「新SI単位と電磁気学」の正誤表

ver.2.1, 2020 年 2 月 17 日

初版第1刷,2018年6月

- 23 ページ, 8 行目:
 - (誤)「物象の状態の量」について定めている. その数は「SI 単位を基準にするもの」72 とその他 17 である. 「使用義務」は前者の 72 の量について重く定められている
 - \rightarrow (正)「物象の状態の量」について定めている。それらは「SI 単位を基準にするもの」72 と、その他 17 に分けられ、「使用義務」は前者の量について重く定められている。
- 26 ページ. 5 行目:
 - (誤)計量法には法定計量単位としてつぎの17量が含まれている.
 - → (正) 計量法には次の物象の状態の量 17 が含まれている.
- {ページ,2:6}{10 行目}
 - (誤) SI 単位がある量の法定計量単位 72 である.
 - → (正) SI 単位がある 65 量の法定計量単位である.
- 43 ページ, 10 行目:
 - (誤)新 SI で電流を基準現象から排除したことで必要になる代替として登場するのが
 - → (正)新 SI において、力に依らない電流の基準として新たに登場するのが
- 43 ページ, 11 行目:
 - (誤) これは単一電子トンネル効果による測定で、素電荷の測定精度が大きく向上したことで可能となった. \rightarrow (正) すでにジョゼフソン効果と量子ホール効果により、力に依存しない電気的標準が事実上達成されており、ワットバランス法を介して、力や質量が電気的に決定できることを踏まえ、 $K_{\rm J}$ 、 $R_{\rm K}$ を定義値化、すなわちプランク定数と素電荷を定義値化することとなったのである。今後は単一電子素子で電子を1つずつカウントすることで、電流の直接的実現が可能となる。
- 46 ページ, 9 行目:
 - (誤)音響共鳴をマイクロ波で測り、 → (正)音響共鳴を測定し、
 - (注:球の大きさはマイクロ波共鳴を用いて測定される.)
- 46 ページ, 22 行目:
 - (誤) ジョセフソン結合 → (正) ジョセフソン接合
- 47 ページ. 16 行目:
 - (誤) 20 年に 1 度改定される. → (正) 1968 年国際実用温度目盛(IPTS-68)に次ぐものである.
- 55 ページ, 6 行目:
 - (誤) 視覚での光度と仕事率(ワット W)を結ぶ発光効率(luminous efficacy) K_{cd}
 - \rightarrow (正) 視覚での光束 (単位はルーメン lm) と放射束 (単位はワット W) を結ぶ視感効果度 (luminous efficacy) $K_{\rm cd}$
 - (注: 放射束は光源のパワーに関係づけることができるが、その場合には K_{cd} は光源の発光効率と見なすことができる。)
- 55 ページ, 12 行目:
 - (誤) 光度が cd, 単位面積当たりの照度が lx → (正) 光束が cd, 単位面積当たりの光束が lx
- 141 ページ, 5 行目:
 - (誤) 2009 年には秒の 2 次標準 → (正) 2006 年には秒の 2 次表現

2018 年版 CODATA に基づく追加修正, 2019 年 12 月

本書の出版後に、新 SI を反映した物理定数の推奨値 (2018 CODATA) が発表されたことを承けて、以下の修正を施す、いくつかの表の差し替えが必要であるが、最後にまとめて掲載する.

