Universidad Carlos III de Madrid

ALMA

icgvicto@ing.uc3m.es

Juan G Victores © 2021

Robótica inteligente mediante

Reinforcement Learning

- ☐ Reinforcement Learning dentro de la IA
- ☐ Conceptos Principales en RL
- ☐ Ejemplos de Algoritmos en RL
- ☐ Robótica: Expert Rules hasta End-to-end
- ☐ Conclusiones y recursos

Artificial Intelligence

Artificial General Intelligence (AGI) Narrow Al

Optimization (Gradient Descent, Evol. Comput...)

Good Old-Fashioned AI (Cognitivist/Symbolical)

Machine Learning (Connectionist/Statistical)

Artificial Intelligence

Artificial General Intelligence (AGI) Narrow Al

Optimization (Gradient Descent, Evol. Comput...)

Good Old-Fashioned AI (Cognitivist/Symbolical)

Machine Learning (Connectionist/Statistical)

Machine Learning (Tipos de Problemas)

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Aún más vía Deep Learning

(p.ej. Selfsupervised Learning, Style Transfer, GANs...)

Machine Learning (Tipos de Problemas)

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Aún más vía Deep Learning

(p.ej. Selfsupervised Learning, Style Transfer, GANs...)

INTERACCIÓN ROBOT-ENTORNO

@jgvictore:

INTERACCIÓN ROBOT-ENTORNO

@jgvictores

Reinforcement Learning (Tipo de Problema)

Toma de decisiones

Objetivo: ley de control

 $acción = \pi(estado)$

Maximiza: f(refuerzo)

Supuestos:

Markov Assumption

Markov Decision Process

π directa o vía V/Q

Reinforcement Learning: Técnicas

```
\pi(s) / V(s) / Q(s,a) / Actor-Critic
Tabular / Function Approximator
f(reward): Average / Discounted / (Return)
Model-free / Model-based
MDP / POMDP / ...
On-policy / Off-policy
```


Mnih (2015-): Deep Q-Network (DQN)

@jgvictores

RL+DeepL=DRL: en videojuegos (2015-)

DRL: en simuladores de robots (2015-): TRPO

DRL: en robots (2015-)

Levine (2015-): End-to-End Training of Deep **Visuomotor Policies**

Conceptos RL (agente y entorno)

s: estado

a: acción

r: refuerzo (recompensa)

= и (управление)

Ecuaciones de Bellman (fundamentos y proofs matemáticos)

Conceptos RL (entorno)

Algoritmos "Model-Based": Intentan hallar modelo de P Algoritmos "Model-Free": El resto (muy habitual)

P: dinámica=transiciones

En un MDP, el entorno devuelve estado completo. En un Partialy Observable MDP (POMDP), sólo devuelve una parte: la observación

Determinista s',r',fin = P(s,a)

Probabilística P(s',r',fin | s,a)

fin: "episodic" (vs. "continuing"="infinite")

isd(s): distribución inicial de estados

Conceptos RL (agente)

π: Ley de control (policy, cómo actúa agente)

Determinista acción=π(estado)

Probabilística π(acción | estado)

Conceptos RL (agente)

π: Ley de control, acción=π(estado)

Modelo explícito

Tabla

Función

estado (s)	acción (a)
S ₁	•••
s ₂	•••
S ₃	•••
•••	•••

Modelo que depende de Q o V

Conceptos RL (agente)

Q(s,a): Q-Value, action-value. Modela el valor de cada acción para cada estado. Es opcional. Tablular / function approx.

```
π "greedy"
\pi = argmax(Q(s,a))
```

```
π "ε-greedy"
[ (1-\epsilon): argmax(Q(s,a)) (\epsilon): random a
```


Conceptos RL (agente)

V(s): Value, state value. Modelo valor de cada estado.

Es opcional. Tablular / function approx.

Una π "greedy" sería aquella que siempre escoja la a que lleve al s' (estado contiguo) de mayor V(s').

Conceptos RL (agente)

y: Discount [0, 1]. Opcional. Pondera importancia del refuerzo futuro.

