Chapitre

Généralités sur les fonctions

9

- Exemple 9.1 discussion basée sur https://student.desmos.com/join/wkzwdt?lang=fr code: WKZWDT
 - R

Page Wikipedia sur l'histoire du concept de fonction.

9.1 Définition

Un couple de 2 nombres x et y se note (x, y) (parenthèses et une virgule pour séparer ses deux composants).

Le 1er nombre x s'appelle l'abscisse. Le 2nd y s'appelle l'ordonnée.

Définition 9.1 — fonction identifiée à son graphe. Une fonction f est un ensemble de couples (x,y), tel qu'il n'y ait pas 2 couples ayant la même abscisse mais des ordonnées différentes.

Pour un couple (x, y) de la fonction, on dit :

- « ordonnée y est l'image de l'abscisse x »
- « l'abscisse x est un antécédent de l'ordonnée y ».

Notation 1 « $f: x \mapsto y$ » lire « f associe à la valeur x l'ordonnée y » Notation 2 « y = f(x) » lire « y égal à f de x », notation due à Euler vers 1750

¹ Utiliser le site https://mathix.org/fonction/ pour illustrer les différentes représentations de fonctions

9.1.1 Par un tableau de valeurs

On peut représenter l'ensemble des couples (x, y) d'une fonction par un tableau de valeurs en ligne ou en colonne.

x	12	17	-5	-1	9
f(x)	-1	9	18	-5	-1

Table 9.1 – L'image de -5 par f est 18 : f(-5) = 18

Questionnaire http://bref.jeduque.net/tr5zuo

9.1.2 Par une représentation graphique

La représentation graphique d'une fonction f est l'ensemble des points du plan M(x;y) dont le couple de coordonnées vérifient y=f(x) (l'ordonnée de M est l'image de l'abscisse de M par f).

Figure 9.1 – La représentation graphique d'une fonction ne peut pas avoir deux points ayant même abscisse et des ordonnées différentes.

R Lecture d'images, antécédents et mélanges.

9.1.3 Expressions algébriques de fonctions

Certaines fonctions, se présentent comme un programme de calcul qui permet d'obtenir la valeur de l'ordonnée y lorsque l'on connait la valeur de l'abscisse x. Souvent il s'agit d'une expression algébrique de la variable x.

Exemple 9.2 Soit f la fonction définie par l'expression :

$$f: x \mapsto x^2$$
 $f(x) = x^2$ $f: 3 \mapsto 3^2 = 9$ l'image de 3 par f est 9 $f: -4 \mapsto (-4)^2 = 16$ l'image de -4 par f est 16

■ Exemple 9.3 Soit la fonction g définie par $g(x) = x^2 - 3x + 2$. L'image de -1 vaut

$$g(-1) = (-1)^2 - 3 \times (-1) + 2 = 6$$

9.2 Exercices : notion de relation et de fonction

Définition naive Une relation est une règle d'association entre nombres donnés en entrée, et nombres en sortie. On peut utiliser la lettre x pour désigner une valeur donnée en entrée, et y pour la sortie. Souvent une relation est donnée par une équation qui associe exactement deux variables.

■ Exemple 9.5

Compléter le tableau de valeurs pour la relation y = 7x - 1.

x	y
0	-1
1	6
2	13
3	20

Pour trouver la valeur de y on multiplie x par 7 puis on soustrait 1 au résultat.

Exercice 1 Complétez les tableaux de valeurs associés à chaque relation.

3		
y =	$(3x)^2$	brace
x	y	
0		
1		
2		
3		

y = 1	x-5
x	y
-2	
-1	
0	
1	

y = 2	$x^2 - 3$
x	y
0	
4	
-6	
9	
<i>u</i> – 9	$0x \perp 1$

g-2	1.0 I
x	y
-3	
-1	
7	
100	

Exercice 2

1) Cette relation <u>utili</u>se plusieurs étapes, peux-tu retrouv<u>er la valeur finale en sortie?</u>

2) Cette relation utilise plusieurs étapes, peux-tu retrouver la valeur donnée en entrée?

Exercice 3 Pour chaque relation, complète les tableaux de valeurs avec les entrées et les sorties manquantes.

