"低保"标准确定的数学模型

摘要

城市居民最低生活保障制度,是为满足城市贫困群体基本生活需求而设立的 社会救助制度。1999 年,国务院正式颁布并实施了《城市居民最低生活保障条例》后,城市居民最低生活保障制度走上了规范化、法制化的发展道路。如何合 理地确定"低保"标准,帮助百姓脱贫,一直是社会热点问题。

针对问题一,我们结合现行"低保"制度存在的问题,提出了三个指标。首先,利用"马丁法"构造出低贫困线和高贫困线,用以刻画某一地区维持最基本生活需要所需的货币支出;其次,利用 GDP 的百分比进行约束,构造出反映政府财政压力的指标。最后,将"懒惰指数"纳入考虑范围,刻画"低保户"接受补助后滋生的惰性大小。利用模糊数学,得到 $g(\xi_i) = e^{k(\xi_i - a)}$ 的函数。

针对问题二,选定研究的区域为北京市(城镇)。首先,利用"马丁法"对高贫困线进行拟合,得出北京地区的"马丁线"为 1310.101 元。其次,对北京市(城镇)的收入分布函数进行拟合,利用经典的对数正态分布,经过计算,得到的参数为 $\mu=8.4087$, $\sigma=0.5742$ 。然后,构建非线性规划,对"低保"标准进行分档,在财政约束下,使得居民生活水平尽可能高,"懒惰指数"尽可能小。结果是第一档"低保"标准定为 1375.83 元,第二档"低保"标准定为 1635.68 元。最后,进行灵敏度分析。

针对问题三,首先,对城市和农村之间"低保"标准的比例进行研究。针对四类不同的城市,比例分别为(1.1120, 1.5092, 1.8040, 2.7751)。其次,对不同省份的"低保"标准进行聚类,构造 4 类省份不平衡系数,为 w_{21} =1.6099, w_{22} =1.1564, w_{23} =0.8741, w_{24} =0.9953。最后,针对湖南省内不同地市、县、区的"低保"标准,选取了"城镇居民人均可支配收入"为最相关指标,用以后续分析。

针对问题四,本文拥有两条思路。首先,根据思路一,以问题二中北京市的结论为基准,利用问题三中的"城市农村比"和不同省份的"不平衡系数"进行调整,即可粗略得到任意一省的"低保"标准。例如,吉林省的"低保"标准应定为:城市,第一档666.40元,第二档782.83元;农村,第一档441.56元,第二档518.50元。

然后,根据思路二(以吉林省为例),将省份内部不同的地区进行分类。第一步进行非线性优化,得到全省基准值,为 459.66 元。第二步,对"城镇居民人均可支配收入"进行分档,利用改进的"五数概括"算法,得到 6 档。第三步,进行系数调整,得到了 6 档地区的"低保"标准,为 388.42 元, 430.67 元, 438.22 元, 452.43 元, 488.16 元,以及 578.14 元。最后,简述了吉林省各地市、区县"低保"标准的不合理性。

关键词 "低保"标准,模糊数学,非线性规划,聚类,"五数概括"分档算法

1. 问题的重述

"低保"是一种对低收入家庭的保障制度。在我国,不管是城市居民,还是农民居民,只要符合"低保"要求,都可以申请"低保"保障。而由于地区发展不平衡,每个省市甚至县级城镇的"低保"标准存在一定差异。

现有以下几个问题:

- 1. 根据掌握的数据, 挑选出主要的计算"低保标准"的指标。
- 2. 就某一地区,根据获得的数据,给出该地区"低保标准",并给出合理的解释。
- 3. 根据掌握的数据,分析一下现行的各地(省、或县市)之间"低保标准"的相关性。
 - 4.利用第三问分析的结果,给出多元数学模型,并各处模型适应性验证。

2. 问题的分析

2.1 问题(1)的分析

问题(1)要求根据掌握的数据,挑选出主要的计算"低保标准"的指标。 首先,明确"低保"——最低生活保障的含义,在此基础上构造"马丁线" 指标,以低贫困线、高贫困线衡量不同地区满足最低生活要求的货币数量。其次, 构造指标衡量政府财政压力,以 GDP 的百分比进行约束。然后,利用模糊数学 的隶属度函数构造"懒惰指数",刻画"低保户"在接受补助后滋生的惰性。

2.2 问题(2)的分析

问题(2)要求就某一地区,根据获得的数据,给出该地的"低保标准",并给出合理的解释。

首先,选定北京市(城镇)为研究对象。利用回归方程,对北京的"马丁线" (高贫困线)进行测算,得出北京地区维持最低生活水平所要求的货币数量。其次,对北京的收入分布进行拟合,为后续模型进行准备。然后,根据满足生活需要、减轻财政压力、降低"懒惰指数"的要求,对"低保"水平进行优化,最大化人民的生活水平,从而求得"低保"覆盖率、"低保"标准与补助金额。

2.3 问题(3)的分析

问题(3)要求根据掌握的数据,分析现行各地"低保标准"的相关性。

首先,对农村、城市之间的相关性进行分析。通过对省份的分类,构造不同类别省份的"城市农村比"。其次,对省份之间的"低保"标准相关性进行分析。利用模糊聚类法,构造不同省份之间的不平衡系数。最后,对某一省份内部的各个地市、区、县的"低保"相关性进行分析,选出相关性最强的指标。

2.4 问题(4)的分析

问题(4)要求利用前述结果,给出多元数学模型,并进行适应性验证。

首先,第一条思路是以求出的北京"低保"标准为基准,依据第(3)问中求得的"城市农村比"、不同省份之间的"不平衡系数",可以求得任意一省、任意城乡的"低保"标准值。其次,第二条思路,是对给定的省份进行不分档优化,

求出省内基准值,而后将问题(3)中选出的、与省内地市标准相关性最强的指标进行分档。构造分档后的不平衡系数,从而求得省内不同地区的不同"低保"标准。最后,进行模型适应性分析。

3. 模型的假设与符号的说明

3.1 模型的假设

- (1) 从相关文献、统计年鉴中获取的各种数据能反映实际情况;
- (2) 全国经济状况稳定,短时间内不会出现大的波动;
- (3)"低保"标准按月制定。
- (4)"低保"标准与各地经济发展水平密切相关。

3.2 符号的说明

单位 符号 说明 S^F 最低食物线 元/月 元/月 家庭人均消费支出 w w^0 "马丁线" 元/月 "低保"覆盖率 λ_i "低保"补助金额 元/月 x_i 获得补助满足度 ξ_i "低保"标准城市农村比 w_{1i} 省份不平衡系数 w_{2i} 省内不平衡系数 w_{3i}

表 1 符号的说明

4. 模型的建立、求解与分析

4.1 问题(1)模型的建立、求解与分析

城市居民最低生活保障制度(以下简称"低保"制度),是为满足城市贫困群体基本生活需求而设立的社会救助制度。1997年9月2日下发的《关于在全国建立城市居民最低生活保障制度的通知》标志着城市居民最低生活保障制度的开始。1999年,国务院正式颁布并实施了《城市居民最低生活保障条例》后,城市居民最低生活保障制度走上了规范化、法制化的发展道路。

"低保"制度实施若干年来,改善了人民群众的生活,有效地维护了社会的和谐稳定与公平正义。然而,现行的"低保"标准存在着若干问题:一是囿于各地经济发展水平,"低保"标准仍然难以保障百姓最基本的生活需要,在巨大的生活开销前,有时无异于杯水车薪;二是"低保"支出给各级地方政府带来了巨大的财政压力,使得政府在制定"低保"标准时,出现了左右为难的状况;三是"低保"的补助无疑会滋生某些"懒汉"的行为,依赖补助、拒不工作,显然不利于促进社会公平、提高社会效率。

基于此,本文从这三条问题出发,构造并计算"低保标准"的指标。

4.1.1 "马丁线"指标

"马丁线"是一条贫困线,测算的是对于某一地区,满足最基本的生活需要而所需的货币支出。首先,根据中国营养学会,确定每人每日应摄入的各种食品类别 r_i kg,再根据当地物价,计算出每种食物类别的价格 p_i 元/kg,从而计算出"最低食物线":

$$S^F = \sum_{i=1}^n r_i p_i. \tag{1}$$

马丁法的"低贫困线",是利用"最低食物线"衡量低收入家庭的人均非食物支出——当某一家庭的全部消费刚好达到"最低食物线"时,用部分维持生活必须的食物支出所换取的非食物支出,便是"非食物贫困线"。

