

NUCL 511 Nuclear Reactor Theory and Kinetics

Lecture Note 5

Prof. Won Sik Yang

Purdue University
School of Nuclear Engineering

Exact Point Kinetics Equation (PKE)

Point kinetics equation was previously derived by assuming that the time dependency of flux is separable from its space and energy dependence

$$\phi(r, E, t) = p(t)\psi(r, E)$$

A formally exact point kinetics equation can be derived using the factorization of the flux into a purely time-dependent amplitude function and a slowly varying shape function p(t): exponential function

$$\phi(r, E, t) = p(t)\psi(r, E, t)$$

- Factorization is not an approximation such as the separation
- It splits one function into two
- One additional equation is needed to make the factorization unique
- One convenient way is to hold a weighted integral of the shape function in space and energy constant in time

Time-Dependent Neutron Diffusion Equation

Time-dependent neutron diffusion equation

$$\frac{1}{v(E)} \frac{\partial \phi(r, E, t)}{\partial t} = (\mathbf{F}_p - \mathbf{M})\phi(r, E, t) + S_d(r, E, t) + S(r, E, t)$$

Production rates of prompt fission neutrons

$$\mathbf{F}_{p}\phi(r,E,t) = \sum_{i} N_{i}(r,t) \chi_{p}^{i}(E) \int_{0}^{\infty} V_{p}^{i}(E') \sigma_{f}^{i}(E') \phi(r,E',t) dE'$$
$$= \chi_{p}(E) \int_{0}^{\infty} V_{p} \Sigma_{f}(r,E',t) \phi(r,E',t) dE'$$

Loss rate by reaction and leakage & scattering source
 Material Description of the control of the con

$$\mathbf{M}\phi(r,E,t) = -\nabla \cdot D(r,E,t)\nabla\phi(r,E,t) + \Sigma_{t}(r,E,t)\phi(r,E,t)$$
$$-\int_{0}^{\infty} \Sigma_{s}(r,E'\to E,t)\phi(r,E',t)dE'$$

Delayed neutron source

$$S_d(r, E, t) = \sum_{k} \chi_{dk}(E) \lambda_k C_k(r, t)$$

Precursor balance equation

$$\frac{\partial C_k(r,t)}{\partial t} = \int_0^\infty V_{dk} \Sigma_f(r,E',t) \phi(r,E',t) dE' - \lambda_k C_k(r,t)$$

Time-Dependent Neutron Transport Equation

Time-dependent neutron transport equation

$$\frac{1}{v(E)} \frac{\partial \psi(r, E, \Omega, t)}{\partial t} = (\mathbf{F}_p - \mathbf{M}) \psi(r, E, \Omega, t) + S_d(r, E, \Omega, t) + S(r, E, \Omega, t)$$

Production rates of prompt fission neutrons

$$\mathbf{F}_{p}\psi(r, E, \Omega, t) = (4\pi)^{-1} \sum_{i} N_{i}(r, t) \chi_{p}^{i}(E) \int_{0}^{\infty} V_{p}^{i}(E') \sigma_{f}^{i}(E') \phi(r, E', t) dE'$$

$$= (4\pi)^{-1} \chi_{p}(E) \int_{0}^{\infty} V_{p} \Sigma_{f}(r, E', t) \phi(r, E', t) dE'$$

Loss rate by reaction and leakage & scattering source

$$\mathbf{M}\phi(r,E,t) = \Omega \cdot \nabla \psi(r,E,\Omega,t) + \Sigma_{t}(r,E,t)\psi(r,E,\Omega,t)$$
$$-\int dE' \int d\Omega' \Sigma_{s}(r,E' \to E,\Omega' \to \Omega,t)\psi(r,E',\Omega',t)$$

Delayed neutron source

$$S_d(r, E, \Omega, t) = (4\pi)^{-1} \sum_{k} \chi_{dk}(E) \lambda_k C_k(r, t)$$

Precursor balance equation

$$\frac{\partial C_k(r,t)}{\partial t} = \int_0^\infty V_{dk} \Sigma_f(r,E',t) \phi(r,E',t) dE' - \lambda_k C_k(r,t)$$

