NASA Technical Paper 2753

November 1987

Effect of Empennage Arrangement on Single-Engine Nozzle/Afterbody Static Pressures at Transonic Speeds

William P. Henderson and James R. Burley II

(NASA-TP-2753) EFFECT OF EMPENNAGE

ARRANGEMENT ON SINGLE-ENGINE

NOZZLE/AFTERBODY STATIC PRESSURES AT

TRANSONIC SPEEDS (NASA) 230 p Avail: NTIS

HC A11/MF A01 CSCL) A HI/C 2 0 106 154

NASA Technical Paper 2753

1987

Effect of Empennage Arrangement on Single-Engine Nozzle/Afterbody Static Pressures at Transonic Speeds

William P. Henderson and James R. Burley II

Langley Research Center Hampton, Virginia

Scientific and Technical Information Division

Summary

An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empennage arrangement on single-engine nozzle/afterbody static pressures. Tests were conducted at Mach numbers from 0.60 to 1.20, nozzle pressure ratios from 1.0 (jet off) to 8.0, and angles of attack from -3° to 9° (at jet-off conditions), depending on Mach number. Three empennage arrangements (aft, staggered, and forward) were investigated. Extensive measurements were made of static pressure on the nozzle/afterbody in the vicinity of the tail surfaces.

The results of this study indicate that, for the isolated nozzle/afterbody, high negative pressure coefficients which act on the aft facing slopes of the nozzle/afterbody are evident at Mach numbers above 0.90. At supersonic speeds, shock-induced flow separation is present on the nozzle. The effects of the empennage on the nozzle/afterbody static pressure distributions are not limited to regions close to the tail surface but extend completely around the nozzle/afterbody. At a Mach number of 0.90 and 0.95, the configuration with the aft-located empennage had the lowest pressure coefficients (highest local velocities) on the afterbody. As the empennage is moved closer to the nozzle at supersonic speeds, the shock-induced flow separation causes a reduction in the pressure coefficients over the nozzle. At subsonic speeds (Mach number less than or equal to 0.95), placing the horizontal and vertical tails at the same longitudinal location causes a channeling effect on the flow and results in increased negative pressure coefficients. Thus, the configuration with the staggered empennage represents the configuration with the lowest unfavorable flow effects. At supersonic speeds (Mach number of 1.20), the results show that moving the horizontal and vertical tails away from the nozzle reduces the adverse empennage interference.

Introduction

Past experimental investigations (refs. 1 through 3) on a typical single-engine fighter aft end have shown the vertical and horizontal tails to be the major contributors to the nozzle/afterbody drag problem. During these investigations, the drag penalty was found to be especially acute when the nozzle operated in a closed-down (dry power) mode and when the tail surfaces were in an aft empennage arrangement. Moving the vertical and horizontal tails forward away from the nozzle greatly reduced the transonic drag rise and lowered the overall configuration drag. These results were deduced from force mea-

surements on the aft end of the model and limited pressure measurements on the nozzle. The extent of the interference caused by the tails and its effects could not be determined because of a lack of detailed pressure measurements in the vicinity of the tails. For this reason, the present investigation was undertaken to obtain the detailed pressure distributions over the nozzle, afterbody, and empennage that are necessary to develop an understanding of the flow interactions associated with afterbody/empennage integration. In addition, there is a tremendous need for very detailed, highly accurate pressure data on simple configurations for use in validating new computational methods. (See refs. 4 through 6.) This study provides these data on a very simple axisymmetric nozzle/afterbody configuration with horizontal and vertical tails.

The investigation was conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0.60 to 1.20. Over 300 static pressures were measured on the surface of the model in the vicinity of the tails while nozzle pressure ratio and angle of attack were varied at each Mach number. Three empennage arrangements (aft, staggered, and forward) were investigated with a typical dry power convergent-divergent nozzle installed.

Symbols

The symbols used in the computer-generated tables in the appendix are given in the second column.

b	В	span (root to tip excluding root filler) of baseline tail surface (used for both vertical and horizontal tails), in.
C_p		static-pressure coefficient, $\frac{p_{\ell}-p_{\infty}}{q_{\infty}}$
C_p^*		pressure coefficient for sonic flow
\boldsymbol{c}	\mathbf{C}	airfoil local chord, in.
l	L	model length, in.
M		free-stream Mach number
NPR		nozzle pressure ratio, $p_{t,j}/p_{\infty}$
p_l		local static pressure, psi
p_t	PTO	free-stream total pressure, psi
$p_{t,j}$		jet total pressure, psi
p_{∞}	PO	free-stream static pressure, psi
q_{∞}	QO	free-stream dynamic pressure, psi
R		radius of afterbody or nozzle, in.
\boldsymbol{x}	X	axial distance, in.

y distance from root (excluding root filler) to row of pressure

orifices on horizontal or vertical tails, in.

 α ALPHA model angle of attack, deg

 ϕ PHI meridian angle about model

axis, positive in counterclockwise direction when facing upstream,

deg

Abbreviations:

Fwd forward

L.E. leading edge

Sta. station

Stag staggered

Apparatus and Methods

Wind Tunnel

The experimental investigation was conducted in the Langley 16-Foot Transonic Tunnel, a single-return atmospheric tunnel with a slotted octagonal test section and continuous air exchange. The Mach number in the test section can be varied from 0.20 to 1.30. A complete description of this facility and its operating characteristics can be found in reference 7.

Support System and Model

A sketch of the sting-strut-supported singleengine model is presented in figure 1. This type of support system places the model centerline on the centerline of the wind tunnel and minimizes support interference on the afterbody and nozzle. Photographs of the model installed in the test section of the Langley 16-Foot Transonic Tunnel are shown in figure 2. A complete description of the model support system can be found in reference 7.

The overall model arrangement, representing a typical single-engine fighter aft end, is composed of four major parts located as shown in the following table:

Part	x, in.	x/l
Forebody	0-40.89	0-0.57
Afterbody	40.89-64.89	0.57-0.91
Nozzle	64.89-71.70	0.91-1.00
Tail surfaces	Variable	Variable

The forebody consists of an ogive nose 24 in. in length with an initial angle of 14° and a constantradius cylinder thereafter. The afterbody was designed to simulate closure ahead of the nozzle typical of a single-engine fighter configuration. The afterbody had provisions for mounting the vertical and horizontal tails at two different axial locations (forward and aft). The geometric details of the tail surfaces are presented in figure 3. The tail surfaces were tested in three empennage arrangements: aft, staggered, and forward. Figure 4 illustrates the relative position of the tails for the three empennage arrangements. In addition, the model was tested with all tails removed. The external shape of the afterbody and nozzle is presented in figure 5. The nozzle used for this investigation simulated a variable geometry (fixed in dry power mode for this test), convergentdivergent, axisymmetric nozzle typical of those currently in use on modern fighter aircraft. A complete description of this nozzle can be found in reference 1.

Instrumentation

Static pressure was measured on the afterbody and nozzle at the orifice locations shown in figure 5. Additional orifices were located on the left side of the vertical tail and on the horizontal tails as shown in figure 3. Jet total pressure $p_{t,j}$ was measured upstream of the nozzle throat as shown in figure 1. Jet total temperature was maintained at approximately 530°R throughout the entire investigation.

The forces and moments acting on the model were not measured during this investigation but have been extensively measured and documented in previous tests (refs. 1, 2, and 3).

Tests, Corrections, and Accuracy

Data were obtained at Mach numbers 0.60, 0.90, 0.95, and 1.20. At each Mach number, nozzle pressure ratio NPR was varied while angle of attack α was held constant at 0°. The effect of angle of attack was obtained only at a nozzle pressure ratio NPR of 1.00 (jet off). The NPR was varied from 1.0 to 8.0, and the angle of attack was varied from -3° to 9° , depending on Mach number. Reynolds numbers based on the model length for this study are as follows:

M	Reynolds number						
0.60	1.80×10^7						
0.90	2.24×10^7						
0.95	2.30×10^7						
1.20	2.40×10^7						

To ensure a turbulent boundary layer over the model, a 0.15-in-wide transition strip of No. 100 Carborundum grit was fixed at 0.82 and 0.63 in. from the leading edges of the vertical and horizontal tails, respectively, and at 2.25 in. from the model nose. Model angle of attack was measured by an attitude sensor mounted in the nose of the model.

The accuracy of the pressure coefficients is estimated to be within the following limits:

M	C_p
0.60	±0.0170
0.90	±0.0100
0.95	±0.0096
1.20	±0.0082

The accuracy of α is ± 0.02 .

Data Reduction

All data for both the model and wind tunnel were recorded simultaneously by computer and stored on magnetic tape. Fifty frames of data taken at a rate of 10 frames per second were averaged for each data point; these average values were used to compute steady-state results. All the data obtained in this study are presented as the variation of pressure coefficient C_p over the afterbody and empennage. These pressure coefficient data are presented in tabulated form in the appendix and in plotted form in the data figures.

Presentation of Results

All the aerodynamic data taken during this study are presented graphically in the figures in the form of pressure coefficient on the nozzle/afterbody and empennage of each configuration. The major results of this investigation are presented in the following figures:

	Fi	gu	re
Effect of model support system on pressure			
coefficients at two meridian angles for			
body alone at $M = 0.95$ and			
NPR = 1.0 (jet off)			6
Effect of nozzle pressure ratio on nozzle/afterbody			
pressures at $\alpha \approx 0^{\circ}$ for—			
Body alone			7
Body with horizontal and vertical			
tails in aft location			8
Body with horizontal and vertical			
tails in forward location			9
Body with horizontal tails in aft location and			
vertical tail in forward location			10

Effect of angle of attack on nozzle/afterbody	
pressures at NPR ≈ 1.0 for —	
Body alone	11
Body with horizontal and vertical tails	
in aft location	12
Body with horizontal and vertical tails	
in forward location	13
Body with horizontal tails in aft location and	
vertical tail in forward location	14
Effect of empennage arrangement on nozzle/afterbody	
pressure coefficients at NPR = 1.0 and $\alpha = 0^{\circ}$ for—	
$\phi=18^{\circ}$	15
$\phi=72^{\circ}$	16
Effect of empennage arrangement on pressure	
coefficients at NPR = 1.0 and $\alpha = 0^{\circ}$ on—	
Horizontal tails	17
Vertical tail	18
Comparison of calculated and experimental pressure	
coefficients at $\alpha = 0^{\circ}$ on nozzle/afterbody for—	
Body alone	19
Staggered tails configuration	20
Drag coefficient due to various	
empennage arrangement	21

Results and Discussions

The primary emphasis in this investigation was on determining the effects of nozzle pressure ratio, angle of attack, and empennage arrangement on the pressure distributions over a single-engine nozzle/afterbody configuration. The basic data are presented graphically in figures 7 to 18 and tabulated in the appendix. Comparisons of the experimental data with theoretical calculations are presented in figures 19 and 20.

Strut Interference Effects

The model used in this study was mounted on a strut support system in the Langley 16-Foot Transonic Tunnel. (See fig. 1.) It would be expected from looking at this installation that the strut located on the bottom of the model may adversely affect the pressure coefficients on the model lower However, as indicated by the data of figures 6 and 7, the pressure coefficients on the nozzle/afterbody are not significantly affected by the presence of the strut support system. At an angle of attack of 0° the largest effect noted, as one would expect, is at the stations closest to the strut. (See data for x/l = 0.7 in fig. 6(a).) At lifting conditions, $\alpha = 3^{\circ}$, the strut system again appears to have only small effects on the pressure coefficients. (Compare lower surface pressure coefficients at $\alpha = -3^{\circ}$ with upper surface pressure coefficients at $\alpha = 3^{\circ}$ in fig. 6(b).) Based on these results it is believed that the pressure coefficient data obtained on the model

at $\alpha=0^{\circ}$ are relatively free of adverse strut interference effects.

Nozzle/Afterbody Configuration

Varying nozzle pressure ratio does not significantly alter the pressure distributions over the isolated nozzle/afterbody (body alone) at the lower test Mach numbers. (See fig. 7.) At supersonic speeds (fig. 7(a)), a local shock wave appears to be present on the nozzle at a fuselage station x/l of about 0.95 and causes flow separation. As the pressure ratio is increased, this shock wave moves forward on the nozzle increasing slightly the area of flow separation. The data of reference 3 (summarized in fig. 21) indicated that the drag coefficient for the isolated nozzle/afterbody is fairly constant up to a Mach number of 0.90. At the higher Mach numbers, the drag increases significantly. At a Mach number of 0.95 (compare figs. 7(b) and (d), for example) the increased drag is probably due to the higher local velocities (area of supersonic flow) in the area around the start of the nozzle (x/l = 0.91). These higher negative pressure coefficients acting on the rearwardfacing surface area of the nozzle act to increase the drag coefficient. At supersonic speeds, M = 1.2, the high drag is caused (compare figs. 7(a) and (d)) by the shock-induced flow separation on the nozzle itself which prevents any pressure recovery over the last 25 percent of the nozzle boattail.

Increasing the angle of attack at subsonic speeds for the isolated nozzle/afterbody (fig. 11) tends to increase the pressure coefficients (reduce local velocities) on the upper surface of the model and decrease the pressure coefficients (increase local velocities) on the lower surface of the model, particularly near the start of the nozzle boattail. At supersonic speeds, the effect of angle of attack is extremely small, which is not surprising since the highest angle of attack at this Mach number was less than 6°.

Nozzle/Afterbody/Empennage Configurations

The effect of nozzle pressure ratio on the pressure distributions over the nozzle/afterbody with the empennage in various arrangements at an angle of attack of approximately 0° is presented in figures 8 through 10. In general, the results show forward movement of a shock wave on the nozzle with increasing NPR at supersonic speeds and some increase in pressure coefficients at the nozzle exit at subsonic speeds. Although there is a small effect of nozzle pressure ratio on these pressure distributions, there is a significant effect of the empennage on the nozzle/afterbody pressure coefficients. The pressure distributions show that the local airflow velocity over

the afterbody decreases at the leading edge of the empennage surface and then increases around the empennage surface resulting in slightly lower (more negative) static pressure coefficients at the nozzle exit for M > 0.90. (Compare fig. 7 with fig. 8 or 16.) In addition, for the aft tails arrangement the flow expansion around the empennage results in a higher local velocity (lower negative pressure coefficients) at the start of the nozzle boattail than occurs with the tails off. At all Mach numbers of this investigation, the effects of the empennage are not limited to the regions close to the tail surfaces but extend completely around the nozzle/afterbody. The magnitude of these effects is small at the lower Mach numbers (for M = 0.60, compare figs. 7(d) and 8(d)) but increase as the Mach number increases (for M = 0.95, compare figs. 7(b) and 8(b)).

The drag data of references 1 to 3 and figure 21 indicate that adding the empennage can cause significant interference effects on the nozzle/afterbody. depending on the empennage configuration and test Mach number. At the lower Mach numbers (M =0.50 from ref. 3), the interference drag is extremely small with the aft tails arrangement having the highest level. Comparing the data of figure 7(d) with 8(d) for M = 0.60 (empennage is off in fig. 7(d) and on in fig. 8(d)) would tend to confirm this low level of interference drag. The results at M = 0.60 presented herein indicate that although the tails caused an acceleration of the flow over the afterbody, the local velocities are still subsonic and no indication of flow separation is present. At a Mach number of 0.95, however (compare figs. 7(b) and 8(b)), the empennage caused a large increase in velocities over the aft portion of the afterbody and forward portion of the nozzle (x/l = 0.82 to 0.92) which results in the formation of a shock wave at about x/l = 0.92 and flow separation over much of the nozzle (pressures on the nozzle are less positive than on the body alone). (See data for $\phi = 72^{\circ}$, for example.) These high negative pressure coefficients acting on the rearwardfacing projected area of the nozzle/afterbody along with the absence of pressure recovery on the nozzle (flow separation) cause the high level of interference drag shown in references 1 to 3.

The effect of angle of attack on the pressure distributions over the nozzle/afterbody is presented in figure 12 for the configuration with the tails in the aft location, in figure 13 for the configuration with the tails in the forward location, and in figure 14 for the configuration with the tails in the staggered location. (See fig. 4 for model sketches.) Increasing angle of attack significantly affects the pressure coefficients over the afterbody. These effects, as indicated previously, are not limited to the area around the

empennage but extend completely around the afterbody. Increasing angle of attack increases the local velocity on model surfaces located above the upper surface of the horizontal tails ($\phi = 0^{\circ}$ to 72°) and lowers the velocities on model surfaces below the horizontal tails ($\phi = 108^{\circ}$ to 180°).

At a Mach number of 0.60, increasing angle of attack significantly alters the pressure coefficient distributions over the model afterbody with very little effect on the pressures over the nozzle (particularly at roll angles greater than 18°). (See figs. 12(d), 13(d), and 14(d).) At roll angles which are essentially located behind the vertical tail ($\phi = 0^{\circ}$ and 18°) there is a significant effect of angle of attack on the nozzle pressure distribution. The effect of angle of attack on the level of interference drag is believed to be relatively small, since the flow data generally show no evidence of flow separation on the nozzle/afterbody.

At the higher Mach numbers (M > 0.60), the angle-of-attack effects are not limited to the model afterbody but extend aft on to the nozzle. (For example, see figs. 12(a) and (b).) Increasing α generally results in lower local pressure coefficients which increase the total drag. Although the effect of α on the nozzle pressure coefficients is large for the aft-mounted empennage arrangement (fig. 12), it is somewhat reduced as the tail surfaces are moved forward away from the nozzle. (See fig. 13.)

Effect of Empennage Arrangement

In references 1 and 3 and figure 21, the aerodynamic force data showed that the staggered tails configuration in general has the lowest interference drag at high subsonic speeds and the aft tails configuration the highest interference drag. At supersonic speeds (M=1.20), the aft tails configuration still has the highest interference drag, but now the forward tails configuration has the lowest interference drag.

At M=0.90, the pressure data show that the configuration with the aft-tail arrangement has the higher local velocities on the afterbody at the start (x/l=0.91) of the nozzle boattail. (Compare figs. 8(c) and 10(c) and see figs. 15(a) and 16(a).) This region of supersonic flow with large negative pressure coefficients acting on the rearward-facing slopes may cause the drag increase identified in reference 3 even though the pressures on the aft part of the nozzle are slightly higher (more positive). The largest negative pressure coefficients on the aft tails configuration are located in the region between the horizontal and vertical tails ($\phi=0^{\circ}$ to 90°); this indicates some channeling effect of the airflow.

At a Mach number of 0.95, the pressure coefficient data indicate (compare figs. 8(b) and 10(b)) essentially the same results as for M = 0.90, except

that a shock wave at x/l = 0.92 causes some flow separation on the nozzle for the aft tails arrangement, and this results in higher interference drag.

At M=1.20, the major area of adverse empennage effects appears to be located on the nozzle. (Compare figs. 8(a) and 9(a) and see figs. 15(b) and 16(b).) As the empennage is moved closer to the nozzle, the shock-induced flow separation causes larger negative pressure coefficients over the nozzle. These reduced pressures acting on the rearward-facing slopes of the nozzle probably result in the increased drag noted in reference 3 for the aft tails configuration.

Empennage Pressure Coefficients

The effect of empennage arrangement on the horizontal tail and vertical tail pressure coefficients at jet-off conditions is summarized in figures 17 and 18, respectively. At the inboard station (y/b = 0.10), the pressure coefficients over the horizontal tails in the staggered empennage configuration at subsonic speeds are approximately the same as for the other two empennage arrangements, whereas at the more outboard span station (y/b = 0.20), the velocities over the staggered empennage horizontal tails are significantly lower except near the tail leading edge. These data would seem to indicate that at the inboard station, the local flow may be dominated by afterbody/horizontal tail juncture effects. For the outboard station, however, the data would seem to indicate that when the tail surfaces are aligned (located at the same afterbody station) there is some channeling (meeting of the pockets of supersonic flow on each tail surface) of the air flow between the tail surfaces which causes the higher local velocities indicated by the pressure coefficient data. This is evident in the pressure distribution over the vertical tail (fig. 18), which shows a shock wave formed on the aft and forward tails configuration and none on the staggered tails configuration. It is evident that the high empennage interference drag increments at subsonic speeds for the aft and forward tails configurations are due to the high negative pressures in the region of supersonic flow, which are acting on the rearward-facing projected area of the model afterbody and the wave drag. At M = 1.20, the pressure coefficient characteristics are nearly the same for all empennage configurations studied, possibly indicating that the interference drag is primarily associated with the effect of the empennage on the flow over the afterbody and nozzle.

Comparison of Calculated and Experimental Results

The experimental data obtained in this investigation are compared with the results calculated

by two theoretical methods in figures 19 and 20. The first theoretical method is a viscous-inviscid interaction method known as RAXJET (refs. 5 and 6), which is used to calculate the pressure distributions over an isolated nozzle/afterbody. interaction method subdivides the flow about the In general nozzle/afterbody into several regions. these regions include (1) the essentially inviscid external flow, (2) the boundary-layer flow over the nozzle surfaces, (3) the essentially inviscid jet exhaust, and (4) the mixing layer between the jet exhaust and the external stream. The boundary-layer growth effects are accounted for by using an effective surface determined by adding the boundary-layerdisplacement thickness to the body geometry. RAX-JET attempts to solve the flow field by patching together solutions for the flow in each of these regions. This type of jet flow field modeling has proven to be very accurate for isolated boattail geometries. The second method is a full-potential finite-volume transonic code called FLO-30V (ref. 5), which is used to calculate the pressure distributions over the nozzle/afterbody including the effects of the empennage. In this code an integral boundary-layer calculation is performed in strip fashion. The resulting effective body and tails are used as input to the code. This developmental code utilizes the method of Caughey and Jameson which is based upon the full potential equation and a mesh generation technique which wraps a C-type grid around the body and tails. Further discussion of the methods used in these calculations and of the comparisons of calculations with experimental data can be found in reference 8.

A comparison of the experimental data for the nozzle/afterbody configuration with the calculations by using the RAXJET code is presented in figure 19. The results indicate that the calculations compare reasonably well with the experimental data at subsonic speeds. There is some discrepancy in the comparison at the model station just downstream of the start of the nozzle (x/l = 0.91) and at the nozzle exit. This difference is possibly caused either by grid resolution or the inadequacy of the boundary-layer calculation to accurately predict viscous effects. At M = 1.20, the nozzle external flow is dominated by shock-induced flow separation, and therefore, the calculations would not be expected to yield good agreement over the nozzle itself because the method does not contain a separation model.

The calculated results from FLO-30V for the staggered empennage arrangement at subsonic speeds are compared with the experimental data in figure 20. The staggered tails arrangement was chosen because the results presented herein and in references 1 and 3 show that the empennage interference effects were less for this configuration than for the other configurations studied, and it was believed that a better agreement could be obtained. The calculated results show reasonably good agreement with the experimental data at the lowest test Mach number (M = 0.60). At the higher subsonic test Mach numbers (fig. 20(c) for M = 0.95), the discrepancy between the experiment and theory becomes significant. The major reason for the discrepancy could probably be attributed to the approximations made to model the vertical tails and the lack of a model of the wake of the vertical tail. The FLO-30V calculations do account for viscous effects, but the boundary layers on the body and tail were computed separately as twodimensional elements so that the influence of the empennage is not included in the afterbody boundarylayer calculations. As a result, the FLO-30V calculation shows some influence of the empennage on nozzle/afterbody pressures but fails to predict the severity of the interference effects.

Conclusions

An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empennage arrangement on single-engine nozzle/afterbody static pressures. Tests were conducted at Mach numbers from 0.60 to 1.20, nozzle pressure ratios from 1.0 (jet off) to 8.0, and angles of attack from -3° to 9° , depending on Mach number. Three empennage arrangements (aft, staggered, and forward) were investigated. The results of this study indicate the following conclusions:

- 1. For the isolated nozzle/afterbody, high negative pressure coefficients which act on the rearward-facing slopes of the nozzle/afterbody are evident at Mach numbers above 0.90. At supersonic speeds, shock-induced flow separation is present on the nozzle.
- .2. The effects of the empennage on nozzle/afterbody pressure coefficients are not limited to the regions close to the tail surfaces but extend completely around the nozzle/afterbody.
- 3. At a Mach number of 0.90 and 0.95, the configuration with the aft-located horizontal and vertical tails had the lowest (most negative) pressure coefficients (highest local velocities) on the afterbody.
- 4. As the empennage is moved closer to the nozzle at supersonic speeds, the shock-induced flow separation causes a reduction in the pressure coefficients over the nozzle.
- 5. At subsonic speeds (Mach number less than or equal to 0.95), placing the horizontal and vertical tails at the same longitudinal location causes a channeling effect on the flow resulting in increased

negative pressure coefficients. The configuration with the staggered tails represents the configuration with the lowest unfavorable flow effects.

6. At supersonic speeds (Mach number equal to 1.20), the results show that moving the horizontal and vertical tails away from the nozzle reduces the unfavorable flow effects.

NASA Langley Research Center Hampton, VA 23665-5225 July 30, 1987

References

- Berrier, Bobby L.: Effect of Nonlifting Empennage Surfaces on Single-Engine Afterbody/Nozzle Drag at Mach Numbers From 0.5 to 2.2. NASA TN D-8326, 1977.
- Burley, James R., II; and Berrier, Bobby L.: Investigation of Installation Effects on Single-Engine Convergent-Divergent Nozzles. NASA TP-2078, 1982.

- Burley, James R., II; and Berrier, Bobby L.: Effects of Tail Span and Empennage Arrangement on Drag of a Typical Single-Engine Fighter Aft End. NASA TP-2352, 1984
- 4. Wilmoth, Richard G.; and Putnam, Lawrence E.: Subsonic/Transonic Prediction Capabilities for Nozzle/Afterbody Configurations. AIAA-84-0192, Jan. 1984.
- Putnam, Lawrence E.; and Bissinger, N. C.: Results of AGARD Assessment of Prediction Capabilities for Nozzle Afterbody Flows. AIAA-85-1464, July 1985.
- Wilmoth, Richard G.: RAXJET: A Computer Program for Predicting Transonic, Axisymmetric Flow Over Nozzle Afterbodies With Supersonic Jet Exhausts. NASA TM-83235, 1982.
- Peddrew, Kathryn H., compiler: A User's Guide to the Langley 16-Foot Transonic Tunnel. NASA TM-83186, 1981.
- 8. Burley, James R., II; Carlson, John R.; and Henderson, William P.: Experimental and Numerical Results for a Generic Axisymmetric Single-Engine Afterbody With Horizontal and Vertical Tails at Transonic Speeds. NASA TM-87755, 1986.

Appendix

Tabulated Pressure Distributions

The tabulated pressure distributions are presented in tables A1 through A32 as follows:

Effect of nozzle pressure ratio on p	ore	ess	ur	e d	list	ril	ou'	tio	ns	fo	r-	_										
Body alone at—																						
$M = 1.20 \text{ and } \alpha = 0.010^{\circ}$.							:															A 1
$M = 0.95 \text{ and } \alpha = 0.010^{\circ}$.																						A3
$M = 0.90 \text{ and } \alpha = 0.009^{\circ}$.																						$\mathbf{A5}$
$M = 0.60 \text{ and } \alpha = 0.010^{\circ}$.																						A7
Aft tails configuration at—																						
$M = 1.20 \text{ and } \alpha = 0.025^{\circ}$.																						A9
$M = 0.95 \text{ and } \alpha = 0.024^{\circ}$.																						A11
$M = 0.90 \text{ and } \alpha = 0.017^{\circ}$.																						A13
$M = 0.60 \text{ and } \alpha = 0.030^{\circ}$.																•						A15
Forward tails configuration at—	-																					
																						A17
																						A19
																						A21
$M = 0.60 \text{ and } \alpha = 0.009^{\circ}$.																						A23
Staggered tails configuration at-																						
																						A25
																						A27
																						A29
																	•	•	٠			A31
Effect of angle of attack on pressu	re	$_{ m di}$	stı	rib	uti	ion	ıs :	for	<u>:</u> —	-												
Direct of angle of actors on pressu																						
Body alone at—																						
Body alone at— $M = 1.20$ and NPR = 1.037																						A2
Body alone at— $M = 1.20$ and NPR = 1.037 $M = 0.95$ and NPR = 1.115				•																		A 4
Body alone at— $M = 1.20$ and NPR = 1.037 $M = 0.95$ and NPR = 1.115 $M = 0.90$ and NPR = 1.111																						A4 A6
Body alone at— $M = 1.20$ and NPR = 1.037 $M = 0.95$ and NPR = 1.115 $M = 0.90$ and NPR = 1.111 $M = 0.60$ and NPR = 1.051				•																		A 4
Body alone at— $M = 1.20$ and NPR = 1.037 $M = 0.95$ and NPR = 1.115 $M = 0.90$ and NPR = 1.111 $M = 0.60$ and NPR = 1.051 Aft tails configuration at—											•	•									•	A4 A6 A8
Body alone at— $M = 1.20$ and NPR = 1.037 $M = 0.95$ and NPR = 1.115 $M = 0.90$ and NPR = 1.111 $M = 0.60$ and NPR = 1.051 Aft tails configuration at— $M = 1.20$ and NPR = 0.985												•	•							 		A4 A6 A8
Body alone at— $M = 1.20$ and NPR = 1.037 $M = 0.95$ and NPR = 1.115 $M = 0.90$ and NPR = 1.111 $M = 0.60$ and NPR = 1.051 Aft tails configuration at— $M = 1.20$ and NPR = 0.985 $M = 0.95$ and NPR = 1.067											•	•		 	 					 		A4 A6 A8 A10 A12
Body alone at— $M = 1.20$ and NPR = 1.037 $M = 0.95$ and NPR = 1.115 $M = 0.90$ and NPR = 1.111 $M = 0.60$ and NPR = 1.051 Aft tails configuration at— $M = 1.20$ and NPR = 0.985 $M = 0.95$ and NPR = 1.067 $M = 0.90$ and NPR = 1.099														 	 					 		A4 A6 A8 A10 A12 A14
Body alone at— $M = 1.20$ and NPR = 1.037 $M = 0.95$ and NPR = 1.115 $M = 0.90$ and NPR = 1.111 $M = 0.60$ and NPR = 1.051 Aft tails configuration at— $M = 1.20$ and NPR = 0.985 $M = 0.95$ and NPR = 1.067 $M = 0.90$ and NPR = 1.099 $M = 0.60$ and NPR = 1.050														 	 					 		A4 A6 A8 A10 A12
Body alone at— $M = 1.20$ and NPR = 1.037 $M = 0.95$ and NPR = 1.115 $M = 0.90$ and NPR = 1.111 $M = 0.60$ and NPR = 1.051 Aft tails configuration at— $M = 1.20$ and NPR = 0.985 $M = 0.95$ and NPR = 1.067 $M = 0.90$ and NPR = 1.099 $M = 0.60$ and NPR = 1.050 Forward tails configuration at—														 	 					 		A4 A6 A8 A10 A12 A14 A16
Body alone at— $M = 1.20$ and NPR = 1.037 $M = 0.95$ and NPR = 1.115 $M = 0.90$ and NPR = 1.111 $M = 0.60$ and NPR = 1.051 Aft tails configuration at— $M = 1.20$ and NPR = 0.985 $M = 0.95$ and NPR = 1.067 $M = 0.90$ and NPR = 1.099 $M = 0.60$ and NPR = 1.050 Forward tails configuration at— $M = 1.20$ and NPR = 1.052														 	 					 		A4 A6 A8 A10 A12 A14 A16
Body alone at— $M = 1.20$ and NPR = 1.037 $M = 0.95$ and NPR = 1.115 $M = 0.90$ and NPR = 1.111 $M = 0.60$ and NPR = 1.051 Aft tails configuration at— $M = 1.20$ and NPR = 0.985 $M = 0.95$ and NPR = 1.067 $M = 0.90$ and NPR = 1.099 $M = 0.60$ and NPR = 1.050 Forward tails configuration at—														 	 					 		A4 A6 A8 A10 A12 A14 A16 A20
Body alone at— $M = 1.20$ and NPR = 1.037 $M = 0.95$ and NPR = 1.115 $M = 0.90$ and NPR = 1.111 $M = 0.60$ and NPR = 1.051 Aft tails configuration at— $M = 1.20$ and NPR = 0.985 $M = 0.95$ and NPR = 1.067 $M = 0.90$ and NPR = 1.099 $M = 0.60$ and NPR = 1.050 Forward tails configuration at— $M = 1.20$ and NPR = 1.052 $M = 0.95$ and NPR = 1.138 $M = 0.90$ and NPR = 1.119														 	 					 		A44 A66 A12 A14 A166 A20 A22
Body alone at— $M = 1.20$ and NPR = 1.037 $M = 0.95$ and NPR = 1.115 $M = 0.90$ and NPR = 1.111 $M = 0.60$ and NPR = 1.051 Aft tails configuration at— $M = 1.20$ and NPR = 0.985 $M = 0.95$ and NPR = 1.067 $M = 0.90$ and NPR = 1.050 Forward tails configuration at— $M = 1.20$ and NPR = 1.050 Forward tails configuration at— $M = 1.20$ and NPR = 1.052 $M = 0.95$ and NPR = 1.138 $M = 0.90$ and NPR = 1.119 $M = 0.60$ and NPR = 1.056														 	 					 		A4 A6 A8 A10 A12 A14 A16 A20
Body alone at— $M = 1.20$ and NPR = 1.037 $M = 0.95$ and NPR = 1.115 $M = 0.90$ and NPR = 1.111 $M = 0.60$ and NPR = 1.051 Aft tails configuration at— $M = 1.20$ and NPR = 0.985 $M = 0.95$ and NPR = 1.067 $M = 0.90$ and NPR = 1.099 $M = 0.60$ and NPR = 1.050 Forward tails configuration at— $M = 1.20$ and NPR = 1.052 $M = 0.95$ and NPR = 1.138 $M = 0.90$ and NPR = 1.119 $M = 0.60$ and NPR = 1.119 $M = 0.60$ and NPR = 1.056 Staggered tails configuration at—															 					 		A46 A88 A10 A12 A14 A16 A20 A22 A24
Body alone at— $M = 1.20$ and NPR = 1.037 $M = 0.95$ and NPR = 1.115 $M = 0.90$ and NPR = 1.111 $M = 0.60$ and NPR = 1.051 Aft tails configuration at— $M = 1.20$ and NPR = 0.985 $M = 0.95$ and NPR = 1.067 $M = 0.90$ and NPR = 1.099 $M = 0.60$ and NPR = 1.050 Forward tails configuration at— $M = 1.20$ and NPR = 1.052 $M = 0.95$ and NPR = 1.138 $M = 0.90$ and NPR = 1.119 $M = 0.60$ and NPR = 1.119 $M = 0.60$ and NPR = 1.056 Staggered tails configuration at— $M = 1.20$ and NPR = 1.056																				 		A46 A88 A10 A12 A14 A16 A20 A22 A24
Body alone at— $M = 1.20$ and NPR = 1.037 $M = 0.95$ and NPR = 1.115 $M = 0.90$ and NPR = 1.111 $M = 0.60$ and NPR = 1.051 Aft tails configuration at— $M = 1.20$ and NPR = 0.985 $M = 0.95$ and NPR = 1.067 $M = 0.90$ and NPR = 1.099 $M = 0.60$ and NPR = 1.050 Forward tails configuration at— $M = 1.20$ and NPR = 1.052 $M = 0.95$ and NPR = 1.138 $M = 0.95$ and NPR = 1.138 $M = 0.90$ and NPR = 1.119 $M = 0.60$ and NPR = 1.056 Staggered tails configuration at— $M = 1.20$ and NPR = 1.056 $M = 0.95$ and NPR = 1.006																				 		A46 A88 A10 A12 A14 A16 A20 A22 A24 A26 A28
Body alone at— $M = 1.20$ and NPR = 1.037 $M = 0.95$ and NPR = 1.115 $M = 0.90$ and NPR = 1.111 $M = 0.60$ and NPR = 1.051 Aft tails configuration at— $M = 1.20$ and NPR = 0.985 $M = 0.95$ and NPR = 1.067 $M = 0.90$ and NPR = 1.099 $M = 0.60$ and NPR = 1.050 Forward tails configuration at— $M = 1.20$ and NPR = 1.052 $M = 0.95$ and NPR = 1.138 $M = 0.90$ and NPR = 1.119 $M = 0.60$ and NPR = 1.119 $M = 0.60$ and NPR = 1.056 Staggered tails configuration at— $M = 1.20$ and NPR = 1.056	· · · · · · · · · · · · · · · · · · ·																					A46 A88 A10 A12 A14 A16 A20 A22 A24 A26

ORIGINAL PAGE IS OF POOR QUALITY

Table A1. Effect of Nozzle Pressure Ratio on Pressure Distributions for Body Alone at M=1.20 and $\alpha=0.010^\circ$

(a) NPR = 1.060

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY		HORIZONTAL TAILS Upper Surface Lower Surface								
POINT NUMBER	3		UPPER Y/		L DWER		Υ/	8			
MACH NUMBER	1.205	x/c	0.1	0.2	0.1	0.2	0.1	0.2			
ALPHA, DFG	.010	0.05 0.10									
NPR	1.060	0.20									
PTO, PSI	14.696	0.40 0.50			Tails r	emoved					
PO, PSI	6.023	0.60 0.70									
QO, PSI	6.119	0.80 0.90									

AFTERBODY PRESSURE COEFFICIENTS

PHI,	DEG
------	-----

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	027	023	*****	018	*****	*****	*****	023	014	007	•005	*****
.598	033	027	*****	025	*****	028	*****	028	015	007	*****	*****
•612	033	029	*****	026	*****	021	*****	020	011	008	*****	*****
.626	031	028	*****	028	*****	024	*****	017	012	005	*****	*****
•640	****	019	*****	015	* * * * * *	019	*****	014	005	002	*****	*****
.654	*****	028	*****	025	*****	019	*****	023	024	020	*****	*****
•668	****	*****	*****	022	*****	021	*****	017	015	008	*****	*****
•682	****	030	*****	027	*****	028	*****	021	018	001	.003	*****
.696	****	030	*****	027	*****	026	*****	019	007	.001	001	.000
•710	****	023	*****	*****	*****	024	*****	010	005	.000	004	006
.724	****	020	*****	021	*****	020	*****	009	008	009	013	014
•738	*****	025	*****	028	*****	*****	*****	014	026	021	027	026
.752	****	012	****	009	* * * * * *	012	****	010	016	018	018	*****
.766	****	027	****	032	*****	030	*****	035	043	043	043	046
•779	****	019	*****	019	*****	023	*****	018	*****	029	026	030
•793	****	031	*****	030	*****	032	****	*****	034	035	038	*****
.807	*****	038	*****	034	*****	036	*****	*****	037	041	037	037
•821	*****	*****	*****	034	*****	038	*****	*****	038	040	039	038
.835	****	046	*****	048	*****	042	*****	*****	040	043	044	051
.849	****	057	*****	057	*****	050	*****	*****	047	054	056	062
.863	*****	074	*****	071	*****	068	*****	*****	068	072	*****	071
.877	086	074	*****	076	*****	081	*****	*****	*****	*****	*****	*****
.891	086	094	*****	096	*****	100	*****	*****	102	097	096	093
•916	115	116	178	*****	124	*****	137	143	140	126	116	127
•928	157	*****	202	*****	163	*****	167	169	171	173	174	170
.940	215	*****	212	*****	224	229	225	226	229	229	231	230
•952	****	*****	295	*****	299	300	305	306	308	309	311	306
•962	329	328	326	*****	331	326	317	314	315	297	327	333
.974	114	086	****	*****	067	058	050	054	050	047	055	055
•986	016	013	016	*****	014	009	008	011	009	008	010	010
• 996	.007	.010	*****	*****	.003	.009	.010	.009	.006	.010	.006	.010

AFTERBODY INTEGRATED PRESSURE DRAG COEFFICIENT

.0988

Table A1. Continued

(b) NPR = 2.040

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY		VERTICA	L TAIL				
POINT NUMBER	4		UPPER Y/	SURFACE B	LOWER Y/	SURFACE B	Y/	В
MACH NUMBER	1.201	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	.010	0.05 0.10						
NPR	2.040	0.20			Tails r	emoved		
PTO, PSI	14.697	0.40			14110 1	emoved.		
PO, PSI	6.051	0.60 0.70						
Q(), PSI	6.112	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	032	030	*****	018	*****	*****	*****	023	020	012	.005	*****
.599	037	033	*****	028	*****	030	*****	025	019	008	*****	*****
.612	034	034	*****	028	*****	025	*****	020	017	005	*****	*****
.626	034	036	*****	025	*****	028	*****	020	018	010	*****	*****
.640	****	027	*****	022	*****	015	*****	012	012	006	*****	*****
.654	*****	040	*****	029	*****	021	*****	028	027	021	*****	*****
.668	****	*****	*****	025	* * * * * *	022	*****	021	018	014	*****	*****
.682	*****	032	*****	034	*****	030	*****	023	021	005	.002	*****
.696	*****	034	*****	033	* * * * * *	027	*****	021	016	006	004	.003
.710	*****	032	*****	*****	*****	025	*****	014	008	002	003	005
.724	*****	023	*****	025	*****	017	*****	010	011	007	012	013
.738	****	028	*****	025	*****	*****	*****	018	028	024	026	024
• 752	****	016	*****	014	*****	014	*****	013	021	018	019	*****
.766	****	030	*****	038	*****	035	*****	036	044	044	047	048
.779	****	022	****	024	*****	027	*****	022	*****	030	028	027
.793	****	035	*****	035	*****	038	*****	*****	039	039	039	*****
.807	*****	043	*****	040	*****	040	*****	*****	042	043	040	038
.821	****	*****	*****	039	*****	041	*****	*****	040	036	038	038
.835	*****	054	*****	050	*****	051	*****	*****	047	047	048	051
.849	****	062	*****	053	*****	052	*****	*****	050	059	059	057
.863	****	076	*****	073	*****	071	*****	*****	072	071	*****	072
.877	094	077	*****	078	*****	085	*****	*****	*****	*****	*****	*****
.891	094	100	****	097	*****	103	*****	*****	102	096	097	092
.916	121	122	183	*****	129	*****	140	147	143	128	116	126
.928	160	*****	207	*****	168	*****	170	173	174	174	174	170
.940	218	*****	216	*****	229	234	229	230	232	231	232	229
.952	*****	*****	-,299	*****	305	305	309	308	310	309	312	305
.962	334	333	331	*****	334	332	330	326	331	320	335	338
.974	061	063	*****	*****	055	055	051	056	049	045	057	060
.986	010	012	009	*****	009	008	012	010	012	011	017	014
•996	.005	.005	*****	*****	.006	•009	.007	•004	.007	.004	.002	.005

ORIGINAL PAGE IS OF POOR QUALITY

Table A1. Continued

(c) NPR = 4.074

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY				ITAL TAILS		VERTICA	L TAIL
POINT NUMBER	5		UPPER Y/	SURFACE B	LOWER Y/	SURFACE B	٧/	В
MACH NUMBER	1.200	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	.011	0.05						
NPR	4.074	0.10 0.20 0.30			T-11			
PTO, PSI	14.695	0.40 0.50			i alis r	emoved		
PO, PSI	6.057	0.60 0.70						
QO, PSI	6.109	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

İ	X/L	0	18	36	45	54	72	81	90	108	135	162	180
1	.584	033	031	*****	017	*****	*****	*****	023	024	014	.004	*****
İ	•598	039	037	*****	017	*****	030	*****	023	024	014	*****	*****
1	•612	039	037	*****	027	*****	025	*****			007	*****	*****
		038	037	*****	027	*****	025	*****	020	019		*****	*****
	•626								020	018	013		*****
	•640	*****	027	*****	026	*****	021	*****	014	014	008	*****	*****
1	•654	*****	042	*****	035	*****	022	*****	027	028	024	*****	
	•668	*****	*****	*****	028	*****	024	*****	024	021	015	*****	*****
	•682	*****	031	*****	033	*****	031	*****	026	025	007	001	*****
	.696	*****	038	*****	034	*****	032	*****	027	020	003	003	•000
	•710	*****	037	*****	*****	*****	024	*****	019	013	003	001	007
	.724	*****	028	*****	026	*****	015	*****	009	013	011	013	016
	•738	*****	032	*****	031	*****	*****	*****	019	027	022	024	026
	•752	*****	018	*****	020	*****	015	*****	011	022	021	020	*****
	•766	*****	035	*****	039	*****	035	*****	040	049	044	047	048
	.779	*****	024	*****	026	*****	030	*****	025	*****	031	031	031
	.793	*****	034	*****	037	*****	042	*****	*****	039	039	040	*****
	•807	*****	042	*****	039	*****	043	*****	*****	042	042	040	041
	.821	*****	*****	*****	040	*****	044	*****	*****	044	044	037	038
	.835	*****	054	*****	053	*****	052	*****	*****	048	049	050	052
	.849	*****	062	****	055	*****	057	*****	*****	053	055	059	062
	.863	*****	080	*****	074	*****	071	*****	*****	073	076	*****	072
	•877	097	082	*****	078	*****	085	*****	*****	*****	*****	*****	*****
	.891	096	101	*****	100	*****	104	*****	*****	103	097	098	092
	•916	121	123	185	*****	130	*****	144	146	145	127	117	127
	•928	161	*****	208	*****	171	*****	173	173	175	175	174	169
	.940	220	*****	218	*****	230	235	231	231	232	233	232	229
	.952	*****	*****	303	*****	303	308	311	311	312	310	313	305
	.962	336	335	334	*****	337	336	336	329	333	332	341	341
	.974	079	074	*****	*****	067	057	061	057	055	054	060	069
	•986	011	012	013	*****	014	012	014	014	012	016	014	013
	•996	• 005	.004	*****	*****	.005	.004	.005	.005	.003	.006	.004	.009
	I												

Table A1. Continued

(d) NPR = 6.026

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY				NTAL TAILS		VERTICA	L TAIL
POINT NUMBER	6		Y /		Υ/		Υ/	В
MACH NUMBER	1.199	x/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	.011	0.05 0.10						
NPR	6.026	0.20 0.30			Tailer	emoved		
ISA (CTA	14.694	0 • 40 0 • 50			Talls I	ellio v e u		
PO, PSI	6.064	0.60 0.70						
QN, PSI	6.107	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	1 35	162	180
.584	034	031	*****	014	*****	*****	*****	024	023	015	•000	*****
.598	041	036	*****	031	*****	033	*****	026	024	012	*****	*****
.612	040	037	*****	031	*****	027	*****	022	021	011	*****	*****
.626	039	039	*****	029	*****	024	*****	021	020	013	*****	*****
.640	****	030	*****	026	*****	022	*****	017	015	008	*****	*****
.654	*****	042	*****	035	* * * * * *	025	*****	030	028	025	*****	*****
.668	****	* * * * * *	*****	030	*****	027	*****	026	022	015	*****	*****
.682	****	033	*****	032	*****	032	*****	031	027	010	003	*****
•696	*****	036	*****	037	*****	032	*****	029	021	010	005	004
.710	*****	034	*****	*****	*****	026	*****	019	014	008	008	010
.724	*****	031	*****	029	*****	020	*****	012	014	012	017	017
.738	****	031	*****	030	*****	*****	*****	021	032	025	027	029
•752	*****	020	*****	016	*****	015	*****	014	021	021	020	*****
•766	*****	036	*****	039	*****	037	*****	039	049	045	047	048
.779	****	026	****	026	* * * * * *	028	*****	024	*****	033	029	030
•793	*****	035	*****	037	*****	038	*****	*****	040	040	042	*****
.807	*****	044	****	039	*****	042	*****	*****	045	043	041	040
.821	*****	****	*****	041	*****	043	*****	*****	044	044	040	041
.835	*****	053	*****	053	*****	054	*****	*****	052	050	051	053
.849	*****	064	****	061	* * * * *	056	*****	*****	058	059	062	064
.863	*****	081	*****	077	*****	073	*****	*****	071	074	*****	076
.877	097	085	*****	079	*****	084	*****	*****	*****	*****	*****	*****
.891	096	100	****	100	*****	104	*****	*****	103	096	098	094
.916	122	123	186	*****	130	*****	144	149	144	128	117	127
•928	163	*****	209	*****	172	*****	172	174	175	175	175	170
.940	220	*****	218	*****	~. 230	236	231	232	233	233	232	229
.952	*****	****	302	*****	~.307	308	309	309	313	310	312	306
• 962	289	271	247	****	220	198	189	187	180	187	216	266
.974	026	024	*****	****	020	020	020	021	018	020	025	021
.986	.010	.009	• 009	*****	.009	.009	.007	.008	.007	.006	• 004	.008
• 996	.015	.014	*****	*****	.012	.014	.015	.016	.015	.017	.015	•018

ORIGINAL PAGE IS OF POOR QUALITY

Table A1. Concluded

(e) NPR = 7.997

TΕ	ST	PAR	AME	TERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY		VERTICA	L TAIL				
POINT NUMBER	7		Y/	SURFACE B	Y	SURFACE	Y/	' В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.200							
ALPHA, DEG	.011	0.05 0.10						
NPR	7.997	0.20			Taile r	emoved		
PTO, PSI	14.694	0.40 0.50			I all 5 I	emoved		
PO, PSI	6.057	0.60 0.70						
QO, PSI	6.108	0.80						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	1 3 5	162	180
• 584	037	030	*****	025	*****	*****	*****	025	022	016	•000	*****
•598	043	034	*****	031	* * * * * *	031	*****	026	022	014	*****	*****
.612	039	034	*****	031	*****	024	*****	022	017	012	*****	*****
•626	040	035	*****	033	*****	028	****	021	021	015	*****	*****
640	*****	033	*****	028	*****	020	*****	014	015	008	*****	*****
654	*****	046	*****	036	*****	023	*****	031	028	023	*****	*****
668	*****	*****	*****	030	* * * * * *	028	*****	026	024	014	*****	*****
682	****	037	*****	032	*****	032	*****	029	026	007	006	*****
696	*****	035	*****	035	*****	035	*****	032	025	006	007	004
710	*****	038	*****	*****	*****	030	*****	021	018	003	006	011
,724	****	033	*****	026	*****	018	*****	015	012	012	015	017
.738	*****	030	*****	031	*****	*****	*****	021	033	027	026	025
.752	****	023	*****	018	*****	019	*****	016	025	021	019	*****
1766	****	039	*****	038	*****	040	*****	042	049	047	049	048
779 ،	*****	028.	*****	024	*****	028	*****	026	*****	031	030	032
1793	****	036	*****	038	*****	041	*****	*****	038	039	042	*****
807	*****	042	*****	039	*****	044	*****	*****	043	042	041	040
821	****	****	*****	044	*****	041	*****	*****	041	043	039	040
835	****	054	*****	052	*****	056	*****	*****	052	051	051	053
849	*****	065	*****	060	*****	061	*****	*****	054	062	063	066
863	*****	084	*****	076	*****	074	****	*****	071	074	*****	078
877	102	084	*****	079	*****	084	*****	*****	*****	*****	*****	*****
891	094	102	*****	098	*****	102	*****	*****	103	098	097	092
916	122	122	186	*****	131	*****	144	146	142	127	117	125
928	162	*****	210	*****	172	*****	173	173	174	176	173	169
940	220	*****	220	*****	231	236	231	231	232	231	231	227
952	*****	*****	303	*****	305	308	309	310	310	311	310	304
962	128	103	101	*****	085	069	073	063	066	065	084	110
974	.006	.008	*****	*****	.008	.006	.008	.009	.012	.007	.006	.006
986	.029	.031	.025	*****	.028	.027	.027	.027	.026	.022	.025	.027
996	.028	• 02.5	*****	*****	.026	.027	.031	.029	.030	.029	.029	.031

Table A2. Effect of Angle of Attack on Pressure Distributions for Body Alone at M=1.20 and NPR = 1.037

(a) $\alpha = -2.991^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY			_	VERTICA	L TAIL		
POINT NUMBER	9		UPPER Y/	SURFACE B	LOWER Y/	SURFACE	Υ/	В
MACH NUMBER	1.200	X/C	0.1	0.2	0.1	0.2	0.1	0.2
		0.05						
ALPHA, DEG	-2.991	0.05 0.10						
NPR	1.037	0.20 0.30			Tails	removed		
PTO, PSI	14.692	0.40 0.50				00104		
PO, PSI	6.058	0.60						
QO, PSI	6.107	0.70 0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI,	DEG
------	-----

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	037	024	*****	030	*****	*****	*****	045	040	023	• 000	*****
.598	037	033	*****	040	*****	~.045	*****	043	038	022	*****	*****
.612	036	035	*****	038	*****	042	*****	035	030	020	*****	*****
.626	038	039	*****	043	* * * * * *	040	*****	037	026	020	*****	*****
.640	*****	027	*****	037	*****	038	*****	027	023	015	*****	*****
.654	*****	044	*****	043	*****	038	*****	043	039	030	*****	*****
.668	*****	*****	*****	039	*****	039	*****	036	034	022	*****	*****
.692	*****	037	*****	040	* * * * * *	044	*****	042	044	023	009	*****
.696	*****	042	*****	044	*****	049	*****	045	043	015	006	001
.710	*****	040	*****	*****	*****	046	*****	039	030	005	002	002
.724	*****	035	*****	041	*****	039	*****	027	023	010	~.007	010
.738	*****	042	*****	047	*****	*****	*****	030	033	021	018	017
.752	*****	030	*****	031	*****	026	*****	020	023	021	~.019	*****
.766	*****	041	*****	050	*****	041	*****	046	048	043	041	043
.779	*****	034	*****	031	*****	036	*****	027	*****	030	~.027	025
.793	*****	036	*****	039	*****	047	*****	*****	047	039	~.035	*****
.807	*****	045	*****	043	*****	050	*****	*****	046	043	033	031
.821	*****	*****	****	044	*****	052	*****	*****	043	042	034	032
.835	*****	054	*****	062	*****	063	*****	*****	052	048	044	043
.849	*****	062	*****	066	*****	068	*****	*****	054	060	055	056
.863	*****	084	*****	087	*****	078	*****	*****	069	069	*****	073
.877	134	114	*****	090	*****	092	*****	*****	*****	*****	*****	*****
.891	103	111	*****	098	*****	102	*****	*****	108	098	090	088
.916	126	128	199	*****	134	*****	152	154	144	124	111	118
.928	168	*****	221	*****	181	*****	181	178	176	171	167	164
.940	230	*****	230	*****	245	249	241	237	232	224	221	219
.952	*****	*****	322	*****	324	321	322	317	310	295	295	293
.962	363	364	362	*****	367	360	345	320	302	275	~.305	318
.974	164	111	*****	*****	075	066	058	055	056	064	087	111
.986	041	034	033	*****	028	028	026	027	025	 028	029	032
.996	015	013	*****	*****	012	012	012	009	014	013	014	010

AFTERBODY INTEGRATED PRESSURE DRAG COEFFICIENT

.108

Table A2. Continued

(b) $\alpha = 0.011^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY		110050		TAL TAILS		VERTICA	LTAIL
POINT NUMBER	10		Υ/		Υ/		Υ/	
MACH NUMBER	1.201	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	.011	0.05 0.10						
NPR	1.043	0.20			Taila -			
PTO, PSI	14.691	0.40			iansr	emoved		
PO, PSI	6.050	0.60						
QO, PSI	6.109	0.80						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	041	031	*****	030	*****	*****	*****	031	026	018	.001	*****
598	042	037	*****	036	*****	034	*****	030	024	015	*****	*****
•612	041	036	*****	032	*****	027	*****	022	018	014	*****	*****
.626	041	036	*****	035	*****	030	*****	023	019	016	*****	*****
•640	*****	031	*****	031	*****	020	*****	019	011	013	*****	*****
.654	*****	040	*****	043	*****	026	*****	029	027	022	*****	*****
•668	*****	*****	*****	031	*****	027	*****	023	024	015	*****	*****
.682	*****	038	*****	034	*****	030	*****	030	029	012	006	*****
•696	*****	037	*****	036	*****	036	*****	032	022	013	008	004
.710	*****	035	*****	*****	*****	032	*****	023	019	010	011	011
.724	*****	035	*****	032	*****	025	*****	018	018	013	021	020
.738	*****	039	*****	032	*****	*****	*****	027	036	027	031	030
.752	*****	022	*****	021	*****	020	*****	021	034	023	022	*****
•766	*****	037	*****	042	*****	041	*****	044	051	047	050	050
.779	*****	029	*****	025	*****	031	*****	027	*****	033	031	034
.793	*****	035	*****	035	*****	041	*****	*****	039	040	045	*****
.807	*****	042	*****	038	*****	046	*****	*****	045	043	042	040
.821	*****	*****	*****	044	*****	045	*****	*****	044	043	040	043
.835	*****	054	*****	056	*****	055	*****	*****	051	053	052	056
.849	****	064	*****	062	*****	064	*****	*****	058	063	067	066
.863	*****	082	*****	082	*****	073	*****	*****	069	076	*****	078
.877	104	087	*****	079	*****	082	*****	*****	*****	*****	*****	*****
.891	095	100	*****	095	*****	102	*****	*****	101	095	098	095
.916	119	127	184	*****	129	*****	141	144	141	124	114	124
.928	162	*****	208	*****	173	*****	171	172	172	171	172	167
.940	220	*****	218	*****	231	235	230	229	229	229	229	226
.952	*****	*****	301	*****	305	307	311	310	311	310	310	304
.962	333	336	333	*****	331	331	333	320	321	327	333	338
.974	127	095	*****	*****	071	057	053	057	048	049	065	070
.986	026	020	024	*****	021	016	016	015	013	014	020	022
• 996	003	003	*****	*****	003	001	.001	.003	• 003	001	001	002

Table A2. Continued

(c) $\alpha = 3.011^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BUDA DMFA			HORIZON		VERTICA	L TAIL	
POINT NUMBER	11		Υ/		Y/		Y/	
MACH NUMBER	1.200	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	3.011	0.05 0.10						
NPR	1.034	0.20			Tailer	emoved		
PTO, PSI	14.689	0.40			i alis i	emoved		
PO, PSI	6.055	0.60 0.70						
QO, PSI	6.107	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DE) E (G
---------	-------	---

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	043	034	*****	036	*****	*****	*****	031	023	012	.004	*****
•598	041	037	*****	036	* * * * * *	038	*****	031	024	015	*****	*****
•612	042	036	*****	038	*****	032	*****	027	023	012	*****	*****
.626	038	035	*****	~.033	*****	033	*****	025	026	014	*****	*****
•640	*****	034	*****	030	*****	028	*****	020	018	008	*****	*****
•654	*****	042	*****	040	*****	033	*****	032	031	017	*****	*****
•668	****	* * * * * *	*****	030	* * * * * *	030	*****	029	023	009	*****	*****
•682	****	034	****	034	*****	037	*****	033	029	012	005	*****
•696	*****	034	*****	037	*****	039	*****	033	024	019	013	009
•710	*****	034	*****	*****	*****	033	*****	028	024	015	019	019
.724	****	027	*****	028	*****	027	*****	028	030	026	022	023
•738	*****	032	*****	034	*****	*****	*****	038	050	038	032	032
.752	*****	019	****	~.023	*****	034	*****	036	038	034	029	*****
.766	****	032	*****	042	*****	048	*****	050	058	057	051	050
•779	*****	028	*****	029	*****	039	*****	032	*****	045	036	036
•793	****	037	*****	042	*****	046	*****	*****	050	042	049	*****
.807	*****	042	*****	044	*****	048	*****	*****	052	051	046	046
.821	****	*****	*****	044	*****	051	*****	*****	052	051	048	047
.835	*****	053	****	058	*****	057	*****	*****	064	065	061	062
.849	*****	054	*****	~.065	*****	068	*****	*****	067	076	069	068
.863	*****	079	*****	077	* * * * * *	080	*****	*****	087	089	*****	082
.877	081	075	*****	079	* ** ***	085	*****	*****	*****	*****	*****	*****
.891	091	096	*****	096	*****	105	*****	*****	108	102	097	100
.916	116	119	168	*****	127	*****	143	148	150	133	117	133
•928	158	*****	195	*****	168	*****	173	177	180	182	178	171
.940	212	*****	212	*****	224	234	231	236	240	243	242	235
.952	****	* * * * *	286	*****	293	303	310	315	324	328	330	319
• 962	307	303	300	*****	300	316	328	337	360	371	373	368
.974	143	118	****	*****	078	069	066	065	070	078	105	141
•985	034	031	033	*****	031	026	028	030	030	033	038	039
. 996	009	013	*****	*****	015	013	014	016	014	015	013	011

