Page 2

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Previously Presented) A method for the in-situ removal of impurities from a saponified solution of a pyridine-2,3-dicarboxylic acid ester, said method comprising the steps of:

providing a saponified solution comprising the product produced by adding a base to a pyridine-2,3-dicarboxylic acid ester;

reacting said saponified solution with an amount of an oxidizing agent effective to remove impurities, thereby providing a purified saponified solution; and collecting said purified saponified solution;

wherein said pyridine-2,3-dicarboxylic acid ester is a compound of the formula

$$R_5$$
 CO_2R_2
 R_4
 N
 CO_2R_3

wherein R_4 and R_6 are each independently H, C_1 - C_6 alkyl, C_1 - C_6 alkenyl, phenyl or substituted phenyl;

 R_5 is H; halogen; C_1 - C_6 alkyl optionally substituted with one or more C_1 - C_4 alkoxy groups; C_1 - C_6 alkenyl; phenyl or substituted phenyl; and

 R_2 and R_3 are each independently $C_1\text{-}C_6$ alkyl, phenyl or substituted phenyl; and

Page 3

wherein said oxidizing agent is selected from the group consisting of peroxides, peroxyacids, and hypohalite salts.

- 2. (Original) The method of Claim 1 wherein said base is a hydroxide.
- 3. (Original) The method of Claim 2 wherein said hydroxide is sodium hydroxide.
- 4. (Canceled)
- 5. (Original) The method of Claim 4 wherein said oxidizing agent is hydrogen peroxide.
- 6. (Original) The method of Claim 4 wherein said oxidizing agent is sodium hypochlorite or sodium hypobromite.
- 7. (Original) The method of Claim 5 wherein said amount of hydrogen peroxide effective to remove impurities is an amount in the range of about 0.1 to about 2.0 moles hydrogen peroxide per mole of pyridine-2,3-dicarboxylic acid ester.
- 8. (Original) The method of Claim 5 wherein said amount of hydrogen peroxide effective to remove impurities is an amount in the range of about 0.2 to about 0.8 moles hydrogen peroxide per mole of pyridine-2,3-dicarboxylic acid ester.

Page 4

- 9. (Previously Presented) The method of Claim 1 further comprising adding oxidizing agent until the color of said saponified solution changes from a darker color to a lighter color.
- 10. (Original) The method of Claim 9 wherein the color of said saponified solution is changed from black to light amber.
- 11. (Original) The method of Claim 1 wherein said reaction is performed at a temperature of about 60°C to about 110°C.
- 12. (Original) The method of Claim 1 wherein said oxidizing agent is added over a time period of about 15 to about 120 minutes.
- 13. (Original) The method of Claim 1 wherein said reaction further comprises stirring said saponified solution.
- 14. (Original) The method of Claim 13 wherein said stirring is carried out for a time period of about 15 to about 120 minutes.
- 15. (Canceled)

Page 5

16. (Previously Presented) A method for the in-situ removal of impurities from a solution of pyridine-2,3-dicarboxylic acid ester, said method comprising the steps of:

providing a solution comprising a pyridine-2,3-dicarboxylic acid ester; saponifying said solution by adding a base thereto, thereby forming a saponified solution comprising a pyridine-2,3-dicarboxylic acid salt;

reacting said saponified solution with an amount of an_oxidizing agent effective to remove impurities, to produce a purified saponified solution;

acidifying said purified saponified_solution and converting said pyridine-2,3-dicarboxylic acid salt into the corresponding pyridine-2,3-dicarboxylic acid by adding an acid to said purified saponified solution; and

collecting a purified solution comprising the pyridine-2,3-dicarboxylic acid; wherein said pyridine-2,3-dicarboxylic acid ester is a compound of the formula

$$R_5$$
 CO_2R_2
 R_4
 CO_2R_3

wherein R_4 and R_6 are each independently H, C_1 - C_6 alkyl, C_1 - C_6 alkenyl, phenyl or substituted phenyl;

 R_5 is H; halogen; C_1 - C_6 alkyl optionally substituted with one or more C_1 - C_4 alkoxy groups; C_1 - C_6 alkenyl; phenyl or substituted phenyl; and

 R_2 and R_3 are each independently $\mathsf{C}_1\text{-}\mathsf{C}_6$ alkyl, phenyl or substituted phenyl; and

Page 6

wherein said oxidizing agent is selected from the group consisting of peroxides, peroxyacids, and hypohalite salts.

- 17. (Original) The method of Claim 16 wherein said base is a hydroxide.
- 18. (Original) The method of Claim 17 wherein said hydroxide is sodium hydroxide.
- 19. (Canceled)
- 20. (Currently Amended) The method of Claim [[19]] <u>16</u> wherein said oxidizing agent is hydrogen peroxide.
- 21. (Currently Amended) The method of Claim [[19]] 16 wherein said oxidizing agent is sodium hypochlorite or sodium hypobromite.
- 22. (Original) The method of Claim 20 wherein said amount of hydrogen peroxide effective to remove impurities is an amount in the range of about 0.1 to about 2.0 moles hydrogen peroxide per mole of pyridine-2,3-dicarboxylic acid ester.
- 23. (Original) The method of Claim 20 wherein said amount of hydrogen peroxide effective to remove impurities is an amount in the range of about 0.2 to about 0.8 moles hydrogen peroxide per mole of pyridine-2,3-dicarboxylic acid ester.

