

Aluna: Tatielen Rodrigues Dutra Pereira

Matrícula: 12/0136074 **Data:** 08/03/2017

1. O que são sistemas embarcados?

É um sistema microprocessado no qual o computador é encapsulado ou é completamente dedicado ao dispositivo ou sistema que ele controla.

2. O que são sistemas microprocessados?

É um circuito integrado que realiza funções e tomadas de decisão de um computador, são dispositivos multifuncionais programáveis.

3. Apresente aplicações de sistemas embarcados:

Para a indústria automotiva;

Na indústria automotiva os sistemas embarcados podem estar presentes nos sistemas de GPS e navegação, controle de motor e injeção eletrônica, alarmes, sistemas em tempo real como Freios ABS e Air Bag, Painel de instrumento e muitos outros.

Para eletrodomésticos;

Em eletrodomésticos os sistemas embarcados são encontrados em fornos microondas, máguinas de lavar, aparelhos de TV, vídeos games.

Para automação industrial.

Os sistemas embarcados na automação industrial são usados nas áreas de acionamentos elétricos, robótica industrial, Interface homem-máquina, computador de vazão, instrumentos inteligentes e outros.

4. Cite arquiteturas possíveis e as diferenças entre elas.

Algumas arquiteturas possiveis que podem ser utilizadas são ARM, PIC, AVR, Intel 8051, Blackfin. Suas principais características:

ARM: Possui arquitetura Load-Store: as instruções somente processarão valores que estiverem nos registradores e sempre armazenarão os resultados em algum registrador; Formato da instrução com 3 endereços; Instruções fixas de 32 bits de largura; 15 registradores de 32 bits para uso geral; manipulação de periféricos de entrada e saída como dispositivos mapeados na memória com suporte às interrupções; Baixo consumo de energia.

PIC: Utilizam arquitetura Harvard e as palavras possuem tamanhos pouco comuns. No início, instruções de 12 bits incluíam endereço de 5 bits para especificar o operando em memória e destinos de desvios de 9 bits. Posteriormente, adicionaram-se bits aos códigos de operações - os chamados opcodes - permitindo adicionar bits para endereços.

AVR: Possui arquitetura Harvard modificada onde possui o programa e os dados armazenados em sistemas de memórias físicas separados e aparecem em diferentes espaços de endereços mas possuem habilidade de ler os itens da memória do programa usando instruções especiais.

Intel 8051 – Possui CPU de 8 bits otimizada para aplicações de controle; possui memória interna de programa de 4kbytes; possui memória interna de dados de

128bytes; conta com 2 contadores programáveis de 16 bits e 1 porta serial full duplex; 32 linhas de entrada e saída; RAM interna endereçável bit-a-bit; 64kbytes para a memória externa de programa; 64kbytes para memória externa de dados. Blackfin: microprocessadores de 16 e 32 bits que possuem como diferencial um processador de sinal digital (DSP) embutido utilizado para processar áudio e vídeo. Esse processador permite um consumo de menor energia juntamente com um alto desempenho.

5. Por quê usamos o MSP430 na disciplina, ao invés de outro microcontrolador? Porque o microcontrolador MSP430 possui muitos recursos de hardware necessários para um iniciante na área embarcada. Esse microcontrolador é conhecido pelo seu baixíssimo consumo elétrico, podendo ser alimentado por bateria, possui uma arquitetura de RISC de 16 bits podendo trabalhar a uma frequência interna de até 16 MHz. As principais características são soquete DIP (Dual In line Package) com suporte a encaixe de microcontroladores de 14 e 20 pinos, uma interface USB que permite debug e programação dos chips MSP430, um botão programável (tipo push button), um led SMD de sinalização de POWER ON, um botão de reset e 14 pinos de I/O programáveis. Ele também possui um pequeno porte e baixo custo. Para programar o microcontrolador é usado a plataforma energia que é baseada na plataforma do Arduino, o que torna a programação mais fácil, pois quase todos os estudantes da matéria já utilizaram essa ferramenta.