- 20 ページ,表 2.6:
 - (誤) $1 \text{ eV} = 1.6021766208(98) \times 10^{-19} \text{ J} \rightarrow \text{ (正) } 1 \text{ eV} = 1.602176634 \times 10^{-19} \text{ J}$
- 20ページ、表 2.6:
 - (誤) $1 \text{ u} = 1.660539040(20) \times 10^{-27} \text{ kg} \rightarrow \text{ (正) } 1 \text{ u} = 1.66053906660(50) \times 10^{-27} \text{ kg}$
- 77 ページ, 下から 6 行目, 式 (4.30):
 - (誤) $Z_0 = 376.730313538(87)\Omega \rightarrow (正) Z_0 = 376.730313668(57)\Omega$
- 78 ページ, 5 行目, 式 (4.33):
 - (誤) $\alpha^{-1} = 137.035\,999\,139(31) \rightarrow$ (正) $\alpha^{-1} = 137.035\,999\,084(21)$
- 90 ページ, 5 行目, 式 (4.65):
 - (誤) $\mu_0 = 12.5663706169(29) \times 10^{-7} \,\mathrm{NA}^{-2} \rightarrow (\mathbb{E}) \,\mu_0 = 12.5663706212(19) \times 10^{-7} \,\mathrm{NA}^{-2}$
- 184 ページ、表 8.2: 差し替え
- 184 ページ. 4 行目:
 - (誤) u_r の数値は CODATA の正式なものではなく, 文献 [2] の推計によるものである.
 - \rightarrow (正) 新, 旧 $u_{\rm r}$ の数値はそれぞれ 2014 年, 2018 年の CODATA によるものである.
- 185 ページ,表8.3: 差し替え
- 185 ページ, 下から 3 行目:
 - (誤) 2014 年版である. → (正) 2018 年版である.
- 186 ページ、表 8.4: 差し替え
- 186 ページ. 3 行目:
 - (誤) 2018 年の新 SI に応じて、不確かさの調整をして次回の改訂が行われる。ここに載せてある不確かさの数値は旧 SI のものである。新 SI に変わることで、「旧」と「新」でこの欄がどう変わるかを対比したのが先ほどの表 8.2 である。
 - \rightarrow (正) 前回 (2014 年) 以後の測定データを反映し、 さらに新 SI に応じて不確かさの調整をした推奨値 (2018 CODATA) が、 2019 年 5 月に発表された.
- 187 ページ、表 8.5: 差し替え
- 187 ページ,下から4 行目:
 - (誤) $(1/12)m(^{12}C) = 10^{-3} \text{ kg mol}^{-1}/N_A \rightarrow (\mathbb{E}) (1/12)m(^{12}C) \approx 10^{-3} \text{ kg mol}^{-1}/N_A$
- 188 ページ、表 8.6: 差し替え
- 189 ページ, 参考文献 [2]: 以下のように変更
 - [2] E. Tiesinga, P.J. Mohr, D.B. Newell, and B.N. Taylor: The 2018 CODATA Recommended Values of the Fundamental Physical Constants (Web Version 8.0, 2019). J. Baker, M. Douma, and S. Kotochigova によって開発されたデータベースが NIST (National Institute of Standards and Technology) の WEB サイトで公開されている: http://physics.nist.gov/constants

表 8.2 主要物理定数の新, 旧 SI での相対不確かさ (2014, 2018 CODATA)

物理定数	記号	$\mathbb{H} \ \mathrm{SI} \ u_{\mathrm{r}} \times 10^9$	新 SI $u_{\rm r} \times 10^9$
キログラム原器	m(K)	0	44
真空の透磁率	μ_0	0	0.15
真空の誘電率	ε_0	0	0.15
真空のインピーダンス	Z_0	0	0.15
水の3重点	T_{TPW}	0	570
炭素 12 のモル質量	$M(^{12}{ m C})$	0	0.30
プランク定数	h	12	0
素電荷	e	61	0
ボルツマン定数	k	570	0
アボガドロ定数	$N_{ m A}$	12	0
モル気体定数	R	570	0
ファラデー定数	F	6.2	0
ステファン・ボルツマン定数	σ	2300	0
電子質量	$m_{ m e}$	12	0.30
原子質量	$m_{ m u}$	12	0.30
炭素 12 の質量	$m(^{12}{ m C})$	12	0.30
ジョゼフソン定数	K_{J}	6.1	0
フォン・クリッツィング定数	$R_{ m K}$	0.23	0
微細構造定数	α	0.23	0.15
$E = mc^2$	$J \leftrightarrow kg$	0	0
$E = hc/\lambda$	$J\leftrightarrow m^{-1}$	12	0
$E = h\nu$	$J \leftrightarrow Hz$	12	0
E = kT	$J \leftrightarrow K$	570	0
E = eV	$J \leftrightarrow eV$	61	0

