1. The Normal distribution can be used to approximate binomial probabilities when 101 = (q-1)n bno 01 = q.n

2. Three choices of dessert - ice cream, apple pie, and chocolate cake. Each dessert is equally likely to be chosen. P(choose ice cream) = 13

P(do not choose ice cream) = 2/3

a.) n=4 p=0.33 Let x be number of people who choose ice cream. X=0,1,2,3,004 P(X=2) = P(X=2) + P(X=3) + P(X=4) $4C_2(0.33)^2(0.67)^2 = 0.2933$ $4C_3(0.33)^3(0.67)^2 = 0.0963$ 4C4 (0.33)4 (0.67) = 0.0119

P(X≥2) = 0.4015 n=21 (b) Cannot approximate blc np=693<10 However $P(X \ge 2) = 1 - P(X < 2) = 1 - [P(X = 0) + P(X = 1)]$

= 1-[a(Co(0.33)°(0.67)21 + a(C, (0.33)'(0.67)20]=0.9975

40% pay w/ credit card
If n=3 customers are sampled and we are interested in whether or not each pays with a credit card, define X to be the number who pay with CC. n=3 p=0.4 (1-p)=0.6

(a) P(X=0) = 3Co(0.4) (0.6)3 = [0.216] 6) P(X=2) = 3C2 (0,4)2(0,6)1 = 10,288 $\widehat{OP}(X \ge 2) = P(X = 2) + P(X = 3)$ $= 0.288 + 3C_3(0.4)^3(0.6)^0 = [0.352]$ from

 $\frac{3}{d} \cdot P(X=2) = P(X=0) + P(X=1) + P(X=2)$ $P(X=0) = 0.216 \quad \text{from b}$ $P(X=3) = 0.064 \quad \text{from c}$ $P(X=1) = 3C_1(0.4)^{1}(0.6)^{2} = 0.432$ P(X=2) = 0.216 + 0.064 + 0.432 = 0.712

If n=200 customers are chosen, let X be defined as the number who pay w/ cc. X=0,1,2,...,200. p=0.4

np = 80 n(1-p) = 120 use Normal approx.

@P(X>75) = 0.7642 78

 $\mu = 80$ $\sigma = 6.93$

$$Z = \frac{75-80}{6,93} = -0.72$$

$$P(X > 75) = 1 - P(X < 75)$$

= 1 - 0.2358
= 0.4642

(b) P(x<70)=[0.0749

$$z = \frac{70-80}{6.93} = -1.44$$

© P(70 < X < 75) = 0.2358 - 0.0749= [0.1609]

on a 40 question test...

4. n=40 p=0.25 (4 selections for each problem)

= Guess on every answer

Let X be the number of questions correct. (a) P(X=5) = 40C5 (0.25) (0.7

(b) P(x>15) Use Normal approx. 6/c 40.0.35≥10 and 40.0.75≥10

n=40 p=0.25 $\mu=(40)(0.25)=10$ $\sigma=\sqrt{(40)(0.25)(0.75)}=2.7386$

z = 15-10 = 1.83 P(X < 15) = 0.9664 2.7386 = P(X > 15) = 1-0.9664= [0.0336]

@ 70% is passing (0.7)(40) = 28
Student must get
28 out of 40 correct
to pass the test

P(X = 28)

M=10 Z=28-10=6.57 $\sigma=2.7386$ 2.7386

Estimate P(x≤28) ≈ 0,9999

P(X≥28) ≈0.0001

E Batting overage is 0.275. Use Normal approx. to find, in next 100 times at bot, P(x≥20).

n=100 p=0.275 M=np=27.5 $\sigma=\sqrt{np(1-p)}=4.465$ $Z=\frac{20-27.5}{4.465}=-6.16$

Estimate P(X<20) ≈ 0.0001 P(X ≥ 20) ≈ 0.9999

6. Probability a person is right-handed is 85% USE Normal approx. to find, in group of 100 people, P(70<X<90).

n=100 np=85 n(1-p)=15

$$Z = 70 - 85 = -4.2$$
 $Z = 90 - 85 = 1.4$ 3.57

P(70 < X < 90) = [0.9191]

7. Probability that a tire will be defective = is 0.03.

we are counting defective tires so probability of saccess, p, is 0.0

In 350 tires, find P(X = 5)

= n = 350 np = 10.5 n(1-p) = 339.5

M=10,5 0=3.19

 $Z = \frac{5 - 10.5}{3.19} = -1.72$ $P(X \le 5) = 0.0427$

8. Failure rate of Calculus students is 30%. P(X = 6) = np=10.5 n(1-p)=24.5

M= np = 10.5 0= \np(1-p) = 2.71

Z = 6 - 10.5 = -1.66 $P(X \le 6) = 0.0485$

9. 75% of canadian families have one or more

= cars. In a SRS of 100 families, find

n=100 np=75 / n(1-p)=25 M=np=75 0= \np(1-p)=4.33

P(65 < x < 80) = 0.8749 - 0.0104 = [0.8645]

 $Z = \frac{65 - 75}{4.33} = -2.31$ 20.8749 0.0104= 1,15

Z = 80-75 = 1.15

10. 11% of glass jars are defective. Out of primes 1000 jars, what is P(105 < X < 115) np= 3350" n(1-p)=1650 M= np = 110 0 = Vnp(1-p) = 9.89 $Z = \frac{105 - 110}{9.89} = -0.51$ Z=115-110 = 0.51 50% P(110<X<115) 8 = 0.6950 - 0.3050 < 0.3050 −0,51 ° 0,51 = 0.39 OR ... $P(105 < X < 115) = 2 \times P(110 < X < 115)$ $= 2 \times (0.6950 - 0.5)$ $= 2 \times 0.195$ = 0.39II roll die 5000 times (a) Probability of rolling more than 1000 ones Define X to be the number of ones n = 5000 p = 1/6 = 0.17 (1-p) = 0.83n(1-p)=4150 / 11=np=850 0=1np(1-p)=26.56 $Z = \frac{1000 - 850}{36.56} = 5.65$ P(X > 1000) = 1 - P(X < 1000)Estimate P(X<1000) = 0,9999 P(X > 1000) ≈ 1-0,9999

€0.0001

11 (b) n=5000 Define x to be the number of primes

Primes are 1,2,3,5 p(p) = 4/6 = 0.67 P(X > 3300) (1-p) = 0.33 np = 3350 n(1-p) = 1650

M=np=3350 $\sigma=\sqrt{np(1-p)}=33.25$

Z = 3300 - 3350 = -1.5 P(X > 3300)33.25

= 1-P(X23300) = 1-0.0668 = 0.9332