	$\overline{\text{REG}}$	REG	CFL	DEC.	REC.	P	NP	NPC	
$L_1 \cup L_2$	no	✓	✓	✓	✓	√	✓	no	•
$L_1\cap L_2$	no	✓	no	√	✓	√	✓	no	
\overline{L}	✓	✓	no	✓	no	√	?	?	i.
$L_1 \cdot L_2$	no	✓	✓	✓	✓	√	✓	no	
L^*	no	✓	✓	✓	✓	√	✓	no	İ
$_L\mathcal{R}$	✓	✓	✓	✓	√	√			-
$L_1 \setminus L_2$	no	✓	no	✓	no	√	?		
$L\cap R$	no	✓	✓	✓	✓	✓			

(**DFA**)
$$M=(Q,\Sigma,\delta,q_0,F),\,\delta:Q imes\Sigma o Q$$

Reg / DFA / NFA								
VFA) $M=(Q,\Sigma,\delta,q_0,F),\delta:Q imes\Sigma_arepsilon o\mathcal{P}(Q)$								

(GNFA) $(Q, \Sigma, \delta, q_0, q_a)$, $\delta: (Q \setminus \{q_{\mathrm{a}}\}) imes (Q \setminus \{q_{\mathrm{start}}\} \longrightarrow \mathcal{R}$ (where

 $\mathcal{R} = \{\text{all regex over }\Sigma\}$

GNFA accepts $w \in \Sigma^*$ if $w = w_1 \cdots w_k$, where $w_i \in \Sigma^*$ and there exists a sequence of states q_0, q_1, \dots, q_k s.t. $q_0 = q_{ ext{start}},\, q_k = q_{ ext{a}}$ and for each i, we have $w_i \in L(R_i),$ where $R_i = \delta(q_{i-1}, q_i)$.

(DFA \leadsto GNFA) $G = (Q', \Sigma, \delta', s, a),$ $Q'=Q\cup\{s,a\}, \quad \delta'(s,arepsilon)=q_0, \quad ext{For each } q\in F,$ $\delta'(q, \varepsilon) = a,$ ((TODO...))

Every NFA can be converted to an equivalent one that has a single accept state.

(reg. grammar) $G = (V, \Sigma, R, S)$. Rules: $A \rightarrow aB$,

• (NFA → DFA)

• $N = (Q, \Sigma, \delta, q_0, F)$

• $D = (Q' = \mathcal{P}(Q), \Sigma, \delta', q'_0 = E(\{q_0\}), F')$

A o a or S o arepsilon. $(A, B, S \in V; a \in \Sigma)$.

 $\bullet \quad F' = \{q \in Q' \mid \exists p \in F : p \in q\}$

• $E(\{q\}) := \{q\} \cup \{\text{states reachable from } q \text{ via } \varepsilon\text{-arrows}\}$

$$ullet \ orall R \subseteq Q, orall a \in \Sigma, \delta'(R,a) = E\left(igcup_{r \in R} \delta(r,a)
ight)$$

 $\quad L(\varepsilon \cup \mathtt{0}\Sigma^*\mathtt{0} \cup \mathtt{1}\Sigma^*\mathtt{1}) = \{ w \mid \#_w(\mathtt{01}) = \#_w(\mathtt{10}) \},$

Regular Expressions

•
$$L=\{a^nwb^n:w\in\Sigma^*\}\equiv a(a\cup b)^*b$$

• $L = \{w \in \Sigma^* : \#_w(\mathtt{0}) \geq 2 \land \#_w(\mathtt{1}) \leq 1\} \equiv ((0 \cup 1)^*0(0 \cup 1)^*)$

PL: $A \in \text{REG} \implies \exists p : \forall s \in A, |s| \geq p, s = xyz$, (i) $\forall i \geq 0, xy^iz \in A$, (ii) |y| > 0 and (iii) $|xy| \leq p$.

$$egin{aligned} & \{w=a^{2^k}\}; \quad k=\lfloor \log_2|w|
floor, s=a^{2^k}=xyz. \ & 2^k=|xyz|<|xy^2z|\leq |xyz|+|xy|\leq 2^k+p<2^{k+1}. \end{aligned}$$

• $\{w = w^{\mathcal{R}}\}; \quad s = 0^p 10^p = xyz. \text{ then }$ $xy^2z = 0^{p+|y|}10^p \not\in L.$

 $\{a^nb^n\};$ $s=a^pb^p=xyz$, where |y|>0 and $|xy|\leq p$.

