Quantum Circuits with Classical and Quantum Control of Causal Orders

Alastair A. Abbott

joint work with Julian Wechs, Hippolyte Dourdent and Cyril Branciard

Université de Genève, Geneva, Switzerland

Lugano, 15 May 2019 [arXiv:1807.10557 & arXiv:19??:soon™]

Outline

Process Matrix Formalism

Bipartite process matrices & causal separability

Multipartite Causal Nonseparability

Defining multipartite causal separability Characterising causal separability

Quantum Circuits with Classical and Quantum Controls of Causal Order

Quantum combs

Classically controlled circuits

Coherently (quantum) controlled circuits

General Operational Framework

- What constraints does a global causal structure impose on:
 - The correlations $P(a_1, \ldots, a_N | x_1, \ldots, x_N)$?
 - The physical resource generating the correlations?
- Assume "local quantum mechanics":
 - lacksquare Input/output Hilbert spaces $\mathcal{H}^{A_k^I}$ and $\mathcal{H}^{A_k^O}$
 - Parties perform completely positive maps $\mathcal{M}_{a|x}$

General Operational Framework

- What constraints does a global causal structure impose on:
 - The correlations $P(a_1, \ldots, a_N | x_1, \ldots, x_N)$?
 - The physical resource generating the correlations?
- Assume "local quantum mechanics":
 - lacksquare Input/output Hilbert spaces $\mathcal{H}^{A_k^I}$ and $\mathcal{H}^{A_k^O}$
 - Parties perform completely positive maps $\mathcal{M}_{a|x}$

General Operational Framework

- What constraints does a global causal structure impose on:
 - The correlations $P(a_1, \ldots, a_N | x_1, \ldots, x_N)$?
 - The physical resource generating the correlations?
- Assume "local quantum mechanics":
 - Input/output Hilbert spaces $\mathcal{H}^{A_k^I}$ and $\mathcal{H}^{A_k^O}$
 - lacksquare Parties perform completely positive maps $\mathcal{M}_{a|x}$

Bipartite Process Matrices

- lacksquare Alice and Bob's operations: $\mathcal{M}_{a|x}$ and $\mathcal{M}_{b|y}$
 - \blacksquare Represent via CJ isomorphism as PSD matrices $M_{a|x}$ and $M_{b|y}$

Correlations can be obtained via the generalised Born rule:

$$P(a, b|x, y) = \text{Tr}\left[\left(M_{a|x}^T \otimes M_{b|y}^T\right) \cdot \mathbf{W}\right]$$

[Oreshkov, Costa, Brukner, Nat. Commun. 2012]

Bipartite Process Matrices

Requiring P(a,b|x,y) to be a valid probability distribution, even when the parties share ancillary states ρ gives:

- Positivity: $W \ge 0$
- Normalisation: $W \in \mathcal{L}^{\{A,B\}}$ and $\operatorname{Tr} W = d_{A^{\bigcirc}} d_{B^{\bigcirc}}$
- lacksquare $\mathcal{L}^{\{A,B\}}$ is linear subspace of "valid" process matrices

Fixed Order Process Matrices

- Some processes are compatible with a fixed causal order
 - Defined in terms of signalling constraints:
 - $\blacksquare \ A \prec B$ means B cannot signal to A
- E.g. channel: $W^{A \prec B} = \rho^{A^I} \otimes E^{A^O B^I} \otimes \mathbb{1}^{B^O}$

[Chiribella et al., PRA 2009]; [Oreshkov, Costa, Brukner, Nat. Commun. 2012]

Fixed Order Process Matrices

- Some processes are compatible with a fixed causal order
 - Defined in terms of signalling constraints:
 - $lacksquare A \prec B$ means B cannot signal to A
- $\mathcal{L}^{A \prec B}$: subspace of valid processes compatible with $A \prec B$
- $W^{A \prec B} \in \mathcal{L}^{A \prec B}$ if:
 - 1. $W^{A \prec B} = (\operatorname{Tr}_{B^O}[W^{A \prec B}]) \otimes \mathbb{1}^{B^O}$
 - $2. \quad \underbrace{\operatorname{Tr}_{B^{IO}} W^{A \prec B}}_{\text{Reduced process for } A} = \left(\operatorname{Tr}_{A^O} [\operatorname{Tr}_{B^{IO}} W^{A \prec B}] \right) \otimes \mathbb{1}^{A^O}$
- Quantum circuit / channel with memory:

[Chiribella et al., PRA 2009]; [Oreshkov, Costa, Brukner, Nat. Commun. 2012]

Fixed Order Process Matrices

- Some processes are compatible with a fixed causal order
 - Defined in terms of signalling constraints:
 - $\blacksquare \ A \prec B$ means B cannot signal to A
- $\mathcal{L}^{A \prec B}$: subspace of valid processes compatible with $A \prec B$
- $W^{A \prec B} \in \mathcal{L}^{A \prec B}$ if:
 - 1. $W^{A \prec B} = (\operatorname{Tr}_{B^O}[W^{A \prec B}]) \otimes \mathbb{1}^{B^O}$
 - $2. \quad \underbrace{\operatorname{Tr}_{B^{IO}} W^{A \prec B}}_{\text{Reduced process for } A} = \left(\operatorname{Tr}_{A^O} [\operatorname{Tr}_{B^{IO}} W^{A \prec B}] \right) \otimes \mathbb{1}^{A^O}$
- Quantum circuit / channel with memory:

[Chiribella et al., PRA 2009]; [Oreshkov, Costa, Brukner, Nat. Commun. 2012]

Causally Separable Process Matrices

Causally separable process matrix

$$W^{\mathsf{sep}} = q \, W^{A \prec B} + (1-q) \, W^{B \prec A},$$
 (with $W^{A \prec B} \in \mathcal{L}^{A \prec B}$, $W^{B \prec A} \in \mathcal{L}^{B \prec A}$)

- Well defined causal order in every experimental run
- Causally nonseparable process matrices exist
 Local QM consistent with globally noncausal physics!
- Causal separability can be checked efficiently with SDPs

[Oreshkov, Costa, Brukner, Nat. Commun. 2012]

Defining Multipartite Causal Separability

- Process matrix formalism generalises easily to N parties $\mathcal{N} = \{A_1, \dots, A_N\}$
- Restricted tripartite scenario where C has no outgoing system Only relevant orders are $A \prec B \prec C$ and $B \prec A \prec C$

Restricted Tripartite Causal Separability [Araújo et al., NJP 2015

$$W^{\mathsf{sep}} = q \, W^{A \prec B \prec C} + (1 - q) \, W^{B \prec A \prec C},$$

Defining Multipartite Causal Separability

- Process matrix formalism generalises easily to N parties $\mathcal{N} = \{A_1, \dots, A_N\}$
- lacktriangle Restricted tripartite scenario where C has no outgoing system
 - lacksquare Only relevant orders are $A \prec B \prec C$ and $B \prec A \prec C$

Restricted Tripartite Causal Separability [Araújo et al., NJP 2015]

$$W^{\mathsf{sep}} = q W^{A \prec B \prec C} + (1 - q) W^{B \prec A \prec C},$$

Example: Quantum Switch

 \blacksquare A "pure" 3-partite process matrix: $W^{\rm switch} = |w\rangle\!\rangle\!\langle\!\langle w|$ with

$$|w\rangle\!\rangle = |\psi\rangle^{A_t^I} \, |1\rangle\!\rangle^{A_t^O\,B_t^I} \, |1\rangle\!\rangle^{B_t^O\,C_t^I} \, |0\rangle^{C_c^I} + |\psi\rangle^{B_t^I} \, |1\rangle\!\rangle^{B_t^O\,A_t^I} \, |1\rangle\!\rangle^{A_t^O\,C_t^I} \, |1\rangle^{C_c^I}$$

- Causally non-separable
 - But cannot violate any "causal inequality"
- Permits advantages: e.g., in query and communication complexities, communication through noisy channels
- Physically realisable [Procopio et al., Nat. Commun. 2015; Rubino et al., Sci. Adv. 2017; Goswami et al., PRL 2018.]

Dynamical Causal Orders

In general, a causal process may have:

- Fixed causal orders: $A_{\sigma(1)} \prec \cdots \prec A_{\sigma(N)}$ (σ a permutation of $\{1,\ldots,N\}$)
- But also dynamical orders:

Recursive definition of causal correlations

Multipartite Causal Correlation [Oreshkov & Glarmatzi, NJP 2016; Abbott et al., PRA 2016.]

- 1. Any single-partite distribution P(a|x) is causal
- 2. For $N \geq 2$, P causal iff $P(\vec{a}|\vec{x}) = \sum_k q_k P_k(a_k|x_k) \underbrace{P_{k,x_k,a_k}(\vec{a}_{\mathcal{N}\backslash k}|\vec{x}_{\mathcal{N}\backslash k})}_{(N\text{-}1)\text{-partite causal correlation}}$
 - Natural approach would be to generalise directly this for process matrices

Dynamical Causal Orders

In general, a causal process may have:

- Fixed causal orders: $A_{\sigma(1)} \prec \cdots \prec A_{\sigma(N)}$ (σ a permutation of $\{1,\ldots,N\}$)
- But also dynamical orders:

Recursive definition of causal correlations

Multipartite Causal Correlation [Oreshkov & Giarmatzi, NJP 2016; Abbott et al., PRA 2016.]

