

Intangible Assets

Winter 2023

Quantitative Portfolio Management

Amy Cai, Arthur Ji, Charene Shen, Anthony Song

Why Intangibles

• Value accrues to intangible assets has increased significantly in recent years as companies adapt to "information revolution" with virtual business models⁽¹⁾

Values of tangible and intangible assets* at S&P 500 companies (in trillions)

Source: Company reports, PwC analyis

^{*}Implied market value of intangibles = Market cap + Book value of total liabilities - Book value of tangibles

Accounting Rules

- However, accounting rules treat internally developed vs. acquired intangible assets asymmetrically
- Internally generated R&D does not always appear on Balance Sheet and book value of intangible assets (including goodwill) are mostly acquired as a result⁽¹⁾

	IFRS	GAAP
Internally Generated Intangibles	Research costs are immediately expensed / development costs may be capitalized	Not capitalized except for internally developed software
Acquired Intangibles	Capitalized	Capitalized

^{1.} Per PwC Analysis, KPMG Insights

Main Economic Ideas

• Therefore, we want to test the idea of whether companies / investors tend to overprice these intangible assets during acquisitions, given the risks of change in consumer sentiment, regulation, and technology, which would lower future expected returns and cost of capital

• Examples:

- 2001 AOL Time Warner merger led to \$99B goodwill impairment in 2002 after the dot-combubble burst
- 2016 Valeant Pharmaceuticals under SEC investigation following its aggressive R&D acquisitions
- 2016 Yahoo! wrote down \$1.1B Tumblr acquisition by \$482 million after it failed to to monetize Tumblr effectively through its user base
- 2019 Kraft Heinz wrote down \$15.4B on Kraft and Oscar Mayer brands due to changing consumer taste

Economic Interpretations

Risk-Based

- i. Valuation risks of internally developed intangibles as their fair values have not been independently assessed in the active market
- Risks associated with the outcome of the investment (change in market conditions, consumer sentiment, and technological feasibility)
- iii. Risks of infringement by competitors

Behavioral

- i. Acquisition bias as investors might be overly optimistic about the synergies, growth prospects, and intrinsic value associated with acquired intangibles
- ii. Investors may overly focus on accounting metrics and undervalue internally-developed intangibles
- iii. Short-termism

Connection to Existing Research

Intangible intensity and stock price crash risk

Kai Wu*, Seiwai Lai

School of Finance, Central University of Finance and Economics, China

Fig. 2. Nonlinear relationship between intangible intensity and crash risk

Variable Definition:

The intangible intensity is decomposed into definite-life intangible intensity FLRANK (a), indefinite-life intangible intensity INFLRANK (b), and goodwill intensity GWRANK (c). ROTA=EBITDA/NETPPE=(a)+(b)+(c)

How does intangible intensity affect crash risk?

- Goodwill impairments
- High information asymmetry

Intangible Value

Andrea L. Eisfeldt † — Edward T. Kim ‡ — Dimitris Papanikolaou §

May 4, 2022

Signal Construction:

$$B_{it}^{INT} = B_{it} - GDWL_{it} + INT_{it} \rightarrow B_{it}^{INT}/M$$

Key Findings:

- A value portfolio that adds intangible capital to book assets prior to sorting provides much stronger performance in all periods.
- Each leg of intangible value outperforms traditional value that is industry-sorted.
- Outperformance is more pronounced when financials, utilities, and public service firms are dropped during portfolio formation.

The Stock Market Valuation of Research and Development Expenditures Author(s): Louis K. C. Chan, Josef Lakonishok and Theodore Sougiannis Source: *The Journal of Finance*, Dec., 2001, Vol. 56, No. 6 (Dec., 2001), pp. Published by: Wiley for the American Finance Association

Key Findings:

- Using R&D/sales as signal does not generate a spread in average returns or alphas.
- Market is skeptical about firms with high R&D/MarketCap, giving them low valuations.
- The evidence on an association between R&D intensity measured relative to sales and future returns is not strong.
- The clearest evidence that high R&D plays a distinctive role arises from stocks with high R&D relative to the market value of equity.