根据边恕(2015),有如下回归方程:

$$C = a + b \ln \left(\frac{w}{S^F}\right) + \epsilon \tag{2}$$

其中, *C*为家庭消费支出占总消费支出的比重,即恩格尔系数; *w*为家庭人均消费支出;

 S^F 为当地的"最低食物线"。

而"非食物贫困线"与"最低食物线"之间存在比例关系:

$$S^o = S^F(1-a)$$

其中, S°为非食物支出。

同时, 当 S^F 为常量时, (2) 式演化成如下回归模型

$$ln(w) = c + dY^F + \epsilon$$
(3)

其中, Y^F 为家庭人均食物支出,当把"最低食物线"代入此变量时,反解出w,即可求得"高贫困线"。

4.1.2 政府财政压力

"低保"补助在改善人民生活的同时,也给政府带来了巨大的财政压力。当前,对于发达国家而言,社会救助资金投入通常占 GDP 的 0.5%;而根据国际惯例,可以认为中国用于社会救助的资金比例不应低于发达国家水平。然而,当前中国经济发展水平虽与西方发达国家的差距明显缩小,但低收入群体的人口比例却远高于发达国家水平,为不给政府财政造成过重负担,可以选用 0.5%*GDP 为基准。

设

$$\lambda_i = \frac{ 接受前 i 档 "低保"的补贴人数}{ 社会总人数 N}$$

$$\mathrm{TP} = \sum_{i=1}^k (\lambda_i - \lambda_{i-1}) x_i N, \qquad \lambda_0 = 0.$$

其中, 可将"低保"补助分为k个档次:

第 1 档补助惠及收入最低的 λ_1 %人群,他们获得的补助为 x_1 元/人;

第2档补助惠及收入次低的 $(\lambda_2 - \lambda_1)$ %人群,他们获得的补助为 x_2 元/人;

. .

依此类推,进行求和,可以算出政府最终的转移支付TP。

4.1.3 "懒惰指数"

事实上,政府补助过多而导致人生惰性,厌恶劳动的例子屡见不鲜。最典型的例子是北欧社会,政府补贴的社会福利普遍而广泛,人的一生"从摇篮到坟墓",每个阶段都享受着各种各样的福利与补助;然而 2009 年希腊政府破产,却与过高的福利与补助存在着极为密切的关系。

为了刻画社会补助滋生的"懒惰指数",首先定义

$$\xi_i = \frac{x_i}{$$
收入位于后 λ_i %的人群所对应的收入

 ξ_i 表示对于收入位于后 λ_i %的人群,相较于其获得的其他收入,政府给予的补助带给其的满足度。可以想见, ξ_i 越大,政府给予的补助就越多,就越易滋生惰性,且这种惰性随着 ξ_i 的增加急速增长。

因此, 利用模糊数学中的隶属度函数, 对这种惰性进行刻画。

$$g(\xi_i) = e^{k(\xi_i - a)}, \qquad \xi_i > 0$$

当 ξ_i =0 时,不妨设 $g(\xi_i)$ =0.1;

当 ξ_i =1 时,不妨设 $g(\xi_i) > 1$;

综上,可以确定参数 $k=\ln 10$, a=1.

观察该"懒惰指数",可以发现,当 $0 < \xi_i \le 1$ 时,懒惰值增长较为平稳,而当 $\xi_i > 1$ 时,懒惰值呈爆炸式增长;同时,随着 ξ_i 的增加,懒惰值增长率始终大于0,且懒惰值增长率也在稳步增长。

当政府补助少于自身收入时,惰性较小;而当政府补助高过自身收入时,惰性较大,且极易膨胀——这也是符合人之常情与实际常理的情况。

4.2 问题(2)模型的建立、求解与分析

目前,"低保"标准的制定与"低保"的发放遵循的是"补差法"——在规定一定标准后,用此标准扣除居民的收入,不足的差额由政府进行补贴。

在问题(2)中,本文拟选定北京市(城镇)为"低保"标准制定地区,根据问题(1)中选定的指标,综合考虑"马丁线"所代表的贫困线、政府财政压力问题以及"懒惰指数"问题,制定一个分档次分层级、满足温饱、减轻财政压力并且尽量避免"懒惰"的"低保"标准。

4.2.1 "马丁线"的测算

首先,根据中国营养学会公布的最低热量支出水平,将最低热量确定为每日 2200 卡路里比较合适。

表 2 食品种类及摄入量

食品类别	标准(kg/人/日)
粮食	0.300
豆类及豆制品	0.040
油脂	0.026
肉禽	0.075
蛋	0.051
水产品	0.075
鲜菜	0.409
水果	0.125
奶类及奶制品	0.125

其次,通过查阅北京批发市场对各种食品类别的定价,并上浮 30%作为食品零售价,通过(1)式计算出当前时期北京地区的最低食物线 S^F =258.53 元/人/月。(数据见附录 A.1.1)

然后,利用(3)式高贫困线进行计算。首先确定回归方程的系数c、d. 查阅《北京统计年鉴》,选取 1978~2015 年的人均消费支出和人均食品支出(数据见附录 A.1.2),运用 Excel 软件,利用最小二乘法进行回归拟合,得到回归方程 $\ln(w)=7.143336+0.000134Y^F$.

经检验,该回归方程 $R^2=87.48\%$,对方程进行 F 显著性检验,p-value 为 $7.02*10^{-13}$,该模型十分显著。

SUMMARY	OUTPUT							
回归	统计							
Multiple R	0.874786							
R Square	0.765251							
Adjusted R	0.758731							
标准误差	0.70177							
观测值	38							
方差分析								
	df	SS	MS	F	ignificance	F		
回归分析	1	57.79542	57.79542	117.3555	7.02E-13			
残差	36	17.72934	0.492482					
总计	37	75.52476						
	Coefficients	标准误差	t Stat	P-value	Lower 95%	Upper 95%	下限 95.0%	上限 95.09
Intercept	7.143336	0.158462	45.07923	2.87E-33	6.821961	7.464712	6.821961	7.464712
X Variable 1	0.000134	1.23E-05	10.83307	7.02E-13	0.000109	0.000159	0.000109	0.000159

图 1 Excel 回归结果

最后,将 S^F =258.53 反代入该回归方程中,得到"马丁线",记为 w^0 ,为1310.101元。因此可以认为,对于北京市(城镇)的居民,只有当补贴后收入超过1310.101元时,才能满足最基本的生活需求。

4.2.2 北京市(城镇)居民收入分布函数的测算

为了将居民收入的百分比与实际收入的取值相结合,我们需要对北京市(城镇)居民收入的分布函数进行刻画与测算。

首先,根据《北京统计年鉴》,得到 2016 年城镇居民家庭人均可支配收入按百分比划分的数据。

表 3 北京市(城镇)居民收入按 20%划分

	低收入户 20%	中低收入 户 20%	中等收入 户 20%	中高收入 户 20%	高收入户 20%
可支配收入 (年)	25812	41555	53829	69501	109429
可支配收入 (月)	2151	3463	4486	5792	9119

其次,通过查阅文献,我们了解到居民收入服从对数正态分布。这里不妨设 居民收入为*m*元。

其概率密度为:

$$f(m;\mu;\sigma) = \frac{1}{\sqrt{2\pi}m\sigma} e^{-\frac{(\ln m - \mu)^2}{2\sigma^2}}$$

分布函数为:

$$\lambda = F(m; \mu; \sigma) = \int_0^m \frac{1}{\sqrt{2\pi}x\sigma} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}} dx = \Phi\left(\frac{\ln m - \mu}{\sigma}\right)$$

因此,结合表 3,可以写出方程:

$$\begin{cases} \frac{1}{2} = \Phi\left(\frac{\ln 4486 - \mu}{\sigma}\right) \\ \frac{1}{10} = \Phi\left(\frac{\ln 2151 - \mu}{\sigma}\right) \end{cases}$$

最终,解得 $\mu = 8.4087$, $\sigma = 0.5742$.