ORIGINAL PAGE IS OF POOR QUALITY

Table A2. Concluded

(d) $\alpha = 5.984^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION BODY ONLY			VERTICA	L TAIL				
POINT NUMBER	12		UPPER Y/	SURFACE B	LOWEK Y/	SURFACE B	Υ/	В
MACH NUMBER	1.199	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DFG	5.984	0.05 0.10						
NPR	1.017	0.20			Tails r	emoved		
PTO, PSI	14.691	0.40 0.50			74.10 1	omoveu		
PO, PSI	6.067	0.60 0.70						
QO, PSI	6.105	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	041	033	*****	039	*****	*****	*****	050	043	021	.015	*****
•598	041	037	*****	046	*****	049	*****	053	040	016	*****	*****
.612	036	037	*****	042	*****	045	*****	047	040	018	*****	*****
•626	030	035	*****	041	*****	044	*****	045	042	025	*****	*****
.640	*****	034	*****	041	*****	041	*****	041	034	013	*****	*****
•654	*****	039	*****	045	*****	045	*****	052	043	023	*****	*****
• 668	*****	*****	*****	039	*****	043	*****	047	039	013	*****	*****
•682	*****	033	*****	042	*****	049	*****	053	049	022	003	*****
.696	*****	037	****	043	* * * * *	049	*****	049	046	032	018	017
.710	*****	035	*****	*****	*****	048	*****	052	049	039	021	021
.724	*****	032	*****	038	*****	046	*****	051	055	035	029	024
.738	*****	033	*****	035	*****	*****	*****	065	067	048	039	039
.752	*****	026	*****	036	*****	046	*****	054	061	046	030	*****
•766	*****	042	****	048	*****	063	*****	079	082	067	052	054
•779	*****	034	*****	043	*****	059	*****	061	*****	060	038	038
•793	*****	041	*****	051	*****	065	*****	*****	073	054	040	*****
.807	*****	049	*****	051	* * * * * *	066	*****	*****	070	057	047	047
.821	*****	*****	*****	054	*****	062	*****	*****	073	062	049	054
. 835	*****	058	*****	062	*****	071	*****	*****	086	077	058	063
.849	*****	065	*****	068	* ** ***	080	*****	*****	089	082	064	069
.863	****	078	*****	080	*****	093	*****	*****	095	101	*****	084
•8 7 7	105	082	*****	080	*****	092	*****	*****	*****	*****	*****	*****
.891	090	102	*****	099	*****	114	*****	*****	124	109	115	112
•916	104	118	159	*****	129	*****	157	165	170	143	120	139
•928	153	*****	188	*****	167	*****	183	192	201	195	186	176
•940	215	*****	206	*****	219	236	242	251	262	261	253	241
•952	*****	*****	275	*****	277	298	316	330	348	351	344	329
•962	335	318	281	*****	276	286	312	341	390	399	393	383
.974	233	167	*****	*****	109	082	088	079	086	126	252	363
.986	032	050	054	*****	054	051	053	051	055	066	077	073
• 996	025	030	*****	*****	035	038	040	038	039	043	044	044

Table A3. Effect of Nozzle Pressure Ratio on Pressure Distributions for Body Alone at M=0.95 and $\alpha=0.010^{\circ}$

(a) NPR = 1.112

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION			VERTICA	LTAIL				
POINT NUMBER	13		UPPER Y/	SURFACE B	LOWER Y/	SURFACE B	Υ/	В
MACH NUMBER	•951	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	.010	0.05 0.10						
NPR	1.112	0.20 0.30			Taile r	emoved		
PTO, PSI	14.691	0.40 0.50			rans i	61110164		
PG, PSI	8.214	0.60 0.70						
QO, PSI	5.195	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	033	031	*****	023	*****	*****	*****	016	016	010	004	*****
•598	049	040	*****	040	*****	049	*****	025	~.030	018	*****	*****
•612	043	041	*****	032	*****	041	*****	023	033	016	*****	*****
.626	036	038	*****	029	* * * * * *	034	*****	033	032	038	*****	*****
. 640	*****	049	*****	056	*****	049	*****	045	028	026	*****	*****
.654	*****	047	*****	048	*****	050	*****	044	040	046	*****	*****
.668	*****	*****	*****	047	*****	045	*****	042	044	034	*****	*****
.682	*****	060	*****	052	* * * * * *	050	*****	046	047	052	038	*****
•696	*****	050	*****	060	*****	048	*****	046	042	046	039	031
.710	*****	043	*****	*****	* * * * * *	046	*****	~.051	044	040	043	035
.724	*****	051	*****	057	*****	058	*****	043	049	042	050	046
•738	*****	058	*****	056	*****	*****	*****	060	057	044	049	061
•752	*****	052	*****	052	*****	055	*****	052	054	050	057	*****
.766	*****	079	*****	077	*****	081	*****	074	084	070	079	079
.779	*****	061	*****	060	*****	063	*****	070	*****	066	062	056
.793	*****	081	*****	087	*****	071	*****	*****	083	081	078	*****
.807	*****	087	*****	074	*****	077	*****	*****	081	088	079	075
.821	*****	*****	*****	084	* * * * * *	086	*****	*****	093	096	096	098
.835	*****	104	*****	102	*****	115	*****	*****	108	112	103	109
.849	*****	127	*****	115	*****	122	*****	*****	130	138	121	117
.863	*****	148	*****	151	*****	147	*****	*****	140	147	*****	135
.877	131	129	*****	144	*****	146	*****	*****	*****	*****	*****	*****
.891	155	156	*****	167	*****	167	*****	*****	165	165	155	162
.916	187	184	246	*****	176	*****	193	199	195	185	181	184
.928	237	*****	276	*****	232	*****	235	240	232	241	245	233
.940	275	*****	215	*****	218	224	243	240	249	228	219	223
.952	*****	*****	088	*****	090	098	099	095	101	106	104	105
.962	.011	.015	.018	*****	.010	.016	.016	.012	.009	.003	004	003
.974	.103	.104	*****	*****	.105	.097	•097	.101	.089	.090	.086	.088
.986	.148	•157	.159	*****	.160	.150	.147	.145	.139	•146	.144	.143
.996	.176	.173	*****	*****	.181	.170	•170	•172	.166	.166	.170	.166

Table A3. Continued

(b) NPR = 2.036

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY				TAL TAILS		VERTICA	LTAIL
POINT NUMBER	14		UPPER Y/	SURFACE B	LOWER Y/	SURFACE	Y/	В
MACH NUMBER	.953	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	.009	0.05 0.10						
NPR	2.036	0.20			Taile r	emoved		
PTO, PSI	14.693	0.40 0.50			, ans i	0.110 10 0		
PO, PSI	8.197	0.60 0.70						
QO, PSI	5.206	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	035	024	*****	022	*****	*****	*****	023	016	005	.011	*****
.598	037	042	*****	033	*****	025	****	033	025	022	*****	*****
.612	054	037	*****	035	*****	033	*****	030	025	029	*****	*****
.626	~.034	029	*****	042	*****	032	*****	026	039	015	*****	*****
.640	*****	053	*****	032	*****	033	*****	041	037	038	*****	*****
.654	*****	054	*****	~.058	*****	037	*****	050	047	040	*****	*****
.668	*****	*****	*****	040	*****	038	*****	035	041	027	*****	*****
.682	*****	059	*****	047	*****	041	*****	052	048	039	042	*****
.695	*****	049	*****	046	*****	055	*****	044	054	049	049	042
.710	*****	060	*****	*****	*****	056	*****	041	051	049	039	037
.724	*****	061	******	066	*****	053	*****	042	053	045	047	046
.738	*****	062	*****	~.059	*****	*****	*****	059	057	049	060	046
.752	*****	057	*****	061	*****	060	*****	049	062	053	047	*****
•766	*****	078	*****	083	*****	084	****	082	078	074	069	090
•779	*****	060	*****	052	*****	062	*****	053	*****	062	053	068
.793	*****	077	*****	079	*****	086	*****	*****	077	073	083	*****
.807	*****	079	*****	077	*****	087	*****	*****	079	070	083	079
.821	*****	*****	*****	~.095	*****	095	*****	*****	099	085	092	082
.835	*****	106	*****	114	*****	101	*****	*****	105	101	094	113
.849	*****	131	*****	114	*****	128	*****	*****	134	115	123	127
.863	*****	152	*****	146	*****	136	*****	*****	138	132	*****	134
.877	141	132	*****	129	*****	131	*****	*****	*****	*****	*****	*****
.891	147	165	*****	~.155	*****	155	*****	*****	169	141	155	141
.916	174	176	238	*****	173	*****	180	177	173	162	165	174
.928	~.217	*****	250	*****	215	*****	195	210	193	190	208	210
.940	186	*****	170	*****	193	161	165	174	160	157	159	171
.952	****	*****	049	*****	058	061	055	059	059	059	065	063
.962	.050	.047	.047	*****	.051	.049	.046	.047	.045	.047	.038	.037
.974	.134	.134	*****	*****	.131	.133	.133	.127	.133	.131	.123	.123
.986	.187	•182	.181	*****	. 174	.180	.183	.176	.181	•182	•177	.174
.996	.207	.204	*****	*****	. 205	.200	.201	.199	.204	.195	.195	.201

Table A3. Continued

(c) NPR = 3.036

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY				TAL TAILS		VERTICA	L TAIL
POINT NUMBER	15		UPPER SURFACE Y/B X/C 0.1 0.2			SURFACE B	Y/	В
MACH NUMBER	•952	X/C	0.1	0.2	0.1	0.2	0.1	0•2
ALPHA, DEG	.009	0.05						
NPR	3.036	0.10 0.20			T - 11 -			
PTO, PSI	14.691	0.30 0.40 0.50			i alis r	emoved		
PO, PSI	8.203	0.60						
QO, PSI	5.202	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
•584	043	018	*****	019	*****	*****	*****	022	006	009	002	*****
.598	032	028	****	034	*****	041	*****	028	025	018	*****	*****
.612	040	036	*****	031	*****	035	*****	024	019	024	*****	*****
•626	040	025	*****	034	*****	032	*****	034	036	020	*****	*****
•640	****	049	*****	037	*****	041	*****	050	039	026	*****	*****
•654	****	054	*****	046	*****	035	*****	053	058	056	*****	*****
•668	****	* * * * * *	****	054	* * * * * *	038	*****	029	046	028	*****	*****
.682	****	058	*****	046	*****	051	*****	046	048	042	044	*****
•696	*****	049	*****	051	*****	054	*****	047	044	039	041	033
.710	****	050	*****	*****	*****	048	*****	035	055	046	036	025
.724	*****	062	*****	063	*****	050	*****	050	052	043	040	043
.738	****	062	*****	058	*****	*****	*****	054	065	050	049	060
•752	*****	056	*****	053	*****	061	*****	049	053	052	045	*****
•766	****	070	*****	078	*****	079	*****	070	084	074	074	074
.779	*****	065	*****	051	*****	063	*****	057	*****	058	061	060
.793	*****	074	*****	073	*****	079	*****	*****	082	077	082	*****
.807	*****	073	*****	072	*****	084	*****	*****	078	078	075	071
.821	****	*****	*****	089	*****	093	*****	*****	094	079	086	091
.835	*****	099	*****	110	*****	106	*****	*****	107	107	112	100
.849	*****	124	*****	122	*****	117	*****	*****	127	125	123	120
.863	*****	145	*****	141	*****	133	*****	*****	143	121	*****	120
.877	125	138	*****	124	*****	136	*****	*****	*****	*****	*****	*****
.891	140	170	****	152	*****	164	*****	*****	152	159	151	146
•916	173	167	233	*****	177	*****	168	180	177	158	163	182
.928	204	*****	260	*****	214	*****	192	204	199	210	202	205
.940	191	*****	186	*****	178	163	172	171	171	171	170	159
952	*****	*****	063	*****	058	059	058	060	054	059	069	067
.962	.044	.049	.046	*****	.042	.048	.048	.046	.044	.045	.036	.031
.974	.137	.138	*****	*****	.129	.133	.132	.130	.125	.123	.124	.124
986	.187	.191	.174	*****	.180	.182	.178	.175	.177	.172	.175	.180
•996	.203	.205	****	*****	. 203	.196	.201	.198	.201	.197	• 194	.200

Table A3. Concluded

(d) NPR = 5.009

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY				TAL TAILS		VERTICA	L TAIL
POINT NUMBER	16		Y/		Y/		Υ/	
MACH NUMBER	•950	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	•010	0.05 0.10						
NPR	5.009	0.20			Tailer	omoved.		
PTO, PSI	14.693	0.40 0.50			Tans r	emoved		
PO, PSI	8.224	0.60						
QO, PSI	5.191	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	028	027	*****	017	*****	*****	*****	024	023	005	005	*****
•598	035	046	*****	029	*****	042	*****	033	027	019	*****	*****
•612	045	038	*****	031	*****	036	*****	035	033	037	*****	*****
•626	032	040	*****	047	*****	035	*****	033	023	020	*****	*****
•640	*****	039	*****	036	*****	038	*****	048	043	031	*****	*****
•654	*****	061	*****	052	*****	042	*****	045	049	039	*****	*****
•668	*****	*****	*****	040	*****	036	*****	029	037	034	*****	*****
.682	*****	052	*****	053	*****	046	*****	047	041	041	046	*****
.696	*****	041	*****	049	*****	057	*****	045	052	046	045	033
.710	*****	055	*****	*****	*****	051	*****	042	043	044	041	043
.724	****	050	*****	056	*****	054	*****	051	049	043	039	039
.738	*****	057	*****	059	*****	*****	*****	051	066	050	058	058
.752	*****	055	*****	062	*****	053	*****	050	060	052	049	*****
.766	*****	066	*****	076	*****	074	*****	078	078	075	072	085
•779	*****	059	*****	066	*****	057	*****	055	*****	057	057	056
•793	****	074	*****	072	*****	082	*****	*****	079	073	081	*****
.807	*****	079	*****	078	*****	075	*****	*****	078	071	081	068
.821	*****	* * * * *	*****	083	*****	087	*****	*****	088	083	087	090
. 835	*****	105	*****	103	*****	104	*****	*****	104	100	101	106
.849	*****	120	*****	119	*****	121	*****	*****	119	116	119	115
.863	*****	142	****	142	*****	139	*****	*****	131	124	*****	132
.877	126	126	*****	128	*****	138	*****	*****	*****	*****	*****	*****
.891	151	159	*****	148	*****	160	*****	*****	141	139	146	137
.916	164	163	226	*****	168	*****	168	173	161	153	159	166
.928	194	*****	244	*****	196	*****	191	182	176	179	180	185
.940	171	*****	150	*****	145	138	143	149	145	137	145	143
•952	****	*****	052	****	046	045	050	044	045	047	048	051
• 962	.062	.062	.063	*****	.059	.060	.059	•058	.059	•056	.051	.045
.974	.151	.151	*****	*****	.144	.148	.143	.145	.146	.143	•140	.136
•986	.198	.199	.190	*****	.195	.190	•192	.190	•191	.188	•186	.189
•996	•213	.217	*****	*****	.214	.210	•203	.209	.212	.209	• 207	.209

Table A4. Effect of Angle of Attack on Pressure Distributions for Body Alone at M=0.95 and NPR = 1.115

(a) $\alpha = -2.985^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY		VERTICA	L TAIL				
POINT NUMBER	18		UPPER Y/	SURFACE B	LOWER Y/	SURFACE B	Y/	В
MACH NUMBER	.950	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	-2.985	0.05 0.10						
NPR	1.115	0.20			Tails	emoved		
PTO, PSI	14.690	0.40 0.50			runo i	coveu		
PO, PSI	8.223	0.60 0.70						
QO, PSI	5.190	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
•584	027	029	*****	020	*****	*****	*****	033	024	022	013	*****
• 598	045	033	*****	045	*****	055	*****	048	041	030	*****	*****
•612	051	039	*****	040	*****	042	*****	047	047	029	*****	*****
•626	037	040	*****	038	*****	044	*****	043	043	039	*****	*****
.640	*****	048	****	054	*****	063	*****	046	048	054	*****	*****
•654	****	057	*****	077	*****	060	*****	060	058	047	*****	*****
•668	*****	*****	*****	047	*****	056	*****	054	045	045	*****	*****
.682	****	054	*****	064	* * * * * *	063	*****	070	059	049	041	*****
•696	****	052	*****	058	* * * * * *	056	*****	065	063	049	032	035
.710	****	055	****	****	*****	050	*****	049	047	044	037	046
.724	****	047	*****	060	*****	059	*****	055	063	048	044	046
•738	****	064	*****	065	*****	*****	*****	063	069	055	052	041
.752	****	054	****	061	*****	061	*****	069	081	056	055	*****
.766	*****	089	*****	090	*****	088	*****	084	089	075	073	072
•779	*****	072	****	073	*****	068.	*****	069	*****	064	060	056
•793	*****	090	*****	089	*****	093	*****	*****	083	074	068	*****
.807	*****	076	*****	084	*****	082	*****	*****	084	080	068	077
.821	*****	*****	*****	087	*****	102	*****	*****	098	085	081	079
.835	*****	114	*****	120	*****	122	*****	*****	110	101	099	098
.849	*****	123	*****	132	*****	143	*****	*****	135	120	106	111
.863	****	159	*****	162	*****	162	*****	*****	143	128	*****	131
.877	153	133	*****	153	*****	161	*****	*****	*****	*****	*****	*****
.891	178	189	*****	175	*****	172	*****	*****	156	144	132	142
•916	193	193	269	*****	194	*****	204	193	180	164	138	155
•928	262	*****	308	*****	250	*****	243	245	201	172	158	169
.940	345	*****	324	*****	325	271	240	247	193	123	132	131
.952	*****	*****	214	*****	149	136	116	096	082	049	053	059
.962	032	023	005	*****	014	.030	.005	.009	.020	.050	.049	.027
.974	.073	.070	*****	*****	. 099	.112	.087	.081	.116	.117	.113	.101
•986	.126	•134	.127	*****	.127	.137	•141	.120	.129	•132	.134	•132
•996	.140	.142	*****	*****	.147	.132	.141	.143	.136	.151	.146	•141

Table A4. Continued

(b) $\alpha = 0.011^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY		HORIZONTAL TAILS Upper Surface Lower Surface								
POINT NUMBER	19		UPPER Y/		LUWEK Y/		Y/				
MACH NUMBER	•951	X/C	0.1	0.2	0.1	0.2	0.1	0.2			
ALPHA, DEG	.011	0.05 0.10									
NPR	1.133	0.20 0.30			Tails re	emoved					
PTO, PSI	14.689	0.40 0.50									
PO, PSI	8.212	0.60 0.70									
QO, PSI	5.195	0.80 0.90									

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
• 584	040	026	*****	024	*****	*****	*****	021	011	016	.001	*****
.598	046	033	*****	044	*****	037	*****	036	027	026	*****	*****
.612	040	041	*****	039	*****	031	*****	039	025	022	*****	*****
.626	035	031	*****	035	*****	044	*****	034	024	030	*****	*****
.640	*****	040	*****	045	*****	046	*****	046	041	032	*****	*****
.654	*****	062	*****	054	*****	047	*****	050	066	038	*****	*****
.668	*****	*****	*****	040	*****	042	*****	038	038	038	*****	*****
.682	*****	054	*****	056	*****	056	*****	043	055	047	042	*****
.696	*****	059	*****	053	*****	048	*****	042	047	048	046	045
.710	*****	050	*****	*****	*****	053	*****	041	043	047	034	039
.724	*****	052	*****	065	*****	048	*****	052	054	046	054	049
.738	*****	063	*****	062	*****	*****	*****	059	066	044	053	056
.752	*****	053	*****	053	*****	074	*****	057	062	055	056	*****
.766	*****	076	*****	090	*****	076	*****	081	081	071	082	082
.779	*****	059	*****	058	*****	073	*****	057	*****	063	064	072
.793	*****	076.	*****	074	*****	078	*****	*****	083	066	077	*****
.807	*****	081	*****	083	*****	080	*****	*****	086	086	079	081
.821	*****	*****	*****	087	*****	093	*****	*****	102	101	085	090
.835	*****	111	*****	109	*****	102	*****	*****	112	094	109	112
.849	*****	136	*****	129	*****	129	*****	*****	140	128	118	130
.863	*****	140	*****	148	* * * * * *	146	*****	*****	132	152	, *****	128
.877	148	148	*****	139	*****	151	*****	*****	*****	*****	*****	*****
.891	157	167	*****	169	*****	177	*****	*****	154	161	167	148
•916	189	188	253	*****	187	*****	193	199	191	184	167	191
.928	233	*****	289	*****	229	*****	237	251	228	235	232	231
.940	247	*****	228	*****	244	223	245	234	230	225	244	222
.952	*****	*****	092	*****	095	094	100	094	101	098	107	102
.962	.016	.016	.019	*****	.017	.012	.017	.011	.014	.006	002	005
.974	.105	.106	*****	*****	.105	.103	.100	.096	.098	. 095	.091	• 091
.986	.156	.152	.152	*****	. 153	.150	.148	.150	.149	.147	.138	.145
•996	.175	.180	*****	*****	.173	.178	.167	.175	.165	.171	.163	.169

Table A4. Continued

(c) $\alpha = 3.014^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY		VERTICA	L TAIL				
POINT NUMBER	20		UPPER Y/	SURFACE	LOWER Y/	SURFACE B	Υ/	В
MACH NUMBER	.948	x/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	3.014	0.05 0.10						
NPR	1.120	0.20			Tails r	emoved		
PTO, PSI	14.689	0.40 0.50						
PO, PSI	8.233	0.60 0.70						
QO, PSI	5.183	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	o	18	36	45	54	72	81	90	108	135	162	180
•584	041	035	*****	015	*****	*****	*****	020	015	004	.010	*****
.598	037	041	*****	038	*****	041	*****	029	034	011	*****	*****
.612	033	045	*****	033	*****	032	*****	029	032	015	*****	*****
.626	032	036	*****	032	*****	040	*****	032	035	024	*****	*****
.640	*****	045	*****	045	*****	051	*****	036	039	027	*****	*****
.654	*****	048	*****	047	*****	049	*****	055	055	052	*****	*****
.668	****	*****	*****	051	*****	045	*****	038	033	033	*****	*****
.682	*****	042	*****	053	*****	047	*****	049	057	039	034	*****
.696	*****	052	*****	046	*****	047	*****	049	046	044	047	033
.710	*****	046	*****	*****	*****	060	*****	048	050	041	032	034
.724	*****	050	*****	055	*****	050	*****	043	056	051	043	039
.738	*****	059	*****	063	*****	*****	*****	063	058	059	050	048
•752	****	056	*****	064	*****	063	*****	062	060	059	051	*****
.766	*****	072	*****	085	*****	072	*****	079	096	089	088	084
.779	*****	062	*****	070	*****	073	*****	067	*****	062	056	064
.793	*****	075	*****	079	*****	082	*****	*****	086	085	080	*****
.807	*****	075	*****	078	*****	085	*****	*****	080	081	083	073
.821	*****	*****	*****	090	* * * * * *	098	*****	*****	093	089	083	089
.835	****	101	*****	108	*****	112	*****	*****	107	117	104	110
.849	*****	113	*****	110	*****	122	*****	*****	126	128	125	133
.863	****	123	*****	130	*****	140	*****	*****	152	141	*****	136
.877	141	120	*****	141	*****	142	*****	*****	*****	*****	*****	*****
.891	151	146	*****	149	* * * * * *	170	*****	*****	171	176	163	173
.916	173	163	204	*****	164	*****	184	185	193	188	177	202
•928	168	*****	204	*****	199	*****	212	216	236	259	261	258
.940	135	*****	135	*****	146	169	200	232	259	321	320	329
.952	*****	*****	043	*****	047	067	075	071	113	188	192	201
•962	.027	.022	.045	*****	.047	.056	.043	.039	.010	014	032	043
.974	.103	.101	****	*****	.082	.104	.111	.097	.092	.087	.066	•059
.986	.145	.137	.142	*****	.146	•145	•142	.131	•143	•131	.127	.127
.996	.162	.155	*****	*****	.158	.156	•152	•156	.152	.133	.139	.138

Table A4. Concluded

(d) $\alpha = 5.976^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY		VERTICA	L TAIL				
POINT NUMBER	21		UPPER Y/	SURFACE	LOWER Y/	SURFACE B	Υ/	В
MACH NUMBER	.949	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	5.976	0.05 0.10						
NPR	1.092	0.20			Taile r	emoved		
PTO, PSI	14.689	0.40 0.50			Tans I	emoved		
PO, PSI	8.224	0.60 0.70						
QO, PSI	5.189	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
• 584	037	029	*****	044	*****	*****	*****	029	021	003	.028	*****
•598	032	034	*****	042	*****	046	*****	060	030	019	*****	*****
.612	037	028	*****	046	*****	042	*****	048	034	036	*****	*****
•626	028	030	*****	055	*****	046	*****	056	045	029	*****	*****
•640	*****	044	*****	051	*****	067	*****	057	055	036	*****	*****
•654	*****	052	*****	056	*****	069	*****	077	071	050	*****	*****
•668	****	****	*****	051	*****	055	*****	053	057	034	*****	*****
•682	*****	049	*****	056	*****	061	*****	072	069	044	031	*****
•696	*****	048	*****	049	* * * * * *	066	*****	068	069	055	033	028
.710	*****	053	*****	*****	*****	068	*****	070	063	047	034	026
.724	*****	050	*****	060	*****	073	*****	073	069	054	039	040
.738	****	053	*****	064	*****	*****	*****	080	088	057	042	046
•752	*****	060	*****	068	*****	080	*****	085	078	060	050	*****
•766	*****	064	****	071	****	090	*****	113	115	094	089	074
•779	*****	066	*****	072	*****	083	*****	080	*****	069	050	054
•793	*****	074	*****	083	*****	099	*****	*****	099	084	079	*****
.807	*****	085	*****	086	****	094	*****	*****	107	083	072	075
.821	*****	*****	*****	093	*****	103	*****	*****	115	104	090	083
.835	*****	103	*****	103	* * * * * *	117	*****	*****	139	118	104	101
.849	****	117	*****	117	*****	130	*****	*****	149	133	123	118
.863	*****	116	*****	126	*****	148	*****	*****	171	165	*****	135
.877	105	113	*****	127	*****	140	*****	*****	*****	*****	*****	*****
.891	141	137	*****	134	*****	155	*****	*****	185	188	182	166
•916	124	129	166	*****	140	*****	176	193	205	199	177	188
.928	128	*****	167	*****	153	*****	211	231	254	271	273	260
•940	110	*****	109	*****	133	158	192	249	311	350	347	344
•952	*****	*****	059	*****	065	074	072	092	171	307	371	306
.962	.032	.006	.007	****	.008	.011	.014	.013	008	056	089	089
.974	.093	.080	*****	*****	.055	.060	.057	•060	.065	.043	.023	.023
•986	.100	.101	.099	*****	.085	.083	.087	.082	.091	.088	.081	.083
•996	.093	.096	*****	*****	.093	.089	.099	•095	.086	.087	.087	.093

Table A5. Effect of Nozzle Pressure Ratio on Pressure Distributions for Body Alone at M=0.90 and $\alpha=0.009^\circ$

(a) NPR = 1.111

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY			HORIZON	TAL TAILS	;	VERTICA	L TAIL
			UPPER	SURFACE		SURFACE		
POINT NUMBER	22		Y/	В	Y/	'B	Y /	В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.901							
ALPHA, DEG	•009	0.05						
		0.10						
NPR	1.111	0.20						
		0.30			Taile r	emoved		
PTO, PSI	14.692	0.40			I allo I	01110 4 0 0		
	2.00.2	0.50						
PO, PSI	8.677	0.60						
		0.70						
QO, PSI	4.931	0.80						
		0.90						

AFTERBODY PRESSURE COEFFICIENTS

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	034	030	*****	021	*****	*****	*****	~.025	024	016	009	*****
• 598	047	044	*****	039	*****	043	*****	037	031	025	*****	*****
•612	043	041	****	037	*****	042	*****	034	035	030	*****	*****
•626	037	042	*****	043	*****	037	*****	031	033	031	*****	*****
.640	****	048	*****	047	*****	044	*****	045	038	037	*****	*****
.654	*****	053	*****	055	*****	043	*****	044	047	043	*****	*****
• 668	*****	*****	*****	044	*****	040	*****	041	044	033	*****	*****
.682	****	057	*****	049	* * * * * *	050	*****	048	051	046	045	*****
•696	*****	052	*****	-,051	*****	051	*****	048	049	047	041	040
.710	****	051	*****	*****	*****	046	*****	046	~.050	047	045	044
•724	*****	055	*****	058	*****	056	*****	049	051	047	048	048
.738	*****	057	*****	060	*****	*****	*****	053	~.063	062	051	058
•752	****	051	*****	060	*****	056	****	056	062	054	052	*****
•766	*****	073	*****	077	*****	076	*****	079	078	081	072	073
•779	*****	063	*****	064	*****	065	*****	061	*****	063	057	059
.793	*****	075	*****	076	*****	075	*****	*****	075	078	075	*****
.807	*****	078	*****	074	*****	077	*****	*****	075	074	072	071
.821	*****	*****	*****	084	*****	084	*****	*****	088	084	085	088
·835	*****	098	*****	096	*****	099	*****	*****	~.097	102	093	093
.849	*****	108	*****	110	*****	112	*****	*****	113	108	107	105
.863	****	124	*****	119	*****	119	*****	*****	116	117	*****	115
.877	120	117	*****	117	*****	123	*****	*****	*****	*****	*****	*****
.891	141	143	*****	145	*****	140	*****	*****	138	126	130	13;
.916	166	167	224	*****	163	*****	168	170	165	157	151	16:
•928	203	*****	235	*****	197	*****	189	197	189	192	195	19
•940	196	*****	187	*****	191	186	191	191	190	190	192	18
•952	*****	*****	123	*****	122	120	124	128	119	122	125	12
•962	023	028	021	*****	024	024	024	025	031	027	031	03!
.974	.071	.072	*****	*****	• 070	.073	.074	.069	•068	.069	.063	• 061
.986	.144	.137	.138	*****	.139	.134	.137	.134	.134	.131	•129	•12
• 996	.169	.169	*****	*****	.170	.167	.169	.161	•164	.160	.161	.15

AFTERBODY INTEGRATED PRESSURE DRAG COEFFICIENT

.0473

Table A5. Continued

(b) NPR = 2.033

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY				ITAL TAILS		VERTICA	L TAIL
POINT NUMBER	23		UPPER Y/	SURFACE B	LOWER Y/	SURFACE	Y/	8
MACH NUMBER	.901	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	.010	0.05 0.10						
NPR	2.033	0.20			Tailer	emoved		
PTO, PSI	14.693	0.40 0.50			I all 5 I	81110 4 8 0		
PO, PSI	8.682	0.60						
QO, PSI	4.929	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	034	025	*****	023	*****	*****	*****	022	019	-,016	007	*****
.598	046	037	*****	036	*****	037	*****	037	029	027	*****	*****
.612	043	038	*****	038	*****	035	*****	035	032	030	*****	*****
.626	034	037	*****	041	*****	038	*****	027	028	029	*****	*****
•640	*****	041	*****	043	*****	041	*****	038	039	030	*****	*****
.654	*****	053	*****	048	*****	042	*****	046	045	038	*****	*****
.668	*****	*****	*****	038	*****	036	*****	042	042	033	*****	*****
.682	*****	056	*****	048	*****	045	*****	049	046	040	038	*****
.696	*****	047	*****	045	*****	044	*****	047	050	045	040	041
.710	*****	052	*****	*****	*****	046	*****	042	051	042	041	046
.724	*****	056	*****	053	*****	052	*****	049	055	048	050	043
.738	****	061	*****	059	*****	*****	*****	052	063	057	051	050
.752	*****	052	*****	054	*****	054	*****	057	055	054	051	*****
• 766	*****	072	*****	073	*****	074	*****	077	071	077	-,067	073
•779	*****	062	*****	061	*****	060	*****	059	*****	060	052	060
.793	*****	073.	*****	069	*****	075	*****	*****	068	073	066	*****
.807	*****	070	*****	071	*****	077	*****	*****	073	074	068	065
.821	*****	*****	*****	085	*****	086	*****	*****	080	080	080	078
.835	*****	094	*****	099	*****	096	*****	*****	094	096	086	092
.849	*****	104	*****	107	*****	102	*****	*****	103	106	096	104
•863	*****	122	*****	116	*****	110	*****	*****	115	112	*****	113
.877	114	107	*****	116	*****	- 115	*****	*****	*****	*****	*****	*****
.891	131	137	*****	134	*****	126	*****	*****	130	114	123	119
.916	152	146	206	*****	149	*****	143	152	148	139	132	149
.928	179	*****	206	*****	174	*****	163	165	164	161	169	171
-940	176	*****	160	*****	166	154	157	165	154	150	156	155
•952	*****	*****	084	*****	089	084	082	086	088	076	089	087
962	.014	.016	.018	*****	.014	.015	•020	.016	.011	.014	.010	•005
.974	.112	.113	*****	*****	.108	.108	.113	.110	.107	.112	.105	•102
•986	.177	•175	• 172	*****	.172	.168	•174	.169	.167	.172	.166	.170
•996	.206	.206	*****	*****	.197	.194	.200	•191	•196	.198	.195	.196

Table A5. Continued

(c) NPR = 3.061

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY				TAL TAILS		VERTICA	L TAIL
POINT NUMBER	24		UPPER Y/	SURFACE	LOWER Y/	SURFACE B	Υ/	В
MACH NUMBER	.900	x/c	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	.009	0.05 0.10						
NPR	3.061	0.20			Tailer	emoved		
PTO, PSI	14.694	0.40 0.50			14115 1	cmoved		
PO, PSI	8.687	0.60						
QO, PSI	4.926	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	o	18	36	45	54	72	81	90	108	135	162	180
• 584	041	033	*****	018	*****	*****	*****	022	021	019	011	*****
.598	047	040	*****	040	*****	044	*****	030	028	030	*****	*****
.612	046	036	*****	041	*****	037	*****	028	029	026	*****	*****
.626	~.038	036	*****	038	*****	037	*****	028	029	025	*****	*****
.640	*****	043	*****	040	*****	042	*****	040	037	038	*****	*****
.654	*****	054	*****	056	*****	043	*****	054	051	043	*****	*****
.668	*****	*****	*****	044	* ** ***	042	*****	043	038	033	*****	*****
.682	****	052	*****	048	*****	052	*****	051	047	040	042	*****
•696	*****	048	*****	045	*****	049	*****	049	047	041	046	036
.710	*****	049	*****	*****	*****	052	*****	048	046	043	041	038
.724	*****	052	*****	055	*****	052	*****	043	048	050	047	042
.738	*****	055	*****	062	*****	*****	*****	055	058	055	050	054
.752	****	060	****	056	*****	058	*****	058	063	055	051	*****
.766	*****	075	*****	070	* * * * * *	070	*****	072	075	075	071	072
.779	*****	064	*****	058	*****	060	*****	053	*****	062	059	053
.793	*****	074	****	070	*****	071	*****	*****	069	070	071	*****
.807	*****	077	*****	071	*****	072	*****	*****	068	072	072	065
.821	*****	* * * * *	****	078	*****	079	*****	*****	081	081	079	081
.835	*****	096	*****	091	*****	091	*****	*****	088	092	093	091
.849	*****	107	*****	101	*****	109	*****	*****	104	103	102	098
.863	*****	116	*****	117	*****	112	*****	*****	115	113	*****	105
.877	108	105	*****	116	*****	116	*****	*****	*****	*****	*****	*****
.891	126	133	*****	131	*****	127	*****	*****	131	120	121	121
.916	158	146	210	*****	146	*****	152	148	148	138	136	143
.928	179	*****	214	*****	170	*****	166	168	164	168	169	165
.940	171	*****	153	*****	157	154	156	164	157	161	156	151
.952	*****	* * * * * *	084	*****	083	085	085	088	089	086	087	087
.962	.007	.012	.013	*****	.015	.014	•012	.018	.009	.014	.007	.008
.974	.107	.114	*****	*****	•110	•106	.111	.109	.108	.106	.104	.105
.986	.175	.176	.173	*****	.175	.170	.172	.167	.169	.164	•165	.169
• 996	.201	.203	*****	*****	• 201	.198	.199	.194	.195	.192	.195	•192

Table A5. Concluded

(d) NPR = 4.991

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY				TAL TAILS		VERTICA	L TAIL
POINT NUMBER	25		UPPER Y/	SURFACE B	LOWER Y/	SURFACE B	Υ/	В
MACH NUMBER	.901	x/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	.009	0.05 0.10						
NPR	4.991	0.20			Tailar	emoved		
PTO, PSI	14.692	0.40			I alis I	emoveu		
PO, PSI	8.681	0.60 0.70						
QO, PSI	4.929	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
•584	038	023	*****	025	*****	*****	*****	029	022	018	007	*****
•598	040	042	*****	038	*****	040	*****	039	030	026	*****	*****
•612	035	039	*****	036	*****	032	*****	031	027	030	*****	*****
•626	032	033	*****	041	*****	036	*****	029	028	027	*****	*****
.640	*****	042	*****	042	*****	042	*****	039	040	031	*****	*****
•654	*****	056	*****	050	*****	042	*****	051	051	043	*****	*****
•668	*****	*****	*****	044	*****	043	*****	035	043	030	*****	*****
.682	*****	056	*****	046	* * * * * *	052	*****	039	043	038	042	*****
•696	*****	044	*****	044	*****	049	*****	043	052	041	043	043
.710	*****	054	*****	*****	*****	050	*****	039	047	039	045	038
.724	*****	052	*****	047	*****	057	*****	050	050	044	047	044
•738	****	056	*****	056	*****	*****	*****	055	064	051	055	050
•752	*****	056	*****	058	*****	059	*****	053	056	050	051	*****
•766	*****	066	*****	071	*****	074	*****	075	074	071	074	076
.779	*****	053	*****	055	*****	057	*****	055	*****	061	058	061
•793	*****	068.	*****	069	*****	076	*****	*****	067	067	071	*****
▶807	*****	068	*****	074	*****	073	*****	*****	068	072	072	066
.821	*****	*****	*****	079	*****	081	*****	*****	077	078	084	077
•835	*****	097	*****	094	* * * * * *	092	*****	*****	088	089	091	094
.849	*****	109	*****	106	*****	103	*****	*****	099	104	100	104
.863	*****	118	*****	118	*****	111	*****	*****	109	109	*****	104
.877	109	103	*****	111	*****	113	*****	*****	*****	*****	*****	*****
.891	121	135	*****	131	*****	122	*****	*****	125	122	118	112
•916	140	141	205	*****	143	*****	141	142	142	134	131	143
•928	160	*****	207	*****	164	*****	155	157	155	160	165	157
•940	-,151	*****	143	*****	148	140	142	147	147	140	141	146
•952	*****	*****	067	*****	070	068	065	068	066	069	072	067
.962	.037	.034	.035	*****	.033	.033	.036	.038	.033	• 034	.028	•024
.974	.138	.133	*****	*****	.130	.128	•131	•129	.129	.125	.119	.124
.986	.197	.194	.189	*****	.189	.185	.187	.188	.183	.182	.181	.185
•996	.223	.216	*****	*****	.210	.212	.212	.211	.207	.208	• 204	.210

Table A6. Effect of Angle of Attack on Pressure Distributions for Body Alone at M=0.90 and NPR = 1.111

(a) $\alpha = -2.980^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY				TAL TAILS		VERTICA	L TAIL
			UPPER	SURFACE		SURFACE		
POINT NUMBER	27		Y/	В	Y/	'B	Y/	'B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.901			• • •			•••	***
ALPHA, DEG	-2.980	0.05						
		0.10						
NPR	1.111	0.20						
		0.30			Tailer	emoved		
PTO, PSI	14.691	0.40			I diis i	61110 V 6 U		
7 (0) 7 31	14.071	0.50						
PO, PSI	8.681	0.60						
FU) F31	0.001							
		0.70						
QO, PSI	4.928	0.80						
		0.90						

AFTERBODY PRESSURF COEFFICIENTS

PHI, DEG

X/L	o	19	36	45	54	72	81	90	108	135	162	180
.584	037	027	*****	027	*****	*****	*****	036	035	032	014	*****
•598	040	042	*****	051	*****	052	*****	042	040	036	*****	*****
.612	039	039	*****	045	*****	041	*****	044	039	038	*****	*****
•625	028	034	*****	047	*****	044	*****	047	041	039	*****	*****
.640	*****	047	*****	052	*****	056	*****	~. 055	053	038	*****	*****
.654	*****	062	*****	059	*****	052	*****	063	060	050	*****	*****
.668	*****	*****	*****	053	*****	051	*****	049	047	042	*****	*****
.682	*****	054	*****	060	*****	058	*****	056	056	049	039	*****
•696	****	047	****	058	*****	055	*****	~.053	056	050	040	035
.710	*****	051	*****	*****	*****	057	*****	~.056	058	045	041	040
.724	*****	055	*****	057	*****	062	*****	064	064	~.052	041	047
.738	*****	064	*****	068	*****	*****	*****	069	077	~.059	048	051
.752	*****	058	*****	064	*****	067	*****	~.067	065	~.057	050	*****
.766	*****	077	*****	084	*****	082	*****	088	085	074	064	064
.779	*****	060	*****	064	*****	070	*****	067	*****	065	055	052
.793	*****	073	*****	083	*****	÷.083	*****	*****	081	068	065	*****
.807	****	080	*****	083	*****	085	*****	*****	082	072	066	069
.821	*****	*****	*****	~.090	*****	097	*****	*****	086	083	077	077
.835	*****	107	*****	110	*****	108	*****	*****	103	~.091	084	082
.849	****	119	*****	128	*****	~.120	*****	*****	109	101	093	093
.863	*****	133	*****	142	*****	133	*****	*****	120	111	*****	101
.877	124	119	*****	132	*****	139	*****	*****	*****	*****	*****	*****
.891	153	160	*****	160	* * * * * *	153	*****	*****	137	113	107	110
.916	188	187	266	*****	182	*****	174	176	157	135	120	127
.928	246	****	301	*****	235	*****	210	197	174	149	144	145
.940	284	*****	256	*****	254	216	210	194	170	131	125	133
•952	*****	*****	181	*****	174	145	131	109	098	067	070	071
•962	084	075	066	*****	054	039	022	010	• 006	.000	.003	.005
.974	.038	.037	*****	*****	. 048	.062	.075	.074	.075	.078	.077	.083
•986	•118	.120	.120	*****	.133	.124	.124	.133	•121	.140	.129	.132
•996	•136	.139	*****	*****	.133	.134	•139	.149	•142	.156	.149	.148

AFTERBODY INTEGRATED PRESSURE DRAG COEFFICIENT

.0509

Table A6. Continued

(b) $\alpha = 0.013^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY				ITAL TAILS		VERTICA	L TAIL
POINT NUMBER	28		UPPER Y/	SURFACE B	LOWER Y/	SURFACE B	Υ,	'В
MACH NUMBER	.900	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	.013	0.05 0.10						
NPR	1.122	0.20						
PTO, PSI	14.691	0.30 0.40 0.50			Tails r	emoved		
PO, PSI	8.688	0.60 0.70						
QO, PSI	4.924	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	039	032	*****	024	*****	*****	*****	022	025	023	006	*****
.598	045	045	*****	045	*****	037	*****	030	031	026	*****	*****
.612	043	041	*****	039	*****	039	*****	032	034	027	*****	*****
•626	035	041	*****	039	*****	038	*****	039	027	030	*****	*****
•640	*****	041	*****	045	*****	043	*****	045	035	035	*****	*****
.654	*****	050	*****	054	*****	044	*****	050	049	042	*****	*****
•668	*****	*****	*****	043	*****	037	*****	040	038	038	*****	*****
.682	*****	051	*****	054	*****	053	*****	047	049	039	041	*****
.696	*****	049	*****	044	*****	049	*****	045	054	043	043	035
.710	*****	057	*****	*****	*****	049	*****	048	050	045	041	043
.724	****	055	*****	055	*****	053	*****	052	054	051	050	053
.738	*****	061	*****	062	*****	*****	*****	062	066	056	049	056
•752	*****	057	*****	062	*****	059	*****	058	060	057	052	*****
.766	*****	072	*****	075	*****	071	*****	077	075	076	068	070
•779	*****	062	*****	064	*****	062	*****	058	*****	059	061	053
•793	*****	072	*****	069	*****	081	*****	*****	067	075	073	*****
.807	*****	078	*****	070	*****	+.077	*****	*****	072	075	071	077
.821	*****	*****	*****	083	*****	086	*****	*****	086	083	080	087
.835	*****	093	*****	100	* * * * * *	097	*****	*****	094	099	097	090
.849	*****	113	*****	111	*****	110	*****	*****	110	109	105	099
.863	****	121	*****	129	*****	116	*****	*****	119	117	*****	115
.877	118	112	*****	120	*****	125	*****	*****	*****	*****	*****	*****
.891	140	151	*****	144	*****	130	*****	*****	134	124	131	132
•916	166	165	224	*****	171	*****	164	167	163	156	149	156
•928	195	*****	238	*****	196	*****	186	195	188	186	190	193
•940	196	*****	187	*****	191	185	192	195	193	~. 195	191	193
•952	*****	*****	121	*****	125	123	115	124	118	124	121	128
•962	025	029	022	*****	031	027	023	023	025	026	031	029
• 974	•075	.075	*****	*****	.068	.069	.075	.069	.069	.069	.065	.062
• 986	.141	.139	.138	*****	• 142	.132	.135	.132	.134	•130	• 129	•127
•996	.167	.175	*****	*****	.158	.167	.174	.165	.163	.159	.163	.155

Table A6. Concluded

(c) $\alpha = 6.008^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY				ITAL TAILS		VERTICA	L TAIL
POINT NUMBER	29		UPPER Y/	SURFACE B	LOWER Y/	SURFACE	Υ/	В
MACH NUMBER	•901	x/C	0.1	0.2	0.1	0 • 2	0.1	0.2
ALPHA, DFG	6.008	0.05 0.10						
NPR	1.079	0.20			Taile r	emoved		
PTO, PSI	14.692	0.40			i alis i	emoveu		
PO, PSI	8.680	0.60 0.70						
QD, PSI	4.930	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	042	034	*****	040	*****	*****	*****	042	039	016	.014	*****
•598	045	043	*****	047	*****	054	*****	052	045	031	*****	*****
•612	037	037	*****	050	*****	056	*****	049	051	027	*****	*****
•626	036	040	****	046	*****	056	*****	051	051	029	*****	*****
.640	*****	046	*****	049	*****	064	*****	060	054	038	*****	*****
.654	*****	045	*****	058	*****	059	*****	079	070	051	*****	*****
•668	*****	*****	****	052	*****	060	*****	068	061	037	*****	*****
•682	*****	051	*****	053	*****	072	*****	076	074	053	042	*****
.696	****	049	****	055	* * * * * *	069	*****	077	075	057	042	026
.710	*****	054	*****	*****	*****	068	*****	072	071	053	038	029
.724	*****	054	*****	061	*****	076	*****	077	073	054	041	043
.738	*****	056	*****	059	*****	*****	*****	081	089	064	048	047
.752	*****	060	****	066	*****	073	*****	085	082	059	044	*****
•766	*****	072	*****	069	*****	088	*****	101	105	089	081	074
.779	*****	061	*****	067	*****	080	*****	079	*****	067	057	049
.793	*****	074	*****	074	*****	094	*****	*****	099	089	080	*****
.807	*****	073	*****	073	*****	092	*****	*****	102	088	074	072
.821	*****	*****	*****	084	*****	096	*****	*****	110	101	085	082
.835	*****	084	*****	091	* * * * * *	106	*****	*****	126	116	102	096
.849	****	093	*****	101	*****	121	*****	*****	138	129	120	105
.863	*****	104	*****	109	*****	122	*****	*****	143	146	*****	119
.877	089	096	*****	110	*****	120	*****	*****	*****	*****	*****	*****
.891	101	118	*****	113	*****	137	*****	*****	160	152	148	144
•916	118	113	149	*****	130	*****	170	184	200	192	181	185
•928	124	*****	145	*****	137	*****	183	215	244	265	271	254
•940	126	*****	111	*****	121	143	166	202	260	316	313	307
•952	*****	*****	069	*****	070	076	095	109	170	226	242	238
• 962	.036	007	004	*****	010	004	008	012	050	105	135	126
.974	.033	.068	*****	*****	.049	.049	.054	•052	.045	.011	019	015
• 986	.106	.104	.091	*****	.084	.082	.085	.085	.083	.071	.055	•062
• 996	.101	.100	*****	*****	.093	.090	.090	.088	.079	.077	.081	.088

Table A7. Effect of Nozzle Pressure Ratio on Pressure Distributions for Body Alone at M=0.60 and $\alpha=0.010^{\circ}$

(a) NPR = 1.037

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY	HORIZONTAL TAILS VERTICAL UPPER SURFACE LOWER SURFACE									
POINT NUMBER	30		UPPER Y/		LOWER Y/	SURFACE B	Υ/	В			
MACH NUMBER	.601	X/C	0.1	0.2	0.1	0.2	0.1	0.2			
ALPHA, DEG	.010	0.05 0.10									
NPR	1.037	0.10 0.20 0.30			Talla -						
PTO, PSI	14.703	0.40 0.50			i alis r	emoved					
PO, PSI	11.520	0.60 0.70									
QO, PSI	2.911	0.80 0.90									

AFTERBODY PRESSURE COEFFICIENTS

PH	I	,	D	Ē٩	

X/L	o	18	36	45	54	72	81	90	108	135	162	180
•584	040	033	*****	024	*****	*****	*****	033	025	022	014	*****
• 598	044	038	*****	038	*****	041	*****	037	032	027	*****	*****
.612	043	038	*****	035	*****	035	*****	035	035	026	*****	*****
•626	039	039	*****	035	*****	038	*****	038	038	030	*****	*****
•640	*****	047	*****	041	*****	040	*****	040	044	036	*****	*****
.654	*****	054	*****	050	*****	037	*****	048	049	045	*****	*****
•668	*****	*****	*****	044	*****	045	*****	039	042	032	*****	*****
•682	*****	051	*****	043	*****	046	*****	047	048	043	039	*****
•696	*****	049	*****	046	*****	045	*****	047	045	044	043	039
.710	*****	046	*****	*****	*****	047	*****	044	045	039	042	042
.724	*****	049	*****	048	*****	049	*****	045	050	042	049	049
.738	*****	054	*****	051	*****	*****	*****	049	057	051	051	048
•752	****	053	*****	050	*****	052	****	048	055	045	043	*****
.766	*****	061	*****	061	*****	063	*****	059	067	066	065	066
.7 79	*****	056	*****	055	*****	057	*****	050	*****	054	050	050
.793	*****	065	*****	067	*****	062	*****	*****	062	060	058	*****
.807	*****	065	*****	067	*****	063	*****	*****	063	063	060	063
.821	*****	*****	*****	068	*****	071	*****	*****	066	066	067	067
.835	*****	083	*****	080	*****	076	*****	*****	077	076	074	078
.849	*****	086	*****	085	*****	088	*****	*****	082	085	079	081
.863	****	096	*****	091	*****	093	*****	*****	086	089	*****	086
.877	090	089	*****	090	*****	091	*****	*****	*****	*****	*****	*****
.891	103	108	*****	100	*****	105	*****	*****	105	100	104	098
.916	122	120	184	*****	118	*****	123	124	120	114	110	120
.928	142	*****	176	*****	138	*****	139	136	137	142	141	137
.940	152	*****	139	*****	148	141	141	138	145	147	153	147
• 952	*****	*****	113	*****	113	110	113	118	114	114	122	119
•962	046	048	054	*****	050	048	053	047	056	053	055	058
.974	.028	.031	*****	*****	.027	.029	.026	.027	.024	.020	.018	.022
•986	.095	• 095	•092	*****	.091	.093	•092	.088	.083	.081	.074	.076
.996	.134	.124	*****	*****	.124	.119	.118	.114	.114	.104	.105	.104

AFTERBODY INTEGRATED PRESSURE DRAG COEFFICIENT

.0446

Table A7. Continued

(b) NPR = 1.992

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY DNLY		HORIZONTAL TAILS							
POINT NUMBER	31		UPPER Y/	SURFACE B	LOWER Y	SURFACE B	Y /	/B		
MACH NUMBER	.603	X/C	0.1	0.2	0.1	0.2	0.1	0.2		
ALPHA, DFG	.009	0.05 0.10								
NPR	1.992	0.20			Taile r	emoved				
PTO, PSI	14.703	0.40			14113 1	01110 V G G				
PO, PSI	11.503	0.60 0.70								
QO, PSI	2.925	0.80 0.90								

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	037	030	*****	024	*****	*****	*****	028	019	024	015	*****
.598	041	033	*****	041	*****	041	*****	035	027	030	*****	*****
.612	035	031	*****	038	*****	036	*****	033	030	030	*****	*****
.626	034	035	*****	041	*****	039	*****	039	034	029	*****	*****
.640	*****	044	*****	040	*****	038	*****	044	039	027	*****	*****
•654	*****	049	*****	041	*****	040	*****	045	051	038	*****	*****
.668	*****	*****	*****	039	*****	041	*****	037	035	030	*****	*****
.682	*****	044	*****	041	*****	046	*****	038	047	039	039	*****
.696	*****	047	*****	042	*****	043	*****	042	047	044	042	~.036
.710	*****	049	*****	*****	*****	047	*****	042	046	039	042	~.039
•724	*****	050	*****	047	• * * * * *	051	*****	044	053	041	043	04B
.738	*****	057	*****	050	*****	*****	*****	049	056	047	045	051
.752	*****	048	*****	044	*****	057	*****	048	044	044	044	*****
.766	*****	058	*****	055	*****	055	*****	-,064	060	~. 059	060	~.059
•779	****	046	*****	049	*****	054	*****	047	*****	~. 052	048	046
.793	*****	059	*****	060	*****	063	*****	*****	056	058	057	*****
.807	*****	061	*****	061	*****	064.	*****	*****	061	062	057	060
.821	*****	*****	*****	067	*****	072	*****	*****	064	062	066	069
.835	*****	077	*****	081	*****	073	*****	*****	075	074	071	070
.849	*****	090	*****	082	*****	075	*****	*****	079	~.083	075	076
.863	*****	085	*****	090	*****	083	*****	*****	083	084	*****	082
.877	082	084	*****	088	*****	087	*****	*****	*****	*****	*****	*****
.891	095	104	*****	101	*****	096	*****	*****	099	~. 093	092	096
.916	116	107	167	*****	111	*****	105	117	112	~.105	101	109
.928	122	****	174	*****	128	*****	121	124	125	129	130	126
.940	132	*****	117	*****	133	127	122	127	131	126	129	132
• 952	*****	*****	092	*****	094	092	090	091	088	091	094	098
•962	027	014	021	*****	022	020	016	023	027	021	025	027
• 974	.068	•069	*****	*****	• 060	.062	.066	.061	• 062	.059	• 056	.055
.986	.137	.137	.137	*****	.129	.130	.135	.131	.126	.128	• 125	.123
• 995	.173	.173	*****	*****	.169	.168	.171	.166	• 165	.164	.163	.156

Table A7. Continued

(c) NPR = 3.028

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY		HORIZONTAL TAILS							
POINT NUMBER	32		UPPER Y/	SURFACE B	LOWER Y/	SURFACE B	Υ/	В		
MACH NUMBER	.600	X/C	0.1	0.2	0.1	0.2	0.1	0.2		
ALPHA, DEG	.010	0.05 0.10								
NPR	3.028	0.20 0.30			Tailar	emoved				
PTO, PSI	14.703	0.40			Talls I	BIIIOVEU				
PO, PSI	11.528	0.60 0.70								
QO, PSI	2.904	0.80 0.90								

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
•584	039	034	*****	027	*****	*****	*****	031	028	029	008	*****
•598	054	041	*****	044	*****	033	*****	038	036	031	*****	*****
.612	042	042	*****	037	*****	028	*****	031	031	034	*****	*****
.626	040	036	*****	043	*****	026	****	036	031	032	*****	*****
.640	*****	042	*****	044	*****	032	*****	043	045	035	*****	*****
.654	*****	055	*****	049	*****	036	*****	048	048	042	*****	*****
•668	*****	*****	*****	043	*****	037	*****	050	039	035	*****	*****
.682	*****	049	*****	045	*****	046	*****	045	054	041	042	*****
.696	*****	054	*****	045	*****	047	*****	048	049	039	040	039
.710	*****	051	*****	*****	*****	044	*****	047	046	038	038	038
.724	*****	050	*****	046	*****	047	*****	049	047	040	045	045
.738	*****	052	*****	049	*****	*****	*****	054	061	045	048	050
.752	*****	051	*****	053	*****	053	*****	051	053	043	042	*****
.766	*****	072	*****	066	*****	060	*****	066	066	059	057	064
.779	*****	055	*****	051	*****	062	*****	051	*****	045	049	051
.793	*****	066	*****	059	*****	066	*****	*****	060	051	060	*****
.807	*****	066	*****	068	*****	063	*****	*****	057	049	057	059
.821	*****	*****	*****	067	*****	068	*****	*****	063	056	063	069
.835	*****	083	*****	075	*****	075	****	*****	070	067	072	075
.849	*****	086	*****	086	*****	084	*****	*****	078	070	080	081
.863	*****	091	*****	096	*****	088	****	*****	082	078	*****	081
.877	092	091	*****	089	*****	092	*****	*****	*****	*****	*****	*****
.891	095	106	*****	103	*****	099	*****	*****	091	088	093	096
•916	129	113	175	*****	114	*****	113	111	108	103	101	115
.928	129	*****	169	*****	129	*****	126	124	120	123	126	124
.940	137	*****	123	*****	128	127	129	124	116	129	129	131
•952	*****	*****	097	*****	097	090	093	088	084	095	102	099
•962	039	024	029	*****	025	029	023	017	019	021	027	033
•974	.063	.061	*****	*****	.059	.060	.061	.063	.067	.063	.059	.058
.986	.132	.136	.132	*****	.132	.125	.130	.133	.137	.127	.126	.124
•996	•171	•175	*****	*****	.165	.165	.166	.166	.170	. 162	.162	•159

