CoE202 Fundamentals of Artificial intelligence <Big Data Analysis and Machine Learning>

Linear and Polynomial Regression

Prof. Young-Gyu Yoon School of EE, KAIST

Contents

- Recap
- Machine learning
- Supervised learning
- Linear regression
- Polynomial regression
- House price prediction problem

Recap: Challenges in image classification

- Viewpoint variation
- Scale variation
- Deformation
- Occlusion
- Illumination conditions
- Background clutter
- Intra-class variation

Recap: Question

- Despite all these issues, we (human) have no problem in recognizing that these are cats
- How can our algorithms do the same?

Recap: Data-driven approach

- What if we can design a program that can analyze the data and make its own algorithm?
 - Give all possible variations (viewpoint, scale, etc) and just let the program make the algorithm

Recap: Goal

Regression

Classification

Types of machine learning

- Supervised learning: <u>learning a function</u> that maps an input to an output based on example input-output pairs
- **Unsupervised learning**: <u>looking for previously undetected</u> <u>patterns in a data set</u> with no pre-existing labels and without human supervision
- Reinforcement learning: enabling an agent to learn in an interactive environment by trial and error using feedback from its own actions and experiences

Question

How many of you has ever done linear fitting?

Where we are going

- Discuss the definition of machine learning & supervised learning
- Show that linear fitting is a "perfect" example of supervised learning
- Discuss how linear fitting works
- Then, we (pretty much) understand supervised learning ©

Supervised learning

• Supervised learning: <u>learning a function</u> that maps an input to an output based on example input-output pairs

For a data set
$$\mathcal{D} = \{(\vec{x_1}, \vec{y_1}), (\vec{x_2}, \vec{y_2}), \cdots, (\vec{x_N}, \vec{y_N})\}$$

Seeks a function $f: X \to Y$

Such that a loss function $\mathcal{L}: X \times Y \to \mathcal{R}$ is minimized

Supervised learning: image classification

For a data set $\mathcal{D} = \{(\vec{x_1}, \vec{y_1}), (\vec{x_2}, \vec{y_2}), \cdots, (\vec{x_N}, \vec{y_N})\}$

Supervised learning: image classification

Seeks a function $f: X \to Y$

$$f\left(\begin{array}{c} 1 \\ 0 \end{array}\right) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$f\left(\begin{array}{c} 1 \\ 1 \end{array}\right) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Supervised learning: image classification

Neural network can be used to construct the "function"

Supervised learning: Linear regression

 Linear regression is an approach to model the relationship between a dependent variable and one or more independent variables as a linear function

$$f(\vec{x}; \vec{\theta}, \theta_0) = \vec{\theta} \cdot \vec{x} + \theta_0 = \sum_{i=1}^d \theta_i x_i + \theta_0$$

this is NOT sample index

Simple linear regression: one dependent variable and one independent variable

$$f(x; \theta_0, \theta_1) = \theta_1 x + \theta_0$$

For a data set
$$\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)\}$$

Seeks a function $f: X \to Y$

$$f(x; \theta_0, \theta_1) = \theta_1 x + \theta_0$$

Such that a loss function $\mathcal{L}: X \times Y \to \mathcal{R}$ is minimized

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} (f(x_i) - y_i)^2$$

For a data set $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)\}$

Seeks a function $f(x; \theta_0, \theta_1) = \theta_1 x + \theta_0$

Such that the mean squared error, $\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} (f(x_i) - y_i)^2$, is minimized

The "training": finding the function

Seeks a function $f(x; \theta_0, \theta_1) = \theta_1 x + \theta_0$ Such that the mean squared error is minimized

- Finding f is equivalent to finding θ_I and θ_θ
- Training: finding f (or θ_1 and θ_0) from

data set
$$\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)\}$$

• How can we find θ_1 and θ_0 ?