- 1. Any single-partite distribution P(a|x) is causal
- 2. For $N \geq 2$, P causal iff $P(\vec{a}|\vec{x}) = \sum_k q_k P_k(a_k|x_k) \underbrace{P_{k,x_k,a_k}(\vec{a}_{\mathcal{N}\backslash k}|\vec{x}_{\mathcal{N}\backslash k})}_{(N\text{-}1)\text{-partite causal correlation}}$
 - Natural approach would be to generalise directly this for process matrices

Oreshkov & Giarmatzi's Definitions

Multipartite Causal Correlation

- 1. Any single-partite distribution P(a|x) is causal
- 2. For $N \geq 2$, P causal iff $P(\vec{a}|\vec{x}) = \sum_k q_k P_k(a_k|x_k) \underbrace{P_{k,x_k,a_k}(\vec{a}_{\mathcal{N}\backslash k}|\vec{x}_{\mathcal{N}\backslash k})}_{(N\text{-}1)\text{-partite causal correlation}}$

Idea: in any run, one party acts first and conditioned on their operation, the other parties also causally separable

■ Need to define a notion of "conditional process": For a process W, party A_k and CP map M_k applied by A_k :

$$W_{|M_k} := W * M_k = \operatorname{Tr}_{A_k^{IO}}[(M_k^T \otimes \mathbb{1}^{\mathcal{N} \setminus k}) \cdot W]$$

Oreshkov & Giarmatzi's Causal Separability (OG-CS) [NJP 2016]

- 1. Any single-partite process W is causally separable
- 2. For $N \geq 2$, W causally separable iff $W = \sum_k q_k \, W_{(k)}$

 $\begin{array}{l} \mbox{Valid process compatible with } A_k \prec (\mathcal{N} \backslash A_k), \\ \mbox{s.t. } \forall \ M_k \ \mbox{the } (N-1) \mbox{-partite conditional matrix} \\ W_{\mid M_k} \ \mbox{is causally separable} \\ \end{array}$

Oreshkov & Giarmatzi's Definitions

Multipartite Causal Correlation

- 1. Any single-partite distribution P(a|x) is causal
- 2. For $N \geq 2$, P causal iff $P(\vec{a}|\vec{x}) = \sum_k q_k P_k(a_k|x_k) \underbrace{P_{k,x_k,a_k}(\vec{a}_{\mathcal{N}\backslash k}|\vec{x}_{\mathcal{N}\backslash k})}_{(N\text{-}1)\text{-partite causal correlation}}$

Idea: in any run, one party acts first and conditioned on their operation, the other parties also causally separable

■ Need to define a notion of "conditional process": For a process W, party A_k and CP map M_k applied by A_k :

$$W_{|M_k} := W * M_k = \operatorname{Tr}_{A_k^{IO}}[(M_k^T \otimes \mathbb{1}^{N \setminus k}) \cdot W]$$

Oreshkov & Giarmatzi's Causal Separability (OG-CS) [NJP 2016]

- 1. Any single-partite process ${\it W}$ is causally separable
- 2. For $N \geq 2$, W causally separable iff $W = \sum_k q_k \underbrace{W_{(k)}}$

 $\begin{array}{l} \text{Valid process compatible with } A_k \prec (\mathcal{N} \backslash A_k), \\ \text{s.t. } \forall \ M_k \ \text{the } (N-1)\text{-partite conditional matrix} \\ W|_{M_k} \ \text{is causally separable} \end{array}$

Oreshkov & Giarmatzi's Definitions

Oreshkov & Giarmatzi's Causal Separability (OG-CS):

- 1. Any single-partite process W is causally separable
- 2. For $N \geq 2$, W causally separable iff $W = \sum_k q_k \underbrace{W_{(k)}}_{\mbox{Valid process compatible with } A_k \prec (\mathcal{N} \backslash A_k)}_{\mbox{S.t. } \forall M_k \mbox{ the } (N-1)\text{-partite conditional matrix}}$
 - Definition natural, but allows "activation of non-causality"
 - lacksquare $W^{\mathrm{act.}}$ causally separable but $W^{\mathrm{act.}} \otimes \rho$ nonseparable
 - Process matrix framework constructed to allow for shared ancillary systems
 - Entanglement a different kind of resource and generally taken to be free in process matrix formulation
 - Doesn't reduce to accepted definition for restricted tripartite scenario (i.e., when *C* always last)

Multipartite Causal Separability

A more robust definition is the following:

Multipartite Causal Separability [Wechs, AAA, Branciard, NJP 2019]

- 1. For N=1, any W is causally separable
- 2. For $N \geq 2$ W is causally separable iff for all extensions $\rho \in A_{\mathcal{N}}^{I'}$

$$W\otimes
ho = \sum_{k\in\mathcal{N}} q_k W_{(k)}^
ho, \quad ext{where}$$

- (i) $W_{(k)}^{
 ho}$ is a valid process compatible with $A_k \prec (\mathcal{N} \backslash A_k)$
- (ii) For any $M_k \in A_k^{II'O}$, $W_{|M_k|}$ is causally separable
- This definition turns out to be equivalent to a notion of "extensible causal separability" defined by Oreshkov & Giarmatzi
 - In particular: the decomposition $\{W_{(k)}^{\rho}\}_k$ can be taken independent of ρ

Tripartite Causal Separability

- lacksquare How to check if an N-partite W is causally separable?
- Recall bipartite characterisation: $W^{\text{sep}} = W^{A \prec B} + W^{B \prec A}$

Tripartite Causal Separability [equivalent to Oreshkov & Giarmatzi, NJP 2016

- All terms are positive semidefinite
- $\underbrace{\operatorname{Tr}_{B^{IO}C^{IO}}W_{(A)}}_{\text{Reduced process for }A} = \left(\operatorname{Tr}_{A^{O}}\left[\operatorname{Tr}_{B^{IO}C^{IO}}W_{(A)}\right]\right) \otimes \mathbb{1}^{A^{O}}$
- $\blacksquare \ \operatorname{Tr}_{C^{IO}} \widetilde{W}_{(A,B,C)} = \left(\operatorname{Tr}_{B^O} [\operatorname{Tr}_{C^{IO}} \widetilde{W}_{(A,B,C)}] \right) \otimes \mathbb{1}^{B^O}$
- $\widetilde{W}_{(A,B,C)} = (\operatorname{Tr}_{C^{\mathcal{O}}} \widetilde{W}_{(A,B,C)}) \otimes \mathbb{1}^{C^{\mathcal{O}}} \text{ (+ permutations of these)}$
- For any M_A , $(\widetilde{W}_{(A,B,C)})_{|M_A}$ is a valid process (compatible with $B \prec C$)
- Not a convex mixture of valid processes; allows for dynamical orders

Tripartite Causal Separability

- How to check if an N-partite W is causally separable?
- Recall bipartite characterisation: $W^{\text{sep}} = W^{A \prec B} + W^{B \prec A}$

Tripartite Causal Separability [equivalent to Oreshkov & Giarmatzi, NJP 2016]

- All terms are positive semidefinite
- $\underbrace{ \operatorname{Tr}_{B^{IO}C^{IO}} W_{(A)} }_{\text{Reduced process for } A} = \left(\operatorname{Tr}_{A^O} \left[\operatorname{Tr}_{B^{IO}C^{IO}} W_{(A)} \right] \right) \otimes \mathbb{1}^{A^O}$
- $\blacksquare \ \operatorname{Tr}_{C^{IO}} \widetilde{W}_{(A,B,C)} = \left(\operatorname{Tr}_{B^O} [\operatorname{Tr}_{C^{IO}} \widetilde{W}_{(A,B,C)}] \right) \otimes \mathbbm{1}^{B^O}$
- $\widetilde{W}_{(A,B,C)} = (\operatorname{Tr}_{C^O} \widetilde{W}_{(A,B,C)}) \otimes \mathbb{I}^{C^O} \text{ (+ permutations of these)}$
- lacksquare For any M_A , $(\widetilde{W}_{(A,B,C)})_{|M_A}$ is a valid process (compatible with $B \prec C$)
- Not a convex mixture of valid processes; allows for dynamical orders

Example: Fourpartite Quantum Switch

Tripartite Causal Separability

$$W^{\text{sep}} = W_{(A)} + W_{(B)} + W_{(C)}$$

$$= \widetilde{\widetilde{W}}_{(A,B,C)} + \widetilde{\widetilde{W}}_{(A,C,B)} + \widetilde{\widetilde{W}}_{(B,A,C)} + \widetilde{\widetilde{W}}_{(B,C,A)} + \widetilde{\widetilde{W}}_{(C,A,B)} + \widetilde{\widetilde{W}}_{(C,B,A)}$$

Fourpartite quantum switch: [Chiribella et al., PRA 2013; Araújo et al., PRL 2014]

