Signals and Systems

Lecture 9: Frequency Response

Instructor: Prof. Yunlong Cai Zhejiang University

03/20/2025
Partly adapted from the materials provided on the MIT OpenCourseWare

Review

Last time, we saw how a linear, time-invariant (LTI) system can be characterized by its unit-sample/impulse response.

$$\mathrm{DT:}\ y[n] = (x*h)[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

CT:
$$y(t) = (x * h)(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

Characterizing a system by its unit-sample/impulse response is especially insightful for some systems.

Frequency Response

Today we will investigate a different way to characterize a system: the **frequency response**.

Many systems are naturally described by their responses to sinusoids.

Example: audio systems

Frequency Response Preview

If the input to a linear, time-invariant system is an eternal sinusoid, then the output is also an eternal sinusoid:

- same frequency
- possibly different amplitude, and
- possibly different phase angle.

The **frequency response** is a plot of the magnitude M and angle ϕ as a function of frequency ω .

Example

Mass, spring, and dashpot system.

Demonstration

Measure the frequency response of a mass, spring, dashpot system.

Frequency Response

Calculate the frequency response.

Methods

- solve differential equation
 - ightarrow find particular solution for $x(t) = \cos \omega_0 t$
- find impulse response of system
 - \rightarrow convolve with $x(t) = \cos \omega_0 t$

New method

• use eigenfunctions and eigenvalues

Eigenfunctions

If the output signal is a scalar multiple of the input signal, we refer to the signal as an eigenfunction and the multiplier as the eigenvalue.

Check Yourself: Eigenfunctions

Consider the system described by

$$\dot{y}(t) + 2y(t) = x(t).$$

Determine if each of the following functions is an eigenfunction of this system. If it is, find its eigenvalue.

- 1. e^{-t} for all time
- 2. e^t for all time
- 3. e^{jt} for all time
- 4. cos(t) for all time
- 5. u(t) for all time

Check Yourself: Eigenfunctions

$$\dot{y}(t) + 2y(t) = x(t)$$

1.
$$e^{-t}$$
: $-\lambda e^{-t} + 2\lambda e^{-t} = e^{-t} \to \lambda = 1$

2.
$$e^t$$
: $\lambda e^t + 2\lambda e^t = e^t \rightarrow \lambda = \frac{1}{3}$

3.
$$e^{jt}$$
: $j\lambda e^{jt} + 2\lambda e^{jt} = e^{jt} \rightarrow \lambda = \frac{1}{j+2}$

- 4. $\cos t$: $-\lambda \sin t + 2\lambda \cos t = \cos t \rightarrow$ not possible!
- 5. $u(t): \quad \lambda \delta(t) + 2\lambda u(t) = u(t) \rightarrow \quad \text{not possible!}$

Check Yourself: Eigenfunctions

Consider the system described by

$$\dot{y}(t) + 2y(t) = x(t).$$

Determine if each of the following functions is an eigenfunction of this system. If it is, find its eigenvalue.

- 1. e^{-t} for all time $\sqrt{\lambda} = 1$
- 2. e^t for all time $\sqrt{\lambda} = \frac{1}{3}$
- 3. e^{jt} for all time $\sqrt{\lambda} = \frac{1}{j+2}$
- 4. $\cos(t)$ for all time \times
- 5. u(t) for all time X

Complex Exponentials

Complex exponentials are eigenfunctions of LTI systems.

If $x(t) = e^{st}$ and h(t) is the impulse response then

$$y(t) = (h*x)(t) = \int_{-\infty}^{\infty} h(\tau)e^{s(t-\tau)}d\tau = e^{st}\int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau = H(s)\,e^{st}$$

Complex Exponentials

Complex exponentials are eigenfunctions of LTI systems.

If $x(t) = e^{st}$ and h(t) is the impulse response then

$$y(t) = (h*x)(t) = \int_{-\infty}^{\infty} h(\tau)e^{s(t-\tau)}d\tau = e^{st}\int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau = H(s)\,e^{st}$$

Eternal sinusoids are sums of complex exponentials.

$$\cos \omega_0 t = \frac{1}{2} \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right)$$

Complex Exponentials

Complex exponentials are eigenfunctions of LTI systems.

If $x(t) = e^{st}$ and h(t) is the impulse response then

$$y(t) = (h*x)(t) = \int_{-\infty}^{\infty} h(\tau)e^{s(t-\tau)}d\tau = e^{st}\int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau = H(s)\,e^{st}$$

Eternal sinusoids are sums of complex exponentials.

$$\cos \omega_0 t = \frac{1}{2} \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right)$$

Furthermore, the eigenvalue associated with e^{st} is H(s)!

