CIS6930/4930 – Probability for Computer Systems and Machine Learning

Classification - Discrete Case

Feb. 22, 2022

Prof. Ye Xia

Problem Setup

- $X \in \{1, ..., K\}^D$: random input vector, representing D features; each feature takes K possible values.
- $Y \in \{1, \dots, C\}$: random output scalar, representing the class.
- $P_{X,Y}(x,y)$: (joint) probability mass function, which we don't really know; short hand P(x,y).
- We wish: Given an input X, we classify it into a class \hat{Y} through some function h, i.e., $\hat{Y} = h(X)$.
- Example: Consider classification of a collection of documents. First, create a list of unique words that show up in the sample documents, say D words.

A document i can be represented by a D-dimensional binary vector, say x_i , where $x_{ij} = 1$ if the jth word in the list shows up in the

document, and $x_{ij} = 0$ otherwise. Example:

$$x_i = (1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1).$$

Here, there are D features, corresponding to the words. Each feature can take two possible values, 0 or 1. (Therefore, $X \in \{0,1\}^D$)

- Let $\{(X_1, Y_1), \dots, (X_N, Y_N)\}$ be a random sample. The (X_i, Y_i) 's are IID, each having the same distribution as (X, Y).
- We observe a realization of the random sample, i.e., the training data: $(x_1, y_1), \ldots, (x_N, y_N)$. Each x_i is a vector corresponding to a document $i; y_i$ is its class.

Model with Non-Random Parameters

- The strategy is to assume $P_{X,Y}$ comes from a know distribution but unknown parameters, $\pi = (\pi_c)$ and $\theta = (\theta_{jc})$, which are vectors (or matrix).
- Let $t=(t_j)$ be a feature vector, and c be a scalar for class. We have $P(X=t,Y=c|\pi,\theta)=P(X=t|Y=c,\pi,\theta)P(Y=c|\pi,\theta).$
- We assume Y depends only on π :

$$P(Y = c|\pi, \theta) = P(Y = c|\pi) = \pi_c.$$

• We also assume, conditional on Y = c, X depends only on θ according to

$$P(X = t | Y = c, \pi, \theta) = \prod_{j=1}^{D} P(X_j = t_j | Y = c, \theta_{jc}).$$

The above says: Conditional on Y = c, (i) the different features are independent, and (ii) each feature j depends only on the parameter θ_{jc} . The resulting model is known as a **naive Bayes classifier**.

• For binary features, $t_j \in \{0, 1\}$ for each j. We further assume Bernoulli distributions. For each j, conditional on Y = c, $X_j \sim \text{Bernoulli}(\theta_{jc})$.

$$f(t_j|\theta_{jc}) \triangleq P(X_j = t_j|Y = c, \theta_{jc}) = \begin{cases} \theta_{jc}, & t_j = 1\\ 1 - \theta_{jc}, & t_j = 0. \end{cases}$$
(1)

Sometimes, we use the following compact notation.

$$f(t_j|\theta_{jc}) = \theta_{jc}^{t_j} (1 - \theta_{jc})^{1-t_j}.$$

• The probability of observing a training data point (x_i, y_i) is

$$P(X = x_i, Y = y_i | \pi, \theta) = P(X = x_i | Y = y_i, \pi, \theta) P(Y = y_i | \pi, \theta)$$

$$= \pi_{y_i} \prod_{j=1}^{D} P(X_j = x_{ij} | Y = y_i, \theta_{jy_i})$$

$$= \pi_{y_i} \prod_{j=1}^{D} f(x_{ij} | \theta_{jy_i})$$

$$= \left(\prod_{c=1}^{C} \pi_c^{\mathbf{1}(c=y_i)}\right) \left(\prod_{j=1}^{D} \prod_{c=1}^{C} f(x_{ij} | \theta_{jc})^{\mathbf{1}(c=y_i)}\right).$$
(2)

The last step is an often used trick.

Likelihood Function

Let the entire training data be denoted by

$$\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}.$$

• The likelihood function is

$$P(\mathcal{D}|\pi,\theta) = \prod_{i=1}^{N} \left(\left(\prod_{c=1}^{C} \pi_c^{\mathbf{1}(c=y_i)} \right) \left(\prod_{j=1}^{D} \prod_{c=1}^{C} f(x_{ij}|\theta_{jc})^{\mathbf{1}(c=y_i)} \right) \right).$$

The above can be written as

$$P(\mathcal{D}|\pi,\theta) = \left(\prod_{i=1}^{N} \prod_{c=1}^{C} \pi_{c}^{\mathbf{1}(c=y_{i})}\right) \left(\prod_{i=1}^{N} \prod_{j=1}^{D} \prod_{c=1}^{C} f(x_{ij}|\theta_{jc})^{\mathbf{1}(c=y_{i})}\right)$$
$$= \left(\prod_{c=1}^{C} \prod_{i=1}^{N} \pi_{c}^{\mathbf{1}(c=y_{i})}\right) \left(\prod_{j=1}^{D} \prod_{c=1}^{C} \prod_{i=1}^{N} f(x_{ij}|\theta_{jc})^{\mathbf{1}(c=y_{i})}\right).$$

• Note that

$$\prod_{i=1}^{N} \pi_c^{\mathbf{1}(c=y_i)} = \pi_c^{\sum_{i=1}^{N} \mathbf{1}(c=y_i)} = \pi_c^{N_c},$$

where, for each c, $N_c \triangleq \sum_{i=1}^{N} \mathbf{1}(c=y_i)$ is the number of data points that belong to class c.

• Next, consider

$$\prod_{i=1}^{N} f(x_{ij}|\theta_{jc})^{\mathbf{1}(c=y_i)}.$$

Here, j and c are fixed. The above is a product of N factors. For i such that $x_{ij} = 1$ and $c = y_i$, the factor is θ_{jc} ; for i such that $x_{ij} = 0$ and $c = y_i$, the factor is $(1 - \theta_{jc})$; for i such that $c \neq y_i$, the factor is 1. Thus,

$$\prod_{i=1}^{N} f(x_{ij}|\theta_{jc})^{\mathbf{1}(c=y_i)} = \theta_{jc}^{\sum_{i=1}^{N} \mathbf{1}(c=y_i, x_{ij}=1)} (1-\theta_{jc})^{\sum_{i=1}^{N} \mathbf{1}(c=y_i, x_{ij}=0)}.$$

- For each j and c, let $N_{jc} \triangleq \sum_{i=1}^{N} \mathbf{1}(x_{ij} = 1, c = y_i)$. N_{jc} is the number of data points that belong to class c and with the jth feature turned on.
- Then, $N_c N_{jc}$ is the number of data points that belong to class c and with the jth feature turned off. That is, $N_c N_{jc} = \sum_{i=1}^{N} \mathbf{1}(x_{ij} = 0, c = y_i)$.
- We can write

$$\prod_{i=1}^{N} f(x_{ij}|\theta_{jc})^{\mathbf{1}(c=y_i)} = \theta_{jc}^{N_{jc}} (1 - \theta_{jc})^{N_c - N_{jc}}.$$

• The likelihood function can be written as

$$P(\mathcal{D}|\pi,\theta) = \left(\prod_{c=1}^{C} \pi_c^{N_c}\right) \left(\prod_{j=1}^{D} \prod_{c=1}^{C} \theta_{jc}^{N_{jc}} (1 - \theta_{jc})^{N_c - N_{jc}}\right).$$
(3)

Log-Likelihood Function

• The **log-likelihood function** is

$$\log P(\mathcal{D}|\pi, \theta) = \sum_{c=1}^{C} N_c \log \pi_c + \sum_{c=1}^{C} \sum_{j=1}^{D} (N_{jc} \log \theta_{jc} + (N_c - N_{jc}) \log(1 - \theta_{jc})).$$
(4)

Maximum Likelihood Estimate (MLE)