^{*}In machine learning, training refers to the process of finding the model parameters that minimizes the loss function

data set
$$\mathcal{D} = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)\}$$

$$(x_1, y_1) = (1, 1.5)$$

$$(x_2, y_2) = (2, 1.6)$$

$$(x_3, y_3) = (5, 4.9)$$

$$(x_4, y_4) = (7, 5.1)$$

$$= \frac{1}{4} \{ (\theta_1 \cdot 1 + \theta_0 - 1.5)^2 + (\theta_1 \cdot 2 + \theta_0 - 1.6)^2 + (\theta_1 \cdot 5 + \theta_0 - 4.9)^2 + (\theta_1 \cdot 7 + \theta_0 - 5.1)^2 \}$$

$$\mathcal{L}(\theta_1, \theta_0)$$

$$= \frac{1}{4} \{ (\theta_1 \cdot 1 + \theta_0 - 1.5)^2 + (\theta_1 \cdot 2 + \theta_0 - 1.6)^2 + (\theta_1 \cdot 5 + \theta_0 - 4.9)^2 + (\theta_1 \cdot 7 + \theta_0 - 5.1)^2 \}$$

Training: finding θ_1 and θ_0 that minimizes this loss function

$$\mathcal{L}(\theta_1, \theta_0) = \theta_0^2 + 7.5\theta_0\theta_1 - 6.55\theta_0 + 19.75\theta_1^2 - 32.45\theta_1 + 13.7075$$

$$\mathcal{L}(\theta_1, \theta_0) = \theta_0^2 + 7.5\theta_0\theta_1 - 6.55\theta_0 + 19.75\theta_1^2 - 32.45\theta_1 + 13.7075$$

Training (simple example): partial derivative

$$\mathcal{L}(\theta_1, \theta_0) = \theta_0^2 + 7.5\theta_0\theta_1 - 6.55\theta_0 + 19.75\theta_1^2 - 32.45\theta_1 + 13.7075$$

$$\frac{\partial}{\partial \theta_1} \mathcal{L}(\theta_1, \theta_0) = \frac{\partial}{\partial \theta_1} \{\theta_0^2 + 7.5\theta_0 \theta_1 - 6.55\theta_0 + 19.75\theta_1^2 - 32.45\theta_1 + 13.7075\}$$

$$= 39.5\theta_1 + 7.5\theta_0 - 32.45$$

$$\frac{\partial}{\partial \theta_0} \mathcal{L}(\theta_1, \theta_0) = \frac{\partial}{\partial \theta_0} \{\theta_0^2 + 7.5\theta_0 \theta_1 - 6.55\theta_0 + 19.75\theta_1^2 - 32.45\theta_1 + 13.7075\}$$
$$= 7.5\theta_1 + 2\theta_0 - 6.55$$

Training (simple example): partial derivative

$$\frac{\partial}{\partial \theta_1} \mathcal{L}(\theta_1, \theta_0) = 0$$

$$\frac{\partial}{\partial \theta_0} \mathcal{L}(\theta_1, \theta_0) = 0$$

$$39.5\theta_1 + 7.5\theta_0 = 32.45$$

$$7.5\theta_1 + 2\theta_0 = 6.55$$

$$\theta_0 = 0.6747$$

$$\theta_1 = 0.6934$$

$$f(x) = 0.6934x + 0.6747$$

$$\begin{aligned}
f(x_1) &= \theta_1 x_1 + \theta_0 \\
f(x_2) &= \theta_1 x_2 + \theta_0 \\
f(x_3) &= \theta_1 x_3 + \theta_0 \\
f(x_4) &= \theta_1 x_4 + \theta_0
\end{aligned} \qquad \begin{bmatrix}
f(x_1) \\
f(x_2) \\
f(x_3) \\
f(x_4)
\end{bmatrix} = \theta_0 \begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix} + \theta_1 \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}$$

$$\begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \\ f(x_4) \end{bmatrix} = \theta_0 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \theta_1 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$\begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \\ f(x_4) \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

$$(x_1, y_1) = (1, 1.5)$$

$$(x_2, y_2) = (2, 1.6)$$

$$(x_3, y_3) = (5, 4.9)$$

$$(x_4, y_4) = (7, 5.1)$$

$$X = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 5 \\ 1 & 7 \end{bmatrix} \quad Y = \begin{bmatrix} 1.5 \\ 1.6 \\ 4.9 \\ 5.1 \end{bmatrix} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

$$X\theta - Y = \begin{bmatrix} \theta_1 + \theta_0 - 1.5 \\ 2\theta_1 + \theta_0 - 1.6 \\ 5\theta_1 + \theta_0 - 4.9 \\ 7\theta_1 + \theta_0 - 5.1 \end{bmatrix}$$

