

Environmental Product Declaration

In accordance with 14025 and EN15804 +A2

H-vinduet+ toppsving, 90mm profil

Eier av deklarasjonen :

H-fasader Stette AS

Produkt navn:

H-vinduet+, toppsving, 90 mm profil

Dekarert enhet:

1 stk toppsving vindu med 3-lags glass og målene 1,23 m x 1,48m

Produktkategori / PCR:

NPCR Part A: 2021 Construction products and services Ver 2. NPCR 014:2021 Part B for Windows and doors. EN 17213:2020 PCR for Windows and doors

Programoperatør og utgiver:

Næringslivets Stiftelse for Miljødeklarasjoner

De klar a sjonsnummer:

NEPD-5672-4939-NO

Registrering snummer:

NEPD-5672-4939-NO

Utgivelsesdato: 08.01.2024 Gyldig til: 08.01.2029

The Norwegian EPD Foundation

Generell informasjon

Produkt:

H-vinduet+ toppsving 90mm profil

Programoperatør:

Næringslivets Stiftelse for Miljødeklerasjoner Postboks 5250 Majorstuen 0303 Oslo

Tlf: +47 23 08 80 00 e-post: post@epd-norge.no

Deklarasjonsnummer:

NEPD-5672-4939-NO

Deklarasjon er basert på PCR:

NPCR Part A:2021 Construction products and services Ver 2. NPCR 014:2021 Part B for Windows and doors. EN 17213:2020 PCR for Windows and doors

Erklæring om ansvar:

Eiern av deklarasjonen skal være ansvarlig for den underliggende informasjon og bevis. EPD-Norge skal ikke være ansvarlig med hensyn til produsent informasjon. Livsløpsvurdering data og bevis

Deklarert enhet:

1 stk toppsving vindu med 3-lags glass og målene $1.23 \text{ m} \times 1.48 \text{m}$

Funksjonell enhet:

1 stk toppsving vindu med 3-lags glass og målene 1,23 m x 1,48m og en referanselevetid på 40 år, fra vugge til grav.

Verifikasjon

Uavhengig verifikasjon av data, annen miljøinformasjon og EPD er foretatt etter ISO 14025:2010

internt eksternt

Sign

Juli Wie Stubbad

Julie Lyslo Skullestad Uavhengig verifikator godkjent av EPD Norge

Eier av deklarasjonen:

H-fasader Stette AS

Kontakt person: Eva Furevik Tlf: +47 47266840

e-post: eva.furevik@hfasader.no

Produsent:

H-fasader Stette AS

Produksjonssted:

Siauliai, Litauen

Kvalitet/Miljøsystem:

NDVK-sertifisert (Norsk dør- og vinduskontroll

Org. No:

852072202

Godkjent dato: 08.01.2024

Gyldig til: 08.01.2029

Årstall for studien:

2022

Sammenlignbarhet:

EPD av byggevarer er nødvendigvis ikke sammenlignbare hvis de ikke samsvarer med NS-EN 15804 og ses i en bygningskontekst

Miljødeklarasjonen er utarbeidte av:

Kristine Bjordal og Jill Saunders, Asplan Viak AS

Godkjent

Daglig Leder av EPD-Norge

Hakon Hayan

Produkt

Produktbeskrivelse:

Toppsving vindu for yttervegg med 3-lags glass og PVC-karm. Vinduet kan svinges 180 grader rundt.

Produktspesifikasjon:

Materialer	kg	%
3-lags glassinnsats	41,74 kg	51,7 %
Karm og ramme i PVC	21,41 kg	26,5 %
Stålkomponenter	17,24 kg	21,4 %
Gummipakning	0,30 kg	0,4 %
Plast	0,01 kg	0,0 %
Totalvekt vindu	80,7 kg	100 %
Treemballasje	4,62 kg	
Stålembalasje	0,09 kg	
Plastemballasje	0,08 kg	
Pappembalasje	0,17 kg	
Totalvekt vindu med emballasje	85,7 kg	

Tekniske data:

U-verdi for referansestørrelse: 0,79 (W/m2K).

Kan fås i kundetilpassede størrelser. Godkjent iht. NDVK standard.

