

UNIVERSITÀ DEGLI STUDI DI PADOVA

Spatial filtering

Stefano Ghidoni

Intro to local operations

Correlation and convolution

Local filters overview

Spatial operations

IAS-LAB

modules

- Many different ways of transforming an image
- Single-pixel operations
 - Intensity transform, histogram equalization, ...
 - The output value of each pixel depends on the value
- Local operations
 - Linear and non-linear filters
 - The output value depends on the initial values of the pixel
 + its neighbors
- Geometric transforms
 - Scaling, rotation, ...
 - "Moving" points

Spatial operations

- Many different ways of transforming an image
- Single-pixel operations
 - Intensity transform, histogram equalization, ...
 - The output value of each pixel depends on the pixel initial value
- Local operations
 - Linear and non-linear filters
 - The output value depends on the initial values of the pixel
 + its neighbors
- Geometric transforms
 - Scaling, rotation, ...
 - "Moving" points

- Local operations are defined based on a filter/kernel
- The kernel defines
 - A neighborhood (the set of "green" pixels)

- Local operations are defined based on a filter/kernel
- The kernel defines
 - A neighborhood (the set of "green" pixels)
 - A weight associated
 with each pixel involved
 in the computation

Spatial filters

- Local operations are performed in the spatial domain of the image (the space containing the pixels)
 - AKA spatial filtering
 - The kernel is AKA spatial filter

Convolution

IAS-LAB

- How is the spatial filter applied to the image?
- Several options are available
 - Evaluating a correlation/convolution

Linear filtering

Calculating the min/max

Non-linear filtering

— ...

 Depending on the processing applied to the image the filter can be linear or non-linear

- Correlation operation
 - Filter superimposed on each pixel location
 - Evaluation of a weighted average
 - Pixel value
 - Filter weight

IAS-LAB

- Correlation operation
- Suppose the filter dimensions are $m \times n$

$$-m = 2a + 1$$

$$-n = 2b + 1$$

Correlation is defined as:

$$g(x,y) = \sum_{s=-a}^{s=a} \sum_{t=-b}^{t=b} w(s,t)I(x+s,y+t)$$

Signal convolution

IAS-LAB

Recall: signal convolution

$$(f * g)(t) = \int_{-\infty}^{+\infty} f(\tau)g(t - \tau)d\tau$$

Convolution vs correlation

IAS-LAB

Recall: signal convolution

$$(f * g)(t) = \int_{-\infty}^{+\infty} f(\tau)g(t - \tau)d\tau$$

Applied to the image spatial domain

$$g(x,y) = \sum_{s=-a}^{s=a} \sum_{t=-b}^{t=b} w(s,t)I(x-s,y-t)$$

Convolution vs correlation

IAS-LAB

Recall: signal convolution

$$(f * g)(t) = \int_{-\infty}^{+\infty} f(\tau)g(t - \tau)d\tau$$

Applied to the image spatial domain

$$g(x,y) = \sum_{s=-a}^{s=a} \sum_{t=-b}^{t=b} w(s,t)I(x-s,y-t)$$

Compare with the definition of correlation

$$g(x,y) = \sum_{s=-a}^{s=a} \sum_{t=-b}^{t=b} w(s,t)I(x+s,y+t)$$

Convolution vs correlation

IAS-LAB

Recall: signal convolution

$$(f * g)(t) = \int_{-\infty}^{+\infty} f(\tau)g(t - \tau)d\tau$$

Applied to the image spatial domain

$$g(x,y) = \sum_{s=-a}^{s=a} \sum_{t=-b}^{t=b} w(s,t)I(x-s,y-t)$$

Compare with the definition of correlation

$$g(x,y) = \sum_{s=-a}^{s=a} \sum_{t=-b}^{t=b} w(s,t)I(x+s,y+t)$$

Correlation vs convolution – notation

- In the CV context, convolution and correlation are often used as synonims
 - Usually, correlation is evaluated
 - But it is called convolution!
- Filters are usually symmetric
 - Convolution and correlation are equal
- Filters obtained by applying convolution are called convolutional filters

Effects on brightness

IAS-LAB

- The filter weights can change the image brightness
- Brightness is unchanged if:

$$\sum_{i} w_i = 1$$

This is obtained by a normalization factor

Spatial filters overview

UNIVERSITÀ DEGLI STUDI DI PADOVA

Spatial filtering

Stefano Ghidoni