Then $xy^2z=a^{p+|y|}b^p
otin L.$ $ullet L=\{a^p: p ext{ is prime}\}; \quad s=a^t=xyz ext{ for prime } t\geq p.$

CFL / CFG / PDA

(**CFG**) $G = (V, \Sigma, R, S)$. Rules: $A \to w$. (where $A \in V$ and $w \in (V \cup \Sigma)^*$).

A derivation of w is a **leftmost derivation** if at every step the leftmost remaining variable is the one replaced.

 \boldsymbol{w} is derived **ambiguously** in \boldsymbol{G} if it has at least two different l.m. derivations. G is ambiguous if it generates at least one string ambiguously. A CFG is ambiguous iff it generates some string with two different parse trees. A CFL is inherently ambiguous if all CFGs that generate it are ambiguous.

(CNF) $A \to BC$, $A \to a$, or $S \to \varepsilon$, (where $A, B, C \in V$, $a \in \Sigma$, and $B, C \neq S$).

(CFG \leadsto CNF) (1.) Add a new start variable S_0 and a rule $S_0 o S$. (2.) Remove ε -rules of the form $A o \varepsilon$ (except for $S_0
ightarrow arepsilon$). and remove A's occurrences on the RH of a rule (e.g.: R o u A v A w becomes

 $R
ightarrow uAvAw \mid uAvw \mid uvAw \mid uvw.$ where $u, v, w \in (V \cup \Sigma)^*$). (3.) Remove unit rules $A \to B$ then whenever $B \to u$ appears, add $A \to u$, unless this was a unit rule previously removed. ($u \in (V \cup \Sigma)^*$). (4.) Replace each rule $A o u_1 u_2 \cdots u_k$ where $k \geq 3$ and $u_i \in (V \cup \Sigma)$, with the rules $A o u_1 A_1$, $A_1 o u_2 A_2$, ..., $A_{k-2}
ightarrow u_{k-1} u_k$, where A_i are new variables. Replace terminals u_i with $U_i \rightarrow u_i$.

If $G \in \mathsf{CNF}$, and $w \in L(G)$, then $|w| \leq 2^{|h|} - 1$, where his the height of the parse tree for w.

 $L \in \mathbf{CFL} \Leftrightarrow \exists \ G : L = L(G) \Leftrightarrow \exists \ M : L = L(M)$

 $\forall L \in \mathsf{CFL}, \exists G \in \mathsf{CNF} : L = L(G).$

(derivation) $S \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_n = w$, where each u_i is in $(V \cup \Sigma)^*$. (in this case, G generates w (or S derives w), $S \stackrel{*}{\Rightarrow} w$)

(PDA) $M=(Q,\sum\limits_{\mathsf{input}},\prod\limits_{\mathsf{stack}},\delta,q_0\in Q,\mathop{F}\limits_{\mathsf{accepts}}\subseteq Q).$ (where Q, Σ, Γ, F finite). $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$.

r := |y| > 0

M accepts $w \in \Sigma^*$ if there is a seq. $r_0, r_1, \ldots, r_m \in Q$ and $s_0, , s_1, \ldots, s_m \in \Gamma^*$ s.t.:

> For $i=0,1,\ldots,m-1$, we have $(r_i,b)\in\delta(r_i,w_{i+1},a)$, where $s_i=at$ and $s_{i+1}=bt$ for some $a,b\in\Gamma_{arepsilon}$ and $t\in\Gamma^*$.

 $r_m \in F$

 $ullet r_0=q_0 ext{ and } s_0=arepsilon$

A PDA can be represented by a state diagram, where each transition is labeled by the notation " $a,b \rightarrow c$ " to denote that the PDA: Reads a from the input (or read nothing if $a = \varepsilon$). **Pops** b from the stack (or pops nothing if $b = \varepsilon$). **Pushes** c onto the stack (or pushes nothing if $c = \varepsilon$)

(CSG) $G=(V,\Sigma,R,S)$. Rules: $S \to \varepsilon$ or $\alpha A\beta \to \alpha\gamma\beta$ where: $\alpha, \beta \in (V \cup \Sigma \setminus \{S\})^*$; $\gamma \in (V \cup \Sigma \setminus \{S\})^+$; $A \in V$.

 $\textbf{PL:}\ L\in \mathrm{CFL} \implies \exists p: \forall s\in L, |s|\geq p,\ s=uvxyz, \textbf{(i)}\ \forall i\geq 0, uv^ixy^iz\in L, \textbf{(ii)}\ |vxy|\leq p, \textbf{ and (iii)}\ |vy|>0.$

 $\{w = a^n b^n c^n\}; \quad s = a^p b^p b^p = uvxyz. vxy$ can't contain all of a, b, c thus uv^2xy^2z must pump one of them less

than the others.

