Wstęp do informatyki

Wykład 3
Uniwersytet Wrocławski
Instytut Informatyki

Dane przetwarzane przez "komputer"

Tydzień temu:

 Wejście, wyjście, wartości przetwarzane: liczby całkowite (dowolnie duże)

Dziś:

- Podstawowa jednostka informacji, binarna reprezentacja informacji;
- Cyfrowa/binarna reprezentacja liczb: naturalnych, całkowitych, rzeczywistych;
- Cyfrowa/binarna reprezentacja: znaków, obrazów, wideo, dźwięku, ...
- TABLICE jako struktura danych w algorytmie

Podstawowa jednostka informacji

Bit:

-dwa stany (0 i 1)

Dlaczego tak "mało":

 urządzenia cyfrowe ("komputery") powinny "automatycznie" i niezawodnie odróżniać wartości

Jak uzyskać więcej wartości?

 ciąg k bitów może przyjmować 2k różnych wartości

Bity a komórki pamięci komputera

Maszyna RAM:

komórka pamięci przechowuje <u>dowolnie</u>
 <u>dużą</u> liczbę całkowitą

Świat rzeczywisty:

- komórka pamięci to ciąg bitów o ustalonej długości – "bajt" lub "słowo maszynowe";
- -1 bajt = 8 bitów (zazwyczaj...);
- –formalnie (czasem…): bajt to najmniejsza "adresowalna" jednostka pamięci komputera

Ciąg binarny = ciąg, którego elementami mogą być tylko zera i jedynki.

Binarna reprezentacja liczby naturalnej x>0 to ciąg binarny $x_k...x_1x_0$ taki, że:

$$x = \sum_{i=0}^{k} x_i \cdot 2^i$$

oraz $x_k = 1$.

Binarna reprezentacja zera = 0.

Fakt. Każda liczba naturalna posiada dokładnie jedną reprezentację binarną (bez zbędnych zer "wiodących").

Dowód: Indukcyjny:

- Krok bazowy: n = 0
- Krok indukcyjny:
 - Zał.: Fakt zachodzi dla każdej liczby m<n
 - Teza: Fakt zachodzi dla n
 - Idea dowodu: skorzystaj z zał. indukcyjnego oraz reprezentacji n = 2^k+m, gdzie 0 ≤ m < 2^k

Problem algorytmiczny

Wejście: a – liczba naturalna

Wyjście: x_k...x₁x₀ – ciąg tworzący binarną

reprezentację liczby a

Algorytm

- 1. $i \leftarrow 0$
- 2. $x[0] \leftarrow a \mod 2$
- 3. $a \leftarrow a \text{ div } 2$
- 4. dopóki a > 0:
 - a) $i \leftarrow i + 1$
 - b) x[i] ← a mod 2
 - c) a ← a div 2
- 5. dopóki i ≥ 0:
 - a) wypisz x[i]
 - b) $i \leftarrow i 1$

Oznaczenia:

- a mod b = reszta z dzielenia a przez b
- a div b = wynik
 dzielenia całkowitego
 a przez b
 (zaokrąglenie wyniku
 w dół do liczby
- x[0], x[i]... co to? tablica

całkowitej)

Poprawność algorytmu - idea:

- ostatnia cyfra reprezentacji binarnej liczby a jest równa a mod 2
- $-a = (a div 2) \cdot 2 + (a mod 2)$
- reprezentację binarną liczby (a div 2) uzyskujemy poprzez usunięcie cyfry repręzentacji binarnej liczby a:

$$a = \sum_{i=0}^{k} a_i \cdot 2^i$$

$$a \text{ div } 2 = \left(\sum_{i=0}^{k} a_i \cdot 2^i\right) \text{ div } 2 = \sum_{i=1}^{k} a_i \cdot 2^{i-1}$$

TABLICE

Tablica:

struktura danych przechowująca ustaloną liczbę elementów n tego samego typu,

indeksowanych kolejnymi liczbami naturalnymi 0,
 1, 2,..., n – 1 (Ansi C).