Page 7

- 24. (Original) The method of Claim 16 wherein said amount of oxidizing agent effective to remove impurities is an amount necessary to change the color of said saponified solution from a darker color to a lighter color.
- 25. (Original) The method of Claim 24 wherein the color of said saponified solution is changed from black to light amber.
- 26. (Original) The method of Claim 16 wherein said reaction is performed at a temperature of about 60°C to about 110°C.
- 27. (Original) The method of Claim 16 wherein said oxidizing agent is added over a time period of about 15 to about 120 minutes.
- 28. (Original) The method of Claim 16 wherein said reaction further comprises stirring said saponified solution.
- 29. (Original) The method of Claim 28 wherein said stirring is carried out for a time period of about 15 to about 120 minutes.
- 30. (Original) The method of Claim 16 wherein said acid is sulfuric acid.
- 31. (Canceled)

Page 8

32. (Original) The method of Claim 16, wherein said pyridine-2,3-dicarboxylic acid is 5-methyl-pyridine-2,3-dicarboxylic acid or 5-ethyl-pyridine-2,3-dicarboxylic acid.

33. (Currently Amended) A method for the preparation of herbicidal 2-(2-imidazolin-2-yl)nicotinic acids, esters, and salts, said method comprising the steps of:

providing a solution comprising a pyridine-2,3-dicarboxylic acid ester; saponifying said solution by adding a base thereto, thereby forming a saponified solution comprising a pyridine-2,3-dicarboxylic acid salt;

reacting said saponified solution with an amount of an oxidizing agent effective to remove impurities to produce a purified saponified solution;

acidifying said purified saponified solution and converting said pyridine-2,3-dicarboxylic acid salt into the corresponding pyridine-2,3-dicarboxylic acid by adding an acid to said purified saponified solution; and

using said pyridine-2,3-dicarboxylic acid as an intermediate in the preparation of herbicidal 2-(2-imidazolin-2-yl)nicotinic acids, esters, and salts; wherein said pyridine-2,3-dicarboxylic acid ester is a compound of the formula

$$R_5$$
 CO_2R_2
 R_4
 N
 CO_2R_3

and

Page 9

converting said pyridine-2,3-dicarboxylic acid into a herbicidal 2-(2-imidazolin-2-yl)nicotinic acid, ester, or salt;

wherein R_4 and R_6 are each independently H, C_1 - C_6 alkyl, C_1 - C_6 alkenyl, phenyl or substituted phenyl;

R₅ is H; halogen; C₁-C₆ alkyl optionally substituted with one or more C₁-C₄ alkoxy groups; C₁-C₆ alkenyl; phenyl or substituted phenyl; and R₂ and R₃ are each independently C₁-C₆ alkyl, phenyl or substituted phenyl; and wherein said oxidizing agent is selected from the group consisting of peroxides, peroxyacids, and hypohalite salts.

- 34. (Original) The method of Claim 33 wherein said base is a hydroxide.
- 35. (Original) The method of Claim 34 wherein said hydroxide is sodium hydroxide.
- 36. (Canceled)
- 37. (Currently Amended) The method of Claim [[36]] <u>33</u> wherein said oxidizing agent is hydrogen peroxide.
- 38. (Currently Amended) The method of Claim [[36]] <u>33</u> wherein said oxidizing agent is sodium hypochlorite or sodium hypobromite.

Page 10

39. (Original) The method of Claim 37 wherein said amount of hydrogen peroxide effective to remove impurities is an amount in the range of about 0.1 to about 2.0 moles hydrogen peroxide per mole of pyridine-2,3-dicarboxylic acid ester.

- 40. (Original) The method of Claim 37 wherein said amount of hydrogen peroxide effective to remove impurities is an amount in the range of about 0.2 to about 0.8 moles hydrogen peroxide per mole of pyridine-2,3-dicarboxylic acid ester.
- 41. (Original) The method of Claim 33 wherein said amount of oxidizing agent effective to remove impurities is an amount necessary to change the color of said saponified solution from a darker color to a lighter color.
- 42. (Original) The method of Claim 41 wherein the color of said saponified solution is changed from black to light amber.
- 43. (Original) The method of Claim 33 wherein said reaction is performed at a temperature of about 60°C to about 110°C.
- 44. (Original) The method of Claim 33 wherein said oxidizing agent is added over a time period of about 15 to about 120 minutes.
- 45. (Original) The method of Claim 33 wherein said reaction further comprises stirring said saponified solution.

Page 11

46. (Original) The method of Claim 45 wherein said stirring is carried out for a time period of about 15 to about 120 minutes.

- 47. (Original) The method of Claim 33 wherein said acid is sulfuric acid.
- 48. (Canceled)
- 49. (Original) The method of Claim 33 wherein said pyridine-2,3-dicarboxylic acid is 5-methyl-pyridine-2,3-dicarboxylic acid or 5-ethyl-pyridine-2,3-dicarboxylic acid.