Deep Reinforcement Learning Seminar: Introduction to Deep Learning

Erik A. Daxberger

February 3, 2017

Motivation

Ultimate goal of ML/Al research: **general purpose intelligence**, i.e. general intelligent agent, excelling at a wide variety of human-level tasks

Real world is insanely complex \rightarrow use **video games** as a testbed!

Is it possible to design a single AI agent, being able to play a wide variety of different games, **end-to-end**, at a human level?

Motivation

Recently, **DeepMind Technologies** published a paper succeeding at that task.

Shortly after, DeepMind was bought by Google for **\$500M** and published a Nature cover paper

Motivation

(Oh and by the way, they recently managed to beat a human pro at Go)

So how did they do that?! \rightarrow deep reinforcement learning!

Goal of this talk

- 1 good understanding of DeepMind's Atari paper
- 2 ability to read other state-of-the-art papers

Contents

- 1 Introduction
- 2 Reinforcement Learning
- 3 Deep Q-Learning
- 4 Demo: Learning to Play Pong
- **6** Conclusions

Contents

- 1 Introduction
- 2 Reinforcement Learning
- 3 Deep Q-Learning
- 4 Demo: Learning to Play Pong
- 6 Conclusions

Machine Learning Paradigms

Supervised learning

- in: example input/output pairs (by a "teacher")
- out: general mapping rule
- ullet example: learn to detect dogs in images o classification

Unsupervised learning

- in: inputs without outputs
- out: hidden structure in the inputs
- ullet example: learn groups of different animals o clustering

Reinforcement learning

- in: observations and feedback (rewards or punishments) from interacting with an environment
- out: achieve some goal
- example: learn to play Atari games from scratch

The RL Setting

RL is a **general-purpose framework** for Al

At each timestep t an **agent** interacts with an **environment** \mathcal{E} and

- observes **state** $s_t \in \mathbb{R}^d$
- receives **reward** $r_t \in \mathbb{R}$
- executes **action** $a_t \in A$

Reward signals may be sparse, noisy and delayed.

ightarrow Agent-environment-loop

Example: TicTacToe

$$s_t \in \left\{ \frac{ \circ \mid \mid x}{\mid x \mid \mid \mid o}, \frac{x \mid \mid x}{\mid o \mid \mid o}, \frac{\mid o \mid}{\mid x \mid \mid o}, \ldots \right\}$$

$$r_t = egin{cases} +1 & ext{if we won} \ -1 & ext{if we lost} \ 0 & ext{otherwise} \end{cases}$$

$$a_t \in \left\{ \frac{x}{1}, \frac{x}{1}, \frac{x}{1}, \frac{x}{1}, \dots \right\}$$

Reinforcement Learning vs. Deep Learning

Why don't we just use **Deep Learning**?!

Reinforcement Learning	vs.	Deep Learning
sparse and noisy rewards	VS.	hand-labeled training data
delay between actions and rewards ($ riangleq$ credit assignment problem)	VS.	direct association between inputs and outputs
highly correlated inputs from a non-stationary data distribution	VS.	i.i.d. data samples

Fundamental RL Concepts

Policy π tells the agent which actions to choose, given states

$$a=\pi(s)$$

Goal: Select actions to maximize future reward \triangleq return

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots = \sum_{t'=t}^{T} \gamma^{t'-t} r_{t'}$$

Value function $Q^{\pi}(s, a)$ defines the expected total reward from state s and action a under policy π ("How good is action a in state s?")

$$Q^{\pi}(s, a) = \mathbb{E}\left[R_t|s, a\right] = \mathbb{E}\left[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots \middle|s, a\right]$$

Optimal value function

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

Example: TicTacToe

$$\pi(s) = \begin{cases} \frac{1}{|x|} & \text{if } s = \frac{x \mid x \mid}{|x|} \\ \frac{1}{|x|} & \text{if } s = \frac{x \mid x \mid}{|x|} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ 0 + 0.9 * 0 + \dots + 0.9^5 * \\ \approx 0.59 \end{cases}$$

Let
$$\gamma = 0.9$$

 $R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$
 $= 0 + 0.9 * 0 + \dots + 0.9^5 * 1$
 ≈ 0.59

