Cybersecurity Professional Program

Linux Forensics

Digital Forensics & Incident Response

The object of this lesson is to learn about the forensic methods applied during Linux live and dead analysis.

- Linux Live Forensics
- Linux Live Acquisition
- Linux File Systems
- File System Analysis
- Linux Memory Forensics
- Process Investigation

Linux Forensics

Linux Live Forensics

- In Linux, everything has file representation: memory, running processes, etc.
- Dead and live analysis are similar in many aspects.
- Most Linux-based data is not binary.

Linux Forensics Acquisition

Static binaries are used for a minimal footprint on the system.

Binaries should be loaded from a live CD.

In most cases, such Rescue CDs are custom made.

Static Binaries

Live CDs should be mounted as RO.

Although the binaries are static, some may rely on other binaries to work.

Busybox is also commonly used in such cases.

```
johnd@ubuntu:~$ sudo mount -o loop,ro /dev/sr0 /mnt/
johnd@ubuntu:~$ ls /mnt/
acl-2.2.52
acpid-2.0.22
aespipe-2.4c
aircrack-ng-1.2-rc1
alsa-lib-1.0.29
alsa-utils-1.0.29
argp-standalone-1.3
arptables-0.0.4
at-3.1.13
atk-2.16.0
attr-2.4.47
audiofile-0.3.6
aumix-2.8
axe1-2.4
bash-4.3.30
bc-1.06.95
```

Extraction Over NC

To prevent writing to disk, data acquisition should be done over the network.

Netcat is typically used to send and receive the data.

On the compromised host, a static binary of nc (Netcat) is used.

```
johnd@ubuntu:~$ cat /etc/os-release | /mnt/netcat-0.7.1/netcat -c
172.16.0.11 1337
johnd@ubuntu:~$
```

```
sansforensics@siftworkstation -> ~

$ nc -lp 1337 > os-release.capture
sansforensics@siftworkstation -> ~

$ cat os-release.capture
NAME="Ubuntu"
VERSION="18.04.3 LTS (Bionic Beaver)"
ID=ubuntu
ID_LIKE=Debian
PRETTY_NAME="Ubuntu 18.04.3 LTS"
VERSION_ID="18.04"
HOME_URL="https://www.ubuntu.com/"
```


Linux Forensics

Linux Live Acquisition

Linux Live Acquisition

Network Data Extraction

Netstat can be used to obtain network information.

Netstat can show open and established sockets.

This is useful when attempting to identify backdoors.

```
johnd@ubuntu:~$ /mnt/busybox-1.23.2/bin/netstat -ant |
/mnt/netcat-0.7.1/netcat -c 172.16.0.11 1337
johnd@ubuntu:~$
```

```
sansforensics@siftworkstation -> ~
$ nc -lp 1337 > netstat.capture
sansforensics@siftworkstation -> ~
$ cat netstat.capture
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address
                                         Foreign Address
                                                              State
                  0 127.0.0.1:3306
                                         0.0.0.0:*
                                                              LISTEN
tcp
                  0 127.0.0.53:53
                                         0.0.0.0:*
                                                              LISTEN
tcp
                  0 0.0.0.0:22
                                         0.0.0.0:*
tcp
                                                              LISTEN
                                         0.0.0.0:*
tcp
                  0 127.0.0.1:631
                                                              LISTEN
tcp
                  0 :::80
                                         * * *
                                                              LISTEN
                  0 127.0.0.1:8080
                                         0.0.0.0:*
                                                              LISTEN
tcp
                  0:::443
                                          * * *
                                                              LISTEN
tcp
```

Linux Live Acquisition

Process Acquisition


```
johnd@ubuntu:~$ /mnt/lsof-4.88/lsof -n -P -l | /mnt/netcat-0.7.1/netcat
-c 172.16.0.11 1337
johnd@ubuntu:~$
```

ps is used in Linux to acquire process information.