Fission Operators

Prompt fission neutron operator

$$\mathbf{F}_{p}\phi(r,E,t) = \chi_{p}(E) \int_{0}^{\infty} v_{p} \Sigma_{f}(r,E',t) \phi(r,E',t) dE'$$

$$v_{p} \Sigma_{f} = \sum_{i} v_{p}^{i} \Sigma_{f}^{i}, \quad \chi_{p} = \sum_{i} \chi_{p}^{i}(E) \int_{0}^{\infty} v_{p}^{i} \Sigma_{f}^{i}(E') \phi(E') dE' / \int_{0}^{\infty} v_{p} \Sigma_{f}(E') \phi(E') dE'$$
(The space and time variables are omitted for simplicity.)

- Quasi-stationary delayed fission neutron operator
 - This a source of delayed neutrons that would be produced in a stationary reactor with fission cross sections and neutron flux as they exist at time t
 - This is not the actual delayed neutron source since no time delay is included

$$\mathbf{F}_{dk}\phi(r,E,t) = \chi_{dk}(E) \int_{0}^{\infty} v_{dk} \Sigma_{f}(r,E',t) \phi(r,E',t) dE'$$

$$v_{dk} \Sigma_{f} = \sum_{i} v_{dk}^{i} \Sigma_{f}^{i}, \quad \chi_{dk} = \sum_{i} \chi_{dk}^{i}(E) \int_{0}^{\infty} v_{dk}^{i} \Sigma_{f}^{i}(E') \phi(E') dE' / \int_{0}^{\infty} v_{dk} \Sigma_{f}(E') \phi(E') dE'$$

$$\mathbf{F}_{d}\phi(r,E,t) = \sum_{k} \mathbf{F}_{dk}\phi(r,E,t) = \chi_{d}(E) \int_{0}^{\infty} v_{d} \Sigma_{f}(r,E',t) \phi(r,E',t) dE'$$

$$v_{d} = \sum_{k} v_{dk}, \quad \chi_{d} = \sum_{k} \chi_{dk}(E) \int_{0}^{\infty} v_{dk} \Sigma_{f}(E') \phi(E') dE' / \int_{0}^{\infty} v_{d} \Sigma_{f}(E') \phi(E') dE'$$

Fission Operators

Total fission neutron operator

$$\begin{split} \mathbf{F}\phi(r,E,t) &= \mathbf{F}_p\phi(r,E,t) + \mathbf{F}_d\phi(r,E,t) \\ &= \chi_p(E) \int_0^\infty v_p \Sigma_f(r,E',t) \phi(r,E',t) dE' + \chi_d(E) \int_0^\infty v_d \Sigma_f(r,E',t) \phi(r,E',t) dE' \\ &= \chi(E) \int_0^\infty v \Sigma_f(r,E',t) \phi(r,E',t) dE' \\ v &= v_p + v_d \end{split}$$

$$\chi = \frac{\chi_p(E) \int_0^\infty v_p \Sigma_f(r, E', t) \phi(r, E', t) dE' + \chi_d(E) \int_0^\infty v_d \Sigma_f(r, E', t) \phi(r, E', t) dE'}{\int_0^\infty v(E') \Sigma_f(E') \phi(r, E', t) dE'}$$

Constraints on Shape Function

Weighted integration of time-dependent neutron balance equations

$$\frac{1}{v(E)} \frac{\partial \phi(r, E, t)}{\partial t} = (\mathbf{F} - \mathbf{M} - \mathbf{F}_d)\phi(r, E, t) + S_d(r, E, t) + S(r, E, t)$$

$$\left\langle w, \frac{1}{v} \frac{\partial \phi}{\partial t} \right\rangle = \left\langle w, (\mathbf{F} - \mathbf{M})\phi \right\rangle - \left\langle w, \mathbf{F}_d \phi \right\rangle + \left\langle w, S_d \right\rangle + \left\langle w, S \right\rangle$$

