Výroková a predikátová logika - VIII

Petr Gregor

KTIML MFF UK

ZS 2019/2020

Tablo metoda ve VL - opakování

- Tablo je binární strom reprezentující vyhledávání protipříkladu.
- Vrcholy jsou označeny položkami, tj. formulemi s příznakem T / F, který reprezentuje předpoklad, že formule v nějakém modelu platí / neplatí.
- Je-li tento předpoklad správný, je správný i v nějaké větvi pod ní.
- Větev je sporná (selže), pokud obsahuje $T\psi$, $F\psi$ pro nějaké ψ .
- Důkaz formule φ je sporné tablo s kořenem $F\varphi$, tj. tablo v němž každá větev je sporná (nebyl nalezen protipříklad), pak φ je pravdivá.
- Pokud protipříklad existuje, v dokončeném tablu bude větev, která ho poskytuje, tato větev může být nekonečná.
- Lze zkonstruovat systematické tablo, jež je vždy dokončené.
- Pokud je φ pravdivá, systematické tablo pro φ je sporné, tj. důkazem φ , v tom případě je i konečné.

Tablo metoda ve VL - příklady

- *a*) Tablo důkaz formule $((p \rightarrow q) \rightarrow p) \rightarrow p$.
- *b*) Dokončené tablo pro $(\neg q \lor p) \to p$. Levá větev poskytuje protipříklad v(p) = v(q) = 0.

Tablo metoda v PL - rozdíly

- Formule v položkách budou sentence (uzavřené formule), tj. formule bez volných proměnných.
- Přidáme nová atomická tabla pro kvantifikátory.
- Za kvantifikované proměnné se budou substituovat konstantní termy dle jistých pravidel.
- Jazyk rozšíříme o nové (pomocné) konstantní symboly (spočetně mnoho) pro reprezentaci "svědků" položek T(∃x)φ(x) a F(∀x)φ(x).
- V dokončené bezesporné větvi s položkou $T(\forall x)\varphi(x)$ či $F(\exists x)\varphi(x)$ budou instance $T\varphi(x/t)$ resp. $F\varphi(x/t)$ pro každý konstantní term t (rozšířeného jazyka).

Předpoklady

1) Dokazovaná formule φ je sentence. Není-li φ sentence, můžeme ji nahradit za její generální uzávěr φ' , neboť pro každou teorii T,

$$T \models \varphi$$
 právě když $T \models \varphi'$.

2) Dokazujeme z teorie v uzavřeném tvaru, tj. každý axiom je sentence. Nahrazením každého axiomu ψ za jeho generální uzávěr ψ' získáme ekvivalentní teorii, neboť pro každou strukturu $\mathcal A$ (daného jazyka $\mathcal L$),

$$\mathcal{A} \models \psi$$
 právě když $\mathcal{A} \models \psi'$.

- 3) $Jazyk\ L\ je\ spočetný$. Pak každá teorie nad L je spočetná. Označme L_C rozšíření jazyka L o nové konstantní symboly c_0,c_1,\ldots (spočetně nekonečně mnoho). Platí, že konstantních termů jazyka L_C je spočetně. Nechť t_i označuje i-tý konstantní term (v pevně zvoleném očíslování).
- 4) Zatím budeme předpokládat, že jazyk je bez rovnosti.

Tablo v PL - příklady

Atomická tabla - původní

Atomická tabla jsou všechny následující (položkami značkované) stromy, kde α je libovolná atomická sentence a φ , ψ jsou libovolné sentence, vše v L_C .

$T\alpha$	$F\alpha$	$T(\varphi \wedge \psi)$ $ $ $T\varphi$ $ $ $T\psi$	$F(\varphi \wedge \psi)$ $/ \qquad \qquad$	$T(\varphi \lor \psi)$ $T\varphi \qquad T\psi$	$F(\varphi \lor \psi)$ $ $ $F\varphi$ $ $ $F\psi$
$T(\neg \varphi \\ \\ F\varphi$	$F(\neg \varphi)$ $ $ $T\varphi$	$T(\varphi \to \psi)$ $F\varphi \qquad T\psi$	$F(\varphi \to \psi)$ $ $ $T\varphi$ $ $ $F\psi$	$\begin{array}{ccc} T(\varphi \leftrightarrow \psi) \\ \nearrow & \searrow \\ T\varphi & F\varphi \\ \mid & \mid \\ T\psi & F\psi \end{array}$	$ \begin{array}{c cccc} F(\varphi \leftrightarrow \psi) \\ \hline \nearrow & \\ T\varphi & F\varphi \\ & \\ F\psi & T\psi \\ \end{array} $

Atomická tabla - nová

Atomická tabla jsou i následující (položkami značkované) stromy, kde φ je libovolná formule jazyka L_C ve volné proměnné x, t je libovolný konstantní term jazyka L_C a c je nový konstantní symbol z $L_C \setminus L$.