However, from a forensics perspective, *Isof* is better.

Lsof lists are based on the files used by processes.

```
sansforensics@siftworkstation -> ~
$ nc -lp 1337 > lsof.capture
sansforensics@siftworkstation -> ~
$ cat lsof.capture | sort -u -k1,1
accounts- 614 0 cwd unknown /proc/614/cwd (readlink: Permission denied)
          608 0 cwd unknown /proc/608/cwd (readlink: Permission denied)
acpid
acpi_ther 86 0 cwd unknown /proc/86/cwd (readlink: Permission denied)
alsa-sink 1424 0 cwd unknown /proc/1424/cwd (readlink: Permission denied)
alsa-sour 1425 0 cwd unknown /proc/1425/cwd (readlink: Permission denied)
apache2
         1016 0 cwd unknown /proc/1016/cwd (readlink: Permission denied)
vahi-dae 598 0 cwd unknown /proc/598/cwd (readlink: Permission denied)
         2425
bash
                       1000 cwd
                                       DIR
                                                          8,1
                                                                  4096
3145730 /home/johnd
```

Kernel Modules

johnd@ubuntu:~\$ cat /proc/modules | /mnt/netcat-0.7.1/netcat -c
172.16.0.11 1337
johnd@ubuntu:~\$

Inspecting the kernel modules may reveal malicious activity.

Kernel modules can be hidden and require a more thorough investigation.

File Acquisition Output Description File Acquisition

File extraction is possible over the network using **dd**.

dd can copy files and partitions byte by byte.

Using piping and input redirection, the data can be sent over the network.

```
johnd@ubuntu:~$ dd < /etc/passwd | /mnt/netcat-0.7.1/netcat -c
172.16.0.11 1337
4+1 records in
4+1 records out
2511 bytes (2.5 kB, 2.5 KiB) copied, 0.000146646 s, 17.1 MB/s</pre>
```

```
sansforensics@siftworkstation -> ~

$ nc -lp 1337 > passwd.capture
sansforensics@siftworkstation -> ~

$ cat passwd.capture
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/usr/sbin/nologin
man:x:6:12:man:/var/cache/man:/usr/sbin/nologin
```

DFIR-08-L1

Forensic Acquisition 15–25 Min.

Mission

Create a forensic acquisition CD with static binaries and use it to extract information from a Linux OS.

Steps

- Download the static binaries.
- Create an ISO image.
- Load the image in RO mode.
- Extract forensic information.

Env. & Tools

- SIFT Workstation
- Ubuntu 16.04+
- LinuxRescueCD.iso

Related Files

Lab document

Pulse Check

Linux Forensics

Linux File Systems

Different Distribution File Systems

Extended File System

- A family of file systems that includes Ext2, Ext3, and Ext4
- Ext4 is the most common file system in Linux distributions.

Ext4 includes many features, such as journaling, space allocation, and others.

XFS

- Designed to span multiple storage devices
- Divides the file system into mapped blocks of data

BTRFS

- Space-efficient file system
- Supports compression and snapshots

XFS	EXT4	BTRFS
Architecture: B+ Tree	Architecture: Hashed B Tree	Architecture: Extent Based
Introduced: 1994	Introduced: 2006	Introduced: 2009
Max volume size: 8 Ebytes	Max volume size: 1 Ebytes	Max volume size: 16 Ebytes
Max file size: 8 Ebytes	Max file size: 16 Tbytes	Max file size: 16 Ebytes
Snapshots: Planned	Snapshots: No	Snapshots: Yes

Multiple File Systems Systems

At any given time, Linux hosts multiple file systems.

Among them are tmpfs, squashfs, and others.