$$= \int dV \int dE w(r, E) f(r, E, t)$$

$$\langle w(r,E), f(r,E,t) \rangle$$

= $\int dV \int dE w(r,E) f(r,E,t)$

Factorization yields two time derivatives

$$\frac{\partial \phi}{\partial t} = \psi \frac{dp}{dt} + p \frac{\partial \psi}{\partial t} \implies \left\langle w, \frac{1}{v} \frac{\partial \phi}{\partial t} \right\rangle = \left\langle w, \frac{\psi}{v} \frac{dp}{dt} \right\rangle + \left\langle w, \frac{p}{v} \frac{\partial \psi}{\partial t} \right\rangle = \frac{dp}{dt} \left\langle w, \frac{\psi}{v} \right\rangle + p \frac{\partial}{\partial t} \left\langle w, \frac{\psi}{v} \right\rangle$$

Constrain the shape function to yield a unique factorization

$$K(t) = \left\langle w, \frac{\psi}{v} \right\rangle = K_0 \text{ (constant)} \implies \left\langle w, \frac{1}{v} \frac{\partial \phi}{\partial t} \right\rangle = K_0 \frac{dp(t)}{dt}$$

- The shape function itself is not constant over time
- Choose the initial adjoint flux as the weighting function to minimize the reactivity error when the shape function is approximated later

$$\left\langle \phi_0^*, \frac{\psi}{v} \right\rangle = \int dV \int dE \frac{\phi_0^*(r, E)}{v(E)} \psi(r, E, t) = K_0$$

• An un-normalized shape function is normalized to satisfy this constraint

Stationary solutions in a critical reactor

$$\frac{\partial C_k}{\partial t} = \int_0^\infty V_{dk} \Sigma_f \phi dE' - \lambda_k C_k = 0 \quad \Rightarrow \quad C_{k0} = \frac{1}{\lambda_k} \int_0^\infty V_{dk} \Sigma_f \phi dE'
\Rightarrow \quad S_{d0} = \sum_k \chi_{dk} \lambda_k C_{k0} = \sum_k \chi_{dk} \int_0^\infty V_{dk} \Sigma_f \phi_0 dE' = \sum_k \mathbf{F}_{dk0} \phi_0 = \mathbf{F}_{d0} \phi_0
\frac{1}{v} \frac{\partial \phi}{\partial t} = (\mathbf{F}_p - \mathbf{M}) \phi + S_d = 0 \quad \Rightarrow \quad (\mathbf{F}_{p0} - \mathbf{M}_0) \phi_0 + S_{d0} = 0 \quad \Rightarrow \quad (\mathbf{F}_{p0} - \mathbf{M}_0) \phi_0 + \mathbf{F}_{d0} \phi_0 = 0
(\mathbf{F}_0 - \mathbf{M}_0) \phi_0 = 0, \quad (\mathbf{F}_0^* - \mathbf{M}_0^*) \phi_0^* = 0$$

Importance-weighted neutron balance equation

$$\left\langle \phi_0^*, \frac{1}{v} \frac{\partial \phi}{\partial t} \right\rangle = \left\langle \phi_0^*, (\mathbf{F} - \mathbf{M}) \phi \right\rangle - \left\langle \phi_0^*, \mathbf{F}_d \phi \right\rangle + \left\langle \phi_0^*, S_d \right\rangle$$

$$\phi = p(t)\psi(r, E, t) \implies K_0 \frac{dp(t)}{dt} = \left\langle \phi_0^*, (\mathbf{F} - \mathbf{M})\psi \right\rangle p(t) - \left\langle \phi_0^*, \mathbf{F}_d \psi \right\rangle p(t) + \left\langle \phi_0^*, S_d \right\rangle$$

