LM7805C,LM7812C,LM7815C

LM78XX Series Voltage Regulators

Literature Number: SNOSBR7C

LM78XX

Series Voltage Regulators

General Description

The LM78XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi, and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.

The LM78XX series is available in an aluminum TO-3 package which will allow over 1.0A load current if adequate heat sinking is provided. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.

Considerable effort was expanded to make the LM78XX series of regulators easy to use and minimize the number of

external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

For output voltage other than 5V, 12V and 15V the LM117 series provides an output voltage range from 1.2V to 57V.

Features

Output current in excess of 1A
Internal thermal overload protection
No external components required
Output transistor safe area protection
Internal short circuit current limit
Available in the aluminum TO-3 package

Voltage Range

LM7805C	5V
LM7812C	12V
LM7815C	15V

Connection Diagrams

Bottom View
Order Number LM7805CK,
LM7812CK or LM7815CK
See NS Package Number KC02A

Top View
Order Number LM7805CT,
LM7812CT or LM7815CT
See NS Package Number T03B

LM78XX

Absolute Maximum Ratings

Distributors for availability and specifications.

If Military/Aerospace specified devices are required,

please contact the National Semiconductor Sales Office/

(Note 3)

Maximum Junction Temperature

(K Package) 150 ° C (T Package) 150 ° C

Storage Temperature Range Lead Temperature (Soldering, 10 sec.)

TO-3 Package K 300 ° C TO-220 Package T 230 ° C

Input Voltage

 $(V_O = 5V, 12V \text{ and } 15V)$

35V

Internal Power Dissipation (Note 1) Internally Limited

Operating Temperature Range (T A) 0 ° C to +70 ° C

Electrical Characteristics LM78XXC

(Note 2)

 $0\,^{\circ}$ C T_{J} 125 $^{\circ}$ C unless otherwise noted.

Parameter tput Voltage e Regulation	C_{O} $T_{J} = 25$ ° C, S_{D} V_{MIN} V_{IN} $I_{O} = 500 \text{ mA}$	onditions $\begin{array}{cccccccccccccccccccccccccccccccccccc$	Min 4.8 4.75 (7.5	10V Typ 5 V _{IN} 3	Max 5.2 5.25 20) 50	Min 11.5 11.4 (14.5	19V Typ 12 V _{IN}	Max 12.5 12.6 27)	Min 14.4 14.2 5 (17.5	Typ 15 V _{IN}	Max 15.6 15.7 5 30)	V V
tput Voltage	$Tj = 25$ ° C, S P_D 15W, 5 m V_{MIN} V_{IN} $I_O = 500 \text{ mA}$	$5 \text{ mA } I_{O}$ 1A nA I_{O} 1A V_{MAX} $Tj = 25 ^{\circ} C$ V_{IN} $0 ^{\circ} C T_{J}$ +125 $^{\circ} C$	4.8 4.75 (7.5	5 V _{IN}	5.2 5.25 20)	11.5	12	12.5	14.4 14.2 5	15	15.6 15.7 5	V
	P_D 15W, 5 m V_{MIN} V_{IN} $I_O = 500 \text{ mA}$	nA I _O 1A V _{MAX} Tj = 25 ° C V _{IN} 0 ° C Tj +125 ° C	4.75 (7.5	V _{IN}	5.25	11.4		12.6	14.2 5		15.7 5	V
e Regulation	V_{MIN} V_{IN} $I_{O} = 500 \text{ mA}$	V _{MAX} Tj = 25 ° C VIN 0 ° C Tj +125 ° C	(7.5	_	20)		V _{IN}		5	V _{IN}	5	
e Regulation	I _O = 500 mA	Tj = 25 ° C VIN 0 ° C Tj +125 ° C		_		(14.5	V _{IN}	27)		V _{IN}		V
e Regulation	I _O = 500 mA	Tj = 25 ° C VIN 0 ° C Tj +125 ° C		_		(14.5	V _{IN}	27)	(17.5	V_{IN}	30)	V
e Regulation		V _{IN} 0 ° C Tj +125 ° C	(7	3	50							
	1 4 4	0 ° C Tj +125 ° C	(7		,		4	120		4	150	mV
	1 4 4	•		V _{IN}	25)	14.5	V _{IN}	30)	(17.5	V _{IN}	30)	V
	1 10				50			120			150	mV
	1 1 1	V _{IN}	(8	V _{IN}	20)	(15	V_{IN}	27)	(18.5	V_{IN}	30)	V
	I _O 1A	Tj = 25 ° C		_	50			120			150	mV
		V _{IN}	(7.5	V _{IN}	20)	(14.6	V_{IN}	27)	(17.7	V_{IN}	30)	V
		0 ° C Tj +125 ° C			25			60			75	mV
		Vin	(8	V _{IN}	12)	(16	V_{IN}	22)	(20	V_{IN}	26)	V
ad Regulation	Tj = 25 ° C	5 mA I _O 1.5A		10	50		12	120		12	150	mV
		250 mA I _O 750			25			60			75	mV
		mA										
	5 mA I _O	IA, 0 ° C Tj +125 °			50			120			150	mV
	С											
iescent Current	I _O 1A	Tj = 25 ° C			8			8			8	mA
		0 ° C Tj +125 ° C			8.5			8.5			8.5	mA
iescent Current	5 mA I _O	1A			0.5			0.5			0.5	mA
ange	Tj = 25 ° C _⊙ l	1A			1.0			1.0			1.0	mA
	V _{MIN} V _{IN}	V _{MAX}	(7.5	V _{IN}	20)	(14.8	V_{IN}	27)	 (17.9	V _{IN}	30)	V
					1.0			1.0			1.0	mA
	"	·	(7	Vini	25)	(14.5	Vini	30)	(17.5	Vin	30)	V
tput Noise tage				40	,	· ·	75	00)	(17.0	90	,	μV
ple Rejection		I _O 1A, Ti = 25 ° 0	ე ე მ	80		55	72		54	70		dB
	f = 120 Hz		62			55			54			dB
	V _{MIN} V _{IN}		(8	V _{IN}	18)	(15	V _{IN}	25)	(18.	5 V _I	N	V
ie tp	escent Current escent Current inge out Noise	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	250 mA I _O 750 mA 5 mA I _O 1A, 0 ° C Tj +125 ° C Scent Current I _O 1A Tj = 25 ° C O° C Tj +125 ° C Scent Current Tj = 25 ° C _O I 1A Tj	250 mA I _O 750 mA 5 mA I _O 1A, 0 ° C Tj +125 ° C scent Current I _O 1A Tj = 25 ° C 0° C Tj +125 ° C 8 8 8 8 8 8 8 8 8 8 8 8 8 8

