

Nombre: Nills Berducido Gómez

Carné: 0901-23-14275

Curso: Métodos Numéricos

Ing. Bryan Barrios

Tarea No. 13
Investigación
En clase

Interpolación segmentaria

Consiste en construir funciones por tramos que conectan un conjunto de puntos. Cada tramo se ajusta entre dos puntos consecutivos.

Tipos de interpolación segmentaria

- 1. Lineal segmentaria (interp1)
- 2. Splines cúbicos naturales o completos (spline, csape en MATLAB)

Interpolación mediante trazadores (Splines)

Los splines ajustan curvas suaves a conjuntos de datos. El más usado es el spline cúbico, que garantiza

continuidad de la primera y segunda derivada.

Aplicaciones en ingeniería

- Modelado de trayectorias.
- Interpolación de datos experimentales.
- Ajuste de curvas de calibración.
- Procesamiento de señales.

```
Funciones de MATLAB
```

```
interp1: yi = interp1(x, y, xi, 'linear')
spline: yy = spline(x, y, xi)
csape: pp = csape(x, y, 'natural'); yy = ppval(pp, xi)
plot: plot(x, y, 'o', xi, yi)
```

Sintaxis y parámetros importantes

- 'natural': condiciones de derivada segunda nula en los extremos.
- 'complete': permite fijar las derivadas en los extremos.

Investigar funciones de MATLAB

Interpolar en MATLAB (ejemplo)

```
x = [0 1 2 3 4];
y = [0 1 0.5 2 1.5];
xi = linspace(0, 4, 200);
% Lineal
yi_linear = interp1(x, y, xi, 'linear');
% Spline cúbico
yi_spline = spline(x, y, xi);
plot(x, y, 'o', xi, yi_linear, '--', xi, yi_spline, '-')
```


legend('Datos','Lineal','Spline')

Identificar la función para Splines cúbicos

El spline cúbico asegura continuidad en la derivada primera y segunda entre cada segmento es por esto por lo que podemos decir que es más fluido, generando transiciones suaves. La interpolación lineal crea ángulos abruptos en cada punto.

- El spline cúbico aparece más suave que la interpolación lineal porque:
- El spline cúbico usa polinomios de grado 3 entre cada par de puntos.

Estos polinomios no solo garantizan que la curva pase por los puntos, sino que además aseguran que:

- La función sea continua (sin saltos).
- La primera derivada (pendiente) sea continua → No hay cambios bruscos en la dirección de la curva.
- La segunda derivada (curvatura) también sea continua → La curva cambia de forma de manera gradual.

En cambio, en la interpolación lineal:

- Solo conecta los puntos con segmentos rectos.
- En cada punto hay un cambio brusco de pendiente → Se forman "picos" o "esquinas".

Graficar los resultados con Plot

```
% Datos
x = [0 1 2 3 4];
y = [0 1 0.5 2 1.5];
xi = linspace(0, 4, 200); % Puntos densos para la gráfica
% Interpolación lineal
yi_linear = interp1(x, y, xi, 'linear');
% Interpolación cúbica (spline natural)
yi_spline = spline(x, y, xi);
% Graficar
figure;
```



```
plot(x, y, 'ko', 'MarkerFaceColor', 'k'); hold on; plot(xi, yi_linear, 'r--', 'LineWidth', 1.5); plot(xi, yi_spline, 'b-', 'LineWidth', 2); legend('Datos originales', 'Interpolación Lineal', 'Spline Cúbico Natural', 'Location', 'best'); title('Comparación: Interpolación Lineal vs Spline Cúbico'); xlabel('x'); ylabel('y'); grid on;
```


¿Por qué el spline cúbico parece más 'suave' que el lineal?

Porque el spline cúbico asegura continuidad en la derivada primera y segunda entre cada segmento,

generando transiciones suaves. La interpolación lineal crea ángulos abruptos en cada punto.

¿Cómo cambian las curvas al agregar el punto (2.5, 1.8)?

- El spline se adapta localmente, ajustando la suavidad cerca de 2.5.

- El lineal simplemente conecta el nuevo punto con líneas rectas a sus vecinos.

¿Cuándo es mejor usar splines que polinomios globales?

- Cuando hay muchos datos: los polinomios globales pueden oscilar (fenómeno de Runge).
- Cuando se desea una interpolación más local y suave.
- Para evitar errores numéricos al usar grados altos.

