Appendix I

Definitions of the SI Base Units

Metre (m): The metre is the length of path travelled by light in vacuum during a time interval of 1/299 792 458 of a second (17th CGPM, 1983).

Kilogram (kg): The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram (3rd CGPM, 1901).

Second (s): The second is the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium-133 atom (13th CGPM, 1967).

Ampere (A): The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} Newton per metre of length (9th CGPM, 1948).

Kelvin (K): The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water (13th CGPM, 1967).

Mole (mol): The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon-12. When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles (14^{th} CGPM, 1971).

Candela (cd): The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} hertz and that has a radiant intensity in that direction of (1/683) watt per steradian $(16^{th}$ CGPM, 1979).

(The symbols listed here are internationally agreed and should not be changed in other languages or scripts).

Appendix II

Elements, their Atomic Number and Molar Mass

Element	Symbol	Atomic Number	Molar mass/ (g mol ⁻¹)	Element	Symbol	Atomic Number	Molar mass/ (g mol ⁻¹)
Actinium	Ac	89	227.03	Mercury	Hg	80	200.59
Aluminium	Al	13	26.98	Molybdenum	Mo	42	95.94
Americium	Am	95	(243)	Neodymium	Nd	60	144.24
Antimony	Sb	51	121.75	Neon	Ne	10	20.18
Argon	Ar	18	39.95	Neptunium	Np	93	(237.05)
Arsenic	As	33	74.92	Nickel	Ni	28	58.71
Astatine	At	85	210	Niobium	Nb	41	92.91
Barium	Ba	56	137.34	Nitrogen	N	7	14.0067
Berkelium	Bk	97	(247)	Nobelium	No	102	(259)
Beryllium	Be	4	9.01	Osmium	Os	76	190.2
Bismuth	Bi	83	208.98	Oxygen	0	8	16.00
Bohrium	Bh	107	(264)	Palladium	Pd	46	106.4
Boron	В	5	10.81	Phosphorus	P	15	30.97
Bromine	Br	35	79.91	Platinum	Pt	78	195.09
Cadmium	Cd	48	112.40	Plutonium	Pu	94	(244)
Caesium	Cs	55	132.91	Polonium	Po	84	210
Calcium	Ca	20	40.08	Potassium	K	19	39.10
Californium	Cf	98	251.08	Praseodymium Promethium	Pr	59	140.91
Carbon	С	6	12.01		Pm Pa	61 91	(145) 231.04
Cerium	Ce	58	140.12	Protactinium Radium	Pa Ra	91 88	(226)
Chlorine	C1	17	35.45	Radon	Rn	86	
Chromium	Cr	24	52.00	Rhenium	Re	75	(222) 186.2
Cobalt	Co	27	58.93	Rhodium	Rh	45	102.91
Copper Curium	Cu Cm	29 96	63.54 247.07	Rubidium	Rb	37	85.47
Dubnium	Db	105		Ruthenium	Ru	44	101.07
Dysprosium	Dy	66	(263) 162.50	Rutherfordium	Rf	104	(261)
Einsteinium	Es	99	(252)	Samarium	Sm	62	150.35
Erbium	Er	68	167.26	Scandium	Sc	21	44.96
Europium	Eu	63	151.96	Seaborgium	Sg	106	(266)
Fermium	Fm	100	(257.10)	Selenium	Se	34	78.96
Fluorine	F	9	19.00	Silicon	Si	14	28.08
Francium	Fr	87	(223)	Silver	Ag	47	107.87
Gadolinium	Gd	64	157.25	Sodium	Na	11	22.99
Gallium	Ga	31	69.72	Strontium	Sr	38	87.62
Germanium	Ge	32	72.61	Sulphur	S	16	32.06
Gold	Au	79	196.97	Tantalum	Ta	73	180.95
Hafnium	Hf	72	178.49	Technetium	Tc	43	(98.91)
Hassium	Hs	108	(269)	Tellurium	Te	52	127.60
Helium	He	2	4.00	Terbium	Tb	65	158.92
Holmium	Но	67	164.93	Thallium	Tl	81	204.37
Hydrogen	Н	1	1.0079	Thorium	Th	90	232.04
Indium	In	49	114.82	Thulium	Tm	69	168.93
Iodine	I	53	126.90	Tin	Sn	50	118.69
Iridium	Ir	77	192.2	Titanium	Ti	22	47.88
Iron	Fe	26	55.85	Tungsten	W	74	183.85
Krypton	Kr	36	83.80	Ununbium	Uub	112	(277)
Lanthanum	La	57	138.91	Ununnilium	Uun	110	(269)
Lawrencium	Lr	103	(262.1)	Unununium	Uuu	111	(272)
Lead	Pb	82	207.19	Uranium	U	92	238.03
Lithium	Li	3	6.94	Vanadium	V	23	50.94
Lutetium	Lu	71	174.96	Xenon	Xe	54	131.30
Magnesium	Mg	12	24.31	Ytterbium	Yb	70	173.04
Manganese	Mn	25	54.94	Yttrium	Y	39	88.91
Meitneium	Mt	109	(268)	Zinc	Zn	30	65.37
Mendelevium	Md	101	258.10	Zirconium	Zr	40	91.22

The value given in parenthesis is the molar mass of the isotope of largest known half-life.

Appendix III

8.65

Substance	Specific Heat Capacity (J/g)	Molar Heat Capacity (J/mol)
air	0.720	20.8
water (liquid)	4.184	75.4
ammonia (gas)	2.06	35.1
hydrogen chloride	0.797	29.1
hydrogen bromide	0.360	29.1
ammonia (liquid)	4.70	79.9
ethyl alcohol (liquid)	2.46	113.16
ethylene glycol (liquid)	2.42	152.52
water (solid)	2.06	37.08
carbon tetrachloride (liquid)	0.861	132.59
chlorofluorocarbon (CCl F)	0.5980	72.35
ozone ^{2 2}	0.817	39.2
neon	1.03	20.7
chlorine	0.477	33.8
bromine	0.473	75.6
iron	0.460	25.1
copper	0.385	24.7
aluminium	0.902	24.35
gold	0.128	25.2
• • •		Y

gold graphite

Gas	$C_{\mathbf{p}}$	$C_{ m v}$	C_{p} - C_{v}	$C_{\rm p} / C_{\rm v}$
Monatomic*				
helium	20.9	12.8	8.28	1.63
argon	20.8	12.5	8.33	1.66
iodine	20.9	12.6	8.37	1.66
mercury	20.8	12.5	8.33	1.66
Diatomic†				
hydrogen	28.6	20.2	8.33	1.41
oxygen	29.1	20.8	8.33	1.39
nitrogen	29.0	20.7	8.30	1.40
hydrogen chloride	29.6	21.0	8.60	1.39
carbon monoxide	29.0	21.0	8.00	1.41
Triatomic†				
nitrous oxide	39.0	30.5	8.50	1.28
carbon dioxide	37.5	29.0	8.50	1.29
Polyatomic†				
ethane	53.2	44.6	8.60	1.19

0.720

†Translational, vibrational and rotational energy.

