CSCE 221 — Data Structures and Algorithms

Notes taken by Lukas Zamora

Spring 2019

Arrays, Linked Lists, and Recursion

Conduction of Heat in a 1-Dimensional rod, boundary conditions, equilibrium temperature distribution, heat condition in 2 or 3 dimensions. [1,3]

Introduction to Analysis of Algorithms

Linearity, heat equation with zero temperatures at finite ends, orthogonality of functions, Laplace's equation; solutions and qualitative properties. [4]

Stacks and Queues

Statement of Convergence Theorem, Fourier cosine and sine series, term-by-term differentiation of Fourier series, term-by-term integration of Fourier series, complex form of Fourier series. [5]

Vectors, Lists, and Sequences

Vertically vibrating string, boundary conditions, vibrating string with fixed ends, vibrating membrane, reflection and refraction of electromagnetic and acoustic sound waves.

Trees and Search Trees

Characteristics for first order wave equations, method of characteristics for first order PDEs, one-dimensional wave equation, a vibrating string of fixed length, many quasilinear PDEs, semi-infinite strings and reflections. [7,10]

Priority Queues, Heaps

Heat equation on an infinite domain, Fourier transform pair, inverse Fourier transform, convolution theorem. [8]

Dictionaries, Hashing

Green's functions for boundary value problems for ODEs, method of eigenvalue expansion, nonhomogeneous boundary conditions. [9]

Sorting, Sets and Selection

Green's functions for boundary value problems for ODEs, method of eigenvalue expansion, nonhomogeneous boundary conditions. [11]

Text Compression

Green's functions for boundary value problems for ODEs, method of eigenvalue expansion, nonhomogeneous boundary conditions. [12.4]

Graphs

Green's functions for boundary value problems for ODEs, method of eigenvalue expansion, nonhomogeneous boundary conditions. [13]

Contents

1 The Heat Equation

4

1 The Heat Equation