OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG

Fakultät für Maschinenbau

Fakultät für Elektrotechnik und Informationstechnik

Modulhandbuch für den Masterstudiengang

Elektromobilität

M-EMOB

zur Studien- und Prüfungsordnung vom 04.03.2020

(jeweils Datum des Fakultätsratsbeschlusses)

Version: 01.04.2023

Inhaltsverzeichnis

1	Κι	ırzbeschreibung des Studiengangs	3
2	Ge	eltung des Modulhandbuches	5
3	Pf	lichtbereich Studiengangs	6
4	Ве	rufsbild Ingenieur für Forschung und Entwicklung von elektrischen und	
	hy	briden Antriebssystemen	7
	4.1	Kurzbeschreibung des Berufsbildes	7
	4.2	Moduleinordnung in den Studienablauf	8
5	Ве	rufsbild Betriebsingenieur Fahrzeugbau von E-Mobilen	9
į	5.1	Kurzbeschreibung des Berufsbildes	9
!	5.2	Moduleinordnung in den Studienablauf	10
6	Be	rufsbild Ingenieur für Forschung und Entwicklung von Systemen für die	
	int	telligente Mobilität	11
(5.1	Kurzbeschreibung des Berufsbildes	11
(6.2	Moduleinordnung in den Studienablauf	12
7	Ве	rufsbild Systemingenieur für nutzerzentriertes Fahren	13
	7.1	Kurzbeschreibung des Berufsbildes	13
	7.2	Moduleinordnung in den Studienablauf	14
8	Ве	rufsbild Ingenieur für Forschung und Entwicklung von elektronischen	
	Fa	hrzeugsystemenhrzeugsystemen	15
;	8.1	Kurzbeschreibung des Berufsbildes	15
;	8.2	Moduleinordnung in den Studienablauf	16
9	Fr	eier Wahlpflichtbereich	17
10	Kc	ompetenzblöcke und deren Module	18
11	М	odulbeschreibungen	22
12	Int	terdisziplinäres Projekt	23
		astorarheit	2.4

1 Kurzbeschreibung des Studiengangs

Name des Studienganges: Elektromobilität (engl.: E-Mobility)

Art des Studienganges: Präsenzstudiengang (Vollzeitstudium)

Von der FMB und der FEIT getragener gemeinsamer Studiengang.

Die FMB ist die immatrikulierende Fakultät

Abschluss: Master of Science (M.Sc.)

Umfang: 4 Semester

Profil: "stärker forschungsorientiert"

Ausbildungsergebnisse (Fachliche Kompetenzen):

Ziel des Studiums ist es, ein breites aber gleichzeitig detailliertes und kritisches Verständnis des Fachwissens und die Fähigkeit zu erwerben, um nach wissenschaftlichen Methoden selbständig arbeiten, sich in die vielfältigen Aufgaben der auf Anwendung, Forschung oder Lehre bezogenen Tätigkeitsfelder selbständig einarbeiten und die häufig wechselnden Aufgaben bewältigen zu können, die im Berufsleben auftreten.

Das Masterstudium ergänzt inhaltlich den vorausgehenden Bachelorstudiengang und geht qualitativ deutlich über diesen hinaus. Mit dem Angebot berufsfeldorientierter Kompetenzblöcke wird eine breite und facettenreiche wissenschaftliche Ausbildung ermöglicht, die durch die verbindenden Rahmenmodule Systembetrachtung intelligenter Elektrofahrzeuge, Fahrzeugsystementwurf sowie Nachhaltige Mobilität den gesamten Spannungsbogen aufzeigt und den Gesamtzusammenhang wahrt.

Die sich an aktuellen Berufsfeldern orientierenden Kompetenzblöcke bieten den Studierenden die Möglichkeit, ihrem späteren gewünschten Tätigkeitsfeld entsprechend Module zu belegen und sich entsprechend den eigenen Neigungen zu qualifizieren.

Die Studierenden erlangen die Fähigkeiten auf ihrem Fachgebiet Meinungen kritisch zu hinter-fragen, anstehende Probleme wissenschaftlich strukturiert unter Berücksichtigung angrenzender Fachdisziplinen zu lösen und ihre erarbeitete Lösung vor Fachkollegen und Laien zu vertreten bzw. ihr Wissen zu vermitteln. Sie sind dazu in der Lage, ihr Fachgebiet über den aktuellen Stand der Technik hinaus kreativ weiterzuentwickeln und sich selbst neues Wissen anzueignen. Auch auf der Grundlage begrenzter Informationen können die Absolventen wissenschaftlich fundierte Entscheidungen treffen und dabei gesellschaftliche und ethische Erkenntnisse berücksichtigen. Sie sind in der Lage, in einem Team Verantwortung zu übernehmen.

Abhängig vom gewählten Berufsfeld können darüber hinaus individuelle Ziele definiert werden. Als Berufsfelder innerhalb des Masterprogramms Elektromobilität werden folgende Bereiche angeboten:

Berufsbild Ingenieur für Forschung und Entwicklung von elektrischen und hybriden Antriebssystemen
 Berufsbild Betriebsingenieur Fahrzeugbau von E-Mobilen
 Berufsbild Ingenieur für Forschung und Entwicklung von Systemen für die intelligente Mobilität
 Berufsbild Systemingenieur für nutzerzentriertes Fahren
 Berufsbild Ingenieur für Forschung und Entwicklung von elektronischen Fahrzeugsystemen

Ausbildungsergebnisse (Soziale Kompetenzen):

Die Absolventen und Absolventinnen sind befähigt, einerseits leitende und selbständige Tätigkeiten in der Investitions- und Konsumgüterindustrie (z.B. folgender Branchen: Automobilbau, Fahrzeugbau, Automobilzulieferindustrie, Mobilitätsdiensleistungen, Luft-/Raumfahrt) sowohl in Anwendung und Dienstleistung als auch in der Forschung auszufüllen. Andererseits sind entsprechende Tätigkeiten in Wissenschaft und Bildungswesen möglich.

