Interval estimation: Confidence intervals

- Math 161a, Spring 2019, San Jose State University

Prof. Guangliang Chen

April 30, 2019

Introduction

Last time we started considering the new setting in which we only know the distribution type, not the values of its parameter (say θ).

The new goal is to use a random sample to infer about the population parameter. This is called **statistical inference**.

We also mentioned three kinds of inference tasks (all about an unknown population parameter θ):

- **Point estimation**: What is a single (best) guess of the value of θ ?
- **Interval estimation**: In what interval does θ lie "with high probability"?
- **Hypothesis testing**: It is claimed that $\theta = \theta_0$. How do you test the hypothesis based on a random sample from the population?

Recall that mathematically, a **point estimator** $\hat{\theta}$ of θ is a (reasonable) statistic used to estimate θ .

For any specific realization of the random sample, the corresponding value of $\hat{\theta}$ is called a point estimate of θ .

Limitations with point estimation:

• Typically, the probability that a point estimator attains the true value of the parameter is zero.

For example, for a random sample of size n from the normal population $N(\mu,\sigma^2)$, the point estimator \bar{X} of the population mean μ is a continuous random variable $\bar{X}\sim N(\mu,\sigma^2/n)$. Thus, $P(\bar{X}=\mu)=0$.

• Point estimators (even the ones that are unbiased and have least variance) provide no error information.

Question: Can we make the coverage probability much higher than 0?

The answer is yes (by using an interval around $ar{X}$). One extreme case is

$$P(\mu \in (-\infty, +\infty) = 1)$$

but it is useless.

A favorable solution is to find a "short" interval with "high" coverage probability:

$$P(\mu \in (\bar{X} - m, \bar{X} + m)) = 1 - \alpha$$
 (for some small α).

Rewrite as

$$P(\bar{X} - m < \mu < \bar{X} + m) = 1 - \alpha.$$

In the equation,

- μ : population mean (unknown parameter to be estimated)
- \bar{X} : sample mean (statistic)
- m: half width (fixed scalar, to be found)
- 1α : coverage probability (specified by user)
- $(\bar{X} m, \bar{X} + m)$: interval estimator (random)

Task: Given α , find m.

Theorem 0.1. Assume $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ where μ is unknown, but σ^2 is known. For any given $0 < \alpha < 1$, we have

$$m = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}.$$

Proof. The equation on the preceding slide is equivalent to

$$P(-m < \bar{X} - \mu < m) = 1 - \alpha$$
, or $P\left(-\frac{m}{\sigma/\sqrt{n}} < Z < \frac{m}{\sigma/\sqrt{n}}\right) = 1 - \alpha$.

This implies that

$$\frac{m}{\sigma/\sqrt{n}} = z_{\alpha/2},$$
 and accordingly, $m = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}.$

Interval estimator

We have just obtained that

$$P\left(\mu \in \left(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)\right) = 1 - \alpha.$$

Definition 0.1. We call the interval estimator

$$\left(\bar{X}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{X}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)\equiv\bar{X}\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$$

a $1-\alpha$ random interval for μ . The quantity $m=z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$ is called the margin of error of the point estimator \bar{X} .

Remark. If $\alpha = 0.05$ (i.e., $1 - \alpha = 0.95$), then $m = 1.96 \frac{\sigma}{\sqrt{n}}$.

Definition 0.2. For any specific sample $X_1 = x_1, \dots, X_n = x_n$ (along with the observed value \bar{x} of \bar{X}), the <u>interval estimate</u>

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

is called a $1-\alpha$ confidence interval for μ . In this setting, $1-\alpha$ is called the confidence level.

Example 0.1. Recall the brown egg example where $n=12, \bar{x}=65.5$ and $\sigma=2$, a 95% confidence interval is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 65.5 \pm 1.96 \cdot \frac{2}{\sqrt{12}} = 65.5 \pm 1.1 = (64.4, 66.6).$$

Interpretations of confidence intervals

We can say that

- (64.4, 66.6) is a 95% confidence interval for μ , or
- We are 95% confident that the true μ is contained by this interval (i.e., between 64.4 and 66.6 grams).

We cannot say that

ullet The probability that μ is contained by this interval is 0.95,

as both μ and this interval are fixed and there is only one outcome: "contain" or "not contain". We just do not know which one is true (when μ is unknown).

Confidence is not probability!

- Probability describes the chance of selecting a blue ball <u>before</u> you actually do it (or if you do it many times)
- Confidence is, <u>after</u> you selected one ball, how certain you believe the ball you got is blue (without looking at it).

