Machine Learning 2019 Spring - HW1 Report

學號: B06902029 系級: 資工二 姓名: 裴梧鈞

請實做以下兩種不同feature的模型,回答第(1)~(3)題:

- 1. 抽全部9小時內的污染源feature當作一次項(加bias)
- 2. 抽全部9小時內pm2.5的一次項當作feature(加bias)

備註: a. NR請皆設為0,其他的數值不要做任何更動 b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的 c. 第1-3題請都以題目給訂的兩種model來回答 d. 同學可以先把model 訓練好,kaggle死線之後便可以無限上傳。 e. 根據助教時間的公式表示,(1) 代表 $p=9\times18+1$ 而 (2) 代表 $p=9\times1+1$

以下三題的程式碼皆可在 hw1/Report 中找到對應的資料夾進行 reproduce,基本上都有使用 Adagrad 以及 Feature Scaling,並且把 η 設成1, iteration 次數設成 10^5 ,但請仍以實作為主。

1. (2%) 記錄誤差值 (RMSE) (根據kaggle public+private分數) ,討論兩種feature的影響。

Mod	del	Public	Private	E_{in}
Mod	del 1	5.64856	7.26903	5.68107
Mod	del 2	5.90263	7.22356	6.12302

最後一個 column 是 training data 在 training 的最後一個 iteration 做的 RMSE

Model 2 的 hypothesis set 是包含於 Model 1 的 hypothesis set,所以在 training 的過程中, Model 1 理當可以得到比較好的 training Loss。至於 Kaggle 上的部分,雖然在 public 的部分 Model 1 表現得比較好,但是在 private 的部分 Model 1 卻有更大的 Loss,可見 Model 1 還是 overfit 了。

2. (1%) 將feature從抽前9小時改成抽前5小時,討論其變化。

Model	Public	Private	E_{in}	
Model 1'	5.96813	7.21953	5.80596	
Model 2'	6.22732	7.22552	6.20700	

最後一個 column 是 training data 在 training 的最後一個 iteration 做的 RMSE 為了方便區分,我在這小題的 Model 都多加一點

第二小題中的兩個 model 的 hypothesis set 都是第一小題同樣 model 的子集,可以猜想到在 training 過程中,兩者的 training Loss 都會比第一小題的 Model 高。雖然在 kaggle 上 Public set 的表現都不如第一小題,但 Model 1′ 在這四種 model 中的表現是最佳的,代表其實只選 5 個小時並不會有明顯的 underfit。

比較完這四種 model 後,我又有另外一個大膽的猜測,就是 Public set 的資料與 training data 比較像,而 Private set 的比較不像。

3. (1%) Regularization on all the weight with $\lambda=0.1,0.01,0.001,0.0001$,並作圖。

以下表格是由四種 λ 對兩種 Model 在 Kaggle 上得到的成績以及 training 最後一個 epoch 的 Loss。

λ	Model 1 Public	Model 1 Private	$\begin{array}{c} \textbf{Model 1} \\ E_{in} \end{array}$	Model 2 Public	Model 2 Private	Model 2
0.1	5.68359	7.26939	5.681086	5.90305	7.22409	6.123021
0.01	5.68341	7.26907	5.681075	5.90267	7.22361	6.123021
0.001	5.68339	7.26904	5.681074	5.90263	7.22356	6.123021
0.0001	5.68339	7.26903	5.681073	5.90263	7.22356	6.123021

先從 Model 的 trainging Loss 看起,其實兩種 Model 的 Loss 都是隨著 λ 增加而越大,符合我們對於 regularize 的期望。就 Kaggle 上的結果而言,其實差異也並不大,或許 λ 的設置要更大一點,才能 看出明顯的差距。

相較於第一小題,regularize後的結果普遍較尚未 regularize 的差但差距不大,我認為可能純粹是因為一點點的誤差造成,無法判斷哪種 λ 有較好的表現。

下圖則是在 Training 時,training data 的 RMSE 對 epochs 做圖的結果。

雖然在該圖看不到明顯的差距,但放大後應該可以看到有些微的差距,或許 λ 的設置再懸殊一點才能看到明顯的差別。

- 4. (1%) 在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一純量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 \mathbf{b}),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^{N} (\mathbf{y}^n \mathbf{x}^n \mathbf{w})^2$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X} = [\mathbf{x}^1 \ \mathbf{x}^2 \ \dots \ \mathbf{x}^N]^T$ 表示,所有訓練資料的標註以向量 $\mathbf{y} = [\mathbf{y}^1 \ \mathbf{y}^2 \ \dots \ \mathbf{y}^N]^T$ 表示,請問如何以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} ? 請選出正確答案。(其中 $\mathbf{X}^T \mathbf{X}$ 為invertible)
 - 1. $(\mathbf{X}^T\mathbf{X})\mathbf{X}^T\mathbf{y}$
 - 2. $(\mathbf{X}^T\mathbf{X})\mathbf{v}\mathbf{X}^T$
 - 3. $(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$
 - 4. $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{y}\mathbf{X}^T$

Ans: (3)