对于拟合的效果,可以从下表进行比较。

表 4 收入分布函数拟合结果比较

可支配收入	2151	3463	4486	5792	9119
实际分位数区间	0%~20%	20%~40%	40%~60%	60%~80%	80%~100%
拟合分位数	10.026%	32.609%	50.001%	67.185%	89.167%

通过表 4,可以大致看出,"拟合分位数"全部位于"实际分位数区间"的中间部分。由于可支配收入为 2151 元以及 4486 元时,被用作参数求解条件,故拟合分位数恰好为 10%和 50%。对于未被用作参数求解条件的 3463 元,5792 元以及 9119 元,所得"拟合分位数"与 30%、70%以及 90%仍然十分接近,所以有理由相信,该分布函数与实际情况较为符合,拟合的效果较好。

4.2.3 非线性规划求得"低保"标准

在制定北京市(城镇)的月"低保"标准时,需明确这样几个原则:

- (1) 利用"补差法"进行"低保"标准的制定与"低保"补贴的发放;
- (2) "低保"标准以测算出的"马丁线"1310.101 元为基准参考;
- (3)"低保"标准按人均收入进行分档。在现实情况下,档次过多往往会使得"低保"的申请、审核与发放工作过于繁琐,因而此处限定为不多于三档:
- (4) 第 1 档补助惠及的人群收入最低,故获取的补助应该最高;第 3 当补助惠及的人群收入相对高,故获取的补助应该相对较少;
 - (5) 为了使"低保"补助惠及的人群为切切实实的低收入人群,避免高收

入人群钻制度的漏洞,设定"低保"补助第三档人群的最高收入—— $\exp(\Phi^{-1}(\lambda_3)*0.5742+8.4087)$ 应少于"马丁线"1310.101元的1.1倍;

- (6) 在现行"低保"制度中,由于档次划分的问题,会存在特定的低收入群体,其收入仅比"低保"标准略高,却错失了领取补助的机会。他们既失去了改善生活的机会,又造成了另一个棘手的现象——其收入反而不如比其收入更低群体在接受补助后的收入高——这涉及到社会的公平问题,但又无法避免。为了保证这类特殊的群体至少能够维持温饱,设定"低保"补助第三档人群的最高收入—— $\exp(\Phi^{-1}(\lambda_3)*0.5742+8.4087)$ 应多于"马丁线"1310.101元。这样,当某一居民的收入略高于 $\exp(\Phi^{-1}(\lambda_3)*0.5742+8.4087)$ 却无法领取补助时,他仍然能够维持最基本的生活水平;
 - (7) 在制定"低保"补助时,应考虑政府财政压力;
- (8) 在制定"低保"补助时,应考虑补助金额与其惠及的居民的收入之比; 该比值一旦过高,将引起"懒汉"行为。
 - (9) 为改善人民生活,应尽可能使政府对"低保户"的补贴多一些。
- (10) 根据重要性,对"低保"补贴最大化赋权 0.9,"懒惰指数"最小化赋权 0.1。

基于以上几个原则,进行以下非线性规划:

$$\max 0.9 \sum_{i=1}^{3} \eta_{i} - 0.1 \sum_{i=1}^{3} g(\xi_{i})$$

$$\eta_{i} = \frac{\exp(\Phi^{-1}(\lambda_{3}) * \sigma + \mu) + x_{i}}{w^{0}}$$

$$\xi_{i} = \frac{x_{i}}{\exp(\Phi^{-1}(\lambda_{3}) * \sigma + \mu)}$$

$$g(\xi_{i}) = e^{\ln 10 * (\xi_{i} - 1)}$$

$$1 < \frac{\exp(\Phi^{-1}(\lambda_{3}) * \sigma + \mu)}{w^{0}} < 1.1$$

$$TP = \sum_{i=1}^{3} (\lambda_{i} - \lambda_{i-1}) x_{i} N < 0.5\%GDP$$

$$\lambda_{3} > \lambda_{2} > \lambda_{1} > 0$$

$$\lambda_{3} > \lambda_{2} > \lambda_{1} > 0$$

$$\lambda_{3} > \lambda_{2} > \lambda_{1} > 0$$

利用 Matlab 进行求解,得到以下结果:

表 5 优化结果

变量	λ_1	λ_2	λ_3	x_1	x_2	x_3
优化结果	5.4627*10 ⁻¹⁹	0.019780	0.039456	805.39	805.39	723.91

观察表 5, 可以看到得出如下结论:

- (1) λ_1 数值极小,所以可以认为,北京市(城镇)的"低保"标准分为两个档次即可,分别是收入占北京市后 1.978%的人群和收入占后 1.978%~3.9456%的人群。
- (2) 因此,将第一档"低保"标准定为 1375.83 元,补助 805.39 元;第二档"低保"标准定为 1635.68 元,补助 723.91 元。
- (3)此时,对于收入略高于 1635.68 元的居民,虽然没能享受到补助,但是在以 1310.101 元为"马丁线"的情况下,亦足以维持生活。

- (4) 此时,政府为"低保"补助而投入的转移支付占 GDP 的 0.2889%,尚未达到临界值 0.5%,财政压力较为平缓。
- (5) 此时, ξ_1 =0.585, $g(\xi_1)$ =0.385; ξ_2 =0.443, $g(\xi_2)$ =0.277。可见,"懒惰指数"被控制在了相当好的范围内,这显然有利于促进效率和公平,激发全社会的活力。

4.2.4 灵敏度分析

事实上,在上述优化中,"低保"补贴最大化的权值 0.9 和"懒惰指数"最小化的权值 0.1 的确定较为主观。尽管可以肯定的是,"低保"补贴最大化的重要性远远大于"懒惰指数"最小化的重要性,但是当权值发生改变时,优化的结果是否会发生较大的改变呢?

下面,对这对权值试取不同的值,进行灵敏度分析:

权重1	权重2	λ_1	λ_2	λ_3	x_1	x_2	x_3
0.9	0.1	5.4627*10-19	0.019780	0.039456	805.39	805.39	723.91
0.8	0.2	3.1321*10-17	0.019488	0.038948	913.41	913.41	913.39
0.7	0.3	8.1055*10-15	0.011998	0.023996	926.57	924.85	920.30
0.6	0.4	6.1049*10-15	0.011998	0.023997	937.98	929.87	929.42

表 6 优化的灵敏度分析

通过表 6, 可以看出:

- (1) 无论权重取值如何, λ_1 均十分小,说明在当前的情况下,"低保"标准分为两个档次已经足够;
- (2)当权重由 0.9-0.1 变为 0.8-0.2 时, λ_2 变动了-1.276%, λ_3 变动了-1.288%, x_2 变动了 13.41%, x_3 变动了 26.17%;
- (3)当权重由 0.8-0.2 变为 0.7-0.3 时, λ_2 变动了-38.43%, λ_3 变动了-38.39%, x_2 变动了 1.252%, x_3 变动了 0.757%;
- (4) 当权重由 0.7-0.3 变为 0.6-0.4 时, λ_2 变动了 0%, λ_3 变动了 0%, x_2 变动了 0.5428%, x_3 变动了 0.991%;

不难发现,权重从 0.7-0.3 变为 0.6-0.4 时,各个变量的变动幅度都达到最小。此时,第一档"低保"标准定为 1227.36 元,补助 927.36 元;第二档"低保"标准定为 1441.24 元,补助 924.86 元。

4.3 问题(3)模型的建立、求解与分析

问题(3)要求根据掌握的数据,分析现行的各地(省或县、市)之间"低保"标准的相关性。

首先,本文搜集到了财政部公布的2017年9月全国各省"低保"的平均值。 (见附录A.2.1)。其次,本文拟从城镇一农村、不同省份、省份内部不同县市三个维度,对各地现行的"低保"标准相关性进行分析。

4.3.1 城镇和农村的"低保"标准相关性

首先,通过全国各地农村和城市的"低保"标准折线图,可以大致地看出其中趋势。

全国各地"低保"标准相关性 图 2

无论省份如何,农村的"低保标准"保持较为平稳的态势;而城市的"低保" 标准则随不同省份变化较大。

为考察城市"低保"标准与农村"低保"标准的比例关系,计算各省城市"低 保"标准与农村"低保"标准的比值。

	表	7 全国	各省城市	"低保"	标准与农村	"低保"	标准的比值	
省份	北京	天津	河北	山西	内蒙古	辽宁	吉林	黑龙江
比值	1.0166	1.0000	1.7055	1.5513	1.4514	1.5645	1.5532	1.7042
省份	上海	江苏	浙江	安徽	福建	江西	山东	河南
比值	1.0000	1.0937	1.0803	1.4480	1.4302	1.7046	1.5175	1.6617
省份	湖北	湖南	广东	广西	海南	重庆	四川	贵州
比值	1.4319	1.4840	1.2797	1.8343	1.3139	1.9633	1.5543	1.8252
省份	云南	西藏	陕西	甘肃	青海	宁夏	新疆	
比值	1.8732	2.7751	1.8220	1.4589	1.6275	1.4876	1.4166	

