Instructions: Please **show all work** (partial credit will be given for correct work, even if your answer is wrong).

- 1. (15 points) Let $\mathbf{u} = \langle 5, 3 \rangle$ and $\mathbf{v} = \langle -1, 2 \rangle$. Write your answers in component form.
 - a) 3v =
 - b) u + 2v =
 - c) $\mathbf{u} \cdot \mathbf{v} =$
- 2. (5 points) Find the angle between the vectors $\mathbf{u} = \langle 5, 3 \rangle$ and $\mathbf{v} = \langle -1, 2 \rangle$.

Angle = _____

3. (10 points) Eliminate the parameter t from the following parametric equations. For your answer, write y in terms of x.

a)
$$x = t - 1$$
$$y = t^2 + 4t$$

 $y = \underline{\hspace{1cm}}$

b)
$$x = 3\cos(t)$$

 $y = 3\sin(t)$

4. (15 points) Steven shoots and makes a basket from a horizontal distance of d=10 ft from a basketball hoop. The basketball has initial velocity $v_0=20$ ft/s and an initial angle of $\theta=50^{\circ}$.

a) What is the component of the initial velocity in the vertical y-direction v_{0_y} ?

b) After what length of time t has the ball traveled a horizontal distance of d = 10 ft?

$$t =$$

c) What is the height h of the basketball above where it was shot (see diagram above) at the time t you found in part (b)? Hint: remember that the height of a flying object is given by $y = -16t^2 + v_{0y}t + y_0$.

$$h = \underline{\hspace{1cm}}$$

5.	(5 points) Convert the equation $r \sec(\theta) = 3$ to rectangular form (using only
	x and y). Write your answer in the standard form for a circle $(x-a)^2 + (y-a)^2 + (y$
	$(b)^2 = c^2$, where a, b, and c are constants.

Rectangular form:

6. (5 points) Show that the graph of the polar equation $r=1+2\cos(\theta)$ is symmetric across the x-axis, using a symmetry test.

7. (10 points) True or false? (circle your answer)

a) If \mathbf{u} and \mathbf{v} are vectors, then $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

 \mathbf{T} or \mathbf{F}

b) If \mathbf{u} and \mathbf{v} are vectors, then $|\mathbf{u}||\mathbf{v}| = \mathbf{u} \cdot \mathbf{v}$

 ${f T}$ or ${f F}$

- c) If \mathbf{u} and \mathbf{v} are nonzero vectors, then \mathbf{u} and \mathbf{v} are parallel if and only if $\mathbf{u} \cdot \mathbf{v} = 0$.
- d) The polar coordinates $(2, -\frac{\pi}{2})$ and $(-2, \frac{5\pi}{2})$ are the same point.

 \mathbf{T} or \mathbf{F}

- e) The distance between any two points in polar coordinates (r_1, θ_1) and (r_2, θ_2) is $|r_1 r_2|$. **T** or **F**
- 8. (10 points) The graph of $r = 5\sin(2\theta) + 1$ is shown below. What are the lengths of the petals l_1 and l_2 ?

 $l_1 =$ ______

 $l_2 =$ ______