

Chapter 7

Analog to Digital conversion

Part 2 of 4

- The sampled signal from a sampling process is still an analog signal.
- To obtain a digital representation of a sampled analog signal, quantisation and encoding are required

Quantisation - a process that converts sampled analog signal into discrete levels

Quantisation process:

1. Divide the voltage range, V_L to V_H into M equal intervals, denoted as L_{01} , L_{02} L_{03} ... L_{0M}

The size of a intervals: $q = (V_H - V_L) / M$ Step-size

- 2. Choose the center of each interval as a quantisation level, denoted as m_0 , m_1 , m_2 ..., m_M .
- 3. Represent m(t) by $m_q(t)$, where $m_q(t) \in \{ m_0, m_1, m_2..., m_M \}$
 - At any time, $m_q(t)$ has the value of a quantisation levels which is closest to m(t).

- For a sampled amplitude value m t, the quantizer rounds it up or down to make it equal to one of the 8 different quantization levels.
- The quantization level chosen is the nearest to m(t).

- The quantisation process always introduces error as it approximates the sampled analog signal using quantization levels.
- The quantisation error is defined as:

Quantisation error =
$$m_q(t)$$
 - $m(t)$

• At any time instant, the quantisation error magnitude, $|m_q(t) - m(t)|$ is equal or less than q/2.

$$|m_{q}(t) - m(t)| \le q/2$$
 or $-q/2 \le m_{q}(t) - m(t) \le q/2$

The quantisation error is regarded as noise and is also called quantisation noise.

- The quality of the approximation of the quantisation process is improved by
 - reducing the step size
 - increasing the number of allowable levels.
- Depending on intended applications, different quantisation steps and levels may be chosen.
- E.g. voice telephony: 8 bits/sample 28 = 256 levels
 Audio CD: 16 bits/sample 216 = 65,536 levels
- HowStuffWorks "How DVDs Work"

Uniform quantisation

A quantiser can be defined by its input-output characteristics.

Uniform quantisation

A common type of uniform quantiser characteristic: mid-riser type

Uniform quantisation

- A uniform quantiser is defined by two parameters:
 - number of levels
 - step size
- The number of levels, M is generally chosen to be = 2^B to make the most efficient use of B-bit binary codewords. i.e. $M = 2^B$ E.g. B = 4, $M = 2^4 = 16$ levels
- q and B must be chosen so as to cover the entire range of input samples which means we should set:

peak-to-peak signal amplitude = input range of quantizer, i.e. $2 X_{max} = q2^{B}$

$$2 X_{max} = q2^{B}$$

i.e.
$$q = 2 X_{max} / 2^{B}$$

 $q = 2 X_{max} / 2^{B}$ where X_{max} is the peak signal amplitude

Overload Error

Besides quantisation error or quantising noise the quantisation process also causes overload error or clipping.

Quantisation noise power

Quantisation noise power

 The difference between the quantised output and input waveform gives the quantisation noise (waveform), denoted as e.

Quantisation noise power

Quantisation Noise Waveform

rms value of the quantisation noise signal:

$$e_{\rm rms} = \sqrt{\frac{1}{q} \int_0^q \left(-x + \frac{q}{2}\right)^2 dx} = \sqrt{\frac{q^2}{12}}$$

Quantisation noise power

• The quantisation noise power (over a 1Ω load) is

$$N_q = \frac{e_{rms}^2}{R} = e_{rms}^2$$
 (as R = 1)

$$N_q = \frac{q^2}{12}$$
 watts $(R=1)$

- The result is applicable to any input to an uniform quantiser.
- The same result can be obtained when the quantisation noise is a random signal with an uniform distribution in the interval -q/2 to +q/2, i.e.

$$p_e(e) = \frac{1}{q},$$
 $-\frac{q}{2} \le e \le +\frac{q}{2}$

$$= 0, \quad \text{otherwise}$$

Signal to quantising noise (S/N_q)

The performance of a quantiser is measured by signal-to-noise ratio that takes both quantising error and overload error into account.

$$SNR = \frac{S}{N_o + N_q} \approx \frac{S}{N_q}$$
 Overload error is neglected for simplicity.