Table A7. Concluded

(d) NPR = 4.992

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY			HORIZON		VERTICA	L TAIL	
POINT NUMBER	33		UPPER Y/	SURFACE B	LOWER Y/	SURFACE B	Υ/	В
MACH NUMBER	.600	x/c	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DFG	.009	0.05 0.10						
NPR	4.992	0.20			Tailer	emoved		
PTO, PSI	14.701	0.40 0.50			I alis I	91110490		
PO, PSI	11.522	0.60 0.70						
QO, PSI	2.907	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	029	034	*****	023	*****	*****	*****	018	034	022	012	*****
.598	039	046	*****	035	*****	036	*****	023	041	029	*****	*****
.612	040	046	*****	037	*****	034	*****	026	037	026	*****	*****
.626	041	040	****	035	*****	037	*****	031	043	028	*****	*****
.640	*****	053	*****	039	*****	040	*****	039	046	032	*****	*****
.654	*****	056	*****	045	*****	032	*****	039	054	042	*****	*****
.668	****	* * * * *	*****	043	*****	039	*****	036	050	040	*****	*****
.682	*****	060	*****	050	*****	043	*****	044	057	047	034	*****
.696	*****	056	*****	052	*****	039	*****	049	057	046	035	023
.710	*****	058	*****	*****	*****	040	*****	048	054	040	029	032
.724	*****	058	*****	048	*****	038	*****	045	054	042	034	042
.738	*****	058	*****	052	*****	*****	****	047	057	045	035	045
•752	*****	043	*****	058	*****	059	*****	049	049	045	038	*****
.766	*****	058	*****	069	*****	071	*****	058	066	058	057	051
.779	****	053	*****	056	*****	064	*****	046	*****	047	045	034
.793	*****	067	*****	070	*****	073	*****	*****	066	058	052	*****
.807	*****	067	*****	068	*****	070	*****	*****	065	060	051	054
.821	*****	*****	*****	074	*****	074	*****	*****	065	064	054	062
.835	*****	082	*****	081	* ** ** *	070	*****	*****	077	072	068	060
.849	*****	090	*****	082	*****	078	*****	*****	078	080	070	062
.863	*****	102	*****	087	*****	087	*****	*****	083	083	*****	075
.877	095	092	*****	087	*****	093	*****	*****	*****	*****	*****	*****
.891	100	112	*****	095	*****	102	*****	*****	090	087	080	087
.916	112	114	170	*****	118	*****	104	115	106	095	089	092
.928	125	*****	166	*****	132	*****	123	120	117	119	115	115
.940	135	*****	128	*****	132	118	123	122	123	120	111	118
952	*****	*****	091	*****	084	079	084	077	075	074	074	080
.962	010	017	012	*****	018	007	004	010	006	001	002	• 002
.974	.085	.080	*****	*****	.073	.081	.081	•082	.081	.081	.085	.081
.986	.159	.157	.149	*****	.152	•157	.151	.153	.152	.153	.158	.154
• 996	.198	.192	*****	*****	.195	.197	.188	.190	.189	• 195	.198	•193

Table A8. Effect of Angle of Attack on Pressure Distributions for Body Alone at M=0.60 and NPR = 1.051

(a) $\alpha = -2.980^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY			CUD 5 4 0 5	VERTICA	L TAIL		
POINT NUMBER	35		UPPER Y/	SURFACE B	LOMEK	SURFACE B	Y/	В
MACH NUMBER	.601	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	-2.980	0.05 0.10						
NPR	1.051	0.20			Tails r	emoved		
PTO, PSI	14.703	0.40 0.50				oo		
PO, PSI	11.518	0.60 0.70						
QO, PSI	2.912	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PH	۱Į,	DEG
----	-----	-----

X/L	0	18	36	45	54	72	81	90	108	135	162	180
• 584	033	031	*****	024	*****	*****	*****	039	037	031	015	*****
•598	039	038	*****	044	*****	046	*****	046	041	035	*****	*****
.612	041	038	*****	041	*****	044	*****	040	041	031	*****	*****
•626	035	036	*****	040	*****	046	*****	044	041	037	*****	*****
.640	*****	043	*****	048	*****	049	*****	051	047	040	*****	*****
.654	*****	049	*****	054	*****	049	*****	056	051	047	*****	*****
.668	****	*****	*****	049	*****	048	*****	046	046	040	*****	*****
•682	*****	048	*****	052	*****	051	*****	054	056	044	038	*****
•695	****	049	*****	051	*****	054	*****	056	053	041	037	033
•710	*****	050	******	*****	*****	053	*****	054	059	043	038	033
.724	*****	056	*****	054	*****	059	*****	055	056	044	042	038
•738	*****	056	*****	060	*****	*****	*****	059	065	047	044	044
•752	*****	052	*****	059	*****	058	*****	059	061	049	045	*****
•766	****	063	*****	071	*****	070	*****	068	073	060	054	055
•779	*****	060	*****	059	*****	065	*****	061	*****	051	042	043
.793	*****	071	*****	070	*****	072	*****	*****	066	058	054	*****
.807	*****	072	*****	071	*****	077	*****	*****	063	061	052	051
.821	*****	*****	*****	080	*****	081	*****	*****	071	065	059	059
.835	*****	086	*****	089	*****	089	*****	*****	075	071	060	064
.849	*****	093	*****	097	*****	096	*****	*****	085	079	069	066
•863	*****	105	*****	106	*****	102	*****	*****	090	081	*****	069
.877	105	100	*****	106	*****	108	*****	*****	*****	*****	*****	*****
.891	117	125	*****	118	*****	115	*****	*****	098	084	082	079
•916	148	146	216	*****	139	*****	131	126	114	099	087	092
•928	177	*****	218	*****	173	*****	149	143	126	112	108	104
•940	205	*****	177	*****	183	161	159	150	133	109	106	105
• 952	*****	*****	165	*****	150	136	121	112	092	080	077	077
•962	106	106	093	*****	077	065	052	040	031	021	022	021
.974	014	008	*****	*****	001	.020	.030	.035	.044	.044	.043	.044
.986	.065	.071	.076	*****	.085	.088	.095	• 095	.098	.100	•092	•092
• 996	.101	.104	*****	*****	.115	.119	•119	•122	.128	.125	.115	.107

AFTERBODY INTEGRATED PRESSURE DRAG COEFFICIENT

.0463

Table A8. Continued

(b) $\alpha = 0.019^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BONY ONLY		140050	HORIZON SURFACE	VERTICA	L TAIL		
POINT NUMBER	36		Y/		Y/	SURFACE	Υ/	8
, ozn. namezn	3.0	X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	• 599							
ALPHA, DEG	.019	0.05						
		0.10						
NPR	1.052	0.20						
		0.30			Tails r	emoved		
PTO, PSI	14.703	0.40						
		0.50						
PO, PSI	11.533	0.60						
		0.70						
QO, PSI	2.900	0.80						
		0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	o	16	36	45	54	72	81	90	108	135	162	180
.584	044	033	*****	027	*****	*****	*****	031	028	026	010	*****
•598	047	042	****	042	* ** ***	036	*****	036	034	035	*****	*****
.612	042	039	*****	043	*****	037	*****	029	030	034	*****	*****
•626	034	035	*****	043	*****	037	*****	029	036	027	*****	*****
.640	****	046	****	039	*****	041	*****	034	038	035	*****	*****
•654	*****	047	*****	049	*****	041	*****	052	047	048	*****	*****
•668	****	****	*****	048	*****	041	*****	043	042	040	*****	*****
•682	****	~. 053	****	052	*****	054	*****	045	047	040	041	*****
•696	*****	047	*****	045	*****	046	*****	043	-,045	045	042	039
.710	****	047	****	*****	*****	047	*****	045	047	044	041	036
.724	*****	~. 050	*****	052	*****	049	*****	049	048	048	046	039
.738	*****	053	*****	057	*****	*****	*****	053	061	050	048	042
•752	****	057	*****	053	*****	053	*****	055	054	052	048	*****
•766	*****	066	*****	064	*****	065	*****	068	072	064	060	064
•779	****	055	*****	051	*****	055	*****	047	*****	049	057	050
.793	****	062	*****	066	*****	063	*****	*****	059	062	~.059	*****
.807	*****	066	*****	061	*****	064	*****	*****	064	062	~.059	054
.821	****	****	****	069	*****	070	*****	*****	070	066	~.066	062
.835	****	076	****	077	*****	072	*****	*****	079	078	081	076
.849	*****	086	*****	088	*****	086	*****	*****	086	084	079	081
.863	****	096	****	096	*****	096	*****	*****	094	089	*****	084
.877	093	089	*****	098	*****	099	*****	*****	*****	*****	*****	*****
.891	100	108	*****	110	*****	101	*****	*****	099	095	099	090
.916	128	121	175	*****	120	*****	120	-,126	120	115	111	119
•928	138	*****	178	*****	141	*****	142	-,141	136	136	141	137
.940	149	*****	139	*****	143	142	148	150	147	150	146	140
.952	*****	*****	113	*****	118	107	112	117	113	111	117	110
•962	057	049	049	*****	051	053	049	050	051	052	~.058	057
.974	.030	.030	*****	*****	.023	.019	.023	.023	.025	.025	.020	.021
.986	.097	•095	.089	*****	.092	.083	•084	.081	.083	.079	.080	.084
.996	.130	.123	*****	*****	.115	.121	•119	•111	.115	.111	.104	.108

Table A8. Continued

(c) $\alpha = 3.013^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY				TAL TAILS		VERTICA	L TAIL
POINT NUMBER	37		UPPER Y/	SURFACE B	L DWER	SURFACE B	Υ/	В
MACH NUMBER	.600	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	3.013	0.05 0.10						
NPR	1.048	0.20 0.30			Taile r	emoved		
PTO, PSI	14.704	0.40 0.50			i alis i			
PD, PSI	11.525	0.60 0.70						
QO, PSI	2.907	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	042	033	*****	027	*****	*****	*****	035	031	020	010	*****
.598	045	042	*****	038	*****	045	*****	042	040	027	*****	*****
.612	042	040	*****	037	*****	043	*****	040	~.035	032	*****	*****
.626	035	035	*****	043	*****	042	*****	041	044	032	*****	*****
.640	*****	047	*****	045	*****	043	*****	048	043	038	*****	*****
.654	*****	046	*****	051	*****	046	*****	056	047	047	*****	*****
.668	****	*****	*****	046	****	050	*****	047	046	037	*****	*****
.682	*****	047	*****	046	*****	051	*****	057	052	044	042	*****
.696	*****	044	****	046	* * * * * *	052	*****	051	057	047	038	038
.710	*****	052	****	*****	*****	047	*****	051	055	045	039	044
.724	*****	051	*****	051	*****	052	*****	051	057	045	046	047
.738	*****	052	****	050	*****	*****	*****	054	063	047	051	051
.752	*****	052	****	055	*****	050	*****	053	061	049	050	*****
.766	*****	060	*****	063	*****	065	*****	073	074	063	070	068
.779	****	052	*****	050	*****	058	*****	058	*****	058	052	053
.793	*****	056	*****	066	*****	073	*****	*****	068	071	067	*****
.807	*****	060	*****	060	* * * * * *	071	*****	*****	070	069	060	066
.821	*****	*****	*****	069	*****	075	*****	*****	078	072	071	075
.835	*****	068	*****	076	*****	080	*****	*****	085	088	080	083
.849	*****	070	****	079	*****	088	*****	*****	095	094	090	089
.863	*****	081	*****	082	*****	091	*****	*****	097	099	*****	100
.877	079	074	*****	051	*****	092	*****	*****	*****	*****	*****	*****
.891	080	095	*****	097	*****	101	*****	*****	114	115	113	113
.916	102	095	142	*****	111	*****	122	129	133	137	128	144
.928	106	* * * * * *	134	*****	123	*****	135	146	153	172	172	174
.940	105	*****	105	*****	124	128	~.133	144	164	184	189	188
•952	*****	*****	075	*****	084	098	104	108	128	155	169	166
.962	023	020	018	*****	029	030	039	046	065	087	101	107
.974	.045	.044	*****	*****	.039	.045	.037	.031	.020	004	016	024
.986	.101	.102	.098	*****	.093	.088	.106	.102	.083	.069	.055	.050
996	.126	.115	*****	*****	.125	.120	.122	.120	.108	.093	.086	.083

Table A8. Continued

(d) $\alpha = 5.976^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION		VERTICA	L TAIL					
POINT NUMBER	38		UPPER Y/	SURFACE B	LOWER Y/	SURFACE B	Υ/	В
MACH NUMBER	.601	x/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	5.976	0.05 0.10						
NPR	1.040	0.20			Taile r	emoved		
PTO, PSI	14.705	0.40 0.50			14115 1	61110460		
PO, PSI	11.522	0.60 0.70						
QO, PSI	2.911	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	032	037	*****	034	*****	*****	*****	049	045	028	003	*****
.598	037	040	*****	048	* * * * * *	063	*****	058	056	034	*****	*****
.612	040	040	*****	045	*****	056	*****	064	054	030	*****	*****
.626	037	038	*****	043	*****	053	*****	058	057	038	*****	*****
.640	*****	042	****	051	*****	058	*****	066	059	047	*****	*****
.654	*****	042	*****	058	*****	061	*****	070	076	053	*****	*****
•668	*****	*****	*****	051	*****	061	*****	064	059	042	*****	*****
.682	****	043	****	051	*****	067	*****	076	072	057	043	*****
•696	****	043	*****	054	*****	070	*****	078	069	059	040	034
.710	****	045	****	* * * * * *	*****	064	*****	074	072	054	034	043
.724	*****	049	*****	054	*****	060	*****	069	071	057	041	044
.738	*****	046	*****	058	*****	*****	*****	078	079	062	045	044
.752	*****	044	****	056	*****	073	*****	075	080	063	048	*****
• 766	*****	054	****	064	*****	074	*****	084	093	080	069	063
•779	*****	052	*****	056	*****	071	*****	078	*****	069	050	051
.793	*****	062	*****	063	*****	078	*****	*****	089	077	070	*****
.807	*****	062	*****	058	*****	080	*****	*****	091	076	064	067
.821	*****	*****	*****	068	*****	081	*****	*****	096	085	069	073
.835	*****	062	*****	070	*****	089	*****	*****	107	098	083	082
.849	*****	075	*****	074	*****	097	*****	*****	113	103	098	092
.863	****	071	****	081	*****	098	*****	*****	122	116	*****	108
.877	070	067	*****	076	*****	096	*****	*****	*****	*****	*****	*****
.891	073	083	*****	080	*****	108	*****	*****	136	129	120	119
.916	034	085	114	*****	093	*****	129	144	154	160	148	156
.928	099	*****	120	*****	104	*****	139	154	175	196	195	199
.940	113	*****	075	*****	091	116	136	159	186	220	215	215
• 952	*****	*****	062	*****	063	080	098	116	151	204	204	200
.962	023	020	012	*****	014	.017	030	041	085	131	149	145
.974	.048	.038	****	*****	.033	.041	.044	.034	.007	034	054	070
.986	.097	•085	.117	*****	.099	.078	.078	.076	.073	•039	.034	.016
•996	.100	.045	*****	*****	.097	.083	.086	.082	.082	.066	•057	.053

Table A8. Concluded

(e) $\alpha = 9.015^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	BODY ONLY				TAL TAILS		VERTICA	L TAIL
BOTHT NUMBER	2.0			SURFACE		SURFACE		_
POINT NUMBER	39		Υ/	-	Y/		Y /	
MACH NUMBER	•600	x/c	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	9.015	0.05 0.10						
NPR	1.040	0.20			Tailar	emoved		
PTO, PSI	14.704	0.40			14115 1	emoved		
PO, PSI	11.526	0.60 0.70						
QO, PSI	2.907	0.80 0.90						

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	029	042	*****	049	*****	*****	*****	076	073	034	.008	*****
•598	037	046	*****	055	*****	089	*****	094	084	050	*****	*****
.612	029	047	*****	060	*****	086	*****	087	079	044	*****	*****
•626	016	045	*****	056	*****	084	*****	096	084	046	*****	*****
•640	*****	046	*****	057	*****	086	*****	098	084	057	*****	*****
•654	*****	051	*****	065	*****	077	*****	107	097	065	*****	*****
•668	*****	*****	*****	059	*****	083	*****	102	099	055	*****	*****
•682	*****	066	*****	060	*****	092	*****	104	105	067	028	*****
• 696	****	063	****	058	*****	085	*****	095	095	063	031	023
•710	*****	057	*****	*****	*****	087	*****	100	096	068	028	023
.724	*****	061	*****	062	*****	087	*****	105	103	073	033	036
.738	*****	067	*****	065	*****	*****	*****	108	111	077	032	038
•752	*****	059	*****	057	*****	085	*****	112	110	077	037	*****
•766	*****	076	****	063	*****	100	****	121	123	096	059	051
•779	*****	061	*****	056	*****	090	*****	104	*****	084	045	045
.793	*****	065.	*****	061	*****	090	*****	*****	119	097	060	*****
.807	****	071	*****	056	*****	088	*****	*****	112	097	059	062
.821	*****	*****	*****	065	*****	097	*****	*****	128	102	070	071
.835	*****	073	*****	077	*****	098	*****	*****	129	119	082	074
.849	*****	084	*****	078	*****	106	*****	*****	146	127	092	090
•863	*****	097	*****	079	*****	103	*****	*****	154	136	*****	097
.877	070	078	*****	082	*****	100	*****	*****	*****	*****	*****	*****
.891	074	097	*****	083	*****	104	*****	*****	166	146	125	124
•916	100	095	109	*****	098	*****	132	147	180	178	154	164
•928	111	*****	114	*****	095	*****	134	~.163	203	221	213	198
.940	130	*****	090	*****	081	097	123	155	213	253	237	232
• 952	*****	*****	064	*****	043	060	081	079	176	227	229	220
.962	069	033	003	*****	014	.013	.003	.015	082	163	175	173
•974	.016	.034	*****	*****	.050	.075	.064	.076	.001	052	086	089
•986	.093	.094	.088	*****	.091	.074	.091	.087	.090	•015	002	009
• 996	.093	.088	*****	*****	.106	.108	•084	•106	.085	.079	.041	.037

Table A9. Effect of Nozzle Pressure Ratio on Pressure Distributions for Aft Tails Configuration at M=1.20 and $\alpha=0.025^\circ$

(a) NPR = 1.033

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	s	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	3		Y	/ B	Y	/B	Υ/	'B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.205							
ALPHA, DEG	.025	0.05	*****	*****	*****	*****	*****	•028
		0.10	1.146	.061	008	1.146	.208	.019
NPR	1.033	0.20	1.140	.012	021	1.136	*****	044
		0.30	1.137	*****	058	1.129	055	061
PTO, PSI	14.745	0.40	1.130	094	097	*****	048	063
		0.50	1.135	150	143	1.129	065	074
PO, PSI	6.041	0.60	1.142	180	165	1.135	106	103
		0.70	1.151	193	188	1.144	144	139
QO, PSI	6.140	0.80	1.163	*****	204	1.157	186	157
	-	0.90	1.176	*****	200	*****	194	172

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	o	18	36	45	54	72	81	90	108	135	162	180
.584	032	024	*****	023	*****	*****	*****	024	014	009	.009	*****
•598	037	029	****	029	*****	027	*****	023	017	008	*****	*****
.612	034	031	****	027	*****	021	*****	016	012	002	*****	*****
.626	035	030	*****	020	*****	019	*****	014	009	006	*****	*****
.640	****	019	****	016	* ** ***	016	*****	012	006	003	*****	*****
•654	*****	032	*****	027	*****	020	*****	024	024	017	*****	*****
.668	*****	*****	*****	023	*****	024	*****	019	013	008	*****	*****
•682	*****	029	*****	030	*****	028	*****	023	018	003	.003	*****
•696	*****	032	*****	031	*****	027	*****	021	013	.000	.001	.001
.710	*****	027	*****	*****	*****	021	*****	009	007	001	003	004
.724	*****	.022	*****	016	*****	016	*****	010	007	009	014	014
.738	*****	•101	*****	.016	*****	****	*****	015	026	024	027	026
.752	****	.074	** * * * *	• 055	* ** ***	.012	*****	001	013	018	020	*****
.766	*****	.036	*****	.031	*****	.013	*****	002	028	042	046	047
.779	*****	.018	*****	.042	*****	.092	*****	.204	.047	010	023	028
.793	*****	009	*****	.050	*****	•120	*****	*****	.067	.013	022	*****
.807	*****	006	*****	.056	*****	.096	*****	*****	.036	.028	.003	003
.821	****	*****	*****	.047	*****	.051	*****	*****	.001	.022	.019	.014
.835	*****	018	*****	.008	*****	.014	*****	*****	027	.007	.014	.013
.849	*****	049	*****	*****	*****	036	*****	*****	055	021	001	003
.863	*****	C83	****	075	*****	088	*****	*****	087	051	*****	022
.877	099	119	*****	107	*****	134	*****	*****	*****	*****	*****	*****
.891	147	154	*****	151	*****	174	*****	*****	151	109	087	079
.915	193	214	271	*****	223	*****	251	228	222	170	137	146
.928	224	*****	309	*****	273	268	257	240	246	227	208	199
.940	277	*****	319	****	332	321	301	285	296	287	273	267
.952	*****	*****	393	*****	396	372	355	342	362	371	364	356
•962	371	312	-,275	*****	276	275	276	239	218	229	310	379
.974	108	108	*****	*****	115	109	098	096	091	089	095	093
.986	070	077	079	*****	079	072	075	072	072	071	072	068
.996	045	041	*****	*****	051	049	053	055	054	052	049	049

Table A9. Continued

(b) NPR = 1.998

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	s	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	4		Y	/B	Υ.	/ B	Y/	'B
		X/C	0.1	0 • 2	0.1	0.2	0.1	0.2
MACH NUMBER	1.200							
ALPHA, DEG	.027	0.05	*****	*****	*****	*****	*****	.026
		0.10	021	.053	011	.066	.161	.012
NPR	1.998	0.20	043	.008	026	.023	*****	050
		0.30	068	*****	062	034	053	~.066
PTO, PSI	14.743	0.40	123	100	102	*****	059	071
		0.50	168	154	149	145	067	~.079
PO, PSI	6.081	0.60	185	184	165	182	104	104
		0.70	193	201	194	211	144	136
QO, PSI	6.128	0.80	206	*****	208	234	180	161
		0.90	192	*****	207	*****	191	174

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	038	033	*****	024	*****	*****	*****	025	017	009	•006	*****
.598	041	032	*****	033	*****	031	*****	025	021	009	*****	*****
.612	040	037	*****	031	*****	025	*****	022	017	008	*****	*****
.626	038	038	*****	029	*****	026	*****	020	019	013	*****	*****
.640	*****	029	*****	027	*****	019	*****	015	014	008	*****	*****
.654	*****	040	*****	034	*****	025	*****	030	030	021	*****	*****
.668	****	*****	*****	028	*****	027	*****	023	016	014	*****	*****
.682	*****	032	*****	034	*****	033	*****	028	025	009	002	*****
.696	*****	038	****	039	*****	032	*****	022	017	004	002	.000
.710	*****	035	*****	*****	*****	023	*****	016	009	005	007	009
.724	*****	.022	*****	022	*****	020	*****	009	012	011	018	016
.738	*****	.100	*****	.011	*****	*****	*****	016	027	024	027	026
.752	*****	.073	*****	.051	*****	.010	*****	005	020	021	021	*****
.766	*****	.030	*****	.029	*****	.010	*****	008	032	042	051	048
.779	*****	.011	*****	.034	*****	.090	*****	.194	.046	012	027	028
.793	*****	007	*****	.039	*****	.116	*****	*****	.063	.011	026	*****
.807	****	014	*****	.047	*****	.089	*****	*****	.033	.021	.001	007
.821	*****	*****	*****	•040	*****	.047	*****	*****	.000	.018	.016	.013
.835	*****	030	*****	.006	*****	.002	*****	*****	030	.003	.009	.011
.849	*****	050	*****	*****	*****	039	*****	*****	054	023	007	004
.863	*****	086	*****	078	*****	093	*****	*****	096	053	*****	024
.877	108	123	*****	113	*****	144	*****	*****	*****	*****	*****	*****
.891	154	162	*****	157	*****	177	*****	*****	154	112	090	080
•916	201	220	281	*****	231	*****	255	232	226	172	139	147
.928	229	* * * * *	312	*****	281	278	262	245	250	230	210	199
.940	285	*****	324	*****	338	327	307	289	300	292	277	272
•952	*****	*****	400	*****	399	377	360	345	365	374	365	358
•962	177	138	142	*****	134	156	155	206	271	351	363	410
.974	092	106	*****	*****	104	110	104	101	098	103	109	115
•986	081	087	087	****	092	092	096	081	077	082	081	082
• 996	064	064	*****	*****	060	061	057	060	051	059	056	058

Table A9. Continued

(c) NPR = 3.995

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	s	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	5		Y	/ B	Y	/ B	Υ/	'В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.200							
ALPHA, DEG	.028	0.05	*****	*****	*****	*****	*****	•020
		0.10	017	.055	007	.059	.128	.017
NPR	3.995	0.20	044	.008	029	.023	*****	049
		0.30	073	*****	066	032	053	065
PTO, PSI	14.746	0.40	118	098	101	*****	056	071
		0.50	168	156	145	144	071	077
PO, PSI	6.081	0.60	184	187	165	182	106	108
		0.70	190	198	194	210	142	138
90, PSI	6.129	0.80	204	*****	209	229	182	156
		0.90	194	*****	207	*****	191	173

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	035	032	*****	027	*****	*****	*****	026	019	012	• 005	*****
.598	040	-,035	*****	035	* * * * * *	031	*****	027	021	010	*****	*****
.612	040	037	*****	033	*****	025	*****	020	017	009	*****	*****
.626	042	039	*****	032	*****	027	*****	018	016	013	*****	*****
.640	*****	027	*****	029	*****	018	*****	015	010	007	*****	*****
.654	****	039	*****	033	*****	022	*****	029	030	026	*****	*****
•668	*****	*****	*****	031	*****	026	*****	023	021	011	*****	*****
.682	****	034	*****	032	*****	030	*****	028	024	010	001	*****
.696	*****	038	*****	039	*****	032	*****	030	019	003	007	004
.710	*****	036	*****	*****	*****	025	*****	016	014	005	007	008
.724	*****	.012	****	020	*****	019	*****	010	013	013	016	014
.738	*****	•090	*****	.008	*****	*****	*****	019	027	028	027	026
•752	****	.071	*****	•053	*****	.008	*****	006	018	022	020	*****
.766	*****	•025	*****	.031	*****	.011	*****	008	035	045	046	050
.779	*****	.014	*****	.040	*****	.093	*****	.194	.049	011	026	032
.793	*****	012	*****	.045	*****	.122	*****	*****	.059	.009	023	*****
.807	*****	009	*****	•054	*****	.083	*****	*****	.035	.020	003	004
.821	*****	*****	*****	•034	* * * * * *	.043	*****	*****	003	.021	.015	.013
.835	*****	023	*****	001	*****	001	*****	*****	027	.004	.012	.008
.849	*****	055	*****	*****	*****	038	*****	*****	055	024	006	007
.863	****	091	*****	080	*****	092	*****	*****	097	052	*****	024
.877	106	119	*****	108	*****	137	*****	*****	*****	*****	*****	*****
.891	152	155	*****	154	*****	176	*****	*****	153	110	088	078
•916	198	220	276	*****	227	*****	254	232	226	170	138	147
•928	229	*****	313	*****	281	278	264	245	250	229	208	198
.940	283	*****	327	*****	339	327	305	289	301	291	276	268
.952	*****	*****	399	*****	401	377	360	347	365	373	367	357
.962	249	184	153	*****	148	146	164	213	331	396	411	410
.974	095	113	*****	*****	109	102	107	108	107	118	119	118
.986	076	086	091	*****	095	095	092	090	078	084	082	074
•996	051	053	*****	*****	058	072	071	062	039	062	055	053

Table A9. Continued

(d) NPR = 5.988

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	6		Y	/ B	Y	/ B	Υ.	' B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.200	•		***	•••	***	•••	0.2
ALPHA, DEG	•028	0.05	*****	*****	*****	*****	*****	•024
		0.10	018	.058	011	• 067	.102	.021
NPR	5.988	0.20	043	.006	033	•019	*****	047
		0.30	068	*****	064	031	058	067
PTO, PSI	14.747	0.40	121	098	102	*****	054	072
•		0.50	167	154	148	143	074	080
PO, PSI	6.082	0.60	181	185	168	182	106	113
		0.70	188	197	195	211	141	136
QD, PSI	6.130	0.80	205	*****	208	230	183	157
	- 3 - 3 - 3	0.90	196	*****	207	*****	190	172

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
584	037	032	*****	029	*****	*****	*****	026	019	013	.004	*****
598	040	034	*****	034	*****	032	*****	027	023	010	*****	*****
612	040	038	*****	032	*****	026	*****	022	018	011	*****	*****
626	042	039	*****	034	*****	027	*****	017	019	013	*****	*****
640	*****	029	*****	029	*****	019	*****	014	013	005	*****	*****
654	*****	042	*****	035	*****	028	*****	030	028	022	*****	*****
668	*****	*****	*****	027	*****	029	*****	023	022	015	*****	*****
682	*****	034	*****	035	*****	034	*****	029	025	016	004	*****
696	*****	037	*****	040	*****	035	*****	032	019	011	006	003
710	*****	034	*****	*****	*****	027	*****	018	011	004	010	010
724	*****	.019	*****	019	*****	021	*****	014	014	013	015	015
738	*****	.090	*****	.009	*****	*****	*****	019	030	027	028	024
752	*****	.079	*****	• 053	*****	.007	*****	005	018	021	023	*****
766	*****	.033	*****	.027	*****	.012	****	011	029	044	049	048
779	*****	.015	*****	.038	*****	.091	*****	.198	.044	011	026	030
793	*****	008	*****	.040	*****	.118	*****	*****	.059	.007	027	*****
807	*****	013	*****	.050	*****	.085	*****	*****	.030	.022	002	005
821	*****	*****	*****	•035	*****	.042	*****	*****	001	.018	.013	.015
835	*****	032	*****	001	*****	001	*****	*****	035	005	.008	.005
849	*****	052	*****	*****	*****	038	*****	*****	054	024	007	009
863	*****	088	*****	078	*****	087	*****	*****	093	054	*****	026
877	105	123	*****	109	*****	138	*****	*****	*****	*****	*****	*****
891	152	157	*****	156	*****	179	*****	*****	155	114	089	082
916	198	219	276	*****	229	*****	253	232	226	172	138	146
928	228	* * * * *	311	*****	279	278	261	244	250	231	210	198
940	282	*****	325	*****	336	324	306	288	301	294	277	269
952	*****	*****	392	*****	380	353	351	344	366	374	367	359
962	135	133	123	*****	113	103	109	133	183	235	283	316
974	067	083	*****	*****	089	080	083	082	081	093	087	082
986	059	059	066	*****	066	074	076	072	060	065	058	051
996	040	031	*****	*****	037	051	056	043	024	040	037	031

Table A9. Concluded

(e) NPR = 7.963

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TAIL
			UPPER	SURFACE		SURFACE		
POINT NUMBER	7		Y	/B	Y	/B	Υ.	′ B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.201							
ALPHA, DEG	.025	0.05	*****	*****	*****	*****	*****	.019
		0.10	020	.061	011	.074	.081	.024
NPR	7.963	0.20	043	.008	035	•026	*****	~.050
		0.30	073	*****	070	028	054	059
PTO, PSI	14.746	0.40	120	097	100	*****	058	071
		0.50	168	155	148	141	076	085
PO, PSI	6.075	0.60	183	184	173	179	112	114
		0.70	193	199	195	208	136	134
QO, PSI	6.131	0.80	201	*****	208	230	179	154
		0.90	195	*****	206	*****	186	168

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	. 0	18	36	45	54	72	81	90	108	135	162	180
.584	037	033	*****	029	*****	*****	*****	029	023	015	.003	*****
.598	043	037	*****	035	*****	031	*****	027	024	015	*****	*****
.612	043	037	*****	034	*****	030	*****	020	019	012	*****	*****
.626	043	041	*****	035	*****	028	*****	019	019	011	*****	*****
.640	****	032	*****	026	*****	021	*****	017	015	009	*****	*****
•654	*****	046	*****	040	*****	024	*****	031	029	022	*****	*****
.668	*****	*****	*****	031	*****	027	*****	024	022	016	*****	*****
.682	*****	034	*****	036	*****	032	*****	034	029	014	005	*****
•696	*****	039	*****	040	*****	036	*****	033	024	012	007	003
.710	*****	036	*****	*****	*****	029	*****	022	013	005	009	010
.724	*****	.014	*****	022	*****	021	*****	014	016	014	019	015
.738	*****	.088	*****	.005	*****	*****	*****	021	032	023	030	028
.752	****	.065	*****	.047	*****	.005	*****	011	024	022	019	*****
.766	*****	.029	*****	.029	* * * * * *	.011	*****	011	031	041	048	050
.779	*****	.003	*****	.039	*****	.091	*****	.200	• 045	009	026	029
•793	****	008	*****	.047	*****	- 117	*****	*****	.059	.006	025	*****
.807	*****	016	*****	•050	*****	.087	*****	*****	.027	.019	002	005
.821	*****	*****	*****	.036	*****	.045	*****	*****	001	.017	.014	.008
.835	*****	032	*****	.002	*****	.008	*****	*****	041	009	• 009	•004
.849	*****	056	*****	*****	*****	043	*****	*****	052	028	011	006
.863	****	092	*****	078	*****	087	*****	*****	094	055	*****	028
.877	107	117	*****	108	*****	133	*****	*****	*****	*****	*****	*****
.891	149	156	*****	152	*****	173	*****	*****	156	112	085	080
.916	197	218	275	*****	229	*****	255	231	225	168	137	142
.928	227	*****	311	*****	276	276	260	244	249	229	207	198
.940	284	****	323	*****	335	312	304	287	300	291	276	266
.952	*****	*****	301	*****	230	214	228	277	360	373	366	357
•962	079	093	097	*****	088	075	081	083	111	127	139	151
.974	047	061	*****	*****	068	065	057	057	062	067	058	051
.986	040	038	041	*****	046	053	056	054	043	C43	038	025
•996	024	015	*****	*****	018	028	033	027	012	020	022	017

Table A10. Effect of Angle of Attack on Pressure Distributions for Aft Tails Configuration at M = 1.20 and NPR = 0.985

(a) $\alpha = -2.979^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	9		Y.	/B	Y	/ B	Y /	'В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.200							
ALPHA, DFG	-2.979	0.05	*****	*****	*****	*****	*****	.016
		0.10	018	.175	130	.057	.048	.015
NPR	•985	0.20	045	.099	127	.023	*****	058
		0.30	064	*****	147	038	071	074
PTO, PSI	14.746	0.40	118	030	169	*****	056	079
		0.50	167	091	201	150	073	046
PO, PSI	6.081	0.60	183	126	227	186	066	074
		0.70	192	145	258	213	093	091
QO, PSI	6.129	0.80	201	*****	264	235	135	110
		0.90	194	*****	244	*****	142	125

AFTERBODY PRESSURE COEFFICIENTS

Ρł	٩I	,	D	E	C

X/L	0	18	36	45	54	72	81	90	108	135	162	180
• 584	042	039	*****	050	*****	*****	*****	042	031	015	.004	*****
•598	043	042	*****	047	*****	048	*****	045	037	014	*****	*****
.612	044	046	*****	047	*****	042	*****	038	033	017	*****	*****
.626	048	049	*****	049	*****	043	*****	037	030	015	*****	*****
.640	*****	038	*****	039	*****	038	*****	027	024	014	*****	*****
•654	*****	049	*****	046	*****	038	*****	043	040	030	*****	*****
.668	*****	*****	*****	041	*****	039	*****	037	034	021	*****	*****
.682	*****	038	*****	037	*****	044	*****	042	042	024	009	*****
.696	*****	042	*****	046	*****	049	*****	044	039	019	005	•000
.710	*****	041	*****	*****	*****	044	*****	039	029	008	007	.000
.724	*****	014	*****	039	*****	042	*****	028	021	011	012	009
.738	*****	.099	*****	015	*****	*****	*****	029	031	022	019	016
•752	*****	.068	*****	.045	*****	002	*****	010	020	017	018	*****
.766	*****	.024	*****	.013	*****	.004	*****	013	030	034	040	041
•779	*****	.005	*****	.023	*****	.101	*****	.199	.043	006	020	016
.793	*****	023	*****	.040	*****	.179	*****	*****	.008	.002	016	*****
.807	*****	026	*****	.085	*****	.159	*****	*****	047	005	001	002
.821	*****	*****	*****	.081	*****	.112	*****	*****	077	027	006	•002
.835	*****	.016	*****	.047	* * * * * *	.065	*****	*****	108	046	022	018
.849	*****	017	*****	*****	*****	.021	*****	*****	118	071	050	044
.863	*****	041	*****	027	*****	036	*****	*****	146	104	*****	074
.877	065	081	*****	061	*****	081	*****	*****	*****	*****	*****	*****
.891	104	110	*****	106	*****	119	*****	*****	211	165	136	123
•916	151	172	233	*****	191	*****	236	245	267	221	186	191
.928	180	*****	272	*****	239	252	249	251	278	276	252	241
.940	237	*****	286	*****	306	313	303	288	317	329	317	310
•952	*****	*****	370	*****	381	375	370	343	352	400	401	394
.962	361	367	396	*****	407	347	264	174	138	149	198	266
•974	319	2 28	*****	*****	157	150	139	120	107	113	125	121
•986	080	088	091	*****	107	129	123	110	105	106	107	101
•995	056	059	*****	*****	082	099	097	097	092	090	079	078

Table A10. Continued

(b) $\alpha = 0.021^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	s	VERTICA	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	10		Y	/ B	Y	/ B	Υ,	/ B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.200							
ALPHA, DEG	•021	0.05	*****	*****	*****	*****	*****	.019
		0.10	153	•053	011	.178	• 042	.016
NPR	•999	0.20	152	.006	030	•113	*****	047
		0.30	161	*****	066	.040	058	065
PTO, PSI	14.746	0.40	187	099	100	*****	063	079
		0.50	220	157	145	086	078	084
PO, PSI	6.081	0.60	248	188	171	122	114	118
		0.70	257	205	195	158	139	137
QO, PSI	6.129	0.80	265	*****	208	180	182	157
		0.90	245	*****	205	*****	191	172

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	040	034	*****	039	*****	*****	*****	024	023	013	001	*****
.598	045	041	*****	038	*****	037	*****	035	028	010	*****	*****
•612	044	044	*****	033	*****	030	*****	027	025	012	*****	*****
.626	045	044	*****	037	*****	026	*****	024	022	014	*****	*****
•640	*****	035	*****	032	*****	023	*****	016	012	009	*****	*****
.654	*****	043	*****	039	* * * * * *	027	*****	032	028	024	*****	*****
. 668	*****	*****	*****	032	*****	030	*****	026	023	016	*****	*****
.682	*****	038	*****	036	*****	036	*****	031	030	014	004	*****
• 696	****	040	****	041	*****	036	*****	032	025	011	010	007
.710	*****	039	*****	*****	*****	035	*****	022	019	007	011	013
.724	*****	.007	*****	027	* * * * * *	025	*****	018	021	014	022	019
.738	****	.086	****	.007	*****	*****	*****	023	034	030	029	028
.752	*****	.071	*****	.046	*****	.003	*****	010	023	021	023	*****
•766	*****	• 026	*****	•023	*****	.009	*****	012	034	044	050	050
•779	*****	.007	****	.036	*****	.088	*****	.190	.044	013	029	034
.793	*****	012	*****	.041	*****	•110	*****	*****	.062	.010	026	*****
.807	*****	016	*****	• 052	* * * * * *	.082	*****	*****	.025	.027	004	009
.821	****	*****	*****	.031	*****	.043	*****	*****	001	.011	.013	.010
.835	*****	024	*****	001	*****	008	*****	*****	041	002	.006	.007
.849	*****	058	****	*****	*****	045	*****	*****	052	018	010	011
.863	*****	091	*****	081	*****	093	*****	*****	086	058	*****	028
.877	111	126	*****	115	*****	137	*****	*****	*****	*****	*****	*****
.891	151	164	****	154	*****	179	*****	*****	151	112	087	076
.916	201	220	277	*****	233	*****	255	231	224	170	136	143
.928	230	****	313	*****	284	280	263	246	248	230	208	196
.940	286	*****	326	*****	339	328	306	288	298	290	275	268
•952	*****	*****	403	*****	404	380	361	346	366	375	365	356
•962	368	302	293	*****	273	293	316	297	275	265	371	402
.974	112	115	*****	*****	127	119	108	104	099	097	104	109
.986	081	084	088	*****	090	085	081	078	077	078	079	076
•996	061	058	*****	*****	061	063	062	062	060	059	057	054

Table A10. Continued

(c) $\alpha = 3.018^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	11		Y	/B	Υ.	/ B	Y /	′ B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.199							
ALPHA, DEG	3.018	0.05	*****	*****	*****	*****	*****	.009
		0.10	018	087	.126	.052	.039	.017
NPR	.975	0.20	042	096	.062	.019	*****	042
		0.30	064	*****	.016	039	046	063
PTO, PSI	14.745	0.40	119	171	037	*****	071	087
		0.50	167	218	074	151	090	116
PO, PSI	6.087	0.60	183	250	104	187	153	156
		0.70	192	259	130	215	184	176
00, PSI	6.127	0.80	202	*****	148	234	224	203
		0.90	195	*****	156	*****	236	218

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	035	040	*****	038	*****	*****	*****	026	026	018	004	*****
•598	040	036	*****	034	*****	035	*****	033	027	013	*****	*****
.612	035	035	*****	029	*****	033	*****	028	026	017	*****	*****
.626	033	034	*****	034	*****	033	*****	030	027	016	*****	*****
•640	*****	031	*****	028	*****	026	*****	020	016	012	*****	*****
•654	*****	038	*****	039	*****	030	*****	035	033	021	*****	*****
•668	*****	*****	*****	030	* * * * * *	030	*****	031	026	012	*****	*****
•682	****	035	*****	036	*****	039	*****	033	027	013	006	*****
•696	*****	035	*****	038	*****	035	*****	032	023	018	013	012
•710	*****	025	*****	*****	*****	029	*****	028	025	018	021	022
•724	****	.033	******	013	*****	024	*****	021	027	024	024	025
•738	****	.079	*****	.012	*****	*****	*****	034	042	038	034	033
•752	*****	.062	*****	.037	*****	004	*****	016	034	032	027	*****
•766	*****	.027	*****	.022	*****	002	*****	028	047	053	051	051
•779	*****	•017	*****	.033	*****	.067	*****	.192	.045	028	036	038
•793	*****	002	****	.026	*****	.056	*****	*****	.117	.008	035	*****
.807	*****	015	*****	.015	*****	.006	*****	*****	.100	.053	014	029
.821	****	*****	*****	014	*****	033	*****	*****	.074	.058	.022	.010
.835	*****	063	*****	050	*****	072	*****	*****	.029	.040	.036	.032
.849	*****	096	*****	*****	* ** ***	108	*****	*****	.009	.033	.045	.038
.863	*****	136	*****	126	*****	151	*****	*****	033	.003	*****	•021
.877	156	165	*****	159	*****	194	*****	*****	*****	*****	*****	*****
.891	197	203	*****	201	*****	231	*****	*****	090	057	036	030
•916	245	263	323	*****	278	*****	274	268	177	120	085	096
•928	272	*****	351	*****	322	304	279	288	213	181	162	151
•940	324	****	364	*****	370	324	311	313	275	253	232	226
•952	*****	*****	204	*****	180	180	203	309	349	341	333	318
•962	135	127	118	*****	113	116	118	125	270	389	381	377
•974	111	112	*****	*****	108	107	109	117	145	235	395	403
•986	111	110	111	*****	108	118	120	126	132	127	133	143
• 996	098	095	*****	*****	-,108	-,115	115	119	107	087	077	072

Table A10. Concluded

(d) $\alpha = 5.976^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION AFT TAILS				HOR I ZO	NTAL TAIL	s	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	12		Y	/B	Y	/ B	Y /	'B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.200							
ALPHA, DEG	5.976	0.05	*****	*****	*****	*****	*****	.008
		0.10	.123	224	.265	056	.032	.011
NPR	• 970	0.20	.063	189	.169	073	*****	038
		0.30	.015	*****	.099	115	045	057
PTO, PSI	14.747	0.40	044	236	.053	*****	078	092
		0.50	082	271	•001	205	105	137
PO, PSI	6.078	0.60	092	297	040	239	184	188
		0.70	117	307	058	264	225	212
QU, PSI	6.131	0.80	132	*****	086	277	255	235
		0.90	139	*****	102	*****	272	250

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	o	18	36	45	54	72	81	90	108	135	162	180
.584	027	030	*****	038	*****	*****	*****	043	046	022	•002	*****
.598	031	032	*****	036	*****	047	*****	048	041	022	*****	*****
.612	029	031	*****	037	*****	046	*****	048	042	020	*****	*****
.626	028	031	*****	036	*****	043	*****	046	042	025	*****	*****
.640	*****	029	*****	034	*****	037	*****	040	036	014	*****	*****
.654	*****	038	*****	042	*****	041	*****	050	043	025	*****	*****
.668	*****	*****	*****	036	*****	040	*****	045	037	018	*****	*****
•682	*****	034	*****	043	*****	046	*****	050	048	026	006	*****
•696	*****	034	*****	043	*****	049	*****	048	042	032	017	015
.710	*****	021	*****	*****	*****	042	*****	049	043	034	022	021
.724	*****	.033	*****	009	*****	038	*****	050	048	~.039	023	025
.738	*****	.075	*****	•009	*****	*****	*****	055	066	048	036	037
•752	*****	.052	*****	•023	*****	012	*****	040	056	048	028	*****
.766	*****	.021	*****	•015	*****	008	*****	052	070	064	052	052
.779	*****	.011	*****	.017	*****	.050	*****	•196	.007	053	035	035
• 793	*****	010	*****	.005	*****	.000	*****	*****	.185	015	040	*****
.807	*****	027	*****	021	*****	064	****	*****	.185	.088	026	041
.821	*****	*****	*****	056	*****	098	*****	*****	.148	.116	.037	.007
•835	*****	088	*****	098	*****	127	*****	*****	.104	.105	.087	•069
.849	*****	125	*****	*****	*****	165	*****	*****	.089	.097	.095	.087
.863	*****	170	*****	178	*****	203	*****	*****	•051	• 075	*****	.078
.877	-,202	234	*****	214	*****	246	*****	*****	*****	*****	*****	*****
.891	229	235	*****	249	*****	282	*****	*****	021	.005	•026	.024
.916	285	302	368	*****	324	*****	289	352	120	059	029	039
•928	303	*****	398	*****	359	323	293	355	163	124	107	095
.940	357	*****	407	*****	379	302	285	340	229	203	~.182	-,176
•952	*****	*****	324	*****	156	152	155	385	322	299	298	-,269
•962	231	302	251	*****	152	152	146	144	350	348	343	332
.974	155	179	*****	*****	-•162	160	153	151	334	354	362	360
.986	142	151	152	*****	164	172	172	136	179	253	~.309	-,298
• 996	122	125	*****	*****	166	164	164	108	106	111	120	123

Table A11. Effect of Nozzle Pressure Ratio on Pressure Distributions for Aft Tails Configuration at M = 0.95 and $\alpha = 0.024$ °

(a) NPR = 1.063

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			s	VERTICAL TAIR			
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	13		Y.	/B	Y	/ B	Y/	'B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.950							
ALPHA, DEG	.024	0.05	*****	*****	*****	*****	*****	053
		0.10	126	069	085	~.627	064	048
NPR	1.063	0.20	219	148	152	619	*****	099
		0.30	283	*****	200	630	116	141
PTO, PSI	14.754	0.40	370	-,311	264	*****	183	229
		0.50	420	366	308	720	492	276
PO, PSI	8.252	0.60	437	415	366	754	328	336
		0.70	470	437	389	783	374	361
QD, PSI	5.216	0.80	494	*****	399	786	425	397
		0.90	511	*****	111	*****	299	236

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	027	022	*****	004	*****	*****	*****	003	008	009	.010	*****
.598	034	028	*****	028	*****	024	*****	-, 025	019	012	*****	*****
.612	037	026	*****	022	*****	019	*****	022	017	019	*****	*****
.626	018	021	*****	025	*****	023	*****	017	021	008	*****	*****
.640	****	032	****	019	*****	022	*****	023	026	012	*****	*****
.654	*****	035	*****	025	*****	019	*****	025	~.032	029	*****	*****
.668	*****	*****	*****	019	*****	011	*****	015	012	012	*****	*****
.682	*****	007	****	010	* * * * * *	015	*****	023	014	009	013	*****
.695	*****	.014	*****	.011	*****	002	*****	006	010	010	012	011
.710	*****	.046	****	*****	*****	•006	*****	.003	006	003	005	009
.724	*****	.093	*****	.040	*****	.013	*****	.010	005	001	011	010
.738	*****	.082	*****	.038	*****	*****	*****	•006	-,002	006	005	009
•752	*****	.039	*****	•032	*****	.020	*****	.019	.010	.005	001	*****
.766	*****	018	*****	.007	*****	.035	*****	.035	.015	007	017	020
.779	*****	034	*****	.020	*****	.082	*****	.203	• 056	.011	002	008
.793	*****	054	*****	008	*****	.057	*****	*****	.020	009	022	*****
.807	*****	077	*****	038	*****	007	*****	*****	046	032	037	041
.821	*****	*****	*****	078	*****	088	*****	*****	086	070	064	067
.835	*****	194	*****	152	*****	142	*****	*****	156	114	100	100
.849	*****	234	*****	*****	* ** ** *	218	*****	*****	187	155	136	138
.863	****	289	*****	273	*****	286	*****	*****	246	203	*****	174
.877	305	-,324	*****	318	*****	347	*****	*****	*****	*****	*****	*****
.891	381	387	*****	379	*****	407	*****	*****	345	290	270	262
.916	430	449	545	*****	471	*****	449	437	420	364	334	343
.928	357	*****	464	*****	~. 355	360	382	331	402	429	424	416
.940	103	****	103	*****	~.075	096	118	119	201	242	269	285
.952	*****	*****	008	*****	~.005	011	011	021	029	030	044	042
.962	.020	.023	.003	*****	.020	•004	.020	.025	•035	.039	.020	.019
.974	.030	.042	*****	*****	.050	.042	.041	.050	.057	.059	.054	• 054
.986	.067	•059	.078	*****	.062	.057	.071	.078	.063	.073	.070	.065
• 996	.085	.076	*****	*****	.084	•091	.091	.087	•085	.095	.086	.085

Table A11. Continued

(b) NPR = 2.018

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	s	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	14		Y	/ B	_ Y	/ B	Υ/	'В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.751							
ALPHA, DFG	.024	0.05	*****	*****	*****	*****	*****	050
		0.10	081	062	079	.010	063	047
NPR	2.018	0.20	119	140	137	074	*****	097
		0.30	163	*****	205	152	120	143
PTO, PSI	14.752	0.40	228	308	266	*****	181	224
		0.50	252	361	305	315	464	272
PO, PSI	8.247	0.60	271	413	372	368	326	331
		0.70	094	440	387	403	374	359
QO, PSI	5.217	0.80	.026	*****	397	151	425	396
		0.90	.117	*****	060	*****	119	189

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	025	018	*****	008	*****	*****	*****	014	002	007	•009	*****
.598	031	021	*****	025	*****	024	*****	019	015	014	*****	*****
.612	027	022	*****	024	*****	018	*****	016	015	019	*****	*****
.626	014	018	*****	026	*****	017	*****	015	012	015	*****	*****
.640	*****	021	****	025	*****	027	*****	019	023	019	*****	*****
•654	****	032	*****	032	*****	~.023	*****	025	032	029	*****	*****
.668	****	* * * * * *	*****	019	*****	019	*****	011	020	010	*****	*****
.682	*****	016	*****	010	*****	014	*****	014	023	016	015	*****
.695	****	.007	****	.005	*****	005	*****	001	014	009	012	010
.710	****	.043	*****	*****	*****	•006	*****	• 004	002	003	008	~.006
.724	****	.097	*****	.038	*****	.011	*****	.006	.000	.004	011	~.004
.738	*****	.090	****	.043	*****	*****	*****	.011	005	004	010	~.001
.752	*****	.033	*****	.038	*****	•021	*****	.020	.006	.010	003	*****
.766	****	012	*****	.012	*****	.029	*****	.036	.016	005	020	023
.779	*****	025	*****	.018	*****	•079	*****	.202	.057	.012	002	007
.793	*****	048	*****	001	* * * * *	• 052	*****	*****	.016	008	023	*****
.807	*****	080	*****	033	*****	002	*****	*****	041	031	039	033
.821	*****	* * * * * *	*****	073	*****	075	*****	*****	093	070	067	065
.835	*****	190	*****	142	*****	146	*****	*****	150	113	099	102
.849	*****	232	*****	*****	*****	217	*****	*****	193	156	138	138
.863	****	291	*****	276	****	294	*****	*****	247	204	*****	172
.877	300	329	*****	317	*****	347	*****	*****	*****	*****	*****	*****
.891	377	389	*****	378	*****	407	*****	*****	344	293	277	261
.916	419	435	540	*****	470	*****	465	418	415	367	335	342
.928	259	* * * * *	363	*****	361	277	300	263	361	431	428	411
.940	059	*****	070	*****	064	061	065	066	117	212	264	247
.952	****	****	010	*****	.006	006	.007	008	017	032	044	029
.962	.045	.051	.028	*****	.017	•031	.014	.033	.037	•027	.024	.023
.974	.070	.090	*****	*****	.060	.042	.035	.068	.068	• 060	•049	• 076
.986	.100	.089	.067	*****	.072	• 065	.070	.102	.095	.089	•075	.114
.996	.109	.111	*****	*****	.097	.089	•103	.092	•096	.097	.096	.123

Table A11. Continued

(c) NPR = 3.023

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	s	VERTICA	L TAIL
POINT NUMBER	15			SURFACE /B		SURFACE /B	Υ/	В
MACH NUMBER	.949	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	.023	0.05	*****	*****	*****	*****	*****	050
NPR	3.023	0.10 0.20	119 167	078 141	089 143	036 111	061 *****	054 102
PTO, PSI	14.752	0.30 0.40	210 291	***** 306	202 269	198 *****	114 185	151 227
PO, PSI	8.259	0.50 0.60	328 365	-,366 -,414	308 369	359 409	443 325	275 332
QO, PSI	5.210	0.70 0.80	386 383	439 *****	383 398	452 456	377 427	363 397
		0.90	194	*****	046	*****	140	128

AFTERBODY PRESSURE COEFFICIENTS

D	ΗI	_ 1	D	c .	G
٠,	нı	•	υ	E'	G

X/L	0	18	36	45	54	72	81	90	108	135	162	180
•584	032	024	*****	005	*****	*****	*****	014	017	007	.005	*****
.598	031	036	*****	024	*****	027	*****	021	025	015	*****	*****
.612	032	033	*****	024	*****	014	*****	022	014	015	*****	*****
•626	031	018	*****	021	*****	016	*****	017	017	015	*****	*****
•640	****	027	****	025	*****	025	*****	023	022	017	*****	*****
•654	*****	031	*****	029	*****	024	*****	032	030	021	*****	*****
•668	*****	****	*****	012	*****	018	*****	013	011	013	*****	*****
.682	****	007	*****	013	*****	019	*****	017	017	012	016	*****
•696	*****	.013	*****	.008	*****	~.005	*****	016	013	012	015	011
.710	*****	.045	*****	*****	*****	.004	*****	.000	008	007	008	010
.724	*****	.091	*****	•034	*****	.012	*****	.008	002	.000	005	007
•738	*****	• 092	*****	.038	* ** ** *	*****	*****	.007	003	004	006	011
•752	****	• 02 9	*****	•025	*****	.022	*****	.019	.008	.005	005	*****
.766	*****	014	*****	• 00 4	*****	•033	*****	.038	.018	007	020	020
•779	*****	026	*****	.019	*****	.083	*****	.206	.051	.011	007	008
•793	****	058	*****	008	*****	•056	*****	*****	.010	008	023	*****
.807	*****	080	*****	031	*****	009	*****	*****	042	038	037	036
.821	****	* * * * * *	*****	078	*****	073	*****	*****	094	070	065	068
.835	****	189	*****	140	*****	142	*****	*****	154	114	107	101
.849	****	230	*****	*****	*****	221	*****	*****	195	161	140	138
.863	****	295	*****	277	*****	291	*****	*****	250	204	*****	177
.877	311	324	*****	314	*****	346	*****	*****	*****	*****	*****	*****
.891	378	390	*****	375	*****	405	*****	*****	345	292	264	262
•916	425	444	537	*****	473	*****	462	435	415	370	330	342
.928	-,293	*****	372	*****	316	281	268	292	354	420	408	417
.940	105	****	061	*****	072	061	071	066	125	216	252	285
.952	*****	*****	.012	*****	.013	.001	.018	.003	010	023	037	051
•962	.032	•025	.045	*****	.028	.030	.026	.020	.035	.038	.030	.024
•974	.051	.049	*****	*****	.065	•055	.054	.043	.076	.081	.075	.067
.986	.058	.090	.087	*****	.079	.078	.081	.094	.097	.083	.110	.098
•996	.083	.106	*****	*****	.106	.101	.112	.103	.108	•109	•112	.104

Table A11. Concluded

(d) NPR = 5.002

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	16		Y	/B	Y	/B	Y /	В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	•949							
ALPHA, DEG	.024	0.05	*****	*****	*****	*****	*****	042
		0.10	107	066	087	036	061	060
NPR	5.002	0.20	175	142	153	114	*****	100
		0.30	212	*****	205	199	119	142
PTO, PSI	14.754	0.40	293	305	271	*****	184	228
		0.50	330	365	305	356	425	271
PO, PSI	8.264	0.60	368	413	377	407	329	332
		0.70	386	436	389	449	378	360
QO, PSI	5.209	0.80	379	*****	402	446	425	394
		0.90	103	*****	058	*****	117	090

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
. 584	038	019	*****	004	*****	*****	*****	015	004	008	•004	*****
•598	034	021	*****	023	*****	025	*****	030	019	017	*****	*****
.612	033	026	*****	026	*****	020	*****	021	018	016	*****	*****
•626	022	021	*****	022	*****	025	*****	017	012	013	*****	*****
.640	****	020	*****	023	*****	025	*****	022	019	019	*****	*****
.654	*****	028	*****	031	*****	022	*****	039	031	021	*****	*****
.668	****	*****	****	011	*****	014	*****	016	017	017	*****	*****
•682	*****	013	*****	016	*****	014	*****	020	018	017	017	*****
•696	****	.012	****	.003	*****	006	*****	009	011	013	014	011
.710	*****	.046	*****	*****	*****	.004	*****	001	005	007	011	010
.724	*****	.093	*****	.036	*****	.008	*****	.005	004	003	014	008
.738	*****	.084	****	.038	*****	*****	****	.009	006	003	011	011
.752	*****	.027	*****	.035	*****	.022	*****	.016	.007	.003	003	*****
.766	*****	017	*****	.006	*****	.029	*****	.037	.018	~.005	018	~.025
.779	*****	026	*****	.018	*****	.080	*****	.207	.053	.009	001	007
.793	*****	04B	*****	001	*****	•052	*****	*****	•008	010	025	*****
.807	*****	088	*****	032	*****	008	*****	*****	048	~.039	040	~.039
.821	*****	*****	*****	078	*****	083	*****	*****	103	~.075	071	071
.835	*****	191	*****	147	* * * * * *	146	*****	*****	159	117	100	103
.849	*****	233	****	*****	*****	209	*****	*****	202	163	143	138
.863	*****	293	*****	~.270	*****	291	*****	*****	250	208	*****	185
.877	305	323	*****	318	*****	346	*****	*****	*****	*****	*****	*****
.891	378	388	*****	377	*****	411	*****	*****	347	~.290	274	267
•916	419	437	535	*****	465	*****	456	426	415	364	336	345
.928	268	*****	361	*****	337	269	261	258	340	393	426	421
.940	061	*****	068	*****	059	054	065	077	123	189	244	242
.952	*****	*****	• 025	*****	• 012	.016	.009	.021	003	025	030	032
.962	.048	.066	.063	*****	.057	.042	.045	.052	.043	•051	•026	.041
.974	•077	.083	*****	*****	.069	.061	•065	.070	.087	.094	.059	.075
•986	.107	.105	.086	*****	• 090	.087	.084	.097	•095	.103	.092	.109
•996	.117	.134	*****	*****	.109	.115	.109	.122	•112	.101	•119	.115

Table A12. Effect of Angle of Attack on Pressure Distributions for Aft Tails Configuration at M=0.95 and NPR = 1.067

(a) $\alpha = -2.989^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	s	VERTICA	L TAIL
				SURFACE		SURFACE		
POINT NUMBER	18		Y.	/ B	Y.	/ B	Y /	' B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.951							
ALPHA, DEG	-2.989	0.05	*****	*****	*****	*****	*****	046
		0.10	120	.069	267	028	061	048
NPR	1.067	0.20	166	018	270	105	*****	076
		0.30	212	*****	304	189	098	124
PTO, PSI	14.755	0.40	282	225	355	*****	154	196
		0.50	320	280	394	350	373	235
PO, PSI	8.242	0.60	366	331	444	400	281	-,290
		0.70	377	367	467	446	366	309
QO, PSI	5.222	0.80	369	*****	442	440	372	350
		0.90	040	*****	117	*****	250	282

AFTERBODY PRESSURE COEFFICIENTS

PHI,	DE	3
------	----	---

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	045	034	*****	023	*****	*****	*****	026	022	005	• 009	*****
.598	041	036	*****	035	*****	038	*****	032	026	011	*****	*****
.612	029	029	*****	025	*****	027	*****	028	029	021	*****	*****
.626	020	019	*****	028	*****	028	*****	023	023	017	*****	*****
.640	*****	024	*****	027	*****	032	*****	027	021	020	*****	*****
.654	****	026	*****	035	*****	034	*****	041	040	025	*****	*****
.668	****	*****	*****	017	*****	025	*****	024	020	012	*****	*****
.682	*****	010	*****	014	*****	020	*****	022	020	018	015	*****
.696	*****	.016	****	001	*****	012	*****	013	017	014	012	008
.710	*****	.049	*****	*****	*****	003	*****	002	010	008	002	005
.724	*****	.108	*****	.034	*****	.006	*****	003	009	006	010	002
.738	****	.091	*****	.035	*****	*****	*****	004	013	012	012	007
.752	****	.031	*****	.022	*****	.011	*****	.011	•002	004	010	*****
•766	****	028	*****	002	*****	.025	*****	.029	.004	020	026	030
.779	****	020	*****	.033	*****	.113	*****	•202	.018	018	022	023
.793	*****	041	*****	.024	*****	•133	*****	*****	099	052	052	*****
.807	*****	051	****	.013	*****	.079	*****	*****	151	095	078	069
.821	*****	*****	*****	025	*****	.005	*****	*****	207	140	113	107
.835	*****	150	*****	086	*****	071	*****	*****	251	180	154	155
.849	****	180	*****	*****	*****	143	*****	*****	290	228	199	191
.863	*****	245	*****	219	*****	223	*****	*****	340	273	*****	232
.877	254	273	*****	255	*****	278	*****	*****	*****	*****	*****	*****
.891	317	334	*****	316	*****	332	*****	*****	420	359	329	315
.916	374	400	491	*****	411	*****	444	436	448	430	392	398
•928	387	*****	527	*****	463	389	357	277	282	409	395	377
.940	195	*****	226	*****	249	187	178	132	108	159	173	130
• 952	*****	*****	042	*****	056	063	074	072	055	055	053	018
.962	.022	.009	.019	*****	005	040	019	036	025	022	022	005
.974	.061	.063	*****	*****	.039	• 009	003	014	.016	003	.003	.013
.986	.083	.082	.074	*****	.056	.036	•023	.021	.020	.020	.012	.028
• 996	.084	.086	****	*****	. 064	.063	.051	.037	.045	• 035	.028	• 052

AFTERBODY INTEGRATED PRESSURE DRAG COEFFICIENT .