$$(X\theta - Y)^{T}(X\theta - Y) = \begin{bmatrix} \theta_{1} + \theta_{0} - 1.5 \\ 2\theta_{1} + \theta_{0} - 1.6 \\ 5\theta_{1} + \theta_{0} - 4.9 \\ 7\theta_{1} + \theta_{0} - 5.1 \end{bmatrix}^{T} \begin{bmatrix} \theta_{1} + \theta_{0} - 1.5 \\ 2\theta_{1} + \theta_{0} - 1.6 \\ 5\theta_{1} + \theta_{0} - 4.9 \\ 7\theta_{1} + \theta_{0} - 5.1 \end{bmatrix}$$

$$= \{(\theta_1 \cdot 1 + \theta_0 - 1.5)^2 + (\theta_1 \cdot 2 + \theta_0 - 1.6)^2 + (\theta_1 \cdot 5 + \theta_0 - 4.9)^2 + (\theta_1 \cdot 7 + \theta_0 - 5.1)^2\}$$

$$\therefore \mathcal{L}(\theta) = \frac{1}{4} (X\theta - Y)^T (X\theta - Y)$$

$$\mathcal{L}(\theta) = \frac{1}{4}(X\theta - Y)^T(X\theta - Y)$$

$$\nabla_{\theta} \mathcal{L}(\theta) = \begin{bmatrix} \frac{\partial}{\partial \theta_0} \mathcal{L}(\theta_1, \theta_0) \\ \frac{\partial}{\partial \theta_1} \mathcal{L}(\theta_1, \theta_0) \end{bmatrix} = 0$$

$$\nabla_{\theta} \mathcal{L}(\theta) = \frac{1}{2} X^T (X\theta - Y) = 0$$

$$X^TY = X^TX\theta$$

$$\theta = (X^T X)^{-1} X^T Y$$

$$\theta = (X^{T}X)^{-1}X^{T}Y$$

$$= \left(\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 5 & 7 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 5 \\ 1 & 7 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 5 & 7 \end{bmatrix} \begin{bmatrix} 1.5 \\ 1.6 \\ 4.9 \\ 5.1 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 15 \\ 15 & 79 \end{bmatrix}^{-1} \begin{bmatrix} 13.1 \\ 64.9 \end{bmatrix} = \begin{bmatrix} 0.8681 & -0.1648 \\ -0.1648 & 0.0440 \end{bmatrix} \begin{bmatrix} 13.1 \\ 64.9 \end{bmatrix} = \begin{bmatrix} 0.6747 \\ 0.6934 \end{bmatrix}$$

$$\theta_0 = 0.6747$$
 $\theta_1 = 0.6934$

$$\theta_0 = 0.6747$$

$$\theta_1 = 0.6934$$

$$f(x) = 0.6934x + 0.6747$$

$$\theta = (X^T X)^{-1} X^T Y$$

$$X : m \times 2$$

$$X^T : 2 \times m$$

$$X^T X : 2 \times 2$$

$$(X^T X)^{-1} : 2 \times 2$$

$$(X^T X)^{-1} X^T : 2 \times m$$

$$Y : m \times 1$$

$$\theta = (X^T X)^{-1} X^T Y : 2 \times 1$$

32

• This relation can be used to find θ for a large m (number of data points)!

$$\theta = (X^TX)^{-1}X^TY$$
 Q) Pop quiz: what happens if m < 2
$$X: m \times 2$$

$$X^T: 2 \times m$$

$$X^TX: 2 \times 2$$

$$(X^TX)^{-1}: 2 \times 2$$

$$(X^TX)^{-1}X^T: 2 \times m$$

$$Y: m \times 1$$

$$\theta = (X^TX)^{-1}X^TY: 2 \times 1$$

• This relation can be used to find θ for a large m (number of data points)!

