Decision Theory

Lecture 8

Performance Evaluation -> Application

Accuracy (performance metrics)

Deciding how to operate our algorithms in practice

Computational efficiency

(after we've evaluated generalization performance)

Interpretability

Time to make a decision...

Exercise inspired by Mausam, University of Washington, CSE573

Poor market Good market

Buy	Apple
Buy	Google
Buy	bonds

Action

	performance Payoff	performance Payoff	
	-1,000	1,700	-10% to +17% return
Э	-2,000	2,100	-20% to +21% return
	500	500	Guaranteed 5% return

How to invest \$10,000?

Kyle Bradbury **Decision Theory** Lecture 8

Maximax

Optimism

	State of	Criterion	
	Poor market performance Payoff	Good market performance Payoff	Maximum payoff for an action
Buy Apple	-1,000	1,700	1,700
Buy Google	-2,000	2,100	2,100
Buy bonds	500	500	500

Select the maximum of the maximum payoff

← Maximax

Maximin

Pessimism

	State of Nature		Criterion
	Poor market performance Payoff	Good market performance Payoff	Minimum payoff for an action
Buy Apple	-1,000	1,700	-1,000
Buy Google	-2,000	2,100	-2,000
Buy bonds	500	500	500

Select the maximum of the minimum payoffs

← Maximin

Kyle Bradbury

Decision Theory

Lecture 8

Minimax

Select the minimum maximum regret

Criterion

State	of	Nature	
-------	----	---------------	--

Poor market performance Good market performance regret for Pavoff Regret Pavoff Regret an action

an action **Payoff** Regret **Payoff** Regret Buy Apple 1,500 1,500 -1,000 1,700 400 Buy Google 2,500 2,100 2,500 -2,000 Buy bonds 500 1,600 1,600 500

Minimax

Which decision would I regret least?

Regret = Opportunity Loss
Difference between a decision
made and an optimal decision

Next: factor in probabilities of different outcomes

Expected Payoff: Equal likelihood

		State of Nature		Criterion
		Poor market performance Payoff	Good market performance Payoff	Expected reward/ payoff
	Buy Apple	-1,000	1,700	350
Action	Buy Google	-2,000	2,100	50
	Buy bonds	500	500	500
St	ate			

0.5

Probability:

Select the highest average payoff ASSUMING all states are of equal probability

Maximum
Expected
Reward

Kyle Bradbury Decision Theory Lecture 8

0.5

Expected Payoff

	State of Nature		Criterion
	Poor market performance Payoff	Good market performance Payoff	Expected reward/ payoff
Buy Apple	-1,000	1,700	890
Buy Google	-2,000	2,100	870
Buy bonds	500	500	500
- 1 -			

Select the highest average payoff assuming state probabilities from prior knowledge

Maximum Expected Reward

State Probability:

0.3

0.7

Decision making design pattern

1. Define a measure of risk or reward

2. Select the action that optimizes that metric

Notation

$EV(a_i) = V(a_i|s_0)P(s_0) + V(a_i|s_1)P(s_1)$ Expected reward / payoff

State of Nature (s)

Buy Apple $a = a_0$

Buy Google $a = a_1$

Buy bonds $a = a_2$

Poor market performance $s = s_0$

500

Excellent market performance $S = S_1$

500

$$\begin{array}{c|cccc} V(a_0|s_0) & & V(a_0|s_1) \\ -1,000 & & 1,700 \\ \hline V(a_1|s_0) & & V(a_1|s_1) \\ -2,000 & & 2,100 \\ \hline V(a_2|s_0) & & V(a_2|s_1) \\ \end{array}$$

