

Módulo 6: Camada de Link de Dados

Introdução às redes v7.0 (ITN)

Objetivos do módulo

Título do Módulo: Camada de Link de Dados

Objetivo do módulo: Explique como o controle de acesso à mídia na camada de enlace suporta a comunicação entre redes.

Título do Tópico	Objetivo do Tópico
Finalidade da camada de link de dados	Descrever o objetivo e a função da camada de link de dados na preparação da comunicação para transmissão em determinado meio físico.
Topologias	Comparar as características de métodos de controle de acesso ao meio físico nas topologias WAN e LAN.
Quadro de link de dados	Descrever as características e as funções do quadro de link de dados.

6.1 Finalidade da camada de enlace de dados

Objetivo da camada de vínculo de dados A camada de vínculo de dados

- A camada Data Link é responsável pelas comunicações entre placas de interface de rede do dispositivo final.
- Ele permite que os protocolos de camada superior acessem a mídia da camada física e encapsula pacotes da Camada 3 (IPv4 e IPv6) em Frames da Camada 2.
- Ele também executa a detecção de erros e rejeita quadros corrompidos.

Objetivo da camada de enlace de dados IEEE 802 LAN/MAN Data Link Sublayers

Os padrões IEEE 802 LAN/MAN são específicos para o tipo de rede (Ethernet, WLAN, WPAN, etc).

A Camada de Link de Dados consiste em duas subcamadas. Controle de Link Lógico (LLC) e Controle de Acesso a Mídia (MAC).

- A subcamada LLC se comunica entre o software de rede nas camadas superiores e o hardware do dispositivo nas camadas inferiores.
- A subcamada MAC é responsável pelo encapsulamento de dados e controle de acesso à mídia.

Objetivo da camada de enlace de dadosr Fornecendo acesso à mídia

Pacotes trocados entre nós podem enfrentar várias camadas de link de dados e transições de mídia.

Em cada salto ao longo do caminho, um roteador executa quatro funções básicas da Camada 2:

- Aceita um quadro da mídia de rede.
- Desencapsula o quadro para expor o pacote encapsulado.
- Encapsula novamente o pacote em um novo quadro.
- Encaminha o novo quadro no meio do próximo segmento de rede.

Objetivo da camada de enlace de dados Padrões da camada de enlace de dados

Os protocolos de camada de link de dados são definidos por organizações de engenharia:

- Instituto de Engenheiros Elétricos e Eletrônicos (IEEE).
- União Internacional de Telecomunicações (UIT).
- Organizações Internacionais de Normalização (ISO).
- Instituto Nacional Americano de Padrões (ANSI).

6.2 Topologias

Topologias Topologias físicas e lógicas

A topologia de uma rede é o arranjo e o relacionamento dos dispositivos de rede e as interconexões entre eles.

Existem dois tipos de topologias usadas ao descrever redes:

- Topologia física mostra as conexões físicas e como os dispositivos estão interligados.
- Topologia lógica identifica as conexões virtuais entre dispositivos usando interfaces de dispositivo e esquemas de endereçamento IP.

9

Topologias WAN Topologias

Existem três topologias físicas comuns da WAN:

- Ponto a ponto a topologia WAN mais simples e comum. Consiste em uma ligação permanente entre dois pontos finais.
- Hub e spoke semelhante a uma topologia em estrela, na qual um site central interconecta sites de filial por meio de links ponto a ponto.
- Malha fornece alta disponibilidade, mas requer que todos os sistemas finais estejam conectados a todos os outros sistemas finais.

Topologias Topologia de WAN ponto a ponto

- As topologias ponto a ponto físicas conectam diretamente dois nós.
- Os nós não podem compartilhar a mídia com outros hosts.
- Como todos os quadros na mídia só podem viajar de ou para os dois nós, os protocolos WAN Ponto a Ponto podem ser muito simples.

Topologias LAN Topologias

Os dispositivos finais em LANs são normalmente interconectados usando uma topologia estrela ou estelar estendida. Topologias estrelas e estrelas estendidas são fáceis de instalar, muito escaláveis e fáceis de solucionar problemas.

As tecnologias Early Ethernet e Token Ring Legacy fornecem duas topologias adicionais:

- Barramento Todos os sistemas finais encadeados e terminados em cada extremidade.
- Anel Cada sistema final é conectado aos seus respectivos vizinhos para formar um anel.

Topologias Half e Full Duplex Comunicação

Comunicação half-duplex

- Só permite que um dispositivo envie ou receba de cada vez em uma mídia compartilhada.
- Usado em WLANs e topologias de barramento herdadas com hubs Ethernet.

Comunicação full-duplex

- Permite que ambos os dispositivos transmitam e recebam simultaneamente em uma mídia compartilhada.
- Os comutadores Ethernet operam no modo full-duplex.

