

Теория вероятностей и математическая статистика Часть 1

Теория вероятностей

Лектор: Лобузов Алексей Аркадьевич

Направление подготовки бакалавров 01.03.02 «Прикладная математика и информатика»

Профили подготовки

«Математическое моделирование и вычислительная математика» «Системное программирование и компьютерные технологии»

Формируемые компетенции:

- способность собирать, обрабатывать и интерпретировать данные современных научных исследований;
- знание принципов решения вероятностных задач с использованием стандартных программных средств;
- владение навыками построения стохастических моделей для исследования случайных явлений.

ЛЕКЦИЯ 1

Основные понятия теории вероятностей

Основные понятия теории вероятностей

Случайное событие — результат (исход) некоторого испытания (эксперимента, наблюдения), который может осуществиться или не осуществиться.

Элементарное событие (элементарный исход) нельзя разделить на события, которые могут осуществиться.

Пространство элементарных событий Ω — множество всех элементарных событий (исходов).

Каждое элементарное событие (исход) ω – элемент Ω , $\omega \in \Omega$.

Каждое событие A — подмножество Ω , $A \subseteq \Omega$. Событие A произошло, когда осуществился некоторый элементарный исход ω , который входит в A, $\omega \in A$.

 Ω также называют достоверным событием.

Невозможное событие \varnothing не содержит в себе ни одного элементарного события.

Операции над событиями

Противоположное событие

$$\overline{A} = \{\omega \in \Omega \mid \omega \notin A\}$$

Произведение событий

$$AB = \{ \omega \in \Omega | \omega \in A \ u \ \omega \in B \}$$

Сумма событий

$$A+B=\{\omega\in\Omega|\omega\in A\ unu\ \omega\in B\}$$

Разность событий

$$A - B = A \cdot \overline{B}$$

Симметрическая разность событий

$$A\Delta B = (A \setminus B) + (B \setminus A) = A + B - AB$$

Сравнение терминов теории вероятностей и теории множеств

Теория множеств	Теория вероятностей
1. Ω – множество	1. Ω – достоверное событие
2. ω∈Ω – элементы	2. ω∈Ω – элементарные исходы
3. А⊆Ω – подмножество	3. А⊆Ω – событие
4. \overline{A} – дополнение	4. \overline{A} — противоположное событие
5. A∩B – пересечение	5. АВ – произведение событий
6. A∪B – объединение	6. А+В – сумма событий
7. Ø – пустое множество	7. Ø – невозможное событие
8. $A \cap B = \emptyset \implies A \ u \ B -$	8. $AB = \varnothing \implies A \ u \ B$ – несовместные
непересекающиеся множества	события

Свойства операций над событиями

Ассоциативность

$$(A+B)+C=A+(B+C)_{-\ accolumn{2}{c}}$$
 - ассоциативность сложения

$$(AB)C = A(BC)$$
 – ассоциативность умножения

Коммутативность

$$A + B = B + A$$
 – коммутативность сложения

$$AB = BA$$
 – коммутативность умножения

Закон двойного отрицания $\overline{A} = A$ Дистрибутивность

а) умножения по отношению к сложению

$$A(B+C) = AB + AC$$

б) сложения по отношению к умножению

$$A+BC=(A+B)(A+C)$$

Законы де Моргана

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$
, $\overline{AB} = \overline{A} + \overline{B}$

$$\overline{AB} = \overline{A} + \overline{B}$$

Вероятностное пространство

Множество событий ${\mathcal A}$ называется ${f \sigma}$ -алгеброй, если выполнены следующие условия:

1)
$$\Omega \in \mathcal{A}$$

2)
$$A \in \mathcal{A} \Rightarrow \overline{A} \in \mathcal{A}$$

3)
$$A_i \in \mathcal{A}$$
, $i = 1, 2, ...$ $\Rightarrow \sum_{i=1}^{\infty} A_i \in \mathcal{A}$

Отображение $P: \mathcal{A} \to \mathbf{R}$ называется вероятностью, если

1) для любого
$$A \in \mathcal{A}$$
 $0 \le P(A) \le 1$ и $P(\Omega)=1$

2)
$$A_i \in \mathcal{A} \ (i=1,2,...); \quad A_i A_j = \emptyset \ (i \neq j) \Rightarrow$$

$$\Rightarrow P(\sum_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

Тройка (Ω, \mathcal{A}, P) называется вероятностным пространством.