Die akademische Ausbildung mit dem Abschluss M.Sc. der Otto-von-Guericke-Universität liefert eine hinreichende Voraussetzung für weitere postgraduale Ausbildungen im Bereich der Ingenieurwissenschaften und angrenzender Gebiete (zum Beispiel Promotion).

Kurzcharakteristik:

Die Immatrikulation erfolgt zum Winter- und zum Sommersemester. Der Masterstudiengang ist so konzipiert, dass das Studium einschließlich der Anfertigung der Masterarbeit mit Kolloquium in der Regelstudienzeit von vier Semestern abgeschlossen werden kann.

Der Studienaufwand wird mit Leistungspunkten (Creditpoints [CP]) beschrieben. Er beträgt insgesamt 120 CP, die sich auf den Pflicht-, Wahlpflicht- und Projektbereich sowie die Masterarbeit verteilen. Das Arbeitspensum beträgt ca. 30 CP pro Semester.

Abbildung 1 zeigt den prinzipiellen Aufbau des Masters Elektromobilität, bestehend aus:

- einem Pflichtbereich mit drei Modulen zu je 5 CP,
- einem berufsbildspezifischen Kompetenzbereich bestehend aus drei Kompetenzblöcke mit je 10 CP,
- einem wahlfreien Kompetenzbereich mit zwei Kompetenzblöcken mit je 10 CP zu wählen aus der Gesamtheit der verfügbaren Kompetenzblöcke (siehe Abschnitt 10),
- einem Teamprojekt mit 10 CP,
- drei freien Wahlmodulen zu je 5 CP, aus den verfügbaren Kompetenzblöcke heraus, bzw, aus dem Gesamtkatalog der Universität.

Der Wahlpflicht- und der freie Wahlpflichtbereich ermöglichen im Rahmen der gewählten Berufsfelder und den entsprechenden Kompetenzblöcken, individuellen Neigungen und Interessen nachzugehen bzw. fachspezifischen Erfordernissen des späteren Tätigkeitsfeldes der Studierenden Rechnung zu tragen. Der Pflicht- und Wahlpflichtbereich verteilen sich auf die ersten

drei Semester. Das Projekt ist als Teamprojekt konzipiert und wird empfohlen, im 3. Semester anzuordnen.

Jedem Berufsfeld sind drei Kompetenzblöcke zugeordnet, in jedem diese Kompetenzblöcke sind je zwei der ausgewiesenen Module zu belegen.

Das Studium schließt mit einer Abschlussarbeit, der so genannten Masterarbeit und deren Präsentation in einem Kolloquium ab. Die Abschlussarbeit soll zeigen, dass die Studierenden in der Lage sind, innerhalb einer vorgegebenen Bearbeitungszeit eine Problemstellung selbständig, wissenschaftlich und kompetent zu bearbeiten.

Abbildung 1: Prinzipieller Aufbau des Master Elektromobilität

2 Geltung des Modulhandbuches

Das vorliegende Modulhandbuch gilt für Studierende, deren Studium sich nach der Studienund Prüfungsordnung für den Masterstudiengang Elektromobilität vom 04.03.2020 (jeweils Datum der Fakultätsratsbeschlüsse) richtet.

3 Pflichtbereich Studiengangs

Die Module des Pflichtbereiches spannen den weiten Bogen und den Facettenreichtum des Themenbereiches Elektromobilität auf und bilden den verbindenden Rahmen mit den berufsfeldorientierten Kompetenzblöcken. Die Module liegen in den 3 Semestern des Fachstudiums und sind von allen Studierenden zu absolvieren.

Regelstudienplan allg.

Master-Studiengang		Umfan	g SWS	CP je Semester			
Elektromobilität		бı	_	1.	2.	3.	4.
		Vorlesung	Seminar	СР	СР	СР	СР
Pflichtbereich			ı		·		
Systembetrachtung intelli	genter Elektrofahrzeuge	0	3		5		
Fahrzeugsystementwurf		2	2	5			
Nachhaltige Mobilität		2	2		5		
Wahlpflichtbereich nach B	erufsbild						
Kompetenzblock B1	Modul 1			5			
Kompetenzbiock bi	Modul 2				5		
Kompetenzblock B2	Modul 1				5		
Kompetenzbiock bz	Modul 2					5	
Kompetenzblock B3	Modul 1			5			
Rompetenzbioek B5	Modul 2					5	
Wahlpflichtbereich frei							
Kompetenzblock W1	Modul 1			5			
Rompetenzbioek W1	Modul 2			5			
Kompetenzblock W2	Modul 1			5			
Rompetenzbioek WZ	Modul 2				5		
Modul 1					5		
Modul 2						5	
Modul 3	Modul 3					5	
Projektbereich							
interdisziplinäres Projekt						10	
Masterarbeit							
Masterarbeit incl. Kolloqu	ium						30
Summe				30	30	30	30

4 Berufsbild

Ingenieur für Forschung und Entwicklung von elektrischen und hybriden Antriebssystemen

4.1 Kurzbeschreibung des Berufsbildes

Elektrische und hybride Antriebssysteme beinhalten die Regelung und Umwandlung der elektrischen Energie von einem oder mehreren Erzeugern oder Speichern hin zur Umsetzung in einen Bewegungsablauf eines Fahrzeuges. Darunter fallen leistungselektronische, elektromechanische, mechanische und thermische Energiewandler, die untereinander abgestimmt und sowohl auch einzeln als auch global geregelt werden müssen.

