

UV Traitement du signal

Cours 5

Filtrage analogique

ASI3

Contenu du cours

- Introduction
 - Notion de filtrage
 - Filtrages temporel et fréquentiel
- Filtres élémentaires idéaux
- Filtres physiquement réalisables
- Filtres réalisables classiques
 - Synthèse de filtres passe-bas
 - Filtres de Butterworth
 - Filtres de Tchebytchev
 - Filtres de Cauer
 - Obtention des autres filtres par transformation
- Méthodologie de synthèse des filtres
- Exemple

Introduction

Notion de filtrage

Filtrer = arrêter, complètement ou non, empêcher ou gêner le passage de quelque chose.

- = changement ou annulation des amplitudes d'un signal.
- En général, un système est un filtre

- But:
- Sélectionner des parties du signal contenant une information pertinente
- ◆Éliminer du bruit
- Adoucir un signal, éliminer des valeurs aberrantes
- Séparer plusieurs composantes d'un signal
- etc.

Applications

- Réglage de tonalité dans les appareils audio : equalizer
- Suspension des véhicules : filtre mécanique amortissant les chocs (voir applet)
- Protection sismique : filtrage des ondes provenant de la rotation de la terre
- Acoustique : séparation des graves et des aigus dans les enceintes
- Téléphonie mobile,
- Compression de données : mp3
- karaoké
- Imagerie médicale, ...

exemple de filtrage sur un fichier son

exemple de filtrage sur un fichier image

Application d'un filtre pour la détection de contours (filtre de laplace sous gimp)

Problématique

- Objectif du filtre : sélection de composantes particulières
- Caractérisation du filtre : capacité à transmettre certaines fréquences ou certaines parties du signal
- Difficultés :
 - Détermination de h(t) ou H(f)
 - Réaliser le filtre à partir de h(t) ou H(f)

Module
$$|H(f)|$$
 — Gain en décibel (dB) : $G(f) = 20\log|H(f)|$

Argument $\phi(f) = \arg(H(f))$

Filtrage temporel / fréquentiel

Filtrage temporel / fréquentiel

- ◆ Filtrage temporel : atténuation ou interruption du signal au cours du temps
 - Changement / annulation des amplitudes d'un signal
 - Sélection d'une portion du signal
 - Lissage du signal

$$y(t) = h(t) \times x(t)$$
$$Y(f) = H(f) * X(f)$$

Multiplication temporelle Convolution fréquentielle

- ◆ Filtrage fréquentiel : sélection ou atténuation de certaines fréquences
 - Sélection de certaines composantes fréquentielles du signal
 - Blocage des impulsions transitoires

$$y(t) = h(t) * x(t)$$
$$Y(f) = H(f) \times X(f)$$

Convolution temporelle Multiplication fréquentielle

Filtres élémentaires

Filtre passe-bas

- Sélection des fréquences basses
- lacktriangle Élimination des fréquences supérieures à f_c (fréquence de coupure)
- ♦ Bande passante $BP = [0, f_c]$

Remarque

La bande passante d'un filtre est l'intervalle de fréquence dans lequel son gain G(f) est supérieur à un gain de référence (par exemple -3dB)

La bande passante à –3dB est
$$\left\{ f: 20\log \frac{|H(f)|}{\max(|H(f)|)} \ge -3 \right\}$$

Filtres élémentaires

Filtre passe-haut

- lacktriangle Transmission des fréquences supérieures à f_c
- lacktriangle Élimination des fréquences inférieures à f_c
- ♦ Bande passante $BP = [f_c, \infty[$

Filtre passe-bande

- Transmission des fréquences appartenant à un intervalle donné
- ◆ Bande passante $BP = \begin{bmatrix} f_{c_1}, & f_{c_2} \end{bmatrix}$

Filtre coupe-bande

- Transmission des fréquences hors d'une bande déterminée
- ◆ Bande passante $BP = \begin{bmatrix} 0, & f_{c_1} \end{bmatrix} \cup \begin{bmatrix} f_{c_2}, & \infty \end{bmatrix}$

Filtre physiquement réalisable

La sortie ne se produit pas avant l'entrée

Un filtre est physiquement réalisable s'il est stable et causal

Revient à son état initial après excitation

Soit le filtre passe-bas idéal

réponse impulsionnelle du filtre

Donc pour un Dirac en 0, la réponse impulsionnelle h(t) va de – à + l'infini, elle commence donc avant la cause ! Le système est NON CAUSAL.

