

Global United Technology Services Co., Ltd.

Report No.: GTS201712000125F02

FCC REPORT

Shenzhen Sunchip Technology Co., Ltd **Applicant:**

Address of Applicant: 201-301, Building A4, No. 90, Dayang Road, FuYong town,

Bao'an District, Shenzhen, China

Shenzhen Sunchip Technology Co., Ltd Manufacturer/Factory:

Address of 201-301, Building A4, No. 90, Dayang Road, FuYong town,

Bao'an District, Shenzhen, China Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: Android TV BOX

Model No.: CX-968

FCC ID: 2ALNC-CX968

FCC CFR Title 47 Part 15 Subpart C Section 15.249:2017 **Applicable standards:**

Date of sample receipt: December 25, 2017

Date of Test: December 26-29, 2017

Date of report issued: January 02, 2018

PASS * Test Result:

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	January 02, 2018	Original

Prepared By:	Bill. yuan	Date:	January 02, 2018
	Project Engineer		
Check By:	Andy wa	Date:	January 02, 2018
	Reviewer		

3 Contents

			Page
1	COVE	R PAGE	1
2	VED	CION	•
2	VER	SION	
3	CON	TENTS	3
	TEO :	COLUMN A DV	
4		Г SUMMARY	
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	ERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	7
	5.3	DESCRIPTION OF SUPPORT UNITS	7
	5.4	TEST FACILITY	7
		TEST LOCATION	
	5.6	OTHER INFORMATION REQUESTED BY THE CUSTOMER	7
6	TEST	「INSTRUMENTS LIST	8
7	TEST	Γ RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	9
		CONDUCTED EMISSIONS	
	7.3	RADIATED EMISSION METHOD	13
	7.3.1	Field Strength of The Fundamental Signal	15
	7.3.2	Spurious emissions	16
	7.3.3	Bandedge emissions	21
	7.4	20DB OCCUPY BANDWIDTH	22
8	TEST	「 SETUP PHOTO	24
9	FUT	CONSTRUCTIONAL DETAILS	25
	LUI	CUNUINUUIUME ULI AILU	Z 3

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Field strength of the fundamental signal	15.249 (a)	Pass
Spurious emissions	15.249 (a) (d)/15.209	Pass
Band edge	15.249 (d)/15.205	Pass
20dB Occupied Bandwidth	15.215 (c)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10: 2013 and ANSI C63.4: 2014.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)
Note (1): The measurement unce	ertainty is for coverage factor of ka	=2 and a level of confidence of 9	5%.

5 General Information

5.1 General Description of EUT

Product Name:	Android TV BOX	
Model No.:	CX-968	
Operation Frequency:	2402MHz~2480MHz	
Channel numbers:	40	
Channel separation:	2MHz	
Modulation type:	GFSK	
Antenna Type:	Integral antenna	
Antenna gain:	2.5dBi(declare by Applicant)	
Power supply:	AC ADAPTER:	
	Model: TDX-0502000	
	Input: AC 100-240V, 50/60Hz, 0.5A	
	Output: DC 5V, 2.0A	

Operation F	Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
•	. !	•	•	•	• !	• !	•	
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz	
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	Х	Υ	Z
Field Strength(dBuV/m)	90.21	91.49	89.32

5.3 Description of Support Units

None

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Other Information Requested by the Customer

None.

6 Test Instruments list

Rad	iated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 03 2015	July 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June 28 2017	June 27 2018
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 28 2017	June 27 2018
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 28 2017	June 27 2018
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 28 2017	June 27 2018
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 28 2017	June 27 2018
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
9	Coaxial Cable	GTS	N/A	GTS213	June 28 2017	June 27 2018
10	Coaxial Cable	GTS	N/A	GTS211	June 28 2017	June 27 2018
11	Coaxial cable	GTS	N/A	GTS210	June 28 2017	June 27 2018
12	Coaxial Cable	GTS	N/A	GTS212	June 28 2017	June 27 2018
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 28 2017	June 27 2018
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 28 2017	June 27 2018
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 28 2017	June 27 2018
16	Band filter	Amindeon	82346	GTS219	June 28 2017	June 27 2018
17	Power Meter	Anritsu	ML2495A	GTS540	June 28 2017	June 27 2018
18	Power Sensor	Anritsu	MA2411B	GTS541	June 28 2017	June 27 2018