Bellman Equation and Value Iteration

Optimal value function can be unrolled recursively o **Bellman equation**

$$Q^*(s, a) = \mathbb{E}\left[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots \middle| s, a\right]$$
$$= \mathbb{E}_{s' \sim \mathcal{E}}\left[r + \gamma \max_{a'} Q^*(s', a') \middle| s, a\right]$$

Value iteration algorithms estimate Q^* using iterative Bellman updates

$$Q_{i+1}(s, a) = \mathbb{E}\left[r + \gamma \max_{a'} Q_i(s', a') \middle| s, a\right]$$

This procedure is guaranteed to converge, i.e.

$$Q_i o Q^*$$
 as $i o \infty$

Function Approximators

These tabular methods are highly impractical

- **1** all Q-values are stored seperately \rightarrow **technical challenge** Example: Chess
 - 10⁴⁷ states
 - 35 possible moves/state
 - $ightarrow 10^{47} * 35 * 1$ Byte $pprox 10^{27}$ Zettabytes

(The Internet is 10 Zettabytes)

- ② no generalization over unseen states → "dumb" approach
- \implies use a function approximator to estimate Q!

Contents

- 1 Introduction
- 2 Reinforcement Learning
- 3 Deep Q-Learning
- 4 Demo: Learning to Play Pong
- 6 Conclusions

DQN Idea

Approximate Q by an **ANN** with weights $\theta \to \text{deep Q-network (DQN)}$

$$Q(s,a;\theta) \approx Q^{\pi}(s,a)$$

Loss function = MSE in Q-Values

$$\mathcal{L}(\theta) = \mathbb{E}_{s, a \sim \rho(\cdot); s' \sim \mathcal{E}} \left[\left(\underbrace{r + \gamma \max_{a'} Q(s', a'; \theta)}_{\text{target}} - Q(s, a; \theta) \right)^2 \right]$$

Q-learning gradient

$$abla_{ heta} \mathcal{L}(heta) = \mathbb{E}_{s, a \sim
ho(\cdot); s' \sim \mathcal{E}} \left[\left(r + \gamma \max_{a'} Q(s', a'; heta) - Q(s, a; heta)
ight)
abla_{ heta} Q(s, a; heta)
ight]$$

 \rightarrow Optimize $\mathcal{L}(\theta)$ with $\nabla_{\theta}\mathcal{L}(\theta)$ using **stochastic gradient descent**

DQN Architecture

Stability Issues & Solutions

Standard Q-learning oscillates or diverges when using ANNs

- $\textbf{ 1 Sequential nature of data} \rightarrow \mathsf{non-i.i.d., as successive samples are } \\ \mathsf{(highly) correlated}$
- 2 Policy changes rapidly with slight changes to Q-values \to policy may oscillate and data distribution may swing between extremes

Tweaks DQN uses to stabilize training

- **1 Experience replay**: store agent's experiences $e_t = (s_t, a_t, r_t, s_{t+1})$ in a data set $\mathcal{D} = \{e_1, \dots, e_N\}$, into a *replay memory* \rightarrow apply minibatch updates to samples $e \sim \mathcal{D}$
- **2 Frozen target network**: hold previous parameters θ^- fixed in the Q-learning target when optimizing $\mathcal{L}_i(\theta)$, and update them only periodically, i.e. $\theta^- \leftarrow \theta$

DQN Pseudocode

Algorithm: Deep Q-learning

Initialize Q-function with random weights

for
$$episode = 1, ..., M$$
 do

for
$$t = 1, \ldots, T$$
 do

Choose
$$a_t = \begin{cases} \text{sampled randomly} & \text{with probability } \epsilon \\ \max_a Q^*(s_t, a; \theta) & \text{otherwise} \end{cases}$$

Execute a_t in emulator and observe reward r_t and image s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in \mathcal{D}

Sample random minibatch of transitions (s_j, a_j, r_j, s_{j+1}) from \mathcal{D}

Set
$$y_j = \begin{cases} r_j & \text{for terminal } s_{t+1} \\ r_j + \gamma \max_{a'} Q(s_{j+1}, a'; \theta) & \text{for non-terminal } s_{t+1} \end{cases}$$

Perform a gradient descent step on $(y_j - Q(s_j, a_j; \theta))^2$

end

end

DQN Atari Results

Contents

- 1 Introduction
- 2 Reinforcement Learning
- 3 Deep Q-Learning
- 4 Demo: Learning to Play Pong
- **5** Conclusions

