# MÁQUINAS DE VECTORES DE SOPORTE (SVM)

## CONJUNTO DE ALGORITMOS DE APRENDIZAJE SUPERVISADO

- VARIAS APLICACIONES:
- CLASIFICADOR BINARIO O MULTICLASE
- **REG**RESOR
- RECONOCIMIENTO DE OUTLIERS

#### CÓMO FUNCIONA?





## CÓMO FUNCIONA? CONTINUACIÓN







#### Receta

- Estandarizar las características
- Obtener la ecuación del hiperplano, lo que equivale a encontrar sus coeficientes
- Por cada dato que deseo clasificar reemplazar sus coordenadas en la ecuación del hiperplano, y dependiendo del valor obtenido clasificar el dato en una u otra categoría.





## **VENTAJAS**

- Eficaz en espacios de altas dimensiones.
- Todavía efectivo en casos donde el número de dimensiones es mayor que el número de muestras.
- Utiliza un subconjunto de puntos de entrenamiento e<mark>n la función de decis</mark>ión (llamados vectores de soporte), por lo que t<mark>ambién es eficient</mark>e en memoria.
- Versátil: se pueden especificar diferentes funciones del Kernel para la función de decisión. Se proporcionan kernels comunes, pero también es posible especificar kernels personalizados.

## **DESVENTAJAS**

Si el número de características es mucho mayor que el número de muestras, es crucial evitar el ajuste excesivo al elegir las funciones del núcleo y el término de regularización.

Las SVM no proporcionan directamente estimaciones de probabilidad, éstas se calculan mediante una costosa validación cruzada de cinco veces .

El ajuste de los parámetros lleva tiempo y requiere experiencia

## EL TRUCO DEL KERNEL







## El truco del kernel

• Las transformaciones más usadas en este truco del kernel se logran usualmente a través de dos tipos de funciones:

- Las polinomiales, que implican obtener combinaciones de los vectores de características usando potencias mayores que 1, o
- Usando funciones gaussianas, con forma de campana, que se conocen como funciones de base radial.
- En cualquiera de estos casos, y dependiendo del set de datos, lo que se logra es añadir más dimensiones a los datos originales para, en este espacio de más dimensiones, lograr la separación lineal de los datos.

### **USOS**

- CLASIFICACIONES LINEALES (O TRUCO DEL KERNEL)
- REGRESIONES LINEALES
- RECONOCIMIENTO FACIAL EN COMBINACIÓN CON REDES NEURONALES CONVOLUCIONALES