Eigenvalues and Eigenvectors - Introduction

$$Ax=\lambda x$$
 $A=SAS^{-1}$

Applications

- Applications of Matrix Diagonalization: Powers A^k and Exponential e^{At}
 - ✓ Markov processes (application of A^k)
 - ✓ Ordinary Differential Equation (the most often mentioned but is just one of many e^{At} applications)
- Minimum and Maximum Principles
 - ✓ Gradient Search
 - ✓ Principal Component/Discriminant Analysis
- Change of Basis = Similarity Transformation
- $Ax=\lambda x \Rightarrow$ this is an attempt to simplify the transformation by a matrix A to a simple multiplication by a number λ .
- Problem:

Find certain x such that transformation A can be simplified into multiplication of a number λ , i.e. $Ax = \lambda x$

This is only possible for certain vectors, x, called <u>eigenvectors</u> in certain subspaces called <u>eigenspaces</u> and λ is called "<u>eigenvalue</u>" of A

Solutions of $Ax = \lambda x$

When λ and x are both unknown, $Ax = \lambda x$ is a nonlinear equation.

If λ is known $\Rightarrow (A - \lambda I)x = 0$ a linear problem.

- (i) The vector x is in the nullspace of $A-\lambda I$
- (ii) The number λ is chosen so that $A-\lambda I$ has a nullspace
- The nullspace of $A-\lambda I$ is then called "eigenspace" of A. All x's in the eigenspace are eigenvectors corresponding to the same λ .
- The nullspace of A is an eigenspace of A with λ =0.
- We are interested in nonzero vector $x \Rightarrow A \lambda I$ must be singular \Rightarrow $\det(A \lambda I) = 0$. (Characteristic equation)
- Conventional solution: find λ first by $\det(A \lambda I) = 0$. Then, the corresponding x can be found by the nullspace $(A \lambda I)x = 0$.
- Example: $A = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix}$ Find x and λ such that $Ax = \lambda x$

$$\det(A - \lambda I) = \det\begin{bmatrix} 4 - \lambda & -5 \\ 2 & -3 - \lambda \end{bmatrix} = \mathbf{0} \Rightarrow (4 - \lambda)(-3 - \lambda) + 10 = 0 \Rightarrow$$

$$\lambda^2 - \lambda - 2 = 0 \Rightarrow \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{9}}{2} = -1 \text{ or } 2$$

$$\lambda_1 = -1 : (A - \lambda_1 I)x = \begin{bmatrix} 5 & -5 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \quad x_1 = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

$$\lambda_2 = 2 : (A - \lambda_2 I)x = \begin{bmatrix} 2 & -5 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \quad x_2 = c_2 \begin{bmatrix} 5 \\ 2 \end{bmatrix}.$$

2

More on $Ax = \lambda x$ solutions

- Ax: Transformation of a vector x to Ax
- λx : a multiple of the vector $x \Rightarrow$ a vector in the same direction
- $Ax=\lambda x$: A transformation of "certain" vector x by A becomes a multiple of the vector x itself.

Ex: $P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ projects any vector onto $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ Eigenvectors? Eigenvalues?

 $Px=1x=x \Rightarrow$ column space of P is the eigenspace with $\lambda_1=1$

 $Px=0x=0 \Rightarrow$ nullspace is an eigenspace too with $\lambda_2=0$

If a projection matrix P has $\dim(\Re)=r$ and $\dim(\aleph)=n-r$, $\lambda=1$ has a r-dimensional eigenspace (repeats r times) and $\lambda=0$ has a (n-r)-dimensional eigenspace (repeats n-r times).

• Only for "certain" vector x, transformation A can be simplified?

Useless for other vectors?

Ex:
$$A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$
 has $\lambda_1 = 3$ with $x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\lambda_2 = 2$ with $x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

How about $x = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$? Not an eigenvector!

Let $x=x_1+5x_2 \Rightarrow Ax = \lambda_1 x_1 + 5\lambda_2 x_2 = \begin{bmatrix} 3 \\ 10 \end{bmatrix}$. The action of A can still be

3

determined by eigenvalues and eigenvectors!