Die Studierenden des Masterstudienganges Elektromobilität im Berufsbild Ingenieur für Forschung und Entwicklung von elektrischen und hybriden Antriebssystemen können folgende Kompetenzen erlangen:

- elektrische und hybride Antriebssysteme und dessen Bestandteile in Zusammenhang mit dem Gesamtfahrzeug und der Umgebung tiefgründig zu analysieren. Darunter fällt insbesondere die Betrachtung der Energieeffizienz,
- ausgehend von vorgegebenen Randbedingungen und Optimierungszielen die elektrischen und hybriden Antriebssysteme zu dimensionieren,
- Verbesserungspotential in bestehenden Komponenten des Antriebssystems zu identifizieren und Verbesserungsansätze umzusetzen,
- das Antriebssystem im Allgemeinen sowie die einzelnen Bestandteile zu modellieren und mittels numerischer Methoden zu simulieren,
- experimentelle Versuche zu konzipieren, umzusetzen und Ergebnisse zu bewerten, um das Antriebssystem zu charakterisieren.

In den Veranstaltungen der Module der Kompetenzbereiche des Berufsbildes können die Studierenden je nach persönlicher Neigung bzw. hinsichtlich ihres angestrebten Berufswunsches vor allem in den Bereichen elektronischen Fahrzeugsysteme, aber auch im Bereich Fahrdynamik weitere Kompetenzen erwerben.

Mit diesen Kompetenzen können die Absolventen im Berufsleben in Branchen der Elektromobilität, darunter Kfz, Bahn, Schiff und Luftfahrt sowie in der entsprechenden Zulieferindustrie, anspruchsvolle und vielseitige Tätigkeiten ausüben.

Die wesentlichen Einsatzmöglichkeiten in der Industrie liegen für die Absolventen dieses Berufsbildes in "Forschung und Entwicklung von elektrischen und hybriden Antriebssystemen" in den Aufgabenbereichen Forschung, Vorentwicklung, Entwicklung, Versuch, Projektierung, Konstruktion, Inbetriebnahme, Service und Berechnung. Neben den vielfältigen Beschäftigungsmöglichkeiten in der Industrie sind auch bei Dienstleistern, wie z.B. TÜV oder Ingenieurbüros, beim Öffentlichen Dienst (Stadtwerke, Kommunen, Länder, Bund) und bei öffentlichen Forschungseinrichtungen (z.B. Fraunhofer- und Max-Planck-Institute) und Hochschulen interessante Tätigkeitsfelder zu finden.

Master-Studiengang Elektromobilität			g SWS		CP je Se	emester	
Berufsbild Ingenieur für Forschung und Entwicklung von elektri-		βL	7	1.	2.	3.	4.
		Vorlesung	Seminar	СР	СР	СР	СР
schen und hybriden Antriebssysteme	schen und hybriden Antriebssystemen		Ser				
Pflichtbereich							
Systembetrachtung intelligenter Elekt	rofahrzeuge	0	3		5		
Fahrzeugsystementwurf		2	2	5			
Nachhaltige Mobilität		2	2		5		
Wahlpflichtbereich Berufsbild					ľ		
Ingenieur für Forschung und Entwickl	ung von elektrischen	und hyb	riden Aı	ntriebssy	/stemen		
Kompetenzblock	Modul 1			5			
Antriebsmaschinen	Modul 2			5			
Kompetenzblock	Modul 1				5		
Antriebsstrang	Modul 2					5	
Kompetenzblock	Modul 1				5		
Energiespeicher	Modul 2					5	
Wahlpflichtbereich frei							
Kompetenzblock W1	Modul 1			5			
Kompetenzbiock W1	Modul 2				5		
Kompetenzblock W2	Modul 1			5			
Kompetenzbiock wz	Modul 2				5		
Modul 1				5			
Modul 2						5	
Modul 3						5	
Projektbereich							
interdisziplinäres Projekt						10	
Masterarbeit		•		•			
Masterarbeit incl. Kolloquium							30
Summe				30	30	30	30

5 Berufsbild Betriebsingenieur Fahrzeugbau von E-Mobilen

5.1 Kurzbeschreibung des Berufsbildes

Die Studierenden des Masterstudienganges Elektromobilität im Berufsbild Betriebsingenieur Fahrzeugbau von E-Mobilen können folgende Kompetenzen erlangen:

- Fähigkeit zur produktionstechnischen Umsetzung komplexer elektromobiler Bauteile und Systeme in Fabrik- und Produktionsstrukturen
- Fähigkeit zur analytischen Durchdringung komplexer technischer Sachverhalte und deren Transfer in funktionsfähige Produktionssysteme
- Gestaltung von mikrotechnischen, automatisierten Systemen (geschlossen Maschinenabläufen) und Erstellung komplexer manueller Montagefolgen, wie z.B. Fließmontage

Der Betriebsingenieur schließt die Lücke zwischen Entwicklung und Produktion im Unternehmen, ist befähigt, Anforderungen an die Fertigbarkeit neuer Komponenten dahingehen zu reflektieren, welche konstruktiven Merkmale zur späteren technologischen Umsetzbarkeit geeignet sind bzw. wo sich logischerweise aus dem Entwurfsprozess Vorgaben ergeben (z.B. Kubaturen, Fertigungsgenauigkeiten und Fertigungstoleranzen), die im späteren Fertigungsprozess erhöhte Aufwendungen verursachen bzw. bei gegebenen technologischen Voraussetzungen einzelner Unternehmen nur durch erhebliche Nachinvestition zu schaffen sind.

Der Ingenieur dieses Typus ist sowohl einsetzbar für die bedarfsgerechte Auswahl von Betriebsmitteln und personellen Ressourcen, gleichzeitig jedoch auch befähigt im Bereich der Produktionssystemgestaltung komplexe Produktionssysteme auszulegen; von der Manufakturarbeit bis zum Serienbau von elektromobilen Komponenten.

Vor dem Hintergrund seiner Eignung zur prozessseitigen Absicherung der Fertigung elektromobiler Komponenten ist der Betriebsingenieur darüber hinaus befähigt, betriebliche Strukturen unter technologisch-wirtschaftlichen Gegebenheiten insofern zu entwerfen, dass vor dem Hintergrund der Wahrnehmung der technisch-technologischen Notwendigkeiten des Produktes eine sowohl technische als auch wirtschaftliche Machbarkeit abgesichert ist.

Die typische Einsatzgebiete des Betriebsingenieurs sind Produktentwicklung, Verfahrens- und Prozessentwicklung, Produktionsmanagement, Fabrikplanung sowie angepasste Organisations- entwicklung

Master-Studiengang Elektromobilität		Umfang SWS		CP je Semester			
		βι	_	1.	2.	3.	4.
Berufsbild Betriebsingenieur Fahrzeugbau von E-Mobilen		Vorlesung	Seminar	СР	СР	СР	СР
Pflichtbereich							
Systembetrachtung intelligenter Elektrofa	ahrzeuge	0	3		5		
		2	2	5			
Fahrzeugsystementwurf		2	2				
Nachhaltige Mobilität		2	2		5		
Wahlpflichtbereich Berufsbild					ľ		
Betriebsingenieur Fahrzeugbau von E-Mo	obilen						
Kompetenzblock	Modul 1			5			
Fabrikplanung und -gestaltung	Modul 2				5		
Kompetenzblock	Modul 1					5	
Projektmanagement und Innovation	Modul 2					5	
Kompetenzblock	Modul 1				5		
Montage und Automatisierung	Modul 2					5	
Wahlpflichtbereich frei							
Kompetenzblock W1	Modul 1			5			
Kompetenzbiock WT	Modul 2				5		
Kampatanahlask W2	Modul 1			5			
Kompetenzblock W2	Modul 2				5		
Modul 1				5			
Modul 2				5			
Modul 3						5	
Projektbereich							
interdisziplinäres Projekt						10	
Masterarbeit							
Masterarbeit incl. Kolloquium							30
Summe				30	30	30	30

6 Berufsbild Ingenieur für Forschung und Entwicklung von Systemen für die intelligente Mobilität

6.1 Kurzbeschreibung des Berufsbildes

Die Studierenden des Masterstudienganges Elektromobilität im Berufsbild Ingenieur für Forschung und Entwicklung von Systemen für die intelligente Mobilität können folgende Kompetenzen erlangen:

- Fähigkeit zum Verständnis und zur Entwicklung von komplexen Fahrerassistenzsystemen
- Fähigkeit zum Verständnis und zur Entwicklung von komplexen autonomen Systemen über die gesamte Datenverarbeitungskette hinweg,
- Fähigkeit zum Verständnis und zur Entwicklung von neuartigen Mobilitätsträger bspw. Intelligente Mikromobile
- Fähigkeit zum Verständnis von Infrastrukturkomponenten der intelligenten Mobilität, Backend und Server

Der Ingenieur für Forschung und Entwicklung von Systemen für die intelligente Mobilität entwickelt komplexe Fahrerassistenzsysteme im Sicherheits- und Komfortbereich und hilft beispielsweise das Potential des elektrischen Antriebes etwa für die Fahrdynamikregelung nutzbar zu machen. Durch die Kenntnis der gesamten Verarbeitungskette von der Sensorik, über die Umfeldwahrnehmung, Prädiktion, Planung und Stabilisierung wird der Ingenieur in die Lage versetzt Gesamtsysteme der autonomen Mobilität zu entwickeln. Dies zielt sowohl auf autonome PKW als auch auf neue Mobilitätsformen wie etwa intelligente autonome Mikromobile. Damit bewegt er sich in einem hochdynamischen Forschungs- und Entwicklungsumfeld und trägt maßgeblich zum Gelingen der Mobilitätswende bei. Neben dem einzelnen Fahrzeug zielt die Ausbildung stets auch immer auf ein Verständnis des Gesamtsystems bestehend aus Infrastrukturkomponenten wie Kommunikationseinrichtungen oder Serverinfrastruktur.

Mit dem breiten Kompetenzprofil können die Studierenden in der Kfz- und Kfz-Zulieferindustrie anspruchsvolle und vielseitige Tätigkeiten ausüben. Weitere wesentliche Einsatzmöglichkeiten liegen bei den Entwicklern von neuen Mobilitätsdienstleistungen vor allem im forschungsintensiven Bereich. Neben den vielfältigen Beschäftigungsmöglichkeiten in der Industrie sind auch bei Dienstleistern, wie z.B. Bahn, TÜV oder Ingenieurbüros, beim Öffentlichen Dienst (Stadtwerke, Kommunen, Länder, Bund) und bei öffentlichen Forschungseinrichtungen (z.B. Fraunhofer- und Max-Planck-Institute) und Hochschulen interessante Tätigkeitsfelder zu finden.

Master-Studiengang Elektromobilität	_		g SWS		CP je Se	emester	
Berufsbild Ingenieur für Forschung und Entwicklung von Systemen für die intelligente Mobilität		βι	7	1.	2.	3.	4.
		Vorlesung	Seminar	СР	СР	СР	СР
Pflichtbereich			l			l	
Systembetrachtung intelligenter Elektrofa	ahrzeuge	0	3		5		
Fahrzeugsystementwurf		2	2	5			
Nachhaltige Mobilität		2	2		5		
Wahlpflichtbereich Berufsbild			l			l	
Ingenieur für Forschung und Entwicklung	y von Systemen fü	r die inte	elligente	Mobilit	it		
Kompetenzblock	Modul 1			5			
Autonomes Fahren	Modul 2				5		
Kompetenzblock	Modul 1				5		
Umfeld-Wahrnehmung	Modul 2				5		
Kompetenzblock	Modul 1					5	
Intelligente Systeme	Modul 2					5	
Wahlpflichtbereich frei					•		
Kompetenzblock W1	Modul 1			5			
Kompetenzbiock WT	Modul 2				5		
Kompetenzblock W2	Modul 1			5			
Kompetenzbiock wz	Modul 2					5	
Modul 1				5			
Modul 2				5			
Modul 3						5	
Projektbereich							
interdisziplinäres Projekt						10	
Masterarbeit							
Masterarbeit incl. Kolloquium							30
Summe				30	30	30	30

