

METHOD AND DEVICE FOR TREATING CONTAMINATED MATERIALS

A BACKGROUND OF THE INVENTION

The invention concerns a method for the treatment of contaminated materials, particularly infected materials, whereby said materials are fed by means of an input unit to a conveyor system extending into a treatment chamber, where they are heated, treated, and discharged via a discharge element. Furthermore, the invention concerns a device for the above method in which essentially the entire treatment chamber is slanted upward in the direction of transport.

A high-temperature disinfection plant for hospital-specific waste is already known from DE 39 38 546 C2 in which the wastes are supplied to two screw segments separated by a mechanical pressure-sealed intermediate lock via a receiving hopper. An adjustable steam pressure is hereby generated in the first screw segment through the introduction of heat, while a partial vacuum is generated in the second screw segment in order to dehumidify the material by sucking away the steam. In this known plant, it is disadvantageous that the two screw sections are separated by a mechanical pressure lock which is expensive and, of course, also represents a potential source of defects. In addition, the screw sections are positioned in the horizontal plane in such a way that contaminated liquids can flow unnoticed through the plant and pass through the disinfection process untreated and/or insufficiently treated. It is in no way assured here that a safe disinfection and/or, in particular, sterilization of the wastes occurs.

A device for the regeneration and sterilization of soil is known from DE 92 13 599 U1. In this device, the soil is sent through a slanted treatment chamber and thereby impinged upon by steam. It is, however, disadvantageous in this device that two different treatment zones which serve for moistening and/or for disinfection or sterilization of the material to be treated are not provided. Rather, disinfection or sterilization occurs over the entire area of the treatment chamber. Furthermore, no pressure buildup can occur in the device because it is not a closed system.

A device and a method for the sterilization and disinfection of contaminated hospital waste is also already known from DE 41 38 938 A, in which the waste is first shredded and the damp granulate thus obtained is subsequently fed to a disinfection screw in a slanted treatment chamber, wherein three regions are provided for treatment. The granulate is first dried in the lower region and subsequently agitated and disinfected with flowing steam in the next section of the disinfection screw, which lies higher up, in order to finally be redried in the upper part of the disinfection screw and conveyed to a container via a conveyor device.

Furthermore, a method and a device for the decontamination of bulk material is described in DE 44 09 391 A1. However, in this prior art as well, two different treatment zones for moistening and/or for decontamination of the material are not provided. In addition, a closed system suitable for pressure buildup is not provided here, either.

A SUMMARY OF THE INVENTION

It is the object of the invention to provide a method and a compact device which, using simple technical means, make possible different treatment zones for batch operation, single step and multi-step processes, and continuous operation, while always assuring a reliable disinfection and/or sterilization of contaminated materials.

as described and claimed
A This object is achieved in accordance with the invention through the characteristics of hereinafter claim 1 and claim 8. The further development of the invention can be inferred from the following description

*batch
operation*

In the method according to the invention, a first treatment zone for moistening of the infected materials is made by producing a liquid reservoir in a first region of the treatment chamber with the liquid present in the infected material and/or the introduction of water from the exterior by slanting essentially the entire treatment chamber upwards in the direction of transport and heating the liquid reservoir to a temperature lower than the boiling point of water, wherein the first region lies adjacent the lower end of the treatment chamber. Furthermore, a second treatment zone for disinfection and/or sterilization is made by heating a second region, extending from the first region up to the higher end of the treatment chamber,

2a

at least partially to a temperature higher than the boiling point of water and building up the steam pressure required for disinfection and/or sterilization in the second region.

In this way, it is assured that contaminated liquid always collects in a defined region of the treatment chamber and thereby cannot flow unnoticed into an undesired section of a device used. In addition, at least two treatment zones are created according to the method, namely a first one, in which the infected material is moistened within the liquid reservoir, and a second, in which the temperature and the steam pressure are provided which are necessary for disinfection or

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1

sterilization. The method allows a continuous and/or quasi-continuous disinfection and/or sterilization process, whereby the optimization of dwell times in the various treatment zones can be assured due to shorter paths.

It can be provided that the second region of the treatment chamber is divided into sections, each with a different temperature. Thus, for example, a section which borders immediately on the first region can have a lower temperature than the following section and thereby serve as a transition section. In this transition section steam, for example, can be supplied in order to achieve the desired steam pressure in the second region, in which the second step of the disinfection and/or sterilization process occurs. Furthermore, particularly in this transition section, various measurement procedures for determination of process parameters can be performed.

In the first region, means for the supply of water in liquid form can be provided in order to keep the level of the liquid reservoir at a preset height. The maximum level of the liquid reservoir is preferably regulated via an overflow. It is hereby practical if the liquid which flows into the overflow can be fed back into the liquid reservoir so that it can also be disinfected or sterilized at a later time in a separate process.

It can be provided that the material to be treated is supplied in small portions, whereby the supply and the removal occurs via slide valves and/or pressure locks of the input unit and the discharge element. The portions are hereby each at different treatment steps. By means of the locks it can be assured that no noticeable loss of pressure occurs during the feeding and/or the removal of batches, and the technical process parameters therefore do not change. A slight transient pressure variation can, however, also be intentional, in order to positively influence the effectiveness of the disinfection and/or sterilization process by such "breathing".