• $\{ww: w \in \{a,b\}^*\};$

$L \in \text{DECIDABLE} \iff (L \in \text{REC. and } L \in \text{co-REC.}) \iff \exists M_{\mathsf{TM}} \text{ decides } L.$

- (**TM**) $M=(Q,\sum\limits_{\mathsf{input}}\subseteq\Gamma,\prod\limits_{\mathsf{tape}},\delta,q_0,q_{\mathrm{accept}},q_{\mathrm{reject}}),$ where
 - $\sqcup \in \Gamma$ (blank), $\sqcup
 otin \Sigma$, $q_{ ext{reject}}
 eq q_{ ext{accept}}$, and $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$
- (recognizable) accepts if $w \in L$, rejects/loops if $w \notin L$.
- $L \in \text{RECOGNIZABLE} \iff L \leq_{\text{m}} A_{\mathsf{TM}}.$
- A is **co-recognizable** if \overline{A} is recognizable.
- Every inf. recognizable lang. has an inf. dec. subset.
- (decidable) accepts if $w \in L$, rejects if $w \notin L$.
- $L \in \text{DECIDABLE} \iff L \leq_{\text{m}} 0^*1^*.$
- $L \in \text{DECIDABLE} \iff L^{\mathcal{R}} \in \text{DECIDABLE}.$
- (decider) TM that halts on all inputs.
- (Rice) Let P be a lang. of TM descriptions, s.t. (i) P is nontrivial (not empty and not all TM desc.) and (ii) for
- each two TM M_1 and M_2 , we have $L(M_1) = L(M_2) \implies (\langle M_1 \rangle \in P \iff \langle M_2 \rangle \in P).$ Then P is undecidable.
- $\{all\ TMs\}$ is countable; Σ^* is countable (for every finite Σ); {all languages} is uncountable; {all infinite binary sequences} is uncountable.
- $\mathsf{DFA} \equiv \mathsf{NFA} \equiv \mathsf{GNFA} \equiv \mathsf{REG} \, \subset \, \mathsf{NPDA} \equiv \mathsf{CFG} \, \subset \, \mathsf{DTM} \equiv \mathsf{NTM}$

$FINITE \subset REGULAR \subset CFL \subset CSL \subset DECIDABLE \subset RECOGNIZABLE$

- (unrecognizable) $\overline{A_{TM}}$, $\overline{EQ_{\mathsf{TM}}}$, EQ_{CFG} , $\overline{HALT_{\mathsf{TM}}}$, REGULAR_{TM} = {M is a TM and L(M) is regular}, E_{TM} $EQ_{TM} = \{M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\},$ $ALL_{\mathsf{CFG}}, EQ_{\mathsf{CFG}}$
- (recognizable but undecidable) A_{TM} , $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM halts on } w \},$
- $D = \{p \mid p \text{ is an int. poly. with an int. root}\}, \overline{EQ_{\mathsf{CFG}}},$ $\overline{E_{\mathsf{TM}}}$,
- (decidable) A_{DFA} , A_{NFA} , A_{REX} , E_{DFA} , EQ_{DFA} , A_{CFG} , E_{CFG} , A_{LBA} , $ALL_{\mathsf{DFA}} = \{ \langle M \rangle \mid M \text{ is a DFA}, L(A) = \Sigma^* \}$, $A\varepsilon_{\mathsf{CFG}} = \{ \langle G \rangle \mid G \text{ is a CFG that generates } \varepsilon \},$ INFINITEDEA, INFINITEDDA
- (not CFL) $\{a^ib^jc^k\mid 0\leq i\leq j\leq k\},\,\{a^nb^nc^n\mid n\in\mathbb{N}\},$ $\{ww \mid w \in \{a,b\}^*\}, \{\mathtt{a}^{n^2} \mid n \geq 0\},$ $\{w \in \{a, b, c\}^* \mid \#_a(w) = \#_b(w) = \#_c(w)\},$ $\{a^p \mid p \text{ is prime}\}, L = \{ww^{\mathcal{R}}w : w \in \{a, b\}^*\}$
- (CFL but not REGULAR) $\{w \in \{a,b\}^* \mid w = w^{\mathcal{R}}\},\$ $\{ww^{\mathcal{R}} \mid w \in \{a, b\}^*\},\$ $\{a^nb^n \mid n \in \mathbb{N}\}, \{w \in \{\mathtt{a},\mathtt{b}\}^* \mid \#_\mathtt{a}(w) = \#_\mathtt{b}(w)\},$ $L = \{a^n b^m : n \neq m\}$

Mapping Reduction: $A \leq_{\mathrm{m}} B$ if $\exists f : \Sigma^* \to \Sigma^* : \forall w \in \Sigma^*, \ w \in A \iff f(w) \in B$ and f is computable.