Rational System Functions

Eigenvalues are particularly easy to evaluate for systems represented by linear differential equations with constant coefficients.

Then the system function is a ratio of polynomials in s.

Example:

$$\ddot{y}(t) + 3\dot{y}(t) + 4y(t) = 2\ddot{x}(t) + 7\dot{x}(t) + 8x(t)$$

Then

$$H(s) = \frac{2s^2 + 7s + 8}{s^2 + 3s + 4} \equiv \frac{N(s)}{D(s)}$$

The value of H(s) at a point $s=s_0$ can be determined graphically using vectorial analysis.

Factor the numerator and denominator of the system function to make poles and zeros explicit.

$$H(s_0) = K \frac{(s_0 - z_0)(s_0 - z_1)(s_0 - z_2) \cdots}{(s_0 - p_0)(s_0 - p_1)(s_0 - p_2) \cdots}$$

Each factor in the numerator/denominator corresponds to a vector from a zero/pole (here z_0) to s_0 , the point of interest in the s-plane.

Example: Find the response of the system described by

$$H(s) = \frac{1}{s+2}$$

to the input $x(t) = e^{2jt}$ (for all time).

The denominator of $H(s)|_{s=2j}$ is 2j+2, a vector with length $2\sqrt{2}$ and angle $\pi/4$. Therefore, the response of the system is

$$y(t) = H(2j)e^{2jt} = \frac{1}{2\sqrt{2}}e^{-\frac{j\pi}{4}}e^{2jt}$$
.

The value of H(s) at a point $s=s_0$ can be determined by combining the contributions of the vectors associated with each of the poles and zeros.

$$H(s_0) = K \frac{(s_0 - z_0)(s_0 - z_1)(s_0 - z_2) \cdots}{(s_0 - p_0)(s_0 - p_1)(s_0 - p_2) \cdots}$$

The magnitude is determined by the product of the magnitudes.

$$|H(s_0)| = |K| \frac{|(s_0 - z_0)||(s_0 - z_1)||(s_0 - z_2)| \cdots}{|(s_0 - p_0)||(s_0 - p_1)||(s_0 - p_2)| \cdots}$$

The angle is determined by the sum of the angles.

$$\angle H(s_0) = \angle K + \angle (s_0 - z_0) + \angle (s_0 - z_1) + \dots - \angle (s_0 - p_0) - \angle (s_0 - p_1) - \dots$$

Frequency Response

Response to eternal sinusoids.

Let
$$x(t)=\cos\omega_0 t$$
 (for all time). Then
$$x(t)=\frac{1}{2}\left(e^{j\omega_0 t}+e^{-j\omega_0 t}\right)$$

and the response to a sum is the sum of the responses.

$$y(t) = \frac{1}{2} \left(H(j\omega_0) e^{j\omega_0 t} + H(-j\omega_0) e^{-j\omega_0 t} \right)$$

Conjugate Symmetry

The complex conjugate of $H(j\omega)$ is $H(-j\omega)$.

The system function is the Laplace transform of the impulse response:

$$H(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt$$

where h(t) is a real-valued function of t for physical systems.

$$\begin{split} H(j\omega) &= \int_{-\infty}^{\infty} h(t) e^{-j\omega t} dt \\ H(-j\omega) &= \int_{-\infty}^{\infty} h(t) e^{j\omega t} dt \equiv \left(H(j\omega)\right)^* \end{split}$$

Frequency Response

Response to eternal sinusoids.

Let
$$x(t)=\cos\omega_0 t$$
 (for all time), which can be written as
$$x(t)=\frac{1}{2}\left(e^{j\omega_0 t}+e^{-j\omega_0 t}\right)$$

The response to a sum is the sum of the responses,

$$\begin{split} y(t) &= \frac{1}{2} \left(H(j\omega_0) e^{j\omega_0 t} + H(-j\omega_0) e^{-j\omega_0 t} \right) \\ &= \operatorname{Re} \left\{ H(j\omega_0) e^{j\omega_0 t} \right\} \\ &= \operatorname{Re} \left\{ |H(j\omega_0)| e^{j\angle H(j\omega_0)} e^{j\omega_0 t} \right\} \\ &= |H(j\omega_0)| \operatorname{Re} \left\{ e^{j\omega_0 t + j\angle H(j\omega_0)} \right\} \\ y(t) &= |H(j\omega_0)| \cos \left(\omega_0 t + \angle \left(H(j\omega_0) \right) \right). \end{split}$$

Frequency Response

The magnitude and phase of the response of a system to an eternal cosine signal is the magnitude and phase of the system function evaluated at $s=j\omega$.

