

PENDAHULUAN

LATAR BELAKANG:

- KELUHAN AIR DI WATER TANK KOMPLEKS DAGO PPR YANG CEPAT HABIS NAMUN BELUM DAPAT DISIMPULKAN APAKAH ADA KEBOCORAN PIPA ATAU MEMANG KARENA SUPPLY AIR YANG KURANG
- PENGECEKAN KETINGGIAN AIR MASIH DILAKUKAN SECARA MANUAL (DILIHAT SECARA LANGSUNG OLEH PETUGAS KOMPLEKS)

KEBUTUHAN:

- SISTEM PEMANTAUAN LEVEL AIR DI WATER TANK (DAGO PPR)
- PEMANTAUAN DIINGINKAN BERSIFAT ONLINE SEHINGGA DAPAT DIAKSES VIA WEB BROWSER

ARSITEKTUR SISTEM

- + Tidak Butuh Listrik (asumsi awal lokasi jauh dari sumber listrik)
- Ketahanan baterai sekitar 2-3 jam

- + Menggunakan listrik (tidak perlu repot ganti baterai)
- Perlu kabel cukup Panjang serta pipa untuk melindungi kabel dari panas dan hujan

ARSITEKTUR SISTEM

- v1:
- modem mati harus dinyalakan manual (efek pada saat pengisian paket data)
- Noise pengukuran karena power supply
- Baterai modem rusak (kembung)

- + baterai modem di bypass, langsung ke 5V. Tidak perlu switch charge/discharge.
- + tombol modem dibuat terus menerus menekan, sehingga apabila mati listrik, tidak perlu datang utk menyalakan. Sudah menyala otomatis.
- + power supply diganti dengan adaptor 5V, diisolasi dan ditempatkan di luar, noise pengukuran hilang

LIST KOMPONEN & TAHAPAN IMPLEMENTASI

User

Modul	Nama Komponen
Micro Controller	WIFI Bluetooth IoT ESP-32S Development Board
Ultrasonic Sensor	JSN-SR04T SR04T ULTRASONIC (Waterproof – V1)
Wireless Modem	Mifi Modem Wifi Bolt Juno 4G
5V DC PSU	Adaptor Raspberry Pi 5V 3 ^a
User Interface	Cayenne My Devices (MQTT)
Junction Box	<u>Legrand Junction Box</u>
Accessories	Resistor, PCB dot matrix, LED, Switch dsb

Uji Coba komunikasi Koordinasi dengan Survey dan evaluasi Kalibrasi Sensor Pemantauan dan Persiapan Perangkat dan kirim data ke Implementasi desain awal penjaga water tank maintenance dashboard

DOKUMENTASI

Implementasi V1

Notes:

- PSU dalam junction box, sehingga kabel supply langsung masuk ke dalam box
- Probe ultrasonic berada di luar box
- Data hasil noisy karena adanya pengaruh dari power supply
- Modem masih menggunakan baterai

Link Dashboard : https://bit.ly/WaterLevelPPR

DOKUMENTASI

Implementasi V2

Notes:

- PSU diluar junction box (power adapter) namun diisolasi dan diamankan
- Probe ultrasonic berada di luar box
- Data hasil sudah tidak terlalu noisy karena power supply dijauhkan dari modul pemroses ultrasonik
- Modem tidak lagi menggunakan baterai

DOKUMENTASI

EVALUASI & SARAN

- Perlu adanya kode untuk mengantisipasi MCU yang terkadang hang (watchdog timer); untuk dago PPR saat ini biasanya direset manual oleh penjaga water tank (terjadi 2 bulan sekali/1 bulan sekali)
- Solusi untuk bagian dalam junction box yang panas (asumsi penyebab MCU hang)
- Power supply diperkecil sehingga bisa dimasukkan ke dalam box agar menjadi lebih compact. (bisa dicoba menggunakan :

 HLK5M05 AC-DC 220V to 5V Isolated Step-Down Power Supply">https://doi.org/10.1007/jhtml/>
 HLK5M05 AC-DC 220V to 5V Isolated Step-Down Power Supply)
- Probe ultrasonic dipasang di dalam box (dapat disesuaikan dengan lokasi implementasi)
- Dashboard sebaiknya di set menggunakan server Pribadi ataupun dashboard buatan sendiri agar lebih mudah dikostumisasi.

 Fungsi sederhana terkadang agak sulit diterapkan di Cayenne (semisal hand-shake, dsb)
- Jenis MCU dapat diperkecil atau disesuaikan Kembali, sesuai dengan kebutuhan

Link Dashboard : https://bit.ly/WaterLevelPPR

