Real Analysis I Homework #1

Please prepare your solutions as a compiled LATEX document. Due date September 17.

- (1) Complete the fill in the blank practice problems 2.1.14 (page 45), 2.1.15 (page 46) and 2.3.17 (page 70). Please type out the complete paragraphs underlining the filled in text.
- (2) Suppose that B is a set and $\{A_i : i \in I\}$ is an indexed family of sets. Prove

$$B \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} B \setminus A_i$$

 $B\setminus\bigcup_{i\in I}A_i=\bigcap_{i\in I}B\setminus A_i$ (3) Do problem 3.1#24: Prove by induction on $n\in\mathbb{N}$ that for any real number $x \ge -1$,

$$(1+x)^n \ge 1 + nx$$

- (4) Defining the rationals from the integers: Let \equiv be the relation on $Q = \mathbb{Z} \times \mathbb{N}$ defined by $(n, m) \equiv (n', m')$ if $n \cdot m' = n' \cdot m$. Prove the following
 - (a) \equiv is an equivalence relation on Q Remark: Your proof should only depend on the operations + and · defined on the integers, however, you may use the fact that the integers satisfy: If ab = cd and b = d then it follows that a = c).
 - (b) Let $\mathbb{Q} = \{[(n,m)] : (n,m) \in Q\}$ be the set of equivalence classes and define the operation + on \mathbb{Q} by [(n,m)]+[(k,l)] = [(ln+km,ml)].Prove that + is well-defined. Just to clarify: + is the given operation of addition on the integers and red coloured plus, +, is the newly defined operation of addition on the equivalence classes of Q.