Conduc	onducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June 28 2017	June 27 2018		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 28 2017	June 27 2018		
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June 28 2017	June 27 2018		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June 28 2017	June 27 2018		

General used equipment:							
Item	Test Equipment Manu	Manufacturer	facturer Model No.	Inventory No.	Cal.Date	Cal.Due date	
	7. P			,	(mm-dd-yy)	(mm-dd-yy)	
4	Davamatav	Chana Chua	DVMO	OTCOE7	lum = 00 0047	luna 07 0040	
1	Barometer	ChangChun	DYM3	GTS257	June 28 2017	June 27 2018	

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is Integral antenna, the best case gain of the antenna is 2.5dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	150KHz to 30MHz								
Class / Severity:	Class B								
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto							
Limit:		Limit (d	lBuV)						
	Frequency range (MHz)	Quasi-peak	Average						
	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
	5-30	60	50						
* Decreases with the logarithm of the frequency.									
Test setup:	Reference Plane								
	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m								
Test procedure:	 The EUT and simulators are impedance stabilization net coupling impedance for the The peripheral devices are 	work (L.I.S.N.). This pr measuring equipment. also connected to the r	ovides a 50ohm/50uH . main power through a						
	LISN that provides a 50ohn termination. (Please refer to photographs).								
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								

Measurement data

Line:

Freq MHz	Reading level dBuV	lISN/ISN factor dB	Cable loss dB	level dBuV	Limit level dBuV	Over limit dB	Remark
0. 172 0. 172 0. 307 0. 307 0. 402 0. 402 0. 641 0. 641 0. 963	29. 48 11. 59 23. 57 16. 62 23. 42 18. 42 25. 18 17. 17 21. 75	0. 40 0. 40 0. 40 0. 40 0. 35 0. 35 0. 27 0. 27	0. 09 0. 09 0. 10 0. 10 0. 11 0. 11 0. 12 0. 12 0. 15	29. 97 12. 08 24. 07 17. 12 23. 88 18. 88 25. 57 17. 56 22. 11	64. 86 54. 86 60. 06 50. 06 57. 81 47. 81 56. 00 46. 00	-34.89 -42.78 -35.99 -32.94 -33.93 -28.93 -30.43 -28.44 -33.89	QP Average QP Average QP Average QP Average
0.963 0.963 1.762 1.762	15.38 22.15 15.20	0.21 0.21 0.20 0.20	0.15 0.17 0.17	15. 74 22. 52 15. 57	46.00 56.00 46.00	-30.26 -33.48 -30.43	Average QP Average

Neutral:

Notes:

2.422

14.78

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

0.18

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

46.00

-30.84

Average

3. Final Level = Receiver Read level + LISN Factor + Cable Loss

0.20

4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

15.16

7.3 Radiated Emission Method

7.3	Radiated Emission Me	tnoa								
	Test Requirement:	FCC Part15 C Section 15.209								
	Test Method:	ANSI C63.10:20	013							
	Test Frequency Range:	30MHz to 25GH	łz							
	Test site:	Measurement D	Distance: 3m							
	Receiver setup:	Frequency	Detector		RBW	VBW	Remark			
		30MHz- 1GHz	Quasi-pea	k	120KHz	300KHz	Quasi-peak Value			
		Above 1GHz	Peak		1MHz	3MHz	Peak Value			
		Above 1G112	Peak		1MHz	10Hz	Average Value			
	Limit:	Frequency Limit (dBuV/m @3m) Rema								
	(Field strength of the fundamental signal)	2400MHz-2483.5MHz 94.00 Average Value								
	Limit:	Freque	L	.imit (dBuV/		Remark				
	(Spurious Emissions)	30MHz-88MHz			40.0		Quasi-peak Value			
		88MHz-216MHz 216MHz-960MHz			43.5 46.0		Quasi-peak Value Quasi-peak Value			
		960MHz-1GHz			54.0		Quasi-peak Value			
		Above 1GHz			54.0		Average Value			
		Above	IGHZ		74.0	0	Peak Value			
	Limit: (band edge)	harmonics, sha	II be attenuat to the genera	ed I al ra	by at least to adjust the state of the state	50 dB below	bands, except for v the level of the in Section 15.209,			
	Test setup:	Below 1GHz	EUT-			Antennae de la constant de la consta	fiere-			
		, 10010 10112								