- Quite often SNR calculation for a quantiser is based on sinusoidal inputs because SNR results for speech and sinusoidal inputs are quite close.
- Use of sinusoidal make the measurements and calculation of $S/N_{\rm q}$ easier.

Signal to quantising noise (S/N_q)

Derive formula for S/N_q

 For a full range (-V to +V) sinusoidal input that has zero overload error, the average signal power is

$$S = \frac{V_{rms}^2}{R} \qquad V_{rms} = \frac{V}{\sqrt{2}} \qquad \text{V = peak signal amplitude}$$

$$S = \frac{V^2}{2} \qquad (R = 1)$$

Peak-to-peak signal amplitude = input range of quantiser

Signal to quantising noise (S/N_g) Derive formula for S/N_g

For a full range (-V to +V) sinusoidal input that has zero overload error, the average signal power is

$$S = \frac{V_{rms}^2}{R} = V_{rms}^2 \qquad (R = 1)$$

$$S = \frac{V^2}{2}$$
 Since $V_{rms} = \frac{V}{\sqrt{2}}$

The peak value V of the sinusoid can be expressed in terms of step size q and number of levels in the quantiser M, as follows:

$$2V = qM$$

$$V = \frac{qM}{2}$$

$$\therefore rms \ value = V_{rms} = \frac{V}{\sqrt{2}} = \frac{qM}{2\sqrt{2}}$$

Signal to quantising noise (S/N_g) Derive formula for S/N_g

Hence, the average signal power is

$$S = V_{rms}^2 = \left(\frac{qM}{2\sqrt{2}}\right)^2 = \frac{q^2M^2}{8}$$

Combining eqs for S and N_q

$$N_q = \frac{q^2}{12}$$

$$\frac{S}{N_q} = \frac{q^2 M^2}{8} \cdot \frac{12}{q^2} = 1.5 M^2$$

$$\left[\frac{S}{N_q} \right] = 10 \log_{10} (1.5M^2) = 10 \log_{10} (1.5) + 10 \log_{10} (M^2)$$

$$\left[\frac{S}{N_q} \right]_{dB} = 1.76 + 20 \log_{10} M$$

Signal to quantising noise (S/N_q) Derive formula for S/N_q

Since
$$M = 2^B$$
,

$$\left[\frac{S}{N_q}\right]_{dB} = 1.76 + 20log_{10}(2^B) = 1.76 + B \times 20log_{10}(2)$$

$$\left[\frac{S}{N_q}\right]_{dB} = 1.76 + 6B \text{ dB}$$

 $\begin{bmatrix} \frac{S}{N_q} \end{bmatrix}_{dR}$ = 1.76 + 6B dB for a sinusoid whose amplitude range coincides with the range of the quantiser. with the range of the quantiser.

Signal to quantising noise (S/N_q)

For sinusoidal inputs whose amplitude, V_x, is less than the full input range of the quantiser, V, then

Non-uniform quantization

- For signals with large variance in strength over time, it is preferable to use a non-uniform quantiser i.e. a quantiser that has variable step size.
 - E.g. Speech signal strength can vary largely from one speech segment to another.
 - If the quantiser is designed to accommodate strong signals (like vowels), the quantisation step size will be large.
 - Weaker signals (like consonants) will be subjected to a larger quantisation error.

- The quality of the speech will be affected.

Non-uniform quantization

 For signals with large varying amplitude, a suitable non-uniform quantiser would be a quantiser whose step size increases with the signal amplitude.

I/O characteristic of a non-uniform quantiser

- In practice, a non-uniform quantizer is implemented by combining a uniform quantizer with a compressor.
- A sampled analog signal is first input to a compressor and then to a uniform quantiser.
- The compressor can be viewed as a variable-gain amplifier that amplifiers the signal at low amplitude and attenuate the signal at high amplitude.
- The compressor and uniform quantiser work jointly to form a non-uniform quantiser.

Non-uniform quantization

Input-output characteristic of a compressor

- At the receiver the signal is reconstructed by the reverse process.
 i.e. by expanding it.
- This process of compression-expansion is called COMPANDING.
 (COMpressing-exPANDING)

 S_i (dB) signal power at quantiser input

END

CHAPTER 7

(Part 2 of 4)

