

orso di Laurea Magistrale in Ingegneria Aerospaziale

VEGA'S P80 FIRST STAGE

PERFORMANCE RECONSTRUCTION OF A SOLID ROCKET MOTOR

Supervisor Prof. Ing. Stefano Mungiguerra

Candidate Rosario Donnarumma M53/1488

Outline

- **≻**Overview
- > Requirements
- ➤ Sizing
 - ➤ Performance Parameters
 - **≻**Grain
 - **≻**Blueprint
 - ➤ Combustion Chamber
- ➤ Deliverables

1. OVERVIEW

- > VEGA
- > P80 (FIRST ROCKET STAGE)
- > OBJECTIVE

Overview - VEGA

- ➤ Vega (Vettore Europeo di Generazione Avanzata) is an expendable launch system in use by Arianespace jointly developed by the Italian Space Agency (ASI) and the European Space Agency (ESA).
- ➤ Vega joined the family of launch vehicles at Europe's Spaceport in French Guiana in 2012.

VEGA at the National Museum of Science and Technology (courtesy of AVIO Group)

Overview - VEGA

➤ VEGA is a single-body launcher with three solid rocket stages and the upper module is liquid rocket:

Solid

➤I stage: P80

➤II stage: Zefiro 23

➤ III stage: Zefiro 9

Liquid

➤IV stage: AVUM

The multi-national contributions to Vega (courtesy of ESA – European Space Agency)

Overview – P80

- ➤ P80 is solid-fuel first-stage rocket motor used on Vega rocket.
- It is the world's largest and most powerful one-piece solid-fuel rocket engine.

Departure of the P80 first stage from the Booster Integration Facility

(courtesy of <u>Arianespace</u>)

Overview – Objective

The main objective of this investigation is to obtain a performance reconstruction of the P80 rocket and to propose a preliminary sizing for the P80.

2. REQUIREMENTS

- > MAIN CHARACTERISTICS
- > PROPELLANT SPECS

Requirements - Main characteristics

P80 Rocket Motor Characteristics [2,3,4,6]

Length L (m)	7,50
Motor diameter $\mathbf{d_m}$ (m)	3,00
Nozzle diameter d _n (m)	1,98
Case thickness d _{th} (mm)	5
Nozzle expansion ratio ε	16
Maximum pressure P _{max} (bar)	95,00
Propellant mass M _p (kg)	80180
Specific impulse $\mathbf{I_{sp}}$ (s)	280
Thrust S (kN)	3037

Requirements – Propellant Specs

HTPB-based 1912 propellant [1]

Oxidizer (%)	69
Aluminium (%)	19
HTPB (%)	12
Chamber Temperature T_c (K)	3550
Density ρ_p (kg/m ³)	1810
Burning rate \dot{r} (in/s)	0,5
n	0,39

Requirements – Propellant Specs

- ➤ HTPB 1912 is composite propellant, consisting of an oxidizer and a reductant mixed.
- In more detail, the oxidizer is in the form of crystals which are salts either chlorine-based (AP) or nitrogen-based;
- On the other hand, as far as reducing agents are concerned, the most used polymer is
 HTPB a polymer whose single monomer is butadiene, a plastic organic matter essentially based on carbon and hydrogen.
- Aluminum (AI) particles, added as they allow for a much higher rate of regression.

Schematic diagrams of composition distribution in a HTPB-based propellant [5]

3. SIZING

- > PERFORMANCE PARAMETERS
- > GRAIN
- > BLUEPRINT
- > COMBUSTION CHAMBER

Sizing – Performance Parameters

➤In order to evaluate the performance parameters, the RPA(*) software has been used.

(*) Rocket Propulsion Analysis – Lite Edition

Sizing – Performance Parameters

The data were plotted using MATLAB

To better visualize the data collected after the RPA analyses, the specific impulse has been plotted.

