

A View-Adversarial Framework for Multi-View Network Embedding

Dongqi Fu* (UIUC)

Zhe Xu* (UIUC)

Bo Li (UIUC)

Hanghang Tong (UIUC)

Jingrui He (UIUC)

Presenter: Dongqi Fu

Email: dongqif2@illinois.edu

- Motivation
- Problem Definition
- Proposed VANE Framework
- Experiments
- Conclusion

Network Embedding

- Network embedding algorithms aim to embed nodes and graphs into low-dimensional representation vectors.
- Representation vectors have wide applications in real networks:
 - Clustering and Classification
 - Link Prediction
 - Anomaly Detection
 - •

Collaboration Network

Traffic Network

Brain Network

Existing Work

- Existing network embedding algorithms
 - Single-view embedding algorithms: DeepWalk [Perozzi et al., 2014], LINE [Tang et al., 2015], node2vec [Grover et al., 2016], GCN [Kipf and Welling, 2017], GraphSAGE [Hamilton et al., 2017] and GAT [Velickovic et al., 2018].
 - Multi-view embedding algorithms: MVE [Qu et al., 2017] and MNE [Zhang et al., 2018].
 - GAN-based embedding algorithms: GraphGAN [Wang et al., 2018] and ANE [Dai et al., 2018].

Challenges

- If we have the topology (i.e., structure) of a multi-view network
 - Challenge 1 (comprehensiveness): How can we learn comprehensive node representations which are consistent across different views?
 - Challenge 2 (robustness): How can we ensure the learned comprehensive node representations robust enough (i.e., hard to fit)?
- Multi-view network of academic literatures

A multi-view network of 3 views with 6 papers

- Motivation
- Problem Definition
- Proposed VANE Framework
- Experiments
- Conclusion

Multi-View Network Embedding

- Given:
 - A multi-view network with k views,

$$G = \{V, E_1, E_2, ..., E_k\}$$

where E_i is the set of edges in the i-th view.

- Find:
 - Robust node representations,

$$\{x_v\}_{v\in V}\in \mathbb{R}^d$$
, with $d\ll |V|$

which are consistent across k different views.

- Motivation
- Problem Definition
- Proposed VANE Framework
- Experiments
- Conclusion

- VANE (<u>V</u>iew-<u>A</u>dversarial Multi-View <u>N</u>etwork <u>E</u>mbedding)
 - Extracts robust node representations that are consistent across all given views via two adversarial games for two mentioned challenges.

VANE Framework

- VANE (<u>V</u>iew-<u>A</u>dversarial Multi-View <u>N</u>etwork <u>E</u>mbedding)
 - Extracts robust node representations that are consistent across all given views via two adversarial games for two mentioned challenges.

VANE Framework

- VANE (<u>V</u>iew-<u>A</u>dversarial Multi-View <u>N</u>etwork <u>E</u>mbedding)
 - Extracts robust node representations that are consistent across all given views via two adversarial games for two mentioned challenges.

Second game (G, F_N, D_N)

VANE Framework

- VANE (<u>V</u>iew-<u>A</u>dversarial Multi-View <u>N</u>etwork <u>E</u>mbedding)
 - Extracts robust node representations that are consistent across all given views via two adversarial games for two mentioned challenges.

VANE Framework

- First adversarial game (F, D_S)
 - Intuition: Feature extractor F tries to extract the **view-invariant** subgraph representations (aggregated by node representations) across different views, while the view discriminator D_S tries to discriminate which subgraph representation comes from which view.
 - S: the node sequence (i.e., subgraph) sampled from one view by random walk

$$\min_{F} \max_{D_S} J_S(D_S, F)$$

$$= \min_{F} \max_{D_S} \mathbb{E}_{F(S) \sim p_i(F(S))} [\log(D_S(F(S)))]$$

$$+ \mathbb{E}_{F(S) \sim \bar{p_i}(F(S))} [\log(1 - D_S(F(S)))]$$

F(S): the subgraph embedding vector, and F consists of F_N (node embedding model) and F_S (subgraph embedding model)

 $F(S) \sim p_i(F(S))$: the distribution of subgraph representation F(S) from the i-th view

locality constraints:

$$\min_{F_N} J_{LC}(F_N(v_i), F_N(v_j)) = \min_{F_N} \mathbb{E}_{v_i, v_j \in S} [1 - \cos(F_N(v_i), F_N(v_j))]$$

 $F_N(v)$: the node embedding vector

VANE Framework

- Noise Distribution

 Locality Constraints

 View 1

 Feature Extractor FSubgraph Embedding F_S Subgraph Embedding F_S Node Representation Discriminator D_S Representation

 Representation

 Representation
- Second adversarial game (G, F_N, D_N)
 - Intuition: Generator G generates fake node representations to fit node representations produced by F_N , and F_N tries to provide robust representations that are hard to fit to help discriminator D_N tell fake vectors.
 - Objective:

$$\min_{G} \max_{D_{N}} \max_{F_{N}} J_{N}(D_{N}, G, F_{N})$$

$$= \min_{G} \max_{D_{N}} \max_{F_{N}} \mathbb{E}_{F_{N}(v) \sim p_{data}(F_{N}(v))} [\log(D_{N}(F_{N}(v)))]$$

$$+ \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})} [\log(1 - D_{N}(G(\mathbf{z})))]$$

 $F_N(v)$: the real node representation

 $G(\mathbf{z})$: the generated node representation

- Motivation
- Problem Definition
- Proposed VANE Framework
- Experiments
- Conclusion

Experimental Setup

Comparison methods

- Single-view embedding algorithms: DeepWalk [Perozzi et al., 2014], node2vec [Grover et al., 2016].
- GAN-based single-view embedding algorithm: GraphGAN [Wang et al., 2018].
- Multi-view embedding algorithms: MVE [Qu et al., 2017], MNE [Zhang et al., 2018].
- GAN-based multi-view embedding algorithms: Our VANE-RW (sampling with random walk), VANE-BRW (sampling with biased random walk).