Tablica C: #define N 200 int n = 100 int tabA[100], tabB[N], tabC[n]; tabA[55] = 7;

tabC[n-1] = tabA[0] + tabB[1];

Tablica Python (array_demo.py):

```
from wdi import *
print "Tablica jednowymiarowa\n"
N = 10
A = Array(N)
                      # Tworzenie tablicy
B = Array(N)
for i in range(N):
   A[i] = i * i
   print A[i]
B[5] = A[0] + B[3]
```

Tablica Python (array_demo.py):

Na WdI nie używamy list pythonowych!

```
A = Array(10)
```

Tablica Python (array_demo.py):

Na Wdl nie używamy list pythonowych!

```
A = Array(10)

append, extend, insert, remove, count, pop, ...
```

Binarna reprezentacja liczby rzeczywistej a>0 to $x_k...x_1x_0$, $x_{-1}x_{-2}x_{-3}x_{-4}...$ taka, że:

$$a = \sum_{i=0}^{k} x_i \cdot 2^i + \sum_{i=1}^{\infty} x_{-i} \cdot 2^{-i}$$

oraz $x_k=1$ lub k=0, $x_i \in \{0,1\}$ dla każdego i.

X ₄	X ₃	X ₂	X ₁	X ₀	,	X ₋₁	X ₋₂	X ₋₃	X ₋₄	X ₋₅	
24	2 ³	2 ²	21	20	,	2-1	2-2	2-3	2-4	2 -5	

Binarna reprezentacja liczby rzeczywistej a>0 to $x_k...x_1x_0$, $x_{-1}x_{-2}x_{-3}x_{-4}...$ taka, że:

$$a = \sum_{i=0}^{k} x_i \cdot 2^i + \sum_{i=1}^{\infty} x_{-i} \cdot 2^{-i}$$

- oraz $x_k=1$ lub k=0, $x_i \in \{0,1\}$ dla każdego i.
- Reprezentacja nieskończona?
 - Jeśli $x_p=0$ dla każdego p>j: wartości $x_{-j-1}, x_{-j-2}, x_{-j-3}, \dots$ pomijamy!
 - Analogia: dziesiętna reprezentacja ½, 1/3,...

Jeśli liczba *a* posiada skończoną reprezentację binarną, to reprezentacja ta jest jednoznaczna. (inaczej: każda liczba posiada co najwyżej jedną skończoną reprezentację binarną)

Dowód – idea:

Fakt

- część całkowita p. dowód wcześniej
- część ułamkowa indukcja ze względu na liczbę cyfr najkrótszej reprezentacji, wykorzystanie nierówności (j>k): $2^{-k}>\sum_{i=l+1}^{j}2^{-i}$

Problem algorytmiczny Wejście:

- a liczba rzeczywista z przedziału (0;1);
- n dodatnia liczba naturalna

Wyjście:

```
x_{-1}x_{-2}...x_{-n+1}x_{-n} - n pierwszych bitów ułamkowej części w binarnej reprezentacji liczby a (czyli a = 0, x_{-1}x_{-2}...x_{-n+1}x_{-n}...)
```

Algorytm

- 1. $i \leftarrow 1$
- 2. dopóki (a \neq 0) oraz (i \leq n):
 - 1. $a \leftarrow 2 \cdot a$
 - 2. jeśli (a≥1):
 - a) wypisz 1 (czyli $x_{\leftarrow}1$)
 - b) $a \leftarrow a 1$
 - 3. w przeciwnym przypadku:
 - a) wypisz 0 (czyli $x_{-}\leftarrow 0$)
 - 4. $i \leftarrow i + 1$

Poprawność algorytmu: p. efekt mnożenia przez 2 liczby z przedziału (0;1) ...