 \blacksquare A "pure" 4-partite process matrix: $W^{\rm switch} = |w\rangle\!\rangle\!\langle\!\langle w|$ with

$$|w\rangle\!\rangle = |0\rangle^{A_c^O} \, |1\rangle\!\rangle^{A_t^OB_t^I} \, |1\rangle\!\rangle^{B_t^OC_t^I} \, |1\rangle\!\rangle^{C_t^OD_t^I} \, |0\rangle^{D_c^I} + |1\rangle^{A_c^O} \, |1\rangle\!\rangle^{A_t^OC_t^I} \, |1\rangle\!\rangle^{C_t^OB_t^I} \, |1\rangle\!\rangle^{B_t^OD_t^I} \, |1\rangle^{D_c^I} \, |1\rangle^{A_t^OC_t^I} \, |1\rangle^{A_t^OC$$

- Causally non-separable
- $lue{}$ Tracing out D it becomes causally separable:

$$\underbrace{[0\rangle\!\langle 0|^{A_c^O}\otimes |\mathbb{1}\rangle\!\rangle\!\langle \mathbb{1}|^{A_t^OB_t^I}\otimes |\mathbb{1}\rangle\!\rangle\!\langle \mathbb{1}|^{B_t^OC_t^I}\otimes \mathbb{1}^{C_t^O}}_{} + |1\rangle\!\langle \mathbb{1}|^{A_c^O}\otimes |\mathbb{1}\rangle\!\langle \mathbb{1}|^{A_t^OC_t^I}\otimes |\mathbb{1}\rangle\!\rangle\!\langle \mathbb{1}|^{C_t^OB_t^I}\otimes \mathbb{1}^{B_t^O}$$

$$\widetilde{W}_{(A,B,C)}$$
 – not a valid process

Example: Fourpartite Quantum Switch

Tripartite Causal Separability

$$W^{\text{sep}} = W_{(A)} + W_{(B)} + W_{(C)}$$

$$= \widetilde{\widetilde{W}}_{(A,B,C)} + \widetilde{\widetilde{W}}_{(A,C,B)} + \widetilde{\widetilde{W}}_{(B,A,C)} + \widetilde{\widetilde{W}}_{(B,C,A)} + \widetilde{\widetilde{W}}_{(C,A,B)} + \widetilde{\widetilde{W}}_{(C,B,A)}$$

Fourpartite quantum switch: [Chiribella et al., PRA 2013; Araújo et al., PRL 2014]

 \blacksquare A "pure" 4-partite process matrix: $W^{\rm switch} = |w\rangle\!\rangle\!\langle\!\langle w|$ with

$$|w\rangle\!\rangle = |0\rangle^{A_c^O} \, |1\rangle\!\rangle^{A_t^OB_t^I} \, |1\rangle\!\rangle^{B_t^OC_t^I} \, |1\rangle\!\rangle^{C_t^OD_t^I} \, |0\rangle^{D_c^I} + |1\rangle^{A_c^O} \, |1\rangle\!\rangle^{A_t^OC_t^I} \, |1\rangle\!\rangle^{C_t^OB_t^I} \, |1\rangle\!\rangle^{B_t^OD_t^I} \, |1\rangle^{D_c^I} \, |1\rangle^{A_t^OC_t^I} \, |1\rangle^{A_t^OC$$

- Causally non-separable
- Tracing out *D* it becomes causally separable:

$$\underbrace{\frac{[0\rangle\!\langle 0|^{A_c^O}\otimes |\mathbb{1}\rangle\!\rangle\!\langle \mathbb{1}|^{A_t^OB_t^I}\otimes |\mathbb{1}\rangle\!\rangle\!\langle \mathbb{1}|^{B_t^OC_t^I}\otimes \mathbb{1}^{C_t^O}}_{\widetilde{W}_{(A,B,C)} - \text{ not a valid process}} + |1\rangle\!\langle \mathbb{1}|^{A_c^O}\otimes |\mathbb{1}\rangle\!\langle \mathbb{1}|^{A_t^OC_t^I}\otimes |\mathbb{1}\rangle\!\rangle\!\langle \mathbb{1}|^{C_t^OB_t^I}\otimes \mathbb{1}^{B_t^O}\otimes |\mathbb{1}\rangle^{B_t^OC_t^I}\otimes |\mathbb{1}\rangle\!\rangle \langle \mathbb{1}|^{C_t^OB_t^I}\otimes \mathbb{1}^{B_t^OC_t^I}\otimes |\mathbb{1}\rangle^{B_t^OC_t^I}\otimes |\mathbb{1}\rangle^{B_t^O$$

N-partite Causal Separability

Tripartite Causal Separability

Can generalise condition to 4 parties and beyond:

Sufficient Condition for Fourpartite Causal Separability Valid process compatible with A first (up to norm.) $W = \underbrace{\widetilde{W}_{(A,B)} + \widetilde{W}_{(A,C)} + \widetilde{W}_{(A,C,D,B)}}_{\widetilde{W}_{(A,C,D,B)} + \widetilde{W}_{(A,D,C,B)} + \widetilde{W}_{(A,D,C,B)} + \widetilde{W}_{(A,D,C,B)} + \cdots + \cdots + \cdots + \cdots$ $= \underbrace{\widetilde{W}_{(A,B,C,D)} + \widetilde{W}_{(A,B,C,D)}}_{For any CP map } \underbrace{W_{(A,B,C,D)}}_{M_A \otimes M_B}, \underbrace{W_{(A,B,C,D)}}_{M_A \otimes M_B}, \text{is valid, compatible with B first}$ For any CP maps $M_A, M_B, (W_{(A,B,C,D)})_{|M_A \otimes M_B}$ is valid, compatible with \$C\$ first

 Conditions on terms given by linear constraints with same interpretation as before

N-partite Causal Separability

Tripartite Causal Separability

Can generalise condition to 4 parties and beyond:

Sufficient Condition for N-partite Causal Separability

$$W^{\mathsf{sep}} = \sum_{\pi \in \Pi} \widetilde{W}_{\pi}, \quad \mathsf{with}$$

- 1. $\widetilde{W}_{\pi} \geq 0$ for each permutation π of $(1, \dots, N) \equiv (A_1, \dots, A_N)$
- 2. For every ordered subset (k_1, \ldots, k_n) (with $1 \le n \le N$),

$$\begin{split} \widetilde{W}_{(k_1,\dots,k_n)} &:= \sum_{\pi \in \Pi_{(k_1,\dots,k_n)}} \widetilde{W}_{\pi}, \text{ satisfies} \\ \operatorname{Tr}_{A^{IO}_{\mathcal{N} \backslash \{k_1,\dots,k_n\}}} \widetilde{W}_{(k_1,\dots,k_n)} &= \left(\operatorname{Tr}_{A^O_{\mathcal{N} \backslash \{k_1,\dots,k_n\}}} \widetilde{W}_{(k_1,\dots,k_n)}\right] \right) \otimes \mathbb{1}^{A^O_{k_n}} \end{split}$$

lacktriangle This constraint is sufficient for W^{sep} to be causally separable, is it necessary?

N-partite Causal Separability

Tripartite Causal Separability

Can generalise condition to 4 parties and beyond:

Sufficient Condition for N-partite Causal Separability

$$W^{\mathsf{sep}} = \sum_{\pi \in \Pi} \widetilde{W}_{\pi}, \quad \mathsf{with}$$

- 1. $\widetilde{W}_{\pi} \geq 0$ for each permutation π of $(1,\ldots,N) \equiv (A_1,\ldots,A_N)$
- 2. For every ordered subset (k_1, \ldots, k_n) (with $1 \le n \le N$),

$$\begin{split} \widetilde{W}_{(k_1,...,k_n)} := & \operatorname{Tr}_{A^{IO}_{\mathcal{N}\backslash \{k_1,...,k_n\}}} \sum_{\pi \in \Pi_{(k_1,...,k_n)}} \widetilde{W}_{\pi}, \text{ satisfies} \\ \widetilde{W}_{(k_1,...,k_n)} = & \left(\operatorname{Tr}_{A^O_{k_n}} \widetilde{W}_{(k_1,...,k_n)} \right) \otimes \mathbbm{1}^{A^O_{k_n}} \end{split}$$

lacktriangle This constraint is sufficient for W^{sep} to be causally separable, is it necessary?

