King County Real Estate Price Focast

 $\bullet \bullet \bullet$

November 2020

Andrew Banner and Trevor Mott

Defining The Problem

- Create a accurate pricing model for new listings within King County
 - Use the model to gain additional listings by accurately predicting the sale sale price
 - Use model for negotiations between seller and buyer
 - Provide great visuals to allow the home buyer/seller to gain a greater understanding of market
- Target audience
 - Buyers and sellers looking within the average price range for the market.

Understanding the Raw Data

- Housing data set for King County,
 Washington
- 21613 Total Houses
- All houses sold in 2014 and 2015
- 70 Different Zip Codes within data
 - Categorical Variable

Column Names and descriptions for Kings County Data Set

- · id unique identified for a house
- · dateDate house was sold
- · pricePrice is prediction target
- · bedroomsNumber of Bedrooms/House
- · bathroomsNumber of bathrooms/bedrooms
- · sqft_livingsquare footage of the home
- · sqft_lotsquare footage of the lot
- · floorsTotal floors (levels) in house
- . waterfront House which has a view to a waterfront
- · view Has been viewed
- . condition How good the condition is (Overall)
- . grade overall grade given to the housing unit, based on King County grading system
- saft above square footage of house apart from basement
- sqft_basement square footage of the basement
- yr_built Built Year
- yr_renovated Year when house was renovated
- zipcode zip
- · lat Latitude coordinate
- . long Longitude coordinate
- sqft_living15 The square footage of interior housing living space for the nearest 15 neighbors
- sqft_lot15 The square footage of the land lots of the nearest 15 neighbors

Cleaning Data for target audience

- Created new column of Price per Square Foot
 - Very common real estate metric which was not included in original data
- Removed outliers
 - Price outliers
 - Extremely expensive or inexpensive houses will skew results
 - House size Outliers
 - Number of Bedroom, Bathroom, and Floors
- Removed Unnecessary columns
 - \circ Id
 - o Date
 - Year Renovated

Understanding Target Market

Understanding the market

Understanding the market

Model objective:

Make improvements from a baseline model to create a model which accurately predicts house prices for our target audience

Ordinary Least Squares (OLS) Regression Key Terms

• R-Squared (r^2)

- \circ Represents the a goodness-of-fit measure for the entire mode**l**
 - For example, a r^2 score of .68 means that 68% of the data fits the regression model

Coefficients

 Describes mathematical relationship between independent and dependent variable

• P-Value

 Describes weather the relationship between independent and dependent variable is statistically significant

Baseline Model

- Price will be used as dependent variable throughout modeling process
- R-squared value = .699
- Root Mean Square Error(RMSE)
 - Standard deviation of the residuals
 - Residuals are a measure of how far from the regression line the data points lie.
 - Measure of concentration of data points around the line of best fit
- RMES for for baseline model:
 - > **\$198314.69**

OLS Regression Results							
Dep. Variabl	e:	price	R-squ	uared:	0.699)	
Mode	el:	OLS	Adj. R-squ	uared:	0.699)	
Metho	d: Least 9	Squares	F-sta	tistic:	2361		
Dat	e: Sat, 28 No	ov 2020 P	rob (F-stat	istic):	0.00)	
Tim	e: 13	3:03:34	Log-Likeli	ihood:	-2.3543e+05	i	
No. Observation	s:	17290		AIC:	4.709e+05	i	
Df Residual	s:	17272		BIC:	4.710e+05	i	
Df Mode	el:	17					
Covariance Typ	e: no	nrobust					
	coef	std err	t	P> t	[0.025	0.975]	
id	-1.307e-06	5.32e-07	-2.456	0.014	-2.35e-06	-2.64e-07	
bedrooms	-3.405e+04	2079.721	-16.371	0.000	-3.81e+04	-3e+04	
bathrooms	4.45e+04	3607.657	12.334	0.000	3.74e+04	5.16e+04	
sqft_living	108.7783	2.530	43.002	0.000	103.820	113.737	
sqft_lot	0.0865	0.058	1.495	0.135	-0.027	0.200	
floors	5528.2263	3896.712	1.419	0.156	-2109.725	1.32e+04	
waterfront	5.625e+05	1.95e+04	28.831	0.000	5.24e+05	6.01e+05	
view	5.326e+04	2346.748	22.694	0.000	4.87e+04	5.79e+04	
condition	2.521e+04	2560.508	9.848	0.000	2.02e+04	3.02e+04	
grade	9.426e+04	2363.737	39.876	0.000	8.96e+04	9.89e+04	
sqft_above	70.5935	2.468	28.600	0.000	65.755	75.432	
sqft_basement	38.1848	2.915	13.101	0.000	32.472	43.898	
yr_built	-2622.2225	75.143	-34.896	0.000	-2769.510	-2474.934	
yr_renovated	20.8861	4.051	5.156	0.000	12.946	28.826	
zipcode	-486.9280	19.824	-24.562	0.000	-525.785	-448.071	
lat	5.949e+05	1.19e+04	50.135	0.000	5.72e+05	6.18e+05	
long	-1.96e+05	1.45e+04	-13.488	0.000	-2.25e+05	-1.68e+05	
sqft_living15	22.6219	3.747	6.038	0.000	15.278	29.966	
sqft_lot15	-0.3330	0.082	-4.064	0.000	-0.494	-0.172	

