Examen de laboratori d'EC

16 de desembre de 2020 - De 18:05h a 20:00h

INSTRUCCIONS IMPORTANTS:

Baixa els fitxers plantilla de la web d'exàmens

- 1. La imatge Linux que cal usar hauria d'estar precarregada ja quan comences a fer l'examen. Si no ho estigués, cal usar la imatge "**Linux**" que apareix al menú de possibles imatges.
- 2. Entra al teu compte personal amb el teu nom d'usuari d'estudiant.
- 3. Obre el navegador a la pàgina: https://examens.fib.upc.edu
- 4. Clica Accedir a l'aplicació d'exàmens, i autentifica't de nou amb el teu nom d'usuari d'estudiant.
- 5. Busca la pràctica Examen de Laboratori d'EC Quadrimestre tardor 2020/21 Subgrup 41
- 6. Obre el fitxer adjunt **examlab-202021q1-subgrup41.zip**, i extrau els fitxers a la teva carpeta. Comença l'examen.

Resol l'examen

- 1. Posa nom i cognoms a la capçalera dels fitxers següents i que s'han de lliurar de forma individual: matrius.s, crides.s, respostes memoria cache.txt
- 2. No canviis el nom dels fitxers.
- 3. Pots pujar cada fitxer a la web múltiples cops, no esperis a l'últim minut.
- 4. L'avaluació de cada apartat tindrà en compte principalment el seu funcionament correcte. Es practicaran diverses comprovacions, a més a més de la que suggereix el propi enunciat.
- 5. Per executar el simulador escriviu la següent comanda en una finestra de terminal:

Puja les solucions a la web d'exàmens

- 1. Busca al final de la pàgina web el quadre *Lliurar una nova pràctica*, i verifica que la llista desplegable té seleccionada la pràctica: *Examen de laboratori d'EC Quadrimestre tardor 2020/21 Subgrup 41*
- 2. Clica el botó *Browse* i puja d'un en un els fitxers a lliurar amb la solució:

matrius.s, crides.s, respostes_memoria_cache.txt

- 3. Verifica que cada fitxer que has pujat no és un fitxer plantilla buit (comprovant la mida en bytes!) i que els noms són els corresponents a aquest torn d'examen.
- 4. Surt de la sessió que tinguis oberta però NO APAGUIS EL PC.

Problema 1. (3,5 punts)

Donat el següent codi en C, escriu al fitxer matrius.s el programa equivalent en assemblador de MIPS.

Tradueix al fitxer **matrius.s** el codi de main. Les variables globals ja estan declarades i inicialitza-des. Feu servir el registre \$t0 per emmagatzemar las variable i, i \$t1 per emmagatzemar la variable j.

Comprova que al final de l'execució del programa la matriu global MAT conté els valors següents:

```
int MAT[4][4] = { 153, -1, -3, -2, 1, -102, 9, 12, -51, 153, 8, 2, 18, 204, 2, 51};
```

Problema 2. (3,5 punts)

Tradueix a assemblador MIPS en el fitxer **crides.s** el codi de la funció *subr*. Es valorarà fer servir el menor nombre de registres segurs i seguir les regles de l'ABI.

```
short subr(int p0, unsigned char p1, short *p2) {
    short v1; short v2[3]; short v3; short v4;

if (p1 >= 127) {
       v1 = 1; v4 = 2;
    } else {
       v1 = 3; v4 = 4;
    }

v2[0] = *p2;
    v2[1] = *(p2+p0);
    v2[2] = v1;

v3 = suma(v2);

*(p2+3) = v3;

return v3 + v4 + *p2;
}
```

La funció short suma (short v[3]); retorna la suma dels 3 elements del vector passat com a paràmetre. El codi de la subrutina suma ja està programat i no es pot modificar.

Sabent que el programa principal té declarat:

```
short res1, res2;
short vs[10] = { 8, -6, 4, -2, 2, -4, 6, -8, 10, -10};
i que fa 2 crides a subr:
    res1 = subr(1, 0, &vs[0]);
    res2 = subr(2, 255, &vs[2]);
```

Verifica que els resultats que s'obtenen en aquestes dues crides són res1=17 (0x0011) i res2=13 (0x0000). I que el vector global vs al final de l'execució conté els següents valors:

```
short vs[10] = \{ 8, -6, 4, 5, 2, 7, 6, -8, 10, -10 \};
```

Problema 3. (3 punts)

Considera un sistema computador format per un processador MIPS, una memòria principal (MP) i una memòria cache de dades (MC), amb la següent configuració:

- correspondència directa
- mida del bloc: 16 bytes (4 words)
- capacitat: 128 bytes (8 blocs)
- escriptura immediata amb assignació

Considera el següent programa en C (que s'ha traduït a MIPS en el fitxer **codi mem cache.s**):

Suposa que les variables globals V i M s'emmagatzemen en posicions consecutives a partir de l'adreça 0x10010000 i que la MC està inicialment buida. Respon (al fitxer respostes_memoria_cache.txt):

a) (0,5 punts)

Quants blocs ocupa V?

Quants blocs ocupa M?

Quin número de bloc de la cache pot contenir tant elements de V com de M?

Indica quins elements de V i M es mapegen en el mateix número de bloc de la cache:

Elements de V (llista d'elements):

Elements de M (llista d'elements):

b) (1 punt)

Quin és el percentatge d'encert d'aquests programa en aquesta cache:

Quantes fallades de cache són causades per accessos a V per lectura:

Quantes fallades de cache són causades per accessos a M per lectura:

Quantes fallades de cache són causades per accessos a V per escriptura:

c) (0,5 punts)

Quins tipus de localitat tenen els accessos a V (Espacial, temporal, Espacial i temporal):

Quins tipus de localitat tenen els accessos a M (Espacial, temporal, Espacial i temporal):

d) (1 punt)

Suposa que volem millorar la taxa d'encerts sense variar la capacitat total de la cache (128 bytes), solament podem modificar el grau d'associativitat (A) i la llargada del bloc (B).

El mínim nombre de fallades s'obté amb la combinació:

Grau d'associativitat (núm de vies) A:

Mida del bloc (núm de words) B:

Nombre total de fallades:

Quin és el percentatge d'encert d'aquets programa en aquesta nova organització de la cache: