

Fuzzy Logic & Neural Networks (CS-514)

Dr. Sudeep Sharma

IIIT Surat

sudeep.sharma@iiitsurat.ac.in

- In neural network training, a loss function/cost function/objective function is a mathematical function.
- The goal of training a neural network is to minimize this loss function, to improving the accuracy of the model's predictions.

Source: Internet

Neural Network - Backpropagation

Source: Internet

Mean Squared Error (MSE) Loss Function

➤ MSE loss function is used for Regression Problems.

$$MSE = rac{1}{N} \sum_{i=1}^{N} \left(y_i - \stackrel{\wedge}{y}_i
ight)^2$$

- MSE measures the average squared difference between the actual target values (y_i) and the predicted values (y_i) .
- Lower MSE indicates better performance.

Mean Absolute Error (MAE) Loss Function

MAE loss function is used for Regression Problems.

$$MAE = rac{1}{N} \sum_{i=1}^{N} \left| y_i - \stackrel{\wedge}{y}_i
ight|$$

- MAE measures the average absolute difference between actual (y_i) and predicted values (y_i) .
- It is less sensitive to outliers compared to MSE.

Example

MAE is less sensitive to outliers compared to MSE.

Data Point	Actual y	Predicted \hat{y}
1	10	12
2	15	14
3	14	13
4	18	20
5 (Outlier)	100	80

$$Errors = [10-12, 15-14, 14-13, 18-20, 100-80] = [-2, 1, 1, -2, 20]$$

Example

MAE is less sensitive to outliers compared to MSE.

Data Point	Actual y	Predicted \hat{y}
1	10	12
2	15	14
3	14	13
4	18	20
5 (Outlier)	100	80

$$\mathrm{MAE} = \frac{1}{5}(|-2| + |1| + |1| + |-2| + |20|) = \frac{1}{5}(2 + 1 + 1 + 2 + 20) = \frac{26}{5} = \textbf{5.2}$$

Example

MAE is less sensitive to outliers compared to MSE.

Data Point	Actual y	Predicted \hat{y}
1	10	12
2	15	14
3	14	13
4	18	20
5 (Outlier)	100	80

$$egin{aligned} ext{MSE} &= rac{1}{5}((-2)^2 + 1^2 + 1^2 + (-2)^2 + 20^2) \ &= rac{1}{5}(4 + 1 + 1 + 4 + 400) = rac{410}{5} = \mathbf{82} \end{aligned}$$

Loss Function Derivative

(MSE) Loss Function Derivative

$$rac{\partial}{\partial \hat{y}_i} MSE = rac{\partial}{\partial \hat{y}_i} igg(rac{1}{N} \sum_{i=1}^N ig(y_i - \hat{y}_iig)^2igg)$$

$$rac{\partial}{\partial \hat{y}_{i}}MSE=rac{1}{N}rac{\partial}{\partial \hat{y}_{i}}ig(y_{i}-\hat{y}_{i}ig)^{2}$$

$$\frac{\partial}{\partial \hat{y}_{i}} MSE = \frac{2}{N} \left(y_{i} - \hat{y}_{i} \right) \frac{\partial}{\partial \hat{y}_{i}} \left(y_{i} - \hat{y}_{i} \right)$$

$$rac{\partial}{\partial \hat{y}_{i}}MSE=-rac{2}{N}ig(y_{i}-\hat{y}_{i}ig)$$

Loss Function Derivative

(MAE) Loss Function Derivative

$$\left\| rac{\partial}{\partial \hat{y}_i} MAE = rac{\partial}{\partial \hat{y}_i} \left(rac{1}{N} \sum_{i=1}^N \left| y_i - \hat{y}_i
ight|
ight)$$

$$\left \| rac{\partial}{\partial \hat{y}_{i}} MAE = rac{1}{N} rac{\partial}{\partial \hat{y}_{i}} \left| y_{i} - \hat{y}_{i}
ight|$$

$$rac{\partial}{\partial \hat{y}_{i}}MAE = rac{1}{N} \left\{ egin{array}{ll} -1 & \left(y_{i} - \hat{y}_{i}
ight) > 0 \ 1 & \left(y_{i} - \hat{y}_{i}
ight) < 0 \end{array}
ight.$$