$ au_1^{\#2}$	0	0	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6 k^2 (2 r_3 + r_5) + t_1}{(1 + 2 k^2)^2 (2 r_3 + r_5) t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0) · · · · · · · · · · · · · · · · · · ·	$0 \qquad \frac{i (6)}{\sqrt{2} k (1)}$	0	0 64
$\sigma_{1^-}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (2 r_3 + r_5)}$	$\frac{6k^2(2r_3+r_5)+t_1}{2(k+2k^3)^2(2r_3+r_5)t_1}$	0	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{k^2 \left(2 r_3 + r_5\right)}$	$-\frac{1}{\sqrt{2} (k^2 + 2k^4) (2r_3 + r_5)}$	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$
$\tau_1^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2 k^4 (2 r_3 + r_5) + k^2 t_1}{(1 + k^2)^2 t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$		$\frac{-2k^2(2r_3+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + \alpha^{eta}$	$t_1^{\#1} + ^{\alpha \beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{#2} + ^{\alpha}$	$\tau_{1^-}^{\#1} +^{\alpha}$	$\tau_{1}^{#2} + \alpha$

	#	1	I	3	3	3	2	16
Source constraints	SO(3) irreps	$t_0^{\#2} == 0$	$\tau_{0}^{\#1} = 0$	$t_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha = 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_1^{\#1}{}^{\alpha\beta} + ik \sigma_1^{\#2}{}^{\alpha\beta} == 0$	$\tau_{2+}^{\#1}\alpha\beta - 2ik\sigma_{2+}^{\#1}\alpha\beta == 0$	Total #:

	$\sigma_{2^{+}lphaeta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

X	$\omega_{2}^{\#1}_{+}$ $f_{2}^{\#1}_{+}$ $\omega_{2}^{\#1}_{2}$ $aeta_{X}$	
	$f_{2}^{\#1}$	
	$\omega_2^{\#1}$	
	•	•

0 7 7 $k^2 t_1$ 0 $\frac{i\,k\,t_1}{\sqrt{2}}$ 0 $\omega_2^{\#1} \dagger^{\alpha\beta}$ $f_2^{\#1} \dagger^{\alpha\beta}$ $\omega_{2}^{\#1} +^{lphaeta\chi}$

$f_{1}^{\#2}$	0	0	0	<i>ikt</i> 1 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^{ ext{-}}}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	17 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$k^2 (2 r_3 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$-rac{1}{3}$ Ik t_1
$f_{1}^{\#1}$	$-\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}\ f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$ +^{\alpha\beta} k^2 (2 r_3 + r_5) - \frac{t_1}{2} $	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	$+_{\alpha}$ 0	1 4 $^{\alpha}$ 0	0	$+_{\alpha}$ 0

 $r_5 \, \partial_\theta \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\theta \kappa \lambda} - 2 \, r_3 \, \partial_\alpha \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} - r_5 \, \partial_\alpha \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} + 4 \, r_3 \, \partial_\theta \omega_\lambda^{\ \alpha} \, \partial_\kappa \omega^{\kappa \lambda \theta} +$ $r_5\,\partial_i\omega^{\kappa\lambda}_{\kappa}\,\partial^i\omega_{\alpha}^{\alpha} + 2\,r_3\,\partial_\alpha\omega_{\alpha}^{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda}_{} - r_5\,\partial_\alpha\omega_{\alpha}^{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda}_{} - 2\,r_3\,\partial_\theta\omega_{\alpha}^{\alpha}\,\partial_\kappa\omega^{\theta\kappa\lambda}_{} +$ $2r_3\partial_\alpha\omega_\lambda^{\ \alpha}{}_{\theta}\partial^\lambda\omega^{\theta\kappa}{}_{\kappa}+r_5\partial_\alpha\omega_\lambda^{\ \alpha}{}_{\theta}\partial^\lambda\omega^{\theta\kappa}{}_{\kappa}+2r_3\partial_\theta\omega_\lambda^{\ \alpha}{}_{\alpha}\partial^\lambda\omega^{\theta\kappa}{}_{\kappa}-r_5\partial_\theta\omega_\lambda^{\ \alpha}{}_{\alpha}\partial^\lambda\omega^{\theta\kappa}{}_{\kappa}$ $2 r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} - \tfrac{1}{2} t_1 \partial^\alpha f_{\theta\kappa} \partial^\kappa f_\alpha^{\ \theta} - \tfrac{1}{2} t_1 \partial^\alpha f_{\kappa\theta} \partial^\kappa f_\alpha^{\ \theta} - \tfrac{1}{2} t_1 \partial^\alpha f^\lambda_{\ \kappa} \partial^\kappa f_{\alpha\lambda} +$ $\frac{1}{2}t_1\partial_\kappa f_{\lambda}^{\ \lambda}\partial^\kappa f_{\lambda}^{\ \theta} + \frac{1}{2}t_1\partial_\kappa f^{\lambda}_{\ \theta}\partial^\kappa f_{\lambda}^{\ \theta} - \frac{1}{3}t_1\partial^\alpha f^{\lambda}_{\ \alpha}\partial^\kappa f_{\lambda\kappa} - 4\,r_3\,\partial^\beta \omega_{,\lambda}^{\ \lambda\alpha}\partial_\lambda \omega_{\alpha\beta}^{\ \prime} \frac{1}{3} t_1 \ \omega_{\kappa\alpha}^{\ \alpha} \ \partial^{\kappa} f'_{\ \prime} + \frac{1}{3} t_1 \ \omega_{\kappa\lambda}^{\ \lambda} \ \partial^{\kappa} f'_{\ \prime} + \frac{2}{3} t_1 \partial^{\alpha} f_{\ \kappa\alpha} \ \partial^{\kappa} f'_{\ \prime} - \frac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{\ \lambda} \partial^{\kappa} f'_{\ \prime} +$ $2\,t_1\,\,\omega_{,\kappa\theta}\,\partial^\kappa f^{\,\prime\theta} - \tfrac{1}{3}\,t_1\,\,\omega_{,\alpha}^{\ \alpha}\,\partial^\kappa f^{\,\prime}_{\ \kappa} - \tfrac{1}{3}\,t_1\,\,\omega_{,\lambda}^{\ \lambda}\,\,\partial^\kappa f^{\,\prime}_{\ \kappa} + \tfrac{1}{2}\,t_1\,\partial^\alpha f^{\,\lambda}_{\ \kappa}\,\partial^\kappa f_{\,\lambda\alpha} +$ Lagrangian density

	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	$6 k^2 r_3$	0	0	0
$f_{0}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	$-t_1$

	$\sigma_{0}^{\#1}$	$\tau_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{6 k^2 r_3}$	0	0	0
$\tau_{0}^{\#1}$ †	0	0	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$

?	Quadratic pole	
$\stackrel{k^{\mu}}{\longrightarrow}$?	Pole residue:	$-\frac{1}{(2r_3+r_5)t_1^2} > 0$
?	Polarisations:	2

(No massive particles)