Feasibility Study of LTE Middle-Mile Networks in TV White Spaces for Rural India

 27^{th} ANNUAL IEEE PIMRC, VALENCIA, SPAIN'16

Soubhik Deb Chaitanya Prasad Narisetty & Prof. Abhay Karandikar

Department of Electrical Engineering Indian Institute of Technology Bombay

September 5, 2016

Outline

- 1 Introduction & Contribution
- 2 System Architecture
 - Two-Stage System
 - CoR Overview
- Radio Resource Allocation
 - Problem Formulation
 - Interference Analysis
- Simulations & Results
 - Topology: Modelling CPE Location
 - Results
- Oiscussions
 - SPFA With Reservation (SPFAR)
 - Tradeoff
 - Transmission Tx Power vs. Cell Radius R_{cell}
 - Meeting the Demands
 - Varying Demands Based on Topology
- Future Work

2 / 20

Introduction

- BharatNet 638, 619 villages via 250, 000 Village Offices (VOs)
- Point of Presence (PoP) at VOs, wireless clusters at the villages
- Middle-mile network
- Envisioned to use the underutilized TV White Spaces
- Base Station at VOs, CPEs at associated villages

Contribution

- Analyzed feasibility, estimates based upon Telecom Regulatory Authority of India targets rate of 512 kbps
- Proportional fair iterative algorithm for radio resource allocation

Two-Stage System

Figure: Simple overview of the two-stage system

CoR Overview

- \bullet BaseStation omnidirectional, 3 sectoral antennas (SAs) of 120°
- Network partitioned into coordination regions (CoRs)
- Why truncated? **Negligible** interference from other tiers

Figure: Truncated Network

Problem Formulation

- P_b^{max} : Maximum transmission power of BaseStation b
- \bullet P^k_{bs} : Power of BaseStation b to a CPE in sector s on PRB k
- $r_{(m,n)}^k$: Received rate of $CPE_{(m,n)}$ on PRB k

The objective is:

$$\max \sum_{n:CPE_{(m,n)} \in \mathcal{N}_m} \sum_{k \in \mathcal{K}} r_{(m,n)}^k \ \forall \ m: CoR_m \in \mathcal{M}$$
 (1)

subject to:
$$\sum_{s \in \mathcal{S}} \sum_{k \in \mathcal{K}} P_{bs}^k \leq P_b^{\max},$$
$$P_{bs}^k \geq 0.$$

• Involves optimization over continuous and discrete variables

Interference Analysis

- ullet No PRB is reused in a CoR \Longrightarrow **zero** intra-CoR interference
- non-zero inter-CoR interference
- Allocating PRBs:
 - Coordinated Policy
 - Coordinated Policy with Bucketing

Figure: Interference Diagram for inter-CoR interference

Topology: Modelling CPE Location

The no. of CPEs in the sector belonging to each BaseStation of a CoR is randomly chosen with $q_s \in [0, 1]$ as follows:

no. of CPEs in each sector =
$$\begin{cases} 2, & \text{w.p. } q_s \\ 1, & \text{w.p. } (1 - q_s) \end{cases}$$

Figure: $R_{RP_1}=\gamma_1.R_{max_1},\,R_{RP_2}=\gamma_2.R_{max_2}$, where $\gamma_1,\gamma_2\in[0,1)$

Using a standard Suboptimal Proportional Fair Allocation algorithm (SPFA), distribute the PRBs among the CPEs in each CoR

Results

Multiple topologies with varying values of q_s and R_{RP} whose results are:

- Average received rate of the central CoR has little variance
- ② CoR have similar data rates, irrespective of no. of CPEs and location.

Figure: Received rate of the central CoR averaged over 10 network initializations

SPFA doesn't always allocate the PRBs fairly among all CPEs in a CoR.

