Diszkrét matematika II. 1. előadás

Fancsali Szabolcs Levente nudniq@inf.elte.hu

ELTE IK Komputeralgebra Tanszék

Mérai László diái alapján

Ha a és b egész számok, az a/b osztás nem mindig végezhető el (a hányados nem feltétlenül lesz egész).

Definíció

Az a egész osztja a b egészet: $a \mid b$, ha létezik olyan c egész, mellyel $a \cdot c = b$, azaz b/a szintén egész.

Példák

- $1 \mid 13$, mert $1 \cdot 13 = 13$;
- $1 \mid n$, mert $1 \cdot n = n$:
- 6 | 12, mert $6 \cdot 2 = 12$;
- $-6 \mid 12$, mert $(-6) \cdot (-2) = 12$.

A definíció kiterjeszthető pédául a Gauss-egészekre: $\{a+bi: a,b\in\mathbb{Z}\}$. Példák

- $i \mid 13$, mert $i \cdot (-13i) = 13$;
- $1+i \mid 2$, mert $(1+i) \cdot (1-i) = 2$.

Oszthatóság

Az oszthatóság tulajdonságai:

Állítás (HF)

Minden $a, b, c, \dots \in \mathbb{Z}$ esetén

- a | a;
- 2 $a \mid b \text{ és } b \mid c \Rightarrow a \mid c;$
- \bullet $a \mid b \text{ és } b \mid a \Rightarrow a = \pm b;$
- \bullet a | b és a' | b' \Rightarrow aa' | bb';

- $a \mid b_1, \dots, b_k \Rightarrow a \mid c_1b_1 + \dots + c_kb_k$ minden c_1, \dots, c_k esetén.
- **3** $a \mid 0$, u.i. $a \cdot 0 = 0$;
- $0 \mid a \Leftrightarrow a = 0$:
- 0 1 | a és -1 | a;

Példák

- **1** 6 | 6;
- 2 | 6 és 6 | 12 \Rightarrow 2 | 12;
- 3 $2 \mid 4 \text{ és } 3 \mid 9 \Rightarrow 2 \cdot 3 \mid 4 \cdot 9;$
- **4** $3 \mid 6 \Rightarrow 5 \cdot 3 \mid 5 \cdot 6;$
- **3** \cdot 5 | 6 \cdot 5 és 5 \neq 0 \Rightarrow 3 | 6;

Egységek

A ± 1 oszthatóság szempontjából nem különbözteti meg az egész számokat

Definíció

Ha egy szám bármely másiknak osztója, akkor egységnek nevezzük.

Állítás

Az egész számok körében két egység van: 1, -1.

Bizonyítás

Az ±1 nyilván egység.

Megfordítva, ha ε egység, akkor $1=\varepsilon\cdot q$ valamely q egész számra. Mivel $|\varepsilon|\geq 1,\ |q|\geq 1\Rightarrow |\varepsilon|=1$, azaz $\varepsilon=\pm 1$.

Példa A Gauss-egészek körében az i is egység: a + bi = i(b - ai).

Asszociáltak

Oszthatóság szempontjából nincs különbség a 12 ill. -12 között.

Definíció

Két szám asszociált, ha egymás egységszeresei.

Megjegyzés (HF)

a és b pontosan akkor asszociált, ha $a \mid b$ és $b \mid a$.

Definíció

Egy számnak az asszociáltjai és az egységek a triviális osztói.

Prímek, felbonthatatlanok

Definíció

Ha egy nem-nulla, nem-egység számnak a triviális osztóin kívűl nincs más osztója, akkor felbonthatatlanak (irreducibilisnek) nevezzük.

Példa 2, -2, 3, -3, 5, -5 felbonthatatalnok. 6 nem felbonthatatlan, mert $6 = 2 \cdot 3$.

Definíció

Egy nem-nulla, nem-egység p számot prímszámnak nevezünk, ha $p \mid ab$ $\Rightarrow p \mid a$ vagy $p \mid b$

Példa 2,
$$-2$$
, 3, -3 , 5, -5 .
6 nem prímszám, mert $6 \mid 2 \cdot 3$ de $6 \nmid 2$ és $6 \nmid 3$.

