Volume Of A Solid (By Rotation)

- 1. Find the Volume obtained by rotation of the region bounded by $y=\sqrt{x}$, y=3 and the y axis about the y axis.
- 2. Find the Volume obtained by rotation of the region bounded by $y = 7 x^2$, x = -2, x = 2 and the x axis about the x axis.
- 3. Find the Volume obtained by rotation of the region bounded by $x = y^2 6y + 10$, x = 5 about the y axis.
- 4. Find the Volume obtained by rotation of the region bounded by $y = 2x^2$, $y = x^3$ about the x axis.
- 5. Find the Volume obtained by rotation of the region bounded by $y = 6e^{-2x}$ and $y = 6 + 4x 2x^2$ between x = 0 and x = 1 about the line y = -2.
- 6. Find the Volume obtained by rotation of the region bounded by $y = 10 6x + x^2$, $y = -10 + 6x x^2$, x = 1 and x = 5 about the line y = 8.
- 7. Find the Volume obtained by rotation of the region bounded by $x = y^2 4$, x = 6 3y about the line x = 24.
- 8. Find the Volume obtained by rotation of the region bounded by y = 2x + 1, x = 4 and y = 3 about the line x = -4.
- 9. Find the Volume obtained by rotation of the region bounded by $x = (y-2)^2$, the x axis and the y axis about the x axis.
- 10. Find the Volume obtained by rotation of the region bounded by $y = \frac{1}{x}$, $x = \frac{1}{2}$, x = 4 and the x axis about the y axis.
- 11. Find the Volume obtained by rotation of the region bounded by y=4x and $y=x^3$ about the y-axis.(Assume x>=0)
- 12. Find the Volume obtained by rotation of the region bounded by y=4x and $y=x^3$ about the x-axis.(Assume x>=0)
- 13. Find the Volume obtained by rotation of the region bounded by y = 2x + 1, y = 3 and x = 4 about the line y = 10.
- 14. Find the Volume obtained by rotation of the region bounded by $x = y^2 4$ and x = 6 3y about the line y = -8.
- 15. Find the Volume obtained by rotation of the region bounded by $y = x^2 6x + 9$ and $y = -x^2 + 6x 1$ about the line x = 8.
- 16. Find the Volume obtained by rotation of the region bounded by $y = \frac{e^{\frac{x}{2}}}{x+2}$, $y = 5 \frac{x}{4}$, x = -1 and x = 6 about the line x = -2.

Hints And Solutions

1. Start with sketching the bounded region and determine a formula for the area of the disk.

Ans : $\frac{243\pi}{5}$

2. Start with sketching the bounded region and determine a formula for the area of the disk.

Ans: $\frac{2012\pi}{15}$

3. Start with sketching the bounded region and determine a formula for the area of the disk.

Ans: $\frac{1088\pi}{15}$

4. Start with sketching the bounded region and determine a formula for the area of the disk.

Ans : $\frac{256\pi}{35}$

5. Start with sketching the bounded region and determine a formula for the area of the disk.

Ans: $(\frac{937}{15} + 12e^{-2} + 9e^{-4})\pi$

6. Start with sketching the bounded region and determine a formula for the area of the disk.

Ans : $\frac{896\pi}{3}$

7. Start with sketching the bounded region and determine a formula for the area of the disk.

Ans: $\frac{31556\pi}{15}$

8. Start with sketching the bounded region and determine a formula for the area of the disk.

Ans: 126π

9. Start with sketching the bounded region and determine a formula for the area of the cylinder.

Ans: $\frac{8\pi}{3}$

10. Start with sketching the bounded region and determine a formula for the area of the cylinder.

Ans : 7π

11. Start with sketching the bounded region and determine a formula for the area of the cylinder.

Ans: $\frac{128\pi}{15}$

12. Start with sketching the bounded region and determine a formula for the area of the cylinder.

Ans : $\frac{512\pi}{21}$

13. Start with sketching the bounded region and determine a formula for the area of the cylinder.

Ans : 90π

14. Start with sketching the bounded region and determine a formula for the area of the cylinder.

Ans : $\frac{4459\pi}{6}$

15. Start with sketching the bounded region and determine a formula for the area of the cylinder.

Ans : $\frac{640\pi}{3}$

16. Start with sketching the bounded region and determine a formula for the area of the cylinder.

Ans: $2\pi(\frac{392}{3} + 2e^{\frac{-1}{2}} - 2e^3)$