Основные свойства вероятности

$$P(\emptyset) = 0$$

2.
$$P(\overline{A})=1-P(A)$$

3.
$$A \subseteq B \Rightarrow P(A) \leq P(B)$$

4.
$$P(A+B)=P(A)+P(B)-P(AB)$$

5.
$$P(A+B+C)=P(A)+P(B)+P(C)-$$

$$-P(AB)-P(AC)-P(BC)+P(ABC)$$

Примеры вероятностных пространств

1. $\Omega = \{(i, j) | i, j = 1,...,6\}$ — множество всех элементарных событий при бросании двух игральных костей;

$$\mathcal{A}=M(\Omega)$$
 — множество всех подмножеств Ω ;

$$\omega = (i, j) \Rightarrow P(\{\omega\}) = \frac{1}{36}; P(A) = \frac{|A|}{36}, |A|$$
 — число элементов в A .

2. $\Omega = \{1, 2, ...\}$; $A = M(\Omega)$ — множество всех подмножеств Ω ;

$$\omega = i \Rightarrow P(\{\omega\}) = \frac{1}{2^i}; P(A) = \sum_{\omega \in A}^{\infty} P(\{\omega\})$$

3.
$$\Omega = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\} - \kappa \text{вадрат};$$

$$\mathcal{A} = \mathscr{B}(\Omega)$$
 — множество борелевских подмножеств Ω ;

$$A \in \mathcal{A} \Longrightarrow \mathrm{P}(A) = S_{_A}$$
 – площадь A .

01.03.02 «Прикладная математика и информатика» Теория вероятностей и математическая статистика Часть 1 Теория вероятностей

Лектор: Лобузов Алексей Аркадьевич

Online-edu.mirea.ru

ЛЕКЦИЯ 2

Классическая и геометрическая вероятности

Классическая вероятность

Классическое определение вероятности применяется при выполнении условий:

1)
$$\Omega = \{\omega_1, ..., \omega_n\}, \quad |\Omega| = n < \infty$$
;

2) все $\omega_i \in \Omega$ равновозможны, т.е. $P(\{\omega_i\}) = p$ для всех $\omega_i \in \Omega$.

При этом из равенства
$$P(\Omega) = \sum_{i=1}^{n} P(\{\omega_i\}) = \sum_{i=1}^{n} p = np = 1$$
 следует

формула классической вероятности

$$P(A) = \frac{|A|}{|\Omega|} = \frac{m}{n}$$

для всех событий $A \subseteq \Omega$,

где |A| = m — число элементов в A.

Для нахождения числа элементарных исходов в событиях применяются формулы комбинаторики.

Формулы комбинаторики

- 1. Число подмножеств $M(\Omega)$ множества Ω ($|\Omega|=n$) равно $|M(\Omega)|=2^n$.
- 2. Число способов упорядоченного выбора m элементов из множества Ω ($|\Omega| = n$) с возвращением равно n^m .
- 3. Число способов упорядоченного выбора m элементов из множества Ω ($|\Omega|=n$) без возвращения равно $A_n^m=n(n-1)\cdots(n-m+1)$.

Про этой же формуле находится число размещений n различимых элементов по m местам.

Формулы комбинаторики

- 4. Число перестановок n различимых элементов $A_n^n = n!$.
- 5. Число сочетаний n различимых элементов по m равно

$$C_n^m = \frac{A_n^m}{m!} = \frac{n(n-1)\cdots(n-m+1)}{m!} = \frac{n!}{m!(n-m)!}$$

это также равно числу способов неупорядоченного выбора m элементов из множества Ω ($|\Omega|=n$) без возвращения.

6. Число способов распределения n неразличимых элементов по r урнам (в каждой урне может быть от 0 до n элементов)

равно
$$C_{n+r-1}^n = C_{n+r-1}^{r-1} = \frac{A_{n+r-1}^n}{n!} = \frac{A_{n+r-1}^{r-1}}{(r-1)!} = \frac{(n+r-1)!}{n!(r-1)!}$$
.