1)
$$y = \frac{x}{2}$$
:

x	1	4		
y			4	-10
x	-2	-1		
y			4	-10

2) y = 2x - 3

Exercice 4

1) Pour la relation $y = \sqrt{x}$, lesquelles des valeurs suivantes ne peuvent pas être des valeurs de x:

-91 000 car 0,3

2) Pour la relation $y = x^2$, lesquelles des valeurs suivantes ne peuvent pas être des valeurs de y:

0 1 -11,5

Exercice 5 Pour chaque tableau de valeurs, écrire une relation entre l'entrée x et la sortie y.

x (entrée)	y (sortie)
2	10
5	25
3	15
6	30
-10	-50

x (entrée)	y (sortie)
1	-2
5	2
12	9
0	_3

x (entrée)	y (sortie)
1	-2
5	2
12	9
0	-3
10	7

x (entrée)	y (sortie)
4	6
10	12
7	9
-5	-3
5	7

x (entrée)	y (sortie)
2	4
5	25
3	9
6	36
-10	100

x (entrée)	y (sortie)
1	4
10	31
5	16
7	22

x (entrée)	y (sortie)
1	4
10	31
5	16
7	22
-2	- 5

x (entrée)	y (sortie)
2	7
5	19
3	11
6	23
10	39

• Une relation est un ensemble de couples (x; y).

On peut donner une liste exhaustive de couples, ou bien donner une équation vérifiée par x et y.

v

On peut représenter une relation par une figure dans le plan.

■ Exemple 9.6 Les points de coordonnées (2;3), (2;0), (2;-2) et (2;-5) vérifient l'équation x=2.

Si on trace tous les points dont les coordonnées vérifient x=2, on obtient une droite (verticale, coupe l'axe des abscisses, parallèle à l'axe des ordonnées)

L'équation « x=a » est une relation représentée par les points du plan dont l'abscisse est a. Ces points forment une droite verticale qui coupe l'axe des abscisses.

L'équation « y=x » est une relation représentée par les points du plan dont l'abscisse est égale à l'ordonnée.

Exercice 6 Représentez graphiquement les points du plan de coordonnées vérifiant l'équation donnée.

Exercice 7 Donner l'équation associée à chacune des droites représentées.

■ Exemple 9.8

Cette relation n'est pas une fonction.

Il y a deux couples (6; 10) et (6; -4) qui ont une même abscisse mais deux ordonnées différentes!

x	y
6	10
-7	3
0	4
6	-4
4	5

Cette relation f est une fonction.

Il y n'y a deux couples ayant même abscisse mais des ordonnées différentes.

On dit que 0 a pour image -3 par f.

On écrit : $f \colon 0 \mapsto -3$

ou encore f(0) = -3

x	y
-1	0
0	-3
2	-3
3	0
4	5

Exercice 8

Compléter à l'aide du tableau de valeur de la fonction f ci-dessous :

x	19	-15	8	-3	9	0
f(x)	-15	-2	9	19	8	-3

L'image de
$$-15$$
 est $\dots f(\dots) = \dots$

L'image de est
$$f(8) = \dots$$

L'image de est
$$f(\ldots) = 8$$

L'image de est
$$f: 9 \mapsto$$

L'image de est 19
$$f: \ldots \mapsto \ldots$$

■ Exemple 9.9

La représentation cicontre d'une relation n'est pas celle d'une fonction.

On a des points qui ont la même abscisse et deux ordonnées différentes!

La représentation cicontre d'une relation est celle d'une fonction.

Il n'y a pas deux points qui ont même abscisse et ordonnées différentes.

Exercice 9

Compléter à l'aide la représentation graphique de la fonction f ci-dessous.

L'image de 2 est $\dots f(\dots) =$

L'image de 3 est $\dots f(\dots) =$

L'image de est 3 $f(\ldots) =$

L'image de -2 est $\dots f(\dots) =$

L'image de 0 estf(.....)

L'image de -3 est $\dots f(\dots) =$

L'image de 4 est $\dots f(\dots) =$

L'image de -4 est $\dots f(\dots) =$

Exercice 10 On a représenté ci-dessous l'évolution de la température sur une journée.

- 1) Quelle est la température la plus froide de la journée?
- 2) Quelle est la température la plus chaude de la journée?.....
- 4) Quelle grandeur est représentée par l'axe des abscisses? axe des orgonnées?
- 5) Corriger l'affirmation : « Le graphique représente l'heure en fonction de la température ».
- 6) Par lecture graphique déterminer l'image de 4 et compléter : $f \colon 4 \mapsto \ldots$; $f(4) = \ldots$
- 7) Par lecture graphique déterminer les antécédents de 4 et compléter : $f\colon\ldots\mapsto\ldots;\,f\colon\ldots\mapsto\ldots$
- 8) Avec la précision permise par le graphique compléter les pointillés :

$$f \colon 0 \mapsto \dots \qquad f \colon 0 \mapsto \dots \qquad f \colon \dots \mapsto 0 \qquad f \colon \dots \mapsto 0.$$

$$f(\ldots) = 0 \qquad f(0) = \ldots$$

$$f(4) = \dots \qquad f(\dots) = 4$$

$$f(7) = \dots \qquad f(\dots) = 7$$

$$f(-5) = \dots \qquad f(\dots) = -5$$

$$f(10) = f(...)$$
 $f(5,5) = f(...)$ (compléter avec un nombre différent)

Donner un nombre qui n'admet pas d'image.

