Signal Theory in examples

$$f(t) = A \cdot \Pi\left(\frac{t}{2 \cdot t_0}\right) \cdot \cos\left(\frac{2\pi}{t_0} \cdot t\right) \qquad F(\jmath\omega) = A \cdot t_0 \cdot [Sa\left(\omega \cdot t_0 + 2\pi\right) - Sa\left(\omega \cdot t_0 - 2\pi\right)]$$

Tomasz Grajek, Krzysztof Wegner

POZNAN UNIVERSITY OF TECHNOLOGY Faculty of Computing and Telecommunications Departament of Multimedia Telecomunications

pl. M. Skłodowskiej-Curie 5 60-965 Poznań

www.et.put.poznan.pl www.multimedia.edu.pl

Copyright © Krzysztof Wegner, 2019 All right reserved ISBN 978-83-939620-3-7 Printed in Poland

Basic properties of the signals

- 1.1 Basic properties of the signals
- 1.1.1 Mean of the signal
- 1.1.2 Energy of the signal
- 1.1.3 Power of the signal

Analisis of the periodic signals by ortogonal series

2.1 Trigonometric Fourier Series

2.2 Complex Fourier Series

Task 1.

Calculate coefficients of the periodic signal f(t) shown below for the expansion into a complex exponential Fourier series.

First of all, the definition of f(t) signal has to be derived. This is periodic piecewise function, which may be describe as:

$$f(x) = \begin{cases} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) & t \in \left(0 + k \cdot T; \frac{T}{2} + k \cdot T\right) \\ 0 & t \in \left(\frac{T}{2} + k \cdot T; T + k \cdot T\right) \end{cases} \land k \in Z$$
 (2.1)

The F_0 coefficient is defined as:

$$F_0 = \frac{1}{T} \int_T f(t) \cdot dt \tag{2.2}$$

For the period $t \in (0; T)$, i.e. k = 0, we get:

$$F_{0} = \frac{1}{T} \int_{T} f(t) \cdot dt =$$

$$= \frac{1}{T} \left(\int_{0}^{\frac{T}{2}} A \cdot \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + \frac{1}{T} \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) =$$

$$= \frac{A}{T} \left(\int_{0}^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt + 0 \right) =$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} \sin\left(\frac{2\pi}{T} \cdot t\right) \cdot dt =$$

$$= \begin{cases} z = \frac{2\pi}{T} \cdot t \\ dz = \frac{2\pi}{T} \cdot dt \\ dt = \frac{dz}{\frac{2\pi}{T}} \end{cases} =$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} \sin(z) \cdot \frac{dz}{\frac{2\pi}{T}} =$$

$$= \frac{A}{T} \int_{0}^{\frac{T}{2}} \sin(z) \cdot dz =$$

$$= \frac{A}{2\pi} \cdot \left(-\cos(z) \Big|_{0}^{\frac{T}{2}} \right) =$$

$$= -\frac{A}{2\pi} \cdot \left(\cos\left(\frac{2\pi}{T} \cdot t\right) \Big|_{0}^{\frac{T}{2}} \right) =$$

$$= -\frac{A}{2\pi} \cdot \left(\cos\left(\frac{2\pi}{T} \cdot \frac{T}{2}\right) - \cos\left(\frac{2\pi}{T} \cdot 0\right) \right) =$$

$$= -\frac{A}{2\pi} \cdot (\cos(\pi) - \cos(0)) =$$

$$= -\frac{A}{2\pi} \cdot (-1 - 1) =$$

$$= -\frac{A}{2\pi} \cdot (-2) =$$

$$= \frac{A}{\pi}$$

The F_0 coefficient equals $\frac{A}{\pi}$.