7 Berufsbild Systemingenieur für nutzerzentriertes Fahren

7.1 Kurzbeschreibung des Berufsbildes

Die Studierenden des Masterstudienganges Elektromobilität im Berufsbild Systemingenieur für nutzerzentriertes Fahren können folgende Kompetenzen erlangen:

- Machine-Learning, Deep Learning
- Sensordatenanalyse und Sensordatenfusion
- Bildverarbeitung/Sprachverarbeitung/Dialogsysteme
- Hardwarenahe Informationstechnik

In den Veranstaltungen der Module der Kompetenzbereiche des Berufsbildes können die Studierenden je nach persönlicher Neigung bzw. hinsichtlich ihres angestrebten Berufswunsches vor allem in den Bereichen Hardwarenahe Informationstechnik, Machine-Learning sowie Situationsinterpretation Kompetenzen erwerben.

Mit diesen Kompetenzen können die Studierenden im Berufsleben in allen Branchen des Maschinenbaus und in der Kfz- und Kfz-Zulieferindustrie anspruchsvolle und vielseitige Tätigkeiten ausüben. Die wesentlichen Einsatzmöglichkeiten in der Industrie liegen für die Studierenden dieses Berufsbildes in "Softwareentwicklung – Fahrerassistenzfunktion/Situationsinterpretation (ADAS), Fahrzeugentertainment sowie Komfortfunktionen" in den Aufgabenbereichen Forschung, Vorentwicklung, Entwicklung, Versuch, Projektierung, Konstruktion, Inbetriebnahme, Service und Berechnung. Neben den vielfältigen Beschäftigungsmöglichkeiten in der Industrie sind auch bei Dienstleistern, wie z.B. Bahn, TÜV oder Ingenieurbüros, beim Öffentlichen Dienst (Stadtwerke, Kommunen, Länder, Bund) und bei öffentlichen Forschungseinrichtungen (z.B. Fraunhofer– und Max-Planck-Institute) und Hochschulen sowie zukunftsweisenden Start-Ups interessante Tätigkeitsfelder zu finden

Master-Studiengang Elektromobilität		Umfan	g SWS	CP je Semester			
Berufsbild		<u>g</u>	_	1.	2.	3.	4.
Systemingenieur für nutzerzentriertes Fah	ren Sa	Vorlesung	Seminar	СР	СР	СР	СР
Pflichtbereich		•		•		•	
Systembetrachtung intelligenter Elektrofah	ırzeuge	0	3		5		
Fahrzeugsystementwurf		2	2	5			
Nachhaltige Mobilität		2	2		5		
Wahlpflichtbereich Berufsbild							
Systemingenieur für nutzerzentriertes Fah	ren						
Kompetenzblock	Modul 1			5			
Hardwarenahe Informationstechnik	Modul 2				5		
Kompetenzblock	Modul 1				5		
Grundlagen der multimodalen Datenver- arbeitung	Modul 2				5		
Kompetenzblock	Modul 1					5	
Nutzerzentrierte Situationsinterpretation	Modul 2					5	
Wahlpflichtbereich frei							
Kampatan ahladi W1	Modul 1			5			
Kompetenzblock W1	Modul 2				5		
Kompetenzblock W2	Modul 1			5			
Kompetenzbiock wz	Modul 2					5	
Modul 1				5			
Modul 2				5			
Modul 3						5	
Projektbereich							
interdisziplinäres Projekt						10	
Masterarbeit				_			
Masterarbeit incl. Kolloquium							30
Summe				30	30	30	30

8 Berufsbild Ingenieur für Forschung und Entwicklung von elektronischen Fahrzeugsystemen

8.1 Kurzbeschreibung des Berufsbildes

Elektronische Fahrzeugsysteme ermöglichen die Steuerung, die Umfelderfassung, die Regelung, die elektrische Energieumwandlung und die Kommunikation in Fahrzeugen. Diese dienen hauptsächlich als Antriebssystem beinhalten aber auch Fahrerassistenzsysteme und eine Vielfalt von Hilfs-, Sicherheits- und Komfortsystemen in Fahrzeugen.

Die Studierenden des Masterstudienganges Elektromobilität im Berufsbild Ingenieur für Forschung und Entwicklung von elektronischen Fahrzeugsysteme können folgende Kompetenzen erlangen:

- Elektronische Fahrzeugsysteme in ihrer einzelnen Funktionsweise sowie in der Interaktion bzw. Kommunikation mit anderen Systemen tiefgründig zu verstehen und zu analysieren.
- Hard-, Firm- und Software für elektronische Fahrzeugsysteme in Verbindung mit den erforderlichen Sensoren, Aktoren und Kommunikation zu entwerfen und zu optimieren.
- Elektromagnetische Wechselwirkungen zwischen Fahrzeugsysteme sowie mit dem Umfeld zu analysieren und Maßnahmen zur elektromagnetischen Verträglichkeit umzusetzen.
- Elektronische Fahrzeugsysteme zu modellieren und zu simulieren.
- Experimentelle Versuche zu konzipieren, durchzuführen und Ergebnisse zu bewerten, um elektronische Fahrzeugsysteme in seiner Funktion zu prüfen und zu optimieren.

In den Veranstaltungen der Module der Kompetenzbereiche des Berufsbildes können die Studierenden je nach persönlicher Neigung bzw. hinsichtlich ihres angestrebten Berufswunsches vor allem in den Bereichen elektrische und hybride Antriebssysteme, aber auch im Bereich intelligente Mobilität und nutzerzentriertes Fahren weitere Kompetenzen erwerben.

