МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И.УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЁТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»
Тема: Оценка параметров надежности программ по временным моделям
обнаружения ошибок

Студент гр. 6304	Корытов П.В.
Преподаватель	Кирьянчиков В.А.

Санкт-Петербург 2020

Формулировка задания

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

1. Сгенерировать массивы данных $\{Xi\}$, где Xi – случайное значение интервала между соседними (i-1)—ой и i—ой ошибками

$$L \coloneqq 30$$
 $i \coloneqq 1..L$

также смотри примечание в п.3, в соответствии с:

А) равномерным законом распределения в интервале

$$X_{umin} \coloneqq 0 \quad X_{umax} \coloneqq 20$$

при этом средний интервал между ошибками будет:

$$m_u = 10$$
 $MSE_u = \frac{20}{2\sqrt{3}} = 5.774$

Б) экспоненциальным законом распределения

$$b \coloneqq 0.1$$

$$W_e(y) \coloneqq b \cdot \exp(-b \cdot y)$$

и соответственно

$$m_e := \frac{1}{b} = 10$$
 $s_e := \frac{1}{b} = 10$

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле:

$$Y_e(t) = \frac{-\ln(t)}{b}$$

В) Релеевским законом распределения

$$c = 8.0$$

$$W_r(y) \coloneqq \frac{y}{c^2} \exp\left(\frac{-y^2}{2 c^2}\right)$$

и соответственно:

$$m_r \coloneqq c \cdot \sqrt{\frac{\pi}{2}} = 10.027$$
 $s_r \coloneqq c \cdot \sqrt{2 - \frac{\pi}{2}} = 5.241$

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле

$$Y_r(t) \coloneqq c \cdot \sqrt{-2 \cdot \ln(t)}$$

- 2. Каждый из 3-х массивов {Xi} интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов {Xi} оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать:

$$L_1 := L = 30$$

 $L_2 := 80\% \cdot L = 24$
 $L_3 := 60\% \cdot L = 18$

- 4. Если B>n, оценить значения средних времен Xj, j=n+1,n+2..., n+k до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы

1. Равномерный закон, n = 30

$$L_m \coloneqq L_1 = 30$$
 $law \coloneqq$ "Равномерный закон"

$$X = \operatorname{sort} \left(\operatorname{runif} \left(L_m, X_{umin}, X_{umax} \right) \right)$$

$$slice\left(X, start, end\right)$$
:= for $i \in start \mathinner{..}\ end$ return r - чтобы показать часть вектора

$$print_vector(X) = \begin{bmatrix} [0.025 \ 0.178 \ 1.141 \ 1.828 \ 2.382 \ 2.946 \ 3.325 \ 3.483 \ 3.866 \ 5.324] \\ [6.08 \ 7.006 \ 9.016 \ 9.241 \ 10.398 \ 10.633 \ 10.787 \ 11.7 \ 12.035 \ 12.23] \\ [14.21 \ 15.593 \ 15.666 \ 16.457 \ 16.802 \ 17.244 \ 17.519 \ 19.118 \ 19.77 \ 19.936] \end{bmatrix}$$

Проверка существования максимума

$$A(X) \coloneqq \frac{\sum\limits_{i=1}^{\operatorname{length}(X)} X_{i-1} \cdot i}{\sum\limits_{i=1}^{\operatorname{length}(X)} X_{i-1}}$$
 $check(X) \coloneqq \operatorname{if} A(X) > \frac{\operatorname{length}(X) + 1}{2}$ $\|\operatorname{return} \text{ "Существует"}\|$ $A_v \coloneqq A(X) = 21.003$ $\|\operatorname{return} \text{ "He существует"}\|$

$$check(X) =$$
 "Существует"