Poznámka Konstantní symbol c reprezentuje "svědka" položky $T(\exists x)\varphi(x)$ či $F(\forall x)\varphi(x)$. Jelikož nechceme, aby na c byly kladeny další požadavky, je v definici tabla omezeno, jaký konstantní symbol c lze použít.

Tablo

Konečné tablo z teorie T je binární, položkami značkovaný strom s předpisem

- (i) každé atomické tablo je konečné tablo z T, přičemž v případě (*) lze použít libovolný konstantní symbol $c \in L_C \setminus L$,
- (ii) je-li P položka na větvi V konečného tabla z T, pak připojením atomického tabla pro P na konec větve V vznikne konečné tablo z T, přičemž v případě (*) lze použít pouze konstantní symbol $c \in L_C \setminus L$, který se dosud nevyskytuje na V,
- (iii) je-li V větev konečného tabla z T a $\varphi \in T$, pak připojením $T\varphi$ na konec větve V vznikne rovněž konečné tablo z T.
- (iv) každé konečné tablo z T vznikne konečným užitím pravidel (i), (ii), (iii).

Tablo z teorie T je posloupnost $\tau_0, \tau_1, \ldots, \tau_n, \ldots$ konečných tabel z T takových, že τ_{n+1} vznikne z τ_n pomocí (ii) či (iii), formálně $\tau = \cup \tau_n$.

Konstrukce tabla

Konvence

Položku, dle které tablo prodlužujeme, nebudeme na větev znovu zapisovat kromě případů, kdy položka je tvaru $T(\forall x)\varphi(x)$ či $F(\exists x)\varphi(x)$.

Tablo důkaz

- Větev V tabla τ je sporná, obsahuje-li položky $T\varphi$ a $F\varphi$ pro nějakou sentenci φ , jinak je *bezesporná*.
- Tablo τ je sporné, pokud je každá jeho větev sporná.
- Tablo důkaz (důkaz tablem) sentence φ z teorie T je sporné tablo z T s položkou $F\varphi$ v kořeni.
- φ je (tablo) dokazatelná z teorie T, píšeme $T \vdash \varphi$, má-li tablo důkaz z T.
- Zamítnutí sentence φ tablem z teorie T je sporné tablo z T s položkou $T\varphi$ v kořeni.
- Sentence φ je (tablo) zamítnutelná z teorie T, má-li zamítnutí tablem z T, ti. $T \vdash \neg \varphi$.

Příklady

$$F((\forall x)(P(x) \rightarrow Q(x)) \rightarrow ((\forall x)P(x) \rightarrow (\forall x)Q(x)) \qquad F((\forall x)(\varphi(x) \land \psi(x)) \leftrightarrow ((\forall x)\varphi(x) \land (\forall x)\psi(x)))$$

$$T((\forall x)(P(x) \rightarrow Q(x)) \qquad T(((\forall x)(\varphi(x) \land \psi(x))) \qquad F(((\forall x)(\varphi(x) \land \psi(x))))$$

$$F(((\forall x)P(x) \rightarrow (\forall x)Q(x)) \qquad F(((\forall x)\varphi(x) \land (\forall x)\psi(x)) \qquad T(((\forall x)\varphi(x) \land (\forall x)\psi(x)))$$

$$T((\forall x)P(x) \qquad F((\forall x)\varphi(x) \qquad F((\forall x)\psi(x) \qquad T((\forall x)\varphi(x) \land (\forall x)\psi(x))$$

$$T((\forall x)P(x) \qquad F((\forall x)\varphi(x) \qquad F((\forall x)\psi(x) \qquad T((\forall x)\varphi(x) \land (\forall x)\psi(x))$$

$$F((\forall x)P(x) \qquad F((\forall x)\varphi(x) \qquad F((\forall x)\psi(x)) \qquad F((\forall x)\psi(x)) \qquad F((\forall x)\psi(x) \qquad F((\forall x)\psi(x)) \qquad F((\forall x)\psi(x))$$

$$F((\forall x)P(x) \qquad F((\forall x)\varphi(x) \qquad F((\forall x)\psi(x)) \qquad T((\forall x)\varphi(x) \land (\forall x)\psi(x))$$

$$F((\forall x)P(x) \qquad F((\forall x)\varphi(x) \qquad F((\forall x)\psi(x)) \qquad T((\forall x)\varphi(x) \land (\forall x)\psi(x)) \qquad F((\forall x)\varphi(x) \land (\forall x)\psi(x)) \qquad F($$