- → Ce filtre n'est <u>pas physiquement réalisable</u>
- → Nécessité de trouver une approximation du filtre idéal

Caractérisation des filtres

- Discontinuités / dérivées infinies en fréquence -> réponse impulsionnelle non causale = non physiquement réalisable => Approximation du filtre idéal
- Les Filtres réels sont définis par un gabarit spécifiant :
 - Une zone dans laquelle doit passer sa courbe fréquentielle
 - La bande passante et la bande atténuée (ou rejetée)
 - ◆ Les ondulations maximales admissibles dans la bande passante a et l'atténuation minimale dans la bande rejetée b

Filtre de Butterworth :

n : ordre du filtre

$$|H(f)|^2 = \frac{1}{1 + (2\pi f)^{2n}}$$

Passe bas pour $f' = f/f_c$

- Propriétés
 - Conçu pour avoir une réponse aussi plate que possible dans la bande passante
 - Pour tout n, l'Atténuation asymptotique est de -20n dB/décade à partir de Fc = 1

Réalisation:

- Quel ordre choisir ?
- Détermination de H(f) ?
- Réaliser le filtre à partir de H(f) ?

- Filtre de Butterworth : réalisation
 - Problème N°1: déterminer l'ordre du filtre
 - On trouve l'ordre du filtre en fonction de l'atténuation b que l'on désire

■ Détermination de *n* en fonction de *b* : atténuation minimale en bande rejetée

$$G(f_s) = 20\log|H(f_s)| \le b \longrightarrow 20\log\frac{1}{\sqrt{1 + \left(\frac{f_s}{f_c}\right)^{2n}}} \le b \longrightarrow n \ge \frac{\log\left(10^{-\frac{b}{10}} - 1\right)}{2\log\left(\frac{f_s}{f_c}\right)}$$
 n: entier

- Filtre de Butterworth : réalisation
 - Problème N° 2 : déterminer la fonction de transfert

A partir de l'ordre du filtre, les tables nous donnent le polynôme H(s) :

```
\begin{array}{l} \textbf{n} & \textbf{B}_{\textbf{n}}(\textbf{s}) \\ 1 \text{ s+1} \\ 2 \text{ s}^2 + 1,414\text{ s+1} \\ 3 \text{ (s+1)(s}^2 + \text{s+1)} \\ 4 \text{ (s}^2 + 0,7654\text{ s+1)(s}^2 + 1,8478\text{ s+1)} \\ 5 \text{ (s+1)(s}^2 + 0,6180\text{ s+1)(s}^2 + 1,6180\text{ s+1)} \\ 6 \text{ (s}^2 + 0,5176\text{ s+1)(s}^2 + 1,414\text{ s+1)(s}^2 + 1,9318\text{ s+1)} \\ 7 \text{ (s+1)(s}^2 + 0,4450\text{ s+1)(s}^2 + 1,247\text{ s+1)(s}^2 + 1,8022\text{ s+1)} \\ 8 \text{ (s}^2 + 0,3986\text{ s+1)(s}^2 + 1,111\text{ s+1)(s}^2 + 1,6630\text{ s+1)(s}^2 + 1,9622\text{ s+1)} \end{array}
```

Avec
$$H(s) = 1/B_n(s)$$

Filtre de Butterworth : réalisation

Problème N° 3 : réalisation pratique du filtre :

Par exemple, implémentation électronique avec un montage passif grâce à

la méthode de Cauer:

Le kième élément du circuit est donné par :

$$C_k = 2\sin\left[\frac{(2k-1)}{2n}\pi\right](k impair)$$

$$L_k = 2\sin\left[\frac{(2k-1)}{2n}\pi\right](k \ pair)$$

Filtres de Tchebychev de type I

$$|H(f)|^2 = \frac{1}{1 + \epsilon^2 T_n^2 (2\pi f)}$$

Filtre qui minimise les oscillations dans la bande atténuée

Filtres de Tchebychev de type II

$$|H(f)|^2 = \frac{\frac{\epsilon}{1-\epsilon} T_n^2 (\frac{1}{2\pi f})}{1+\frac{\epsilon}{1-\epsilon} T_n^2 (\frac{1}{2\pi f})}$$