Framework

Goal: Agent that learns how to play Pong, end-to-end

• **input**: raw image frame in form of a $210 \times 160 \times 3$ byte array, i.e.

$$s_t \in \{0, \dots, 255\}^{100.800}$$

• **output**: distribution over actions $\rho(a_t)$ (\rightarrow stochastic policy, i.e., we sample $a_t \sim \rho(a_t)$ in every t), with

$$a_t \in \{\mathsf{UP}, \mathsf{DOWN}\}$$

• \rightarrow game emulator executes a_t and emits s_{t+1} and a **reward**, i.e.,

$$r_t = egin{cases} +1 & ext{if we score a point} \ -1 & ext{if our opponent scores a point} \ 0 & ext{otherwise} \end{cases}$$

Architecture

Policy network: 2-layer fully-connected ANN with 200 hidden nodes

 \rightarrow **Goal**: find optimal weights θ of the policy network

Implementation

Implemented in Python, using only numpy and OpenAl Gym

A toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents everything from walking to playing games like Pong or Go.

```
import gym
env = gym.make("Pong-v0")
s_0 = env.reset()
for _ in range(1000):
    env.render()
    a_t = env.action_space.
   sample()
    s_t1, r_t1, done, info =
   env.step(a_t)
```

Results

Results

Contents

- 1 Introduction
- 2 Reinforcement Learning
- 3 Deep Q-Learning
- 4 Demo: Learning to Play Pong
- **5** Conclusions

Summary

- RL is a general-purpose AI framework, modelled through the agent-environment-loop of actions, states and rewards
- it can solve problems that are difficult for supervised learning, i.e. involving sparse, noisy and delayed rewards and correlated inputs
- the goal of an RL agent is to find the policy maximizing its return
- this can be done by finding the optimal value function, using iterative Bellman updates, which is guaranteed to converge
- as storing Q in a table can be demanding for large problems and disables generalization, function approximators are commonly used
- for example, an ANN can be used to approximate Q, allowing us to optimize Q using standard deep learning techniques
- as this process may oscillate/converge, DQN uses experience replay and a frozen target network to stabilize training

Open Problems and Current Research

Despite the empirical successes, there are still many fundamental **unsolved problems**.

For example, current algorithms

- are bad at long-term planning (i.e. act myopically)
- need a long training time (i.e., have a low data efficiency)
- are unable to understand abstract concepts (i.e. lack a model)

Some state-of-the-art papers (Deep RL Workshop @ NIPS 2016)

- Duan, Yan, et al. RL²: Fast Reinforcement Learning via Slow Reinforcement Learning
- Jaderberg, Max, et al. Reinforcement Learning with Unsupervised Auxiliary Tasks
- He, Frank S., et al. Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening

Now what about AlphaGo?!

Chess	vs.	Go
10 ⁴⁷ states	VS.	10 ¹⁷⁰ states
rule-based	VS.	intuition-based

So how does AlphaGo work?

Deep reinforcement learning + Monte Carlo tree search

→ Silver, David, et al. *Mastering* the game of Go with deep neural networks and tree search. Nature 529.7587 (2016): 484-489.

Thank you for your attention!

References

- Mnih, Volodymyr, et al. *Playing atari with deep reinforcement learning.* arXiv preprint arXiv:1312.5602 (2013).
- Mnih, Volodymyr, et al. *Human-level control through deep reinforcement learning*. Nature 518.7540 (2015): 529-533.
- Sutton, Richard S., and Andrew G. Barto. *Reinforcement learning:* An introduction. Vol. 1. No. 1. Cambridge: MIT press, 1998.
- Karpathy, Andrej. Deep Reinforcement Learning: Pong from Pixels. http://karpathy.github.io/2016/05/31/rl/ (21.01.2017).
- Brockman, Greg, et al. *OpenAl gym.* arXiv preprint arXiv:1606.01540 (2016) and https://gym.openai.com/ (21.01.2017).
- Silver, David. Deep Reinforcement Learning. Tutorial at ICLR (2015), http://www0.cs.ucl.ac.uk/staff/d.silver/web/Resources_files/deep_rl.pdf (21.01.2017).