Prímek, felbonthatatlanok

Állítás

Minden prímszám felbonthatatlan.

Bizonyítás

Legyen p prímszám és legyen p=ab egy felbontás. Igazolnunk kell, hogy a vagy b egység.

Mivel p = ab, így $p \mid ab$, ahonnan például $p \mid a$. Ekkor a = pk = a(bk), azaz bk = 1, ahonnan következik, hogy b és k is egység.

A fordított irány nem feltétlenül igaz:

- ■ Z-ben igaz, (lásd késöbb);
- $\{a + bi\sqrt{5} : a, b \in \mathbb{Z}\}$ -ben nem igaz.

Maradékos osztás

A számelméletben a fő eszközünk a maradékos osztás lesz:

Tétel

Tetszőleges $a,\ b \neq 0$ egész számokhoz egyértelműen létenek $q,\ r$ egészek, hogy

$$a = bq + r$$
 és $0 \le r < |b|$.

Bizonyítás

A tételt csak nemnegatív számok esetében bizonyítjuk.

- Létezés: a szerinti indukcióval.
 - Ha a < b, akkor $a = b \cdot 0 + a$ (q = 0, r = a).
 - Ha $a \ge b$, akkor tegyük fel, hogy a-nál kisebb számok már felirhatók ilyen alakban. Legyen $a b = bq^* + r^*$. Ekkor $a = b(q^* + 1) + r^*$ és legyen $q = q^* + 1$, $r = r^*$.
- **9** Egyértelműség: legyen $a = bq + r = bq^* + r^*$. Ekkor $b(q q^*) = r^* r$. Ez csak akkor lehet, ha $q = q^*$ és $r = r^*$.

Maradékos osztás

Definíció

Legyenek a,b egész számok ($b \neq 0$). Legyen $a = b \cdot q + r$ ($0 \leq r < |b|$). Ekkor

- $a \mod b = r$;
- $q = \lfloor a/b \rfloor$, ha b > 0, és $q = \lceil a/b \rceil$, ha b < 0

Példa

- $123 \mod 10 = 3$, $123 \mod 100 = 23$, $123 \mod 1000 = 123$;
- $123 \mod -10 = 3, \ldots$
- \bullet -123 mod 10 = 7, -123 mod 100 = 77, -123 mod 1000 = 877;
- $-123 \mod -10 = 7, \ldots$

Maradékos osztás

Példa

- Ha most 9 óra van, hány óra lesz 123 óra múlva? Osszuk el maradékosan 123-at 24-gyel: $123 = 24 \cdot 5 + 3$. Tehát 9+3=12: déli 12 óra lesz!
- ① Ha most 9 óra van, hány óra lesz 104 óra múlva? Osszuk el maradékosan 104-at 24-gyel: $104=24\cdot 4+20$. Tehát 9+20=29. Újabb redukció: $29=24\cdot 1+5$: hajnali 5 óra lesz!
- Milyen napra fog esni jövőre szeptember 16? Milyen napra esett két éve szeptember 20?

```
\begin{array}{ll} \text{h\'et}f\Ho \mapsto 0 \\ \text{kedd} \mapsto 1 \\ \text{szerda} \mapsto 2 \\ \text{cs\"ut\"ort\"ok} \mapsto 3 \\ \text{p\'entek} \mapsto 4 \\ \text{szombat} \mapsto 5 \\ \text{vas\'arnap} \mapsto 6 \\ \end{array} \begin{array}{ll} \text{Osszuk el marad\'ekosan } 365-\Totat 7-tel: } 365 = 7 \cdot 22 + 1. \\ \text{szerda} + 1 \text{ nap} = 2 + 1 = 3 = \text{cs\"ut\"ort\"ok} \\ \text{szerda} + 1 \text{ nap} = 2 + 1 = 3 = \text{cs\"ut\"ort\"ok} \\ \text{Osszuk el marad\'ekosan } -(365 + 366) - \text{ot} \\ (2020. \text{sz\"ok\'o\'ev}) \text{ } 7-tel: -731 = 7 \cdot (-104) - 3. \\ \text{vas\'arnap} - 3 \text{ nap} = 6 - 3 = 3 = \text{cs\"ut\"ort\"ok} \\ \end{array}
```

