3000788 Intro to Comp Molec Biol

Lecture 30: Dynamics modeling for systems biology

November 29, 2022

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Systems biology

- A (biological) system consists of components (genes) and rules (gene expression regulations) that control its characteristics (phenotypes)
- Systems biology = integration of data and model to fully understand the system

Multi-omics approach

- Genomics → gene state
- Epigenomics → chromatin state
- Transcriptomics → gene expression
- Proteomics → protein expression
- Other assays → protein function
- Provide mechanistic understanding

Modeling approach

Represent molecular interaction as network of physical-chemical reactions

Why is systems biology interesting?

- How does gene and protein know where to activate in the body during development?
- Each cell starts in identical state!

Why is systems biology interesting?

 Gene regulatory dynamics lead to specific expression pattern over time

A simple enzymatic reaction

$$E + S \underset{\mathsf{k}_{\mathsf{off}}}{\longleftrightarrow} ES \xrightarrow{\mathsf{k}_{\mathsf{react}}} E + P$$

-
$$\frac{d[S]}{dt}$$
 = Rate of change in $S = -k_{on}[E][S] + k_{off}[ES]$

-
$$\frac{d[E]}{dt}$$
 = Rate of change in $E = -k_{on}[E][S] + k_{off}[ES] + k_{react}[ES]$

-
$$\frac{d[P]}{dt}$$
 = Rate of change in $P = \mathbf{k_{react}}[ES]$

A key mental image

Rate of E + S \rightarrow ES = Rate of E meeting S x Rate of binding

Rate of E + S \rightarrow ES = [E][S] x k

Rate of E meeting S scales linearly with [E] and [S]

Rate of binding is a constant for E and S

https://employees.csbsju.edu/cschaller/Reactivity/kinetics/rkphase.htm

- Molecules must find each other in 3D to bind and interact
- Reaction takes time (and typically energy)

From enzymatic reaction to transcription

- $TF + DNA_{inactive} \leftrightarrow TF-DNA$
- RNAP + TF-DNA → RNAP + TF-DNA + RNA
- RNA → degraded RNA

A simple gene expression model

$$k_{\text{transcription}}$$
 $DNA \rightarrow DNA + RNA$
 $RNA \rightarrow \emptyset$
 $k_{\text{degradation}}$

- $\frac{d[RNA]}{dt} = k_{transcription} k_{degradation}[RNA]$
- What would the graph of [RNA] looks like?

How to simulate differential equation?

$$- x_{t+1} = x_t + (x_{t+1} - x_t)$$

- $x_{t+1} x_t$ can be viewed as Δx at time t, or approximately x'(t)
- Differential equation defines x'(t)
- If we start with an initial condition x_0 , we can determine $x_1, x_2, ...$ by calculating x'(0), x'(1), ... and adding them

scipy.integrate.odeint

```
from scipy.integrate import odeint
import matplotlib.pyplot as plt

def simple_transcription(rna, time, k_trans, k_deg):
    return k_trans - k_deg * rna

initial_rna = 0
times = range(0, 20)

k_trans = 2
k_deg = 0.5

simulated = odeint(simple transcription, initial_rna, times, args = (k_trans, k_deg))
```

odeint() takes a function that return derivative(s), initial condition, and time steps

Time-dependent activation

- First half of the dynamics is the same as before
- Second half is when RNA degrades until the [RNA] falls back to the basal level

```
def time_transcription(rna, time, k_trans, k_deg):
    if time < 10:
        return k_trans - k_deg * rna
    else:
        return - k_deg * rna</pre>
```


Negative auto-regulation

http://be150.caltech.edu/2019/handouts/03_small_circuits.html

$$- \frac{dDNA_{inactive}}{dt} = k_{bind}[X]^{n}[DNA] - k_{unbind}[DNA_{inactive}]$$

- At equilibrium, fraction of unbound DNA =
$$\frac{[DNA]}{[DNA] + [DNA_{inactive}]} = \frac{k_{bind}[X]^n}{k_{unbind} + k_{bind}[X]^n}$$

Also known as Hill function

Faster equilibrium & response time

$$\frac{d[X]}{dt} = \frac{k_{transcription}}{1 + (k[X])^n} - k_{degradation}[X] \leftarrow \text{reduced transcription rate}$$

Positive auto-regulation

$$-\frac{d[X]}{dt} = \frac{k_{transcription}(k[X])^n}{1 + (k[X])^n} - k_{degradation}[X]$$

- Can you guess what would happen to the system when n = 2?

Bistability

- At equilibrium, $\frac{k_{transcription}(k[X])^2}{1+(k[X])^2} = k_{degradation}[X]$
- There are two solutions, one of which is [X] = 0
- Depending on the current [X], the system can converge to either equilibrium

Bistability

- For low [X], the degradation term wins over the transcription and [X] decays down to zero
- For intermediate [X], the transcription term wins over degradation and [X] increases until reaching the other equilibrium
- For high [X], the degradation term wins over the transcription and [X] decays down to the nearest equilibrium

Tunable cell state based on equilibria

- With more genes and regulatory interactions, many more equilibria can exist
- Gradient of gene expression can establish position-specific cell states

Cell memory

- Once a cell gets pass the green boundary, small changes in gene expression will not be able to bring it back to the other side
- The cell "remembers" its state

Memory from gene toggle switch

- Two genes repressing each other
- Two equilibria: High Lacl or high GFP
- If GFP is ON, how can we turn it off? Adding aTc or IPTG?
- Once GFP is OFF, do we need to continue adding those molecules to keep it OFF?

Toogle switch simulation

```
def toggle_switch(rna, time, k_trans, k_deg, n):
    LacI = rna[0]
    GFP = rna[1]

dLacI_dt| = k_trans / (1 + GFP ** n) - k_deg * LacI dGFP_dt = k_trans / (1 + LacI ** n) - k_deg * GFP

return [dLacI_dt, dGFP_dt]
```

- odeint() can handle multiple equations
- Input rna is a list [Lacl, GFP]
- Bottom Panel: add IPTG to neutralize Lacl at time = 10

Two-gene linear system

$$\frac{d[X1]}{dt} = k_{1,1}[X1] + k_{1,2}[X2]$$

$$\frac{d[X2]}{dt} = k_{2,1}[X1] + k_{2,2}[X2]$$

- Depending on the values of $k_{i,j}$, diverse dynamics can be obtained
 - Actually, depending on Trace and Determinant of the matrix $\{k_{i,i}\}$

Some possible dynamics

RNA velocity model

- Two-step process: From DNA to unspliced RNA to spliced RNA
- $-\frac{d[U]}{dt} = \alpha \beta[U], \frac{d[S]}{dt} = \beta[U] \gamma[S]$
- Not the same dynamics as simplifying $\frac{d[S]}{dt} = \alpha \gamma[S]$

Summary

- Systems biology = gain mechanistic understanding of a biological systems
 - Combine multi-omics data
 - Model the dynamics
- Different stable cell states arise from multiple gene expression equilibria
- Diverse dynamics can originate from a simple two-gene system
- Next: Gene expression simulation with Python

Any question?

See you on December 1st at 1pm for our last session