The systems can be viewed using df - T.

johnd@ubuntu:~\$ df -T							
Filesystem	Туре	1K-blocks	Used	Available	Use%	Mounted on	
udev	devtmpfs	1985544	0	1985544	0%	/dev	
tmpfs	tmpfs	401592	2100	399492	1%	/run	
/dev/sda1	ext4	61663020	9624136	48876876	17%	/	
tmpfs	tmpfs	2007940	0	2007940	0%	/dev/shm	
tmpfs	tmpfs	5120	4	5116	1%	/run/lock	
tmpfs	tmpfs	2007940	0	2007940	0%	/sys/fs/cgroup	
/dev/loop0	squashfs	91264	91264	0	100%	/snap/core/7917	
/dev/loop1	squashfs	144128	144128	0	100%	/snap/gnome-3	
tmpfs	tmpfs	401588	16	401572	1%	/run/user/120	
tmpfs	tmpfs	401588	32	401556	1%	/run/user/1000	
/dev/sr0	iso9660	1214060	1214060	0	100%	/media/CDROM	
/dev/loop19	iso9660	1214060	1214060	0	100%	/mnt	
johnd@ubuntu:~\$							

Linux Forensics

File System Analysis

File System Analysis Image Mounting

Captured images can be mounted directly in Linux.

The *losetup* command is used to create a loop device.

Loop devices can be mounted the same way as other devices.

```
sansforensics@siftworkstation -> ~
$ sudo losetup -f -P Documents/Samples/dd/Web Server.dd
sansforensics@siftworkstation -> ~
$ sudo mount -o loop,ro -t ext4 /dev/loop0p1 /mnt/dd/
$ ls -la /mnt/dd/
total 88
drwxr-xr-x 19 root root 4096 Jan 16 09:49 .
drwxr-xr-x 20 root root 4096 Jan 16 20:02 ...
lrwxrwxrwx 1 root root
                            7 Jan 16 09:43 bin -> usr/bin
drwxr-xr-x 3 root root 4096 Jan 16 09:50 boot
drwx----- 2 root root 4096 Jan 16 09:49 .cache
            4 root root 4096 Jan 16 09:43 dev
drwxr-xr-x
drwxr-xr-x 119 root root 4096 Jan 16 10:02 etc
drwxr-xr-x 3 root root 4096 Jan 16 09:54 home
lrwxrwxrwx
            1 root root
                            7 Jan 16 09:43 lib -> usr/lib
lrwxrwxrwx
            1 root root 9 Jan 16 09:43 lib32 -> usr/lib32
            1 root root 9 Jan 16 09:43 lib64 -> usr/lib64
lrwxrwxrwx
                           10 Jan 16 09:43 libx32 -> usr/libx32
lrwxrwxrwx
            1 root root
drwx - - - - - - -
            2 root root 16384 Jan 16 09:43 lost+found
. . .
```


- Keeps track of changes not yet committed to the file system
- Journaling can be done on an entire file or just its metadata.
- Was introduced in Ext3 and improved in Ext4

The Sleuth kit provides tools to inspect the journal.

JLS lists all the blocks, while JCAT prints information of a given block.

The block data is usually unreadable but may include file names.

```
$ jcat -f ext4 -o 2048 Web_Server.dd 4009
♦S
   . • 2
         ..$s
xmlrpc.php swp-blog-header.php s
                     index.php@s readme.html@s,
wp-signup.php s
                                     wp-cron.php7r .htaccessg.php.swphp�s
wp-login.php@swp-settings.php@s
                    license.txt s
wp-contentLt
              wp-mail.phpMtwp-links-opml.phpNt
                                                     wp-load.php0t
wp-includes vwp-activatwp-config.phpminxwp-trackback.phxwp-comments-post.php s4
              ��%:
```

Inode Structure

Inodes are the Linux equivalent of MFT.

They map files to the system without file names and include time stamps.

Inodes can be viewed using the *ils* and *ffstat* commands.