	Tum Table* < 1m 4m >v Comparison Preamplifier* Receiver* Preamplifier*
Test Procedure:	The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was placed on the top of a rotating table (0.8m for below 1GHz and 1.5m for below 1GHz).
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

7.3.1 Field Strength of The Fundamental Signal

Peak value:

_								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	87.59	27.58	5.39	30.18	90.38	114.00	-23.62	Vertical
2402.00	85.77	27.58	5.39	30.18	88.56	114.00	-25.44	Horizontal
2440.00	86.32	27.55	5.43	30.06	89.24	114.00	-24.76	Vertical
2440.00	84.88	27.55	5.43	30.06	87.80	114.00	-26.21	Horizontal
2480.00	88.43	27.52	5.47	29.93	91.49	114.00	-22.51	Vertical
2480.00	85.87	27.52	5.47	29.93	88.93	114.00	-25.07	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2402.00	76.51	27.58	5.39	30.18	79.30	94.00	-14.70	Vertical
2402.00	74.75	27.58	5.39	30.18	77.54	94.00	-16.46	Horizontal
2440.00	75.06	27.55	5.43	30.06	77.98	94.00	-16.02	Vertical
2440.00	72.38	27.55	5.43	30.06	75.30	94.00	-18.70	Horizontal
2480.00	77.16	27.52	5.47	29.93	80.22	94.00	-13.78	Vertical
2480.00	74.82	27.52	5.47	29.93	77.88	94.00	-16.12	Horizontal

Note: RBW 3MHz VBW 3MHz Peak detector is for PK value, RMS detector is for AV value

7.3.2 Spurious emissions

■ Below 1GHz

Horizontal:

Vertical:

Report No.: GTS201712000125F02

■ Above 1GHz

Test channel:	Lowest channel
---------------	----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	42.36	31.78	8.60	32.09	50.65	74.00	-23.35	Vertical
7206.00	35.18	36.15	11.65	32.00	50.98	74.00	-23.02	Vertical
9608.00	34.45	37.95	14.14	31.62	54.92	74.00	-19.08	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	47.68	31.78	8.60	32.09	55.97	74.00	-18.03	Horizontal
7206.00	37.38	36.15	11.65	32.00	53.18	74.00	-20.82	Horizontal
9608.00	34.35	37.95	14.14	31.62	54.82	74.00	-19.18	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	30.22	31.78	8.60	32.09	38.51	54.00	-15.49	Vertical
7206.00	23.30	36.15	11.65	32.00	39.10	54.00	-14.90	Vertical
9608.00	22.06	37.95	14.14	31.62	42.53	54.00	-11.47	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	35.00	31.78	8.60	32.09	43.29	54.00	-10.71	Horizontal
7206.00	25.80	36.15	11.65	32.00	41.60	54.00	-12.40	Horizontal
9608.00	22.21	37.95	14.14	31.62	42.68	54.00	-11.32	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel	:			М	iddle			
Peak value:				•				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	44.02	31.85	8.67	32.12	52.42	74.00	-21.58	Vertical
7320.00	36.29	36.37	11.72	31.89	52.49	74.00	-21.51	Vertical
9760.00	35.44	38.35	14.25	31.62	56.42	74.00	-17.58	Vertical
12200.00	*					74.00		Vertical
14640.00	*					74.00		Vertical
4880.00	49.68	31.85	8.67	32.12	58.08	74.00	-15.92	Horizontal
7320.00	38.64	36.37	11.72	31.89	54.84	74.00	-19.16	Horizontal
9760.00	35.49	38.35	14.25	31.62	56.47	74.00	-17.53	Horizontal
12200.00	*					74.00		Horizontal
14640.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	31.61	31.85	8.67	32.12	40.01	54.00	-13.99	Vertical
7320.00	24.24	36.37	11.72	31.89	40.44	54.00	-13.56	Vertical
9760.00	22.90	38.35	14.25	31.62	43.88	54.00	-10.12	Vertical
12200.00	*					54.00		Vertical
14640.00	*					54.00		Vertical
4880.00	36.59	31.85	8.67	32.12	44.99	54.00	-9.01	Horizontal
7320.00	26.86	36.37	11.72	31.89	43.06	54.00	-10.94	Horizontal
9760.00	23.19	38.35	14.25	31.62	44.17	54.00	-9.83	Horizontal
12200.00	*					54.00		Horizontal
14640.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel	:			Hig	hest			
Peak value:				•				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	42.88	31.93	8.73	32.16	51.38	74.00	-22.62	Vertical
7440.00	35.53	36.59	11.79	31.78	52.13	74.00	-21.87	Vertical
9920.00	34.76	38.81	14.38	31.88	56.07	74.00	-17.93	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	48.31	31.93	8.73	32.16	56.81	74.00	-17.19	Horizontal
7440.00	37.78	36.59	11.79	31.78	54.38	74.00	-19.62	Horizontal
9920.00	34.71	38.81	14.38	31.88	56.02	74.00	-17.98	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	30.91	31.93	8.73	32.16	39.41	54.00	-14.59	Vertical
7440.00	23.76	36.59	11.79	31.78	40.36	54.00	-13.64	Vertical
9920.00	22.47	38.81	14.38	31.88	43.78	54.00	-10.22	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	35.79	31.93	8.73	32.16	44.29	54.00	-9.71	Horizontal
7440.00	26.33	36.59	11.79	31.78	42.93	54.00	-11.07	Horizontal
9920.00	22.69	38.81	14.38	31.88	44.00	54.00	-10.00	Horizontal
12400.00	*					54.00		Horizontal
		1	1	1	1	· · · · · · · · · · · · · · · · · · ·	1	1