表 8.3 よく使われる物理基本定数 (2018 CODATA 推奨値)

物 理 量	記号	数值	単位	相対的不
70 柱 重	此与	女 恒	平 位	確かさ $u_{\rm r}$
真空中の光速	c, c_0	299 792 458	$\mathrm{ms^{-1}}$	定義値
真空の透磁率	μ_0	$1.25663706212(19) \times 10^{-6}$	$ m NA^{-2}$	1.5×10^{-10}
$\mu_0/(4\pi\times 10^{-7})$		1.00000000055(15)	$ m NA^{-2}$	1.5×10^{-10}
真空の誘電率 $1/(\mu_0c^2)$	ε_0	$8.8541878128(13)\times 10^{-12}$	$\mathrm{F}\mathrm{m}^{-1}$	1.5×10^{-10}
真空のインピーダンス	Z_0	376.730 313 668(57)	Ω	1.5×10^{-9}
重力定数	G	$6.67430(15)\times10^{-11}$	$m^3 kg^{-1} s^{-2}$	2.2×10^{-5}
プランク定数	h	$6.62607015 \times 10^{-34}$	Js	定義値
$h/(2\pi)$	\hbar	$1.054571817\ldots \times 10^{-34}$	Js	0
素電荷	e	$1.602176634\times10^{-19}$	C	定義値
磁束量子 $h/(2e)$	Φ_0	$2.067833848\ldots\times10^{-15}$	Wb	0
量子コンダクタンス $2e^2/h$	G_0	$7.748091729\ldots \times 10^{-5}$	S	0
電子質量	$m_{ m e}$	$9.1093837015(28)\times 10^{-31}$	kg	3.0×10^{-10}
陽子質量	$m_{\rm p}$	$1.67262192369(51) \times 10^{-27}$	kg	3.1×10^{-10}
陽子と電子の質量比	$m_{ m p}/m_{ m e}$	1836.15267343(11)		6.0×10^{-11}
微細構造定数 $e^2/(4\pi\varepsilon_0\hbar c)$	α	$7.2973525693(11) \times 10^{-3}$		1.5×10^{-10}
	α^{-1}	137.035 999 084(21)		1.5×10^{-10}
リドベルク定数 $lpha^2 m_{ m e} c/(2h)$	R_{∞}	10 973 731.568 160(21)	m^{-1}	1.9×10^{-12}
アボガドロ定数	$N_{ m A}$	6.02214076×10^{23}	mol^{-1}	定義値
ボルツマン定数	$k, k_{\rm B}$	1.380649×10^{-23}	$ m JK^{-1}$	定義値
ファラデー定数 $N_{ m A}e$	F	96 485.332 12	$ m Cmol^{-1}$	0
モル気体定数 $N_{ m A} k$	R	8.314 462 618	$ m J mol^{-1} K^{-1}$	0
ステファン・ボルツマン定数	σ	$5.670374419\ldots \times 10^{-8}$	${ m W}{ m m}^{-2}{ m K}^{-4}$	0
$\pi^2 k^4 / (60\hbar^3 c^2)$				

SI で併用が認められている非 SI 単位

電子ボルト (e/C)J	eV	$1.602176634\times10^{-19}$	J	0
原子質量単位 $m(^{12}C)/12$	u	$1.66053906660(50)\times10^{-27}$	kg	3.0×10^{-10}

表 8.4 自然単位 (natural units) (2018 CODATA から)

