

Washington DC & Maryland

Energy

Estimating Solar Potential Using NASA POWER Data to Inform Renewable Energy Policy for Washington DC

Edward Cronin, Ashley Fernando, Jarrett James, and Rupa Kurinchi-Vendhan

Virginia - Langley | Fall 2021

STUDY AREA & PERIOD

Study Area:

- Prince George's and
 Montgomery Counties, Maryland
- Focus on select cities on the Maryland and Washington DC border

Study Period:

- LiDAR (2018)
- NASA POWER (2015-2021)
- Building Footprints (2018)

PARTNERS

Washington DC Department of Energy and Environment (DOEE)

Thomas Bartholomew, Branch Chief

Image Credit: DC DOEE

COMMUNITY CONCERNS

ECONOMIC

Solar is cost-efficient and contributes to a growing job market

SOCIAL

Community solar programs make solar accessible to all

POLITICAL

The 2018 CEDC Omnibus Act is moving D.C. to 100% renewable energy by 2032

OBJECTIVES

EVALUATE

Solar Potential for the Study
Area

ESTIMATE

Annual Rooftop Solar Potential for Study Area

PROVIDE

Documented Methodology for the DOEE

NASA EARTH OBSERVATIONS

NASA Prediction of Worldwide Energy Resources (POWER)

DATA ACQUISITION

LiDAR 2018 – Maryland GIS Data Catalog

Solar irradiance data to determine the solar potential for tilted surfaces

Building Footprints – Maryland GIS Data Catalog

Creating roof segmentation shapefiles

30-year Meteorological and Solar Monthly & Annual Climatologies – NASA POWER

Solar irradiance data to determine the solar potential for tilted surfaces

DATA PROCESSING

Generated DSMs

Solar
Irradiation by
Building
Footprint

Mapped Solar Potential

DATA PROCESSING

DSMs

RESULTS

CONCLUSION

Roughly

242 GW

would supply nearly

1,703 buildings

with power each year.

LIMITATIONS

Lack of Spatial Precision and Inaccuracies in LiDAR Data

Lack of Spatial Precision of Building Footprint Data

Physical Uncertainties in NASA POWER DATA

Computational Limits

FUTURE WORK

Apply our Methodology to the Entire Study Area

Comprehensive Analysis of Grayspace

Assign Potential to Each Roof Segment

Model the Socioeconomic Distribution

ACKNOWLEDGEMENTS

DEVELOP

We gratefully acknowledge **Dr. Kenton Ross (NASA Langley Research Center)** and **Dr. Paul Stackhouse (NASA Langley Research Center)** for their contributions to this work as science advisors, **Thomas Bartholomew (Branch Chief of the Washington DC DOEE)** for his role as a partner, and **Adriana LeCompte (DEVELOP LaRC Fellow)** for her coordination between the team and the DEVELOP program.