Strategy Construction

Baseline signal:

signal = -intan

Control industry:

Technology sector

Control size:

$$Signal = \frac{-Intan}{at}$$

Adjust current asset:

$$Signal = \frac{-Intan}{at-act}$$

- "Intan" represents the value of total intangible asset on a company's balance sheet
- Negative sign captures our main economic idea: penalize companies with high intangible assets
- Different industries may have different number of patents, copyright, etc. on average
- Make apple-to-apple comparison within only one industry for intangible assets

- Larger firms may have greater number of intangible assets
- Add denominator "at", representing total assets, to our signal to control for different firm size
- Current assets such as account receivable, etc. is frequently changed by daily operations
- Exclude "act", representing total current asset, from our signal denominator

Strategy Construction (cont'd)

However, it could also be possible that the market has priced in our economic idea: those tech firms with proportionally high intangible assets has already been penalized by a discounted valuation

To compensate for potentially repeated penalization, we add a value signal = $\frac{at - lt}{mkvalt}$ ($\frac{book\ equity\ value}{maket\ capital\ zation}$)

Combined signal = 50%
$$\frac{-\ln \tan}{at-act}$$
 + 50% $\frac{at-lt}{mkvalt}$ (after normalizing signal value to z-score)

- → High intangible asset, high current valuation: penalize the most
- 0 0
- → High intangible asset, low current valuation: fine, has been penalized

→ Low intangible asset, high current valuation: fine, fairly priced

→ Low intangible asset, low current valuation: reward the most

Result: Combined Signal

Result: Combined Signal (cont'd)

> Running Factor Regressions: Table 1 - 3 Fama-French Factors

	(1)	(2)	(3)	(4)	(5)	(6)
const	0.0084	-0.0030	0.0042**		-0.0007	0.0049***
mktrf	(0.0051) -0.1208	(0.0025) 1.2845***	(0.0017) 0.0257	(0.0052) -0.1435	(0.0018) 1.0980***	(0.0017) -0.0054
h1	(0.1137)	(0.0550)	(0.0382)	(0.1229)	(0.0429)	(0.0401)
hml				-0.0900 (0.1568)	-0.2133*** (0.0547)	0.1016** (0.0512)
smb				0.1227 (0.2151)	0.9031*** (0.0751)	0.1233* (0.0702)
R-squared	0.0071	0.7752	0.0029	0.0104	0.8836	0.0602
R-squared Adj. N	0.0008 160	0.7737 160	-0.0035 160	-0.0087 160	0.8814 160	0.0421 160
R2	0.01	0.78	0.00	0.01	0.88	0.06

Standard errors in parentheses.

* p<.1, ** p<.05, ***p<.01

(1): Long-Short Value Weights ~ CAPM Model

(2): Long-Only Rank Weights ~ CAPM Model

(3): Long-Short Rank Weights ~ CAPM Model

(4): Long-Short Value Weights ~ 3-Factor Fama French Model

(5): Long-Only Rank Weights ~ 3-Factor Fama French Model

(6): Long-Short Rank Weights ~ 3-Factor Fama French Model

Annualized Information Ratios:

	1	2	3	4	5	6
Alpha	0.101	-0.036	0.051	0.103	-0.009	0.058
Std(resid)	0.217	0.105	0.073	0.217	0.076	0.071
Information Patio	0 161	_0 3/15	0 700	0 171	_0 114	0 826

> Running Factor Regressions: Table 2 - 5 Fama-French Factors + Momentum

	(1)	(2)	(3)	(4)	(5)	(6)
const	0.0099*	0.0008	0.0047***	0.0108**	0.0015	0.0053***
	(0.0053)	(0.0017)	(0.0017)	(0.0052)	(0.0016)	(0.0017)
mktrf	-0.1529	1.1153***	-0.0020	-0.2217*	1.0658***	-0.0461
	(0.1257)	(0.0403)	(0.0412)	(0.1294)	(0.0393)	(0.0409)
hml	0.0965	-0.0881	0.0725	-0.0449	-0.1898***	-0.0180
	(0.2133)	(0.0684)	(0.0700)	(0.2232)	(0.0678)	(0.0706)
smb	-0.0090	0.6994***	0.1349*	-0.0664	0.6582***	0.0982
	(0.2437)	(0.0781)	(0.0800)	(0.2432)	(0.0739)	(0.0769)
rmw	-0.2542	-0.4934***	0.0145	-0.2911	-0.5199***	-0.0091
	(0.2886)	(0.0925)	(0.0947)	(0.2865)	(0.0870)	(0.0906)
cma	-0.3468	-0.1391	0.0615	-0.1937	-0.0290	0.1595
	(0.3178)	(0.1019)	(0.1043)	(0.3244)	(0.0985)	(0.1026)
umd				-0.3180*	-0.2287***	-0.2035***
				(0.1615)	(0.0491)	(0.0511)
R-squared	0.0232	0.9030	0.0625	0.0474	0.9151	0.1506
R-squared Adj.	-0.0085	0.8998	0.0320	0.0100	0.9117	0.1173
N	160	160	160	160	160	160
R2	0.02	0.90	0.06	0.05	0.92	0.15

Standard errors in parentheses.