	— ((_	,
物 理 量	記号	数值	単位	相対的不
四在里	ПП-2	XX III.	7 12.	確かさ $u_{\rm r}$
速度:真空中の光速	c, c_0	299 792 458	${ m ms^{-1}}$	定義値
作用: $h/2\pi$	\hbar	$1.054571817\ldots \times 10^{-34}$	Js	0
作用 (単位 eVs)		$6.582119569 \times 10^{-16}$	eV s	0
作用 (単位 MeV fm)	$\hbar c$	197.326 9804	MeV fm	0
質量:電子の質量	$m_{\rm e}$	$9.1093837015(28) \times 10^{-31}$	kg	3.0×10^{-10}
エネルギー	$m_{\rm e}c^2$	$8.1871057769(25) \times 10^{-14}$	J	3.0×10^{-10}
エネルギー (単位 MeV)		0.510 998 950 00(15)	MeV	3.0×10^{-10}
運動量	$m_{ m e}c$	$2.73092453075(82)\times 10^{-22}$	$ m kgms^{-1}$	3.0×10^{-10}
運動量 (単位 MeV/c)		0.510 998 950 00(15)	MeV/c	3.0×10^{-10}
長さ $\hbar/(m_{ m e}c)$	λ_{C}	$3.8615926796\times10^{-13}$	m	3.0×10^{-10}
時間	$\hbar/(m_{\rm e}c^2)$	$1.28808866819(39) \times 10^{-21}$	s	3.0×10^{-10}

表 8.5 原子単位 (atomic units) (2018 CODATA から)

