NP完全性证明

顶点覆盖,团,独立集概念

设无向图G=<V,E>, $V'\subseteq V$. V'是G的一个

顶点覆盖: G的每一条边都至少有一个顶点在V'中.

团: 对任意的 $u,v \in V'$ 且 $u \neq v$, 都有 $(u,v) \in E$.

独立集: 对任意的 $u,v \in V'$, 都有 $(u,v) \notin E$.

引理 对任意的无向图 $G=\langle V,E\rangle$ 和子集 $V'\subseteq V$,下述命题是等价的:

- (1) V'是G的顶点覆盖,
- (2) V-V'是G的独立集,
- (3) V-V'是补图 $G^c=< V, E^c>$ 的团.

顶点覆盖,团,独立集的问题

顶点覆盖(VC): 任给一个无向图 $G=\langle V,E\rangle$ 和非负整数 $K\leq |V|$,问G有顶点数不超过K的顶点覆盖吗?

团: 任给一个无向图 $G=\langle V,E\rangle$ 和非负整数 $J\leq |V|$,问G有顶点数不小于J的团吗?

独立集: 任给一个无向图G=<V,E>和非负整数 $J\le|V|$,问G有顶点数不小于J的独立集吗?

根据引理,很容易把这3个问题中的一个问题多项式时间变换到另一个问题.

VC∈NPC

定理 顶点覆盖(VC)是NP完全的.

证: VC的非确定型多项式时间算法: 任意猜想一个子集V' $\subseteq V$, $|V'| \le K$, 检查V'是否是一个顶点覆盖.

要证3SAT \leq_p VC. 任给变元 $x_1, x_2, ..., x_n$ 的3元合取范式

$$F=C_1 \wedge C_2 \wedge \ldots \wedge C_m$$

其中 $C_j = z_{j1} \lor z_{j2} \lor z_{j3}$, z_{jk} 是某个 x_i 或 $\neg x_i$. 如下构造 VC的实例 f(F):

$$G = \langle V, E \rangle$$
 π $K = n + 2m$,

其中

变换: 构件设计法

$$V=V_1\cup V_2, \qquad E=E_1\cup E_2\cup E_3,$$

$$V_1 = \{ x_i, \bar{x}_i \mid 1 \le i \le n \}$$

$$E_1 = \{ (x_i, \bar{x}_i) \mid 1 \le i \le n \}$$

变元构件, $\forall x_i, i=1,2,\ldots,n$

$$V_2 = \{ [z'_{jk}, j] | k=1,2,3, 1 \le j \le m \},$$

$$E_2 = \{([z'_{j1},j],[z'_{j2},j]),([z'_{j2},j],[z'_{j3},j]),([z'_{j3},j],[z'_{j1},j])|\ 1 \le j \le m\}.$$

析取式构件, $\forall C_i, j=1,2,...,m$

$$E_3 = \{ ([z'_{jk}, j], z'_{jk}) | k = 1, 2, 3, 1 \le j \le m \}$$
 联络边 $C_i = z_{i1} \lor z_{i2} \lor z_{i3}, \exists z_{ik} = x_i \text{时}, z'_{ik} = x_i; \exists z_{ik} = \neg x_i \text{时}, z'_{ik} = \bar{x}_i$

$$K=n+2m$$

变换实例

$$U = \{ x_1, x_2, x_3, x_4 \},$$

$$C = (x_1 \lor \neg x_3 \lor \neg x_4) \land (\neg x_1 \lor x_2 \lor \neg x_4)$$

$$K = 4 + 2 \times 2 = 8$$

证明

要证: F 是可满足的 \Leftrightarrow G 恰好有K个顶点的顶点覆盖.

- 任何顶点覆盖V'至少有n+2m个顶点,故任何不超过K的顶点覆盖V'恰好含K个顶点,且在 x_i 和 $\bar{x_i}$ 中取一个,这恰好对应 x_i 的赋值,取 x_i 对应 $t(x_i)=1$,取 $\bar{x_i}$ 对应 $t(x_i)=0$. 三角形 C_j 的顶点 $[z'_{j1},j]$ 、 $[z'_{j2},j]$ 和 $[z'_{j3},j]$ 中取2个,剩下顶点对应的变量满足 C_j

2n+3m个顶点和n+6m条边,显然在多项式时间内构造G和 K,定理 独立集和团是NP完全的.

其他基本NPC问题

有向哈密顿回路: 任给有向图D, 问:D中有哈密顿回路吗?