Outline

Process Matrix Formalism

Bipartite process matrices & causal separability

Multipartite Causal Nonseparability

Defining multipartite causal separability Characterising causal separability

Quantum Circuits with Classical and Quantum Controls of Causal Order

Quantum combs

Classically controlled circuits

Coherently (quantum) controlled circuits

Process Matrices as Supermaps

- Useful to consider process matrices with global past P and future F
 Interpret as parties with no input and output spaces, respectively
- lacksquare Process matrices are supermaps, mapping $(A_1,\ldots,A_N) o M$

$$M = \operatorname{Tr}_{A_{\mathcal{N}}^{IO}} \left[W(A_1^T \otimes \cdots \otimes A_N^T \otimes \mathbb{1}^{PF}) \right]$$
$$= W * (A_1 \otimes \cdots \otimes A_N) \in PF,$$

lacksquare Output state given by $M*
ho=W*(
ho\otimes A_1\otimes\cdots\otimes A_N)$

Quantum Circuits as Fixed-Order Processes

- Standard quantum circuits can be seen as fixed-order processes
 - Equivalently, quantum combs, quantum networks... [e.g. Chiribella et al., PRA 2009]

Most general quantum circuit described by CPTP maps:

- $lacksquare \mathcal{M}_1: P o A_1^I lpha_1$, where $lpha_1$ is an ancillary system
- $\blacksquare \mathcal{M}_{n+1}: A_n^O \alpha_n \to A_{n+1}^I \alpha_{n+1} \text{ for } 1 \leq n \leq N-1$
- $\blacksquare \mathcal{M}_{N+1}: A_N^O \alpha_N \to F$

Quantum Circuits with Fixed Causal Order

For input ρ output is

$$M_{N+1}*A_N*\cdots*M_2*A_1*M_1*\rho = \underbrace{(M_1*M_2*\cdots*M_{N+1})}_{W}*(\rho\otimes A_1\otimes\cdots\otimes A_N)$$

lacktriangleq W is defined uniquely by the maps M_n via the link product:

$$W = M_1 * M_2 * \cdots * M_{N+1} = \operatorname{Tr}_{\alpha_1 \cdots \alpha_N} \left[M_1 \otimes M_2^{T_{\alpha_1}} \otimes \cdots \otimes M_{N+1}^{T_{\alpha_N}} \right]$$

Chiribella et al., PRL 2008.]

QC-FO Characterisation

The constraint that the M_n are CPTP maps and thus satisfy $\operatorname{Tr}_{A_{n+1}^I\alpha_{n+1}}M_{n+1}=\mathbbm{1}^{A_n^O\alpha_n}$ allow the W of QC-FOs to be characterised

■ They are precisely process matrices compatible with $P \prec A_1 \prec \cdots \prec A_N \prec F$

QC-FOs compatible with order $P \prec A_1 \prec \cdots \prec A_N \prec F$

$$\begin{split} &\operatorname{Tr}_F W = W_{(N)} \otimes \mathbb{1}^{A_N^O}, \\ &\operatorname{Tr}_{A_{n+1}^I} W_{(n+1)} = W_{(n)} \otimes \mathbb{1}^{A_n^O} \quad \forall \, n=1,\dots,N-1, \\ &\operatorname{and} \quad \operatorname{Tr}_{A_1^I} W_{(1)} = \mathbb{1}^P. \end{split}$$

where $W_{(n)}:=rac{1}{d_n^Od_{n+1}^O\cdots d_N^O}\operatorname{Tr}_{A_n^OA_{\{n+1,\dots,N\}}^{IO}F}W$ are reduced process matrices

Classically Controlled Circuits

- Causal separability allows for mixed or dynamical causal orders
 - Goes beyond QC-FOs; how can such causal processes be realised?
 - Oreshkov & Giarmatzi [NJP, 2016] suggested causal separability corresponds to quantum circuits with classical control of causal order (QC-CCs): "classically controlled quantum circuits"

- At each time slot t_n exactly one operation A_{k_n} is applied
- Crucial requirement: each operation applied once and only once, irrespective of the operations themselves
 - \blacksquare Needed to ensure W gives a valid supermap

Classically Controlled Circuits

Classical control of causal order

- \blacksquare Outcome of instrument $\{M_{(k_1,\dots,k_n)}^{\to k_{n+1}}\}_{k_{n+1}}$ determines the (n+1)th party
 - Can depend on previous parties and operations → allows dynamical causal order
- Technicality: the $M^{\to k_{n+1}}_{(k_1,...,k_n)} \in A^O_{k_n} \alpha_n A^I_{k_{n+1}} \alpha_{n+1}$ belong to different spaces
 - Can solve by embedding in common direct-sum output space

Process Matrix of a QC-CC

For input ρ , when operations applied in order k_1, \ldots, k_N , output is

$$M_{(k_{1},...,k_{N})}^{\rightarrow F} * A_{k_{N}} * M_{(k_{1},...,k_{N-1})}^{\rightarrow k_{N}} * \cdots * M_{(k_{1},k_{2})}^{\rightarrow k_{3}} * A_{k_{2}} * M_{(k_{1})}^{\rightarrow k_{2}} * A_{k_{1}} * M_{\emptyset}^{\rightarrow k_{1}} * \rho$$

$$= \underbrace{M_{\emptyset}^{\rightarrow k_{1}} * M_{(k_{1})}^{\rightarrow k_{2}} * M_{(k_{1},k_{2})}^{\rightarrow k_{3}} * \cdots * M_{(k_{1},...,k_{N-1})}^{\rightarrow k_{N}} * M_{(k_{1},...,k_{N})}^{\rightarrow F}}_{(k_{1},...,k_{N},F)} * (\rho \otimes A_{1} \otimes \cdots \otimes A_{N})$$

Process matrix of a QC-CC

$$W = \sum_{(k_1, \dots, k_N)} \widetilde{W}_{(k_1, \dots, k_N, F)}$$

QC-CC Characterisation

Classical control of causal order

- Intuitively clear that QC-CCs are causally separable
 - What about the conjectured converse claim?

Characterisation of circuits with classically controlled order

A process W represents a classically controlled circuit iff it satisfies our sufficient conditions for causal separability.

 \blacksquare Can constructively give the QC-CC components from any such $W^{\rm sep}$

Recall characterisation:
$$W^{\text{sep}} = \sum_{\pi \in \Pi} \widetilde{W}_{\pi}$$
; $\widetilde{W}_{(k_1, \dots, k_n)} = \left(\operatorname{Tr}_{A_O^{k_n}} \widetilde{W}_{(k_1, \dots, k_n)}\right) \otimes \mathbb{1}^{A_O^{k_n}}$, where $\widetilde{W}_{(k_1, \dots, k_n)} := \operatorname{Tr}_{A_{\mathcal{N} \setminus \{k_1, \dots, k_n\}}^{I_O}} \sum_{\pi \in \Pi_{(k_1, \dots, k_n)}} \widetilde{W}_{\pi}$

QC-CC Characterisation

Classical control of causal order

- Intuitively clear that QC-CCs are causally separable
 - What about the conjectured converse claim?

Characterisation of circuits with classically controlled order

A process W represents a classically controlled circuit iff it satisfies our sufficient conditions for causal separability.

 \blacksquare Can constructively give the QC-CC components from any such $W^{\rm sep}$

Recall characterisation:
$$W^{\text{sep}} = \sum_{\pi \in \Pi} \widetilde{W}_{\pi}$$
; $\widetilde{W}_{(k_1, \dots, k_n)} = \left(\operatorname{Tr}_{A_O^{k_n}} \widetilde{W}_{(k_1, \dots, k_n)}\right) \otimes \mathbb{I}^{A_O^{k_n}}$, where $\widetilde{W}_{(k_1, \dots, k_n)} := \operatorname{Tr}_{A_{\mathcal{N} \setminus \{k_1, \dots, k_n\}}^{IO}} \sum_{\pi \in \Pi_{(k_1, \dots, k_n)}} \widetilde{W}_{\pi}$

Alternative Descriptions of QC-CCs

■ Conditioning can be included in operations by introducing (classical) control system $[(k_1, \ldots, k_n)]^{C_n} := |(k_1, \ldots, k_n)\rangle\langle(k_1, \ldots, k_n)|^{C_n}$

Classical control of causal order

Operations now given by the CPTP maps

$$\tilde{M}_{n+1} := \sum_{k_1, \dots, k_n, k_{n+1}} \tilde{M}_{(k_1, \dots, k_n)}^{\to k_{n+1}} \otimes \llbracket (k_1, \dots, k_n) \rrbracket^{C_n} \otimes \llbracket (k_1, \dots, k_n, k_{n+1}) \rrbracket^{C_{n+1}},$$

$$\tilde{M}_1 := \sum_{k_1} \tilde{M}_{\emptyset}^{\rightarrow k_1} \otimes \llbracket(k_1)\rrbracket^{C_1}, \qquad M_{N+1} := \sum_{k_1, \dots, k_N} M_{(k_1, \dots, k_N)}^{\rightarrow F} \otimes \llbracket(k_1, \dots, k_N)\rrbracket^{C_N}$$

Alternative Descriptions of QC-CCs

 \blacksquare Defining global operations $\tilde{A}_n \coloneqq \bigoplus_{k_n \in \mathcal{N}} A_{k_n}$ we have

$$\tilde{M}_{N+1} * \tilde{A}_N * \tilde{M}_N * \cdots * \tilde{A}_1 * \tilde{M}_1 * \rho = \underbrace{\sum_{k_1, \dots, k_N} W_{(k_1, \dots, k_N, F)}}_{W} * (\rho \otimes A_1 \otimes \dots \otimes A_N)$$

■ Note that wlog we can take all operations to be purified isometries

$$M_{(k_1,\dots,k_{n-1})}^{\to k_n} = |V_{(k_1,\dots,k_{n-1})}^{\to k_n}\rangle\rangle\langle\langle V_{(k_1,\dots,k_{n-1})}^{\to k_n}|$$