Markedsområde:

Norge

Levetid:

40 år

LCA: Beregningsregler

Deklarert Enhet:

1 stk toppsving vindu med 3-lags glass og målene $1,23 \text{ m} \times 1,48 \text{m}$ og en referanselevetid på 40 år fra vugge til grav.

Datakvalitet:

Datakvaliteten overholder retningslinjene for bruk av generisk og spesifikk data angitt i EN 15804 og ISO 14044. Dataen som er brukt er representativ med hensyn på tidsmessige, geogafiske og teknologiske forhold.

Data for energiforbruk, materialforbruk, transport av råmaterialer og avfallshåndtering er hentet for H-fasaders produksjon i 2021 og ble samlet inn i 2022 og 2023. Generisk data er fra Ecoinvent v.3.9og SimaPro v 9.5.0.1. All generisk data er < 10 år gammel. Karakteriseringsfaktorer iht. EN15804:2012 + A2 2019.

Allokering:

Allokering av energi, vann og avfall er allokert likt mellom alle produkter ut fra produksjonen basert på mengden produsert. Oppstrøms produksjon av råmaterialer er allokering som standard i databasen ecoinvent v3.9.

Systemgrenser:

A1-A3, A4, A5, B1-B6, C1-C4, D

Cut-off kriterier:

Alle viktige råmaterialer og all viktig energibruk er inkludert. Produksjonsprosessen for enkelte råmaterialer og energistrømmer som inngår med veldig små mengder (<1%) er ikke inkludert. Opptak og utslipp av biogent karbon beregnes i henhold til NS-EN 16485:2014. Denne tilnærmingen er basert på modulatritetsprinisippet i EN 15804: utslipp skal telles i modelen der det faktisk forekommer. Beregning av biogent karboninnhold og konvertering til karbondioksid er gjord i henhold til NS-EN 16449:2014.

LCA: Scenarier og annen teknisk informasjon

Følgende informasjonen beskriver scenariene for modulene i EPDen

Transport fra produksjonssted til bruker (A4)

Туре	Kapasitetsutnyttelse inkl. retur (%)	Kjøretype	Distanse KM	Brennstoff/ Energiforbruk	Verdi (l/t)		
Lastebil 16- 32 t	36,67 % (ecoinvent prosess)	Euro 5	776	0,03 l/tkm	9,4 l/t		
Ferje		Sea ferry	283				

Det er beregnet lastebil transport fra H-fasader sin fabrikk i Litauen til terminal i Oslo med 476 km, og videre transport til en byggeplass i Norge med en avstand på 300 km iht. PCR.

Byggefase (A5)

	Enhet	Verdi
Hjelpematerialer	Kg	0
Vannforbruk	m3	0
Elektrisitetsforbruk	kWh	0
Andre energikilder	MJ	0
Materialtap	Kg	0
Materialer fra avfallsbehandling	Kg	5,0
Støv i luften	kg	0

Vinduene kommer klare for installasjon. Forbruk av skruer og festemateriell skal iht. PCR for vinduer beregnes ved LCA av selve bygningen og er dermed utelatt her. Energibruk for installasjonen er derfor heller ikke tatt med. Modulen deklarerer avfall fra emballasje og behandling av denne, inkludert transport.

Bruk (B1)

Produktet krever ingen ressurser eller forårsaker ingen utslipp i bruk, annet enn det som dekkes av vedlikehold og utskiftning i B2 og B4. B1 er derfor satt til 0.

Vedlikehold (B2)/Reparasjon (B3)

	Enhet	Verdi
Vaskemiddel	Liter	9
Vannforbruk	Liter	180
Smøreolje	kg	0,3
Utskiftning av glassinnsats etter 30 år	stk	1

Vedlikehold etter H-fasader sin FDV. PVC materialet er vedlikeholdsfritt og av den grunn ser man bort fra vedlikehold av knyttet til interiør og eksteriør. NPCR 014 krever at det beregnes vask 3 ganger årlig med såpe og vann. Det er forutsatt at det brukes 1,5 dl vaskemiddel og 3 liter vann per vindu per år. PCR EN 17213:2020 krever også at det medregnes utskifting av glassinnsatsen for alle produkter med levetid lenger enn 30 år.