The F_k coefficients are defined as:

$$F_k = \frac{1}{T} \int_T f(t) \cdot e^{-j \cdot k \cdot \frac{2\pi}{T} \cdot t} \cdot dt$$
 (2.3)

For the period $t \in (0; T)$, i.e. k = 0, we get:

$$\begin{split} &=\frac{1}{T}\cdot\left(A\cdot\int_{0}^{\frac{\gamma}{2}}e^{j\frac{N-\gamma}{2}-1}-e^{-j\frac{N-\gamma}{2}-1}\cdot e^{-jk\cdot\frac{N-\gamma}{2}}\cdot dt+0\right)=\\ &=\frac{1}{T}\cdot\left(\frac{A}{2}\cdot\int_{0}^{\frac{\gamma}{2}}\left(e^{j\frac{N-\gamma}{2}-1}-e^{-j\frac{N-\gamma}{2}-1}\cdot e^{-jk\cdot\frac{N-\gamma}{2}}\cdot dt\right)=\\ &=\frac{1}{T}\cdot\frac{A}{2}\cdot\int_{0}^{\frac{\gamma}{2}}\left(e^{j\frac{N-\gamma}{2}-1}-e^{-j\frac{N-\gamma}{2}-1}\cdot e^{-jk\cdot\frac{N-\gamma}{2}}\cdot dt\right)=\\ &=\frac{A}{T\cdot2j}\cdot\int_{0}^{\frac{\gamma}{2}}\left(e^{j\frac{N-\gamma}{2}-1}-e^{-j\frac{N-\gamma}{2}-1}\cdot e^{-j\frac{N-\gamma}{2}-1}\cdot dt\right)-dt=\\ &=\frac{A}{T\cdot2j}\cdot\int_{0}^{\frac{\gamma}{2}}\left(e^{j\frac{N-\gamma}{2}-1}-e^{-j\frac{N-\gamma}{2}-1}\cdot e^{-j\frac{N-\gamma}{2}-1}\cdot dt\right)-dt=\\ &=\frac{A}{T\cdot2j}\cdot\int_{0}^{\frac{\gamma}{2}}\left(e^{j\frac{N-\gamma}{2}-1}-e^{-j\frac{N-\gamma}{2}-1}\cdot (1+k)\cdot dt\right)-dt=\\ &=\frac{A}{T\cdot2j}\cdot\int_{0}^{\frac{\gamma}{2}}\left(e^{j\frac{N-\gamma}{2}-1}-e^{-j\frac{N-\gamma}{2}-1}\cdot (1+k)\cdot dt\right)-dt=\\ &=\frac{A}{T\cdot2j}\cdot\int_{0}^{\frac{\gamma}{2}}\left(e^{j\frac{N-\gamma}{2}-1}-e^{-j\frac{N-\gamma}{2}-1}\cdot (1+k)\cdot dt\right)=\\ &=\frac{A}{T\cdot2j}\cdot\int_{0}^{\frac{\gamma}{2}}\left(1-k\right)\cdot dt-\int_{0}^{\frac{\gamma}{2}}e^{-j\frac{N-\gamma}{2}-1}\cdot (1+k)\cdot dt\\ &=\frac{A}{T\cdot2j}\cdot\int_{0}^{\frac{\gamma}{2}}\left(1-k\right)\cdot dt-\int_{0}^{\frac{\gamma}{2}}e^{-j\frac{N-\gamma}{2}-1}\cdot (1+k)\cdot dt\\ &=\frac{A}{T\cdot2j}\cdot\int_{0}^{\frac{\gamma}{2}}\left(1-k\right)\cdot dt-\frac{J^{\frac{\gamma}{2}}}{J^{\frac{\gamma}{2}-1}\cdot (1-k)}-\int_{0}^{\frac{\gamma}{2}}e^{2j\cdot\frac{N-\gamma}{2}-1}\cdot (1+k)\cdot dt\\ &=\frac{A}{T\cdot2j}\cdot\int_{0}^{\frac{\gamma}{2}}e^{2i\cdot\frac{N-\gamma}{2}-1}\cdot dz_{1}-\frac{1}{J^{\frac{\gamma}{2}-1}\cdot (1+k)\cdot J^{\frac{\gamma}{2}}}-e^{2j\cdot\frac{N-\gamma}{2}\cdot dz_{2}}-e^{-j\frac{N-\gamma}{2}-1}\cdot (1+k)\cdot J^{\frac{\gamma}{2}}-e^{2j\cdot\frac{N-\gamma}{2}\cdot dz_{2}}-e^{-j\frac{N-\gamma}{2}-1}\cdot (1+k)\cdot J^{\frac{\gamma}{2}}-e^{2j\cdot\frac{N-\gamma}{2}\cdot dz_{2}}-e^{-j\frac{N-\gamma}{2}-1}\cdot (1+k)\cdot J^{\frac{\gamma}{2}}-e^{2j\cdot\frac{N-\gamma}{2}\cdot dz_{2}}-e^{-j\frac{N-\gamma}{2}-1}\cdot dz_{2}}-e^{-j\frac{N-\gamma}{2}-N-\gamma}\cdot dz_{2}}-e^{-j\frac{N-\gamma}{2}-N-\gamma}\cdot$$