- $f: \Sigma^* \to \Sigma^*$ is **computable** if there exists a TM M s.t. for every $w \in \Sigma^*$, M halts on w and outputs f(w) on its
- If $A \leq_m B$ and B is decidable, then A is dec.
- If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undec.
- If $A \leq_{\mathrm{m}} B$ and B is recognizable, then A is rec.
- If $A \leq_{\mathrm{m}} B$ and A is unrecognizable, then B is unrec.
- (transitivity) If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} C$, then $A \leq_{\mathrm{m}} C$.
- $A \leq_{\mathrm{m}} B \iff \overline{A} \leq_{\mathrm{m}} \overline{B} \text{ (esp. } A \leq_{\mathrm{m}} \overline{A} \iff \overline{A} \leq_{\mathrm{m}} A \text{)}$

If $A \leq_{\mathrm{m}} \overline{A}$ and $A \in \text{RECOGNIZABLE}$, then $A \in \text{DEC}$.

EXAMPLES

- $A_{TM} \leq_{\mathrm{m}} S_{TM} = \{ \langle M \rangle \mid w \in L(M) \iff w^{\mathcal{R}} \in L(M) \},$ $f(\langle M,w \rangle) = \langle M' \rangle$, where M' = "On x, if $x \notin \{01,10\}$, reject; if x = 01, return M(x); if x = 10, accept;"
- $A_{TM} \leq_{\mathrm{m}} L = \{\langle \underbrace{M}_{\mathsf{TM}}, \underbrace{D}_{\mathsf{DFA}}
 angle \mid L(M) = L(D)\},$
- $f(\langle M, w \rangle) = \langle M', D \rangle$, where M' ="On x: if x = w return M(x); otherwise, reject;" and D is DFA s.t. $L(D) = \{w\}$
- $A \leq_{\mathrm{m}} HALT_{\mathsf{TM}}, \quad f(w) = \langle M, \varepsilon \rangle$, where $M = \mathsf{"On}\ x$: if $w \in A$, halt; if $w \notin A$, loop forever;"
- $A_{TM} \leq_{\mathrm{m}} CF_{\mathsf{TM}} = \{ \langle M \rangle \mid L(M) \text{ is CFL} \},$ $f(\langle M, w \rangle) = \langle N \rangle$, where N ="On x: if $x = a^n b^n c^n$, accept; otherwise, return M(w);" $A\leq_{\mathrm{m}} B=\{0w:w\in A\}\cup\{1w:w\not\in A\},\quad f(w)=0w.$
- $E_{\mathrm{TM}} \leq_{\mathrm{m}} \mathrm{USELESS}_{\mathrm{TM}}; \; f(\langle M \rangle) = \langle M, q_{\mathrm{accept}} \rangle$
- $A_{\mathrm{TM}} \leq_{\mathrm{m}} EQ_{\mathrm{TM}}; \quad f(\langle M, w \rangle) = \langle M_1, M_2 \rangle, \text{ where } M_1 =$ "Accept everything"; $M_2 =$ "On x: return M(w);"
- $A_{\mathrm{TM}} \leq_{\mathrm{m}} \overline{EQ_{\mathrm{TM}}}; \quad f(\langle M, w \rangle) = \langle M_1, M_2 \rangle, \text{ where } M_1 =$ "Reject everything"; $M_2 =$ "On x: return M(w);"
- $ALL_{ ext{CFG}} \leq_{ ext{m}} EQ_{ ext{CFG}}; \, f(\langle G
 angle) = \langle G, H
 angle$, where $L(H) = \Sigma^*$.

Polytime Reduction: $A \leq_{\mathrm{P}} B$ if $\exists f: \Sigma^* \to \Sigma^*: \forall w \in \Sigma^*, \ w \in A \iff f(w) \in B$ and f is polytime computable.