Utskiftning (B4)/Renovering (B5)

	Enhet	Verdi
Utskiftingsfrekvens*	år	40
Utskiftning hele vinduet	Stk	0,5

For hele vinduet må det beregnes utskifting i år 40. Det gir et vindusforbruk på totalt 1,5 vinduer i løpet av byggets levetid på 60 år, dvs. 0,5 ekstra vindu ila 60 år.

Sluttfase (C1, C3, C4)

	Enhet	Verdi
Farlig avfall	kg	0
Blandet avfall	kg	80,70
Hvorav gjenbruk	kg	0
Hvorav resirkulering	kg	9,82
Hvorav energigjenvinning	kg	21,73
Hvorav deponert	kg	49,15

I likhet med montering i A5 er det ikke beregnet aktiviteter for demontering i C1. Vinduer skal behandles som blandet avfall og antas forbrent med energigjenvinning. Noe av metallet er antatt hentet ut av asken for resirkulering. Aske, glass og øvrig restmateriale antas deponert i C4.

Transport avfallsbehandling (C2)

-	0 (
Туре	Kapasitetsutnyttelse inkl. retur (%)	Kjøretype	Distanse KM	Brennstoff/ Energiforbruk	Verdi (l/t)
Lastebil 16-32 t	36,7 % (Ecoinventprosess)	Euro 5	50	0,03 L / tkm	1,5 L/t

Det er antatt at avfallet transporteres 50 km til avfallsmottaket.

Gevinst og belastninger etter end levetid (D)

	Enhet	Verdi
Erstattet levert elektrisitet	26	MJ
Erstattet levert fjernvarme	745	MJ
Netto nytt stålskrap	8,54	kg

Eksportert energi erstatter norsk fjernvarmemiks og elektrisitetsmiks. Alle konverteringsfaktorer for virkningsgrader og tap fra avfall til levert energi er medregnet.

Det antas at skrapstålet erstatter et globalt snitt for skrapstål. For denne skrapfraksjonen er det antatt at skrapet erstatter råmaterialer med samme verdi, og det trengs ingen verdikorreksjonsfaktor. For aluminium er det forutsatt at skrapet erstatter jomfruelig produsert aluminium med en verdikorreksjonsfaktor på 0,7.

LCA: Resultater

Resultater vises per vindu på 1,23 x 1,48 m.

Systemgrenser (X = inkludert, MID = modul ikke deklarert, MIR = modul ikke relevant)

		Sammer fa:		Bruksfase					Sluttfase				Gevinst og belastninger etter endt levetid				
Råmaterialer	Transport	manspore	Tilvirkning	Transport	Sammensetning	Bruk	Vedlikehold	Reperasjon	Utskiftninger	Renovering	Operasjonell energiforbruk	Operasjonell vannbruk	Demontering	Transport	Avfallsbehandling	Avfall til sluttbheandlign	Gjenbruk-gjenvinning- resirkulering-potensiale
A:	l A	2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
X	X	ζ.	X	X	X	X	X	X	X	X	MIR	MIR	X	X	X	X	X

