Table 1: Confusion matrices attackVector

	N	\mathbf{A}	\mathbf{L}	P	$ \mathbf{N} $	\mathbf{A}	$\mid \mathbf{L} \mid$	$ \mathbf{P} $	N	A	$\mid \mathbf{L} \mid$	$ \mathbf{P} $	N	\mathbf{A}	\mathbf{L}
N	0.4	0.21	0.19	0.2	0.4	0.2	0.2	0.2	0.39	0.2	0.2	0.21	0.39	0.21	0.2
A	0.2	0.4	0.2	0.2	0.2	0.41	0.2	0.19	0.2	0.4	0.2	0.2	0.2	0.39	0.2
${ m L}$	0.2	0.2	0.4	0.2	0.2	0.2	0.4	0.2	0.2	0.2	0.4	0.2	0.2	0.2	0.3
Ρ	0.2	0.2	0.2	0.39	0.2	0.21	0.2	0.39	0.2	0.19	0.21	0.4	0.19	0.2	0.2

Table 2: Confusion matrices attackComplexity

	\mathbf{L}	\mathbf{H}	$\mid \mathbf{L} \mid$	\mathbf{H}	${f L}$	\mathbf{H}	$\mid \mathbf{L} \mid$	H
\overline{L}	0.66	0.34	0.67	0.33	0.67	0.33	0.66	0.34
Η	0.34	0.66	0.34	0.66	0.33	0.67	0.33	0.67

CVSS - VULNERABILITY SCORE PREDICTION Supervisor(s): David Eyers Veronica Liesaputra

		Table	e 1		Table 2					
	N	A	L	P		N	A	L	Р	
N	0.4	0.21	0.19	0.2	N	0.4	0.2	0.2	0.2	
A	0.2	0.4	0.2	0.2	A	0.2	0.41	0.2	0.19	
\mathbf{L}	0.2	0.2	0.4	0.2	L	0.2	0.2	0.4	0.2	
Р	0.2	0.2	0.2	0.39	P	0.2	0.21	0.2	0.39	
	ı	Table	e 3			1	Table	4		
	N	Table A	2 3	P		N	Table A	4 L	P	
N	N 0.39			P 0.21	N	N 0.39			P 0.2	
 N A		A	L		N A		A	L		
	0.39	A 0.2	L 0.2	0.21	- ·	0.39	A 0.21	L 0.2	0.2	

Aims The primary aim of this research is to develop sophisticated predictive models capable of accurately determining the severity levels of security threats based on the CVSS. This will involve a comprehensive review and comparison of current datasets, with a focus on leveraging natural language descriptions provided in security vulnerability reports. The project intends to utilize advanced transformer-based models to achieve this goal, contributing to the field of cybersecurity by enhancing the precision of threat severity

Table 3: Confusion matrices privilegesRequired

	\mathbf{N}	${f L}$	\mathbf{H}	$ \mathbf{N} $	\mathbf{L}	\mathbf{H}	\mathbf{N}	\mathbf{L}	\mathbf{H}	$ \mathbf{N} $	$\mid \mathbf{L} \mid$	H
N	0.5	0.25	0.25	0.5	0.26	0.24	0.51	0.25	0.24	0.51	0.24	0.25
\mathbf{L}	0.24	0.51	0.25	0.26	0.5	0.25	0.25	0.5	0.25	0.26	0.5	0.25
Η	0.25	0.24	0.51	0.25	0.26	0.49	0.24	0.25	0.51	0.25	0.25	0.5

Table 4: Confusion matrices userInteraction

	N	\mathbf{R}	\mathbf{N}	\mathbf{R}	N	\mathbf{R}	\mathbf{N}	${f R}$
N	0.67	0.33	0.67	0.33	0.68	0.32	0.67	0.33
\mathbf{R}	0.34	0.66	0.33	0.67	0.34	0.66	0.33	0.67

Table 5: Confusion matrices scope

	\mathbf{U}	\mathbf{C}	$\mid \mathbf{U} \mid$	\mathbf{C}	\mathbf{U}	\mathbf{C}	$\mid \mathbf{U} \mid$	\mathbf{C}
U	0.68	0.32	0.66	0.34	0.66	0.34	0.66	0.34
\mathbf{C}	0.34	0.66	0.33	0.67	0.34	0.66	0.34	0.66

Table 6: Confusion matrices confidentiality Impact

	\mathbf{N}	\mathbf{L}	H	N	\mathbf{L}	H	N	$oldsymbol{\mathbf{L}}$	H	N	\mathbf{L}	\mathbf{H}
				0.5			I					
				0.26								
Η	0.25	0.25	0.51	0.25	0.25	0.5	0.25	0.24	0.5	0.25	0.26	0.5

Table 7: Confusion matrices integrity Impact

		\mathbf{L}										
N	0.51	0.25	0.25	0.49	0.25	0.26	0.5	0.26	0.25	0.49	0.25	0.26
\mathbf{L}	0.25	0.5	0.25	0.25	0.5	0.25	0.24	0.51	0.25	0.25	0.5	0.25
Η	0.25	0.25	0.49	0.25	0.25	0.49	0.25	0.24	0.51	0.25	0.24	0.5

June 3, 2024

Table 8: Confusion matrices availabilityImpact

	N	${f L}$	H	N	\mathbf{L}	H	N	\mathbf{L}	\mathbf{H}	N	${f L}$	\mathbf{H}
N	0.5	0.25	0.24	0.5	0.25	0.24	0.5	0.25	0.25	0.5	0.25	0.25
\mathbf{L}	0.25	0.5	0.25	0.24	0.51	0.25	0.25	0.5	0.25	0.25	0.5	0.25
\mathbf{H}	0.25	0.25	0.5	0.25	0.25	0.5	0.25	0.24	0.51	0.25	0.25	0.5

assessments.

Objectives

- Conduct a comprehensive literature review to understand the current landscape of CVSS score prediction and the methodologies employed in existing models.
- Replicate successful methodologies to verify the accuracy of CVSS score databases, with a particular focus on alignment with recent CVSS standards and datasets.
- Explore opportunities for enhancing existing methodologies, including the investigation of data amalgamation from multiple databases to ascertain improvements in model performance.
- Experiment with various model architectures to identify the most effective approach in terms of predictive accuracy, specifically focusing on metrics such as the F1 score and balanced accuracy.

Timeline

- March: Initiate the project with a literature review, system environment setup, and resource gathering.
- March-April: Replicate existing methodologies to validate findings and ensure alignment with current standards.
- May-June: Generate preliminary results and compile an interim report detailing findings and methodologies.
- July-August: Conduct experiments with various data source combinations and model architectures to identify optimal configurations.
- September-October: Finalize experimental work, analyze results, and prepare the comprehensive final report.