

Displays, Hitachi, Ltd.

DATE: Oct. 10, 2001

Page 1-1/1

COMPAL ELECTRONICS, Inc.

CUSTOMER'S ACCEPTANCE SPECIFICATIONS

TX46D15VC0CAA

CONTENTS

No.	ITEM	Sheet No.	Page
•	COVER	3284PS 2601-TX46D15VC0CAA-3	1-1/1
ı	RECORD OF REVISION	3284PS 2602-TX46D15VC0CAA-3	2-1/1
-	DESCRIPTION	3284PS 2603-TX46D15VC0CAA-3	3-1/1
1	ABSOLUTE MAXMUM RATINGS	3284PS 2604-TX46D15VC0CAA-3	4-1/1
2	OPTICAL CHARACTERISTICS	3284PS 2605-TX46D15VC0CAA-3	5-1/2~2/2
3	ELECTRICAL CHARACTERISTICS	3284PS 2606-TX46D15VC0CAA-3	6-1/1
4	BLOCK DIAGRAM	3284PS 2607-TX46D15VC0CAA-3	7-1/1
5	INTERFACE PIN ASSIGNMENT	3284PS 2608-TX46D15VC0CAA-3	8-1/6~6/6
6	TIMING DUAGRAMS OF INTERFACE TIMING	3284PS 2609-TX46D15VC0CAA-3	9-1/3~3/3
7	DIMENSIONAL OUTLINE	3284PS 2610-TX46D15VC0CAA-3	10-1/2~2/2
8	DESIGNATION OF LOT MARK	3284PS 2611-TX46D15VC0CAA-3	11-1/1
9	COSMETIC SPECIFICATIONS	3284PS 2612-TX46D15VC0CAA-3	12-1/3~3/3
10	PRECAUTION	3284PS 2613-TX46D15VC0CAA-3	13-1/3~3/3

Accepted by		
Proposed by Z. Dg aw	-a	
Displays, Hitachi, Ltd.	Sheet	3284PS 2601-TX46D15VC0CAA-3

RECORD OF REVISION

Date	The upper section: Before revision The lower section: After revision		Summary		
	Sheet No.	Page			
'01.09.20	3284PS 2605-TX46D15VC0CAA-1	F 1/0	Contrast Ratio		
	3284PS 2605-TX46D15VC0CAA-2	5-1/2	Min.=1 50→180 Typ.=300→350		
	3284PS 2605-TX46D15VC0CAA-1	T 1/0	Brightness of white		
	3284PS 2605-TX46D15VC0CAA-2	5-1/2	Min.=160 →180 Typ.=200→230		
	3284PS 2605-TX46D15VC0CAA-1	0.400	Correction of errors in writing		
	3284PS 2605-TX46D15VC0CAA-2	8-4/6	(pin.asign of TFT controlinput)		
'01.10.10	3284PS 2605-TX46D15VC0CAA-2		Modititication of CR and Bwh		
	3284PS 2605-TX46D15VC0CAA-3	5-1/2	C R:Min.=180→210 Typ.=230→235 Bwh:Min.=180→190 Typ.=230→235		
	3284PS 2605-TX46D15VC0CAA-2	C 1/1	Moditication of VBL		
	3284PS 2605-TX46D15VC0CAA-3	6-1/1	VBL:Min.=10.8→11.8 Typ.=12.0→12.5		

Displays, Hitachi, Ltd. Date Oct. 10,200	Sheet No.	3284PS 2602-TX46D15VC0CAA-3	Page	2-1/1
--	-----------	-----------------------------	------	-------

DESCRIPTION

The following specifications are applied to the 18.1-inch Super-TFT module.

Note: Inverter for back light unit is built in a module.

Product Name: TX46D15VC0CAA

General Specifications

Effective Display Area

 $:(H)359.0\times(V)287.2$

(mm)

Number of Pixels

 $:(H)1280 \times (V)1024$

(pixels)

Pixel Pitch

 $:(H)0.2805 \times (V)0.2805$

(mm)

Color Pixel Arrangement

:R·G·B Vertical Stripe

Display Mode

:Transmissive Mode

Normally Black Mode

Top Polarizer Type

:Anti-glare (Haze: 25%)

Number of Colors

:16,777,216

(colors)

Viewing Angle Range

:Super Wide Version

(Horizontal & Vertical: 170° , $CR \ge 10$)

Input Signal

:2-channel LVDS (LVDS:Low Voltage Differential Signaling)

Back Light

:8 pcs. of CCFL

External Dimensions

 $:(H)389 \times (V)312 \times (t)33$

(mm)

Weight

:max.2000 (typ. 1800)

(g)

1. ABSOLUTE MAXIMUM RATINGS

1.1 Environmental Absolute Maximum Ratings

TOTAL C	Oper	ating	Sto	rage	T T ! 4	N. T
ITEM	M in.	Max.	M in.	M ax.	Unit	Note
Temperature	0	55	-20	60	J	1)
Humidity		2)		2)		1)
Vibration	ı	4.9(0.5G)	ı	11.8 (1.2G)	m/s 2	3)
Shock	1	29.4(3G)	1	294 (30G)	m/s 2	4)
Corrosive Gas	Not Acceptable		Not Ac	cceptable	ı	
Illuminance of LCD Surface	-	50,000	-	50,000	lx	

Note 1) Temperature and Humidity should be applied to the glass surface of a Super-TFT module, not to the system installed with a module.

The temperature at the center of rear surface should be less than 60°C on the condition of operating. The brightness of a CCFL tends to drop at low temperature. Besides, the life-time becomes shorter at low temperature.