By default, *ils* only displays deleted nodes. Inodes can be viewed more elaborately on live systems.

```
$ ils -f ext4 -o 2048 Documents/Samples/dd/Hacked.dd
class|host|device|start_time
ils|siftworkstation||1579367260
st_ino|st_alloc|st_uid|st_gid|st_mtime|st_atime|st_ctime|st_crtime|st_mode|st_nlin
st size
22344|f|0|0|1579364887|1579364887|1579365328|1579364887|644|0|0
22345|f|0|0|1579169605|1579169605|1579169605|1579169605|755|0|0
22353|f|0|0|1579168209|1579168205|1579168209|1579168203|644|0|0
22354|f|0|0|1579168209|1579168203|1579168209|1579168203|755|0|0
22355|f|0|0|1579168209|1579168204|1579168209|1579168203|644|0|0
22356|f|0|0|1579168209|1579168205|1579168209|1579168203|644|0|0
22357|f|0|0|1579168209|1579168205|1579168209|1579168203|644|0|0
22358|f|0|0|1579168209|1579168204|1579168209|1579168203|644|0|0
22359|f|0|0|1579168209|1579168205|1579168209|1579168203|644|0|0
22360|f|0|0|1579168209|1579168203|1579168209|1579168203|755|0|0
22361|f|0|0|1579168209|1579168204|1579168209|1579168203|644|0|0
22362|f|0|0|1579168209|1579168205|1579168209|1579168203|644|0|0
22363|f|0|0|1579168209|1579168205|1579168209|1579168203|644|0|0
22364|f|0|0|1579168209|1579168205|1579168209|1579168203|644|0|0
22365|f|0|0|1579168209|1579168203|1579168209|1579168203|755|0|0
```

File System Analysis File System Debugging

Linux has a special utility to debug file systems called **debugfs**.

debugfs can also be used to recover files.

```
johnd@ubuntu:~$ echo "data" > file
johnd@ubuntu:~$ ls -li file
3147090 -rw-r--r-- 1 johnd johnd 5 Jan 15 10:19 file
johnd@ubuntu:~$ sudo debugfs /dev/sda1
debugfs 1.44.1 (24-Mar-2018)
debugfs: logdump -i <3147009>
Inode 3147009 is at group 384, block 12582984, offset 0
Journal starts at block 1, transaction 1137048
 FS block 12582984 logged at sequence 1137091, journal block 3298 (flags 0x2)
    (inode block for inode 3147009):
   Inode: 3147009 Type: regular Mode: 0600 Flags: 0x80000
   Generation: 2008725915 Version: 0x00000000:00000001
             0 Group:
                           0 Project:
                                            0 Size: 1612
   User:
   File ACL: 0
   Links: 1 Blockcount: 8
   Fragment: Address: 0 Number: 0 Size: 0
    ctime: 0x5c2dd781:ebf6c1e0 -- Thu Jan 3 01:36:01 2019
    atime: 0x5c2dd781:eb02a058 -- Thu Jan 3 01:36:01 2019
    mtime: 0x5c2dd781:ebf6c1e0 -- Thu Jan 3 01:36:01 2019
   crtime: 0x5c2dd781:eb02a058 -- Thu Jan 3 01:36:01 2019
```

DFIR-08-L2

Server Investigation 15–20 Min.

Mission

Investigate a server image and identify the deleted or modified files.

Steps

- Mount the hacked image.
- Identify the deleted files.
- Identify the modified files.

Env. & Tools

SIFT Workstation

Related Files

- Lab document
- DFIR-08-L2 Hacked.rar

Linux Forensics

Linux Memory Forensics

RAM

- Linux uses RAM in a similar way to Windows.
- RAM can be investigated using Volatility.

SWAP

- The Linux equivalent to page file
- Can be a file or an entire partition

The **swapon** -s command can be used to check the location of the swap.

fmem Kernel Module

One way to create a memory dump is to use the *fmem* kernel module.

The kernel module creates /dev/fmem, which can be captured.

