

SAE 2.04 - GESTION DE PROJET - R2.10b

ANTONIN GUILBAUD - ADRIEN CLAVAGUERA

Table des matières

1	Introduction	3
2	Analyse des contraintes et des risques	4
3	Matrices de criticité	5
4	Schéma du processus	6

1 Introduction

■ Démarrage du cahier des charges

Nous sommes deux membres d'une association ayant pour objectif principal d'informer le consommateur anglophone sur le nutriscore, avant le 12 avril 2024. Notre objectif est de fournir un outil statistique et visuel avec des données pertinentes relatif aux produits « biscuits and cakes » aux Etats-Unis.

A partir d'une base de données disponible en open data et renseignée par des contributions libres, nous allons réaliser un tri et nettoyage des données dans le but de réaliser une étude simple contenant des graphiques appropriés pour répondre en anglais à une question précise qui est la suivante : Quel lien peut-on établir entre le nutriscore et les variables nutritionnelles pour les produits de la famille 'en: biscuits-and-cakes' aux États-Unis ?

Dans le cadre de ce projet, nous travaillerons à distance (*transit*) ou sur place à l'IUT par les moyens qui nous sont mis à disposition : ordinateurs, serveurs, base de données...

■ Nutri-Score

Le Nutri-Score est un système d'étiquetage nutritionnel visuel créé en 2014 par des chercheurs français, destiné à informer rapidement les consommateurs sur la qualité nutritionnelle globale des aliments emballés. Il s'agit d'un système à cinq lettres allant de A à E et couleurs associées, du vert au rouge, apposé sur la face avant des emballages. Dans cet intérêt nous allons intéresser au nutri-score des produits de type « biscuits and cakes » commercialisés aux Etats-Unis.

■ Conduite du projet

Dans le cadre de ce projet, notre objectif est d'analyser une base de données disponible en open data qui nous a été confiée, dans le but ultime de répondre à une question spécifique. Cette base de données contient une multitude d'informations pertinentes pour notre analyse, mais elle nécessite un nettoyage approfondi afin de n'inclure que les données pertinentes pour la suite de notre projet. Notre approche se décompose en trois étapes principales : analyse initiale de la base de données, nettoyage des données et enfin, développement d'un projet statistique en anglais pour répondre à notre question de recherche.

2 Analyse des contraintes et des risques

Conti	raintes	Risques induits					
Types de contraintes	Nom de la contrainte	Nom et index du risque	Type de risque	Criticité	Mitigation		
Humaine	Motivation	H1	Baisse de performances, augmentation des erreurs	1 x 1 = 1	Entraide et communication au sein du groupe		
Humaine	Qualité	H4	Satisfaction client moindre	2 x 4 = 8	Contrôle curent professeurs, demande d'aide		
Humaine	Manque de connaissance	H2	Erreurs/accidents, incapacité de résoudre le problème, perte de temps	2 x 3 = 6	S'entourer de tous le outils qui sont mis à notre disposition (cours, internet)		
Humaine	Absentéisme	НЗ	Baisse de productivité, charge de travail alourdie, retard dans le projet	1 x 3 = 3	Répartition des tâches et mettre en place un système de rotation au cas où		
Humaine	Nettoyage incorrect	H4	Satisfaction client moindre, Hors sujet	1 x 4 = 4	Vérifier constammer les données nettoyées		
Matérielle	Salle informatique	M1	Matériel défectueux, panne de système, surcharge électrique	1 x 4 = 4	Maintenance, surveillance, plan de sauvegarde et de restauration en continu		
Matérielle	Transit	M2	Non accès aux données à distance, retard sur le rendu	4 x 4 = 16	Optimiser les action trouver une alternative (connexion par Windows, copies données)		
Matérielle	Ordinateur	M3	Panne matériel, perte de données, panne de réseau, problème de compatibilité	1 x 2 = 2	Maintenance préventive, prévoir u second poste de travail		
Matérielle	Interopérabilité des outils	M4	Outils incompatibles entre eux SQL – CSV - R	1 x 4	Travail en amont pou déterminer si compatibilité des outils à disposition		
Techniques	Données falsifiées	T1	Prise de décisions erronées, impact sur les recherches, défaut de qualité	4 x 2 = 8	Vérification et validation des données avec discernement		
Techniques	Performances	T2	Surcapacité du serveur, trop de trafic	3 x 2 = 6	Optimisation des actions sur le serveu pour éviter un encombrement du réseau / serveur		
Temporelles	Respect du temps	Т3	Retard du rendu, stress et impact de productivité, tensions interpersonnelles	1 x 4 = 4	Planification rigoureuse, communication binôme, gestion du stress		

3 Matrices de criticité

La matrice de criticité permet de classer les risques en fonction de leur impact potentiel et de leur probabilité d'occurrence. En attribuant des scores à ces deux dimensions, la matrice de criticité permet de hiérarchiser les risques en fonction de leur gravité, fournissant ainsi une base pour l'allocation des ressources et la priorisation des actions de gestion des risques. La matrice résulte du produit de l'impact par la probabilité.

Ci-dessous la matrice de criticité de notre projet, avec les index utilisés dans le tableau précédent.

Probabilité/Impact	1	2	3	4	5
1	H1	H4, M3	H3, M4	M1, T3	
2			H2	H4	
3		T2			
4		T1		M2	
5					

4 Schéma du processus

Nous avons décidé de représenter le processus de gestion des contraintes et des risques de *TRANSIT*, le serveur de l'IUT2, depuis lequel nous devrons travailler tout au long du projet.

Ce processus commence par l'identification de la contrainte et des risques potentiellement induits par l'utilisation du serveur TRANSIT.

Le niveau de criticité est ensuite établi et résulte du produit de l'impact par la probabilité. Cela permet d'évaluer de manière précise les risques et de les classer selon leur importance relative, fournissant une base solide pour l'allocation et la priorisation des actions de gestion des risques.

Ensuite, viennent les mesures de gestion des risques, conçues pour atténuer l'impact potentiel des risques identifiés et pour renforcer la capacité de l'organisation à y faire face de manière proactive.

Enfin, découlent les contraintes engendrées par ces mesures de gestion, ainsi que les indicateurs de suivi des risques résiduels qui permettent à l'organisation de maintenir une surveillance continue de son environnement opérationnel.