1022

Table A12. Continued

(b) $\alpha = 0.026^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	s	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	19		Y	/ B	Y	/ B	Υ/	'В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.950							
ALPHA, DEG	•026	0.05	*****	*****	*****	*****	*****	057
		0.10	120	072	090	034	054	054
NPR	1.086	0.20	166	140	142	114	*****	105
		0.30	217	*****	197	197	117	145
PT:), PSI	14.754	0.40	291	309	266	*****	184	228
		0.50	325	368	307	356	362	281
PO. PSI	8.258	0.60	369	418	370	408	327	336
		0.70	381	440	386	453	377	362
QO, PSI	5.212	0.80	378	*****	404	453	427	398
		0.90	192	*****	110	*****	289	187

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	022	020	*****	014	*****	*****	*****	024	010	016	•002	*****
•598	028	024	*****	031	* * * * * *	024	*****	022	023	023	*****	*****
•612	020	031	*****	029	*****	020	*****	022	016	010	*****	*****
.626	017	021	*****	017	*****	017	*****	018	016	015	*****	*****
.640	*****	026	*****	025	*****	026	*****	027	028	017	*****	*****
.654	*****	038	*****	029	*****	026	*****	022	034	025	*****	*****
•668	*****	*****	*****	014	*****	015	*****	008	021	012	*****	*****
.682	*****	017	****	012	*****	017	*****	006	026	016	013	*****
.696	*****	.005	****	.003	*****	004	*****	005	013	014	012	012
.710	*****	.044	*****	*****	*****	.006	*****	.005	013	006	002	010
.724	*****	.096	****	.035	*****	.016	*****	.001	009	006	008	008
.738	*****	•077	*****	.035	*****	*****	*****	.002	010	008	008	008
.752	*****	.036	****	.035	*****	.018	*****	.015	.008	.001	005	*****
.766	*****	013	*****	.008	*****	.026	*****	•037	.018	009	020	021
.779	*****	015	*****	.020	*****	.082	*****	.213	.051	•007	005	009
•793	*****	047	****	003	*****	.058	*****	*****	.014	007	022	*****
.807	*****	077	*****	•03B	*****	020	*****	*****	053	036	036	038
.821	****	* * * * *	****	088	*****	083	*****	*****	094	074	063	066
.835	*****	194	*****	149	*****	143	*****	*****	161	112	101	099
.849	*****	231	*****	*****	*****	213	*****	*****	194	159	138	140
.863	*****	295	****	281	*****	285	*****	*****	251	206	*****	176
.877	309	324	*****	323	*****	341	*****	*****	*****	*****	*****	*****
.891	374	386	*****	379	* * * * * *	416	*****	*****	350	294	266	262
•916	414	449	547	*****	470	*****	474	447	418	369	329	347
• 928	317	* * * * *	548	*****	484	356	359	354	381	428	421	418
•940	101	*****	142	*****	139	097	112	129	167	231	251	309
•952	*****	****	053	*****	048	023	024	012	021	025	036	054
•962	•055	•023	019	*****	003	009	.012	.024	.033	.034		.020
.974	.071	.027	*****	*****	.015	.029	.059	.062	.043	.076	.077	.060
•986	.088	.057	.041	*****	• 046	.076	.089	.080	.084	.073	• 093	.081
•996	.102	.077	*****	*****	.069	.093	.095	.098	.099	.106	•097	.088

Table A12. Continued

(c) $\alpha = 3.026^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	20		Y	/B	Y	/ B	Y /	'В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.951							
ALPHA, DEG	3.026	0.05	*****	*****	*****	*****	*****	020
		0.10	323	226	.067	.094	047	047
NPR	1.061	0.20	301	259	011	008	*****	108
		0.30	326	*****	092	111	135	160
PTO, PSI	14.757	0.40	391	384	170	*****	208	251
		0.50	425	446	206	282	358	307
PO, PSI	8.249	0.60	440	492	287	343	364	374
		0.70	460	508	305	383	417	405
QD, PSI	5.219	0.80	456	*****	330	399	467	439
		0.90	101	*****	225	*****	232	318

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	018	015	*****	001	*****	*****	*****	034	022	004	.004	*****
• 598	027	024	*****	019	*****	014	*****	011	017	011	*****	*****
.612	023	018	*****	020	*****	018	*****	010	019	014	*****	*****
.626	023	017	*****	023	*****	022	*****	015	013	012	*****	*****
.640	*****	018	*****	024	*****	023	*****	020	019	017	*****	*****
.654	*****	019	*****	029	*****	026	*****	031	031	023	*****	*****
.668	*****	*****	*****	013	*****	019	*****	017	015	008	*****	*****
•682	*****	003	*****	007	*****	015	*****	018	020	017	016	*****
.696	****	.018	*****	.006	*****	008	*****	014	014	008	009	.000
.710	*****	.045	*****	*****	*****	.007	*****	003	006	.001	005	.003
.724	*****	.087	*****	.040	*****	.012	*****	.005	001	002	003	005
.738	****	.086	*****	.038	*****	*****	*****	.012	004	002	004	001
•752	*****	.045	*****	.038	*****	.026	*****	.026	.013	.010	.001	*****
.766	*****	001	****	.016	*****	.035	*****	.042	.029	.004	012	010
.779	*****	020	*****	.005	*****	.053	*****	.223	.103	.041	.020	.019
•793	*****	065	*****	029	*****	027	*****	*****	.110	.037	.005	*****
.807	*****	107	*****	077	*****	101	*****	*****	.062	.025	.006	.002
.821	*****	*****	*****	132	*****	161	*****	*****	002	003	016	018
.835	*****	222	*****	196	*****	224	*****	*****	061	047	046	047
.849	****	273	****	*****	*****	-,283	*****	*****	111	090	086	080
.863	*****	334	*****	327	*****	355	*****	*****	165	135	*****	109
.877	352	373	*****	369	*****	409	*****	*****	*****	*****	*****	*****
.891	426	436	*****	439	*****	469	*****	*****	271	228	206	202
.916	430	467	578	*****	515	*****	460	440	363	308	267	275
•928	223	****	314	*****	321	259	265	269	370	389	369	351
.940	090	*****	115	*****	112	123	136	126	295	411	442	444
•952	*****	*****	060	*****	063	075	081	079	135	179	180	192
•962	037	016	033	*****	037	039	047	033	063	052	035	035
•974	014	007	*****	*****	013	014	018	004	015	.016	.026	.037
•986	005	.015	.008	*****	.007	014	.003	.010	.019	.047	.062	.057
.996	.019	.027	*****	*****	.025	.021	.025	.029	.021	.041	.063	.061

Table A12. Concluded

(d) $\alpha = 5.970^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	21		Y	/ B	Y	/ B	Y /	В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	•948	,,,,						
ALPHA, DEG	5.970	0.05	*****	*****	*****	*****	*****	046
		0.10	119	392	.196	042	043	063
NPR	1.045	0.20	170	377	.097	115	*****	120
		0.30	217	*****	.008	199	149	187
PTO, PSI	14.759	0.40	294	465	079	*****	230	278
		0.50	335	522	125	363	370	347
PO, PSI	8.273	0.60	372	553	219	412	411	413
		0.70	387	570	209	455	457	452
QO, PSI	5.208	0.80	381	*****	258	461	512	485
	- 3	0.90	151	*****	192	*****	246	198

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	013	016	*****	013	*****	*****	*****	044	040	005	.015	*****
•598	022	018	*****	026	*****	020	*****	027	033	021	*****	*****
.612	021	015	****	029	*****	023	*****	027	032	010	*****	*****
.626	010	017	*****	022	*****	022	*****	026	032	013	*****	*****
.640	*****	018	****	026	*****	028	*****	034	030	022	*****	*****
.654	*****	016	*****	032	*****	028	*****	048	045	032	*****	*****
.668	*****	*****	*****	019	*****	013	*****	038	021	018	*****	*****
.682	*****	800	*****	015	*****	022	*****	038	035	030	002	*****
.696	*****	.019	*****	003	*****	011	*****	025	026	023	.001	•008
.710	*****	•042	*****	*****	*****	.002	*****	016	014	016	.009	•006
.724	*****	.085	****	.025	*****	.010	*****	004	012	010	.013	.015
.738	*****	.079	*****	.033	*****	*****	*****	002	012	005	.018	.010
.752	*****	.036	*****	.030	*****	•027	*****	.015	.007	.010	.027	*****
.766	****	009	*****	.012	*****	.040	*****	•047	• 02 9	•011	.014	•020
.779	*****	032	*****	011	*****	.029	*****	.244	.144	.067	.050	.046
.793	****	077	*****	067	*****	114	*****	*****	.194	.086	.048	*****
.807	*****	132	*****	120	*****	206	*****	*****	.152	.088	.054	.054
.821	*****	*****	*****	191	*****	248	*****	*****	.090	• 070	.041	.031
.835	****	267	*****	255	* * * * * *	306	*****	*****	.017	.028	.010	.014
.849	*****	316	*****	*****	*****	358	*****	*****	037	019	022	024
.863	*****	378	*****	391	*****	428	*****	*****	095	059	*****	059
.877	410	452	*****	437	* * * * * *	476	****	*****	*****	*****	*****	*****
.891	476	483	*****	494	*****	535	*****	*****	197	144	131	137
.916	499	525	541	*****	472	*****	388	506	275	218	193	204
.928	295	*****	216	*****	191	202	236	326	283	299	297	294
.940	156	*****	116	*****	136	144	172	159	257	363	384	383
• 952	*****	*****	123	*****	117	128	131	130	163	249	299	390
.962	145	118	122	*****	117	146	118	124	113	078	095	109
.974	123	097	*****	*****	097	093	088	088	055	008	012	019
.986	079	065	043	*****	059	040	053	042	004	•019	.040	.026
•996	039	022	*****	*****	02B	047	046	023	.019	.036	.047	.027

Table A13. Effect of Nozzle Pressure Ratio on Pressure Distributions for Aft Tails Configuration at M=0.90 and $\alpha=0.017^{\circ}$

(a) NPR = 1.096

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	S	VERTICA	AL TAIL
				SURFACE		SURFACE		
POINT NUMBER	22		Y	/B	Y	/ B	Υ/	′ B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	•900							
ALPHA, DEG	.017	0.05	*****	*****	*****	*****	*****	071
		0.10	036	106	127	271	100	090
NPR	1.096	0.20	135	200	179	320	*****	142
		0.30	200	*****	233	393	164	195
PTO, PSI	14.757	0.40	288	358	298	*****	237	276
		0.50	326	407	316	545	452	322
PO, PSI	8.721	0.60	397	456	353	592	374	377
		0.70	409	330	233	635	412	379
QO, PSI	4.950	0.80	409	*****	087	496	148	066
		0.90	307	*****	.012	*****	.019	.053

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	031	021	*****	011	*****	*****	*****	013	022	020	006	*****
.598	037	036	*****	030	*****	032	*****	027	026	025	*****	*****
.612	036	031	*****	030	*****	026	*****	024	028	022	*****	*****
•626	028	032	*****	028	*****	024	*****	026	026	021	*****	*****
•640	*****	035	*****	031	*****	032	*****	032	027	026	*****	*****
•654	****	035	*****	037	*****	028	*****	037	033	032	*****	*****
.668	*****	*****	*****	021	*****	024	*****	024	024	022	*****	*****
.682	*****	019	*****	021	*****	028	*****	031	028	031	028	*****
.696	*****	.000	*****	012	*****	019	*****	025	025	027	025	025
.710	*****	.027	*****	*****	*****	011	*****	014	025	025	028	024
.724	*****	•068	*****	.010	* * * * * *	016	*****	017	027	023	029	028
.738	****	.051	*****	.012	*****	*****	*****	014	030	023	025	033
-752	*****	.004	*****	.000	*****	.001	*****	007	015	021	+.025	*****
.766	*****	048	*****	021	*****	.005	*****	•009	007	030	043	042
.779	****	056	*****	021	*****	• 046	*****	•191	.027	021	032	036
.793	*****	095	*****	046	*****	.003	*****	*****	023	043	053	*****
807	****	124	*****	078	*****	046	*****	*****	076	063	064	067
.821	*****	*****	*****	121	*****	130	*****	*****	128	106	100	097
.835	*****	245	*****	199	*****	201	*****	*****	187	146	130	123
.849	****	277	*****	*****	*****	270	*****	*****	226	181	166	165
.863	*****	337	*****	322	*****	340	*****	*****	276	231	*****	195
.877	347	368	*****	369	*****	395	*****	*****	*****	*****	*****	*****
.891	423	436	*****	432	*****	450	*****	*****	336	270	246	243
.916	169	176	208	*****	197	*****	208	206	191	189	184	203
.928	092	*****	136	*****	124	112	116	113	136	168	191	191
.940	048	*****	073	*****	078	065	065	059	091	133	156	163
• 952	*****	*****	014	*****	011	012	015	+.005	031	062	083	090
.962	.051	.049	.051	*****	.064	.037	.043	.043	.036	.019	.003	003
.974	.105	.110	*****	*****	.105	.115	.099	.096	.097	.096	.086	.080
.986	.155	.144	.153	*****	.156	.134	.156	.153	.143	.138	.133	•131
996	•172	.175	*****	*****	.174	.165	.168	.166	.161	.158	.154	.149

AFTERBODY INTEGRATED PRESSURE DRAG COEFFICIENT

.0521

Table A13. Continued

(b) NPR = 2.020

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	23		Y	/ B	Y	/ B	Υ,	′B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.901							
ALPHA, DEG	.016	0.05	*****	*****	*****	*****	*****	082
		0.10	.109	107	117	456	105	079
NPR	2,020	0.20	007	190	169	437	*****	135
		0.30	090	*****	228	486	159	186
PTO, PSI	14.759	0.40	185	361	290	*****	238	285
		0.50	243	402	308	617	440	-,323
PO, PSI	8.718	0.60	269	453	338	658	376	-,375
		0.70	295	235	207	676	346	342
QO, PSI	4.953	0.80	293	*****	077	393	096	055
		0.90	214	*****	.026	*****	.033	.060

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	033	024	*****	.001	*****	*****	*****	015	017	020	012	*****
.598	031	~.030	*****	030	* * * * * *	036	*****	026	028	019	*****	*****
.612	030	033	*****	022	*****	034	*****	026	024	018	*****	*****
•626	023	027	*****	023	*****	023	*****	022	021	020	*****	*****
•640	*****	029	*****	029	* * * * * *	024	*****	025	032	025	*****	*****
•654	*****	040	*****	034	* * * * * *	026	*****	040	034	032	*****	*****
.668	*****	*****	*****	022	*****	028	*****	018	025	024	*****	*****
.682	****	021	*****	023	*****	021	*****	025	027	029	028	*****
•696	****	.001	*****	010	*****	020	*****	019	029	024	025	024
.710	*****	.023	*****	*****	*****	012	*****	019	020	023	023	026
.724	*****	.070	****	•015	*****	010	*****	013	016	024	024	025
•738	*****	.064	*****	•012	*****	*****	*****	016	024	028	026	027
•752	*****	001	*****	.008	* * * * * *	003	*****	001	014	021	023	*****
.766	****	037	*****	022	*****	.000	*****	.011	009	034	046	044
•779	*****	059	*****	014	*****	• 050	*****	•197	.025	023	027	034
•793	*****	~. 089	*****	042	*****	.008	*****	*****	016	047	053	*****
.807	*****	123	*****	082	*****	058	*****	*****	074	062	063	063
.821	*****	*****	*****	127	*****	125	*****	*****	125	095	095	090
.835	****	248	*****	192	*****	192	*****	*****	183	149	121	123
.849	*****	276	*****	*****	*****	255	*****	*****	221	178	163	158
.863	*****	343	*****	328	*****	342	*****	*****	271	213	*****	193
.877	347	361	*****	360	*****	394	*****	*****	*****	*****	*****	*****
.891	406	428	*****	417	*****	448	*****	*****	327	262	220	215
.916	133	146	197	*****	174	*****	162	176	169	167	163	179
.928	069	*****	119	*****	103	094	095	092	115	151	166	169
.940	027	*****	054	*****	057	044	047	040	070	104	124	132
.952	*****	****	.008	*****	.008	.012	.010	.015	•003	030	051	053
•962	.080	.078	.077	*****	.074	.076	.073	•075	.063	.055	044	.037
.974	.136	.136	****	*****	.138	•136	•132	.130	.128	.128	.125	•122
.986	.181	.177	.174	*****	.177	.173	.170	.170	.174	.178	.177	.177
•996	.194	.195	*****	*****	• 192	.194	.189	.190	.199	.195	.198	.199

ORIGINAL PAGE IS OF POOR QUALITY

Table A13. Continued

(c) NPR = 3.017

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	s	VERTICA	AL TAIL
POINT NUMBER	24			SURFACE /B		SURFACE /B	Υ/	' B
MACH NUMBER	•901	x/c	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DFG	.018	0.05	*****	*****	*****	*****	*****	080
NPR	3.017	0.10 0.20	147 191	121 184	126 178	072 156	129 *****	082 132
PTO, PSI	14.759	0.30 0.40	236 307	***** 356	231 295	237 *****	163 240	186 275
PO, PSI	8.715	0.50 0.60 0.70	332 333 183	404 448 221	319 346 214	391 447 410	432 368 298	317 383
QO, PSI	4.954	0.80 0.90	051 041	*****	076 .027	063 *****	095 032	381 063 .061

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

۸/۲	U	18	36	45	54	72	81	90	108	135	162	180
.584	030	025	*****	.001	*****	*****	*****	017	021	023	004	*****
.598	036	034	*****	031	*****	028	*****	024	029	018	*****	*****
.612	033	033	*****	022	*****	025	*****	020	024	020	*****	*****
.626	028	026	*****	024	*****	027	*****	022	030	025	*****	*****
.640	*****	039	*****	033	*****	033	*****	029	025	025	*****	*****
.654	*****	033	*****	036	*****	030	*****	038	031	040	*****	*****
. 668	****	*****	*****	029	*****	026	*****	024	018	022	*****	*****
.682	*****	013	*****	020	*****	022	*****	028	026	027	031	*****
•696	*****	.002	*****	009	* * * * * *	023	*****	025	025	025	028	023
.710	*****	.028	*****	*****	*****	012	*****	020	022	023	030	020
.724	*****	.070	*****	.013	*****	015	*****	012	021	024	028	025
.738	****	.062	*****	.015	*****	*****	*****	016	025	024	028	030
.752	*****	.002	*****	.001	*****	.002	*****	001	014	021	027	*****
.766	*****	040	*****	025	*****	•009	*****	.012	013	031	044	045
•779	*****	062	*****	016	*****	.052	*****	.197	.027	016	029	032
•793	*****	093	*****	047	*****	.018	*****	*****	022	040	056	*****
.807	*****	124	*****	072	*****	054	*****	*****	075	064	064	064
.821	*****	*****	*****	124	*****	124	*****	*****	128	107	098	093
•835	*****	236	*****	192	*****	189	*****	*****	184	144	124	125
.849	*****	274	*****	*****	*****	262	*****	*****	225	180	165	157
.863	****	333	*****	322	*****	348	*****	*****	269	231	*****	185
877	351	359	*****	356	*****	398	*****	*****	*****	*****	*****	*****
891	401	419	*****	424	*****	435	*****	*****	319	256	228	221
916	143	149	180	*****	169	*****	169	184	170	174	169	175
928	075	****	117	*****	104	094	101	090	117	148	171	161
940	031	*****	052	*****	058	045	047	040	070	106	127	129
952	*****	*****	.007	*****	.005	.008	.013	.014	006	036	049	056
962	.075	.075	.078	*****	.076	.072	.072	.071	.065	.051	.038	.037
974	.131	.132	*****	*****	.137	.133	.128	.129	.130	.129	.119	.125
986	.173	.175	.178	*****	.173	-168	.169	.172	.170	.175	.172	.175
996	.190	.189	*****	*****	. 194	.189	.191	.191	.188	.190	.194	.193

Table A13. Concluded

(d) NPR = 5.028

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	25		Y	/ B	Y	/ B	Υ/	В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.900	•		,,,			•	
ALPHA, DEG	.017	0.05	*****	*****	*****	*****	*****	064
		0.10	167	111	123	080	153	082
NPR	5.028	0.20	196	183	176	160	*****	138
		0.30	254	*****	226	248	154	188
PTO. PSI	14.760	0.40	317	356	301	*****	237	275
		0.50	335	408	312	404	426	324
129 ,09	8.724	0.60	317	448	335	463	367	385
,		0.70	149	237	194	391	261	348
QD, PSI	4.950	0.80	044	*****	069	059	089	053
77		0.90	.047	*****	.033	*****	.035	.063

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	030	018	*****	.001	*****	*****	*****	018	018	022	008	*****
•598	039	031	*****	030	*****	031	*****	026	026	020	*****	*****
•612	031	032	*****	024	*****	030	*****	020	024	022	*****	*****
•626	024	025	*****	026	* * * * * *	032	*****	027	022	022	*****	*****
.640	*****	030	*****	030	*****	035	*****	030	027	022	*****	*****
•654	*****	034	*****	032	*****	033	*****	037	038	033	*****	*****
•668	*****	*****	*****	023	*****	027	*****	026	020	022	*****	*****
•682	*****	015	****	021	* * * * * *	033	*****	026	027	030	034	*****
• 696	*****	.001	*****	011	*****	025	*****	020	030	026	030	022
.710	*****	•024	*****	*****	*****	015	*****	015	022	023	021	020
.724	*****	.070	*****	.014	*****	006	*****	009	023	023	024	029
.738	*****	•058	*****	•009	*****	*****	*****	015	022	022	030	030
•752	*****	• 00 5	*****	.006	*****	002	*****	001	012	021	030	*****
•766	*****	045	*****	023	*****	.008	*****	.011	009	029	046	047
•779	*****	05?	*****	016	*****	.049	*****	.197	.027	019	038	033
.793	*****	081	*****	039	* * * * * *	.011	*****	*****	027	044	058	*****
.807	*****	116	*****	069	*****	048	*****	*****	076	071	070	070
.821	*****	*****	*****	121	*****	119	*****	*****	127	111	095	095
.835	*****	235	****	189	*****	190	*****	*****	185	147	135	126
.849	*****	280	*****	*****	*****	252	*****	*****	225	190	168	158
.863	*****	334	*****	321	*****	333	*****	*****	273	232	*****	181
.877	~.346	362	*****	358	*****	392	*****	*****	*****	*****	*****	*****
.891	382	423	*****	402	*****	435	*****	*****	305	252	208	207
.916	140	138	174	*****	168	*****	150	171	161	170	162	162
.928	063	*****	113	*****	094	085	086	084	109	140	151	155
.940	020	*****	044	*****	052	036	039	030	065	103	111	121
• 952	*****	*****	.019	*****	.020	.022	•019	.026	.008	024	042	040
•962	.088	.090	.090	*****	.087	.088	.086	.086	.080	.064	052	• 054
.974	.147	.149	*****	*****	.150	.147	.145	.142	.140	.144	.140	.138
.986	.192	.188	.189	*****	. 186	.185	.184	.181	•177	.179	.187	.185
•996	.212	.212	*****	*****	• 203	.202	•202	.204	.197	.198	.202	.204

Table A14. Effect of Angle of Attack on Pressure Distributions for Aft Tails Configuration at M = 0.90 and NPR = 1.099

(a) $\alpha = -2.977^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION AFT TAILS				s	VERTICAL TAIL			
POINT NUMBER	27			SURFACE /B		SURFACE /B	Υ/	'В
MACH NUMBER	.901	x/c	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	-2.977	0.05	*****	*****	*****	*****	*****	075
NPR	1.099	0.10 0.20	152 200	.033 067	329 302	066 149	092 *****	078 124
PTO, PSI	14.762	0.30 0.40	242 323	***** 258	349 400	242 *****	140 200	168 238
PO, PSI	8.720	0.50 0.60	321 326	311 333	423 483	402 460	385 321	272 325
QO, PSI	4.954	0.70 0.80 0.90	149 041 .051	134 ***** *****	313 081 .017	405 056 *****	195 097 .007	224 057 .043

AFTERBODY PRESSURE COEFFICIENTS

		_	_		
Р١	н	Ι,	D	F	ſ

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	046	041	*****	025	*****	*****	*****	025	027	016	.008	*****
.598	045	038	*****	043	*****	036	*****	038	033	021	*****	*****
•612	032	031	*****	031	*****	033	*****	038	030	025	*****	*****
.626	030	024	*****	032	*****	030	*****	034	030	025	*****	*****
.640	*****	029	*****	033	*****	037	*****	043	036	035	*****	*****
.654	*****	035	*****	047	*****	041	*****	04B	043	039	*****	*****
•668	*****	*****	*****	031	* ** ***	035	*****	035	040	025	*****	*****
.682	****	027	*****	026	*****	033	*****	036	035	026	029	*****
•696	*****	.005	*****	008	*****	028	*****	039	030	030	029	023
.710	*****	•036	*****	*****	*****	025	*****	031	034	023	026	02B
.724	*****	.079	*****	.013	*****	021	*****	026	033	028	031	031
.738	*****	• 064	*****	.005	*****	*****	*****	030	039	029	033	037
•752	*****	.005	*****	005	*****	014	*****	016	033	031	038	*****
.766	*****	042	*****	027	*****	007	*****	.000	030	045	057	057
.779	*****	055	*****	004	*****	.081	*****	.172	022	047	055	056
.793	*****	078	*****	013	*****	.108	*****	*****	123	093	087	*****
.807	*****	098	*****	025	*****	.039	*****	*****	192	126	118	112
.821	*****	*****	*****	068	*****	041	*****	*****	229	183	150	151
.835	*****	190	*****	134	*****	109	*****	*****	287	222	187	184
.849	****	226	*****	*****	* ** ***	190	*****	*****	311	254	231	226
.863	*****	288	*****	267	* ** ***	267	*****	*****	373	310	*****	269
.877	284	292	*****	283	*****	313	*****	*****	*****	*****	*****	*****
.891	286	295	*****	293	*****	303	*****	*****	421	366	333	328
.916	135	136	195	*****	147	*****	172	195	186	208	201	202
.928	089	*****	159	*****	129	122	120	104	116	154	169	167
.940	071	*****	105	*****	099	087	077	052	048	102	123	~.125
.952	*****	*****	053	*****	054	039	028	004	005	032	054	~.052
.962	.015	.017	.017	*****	.022	.019	.019	•046	.049	.032	.021	.029
.974	.082	.083	*****	*****	.089	•079	.077	.099	.091	.086	.087	.096
•986	.125	.131	.122	*****	.132	.111	.118	.118	.130	.121	•116	.123
.996	•135	.141	*****	*****	.130	.121	.128	.136	.125	.128	.133	.124

AFTERBODY INTEGRATED PRESSURE DRAG COEFFICIENT

.0562

Table A14. Continued

(b) $\alpha = 0.021^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION AFT TAILS				HORIZO	S	VERTICAL TAIL		
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	28		Y	/8	Y	/ B	Υ/	'В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.901	, -						***
ALPHA, DEG	.021	0.05	*****	*****	*****	*****	*****	071
		0.10	145	115	117	081	089	089
NPR	1.115	0.20	191	187	171	158	*****	138
		0.30	248	*****	225	243	161	190
PTO, PSI	14.762	0.40	309	364	298	*****	238	279
	- •	0.50	334	408	321	402	379	327
PO, PSI	P.722	0.60	358	461	365	458	376	387
		0.70	200	349	246	457	179	395
QO, PSI	4.953	0.80	058	*****	088	070	131	094
	• • • •	0.90	.037	*****	.017	*****	.020	.051

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	С	18	36	45	54	72	81	90	108	135	162	180
.584	028	031	*****	015	*****	*****	*****	020	021	015	007	*****
.598	036	035	****	026	* * * * * *	032	*****	027	027	021	*****	*****
.612	032	032	*****	026	*****	030	*****	025	027	022	*****	*****
.626	029	029	*****	028	*****	029	*****	025	025	028	*****	*****
.640	****	034	*****	037	*****	036	*****	031	031	028	*****	*****
.654	*****	039	*****	039	*****	034	*****	035	037	033	*****	*****
•668	*****	*****	*****	024	*****	027	*****	024	027	022	*****	*****
.682	*****	022	*****	021	*****	029	*****	026	033	022	030	*****
•696	*****	004	*****	004	*****	020	*****	026	027	021	030	022
.710	****	.026	*****	*****	*****	016	*****	025	020	017	027	025
.724	*****	.072	*****	.017	*****	013	*****	014	021	021	031	027
.738	*****	.055	*****	.012	*****	*****	*****	009	026	022	032	031
.752	****	.002	*****	.000	*****	005	*****	003	018	018	031	*****
.766	*****	048	*****	023	*****	.001	*****	.009	010	029	046	050
.779	*****	058	*****	019	*****	•045	*****	.189	.026	018	032	032
•793	*****	094	*****	043	*****	.015	*****	*****	016	041	052	*****
.807	*****	127	*****	082	*****	050	*****	*****	058	064	071	067
.821	****	*****	*****	121	* ** ***	123	*****	*****	112	112	097	095
.835	*****	248	*****	192	*****	197	*****	*****	168	144	128	131
.849	*****	280	*****	*****	* * * * * *	269	*****	*****	211	185	163	158
.863	*****	348	*****	317	*****	341	*****	*****	270	240	*****	195
.877	352	366	*****	367	*****	395	*****	*****	*****	*****	*****	*****
.891	419	424	****	434	*****	425	*****	*****	334	277	258	233
.916	165	171	228	*****	191	*****	203	199	198	207	197	196
•928	086	* * * * * *	134	*****	121	110	116	100	140	173	191	187
.940	050	*****	069	*****	080	064	065	054	103	132	157	157
•952	*****	*****	019	*****	013	011	009	.003	036	064	089	092
•962	.055	.057	.059	*****	.047	•050	.053	•063	.028	.011	001	005
.974	•112	.116	*****	*****	.112	.108	.105	.121	• 092	.090	•079	.083
•986	.154	.154	.159	*****	.151	•156	.154	.156	.120	.139	•132	.135
• 996	•163	.176	****	*****	.175	•167	.180	.176	.147	.152	.149	.146

Table A14. Continued

(c) $\alpha = 6.020^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION			s	VERTICAL TA				
	••			SURFACE		SURFACE		
POINT NUMBER	29	x/c	0.1	/B 0.2	0.1	/B 0.2	0.1	′в 0•2
MACH NUMBER	.900	~/~	0.1	0.2	•••	0.2	0.1	0.2
ALPHA, DEG	6.020	0.05	*****	*****	*****	*****	*****	063
		0.10	370	464	•197	.057	105	078
NPR	1.088	0.20	347	446	.084	061	*****	156
		0.30	369	*****	005	153	195	231
PTO, PSI	14.762	0.40	435	538	084	*****	296	335
		0.50	456	594	121	324	396	400
PO, PSI	8.728	0.60	460	622	166	354	472	470
		0.70	222	461	161	199	237	499
QO, PSI	4.948	0.80	048	*****	104	068	481	291
		0.90	.043	*****	014	*****	005	.042

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
•584	020	014	*****	016	*****	*****	*****	038	035	009	.010	*****
•598	031	024	*****	030	*****	045	*****	049	048	022	*****	*****
•612	024	031	*****	034	*****	038	*****	041	043	017	*****	*****
•626	016	026	*****	029	*****	036	*****	045	043	022	*****	*****
•640	*****	031	*****	035	* * * * * *	043	*****	051	046	022	*****	*****
.654	*****	029	*****	034	*****	039	*****	059	054	036	*****	*****
.668	*****	*****	*****	027	*****	034	*****	046	040	022	*****	*****
•682	*****	015	*****	022	*****	031	*****	049	046	028	017	*****
•695	*****	.003	*****	008	*****	029	*****	034	038	027	008	012
.710	*****	.025	*****	*****	*****	020	*****	032	029	022	005	005
.724	*****	.057	*****	•009	*****	013	*****	022	029	018	005	010
.738	*****	.049	*****	.014	*****	*****	*****	018	026	014	008	007
•752	*****	.007	*****	.001	*****	002	*****	006	007	001	.009	*****
.766	****	046	*****	025	*****	.000	*****	.023	.012	001	006	010
•779	*****	073	*****	052	*****	018	*****	•232	•122	.047	.039	.018
.793	*****	124	*****	115	*****	176	*****	*****	.179	.061	.023	*****
.807	*****	178	*****	180	*****	259	*****	*****	.139	.065	.038	.019
.821	*****	*****	*****	238	*****	311	*****	*****	• 076	.045	.017	.006
.835	*****	338	*****	315	*****	367	*****	*****	.007	.007	•005	020
.849	*****	380	*****	*****	*****	411	*****	*****	048	034	038	044
.863	*****	449	*****	449	*****	488	*****	*****	093	071	*****	068
.877	468	502	*****	499	*****	540	*****	*****	*****	*****	*****	*****
.891	541	549	*****	559	*****	583	*****	*****	168	131	119	122
•916	309	299	344	*****	292	*****	275	327	198	173	158	175
.928	147	*****	181	*****	154	152	161	180	184	208	221	217
•940	074	*****	097	*****	088	094	101	108	165	200	234	240
•952	*****	*****	040	*****	040	062	047	061	108	151	184	185
.962	021	021	014	*****	018	022	012	023	047	059	090	095
.974	.012	.021	*****	*****	.020	.016	.025	.012	.015	.025	.015	.007
.986	.048	.052	.065	*****	.065	.057	.067	.064	.069	.084	.074	.066
.996	.087	.081	*****	*****	.098	.093	•095	.088	.080	.084	.084	.082

Table A15. Effect of Nozzle Pressure Ratio on Pressure Distributions for Aft Tails Configuration at M=0.60 and $\alpha=0.030^\circ$

(a) NPR = 1.035

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION			s	VERTICAL TAIL				
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	30		Y	/B	Y	/B	Υ.	8
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	•602							
ALPHA, DEG	.030	0.05	*****	*****	*****	*****	*****	109
		0.10	-1.219	147	111	-1.112	-1.110	123
NPR	1.035	0.20	-1.298	163	145	-1.249	*****	158
		0.30	-1.365	*****	180	-1.384	166	183
PTO, PSI	14.774	0.40	-1.492	215	194	*****	193	208
		0.50	-1.526	201	181	-1.653	-1.316	185
PO, PSI	11.568	0.60	-1.571	166	168	-1.750	178	163
		0.70	-1.285	117	126	-1.667	-1.081	123
QO, PSI	2.931	0.80	-1.061	*****	073	-1.091	085	058
		0.90	906	*****	011	*****	007	.015

AFTERBODY PRESSURE COEFFICIENTS

PH1	,	DEG
-----	---	-----

X/L	0	18	36	45	54	72	81	90	108	135	162	180
•584	033	028	*****	015	*****	*****	*****	022	028	022	012	*****
•598	041	036	*****	028	*****	032	*****	036	037	026	*****	*****
.612	03B	038	*****	028	*****	030	*****	027	031	026	*****	*****
•626	033	030	*****	030	*****	032	*****	031	031	030	*****	*****
.640	****	035	*****	033	*****	039	*****	030	031	034	*****	*****
.654	*****	033	*****	041	*****	036	*****	040	038	037	*****	*****
•668	*****	*****	****	030	*****	033	*****	034	034	031	*****	*****
•682	*****	027	*****	030	*****	035	*****	040	039	038	037	*****
.696	*****	014	*****	025	*****	035	*****	038	034	034	034	037
.710	*****	.004	****	*****	*****	030	*****	033	035	040	031	034
.724	*****	.022	*****	025	*****	027	*****	028	036	034	037	042
.738	*****	• 00 4	*****	026	*****	*****	*****	026	038	037	040	038
•752	*****	031	*****	031	*****	023	*****	019	033	033	044	*****
.766	*****	077	*****	059	*****	022	*****	008	027	046	057	056
.779	*****	100	*****	052	* * * * * *	.000	*****	.160	008	037	045	050
.793	*****	115	*****	082	*****	039	*****	*****	041	057	060	*****
.807	*****	141	*****	098	*****	093	*****	*****	077	069	064	068
.821	*****	*****	*****	127	*****	133	*****	*****	116	088	075	075
.835	****	180	*****	154	*****	154	*****	*****	144	109	091	089
.849	*****	182	*****	*****	*****	190	*****	*****	163	123	103	105
.863	****	185	****	174	*****	204	****	*****	164	135	*****	107
.877	~.163	166	*****	162	*****	192	*****	*****	*****	*****	*****	*****
.891	162	166	*****	165	* * * * * *	185	*****	*****	161	134	119	115
.916	~.115	130	181	*****	138	*****	139	140	137	135	124	135
928	098	*****	160	*****	137	127	118	112	128	143	145	146
.940	~.088	*****	118	*****	124	107	098	086	116	136	140	150
.952	*****	*****	082	*****	083	071	069	061	081	099	114	110
.962	014	016	014	*****	017	011	015	010	019	039	048	054
.974	.045	.049	*****	*****	.052	.047	.047	.039	.043	.036	.032	.025
.986	.099	.102	•102	*****	.107	.099	.097	.100	• 092	.096	• 092	.084
.996	.126	.140	*****	*****	.126	.125	•122	.116	•111	-114	•116	.110

Table A15. Continued

(b) NPR = 2.057

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION			S	VERTICAL TAIL				
POINT NUMBER	21			SURFACE /B		SURFACE /B	Y /	ь
LOTAL MOWSEK	31	V / C						
MACH NUMBER	•602	X/C	0.1	0.2	0.1	0 • 2	0.1	0.2
ALPHA, DEG	.029	0.05	*****	*****	*****	*****	*****	107
		0.10	674	129	120	-1.673	-1.069	103
NPR	2.057	0.20	847	172	152	-1.622	*****	143
		0.30	989	*****	177	-1.714	165	183
PTO, PSI	14.775	0.40	-1.132	205	-,190	*****	201	203
		0.50	-1.197	193	175	-1.929	-1.099	187
PO, PSI	11.570	0.60	-1.228	165	160	-1.992	177	156
		0.70	-1.178	110	117	-1.737	874	111
QO, PSI	2.930	0.80	-1.093	*****	062	-1.244	074	049
		0.90	960	*****	001	*****	002	.023

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	032	023	*****	020	*****	*****	*****	024	020	027	014	*****
•598	040	029	*****	034	*****	033	****	035	031	027	*****	*****
.612	035	032	*****	028	*****	032	*****	032	030	027	*****	*****
.626	027	030	*****	030	*****	030	*****	028	030	027	*****	*****
.640	*****	034	*****	033	*****	036	*****	032	030	030	*****	*****
•654	*****	032	*****	036	* * * * * *	030	*****	039	036	035	*****	*****
•668	*****	*****	*****	027	*****	029	*****	033	033	027	*****	*****
•682	*****	026	*****	027	*****	033	*****	036	036	036	036	*****
•696	*****	012	*****	022	*****	032	*****	033	037	034	040	036
.710	*****	.001	*****	*****	*****	033	*****	029	033	033	032	039
.724	*****	• 028	*****	017	* * * * * *	028	*****	033	038	034	038	037
.738	*****	.000	*****	022	*****	*****	*****	030	042	036	041	040
•752	*****	031	*****	023	*****	021	*****	018	028	035	039	*****
•766	*****	080	*****	051	*****	023	*****	009	026	046	052	059
•779	****	083	****	050	*****	002	*****	•151	002	037	046	046
•793	*****	113	*****	076	*****	041	*****	*****	042	054	061	*****
.807	*****	128	*****	093	* ** ** *	079	*****	*****	074	063	068	063
.821	*****	*****	*****	115	*****	131	*****	*****	108	088	075	077
.835	*****	174	*****	153	*****	158	*****	*****	140	105	090	092
.849	*****	176	*****	*****	*****	179	*****	*****	155	115	102	097
.863	*****	182	*****	174	* * * * * *	190	*****	*****	168	133	*****	113
.877	150	160	*****	158	*****	188	*****	*****	*****	*****	*****	*****
.891	158	163	****	159	*****	174	*****	*****	158	126	118	113
.916	105	115	169	*****	131	*****	124	132	128	121	120	125
.92B	082	*****	146	*****	123	120	104	095	116	130	136	140
.940	071	*****	~.101	*****	112	093	081	071	097	119	132	131
•952	*****	*****	057	*****	065	049	047	041	056	079	093	092
•962	.010	•015	.010	*****	.003	.006	.010	.012	.003	011	028	030
.974	.077	.080	*****	*****	.079	.079	•076	.073	.072	.070	•062	• 055
•986	.138	•135	.136	*****	.135	.134	.135	.131	.131	.131	.127	-127
•996	.169	.167	****	*****	.163	•165	.164	.161	.159	.160	.159	.161

Table A15. Continued

(c) NPR = 3.036

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	S	VERTICAL TAIL		
			UPPER	SURFACE	LOWER	SURFACE			
POINT NUMBER	32		Y	/ B	Y.	/ B	Υ,	′ B	
		X/C	0.1	0.2	0.1	0.2	0.1	0.2	
MACH NUMBER	.600								
ALPHA, DEG	.015	0.05	*****	*****	*****	*****	*****	097	
		0.10	.062	140	115	•066	-1.035	098	
NPR	3.036	0.20	.042	157	150	•036	*****	150	
		0.30	.024	*****	178	.000	167	178	
PTO, PSI	14.776	0.40	.012	199	199	*****	192	202	
		0.50	.021	194	180	•007	946	185	
PO, PSI	11.587	0.60	•039	155	157	.024	171	154	
		0.70	.079	108	120	.058	738	109	
QO, PSI	2.917	0.80	.127	*****	068	.100	076	- ∙052	
		0.90	.174	*****	001	*****	001	.020	

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	19	36	45	54	72	81	90	108	1 3 5	162	180
.584	038	024	*****	019	*****	*****	*****	019	024	029	016	*****
•598	039	03 <i>2</i>	*****	034	* * * * *	037	*****	032	032	032	*****	*****
.612	034	033	*****	034	*****	031	*****	029	031	030	*****	*****
.626	029	029	*****	032	*****	032	****	030	034	032	*****	*****
.640	*****	037	*****	035	* * * * * *	034	*****	034	030	027	*****	*****
.654	*****	031	*****	032	*****	033	*****	047	038	036	*****	*****
.668	*****	*****	****	027	*****	032	*****	033	030	033	*****	*****
.682	*****	022	*****	033	*****	037	*****	035	035	038	038	*****
.696	*****	010	*****	024	*****	034	*****	035	041	036	036	032
.710	*****	.000	*****	*****	*****	029	*****	030	032	032	032	035
.724	*****	.024	*****	016	*****	027	*****	032	036	038	036	039
.738	*****	.007	*****	024	*****	*****	*****	030	042	037	036	040
•752	*****	047	****	027	*****	025	*****	024	025	038	041	*****
•766	****	077	*****	047	*****	018	*****	009	025	046	055	053
.779	****	078	*****	049	*****	.002	*****	.155	007	041	047	045
•793	****	113	*****	071	*****	040	*****	*****	040	056	061	*****
.807	*****	140	*****	085	*****	 087.	*****	*****	082	069	065	065
.821	*****	* * * * * *	****	123	*****	124	*****	*****	109	085	073	074
.835	*****	168	****	147	*****	160	*****	*****	148	107	091	086
.849	*****	182	*****	*****	*****	178	*****	*****	155	122	103	098
.863	****	175	*****	172	*****	191	****	*****	170	130	*****	109
.877	154	160	*****	165	*****	192	*****	*****	*****	*****	*****	*****
.891	155	167	****	162	*****	178	*****	*****	163	128	116	111
.916	106	116	169	*****	135	*****	124	134	-,129	125	118	123
.928	083	*****	149	*****	122	119	105	093	116	132	136	137
.940	071	*****	097	*****	108	094	087	075	100	124	129	134
•952	*****	*****	058	*****	066	054	050	040	053	081	090	090
•962	.012	.013	.011	*****	.000	.006	.011	.011	.002	014	024	024
.974	.077	.079	****	*****	.093	•075	.077	.077	.072	.069	.064	.058
.986	.137	.141	.144	*****	.140	•134	•130	.130	.132	.130	.130	•127
•996	.170	•169	*****	*****	.166	.163	.165	.166	.164	.161	.167	.163

Table A15. Concluded

(d) NPR = 4.989

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			s	VERTICAL TAIL				
POINT NUMBER	33			SURFACE /B		SURFACE /B	Υ/	В	
MACH NUMBER	.601	X/C	0.1	0.2	0.1	0.2	0.1	0.2	
ALPHA, DEG	.017	0.05	*****	*****	*****	*****	*****	107	
NPR	4.989	0.10 0.20	129 165	135 150	120 161	144 179	958 *****	112 150	
PTO, PSI	14.776	0.30 0.40	202 200	***** 206	174 199	221 *****	166 192	180 203	
PO, PSI	11.578	0.50 0.60	189 163	192 155	181 159	217 201	795 169	180 151	
QO, PSI	2.925	0.70 0.80 0.90	113 062 .000	108 ***** *****	123 064 .001	154 094 *****	605 073 .001	107 045 .021	

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
• 584	037	025	*****	012	*****	*****	*****	021	025	027	017	*****
•598	039	032	*****	032	*****	035	*****	033	031	031	*****	*****
•612	033	032	*****	031	* * * * * *	030	*****	029	030	032	*****	*****
•626	028	028	*****	033	*****	031	*****	029	026	032	*****	*****
.640	*****	028	*****	034	*****	034	*****	034	033	031	*****	*****
•654	*****	033	*****	036	*****	030	*****	045	038	039	*****	*****
•668	*****	*****	*****	030	*****	034	*****	033	027	032	*****	*****
•682	*****	022	*****	029	*****	034	*****	036	038	038	034	*****
•696	****	011	*****	023	*****	028	*****	034	035	038	034	033
.710	*****	.007	*****	*****	*****	027	*****	031	031	031	035	035
.724	*****	.030	*****	018	*****	031	*****	027	027	036	037	039
.738	****	.021	****	022	*****	*****	*****	029	036	036	039	042
•752	*****	040	*****	029	*****	023	*****	021	029	036	039	*****
.766	*****	076	*****	049	*****	019	*****	013	030	046	058	055
•779	*****	083	*****	050	*****	.004	*****	•153	003	042	045	047
•793	*****	114	*****	072	*****	024	*****	*****	045	056	058	*****
.807	*****	134	****	092	* * * * * *	078	*****	*****	079	075	064	066
.821	*****	*****	*****	115	*****	107	*****	*****	095	087	079	077
.835	*****	175	****	133	*****	153	*****	*****	145	105	088	088
.849	****	176	*****	*****	*****	183	*****	*****	143	125	098	100
.863	*****	174	*****	166	* * * * * *	186	*****	*****	166	130	*****	106
.877	150	156	*****	163	*****	189	*****	*****	*****	*****	*****	*****
.891	151	157	*****	163	*****	174	*****	*****	161	130	115	112
•916	105	112	168	*****	124	*****	124	131	125	120	112	123
•928	077	*****	141	****	115	113	103	091	111	129	134	131
•940	065	*****	088	*****	096	087	080	068	091	115	121	126
•952	*****	*****	050	*****	049	043	041	030	046	067	082	084
•962	.023	.027	.023	*****	.020	.022	.022	.023	.017	.006	006	012
•974	.095	.099	*****	*****	.101	.094	.091	•091	.091	.085	.080	.079
.986	.156	.162	.164	*****	• 166	•153	.154	.154	.152	.154	.152	.150
• 996	.192	.197	*****	*****	.192	.187	.191	.187	.187	.189	.188	.190

Table A16. Effect of Angle of Attack on Pressure Distributions for Aft Tails Configuration at M=0.60 and NPR = 1.050

(a) $\alpha = -2.981^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION			S	VERTICA	L TAIL			
	2.5			SURFACE	_	SURFACE		
POINT NUMBER	35	v		/B	-	/B	Y/	
MACH NUMBER	.600	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	-2.981	0.05	*****	*****	*****	*****	*****	136
		0.10	158	•032	312	152	808	114
NPR	1.050	0.20	174	031	281	194	*****	141
		0.30	194	*****	278	232	131	161
PTO, PSI	14.777	0.40	219	127	285	*****	158	175
		0.50	194	122	250	225	578	157
PO, PSI	11.589	0.60	170	104	217	208	148	139
		0.70	123	061	163	155	420	096
QO, PSI	2.916	0.80	068	*****	094	097	067	039
		0.90	005	*****	024	*****	003	.022

AFTERBODY PRESSURE COEFFICIENTS

			_
- 1	ΗĮ	DE	b

X/L	0	18	36	45	54	72	81	90	108	135	162	180
•584	034	027	*****	017	*****	*****	*****	032	034	033	016	*****
.598	038	031	*****	044	*****	048	*****	042	035	039	*****	*****
•612	032	027	*****	040	* * * * * *	039	*****	037	039	039	*****	*****
.626	025	022	*****	038	*****	042	*****	039	038	045	*****	*****
•640	*****	029	*****	046	* * * * * *	047	*****	041	039	048	*****	*****
.654	*****	028	*****	049	*****	039	*****	051	042	053	*****	*****
•663	*****	*****	*****	043	*****	042	*****	043	031	043	*****	*****
.682	*****	009	*****	039	*****	042	*****	051	034	047	045	*****
•696	****	.009	*****	030	*****	044	*****	048	037	048	039	037
.710	*****	.021	*****	*****	*****	041	*****	042	037	046	038	040
.724	*****	.049	*****	026	*****	035	*****	043	044	051	042	050
•738	****	.023	*****	031	*****	*****	*****	050	057	060	051	050
•752	*****	036	*****	027	*****	022	*****	042	060	058	054	*****
.766	****	067	*****	040	*****	005	*****	028	071	082	075	073
.779	*****	067	*****	025	*****	.061	*****	•113	078	082	070	068
.793	*****	097	*****	040	*****	• 067	*****	*****	143	103	095	*****
.807	*****	~.105	*****	048	*****	.034	*****	*****	189	123	101	099
.821	****	*****	*****	051	*****	029	*****	*****	205	148	113	108
.835	*****	142	****	087	*****	085	*****	*****	231	157	124	123
.849	*****	132	*****	*****	*****	126	*****	*****	228	170	143	129
.863	*****	130	*****	137	*****	146	*****	*****	231	178	*****	138
.877	121	113	*****	133	*****	152	*****	*****	*****	*****	*****	*****
.891	133	129	*****	137	*****	154	*****	*****	202	162	137	135
•916	098	109	174	*****	108	*****	134	144	147	144	134	140
.928	086	****	150	*****	114	120	124	112	130	147	144	146
• 940	087	*****	103	*****	118	112	106	089	113	133	134	145
•952	*****	*****	075	*****	089	089	076	060	062	095	105	103
.962	023	023	025	*****	014	028	025	006	011	028	042	045
.974	.035	•050	*****	*****	.054	.040	.033	.040	•060	.039	.042	.033
.986	.093	.098	.108	****	.107	.091	.093	.085	.088	.088	•086	.087
.996	.116	.116	*****	*****	.111	.089	.110	•112	•112	.103	.104	.112

AFTERBODY INTEGRATED PRESSURE DRAG COEFFICIENT

.0472

Table A16. Continued

(b) $\alpha = 0.022^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TAIL
POINT NUMBER	36			SURFACE /B		SURFACE: /B	Υ/	'В
MACH NUMBER	•598	x/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	.022	0.05 0.10	***** 158	***** 129	***** 109	***** 146	***** 731	123 112
NPR	1.056	0.20 0.30	191 216	174 +****	157 178	202 236	***** 167	155 186
PTO, PSI	14.778	0.40	222 209	218 199	194 182	***** 230	200 501	210 187
PO, PSI	11.602	0.60 0.70	180 131	167 116	162 127	212 165	172 353	155 117
QO, PSI	2.906	0.80 0.90	075 011	*****	074 011	100 *****	082 013	052

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
•584	037	029	*****	018	*****	*****	*****	025	023	028	016	*****
•598	039	032	*****	036	*****	037	*****	034	032	030	*****	*****
.612	036	033	*****	032	*****	030	*****	030	030	026	*****	*****
•626	032	031	*****	029	*****	029	*****	031	035	029	*****	*****
.640	****	039	*****	033	*****	037	*****	035	035	030	*****	*****
•654	*****	037	*****	036	*****	031	*****	043	039	039	*****	*****
.668	*****	*****	*****	029	*****	029	*****	032	033	030	*****	*****
•682	*****	026	*****	030	*****	033	*****	038	039	039	035	*****
.696	****	014	*****	025	*****	030	*****	037	040	032	032	036
.710	*****	.000	*****	*****	*****	025	*****	033	036	036	033	036
.724	*****	.026	*****	021	*****	030	*****	030	039	036	041	041
.738	*****	002	*****	025	*****	*****	*****	032	039	042	043	042
•752	*****	047	*****	030	*****	024	*****	022	029	036	038	*****
.766	****	075	*****	053	*****	024	*****	007	029	053	054	060
•779	*****	091	*****	056	*****	002	*****	.155	004	043	045	050
•793	*****	116	*****	082	*****	043	*****	*****	043	053	059	*****
.807	*****	137	*****	101	*****	085	*****	*****	068	064	061	067
.821	*****	****	****	123	*****	125	*****	*****	110	089	079	079
.835	*****	182	*****	150	*****	160	*****	*****	138	104	090	094
.849	*****	182	*****	*****	*****	188	*****	*****	159	117	102	105
.863	*****	185	*****	175	*****	197	*****	*****	170	135	*****	110
.877	153	166	*****	165	*****	195	*****	*****	*****	*****	*****	*****
.891	163	170	*****	163	*****	183	*****	*****	166	133	125	119
•916	113	124	183	*****	141	*****	134	138	135	128	120	134
•928	093	*****	159	*****	138	126	117	107	125	140	149	147
•940	087	****	113	*****	125	107	100	088	111	138	150	149
•952	*****	*****	080	*****	081	072	066	064	079	100	118	115
.962	012	006	015	*****	021	021	012	010	025	032	046	054
•974	.049	.057	*****	*****	.046	.045	.047	.043	.041	.039	.024	.022
.986	.103	.114	.109	*****	.105	•104	•096	•093	.094	.089	.081	.080
•996	•134	•129	*****	*****	.134	.126	.129	.113	.109	.107	.101	.100

Table A16. Continued

(c) $\alpha = 3.017^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	s	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	37		Y	/B	Y.	/ B	Υ/	'B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.598							
ALPHA, DFG	3.017	0.05	*****	*****	*****	*****	*****	128
		0.10	146	328	.043	159	655	125
NPR	1.048	0.20	197	301	035	208	*****	168
		0.30	211	*****	082	238	192	206
PTJ, PSI	14.778	0.40	233	298	120	*****	227	223
		0.50	214	255	120	243	440	208
PO, PSI	11.602	0.60	186	208	123	220	203	181
		0.70	143	149	098	176	298	126
QO, PSI	2.906	0.80	081	*****	053	112	092	065
		0.90	021	*****	.002	*****	013	.007

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	034	023	*****	019	*****	*****	*****	028	031	023	007	*****
.598	039	036	*****	033	*****	037	*****	040	039	027	*****	*****
.612	036	035	*****	037	*****	037	*****	039	031	022	*****	*****
.626	030	029	*****	032	*****	039	*****	032	033	026	*****	*****
.640	*****	035	*****	037	*****	036	*****	034	040	033	*****	*****
•654	*****	040	*****	041	*****	035	*****	049	045	037	*****	*****
.668	****	* * * * * *	*****	034	*****	038	*****	039	036	028	*****	*****
.682	*****	8 SC •-	*****	033	* * * * * *	039	*****	043	044	034	036	*****
.696	*****	020	*****	028	*****	042	*****	039	039	033	034	030
.710	****	003	*****	*****	* ** ***	040	*****	036	037	031	026	033
•724	*****	.014	*****	028	*****	034	*****	034	039	030	026	029
.738	****	009	****	032	*****	*****	*****	031	038	030	027	025
.752	*****	048	*****	046	*****	037	*****	029	027	023	026	*****
.766	*****	085	*****	073	*****	044	*****	010	015	030	042	038
.779	*****	107	*****	077	* * * * * *	059	*****	.153	.042	004	022	028
.793	****	138	*****	119	*****	132	*****	*****	• 052	012	035	*****
.807	*****	163	****	149	* * * * * *	192	*****	*****	.025	019	037	036
.821	*****	* ****	*****	178	*****	223	*****	*****	020	029	042	040
.835	*****	217	*****	205	*****	239	*****	*****	062	053	056	056
.849	*****	221	*****	*****	*****	256	*****	*****	089	075	072	072
.863	*****	214	*****	216	*****	-,256	*****	*****	109	086	*****	085
.877	183	-,194	*****	209	*****	239	*****	*****	*****	*****	*****	*****
.891	179	187	*****	190	*****	219	*****	*****	121	106	098	090
•916	129	137	191	*****	153	*****	145	142	122	117	117	125
•928	100	****	162	****	143	130	119	112	120	140	145	148
.940	085	*****	110	*****	123	101	093	089	113	143	151	151
•952	*****	*****	078	*****	070	060	057	060	073	113	127	117
• 962	013	011	018	*****	014	008	.000	.002	018	042	067	069
.974	.048	.051	*****	*****	.050	•058	.056	.056	.039	.029	.022	.009
•986	.098	.094	.096	*****	.093	.099	•099	.091	.089	.079	.081	.078
• 996	.124	.105	*****	*****	.136	.119	.111	.109	.112	.092	.099	.102

Table A16. Continued

(d) $\alpha = 5.972^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZO	NTAL TAIL	s	VERTICA	LTAIL
				SURFACE		SURFACE		
POINT NUMBER	38		Y	/8	Y	/ B	Y /	B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.601							
ALPHA, DEG	5.972	0.05	*****	*****	*****	*****	*****	151
		0.10	351	489	.189	.021	578	142
NPR	1.036	0.20	319	435	.082	067	*****	188
		0.30	296	*****	.015	135	223	229
PTO, PSI	14.778	0.40	303	365	040	*****	262	253
		0.50	264	307	061	166	389	229
PO, PSI	11.576	0.60	219	239	079	164	229	204
		0.70	161	163	064	131	251	153
QD, PSI	2.928	0.80	091	*****	032	085	113	086
		0.90	025	*****	.012	*****	025	002

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG.