Számrendszerek

10-es számrendszerben a 123:

$$123 = 100 + 20 + 3 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0.$$

2-es számrendszerben a 123:

$$1111011_{(2)} = 1 \cdot 2^{6} + 1 \cdot 2^{5} + 1 \cdot 2^{4} + 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0}_{(10)}$$
$$= 1 \cdot 64 + 1 \cdot 32 + 1 \cdot 16 + 1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 1 \cdot 1_{(10)}$$

Tétel

Legyen q>1 rögzített egész. Ekkor bármely n pozitív egész

egyértelműen felírható
$$n = \sum_{i=0}^{n} a_i q^i$$
 alakban, ahol $0 \le a_i < q$, $a_k \ne 0$.

- Ez a felírás *n g* számrendszerben történő felírása.
- q a számrendszer alapja.
- a_0, \ldots, a_k az n jegyei.
- $k = \lceil \log_a n \rceil$.

Számrendszerek

n felírása a q alapú számrendzserben: $n = \sum_{i=0}^{k} a_i q^i$.

Bizonyítás

A tételt indukcióval bizonyítjuk.

- ③ Tfh minden n-nél kisebb számot feltudunk írni egyértelműen q alapú számrendszerben. A maradékos osztás tétele alapján létezik egyértelműen $0 \le a_0 < q$ egész, hogy $q \mid n a_0$. Indukció alapján írjuk fel q alapú számrendsserben $\frac{n-a_0}{q} = \sum_{i=1}^k a_i q^{i-1}$, indukció

alapján a felírás egyértelmű. Ekkor $n = \sum_{i=0}^{k} a_i q^i$.

Számrendszerek

Az elöbbi bizonyítás módszert is ad a felírásra: Példa Írjuk fel az n=123 10-es számrendszerben felírt számot 2-es számrendszerben.

i	n	<i>n</i> mod 2	$\frac{n-a_i}{2}$	jegyek
0	123	1	<u>123-1</u> 2	1
1	61	1	<u>61-1</u> 2	11
2	30	0	<u>30−0</u> 2	011
3	15	1	<u>15-1</u> 2	1 011
4	7	1	7-1 2	1 1011
5	3	1	$\frac{3-1}{2}$	1 10011
6	1	1	<u>1-1</u>	1 110011

Legnagyobb közös osztó

Definíció

Az a és b legnagyobb közös osztója a d szám: d=(a,b)=lnko(a,b) , ha $c\mid a$ és $c\mid b\Rightarrow c\mid d$.

Figyelem! Itt a "legnagyobb" nem a szokásos rendezésre utal: 12-nek és 9-nek legnagyobb közös osztója lesz a -3 is.

A legnagyobb közös osztó csak asszociáltság erejéig egyértelmű. Mostantól (a, b) legyen a pozitív legnagyobb közös osztó!

Definíció

Az a és b legkisebb közös töbszöröse a m szám: m = [a, b] = lkkt(a, b) ha $a \mid c$ és $b \mid c \Rightarrow m \mid c$.

Hasonlóan legyen [a, b] mostantól a pozitív legkisebb közös többszörös.

14.

Legnagyobb közös osztó kiszámolása, euklideszi algoritmus

Tétel

Bármely két egész számnak létezik legnagyobb közös osztója, és ez meghatározható az euklideszi algoritmussa.

Bizonyítás

Ha valamelyik szám 0, akkor a legnagyobb közös osztó a másik szám. Tfh *a, b* nem-nulla számok. Végezzük el a következő osztásokat:

$$a = bq_1 + r_1, \quad 0 < r_1 < |b|,$$

$$b = r_1q_2 + r_2, \quad 0 < r_2 < r_1,$$

$$r_1 = r_2q_3 + r_3, \quad 0 < r_3 < r_2,$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_n + r_n, \quad 0 < r_n < r_{n-1},$$

$$r_{n-1} = r_nq_{n+1}$$

Ekkor az Inko az utólsó nem-nulla maradék: $(a, b) = r_n$.

