Homework 4

Denis Ostroushko

2022-10-11

```
library(tidyverse)
library(kableExtra)
library(readxl)
```

8.4

8.4 - A

First, let's look at the distribution of the calculated response variable, it is a good practice to do so going forward for model development and diagnostics purpose.

Ratio of NNAL Measurements on the Natural Logarithmic Scale

Coefficients and other statistics from the multiple regression model are given in the table below.

Predictor	Estiamte	Standard Error	T Value	P value
(Intercept)	-0.093	0.477	-0.196	0.845
arm	-0.016	0.057	-0.285	0.776
age	-0.005	0.004	-1.068	0.287
gender2	-0.100	0.116	-0.863	0.389
white1	-0.113	0.124	-0.913	0.363
educ22	-0.068	0.119	-0.567	0.571
income302	-0.250	0.129	-1.944	0.053
FTND	0.060	0.045	1.323	0.187

Comments:

- None of the variables appear to be statistically significantly related to the response, after adjusting for other variables, at the 5% level.
- However, p-value for the income variable is suggestive that there might be some relationship going on, which we potentially can uncover either with a better model or with more data. Income summary is given below:

```
sum_income <-
  e_cig_3 %>%
  group_by(income30) %>%
  dplyr::summarise(
    n = n(),
    mean = mean(Y1),
    median = median(Y1)
)

sum_income$income30 <- c("<= $30K/Yr.", "> $30K/Yr.")

colnames(sum_income) <- c("Income Levels", "N", "Average Response", "Median Response")</pre>
```

Income Levels	N	Average Response	Median Response
<= \$30 K/Yr.	135	-0.3531677	-0.2473906
> \$30 K/Yr.	60	-0.6406918	-0.4237410

```
sum_income %>%
kbl(align = 'c', booktabs = T) %>%
kable_styling(latex_options = 'striped')
```

• While the average response appears to be quite different between the two groups, other variables in the multiple linear model might have an effect on this relationship.

8.4 - B

The distribution of the response variable below is highly skewed, so, perhaps, we should expect an even more poor fit of the model, and less statistically significant number of predictors.

Ratio of TNE Measurements on the Natural Logarithmic Scale


```
e_cig_3_model_data <-
  e_cig_3 %>% select(arm, age, gender, white, educ2, income30, FTND, Y2)
model_8.4 <- lm(Y2 ~ ., data = e_cig_3_model_data)</pre>
model_8.4_res <- summary(model_8.4)</pre>
model_8.4_res_df <- data.frame(model_8.4_res$coefficients)</pre>
model_8.4_res_df$var <- rownames(model_8.4_res_df)</pre>
rownames(model_8.4_res_df) <- NULL</pre>
model_8.4_res_df <- model_8.4_res_df %>% select(var, everything())
model_8.4_res_df <-</pre>
  model_8.4_res_df %% mutate_at(vars(Estimate, `Std..Error`, t.value, `Pr...t..`),
                                  funs(round(., 3)
                                   )
colnames(model_8.4_res_df) <- c("Predictor", "Estiamte", "Standard Error", "T Value", "P value")
model_8.4_res_df %>%
  kbl(booktabs = T, align = c('l','c', 'c', 'c', 'c')) %>%
  kable_styling(latex_options = c("striped", "HOLD_position"))
```

Predictor	Estiamte	Standard Error	T Value	P value
(Intercept)	0.433	0.706	0.613	0.541
arm	-0.041	0.085	-0.481	0.631
age	0.003	0.007	0.490	0.625
gender2	0.084	0.172	0.492	0.624
white1	0.101	0.183	0.551	0.582
educ22	0.206	0.177	1.168	0.244
income302	0.216	0.190	1.138	0.257
FTND	-0.074	0.067	-1.114	0.267

- None of the variables here are close to being statistically significant
- Therefore, none of the predictors help us explain the variance of the biomarker change over time.

9.3

```
data 9.3 <-
data.frame(
  x = c(
    24,
    28,
    32,
    36,
    40,
    44,
    48,
    52,
    56,
    60
    ),
  y = c(
    38.8,
    39.5,
```

```
у
24
    38.8
28
    39.5
32
    40.3
    40.7
40
    41.0
    41.1
44
    41.4
    41.6
    41.8
56
60
    41.9
```

```
40.3,
   40.7,
    41.0,
    41.1,
    41.4,
    41.6,
    41.8,
    41.9
    )
  )
data_9.3 %>% kbl() %>%
 kable_styling(latex_options = c("striped"))
res1 <- t(data_9.3$y) %*% data_9.3$y
res2 <- t(data_9.3$x) %*% data_9.3$y
res3 <- t(data_9.3$x) %*% data_9.3$x
  • Y'Y = res1 = 16663.85
```

- X'Y = res2 = 17245.6
- X'X = res3 = 18960