Appendix IV

Physical Constants

Quantity	Symbol	Traditional Units	SI Units
Acceleration of gravity	g	980.6 cm/s	9.806 m/s
Atomic mass unit (1/12	amu	$1.6606 \times 10^{-24} \text{ g}$	$1.6606 \times 10^{-27} \text{ kg}$
the mass of ¹² C atom)	or u		
Avogadro constant	$N_{\!$	6.022×10^{23}	6.022×10^{23}
		particles/mol	particles/mol
Bohr radius	$a_{_{0}}$	0.52918 Å $5.2918 \times 10^{-9} \text{ cm}$	$5.2918 \times 10^{-11} \text{ m}$
Boltzmann constant	k	$1.3807 \times 10^{-16} \text{ erg/K}$	$1.3807 \times 10^{-23} \text{ J/K}$
Charge-to-mass ratio of electron	e/m	$1.758820 \times 10^8 \text{ coulomb/g}$	$1.7588 \times 10^{11} \text{ C/kg}$
Electronic charge	e	1.602176×10^{-19} coulomb 4.8033×10^{-19} esu	$1.60219 \times 10^{-19} \text{ C}$
Electron rest mass	m_e	9.109382 ×10 ⁻²⁸ g 0.00054859 u	9.10952 ×10 ⁻³¹ kg
Faraday constant	F	96,487 coulombs/eq	96,487 C/mol e ⁻
		23.06 kcal/volt. eq	96,487 J/V.mol e ⁻
		L atm	kPa dm ³
Gas constant	R	$0.8206 \frac{\text{mol K}}{\text{mol K}}$	8.3145 mol K
		mor K	IIIOI K
	(cal	
		1.987 mol K	8.3145 J/mol.K
Molar volume (STP)	V_m	22.710981 L/mol	$22.710981 \times 10^{-3} \text{ m}^3/\text{mol}$
, ,	m		22.710981 dm ³ /mol
Neutron rest mass	m_n	1.674927 × 10 ⁻²⁴ g 1.008665 u	$1.67495 \times 10^{-27} \text{ kg}$
Planck constant	h	$6.6262 \times 10^{-27} \text{ ergs}$	$6.6262 \times 10^{-34} \text{ J s}$
Proton rest mass	m_p	1.6726216 ×10 ⁻²⁴ g	1.6726 ×10 ⁻²⁷ kg
	p	1.007277 u	G
Rydberg constant	$R_{_\infty}$	$3.289 \times 10^{15} \text{ cycles/s}$	$1.0974 \times 10^7 \text{m}^{\text{-}1}$
		$2.1799 \times 10^{-11} \text{ erg}$	$2.1799 \times 10^{-18} \text{ J}$
Speed of light	c	2.9979 ×10 ¹⁰ cm/s	$2.9979 \times 10^8 \text{ m/s}$
(in a vacuum)		(186,281 miles/second)	

 $\pi = 3.1416 \qquad 2.303 \; R = 4.576 \; \text{cal/mol K} = 19.15 \; \text{J/mol K}$ $e = 2.71828 \qquad 2.303 \; RT \; (\text{at } 25^{\circ}\text{C}) = 1364 \; \text{cal/mol} = 5709 \; \text{J/mol}$ $\ln X = 2.303 \; \log X$

Appendix V

Some Useful Conversion Factors

Common Unit of Mass and Weight 1 pound = 453.59 grams

1 pound = 453.59 grams = 0.45359 kilogram 1 kilogram = 1000 grams = 2.205 pounds1 gram = 10 decigrams = 100 centigrams = 1000 milligrams 1 gram = 6.022×10^{23} atomic mass units or u 1 atomic mass unit = 1.6606×10^{-24} gram 1 metric tonne = 1000 kilograms = 2205 pounds

Common Unit of Volume 1 quart = 0.9463 litre 1 litre = 1.056 quarts

1 litre = 1 cubic decimetre = 1000 cubic centimetres = 0.001 cubic metre 1 millilitre = 1 cubic centimetre = 0.001 litre $= 1.056 \times 10^{-3}$ quart 1 cubic foot = 28.316 litres = 29.902 quarts = 7.475 gallons

Common Units of Energy 1 joule = 1×10^7 ergs

1 thermochemical calorie**

= 4.184 joules $= 4.184 \times 10^7 \text{ ergs}$

= 4.129×10^{-2} litre-atmospheres = 2.612×10^{19} electron volts

1 ergs = 1×10^{-7} joule = 2.3901×10^{-8} calorie

1 electron volt = 1.6022×10^{-19} joule $= 1.6022 \times 10^{-12} \text{ erg}$ = 96.487 kJ/mol†

1 litre-atmosphere = 24.217 calories

= 101.32 joules $= 1.0132 \times 10^9 \text{ ergs}$

1 British thermal unit = 1055.06 joules

 $= 1.05506 \times 10^{10} \text{ ergs}$

= 252.2 calories

Common Units of Length 1 inch = 2.54 centimetres (exactly)

1 mile = 5280 feet = 1.609 kilometres1 yard = 36 inches = 0.9144 metre 1 metre = 100 centimetres = 39.37 inches = 3.281 feet = 1.094 yards1 kilometre = 1000 metres = 1094 yards = 0.6215 mile 1 Angstrom = 1.0×10^{-8} centimetre = 0.10 nanometre $= 1.0 \times 10^{-10} \text{ metre}$ $= 3.937 \times 10^{-9}$ inch

Common Units of Force* and Pressure

1 atmosphere = 760 millimetres of mercury = 1.013×10^5 pascals = 14.70 pounds per square inch 1 bar = 10^5 pascals 1 torr = 1 millimetre of mercury 1 pascal = $1 \text{ kg/ms}^2 = 1 \text{ N/m}^2$

Temperature SI Base Unit: Kelvin (K)

 $K = -273.15^{\circ}C$ $K = ^{\circ}C + 273.15$ $F = 1.8(^{\circ}C) + 32$ °F – 32

Force: 1 newton (N) = 1 kg m/s², i.e., the force that, when applied for 1 second, gives a 1-kilogram mass a velocity of 1 metre per second.

The amount of heat required to raise the temperature of one gram of water from 14.5°C to

Note that the other units are per particle and must be multiplied by 6.022×10^{23} to be strictly comparable.

Appendix VI

Thermodynamic Data at 298 K

INORGANIC SUBSTANCES

Substance	Enthalpy of formation, $\Delta_{\rm f} H^{\rm o}/~({ m kJ~mol}^{-1})$	Gibbs Energy of formation, $\Delta_{\rm f} G^{\rm e}/$ (kJ mol ⁻¹)	Entropy,* S ^o /(J K ⁻¹ mol ⁻¹)
Aluminium			
Al(s)	0	0	28.33
Al ³⁺ (aq)	- 524.7	-481.2	-321.7
$Al_2O_3(s)$	-1675.7	-1582.3	50.92
$Al(OH)_3(s)$	-1276	_	-
AlCl ₃ (s)	-704.2	-628.8	110.67
Antimony			
SbH ₃ (g)	145.11	147.75	232.78
SbCl ₃ (g)	-313.8	-301.2	337.80
SbCl ₅ (g)	-394.34	-334.29	401.94
Arsenic			
As(s), gray	0	0	35.1
$As_2S_3(s)$	-169.0	-168.6	163.6
AsO ₄ ³⁻ (aq)	-888.14	-648.41	-162.8
Barium			
Ba(s)	0	0	62.8
Ba ²⁺ (aq)	-537.64	-560.77	9.6
BaO(s)	-553.5	-525.1	70.42
BaCO ₃ (s)	-1216.3	-1137.6	112.1
BaCO ₃ (aq)	-1214.78	-1088.59	-47.3
Boron			
B(s)	0	0	5.86
$B_2O_3(s)$	-1272.8	-1193.7	53.97
$BF_3(g)$	-1137.0	-1120.3	254.12
Bromine			
$Br_2(1)$	0	0	152.23
$Br_2(g)$	30.91	3.11	245.46
Br(g)	111.88	82.40	175.02
Br ⁻ (aq)	-121.55	-103.96	82.4
HBr(g)	-36.40	-53.45	198.70
$BrF_3(g)$	-255.60	-229.43	292.53
Calcium			
Ca(s)	0	0	41.42
Ca(g)	178.2	144.3	154.88
Ca ²⁺ (aq)	-542.83	-553.58	-53.1

