

Pipelining and Parallel Processing

Introduction

- Pipelining and parallel are the most important design techniques in VLSI DSP systems
- Make use of the inherent parallel property of DSP algorithms
 - □ Pipelining: different function units working in parallel
 - □ Parallel: duplicated function units working in parallel

```
Parallel processing and pipelining techniques are duals of each other. If a computation can be pipelined, it can also be processed in parallel.
```


Throughput: how

one hour

many cars produced in

Latency: how long will

it take to produce one

An Example: Car Production Line

Cost: 1 10 cars / month
Throughput: 1/mT
Latency: mT 3days

Cost: >1
Throughput: 1/T
Latency: >mT

(slightly > mT)

Cost: >n >3Throughput: (1/mT)*n lo cars/month <math>x3 = 3 o cors/monthLatency: >mT 3 days

Pipelining of Digital Filters (1/3)

FIR filter

$$y(n) = ax(n) + bx(n-1) + cx(n-2).$$

□ Critical path: T_M+2T_A

$$T_{sample} \ge T_M + 2T_A$$
 $f_{sample} \le \frac{1}{T_M + 2T_A}$

Pipelining of Digital Filters (2/3)

Pipelined FIR filter

$$T_{sample} \ge T_M + T_A$$
 $f_{sample} \le \frac{1}{T_M + T_A}$

Pipelining of Digital Filters (3/3)

Schedule

$\overline{\text{Clock}}$	Input	Node 1	Node 2	Node 3	Output
0	x(0)	ax(0) + bx(-1)	_	_	_
1	x(1)	ax(1) + bx(0)	ax(0) + bx(-1)	cx(-2)	y(0)
$\overline{2}$	x(2)	ax(2) + bx(1)	ax(1) + bx(0)	cx(-1)	y(1)
3	x(3)	ax(3) + bx(2)	ax(2) + bx(1)	cx(0)	y(2)

Pipeline

Can reduce the critical path to increase the working frequency and sample rate

$$\Box T_M + 2T_A \rightarrow T_M + T_A$$

Drawbacks of Pipelining

- Increasing latency (in cycle) > 1- cycle latency
 - □ For M-level pipelined system, the number of delay elements in any path from input to output is (M-1) greater than the origin one
- Increase the number of latches (registers)

```
Cat ID data => Register(s)

Cat 2D data => line buffer(s)

Cat 3D data => frame buffer(s)

depends on where you cut
```


How to Do Pipelining?

- Put pipelining latches across any feed-forward cutset of the graph
- Cutset "bridges"
 - □ A cutset is a set of edges of a graph such that if these edges are removed from the graph, the graph becomes disjoint

cut set

- Feed-forward cutset

How to Do Pipelining?

DSP in VLSI Design

Example

- In the SFG in Fig. (a), all the computation time A₁ of or each node is 1 u.t.
- (a) Calculate the critical path
- (b) The critical path is reduced to 2 u.t. by inserting 3 extra delay elements. Is it a valid pipelining?

(b)

Fine-Grain Pipelining

- Critical path (T_M=10, T_A=2)
 - \Box T_M+2T_A=14
 - $\Box T_M + T_A = 12$
 - \Box T_{M1}=6 or T_{M2}+T_A=6

Notes for Pipelining (1/2)

- Pipelining is a very simple design technique which can maintain the input output data configuration and sampling frequency
- Modern GDA tools support automatic law-level

 Modern GDA tools support automatic law-level

 Pipelining. However, system level pipelining still havily

 rely on designers. e.g.) Designwere pipelined multiplier.

 Still has some limitations
- - □ Pipeline bubbles conditional Hustes 1 efficiency
 - ☐ Has some problems for recursive system (has feed back loop)
 - □ Introduces large hardware cost for 2-D or 3-D data
 - □ Communication bound Although pipelined design 1 speed, Data I/o couldn't keep up

Notes for Pipelining (2/2)

- Effective pipelining
 - □ Put pipelining registers on the critical path
 - □ Balance pipelining
 - $10 \rightarrow (2+8)$: critical path=8
 - $10 \rightarrow (5+5)$: critical path=5

Parallel of Digital Filters (1/5)

Single-input single-output (SISO) system

$$y(n) = ax(n) + bx(n-1) + cx(n-2).$$

Multiple-input multiple-output (MIMO) system

$$y(3k) = ax(3k) + bx(3k-1) + cx(3k-2)$$

 $y(3k+1) = ax(3k+1) + bx(3k) + cx(3k-1)$ 3-Parallel System!
 $y(3k+2) = ax(3k+2) + bx(3k+1) + cx(3k)$.

Sequential System

3-Parallel System

Parallel of Digital Filters (2/5)

- Parallel processing, block processing
- Block size (L): the number of data to be processed at the same time
- Block delay (L-slow)
 - □ A latch is equivalent to L clock cycles at the sample rate

Parallel of Digital Filters (3/5)

$$T_{clk} \ge T_M + 2T_A$$

The critical path is the same

$$T_{iter} = T_{sample} = \frac{1}{L}T_{clk} \ge \frac{1}{3}(T_M + 2T_A)$$

 T_{clk} is not equal to T_{sample}

Parallel of Digital Filters (4/5)

Whole system

DSP in VLSI Design

Parallel of Digital Filters (5/5)