X/L	0	18	36	45	54	72	81	90	108	135	162	180
• 584	029	031	*****	028	*****	*****	*****	048	043	022	002	*****
•598	024	031	*****	047	*****	059	*****	055	059	030	*****	*****
.612	031	039	*****	042	*****	044	*****	055	~.050	027	*****	*****
•626	031	034	*****	041	*****	049	*****	054	045	032	*****	*****
.640	*****	033	*****	046	*****	058	*****	056	051	040	*****	*****
.654	*****	036	*****	053	*****	060	*****	066	061	043	*****	*****
.668	*****	*****	*****	042	*****	057	*****	058	053	030	*****	*****
.682	*****	032	*****	040	* * * * * *	058	*****	064	058	039	022	*****
•696	*****	024	*****	037	*****	060	*****	062	055	042	021	015
.710	*****	015	*****	*****	*****	052	*****	061	052	032	014	018
.724	*****	002	*****	037	*****	053	*****	055	055	032	016	018
.738	*****	019	*****	044	*****	*****	*****	059	051	027	013	014
•752	*****	061	*****	059	*****	060	*****	047	040	019	014	*****
•766	****	106	*****	103	*****	080	*****	035	015	016	022	018
.779	*****	130	*****	122	*****	131	*****	.144	.079	.016	.007	.001
.793	****	178	*****	163	*****	274	*****	*****	.138	• 02 5	.002	*****
.807	*****	208	*****	207	*****	312	*****	*****	.118	.033	.003	008
.821	*****	*****	*****	242	*****	331	*****	*****	.069	.020	002	013
.835	****	260	****	268	* * * * *	334	*****	*****	.009	.000	013	021
.849	*****	268	*****	*****	*****	341	*****	*****	025	020	027	034
.863	*****	259	*****	276	*****	316	*****	*****	062	045	*****	048
.877	217	225	*****	249	*****	287	*****	*****	*****	*****	*****	*****
.891	209	228	*****	229	*****	253	*****	*****	093	074	071	069
.916	141	160	212	*****	181	*****	162	158	109	108	097	105
•928	112	*****	186	*****	158	138	122	116	116	132	137	135
•940	098	*****	128	*****	133	103	089	089	119	142	154	152
•952	****	*****	090	*****	080	059	050	062	098	119	137	128
•962	035	042	032	*****	025	012	012	018	047	065	077	076
•974	• 025	.008	*****	*****	• 029	.037	.037	.024	.021	.008	.003	004
•986	• 074	.060	.069	*****	.060	.068	.070	.061	.063	.060	•056	•052
• 996	.069	.065	*****	*****	.069	.072	.074	.065	.063	.068	.067	•068

Table A16. Concluded

(e) $\alpha = 9.013^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	AFT TAILS			HORIZON	NTAL TAILS	S	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	39		Y	/ B	Υ.	/ B	Y /	В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.597							
ALPHA, DEG	9.013	0.05	*****	*****	*****	*****	*****	133
		0.10	175	-1.711	.320	177	540	137
NPR	1.046	0.20	196	376	.195	211	*****	205
		0.30	212	*****	.101	244	255	250
PTO, PSI	14.778	0.40	~.239	376	.031	*****	305	277
	-	0.50	218	334	.002	255	376	262
PO, PSI	11.612	0.60	194	272	033	225	258	229
		0.70	145	201	035	183	237	170
QD. PSI	2.899	0.80	~.091	*****	~.016	118	132	094
		0.90	030	*****	.022	*****	044	011

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG.

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	024	032	*****	042	*****	*****	*****	086	077	030	.014	*****
.598	-,032	047	*****	052	*****	072	*****	091	084	039	*****	*****
.612	023	048	*****	052	*****	076	*****	086	075	036	*****	*****
•626	019	040	****	052	*****	081	*****	087	081	039	*****	*****
.640	*****	052	*****	055	*****	081	*****	095	083	042	*****	*****
.654	*****	054	*****	055	*****	077	*****	109	093	050	*****	*****
.668	****	*****	*****	052	*****	081	*****	093	084	040	*****	*****
.682	*****	054	*****	050	*****	081	*****	099	096	044	006	*****
•696	****	058	*****	044	*****	082	*****	100	078	047	004	.007
.710	*****	034	*****	*****	*****	082	*****	091	080	036	•002	.004
.724	*****	~.021	*****	047	*****	081	*****	092	081	035	.001	.011
.738	*****	050	*****	058	*****	*****	*****	093	078	029	.004	.010
.752	*****	103	*****	081	*****	093	*****	083	054	014	.020	*****
.766	*****	149	*****	123	*****	129	*****	069	024	008	•009	• 00€
.779	*****	172	*****	161	*****	266	*****	.084	.104	.039	.041	.037
.793	*****	227	*****	235	*****	420	*****	*****	.225	• 06 1	.038	*****
.807	****	264	****	281	*****	465	*****	*****	.207	.078	.045	.039
.821	****	*****	*****	320	*****	442	*****	*****	.150	.074	.038	.029
.835	****	320	*****	341	*****	419	*****	*****	.073	• 055	.030	.012
.849	****	315	*****	* * * * * *	*****	395	*****	*****	.019	•028	.014	•005
.863	*****	310	*****	330	*****	364	*****	*****	025	.003	*****	012
.877	248	277	*****	297	*****	331	*****	*****	*****	*****	*****	*****1
.891	240	261	*****	275	*****	285	*****	*****	067	040	044	041
•916	170	196	292	*****	205	*****	179	187	105	081	078	081
.928	143	* * * * * *	256	*****	191	161	140	138	119	120	127	119
.940	141	*****	179	*****	162	115	097	101	132	134	151	138
•952	*****	*****	146	*****	105	062	~.050	069	111	116	-,143	12{
.962	084	098	066	*****	032	010	007	016	052	058	084	077
.974	012	023	*****	*****	• 035	.042	.041	.033	.015	.014	.001	00!
.986	.060	.049	.075	*****	.081	.087	.086	•072	.070	.073	.059	• 051
•996	.088	.061	*****	*****	. 101	.097	.101	.085	•082	.089	.081	•074

Table A17. Effect of Nozzle Pressure Ratio on Pressure Distributions for Forward Tails Configuration at M=1.20 and $\alpha=0.003^\circ$

(a) NPR = 1.056

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	NTAL TAIL	S	VERTIC	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	3		Y	/ B	Y	/ B	Y	/B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.203							
ALPHA, DEG	.003	0.05	.034	*****	.021	*****	.026	.033
		0.10	•045	.104	001	•068	*****	*****
NPR	1.056	0.20	.012	.056	014	•020	024	038
		0.30	*****	.008	*****	025	048	051
PTO, PSI	14.683	0.40	073	044	101	080	043	052
		0.50	114	098	145	137	041	067
PO, PSI	6.028	0.60	123	135	160	158	094	099
		0.70	122	156	133	163	115	*****
QO, PSI	6.111	0.80	125	168	136	171	138	126
		0.90	093	*****	111	*****	137	119

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	С	18	36	45	54	72	81	90	108	135	162	180
•584	031	027	*****	*****	*****	*****	*****	024	018	009	.008	*****
.598	039	030	*****	029	*****	027	*****	026	017	009	*****	*****
.612	036	032	*****	029	*****	025	*****	024	013	008	*****	*****
•626	017	023	*****	029	*****	023	*****	023	012	008	*****	*****
.640	*****	.074	*****	004	*****	019	*****	016	010	001	*****	*****
•654	*****	•073	*****	.025	*****	008	*****	021	022	018	*****	*****
•668	*****	*****	*****	.048	*****	.010	*****	004	011	011	*****	*****
.682	*****	.023	*****	•036	*****	.046	*****	.074	.021	.000	001	*****
•696	*****	.003	*****	.047	*****	.120	*****	*****	.094	.033	.005	• 002
.710	****	001	*****	*****	*****	.111	*****	*****	.085	.058	.019	.010
.724	*****	.002	*****	•058	*****	.076	*****	*****	.051	.055	.033	.024
.738	****	004	*****	.033	*****	*****	*****	*****	.014	.033	.035	.033
•752	*****	005	*****	.016	*****	.011	*****	*****	006	.029	.042	*****
•766	*****	050	*****	027	*****	036	*****	*****	046	009	.008	.009
.779	****	061	*****	046	*****	071	*****	*****	076	006	.011	.012
.793	*****	089	*****	084	*****	100	*****	*****	078	039	016	*****
.807	****	115	*****	110	*****	133	*****	*****	099	061	030	032
.821	*****	*****	*****	135	*****	147	*****	*****	106	076	052	050
.835	*****	156	*****	161	*****	170	*****	*****	118	 095	078	077
.849	*****	166	*****	176	*****	178	****	*****	117	117	101	100
.863	*****	159	*****	192	*****	167	*****	*****	104	128	*****	129
.877	128	140	*****	166	*****	122	*****	*****	*****	*****	*****	*****
.891	136	142	*****	136	*****	128	*****	*****	119	134	159	155
•916	136	130	175	*****	125	*****	147	154	160	157	157	*****
.928	159	*****	196	*****	163	*****	173	178	189	200	192	203
•940	204	*****	205	*****	221	*****	229	233	242	252	260	257
•952	*****	*****	285	*****	293	303	312	313	321	328	332	*****
.962	311	309	318	*****	322	318	321	307	248	189	217	275
.974	137	114	*****	*****	084	073	065	057	050	044	050	054
986	018	~.019	020	*****	022	031	031	028	025	021	023	025
1.996	.005	• 00 5	*****	*****	001	006	012	009	010	007	008	008

AFTERBODY INTEGRATED PRESSURE DRAG COEFFICIENT

.1092

Table A17. Continued

(b) NPR = 1.990

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	NTAL TAIL	S	VERTIC	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	4		Y	/ B	Y	/ B	Y	/B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.201			• • •				• • •
ALPHA, DEG	•005	0.05	•022	*****	.021	*****	.028	.020
		0.10	.044	.102	.001	.063	*****	*****
NPR	1.390	0.20	.012	.047	027	.015	022	044
		0.30	*****	.006	*****	031	043	056
PTO, PSI	14.680	0.40	071	046	106	086	047	054
		0.50	116	102	146	138	040	069
PO, PSI	6.046	0.60	127	137	166	165	088	100
-,		0.70	124	159	137	170	113	*****
QO, PSI	6.104	0.80	118	169	140	176	137	131
		0.90	100	*****	123	*****	134	122

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	o	18	36	45	54	72	81	90	108	135	162	180
.584	035	029	*****	*****	*****	*****	*****	024	021	011	•007	*****
.598	039	034	*****	030	*****	028	*****	026	023	008	*****	*****
.612	036	036	*****	029	*****	023	*****	019	016	011	*****	*****
.626	019	026	*****	032	*****	025	*****	019	018	009	*****	*****
.640	****	.066	*****	005	*****	015	*****	012	012	004	*****	*****
•654	*****	.070	*****	.021	*****	010	*****	024	026	019	*****	*****
•668	*****	*****	*****	.046	* * * * * *	.008	*****	006	015	006	*****	*****
.682	*****	.017	*****	.037	*****	.042	*****	.077	.021	001	.000	*****
•696	****	.001	*****	.043	*****	.127	*****	*****	• 095	.028	.006	•003
.710	*****	.002	*****	*****	* * * * * *	.115	*****	*****	.080	.057	.023	.011
•724	*****	.007	*****	.058	*****	•075	*****	*****	.045	.051	.032	.024
.738	****	003	*****	.030	*****	*****	*****	*****	.015	.032	.038	.037
.752	*****	007	****	.018	*****	.006	*****	*****	008	.023	.041	*****
.766	*****	049	*****	030	*****	045	*****	*****	049	011	•003	.012
.779	*****	066	*****	048	*****	077	*****	*****	067	012	.011	•013
.793	****	094	****	082	* ** ** *	103	*****	*****	085	039	018	*****
.807	*****	119	*****	112	*****	128	*****	*****	103	063	033	030
.821	*****	* * * * *	****	129	*****	146	*****	*****	106	075	050	048
.835	*****	157	*****	161	*****	169	*****	*****	123	096	080	074
.849	*****	169	*****	183	*****	182	*****	*****	119	119	102	101
.863	****	162	****	200	*****	167	*****	*****	106	130	*****	124
.877	132	14R	*****	170	*****	127	*****	*****	*****	*****	*****	*****
.891	142	146	*****	136	*****	128	*****	*****	124	136	157	153
.916	137	134	178	*****	129	*****	150	~.156	162	158	159	*****
.928	158	*****	197	*****	165	*****	174	180	190	201	196	204
.940	207	****	210	*****	224	*****	231	~.235	246	253	260	257
.952	*****	*****	288	*****	297	306	313	~.315	321	328	333	*****
•962	303	302	303	*****	283	271	292	296	242	176	176	225
.974	062	067	*****	*****	047	043	046	~.050	050	045	041	045
.986	.000	006	009	*****	013	013	004	017	021	021	019	018
.996	.019	.014	*****	*****	• 005	.004	• 004	003	.001	002	001	.001

ORIGINAL PAGE IS OF POOR OUALITY

Table A17. Continued

(c) NPR = 3.949

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	NTAL TAIL	S	VERTIC	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	5		Y	/B	Y	/ B	Y	/ B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.199				• • •			
ALPHA, DEG	.004	0.05	•024	*****	.016	*****	•028	.034
		0.10	.040	.097	005	.056	*****	*****
NPR	3.949	0.20	•005	.048	027	.018	024	038
		0.30	*****	003	*****	031	041	057
PTO, PSI	14.682	0.40	075	049	109	083	049	052
		0.50	117	104	156	140	043	069
PO, PSI	5.064	0.60	127	138	173	162	091	103
		0.70	129	158	146	170	114	*****
QD, PSI	6.100	0.80	126	174	143	176	134	131
	- 1200	0.90	102	*****	128	*****	137	122

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG.

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	033	031	*****	*****	*****	*****	*****	025	026	016	.004	*****
.598	042	038	*****	033	*****	031	*****	025	025	013	*****	*****
.612	039	038	*****	033	*****	027	*****	021	018	014	*****	*****
.626	019	030	****	035	*****	028	*****	019	019	013	*****	*****
.640	*****	.064	*****	010	*****	020	*****	012	012	007	*****	*****
.654	*****	.075	*****	.015	*****	013	*****	023	025	023	*****	*****
•668	****	*****	*****	.035	*****	.007	*****	008	012	014	*****	*****
•682	*****	.020	*****	.030	*****	.044	*****	.073	.022	.002	005	*****
•696	*****	003	*****	.040	*****	.121	*****	*****	.086	.031	.003	.003
.710	*****	013	*****	*****	*****	.117	*****	*****	.080	.058	.016	.008
.724	*****	.001	*****	.056	*****	.068	*****	*****	.044	.050	.029	.027
.738	****	010	****	.034	*****	*****	*****	*****	• 009	.030	.034	.037
.752	*****	005	*****	.010	*****	.005	*****	*****	008	.024	.038	*****
•766	*****	049	****	041	*****	041	*****	*****	051	012	.004	.008
.779	****	064	*****	048	*****	071	*****	*****	077	012	.012	.014
.793	*****	093	*****	091	*****	106	*****	*****	086	043	018	*****
.807	*****	119	*****	112	*****	135	*****	*****	097	064	037	029
.821	*****	*****	*****	137	*****	151	*****	*****	108	079	051	048
.835	*****	157	*****	166	* * * * * *	175	*****	*****	116	099	080	078
-849	****	172	*****	186	*****	190	*****	*****	120	122	105	100
.863	*****	162	*****	202	*****	173	*****	*****	112	133	*****	125
877	139	142	*****	173	*****	125	*****	*****	*****	*****	*****	*****
.891	142	145	*****	138	*****	128	*****	*****	122	139	159	153
•916	138	135	179	*****	130	*****	154	158	164	160	159	*****
• 928	162	*****	198	*****	170	*****	177	181	192	204	198	204
.940	208	*****	210	*****	228	*****	233	237	246	-,255	264	256
• 952	*****	*****	292	*****	299	308	314	316	325	331	334	*****
• 962	311	308	311	*****	307	306	323	318	296	- .250	256	307
• 974	069	069	*****	*****	062	062	056	058	060	057	055	057
- 986	.000	005	005	*****	018	017	010	015	024	025	026	019
• 996	.017	.013	*****	*****	.000	.003	.002	004	005	009	004	• 000

Table A17. Concluded

(d) NPR = 6.008

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	NTAL TAIL	S	VERTIC	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	6		Y	/8	Y	/ B	Y	/ B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.201	_	-	_				
ALPHA, DFG	•005	0.05	.027	*****	.019	*****	.028	.019
		0.10	.028	.101	.006	.066	*****	*****
NPR	6.008	0.20	.004	.046	029	.021	019	042
		0.30	*****	003	*****	022	043	061
PTO. PSI	14.683	0.40	077	049	107	082	046	052
		0.50	114	100	154	137	045	065
PO, PSI	6.049	0.60	127	136	168	165	088	104
		0.70	126	159	143	172	113	*****
QO, PSI	6.105	0.80	125	169	140	177	138	130
****		0.90	102	*****	129	*****	132	123

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

.584	X/L	0	18	36	45	54	72	81	90	108	135	162	180
.612	.584	036	031	*****	*****	*****	*****	*****	028	023	016	.005	*****
.626	.598	042	035	*****	033	* * * * * *	028	*****	027	023	011	*****	*****
.640	.612	042	037	*****	029	*****	027	*****	023	017	013	*****	*****
.654	.626	020	025	*****	032	*****	028	*****	022	020	013	*****	*****
.666	.640	****	.066	*****	011	*****	018	*****	014	016	005	*****	*****
.682 ****** .072 ****** .032 ****** .044 ****** .066 .016 005 002 ****** .696 ****** 007 ****** .037 ****** .120 ****** ****** .085 .026 .001 .001 .724 ****** 006 ****** .059 ****** .076 ****** .044 .050 .030 .021 .738 ****** 010 ****** .029 ****** ****** .004 .050 .030 .021 .752 ****** 015 ****** .019 ****** .009 ****** 011 .023 .032 .032 .752 ******* 050 ****** 015 ****** 016 ****** 010 .002 .007 .779 ****** 061 ****** 063 ******* 068 ****** 010 .002 .007 .793 ****** 061 ****** 083 ******* 108	.654	*****	.064	*****	.018	*****	011	*****	025	025	021	*****	*****
6.696 ****** 007 ****** .037 ****** .120 ****** ****** .026 .001 .001 .710 ****** 009 ****** ****** ****** .113 ****** .079 .057 .020 .007 .724 ****** 006 ****** .059 ****** .076 ****** .077 .057 .020 .007 .738 ****** 010 ****** .029 ****** .076 ****** .003 .027 .032 .032 .752 ****** 015 ****** .019 ****** .009 ******* 011 .023 .038 ****** .766 ******* 050 ****** 047 ******* 076 ******* 011 .002 .007 .779 ******* 061 ******* 076 ******* ****** 011 .002 .001 .001 .807 ******* 061 ****** 108 ****** ****** 008 <td>.668</td> <td>*****</td> <td>*****</td> <td>*****</td> <td>• 043</td> <td>*****</td> <td>.006</td> <td>*****</td> <td>007</td> <td>015</td> <td>012</td> <td>*****</td> <td>*****</td>	.668	*****	*****	*****	• 043	*****	.006	*****	007	015	012	*****	*****
*710	.682	****	.022	*****	.032	*****	.044	*****	.066	.016	005	002	*****
*724	•696	*****	007	*****	.037	*****	•120	*****	*****	.085	.026	.001	.001
******010 ****** *.029 ****** ****** ****** ****** ****** *.003 .027 .032 .032 .752 .752 ******015 ****** .019 ****** .009 ***** ******011 .023 .038 ****** .766 ******050 ******033 ******042 ****** *****050016 .002 .007 .779 ******061 ******047 ******076 ****** *****050016 .002 .007 .779 ******091 ******083 ******108 ****** *****088045011 .008 .011 .008 .011 .008 .011 .008 .011 .008 .011 .008 .011 .008 .011 .008 .011 .008 .011 .008 .011 .008 .011 .008 .011 .008 .011 .008 .011 .008 .011 .008 .011 .008 .011 .008 .001 .001	.710	****	009	*****	*****	*****	.113	*****	*****	.079	.057	.020	.007
.752	.724	*****	006	*****	.059	*****	.076	*****	*****	.044	.050	.030	.021
.766	.738	*****	010	*****	.029	*****	*****	*****	*****	.003	.027	.032	.032
.779	.752	****	015	*****	.019	*****	.009	*****	*****	011	.023	.038	*****
.793	.766	*****	050	*****	033	*****	042	*****	*****	050	016	.002	.007
.807	•779	*****	061	****	047	*****	076	*****	*****	072	011	.008	.011
.821	•793	*****	091	*****	083	*****	108	*****	*****	088	045	017	*****
.835	.807	*****	117	*****	115	*****	133	*****	*****	104	058	~.033	032
.849	.821	*****	*****	*****	134	*****	151	*****	*****	109	078	048	~.050
.863	.835	*****	166	*****	166	*****	173	*****	*****	123	103	083	077
.877	.849	*****	168	*****	182	*****	184	*****	*****	120	119	105	103
.891	.863	*****	165	*****	200	*****	172	*****	*****	109	137	*****	130
.916	.877	133	149	*****	170	*****	127	*****	*****	*****	*****	*****	*****
.928	.891	140	148	*****	137	*****	127	*****	*****	121	137	157	156
.940	.916	138	-,132	177	*****	129	*****	149	154	161	158	156	*****
.952	•928	161	*****	198	*****	167	*****	174	179	190	201	197	203
.962230214197 ******173160144164161107110132 .974018020 ****** ******022022024021022024023025 .986 .017 .020 .011 ****** .006 .006 .008 .003002002001003	.940	208	*****	210	*****	225	*****	233	235	245	253	258	255
.974018020 ****** ******022022024021022024023025 .986 .017 .020 .011 ****** .006 .006 .008 .003002002001003	•952	*****	*****	-,290	*****	298	308	313	316	~.322	329	332	*****
.974018020 ****** ******022022024021022024023025 .986 .017 .020 .011 ****** .006 .006 .008 .003002002001003	.962	230	214	197	*****	173	160	144	164	141	107	110	132
.986 .017 .020 .011 ****** .006 .006 .008 .003 ~.002 ~.002 ~.001 ~.003		018	020	*****	*****	022	022	024	021	022	024	023	025
		.017	.020	.011	*****	.006	.006	.008	•003	002	002	001	003
		.028	.029	*****	*****	.012	.012	.012	.010	.009	.009	.011	.010

Table A18. Effect of Angle of Attack on Pressure Distributions for Forward Tails Configuration at M = 1.20 and NPR = 1.052

(a) $\alpha = -2.985^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	NTAL TAILS	s	VERTIC	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	9		Y	/B	Y.	/ B	Y	/ B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.200							
ALPHA, DEG	-2.985	0.05	095	*****	.031	*****	.021	.026
		0.10	113	.091	.003	•179	*****	*****
NPR	1.052	0.20	093	.045	028	.115	031	050
		0.30	*****	008	*****	.061	069	070
PTO, PSI	14.680	0.40	139	054	108	013	060	078
		0.50	174	110	154	072	011	029
PO, PSI	6.053	0.60	185	143	171	098	042	061
		0.70	192	156	139	115	066	*****
QO, PSI	6.102	0.80	185	174	141	110	092	090
		0.90	164	*****	124	*****	085	077

AFTERBODY PRESSURE COEFFICIENTS

Ρ	ΗI	,	D	E	G
---	----	---	---	---	---

X/L	0	18	36	45	54	72	81	90	108	135	162	180
•584	036	035	*****	*****	*****	*****	*****	044	037	021	.003	*****
.598	045	041	*****	042	*****	047	*****	045	036	017	*****	*****
.612	041	043	*****	041	*****	041	*****	039	034	014	*****	*****
•626	040	046	*****	042	*****	041	*****	038	030	016	*****	*****
.640	*****	.063	*****	024	*****	028	*****	028	025	016	*****	*****
•654	*****	.072	*****	.006	*****	021	*****	035	037	027	*****	*****
.668	*****	*****	*****	.031	*****	001	*****	018	026	016	*****	*****
•682	*****	.007	*****	.018	*****	.028	*****	.065	.010	014	005	*****
.696	*****	010	*****	.018	*****	.158	*****	*****	.038	.019	.009	• 009
.710	*****	025	*****	*****	*****	.181	*****	*****	007	.029	.021	.017
.724	*****	011	*****	.087	*****	.143	*****	*****	035	.011	.019	.018
.738	*****	• 00 4	*****	.069	* * * * * *	*****	*****	*****	065	013	.007	.013
• 752	*****	.025	*****	.063	*****	.066	*****	*****	078	030	.001	*****
.766	*****	013	*****	.007	*****	.012	*****	*****	108	061	041	036
.779	*****	012	*****	.001	*****	023	*****	*****	133	071	043	034
.793	*****	047	*****	032	*****	053	*****	*****	144	092	065	*****
.807	*****	075	*****	060	*****	077	*****	*****	159	110	081	070
.821	****	*****	*****	085	*****	095	*****	*****	169	125	098	092
.835	****	107	*****	115	*****	119	*****	*****	178	149	124	119
.849	*****	118	*****	134	*****	131	*****	*****	181	168	149	145
.863	*****	112	*****	150	*****	120	*****	*****	162	190	*****	178
.877	083	095	*****	119	*****	105	*****	*****	*****	*****	*****	*****
.891	089	092	*****	090	*****	109	*****	*****	135	174	206	209
.916	101	098	158	*****	108	*****	145	151	161	176	188	*****
.928	134	*****	186	*****	152	*****	164	173	189	211	212	226
.940	197	*****	202	*****	217	*****	229	230	241	257	266	266
.952	*****	*****	292	*****	297	306	316	313	311	319	328	*****
. 962	320	320	327	*****	336	345	341	283	171	116	126	170
.974	307	240	*****	*****	121	090	074	069	051	041	045	050
.986	039	041	039	*****	038	046	050	042	035	028	026	027
• 996	011	011	****	*****	015	024	031	025	017	013	014	011

Table A18. Continued

(b) $\alpha = 0.014^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	NTAL TAIL	s	VERTIC	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	10		Y	/B	Y	/ B	Y	/ B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.198							
ALPHA, DFG	.014	0.05	•033	*****	320	*****	.028	.013
		0.10	.034	.224	142	.065	*****	*****
NPR	1.056	0.20	.007	.143	128	.015	025	045
		0.30	*****	.085	*****	029	051	060
PTO, PSI	14,637	0.40	080	.018	177	086	060	067
		0.50	118	-,043	210	140	048	069
PO, PSI	6.054	0.60	133	080	231	166	095	105
		0.70	133	099	210	178	115	*****
QQ, PSI	6.079	0.80	127	111	203	180	142	136
		0.90	103	*****	184	*****	142	128

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
• 584	039	035	*****	*****	*****	*****	*****	028	026	015	.001	*****
•598	048	040	*****	035	*****	037	*****	029	025	015	*****	*****
•612	043	038	*****	033	*****	031	*****	026	025	019	*****	*****
•626	023	032	****	037	*****	031	*****	027	025	019	*****	*****
.640	*****	.058	*****	018	*****	024	*****	019	019	012	*****	*****
•654	*****	.063	*****	.009	*****	018	*****	029	027	025	*****	*****
.668	*****	*****	*****	.031	*****	• 006	*****	008	016	017	*****	*****
.682	*****	.010	*****	.026	* * * * * *	•039	*****	.066	.013	007	005	*****
•696	*****	.000	****	.036	*****	.120	*****	*****	.078	.021	005	001
.710	*****	015	*****	*****	*****	.104	*****	*****	.075	•052	.010	.004
.724	*****	015	*****	.046	*****	.070	*****	*****	.045	.047	.021	.016
.738	****	012	****	.022	* * * * * *	*****	*****	*****	• 005	• 025	.029	•027
• 752	*****	022	*****	• 00 B	*****	001	*****	*****	015	.020	.033	*****
.766	*****	058	*****	033	* * * * * *	051	*****	*****	059	019	.004	.005
.779	*****	066	*****	054	*****	085	*****	*****	081	020	• 009	.012
•793	*****	089	*****	087	*****	111	*****	*****	086	043	022	*****
.807	*****	121	****	115	* * * * * *	146	*****	*****	107	064	036	030
.821	*****	*****	*****	143	*****	154	*****	*****	113	078	054	049
.835	*****	166	*****	168	* * * * * *	175	*****	*****	128	102	080	080
.849	****	171	****	188	*****	185	*****	*****	128	122	110	101
.863	*****	170	*****	204	*****	178	*****	*****	107	142	*****	130
.877	137	157	*****	177	*****	130	*****	*****	*****	*****	*****	*****
.891	150	151	*****	141	*****	130	*****	*****	123	136	157	157
.916	141	135	179	*****	128	*****	152	158	163	160	158	*****
.928	165	*****	201	****	168	*****	177	182	191	203	214	206
.940	212	*****	214	*****	226	*****	234	237	246	255	261	258
•952	*****	*****	292	*****	300	310	315	319	325	333	335	*****
•962	318	314	325	*****	332	332	338	319	285	243	269	307
.974	148	128	*****	*****	099	082	077	070	062	054	057	057
.986	030	030	030	*****	030	038	039	033	032	029	034	030
.996	003	006	*****	*****	009	015	017	016	015	013	012	012

Table A18. Continued

(c) $\alpha = 3.016^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	NTAL TAIL	s	VERTIC	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	11		Y	/B	Υ.	/ B	Y	/B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.202							
ALPHA, DEG	3.016	0.05	•203	*****	.032	*****	•022	.015
		0.10	.165	.097	.007	094	*****	*****
NPR	1.048	0.20	.092	.054	022	091	015	039
		0.30	*****	.000	*****	115	039	052
PTO, PSI	14.684	0.40	012	049	105	155	067	074
		0.50	045	102	146	202	081	099
PO, PSI	6.037	0.60	063	137	162	230	131	142
		0.70	061	159	139	228	160	*****
QO, PSI	6.109	0.80	059	168	135	236	186	179
		0.90	042	*****	120	*****	190	177

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
•584	035	032	*****	*****	*****	*****	*****	035	027	018	•000	*****
• 598	040	035	*****	036	* * * * * *	039	*****	033	029	017	*****	*****
.612	035	036	*****	034	*****	032	*****	030	026	018	*****	*****
•626	.003	011	*****	030	*****	032	*****	029	032	017	*****	*****
•640	****	.053	*****	004	*****	028	*****	023	023	010	*****	*****
.654	*****	.053	*****	.014	*****	018	*****	031	031	022	*****	*****
•668	*****	*****	*****	.031	*****	.004	*****	011	019	010	*****	*****
•682	*****	.018	*****	.033	* * * * * *	.041	*****	.064	• 005	012	004	*****
•696	*****	.008	*****	.035	*****	•076	*****	*****	.132	.006	013	009
.710	*****	005	*****	*****	*****	.035	*****	*****	.149	.064	009	015
.724	*****	019	*****	.009	*****	010	*****	*****	.120	.084	.024	.007
.738	*****	032	*****	021	*****	*****	*****	*****	.074	.075	.048	.043
•752	*****	050	*****	042	*****	063	*****	*****	• 052	.071	.077	*****
•766	*****	090	*****	089	*****	116	*****	*****	.005	.039	.050	•052
•779	*****	110	*****	106	*****	142	*****	*****	018	.043	.064	.062
•793	*****	135	*****	143	*****	167	*****	*****	025	.014	.037	*****
.807	*****	164	*****	169	*****	198	*****	*****	033	004	.019	.022
.821	*****	*****	*****	192	*****	212	*****	*****	045	020	002	.001
.835	*****	214	*****	221	*****	231	*****	*****	059	048	028	028
.849	*****	217	*****	235	*****	238	*****	*****	064	061	046	046
863	****	221	*****	255	*****	217	*****	*****	053	078	*****	069
.877	196	209	*****	226	*****	144	*****	*****	*****	*****	*****	*****
.891	202	201	*****	171	*****	138	*****	*****	112	093	099	097
•916	171	164	191	*****	149	*****	158	166	157	136	115	*****
•928	185	*****	210	*****	182	*****	182	184	188	187	196	169
•940	222	*****	221	*****	232	*****	234	241	244	246	242	238
•952	*****	*****	285	*****	289	301	313	321	325	330	333	*****
•962	289	279	275	*****	273	309	338	333	345	367	375	374
•974	106	099	*****	*****	092	092	074	074	073	079	103	123
•986	032	034	037	*****	040	041	041	043	044	045	047	039
•996	009	013	*****	*****	018	025	029	028	027	023	023	017

Table A18. Concluded

(d) $\alpha = 6.017^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	NTAL TAIL	S	VERTIC	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	12		Y	/ B	Y	/ B	Y	/ B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.197							
ALPHA, DEG.	6.017	0.05	.348	*****	.198	*****	.042	.028
		0.10	.269	038	•136	299	*****	*****
NPR	1.028	0.20	.195	051	.061	188	008	027
		0.30	*****	090	*****	199	023	035
PTO, PSI	14.682	0.40	.064	126	039	223	068	076
		0.50	.024	176	084	263	110	126
PO, PSI	6.074	0.60	.025	206	082	~.283	170	175
		0.70	.019	226	081	282	203	*****
QO, PSI	6.098	0.80	•009	232	078	287	232	220
,		0.90	.037	*****	050	*****	231	218

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	031	034	*****	*****	*****	*****	*****	051	048	027	.005	*****
.598	036	035	*****	044	*****	052	*****	052	047	021	*****	*****
.612	034	034	*****	039	*****	047	*****	048	048	025	*****	*****
•626	.007	009	*****	032	*****	046	*****	~.052	043	029	*****	*****
.640	*****	.062	*****	008	*****	033	*****	042	038	016	*****	*****
.654	*****	.054	*****	.010	*****	022	*****	047	048	029	*****	*****
.668	*****	*****	*****	.020	*****	003	*****	~.033	038	014	*****	*****
.682	*****	.017	*****	.023	*****	.031	*****	.046	027	022	006	*****
.696	*****	.006	*****	.025	*****	.038	*****	*****	.172	026	024	015
.710	*****	005	*****	*****	*****	047	*****	*****	.211	.065	019	023
.724	*****	024	*****	028	*****	092	*****	*****	.190	.132	.019	010
.738	*****	056	*****	071	*****	*****	*****	*****	.130	.130	.073	.059
•752	*****	077	*****	098	*****	132	*****	*****	.113	.136	.133	*****
.766	****	131	*****	142	*****	173	*****	*****	.065	.107	.103	.100
.779	*****	152	*****	165	*****	192	*****	*****	.052	.106	.126	.118
•793	*****	184	****	197	*****	218	*****	*****	.049	.080	.095	*****
.807	*****	209	*****	222	*****	247	*****	*****	.038	.058	.072	.071
.821	*****	*****	*****	246	*****	264	*****	*****	.025	.044	.063	.057
.835	*****	253	*****	277	*****	281	*****	*****	.002	.021	.036	.031
.849	*****	265	*****	295	*****	290	*****	*****	.011	.007	.016	.015
.863	*****	275	*****	312	*****	244	*****	*****	.018	011	*****	014
.877	246	287	*****	263	*****	167	*****	*****	*****	*****	*****	*****
.891	246	247	*****	202	*****	159	*****	*****	105	053	041	044
•916	206	191	234	*****	173	*****	171	182	163	129	080	*****
.928	202	*****	242	*****	200	*****	194	196	198	184	171	147
.940	232	*****	237	*****	242	*****	252	259	255	251	236	228
.952	*****	*****	291	*****	285	302	327	338	337	338	335	*****
.962	325	316	242	*****	258	310	343	357	377	384	385	380
.974	148	126	*****	*****	127	128	111	105	115	161	334	363
.986	051	069	091	*****	090	065	063	070	071	073	071	072
•996	033	033	*****	*****	056	048	049	054	050	051	041	039

ORIGINAL PAGE IS OF POOR QUALITY

Table A19. Effect of Nozzle Pressure Ratio on Pressure Distributions for Forward Tails Configuration at M=0.95 and $\alpha=0.015^\circ$

(a) NPR = 1.132

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORTZO	NTAL TAIL	S	VERTIC	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	13		Y	/B	Y	/B	Y	/ B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.951							
ALPHA, DEG	.015	0.05	062	*****	024	*****	013	035
		0.10	066	606	110	070	*****	*****
NPR	1.132	0.20	110	588	216	131	055	090
		0.30	*****	609	*****	190	104	136
PTO, PSI	14.685	0.40	228	636	372	290	186	205
		0.50	262	679	419	341	215	245
PO, PSI	8.209	0.60	301	711	409	374	286	305
		0.70	294	732	402	387	327	*****
QO, PSI	5.194	0.80	298	742	417	391	348	348
		0.90	251	*****	388	*****	350	329

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
•584	•002	.006	*****	*****	*****	*****	*****	.003	.010	.012	.023	*****
•598	.009	.016	*****	.010	*****	.007	*****	002	• 005	.004	*****	*****
•612	•045	.041	*****	• 02 4	*****	.016	*****	.008	.004	.006	*****	*****
.626	.117	.080	*****	•042	* ** **	.025	*****	.015	.013	.007	*****	*****
.640	*****	.114	*****	•046	*****	.028	*****	.019	.009	.006	*****	*****
•654	*****	.052	*****	.036	*****	.030	*****	.017	.010	.006	*****	*****
.668	*****	****	*****	•036	*****	.045	*****	.047	.040	.025	*****	*****
.682	*****	007	*****	•026	*****	.071	*****	.117	.064	.026	.009	*****
.696	*****	025	*****	.022	*****	.081	*****	*****	.056	.024	.008	•003
.710	*****	053	*****	*****	*****	.020	*****	*****	.005	.008	002	005
.724	*****	088	*****	049	*****	032	*****	*****	049	022	022	028
.738	****	135	*****	098	*****	*****	*****	*****	098	053	053	047
.752	****	165	*****	131	*****	149	*****	*****	128	082	070	*****
.766	*****	231	*****	207	*****	222	*****	*****	189	141	125	126
.779	*****	248	*****	235	*****	256	*****	*****	215	152	124	128
.793	*****	291	*****	282	*****	306	*****	*****	245	197	173	*****
.807	*****	327	*****	321	*****	343	*****	*****	259	222	194	194
.821	****	*****	*****	345	*****	366	*****	*****	279	240	225	220
.835	*****	380	*****	387	*****	394	*****	*****	292	278	255	258
.849	*****	377	*****	402	* * * * * *	396	*****	*****	287	296	286	289
.863	*****	251	*****	269	*****	261	*****	*****	212	255	*****	311
.877	074	102	*****	091	*****	099	*****	*****	*****	*****	*****	*****
.891	074	075	*****	069	*****	053	*****	*****	075	101	114	105
•916	069	071	117	*****	090	*****	090	080	091	092	091	*****
•928	095	* * * * * *	135	*****	107	*****	108	112	112	120	126	130
.940	114	*****	107	*****	111	*****	112	115	119	121	131	127
• 952	*****	*****	060	*****	057	060	065	061	063	053	064	*****
•962	.019	.023	.026	*****	.026	.022	.020	.024	.021	.027	.018	.021
• 974	.110	.105	*****	*****	.101	.102	.106	.094	.107	.107	.099	• 099
•986	.159	.156	.156	*****	.163	.148	•152	.155	.155	.150	.153	.153
•996	.186	.182	****	*****	. 177	.178	.180	.176	.167	.178	.170	.180

AFTERBODY INTEGRATED PRESSURE DRAG COEFFICIENT

.0429

Table A19. Continued

(b) NPR = 2.013

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	NTAL TAIL	S	VERTIC	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	14		Y	/ B	Y	/ B	Y	/B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.952							
ALPHA, DEG	.015	0.05	050	*****	•591	*****	007	031
		0.10	066	.603	.592	070	*****	*****
NPR	2.013	0.20	107	.580	•572	128	055	081
		0.30	*****	.559	*****	189	107	132
PTO. PSI	14.682	0.40	227	.543	.555	285	187	204
		0.50	260	.552	.559	336	216	250
PO, PSI	8.200	0.60	300	.567	.575	370	288	306
,		0.70	297	.587	.597	384	324	*****
QU, PSI	5.197	0.80	300	.613	.623	393	351	345
,	- / - / ·	0.90	261	*****	.649	*****	343	333

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	.004	.006	*****	*****	*****	*****	*****	.009	.009	.015	.016	*****
.598	.010	.015	*****	.013	*****	.000	*****	001	.002	.004	*****	*****
.612	.041	.039	*****	.024	*****	.012	*****	.011	.006	.011	*****	*****
.626	.119	.082	*****	.045	*****	.023	*****	.017	.012	.008	*****	*****
.640	*****	.109	*****	.045	*****	.025	*****	.021	.017	.010	*****	*****
.654	****	.064	*****	.039	*****	.030	*****	.020	.014	.010	*****	*****
.668	*****	* * * * *	*****	.038	*****	.045	*****	.048	.041	.026	*****	*****
.682	****	007	****	.026	*****	.077	*****	.115	.062	.026	.011	*****
.696	****	025	*****	.018	*****	.087	*****	*****	.060	.024	.007	•007
.710	*****	051	*****	*****	*****	.025	*****	*****	.003	.013	003	003
•724	*****	090	*****	050	*****	033	*****	*****	039	020	024	024
.738	*****	139	*****	095	*****	*****	*****	*****	094	056	047	042
.752	****	163	****	126	* ** **	140	*****	*****	123	080	071	*****
.766	****	228	*****	207	*****	223	*****	*****	191	144	122	121
.779	****	247	*****	232	*****	249	*****	*****	219	160	129	125
•793	****	287	*****	283	*****	311	*****	*****	-,246	 197	174	*****
.807	*****	324	****	316	*****	341	*****	*****	260	221	196	190
.821	****	****	****	344	* * * * * *	368	*****	*****	272	249	226	214
.835	*****	372	*****	388	*****	398	*****	*****	295	279	258	252
.849	*****	370	*****	396	*****	390	*****	*****	275	297	288	284
.863	****	253	****	202	* * * * * *	207	*****	*****	177	295	*****	305
.877	077	108	*****	105	*****	102	*****	*****	*****	*****	*****	*****
.891	062	062	***	047	*****	060	*****	*****	090	088	094	095
•916	055	058	098	*****	062	*****	067	067	075	071	078	*****
• 928	079	*****	111	*****	087	*****	085	082	088	101	116	108
•940	 075	*****	071	****	079	*****	080	092	082	086	091	096
.952	*****	*****	024	*****	020	020	023	023	024	020	026	*****
•962	.058	.063	.063	*****	.068	.065	.063	.063	.066	.071	.068	.061
.974	.140	.141	*****	*****	.141	.141	.140	.143	.143	.147	.146	.144
.986	.198	.189	.191	*****	•193	.189	.189	•196	.191	.193	• 193	•197
•996	.214	•212	*****	*****	.217	.210	.213	.213	.208	.210	.212	.215

ORIGINAL PAGE IS OF POOR QUALITY

Table A19. Continued

(c) NPR = 2.993

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION			S	VERTICAL TA				
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	15		Y.	/B	Y	/ B	Y	/ B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.952							
ALPHA, DFG	.015	0.05	055	*****	.585	*****	014	032
		0.10	065	.602	•583	071	*****	*****
NPR	2.993	0.20	109	.574	•573	129	052	089
		0.30	*****	•556	*****	189	099	136
PTO, PSI	14.686	0.40	228	.543	• 553	286	183	206
		0.50	255	•551	•559	339	213	245
PO, PSI	8.195	0.60	294	•570	.575	370	286	302
		0.70	292	•591	•597	385	319	*****
QD, PSI	5.202	0.80	295	.614	.622	385	346	350
		0.90	255	*****	•647	*****	340	325

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	.004	.010	*****	*****	*****	*****	*****	.008	.003	.012	•021	*****
•598	•015	.010	*****	.012	*****	.005	*****	.001	.005	.008	*****	*****
.612	.046	.041	*****	.028	*****	.016	*****	.011	.007	.005	*****	*****
.626	.117	.082	*****	.042	*****	.024	*****	.018	.011	.010	*****	*****
•640 ·	*****	.106	*****	.048	*****	• 026	*****	.022	.012	.014	*****	*****
•654	*****	.069	*****	.045	*****	.027	*****	.020	.014	.009	*****	*****
.668	****	*****	*****	.035	*****	.046	*****	• 052	.040	.029	*****	*****
•682	*****	003	*****	.030	*****	.073	*****	.119	.061	.029	.011	*****
•696	*****	031	*****	.024	*****	.082	*****	*****	.056	.024	.010	•009
.710	*****	053	*****	*****	*****	.043	*****	*****	.005	.010	.001	001
.724	*****	089	******	046	*****	033	*****	*****	045	023	022	023
.738	*****	135	****	098	*****	*****	*****	*****	100	057	047	041
.752	*****	160	*****	139	*****	144	*****	*****	119	083	069	*****
•766	*****	228	*****	202	*****	223	*****	*****	190	145	126	121
•779	*****	244	*****	233	*****	256	*****	*****	215	151	127	121
.793	*****	288	*****	283	*****	307	*****	*****	241	194	171	*****
.807	*****	326	****	312	*****	336	*****	*****	260	226	195	190
.821	*****	*****	*****	341	*****	365	*****	*****	273	249	221	214
.835	*****	370	*****	385	*****	396	*****	*****	295	275	255	252
.849	****	373	*****	395	*****	377	*****	*****	280	302	284	281
.863	*****	251	*****	330	*****	243	*****	*****	-,225	289	*****	308
.877	098	080	*****	112	*****	070	*****	*****	*****	*****	*****	*****
.891	058	042	*****	067	*****	051	*****	*****	076	093	098	075
•916	054	060	106	*****	056	*****	063	070	075	080	073	*****
.928	077	*****	112	*****	085	*****	088	089	088	099	115	103
•940	079	*****	072	*****	082	*****	079	084	084	084	093	093
.952	*****	*****	018	*****	021	024	023	020	020	020	023	*****
. 962	• 056	.062	.061	*****	. 054	.060	.060	.061	.062	•067	.066	• 06 3
.974	.140	.138	*****	*****	.139	.137	.138	.138	.141	.144	.146	.145
.986	.190	.188	.192	*****	• 191	.185	.194	.188	.187	.190	•192	•195
• 996	.214	.209	*****	*****	.213	.211	.214	.209	.208	.209	.214	.219

Table A19. Concluded

(d) NPR = 5.014

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION FWD TAILS				S	VERTICAL TAIL			
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	16		Υ	/ B	Y	/B	Y	/ B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.953							
ALPHA, DFG	.015	0.05	059	*****	•587	*****	007	019
		0.10	067	.605	•582	063	*****	*****
NPR	5.014	0.20	113	.577	•571	122	050	083
		0.30	*****	.563	*****	187	103	128
PTO, PSI	14.685	0.40	227	.545	.554	283	182	205
-		0.50	263	•555	• 560	342	213	239
PO, PSI	8.189	0.60	299	.570	•577	367	287	297
		0.70	302	.589	•598	385	317	*****
QO, PSI	5.205	0.80	305	.615	.624	381	345	345
		0.90	270	*****	•650	*****	345	F.321

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG.

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	•006	.012	*****	*****	*****	*****	*****	.006	.008	.011	• 023	*****
•598	.013	.014	*****	.010	*****	.008	*****	.001	.002	.008	*****	*****
.612	.043	.040	*****	.029	*****	.015	*****	.010	.008	.008	*****	*****
.626	.117	.045	*****	.043	*****	.030	*****	.017	.011	.010	*****	*****
.640	*****	.111	*****	.050	*****	.029	*****	.019	.013	.010	*****	*****
.654	*****	• 05 B	*****	.038	*****	.030	*****	.021	.013	.002	*****	*****
.668	*****	*****	*****	.033	*****	.045	*****	• 050	.043	.021	*****	*****
.682	*****	.004	*****	.024	*****	.074	*****	.116	.063	.024	.013	*****
.696	*****	025	*****	.018	*****	.094	*****	*****	.054	.023	.008	•009
.710	*****	054	*****	*****	*****	.031	*****	*****	.001	.008	•002	004
.724	****	090	*****	043	*****	031	*****	*****	048	019	019	024
.738	*****	133	*****	093	*****	*****	*****	*****	095	058	047	042
.752	*****	157	*****	134	*****	138	*****	*****	124	078	072	*****
.766	*****	224	*****	206	*****	207	*****	*****	197	144	124	120
.779	*****	243	*****	226	*****	250	*****	*****	222	148	127	122
.793	*****	285	*****	281	*****	306	*****	*****	244	198	172	*****
.807	*****	315	*****	315	*****	341	*****	*****	264	218	196	190
.821	*****	*****	*****	344	*****	363	*****	*****	279	243	220	215
.835	*****	373	*****	382	*****	389	*****	*****	298	279	256	253
.849	*****	372	*****	394	*****	397	*****	*****	281	283	283	281
.863	*****	199	****	258	*****	296	*****	*****	167	274	*****	307
.877	076	082	*****	067	*****	133	*****	*****	*****	*****	*****	*****
.891	047	058	*****	044	*****	088	*****	*****	065	102	095	131
.916	051	054	098	*****	058	*****	063	067	068	066	069	*****
.928	071	*****	101	*****	081	*****	083	075	079	092	104	092
.940	071	*****	067	*****	070	*****	071	070	070	073	080	079
•952	*****	*****	005	*****	005	009	010	009	007	003	006	*****
•962	.072	.077	.078	*****	.081	.076	.077	.075	.078	.085	.081	.079
.974	.154	.153	*****	*****	.153	.158	.150	.155	.156	.158	.159	.160
986	.205	.203	.207	*****	. 203	.203	.197	.205	.207	.199	.206	.205
•996	. 224	.225	*****	*****	. 226	.218	.215	.223	.214	.218	.222	.221

Table A20. Effect of Angle of Attack on Pressure Distributions for Forward Tails Configuration at M=0.95 and NPR = 1.138

(a) $\alpha = -2.987^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION FWD TAILS				S	VERTIC	AL TAIL		
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	18		Y	/ B	Υ.	/ B	Y	/B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	•951							
ALPHA, DEG	-2.987	0.05	281	*****	.586	*****	016	030
		0.10	245	•592	.575	.081	*****	*****
NPR	1.138	0.20	241	.574	.571	017	049	078
		0.30	*****	•552	*****	102	083	113
PTO, PSI	14.687	0.40	321	.538	.548	209	149	173
		0.50	352	.550	.556	257	179	209
PO, PSI	8.211	0.60	382	.563	.571	305	237	256
		0.70	388	•582	•592	315	277	*****
QO, PSI	5.194	0.80	380	.611	.619	321	295	292
•		0.90	329	*****	.643	*****	265	216

AFTERBODY PRESSURE COEFFICIENTS

PH	I,	DE	G

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	010	.006	*****	*****	*****	*****	*****	007	.001	•010	.022	*****
•598	•001	.011	*****	.004	*****	007	*****	011	010	.005	*****	*****
.612	.040	.038	*****	.026	*****	.010	*****	.003	004	.000	*****	*****
.626	.127	.088	*****	.038	*****	.017	*****	.008	.000	.001	*****	*****
•640	*****	.118	*****	.048	*****	.016	*****	.006	002	002	*****	*****
.654	*****	•056	*****	.030	*****	.024	*****	.001	002	004	*****	*****
•668	*****	*****	*****	.023	* * * * * *	.033	*****	.032	.029	• 00 B	*****	*****
.682	*****	.000	*****	.024	*****	.083	*****	.112	.035	.002	006	*****
•696	*****	016	*****	.037	*****	•150	*****	*****	028	018	022	018
.710	*****	029	*****	*****	*****	•112	*****	*****	107	056	041	036
.724	*****	061	*****	.008	*****	• 055	*****	*****	158	101	073	068
.738	*****	094	*****	031	*****	*****	*****	*****	191	133	104	096
•752	*****	115	****	072	*****	070	*****	*****	223	163	123	*****
.766	*****	189	*****	148	*****	152	*****	*****	278	214	183	178
•779	*****	196	*****	173	*****	192	*****	*****	302	228	189	185
•793	*****	239	*****	228	*****	241	*****	*****	312	 261	234	*****
.807	*****	271	*****	257	*****	278	*****	*****	341	292	256	250
.821	*****	*****	****	285	*****	300	*****	*****	360	315	287	277
.835	*****	312	*****	320	*****	337	*****	*****	369	343	318	315
.849	*****	266	*****	310	*****	320	*****	*****	348	365	350	346
.863	*****	061	*****	148	*****	187	****	*****	163	307	*****	361
.877	028	041	*****	044	*****	087	*****	*****	*****	*****	*****	*****
.891	051	061	*****	066	*****	061	*****	*****	068	070	165	117
.916	109	098	163	*****	091	*****	094	088	078	064	070	*****
.928	148	*****	186	*****	131	*****	122	115	089	084	086	083
.940	168	****	151	*****	145	*****	130	117	067	071	065	073
952	*****	*****	091	*****	080	071	066	063	015	018	021	*****
•962	017	007	002	*****	.009	.008	.034	.018	.040	.057	.047	.048
974	.076	.084	*****	*****	.099	.104	.094	.095	.128	.109	.122	.121
986	.143	•139	.138	*****	.145	.131	.135	.131	.155	151	.149	.152
•996	•160	•152	*****	*****	.155	.147	.150	.146	.162	.149	.151	.161
• 0	• 100	-172										

Table A20. Continued

(b) $\alpha = 0.002^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	CONFIGURATION FWD TAILS			HORIZO	NTAL TAIL	S	VERTIC	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	19		Y	/8	Y	/ B	Y	/B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.950							
ALPHA, DEG	.002	0.05	068	*****	.432	*****	003	031
		0.10	068	.686	. 456	069	*****	*****
NPR	1.155	0.20	109	.646	.489	132	056	089
		0.30	*****	.606	*****	188	107	135
PTO, PSI	14.687	0.40	221	.585	•502	289	187	213
		0.50	261	.588	•519	343	216	246
PO, PSI	8.214	0.60	299	.592	.545	375	288	304
		0.70	294	.606	.574	389	322	*****
OO, PSI	5.192	0.80	306	.625	.603	391	-,351	347
		0.90	257	*****	.637	*****	345	329

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	Э	18	36	45	54	72	81	90	108	135	162	180
.584	003	.006	*****	*****	*****	*****	*****	.005	•002	.010	.019	*****
•598	.009	.008	*****	.008	*****	.000	*****	.004	.001	.009	*****	*****
.612	.040	.037	*****	.028	*****	.012	*****	.013	.007	.010	*****	*****
.626	.111	.081	*****	.043	*****	.023	*****	.019	.009	.011	*****	*****
.640	*****	.112	*****	.049	*****	•025	*****	.016	.014	.011	*****	*****
.654	*****	.063	*****	•038	*****	.028	*****	.016	.011	.007	*****	*****
•66B	****	*****	*****	.034	*****	.044	*****	.045	.042	.023	*****	*****
.682	*****	004	*****	.025	*****	.071	*****	.113	.059	.027	.008	*****
.696	*****	032	*****	.022	* * * * * *	.085	*****	*****	.057	.022	.007	.01
.710	*****	054	*****	*****	*****	.026	*****	*****	.006	.003	001	00
.724	*****	091	*****	046	*****	037	*****	*****	051	020	024	02
.738	*****	133	*****	103	*****	*****	*****	*****	093	059	047	04
.752	*****	166	*****	134	*****	142	*****	*****	124	081	073	****
.766	*****	233	****	211	*****	225	*****	*****	191	146	125	12
.779	*****	254	*****	234	*****	257	*****	*****	222	154	126	12
.793	****	293	*****	281	*****	312	*****	*****	241	199	175	****
.807	*****	326	****	317	*****	348	*****	*****	263	231	196	18
.821	*****	*****	*****	349	*****	364	*****	*****	285	245	223	21
.835	*****	374	*****	383	*****	390	*****	*****	297	280	256	25
.849	*****	365	*****	401	*****	374	*****	*****	292	306	286	28
.863	*****	187	*****	285	*****	231	*****	*****	242	292	*****	30
.877	056	094	*****	059	*****	105	*****	*****	*****	*****	*****	****
.891	038	056	*****	055	*****	071	*****	*****	144	105	151	16
.916	072	073	118	*****	074	*****	077	088	094	092	091	****
.928	102	*****	143	*****	~.111	*****	113	106	113	121	118	12
.940	114	*****	105	*****	120	*****	112	116	115	121	124	13
.952	*****	*****	057	*****	057	061	066	060	057	-,060	060	****
.962	.019	.017	.023	*****	.024	.019	.022	.022	.024	.021	.024	.01
.974	.105	.103	*****	*****	.098	.103	.097	.101	.102	.101	.102	.10
•986	.157	.162	•159	****	.153	.159	.154	.149	.154	.150	.150	• 15
•996	.182	•179	****	*****	.183	.179	.181	.177	.174	.170	.178	.16

Table A20. Continued

(c) $\alpha = 3.010^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	NTAL TAIL	S	VERTIC	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	20		Y.	/ B	Y	/ B	Y	/B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	•949							
ALPHA, DEG	3.010	0.05	•145	*****	.578	*****	006	035
		0.10	.092	.597	•575	241	*****	*****
NPR	1.129	0.20	.014	•569	•570	259	050	094
		0.30	*****	.552	*****	295	119	158
PTO, PSI	14.694	0.40	132	.537	.545	370	210	242
•		0.50	164	.548	•553	426	255	284
PO, PSI	8.225	0.60	214	.563	.571	448	333	346
		0.70	216	•581	•591	456	377	*****
QO, PSI	5.184	0.80	217	.609	.617	465	407	402
		0.90	162	*****	.643	*****	412	388