Поиск для т>=n+1:

$$L_{S} \coloneqq 5$$

$$f_{n}(m,n) \coloneqq \sum_{i=1}^{n} \frac{1}{m-i} \qquad g_{n}(m,A,n) \coloneqq \frac{n}{m-A} \qquad M \coloneqq L_{m}+1 \dots L_{m}+L_{S}+1 = \begin{bmatrix} 31\\32\\33\\34\\35\\36 \end{bmatrix}$$

$$d_{n}(m,A,n) \coloneqq \overline{\left|f_{n}(m,n)-g_{n}(m,A,n)\right|}$$

$$f_n(M, L_m)^{\mathrm{T}} = [3.995 \ 3.027 \ 2.558 \ 2.255 \ 2.035 \ 1.863]$$

$$g_n(M, A_v, L_m)^{\mathrm{T}} = [3.001 \ 2.728 \ 2.501 \ 2.308 \ 2.143 \ 2]$$

$$D \coloneqq d_n \left(\!\!\!\! \left(M \,, A_v \,, L_m \right) \right. \quad D^{\mathrm{T}} \! = \! \left[\, 0.994 \;\; 0.299 \;\; 0.058 \;\; 0.053 \;\; 0.108 \;\; 0.137 \, \right]$$

$$min_index\left(X,start\right)\coloneqq \mathrm{match}\left(\min\left(X\right),X\right)_0+start$$
 - поиск минимального индекса

$$\begin{split} m \coloneqq & \min_{-index} \left(D, M_{_{0}}\right) = 34 & range\left(a, b, s\right) \coloneqq \text{if } b \geq a \\ & \left\| \text{ for } i \in a, a + s \dots b \right\| \text{ return } r \\ & \left\| K(B, X) \right\| = \frac{\text{length}\left(X\right)}{\left(B + 1\right) \sum_{i=1}^{\text{length}\left(X\right)} X_{i-1} - \sum_{i=1}^{\text{length}\left(X\right)} i \cdot X_{_{i-1}} \end{split} \right\| \begin{bmatrix} \text{"He срослось, b < a"} \end{bmatrix}$$

$$K_v := K(B_v, X) = 0.008$$

$$X_{n1}ig(K,B,nig)\coloneqq {
m try}$$

$$\parallel \frac{1}{Km{\cdot}(B-n+1)}$$
 on error
$$\parallel \big[\text{"B MathCAD не поддерживаются пустые векторы"} ig]$$
 $M_1\coloneqq range\left(M_{_0},B_{_V},1
ight)$ $X_{n1}\left(K_{_V},B_{_V},M_{_1}
ight)^{^{\mathrm{T}}}=ig[42.737\ 64.106\ 128.212ig]$

Время до завершения тестирования:

$$T(K,B,N) \coloneqq \operatorname{try} \left\| \sum_{i=0}^{\operatorname{length}(N)-1} X_{n1}(K,B,N_i) \right\|$$
 on error $\left\| 0 \right\|$ $T(K_v,B_v,M_1) = 235.055$

Полное время:

олное время:
$$T_f\big(X,K,B,N\big) \coloneqq \sum_{i=0}^{\mathrm{length}\,(X)-1} X_i + T\big(K,B,N\big)$$

$$T_f\big(X,K_v,B_v,M_1\big) = 530.997$$

$$method \coloneqq [law]$$

$$number \coloneqq \begin{bmatrix} L_m \\ start_errors \coloneqq \begin{bmatrix} B_v \\ total_time \coloneqq \begin{bmatrix} T_f\big(X,K_v,B_v,M_1\big)\end{bmatrix}$$

2. Равномерный закон, n = 24

$$\begin{array}{c} L_m \coloneqq L_2 = 24 \\ X \coloneqq \mathrm{sort} \left(\mathrm{runif} \left(L_m, X_{umin}, X_{umax} \right) \right) \\ & \lceil 0.176 \ \ 2.832 \ \ 2.95 \ \ 3.031 \ \ 3.38 \ \ 5.518 \ \ 7.517 \ \ 8.503 \ \ 8.531 \ \ 9.16 \rceil \end{array}$$

1

$$print_vector(X) = \begin{bmatrix} 9.699 & 9.838 & 10.342 & 11.448 & 11.758 & 11.981 & 13.544 & 13.858 & 13.995 & 14.7 \end{bmatrix} \begin{bmatrix} 14.875 & 14.888 & 15.031 & 16.752 \end{bmatrix}$$

Проверка существования максимума

$$A_v := A(X) = 15.709$$

 $check(X) =$ "Существует"