Mit diesen Kompetenzen können die Absolventen im Berufsleben in Branchen der Elektromobilität, darunter Kfz, Bahn, Schiff und Luftfahrt sowie in der entsprechenden Zulieferindustrie, anspruchsvolle und vielseitige Tätigkeiten ausüben.

Die wesentlichen Einsatzmöglichkeiten in der Industrie liegen für die Absolventen dieses Berufsbildes in "Forschung und Entwicklung von elektronischen Fahrzeugsysteme" in den Aufgabenbereichen Forschung, Vorentwicklung, Entwicklung, Versuch, Projektierung, Konstruktion, Inbetriebnahme, Service und Berechnung. Neben den vielfältigen Beschäftigungsmöglichkeiten in der Industrie sind auch bei Dienstleistern, wie z.B. TÜV oder Ingenieurbüros, beim Öffentlichen Dienst (Stadtwerke, Kommunen, Länder, Bund) und bei öffentlichen Forschungseinrichtungen (z.B. Fraunhofer- und Max-Planck-Institute) und Hochschulen interessante Tätigkeitsfelder zu finden.

Berufsbild Ingenieur für Forschung und Entwicklung von elektroni- schen Fahrzeugsystemen		Umfang SWS		CP je Semester			
		бı	_	1.	2.	3.	4.
		Vorlesung	Seminar	СР	СР	СР	СР
		×	S				
Pflichtbereich							
Systembetrachtung intelligenter Elektrofahrze	uge	0	3		5		
Fahrzeugsystementwurf		2	2	5			
Nachhaltige Mobilität		2	2		5		
Wahlpflichtbereich Berufsbild		1				l	l
Ingenieur für Forschung und Entwicklung von	elektronisch	en Fahrz	eugsyst	eme			
Kompetenzblock	Modul 1				5		
Systemintegration	Modul 2				5		
Kompetenzblock	Modul 1			5			
Elektronische Komponenten und Bordnetze	Modul 2			5			
Kompetenzblock	Modul 1				5		
Sensorsysteme	Modul 2					5	
Wahlpflichtbereich frei							
Kompetenzblock W1	Modul 1			5			
Kompetenzbiock w i	Modul 2				5		
Kompetenzblock W2	Modul 1			5			
Kompetenzbiock wz	Modul 2					5	
Modul 1				5			
Modul 2						5	
Modul 3						5	
Projektbereich							
interdisziplinäres Projekt						10	
Masterarbeit							
Masterarbeit incl. Kolloquium							30
Summe				30	30	30	30

9 Freier Wahlpflichtbereich

Der freie Wahlpflichtbereich ermöglicht es den Studierenden individuellen Neigungen und Interessen nachzugehen bzw. fachspezifischen Erfordernissen des späteren Tätigkeitsfeldes Rechnung zu tragen.

Im freien Wahlpflichtbereich sind insgesamt 2 Kompetenzblöcke aus der Gesamtmenge der Kompetenzblöcke nach Kapitel 10 zu belegen, die nicht zum gewählten Berufsfeld gehören. Weiterhin sind aus dem Modulangebot aller Kompetenzblöcke 2 Module zu absolvieren. Ein weiteres Wahlpflichtmodul ist frei aus dem universitären Modulangebot oder aus Kompetenzblock "Sonstige" zu belegen.

10 Kompetenzblöcke und deren Module

Berufsbildende Kompetenzblöcke

Ingenieur für Forschung und Entwicklung von elektrischen und hybriden Antriebssystemen

Antriebsmaschi				
	Regelung von Drehstrommaschinen	SoSe	FEIT	Leidhold
	Verbrennungsmotoren I	WiSe/SoSe	FMB	Rottengruber
	Unkonventionelle elektrische Maschinen	WiSe	FEIT	Leidhold
bis WiSe 2021-22	Grundlagen der Berechnung und Auslegung elektrischer Maschinen	WiSe	FEIT	Ostovic
	Elektrische Antriebssysteme/ Fahrantriebe *	WiSe	FEIT	Leidhold

Antriebsstrang (4.2)			
Mobile Antriebssysteme II	WiSe	FMB	Schünemann
Maschinen- & Strukturdynamik	WiSe	FMB	Daniel
Schaltungen der Leistungselektronik	SoSe	FEIT	Lindemann
Grundlagen der Tribologie*	WiSe	FMB	Bartel

Energiespeicher	(4.2)			
bis SoSe 2021	Kraftstoffe und Energieträger	SoSe	FMB	Rottengruber
bis WiSe 2021-22	Modeling, Estimation and Operation of Electrical Batteries	WiSe	FEIT	Findeisen
bis WiSe 2021-22	Energiespeichersysteme	WiSe	FEIT	Hauer
	Wasserstofftechnologie und Wasserstoff Antriebe	SoSe	FMB	Rottengruber
	Verbrennungsmotoren II	SoSe	FMB	Rottengruber
	Regenerative Energien - Funktionen, Komponenten, Werkstoffe	SoSe	FMB	Scheffler
	Brennstoffzellen/Fuel Cells (in Englisch)	WiSe	FVST/MPI	Vidakovic-Koch

Betriebsingenieur Fahrzeugbau von E-Mobilen

Fabrikplanung ı	und -gestaltung (5.2)			
	Produktionssystemplanung	Sose	FMB	Arlinghaus
	Betriebsorganisation	WiSe	FMB	Arlinghaus
Montage und Au	utomatisierung (5.2)			
	Systementwurf	SoSe	FMB	Lüder
	Montagesysteme	SoSe	FMB	Arlinghaus
Projektmanager	nent und Innovation (5.2)			
	Technisches. Innovationsmanagement	WiSe	FMB	Arlinghaus
	Industrielles Projektmanagement	WiSe	FMB	Arlinghaus

Ingenieur für Forschung und Entwicklung von Systemen für die intelligente Mobilität