物理量 記号 数値 単位 相対的不確かさ u_r で表値 表電荷 e $1.602 176 634 \times 10^{-19} C 定義値 質量:電子の質量 m_e 9.109 383 7015(28) \times 10^{-31} kg 3.0 \times 10^{-10} $
電荷:素電荷 e $1.602176634 \times 10^{-19}$ C 定義値 $g\equiv : 電子の質量$ m_e $9.1093837015(28) \times 10^{-31}$ kg 3.0×10^{-10} E
質量:電子の質量 m_e 9.109 383 7015(28) × 10 $^{-31}$ kg 0.0 × 10 $^{-10}$ 長さ:ボーア半径 $\alpha/(4\pi R_\infty)$ a_0 5.291 772 109 03(80) × 10 $^{-11}$ m 1.5 × 10 $^{-10}$
作用: $h/2\pi$ 長さ:ボーア半径 $\alpha/(4\pi R_\infty)$ a_0 5.291 772 109 03(80) × 10^{-11} m 1.5 × 10^{-10}
長さ:ボーア半径 $\alpha/(4\pi R_{\infty})$ a_0 5.291 772 109 03(80) \times 10 ⁻¹¹ m 1.5 \times 10 ⁻¹⁰ $\pm \lambda$ 1.9 \times 10 ⁻¹² $\pm \lambda$ 1.5 \times 10 ⁻¹⁰ $\pm \lambda$ 1.5 $\pm \lambda$ 1.5 $\pm \lambda$ 10 ⁻¹⁰ $\pm \lambda$ 1.5 $\pm \lambda$ 1.5 $\pm \lambda$ 10 ⁻¹⁰ $\pm \lambda$ 1.5 $\pm \lambda$ 1.5 $\pm \lambda$ 10 ⁻¹⁰ $\pm \lambda$ 1.5 $\pm \lambda$ 1.5 $\pm \lambda$ 10 ⁻¹⁰ $\pm \lambda$ 1.5 $\pm \lambda$ 1.5 $\pm \lambda$ 10 ⁻¹⁰ $\pm \lambda$ 1.5 $\pm \lambda$ 1.5 $\pm \lambda$ 10 ⁻¹⁰ $\pm \lambda$ 1.5 $\pm \lambda$ 1.5 $\pm \lambda$ 10 ⁻¹⁰ $\pm \lambda$ 1.5 $\pm \lambda$ 10
エネルギー:ハートリー・ エネルギー $e^2/(4\pi\varepsilon_0 a_0)$ $=2R_\infty hc=\alpha^2 m_e c^2$ 時間 h/E_h 2.418 884 326 5857(47) × 10 ⁻¹⁷ s 1.9 × 10 ⁻¹² 力 E_h/a_0 8.238 723 4983(12) × 10 ⁻⁸ N 1.5 × 10 ⁻¹⁰ 速度 $a_0 E_h/\hbar$ 2.187 691 263 64(33) × 10 ⁶ m s ⁻¹ 1.5 × 10 ⁻¹⁰ 電流 eE_h/\hbar 6.623 618 237 510(13) × 10 ⁻³ A 1.9 × 10 ⁻¹² 電荷密度 e/a_0^3 1.081 202 384 57(49) × 10 ¹² Cm^{-3} 4.5 × 10 ⁻¹⁰ 電 協 E_h/e 27.211 386 245 988(53) V 1.9 × 10 ⁻¹² 電場勾配 $E_h/(ea_0)$ 5.142 206 747 63(78) × 10 ¹¹ Vm^{-1} 1.5 × 10 ⁻¹⁰
エネルギー $e^2/(4\pi\varepsilon_0a_0)$ $=2R_\infty hc=\alpha^2m_ec^2$ 時間 \hbar/E_h $2.4188843265857(47)\times 10^{-17}$ s 1.9×10^{-12} 力 E_h/a_0 $8.2387234983(12)\times 10^{-8}$ N 1.5×10^{-10} 速度 a_0E_h/\hbar $2.18769126364(33)\times 10^6$ ms $^{-1}$ 1.5×10^{-10} 電流 eE_h/\hbar $6.623618237510(13)\times 10^{-3}$ A 1.9×10^{-12} 電荷密度 e/a_0^3 $1.08120238457(49)\times 10^{12}$ $C\mathrm{m}^{-3}$ 4.5×10^{-10} 電 4.5×10^{-10} 電場 4.5×10^{-10} 4.5×1
時間 $\hbar/E_{\rm h}$ 2.418 884 326 5857(47) × 10^{-17} s 1.9 × 10^{-12} 力 $E_{\rm h}/a_0$ 8.238 723 4983(12) × 10^{-8} N 1.5 × 10^{-10} 速度 $a_0E_{\rm h}/\hbar$ 2.187 691 263 64(33) × 10^6 m s $^{-1}$ 1.5 × 10^{-10} 電動量 \hbar/a_0 1.992 851 914 $10(30)$ × 10^{-24} kg m s $^{-1}$ 1.5 × 10^{-10} 電流 $eE_{\rm h}/\hbar$ 6.623 618 237 510(13) × 10^{-3} A 1.9 × 10^{-12} 電荷密度 e/a_0^3 1.081 202 384 57(49) × 10^{12} C m $^{-3}$ 4.5 × 10^{-10} 電 位 $E_{\rm h}/e$ 27.211 386 245 988(53) V 1.9 × 10^{-12} 電場 $E_{\rm h}/(ea_0)$ 5.142 206 747 63(78) × 10^{11} V m $^{-1}$ 1.5 × 10^{-10} 電場勾配 $E_{\rm h}/(ea_0^2)$ 9.717 362 4292(29) × 10^{21} V m $^{-2}$ 3.0 × 10^{-10}