Поиск для т>=n+1:

$$\begin{split} M \coloneqq & range \left(L_m + 1 \,, L_m + L_S + 1 \,, 1 \right) \qquad M^{^{\mathrm{T}}} = \begin{bmatrix} 25 \ 26 \ 27 \ 28 \ 29 \ 30 \end{bmatrix} \\ & f_n \left(M \,, L_m \right)^{^{\mathrm{T}}} = \begin{bmatrix} 3.776 \ 2.816 \ 2.354 \ 2.058 \ 1.844 \ 1.678 \end{bmatrix} \\ & g_n \left(M \,, A_v \,, L_m \right)^{^{\mathrm{T}}} = \begin{bmatrix} 2.583 \ 2.332 \ 2.126 \ 1.953 \ 1.806 \ 1.679 \end{bmatrix} \\ & D \coloneqq d_n \left(M \,, A_v \,, L_m \right) \qquad D^{^{\mathrm{T}}} = \begin{bmatrix} 1.193 \ 0.484 \ 0.229 \ 0.106 \ 0.038 \ 0.001 \end{bmatrix} \\ & m \coloneqq & min_index \left(D \,, M_0 \right) = 30 \\ & B_v \coloneqq B \left(m \right) = 29 \\ & K_v \coloneqq K \left(B_v \,, X \right) = 0.007 \end{split}$$

Среднее время:

$$\begin{aligned} & M_{1}\!\coloneqq\!range\left(\!M_{_{0}},\!B_{_{v}},1\right) & M_{_{1}}{}^{^{\mathrm{T}}}\!=\!\begin{bmatrix}25\ 26\ 27\ 28\ 29\end{bmatrix}\\ & X_{n1}\left(\!K_{_{\!V}},\!B_{_{\!V}},\!M_{_{\!1}}\!\right)^{^{\mathrm{T}}}\!=\!\begin{bmatrix}27.905\ 34.881\ 46.508\ 69.762\ 139.524\end{bmatrix} \end{aligned}$$

Время до завершения тестирования:

$$T(K_v, B_v, M_1) = 318.579$$

Полное время:

$$\begin{split} T_f \big(X, K_v, B_v, M_1 \big) &= 552.885 \\ method &\coloneqq \operatorname{stack} \big(method \,, law \big) \\ number &\coloneqq \operatorname{stack} \big(number \,, L_m \big) \\ start_errors &\coloneqq \operatorname{stack} \big(start_errors \,, B_v \big) \\ total_time &\coloneqq \operatorname{stack} \big(total_time \,, T_f \big(X, K_v, B_v, M_1 \big) \big) \end{split}$$

3. Равномерный закон, n = 18

$$L_m \coloneqq L_3 = 18$$

$$X \coloneqq \operatorname{sort} \left(\operatorname{runif} \left(L_m, X_{umin}, X_{umax} \right) \right)$$

$$print_vector(X) = \begin{bmatrix} \begin{bmatrix} 2.461 & 3.065 & 3.111 & 3.827 & 5.592 & 8.524 & 9.434 & 10.34 & 10.991 & 13.645 \end{bmatrix} \\ \begin{bmatrix} 14.438 & 14.64 & 16.344 & 16.433 & 16.693 & 16.939 & 18.987 & 19.332 \end{bmatrix} \end{bmatrix}$$

Проверка существования максимума

$$A_v := A(X) = 12.04$$

 $check(X) =$ "Существует"

Поиск для т>=n+1:

$$\begin{split} M \! \coloneqq \! range \left(L_m \! + \! 1 \,, L_m \! + \! L_S \! + \! 1 \,, 1 \right) & \quad M^{\mathrm{T}} \! = \! \left[19 \;\; 20 \;\; 21 \;\; 22 \;\; 23 \;\; 24 \right] \\ \\ f_n \left(M \,, L_m \right)^{\mathrm{T}} \! = \! \left[3.495 \;\; 2.548 \;\; 2.098 \;\; 1.812 \;\; 1.607 \;\; 1.451 \right] \end{split}$$

$$g_n \left(\!\!\! \left(M, A_v, L_m \!\!\! \right)^{\mathrm{T}} \!=\! \left[2.586 \;\; 2.261 \;\; 2.009 \;\; 1.807 \;\; 1.642 \;\; 1.505 \right]$$

$$\begin{split} D &\coloneqq d_n \left(\!\!\!\! \left(\!\!\! M \,, \!\!\! A_v \,, \!\!\! L_m \!\!\! \right) \right. \quad D^{\mathrm{T}} \! = \!\!\! \left[0.909 \;\; 0.287 \;\; 0.089 \;\; 0.005 \;\; 0.035 \;\; 0.054 \right] \\ m &\coloneqq \!\!\!\! \min \!\!\!\! \left[index \left(\!\!\!\! D \,, \!\!\! M_{_0} \!\!\! \right) \!\!\!\! = \!\!\! 22 \right. \end{split}$$