Example: Mass, Spring, and Dashpot

$$F = Ma = M\ddot{y}(t) = K(x(t) - y(t)) - B\dot{y}(t)$$

$$M\ddot{y}(t) + B\dot{y}(t) + Ky(t) = Kx(t)$$

$$(s^2M + sB + K) \ Y(s) = KX(s)$$

$$H(s) = \frac{K}{s^2M + sB + K}$$

$$H(s) = \frac{15}{(s - p_1)(s - p_2)}$$

$$\omega$$
5 s-plane
$$\sqrt{5}$$

$$\sqrt{5}$$

$$H(s) = \frac{15}{(s - p_1)(s - p_2)}$$

$$\omega$$
5 s-plane
$$\star$$

$$-5$$

Consider the system represented by the following poles.

Find the frequency ω at which the magnitude of the response y(t) is greatest if $x(t) = \cos \omega t$.

1.
$$\omega = \omega_d$$

3.
$$0 < \omega < \omega_d$$

2.
$$\omega_d < \omega < \omega_0$$

4. none of the above

Check Yourself: Frequency Response

Analyze with vectors.

The product of the lengths is $\left(\sqrt{(\omega+\omega_d)^2+\sigma^2}\right)\left(\sqrt{(\omega-\omega_d)^2+\sigma^2}\right)$.

Check Yourself: Frequency Response

Analyze with vectors.

The product of the lengths is
$$\left(\sqrt{(\omega+\omega_d)^2+\sigma^2}\right)\left(\sqrt{(\omega-\omega_d)^2+\sigma^2}\right)$$
.

Decreasing ω from ω_d to $\omega_d - \epsilon$ decreases the product since length of bottom vector decreases as ϵ while length of top vector increases only ϵ^2 .

Check Yourself: Frequency Response

More mathematically ...

The product of the lengths is
$$\left(\sqrt{(\omega+\omega_d)^2+\sigma^2}\right)\left(\sqrt{(\omega-\omega_d)^2+\sigma^2}\right)$$
.

Maximum occurs where derivative of squared lengths is zero.

$$\frac{d}{d\omega}\left((\omega + \omega_d)^2 + \sigma^2\right)\left((\omega - \omega_d)^2 + \sigma^2\right) = 0$$

$$\rightarrow \quad \omega^2 = \omega_d^2 - \sigma^2 = \omega_0^2 - 2\sigma^2 \ .$$

Consider the system represented by the following poles.

Find the frequency ω at which the magnitude of the response y(t) is greatest if $x(t) = \cos \omega t$.

1.
$$\omega = \omega_d$$

3.
$$0 < \omega < \omega_d$$

2.
$$\omega_d < \omega < \omega_0$$

4. none of the above

Consider the system represented by the following poles.

Find the frequency ω at which the phase of the response y(t) is $-\pi/2$ if $x(t) = \cos \omega t$.

0.
$$0 < \omega < \omega_d$$

1.
$$\omega = \omega_d$$

1.
$$\omega = \omega_d$$
 2. $\omega_d < \omega < \omega_0$

3.
$$\omega = \omega_0$$

4.
$$\omega > \omega_0$$

The phase is 0 when $\omega = 0$.

The phase is less than $\pi/2$ when $\omega = \omega_d$.

The phase at $\omega=\omega_0$ is $-\pi/2$.

Check result by evaluating the system function.

Substitute
$$s = j\omega_0 = j\sqrt{\frac{K}{M}}$$
 into

$$H(s) = \frac{K}{s^2M + sB + K} = \frac{K}{-\frac{K}{M}M + j\omega_0 B + K} = \frac{K}{j\omega_0 B}$$

The phase is $-\frac{\pi}{2}$.

Consider the system represented by the following poles.

Find the frequency ω at which the phase of the response y(t) is $-\pi/2$ if $x(t) = \cos \omega t$. 3

0.
$$0 < \omega < \omega_d$$

1.
$$\omega = \omega_d$$

1.
$$\omega = \omega_d$$
 2. $\omega_d < \omega < \omega_0$

3.
$$\omega = \omega_0$$

4.
$$\omega > \omega_0$$

Frequency Response: Summary

LTI systems can be characterized by responses to eternal sinusoids.

Many systems are naturally described by their frequency response.

- audio systems
- mass, spring, dashpot system

Frequency response is easy to calculate from the system function.

Frequency response lives on the $j\omega$ axis of the Laplace transform.

Filtering

Idealized Filters

Lowpass filter

Filtering

Highpass

Filtering

Bandpass

Assignments

- Reading Assignment: Chap. 9.4, 10.4, 3.8-3.11, 6.0-6.2, 6.5
- Project 1