- 2) Ta \leq 40 °C ····· Relative humidity should be less than 85%RH max. Dew is prohibited. Ta \geq 40 °C ···· Relative humidity should be lower than the moisture of the 85%RH at 40°C.
- 3)Frequency of the vibration is between 15Hz and 100Hz. (Remove the resonance point)
- 4) Pulse width of the shock is 10ms.

1.2 Electrical Absolute Maximum Ratings

(1)Super-TFT Module

Vss = 0 V

ITEM	SYMBOL	M in.	Max.	Unit	Note
Power Supply Voltage	V_{DD}	0	15.0	V	
Input Voltage for logic	VI	-0.3	3.6	V	1)
Electrostatic Durability	Vesdo	± 100		V	2),3)
Electrostatic Durability	Vesd1	±8	3	kV	2),4)

Note 1)It is applied to pixel data signal and clock signal.

- 2)Discharge Coefficient: 200p F-250 \,\Omega\$, Environmental: 25 \,\C-70 \% RH
- 3) It is applied to I/F connector pins.
- 4)It is applied to the surface of a metallic bezel and a LCD panel.

(2) Inverter

ITEM	SYMBOL	M aximum Rating	Unit	Note
Power Supply Voltage	VBL	14	V	
ON/OFF Signal L	VIL	-0.3	V	
ON/OFF Signal H	VIH	14	V	

	Displays, Hitachi, Ltd.	Date	Oct. 10, 2001	Sheet No.	3284PS 2604-TX46D15VC0CAA-3	Page	4-1/1
--	-------------------------	------	----------------------	--------------	-----------------------------	------	-------

2. OPTICAL CHARACTERISTICS

The following optical characteristics are measured under stable conditions. It takes about 30 minutes to reach stable conditions. The measuring point is the center of display area unless otherwise noted. The optical characteristics should be measured in a dark room or equivalent state.

Measuring equipment: Prichard 1980A, or equivalent Temperature of LCD surface=25°C, VDD=12.0V, f V=60Hz, VBL=12V, BC=GND

ITEM	[SYMBOL	CONDITION	M in.	Typ.	Max.	UNIT	NOTE
Contrast I	Ratio	CR		210	350	-	_	2)
Response	Rise	ton		_	15	30	ms	3)
Time	Fall	toff		ı	15	30	ms	3)
Brightness o	f white	Bwh		190	235		cd/m ²	
Brightness un	iformity	Buni		_	1	20	%	4)
Color	Red	χ		0.58	0.63	0.68		
Chromaticity	Rou	У	$ heta=0^{\circ}$	0.29	0.34	0.39		
1	Green	χ	1)	0.23	0.28	0.33		
(CIE)	Olecii	У		0.56	0.61	0.66	_	[Gray scale
	Blue	χ		0.09	0.14	0.19		=255]
	Diuc	У		0.04	0.09	0.14		
	White	χ		0.25	0.30	0.35		
	Willie	У		0.27	0.32	0.37		
Variation of	Red	Δχ	!	_	_	0.04		
Color Position	Red	Δу	θ =+50°	·—	_	0.04		
(CIE)	Green	Δχ	$\phi = 0^{\circ}$, 90°			0.04		5)
	Ofecii	Δу	180° $\sqrt{270^{\circ}}$		_	0.04	_	[Gray scale
Blue	Rlue	Δχ	1)		_	0.04	ļ	=255]
		Δу			_	0.04		
	White	Δχ		<u>—</u>	_	0.04		
	WHILE	Δу		<u> </u>	_	0.04		
Contrast Ratio at 85°		CR85°	θ =85°	10	_	_	_	

Displays, Hitachi, Ltd. Dat	Oct. 10	Sheet No.	3284PS 2605-TX46D15VC0CAA-3	Page	5-1/2
-----------------------------	---------	-----------	-----------------------------	------	-------

2) Definition of Contrast Ratio (CR)

3) Definition of Response Time

4) Definition of Brightness Uniformity

Display pattern is white (255 level) and gray scale. The brightness uniformity is defined as the following equation. Brightness at each point is measured, and average, maximum and minimum brightness is calculated.

Buni =
$$\frac{\left| \text{Bmax or Bmin} - \text{Bave} \right|}{\text{Bave}} \times 100$$

where, Bmax = Maximum brightness

Bmin = Minimum brightness

 $\frac{\sum_{k=1}^{\infty} (B(k))}{\sum_{k=1}^{\infty} (B(k))}$

5) Variation of color position on CIE is defined as difference between colors at $\theta = 0^{\circ}$ and at $\theta = 50^{\circ}$ & $\phi = 0^{\circ}$,90° ,180° ,270°.

Displays, Hitachi, Ltd.	Date	Oct. 10, 2001	Sheet No.	3284PS 2605-TX46D15VC0CAA-3	Page	5-2/2
· ·						

3. ELECTRICAL CHARACTERISTICS

3.1 TFT-LCD Module

Ta=25°C, Vss=0V

ITEM	SYM BOL	M in.	Typ.	Max.	Unit	Note
Power Supply Voltage	Vdd	10.8	12	13.2	V	
Power Supply Current	IDD	_	_	700	mA	1),2)
Vsync Frequency	fv	_	60		Hz	
Hsync Frequency	fн	_			kHz	
DCLK Frequency	fclk	50	54	60	MHz	
Input Signals	VI				V	3)

Dimensions in parentheses are reference value.