$$B_v := B(m) = 21$$

 $K_v := K(B_v, X) = 0.009$

Среднее время:

$$\begin{aligned} & M_{1}\!:=\!range\left(\!M_{_{0}},\!B_{_{v}},\!1\right) & M_{1}{^{^{\mathrm{T}}}}\!=\!\left[\!\!\begin{array}{ccc} 19 & 20 & 21 \end{array}\!\!\right] \\ & X_{n1}\left(\!K_{v},\!B_{v},\!M_{1}\!\right)^{^{\mathrm{T}}}\!=\!\left[\!\!\begin{array}{cccc} 37.775 & 56.663 & 113.325 \end{array}\!\!\right] \end{aligned}$$

Время до завершения тестирования:

$$T(K_v, B_v, M_1) = 207.763$$

Полное время:

$$\begin{split} T_f \left(X, K_v, B_v, M_1 \right) &= 412.56 \\ method &\coloneqq \operatorname{stack} \left(method, law \right) \\ number &\coloneqq \operatorname{stack} \left(number, L_m \right) \\ start_errors &\coloneqq \operatorname{stack} \left(start_errors, B_v \right) \\ total_time &\coloneqq \operatorname{stack} \left(total_time, T_f \left(X, K_v, B_v, M_1 \right) \right) \end{split}$$

4. Экспоненциальный закон, n = 30

$$\begin{split} L_m\coloneqq L_1&=30 &law\coloneqq \text{``Экспоненциальный закон''}\\ X\coloneqq \mathrm{sort}\left(Y_e\left(\mathrm{runif}\left(L_m,0,1\right)\right)\right) \\ print_vector\left(X\right) &= \begin{bmatrix} \begin{bmatrix} 0.172 & 1.707 & 1.718 & 1.75 & 1.808 & 2.154 & 2.847 & 3.022 & 3.621 & 4.192 \end{bmatrix} \\ \begin{bmatrix} 5.104 & 5.484 & 5.576 & 5.92 & 6.099 & 6.324 & 6.913 & 7.851 & 8.285 & 8.285 \end{bmatrix} \\ \begin{bmatrix} 11.581 & 12.515 & 13.755 & 15.579 & 16.296 & 19.641 & 21.735 & 22.078 & 35.937 & 64.258 \end{bmatrix} \end{bmatrix} \end{split}$$

Проверка существования максимума

$$A_v \coloneqq A\left(X\right) = 23.308$$
 $check\left(X\right) =$ "Существует"

Поиск для т>=n+1:

$$\begin{split} M \coloneqq & range \left(L_m + 1 \,, L_m + L_S + 1 \,, 1 \right) \qquad M^{^{\mathrm{T}}} = \begin{bmatrix} 31 \ 32 \ 33 \ 34 \ 35 \ 36 \end{bmatrix} \\ & f_n \left(M \,, L_m \right)^{^{\mathrm{T}}} = \begin{bmatrix} 3.995 \ 3.027 \ 2.558 \ 2.255 \ 2.035 \ 1.863 \end{bmatrix} \\ & g_n \left(M \,, A_v \,, L_m \right)^{^{\mathrm{T}}} = \begin{bmatrix} 3.9 \ 3.451 \ 3.095 \ 2.806 \ 2.566 \ 2.364 \end{bmatrix} \\ & D \coloneqq & d_n \left(M \,, A_v \,, L_m \right) \qquad D^{^{\mathrm{T}}} = \begin{bmatrix} 0.095 \ 0.424 \ 0.537 \ 0.55 \ 0.531 \ 0.5 \end{bmatrix} \\ & m \coloneqq & min_index \left(D \,, M_0 \right) = 31 \\ & B_v \coloneqq & B \left(m \right) = 30 \\ & K_v \coloneqq & K \left(B_v \,, X \right) = 0.012 \end{split}$$

Среднее время:

$$M_1$$
:= $range\left(M_{_0},B_v,1
ight)$ $M_1^{^{\mathrm{T}}}$ = ["Не срослось, bX_{n1}\left(K_v,B_v,M_1
ight)^{^{\mathrm{T}}} = ["В MathCAD не поддерживаются пустые векторы"]