Trace and Eigenvalues

Ex: a triangular A

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 4 & 5 \\ 0 & \frac{3}{4} - \lambda & 6 \\ 0 & 0 & \frac{1}{2} - \lambda \end{vmatrix} = (1 - \lambda)(\frac{3}{4} - \lambda)(\frac{1}{2} - \lambda).$$

 $\lambda = 1$ or 3/4 or 1/2 \Rightarrow eigenvalues are diagonal entries

- How to transform matrix A into a diagonal or triangular matrix without changing its eigenvalues? Elimination doesn't work any more!
- To find eigenvalues is already a headache (unlike solving Ax=b where elimination always works)
- Some checks on the eigenvalues (proof?)

1.
$$\lambda_1 + \cdots + \lambda_n = a_{11} + \cdots + a_{nn} = trace$$

2. det
$$A = \lambda_1 \lambda_2 \cdots \lambda_n$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 has trace $a + d$, determinant $ad - bc$

$$\det\begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = \lambda^2 - (\operatorname{trace})\lambda + \operatorname{determinant}; \lambda = \frac{\operatorname{trace} \pm \left[\left(\operatorname{trace} \right)^2 - 4 \operatorname{det} \right]^{1/2}}{2}.$$

Diagonal Form of Matrix

• $n \times n$ matrix A with <u>n linearly independent eigenvectors from</u>

eigenspaces:
$$S^{-1}AS = \Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$
 where S's columns are

formed by the eigenvectors and λ_1 , λ_2 , λ_3 ,..., λ_n may not be all distinct.

Proof

$$AS = A \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} = \begin{bmatrix} \lambda_1 x_1 & \lambda_2 x_2 & \cdots & \lambda_n x_n \end{bmatrix}.$$

$$\begin{bmatrix} \lambda_1 x_1 & \lambda_2 x_2 & \cdots & \lambda_n x_n \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{bmatrix}.$$

$$\Rightarrow$$
 $AS = S\Lambda$, or $S^{-1}AS = \Lambda$, or $A = S\Lambda S^{-1}$.

- Not all matrixes are diagonalizable. When diagonalizable, only S with eigenvector columns can diagonalize A into Λ with eigenvalues as its diagonal entries.
- If there are n distinct eigenvalues, all eigenvectors are independent \Rightarrow the matrix can be diagonalized.
- S is not unique. Example: A=I: eigenvalue=1; the eigenspace filling up the entire n-dimensional space.

Independent Eigenvectors

Ex: defective matrix

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}. \Rightarrow \lambda_1 = \lambda_2 = 0 \Rightarrow S^{-1}AS = 0 \Rightarrow SS^{-1}ASS^{-1} = 0 \Rightarrow A = 0$$

But A is not zero! \Rightarrow Contradictory! \Rightarrow A is not diagonalizable!

A is defective not because the eigenvalues are repeated zeros but because not enough independent eigenvectors can be found.

Ex:
$$A = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$$
 and $A = I$

- Diagonalizability is concerned with the eigenvectors
 Invertibility is concerned with the eigenvalues
- If the eigenvectors correspond to *distinct* eigenvalues then those eigenvectors are linearly independent.

Eigenvalues Different "⇒" Eigenvectors Independent

Reason: For 2 by 2 matrix, let the eigenvectors be x_1 and x_2 corresponding to λ_1 and λ_2 . Let $c_1x_1+c_2x_2=0$ (1) then $A(c_1x_1+c_2x_2)=0 \Rightarrow c_1\lambda_1x_1+c_2\lambda_2x_2=0$ (2) \Rightarrow (2)— λ_2 (1) \Rightarrow $c_1(\lambda_1-\lambda_2)x_1=0$. But $\lambda_1 \neq \lambda_2$ and $x_1 \neq 0 \Rightarrow c_1=0$

same for c_2 and for any number of eigenvectors.

Examples of Diagonalization

Ex: projection matrix $A = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

$$\Rightarrow S = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 and $AS = S\Lambda = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$.

Ex: rotation $K = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

K rotates any vector through 90° . Are there vectors rotated without changing its direction? Does K have eigenvalues? Yes!