Relationship between m and n, α

(m: margin of error, n: sample size, $1 - \alpha$: confidence level)

$$m = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

- The larger the sample size n, the smaller the margin of error m (the shorter the confidence interval);
- The larger the confidence level $1-\alpha$, the bigger the margin of error m (the wider the confidence interval).

Example 0.2 (Continuation of the brown egg example). For another sample from the same normal distribution but with a larger size, say n=48, a 95% confidence interval is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 65.5 \pm 1.96 \cdot \frac{2}{\sqrt{48}} = 65.5 \pm 0.55.$$

How large the sample size must be in order for the margin of error to be 0.2 (at level 95%)?

$$n = \left(z_{\alpha/2} \frac{\sigma}{m}\right)^2 = \left(1.96 \cdot \frac{2}{0.2}\right)^2 = 384.2.$$

The smallest sample size thus is 385.

Example 0.3 (Continuation of the brown egg example). Using the same sample, a 99% confidence interval is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 65.5 \pm 2.576 \cdot \frac{2}{\sqrt{12}} = 65.5 \pm 1.5 = (64.0, 67.0),$$

and a 90% confidence interval is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 65.5 \pm 1.645 \cdot \frac{2}{\sqrt{12}} = 65.5 \pm 0.95$$

Remark. 99% CI > (longer than) 95% CI > 90% CI

i-Clicker Quiz 9 (extra credit)

Which of the following interpretations of a confidence interval (64.0, 67.0) constructed at level 99% for the population mean μ is INCORRECT?

- A. We don't know whether this interval contains the true value of μ .
- B. The probability that μ is contained by this interval is 0.99.
- C. We are 99% confident that μ is contained by this interval.
- D. If we generate many more such intervals, roughly 99% of them will capture the true value of μ .
- E. None of the above

What if we do not know σ ?

Assuming a normal population $N(\mu, \sigma^2)$, with both μ, σ^2 unknown, we can still construct a $1-\alpha$ confidence intervals for

- (1) μ
- (2) σ^2

We present the details next.

Confidence interval for μ (when σ is unknown)

Recall when σ is needed for deriving a $1-\alpha$ confidence interval for μ :

We started with

$$P(\bar{X} - m < \mu < \bar{X} + m) = 1 - \alpha$$

and got (after rearranging terms)

$$P(-m < \bar{X} - \mu < m) = 1 - \alpha.$$

In order to solve for m, we then standardized $\bar{X} \sim N(\mu, \sigma^2/n)$ by using the known σ :

$$P\left(-\frac{m}{\sigma/\sqrt{n}} < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < \frac{m}{\sigma/\sqrt{n}}\right) = 1 - \alpha.$$

When σ is unknown, we can use its estimator S in place of σ : Dividing all sides of the inequalities in the equation

$$P(-m < \bar{X} - \mu < m) = 1 - \alpha.$$

by S/\sqrt{n} gives that

$$P\left(-\frac{m}{S/\sqrt{n}} < \frac{\bar{X} - \mu}{S/\sqrt{n}} < \frac{m}{S/\sqrt{n}}\right) = 1 - \alpha$$

To determine m, we need to know the distribution of the middle quantity, which has a t distribution with n-1 degrees of freedom:

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1).$$

Student's t distributions

Definition 0.3. The t distribution with ν degrees of freedom is a continuous distribution whose pdf has the following form

$$f(x) = C\left(1 + x^2/\nu\right)^{-\frac{\nu+1}{2}}, -\infty < x < \infty.$$

- (1) The graph is also symmetric, unimodal and bell-shaped.
- (2) E(X) = 0
- (3) $Var(X) = \frac{\nu}{\nu 2}$ (when $\nu > 2$).
- (4) $t(\nu) \to N(0,1)$ as $\nu \to +\infty$.
- (5) t has thicker tails than N(0,1).

Confidence interval for μ (when σ unknown)

Theorem 0.2. A $1-\alpha$ confidence interval for μ in the case of a normal population

$$X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2),$$

where σ is unknown, is

$$\bar{x} \pm t_{\alpha/2,n-1} \frac{s}{\sqrt{n}}.$$

Remark. Compare with:

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
 (when σ known).

Example 0.4. In the brown egg example, we selected a sample of 12 eggs (in a carton) and obtained that $\bar{x}=65.5$ and $s^2=4.69$. Assuming normal population (with unknown variance), we obtain a 95% confidence interval

$$\bar{x} \pm t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} = 65.5 \pm t_{0.025, 11} \frac{\sqrt{4.69}}{\sqrt{12}} = 65.5 \pm 2.201 \sqrt{\frac{4.69}{12}} = 65.5 \pm 1.4.$$

 ${\bf Remark}.$ Previously, when $\sigma=2$ was used, we obtained the following 95% confidence interval

$$\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 65.5 \pm 1.96 \cdot \frac{2}{\sqrt{12}} = 65.5 \pm 1.1,$$

which is shorter. Why?