Substance	Enthalpy of formation, $\Delta_{\rm f} H^{\rm o}/$ (kJ mol ⁻¹)	Gibbs Energy of formation, $\Delta_f G^{\Theta} / \text{ (kJ mol}^{-1}\text{)}$	Entropy,* S ^o /(J K ⁻¹ mol ⁻¹)
Calcium (continued)			
CaO(s)	-635.09	-604.03	39.75
$Ca(OH)_2(s)$	-986.09	-898.49	83.39
Ca(OH) ₂ (aq)	-1002.82	-868.07	-74.5
CaCO ₃ (s), calcite	-1206.92	-1128.8	92.9
CaCO ₃ (s), aragonite	-1207.1	-1127.8	88.7
CaCO ₃ (aq)	-1219.97	-1081.39	-110.0
CaF ₂ (s)	-1219.6	-1167.3	68.87
CaF ₂ (aq)	-1208.09	-1111.15	-80.8
$CaCl_2(s)$	-795.8	-748.1	104.6
CaCl ₂ (aq)	-877.1	-816.0	59.8
CaBr ₂ (s)	-682.8	-663.6	130
CaC ₂ (s)	-59.8	-64.9	69.96
CaS(s)	-482.4	-477.4	56.5
CaSO ₄ (s)	-1434.11	-1321.79	106.7
CaSO ₄ (aq)	-1452.10	-1298.10	-33.1
Carbon**			
C(s), graphite	0	0	5.740
C(s), diamond	1.895	2.900	2.377
C(g)	716.68	671.26	158.10
CO(g)	-110.53	-137.17	197.67
$CO_2(g)$	-393.51	-394.36	213.74
$CO_3^{2-}(aq)$	-677.14	-527.81	-56.9
CCl ₄ (l)	-135.44	-65.21	216.40
CS ₂ (l)	89.70	65.27	151.34
HCN(g)	135.1	124.7	201.78
HCN(l)	108.87	124.97	112.84
Cerium			
Ce(s)	0	0	72.0
Ce ³⁺ (aq)	-696.2	-672.0	-205
Ce ⁴⁺ (aq)	-537.2	-503.8	-301
Chlorine			
$Cl_2(g)$	0	0	223.07
Cl(g)	121.68	105.68	165.20
Cl ⁻ (aq)	-167.16	-131.23	56.5
HCl(g)	-92.31	-95.30	186.91
HCl(aq)	-167.16	-131.23	56.5
Copper			
Cu(s)	0	0	33.15
Cu ⁺ (aq)	71.67	49.98	40.6
Cu ²⁺ (aq)	64.77	65.49	-99.6
Cu ₂ O(aq)	-168.6	-146.0	93.14
CuO(s)	-157.3	-129.7	42.63
CuSO ₄ (s)	-771.36	-661.8	109
$CuSO_4.5H_2O(s)$	-2279.7	-1879.7	300.4

 $[\]ensuremath{^{**}}$ For organic compounds, a separate table is provided in continuation.

	Enthalpy of formation, $\Delta_{\rm f} H^{\rm o} / ({\rm kJ~mol}^{-1})$	Gibbs Energy of formation, $\Delta_{\rm f}G^{\rm e}/$ (kJ mol ⁻¹)	Entropy,* S ^o /(J K ⁻¹ mol ⁻¹)
<i>Deuterium</i>			
$D_2(g)$	0	0	144.96
$D_2O(g)$	-249.20	-234.54	198.34
$D_2O(1)$	-294.60	-243.44	75.94
Fluorine			
$F_2(g)$	0	0	202.78
F ⁻ (aq)	-332.63	-278.79	-13.8
HF(g)	-271.1	-273.2	173.78
HF(aq)	-332.63	-278.79	-13.8
<i>Hydrogen</i> (see also I	Deuterium)		
$H_2(g)$	0	0	130.68
H(g)	217.97	203.25	114.71
H ⁺ (aq)	0	0	0
$H_2O(l)$	-285.83	-237.13	69.91
$H_2O(g)$	-241.82	-228.57	188.83
$H_2O_2(l)$	-187.78	-120.35	109.6
$H_2O_2(aq)$	-191.17	-134.03	143.9
Iodine			
$I_2(s)$	0	0	116.14
$I_2(g)$	62.44	19.33	260.69
-2(8) [⁻(aq)	-55.19	-51.57	111.3
HI(g)	26.48	1.70	206.59
Iron			
Fe(s)	0	0	27.28
Fe ²⁺ (aq)	-89.1	-78.90	-137.7
Fe ³⁺ (aq)	-48.5	-4.7	-315.9
$Fe_3O_4(s)$, magnetite	-1118.4	-1015.4	146.4
Fe ₂ O ₃ (s), haematite	-824.2	-742.2	87.40
$FeS(s,\alpha)$	-100.0	-100.4	60.29
FeS(aq)	_	6.9	_
$FeS_2(s)$	-178.2	-166.9	52.93
Lead			
Pb(s)	0	0	64.81
Pb ²⁺ (aq)	-1.7	-24.43	10.5
PbO ₂ (s)	-277.4	-217.33	68.6
$PbSO_4(s)$	-919.94	-813.14	148.57
PbBr ₂ (s)	-278.7	-261.92	161.5
PbBr ₂ (aq)	-244.8	-232.34	175.3
Magnesium			
Mg(s)	0	0	32.68
Mg(g)	147.70	113.10	148.65
Mg ²⁺ (aq)	-466.85	-454.8	-138.1
MgO(s)	-601.70	-569.43	26.94
MgCO ₃ (s)	-1095.8	-1012.1	65.7
5003(0)	-524.3	-503.8	117.2