G: Return. Refuerzos ponderados según discount y caso de uso específico.

$$\begin{aligned} G_t &= \sum_{t}^T r_{t+1} + r_{t+2} + \dots + r_T \\ G_t &= \sum_{t}^{\infty} r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \end{aligned}$$

Robótica inteligente mediante

Reinforcement Learning

- ☐ Reinforcement Learning dentro de la IA
- ☐ Conceptos Principales en RL
- ☐ Ejemplos de Algoritmos en RL
- ☐ Robótica: Expert Rules hasta End-to-end
- ☐ Conclusiones y recursos

Robótica inteligente mediante Reinforcement Learning

- ☐ Reinforcement Learning dentro de la IA
- ☐ Conceptos Principales en RL
- ☐ Ejemplos de Algoritmos en RL
- ☐ Robótica: Expert Rules hasta End-to-end
- ☐ Conclusiones y recursos

k-armed Bandit: jun entorno sin estado! k acciones (c/u proporciona r correspondiente)

k-armed Bandit: una π solución vía Q

Caso particular: Q(s,a) = Q(a)

Algoritmo: Q(a) =

Σ r habiendo seleccionado a # veces seleccionado a

Un algoritmo muy conocido: Q-Learning

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$

Initialize Q(s, a), for all $s \in S^+, a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_{a} Q(S',a) - Q(S,A) \right]$$

$$S \leftarrow S'$$

until S is terminal

Un algoritmo muy conocido: Q-Learning

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_{a} Q(S',a) - Q(S,A) \right]$$

Es un método tabular, s y a valores discretos. Incorpora hiperparámetro α (learning rate), que se puede ajustar para optimizar en convergencia o en rapidez de aprendizaje.

Q[s,a] = Q[s,a] + alpha*(r + gamma*np.max(Q[s1,:]) - Q[s,a])

Universidad Carlos III de Madrid

@jgvictores

Un algoritmo muy conocido: Q-Learning

```
pygame window
            marcos@marcos-VirtualBox: ~/OpenAiGym/gym-csv/Code
Mapa del entorno: (los 0 representan espacio libre, los 1 muros, el 2 el robot y
el 3 la meta.)
¿Qué modo de avance quiere para el robot? GirDer (gira a derechas), GirIzq (gira
a izquierdas), MinDis (Minimiza la distancia a la meta) o RL (Avance realizado
con aprendizaje por refuerzo))
```


Algoritmos "Deep Reinforcement Learning"

Mnih (2015-): Deep Q-Network (DQN) for Atari

Levine (2015-): End-to-End Training of Deep Visuomotor Policies

entrada = estado (imagen, pose...)

salida = $\pi/V/Q$ para acción = $\pi(state)$

Algoritmos "Deep Reinforcement Learning"

Modelado directo de π (policy gradient, p.ej. REINFORCE)

Probabilística $\pi_{\theta}(acción \,|\, estado)$

Supervised Learning (DL)

$$\nabla_{\theta} J_{\mathrm{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \right)$$

Reinforcement Learning (DL)

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

Más posibilidades dentro de RL

En "on-policy", el agente mejora sus parámetros a través de su interacción.

En "off-policy", es capaz de mejorar sus parámetros en base a los datos de interacción de otro agente (herramienta: "importance sampling").

Más posibilidades dentro de RL

Modelos simultáneos: Generalized Policy Iteration (GPI)

Actor-Critic: A3C, TRPO, SAC...

Más posibilidades dentro de RL (Avanzado)

Inverse Reinforcement Learning Metalearning **AutoML**

Robótica inteligente mediante

Reinforcement Learning

- ☐ Reinforcement Learning dentro de la IA
- ☐ Conceptos Principales en RL
- ☐ Ejemplos de Algoritmos en RL
- ☐ Robótica: Expert Rules hasta End-to-end
- ☐ Conclusiones y recursos

pjgvictore

Robótica: Expert Rules hasta End-to-End

Component Based Software Engineering (CBSE)

Sistemas Expertos (Rule-Based: IF-ELSE)

Planificación, Cinemática, Control

Learning w/hand-crafted Features

All Learned Features

End-to-End (p.ej. Via DRL)

Hyperparameters

Hand-crafted

Automated search

Expert (Coding)

