STATS 3001 / STATS 4101 / STATS 7054

Statistical Modelling III

Tutorial 5 2022

Solutions

QUESTIONS:

1. Suppose y_1, y_2, \ldots, y_n are independent Poisson observations, $y_i \sim Po(\mu_i)$ and consider the **linear** regression model

$$\mu = X\beta$$

where X is an $n \times p$ matrix with linearly independent columns and $\boldsymbol{\beta} \in \mathbb{R}^p$ is the vector of unknown parameters.

(a) Write down the log-likelihood

$$\ell(m{\mu};m{y})$$

- (b) Calculate $\frac{\partial \ell}{\partial \mu_i}$.
- (c) Find the matrix of partial derivatives

$$\left[\frac{\partial \mu_i}{\partial \beta_j}\right].$$

(d) Show that the score vector can be expressed as

$$\mathcal{S}(\boldsymbol{\beta}) = \left[\frac{\partial \ell}{\partial \beta_i}\right] = X^T D_{\mu}^{-1} (\boldsymbol{y} - \boldsymbol{\mu})$$

where $D_{\mu} = diag(\mu_1, \mu_2, \dots, \mu_n)$.

- (e) Evaluate the Fisher information matrix.
- (f) Describe the Fisher scoring algorithm.
 - i. State the iterative step of the algorithm to obtain $\hat{\boldsymbol{\beta}}^{(t+1)}$ from $\hat{\boldsymbol{\beta}}^{(t)}$.
 - ii. Suggest a starting value, $\hat{\boldsymbol{\beta}}^{(0)}$.

SOLUTIONS:

(a)

$$\ell(\boldsymbol{\mu}; \boldsymbol{y}) = \log \prod_{i=1}^{n} \frac{e^{-\mu_i} \mu_i^{y_i}}{y_i!}$$
$$= \sum_{i=1}^{n} (y_i \log \mu_i - \mu_i) - \log \prod_{i=1}^{n} y_i!$$

(b)

$$\frac{\partial \ell}{\partial \mu_i} = \frac{y_i}{\mu_i} - 1.$$

(c)

Observe first that

$$\mu = X\beta \Rightarrow \mu_i = \sum_{k=1}^p x_{ik}\beta_k$$

so that

$$\frac{\partial \mu_i}{\partial \beta_j} = \frac{\partial}{\partial \beta_j} \sum_{k=1}^p x_{ik} \beta_k = \sum_{k=1}^p \frac{\partial}{\partial \beta_j} x_{ik} \beta_k = x_{ij}.$$

Hence, we obtain in matrix notation

$$\left[\frac{\partial \mu_i}{\partial \beta_i}\right] = X.$$

(d)

Using the chain rule of multivariable calculus,

$$\frac{\partial \ell}{\partial \beta_j} = \sum_{i=1}^n \frac{\partial \ell}{\partial \mu_i} \frac{\partial \mu_i}{\partial \beta_j}$$

$$= \sum_{i=1}^n \left(\frac{y_i}{\mu_i} - 1 \right) x_{ij}$$

$$= \sum_{i=1}^n \frac{(y_i - \mu_i)}{\mu_i} x_{ij}$$

which is the j^{th} element of

$$X^T D_{\mu}^{-1}(\boldsymbol{y} - \boldsymbol{\mu})$$

(e)

$$\mathcal{S}(\boldsymbol{\beta}) = X^{T}(\boldsymbol{Y} - \boldsymbol{\mu}) \Rightarrow Var(\mathcal{S}(\boldsymbol{\beta})) = X^{T}D_{\mu}^{-1}Var(Y)D_{\mu}^{-1}X$$

and since the Y_i are independent Poisson we have

$$Var(\mathbf{Y}) = diag(\mu_1, \mu_2, \dots, \mu_n) = D_{\mu}.$$

Hence,

$$\mathcal{I}(\boldsymbol{\beta}) = X^T D_{\mu}^{-1} X.$$

(f)

$$\hat{\boldsymbol{\beta}}^{(t+1)} = \hat{\boldsymbol{\beta}}^{(t)} + \mathcal{I}(\hat{\boldsymbol{\beta}}^{(t)})^{-1} \mathcal{S}(\hat{\boldsymbol{\beta}}^{(t)}) = \hat{\boldsymbol{\beta}}^{(t)} + (X^T D_{\hat{\mu}^{(t)}}^{-1} X)^{-1} X^T D_{\hat{\mu}^{(t)}}^{-1} (\boldsymbol{y} - \hat{\boldsymbol{\mu}}^{(t)}).$$

(g)

$$\hat{\boldsymbol{\beta}}_0 = (X^T X)^{-1} X^T \boldsymbol{y}$$