 $\det(K - \lambda I) = \lambda^2 + 1 = 0 \implies \lambda_1 = i \text{ and } \lambda_2 = -i$

$$(K - \lambda_1 I)x_1 = \begin{bmatrix} -i & -1 \\ 1 & -i \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 and $x_1 = \begin{bmatrix} 1 \\ -i \end{bmatrix}$

$$(K - \lambda_2 I)x_2 = \begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 and $x_2 = \begin{bmatrix} 1 \\ i \end{bmatrix}$.

$$\Rightarrow S = \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix}$$
 and $S^{-1}KS = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$.

• Complex numbers are needed even for real matrices

Ex: $A^2x = A\lambda x = \lambda Ax = \lambda^2 x$. eigenvalues for A^2 are the square of eigenvalues of A.

Ex:
$$(S^{-1}AS)(S^{-1}AS) = \Lambda^2$$
 or $S^{-1}A^2S = \Lambda^2$.

More on Eigenvalues and Eigenvectors

Example 2: $\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$

Powers: $A^k = SA^kS^{-1}$

- $A^k = (S\Lambda S^{-1}) (S\Lambda S^{-1}) \dots (S\Lambda S^{-1}) = S\Lambda^k S^{-1}$
- For invertible A,

if
$$Ax = \lambda x$$
 then $x = \lambda A^{-1}x$ and $\frac{1}{\lambda}x = A^{-1}x$.

The eigenvalues of A^{-1} is $1/\lambda$.

Example: rotation through 90°

$$K = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 and $K^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ and $K^{-1} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

eigenvalues for square are -1 and -1;

eigenvalues for inverse are 1/i = -i and 1/(-i) = i.

$$K^4 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and also $\Lambda^4 = \begin{bmatrix} i^4 & 0 \\ 0 & (-i)^4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Why? Physically. Rotate 90° 4 times = rotate 360°

Product of two matrices

• $ABx=A\mu x=\mu Ax=\mu \lambda x$ where μ is the eigenvalue of B

THIS IS FALSE!! Eigenvectors are different for A and B!

Example:
$$AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

• A and B are diagonalizable:

They share the same eigenvector matrix S if and only if AB=BA

Proof: If
$$A = S\Lambda_1 S^{-1}$$
 and $B = S\Lambda_2 S^{-1}$ then

$$AB = SA_1S^{-1}SA_2S^{-1} = SA_1A_2S^{-1}$$
 and

$$BA = SA_2S^{-1}SA_1S^{-1} = SA_2A_1S^{-1}$$
 but $A_2A_1 = A_1A_2$

$$\Rightarrow AB=BA$$

Opposite direction: Let $AB=BA \Rightarrow$

$$ABx = BAx = B\lambda x = \lambda Bx.$$

Bx and x are both eigenvectors of A corresponding to the same λ : assuming distinct eigenvalues, Bx must be then multiple of $x \Rightarrow Bx = \mu x$ (for repeated eigenvalue corresponding to an eigenspace, the proof will be longer)

• $A = SAS^{-1}$ is extremely useful when taking powers of A:

$$A^k = S \Lambda^k S^{-1}$$

and A=LU does not help at all in this aspect.

Fibonacci Sequence and Difference Equations

• Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13,...

$$F_{k+2} = F_{k+1} + F_k$$
.

This is a form of difference equation. Numbers in the sequence turn up in fantastic natural patterns (e.g. sunflower seeds).

• Question: 1000th Fibonacci number?

Reduce it to a $u_{k+1} = Au_k$ problem (like the compounded interest

problem) Let
$$u_k = \begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix}$$

$$F_{k+2} = F_{k+1} + F_k$$
 becomes $u_{k+1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} u_k$.

The second equation is trivial and is a standard trick for second order difference equation. For higher order equations, say order s, we need s-1 trivial equations.