Kjerneindikatorer for miljøpåvirkning

rijernen	jernemarkatorer for miljøpavi		111111111111111111111111111111111111111							
Indikator	Enhet	A1-A3	A4	A5	В2	В4	C2	С3	C4	D
GWP-total	kg CO2 ekv.	1,67E+02	1,58E+01	7,33E+00	9,14E+01	1,22E+02	6,73E-01	5,22E+01	2,02E-01	-2,00E+01
GWP- fossil	kg CO2 ekv.	1,77E+02	1,58E+01	2,82E-01	9,16E+01	1,23E+02	6,71E-01	5,21E+01	2,00E-01	-1,81E+01
GWP- biogent	kg CO2 ekv.	- 1,07E+01	3,23E-02	7,05E+00	-5,04E-01	-1,76E+00	1,77E-03	1,04E-01	1,75E-03	-1,88E+00
GWP- LULUC	kg CO2 ekv.	2,19E-01	8,14E-03	4,46E-05	2,84E-01	1,16E-01	2,63E-04	3,59E-03	4,50E-05	-1,44E-02
ODP	kg CFC11 ekv.	1,79E-05	3,16E-07	4,51E-09	1,83E-06	9,51E-06	1,55E-07	5,57E-07	9,90E-08	-9,05E-08
AP	mol H ⁺ ekv.	1,05E+00	1,27E-01	1,73E-03	6,91E-01	5,99E-01	2,72E-03	1,89E-02	1,96E-03	-6,47E-02
EP- ferskvann	kg PO4 ekv.	6,68E-03	1,11E-04	1,42E-06	2,92E-03	3,42E-03	4,70E-06	4,65E-05	1,27E-06	-1,87E-04
EP-marint	kg N ekv.	1,87E-01	3,57E-02	7,99E-04	1,18E-01	1,16E-01	8,11E-04	7,37E-03	7,39E-04	-1,64E-02
EP- terrestris k	mol N ekv.	2,22E+00	3,90E-01	8,97E-03	1,38E+00	1,36E+00	8,96E-03	8,00E-02	8,13E-03	-1,73E-01
POCP	kg NMVOC ekv.	7,32E-01	1,26E-01	2,48E-03	4,23E-01	4,44E-01	2,74E-03	2,16E-02	2,33E-03	-5,65E-02
ADP- M&M	kg Sb ekv.	1,24E-03	4,27E-05	2,91E-07	5,73E-04	6,47E-04	2,33E-06	1,15E-05	3,90E-07	-1,39E-04

ADP-fossil	MJ	2,52E+03	2,13E+02	1,27E+00	1,21E+03	1,39E+03	1,01E+01	2,75E+01	6,47E+00	-1,86E+02	
WDP	m³	7,23E+01	7,79E-01	1,84E-02	2,42E+01	3,66E+01	2,94E-02	1,22E-01	2,00E-02	-1,74E+02	

GWP Globalt oppvarmingspotensial; GWP-fossil: Globalt oppvarmingspotensial fosile brensler; GWP-biogent: Globalt oppvarmingspotensial biogene kilder; GWP-LULUC: Globalt oppvarmingspotensial arealbruk endringer i bruk av arealer; ODP Potensial for nedbryting av stratosfærisk ozon; AP Forsurningspotensial for kilder på land og vann; EP Overgjødslingspotensial til ferskvann, hav og jord; POCP Potensial for fotokjemisk oksidantdanning; ADP-M&M Abiotisk utarmingspotensial for ikke-fossile ressurser; ADP-fossil Abiotisk utarmingspotensial for fossile ressurser; WDP Utarmingspotensial for vannressurser

Supplerende indikatorer for miljøpåvirkning

Indikator	Enhet	A1-A3	A4	A5	B2	B4	C2	C3	C4	D
PM	Sykdoms- tilfeller	1,16E-05	8,84E-07	1,67E-08	6,94E-06	6,42E-06	4,64E-08	2,73E-07	4,25E-08	-2,45E-06
IRP	kBq U235 ekv.	6,40E+00	9,57E-02	9,62E-04	2,57E+00	3,33E+00	4,40E-02	9,98E-02	2,78E-02	3,30E+02
ETP-fw	CTUe	1,36E+03	1,12E+02	1,75E+00	7,38E+02	8,23E+02	7,91E+00	1,63E+02	3,59E+00	-3,54E+01
НТР-с	CTUh	3,68E-07	6,86E-09	1,44E-09	7,81E-08	1,94E-07	2,56E-10	1,18E-08	8,18E-11	-1,09E-08
HTP-nc	CTUh	3,74E-06	1,81E-07	5,78E-09	1,29E-06	2,03E-06	8,30E-09	1,13E-07	1,70E-09	-4,38E-07
SQP	Dimensjo nsløs	9,48E-02	1,29E-02	3,05E-04	5,42E-02	5,58E-02	3,44E-04	3,02E-03	2,84E-04	-7,64E-03

PM: Partikkelutslipp; **IRP:** Ioniserende stråling (helseeffekt); **ETP-fw:** Økotoksisitet (ferskvann); **HTP-c:** Toksisitet påvirkning på mennesker, kreft; **HTP-nc:** Toksisitet påvirkning på mennesker, andre effekter enn kreft; **SQP:** Påvirkninger knyttet til arealbruksendringer / jordkvalitet

Klassifisering av forbehold knyttet til erklæring av kjerne- og supplerende indikatorer for miljøpåvirkning

