

### PVsyst - Rapport de simulation

Système couplé au réseau

Projet: centrale photovoltaique

Variante : New simulation variant
Système en sheds, simple rangée
Puissance système : 70.0 kWc
Paris/Bonneuil-en-France - France

## PVsyst EVALUATION

# **PVsyst EVALUATION**

PVsyst EVALUATION



Projet: centrale photovoltaique

Variante: New simulation variant

PVsyst V8.0.6 VC1. Simulé le : 21/01/25 15:59 avec V8.0.6

Ré sumé du projet

Site gé ographique

Situation

Paramè tres du projet

Paris/Bonneuil-en-France

Latitude Longitude 48.97 °N

Albédo

France

Altitude

66 m

Fus. horaire

UTC+1

2.44 °E

Donné es mé té o Paris/Bonneuil-en-France

MeteoNorm 8.2 station - Synthetic

Ré sumé du systè me

Systè me couplé au ré seau

Systè me en sheds, simple rangé e

Orientation #1

Plan fixe

Ombrages proches

Besoins de l'utilisateur

Inclinaison/Azimut 20 / 0° Selon chaînes de modules : Rapide (table) Effet électrique

Charge illimitée (réseau)

Information systè me

Champ PV

Onduleurs

100 %

Nb. de modules

140 unités

Nombre d'unités

1 unité

0.20

Pnom total

70.0 kWc

Pnom total

60.0 kWac

Rapport Pnom 1.167

Ré sumé des ré sultats

Energie produite

80131 kWh/an

Productible

1145 kWh/kWc/an

Indice perf. PR

88.17 %

Table des matiè res Résumé du projet et des résultats 2 3 Paramètres généraux, Caractéristiques du champ de capteurs, Pertes système Définition des ombrages proches - Diagramme d'iso-ombrages 4 5 Résultats principaux Diagramme des pertes 6 Graphiques prédéfinis 7 8 Schéma unifilaire



Projet : centrale photovoltaique

Variante: New simulation variant

PVsyst V8.0.6 VC1. Simulé le : 21/01/25 15:59 avec V8.0.6

Paramè tres gé né raux

Systè me couplé au ré seau

Systè me en sheds, simple rangé e

Orientation #1

Plan fixe Inclinaison/Azimut Configuration des sheds

Nbre de sheds

4 unités

Dimensions

Esp. entre sheds 16 2 m Largeur collecteurs 3.14 m

Champ simple

Pas d'horizon

GCR moyen

19.3 %

Angle limite d'ombrage Angle de profil limite

4.7°

Bande inactive haut 0.02 m

Bande inactive bas 0.02 m

Modè les utilisé s

Transposition Perez

Diffus Circumsolaire

Perez, Meteonorm

20 / 0°

séparément

Besoins de l'utilisateur Charge illimitée (réseau)

Horizon Ombrages proches

Selon chaînes de modules : Rapide (table)

Effet électrique

100 %

#### Caracté ristiques du champ de capteurs

Module PV Onduleur

Fabricant Generic Fabricant Generic Modèle LR5-66HPH-500M G2 Modèle SUN2000-60KTL-M0\_400Vac

(Base de données PVsyst originale)

(Base de données PVsyst originale) Puissance unitaire 500 Wc Puissance unitaire 60.0 kWac Nombre de modules PV 140 unités Nombre d'onduleurs 1 unité Nominale (STC) 70.0 kWc 60.0 kWac Puissance totale 7 chaîne x 20 En série Tension de fonctionnement 200-1000 V Modules

Aux cond. de fonct. (50° C)

64.2 kWc

Puissance max. (=>30°C) Rapport Pnom (DC:AC) Partage PNom dans l'onduleur 66.0 kWac 1.17

U mpp 689 V

I mpp

Pmpp

93 A

Puissance totale onduleur

Puissance PV totale Nominale (STC) 70 kWc Total 140 modules Surface modules 332 m<sup>2</sup>