Binarna/cyfrowa reprezentacja liczb całkowitych

Cyfrowa reprezentacja liczb całkowitych

Reprezentacje liczb całkowitych:

- znak-moduł
- kod uzupełnień do 1
- kod uzupełnień do 2

Wspólna cecha powyższych reprezentacji liczb całkowitych:

- k <u>ustalona</u> długość reprezentacji (liczba bitów)
- najstarszy bit (skrajnie lewy) pozwala określić znak liczby

Reprezentacja znak-moduł

Wartość opisywana ciągiem x_{k-1} x_{k-2} ... x_1 x_0

– wartość bezwzględna odpowiada binarnej reprezentacji $x_{k-2} \dots x_1 x_0$ czyli

$$\sum_{i=0}^{k-2} x_i \cdot 2^i$$

- znak liczby:
 - -dodatnia gdy $x_{k-1} = 0$,
 - –ujemna gdy $x_{k-1} = 1$

Kod uzupełnień do 1 (U1)

Wartość opisywana ciągiem x_{k-1} x_{k-2} ... x_1 x_0

– Jeśli x_{k-1} =0: "standardowa" reprezentacja liczby dodatniej

$$\sum_{i=0}^{k-2} x_i \cdot 2^i$$

– Jeśli x_{k-1} =1: liczba ujemna, bity wartości bezwzględnej zanegowane

$$-\sum_{i=0}^{k-2} (1-x_i) \cdot 2^i$$

Kod uzupełnień do 2 (U2)

Wartość opisywana ciągiem x_{k-1} x_{k-2} ... x_1 x_0 jest równa $-x_{k-1} \cdot 2^{k-1} + \sum_{i=1}^{k-2} x_i \cdot 2^i$

Zakres reprezentowanych liczb:

Kodowanie	Zakres	Najmniejsza	Największa	zero
Znak-moduł	$[-(2^{k-1}-1), 2^{k-1}-1]$	1 1111	01111	0000 1000
U1	$[-(2^{k-1}-1), 2^{k-1}-1]$	1 0000	01111	0000 1111
U2	$[-2^{k-1}, 2^{k-1} -1]$	1 0000	01111	0000

Reprezentacje liczb całkowitych

Przykład. *k*=8

Liczba	Znak-moduł	U1	U2
0	00000000 10000000	00000000 11111111	0000000
109	01101101	01101101	01101101
-109	11101101	10010010	10010011

Kod uzupełnień do 2 (U2) – liczby przeciwne

Wejście:

k – liczba naturalna,

 $x=x_{k-1},x_{k-2},...x_1,x_0$ - reprezentacja liczby a w U2 na k bitach

Wyjście: y – reprezentacja liczby –a w U2 na k bitach

Algorytm – idea:

- zaneguj wszystkie bity w ciągu x (negowanie: 1→0, 0 →1);
- 2. do zanegowanego ciągu (traktowanego jako liczba naturalna w zapisie binarnym) dodaj 1.

Kod uzupełnień do 2 (U2) – liczby przeciwne

Wejście:

k – liczba naturalna

 $x=x_{k-1},x_{k-2},...x_1,x_0$ – reprezentacja liczby a w U2 na k bitach

Wyjście: y – reprezentacja liczby –a w U2 na k bitach **Algorytm:**

- Jeśli x=100...0:
 zwróć "Brak reprezentacji"
- 2. x' ← x z zanegowanym każdym bitem
- 3. x" ← binarna reprezentacja bez znaku x'+1
- 4. Jeśli długość(x")>k:
 y ← x" bez skrajnie lewego bitu
 wpp y ← x"
- 4. Zwróć y

Kod uzupełnień do 2 (U2) – liczby przeciwne

Poprawność algorytmu:

- zanegowanie bitów 0, 1,..., k 2: zamiana wartości liczby naturalnej bez znaku w na 2^{k-1} 1 w
- jeśli *a*≥0:
 - $x_{k-1}=0$, a=w, zanegowanie x_{k-1} daje wartość $2^{k-1}-1-w-2^{k-1}=-w-1=-a-1$
- jeśli a<0:
 - $x_{k-1}=1$, $a=w-2^{k-1}$, zanegowanie $x_{k-1}=1$ "usuwa" ujemny składnik -2^{k-1} i daje wartość $2^{k-1}-1-w=-(w-2^{k-1})-1=-a-1$

Kod uzupełnień do 2 (U2)

Problem

Wejście:

x - liczba całkowita,k – dodatnia liczba naturalna

Wyjście:

zapis liczby x w kodzie U2 na k bitach

Algorytm – idea:

- Jeśli x poza przedziałem
 [-2^{k-1}, 2^{k-1} -1]: liczba poza zakresem; zakończ
- Jeśli x≥0: zwróć binarną (kbitową) reprezentację x
- 3. Jeśli x<0:
 - Zaneguj wszystkie bity binarnej (k-bitowej) reprezentacji -x
 - Dodaj 1
 - Zwróć wynik dodawania

Kod uzupełnień do 2 (U2)

Problem

Wejście:

x - liczba całkowita,k – dodatnia liczba

naturalna

Wyjście:

zapis liczby x w kodzie U2 na k bitach

Uwaga:

binarna(x) zwraca zapis binarny liczby x. neg(x) oznacza ciąg utworzony przez zanegowanie każdego bitu w x

Algorytm

- 1. $x' \leftarrow |x|$
- 2. Jeśli x= 2^{k-1}: zwróć 10...0
- 3. $bx \leftarrow binarna(x')$
- 4. $p \leftarrow dlugość(bx)$
- 5. Jeśli p>k-1: liczba przekracza zakres; stop
- Uzupełnij bx z lewej strony k – p zerami;
- 7. Jeśli x≥0: zwróć bx,w przeciwnym przypadku:bx ← neg(bx) + 1
- 8. Zwróć bx

Kod U2 – dodawanie

Problem Wejście:

k – liczba naturalna x₁, x₂ – k-bitowe zapisy liczb całkowitych w U2 **Wyjście:**

k-bitowy zapis w U2 liczby x_1+x_2

Algorytm (idea)

- x←x₁+x₂ gdzie x₁ i x₂ traktowane jako liczby zapisane binarnie bez znaku,
- 2. Obetnij x do k skrajnie prawych bitów!
- 3. Potraktuj x jako liczbę w U2 oraz:
 - a) jeśli znak(x₁)=znak(x₂) oraz znak(x₁)≠znak(x): zwróć "przekroczenie zakresu"
 - b) zwróć x

Kod U2 – liczby rzeczywiste

Reprezentacja liczb rzeczywistych w U2:

- k liczba bitów na część całkowitą
- p liczba bitów na część ułamkową

Zapis

$$X_{k-1} X_{k-2} \dots X_2 X_1 X_0, X_{-1} X_{-2} \dots X_{-(p-1)} X_{-p}$$

reprezentuje liczbę

$$-x_{k-1} \cdot 2^{k-1} + \sum_{i=0}^{k-2} x_i \cdot 2^i + \sum_{i=1}^p x_{-i} \cdot 2^{-i}$$

Zmiennopozycyjna reprezentacja liczb rzeczywistych

Fakt Każdą liczbę rzeczywistą x≠0 można jednoznacznie zapisać

$$x = (-1)^s \cdot m \cdot 2^c$$

gdzie

- $s \in \{0, 1\}$
- m to liczba rzeczywista, m ∈[1,2)
- c to liczba całkowita

Reprezentacja cyfrowa liczby

$$x = (-1)^s \cdot m \cdot 2^c$$

gdzie $s \in \{0, 1\}$, $m \in [1,2)$, c to liczba całkowita:

- s jeden bit
- binarny (<u>zaokrąglony</u>) zapis 1,m₁m₂m₃...₍₂₎ liczby *m* reprezentujemy przy pomocy ciągu m₁m₂m₃...m_M, gdzie M ustalone
- c liczba w zapisie U2 na C bitach.

Razem:

Zapis na 1 + M + C bitach.

