Walmart Sales Prediction

Justin Hilliard, Gus Henry

The Challenge

- Predict sales of weather-sensitive items
- During "significant weather events"
- Given weather data

past sales for various stores

 train.csv - training data, previous sales numbers for each store and day

	Α	В	С	D	
1	date	store_nbr	item_nbr	units	
2	1/1/12	1	1	0	
3	1/1/12	1	2	0	
4	1/1/12	1	3	0	
5	1/1/12	1	4	0	
6	1/1/12	1	5	0	
7	1/1/12	1	6	0	
8	1/1/12	1	7	0	
9	1/1/12	1	8	0	
10	1/1/12	1	9	29	

weather.csv - weather data for each date and station

station_nbr	date	tmax	tmin	tavg	depart	dewpoint	wetbulb	heat	cool
1	1/1/12	52	31	42	M	36	40	23	0
2	1/1/12	48	33	41	16	37	39	24	0
3	1/1/12	55	34	45	9	24	36	20	0
4	1/1/12	63	47	55	4	28	43	10	0
6	1/1/12	63	34	49	0	31	43	16	0
7	1/1/12	50	33	42	M	26	35	23	0
8	1/1/12	66	45	М	M	34	46	M	М
9	1/1/12	34	19	27	M	17	23	38	0
10	1/1/12	73	53	63	M	55	58	2	0

sunrise	sunset	codesum	snowfall	preciptotal	stnpressure	sealevel	resultspeed	resultdir	avgspeed
-	-	RA FZFG BR	М	0.05	29.78	29.92	3.6	20	4.6
716	1626	RA	0	0.07	28.82	29.91	9.1	23	11.3
735	1720		0	0	29.77	30.47	9.9	31	10
728	1742		0	0	29.79	30.48	8	35	8.2
727	1742		0	0	29.95	30.47	14	36	13.8
-	-		0	0	29.15	30.54	10.3	32	10.2
-	-	RA BR	M	0	30.05	M	11	36	10.9
-	-	UP	М	T	29.34	30.09	22.8	30	22.5
723	1738	FG+ FG BR	М	0	30.16	30.19	5.1	24	5.5

key.csv - table linking each store to a weather station

store_nbr	station_nbr
1	1
2	14
3	7
4	9
5	12
6	14
7	6
8	4
9	17
10	12
11	10

test.csv - dates, stores and items on which to test

date	store_nbr	item_nbr
4/1/13	2	1
4/1/13	2	2
4/1/13	2	3
4/1/13	2	4
4/1/13	2	5
4/1/13	2	6
4/1/13	2	7
4/1/13	2	8
4/1/13	2	9
4/1/13	2	10
4/1/13	2	11
4/1/13	2	12
4/1/13	2	13
4/1/13	2	14
4/1/13	2	15

Our Approach

- *k*-nearest neighbors algorithm
- loaded and reformatted data
- partitioned 10% of data for testing
- ran 90% training data through algorithm
- compared results to test data using Root Mean Squared Logarithmic Error

The Algorithm

 Used date, temperature, store, and weather station as predictors

Variable Name	Description	Format	
keyDict	storeKey matched to stationKey	{ 'storeKey' : [['stationKey']] }	
weatherDict	Date matched with weather Data	{ 'stationKey': [['YYYY-MM-DD']] }	
trainDict	Train data with items and date	{ 'YYYY-MM-DD': [['store','item','units']] }	
notedDays	Hash with storekey and the noted days with weather info, 0 not noted days	{ 'storeKey' : [0,0,['YYYY-MM-DD']]}	
trainedPreStoreDict	StoreKey with noted days, features and items	{ 'storeKey' : [['YYYY-MM-DD','storeKey','tempurature','stationKey',i1i111],]	
dataList	noted days array with freatures and item numbers	['DayOfYeay','storeKey','tempurature','stationKey',i1i111]	
testData	10% of the dataList	['DayOfYeay','storeKey','tempurature','stationKey',i1i111]	
trainingData	90% of the dataList	['DayOfYeay','storeKey','tempurature','stationKey',i1i111]	
tempStdev	Standard Deviation of training Data	float	
simDict	score for all 90% train against each day data in 10% test data	{ IndexInTestData : [(Score, [i1i111])] }	
predictedDict	predicted Hash with all predicted items	{ IndexInTestData : [pi1pi111] }	
RSMLEList	list of all the RSMLE across the predicted items	[RSMLE1]	

Judging Prediction Results

Root Mean Squared Logarithmic Error

•
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(p_i + 1) - \log(a_i + 1))^2}$$

- n = number of rows in test set
- p = predicted units sold
- a = actual units sold

Predictions vs. Actual using Date as predictor

Predictions vs. Actual using Temperature as predictor

