Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 9

Aufgabe 9.1 (2+2+2+2+2 Punkte)

Zeigen oder widerlegen Sie:

- a) $\frac{n^3+2n}{2n+1} \in O(n^2)$
- b) $5^n \in O(3^n)$
- c) $n^5(\log_2 n)^2 \in \Theta(2^{5\log_2 n + \log_2 \log_2 n} \log_2(n^5))$
- d) Für alle Funktionen f(n) > 0, g(n) > 0 gilt: $f(n) \in O(g(n)) \Rightarrow (f(n) + g(n)) \in \Theta(g(n))$
- e) Für alle Funktionen f(n) > 0, g(n) > 0, p(n) > 0, q(n) > 0 gilt: $f(n) \in O(p(n)) \land g(n) \in O(q(n)) \Rightarrow (f(n))^{g(n)} \in O((p(n))^{q(n)})$

Lösung 9.1

- a) Zu zeigen: $\frac{n^3+2n}{2n+1} \in O(n^2)$: $\frac{n^3+2n}{2n+1} \le \frac{n^3+2n}{2n} = \frac{1}{2}n^2 + 1 \le \frac{1}{2}n^2 + n^2 = \frac{3}{2}n^2$ Das heisst für $c = \frac{3}{2}$ und $n_0 = 42$ gilt: $\forall n \ge n_0 : \frac{n^3+2n}{2n+1} \le cn^2$
- b) $5^n \in O(3^n)$: Angenommen $5^n \in O(3^n)$, dann existieren c > 0 und $n_0 \in \mathbb{N}_0$, so dass $5^n \le c \cdot 3^n, \forall n \ge n_0$

$$5^{n} \le c \cdot 3^{n}$$

$$\iff \log_{3}(5^{n}) \le \log_{3} c + \log_{3}(3^{n})$$

$$\iff \log_{3}((\frac{5}{3})^{n}) \le \log_{3} c$$

$$\iff n \cdot \log_{3}(\frac{5}{3}) \le \log_{3} c$$

$$\iff n \le \frac{\log_{3} c}{\log_{3}(\frac{5}{3})}$$

$$\iff n \le \log_{\frac{5}{2}} c$$

Dies kann allerdings für $n > \log_{\frac{5}{3}} c$ nicht erfüllt sein. Somit gilt $5^n \notin O(3^n)$.

c) Die Behauptung stimmt.

Zu zeigen:
$$n^5(\log_2 n)^2 \in \Theta(2^{5\log_2 n + \log_2 \log_2 n} \log_2(n^5))$$
:
 $2^{5\log_2 n + \log_2 \log_2 n} \log_2(n^5) = 2^{5\log_2 n} \cdot 2^{\log_2 \log_2 n} \cdot \log_2(n^5)$
 $= (2^{\log_2 n})^5 \cdot \log_2 n \cdot 5 \log_2 n$
 $= n^5 \cdot \log_2 n \cdot 5 \log_2 n = n^5 \cdot 5(\log_2 n)^2$
 $\Rightarrow \frac{1}{5} \leq \frac{n^5(\log_2 n)^2}{2^{5\log_2 n + \log_2 \log_2 n} \log_2(n^5)} \leq \frac{1}{5}$

Da der Quotient der beiden Funktionen durch eine Konstante beschränkt wird, gilt: $n^5(\log_2 n)^2 \in \Theta(2^{5\log_2 n + \log_2\log_2 n}\log_2(n^5))$

d) Die Behauptung stimmt.

Wir nehmen an $f(n) \in O(g(n))$: d.h. nach Definition $\exists c > 0 \land \exists n_0 \in \mathbb{N}_0 : \forall n \ge n_0 : f(n) \le c \cdot g(n)$

Addieren von g(n) auf beiden Seiten, führt zu: $f(n) + g(n) \le c \cdot g(n) + g(n) = (c+1) \cdot g(n)$.

