

CREDIT CARD APPROVAL ANALYSIS

Diana Vega

TABLE OF CONTENTS

- 1. Industry background
- 2. Business risks
- 3. Objective
- 4. Analysis path
- 5. Data exploration & preparation
- 6. Models
- 7. Key Drivers Best Model
- 8. Model risks
- 9. Recommendations
- 10. Conclusion

INDUSTRY BACKGROUND | CREDIT CARD BUSINESS

2.8bn

Credit cards in the world as of August 2021

28%

Use credit cards to make payments in US

714

Average Credit Score in US

196mn

Credit card users in US as of December 2021

BUSINESS RISKS

Increase in credit risk

Increase in default provisions

Manual & Time consuming

Inaccurate

OBJECTIVE

Develop an accurate analytical tool to derive the drivers for an efficient credit card approval and therefore, increase earnings by not missing out on good candidates and decrease the financial loss by avoiding increase in credit risk and subsequent default provisions due to approval of a bad candidate.

ANALYSIS PATH

DATA EXPLORATION & PREPARATION 🕖

DATASET SUMMARY

Source: Kaggle

Variables: 21

• Records: 25,128

Target: Status

• No missing or NA values

CLASS IMBALANCE

- Imbalance: >85%
 - Owned_Mobile_Phone
 - Owned_Email
 - Housing_Type
 - Status: 99.8% data of

1- approved

SKEWNESS & OUTLIERS

- Total_Children
- Total_Income
- Years_of_Working
- Total_Bad_Debt

MODELS

Model	Accuracy	Recall	Precision	F1-Score	AUC
Random Forest	0.99768	0.99943	0.99592	0.99767	0.99958
Grid Search Random Forest	0.99655	0.99898	0.99411	0.99654	0.9996
Gradient Boosting Classifier	0.98393	0.98361	0.98406	0.98383	0.99853
Neural Network: Multi-Layer Perceptron	0.49711	1	0.49711	0.6641	0.5
Logistic Regression	0.82803	0.77575	0.86441	0.81769	0.89471

KEY DRIVERS BEST MODEL

Variable	Odd-Ratio	Chances for a person to be approved for a credit card
Total_Good_Debt	1.3497991	34.98%
Applicant_Gender_F	1.1818953	18.19%
Owned_Realty	1.1318568	13.19%
Education_Type_Secondary / secondary special	1.1243544	12.44%
Income_Type_Working	1.1234471	12.34%
Job_Title_Laborers	1.1157023	11.57%
Housing_Type_House / apartment	1.1120753	11.21%
Education_Type_Higher education	1.1029454	10.29%
Owned_Phone	1.1000779	10.01%
Total_Income	1.0000004	0.00%
Job_Title_IT staff	0.9791231	-2.09%
Applicant_Age	0.920845	-7.92%

MODEL'S RISKS

INCREMENT IN UNEMPLOYMENT RATE

Forecast Canada 2022: 5%

Job's loss may result in reduced capacity of payment.

INCREMENT IN INFLATION RATE

Forecast Canada 2022: 8%

Greater cost of life may result in reduced capacity of payment.

Income doesn't go up at the same rate of inflation.

INCREMENT IN INTEREST RATES

Mechanism to tackle inflation hence credits may become more expensive.

Capacity of payment may reduced.

RECOMMENDATIONS

FOCUS ON KEY DRIVER

Good debt, women, own realty.

MONTHLY MONITORING

Meet the validation and governance plan.

COLLECT MORE DATA

People who have been rejected for a credit card.

INCLUDE OTHER PARAMETERS

Solvency ratio, debt level, legal background issues.

CONCLUSION

This model might not fully resolve the business problem but it will hugely impact the process by bringing more efficiency and overall accuracy in the assessment of potential clients profile for a credit card approval; especially because the process will not be manual anymore but more automated, and also its performance is good enough in classifying if a customer is "good" or "bad".

