Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (currently amended) Method for the identification of biomolecules in variant libraries of biomolecules comprising the steps:
 - a) Production of a variant library, consisting of a number of variants (B₀) of gene sequences coding for the biomolecule, and
 - b) Division of the variant library into a number of compartments (W₀) of a microtiter plate and a deep well plate, respectively, which is at least by a factor of ten smaller than the number of variants in the variant library (B₀) and amounts to between 10¹ and 10⁴, and wherein where each compartment contains a partial library which contains K₀=B₀/W₀ variants,
 - c) Production of biomolecules in the compartments and testing of the biomolecules obtained in the single compartments for a specified phenotype, whereas from the observed phenotype no direct conclusions on the genotype can be made,
 - d) Selection of at least one compartment, which contains biomolecules fulfilling the wanted properties,
 - e) Division of the partial library contained in the selected compartment into further compartments, and
 - f) n-fold repetition of the steps c) to e) until in every compartment maximally only one variant $(K_n \le 1)$ of the gene sequence coding for the biomolecule is contained.
- 2. (Original) The method of claim 1, wherein the wanted property is a biocatalytic activity.

- 3. (Previously presented) The method of claim 1, wherein in step c) also an amplification of the partial library takes place in the compartments up to an number of individuals $V_0(x)$ at the point in time x per compartment, whereas the number of individuals $V_0(x)$ divided by the number of clones per compartment K_0 gives the amplification factor $F_0(x)$ per clone.
- 4. (Previously presented) The method of claim 1, wherein in step e) the division is carried out under dilution of the partial library by means of factor $F_0(x)$, so that in a given volume every clone contained in the compartment is statistically present up to a number $X_0 < W_1$, this volume is divided up in a number of new compartments W_1 , whereas the new number of clones per compartment amounts to $K_1 = X_0 * K_0 / W_1$.
- 5. (Previously presented) The method of claim 1, wherein the variant library contains 103 to 10¹⁵ variants of the gene sequence of the biomolecule.
- 6. (Previously presented) The method of claim 1, wherein in step b) the variant library is divided up in 10^1 to 10^4 compartments.
- 7. (Previously presented) The method of claim 1, wherein in step b) the variant library is transferred into an organism before division.
- 8. (Previously presented) The method of claim 7, wherein in step c) the organism is amplified to a number of organisms of 10⁸ to 10⁹ per compartment.
- 9. (Previously presented) The method of claim 7, wherein the organisms also conduct the production of the biomolecules.

- 10. (Previously presented) The method of claim 7, wherein the partial libraries in the compartments are re-isolated from the organisms, and the production of the biomolecules is conducted by cell-free systems.
- 11. (Previously presented) The method of claim 3, wherein the amplification of the partial libraries and the production of the biomolecules is conducted by cellfree systems.
- 12. (Previously presented) The method of claim 1, wherein the variant library consists of DNA-plasmids, which contain the gene sequence coding for the biomolecule.
- 13. (Previously presented) The method of claim 1, wherein the variant library consists of linear nucleic acid molecules, which contain the gene sequence coding for the biomolecule.
- 14. (Previously presented) The method of claim 1, wherein the biomolecules are enzymes or ribozymes or other biomolecules, which exhibit a biocatalytic activity.
- 15. (Previously presented) The method of claim 2, wherein the test for a biocatalytic activity is conducted with a physical detection method selected from the group consisting of UVIVIS-spectroscopy, fluorescence spectroscopy and fluorescence-correlation-spectroscopy.