Correlation

price	1.000000
grade	0.600028
sqft_living	0.587663
sqft_living15	0.533609
sqft_above	0.495720
price_per_sqft	0.458125
lat	0.451340
bathrooms	0.426600
bedrooms	0.283191
floors	0.262949
sqft_basement	0.219279
view	0.192805
sqft_lot	0.091171
long	0.084751
sqft_lot15	0.083089
yr_built	0.061039
waterfront	0.036707
condition	0.029584
zipcode	-0.014223

Training/Improving Model

Categorical Variables

- Assigned to non continuous or obvious categorical data
- Zip Codes were given the categorical designation.
 - Assigned dummy variables to represent each zip code within model.
 - Allows for the significance of zip code to have its individual influence on model

Collinear Variables

- Variables that are highly correlated with other variables can skew results.
- Dropping collinear variables will improve the predictive power and results for model.
- Sqft_above was chosen to be dropped

pairs				
(sqft_above, sqft_living)	0.844410			
(sqft_living15, sqft_living)	0.728793			
(sqft_lot, sqft_lot15)	0.708516			
(sqft_living15, sqft_above)	0.708036			
(bathrooms, sqft_living)	0.703585			

Additional Feature Selection Through Stepwise

Many of the remaining variables had high P-values

- Use stepwise function to iterate through model and remove all variables deemed statistically insignificant
 - All values with a P-value higher than .05

• Test-Train-Split

- Creates two, randomly chosen subsets to compare
- One set of data us unchanged and one set is used to train model

Cross Validation

- Technique used for assessing the statistical analysis on a model
 - Used to estimate accuracy not improve accuracy

Final Model

- Final R-squared value = .919
 - Over 90% of the data can be explained within the model
- Root Mean Square Error(RMSE) for both test and train set:

RMSE for train set: 52809.0694374566 RMSE for test set: 54877.40702905297 RMSE difference: -2068.3375915963697

• Cross Validation Scores:

10 Cross Validation R^2 score for train: 0.917662066078903
10 Cross Validation R^2 score for test: 0.9118442675351133

OLS Regression Results							
Dep. Variabl	e:	price	R-squared:		0.919)	
Mode	el:	OLS	Adj. R-so	uared:	0.918	3	
Metho	od: Least Squares		F-statistic:		2814		
Dat	e: Wed, 25 N	lov 2020 I	Prob (F-sta	tistic):	0.00)	
Tim	e:	16:59:54	Log-Like	lihood:	-1.9383e+05	i	
No. Observation	s:	15768		AIC:	3.878e+05	5	
Df Residual	ls:	15704		BIC:	3.883e+05	i	
Df Mode	el:	63					
Covariance Typ	e: n	onrobust					
	coef	std err	t	P> t	[0.025	0.975]	
sqft_living15	5.7552	1.220	4.717	0.000	3.364	8.147	
price_per_sqft	1100.3271	7.670	143.460	0.000	1085.293	1115.361	
grade	2.331e+04	732.405	31.825	0.000	2.19e+04	2.47e+04	
const	-1.368e+07	3.4e+05	-40.196	0.000	-1.43e+07	-1.3e+07	
bedrooms	6370.9119	646.033	9.862	0.000	5104.613	7637.210	
sqft_living	168.0949	1.386	121.259	0.000	165.378	170.812	
lat	2.907e+05	7095.332	40.975	0.000	2.77e+05	3.05e+05	
condition	1.168e+04	735.279	15.891	0.000	1.02e+04	1.31e+04	
zip_98040	9.595e+04	5700.928	16.830	0.000	8.48e+04	1.07e+05	
zip_98006	4.252e+04	3408.461	12.476	0.000	3.58e+04	4.92e+04	
view	1.193e+04	764.024	15.611	0.000	1.04e+04	1.34e+04	
zip_98155	-7.891e+04	3402.740	-23.191	0.000	-8.56e+04	-7.22e+04	
zip_98133	-7.174e+04	3216.353	-22.305	0.000	-7.8e+04	-6.54e+04	
zip_98028	-7.747e+04	3983.178	-19.449	0.000	-8.53e+04	-6.97e+04	
zip_98019	-8.632e+04	4692.968	-18.393	0.000	-9.55e+04	-7.71e+04	
zip_98005	5.07e+04	5155.315	9.834	0.000	4.06e+04	6.08e+04	
zip_98004	7.269e+04	5762.365	12.615	0.000	6.14e+04	8.4e+04	
zip_98011	-7.327e+04	4706.360	-15.569	0.000	-8.25e+04	-6.4e+04	
zip_98125	-5.298e+04	3381.274	-15.670	0.000	-5.96e+04	-4.64e+04	
zip_98034	-4.802e+04	3073.738	-15.622	0.000	-5.4e+04	-4.2e+04	

Final Model Conclusions

- Dramatic increase in R-squared score
 - Goodness of fit along regression line was greatly improved
 - About 30% increase in strength of the relationship between price and the various independent variables
- Dramatic decrease in Root Mean Squared Error Metric
 - Allows for predictions to be far more accurate.
 - Can estimate the price of a house with and error of about \$52809
 - Substantially lower the the \$198314 we saw in the baseline model
- Both Test-Train-Split and cross validation confirmed results
 - o A small Test-Train-Split difference conforms model can be applied to entire data set
 - Cross validation scores confirm the models accuracy throughout entire data set

Future Considerations

- Gathering additional data to solidify model.
 - Recent years to establish market trends
- Zip Code information
 - Neighborhood data
 - Schools, parks, crime
- Smaller geographic with more house data would lead to stronger model for predicting prices.

THANKS FOR LISTENING