ILCD klassifisering	Indikator	Forbehold
	Globalt oppvarmingspotensial (GWP)	Ingen
ILCD type / level	Potensial for nedbryting av stratosfærisk ozon (ODP)	Ingen
	Potensial for sykdomstilfeller kynntet til partikkelutslipp (PM)	Ingen
	Forsurningspotensial for kilder på land og vann (AP)	Ingen
	Overgjødslingspotensial til hav (EP-marine)	
ILCD type / level 2	Overgjødslingspotensial til jord (EP-terrestrial)	Ingen
	Potensial for fotokjemisk oksidantdanning (POCP)	Ingen
	Ioniserende stråling (helseeffekt); relativt til U235 (IRP)	1
	Abiotisk utarmingspotensial for ikke-fossile ressurser (ADP-minerals&metals)	2
	Abiotisk utarmingspotensial for fossile ressurser (ADP-fossil)	2
ILCD type / level 3	Utarmingspotensial for vannressurser (WDP)	2
	Økotoksisitet (ferskvann) (ETP-fw)	2
	Toksisitet påvirkning på mennesker, kreft (HTP-c)	2

Toksisitet påvirkning på mennesker, andre effekter enn kreft (HTP-nc)	2
Påvirkninger knyttet til arealbruksendringer / jordkvalitet (SQP)	2

Forbehold 1 – Denne påvirkningskategorien omhandler hovedsakelig den eventuelle effekten av lavdose ioniserende stråling på menneskers helse i atombrenselsyklusen. Den tar ikke hensyn til effekter på grunn av mulige atomulykker, yrkesmessig eksponering eller på grunn av fjerning av radioaktivt avfall i underjordiske anlegg. Potensiell ioniserende stråling fra jorda, fra radon og fra noen byggematerialer måles heller ikke av denne indikatoren.

Forbehold 2 – Resultatene av denne miljøpåvirkningsindikatoren skal brukes med forsiktighet ettersom usikkerheten til resultatene er høy eller det er begrenset erfaring med bruk av indikatoren

Ressursbruk

Indikator	Enhet	A1-A3	A4	A5	В2	B4	C2	C3	C4	D
RPEE	MJ	3,06E+02	2,98E+00	3,59E-02	2,54E+02	1,55E+02	1,43E-01	1,23E+00	1,32E-01	-2,98E+02
RPEM	MJ	7,94E+01	0,00E+00	0,00E+00	0,00E+00	3,97E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00
TPE	MJ	3,85E+02	2,98E+00	3,59E-02	2,54E+02	1,95E+02	1,43E-01	1,23E+00	1,32E-01	-2,98E+02
NRPE	MJ	2,07E+03	2,13E+02	1,27E+00	1,20E+03	1,16E+03	1,01E+01	2,75E+01	6,47E+00	-1,86E+02
NRPM	MJ	4,51E+02	0,00E+00	0,00E+00	1,19E+01	2,25E+02	0,00E+00	0,00E+00	0,00E+00	0,00E+00
TRPE	MJ	2,52E+03	2,13E+02	1,27E+00	1,21E+03	1,39E+03	1,01E+01	2,75E+01	6,47E+00	-1,86E+02
SM	kg	7,86E+00	0,00E+00	0,00E+00	0,00E+00	3,93E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00								
NRSF	MJ	0,00E+00								
W	m^3	1,28E+00	2,61E-02	2,48E-03	8,89E-01	6,64E-01	1,06E-03	1,45E-02	7,76E-03	-9,29E-01

RPEE Fornybar primærenergi brukt som energibærer; RPEM Fornybar primærenergi brukt som råmateriale; TPE Total bruk av fornybar primærenergi; NRPE Ikke fornybar primærenergi brukt som energibærer; NRPM Ikke fornybar primærenergi brukt som råmateriale; TRPE Total bruk av ikke fornybar primærenergi; SM Bruk av sekundære materialer; RSF Bruk av fornybart sekundære brensel; NRSF Bruk av ikke fornybart sekundære brensel; W Netto bruk av ferskvann