SPFA With Reservation (SPFAR)

• $\overline{r}_{(m,n)}$: Latest avg. rate of the $CPE_{(m,n)}; \mathbf{r}_m = \{\overline{r}_{(m,n)} | CPE_{(m,n)} \in \mathcal{N}_m\}$

Equations:

- $\bullet \ \overline{r}_m = \frac{\mathbf{r}_m \cdot \mathbf{I}}{|\mathcal{N}_m|} \ , \ \chi_m : \{ n \in \mathcal{N}_m | \overline{r}_{(m,n)} \le \overline{r}_m \ \}$
- **2** For $CPE_{(m,n)} \in \chi_m$, difference between $\overline{r}_{(m,n)}$ and \overline{r}_m is quantified as

$$K_{(m,n)} = \Gamma \cdot \frac{\left(\overline{r}_m - \overline{r}_{(m,n)}\right)}{\overline{r}_m^{PRB}}$$
 number of PRBs, (2)

where, $K_{(m,n)}$ is rounded off to nearest integer, Γ is a tuning parameter and

$$\overline{r}_{m}^{PRB} = \frac{\sum\limits_{n:CPE_{(m,n)} \in \mathcal{N}_{m}} \overline{r}_{(m,n)}}{K}.$$

- Select CPE with worst $\overline{r}_{(m,n)}$ and assign it best $K_{(m,n)}$ PRBs and remove them from set of PRBs that are to be assigned and so on
- Use SPFA to assign rest of PRBs
- SPFA till t_f iterations; based on average received rate over t_f iterations, SPFAR is employed in from iteration $(t_f + 1)$ to $(t_f + t_0)$

◆ロト 4回ト 4 章 ト 4 章 ト 章 章 * 9 Q Q Q Q

Tradeoff

Algorithm	Γ	Fairness	CoR rate (Mbps)
SPFA	_	0.9689	89.73
SPFAR	1	0.9828	87.31
SPFAR	2	0.9862	86.26
SPFAR	3	0.9876	85.86
SPFAR	4	0.9905	85.41

Table: For a varying Γ , the tradeoff between Fairness among the CPEs vs. their total Throughput in the central CoR

• The reservation of PRBs improves fairness while introducing sub-optimality, thereby decreasing the total average rate of a CoR

Transmission Tx Power vs. Cell Radius R_{cell}

Figure: Received rate of the central CoR averaged over 10 network initializations

- Distance between the neighboring BSs decreases, the interference between them becomes more prominent
- After 5 km, path loss becomes more predominant decreasing the average rate
- Increasing the Tx power has little improvement in the total average rate due to higher inter-cell interference

Meeting the Demands

- Palghar has a density of 285 people per sq. km
- Contention ratio is 1:50 as prescribed by TRAI
- For a cell radius of CoR below 5 km, the target rate of 1 Mbps per user is achievable

Varying Demands Based on Topology

• If rates demanded CPEs \mathcal{N}_m in CoR_m are in the ratio $\lambda_{(m,1)}:\lambda_{(m,2)}:\cdots:\lambda_{(m,|\mathcal{N}_m|)}$, then

Results:

- Average fairness among the CPEs with the new rate requirements is over 0.99 with an average standard deviation in CoR rate of just 3 Mbps
- ② Average CoR rate achieved using the proposed RRA is independent of the rates demanded by its CPEs

Future Work

- Adaptive power control can be utilized for optimality
- Framework has to be established for efficient RRA and interaction among operators in case of changes in demand and entry of a new operator
- For the coexistence among multiple operators in middle-mile network, a regulatory approach needs to be developed

References I

- Z. Shen, J. G. Andrews, and B. L. Evans, Adaptive resource allocation in multiuser ofdm systems with proportional rate constraints, Wireless Communications, IEEE Transactions on, vol. 4, no. 6, pp. 2726-2737, 2005.
- G. Naik, S. Singhal, A. Kumar, and A. Karandikar, Quantitative assessment of tv white space in india, in Twentieth National Conference on Communications (NCC), 2014. IEEE, 2014, pp. 1-6.
- M. Hata, Empirical formula for propagation loss in land mobile radio services, Vehicular Technology, IEEE Transactions on, vol. 29, no. 3, pp. 317-325, 1980
- R. Jain, D.-M. Chiu, and W. R. Hawe, A quantitative measure of fairness and discrimination for resource allocation in shared computer system. Eastern Research Laboratory, Digital Equipment Corporation Hudson, MA, 1984, vol. 38.
- A. Kumar, A. Karandikar, G. Naik, M. Khaturia, S. Saha, M. Arora, and J. Singh, Towards enabling broadband for a billon plus population with tw white spaces, arXiv preprint arXiv:1603.01999, 2016.

