METODA MARQUARDTA

Implementacja algorytmu optymalizacyjnego w języku Julia

Konrad Roszczynialski 2019-05-16

Spis Treści:

- 1. Opis projektu
 - a. Ogólnie
 - b. Sposób działania
- 2. Harmonogram prac
- 3. Źródła

1. Opis Projektu

a. Ogólny opis

W metodzie Marquardta, stosuje się na początku metodę Cauchy'ego, a następnie wykorzystuje się metodę Newtona.

Metoda Cauchy'ego jest używana do rozwiązania problemu minimalizacji funkcji.

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \lambda \nabla \Phi(\mathbf{x}_i),$$

W ogólnym przypadku jest ona wolno zbieżna, więc korzystając z wiedzy o drugiej pochodnej minimalizowanej funkcji w badanym punkcie możemy skorzystać z rozwinięcia gradientu minimalizowanej funkcji w szereg Taylora.

$$\nabla \Phi(\mathbf{x}) = \nabla \Phi(\mathbf{x}_0) + (\mathbf{x} - \mathbf{x}_0)^\mathsf{T} \nabla^2 \Phi(\mathbf{x}_0) + \dots$$

Wtedy przyjmujemy przybliżenie kwadratowe funkcji Φ w otoczeniu $\mathbf{x_0}$ do rozwiązania równania $\nabla \Phi(\bar{\mathbf{x}}) = \mathbf{0}$ W ten sposób otrzymujemy metodę Gaussa-Newtona opisaną schematem:

$$\mathbf{x}_{i+1} = \mathbf{x}_i - (\nabla^2 \Phi(\mathbf{x}_i))^{-1} \nabla \Phi(\mathbf{x}_i),$$

Kenneth Levenberg zauważył, że opisane metody (największego spadku i Gaussa-Newtona) nawzajem się uzupełniają i zaproponował następującą modyfikację kroku metody:

$$\mathbf{x}_{i+1} = \mathbf{x}_i - (\mathsf{H}(\mathbf{x}_i) + \lambda \mathsf{I})^{-1} \nabla \Phi(\mathbf{x}_i),$$

Donald Marquardt zauważył, że nawet w sytuacji gdzie hesjan jest niewykorzystywany można wykorzystać informację zawartą w drugiej pochodnej minimalizowanej funkcji, poprzez skalowanie każdego komponentu wektora gradientu w zależności od krzywizny w danym kierunku (co pomaga w źle uwarunkowanych zadaniach minimalizacji typu *error valley*). Po uwzględnieniu

poprawki Marquardta otrzymujemy następującą postać kroku metody:

$$\mathbf{x}_{i+1} = \mathbf{x}_i - (\mathsf{H}(\mathbf{x}_i) + \lambda \mathrm{diag}[\mathsf{H}])^{-1} \nabla \Phi(\mathbf{x}_i),$$

b. Sposób działania

- i. Wybierz maksymalną liczbę iteracji M, punkt początkowy oraz parametr zakończenia ϵ . Ustal k=0 oraz λ (0) = 104 (duża liczba).
- ii. Oblicz $\nabla f(x(k))$
- iii. Jeśli ||∇f(x (k))|| ≤ ε, Zakończ;
 Jeśli k ≥ M; Zakończ;
 W przeciwnym razie idź do kroku 4).
- iv. Oblicz x (k+1) = x (k) h $\nabla 2$ f(x (k)) + λ (k) | i-1 ∇ f(x (k))
- v. Jeśli f(x (k+1)) < f(x (k)), idź do kroku 6); W przeciwnym przypadku idź do kroku 7).
- vi. Ustal λ (k+1) = 1 2 λ (k), k = k + 1 i idź do kroku 2).
- **VII.** Ustal λ (k+1) = 2λ (k) i idź do kroku 4).

2. Harmonogram Prac

Cel	Termin
Stworzenie specyfikacji projektu	17.05.19
Utworzenie niegenerycznej funkcji	24.05.19
Ukończenie generycznej funkcji	10.06.19
Ukończenie dokumentacji projektu	14.06.19

3. Źródła

- a. "Metody Optymalizacji" Michał Lewandowski
- b. Wikipedia