Euklideszi algoritmus helyessége

Bizonyítás (folyt.)

$$a = bq_1 + r_1, \quad 0 < r_1 < |b|,$$

$$b = r_1q_2 + r_2, \quad 0 < r_2 < r_1,$$

$$r_1 = r_2q_3 + r_3, \quad 0 < r_3 < r_2,$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_n + r_n, \quad 0 < r_n < r_{n-1},$$

$$r_{n-1} = r_nq_{n+1}$$

Az algoritmus véges sok lépésben végetér: $|b| > r_1 > r_2 > \dots$ Az r_n maradék közös osztó: $r_n \mid r_{n-1} \Rightarrow r_n \mid r_{n-1}q_n + r_n = r_{n-2} \Rightarrow \dots \Rightarrow r_n \mid b \Rightarrow r_n \mid a$.

Az r_n maradék a legnagyobb közös osztó: legyen $c \mid a, c \mid b \Rightarrow c \mid a - bq_1 = r_1 \Rightarrow c \mid b - r_1q_2 = r_2 \Rightarrow \ldots \Rightarrow c \mid r_{n-2} - r_{n-1}q_n = r_n$. \square

16.

Legnagyobb közös osztó kiszámolása, euklideszi algoritmus

Példa Számítsuk ki (172, 62) értékét!

i	r_i	q_i	$r_{i-2} = r_{i-1}q_i + r_i$
_	172	_	_
_	62	_	_
1	48	2	$172 = 62 \cdot 2 + 48$
2	14	1	$62 = 48 \cdot 1 + 14$
3	6	3	$48 = 14 \cdot 3 + 6$
4	2	2	$14 = 6 \cdot 2 + 2$
5	0	3	$6 = 2 \cdot 3 + 0$

A legnagyobb közös osztó: (172,62) = 2

Legnagyobb közös osztó kiszámolása rekurzióval

Tétel

Legyen $a \neq 0$. Ha b = 0, akkor (a, b) = a. Ha $b \neq 0$, akkor $(a, b) = (|b|, a \mod |b|)$.

Bizonyítás

Ha b = 0, akkor a tétel nyilvánvaló.

Ha $b \neq 0$, osszuk el maradékosan a-t |b|-vel: $a = |b| \cdot q + (a \mod |b|)$.

Ez az euklideszi algoritmus első sora.

Példa

Számítsuk ki (172, 62) értékét!

(a,b)	$a \mod b $
(172, 62)	48
(62, 48)	14
(48, 14)	6
(14, 6)	2
(6, 2)	0

A legnagyobb közös osztó: (172, 62) = 2.

Legnagyobb közös osztó, további észrevételek

Hasonló módon definiálható több szám legnagyobb közös osztója is (HF): (a_1, a_2, \ldots, a_n) .

Állítás (HF)

Bármely a_1, a_2, \ldots, a_n egész számokra létezik (a_1, a_2, \ldots, a_n) és $(a_1, a_2, \ldots, a_n) = ((\ldots (a_1, a_2), \ldots a_{n-1}), a_n).$

Állítás (HF)

Bármely a, b, c egész számokra (ca, cb) = c(a, b).

Bővitett euklideszi algoritmus

Tétel

Minden a, b egész számok esetén léteznek x, y egészek, hogy $(a,b) = x \cdot a + y \cdot b$.

Bizonyítás

Legyenek q_i , r_i az euklideszi algoritmussal megkapott hányadosok, maradékok.

Legyen $x_{-1} = 1$, $x_0 = 0$ és $i \ge 1$ esetén legyen $x_i = x_{i-2} - q_i x_{i-1}$.

Hasonlóan legyen $y_{-1}=0$, $y_0=1$ és $i\geq 1$ esetén legyen

$$y_i = y_{i-2} - q_i y_{i-1}$$
.

