Task 5

Exploratary Data Analysis

- > Initially downloaded the dataset from Kaggle and extracted the files from zip
- Later uploaded the files into google colab

> Creating a data frame:

- Initially import pandas library (which helps for data visualization) and then create a data frame
- After creating the data frame upload the file path in it and run the cell
- Code: import pandas as pd df=pd.read_csv("train.csv")

> Performing operations after creating data frame :

- To know the information of the dataset u can use info() function
- Code: df.info()
- Output:

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

- To describe about the dataset we use the function called describe ()
- Code: df.describe()
- Output:

0	df.describe()							
[→]		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

- To describe about the values of the column
- Code: df['survived'].value counts()
- [Here 'survived' is a column name]
- Output:

> Different plots used for visualization

- sns.pairplot():
- code: import seaborn as sns import matplotlib.pyplot as plt sns.pairplot(df, hue='Sex') plt.show()
- Output:

- Observation: For each column in the dataset there is a separate plot
- Inorder to create a heatmap first u need to find corelation of the dataframe
- Code: corr = df.corr(numeric_only=True)
- sns.heatmap():
- Code: import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(8,6)) sns.heatmap(corr, annot=True, cmap='coolwarm', fmt=".2f") plt.show()
- Output:

- **Observation:** survival has positive corelation with fare and negative corelation with passenger class
- Histogram:
- Code: import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(8,5)) sns.histplot(df['Fare'], bins=30, kde=True) plt.title('Fare Distribution') plt.show()
- Output:

- Boxplot:
- Code: plt.figure(figsize=(8,5))
 sns.boxplot(x='Survived', y='Fare', data=df)
 plt.title('Fare vs Survival')
 plt.show()
- Output:

• Scatterplot:

• Code: plt.figure(figsize=(3,4))
sns.scatterplot(x='Age', y='Fare', hue='Survived', data=df)
plt.title('Age vs Fare by Survival')
plt.show()

• Output:

• Observation:

- The death ratio is less between 60 80 age group and more between 20- 60 age group
- The people who paid more fare have less no of deaths