- **Definition 1.** A functor $F: \mathcal{C} \longrightarrow \mathcal{D}$ is a map ob $\mathcal{C} \to \text{ob} \mathcal{D}$ and a map of morphisms $\text{Hom}_{\mathcal{C}}(x,y) \to \text{ob} \mathcal{D}$
- $\operatorname{Hom}_{\mathcal{D}}(F(x), F(y))$. Such that $F(\operatorname{id}_x) = \operatorname{id}_{F(x)}$ and $F(g \circ f) = F(g) \circ F(f)$.
- **Definition 2.** $F: \mathcal{C} \to \mathcal{D}$ is faithful if for all $x, y \in \mathcal{C}$, $\operatorname{Hom}_{\mathcal{C}}(x, y) \to \operatorname{Hom}_{\mathcal{D}}(F(x), F(y))$ is injective. It
- is full if every such map is surjective. It is essentially surjective if for all $d \in \mathcal{D}$ there is $c \in \mathcal{C}$ such that
- $F(x) \cong d$.
- **Definition 3.** For two functors $F,G:\mathcal{C}\to\mathcal{D}$, a natural transformation $\eta\colon F\Rightarrow D$ is a collection of
- morphisms $\eta_x \in \operatorname{Hom}_{\mathcal{D}}(F(x), G(x))$ such that for every $x \xrightarrow{f} y$, $\eta_y \circ F(f) = G(f) \circ \eta_x$. They're natural
- isos if η_x isos.
- **Definition 4.** Equivalence of categories: $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ with natural isomorphisms $e: \mathrm{id}_{\mathcal{C}} \Rightarrow$
- GF, $\epsilon \colon FG \Rightarrow \mathrm{id}_{\mathcal{D}}$. An adjoint equivalence is an equivalence where $F \dashv G$.
- **Proposition 5.** The following are equivalent: \mathcal{C} and \mathcal{D} are equivalent, \mathcal{C} and \mathcal{D} are adjoint equivalent
- and there is $F: \mathcal{C} \to \mathcal{D}$ that is fully faithful and essentially surjective.
- **Definition 6.** Two functors $F: \mathcal{C} \to \mathcal{D}, G: \mathcal{D} \to \mathcal{C}$ are adjoint if there exist natural transformations $\eta: \mathrm{id}_{\mathcal{C}} \Rightarrow GF$ and $\epsilon: FG \Rightarrow \mathrm{id}_{\mathcal{D}}$ with $F \stackrel{\mathrm{id}_{F} \circ \eta}{\Longrightarrow} FGF \stackrel{\epsilon \circ \mathrm{id}_{F}}{\Longrightarrow} F$ and $G \stackrel{\eta \circ \mathrm{id}_{G}}{\Longrightarrow} GFG \stackrel{\mathrm{id}_{G} \circ \epsilon}{\Longrightarrow} G$. 13
- The forgetful functor $Forget: * \rightarrow Set$ has a left adjoint $Free \dashv Forget$ for * being Grp, Ab, Vect.
- $Forget: Ab \to Grp \text{ has a left adjoint, the abelianisation of } G. For topologies <math>Forget: Top \longrightarrow Set$, we have
- $D\dashv Forget\dashv I$, where D is the discrete topology and I the indiscrete topology. The forgetful functor 17
- from fields has no left adjoint. Such a left adjoint should map \(\varnothing \) to an initial object in Field, but fields 18
- have no initial object. 19
- **Definition 7** (Comma categories). For $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$, and $x \in \mathcal{C}$ the category $(x \Rightarrow G)$ has
- objects $(y, x \xrightarrow{f} G(y))$ and morphisms $(y_1, f_1) \to (y_2, f_2)$ such that $x \xrightarrow{f_1} G(y_1) \to G(y_2)$ commutes with 21
- f_2 . Similarly $(F \Rightarrow y)$.
- **Proposition 8.** $F \dashv G$ iff $\operatorname{Hom}_{\mathcal{D}}(F(x), y) \cong \operatorname{Hom}_{\mathcal{C}}(x, G(y))$ naturally in x, y iff for all $x, (F(x), e_x)$ is
- initialin $(x \Rightarrow G)$. 24
- **Definition 9.** For a locally small category \mathcal{C} , the Yoneda Embedding is given by a functor $Y:\mathcal{C}\longrightarrow$
- Fun(\mathcal{C}^{op} , Set), where $Y(x) = \operatorname{Hom}_{\mathcal{C}}(-, x)$ and $Y(x \xrightarrow{f} y) = (g \mapsto f \circ g)$.
- **Definition 10.** A functor is representable if it is in the essential image of the Yoneda functor.
- **Lemma 11.** The Yoneda lemma states that for any presheaf $F: \mathcal{C}^{op} \to \operatorname{Set}$, the map $\operatorname{Fun}(Y(x), F) \to \operatorname{Lemma}(Y(x), F)$ 28
- F(x) given by $\eta \mapsto \eta_x(\mathrm{id}_x)$, is an isomorphism.
- *Proof.* To construct the inverse, let $f \in F(x)$, then define natural transformation $\epsilon \colon Y(x) \Rightarrow F$ given by 30
- $\epsilon_y \colon Y(x)(y) \to F(y)$ and $g \mapsto F(g)(f)$. Show this is natural by F preserving composition. One inverse is 31
- easy, for the other take η arbitrary, make diagram with $x \xrightarrow{g} y$ and claim $\eta_y(g) = F(g)(\eta_x(\mathrm{id}_x))$.
- Corollary 12. The Yoneda functor is full and faithful. 33
- *Proof.* For x_1, x_2 , we have that $\operatorname{Hom}(Y(x_1), Y(x_2)) \longrightarrow Y(x_1)(x_2)$ is an isomorphism by Yoneda.
- Definition 13 (Representable). A presheaf is representable if it is in the essential image of the Yoneda 35
- functor.
- **Proposition 14.** A formal right adjoint to $F: \mathcal{C} \to \mathcal{D}$ is a functor $G^{formal}: \mathcal{D} \to \operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Set})$ with
- $y \mapsto (x \mapsto \operatorname{Hom}_{\mathcal{D}}(F(x), y))$. A right adjoint G to F exists if and only if $G^{formal}(y)$ is representable for 38
- all y. 39
- **Definition 15.** Let $D: I \to \mathcal{C}$. A limit of D is an object $\lim_I D \in \mathcal{C}$ along with maps $f_i: \lim_I D \to D(i)$,
- such that for every $g: i \to j$, $D(g) \circ f_i = f_i$. It is universal as for any other object W with compatible
- maps $W \to D(i)$, there is a unique morphism $W \to \lim_I F$. 42
- **Proposition 16.** The diagonal functor $\Delta \colon \mathcal{C} \to \operatorname{Fun}(I,\mathcal{C})$ is $\Delta(x)(i) = x$. Then $\operatorname{Hom}_{\operatorname{Fun}(\mathcal{I},\mathcal{C})}(\Delta(W),F) \cong$
- $\operatorname{Hom}_{\mathcal{C}}(W, \lim_I F)$, so $\operatorname{colim}_I \dashv \Delta \dashv \lim_I$.

