INSTRUKCJA WYKONAWCZA DMOS (ćwiczenie wykonywane zdalnie)

- 1. Wykreślić charakterystykę pojemnościowo-napięciową wybranej struktury diody tunelowej metal-izolator-półprzewodnik (dane pomiarowe w zakładce CV pliku). *uwaga*: przyporządkowanie plików z danymi do studentów podane na stronie przedmiotu PNAN
- 2. Na podstawie wykreślonej charakterystyki pojemnościowo-napięciowej dokonać ekstrakcji grubości warstwy dielektryka t_{ox} , koncentracji atomów domieszki w podłożu N_A , pojemności w stanie płaskich pasm C_{FB} , napięcia płaskich pasm U_{FB} , ładunku efektywnego tlenku Q_{eff} .

2.1/ Grubość warstwy dielektrycznej (t_{ox}):

a/ z jednego punktu charakterystyki w zakresie akumulacji (C_{MAX})

gdzie:

A - powierzchnia elektrody bramki (do obliczeń przyjąć A = 0,0028 cm²), ε_i - przenikalność elektryczna izolatora (dla SiO₂ ε_i = 3,9· ε_0 = 3,45·10 ⁻¹³ F/cm)

 ${f b}/$ znając dwa punkty charakterystyki w zakresie akumulacji $C_1(U_{G1})$ i $C_2(U_{G2})$.

$$C_{MAX} = \left(\frac{C_1 + C_2}{2} + \frac{kT}{q} \left| \frac{C_2 - C_1}{U_{G2} - U_{G1}} \right| \right) + \sqrt{\left(\frac{C_1 + C_2}{2} + \frac{kT}{q} \left| \frac{C_2 - C_1}{U_{G2} - U_{G1}} \right| \right)^2 - C_1 C_2}$$

(dla
$$T=300K$$
, $\frac{kT}{q} \cong 26mV$)

$$t_{ox} = A \frac{\mathcal{E}_i}{C_{MAX}}$$

2.2/ Koncentracji domieszki w podłożu (N_A):

Na podstawie nachylanie krzywej w zakresie zubożenia obliczyć szukaną wartość $N_{\!\scriptscriptstyle A}$ korzystając z zależności:

$$N_A = \frac{2}{qA^2 \varepsilon_s} \left[\frac{d(C^{-2})}{dU_G} \right]^{-1}$$

q – ładunek elementarny (1,6·10⁻¹⁹ C),

 ε_s - przenikalność elektryczna półprzewodnika (dla Si ε_s = 11,7· ε_0 = 10 ⁻¹² F/cm)

2.3/ Pojemność w stanie płaskich pasm (C_{FB}), napięcie płaskich pasm (U_{FB}):

gdzie:

q – ładunek elementarny (1,6·10 ⁻¹⁹ C), k_B - stała Boltzmana k_B =1,38·10 ⁻²³ J/K

 ε_s - przenikalność elektryczna półprzewodnika (dla Si $\varepsilon_s=11,7\cdot\varepsilon_0=10^{-12}$ F/cm)

2.4/ Ładunek efektywny tlenku (Q_{eff}):

$$Q_{eff} = C_{ox} (\phi_{MS} - U_{FB}) = \frac{\varepsilon_i}{t_{ox}} (\phi_{MS} - U_{FB})$$

gdzie

 ε_i - przenikalność elektryczna izolatora (dla SiO₂ ε_i =3,9· ε_0 = 3,45·10 ⁻¹³ F/cm)

przy czym dla struktury MOS w układzie materiałowym Al-SiO₂-Si(p):

$$\phi_{MS} = \frac{\phi_{M} - (\chi_{S} + E_{g} / 2 - q\phi_{F})}{q} = \frac{4,1 - (4,05 + 1,10 / 2 - q\phi_{F})}{q} = -0,5 - \phi_{F}$$

gdzie

$$\phi_F = \frac{kT}{q} \ln \frac{N_A}{n_i}$$
 (dla $T=300$ K: $\frac{kT}{q} \approx 26 mV$, $n_i=10^{10}$ cm⁻³).

