a closed subset $F \subset E$ such that $|E - F| < \varepsilon$ and $\{f_k\}$ converges uniformly to f.

Theorem 2.16 (Lusin's Theorem). Let f be defined and finite on a measurable set E, then f is measurable if and only if given $\varepsilon > 0$, there is a closed set F such that $|E - F| < \varepsilon$, and f is continuous on F.

Theorem 2.17. Let f, $\{f_k\}$ be measurable and finite a.e. in E, then if $f_k \to f$ a.e. on E, and $|E| < \infty$, then f_k converges to f in measure.

Theorem 2.18. If f_k converges to f in measure, then there exists a subsequence $\{f_{k_j}\}$ such that $\{f_{k_j}\}$ converges to f a.e. in E.

Theorem 2.19. $\{f_k\}$ converges to f in measure if and only if

$$\lim_{k,l\to\infty} |\{x\in E: |f_k(x)-f_l(x)|>\varepsilon\}|=0$$

Proposition 2.32. Let f be a nonnegative function defined on a measurable set E, then $\int_E f$ exists if and only if f is measurable.

Proposition 2.33. If f is nonnegative measurable on E, then $\Gamma(f, E)$ has measure zero.

Proposition 2.34. If f is nonnegative, and taking constant values on disjoint sets E_1, E_2, \ldots , if $E = \bigcup_i E_j$, then

$$\int_{E} f = \sum_{j} a_{j} |E_{j}|$$

Proposition 2.35. If f,g are measurable, and $0 \le g \le f$ on E, then $\int_E g \le \int_E f$, in particular, $\int_E \inf f \le \int_E g$. If f is nonnegative and measurable on E, and $\int_E f$ is finite, then $f < \infty$ a.e. in E. Let E_1, E_2 be measurable and $E_1 \subset E_2$. If f is nonegative and measurable on E_2 , then

$$\int_{E_1} f \le \int_{E_2} f$$

Theorem 2.20 (MCT for nonnegative functions). If $\{f_k\}$ is a sequence of nonnegative functions such that $f_k \nearrow f$ on E, then

$$\lim_{k \to \infty} \int_E f_k = \int_E f$$

Proposition 2.36. Suppose that f is nonnegative and measurable on E such that E is the countable union of disjoint measurable sets, $E = \bigcup_i E_j$, then

$$\int_E f = \sum_j \int_{E_j} f$$

Proposition 2.37. let f be nonnegative on E, if |E|=0, then $\int_E f=0$. If f,g are nonnegative and measurable on E, if $g\leq f$ a.e. in E, then

$$\int_E g \le \int_E f$$

if f = g a.e., then $\int_E f = \int_E g$.

Theorem 2.21 (Chebyshev). Let f be nonnegative, if $\alpha > 0$, then

$$|\{x \in E: f(x) > \alpha\}| \le \frac{1}{\alpha} \int_E f$$

Proposition 2.38. If f is nonnegative, then let c be any nonnegative constant, then

$$\int_{E} cf = c \int_{E} f$$

Proposition 2.39. We have the following:

1. If $0 \le f \le \phi$, and $\int_E f$ is finite, then

$$\int_{E} \phi - f = \int_{E} \phi - \int_{E} f$$

2. if f_k 's are nonnegative, then

$$\int_{E} \left(\sum_{k=1}^{\infty} f_k \right) = \sum_{k=1}^{\infty} \int_{E} f_k$$

Theorem 2.22 (Fatou's Lemma). If $\{f_k\}$ is a sequence of nonnegative functions on E, then

$$\int_{E} (\liminf_{k \to \infty} f_k) \le \liminf_{k \to \infty} \int_{E} f_k$$

Proposition 2.40. Let f_k be nonnegative, and let $f_k \to f$ a.e. in E. If $\int_E f_k \leq M$ for all k, then

$$\int_E f \leq M$$

Theorem 2.23 (Lebesgue Dominated Convergence Theorem for nonnegative functions). Let $\{f_k\}$ be nonnegative, and $f_k \to f$ a.e.. If there exists ϕ such that $f_k \le \phi$ for all k, and if $\int_E \phi$ is finite, then

$$\lim_{k \to \infty} \int_E f_k = \int_E f$$