- Choose π and θ that maximizes the likelihood $P(\mathcal{D}|\pi, \theta)$. The maximizing (π, θ) , denoted by $(\hat{\pi}, \hat{\theta})$, is an MLE.
- Maximizing $P(\mathcal{D}|\pi, \theta)$ is the same as maximizing $\log P(\mathcal{D}|\pi, \theta)$.
- For (4), due to the separation of the variables, we ends up with two sets of maximization sub-problems.
- The first is

$$\max_{\pi} \sum_{c=1}^{C} N_c \log \pi_c$$
 subject to
$$\sum_{c=1}^{C} \pi_c = 1.$$

This is an easy problem. The maximizer is, for each c,

$$\hat{\pi}_c = \frac{N_c}{N}.$$

- $\hat{\pi}_c$ is simply the empirical average.
- Note that if $N_c = 0$ (possibly due to insufficient data in high-dimensional cases), $\hat{\pi}_c = 0$. Class c is ruled out. This is known as the **zero count problem**, a form of overfitting.
- The second set of sub-problems is, for each j and c,

$$\max_{\theta_{jc} \in [0,1]} N_{jc} \log \theta_{jc} + (N_c - N_{jc}) \log(1 - \theta_{jc}).$$

• First, assume $0 < N_{jc} < N_c$. Taking derivative with respect to θ_{jc}

and setting it to zero, we get

$$\frac{N_{jc}}{\theta_{jc}} - \frac{N_c - N_{jc}}{1 - \theta_{jc}} = 0.$$

This yields the maximizer

$$\hat{\theta}_{jc} = \frac{N_{jc}}{N_c}.$$

- $\hat{\theta}_{jc}$ is again an empirical average.
- For cases of $N_{jc} = 0$ or $N_{jc} = N_c$, the above solution is still correct.
- The MLE is random because it depends on the random sample $\{(X_1, Y_1), \dots, (X_N, Y_N)\}.$

How to Classify New Document

• With $\hat{\pi}, \hat{\theta}$, we now think the distribution of (X, Y) is $P(t, c | \hat{\pi}, \hat{\theta})$ with the form given in (2), i.e.,

$$P(X = t, Y = c | \hat{\pi}, \hat{\theta}) = \hat{\pi}_c \prod_{j=1}^{D} f(t_j | \hat{\theta}_{jc}),$$

where f is the Bernoulli pmf given in (1).

Keep in mind that this is still not the true distribution of (X, Y).

• The marginal probability mass for X is

$$P(X = t | \hat{\pi}, \hat{\theta}) = \sum_{c=1}^{C} \hat{\pi}_c \prod_{j=1}^{D} f(t_j | \hat{\theta}_{jc}).$$

 \bullet For a given document with the feature vector t, the class that it

belongs to is random, according to the conditional probability

$$P(Y = c | X = t, \hat{\pi}, \hat{\theta}) = \frac{P(X = t, Y = c | \hat{\pi}, \hat{\theta})}{P(X = t | \hat{\pi}, \hat{\theta})}, \quad c \in \{1, \dots, C\}.$$

ullet If we insist on putting t into one class, we can use the mode as its class. Let

$$\hat{c} \in \operatorname*{argmax} P(Y = c | X = t, \hat{\pi}, \hat{\theta}).$$

Then, our classification function is $h(t) = \hat{c}$.

- Since $P(X=t|\hat{\pi},\hat{\theta})$ does not depend on c,\hat{c} is also the mode of $P(X=t,Y=c|\hat{\pi},\hat{\theta})$. We only need to find the mode for $P(X=t,Y=c|\hat{\pi},\hat{\theta})$ but do not need to compute the marginal probability $P(X=t|\hat{\pi},\hat{\theta})$.
- For numerical calculation, it is easier to compute $\log P(X=t,Y=c|\hat{\pi},\hat{\theta})$ for different c and find the maximizing \hat{c} .

Problem of MLE - Overfitting

- Consider email documents. Suppose the jth feature corresponding to the word 'subject', and suppose $\hat{\theta}_{jc} = 1$. This happens if all the training documents contain the word 'subject' (since $\hat{\theta}_{jc} = \frac{N_{jc}}{N_c}$)
- In the classification stage, consider an input document without the word 'subject'. The input vector t has $t_j = 0$. Then, $f(t_i|\hat{\theta}_{ic}) = 1 \hat{\theta}_{ic} = 0$ for all c. We have, for every c,

$$P(X = t, Y = c | \hat{\pi}, \hat{\theta}) = \hat{\pi}_c \prod_{j=1}^{D} f(t_j | \hat{\theta}_{jc}) = 0.$$

- Classification will fail.
- A Bayesian approach will solve the problem.

Bayesian Approach

- In the Bayesian approach, we don't think π and θ as unknown parameters. We think about them as random variables Π and Θ , with a prior distribution.
- The inference will be based on the posterior probability.
- **Assumption 0:** For simplicity, we assume a factored prior:

$$P_{\Pi,\Theta}(\pi,\theta) = P_{\Pi}(\pi) \prod_{j=1}^{D} \prod_{c=1}^{C} P_{\Theta_{jc}}(\theta_{jc}).$$

When there is no confusion, we will omit the subscripts.

Note that $\{\Theta_{jc}\}_{jc}$ are independent of each other, and independent of all π_c ; $\{\Pi_c\}_c$ may be dependent on each other.

• **Assumption 1:** As before, we still assume

$$P(Y = c|\pi, \theta) = P(Y = c|\pi) = \pi_c.$$
 (5)

But, the meaning is different since Π and θ are random variables. The first equality says that conditional on $\Pi = \pi$, Y is independent of Θ .

• Assumption 2: As before, we still assume,

$$P(X = t | Y = c, \pi, \theta) = \prod_{j=1}^{D} P(X_j = t_j | Y = c, \theta_{jc}),$$
 (6)

where each $P(X_j = t_j | Y = c, \theta_{jc})$ is a function of t_j and θ_{jc} only, in particular, the Bernoulli pmf $f(t_j | \theta_{jc})$ in (1).

This implies X is independent of Π given Y and Θ (prove this):

$$P(X = t | Y = c, \pi, \theta) = P(X = t | Y = c, \theta).$$
 (7)

Proof:

$$P(X = t | Y = c, \theta) = \int P(X = t | Y = c, \pi, \theta) P(\pi | Y = c, \theta) d\pi$$

$$= \int \prod_{j=1}^{D} P(X_j = t_j | Y = c, \theta_{jc}) P(\pi | Y = c, \theta) d\pi$$

$$= \prod_{j=1}^{D} P(X_j = t_j | Y = c, \theta_{jc}) \int P(\pi | Y = c, \theta) d\pi$$

$$= \prod_{j=1}^{D} P(X_j = t_j | Y = c, \theta_{jc})$$

$$= P(X = t | Y = c, \pi, \theta).$$

The integrals in the above are over π_1, \ldots, π_C in the region where $\pi_c \ge 0$ for each c and $\sum_{c=1}^C \pi_c = 1$.

• Assumption 3: For each π and θ , conditional on $\{\Pi = \pi, \Theta = \theta\}$,

 $(X_i, Y_i)_{i=1}^N$ in the sample are IID.

