МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) Физтех-школа физики и исследований им. Ландау

Отчет по лабораторной работе №4.4.1 **Амплитудная дифракционная решётка**

Работу выполнил:

Комкин Михаил Валерьевич

Группа: Б01-303

Цель работы: Знакомство с работой и настройкой гониометра Г5, определение спектральных характеристик амплитудной решётки.

В работе используется: гониометр, дифракционная решётка, ртутная лампа.

1. Теоретические сведения:

1.1. Принцип работы

Спектральными называются оптические приборы, которые осуществляют физическое разложение излучения на монохроматические составляющие. По характеру распределения интенсивности выделяют три вида спектров непрерывные, сплошные и линейчатые. Установка действует по следующему принципу:

- 1. Свет от источника попадает на экран, которые содержит отверстие в виде щели. Экран располагают в фокальной плоскости линзы или системы линз.
- 2. Коллиматор формирует пучок света, близкий к параллельному.
- 3. Затем пучок лучей попадает на *диспергирующий элемент* (в данной работе им является Амплитудная решетка).
- 4. С помощью зрительной трубы установленной на бесконечность можно наблюдать изображение.

Рис. 1: Схема прибора: источник-коллиматор — диспергирующий элемент — зрительная труба

Диспергирующий элемент пространственно разделяет монохроматические составляющие падающего на него излучения, осуществляя тем самым его физическое разложение по спектру. **Наиболее важные характеристики**

- 1. Разрешающая способность $R=\frac{\lambda}{\delta\lambda}$ характеризует возможность прибора различать две близкие спектральные линии с длинами волн λ и $\lambda+\delta\lambda$
- 2. Угловая дисперсия $D=\frac{d\lambda}{d\varphi}$ производная зависимости угла отклонения $\varphi(\lambda)$ волны диспергирующим элементом по λ
- 3. Дисперсионная область предельная ширина спектрального интервала $\Delta\lambda$ прибора, для которой дифракционные максимумы соседних порядков не перекрываются.

1.2. Амплитудная дифракционная решётка

Рис. 2: Дифракция световой волны на амплитудной решётке

Амплитудная решетка представляет собой непрозрачный экран, в котором прорезано N параллельных щелей - штрихов. Расстояния между всеми штрихами равны d. Интенсивность дифрагированного света максимальна для углов φ_m , при которых волны, приходящие в точку наблюдения от всех щелей, оказываются в фазе: $dsin\varphi_m = m\lambda \ (m=0,\pm 1,\pm 2)$.

Рис. 3: Дифракция света на решётке. Зависимость интенсивности света от угла: а) дифракция на отдельной щели; б) дифракция на решётке в пределе бесконечно узких щелей; в) распределение мощности света на единицу высоты изображения, отнесённое к малому диапазону углов

2. Ход работы

Сначала были измерены углы для максимумов линий спектра ртутной лампы порядков ± 1 . Полученные данные приведены в таблице $\ref{eq:constraint}$?

№ линии	φ_{+1}	φ_{-1}
6	11°41′57″	11°38′29″
5	12°36′34″	12°33′37″
4	14°15′39″	14°11′58″
3	15°52′33″	15°48′17″
2	16°48′4″	16°43′18″
1	16°51′56″	16°47′1″
K_2	17°52′8″	17°47′11″
K_1	18°12′43″	18°6′48″

Таблица 1: Углы линий спектра ртути

Далее, для оценки угловой дисперсии решётки были измерены угловые координаты линий жёлтого дублета для всех видимых порядков спектра, положительных и отрицательных. Данные можно найти в таблице ??.

m	$arphi_2$	φ_1
1	16°48′4″	16°51′56″
-1	16°43′18″	16°47′1″
2	35°24′15″	35°33′12″
-2	35°3′45″	35°12′46″
3	60°41′58″	61°4′30″
-3	59°13′38″	59°35′5″

Таблица 2: Углы жёлтых линий

Наконец, для оценки разрешающей способности спектрального прибора была измерена угловая ширина одной из линий жёлтого дублета по нулям интенсивности в первом и втором порядках. Угловая ширина составила $\Delta \varphi = 0°1'30''$ и $\Delta \varphi = 0°1'53''$ соответственно.

3. Обработка данных

По полученным данным в таблице ?? был построен график на рис.?? зависимости $\sin\varphi_m$ от длины волны. По коэффициенту наклона с использованием формулы (??) был найден период решётки $d=\frac{1}{k}=2.04\pm0.05$ мкм.

Рис. 4: График зависимости $\sin \varphi$ от длины волны для первых максимумов

Далее, посмотрим зависимость D от m и сравним результат с формулой 2. Результат наглядно представлен на графике $\ref{eq:property}$?

Рис. 5: Зависимость угловой дисперсии от порядка. Черная прямая - это теоретическая зависимость, построенная по параметру d, ранее определенному. Легко видеть, что теория очень хорошо описывает эксперимент

Определим также разрешающую способность по формуле $R=\frac{\varphi}{\delta\varphi}\approx 670$, используя измеренную ширину первого порядка жёлтой линии $\delta\varphi=90''$, то есть число рабочих штрихов решётки $N\approx 670$ и размер освещённой части $l=Nd\approx 1,3$ мм.

4. Вывод

Таким образом, мы исследовали спектральные линии ртути, определили шаг решётки, её угловую дисперсию, а также её разрешающую способность. Полученные результаты близки к теоретическим вычислениям.