Topologias Métodos de controle de acesso

Acesso baseado em contenção

Todos os nós operando em half-duplex, competindo pelo uso do meio. Os exemplos são:

- A operadora detecta o acesso múltiplo com detecção de colisão (CSMA / CD) conforme usado na Ethernet de topologia de barramento herdada.
- A operadora detecta o acesso múltiplo com prevenção de colisão (CSMA / CA), conforme usado nas LANs sem fio.

Acesso controlado

- Acesso determinístico onde cada nó tem seu próprio tempo no meio.
- Usado em redes herdadas, como Token Ring e ARCNET.

Topologias

- Acesso baseado em conteúdo - CSMA/CD

CSMA/CD

- Usado por LANs Ethernet herdadas.
- Funciona no modo half-duplex onde apenas um dispositivo envia ou recebe de cada vez.
- Usa um processo de detecção de colisão para controlar quando um dispositivo pode enviar e o que acontece se vários dispositivos enviarem ao mesmo tempo.

Processo de detecção de colisão CSMA/CD:

- Dispositivos que transmitem simultaneamente resultarão em uma colisão de sinal na mídia compartilhada.
- Dispositivos detectam a colisão.
- Os dispositivos aguardam um período aleatório de tempo e retransmitem dados.

15

Topologias Acesso baseado em conteúdo - CSMA/CA

CSMA/CA

- Usado por WLANs IEEE 802.11.
- Funciona no modo half-duplex onde apenas um dispositivo envia ou recebe de cada vez.
- Usa um processo de prevenção de colisão para controlar quando um dispositivo pode enviar e o que acontece se vários dispositivos enviarem ao mesmo tempo.

Processo de prevenção de colisão CSMA/CA:

- Ao transmitir, os dispositivos também incluem a duração de tempo necessária para a transmissão.
- Outros dispositivos na mídia compartilhada recebem as informações de duração do tempo e sabem por quanto tempo a mídia ficará indisponível.

6.3 Quadro de link de dados

Quadro de enlace de dados O quadro

Os dados são encapsulados pela camada de link de dados com um cabeçalho e um trailer para formar um quadro.

Um quadro de link de dados tem três partes:

- Cabeçalho
- Dados
- Trailer

Os campos do cabeçalho e do trailer variam de acordo com o protocolo da camada de link de dados.

A quantidade de informações de controle transportadas no quadro varia de acordo com as informações de controle de acesso e a topologia lógica.

Quadro de enlace de dados Campos do quadro

Campo	Descrição
Frame Start e Stop	Identifica o início e o fim do quadro
Endereçamento	Indica nós de origem e destino
Tipo	Identifica o protocolo encapsulado da Camada 3
Controle	Identifica serviços de controle de fluxo
Dados	Contém a carga útil do quadro
Detecção de erros	Usado para determinar erros de transmissão

Quadro de enlace de dados Endereço da Camada 2

- Também referido como um endereço físico.
- Contido no cabeçalho do quadro.
- Usado apenas para entrega local de um quadro no link.
- Atualizado por cada dispositivo que encaminha o quadro.

Quadro de Link de Dados LAN e WAN Frames

A topologia lógica e a mídia física determinam o protocolo de link de dados usado:

- Ethernet
- 802.11 sem fio
- Ponto a ponto (PPP)
- Controle de Enlace de Dados de Alto Nível (HDLC)
- Frame-Relay

Cada protocolo executa o controle de acesso à mídia para topologias lógicas especificadas.

6.4 - Módulo Prática e Quiz

O que aprendi neste módulo?

- A camada de enlace de dados do modelo OSI (Camada 2) prepara dados de rede para a rede física.
- A camada de link de dados é responsável pela placa de interface de rede (NIC) para comunicações de placa de interface de rede.
- A camada de link de dados IEEE 802 LAN/MAN consiste nas seguintes duas subcamadas: LLC e MAC.
- Os dois tipos de topologias usados em redes LAN e WAN são físicos e lógicos.
- Três tipos comuns de topologias WAN físicas são: ponto a ponto, hub e spoke e malha.
- As comunicações semi-duplex trocam dados em uma direção de cada vez. Full-duplex envia e recebe dados simultaneamente.
- Em redes multiacesso baseadas em contenção, todos os nós estão operando em half-duplex.
- Exemplos de métodos de acesso baseados em contenção incluem: CSMA/CD para LANs Ethernet de topologia barramento e CSMA/CA para WLANs.
- O quadro do link de dados tem três partes básicas: cabeçalho, dados e reboque.
- Os campos de quadro incluem: sinalizadores de indicador de início e parada de quadros, endereçamento, tipo, controle, dados e detecção de erros.
- Endereços de links de dados também são conhecidos como endereços físicos.
- Endereços de links de dados são usados somente para a entrega local de links de quadros.