Substance	Enthalpy of formation, $\Delta_f H^{\Theta}$ / (kJ mol ⁻¹)	Gibbs Energy of formation, $\Delta_f G^{\circ} / \text{ (kJ mol}^{-1}\text{)}$	Entropy,* $S^{\circ}/(J \ K^{-1} \ mol^{-1})$
Mercury			
Hg(1)	0	0	76.02
Hg(g)	61.32	31.82	174.96
HgO(s)	-90.83	-58.54	70.29
$Hg_2Cl_2(s)$	-265.22	-210.75	192.5
Nitrogen			
N ₂ (g)	0	0	191.61
NO(g)	90.25	86.55	210.76
N ₂ O(g)	82.05	104.20	219.85
$NO_2(g)$	33.18	51.31	240.06
$N_2O_4(g)$	9.16	97.89	304.29
$HNO_3(1)$	-174.10	-80.71	155.60
HNO ₃ (aq)	-207.36	-111.25	146.4
NO_3^- (aq)	-205.0	-108.74	146.4
$NH_3(g)$	-46.11	-16.45	192.45
NH ₃ (aq)	-80.29	-26.50	111.3
NH ₄ (aq)	-132.51	-79.31	113.4
NH ₂ OH(s)	-114.2	_	
HN ₃ (g)	294.1	328.1	238.97
$N_2H_4(1)$	50.63	149.34	121.21
$NH_4NO_3(s)$	-365.56	-183.87	151.08
NH ₄ Cl(s)	-314.43	-202.87	94.6
NH ₄ ClO ₄ (s)	-295.31	-88.75	186.2
Oxygen			
$O_2(g)$	0	0	205.14
O ₃ (g)	142.7	163.2	238.93
OH⁻(aq)	-229.99	-157.24	-10.75
Phosphorus			
P(s), white	0	0	41.09
$P_4(g)$	58.91	24.44	279.98
PH ₃ (g)	5.4	13.4	210.23
$P_4O_{10}(s)$	-2984.0	-2697.0	228.86
H ₃ PO ₃ (aq)	-964.8	_	_
$H_3PO_4(1)$	-1266.9	_	_
$H_3PO_4(aq)$	-1277.4	-1018.7	_
PCl ₃ (1)	-319.7	-272.3	217.18
PCl ₃ (g)	-287.0	-267.8	311.78
PCl ₅ (g)	-374.9	-305.0	364.6
Potassium			
K(s)	0	0	64.18
K(g)	89.24	60.59	160.34
K ⁺ (aq)	-252.38	-283.27	102.5
KOH(s)	-424.76	-379.08	78.9
KOH(aq)	-482.37	-440.50	91.6
KF(s)	-567.27	-537.75	66.57

Substance	nce Enthalpy of formation, Gibbs Energy of formation $\Delta_{\rm f} H^{\rm O}$ (kJ mol ⁻¹) $\Delta_{\rm f} G^{\rm O}$ (kJ mol ⁻¹)		Entropy,* S [©] /(J K ⁻¹ mol ⁻¹)
Potassium (contin	nued)		
KCl(s)	-436.75	-409.14	82.59
KBr(s)	-393.80	-380.66	95.90
KI(s)	-327.90	-324.89	106.32
KClO ₃ (s)	-397.73	-296.25	143.1
KClO ₄ (s)	-432.75	-303.09	151.0
$K_2S(s)$	-380.7	-364.0	105
K_2 S(aq)	-471.5	-480.7	190.4
Silicon			
Si(s)	0	0	18.83
$SiO_2(s,\alpha)$	-910.94	-856.64	41.84
Silver			
Ag(s)	0	0	42.55
Ag ⁺ (aq)	105.58	77.11	72.68
Ag ₂ O(s)	-31.05	-11.20	121.3
AgBr(s)	-100.37	-96.90	107.1
AgBr(aq)	-15.98	-26.86	155.2
AgCl(s)	-127.07	-109.79	96.2
AgCl(aq)	-61.58	-54.12	129.3
AgI(s)	-61.84	-66.19	115.5
AgI(aq)	50.38	25.52	184.1
AgNO ₃ (s)	-124.39	-33.41	140.92
Sodium			
Na(s)	0	0	51.21
Na(g)	107.32	76.76	153.71
Na ⁺ (aq)	-240.12	-261.91	59.0
NaOH(s)	-425.61	-379.49	64.46
NaOH(aq)	-470.11	-419.15	48.1
NaCl(s)	-411.15	-384.14	72.13
NaCl(aq)	-407.3	-393.1	115.5
NaBr(s)	-361.06	-348.98	86.82
NaI(s)	-287.78	-286.06	98.53
NaHCO ₃ (s)	-947.7	-851.9	102.1
$Na_2CO_3(s)$	-1130.9	-1047.7	136.0
Sulphur			
S(s), rhombic	0	0	31.80
S(s), monoclinic	0.33	0.1	32.6
S ²⁻ (aq)	33.1	85.8	-14.6
$SO_2(g)$	-296.83	-300.19	248.22
SO ₃ (g)	-395.72	-371.06	256.76
H ₂ SO ₄ (l)	-813.99	-690.00	156.90
$H_2SO_4(aq)$	-909.27	-744.53	20.1
SO ₄ ² -(aq)	-909.27	-744.53	20.1
H ₂ S(g)	-20.63	-33.56	205.79
H ₂ S(aq)	-39.7	-27.83	121
SF ₆ (g)	-1209	-1105.3	291.82

Substance	Enthalpy of formation, $\Delta_f H^{\odot}$ / (kJ mol ⁻¹)	Gibbs Energy of formation, $\Delta_f G^{\circ} / \text{ (kJ mol}^{-1}\text{)}$	Entropy,* S ^o /(J K ⁻¹ mol ⁻¹)
Tin			
Sn(s), white	0	0	51.55
Sn(s), gray	-2.09	0.13	44.14
SnO(s)	-285.8	-256.9	56.5
SnO ₂ (s)	-580.7	-519.6	52.3
Zinc			
Zn(s)	0	0	41.63
$Zn^{2+}(aq)$	-153.89	-147.06	-112.1
ZnO(s)	-348.28	-318.30	43.64
Zn(g)	+130.73	+95.14	160.93

^{*}The entropies of individual ions in solution are determined by setting the entropy of H^{+} in water equal to 0 and then defining the entropies of all other ions relative to this value; hence a negative entropy is one that is lower than the entropy of H^{+} in water.

ORGANIC COMPOUNDS

Substance	Enthalpy of combustion, $\Delta_c H^{\Theta}$ (kJ mol ⁻¹)	Enthalpy of formation, $\Delta_f H^{\Theta}$ (kJ mol ⁻¹)	Gibbs Energy of formation, $\Delta_f G^{\Theta}$ / (kJ mol ⁻¹) S	Entropy, $S^{\Theta}/(J \ K^{-1} \ mol^{-1})$	
Hydrocarbons					
CH ₄ (g), methane	-890	-74.81	-50.72	186.26	
$C_2H_2(g)$, ethyne (acetylene)	-1300	226.73	209.20	200.94	
$C_2H_4(g)$, ethene(ethylene)	-1411	52.26	68.15	219.56	
$C_2H_6(g)$, ethane	-1560	-84.68	-32.82	229.60	
C ₃ H ₆ (g), propene (propylene)	-2058	20.42	62.78	266.6	
C ₃ H ₆ (g), cyclopropane	-2091	53.30	104.45	237.4	
$C_3H_8(g)$, propane	-2220	-103.85	-23.49	270.2	
$C_4H_{10}(g)$, butane	-2878	-126.15	-17.03	310.1	
C ₅ H ₁₂ (g), pentane	-3537	-146.44	-8.20	349	
C ₆ H ₆ (l), benzene	-3268	49.0	124.3	173.3	
$C_6H_6(g)$	-3302	_	_	_	
C ₇ H ₈ (l), toluene	-3910	12.0	113.8	221.0	
$C_7H_8(g)$	-3953	_	_	_	
C ₆ H ₁₂ (l), cyclohexane	-3920	-156.4	26.7	204.4	
$C_6H_{12}(g)$,	-3953	_	_	_	
C ₈ H ₁₈ (l), octane	-5471	-249.9	6.4	358	
Alcohols and phenols					
CH ₃ OH(l), methanol	-726	-238.86	-166.27	126.8	
CH ₃ OH(g)	-764	-200.66	-161.96	239.81	
$C_2H_5OH(l)$, ethanol	-1368	-277.69	-174.78	160.7	
$C_2H_5OH(g)$	-1409	-235.10	-168.49	282.70	
C ₆ H ₅ OH(s), phenol	-3054	-164.6	-50.42	144.0	