Ekkor $i \ge 1$ esetén $x_i a + y_i b = r_i$. (Biz.: HF, indukcióval)

Speciálisan $x_n a + y_n b = r_n = (a, b)$.

Bővitett euklideszi algoritmus

Algoritmus:
$$r_{i-2} = r_{i-1}q_i + r_i$$
, $x_{-1} = 1$, $x_0 = 0$, $x_i = x_{i-2} - q_ix_{i-1}$ $y_{-1} = 0$, $y_0 = -1$, $y_i = y_{i-2} - q_iy_{i-1}$

Példa

Számítsuk ki (172,62) értékét és oldjuk meg az 172x + 62y = (172,62) egyenletet!

i	ri	q_{i+1}	Xi	Уi	$r_i = 172x_i + 62y_i$
-1	172	_	1	0	$172 = 172 \cdot 1 + 62 \cdot 0$
0	62	2	0	1	$62 = 172 \cdot 0 + 62 \cdot 1$
1	48	1	1	-2	$48 = 172 \cdot 1 + 62 \cdot (-2)$
2	14	3	-1	3	$14 = 172 \cdot (-1) + 62 \cdot 3$
3	6	2	4	-11	$6 = 172 \cdot 4 + 62 \cdot (-11)$
4	2	3	-9	25	$2 = 172 \cdot (-9) + 62 \cdot 25$
5	0	_	31	-86	$0 = 172 \cdot (31) + 62 \cdot (-86)$

A felírás: $2 = 172 \cdot (-9) + 62 \cdot 25$, x = -9, y = 25.

Felbonthatatlanok, prímek

```
Emlékeztető: t felbonthatatlan: csak triviális osztói vannak: \varepsilon, t, \varepsilon \cdot t típusú osztók (ahol \varepsilon egy egység). Más szavakkal: t felbonthatatlan: t = ab \Rightarrow a vagy b egység. p prím: p \mid ab \Rightarrow p \mid a vagy p \mid b. p prím \Rightarrow p felbonthatatlan. Az egész számok körében a fordított irány is igaz:
```

Tétel

Minden felbonthatatlan szám prímszám.

Bizonyítás

Legyen p felbonthatatlan, és legyen $p \mid ab$. Tfh. $p \nmid b$. Ekkor p és b relatív prímek. A bővített euklideszi algoritmussal kaphatunk x, y egészeket, hogy px + by = 1. Innen pax + aby = a. Mivel p osztója a baloldalnak, így osztója a jobboldalnak is: $p \mid a$.

22.

Számelmélet alaptétele

Tétel

Minden nem-nulla, nem egység egész szám sorrendtől és asszociáltaktól eltekintve egyértelműen felírható prímszámok szorzataként.

Bizonyítás

Csak nemnegatív számokra.

Létezés: Indukcióval: n=2, n=3 esetén igaz (prímek). Általában ha n prím, akkor készen vagyunk, ha nem, akkor szorzatra bomlik nemtriviális módon. A tényezők már felbonthatók indukció alapján.

Egyértelműség: Indukcióval: n=2, n=3 esetén igaz (prímek). Tfh. $n=p_1p_2\cdots p_k=q_1q_2\cdots q_\ell$, ahol $p_1,p_2\cdots ,p_k,q_1,q_2,\ldots ,q_\ell$ prímek. p_1 osztja a bal oldalt \Rightarrow osztja a jobb oldalt, felthehető $p_1=q_1$. Egyszerűsítve: $n'=p_2\cdots p_k=q_2\cdots q_\ell$. Indukció alapján ez már

Egyszerűsítve: $n'=p_2\cdots p_k=q_2\cdots q_\ell$. Indukció alapjan ez mai egyértelmű.

23.

Számelmélet alaptétele

Definíció

Egy *n* nem-nulla egész szám kanonikus alakja:

$$n=\pm p_1^{lpha_1}p_2^{lpha_2}\cdots p_\ell^{lpha_\ell}=\pm\prod_{i=1}^{n}p_i^{lpha_i}$$
, ahol $p_1,\ p_2,\ldots,\ p_\ell$ pozitív prímek, $lpha_1,$ $lpha_2,\ldots,\ lpha_\ell$ pozitív egészek.

