

Bit Plane

Bit-plane

Un'immagine con una profondità colore di N bit può essere rappresentata da N piani di bit (bit-planes), ciascuno dei quali può essere vista come una singola immagine binaria. In particolare si può indurre un ordine che varia dal Most Significant Bit (MSB) fino al Least Significant (LSB).

Bit-plane - Definizione

Il bit plane di un'immagine digitale a N bit, è un'insieme di N immagini binarie (piani), in cui l'immagine *i*-esima contiene i valori dell' *i*-esimo bit della codifica scelta.

Bit plane di Lena

Bit-planes – Codifica binario puro

Most Significant bit (MSB)

Least Significant bit (LSB)

Bit-planes binario puro

Bit-planes binario puro: Osservazioni

- Se si usa la codifica in binario puro i piani di bit più significativi contengono informazioni sulla struttura dell'immagine, mentre quelli via via meno significativi forniscono i dettagli sempre più piccoli.
- Si noti che solo i piani dal 7 al 3 contengono dati significativi dal punto di vista visuale.
- Il rumore delle immagini e gli errori di acquisizione sono più evidenti nei piani bassi.

Bit-planes binario puro

Usi bit-planes binario puro:

- Questo genere di scomposizione è molto utile per eliminare tutti i valori compresi in un certo range.
- Ad esempio, se si vogliono eliminare tutti i grigi compresi tra 32 e 64, è necessario porre a 0 il quinto bit, e quindi tutto il piano 5.
- Chiaramente, questa osservazione e le precedenti, sono valide se la codifica utilizzata è quella in binario puro.

Bit-plane binario puro - Esempio

Figura 3.14 (a) Immagine a 8 bit in scala di grigio di 500 x 1192 pixel. Da (b) a (i) i piani di bit da 1 a 8; il piano 1 corrispondente al bit meno significativo. Ogni piano è un'immagine binaria.

Bit-plane binario puro - Esempio

Figura 3.15 Immagini ricostruite usando (a) i piani di bit 8 e 7; (b) i piani di bit 8, 7 e 6; (c) i piani di bit 8, 7, 6 e 5. Si confronti (c) con la Figura 3.14a.

Ricostruzione senza un piano di bit

without 20

without 2¹

without 2²

without 2³

without 24

without 2⁵

without 26

without 2⁷

Bit-Plane - Problema

Se la codifica usata è quella in binario puro, allora risulta evidente uno svantaggio: una piccola variazione può ripercuotersi su tutti i piani.

Esempio: Se un pixel ha ad esempio intensità 127 (01111111) e il suo adiacente ha intensità 128 (10000000) allora la transizione tra 0 e 1 si ripercuote su tutti i piani di bit.

Serve un codice in cui valori molto vicini abbiano codifiche binarie molto simili!

Soluzione – Codice Gray

Il codice Gray a m bit g_{m-1} ... g_1g_0 che corrisponde al numero in binario puro a_{m-1} ... a_1a_0 può essere calcolato con la formula

$$g_i = a_i \oplus a_{i+1}$$
 $0 \le i \le m-2$
 $g_{m-1} = a_{m-1}$

dove ⊕ denota l'operatore XOR (OR esclusivo).

Il codice Gray gode della proprietà per cui ogni codeword differisce dalla precedente per un solo bit.

- Come si può osservare nell'esempio precedente, in base alla codifica i bitplane presentano delle differenze.
- In particolare, i bit-plane delle immagini in codice Gray risultano tra loro più "coerenti" se confrontati con i rispettivi in binario puro. Se aumento l'intensità del pixel di 1 varierà infatti solo un bit (ossia solo un piano).
- Inoltre, il numero di transizioni bianco-nero nel singolo piano (complessità descrittiva) sono inferiori se si usa il codice Gray (es: confrontare i capelli di Lena tra i piani 6).
- Queste caratteristiche indicano una minore entropia (maggiore ridondanza) se si utilizza il codice Gray. Ciò significa che diventa più semplice comprimere a partire da immagini così codificate.

ATTENZIONE!

- Dato che il significato associato ai bit è diverso tra le due codifiche, alcune proprietà di una non valgono per l'altra!
- Se si azzerano dei piani di bit in Gray code, si eliminano range di valori diversi (e meno significativi) rispetto a quelli in binario puro.
- Nonostante i dettagli e il rumore tenderanno a concentrarsi nei piani più bassi anche con il codice Gray, eliminare direttamente tali piani potrebbe introdurre artefatti indesiderati.