• Under the above assumptions, the likelihood function is as in (3):

$$P(\mathcal{D}|\pi,\theta) = \left(\prod_{c=1}^{C} \pi_c^{N_c}\right) \left(\prod_{j=1}^{D} \prod_{c=1}^{C} \theta_{jc}^{N_{jc}} (1 - \theta_{jc})^{N_c - N_{jc}}\right).$$

Recall
$$\mathcal{D} = \{(x_1, y_1), \dots, (x_N, y_N)\}.$$

MAP - Maximum A Posteriori

- One of our goals is to find (π, θ) that maximizes the posterior probability $P(\pi, \theta | \mathcal{D})$. A maximizer $(\hat{\pi}, \hat{\theta})$ is known as the **MAP estimate**.
- Note that

$$P(\pi, \theta | \mathcal{D}) = \frac{P(\mathcal{D} | \pi, \theta) P(\pi, \theta)}{P(\mathcal{D})}.$$

• $P(\mathcal{D})$ doesn't contain π or θ , and thus it plays no role in the maximization. We can ignore $P(\mathcal{D})$ and write:

$$P(\pi, \theta | \mathcal{D}) \propto P(\mathcal{D} | \pi, \theta) P(\pi, \theta).$$

• Then,

$$P(\pi, \theta | \mathcal{D}) \propto$$

$$\left(P(\pi) \prod_{j=1}^{D} \prod_{c=1}^{C} P(\theta_{jc})\right) \left(\prod_{c=1}^{C} \pi_c^{N_c}\right) \left(\prod_{j=1}^{D} \prod_{c=1}^{C} \theta_{jc}^{N_{jc}} (1 - \theta_{jc})^{N_c - N_{jc}}\right).$$

• After re-arranging,

$$P(\pi, \theta | \mathcal{D}) \propto \left(P(\pi) \prod_{c=1}^{C} \pi_c^{N_c} \right) \left(\prod_{j=1}^{D} \prod_{c=1}^{C} \left(P(\theta_{jc}) \theta_{jc}^{N_{jc}} (1 - \theta_{jc})^{N_c - N_{jc}} \right) \right).$$

We see that the π -part and θ -part are separated. Also, each θ_{jc} is separated from each other as well.

• Main result: We need to solve a set of smaller maximization sub-problems, one for π and one for each θ_{jc} .

Sub-Problem 1:

$$\max_{\pi} P(\pi) \prod_{c=1}^{C} \pi_c^{N_c}$$
s.t. $\pi \ge 0, \sum_{c=1}^{C} \pi_c = 1$

Sub-Problems 2: For each j, c,

$$\max_{0 \le \theta_{jc} \le 1} P(\theta_{jc}) \theta_{jc}^{N_{jc}} (1 - \theta_{jc})^{N_c - N_{jc}}$$

Derivation based on Factored Model

• This separation result can be derived from the general results about factored models (see later). Since the likelihood function and the prior can both be factorized into the π part and θ part, the general results lead to factorized posterior:

$$P(\pi, \theta | \mathcal{D}) = P(\pi | \mathcal{D}) P(\theta | \mathcal{D}). \tag{8}$$

• The model is also factorized with respect to θ_{jc} . Thus, we have

$$P(\pi, \theta | \mathcal{D}) = P(\pi | \mathcal{D}) \prod_{j=1}^{D} \prod_{c=1}^{C} P(\theta_{jc} | \mathcal{D}).$$

Now,

$$\max_{\pi,\theta} P(\pi,\theta|\mathcal{D}) = \max_{\pi} P(\pi|\mathcal{D}) \prod_{j=1}^{D} \prod_{c=1}^{C} \max_{\theta_{jc}} P(\theta_{jc}|\mathcal{D}).$$

• Also due to the factored model (see later) and the particular expression of the likelihood function, we have

$$P(\pi|\mathcal{D}) \propto P(\pi) \prod_{c=1}^{C} \pi_c^{N_c}$$

$$P(\theta_{jc}|\mathcal{D}) \propto P(\theta_{jc})\theta_{jc}^{N_{jc}}(1-\theta_{jc})^{N_c-N_{jc}}, \ \forall j, c$$

• We see that $\max P(\pi|\mathcal{D})$ leads to sub-problem 1 earlier; $\max P(\theta_{jc}|\mathcal{D})$ leads to sub-problems 2.

What Prior Distributions?

- There is much flexibility when the training data points are sufficient.
- Here is a general discussion with new notations.
- To simplify the notation, suppose the parameters are all collected into a single random vector Θ (no Π anymore). Suppose the random sample is X_1, \ldots, X_N (no Y anymore).
- Suppose the training data points are $\mathcal{D} = (x_1, x_2, \dots, x_N)$, where each x_i is a vector in general.
- We have

$$P(\theta|\mathcal{D}) \propto P(\mathcal{D}|\theta)P(\theta) = \prod_{i=1}^{N} P_{X|\Theta}(x_i|\theta)P(\theta).$$

Then,

$$\log P(\theta|\mathcal{D}) \propto \sum_{i=1}^{N} \log P_{X|\Theta}(x_i|\theta) + \log P(\theta).$$

The MAP estimate is

$$\underset{\theta}{\operatorname{argmax}} \left(\sum_{i=1}^{N} \log P_{X|\Theta}(x_i|\theta) + \log P(\theta) \right).$$

- The term $\sum_{i=1}^{N} \log P_{X|\Theta}(x_i|\theta)$ is roughly linear in N. As N is sufficiently large, it overwhelms the term $\log P(\theta)$. If so, the MAP estimate converges to the MLE.
- When there is enough data, we say the **data overwhelms the prior**.

Conjugate Prior and Beta-Binomial Model

- This part is a general discussion.
- For easy calculation, one often chooses a conjugate prior.
- When the prior is such that the prior and the posterior have the same form, we say the prior is a **conjugate prior** for the corresponding likelihood function.
- Suppose the random sample X_1, \ldots, X_N is a sequence of IID Bernoulli random variables with parameter θ (a scalar). Let $\mathcal{D} = (x_1, \ldots, x_N)$ be a realization (i.e., data).
- Then, the likelihood function is

$$P(\mathcal{D}|\theta) = \theta^{N_1} (1 - \theta)^{N_0},$$

where $N_1 = \sum_{i=1}^{N} \mathbf{1}(x_1 = 1)$ and $N_0 = N - N_1$.

• The log-likelihood function is

$$\log P(\mathcal{D}|\theta) = N_1 \log \theta + N_0 \log(1 - \theta).$$

The MLE is $\hat{\theta} \in \operatorname{argmax}_{\theta \in [0,1]} \log P(\mathcal{D}|\theta)$. This gives

$$\hat{\theta}_{MLE} = \frac{N_1}{N}.\tag{9}$$

• A conjugate prior has the following form for its pdf:

$$P(\theta) \propto \theta^{\gamma_1} (1 - \theta)^{\gamma_2}, \quad \theta \in [0, 1]. \tag{10}$$

• With that, the posterior is:

$$P(\theta|\mathcal{D}) \propto \theta^{\gamma_1} (1-\theta)^{\gamma_2} \theta^{N_1} (1-\theta)^{N_0} = \theta^{N_1+\gamma_1} (1-\theta)^{N_0+\gamma_2}.$$
(11)

Beta Distribution

• A beta distribution with parameters a and b is denoted by Beta(a, b). The pdf is

Beta
$$(\theta; a, b) = \frac{1}{B(a, b)} \theta^{a-1} (1 - \theta)^{b-1}, \ \theta \in [0, 1],$$

where a, b > 0 and B(a, b) is the **beta function** defined by

$$B(a,b) = \int_0^1 \theta^{a-1} (1-\theta)^{b-1} d\theta.$$

 \bullet B(a,b) is related to the gamma function by

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}.$$

Recall a gamma function is $\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$ for t > 0.

• For a random variable X with the distribution Beta(a, b):

$$E[X] = \frac{a}{a+b}, \text{ var}(X) = \frac{ab}{(a+b)^2(a+b+1)}.$$

• Mode: When a > 1 and b > 1, it has a single mode at

$$\frac{a-1}{a+b-2}$$
 (most important case)

When a < 1 and b < 1: two modes 0 and 1

When $a \leq 1$ and b > 1: 0

When a > 1 and $b \le 1$: 1

When a = b = 1: uniform distribution on [0, 1].

Figure 1: Examples of beta pdf (from Wikipedia)

• As we increase a and b to infinity, we see that the variance decreases to zero, and therefore, the pdf is more and more peaked.

Where Is the Binomial Part?