The conveyor system used in the method preferably has a screw conveyor.

In the method, the saturated steam desired in the second region of the treatment chamber can be produced merely by moving the material to be treated out of the liquid reservoir and, thus moistened, into the second region of the treatment chamber, where the water on the surface of the waste steams. As a rule, this inherent moisture of the material to be treated is sufficient to produce the steam pressure required. If, however, the steam pressure thus obtained is not sufficient, additional steam can be supplied.

The device according to the invention is characterized in that the treatment chamber has a first heating zone which lies adjacent the lower end of the treatment chamber and is designed to generate a temperature below the boiling point of water and, furthermore, has a second heating zone which extends between the first heating zone and the higher end of the treatment chamber and is designed to generate a temperature above the boiling point of water and to build up the steam pressure required for disinfection and/or sterilization.

Slanting the treatment chamber ensures that the liquid which is in the contaminated materials supplied to the treatment chamber and is, for example, released by the action of an upstream shredder collects in the first heating zone. This assures on one hand that contaminated liquid does not reach undesired regions of the treatment chamber. On the other hand, a liquid reservoir is produced through the collection of the contaminated liquid and, if necessary, through the external addition of water which can be used for moistening of the materials to be treated. The first heating zone is designed so that the liquid reservoir can be heated to a temperature which is slightly below the boiling point of water, i.e., under 100°C at atmospheric pressure. Therefore, because the temperature is below the prevailing boiling point, a high evaporation rate of the water and undesired encrustations on the inner walls of the treatment chamber or on the conveyor system are prevented. In addition, because the boiling point is not attained, the release of vapors and possible odors when the input unit is opened is prevented. The device according to the invention makes the production of several temperature and/or treatment zones possible while requiring little space. Due to the technical means, a reliable hermetic shield, and thus reliably reproducible process control, is assured in which a very economical disinfection and/or sterilization can be performed.

The first heating zone can, for example, have means for the supply of liquid water so that the level of the liquid in the liquid reservoir can be regulated. The second step of the disinfection and/or sterilization method occurs in the second heating zone. The second heating zone can have means for the introduction of water in the form of liquid and of steam so that saturated steam can also be generated in case the inherent moisture of the material to be treated is not sufficient. In addition, means for the attachment of gauges of varying types, particularly temperature, dampness, and pressure gauges, as well as means for the supply of aggregates, can be provided in the second heating zone. In the framework of the invention it can be provided that the second heating zone is subdivided into further heating sections for the generation of further temperatures. Thus, for example, a section of the second heating zone bordering immediately on the first heating zone can represent a temperature transition from the first heating zone to a section of the second heating zone in which the temperature necessary for disinfection and/or sterilization is present.

Furthermore, it can be provided that the treatment chamber has an overflow for regulation of the liquid reservoir. This overflow preferably discharges into a pressure sealed collection vessel which is in turn connected with the treatment chamber through a return line. The overflow, the collection vessel, and the return line are preferably designed in such a way that they have the same pressure as in the treatment chamber. It is thus possible to pump liquid from the collection vessel into the treatment chamber through a simple pumping system if the liquid level in the treatment chamber is to be raised. An additional high-temperature disinfection and/or high-temperature sterilization unit can also be provided in which the liquid from the collection vessel can be treated. The collection vessel itself can hereby also be designed as an autoclave.

An array of heating means can be used to generate the respective temperatures in the different heating zones and/or heating sections. Thus, for example, the inner wall of the treatment chamber can be provided with heating means. This could consist of a double shell provided with heat transfer oil. The heat transfer oil is hereby heated by a heating block.

It can also be provided that microwave energy can be definably conducted into damp material in the treatment chamber and/or in the conveyor system in order to heat the material to the desired temperature.

The conveyor system preferably has a screw conveyor. This can be designed to be reversible in order, if necessary, to reduce pressure if a transport bottleneck occurs. It is advantageous if the screw conveyor only has a bearing on one end and rests on slide runners.

It is very practical if a shredder is positioned in the input unit, which is particularly advantageous for the shredding of contaminated hospital wastes.

To increase capacity, a plant can be provided which has several of the devices described above and one shredder unit, whereby the devices are laid out in parallel in such a way that they can be simultaneously and/or sequentially charged by the shredder unit. In this way, even if the individual devices are used in so-called batch operation, a quasi-continuous disinfection and/or sterilization can be performed.

BRIEF DESCRIPTION OF THE DRAWINGS

In the following, the device according to the invention will be described in more detail with the aid of an exemplary embodiment, whereby reference will be made to the single figure. The figure schematically shows a device according to the invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

In the figure, a device for the treatment of contaminated materials, particularly infected materials, is indicated with 1. The device 1 has a feed hopper 2, under which a shredder 3 is positioned, as a component of an input unit. From the shredder 3, a gravity feed hopper 4 leads to an intake 5 of a tube-shaped treatment chamber 6. The intake 5 can be closed by a slide valve 7. In place of the slide valve 7, or in addition to same, a lock could also be provided. A metering device 8 is positioned above the intake 5.