Because the memory is dynamic, issues may arise when using *dd*.

```
johnd@ubuntu:/opt/fmem$ sudo ./run.sh
Module: insmod fmem.ko a1=0xfffffffbd098030 : OK
Device: /dev/fmem
----Memory areas: ----
reg00: base=0x000000000 (
                             OMB), size= 2048MB, count=1: write-back
reg01: base=0x080000000 ( 2048MB), size= 1024MB, count=1: write-back
reg02: base=0x100000000 ( 4096MB), size= 4096MB, count=1: write-back
reg03: base=0x200000000 ( 8192MB), size= 8192MB, count=1: write-back
reg04: base=0x400000000 (16384MB), size=16384MB, count=1: write-back
reg05: base=0x800000000 (32768MB), size=32768MB, count=1: write-back
reg06: base=0x1000000000 (65536MB), size=65536MB, count=1: write-back
!!! Don't forget add "count=" to dd !!!
johnd@ubuntu:/opt/fmem$ sudo dd if=/dev/fmem of=/tmp/memdump.raw bs=1024
count=1024000
1024000+0 records in
1024000+0 records out
1048576000 bytes (1.0 GB, 1000 MiB) copied, 2.28005 s, 460 MB/s
johnd@ubuntu:/opt/fmem$
```


A more stable tool for memory dumping is **LiME**.

LiME also supports mobile devices.

A Python utility called **LiMEaide** enables remote memory dumping.

```
johnd@ubuntu:/opt/LiME/src$ sudo make
make -C /lib/modules/4.15.0-74-generic/build M="/opt/LiME/src" modules
make[1]: Entering directory '/usr/src/linux-headers-4.15.0-74-generic'
 CC [M] /opt/LiME/src/tcp.o
 CC [M] /opt/LiME/src/disk.o
 CC [M] /opt/LiME/src/main.o
 CC [M] /opt/LiME/src/hash.o
 CC [M] /opt/LiME/src/deflate.o
 LD [M] /opt/LiME/src/lime.o
 Building modules, stage 2.
 MODPOST 1 modules
 CC
         /opt/LiME/src/lime.mod.o
 LD [M] /opt/LiME/src/lime.ko
make[1]: Leaving directory '/usr/src/linux-headers-4.15.0-74-generic'
strip --strip-unneeded lime.ko
mv lime.ko lime-4.15.0-74-generic.ko
johnd@ubuntu:/opt/LiME/src$ insmod lime-4.15.0-74-generic.ko "path=/tmp/memdump.raw
format=raw"
@ubuntu:/opt/LiME/src$
```

Swap Digger

Swap Digger is a Bash script that automates swap analysis.

The script looks up passwords and URLs.

Swap Digger can operate on live systems and mounted captures.

```
$ sudo ./swap_digger.sh -vx -s /home/swap.capture
  - SWAP Digger -
 [+] Using /home/swap.capture as swap partition
 [+] Dumping swap strings in /tmp/swap dump.txt ... (this may take some time)
    [-] Swap dump size: 3.9M
  ==== Web entered passwords and emails ===
 [+] Looking for web passwords method 1 (password in GET/POST)...
 [+] Looking for web passwords method 2 (JSON) ...
 [+] Looking for web passwords method 3 (HTTP Basic Authentication) ...
 [+] Looking for web entered emails...
```

Mission

Investigate a swap and extract useful data.

Steps

- Inspect the contents of the swap using Swap Digger.
- Identify the location of the swap on the system.
- Load the *swap/drive* file.
- Investigate the capture using Swap Digger and compare the output.

Short Practice

Swap Inspection 10-15 Min.

Linux Forensics

Process Investigation

Process Investigation

- Processes in Linux have file representations.
- Process files include metadata associated with the process.
- Processes are mapped in the /proc/ directory.

The /proc/ directory uses tmpfs, meaning the files are saved in volatile memory.

Process Investigation Proc Directory

Each process listed by **ps** or **lsof** is mapped in **/proc/**.