$$\left\langle \phi_0^*, (\mathbf{F} - \mathbf{M})\phi \right\rangle = \left\langle \phi_0^*, (\mathbf{F}_0 - \mathbf{M}_0)\phi \right\rangle + \left\langle \phi_0^*, (\Delta \mathbf{F} - \Delta \mathbf{M})\phi \right\rangle = \left\langle \phi_0^*, (\Delta \mathbf{F} - \Delta \mathbf{M})\phi \right\rangle$$

$$\Rightarrow K_0 \frac{dp(t)}{dt} = \left\langle \phi_0^*, (\Delta \mathbf{F} - \Delta \mathbf{M})\psi \right\rangle p(t) - \left\langle \phi_0^*, \mathbf{F}_d \psi \right\rangle p(t) + \left\langle \phi_0^*, S_d \right\rangle$$

Importance-weighted neutron balance equation

$$K_0 \frac{dp(t)}{dt} = \left\langle \phi_0^*, (\Delta \mathbf{F} - \Delta \mathbf{M}) \psi \right\rangle p(t) - \left\langle \phi_0^*, \mathbf{F}_d \psi \right\rangle p(t) + \left\langle \phi_0^*, S_d \right\rangle$$

 Divide by the importance-weighted quasi-stationary source of fission neutrons, as produced by the flux shape function

$$\frac{F(t) = \left\langle \phi_0^*, \mathbf{F} \psi \right\rangle}{F(t)} = \frac{\left\langle \phi_0^*, (\Delta \mathbf{F} - \Delta \mathbf{M}) \psi \right\rangle}{\left\langle \phi_0^*, \mathbf{F} \psi \right\rangle} p(t) - \frac{\left\langle \phi_0^*, \mathbf{F}_d \psi \right\rangle}{\left\langle \phi_0^*, \mathbf{F} \psi \right\rangle} p(t) + \frac{\left\langle \phi_0^*, S_d \right\rangle}{\left\langle \phi_0^*, \mathbf{F} \psi \right\rangle}$$

Define kinetics parameters

$$\begin{split} &\Lambda(t) = \frac{K_0}{F(t)} = \frac{\left\langle \phi_0^*, (1/\nu)\psi \right\rangle}{\left\langle \phi_0^*, \mathbf{F}\psi \right\rangle} & \text{neutron} \\ & \text{generation} \\ & \beta(t) = \frac{\left\langle \phi_0^*, (\Delta \mathbf{F} - \Delta \mathbf{M})\psi \right\rangle}{\left\langle \phi_0^*, \mathbf{F}\psi \right\rangle} & \text{reactivity} \\ & \beta(t) = \frac{\left\langle \phi_0^*, \mathbf{F}_d\psi \right\rangle}{\left\langle \phi_0^*, \mathbf{F}\psi \right\rangle} = \sum_k \beta_k(t), \quad \beta_k(t) = \frac{\left\langle \phi_0^*, \mathbf{F}_{dk}\psi \right\rangle}{\left\langle \phi_0^*, \mathbf{F}\psi \right\rangle} & \text{delayed} \\ & \text{neutron} \\ & \text{fraction} & s_d(t) = \frac{\left\langle \phi_0^*, S_d \right\rangle}{\left\langle \phi_0^*, \mathbf{F}\psi \right\rangle} & \text{delayed} \\ & \text{neutron} \\ & \text{fraction} & s_d(t) = \frac{\left\langle \phi_0^*, S_d \right\rangle}{\left\langle \phi_0^*, \mathbf{F}\psi \right\rangle} & \text{source} \\ & \frac{dp(t)}{dt} = \frac{\rho(t) - \beta(t)}{\Lambda(t)} & p(t) + \frac{s_d(t)}{\Lambda(t)} & \text{delayed} \\ & \frac{dp(t)}{dt} = \frac{\rho(t) - \beta(t)}{\Lambda(t)} & p(t) + \frac{s_d(t)}{\Lambda(t)} & \text{delayed} \\ & \frac{dp(t)}{dt} = \frac{\rho(t) - \beta(t)}{\Lambda(t)} & \frac{dp(t)}{\Delta(t)} & \frac{dp(t)}{\Delta$$

