Effectively Closed Sets of Measures and Randomness

Jan Reimann

January 12, 2007

Outline

Motivation

Measures and Randomness

Outer Measures on Cantor Space Randomness for Outer Measures

The Space of Probability Measures

The Weak Topology Effective Representations Effeczively Closed Sets of Measures

Hausdorff Measures and Probability Measures

Hausdorff Measures Mass Distributions and Hausdorff Measures Proving Frostman's Lemma

Motivation

Hausdorff measures and probability measures

- ► Hausdorff measures are an indispensable tool in fractal geometry: self-similar sets, rectifiability, dimension concepts.
- As measures, they are rather unpleasant to deal with: in general not σ -finite, no integration theory, etc.
- Consequently, the study of sets of finite Hausdorff s-measure is very complicated.
- ▶ It is possible to "approximate" Hausdorff measures by probability measures and make use their "good behavior".
- Question: Can the theory of effective dimension, especially the connections to randomness and Kolmogorov complexity, contribute to this?

Motivation

The basic paradigm

 $random\ reals + Turing\ reductions = existence\ of\ measures$

Measures on Cantor Space

Outer measures from premeasures

Approximate sets from outside by open sets and weigh with a general measure function.

- ▶ A premeasure is a function $\rho: 2^{<\omega} \to \mathbb{R}_0^+ \cup \{\infty\}$.
- ▶ One can obtain an outer measure μ_{ρ} from ρ by letting

$$\mu_{\rho}(X) = \inf_{C \subseteq 2^{<\omega}} \left\{ \sum_{\sigma \in C} \rho(\sigma) : \ \bigcup_{\sigma \in C} N_{\sigma} \supseteq X \right\},$$

where N_{σ} is the basic open set induced by σ . (Set $\mu_{\rho}(\emptyset) = 0$.)

The resulting $\mu=\mu_\rho$ is a countably subadditive, monotone set function, an outer measure.

Measures on Cantor Space

Types of measures

Probability measures: based on a premeasure ρ which satisfies

- $\blacktriangleright \ \rho(\emptyset) = 1 \ \text{and}$

For probability measures it holds that $\mu_{\rho}(N_{\sigma}) = \rho(\sigma)$.

Hausdorff measures: based on a premeasure ρ which satisfies

- If $|\sigma| = |\tau|$, then $\rho(\sigma) = \rho(\tau)$.
- \triangleright $\rho(n)$ is nonincreasing.
- ightharpoonup
 ho(n)
 ightarrow 0 as $n
 ightarrow \infty$.
- ► For example: $\rho(\sigma) = 2^{-|\sigma|s}$, $s \ge 0$.

Measures on Cantor Space

Nullsets

The way we constructed outer measures, $\mu(A)=0$ is equivalent to the existence of a sequence $(W_n)_{n\in\omega}$, $W_n\subseteq 2^{<\omega}$, such that for all n,

$$A\subseteq \bigcup_{\sigma\in W_n} N_\sigma \quad \text{and} \quad \sum_{\sigma\in W_n} \rho(\sigma)\leqslant 2^{-n}.$$

Thus,

every nullset is contained in a G_{δ} nullset.

By requiring that the covering nullset is effectively G_{δ} , we obtain a notion of effective nullsets.

Definition

- A test relative to $z \in 2^{\omega}$ is a set $W \subseteq \mathbb{N} \times 2^{<\omega}$ which is c.e. in z.
- ▶ A real x passes a test W if $x \notin \bigcap_n N(W_n)$, where $W_n = \{\sigma : (n, \sigma) \in W\}$.

Hence a real passes a test W if it is not in the G_{δ} -set represented by W.

Randomness for Outer Measures

Martin-Löf tests

To test for randomness, we want to ensure that W actually describes a nullset.

Definition

Suppose μ is a measure on 2^{ω} . A test W is correct for μ if for all n,

$$\sum_{\sigma \in W_n} \mu(N_\sigma) \leqslant 2^{-n}.$$

Any test which is correct for μ will be called a test for μ .

Randomness for Outer Measures

Representation of measures

An effective test for randomness should have access to the measure it is testing for.