Zakres wartości

$$x = (-1)^s \cdot m \cdot 2^c$$

dla ustalonych M i C:

$$m \in \left[1, 1 + \sum_{i=1}^{M} \frac{1}{2^i}\right] = \left[1, 2 - \frac{1}{2^M}\right]$$
 $c \in \left[-2^{C-1}, 2^{C-1} - 1\right]$

Liczba o największym module:

$$\pm \left(2 - \frac{1}{2^{M}}\right) \cdot 2^{2^{C-1} - 1} \approx \pm 2^{2^{C-1}}$$

Liczba o najmniejszym module:

$$\pm 2^{-2^{(C-1)}}$$

Przykład

$$x = (-1)^s \cdot m \cdot 2^c$$

dla M=4 i C=3:

$$m \in \left[1,1+\sum_{i=1}^{4}\frac{1}{2^{i}}\right] = \left[1,2-\frac{1}{2^{4}}\right] = \left[1,1\frac{15}{16}\right] \quad c \in \left[-2^{2},2^{2}-1\right] = \left[-4,3\right]$$

Liczba o największym module:

$$\pm \left(2 - \frac{1}{2^{M}}\right) \cdot 2^{2^{C-1} - 1} = \pm 1 \frac{15}{16} \cdot 2^{3} \approx \pm 2^{4}$$

Liczba o najmniejszym module:

$$\pm 2^{-2^{(C-1)}} = \pm 2^{-4}$$

Reprezentacja zmiennopozycyjna - normalizacja

Normalizacja liczby

$$x = (-1)^s \cdot m \cdot 2^c$$

dla $s \in \{0,1\}$, $m \in \Re_+$ oraz liczby całkowitej c polega na znalezieniu m' oraz c' takich, że

$$x = (-1)^{s} \cdot m \cdot 2^{c} = (-1)^{s} \cdot m' \cdot 2^{c'}$$

oraz $m' \in [1,2)$, c' całkowite.

Przykład

$$x = 47 = 101111_{(2)} = 1.101111_{(2)} \cdot 2^0 = 1.1,01111_{(2)} \cdot 2^5$$

Dla M=6 i C=4 liczba x ma następującą reprezentację:

S	m	C
0	011110	0101

Reprezentacja zmiennopozycyjna - mnożenie

Wejście:

zmiennopozycyjne reprezentacje liczb x₁ i x₂:

$$x_1 = (-1)^{s_1} \cdot m_1 \cdot 2^{c_1}, \ x_2 = (-1)^{s_2} \cdot m_2 \cdot 2^{c_2}$$

Wyjście:

zmiennopozycyjna reprezentacja

$$x = x_1 \cdot x_2 = (-1)^s \cdot m \cdot 2^c$$

Reprezentacja zmiennopozycyjna - mnożenie

Wejście:
$$s_1$$
, m_1 , c_1 , s_2 , m_2 , c_2
 $x_1 = (-1)^{s_1} \cdot m_1 \cdot 2^{c_1}$, $x_2 = (-1)^{s_2} \cdot m_2 \cdot 2^{c_2}$

Wyjście: s, m, c, takie, że $s \in \{0, 1\}$, m $\in [1,2)$, c to liczba całkowita

$$x = x_1 \cdot x_2 = (-1)^s \cdot m \cdot 2^c$$

Algorytm:

- dodaj znaki modulo 2: $s = (s_1 + s_2) \mod 2$
- pomnóż mantysy: m = m₁ · m₂
- dodaj cechy: $c = c_1 + c_2$
- znormalizuj wynik!!

Reprezentacja zmiennopozycyjna - mnożenie

Przykład (założenie M=3):

Reprezentacja zmiennopozycyjna - dodawanie

Wejście: s_1 , m_1 , c_1 , s_2 , m_2 , c_2

$$x_1 = (-1)^{s_1} \cdot m_1 \cdot 2^{c_1}, \ x_2 = (-1)^{s_2} \cdot m_2 \cdot 2^{c_2}$$

Wyjście: s, m, c takie, że: $x = x_1 + x_2 = (-1)^s \cdot m \cdot 2^c$ Algorytm:

- 1. wyrównaj cechy do większej
- 2. dodaj mantysy ze znakiem: $m \leftarrow (-1)^{s_1} m_1 + (-1)^{s_2} m_2$
- 3. Ustal znak na podstawie sumy mantys ze znakiem (i zamień mantysę na jej wartość bezwzględną):
 - Jeśli (m>0): s ←0,
 wpp s ←1
 - m ← | m |
- 4. Normalizuj wynik!