Polynomial regression

 Polynomial regression is an approach to model the relationship between a dependent variable and one or more independent variables as an nth order polynomial function

$$f(x;\theta) = \sum_{l=1}^{k} \theta_l x^l + \theta_0$$

Polynomial regression

Almost everything is the same as linear regression

For a data set $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)\}$

Seeks a function $f: X \to Y$

$$f(x;\theta) = \sum_{l=1}^{k} \theta_l x^l + \theta_0$$

Such that a loss function $\mathcal{L}: X \times Y \to \mathcal{R}$ is minimized

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} (f(x_i) - y_i)^2$$

Polynomial regression: matrix representation

2nd order polynomial regression for the same data set

$$f(x_1) = \theta_2 x_1^2 + \theta_1 x_1 + \theta_0$$

$$f(x_2) = \theta_2 x_2^2 + \theta_1 x_2 + \theta_0$$

$$f(x_3) = \theta_2 x_3^2 + \theta_1 x_3 + \theta_0$$

$$f(x_4) = \theta_2 x_4^2 + \theta_1 x_4 + \theta_0$$

$$f(x_{2}) = \theta_{2}x_{2}^{2} + \theta_{1}x_{2} + \theta_{0}$$

$$f(x_{3}) = \theta_{2}x_{3}^{2} + \theta_{1}x_{3} + \theta_{0}$$

$$f(x_{3}) = \theta_{2}x_{3}^{2} + \theta_{1}x_{3} + \theta_{0}$$

$$f(x_{4}) = \theta_{0}\begin{bmatrix} f(x_{1}) \\ f(x_{2}) \\ f(x_{4}) \end{bmatrix} = \theta_{0}\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \theta_{1}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} + \theta_{2}\begin{bmatrix} x_{1}^{2} \\ x_{2}^{2} \\ x_{3}^{2} \\ x_{4}^{2} \end{bmatrix}$$

$$\begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \\ f(x_4) \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$$

Feature matrix

$$\Phi = \begin{bmatrix} \phi(x_1) & \phi(x_2) & \phi(x_3) & \cdots & \phi(x_n) \end{bmatrix}^T$$

$$\phi(x) = \begin{bmatrix} 1 \\ x^1 \\ x^2 \\ \vdots \\ x^K \end{bmatrix}$$

$$(x_1, y_1) = (1, 1.5)$$
 $(x_2, y_2) = (2, 1.6)$
 $(x_3, y_3) = (5, 4.9)$
 $(x_4, y_4) = (7, 5.1)$
 $(x_1, y_1) = (1, 1.5)$
 $\Phi = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 5 & 25 \\ 1 & 7 & 49 \end{bmatrix}$

$$\begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \\ f(x_4) \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} \qquad \Phi = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 5 & 25 \\ 1 & 7 & 49 \end{bmatrix} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} \qquad Y = \begin{bmatrix} 1.5 \\ 1.6 \\ 4.9 \\ 5.1 \end{bmatrix}$$

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} (f(x_i) - y_i)^2 = \frac{1}{4} \sum_{i=1}^{4} (\theta_2 x_i^2 + \theta_1 x_i + \theta_0 - y_i)^2$$

$$= \frac{1}{4} \{ (\theta_2 \cdot 1 + \theta_1 \cdot 1 + \theta_0 - 1.5)^2 + (\theta_2 \cdot 4 + \theta_1 \cdot 2 + \theta_0 - 1.6)^2 + (\theta_2 \cdot 25 + \theta_1 \cdot 5 + \theta_0 - 4.9)^2 + (\theta_2 \cdot 49 + \theta_1 \cdot 7 + \theta_0 - 5.1)^2 \}$$

$$\Phi\theta - Y = \begin{bmatrix} \theta_2 + \theta_1 + \theta_0 - 1.5 \\ 4\theta_2 + 2\theta_1 + \theta_0 - 1.6 \\ 25\theta_2 + 5\theta_1 + \theta_0 - 4.9 \\ 49\theta_2 + 7\theta_1 + \theta_0 - 5.1 \end{bmatrix}$$