Confidence interval for σ^2

Assume the same setting of a random sample from a normal population:

$$X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2),$$

where neither μ nor σ^2 is known.

We already know that

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

is an (unbiased) estimator for σ^2 .

We can further use S^2 to construct a $1-\alpha$ confidence interval for σ^2 .

The chi-square distribution

Definition 0.4. The chi-square distribution with k degrees of freedom, denoted $\chi^2(k)$, is a continuous distribution with pdf of the form

$$f(x) = C\left(\frac{x}{2}\right)^{k/2-1} e^{-\frac{x}{2}}, \quad x > 0.$$

Properties:

(1) If $Z_1, \ldots, Z_k \stackrel{\text{iid}}{\sim} N(0,1)$, then

$$X = Z_1^2 + \dots + Z_k^2 \sim \chi^2(k).$$

- (2) E(X) = k.
- (3) Var(X) = 2k.

Another way of defining the t distribution

We have defined Student's t distribution (with ν degrees of freedom) by specifying directly its pdf:

$$f(x) = C\left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}, -\infty < x < \infty.$$

Another way to define the t distribution is to use standard normal and chi-square: Let $Z\sim N(0,1)$ and $X\sim \chi^2(\nu)$ be independent random variables, then

$$\frac{Z}{\sqrt{X/\nu}} \sim t(\nu).$$

Confidence interval for σ^2

Theorem 0.3. Let

$$X_1,\ldots,X_n \stackrel{\text{iid}}{\sim} N(\mu,\sigma^2),$$

Then

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1).$$

Remark. This result will be used for constructing a $1-\alpha$ confidence interval for σ^2 .

Selecting constants a,b (choices not unique!) such that

$$P\left(a < \frac{(n-1)S^2}{\sigma^2} < b\right) = 1 - \alpha.$$

For example,

$$a = \chi_{1-\alpha/2}^2(n-1), \quad b = \chi_{\alpha/2}^2(n-1)$$

We then solve for σ^2 :

$$\frac{(n-1)S^2}{b} < \sigma^2 < \frac{(n-1)S^2}{a}$$

i.e.,

$$\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)} < \sigma^2 < \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}.$$

We have obtained the following result.

Theorem 0.4. A $1-\alpha$ confidence interval for σ^2 in the case of a normal population $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ is

$$\left(\frac{(n-1)s^2}{\chi_{\alpha/2}^2(n-1)}, \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2(n-1)}\right)$$

In the brown egg example, suppose we did not know the true value of σ^2 . Let us find a 95% confidence interval for σ^2 based on the specific sample we have been using: $n=12, s^2=4.69$.

We need to find the two χ^2 critical values:

- $\chi^2_{\alpha/2}(n-1) = \chi^2_{.025}(11) = 21.92$ (from Chi-square table)
- $\chi^2_{1-\alpha/2}(n-1)=\chi^2_{.975}(11)=3.82$ (using software).

Therefore, a 95% confidence interval for σ^2 is

$$\left(\frac{(n-1)s^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}(n-1)}\right) = \left(\frac{11 \cdot 4.69}{21.92}, \frac{11 \cdot 4.69}{3.82}\right) = (2.35, 13.51).$$

One-sided confidence intervals

Sometimes there is a need for only one-sided confidence intervals:

Lower confidence bound

$$1 - \alpha = P(\mu > \bar{X} - m) = P(\mu \in (\bar{X} - m, +\infty))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

• Upper confidence bound

$$1 - \alpha = P(\mu < \bar{X} + m) = P(\mu \in (-\infty, \bar{X} + m))$$

$$\bar{X} \qquad \bar{X} + m$$

Assuming a random sample $X_1,\ldots,X_n\stackrel{\mathrm{iid}}{\sim} N(\mu,\sigma^2)$ with unknown μ but known σ^2 . Then

• A $1-\alpha$ upper confidence bound for μ is

$$\mu < \bar{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

• A $1-\alpha$ lower confidence bound for μ is

$$\mu > \bar{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

Remark. When σ is unknown, one can use the t distribution instead: in the above formulas, just change σ to s and z_{α} to $t_{\alpha,n-1}$.

In the brown egg example, a 95% upper confidence bound for μ is

$$\mu < \bar{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}} = 65.5 + z_{.05} \frac{2}{\sqrt{12}} = 65.5 + 1.645 \frac{2}{\sqrt{12}} = 66.45.$$

Similarly, a 95% lower confidence bound for μ is

$$\mu > \bar{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}} = 64.55.$$