城市农村比的散点图 图 3

通过图 3 可以看出,"城市农村比"大致徘徊于 1~2 之间, 1 沿线、1.5 沿线 以及2沿线均密布着散点。基于这种观察,将"城市农村比"进行分类。

类别	城市	"城市农村 比"范围
1	北京、天津、上海、江苏、浙江、广东、海南	1.00~1.33
2	山西、内蒙古、辽宁、吉林、安徽、福建、山东、河 南、湖北、湖南、四川、甘肃、青海、宁夏、新疆	1.33~1.67
3	河北、黑龙江、江西、广西、重庆、贵州、云南、陕西	1.67~2.00
4	西藏	2.00~

"城市农村比"分类

通过表 8,不难发现,"城市农村比"较低的、接近1的省份多为经济发达

省份,而这也从侧面反映出经济发达省份贫富差距相对较小。而"城市农村比"较高的省份,一方面经济不够发达、贫富差距较大,另一方面政府财政吃紧,对农村的补助往往不够到位。这4个类别中,第四类西藏自成一类,需要单独考虑,这或许和西藏极高的贫富差距有关。

其次,为了构造一个确定的"调整系数",刻画这 4 个类别"城市农村比"的相对大小关系,我们求出了他们的均值。均值分别为(1.1120, 1.5092, 1.8040, 2.7751):

从而,对于不同类别的省份,"低保"标准的"城市农村比"可以视作 $w_{1i} = \bar{x} = (1.1120, 1.5092, 1.8040, 2.7751).$

4.3.2 不同省份的"低保"标准相关性

我国省份较多,经济情况各不相同,"低保"标准之间既有较大的区别,又有较深的联系。为了刻画不同省份的"低保"标准的相关性,这里运用模糊聚类分析方法,将不同省份现行的城镇"低保"标准、农村"低保"标准、"城市农村比"的差异进行聚类分析,使得同一类别内部差异较小,而类别之间差异较大。

Step 1. 建立数据矩阵。

依据 31 个省份关于城镇"低保"标准(月),农村"低保"标准(月),农村"低保"标准(年)以及"城市农村比"四个因素,设论域 $U=\{x_1,x_2,\ldots,x_{31}\}$ 为被分类对象。

于是,原始数据矩阵为 $X = (x_{ij})_{31*4}$ 。由于这四个指标的量纲不同,所以应对他们进行标准化处理:

$$z_{ij} = \frac{x_{ij} - \overline{x_{ij}}}{\sigma_{x_{ij}}}$$

Step 2. 运用距离法建立模糊相似矩阵。

确定 z_i 与 z_j 相似程度 $r_{ij} = R(z_i, z_j)$ 的主要方法有距离法,采用欧式距离:

$$d(z_i, z_j) = \sqrt{\sum_{k=1}^4 (z_{ik} - z_{jk})^2}$$

于是得到相似矩阵为

$$r_{ij} = 1 - cd(z_i, z_j)$$

其中c为适当选取的参数,它使得 $0 \le r_{ij} \le 1$.

Step 3. 聚类。

从第二步求出的 31*4 阶模糊相似矩阵R出发,进行聚类。利用 SPSS,得到聚类结果。

表 9 省份聚类结果

类别	城市								
1	北京、天津、上海								
2	江苏、浙江、广东								
3	河北、黑龙江、江西、广西、贵州、云南、陕西、山西、吉林、山 东、河南、湖南、四川、甘肃、青海、宁夏、新疆、西藏								
4	内蒙古、辽宁、安徽、福建、湖北、海南、重庆、								

根据表 9,可以看出,类别 1 和类别 2 为经济较发达省份,而类别 4 经济发展水平要好于类别 3。

在此基础上,以各省份城镇"低保"标准为研究对象,计算各地区间的不平衡系数:

 $\zeta_i = \frac{i \text{省城镇"低保"标准}}{\text{全国城镇平均"低保"标准}}$

表 10 各省城镇"低保"不平衡系数

省份	北京	天津	河北	山西	内蒙古	辽宁	吉林	黑龙江
比值	1.6389	1.4995	0.9443	0.8115	1.0315	0.9664	0.8429	0.9543
省份	上海	江苏	浙江	安徽	福建	江西	山东	河南
比值	1.6913	1.1179	1.1832	0.9193	1.0283	0.9260	0.8847	0.8804
省份	湖北	湖南	广东	广西	海南	重庆	四川	贵州
比值	0.9666	0.7720	1.1681	0.8671	0.8362	1.2187	0.8198	0.9692
省份	云南	西藏	陕西	甘肃	青海	宁夏	新疆	
比值	0.8995	1.3150	0.8539	0.7981	0.7854	0.8024	0.6877	

这个分析结果不难看出:

- (1) 类别 1 省份的不平衡系数远远超过 1, 意味着其"低保"标准远超全国平均值:
- (2) 类别 2 省份的不平衡系数全部超过 1, 意味着其"低保"标准超过全国平均值;
- (3) 类别 3 省份的不平衡系数全部低于 1, 意味着其"低保"标准明显地低于全国平均值。
- (4) 类别 4 省份的不平衡系数在 1 上下波动, 意味着其"低保"标准基本上与全国平均值持平;

根据表 9 的聚类结果和表 10 计算所得的不平衡系数,可以求得 4 个类别的平均不平衡系数,记为 w_{2i} .

其中, w_{21} =1.6099, w_{22} =1.1564, w_{23} =0.8741, w_{24} =0.9953.

4.3.3 省份内部各地市"低保"标准相关性

"低保"标准不仅在省份之间、城乡之间存在着显著的不同,在同一省份的不同地市之间也存在着显著的不同。当讨论省份内部各个地市的"低保"标准时,不同省份之间便不再有可比性了。通过查阅资料,得知目前湖南省"低保"标准

根据最低工资标准制定,与各地市经济水平密切相关。故在本节,本文选取湖南省各区、县的"低保"标准的数据,分析与他们具有较强相关性的指标。

首先, 搜集到了湖南省 124 个地级市、区、县的"低保"标准(见附录 A.2.3)。 其次, 根据《湖南统计年鉴 2017》, 选取了若干个与"低保"标准相关联的 指标,包括:

- (1) 在岗职工平均年工资;
- (2) 地区 GDP 总值:
- (3) 人均 GDP:
- (4) 城镇居民人均可支配收入;
- (5) 全体居民人均生活消费支出。

为了选取与"低保"标准最具关联性的指标,并基于此,对某一省内各市、区、县的"低保"标准进行分档,本文此处拟采用相关系数,对指标间的相关性进行衡量。

对于两个序列向量,X和Y之间的 Pearson 相关系数为

$$\rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E\big((X - u_X)(Y - u_Y)\big)}{\sigma_X \sigma_Y} = \frac{E(XY) - E(X)E(Y)}{\sqrt{E(X^2) - E^2(X)}\sqrt{E(Y^2) - E^2(Y)}}$$

此外,还应对求得的 ρ_{XY} 进行显著性检验。运用 t 检验,统计量为

$$t = \frac{\rho_{X,Y}\sqrt{n-2}}{\sqrt{1-r^2}} ~\sim ~t(n-2)$$

当 $|t| > t_{\mathfrak{S}}(n-2)$ 时,或者 p-value<0.05 时,可以认为 $\rho_{X,Y}$ 不为 0 是显著的。

利用统计分析软件 SPSS,可获得湖南省各地市、区、县"低保"标准与以上五个指标的相关性。

	27 1 11 10 3 10 10 10 10 11 11 11 11 11 11 11 11 11								
	在岗职工平	地区 GDP	人均	城镇居民人均	全体居民人均				
	均年工资	总值	GDP	可支配收入	生活消费支出				
Pearson	0.496	0.671	0.772	0.795	0.767				
p-value	0.000	0.000	0.000	0.000	0.000				

表 11 五个指标与"低保"标准的相关性

通过表 11,可以清晰地看出,所有 Pearson 相关系数都通过了显著性检验。事实上,指标"在岗职工平均年工资"与现行"低保"标准的相关性最弱,而指标"人均 GDP","城镇居民人均可支配收入",以及"全体居民人均生活消费支出"与现行"低保"标准存在较强的相关性。其中,指标"城镇居民人均可支配收入"与现行"低保"标准的相关性最强。

基于此,在后续分析中,将选择"城镇居民人均可支配收入",作为省份内部划分"低保标准"的重要参考。

4.4 问题(4)模型的建立、求解与分析

问题(4)要求利用先前的结果,给出多元数学模型,并给出模型适应性验证。本文拟结合前文的分析,给出两个思路,对给定的地区的"低保"标准做出制定。

4.3.1 思路一: 以北京市(城镇)为基准的系数调整模型

在问题(2)中,我们结合北京市消费水平、政府财政压力、"懒惰指数"等,给出了北京市(城镇)的"低保"标准——第一档"低保"定为1227.36元,第二档"低保"定为1441.24元。

在问题(3)中,我们对不同的省份进行聚类分析,得到了"城市农村比"和"不平衡系数"。

基于这些信息,以北京市为基准,通过系数调整,便可以对各省的"低保"标准进行确定。

Step 1. 现已知,北京市所属类别的"城市农村比"为 1.1120,"不平衡系数"为 1.6099。

Step 2. 对于某省 θ ,通过搜索其所属类别,得到"城市农村比"为 $w_{1\theta}$,"不平衡系数"为 $w_{2\theta}$.