Expected Reward

 $EV(a_i)$

(0.3)(-1000) + (0.7)(1700)= 890

(0.3)(-2000) + (0.7)(2100)= 870

(0.3)(500) + (0.7)(500)= 500

State Probability: $P(s_0) = 0.3$

$$P(s_0) = 0.3$$

$$P(s_1) = 0.7$$

Risk = expected loss (cost)

$$\lambda(a_i|s_j) \triangleq$$

Loss incurred by choosing action *i* and the state of nature being state *j*

$$R(a_i) = \sum_{j=1}^{N_S} \lambda(a_i|s_j)P(s_j)$$

Goal:

Select action i for which $R(a_i)$ is minimum

Payoff

State of Nature

Poor market Good market performance performance

Buy Apple

-1,000 1,700

Buy Google

Buy bonds

-2,000 2,100 500 500

Loss

(here we define loss in terms of opportunity cost)

State of Nature

Poor market Good market performance performance

Buy Apple

1,500

400

Buy Google

Buy bonds

2,500 C

0 1,600

Investments: loss

$R(a_i) = \lambda(a_i|s_0)P(s_0) + \lambda(a_i|s_1)P(s_1)$ Risk (Expected loss)

State of Nature (s)

Buy Apple $a = a_0$

Buy Google

Buy bonds $a = a_2$

Poor market performance $s = s_0$

Excellent market performance $s = s_1$

Risk (Expected Loss) $R(a_i)$

(0.3)(1500) + (0.7)(400)= 730

(0.3)(2500) + (0.7)(0)= 750

(0.7)(0) + (0.3)(1600)= 480

State Probability: $P(s_0) = 0.3$

$$P(s_0) = 0.3$$

$$P(s_1) = 0.7$$

How does this relate to supervised learning?

Where to operate along ROC?

State of Nature

Class 0

Class 1

Estimate

Class 0

Class 1

$\lambda_{00} = 0$	$\lambda_{01} = 100$ False negative
$\lambda_{10} = 1$ False positive	$\lambda_{11} = 0$

$$\lambda_{ij} = \lambda(a_i|s_j)$$
Loss from classifying as class i when state of nature is class j

NOTE: Actions, a_i , are choices of points to operate at along the ROC curve (threshold values of the confidence score)

- Assume our classification problem is landmine detection
- A false positive wastes some time and resources, but a missed detection may cost a life

Where to operate along ROC?

Action: select operating point	Probability of false positive	Probability of false negative	Risk
i	P_{FP}	$(1-P_{TP})$	$R(a_i)$
1	0	1	100

State of Nature

Class 0

Class 0

Class 1

Class 1

$\lambda_{00} = 0$	$\lambda_{01} = 100$
$\lambda_{10} = 1$	$\lambda_{11}=0$

 $R(a_i) = \lambda_{10} P_{FP}(i) + \lambda_{01} (1 - P_{TP}(i))$

Prob of false positive

Prob of false negative

Where to operate along ROC?

Action: select operating point	Probability of false positive	Probability of false negative	Risk
i	P_{FP}	$(1-P_{TP})$	$R(a_i)$
1	0	1	100
2	0	0.33	33
3	0.5	0.33	33.5
4	0.5	0	0.5
5	1	0	1

State of Nature

Class 0

Class 1

Cla
Ulč

 $\lambda_{00} = 0$

 $\lambda_{10} = 1$

 $\lambda_{01} = 100$

ass 1

Class 0

 $\lambda_{11} = 0$

$R(a_i) = \sum \lambda(a_i|s_j)P(s_j)$

$$R(a_i) = \lambda_{10} P_{FP}(i) + \lambda_{01} (1 - P_{TP}(i))$$

$$Prob of false positive Prob of missed detection$$

Prob of false positive

Prob of missed detection

Let's generalize this to any binary classifier

This is how to pick what decision threshold to use for a binary classifier

State of Nature

Class 0

Class 1

$$s = s_0$$

$$s = s_1$$

 $a = a_0$

Class 0

Class 1 $a = a_1$

$\lambda(a_0 s_0)$ λ_{00}	$\lambda (a_0 s_1)$ λ_{01}
$\lambda (a_1 s_0)$ λ_{10}	$\lambda (a_1 s_1)$ λ_{11}

