2013-2014-第一学期 工科数学分析期中试题解答(2013.11)

$$-1. \quad [2f(a^x) \cdot f'(a^x)a^x \ln a + \frac{g'(x)}{\sqrt{1 - g^2(x)}}]dx$$

- 2. 12 4
- 3. $-2^{n-1}\cos(2x+\frac{n\pi}{2})$
- 4. $\frac{5}{4\pi}$ m/min
- 5. -1 $\frac{2}{3}$

$$\frac{dy}{dx} = \frac{\frac{1}{\sqrt{t^2 + 1}}}{\frac{1}{1 + t^2}} = \sqrt{1 + t^2} \qquad(4 \, \%)$$

$$\frac{d^2y}{dx^2} = \frac{\frac{t}{\sqrt{1+t^2}}}{\frac{1}{1+t^2}} = t\sqrt{1+t^2}$$
 (8 $\%$)

三.
$$\lim_{x \to \infty} \left(\frac{1}{x} + 2^{\frac{1}{x}}\right)^{x} = \lim_{x \to \infty} \left[\left(1 + \left(\frac{1}{x} + 2^{\frac{1}{x}} - 1\right)\right)^{\frac{1}{1 + 2^{\frac{1}{x}} - 1}} \right]^{\frac{1}{1 + 2^{\frac{1}{x}} - 1} - 1}$$

$$= e^{\lim_{x \to \infty} \left(\frac{1}{x} + 2^{\frac{1}{x}} - 1\right)x}$$

$$= e^{\lim_{x \to \infty} \left(\frac{1}{x} + 2^{\frac{1}{x}} - 1\right)x}$$

$$= e^{\lim_{x \to \infty} \left(\frac{1}{x} - 1\right)x}$$

х	(-∞,-√3)	-√ 3	(-√3,-1)	-1	(-1,0)	0	(0,1)	1	(1, √3)	√ 3 ((√3,+∞)
y'	+	0	_		1	0	_		1	0	+
y"	_		-		+	0	_		+		+
у		极大值 - 3√3 2		间断		拐点 (0,0)	\	间断		极小值 <u>3√3</u> 2	

.....(11 分)

十一. $\Leftrightarrow F(x) = x^2 f(x)$ (2 分)

则F(x)在[a,b]上连续,在(a,b)内可导,

根据零值定理,存在 $c \in (1,2)$,使F(c) = 0(5分)

又 F(0) = 0 根据罗尔定理, $\exists \xi \in (0,c) \subset (0,2)$ 使 $F'(\xi) = 0$

$$f'(\xi) = -\frac{2f(\xi)}{\xi}$$
.(8 $\%$)