

Linguagens Formais e Autômatos (LFA)

Aula de 02/10/2013

Máquinas de Moore e Mealy Implementação e exercícios

Recapitulando a aula anterior

- Transdutores finitos são extensões de AFDs que, a partir da leitura dos símbolos da cadeia de entrada, formada por símbolos do alfabeto Σ , gravam símbolos na cadeia de saída, pertencentes ao alfabeto Δ
- Máquina de Moore: função de transdução definida sobre os estados do autômato (λ : Q $\rightarrow \Delta$ *)
- Máquina de Mealy: função de transdução definida sobre as transições do autômato (λ : Q \times Σ \to Δ *)

Conteúdo da aula 16

- Visão geral da implementação das máquinas de Moore e Mealy em Ruby
- Exercícios sobre transdutores finitos, extraídos do livro-texto (Ramos, 2009 cap. 3)

Revisão da arquitetura de implementação do livro

Implementação de transdutores - visão detalhada

Novas classes

- Transdutor
- Máquina de Moore
 - Moore
 - AutomatoMoore
 - MovimentacaoMoore
- Máquina de Mealy:
 - Mealy
 - AutomatoMealy
 - MovimentacaoMealy

Classe Transdutor (moore/Transdutor.rb)

```
class Transdutor < ReconhecedorDeterministico
    attr_accessor :lambda
    def instanciarEstruturaEspecifica()
        @lambda = {}
    end
    def adicionarLambda( traducao )
        @lambda.update( traducao )
    end
    def traduzir()
        analisar()
    end
end
```


Classe Moore (moore/Moore.rb)

```
class Moore < Transdutor
   def instanciarAutomato( estadoInicial, estadosFinais )
      @automato = AutomatoMoore.new( estadoInicial, estadosFinais )
      @automato.criarVinculo( self )
      @resultado = ''
end

def traduzirEstado()
      print( @lambda[ @automato.consulta.estadoCorrente?() ] )
   end
end</pre>
```


Classe AutomatoMoore (moore/AutomatoMoore.rb)

```
class AutomatoMoore < AutomatoDeterministico
  attr_accessor :moore

def criarVinculo( moore )
    @moore = moore
  end

def instanciarMovimentacao()
    @movimentacao = MovimentacaoMoore.new( self )
  end
end</pre>
```


Classe MovimentacaoMoore (moore/servico/MovimentacaoMoore.rb)

```
class MovimentacaoMoore < MovimentacaoDeterministica
  def mover( estadosSeguintes )
     @automato.moore.traduzirEstado()
     super( estadosSeguintes )
  end
end</pre>
```


Classe Mealy (mealy/Mealy.rb)

Classe AutomatoMealy (mealy/AutomatoMealy.rb)

```
class AutomatoMealy < AutomatoDeterministico
  attr_accessor :mealy

def criarVinculo( mealy )
    @mealy = mealy
  end

def instanciarMovimentacao()
    @movimentacao = MovimentacaoMealy.new( self )
  end
end</pre>
```


Classe MovimentacaoMealy (mealy/servico/MovimentacaoMealy.rb)

```
class MovimentacaoMealy < MovimentacaoDeterministica
  def mover( estadosSeguintes )
     @automato.mealy.traduzirTransicao()
     super( estadosSeguintes )
  end
end</pre>
```


Arquivos de teste

• moore/CasoUso.rb

• mealy/CasoUso.rb

Exercícios sobre transdutores finitos

- A seguir, alguns exercícios sobre o tema selecionados do livro-texto
- · Os exercícios podem ser feitos em dupla
- As soluções serão discutidas na sequência

Ex. 108 (Ramos p.288)

A expressão regular (a+b)* representa uma linguagem cujas sentenças são sequências arbitrárias de um ou mais símbolos a terminadas por um símbolo b. São exemplos de sentenças dessa linguagem: ϵ , ab, aaababaab e aaaab. Defina formalmente um transdutor finito que aceite essa linguagem como entrada e gere na saída cadeias sobre $\{-,0,+\}$, da seguinte forma:

- Para cada subcadeia $\alpha \in a$ +, se $|\alpha|$ =1 então o símbolo '-' é emitido na saída;
- Se $|\alpha|$ =2, o símbolo '0' é emitido na saída;
- Se $|\alpha| \ge 3$, o símbolo '+' é emitido na saída.
- Exemplos:
 - ϵ produz ϵ
 - *ab* produz –
 - *aaababaab* produz +-0