Po dokonaniu podstawień otrzymujemy:

$$Q_{eff} = \frac{\varepsilon_i}{t_{ox}} \left(-0.5 - \phi_F - U_{FB} \right) = \frac{\varepsilon_i}{t_{ox}} \left[-0.5 - \left(0.026 \cdot \ln \frac{N_A}{10^{10}} \right) - U_{FB} \right]$$

3. Obliczyć i wykreślić charakterystykę J-V we współrzędnych liniowych i półlogarytmicznych (dane pomiarowe w zakładce IV pliku).

współrzędne liniowe

współrzędne półlogarytmiczne

Uwaga: J=I/A, gdzie A jest powierzchnią elektrody bramki (do obliczeń przyjąć A = 0,0028 cm²),

4. Obliczyć i wykreślić charakterystyki ($|\mathbf{J}|$) ~ U oraz dla zakresu ujemnych napięć bramki ($|\mathbf{J}|/F_{ox}^2$) ~ $1/|F_{ox}|$ - dla obu wykresów należy zastosować skalę półlogarytmiczną. Należy przyjąć, że w stanie akumulacji $U_G = \phi_{MS} + \phi_s + U_{ox} \cong \phi_{MS} + F_{ox} \cdot t_{ox}$, czyli pominąć mały w przypadku stanu akumulacji potencjał powierzchniowy ϕ_s , wówczas:

$$F_{ox} = \frac{U_G - \phi_{MS}}{t_{ox}} = \frac{U_G - (-0.5 - \phi_F)}{t_{ox}} = \frac{U_G - (-0.5 - 0.026 \cdot \ln \frac{N_A}{10^{10}})}{t_{ox}}$$

(*Uwaga*: przyjąć wartość t_{ox} [cm] obliczoną w pkt. 2.1b, wartość N_A obliczoną w pkt. 2.2)

5. Wykreśloną charakterystykę $(J/F_{ox}^2) \sim 1/|F_{ox}|$ należy porównać z rys. 9 *instrukcji ćwiczenia DMOS* i znaleźć zakresy odpowiadające tunelowaniu bezpośredniemu (DT) i Fowlera-Nordheima (FN).

Rys. 9: Wykres Fowlera-Nordheima dla struktury Al-SiO₂-Si (a-b-c).

6. Obliczyć i wykreślić charakterystykę we współrzędnych $\ln(|J|/|F_{ox}|^2) \sim 1/|F_{ox}|$ (dla zakresu ujemnych napięć bramki). Korzystając z wzoru (3) wyznaczyć **wysokość bariery potencjału** (Φ_{mi}) przy założeniu masy efektywnej wynoszącej 0,5.

Komentarz:

2.1/ Grubość warstwy dielektrycznej (t_{ox})

W przypadku grubych dielektryków charakterystyka C-V wygląda jak na rysunku poniżej (stała wartość pojemności w akumulacji i stała wartość pojemności w zakresie silnej inwersji.

Grubość dielektryk oblicza się wówczas tak jak w pkt. 2.1a, czyli ze wzoru (1): $t_{ox} = A \frac{\mathcal{E}_i}{C_{MAX}}$

W przypadku struktur z relatywnie cienkim dielektrykiem <u>zmierzona</u> charakterystyka w zakresie akumulacji często wygląda jak na rysunku poniżej (ciągła czarna linia) tj. nie ma nasycenia krzywej (stałej wartości pojemności) w zakresie akumulacji. Pomiar dla większych wartości napięcia polaryzującego (chodzi o wartości bezwzględne) nie jest możliwy, gdyż nastąpiłoby przebicie dielektryka. Można wówczas korzystając z charakterystyki zmierzonej oszacować maksymalną wartość pojemności (C_{MAX}) jaka odpowiada niezmierzonemu zakresowi charakterystyki C-V (szara przerywana linia). Służy do tego wzór podany w pkt. 2.1b.

Należy wykonać obliczenia kilkukrotnie, wybierając różne punkty charakterystyki jako $C_1(U_{G1})$ i ostatecznie wybrać ten, dla którego wynik (C_{MAX}) jest najrozsądniejszy.