$E_{\rm h}/a_0$ 8.238 723 4983(12) × 10 ⁻⁸ N 1.5 × 10 ⁻¹⁰ 速度 $a_0E_{\rm h}/\hbar$ 2.187 691 263 64(33) × 10 ⁶ m s ⁻¹ 1.5 × 10 ⁻¹⁰ 運動量 \hbar/a_0 1.992 851 914 10(30) × 10 ⁻²⁴ kg m s ⁻¹ 1.5 × 10 ⁻¹⁰ 電流 $eE_{\rm h}/\hbar$ 6.623 618 237 510(13) × 10 ⁻³ A 1.9 × 10 ⁻¹² 電荷密度 e/a_0^3 1.081 202 384 57(49) × 10 ¹² C m ⁻³ 4.5 × 10 ⁻¹⁰ 電 位 $E_{\rm h}/e$ 27.211 386 245 988(53) V 1.9 × 10 ⁻¹² 電場勾配 $E_{\rm h}/(ea_0)$ 5.142 206 747 63(78) × 10 ¹¹ V m ⁻¹ 1.5 × 10 ⁻¹⁰ 電場勾配 $E_{\rm h}/(ea_0^2)$ 9.717 362 4292(29) × 10 ²¹ V m ⁻² 3.0 × 10 ⁻¹⁰
速度 $a_0E_{\rm h}/\hbar$ $2.18769126364(33)\times 10^6$ ${\rm ms^{-1}}$ 1.5×10^{-10} ${\rm light}$ \hbar/a_0 $1.99285191410(30)\times 10^{-24}$ ${\rm light}$ ${\rm l$
運動量 $ \frac{\hbar/a_0}{\epsilon} \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$
電流 eE_h/\hbar $6.623618237510(13)\times 10^{-3}$ A 1.9×10^{-12} 電荷密度 e/a_0^3 $1.08120238457(49)\times 10^{12}$ $C\mathrm{m}^{-3}$ 4.5×10^{-10} 電 位 E_h/e $27.211386245988(53)$ V 1.9×10^{-12} 電場勾配 $E_h/(ea_0)$ $5.14220674763(78)\times 10^{11}$ $V\mathrm{m}^{-1}$ 1.5×10^{-10} $E_h/(ea_0^2)$ $9.7173624292(29)\times 10^{21}$ $V\mathrm{m}^{-2}$ 3.0×10^{-10}
電荷密度 e/a_0^3 $1.08120238457(49)\times 10^{12}$ ${\rm Cm^{-3}}$ 4.5×10^{-10} 電 位 $E_{\rm h}/e$ $27.211386245988(53)$ ${\rm V}$ 1.9×10^{-12} 電場勾配 $E_{\rm h}/(ea_0)$ $5.14220674763(78)\times 10^{11}$ ${\rm Vm^{-1}}$ 1.5×10^{-10} $E_{\rm h}/(ea_0^2)$ $9.7173624292(29)\times 10^{21}$ ${\rm Vm^{-2}}$ 3.0×10^{-10}
電位 $E_{\rm h}/e$ 27.211 386 245 988(53) V 1.9 × 10 ⁻¹² 電場 $E_{\rm h}/(ea_0)$ 5.142 206 747 63(78) × 10 ¹¹ $V{\rm m}^{-1}$ 1.5 × 10 ⁻¹⁰ 電場勾配 $E_{\rm h}/(ea_0^2)$ 9.717 362 4292(29) × 10 ²¹ $V{\rm m}^{-2}$ 3.0 × 10 ⁻¹⁰
電場 $ E_{\rm h}/(ea_0) \qquad 5.14220674763(78)\times 10^{11} \qquad {\rm Vm^{-1}} \qquad 1.5\times 10^{-10} \\ E_{\rm h}/(ea_0^2) \qquad 9.7173624292(29)\times 10^{21} \qquad {\rm Vm^{-2}} \qquad 3.0\times 10^{-10} $
電場勾配 $E_{\rm h}/(ea_0^2)$ 9.717 362 4292(29) \times 10^{21} V m $^{-2}$ 3.0 \times 10^{-10}
-/ (0/
電気双極子モーメント ea_0 $8.4783536255(13) imes 10^{-30}$ $\rm Cm$ $1.5 imes 10^{-10}$
電気四重極モーメント ea_0^2 $4.4865515246(14) imes 10^{-40}$ ${\rm Cm^2}$ $3.0 imes 10^{-10}$
分極率
1 次超分極率
2 次超分極率 $ e^4 a_0^4 / E_{\rm h}^3 \left[\begin{array}{ccc} 6.2353799905(38) \times 10^{-65} & \left \begin{array}{ccc} {\rm C}^4 {\rm m}^4 {\rm J}^{-3} & \left \begin{array}{ccc} 6.0 \times 10^{-10} \end{array} \right \end{array} \right] $
磁束密度 $\hbar/(ea_0^2) \qquad 2.35051756758(71)\times 10^5 \qquad {\rm T} \qquad \qquad 3.0\times 10^{-10}$
磁気双極子モーメント $(2\mu_{\mathrm{B}})$ $\hbar e/m_{\mathrm{e}}$ $1.85480201566(56) imes 10^{-23}$ $\mathrm{J}\mathrm{T}^{-1}$ $3.0 imes 10^{-10}$
磁化率 $e^2 a_0^2/m_e$ 7.891 036 6008(48) × 10 ⁻²⁹ JT ⁻² 6.0 × 10 ⁻¹⁰
誘電率 $(4\pi\varepsilon_0)$ $e^2/(a_0E_{\rm h})$ $1.11265005545(17)\times 10^{-10}$ ${\rm Fm^{-1}}$ 1.5×10^{-10}

