Chuỗi số

I Đại cương về chuỗi số

1 Định nghĩa

• Chuỗi:
$$\sum_{n=1}^{\infty}a_n$$
 với
$$\begin{cases} a_n & \text{là số hạng tổng quát} \\ S_n=a_1+a_2+\ldots+a_n & \text{là tổng riêng thứ n} \end{cases}$$

$$\bullet \lim_{n \to \infty} \sum_{n=1}^{\infty} a_n \text{ với} \begin{cases} S \Rightarrow \sum_{n=1}^{\infty} a_n \text{liên tục và} \sum_{n=1}^{\infty} a_n = S \\ \nexists_{\infty} \Rightarrow \sum_{n=1}^{\infty} a_n \text{phân kì} \end{cases}$$

• Ví dụ:
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \text{ với } a_n = \frac{1}{n(n+1)}$$

$$S_n = a_1 + a_2 + \dots + a_n = \frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)} = 1 - \frac{1}{(n+1)} = \frac{n}{(n+1)}$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{n}{(n+1)} = 1$$

$$\Rightarrow \text{Chuỗi hội tụ} \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$

$$\Rightarrow \text{Chuỗi hội tụ} \Leftrightarrow |q| < 1 \text{ về} \sum_{n=1}^{\infty} a_n a_n$$

$$\star \sum_{n=1}^{\infty} a.q^n \quad (a \neq 0) \begin{cases} \text{hội tụ } \Leftrightarrow |q| < 1 \\ \text{phân kì } \Leftrightarrow |q| \geqslant 1 \end{cases} \text{ và } \sum_{n=1}^{\infty} a.q^n = \frac{aq}{1-q}$$

2 Định lý 1.1: Điều kiện cần để chuỗi hội tụ

•
$$\sum_{n=1}^{\infty} a_n$$
 là hội tụ thì $\lim_{n\to\infty} a_n = 0$

• Hệ quả:
$$\lim_{n\to\infty}a_n\neq 0\Rightarrow \sum_{n=1}^\infty a_n$$
 phân kỳ

• Ví dụ:
$$\sum_{n=1}^{\infty} \frac{10-3n}{\sqrt{4n^2+2n+7}}$$
 với $a_n = \frac{10-3n}{\sqrt{4n^2+2n+7}}$
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{10-3n}{\sqrt{4n^2+2n+7}} = \frac{-3}{2} \neq 0 \Rightarrow \text{chuỗi phân kỳ}$$

3 Định lý 1.2: Các phép toán trên chuỗi số hội tụ

- Nếu $\sum_{n=1}^{\infty} a_n$ và $\sum_{n=1}^{\infty} b_n$ là các chuỗi số hội tụ thì chuỗi số $\sum_{n=1}^{\infty} (\alpha a_n + \beta b_n) = \alpha \sum_{n=1}^{\infty} a_n + \beta \sum_{n=1}^{\infty} a_n$
- Ví dụ: Chứng minh chuỗi số sau hội tụ $\sum_{n=1}^{\infty} \left[\frac{2020}{n(n+1)} + \frac{2021}{4^n} \right]$ tính tổng chuỗi số:

$$- \operatorname{X\acute{e}t} \sum_{n=1}^{\infty} \frac{2020}{n(n+1)} = 2020 \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \qquad a_n = \frac{1}{n(n+1)}$$

$$S_n = a_1 + a_2 + \dots + a_n = \frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)} = 1 - \frac{1}{(n+1)} = \frac{n}{(n+1)}$$

$$\lim_{n \to \infty} S_n = 1 \Rightarrow \begin{cases} \operatorname{chuỗi} hội tụ \\ \sum_{n=1}^{\infty} \frac{2020}{n(n+1)} = 2020 \end{cases}$$

$$(1)$$

$$- \operatorname{X\acute{e}t} \sum_{n=1}^{\infty} \frac{2020}{4^n}$$

$$\Rightarrow \begin{cases} \operatorname{chu\~0i} \ \operatorname{h\^0i} \ \operatorname{t} u & (|q| = \frac{1}{4} < 1) \\ \lim_{n \to \infty} \frac{2021}{4^n} = \frac{2021 \cdot \frac{1}{4}}{1 - \frac{1}{4}} = \frac{2021}{3} \end{cases}$$
 (2)

Thay đổi một số hữu hạn số hạng đầu không làm thay đổi tính hội tụ hay phân kỳ của chuỗi.

$$\text{từ (1)và (2)} \Rightarrow \begin{cases} \sum_{n=1}^{\infty} \left[\frac{2020}{n(n+1)} + \frac{2021}{4^n} \right] & \text{hội tụ} \\ \sum_{n=1}^{\infty} \left[\frac{2020}{n(n+1)} + \frac{2021}{4^n} \right] & = 2021 + \frac{2021}{3} = \frac{8081}{3} \end{cases}$$