"generic/ agnostic" Algorithms

Learning (Data+Model +Algorthms)

uc3m | Universidad Carlos III de Madrid

@jgvictores Robótica: CBSE (rules & generic & learning)

pjgvictore

Robótica: Expert Rules hasta End-to-End

Component Based Software Engineering (CBSE)

Sistemas Expertos (Rule-Based: IF-ELSE)

Planificación, Cinemática, Control

Learning w/hand-crafted Features

All Learned Features

End-to-End (p.ej. Via DRL)

Hyperparameters

Hand-crafted

Automated search

Expert (Coding)

"generic/ agnostic" Algorithms

Learning (Data+Model +Algorthms)

Recursos (software): OpenAl Gym

Python API: Utilizar entornos [1]


```
import gym
env = gym.make('CartPole-v0')
env.reset()
for _ in range(1000):
    env.render()
    env.step(env.action_space.sample()) # take a random action
```


Recursos (software): OpenAl Gym

Python API: Utilizar entornos [1]

```
Agent
import gym
                                          state
                                                reward
env = gym.make('CartPole-v0')
                                                                                   action
for i episode in range(20):
    observation = env.reset()
                                                           Environment
    for t in range(100):
        env.render()
        print(observation)
        action = env.action_space.sample()
        observation, reward, done, info = env.step(action)
        if done:
            print("Episode finished after {} timesteps".format(t+1))
            break
```


Recursos (software): OpenAl Gym

Python API: Crear entornos [1]

```
import gym
from gym import error, spaces, utils
from gym.utils import seeding
class FooEnv(gym.Env):
 metadata = {'render.modes': ['human']}
 def init (self):
  def step(self, action):
  def reset(self):
  def render(self, mode='human'):
  def close(self):
```

Universidad Carlos III de Madrid

@jgvictores

Recursos (software): OpenAl Gym

Python API: Crear entornos [1]

```
class DiscreteEnv(Env):

"""

Has the following members
- nS: number of states
- nA: number of actions
- P: transitions (*)
- isd: initial state distribution (**)

(*) dictionary dict of dicts of lists, where
   P[s][a] == [(probability, nextstate, reward, done), ...]
(**) list or array of length nS
```

```
def init (self, nS, nA, P, isd):
    self.P = P
    self.isd = isd
    self.lastaction = None # for rendering
    self.nS = nS
    self.nA = nA
    self.action_space = spaces.Discrete(self.nA)
    self.observation_space = spaces.Discrete(self.nS)
    self.seed()
    self.s = categorical_sample(self.isd, self.np_random)
    self.lastaction=None
def seed(self, seed=None):
    self.np random, seed = seeding.np random(seed)
    return [seed]
def reset(self):
    self.s = categorical_sample(self.isd, self.np_random)
    self.lastaction = None
    return self.s
def step(self, a):
    transitions = self.P[self.s][a]
    i = categorical_sample([t[0] for t in transitions], self.np_random)
    p, s, r, d= transitions[i]
    self.s = s
    self.lastaction = a
    return (s, r, d, {"prob" : p})
```


Recursos (software):

- 1. https://gym.openai.com
- https://github.com/openai/gym
- 3. https://github.com/openai/gym/blob/master/docs/s/environments.md#third-party-environments
- 4. https://github.com/jgvictores/awesome-deep-reinforcement-learning#rldrl-gyms
- 5. https://github.com/hill-a/stable-baselines

Recursos (libros, cursos, proyectos)

Guili, "Deep Learning with TensorFlow 2 and Keras", 2019

https://www.coursera.org/specializations/deep-learning

Sutton, Barto, "Reinforcement Learning: An Introduction", 2018

https://www.coursera.org/specializations/reinforcement-learning

http://rail.eecs.berkeley.edu/deeprlcourse

Máster Universitario en Robótica y Automatización (UC3M) (p.ej. Planificación, Aprendizaje, Simuladores...)

ALMA: Human Centric Algebraic Machine Learning (H2020-EIC-FETPROACT-2019)

https://github.com/jgvictores/awesome-deep-reinforcement-learning

Universidad Carlos III de Madrid

jcgvicto@ing.uc3m.es

Juan G Victores © 2021