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
•584	.006	.013	*****	*****	*****	*****	*****	.004	.005	.015	.030	*****
.598	.012	.018	*****	.013	*****	.007	*****	.000	001	.007	*****	*****
.612	.043	.039	*****	.025	*****	.013	*****	.007	.003	.010	*****	*****
.626	.103	•073	*****	.039	*****	.028	*****	.017	.010	.012	*****	*****
.640	****	.097	****	•045	*****	.025	*****	.019	.011	.011	*****	*****
.654	*****	.064	*****	•035	*****	.034	*****	.019	.014	.011	*****	*****
•668	*****	*****	*****	.036	*****	.046	*****	.050	.047	.033	*****	*****
.682	*****	009	*****	.016	*****	.061	*****	.120	.089	.044	.038	*****
.696	*****	034	*****	009	*****	.028	*****	*****	.137	.058	.038	.038
.710	****	070	*****	*****	*****	056	*****	*****	.104	.068	.044	•032
.724	****	121	*****	106	*****	119	*****	*****	.052	.044	.030	.019
.738	*****	174	*****	150	*****	*****	*****	*****	.004	.015	.006	.003
.752	*****	214	*****	201	*****	227	*****	*****	045	014	013	*****
•766	*****	275	*****	270	*****	301	*****	*****	107	071	069	064
.779	*****	307	****	298	*****	328	*****	*****	135	073	059	060
.793	*****	347	*****	349	*****	374	*****	*****	166	127	103	*****
.807	*****	381	*****	382	*****	410	*****	*****	185	148	127	128
.821	*****	*****	*****	409	* * * * * *	435	*****	*****	191	172	147	154
•835	*****	437	*****	449	*****	467	*****	*****	218	203	181	185
.849	*****	443	*****	474	*****	468	*****	*****	184	185	194	209
.863	*****	338	*****	379	*****	353	*****	*****	132	202	*****	232
.877	141	143	*****	166	* * * * * *	183	*****	*****	*****	*****	*****	*****
.891	083	064	*****	068	*****	111	*****	*****	101	171	125	189
.916	052	053	086	*****	062	*****	076	092	104	119	117	*****
•928	062	*****	094	*****	070	*****	099	090	126	155	170	172
•940	065	*****	053	*****	062	*****	094	112	130	153	175	176
•952	****	*****	032	*****	035	037	044	058	064	083	099	*****
•962	.040	.033	.028	*****	.034	.027	.071	.020	.009	.009	002	004
.974	.109	.110	*****	*****	. 129	.082	.079	.120	• 082	.090	.090	.087
.986	.147	.134	•152	*****	.143	•119	•112	.120	•126	.131	.135	.131
.996	.147	.136	****	****	.127	.131	.127	.128	.133	.135	•135	.140

Table A20. Concluded

(d) $\alpha = 6.008^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORTZO	NTAL TAIL	s	VERTIC	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	21		Y	/ B	Y	/ B	Y	/ B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.948	×, •	0.7.2		• • •	***	•••	•••
ALPHA, DEG	6.008	0.05	.323	*****	.728	*****	.010	011
		0.10	.236	.494	.678	414	*****	*****
NPR	1.087	0.20	.134	•506	•642	~.387	053	101
•		0.30	*****	.498	*****	400	141	171
PTO, PSI	14,686	0.40	025	. 495	.596	452	247	269
	21,000	0.50	064	.518	.596	510	302	326
PO, PSI	8,230	0.60	101	.534	.604	~.516	391	393
. 5, . 51		0.70	112	.560	615	526	429	*****
QO, PSI	5.183	0.80	087	.596	•635	~.535	463	454
	- 72-32	0.90	053	*****	.654	*****	461	443

AFTERBODY PRESSURE COFFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
• 584	.014	.015	*****	*****	*****	*****	*****	013	007	.018	.047	****
.598	.022	.020	*****	•014	*****	.001	*****	014	007	.012	*****	****
.612	.045	.045	*****	.026	*****	.012	*****	002	005	.016	*****	****
.626	.104	.073	*****	.039	*****	.024	*****	.007	.006	.020	*****	****
.640	*****	.097	*****	.045	*****	.023	*****	.012	.006	.027	*****	****
.654	*****	.05B	****	.047	*****	.033	*****	.015	.010	.026	*****	****
.668	*****	*****	*****	.037	*****	• 049	*****	.055	.053	.059	*****	****
.682	*****	006	*****	.014	*****	•053	*****	.140	.114	.075	.061	****
.696	****	044	****	027	*****	047	*****	*****	.216	.106	.075	• 07
.710	*****	096	*****	*****	*****	162	*****	*****	.207	.123	.083	.07
.724	*****	157	*****	154	*****	218	*****	*****	.156	.114	.077	•06
.738	*****	214	*****	216	*****	*****	*****	*****	.099	.096	• 062	.05
.752	*****	254	*****	265	*****	307	*****	*****	.052	.064	.049	****
.766	****	326	*****	331	*****	367	*****	*****	013	.013	.002	00
.779	*****	357	*****	367	*****	399	*****	*****	046	001	.005	00
.793	*****	401	*****	415	*****	443	*****	*****	074	042	040	****
.807	*****	439	*****	447	*****	478	*****	*****	089	067	055	05
.821	*****	*****	*****	479	*****	-,497	*****	*****	107	098	083	07
.835	*****	496	*****	515	*****	526	*****	*****	110	104	104	10
.849	*****	509	*****	538	*****	509	*****	*****	097	~.113	116	12
.863	*****	493	*****	440	*****	337	*****	*****	124	134	*****	13
.877	232	231	*****	197	*****	170	*****	*****	*****	*****	*****	****
.891	112	113	*****	127	*****	110	*****	*****	204	241	226	21
.916	055	047	069	*****	046	*****	041	062	132	224	234	****
.928	070	*****	045	*****	020	*****	021	043	115	215	281	29
.940	071	*****	002	*****	.009	*****	.020	009	076	136	208	20
.952	*****	*****	.032	*****	.029	.031	.040	.026	036	058	100	****
.962	.002	.039	.035	*****	.040	.047	.051	.044	.021	.008	005	02
.974	.046	.060	*****	*****	.037	.050	.050	.058	.038	.059	.070	. 05
.986	.075	.069	.054	*****	.069	.070	.084	.083	.068	.076	.093	.10
•996	.072	.076	*****	*****	.078	.061	•072	.080	.050	.068	.082	• 0 9

Table A21. Effect of Nozzle Pressure Ratio on Pressure Distributions for Forward Tails Configuration at M = 0.90 and $\alpha = 0.016^{\circ}$

(a) NPR = 1.114

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	NTAL TAIL	s	VERTIC	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	22		Y	/B	Υ.	/ B	Y	/ B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.900							
ALPHA, DEG	.016	0.05	097	*****	.770	*****	041	071
		0.10	102	.292	.710	119	*****	*****
NPR	1.114	0.20	141	.345	.656	183	093	128
		0.30	*****	. 374	*****	247	152	189
PTO, PSI	14.684	0.40	258	.381	.585	351	230	256
		0.50	250	.414	•576	388	271	301
PO, PSI	8.686	0.60	263	.441	.574	406	332	349
		0.70	171	.480	.581	253	349	*****
QO, PSI	4.921	0.80	088	.518	.595	064	125	085
		0.90	014	*****	.610	*****	004	.020

AFTERBODY PRESSURE COEFFICIENTS

PHI,	DE:	G
------	-----	---

X/L	0	18	36	45	54	72	81	90	108	135	162	180
•584	010	~.007	*****	*****	*****	*****	*****	012	014	005	.003	*****
.598	005	007	*****	005	*****	012	*****	012	017	012	*****	*****
.612	.028	.016	*****	.006	*****	.000	*****	006	007	009	*****	*****
•626	.089	.060	*****	.018	*****	001	*****	001	005	007	*****	*****
.640	****	.081	*****	.023	*****	001	*****	007	011	012	*****	*****
.654	*****	.025	*****	.008	*****	.006	*****	007	011	010	*****	*****
.668	*****	*****	*****	.015	*****	.012	*****	.019	.011	.002	*****	*****
.682	*****	044	*****	006	*****	.036	*****	.089	.029	002	018	*****
.696	*****	067	*****	015	*****	.044	*****	*****	. 025	005	023	019
.710	*****	103	*****	*****	*****	019	*****	*****	027	027	034	034
.724	*****	141	*****	095	*****	079	*****	*****	080	050	047	052
.738	*****	178	*****	139	*****	*****	*****	*****	127	083	081	080
•752	*****	212	****	194	*****	187	*****	*****	153	106	093	*****
.766	*****	287	*****	261	*****	279	*****	*****	204	157	150	142
.779	*****	293	*****	278	*****	302	*****	*****	213	158	130	122
•793	*****	331	*****	317	*****	365	*****	*****	223	175	154	*****
.807	*****	~.303	*****	311	*****	334	*****	*****	190	180	144	135
.821	*****	*****	*****	166	*****	178	*****	*****	154	140	130	134
.835	*****	080	*****	085	*****	087	*****	*****	097	107	113	119
.849	*****	041	*****	053	*****	045	*****	*****	067	098	099	100
.863	****	029	*****	043	*****	027	*****	*****	043	081	*****	097
.877	022	029	*****	044	*****	038	*****	*****	*****	*****	*****	*****
.891	058	069	*****	071	*****	067	*****	*****	078	090	096	101
.916	115	115	174	*****	115	*****	121	119	125	123	123	*****
•928	145	*****	191	*****	152	*****	147	152	152	160	173	167
.940	1 67	*****	151	*****	160	*****	154	157	161	167	164	166
.952	*****	*****	105	*****	106	104	102	106	104	100	107	*****
.962	031	023	020	*****	021	019	021	018	018	013	017	017
.974	.066	.067	*****	*****	.068	.067	.072	.068	.072	.079	.078	.071
.986	.131	.132	.133	*****	.134	.135	.138	.136	.134	.130	.135	.135
.996	.160	.161	*****	*****	.164	.168	.169	.165	.161	.168	.163	•163

Table A21. Continued

(b) NPR = 2.001

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	NTAL TAIL	s	VERTIC	AL TAIL
			UPPER	SUPFACE	LOWER	SURFACE		
POINT NUMBER	23		Y	/B	Y	/ B	Y	/ B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.899							
ALPHA, DEG	.016	0.05	080	*****	.854	*****	036	073
		0.10	092	.281	.789	112	*****	*****
NPR	2.001	0.20	127	.278	.713	182	088	131
		0.30	*****	•327	*****	244	153	184
PTO, PSI	14.684	0.40	246	.350	.628	339	236	248
		0.50	243	.394	.607	385	272	298
PO, PSI	8.688	0.60	249	. 433	.598	399	339	341
		0.70	181	. 469	.600	213	354	*****
QO, PSI	4.919	0.80	087	.504	.602	059	105	071
,	* *	0.90	012	*****	.609	*****	.001	.028

AFTERBODY PRESSURE COFFFICIENTS

Ρ	Н	I	,	D	E	G
---	---	---	---	---	---	---

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	014	001	*****	*****	*****	*****	*****	011	010	003	.007	*****
•598	013	002	*****	003	*****	009	*****	019	015	009	*****	*****
•612	.018	.020	*****	.009	* * * * * *	.004	*****	008	014	001	*****	*****
.626	• 091	.053	*****	•025	*****	.009	*****	003	008	006	*****	*****
•640	*****	.072	*****	.024	*****	•007	*****	004	007	012	*****	*****
•654	*****	.024	*****	•007	*****	.008	*****	012	006	014	*****	*****
.668	****	****	*****	.007	*****	.018	*****	.013	.012	001	*****	*****
.682	*****	045	*****	011	*****	.041	*****	.079	.031	003	014	*****
•696	*****	071	*****	022	*****	.052	*****	*****	.025	009	021	027
.710	*****	093	*****	*****	*****	008	*****	*****	028	022	034	035
.724	*****	137	*****	087	*****	079	*****	*****	073	056	057	054
.738	****	173	*****	145	*****	*****	*****	*****	121	082	081	075
•752	*****	216	*****	188	*****	192	*****	*****	155	111	091	*****
.766	*****	294	*****	-,258	*****	278	*****	*****	212	155	133	143
.779	*****	312	*****	286	*****	302	*****	*****	215	155	128	135
.793	****	327	*****	324	*****	343	*****	*****	219	166	147	*****
.807	*****	247	*****	243	*****	302	*****	*****	185	149	139	136
.821	*****	*****	*****	148	*****	164	*****	*****	143	130	129	126
.835	*****	065	*****	079	*****	080	*****	*****	095	102	108	120
849	****	032	*****	046	*****	041	*****	*****	057	082	091	104
.863	*****	025	*****	039	*****	026	*****	*****	043	071	*****	091
.877	018	023	*****	034	*****	036	*****	*****	*****	*****	*****	*****
.891	055	060	*****	059	*****	060	*****	*****	069	079	096	092
.916	107	101	154	*****	099	*****	106	103	107	104	105	*****
.928	131	*****	160	*****	127	*****	128	125	127	134	145	146
.940	131	*****	123	*****	128	*****	128	129	122	129	137	136
952	*****	*****	066	*****	066	068	069	071	060	059	073	*****
962	.002	.016	.023	*****	. 022	.022	.018	.023	.025	.031	.029	.018
.974	.099	.106	*****	*****	.112	.112	.109	•112	.116	.120	.117	.113
986	.171	.167	.171	*****	.176	.174	.171	.171	.177	.177	.172	.178
.996	.199	.201	*****	*****	. 203	.204	.201	.198	.202	.205	.198	.204

ORIGINAL PAGE IS OF POOR QUALITY

Table A21. Continued

(c) NPR = 3.006

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	NTAL TAIL	s	VERTIC	AL TAIL
				SURFACE		SURFACE		
POINT NUMBER	24		Y	/B	Y	/B	Y	/ B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	•900							
ALPHA, DEG	.016	0.05	091	*****	191	*****	039	062
		0.10	104	090	219	122	*****	*****
NPR	3.006	0.20	137	170	242	180	089	136
		0.30	*****	243	*****	237	147	184
PTO, PSI	14.685	0.40	254	344	364	341	232	256
		0.50	252	389	411	387	267	305
PO, PSI	8.679	0.60	260	459	416	402	331	343
		0.70	179	481	417	255	353	*****
QO, PSI	4.925	0.80	092	490	392	055	111	078
		0.90	014	*****	327	*****	.003	.025

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

	X/L	0	18	36	45	54	72	81	90	108	135	162	180
	•584	003	001	*****	*****	*****	*****	*****	010	008	004	• 002	*****
۱	•598	001	.000	*****	005	*****	015	*****	014	011	008	*****	*****
ı	.612	.027	.023	*****	•010	*****	003	*****	007	005	008	*****	*****
	•626	.097	.063	*****	.021	*****	.002	*****	004	.000	009	*****	*****
J	.640	*****	.085	*****	.021	*****	.004	*****	.004	002	012	*****	*****
۱	.654	*****	.031	*****	.008	*****	- 004	*****	.000	006	012	*****	*****
Į	.668	*****	*****	*****	•008	*****	.015	*****	.024	.016	003	*****	*****
ı	.682	*****	044	*****	011	*****	.042	*****	.087	.037	006	017	*****
ı	•696	*****	062	*****	021	*****	•042	*****	*****	.025	011	020	021
ı	.710	****	095	*****	*****	*****	012	*****	*****	030	028	027	031
ı	.724	*****	141	*****	097	*****	072	*****	*****	081	058	053	055
1	.738	*****	182	*****	149	*****	*****	*****	*****	126	086	079	061
ı	.752	****	203	*****	183	*****	192	****	*****	157	115	095	*****
ł	•766	*****	281	*****	260	*****	272	*****	*****	208	160	137	138
ŀ	•779	****	285	****	27 5	* * * * * *	306	*****	*****	224	160	130	125
ı	•793	*****	315	*****	308	*****	346	*****	*****	230	174	150	*****
ı	.807	*****	267	*****	280	*****	341	*****	*****	202	166	137	139
ı	.821	*****	*****	*****	172	****	215	*****	*****	154	131	122	110
۱	.835	*****	067	*****	092	*****	092	*****	*****	101	108	108	115
ı	.849	*****	034	*****	050	* * * * * *	041	*****	*****	063	089	095	098
ļ	.863	****	019	*****	037	*****	023	*****	*****	047	072	*****	090
ì	.877	013	020	*****	035	*****	037	*****	*****	*****	*****	*****	*****
l	.891	046	055	*****	061	*****	064	*****	*****	071	080	094	081
I	.916	096	097	149	*****	095	*****	106	108	109	109	107	*****
١	•928	125	*****	163	*****	131	*****	127	133	130	138	153	147
ł	•940	126	*****	120	*****	136	*****	131	137	131	133	137	141
ŀ	.952	*****	*****	068	*****	073	070	075	074	066	066	073	*****
۱	.962	.012	.015	•025	*****	• 026	.020	.019	.018	.020	.027	.024	.021
Ì	.974	.107	.109	****	*****	.109	.110	.109	.105	•111	.116	.116	.111
۱	•986	•176	.175	.174	*****	.169	.170	.167	.164	•168	.173	.172	.173
ı	•996	.202	.206	****	*****	.197	•199	.196	.196	.199	.199	.196	. 206

Table A21. Concluded

(d) NPR = 4.977

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	CONFIGURATION FWD TAILS			HORIZO	NTAL TAIL	s	VERTIC	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	25		Y	/ B	Y	/ B	Y	/B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.899							
ALPHA, DEG	.016	0.05	090	*****	202	*****	034	066
		0.10	101	091	207	132	*****	*****
NPR	4.977	0.20	133	171	241	178	086	128
		0.30	*****	241	*****	244	149	184
PTO. PSI	14.684	0.40	255	344	369	341	231	258
		0.50	259	394	415	381	274	300
PO. PSI	8.689	0.60	253	456	419	393	331	341
. 3, , 31		0.70	174	482	- 420	- 250	341	*****
QQ, PSI	4.919	0.80	085	492	421	059	110	065
-0, .0.		0.90	016	*****	350	*****	.000	.028

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG.

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	010	.001	*****	*****	*****	*****	*****	012	013	004	•002	*****
•598	002	~.005	*****	003	*****	014	*****	018	014	008	*****	*****
.612	.025	.021	*****	.011	*****	007	*****	007	009	009	*****	*****
.626	.094	.060	*****	.020	*****	.005	*****	004	008	012	*****	****
.640	*****	.083	****	.017	*****	.005	*****	003	007	008	*****	****
.654	****	.029	*****	.012	*****	.008	*****	008	008	016	*****	****
.668	*****	*****	*****	.006	*****	.021	*****	.020	.017	.001	*****	****
.682	*****	037	*****	001	*****	.045	*****	.086	.033	009	017	****
.696	****	065	*****	021	*****	.046	*****	*****	.019	011	021	02
•710	*****	093	*****	*****	*****	011	*****	*****	030	020	033	03
.724	****	142	*****	091	*****	079	*****	*****	081	047	058	05
.738	*****	174	*****	137	*****	*****	*****	*****	119	092	078	07
.752	*****	209	*****	179	*****	185	*****	*****	147	100	091	****
.766	*****	282	****	261	*****	272	*****	*****	211	163	130	13
.779	*****	293	*****	274	*****	300	*****	*****	214	160	125	13
•793	*****	-,316	*****	326	*****	338	*****	*****	236	192	150	****
.807	*****	260	*****	260	*****	321	*****	*****	190	155	134	13
.821	*****	*****	*****	167	*****	161	*****	*****	135	127	125	11
.835	*****	066	*****	079	*****	086	*****	*****	098	115	103	11
.849	*****	032	*****	046	*****	036	*****	*****	055	083	094	10
.863	*****	018	*****	036	* ** ** *	024	*****	*****	036	070	*****	08
.877	014	021	*****	033	*****	033	*****	*****	*****	*****	*****	****
.891	050	059	*****	061	*****	063	*****	*****	069	076	095	08
•916	095	093	147	*****	095	*****	097	101	103	101	099	****
.928	118	*****	156	*****	124	*****	122	116	120	128	145	13
.940	118	*****	106	*****	118	*****	119	112	115	115	128	12
.952	*****	*****	054	*****	054	057	059	055	050	050	057	****
.962	.027	.033	.042	*****	• 039	.040	.039	.037	.038	.046	. • 044	.03
.974	.127	.127	*****	*****	.128	.132	.128	.131	.127	.136	•133	.13
.986	.192	.190	.193	*****	.191	.187	.190	.191	.189	•192	.186	.19
.996	.221	.216	*****	*****	.214	•212	.210	.212	.213	.212	.211	.21

Table A22. Effect of Angle of Attack on Pressure Distributions for Forward Tails Configuration at M = 0.90 and NPR = 1.119

(a) $\alpha = -2.994^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION			HORIZO	NTAL TAIL	S	VERTIC	AL TAIL	
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	27		Y	/B	Y	/ B	Y	/B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.893							
ALPHA, DEG	-2.994	0.05	357	*****	212	*****	037	062
		0.10	290	096	215	.038	*****	*****
NPR	1.119	0.20	283	175	243	058	084	111
		0.30	*****	247	*****	137	133	159
PTO, PSI	14.578	0.40	367	351	376	237	195	217
		0.50	392	402	421	273	226	262
PO, PSI	8.686	0.60	399	466	428	264	249	257
		0.70	281	488	429	130	180	*****
QD, PSI	4.847	0.80	119	500	425	048	069	048
		0.90	030	*****	380	*****	.014	.034

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG.

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	012	003	*****	*****	*****	*****	*****	019	016	015	•002	*****
.598	001	.001	*****	015	*****	022	*****	022	022	015	*****	*****
•612	.034	.025	*****	.007	*****	011	*****	012	023	019	*****	*****
.626	.112	.065	*****	.016	*****	006	*****	013	018	021	*****	*****
•640	*****	.099	*****	.018	*****	007	*****	016	021	024	*****	*****
.654	*****	.026	*****	004	*****	005	*****	023	024	029	*****	*****
•668	*****	*****	*****	.001	*****	.011	*****	.007	008	022	*****	*****
•682	*****	044	*****	009	*****	.050	*****	.087	.001	038	042	*****
•696	*****	051	*****	004	*****	.111	*****	*****	065	059	058	051
•710	*****	072	******	*****	*****	.076	*****	*****	160	094	080	070
• 724	*****	102	*****	041	*****	.010	*****	*****	210	131	114	104
•738	*****	125	*****	076	*****	*****	*****	*****	241	160	143	132
•752	*****	156	*****	119	*****	120	*****	*****	262	190	160	*****
•766	*****	234	*****	190	*****	193	*****	*****	324	238	215	208
•779	*****	195	*****	198	*****	208	*****	*****	332	250	211	201
• 793	*****	191	*****	194	*****	239	*****	*****	345	277	239	*****
.807	*****	143	*****	150	*****	168	*****	*****	308	260	226	200
.821	*****	*****	*****	096	*****	106	*****	*****	217	198	183	171
.835	*****	048	*****	060	*****	065	*****	*****	124	145	142	141
.849	*****	026	*****	040	*****	034	*****	*****	082	103	113	111
.863	*****	020	*****	039	* * * * * *	027	*****	*****	049	086	*****	095
.877	013	022	*****	035	*****	043	*****	*****	*****	*****	*****	*****
.891	064	075	*****	073	*****	073	*****	*****	079	086	102	095
.916	126	125	197	*****	122	*****	125	121	122	115	+.117	*****
•928	166	*****	216	*****	162	*****	156	155	146	143	152	143
.940	187	*****	180	*****	176	*****	169	156	151	141	144	140
•952	*****	*****	128	*****	119	119	110	108	087	082	083	*****
• 962	049	037	029	*****	031	027	025	015	006	.001	007	005
•974	.059	.060	*****	*****	.070	.071	.068	.065	.071	.081	.075	.080
• 986	.128	.124	•124	*****	.130	.123	•131	•134	.128	.134	• 128	•137
• 996	• 147	•148	*****	*****	.146	.139	.148	.141	.148	•155	.154	.159

AFTERBODY INTEGRATED PRESSURE DRAG COEFFICIENT

.0451

ORIGINAL PAGE IS OF POOR QUALITY

Table A22. Continued

(b) $\alpha = 0.013^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION			HORIZO	NTAL TAIL	s	VERTIC	AL TAIL	
			UPPER	SURFACE	LOWER	SURFACE		
PDINT NUMBER	2.8		Y	/B	Y	/ B	Y	/ B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	•903							
ALPHA, DEG	.013	0.05	082	*****	213	*****	043	075
		0.10	093	084	201	120	*****	*****
NPR	1.131	0.20	138	171	238	185	092	127
		0.30	*****	~.239	*****	248	145	180
PTO, PSI	14.684	0.40	260	340	359	346	230	255
		0.50	265	387	402	378	273	300
PO, PSI	8.649	0.60	272	454	414	417	332	347
		0.70	199	467	415	323	357	*****
QO, PSI	4.942	0.80	090	482	404	057	137	090
		0.90	017	*****	339	*****	003	.024

AFTERBODY PRESSURE COFFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	009	007	*****	*****	*****	*****	*****	013	011	004	.005	*****
.598	.000	003	*****	004	*****	013	*****	011	019	004	*****	*****
.612	.027	.016	*****	.013	*****	005	*****	007	013	011	*****	*****
.626	.093	•05₽	****	.019	*****	.007	*****	•002	009	010	*****	*****
.640	****	·085	*****	.024	*****	.003	*****	002	008	010	*****	*****
.654	*****	• 024	*****	.012	*****	.005	*****	002	008	019	*****	*****
.668	****	*****	*****	.007	* * * * *	.015	*****	.024	.018	.000	*****	*****
.682	*****	039	*****	008	*****	.037	*****	.089	.039	005	020	*****
.696	****	060	*****	022	* ** **	.045	*****	*****	.031	008	022	020
.710	****	090	*****	*****	*****	013	*****	*****	027	022	032	034
.724	*****	135	*****	093	*****	080	*****	*****	073	051	054	046
.738	****	179	****	139	*****	*****	*****	*****	121	086	082	070
• 752	*****	204	*****	184	*****	187	*****	*****	150	108	095	*****
.766	****	240	*****	264	*****	273	*****	*****	222	161	139	147
.779	****	294	*****	280	*****	303	*****	*****	220	165	137	130
.793	*****	336	*****	331	*****	352	*****	*****	235	192	166	*****
.807	*****	321	****	340	*****	347	*****	*****	208	162	149	133
.821	*****	*****	*****	198	*****	238	*****	*****	154	143	133	~.125
.835	*****	082	*****	097	*****	096	*****	*****	104	118	118	127
.849	****	037	****	051	*****	046	*****	*****	060	084	103	~.099
.863	****	023	*****	040	*****	032	*****	*****	044	079	*****	094
.877	021	024	*****	037	*****	038	*****	*****	*****	*****	*****	*****
.891	060	059	*****	069	*****	068	*****	*****	~.075	088	098	095
.916	110	113	171	*****	106	*****	121	122	125	125	125	*****
.928	144	*****	186	*****	149	*****	156	149	152	159	157	168
.940	159	*****	148	*****	161	*****	157	158	157	169	164	166
.952	*****	*****	099	*****	106	110	109	109	102	104	114	*****
.962	025	020	018	*****	010	020	025	018	~.018	016	020	018
.974	.071	.066	*****	*****	.073	.070	.064	•069	.067	.075	•070	.068
.985	.140	.128	.135	*****	.134	.127	.133	•136	.127	.126	.131	.129
.996	.163	.158	*****	*****	.168	.156	.159	.158	.162	.160	.148	.152

ORIGINAL PAGE IS OF POOR QUALITY

Table A22. Concluded

(c) $\alpha = 6.015^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION			s	VERTICAL TA				
POINT NUMBER	29			SURFACE /B		SURFACE /B		/ B
POTAL MOMBER	29	X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.901							
ALPHA, DEG	6.015	0.05	.313	*****	361	*****	026	066
		0.10	.229	.047	415	499	*****	*****
NPR	1.086	0.20	.117	058	406	447	095	150
		0.30	*****	150	*****	469	191	224
PTO, PSI	14.684	0.40	030	262	469	521	306	322
		0.50	062	310	511	568	357	379
PO, PSI	8.677	0.60	085	-,379	507	577	442	447
		0.70	078	404	505	591	485	*****
QO, PSI	4.926	0.80	042	419	499	524	507	504
		0.90	001	*****	459	*****	075	081

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
• 584	.000	.002	*****	*****	*****	*****	*****	025	020	•006	.031	*****
.598	.008	.006	*****	.000	*****	019	*****	029	030	001	*****	*****
.612	.030	.019	*****	.007	*****	013	*****	018	019	.001	*****	*****
•626	.084	•052	*****	.015	*****	003	*****	011	012	.002	*****	*****
.640	*****	.071	*****	.019	*****	.000	*****	008	010	.005	*****	*****
.654	*****	.028	*****	.013	*****	• 003	*****	011	007	.002	*****	*****
•668	*****	*****	*****	.001	*****	.013	*****	.030	.028	.032	*****	*****
.682	****	049	****	029	*****	.011	*****	.113	.088	.047	.040	*****
•696	*****	089	*****	080	*****	103	*****	*****	.189	.075	.053	.050
.710	*****	146	*****	****	*****	214	*****	*****	.185	• 092	.061	.053
.724	*****	204	*****	210	*****	287	*****	*****	.138	.089	.056	.051
·738	*****	269	*****	275	*****	*****	*****	*****	.082	.072	.046	.040
•752	*****	312	*****	322	*****	355	*****	*****	.029	.046	.029	*****
• 766	*****	390	*****	393	*****	438	*****	*****	033	.002	014	007
•779	*****	415	*****	418	*****	458	*****	*****	050	006	.005	005
•793	*****	454	*****	474	*****	503	*****	*****	066	041	032	*****
.807	*****	489	*****	505	*****	535	*****	*****	071	051	035	033
.821	*****	*****	*****	512	*****	543	*****	*****	075	054	051	048
.835	*****	352	*****	375	*****	331	*****	*****	062	068	057	063
.849	*****	135	*****	176	*****	148	*****	*****	052	068	070	072
.863	****	065	****	085	*****	089	*****	*****	048	066	*****	077
.877	026	033	*****	061	*****	058	*****	*****	*****	*****	*****	*****
.891	042	057	*****	064	*****	057	*****	*****	067	091	093	089
•916	074	078	141	*****	069	*****	072	080	098	115	116	*****
•928	107	*****	128	*****	075	*****	074	090	116	158	179	180
.940	127	*****	084	*****	053	*****	046	069	116	150	188	192
•952	*****	*****	032	*****	.008	.021	.023	003	056	089	135	*****
•962	042	012	.043	*****	• 057	.064	.061	.057	.025	005	029	051
.974	.033	.061	*****	*****	.070	.074	.069	.068	.064	.067	.060	.046
.986	• 090	.104	.086	*****	.079	.084	.090	.093	•085	.106	.107	.107
•996	.084	.106	****	*****	.109	.088	.086	.103	.077	.086	.098	.103

Table A23. Effect of Nozzle Pressure Ratio on Pressure Distributions for Forward Tails Configuration at M=0.60 and $\alpha=0.009^\circ$

(a) NPR = 1.041

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	NTAL TAIL	s	VERTIC	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	30		Y	/ B	Y	/ B	Y	/B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.602							
ALPHA, DFG	.009	0.05	082	*****	-1.301	*****	077	096
		0.10	095	-1.122	-1.312	131	*****	*****
NPR	1.041	0.20	121	-1.274	-1.370	169	118	138
		0.30	*****	-1.379	*****	191	156	171
PTO, PSI	14.694	0.40	166	-1.552	-1.586	208	194	185
		0.50	159	-1.637	-1.657	190	177	171
PO, PSI	11.503	0.60	140	-1.741	-1.678	162	148	151
		0.70	111	-1.782	-1.667	111	123	*****
QO, PSI	2.916	0.80	070	-1.797	-1.669	071	075	064
		0.90	030	*****	-1.600	*****	025	009

AFTERBODY PRESSURE COEFFICIENTS

PHI,	DEG
------	-----

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	015	012	*****	*****	*****	*****	*****	020	014	018	006	*****
.598	016	006	*****	018	*****	022	*****	022	026	022	*****	*****
.612	.008	.003	*****	012	*****	016	*****	018	026	021	*****	*****
.626	.056	.020	*****	011	*****	021	*****	020	022	025	*****	*****
.640	*****	.034	*****	016	*****	022	*****	025	024	025	*****	*****
.654	*****	015	*****	026	*****	021	*****	021	~.025	030	*****	*****
.668	*****	*****	*****	029	*****	012	*****	003	006	023	*****	*****
.682	*****	073	*****	044	*****	.003	*****	.051	.005	033	033	*****
.695	****	092	****	054	* * * * * *	010	*****	*****	005	031	040	033
.710	*****	118	*****	*****	*****	056	*****	*****	049	047	039	039
.724	*****	138	****	089	*****	094	*****	*****	075	052	055	049
.738	****	149	*****	120	*****	*****	*****	*****	~.105	071	059	062
•752	*****	144	*****	125	*****	140	*****	*****	114	075	066	*****
.766	*****	156	****	140	*****	168	*****	*****	138	099	086	079
.779	*****	138	*****	134	*****	145	*****	*****	132	084	068	065
.793	*****	129	****	125	*****	151	*****	*****	130	091	078	*****
.807	*****	108	*****	110	*****	129	*****	*****	106	089	078	073
.821	*****	*****	*****	098	*****	-,104	*****	*****	099	086	077	082
.835	*****	074	****	085	*****	085	*****	*****	078	081	079	082
.849	*****	061	*****	079	*****	066	*****	*****	069	083	081	080
.863	*****	055	*****	071	*****	058	*****	*****	061	083	*****	084
.877	047	047	*****	066	*****	064	*****	*****	*****	*****	*****	*****
.891	073	080	*****	079	*****	079	*****	*****	077	088	094	094
.916	103	097	156	*****	103	*****	103	103	105	109	107	*****
.928	122	*****	156	*****	129	*****	122	121	122	133	134	133
.940	134	*****	122	*****	132	*****	133	133	132	135	136	139
.952	****	*****	098	*****	107	106	104	102	104	103	111	*****
.962	049	035	037	*****	043	042	043	042	043	048	052	048
.974	.027	.030	*****	*****	.027	.032	.029	.029	.032	.027	.029	.024
.986	• 091	*048	.093	*****	• 093	.090	.088	•085	.088	.089	.088	.087
•996	.114	.117	*****	*****	•120	.115	.116	.119	.121	.115	•115	.109

Table A23. Continued

(b) NPR = 2.112

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	NTAL TAIL	s	VERTIC	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	31		Y	/B	Y	/ B	Y	/ B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.601							
ALPHA, DEG	.008	0.05	090	*****	870	*****	089	095
		0.10	100	-1.381	-1.008	144	*****	*****
NPR	2.112	0.20	118	-1.464	-1.140	169	115	143
		0.30	*****	-1.566	*****	183	158	169
PTO, PSI	14.694	0.40	172	-1.695	-1.401	203	190	188
		0.50	147	-1.787	-1.454	183	172	168
PO, PSI	11.512	0.60	137	-1.861	-1.517	159	149	143
		0.70	108	-1.907	-1.507	110	120	*****
QO, PSI	2.910	0.80	064	-1.921	-1.488	063	071	054
		0.90	023	*****	-1.359	*****	015	002

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
•584	020	008	*****	*****	*****	*****	*****	018	021	014	005	*****
•598	008	012	*****	016	* * * * * *	022	*****	018	027	020	*****	*****
.612	.008	.000	*****	011	*****	017	*****	017	027	024	*****	*****
.626	.057	.020	*****	012	*****	015	*****	017	021	020	*****	*****
.640	*****	.027	*****	010	*****	021	*****	017	020	020	*****	*****
•654	****	010	*****	020	*****	015	*****	024	022	033	*****	*****
.668	****	*****	*****	031	*****	009	*****	.004	008	017	*****	*****
•682	****	073	*****	034	*****	002	*****	.053	.004	027	033	*****
•696	*****	086	*****	052	*****	012	*****	*****	006	036	041	028
•710	*****	109	*****	*****	* * * * * *	048	*****	*****	038	041	041	037
.724	*****	131	******.	093	*****	102	*****	*****	071	050	047	049
.738	*****	146	*****	118	* * * * * *	*****	*****	*****	103	067	057	052
•752	*****	149	*****	128	*****	136	*****	*****	116	074	059	*****
.766	*****	150	*****	147	*****	164	*****	*****	141	096	080	079
.779	*****	140	*****	130	*****	146	*****	*****	127	081	072	059
•793	****	129	*****	123	*****	142	*****	*****	123	092	077	*****
.807	*****	105	*****	106	*****	124	*****	*****	110	085	079	073
.821	*****	****	*****	093	*****	103	*****	*****	094	084	079	072
.835	*****	069	*****	082	*****	078	*****	*****	079	081	082	079
.849	*****	054	*****	073	*****	057	*****	*****	064	076	079	074
.863	****	053	****	065	*****	057	*****	*****	055	079	*****	079
.877	045	046	*****	061	*****	055	*****	*****	*****	*****	*****	*****
.891	069	072	*****	076	* * * * *	071	*****	*****	071	079	085	082
•916	090	092	144	*****	091	*****	092	094	096	093	099	*****
•928	108	*****	142	*****	112	*****	112	111	110	118	124	120
.940	116	*****	107	*****	118	*****	109	113	114	122	120	125
•952	*****	*****	079	*****	084	080	082	080	084	084	091	*****
• 962	018	018	011	*****	013	013	014	015	013	012	024	019
.974	.060	.062	*****	*****	.064	.063	.060	.061	.065	.065	.059	.061
•986	.128	• 124	.129	*****	•130	.125	.130	.127	.130	.128	.132	.130
•996	.164	.164	****	*****	• 160	.163	.162	.160	.161	.164	•166	.171

Table A23. Continued

(c) NPR = 3.137

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	NTAL TAIL	s	VERTIC	AL TAIL
POINT NUMBER	32			SURFACE /B		SURFACE /B	v	/ B
PUTAL MOLDEK	32	v		-				
MACH NUMBER	.600	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	.009	0.05	086	*****	563	*****	082	091
		0.10	095	-1.688	740	125	*****	*****
NPR	3.137	0.20	140	-1.642	926	175	114	140
		0.30	*****	-1.734	*****	189	154	166
PTO, PSI	14.691	0.40	169	-1.824	-1.218	213	186	192
		0.50	158	-1.931	-1.303	189	172	171
PO, PSI	11.517	0.60	143	-1.980	-1.334	160	155	145
		0.70	106	-2.037	-1.330	116	125	*****
QO, PSI	2.903	0.80	065	-2.032	-1.271	067	074	060
		0.90	021	*****	-1.180	*****	018	002

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	υ	18	36	45	54	72	81	90	108	135	162	180
.584	017	011	*****	*****	*****	*****	*****	016	024	023	013	*****
.598	012	014	*****	021	*****	028	*****	026	023	022	*****	*****
.612	.011	.006	*****	011	* * * * * *	021	*****	021	024	020	*****	*****
.626	.062	.025	****	008	*****	018	*****	019	022	026	*****	*****
.640	****	.036	*****	016	*****	023	*****	019	021	031	*****	*****
.654	*****	008	*****	026	* * * * * *	019	*****	023	023	029	*****	*****
.668	****	* * * * * *	****	026	* * * * *	013	*****	.000	007	023	*****	*****
•682	*****	068	*****	042	*****	•006	*****	• 055	001	023	033	*****
•696	*****	100	****	051	*****	005	*****	*****	008	032	040	035
.710	*****	114	*****	*****	*****	046	*****	*****	046	037	037	042
.724	*****	134	*****	083	*****	093	*****	*****	072	~.053	049	050
.738	*****	154	****	117	*****	*****	*****	*****	105	068	054	057
.752	*****	143	*****	127	*****	144	*****	*****	121	075	068	*****
.766	*****	154	****	138	* * * * * *	162	*****	*****	134	096	084	075
.779	*****	134	*****	130	* * * * *	156	*****	*****	131	087	066	065
.793	****	121	****	120	*****	146	*****	*****	117	094	077	*****
.807	*****	107	****	107	*****	125	*****	*****	107	084	076	073
.821	*****	*****	*****	094	*****	108	*****	*****	088	084	073	077
.835	*****	070	*****	087	*****	080	*****	*****	079	084	075	076
.849	****	059	*****	069	*****	067	*****	*****	059	077	078	082
.863	*****	051	*****	072	*****	053	*****	*****	057	079	*****	083
.877	038	053	*****	061	*****	060	*****	*****	*****	*****	*****	*****
.891	066	075	*****	074	*****	067	*****	*****	077	084	089	086
.916	090	089	146	*****	093	*****	099	094	097	102	095	*****
•928	103	* * * * * *	142	*****	114	*****	110	105	110	120	148	123
.940	113	*****	105	*****	119	*****	116	115	114	117	125	128
•952	*****	*****	079	*****	080	081	077	083	081	082	088	*****
•962	018	015	011	*****	015	019	021	015	019	021	021	026
.974	.057	.069	*****	*****	• 064	.066	.064	•066	.064	.063	.067	.059
.986	.135	.131	.134	*****	•129	•130	.128	.129	.130	.135	.131	•130
•996	.168	.169	*****	*****	.168	.163	.168	.164	.163	.168	•169	.169

Table A23. Concluded

(d) NPR = 5.091

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	NTAL TAIL	s	VERTIC	AL TAIL
POINT NUMBER	33			SURFACE /B		SURFACE /B	Y	/B
MACH NUMBER	.600	x/c	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	•009	0.05	077	*****	-1.209	*****	094	094
NPR	5.091	0.10 0.20	100 123	-1.058 -1.176	-1.214 -1.255	136 158	*****	***** 145
PTO, PSI	14.691	0.30 0.40 0.50	***** 167 154	-1.307 -1.476 -1.543	***** -1.458 -1.467	186 208 181	148 184	159 184 173
PO, PSI	11.516	0.50 0.60 0.70	145 104	-1.637 -1.695	-1.429 -1.266	151 151 114	171 146 116	173 148
QD, PSI	2.904	0.80 0.90	062 021	-1.495 -1.107 *****	-1.078 941	063 *****	072 020	053 .001

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
• 584	015	013	*****	*****	*****	*****	*****	020	022	018	011	*****
.598	008	012	*****	019	*****	025	*****	022	025	023	*****	*****
.612	.011	.004	*****	011	*****	021	*****	017	020	023	*****	*****
.626	.059	.028	*****	012	*****	021	*****	022	026	024	*****	*****
.640	*****	.028	*****	015	*****	017	*****	024	024	028	*****	*****
.654	*****	016	*****	024	*****	015	*****	021	025	028	*****	*****
.668	*****	*****	*****	022	*****	009	*****	.004	009	019	*****	*****
.682	*****	073	*****	042	*****	.005	*****	•056	.007	024	032	*****
.696	*****	087	*****	048	*****	005	*****	*****	010	032	032	034
.710	*****	110	*****	*****	*****	055	*****	*****	046	041	040	040
.724	*****	134	******	098	*****	093	*****	*****	069	052	046	056
.738	*****	144	*****	119	*****	*****	*****	*****	104	075	060	059
•752	*****	141	*****	124	*****	139	*****	*****	120	074	063	*****
•766	*****	147	*****	138	*****	162	*****	*****	137	099	080	080
•779	*****	128	*****	120	*****	150	*****	*****	126	088	068	064
•793	*****	123	*****	122	*****	138	*****	*****	119	093	074	*****
.807	*****	106	*****	107	*****	122	*****	*****	106	089	069	078
.821	*****	*****	*****	092	*****	099	*****	*****	094	083	074	079
.835	*****	071	*****	078	*****	078	*****	*****	076	083	076	080
•849	*****	056	*****	064	*****	061	*****	*****	064	082	076	077
.863	*****	051	*****	066	*****	049	*****	*****	054	075	*****	079
.877	040	045	*****	060	*****	053	*****	*****	*****	*****	*****	*****
.891	058	069	*****	073	*****	066	*****	*****	071	077	082	087
•916	085	086	145	*****	087	*****	093	093	093	093	090	*****
•928	099	*****	137	*****	108	*****	103	108	107	111	137	114
•940	110	*****	099	*****	107	*****	105	107	111	108	111	121
•952	*****	*****	065	*****	067	070	067	073	067	068	079	*****
• 962	001	.000	.000	*****	.002	•000	004	003	•000	002	004	004
•974	.084	.084	*****	*****	.083	.084	.084	• 079	.082	.085	.084	.082
•986	•158	•158	.157	*****	• 156	.151	.155	.153	.150	.155	.158	• 152
•996	.193	.194	*****	*****	.195	.189	.193	.191	.190	.194	.192	.194

Table A24. Effect of Angle of Attack on Pressure Distributions for Forward Tails Configuration at M=0.60 and NPR = 1.056

(a) $\alpha = -2.992^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	NTAL TAIL	s	VERTIC	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	35		Y	/B	Y	/ B	Y	/B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.601	~~~	•••	***	•••	***	•••	012
ALPHA, DFG	-2.992	0.05	325	*****	-1.162	*****	076	081
		0.10	282	-1.047	-1.192	.049	*****	*****
NPR	1.056	0.20	257	-1.177	-1.261	046	101	122
		0.30	*****	-1.294	*****	085	130	148
PTO, PSI	14.691	0.40	258	-1.468	-1.451	122	151	166
		0.50	210	-1.535	-1.466	117	140	148
PO, PSI	11.511	0.60	188	-1.623	-1.428	102	120	116
		0.70	144	-1.382	-1.237	080	102	*****
QO, PSI	2.908	0.80	095	-1.079	-1.060	039	050	037
-5, -5.		0.90	039	*****	932	*****	003	.011

AFTERBODY PRESSURE COEFFICIENTS

	Ρ	Н	I	,		D	E	(
--	---	---	---	---	--	---	---	---

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	009	006	*****	*****	*****	*****	*****	026	030	024	019	*****
.598	006	005	*****	015	*****	036	*****	043	038	028	*****	*****
.612	.015	.010	*****	003	*****	033	*****	033	033	036	*****	*****
.626	.077	.038	*****	008	*****	025	*****	030	042	034	*****	*****
.640	*****	.026	*****	010	* * * * * *	028	*****	031	038	038	*****	*****
.654	****	.001	*****	014	*****	020	*****	035	044	048	*****	*****
.668	*****	*****	*****	016	*****	009	*****	013	032	048	*****	*****
.682	*****	054	*****	023	*****	.024	*****	.039	053	059	053	*****
•696	*****	072	*****	028	*****	.070	*****	*****	106	079	068	069
.710	*****	082	*****	*****	*****	.031	*****	*****	154	095	075	075
.724	*****	100	*****	048	*****	005	*****	*****	185	117	098	085
.738	*****	110	*****	055	*****	*****	*****	*****	203	129	095	090
.752	*****	101	*****	076	*****	054	*****	*****	197	133	102	*****
.766	*****	117	*****	091	*****	091	*****	*****	204	148	120	109
.779	*****	104	*****	083	*****	095	*****	*****	186	132	103	~.105
.793	*****	091	*****	090	*****	095	*****	*****	166	136	103	*****
.807	*****	077	*****	069	*****	084	*****	*****	146	119	103	098
.821	*****	****	****	063	*****	075	*****	*****	124	110	101	~.095
.835	****	048	*****	064	*****	061	*****	*****	102	109	098	096
.849	*****	040	*****	C58	*****	042	*****	*****	083	095	090	100
.863	*****	039	*****	053	*****	049	*****	*****	069	091	*****	096
.877	035	046	*****	053	*****	058	*****	*****	*****	*****	*****	*****
.891	064	075	*****	076	*****	075	*****	*****	084	091	098	~.091
.916	105	102	167	*****	101	*****	099	103	103	103	103	*****
.928	132	*****	170	*****	126	*****	126	124	118	122	136	126
.940	147	****	129	*****	141	*****	134	130	123	123	125	125
.952	*****	*****	119	*****	115	106	103	107	094	087	098	*****
.962	063	056	051	*****	048	044	042	040	040	034	042	045
.974	.016	.025	*****	*****	.029	.032	.028	.026	.034	.036	.030	•026
.986	.086	.086	.091	*****	. 036	.088	.092	.089	.087	.088	.083	.086
.996	.113	•110	*****	*****	.110	.113	.117	.110	.113	.122	•102	•114

AFTERBODY INTEGRATED PRESSURE DRAG COEFFICIENT

.0431

Table A24. Continued

ORIGINAL PAGE IS OF POOR QUALITY

(b) $\alpha = 0.008^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	NTAL TAIL	s	VERTIC	AL TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	36		Υ.	/ B	Y	/ B	Y	/ B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	•600							
ALPHA, DEG	.008	0.05	115	*****	-1.187	*****	082	095
		0.10	092	-1.037	-1.218	143	*****	*****
NPR	1.058	0.20	124	-1.168	-1.265	164	119	140
		0.30	*****	-1.293	*****	181	152	+.175
PTO, PSI	14.691	0.40	162	-1.461	-1.463	209	188	189
		0.50	149	-1.529	-1.462	193	178	165
PO, PSI	11.519	0.60	142	-1.627	-1.403	161	155	149
		0.70	110	-1.480	-1.235	116	122	*****
QO, PSI	2.901	0.80	065	-1.085	-1.060	068	079	055
		0.90	029	*****	930	*****	027	001

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	017	013	*****	*****	* * * * *	*****	*****	022	020	016	008	*****
•598	014	011	*****	019	*****	026	*****	027	025	025	*****	*****
.612	.006	• 00 2	*****	015	*****	016	*****	021	023	019	*****	*****
.626	• 059	.022	*****	008	*****	018	*****	023	021	020	*****	*****
•640	*****	.027	*****	014	*****	018	*****	026	023	024	*****	*****
.654	*****	011	*****	026	*****	014	*****	021	028	031	*****	*****
.668	****	*****	****	031	****	008	*****	.001	010	021	*****	*****
.682	****	078	*****	046	*****	.004	*****	.051	005	029	033	*****
.696	*****	093	*****	058	*****	.007	*****	*****	.002	034	035	039
.710	*****	107	*****	*****	*****	060	*****	*****	039	032	042	045
.724	****	133	*****	105	*****	092	*****	*****	084	060	054	053
.738	*****	137	****	115	*****	*****	*****	*****	102	064	060	061
•752	*****	146	*****	128	*****	148	*****	*****	115	083	063	*****
.766	*****	160	****	144	*****	172	*****	*****	139	093	078	082
.779	*****	140	****	127	*****	149	*****	*****	127	088	068	069
.793	*****	124	*****	122	*****	143	*****	*****	127	094	078	*****
.807	*****	107	*****	107	*****	127	*****	*****	109	086	072	076
.821	*****	*****	*****	095	*****	098	*****	*****	089	083	079	082
.835	*****	072	*****	078	*****	079	*****	*****	081	082	077	082
.849	*****	064	****	074	*****	064	*****	*****	062	079	079	084
.863	*****	058	*****	068	*****	057	*****	*****	062	079	*****	087
.877	046	053	*****	068	*****	062	*****	*****	*****	*****	*****	*****
.891	069	075	****	075	*****	079	*****	*****	077	082	096	096
•915	099	096	156	*****	098	*****	103	106	103	103	103	*****
•928	118	*****	157	****	124	*****	122	120	120	127	138	134
•940	129	*****	122	*****	133	*****	130	132	127	133	142	143
•952	*****	*****	103	*****	104	096	105	102	102	100	114	*****
.962	043	03P	039	*****	039	039	043	046	042	043	049	056
.974	.032	.032	*****	*****	.031	.029	.029	•029	.031	.031	•026	.023
• 986	.096	.094	.091	*****	.094	.094	.091	.084	.086	.088	.082	.081
• 996	.120	.125	*****	*****	.119	.122	.117	.115	.115	.113	•106	.102

Table A24. Continued

(c) $\alpha = 3.020^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	VERTIC	AL TAIL			
				SURFACE		SURFACE			
POINT NUMBER	37		Y	/B	Y	/ B	Y/B		
		X/C	0.1	0.2	0.1	0.2	0.1	0.2	
MACH NUMBER	.600								
ALPHA, DEG	3.020	0.05	.126	*****	-1.218	*****	093	107	
		0.10	.076	-1.061	-1.183	344	*****	*****	
NPR	1.053	0.20	005	-1.182	-1.252	300	142	166	
		0.30	*****	-1.298	*****	294	186	197	
PTO, PSI	14.691	0.40	083	-1.478	-1.430	288	226	213	
		0.50	093	-1.542	-1.445	261	209	200	
PO, PSI	11.517	0.60	083	-1.633	-1.370	210	180	175	
		0.70	068	-1.437	-1.229	154	149	*****	
OO, PSI	2.903	0.80	038	-1.104	-1.068	096	094	078	
		0.90	007	*****	938	*****	039	017	

AFTERBODY PRESSURE COFFFICIENTS

PHI, DEG

X/L)	18	36	45	54	72	81	90	108	135	162	180
. 584	020	017	*****	*****	*****	*****	*****	026	027	015	.001	*****
.598	016	019	*****	025	*****	030	*****	029	028	017	*****	****
.612	.003	004	*****	018	*****	028	*****	025	024	015	*****	****
.626	.044	•015	*****	018	*****	028	*****	026	028	016	*****	****
.640	*****	.011	*****	020	*****	029	*****	030	024	011	*****	****
•654	*****	023	*****	028	*****	030	*****	029	029	015	*****	****
.668	*****	*****	*****	043	*****	028	*****	005	.000	002	*****	****
.682	*****	097	*****	067	*****	042	*****	.047	.031	002	011	****
.696	*****	117	*****	094	*****	096	*****	*****	.070	.010	011	00
.710	*****	151	*****	*****	* * * * * *	171	*****	*****	.053	.012	009	01
.724	****	171	*****	154	*****	206	*****	*****	.022	.000	015	01
.738	*****	183	*****	179	*****	*****	*****	*****	012	013	021	02
.752	*****	186	*****	189	*****	235	*****	*****	030	025	023	****
.766	****	190	*****	194	*****	237	*****	*****	069	050	042	04
.779	****	173	****	175	*****	215	*****	*****	074	044	033	03
.793	****	159	****	172	*****	202	*****	*****	078	057	048	****
.807	****	138	*****	142	* * * * * *	167	*****	*****	066	055	048	05
.821	*****	*****	*****	124	*****	131	*****	*****	061	057	058	05
.835	****	091	*****	103	* * * * *	102	*****	*****	053	064	060	06
.849	*****	081	*****	090	*****	078	*****	*****	047	066	066	06
.863	****	066	****	082	*****	063	*****	*****	052	069	*****	07
.877	052	063	*****	072	*****	065	*****	*****	*****	*****	*****	****
.891	071	083	*****	083	*****	078	*****	*****	075	079	091	08
.916	093	095	147	*****	100	*****	097	101	105	108	107	****
.928	108	*****	145	*****	119	*****	~.116	116	124	136	144	14
•940	116	*****	110	*****	117	*****	124	129	134	146	158	15
.952	****	*****	089	*****	086	092	094	103	109	116	135	****
•962	034	035	033	*****	031	034	~.033	035	046	052	067	06
.974	.036	.033	*****	*****	.028	.036	.038	•035	• 025	.024	.015	• 00
.986	.094	.087	.083	*****	. 091	• 093	.086	.081	.087	.082	•076	.07
•996	.114	.104	*****	*****	.124	.104	.108	.107	.099	.101	•096	•09

Table A24. Continued

(d) $\alpha = 6.017^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	VERTIC	AL TAIL			
POINT NUMBER	38			SURFACE /B		SURFACE /B	Y/B		
MACH NUMBER	.601	x/c	0.1	0.2	0.1	0•2	0.1	0.2	
ALPHA, DEG	6.017	0.05 0.10	•313 •216	***** 801	-1.610 -1.549	***** 451	095 *****	128 *****	
NPR	1.039	0.20	.116	971 -1.131	-1.521 *****	415 390	151 215	174 231	
PTO, PSI	14.691	0.40	•006 -•025	-1.292 -1.337	-1.630 -1.687	370 312	255 251	255 236	
PO, PSI	11.506	0.60 0.70	039 031	-1.352 -1.202	-1.615 -1.384	251 185	215 178	200 *****	
QO, PSI	2.912	0.80	013 .009	-1.059 *****	-1.093 959	114 *****	121 050	100 029	

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	023	025	*****	*****	*****	*****	*****	048	039	016	.009	*****
•598	021	023	*****	037	*****	055	*****	049	054	018	*****	*****
•612	008	021	*****	030	*****	051	*****	047	042	013	*****	*****
•626	.034	.002	*****	028	*****	047	*****	051	044	014	*****	*****
•640	*****	001	*****	036	*****	055	*****	050	040	016	*****	*****
.654	*****	038	*****	054	*****	059	*****	054	038	014	*****	*****
•668	*****	*****	*****	073	*****	061	*****	029	005	.005	*****	*****
.682	*****	111	*****	114	*****	105	*****	• 022	.047	.019	.017	*****
•696	*****	153	****	151	*****	225	*****	*****	.144	.036	.023	.019
.710	*****	191	*****	*****	*****	302	*****	*****	.159	.057	.039	•028
.724	*****	217	*****	236	*****	335	*****	*****	.114	.053	.026	.020
.738	*****	237	****	237	*****	*****	*****	*****	.061	.041	.020	.016
.752	*****	233	*****	250	*****	312	*****	*****	.028	.032	•015	*****
•766	*****	240	*****	263	*****	304	*****	*****	009	.000	006	010
•779	****	215	****	229	*****	271	*****	*****	025	.002	.010	002
•793	*****	203	****	222	*****	245	*****	*****	031	014	013	*****
.807	****	174	*****	185	*****	202	*****	*****	033	020	017	019
.821	*****	*****	*****	157	*****	165	*****	*****	032	030	020	030
.835	*****	116	*****	135	*****	127	*****	*****	037	041	034	044
.849	****	095	****	113	*****	099	*****	*****	036	048	049	053
.863	*****	079	*****	101	*****	079	*****	*****	041	060	*****	059
.877	062	068	****	085	*****	076	*****	*****	*****	*****	*****	*****
.891	076	094	*****	088	*****	081	*****	*****	079	075	083	081
•916	099	103	162	*****	100	*****	099	105	107	112	107	*****
.928	117	*****	153	*****	111	*****	113	116	128	140	162	144
.940	131	*****	115	*****	114	*****	117	125	138	151	166	164
• 952	*****	*****	100	*****	085	081	086	104	116	129	150	*****
.962	055	057	049	*****	037	035	034	046	059	070	086	083
.974	.017	003	*****	*****	.019	.023	.019	.014	.012	.010	.000	007
•986	.077	.062	.063	*****	.055	.059	.054	•062	• 065	.065	.060	.054
•996	.078	.060	*****	*****	• 065	.066	.065	•062	.068	.073	.070	.069

Table A24. Concluded

(e) $\alpha = 9.009^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	FWD TAILS			HORIZO	VERTICAL TAI				
			UPPER	SURFACE	LOWER	SURFACE			
POINT NUMBER	39		Y	/ B	Y	/ B	Y/B		
		X/C	0.1	0.2	0.1	0.2	0.1	0.2	
MACH NUMBER	•601								
ALPHA, DEG	9.009	0.05	.447	*****	-1.135	*****	098	139	
		0.10	•343	-1.042	-1.203	-1.848	*****	*****	
NPR	1.051	0.20	.221	-1.173	-1.248	291	178	204	
		0.30	*****	-1.299	*****	329	244	252	
PTO. PSI	14.689	0.40	•071	-1.462	-1.429	358	298	279	
		0.50	.040	-1.539	-1.430	330	281	256	
PO, PSI	11.507	0.60	•005	-1.615	-1.397	287	251	225	
		0.70	.000	-1.400	-1.204	228	205	*****	
QO, PSI	2.909	0.80	• 005	-1.080	-1.059	161	~.139	117	
		0.90	.018	*****	928	*****	071	046	