Filtre qui minimise les oscillations dans la bande passante

> Avec T_n: polynômes de Tchebytchev

$$T_n(x) = \begin{cases} \cos(n\cos^{-1}(x)) & \text{si } x < 1 \\ \cosh(n\cosh^{-1}(x)) & \text{si } x > 1 \end{cases}$$

■ $T_n(1) = 1 \ \forall \ n$ plus d'ondulations pour x > 1

Filtres de Tchebychev

- Propriétés des filtres de Tchebytchev I
 - Ondulation dans la bande passante réglée par ε
 - Pas d'ondulation en bande rejetée
 - Raideur de coupure importante
 - Meilleure atténuation que butterworth

- Ondulation dans la bande rejetée réglée par «
- Pas d'ondulation en bande passante

Comme pour Butterworth, on détermine l'ordre, ε et H(s) à partir du gabarit et de tables

- Filtres de Tchebychev de type I : réglage des paramètres
 - Problème : déterminer n, ε et la FT H(s) à partir du gabarit

$$n \ge \frac{\cosh^{-1}\sqrt{\frac{\left(10^{-0.1b}-1\right)}{\varepsilon^2}}}{\cosh^{-1}\left(\frac{f_s}{f_c}\right)}$$

$$\varepsilon = \sqrt{10^{-\frac{a}{10}}-1}$$

A partir de n et \mathcal{E} , on déduit H(s) en utilisant les tables :

	n	g ₁	g ₂	g ₃	g ₄	gs.	g ₆	g ₇	g₃	g ₉	g ₁₀	g ₁₁
Ondulation 0,5 dB	1	0,6986	1									
	2	1,4029	0,7071	1,9841		4.5						
	3	1,5963	1,0967	1,5963	1							
	4	1,6703	1,1926	2,3661	0,8419	1,9841		0				
	5	1,7058	1,2296	2,5408	1,2296	1,7058	1					
	6	1,7254	1,2479	2,6064	1,3137	2,4758	0,8696	1,9841	la la			
	7	1,7372	1,2583	2,6381	1,3444	2,6381	1,2583	1,7372	1			
	8	1,7451	1,2647	2,6564	1,359	2,6964	1,3389	2,5093	0,8796	1,9841		k.
	9	1,7504	1,269	2,6678	1,3673	2,7239	1,3673	2,6678	1,269	1,7504	1	
	10	1,7543	1,2721	2,6754	1;3725	2,7392	1,3806	2,7231	1,3485	2,5239	0,8842	1,9841
Ondulation 1,0 dB	1	1,0177	1			100		0				
	2	1,8219	0,685	2,6599								
	3	2,0236	0,9941	2,0236	1							
	4	2,0991	1,0644	2,8311	0,7892	2,6599						
	5	2,1349	1,0911	3,0009	1,0911	2,1349	1					
	6	2,1546	1,1041	3,0634	1,1518	2,9367	0,8101	2,6599				
	7	2,1664	1,1116	3,0934	1,1736	3,0934	1,1116	2,1664	1		1	
	8	2,1744	1,1161	3,1107	1,1839	3,1488	1,1696	2,9685	0,8175	2,6599		
	9	2,1797	1,1192	3,1215	1,1897	3,1747	1,1897	3,1215	1,1192	2,1797	1	
	10	2,1836	1,1213	3,1286	1,1933	3,189	1,199	3,1738	1,1763	2,9824	0,821	2,6599

Filtres de Cauer ou filtres elliptiques

$$\left|H(f)\right|^2 = \frac{1}{1+\varepsilon^2 R_n^2 (2\pi f)}$$

- Optimaux en terme de bande de transition
- Ondulations en bande passante et atténuée