恰好覆盖: 给定有穷集 $A = \{a_1, a_2, ..., a_n\}$ 和A的子集的集合 $W = \{S_1, S_2, ..., S_m\}$,问: 存在子集 $U \subseteq W$ 使得U中子集彼此不交且它们的并集等于A? 称W这样的子集U是A的恰好覆盖(划分).

实例 设 $A=\{1,2,3,4,5\}$, $S_1=\{1,2\}$, $S_2=\{1,3,4\}$, $S_3=\{2,4\}$, $S_4=\{2,5\}$, 则 $\{S_2,S_4\}$ 是A的恰好覆盖. 若把 S_4 改为 $S_4=\{3,5\}$, 则不存在A的恰好覆盖.

子集和: 给定正整数集合 $X=\{x_1,x_2,...,x_n\}$ 及正整数N, 问存在X的子集T, 使得T中的元素之和等于N吗?

其他基本NPC问题(续)

装箱: 给定n件物品, 物品j 的重量为正整数 w_j , $1 \le j \le n$, 以及箱子数K. 规定每只箱子装入物品的总重量不超过正整数B, 问能用K 只箱子装入所有的物品吗?

双机调度: 有2台机器和 n 项作业 $J_1, J_2, ..., J_n$, 这2台机器完全相同, 每一项作业可以在任一台机器上进行, 没有先后顺序, 作业 J_i 的处理时间为 t_i , $1 \le i \le n$, 截止时间为D, 所有 t_i 和 D 都是正整数, 问能把 n 项作业分配给这 2 台机器, 在截止时间 D 内完成所有的作业吗?

整数线性规划(ILP):任给 $m \times n$ 维整数矩阵和m维向量b,问下述问题:

 $AX \ge b$ $x \ge 0$, x为整数

是否有解?

证明方法小结

NPC证明方法:

- · 选好一个已知的NP完全问题.
- 使用限制法,局部替换法和构件设计法.

NP完全性理论的应用

用NP完全性理论进行子问题分析

子问题的计算复杂性 子问题的NP完全性证明

推广到搜索问题与优化问题

搜索问题与优化问题

Turing归约

NP-hard, NP-easy

子问题的计算复杂性

努力扩大已知区域,缩小未知区域 当P≠NP时,存在不属于NPC也不属于P的问题

有先行约束的 多处理机调度问题

优化问题:

给定任务集 T, m 台机器, $\forall t \in T$, $l(t) \in Z^+$, T上的偏序 \prec . 若 $\sigma: T \rightarrow \{0, 1, ..., D\}$ 满足下述条件, 则称 σ 为可行调度.

- (1) $\forall t \in T$, $\sigma(t) + l(t) \leq D$
- (2) $\forall i, 0 \le i \le D, |\{t \in T : \sigma(t) \le i < \sigma(t) + l(t)\}| \le m$
- (3) $\forall t, t' \in T, t \prec t' \Leftrightarrow \sigma(t) + l(t) \leq \sigma(t')$

求使得D最小的可行调度.

条件说明:

任务在截止时间前完成 同时工作的台数不超过 *m* 有偏序约束的任务必须按照约束先行

实例

任务集如图所示

m=2

求使得D最小的可行调度.

t_6		t_4		t_2	t_1
t_5	t_3				
t_4			t_2	t_1	
t_6	t_5	t_3			

D=5

判定问题

实例: 任务集T, m台机器, $\forall t \in T$, $l(t) \in \mathbb{Z}^+$, T上的偏序 \prec ,

截止时间 $D \in \mathbb{Z}^+$.

问:是否存在小于等于D的可行调度?

子问题通过限制参数(机器数、工作时间、偏序)构成

参数		限制	J	
偏序	Ø	树		任意
m大小	<i>m</i> ≤1, 2,, 某个常数		m 任意	
1大小	1为常数			l 任意

调度问题的子问题结构

从上到下:偏序任意、树形偏序、无偏序约束

从左到右:处理器台数限制逐步放大

从前到后: 各任务等长工作时间、任意工作时间

Turing归约

北京大学17

Turing归约

设 π_1 , π_2 是搜索问题或优化问题,A 是利用解 π_2 的假想子程序 s 解 π_1 的算法,且只要 s 是多项式时间的,A 也是多项式时间的,则称算法 A 是从 π_1 到 π_2 的多项式时间的 Turing归约. 这时也称 π_1 Turing归约到 π_2 ,记作 $\pi_1 \sim_T \pi_2$.

