DIAL: Domain-Invariant Adversarial Learning on Digits Domains

Daniel Zeng

Agenda

Recap

DIAL Approach

Benchmarking on Digits Domains

Sim-to-real transfer

 Object recognition/grasp planning in decluttering by sim-to-real transfer

 Deformable object manipulation

Domain Adaptation Problem Formulation

- -- Simulator or source domain: $\langle D_S, \pi_S \rangle = \{(\mathbf{x_i^S, u_i^S})\}_{i=1}^{N_S}$
- -- Real or target domain: $\langle D_T, \pi_T \rangle \ \{(\mathbf{x_i^T}, \mathbf{u_i^T})\}_{i=1}^{\mathbf{N_T}}$
- -- Learn policy

$$\pi: \mathcal{X} o \mathbb{R}^{|\mathcal{U}|} \qquad \{0, 1....K\} ext{ or } \mathbb{R}^K$$

such that the loss function on target domain is minimized

$$\mathcal{L}_{D_T}(\pi, \pi^*) = \mathbb{E}_{\mathbf{x} \sim \mathbf{D_T}} \left[\mathbb{I}(\pi(\mathbf{x})
eq \pi^*(\mathbf{x}))
ight]$$

Usually few or no labels for the target domain: thus need to learn how to adapt from source to target

DIAL Approach

- Metric Learning: Deep embedding space that pulls together samples from same classes, while pushes away samples from other classes
- **Domain Alignment:** Find a g such that features Z look similar across source and target domains
- **Class Alignment:** Find g and h such that features Z look similar across class categories

Datasets on Digits Benchmark:

- MNIST: Modified National Institute of Standards and Technology database
- MNISTM: MNIST Modified
- SVHN: Street View House Numbers
- USPS: US Post Office Zip Code Data

Unsupervised Baselines

- Source Only
- Domain adversarial neural networks (DANN) [1]
- Reconstruction based adaptation
- Associative adaptation [2]
- Maximum classifier discrepancy (MCD) [3]

- [1] Ganin et. al, Domain-Adversarial Training of Neural Networks. 2015
- [2] Haeusser et. al, Associative Domain Adaptation. 2017
- [3] Saito et. al, Maximum Classifier Discrepancy for Unsupervised Domain

Adaptation. 2018

Baselines: Source

Source only classifier

Only trained on MNIST, no alignment

Thus, red exist in different location than source, though some red are in blue clusters

Accuracy = 56.2%

Baselines: DANN

DANN + Source classifier:

Domain adversarial neural networks

Domain level alignment with DANN, but weaker Class alignment

Accuracy = 79.8%

DANN Architecture

MNIST -> **MNISTM**

Baselines: Reconstruction

TSNE Visualization, Blue = Source, Red = Target

Reconstruction based adaptation:

DANN + Source classifier + Recon.

Reconstruction does not improve

Accuracy = 53.4%

Baselines: MCD

Maximum classifier discrepancy:

Trains 2 different classifiers, and moves target to fit within support region of them

Accuracy = 77%

Results: Unsupervised baselines

X -> Y: means X is source domain, Y is target domain

Test Accuracy	MNIST-> MNISTM	MNIST-> USPS	SVHN-> MNIST	USPS-> SVHN	USPS-> MNIST
Source Classifier + DANN	0.798	0.873	0.674	0.153	0.751
Triplet + DANN	0.704	0.886	0.805	0.180	0.832
Associative DA	0.895	0.212	0.960	0.256	0.570
MCD	0.770	0.941	0.978	0.288	0.932
Recon. + DANN	0.534	0.823	0.627	0.155	0.715

Semi-Supervised scenario

- Why Semi-Supervised?
- Typical, we do have at least few labels for target dataset domain
- 1, 5, or 10 labels per class can greatly increase target accuracy, as demonstrated in results
- Semi-Supervised is needed when unsupervised fails to perform as well
- Difficult domain adaptation pairs: USPS -> SVHN

DIAL Architecture

k = num classes

DIAL Embeddings

Class-DANN +
Metric learning +
DANN + Source
classifier

Accuracy with m = 5: 94.1% (Semi-supervised)

Stronger domain and class level alignment

MNIST -> **MNISTM**

Results: Semi-supervised, m = 1, labeled target per class

3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					
Test	MNIST->	MNIST->	SVHN->	USPS->	USPS->
Accuracy	MNISTM	USPS	MNIST	SVHN	MNIST
DANN					
Baseline	0.758	0.872	0.764	0.151	0.777
DIAL: Source Classifier + DANN + Class DANN	0.779	0.906	0.765	0.351	0.893
DIAL : Source Classifier + Triplet + DANN	0.786	0.894	0.773	0.400	0.949

+ Class DANN

Results: Semi-supervised, $m = 5$, labeled target per class						
Test Accuracy	MNIST-> MNISTM	MNIST-> USPS	SVHN-> MNIST	USPS-> SVHN	USPS-> MNIST	
DANN Baseline	0.763	0.920	0.793	0.252	0.85	
DIAL: Source Classifier + DANN + Class DANN	0.941	0.946	0.864	0.610	0.945	
DIAL : Source Classifier +	0.705	0.004	0.000	0.000	0.007	

0.868

0.682

0.967

0.934

0.795

Triplet + DANN + Class DANN

Desulte: Semi supervised m = 10 labeled torque per elece

Results: Semi-supervised, $m = 10$, labeled target per class						
Test Accuracy	MNIST-> MNISTM	MNIST-> USPS	SVHN-> MNIST	USPS-> SVHN	USPS-> MNIST	
DANN Baseline	0.796	0.923	0.806	0.354	0.914	
DIAL: Source Classifier + DANN + Class DANN	0.948	0.951	0.867	0.725	0.950	
DIAL : Source Classifier + Triplet + DANN	0.903	0.946	0.903	0.802	0.962	

+ Class DANN

Results: Comparison to another Semi-supervised method

Test Accuracy		MNIST->	SVHN->	USPS->	USPS->
	MNISTM	USPS	MNIST	SVHN	MNIST
DIAL (best results**)	m = 1: 0.779 m = 5: 0.941 m = 10: 0.948	m = 1: 0.906 m = 5: 0.946 m = 10: 0.951	m = 1: 0.773 m = 5: 0.868 m = 10: 0.903	m = 1: 0.400 m = 5: 0.682 m = 10: 0.802	m = 1: 0.949 m = 5: 0.967 m = 10: 0.962
FADA [4]: Few-Shot Adversarial Domain Adaptation	-	m = 1: 0.891 m = 5: 0.934 m = 7: 0.944	m = 1: 0.728 m = 5: 0.861 m = 7: 0.872	m = 1: 0.275 m = 5: 0.379 m = 7: 0.429	m = 1: 0.811 m = 5: 0.911 m = 7: 0.915

[4] Mottian et. al, Few-Shot Adversarial Domain Adaptation. 2017