Step 3. 则对于该省 θ ,应确定城市 "低保"补助为

北京市(城镇)"低保"标准 *
$$\frac{w_{2\theta}}{1.6099}$$

而应确定农村"低保"补助为

北京市(城镇)"低保"标准 *
$$\frac{w_{2\theta}}{1.6099}$$
 * $\frac{1}{w_{1\theta}}$

例如,对于吉林省, $w_{1\theta}$ =1.5092, $w_{2\theta}$ =0.8741,故吉林省城市"低保"补助为第一档 666.40 元,第二档 782.83 元;而吉林省农村"低保"补助为第一档 441.56 元,第二档 518.50 元。

尽管该模型中,各个调整系数全部来源于现行标准数据,但是最终所得结果与吉林省现行的"低保"标准相比,仍然略高。这是由于,模型的基准——在第(2)问中求出的北京市城镇"低保"标准——高于现行的940元/月,从而导致所有通过该模型获得的,其他各个省份的结果,全部高于现行标准。

4.3.2 思路二: 规划与系数调整的结合模型

事实上,通过上述"思路一"得到的结果较为粗糙,且只能具体到省份这一级别。当讨论某一省份内,具体的地市、县、区的"低保"标准确定问题的时候,就需要对全省的整体情况与数据拥有较好的把握。

承袭上文,在这一节中,我们依旧选取吉林省为考察对象,进行"低保"标准的确定。

Step 1. 规划

参考 4.2.3 节,对吉林省的"马丁线"、财政压力、"懒惰指数"以及收入分布进行刻画,并进行非线性规划,求出吉林省的基准值。

- (1)"马丁线": 利用城镇数据, 运用"马丁法"拟合低贫困线, 求出 w^0 =306.47元。
- (2) 财政压力:根据数据查找,2017年吉林省城镇"低保"支出47807万元,农村"低保"支出20092万元,全年生产总值2302.8亿元;"低保"转移支付占GDP的比例大致为0.25%。
 - (3) "懒惰指数": 仍然使用 $g(\xi) = e^{\ln 10*(\xi-1)}$ 为"懒惰指数"。
 - (4) 分档:由于此处进行规划的目的,仅仅是求得全省的基准值,故不再

分档。

(5) 收入分布函数: 采用指数正态分布, 分布函数为

$$F = \Phi\left(\frac{\ln m - 7.490348}{0.64927}\right)$$

(6) 2017 年吉林省人均 GDP 为 4489 元/月。则,非线性规划为:

$$\text{s. t} \begin{cases} \eta = \frac{\exp(\Phi^{-1}(\lambda) * \sigma + \mu) + x}{w^0} \\ \xi = \frac{x}{\exp(\Phi^{-1}(\lambda) * \sigma + \mu)} \\ g(\xi) = e^{\ln 10*(\xi - 1)} \\ 1 < \frac{\exp(\Phi^{-1}(\lambda) * \sigma + \mu)}{w^0} < 1.1 \\ \text{TP} = \lambda x N < 0.25\%GDP \\ \lambda > 0 \\ x > 0 \end{cases}$$

利用 Matlab 进行求解,得到

$$\lambda = 0.0181$$
, $x = 619.451135$

此时, 吉林省城镇"低保"标准的基准值为 $\exp(\Phi^{-1}(\lambda)*0.64927+7.490348)$,即 459.66 元,额外补贴 619.45 元。

Step 2. 分档

通过 4.3.3 节的分析,在分析省内各地市、区、县的数据时,指标"城镇居民人均可支配收入"与现行"低保"标准的相关性最强。因此,在对省内"低保"标准进行确定时,"城镇居民人均可支配收入"应作为省份内部划分"低保"标准的重要参考。

受到描述统计"五数概括法"(five-number summary)的启发,本文拟通过判断"上极端值"的方法对吉林省各县市的城镇居民人均可支配收入进行档次划分。

判断"上极端值"的方法如下:

- (1) 将程序内数据从小到大进行排序。
- (2) 以最底层数据为起点,每次向上选入一个数据。
- (3) 计算被选入数据的 25%分位点 Q_1 , 75%分位点 Q_3 , 以及最大值 max.
- (4) 若 $(\max Q_3)$ ≥0.9*IQR,则认为存在上极端值,将已选入的数据归为一类,抛出程序,重复(1);
 - (5) 若 $(\max Q_3)$ <0.9*IQR,则认为不存在上极端值,重复(2)。 算法流程图如下:

图 4 分档算法的流程图

经过上述流程,得到吉林省48个地市、县、区的"城镇居民人均可支配收入"的档次分类。

与此同时,通过

 $\zeta_i = \frac{i$ 县(市)城镇居民人均可支配收入 吉林省平均城镇居民人均可支配收入

计算各个县(市)的不平衡系数,结果如下:

表 12 吉林省各县(市)档次以及不平衡系数

"低保"标准档次												
1	2	3	4	4	5							
和龙市	扶余市	蛟河市	辉南县	东辽县	敦化市	桦甸市						
安图县	长白县	梨树县	抚松县	永吉县	东丰县	公主岭市						
通榆县	洮南市	双辽市	伊通县	磐石市	德惠市	梅河口市						
龙井市	长岭县	临江市	榆树市	柳河县	通化县	延吉市						
靖宇县	镇赉县	乾安县	集安市	图们市	前郭县							
汪清县	舒兰市			珲春市	农安县							
大安市												
平均不平衡系数												
0.8450	0.9369	0.9534	0.9843	1.0	620	1.2578						

Step 3. 调整系数

- (1) 记第i个档次的平均不平衡系数为 w_{3i} ;
- (2) 最终的得到的各地市低保标准为:

吉林省第i档地市"低保"保标准 = $459.66 * w_{3i}$

第一档: 388.42 元; 第二档: 430.67 元; 第三档: 438.22 元; 第四档: 452.43 元; 第五档: 488.16 元;

第五档: 488.16 元; 第六档: 578.14 元。

4.3.3 模型的适应性检验

依据上述调整系数 w_{3i} , 计算出了吉林省各个地市、县、区的"低保"标准。为了衡量:

- ①模型的适应性:
- ②现行标准的合理性;

记误差

$$\varepsilon_i = \left| \frac{ 现行 i \text{地"低保"标准} - 测算得到的 i \text{地"低保"标准} }{ \text{现行} i \text{地"低保"标准} } \right|$$

从而,得到 ε_i 的散点图。

观察图 5,可以发现, ε_i 在 0~30%之间较为均匀地分布;事实上, ε_i 的均值为 16.37%。当 ε_i 达到 30%时,现行的"低保"标准与测算所得的"低保"标准之间就已经出现了上百元的差额,反映了诸多不合理之处。

为了验证模型的可信性,本文将之前所使用的指标"城镇居民人均可支配收入",替换为在 4.3.3 节中相关度次高的指标"人均 GDP"。经过 Step2 分档与 Step3 调整系数,最终得到的 ε_i 的均值为 19.89%,同样居高不下。这表明,现行值与测算值的差异,很有可能并非由模型指标选取造成,而是由现行"低保"标准的不合理造成的。

吉林省现行的城市"低保"标准,最低为340元/月,最高为550元/月。这仅仅略低于模型测算所得——最低388.42元/月,最高578.14元/月——从这一

点而言,现行标准和模型结果相差不大。然而,对于全省城镇居民人均可支配收入最低的和龙市,现行"低保"标准却达到了520元/月,而人均可支配收入排名处于中上游的德惠市,现行"低保"标准却仅有393元/月。从经济发展水平的角度看,吉林省现行"低保"标准呈现两头高、中间矮的态势,这显然会滋生经济落后地区的"懒惰"现象,亦不利与改善经济中等地区的人民生活。