Autonomes Fah	ren (6.2)			
bis WiSe 2024-25	Fahrerassistenzsysteme und autonomes Fahren	WiSe	FMB	Schmidt
	Grundlagen mobile und autonome Roboter	WiSe/SoSe	FMB	Telesh
	Swarm Intelligence	WiSe	FIN	Mostaghim

Intelligente Systeme (6.2)				
	Intelligente Systeme*	WiSe	FIN	Mostaghim
	System-on-Chip	WiSe	FEIT	Pionteck
bis WiSe 2021-22	Control and Learning for Autonomous Systems	WiSe	FEIT	Findeisen
	Neuronale Netze	SoSe	FIN	Stober
	Introduction to Deep Learning	WiSe	FIN	Stober
	Künstliche neuronale Netze *	SoSe	FEIT	Seiffert

Umfeld-Wahrnehmung (6.2)				
bis SoSe 2021	Fahrzeugradarsysteme	SoSe	FEIT	Issakov
	Radartechnik	SoSe	FEIT	Maue
	Bildverarbeitung	SoSe	FEIT	Al-Hamadi
	Fusionsarchitekturen	WiSe	FEIT	Siegert
bis WiSe 2021-22	Introduction to Computer Vision	SoSe	FIN	Tönnies

Systemingenieur für nutzerzentriertes Fahren

Grundlagen de	er multimodalen Datenverarbeitung (7.2)			
	Bildverarbeitung	SoSe	FEIT	Al-Hamadi
	Sprachverarbeitung	SoSe	FEIT	Wendemuth
Hardwarenahe	Informationstechnik (7.2)			
	Digital Information Processing	WiSe	FEIT	Wendemuth
	Heterogeneous Computing	SoSe	FEIT	Pionteck
	Sensorapplikationen	SoSe	FEIT	Steinmann
Nutzerzentrierte Situationsinterpretation (7.2)				
	Dialogsysteme/Sprachdialogsysteme	SoSe	FEIT	Siegert
	Fusionsarchitekturen / Multimodale Mus- tererkennung für die Mensch-Maschine-In- teraktion	WiSe	FEIT	Siegert
	Mustererkennung	WiSe	FEIT	Al-Hamadi

Ingenieur für Forschung und Entwicklung von elektronischen Fahrzeugsystemen

ingemear far fo	ischung und Entwicklung von elektrom	scrien i a	ııı zeugs,	/stemen
Elektronische Ko	omponenten und Bordnetze (8.2)			
	System-on-Chip	WiSe	FEIT	Pionteck
	Systeme der Leistungselektronik	WiSe	FEIT	Lindemann
	Mikrocontroller-basierte Antriebsregelung	WiSe	FEIT	Leidhold
			1	T
Systemintegration	on (8.2)			
	Analyse und Berechnung elektrischer Systeme	SoSe	FEIT	Vick
	EMV-Analyse elektronischer Systeme	SoSe	FEIT	Leone
	EMV-Messtechnik	SoSe	FEIT	Vick
			I	I
Sensorsysteme ((8.2)			
	Sensorapplikationen	SoSe	FEIT	Steinmann
bis SoSe 2021	Fahrzeugradarsysteme	SoSe	FEIT	Issakov
	Radartechnik	SoSe	FEIT	Maue
	Fusionsarchitekturen	WiSe	FEIT	Siegert

Zusätzliche Kompetenzblöcke

Arbeitsorganisa	ation			
bis SoSe 2022	Organisations- und Personalentwicklung	WiSe	FMB	Schmicker
D13 303C 2022	für Teamarbeit (Grundkurs)	SoSe	T M D	Semmerer
bis WiSe 2021-22	Ausgewählte Themenfelder der Arbeits- und Organisationsgestaltung (AOG)	WiSe	FMB	Schmicker
	Arbeitssystemplanung	WiSe	FMB	Brennecke
i				
Data Mining an	d Machine Learning			
	Maschinelles Lernen/Machine Learning	WiSe	FIN	Nürnberger
	Data Mining I	SoSe	FIN	Spiliopoulou
	Data Mining II	WiSe	FIN	Spiliopoulou
	Introduction to Deep Learning	WiSe	FIN	Stober
	Deep learning for Computer Vision	WiSe	FIN	Belagiannis
bis WiSe 2021-22	Computer Vision and Deep Learning	WiSe	FIN	Tönnies
Elektrische Ene	rgiesysteme			
	Reg. Elektroenergiequellen - Systembe- trachtung	WiSe	FEIT	Wolter
	Brennstoffzellen/Fuel Cells (in Englisch)	WiSe	FVST/MPI	Vidakovic-Koch
Fahrdynamik				
	Simulation dynamischer Systeme	SoSe	FMB	Woschke
	Mechatronische Systeme II	SoSe	FMB	Schünemann
	·			
Fertigung				
	Werkstoffe und Verfahren im Automobil- bau	WiSe	FMB	Jüttner
bis WiSe 2022-23	Mikroproduktionstechnik	WiSe	FMB	Hackert-Oschätz- chen/Jüttner
ab WiSe 2023-24	Mikro- und Ultrapräzisionsbearbeitung	WiSe	FMB	Hackert-Oschätzchen
	Mechanics of Materials	Sose	FMB	Naumenko
	Werkzeugmaschinen *	SoSe	FMB	Hackert-Oschätzchen
IT-Security		1		
	Selected Chapters of IT-Security III	WISe	FIN	Dittmann
 		Į.		
	Selected Chapters of IT-Security IV	WISe	FIN	Dittmann
	Praktikum IT-Security	WiSe	FIN	Dittmann
	IT-Security of Cyber-Physical Systems	WiSe	FIN	Dittmann

Kommunikation	und Netze			
bis WiSe 2020-21	Computernetze	WiSe	FIN	Günes
voraussichtlich im WiSe 22-23	Modellierung und Simulation von Computernetzen	SoSe	FIN	Günes
Nachhaltigkeit				
Auf Nachfrage im Prüfungsamt	Nachhaltigkeit (Ringvorlesung)	SoSe	FHW	Hilf
	Politik und Nachhaltigkeit	WiSe	FHW	Böcher
bis WiSe 2021-22	Global Sustainability Governance	WiSe	FHW	Böcher
	Grundlagenmodul zum Schwerpunkt Umweltpsychologie/Mensch-Technik-Interaktion	WiSe	FNW	Matthies
	Regenerative Energien - Funktionen, Komponenten, Werkstoffe	SoSe	FMB	Scheffler
Sonstige				

Hinweis: Module der Fakultät für Informatik, welche in der Modulbeschreibung mit 6 CP angegeben werden, werden bei der Berechnung der Abschlussnote mit 5 CP berücksichtigt. Die Ausweisung auf dem Zeugnis erfolgt regulär mit 6 CP.