II Chuỗi số dương

1 Định nghĩa

Chuỗi $\sum_{n=1}^{\infty} a_n$ thỏa mãn $a_n > 0, \forall n$ được gọi là chuỗi số dương (Chú ý rằng nếu các phần tử $a_n < 0, \forall n$ thì ta thực hiện bỏ dấu trừ ra ngoài, ta sẽ được một chuỗi dương)

2 Tiêu chu<mark>ẩn tích</mark> p<mark>hân</mark>

- Cho f(x) là một hàm liên tục dương, giảm trên $[1; \infty)$ và $\lim_{n \to \infty} f(x) = 0$, $a_n = f(n) \quad \forall n \geqslant 1$. Khi đó $\sum_{n=1}^{\infty} a_n$ và $\int_{-\infty}^{\infty} f(x) dx$ cùng hội tụ hoặc cùng phân kỳ.
- Ví dụ: $\sum_{n=2}^{\infty} \frac{1}{n \ln n} , a_n = \frac{1}{n \ln n} > 0$ Xét $f(x) = \frac{1}{n \ln n}$ liên tục dương, giảm trên $[2; \infty)$ và $a_n = f(x) \quad \forall n \geqslant 2$ Mà $\int_{2}^{\infty} \frac{dx}{x \ln x} = \int_{2}^{\infty} \frac{d(\ln x)}{\ln x} = \ln(\ln x) \Big|_{2}^{\infty} = \infty$ $\rightarrow \int_{2}^{\infty} \frac{dx}{x \ln x} \text{ phân kỳ} \Rightarrow \sum_{n=2}^{\infty} \frac{1}{n \ln n} \text{ phân kỳ theo tính chất tích phân.}$ $\bigstar \sum_{n=2}^{\infty} \frac{1}{n^{\alpha}} (n > 0) \begin{cases} \text{hội tụ} \Leftrightarrow \alpha > 1 \\ \text{phân kỳ} \Leftrightarrow 0 < \alpha \leqslant 1 \end{cases}$

3 Các tiêu chuẩn so sánh

Cho
$$\sum_{n=1}^{\infty} a_n, \sum_{n=2}^{\infty} b_n$$
 là chuỗi số dương.

• Tiêu chuẩn so sánh 1:

Nếu
$$a_n \leqslant b_n$$

$$\begin{cases} \sum_{n=1}^{\infty} b_n \text{hội tụ thì} \sum_{n=1}^{\infty} a_n \text{hội tụ} \\ \sum_{n=1}^{\infty} a_n \text{phân kỳ thì} \sum_{n=1}^{\infty} b_n \text{phân kỳ} \end{cases}$$

Ví dụ:
$$\sum_{n=1}^{\infty} \frac{2^n}{n+5^n}$$
 Ta có $0 < \frac{2^n}{n+5^n} \le \left(\frac{2}{5}\right)^n$ Mà
$$\sum_{n=1}^{\infty} \left(\frac{2}{5}\right)^n \text{hội tụ } (q = \frac{2}{5} < 1) \Rightarrow \sum_{n=1}^{\infty} \frac{2^n}{n+5^n} \text{hội tụ theo tiêu chuẩn so sánh.}$$

• Tiêu chuẩ<mark>n so sánh</mark> 2:

Giả sử
$$\exists \lim_{n \to \infty} \frac{a_n}{b_n} = K$$

$$-K=0\Rightarrow\sum_{n=1}^{\infty}b_{n}$$
 hội tụ thì $\sum_{n=1}^{\infty}a_{n}$ hội tụ.

$$-K = \infty \Rightarrow \sum_{n=1}^{\infty} b_n$$
 phân kỳ thì $\sum_{n=1}^{\infty} a_n$ phân kỳ.

$$-K=0\Rightarrow \sum_{n=1}^{\infty}b_n$$
 và $\sum_{n=1}^{\infty}a_n$ cùng hội tụ hoặc cùng phân kỳ.

Ví dụ:
$$\sum_{n=1}^{\infty} \frac{n^2 + n}{\sqrt{n^5 + 1}}$$
, $a_n = \frac{n^2 + n}{\sqrt{n^5 + 1}} > 0$
Xét $\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n^5}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$, $b_n = \frac{1}{\sqrt{n}}$
Ta có $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{n^2 + n}{\sqrt{n^5 + 1}}}{\frac{1}{\sqrt{n^5 + 1}}} = \lim_{n \to \infty} \frac{1 + \frac{1}{n}}{\sqrt{1 + \frac{1}{n}}} = 1$

Mà
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 phân kỳ $(\alpha = \frac{1}{2} < 1)$

$$\Rightarrow \sum_{n=1}^{\infty} \frac{n^2 + n}{\sqrt{n^5 + 1}}$$
 phân kỳ theo tiêu chẩn so sánh.