Задача о выборке

Из множества, содержащего N элементов, среди которых М отмеченных элементов, случайным образом выбирают n элементов. Требуется найти вероятность того, что среди nвыбранных будет ровно $\,m\,$ отмеченных элементов. Элементарным событием в этом случае является любой неупорядоченный выбор n элементов из N, поэтому число элементов в множестве всех элементарных исходов Ω равно C_N^n . Число элементарных исходов в рассматриваемом событии находится по правилу умножения: число способов выбора m элементов из M отмеченных умножается на число способов выбора остальных n-m элементов из N-M неотмеченных.

Поэтому требуемая вероятность находится по формуле

$$P = \frac{C_M \cdot C_{N-M}^{n-m}}{C_N^n}$$

Геометрическая вероятность

Геометрическое определение вероятности применяется при выполнении условий:

- 1) $\Omega \subseteq R^n$, $0 < \mu(\Omega) < \infty$ (где $\mu(\Omega)$ мера (площадь, объём)
- множества Ω в \mathbb{R}^n);
- 2) вероятность любого события $A \subseteq \Omega$ пропорциональна его мере $\mu(A)$.

В этом случае $\mathcal{A} = \mathscr{B}(\Omega)$ — множество борелевских подмножеств Ω .

Из условия 2) следует, что для всех $A \in \mathcal{A} : \mathrm{P}(A) = \alpha \cdot \mu(A)$,

но
$$P(\Omega)=1=\alpha\cdot\mu(\Omega)$$
 , т.е. $\alpha=\frac{1}{\mu(\Omega)}$. Отсюда получается

формула для геометрической вероятности

$$P(A) = \frac{\mu(A)}{\mu(\Omega)}$$
.

Задача о встрече

Два человека приходят в парк в интервал времени от a до a+L . Каждый проводит там время l . Найти вероятность того, что они встретятся.

$$\Omega = \{(x, y): 0 \le x \le L, 0 \le y \le L\}$$

 $A = \{(x, y) \in \Omega: |y - x| \le l\}$

$$\mu(\Omega) = L^2$$
, $\mu(\overline{A}) = (L-l)^2$, $\mu(A) = L^2 - (L-l)^2$

$$P(A) = \frac{L^2 - (L - l)^2}{L^2} = 1 - \left(\frac{L - l}{L}\right)^2 = \frac{2l}{L} - \left(\frac{l}{L}\right)^2$$

ЗАДАЧА БЮФФОНА (1777 год)

На плоскость, расчерченную параллельными прямыми с расстоянием a друг от друга, случайным образом бросается игла длиной l < a. Найти вероятность того, что игла не пересечет ни одну линию.

$$\Omega = \{(x, \varphi): 0 \le x \le \frac{a}{2}, 0 \le \varphi \le \pi\} \subseteq \mathbb{R}^2, \ \mu(\Omega) = \frac{(a\pi)}{2}$$

x – расстояние от центра иглы до ближайшей линии;

 φ - угол между иглой и линией.

$$A = \{(x,\varphi) \colon 0 \le \varphi \le \pi, \ x > \frac{1}{2}l\sin\varphi\}, \ \mu(\overline{A}) = \int_{0}^{\pi} \frac{1}{2}l\sin\varphi d\varphi = l$$

$$P(\overline{A}) = \frac{2l}{a\pi}, P(A) = 1 - \frac{2l}{a\pi}$$

01.03.02 «Прикладная математика и информатика» Теория вероятностей и математическая статистика Часть 1 Теория вероятностей

Лектор: Лобузов Алексей Аркадьевич

Online-edu.mirea.ru

ЛЕКЦИЯ 3

Условные вероятности

Условные вероятности

Рассмотрим бросание игральной кости

$$\Omega = \{1, ..., 6\}$$

$$A = \{1, 3, 6\}$$

$$P(A) = \frac{3}{6} = \frac{1}{2} = \frac{|A|}{|\Omega|}$$

$$B = \{2, 4, 6\}$$

$$B = \{2, 4, 6\}$$
 $P(A|B) = \frac{1}{3} = \frac{|A \cdot B|}{|B|} =$

$$= \frac{\frac{|A \cdot B|}{|\Omega|}}{\frac{|B|}{|\Omega|}} = \frac{P(A \cdot B)}{P(B)}$$

Условные вероятности

Условная вероятность события A при условии, что событие B произошло ($(P(B)\!>\!0)$, обозначается как P(A|B) или $P_B(A)$ и

определяется как
$$P(A|B) = \frac{P(A \cdot B)}{P(B)}$$
.