Donner un nombre qui n'admet pas d'antécédents.

Donner un nombre qui admet un unique antécédent.

Exercice 11

Soit la fonction f représentée par le tableau de valeur suivant :

x	0	- 1	4	5	2	- 2	8	3	- 5	1
f(x)	- 4	0	0	8	6	- 6	5	14	6	- 6

Pour chaque question vous répondrez en précisant l'égalité f(...) = ... correspondante.

- 2) Quelle est l'image de 4?......Donner un antécédent de 14.....
- 3) Y a-t-il un nombre du tableau égal à son image?.....
- 4) Citer des valeurs de x telles que f(x) = -6......
- 5) Citer un nombre strictement négatif ayant un antécédent strictement positif......
- 6) Citer deux nombres opposés dont les images sont des nombres opposés......
- 7) Trouver deux nombres a et b image l'un de l'autre par f......

■ Exemple 9.10 — fonction définie par un programme de calcul ou une expression.

- 1) On donne le programme de calcul suivant qui correspond à la fonction g :
 - Choisir un nombre
 - Multiplier ce nombre par 5

L'image de 3 par la fonction g est

- Ajouter 9 au résultat obtenu
- 2) Soit f la fonction définie par l'expression algébrique f(x) = 5x+9

L'image de 2 est

- 3) Soit la fonction i définie par le diagramme
 - a) Exprimer l'image i(x) en fonction de x sous forme développée réduite $i(x) = \dots$
 - b) L'image de -3 est $i(\ldots) = \ldots$

Exercice 12

- 1) On considère la fonction f définie par $f: x \mapsto -11x^2 3x$. Calculer $f(-1) = \dots$
- 2) On considère la fonction q définie par $q: x \mapsto 4x^2 + 3x + 7$. Calculer $q(3) = \dots$
- 3) On considère la fonction h définie par $h: x \mapsto (-2x+3)^2$. Calculer $h(1) = \dots$
- 4) On considère la fonction i définie par $i: x \mapsto 5x^2 9x 11$. Calculer $i(-2) = \dots$
- 5) On considère la fonction j définie par $j: x \mapsto \frac{7x+7}{3x+8}$. Calculer $j(-12) = \dots$

Exercice 13

La distance de freinage d'un véhicule est la distance que le véhicule parcourt entre le moment où le conducteur commence à freiner et le moment où le véhicule est à l'arrêt. La distance de freinage f (mesurée en m) est fonction de sa vitesse v (en km/h). Sur route sèche, elle est donnée par la formule $f(v) = \frac{v^2}{155}$.

1) Complète la seconde ligne de ce tableau à l'aide du menu tableau de la calculette:

v en km/h	20	40	60	80	100	120	140	160
f(v)								

2) Par temps de pluie, la distance de freinage est doublée.

Quelle est la distance de freinage par temps de pluie pour un véhicule roulant à 90km/h?

Exercice 14 Compléter les tableaux de valeurs des fonctions f, g, h et i définies par :

$$f: x \mapsto 4x^2 - 2$$

$$g: x \mapsto 2x^2 + 8$$

$$h: x \mapsto 9x$$

$$i: x \mapsto \frac{8}{-4x+1}$$

x	-2	0	2
f(x)			

1	x	1	2	5
1	g(x)			

x	-3	6	9
h(x)			

$$\begin{array}{c|cccc}
 & -4x \\
\hline
x & -2 & 0 & 2 \\
\hline
i(x) & & & \\
\end{array}$$

Exercice 15 Associer les fonctions définies par les expressions suivantes avec le bon tableau de valeur, et compléter les. Lesquels sont des tableaux de proportionnalités?

$$A(x) = \frac{x+6}{2}$$
$$B(x) = x^2 + 6$$

$$C(x) = 2(x+3)$$
$$D(x) = \frac{x}{2} + 6$$

$$E(x) = 3x^2$$

$$F(x) = (3x)^2$$

$$G(x) = (x+6)^2$$

$$H(x) = x^2 + 6^2$$

x	-8	0	1	2
y	100			

x	1	2	3	4
y			81	100

x	0	1	2	3	4
y			4		5

x	-5	1	2	3	4
y			10	12	14

Exercice 16 Ci-dessous les représentations graphiques des fonctions f, g et h.