- **Proposition 17.** Suppose \mathcal{C} has limits for diagrams of shape I and J. Then it has limits of diagrams of
- shape $I \times J$ and

$$\lim_{I\times J}F\cong \lim_I\lim_JF\cong \lim_I\lim_IF$$

- For the proof use Δ as an adjoint
- **Theorem 18.** \mathcal{C} has limits iff it has products and equalisers. \mathcal{C} has finite limits if it has binary products,
- final object and equalisers.
- *Proof.* For $F: I \to \mathcal{C}$, for every morphism $f: i \to j$, let $\prod_{k \in I} F(k) \to F(j)$ the projection map and the
- composite map $\prod_{k\in I} F(k) \to F(i) \xrightarrow{F(f)} F(j)$. Then, by the universal property of the product we get

13

30

$$\prod_{k \in I} F(k) \rightrightarrows \prod_{(i \to j) \in \text{Fun}([1], J)} F(j)$$

- By the equalisers, we get E the limit of F.
- **Definition 19.** A morphism $f: X \to Y$ is a monomorphism if for every $g, h: Y \to Z$, $f \circ g = f \circ h$
- implies g=h. For an epimorphism $f,\,g\circ f=h\circ f$ implies g=h.
- **Definition 20.** Equalisers are regular monomorphisms, coequalisers are regular epimorphisms.

Limits		Colimits	
Final	$\mathbf{Set}: \{1\}, \mathbf{Grp}: \{e\}$	Initial	$\operatorname{Set}:\varnothing,\operatorname{Grp}:\{e\}$ Fields: None
Products	× in Grp, Set, Vect	Co-products	Set: \sqcup , Grp: free product, Ab: \times
Equal	Set: x with $f(x) = g(x)$,	Coeq	Set: $Y/f(x) \sim g(x)$, Grp: $Y/S f(x)g(x)^{-1}$
Pullback	$\{(x,y) \mid f(x) = g(y)\}$	Pushout	