Finalement, on choisit son filtre en fonction des besoins : ondulations, raideur

Transformation de filtres

Les définitions précédentes correspondent à des filtres génériques. Le filtre voulu s'obtient par changement de variables, en introduisant la fréquence de coupure :

Changement de variables	□ Filtre associé				
$f' \leftrightarrow \frac{f}{f_o}$	• passe-bas $f_c = f_o$				
$f' \leftrightarrow \frac{f_o}{f}$	• passe-haut $f_c = f_o$				
$f' \leftrightarrow \frac{f_o}{B} \cdot \frac{\left(\frac{f}{f_o}\right)^2 + 1}{\frac{f}{f_o}}$	• passe bande $f_o = \sqrt{f_1 f_2}$ $B = f_2 - f_1$				
$f' \leftrightarrow \frac{B}{f_o} \cdot \frac{\frac{f}{f_o}}{\left(\frac{f}{f_o}\right)^2 + 1}$	$f_o = \sqrt{f_1 f_2}$ • coupe-bande $B = f_2 - f_1$				

Exemples de transformation

Soit le filtre suivant : H(f) passe-bas

Butterworth 2^{ème} ordre
$$H(f) = \frac{1}{1 + \sqrt{2} 2\pi f + 4\pi^2 f^2}$$

Filtre passe haut équivalent

Changement de variable $f' \leftrightarrow \frac{f_o}{f}$

$$H(f') = \frac{1}{1 + \sqrt{2} 2\pi \frac{f_o}{f'} + 4\pi^2 \left(\frac{f_o}{f'}\right)^2} \longrightarrow H(f) = \frac{f^2}{f^2 + \sqrt{2} 2\pi f_o f + 4\pi^2 f_o^2}$$

- ◆ Réalisation effective des filtres :
 - Electronique (montage RLC) : filtres passifs (bon marché, délicat en basses fréquences)
 - Electronique (montage avec amplificateurs opérationnels) : filtres actifs
 - Mécanique (ressort amortisseur)

Exemple de filtrage

Soit un signal x(t) est un signal physiologique (ECG) et un bruit b(t) superposé

Problème : élimination du bruit pour améliorer la détection de pathologies cardiaques

$$x_b(t) = x(t) + b(t)$$

Objectif : retrouver x(t) à partir de $x_b(t)$

Elimination du signal perturbateur → filtrage du bruit.

□ Analyse du spectre de $x_b(t)$:

Spectre et gabarit proposés :

Spectre du signalButterworth 10Butterworth 2

Exemple de filtrage

Filtre passe-bas électronique du 2e ordre :

Butterworth: table + transformation

Réalisation pratique

$$H(f) = \frac{H_o}{\left(j\frac{f}{f_o}\right)^2 + \frac{1}{Q} \cdot j\frac{f}{f_o} + 1} \qquad Q = \frac{1}{3}\sqrt{\frac{C_1}{C_2}}$$

$$H_o = 1 \qquad f_o = \frac{1}{2\pi R\sqrt{C_1C_2}}$$

On a : $f_o = 35 \text{ Hz}$ $Q = \sqrt{2}$

$$R$$
=1071 Ω C_1 =18 μF C_2 =1 μF

Exemple de filtrage

Résultats

Filtrage avec Butterworth 2

Suppression du bruit hautes fréquences.

Amélioration des performances

- augmentation de l'ordre,
- diminution de la f_c ,
- changement de filtre

■ Filtrage avec Butterworth 10

Atténuation plus importante

Différence faible car composantes fréquentielles d'amplitude peu élevée

A savoir: tout:)

- Toutes les définitions : classification des signaux, etc.
- Connaître les signaux usuels : échelon/sin/cos/porte/expo/dirac/ ...
- Energie et puissance, corrélation, distribution
- Notion de fréquence, savoir calculer la DSF et la TF d'un signal + TF inverse
- Connaître leur propriétés : dualité, etc.
- Systèmes :
 - Convolution
 - Notion de réponse impulsionnelle
 - ◆ Transformée de Laplace + propriétés, TL inverse
 - Plancherel
 - ◆ Fonction de transfert d'un système : pôles/zéros
- Filtrage :
 - Définition, notion de bande passante
 - Filtre usuels : butterworth, Tchebychev, Cauer