Note 1) DC current at fv=60Hz, fCLK=54MHz and VDD=12.0V

- 2) Current fuse(1.6A,24V:Product Name; JAA2402162NA, Matsuo Corp.) is built in a module. Current capacity of power supply for VDD should be larger than 4A, so that the fuse can be opened at the trouble of power supply.
- 3) The picture on maximum current is white picture.
- 4) Characteristics of input signals are shown in LVDS data sheets. (Receiver:THC63LVDF84A or DS90cf386)

3.2 Inverter (Back Light)

ITEM	SYMBOL	M in.	Typ.	Max.	Unit	Note
Power Supply Voltage	VBL	11.8	12.5	13.2	V	
Power Supply Current	IBL	_	(2.8)	(3.3)	Α	VBL=12V
Kick-Off Current		_	(2.8)	(3.3)	A	
Dimming voltage	VBCH	3.3			V	Min. dimming
	VBCL	_	-	0	V	Max. dimming
ON/OFF Signal L	VIL	0	_	0.8	V	OFF state
ON/OFF Signal H	VIH	2		5	V	ON state
Frequency	f0	49	54	59	kHz	
Dimming Frequency	fB	234	260	286	Hz	
Dimming Range	_	20	_	100	%	1)

Notes 1) 100 % mean the maximum brightness.

Displays, Hitachi, Ltd. Date	Oct	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sheet No.	3284PS 2606-TX46D15VC0CAA-3	Page	6-1/1
------------------------------	-----	---	--------------	-----------------------------	------	-------

4. BLOCK DIAGRAM

(1) Super-TFT Module

(2) Back light unit

Note) The inverter for driving CFLs is not built in a module.

Displays, Hitachi, Ltd. Date	Oct. 10, 2001	Sheet No.	3284PS 2607-TX46D15VC0CAA-3	Page	7-1/1
------------------------------	---------------	--------------	-----------------------------	------	-------

5. INTERFACE PIN ASSIGNMENT

CN1: JAE FI-SE20P-HF

(Matching connector: JAE FI-SE20M)

Pin No .	SYMBOL	Function	
1	(NC)		
2	(NC)		
3	Vss	GND(0V)	1)
4	Vss		
5	RAIN0-	Odd pixel data	2)
6	RAIN0+		
7	Vss	GND(0V)	1)
88	RAIN1-	Odd pixel data	2)
9	RAIN1+	•	
10	Vss	GND(0V)	1)
11	RAIN2-	Odd pixel data	2)
12	RAIN2+		Ĺ
13	Vss	GND(0V)	1)
14	RACLKIN-	Odd pixel data	2)
15	RACLKIN+		2)
16	Vss	GND(0V)	1)
17	RAIN3-	Odd pixel data	2)
18	RAIN3+		2)
19	Vss	GND(0V)	1)
20	RSVD		

CN2: JAE FI-SE20P-HF

(Matching connector: JAE FI-SE20M)

ピン No.	SYMBOL	Function	
1	(NC)	_	
2	(NC)		
3	Vss	GND(0V)	1)
4	Vss		
5	RBIN0-	Even pixel data	2)
6	RBIN0+		
7	Vss	GND(0V)	1)
- 8	RBIN1-	Even pixel data	2)
9	RBIN1+		
10	Vss	GND(0V)	1)
11	RBIN2-	Even pixel data	2)
12	RBIN2+		
13	Vss	GND(0V)	1)
14	RBCLKIN-	Even pixel data	2)
15	RBCLKIN+		
16	Vss	GND(0V)	1)
17	RBIN3-	Even pixel data	2)
18	RBIN3+		2)
19	Vss	GND(0V)	1)
20	RSVD		

Notes 1) All Vss pins should be grounded.

- 2) RnINm+ and RnINm- (n=A, B m=0, 1, 2, 3) should be wired by twist-pairs or side-by-side FPC patterns, respectively.
- 3) Pin assignment of CN1 and CN2 is as follows.

Pin No.	SYM BOL		Function	
1	VDD	Power supply (typ.12V)	1)	
2	VDD			
3	VDD			
4	(NC)			
5	(NC)			
6	VSS	GND(0V)	2)	
7	VSS			
8	VSS			
9	(NC)			
10	(NC)			

Notes 1) All VDD pins should be connected to +12.0 V(typ.).

- 2) All Vss pins should be grounded.
- 3) Pin assignment of CN3 is as follows.

10pin (Figure from top-view) 1pin

CN4:S12B-PH-SM3-TB(JST) (Matching connector:JST PHR-12)

Pin No.	SYMBOL	Function
1	VBL	Power supply (typ.12V) 1)
2	VBL	•
3	VBL	
4	VBL	
5	ON/OFF	Remote ON/OFF Switch ON:VIH, OFF:VIL
66	GND	GND(0V) 2)
7	GND	
8	BC	Brightness Control BC=GND: max brightness, BC=VCC: min brightness 3)
9	GND	GND(0V) 2)
10	GND	
11	GND	
12	GND	

Notes 1) All VBL pins should be connected to +12.0 V(typ.).

- 2) All GND pins should be grounded (0V).
- 3) VR should be setted 5 to 20 k Ω . VCC=3.3V

4) Pin assignment is as follows.

GND

BC

,		1
1 n in	(Figure from top-view)	10
Thm	(Figure from top-view)	I Zn in
1	(1.1801.1 1.011.1 1.0 h . 1.10)	P

Displays, Hitachi, Ltd.	Date	Oct. 10, 200 1	Sheet No.	3284PS 2608-TX46D15VC0CAA-3	Page	8-2/6	
						,	

Receiver: THC63LVDF84A by Thine,

DS90CF386 by NS

RA0-7, RB0-7: R data GA0-7, GB0-7: G data BA0-7, BB0-7: B data

Hsync: Horizontal synchronization Vsync: Vertical synchronization DTMG: Display timing data

Notes 1) RSVD(reserved) pins on a transmitter should be connected with Vss.