• The solution to $u_{k+1}=Au_k$:

$$u_k = A^k u_0$$

Power of Matrix and Difference Equations

• If $A = SAS^{-1}$ then

$$u_k = A^k u_0 = (S \Lambda S^{-1})(S \Lambda S^{-1}) \cdots (S \Lambda S^{-1}) u_0 = S \Lambda^k S^{-1} u_0.$$

By setting $S^{-1}u_0=c \Rightarrow Sc=u_0$ (i.e. expressing \mathbf{u}_0 as linear combination of eigenvectors), the solution becomes

$$u_k = S\Lambda^k c = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} \lambda_1^k & & \\ & \ddots & \\ & & \lambda_n^k \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = c_1 \lambda_1^k x_1 + \cdots + c_n \lambda_n^k x_n.$$

The solution is a combination of the "pure solutions" $\lambda_i^k x_i$

• Another way of looking at the solution:

If
$$u_0 = c_1 x_1 + \dots + c_n x_n$$
, i.e. $u_0 = Sc$ then

$$u_k = A^k u_0 = A^k (c_1 x_1 + \dots + c_n x_n)$$

$$= c_1 A^k x_1 + \dots + c_n A^k x_n$$

$$=c_1\lambda_1^kx_1+\cdots+c_n\lambda_n^kx_n.$$

c's are determined by the initial conditions:

$$u_0 = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = Sc \quad \text{and} \quad c = S^{-1}u_0.$$

More on Fibonacci and Difference Equations

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad \det(A - \lambda I) = \lambda^2 - \lambda - 1, \ \lambda_1 = \frac{1 + \sqrt{5}}{2}, \quad \lambda_2 = \frac{1 - \sqrt{5}}{2}.$$

and initial conditions: $c = S^{-1}u_0 = \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/(\lambda_1 - \lambda_2) \\ -1/(\lambda_1 - \lambda_2) \end{bmatrix}$.

We have $u_k = c_1 \lambda_1^k x_1 + c_2 \lambda_2^k x_2 \Rightarrow$

$$F_k = \frac{\lambda_1^k}{\lambda_1 - \lambda_2} - \frac{\lambda_2^k}{\lambda_1 - \lambda_2} = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^k - \left(\frac{1 - \sqrt{5}}{2} \right)^k \right].$$

Since the second term $[(1-\sqrt{5})/2]^k/\sqrt{5}$ is less than 1/2 and is becoming insignificant when k is large.

$$\frac{F_{k+1}}{F_k} \approx \frac{1+\sqrt{5}}{2} \approx 1.618 \implies$$
Golden ratio!!

• Simplicity of A^k computation with diagonalization:

$$A = \begin{bmatrix} -4 & -5 \\ 10 & 11 \end{bmatrix} \text{ has } \lambda_1 = 1, \quad x_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad \lambda_2 = 6, \quad x_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
$$A^k = S\Lambda^k S^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1^k & 0 \\ 0 & 6^k \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 - 6^k & 1 - 6^k \\ -2 + 2 \cdot 6^k & -1 + 2 \cdot 6^k \end{bmatrix}.$$

Markov Processes and Difference Equations

• Example: each year 1/10 of the people outside California move in, and 2/10 of the people inside California move out. What is the population of California after 5 years, 10 years, or 100 years? (y: population outside, z: inside)

$$y_1 = .9y_0 + .2z_0$$

 $z_1 = .1y_0 + .8z_0$ or $\begin{bmatrix} y_1 \\ z_1 \end{bmatrix} = \begin{bmatrix} .9 & .2 \\ .1 & .8 \end{bmatrix} \begin{bmatrix} y_0 \\ z_0 \end{bmatrix}$.

• Markov matrix: 1. Each column adds up to 1

2. All entries are nonnegative

Solving Markov process:

$$A = \begin{bmatrix} .9 & .2 \\ .1 & .8 \end{bmatrix}, \quad \det(A - \lambda I) = \lambda^2 - 1.7\lambda + .7,$$

$$\lambda_1 = 1 \quad \text{and} \quad \lambda_2 = .7$$

$$A = S\Lambda S^{-1} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix}.$$

$$\Rightarrow \begin{bmatrix} y_k \\ z_k \end{bmatrix} = A^k \begin{bmatrix} y_0 \\ z_0 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{bmatrix} \begin{bmatrix} 1^k & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} y_0 \\ z_0 \end{bmatrix} \\ = (y_0 + z_0)(1)^k \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \end{bmatrix} + (y_0 - 2z_0)(.7)^k \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \end{bmatrix}.$$