Spodziewamy się grubości $5 \div 10$ nm. Przy weryfikacji obliczonej grubości proszę pamiętać, że wynik otrzymany z obliczeń w pkt. 2 jest podany w centymetrach tj. 10^{-2} m.

2.2/ Koncentracji domieszki w podłożu (N_A)

Koncentrację atomów domieszki w podłożu określa się na podstawie nachylenia charakterystyki $1/C^2 = f(U_G)$ w zakresie zubożenia, zgodnie z rysunkiem poniżej.

Spodziewamy się koncentracji na poziomie $10^{14} \div 10^{16}$ cm⁻³.

Jeżeli poprowadzimy prostą przechodzącą przez punkty służące do wyznaczenia nachylenia charakterystyki (zob. rysunek powyżej), czyli ekstrapolujemy liniowy odcinek charakterystyki w kierunku osi napięcia (U_G), to przecięcie tej prostej z osią odciętych wyznaczy napięcie płaskich pasm (U_{FB}), tak jak to zostało przedstawione na rysunku powyżej.

Mogą skorzystać Państwo z tej metody wyznaczania U_{FB} i porównać otrzymany wynik z wartością otrzymaną w punkcie 2.3.- powinny być podobne.

2.3/ Pojemność w stanie płaskich pasm (C_{FB}) , napięcie płaskich pasm (U_{FB}) :

Z podanego wzoru obliczają Państwo C_{FB} (pojemność w stanie płaskich pasm), a następnie odszukujecie tego punktu na zmierzonej charakterystyce i odczytujecie odpowiadające mu napięcie.

5/ Charakterystyka we współrzędnych $(J/|F_{ox}|^2) \sim 1/|F_{ox}|$

Zgodnie z rys. 9: dla małych napięć polaryzujących (mowa o wartościach bezwzględnych) mamy małe natężenie pola elektrycznego wewnątrz dielektryka (F_{ox} =U/ t_{ox}) i mechanizmem transportu jest tunelowanie bezpośrednie. Dla dużych napięć polaryzujących (mowa o wartościach bezwzględnych), mamy duże natężenie pola elektrycznego wewnątrz dielektryka (F_{ox} =U/ t_{ox}) i mechanizmem transportu jest tunelowanie Fowlera-Nordheima. Krytyczna wartość natężenia pola (przejście pomiędzy jednym a drugim mechanizmem tunelowania) to F=6,4MV/cm (fragment instrukcji str. 6). Odpowiada to wartości 1,56·10⁻⁷ [cm/V] na osi odciętych ($1/F_{ox}$). Proszę sprawdzić, czy mają Państwo podobne (niekoniecznie identyczne) wartości na swoich wykresach.

6/ Charakterystyka we współrzędnych Fowlera-Nordheima: $\ln(|J|/F_{ox}^2) \sim 1/|F_{ox}|$

Nachylenie charakterystyki (\mathbf{m}_{FN} na rys. poniżej) w zakresie tunelowania F-N (liniowy fragment charakterystyki ln($|\mathbf{J}|/\mathrm{Fox2}) \sim 1/|\mathrm{Fox}|$), zgodnie ze wzorem 3 instrukcji, można wykorzystać do ekstrakcji (wyznaczenia) wysokości bariery potencjału dla tunelujących nośników (Φ_{mi} na rys. 1 instrukcji).

Zgodnie z poleceniem w instrukcji, do obliczeń należy przyjąć masę efektywną o wartości 0,5, wówczas wzór (3) przyjmuje postać:

$$m_{FN} = 6.83 \cdot 10^7 \sqrt{\frac{m_{ox}}{m_0}} \phi_{mi}^{\frac{3}{2}} = 6.83 \cdot 10^7 \sqrt{0.5} \cdot \phi_{mi}^{\frac{3}{2}} \quad \left[\frac{V}{cm}\right]$$

Reasumując, na podstawie wykresu obliczacie Państwo wartość m_{FN} , a następnie korzystając z powyższego wzoru obliczcie wysokość bariery potencjału dla nośników tunelujących z bramki (Φ_{mi}). Spodziewamy wysokości bariery ok. 2 [eV].