Livsløpets slutt - Avfall

Indikator	Enhet	A1-A3	A4	A5	B2	B4	C2	C3	C4	D
HW	KG	2,89E+00	4,82E-03	2,21E-02	4,72E+01	3,04E+01	5,16E-04	5,79E+01	2,02E-04	-2,34E-02
NHW	KG	4,26E+01	8,75E+00	7,11E-02	1,33E+01	5,01E+01	5,21E-01	1,23E+00	4,71E+01	-1,24E+00
RW	KG	4,36E-03	6,11E-05	6,25E-07	1,89E-03	2,33E-03	6,86E-05	1,33E-04	4,36E-05	-2,05E-04

HW Avhendet farlig avfall; NHW Avhendet ikke-farlig avfall; RW Avhendet radioaktivt avfall

Livsløpets slutt – Utgangsfaktorer

Indikator	Enhet	A1-A3	A4	A5	В2	B4	C2	C3	C4	D
CR	kg	0,00E+00								
MR	kg	1,66E+00	0,00E+00	1,75E-01	1,75E-01	5,74E+00	0,00E+00	9,82E+00	0,00E+00	0,00E+00
MER	kg	3,27E+00	0,00E+00	1,06E+01	1,06E+01	1,25E+01	0,00E+00	2,17E+01	0,00E+00	0,00E+00
EEE	MJ	0,00E+00								

ETE MJ 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00

CR Komponenter for gjenbruk, MR Materialer for resirkulering, MER Materialer for energigjenvinning, EEE Eksportert elektrisk energi; ETE Eksportert termisk energi

Leseeksempel: $9.0 \text{ E}-03 = 9.0*10^{-3} = 0.009$

Informasjon om innholdet av biogent karbon ved port

Innhold av biogent karbon	Enhet	Verdi
Innhold av biogent karbon i produkt	kg C	0
Innhold av biogent karbon i den medfølgene emballasjen	kg C	2,3

Norske tilleggskrav

Lokasjonsbasert bruk av elektrisitet i produksjonsfasen

Nasjonal produksjonsmiks fra import, medium spenning (produksjon av overføringslinjer, i tillegg til direkte utslipp og tap i nettet) av anvendt elektrisitet i produksjonprosessen (A3).

Najonalt strømnett	Data kilde	Forgrunn / kjerne [kWh]	GWP _{total} [kg CO2 - eq/kWh]	SUM [kg CO2 - eq]
Electricity, medium voltage {LT} market for Cutoff, U	Ecoinvent v3.9	19,68	0,501	9,86

Opprinnelsesgarantier for strøm brukt i produksjonsfasen

Opprinnelsesgarantier brukes ikke i produksjonsfasen, og derfor rapporteres kun restmiksen for Litauen etter markedsbasert rapportering.

Elektrisitetskilde	Forgrunn / kjerne [kWh	GWP _{total} [kg CO2 -eq/kWh]	SUM [kgCO2 -eq]
Residual mix electricity used in the foreground	19,68	0,699	13,76

Residualmiksen er basert på datasettet *Electricity, medium voltage {LT}| electricity, medium voltage, residual mix | Cut-off, U* fra Ecoinvent v3.9, og det er basert på statistikk fra AIB (2022).

Ytterligere indikatorer for miljøpåvirkning nødvendig i NPCR Part A for construction products

For å øke tydeligheten av biogent karbonbidrag til klimapåvirkning, kreves indikatoren GWP-IOBC da den erklærer klimapåvirkninger beregnet i henhold til prinsippet om øyeblikkelig oksidasjon. GWP-IOBC er også referert til som GWP-GHG i sammenheng med svensk lov om offentlige anskaffelser.

Indikator	Enhet	A1-A3	A4	A5	B2	B4	C2	C3	C4	D
GWP- IOBC	kg CO2 ekv.	1,74E+02	1,58E+01	-2,38E-01	9,14E+01	1,22E+02	6,73E-01	5,22E+01	2,02E-01	-2,00E+01

GWP-IOBC Globalt oppvarmingspotensial beregnet etter prinsippet om umiddelbar oksidasjon.

Farlige stoffer

Erklæringen er basert på referanse til terskelverdier og/eller testresultater og/eller sikkerhetsdatablad levert til EPD-verifikatorer. Detaljer tilgjengelig på forespørsel til EPD-eier.