- ► Therefore, represent it by an infinite binary sequence.
- Outer measures are determined by the underlying premeasure ρ. It seems reasonable to represent these values via approximation by rational intervals.

Definition

Given a premeasure ρ , define its rational representation r_{ρ} by letting, for all $\sigma \in 2^{<\omega}$, $q_1, q_2 \in \mathbb{Q}$,

$$\langle \sigma, \mathsf{q}_1, \mathsf{q}_2 \rangle \in \mathsf{r}_\rho \ \Leftrightarrow \ \mathsf{q}_1 < \rho(\sigma) < \mathsf{q}_2.$$

Randomness for Outer Measures

Tests for Arbitrary Measures

Definition

Suppose ρ is a premeasure on 2^ω and $z\in 2^\omega$. A real is μ_ρ -z-random if it passes all $r_\rho\oplus z$ -tests which are correct for μ_ρ .

Hence, a real x is random with respect to an arbitrary measure μ_ρ if and only if it passes all tests which are enumerable in the representation r_ρ of the underlying premeasure $\rho.$

The weak*-topology

If μ_ρ is a probability measure, the representation r_ρ can be interpreted topologically, by means of the weak*-topology of Banach spaces.

- ▶ Denote by \mathcal{P} the set of all probability measures on 2^{ω} . For this section, we identify measures and their underlying premeasures.
- The Riesz representation theorem lets us identify measures with linear functionals on the space of continuous functions on 2^ω, by means of integration.
- ► The weak*-topology on $\mathcal P$ is the topology generated by the mappings $f \mapsto \int f d\mu$.

A compatible metric

To generate the weak topology of \mathcal{P} , it suffices to consider a dense set of continuous functions on 2^{ω} .

- A countable dense set is given by the set of continuous functions on 2^ω that take only finitely many, rational values.
- ▶ Denote this set by $D(2^{\omega}) = \{f_n\}_{n \in \omega}$.

The mapping $\mu \mapsto (\int f_n \mu / \|f_n\|_{\infty})_{n \in \omega}$ embeds \mathcal{P} into $[-1, 1]^{\omega}$.

▶ We can pull back the product metric on $[-1, 1]^{\omega}$ to \mathcal{P} to obtain a compatible metric

$$d(\mu,\nu) = \sum_{n=0}^\infty 2^{-n-1} \frac{|\int f_n d\mu - \int f_n \nu|}{\|f_n\|_\infty}.$$

An effective dense subset

With the weak topology, $\mathcal P$ becomes a compact Polish space.

A countable dense subset of \mathcal{P} is given as follows:

- ▶ Let Q be the set of all reals of the form $\sigma \cap 0^{\omega}$.
- ▶ Given $\bar{q} = (q_1, ..., q_n) \in Q^{<\omega}$ and non-negative rational numbers $\alpha_1, ..., \alpha_n$, let

$$\delta_{\bar{q}} = \sum_{k=1}^{n} \alpha_k \delta_{q_k},$$

where δ_x denotes the Dirac point measure for x.

Effective representations

We want to exploit the topological structure of \mathcal{P} to prove results about algorithmic randomness.

One can show that sets of the form

$$\{\mu\in\mathcal{P}:\ q_1<\mu(\sigma)< q_2\},\quad \sigma\in 2^{<\omega},\, q_1,\, q_2\in\mathbb{Q}$$

form a subbasis of the weak topology.

- ▶ Hence, the rational representation r_{μ} indicates to which basic open sets μ belongs.
- ► However, not every real is a rational representation of some probability measure.
- Moreover, the set of all $x \in 2^{\omega}$ such that $x = r_{\mu}$ for some $\mu \in \mathcal{P}$ is not Π_1^0 , so it does not effectively reflect the topological properties of \mathcal{P} .

Effective representations

Alternative: Use the recursive dense subset $\{\delta_{\bar{q}}\}$ and the effectiveness of the metric d between measures of the form $\delta_{\bar{q}}$ to represent measures.