Substance	Enthalpy of combustion, $\Delta_c H^{\odot}$ (kJ mol ⁻¹)	Enthalpy of formation, $\Delta_f H^{\Theta}/$ (kJ mol ⁻¹)	Gibbs Energy of formation, $\Delta_f G^{\Theta}$ (kJ mol ⁻¹) S^{Θ}	Entropy, 9/(J K ⁻¹ mol ⁻¹)
Carboxylic acid				
HCOOH(l), formic acid	-255	-424.72	-361.35	128.95
CH ₃ COOH(l), acetic acid	-875	-484.5	-389.9	159.8
CH ₃ COOH (aq)	_	-485.76	-396.64	86.6
(COOH) ₂ (s), oxalic acid	-254	-827.2	-697.9	120
$C_6H_5COOH(s)$, benzoic acid	-3227	-385.1	-245.3	167.6
Aldehydes and ketones				
HCHO(g), methanal	-571	-108.57	-102.53	218.77
(formaldehyde)				
CH ₃ CHO(l), ethanal	-1166	-192.30	-128.12	160.2
(acetaldehyde)				
CH ₃ CHO(g)	-1192	-166.19	-128.86	250.3
CH ₃ COCH ₃ (l), propanone (acetone)	-1790	-248.1	-155.4	200
Sugars				
$C_6H_{12}O_6(s)$, glucose	-2808	-1268	-910	212
$C_6H_{12}O_6(aq)$	_		<i>–</i> 917	_
$C_6H_{12}O_6(s)$, fructose	-2810	-1266		_
$C_{12}H_{22}O_{11}(s)$, sucrose	-5645	-2222	-1545	360
Nitrogen compounds				
CO(NH ₂) ₂ (s), urea	-632	-333.51	-197.33	104.60
$C_6H_5NH_2(l)$, aniline	-3393	31.6	149.1	191.3
NH ₂ CH ₂ COOH(s), glycine	-969	-532.9	-373.4	103.51
CH ₃ NH ₂ (g), methylamine	-1085	-22.97	32.16	243.41