Produktet inneholder ingen stoffer fra REACH Kandidatliste eller den norske
prioritetslisten

Produktet inneholde stoffer som er under 0,1 vekt% på REACH Kandidatliste eller den
norske prioritetslisten.

- □ Produktet inneholde stoffer fra REACH Kandidatliste eller den norske prioritetslisten, se tabell under Spesifikke norske krav.
- □ Produktet inneholder ingen stoffer på REACH Kandidatliste eller den norske prioritetslisten. Produktet kan karakteriseres som farlig avfall (etter Avfallsforskiften, Vedlegg III), se tabell under.

Navn	CAS no.	Mengde

Inneklima

Det er ikke gjort tester på produktet med hensyn til inneklima. Dette er ikke relevant.

Klimadeklarasjon

Det er ikke utarbeidet klimadeklarasjon for produktet.

Bibliografi

NS-EN ISO 14025:2010 Miljømerker og deklarasjoner - Miljødeklarasjoner type III -

Prinsipper og prosedyrer.

NS-EN ISO 14044:2006 Miljøstyring - Livsløpsvurderinger - Krav og retningslinjer

NS-EN 15804:2012+A2:2019 Bærekraftig byggverk - Miljødeklarasjoner - Grunnleggende

produktkategoriregler for byggevarer

ISO 21930:2007 Bærekraftige bygninger og anlegg - Grunnleggende

produktkategoriregler for miljødeklarasjoner for byggevarer og

tjenester

NDVK (2019) Norsk dør- og vinduskontroll – Krav til vinduer og ytterdører.

Regler for tildeling av merkerett.

Ecoinvent v 3.9 https://ecoinvent.org/

EPD-Norge 2022 NPCR Part A:2021 Construction products and services

EPD-Norge 2022 NPCR 014:2021 v.4 Part B for windows and doors

EN 17213:2020 Windows and doors – Environmental Product Declarations –

Product category rules for windows and pedestrian doorsets

Simapro v 9.5.0.1 LCA-software produced by Pré Sustainability.

SSB (2020) Tabell 04727 Fjernvarmebalanse (GWh), etter fjernvarme, statistikkvariabel og

år. For år 2020

SSB (2022) Tabell 04730 Forbruk av brensel til bruttoproduksjon av fjernvarme (GWh),

etter energitype, statistikkvariabel og år. For år 2020

SSB (2022) Tabell 09469 Nettoproduksjon av fjernvarme, etter varmesentral,

statistikkvariabel og år. For år 2020

Bjordal and Saunders (2023) LCA Report for H-fasader Statte AS products.

H-fasader Stette AS (2022) Bill of materials – data collection.

Raadal et al. (2009) Klimaregnskap for avfallshåndtering. Fase I og II:

Glassemballasje, metallemballasje, papir, papp, plastemballasje, våtorganisk avfall, treavfall og restavfall fra husholdninger. ISBN:

82-8035-073-X.

epd-norge Global program operator	Programoperatør	tlf	+47 23 08 80 00
	Næringslivets Stiftelse for		
	Miljødeklarasjoner		
	Postboks 5250 Majorstuen, 0303 Oslo	e-post:	post@epd-norge.no
	Norge	web	www.epd-norge.no
epd-norge Global program operator	Utgiver av deklarasjonen	tlf	+47 23 08 80 00
	Næringslivets Stiftelse for		
	Miljødeklarasjoner Postboks 5250 Majorstuen, 0303 Oslo	e-post:	post@epd-norge.no
	Norge	web	www.epd-norge.no
III fasader	Eier av deklarasjonen	tlf	+47 70217400
	H-fasader Stette AS	Fax	
	Stette næringsområde 15	e-post:	marked@hfasader.no
	Norge	web	www.hfasader.no
asplan viak	Forfatter av livssyklusrapporten	tlf	+47 417 99 417
	Kristine Bjordal og Jill Saunders	Fax	
	Asplan Viak AS	e-post:	asplanviak@asplanviak.no
	Kjørboveien 20, 1337 Sandvika	web	www.asplanviak.no
ECO PLATFORM VERIFIED	ECO Platform ECO Portal	web web	www.eco-platform.org ECO Portal

EPD for the best environmental decision