- We see that the likelihood function $P(\mathcal{D}|\theta) = \theta^{N_1} (1-\theta)^{N_0}$ depends on the data \mathcal{D} through N_1 only $(N_0 = N N_1)$ is a function of N_1).
- For the purpose of estimating θ , we only need to collect N_1 from the data.
- We will learn later that N_1 is a sufficient statistic (in fact, a realization of it) with respect to the estimation of θ .
- For our random sample X_1, \ldots, X_N , let $S(X_1, \ldots, X_N)$ be a statistic (i.e., a function of the random sample). Let $\mathcal{D} = (x_1, \ldots, x_N)$ be a realization of the random sample.
- According to one definition, $S(X_1, ..., X_N)$ is a **sufficient statistic** if $P(\theta|\mathcal{D}) = P(\theta|S(\mathcal{D}))$ for all θ and all \mathcal{D} .
- In our case, the sufficient statistic involved is

 $S(X_1,\ldots,X_N)=\sum_{i=1}^N \mathbf{1}(X_i=1)$, which has a binomial distribution:

$$P(S(X_1,\ldots,X_N)=N_1)=\binom{N}{N_1}\theta^{N_1}(1-\theta)^{N-N_1}=\binom{N}{N_1}\theta^{N_1}(1-\theta)^{N_0}.$$

• We see that, for any \mathcal{D} with N_1 successes, i.e., $S(\mathcal{D}) = N_1$, we have

$$P(\theta|\mathcal{D}) = P(\theta|S(\mathcal{D}))$$

$$\propto P(S(\mathcal{D})|\theta)P(\theta)$$

$$= \binom{N}{N_1} \theta^{N_1} (1-\theta)^{N_0} \frac{1}{B(a,b)} \theta^{a-1} (1-\theta)^{b-1}.$$

- Therefore, in the beta-binomial model, the posterior is proportional to the product of a beta prior (a pdf) and a binomial distribution (a pmf). Therefore, the posterior is another beta distribution.
- We can also explain the model name without mentioning the sufficient statistic. For any \mathcal{D} with N_1 successes, the likelihood function is:

$$P(\mathcal{D}|\theta) = \theta^{N_1} (1 - \theta)^{N_0}.$$

• Then,

$$P(\theta|\mathcal{D}) \propto P(\mathcal{D}|\theta)P(\theta)$$

$$= \theta^{N_1} (1 - \theta)^{N_0} \frac{1}{B(a,b)} \theta^{a-1} (1 - \theta)^{b-1}$$

$$\propto \binom{N}{N_1} \theta^{N_1} (1 - \theta)^{N_0} \frac{1}{B(a,b)} \theta^{a-1} (1 - \theta)^{b-1}.$$

MAP Estimate of θ

- The conjugate prior $P(\theta)$ in (10) is Beta(a, b) with $a = \gamma_1 + 1$ and $b = \gamma_2 + 1$.
- A common practice is to choose $\gamma_1 = \gamma_2 = 1$ so that the prior is Beta(2,2);
- With the conjugate prior, the posterior in (11) can be written as

$$P(\theta|\mathcal{D}) \propto \theta^{a-1} (1-\theta)^{b-1} \theta^{N_1} (1-\theta)^{N_0} = \theta^{N_1+a-1} (1-\theta)^{N_0+b-1}.$$
(12)

The posterior has the Beta distribution Beta $(N_1 + a, N_0 + b)$.

• The MAP estimate $\hat{\theta}_{MAP}$ is the mode of the posterior $P(\theta|\mathcal{D})$:

$$\hat{\theta}_{MAP} = \frac{N_1 + a - 1}{N + a + b - 2}.$$

• Also note that the maximization problem for the MAP estimate has

the same form as the one for the MLE that leads to (9). The MLE is a special case, which corresponds to the uniform prior (with a = b = 1).

$$\hat{\theta}_{MLE} = \frac{N_1}{N}.$$

- When the training data is such that $N_1 = 0$, we have $\hat{\theta}_{MLE} = 0$. This is the zero count problem.
- When $N_1 = N$, we have $\hat{\theta}_{MLE} = 1$. Earlier, we have identified an overfitting problem when using the MLE for classification, which is a problem of the same kind.
- Instead, suppose we use the MAP estimate and and suppose we choose the prior with a=b=2. Then $\hat{\theta}_{MAP}>0$ and we have solved the zero count problem. Furthermore, even when $N_1=N$, we have $\hat{\theta}_{MAP}<1$; we have solved the earlier overfitting problem.

Trading Off Prior and MLE

- Let $\alpha_0 = a + b$. One can view $\alpha_0 2$ as the equivalent sample size of the prior, based on the form of the posterior $P(\theta|\mathcal{D})$ in (12).
- Let the prior mean be denoted by $m_1 = \frac{a}{a+b} = \frac{a}{\alpha_0}$.
- Since the posterior is $Beta(N_1 + a, N_0 + b)$, its mean is

$$E[\theta|\mathcal{D}] = \frac{N_1 + a}{N_1 + a + N_0 + b} = \frac{N_1 + a}{N + \alpha_0}.$$

We see that the posterior mean is not the same as the posterior mode.

• Furthermore,

$$E[\theta|\mathcal{D}] = \frac{a}{N + \alpha_0} + \frac{N_1}{N + \alpha_0}$$

$$= \frac{\alpha_0}{N + \alpha_0} m_1 + \frac{N}{N + \alpha_0} \frac{N_1}{N}$$

$$= \lambda m_1 + (1 - \lambda)\hat{\theta}_{MLE},$$

where $\lambda = \frac{\alpha_0}{N + \alpha_0}$ is the weight of the prior. We see that as $N \to \infty$, the posterior mean approaches the MLE.

• Similarly, one can show that the posterior mode is a convex combination of the prior mode and the MLE and that it converges to the MLE.

Dirichlet-Multinomial Model

- This is a generalization from binary to K-outcome trials.
- In this model, the prior is a Dirichlet distribution, and the likelihood function is proportional to a multinomial distribution. The posterior is another Dirichlet distribution.
- Consider a sequence of N IID random variables, X_1, \ldots, X_N , with

$$P(X_i = k) = \theta_k, \ k \in \{1, \dots, K\},$$

where
$$\sum_{i=1}^{K} \theta_k = 1$$
. Let $\theta = (\theta_1, \dots, \theta_K)$.

- Let the sample data points be $\mathcal{D} = \{x_1, \dots, x_N\}$, where each $x_i \in \{1, \dots, K\}$.
- Let $N_k = \sum_{i=1}^N \mathbf{1}(x_i = k)$, which is the number of times outcome k shows up.

• The likelihood function is

$$P(\mathcal{D}|\theta) = \prod_{k=1}^{K} \theta_k^{N_k}.$$

• The MLE is

$$\hat{\theta}_{MLE} \in \operatorname*{argmax} \log P(\mathcal{D}|\theta).$$

• The maximization is taken over the set S_K known as the K-simplex:

$$S_K \triangleq \{(z_1, \dots, z_K) \in \mathbb{R}^K : \sum_{k=1}^K z_k = 1; z_k \ge 0, \forall k\}.$$

Each point in S_K can be a probability assignment.

• The maximum is

$$\hat{\theta}_{MLE,k} = \frac{N_k}{N}, \quad k = 1, \dots, K. \tag{13}$$

Dirichlet Distribution

- The **Dirichlet distribution** is a conjugate prior for the above $P(\mathcal{D}|\theta)$. It can be viewed as a generalization to the beta distribution.
- A Dirichlet distribution is a joint distribution of K random variables Y_1, \ldots, Y_K with each $Y_k \ge 0$ and $\sum_{k=1}^K Y_k = 1$. That is, it is a distribution on the K-simplex.
- A Dirichlet distribution has K parameters $\alpha = (\alpha_1, \dots, \alpha_K)$, where each $\alpha_k > 0$.
- A Dirichlet distribution is denoted by $Dir(\alpha)$. The pdf is

$$Dir(\theta; \alpha) = \frac{1}{B(\alpha)} \prod_{k=1}^{K} \theta_k^{\alpha_k - 1}, \ \theta \in S_K,$$

where $B(\alpha)$ is a generalization of the beta function to K dimension.

$$B(\alpha) = \frac{\prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma(\alpha_0)}, \qquad \alpha_0 \triangleq \sum_{k=1}^{K} \alpha_k.$$

• Suppose the random vector $Y = (Y_1, ..., Y_K)$ has the distribution $Dir(\alpha)$. Then, for each k,

$$E[Y_k] = \frac{\alpha_k}{\alpha_0}, \quad \operatorname{var}(Y_k) = \frac{\alpha_k(\alpha_0 - \alpha_k)}{\alpha_0^2(\alpha_0 + 1)}.$$

When $\alpha_k > 1$ for every k,

$$\operatorname{mode}(Y_k) = \frac{\alpha_k - 1}{\alpha_0 - K}, \ \forall k. \tag{14}$$

Figure 2: Examples of Dirichlet pdf (from Wikipedia)

- Dir(1, 1, 1) is the uniform distribution on the simplex.
- In practice, one often sets the Dirichlet parameters to be $\alpha_k = b/K$ for each k, where the constant b > K. In this case, for each k,

$$E[Y_k] = \frac{1}{K}, \quad \text{var}(Y_k) = \frac{K-1}{K^2(b+1)}.$$

The pdf is more peaked when b is larger.

