HOMEWORK PROBLEMS 01, ANLY 561, FALL 2018 DUE 09/14/18

Readings: Lecture 01 Notes; Begin reading Goodfellow and Bengio, Chapter 2; and Chapter 2 from https://jakevdp.github.io/PythonDataScienceHandbook/

Exercises:

- 1. Use what we know from lecture to show that the functions defined in parts (a) through (g) are all convex.
 - (a) f(x) = |x|
 - (b) $f(x) = x^2$
 - (c) $f(x) = x^3 x$ on the interval [0, 1]
 - (d) $f(x) = |x \mu|$ for fixed $\mu \in \mathbb{R}$
 - (e) $f(x) = \frac{1}{2\sigma^2}(x-\mu)^2$ for fixed $\mu \in \mathbb{R}$ and $\sigma > 0$
 - (f) $f(x) = \sum_{i=1}^{n} |x_i x|$ where $x_1, \dots, x_n \in \mathbb{R}$ are fixed values
 - (g) $f(x) = \frac{1}{2\sigma^2}(x-\mu)^2 + \lambda |x|$ for fixed values $\mu \in \mathbb{R}$, $\sigma > 0$, and $\lambda > 0$.
- 2. For each of the functions in Exercise 1, find the minimum value and a minimizing solution (and as a function of the fixed parameters μ , σ , x_i , and λ for parts 1(d) through 1(f).
- 3. We say that $f: I \to \mathbb{R}$ (where I is any subinterval of \mathbb{R}) is a Lipschitz function if there is a fixed constant C > 0 such that

$$|f(x) - f(y)| \le C|x - y|$$
 for all $x, y \in I$.

If C is the minimal constant satisfying this set of inequalities, we say that C is the Lipschitz constant of f. One of the main tools for verifying the Lipschitz condition and finding the Lipschitz constant is the following fact:

Fact: If $f: I \to \mathbb{R}$ is continuous and piecewise differentiable on I (that is, it is differentiable except possibly at a finite set of points in I), and the program

$$\max_{x \in I} |f'(x)|$$
 subject to $f'(x)$ existing,

has maximum value $C < \infty$, then f is Lipschitz with Lipschitz constant C. On the other hand, if |f'(x)| is unbounded above on I where it is defined, then f is not Lipschitz on I.

For each of the functions in Exercise 1, use the above fact to determine if the function is Lipschitz on $I = \mathbb{R}$ (or Lipschitz on I = [0, 1] for part 1(c)). If it is, what is the Lipschitz constant?

As an aside, if f is a Lipschitz function and we have a point x that is close the a minimum (that is, $|x^* - x|$, is small where x^* is the solution), then f(x) is also close to the minimum value of the function on the domain of optimization, $f(x^*)$. This is why Lipschitz functions are important in the theory of optimization.