Regression for counts

Jeff Leek

@jtleek

www.jtleek.com

Data aren't always "Normal" Sequencing data is often counts

http://www-huber.embl.de/users/anders/HTSeq/doc/count.html read gene_A gene_A gene_A gene_A read

gene A

gene B

Union of all exons

Genome

	sample1	sample2	sample3
gene1	0	0	0
gene2	0	12	1
gene3	1000	2000	100
gene4	10	20	2

Poisson is a common assumption

Fit a regression on log of expectation of the counts

Normalized Counts For Gene i, Sample j

 $g(E[f(c_{ij}) | y_j]) = b_{i0} + \eta_i \log(q_j) + b_{i1}y_j$

Group Indicator

Normalization Constant For Sample j

Parameter We Test

Mean and variance relationship
They are often not exactly equal
The relationship can be modeled

Negative binomial distribution Is more flexible for modeling 2 parameters instead of one

nttp://www.moigen.mpg.de/1242892/rnaseq

$$K_{ij} \sim \text{NB}(\mu_{ij}, \alpha_i)$$

$$\mu_{ij} = s_j q_{ij}$$

$$\log_2(q_{ij}) = x_{j*} \vec{\beta}_i$$

$$K_{ij}$$
 counts of reads for gene i , sample j
 μ_{ij} fitted mean
 α_i gene-specific dispersion
 s_j sample-specific size factor
 q_{ij} parameter proportional to the expected true concentration of fragments
 x_{j*} the j -th row of the design matrix X
 $\vec{\beta_i}$ the log fold changes for gene i for each column of X

Notes and further reading

- Negative binomial/Poisson regression are "generalized linear models"
 - https://en.wikipedia.org/wiki/Generalized_linear_model
- A nice set of lecture notes.
 - http://data.princeton.edu/wws509/notes/
- This is again a huge topic and we have only scratched the surface.