FIN

FMB

SoSe

Mostaghim

Luft

ACHTUNG!

ab SoSe-23

11 Modulbeschreibungen

Die Modulbeschreibungen sind im Modulkatalog des M-EMOB verankert.

Evolutionary Multi-Objective Optimization SoSe

Motor- und Fahrzeugakustik

^{*} Eine Doppelanrechnung von Modulen aus einem vorherigen Studiengang ist nicht möglich. Kursiv gestellte Module sind zeitlich befristet.

12 Interdisziplinäres Projekt

Name des Moduls	Interdisziplinäres Projekt)
Englischer Titel	Interdisciplinary Project
Inhalt und Qualifikati-	Lernziele und zu erwerbende Kompetenzen:
onsziele des Moduls	Nach absolvieren der Veranstaltung soll der Student in der Lage sein
	ein Projekt zielgerichtet und effektiv zu bearbeiten, die dazu erfor-
	derlichen Verbindungen zu knüpfen und das Ergebnis des Projektes
	zu dokumentieren und zu verteidigen.
	Inhalte:
	Die fachlichen Inhalte sollten sich an aktuellen Projekten, For-
	schungsthemen oder Lehrinhalten der Institute anlehnen und mög-
	lichst so gestaltet sein, dass sie direkt in die zugeordneten Arbeiten
	einfließen können.
Lehrformen	Begleitende Vorlesung: Organisations- und Personalentwicklung für
	Teamarbeit (Grundkurs) und Projektarbeit
Voraussetzungen für	Fachkenntnisse in den dem Projekt zugeordneten Fachgebieten
die Teilnahme	
Verwendbarkeit des	M-EMOB
Moduls	
Voraussetzungen für	Vorlesung, Belegarbeit ²⁾ , Präsentation ³⁾ mit Verteidigung
die Vergabe von Leis-	
tungspunkten	
Leistungspunkte und	10 CP
Noten	Notenskala gemäß Prüfungsordnung ⁴⁾
Arbeitsaufwand	selbständige Projektbearbeitung
Angebotshäufigkeit	semesterübergreifend
Dauer des Moduls	Bearbeitungszeit in der Regel 5 Monate
	Aushändigung einer Aufgabenstellung mit Start- und Ende-Termin
Modulverantwortlicher	Projektbetreuer aus allen Instituten der FMB oder FEIT

¹⁾ Das Projekt soll als Teamprojekt ausgeführt werden. Die Anzahl der Projektmitglieder sollte maximal 6 betragen.

- ³⁾ Die <u>gemeinsame</u> Präsentation dient als Grundlage für die 10-minütigen Vorträge. Jeder Student trägt sein Teilthema vor und beantwortet im Anschluss die zugehörigen Fragen.
- ⁴⁾ Die Teilnote für den Beleg geht mit 70% und die Teilnote für die Präsentation incl. Verteidigung mit 30 % in die Endnote für jeden Projektteilnehmer ein.

²⁾ Im <u>gemeinsamen</u> Beleg muss eindeutig die Verantwortung des einzelnen Studenten für ein Teilthema ausgewiesen sein.

13 Masterarbeit

Name des Moduls	Masterarbeit
Englischer Titel	Master Thesis
Inhalt und Qualifikati- onsziele des Moduls	Master Thesis Lernziele und erworbene Kompetenzen: Die Masterarbeit soll zeigen, dass der Studierende in der Lage ist, innerhalb einer vorgegebenen Frist ein Problem selbstständig mit wissenschaftlichen Methoden zu bearbeiten sowie mögliche Lösungsansätze zu analysieren und kritisch zu bewerten. Die Studierenden können ihre Arbeit im Kontext der aktuellen Forschung einordnen. Inhalte:
	Themen aus allen Fachrichtungen der Fakultät Maschinenbau vor- zugsweise mit der Orientierung auf wirtschaftlich relevante Sachver- halte
Lehrformen	Projektarbeit, Beleg, Kolloquium unter Beachtung der Gestaltungsrichtlinie sowie Hinweisen zur Bear- beitung und Präsentation von Abschlussarbeiten der FMB
Voraussetzungen für den Beginn der Mas- terarbeit	Nachweis von 70 CP aus Pflicht- und Wahlpflichtbereich und abgeschlossene Projektarbeit
Voraussetzung für das Kolloquium	Nachweis aller erforderlichen 90 CP Vorliegen von zwei mit mindestens "ausreichend" bewerteten Gut- achten zur Masterarbeit
Verwendbarkeit des Moduls	M-EMOB
Voraussetzungen für die Vergabe von Leis- tungspunkten	2 Gutachten, Kolloquium
Leistungspunkte und Noten	30 CP Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	selbständige Projektbearbeitung, Masterarbeit, Vortrag
Angebotshäufigkeit	jedes Semester
Dauer des Moduls	5 Monate Ausgabe des Themas und Abgabe der Masterarbeit aktenkundig im Prüfungsamt der FMB
Modulverantwortlicher	Hochschullehrerinnen oder Hochschullehrer laut M-ASPO des Inge- nieurcampus