Appendix VII

Standard potentials at 298 K in electrochemical order

$\begin{split} &H_{4}XeO_{6}+2H^{^{+}}+2e^{^{-}} \longrightarrow XeO_{3}+3H_{2}O \\ &F_{2}+2e^{^{-}} \longrightarrow 2F-\\ &O_{3}+2H^{^{+}}+2e^{^{-}} \longrightarrow O_{2}+H_{2}O \\ &S_{2}O_{8}^{2^{+}}+2e^{^{-}} \longrightarrow 2SO_{4}^{2^{-}} \\ &Ag^{^{+}}+e^{^{-}} \longrightarrow Ag^{^{+}} \\ &Co^{3^{+}}+e^{^{-}} \longrightarrow Co^{2^{+}} \\ &H_{2}O_{2}+2H^{^{+}}+2e^{^{-}} \longrightarrow 2H_{2}O \\ &Au^{^{+}}+e^{^{-}} \longrightarrow Au \\ &Pb^{4^{+}}+2e^{^{-}} \longrightarrow Pb^{2^{+}} \\ &2HCIO+2H^{^{+}}+2e^{^{-}} \longrightarrow Cl_{2}+2H_{2}O \\ &Ce^{4^{+}}+e^{^{-}} \longrightarrow Ce^{3^{+}} \\ &2HBrO+2H^{^{+}}+2e^{^{-}} \longrightarrow Br_{2}+2H_{2}O \\ &MnO_{4}^{^{-}}+8H^{^{+}}+5e^{^{-}} \longrightarrow Mn^{2^{+}}+4H_{2}O \\ &Mn^{3^{+}}+e^{^{-}} \longrightarrow Mn^{2^{+}} \end{split}$	+3.0 +2.87 +2.07 +2.05 +1.98 +1.81 +1.78 +1.69 +1.67 +1.63 +1.61 +1.60 +1.51	$\begin{array}{l} \operatorname{Cu}^+ + \operatorname{e}^- \longrightarrow \operatorname{Cu} \\ \operatorname{NiOOH} + \operatorname{H}_2\operatorname{O} + \operatorname{e}^- \longrightarrow \operatorname{Ni(OH)}_2 + \operatorname{OH}^- \\ \operatorname{Ag}_2\operatorname{CrO}_4 + 2\operatorname{e}^- \longrightarrow 2\operatorname{Ag} + \operatorname{CrO}_4^2 \\ \operatorname{O}_2 + 2\operatorname{H}_2\operatorname{O} + 4\operatorname{e}^- \longrightarrow 4\operatorname{OH}^- \\ \operatorname{ClO}_4^- + \operatorname{H}_2\operatorname{O} + 2\operatorname{e}^- \longrightarrow \operatorname{ClO}_3^- + 2\operatorname{OH}^- \\ [\operatorname{Fe}(\operatorname{CN})_6]^3^- + \operatorname{e}^- \longrightarrow [\operatorname{Fe}(\operatorname{CN})_6]^4^- \\ \operatorname{Cu}^{2^+} + 2\operatorname{e}^- \longrightarrow \operatorname{Cu} \\ \operatorname{Hg}_2\operatorname{Cl}_2 + 2\operatorname{e}^- \longrightarrow 2\operatorname{Hg} + 2\operatorname{Cl}^- \\ \operatorname{AgCl} + \operatorname{e}^- \longrightarrow \operatorname{Ag} + \operatorname{Cl}^- \\ \operatorname{Bi}^{3^+} + 3\operatorname{e}^- \longrightarrow \operatorname{Bi} \\ \operatorname{SO}_4^{2^-} + 4\operatorname{H}^+ + 2\operatorname{e}^- \longrightarrow \operatorname{H}_2\operatorname{SO}_3 + \operatorname{H}_2\operatorname{O} \\ \operatorname{Cu}^{2^+} + \operatorname{e}^- \longrightarrow \operatorname{Cu}^+ \\ \operatorname{Sn}^{4^+} + 2\operatorname{e}^- \longrightarrow \operatorname{Sn}^{2^+} \end{array}$	+0.52 +0.49 +0.45 +0.40 +0.36 +0.36 +0.34 +0.27 +0.27 +0.20 +0.17
$\begin{array}{c} O_{3} + 2H^{+} + 2e^{-} \longrightarrow O_{2} + H_{2}O \\ S_{2}O_{8}^{2-} + 2e^{-} \longrightarrow 2SO_{4}^{2-} \\ Ag^{+} + e^{-} \longrightarrow Ag^{+} \\ Co^{3+} + e^{-} \longrightarrow Co^{2+} \\ H_{2}O_{2} + 2H^{+} + 2e^{-} \longrightarrow 2H_{2}O \\ Au^{+} + e^{-} \longrightarrow Au \\ Pb^{4+} + 2e^{-} \longrightarrow Pb^{2+} \\ 2HCIO + 2H^{+} + 2e^{-} \longrightarrow Cl_{2} + 2H_{2}O \\ Ce^{4+} + e^{-} \longrightarrow Ce^{3+} \\ 2HBrO + 2H^{+} + 2e^{-} \longrightarrow Br_{2} + 2H_{2}O \\ MnO_{4}^{-} + 8H^{+} + 5e^{-} \longrightarrow Mn^{2+} + 4H_{2}O \end{array}$	+2.07 +2.05 +1.98 +1.81 +1.78 +1.69 +1.67 +1.63 +1.61 +1.60 +1.51	$\begin{array}{l} \operatorname{Ag_2CrO_4} + 2\mathrm{e}^- \longrightarrow 2\operatorname{Ag} + \operatorname{CrO_4^{2^-}} \\ \operatorname{O_2} + 2\operatorname{H_2O} + 4\mathrm{e}^- \longrightarrow 4\operatorname{OH}^- \\ \operatorname{ClO_4^-} + \operatorname{H_2O} + 2\mathrm{e}^- \longrightarrow \operatorname{ClO_3^-} + 2\operatorname{OH}^- \\ \operatorname{[Fe(CN)_6]^{3^-}} + \mathrm{e}^- \longrightarrow \operatorname{[Fe(CN)_6]^{4^-}} \\ \operatorname{Cu^{2^+}} + 2\mathrm{e}^- \longrightarrow \operatorname{Cu} \\ \operatorname{Hg_2Cl_2} + 2\mathrm{e}^- \longrightarrow 2\operatorname{Hg} + 2\operatorname{Cl}^- \\ \operatorname{AgCl} + \mathrm{e}^- \longrightarrow \operatorname{Ag} + \operatorname{Cl}^- \\ \operatorname{Bi^{3^+}} + 3\mathrm{e}^- \longrightarrow \operatorname{Bi} \\ \operatorname{SO_4^{2^-}} + 4\mathrm{H}^+ + 2\mathrm{e}^- \longrightarrow \operatorname{H_2SO_3} + \operatorname{H_2O} \\ \operatorname{Cu^{2^+}} + \mathrm{e}^- \longrightarrow \operatorname{Cu}^+ \end{array}$	+0.45 +0.40 +0.36 +0.36 +0.34 +0.27 +0.27 +0.20 +0.17
$\begin{split} &S_2O_8^{2^-} + 2e^- \longrightarrow 2SO_4^{2^-} \\ &Ag^+ + e^- \longrightarrow Ag^+ \\ &Co^{3^+} + e^- \longrightarrow Co^{2^+} \\ &H_2O_2 + 2H^+ + 2e^- \longrightarrow 2H_2O \\ &Au^+ + e^- \longrightarrow Au \\ &Pb^{4^+} + 2e^- \longrightarrow Pb^{2^+} \\ &2HCIO + 2H^+ + 2e^- \longrightarrow Cl_2 + 2H_2O \\ &Ce^{4^+} + e^- \longrightarrow Ce^{3^+} \\ &2HBrO + 2H^+ + 2e^- \longrightarrow Br_2 + 2H_2O \\ &MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2^+} + 4H_2O \end{split}$	+2.05 +1.98 +1.81 +1.78 +1.69 +1.67 +1.63 +1.61 +1.60 +1.51	$\begin{aligned} &O_2 + 2H_2O + 4e^- \longrightarrow 4OH^- \\ &ClO_4^- + H_2O + 2e^- \longrightarrow ClO_3^- + 2OH^- \\ &[Fe(CN)_6]^{3^-} + e^- \longrightarrow [Fe(CN)_6]^{4^-} \\ &Cu^{2^+} + 2e^- \longrightarrow Cu \\ &Hg_2Cl_2 + 2e^- \longrightarrow 2Hg + 2Cl^- \\ &AgCl + e^- \longrightarrow Ag + Cl^- \\ &Bi^{3^+} + 3e^- \longrightarrow Bi \\ &SO_4^{2^-} + 4H^+ + 2e^- \longrightarrow H_2SO_3 + H_2O \\ &Cu^{2^+} + e^- \longrightarrow Cu^+ \end{aligned}$	+0.40 +0.36 +0.36 +0.34 +0.27 +0.27 +0.20 +0.17
$Ag^{+} + e^{-} \longrightarrow Ag^{+}$ $Co^{3+} + e^{-} \longrightarrow Co^{2+}$ $H_{2}O_{2} + 2H^{+} + 2e^{-} \longrightarrow 2H_{2}O$ $Au^{+} + e^{-} \longrightarrow Au$ $Pb^{4+} + 2e^{-} \longrightarrow Pb^{2+}$ $2HCIO + 2H^{+} + 2e^{-} \longrightarrow Cl_{2} + 2H_{2}O$ $Ce^{4+} + e^{-} \longrightarrow Ce^{3+}$ $2HBrO + 2H^{+} + 2e^{-} \longrightarrow Br_{2} + 2H_{2}O$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} \longrightarrow Mn^{2+} + 4H_{2}O$	+1.98 +1.81 +1.78 +1.69 +1.67 +1.63 +1.61 +1.60 +1.51	$\begin{split} &\operatorname{ClO}_4^- + \operatorname{H}_2\operatorname{O} + 2\operatorname{e}^- \longrightarrow \operatorname{ClO}_3^- + 2\operatorname{OH}^- \\ &[\operatorname{Fe}(\operatorname{CN})_6]^{3^-} + \operatorname{e}^- \longrightarrow [\operatorname{Fe}(\operatorname{CN})_6]^{4^-} \\ &\operatorname{Cu}^{2^+} + 2\operatorname{e}^- \longrightarrow \operatorname{Cu} \\ &\operatorname{Hg}_2\operatorname{Cl}_2 + 2\operatorname{e}^- \longrightarrow 2\operatorname{Hg} + 2\operatorname{Cl}^- \\ &\operatorname{AgCl} + \operatorname{e}^- \longrightarrow \operatorname{Ag} + \operatorname{Cl}^- \\ &\operatorname{Bi}^{3^+} + 3\operatorname{e}^- \longrightarrow \operatorname{Bi} \\ &\operatorname{SO}_4^{2^-} + 4\operatorname{H}^+ + 2\operatorname{e}^- \longrightarrow \operatorname{H}_2\operatorname{SO}_3 + \operatorname{H}_2\operatorname{O} \\ &\operatorname{Cu}^{2^+} + \operatorname{e}^- \longrightarrow \operatorname{Cu}^+ \end{split}$	+0.36 +0.36 +0.34 +0.27 +0.27 +0.20 +0.17
