Advanced Network Technologies

Multimedia 2/2

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Dr. Wei Bao | Lecturer School of Computer Science

Networkigsupporterfor MUHimedia

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Network support for multimedia

Three broad approaches towards providing network-level support for multimedia apps

Approach	Granularity	Guarantee	Mechanisms	Complex	Deployed?
1. Making best of best effort service	equal		No network]		everywhere
2. Differentiated service			sistpro.gi edu_ass		
3. Per- connection QoS	Per- connection flow	Soft or hard after flow admitted	Packet mark, scheduling policing	high	Little to none

Providing multiple classes of services

- thus far: making the best of best effort service
 - one-size fits all service model
- alternative: multiple classes of service
 - partition traffic Ants Elegisteent Project Exam Help
 - network treats differ analogy: VIP service versus regular servihttps://eduassistpro.github.io/

y granularity: differentiald WeChat edu_assist_pro service among multiple

classes, not among

individual connections

How: ToS bits

Multiple classes of services: scenarios

Scenario 1: mixed HTTP and VoIP

- example: 1Mbps VoIP (Video and Voice), HTTP share 1.5 Mbps link.
 - HTTP bursts can congest router, cause video/audio loss
 - want to give priority to audio over HTTP

Principle 1

packet marking needed for router to distinguish between different classes; and new router policy to treat packets accordingly

Principles for QOS guarantees

- what if applications misbehave (VoIP sends higher than declared rate)
 - policing: force source adherence to bandwidth allocations
- marking, policing

Assignment Project Exam Help

Principle 2 provide protection for one class from others

Principles for QOS guarantees (con't)

 allocating fixed (non-sharable) bandwidth to flow: inefficient use of bandwidth if flows doesn't use its allocation

Principle 3

 while providing protection, it is desirable to use resources as efficiently as possible

Scheduling and policing mechanisms

- scheduling: choose next packet to send on link
- FIFO (first in first out) scheduling: send in order of arrival to queue
 - real-world example?
 - discard policy. A saignment Brojectue: who discard?
 - tail drop: drop. https://eduassistpro.github.io/
 - priority: drop/
 - random: drop/rendoWerGhatedu_assist_pro

high priority queue

priority scheduling: send highest priority queued packet

non-preemptive

Assignment Project Exam

multiple classes, w https://eduassistpro.githqub.jio/ priorities

 class may depend on marking or other header info, A.G. IP source/dest, port numbers, etc.

real world example?

Round Robin (RR) scheduling:

- multiple classes, with equal priority
- ocyclically scan class queues, sending one complete packet from each class (if axailable) ment Project Exam Help

https://eduassistpro.github.io/
arrivals

packet in service
1 3 2 4 5
departures
1 3 3 4 5

Weighted Fair Queuing (WFQ):

- generalized Round Robin
- each class gets weighted amount of service in each cycle
 Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Weighted Fair Queuing (WFQ):

- Each class i is assigned a weight w_i
- Guarantee: if there are class i packets to send (during some interval) then class i receives a fraction of service which is $w_i/(\Sigma w_i)$ Assignment Project Exam Help
- on a link with transmis ghput $Rw_i/(\sum w_j)$ https://eduassistpro.github.io/
- WFQ is part of route

Add WeChat edu_assist_pro

1

Example:

One link has capacity 1 Mbps. Three flows: Flow 1 is ensured with 0.5 Mbps data rate; Flow 2 is ensured with 0.25 Mbps, Flow 3 is ensured with 0.25 Mbps.

Weighted queu https://eduassistpro.github.io/

Efficiency: Add WeChat edu_assist_pro

When flow 3 has nothing to transmit, but flow 1 and flow 2 have many packets to send

Flow 1: 2/3 Mbps

Flow 2: 1/3 Mbps

Assignment Project Form Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Policing mechanisms

- goal: to limit traffic to not exceed declared parameters (the rate at which a class or flow is allowed to inject packets into the network)
- Three important policing criteria (differing on the time scale):
 - 1. (long term) Assing a mento Projectkt sante sed per unit of time (in the long run)
 - e.g., 6000 packe https://eduassistpro.github.io/
 - 2. peak rate: limit the number of paredu_assist pro relatively shorter period of time, e. per minute (ppm) in average but 3000 packets per 5 second peak rate max.
 - 3. (max.) burst size: max number of pkts sent "instantaneously" into the networks, e.g., 1500 packets.

Policing mechanisms: implementation

token bucket: limit input to specified burst size and average rate (useful to police the flow)

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- bucket can hold b tokens
- a packet must remove a token from bucket to be transmitted into the network
- tokens generated at rate r token/sec unless bucket full (token ignored)
- over interval of length t: number of packets admitted less than or equal to (rt + b)
- Token-generation rate r limits the rate at which packets enter the network t->0, b packets $t->\infty$, (rt+b)/t=r packets/second

Policing and QoS guarantees

Combining token bucket and WFQ to provide guaranteed upper bound on delay, i.e., QoS guarantee!

Packets arrive while the bucket is full (b₁). The last packet has a maximum delay of D_{max}. L packet size.

Differentiated services in reality

- want "qualitative" service classes
 - relative service distinction: Platinum (VIP), Gold, Silver
- > scalability: simple sugations in Remionate by anti-lety complex functions at edge ro

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

edge router:

- per-flow traffic management
- marks packets assignment Project Exam Help
 - › E.g. Alice' traffic: hihttps://eduassistpro.github.io/
 - › Bob's traffic: high
 - Chris's traffic: low

Add WeChat edu_assist

core router:

- per class traffic management
- buffering and scheduling based on marking at edge
- Red packets vs green packets

Edge-router packet marking

- profile: pre-negotiated rate r, burst (bucket) size b
- packet marking at edge based on per-flow profile

Example:

- class-based marking: packets of different classes marked differently
- intra-class marking: conforming portion of flow marked differently compared with non-conforming one
 - Bob agrees to transmit at 1Mbps, but he is transmitting at 2Mbps
 - Half of them (conforming) are marked green.
 - > Others (non-conforming) are marked red (lower priority) or dropped.