Время до завершения тестирования:

$$T(K_v, B_v, M_1) = 0$$

 $T_f(X, K_v, B_v, M_1) = 322.207$

Полное время:

$$\begin{split} method \coloneqq & \operatorname{stack} \left(method \, , law \right) \\ number \coloneqq & \operatorname{stack} \left(number \, , L_m \right) \\ start_errors \coloneqq & \operatorname{stack} \left(start_errors \, , B_v \right) \\ total_time \coloneqq & \operatorname{stack} \left(total_time \, , T_f \left(X \, , K_v \, , B_v \, , M_1 \right) \right) \end{split}$$

5. Экспоненциальный закон, n = 24

$$L_m := L_2 = 24$$

$$X := \operatorname{sort} (Y_e(\operatorname{runif}(L_m, 0, 1)))$$

$$print_vector(X) = \begin{bmatrix} \begin{bmatrix} 0.71 & 1.114 & 1.569 & 3.627 & 4.642 & 4.651 & 4.704 & 5.03 & 5.145 & 5.368 \end{bmatrix} \\ \begin{bmatrix} 5.696 & 5.885 & 6.849 & 7.043 & 7.821 & 7.949 & 8.899 & 14.153 & 14.814 & 16.61 \end{bmatrix} \\ \begin{bmatrix} 16.913 & 17.239 & 23.277 & 23.602 \end{bmatrix}$$

Проверка существования максимума

$$A_v := A(X) = 17.195$$

 $check(X) = "Существует"$

Поиск для т>=n+1:

$$M\!\coloneqq\! range\left(L_{m}\!+\!1\,,L_{m}\!+\!L_{S}\!+\!1\,,1\right) \qquad \quad M^{\mathrm{T}}\!=\!\left[\,25\ \ 26\ \ 27\ \ 28\ \ 29\ \ 30\,\right]$$

$$\begin{split} &f_n \left(M, L_m \right)^{\mathrm{T}} = \begin{bmatrix} 3.776 & 2.816 & 2.354 & 2.058 & 1.844 & 1.678 \end{bmatrix} \\ &g_n \left(M, A_v, L_m \right)^{\mathrm{T}} = \begin{bmatrix} 3.075 & 2.726 & 2.448 & 2.221 & 2.033 & 1.874 \end{bmatrix} \\ &D \coloneqq d_n \left(M, A_v, L_m \right) \qquad D^{\mathrm{T}} = \begin{bmatrix} 0.701 & 0.09 & 0.093 & 0.163 & 0.189 & 0.196 \end{bmatrix} \\ &m \coloneqq \min_index \left(D, M_0 \right) = 26 \\ &B_v \coloneqq B \left(m \right) = 25 \\ &K_v \coloneqq K \left(B_v, X \right) = 0.013 \end{split}$$

$$\begin{aligned} & M_{1}\!\coloneqq\!range\left(\!M_{_{0}},\!B_{v},1\right) \quad M_{1}{^{^{\mathrm{T}}}}\!=\!\left[\,25\,\right] \\ & X_{n1}\left(\!K_{v},\!B_{v},\!M_{1}\right)^{^{\mathrm{T}}}\!=\!\left[\,78.26\,\right] \end{aligned}$$

Время до завершения тестирования:

$$T(K_v, B_v, M_1) = 78.26$$

Полное время:

$$T_f(X, K_v, B_v, M_1) = 291.566$$

$$\begin{split} method &\coloneqq \operatorname{stack} \left(method \, , law \right) \\ number &\coloneqq \operatorname{stack} \left(number \, , L_m \right) \\ start_errors &\coloneqq \operatorname{stack} \left(start_errors \, , B_v \right) \\ total_time &\coloneqq \operatorname{stack} \left(total_time \, , T_f \left(X \, , K_v \, , B_v \, , M_1 \right) \right) \end{split}$$

6. Экспоненциальный закон, n = 18

$$L_m \coloneqq L_3 = 18$$

$$X \coloneqq \operatorname{sort} (Y_e(\operatorname{runif}(L_m, 0, 1)))$$

$$print_vector(X) = \begin{bmatrix} \begin{bmatrix} 0.926 & 1.611 & 2.175 & 3.001 & 3.179 & 4.038 & 4.447 & 4.774 & 5.516 & 6.068 \end{bmatrix} \\ \begin{bmatrix} 7.645 & 8.941 & 11.551 & 11.848 & 18.651 & 18.796 & 22.203 & 25.339 \end{bmatrix} \end{bmatrix}$$

