СОДЕРЖАНИЕ

введение	4
1. Виды агрегатирования. Особенности навесных машинно-	6
тракторных агрегатов	
2. Подъемно-навесные устройства (механизмы навески)	12
3. Задний механизм навески трактора	18
4. Устройства быстросоединяющие - автосцепки.	24
Функциональная математическая модель механизма навески	25
трактора ЛТЗ-145	
ЗАКЛЮЧЕНИЕ	49
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	50
ПРИЛОЖЕНИЕ	51

					Курсовая работа				
Изм.	Лист	№ докум.	Подпись	Дата					
Разра	1δ.	Кравцов Н.С.				Лит. Лист Листов		Листов	
Провер.		Попов В.Б.					3		51
Реценз.					Содержание	ГГТУ им. П.О. Сухого			O Camaza
Н. Контр.					гр. C-31			•	
Завкаф		Ποποβ Β.Б.						<i>31</i>	

ЗАКЛЮЧЕНИЕ

В процессе выполнения данного курсового проекта был проведен анализ механизм навески. Для анализа была использована плоская математическая модель механизма, которая позволила проводить исследования с меньшими затратами времени, сил и энергии.

При выполнении проекта были выполнены геометрический, кинематический и силовой анализы механизма навески, а также проведен расчет на устойчивость мобильно-тракторного агрегата.

В результате формирования математической модели расчетным путем получены координаты характерных точек механизма, совпадающие с графическим построением трех положений на ватмане. Это доказывает адекватность сформированной математической модели.

Полученная на основе разработанной математической модели статическая характеристика механизма навески может быть улучшена в процессе параметрической оптимизации, т.е. достижения большей стабильности усилия на гидроцилиндре в процессе подъема навешенного адаптера.

При выполнении геометрического и кинематического анализа проверка показывает, что расчёты выполнены верно. Так, в рабочем положении навесной машины ϕ_6 =90°, а при максимальном выдвижении поршня S=0.73 м, угол составляет ϕ_6 =104,37°

При расчёте на управляемость МТА, а также без использования противовеса, при весе трактора ЛТЗ-155 $P_{\rm тp}$ =52,0 кH, управляемость машинно-тракторного агрегата составляет 20,44%, которое превышает минимальное допустимое значение в 20%. Следовательно, расчёт управляемости выполнен верно и использование противовеса не требуется.

Изм.	Лист	№ докум.	Подпись	Дата

Курсовая работа

Лист

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 Артоболевский И.И. Теория механизмов и машин. М. Наука, 590с, ил. 1988.
- 2 Босой Е.С., Верняев О.В. и др. Теория конструкция и расчет сельскохозяйственных машин. 2-е изд.; М.: Машиностроение, 1978.
- 3 ГОСТ 10677-82 (СТ СЭВ). Устройство навесное заднее сельскохозяйственных тракторов тяговых классов 0.6 1.4. Типы, основные параметры и размеры. М.: Госкомстандарт.
- 4 Попов В.Б. Анализ навесных устройств универсального энергосредства «Полесье 250»: Тракторы и сельскохозяйственные машины. 1990, №12.
- 5 Попов В.Б. Аналитические выражения кинематических передаточных функций механизмов навески энергоносителей // Вестник ГГТУ им.П.О. Сухого 2000, №2, с. 25-29.
- 6 Тарасик В.П. Математическое моделирование технических систем: Учебник для вузов. - Мн.: Дизайн про, 1997. - 640с.
- 7 Трудоношин В.А., Пивоварова Н.В. Системы автоматического проектирования кн. 4. Математические модели технических объектов Мн.: Вышейшая школа, 1988.
- 8 Турбин Б.Г., Лурье А.Б., Григорьев С.М. и др. Сельскохозяйственные машины. Теория и расчет. 2-е изд. М.: Машиностроение, Ленинград, 1967 г.
 - 9. https://tractorreview.ru/traktory/ltz/ltz-145-tehnicheskie-harakteristiki.html#5

Изм.	Лист	№ докум.	Подпись	Дата