• Solution when time approaches infinity: $\begin{bmatrix} y_{\infty} \\ z_{\infty} \end{bmatrix} = (y_0 + z_0) \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \end{bmatrix}$ i.e.

$$\begin{bmatrix} .9 & .2 \\ .1 & .8 \end{bmatrix} \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \end{bmatrix}, \quad \text{or} \quad Au_{\infty} = u_{\infty}.$$

Stability of Markov Process

In the example of Markov process: The steady state is the eigenvector of A corresponding to $\lambda = 1$

- For a Markov process:
 - (a) $\lambda_1 = 1$ is an eigenvalue (each column adds up to 1)
 - (b) Its eigenvector x_1 is nonnegative and is the steady state since $Ax_1=x_1 \Rightarrow A^{\infty}x_1=x_1$ (i.e. A can no longer change x_1)
 - (c) Other eigenvalues $|\lambda_i| \le 1$
 - (d) If any power of A has all positive entries, then these other $|\lambda_i| < 1$. Solution $A^k u_0$ then approaches a multiple of $x_1 = u_\infty$ (e.g. California's population approaches $(y_0 + z_0)\frac{1}{3}$)

Reason (a): each column of A-1I adds up to $1-1=0 \Rightarrow$ rows of A-I adds up to $0 \Rightarrow A-I$ is singular $\Rightarrow \lambda_1 = 1$

(b): the steady state should maintain positive proportions (c)(d): otherwise $u_k = c_1 \lambda_1^k x_1 + \dots + c_n \lambda_n^k x_n$ will blow up. If λ_i^k (other than λ_1 =1) goes to zero when k becomes very large. $u_k \to c_1 x_1 = u_\infty$

System Stability and Eigenvalues

Example:

Fibonacci number and compounded interest become larger and larger

⇒ unstable

Markov Process converges to constants \Rightarrow neutrally stable

• Given: $u_k = S\Lambda^k S^{-1}u_0 = c_1\lambda_1^k x_1 + \dots + c_n\lambda_n^k x_n$.

The difference equation $u_{k+1} = Au_k$ is

stable if all eigenvalues satisfy $|\lambda_i| < 1$ ($A^k \to zero$)

neutrally stable if some $|\lambda_i| = 1$ and other $|\lambda_i| < 1$ unstable if at least one eigenvalue has $|\lambda_i| > 1$

Example: stable matrix $A = \begin{bmatrix} 0 & 4 \\ 0 & \frac{1}{2} \end{bmatrix}$ has eigenvalues 0 and 1/2

$$u_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad u_1 = \begin{bmatrix} 4 \\ \frac{1}{2} \end{bmatrix}, \quad u_2 = \begin{bmatrix} 2 \\ \frac{1}{4} \end{bmatrix}, \quad u_3 = \begin{bmatrix} 1 \\ \frac{1}{8} \end{bmatrix}, \quad u_4 = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{16} \end{bmatrix}, \dots$$

The first step is to split u_{θ} into two eigenvectors:

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -8 \\ 0 \end{bmatrix} + \begin{bmatrix} 8 \\ 1 \end{bmatrix}$$

The first vector is multiplied by its eigenvalue 0 and is thus annihilated.

The second vector is cut to half at every step.

Differential Equations Example: Diffusion Model

• v and w are concentrations.

- At each time t the diffusion rate between two adjacent segments equals the difference in concentrations.
- Concentrations in S_0 and S_3 are forever zero because they have infinite ends.
- Differential equations:

$$\frac{dv}{dt} = (w - v) + (0 - v)$$

$$\frac{dw}{dt} = (0 - w) + (v - w)$$

$$\Rightarrow u = \begin{bmatrix} v \\ w \end{bmatrix}, \frac{du}{dt} = \begin{bmatrix} -2v + w \\ v - 2w \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} u.$$

• Then the system becomes:

$$\frac{du}{dt} = Au$$
, $u = u_0$ at $t = 0$.