- 2) The system must have a LVDS transmitter(THC63LVDM83A, DS90C385) to drive a module.
- 3) The impedance of LVDS cable should be 50 ohms per a signal line or about 100 ohms per a twist-pair line when it is used differentially.
- 4) LVDS terminal circuit of a module is as follows.

Displays, Hitachi, Ltd.	Date	Oct., 10, 2001	Sheet No.	3284PS 2608-TX46D15VC0CAA-3	Page	8-3/6
			1.01			

LVDS INTERFACE

	INPUT	Т	ransmitter	Interface connector			Receiver	TFT
	SIGNAL						C63LVDF84A	
		pin	INPUT	System side	Super-TFT modu		OUTPUT	control input
	RA0	51	TAIN0			27	RAOUT0	RA0
	RA1	52 54	TAIN1	TA OUT0+	RA IN0+	29	RAOUT1	RA1
	RA2	55 55	TAIN2			30 32	RAOUT2	RA2
	RA3	56	TAIN3			33	RAOUT3	RA3
	RA4		TAIN4	TA OUT0-	RA INO-	35	RAOUT4	RA4
	RA5	3 4	TAIN6	17.0010-	KA INU-		RAOUT6	RA5
	GA0	6	TAIN7			37	RAOUT7	GA0
	GA1	7	TAIN8	m . ov.m.	D . D.	38 39	RAOUT8	GA1
1	GA2	11	TAIN9 TAIN12	TA OUT1+	RA IN1+	43	RAOUT9	GA2
	GA3	12	TAIN12 TAIN13			45 45	RAOUT12 RAOUT13	GA3
LVDS	GA4 GA5	14	TAIN13			46	RAOUT13	GA4
	1 1	15	TAIN14	TA OUT1-	RA IN1-	47	RAOUT14	GA5
Odd	BA0	19	TAIN13		10.11.1	51	RAOUT18	BA0
	BA1	20	TAIN19			53	RAOUT 18	BA1
	BA2	22	TAIN19	TA OUTA	DA DIO.	54	RAOUT 19	BA2
	BA3	23	TAIN20 TAIN21	TA OUT2+	RA IN2+	55	RAOUT 20 RAOUT 21	BA3
	BA4 BA5	23	TAIN21 TAIN22			1	RAOUT21 RAOUT22	BA4
	HSYNC	27	TAIN24			3	RAOUT22 RAOUT24	BA5
	VSYNC	28	TAIN25	TAOUTTA	DA DIO	5	RAOUT25	HSYNC
	DTMG	30	TAIN25	TA OUT2-	RA IN2-	6	RAOUT26	VSYNC DTMG
	RA6	50	TAIN27			7	RAOUT27	RA6
	RA7	2	TAIN5			34	RAOUT5	RAO RA7
	GA6	8	TAIN10	TA OUT3+	RA IN3+	41	RAOUT10	GA6
	GA7	10	TAIN11			42	RAOUT11	GA7
	BA6	16	TAIN16			49	RAOUT16	BA6
ļ	BA7	18	TAIN17	TA OUT3-	RA IN3-	50	RAOUT17	BA7
	RSVD 1)		TAIN23			2	RAOUT23	RSVD
	DCLK	25 31	TCLKA IN	TCLKA OUT+ TCLKA OUT-	RCLKA IN+ RCLKA IN-	26	RCLKA OUT	DCLK
	RB0	51	TBIN0			27	RBOUT0	RB0
	RB1	52	TBIN1	TB OUT0+	RB IN0+	29	RBOUT1	RB1
	RB2	54	TBIN2		·	30	RBOUT2	RB2
	RB3	55	TBIN3			32	RBOUT3	RB3
	RB4	56	TBIN4			33	RBOUT4	RB4
	RB5	3	TBIN6	TB OUT0-	RB IN0-	35	RBOUT6	RB5
	GB0	4	TBIN7			. 37	RBOUT7	GB0
	GB1	6	TBIN8			38	RBOUT8	GB1
·	GB2	7	TBIN9	TB OUT1+	RB IN1+	39	RBOUT9	GB2
	GB3	11	TBIN12			43	RBOUT12	GB3
	GB4	12	TBIN13			45	RBOUT13	GB4
	GB5	14	TBIN14	TD OFF		46	RBOUT14	GB5
LVDS	BB0	15	TBIN15	TB OUT1-	RB IN1-	47	RBOUT15	BB0
Even	BB1	19	TBIN18			51	RBOUT18	BB1
LVCII	BB2	20	TBIN19			53	RBOUT19	BB2
	BB3	22	TBIN20	TB OUT2+	RB IN2+	54	RBOUT20	BB3
	BB4	23	TBIN21			55	RBOUT21	BB4
	BB5	24	TBIN22			1	RBOUT22	BB5
	RSVD 1)	27	TBIN24			3	RBOUT24	RSVD
	RSVD 1)	28	TBIN25	TB OUT2-	RB IN2-	5	RBOUT25	RSVD
	RSVD 1)	30	TBIN26			6	RBOUT26	RSVD
	RB6	50	TBIN27			7	RBOUT27	RB6
	RB7 GB6	2	TBIN5	TB OUT3+	RB IN3+	34	RBOUT5	RB7
	GB6 GB7	8	TBIN10 TBIN11			41 42	RBOUT10	GB6 GB7
	BB6	10	TBIN11			42	RBOUT11 RBOUT16	BB6
	BB7	16	TBIN17	TB OUT3-	RB IN3-	50	RBOUT17	BB7
	RSVD 1)	18	TBIN23	12 0010		2	RBOUT23	RSVD
	DCLK	25	TCLKB IN	TCLKB OUT+	RCLKB IN+	26	RCLKB OUT	DCLK
		31		TCLKB OUT-	RCLKB IN-			
								