Свойства условной вероятности:

1. Аддитивность:

если
$$A_i A_j = \emptyset (i \neq j)$$
, то $P(\sum_{i=1}^{\infty} A_i | B) = \sum_{i=1}^{\infty} P(A_i | B)$.

2. Формула умножения для двух событий:

$$P(A \cdot B) = P(B) \cdot P(A|B) = P(A) \cdot P(B|A)$$

при условии $P(A) \neq 0, P(B) \neq 0$.

Свойства условной вероятности

2. Формула умножения для п событий

$$P(A_1A_2...A_n) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_1A_2)...P(A_n|A_1...A_{n-1})$$

Доказательство формулы умножения для *п* событий:

$$\begin{split} B_k &= A_1 ... A_k \Longrightarrow B_1 = A_1; B_k = A_k \cdot B_{k-1}; A_1 A_2 ... A_n = B_n \\ P(A_1 A_2 ... A_n) &= P(A_n \cdot B_{n-1}) = P(A_n | B_{n-1}) \cdot P(B_{n-1}) = \\ &= P(A_n | B_{n-1}) \cdot P(A_{n-1} | B_{n-2}) \cdot P(B_{n-2}) = ... \\ &= P(A_n | A_1 ... A_{n-1}) P(A_{n-1} | A_1 ... A_{n-2}) ... P(A_2 | A_1) \cdot P(A_1) \end{split}$$

Независимость событий

События A и B называются независимыми, если $P(A \cdot B) = P(A) \cdot P(B)$.

Если P(A|B) = P(A), то говорят, что событие A не зависит от события B.

Свойства независимости:

- 1. Следующие свойства эквивалентны при условии $P(A) \neq 0$, $P(B) \neq 0$:
 - а) A и B независимы;
 - б) P(A|B) = P(A) (событие A не зависит от B);
 - в) P(B|A) = P(B) (событие B не зависит от A).

Свойства независимости

- 2. Если $P(A) \neq 0$, $P(B) \neq 0$ и $A \cdot B = \emptyset$ (т.е. A и B несовместны), то A и B зависимы.
- 3. Следующие утверждения эквивалентны:
 - а) A и B независимы;
 - б) A и \overline{B} независимы;
 - в) \overline{A} и B независимы;
 - г) \overline{A} и \overline{B} независимы.
- 4. Если A и B независимы, то P(A+B)=P(A)+P(B)-P(A)P(B) .
- 5. Для любого события $A\colon A$ и \varnothing независимы и A и Ω независимы.

Независимость событий

События
$$\{A_1, \dots, A_n\}$$
 называются попарно независимыми, если для всех $i \neq j$ верно $P(A_i A_j) = P(A_i) \cdot P(A_j)$. События $\{A_1, \dots, A_n\}$ называются независимыми в совокупности, если для всех различных i_1, i_2, \dots, i_k верно $P(A_{i_1} \dots A_{i_k}) = P(A_{i_1}) \cdot \dots \cdot P(A_{i_k})$.

Из независимости в совокупности следует попарная независимость. Обратное неверно.

Формулы сложения для независимых событий

Формула сложения для 2-х независимых событий $P(A_1 + A_2) = P(A_1) + P(A_2) - P(A_1)P(A_2) = 1 - P(\overline{A_1})P(\overline{A_2})$

Формула сложения для 3-х независимых событий
$$P(A_1 + A_2 + A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_1)P(A_2) - P(A_2)P(A_3) - P(A_1)P(A_3) + P(A_1)P(A_2)P(A_3) = 1 - P(\overline{A_1})P(\overline{A_2})P(\overline{A_3})$$

01.03.02 «Прикладная математика и информатика» Теория вероятностей и математическая статистика Часть 1 Теория вероятностей

Лектор: Лобузов Алексей Аркадьевич

Online-edu.mirea.ru

ЛЕКЦИЯ 4

Формула полной вероятности и формула Байеса

Формула полной вероятности и формула Байеса Полная группа событий

Рассматриваем вероятностное пространство (Ω, \mathcal{A}, P) .

События $\{H_k\}\ (H_k\!\in\!\mathcal{A})$ образуют полную группу событий, если

1. $\sum_k H_k = \Omega$ (т.е. $\{H_k\}$ покрывают все пространство элементарных

событий);

2. Для всех $k \neq j$ $H_k \cdot H_j = \emptyset$ (т.е. $\{H_k\}$ несовместны).