Loss when you classify as class i when state of nature is class *j*

> NOTE: Actions, a_i , are **predictions** (estimate of what class a sample belongs to)

$$R(a_0|\mathbf{x}) = \lambda_{00}P(s_0|\mathbf{x}) + \lambda_{01}P(s_1|\mathbf{x})$$

$$R(a_1|x) = \lambda_{10}P(s_0|x) + \lambda_{11}P(s_1|x)$$

Probability from classifier (i.e. confidence score)

1

Define the risk associated with each of the two actions

2

Create a decision rule based on the data

Express this rule in terms of the output from the classifier

$$R(a_0|\mathbf{x}) = \lambda_{00}P(s_0|\mathbf{x}) + \lambda_{01}P(s_1|\mathbf{x})$$

$$R(a_1|\mathbf{x}) = \lambda_{10}P(s_0|\mathbf{x}) + \lambda_{11}P(s_1|\mathbf{x})$$

If
$$R(a_0|\mathbf{x}) > R(a_1|\mathbf{x})$$
 then a_1 (decide class 1)

Else then a_0 (decide class 0)

We choose the rule to **minimize the risk**

$$\lambda_{00}P(s_0|\mathbf{x}) + \lambda_{01}P(s_1|\mathbf{x}) > \lambda_{10}P(s_0|\mathbf{x}) + \lambda_{11}P(s_1|\mathbf{x})$$
 then a_1

$$\frac{P(s_1|\mathbf{x})}{P(s_0|\mathbf{x})} > \frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}} \quad \text{then} \quad a_1 \quad \text{This can be applied any time we have an estimate of } P(s_i|\mathbf{x})$$

Special case: Minimizing the misclassification rate

$$\frac{P(s_1|\mathbf{x})}{P(s_0|\mathbf{x})} > \frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}} \quad \text{then} \quad a_1 \text{ (decide class 1)}$$

Assume that the loss is only for error, and it's the same for both types of error:

$$\lambda_{10} = \lambda_{01}$$
 and $\lambda_{00} = \lambda_{11} = 0$

Then the decision rule simplifies to the following:

$$\frac{P(s_1|x)}{P(s_0|x)} > 1 \quad \text{then} \quad a_1 \text{ (decide class 1)}$$

Pick whichever class is more likely given the data

else a_0 (decide class 0)

Recall Bayes' Rule

Note: The **evidence** ensures the posterior integrates to 1

Posterior

Answers the question: after seeing the data – which class is it most likely to belong to? Summing this across classes equals 1.

Likelihood

Answers the question: if I knew which class a sample belongs to, how are the data distributed?

Prior

Answers the question: what do I anticipate is the balance between my classes?

 $P(s_i)$

Generative models also estimate this

Likelihood ratio

Use Bayes rule to express this as a function of likelihoods

$$\frac{P(s_1|\mathbf{x})}{P(s_0|\mathbf{x})} > \frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}}$$

$$P(s_i|\mathbf{x}) = \frac{P(\mathbf{x}|s_i)P(s_i)}{P(\mathbf{x})}$$

$$\frac{P(\mathbf{x}|s_1)P(s_1)}{P(\mathbf{x}|s_0)P(s_0)} > \frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}}$$

then a_1 (decide class 1)

Can easily factor in prior knowledge about the classes

The decision rule can be expressed as a likelihood ratio

$$\frac{P(x|s_1)}{P(x|s_0)} > \left(\frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}}\right) \frac{P(s_0)}{P(s_1)}$$

then a_1 (decide class 1)

This can be readily applied to generative models

else a_0 (decide class 0)

Takeaways

To make a decision:

- 1. Define a measure of risk or reward
- 2. Select the action that optimizes that metric

Decision theory guides us in how to operate supervised learning algorithms in practice

Decision theory systematically incorporates the relative importance of different error types