■ Suggests natural generalisation to quantum control of causal order

From Classical to Coherent Control

- Relax the control state to store only *which* operations have been performed, but not their order: $|\mathcal{K}_{n-1}, k_n|^{C_n}$
 - Conditioning on $\mathcal{K} = \{k_1, \dots, k_{n-1}\}$ allows different orders to interfere
 - Storing full history $|(k_1, \ldots, k_n)|^{C_n}$ is more restrictive and included in this case by using ancillas

Quantum control of causal order

lacksquare Operations given by the isometries V_n with pure CJ representation

$$|\tilde{V}_{n+1}\rangle\rangle := \sum_{\substack{\mathcal{K}_{n-1} \\ k_n, k_{n+1}}} |\tilde{V}_{\mathcal{K}_{n-1}, k_n}^{\to k_{n+1}}\rangle\rangle \otimes |\mathcal{K}_{n-1}, k_n\rangle^{C_n} \otimes |\mathcal{K}_n, k_{n+1}\rangle^{C_{n+1}},$$

$$|\tilde{V}_{1}\rangle := \sum_{k_{1}} |\tilde{V}_{\emptyset,\emptyset}^{\to k_{1}}\rangle\rangle \otimes |\emptyset, k_{1}\rangle^{C_{1}}, \qquad |\tilde{V}_{N+1}\rangle\rangle := \sum_{k_{N}} |\tilde{V}_{N\setminus\{k_{N}\}, k_{N}}^{\to F}\rangle \otimes |N\setminus\{k_{N}\}, k_{N}\rangle^{C_{N}}$$

From Classical to Coherent Control

- Relax the control state to store only *which* operations have been performed, but not their order: $|\mathcal{K}_{n-1}, k_n|^{C_n}$
 - Conditioning on $\mathcal{K} = \{k_1, \dots, k_{n-1}\}$ allows different orders to interfere
 - Storing full history $|(k_1, \dots, k_n)|^{C_n}$ is more restrictive and included in this case by using ancillas

Quantum control of causal order

lacksquare Operations given by the isometries V_n with pure CJ representation

$$|\tilde{V}_{n+1}\rangle := \sum_{\substack{\mathcal{K}_{n-1} \\ k_n, k_{n+1}}} |\tilde{V}_{\mathcal{K}_{n-1}, k_n}^{\to k_{n+1}}\rangle \otimes |\mathcal{K}_{n-1}, k_n\rangle^{C_n} \otimes |\mathcal{K}_n, k_{n+1}\rangle^{C_{n+1}},$$

$$|\tilde{V}_{1}\rangle\rangle := \sum_{k_{1}} |\tilde{V}_{\emptyset,\emptyset}^{\to k_{1}}\rangle\rangle\otimes|\emptyset,k_{1}\rangle^{C_{1}}, \qquad |\tilde{V}_{N+1}\rangle\rangle := \sum_{k_{N}} |\tilde{V}_{\mathcal{N}}\rangle^{F}_{\{k_{N}\},k_{N}}\rangle\otimes|\mathcal{N}\backslash\{k_{N}\},k_{N}\rangle^{C_{N}}$$

Coherently (Quantum) Controlled Circuits

- Each $V_{\mathcal{K}_{n-1},k_n}^{\to k_{n+1}}:\mathcal{H}^{A_{k_n}^O\alpha_n}\to\mathcal{H}^{A_{k_{n+1}}^I\alpha_{n+1}}$ embedded in larger space
 - Control ensures that each party applied once and only once

For input $|\psi\rangle$, circuit applies transformation

$$|\tilde{V}_{N+1}\rangle\rangle * |\tilde{A}_N\rangle\rangle * |\tilde{V}_N\rangle\rangle * \cdots * |\tilde{V}_2\rangle\rangle * |\tilde{A}_1\rangle\rangle * |\tilde{V}_1\rangle\rangle * |\psi\rangle \in \mathcal{H}^{F\alpha_{n+1}}$$

with "pure link product"
$$|a\rangle^{\mathsf{A}} * |b\rangle^{\mathsf{B}} \coloneqq \langle\!\langle \mathbb{1}|^{\mathsf{A} \cap \mathsf{B}} \left(|a\rangle \otimes |b\rangle \right) = \sum_i \langle i,i|^{(\mathsf{A} \cap \mathsf{B})^{\otimes 2}} \left(|a\rangle \otimes |b\rangle \right)$$

QCs with Quantum Control of Causal Order

 \blacksquare To identify the process matrix, note that for input $|\psi\rangle$

$$\begin{split} |\tilde{V}_{N+1}\rangle\!\!\!/ * &|\tilde{A}_{N}\rangle\!\!\!/ * |\tilde{V}_{N}\rangle\!\!\!/ * \cdots * |\tilde{V}_{2}\rangle\!\!\!/ * |\tilde{A}_{1}\rangle\!\!\!/ * |\tilde{V}_{1}\rangle\!\!\!/ * |\psi\rangle \\ &= \sum_{k_{1},...,k_{N}} |V_{\emptyset,\emptyset}^{\rightarrow k_{1}}\rangle\!\!\!/ * |V_{\emptyset,k_{1}}^{\rightarrow k_{2}}\rangle\!\!\!/ * |V_{\{k_{1}\},k_{2}}^{\rightarrow k_{3}}\rangle\!\!\!/ * \cdots * |V_{\{k_{1},...,k_{N-1}\},k_{N}}^{\rightarrow F}\rangle\!\!\!/ * (|\psi\rangle\otimes|A_{1}\rangle\!\!\!/ \otimes \cdots \otimes |A_{N}\rangle\!\!\!/ \\ &|w_{(k_{1},...,k_{N},F)}\rangle\!\!\!/ \end{split}$$

Process matrix of a QC-QC

$$W = \operatorname{Tr}_{\alpha_{N+1}} |w\rangle\!\rangle\!\langle\!\langle w|\,, \quad \text{with} \quad |w\rangle\!\rangle \coloneqq \sum_{k_1,\dots,k_N} |w_{(k_1,\dots,k_N,F)}\rangle\!\rangle$$

QC-QC Characterisation

lacktriangle As for QC-CCs, can characterise such W with SDP constraints

Characterisation of circuits with quantum control of causal order

W is the process matrix of a QC-QC iff \exists PSD matrices $W_{(\mathcal{K},\ell)} \in PA_{\mathcal{K}}^{IO}A_{\ell}^{I}$ $\forall \mathcal{K} \subsetneq \mathcal{N}, \ell \in \mathcal{N} \setminus \mathcal{K}$ satisfying

$$\begin{split} &\operatorname{Tr}_F W = \sum_{k \in \mathcal{N}} \widetilde{W}_{(\mathcal{N} \backslash \{k\}, k)} \otimes \mathbb{1}^{A_k^O}, \\ &\forall \emptyset \subsetneq \mathcal{K} \subsetneq \mathcal{N}, \sum_{\ell \in \mathcal{N} \backslash \mathcal{K}} \operatorname{Tr}_{A_\ell^I} \widetilde{W}_{(\mathcal{K}, \ell)} = \sum_{k \in \mathcal{K}} \widetilde{W}_{(\mathcal{K} \backslash \{k\}, k)} \otimes \mathbb{1}^{A_k^O}, \\ &\text{and} \quad \sum_{\ell \in \mathcal{N}} \operatorname{Tr}_{A_\ell^I} W_{(\emptyset, \ell)} = \mathbb{1}^P. \end{split}$$

QC-QC Characterisation

lacktriangle As for QC-CCs, can characterise such W with SDP constraints

Three-operation QC-QC Characterisation

- $\blacksquare \operatorname{Tr}_{F} W = \widetilde{W}_{(\{B,C\},A)} \otimes \mathbb{1}^{A^{O}} + \widetilde{W}_{(\{A,C\},B)} \otimes \mathbb{1}^{B^{O}} + \widetilde{W}_{(\{A,B\},C)} \otimes \mathbb{1}^{C^{O}}$
- $\blacksquare \ \operatorname{Tr}_{C^I} \widetilde{W}_{(\{A,B\},C)} = \widetilde{W}_{(\{A\},B)} \otimes \mathbb{1}^{B^O} + \widetilde{W}_{(\{B\},A)} \otimes \mathbb{1}^{A^O}, \text{ etc.}$

QC-QC Summary

- QC-QCs are physically realisable, e.g., with a "quantum router"
- \blacksquare Realisation in terms of the V_n can be effectively obtained from the any W satisfying the characterisation
 - Can be checked and obtained via SDPs, or witnesses obtained
- Classically controlled circuits are recovered as a special case
 - But QC-QCs can be causally nonseparable in general

QC-QC Summary

- QC-QCs are physically realisable, e.g., with a "quantum router"
- \blacksquare Realisation in terms of the \tilde{V}_n can be effectively obtained from the any W satisfying the characterisation
 - Can be checked and obtained via SDPs, or witnesses obtained
- Classically controlled circuits are recovered as a special case
 - But QC-QCs can be causally nonseparable in general

Example: Quantum Switch

N=2, d-dimensional target system and 2-dimensional "control": $\mathcal{H}^P=\mathcal{H}^{P_t}\otimes\mathcal{H}^{P_c}$ and $\mathcal{H}^F=\mathcal{H}^{F_t}\otimes\mathcal{H}^{F_c}$

