

SYDNEY BOYS HIGH SCHOOL

MOORE PARK, SURRY HILLS

2004

YEAR 12

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK # 3

Mathematics Extension 1

General Instructions

- Working time 90 minutes.
- Reading Time 5 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work

Total Marks - 66

- Attempt *all* questions
- All questions are of equal value
- Return your answers in 3 booklets, one for each section. Each booklet must show your student number.

Examiner: Mr R Dowdell

Standard Integrals

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - a^{2}}} dx = \ln\{x + \sqrt{x^{2} + a^{2}}\}, |x| > |a|$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln\{x + \sqrt{x^{2} + a^{2}}\}$$

NOTE: $\ln x = \log_a x$

Section A:

Question 1: (11 marks)

(a) Evaluate
$$\int_0^2 \frac{dx}{\sqrt{16-x^2}}$$

(b) Evaluate

(i)
$$\lim_{x \to 0} \frac{\sin 3x}{4x}$$
(ii)
$$\lim_{x \to 0} \frac{\sin 3x}{\sin 7x}$$
3

(c) Use the substitution
$$u = \ln x$$
 to find $\int \frac{dx}{x\sqrt{1-(\ln x)^2}}$.

- (d) Differentiate $\log_e(\sin^3 x)$, writing your answer in simplest form.
- (e) Differentiate with respect to x, $(\tan^{-1} x)^2$.

Marks

Question 2: (11 marks)

Marks

- (a) (i) Write down the domain and range of $y = \sin^{-1} (\sin x)$.
 - (ii) Draw a neat sketch of $y = \sin^{-1} (\sin x)$.

3

- (b) Given that $y = \sin^{-1}(\sqrt{x})$, show that $\frac{dy}{dx} = \frac{1}{\sin 2y}$.
- (c) Show that the derivative of $x \tan x \ln(\sec x)$ is $x \sec^2 x$.

Hence, or otherwise, evaluate $\int_{0}^{\frac{\pi}{4}} x \sec^{2} x \, dx$.

3

(d) If
$$y = 10^x$$
, find $\frac{dy}{dx}$ when $x = 1$.

Section B:

Question 3: (11 marks) START A NEW BOOKLET

Marks

- (a) Consider the function $y = 4\sin\left(x + \frac{\pi}{6}\right), \frac{\pi}{3} \le x \le \frac{4\pi}{3}$.
 - (i) Find the inverse function of y, and write down its domain.

4

- (ii) Sketch the inverse function of y.
- (b)
- (i) On the same axes, draw the graphs of $y = \tan^{-1} x$ and $y = \cos^{-1} x$, showing the important features. Mark the point *P* where the curves intersect.

5

(ii) Show that, if $\tan^{-1} x = \cos^{-1} x$, then $x^4 + x^2 - 1 = 0$. Hence, find the coordinates of P, correct to 2 decimal places.

5

(c) Show that $\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{3}{5}\right) = \frac{\pi}{4}$

Question 4: (11 marks)

Marks

- (a) (i) Draw a neat sketch of $y = \cos^{-1} x$. State its domain and range.
 - (ii) Shade the area bounded by $y = \cos^{-1} x$ and the x and y axes on your diagram.
 - (iii) Calculate the area of the region specified in (ii).
- (b) Differentiate $y = \log_e \left(\frac{2x}{(x-1)^2} \right)$. Write your answer in simplest form.
- (c) The rate of change of temperature T^o , of an object is given by the equation $\frac{dT}{dt} = k(T 16)$ degrees per minute, k a constant.
 - (i) Show that the function $T = 16 + Pe^{kt}$, where *P* is a constant and *t* the time in minutes, satisfies the equation.
 - (ii) If initially T = 0 and after 10 minutes T = 12, find the values of P and k.
 - (iii) Find the temperature of the object after 15 minutes.
 - (iv) Sketch the graph of *T* as a function of *t* and describe its behaviour as *t* continues to increase.

Section C:

Question 5: (11 marks) START A NEW BOOKLET

Marks

(a) It is known that $\ln x + \sin x = 0$ has a root close to x = 0.5. Use one application of Newton's method to obtain a better approximation (to 2 decimal places).

2

(b) The acceleration of a particle *P* is given by the equation $\ddot{x} = 8x(x^2 + 1) \text{ ms}^{-2}$, where *x* is the displacement of *P* from the origin in metres after *t* seconds, with movement being in a straight line.

Initially the particle is projected from the origin with a velocity of 2 ms⁻¹.

(i) Show that the velocity of the particle can be expressed as $v = 2(x^2 + 1)$.

6

- (ii) Hence, show that the equation describing the displacement of the particle at time t is given by $x = \tan 2t$.
- (iii) Determine the velocity of the particle at time $\frac{\pi}{8}$ seconds.
- (c) The arc of the curve $y = \sin^{-1} x$ between x = 0 and x = 1 is rotated about the x axis. Use Simpson's Rule with three function values to estimate the volume of the solid formed.

Question 6: (11 marks)

Marks

- (a) The velocity $v \text{ ms}^{-2}$ of a particle moving in simple harmonic motion along the x axis is given by the expression $v^2 = 28 + 24x 4x^2$.
 - (i) Between which two points is the particle oscillating?
 - (ii) What is the amplitude of the motion?
 - (iii) Find the acceleration in terms of x.

6

- (iv) Find the period of the oscillation.
- (v) If the particle starts from the point furthest to the right, find the displacement in terms of *t*.
- (b) A stone is thrown from the top of a vertical cliff over the water of a lake. The height of the cliff is 8 metres above the level of the water, the initial speed of the stone is 10 ms⁻¹ and the angle of projection is $\theta = \tan^{-1} \left(\frac{3}{4} \right)$ above the horizontal.

The equations of motion of the stone, with air resistance neglected, are $\ddot{x} = 0$ and $\ddot{y} = -g$.

- (i) By taking the origin O as the base of the cliff, show that the horizontal and vertical components of the stone's displacement from the origin after t seconds are given by x = 8t and $y = -\frac{1}{2}gt^2 + 6t + 8.$
- (ii) Hence, or otherwise, calculate the time which elapses before the stone hits the lake and find the horizontal distance of the point of contact from the base of the cliff. (Assume $g = 10 \text{ ms}^{-2}$.)

End of Paper