Theorem

There is a recursive surjection

$$\pi:\,2^\omega\to \mathfrak{P}$$

and a Π^0_1 subset P of 2^ω such that $\pi \upharpoonright_P$ is one-to-one and $\pi(P) = \mathcal{P}$.

► The argument – as an effective version of a classical theorem of descriptive set theory – is applicable in much greater generality, essentially to any Polish space which allows for a recursive presentation (see Moschovakis' book)

Effectively Closed Sets of Measures

Uniform tests for randomness

Levin (1973) was the first to use Π_1^0 classes of measures in algorithmic randomness.

Observation

Given a test W, the set of probability measures that are correct for W is Π_1^0 .

Levin was interested in devising uniform tests for randomness.

- A uniform test tests randomness for a whole class of measures, not only a single one.
- By the observation above, uniform tests can only exist for effectively closed sets of measures.

Effectively Closed Sets of Measures

Uniform tests for randomness

Theorem (Levin, 1973)

Given a Π^0_1 class S of probability measures, there exists a test U such that for any x that passes U there exists a measure $\mu \in S$ such that x passes any μ -test.

Note that this is a kind of lowness property.

Hausdorff Measures

Outer measures from premeasures - Method II

Let $\rho(\sigma)=2^{-|\sigma|s}.$ In general, μ_{ρ} is not a Borel measure.

▶ For example, μ_{ρ} is not additive on cylinders.

Therefore, one refines the transition from a premeasure to an outer measure.

▶ Given $\delta > 0$, define the set function

$$\mathcal{H}^h_\delta(A) = inf \left\{ \sum_{i=0}^\infty \rho_h(N_\sigma) : \ A \subseteq \bigcup_i N(\sigma_i), \ 2^{-|\sigma_i|} < \delta \right\}.$$

 $\qquad \qquad \textbf{Let} \,\, \mathcal{H}^h(A) = \text{lim}_{\delta \to 0} \, \mathcal{H}^h_\delta(A).$

Hausdorff Measures

Difficulties of Hausdorff measures

The s-dimensional Hausdorff measure \mathcal{H}^s is a Borel measure.

- ▶ For s = 1, \mathcal{H}^1 is the same as Lebesgue measure on 2^{ω} .
- ▶ For s < 1, all basic open sets have infinite \mathcal{H}^s -measure. In particular, not all compact subsets of 2^ω have finite \mathcal{H}^s measure.

This makes the study of non-integral Hausdorff measures rather complicated.

- ▶ In particular, if dim_H A = s and $\mathcal{H}^s(A) = \infty$.
- ▶ Recall: $dim_H A = inf\{s : \mathcal{H}^s(A) = 0\}$.

Mass Distributions

Approximating Hausdorff measure by probability measures

Idea: If a set A supports a probability measure that is "close" to uniform, then its Hausdorff dimension is close to 1.

- ▶ Recall: The support of a measure μ , supp(μ), is the smallest closed set F such that $\mu(2^{\omega} \setminus F) = 0$.
- ▶ A supports a measure μ if supp $(\mu) \subseteq A$.

Mass Distribution Principle

If A supports a probability measure μ such that for almost all $\sigma,$

$$\mu(\sigma) \leqslant c2^{-|\sigma|s}$$

then $\mathcal{H}^s(A) \geqslant 1/c$.

Mass Distributions and Hausdorff Measures

Frostman's Lemma

A fundamental result due to Frostman (1935) asserts that the converse holds, too, as long as A is not too complex.

Theorem

If A is analytic and $\dim_H A > s > 0$, then there exists a probability measure μ such that $supp(\mu) \subseteq A$ and for some c > 0,

$$\mu(\sigma) \leqslant c2^{-|\sigma|s}$$

Frostman's Lemma is an important ingredient in the proof that every analytic set of inifinite \mathcal{H}^s -measure has a subset of finite \mathcal{H}^s -measure.

Making reals of positive dimension random

We first show that every real of positive effective dimension is random with respect to a continuous probability measure.

▶ The theorem is an effective version of Frostman's Lemma.

Theorem

If $\dim_H^1 x > s > 0$, then there exists a probability measure μ such that x is μ -random and for all σ ,

$$\mu(\sigma)\leqslant c2^{-|\sigma|s}$$

Transforming Randomness

By the Kucera-Gacs Theorem, there exists a λ -random real y such that $y \geqslant_{wtt} x$ via some reduction Φ .