Da zudem f(n), g(n) > 0 folgt daraus: $0 \le g(n) \le f(n) + g(n) \le (c+1) \cdot g(n), \forall n \ge n_0$, was bedeutet, dass $f(n) + g(n) \in \Theta(g(n))$.

e) Gegenbeispiel: f(n) = p(n) = 2, g(n) = 2n, q(n) = nDann gilt zwar $f(n) \in O(p(n)) \land g(n) \in O(q(n))$, jedoch $(f(n))^{g(n)} = 2^{2n} = 4^n \notin O((p(n))^{q(n)}) = O(2^n)$, für c > 0, mit $n > \log_2 c$, $4^n > c \cdot 2^n$

Aufgabe 9.2 (3+3 Punkte)

Überprüfen Sie folgende Relationen R_1 und R_2 auf alle Eigenschaften einer Äquivalenzrelation:

a)
$$m, n \in \mathbb{R} \setminus \{0\} : mR_1n \iff \exists k \in \mathbb{R}, k > 0 : \frac{m}{n} = k$$

b)
$$m, n \in \mathbb{R} : mR_2n \iff \frac{m}{2} < n$$

Lösung 9.2

- a) Reflexivität: R_1 ist reflexiv. Für beliebiges $m \in \mathbb{R} \setminus \{0\}$ gilt: $\frac{m}{m} = k$, mit k = 1.
 - **Symmetrie**: R_1 ist symmetrisch. Für beliebige $m, n \in \mathbb{R} \setminus \{0\}$ gelte: mR_1n , also $\frac{m}{n} = k$, mit k > 0. Da gilt: $k > 0 \land m, n \neq 0 \Rightarrow \frac{n}{m} = \frac{1}{k}$. Da $\frac{1}{k} > 0$ gilt also auch nR_1m .

- Transitivität: R_1 ist transitiv. Für beliebige $m, n, p \in \mathbb{R} \setminus \{0\}$ gelte: $mR_1n \wedge nR_1p$, also $\frac{m}{n} = k \wedge \frac{n}{p} = j$, mit k, j > 0. Da gilt: $\frac{m}{p} = \frac{m}{n} \cdot \frac{n}{p} = k \cdot j$ und $k \cdot j > 0$ gilt auch mR_1p .
- $\Rightarrow R_1$ ist daher eine Äquivalenzrelation.
- b) Reflexivität: R_2 ist nicht reflexiv. Gegenbeispiel: m = -2 : $\frac{-2}{2} = -1 \not< -2$.
 - Symmetrie: R_2 ist nicht symmetrisch. Gegenbeispiel: $m = 1, n = 2 : \frac{1}{2} < 2 \Rightarrow mR_2n$, aber $\frac{2}{1} \nleq 1$.
 - Transitivität: R_2 ist nicht transitiv. Gegenbeispiel: m=4, n=3, p=2: $\frac{4}{3} < 3 \Rightarrow mR_2n, \frac{3}{2} < 2 \Rightarrow nR_2p,$ aber $\frac{4}{2} \not< 2$.
 - $\Rightarrow R_2$ ist daher keine Äquivalenzrelation.

Aufgabe 9.3 (2 Punkte)

Es sei a ein Array der Länge n. Gegeben sei folgender Algorithmus:

$$\begin{array}{c} x \leftarrow 0 \\ \textbf{for } i \leftarrow 0 \ \textbf{to} \ n-1 \ \textbf{do} \\ \textbf{for } j \leftarrow i \ \textbf{to} \ n-1 \ \textbf{do} \\ x \leftarrow x + a[j] \\ \textbf{od} \\ \textbf{for } k \leftarrow 1 \ \textbf{to} \ n^2 \ \textbf{do} \\ x \leftarrow x + k * a[i] \\ \textbf{od} \\ \textbf{od} \\ \textbf{od} \end{array}$$

Schätzen Sie die Laufzeit möglichst passend im O-Kalkül ab. Begründen Sie dabei Ihre Abschätzung auf Basis der einzelnen Zeilen des Algorithmus.

Lösung 9.3

Folgendes sind die Abschätzungen der jeweiligen Zeile:

 \Rightarrow Die Laufzeit liegt in $O(n^3)$.

Hinweis: Auf dem zuerst verfügbaren fehlerhaften Übungsblatt lief die zweite for-Schleife bis n-i. Fehler, die auf Annahmen darauf basieren, werden nicht geahndet