Définitions 1

Série de fonctions 1.1

Définition 1

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions d'un intervalle I de \mathbb{R} dans \mathbb{R} . La série de terme général f_n est la suite de fonctions $(S_n)_{n\in\mathbb{N}}$, définie pour tout $n\in\mathbb{N}$ et tout $x\in I$ par

$$S_n(x) = \sum_{k=0}^n f_k(x)$$

La série de terme général f_n est notée $\sum f_n$. Dans ce cas S_n est appelée la n^e somme partielle de $\sum f_n$.

Exemple

$$\sum f_n$$
 où pour tout $n \in \mathbb{N}, f_n : \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ & & & \\ & x & \longmapsto & x^n \end{array} \right.$

1.2Convergence simple

Définition 2

Soit $\sum f_n$ une série de fonctions de I dans \mathbb{R} .

On dit que $\sum f_n$ converge simplement sur I si la suite (S_n) des sommes partielles converge simplement sur I. Autrement dit, si pour tout $x \in I$, la série numérique $\sum f_n(x)$ converge.

Exemple

$$\sum f_n$$
 où pour tout $n \in \mathbb{N}, f_n : \begin{cases} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \longmapsto x^n \end{cases}$

Étudions la convergence simple de $\sum f_n$ sur \mathbb{R} .

Soit $x \in \mathbb{R}$. Étudions la série numérique $\sum x^n$.

Soit
$$x \in \mathbb{R}$$
. Étudions la série numérique $\sum x^n$.

On a $\sum x^n$ converge ssi $|x| < 1$. En effet, $\sum_{k=0}^n x^k = \left\{ \begin{array}{l} \frac{1-x^{n+1}}{1-x} & \text{si } x \neq 1 \\ n+1 & \text{si } x = 1 \end{array} \right.$

donc $\lim_{n\to+\infty}\sum_{k=0}^{n}x^k$ existe et est finie ssi |x|<1.

Ainsi
$$\sum f_n$$
 converge simplement sur $]-1,1[$ vers $S: \left\{ \begin{array}{c}]-1,1[\longrightarrow \mathbb{R} \\ x \longmapsto \frac{1}{1-x} \end{array} \right.$

1.3Convergence absolue

Définition 3

Soit $\sum f_n$ une série de fonctions de I dans \mathbb{R} .

On dit que $\sum f_n$ converge absolumentsur I si pour tout $x \in I$, la série numérique $\sum |f_n(x)|$ converge.

1.4 Convergence uniforme

Définition 4

Soit $\sum f_n$ une série de fonctions qui converge simplement vers S sur un intervalle I de \mathbb{R} .

On appelle suite des restes de la série $\sum f_n$, notée (R_n) , la suite de fonctions $(S - S_n)$.

On a ainsi pour tout $x \in I$,

$$R_n(x) = S(x) - S_n(x) = \sum_{k=n+1}^{+\infty} f_k(x)$$

Définition 5

Soit $\sum f_n$ une série de fonctions qui converge simplement vers S sur un intervalle I de \mathbb{R} .

On dit que $\sum f_n$ converge uniformément sur I si la suite des restes (R_n) converge uniformément vers la fonction nulle sur I c'est-à-dire si $\sup_{x\in I} |R_n(x)|$ existe et converge vers 0 lorsque n tend vers $+\infty$.

2 Propriétés de la convergence uniforme

Proposition 1

Soit $\sum f_n$ une série de fonctions de I dans \mathbb{R} . Si $\sum f_n$ converge uniformément sur I alors la suite (f_n) converge uniformément vers la fonction nulle sur I.

Proposition 2

Soit $\sum f_n$ une série de fonctions de I dans \mathbb{R} convergeant uniformément sur I et telle que chaque f_n est continue sur I. Alors la somme de cette série est continue sur I.

Proposition 3

Soient $(a,b) \in \mathbb{R}^2$ tel que a < b et $\sum f_n$ une série de fonctions de [a,b] dans \mathbb{R} convergeant uniformément sur [a,b]. Alors

$$\int_{a}^{b} \sum_{n=0}^{+\infty} f_n(x) \, dx = \sum_{n=0}^{+\infty} \int_{a}^{b} f_n(x) \, dx$$