A screw conveyor 9 having a conveyor spiral 10 extends into the treatment chamber 6. The screw conveyor 9 is driven by a drive 11. The treatment chamber 6 is slanted upwards in the transport direction of the screw conveyor 9, with, for example, an angle to the horizontal of approximately 10° to 40°. At the upper end of the treatment chamber 6 there is a discharge element 12 with a

SuB 1

discharge chute 13. The discharge element 12 is also provided with a slide valve 14. A lock could, of course, also be provided here instead of the slide valve 14 or in addition to same.

An overflow 15 for liquid 16, which can collect in a lower region of the treatment chamber 6, is positioned on the lower side of the treatment chamber 6. The overflow 15 is connected via a conduit 17 with a collection vessel 18. The collection vessel 18 is connected via a further conduit 19 with the treatment chamber, whereby the conduit 19 discharges above the maximum level of the liquid 16 in the lower end of the treatment chamber 6.

The device 1 has two heating zones in which different temperatures can be generated. The first heating zone extends from the lower end of the treatment chamber 6 to the overflow 15. The second heating zone is immediately adjacent to the first heating zone and extends up to the upper end of the treatment chamber 6. In order to simplify the figure, the heating means of the two heating zones are not shown. They could, for example, be comprised of a double casing of the treatment chamber 6 filled with heat transfer oil, wherein the double casing has two chambers, corresponding to the two heating zones. The heat transfer oil is hereby, for example, heated by two separate heating blocks. It is also possible to use heat exchangers.

There is a ventilation valve 21 at the upper end of the treatment chamber 6 connected via a conduit 22 with the gravity feed hopper 4. Furthermore, inlet means 23 for the introduction of steam are provided in the second heating zone.

The metering device 6 is positioned over the intake 5, which is formed as a slot in a base plate and can be closed by the slide valve 7.

In order to treat contaminated materials, the material to be treated is supplied to the device 1 via the feed hopper 2. The shredder 3 shreds the material to a size of, for example, approximately 10 x 20 mm in cross-section, whereby in hospital wastes hollow bodies, such as syringes, are destroyed. The material is then supplied via the gravity feed hopper 4 to the metering device 8. The metering device 8 assures that the material reaches the intake 5 after shredding, without the occurrence of bridging

within the intake 5. The truncated cone shape of the gravity feed hopper 4 also helps to prevent bridging.

The material to be treated reaches the liquid reservoir 16 in the treatment chamber 6. The liquid portion of the material to be treated released by the shredder 3 contributes to the liquid reservoir 16, whose liquid level is measured by a liquid sensor (not shown) and can, if necessary, be raised to the desired value by the supply of liquid from the collection vessel 18 or by the addition of liquid water. The liquid reservoir 16 has a temperature which is slightly lower than the prevailing boiling point of water. In this way, encrustations on the inner walls of the treatment chamber 6 or on the screw conveyor 9 are prevented. The material to be treated is soaked in the liquid reservoir 16. The material is subsequently transported into the second heating zone via the screw conveyor 9. This heating zone essentially, i.e., in a transition section of the second heating zone extending from the overflow 15 up to approximately the height of the treatment chamber 6 indicated by the arrow 20, has a temperature above the boiling point, so that the water of the moistened material steams and a corresponding steam pressure builds up. The process conditions are adjusted so that the material is heated for disinfection to a temperature of more than, for example, 100°C and for sterilization to a temperature of at least 121°C. For this purpose, saturated steam is generated which, if the inherent moisture of the material is not sufficient, can also be generated by supplying steam via the intake means 23 of the treatment chamber 6. The actual disinfection and/or sterilization process, which can last, for example, for a period of at least 15 minutes, occurs in the second heating zone. After the treatment process is finished, the ventilation valve 21 is first opened in order to let off the steam pressure. The steam is hereby fed to the gravity feed hopper 4, in which further material to be treated is already present which will be preheated by the steam. Further dehumidification of the treated material simultaneously occurs in that water which is on the surface of the material or which clings to the material due to capillary action steams due to the reduction in pressure while utilizing the tangible heat of the material, while the temperature of the water and material approaches the boiling point at normal pressure. The discharge element 12 is subsequently opened by the slide valve 14 in order to remove the treated material. The intake 5 is preferably simultaneously opened in order to introduce further material to be treated into the treatment chamber 6 in proportion to the amount of material discharged.

If, instead of or addition to the slide valves 7 and 14, locks are provided, a continuous disinfection and/or sterilization process is also possible.

Die BP +

With the device according to the invention, contaminated materials, which are preferably hospital-specific wastes, but could, for example, also be sewage sludge, contaminated soils, or foods, such as grains and spices, can be reliably disinfected and/or sterilized. The compact design of the device makes possible a cost-effective and reliable treatment of the materials and, in addition, the production of compact, efficient mobile plants.

0
9
8
7
6
5
4
3
2
1
0