Prediction without Preclusion: Recourse Verification with Reachable Sets

Avni Kothari UC San Diego Bogdan Kulynych EPFL

Lily Weng Berk Ustun

UC San Diego
UC San Diego

Motivation

Why care?

- Consumers who are denied loans and interviews may be permanently locked out from access to credit and employment
- Models use features without accounting for how individuals can change them

Fixed Fredictio

Recourse Verification

Our Approach: Recourse Verification

We formally verify if a model assigns predictions that every individual can change

For all $x \in \mathcal{X}$ we determine the feasibility of

Why Verification?Infeasibility in recourse is not often discussed

 Recourse may not exist under realistic actionability constraints

Models in lending and hiring can assign **fixed predictions** that preclude access to credit and employment

Paper

Verification with Reachable Sets

Reachable Set Given a point x and action set A(x), its reachable set contains all feature vectors that can be attained using an action $a\in A(x): R(x):=\{x+a|a\in A(x)\}$

Empirical Results

			Simple			Separable			Non-Separable		
Dataset	Model Type	Metrics	Reach	AR	DiCE	Reach	AR	DiCE	Reach	AR	DiCE
heloc $FICO [17]$ $n=3,184$ $d=29$	LR	Recourse	24.7%	85.2%	51.7%	29.0%	62.2%	48.2%	57.3%	23.5%	20.4%
		No Recourse	0.0%	14.8%	_	0.0%	37.8%	_	41.9%	37.8%	_
		Abstain	75.3%	_	_	71.0%	_	_	0.8%	_	_
		Loopholes	_	0.0%	0.0%	_	0.0%	0.0%	_	38.8%	27.8%
		Blindspots	_	0.0%	48.3%	_	0.0%	51.8%	_	0.0%	51.8%
	XGB	Recourse	84.4%		99.8%	35.1%		57.5%	73.2%		23.4%
		No Recourse	0.0%		_	0.0%		_	26.4%		_
		Abstain	15.6%	_	_	64.9%	_	_	0.5%	_	_
		Loopholes	_		0.0%	_		0.0%	_		34.1%
		Blindspots	_		0.2%	_		42.5%	_		42.5%

 Predictions without recourse are prevalent amongst all sizes of reachable sets

recourse

- Predictions without recourse can vary significantly between different
- types of classifiersHeavily weighted immutable features can have significant impact on

- Recourse may not exist under actionability constraints
- Recourse is feasible under simple constraints
- Infeasibility arises once we consider more complex constraints
- Recourse provision methods fail when used to determine recourse verification