- 1) Déterminer par lecture graphique les images de -3, de 2 et de 4 par la fonction f.
- 2) Déterminer par lecture graphique les images de -3, de 0 et de 3 par la fonction g.
- 3) Déterminer par lecture graphique les images de -2, de 0 et de 4 par la fonction h.

Exercice 17 Ci-dessous les représentations graphiques des fonctions f, g et h.

1) Déterminer par lecture graphique le (ou les) antécédent(s) de -1 par f.

- 2) Déterminer par lecture graphique le (ou les) antécédent(s) de 1 par g.
- 3) Déterminer par lecture graphique le (ou les) antécédent(s) de 3 par h.

Exercice 18 Représentez les fonctions données par leur expression et leur domaine

Problème 1

Des enseignants souhaitent créer un potager pédagogique dans la cour de leur école, en voici un plan ci-après (qui n'est pas à l'échelle).

Le potager AEFG doit respecter les contraintes suivantes :

- être de forme rectangulaire,
- avoir une aire de 90 m²,
- être le long des murs d'enceinte [DA] et [AB],
- être bordé par un grillage le long des deux autres côtés,
- disposer d'une porte de 1 m de large.

On souhaite de plus que le coté [AG] mesure entre 5 m et 20 m. L'ouverture pour la porte correspond au segment [GP].

Le potager est donc le rectangle AEFG où E est un point du segment [AB] et G est un point du segment [AD] avec $5 \text{ m} \leq AG \leq 20 \text{ m}$.

Pour des raisons de coût, les enseignants cherchent à déterminer les dimensions du potager afin que la longueur totale du grillage soit la plus petite possible.

- 1) a) Vérifier que si $AG = 5 \,\mathrm{m}$, alors la longueur de grillage est de $22 \,\mathrm{m}$.
 - b) On suppose maintenant que $AG = 7,50\,\mathrm{m}$. Calculer la longueur du grillage nécessaire.
- 2) Dans la suite, on note x la longueur de [AG], exprimée en mètre, et on appelle L la fonction qui à tout nombre positif x compris entre 5 et 20, associe L(x) la longueur du grillage, exprimée en mètre, nécessaire pour clôturer le potager.

Justifier que $L(x) = x + \frac{90}{x} - 1$.

3) On souhaite compléter le tableau de valeurs suivant à l'aide d'un tableur.

	Α	В	С	D	Е	F	G	Н	- 1	J	K
1	x	5	6	8	10	12	14	16	18	20	22
2	L(x)	22									

- a) Quelle formule a été écrite dans la cellule B2 avant de l'étendre jusqu'à la cellule J2?
- b) Compléter le tableau à l'aide de votre calculatrice.
- c) Quelle semble être la valeur de AG pour laquelle la longueur du grillage est minimale?
- 4) Ci dessous la représentation graphique de la fonction L. Déterminer graphiquement :

- a) la longueur de grillage lorsque $AB = 18 \,\mathrm{m}$
- b) les valeurs possibles de AG lorsque la longueur de grillage est de $20\,\mathrm{m}$.
- c) la valeur de AG pour que la longueur de grillage soit minimale

Exercice 19 1) Quelle est l'image de 3? de 0?

Réponse : $f(\underline{\hspace{0.2cm}}) = \underline{\hspace{0.2cm}}$ et $f(\underline{\hspace{0.2cm}}) = \underline{\hspace{0.2cm}}$

2) Donner un antécédent de -2? un antécédent de 0?

Réponse: $f(\underline{\hspace{0.3cm}}) = \underline{\hspace{0.3cm}} \text{ et } f(\underline{\hspace{0.3cm}}) = \underline{\hspace{0.3cm}}$

3) Citer deux nombres ayant la même image.

Réponses: $f(\underline{\hspace{0.3cm}}) = \underline{\hspace{0.3cm}} \text{ et } f(\underline{\hspace{0.3cm}}) = \underline{\hspace{0.3cm}}$

4) Citer deux nombres égaux à leur image.

Réponses : $f(\underline{\hspace{0.2cm}}) = \underline{\hspace{0.2cm}}; \quad f(\underline{\hspace{0.2cm}}) = \underline{\hspace{0.2cm}};$

5) Citer des antécédents de 5

Réponses : $f(\underline{\hspace{0.2cm}}) = \underline{\hspace{0.2cm}}$ et $f(\underline{\hspace{0.2cm}}) = \underline{\hspace{0.2cm}}$

7) Citer un nombre strictement négatif ayant une image strictement positive

Réponses : $f(\underline{\hspace{1cm}}) = \underline{\hspace{1cm}}$

solution de l'exercice 18. Représentez les fonctions données par leur expression et leur domaine