Проверка существования максимума

$$A_v := A(X) = 13.465$$

 $check(X) =$ "Существует"

Поиск для m>=n+1:

$$\begin{split} M \coloneqq & range\left(L_m + 1\,, L_m + L_S + 1\,, 1\right) \\ & f_n\left(M\,, L_m\right)^{^{\mathrm{T}}} = \begin{bmatrix} 3.495 \;\; 2.548 \;\; 2.098 \;\; 1.812 \;\; 1.607 \;\; 1.451 \end{bmatrix} \end{split}$$

$$\begin{split} g_n \left(M, A_v, L_m \right)^{\mathrm{T}} &= \begin{bmatrix} 3.252 & 2.754 & 2.389 & 2.109 & 1.888 & 1.709 \end{bmatrix} \\ D &\coloneqq d_n \left(M, A_v, L_m \right) \qquad D^{\mathrm{T}} &= \begin{bmatrix} 0.243 & 0.207 & 0.291 & 0.297 & 0.28 & 0.258 \end{bmatrix} \\ m &\coloneqq \min_index \left(D, M_0 \right) &= 20 \\ B_v &\coloneqq B \left(m \right) &= 19 \\ K_v &\coloneqq K \left(B_v, X \right) &= 0.017 \end{split}$$

$$\begin{aligned} & M_{1}\!:=\!range\left(\!M_{_{0}},\!B_{v},1\right) \quad M_{1}^{^{\mathrm{T}}}\!=\!\left[\,19\,\right] \\ & X_{n1}\!\left(\!K_{v},\!B_{v},\!M_{1}\!\right)^{^{\mathrm{T}}}\!=\!\left[\,58.348\,\right] \end{aligned}$$

Время до завершения тестирования:

$$T(K_v, B_v, M_1) = 58.348$$

Полное время:

$$\begin{split} T_f \big(X, K_v, B_v, M_1 \big) &= 219.057 \\ method &\coloneqq \operatorname{stack} \big(method \, , law \big) \\ number &\coloneqq \operatorname{stack} \big(number \, , L_m \big) \\ start_errors &\coloneqq \operatorname{stack} \big(start_errors \, , B_v \big) \\ total_time &\coloneqq \operatorname{stack} \big(total_time \, , T_f \big(X, K_v, B_v, M_1 \big) \big) \end{split}$$

7. Релеевский закон, n = 30

$$\begin{split} L_m \coloneqq L_1 = 30 & law \coloneqq \text{``Pелеевский закон''} \\ X \coloneqq \operatorname{sort}\left(Y_r\left(\operatorname{runif}\left(L_m,0,1\right)\right)\right) \\ print_vector\left(X\right) = \begin{bmatrix} \left[2.408 \ 2.517 \ 3.268 \ 4.163 \ 4.339 \ 4.936 \ 5.567 \ 6.106 \ 6.236 \ 6.917 \right] \\ \left[7.256 \ 7.375 \ 7.959 \ 8.003 \ 8.71 \ 9.294 \ 9.463 \ 9.521 \ 11.127 \ 12.413 \right] \\ \left[13.775 \ 14.898 \ 16.11 \ 16.245 \ 16.992 \ 17.144 \ 18.337 \ 19.212 \ 21.41 \ 25.627 \right] \end{bmatrix} \end{split}$$

Проверка существования максимума

$$A_v$$
:= $A\left(X\right)$ =20.245 $check\left(X\right)$ = "Существует"

Поиск для т>=n+1:

$$\begin{split} M \coloneqq & range\left(L_m+1\,,L_m+L_S+1\,,1\right) \qquad M^{\mathrm{T}} = \begin{bmatrix} 31 \ 32 \ 33 \ 34 \ 35 \ 36 \end{bmatrix} \\ & f_n\left(M\,,L_m\right)^{\mathrm{T}} = \begin{bmatrix} 3.995 \ 3.027 \ 2.558 \ 2.255 \ 2.035 \ 1.863 \end{bmatrix} \\ & g_n\left(M\,,A_v\,,L_m\right)^{\mathrm{T}} = \begin{bmatrix} 2.789 \ 2.552 \ 2.352 \ 2.181 \ 2.033 \ 1.904 \end{bmatrix} \\ & D \coloneqq & d_n\left(M\,,A_v\,,L_m\right) \qquad D^{\mathrm{T}} = \begin{bmatrix} 1.206 \ 0.475 \ 0.207 \ 0.075 \ 0.002 \ 0.041 \end{bmatrix} \end{split}$$