注意

- 多项式变换是特殊的Turing归约.
- NP难:设元是搜索问题,如果存在 NP完全问题元'使得 π ' $\propto_T \pi$,则称元是NP-hard. 这意味着在多项式可计算的角度看,元至少和 NPC问题一样难. 许多NP完全问题对应的优化问题都是NP-hard. 反之也可以证明许多优化问题可以Turing归约到对应的判定问题, 称为NP-easy.
- NP-hard + NP-easy 称为 NP等价.

货郎问题的NP等价性

例1 货郎问题(TSO)是 NP等价的.

证:易证 TSO是 NP-hard.下面证明 TSO 是NP-easy.

引入中间问题: 货郎问题的延伸问题 (TSE)

TSE

实例:有穷城市的集合 $C = \{c_1, c_2, ..., c_m\}$

距离 $\forall c_i, c_j \in C, d(c_i, c_j) \in \mathbb{Z}^+,$

长度限制 $B \in \mathbb{Z}^+$,

部分旅行路线 $\vartheta = \langle c_{\pi(1)}, \ldots, c_{\pi(k)} \rangle$

问:9是否可以延伸成全长不超过B的全程旅行

$$< c_{\pi(1)}, \ldots, c_{\pi(k)}, c_{\pi(k+1)}, \ldots, c_{\pi(m)} > ?$$

易证 TSE属于NP.

TSO到TSE的Turing归约

设 $s(C,d,\vartheta,B)$ 是解 TSE 的子程序,其中 C 为城市集,d 为距离函数, ϑ 为部分旅行,B为长度限制.

下面构造解TSO的算法.

思路:

用二分法确定最短路旅行长度 B^* 旅行长度界于 $m \to m \times d$, $d = \max\{d(c_i, c_j)\}$ 每次取中点值验证是否存在能延伸到此长度的旅行

根据最小长度值 B*确定旅行路线

从 c_1 开始,依次检查< c_1 , c_2 >,< c_1 , c_3 >...是否能延伸到 B^* 长度的旅行,选择第一个可延伸的顶点 c_i . 按照上面方法确定后面的其他顶点.

算法 MinLength

设 s(C,d,9,B) 是解 TSE 的子程序,其中 C 为城市集,d为 距离函数,9为部分旅行,B为长度限制.

算法 Minlength (二分法确定最短旅行长度 B^*)

- 1. $\Leftrightarrow Bmin \leftarrow m$, $Bmax \leftarrow m \cdot \max\{d(c_i,c_j): c_i, c_j \in C\}$
- 2. 若Bmax-Bmin=1,则 $B^*\leftarrow Bmax$,结束
- 3. $B \leftarrow [(Bmin + Bmax)/2]$
- 4. $s(C, d, \langle c_1 \rangle, B)$
- 5. 若回答"Yes"则 $Bmax \leftarrow B$, 否则 $Bmin \leftarrow B$
- 6. 转2.

 B_{\min} $B^*=B_{\max}$

return I

算法 FindSolution

算法 FindSolution (找解)

- 1. $i \leftarrow 2, M \leftarrow \{2, 3, ..., m\}$
- 2. *j←M* 中的最小值
- 3. $\vartheta = \langle c_1, c_i \rangle$
- 4. $s(C, d, \vartheta, B^*)$
- 5. if 回答 "Yes"
- 6. then $i \leftarrow i+1$, $M \leftarrow M-\{j\}$
- 7. else
- 8. 从9中去掉 c_i
- 9. 从 M 中选择大于 j 的最小值 k
- 10. 将 c_k 加入到 θ 的最后项
- 11. 如果 $i \leq m$, 转4; 否则停机

复杂度分析

至多m-2次调用s可以找到第2个城市,至多m-3次调用s可以找到第3个城市,...,至多1次调用s可以找到第m-1个城市。调用s的总次数至多为

$$(m-2)+(m-3)+...+1=\frac{(m-1)(m-2)}{2}$$

为m的多项式,而TSO的实例规模为m+logBmax,所以是从TSO到TSE的Turing归约.

而 TSE 是 NPC 问题,因为判定问题 TSP 是 TSE的子问题,相当 $\vartheta = \langle c_1 \rangle$ 的情况. 因此,TSO Turing归约到 NP问题 TSE,从而证明了TSO 是 NP-easy,即TSO是NP等价的.

同样可以证明六个基本NPC问题对应的优化问题都是NP-等价的.

北京大学23

总结

- NPC证明
- NP完全理论的应用
 - 用NP完全性理论进行子问题分析
 - 推广到搜索问题与优化问题