THANK YOU

Q & A

APPENDIX - DATA DICTIONARY

Feature name	Description		
Applicant_ID	Client ID		
Applicant_Gender	Gender Male – Female		
Owned_Car	The client own a car 0-1		
Owned_Realty	The client own a property 0 -1		
Total_Children	Number of children		
Total_Income	Annual income		
Income_Type	Income category		
Education_Type	Education level		
Family_Status	Marital status		
Housing_Type	Way of living		
Owned_Mobile_Phone	The client own a mobile phone 0 -1		

Feature name	Description		
Owned_Work_Phone	The client has work phone 0 -1		
Owned_Phone	The client has phone $0-1$		
Owned_Email	The client has email $0-1$		
Job_Title	Occupation type		
Total_Family_Members	Family size		
Applicant_Age	Age		
Years_of_Working	Years of working		
Total_Bad_Debt	Score of bad debt		
Total_Good_Debt	Score of good debt		
Status	Status of the credit card approval		
	Target: 0: No – 1:Yes		

APPENDIX - SKEWNESS & OUTLIERS

- df.skew(axis=0)
- /usr/local/lib/python3.7/dist-packages/ipykernel_la """Entry point for launching an IPython kernel.

	2 ,
Applicant_ID	0.055136
Owned_Car	0.330947
Owned_Realty	-0.651824
Total_Children	1.477275
Total_Income	2.964038
Owned_Mobile_Phone	0.000000
Owned_Work_Phone	1.014855
Owned_Phone	0.911041
Owned_Email	2.654207
Total_Family_Member	s 0.784489
Applicant_Age	0.271454
Years_of_Working	1.724235
Total_Bad_Debt	12.432799
Total_Good_Debt	0.738291
Status	-14.307295
dtype: float64	

APPENDIX - SKEWNESS & OUTLIERS

#Skewness improvement

df.skew(axis=0)

/usr/local/lib/python3.7/dist-packages/ This is separate from the ipykernel p Owned Car 0.337474 Owned_Realty -0.623819 Total Children 1.092711 Total Income 0.604917 Owned_Work_Phone 1.000345 Owned Phone 0.933422 Applicant Age 0.327120 Years of Working 0.932117 Total Good Debt 0.752681 Status -14.299688

dtype: float64

APPENDIX - CLASS IMBALANCE

APPENDIX - SMOTE

```
[ ] #SMOTE
    sm = SMOTE(random_state=42)
    X_sm, y_sm = sm.fit_resample(X, y)
    print(f'''Shape of X before SMOTE: {X.shape}
    Shape of X after SMOTE: {X_sm.shape}''')
    print('\nBalance of positive and negative classes (%):')
    y_sm.value_counts(normalize=True) * 100
    Shape of X before SMOTE: (22197, 50)
    Shape of X after SMOTE: (44180, 50)
    Balance of positive and negative classes (%):
         50.0
         50.0
    Name: Status, dtype: float64
   counter = Counter(y)
    print(counter)
    counter = Counter(y_sm)
    print(counter)
Counter({1: 22090, 0: 107})
    Counter({1: 22090, 0: 22090})
```

APPENDIX - MODELS

Model	Accuracy Training	Accuracy Validation	Recall	Precision	F1-Score	ROC
Random_Forest	0.9999	0.99768	0.99943	0.99592	0.99767	0.99958
Grid_Search_Random_Forest	0.9983	0.99655	0.99898	0.99411	0.99654	0.9996
Logistic_Regression	0.82803	0.82803	0.77575	0.86441	0.81769	0.89471
Neural_Network	0.5019	0.49711	1	0.49711	0.6641	0.5
Gradient_Boost_Classifier	0.9871	0.98393	0.98361	0.98406	0.98383	0.99853

APPENDIX - RANDOM FOREST


```
imp= pd.DataFrame({'feature': train_X.columns, 'importance': importance, 'std':std})
print(imp.sort_values('importance', ascending=False).head())

feature importance std

Total_Good_Debt 0.282459 0.111318

Total_Children 0.057040 0.048870

Job_Title_Laborers ... 0.055407 0.029046

Total_Income 0.050798 0.019152
```

REFERENCES

- 1. Canadian Bankers Association. (2021, March 4). *StackPath*. Retrieved August 13, 2022, from https://cba.ca/credit-cards
- 2. Pokora, B. (2022, June 8). *9 Interesting Credit Card Statistics*. Forbes Advisor. Retrieved August 13, 2022, from https://www.forbes.com/advisor/credit-cards/credit-card-statistics/
- 3. Shift Credit Card Processing. (2021, August). *Credit Card Statistics [Updated August 2021] Shift Processing*. Retrieved July 14, 2022, from https://shiftprocessing.com/credit-card/