$$m := min_index (D, M_0) = 35$$

 $B_v := B(m) = 34$
 $K_v := K(B_v, X) = 0.006$

$$\begin{aligned} & M_{1}\!\coloneqq\!range\left(\!M_{_{0}},\!B_{v},1\right) & M_{_{1}}{}^{^{\mathrm{T}}}\!=\!\begin{bmatrix}31\ 32\ 33\ 34\end{bmatrix}\\ & X_{n1}\left(\!K_{v},\!B_{v},\!M_{1}\right)^{^{\mathrm{T}}}\!=\!\begin{bmatrix}39.019\ 52.026\ 78.038\ 156.077\end{bmatrix} \end{aligned}$$

Время до завершения тестирования:

$$T(K_v, B_v, M_1) = 325.16$$

Полное время:

$$\begin{split} T_f \big(X, & K_v, B_v, M_1 \big) = 642.487 \\ method &:= \operatorname{stack} \big(method, law \big) \\ number &:= \operatorname{stack} \big(number, L_m \big) \\ start_errors &:= \operatorname{stack} \big(start_errors, B_v \big) \\ total_time &:= \operatorname{stack} \big(total_time \,, T_f \big(X, K_v, B_v, M_1 \big) \big) \end{split}$$

8. Релеевский закон, n = 24

$$\begin{split} L_m \coloneqq L_2 = 24 \\ X \coloneqq \mathrm{sort} \left(Y_r \left(\mathrm{runif} \left(L_m, 0, 1 \right) \right) \right) \\ print_vector \left(X \right) = \begin{bmatrix} \left[3.764 \ 4.32 \ 5.224 \ 5.308 \ 5.372 \ 6.155 \ 6.462 \ 6.65 \ 8.438 \ 8.774 \right] \\ \left[9.061 \ 10.794 \ 11.318 \ 11.418 \ 11.735 \ 12.221 \ 12.689 \ 13.973 \ 15.087 \ 15.727 \right] \\ \left[\left[15.964 \ 16.11 \ 18.643 \ 23.244 \right] \end{bmatrix} \end{split}$$

Проверка существования максимума

$$A_v := A(X) = 15.584$$
 $check(X) =$ "Существует"

Поиск для m>=n+1:

$$\begin{split} M \coloneqq & range \left(L_m + 1 \,, L_m + L_S + 1 \,, 1 \right) \qquad M^{\mathrm{T}} = \begin{bmatrix} 25 \ 26 \ 27 \ 28 \ 29 \ 30 \end{bmatrix} \\ & f_n \left(M \,, L_m \right)^{\mathrm{T}} = \begin{bmatrix} 3.776 \ 2.816 \ 2.354 \ 2.058 \ 1.844 \ 1.678 \end{bmatrix} \\ & g_n \left(M \,, A_v \,, L_m \right)^{\mathrm{T}} = \begin{bmatrix} 2.549 \ 2.304 \ 2.102 \ 1.933 \ 1.789 \ 1.665 \end{bmatrix} \\ & D \coloneqq & d_n \left(M \,, A_v \,, L_m \right) \qquad D^{\mathrm{T}} = \begin{bmatrix} 1.227 \ 0.512 \ 0.252 \ 0.125 \ 0.055 \ 0.014 \end{bmatrix} \\ & m \coloneqq & min_index \left(D \,, M_0 \right) = 30 \\ & B_v \coloneqq & B \left(m \right) = 29 \\ & K_v \coloneqq & K \left(B_v \,, X \right) = 0.006 \end{split}$$

Время до завершения тестирования:

$$T(K_v, B_v, M_1) = 354.473$$

Полное время:

$$\begin{split} T_f \big(X, K_v, B_v, M_1 \big) &= 612.924 \\ method &\coloneqq \operatorname{stack} \big(method \, , law \big) \\ number &\coloneqq \operatorname{stack} \big(number \, , L_m \big) \\ start_errors &\coloneqq \operatorname{stack} \big(start_errors \, , B_v \big) \\ total_time &\coloneqq \operatorname{stack} \big(total_time \, , T_f \big(X, K_v, B_v, M_1 \big) \big) \end{split}$$