Displays, Thracin, Edd. Date Oct. 10, 2001 No. 32041 3 2008-1 A40D13 VCOCAA-3 1 age 8-4/6	Displays, Hitachi, Ltd.	Date	Oct. 10, 2001	Sheet No.	3284PS 2608-TX46D15VC0CAA-3	Page	8-4/6
---	-------------------------	------	----------------------	--------------	-----------------------------	------	-------

CORRESPONDENCE BETWEEN INPUT DATA AND DISPLAY IMAGE

Odd pixel: RA0~RA7: R data

GA0~GA7: G data

BA0~BA7: B data

Even pixel: RB0~RB7: R data

 $GA0 \sim GA7 : G data$

BB0∼BB7 : B data

1,1	1,2	1,3		1,1280
2,1	2,2	2,3		2,1280
3,1	3,2	3,3		3,1280
!	,	:		!
	1 1			1
		1		1 1 1 1 1
1				1
1 1 1 1		i !		
1	'	1	•	'
1024,1	1024,2	1024,3		1024,1280

	Displays, Hitachi, Ltd.	Date	Oct. 10, 2001	Sheet No.	3284PS 2608-TX46D15VC0CAA-3	Page	8-5/6
--	-------------------------	------	----------------------	--------------	-----------------------------	------	-------

RELATIONSHIP BETWEEN DISPLAY COLORS AND INPUT SIGNALS

	Input data				R d	ata							G	lata							Вα	lata			
	\ \ \	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	GA7	GA6	GA5	GA4	GA3	GA2	GA1	GA0	BA7	BA6	BA5	BA4	BA3	BA2	BA1	BA0
Color		RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	GB7	GB6	GB5	GB4	GB3	GB2	GB1	GB0	BB7	ВВ6	BB5	BB4	ввз	BB2	BB1	вво
Color		MSB			1		! !		LSB	MSB		! !					LSB	MSB	! !	! ! !	1				LSB
ŀ	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
į	RED(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
BASIC	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1_1_	1	1	1	1	1	1
COLOR	CYAN	0_	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	MAGENDA	1_	1	1_1_	1	1	1	_1_	1_1	0_	0	0	0	0	0	0	0	1_1_	1_1_	1	1	1	1	1	1
	YELLOW	1_	1	1	1	1	1	1.	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	WHITE	1	1	1_	1	1	1	1	1	1	1	1	1	1	1	1	1_	1	1	1	1	1	1	1	1
	BLACK	0_	0	0	0	0	0	0_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
}	RED(1)	0_	0	0	0	0	0	0_	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(2)	0_	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED		<u> </u>	<u> </u>	:-		.	<u> </u>	_ : _	¦ :	:_	:		. :	:-	:	: :	: : :	<u> </u>	<u> </u>	:			:	:	<u> </u> :
ļ	;	<u> </u> :_		.				_:_	ļ.:		<u>:</u>			:_	<u>:</u> .	<u>.</u> :	:	:					:	:	<u> </u>
	RED(254)	1	1	1_1_	1	1_1_	1	1_1_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0_	0	0
	RED(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLACK	0_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(1)	0	0	0	0	0	0	0_	0_	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	GREEN(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
GREEN	;	<u> </u> :_	<u> </u>		¦ }	:	¦	:	¦ . :	. : .	:	 :	:-:-		:	<u>.</u> :	0	<u> </u>				:	:	:	:
		<u> : </u>	ļ.;			:		_:_	¦ 	. :	. :				:	<u> </u>	0	<u> </u>		; !:			:	:	<u> </u>
	GREEN(254	0	0	0	0	0	0	.0.	0_	1	1	1	1	1	1	1	0	0_	0	0	0	0	0_	0	0
	GREEN(255	0	0	0	0	0	0	0	0	1	1	1	1	1_	1	1	1	0	0	0	0	0	0	0	0
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0_	0	0	0	0	0	0	0
	BLUE(1)	0	0	0	0	0	0	0_	0	0	0	0	0	0	0	0_	0	0	0	0	0	0	0	0	1
	BLUE(2)	0_	0	0	0	0	0	0_	0	0	0	0	0	0	0	0	0	0_	0	0	0	0	0	1	0
BLUE		<u> </u> :	<u> </u>	 :	¦	.	¦	_:_	¦	<u> </u>	. :	¦	<u> </u>		:	ļ.:	ļ. : 	<u> </u>	¦_;	 :	: 	 	:		ļ.:
	:	<u> </u> :			¦	:	<u> </u>	_:.		<u> </u>	. :	<u>.</u> . :	<u> </u>	:.	:	.		<u> </u>	ļ.;	<u>.</u>		:.	:	<u>:</u>	ļ.:
	BLUE(254)	0	0	0	0	0	0	_0_	0	0_	0	0	0	0	0	0	0	1_1_	1	1_1	1	1	1_	1	0
	BLUE(255)	0	0	0	0	0	0	0_	0	0	0_	0	0	0	0	0	0	1_	1_	1	1	1	1	1	1

Notes 1) Definition of gray scale: Color (n)

n indicates gray scale level. Higher n means brighter level.

2) Data signals: 1:High, 0:Low

	Displays, Hitachi, Ltd.	Date	Oct. 10, 2001	Sheet No.	3284PS 2608-TX46D15VC0CAA-3	Page	8-6/6
--	-------------------------	------	----------------------	--------------	-----------------------------	------	-------

6. TIMING DIAGRAMS OF INTERFACE TIMING

6.1 Timing chart

The following timing chart is defined at input of a LVDS transmitter.

