Introducción al reconocimiento de patrones: Trabajo práctico 2, Preprocesamiento

M. Sc. Saúl Calderón Ramírez Instituto Tecnológico de Costa Rica, Escuela de Computación, bachillerato en Ingeniería en Computación, PAttern Recongition and MAchine Learning Group (PARMA-Group)

28 de agosto de 2018

Fecha de entrega: 11 de Setiembre.

Entrega: Un archivo .zip con el código fuente LaTeX o Lyx, el pdf, y un script en MATLAB, debidamente documentado, con una función definida por ejercicio. A través del TEC-digital.

Modo de trabajo: Grupos de 3 personas.

Resumen

Trabajo práctico basado en el material del curso de *introducción al procesamiento digital de imágenes,* impartido por la Dra. Marta Mejail, en la Universidad de Buenos Aires, Argentina.

1. Aspectos teóricos de la convolución (20 puntos)

- 1. **(5 puntos)** Grafique las siguientes funciones (puede usar *inf* $o \infty$ en los puntos que tienden al infinito):
 - a) $\delta[n_1+2, n_2-3] + 2\delta[n_1, -n_2+2]$
 - b) $s[n_1, n_2] u[n_1, n_2]$ donde:

$$s\left[n_{1},n_{2}\right]=\begin{cases}1 & \text{si }n_{1}=0\\0 & \text{en otro caso}\end{cases} \qquad u\left[n_{1},n_{2}\right]=\begin{cases}1 & \text{si }n_{1}\geq0\land n_{2}\geq0\\0 & \text{en otro caso}\end{cases}$$

c) $\left(\frac{1}{2}\right)^2 t [n_1, n_2] u [-n_1 + 1, -n_2]$ donde:

$$t\left[n_1,n_2\right] = \begin{cases} 1 & \text{si } n_1+n_2=0 \\ 0 & \text{en otro caso} \end{cases} \qquad u\left[n_1,n_2\right] = \begin{cases} 1 & \text{si } n_1 \geq 0 \land n_2 \geq 0 \\ 0 & \text{en otro caso} \end{cases}$$

2. **(5 puntos)** Dada la siguiente señal graficada $x[n_1, n_2]$, escribirla como combinación lineal de funciones impulso (use la propiedad del cedazo).

3. **(5 puntos)** Halle manualmente la convolución discreta x[n]*h[n] de las siguientes señales y grafiquela (muestre el procedimiento completo, como el visto en clase):

4. **(5 puntos)** Demuestre las siguientes propiedades de la convolución, con las funciones $h\left(x\right)$, $u\left(x\right)$, $u_{1}\left(x\right)$, $u_{2}\left(x\right)$ y $a_{1}, a_{2} \in \mathbb{R}$ escalares cualquiera:

- a) Conmutatividad: h(x) * u(x) = u(x) * h(x)
- b) Distributividad: $h\left(x\right)*\left[a_1u_1\left(x\right)+a_2u_2\left(x\right)\right]=a_1h\left(x\right)*u_1\left(x\right)+a_2h\left(x\right)*u_2\left(x\right)$
- c) Invariante a la traslación: $h(x) * u(x x_0) = h(x x_0) * u(x)$

2

2. Filtros lineales (30 puntos)

- 1. Implemente por completo la función de la convolución, la cual tome dos matrices U y F, y tome además como parámetro si se realizará el *padding* de la señal necesario para conservar la dimensionalidad de U.
- 2. Usando la función anterior, pruebe y documente los resultados al utilizar las siguientes máscaras, para una imagen en escala de grises, sin contaminar y con contaminación de ruido aditivo Gaussiano de desviación estandar normalizada $\sigma = 0,0005$ (usando la función *imnoise*):
 - a) (4 puntos) Filtro ideal y Gaussiano: Utilice 3 valores distintos de tamaño de la ventana $N \times N$, N=3, N=5 y N=7, y de desviación estándar $\sigma = \frac{N-1}{4}$. Comente los efectos del tamaño de la ventana, y compare los resultados entre el filtro ideal y el Gaussiano, enunciando las diferencias encontradas.
 - b) (4 puntos) Sobel: Para la detección de bordes horizontales y verticales. Compare el resultado al aplicar el filtro en la imagen con ruido y sin ruido.
 - c) (4 puntos) Prewitt: Para la detección de bordes horizontales y verticales. Compare el resultado al aplicar el filtro en la imagen con ruido y sin ruido y con los resultados obtenidos con el filtro de Sobel.
 - d) (4 puntos) Laplaciano y LoG: El filtro LoG debe recibir la desviación estándar del término Gaussiano. Compare el resultado al aplicar el filtro en la imagen con ruido y sin ruido, y la diferencia entre usar el Laplaciano y el LoG.
 - e) **(10 puntos) Unsharp Masking**: Incorpore como parámetro la ganancia λ y compare el uso de tres valores distintos, tanto para la imagen original como la imagen con ruido Gaussiano.

3. Filtros no lineales (40 puntos)

Para la imagen original, con ruido Gaussiano (2, con desviaciones estándar $\sigma=0.0005$ y $\sigma=0.0025$) e impulsivo (con parámetro d=0.02) implemente y pruebe las siguientes funciones.

- 1. Implemente el Filtro Bilteral **(20 puntos)** y el Filtro de Promediado No Local **(20 puntos)**.
 - a) Para el filtro Bilteral, defina la ventana de $N \times N$ dimensiones con la desviación estándar espacial definida como $\sigma_s = \frac{N-1}{4}$, y reciba además la desviación estándar en el dominio de la intensidad σ_r .
 - b) Para el filtro de promediado no local, reciba la desviación estándar en el dominio de la similitud de vecindarios σ_r . Implemente la variante simplificada sin ventana Gaussiana.

c) Compare los resultados con el filtro Gaussiano, el bilateral y el de promediado no local, usando el PSNR, para la imagen con ruido impulsivo y Gaussiano.

4. Detección de bordes (10 puntos extra)

- 1. Implemente el detector de bordes Laplaciano basado en la varianza local, enunciado en los apuntes del curso.
 - *a*) Implemente el filtro no lineal de varianza local y normalicela de modo que el valor mínimo en la imagen sea 0 y el máximo 255.
 - b) Pruebe la imagen usando la imagen original y con ruido Gaussiano y comente los resultados.