图 6 吉林省城镇居民人均可支配收入与现行"低保"标准的折线图 基于此种考虑,吉林省现行"低保"标准应进行改革,使得"低保"标准与经济发展水平相适应。

5. 模型的评价与改进方向

5.1 模型的优点

- (1) 在制定"低保"标准时,考虑了基本生活需求、政府财政压力与补贴 带给人的"惰性"等多个因素,对问题的考虑较为完善。
- (2)详细分析了各地之间"低保"标准的相关性,利用系数调整的方法,给出了多条在地区间确定"低保"标准的思路。
- (3) 创造性地运用了改进的"五数概括法"对数据进行分档,较好地把握整体信息。
 - (4) 本文对问题论述详实准确,有理有据,结果可靠,可操作性强。

5.2 模型的缺点及改进方向

- (1) 在选用"马丁法"高贫困线和低贫困线的问题上,存在较强的主观性。 利用更加合理的方法确定某一地区的贫困线,是模型改进的方向;
- (2) 在讨论省内各地市、县、区的"低保"标准分档问题时,选取的指标较为单一。选取更加综合的指标,是模型改进的方向。

6. 参考文献

- [1] 姜启源, 谢金星, 叶俊. 数学模型(第四版). 北京: 高等教育出版社, 2011.
- [2] 边恕, 孙雅娜, 郝悦. 城市居民低保标准确定及指数化调整机制设计[J]. 人口与经济, 2015, (1): 108-115.
- [3] 李春根, 夏珺. 中国城市最低生活保障标准: 变化轨迹和现实考量[J]. 中国 行政管理, 2014, (12), 90-94.
- [4] 陈亮. 中国城镇居民最低生活保障标准的统计测算[J]. 统计与决策, 2012, (6), 36-38.
- [5] 陈建东,程树磊,蒲明等.如何准确地拟合居民的收入分布[J]. 北京工商大学学报,2017,32(2),10-20.

附录

A.1 问题(2)附录

A.1.1 最低食物线数据

	千克/人/日	元/kg	元/人/日	元/人/月
粮食	0.3	2.95	0.885	26.55
豆类豆制品	0.04	5	0.2	6
油脂	0.026	25.5	0.663	19.89
肉禽	0.075	16	1.2	36
蛋	0.051	7.85	0.40035	12.0105
水产品	0.075	4	0.3	9
鲜菜	0.409	2	0.818	24.54
水果	0.125	2.3	0.2875	8.625
奶类及奶制品	0.125	15	1.875	56.25
				258.52515

A.1.2 《北京统计年鉴》1978~2015年的人均消费支出和人均食品支出

	人均消费支出	人均食品支出
1978	359.9	211.2
1979	408.7	236.7
1980	490.4	271.0
1981	511.4	295.1
1982	534.8	317.6
1983	574.1	337.7
1984	666.8	379.1
1985	923.3	466.9
1986	1067.4	543.4
1987	1147.6	605.0
1988	1455.6	743.4
1989	1520.4	841.3
1990	1646.1	892.2
1991	1860.2	1016.8
1992	2134.7	1126.3
1993	2939.6	1404.7
1994	4134.1	1919.0
1995	5019.8	2436.5
1996	5729.5	2671.5

1997	6531.8	2854.4
1998	6970.8	2865.7
1999	7498.5	2959.2
2000	8493.5	3083.4
2001	8922.7	3229.3
2002	10285.8	3472.5
2003	11123.8	3522.7
2004	12200.4	3925.5
2005	13244.2	4215.6
2006	14825.0	4561.0
2007	15330.0	4934.0
2008	16460.0	5562.0
2009	17893.0	5936.0
2010	19934.0	6393.0
2011	21984.0	6905.0
2012	24046.0	7535.0
2013	26275.0	8170.0
2014	28009.0	8632.0
2015	36642.0	8091.0

A.1.3 非线性规划 Matlab 代码

fun:

```
% function f = fun(x)
```

% f=-

0.9*(exp(norminv(x(3),0,1)*0.5742+8.4087)+x(6)+exp(norminv(x(2),0,1)*0.5742+8.4087)+x(5)+exp(norminv(x(1),0,1)*0.5742+8.4087)+x(4))/1310.101+0.1*(exp(log(1.0*x(4)/(exp(norminv(x(1),0,1)*0.5742+8.4087)-x(4))/1310.101+0.1*(exp(log(1.0*x(4)/(exp(norminv(x(1),0,1)*0.5742+8.4087)-x(4))/1310.101+0.1*(exp(log(1.0*x(4)/(exp(norminv(x(1),0,1)*0.5742+8.4087)-x(4))/1310.101+0.1*(exp(log(1.0*x(4)/(exp(norminv(x(1),0,1)*0.5742+8.4087)-x(4))/1310.101+0.1*(exp(log(1.0*x(4)/(exp(norminv(x(1),0,1)*0.5742+8.4087)-x(4))/1310.101+0.1*(exp(log(1.0*x(4)/(exp(norminv(x(1),0,1)*0.5742+8.4087)-x(4))/1310.101+0.1*(exp(log(1.0*x(4)/(exp(norminv(x(1),0,1)*0.5742+8.4087)-x(4))/1310.101+0.1*(exp(log(1.0*x(4)/(exp(norminv(x(1),0,1)*0.5742+8.4087)-x(4))/1310.101+0.1*(exp(log(1.0*x(4)/(exp(norminv(x(1),0,1)*0.5742+8.4087)-x(4))/1310.101+0.1*(exp(log(1.0*x(4)/(exp(norminv(x(1),0,1)*0.5742+8.4087)-x(4))/1310.101+0.1*(exp(log(1.0*x(4)/(exp(norminv(x(1),0,1)*0.5742+8.4087)-x(4))/1310.101+0.1*(exp(log(1.0*x(4)/(exp(norminv(x(1),0,1)*0.5742+8.4087)-x(4))/1310.101+0.1*(exp(log(1.0*x(4)/(exp(norminv(x(1),0,1)*0.5742+8.4087)-x(4))/1310.101+0.1*(exp(log(1.0*x(4)/(exp(norminv(x(1),0,1)*0.5742+8.4087)-x(4))/1310.101+0.1*(exp(log(1.0*x(4)/(exp(norminv(x(1),0,1)*0.5742+8.4087)-x(4))/1310.101+0.1*(exp(log(1.0*x(4)/(exp(norminv(x(1),0,1)*0.5742+8.4087)-x(4))/1310.101+0.1*(exp(log(1.0*x(4)/(exp(log(1.0*x(4)/(exp(norminv(x(1),0,1)*0.5742+8.4087)-x(4))/(exp(log(1.0*x(4)/(exp(lo

- $1))) + \exp(\log(10*x(5)/(exp(norminv(x(2),0,1)*0.5742 + 8.4087) -$
- 1)))+ $\exp(\log(10*x(6)/(\exp(norminv(x(3),0,1)*0.5742+8.4087)-1))));$

%

% end

function f = fun(x)

f≕

0.9*(exp(norminv(x(1),0,1)*0.64927+7.490348)+x(2))/306.47+0.1*(exp(log(10*x(2)/(exp(norminv(x(1),0,1)*0.64927+7.490348)-1))));

end

nonlinearcondition:

```
function [f,ceq] = nonlinear condition(x)
```

- f(1)=x(1)*x(2)-0.0025*4489;%线性或者非线性不等式约束(默认<=0)
- $f(2) = (\exp(\operatorname{norminv}(x(1),0,1)*0.64927+7.490348))/306.47-1.5;$

```
f(3)=1-\exp(\operatorname{norminv}(x(1),0,1)*0.64927+7.490348)/306.47;
                           %非线性等式约束
         ceq=0;
    end
    % function [f,ceq] = nonlinearcondition(x)
             f(1)=x(1)*x(4)+(x(2)-x(1))*x(5)+(x(3)-x(2))*x(6)-0.005*10446;% 线性
或者非线性不等式约束 (默认<=0)
            f(2) = (\exp(\operatorname{norminv}(x(3),0,1)*0.5742+8.4087))/1310.101-1.1;
            f(3)=1-exp(norminv(x(3),0,1)*0.5742+8.4087)/1310.101;
    %
    %
            f(4)=x(1)-x(2)+0.015;
    %
            f(5)=x(2)-x(3)+0.015;
            f(6)=x(5)-x(4);
    %
    %
            f(7)=x(6)-x(5);
                             %非线性等式约束
    %
            ceq=0;
    % end
    guihua:
    clc;
    clear:
    % options= optimset('MaxIter',10000);
    [x,fval]=fmincon('fun',[0;1000],[],[],[],[],[0;0],[],'nonlinearcondition')
```