Notes 1) Reference level of timing signals is 1.5 V unless it is stated on the chart. However, high level voltage (VII) and low level voltage (VIL) are defined as follows:

$$V_{IH} \ge 2.0V$$
 $V_{IL} \le 0.8V$

The above definitions come from specifications of THC63LVDM83A(Thine) or DS90C385(Ns).

- 2) The timing of DCLK to other signals comes from specifications of THC63LVDM83A or DS90C385. It is recommended to check specifications of the LVDS.
- 3) HSYNC and VSYNC is a timing in negative polarity.

Display, Hitachi, Ltd. Da	ate Oct. 1	2001 Sheet No.	3284PS 2609-TX46D15VC0CAA-3	Page	9-1/3
---------------------------	------------	----------------	-----------------------------	------	-------

6.2 INTERFACE TIMING SPECIFICATIONS

	ITEM	SYMBOL	Min.	Тур.	Max.	Unit	Notes
DCLK	Period	TCIP	17.6	18.5	19.4	ns	
	Duty	D	0.4	0.5	0.6	_	D=TCIL/TCIP
HSYNC	Period	THP	728	832	1200	TCIP	
	Width-active	TWH	8	_	120	TCIP	
VSYNC	Set up time	TSV	0	-	-	TCIP	to HSYNC
	Hold time	THV	2	-	-	TCIP	to HSYNC
	Period	TVP	1027	1078	2000	THP	
	Width-active	TWV	1	-	120	THP	
DTMG	Horizontal back porch	THBP	110	176	1)	TCIP	
	Horizontal front porch	THFP	0	16	1)	TCIP	
	Vertical back porch	TVBP	0	_	2)	ТНР	
	Vertical front porch	TVFP	3	-	2)	THP	
	Width-active	TWD	640	-	_	TCIP	
COMMON	Set up time	TSTC	6	-	3)	ns	
	Hold time	ТНТС	2	_	3)	ns	

Notes 1) THBP+THFP ≤ 560 TCIP

- 2) TVBP+TVFP \leq 253 THP
- 3) TSTC and THTC come from a specifications of a LVDS transmitter. It is recommended to specifications of a LVDS transmitter.
- 4) $fV=1/TVP \le 60Hz$ (see 3. Description).
- 5) $fH = 1/THP \le 64.9kHz$ (see 3. Description).

		,				
Display, Hitachi, Ltd.	Date	Oct. 10, 2001	Sheet No.	3284PS 2609-TX46D15VC0CAA-3	Page	9-2/3

6.3 TIMING BETWEEN INTERFACE SIGNALS AND POWER SUPPLY

Timing of power supply voltage and input signals should be used under the following specifications.

$$0ms \le TPR \le 30ms$$
 $0ms \le TDR \le 500ms$
 $0ms \le TDF \le 500ms$
 $TIN \ge 500ms$
 $TIV \le 3ms$

(2) Inverter

- Note 1) ON/OFF signal and dimming voltage is not specified during VBL=high (≥ 10.8 V). However, specifications referred to Sec.3 must be satisfied.
 - 2) Dimming voltage should be 0V during VBL=low (<10.8V).

Display, Hitachi, Ltd.	Date	Oct. 10, 2001	Sheet No.	3284PS 2609-TX46D15VC0CAA-3	Page	9-3/3
------------------------	------	---------------	--------------	-----------------------------	------	-------

3284PS 2610-TX46D15VC0CAA-3 Sheet Š.

9

0

Unit:mm Scale:MTS

Oct. 10, 2001 Date Displays, Hitachi, Ltd.

(2) 0 (8.635) 0 (8.55) 0 THE STATE OF THE PARTY OF THE P MOTE 1) Dimensions in parentheses are referense value.
2) Tolerance not specified is ±0.5mm.
3) Measure the values 9.8×10^4Pa(1.0kgf/cm^2). (162.35) (158.35) (88.35) (132.15) (37.35) (66.55) (57.35) (52.35) (102.15)

FO

EXTERNAL DIMENSIONAL

Rear View

TX46D15VC0CAA

8. DESIGNATION OF LOT MARK

8.1 LOT MARK

Notes

1)	Year	M ark
	1999	9
	2000	0
	2001	1

2002

2

2)	Month	M ark	Month	M ark
	1	01	7	07
	2	02	8	08
	3	03	9	09
	4	04	10	10
	5	05	11	11
	6	06	12	12

3)	Week (Day)	M ark
	1~7	1
	8~14	2
	15~21	3
	22~28	4
,	29~31	5

4) It is the mark that was opened up by production person to take correspondence with production number.

8.2 Revision (REV.) control

REV. is the column for manufacturing convenience. A-Z except I and O may be written on this column.

8.3 Location of lot mark

Lot mark is printed on a label. The label is on the metallic bezel as shown in 7. External Dimensional. The style of character will be changed without notice.

Display, Hitachi, Ltd.

Date Oct. 10, 2001 Sheet No. 3284PS 2611-TX46D15VC0CAA-3 Page 11-1/1

9. COSMETIC SPECIFICATIONS

9.1 Condition for cosmetic inspection

- (1) Viewing zone
 - a) The figure shows the correspondence between eyes (of inspector) and TFT-LCD module.

 $\theta \le 45^{\circ}$: when non-operating inspection $\theta \le 5^{\circ}$: when operating inspection

b) Inspection should be executed only from front side and only A-zone.

Cosmetic of B-zone and C-zone are ignore. (refer to 9.2 Definition of zone)

(2) Environmental

a) Temperature: 25 degrees

b) Ambient light: about 700 lx and non-directive when operating inspection.

