Highly Efficient Actively Secure Two-Party Computation with One-Bit Advantage Bound

Yi Liu¹ Junzuo Lai¹ Peng Yang² Anjia Yang¹ Qi Wang³ Siu-Ming Yiu² Jian Weng¹

3. Progressive Revelation

Garbled Circuit

Generated by Alice

Garbled_Outputs

Check then release

Low overhead

Release output bit by bit

1. Jinan University 2. The University of Hong Kong 3. Southern University of Science and Technology

Introduction

Secure two-party computation (2PC) allows two mutually distrusting parties to securely evaluate a public function on their private inputs.

We seek to narrow the efficiency gap between actively and passively secure 2PC protocols.

Motivation

The notion of active security with one-bit leakage offers a promising approach to bridging the efficiency gap between passive and active security in garbled circuit (GC)-based 2PC.

- Achieve active security
- But adversaries may learn at most one additional bit of information

- The honest party cannot learn f(x, y) (i.e., learn 0 bits)
- The adversary learns n+1 bits about x output f(x, y) whether g(x) = f(x, y)

How can we provide an effective solution to the fairness problem in one-bit-leakage protocols?

Contributions

We propose active security with one-bit advantage bound and design an efficient 2PC protocol to address the fairness issue.

New Protocol

• k-Bit Advantage Bound: i vs i + k bits $\frac{1}{4}$

New Model

Formal Definition

Adjustable Advantage

Fully Compatible with SOTA Garbling Three-Halves [RR21], Half-Gates [ZRE15] ¹ Performance ≈ Passive 2PC

Key Insights

Start Point: The one-bit leakage protocol

To prevent either party from learning the output before verification

- We remove the output derivation phase;
- We redesign the verification phase to work solely with garbled outputs.

2. Verification

Verification

Output Revelation

Garbled Outputs → SPDZ MACs

Only use garbled outputs

Low overhead

Garbled_Outputs' →

Garbled Circuit'

Generated by Bob

Observation: Exploit label structures of garbling schemes with point-and-permute and free-XOR techniques for verification

Within the garbled outputs, for a wire w, we have

If computed correctly, it holds that:

 $(L'_{w,\hat{z}'_{w}}) \oplus (L'_{w,0} \oplus \lambda'_{w} \Delta_{B}) = z_{w} \Delta_{B} \int$

 $(L_{w,0} \oplus \lambda_w \Delta_A) \oplus (L_{w,\hat{Z}_w}) = Z_w \Delta_A$

 $z_w \Delta_A \oplus z_w \Delta_B = z_w \Delta$ constitutes the corresponding **SPDZ MAC**

Our approach: extending the principles behind the verification and opening of SPDZ-style authenticated secret sharing to support garbled output verification and progressive output revelation.

Performance

Our protocol attains runtime performance comparable to that of passively secure GC-based 2PC protocols, while exhibiting a 6.9 ~ 10.6× improvement over actively secure GC-based 2PC protocols.

References and QR Code for Our Paper (ePrint: 2025/614)

[HKE12] Huang Y, Katz J, Evans D. Quid-pro-quo-tocols: Strengthening semi-honest protocols with dual execution[C]//IEEE S&P 2012. [ZRE15] Zahur S, Rosulek M, Evans D. Two halves make a whole: Reducing data transfer in garbled circuits using half gates[C]//EUROCRYPT 2015 [RR21] Rosulek M, Roy L. Three halves make a whole? Beating the half-gates lower bound for garbled circuits[C]//CRYPTO 2021.