Következmény (HF)

Legyenek
$$n, m>1$$
 pozitív egészek: $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_\ell^{\alpha_\ell}$, $m=p_1^{\beta_1}p_2^{\beta_2}\cdots p_\ell^{\beta_\ell}$, (ahol most $\alpha_i, \, \beta_i\geq 0$ nemnegatív egészek!). Ekkor
$$(m,n)=p_1^{\min\{\alpha_1,\beta_1\}}p_2^{\min\{\alpha_2,\beta_2\}}\cdots p_\ell^{\min\{\alpha_\ell,\beta_\ell\}}, \\ [m,n]=p_1^{\max\{\alpha_1,\beta_1\}}p_2^{\max\{\alpha_2,\beta_2\}}\cdots p_\ell^{\max\{\alpha_\ell,\beta_\ell\}}, \\ (m,n)\cdot [m,n]=m\cdot n.$$

Osztók száma

Definíció

Egy n > 1 egész esetén legyen $\tau(n)$ az n pozitív osztóinak száma.

Példa

$$\tau(6)=4$$
: osztók: 1, 2, 3, 6; $\tau(96)=12$: osztók: 1, 2, 3, 4, 6, 8, ...

Tétel

Legyen n>1 egész, $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_\ell^{\alpha_\ell}$ kanonikus alakkal. Ekkor $\tau(n)=(\alpha_1+1)\cdot(\alpha_2+2)\cdots(\alpha_\ell+1)$.

Bizonyítás

n lehetséges osztóit úgy kapjuk, hogy a $d=p_1^{\beta_1}p_2^{\beta_2}\cdots p_\ell^{\beta_\ell}$ kifejezésben az összes β_i kitevő végigfut a $\{0,1,\ldots,\alpha_i\}$ halmazon. Így ez a kitevő α_i+1 féleképpen választható.

Példa

$$\tau(2\cdot 3) = (1+1)\cdot (1+1);$$
 $\tau(2^5\cdot 3) = (5+1)\cdot (1+1).$

Prímekről

Tétel (Euklidesz)

Végtelen sok prím van.

Bizonyítás

Indirekt tfh csak véges sok prím van. Legyenek ezek p_1,\ldots,p_k . Tekintsük az $n=p_1\cdots p_k+1$ számot. Ez nem osztható egyetlen p_1,\ldots,p_k prímmel sem, igy n prímtényezős felbontásában kell szerepelnie egy újabb prímszámnak.

Tétel (Dirichlet, NB)

Ha a,d egész számok, d>0, $\left(a,d\right)=1$, akkor végtelen sok ak+d alakú prím van.

Prímekről

Prímszámtétel: x-ig a prímek száma $\sim \frac{x}{\ln x}$. (Sok prím van!)

Prímek száma:

X	prímek száma	$x/\ln x$
10	4	4, 343
100	25	21,715
1000	168	144, 765
10000	1229	1085, 736

Erathoszthenész szitája: Keressük meg egy adott n-ig az összes prímet. Soroljuk fel 2-től n-ig az egész számokat. Ekkor 2 prím. A 2 (valódi) többszörösei nem prímek, ezeket huzzuk ki. A következő szám 3 szintén prím. A 3 (valódi) többszörösei nem prímek, ezeket huzzuk ki. . . Ismételjük az eljárást \sqrt{n} -ig. A ki nem húzott számok mind prímek.

Kongruenciák

Oszthatósági kérdésekben sokszor csak a maradékos osztás esetén csak a maradék fontos:

- hét napjai;
- o órák száma, ...

Példa

 $16 \mod 3 = 1 \pmod 3 = 1$: 3-mal való oszthatóság esetén 16 " = " 4.

Definíció

Legyenek a, b, m egészek, akkor $a \equiv b \mod m$ (a és b kongruensek), ha $m \mid a - b$, és $a \not\equiv b \mod m$ (a és b inkongruensek), ha $m \nmid a - b$.