Dokončené tablo

Chceme, aby dokončená bezesporná větev poskytovala protipříklad.

Výskyt položky P ve vrcholu v tabla τ je $\emph{i-ty}$, pokud v má v τ právě i-1 předků označených P a je $\emph{redukovany}$ na větvi V skrze v, pokud

- *a*) P není tvaru $T(\forall x)\varphi(x)$ ani $F(\exists x)\varphi(x)$ a P se vyskytuje na V jako kořen atomického tabla, tj. při konstrukci τ již došlo k rozvoji P na V, nebo
- b) P je tvaru $T(\forall x)\varphi(x)$ či $F(\exists x)\varphi(x)$, má (i+1)-ní výskyt na V a zároveň se na V vyskytuje $T\varphi(x/t_i)$ resp. $F\varphi(x/t_i)$, kde t_i je i-tý konstantní term (jazyka L_C).

Nechť V je větev tabla τ z teorie T. Řekneme, že

- větev V je *dokončená*, je-li sporná, nebo každý výskyt položky na V je redukovaný na V a navíc V obsahuje $T\varphi$ pro každé $\varphi \in T$,
- tablo τ je *dokončené*, pokud je každá jeho větev dokončená.

Systematické tablo - konstrukce

Nechť R je položka a $T = \{\varphi_0, \varphi_1, \dots\}$ je (konečná či nekonečná) teorie.

- (1) Za τ_0 vezmi atomické tablo pro R. V případě (*) vezmi lib. $c \in L_C \setminus L$, v případě (\sharp) za t vezmi term t_1 . Dokud to lze, aplikuj následující kroky.
- (2) Nechť v je nejlevější vrchol v co nejmenší úrovni již daného tabla τ_n obsahující výskyt položky P, který není redukovaný na nějaké bezesporné větvi skrze ν . (Neexistuje-li ν , vezmi $\tau'_n = \tau_n$ a jdi na (4).)
- (3a) Není-li P tvaru $T(\forall x)\varphi(x)$ ani $F(\exists x)\varphi(x)$, za τ'_n vezmi tablo vzniklé z τ_n přidáním atomického tabla pro P na každou bezespornou větev skrze v. V případě (*) za c vezmi c_i pro nejmenší možné i.
- (3b) Je-li P tvaru $T(\forall x)\varphi(x)$ či $F(\exists x)\varphi(x)$ a ve v má i-tý výskyt, za τ'_n vezmi tablo vzniklé z τ_n připojením atomického tabla pro P na každou bezespornou větev skrze v, přičemž za t vezmi term t_i .
 - (4) Za τ_{n+1} vezmi tablo vzniklé z τ'_n přidáním $T\varphi_n$ na každou bezespornou větev neobsahující $T\varphi_n$. (Neexistuje-li φ_n , vezmi $\tau_{n+1} = \tau'_n$.)

Systematické tablo z T pro R je výsledkem uvedené konstrukce, tj. $\tau = \cup \tau_n$.

Systematické tablo - příklad

$$T((\exists y)(\neg R(y,y) \lor P(y,y)) \land (\forall x)R(x,x))$$

$$T(\exists y)(\neg R(y,y) \lor P(y,y))$$

$$T(\forall x)R(x,x)$$

$$T(\neg R(c_0,c_0) \lor P(c_0,c_0)) \quad c_0 \text{ nov\'a}$$

$$T(\forall x)R(x,x)$$

$$T(x)$$

$$T$$

Systematické tablo - dokončenost

Tvrzení Pro každou teorii T a položku R je systematické tablo τ dokončené.

Důkaz Nechť $\tau = \cup \tau_n$ je systematické tablo z $T = \{\varphi_0, \varphi_1, \dots\}$ s R v kořeni a nechť P je položka ve vrcholu v tabla τ .

