Examples on Mathematical Induction: divisibility 16 & 36

Created by Mr. Francis Hung

Last updated: September 1, 2021

- 1. (a) Prove that $7^n 6n 1$ is divisible by 36 for all non-negative integers n.
 - (b) Prove that $5^n 4n 1$ is divisible by 16 for all non-negative integers n.
 - (c) If $2 \cdot 7^n 3 \cdot 5^n + 1$ is divisible by p, find the greatest value of p.
 - (a) $n = 0, 7^n 6n 1 = 1 0 1 = 0$, which is divisible by 36.

Suppose $7^k - 6k - 1 = 36r$, where r is an integer.

$$7^k = 6k + 1 + 36r \cdot \cdot \cdot \cdot (1)$$

$$7^{k+1} - 6(k+1) - 1 = 7 \cdot 7^k - 6k - 7$$

$$= 7 \cdot (6k+1+36r) - 6k - 7 \text{ by (1)}$$

$$= 42k+7+7 \cdot 36r - 6k - 7$$

$$= 36k+7 \cdot 36r$$

$$= 36(k+7r)$$

 $\therefore k + 7r$ is an integer

 $\therefore 7^{k+1} - 6(k+1) - 1$ is divisible by 36.

If it is true for n = k, then it is also true for n = k + 1

By the principle of mathematical induction, it is true for all non-negative integers n.

(b) $n = 0, 5^n - 4n - 1 = 1 - 0 - 1 = 0$, which is divisible by 16.

Suppose $5^k - 4k - 1 = 16s$, where s is an integer.

$$5^k = 4k + 1 + 16s \cdot \cdot \cdot \cdot (2)$$

$$5^{k+1} - 4(k+1) - 1 = 5 \cdot 5^k - 4k - 5$$

$$= 5 \cdot (4k+1+16s) - 4k - 5 \text{ by (2)}$$

$$= 20k+5+5 \cdot 16s - 4k - 5$$

$$= 16k+5 \cdot 16s$$

$$= 16(k+5s)$$

 $\therefore k + 5s$ is an integer

$$\therefore 5^{k+1} - 4(k+1) - 1$$
 is divisible by 16.

If it is true for n = k, then it is also true for n = k + 1

By the principle of mathematical induction, it is true for all non-negative integers n.

(c) By (a), $7^n - 6n - 1 = 36r \cdot \cdot \cdot \cdot \cdot (1)$, where r is an integer.

$$5^n - 4n - 1 = 16s \cdot \cdot \cdot \cdot \cdot (2)$$
, where s is an integer.

$$2(1) - 3(2)$$
: $2 \cdot 7^n - 3 \cdot 5^n + 1 = 72r - 48s = 24(3r - 2s)$

The greatest value of p = 24.