- ((Running time) decider M is a f(n)-time TM.) $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the max. num. of steps that DTM (or NTM) M takes on any n-length input (and any branch of any n-length input. resp.).
- $\mathsf{TIME}(t(n)) = \{ L \mid L \text{ is dec. by } O(t(n)) \text{ DTM} \}.$
- $\mathsf{NTIME}(t(n)) = \{L \mid L \text{ is dec. by } O(t(n)) \text{ NTM}\}.$
- $\mathbf{P} = \bigcup_{k \in \mathbb{N}} \mathsf{TIME}(n^k)$
- (verifier for L) TM V s.t.
- $L = \{w \mid \exists c : V(\langle w, c \rangle) = \mathsf{accept}\}.$
- (**certificate** for $w \in L$) str. c s.t. $V(\langle w, c \rangle) = \mathsf{accept}$.
- $\mathbf{NP} = igcup_{k \in \mathbb{N}} \mathsf{NTIME}(n^k)$
- $\mathbf{NP} = \{L \mid L \text{ is decidable by a PT verifier}\}.$
- $P \subseteq NP$.
- $f:\Sigma^* o \Sigma^*$ is **PT computable** if there exists a PT TM M s.t. for every $w \in \Sigma^*$, M halts with f(w) on its tape.
- If $A \leq_{\mathbf{P}} B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.
- If $A \leq_P B$ and $B \leq_P A$, then A and B are **PT equivalent**, denoted $A \equiv_P B$. \equiv_P is an equivalence

- relation on NP. $P \setminus \{\emptyset, \Sigma^*\}$ is an equivalence class of
- **NP-complete** = $\{B \mid B \in NP, \forall A \in NP, A \leq_P B\}.$
- CLIQUE, SUBSET-SUM, SAT, 3SAT, VERTEX-COVER, HAMPATH, UHAMATH, $3COLOR \in NP$ -complete.
- $\emptyset, \Sigma^* \notin NP$ -complete.
- If $B \in NP$ -complete and $B \in P$, then P = NP.
- If $B \in \text{NP-complete}$ and $C \in \text{NP}$ s.t. $B \leq_{\text{P}} C$, then $C \in \text{NP-complete}.$
 - If P = NP, then $\forall A \in P \setminus \{\emptyset, \Sigma^*\}, A \in NP$ -complete.

EXAMPLES

- SAT \leq_{P} DOUBLE-SAT; $f(\phi) = \phi \land (x \lor \neg x)$
- SUBSET-SUM \leq_P SET-PARTITION;
- $f(\langle x_1,\ldots,x_m,t\rangle)=\langle x_1,\ldots,x_m,S-2t\rangle$, where S sum of x_1, \ldots, x_m , and t is the target subset-sum.
- $3COLOR \leq_{\mathrm{P}} 3COLOR_{almost}; \quad f(\langle G \rangle) = \langle G'
 angle$, where $G' = G \cup K_4$
- $VERTEX-COVER \leq_{P} WVC; \quad f(\langle G, k \rangle) = (G, w, k),$ $\forall v \in V(G), w(v) = 1$

- $HAM-PATH \leq_P 2HAM-PATH;$
- $f(\langle G, s, t \rangle) = \langle G', s', t' \rangle$, where $V'=V\cup\{s',t',a,b,c,d\},$
- $E' = E \cup \{(s',a),\,(a,b),\,(b,s)\} \cup \{(s',b),\,(b,a),\,(a,s)\}$ $\cup \, \{(t,c), \, (c,d), \, (d,t')\} \cup \{(t,d), \, (d,c), \, (c,t')\}.$
- $f(\langle G=(V,E),k
 angle)=\langle G'=(V',E')
 angle$, if $k=rac{|V|}{2}$, E=E',
- V'=V. if $k>\frac{|V|}{2}$, $V'=V\cup\{j=2k-|V| \text{ new nodes}\}$. if $k < rac{|V|}{2}$, $V' = V \cup \{j = |V| - 2k ext{ new nodes}\}$ and $E' = E \cup \{ \text{edges for new nodes} \}$
- UHAMPATH $\leq_{\mathbf{P}} \mathbf{PATH}_{\geq k}$;
 - $f(\langle G, a, b \rangle) = \langle G, a, b, k = |V(G)| 1 \rangle$
- $VERTEX\text{-}COVER \leq_p CLIQUE;$
- $f(\langle G, k \rangle) = \langle G^{\complement} = (V, E^{\complement}), |V| k \rangle$
- $CLIQUE_k \leq_P \{\langle G, t \rangle : G \text{ has a } 2t\text{-clique}\};$
- $f(\langle G, k \rangle) = \langle G', t = k/2 \rangle$
- $CLIQUE \leq_{P} INDEPENDENT\text{-}SET$
- $SET-COVER \leq_P VERTEX-COVER$
- $3SAT \leq_P SET\text{-SPLITTING}$
 - $INDEPENDENT\text{-}SET \leq_{P} VERTEX\text{-}COVER$

