18 In 1935 Irène and Frédéric Joliot-Curie were awarded a Nobel Prize for the discovery of artificial radioactivity.

They bombarded an aluminium sheet with alpha particles to produce a radioactive isotope of phosphorus as in the nuclear equation below.

$$^{27}_{13}\text{Al} + ^{4}_{2}\alpha \rightarrow ^{30}_{15}\text{P} + ^{1}_{0}\text{X}$$

(a) (i) Identify particle X.

(1)

(ii) Calculate the energy released, in joules, in this nuclear reaction.

Particle	Mass / GeV / c ²
¹ X	0.9396
⁴ α	3.7274
²⁷ A1	25.1333
³⁰ P	27.9206

,	4.5	
1	41	
	4 J	

Energy released = ______ J

(b) Radioactive phosphorus was one of the first artificially produced isotopes to be used in the diagnosis of cancerous tumours.	d
The isotope ³² P is injected into a person and collects in the tumour. Radiation is detected outside the person's body. ³² P is a positron emitter with a half-life of almost fifteen days.	t
Explain why ³² P is suitable for this procedure.	
	(4)
(Total for Question 18 = 9 m	arks)