Работу выполнил: Королёв Егор Владимирович, студент группы M8O-401Б-18 Научный руководитель: Игнатов Алексей Николаевич

Московский авиационный институт (НИУ)

11 декабря 2021 г.

Введение

Введение ●○

Прогресс написания ВКР

- написано страниц;
- приведен предварительный анализ данных;
- построено 96 регрессионных моделей;
- написана программная реализация ММП;

Ввеление

В странах с большой \mathcal{K}/\mathcal{J} сетью и большим потоком перемещения поездов существует проблема схода составов с рельс. Последствия схода могут привести к экологическим, экономическим и логистическим проблемам.

Согласно [1] за период с 2013 г. по 2016 г. в РФ имеется 262 протокола сходов с рельс вагонов как в грузовых поездах, так и в пассажирских, без учета количества крушений. Соответственно, в среднем происходит 1 авария каждые 4 дня. Поэтому проблема представляет интерес для железнодорожных компаний.

Ввеление

Разреженность данных

- Мощность выборки n = 56;
- признак 'Режим движения' имеет 23 пропусков (41%);
- признак 'Профиль пути' имеет 12 пропусков (21%);
- признак 'Кривизна' имеет 10 пропусков (17%);

Введение новых признаков

- $f_1 =$ профиль пути \cdot макс. число вагонов в сходе;
- $lacktriangledown f_2 = 1 rac{ ext{макс. число вагонов в сходе}}{ ext{общее кол-во вагонов}};$
- \bullet $f_3 = скорость \cdot загрузка;$

	target	f_1	f_2	f_3
target	1.0	0.101375	-0.286535	0.198847
f_1	0.101375	1.0	-0.086693	-0.228508
f_2	-0.286535	-0.086693	1.0	-0.124420
f_3	0.198847	-0.228508	-0.124420	1.0

Введение

Функция правдоподобия

$$L(\theta|X,y) = \prod_{i=1}^{n} \frac{e^{-\lambda(x_{i},\theta)} \lambda^{y_{i}}(x_{i},\theta)}{y_{i}!}$$

Функция правдоподобия

$$L(\theta|X,y) = \prod_{i=1}^{n} (1 - p(x_i,\theta))^{y_i} p(x_i,\theta)$$

Конструктор класса

Введение

Пуассоновская регрессия

Геометрическая регрессия

Выводы

Ввеление

В данной работе были построены предсказательные модели числа сошедших вагонов. Глобально их можно разделить на 2 класса: модели Пуассоновской регрессии и модели геометрической регрессии. Для каждого класса были рассмотрены различные параметрические виды и признаковые пространства.

Ввеление

Замышляев А.М., Игнатов А.Н., Кибзун А.И., Новожилов Е.О. Функциональная зависимость между количеством вагонов в сходе из-за неисправностей вагонов или пути и факторами движения // Надежность. 2018. Т. 18, № 1. С.... DOI: 10.21683/1729-2646-2018-18-1...

Спасибо за внимание!