* p<.1, ** p<.05, ***p<.01

(1): Long-Short Value Weights ~ 5-Factor Fama French Model

(2): Long-Only Rank Weights ~ 5-Factor Fama French Model

(3): Long-Short Rank Weights ~ 5-Factor Fama French Model

(4): Long-Short Value Weights ~ 6-Factor Fama French Model

(5): Long-Only Rank Weights ~ 6-Factor Fama French Model

(6): Long-Short Rank Weights ~ 6-Factor Fama French Model

Annualized Information Ratios:

1 2 3 4 5 6 Alpha 0.119 0.010 0.057 0.130 0.018 0.064 Std(resid) 0.215 0.069 0.071 0.213 0.065 0.067 Information Ratio 0.551 0.143 0.801 0.611 0.279 0.949

Observations on Alphas:

- increases and becomes more significant as more factors are included: performance is unexplained when adding more factors
- most significant for rank-based portfolios and long-short portfolios
 - These portfolios use signal more effectively
 - long-short strategies fit our economic idea more, because a high ratio is viewed as a notably adverse signal, outweighing the positive implications of a low ratio.

Result: Combined Signal (cont'd)

> Running Factor Regressions: Table 1 - 3 Fama-French Factors

=========	(1)	(2)	(3)	(4)	(5)	(6)
const	0.0084	-0.0030	0.0042**	0.0086	-0.0007	0.0049***
mktrf	(0.0051) -0.1208	(0.0025) 1.2845***	(0.0017) 0.0257	(0.0052) -0.1435	(0.0018) 1.0980***	(0.0017) -0.0054
h-1	(0.1137)	(0.0550)	(0.0382)	(0.1229)	(0.0429)	(0.0401)
hml				-0.0900 (0.1568)	-0.2133*** (0.0547)	0.1016** (0.0512)
smb				0.1227 (0.2151)	0.9031*** (0.0751)	0.1233* (0.0702)
R-squared	0.0071	0.7752	0.0029	0.0104	0.8836	0.0602
R-squared Adj. N	0.0008 160	0.7737 160	-0.0035 160	-0.0087 160	0.8814 160	0.0421 160
R2	0.01	0.78	0.00	0.01	0.88	0.06

Standard errors in parentheses.

* p<.1. ** p<.05. ***p<.01

(1): Long-Short Value Weights ~ CAPM Model

(2): Long-Only Rank Weights ~ CAPM Model

(3): Long-Short Rank Weights ~ CAPM Model

(4): Long-Short Value Weights ~ 3-Factor Fama French Model

(5): Long-Only Rank Weights ~ 3-Factor Fama French Model

(6): Long-Short Rank Weights ~ 3-Factor Fama French Model

Annualized Information Ratios:

	1 2	3	4 5	6
Alpha	0.101 -0.036	0.051	0.103 -0.009	0.058
Std(resid)	0.217 0.105	0.073	0.217 0.076	0.071
Information Ratio	0.464 - 0.345	0.700	0.474 - 0.114	0.826

> Running Factor	or Regress	sions: Table	e 2 – 5 Fa	ama-French	n Factors +	Momentum
=========	(1)	(2)	(3)	======= (4)	 (5)	 (6)
const	0.0099*	0.0008	0.0047***	0.0108**	0.0015	0.0053***
	(0.0053)	(0.0017)	(0.0017)	(0.0052)	(0.0016)	(0.0017)
mktrf	-0.1529	1.1153***	-0.0020	-0.2217*	1.0658***	-0.0461
	(0.1257)	(0.0403)	(0.0412)	(0.1294)	(0.0393)	(0.0409)
hml	0.0965	-0.0881	0.0725	-0.0449	-0.1898***	-0.0180
	(0.2133)	(0.0684)	(0.0700)	(0.2232)	(0.0678)	(0.0706)
smb	-0.0090	0.6994***	0.1349*	-0.0664	0.6582***	0.0982
	(0.2437)	(0.0781)	(0.0800)	(0.2432)	(0.0739)	(0.0769)
rmw	-0.2542	-0.4934***	0.0145	-0.2911	-0.5199***	-0.0091
	(0.2886)	(0.0925)	(0.0947)	(0.2865)	(0.0870)	(0.0906)
cma	-0.3468	-0.1391	0.0615	-0.1937	-0.0290	0.1595
	(0.3178)	(0.1019)	(0.1043)	(0.3244)	(0.0985)	(0.1026)
umd				-0.3180*	-0.2287***	-0.2035**
				(0.1615)	(0.0491)	(0.0511)
R-squared	0.0232	0.9030	0.0625	0.0474	0.9151	0.1506
R-squared Adj.	-0.0085	0.8998	0.0320	0.0100	0.9117	0.1173
N	160	160	160	160	160	160
R2	0.02	0.90	0.06	0.05	0.92	0.15