LM78XX

-65 ° C to +150 ° C

Output Voltage			5V		12V						
Input Voltage (unless otherwise noted)			10V	19V			23V			Units	
Symbol	Parameter	Conditions	Min Typ	Max	Min	Тур	Max	Min	Тур	Max	1
R_0	Dropout Voltage	Tj = 25 ° C _ဝ ပျ _T = 1A	2.0			2.0			2.0		V
	Output Resistance	f = 1 kHz	8			18			19		m
	Short-Circuit	Tj = 25 ° C	2.1			1.5			1.2		A
	Current										
	Peak Output	Tj = 25 ° C	2.4			2.4			2.4		A
	Current										
	Average TC of V _{OUT}	0 ° C Tj +125 ° C, d = 5 mA	0.6			1.5			1.8		mV/° C
V _{IN}	Input Voltage										
	Required to	Tj = 25 ° C _O I 1A	7.5		14.6			17.7			V
	Maintain										
	Line Regulation					Þ					

Note 1: Thermal resistance of the TO-3 package (K, KC) is typically 4 ° C/W junction to case and 35 ° C/W case to ambient. Thermal resistance of the TO-220 package (T) is typically 4 ° C/W junction to case and 50 ° C/W case to ambient.

Note 2: All characteristics are measured with capacitor across the input of 0.22 properties and ripple rejection ratio are measured using pulse techniques (to the most of the

Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. For guaranteed specifications and the test conditions, see Electrical Characteristics.

Typical Performance Characteristics

Maximum Average Power Dissipation

Peak Output Current

Ripple Rejection

Maximum Average Power Dissipation

Output Voltage (Normalized to 1V at T

LM78XX

774608

Ripple Rejection

774610

Aluminum Metal Can Package (KC)
Order Number LM7805CK, LM7812CK or LM7815CK
NS Package Number KC02A

www.national.com

7

www.national.com 8

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

1

Pi	oducts	Design Support					
Amplifiers	www.national.com/amplifiers	WEBENCH? Tools	www.national.com/webench				
Audio	www.national.com/audio	App Notes	www.national.com/appnotes				
Clock and Timing	www.national.com/timing	Reference Designs www.national.com/refdes					
Data Converters	www.national.com/adc	Samples www.national.com/sample					
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards				
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging				
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green				
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts				
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality				
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback				
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy				
PowerWise? Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions				
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero				
Temperature Sensors	www.national.com/tempsensors	SolarMagic?	www.national.com/solarmagic				
PLL/VCO	www.national.com/wireless	PowerWise? Design University	www.national.com/training				

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION

(" NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY

OR COMPLETENESS OF THE CONTENTS OF THI S PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO

SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS,

MPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS

DOCUMENT.

TESTI NG AND OTHER QUALI TY CONTROLS ARE USED TO THE EXTENT NATI ONAL DEEMS NECESSARY TO SUPPORT NATI ONAL' S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUI REMENTS, TESTI NG OF ALL PARAMETERS OF EACH PRODUCT S NOT NECESSAR LY PERFORMED. NAT ONAL ASSUMES NO L AB L TY FOR APPLI CATIONS ASSI STANCE OR BUYER PRODUCT DESI GN. BUYERS ARE RESPONSI BLE FOR THEI R PRODUCTS AND APPLI CATIONS USI NG NATI ONAL COMPONENTS. PRI OR TO USI NG OR DI STRI BUTI NG ANY PRODUCTS THAT I **NCLUDE** NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL 'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LI ABILITY WHATSOEVER, AND NATI ONAL DI SCLAI MS ANY EXPRESS OR I MPLI ED WARRANTY RELATI NG TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABI LITY, OR I NFRI NGEMENT OF ANY PATENT, COPYRI GHT OR OTHER I NTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIO NAL'S PRO DUCTS ARE NO T AUTHO RIZED FO R USE AS CRITICAL CO MPO NENTS IN LIFE SUPPO RT DEVICES O R SYSTEMS WITHO UT THE EXPRESS PRIO R WRITTEN APPRO VALO F THE CHIEF EXECUTIVE O FFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright? 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com

1 11

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications

Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers

Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps

DLP? Products www.dlp.com Energy and Lighting www.ti.com/energy **DSP** dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical www.ti.com/security Interface interface.ti.com Security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>

OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page <u>e2e.ti.com</u>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright ? 2011, Texas Instruments Incorporated