Tiêu chuẩn D'Alambert: 4

Cho
$$\sum_{n=1}^{\infty} a_n$$
 là chuỗi số dương.

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = D$$

•
$$D < 1 \Rightarrow \sum_{n=1}^{\infty} a_n$$
 hội tụ.

•
$$D > 1 \Rightarrow \sum_{n=1}^{\infty} a_n$$
 phân kỳ.

•
$$K = 1 \Rightarrow \text{chưa có kết luận}$$

Ví dụ 1:
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
, $a_n = \frac{1}{n!} > 0$

Xét
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{1}{(n+1)!}}{\frac{n!}{(n+1)!}} = \lim_{n \to \infty} \frac{1}{n+1} = 0 < 1$$

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n!}$$
 hội tụ theo tiêu chuẩn D'Alambert.

Ví dụ 2:
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^3+4^n}$$
, $a_n = \frac{2n+1}{n^3+4^n} > 0, \forall n \in \mathbb{N}^n$

Ví dụ 2:
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^3+4^n}, \qquad a_n = \frac{2n+1}{n^3+4^n} > 0, \forall n \in N^*$$
Xét
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{2n+3}{\frac{(n+1)^3+4^{n+1}}{n^3+4^n}} = \lim_{n \to \infty} \frac{(2n+3)(2n+2)}{4} = \infty$$

Do
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \infty \Rightarrow a_{n+1} > an$$

$$\Rightarrow a_n > a_{n-1} > \dots a_1 \left(= \frac{3}{2} \right)$$

$$\Rightarrow \lim_{n \to \infty} a_n$$
 nếu có tồn tại thì cũng không thể bằng 0

$$\Rightarrow$$
 Chuỗi số đã cho phân kỳ.

5 Tiêu chuẩn Cauchy:

Cho
$$\sum_{n=1}^{\infty} a_n$$
 là chuỗi số dương.

$$\lim_{n \to \infty} \sqrt[n]{a_n} = C$$

•
$$C < 1 \Rightarrow \sum_{n=1}^{\infty} a_n$$
 hội tụ.

•
$$C > 1 \Rightarrow \sum_{n=1}^{\infty} a_n$$
 phân kỳ.

• $C = 1 \Rightarrow$ chưa có kết luân

Ví dụ:
$$\sum_{n=1}^{\infty} \left(\arctan \frac{1}{n} \right)^n, \qquad a_n = \left(\arctan \frac{1}{n} \right)^n > 0$$
Xét
$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\left(\arctan \frac{1}{n} \right)^n} = \lim_{n \to \infty} \left(\arctan \frac{1}{n} \right) = 0 < 1$$

$$\Rightarrow \sum_{n=1}^{\infty} \left(\arctan \frac{1}{n} \right)^n \text{ hội tụ theo tiêu chuẩn Cauchy.}$$

6 Mối quan hệ giữa tiêu chuẩn D'Alambert và tiêu chuẩn Cauchy

Cho chuỗi số dương
$$\sum_{n=1}^{\infty} a_n$$
. Nếu tồn tại $\sum_{n=1}^{\infty} \frac{a_{n+1}}{a_n} = L \in [0,\infty)$ thì $\sum_{n=1}^{\infty} a_n = L$.

III Chuỗi số dương với số hạng có dấu bất kỳ

1 chuỗi hội tụ tuyệt đối, bán hội tụ

• Định lý: Nếu
$$\sum_{n=1}^{\infty} |a_n|$$
 hội tụ thì $\sum_{n=1}^{\infty} a_n$ cũng là hội tụ. Lưu ý $\sum_{n=1}^{\infty} |a_n| \Rightarrow \sum_{n=1}^{\infty} a_n$ không có chiều ngược lạ.

Định nghĩa 1: Chuỗi
$$\sum_{n=1}^{\infty} a_n$$
 được gọi là

– hội tụ tuyệt đối nếu
$$\sum_{n=1}^{\infty} |a_n|$$
 là hội tụ

– bán hội tụ nếu
$$\sum_{n=1}^{\infty} a_n$$
 là hội tụ và $\sum_{n=1}^{\infty} |a_n|$ là phân kỳ.

Ví dụ:
$$\sum_{n=1}^{\infty} \frac{\cos(n)}{n^2}$$

• ta có
$$\left| \frac{\cos(n)}{n^2} \right| \leqslant \frac{1}{n^2}$$

• mà
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 hội tụ $\Rightarrow \left| \frac{\cos(n)}{n^2} \right|$ hội tụ

Tiêu chuẩn D'Alambert mở rộng:

Giả sử tồn tại
$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$$

- L < 1 thì chuỗi đã cho hội tụ tuyệt đối
- L > 1 thì cả hai chuỗi $\sum_{n=1}^{\infty} |a_n|$ và $\sum_{n=1}^{\infty} a_n$ phân kỳ.