Remark:

14880.00

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Horizontal

54.00

7.3.3 Bandedge emissions

All of the restriction hands were tested, and only the data of worst case was exhibited

All of the restriction bands were tested, and only the data of worst case was exhibited.										
Test channe	l:			L	owest channel					
Peak value:								_		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
2390.00	39.88	27.59	5.38	30.18	42.67	74.00	-31.33	Horizontal		
2400.00	56.24	27.58	5.39	30.18	59.03	74.00	-14.97	Horizontal		
2390.00	40.15	27.59	5.38	30.18	42.94	74.00	-31.06	Vertical		
2400.00	57.96	27.58	5.39	30.18	60.75	74.00	-13.25	Vertical		
Average val	lue:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
2390.00	31.11	27.59	5.38	30.18	33.90	54.00	-20.10	Horizontal		
2400.00	42.17	27.58	5.39	30.18	44.96	54.00	-9.04	Horizontal		
2390.00	30.84	27.59	5.38	30.18	33.63	54.00	-20.37	Vertical		
2400.00	43.53	27.58	5.39	30.18	46.32	54.00	-7.68	Vertical		
Test channe	Test channel: Highest channel									

Test channel:	Highest channel
---------------	-----------------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	41.63	27.53	5.47	29.93	44.70	74.00	-29.30	Horizontal
2500.00	41.37	27.55	5.49	29.93	44.48	74.00	-29.52	Horizontal
2483.50	41.97	27.53	5.47	29.93	45.04	74.00	-28.96	Vertical
2500.00	42.09	27.55	5.49	29.93	45.20	74.00	-28.80	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	33.90	27.53	5.47	29.93	36.97	54.00	-17.03	Horizontal
2500.00	32.33	27.55	5.49	29.93	35.44	54.00	-18.56	Horizontal
2483.50	34.86	27.53	5.47	29.93	37.93	54.00	-16.07	Vertical
2500.00	32.00	27.55	5.49	29.93	35.11	54.00	-18.89	Vertical

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

7.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.249/15.215		
Test Method:	ANSI C63.10:2013		
Limit:	Operation Frequency range 2400MHz~2483.5MHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Test channel	20dB bandwidth(MHz)	Result
Lowest	1.253	Pass
Middle	1.252	Pass
Highest	1.247	Pass

Test plot as follows:

Lowest channel

Middle channel

Highest channel

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No.: GTS201712000125F01

-----End-----