Thank you

17 / 20

Path Loss

• Hata Model appropriate for 470 – 590 MHz band

SINR of each individual PRB on a LOS link is then calculated using

$$SINR = PTx + GTx - PL - Noise (3)$$

Spectral efficiency (SE) evaluated using

$$SE = \log_{10}(1 + SINR) \tag{4}$$

Using LTE CQI table, rate (R) in that PRB of the LOS link in a SubFrame of duration $T_{SF} = 1$ ms is obtained as follows:

$$R = \phi.(RE).(bpS).(CR).(\alpha)/T_{SF}$$
(5)

Suboptimal Proportional Fair Allocation (SPFA)

Algorithm 1 SPFA

```
1: Initialize: \mathcal{N}_m^* = \mathcal{N}_m
     for each iteration t do
         for each CoR_m \in \mathcal{M} do
 3:
            for each PRB k \in \mathcal{K} do
 4:
                if CoR_m \in \text{Tier II then}
 5:
                   update N_m^* based on the bounds imposed by the Coordinated Policy
 6:
                   with Bucketing
                end if
 7:
                for each CPE_{(m,n)} \in \mathcal{N}_m do
 8:
                   Compute r_{(m,n)}^k(t)
 9:
                   Compute SC_{(m,n)}^{k}(t) = \frac{r_{(m,n)}^{k}(t)}{\overline{r}_{(m,n)}^{k}(t-1)}
10:
                end for
11:
12:
                Assign PRB k to
               CPE_{(m,n^*)} = \mathcal{N}_m^* SC_{(m,n)}^k(t)
\overline{r}_{(m,n^*)}^k(t) \leftarrow (1 - \frac{1}{T_*})\overline{r}_{(m,n^*)}^k(t - 1) + \frac{1}{T_*}r_{(m,n^*)}^k(t)
13:
            end for
14:
         end for
15:
16: end for
```

SPFA With Reservation (SPFAR)-II

- \mathcal{K}_1 : set of PRBs which are going to be allocated using Algorithm 2; $|\mathcal{K}_1| = \sum_{n \in \mathcal{N}_m} K_{(m,n)}$ PRBs; selected uniformly at random
- Rest are assigned to \mathcal{K}_2
- Allocate the PRBs in \mathcal{K}_2 among all CPEs $|\mathcal{N}_m|$ of the CoR_m using SPFA

Algorithm 2 Reserved PRB Allocation

- 1: for each $CoR_m \in \mathcal{M}$ do
- 2: **while** $|\chi_m| \neq 0 \land |\mathcal{K}_1| \neq 0$ **do**
- 3: Choose $CPE_{(m,n)} \in \chi_m$ such that

$$\overline{r}_{(m,n)} \le \overline{r}_{(m,n')}, \, \forall CPE_{m,n'} \in \chi_m$$

4: Allocate the set of PRBs $\mathcal{K}_3 \subset \mathcal{K}_1$ to $CPE_{(m,n)}$ as

$$\mathcal{K}_3 = \left\{ y \in \mathcal{K}_1 | r_{(m,n)}^y \ge r_{(m,n)}^k, \forall k \in \mathcal{K}_1 - \mathcal{K}_3 \right.$$
$$\land \left. | \mathcal{K}_3 | = K_{(m,n)} \right\}$$

- 5: $\chi_m \leftarrow \chi_m \{CPE_{(m,n)}\}$
- 6: $\mathcal{K}_1 \leftarrow \mathcal{K}_1 \mathcal{K}_3$
- 7: end while
- 8: end for