In [23]: ▶

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import normalize
import scipy.cluster.hierarchy as shc
from sklearn.cluster import AgglomerativeClustering
%matplotlib inline

#Read the csv
#use the GPA and GPA*SAT column to make an accurate finding of students for s
data = pd.read_csv('GPA and SAT data.csv')
data.head()

Out[23]:

	Student	Rand	GPA	SAT	GPA*SAT
0	1	1	1.161372	906	1052.203131
1	2	1	1.586621	768	1218.525281
2	3	2	2.707815	1406	3807.187748
3	4	1	1.720229	913	1570.569439
4	5	1	1.363763	1458	1988.366906

Out[29]: <matplotlib.collections.PathCollection at 0x2cf82644780>


```
In [37]:  #Useing the dendrogram above we can use that to make our clusters from the GF
#We will first use AgglomerativeClustering to cluster the values based on the
cluster = AgglomerativeClustering(n_clusters=3, affinity='12', linkage='avera
#We fit the the cluster to the data
cluster.fit_predict(data)
#plot!
plt.figure(figsize=(5, 5))
plt.title("Clustered plot")
plt.scatter(data['GPA'], data['SAT'], c=cluster.labels_)
```

Out[37]: <matplotlib.collections.PathCollection at 0x2cf848faa58>


```
In [ ]: ▶
```