- ullet Do úrovně v (včetně) je v au jen konečně mnoho výskytů všech položek.
- Kdyby výskyt P ve v byl neredukovaný na nějaké bezesporné větvi v τ , byl by vybrán v nějakém kroku (2) a zredukován v (3a) či (3b).
- Každá $\varphi_n \in T$ bude dle (4) nejpozději v τ_{n+1} na každé bezesporné větvi.

Tvrzení Je-li systematické tablo τ důkazem (z teorie T), je τ konečné.

extstyle ext

Tablo metoda v jazyce s rovností

Axiomy rovnosti pro jazyk L s rovnosti jsou

- (i) x = x
- (ii) $x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$ pro každý n-ární funkční symbol f jazyka L.
- (iii) $x_1 = y_1 \land \cdots \land x_n = y_n \rightarrow (R(x_1, \dots, x_n) \rightarrow R(y_1, \dots, y_n))$ pro každý n-ární relační symbol R jazyka L včetně =.

Tablo důkaz z teorie T jazyka L *s rovností* je tablo důkaz z teorie T^* , kde T^* je rozšíření teorie T o axiomy rovnosti pro L (resp. jejich generální uzávěry).

Poznámka V kontextu logického programování má rovnost často jiný význam než v matematice (identita). Např. v Prologu $t_1 = t_2$ znamená, že t_1 a t_2 jsou unifikovatelné.

Kongruence a faktorstruktura

Nechť \sim je ekvivalence na $A, f: A^n \to A$ a $R \subseteq A^n$, kde $n \in \mathbb{N}$. Pak \sim je

- kongruence pro funkci f, pokud pro každé $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$ platí $x_1 \sim y_1 \wedge \cdots \wedge x_n \sim y_n \quad \Rightarrow \quad f(x_1, \ldots, x_n) \sim f(y_1, \ldots, y_n),$
- *kongruence pro relaci* R, pokud pro každé $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$ platí $x_1 \sim y_1 \wedge \cdots \wedge x_n \sim y_n \Rightarrow (R(x_1, \ldots, x_n) \Leftrightarrow R(y_1, \ldots, y_n)).$

Nechť ekvivalence \sim na A je kongruence pro každou funkci i relaci struktury $\mathcal{A}=\langle A,\mathcal{F}^A,\mathcal{R}^A \rangle$ pro jazyk $L=\langle \mathcal{F},\mathcal{R} \rangle$. Faktorstruktura (podílová struktura) struktury \mathcal{A} dle \sim je struktura $\mathcal{A}/\sim=\langle A/\sim,\mathcal{F}^{A/\sim},\mathcal{R}^{A/\sim} \rangle$, kde

$$f^{A/\sim}([x_1]_{\sim},\ldots,[x_n]_{\sim}) = [f^A(x_1,\ldots,x_n)]_{\sim}$$

 $R^{A/\sim}([x_1]_{\sim},\ldots,[x_n]_{\sim}) \Leftrightarrow R^A(x_1,\ldots,x_n)$

pro každé $f \in \mathcal{F}$, $R \in \mathcal{R}$ a $x_1, \dots, x_n \in A$, tj. funkce a relace jsou definované z \mathcal{A} pomocí reprezentantů.

Např. $\underline{\mathbb{Z}}_p$ je faktorstruktura $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, -, 0 \rangle$ dle kongruence modulo p.

Význam axiomů rovnosti

Nechť \mathcal{A} je struktura pro jazyk L, ve které je rovnost interpretovaná jako relace $=^A$ splňující axiomy rovnosti, tj. ne nutně identita.

- 1) Z axiomů (*i*) a (*iii*) plyne, že relace $=^A$ je ekvivalence na A.
- 2) Axiomy (*ii*) a (*iii*) vyjadřují, že relace $=^A$ je kongruence pro každou funkci a relaci v \mathcal{A} .
- 3) Je-li $\mathcal{A}\models T^*$, je i $(\mathcal{A}/=^A)\models T^*$, kde $\mathcal{A}/=^A$ je faktorstruktura struktury \mathcal{A} dle $=^A$, přičemž rovnost je v $\mathcal{A}/=^A$ interpretovaná jako identita.

Na druhou stranu, v každém modelu, v kterém je rovnost interpretovaná jako identita, všechny axiomy rovnosti evidentně platí.