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

					•							
X/L	0	18	36	45	54	72	81	90	108	135	162	180
•584	021	037	*****	*****	*****	*****	*****	081	066	016	.030	****
.598	019	040	*****	046	*****	081	*****	088	078	024	*****	****
.612	004	039	*****	~.045	*****	075	*****	083	072	019	*****	****
•626	.043	022	*****	048	*****	074	*****	083	071	015	*****	****
.640	*****	027	*****	054	* * * * * * * .	087	*****	088	070	016	*****	****
.654	*****	074	*****	078	*****	091	*****	094	064	015	*****	*****
.668	*****	*****	*****	104	* * * * * *	104	*****	065	025	.015	*****	****
.682	*****	163	*****	147	*****	186	*****	011	.051	.037	.045	*****
•696	*****	199	*****	205	*****	378	*****	*****	.201	.065	.059	• 05
.710	*****	243	*****	*****	* * * * * *	460	*****	*****	• 250	.096	.076	• 05
•724	****	273	*****	302	* * * * * *	449	*****	*****	• 195	.100	.068	•05
.738	*****	292	*****	317	*****	*****	*****	*****	.137	.089	.067	.05
.752	*****	288	*****	307	*****	383	*****	*****	.091	.083	.059	****
.766	*****	289	*****	318	*****	361	*****	*****	.031	.046	.030	•03
.779	*****	251	*****	280	*****	310	*****	*****	.005	.045	.041	• 03
.793	****	235	****	263	* * * * *	285	*****	*****	002	.020	.017	****
.807	*****	204	*****	229	*****	248	*****	*****	013	.015	.014	• 00
.821	****	****	*****	202	* * * * * *	205	*****	*****	019	011	.002	00
.835	*****	144	*****	174	*****	161	*****	*****	031	024	022	02
.849	*****	129	*****	144	*****	132	*****	*****	035	033	037	03
.863	****	~.117	*****	127	*****	101	*****	*****	051	058	*****	05
.877	076	~.093	*****	114	*****	084	*****	*****	*****	*****	*****	****1
.891	093	126	*****	116	*****	083	*****	*****	085	078	078	07
•916	108	127	241	*****	113	*****	096	097	107	109	104	****1
.928	133	*****	227	*****	125	*****	106	106	125	144	164	14
.940	153	*****	154	****	130	*****	105	116	136	155	170	16
•952	*****	*****	132	*****	089	072	078	100	108	129	156	****1
•962	094	099	064	*****	035	022	034	036	048	060	092	09
.974	021	028	*****	*****	.039	.022	.024	.034	.034	.013	.000	01
.986	.056	.052	.085	*****	• 070	.085	•069	.086	•080	.082	.071	• 0 :
•996	.095	.079	*****	*****	. 141	.124	.107	• 092	.100	• 096	.095	• 0 ٩

Table A25. Effect of Nozzle Pressure Ratio on Pressure Distributions for Staggered Tails Configuration at M=1.20 and $\alpha=0.015^{\circ}$

(a) NPR = 1.043

TFST	DAR	AME	TEDC

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			S	VERTICAL TAIL			
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	3		Y	/B	Y	/ B	Υ/	'B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.205							
ALPHA, DEG	.015	0.05	015	*****	*****	*****	.033	.041
		0.10	031	019	005	• 001	.001	•004
NPR	1.043	0.20	059	071	028	051	030	042
		0.30	082	*****	063	085	055	067
PTO, PSI	14.786	0.40	129	167	103	*****	095	108
		0.50	178	214	148	205	115	138
PO, PSI	6.056	0.60	192	238	165	227	144	153
		0.70	202	221	195	228	148	152
QO, PSI	6.158	0.80	212	*****	206	209	114	139
		0.90	202	*****	199	*****	054	055

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	024	022	*****	014	*****	*****	*****	026	013	012	• 003	*****
.598	030	027	*****	028	*****	027	*****	026	014	008	*****	*****
.612	028	027	*****	027	*****	026	*****	017	010	007	*****	*****
.625	008	019	*****	023	*****	020	*****	016	008	005	*****	*****
.640	****	.081	****	.002	*****	010	*****	011	005	003	*****	*****
.654	*****	.083	*****	.027	*****	007	*****	016	020	018	*****	*****
.668	*****	*****	*****	.041	*****	.007	*****	002	009	005	*****	*****
.682	****	.012	*****	.024	*****	.012	*****	.008	.001	.000	001	*****
.696	*****	006	*****	.011	*****	.007	*****	.015	.011	.007	.002	.002
.710	*****	022	*****	****	*****	.012	*****	.019	.019	.013	.003	.000
.724	*****	042	*****	008	*****	.007	*****	.020	.018	.006	003	004
•738	*****	056	*****	029	*****	*****	*****	001	002	004	012	014
.752	*****	068	*****	029	*****	008	*****	.001	002	002	003	*****
.766	*****	093	*****	063	*****	037	*****	029	030	025	028	029
779	*****	100	*****	056	*****	.024	*****	.174	.030	006	009	012
.793	*****	114	*****	048	*****	.045	*****	*****	.060	.005	015	*****
₹.807	*****	107	*****	039	*****	.001	*****	*****	.023	.020	.002	.002
.821	*****	*****	****	051	*****	034	*****	*****	002	.019	.014	.009
.835	*****	080	*****	072	*****	071	*****	*****	033	004	.009	•002
.849	*****	077	*****	*****	*****	117	*****	*****	053	029	011	011
.863	****	067	*****	122	*****	154	*****	*****	094	056	*****	031
877	021	043	*****	121	*****	194	*****	*****	*****	*****	*****	*****
891	059	079	*****	131	*****	212	*****	*****	160	118	096	086
•916	121	132	193	*****	183	*****	231	219	222	171	141	151
.928	175	*****	241	*****	222	227	224	217	241	231	211	201
•940	247	*****	260	*****	276	274	260	253	284	286	276	271
•952	*****	*****	345	*****	344	323	308	302	336	365	364	355
•962	390	390	387	*****	361	271	248	199	143	132	170	203
.974	125	130	****	*****	108	098	089	077	073	072	079	079
•986	063	072	068	*****	058	057	054	056	054	056	057	053
• 996	030	035	*****	*****	030	031	031	036	038	040	037	036

AFTERBODY INTEGRATED PRESSURE DRAG COEFFICIENT

.1114

Table A25. Continued

(b) NPR = 2.013

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	4		Υ	/B	Y	/ B	Υ.	' B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.200							
ALPHA, DEG	•017	0.05	022	*****	*****	*****	•021	•036
		0.10	038	029	009	~.009	.003	.004
NPR	2.013	0.20	058	066	029	058	036	046
		0.30	088	*****	065	~.098	064	072
PTO. PSI	14.786	0.40	133	171	106	*****	097	113
		0.50	182	217	150	~.211	112	140
PO, PSI	6.094	0.60	191	244	169	236	145	153
		0.70	206	231	196	234	147	156
QO, PSI	6.147	0.80	216	*****	212	215	117	137
		0.90	211	*****	205	*****	058	057

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	o	18	36	45	54	72	81	90	108	135	162	180
•584	028	025	*****	020	*****	*****	*****	024	016	~.015	.001	*****
•598	035	029	*****	031	*****	030	*****	025	019	011	*****	*****
•612	036	032	*****	031	*****	024	*****	021	015	010	*****	*****
•626	017	024	*****	024	*****	023	*****	017	016	009	*****	*****
.640	*****	.073	*****	.000	* * * * * *	014	*****	015	012	005	*****	*****
.654	****	.069	****	.027	*****	009	*****	023	025	020	*****	*****
•668	****	****	*****	.039	*****	.008	*****	007	010	010	*****	*****
.682	*****	.015	*****	• 02 0	*****	.009	*****	.000	007	003	.001	*****
•696	****	010	****	.010	*****	.010	*****	• 006	.004	.001	•004	.003
.710	*****	027	*****	*****	*****	.010	*****	•015	.012	.010	.000	002
.724	****	046	*****	010	*****	•002	*****	.014	.011	.004	001	005
.738	*****	066	*****	034	*****	*****	*****	001	007	008	012	013
•752	*****	073	*****	029	* * * * * *	008	*****	004	004	005	003	*****
.766	****	096	****	066	*****	036	*****	031	031	028	026	027
.779	*****	108	*****	062	*****	.019	*****	•169	.027	006	011	011
•793	*****	119	*****	054	*****	• 042	*****	*****	.049	.004	016	*****
.807	*****	113	*****	047	*****	.000	*****	*****	.024	.019	.003	•000
.821	****	*****	*****	055	*****	047	*****	*****	008	.015	.012	.010
.835	****	090	****	084	*****	084	*****	*****	035	005	.004	.005
.849	*****	077	*****	*****	*****	122	*****	*****	064	~.029	011	009
.863	*****	065	*****	128	*****	166	*****	*****	099	059	*****	034
.877	029	053	*****	133	*****	202	*****	*****	*****	*****	*****	*****
.891	061	082	*****	137	*****	210	*****	*****	161	118	094	087
.916	126	138	199	*****	189	*****	236	226	226	174	143	150
.928	181	*****	244	*****	- .228	238	230	222	245	231	212	202
.940	253	*****	264	*****	283	280	267	258	287	291	276	271
•952	****	****	354	****	352	328	314	305	339	368	365	357
.962	340	256	~.291	*****	255	227	214	222	173	154	173	229
.974	095	088	*****	*****	087	078	071	075	080	084	081	080
.986	053	056	060	*****	055	042	041	047	057	068	056	052
.996	032	031	*****	*****	029	012	012	017	030	046	034	036

ORIGINAL PAGE IS OF POOR QUALITY

Table A25. Continued

(c) NPR = 3.993

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	5		Y	/B	Y	/B	Υ,	′B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.200							
ALPHA, DEG	.015	0.05	028	*****	*****	*****	.024	•028
		0.10	043	023	010	006	.007	•003
NPR	3.993	0.20	063	076	028	057	035	046
		0.30	088	*****	065	101	064	072
PTO, PSI	14.786	0.40	135	170	107	*****	093	112
		0.50	181	216	151	211	117	139
PO, PSI	6.097	0.60	202	242	169	232	143	153
		0.70	204	230	199	235	145	155
QO, PSI	6.146	0.80	218	*****	213	213	117	141
		0.90	209	*****	205	*****	056	056

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG.

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	031	025	*****	021	*****	*****	*****	027	018	014	.000	*****
598	035	030	*****	029	*****	030	*****	023	020	010	*****	*****
612	037	032	*****	030	*****	024	*****	020	016	013	*****	*****
.626	019	025	*****	030	*****	023	*****	021	019	011	*****	*****
.640	*****	.071	*****	005	*****	014	*****	015	011	008	*****	*****
654	*****	.072	*****	•023	*****	008	*****	026	026	022	*****	*****
668	*****	*****	*****	.037	*****	.010	*****	009	016	011	*****	*****
682	*****	.013	*****	.022	* * * * * *	.012	*****	004	010	007	.000	*****
696	*****	015	*****	.002	*****	.010	*****	.005	.006	.002	.001	.000
710	*****	026	*****	*****	* * * * * *	.009	*****	.015	.016	.009	•000	003
724	*****	040	*****	015	*****	.006	*****	.012	.008	.004	004	007
738	*****	067	*****	031	*****	*****	*****	.005	009	007	012	013
752	****	069	*****	031	*****	009	*****	002	004	004	003	*****
766	*****	097	*****	066	*****	039	*****	031	033	030	026	030
779	*****	107	*****	061	*****	.019	*****	.170	.027	007	011	012
793	****	118	*****	054	*****	.045	*****	*****	.051	.004	015	*****
807	*****	111	*****	048	*****	004	*****	*****	.021	.019	.002	003
821	****	*****	*****	057	*****	046	*****	*****	007	.016	.011	.010
835	*****	089	*****	087	*****	080	*****	*****	039	004	.004	.001
849	*****	079	*****	*****	*****	117	*****	*****	059	030	011	014
863	*****	058	*****	124	*****	162	*****	*****	100	059	*****	033
877	026	051	*****	127	*****	195	*****	*****	*****	*****	*****	*****
891	065	083	*****	135	*****	214	*****	*****	154	117	097	086
916	125	137	199	*****	187	*****	234	223	226	173	143	152
928	182	*****	242	*****	230	237	229	223	245	232	213	203
940	252	*****	264	*****	283	280	266	258	288	291	279	269
952	*****	*****	354	*****	350	331	313	306	339	368	+.365	356
962	384	336	309	*****	297	258	254	252	241	208	222	305
974	097	090	*****	*****	091	083	082	082	088	091	089	090
986	052	058	063	*****	062	045	044	048	061	075	061	059
996	029	033	*****	*****	028	012	010	013	029	051	035	037

Table A25. Continued

(d) NPR = 6.019

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	s	VERTICA	LTAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	6		Y	/ B	Y	/ B	Y/	В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.199							
ALPHA, DFG	.010	0.05	029	*****	*****	*****	.023	.035
		0.10	041	023	019	016	.003	.000
NPR	6.019	0.20	063	073	033	061	027	047
		0.30	088	*****	069	104	063	075
PTO, PSI	14.786	0.40	136	173	106	*****	095	114
		0.50	183	218	155	214	114	141
PO, PSI	6.106	0.60	202	242	176	235	144	158
		0.70	207	231	199	236	147	157
QO, PSI	6.144	0.80	220	*****	214	214	116	139
		0.90	210	*****	206	*****	056	058

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	029	029	*****	023	*****	*****	*****	026	021	015	003	*****
.598	037	032	*****	030	*****	~.033	*****	027	022	012	*****	*****
.612	035	034	*****	031	*****	026	*****	021	017	012	*****	*****
.626	020	027	****	030	*****	~.025	*****	020	016	012	*****	*****
.640	*****	.074	*****	007	*****	018	*****	013	015	009	*****	*****
.654	*****	.069	*****	•020	*****	012	*****	026	029	025	*****	*****
.668	****	* * * * *	****	•042	* * * * * *	.004	*****	010	015	015	*****	*****
•682	*****	.013	*****	.021	*****	•006	*****	002	010	006	003	*****
.696	****	011	*****	•005	* * * * * *	.005	*****	.007	.002	. 004	.003	002
.710	****	030	*****	*****	*****	.013	*****	.013	.012	•007	.001	003
.724	*****	046	*****	018	*****	.004	*****	.012	.010	•000	005	005
.738	****	065	****	036	*****	*****	****	.001	010	007	011	011
•752	*****	070	*****	038	*****	012	*****	003	006	005	003	*****
.766	*****	098	****	067	*****	038	*****	029	031	029	031	029
.779	*****	105	*****	058	*****	.022	*****	.173	.027	008	012	013
.793	*****	112	*****	052	*****	.040	*****	*****	.051	• 005	015	*****
.807	*****	112	****	046	*****	.000	*****	*****	.023	.016	.004	001
.821	*****	*****	****	057	*****	046	*****	*****	011	.011	.012	.010
.835	*****	092	*****	087	*****	078	*****	*****	036	007	.000	.000
.849	****	084	****	*****	*****	120	*****	*****	063	032	017	016
.863	*****	070	*****	130	*****	159	*****	*****	103	062	*****	031
.877	030	049	****	128	*****	197	*****	*****	*****	*****	*****	*****
.891	063	043	*****	133	*****	215	*****	*****	164	120	095	087
.916	124	137	201	*****	190	*****	236	227	228	177	145	154
.928	180	****	246	*****	- .230	238	230	225	247	233	213	202
.940	253	*****	264	*****	283	281	267	259	289	293	279	273
.952	*****	*****	354	*****	351	331	313	306	341	371	368	359
.962	192	161	146	*****	139	139	152	148	122	113	115	143
.974	057	061	*****	*****	067	055	052	058	065	071	061	067
.986	026	032	042	*****	043	031	028	032	047	058	037	042
• 996	010	016	*****	*****	018	001	.011	•005	013	041	017	021

ORIGINAL PAGE IS OF POOR QUALITY

Table A25. Concluded

(e) NPR = 8.069

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS				NTAL TAIL		VERTICA	L TAIL
POINT NUMBER	7		Y	SURFACE /B	Y	SURFACE /B	Υ/	_
MACH NUMBER	1.203	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	.010	0.05	027	*****	*****	*****	•020	•025
NPR	8.069	0.10 0.20	041 059	016 066	014 036	009 053	.003 032	•002 -•048
NFK	0.004	0.30	088	*****	066	104	064	071
PTO, PSI	14.782	0.40	130	169	102	*****	098	109
PO, PSI	6.074	0.50 0.60	179 198	217 241	153 175	212 234	113 141	134 151
00 001	. 151	0.70	203	229	197	234	147	154
QO, PSI	6.151	0.80 0.90	213 206	*****	210 203	212 *****	114 056	140 063

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
• 584	030	025	*****	019	*****	*****	*****	026	019	014	002	*****
•598	036	031	*****	028	*****	031	*****	025	022	013	*****	*****
•612	035	034	****	029	*****	024	*****	021	018	012	*****	*****
•626	020	028	*****	030	*****	022	*****	016	018	013	*****	*****
•640	****	.067	*****	011	*****	015	*****	012	012	007	*****	*****
•654	*****	.063	*****	.020	*****	010	*****	024	025	023	*****	*****
.668	*****	*****	*****	.040	*****	.005	*****	010	015	014	*****	*****
•682	*****	.015	*****	.021	*****	.009	*****	001	012	008	002	*****
•696	*****	011	*****	•005	*****	.008	*****	.002	.001	003	003	002
.710	*****	027	*****	*****	* * * * * *	.006	*****	.016	.010	.011	001	002
.724	*****	048	*****	015	*****	.005	*****	.015	.013	.006	008	.000
.738	*****	062	*****	032	*****	*****	*****	.000	006	005	013	007
• 752	*****	073	*****	036	*****	014	*****	002	005	.000	001	*****
•766	*****	097	*****	067	*****	034	*****	030	032	026	027	029
.779	*****	099	*****	057	*****	•022	*****	.172	.030	005	011	010
.793	*****	111	*****	050	*****	.046	*****	*****	.052	.008	015	*****
.807	*****	110	*****	042	*****	.006	*****	*****	.020	.020	.000	.003
.821	*****	*****	*****	053	*****	034	*****	*****	005	.015	.011	.013
.835	****	090	*****	077	* * * * * *	080	*****	*****	044	008	.000	•000
.849	*****	088	*****	*****	*****	119	*****	*****	055	029	016	017
.863	*****	070	*****	126	*****	161	*****	*****	099	057	*****	037
.877	026	049	*****	123	*****	189	*****	*****	*****	*****	*****	*****
.891	057	078	*****	133	*****	211	*****	*****	163	113	096	085
.916	120	133	196	*****	184	*****	233	222	225	171	142	150
.928	177	*****	244	*****	227	235	228	220	243	228	211	203
.940	246	*****	262	*****	277	277	264	255	285	290	277	269
. 952	*****	*****	348	*****	341	316	287	275	307	336	357	354
.962	082	075	073	*****	074	075	077	076	067	067	070	082
974	026	026	*****	*****	036	030	028	030	041	046	036	037
.986	.000	005	014	*****	019	014	008	009	019	034	018	012
• 996	.012	.004	*****	*****	.003	.013	.015	.023	.005	017	.004	.002

Table A26. Effect of Angle of Attack on Pressure Distributions for Staggered Tails Configuration at M=1.20 and NPR =1.006

(a) $\alpha = -2.777^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	9		Y	/ B	Υ	/ B	Y /	'В
7 0 2 11 7 10 7 2 1		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.200							
ALPHA, DFG	-2.377	0.05	214	*****	*****	*****	.019	.006
		0.10	163	.095	131	.104	.000	006
NPR	1.006	0.20	163	.022	129	.034	036	056
		0.30	177	*****	147	036	073	084
PTO, PSI	14.783	0.40	196	101	168	*****	102	119
		C.50	232	157	207	158	126	150
PO, PSI	6.094	0.60	257	176	226	175	149	167
		0.70	268	158	258	165	153	171
00, PSI	6.145	0.80	278	*****	261	136	137	156
		0.90	254	*****	239	*****	029	057

AFTERBODY PRESSURE COEFFICIENTS

PHI,	DEG
------	-----

X/L	o	18	36	45	54	72	81	90	108	135	162	180
• 584	036	029	*****	032	*****	*****	*****	041	030	018	.001	*****
•598	042	033	*****	042	*****	048	*****	039	033	016	*****	*****
.612	036	038	*****	043	*****	041	*****	033	027	016	*****	*****
.626	038	040	****	042	*****	042	*****	037	031	017	*****	*****
.640	*****	.063	*****	029	*****	033	*****	027	023	014	*****	*****
•654	*****	.065	*****	.013	*****	025	*****	042	039	029	*****	*****
.668	****	*****	*****	.033	*****	005	*****	024	029	020	*****	*****
•682	*****	.006	*****	.012	*****	006	*****	010	022	014	002	*****
•696	****	019	*****	011	*****	009	*****	013	014	005	• 004	.010
.710	*****	040	*****	*****	*****	013	*****	006	006	.009	.012	.012
.724	*****	052	*****	029	*****	014	*****	007	003	.009	.009	.003
.738	****	030	*****	049	*****	*****	*****	018	016	004	.002	.001
.752	*****	086	*****	046	*****	030	*****	015	010	002	.001	*****
.766	*****	105	****	078	*****	051	*****	037	036	026	025	020
.779	*****	107	*****	068	*****	.018	*****	.168	.015	008	006	002
.793	*****	123	*****	055	*****	•099	*****	*****	004	008	009	*****
.807	*****	120	*****	016	*****	.076	*****	*****	056	013	004	004
.821	*****	*****	*****	006	*****	.026	*****	*****	078	029	009	006
.835	*****	060	*****	037	*****	020	*****	*****	110	054	030	025
.849	*****	038	****	*****	*****	063	*****	*****	119	079	052	053
.863	*****	018	*****	075	*****	106	*****	*****	148	111	*****	080
.877	• 035	.015	*****	067	*****	141	*****	*****	*****	*****	*****	*****
.891	002	023	*****	071	*****	147	*****	*****	220	170	143	133
.916	073	082	149	*****	131	*****	206	236	266	223	190	194
.928	131	*****	196	*****	179	202	209	237	269	278	256	243
.940	204	*****	223	*****	244	258	257	265	298	328	319	311
.952	*****	*****	315	*****	321	324	324	307	258	314	398	393
.962	357	357	359	*****	356	300	237	148	108	111	136	147
.974	379	373	*****	*****	202	133	113	100	087	092	100	100
.986	124	118	109	*****	100	097	096	095	088	091	091	090
.996	052	056	*****	*****	066	078	081	084	080	073	070	066

AFTERBODY INTEGRATED PRESSURE DRAG COEFFICIENT

.1205

Table A26. Continued

(b) $\alpha = 0.022^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	s	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	10		Y.	/ B	Y	/ B	Y/	В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.199							
ALPHA, DEG	•022	0.05	023	*****	*****	*****	.013	.013
		0.10	042	027	013	017	.003	008
NPR	1.025	0.20	063	086	031	069	036	052
		0.30	088	*****	067	114	069	081
PTO, PSI	14.782	0.40	132	180	101	*****	103	114
		0.50	180	221	155	217	120	140
PO, PSI	6.101	0.60	198	248	175	238	145	160
		0.70	206	234	199	240	150	157
QO, PSI	6.143	0.80	218	*****	210	217	123	145
		0.90	206	*****	206	*****	063	066

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	033	030	*****	024	*****	*****	*****	030	020	020	003	*****
.598	039	034	*****	~.031	*****	031	*****	029	024	020	*****	*****
.612	037	038	*****	034	* * * * * *	026	*****	023	021	017	*****	*****
•626	022	029	*****	034	*****	023	*****	023	023	013	*****	*****
.640	*****	.063	*****	010	*****	020	*****	015	014	009	*****	*****
.654	*****	.062	*****	.013	*****	013	*****	027	030	025	*****	*****
.668	*****	*****	*****	.034	*****	.003	*****	014	018	016	*****	*****
.682	*****	.015	*****	.019	*****	.007	*****	003	013	006	004	*****
•696	*****	014	*****	.006	*****	.003	*****	002	001	001	007	004
.710	*****	028	*****	*****	*****	.003	*****	.008	.009	.004	002	008
.724	****	051	*****	020	*****	.005	*****	.011	.007	.000	011	008
.738	*****	067	*****	036	*****	*****	*****	~.005	012	009	016	013
•752	****	072	*****	~. 035	*****	~.015	*****	009	010	005	002	*****
•766	*****	103	*****	069	*****	~.038	*****	~.035	~.032	029	031	032
.779	*****	101	*****	057	*****	.019	*****	.172	.027	007	010	012
•793	*****	117	*****	053	*****	.043	*****	*****	.051	.006	016	*****
.807	*****	113	*****	048	*****	~.007	*****	*****	•026	.018	001	004
.821	****	*****	*****	062	*****	044	*****	*****	001	.013	.011	.007
.835	*****	094	*****	087	*****	085	*****	*****	037	006	.003	003
.849	*****	087	*****	*****	*****	127	*****	*****	052	027	015	015
.863	*****	070	*****	132	*****	166	*****	*****	099	061	*****	036
.877	030	053	*****	131	*****	199	*****	*****	*****	*****	*****	*****
.891	068	083	*****	139	*****	213	*****	*****	~.156	115	095	084
.916	128	140	205	*****	~.189	*****	240	227	227	174	142	149
•928	183	*****	245	*****	234	242	~.233	226	246	231	213	202
.940	251	*****	266	*****	287	~.283	268	~.260	290	292	278	272
• 952	*****	****	356	*****	~.352	~.333	~.315	309	342	370	370	357
.962	397	396	396	*****	368	283	256	216	159	149	190	281
.974	138	133	*****	*****	115	104	~.089	081	077	074	080	086
.986	071	079	074	*****	~.069	065	062	061	061	061	065	058
.996	038	048	*****	*****	~.040	039	~.039	043	041	043	045	039

Table A26. Continued

(c) $\alpha = 3.021^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	11		Y	/B	Y	/B	Y/	В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	1.200							
ALPHA, DEG	3.021	0.05	.146	*****	*****	*****	.014	003
		0.10	.104	158	.122	123	•007	.000
NPR	1.004	0.20	.047	179	.071	155	028	045
		0.30	002	*****	.016	193	059	066
PTO. PSI	14.784	0.40	060	247	038	*****	094	104
-		0.50	100	285	078	276	107	128
PO, PSI	6.097	0.60	110	309	104	297	135	150
		0.70	135	304	128	300	136	145
an, PSI	6,145	0.80	148	*****	151	280	116	֥135
		0.90	152	*****	155	*****	092	083

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
•584	033	030	*****	023	*****	*****	*****	030	015	034	013	*****
.598	037	032	*****	030	*****	030	*****	025	031	022	*****	*****
.612	032	033	*****	029	*****	028	*****	026	027	014	*****	*****
.626	.011	008	*****	026	*****	030	*****	026	019	015	*****	*****
.640	*****	.069	*****	005	* * * * * *	020	*****	018	016	007	*****	*****
.654	*****	.057	*****	.017	*****	015	*****	029	029	021	*****	*****
•668	*****	****	*****	.036	*****	001	*****	014	021	009	*****	*****
.682	*****	.008	*****	.018	*****	.001	*****	005	019	007	005	*****
.696	*****	010	*****	•005	*****	•004	*****	•003	005	009	014	008
.710	*****	025	*****	*****	*****	• 006	*****	• 007.	002	005	016	018
.724	*****	046	*****	012	*****	.001	*****	•006	.000	008	016	016
.738	*****	056	*****	029	* * * * * *	*****	*****	012	021	019	025	021
.752	****	062	*****	035	*****	018	*****	009	012	012	013	*****
.766	*****	092	*****	067	*****	042	*****	034	037	033	036	036
.779	*****	094	*****	058	*****	• 005	*****	.175	.033	016	016	016
• 793	****	104	*****	058	*****	017	*****	*****	.114	.012	022	*****
.807	*****	110	*****	074	*****	074.	*****	*****	.101	.051	006	014
.821	****	*****	*****	101	*****	117	*****	*****	.072	.060	.026	.017
.835	*****	121	*****	134	*****	156	*****	*****	.033	.045	.036	.032
.849	*****	126	*****	*****	*****	189	*****	*****	.011	.030	.034	.036
.863	****	~. 129	****	185	*****	223	*****	*****	034	.004	*****	.021
.877	087	111	*****	183	*****	255	*****	*****	*****	*****	*****	*****
.891	122	140	*****	195	*****	266	*****	*****	097	060	039	029
.916	177	192	253	*****	249	*****	264	272	177	119	086	097
.928	229	*****	293	*****	284	275	253	268	212	181	162	150
.940	293	*****	313	*****	323	294	275	281	268	251	233	223
.952	*****	*****	373	*****	309	246	251	317	335	340	330	316
•962	141	133	122	*****	117	107	108	131	289	384	384	377
•974	099	092	*****	*****	087	086	085	096	129	216	390	401
.986	086	084	083	*****	084	082	084	091	100	103	101	096
•996	072	066	*****	*****	071	072	072	082	082	070	055	051

Table A26. Concluded

(d) $\alpha = 5.987^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	s	VERTICA	L TAIL
POINT NUMBER	12			SURFACE /B		SURFACE /B	Υ/	В
MACH NUMBER	1.199	x/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	5.987	0.05	.291	*****	*****	*****	.026	•009
NPR	.985	0.10 0.20	.230	319 275	.253 .162	238 248	.011 023	.014 042
PTO, PSI	14.785	0.30 0.40	.094	***** 310	.108 .047	264 *****	045 079	056 093
	6.104	0.50 0.60	018 032	338 358	004 045	331 348	098 134	119 146
PO, PSI		0.70	061	350	063	348	133	138
QO, PSI	6.144	0.80 0.90	077 093	*****	093 104	325 *****	125 116	132 095

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
• 584	027	026	*****	030	*****	*****	*****	046	032	051	020	*****
.598	031	029	*****	036	*****	043	*****	047	048	023	*****	*****
.612	029	029	*****	035	*****	041	*****	047	037	020	*****	*****
.626	•015	.001	*****	027	*****	037	*****	047	039	022	*****	*****
.640	*****	.061	*****	002	*****	027	*****	032	034	014	*****	*****
.654	*****	.055	*****	.013	*****	023	*****	042	042	023	*****	*****
.668	****	****	*****	.019	*****	005	*****	029	038	014	*****	*****
.682	*****	.011	*****	.011	*****	003	*****	021	034	021	006	*****
.696	*****	.001	*****	002	*****	001	*****	017	025	027	019	015
.710	*****	016	*****	*****	*****	.001	*****	011	022	026	021	023
.724	****	035	*****	012	*****	007	*****	013	023	025	021	025
.738	****	050	*****	033	* * * * * *	*****	*****	029	037	032	030	031
.752	*****	057	*****	042	*****	027	*****	026	030	028	018	*****
.766	*****	092	*****	067	*****	052	*****	056	052	046	039	037
.779	****	095	*****	060	*****	004	*****	.185	.018	031	015	019
.793	*****	105	*****	079	*****	065	*****	*****	.177	.002	023	*****
.807	****	117	*****	107	*****	148	*****	*****	.181	.085	014	026
.821	*****	*****	*****	140	*****	185	*****	*****	.150	.111	.044	.021
.835	*****	154	*****	177	*****	218	*****	*****	.103	•111	.091	.077
.849	****	165	*****	*****	*****	248	*****	*****	.084	.097	.093	.087
.863	*****	178	*****	229	*****	274	*****	*****	.045	.067	*****	.070
.877	141	182	*****	235	*****	303	*****	*****	*****	*****	*****	*****
.891	152	194	*****	251	*****	315	*****	*****	026	001	.016	.022
•916	225	238	321	*****	300	*****	281	369	123	063	033	042
.928	267	*****	350	*****	326	299	270	335	166	130	111	100
.940	337	*****	364	*****	354	293	277	317	228	205	186	176
•952	*****	*****	418	*****	224	178	198	309	312	300	289	271
.962	174	176	170	*****	163	151	149	169	305	349	346	336
•974	125	123	*****	*****	157	149	142	135	203	305	365	365
• 986	119	114	119	*****	130	136	129	132	124	154	222	265
• 996	098	101	*****	*****	108	113	119	115	101	089	088	088

Table A27. Effect of Nozzle Pressure Ratio on Pressure Distributions for Staggered Tails Configuration at M=0.95 and $\alpha=0.023^\circ$

(a) NPR = 1.098

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	s	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	13		Y	/B	Y	/B	Υ,	' B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.948							
ALPHA, DEG	•023	0.05	095	*****	*****	*****	049	088
		0.10	123	180	082	155	082	096
NPR	1.098	0.20	161	234	136	212	117	141
		0.30	221	*****	191	273	167	187
PTO, PSI	14.789	0.40	294	306	265	*****	225	250
		0.50	330	260	288	253	227	251
PO, PSI	8.288	0.60	364	278	365	272	232	244
		0.70	372	296	359	293	193	197
QN, PSI	5.219	0.80	279	*****	308	300	161	146
		0.90	.033	*****	.016	*****	041	011

AFTERBODY PRESSURE COEFFICIENTS

PH1	[D	€G
-----	-----	----

X/L	0	18	36	45	54	72	81	90	108	135	162	180
•584	004	007	*****	.002	*****	*****	*****	003	003	007	.010	*****
.598	.009	.000	*****	010	*****	008	*****	015	017	006	*****	*****
.612	.029	.017	*****	.009	*****	005	*****	007	007	013	*****	*****
.626	.096	.067	*****	•019	*****	.002	*****	002	005	012	*****	*****
.640	****	.091	*****	.024	*****	003	*****	008	019	025	*****	*****
•654	*****	.024	*****	001	*****	004	*****	024	029	030	*****	*****
•668	*****	*****	*****	016	*****	015	*****	011	016	022	*****	*****
.682	*****	056	*****	042	*****	033	*****	032	039	032	036	*****
• 696	*****	094	*****	059	*****	057	*****	043	046	041	042	035
.710	*****	116	*****	*****	*****	073	*****	056	056	035	039	037
.724	****	153	*****	103	*****	083	*****	066	064	038	052	043
.738	*****	177	*****	121	*****	*****	*****	084	076	056	051	045
•752	*****	183	*****	131	*****	093	*****	070	071	038	040	*****
.766	*****	195	*****	159	*****	072	*****	054	048	055	053	060
.779	*****	166	*****	103	*****	016	*****	.157	.019	018	030	038
.793	****	162	*****	117	* * * * * *	064	*****	*****	.008	028	049	*****
.807	*****	173	*****	138	*****	129	*****	*****	045	043	058	053
.821	*****	*****	*****	173	*****	182	*****	*****	085	075	076	076
.835	****	155	*****	193	*****	219	*****	*****	150	115	101	108
.849	*****	107	*****	*****	*****	243	*****	*****	182	154	146	143
.863	*****	105	*****	183	*****	240	*****	*****	232	199	*****	178
.877	100	110	*****	181	*****	215	*****	*****	*****	*****	*****	*****
.891	164	189	*****	206	*****	254	*****	*****	330	275	269	255
.916	242	253	321	*****	287	*****	309	307	334	329	319	326
.928	275	*****	344	*****	301	241	229	183	218	265	336	356
.940	211	*****	157	*****	168	096	078	057	066	109	144	161
.952	*****	*****	050	*****	031	008	001	.028	.023	.018	012	017
•962	.022	.020	.033	*****	.045	.052	.060	.085	.086	.079	.066	.061
.974	.089	•086	*****	*****	.096	.100	.114	.124	.114	.126	.114	•116
.986	.131	.132	.138	*****	.125	.119	.136	.140	.137	.139	.133	.136
• 995	.132	.142	*****	*****	•133	•140	.152	.150	.146	.140	.155	.148

AFTERBODY INTEGRATED PRESSURE DRAG COEFFICIENT

.0527

Table A27. Continued

(b) NPR = 1.960

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	s	VERTICA	LTAIL
POINT NUMBER	14			SURFACE /B		SURFACE /B	Υ/	В
MACH NUMBER	.950	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	.021	0.05	094	*****	*****	*****	047	072
NPR	1.960	0.10 0.20 0.30	118 166 205	185 237 *****	061 129 192	155 208 275	072 115 164	095 135 183
PTO, PSI	14.784	0.40	296 327	289 265	260 283	***** 253	221 230	247 254
PO, PSI	8.274	0.60	362 379	274 290	355 364	265 285	226 187	256 198
QO, PSI	5.223	0.80 0.90	284 -035	*****	252 .042	214 *****	161 049	141 012

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
•584	.001	005	*****	001	*****	*****	*****	005	.004	002	.010	*****
.598	.006	.010	*****	006	*****	009	*****	011	009	010	*****	*****
.612	• 024	.026	*****	.006	*****	.001	*****	003	009	010	*****	*****
.626	.090	.067	*****	.021	*****	.000	*****	.001	007	009	*****	*****
.640	*****	.092	*****	•025	*****	005	*****	003	015	016	*****	*****
.654	*****	.030	*****	•005	*****	005	*****	022	021	034	*****	*****
.668	*****	*****	*****	020	*****	013	*****	014	018	023	*****	*****
.682	*****	056	*****	044	*****	040	*****	039	037	026	032	*****
.696	*****	089	*****	058	*****	051	*****	053	040	037	034	029
.710	*****	107	*****	*****	*****	063	*****	048	049	039	042	034
.724	*****	147	******.	105	*****	084	*****	069	058	048	042	038
.738	*****	172	*****	126	*****	*****	*****	074	080	052	051	042
•752	*****	179	*****	119	*****	085	*****	076	061	048	039	*****
.766	*****	196	*****	143	*****	074	*****	048	054	050	051	059
•779	*****	177	*****	104	*****	013	*****	.156	.025	-,015	034	033
.793	*****	172	*****	113	*****	054	*****	*****	.013	028	045	*****
.807	*****	156	*****	131	*****	124	*****	*****	042	-,048	050	048
.821	****	*****	*****	166	*****	176	*****	*****	094	082	079	070
.835	****	140	*****	180	*****	229	*****	*****	150	114	108	109
.849	*****	096	*****	*****	*****	239	*****	*****	190	162	142	138
.863	****	109	*****	177	*****	274	*****	*****	244	207	*****	174
.877	093	113	*****	173	*****	254	*****	*****	*****	*****	*****	*****
.891	159	175	*****	203	*****	249	*****	*****	325	274	258	248
.916	211	233	290	*****	272	*****	283	300	316	308	306	314
.928	237	*****	282	*****	219	193	184	156	182	-, 228	302	277
•940	179	*****	118	*****	106	066	063	042	050	076	109	109
.952	*****	*****	017	*****	004	.012	.021	.046	.036	.022	.007	.000
.962	.062	.064	.072	*****	.075	.080	.083	.095	.097	•090	.081	.080
.974	.132	.137	*****	*****	.137	.125	.125	.132	.120	.139	.132	.137
•986	.163	.171	.175	*****	.172	.160	.155	.147	.139	.149	.158	•167
•996	•191	.191	*****	*****	.193	.185	.180	.170	.166	.161	.168	.180

Table A27. Continued

(c) NPR = 3.020

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TATL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	15		Y	/B	Y	/ B	Y/	В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.951							
ALPHA, DFG	.021	0.05	090	*****	*****	*****	055	063
		0.10	109	182	065	155	065	096
NPR	3.020	0.20	156	239	126	207	104	141
		0.30	211	*****	185	270	162	192
PTO, PSI	14.786	0.40	281	287	257	*****	221	248
		0.50	320	258	280	258	230	253
PO, PSI	8.264	0.60	357	271	352	264	225	236
		0.70	360	293	357	283	192	198
QO, PSI	5.230	0.80	211	*****	290	224	169	r.150
-		0.90	.062	*****	.028	*****	057	018

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
• 584	008	005	*****	.003	*****	*****	*****	001	003	.002	.008	*****
•598	.004	.004	*****	.000	*****	012	*****	008	012	011	*****	*****
•612	.032	.024	*****	.007	*****	.002	*****	003	~.012	010	*****	*****
•626	.104	.065	****	.024	*****	.008	*****	.000	00B	002	*****	*****
.640	*****	.088	*****	.033	*****	001	*****	010	016	019	*****	*****
.654	*****	.031	*****	.001	*****	003	*****	023	022	026	*****	*****
.668	*****	****	*****	008	*****	014	*****	018	~.015	026	*****	*****
•682	*****	053	*****	049	*****	030	*****	031	040	034	029	*****
•696	****	091	*****	060	* * * * *	047	*****	037	042	039	033	027
.710	*****	111	*****	*****	*****	062	*****	048	053	042	031	032
.724	*****	152	*****	107	*****	075	*****	062	061	050	048	044
.738	****	176	*****	132	* * * * * *	*****	*****	073	072	058	049	052
•752	*****	180	*****	134	*****	084	*****	070	066	050	041	*****
.766	*****	209	*****	152	*****	073	*****	049	044	056	055	057
.779	*****	165	*****	107	*****	017	*****	.163	.017	023	027	034
.793	*****	154	*****	115	*****	055	*****	*****	.009	025	045	*****
.807	*****	156	*****	134	*****	126	*****	*****	~.038	039	051	051
.821	*****	*****	*****	170	*****	160	*****	*****	~.095	075	071	079
.835	*****	151	*****	167	*****	211	*****	*****	~.146	111	098	104
.849	*****	104	*****	*****	*****	248	*****	*****	192	149	142	141
.863	*****	102	*****	166	*****	246	*****	*****	243	199	*****	173
.877	097	122	*****	171	*****	235	*****	*****	*****	*****	*****	*****
.891	168	178	*****	211	*****	261	*****	*****	~.333	275	266	259
.916	241	237	306	*****	271	*****	-,279	301	~.316	322	301	320
.928	237	*****	280	*****	247	202	182	179	181	256	291	302
• 940	158	*****	123	*****	109	072	071	047	050	080	115	120
.952	*****	*****	022	*****	006	.006	.012	.035	.042	.025	.000	.000
.962	.051	.058	.065	*****	.056	• 074	.080	.091	.087	.083	.083	.077
.974	.136	.129	*****	*****	.132	•129	.129	.124	.132	.132	.134	.133
.986	.175	.169	.172	*****	•170	•163	.154	.151	.152	.158	.150	.163
. 996	.183	.189	*****	*****	.188	.179	.172	.166	.167	.161	.165	.163

Table A27. Concluded

(d) NPR = 5.036

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	16		Y	/8	Y	/ B	Y /	'В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.948							
ALPHA, DEG	•021	0.05	097	*****	*****	*****	042	071
		0.10	116	182	068	155	077	096
NPR	5.036	0.20	163	228	133	201	108	144
		0.30	209	*****	188	261	164	184
PTO, PSI	14.726	0.40	289	299	260	*****	219	245
		0.50	323	256	285	262	229	250
PO, PSI	8.259	0.60	371	269	357	263	234	242
		0.70	373	288	366	287	194	193
QO, PSI	5.193	0.80	208	*****	269	262	162	164
		0.90	.057	*****	.045	*****	055	004

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
• 584	003	016	*****	.002	*****	*****	*****	001	•000	• 002	•010	*****
•598	•005	.005	*****	002	*****	012	*****	018	011	009	*****	*****
.612	.030	.027	*****	.009	*****	.000	*****	010	006	012	*****	*****
•626	.097	.071	*****	.022	*****	.010	*****	008	006	005	*****	*****
.640	****	.095	*****	.030	*****	•002	*****	010	013	013	*****	*****
.654	****	•032	*****	.011	*****	008	*****	017	029	025	*****	*****
•668	*****	*****	*****	005	*****	012	*****	019	014	020	*****	*****
.682	*****	053	*****	040	*****	034	*****	036	036	029	031	*****
•696	*****	087	*****	055	*****	052	*****	045	038	038	034	036
.710	*****	108	*****	*****	*****	064	*****	053	051	039	031	038
•724	*****	1 45	*****	108	*****	076	*****	063	055	055	042	048
.738	****	168	*****	141	*****	*****	*****	076	072	055	051	050
•752	*****	176	*****	132	*****	093	*****	072	061	055	044	*****
.766	****	213	*****	149	*****	072	*****	049	045	055	057	061
•779	*****	174	*****	102	*****	010	*****	.163	.021	021	033	040
•793	****	167	*****	116	*****	051	*****	*****	.009	025	046	*****
.807	****	164	*****	134	*****	127	*****	*****	046	043	051	057
.821	*****	*****	*****	167	*****	167	*****	*****	089	074	072	077
.835	****	157	****	173	* * * * * *	228	****	*****	153	111	107	111
.849	*****	106	*****	*****	*****	235	*****	*****	187	154	142	147
.863	*****	097	****	176	* * * * * *	235	*****	*****	245	199	*****	180
.877	097	109	*****	171	*****	219	*****	*****	*****	*****	*****	*****
.891	153	171	*****	210	*****	248	*****	*****	338	283	264	257
•916	235	232	307	*****	251	*****	286	292	305	300	299	325
•928	242	*****	251	*****	199	178	167	161	161	238	270	280
•940	136	*****	113	*****	080	056	042	032	037	090	096	106
•952	*****	****	005	*****	.010	.026	.032	.048	.055	.040	.014	.013
.962	.069	.073	.079	*****	.084	.088	.091	.094	.098	.103	.096	.088
.974	.148	.143	*****	*****	.151	.144	.141	.134	.138	• 142	.143	.142
•986	.184	.191	.184	*****	.188	.177	.173	•153	.156	.152	.163	.165
•996	.200	.194	*****	*****	• 201	.196	.190	.182	.181	.176	.171	.179

Table A28. Effect of Angle of Attack on Pressure Distributions for Staggered Tails Configuration at M = 0.95 and NPR = 1.096

(a) $\alpha = -2.977^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	s	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	18		Y	/ B	Y	/ B	Y/	'В
	-	X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	,949	.	•••	7,2	• • •	***	•••	***
ALPHA, DEG	-2.977	0.05	316	*****	*****	*****	046	078
		0.10	295	.019	227	.017	084	107
NPR	1.096	0.20	283	049	226	062	125	150
		0.30	310	*****	284	106	172	203
PTO, PSI	14.789	0.40	374	163	334	*****	233	261
	<u> </u>	0.50	419	183	369	175	247	271
PU, PSI	8.279	0.60	434	223	426	219	247	251
. 3, . 31		0.70	459	242	432	243	125	7.116
QO, PSI	5.224	0.80	381	*****	296	251	041	018
40, , 51		0.90	030	*****	039	*****	.027	.053

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

					·	,						
X/L	o	18	36	45	54	72	81	90	108	135	162	18(
.584	033	020	*****	011	*****	*****	*****	014	011	.001	.014	****1
.598	.022	.006	*****	009	*****	020	*****	021	026	014	*****	****
.612	.044	.026	*****	.003	*****	010	*****	016	015	017	*****	****
.626	.108	.081	*****	.020	*****	002	*****	020	022	018	*****	****
.640	*****	.103	*****	.017	*****	012	*****	028	027	022	*****	****
.654	*****	.028	*****	006	*****	024	*****	035	044	032	*****	****
•668	*****	*****	*****	020	*****	036	*****	031	037	031	*****	****
.682	****	076	*****	066	*****	052	*****	047	053	045	034	****
.696	*****	095	*****	079	*****	072	*****	064	064	048	038	0
.710	*****	130	*****	*****	*****	083	*****	071	068	052	045	0
.724	****	158	*****	119	*****	102	*****	078	081	056	048	0
.738	*****	190	*****	149	*****	*****	*****	095	085	061	048	0
.752	*****	186	*****	149	*****	115	*****	094	075	056	049	****
.766	****	218	*****	187	*****	100	*****	062	055	060	064	0
.779	*****	168	*****	088	*****	.021	*****	.155	012	039	049	0
•793	****	125	*****	059	*****	.029	*****	*****	081	071	069	****
.807	*****	081	*****	045	*****	012	*****	*****	148	098	087	0
.821	****	*****	*****	050	*****	042	*****	*****	181	131	119	1
.835	*****	028	*****	047	*****	071	*****	*****	241	182	151	1
.849	*****	020	*****	*****	*****	100	*****	*****	264	216	191	1
.863	*****	034	*****	088	*****	128	*****	*****	313	255	*****	2
.877	034	059	*****	100	*****	161	*****	*****	*****	*****	*****	****
.891	115	136	*****	157	*****	201	*****	*****	398	343	310	3
.916	202	214	292	*****	240	*****	268	263	306	352	353	3
.928	275	*****	357	*****	297	221	172	123	147	201	273	3
.940	321	*****	301	*****	-,236	111	082	046	038	103	096	1
.952	*****	*****	084	*****	101	032	045	.015	001	.021	019	0
.962	026	020	012	*****	.009	.004	.024	.029	.034	.043	.034	.0
.974	.060	.047	*****	*****	.057	.036	.040	.036	.036	.044	.052	•0
.986	.101	.103	.092	*****	.091	.062	.071	.058	.063	.072	.067	• C
•996	.110	•105	*****	*****	.089	.077	.085	.079	•096	.069	.072	• C

Table A28. Continued

(b) $\alpha = 0.022^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO		VERTICA	L TAIL	
POINT NUMBER	19			SURFACE /B		SURFACE /B	Υ/	В
MACH NUMBER	•952	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DFG	.022	0.05 0.10	089 109	***** 185	***** 071	***** 148	047 070	074 092
NPR	1.119	0.10 0.20 0.30	157 210	233 *****	121 185	207 270	112 167	141 189
PTO, PSI	14.789	0.40	287 322	296 285	251 285	***** 260	225 232	253 254
PG, PSI	8.257	0.60	367 369	271 291	357 355	265 290	238 194	243 200
QO, PSI	5.236	0.80 0.90	309 -020	*****	306 .010	296 *****	173 068	166 034

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
• 584	019	006	*****	.004	*****	*****	*****	003	006	.000	.010	*****
•598	002	001	*****	003	*****	010	*****	016	009	002	*****	*****
•612	.022	.025	*****	•015	*****	001	*****	003	009	006	*****	*****
•626	.096	.065	*****	.026	*****	.006	*****	.001	007	008	*****	*****
.640	*****	.090	*****	.027	*****	001	*****	008	009	015	*****	*****
.654	*****	.038	*****	.010	*****	006	*****	020	028	025	*****	*****
.668	*****	*****	****	011	*****	017	*****	022	021	018	*****	*****
•682	*****	061	*****	040	*****	036	*****	038	033	032	028	*****
•696	****	084	*****	058	* * * * * *	046	*****	046	047	035	035	035
.710	*****	117	*****	*****	*****	062	*****	059	048	038	038	034
•724	*****	144	*****	103	*****	082	*****	063	061	049	046	039
.738	****	177	*****	133	*****	*****	*****	072	073	054	049	048
•752	*****	176	*****	131	*****	092	*****	067	061	050	043	*****
.766	*****	218	*****	152	*****	079	*****	046	045	053	056	057
•779	*****	176	*****	109	*****	009	*****	.157	.025	019	033	039
•793	*****	165	*****	118	*****	063	*****	*****	• 004	027	043	*****
.807	*****	174	****	133	*****	124	*****	*****	041	046	053	048
.821	*****	*****	*****	167	*****	185	*****	*****	087	074	075	074
.835	*****	154	*****	203	*****	229	*****	*****	148	114	105	103
.849	****	129	*****	*****	*****	257	*****	*****	186	158	141	144
.863	*****	113	*****	171	*****	257	*****	*****	242	199	*****	177
•877	101	115	*****	159	*****	242	*****	*****	*****	*****	*****	*****
.891	173	187	*****	212	*****	256	*****	*****	333	277	265	255
•916	249	251	318	*****	275	*****	315	323	342	336	321	335
.928	306	*****	331	*****	298	255	229	213	233	307	370	~. 373
.940	246	*****	184	*****	150	104	088	067	074	098	146	182
•952	*****	*****	057	*****	023	009	.010	.027	.035	.021	004	015
.962	.009	.023	.041	*****	.045	.060	.059	.080	.075	.086	.066	.064
.974	.081	.093	*****	*****	.101	.107	.114	.112	.107	.120	.110	.110
985	.122	.128	.129	*****	.128	.128	.133	.131	.133	. 128	.130	.132
•996	.130	.136	*****	*****	.142	.134	.143	.140	.142	.137	•148	.152

Table A28. Continued

(c) $\alpha = 3.018^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	20		Y	/B	Y	/B	Y/	В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	•951							
ALPHA, DEG	3.018	0.05	•105	*****	*****	*****	034	066
		0.10	.043	349	.073	291	060	087
NPR	1.103	0.20	048	362	010	317	096	125
		0.30	114	*****	083	374	149	169
PTO, PSI	14.788	0.40	200	450	166	*****	199	219
		0.50	221	490	197	470	206	227
PO, PSI	8.263	0.60	289	473	279	457	196	203
		0.70	296	393	288	400	- 205	211
QO, PSI	5.232	0.80	233	*****	279	209	224	224
,		0,90	.039	*****	016	*****	212	168

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	9	18	36	45	54	72	81	90	108	135	162	180
.584	003	.007	*****	.008	*****	*****	*****	005	• 002	.001	.012	****
.598	.004	.011	*****	001	*****	014	*****	019	009	002	*****	****
.612	.027	.027	*****	.013	*****	007	*****	008	009	001	*****	****
.626	.091	•060	*****	•028	*****	.008	*****	009	004	006	*****	****
.640	*****	.080	*****	.024	*****	.000	*****	011	009	012	*****	****
.654	*****	.040	*****	.010	*****	003	*****	017	021	017	*****	****
.668	*****	*****	*****	• 00 2	*****	006	*****	014	012	010	*****	****
.682	*****	049	*****	026	*** **	028	*****	033	024	025	024	****
•696	*****	070	*****	045	*****	042	*****	035	031	032	028	02
.710	*****	092	*****	*****	*****	056	*****	044	043	028	031	02
.724	*****	133	*****	088	*****	074	*****	052	054	041	033	04
.738	*****	154	*****	109	*****	*****	*****	065	060	045	038	01
•752	*****	155	*****	107	*****	070	*****	051	047	036	025	****1
.766	*****	177	*****	122	*****	058	*****	023	022	038	041	04
.779	*****	158	*****	107	*****	027	*****	.184	.073	.013	001	01
.793	*****	170	*****	144	*****	128	*****	*****	.104	. 024	010	****1
.807	*****	195	*****	186	*****	216	*****	*****	.056	.022	009	01
.821	*****	*****	*****	231	*****	271	*****	*****	.009	014	028	~.01
.835	*****	249	*****	280	*****	321	*****	*****	062	042	046	~.0!
.849	*****	245	*****	*****	*****	364	*****	*****	102	085	086	O'
.863	****	224	****	326	****	410	*****	*****	163	137	*****	1:
.877	192	211	*****	299	*****	413	*****	*****	*****	*****	*****	****1
.891	252	277	*****	317	*****	420	*****	*****	264	218	203	21
.916	324	320	388	*****	344	*****	268	278	313	277	262	2·
.928	255	*****	282	*****	246	173	141	181	~.250	310	355	3
.940	112	*****	102	*****	092	047	072	072	~.117	178	287	~.3 :
.952	****	****	003	*****	.026	.037	001	.024	022	040	072	~.0
.962	.046	.043	.044	*****	.051	.063	.066	.048	.032	.032	.014	• 01
.974	.082	.079	*****	*****	.073	.089	.075	.064	.060	.093	.080	• 0:
.986	.099	.095	.101	*****	. 039	.099	.091	.090	.099	.114	•112	-1
•995	.105	.108	*****	*****	.110	.109	.101	.101	.106	.116	.113	.1

Table A28. Concluded

(d) $\alpha = 5.990^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS	HORIZO Upper Surface			NTAL TAIL	•	VERTICA	L TAIL
POINT NUMBER	21			/B		SURFACE /B	Υ,	-
MACH NUMBER	•951	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	5.990	0.05	.261	*****	*****	*****	016	042
NPR	1.079	0.10 0.20	•179 •069	523 480	•222 •104	460 437	045 078	058 104
PTO, PSI	14.784	0.30 0.40	011 089	***** 534	•021 ••069	464 *****	122 163	147 190
		0.50	157	570	111	548	167	185
PD, PSI	8.260	0.60 0.70	198 188	579 529	198 184	555 487	168 210	192 219
QO, PSI	5.232	0.80 0.90	182 019	*****	183 056	182 *****	253 280	249 251

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	.010	.015	*****	•000	*****	*****	*****	019	010	.001	.030	*****
.598	.019	.015	*****	001	*****	014	*****	027	023	006	*****	*****
.612	.033	.027	*****	.007	*****	003	*****	019	019	003	*****	*****
.626	.090	.060	*****	.019	*****	005	*****	012	017	003	*****	*****
•640	*****	.078	*****	.022	*****	004	*****	023	022	013	*****	*****
.654	*****	.034	*****	.008	*****	005	*****	023	029	021	*****	*****
.668	*****	*****	*****	002	*****	008	*****	014	017	009	*****	*****
.682	*****	029	*****	025	*****	025	*****	037	037	020	010	*****
•696	*****	059	*****	038	*****	037	*****	039	040	017	015	004
•710	*****	082	*****	*****	*****	051	*****	042	037	020	006	006
.724	*****	102	*****	074	*****	056	*****	056	050	027	019	010
.738	*****	124	*****	084	*****	*****	*****	053	061	032	015	020
.752	*****	119	*****	088	*****	053	*****	043	037	014	.001	*****
.766	*****	138	*****	097	*****	035	*****	007	004	014	013	011
•779	*****	140	*****	110	*****	045	*****	• 224	.128	. 052	.037	.028
•793	*****	177	*****	168	*****	226	*****	*****	• 205	.080	.036	*****
.807	*****	218	****	225	* * * * * *	323	*****	*****	.171	.090	.041	.038
.821	*****	*****	*****	290	*****	365	*****	*****	.110	.069	.036	.019
.835	*****	302	*****	343	*****	406	*****	*****	.033	.033	.013	• 002
.849	****	324	****	*****	*****	451	****	*****	020	012	022	025
.863	*****	320	*****	405	*****	488	*****	*****	079	057	*****	057
.877	274	312	****	404	*****	503	*****	*****	*****	*****	*****	*****
.891	344	380	*****	425	*****	516	*****	*****	193	140	139	143
•916	346	353	390	*****	270	*****	266	263	242	204	195	199
•928	254	*****	182	*****	114	123	128	133	233	275	294	281
•940	128	*****	090	*****	084	086	091	087	195	303	370	362
.952	*****	*****	081	*****	085	078	076	079	120	147	223	199
.962	039	049	060	*****	086	070	076	049	071	050	065	073
.974	032	030	*****	*****	058	052	052	036	035	.012	.016	.016
•986	009	005	002	*****	026	.001	006	.004	.019	.051	.049	• 061
•996	.040	.037	*****	*****	.019	.045	.045	.028	.041	.061	.054	.061

Table A29. Effect of Nozzle Pressure Ratio on Pressure Distributions for Staggered Tails Configuration at M=0.90 and $\alpha=0.020^\circ$

(a) NPR = 1.113

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	22		Y	/ B	Y	/ B	Y/	'в
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.901							
ALPHA, DEG	.020	0.05	109	*****	*****	*****	079	086
		0.10	134	161	082	153	089	100
NPR	1,113	0.20	181	196	145	179	122	154
		0.30	220	*****	202	226	173	203
PTO, PSI	14.786	0.40	299	275	270	*****	221	243
		0.50	326	278	296	263	223	236
PD, PSI	8.732	0.60	326	265	333	279	196	199
		0.70	172	162	215	196	151	149
QQ, PSI	4.963	0.80	064	*****	091	102	107	083
		0.90	.023	*****	• 004	*****	045	022

AFTERBODY PRESSURE COEFFICIENTS

Ρ	H	I	,	0)E	G
---	---	---	---	---	----	---

X/L	o	18	36	45	54	72	81	90	108	135	162	180
.584	023	004	*****	005	*****	*****	*****	017	011	015	003	*****
•598	012	006	*****	017	*****	023	*****	030	021	014	*****	*****
•612	.016	.011	*****	.001	*****	017	*****	014	019	020	*****	*****
.626	.080	.051	*****	.006	*****	012	*****	012	020	024	*****	*****
.640	*****	.067	*****	.001	*****	019	*****	020	023	031	*****	*****
•654	*****	.003	*****	023	*****	023	*****	039	037	039	*****	*****
•668	*****	*****	*****	031	*****	036	*****	036	033	032	*****	*****
.682	*****	091	*****	058	*****	052	*****	048	049	037	039	*****
.696	*****	106	*****	070	*****	058	*****	055	056	040	040	046
.710	*****	136	*****	*****	*****	067	*****	066	056	037	036	039
.724	****	152	*****	099	*****	075	*****	068	063	049	046	042
.738	*****	174	*****	123	*****	*****	*****	074	072	055	053	046
.752	****	172	*****	118	* * * * * *	075	*****	055	060	045	045	*****
•7 6 6	*****	185	*****	126	*****	063	*****	039	043	055	064	065
•779	*****	145	*****	094	*****	016	*****	•150	.010	029	044	051
.793	*****	146	****	105	*****	061	****	*****	002	045	056	*****
.807	*****	129	*****	112	*****	107	*****	*****	046	061	067	063
.821	*****	* * * * *	****	122	*****	153	*****	*****	099	096	085	088
.835	*****	106	*****	141	*****	181	*****	*****	152	133	120	122
.849	*****	095	*****	*****	*****	205	*****	*****	195	169	150	157
.863	*****	111	****	173	*****	237	*****	*****	255	214	*****	179
.877	104	121	*****	168	*****	231	*****	*****	*****	*****	*****	*****
.891	155	174	****	208	*****	247	*****	*****	308	253	218	207
•916	170	167	215	*****	175	*****	175	178	181	184	178	197
.928	173	*****	198	*****	161	141	133	115	140	174	182	185
.940	162	*****	138	*****	133	103	092	078	102	140	158	159
.952	****	*****	083	*****	071	046	039	027	036	069	086	086
•962	014	003	.006	*****	.012	.019	.023	.030	.027	.026	.003	009
.974	.077	.079	*****	*****	.090	.095	.086	.098	.096	.098	.090	.089
.986	.139	.141	.144	*****	.143	.140	.142	•145	•146	.143	.145	.145
•996	.157	.163	*****	*****	•163	.163	.164	.169	.170	.169	.168	•169