Solution to Ordinal Differential Equation (ODE)

• Solution? Look at $\frac{du}{dt} = au$, $u = u_0$ at t = 0 first

Let $u(t) = ke^{at}$. Given the initial values $u=u_0$ at $t=0 \Rightarrow u(t) = e^{at}u_0$.

- $a>0 \Rightarrow$ unstable; a=0 neutrally stable; a<0 stable.
- If $a=\alpha+i\beta$, $e^{\alpha t}=e^{\alpha t}e^{i\beta t}=e^{\alpha t}(\cos\beta t+i\sin\beta t)$ $\Rightarrow \alpha$: stabiltiy β : oscillations
- For systems

$$\frac{du}{dt} = \begin{bmatrix} -2v + w \\ v - 2w \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} u \text{ where } u = \begin{bmatrix} v \\ w \end{bmatrix} \text{ and } u = u_0 \text{ at } t = 0$$

$$\frac{du}{dt} = Au, \quad u = u_0 \text{ at } t = 0.$$

Solution:

$$u(t) = e^{At}u_0 = Se^{\Lambda t}S^{-1}u_0$$

- Difference equation: $u_k = A^k u_0$ depending on power of A
- Differential equation: $u(t) = e^{At}u_0$ depending on exponential of A
- Problem: what is exponential of A: e^{At} ?

Exponential of a Matrix

• Imitate $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$ $e^{At} = I + At + \frac{(At)^2}{2!} + \frac{(At)^3}{3!} + \cdots$ has the following properties:

1.
$$(e^{As})(e^{At}) = e^{A(s+t)}$$
 2. $(e^{At})(e^{-At}) = I$ **3.** $\frac{d}{dt}(e^{At}) = Ae^{At}$

- Property 3 is how we solve the differential equations
- $e^{At} = I + At + \frac{(At)^2}{2!} + \frac{(At)^3}{3!} + \cdots$ $e^{At} = I + S\Lambda S^{-1}t + \frac{S\Lambda^2 S^{-1}t^2}{2!} + \frac{S\Lambda^3 S^{-1}t^3}{3!} + \cdots$ $= S\left(I + \Lambda t + \frac{(\Lambda t)^2}{2!} + \frac{(\Lambda t)^3}{3!} + \cdots\right)S^{-1} = Se^{\Lambda t}S^{-1}.$
- $e^{\Lambda t} = I + \Lambda t + \frac{(\Lambda t)^2}{2!} + \frac{(\Lambda t)^3}{3!} + \cdots$ $= \begin{bmatrix} 1 + \lambda_1 t + \frac{(\lambda_1 t)^2}{2!} + \frac{(\lambda_1 t)^3}{3!} + \cdots \\ & \ddots \\ & 1 + \lambda_n t + \frac{(\lambda_n t)^2}{2!} + \frac{(\lambda_n t)^3}{3!} + \cdots \end{bmatrix}$ $= \begin{bmatrix} e^{\lambda_1 t} & \ddots & \\ & \ddots & \\ & & e^{\lambda_n t} \end{bmatrix}$

More on Exponential: $e^{At} = Se^{At}S^{-1}$

- Example: exponential of $A = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix}$ $e^{At} = Se^{\Lambda t}S^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} e^{-t} & e^{-3t} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}^{-1}$ $= \frac{1}{2} \begin{bmatrix} e^{-t} + e^{-3t} & e^{-t} e^{-3t} \\ e^{-t} e^{-3t} & e^{-t} + e^{-3t} \end{bmatrix}.$
- If x_1 is the eigenvector of A corresponding to eigenvalue λ_1 , then x_1 is the eigenvector of e^{At} corresponding to eigenvalue $e^{\lambda_1 t}$, i.e.

$$e^{At}x_1 = e^{\lambda_1 t}x_1$$

Proof:

$$e^{At}x_1 = Ix_1 + Atx_1 + \frac{(At)^2}{2!}x_1 + \frac{(At)^3}{3!}x_1 + \cdots$$

$$= Ix_1 + Ax_1t + \frac{t^2}{2!}A^2x_1 + \frac{t^3}{3!}A^3x_1 + \cdots$$

$$= Ix_1 + \lambda_1x_1t + \frac{t^2}{2!}\lambda_1^2x_1 + \frac{t^3}{3!}\lambda_1^3x_1 + \cdots$$

$$= Ix_1 + \lambda_1tx_1 + \frac{(\lambda_1t)^2}{2!}x_1 + \frac{(\lambda_1t)^3}{3!}x_1 + \cdots$$

$$= (I + \lambda_1t + \frac{(\lambda_1t)^2}{2!} + \frac{(\lambda_1t)^3}{3!} + \cdots)x_1 = e^{\lambda_1t}x_1$$