- ▶ We will use y and the reduction to transform randomness.
- ▶ If ν is a probability measure and $f: 2^\omega \to 2^\omega$ is continuous, then the image measure ν_f , defined by $\nu_f(\sigma) = \nu(f^{-1}[N_\sigma])$, is also a probability measure.
- If f is effective (i.e. truth-table), then f transforms a computable probability measure into a computable probability measure.
- ► Conservation of randomness: If z is v-random and f is truth-table, then f(z) is v_f -random.

Transforming Randomness

Problem: The Kucera-Gacs result holds only for a wtt-reduction.

Nota bene: It can be easily seen that it cannot hold for truth-table since there are reals which are not random for any computable probability measure.

Partial reductions yield semimeasures.

▶ A (continuous) semimeasure is a function $M: 2^{<\omega} \to [0,1]$ such that $M(\emptyset) \le 1$ and $M(\sigma) \ge M(\sigma \cap 0) + M(\sigma \cap 1)$.

Completing semimeasures

We want to define $\mu(\sigma),\ \sigma\in 2^{<\omega}.$ We have to satisfy two requirements:

- 1. The measure μ will dominate an image measure induced by Φ . This will ensure that any Martin-Löf random sequence is mapped by Φ to a μ -random sequence.
- 2. The measure must respect the upper bound.

To meet these requirements, we restrict the values of μ in the following way:

$$\lambda(\Phi^{-1}(\sigma)) \leqslant \mu(\sigma) \leqslant c2^{-|\sigma|s}.$$
 (*)

This singles out suitable completions of the semimeasure induced by Φ .

Completing semimeasures

What is c?

Make use of the semimeasure characterization of effective Hausdorff measure:

$$x \text{ not effectively } \mathcal{H}^s\text{-null } \Rightarrow \ (\exists c_0)(\forall n) \ \widetilde{M}(x\!\upharpoonright_n) \leqslant c_0 2^{-ns} \text{,}$$

where \widetilde{M} is an optimal enumerable continuous semimeasure.

▶ Choose $c > c_0$.

It can be shown that

$$M := \{\mu : \mu \text{ satisfies (*)}\}\$$

is a non-empty Π_1^0 subset of \mathcal{P} .

A lowness property for Π_1^0 classes

Note that if (V_n) were a μ -test covering x, then $\Phi^{-1}(V_n)$ would be a λ -test relative to μ covering y.

▶ So, what we need to show is that y is λ -random relative to μ for some $\mu \in M$.

The following result ensures the existence of such a μ . (Downey, Hirschfeldt, Miller, and Nies; Reimann and Slaman)

Theorem

If $B \subseteq 2^{\omega}$ is nonempty and Π_1^0 , then, for every y which is λ -random there is $z \in B$ such that y is λ -random relative to z.

The proof is essentially a compactness argument.

Obtaining the Mass Distribution

Compact subsets

Frostman's Lemma yields a mass distribution such that $\mathsf{supp}(\mu) \subseteq A.$

- ▶ The base case is that A is closed.
- The proof for Borel sets uses clever approximations in measure.

If A is Π_1^0 , then it is $\Pi_1^0(z)$ relative to some z.

► Relativize the argument and add the Π_1^0 conditions for A to (*) determining the set of suitable measures M.

4□ > 4圖 > 4 분 > 4 분 > 1 분 9 9 0 €

Information Theoretic and Classical Methods

A comparison

There are essentially two known proofs of Frostman's Lemma:

- ▶ By means of a direct construction, using the compactness of 𝑃.
- Using the Hahn-Banach theorem, completing a functional defined on the subspace of constant functions constructed via weighted Hausdorff measures.

The second method works in arbitrary compact metric spaces.

► The information theoretic method can also be applied to arbitrary compact effective metric spaces, using Gacs' framework of randomness.

It seems that essentially the extension from subspaces in the Hahn-Banach theorem is replaced by a lowness property of Π^0_1 classes.