The controlled operations are

$$|V_{\emptyset,\emptyset}^{\rightarrow k_1}\rangle\!\rangle = |k_1\rangle^{P_{\mathsf{c}}}\,|\mathbbm{1}\rangle\!\rangle^{P_{\mathsf{t}}A_{k_1}^I}\,, \quad |V_{\emptyset,k_1}^{\rightarrow k_2}\rangle\!\rangle = |\mathbbm{1}\rangle\!\rangle^{A_{k_1}^OA_{k_2}^I}\,, \quad |V_{\{k_1\},k_2}^{\rightarrow F}\rangle\!\rangle = |k_1\rangle^{F_{\mathsf{c}}}\,|\mathbbm{1}\rangle\!\rangle^{A_{k_2}^OF_{\mathsf{t}}}\,,$$

Process vector is then

$$\begin{split} |w_{\mathrm{s}}\rangle &\coloneqq |w_{(P,A_{1},A_{2},F)}\rangle\rangle + |w_{(P,A_{2},A_{1},F)}\rangle\rangle \\ &= |V_{\emptyset,\emptyset}^{\to A_{1}}\rangle\rangle * |V_{\emptyset,A_{1}}^{\to A_{2}}\rangle\rangle * |V_{\{A_{1}\},A_{2}}^{\to F}\rangle\rangle + |V_{\emptyset,\emptyset}^{\to A_{2}}\rangle\rangle * |V_{\emptyset,A_{2}}^{\to A_{1}}\rangle\rangle * |V_{\{A_{2}\},A_{1}}^{\to F}\rangle\rangle \\ &= |1\rangle^{P_{\mathrm{c}}} |1\rangle\rangle^{P_{\mathrm{t}}A_{1}^{I}} |1\rangle\rangle^{A_{1}^{O}A_{2}^{I}} |1\rangle\rangle^{A_{2}^{O}F_{\mathrm{t}}} |1\rangle^{F_{\mathrm{c}}} + |2\rangle^{P_{\mathrm{c}}} |1\rangle\rangle^{P_{\mathrm{t}}A_{2}^{I}} |1\rangle\rangle^{A_{1}^{O}F_{\mathrm{t}}} |2\rangle^{F_{\mathrm{c}}} \end{split}$$

Standard four-partite switch recovered as $W_{\text{switch}} = |w_{\text{s}}\rangle\!\rangle\!\langle\langle w_{\text{s}}|$

Beyond the Quantum Switch?

- N-partite generalisation of the quantum switch is a QC-QC
 - Essentially the extent of known "interesting" causally nonseparable processes
- Do QC-QCs offer something new, or are they all "equivalent" to the switch?
- Need a better understanding of causally nonseparable resources and free operations
 - Taddei, Nery and Aolita [arXiv:1903.06180]: local operations and controlled non-signalling operations ofr bipartite processes
 - Composition: Possible compositions severely restricted [Guérin et al., NJP 2019], but can, e.g., concatenate switches, or insert them inside other switches

Beyond the Quantum Switch?

- N-partite generalisation of the quantum switch is a QC-QC
 - Essentially the extent of known "interesting" causally nonseparable processes
- Do QC-QCs offer something new, or are they all "equivalent" to the switch?
- Need a better understanding of causally nonseparable resources and free operations
 - Taddei, Nery and Aolita [arXiv:1903.06180]: local operations and controlled non-signalling operations ofr bipartite processes
 - Composition: Possible compositions severely restricted [Guérin et al.,
 NJP 2019], but can, e.g., concatenate switches, or insert them inside other switches

Beyond the Quantum Switch?

However, recall characterisation of QC-QCs

$$\begin{split} &\operatorname{Tr}_F W = \sum_{k \in \mathcal{N}} \widetilde{W}_{(\mathcal{N} \backslash \{k\}, k)} \otimes \mathbb{1}^{A_k^O}, \\ &\forall \emptyset \subsetneq \mathcal{K} \subsetneq \mathcal{N}, \sum_{\ell \in \mathcal{N} \backslash \mathcal{K}} \operatorname{Tr}_{A_\ell^I} \widetilde{W}_{(\mathcal{K}, \ell)} = \sum_{k \in \mathcal{K}} \widetilde{W}_{(\mathcal{K} \backslash \{k\}, k)} \otimes \mathbb{1}^{A_k^O}, \\ &\text{and} \quad \sum_{\ell \in \mathcal{N}} \operatorname{Tr}_{A_\ell^I} W_{(\emptyset, \ell)} = \mathbb{1}^P. \end{split}$$

- The $\widetilde{W}_{(\mathcal{N}\setminus\{k\},k)}$ need not, a priori, be valid process matrices
 - lacktriangle Tr $_FW$ not necessarily a mixture of valid process matrices compatible with fixed last parties, i.e.

$$\operatorname{Tr}_F W \neq q_1 W^{\{A_1, A_2\} \prec A_3} + q_2 W^{\{A_1, A_3\} \prec A_2} + q_3 W^{\{A_2, A_3\} \prec A_1}$$

- lacksquare Seems like such W can't be obtained by composing switches
 - Numerically, such processes seem to exist: further study needed to find (and interpret) nice examples
 - In particular, can one obtain new types of advantages with QC-QCs which, by construction, are realisable

QC-QCs and Causal Correlations

Can quantum circuits with quantum control of causal order violate causal inequalities?

QC-QC correlations are causa

Let W be a QC-QC with trivial spaces \mathcal{H}^P and \mathcal{H}^F . Then the correlations

$$P(a_1, \dots, a_N | x_1, \dots, x_N) = \text{Tr}[W \cdot (M_{a_1 | x_1}^T \otimes \dots \otimes M_{a_N | x_N}^T)]$$

are causal for any instruments $\{M_{a_i|x_i}\}_{x_i}$

- Can noncausal correlations be realised in nature?
 - Would require going beyond this type of generic, coherently controlled
- QC-QCs nevertheless have potential for new advantages arising from indefinite causal order
 - New classes of physically realisable, causally nonseparable processes
 - Use as "quantum super-instruments", generalising quantum testers, for transformation tasks

QC-QCs and Causal Correlations

Can quantum circuits with quantum control of causal order violate causal inequalities?

QC-QC correlations are causal

Let W be a QC-QC with trivial spaces \mathcal{H}^P and \mathcal{H}^F . Then the correlations

$$P(a_1,\ldots,a_N|x_1,\ldots,x_N) = \text{Tr}[W \cdot (M_{a_1|x_1}^T \otimes \cdots \otimes M_{a_N|x_N}^T)]$$

are causal for any instruments $\{M_{a_i|x_i}\}_{x_i}$.

- Can noncausal correlations be realised in nature?
 - Would require going beyond this type of generic, coherently controlled circuit
- QC-QCs nevertheless have potential for new advantages arising from indefinite causal order
 - New classes of physically realisable, causally nonseparable processes
 - Use as "quantum super-instruments", generalising quantum testers, for transformation tasks

QC-QCs and Causal Correlations

Can quantum circuits with quantum control of causal order violate causal inequalities?

QC-QC correlations are causal

Let W be a QC-QC with trivial spaces \mathcal{H}^P and \mathcal{H}^F . Then the correlations

$$P(a_1,\ldots,a_N|x_1,\ldots,x_N) = \text{Tr}[W \cdot (M_{a_1|x_1}^T \otimes \cdots \otimes M_{a_N|x_N}^T)]$$

are causal for any instruments $\{M_{a_i|x_i}\}_{x_i}$.

- Can noncausal correlations be realised in nature?
 - Would require going beyond this type of generic, coherently controlled circuit
- QC-QCs nevertheless have potential for new advantages arising from indefinite causal order
 - New classes of physically realisable, causally nonseparable processes
 - Use as "quantum super-instruments", generalising quantum testers, for transformation tasks

Summary & Outlook

- Definition of multipartite causal (non)separability
- Characterisation of causally separable process matrices
 - Separate necessary and sufficient conditions
 - Coincide for N = 2, 3; in general?
 - Necessary condition allows construction of witnesses of causal nonseparability
- Quantum circuits with classical control of causal order
 - Coincide with sufficient condition for causal separability
- Quantum circuits with quantum control of causal order
 - Potential new realisable, causally nonseparable, circuits beyond the quantum switch?
 - Do QC-QCs provide new information theoretical advantages?
 - Need for resource theoretical treatment for such processes
 - Are there other classes of physically realisable processes?