表 **8.6** エネルギーと等価な 8 つ量のあいだの換算表 (1) (2018 CODATA から)

	各々の単位で対応する数値						
	J	kg	m^{-1}	Hz			
1 J	(1 J) =	$(1\mathrm{J})/c^2 =$	$(1 \mathrm{J})/hc =$	$(1 \mathrm{J})/h =$			
	1 J	$1.112650056\ldots\times10^{-17}\mathrm{kg}$	$5.034116567\ldots\times10^{24}\mathrm{m}^{-1}$	$1.509190179\ldots\times10^{33}\mathrm{Hz}$			
$1\mathrm{kg}$	$(1 \mathrm{kg})c^2 =$	$(1 \mathrm{kg}) =$	$(1 \mathrm{kg}) c/h$	$(1\mathrm{kg})c^2/h =$			
	$8.987551787 \times 10^{16} \mathrm{J}$	$1\mathrm{kg}$	$4.524438335\ldots\times10^{41}\mathrm{m}^{-1}$	$1.356392489\ldots\times10^{50}\mathrm{Hz}$			
$1\mathrm{m}^{-1}$	$(1\mathrm{m}^{-1})hc =$	$(1 \mathrm{m}^{-1})h/c =$	$(1 \mathrm{m}^{-1}) =$	$(1 \mathrm{m}^{-1})c =$			
	$1.986445857 \times 10^{-25} \mathrm{J}$	$2.210219094\ldots\times 10^{-42}\mathrm{kg}$	$1\mathrm{m}^{-1}$	$299792458{\rm Hz}$			
$1\mathrm{Hz}$	(1 Hz)h =	$(1\mathrm{Hz})h/c^2 =$	$(1\mathrm{Hz})/c =$	$(1 \mathrm{Hz}) =$			
	$6.62607015 \times 10^{-34}\mathrm{J}$	$7.372497323\ldots\times10^{-51}\mathrm{kg}$	$3.335640951\ldots\times10^{-9}m^{-1}$	$1\mathrm{Hz}$			
$1\mathrm{K}$	(1 K)k =	$(1 \mathrm{K}) k/c^2 =$	$(1 \mathrm{K}) k/(hc) =$	$(1\mathrm{K})k/h =$			
	$1.380649 \times 10^{-23}\mathrm{J}$	$1.536179187\ldots\times 10^{-40}\mathrm{kg}$	$69.50348004\ldotsm^{-1}$	$2.083661912\ldots\times10^{10}\mathrm{Hz}$			
$1\mathrm{eV}$	$(1 \mathrm{eV}) =$	$(1\mathrm{eV})/c^2 =$	$(1 \mathrm{eV})/(hc) =$	$(1\mathrm{eV})/h =$			
	$1.602176634 \times 10^{-19} \mathrm{J}$	$1.782661921\ldots \times 10^{-36}\mathrm{kg}$	$8.065543937\ldots\times10^5m^{-1}$	$2.417989242\ldots\times10^{14}\mathrm{Hz}$			
$1\mathrm{u}$	$(1 \mathrm{u})c^2 =$	(1 u) =	$(1 \mathrm{u})c/h =$	$(1\mathrm{u})c^2/h =$			
	$1.49241808560(45) \times 10^{-10} \mathrm{J}$	$1.66053906660(50)\times 10^{-27}\mathrm{kg}$	$7.5130066104(23)\times 10^{14}\mathrm{m}^{-1}$	$2.25234271871(68)\times 10^{23}\mathrm{Hz}$			
$1E_{\rm h}$	$(1 E_{\rm h}) =$	$(1 E_{\rm h})/c^2 =$	$(1 E_{\rm h})/(hc) =$	$(1E_{\rm h})/h =$			
	$4.3597447222071(85) \times 10^{-18} \mathrm{J}$	$4.8508702095432(94) \times 10^{-35}\mathrm{kg}$	$2.1947463136320(43)\times 10^7\mathrm{m}^{-1}$	$6.579683920502(13)\times 10^{15}\mathrm{Hz}$			

