Mock Exam

Exercise 1

```
library(ltm)
## Loading required package: MASS
## Loading required package: msm
## Loading required package: polycor
cheating <- read.table("cheating.txt")</pre>
dsc <- descript(cheating)</pre>
dsc$perc
##
                  0
                            1
                                  logit
## LIEEXAM 0.8934169 0.10658307 -2.126129
## LIEPAPER 0.8808777 0.11912226 -2.000769
         0.9341693 0.06583072 -2.652571
## COPYEXAM 0.7868339 0.21316614 -1.305945
dsc$items
   0 1 2 3 4
## Freq 207 76 25 9 2
dsc$pw.ass
## Item i Item j p.value
## 1 2 4 0.151
              4 0.150
## 2
        1
       2
             3 0.037
## 3
        1 3 0.025
## 4
## 5
       3
             4 0.002
## 6
        1
              2 0.001
m1.rip <- ltm(cheating ~ z1, IRT.param = FALSE)</pre>
summary(m1.rip)
##
## Call:
## ltm(formula = cheating ~ z1, IRT.param = FALSE)
##
## Model Summary:
## log.Lik AIC
## -440.23 896.4599 926.5815
##
## Coefficients:
##
                       value std.err z.vals
## (Intercept).LIEEXAM -4.4732 1.9143 -2.3368
## (Intercept).LIEPAPER -3.6944 1.1547 -3.1994
## (Intercept).FRAUD
                    -3.0801 0.3725 -8.2678
## (Intercept).COPYEXAM -1.3791 0.1556 -8.8660
## z1.LIEEXAM
             3.1164 1.7328 1.7984
```

```
## z1.LIEPAPER
                        2.5815 1.1390 2.2665
## z1.FRAUD
                      1.0279 0.3692 2.7839
## z1.COPYEXAM
                       0.5163 0.2282 2.2626
##
## Integration:
## method: Gauss-Hermite
## quadrature points: 21
##
## Optimization:
## Convergence: 0
## max(|grad|): 0.0076
## quasi-Newton: BFGS
alpha <- m1.rip$coefficients[,2]</pre>
alpha
##
    LIEEXAM LIEPAPER
                          FRAUD COPYEXAM
## 3.1163675 2.5815212 1.0279310 0.5162571
stalpha <- alpha/sqrt(1+alpha^2)</pre>
stalpha
    LIEEXAM LIEPAPER
                          FRAUD COPYEXAM
## 0.9521788 0.9324828 0.7167779 0.4587328
coef(m1.rip, prob = TRUE, order = TRUE)
           (Intercept)
                          z1 P(x=1|z=0)
## LIEEXAM -4.473222 3.1163675 0.01128176
## LIEPAPER -3.694397 2.5815212 0.02425930
## FRAUD
             -3.080135 1.0279310 0.04393416
## COPYEXAM -1.379139 0.5162571 0.20114731
E <- fitted(m1.rip)[,5]</pre>
0 <- m1.rip$patterns$obs</pre>
cbind(m1.rip$patterns$X, 0, E)
##
                  0
## [1,] 0 0 0 0 207 205.6982523
## [2,] 0 0 0 1 46 47.1411191
## [3,] 0 0 1 0 7 9.1736797
## [4,] 0 0 1 1 5 2.8187912
## [5,] 0 1 0 0 13 12.5501381
## [6,] 0 1 0 1 4 5.1930619
## [7,] 0 1 1 0 1 1.6705821
                 2 0.7982847
## [8,] 0 1 1 1
## [9,] 1 0 0 0 10 9.6501979
## [10,] 1 0 0 1
                 3 4.3174125
## [11,] 1 0 1 0
                 1 1.4908193
## [12,] 1 0 1 1
                 2 0.7622705
## [13,] 1 1 0 0 11 8.2686623
## [14,] 1 1 0 1 4 5.1611361
## [15,] 1 1 1 0
                1
                      2.4914920
## [16,] 1 1 1 1 2 1.8141004
Chisq <-sum((E-0)^2/E)
Chisq
## [1] 9.268555
DOF <- 16 - 4*2 -1
```

```
DOF
## [1] 7
pvalueC <- 1 - pchisq(Chisq, DOF)</pre>
pvalueC
## [1] 0.2339457
LR <- 2 * sum(0 * log(0/E))
LR
## [1] 8.169943
pvalueLR <- 1 - pchisq(LR, DOF)</pre>
pvalueLR
## [1] 0.3178474
margins(m1.rip)
##
## Call:
## ltm(formula = cheating ~ z1, IRT.param = FALSE)
## Fit on the Two-Way Margins
##
## Response: (0,0)
## Item i Item j Obs Exp (0-E)^2/E
## 1 3 4 241 236.17
                             0.10
        1
              4 228 229.09
                                0.01
## 2
            4 225 226.01
## 3
         2
                                0.00
##
## Response: (1,0)
## Item i Item j Obs Exp (0-E)^2/E
## 1 3 4 10 14.83
                            1.57
## 2
              4 23 21.90
                               0.06
        1
              4 26 24.98
## 3
        2
                               0.04
##
## Response: (0,1)
## Item i Item j Obs Exp (0-E)^2/E
## 1 3 4 57 61.81
                            0.37
## 2
        2
               3 15 14.25
                               0.04
## 3
              3 15 14.46
                              0.02
        1
##
## Response: (1,1)
## Item i Item j Obs Exp (0-E)^2/E
## 1 3 4 11 6.19
                            3.73 ***
              4 11 12.05
## 2
                                0.09
        1
         2
               3 6 6.77
## 3
                                0.09
##
## '***' denotes a chi-squared residual greater than 3.5
fs <- factor.scores(m1.rip, method = "EAP")</pre>
resp.pattern <- fs$score.dat[,1:4]</pre>
total.score <- apply(resp.pattern, 1, sum)</pre>
total.score
## [1] 0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4
```

round	d(fs\$score	e.dat[<mark>ord</mark> e	al.score)	,],3)			
##	LIEEXAM	LIEPAPER	FRAUD	COPYEXAM	Obs	Exp	z1	se.z1
## 1	0	0	0	0	207	205.698	-0.354	0.836
## 2	0	0	0	1	46	47.141	-0.019	0.773
## 3	0	0	1	0	7	9.174	0.262	0.711
## 5	0	1	0	0	13	12.550	0.883	0.564
## 9	1	0	0	0	10	9.650	1.043	0.530
## 4	0	0	1	1	5	2.819	0.502	0.654
## 6	0	1	0	1	4	5.193	1.038	0.531
## 7	0	1	1	0	1	1.671	1.176	0.508
## 10) 1	0	0	1	3	4.317	1.182	0.507
## 1:	1 1	0	1	0	1	1.491	1.310	0.494
## 13	3 1	1	0	0	11	8.269	1.690	0.508
## 8	0	1	1	1	2	0.798	1.305	0.494
## 12	2 1	0	1	1	2	0.762	1.434	0.490
## 14	1 1	1	0	1	4	5.161	1.828	0.526
## 15	5 1	1	1	0	1	2.491	1.976	0.550
## 16	3 1	1	1	1	2	1.814	2.140	0.580