При этом справедливо равенство $\sum\limits_k P(H_k) = P(\Omega) = 1$.

Пример: $\{\varnothing,\Omega\}$ – тривиальная полная группа событий.

Формула полной вероятности

Если события $\{H_k\}_{k=1}^n$ образуют ПГС и $P(H_k) > 0$, то

для любого события
$$A$$
: $P(A) = \sum_{k=1}^{n} P(H_k) \cdot P(A|H_k)$.

Доказательство:

$$A = \sum_{k=1}^{n} (A \cdot H_k)$$
 и $(A \cdot H_k) \cdot (A \cdot H_j) = \emptyset$, поэтому

$$P(A) = \sum_{k=1}^{n} P(A \cdot H_k) = \sum_{k=1}^{n} P(H_k) \cdot P(A|H_k)$$

Формула Байеса

Если события $\left\{H_k\right\}_{k=1}^n$ образуют ПГС , $P(H_k) > 0$ и P(A) > 0 , то для любого события H_i :

$$P(H_j|A) = \frac{P(H_j) \cdot P(A|H_j)}{\sum_{k=1}^{n} P(H_k) P(A|H_k)}.$$

<u>Доказательство</u>: используем определение условной вероятности и формулу полной вероятности

$$P(H_j|A) = \frac{P(A \cdot H_j)}{P(A)} = \frac{P(H_j) \cdot P(A|H_j)}{\sum_{k=1}^{n} P(H_k)P(A|H_k)}$$

Пример

В первом ящике находится 2 белых шара и 3 чёрных, а во втором — 3 белых шара и 1 чёрный. Из первого ящика случайным образом переложен во второй ящик один шар.

Найти вероятность того, что:

- а) наудачу извлеченный после этого шар из второго ящика будет белым;
- b) из первого ящика был переложен во второй ящик белый шар, если известно, что после этого из второго ящика извлекли белый шар;
- с) из первого ящика был переложен во второй ящик чёрный шар, если известно, что после этого из второго ящика извлекли белый шар.

Решение:

а) Пусть H_I ={из первого ящика во второй переложили белый шар},

 H_2 ={из первого ящика во второй переложили чёрный шар},

 $A = \{$ из второго ящика извлекли белый шар $\}$.

$$P(A) = P(H_1) \cdot P(A|H_1) + P(H_2) \cdot P(A|H_2) = \frac{2 \cdot 4}{5 \cdot 5} + \frac{3 \cdot 3}{5 \cdot 5} = \frac{17}{25}$$
.

b)
$$P(H_1|A) = \frac{P(H_1) \cdot P(A|H_1)}{P(A)} = \frac{\frac{2}{5} \cdot \frac{4}{5}}{\frac{17}{25}} = \frac{8}{17}$$

c)
$$P(H_2|A) = \frac{P(H_2) \cdot P(A|H_2)}{P(A)} = \frac{\frac{3}{5} \cdot \frac{3}{5}}{\frac{17}{25}} = \frac{9}{17}$$
.

01.03.02 «Прикладная математика и информатика» Теория вероятностей и математическая статистика Часть 1 Теория вероятностей

Лектор: Лобузов Алексей Аркадьевич

Online-edu.mirea.ru

ЛЕКЦИЯ 5

Последовательность независимых испытаний

Последовательность независимых испытаний (Схема Бернулли)

Проводятся одинаковые независимые испытания. Испытание называется удачным, если в нём произошло определённое событие ${\cal A}$.

$$P(A) = p_{-}$$
 вероятность удачи, $P(A) = 1 - p = q_{-}$ вероятность

неудачи. Удаче поставим в соответствие 1, а неудаче – 0.

Пример последовательности независимых испытаний

$$A \quad \overline{A} \quad \overline{A} \quad A \quad \overline{A} \quad \overline{A} \quad \overline{A} \quad \overline{A}$$

Рассмотрим событие

$$B_k = \{ npousoum opobno \underline{k} \ y \partial a v \ b \ \underline{n} \ nesabucumых испытаниях \} .$$

обозначим
$$P(B_k) = P_n(k)$$
.