Tiêu chuẩn Cauchy mở rộng:

Giả sử tồn tại
$$\lim_{n\to\infty} \sqrt{a_n} = L$$

- $\bullet~L<1$ thì chuỗi đã cho hội tụ tuyệt đối
- L > 1 thì cả hai chuỗi $\sum_{n=1}^{\infty} |a_n|$ và $\sum_{n=1}^{\infty} a_n$ phân kỳ.

Ví dụ: Xét chuỗi
$$\sum_{n=1}^{\infty} \frac{an^2}{(1-a^2)^n} \text{ ta có} \lim_{n\to\infty} \sqrt[n]{\frac{an^2}{(1-a^2)^n}} = \lim_{n\to\infty} \frac{\sqrt[n]{an^2}}{|1-a^2|}$$

- $\frac{1}{|1-a^s|} > 1 \Rightarrow 0 < |a| < \sqrt{2} \Rightarrow$ chuỗi phân kỳ theo tiêu chuẩn cauchy.
- $\frac{1}{|1-a^s|} < 1 \Rightarrow |a| > \sqrt{2} \Rightarrow$ chuỗi hội tụ theo tiêu chuẩn cauchy.

•
$$|a|=\sqrt{2}\Rightarrow$$
 chuỗi ban đầu có dạng.
$$\begin{bmatrix} \sum\limits_{n=1}^{\infty}n^2.\sqrt{2}\\ \sum\limits_{n=1}^{\infty}-n^2.\sqrt{2}=-\sum\limits_{n=1}^{\infty}n^2.\sqrt{2} \end{bmatrix}$$

2 Chuỗi đan dấu

Định nghĩa: Cho chuỗi số có dạng $\sum_{n=1}^{\infty} (-1)^{n-1}.a_n$ với $a_n > 0$ được gọi là chuỗi đan dấu. Định lý

Lebnitz: Nếu $a_{nn=1}^{\infty}$ là một dãy số dương, giảm và $\lim_{n\to\infty}a_n=0$ thì $\sum_{n=1}^{\infty}(-1)^{n-1}.a_n$ là một chuỗi số

hội tụ và
$$\sum_{n=1}^{\infty} (-1)^{n-1}.a_n \leqslant a_1$$

Ví dụ: Xét chuỗi
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

- Chuỗi là chuỗi đan dấu
- $\bullet \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$
 - + chuỗi là <mark>dãy số giả</mark>m.
 - ⇒ chuỗi hội tụ theo tiêu chuẩn Leibnitz.

Nhận xét: ta có
$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{\sqrt{n}} \right| = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 mà $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ phần kỳ do $\frac{1}{2} < 1$

Ví dụ 2:
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n^2 + n + 1)}{2^n (n+1)}$$

- Chuỗi là chuỗi đan dấu
- $\bullet \lim_{n \to \infty} \frac{n^2 + n + 1}{2^n (n+1)} = 0$
 - + chuỗi là dãy số giảm.
 - \Rightarrow chuỗi hội tụ theo tiêu chuẩn Leibnitz.

3 Phép nhân chuỗi

Định nghĩa: Cho $\sum_{n=1}^{\infty} a_n$ và $\sum_{n=1}^{\infty} b_n$ là 2 chuỗi bất kỳ. Khi đó chuối $\sum_{n=1}^{\infty} c_n$, ở đó $c_n = \sum_{n=1}^{\infty} a_k . b_{n+1-k}$.

$$\sum_{n=1}^{\infty}c_n$$
 là tích của hai chuỗi $\sum_{n=1}^{\infty}a_n$ và $\sum_{n=1}^{\infty}b_n.$

Định lý Cho
$$\sum_{n=1}^{\infty}a_n$$
 và $\sum_{n=1}^{\infty}b_n$ là các chuỗi hội tụ tuyệt đối $\sum_{n=1}^{\infty}b_n$ và $\sum_{n=1}^{\infty}a_n=A$ và $\sum_{n=1}^{\infty}b_n=B$ thì

$$\sum_{n=1}^{\infty} c_n = A.B$$

Ví dụ: Xét chuỗi $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$

- $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$ hội tụ tuyệt đối
- $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ hội tụ tuyệt đối
- $\sum_{n=1}^{\infty} \left(\frac{1}{n\sqrt{n}} \right) \cdot \left(\frac{1}{2^{n-1}} \right)$ hội tụ

CLB HỐ TRỢ HỌC TẬP