: about 1000 lx and non-directive when non-operating inspection.

c) Back-light: when non-operating inspection, back-light should be off.

9.2 Definition of zone

·A-zone: Display area (pixel area)

·B-zone : Area between A-zone and C-zone

·C-zone : Metallic bezel area (include I/F connector)

9.3 COSMETIC SPECIFICATIONS

When displaying conditions are not stable (ex. at turn on or off), the following specifications are not applied.

	No.		ITEM		Max. acceptable numbe A-zone	r Unit	Note	
Operating	1			1-dot	10	pcs	1),2),4)	
inspection	ction			2-dots	3			
			Sparkle	3-dots	1	Units	1),2),5)	
			mode	4-dots	0			
				Density	3	pcs/ φ 20 _{mm}	1),2),6)	
		Dot defect		Total	10	pcs	1),2)	
				1-dot	10	pcs	1),3),4)	
				2-dots	3			
			Black	3-dots	1	Units	1),3),5)	
			mode	4-dots	0			
				Density	3	pcs/ φ 20 _{mm}	1),3),6)	
				Total	10	pcs	1),3)	
				Total	15	pcs	1)	
	2		defect		Serious one is not allowed.		_	
	3	Oneven t	rightness		Ignore			
	4	Stain inclusion	W≦0.02	L: Ignore L≦2.0	_			
		Line shape	$W \leq 0.04$	L≥2.0 L>2.0	10		7)	
		W: width(mm)	W 6000	L>2.0 L≦1.0	0	pcs	7)	
		L: length (mm)	W≦0.08	L≥1.0 L>1.0	10			
			W>0.08	L>1.0	(See dot shape)			
	5	Stain inclusion		0.22	Ignore			
) 	Dot shape	D≦		1	pcs	7)	
		D: ave. dia. (mm)	D≘ D>		0	P ^{QQ}	17	
	6	Scratch on polarizer		L: Ignore	Ignore			
	0	Line shape		L≦20	10			
	1 11		$W \leq 0.08$	L=20 L>20	0	pcs	8)	
		W: width(mm) L: length(mm)			0			
		Scratch on polarizer	W>0.08	L				
:	7			€0.2	Ignore	ncc	0/	
		D. ovo dio (mm)		€0.6	10	pcs	8)	
	L	[<u>D</u> >	0.6	0	<u> </u>		

Display, Hitachi, Ltd.	Date	Oct. 10, 2001	Sheet No.	3284PS 2612-TX46D15VC0CAA-3	Page	12-2/3
			*			

	No.	п	EM	Max. acceptable number A-zone	Unit	Note
operating	8	Bubbles, peeling in polarizer	D≦0.2	Ignore		
inspection			D≦0.5	5	pcs	8)
		D: ave. dia. (mm)	D>0.5	0		
non-operating inspection	9	Wrinkles o	n polarizer	Serious one is not allowed.	_	_

Note 1) Dot defect : defect area > 1/2 dot

- 2) Sparkle mode: brightness of dot is more than 30% at black. (visible to eye)
- 3) Black mode: brightness of dot is less than 70% at white. (visible to eye)
- 4) 1 dot: defect dot is isolated, not attached to other defect dot.
- 5) N dots: N defect dots are consecutive. (N means the number of defects dots)
- 6) Density: number of defect dots inside 20mm ϕ .
- 7) Those stains which can be wiped out easily are acceptable.
- 8) Polarizer area inside of B-zone is not applied.
- 9) No major (serious) defects when viewed in gray scale mode.

Display, Hitachi, Ltd.	Date	Oct. 10, 2001	Sheet No.	3284PS 2612-TX46D15VC0CAA-3	Page	12-3/3
------------------------	------	---------------	--------------	-----------------------------	------	--------

10. PRECAUTION

Please pay attention to the followings when a Super-TFT module with a back-light unit is used, handled and mounted.

10.1 Precaution to handling and mounting

- (1) Applying strong force to a part of the module may cause partial deformation of frame or mold, and cause damage to the display.
- (2) The module should gently and firmly be held by both hands. Never hold by just one hand in order to avoid any internal damage. Never drop or hit the module. Never push the surface of effective display area.
- (3) The module should be installed with mounting holes at each corner of a module.
- (4) Uneven force such as twisted stress should not be applied to a module when a module is mounted on the cover case. The cover case must have sufficient strength so that external force can not be transmitted directly to a module.
- (5) It is recommended to leave a space between a module and a holding board of a module so that partial force is not applied to a module.

- (6) The edge of a cover case should be located inside more than 1mm from the edge of a module front frame.
- (7) A transparent protective plate should be added on the display area of a module in order to protect a polarizer and Super-TFT cell. The transparent protective plate should have sufficient strength so that the plate can not touch a module by external force.
- (8) Materials included acetic acid and choline should not be used for a cover case as well as other parts and boards near a module. Acetic acid attacks a polarizer. Choline attacks electric circuits due to electro-chemical reaction.
- (9) The polarizer on a TFT cell should carefully be handled due to its softness, and should not be touched, pushed or rubbed with glass, tweezers or anything harder than HB pencil lead. The surface of a polarizer should not be touched and rubbed with bare hand, greasy clothes or dusty clothes.
- (10) The surface of a polarizer should be gently wiped with absorbent cotton, chamois or other soft materials slightly contained petroleum benzene when the surface becomes dirty. Normal-hexane as cleaning chemicals is recommended in order to clean adhesives which fix front/rear polarizers on a Super-TFT cell. Other cleaning chemicals such as acetone, toluen and alcohol should not be used to clean adhesives because they cause chemical damage to a polarizer.
- (11) Saliva or water drops should be immediately wiped off. Otherwise, the portion of a polarizer may be deformed and its color may be faded.
- (12) The module should not be opened or modified. It may cause not to operate properly.