Формула Бернулли

Теорема.
$$P_n(k) = C_n^k \cdot p^k \cdot q^{n-k}$$

Доказательство:

$$\varepsilon_i = egin{cases} 1 \text{, если удача в } i - \text{ом независимом испытании} \\ 0 \text{, иначе} \end{cases}$$

$$\Omega = \left\{ \varepsilon \mid (\varepsilon_1, ..., \varepsilon_n), \varepsilon_i = 0, 1 \right\}$$

$$B_k = \left\{ \overline{\varepsilon} \mid \sum \varepsilon_i = k \right\}, \quad \overline{\varepsilon} \in B_k \implies P(\left\{ \overline{\varepsilon} \right\}) = p^k q^{n-k}$$

$$P(B_k) = |B_k| p^k q^{n-k} = C_n^k p^k q^{n-k}$$

Приближение Пуассона

Применяется при n >> 1, p << 1, $0,1 < n \cdot p <10$.

$$P_n(k) \approx \frac{\lambda^k}{k!} e^{-\lambda}, \qquad (\lambda = np)$$

<u>Теорема Пуассона.</u> Пусть p_n (вероятность удачи) зависит от числа испытаний, при этом $\lim_{n\to\infty} np_n = \lambda > 0$, $\lambda < \infty$.

Тогда
$$\lim_{n\to\infty} C_n^k p_n^k (1-p_n)^{n-k} = \frac{\lambda^k}{k!} e^{-\lambda} .$$

Приближение Лапласа

При больших n >> 1 и при условии n >> 1, 0 , <math>np > 10 или nq > 10

применяется приближение Лапласа, основанное на теоремах Муавра-Лапласа.

Локальная теорема Муавра-Лапласа:

$$P_n(k) = C_n^k p_n q^{n-k} \underset{n \to \infty}{\sim} \frac{1}{\sqrt{npq}} \varphi_0 \left(\frac{k-np}{\sqrt{npq}} \right)$$
, где

$$\varphi_0(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$
.

Приближение Лапласа

Интегральная теорема Муавра-Лапласа.

Пусть ξ_n — число удач в n независимых испытаниях,

p – вероятность удачи в одном испытании, q=1-p . Тогда

$$\lim_{n\to\infty} P(C_1 \le \frac{\xi_n - np}{\sqrt{npq}} \le C_2) = \int_{C_1}^{C_2} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \int_{C_1}^{C_2} \varphi_0(t) dt$$

Функции $\varphi_0(t)$ и $\Phi(x)$

$$\Phi(x) = \int_{-\infty}^{x} \varphi_0(t) dt$$
, $\varphi_0(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$

Свойства: 1)
$$\varphi_0(t) > 0$$
, 2) $\varphi_0(-t) = \varphi_0(t)$,

3)
$$\int_{-\infty}^{+\infty} \varphi_0(t)dt = 1$$
, 4) $\Phi(-x) + \Phi(x) = 1$, 5) $\Phi(0) = 0.5$

Приближение Лапласа

Следствие 1:

$$P(k_1 \le \xi_n \le k_2) = P\left(\frac{k_1 - np}{\sqrt{npq}} \le \frac{\xi_n - np}{\sqrt{npq}} \le \frac{k_2 - np}{\sqrt{npq}}\right) \approx \int_{\frac{k_1 - np}{\sqrt{npq}}}^{\frac{k_2 - np}{\sqrt{npq}}} \varphi_0(t)dt =$$

$$=\Phi\left(\frac{k_2-np}{\sqrt{npq}}\right)-\Phi\left(\frac{k_1-np}{\sqrt{npq}}\right)$$

<u>Приближение Лапласа</u>

$$\underline{Cnedcmвue\ 2:} \quad \Pi \text{усть} \qquad V_n = \frac{\xi_n}{n},$$

$$P(|v_n - p| \le \varepsilon) = P(-\varepsilon \le v_n - p \le \varepsilon) = P(p - \varepsilon \le \frac{\xi_n}{n} \le p + \varepsilon) =$$

$$= P(n(p - \varepsilon) \le \xi_n \le n(p + \varepsilon)) \approx \Phi\left(\frac{n\varepsilon}{\sqrt{npq}}\right) - \Phi\left(-\frac{n\varepsilon}{\sqrt{npq}}\right) =$$

$$= 2\Phi\left(\varepsilon\sqrt{\frac{n}{pq}}\right) - 1 = 1 - 2\Phi\left(-\varepsilon\sqrt{\frac{n}{pq}}\right)$$