Serial-to-parallel converter

Parallel-to-serial converter

DSP in VLSI Design

Parallel Processing v.s. Pipelining

- Parallel processing is superior than pipelining processing for the I/O bottleneck (communication bounded)
 - □ Pipelining only can increase the clock rate
 - □ System clock rate = sample rate for pipelining system
 - □ Use parallel processing can further lower the required

working frequency

Pipelining-Parallel Architecture

DSP in VLSI Design

Notes for Parallel Processing

- The input/output data access scheme should be carefully designed, it will cost a lot sometimes
- T_{clk}>T_{sample}, f_{clk}<f_{sample}
- Large hardware cost
- Combined with pipelining processing

- beneficial for low power design Z Critical Porth Compacitorie
 - Propagation delay $T_{pd} = \frac{C_{charge}V_0}{k(V_0 - V_t)^2}$
 - = d. Cv2f , d: tuggle rate Power consumption

dynamic power:
$$P = C_{total} V_0^2 f$$
 $f = \frac{1}{T_{seq}}$ Static power cleakage) $\prec A \cdot \lor_o$

Assume the sampling frequency is the same

Pipelining for Low Power (1/2)

- For M-level pipelining
 - Critical path is reduced to 1/M
 - □ The capacitance is also reduced to C_{charge}/M
 - \Box The supply voltage can be reduced to βV_0 , and the sampling period remains unchanged

Seq:
$$T_{\text{seq}}$$
 (V_0)

M=3:
$$\frac{T_{\text{seq}}}{\beta} = \frac{T_{\text{seq}}}{\beta} = \frac{T_{\text{seq}}}{\beta} = \frac{(\beta V_0)}{\beta}$$

DSP in VLSI Design

Pipelining for Low Power (2/2)

Power consumption:

$$P_{pip} = C_{total}\beta^2 V_0^2 f = \beta^2 P_{seq}$$

■ How about the parameter β ?

$$T_{seq} = \frac{C_{charge}V_0}{k(V_0 - V_t)^2}$$

$$\parallel \qquad \qquad M(\beta V_0 - V_t)^2 = \beta (V_0 - V_t)^2$$

$$T_{pip} = \frac{\frac{C_{charge}}{M}\beta V_0}{k(\beta V_0 - V_t)^2}$$
Solve this equation to get β

Example

$$\frac{\left(C_{M}+C_{A}\right)\cdot V}{\left(V-V_{t}\right)^{2}}=\frac{6C_{A}\cdot V}{\left(V-V_{t}\right)^{2}}$$

- Parameters
 - \Box T_M=10 u.t.
 - \Box T_A=2 u.t.
 - \Box T_{m1}=6 u.t.
 - \Box T_{m2}=4 u.t.
 - \Box $C_M = 5C_A$
 - □ V_t=0.6V threshold voltage
 - □ Normal V_{cc}=5V
- (a) New supply voltage?
- (b) Power saving percentage?

Answer

(a)

Origin system:
$$C_{charge} = C_M + C_A = 6C_A$$

Pipelined system: $C_{charge} = C_{m1} = C_{m2} + C_A = 3C_A$

$$\beta = 0.6033, \ or \beta = 0.0239$$

$$V_{pip} = \beta V_0 = 3.0165 \ V.$$

(b)
$$Ratio = \beta^2 = 36.4\%.$$

Invalid value, less than threshold voltage

Parallel Processing for Low Power (1/2)

- For L-parallel system
 - □ Clock period: T_{seq}→LT_{seq}
 - □ C_{charge} remains unchanged
 - $\Box C_{totol} \rightarrow LC_{total}$
 - □ Have more time to charge the capacitance, the supply voltage can be lower βV_0

Seq:
$$T_{\text{seq}}$$
 (V_0)

Parallel Processing for Low Power (2/2)

Power consumption

$$P_{par} = (LC_{total})(\beta V_0)^2 \frac{f}{L}$$
$$= \beta^2 C_{total} V_0^2 f$$
$$= \beta^2 P_{seg}$$

 \blacksquare To derive the parameter β

$$T_{seq} = \frac{C_{charge}V_0}{k(V_0 - V_t)^2} \longrightarrow L(\beta V_0 - V_t)^2 = \beta (V_0 - V_t)^2$$

$$LT_{seq} = \frac{C_{charge}V_0}{k(\beta V_0 - V_t)^2}$$
Not always equal Shoot Vi Chian

Example

- Parameters
 - \Box T_M=8 u.t.
 - \Box T_A=1 u.t.
 - \Box T_{sample}=9 u.t.
 - \Box $C_M = 8C_A$
 - \square V_t=0.45V
 - □ Normal V_{cc}=3.3V
- (a) New supply voltage?
- (b) Power saving percentage?

Answer

(a)

Origin:
$$C_{charge} = C_M + C_A = 9C_A$$

2-parallel system: $C_{charge} = C_M + 2C_A = 10C_A$

$$T_{seq} = \frac{9C_A V_0}{k(V_0 - V_t)^2},$$

$$T_{par} = \frac{10C_A \beta V_0}{k(\beta V_0 - V_t)^2}.$$

$$\beta = 0.6589, \text{ or } \beta = 0.0282.$$

$$T_{par} = 2T_{sample} = 2T_{seq}$$

Invalid value, less than threshold voltage

(b)
$$Ratio = \beta^2 = 43.41\%$$

Pipelining-Parallel for Low Power

$$LT_{pd} = \frac{(C_{charge}/M)\beta V_o}{k(\beta V_0 - V_t)^2} = \frac{LC_{charge}V_0}{k(V_0 - V_t)^2}.$$

$$ML(\beta V_0 - V_t)^2 = \beta (V_0 - V_t)^2$$

Conclusion

- Pipelining
 - □ Reduce the critical path
 - □ Increase the clock speed
 - □ Reduce power consumption at the same speed
- Parallel
 - □ Increase effective sampling rate
 - □ Reduce power consumption at the same speed