$$\begin{split} &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{-1\cdot e^{-\jmath\cdot\pi\cdot k}-2+k\cdot(-1)\cdot e^{-\jmath\cdot\pi\cdot k}-1\cdot e^{-\jmath\cdot\pi\cdot k}-k\cdot(-1)\cdot e^{-\jmath\cdot\pi\cdot k}}{1-k^2}\right)=\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{-e^{-\jmath\cdot\pi\cdot k}-2-k\cdot e^{-\jmath\cdot\pi\cdot k}-e^{-\jmath\cdot\pi\cdot k}+k\cdot e^{-\jmath\cdot\pi\cdot k}}{1-k^2}\right)=\\ &=\frac{A}{-4\cdot\pi}\cdot\left(\frac{-2\cdot e^{-\jmath\cdot\pi\cdot k}-2}{1-k^2}\right)=\\ &=\frac{A}{4\cdot\pi}\cdot\left(\frac{2\cdot e^{-\jmath\cdot\pi\cdot k}+2}{1-k^2}\right)=\\ &=\frac{A}{4\cdot\pi}\cdot2\cdot\left(\frac{e^{-\jmath\cdot\pi\cdot k}+1}{1-k^2}\right)=\\ &=\frac{A}{2\cdot\pi}\cdot\frac{e^{-\jmath\cdot\pi\cdot k}+1}{1-k^2}\end{split}$$

The F_k coefficients equal to $\frac{A}{2\cdot\pi}\cdot\frac{e^{-j\cdot\pi\cdot k}+1}{1-k^2}$ for $k\neq 1 \land k\neq -1$. We have to calculate F_k for k=1 directly by definition:

$$\begin{split} F_1 &= \frac{1}{T} \int_T f(t) \cdot e^{-j \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt = \\ &= \frac{1}{T} \cdot \left(\int_0^{\frac{T}{2}} A \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-j \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot e^{-j \cdot 1 \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{1}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^T 0 \cdot dt \right) = \\ &= \left\{ \sin \left(x \right) \right. = \frac{e^{j \cdot x} - e^{-j \cdot x}}{2j} \right\} = \\ &= \frac{1}{T} \cdot \left(A \cdot \int_0^{\frac{T}{2}} \frac{e^{j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t}}{2j} \cdot e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) = \\ &= \frac{1}{T} \cdot \left(\frac{A}{2j} \cdot \int_0^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t} \right) \cdot e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{1}{T} \cdot \frac{A}{2j} \cdot \int_0^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-j \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt = \\ &= \frac{A}{T \cdot 2j} \cdot \int_0^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_0^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot (1-1) \cdot dt - \int_0^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot (1+1) \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_0^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot 0 \cdot dt - \int_0^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot 2 \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_0^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot 0 \cdot dt - \int_0^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_0^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot 0 \cdot dt - \int_0^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_0^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot 0 \cdot dt - \int_0^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_0^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot 0 \cdot dt - \int_0^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_0^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_0^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_0^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_0^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_0^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_0^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_0^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_0^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) =$$