Importance-weighted delayed neutron source and precursor concentration

$$s_{d}(t) = \frac{\left\langle \phi_{0}^{*}, S_{d} \right\rangle}{\left\langle \phi_{0}^{*}, \mathbf{F} \psi \right\rangle} = \sum_{k} \lambda_{k} \frac{\left\langle \phi_{0}^{*}, \chi_{dk} C_{k} \right\rangle}{F(t)} = \Lambda(t) \sum_{k} \lambda_{k} c_{k}(t) \qquad c_{k}(t) = \frac{\left\langle \phi_{0}^{*}, \chi_{dk} C_{k} \right\rangle}{F(t) \Lambda(t)} = \frac{\left\langle \phi_{0}^{*}, \chi_{dk} C_{k} \right\rangle}{K_{0}}$$

$$\frac{\partial C_{k}(r, t)}{\partial t} = \int_{0}^{\infty} V_{dk} \sum_{f} (r, E', t) \phi(r, E', t) dE' - \lambda_{k} C_{k}(r, t) \quad \text{(precursor balance equation)}$$

$$\frac{\partial}{\partial t} \left\langle \phi_{0}^{*}, \chi_{dk} C_{k} \right\rangle = \left\langle \phi_{0}^{*}, \mathbf{F}_{dk} \psi \right\rangle p(t) - \lambda_{k} \left\langle \phi_{0}^{*}, \chi_{dk} C_{k} \right\rangle \quad \Rightarrow \quad \frac{dc_{k}(t)}{dt} = \frac{\left\langle \phi_{0}^{*}, \mathbf{F}_{dk} \psi \right\rangle}{F(t) \Lambda(t)} p(t) - \lambda_{k} c_{k}(t)$$

$$\frac{dc_{k}(t)}{dt} = \frac{\beta_{k}(t)}{\Lambda(t)} p(t) - \lambda_{k} c_{k}(t)$$

Importance-weighted reduced precursor concentration

$$\varsigma_{k}(t) = \Lambda_{0}c_{k}(t) = \frac{F(t)\Lambda(t)}{F_{0}}c_{k}(t) = \frac{\left\langle \phi_{0}^{*}, \chi_{dk}C_{k} \right\rangle}{F_{0}}$$

$$\frac{d\varsigma_k(t)}{dt} = \frac{F(t)}{F_0} \beta_k(t) p(t) - \lambda_k \varsigma_k(t)$$

Exact PKE with precursor concentration

$$\frac{dp(t)}{dt} = \frac{\rho(t) - \beta(t)}{\Lambda(t)} p(t) + \sum_{k} \lambda_{k} c_{k}(t)$$

$$\frac{dc_{k}(t)}{dt} = \frac{\beta_{k}(t)}{\Lambda(t)} p(t) - \lambda_{k} c_{k}(t), \quad k = 1, 2, \dots, 6$$

initial conditions

$$p(0) = 1$$
, $c_k(0) = \frac{\beta_{k0}}{\lambda_k \Lambda_0}$, $k = 1, 2, \dots, 6$

stationary conditions

$$\rho(0) = 0$$

$$\frac{-\beta_0}{\Lambda_0} p(0) + \sum_k \lambda_k c_k(0) = 0$$

$$\frac{\beta_{k0}}{\Lambda_0} p(0) - \lambda_k c_k(0) = 0$$

Exact PKE with reduced precursor concentration

$$\frac{dp(t)}{dt} = \frac{\rho(t) - \beta(t)}{\Lambda(t)} p(t) + \frac{1}{\Lambda_0} \sum_{k} \lambda_k \varsigma_k(t)$$

$$\frac{d\varsigma_k(t)}{dt} = \frac{F(t)}{F_0} \beta_k(t) p(t) - \lambda_k \varsigma_k(t), \quad k = 1, 2, \dots, 6$$

$$\frac{-\beta_0}{\Lambda_0} p(0) + \frac{1}{\Lambda_0} \sum_{k} \lambda_k \varsigma_k(0) = 0$$
stationary conditions
$$\rho(0) = 0$$