Ekvivalens megfogalmazás: $a \equiv b \mod m \Leftrightarrow a \mod m = b \mod m$, azaz m-mel osztva ugyan azt az osztási maradékot adják.

Példa

 $16 \equiv 4 \mod 3$ u.i. $3 \mid 16 - 4 \Leftrightarrow 16 \mod 3 = 1 = 4 \mod 3$;

 $16 \equiv 4 \mod 2$ u.i. $2 \mid 16 - 4 \Leftrightarrow 16 \mod 2 = 0 = 4 \mod 2$;

 $16\not\equiv 4 \mod 5 \text{ u.i. } 5 \nmid 16-4 \Leftrightarrow 16 \mod 5 = 1 \neq 4 = 4 \mod 5.$

29

Kongruencia tulajdonságai

Tétel

Minden a, b, c, d és m egész számra igaz

- 1. $a \equiv a \mod m$; (reflexív)
- 2. $a \equiv b \mod m$, $m' \mid m \Rightarrow a \equiv b \mod m'$;
- 3. $a \equiv b \mod m \Rightarrow b \equiv a \mod m$; (szimmetrikus) 4. $a \equiv b \mod m$, $b \equiv c \mod m \Rightarrow a \equiv c \mod m$; (tranzitív)
- 5. $a \equiv b \mod m$, $c \equiv d \mod m \Rightarrow a + c \equiv b + d \mod m$;
- 6. $a \equiv b \mod m$, $c \equiv d \mod m \Rightarrow ac \equiv bd \mod m$.

Bizonyítás

- 1. $m \mid 0 = a a$;
- 2. $m' \mid m \mid a b \Rightarrow m' \mid a b$;
- 3. $m \mid a b \Rightarrow m \mid b a = -(a b)$;
- 4. $m \mid a b, m \mid b c \Rightarrow m \mid a c = (a b) + (b c);$
- 5. $m \mid a b, m \mid c d \Rightarrow m \mid (a + c) (b + d) = (a b) + (c d);$
- 6. $a = q_1 m + b$, $c = q_2 m + d \Rightarrow$ $ac = (q_1m + b)(q_2m + d) = m(q_1q_2m + q_1d + q_2b) + bd.$

Kongruencia tulajdonságai

Példa

Mi lesz $345 \mod 7 = ?$

 $345 = 34 \cdot 10 + 5 \equiv 6 \cdot 3 + 5 = 18 + 5 \equiv 4 + 5 = 9 \equiv 2 \mod 7.$

Emlékeztető: $a \equiv b \mod m$, $c \equiv d \mod m \Rightarrow ac \equiv bd \mod m$ **Következmény:** $a \equiv b \mod m \Rightarrow ac \equiv bc \mod m$.

Példa

 $14 \equiv 6 \mod 8 \Rightarrow 42 \equiv 18 \mod 24$

A másik irány nem igaz!

 $2 \cdot 7 \equiv 2 \cdot 3 \mod 8 \not\Rightarrow 7 \equiv 3 \mod 8.$

Kongruencia tulajdonságai

Tétel (NB)

Legyenek a, b, c, m egész számok. Ekkor $ac \equiv bc \mod m \Leftrightarrow a \equiv b \mod \frac{m}{(c,m)}$

Következmény: $ac \equiv bc \mod m$, $(c, m) = 1 \Leftrightarrow a \equiv b \mod m$.

Példa

 $2 \cdot 7 \equiv 2 \cdot 3 \mod 8 \Rightarrow 7 \equiv 3 \mod \frac{8}{2}$.

Bizonyítás

Legyen
$$d=(c,m)$$
. Ekkor $m\mid c(a-b)\Leftrightarrow \frac{m}{d}\mid \frac{c}{d}(a-b)$. Mivel $\left(\frac{m}{d},\frac{c}{d}\right)=1$, ezért $\frac{m}{d}\mid (a-b)\Leftrightarrow a\equiv b\mod \frac{m}{d}$.