$$\theta = (\Phi^T \Phi)^{-1} \Phi^T Y$$

$$= \begin{pmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 5 & 7 \\ 1 & 4 & 25 & 49 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 5 & 25 \\ 1 & 7 & 49 \end{bmatrix})^{-1} \begin{pmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 5 & 7 \\ 1 & 4 & 25 & 49 \end{bmatrix} \begin{bmatrix} 1.5 \\ 1.6 \\ 4.9 \\ 5.1 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 15 & 79 \\ 15 & 79 & 477 \\ 79 & 477 & 3043 \end{bmatrix}^{-1} \begin{bmatrix} 13.1 \\ 64.9 \\ 380.3 \end{bmatrix} = \begin{bmatrix} 3.0292 & -1.8743 & 0.2152 \\ -1.8743 & 1.3962 & -0.1702 \\ 0.2152 & -0.1702 & 0.0214 \end{bmatrix} \begin{bmatrix} 13.1 \\ 64.9 \\ 380.3 \end{bmatrix}$$

$$= \begin{bmatrix} -0.1339 \\ 1.3331 \\ -0.0805 \end{bmatrix}$$

$$\theta_0 = -0.1339 \quad \theta_1 = 1.3331 \quad \theta_2 = -0.0805$$

$$\theta_0 = -0.1339$$

$$\theta_1 = 1.3331$$

$$\theta_2 = -0.0805$$

$$f(x) = -0.0805x^2 + 1.3331x - 0.1339$$

3rd order polynomial regression?

$$(x_1, y_1) = (1, 1.5)$$

$$(x_2, y_2) = (2, 1.6)$$

$$(x_3, y_3) = (5, 4.9)$$

$$(x_4, y_4) = (7, 5.1)$$

$$\Phi = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 5 & 25 & 125 \\ 1 & 7 & 49 & 343 \end{bmatrix} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{bmatrix} \quad Y = \begin{bmatrix} 1.5 \\ 1.6 \\ 4.9 \\ 5.1 \end{bmatrix}$$

$$\theta = (\Phi^T \Phi)^{-1} \Phi^T Y = \begin{bmatrix} 2.6500 \\ -1.9250 \\ 0.8500 \\ -0.0750 \end{bmatrix}$$

$$\theta_0 = 2.6500$$

$$\theta_1 = -1.9250$$

$$\theta_2 = 0.8500$$

$$\theta_3 = -0.0750$$

$$f(x) = -0.075x^3 + 0.85x^2 - 1.925x + 2.65$$

Linear regression vs. Polynomial regression

Simple linear regression

$$f(x; \theta_0, \theta_1) = \theta_1 x + \theta_0$$

$$\begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \\ f(x_4) \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

Linear regression

$$f(\vec{x}; \vec{\theta}, \theta_0) = \vec{\theta} \cdot \vec{x} + \theta_0 = \sum_{i=1}^d \theta_i x_i + \theta_0$$

Polynomial regression compare!

$$f(x;\theta) \neq \sum_{l=1}^{k} \theta_l x^l + \theta_0$$

$$\begin{bmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \\ f(x_4) \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$$

Choosing the "model"

- Linear regression vs. 2nd order polynomial regression vs. 3rd order polynomial regression
- We have a smaller loss with a higher order function
 - More complex model has more ability (we call this "capacity") represent more complicated relationship between the input and the output
- Does this mean higher order function is better?
 - We will revisit and talk more about this later...but the short conclusion is that it is important to choose the "right" model

House price prediction problem

What regression do we want to do?

House price prediction problem

- We can try to minimize the MSE loss by choosing a model and applying what we have learned
- In the plot, it seems like the data shows linear correlation between the area and the price (which makes us want to use linear fitting)
- In the plot, it seems that the data has a lot of "noise"
- We know that there are lots of factors, other than area, that can affect the house price
- · No matter how well we do the regression, our prediction will not be very accurate
- We have to provide "enough" information

Summary

- Machine learning refers to algorithms that improve their performance at some task with experience
- There are three types of machine learning: supervised learning, unsupervised learning and reinforcement learning
- Supervised learning is about <u>learning a function</u> that maps an input to an output based on example input-output pairs
- Linear regression is an approach to model the relationship between a dependent variable and one or more independent variables as a linear function
 - ...and linear regression is a perfect example of supervised learning
- Polynomial regression is an approach to model the relationship between a dependent variable and one or more independent variables as an nth order polynomial function

References

- Lecture notes
 - CC229 lecture note
 - http://cs229.stanford.edu/notes/cs229-notes-all/cs229-notes1.pdf
 - MIT 6.036 Intro to Machine Learning (Chapter 7)
 - https://www.mit.edu/~lindrew/6.036.pdf