initial conditions

$$p(0) = 1$$
, $\zeta_k(0) = \frac{\beta_{k0}}{\lambda_k}$, $k = 1, 2, \dots, 6$

stationary conditions

$$\rho(0) = 0$$

$$\frac{-\beta_0}{\Lambda_0} p(0) + \frac{1}{\Lambda_0} \sum_{k} \lambda_k \zeta_k(0) = 0$$

$$\beta_{k0} p(0) - \lambda_k \zeta_k(0) = 0$$

Time-dependent neutron balance equation and initial state

$$\frac{1}{v} \frac{\partial \psi}{\partial t} = (\mathbf{F}_p - \mathbf{M}) \psi + S_d + S$$
$$(\mathbf{F}_0 - \mathbf{M}_0) \psi_0 + S_0 = 0$$
$$(\mathbf{F}_0^* - \mathbf{M}_0^*) \phi_0^* = 0$$

Importance-weighted neutron balance equation

$$\left\langle \phi_{0}^{*}, \frac{1}{v} \frac{\partial \phi}{\partial t} \right\rangle = \left\langle \phi_{0}^{*}, (\mathbf{F} - \mathbf{M}) \phi \right\rangle - \left\langle \phi_{0}^{*}, \mathbf{F}_{d} \phi \right\rangle + \left\langle \phi_{0}^{*}, S_{d} \right\rangle + \left\langle \phi_{0}^{*}, S \right\rangle$$

$$\frac{K_{0}}{F(t)} \frac{dp(t)}{dt} = \frac{\left\langle \phi_{0}^{*}, (\Delta \mathbf{F} - \Delta \mathbf{M}) \psi \right\rangle}{\left\langle \phi_{0}^{*}, \mathbf{F} \psi \right\rangle} p(t) - \frac{\left\langle \phi_{0}^{*}, \mathbf{F}_{d} \psi \right\rangle}{\left\langle \phi_{0}^{*}, \mathbf{F} \psi \right\rangle} p(t) + \frac{\left\langle \phi_{0}^{*}, S_{d} \right\rangle}{\left\langle \phi_{0}^{*}, \mathbf{F} \psi \right\rangle} + \frac{\left\langle \phi_{0}^{*}, S \right\rangle}{\left\langle \phi_{0}^{*}, \mathbf{F} \psi \right\rangle}$$

$$\Lambda(t) \frac{dp(t)}{dt} = \rho(t) p(t) - \beta(t) p(t) + \sum_{k} \lambda_{k} \frac{\left\langle \phi_{0}^{*}, \chi_{dk} C_{k} \right\rangle}{F(t)} + \frac{\left\langle \phi_{0}^{*}, S \right\rangle}{F(t)}$$

$$\frac{dp(t)}{dt} = \frac{\rho(t) - \beta(t)}{\Lambda(t)} p(t) + \sum_{k} \lambda_{k} c_{k}(t) + \frac{1}{\Lambda(t)} s(t)$$

$$s(t) = \frac{\left\langle \phi_{0}^{*}, S \right\rangle}{F(t)}$$

Exact PKE with precursor concentration

$$\frac{dp(t)}{dt} = \frac{\rho(t) - \beta(t)}{\Lambda(t)} p(t) + \sum_{k} \lambda_{k} c_{k}(t) + \frac{s(t)}{\Lambda(t)}$$

$$\frac{dc_{k}(t)}{dt} = \frac{\beta_{k}(t)}{\Lambda(t)} p(t) - \lambda_{k} c_{k}(t), \quad k = 1, 2, \dots, 6$$
initial conditions
$$\frac{\rho_{0} - \beta_{0}}{\Lambda_{0}} p(0) + \sum_{k} \lambda_{k} c_{k}(0) + \frac{s_{0}}{\Lambda_{0}} = 0$$

$$\frac{\beta_{k0}}{\Lambda_{0}} p(0) - \lambda_{k} c_{k}(0) = 0$$

initial conditions

stationary conditions

$$\frac{\rho_0 - \beta_0}{\Lambda_0} p(0) + \sum_k \lambda_k c_k(0) + \frac{s_0}{\Lambda_0} = 0$$

$$\frac{\beta_{k0}}{\Lambda_0} p(0) - \lambda_k c_k(0) = 0$$

$$p(0) = \frac{s_0}{-\rho_0}, \quad c_k(0) = \frac{s_0}{-\rho_0} \frac{\beta_{k0}}{\lambda_k \Lambda_0}, \quad k = 1, 2, \dots, 6$$