$\begin{array}{l} \text{Co}^{3^+} + \text{e}^- \longrightarrow \text{Co}^{2^+} \\ \text{H}_2\text{O}_2 + 2\text{H}^+ + 2\text{e}^- \longrightarrow 2\text{H}_2\text{O} \\ \text{Au}^+ + \text{e}^- \longrightarrow \text{Au} \\ \text{Pb}^{4^+} + 2\text{e}^- \longrightarrow \text{Pb}^{2^+} \\ \text{2HCIO} + 2\text{H}^+ + 2\text{e}^- \longrightarrow \text{Cl}_2 + 2\text{H}_2\text{O} \\ \text{Ce}^{4^+} + \text{e}^- \longrightarrow \text{Ce}^{3^+} \\ \text{2HBrO} + 2\text{H}^+ + 2\text{e}^- \longrightarrow \text{Br}_2 + 2\text{H}_2\text{O} \\ \text{MnO}_4^- + 8\text{H}^+ + 5\text{e}^- \longrightarrow \text{Mn}^{2^+} + 4\text{H}_2\text{O} \end{array}$	+1.81 +1.78 +1.69 +1.67 +1.63 +1.61 +1.60 +1.51	$\begin{split} & [\operatorname{Fe}(\operatorname{CN})_6]^{\overline{3}^-} + \operatorname{e}^- \longrightarrow [\operatorname{Fe}(\operatorname{CN})_6]^{4^-} \\ & \operatorname{Cu}^{2^+} + 2\operatorname{e}^- \longrightarrow \operatorname{Cu} \\ & \operatorname{Hg}_2\operatorname{Cl}_2 + 2\operatorname{e}^- \longrightarrow 2\operatorname{Hg} + 2\operatorname{Cl}^- \\ & \operatorname{AgCl} + \operatorname{e}^- \longrightarrow \operatorname{Ag} + \operatorname{Cl}^- \\ & \operatorname{Bi}^{3^+} + 3\operatorname{e}^- \longrightarrow \operatorname{Bi} \\ & \operatorname{SO}_4^{2^-} + 4\operatorname{H}^+ + 2\operatorname{e}^- \longrightarrow \operatorname{H}_2\operatorname{SO}_3 + \operatorname{H}_2\operatorname{O} \\ & \operatorname{Cu}^{2^+} + \operatorname{e}^- \longrightarrow \operatorname{Cu}^+ \end{split}$	+0.36 +0.34 +0.27 +0.27 +0.20 +0.17
$\begin{split} &H_2O_2 + 2H^+ + 2e^- \longrightarrow 2H_2O \\ &Au^+ + e^- \longrightarrow Au \\ &Pb^{4+} + 2e^- \longrightarrow Pb^{2+} \\ &2HCIO + 2H^+ + 2e^- \longrightarrow Cl_2 + 2H_2O \\ &Ce^{4+} + e^- \longrightarrow Ce^{3+} \\ &2HBrO + 2H^+ + 2e^- \longrightarrow Br_2 + 2H_2O \\ &MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O \end{split}$	+1.78 +1.69 +1.67 +1.63 +1.61 +1.60 +1.51	$Cu^{2^{+}} + 2e^{-} \longrightarrow Cu$ $Hg_{2}Cl_{2} + 2e^{-} \longrightarrow 2Hg + 2Cl^{-}$ $AgCl + e^{-} \longrightarrow Ag + Cl^{-}$ $Bi^{3^{+}} + 3e^{-} \longrightarrow Bi$ $SO_{4}^{2^{-}} + 4H^{+} + 2e^{-} \longrightarrow H_{2}SO_{3} + H_{2}O$ $Cu^{2^{+}} + e^{-} \longrightarrow Cu^{+}$	+0.34 +0.27 +0.27 +0.20 +0.17
$Au^{+} + e^{-} \longrightarrow Au$ $Pb^{4+} + 2e^{-} \longrightarrow Pb^{2+}$ $2HClO + 2H^{+} + 2e^{-} \longrightarrow Cl_{2} + 2H_{2}O$ $Ce^{4+} + e^{-} \longrightarrow Ce^{3+}$ $2HBrO + 2H^{+} + 2e^{-} \longrightarrow Br_{2} + 2H_{2}O$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} \longrightarrow Mn^{2+} + 4H_{2}O$	+1.69 +1.67 +1.63 +1.61 +1.60 +1.51	$\begin{aligned} & Hg_2Cl_2 + 2e^- \longrightarrow 2Hg + 2Cl^- \\ & AgCl + e^- \longrightarrow Ag + Cl^- \\ & Bi^{3+} + 3e^- \longrightarrow Bi \\ & SO_4^{2-} + 4H^+ + 2e^- \longrightarrow H_2SO_3 + H_2O \\ & Cu^{2+} + e^- \longrightarrow Cu^+ \end{aligned}$	+0.27 +0.27 +0.20 +0.17
$Au^{+} + e^{-} \longrightarrow Au$ $Pb^{4+} + 2e^{-} \longrightarrow Pb^{2+}$ $2HClO + 2H^{+} + 2e^{-} \longrightarrow Cl_{2} + 2H_{2}O$ $Ce^{4+} + e^{-} \longrightarrow Ce^{3+}$ $2HBrO + 2H^{+} + 2e^{-} \longrightarrow Br_{2} + 2H_{2}O$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} \longrightarrow Mn^{2+} + 4H_{2}O$	+1.69 +1.67 +1.63 +1.61 +1.60 +1.51	$\begin{array}{l} \operatorname{AgCl} + \operatorname{e}^{-} \longrightarrow \operatorname{Ag} + \operatorname{Cl}^{-} \\ \operatorname{Bi}^{3^{+}} + \operatorname{3e}^{-} \longrightarrow \operatorname{Bi} \\ \operatorname{SO}_{4}^{2^{-}} + \operatorname{4H}^{+} + \operatorname{2e}^{-} \longrightarrow \operatorname{H}_{2}\operatorname{SO}_{3} + \operatorname{H}_{2}\operatorname{O} \\ \operatorname{Cu}^{2^{+}} + \operatorname{e}^{-} \longrightarrow \operatorname{Cu}^{+} \end{array}$	+0.27 +0.20 +0.17
$\begin{split} & 2 H C I O + 2 H^{^{+}} + 2 e^{^{-}} \longrightarrow C l_{2} + 2 H_{2} O \\ & C e^{4+} + e^{^{-}} \longrightarrow C e^{3+} \\ & 2 H B r O + 2 H^{^{+}} + 2 e^{^{-}} \longrightarrow B r_{2} + 2 H_{2} O \\ & M n O_{4}^{^{-}} + 8 H^{^{+}} + 5 e^{^{-}} \longrightarrow M n^{2+} + 4 H_{2} O \end{split}$	+1.67 +1.63 +1.61 +1.60 +1.51	$Bi^{3+} + 3e^{-} \longrightarrow Bi$ $SO_4^{2-} + 4H^+ + 2e^{-} \longrightarrow H_2SO_3 + H_2O$ $Cu^{2+} + e^{-} \longrightarrow Cu^+$	+0.20 +0.17
$\begin{split} & 2 H C I O + 2 H^{^{+}} + 2 e^{^{-}} \longrightarrow C l_{2} + 2 H_{2} O \\ & C e^{4+} + e^{^{-}} \longrightarrow C e^{3+} \\ & 2 H B r O + 2 H^{^{+}} + 2 e^{^{-}} \longrightarrow B r_{2} + 2 H_{2} O \\ & M n O_{4}^{^{-}} + 8 H^{^{+}} + 5 e^{^{-}} \longrightarrow M n^{2+} + 4 H_{2} O \end{split}$	+1.63 +1.61 +1.60 +1.51	$SO_4^{2^-} + 4H^+ + 2e^- \longrightarrow H_2SO_3 + H_2O$ $Cu^{2^+} + e^- \longrightarrow Cu^+$	+0.17
$Ce^{4+} + e^{-} \longrightarrow Ce^{3+}$ $2HBrO + 2H^{+} + 2e^{-} \longrightarrow Br_{2} + 2H_{2}O$ $MnO_{4}^{-} + 8H^{+} + 5e^{-} \longrightarrow Mn^{2+} + 4H_{2}O$	+1.61 +1.60 +1.51	$Cu^{2+} + e^{-} \longrightarrow Cu^{+}$	
2HBrO + 2H ⁺ + 2e ⁻ \longrightarrow Br ₂ + 2H ₂ O MnO ₄ + 8H ⁺ + 5e ⁻ \longrightarrow Mn ²⁺ + 4H ₂ O	+1.60 +1.51		10 10
$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$	+1.51	$\operatorname{Sn}^{4^{+}} + 2e^{-} \longrightarrow \operatorname{Sn}^{2^{+}}$	+0.16
=			+0.15
Mn° + e → Mn°	+1.51	$AgBr + e^{-} \longrightarrow Ag + Br^{-}$	+0.07
$Au^{3+} + 3e^{-} \longrightarrow Au$	+1.40	$Ti^{4+} + e^- \longrightarrow Ti^{3+}$	0.00
$Cl_2 + 2e^- \longrightarrow 2Cl^-$	+1.36	$2\text{H}^{\scriptscriptstyle +} + 2\text{e-} \longrightarrow \text{H}_2$	0.0 by
$Cr_2O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O$	+1.33	D 3t . 0 = D	definition
$O_3 + H_2O + 2e^- \longrightarrow O_2 + 2OH^-$	+1.24	$Fe^{3+} + 3e^{-} \longrightarrow Fe$	-0.04
$O_3 + H_2O + 2C \longrightarrow O_2 + 2OH$ $O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$	+1.23	$O_2 + H_2O + 2e^- \longrightarrow HO_2^- + OH^-$	-0.08
$ClO_4^- + 2H^+ + 2e^- \longrightarrow ClO_3^- + 2H_2O$	+1.23	$Pb^{2+} + 2e^{-} \longrightarrow Pb$	-0.13
$MnO_2 + 4H^+ + 2e^- \longrightarrow Mn^{2+} + 2H_2O$		$In^{+} + e^{-} \longrightarrow In$ $C_{-}^{2^{+}} + Q_{-}^{-} \longrightarrow C_{-}^{-}$	-0.14
$\text{Pt}^{2+} + 2e^{-} \longrightarrow \text{Pt}$	+1.23	$\operatorname{Sn}^{2+} + 2e^{-} \longrightarrow \operatorname{Sn}$	-0.14
	+1.20	$AgI + e^{-} \longrightarrow Ag + I^{-}$ $N^{2} + Q^{-} \longrightarrow N^{2}$	-0.15
$Br_2 + 2e^- \longrightarrow 2Br^-$ $Pu^{4+} + e^- \longrightarrow Pu^{3+}$	+1.09	$Ni^{2^+} + 2e^- \longrightarrow Ni$ $V^{3^+} + e^- \longrightarrow V^{2^+}$	-0.23
	+0.97	$V + e \longrightarrow V$ $Co^{2+} + 2e^{-} \longrightarrow Co$	-0.26
$NO_3^- + 4H^+ + 3e^- \longrightarrow NO + 2H_2O$	+0.96	$\operatorname{In}^{3+} + 3e^{-} \longrightarrow \operatorname{In}$	-0.28 -0.34
$2Hg^{2+} + 2e^{-} \longrightarrow Hg_2^{2+}$	+0.92	$ \begin{array}{ccc} \Pi & + 3e & \longrightarrow \Pi \\ \Pi^{+} + e^{-} & \longrightarrow TI \end{array} $	-0.34 -0.34
$ClO^- + H_2O + 2e^- \longrightarrow Cl^- + 2OH^-$	+0.89	$\begin{array}{ccc} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$	-0.34 -0.36
$Hg^{2^+} + 2e^- \longrightarrow Hg$	+0.86	$Ti3O_4 + 2c \longrightarrow Ti + 3O_4$ $Ti^{3+} + e^- \longrightarrow Ti^{2+}$	-0.37
$NO_3^- + 2H^+ + e^- \longrightarrow NO_2 + H_2O$	+0.80	$Cd^{2^{+}} + 2e^{-} \longrightarrow Cd$	-0.37 -0.40
$Ag^+ + e^- \longrightarrow Ag$	+0.80	$In^{2+} + e^{-} \longrightarrow In^{+}$	-0.40
$Hg_2^{2+} + 2e^- \longrightarrow 2Hg$	+0.79	$Cr^{3+} + e^{-} \longrightarrow Cr^{2+}$	-0.41
$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$	+0.77	$Fe^{2^+} + 2e^- \longrightarrow Fe$	-0.41
$BrO^- + H_2O + 2e^- \longrightarrow Br^- + 2OH^-$	+0.76	$In^{3+} + 2e^{-} \longrightarrow In^{+}$	-0.44
$Hg_2SO_4 + 2e^- \longrightarrow 2Hg + SO_4^{2-}$	+0.62	$S + 2e^{-} \longrightarrow S^{2-}$	-0.48
$MnO_4^{2-} + 2H_2O + 2e^- \longrightarrow MnO_2 + 4OH^-$		$In^{3+} + e^{-} \longrightarrow In^{2+}$	-0.49
$MnO_4^- + e^- \longrightarrow MnO_4^{2-}$	+0.56	$II^{4+} + e^{-} \longrightarrow II^{3+}$	-0.43
$I_2 + 2e^- \longrightarrow 2I^-$	+0.54	$Cr^{3+} + 3e^{-} \longrightarrow Cr$	-0.74
$I_3^- + 2e^- \longrightarrow 3I^-$	+0.53	$Zn^{2^+} + 2e^- \longrightarrow Zn$	-0.76