[arXiv:1807.10557 + new paper soon]

Choi Isomorphism and Link Product

- ullet $|1\rangle\!\!/=\sum_i|i\rangle\otimes|i\rangle$ is the "pure Choi isomorphism" of an identity channel
- Pure Choi isomorphism: for an operator A, $|A\rangle\rangle = \mathbb{1} \otimes A |\mathbb{1}\rangle\rangle$
- Mixed Choi isomorphism: for a CP map \mathcal{M} , $M = \mathcal{I} \otimes \mathcal{M}(|\mathbb{1})\langle\langle \mathbb{1}|)$
- Inverse Choi isomorphism given by the link product: $\mathcal{M}(\rho) = M * \rho$; $A |\psi\rangle = |A\rangle\rangle * |\psi\rangle$

Constraints for Process Matrix Validity

Recall the notation:

$$_XW:=(\operatorname{Tr}_XW)\otimes\frac{\mathbb{1}^X}{d_X}\,,\quad _1W:=W,\quad _{[\sum_X\alpha_XX]}W:=\sum_X\alpha_{X|X}W,$$

Space of valid process matrices

$$W \in \mathcal{L}^{\mathcal{N}} \iff \forall \ \chi \subseteq \mathcal{N}, \chi \neq \emptyset, \ \prod_{i \in \mathcal{N}} [1 - A_O^i] A_O^{\mathcal{N} \setminus \chi} W = 0,$$

Space of valid process compatible with A first

$$\begin{split} W &\in \mathcal{L}^{A_k \prec (\mathcal{N} \backslash A_k)} \\ &\Leftrightarrow \ _{[1-A_O^k]A_{IO}^{\mathcal{N} \backslash k}} W = 0 \quad \text{and} \quad \forall \ \chi \subseteq \mathcal{N} \backslash k, \chi \neq 0, _{\prod_{i \in \chi} [1-A_O^i]A_{IO}^{\mathcal{N} \backslash k \backslash \chi}} W = 0, \end{split}$$

Causal Separability: Necessary Conditions

- Explicit necessary conditions can be obtained by choosing specific CP maps and ancillas at each level of the recursive definition
- Ognyan and Giarmatzi showed how such a choice proves sufficient conditions also necessary in tripartite case
 - 1. ρ : maximally entangled state for each pair of parties
 - 2. $M_{A_k}\colon |\Phi^+\rangle\langle\Phi^+|$ M.E.S. between A^{IO} and half of ancilla between A_k and some $A_{k'}$
- \blacksquare "Teleports" A_k 's system on A_k^{IO} to $A_{k'}^{I'}$

$$\underbrace{W_{(k)}^{\rho}}_{N\text{-partite, }A_k \text{ first}} \longrightarrow \underbrace{W_{(k)}^{A_k^{IO} \to A_{k'}^{I'}}}_{(N-1)\text{-partite, formally equivalent to }W_{(k)}} \otimes \rho' := (W_{(k)}^{\rho})_{|M_{A_k}}$$

- Any constraints obeyed by $W_{(k)}^{A_k^{IO} \to A_{k'}^{I'}}$ must be obeyed by $W_{(k)}$ once Hilbert spaces relabelled
 - Can repeat for each $k' \neq k$

Causal Separability: Necessary Conditions

- Explicit necessary conditions can be obtained by choosing specific CP maps and ancillas at each level of the recursive definition
- Ognyan and Giarmatzi showed how such a choice proves sufficient conditions also necessary in tripartite case
 - 1. ρ : maximally entangled state for each pair of parties
 - 2. $M_{A_k}\colon |\Phi^+\rangle\langle\Phi^+|$ M.E.S. between A^{IO} and half of ancilla between A_k and some $A_{k'}$
- lacksquare "Teleports" A_k 's system on A_k^{IO} to $A_{k'}^{I'}$

$$\underbrace{W_{(k)}^{\rho}}_{N\text{-partite, }A_{k} \text{ first}} \longrightarrow \underbrace{W_{(k)}^{A_{k}^{IO}} \to A_{k'}^{I'}}_{(N-1)\text{-partite, formally equivalent to } W_{(k)}^{\rho})_{|M_{A_{k}}}$$

- \blacksquare Any constraints obeyed by $W_{(k)}^{A_k^{IO} o A_{k'}^{I'}}$ must be obeyed by $W_{(k)}$ once Hilbert spaces relabelled
 - Can repeat for each $k' \neq k$

Necessary Condition for Causal Separability

Necessary condition for N-partite causal separability

An N-partite $W^{\rm sep}\in \mathcal{W}^{\rm sep}$ must have a decomposition $W=\sum_{k\in\mathcal{N}}W_{(k)}$ where:

- 1. $W_{(k)}$ is a valid process compatible with $A_k \prec (\mathcal{N} \backslash A_k)$
- 2. For each $k' \neq k$, $W_{(k)}^{A_k^{IO} \to A_{k'}^{I'}}$ is an (N-1)-partite causally separable process
 - lacktriangledown obeys the necessary conditions for (N-1)-partite processes
 - lacksquare Coincides with separable condition for N=3 [Oreshkov & Giarmatzi, NJP 2016]
 - Also reduced 4-partite scenario (no output for *D*, c.f. quantum switch)
 - lacksquare Note that decomposition may differ for each k'
 - Satisfying these conditions with a unique decomposition would imply the sufficient conditions
 - No known counterexample, but unclear whether the conditions coincide in general

Necessary Condition for Causal Separability

Necessary condition for N-partite causal separability

An N-partite $W^{\text{sep}} \in \mathcal{W}^{\text{sep}}$ must have a decomposition $W = \sum_{k \in \mathcal{N}} W_{(k)}$ where:

- 1. $W_{(k)}$ is a valid process compatible with $A_k \prec (\mathcal{N} \backslash A_k)$
- 2. For each $k' \neq k$, $W_{(k)}^{A_k^{IO} \to A_{k'}^{I'}}$ is an (N-1)-partite causally separable process
 - lacktriangle obeys the necessary conditions for (N-1)-partite processes
 - lacktriangle Coincides with separable condition for N=3 [Oreshkov & Giarmatzi, NJP 2016]
 - Also reduced 4-partite scenario (no output for *D*, c.f. quantum switch)
 - Note that decomposition may differ for each k'
 - Satisfying these conditions with a unique decomposition would imply the sufficient conditions
 - No known counterexample, but unclear whether the conditions coincide in general

Witnesses of Causal Nonseparability

Causally separable process matrix

$$W^{\mathsf{sep}} = q \, W^{A \prec B} + (1 - q) \, W^{B \prec A},$$

Convex cone of (non-normalised) causally separable processes:

$$\mathcal{W}^{\mathsf{sep}} = (\mathcal{P} \cap \mathcal{L}^{A \prec B}) + (\mathcal{P} \cap \mathcal{L}^{B \prec A})$$

Witness of causal nonseparability

 $orall \, W^{ ext{ns}}
otin \, W^{ ext{sep}}, \, \exists S: \ \operatorname{Tr}[S^T \cdot W^{ ext{ns}}] < 0, \, ext{and} \ Tr[S^T \cdot W^{ ext{sep}}] \geq 0 \quad orall \, W^{ ext{sep}} \in \mathcal{W}^{ ext{sep}}$ [Araújo et al., NJP 2015; Branciard, Sci. Rep. 2016]

- Witnesses can be efficiently constructed by semidefinite programming (SDP)
- Witnesses can be measured experimentally

[Rubino et al., Sci. Adv. 2017; Goswami et al., PRL 2018]

Witnessing Causal Nonseparability

■ Both necessary and sufficient conditions define convex cones $\mathcal{W}_{+}^{\text{sep}}$, $\mathcal{W}_{-}^{\text{sep}}$ of (non-normalised) process matrices

- Membership can be tested with SDP
- Dual SDP from necessary condition gives causal witnesses
- lacksquare So far no numerical evidence that $\mathcal{W}_{-}^{\mathsf{sep}}
 eq \mathcal{W}_{+}^{\mathsf{sep}}$, but...

Cones W^{sep} and S for tripartite case

Adopt the notation $\mathcal{L}_X = \{W|_X W = 0\}.$

$$\begin{split} \mathcal{W}^{\text{sep}} &= \mathcal{L}_{[1-A_O]B_{IO}C_{IO}} \cap \left(\mathcal{P} \cap \mathcal{L}_{[1-B_O]C_{IO}} \cap \mathcal{L}_{[1-C_O]} + \mathcal{P} \cap \mathcal{L}_{[1-C_O]B_{IO}} \cap \mathcal{L}_{[1-B_O]} \right) \\ &+ \mathcal{L}_{[1-B_O]A_{IO}C_{IO}} \cap \left(\mathcal{P} \cap \mathcal{L}_{[1-A_O]C_{IO}} \cap \mathcal{L}_{[1-C_O]} + \mathcal{P} \cap \mathcal{L}_{[1-C_O]A_{IO}} \cap \mathcal{L}_{[1-A_O]} \right) \\ &+ \mathcal{L}_{[1-C_O]A_{IO}B_{IO}} \cap \left(\mathcal{P} \cap \mathcal{L}_{[1-A_O]B_{IO}} \cap \mathcal{L}_{[1-B_O]} + \mathcal{P} \cap \mathcal{L}_{[1-B_O]A_{IO}} \cap \mathcal{L}_{[1-A_O]} \right), \end{split}$$

$$\begin{split} \mathcal{S} &= \Big(\mathcal{L}_{[1-A_O]B_{IO}C_{IO}}^{\perp} + (\mathcal{P} + \mathcal{L}_{[1-B_O]C_{IO}}^{\perp} + \mathcal{L}_{[1-C_O]}^{\perp}) \cap (\mathcal{P} + \mathcal{L}_{[1-C_O]B_{IO}}^{\perp} + \mathcal{L}_{[1-B_O]}^{\perp})\Big) \\ &\quad \cap \Big(\mathcal{L}_{[1-B_O]A_{IO}C_{IO}}^{\perp} + (\mathcal{P} + \mathcal{L}_{[1-A_O]C_{IO}}^{\perp} + \mathcal{L}_{[1-C_O]}^{\perp}) \cap (\mathcal{P} + \mathcal{L}_{[1-C_O]A_{IO}}^{\perp} + \mathcal{L}_{[1-A_O]}^{\perp})\Big) \\ &\quad \cap \Big(\mathcal{L}_{[1-C_O]A_{IO}B_{IO}}^{\perp} + (\mathcal{P} + \mathcal{L}_{[1-A_O]B_{IO}}^{\perp} + \mathcal{L}_{[1-B_O]}^{\perp}) \cap (\mathcal{P} + \mathcal{L}_{[1-B_O]A_{IO}}^{\perp} + \mathcal{L}_{[1-A_O]}^{\perp})\Big). \end{split}$$