Puissance totale Puissance max Nombre d'onduleurs 60 kWac 66 kWac 1 unité

1.17

Surface cellule 306 m<sup>2</sup>

Rapport Pnom

#### Pertes champ

Fact. de pertes thermiques Température modules selon l'irradiance

29.0 W/m2K Uc (const) Uv (vent) 0.0 W/m2K/m/s Pertes câ blage DC

Perte de qualité module

Rés. globale champ 122 mΩ 1.5 % aux STC Frac. pertes

Frac. pertes -0.8 %

Pertes de mismatch modules

Frac. pertes 2.0 % au MPP

Facteur de perte IAM

Effet d'incidence (IAM): Profil personnalisé

| 0°    | 25°   | 45°   | 60°   | 65°   | 70°   | 75°   | 80°   | 90°   |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1.000 | 1.000 | 0.995 | 0.962 | 0.936 | 0.903 | 0.851 | 0.754 | 0.000 |



Projet : centrale photovoltaique

Variante: New simulation variant

VC1, Simulé le : 21/01/25 15:59 avec V8.0.6







Projet: centrale photovoltaique

Variante: New simulation variant

PVsyst V8.0.6 VC1, Simulé le : 21/01/25 15:59 avec V8.0.6

#### Ré sultats principaux

Production du systè me

Energie produite 80131 kWh/an

Productible Indice perf. PR 1145 kWh/kWc/an

88.17 %

#### Productions normalisé es (par kWp installé )





#### Bilans et ré sultats principaux

|           | GlobHor | DiffHor | T_Amb | GlobInc | GlobEff | EArray | E_Grid | PR    |
|-----------|---------|---------|-------|---------|---------|--------|--------|-------|
|           | kWh/m²  | kWh/m²  | °C    | kWh/m²  | kWh/m²  | kWh    | kWh    | ratio |
| Janvier   | 24.9    | 17.20   | 5.00  | 35.2    | 33.5    | 2250   | 2206   | 0.896 |
| Fé vrier  | 44.7    | 27.30   | 5.10  | 58.5    | 56.1    | 3789   | 3723   | 0.909 |
| Mars      | 88.3    | 45.80   | 8.40  | 107.6   | 103.7   | 6859   | 6745   | 0.895 |
| Avril     | 131.2   | 64.80   | 11.20 | 147.3   | 142.8   | 9295   | 9141   | 0.886 |
| Mai       | 162.2   | 74.40   | 14.80 | 169.2   | 164.4   | 10705  | 10530  | 0.889 |
| Juin      | 166.8   | 90.30   | 18.60 | 169.5   | 164.5   | 10650  | 10476  | 0.883 |
| Juillet   | 173.4   | 83.30   | 20.70 | 177.5   | 172.2   | 10941  | 10761  | 0.866 |
| Aoû t     | 146.2   | 73.10   | 19.70 | 158.4   | 153.8   | 9774   | 9617   | 0.867 |
| Septembre | 106.0   | 53.90   | 15.70 | 125.7   | 121.2   | 7799   | 7673   | 0.872 |
| Octobre   | 60.7    | 35.30   | 12.50 | 76.5    | 73.5    | 4810   | 4729   | 0.883 |
| Novembre  | 29.8    | 20.20   | 8.00  | 41.2    | 39.5    | 2631   | 2582   | 0.895 |
| Dé cembre | 20.6    | 12.80   | 5.30  | 31.5    | 30.0    | 1989   | 1948   | 0.882 |
| Anné e    | 1154.8  | 598.39  | 12.13 | 1298.3  | 1255.3  | 81493  | 80131  | 0.882 |

Lé gendes

GlobHor Irradiation globale horizontale
DiffHor Irradiation diffuse horizontale

T\_Amb Température ambiante

Globlnc Global incident plan capteurs

GlobEff Global "effectif", corr. pour IAM et ombrages

EArray E\_Grid PR Energie effective sortie champ Energie injectée dans le réseau

Indice de performance



PVsyst V8.0.6 VC1, Simulé le : 21/01/25 15:59

### Projet : centrale photovoltaique

Variante: New simulation variant





PVsyst V8.0.6 VC1, Simulé le : 21/01/25 15:59 avec V8.0.6

### Projet : centrale photovoltaique

Variante: New simulation variant



