Estatística Básica e Introdução ao R

Profa. Dra. Natalia Giordani

4.3 Regressão Logística

- Tipo de variável resposta
 - Binária (duas possíveis repostas: sim/não; sucesso/falha)
- Objetivo
 - Modelar a resposta esperada, nesse caso uma probabilidade, como função das variáveis explicativas
- Exemplos de aplicação
 - Avaliação de fatores associados ao cancelamento de plano/desenvolvimento de uma doença
 - Previsão de churn de um cliente /colaborador
 - Análise de crédito (inadimplente)

4.3 Regressão Logística

Detalhes teóricos

•
$$logit(p) = log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

$$p = P(Y = 1 | X = x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n)}}$$

- Parâmetros do modelo obtidos pelo método da máxima verossimilhança
- O que interpretamos: razão de chances $\exp(\beta)$
 - $\exp(\beta) > 1$: fator de risco, ou seja, aumenta a chance do evento ocorrer
 - $\exp(\beta) < 1$: fator de proteção, ou seja, reduz a chance do evento ocorrer
 - $\exp(\beta) = 1$: não afeta a chance do evento ocorrer

4.3 Regressão Logística

- Avaliação do ajuste do modelo
 - 1. Estatística da medida geral de ajuste do modelo Teste de Hosmer & Lemeshow
 - H₀: o modelo tem um bom ajuste aos dados
 - 2. Avaliação das medidas de influência
 - Distância de Cook
 - 3. Avaliação dos resíduos
 - Resíduos de Pearson
 - Diferença entre os valores observados e os preditos sobre o desvio padrão dos valores preditos
 - Resíduos da Deviance
 - Diferença entre os valores observados e os preditos considerando o log-verossimilhança do modelo

Vamos praticar!

- Objetivo: identificar fatores de risco para baixo peso da criança
 - Dados: birthwt
- Conceitos a desenvolver/discutir
 - Ajuste modelo
 - Avaliação ajuste
 - Interpretação

Referências

 Morretin, PA; Singer JDM. Estatística e Ciência de Dados. Rio de Janeiro: LTC Editora, 2022.

Hosmer, DW; Lemeshow, S. Applied Logistic Regression. New York: John Wiley & sons, 2000.