• Matrix e^{At} is never singular: its eigenvalue $e^{\lambda t}$ is never zero and

$$\det e^{At} = e^{\lambda_1 t} e^{\lambda_2 t} \cdots e^{\lambda_n t} = e^{\operatorname{trace}(At)} \implies$$

Inverse of $e^{At} = e^{-At}$ which always exists

Matrix Exponential and ODE Solution

• If A can be diagonalized, $A=SAS^{-1}$ then the differential equation du/dt=Au has the solution:

$$u(t) = e^{At}u_0 = Se^{\Lambda t}S^{-1}u_0.$$

The column of S are the eigenvectors of A, so that

$$u(t) = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} e^{\lambda_1 t} & & & \\ & \ddots & & \\ & & e^{\lambda_n t} \end{bmatrix} S^{-1} u_0$$

By setting $S^{-1}u_0 = c \Rightarrow Sc = u_0$ (i.e. expressing \mathbf{u}_0 as linear combination of eigenvectors), the solution becomes

$$u(t) = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} e^{\lambda_1 t} & & \\ & \ddots & \\ & & e^{\lambda_n t} \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = c_1 e^{\lambda_1 t} x_1 + \cdots + c_n e^{\lambda_n t} x_n.$$

• Another way of looking at the solution:

If
$$u_0 = c_1 x_1 + \cdots + c_n x_n$$
, i.e. $u_0 = Sc$ then

$$u(t) = e^{At}u_0 = e^{At}(c_1x_1 + \dots + c_nx_n)$$

= $c_1e^{At}x_1 + \dots + c_ne^{At}x_n$
= $c_1e^{\lambda_1 t}x_1 + \dots + c_ne^{\lambda_n t}x_n$.

Back to ODE for Diffusion Model

For systems

$$\frac{du}{dt} = \begin{bmatrix} -2v + w \\ v - 2w \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} u \text{ where } u = \begin{bmatrix} v \\ w \end{bmatrix} \text{ and } u = u_0 \text{ at } t = 0$$

$$\frac{du}{dt} = Au, \quad u = u_0 \text{ at } t = 0.$$

• First step: Diagonalize A

$$\begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \Rightarrow$$

$$A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = (-1) \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = (-3) \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

• General solution:

$$u(t) = c_1 e^{\lambda_1 t} x_1 + c_2 e^{\lambda_2 t} x_2 \quad \text{or} \quad u = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} e^{-t} \\ e^{-3t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}.$$

At time zero (initial condition) ($e^0=1$):

$$u_0 = c_1 x_1 + c_2 x_2$$
 or $u_0 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = Sc \implies c = S^{-1} u_0$

Solution:

$$u(t) = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} e^{-t} & \\ & e^{-3t} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = S \begin{bmatrix} e^{-t} & \\ & e^{-3t} \end{bmatrix} S^{-1} u_0. = Se^{At}S^{-1}u$$

Stability of Differential Equation

$$u(t) = Se^{\Lambda t}S^{-1}u_0 = c_1e^{\lambda_1 t}x_1 + \dots + c_ne^{\lambda_n t}x_n$$

- Eigenvalues decide how u(t) behaves as $t \rightarrow \infty$
- Stability is governed by $e^{\lambda_i t} \Rightarrow$ by real part of λ_i
- If $\lambda = a + ib$,

$$e^{\lambda t} = e^{at}e^{ibt} = e^{at}(\cos bt + i\sin bt)$$
 and $|e^{\lambda t}| = e^{at}$

Decays for a<0; becomes constant for a=0; and explodes for a>0.