Appendix continued

Reduction half-reaction	E^{Θ}/V	Reduction half-reaction	E^{Θ}/V
$Cd(OH)_2 + 2e^- \longrightarrow Cd + 2OH^-$	-0.81	$La^{3+} + 3e^{-} \longrightarrow La$	-2.52
$2H_2O + 2e^- \longrightarrow H_2 + 2OH^-$	-0.83	$Na^+ + e^- \longrightarrow Na$	-2.71
$Cr^{2+} + 2e^{-} \longrightarrow Cr$	-0.91	$Ca^{2+} + 2e^{-} \longrightarrow Ca$	-2.87
$Mn^{2+} + 2e^- \longrightarrow Mn$	-1.18	$Sr^{2+} + 2e^{-} \longrightarrow Sr$	-2.89
$V^{2+} + 2e^- \longrightarrow V$	-1.19	$Ba^{2+} + 2e^{-} \longrightarrow Ba$	-2.91
$Ti^{2+} + 2e^{-} \longrightarrow Ti$	-1.63	$Ra^{2+} + 2e^{-} \longrightarrow Ra$	-2.92
$Al^{3+} + 3e^{-} \longrightarrow Al$	-1.66	$Cs^+ + e^- \longrightarrow Cs$	-2.92
$U^{3+} + 3e^- \longrightarrow U$	-1.79	$Rb^+ + e^- \longrightarrow Rb$	-2.93
$Sc^{3+} + 3e^{-} \longrightarrow Sc$	-2.09	$K^+ + e^- \longrightarrow K$	-2.93
$Mg^{2+} + 2e^- \longrightarrow Mg$	-2.36	$Li^+ + e^- \longrightarrow Li$	-3.05
$Ce^{3+} + 3e^{-} \longrightarrow Ce$	-2.48		