Reprezentacja zmiennopozycyjna - dodawanie

Przykład:

```
(-1)^{0} \cdot 1,101_{(2)} \cdot 2^{8} + (-1)^{1} \cdot 1,001_{(2)} \cdot 2^{6} =
1,101_{(2)} \cdot 2^{8} - 0,01001_{(2)} \cdot 2^{8} =
(1,101_{(2)} - 0,01001_{(2)}) \cdot 2^{8} =
1,01011_{(2)} \cdot 2^{8} =
(-1)^{0} \cdot 1,01011_{(2)} \cdot 2^{8} =
\text{normalizacja}
```

Uwaga: w realizacji komputerowej wystąpić może zaokrąglenie lub błąd wynikające z długości cechy i mantysy (M i C).

Reprezentacja zmiennopozycyjna a reprezentacja stałopozycyjna

Stałopozycyjna:

- Wyniki obliczeń bez błędów
- Mały zakres LUB duży rozmiar pamięci

Zmiennopozycyjna

- Błędy zaokrągleń reprezentacji
- Błędy wyników operacji arytmetycznych
- Duży zakres wartości
- Oszczędność pamięci

Reprezentacja stałopozycyjna w C i Pythonie

Ansi C:

- Typ zmiennej określa zakres wartości i rozmiar pamięci zajmowanej przez zmienną (liczbę bajtów)
- Przekroczenie zakresu wartości oznacza błędne wyniki/wartości

Python

 W niektórych typach interpreter dopasowuje zakres (a zarazem rozmiar pamięci) do aktualnej wartości zmiennej

Reprezentacja tekstu, grafiki, wideo, dźwięku,...

Reprezentacja tekstu

Rozwiązanie "bazowe"

- 1. Ustal zestaw znaków, jego rozmiar
- 2. Przyporządkuj znaki kolejnym liczbom naturalnym

Modyfikacje i uszczegółowienia

- Ustal liczbę bajtów kodujących jeden znak
- Możliwa różna liczba bajtów dla różnych znaków (np. Unicode)

Przykłady

ASCII Unicode

Reprezentacja obrazu

Sposoby reprezentacji grafiki:

- grafika rastrowa: prostokątna siatka pikseli
- grafika wektorowa: matematyczny opis punktów, odcinków, figur płaskich, brył, krzywych itp. w układzie współrzędnych

Uwaga:

 Prezentacja grafiki na ekranie komputera wymaga (przetłumaczenia do) grafiki rastrowej.

Opis zawartości piksela:

- obraz monochromatyczny: intensywność jako liczba z określonego zakresu
- obraz kolorowy: trzy obrazy "monochromatyczne" np. RGB (red, green, blue)

Dźwięk i wideo

Reprezentacja dźwięku:

- dźwięk jako funkcja w dziedzinie czasu (wartości funkcji to "poziom dźwięku", "ciśnienie",…)
- reprezentacja cyfrowa próbkowanie (pomiar wartości funkcji w ustalonych odstępach czasowych)

Sekwencja wideo:

- ciąg obrazów/klatek (np. 50 na sekundę)
- ścieżka dźwiękowa

Kompresja: dźwięk i wideo

Reprezentacja obrazów, dźwięku, wideo – ogromny rozmiar danych:

- zdjęcie dobrej jakości zawiera około 10⁶ pikseli
- dźwięk kilkadziesiąt tysięcy próbek na sekundę
- wideo kilkadziesiąt "klatek" (obrazów) na sekundę

Kompresja – oszczędny sposób reprezentacji, (czasem) kosztem utraty jakości, np.:

- JPG obraz
- MP3 dźwięk
- MPEG wideo

Podsumowanie

- Bit, bajt podstawowe jednostki informacji
- 2. Binarny zapis liczb naturalnych, rzeczywistych
- 3. Cyfrowy zapis liczb całkowitych (U2)
- 4. Zmiennopozycyjny zapis liczb rzeczywistych
- 5. Operacje arytmetyczne na zapisie zmiennopozycyjnym
- 6. Cyfrowa reprezentacja
 - tekstu
 - grafiki
 - dźwięku
 - wideo