Display, Hitachi, Ltd.	Date	Oct. 10, 2001	Sheet No.	3284PS 2613-TX46D15VC0CAA-3	Page	13-1/3

- (13) Metallic bezel of a module should not be handled with bare hand or dirty gloves. Otherwise, color of a metallic frame may become dirty during its storage. It is recommended to use clean soft gloves and clean finger stalls when a module is handled at incoming inspection process and production (assembly) process.
- (14) Lamp(CCFL) cables should not be pulled and held.

10.2 Precaution to operation

- (1) The ambient temperature near the operated module should be satisfied with the absolute maximum ratings. Unless it meets the specifications, sufficient cooling system should be adopted to system.
- (2) The spike noise causes the mis-operation of a module. The level of spike noise should be as follows:
 -200mV≤over- and under- shoot of VDD≤ +200mV
 VDD including over- and under- shoot should be satisfied with the absolute maximum ratings.
- (3) Optical response time, luminance and chromaticity depend on the temperature of a Super-TFT module. Response time and saturation time of CCFL luminance become longer at lower temperature operation.
- (4) Sudden temperature change may cause dew on and/or in the a module. Dew males damage to a polarizer and/or electrical contacting portion. Dew causes fading of displayed quality.
- (5) Fixed patterns displayed on a module for a long time may cause after-image. It will be recovered soon.
- (6) A module has high frequency circuits. Sufficient suppression to electromagnetic interference should be done by system manufacturers. Grounding and shielding methods may be effective to minimize the interference.
- (7) Noise may be heard when a back-light is operated. If necessary, sufficient suppression should be done by system manufacturers.
- (8) The module should not be connected or removed while a main system works.

10.3 Electrostatic discharge control

- (1) Since a module consists of a Super-TFT cell and electronic circuits with CMOS-ICs, which are very weak to electrostatic discharge, persons who are handling a module should be grounded through adequate methods such as a list band. I/F connector pins should not be touched directly with bare hands.
- (2) Protection film for a polarizer on a module should be slowly peeled off so that the electrostatic charge can be minimized.

10.4 Precaution to strong light exposure

(1) A module should not be exposed under strong light. Otherwise, characteristics of a polarizer and color filter in a module may be degraded.

10.5 Precaution to storage

When modules for replacement are stored for a long time, following precautions should be taken care of:

- (1) Modules should be stored in a dark place. It is prohibited to apply sunlight or fluorescent light during storage. Modules should be stored at 5 to 35°C at normal humidity (60%RH or less).
- (2) The surface of polarizers should not come in contact with any other object. It is recommended that modules should be stored in the Hitachi's shipping box.

Display, Hitachi, Ltd.	Date	Oct. 10, 2001	Sheet No.	3284PS 2613-TX46D15VC0CAA-3	Page	13-2/3
------------------------	------	---------------	--------------	-----------------------------	------	--------

10.6 Precaution to handling protection film

- (1) The protection film for polarizers should be pealed off slowly and carefully by persons who are electrically grounded with adequate methods such as a list band. Besides, ionized air should be blown over during peeling action. Dusts on a polarizer should be blown off by an ionized nitrogen gun and so on.
- (2) The protection film should be peeling off without rubbing it to the polarizer. Because, if the film is rubbed together with the polarizer, since the film is attached to the polarizer with a small amount of adhesive, the adhesive may remain on a polarizer.
- (3) The module with protection film should be stored on the conditions explained in 10.5 (1). However, in case that the storage time is too long, adhesive may remain on a polarizer even after a protection film is peeled off. Besides, in case that a module is stored at higher temperature and/or higher humidity, adhesive may remain on a polarizer. The remained adhesive may cause non-uniformity of display image.
- (4) The adhesive can be removed easily with Normal-Hexane. The remained adhesive or its vestige on the polarizer should be wiped off with absorbent cotton or other soft materials such as chamois slightly contained Normal-Hexane.

10.7 Safety

- (1) Since a Super-TFT cell and lamps are made of glass, handling to the broken module should be taken care sufficiently in order not to be injured. Hands touched liquid crystal from a broken cell should be washed sufficiently.
- (2) A inverter located in rear side of a module can drive by high voltage. Super-TFT module has a plastic cover due to safety of high voltage.
- (3) The module should not be taken apart during operation so that back-light drives by high voltage.

10.8 Environmental protection

- (1) The Super-TFT module contains cold cathode fluorescent lamps. Please follow local ordinance or regulations for its disposal.
- (2) Flexible circuits board and printed circuits board used in a module contain small amount of lead. Please follow local ordinance or regulations for its disposal.

10.9 Use restrictions and limitations

- (1) This product is not authorized for use in life support devices or systems, military applications or other applications which pose a significant risk of personal injury.
- (2) In no event shall Hitachi, Ltd., be liable for any incidental, indirect or consequential damages in connection with the installation or use of this product, even if informed of the possibility thereof in advance. These limitations apply to all causes of action in the aggregate, including without limitation breach of contact, breach of warranty, negligence, strict liability, misrepresentation and other torts.

10.10 Others

(1) Electrical components which may not affect electrical performance are subjective to change without notice because of their availability.

Display, Hitachi, Ltd. Date	Oct. 10, 2001	Sheet No.	3284PS 2613-TX46D15VC0CAA-3	Page	13-3/3
-----------------------------	---------------	--------------	-----------------------------	------	--------