2 Наивный байесовский классификатор

20% баллов за задание, оценочное время выполнения: 40 минут

Начало 00:36

Конец 01:25

Загрузите датасеты digits и breast_cancer из sklearn.datasets. Выведите несколько строчек из обучающих выборок и посмотрите на признаки. С помощью sklearn.model_selection.cross_val_score с настройками по умолчанию и вызова метода mean() у возвращаемого этой функцией numpy.ndarray, сравните качество работы наивных байесовских классификаторов на этих двух датасетах.

Для сравнения предлагается использовать BernoulliNB, MultinomialNB и GaussianNB. Насколько полученные результаты согласуются с вашими ожиданиями?

Два датасета, конечно, еще не повод делать далеко идущие выводы, но при желании вы можете продолжить исследование на других выборках (например, из UCI репозитория).

Ответьте (прямо в ірупь блокноте с вашими экспериментами) на вопросы:

- 1. Каким получилось максимальное качество классификации на датасете breast_cancer?
- 2. Каким получилось максимальное качество классификации на датасете digits?
- 3. Какие утверждения из приведенных ниже верны?
- (а) На вещественных признаках лучше всего сработал наивный байесовский классификатор с распределением Бернулли
- (b) На вещественных признаках лучше всего сработал наивный байесовский классификатор с мультиномиальным распределением
- (с) Мультиномиальное распределение лучше показало себя на выборке с целыми неотрицательными значениями признаков
- (d) На вещественных признаках лучше всего сработало нормальное распределение

In [12]:

```
import numpy as np
import matplotlib.pyplot as plt

from sklearn import cross_validation, datasets, metrics, neighbors
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB, BernoulliNB, MultinomialNB
```

```
In [13]:
```

```
digits = datasets.load digits()
```

```
In [14]:
digits.keys()
Out[14]:
['images', 'data', 'target names', 'DESCR', 'target']
In [15]:
print len(digits.images)
print "images: {}".format(digits.images[:2])
print "data: {}".format(digits.data[:2])
print "target names: {names}".format(names = digits.target names)
                                        9.
                                              1.
                                                    0.
images: [[[
               0.
                     0.
                            5.
                                13.
                                                          0.]
  [
     0.
            0.
                13.
                      15.
                             10.
                                   15.
                                          5.
                                                0.1
            3.
                              0.
                                   11.
                                          8.
                                                 0.1
      0.
                 15.
                        2.
  [
     0.
            4.
                 12.
                        0.
                              0.
                                    8.
                                          8.
                                                 0.]
            5.
                                    9.
      0.
                  8.
                        0.
                              0.
                                          8.
                                                0.1
            4.
                        0.
                              1.
                                          7.
      0.
                 11.
                                   12.
                                                0.]
            2.
                 14.
                        5.
                             10.
                                   12.
                                          0.
  [
      0.
                                                0.]
                             10.
            0.
                  6.
                       13.
                                    0.
                                          0.
  [
      0.
                                                0.]]
                                          0.
 [[
            0.
                  0.
                       12.
                                    5.
      0.
                             13.
                                                0.]
            0.
                                    9.
                                          0.
                                                0.]
                  0.
                       11.
      0.
                             16.
  [
                  3.
                       15.
                                    6.
  0.
            0.
                             16.
                                          0.
                                                0.]
                 15.
      0.
            7.
                       16.
                             16.
                                    2.
                                          0.
                                                0.]
  [
      0.
            0.
                  1.
                       16.
                             16.
                                    3.
                                          0.
                                                0.1
  [
            0.
                                          0.
      0.
                  1.
                       16.
                             16.
                                    6.
                                                0.]
      0.
            0.
                  1.
                       16.
                             16.
                                    6.
                                          0.
                                                0.1
            0.
                  0.
                       11.
                             16.
                                          0.
      0.
                                   10.
                                                0.]]]
  [
data: [[
            0.
                  0.
                        5.
                             13.
                                    9.
                                          1.
                                                0.
                                                       0.
                                                             0.
                                                                   0.
                                                                        13.
                                                                              15.
        15.
  10.
                                   2.
    5.
          0.
                 0.
                       3.
                            15.
                                         0.
                                              11.
                                                     8.
                                                            0.
                                                                  0.
                                                                        4.
                                                                             12.
  0.
          8.
                 8.
                       0.
                             0.
                                   5.
                                         8.
                                               0.
                                                     0.
                                                            9.
                                                                  8.
                                                                        0.
                                                                              0.
    0.
  4.
   11.
          0.
                 1.
                      12.
                             7.
                                   0.
                                         0.
                                               2.
                                                    14.
                                                            5.
                                                                 10.
                                                                       12.
                                                                              0.
  0.
                     13.
                            10.
    0.
          0.
                 6.
                                   0.
                                         0.
                                               0.]
                      12.
                                   5.
                                         0.
                                                     0.
                                                            0.
                                                                  0.
                                                                       11.
                                                                             16.
    0.
          0.
                 0.
                            13.
                                               0.
          0.
                 0.
                       0.
                             3.
                                  15.
                                        16.
                                               6.
                                                     0.
                                                            0.
                                                                  0.
                                                                        7.
                                                                             15.
    0.
16.
   16.
                 0.
                       0.
                             0.
                                   0.
                                         1.
                                              16.
                                                    16.
                                                            3.
                                                                  0.
                                                                        0.
                                                                              0.
          2.
  0.
                                               0.
         16.
               16.
                             0.
                                   0.
                                         0.
                                                     1.
    1.
                       6.
                                                          16.
                                                                 16.
                                                                        6.
                                                                              0.
          0.
                 0.
                     11.
                            16.
                                  10.
                                         0.
                                               0.]]
target names: [0 1 2 3 4 5 6 7 8 9]
In [16]:
```