Process directories are based on their PIDs.

Each folder contains additional files required for the processes to run.

```
johnd@ubuntu:~$ ps -aux
USER
                                               STAT START
           PID %CPU %MEM
                            VSZ
                                  RSS TTY
                                                            TIME COMMAND
                                                    06:47
               0.0 0.4 167852
                                 9860 ?
                                                            0:02 /sbin/init
root
            2 0.0 0.0
                                    0 ?
                                                    06:47
                                                            0:00 [kthreadd]
root
            3 0.0
                    0.0
                                    0 ?
                                               I<
                                                    06:47
                                                            0:00 [rcu_gp]
root
            4 0.0 0.0
                                    0 ?
                                                            0:00 [rcu_par_gp]
root
                                               Ι<
                                                    06:47
johnd@ubuntu:~$ cd /proc
johnd@ubuntu:/proc$ ls -la
total 40
dr-xr-xr-x 232 root
                          root
                                                   0 Dec 31 06:47 .
drwxr-xr-x 19 root
                                               36864 Aug 8 02:10 ..
                          root
                                                   0 Dec 31 06:47 1
dr-xr-xr-x
            9 root
                          root
dr-xr-xr-x
            9 root
                          root
                                                   0 Dec 31 06:47 10
                                                   0 Dec 31 06:47 100
dr-xr-xr-x 9 root
                          root
dr-xr-xr-x
            9 root
                                                   0 Dec 31 06:48 1004
                          root
dr-xr-xr-x
                                                   0 Dec 31 06:47 101
            9 root
                          root
dr-xr-xr-x
            9 root
                          root
                                                   0 Dec 31 06:48 1010
                                                   0 Dec 31 06:48 1014
dr-xr-xr-x
             9 root
                          root
dr-xr-xr-x
            9 root
                          root
                                                   0 Dec 31 06:48 1017
                                                   0 Dec 31 06:48 1023
dr-xr-xr-x
            9 root
                          root
```


The folder structure in **/proc/** includes useful information about processes.

Directory Description

/proc/PID/cmdline Command-line arguments

/proc/PID/cpu Current and last CPU in which it was executed

/proc/PID/cwd Link to the current working directory

/proc/PID/environ Environment variable values

/proc/PID/exe Link to the process executable

/proc/PID/fd Directory that contains all file descriptors

Process Investigation

Process Investigation

The first step in process investigation is to understand how the process is executed.

The required information can be found in *comm* and *cmdline*.

```
johnd@ubuntu:~$ ps -aux
johnd@ubuntu:~$ netstat -naltp
(Not all processes could be identified, non-owned process info
will not be shown, you would have to be root to see it all.)
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address
                                        Foreign Address
                                                            State
                                                                       PID/Program
                                        0.0.0.0:*
                0 127.0.0.1:3306
                                                            LISTEN
tcp
                                                            LISTEN
                0 127.0.0.53:53
                                        0.0.0.0:*
tcp
                0 0.0.0.0:22
                                        0.0.0.0:*
                                                            LISTEN
tcp
                0 127.0.0.1:631
                                        0.0.0.0:*
                                                            LISTEN
tcp
                                                                       3930/./x99
                0 0.0.0.0:1337
                                        0.0.0.0:*
                                                            LISTEN
tcp
                0 :::80
                                                            LISTEN
tcp6
tcp6
                0 :::22
                                                            LISTEN
tcp6
                0::1:631
                                        * * *
                                                            LISTEN
johnd@ubuntu:~$ cat /proc/3930/comm
x99
johnd@ubuntu:~$ cat /proc/3930/cmdline
./x99-11337
johnd@ubuntu:~$
```

Maps and Descriptors

Two other useful commands are *maps* and *fd*.

The *maps* command lists all loaded libraries.