Counterexamples

- $A \leq_{\mathrm{m}} B$ and $B \in \mathrm{REG}$, but, $A \notin \mathrm{REG}$: $A = \{0^n 1^n \mid n \ge 0\}, B = \{1\}, f : A \to B,$ $f(w) = egin{cases} 1 & ext{if } w \in A \ 0 & ext{if } w
 otin A \end{cases}$
- $L \in \mathrm{CFL} \; \mathrm{but} \; \overline{L} \not \in \mathrm{CFL} \text{:} \quad L = \{x \mid \forall w \in \Sigma^*, x \neq ww\},$ $\overline{L} = \{ww \mid w \in \Sigma^*\}.$
- $L_1, L_2 \in \text{CFL}$ but $L_1 \cap L_2 \notin \text{CFL}$: $L_1 = \{a^n b^n c^m\}$, $L_2 = \{a^m b^n c^n\}, L_1 \cap L_2 = \{a^n b^n c^n\}.$
- $L_1 \in \mathrm{CFL},\, L_2$ is infinite, but $L_1 \setminus L_2
 otin \mathrm{REG}: \quad L_1 = \Sigma^*$, $L_2 = \{a^nb^n \mid n \geq 0\}$, $L_1 \setminus L_2 = \{a^mb^n \mid m \neq n\}$.
- $L_1, L_2 \in \text{REG}, L_1 \not\subset L_2, L_2 \not\subset L_1$, but, $(L_1 \cup L_2)^* = L_1^* \cup L_2^*: \quad L_1 = \{\mathtt{a},\mathtt{b},\mathtt{ab}\}, \, L_2 = \{\mathtt{a},\mathtt{b},\mathtt{ba}\}$
- $L_1 \in \operatorname{REG}$, $L_2
 otin \operatorname{REG}$, but, $L_1 \cap L_2 \in \operatorname{REG}$, and $L_1 \cup L_2 \in \text{REG}: \quad L_1 = L(\mathbf{a}^*\mathbf{b}^*), L_2 = \{\mathbf{a}^n\mathbf{b}^n \mid n \ge 0\}.$
- $L_1, L_2, L_3, \dots \in \mathrm{REG}$, but, $\bigcup_{i=1}^{\infty} L_i \notin \mathrm{REG}$: $L_i = \{ \mathbf{a}^i \mathbf{b}^i \}, \, \bigcup_{i=1}^\infty L_i = \{ \mathbf{a}^n \mathbf{b}^n \mid n \geq 0 \}.$
- $L_1 \cdot L_2 \in \mathrm{REG}$, but $L_1
 otin \mathrm{REG}: \quad L_1 = \{\mathtt{a}^n\mathtt{b}^n \mid n \geq 0\}$, $L_2 = \Sigma^*$.
- $L_2 \in \mathrm{CFL}$, and $L_1 \subseteq L_2$, but $L_1 \notin \mathrm{CFL}: \quad \Sigma = \{a,b,c\}$, $A \notin \mathrm{DEC.}$, $A \leq_{\mathrm{m}} \overline{A}:$ $L_1=\{a^nb^nc^n\mid n\geq 0\}$, $L_2=\Sigma^*$.
- $L_1, L_2 \in \mathrm{DECIDABLE}$, and $L_1 \subseteq L \subseteq L_2$, but $L \in \mathrm{UNDECIDABLE}: \quad L_1 = \emptyset, \, L_2 = \Sigma^*, \, L \ \mathsf{is} \ \mathsf{some}$ undecidable language over Σ .
- $L_1 \in \text{REG}, L_2 \notin \text{CFL}, \text{ but } L_1 \cap L_2 \in \text{CFL}: \quad L_1 = \{\varepsilon\},$ $L_2 = \{a^n b^n c^n \mid n \ge 0\}.$
- $L^* \in \mathrm{REG}$, but $L
 otin \mathrm{REG}: \quad L = \{a^p \mid p \ \mathrm{is \ prime}\}$, $L^* = \Sigma^* \setminus \{a\}.$
- $A \not\leq_m \overline{A}$: $A = A_{TM} \in \text{RECOGNIZABLE}$, $\overline{A} = \overline{A_{TM}} \notin \text{RECOG}.$