• With a Dirichlet prior $Dir(\alpha)$, the posterior satisfies

$$P(\theta|\mathcal{D}) \propto P(\theta)P(\mathcal{D}|\theta) = \prod_{k=1}^K \theta_k^{\alpha_k - 1} \prod_{k=1}^K \theta_k^{N_k} = \prod_{k=1}^K \theta_k^{N_k + \alpha_k - 1}.$$

Thus, $P(\theta|\mathcal{D})$ again corresponds to a Dirichlet distribution, $Dir(N_1 + \alpha_1, \dots, N_K + \alpha_K)$.

• The MAP estimate is the mode of the posterior, which is given in

(14). Therefore, the MAP estimate is

$$\hat{\theta}_{MAP,k} = \frac{N_k + \alpha_k - 1}{N + \alpha_0 - K}, \quad k = 1, \dots, K.$$

- Also, the maximization problem has the same form as the one for the MLE that leads to (13).
- As for the multinomial part, the likelihood function is proportional to the multinomial distribution (when viewed as a function of θ).

$$P(\mathcal{D}|\theta) = \prod_{k=1}^K \theta_k^{N_k} \propto \frac{N!}{N_1! \dots N_k!} \prod_{k=1}^K \theta_k^{N_k}.$$

The latter is the probability of the event that, after N trials, there are exactly N_k trials that have the outcome k, for every k.

• N_1, \ldots, N_K are realization of a (jointly) sufficient statistic for the purpose of estimating θ . There is no need to record all the data points in \mathcal{D} . It is enough to collect N_1, \ldots, N_K from the data points.

Back to MAP Estimate for the Classification Problem

To find the MAP estimate, we have two sets of sub-problems: Sub-Problem 1:

$$\max_{\pi} P(\pi) \prod_{c=1}^{C} \pi_c^{N_c}$$
 s.t. $\pi \ge 0, \sum_{c=1}^{C} \pi_c = 1$

Sub-Problems 2: For each j, c,

$$\max_{0 \le \theta_{jc} \le 1} P(\theta_{jc}) \theta_{jc}^{N_{jc}} (1 - \theta_{jc})^{N_c - N_{jc}}$$

- We will use the conjugate priors.
- $P(\pi)$: Dirichlet distribution $Dir(\alpha)$, e.g., $\alpha = (2, 2, ..., 2)$.
- Then, $P(\pi|\mathcal{D})$ is a Dirichlet distribution, $\mathrm{Dir}(N_1+\alpha_1,\ldots,N_C+\alpha_C)$.

 When $\alpha_c>1$ for all $c,P(\pi|\mathcal{D})$ has a single mode, which corresponds to the MAP estimate for π .
- Let the mode be denoted by $\hat{\pi}_{MAP}$. Then, for each c,

$$\hat{\pi}_{MAP,c} = \frac{N_c + \alpha_c - 1}{N + \alpha_0 - C},\tag{15}$$

where
$$\alpha_0 = \sum_{c=1}^{C} \alpha_c$$
.

- $P(\theta_{jc})$ has a beta distribution Beta (β_0, β_1) , e.g., $\beta_0 = 2, \beta_1 = 2$.
- Then, $P(\theta_{jc}|\mathcal{D})$ is another Beta distribution, Beta $(N_{jc} + \beta_0, N_c N_{jc} + \beta_1)$.

• When $\beta_0 > 1$ and $\beta_1 > 1$, $P(\theta_{jc}|\mathcal{D})$ has a single mode, which corresponds to the MAP estimate, to be denoted by $\hat{\theta}_{MAP,jc}$. For each j and c, it is

$$\hat{\theta}_{MAP,jc} = \frac{N_{jc} + \beta_0 - 1}{N_c + \beta_0 + \beta_1 - 2}.$$
 (16)

Use the Model for Prediction (Classification)

- Given a new document feature vector x, our goal is to classify it.
- One possibility: We use the MAP estimate in (15) and (16), and make prediction based on

$$P(Y = c | X = x, \hat{\pi}_{MAP}, \hat{\theta}_{MAP}).$$

Whichever c that maximizes the above probability will be the assigned class for the document. This is known as the **plug-in** approximation.

Note that

$$\begin{split} &P(Y=c|X=x,\hat{\pi}_{MAP},\hat{\theta}_{MAP})\\ =&\frac{P(X=x,Y=c|\hat{\pi}_{MAP},\hat{\theta}_{MAP})}{P(X=x|\hat{\pi}_{MAP},\hat{\theta}_{MAP})}\\ =&\frac{P(X=x|Y=c,\hat{\pi}_{MAP},\hat{\theta}_{MAP})}{P(X=x|\hat{\pi}_{MAP},\hat{\theta}_{MAP})P(Y=c|\hat{\pi}_{MAP},\hat{\theta}_{MAP})}\\ =&\frac{P(X=x|Y=c,\hat{\pi}_{MAP},\hat{\theta}_{MAP})P(Y=c|\hat{\pi}_{MAP},\hat{\theta}_{MAP})}{P(X=x|\hat{\pi}_{MAP},\hat{\theta}_{MAP})}\\ =&\frac{\prod_{j=1}^{D}\hat{\theta}_{MAP,jc}^{x_{j}}(1-\hat{\theta}_{MAP,jc})^{1-x_{j}}\hat{\pi}_{MAP,c}}{P(X=x|\hat{\pi}_{MAP},\hat{\theta}_{MAP})}. \end{split}$$

To go directly from the first expression to the third, we can apply (the conditional version of) Bayes' formula.

 \bullet Since the denominator does not depend on c, we have

$$P(Y = c | X = x, \hat{\pi}_{MAP}, \hat{\theta}_{MAP})$$

$$\propto \hat{\pi}_{MAP,c} \prod_{j=1}^{D} \hat{\theta}_{MAP,jc}^{x_j} (1 - \hat{\theta}_{MAP,jc})^{1-x_j}.$$
(17)

• We only need to find a maximizer for the expression in (17). In fact, we will first take log and find a maximizer for log of the expression.

$$\underset{c}{\operatorname{argmax}} \left(\log \hat{\pi}_{MAP,c} + \sum_{j=1}^{D} \left(x_j \log \hat{\theta}_{MAP,jc} + (1 - x_j) \log(1 - \hat{\theta}_{MAP,jc}) \right) \right).$$

• The plug-in approach is fine. But, it does not make use all the information from the data \mathcal{D} . We next consider a different approach.