.0450

Table A29. Continued

(b) NPR = 2.027

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS		442252		NTAL TAIL		VERTICA	L TAIL
POINT NUMBER	23		Y	SURFACE /B	Y	SURFACE /B	Υ/	_
MACH NUMBER	.900	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	.021	0.05	112	*****	*****	*****	069	096
NPR	2.027	0.10 0.20	129 179	172 203	079 148	149 188	085 124	107 162
PTO, PSI	14.782	0.30 0.40	227 289	***** 269	195 264	223 *****	175 216	204 235
PO, PSI	8.741	0.50 0.60	318 286	275 245	290 306	245 252	209 177	227 198
QO, PSI	4.955	0.70 0.80	151 051	146 *****	182 076	172 083	144 093	140 076
		0.90	•034	*****	.016	*****	040	016

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
. 584	016	010	*****	•000	*****	*****	*****	009	015	012	001	*****
• 598	012	009	*****	013	*****	020	*****	016	022	014	*****	*****
•612	.017	.010	*****	.002	*****	012	*****	008	019	016	*****	*****
•626	.083	.051	*****	.010	*****	009	*****	009	018	017	*****	*****
.640	*****	.072	*****	•005	*****	014	*****	018	026	026	*****	*****
.654	*****	.011	*****	013	*****	021	*****	034	038	038	*****	*****
.668	****	*****	*****	027	*****	035	*****	030	030	028	*****	*****
682	*****	077	*****	054	*****	048	*****	045	045	043	041	*****
696	****	103	*****	080	*****	062	*****	052	051	045	039	030
710	****	127	*****	*****	*****	068	*****	062	053	041	042	032
724	*****	150	*****	106	*****	085	*****	066	061	053	042	039
.738	****	174	*****	130	* * * * * *	*****	*****	068	070	056	046	041
752	*****	165	*****	120	*****	079	*****	05 5	055	050	042	*****
766	*****	177	*****	125	*****	060	*****	032	042	056	062	059
779	*****	143	*****	096	*****	012	*****	.155	.016	028	039	036
793	*****	136	*****	095	*****	059	*****	*****	006	038	057	*****
807	****	133	*****	114	*****	099	*****	*****	060	054	063	059
821	*****	*****	*****	115	*****	149	*****	*****	100	087	087	084
835	****	107	*****	136	*****	171	*****	*****	165	125	116	118
849	****	099	****	*****	*****	205	*****	*****	194	160	149	138
863	*****	103	*****	160	*****	226	*****	*****	254	197	*****	163
877	103	113	*****	166	*****	224	*****	*****	*****	*****	*****	*****
891	147	160	*****	180	*****	243	*****	*****	274	232	202	189
916	145	149	198	*****	156	*****	154	162	158	162	158	161
928	147	*****	182	*****	139	120	111	100	118	153	165	157
940	135	*****	113	*****	107	078	066	060	080	112	129	132
952	*****	*****	050	*****	040	019	014	008	009	043	058	057
962	.030	.033	.041	*****	. 046	.052	.053	.060	.057	.051	.034	.036
974	•123	.120	*****	*****	.126	.126	.123	•124	.124	.123	.121	.126
986	.179	.173	.178	*****	.177	.178	.176	.168	.171	.173	.174	.179
996	•196	.203	*****	*****	.198	.198	•194	•191	.194	•191	.195	.199

Table A29. Continued

(c) NPR = 2.997

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	s	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	24		Y	/B	Y	/ B	Υ/	В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.900							
ALPHA, DEG	.021	0.05	112	*****	*****	*****	088	~.087
		0.10	139	166	094	142	092	117
NPR	2.997	0.20	181	192	149	189	123	148
		0.30	222	*****	~.207	220	175	~.200
PTO, PSI	14.780	0.40	300	263	~.265	*****	220	~.236
		0.50	314	~.267	~.277	252	218	228
PD, PSI	8.736	0.60	300	245	299	264	188	189
		0.70	158	~.145	192	183	147	144
QO, PSI	4.957	0.80	050	*****	076	091	103	 081
	, . <u></u>	0.90	.035	*****	.018	*****	048	014

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	э	18	36	45	54	72	81	90	108	135	162	180
.584	015	008	*****	001	*****	*****	*****	013	010	017	002	****
.598	010	004	*****	017	*****	020	*****	026	021	014	*****	****
.612	.017	.012	*****	.002	*****	012	*****	013	021	010	*****	****
.626	.084	.049	*****	.016	* * * * * *	005	*****	016	018	019	*****	****
.640	*****	.072	*****	.006	*****	016	*****	023	025	024	*****	****
•654	*****	.001	*****	013	*****	020	*****	032	033	036	*****	****
.668	*****	****	*****	030	*****	030	*****	030	033	-, 028	*****	****
.682	*****	077	*****	055	*****	051	*****	046	049	042	042	****
• 696	*****	108	*****	076	*****	065	*****	049	050	048	037	0
.710	*****	126	*****	*****	* * * * * *	064	*****	060	058	044	040	0
.724	****	158	*****	109	*****	081	*****	065	063	041	049	0
.738	****	172	*****	114	*****	*****	*****	076	069	052	049	0
•752	*****	161	*****	114	*****	071	*****	053	052	037	041	****
.766	*****	176	*****	124	*****	062	*****	027	041	052	057	0
.779	*****	142	*****	095	*****	015	*****	.159	.018	026	042	0
.793	*****	136	*****	101	*****	058	*****	*****	014	040	060	***
.807	*****	127	****	104	*****	117	*****	*****	069	055	058	0
.821	****	*****	*****	129	*****	157	*****	*****	103	091	087	c
.835	****	099	*****	142	*****	173	*****	*****	174	125	118	1
.849	*****	089	*****	*****	*****	197	*****	*****	200	160	153	1
.863	*****	106	*****	170	*****	220	*****	*****	241	205	*****	~•1
.877	099	117	*****	158	*****	228	*****	*****	*****	*****	*****	****
.891	146	160	*****	176	*****	229	*****	*****	281	224	209	~•;
•916	147	148	201	*****	156	*****	151	172	159	161	158	 1
•928	152	*****	178	*****	143	121	111	103	118	150	166	1
•940	132	*****	115	*****	111	078	066	054	076	~. 115	136	 :
•952	*****	*****	053	*****	040	019	013	005	014	043	063	(
•962	.027	.034	.039	*****	. 046	.050	•054	.056	•057	•048	.033	• (
.974	.118	.119	*****	*****	.122	.123	.121	.120	•124	.125	.121	•:
.986	.179	.173	.176	*****	.173	.178	•174	.174	.170	.169	.169	•:
• 996	.197	.200	*****	*****	.199	.200	.192	.195	.190	.190	.195	•:

Table A29. Concluded

(d) NPR = 5.033

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	s	VERTICA	L TAIL
				SURFACE		SURFACE		-
POINT NUMBER	25		Y	/B	Υ	/ B	Y /	'В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	•900							
ALPHA, DEG	•021	0.05	113	*****	*****	*****	067	096
		0.10	132	158	087	144	090	108
NPR	5.033	0.20	192	189	150	175	127	151
		0.30	228	*****	199	220	176	198
PTO, PSI	14.775	0.40	303	262	265	*****	217	239
		0.50	309	266	292	249	215	229
PO, PSI	8.733	0.60	298	242	300	252	182	187
- · · -		0.70	147	139	179	162	158	142
QO, PSI	4.955	0.80	051	*****	071	079	100	080
. =		0.90	.039	*****	.027	*****	042	006

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	017	.000	*****	.003	*****	*****	*****	014	013	009	006	*****
.598	013	007	*****	009	*****	026	*****	015	018	013	*****	*****
.612	•015	•016	*****	.004	*****	010	*****	016	022	017	*****	*****
•626	.086	.049	*****	.009	*****	006	*****	017	022	024	*****	*****
.640	*****	.072	*****	.002	*****	014	*****	021	019	025	*****	*****
.654	****	.022	*****	011	*****	020	*****	035	032	034	*****	*****
.668	*****	*****	*****	023	*****	032	*****	037	034	028	*****	*****
.682	*****	079	*****	054	*****	047	*****	047	049	039	039	*****
.696	*****	104	*****	071	*****	060	*****	049	049	044	041	031
.710	*****	124	*****	*****	*****	072	*****	053	058	042	042	038
.724	*****	157	*****	108	*****	083	*****	061	066	046	045	047
.738	*****	179	*****	117	*****	*****	*****	067	064	048	049	046
.752	*****	164	*****	118	*****	068	*****	053	052	041	044	*****
.766	*****	187	*****	121	*****	062	*****	032	038	048	059	061
.779	****	150	*****	092	*****	013	*****	.153	.019	033	039	037
•793	*****	136	*****	105	*****	051	*****	*****	004	039	055	*****
.807	*****	120	*****	100	*****	104	*****	*****	054	060	063	069
.821	*****	*****	*****	119	*****	153	*****	*****	099	090	090	087
.835	*****	097	*****	140	*****	177	*****	*****	161	125	117	122
.849	*****	089	*****	*****	*****	202	*****	*****	195	169	146	138
.863	*****	100	*****	154	*****	215	*****	*****	244	203	*****	172
.877	095	112	*****	158	*****	222	*****	*****	*****	*****	*****	*****
.891	138	147	*****	180	*****	223	*****	*****	287	226	197	191
.916	149	143	190	*****	144	*****	147	156	151	158	152	156
.928	144	*****	164	*****	132	111	102	093	108	138	156	156
.940	122	*****	104	*****	100	068	057	042	061	099	121	127
•952	*****	*****	037	*****	022	008	.004	.011	.002	027	046	047
.962	.043	.052	.058	*****	.066	.072	.068	.073	.071	.064	.051	.051
.974	.134	.139	*****	*****	.141	.143	.139	.138	.140	.141	•136	•136
•986	.193	.189	.191	*****	.186	.190	.188	.186	.180	•185	.187	.182
.996	.214	.213	*****	*****	.216	.208	.211	• 206	.200	.201	.201	.207

Table A30. Effect of Angle of Attack on Pressure Distributions for Staggered Tails Configuration at M=0.90 and NPR = 1.098

(a) $\alpha = -2.981^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	s	VERTICA	L TAIL
				SUPFACE		SURFACE		
POINT NUMBER	27		Y	/B	Y	/B	Y/	′₿
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.900							
ALPHA, DFG	-2.981	0.05	342	*****	*****	*****	084	106
		0.10	335	.016	267	.035	098	130
NPR	1.098	0.20	340	041	276	048	134	165
		0.30	360	*****	315	107	180	205
PTO, PSI	14,776	0.40	415	164	384	*****	229	249
· · · · · ·		0.50	436	188	400	164	203	210
PO, PSI	8.738	0.60	463	178	441	201	149	148
		0.70	241	124	279	155	097	088
90. PSI	4.953	0.80	054	*****	083	091	037	033
		0.90	.033	*****	.012	*****	.006	-031

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	o	13	36	45	54	72	81	90	108	135	162	180
. 584	024	015	*****	012	*****	*****	*****	018	021	015	.003	*****
.598	015	006	*****	022	*****	030	*****	037	034	021	*****	*****
.612	.020	.013	*****	007	*****	018	*****	028	032	029	*****	*****
.626	.093	•059	*****	002	*****	013	*****	029	031	027	*****	*****
.640	*****	.078	*****	002	*****	026	*****	031	042	033	*****	*****
•654	*****	• 00 7	*****	027	*****	036	*****	047	050	039	*****	*****
.668	*****	*****	*****	041	*****	048	*****	049	052	038	*****	*****
•682	*****	094	*****	073	*****	072	*****	055	060	050	035	*****
.696	*****	113	****	088	*****	071	*****	070	062	050	040	041
.710	****	136	*****	*****	* * * * * *	084	*****	080	065	049	038	040
.724	*****	158	*****	125	*****	090	*****	078	069	049	050	047
.738	****	16R	*****	129	*****	*****	*****	084	079	058	046	048
. 752	*****	159	*****	122	*****	082	*****	064	062	047	051	*****
.736	*****	166	*****	123	* * * * *	059	*****	044	048	064	068	064
.779	*****	106	*****	053	*****	.038	*****	.151	025	056	065	065
.793	*****	084	*****	043	*****	•056	*****	*****	116	082	082	*****
.807	*****	069	*****	029	*****	.016	*****	*****	159	112	105	105
.821	*****	*****	*****	030	*****	023	*****	*****	207	161	133	130
.835	*****	040	*****	045	*****	062	*****	*****	259	196	180	167
.849	*****	041	*****	*****	*****	113	*****	*****	294	234	208	216
.863	*****	049	*****	096	*****	136	*****	*****	340	286	*****	243
.877	054	064	*****	106	*****	162	*****	*****	*****	*****	*****	*****
.891	101	114	*****	150	*****	173	*****	*****	391	334	307	276
•916	147	151	218	*****	148	*****	166	185	180	200	191	209
.928	173	*****	215	*****	152	136	120	113	116	150	165	169
.940	184	*****	154	*****	142	103	083	058	059	109	130	131
.952	*****	*****	101	*****	080	055	026	017	.011	019	054	065
•962	037	024	018	*****	.000	.026	.016	.044	.065	• 025	.014	.015
.974	.062	.053	*****	*****	.079	.083	•097	.085	.109	.104	.099	•090
.986	.122	.119	.123	*****	.122	.106	.122	.125	.125	.113	.123	.120
•996	.132	.136	*****	*****	.131	.117	.126	.126	.134	.138	•140	•135

AFTERBODY INTEGRATED PRESSURE DRAG COEFFICIENT

.0468

ORIGINAL PAGE IS OF POOR QUALITY

Table A30. Continued

(b) $\alpha = 0.021^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	28		Y	/B	Y	/ B	Y/	В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	•900	•						
ALPHA, DEG	•021	0.05	104	*****	*****	*****	081	107
		0.10	125	183	079	150	091	110
NPR	1.119	0.20	182	200	143	185	126	163
		0.30	227	*****	202	234	174	203
PTO, PSI	14.773	0.40	288	277	269	*****	212	243
		0.50	318	291	293	265	210	234
PO, PSI	8.730	0.60	323	271	320	286	183	205
		0.70	175	156	208	201	155	150
QO, PSI	4.955	0.80	064	*****	093	100	105	085
		0.90	.023	*****	.004	*****	046	017

AFTERBODY PRESSURE COFFFICIENTS

PHI, DEG

X/L	o	18	36	45	54	72	81	90	108	135	162	180
.584	027	010	*****	.004	*****	*****	*****	008	019	011	• 000	*****
•598	015	014	*****	012	*****	019	*****	018	030	016	*****	*****
.612	.008	•003	*****	.001	*****	011	*****	017	020	017	*****	*****
.626	.078	• 0 5 2	*****	.009	*****	013	*****	016	023	020	*****	*****
.640	*****	.067	*****	.005	*****	018	*****	022	027	025	*****	*****
.654	*****	• 005	*****	015	*****	024	*****	042	039	034	*****	*****
.668	*****	*****	*****	028	*****	033	*****	036	038	030	*****	*****
.682	*****	077	*****	059	*****	048	*****	054	041	035	035	*****
.696	*****	098	*****	066	*****	056	*****	055	050	045	040	033
.710	*****	127	*****	*****	*****	070	*****	064	055	042	041	042
.724	*****	157	****	106	*****	082	*****	065	055	048	045	045
.738	*****	165	*****	126	*****	*****	*****	069	069	049	044	050
.752	*****	176	****	126	*****	078	*****	056	053	045	048	*****
.766	*****	189	*****	140	*****	067	*****	035	039	050	064	057
.779	****	157	*****	094	*****	007	*****	.153	.016	028	038	039
.793	*****	148	*****	113	*****	059	*****	*****	002	045	052	*****
.807	*****	141	*****	110	*****	-,119	*****	*****	061	056	062	067
.821	*****	*****	*****	132	*****	149	*****	*****	101	088	086	091
.835	*****	106	*****	137	*****	174	*****	*****	165	134	112	115
.849	*****	106	*****	*****	*****	205	*****	*****	199	165	146	145
.863	*****	116	****	165	*****	229	*****	*****	253	202	*****	176
.877	120	112	*****	170	*****	242	*****	*****	*****	*****	*****	*****
.891	155	164	*****	197	*****	242	*****	*****	291	252	214	216
.916	174	177	226	*****	170	*****	170	180	179	183	174	182
•928	182	*****	204	*****	159	139	129	120	140	171	187	184
•940	167	*****	146	*****	132	102	091	075	105	140	151	-•161
•952	****	*****	078	*****	067	049	038	035	044	067	089	093
.962	013	002	.001	*****	• 017	.021	•023	.032	.027	.017	003	003
.974	•073	.074	*****	*****	.091	.092	.088	.089	.095	.096	.084	• 087
.986	•141	•139	.141	*****	. 144	.141	.141	.149	.137	.142	.153	.143
•996	.165	.176	*****	*****	.167	•163	.161	.157	.158	.172	.167	.163

Table A30. Concluded

(c) $\alpha = 6.030^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	S	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	29		Y	/B	Y	/ B	Υ/	В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.900							
ALPHA, DEG	6.030	0.05	.255	*****	*****	*****	052	067
		0.10	.170	651	.203	559	064	076
NPR	1.075	0.20	.064	542	.094	506	094	127
		0.30	018	*****	.013	529	129	166
PTO. PSI	14.774	0.40	086	592	065	*****	174	203
		0.50	129	599	106	569	185	220
PO, PSI	8.736	0.60	131	386	129	401	208	242
		0.70	107	153	125	191	259	274
QO, PSI	4.952	0.80	052	*****	079	078	296	294
		0.90	.014	*****	.000	*****	240	175

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	o	18	36	45	54	72	81	90	108	135	162	180
•584	•002	.010	*****	009	*****	*****	*****	027	021	015	.010	*****
•598	• 002	.007	*****	016	*****	035	*****	031	034	017	*****	*****
•612	• 025	.017	*****	005	*****	025	*****	026	029	015	*****	*****
•626	.080	.048	*****	.003	*****	023	*****	023	036	015	*****	*****
•640	****	.056	*****	.004	*****	030	*****	033	039	021	*****	*****
•654	*****	.015	*****	004	*****	028	*****	042	051	035	*****	*****
•668	*****	*****	****	018	* * * * *	031	*****	035	039	022	*****	*****
•682	*****	052	*****	038	*****	048	*****	047	059	035	019	*****
.696	***	080	****	057	*****	051	*****	051	055	041	017	007
•710	*****	098	*****	*****	*****	058	*****	050	061	030	011	010
.724	*****	126	*****	086	*****	066	*****	070	063	039	017	009
•738	*****	139	*****	106	*****	*****	*****	069	071	037	014	014
•752	****	140	*****	102	*****	074	*****	054	039	025	010	*****
•766	*****	171	*****	125	*****	066	*****	023	016	022	022	013
.779	*****	176	*****	145	*****	093	*****	.202	.112	.035	.017	• 022
.793	****	220	****	220	*****	278	*****	*****	.182	.053	.023	*****
.807	*****	263	*****	289	*****	390	*****	*****	.144	.060	.031	•029
.821	*****	*****	*****	348	* * * * * *	441	*****	*****	.092	.044	.025	.015
.835	*****	351	*****	402	*****	461	*****	*****	.011	.012	008	005
.849	*****	331	*****	*****	*****	502	*****	*****	030	030	025	026
.863	*****	289	*****	381	*****	503	*****	*****	087	067	*****	052
.877	242	287	*****	357	*****	458	*****	*****	*****	*****	*****	*****
.891	260	311	*****	332	*****	362	*****	*****	145	114	100	095
.916	175	187	233	*****	199	*****	175	185	157	148	132	139
•928	159	*****	198	*****	161	131	116	115	151	180	186	179
.940	137	*****	133	*****	120	082	074	075	135	179	192	186
.952	*****	*****	084	*****	057	032	026	035	092	115	149	138
.962	023	031	021	*****	002	.007	.008	•005	027	036	053	051
.974	.048	.029	*****	*****	.024	.033	.037	.038	.029	.043	.043	.043
.986	•085	•070	.065	*****	• 049	.054	.057	.060	.064	.086	.098	.100
•996	.080	.063	*****	*****	.069	•079	.084	.082	.059	.093	.095	• 097

Table A31. Effect of Nozzle Pressure Ratio on Pressure Distributions for Staggered Tails Configuration at M=0.60 and $\alpha=0.029^{\circ}$

(a) NPR = 1.043

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS				NTAL TAIL	-	VERTICA	L TAIL
POINT NUMBER	30			SURFACE /B		SURFACE /B	Y /	В
MACH NUMBER	.602	x/c	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DFG	.029	0.05	129	*****	*****	*****	109	094
NPR	1.043	0.10 0.20	140 165	132 168	100 137	126 167	117 130	117 143
PTO, PSI	14.784	0.30 0.40	189 207	***** 195	165 196	200 *****	150 167	162 176
PO, PSI	11.573	0.50 0.60	189 162	182 150	179 169	185 176	158 132	160 132
QO, PSI	2.936	0.70 0.80 0.90	116 059 .002	099 ***** *****	126 072 010	134 086 *****	117 077 034	105 061 011

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
• 584	017	013	*****	003	*****	*****	*****	024	026	023	013	*****
•598	013	013	*****	019	*****	029	*****	031	031	026	*****	*****
.612	.003	.000	*****	016	*****	029	*****	029	032	030	*****	*****
.626	.050	.020	*****	020	*****	026	*****	029	029	 035	*****	*****
.640	*****	.026	*****	030	*****	035	*****	035	038	035	*****	*****
.654	*****	031	*****	038	*****	037	*****	044	046	041	*****	*****
.668	*****	*****	*****	041	*****	039	*****	035	038	035	*****	*****
•682	*****	082	*****	060	*****	052	*****	050	042	041	043	*****
•696	*****	092	****	066	*****	059	*****	053	047	038	042	037
.710	*****	114	*****	*****	*****	059	*****	052	047	035	039	038
.724	*****	125	*****	077	*****	058	*****	045	044	038	045	042
.738	*****	125	*****	082	*****	*****	*****	045	049	043	045	044
•752	*****	122	*****	081	*****	051	*****	034	041	037	045	*****
.766	*****	122	*****	088	*****	045	*****	023	032	050	055	059
•779	*****	108	*****	075	*****	014	*****	.140	003	037	046	049
.793	*****	113	*****	081	*****	061	*****	*****	027	054	062	*****
.807	*****	100	*****	091	*****	090	*****	*****	058	068	066	064
.821	*****	*****	*****	095	*****	124	*****	*****	094	082	076	077
.835	*****	088	*****	109	*****	157	*****	*****	~. 131	103	090	088
.849	****	083	*****	*****	*****	158	*****	*****	146	120	103	100
.863	*****	087	*****	120	*****	163	*****	*****	164	130	*****	108
.877	068	077	*****	116	*****	161	*****	*****	*****	*****	*****	*****
.891	095	108	*****	127	*****	158	*****	*****	157	128	125	116
•916	112	119	171	*****	129	*****	131	133	132	131	126	130
•928	133	****	171	*****	135	123	114	099	123	138	145	146
.940	142	*****	130	*****	128	110	097	084	109	134	146	146
•952	*****	*****	098	*****	092	080	067	061	077	101	115	112
•962	042	044	040	*****	030	022	023	015	020	039	051	050
•974	• 027	.033	*****	*****	.039	.046	.040	•043	.040	.040	.030	.025
•986	.093	.098	.096	*****	.099	•092	.095	.093	• 096	.091	.085	.086
•996	.121	.123	*****	*****	.123	.115	.116	.114	.110	.111	.110	•111

Table A31. Continued

(b) NPR = 2.040

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	s	VERTICA	L TAIL
POINT NUMBER	31			SURFACE /B		SURFACE /B	Y/	8
MACH NUMBER	.600	X/C	0.1	0.2	0.1	0.2	0.1	0.2
ALPHA, DEG	•028	0.05	130	*****	*****	*****	106	103
NPR	2.040	0.10 0.20 0.30	140 172 176	128 162 *****	102 149 153	120 158 192	093 120 153	105 143 160
IS9 ecta	14.784	0.40	176 193 187	188 173	182 167	***** 183	163 153	176 164
PO, PSI	11.587	0.60 0.70	157 153 107	143 098	162 118	163 125	134 109	132 103
OO, PSI	2.923	0.80 0.90	054	*****	065 .001	070 *****	074 031	059 010

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	o	18	36	45	54	72	81	90	108	135	162	180
.584	019	009	*****	002	*****	*****	*****	024	021	021	015	*****
•598	013	009	*****	019	*****	030	*****	032	030	022	*****	*****
.612	.006	.002	*****	011	*****	029	*****	029	031	026	*****	*****
•626	.056	.023	*****	016	*****	027	*****	028	032	027	*****	*****
•640	*****	.015	****	019	*****	034	*****	036	035	034	*****	*****
.654	*****	026	*****	036	*****	037	*****	044	044	039	*****	*****
•668	*****	****	*****	040	*****	042	*****	037	035	035	*****	*****
.682	*****	083	****	062	* * * * * *	050	*****	047	045	041	035	*****
•696	*****	100	*****	069	*****	050	*****	047	042	038	042	037
.710	*****	105	*****	*****	* * * * *	057	*****	046	044	041	033	040
.724	*****	121	*****	080	*****	056	*****	045	047	042	038	041
.738	*****	128	*****	087	*****	*****	*****	045	048	037	045	045
• 752	*****	118	*****	076	*****	049	****	030	039	041	044	*****
.766	*****	123	*****	084	*****	040	*****	~.018	032	045	057	061
.779	*****	110	****	076	*****	019	*****	.148	008	038	048	048
.793	*****	104	*****	087	*****	055	*****	*****	031	050	052	*****
.807	*****	094	*****	087	*****	092	*****	*****	065	063	068	062
.821	*****	*****	*****	094	*****	118	*****	*****	108	083	070	077
.835	*****	082	*****	105	*****	140	*****	*****	135	098	090	091
.849	*****	076	*****	*****	*****	153	*****	*****	156	116	093	098
.863	*****	078	****	113	*****	-,157	*****	*****	164	128	*****	108
.877	062	078	*****	111	*****	157	*****	*****	*****	*****	*****	*****
.891	091	100	*****	121	*****	152	*****	*****	155	127	113	113
.916	107	107	158	*****	117	*****	120	123	123	124	118	123
•928	119	*****	158	*****	122	111	~.101	093	111	129	132	134
.940	125	****	111	****	114	093	~.085	073	096	121	126	132
•952	*****	*****	081	*****	072	053	048	037	057	076	092	092
•962	021	012	010	*****	003	.004	.004	.014	.004	012	024	025
.974	.064	.065	****	*****	.074	.081	.074	.071	.072	.071	.066	.061
.986	.132	.131	.134	*****	.135	.133	.131	.129	.131	•131	.131	•129
• 996	.165	.166	*****	*****	.168	.167	.164	.166	.162	.168	•160	•162

Table A31. Continued

(c) NPR = 2.961

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	s	VERTICA	L TAIL
				SURFACE		SURFACE		
POINT NUMBER	32			/B	Y	∕B	Y /	В
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	•600							
ALPHA, DEG	.028	0.05	137	*****	*****	*****	086	101
		0.10	147	131	091	132	104	112
NPR	2.961	0.20	173	144	134	163	116	141
		0.30	190	*****	166	196	146	164
PTO, PSI	14.785	0.40	206	190	185	*****	156	175
		0.50	196	173	176	183	148	155
PO, PSI	11.592	0.60	165	145	160	165	128	135
		0.70	119	100	116	128	114	099
QO, PSI	2.920	0.80	060	*****	063	076	075	059
		0.90	.001	*****	.000	*****	029	005

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	018	010	*****	•000	*****	*****	*****	018	020	022	016	*****
.598	009	008	*****	019	*****	032	****	029	029	030	*****	*****
.612	.011	• 002	*****	018	*****	024	*****	032	026	029	*****	*****
.626	.060	•027	*****	016	*****	028	*****	030	029	032	*****	*****
.640	*****	.022	*****	025	*****	032	*****	032	037	032	*****	*****
.654	*****	021	*****	034	*****	035	*****	044	043	038	*****	*****
.668	*****	*****	*****	040	*****	041	*****	032	036	034	*****	*****
•682	*****	078	*****	058	*****	045	*****	041	049	041	035	*****
•695	****	104	*****	067	*****	049	*****	042	047	041	038	033
.710	*****	114	*****	*****	*****	053	*****	049	044	039	035	042
.724	*****	119	******	081	*****	053	*****	043	041	040	035	041
.738	*****	124	*****	083	*****	*****	*****	045	045	038	038	041
•752	*****	122	*****	077	*****	049	*****	037	037	041	042	*****
•766	****	119	*****	085	*****	041	*****	021	031	047	059	053
•779	*****	104	*****	067	*****	026	*****	•143	005	042	041	045
.793	*****	101	*****	082	*****	059	*****	*****	030	047	056	*****
.807	*****	098	*****	084	*****	085	*****	*****	072	063	062	065
.821	*****	*****	*****	089	*****	117	*****	*****	105	079	075	074
.835	*****	081	*****	103	*****	133	*****	*****	141	094	081	081
.849	*****	078	*****	*****	*****	149	*****	*****	154	114	095	094
.863	*****	081	*****	115	* * * * * *	155	*****	*****	164	124	*****	111
.877	063	082	*****	115	*****	156	*****	*****	*****	*****	*****	*****
.891	083	104	*****	124	*****	152	*****	*****	160	129	110	110
•916	102	106	163	*****	120	*****	118	126	124	120	115	120
•928	114	*****	154	*****	123	112	101	093	112	130	132	139
.940	122	*****	115	*****	112	094	083	072	095	115	122	132
.952	*****	*****	085	*****	~.070	059	049	041	055	074	087	091
•962	017	012	012	*****	007	.007	.006	•009	.006	010	023	022
.974	.067	.067	*****	*****	• 072	.073	.074	.072	.075	.070	.067	.057
.986	.134	.137	•133	*****	•139	.132	.132	.130	.132	.138	•135	.129
• 996	•164	.170	*****	*****	.169	.163	.165	•165	•165	•166	.168	.165

Table A31. Concluded

(d) NPR = 4.975

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	s	VERTICA	L TAIL
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	33		Y	/B	Y	/8	Υ,	'B
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.601	•		• • • • • • • • • • • • • • • • • • • •	•••	***	***	•••
ALPHA, DEG	.028	0.05	135	*****	*****	*****	098	108
		0.10	126	135	103	137	103	110
NPR	4.975	0.20	166	157	135	158	121	147
		0.30	182	*****	168	180	148	166
PTO, PSI	14.785	0.40	~.205	185	190	*****	168	173
		0.50	191	170	167	169	153	155
PO, PSI	11.587	0.60	~.158	140	156	156	135	133
		0.70	~.115	093	115	117	109	095
90, PSI	2.925	0.80	~.057	*****	056	063	069	059
	,,,	0.90	.005	*****	.007	*****	030	006

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	2	18	36	45	54	72	81	90	108	135	162	180
•584	013	004	*****	•000	*****	*****	*****	023	023	018	016	*****
.598	013	010	*****	015	*****	030	*****	033	028	028	*****	*****
.612	.009	.003	*****	013	*****	025	*****	026	028	025	*****	*****
•626	•057	•023	*****	012	*****	026	*****	028	027	028	*****	*****
.640	****	.028	*****	022	* * * * * *	031	*****	033	037	031	*****	*****
•654	*****	025	*****	035	*****	037	*****	040	043	041	*****	*****
.668	*****	****	*****	045	*****	040	*****	039	036	031	*****	*****
.682	*****	079	*****	055	*****	049	*****	044	046	039	042	*****
.696	*****	098	*****	065	*****	055	*****	049	048	037	041	037
.710	****	113	****	*****	*****	055	*****	044	044	043	037	037
.724	*****	120	*****	083	*****	057	*****	044	046	044	047	041
.738	*****	126	*****	089	*****	*****	*****	040	047	044	044	043
.752	****	116	*****	078	*****	047	*****	034	035	043	044	*****
.766	*****	124	*****	083	*****	039	*****	016	033	051	058	060
.779	*****	106	*****	073	*****	015	*****	.147	002	038	046	047
.793	*****	102	*****	080	*****	058	*****	*****	029	050	063	*****
.807	*****	087	*****	084	*****	078	*****	*****	071	064	065	064
.821	*****	*****	****	086	*****	123	*****	*****	111	082	075	075
.835	*****	080	*****	108	*****	139	*****	*****	140	098	088	090
.849	*****	077	*****	*****	*****	145	*****	*****	158	115	103	096
.863	*****	078	*****	108	* ** ** *	158	*****	*****	165	126	*****	105
.877	062	075	*****	111	*****	153	*****	*****	*****	*****	*****	*****
.891	086	101	*****	115	*****	149	*****	*****	156	127	121	108
.916	101	104	155	*****	115	*****	113	117	120	119	114	120
•928	111	*****	149	*****	115	106	097	090	107	125	130	129
.940	122	*****	106	*****	107	086	073	070	090	112	128	124
.952	*****	*****	070	*****	060	045	036	034	042	072	085	080
.962	005	.000	.003	*****	.009	.025	.022	.027	.017	.003	010	011
.974	.085	.086	*****	*****	.092	.092	.090	.087	.093	.089	.082	.079
.986	.157	.156	.157	*****	• 156	.158	.156	.149	•153	. 154	.146	.151
.996	.199	.196	*****	*****	.194	•192	•192	.187	.187	.184	.187	.191

Table A32. Effect of Angle of Attack on Pressure Distributions for Staggered Tails Configuration at M=0.60 and NPR =1.049

(a) $\alpha = -2.980^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS		HORIZONTAL TAILS						
POINT NUMBER	35			SURFACE /B		SURFACE /B	Υ/		
PUINT NUMBER	3.2	X/C	0.1	0.2	0.1	0.2	0.1	0.2	
MACH NUMBER	.598	×/ C	0.1	0.2	0.1	0.2	0.1	0.2	
ALPHA, DEG	-2.980	0.05	392	*****	*****	*****	112	110	
		0.10	359	.049	297	.011	112	117	
NPR	1.049	0.20	322	032	261	045	117	129	
		0.30	299	*****	263	105	143	161	
PTO, PSI	14.786	0.40	307	109	265	*****	158	162	
		0.50	265	111	228	139	138	142	
PD, PSI	11.613	0.60	220	100	201	146	107	110	
		0.70	162	071	149	116	076	074	
QO, PSI	2.904	0.80	096	*****	085	080	041	037	
		0.90	026	*****	019	*****	.003	.014	

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
• 584	021	005	*****	009	*****	*****	*****	033	035	027	014	*****
.598	015	010	*****	027	*****	042	*****	045	044	033	*****	*****
.612	.010	.003	*****	020	*****	038	*****	038	038	034	*****	*****
.626	.063	•029	*****	021	*****	038	*****	040	040	032	*****	*****
.640	*****	.030	****	023	*****	047	*****	046	049	038	*****	*****
•654	****	036	*****	047	*****	048	*****	060	053	045	*****	*****
.668	*****	*****	*****	049	*****	054	*****	054	050	041	*****	*****
•682	*****	090	****	068	*****	062	*****	058	061	052	042	*****
• 696	*****	099	*****	074	*****	063	*****	061	058	050	042	042
.710	*****	106	*****	*****	*****	064	*****	057	062	053	043	043
.724	*****	121	*****	083	*****	063	*****	054	053	050	054	049
.738	*****	108	*****	074	*****	*****	*****	056	062	057	054	053
•752	*****	107	*****	070	*****	045	*****	045	056	055	058	*****
•766	*****	106	*****	070	*****	030	*****	028	060	075	074	074
.779	*****	÷.076	*****	034	*****	.032	*****	.133	066	078	071	073
.793	****	073	*****	033	*****	•045	*****	*****	154	102	086	*****
.807	*****	052	*****	030	*****	.010	*****	*****	170	120	097	093
.821	*****	*****	*****	037	*****	024	*****	*****	196	137	110	107
.835	****	043	*****	045	*****	056	*****	*****	219	156	124	119
.849	*****	041	*****	*****	*****	085	*****	*****	221	166	130	131
.863	****	046	*****	075	* * * * * *	103	*****	*****	220	169	*****	134
.877	035	053	*****	077	*****	110	*****	*****	*****	*****	*****	*****
.891	065	083	*****	095	*****	114	*****	*****	193	158	146	133
•916	104	105	162	*****	112	*****	114	140	142	145	130	137
.928	128	*****	164	*****	127	114	109	107	123	144	144	143
•940	144	*****	127	*****	125	106	096	080	102	129	141	141
• 952	****	*****	112	*****	092	078	067	055	057	086	104	100
.962	063	058	047	*****	041	031	019	009	.003	032	038	043
.974	.018	.020	*****	*****	.029	.037	.038	.048	.067	.050	.033	.033
•986	.087	.091	.091	*****	.099	.091	.099	.100	.103	.112	.091	.089
•996	.110	.113	*****	*****	.115	.106	.116	.112	.133	.131	.113	•112

AFTERBODY INTEGRATED PRESSURE DRAG COEFFICIENT

.0435

Table A32. Continued

(b) $\alpha = 0.02^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	s	VERTICA	L TAIL	
			UPPER	SURFACE LOWER SUR		SURFACE		
POINT NUMBER	36		Y	/ B	Y	/ B	Y/B	
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.598							
ALPHA, DEG	.020	0.05	132	*****	*****	*****	102	109
		0.10	143	127	091	134	109	111
NPR	1.055	0.20	179	160	142	+.173	126	139
		0.30	203	*****	167	195	150	163
PTO, PSI	14.785	0.40	216	192	185	*****	165	172
		0.50	198	175	174	194	151	158
PO, PSI	11.610	0.60	166	148	165	173	136	137
		0.70	122	099	129	134	111	100
QO, PSI	2.906	0.80	063	*****	072	090	077	058
	3	0.90	006	*****	010	*****	034	014

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	021	011	*****	002	*****	*****	*****	022	021	022	011	****
.598	016	011	*****	023	*****	029	*****	032	029	029	*****	****
.612	.004	•001	*****	019	*****	029	*****	025	031	027	*****	****
.626	.055	.021	*****	016	* * * * * *	027	*****	030	035	027	*****	****
.640	*****	.012	*****	022	*****	036	*****	032	038	035	*****	****
.654	*****	026	*****	037	*****	035	*****	044	045	044	*****	****
.668	*****	*****	*****	047	*****	043	*****	039	041	035	*****	****
.682	*****	089	*****	063	*****	049	*****	049	041	041	038	****
.696	*****	094	*****	070	*****	053	*****	048	047	044	042	0
.710	*****	111	*****	*****	*****	059	*****	048	046	041	039	0
.724	*****	126	*****	084	*****	059	*****	045	042	038	043	0
.738	****	122	*****	083	*****	*****	*****	047	047	040	044	0
.752	*****	121	*****	078	*****	051	*****	037	040	036	042	****
.766	*****	125	*****	085	*****	045	*****	019	036	047	060	0
.779	****	108	*****	075	*****	016	*****	.148	007	036	045	0
.793	*****	107	*****	089	*****	057	*****	*****	025	054	059	****
.807	*****	095	*****	089	* * * * * *	095	*****	*****	073	064	067	0
.821	*****	*****	*****	097	*****	115	*****	*****	104	088	078	0
.835	*****	087	*****	103	*****	141	*****	*****	144	104	087	0
.849	****	080	*****	*****	*****	161	*****	*****	153	117	100	1
.863	*****	085	*****	120	*****	169	*****	*****	159	134	*****	1
.877	065	078	****	117	* * * * * *	159	*****	*****	*****	*****	*****	****
.891	093	107	*****	126	*****	158	*****	*****	159	134	122	1
•916	114	114	171	*****	126	*****	130	136	131	128	125	1
.928	130	*****	164	* * * * *	132	122	117	103	123	143	147	1
.940	138	*****	128	*****	125	108	096	084	113	134	147	1
•952	*****	*****	095	*****	091	074	066	061	076	098	113	1
•962	044	039	040	*****	031	023	022	019	020	037	053	0
.974	.034	.037	*****	*****	• 040	.041	.038	.039	.037	.033	• 027	• 0
.986	• 102	.098	.095	*****	.101	.097	.090	.092	.088	.090	.080	.0
.996	.131	•133	*****	*****	• 122	.115	.116	•112	.115	.105	.105	•1

Table A32. Continued

(c) $\alpha = 3.030^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			VERTICA	L TAIL			
			UPPER	SURFACE	LOWER	SURFACE		
POINT NUMBER	37		Y	/B	Y	/ B	Y/B	
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	•599							
ALPHA, DEG	3.030	0.05	.088	*****	*****	*****	081	094
		0.10	.023	333	.060	330	095	113
NPR	1.048	0.20	055	292	017	291	114	142
		0.30	100	*****	069	298	150	168
PTO, PSI	14.786	0.40	141	275	110	*****	169	180
		0.50	147	237	119	247	164	168
PO, PSI	11.605	0.60	126	192	115	221	154	163
		0.70	096	132	089	171	144	130
QO, PSI	2.911	0.80	048	*****	048	110	112	091
		0.90	.005	*****	.002	*****	066	037

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	019	010	*****	007	*****	*****	*****	025	027	024	009	*****
.598	015	014	*****	023	*****	033	*****	032	030	027	*****	*****
.612	•006	.001	*****	018	*****	027	*****	033	031	025	*****	*****
.626	.048	.020	*****	017	*****	035	*****	035	031	028	*****	*****
.640	*****	.024	*****	023	*****	037	*****	039	038	029	*****	*****
.654	*****	020	*****	033	*****	041	*****	052	047	037	*****	*****
•668	*****	*****	*****	042	*****	043	*****	042	040	031	*****	*****
.682	*****	076	*****	056	*****	050	*****	050	050	040	031	*****
•696	*****	097	*****	069	*****	053	*****	053	048	037	031	028
•710	*****	111	*****	*****	*****	059	*****	051	048	040	031	033
.724	*****	125	*****	089	*****	068	*****	056	047	038	035	033
.738	*****	133	*****	099	*****	*****	*****	056	054	037	031	032
•752	*****	139	*****	098	*****	068	*****	044	034	030	029	*****
•766	*****	144	*****	113	*****	071	*****	029	020	035	043	041
•779	*****	129	*****	114	*****	085	*****	-148	.044	008	018	026
.793	****	140	*****	131	*****	176	*****	*****	.060	009	030	*****
.807	*****	131	*****	148	*****	203	*****	*****	.037	017	030	035
.821	*****	*****	*****	157	*****	216	*****	*****	021	026	042	045
.835	*****	126	*****	162	*****	219	*****	*****	053	049	049	055
.849	*****	119	*****	*****	*****	229	*****	*****	091	072	064	067
.863	*****	116	*****	166	*****	219	*****	*****	105	084	*****	081
.877	094	111	*****	153	*****	209	*****	*****	*****	*****	*****	*****
.891	112	129	*****	154	*****	194	*****	*****	123	105	098	094
•916	124	126	173	*****	141	*****	133	132	117	115	109	117
.928	128	*****	165	*****	140	126	108	108	116	136	147	143
.940	132	*****	120	*****	126	103	088	087	113	133	154	151
• 952	*****	*****	090	*****	034	068	060	055	079	102	127	123
•962	039	037	026	*****	009	004	006	007	027	045	061	061
.974	.037	.037	****	*****	.042	.048	.064	.042	.038	.028	.018	.013
.986	.098	.097	.110	*****	.091	.115	.113	.096	.089	.089	.077	.076
• 996	.121	.110	*****	*****	.129	.118	.099	.130	.103	.106	.098	•099

Table A32. Continued

(d) $\alpha = 6.004^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS			HORIZO	NTAL TAIL	s	VERTICA	L TAIL
			UPPER SURFACE		LOWER	SURFACE		
POINT NUMBER	38		Y	/ B	Y	/ B	Y/B	
		X/C	0.1	0.2	0.1	0.2	0.1	0.2
MACH NUMBER	.599							
ALPHA, DEG	6.004	0.05	.263	*****	*****	*****	077	100
		0.10	.176	432	.201	551	090	103
NPR	1.033	0.20	.062	415	• 094	433	107	134
		0.30	002	*****	.030	393	147	163
PTO, PSI	14.786	0.40	055	337	033	*****	171	190
		0.50	079	277	045	300	~.179	186
PO, PSI	11.601	0.60	069	218	064	249	182	178
		0.70	055	149	053	179	186	157
QO, PSI	2.914	0.80	026	*****	020	107	140	119
		0.90	.016	*****	•027	*****	097	061

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG.

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	030	032	*****	014	*****	*****	*****	042	055	023	001	*****
.598	035	025	*****	027	*****	047	*****	052	053	030	*****	*****
•612	019	006	*****	026	*****	042	*****	054	050	026	*****	*****
•626	.025	.012	*****	023	*****	042	*****	046	047	028	*****	*****1
.640	****	.017	*****	027	*****	044	*****	057	051	034	*****	*****1
.654	*****	023	*****	035	*****	051	*****	083	061	043	*****	*****
•668	*****	*****	*****	047	* * * * * *	051	*****	083	055	037	*****	*****
.682	*****	073	*****	066	*****	066	*****	097	062	042	024	*****
•696	*****	093	*****	075	*****	074	*****	097	061	038	021	01
.710	*****	110	****	*****	*****	078	*****	091	061	034	017	01:
.724	*****	130	*****	099	*****	087	*****	073	068	033	015	01;
.738	*****	149	*****	111	*****	*****	*****	074	063	029	014	01
•752	****	171	****	137	*****	095	*****	071	043	019	008	*****
.766	*****	196	*****	152	*****	117	*****	054	022	016	019	01
.779	*****	199	*****	163	*****	171	*****	•126	•076	.015	.011	00
.793	*****	212	*****	193	*****	312	*****	*****	.147	.032	.001	*****
.807	*****	203	*****	210	*****	348	*****	*****	.140	.037	.008	• 00:
.821	****	* * * * *	*****	226	*****	344	*****	*****	.081	.032	001	01
.835	*****	169	*****	235	*****	317	*****	*****	.027	.011	008	02
.849	*****	164	*****	*****	*****	293	*****	*****	019	015	026	03
.863	*****	162	*****	209	*****	274	*****	*****	051	032	*****	03
.877	126	145	*****	200	*****	249	*****	*****	*****	*****	*****	*****
.891	140	162	*****	188	*****	215	*****	*****	086	066	064	06
•916	165	153	191	*****	158	*****	123	120	094	090	091	10
•928	172	*****	178	*****	149	110	093	083	097	-•115	133	12
•940	178	*****	136	*****	134	062	~.052	050	093	122	143	14
• 952	****	*****	104	*****	084	002	001	009	064	098	128	12
.962	088	077	047	*****	025	008	.059	•046	011	035	069	07
•974	006	001	*****	*****	.027	.033	.084	.070	.048	.035	.012	00
.986	.052	.057	.061	*****	• 055	•072	.079	.089	.081	.079	.070	.06⊢
•996	.053	.061	*****	*****	.062	.091	.101	.101	.062	.078	.074	•06

Table A32. Concluded

(e) $\alpha = 9.031^{\circ}$

TEST PARAMETERS

TAIL SURFACE PRESSURE COEFFICIENTS

CONFIGURATION	STAG TAILS		HORIZONTAL TAILS							
			UPPER	SURFACE	LOWER	SURFACE				
POINT NUMBER	39		Y	/ B	Y	/B	Y/B			
		X/C	0.1	0.2	0.1	0.2	0.1	0.2		
MACH NUMBER	.600									
ALPHA, DEG	9.031	0.05	•392	*****	*****	*****	072	089		
		0.10	.300	-1.727	.334	405	080	095		
NPR	1.047	0.20	.172	515	.199	494	099	127		
		0.30	.091	*****	.107	463	140	169		
PTO, PSI	14.786	0.40	.026	325	.034	*****	179	200		
		0.50	012	300	.003	334	200	202		
PO, PSI	11.589	0.60	027	267	027	284	208	204		
		0.70	020	186	030	207	217	184		
QO, PSI	2.923	0.80	.001	*****	011	130	185	144		
		0.90	.027	*****	.027	*****	137	089		

AFTERBODY PRESSURE COEFFICIENTS

PHI, DEG

X/L	0	18	36	45	54	72	81	90	108	135	162	180
.584	019	021	*****	034	*****	*****	****	081	079	031	.011	*****
.598	017	032	*****	037	*****	071	*****	087	088	040	*****	*****
.612	004	027	*****	037	* * * * * *	068	*****	084	081	043	*****	*****
.626	.048	002	*****	037	*****	066	*****	084	080	043	*****	*****
.640	*****	001	*****	038	*****	068	*****	090	085	047	*****	*****
.654	****	038	*****	049	*****	063	*****	109	096	050	*****	*****
.668	*****	*****	*****	056	*****	074	*****	102	096	041	*****	*****
.682	*****	098	*****	066	* ** ***	083	*****	119	099	049	008	*****
.696	****	111	*****	078	* * * * * *	089	*****	121	090	049	004	•002
.710	*****	130	*****	*****	*****	097	*****	117	087	047	.004	.005
.724	****	145	*****	114	*****	107	****	110	090	038	001	•001
.738	****	167	*****	125	*****	*****	*****	109	093	035	.002	.005
•752	*****	188	*****	150	*****	133	*****	106	071	015	.023	*****
.766	****	223	*****	188	* * * * * *	182	****	094	035	009	.012	.008
.779	*****	231	*****	219	*****	307	*****	.067	•105	.037	.042	.033
.793	*****	-,259	****	266	*****	508	*****	*****	.237	.064	.038	*****
.807	*****	261	****	293	*****	488	*****	*****	.211	.086	.049	.033
.821	*****	*****	*****	295	*****	443	*****	*****	•151	.084	.046	.027
.835	*****	235	*****	-,295	*****	396	*****	*****	.075	.061	.034	.017
.849	*****	225	*****	*****	*****	367	*****	*****	.013	.038	.016	•007
.863	*****	236	*****	265	*****	327	*****	*****	020	.012	*****	005
.877	167	203	*****	241	*****	290	*****	*****	*****	*****	*****	*****
.891	178	226	*****	232	*****	259	*****	*****	066	034	042	042
.916	186	205	271	*****	195	*****	167	156	100	074	074	085
• 928	203	****	257	*****	178	152	130	129	114	114	124	117
•940	223	*****	194	*****	153	111	088	088	125	132	147	141
•952	****	*****	151	*****	109	058	048	058	106	111	141	127
.962	133	125	069	*****	043	005	008	014	053	050	077	076
.974	045	041	*****	*****	.027	.044	.044	.027	.023	.025	.006	002
•985	.037	. 053	.068	*****	.092	.084	.114	.087	.078	.077	•067	.059
•996	.081	.082	****	*****	.118	.124	.123	•094	.093	.094	.087	.084

Figure 1. Sketch of air-powered, single-engine model with tails installed in staggered empennage arrangement. Linear dimensions are in inches.

ORIGINAL PAGE IS OF POOR QUALITY

L-85-2292

Looking downstream

Looking upstream

Figure 2. Model installed in test section of Langley 16-Foot Transonic Tunnel. Tail surfaces are shown in staggered arrangement.

Figure 3. Geometric details of horizontal and vertical tails including static pressure orifice locations. Line dimensions are in inches.

Figure 3. Concluded.

Figure 4. Planform view of model configurations tested. Dimensions are in fractions of body length.

Figure 5. Afterbody and nozzle pressure instrumentation and external geometry details. Linear dimensions are in inches.

Figure 6. Effect of model support system on pressure coefficients at two meridian angles for body alone at M=0.95 and NPR = 1.0.

(a) $\alpha = 0.0^{\circ}$.

Figure 6. Concluded.

Figure 7. Effect of nozzle pressure ratio on nozzle/afterbody pressures for body alone.

(a) Concluded.

Figure 7. Continued.

(b) M = 0.95; $\alpha = 0.01^{\circ}$.

Figure 7. Continued.

(b) Concluded.

Figure 7. Continued.

Figure 7. Continued.

(c) Concluded.

Figure 7. Continued.

(d) M = 0.60; $\alpha = 0.01^{\circ}$.

Figure 7. Continued.

(d) Concluded.

Figure 7. Concluded.

Figure 8. Effect of nozzle pressure ratio on nozzle/afterbody pressures for body with horizontal and verticalis in aft location.

Figure 8. Continued.

Figure 8. Continued.

(b) Concluded.

Figure 8. Continued.

Figure 8. Continued.

(c) Concluded.

Figure 8. Continued.

Figure 8. Continued.

Figure 8. Concluded.

Figure 9. Effect of nozzle pressure ratio on nozzle/afterbody pressures for body with horizontal and vertical tails in forward location.

Figure 9. Continued.

Figure 9. Concluded.

Figure 9. Concluded.

Figure 10. Effect of nozzle pressure ratio on nozzle/afterbody pressures for body with horizontal tails in location and vertical tail in forward location.

(a) Concluded.

Figure 10. Continued.

Figure 10. Continued.

(b) Concluded.

Figure 10. Continued.

,

Figure 10. Continued.

Figure 10. Continued.

Figure 10. Continued.

Figure 10. Concluded.

(a) M = 1.20; NPR = 1.037.

Figure 11. Effect of angle of attack on nozzle/afterbody pressures for body alone.

(a) Concluded.

Figure 11. Continued.

(b) M = 0.95; NPR = 1.115.

Figure 11. Continued.

(b) Concluded.

Figure 11. Continued.

(c) M = 0.90; NPR = 1.111.

Figure 11. Continued.

(c) Concluded.

Figure 11. Continued.

(d) M = 0.60; NPR = 1.051.

Figure 11. Continued.

(d) Concluded.

Figure 11. Concluded.

Figure 12. Effect of angle of attack on nozzle/afterbody pressures for body with horizontal and vertical ta in aft location.

Figure 12. Continued.

(b) M = 0.95; NPR = 1.067.

Figure 12. Continued.

Figure 12. Continued.

(c) M = 0.90; NPR = 1.099.

Figure 12. Continued.

Figure 12. Continued.

6-3

(d) M = 0.60; NPR = 1.050.

Figure 12. Continued.

Figure 12. Concluded.

Figure 13. Effect of angle of attack on nozzle/afterbody pressures for body with horizontal and vertical tails in forward location.

Figure 13. Continued.

(b) M = 0.95; NPR = 1.138.

Figure 13. Continued.

(b) Concluded.

Figure 13. Continued.

(c) M = 0.90; NPR = 1.119.

Figure 13. Continued.

Figure 13. Continued.

(d) M = 0.60; NPR = 1.056.

Figure 13. Continued.

(d) Concluded.

Figure 13. Concluded.

Figure 14. Effect of angle of attack on nozzle/afterbody pressures for body with horizontal tails in aft locatic and vertical tail in forward location.

Figure 14. Continued.

(b) M = 0.95; NPR = 1.096.

Figure 14. Continued.

Figure 14. Continued.

(c) M = 0.90; NPR = 1.098.

Figure 14. Continued.

Figure 14. Continued.

Figure 14. Continued.

Figure 14. Concluded.

Figure 15. Effect of empennage arrangement on nozzle/afterbody pressure coefficients at NPR = 1.0 and $\alpha = 0^{\circ}$ for $\phi = 18^{\circ}$.

Figure 15. Concluded.

Figure 16. Effect of empennage arrangement on afterbody/nozzle pressure coefficients at NPR = 1.0 and $\alpha=0^\circ$ for $\phi=72^\circ$.

Figure 16. Concluded.

(b) M = 1.20.

Figure 17. Effect of empennage arrangement on horizontal tail pressure coefficients at NPR = 1.0 and α =

- Aft tails
- Fwd tails
- $\bigcirc \, \square \, \diamondsuit$ Stag tails

 $C_p * = -0.09$

(b) M = 0.95.

Figure 17. Continued.

Configuration

○ Aft tails□ Fwd tails○ Stag tails

(c) M = 1.20.

Figure 17. Concluded.

○ Aft tails○ Fwd tails○ Stag tails

(a) M = 0.90.

Figure 18. Effect of empennage arrangement on vertical tail pressure coefficients at NPR = 1.0 and $\alpha = 0^{\circ}$.

- Aft tails
- ☐ Fwd tails
- Stag tails

(b) M = 0.95.

Figure 18. Continued.

Aft tails

 $\bigcirc \Box \bigcirc$ Fwd tails

Stag tails

y/b = 0.2

x/c

(c) M = 1.20.

Figure 18. Concluded.

(a) M = 0.60; NPR = 3.0.

(b) M = 0.90; NPR = 5.0.

Figure 19. Comparison of calculated and experimental pressure coefficients at $\alpha=0^{\circ}$ on nozzle/afterbody for body alone.

(c) M = 0.95; NPR = 5.0.

(d) M = 1.20; NPR = 6.0.

Figure 19. Concluded.

Figure 20. Comparison of calculated and experimental pressure coefficients at $\alpha = 0^{\circ}$ on nozzle/afterbody for staggered tail configuration at three meridian angles located between vertical and horizontal tails.

(b) M = 0.90; NPR = 5.0.

Figure 20. Continued.

(c) M = 0.95; NPR = 5.0.

Figure 20. Concluded.

Figure 21. Drag coefficient due to various empennage arrangements. (Data from figs. 21 and 22 of ref. 3.)

National Aeronautics and Space Administration	Report Documentation Page			
1. Report No. NASA TP-2753	2. Government Accession No.		3. Recipient's Ca	talog No.
4. Title and Subtitle Effect of Empennage Arrangement on Single-Engine Afterbody Static Pressures at Transonic Speeds		zzle/	5. Report Date November 1987	
			6. Performing Or	ganization Code
7. Author(s) William P. Henderson and James R. Burley II			8. Performing Organization Report No. L-16223	
9. Performing Organization Name and Address NASA Langley Research Center Hampton, VA 23665-5225		10. Work Unit No. 505-68-91-06		
		11. Contract or Grant No.		
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546-0001		13. Type of Report and Period Covered Technical Paper		
		14. Sponsoring Agency Code		gency Code
16. Abstract An investigation has been coneffects of empennage arrangen conducted at Mach numbers frangles of attack from -3° to 9° arrangements (aft, staggered, a of static pressure on the nozzle	nent on single-engine nozzle com 0.60 to 1.20, nozzle pre (at jet-off conditions), deper and forward) were investigat	e/afterbossure rateding on ted. Ext	ody static prestion from 1.0 (j Mach number. Sensive measure	sures. Tests were et off) to 8.0, and Three empennage
17. Key Words (Suggested by Authors(s)) Single engine Empennage arrangement Axisymmetric nozzle Transonic speeds Tails		ribution S assified—	-Unlimited	
Pressure coefficients 19. Security Classif.(of this report)	20. Security Classif.(of this page)	21. No. of Pages	\
Unclassified	Unclassified		228	A11