The *fd* command lists all file descriptors.

```
johnd@ubuntu:~$ 1s -la /proc/3930/fd
total 0
dr-x---- 2 lionk lionk 0 Jan 18 10:04 .
dr-xr-xr-x 9 lionk lionk 0 Jan 18 10:04 ...
lrwx----- 1 lionk lionk 64 Jan 18 10:04 0 -> /dev/pts/0
l-wx----- 1 lionk lionk 64 Jan 18 10:04 1 -> /dev/null
lrwx----- 1 lionk lionk 64 Jan 18 10:04 2 -> /dev/pts/0
lrwx----- 1 lionk lionk 64 Jan 18 10:04 3 -> 'socket:[61151]
lionk@ubuntu:/tmp$ cat /proc/3930/maps
55ad3744d000-55ad37455000 r-xp 00000000 08:01 1311077
                                                                /tmp/x99 (deleted)
55ad37654000-55ad37655000 r--p 00007000 08:01 1311077
                                                                /tmp/x99 (deleted)
55ad37655000-55ad37656000 rw-p 00008000 08:01 1311077
                                                                /tmp/x99 (deleted)
55ad37656000-55ad376d6000 rw-p 00000000 00:00 0
55ad377fc000-55ad3781d000 rw-p 00000000 00:00 0
                                                                [heap]
7fd841d8c000-7fd841da6000 r-xp 00000000 08:01 398746
/lib/x86 64-linux-gnu/libpthread-2.27.so
7fd841da6000-7fd841fa5000 ---p 0001a000 08:01 398746
/lib/x86 64-linux-gnu/libpthread-2.27.so
7fd841fa5000-7fd841fa6000 r--p 00019000 08:01 398746
/lib/x86 64-linux-gnu/libpthread-2.27.so
7fd841fa6000-7fd841fa7000 rw-p 0001a000 08:01 398746
                                                                /lib/x86 64-linux-
```

Extracting the Executable

The executable for each process can be extracted using a *cp*.

Extraction will work even if the executable was deleted.

```
johnd@ubuntu:~$ 1s -la /proc/3930/
total 0
dr-xr-xr-x 9 lionk lionk 0 Jan 18 10:04 .
dr-xr-xr-x 302 root root 0 Jan 18 09:22 ...
dr-xr-xr-x 2 lionk lionk 0 Jan 18 10:04 attr
-rw-r--r-- 1 lionk lionk 0 Jan 18 10:05 autogroup
-r----- 1 lionk lionk 0 Jan 18 10:05 auxv
-r--r-- 1 lionk lionk 0 Jan 18 10:05 cgroup
--w----- 1 lionk lionk 0 Jan 18 10:05 clear refs
-r--r-- 1 lionk lionk 0 Jan 18 10:04 cmdline
-rw-r--r-- 1 lionk lionk 0 Jan 18 10:05 comm
-rw-r--r-- 1 lionk lionk 0 Jan 18 10:05 coredump filter
-r--r-- 1 lionk lionk 0 Jan 18 10:05 cpuset
lrwxrwxrwx 1 lionk lionk 0 Jan 18 10:05 cwd -> /tmp
-r----- 1 lionk lionk 0 Jan 18 10:05 environ
lrwxrwxrwx 1 lionk lionk 0 Jan 18 10:05 exe -> '/tmp/x99 (deleted)'
dr-x---- 2 lionk lionk 0 Jan 18 10:04 fd
johnd@ubuntu:~$ cp /proc/3930/exe x99
johnd@ubuntu:~$ md5sum x99
3dd534fc7f982d3d79391e8c26bcf023 x99
johnd@ubuntu:~$
```

DFIR-08-L3

Process Investigation 20–25 Min.

Mission

Mimic bind shell behavior and investigate it via live analysis of the **/proc/** directory content.

Steps

- Simulate bind shell behavior.
- Identify the process in /proc/.
- Investigate the process.
- Recover the executable's binary.

Env. & Tools

• Ubuntu 16.04+

Related Files

Lab document

Thank You

Questions?