A. 2 问题(3)附录

x = vpa(x,9)

A.2.1 2017年9月全国各地"低保"标准

	城镇	不平衡系数	农村 (年)	农村(月)	城市农村比
北京	940	1.638945023	11095.38	924.615	1.016639358
天津	860	1.499460341	10320	860	1
河北	541.62	0.944346174	3810.86	317.5716667	1.705504794
山西	465.41	0.811469578	3600.25	300.0208333	1.55125894
内蒙古	591.59	1.031471794	4891.22	407.6016667	1.451392495
辽宁	554.27	0.966402189	4251.44	354.2866667	1.564467569
吉林	483.41	0.842853632	3734.88	311.24	1.553174399
黑龙江	547.32	0.954284458	3853.97	321.1641667	1.704175175
上海	970	1.691251779	11640	970	1
江苏	641.16	1.117899991	7034.7	586.225	1.093709753
浙江	678.59	1.183161387	7538.04	628.17	1.080264896
安徽	527.24	0.919273802	4369.39	364.1158333	1.448000751
福建	589.78	1.028315953	4948.54	412.3783333	1.430191531
江西	531.11	0.926021374	3738.89	311.5741667	1.704602168
山东	507.4	0.884681601	4012.35	334.3625	1.517514673

新疆	394.44	0.687729229	3341.2	278.4333333	1.416640728
宁夏	460.18	0.802350767	3712.09	309.3408333	1.487614794
青海	450.45	0.785385942	3321.21	276.7675	1.627539361
甘肃	457.74	0.798096484	3765.17	313.7641667	1.458866399
陕西	489.77	0.853942664	3225.72	268.81	1.821993229
西藏	754.22	1.315026719	3261.43	271.7858333	2.775052661
云南	515.88	0.899466977	3304.81	275.4008333	1.873196946
贵州	555.88	0.969209319	3654.8	304.5666667	1.825150487
四川	470.18	0.819786352	3629.98	302.4983333	1.554322613
重庆	699	1.218747416	4272.31	356.0258333	1.963340675
海南	479.58	0.836175802	4380	365	1.313917808
广西	497.33	0.867123966	3253.52	271.1266667	1.834308687
广东	669.95	1.168097041	6282.36	523.53	1.279678337
湖南	442.79	0.772030284	3580.54	298.3783333	1.483988449
湖北	554.37	0.966576545	4645.84	387.1533333	1.431913282
河南	459.07	0.800415417	3315.11	276.2591667	1.661736715

A.2.2 省份"低保"标准聚类分析 SPSS 代码

QUICK CLUSTER 城镇 农村年 农村月 城市农村比
/MISSING=LISTWISE
/CRITERIA=CLUSTER(4) MXITER(10) CONVERGE(0)
/METHOD=KMEANS(NOUPDATE)
/SAVE CLUSTER
/PRINT INITIAL.

A.2.3 湖南省124各地市、区、县"低保"标准及其他数据

地区	在岗职工平 均年工资	GDP 总 值	人均 GDP	城镇居民人均 可支配收入	全体居民人均生 活消费支出	低保标准
芙蓉区	86782	11597999	207366	46382	34648	450
天心区	94959	7777093	125417	46561	38493	450
岳麓区	81156	9121909	109612	45911	30477	450.00
开福区	104565	8169470	133097	45719	29999	450.00
雨花区	74856	16183575	194865	46435	39462	450.00
望城区	53294	5821907	98877	40179	22191	450.00
长沙县	70444	12633446	135712	39765	23862	450.00
宁乡县	62157	10983525	87826	36714	21422	400.00
浏阳市	58030	12182051	92823	39641	20680	400.00
荷塘区	52119	2121616	69813	38893	24490	420.00
芦淞区	55946	3276658	110474	40567	26862	420.00

石峰区	74943	3353154	97845	39180	23412	420.00
天元区	66100	3011098	102106	44887	30244	420.00
株洲县	52508	1272364	42956	29089	13018	420.00
攸 县	56326	3703185	52460	33044	16157	380.00
茶陵县	45595	1740028	29527	28567	11371	360.00
炎陵县	50648	674747	33043	24607	11617	360.00
醴陵市	53760	5731693	58799	33744	18320	380.00
雨湖区	54089	5925355	98888	32540	23965	420.00
岳塘区	64622	5307070	112892	31732	24967	420.00
湘潭县	50100	3643254	42403	29927	13830	380.00
湘乡市	53913	3656494	45462	30074	16255	380.00
韶山市	52380	777864	79293	34582	21209	400.00
珠晖区	52962	2285885	66123	30343	23693	370.00
雁峰区	62246	2385569	106785	29338	18483	370.00
石鼓区	56162	1567387	64795	30908	21953	370.00
蒸湘区	60317	2100196	67228	30116	23472	370.00
南岳区	50839	362051	57651	33818	24550	370.00
衡阳县	41441	3188443	28777	28320	14025	330.00
衡南县	44409	3170611	32506	27841	13566	330.00
衡山县	50611	1506185	38492	28171	15490	330.00
衡东县	46919	2627621	41012	28226	13989	330.00
祁东县	48104	2661676	26598	22695	10997	330.00
耒阳市	45994	4301442	36524	29444	14532	370.00
常宁市	48686	2966707	35619	27491	13361	330.00
双清区	47773	1390420	43959	24180	18045	300.00
大祥区	65543	1395404	40599	23581	17595	330.00
北塔区	42123	336620	31727	21595	12622	300.00
邵东县	50548	3401720	36527	26746	13145	302.00
新邵县	57949	1271951	16397	22484	10495	330.00
邵阳县	52975	1328308	13932	22417	10061	330.00
隆回县	54719	1544672	13887	21391	6934	300.00
洞口县	49454	1511422	19132	22830	10714	300.00
绥宁县	46003	813874	22734	20615	7676	300.00
新宁县	49719	930387	16172	21310	9550	360.00
城步县	53923	363676	13744	19909	7720	330.00
武冈市	54008	1322395	17286	22393	9830	330.00
岳阳楼 区	52554	8587952	101189	30386	23049	400.00
云溪区	68191	2850204	151365	31913	18755	400.00

君山区	31135	1225902	49075	26918	15375	400.00
岳阳县	42549	2865426	38948	24287	11062	350.00
华容县	43117	3051689	41942	24857	12604	330.00
湘阴县	49005	3388925	48145	26620	16061	400.00
平江县	40385	2390857	24369	20148	11881	390.00
汨罗市	47961	4317314	60517	27014	16240	390.00
临湘市	52810	2331699	45267	24064	12951	375.00
武陵区	60477	11835577	159273	31288	28476	400.00
鼎城区	52835	2883953	35097	28362	20466	350.00
安乡县	46914	1594906	30104	23078	11735	350.00
汉寿县	54742	2532882	31328	25880	14791	350.00
澧县	48998	3110940	39741	24872	14136	300.00
临澧县	54985	1565516	35898	27139	15383	350.00
桃源县	53139	3114681	36171	25362	12954	350.00
石门县	59011	2398633	39871	21205	11843	350.00
津市市	45354	1336743	51473	28236	17965	350.00
永定区	59236	2021060	43699	23646	12514	350.00
武陵源 区	55584	508121	82353	25364	13844	350.00
慈利县	55034	1658202	27029	20222	10208	350.00
桑植县	62045	817228	21008	14115	7616	340.00
资阳区	53076	1446696	34339	25459	15614	300.00
赫山区	56203	4810103	55964	30927	19096	330.00
南 县	56437	2314971	31103	24164	12895	330.00
大通湖 区	53903	408966	37348	24069	12903	350.00
桃江县	54466	2273731	28676	25070	15152	300.00
安化县	62632	1962662	21499	15694	7803	330.00
沅江市	51643	2555105	36998	28610	15511	330.00
北湖区	62478	3599832	83407	30816	18332	360.00
苏仙区	60430	2980732	69481	29662	18221	300.00
桂阳县	57078	3473365	48667	29543	14365	330.00
宜章县	57974	2000613	33840	26013	12438	330.00
永兴县	50465	3177506	58464	27595	11498	360.00
嘉禾县	49054	1406150	43764	24241	11055	330.00
临武县	48978	1401141	37554	23396	11293	330.00
汝城县	54744	568290	16448	18410	9875	330.00
桂东县	54107	307867	13191	17253	9378	330.00
安仁县	40325	830947	21192	20957	11322	330.00