- **Theorem 21.** Let $F \dashv G$ then F preserves colimits and G preserves limits.
- **Theorem 22.** $F: \mathcal{C} \to \mathcal{D}$ for \mathcal{C}, \mathcal{D} locally small, and \mathcal{C} has small colimits. $F \dashv G$ iff F preserves colimits and for all x, $(F \Rightarrow x)$ the solution set holds. A category \mathcal{C} satisfied it if: there is I small, $\{c_i\}_{i\in I}$ such
- that for each $x \in \mathcal{C}$ there is c_i with $\text{Hom}_{\mathcal{C}}(x, c_i)$ non-empty. 17
- **Definition 23** (Monads). A monad $T: \mathcal{C} \to \mathcal{C}$ is a functor with unit $\eta: \mathrm{id}_{\mathcal{C}} \Rightarrow T$ and multiplication
- $\mu \colon T^2 \Rightarrow T$, satisfying: $T^3 \xrightarrow{id_T \circ \mu} T^2 \xrightarrow{\mu} T$ is equal to $T^3 \xrightarrow{\mu \circ id_T} T^2 \xrightarrow{\mu} T$ and $T \xrightarrow{id_T \circ \mu} T^2 \xrightarrow{\mu} T$ and
- $T \xrightarrow{\eta \circ \mathrm{id}_T} T^2 \xrightarrow{\mu} T$ are both equal to the identity.
- **Proposition 24.** Let $F \dashv G$ with $F : \mathcal{C} \to \mathcal{D}$, then GF is a monad in \mathcal{C} and FG is a comonad in \mathcal{D} . For
- the proof, let $\eta: \mathrm{id}_{\mathcal{C}} \Rightarrow GF$ and $\mu: GFGF \xrightarrow{\mathrm{id}_{G} \circ \varepsilon \circ \mathrm{id}_{F}} GF$. Diagrams for T^{2} and then append G and F.
- **Definition 25.** For a monad T an algebra $\operatorname{Alg}_T(\mathcal{C})$ is the category with objects $(x, T(x) \xrightarrow{\alpha_x} x)$ for $x \in \mathcal{C}$
- with α_x such that $T^2(x) \xrightarrow{\mu_x} T(x) \xrightarrow{\alpha_x} x$ is equal to $T^2(x) \xrightarrow{T(\alpha_x)} T(x) \xrightarrow{\alpha_x} x$ and $x \xrightarrow{\eta_x} T(x) \xrightarrow{\alpha_x} x$ is
- the identity. The morphisms $(x, \alpha_x) \to (y, \alpha_y)$ are given by $f: x \to y$ such that $T(x) \xrightarrow{\alpha_x} x \xrightarrow{f} y$ and
- $T(x) \xrightarrow{T(f)} T(y) \xrightarrow{\alpha_y} y$ commutes.
- **Proposition 26.** The forgetful functor $F: Alg_T(\mathcal{C}) \to \mathcal{C}$ has a left adjoint L and FL = T. We have
- $L(x) = (T(x), \mu_x)$. Write down the commutative square for a morphism $T(x) \xrightarrow{f} A$ and then $T(x) \xrightarrow{T(\eta_x)} A$
- $T^2(x) \xrightarrow{\mu_x} T(x)$ commutes. So f is uniquely determined by $x \xrightarrow{\eta_x} Tx \xrightarrow{f} A$ giving an isomorphism of 29
- - **Definition 27.** For $F \dashv G$ let $G_{enh} : \mathcal{D} \to \mathrm{Alg}_T(\mathcal{C})$ with $G_{enh}(x) = (G(x), GFG(x) \xrightarrow{G(\epsilon_x)} G(x))$. G is monadic if there is $F \dashv G$ and for T = GF, $G_{enh} : \mathcal{D} \to \mathrm{Alg}_T(\mathcal{C})$ is an equivalence.
- 32
- **Definition 28.** A functor $G: \mathcal{C} \to \mathcal{D}$ is conservative if when G(f) is an isomorphism so is f. The 33
- forgetful functors from Ab, Grp, Vect are conservative, the one from Top is not. 34
- **Definition 29.** A fork is a cocone x
 ightharpoonup y
 ightharpoonup z so that $e \circ g = e \circ f$. It is split if there are $s: z \to y$, 35
- $t: y \to x$ such that $es = \mathrm{id}_z$, $ft = \mathrm{id}_y$ and gt = se. Split forks are coequalisers. 36
- **Definition 30.** Morphisms $f, g: x \to y$ are a split pair if their coequaliser exists and is split. They are 37
- G split if G(f), G(g) is split. 38
- **Theorem 31.** A functor $G: \mathcal{D} \to \mathcal{C}$ is *monadic* if and only if: it has a left adjoint, it is conservative and
- every G-split pair admits a coequaliser in \mathcal{D} and is preserved by G.