Standard errors in parentheses.

* p<.1, ** p<.05, ***p<.01

(1): Long-Short Value Weights ~ 5-Factor Fama French Model

(2): Long-Only Rank Weights ~ 5-Factor Fama French Model

(3): Long-Short Rank Weights ~ 5-Factor Fama French Model

(4): Long-Short Value Weights ~ 6-Factor Fama French Model

(5): Long-Only Rank Weights ~ 6-Factor Fama French Model

(6): Long-Short Rank Weights ~ 6-Factor Fama French Model Annualized Information Ratios:

	1	2	3	4	5	6	
Alpha	0.119	0.010	0.057	0.130	0.018	0.064	
Std(resid)	0.215	0.069	0.071	0.213	0.065	0.067	
Information Ratio	0.551	0.143	0.801	0.611	0.279	0.949	

Observations on Betas:

- By the left figure, the betas of CAPM and 3-Factor FF model are more significant for rank-based strategy (2), (3), (5), (6).
- Positive and significant SMB for rank-based strategy (2), (3), (5) shows it prefers smaller companies.
- Consistently negative and significant UMD shows it potentially performs better during market downturns.
- There is not much consistent patterns in the Betas, which suggests factors have limited explanatory power regarding the signal performance.

Comparison: Without Value Signal

> Running Factor Regressions: Table 1 - 3 Fama-French Factors

	(1)	(2)	(3)	(4)	(5)	(6)
const	0.0057*	-0.0026	0.0061***	0.0055*	-0.0004	0.0060***
	(0.0031)	(0.0024)	(0.0015)	(0.0031)	(0.0017)	(0.0015)
mktrf	0.0435	1.2713***	-0.0271	0.0368	1.0904***	-0.0359
	(0.0684)	(0.0531)	(0.0334)	(0.0727)	(0.0403)	(0.0356)
hml				-0.2217**	-0.2623***	-0.0942**
				(0.0928)	(0.0514)	(0.0454)
smb				0.0745	0.8870***	0.0589
				(0.1273)	(0.0706)	(0.0623)
R-squared	0.0025	0.7839	0.0042	0.0378	0.8938	0.0319
R-squared Adj.	-0.0038	0.7825	-0.0021	0.0193	0.8917	0.0133
N	160	160	160	160	160	160
R2	0.00	0.78	0.00	0.04	0.89	0.03

Standard errors in parentheses.

- * p<.1, ** p<.05, ***p<.01
- (1): Long-Short Value Weights ~ CAPM Model
- (2): Long-Only Rank Weights ~ CAPM Model
- (3): Long-Short Rank Weights ~ CAPM Model
- (4): Long-Short Value Weights ~ 3-Factor Fama French Model
- (5): Long-Only Rank Weights ~ 3-Factor Fama French Model
- (6): Long-Short Rank Weights ~ 3-Factor Fama French Model

Annualized Information Ratios:

	1	2	3	4	5	6
Alpha	0.069 -0	.031 0.	.073 (0.065 -0.	005 0	.073
Std(resid)	0.131 0	.101 0.	.064 (0.128 0.	071 0	.063
Information Ratio	0.528 -0	.303 1.	147 (0.511 -0.	072 1	.156

Observations on Performances:

- Higher alpha for singlesignal strategy
- Beta still inconsistent

Potential explanations:

- Traditional value metrics (e.g., B/M ratio) cancel out certain intangible signal
- B/M is not an ideal valuation factor due to the high volatility of the technology sector
- Timing of the data

Implications for Further Research

- 1. Use the strategy in other sectors
- more focusd on accounting quality (z score, f score, accruals CFO) and valuation risks