breast_cancer = datasets.load_breast_cancer()

```
In [17]:
```

```
breast cancer.keys()
Out[17]:
['target names', 'data', 'target', 'DESCR', 'feature names']
In [18]:
print "feature names: {}".format(breast cancer.feature names[:2])
print "data: {}".format(breast cancer.data[:2])
print "target names: {names}".format(names = breast cancer.target names)
feature names: ['mean radius' 'mean texture']
data: [[
          1.79900000e+01
                           1.03800000e+01
                                             1.22800000e+02
                                                               1.0010
0000e+03
    1.18400000e-01
                     2.77600000e-01
                                       3.00100000e-01
                                                        1.47100000e-
01
    2.41900000e-01
                     7.87100000e-02
                                       1.09500000e+00
                                                        9.05300000e-
01
    8.58900000e+00
                     1.53400000e+02
                                       6.3990000e-03
                                                        4.90400000e-
02
                                       3.00300000e-02
                     1.58700000e-02
    5.37300000e-02
                                                        6.19300000e-
03
    2.53800000e+01
                     1.73300000e+01
                                       1.84600000e+02
                                                        2.01900000e+
03
    1.62200000e-01
                     6.65600000e-01
                                       7.11900000e-01
                                                        2.65400000e-
01
    4.60100000e-01
                     1.18900000e-011
[
    2.05700000e+01
                     1.77700000e+01
                                       1.32900000e+02
                                                        1.32600000e+
03
                     7.86400000e-02
                                       8.69000000e-02
                                                        7.01700000e-
    8.47400000e-02
02
    1.81200000e-01
                     5.66700000e-02
                                       5.43500000e-01
                                                        7.33900000e-
01
    3.39800000e+00
                     7.40800000e+01
                                       5.22500000e-03
                                                        1.30800000e-
02
    1.8600000e-02
                     1.3400000e-02
                                       1.38900000e-02
                                                        3.53200000e-
03
    2.49900000e+01
                     2.34100000e+01
                                       1.58800000e+02
                                                        1.95600000e+
03
    1.23800000e-01
                     1.86600000e-01
                                       2.41600000e-01
                                                        1.86000000e-
01
    2.75000000e-01
                     8.90200000e-02]]
target names: ['malignant' 'benign']
```

```
In [19]:
```

```
#С помощью sklearn.model selection.cross val score с настройками по умолчанию
#и вызова метода mean() у возвращаемого этой функцией numpy.ndarray,
#сравните качество работы наивных байесовских классификаторов на этих двух датас
етах.
#Для сравнения предлагается использовать BernoulliNB, MultinomialNB и GaussianN
В.
models = [BernoulliNB(), MultinomialNB(), GaussianNB()]
names models = ['BernoulliNB', 'MultinomialNB', 'GaussianNB']
print 'Digits\n'
for i in range(3):
    print('{} {:.3f}'.format(names_models[i], np.mean(cross val score(models[i],
 digits.data, digits.target))))
print '\n'
print 'Breast canser\n'
for i in range(3):
    print('{} {:.3f}'.format(names models[i], np.mean(cross val score(models[i],
 breast cancer.data, breast cancer.target))))
```

Digits

BernoulliNB 0.826 MultinomialNB 0.871 GaussianNB 0.819

Breast canser

BernoulliNB 0.627 MultinomialNB 0.895 GaussianNB 0.937

1. Каким получилось максимальное качество классификации на датасете breast

GaussianNB 0.937

2. Каким получилось максимальное качество классификации на датасете digits?

MultinomialNB 0.871

3. Какие утверждения из приведенных ниже верны?

(с) Мультиномиальное распределение лучше показало себя на выборке с целыми неотрицательными значениями признаков

Выборка Digits содержит дискретные значения признаков. Мультиноминальное распределение дискретно - при его выборе достигается наибольшая точность.

(d) На вещественных признаках лучше всего сработало нормальное распределение

Выборка Breast cancer содержит вещественные признаки. Нормальное распределение непрерывно - при его выборе достигается наибольшая точность.

4