R Shortcuts for Statistics

Useful commands

which()	filter data frame or factor by creating a filter list
table(df)	number of entries for each value in dataframe
prop.table	table in terms of probabilities
str(df)	Type of variables present at df
mean(factor/df)	means of dataframe columns or factor
sd(factor/df)	standard deviation of dataframe columns or factor
paste0	concatenate strings
Levels	return levels of attributes

<u>Tests</u>

1 CSUS		~
Name	Use Case	Comments
acf()		
dwtest()		
shapiro.test()	Test if data is normally	
	distributed	
t.test()		
chisq()		
varTest()		
cor(df[,c(4,1:3)],method="pearson")		Numeric
		Insights
		Parametric
		version for
		normal-
		like
cor(df[,c(4,1:3)],method="spearman")		Numeric
		Insights
		Non
		Parametric
cor.test(df\$prestige,df\$income,method	Test Hypothesis to test whether	Inferential
="pearson")	my population rho equals 0 or	
, , , , , , , , , , , , , , , , , , ,	not	
cor.test(df\$prestige,df\$income,method=	Test Hypothesis to test whether	
"spearman",data=df)	my population rho equals 0 or	
opeaa yaata a.y	not	

Question	Solution
Is serial correlation present?	acf(df\\$cal) library(lmtest) dwtest(df\\$cal~1)
Determine univariant severe outliers.	See Excel
Multivariate Outliers:	See Excel, then:

	<pre>abline(h=res.mout\$cutoff, lwd=2, col="red") abline(v=res.mout\$cutoff, lwd=2, col="red")</pre>			
Using EDA which are the most associated variables with the numeric response variable? Use also FactoMineR profiling tools at	<pre>llmout <- which((res.mout\$md > res.mout\$cutoff) & (res.mout\$rd > res.mout\$cutoff));llmout df[llmout,] res.mout\$md[llmout] df\$mout <- 0 df\$mout[llmout] <- 1 df\$mout <- factor(df\$mout, labels = c("MvOut.No","MvOut.Yes")) See Excel for FactoMineR EDA: plot(df[,c(TARGET_VAR,EXPLAIN_VARS)]) cor(df[,c(TARGET_VAR, EXPLAIN_VARS)],</pre>			
99% significance level	method="spearman	,	1—!!	"\T\
determine the most relevant global associations at 99% CI for categorial Target var.	See Excel	3:8)], met	nod="sp€	earman"), is.corr=T)
Say Something about distribution that was assumed. Graphical and inferential	graphical hist(df\$cal,30) hist(log(df\$cal),30)		Inferent shapiro	tial .test(log(df\$cal))
Num_var variate dispersion behavior according to the categ_var. numeric, graphics and inferential	Graphical Boxplot(num_var~cat_var, data = df)	Inferenti See Exce correct t 33)	el for	Numerical tapply(df\$cal, df\$brand, sd)
Num_var variate mean behavior according to the cat_var. numeric, graphics and inferential	Boxplot(cal~brand, data = df)	See Exce correct t 26)		tapply(df\$cal, df\$brand, mean)
which brands show a remarkable difference in mean behavior among them. Use one-sided tests	pairwise.wilcox.test(df\$cal, df\$brand, alternative="less") pairwise.wilcox.test(df\$cal, df\$brand, alternative="greater")			
test at the 1% level the null hypothesis that the population standard deviation is not larger than 0.15cal against the alternative that it is	tapply(df\$cal,df\$brand,sd) table(df\$brand) ss <- 0.16362880 # H0: sigma^2= 0.15^2 H1: sigma > 0.15^2 Normal population (n-1)ss^2/sigma^2 ~ X2(n-1) # (n-1)ss^2/sigma^2			
	chi<-(29-1)*(ss^2)/(1-pchisq(chi,28) # p Or			an not be rejected

	varTest(df[which(df\$brand == "A"),]\$cal,
	alternative="greater", conf.level =0.99, sigma.squared = 0.15^2)
99% upper threshold for the	varTest(x, sigma.squared=0.15^2,
number of calories for brand	alternative="less",conf.level=0.99)
A population variance.	sqrt(variance) to obtain standard deviation
Normal distribution for	
calories is assumed to hold.	
Build a 99% confidence	ll <- which(df\$brand %in% c("A","C"))
interval for the difference in	dff <- df[ll,]
the mean of 100 g calories	
between brands A and C.	t.test(dff\$cal~dff\$brand, conf.level=0.99) – used to create
Assume that equal variances	confidence interval
in the population calories per	fligner.test(dff\$cal,dff\$brand, conf.level=0.99) – used to
brand does not hold	check if variances are the same
	$t.test(dff\$cal\sim dff\$brand, conf.level=0.99, var.equal = T)$
Out of 100 people, 60 prefer	prop.test(60, n=100, p=0.5, conf.level=0.99, correct=F)
A to C. Determine a 99%	
confidence interval for the	
population proportion that	
favors A in front of C. Test	
the null hypothesis that	
selecting A and C has equal	
probability.	(400,410)
Determine a 99% confidence	prop.test(c(60,110), n=c(100,200), conf.level=0.99,
interval for the difference in	correct=F, alternative="greater")
the population proportion	
that favors A in front of C	
accounting the two surveys.	
Test the null hypothesis that	
selecting A brand has a lower	
probability in the second of	
the surveys	