N=3, two qubit "targets" and 3-dimensional "control"

- Initial control state $|k_1\rangle^{P_c}$ determines first party
- lacksquare First party acts on first target qubit $|\psi\rangle^{P_{t_1}}$
- Output of A_{k_1} determines (dynamically, coherently) k_2 and conditions a flip on second target $|\phi\rangle^{P_{t_2}}$, which is swapped to become "active" target after A_{k_2}
- \blacksquare A_{k_3} then acts on this second target qubit

Can be represented in an "unravelled" form as:

Controlled operations can be written

$$\begin{split} |V_{\emptyset,\emptyset}^{\rightarrow k_1}\rangle\rangle &= |k_1\rangle^{P_c}\,|\mathbbm{1}\rangle\rangle^{P_{t_1}A_{k_1}^I}\,|\mathbbm{1}\rangle\rangle^{P_{t_2}\alpha_1} \\ |V_{\emptyset,k_1}^{\rightarrow k_2}\rangle\rangle &= |0\rangle^{A_{k_1}^O}\,|0\rangle^{A_{k_2}^I}\,|\mathbbm{1}\rangle\rangle^{\alpha_1\alpha_2}\,\,\text{and}\,\,|V_{\emptyset,k_1}^{\rightarrow k_2'}\rangle\rangle &= |1\rangle^{A_{k_1}^O}\,|1\rangle^{A_{k_2}^I}\,|X\rangle\rangle^{\alpha_1\alpha_2}\,\,\text{for}\,\,k_2 \neq k_2' \\ |V_{\emptyset,k_1}^{\rightarrow k_3}\rangle\rangle &= |\mathbbm{1}\rangle\rangle^{A_{k_2}^O\alpha_3}\,|\mathbbm{1}\rangle\rangle^{\alpha_2A_{k_3}^I} \\ |V_{1k_1,k_2\},k_3}^{\rightarrow P_c}\rangle &= |k_3\rangle^{F_c}\,|\mathbbm{1}\rangle\rangle^{A_{k_3}^OF_{t_2}}\,|\mathbbm{1}\rangle\rangle^{\alpha_3F_{t_1}} \end{split}$$

giving (with cyclic permutations for $k_1 = 2, 3$)

$$\begin{split} |w_{(P,A_1,A_2,A_3,F)}\rangle\rangle &= |1\rangle^{P_c} |1\rangle\rangle^{P_{t_1}A_1^I} |00\rangle^{A_1^OA_2^I} |1\rangle\rangle^{A_2^OF_{t_1}} |1\rangle\rangle^{P_{t_2}A_3^I} |1\rangle\rangle^{A_3^OF_{t_2}} |3\rangle^{F_c} \\ |w_{(P,A_1,A_3,A_2,F)}\rangle\rangle &= |1\rangle^{P_c} |1\rangle\rangle^{P_{t_1}A_1^I} |11\rangle^{A_1^OA_3^I} |1\rangle\rangle^{A_3^OF_{t_1}} |X\rangle\rangle^{P_{t_2}A_2^I} |1\rangle\rangle^{A_2^OF_{t_2}} |2\rangle^{F_c} \end{split}$$

Controlled operations can be written

$$\begin{split} |V_{\emptyset,\emptyset}^{\rightarrow k_1}\rangle\rangle &= |k_1\rangle^{P_c}\,|\mathbbm{1}\rangle\rangle^{P_{t_1}A_{k_1}^I}\,|\mathbbm{1}\rangle\rangle^{P_{t_2}\alpha_1} \\ |V_{\emptyset,k_1}^{\rightarrow k_2}\rangle\rangle &= |0\rangle^{A_{k_1}^O}\,|0\rangle^{A_{k_2}^I}\,|\mathbbm{1}\rangle\rangle^{\alpha_1\alpha_2}\,\,\text{, and } |V_{\emptyset,k_1}^{\rightarrow k_2'}\rangle\rangle &= |1\rangle^{A_{k_1}^O}\,|1\rangle^{A_{k_2}^I}\,|X\rangle\rangle^{\alpha_1\alpha_2}\,\,\text{for } k_2 \neq k_2' \\ |V_{\{k_1\},k_2}^{\rightarrow k_3}\rangle\rangle &= |\mathbbm{1}\rangle\rangle^{A_{k_2}^O\alpha_3}\,|\mathbbm{1}\rangle\rangle^{\alpha_2A_{k_3}^I} \\ |V_{\{k_1,k_2\},k_3}^{\rightarrow F}\rangle\rangle &= |k_3\rangle^{F_c}\,|\mathbbm{1}\rangle\rangle^{A_{k_3}^OF_{t_2}}\,|\mathbbm{1}\rangle\rangle^{\alpha_3F_{t_1}} \end{split}$$

giving (with cyclic permutations for $k_1 = 2,3$)

$$\begin{split} &|w_{(P,A_{1},A_{2},A_{3},F)}\rangle\rangle = |1\rangle^{P_{c}} \, |1\rangle\rangle^{P_{t_{1}}A_{1}^{I}} \, |00\rangle^{A_{1}^{O}A_{2}^{I}} \, |1\rangle\rangle^{A_{2}^{O}F_{t_{1}}} \, |1\rangle\rangle^{P_{t_{2}}A_{3}^{I}} \, |1\rangle\rangle^{A_{3}^{O}F_{t_{2}}} \, |3\rangle^{F_{c}} \\ &|w_{(P,A_{1},A_{3},A_{2},F)}\rangle\rangle = |1\rangle^{P_{c}} \, |1\rangle\rangle^{P_{t_{1}}A_{1}^{I}} \, |11\rangle^{A_{1}^{O}A_{3}^{I}} \, |1\rangle\rangle^{A_{3}^{O}F_{t_{1}}} \, |X\rangle\rangle^{P_{t_{2}}A_{2}^{I}} \, |1\rangle\rangle^{A_{2}^{O}F_{t_{2}}} \, |2\rangle^{F_{c}} \end{split}$$

A. A. Abbott

As before, define $W=|w\rangle\!\rangle\!\langle\!\langle w|$ with $|w\rangle\!\rangle=\sum_{k_1,k_2,k_3}|w_{(P,k_1,k_2,k_3,F)}\rangle\!\rangle$

- lacksquare W is easily seen to be causally nonseparable
 - \blacksquare Pure process, not compatible with any of A, B or C being first (after P)
- Appears qualitatively different to the quantum switch
 - Two target qubits, one of which is also used to control the causal order
- \blacksquare But how to prove W is fundamentally inequivalent to quantum switch?
 - Could imagine composing switches, using control of one as target for another, etc.
 - Need a more complete resource theory, e.g. generalising Taddei, Nery and Aolita's proposal for bipartite processes [arXiv:1903.06180]

As before, define $W=|w\rangle\!\!/\!\langle w|$ with $|w\rangle\!\!/=\sum_{k_1,k_2,k_3}|w_{(P,k_1,k_2,k_3,F)}\rangle\!\!/$

- lacktriangleq W is easily seen to be causally nonseparable
 - \blacksquare Pure process, not compatible with any of A, B or C being first (after P)
- Appears qualitatively different to the quantum switch
 - Two target qubits, one of which is also used to control the causal order
- lacksquare But how to prove W is fundamentally inequivalent to quantum switch?
 - Could imagine composing switches, using control of one as target for another, etc.
 - Need a more complete resource theory, e.g. generalising Taddei, Nery and Aolita's proposal for bipartite processes [arXiv:1903.06180]

lacktriangle Crucial difference: $\operatorname{Tr}_F W$ is causally nonseparable and cannot be written as a mixture of valid process matrices with fixed last parties, i.e.

$$\operatorname{Tr}_F W \neq q_1 W^{\{A_1, A_2\} \prec A_3} + q_2 W^{\{A_1, A_3\} \prec A_2} + q_3 W^{\{A_2, A_3\} \prec A_1}$$

- Recall characterisation: $\operatorname{Tr}_F W = \sum_{k \in \mathcal{N}} \widetilde{W}_{(\mathcal{N} \setminus \{k\}, k)} \otimes \mathbb{1}^{A_k^O}$
 - lacksquare the $\widetilde{W}_{(\mathcal{N}\setminus\{k\},k)}$ need not be valid process matrices
- Seems like no composition of quantum switches could give this property!