9. Реелеевский закон, n = 18

$$\begin{split} L_m \coloneqq L_3 = 18 \\ X \coloneqq \text{sort} \left(Y_r \left(\text{runif} \left(L_m, 0, 1 \right) \right) \right) \\ print_vector \left(X \right) = \begin{bmatrix} \left[2.662 & 3.011 & 3.834 & 6.844 & 8.849 & 8.958 & 9.074 & 9.086 & 10.849 & 10.85 \right] \\ \left[11.809 & 13.147 & 13.727 & 13.746 & 15.678 & 17.371 & 19.341 & 19.777 \right] \end{bmatrix} \end{split}$$

Проверка существования максимума

$$A_v := A(X) = 11.804$$
 $check(X) = "Существует"$

Поиск для m>=n+1:

$$\begin{split} M \coloneqq & range \left(L_m + 1 \,, L_m + L_S + 1 \,, 1 \right) \qquad M^{\mathrm{T}} = \begin{bmatrix} 19 & 20 & 21 & 22 & 23 & 24 \end{bmatrix} \\ f_n \left(M \,, L_m \right)^{\mathrm{T}} = \begin{bmatrix} 3.495 & 2.548 & 2.098 & 1.812 & 1.607 & 1.451 \end{bmatrix} \\ g_n \left(M \,, A_v \,, L_m \right)^{\mathrm{T}} = \begin{bmatrix} 2.501 & 2.196 & 1.957 & 1.765 & 1.608 & 1.476 \end{bmatrix} \\ D \coloneqq & d_n \left(M \,, A_v \,, L_m \right) \qquad D^{\mathrm{T}} = \begin{bmatrix} 0.994 & 0.352 & 0.14 & 0.047 & 1.819 \cdot 10^{-4} & 0.025 \end{bmatrix} \\ m \coloneqq & min_index \left(D \,, M_0 \right) = 23 \\ B_v \coloneqq & B \left(m \right) = 22 \\ K_v \coloneqq & K \left(B_v \,, X \right) = 0.008 \end{split}$$

Среднее время:

$$\begin{aligned} & M_{1}\!\coloneqq\!range\left(\!M_{_{0}},\!B_{v},1\right) & M_{1}{}^{^{\mathrm{T}}}\!=\!\begin{bmatrix}19\ 20\ 21\ 22\end{bmatrix}\\ & X_{n1}\left(\!K_{v},\!B_{v},\!M_{1}\!\right)^{^{\mathrm{T}}}\!=\!\begin{bmatrix}30.885\ 41.18\ 61.77\ 123.541\end{bmatrix} \end{aligned}$$

Время до завершения тестирования:

$$T(K_v, B_v, M_1) = 257.377$$

Полное время:

```
\begin{split} T_f \big( X, K_v, B_v, M_1 \big) &= 455.989 \\ method &:= \operatorname{stack} \big( method \, , law \big) \\ number &:= \operatorname{stack} \big( number \, , L_m \big) \\ start\_errors &:= \operatorname{stack} \big( start\_errors \, , B_v \big) \\ total\_time &:= \operatorname{stack} \big( total\_time \, , T_f \big( X, K_v, B_v, M_1 \big) \big) \end{split}
```

10. Результаты

```
results := augment (method, number, start\_errors, total\_time) head := ["Закон" "n" "Начальное число ошибок" "Общее время"]
```

out := stack(head, results)

	"Закон"	"n"	"Начальное число ошибок"	"Общее время"]
$out = \frac{1}{2}$	"Равномерный закон"	30	33	530.997
	"Равномерный закон"	24	29	552.885
	"Равномерный закон"	18	21	412.56
	"Экспоненциальный закон"	30	30	322.207
	"Экспоненциальный закон"	24	25	291.566
	"Экспоненциальный закон"	18	19	219.057
	"Релеевский закон"	30	34	642.487
	"Релеевский закон"	24	29	612.924
	"Релеевский закон"	18	22	455.989

Релеевский закон показал худшие результаты по обоим показателям, лучшие результаты показал экспоненциальный закон. Это должно согласоваться с предположением об экспоненциальном характере распределения времени до следующего отказа программы

Тем не менее, из-за небольшого объема выборки результаты нестабильные и сильно изменяются при пересчёте файла, что не позволяет сделать однозначный вывод из вышеописанного эксперимента.

Для выполнения задания использована среда РТС MathCAD Prime 6.0.