エネルギーと等価な8つ量のあいだの換算表(2)

		各々の単位	立で対応する数値	
	K	eV	u	$E_{ m h}$
1 J	$(1 \mathrm{J})/k =$	(1 J) =	$(1 \mathrm{J})/c^2 =$	(1 J) =
	$7.242970516\ldots \times 10^{22}\mathrm{K}$	$6.241509074\ldots\times10^{18}eV$	$6.7005352565(20)\times 10^9\mathrm{u}$	$2.2937122783963(45)\times 10^{17}E_{\rm h}$
$1\mathrm{kg}$	$(1\mathrm{kg})c^2/k =$	$(1\mathrm{kg})c^2 =$	$(1 \mathrm{kg})$	$(1 \text{ kg})c^2 =$
	$6.509657260\ldots \times 10^{39}\mathrm{K}$	$5.609588603\ldots\times10^{35}eV$	$6.0221407621(18)\times 10^{26}\mathrm{u}$	$2.0614857887409(40)\times 10^{34}E_{\rm h}$
$1\mathrm{m}^{-1}$	$(1 \mathrm{m}^{-1})hc/k =$	$(1 \mathrm{m}^{-1})hc =$	$(1 \mathrm{m}^{-1})h/c =$	$(1 \mathrm{m}^{-1})hc =$
	$1.438776877 \times 10^{-2} \mathrm{K}$	$1.239841984\ldots\times10^{-6}\mathrm{eV}$	$1.33102505010(40)\times 10^{-15}\mathrm{u}$	$4.5563352529120(88)\times 10^{-8}E_{\rm h}$
$1\mathrm{Hz}$	$(1 \mathrm{Hz})h/k =$	$(1 \mathrm{Hz})h =$	$(1{\rm Hz})h/c^2 =$	$(1 \mathrm{Hz})h =$
	$4.799243073 \times 10^{-11} \mathrm{K}$	$4.135667696\ldots \times 10^{-15}\mathrm{eV}$	$4.4398216652(13)\times 10^{-24}\mathrm{u}$	$1.5198298460570(29)\times 10^{-16}E_{\rm h}$
$1\mathrm{K}$	(1 K) =	$(1 \mathrm{K})k =$	$(1\mathrm{K})k/c^2 =$	$(1 \mathrm{K})k =$
	1 K	$8.617333262\ldots\times 10^{-5}\mathrm{eV}$	$9.2510873014(28)\times 10^{-14}\mathrm{u}$	$3.1668115634556(61)\times 10^{-6}E_{\rm h}$
$1\mathrm{eV}$	$(1 \mathrm{eV})/k =$	$(1\mathrm{eV}) =$	$(1 \text{eV})/c^2 =$	$(1 \mathrm{eV}) =$
	$1.160451812 \times 10^4 \mathrm{K}$	$1\mathrm{eV}$	$1.07354410233(32)\times 10^{-9}\mathrm{u}$	$3.6749322175655(71)\times 10^{-2}E_{\rm h}$
$1\mathrm{u}$	$(1 \mathbf{u})c^2/k =$	$(1\mathrm{u})c^2 =$	(1 u) =	$(1 \mathrm{u})c^2 =$
	$1.08095401916(33) \times 10^{13}\mathrm{K}$	$9.3149410242(28)\times 10^8\mathrm{eV}$	1 u	$3.4231776874(10)\times 10^7E_{\rm h}$
$1E_{\rm h}$	$(1E_{\rm h})/k =$	$(1E_{\rm h}) =$	$(1 E_{\rm h})/c^2 =$	$(1 E_{\rm h}) =$
	$3.1577502480407(61) \times 10^5 \mathrm{K}$	$27.211386245988(53)\mathrm{eV}$	$2.92126232205(88)\times 10^{-8}\mathrm{u}$	$1E_{ m h}$

電子書籍, 2020年2月

- 33 ページ, 図 3.1(b): kg から A への矢印を削除
- 189 ページ, 参考文献 [4]:

(誤) https://www.nmij.jp/library \rightarrow (正) https://unit.aist.go.jp/nmij/library/#si