资兴市	46705	3266359	94267	29331	14106	330.00
零陵区	60488	2085606	37578	24572	15710	350.00
冷水滩 区	50325	2425298	45231	27183	12590	350.00
祁阳县	50203	2639346	30037	26143	14917	330.00
东安县	49014	1651318	29134	24965	12386	330.00
双牌县	47695	534442	26379	21465	9378	330.00
道 县	49343	1717520	27445	23008	14374	330.00
江永县	45496	583963	24413	20432	9991	330.00
宁远县	53272	1359778	18658	22144	12614	330.00
蓝山县	62891	982457	28786	23796	10539	330.00
新田县	43515	699449	20464	20871	9813	330.00
江华县	60149	1028510	23836	20812	9327	330.00
鹤城区	59320	3177355	52190	27719	20457	330.00
中方县	50816	1013370	41634	23426	9423	330.00
沅陵县	58610	1770675	29374	19277	10035	350.00
辰溪县	49820	1084577	23466	19553	10144	330.00
溆浦县	48220	1392114	18475	19918	9871	330.00
会同县	51616	677667	20455	18649	10105	259.00
麻阳县	57458	709128	20272	19507	8196	330.00
新晃县	59487	542296	21709	17305	8343	330.00
芷江县	62488	996652	28689	20211	8723	330.00
靖州县	55354	748086	29475	18522	8945	330.00
通道县	52245	374257	17587	17635	7151	330.00
洪江市	46603	1073027	25024	20294	10584	330.00
洪江区	47141	342681	51454	18442	11989	330.00
娄星区	51627	4094626	79958	27226	17823	355.00
双峰县	48662	2192017	25017	17963	9194	335.00
新化县	41991	2238361	19720	17839	10816	320.00
冷水江 市	46582	2881191	83756	29456	16377	355.00
涟源市	47658	2637235	25962	18696	11307	350.00
吉首市	70824	1365130	42043	25532	12640	330.00
泸溪县	51153	537629	18507	19581	9073	365.00
凤凰县	54350	743011	21499	20729	9047	330.00
花垣县	53089	604383	19868	20589	7812	330.00
保靖县	52398	480024	16272	18499	7606	300.00
古丈县	54377	236625	17913	17940	7078	300.00
永顺县	50183	613336	13666	18196	8623	300.00

龙山县	59369	728542	14736	18297	9000	300.00	l
-----	-------	--------	-------	-------	------	--------	---

A.2.4 计算 Pearson 相关系数的 SPSS 代码

CORRELATIONS

/VARIABLES=低保标准 人均 GDP 在岗职工平均年工资 GDP 总值 城镇居民人均可支配收入 全体居民人均生活消费支出

/PRINT=TWOTAIL NOSIG /MISSING=PAIRWISE.

A. 3 问题(4) 附录

A.3.1 吉林省总体数据

年份	可支配收入	食品支出	恩格尔系数
1990	1230.1	332.27	52.4
1991	1395.36	366.51	53.4
1992	1636.92	381.53	50.2
1993	1953.12	406.24	48.9
1994	2561.04	532.47	49.3
1995	3174.84	841.85	51.2
1996	3805.61	803.38	47.4
1997	4190.61	895.12	47
1998	4206.64	799.69	46
1999	4480	719.27	42.7
2000	4810	705.39	39.4
2001	5340.5	757.9	38.1
2002	6260.2	743.07	36.4
2003	7005.12	799.16	35.7
2004	7840.6	899	35.9
2005	8690.62	1003.22	34.7
2006	9775.07	1082.28	33.4
2007	11285.52	1240.5	33.2
2008	12829.45	1362.44	34
2009	14006.27	1371.12	33.3
2010	15411.47	1523.32	32.3
2011	17796.57	1872.1	32.7
2012	20208.04	2268.76	31.7
2013	22274.6	2438.49	29.2
2014	23217.82	2411.25	26.1
2015	24900.86	2550.8	25.8
2016	26530.42	2721.87	26

A.3.2 "五数概括"分档算法 Matlab 代码

```
calssify:
                        clc;
                        clear;
                        x = [30550; 26483; 26398; 25107; 23531; 23379; 23272; 23255; 23085; 23080; 23072; 23272; 23255; 23085; 23080; 23072; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23272; 23
3018;22707;22547;22442;21547;21348;21300;21247;21177;21099;20606;20598;205
86;20548;20501;20255;20233;20219;20197;20192;20181;20008;19982;19974;19905
;19874;19789;8080];
                         xx=x;
                        xx(1)=1;
                        x = sort(x);
                        j=1;k=1;
                        xx(1)=k;
                        for i=2:39
                                                 q3=prctile(x(j:i),75);
                                                 q1=prctile(x(j:i),25);
                                                 if(max(x(j:i))-q3<0.9*(q3-q1))
                                                                    xx(i)=k;
                                                                                   j=j+1;
                         %
                                                 else
                                                                          k=k+1;
                                                                          xx(i)=k;
                                                                          j=i;
                                                 end
                        end
                         \mathbf{x}'
                        xx'
```

A.3.3 吉林省各地市、县、区数据

地区	2017 年城市"低保"标准 元/月/均
长春市	620
其中: 双阳区	400
其中: 九台区	400
榆树市	360
农安县	430
德惠市	393
吉林市	516
永吉县	390

舒兰市 一	340			
磐石市	430			
桦甸市	450			
蛟河市	385			
四平市	500			
公主岭市	500			
双辽市	400			
梨树县	420			
伊通县	360			
辽源市	510			
东辽县	426			
东丰县	400			
通化市	530			
通化县	420			
柳河县	380			
辉南县	360			
梅河口市	550			
集安市	410			
白山市	510			
其中: 江源区	510			
临江市	480			
抚松县	480			
靖宇县	440			
长白县	520			
白城市	460			
洮南市	350			
大安市	440			
镇赉县	450			
通榆县	350			
松原市	514			
长岭县	400			
乾安县	345			
扶余市	350			
前郭县	420			
延吉市	550			
图们市	500			
敦化市	530			
龙井市	460			
和龙市	520			
	20			

珲春市	550
汪清县	550
安图县	520
管委会	550

县市	2016 年 城镇居民人均可支配收入(元)	
和龙市	8080	
安图县	19789	
通榆县	19874	
龙井市	19905	
靖宇县	19974	
汪清县	19982	
大安市	20008	
扶余市	20181	
长白朝鲜族自治县	20192	
洮南市	20197	
长岭县	20219	
镇赉县	20233	
舒兰市	20255	
蛟河市	20501	
梨树县	20548	
双辽市	20586	
临江市	20598	
乾安县	20606	
辉南县	21099	
抚松县	21177	
伊通满族自治县	21247	
榆树市	21300	
集安市	21348	
东辽县	21547	
永吉县	22442	
磐石市	22547	
柳河县	22707	
图们市	23018	
珲春市	23072	
敦化市	23080	
东丰县	23085	
德惠市	23255	
通化县	23272	
前郭尔罗斯蒙古族自治县	23379	
农安县	23531	

桦甸市	25107	
公主岭市	26398	
梅河口市	26483	
延吉市	30550	

县市	2016年	2016年
△ 1H	人均 GDP(年)	人均 GDP(月)
龙井市	24416	2035
柳河县	26125	2177
辉南县	29558	2463
<u> </u>	29584	2465
舒兰市	30737.9	2561
永吉县	31026	2586
和龙市	31271	2606
梨树县	32079	2673
洮南市	32529	2711
通榆县	33927	2827
安图县	34212	2851
榆树市	35100	2925
伊通满族自治县	35113	2926
白城市	35892	2991
大安市	36069	3006
四平市	36732	3061
图们市	37156.63	3096
农安县	37452	3121
敦化市	38148	3179
延边朝鲜族自治州	41154	3430
公主岭市	42144	3512
通化市	42979	3582
双辽市	43049	3587
蛟河市	43606	3634
东丰县	45643	3804
东辽县	47167	3931
德惠市	48124	4010
磐石市	48244	4020
长岭县	48725	4060
集安市	49155	4096
镇赉县	49215	4101
靖宇县	49266	4106

扶余市	49662	4139
长白朝鲜族自治县	51737	4311
梅河口市	54801	4567
通化县	54866	4572
桦甸市	56223	4685
白山市	56411	4701
吉林市	57818	4818
前郭尔罗斯蒙古族自治县	58393	4866
延吉市	59149	4929
松原市	59413.30216	4951
临江市	60800	5067
抚松县	61381	5115
珲春市	61802	5150
辽源市	63480	5290
乾安县	71774	5981
长春市	79434	6620