6

$$= \begin{cases} z = -j \cdot \frac{4\pi}{T} \cdot t \\ dz = -j \cdot \frac{4\pi}{T} \cdot dt \\ dt = \frac{dz}{-j \cdot \frac{4\pi}{T}} \end{cases} =$$

$$= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} dt - \int_{0}^{\frac{T}{2}} e^{z} \cdot \frac{dz}{-j \cdot \frac{4\pi}{T}} \right) =$$

$$= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} dt - \frac{1}{-j \cdot \frac{4\pi}{T}} \cdot \int_{0}^{\frac{T}{2}} e^{z} \cdot dz \right) =$$

$$= \frac{A}{T \cdot 2j} \cdot \left(t|_{0}^{\frac{T}{2}} + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot e^{z}|_{0}^{\frac{T}{2}} \right) =$$

$$= \frac{A}{T \cdot 2j} \cdot \left(\left(\frac{T}{2} - 0 \right) + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot e^{-j \cdot \frac{4\pi}{T} \cdot t}|_{0}^{\frac{T}{2}} \right) =$$

$$= \frac{A}{T \cdot 2j} \cdot \left(\left(\frac{T}{2} - 0 \right) + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot \left(e^{-j \cdot \frac{4\pi}{T}} \cdot \frac{T}{2} - e^{-j \cdot \frac{4\pi}{T} \cdot 0} \right) \right) =$$

$$= \frac{A}{T \cdot 2j} \cdot \left(\frac{T}{2} + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot (1 - 1) \right) =$$

$$= \frac{A}{T \cdot 2j} \cdot \left(\frac{T}{2} + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot 0 \right) =$$

$$= \frac{A}{T \cdot 2j} \cdot \left(\frac{T}{2} + \frac{1}{j \cdot \frac{4\pi}{T}} \cdot 0 \right) =$$

$$= \frac{A}{T \cdot 2j} \cdot \left(\frac{T}{2} + 0 \right) =$$

$$= \frac{A}{T \cdot 2j} \cdot \frac{T}{2} =$$

$$= \frac{A}{4j} =$$

$$= -j \cdot \frac{A}{4}$$

The F_1 coefficients equal to $-j \cdot \frac{A}{4}$.

We have to calculate F_k for k = -1 directly by definition:

$$F_{-1} = \frac{1}{T} \int_{T} f(t) \cdot e^{-\jmath \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt =$$

$$= \frac{1}{T} \cdot \left(\int_{0}^{\frac{T}{2}} A \cdot \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{-\jmath \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot e^{-\jmath \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) =$$

$$= \frac{1}{T} \cdot \left(A \cdot \int_{0}^{\frac{T}{2}} \sin \left(\frac{2\pi}{T} \cdot t \right) \cdot e^{\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt + \int_{\frac{T}{2}}^{T} 0 \cdot dt \right) =$$

$$= \left\{ \sin \left(x \right) \right. = \frac{e^{\jmath \cdot x} - e^{-\jmath \cdot x}}{2\jmath} \right\} =$$

$$= \frac{1}{T} \cdot \left(A \cdot \int_{0}^{\frac{T}{2}} \frac{e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t}}{2\jmath} \cdot e^{\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt + 0 \right) =$$

$$= \frac{1}{T} \cdot \left(\frac{A}{2\jmath} \cdot \int_{0}^{\frac{T}{2}} \left(e^{\jmath \cdot \frac{2\pi}{T} \cdot t} - e^{-\jmath \cdot \frac{2\pi}{T} \cdot t} \right) \cdot e^{\jmath \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) =$$

7

$$\begin{split} &= \frac{1}{T} \cdot \frac{A}{2j} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{j \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt = \\ &= \frac{A}{T \cdot 2j} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t + j \cdot \frac{2\pi}{T} \cdot t} - e^{-j \cdot \frac{2\pi}{T} \cdot t + j \cdot \frac{2\pi}{T} \cdot t} \right) \cdot dt = \\ &= \frac{A}{T \cdot 2j} \cdot \int_{0}^{\frac{T}{2}} \left(e^{j \cdot \frac{2\pi}{T} \cdot t \cdot (1+1)} - e^{-j \cdot \frac{2\pi}{T} \cdot t \cdot (1-1)} \right) \cdot dt = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t \cdot (1+1)} \cdot dt - \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot t \cdot (1-1)} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t \cdot 2} \cdot dt - \int_{0}^{\frac{T}{2}} e^{-j \cdot \frac{2\pi}{T} \cdot t \cdot 0} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{0} \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} 1 \cdot dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} dt \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt - \int_{0}^{\frac{T}{2}} e^{j \cdot \frac{2\pi}{T} \cdot t} \cdot dt \right) - \left(\frac{T}{2} - 0 \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} \frac{\pi}{T} \cdot (e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-j \cdot \frac{2\pi}{T} \cdot t} \right) - \left(\frac{T}{2} - 0 \right) \right) = \\ &= \frac{A}{T \cdot 2j} \cdot \left(\int_{0}^{\frac{T}{2}} \frac{\pi}{T} \cdot (e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-j \cdot \frac{2\pi}{T} \cdot t} \right) - \left(\frac{T}{2} - e^{-j \cdot \frac{2\pi}{T} \cdot t} \cdot e^{-j \cdot$$

