Q9: A Shadow Moves Across The Moon

In high-speed finance it is often necessary to compute the "moving average" of a series of n values. The moving average is computed from a smaller window of p<n values as shown below. Here given n = 6 values with a window of size p = 3, the computed moving average consisting of (n - p + 1) output values is shown in the second column.

Input	Output	Explanation
2.0		
1.4		
2.1	1.8	(2.0 + 1.4 + 2.1)/3 = 5.5/3 = 1.8333 truncated to 1.8
1.9	1.8	(1.4 + 2.1 + 1.9)/3 = 5.4/3 = 1.8 truncated to 1.8
1.8	1.9	(2.1 + 1.9 + 1.8)/3 = 5.8/3 = 1.93333 truncated to 1.9
0.7	1.4	(1.9 + 1.8 + 0.7)/3 = 4.4/3 = 1.4666 truncated to 1.4

Each input value is of the form u.v (where u and v are single digits in the range 0-9) and you will truncate the average to one digit of precision.

Input

The first line of input will be an integer on a line by itself representing the number of values, n. The second line of input will be an integer on a line by itself representing the size of the window, p. The next n lines of input will be floating point numbers of the form $u \cdot v$ where u and v are single digits in the range 0-9. You can be assured that 1 .

Output

Your output will be a list of (n - p + 1) values on individual lines of the form $u \cdot v$ where u and v are single digits in the range 0 - 9.

Sample Input and Output

Input	Output
- Input	
5	1.5
2	2.5
1.0	3.5
2.0	4.5
3.0	
4.0	
5.0	
4	2.5
3	2.8
1.3	
1.9	
4.5	
2.2	
5	6.3
3	4.7
9.0	3.8
7.4	
2.6	
4.3	
4.5	