Example

- yellow >red .
 - > 2Mbps linassignmento regimet, became Habps
 - https://eduassistpro.github.io/
 - Chris, web br
 - Add WeChat edu_assist_pro
 - Priority queue in the core network
- Bob can guarantee 1Mbps data rate
- If Bob transmits >1Mbps
 - If Chris transmits at 1Mbps, all red will be dropped. Bob gets 1Mbps
 - If Chris transmits at <1Mbps, some red will still get through.</p>

Classification, conditioning

- user declares traffic profile (e.g., rate, burst size)
- traffic metered, shaped if non-conforming

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

the meter compares the incoming flow to the negociated traffic profile. Network administrator can decide whether to remark, forward, delay, or drop a non- conforming packet

Per-connection QoS guarantees

 basic fact of life: cannot support traffic demands beyond link capacity

Principle 4

call admission: flow declares its needs, network may block call (e.g., busy signal) if it cannot meet needs

Wirelesisnand misblikem tetworks

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Characteristics of selected wireless links

IEEE 802.11 WiFi

IEEE 802.11 standard	Year	Max data rate	Range	Frequency
802.11b	1999	11 Mbps	30m	2.4 Ghz
802.11a	1999	54 Mbps Language E	30m	5 Ghz
802.11g		54 Mbps Ct E	30mm F1	2.4 Ghz
802.11n (WiFi 4)	https://	/eduassist	pro.gith	2,4, 5 Ghz ub.io /
802.11ac (WiFi 5)				5 Ghz
802.11ax (WiFi 6)	2020 (exp.)	VeChat edu	ı_assis ^ı	<mark>2.</mark> 4, 5 Ghz
802.11af	2014	35 – 560 Mbps	1 Km	unused TV bands (54-790 MHz)
802.11ah	2017	347Mbps	1 Km	900 Mhz

all use CSMA/CA for multiple access, and have base-station and adhoc network versions

Elements of a wireless network

infrastructure mode-

base station connects mobiles into

Assignment Project Exampt Melp

handoff: mobile changes base

roviding connection into info https://eduassistpro.giwbrub.io/

Add WeChateou assist pro

Elements of a wireless network

Wireless network taxonomy

	single hop	multiple hops
infrastructure (e.g., APs)	ssignment Project station (WiFi, cellular) w lahttps://eduassis	to connect to larger
no infrastructure	no hade stellon (ninat econnection to larger Internet (Bluetooth, ad hoc nets)	U_assistation po connection nternet. May have to relay to reach other a given wireless node MANET, VANET

Wireless in Rrothstracteristics

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Wireless Link Characteristics (I)

important differences from wired link

- decreased signal strength: radio signal attenuates as it propagates through matter (pathelps) Help
- interference fro network frequ https://eduassistpro.githadbip/other devices (e.g., p
- multipath propagation: radio si ground, arriving at destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

dB decibel

Iogarithmic unit used to express the ratio of two (power) values

```
10*\log_{10} (P_S/P_N)
```

$$P_{S}/P_{N}=10$$
 10 dB

) ...

Wireless Link Characteristics (2)

- > SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
 - BER: bit error signment Project Exam Help
- SNR versus BER tr https://eduassistpro.github.io/
 - given physical layer modulation:
 increase power -> increase Section Chat edu assist
 decrease BER
 - Different physical layer modulation:

Quadrature amplitude modulation Binary Phase-shift keying Higher data rate -> Higher BER

...... QAM256 (8 Mbps)

— — • QAM16 (4 Mbps)

BPSK (1 Mbps)

Wireless Link Characteristics (2)

- > SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
 - BER: bit error saignment Project Exam
- > SNR versus BER tr https://eduassistpro.github.i
 - given SNR, BER requirement: choose modulation to achieve high extechat edu assist throughput
 - 15 dB, require 10⁻³ BER
 - Which modulation?
 - QAMI6

– - QAM16 (4 Mbps)

BPSK (1 Mbps)

Wireless network characteristics (3)

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B,A hear each other
- B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

Signal attenuation:

- B,A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

Assignment Project/Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Code Division Multiple Access (CDMA)

- unique "code" (chipping sequence) assigned to each user;
- all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
 - length of sequence: M
 - allows multiple westerness that the state of the state
 - orthogonal: https://eduassistpro.github.io/
 - inner product of $c_{i,1}$ $c_{i,2}$ $c_{i,M}$ and $c_{i,1}$ $c_{i,M}$ $c_{i,$
 - inner product(user i's chipping sequence, user i's chipping sequence) = M
- encoded signal = (original data) X (chipping sequence)
- decoding: inner-product of encoded signal and chipping sequence

CDMA encode/decode

User i receives user i's signals

uses its chipping sequence to send and to receive: receive the correct bits

User 2 receives user I's signals

Use 1's chipping sequence to send and use 2's chipping sequence to receive: receive nothing!

Reason: I's chipping sequence is orthogonal to 2's chipping sequence.

CDMA: two-sender interference

channel sums together transmissions by sender 1 and 2

Sender I

Assignment Project Exam Help

Sender 2

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

using same code as sender 1, receiver recovers sender 1's original data from summed channel data!