Exact PKE with reduced precursor concentration

$$\frac{dp(t)}{dt} = \frac{\rho(t) - \beta(t)}{\Lambda(t)} p(t) + \frac{1}{\Lambda_0} \sum_{k} \lambda_k \varsigma_k(t) + \frac{s(t)}{\Lambda(t)}$$
stationary conditions
$$\frac{d\varsigma_k(t)}{dt} = \frac{F(t)}{F_0} \beta_k(t) p(t) - \lambda_k \varsigma_k(t), \quad k = 1, 2, \dots, 6$$

$$\frac{d\rho_0 - \beta_0}{\Lambda_0} p(0) + \frac{1}{\Lambda_0} \sum_{k} \lambda_k \varsigma_k(0) + \frac{s_0}{\Lambda_0} = 0$$

$$\beta_{k0} p(0) - \lambda_k \varsigma_k(0) = 0$$

$$\frac{\rho_0 - \beta_0}{\Lambda_0} p(0) + \frac{1}{\Lambda_0} \sum_{k} \lambda_k \zeta_k(0) + \frac{s_0}{\Lambda_0} = 0$$
$$\beta_{k0} p(0) - \lambda_k \zeta_k(0) = 0$$

initial conditions

$$p(0) = \frac{s_0}{-\rho_0}, \quad \varsigma_k(0) = \frac{s_0}{-\rho_0} \frac{\beta_{k0}}{\lambda_k}, \quad k = 1, 2, \dots, 6$$

Point Kinetics Equations

In the conventional point kinetics equation, the shape function, the importance-weighted quasi-stationary source of fission neutrons, and the delayed neutron source operator are approximated by those at t=0

$$\psi(\mathbf{r}, E, t) = \phi_0(\mathbf{r}, E)$$

$$F(t) = \langle \phi_0^*, F\psi \rangle \cong \langle \phi_0^*, F\phi_0 \rangle$$

$$\cong \langle \phi_0^*, F_0\phi_0(\mathbf{r}, E) \rangle = F_0$$

$$\langle \phi_0^*, \mathbf{F}_k \psi \rangle = \langle \phi_0^*, \mathbf{F}_{k0} \phi_0 \rangle$$

$$\Lambda = \Lambda_0 = \frac{K_0}{F_0}$$

$$\rho(t) = \frac{1}{F_0} < \phi_0^*, (\Delta \mathbf{F} - \Delta \mathbf{M}) \psi_0 >$$

$$\beta_k = \beta_{k0} = \frac{1}{F_0} < \phi_0^*, \mathbf{F}_{k0} \psi_0 >$$

$$\frac{dp(t)}{dt} = \frac{\rho(t) - \beta}{\Lambda} p(t) + \sum_{k} \lambda_{k} c_{k}(t)$$

$$\frac{dc_{k}(t)}{dt} = \frac{\beta_{k}}{\Lambda} p(t) - \lambda_{k} c_{k}(t), \quad k = 1, 2, \dots, 6$$

$$\frac{dp(t)}{dt} = \frac{\rho(t) - \beta}{\Lambda} p(t) + \frac{1}{\Lambda} \sum_{k} \lambda_{k} \zeta_{k}(t)$$

$$k=1,2,\cdots,6$$

$$\frac{d\varsigma_k(t)}{dt} = \beta_k p(t) - \lambda_k \varsigma_k(t), \quad k = 1, 2, \dots, 6$$

initial conditions

initial conditions

$$p(0) = 1$$
, $c_k(0) = \frac{\beta_k}{\lambda_k \Lambda}$, $k = 1, 2, \dots, 6$ $p(0) = 1$, $\zeta_k(0) = \frac{\beta_k}{\lambda_k}$, $k = 1, 2, \dots, 6$

$$p(0) = 1$$
, $\varsigma_k(0) = \frac{\beta_k}{\lambda_k}$, $k = 1, 2, \dots, 6$