Classification via Posterior Predictive Distribution

• The class that a document with feature vector x belongs to is a random variable with the conditional distribution:

$$P(Y = c | X = x, \mathcal{D}) = \frac{P(Y = c | \mathcal{D})P(X = x | Y = c, \mathcal{D})}{P(X = x | \mathcal{D})}.$$

• Since $P(X = x | \mathcal{D})$ does not depend on c,

$$P(Y = c|X = x, \mathcal{D}) \propto P(Y = c|\mathcal{D})P(X = x|Y = c, \mathcal{D}). \tag{18}$$

• We will work on $P(Y = c | \mathcal{D})$ first. The following is a multiple

integral with variables π_1, \ldots, π_C over the simplex S_C .

$$P(Y = c|\mathcal{D}) = \int P(Y = c|\pi, \mathcal{D}) P(\pi|\mathcal{D}) d\pi$$
$$= \int P(Y = c|\pi) P(\pi|\mathcal{D}) d\pi$$
$$= \int \pi_c P(\pi|\mathcal{D}) d\pi = E[\Pi_c|\mathcal{D}].$$

We have used conditional independence of the sample, which leads to

(prove this)
$$P(Y = c|\pi, \mathcal{D}) = P(Y = c|\pi).$$
 (19)

Note that Y and the random sample that produces \mathcal{D} are not independent. But, conditional on $\Pi = \pi$, they are independent. (Θ) does not matter due to the factored form of the likelihood function.)

Proof of (19):

$$\begin{split} P(Y=c|\pi,\mathcal{D}) = & \frac{P(Y=c,\mathcal{D}|\pi)}{P(\mathcal{D}|\pi)} \\ = & \int \frac{P(Y=c,\mathcal{D}|\pi,\theta)P(\theta|\pi)}{P(\mathcal{D}|\pi)} d\theta \\ \text{(model Assumption 3)} = & \int \frac{P(Y=c|\pi,\theta)P(\mathcal{D}|\pi,\theta)P(\theta|\pi)}{P(\mathcal{D}|\pi)} d\theta \\ \text{(model Assumption 1)} = & \int \frac{P(Y=c|\pi)P(\mathcal{D}|\pi,\theta)P(\theta|\pi)}{P(\mathcal{D}|\pi)} d\theta \\ = & \frac{P(Y=c|\pi)}{P(\mathcal{D}|\pi)} \int P(\mathcal{D}|\pi,\theta)P(\theta|\pi) d\theta \\ = & \frac{P(Y=c|\pi)}{P(\mathcal{D}|\pi)} \int P(\mathcal{D},\theta|\pi) d\theta \\ = & \frac{P(Y=c|\pi)}{P(\mathcal{D}|\pi)} P(\mathcal{D}|\pi) = P(Y=c|\pi). \end{split}$$

• Recall that, with the conjugate prior, the posterior $P(\pi|\mathcal{D})$ is $Dir(N_1 + \alpha_1, \dots, N_C + \alpha_C)$. For such a Dirichlet distribution, the mean is

$$\bar{\pi}_c \triangleq E[\Pi_c | \mathcal{D}] = \frac{N_c + \alpha_c}{N + \alpha_0},$$

where $\alpha_0 = \sum_{c=1}^{C} \alpha_c$.

• To summarize, we have

$$P(Y = c|\mathcal{D}) = E[\Pi_c|\mathcal{D}] = \bar{\pi}_c. \tag{20}$$

• This is understandable. To compute P(Y=c), we have to do 'averaging' over the random parameter Π_c . Since we observed \mathcal{D} , the averaging uses the conditional probability $P(\cdot|\mathcal{D})$.

Compute $P(X = x | Y = c, \mathcal{D})$

• The integrals in the following are a short hand for a multiple integral.

$$P(X = x | Y = c, \mathcal{D})$$

$$= \int P(X = x | Y = c, \theta, \mathcal{D}) P(\theta | Y = c, \mathcal{D}) d\theta$$
(see later)
$$= \int P(X = x | Y = c, \theta) P(\theta | \mathcal{D}) d\theta$$
(Assumption 2 and (7))
$$= \int \prod_{j=1}^{D} P(X_j = x_j | Y = c, \theta_{jc}) P(\theta_{jc} | \mathcal{D}) d\theta_{jc}$$

$$= \prod_{j=1}^{D} \int P(X_j = x_j | Y = c, \theta_{jc}) P(\theta_{jc} | \mathcal{D}) d\theta_{jc}$$

• In the derivation, we used (prove this)

$$P(X = x | Y = c, \theta, \mathcal{D}) = P(X = x | Y = c, \theta).$$

The proof is similar to that of (19).

• We also used (prove this)

$$P(\theta|Y=c,\mathcal{D}) = P(\theta|\mathcal{D}).$$

- Recall $P(\theta_{jc}|\mathcal{D})$ is a beta distribution Beta $(N_{jc} + \beta_0, N_c N_{jc} + \beta_1)$.
- Consider each $\int P(X_j = x_j | Y = c, \theta_{jc}) P(\theta_{jc} | \mathcal{D}) d\theta_{jc}$.

When $x_i = 1$:

$$\int P(X_j = x_j | Y = c, \theta_{jc}) P(\theta_{jc} | \mathcal{D}) d\theta_{jc}$$

$$= \int \theta_{jc} P(\theta_{jc} | \mathcal{D}) d\theta_{jc}$$

$$= E[\Theta_{jc} | \mathcal{D}] = \frac{N_{jc} + \beta_0}{N_c + \beta_0 + \beta_1}.$$

When $x_i = 0$:

$$\int P(X_j = x_j | Y = c, \theta_{jc}) P(\theta_{jc} | \mathcal{D}) d\theta_{jc}$$

$$= \int (1 - \theta_{jc}) P(\theta_{jc} | \mathcal{D}) d\theta_{jc}$$

$$= 1 - E[\Theta_{jc} | \mathcal{D}] = \frac{N_c - N_{jc} + \beta_1}{N_c + \beta_0 + \beta_1}.$$

• For shorter notation, let $\bar{\theta}_{jc} \triangleq E[\Theta_{jc}|\mathcal{D}]$.

• The two results can be written together as

$$\bar{\theta}_{jc}^{\mathbf{1}(x_j=1)} (1 - \bar{\theta}_{jc})^{\mathbf{1}(x_j=0)},$$

which is the same as

$$\bar{\theta}_{jc}^{x_j}(1-\bar{\theta}_{jc})^{1-x_j}.$$

• We then have

$$P(X = x | Y = c, \mathcal{D}) = \prod_{j=1}^{D} \bar{\theta}_{jc}^{x_j} (1 - \bar{\theta}_{jc})^{1 - x_j}.$$
 (21)

• This is understandable because $P(X_j = 1 | Y = c, \Theta_{jc}) = \Theta_{jc}$. When computing $P(X_j = 1 | Y = c, \mathcal{D})$, we are given \mathcal{D} but not Θ_{jc} . we must average out Θ_{jc} over $P(\theta_{jc} | \mathcal{D})$.

Posterior Predictive Distribution - Conclusion

• Putting (20) and (21) into (18), the predictive probability satisfies the following:

$$P(Y = c | X = x, \mathcal{D}) \propto \bar{\pi}_c \prod_{j=1}^{D} \bar{\theta}_{jc}^{x_j} (1 - \bar{\theta}_{jc})^{1-x_j}.$$
 (22)

We see the right hand side has the same form as the expression in (17). The difference is that $\hat{\pi}_{MAP}$ and $\hat{\theta}_{MAP}$ are used in (17).

• To classify the document with feature vector x, we need to compute $\log \left(\bar{\pi}_c \prod_{j=1}^D \bar{\theta}_{jc}^{x_j} (1 - \bar{\theta}_{jc})^{1-x_j} \right)$ for each c. We then assign the document to a class \hat{c} that maximizes the expression. That is,

$$\hat{c} \in \underset{c}{\operatorname{argmax}} \left(\log \bar{\pi}_c + \sum_{j=1}^{D} \left(x_j \log \bar{\theta}_{jc} + (1 - x_j) \log(1 - \bar{\theta}_{jc}) \right) \right).$$

Proof: $P(X = x | Y = c, \theta, \mathcal{D}) = P(X = x | Y = c, \theta)$

• Intuition: X depends on the random variable Θ . Given $\Theta = \theta$, the training data provides no further information.