The F_{-1} coefficients equal to $j \cdot \frac{A}{4}$.

To sum up, coefficients for the expansion into a complex exponential Fourier series are given by:

$$F_0 = \frac{A}{\pi}$$

$$F_k = \frac{A}{2 \cdot \pi} \cdot \frac{e^{-\jmath \cdot \pi \cdot k} + 1}{1 - k^2}$$

$$F_{-1} = \jmath \cdot \frac{A}{4}$$

$$F_1 = -\jmath \cdot \frac{A}{4}$$

The first several coefficients are equal to:

F_k	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
F_k	$-\frac{A}{35\pi}$	0	$-\frac{A}{15\pi}$	0	$-\frac{A}{3\pi}$	$-\jmath\cdot\frac{A}{4}$	$\frac{A}{\pi}$	$j \cdot \frac{A}{4}$	$\frac{A}{3\pi}$	0	$\frac{A}{15\pi}$	0	$\frac{A}{35\pi}$
$ F_k $	$\frac{A}{35\pi}$	0	$\frac{A}{15\pi}$	0	$-\frac{A}{3\pi}$	$\frac{A}{4}$	$\frac{A}{\pi}$	$\frac{A}{4}$	$\frac{A}{3\pi}$	0	$\frac{A}{15\pi}$	0	$\frac{A}{35\pi}$

Hence, the signal f(t) may be expressed as the sum of the harmonic series

$$f(t) = \sum_{k=-\infty}^{\infty} F_k \cdot e^{\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t}$$

$$f(t) = \frac{A}{\pi} + \jmath \cdot \frac{A}{4} \cdot e^{\jmath \cdot (-1) \cdot \frac{2\pi}{T} \cdot t} - \jmath \cdot \frac{A}{4} \cdot e^{\jmath \cdot 1 \cdot \frac{2\pi}{T} \cdot t} + \sum_{\substack{k=-\infty \ k \neq 0 \\ k \neq -1 \land k \neq 1}}^{\infty} \left[\frac{A}{2 \cdot \pi} \cdot \frac{e^{-\jmath \cdot \pi \cdot k} + 1}{1 - k^2} \right] \cdot e^{\jmath \cdot k \cdot \frac{2\pi}{T} \cdot t}$$

$$(2.4)$$

A partial approximation of the f(t) signal from $k_{min} = -1$ to $k_{max} = 1$ results in:

A partial approximation of the f(t) signal from $k_{min} = -2$ to $k_{max} = 2$ results in:

A partial approximation of the f(t) signal from $k_{min} = -4$ to $k_{max} = 4$ results in:

A partial approximation of the f(t) signal from $k_{min} = -6$ to $k_{max} = 6$ results in:

A partial approximation of the f(t) signal from $k_{min} = -12$ to $k_{max} = 12$ results in:

Approximation of the f(t) signal for from $k_{min} = -\infty$ to $k_{max} = \infty$ results in oryginal signal. Based on coefficients F_k we can plot

Based on coefficients F_k we can plot

2.3 Calculation of the signals power - Perseval's teorem

Non-periodic signals analisis - Fourier Transform

- 3.1 Calculation of Fourier Transform from definition
- 3.2 Exploiting properties of the Fourier transform
- 3.3 Signal power calculation based on Fourier transform. Perseval Teorem

Linear Time Invariant

- 4.1 Convolutions
- 4.2 Filters