• The du/dt=Au system is

Stable and $e^{At} \rightarrow 0$ whenever all Re $\lambda_i < 0$

Neutrally stable when all Re $\lambda_i \leq 0$ and some Re $\lambda_i = 0$

Unstable and e^{At} is unbounded if any eigenvalue has Re $\lambda_i > 0$

 All solutions approaches zero if and only if all eigenvalues have a negative real part ⇒ asymptotic stability

Stability for a 2 by 2 System

$$\frac{du}{dt} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} u$$

$$\det\begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = \lambda^2 - (\operatorname{trace})\lambda + (\operatorname{det}) = 0. \implies$$

$$\lambda = \frac{1}{2} \left[\text{trace} \pm \sqrt{\left(\text{trace} \right)^2 - 4 \left(\text{det} \right)} \right]$$

- Stability test: 1. The trace a+d must be negative
 - 2. The determinant ad-bc must be positive
- When the eigenvalues are real, the two tests guarantee them to be negative.
- When the eigen values are complex pair $x \pm iy$, the trace=2x and the determinant= x^2+y^2

- If b=c then $(\operatorname{trace})^2 4(\det) = (a+d)^2 4(ad-b^2) = (a-d)^2 + 4b^2 \ge 0$ \Rightarrow symmetric matrix is on or below parabola.
- Neutrally stable: boundaries of 2nd quadrant

Example of 2 by 2 System

Example 2: diffusion equation $du/dt = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} u$ is stable since eigenvalues are -1 and -3

Example 3: diffusion model with two ends closed off.

$$\frac{du}{dt} = \begin{bmatrix} -1 & 1\\ 1 & -1 \end{bmatrix} u \quad \text{or} \quad \frac{dv/dt = w - v}{dw/dt = v - w}$$

- This is a *continuous Markov process*.
 - Markov matrix: each column adds up to $1=\lambda_{max}$

Cont. Markov matrix: each column adds up to $0=\lambda_{max}$

- A is a Markov matrix if and only if B=A-I is a continuous Markov matrix.
- The steady state (v=w) is the eigenvector $(=\begin{bmatrix}1\\1\end{bmatrix})$ corresponding to λ_{\max}

Skew-Symmetric Matrices

Example 1:
$$du/dt = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} u_0$$

trace=0; det=1
$$\Rightarrow \begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 + 1 = 0 \text{ so } \lambda = +i \text{ and } -i.$$

eigenvectors: (1, -i) and (1, i)
$$u(t) = c_1 e^{it} \begin{bmatrix} 1 \\ -i \end{bmatrix} + c_2 e^{-it} \begin{bmatrix} 1 \\ i \end{bmatrix}$$

substituting
$$e^{it} = \cos t + i \sin t$$
: $u(t) = \begin{bmatrix} (c_1 + c_2)\cos t + i(c_1 - c_2)\sin t \\ -i(c_1 - c_2)\cos t + (c_1 + c_2)\sin t \end{bmatrix}$

At t=0, $u_0=(a, b) \Rightarrow Sc=u_0 \Rightarrow (c_1+c_2)=a$ and $-i(c_1-c_2)=b \Rightarrow$

$$u(t) = \begin{bmatrix} a\cos t - b\sin t \\ b\cos t + a\sin t \end{bmatrix} = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix} u_0 \text{ sends } u_0$$

around a circle.

• Also, since $A^2 = -I$

$$e^{At} = I + At + \frac{(At)^2}{2} + \dots = \begin{bmatrix} \left(1 - \frac{t^2}{2} + \dots\right) & \left(-t + \frac{t^3}{6} - \dots\right) \\ \left(t - \frac{t^3}{6} + \dots\right) & \left(1 - \frac{t^2}{2} + \dots\right) \end{bmatrix} = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}$$

 $\Rightarrow e^{At}$ is an orthogonal matrix!

FACT: If A is skew-symmetric then e^{At} is an orthogonal matrix

$$A^{T} = -A$$
 and $(e^{At})^{T} = e^{-At} \Rightarrow e^{At}(e^{At})^{T} = I \Rightarrow e^{At}$ is orthogonal $\Rightarrow ||e^{At}u_{0}|| = ||u_{0}|| \Rightarrow$ Conservative systems: no energy is lost