Dataset

- Aminer academic literature dataset: 27,734 papers (nodes) in total, citation view (111,819 edges) and common-author view (525,623 edges).
- **Twitter-Rugby** dataset: 850 users (nodes) in total, follow view (22,861 edges), mention view (21,660 edges), retweet view (9,627 edges).

Effectiveness Comparison

VANE outperforms baseline methods

Methods	View	Accuracy (%)	
Methous	view	Node Classification	Link Prediction
	Citation	78.03±0.72	95.99
DeepWalk	Common-Author	72.72±0.77	96.29
	Combined	74.94±0.54	97.28
	Citation	78.05±0.57	97.73
node2vec	Common-Author	73.69±0.68	95.58
	Combined	74.88±0.91	97.85
GraphGAN	Citation	74.29±1.20	88.93
	Common-Author	72.07±1.11	89.57
	Combined	71.69±1.06	90.21
MNE	Citation	N/A	54.25
	Common-Author	N/A	52.32
MVE	All	80.16±0.42	72.82
VANE-RW	All	78.84±0.63	97.62
VANE-BRW	All	80.79±0.80	98.53

Methods	View	Accuracy (%)	
		Node Classification	Link Prediction
Da an Walla	Follow	70.95±2.56	50.30
	Mention	69.64±5.46	50.27
DeepWalk	Retweet	73.78±5.18	52.24
	Combined	66.47±2.85	50.03
	Follow	79.52±4.42	65.45
node2vec	Mention	79.64±3.47	62.94
Hode2vec	Retweet	81.83±4.31	52.18
	Combined	80.59±2.75	60.61
	Follow	76.15±1.92	53.97
C	Mention	71.95±2.74	51.88
GraphGAN	Retweet	39.20±2.42	50.21
	Combined	72.44±1.69	55.41
MNE	Follow	85.66±2.87	56.37
	Mention	84.70±3.45	74.66
	Retweet	85.06±3.42	76.15
MVE	All	83.76±4.90	68.85
VANE-RW	All	82.89±2.38	69.40
VANE-BRW	All	90.60±2.57	85.36

Performance on Aminer Dataset

Performance on Twitter-Rugby Dataset

Ablation Study

View 3

| View 3 | View 3 | View 3 | View 3 | View 3 | View 4 | View 6 | View 6 | View 7 | View 8 | View 8 | View 8 | View 8 | View 9 | Vi

- Versatility of VANE
 - Comprehensive information from multiple views.
 - Robust information from the generator.

Model	Locality	Node Representation	Accuracy (%)	
	Constraints	Generator	Node Classification	Link Prediction
VANE-BRW	No	No	19.28±4.03	50.03
	No	Yes	17.59±3.33	60.49
	Yes	No	84.70±4.60	81.29
	Yes	Yes	90.60±2.57	85.36

- Motivation
- Problem Definition
- Proposed VANE Framework
- Experiments
- Conclusion

Conclusion

- VANE: View-Adversarial Multi-View Network Embedding
 - First adversarial game for comprehensive representations.

Second adversarial game for robust representations.

Results

 VANE extracts effective node representations for two down-stream graph mining tasks.

Methods	View	Accuracy (%)	
Methods	View	Node Classification	Link Prediction
	Citation	78.03±0.72	95.99
DeepWalk	Common-Author	72.72±0.77	96.29
	Combined	74.94±0.54	97.28
	Citation	78.05±0.57	97.73
node2vec	Common-Author	73.69±0.68	95.58
	Combined	74.88±0.91	97.85
	Citation	74.29±1.20	88.93
GraphGAN	Common-Author	72.07±1.11	89.57
	Combined	71.69±1.06	90.21
MNE	Citation	N/A	54.25
	Common-Author	N/A	52.32
MVE	All	80.16±0.42	72.82
VANE-RW	All	78.84±0.63	97.62
VANE-BRW	All	80.79±0.80	98.53

Methods	View	Accuracy (%)	
		Node Classification	Link Prediction
DeepWalk	Follow	70.95±2.56	50.30
	Mention	69.64±5.46	50.27
	Retweet	73.78±5.18	52.24
	Combined	66.47±2.85	50.03
	Follow	79.52±4.42	65.45
node2vec	Mention	79.64±3.47	62.94
Hode2vec	Retweet	81.83±4.31	52.18
	Combined	80.59±2.75	60.61
	Follow	76.15±1.92	53.97
GraphGAN	Mention	71.95±2.74	51.88
GraphGAN	Retweet	39.20±2.42	50.21
	Combined	72.44±1.69	55.41
MNE	Follow	85.66±2.87	56.37
	Mention	84.70±3.45	74.66
	Retweet	85.06±3.42	76.15
MVE	All	83.76±4.90	68.85
VANE-RW	All	82.89±2.38	69.40
VANE-BRW	All	90.60±2.57	85.36

Thanks!

Dongqi Fu* (UIUC)

Zhe Xu* (UIUC)

Bo Li (UIUC)

Hanghang Tong (UIUC)

Jingrui He (UIUC)

Please refer to our paper and code at

https://github.com/DongqiFu/VANE