Proof:

$$P(X = x|Y = c, \theta, \mathcal{D})$$

$$= \frac{P(X = x, Y = c, \mathcal{D}|\theta)}{P(Y = c, \mathcal{D}|\theta)}$$

$$= \int \frac{P(X = x, Y = c, \mathcal{D}|\theta, \pi)}{P(Y = c, \mathcal{D}|\theta)} P(\pi|\theta) d\pi$$

$$(\text{model Assumption 3}) = \int \frac{P(X = x, Y = c|\theta, \pi)P(\mathcal{D}|\theta, \pi)}{P(Y = c, \mathcal{D}|\theta)} P(\pi|\theta) d\pi$$

$$= \int \frac{P(X = x|Y = c, \pi, \theta)P(Y = c|\pi, \theta)P(\mathcal{D}|\theta, \pi)}{P(\mathcal{D}, Y = c|\theta)} P(\pi|\theta) d\pi$$

$$(\text{model Assumption 2}) = \int \frac{P(X = x|Y = c, \theta)P(Y = c|\pi, \theta)P(\mathcal{D}|\theta, \pi)}{P(\mathcal{D}, Y = c|\theta)} P(\pi|\theta) d\pi$$

$$(\text{model Assumption 3}) = \int \frac{P(X = x|Y = c, \theta)P(Y = c, \mathcal{D}|\theta, \pi)}{P(\mathcal{D}, Y = c|\theta)} P(\pi|\theta) d\pi$$

$$= \frac{P(X = x|Y = c, \theta)}{P(\mathcal{D}, Y = c|\theta)} \int P(Y = c, \mathcal{D}|\theta, \pi)P(\pi|\theta) d\pi$$

$$= \frac{P(X = x|Y = c, \theta)}{P(\mathcal{D}, Y = c|\theta)} P(\mathcal{D}, Y = c|\theta)$$

$$= P(X = x|Y = c, \theta).$$

Proof: $P(\theta|Y=c,\mathcal{D}) = P(\theta|\mathcal{D})$

- To see $P(\theta|Y=c,\mathcal{D})=P(\theta|\mathcal{D})$ intuitively, Θ has to do with the X random variables and Π has to do with the Y random variable. Knowing Y=c does not tell anything about Θ .
- First, we show

$$P(Y = c|\pi, \theta, \mathcal{D}) = P(Y = c|\pi, \theta). \tag{23}$$

$$\begin{split} P(Y=c|\pi,\theta,\mathcal{D}) = & \frac{P(Y=c,\mathcal{D}|\pi,\theta)}{P(\mathcal{D}|\pi,\theta)} \\ \text{(model Assumption 3)} = & \frac{P(Y=c|\pi,\theta)P(\mathcal{D}|\pi,\theta)}{P(\mathcal{D}|\pi,\theta)} \\ = & P(Y=c|\pi,\theta). \end{split}$$

• We now complete the proof.

$$P(\theta|Y=c,\mathcal{D}) = \int P(\theta,\pi|Y=c,\mathcal{D})d\pi$$

$$(\text{Bayes'}) = \int \frac{P(Y=c|\theta,\pi,\mathcal{D})P(\theta,\pi|\mathcal{D})}{P(Y=c|\mathcal{D})}d\pi$$

$$(\text{by (23)}) = \int \frac{P(Y=c|\theta,\pi)P(\theta,\pi|\mathcal{D})}{P(Y=c|\mathcal{D})}d\pi$$

$$(\text{model Assumption 1}) = \int \frac{P(Y=c|\pi)P(\theta,\pi|\mathcal{D})}{P(Y=c|\mathcal{D})}d\pi$$

$$(\text{by (8)}) = \int \frac{P(Y=c|\pi)P(\pi|\mathcal{D})P(\theta|\mathcal{D})}{P(Y=c|\mathcal{D})}d\pi$$

$$(\text{by (19)}) = \int \frac{P(Y=c|\pi,\mathcal{D})P(\pi|\mathcal{D})P(\theta|\mathcal{D})}{P(Y=c|\mathcal{D})}d\pi$$

$$= \frac{P(\theta|\mathcal{D})}{P(Y=c|\mathcal{D})} \int P(Y=c|\pi,\mathcal{D})P(\pi|\mathcal{D})d\pi$$

$$= P(\theta|\mathcal{D}).$$

Factored Model

- Suppose there are two (random) parameters Π and Θ , which may be vector-valued.
- Assumptions:

A1: Suppose the likelihood function factorizes:

$$P(\mathcal{D}|\pi,\theta) = h(\mathcal{D},\pi)g(\mathcal{D},\theta).$$

Here, $P(\mathcal{D}|\pi, \theta)$ is conditional probability. h and g are just functions.

A2: Suppose the prior factorizes:

$$P_{\Pi,\Theta}(\pi,\theta) = P_{\Pi}(\pi)P_{\Theta}(\theta).$$

• We will show the posterior factorizes:

$$P(\pi, \theta | \mathcal{D}) = P(\pi | \mathcal{D}) P(\theta | \mathcal{D}). \tag{24}$$

Proof:

$$P(\pi, \theta | \mathcal{D}) = \frac{P(\mathcal{D} | \pi, \theta) P(\pi, \theta)}{P(\mathcal{D})}$$
$$= P(\pi)h(\mathcal{D}, \pi) \frac{P(\theta)g(\mathcal{D}, \theta)}{P(\mathcal{D})}.$$

Note that

$$P(\mathcal{D}) = \int_{\pi} \int_{\theta} P(\mathcal{D}|\pi, \theta) P(\pi, \theta) d\theta d\pi$$

$$= \int_{\pi} \int_{\theta} h(\mathcal{D}, \pi) g(\mathcal{D}, \theta) P(\pi) P(\theta) d\theta d\pi$$

$$= \left(\int P(\pi) h(\mathcal{D}, \pi) d\pi \right) \left(\int P(\theta) g(\mathcal{D}, \theta) d\theta \right). \tag{25}$$

Then,

$$P(\pi, \theta | \mathcal{D}) = \frac{P(\pi)h(\mathcal{D}, \pi)}{\int P(\pi)h(\mathcal{D}, \pi)d\pi} \frac{P(\theta)g(\mathcal{D}, \theta)}{\int P(\theta)g(\mathcal{D}, \theta)d\theta}.$$

We then have

$$P(\pi|\mathcal{D}) = \int P(\pi, \theta|\mathcal{D}) d\theta$$

$$= \frac{P(\pi)h(\mathcal{D}, \pi)}{\int P(\pi)h(\mathcal{D}, \pi) d\pi}.$$
(26)

Similarly,

$$P(\theta|\mathcal{D}) = \frac{P(\theta)g(\mathcal{D}, \theta)}{\int P(\theta)g(\mathcal{D}, \theta)d\theta}.$$
 (27)

We then we get the factorization in (24).

Consequences of Factored Models

• For an MAP estimate, we need to find

$$\operatorname*{argmax}_{\pi,\theta} P(\pi,\theta|\mathcal{D}).$$

The factorization of $P(\pi, \theta | \mathcal{D})$ leads to two sub-problems:

$$\underset{\pi}{\operatorname{argmax}} P(\pi|\mathcal{D}), \qquad \underset{\theta}{\operatorname{argmax}} P(\theta|\mathcal{D}).$$

• Furthermore, since

$$P(\theta|\mathcal{D}) \propto P(\theta)g(\mathcal{D},\theta),$$

we have

$$\underset{\theta}{\operatorname{argmax}} P(\theta|\mathcal{D}) = \underset{\theta}{\operatorname{argmax}} P(\theta)g(\mathcal{D}, \theta).$$

Similarly,

$$\operatorname*{argmax}_{\pi} P(\pi | \mathcal{D}) = \operatorname*{argmax}_{\pi} P(\pi) h(\mathcal{D}, \pi).$$

Sufficient Statistic

• In (3), the data $\{(x_1, y_1), \dots, (x_N, y_N)\}$ shows up in the form of N_c and N_{jc} for different j and c.

When consider the random sample $\{(X_1, Y_1), \ldots, (X_N, Y_N)\}$, the corresponding statistics N_c and N_{jc} , for all j and c, are jointly sufficient statistics.