Ex. 108 - solução 1 (Mealy)

T =
$$(Q, \Sigma, \Delta, \delta, \lambda, q0, F)$$

Q = $\{q0,q1,q2,q3\}$
 $\Sigma = \{a,b\}$
 $\Delta = \{-,0,+\}$
 $\delta = \{(q0,a) \rightarrow q1, (q1,a) \rightarrow q2, (q1,b) \rightarrow q0, (q2,a) \rightarrow q3, (q2,b) \rightarrow q0, (q3,a) \rightarrow q3, (q3,b) \rightarrow q0\}$
 $\lambda = \{(q0,a) \rightarrow \varepsilon, (q1,a) \rightarrow \varepsilon, (q1,b) \rightarrow -, (q2,a) \rightarrow \varepsilon, (q2,b) \rightarrow 0, (q3,a) \rightarrow \varepsilon, (q3,b) \rightarrow +\}$
F = $\{q0\}$

Ex. 108 - solução 2 (Moore)

T = (Q, Σ, Δ, δ, λ, q0, F)
Q = {q0,q1,q2,q3,q4,q5,q6}
Σ = {a,b}
Δ = {-,0,+}
δ={(q0,a)
$$\rightarrow$$
q1, (q1,a) \rightarrow q3,
(q1,b) \rightarrow q2, (q2,a) \rightarrow q1,
(q3,a) \rightarrow q5, (q3,b) \rightarrow q4,
(q4,a) \rightarrow q1, (q5,a) \rightarrow q5,
(q5,b) \rightarrow q6, (q6,a) \rightarrow q1}
λ={ q0 \rightarrow ε, q1 \rightarrow ε, q2 \rightarrow -, q3 \rightarrow ε,
q4 \rightarrow 0, q5 \rightarrow ε, q6 \rightarrow +}
F = {q0,q2,q4,q6}

Ex. 112 - Binary Coded Decimal

Construa um transdutor finito que aceite como entrada a linguagem dos números inteiros decimais maiores ou iguais a zero, e gere na saída a representação equivalente em BCD - Binary Coded Decimal (0 \rightarrow 0000, 1 \rightarrow 0001, ... 9 \rightarrow 1001).

Por exemplo, a cadeia de entrada 308 deve gerar na saída a cadeia 001100001000.

Ex. 112 - solução com Mealy

9;1001 8;1000 7;0111 6;0110 5;0101 4;0100 3;0011 2;0010 1;0001 0;0000

Obs: esse é um caso típico em que a escolha do tipo de transdutor influencia diretamente a facilidade de resolução do problema.

Ex. 119

Construa um transdutor finito (Mealy ou Moore) para a linguagem de entrada (a|b|c|d)*, gerando a linguagem de saída $L \subseteq 1$ *, de tal forma que a quantidade de símbolos '1' na cadeia de saída indique a quantidade de subcadeias da forma bcd* presentes na cadeia de entrada.

Exemplos de entradas e correspondentes saídas:

- abcdacbcdddbcacbcd gera 1111
- bcdabcddcaa gera 11
- aaaacdb gera ϵ

Ex. 119 - solução com Mealy

Ex. 119 - solução com Moore

Ex. 122 - para casa

Considere as linguagens de entrada Le e de saída Ls definidas a seguir:

- Le = $\{a,b,c\}^*$
- Ls \subseteq {a,b,c,3,4,5}*

Obtenha um transdutor finito que efetue o mapeamento de $w \in Le$ para $w' \in Ls$, de tal forma que w' seja uma representação compacta da cadeia w, conforme o seguinte critério: toda subcadeia presente na cadeia de entrada w que contenha 3, 4 ou 5 símbolos repetidos em sequência deverá ser substituída, na cadeia de saída w', pela subcadeia correspondente formada pelo símbolo que se repete e o número 3, 4 ou 5. São exemplos de transdução: $\varepsilon \to \varepsilon$, $a \to a$, $cccc \to c4$, $abca \to abca$, $cccccccb \to c5c3b$ e aaaabcaaabb $\to a4bca3bb$.