>Conclusions:

- $ightharpoonup I_{sp,max}$ is obtained in vacuum
- \rightarrow (O/F)_{id} is about 3,416

Sizing – Performance Parameters

➤ Using the collected data from the software and the formulas known, it is possible to draw a preliminary performance evaluation:

$$c^* = \frac{\sqrt{RT_c}}{f(\gamma)} = 1558.780 \, m/s \qquad \leftarrow$$

 \leftarrow Characteristic velocity

$$c_f^0 = f(\gamma)\sqrt{\eta_{noz}} = 1.685$$

 \leftarrow Thrust coefficient

$$c = c^* c_f^0 = 2626.544 \, m/s$$

 \leftarrow Effective exhaust velocity

Let's calculate some of the main geometrical characteristic of the grain.

$$A_e = \left(\frac{d_n}{2}\right)^2 \pi = 3.078 \, m^2$$

$$A^* = \frac{A_e}{\varepsilon} = 0.192 \, m^2$$

$$A_g = \left(\frac{d_c}{2}\right)^2 \pi = 7.018 \, m^2$$

$$d^* = \sqrt{\frac{4A^*}{\pi}} = 0.496 \, m = 49.6 \, cm$$

Let's calculate some of the main geometrical characteristic of the grain.

$$A_{
m port} = 4\,A^* = 0.772\,m^2$$
 $V_0 = A_g\,L_c \qquad V_{
m port} = A_{
m port}\,L_c$
 $V_g \stackrel{
m def}{=} \frac{M_p}{\rho_p} = 44.298\,m^3$
 $V_g = V_0 - V_{
m port}$
 $L_c = \frac{V_g}{M_p} = 7.09\,m$

➤ Using the dimensions previously found, it was possible to draw a CAD model of the grain.

- \triangleright Assuming a case thickness of about 5 mm, the grain diameter will be $d_c = 2,990 \, m$
- The star-shaped grain has been adopted in order to have an almost neutral thrust curve. In general, the grain geometry is such that the wetting area is about the 90% of the external grain circumference.

$$A_b = (\text{burn perimeter}) \times (\text{charge length}) =$$

= $0.9 \pi d_c L_c = 59.909 \ m^2$

P80 has a 12-star shaped grain [3]

Sizing – Blueprint

Sizing – Combustion Chamber

 \triangleright Looking at the tables previously shown, it is possible to obtain the chamber pressure (P_c).

$$A_e = 3.078 \, m^2$$

$$A^* = 0.193 \, m^2$$

$$A_b = 59.909 \, m^2$$

Summerfield Criteria is met

$$\frac{P_e}{P_c} \simeq 0.011 \le \alpha = 0.25 - 0.35$$

The obtained pressure must be

less than P_{max}

$$P_c = \left[\frac{1}{a\rho_p c^*}\right]^{\frac{1}{n-1}} \left[\frac{A^*}{A_b}\right]^{\frac{1}{n-1}} \simeq 90.456 \ bar$$

$$P_c < P_{max}$$

The throat area is compatible with the requirements imposed

Sizing – Combustion Chamber

- To account for various losses, the ideal thrust coefficient c_f can be reduced by a factor of 7%.
- Moreover, the thrust S, and the total impulse I_t , and the specific impulse I_{sp} can be obtained.
- Finally, it is possible to evaluate the propellant mass flow rate \dot{m}_p , the burn time t_b and the web thickness w can be evaluated.

$$c_{f,real} = 0.93 \, c_f = 1.567$$

$$S = c_{f,real} P_c A^* = 2700.010 \ kN$$

$$I_{sp} = \frac{c^* c_{f,real}}{g_0} = 248.848 \ s$$

$$\dot{m}_p = \frac{S}{c} = 1027.872 \ kg/s$$

$$t_b = 85 \ s$$

$$I_{\text{tot}} = S t_b = 210.794 \times 10^3 \, kN \cdot s$$

$$w = \dot{r} t_b = 1.080 \ m$$

Bibliography and Sitography

- 1. Wingborg, N., et al. "*Grail: green solid propellants for launchers*." 7TH European conference for aeronautics and space sciences (EUCASS). 2017.
- 2. Serraglia, Ferruccio, "EGA Launcher". November 2018.
- 3. Delft University Resources, "Some Typical Solid Propellant Rocket Motors (V.2.0)". December 2013.
- 4. Encyclopedia Astronautica, "P80". http://www.astronautix.com/p/p80.html
- 5. Hwang, Ki-Young, and Yoo-Jin Yim. "Effects of propellant gases on thermal response of solid rocket nozzle liners." Journal of Propulsion and Power 24.4 (2008): 814-821.
- 6. Avio, "VEGA" http://www.b14643.de/Spacerockets_1/West_Europe/VEGA/Description/Frame.htm