Effective Delayed Neutron Fraction

Effective delayed neutron fraction

$$\beta_{k}(t) = \frac{\left\langle \phi_{0}^{*}, \mathbf{F}_{dk} \psi \right\rangle}{\left\langle \phi_{0}^{*}, \mathbf{F} \psi \right\rangle} = \frac{\left\langle \phi_{0}^{*}(r, E), \chi_{dk}(E) \int_{0}^{\infty} v_{\Delta_{k}} \Sigma_{f}(r, E', t) \psi(r, E', t) dE' \right\rangle}{\left\langle \phi_{0}^{*}(r, E), \chi(E) \int_{0}^{\infty} v_{\Delta_{f}}(r, E', t) \psi(r, E', t) dE' \right\rangle}$$

$$\stackrel{\cong}{=} \frac{\left\langle \phi_{0}^{*}(r, E), \chi_{dk}(E) v_{dk} \int_{0}^{\infty} \Sigma_{f}(r, E', t) \psi(r, E', t) dE' \right\rangle}{\left\langle \phi_{0}^{*}(r, E), \chi(E) \overline{v}(r) \int_{0}^{\infty} v_{\Delta_{f}}(r, E', t) \psi(r, E', t) dE' \right\rangle}$$
Energy average

If the adjoint separable as $\phi_0^*(r,E) = \phi_0^*(r)\varphi_0^*(E)$

$$\beta_{k}(t) = \frac{\int_{0}^{\infty} \varphi_{0}^{*}(E) \chi_{dk}(E) dE}{\int_{0}^{\infty} \varphi_{0}^{*}(E) \chi(E) dE} \times \frac{v_{dk} \int_{V} \varphi_{0}^{*}(r) \int_{0}^{\infty} \Sigma_{f}(r, E', t) \psi(r, E', t) dE' dV}{\int_{V} \varphi_{0}^{*}(r) \overline{V}(r) \int_{0}^{\infty} \Sigma_{f}(r, E', t) \psi(r, E', t) dE' dV} = \gamma \frac{v_{dk}}{\overline{V}}$$

$$\frac{v_{dk}}{\overline{V}} \approx \frac{v_{dk}}{V} = \beta_{k}^{phy}$$

$$\beta_{k} = \gamma \beta_{k}^{phy}, \quad \gamma \approx \begin{cases} 1.05 \text{ for thermal reactors} \\ 0.85 \text{ for fast reactors} \end{cases}$$

Weak

Delayed Neutron Fractions and Decay Constants

- The precursor families are isotope-dependent, and thus the traditional six delay group equations are obtained by combining the contributions of all the fissionable isotopes to each delay neutron group
- The delayed neutron fraction of each of the six delay groups can be obtained by the simple summation

$$\beta_k = \sum_i \beta_{ki}$$

- The isotope-independent decay constants of six delay groups should be determined to accurately represent the stationary precursor concentrations
 - Stationary precursor concentration

$$c_k(t) = \sum_i c_{ki}(t) \implies \frac{p(t)}{\Lambda} \frac{\beta_k}{\lambda_k} = \frac{p(t)}{\Lambda} \sum_i \frac{\beta_{ki}}{\lambda_{ki}}$$

The decay constant of each of six delay groups can be determined as

$$\lambda_k = \frac{oldsymbol{eta}_k}{\sum_i (oldsymbol{eta}_{ki} / \lambda_{ki})} = \frac{\sum_i oldsymbol{eta}_{ki}}{\sum_i (oldsymbol{eta}_{ki} / \lambda_{ki})}$$