Korektnost

Řekneme, že struktura \mathcal{A} se *shoduje s položkou* P, pokud P je $T\varphi$ a $\mathcal{A} \models \varphi$, nebo pokud P je $F\varphi$ a $\mathcal{A} \models \neg \varphi$, tj. $\mathcal{A} \not\models \varphi$. Navíc, \mathcal{A} se *shoduje s větví* V, shoduje-li se s každou položkou na V.

Lemma Nechť \mathcal{A} je model teorie T jazyka L, který se shoduje s položkou R v kořeni tabla $\tau = \cup \tau_n$ z T. Pak \mathcal{A} lze expandovat do jazyka L_C tak, že se shoduje s nějakou větví V v tablu τ .

Poznámka Postačí nám expanze modelu \mathcal{A} o konstanty c^A pro $c \in L_C \setminus L$ vyskytující se na větvi V, ostatní konstanty lze dodefinovat libovolně.

extstyle ext

Předpokládejme, že máme větev V_n v τ_n a expanzi A_n shodující se s V_n .

- Vznikne-li τ_{n+1} z τ_n bez prodloužení V_n , položme $V_{n+1} = V_n$, $\mathcal{A}_{n+1} = \mathcal{A}_n$.
- Vznikne-li τ_{n+1} z τ_n připojením $T\varphi$ k V_n pro nějaké $\varphi \in T$, nechť V_{n+1} je tato větev a $\mathcal{A}_{n+1} = \mathcal{A}_n$. Jelikož $\mathcal{A} \models \varphi$, shoduje se \mathcal{A}_{n+1} s V_{n+1} .

Korektnost - důkaz (pokr.)

- Jinak τ_{n+1} vznikne z τ_n prodloužením V_n o atomické tablo nějaké položky P na V_n . Z indukčního předpokladu víme, že \mathcal{A}_n se shoduje s P.
- (i) V případě atomického tabla pro spojku položme $\mathcal{A}_{n+1} = \mathcal{A}_n$ a snadno ověříme, že V_n lze prodloužit na větev V_{n+1} shodující se s \mathcal{A}_{n+1} .
- (ii) Je-li P tvaru $T(\forall x)\varphi(x)$, nechť V_{n+1} je (jednoznačné) prodloužení V_n na větev v τ_{n+1} , tj. o položku $T\varphi(x/t)$. Nechť \mathcal{A}_{n+1} je libovolná expanze \mathcal{A}_n o nové konstanty z termu t. Jelikož $\mathcal{A}_n \models (\forall x)\varphi(x)$, platí $\mathcal{A}_{n+1} \models \varphi(x/t)$. Obdobně pro P tvaru $F(\exists x)\varphi(x)$.
- (iii) Je-li P tvaru $T(\exists x)\varphi(x)$, nechť V_{n+1} je (jednoznačné) prodloužení V_n na větev v τ_{n+1} , tj. o položku $T\varphi(x/c)$. Jelikož $\mathcal{A}_n\models(\exists x)\varphi(x)$, pro nějaké $a\in A$ platí $\mathcal{A}_n\models\varphi(x)[e(x/a)]$ pro každé ohodnocení e. Nechť \mathcal{A}_{n+1} je expanze \mathcal{A}_n o novou konstantu $c^A=a$. Pak $\mathcal{A}_{n+1}\models\varphi(x/c)$. Obdobně pro P tvaru $F(\forall x)\varphi(x)$.

Základní krok pro n=0 plyne z obdobné analýzy atomických tabel pro položku R v kořeni s využitím předpokladu, že model A se shoduje s R.

Věta o korektnosti

Ukážeme, že tablo metoda v predikátové logice je korektní.

Věta Pro každou teorii T a sentenci φ , je-li φ tablo dokazatelná z T, je φ pravdivá v T, tj. $T \vdash \varphi \Rightarrow T \models \varphi$.

Důkaz

- Nechť φ je tablo dokazatelná z teorie T, tj. existuje sporné tablo τ z T s položkou $F\varphi$ v kořeni.
- Pro spor předpokládejme, že φ není pravdivá v T, tj. existuje model A teorie T, ve kterém φ neplatí (protipříklad).
- Jelikož se $\mathcal A$ shoduje s položkou $F\varphi$, dle předchozího lemmatu lze $\mathcal A$ expandovat do jazyka L_C tak, že se shoduje s nějakou větví v tablu τ .
- To ale není možné, neboť každá větev tabla τ je sporná, tj. obsahuje dvojici $T\psi$, $F\psi$ pro nějakou sentenci ψ . \square