General discussion:

• Let $X = (X_1, X_2, \dots, X_n)$ be a random sample. Suppose the common distribution P_{X_i} depends on the parameter θ (in general, a vector).

Let
$$x = (x_1, ..., x_n)$$
.

Important Note: X and x are defined differently from before.

• A **statistic** is a function T = r(X) of the sample. Examples:

- the sample mean: $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$
- $-T_1 = \max\{X_1, \dots, X_n\}$
- Suppose we wish to estimate the unknown parameter θ based on the sample.

Informally, a statistic T=r(X) is called a sufficient statistic if one can estimate θ based on T just as well as based on the entire sample. Formally,

Definition 1: A statistic T = r(X) is called a **sufficient statistic** for θ if the conditional distribution of X given T = t does not depend on θ .

Why Definition 1?

- For notational simplicity, consider the discrete case.
- Suppose every time the random sample X takes the value x, one is given r(x) instead of x.
- Since T is a sufficient statistic, the conditional probability P(X=x|T=t) does not depend on θ and it can be computed. To see that, we have

$$P(X = x | T = t) = \frac{P(X = x, T = t)}{P(T = t)}.$$

The above is equal to 0 if $t \neq r(x)$. We only need to consider the case where t = r(x). Then,

$$P(X = x | T = t) = \frac{P(X = x, r(X) = r(x))}{P(r(X) = t)} = \frac{P(X = x)}{P(X \in r^{-1}(t))}.$$

• Thus, for each t, one can use the probability model for each X_i to compute the conditional probability P(X=x|T=t) for $x \in r^{-1}(t)$.

If this is done analytically, θ should cancel out and the conditional probability doesn't have an unknown parameter. If it is done numerically, one can set θ to be any allowed value.

• Then, when given t = r(x), one can draw a random sample $Y = (Y_1, \ldots, Y_n)$ from the conditional distribution P(X = x | T = t). In other words,

$$P(Y = x | T = t) = P(X = x | T = t).$$

Then, we must have P(Y = x) = P(X = x). That is, Y has the

same distribution as the random sample X. To see this:

$$P(Y = x) = P(Y = x, r(X) = r(x))$$

= $P(Y = x | T = t)P(T = t)$
= $P(X = x | T = t)P(T = t)$
= $P(X = x, r(X) = r(x))$
= $P(X = x)$.

- Thus, for any estimator of θ using the sample X, say $\hat{\theta}(X)$, one has the estimator $\hat{\theta}(Y)$. The two estimators have the same statistical properties, i.e., they have the same distribution.
- We have shown that knowing r(X) and knowing X_1, \ldots, X_n are really the same for the purpose of estimating θ .

How to check a statistic is sufficient?

• The following theorem can be used to check if a statistic is sufficient. **Factorization Theorem:** Let $f(x|\theta)$ be the joint pdf or pmf. A statistic T = r(X) is sufficient if and only if there are non-negative functions h and g such that

$$f(x|\theta) = h(x)g(r(x), \theta).$$

Note that h does not depend on θ ; g depends on the sample $X = (X_1, \ldots, X_n)$ only through the statistics r(X). h may be a constant.

• Example: Each X_i is uniformly distributed on $[0, \theta]$, where θ is unknown. The joint density is

$$f(x|\theta) = \theta^{-n}, x_i \in [0, \theta], \ \forall i,$$

and it is zero elsewhere. We only need to consider the region where

 $x_i \ge 0$ for all i. On that region, the density function can be written as:

$$f(x|\theta) = \theta^{-n} \mathbf{1}(x_i \le \theta, \forall i) = \theta^{-n} \mathbf{1}(\max\{x_1, \dots, x_n\} \le \theta).$$

By the factorization theorem, $T = \max\{X_1, \dots, X_n\}$ is a sufficient statistic.

• Since the term h(x) does not depend on θ , we have

$$\underset{\theta}{\operatorname{argmax}} f(x|\theta) = \underset{\theta}{\operatorname{argmax}} g(r(x), \theta).$$

- For MLE, it is enough to keep r(x).
- For two sets of data x and x' with r(x) = r(x'), the two sets of MLE are the same under x or x'.

Jointly Sufficient Statistic

• Consider k statistics: $T_i = r_i(X)$, for i = 1, ..., k. The statistics $T_1, ..., T_k$ are **jointly sufficient** if for any $t_1, ..., t_k$, the conditional distribution of X given $T_1 = t_1, ..., T_k = t_k$ does not depend on θ .

Theorem: Let X_1, \ldots, X_n be a random sample with joint pdf or pmf $f(x|\theta)$. The statistics $T_i = r_i(X)$, where $i = 1, \ldots, k$, are jointly sufficient if and only if there are non-negative functions h and g such that

$$f(x|\theta) = h(x)g(r_1(x), \dots, r_k(x); \theta).$$

• Example: Consider n IID Gaussian random variables with unknown mean μ and unknown variance σ^2 . The joint probability density

function is

$$f(x|\mu,\sigma) = \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\left(-\sum_{i=1}^n \frac{(x_i - \mu)^2}{2\sigma^2}\right)$$
$$= \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\left(\frac{-1}{2\sigma^2} \left(\sum_{i=1}^n x_i^2 - 2\mu \sum_{i=1}^n x_i + n\mu^2\right)\right).$$

Let

$$r_1(x) = \sum_{i=1}^n x_i$$

$$r_2(x) = \sum_{i=1}^{n} x_i^2.$$

We see that $T_1 = \sum_{i=1}^n X_i$ and $T_2 = \sum_{i=1}^n X_i^2$ are jointly sufficient statistics.

The sample mean and sample variance are also jointly sufficient statistics.

Bayesian Version of Sufficient Statistic

- The parameter is viewed as a random variable, denoted Θ .
- Let $f_{\Theta|X}(\theta|x)$ denote the conditional pdf or conditional pmf of Θ given X=x.

Let $f_{\Theta|T}(\theta|r(x))$ denote the conditional pdf or conditional pmf of Θ given T = r(X) = r(x).

Definition 2: A statistic T = r(X) is called a **sufficient statistic** if $f_{\Theta|X}(\theta|x) = f_{\Theta|T}(\theta|r(x))$ for any θ and x.

• For MAP estimate, it is enough to keep r(x).

If we have two data sets $x=(x_1,\ldots,x_n)$ and $x'=(x'_1,\ldots,x'_n)$ with r(x)=r(x'), then $f_{\Theta|X}(\theta|x)=f_{\Theta|X}(\theta|x')$. The MAP estimator will yield the same estimate for θ in the two cases.

Note

$$f_{\Theta|X}(\theta|x) = \frac{f(x|\theta)f_{\Theta}(\theta)}{f_X(x)},$$

where $f_{\Theta}(\theta)$ denotes the pdf or pmf of Θ , $f(x|\theta)$ is the likelihood function or joint pdf of X_1, \ldots, X_n conditional on $\Theta = \theta$, and $f_X(x)$ is the unconditioned joint pdf or pmf of X_1, \ldots, X_n . Similarly,

$$f_{\Theta|T}(\theta|r(x)) = \frac{f_{T|\Theta}(r(x)|\theta)f_{\Theta}(\theta)}{f_{T}(r(x))}.$$

• Then, $f_{\Theta|X}(\theta|x) = f_{\Theta|T}(\theta|r(x))$ implies

$$\frac{f(x|\theta)f_{\Theta}(\theta)}{f_X(x)} = \frac{f_{T|\Theta}(r(x)|\theta)f_{\Theta}(\theta)}{f_T(r(x))}.$$

Or,

$$f(x|\theta) = \frac{f_X(x)}{f_T(r(x))} f_{T|\Theta}(r(x)|\theta).$$

• By the factorization theorem, r(X) is a sufficient statistic according to the first definition earlier.

• Since the term $\frac{f_X(x)}{f_T(r(x))}$ does not depend on θ , we have

$$\underset{\theta}{\operatorname{argmax}} f(x|\theta) = \underset{\theta}{\operatorname{argmax}} f_{T|\Theta}(r(x)|\theta).$$

• For MLE, it is enough to keep r(x).