作业1: 数据探索性分析与数据预处理

— Wine Reviews

1、数据说明

```
In [12]:
          %matplotlib inline
          import matplotlib
          import matplotlib.pyplot as plt
          import pandas as pd
          import tqdm
          import numpy as np
          from sklearn.linear model import LinearRegression
          import scipy.stats as stats
          import warnings
          warnings.filterwarnings('ignore')
In [6]:
          data = pd.read csv('./wine/winemag-data first150k.csv', index col=0)
          print('属性类别数:', len(data.columns))
          print('总行数:', len(data))
          print('示例数据:')
          data.head(5)
         属性类别数: 10
         总行数: 150930
         示例数据:
```

Out[6]:		country	description	designation	points	price	province	region_1	region_2	vari
	0	US	This tremendous 100% varietal wine hails from	Martha's Vineyard	96	235.0	California	Napa Valley	Napa	Caber Sauvig
	1	Spain	Ripe aromas of fig, blackberry and cassis are	Carodorum Selección Especial Reserva	96	110.0	Northern Spain	Toro	NaN	Tinta T
	2	US	Mac Watson honors the memory of a wine once ma	Special Selected Late Harvest	96	90.0	California	Knights Valley	Sonoma	Sauvig Bl
	3	US	This spent 20 months in 30% new French oak, an	Reserve	96	65.0	Oregon	Willamette Valley	Willamette Valley	Pinot I
	4	France	This is the top wine from La Bégude, named aft	La Brûlade	95	66.0	Provence	Bandol	NaN	Prove red bl

2、数据摘要

```
num_fields = data.select_dtypes(include=np.number).columns.values
nom_fields = data.select_dtypes(exclude=np.number).columns.values
print('标称属性:', nom_fields)
print('数值属性:', num_fields)
```

```
标称属性: ['country' 'description' 'designation' 'province' 'region_1' 'region_2'
   'variety' 'winery']
数值属性: ['points' 'price']
```

1) 标称属性

以"country"属性为例,进行频数统计,其余标称属性类似。

2022/3/20 下午4:12 Report&Code

```
In [4]:
        #修改该field即可
        field = 'country'
        print('频数统计:')
        data[field].value_counts()
        频数统计:
```

	频数统计:	
Out[4]:	US	62397
000[1]	Italy	23478
	France	21098
	Spain	8268
	Chile	5816
	Argentina	5631
	Portugal	5322
	Australia	4957
	New Zealand	3320
	Austria	3057
	Germany	2452
	South Africa	2258
	Greece	884
	Israel	630
	Hungary	231
	Canada	196
	Romania	139
	Slovenia	94
	Uruguay	92
	Croatia	89
	Bulgaria	77
	Moldova	71
	Mexico	63
	Turkey	52
	Georgia	43
	Lebanon	37
	Cyprus	31
	Brazil	25
	Macedonia	16
	Serbia	14 12
	Morocco	9
	England	9
	Luxembourg Lithuania	8
	India	8
	Czech Republic	6
	Ukraine	5
	South Korea	4
	Switzerland	4
	Bosnia and Herzegovina	4
	Slovakia	3
	China	3
	Egypt	3
	Tunisia	2
	Montenegro	2
	Japan	2
	Albania	2
	US-France	1
	Name: country, dtype: into	54

2) 数值属性

```
In [5]: data.describe()
```

5]:		points	price		
	count	150930.000000	137235.000000		
	mean	87.888418	33.131482		
	std	3.222392	36.322536		
	min	80.000000	4.000000		
	25%	86.000000	16.000000		
	50%	88.000000	24.000000		
	75%	90.000000	40.000000		
	max	100.000000	2300.000000		

5数概括

Out[

points: 80、86、88、90、100 price; 4、16、24、40、2300

缺失值个数统计

```
print('null of points:',data['points'].isnull().sum())
print('null of price:',data['price'].isnull().sum())

null of points: 0
null of price: 13695
```

3、数据可视化

1) 标称属性

同样以"country"属性为例,绘制直方图检查数据分布,其余标称属性类似。

```
field = 'country'
print('聚会太多导致显示效果不好,所以取前15个聚会为例(其余聚会的频数都小于200):')
data[field].value_counts().head(15).plot.barh()
```

聚会太多导致显示效果不好、所以取前15个聚会为例(其余聚会的频数都小于200):

Out[10]: <AxesSubplot:>

2) 数值属性

绘制直方图和Q-Q图检查数据分布,并绘制盒图检查离群点。

直方图和Q-Q图

```
for field in num_fields:
    print(field, '直方图和Q-Q图:')
    plt.subplot(1, 2, 1)
    data[field].plot.hist(bins=20)
    plt.subplot(1, 2, 2)
    stats.probplot(data[field], plot=plt)
    plt.tight_layout() # 调整整体空白
    plt.show()
```

points 直方图和Q-Q图:

通过直方图和Q-Q图可以看出"points"属性符合正态分布,而"price"属性不符合。

盒图

```
for field in num_fields:
    data.boxplot(field)
    plt.show()
```


4、数据缺失处理

首先对缺失数据进行统计。

```
missing_data = data.isnull().sum()
missing_data = missing_data[missing_data != 0]
missing_data
```

```
Out[10]: country 5
designation 45735
price 13695
province 5
region_1 25060
region_2 89977
dtype: int64
```

1) 将缺失部分剔除

将包含缺失值的整行直接删除。

```
print('原始数据行数:', len(data))
drop_data = data.dropna(how='any')
print('将缺失部分剔除后数据行数:', len(drop_data))
```

原始数据行数: 150930 将缺失部分剔除后数据行数: 39241

```
In [12]:

print('以 price 属性为例, 通过盒图对比新旧数据:')
field = 'price'
plt.subplot(1, 2, 1)
data.boxplot(field)
plt.xlabel('old')
plt.subplot(1, 2, 2)
drop_data.boxplot(field)
plt.xlabel('new')
plt.tight_layout() # 调整整体空白
plt.show()
```

以 price 属性为例,通过盒图对比新旧数据:


```
In [13]: drop_data.isna().sum()
```

```
Out[13]: country
                          0
          description
                          0
          designation
                          0
          points
                          0
          price
                          0
                          0
          province
          region_1
                          0
                          0
          region 2
          variety
                          0
          winery
                          0
          dtype: int64
```

2) 用最高频率值来填补缺失值

```
In [14]:

print('以 price 属性为例, 通过盒图对比新旧数据:')
field = 'price'
mode = data[field].mode()[0]
new_data = data.fillna({field: mode})
print(field, '属性的最高频率值为:', mode)

plt.subplot(1, 2, 1)
data.boxplot(field)
plt.xlabel('old')
plt.subplot(1, 2, 2)
new_data.boxplot(field)
plt.xlabel('new')
plt.tight_layout() # 调整整体空白
plt.show()
```

以 price 属性为例,通过盒图对比新旧数据: price 属性的最高频率值为: 20.0


```
In [15]:
          data[data[field].isna()][field].head(5)
          32
                NaN
Out[15]:
          56
                NaN
          72
                NaN
          82
                NaN
          116
                NaN
          Name: price, dtype: float64
In [16]:
          new_data[data[field].isna()][field].head(5)
                 20.0
          32
Out[16]:
          56
                 20.0
          72
                 20.0
          82
                 20.0
          116
                 20.0
          Name: price, dtype: float64
```

可以看出新数据中 price 属性的缺失值已经被填充。

3) 通过属性的相关关系来填补缺失值

```
In [17]: data.corr()
```

```
Out[17]: points price
points 1.000000 0.459863
price 0.459863 1.000000
```

可以看出"price"和"points"属性之间存在正相关关系,因此可以建立线性回归模型通过"points"值预测缺失的"price"值。

```
In [18]:
    drop_data = data.dropna(subset=['price'])
    x = drop_data['points']
    y = drop_data['price']
    x = np.array(x).reshape(-1, 1)
    model = LinearRegression()
    model.fit(x, y)
    drop_data.plot(kind="scatter", x="points", y="price", alpha=0.05)
    plt.plot(x, model.predict(x), 'r-')
    plt.ylim(0,300)
    plt.show()
```


Ví	region_2	region_1	province	price	points	designation	description	country	[20]:
Sangi	NaN	Brunello di Montalcino	Tuscany	NaN	90	Vigna Piaggia	Underbrush, scorched earth, menthol and plum s	Italy	32
Sauv	NaN	Sancerre	Loire Valley	NaN	90	Le Pavé	Delicious while also young and textured, this	France	56
Nel	NaN	Barolo	Piedmont	NaN	91	Bussia Riserva	This offers aromas of red rose, wild berry, da	Italy	72
Nel	NaN	Roero	Piedmont	NaN	91	Palliano Riserva	Berry, baking spice, dried iris, mint and a hi	Italy	82
Mona	NaN	Jumilla	Levante	NaN	86	Dulce Tinto	Aromas of brandied cherry and crème de cassis	Spain	116

In [21]:

new_data[data['price'].isna()].head(5)

Out[21]:		country	description	designation	points	price	province	region_1	region_2
	32	Italy	Underbrush, scorched earth, menthol and plum s	Vigna Piaggia	90	44.600434	Tuscany	Brunello di Montalcino	NaN
	56	France	Delicious while also young and textured, this	Le Pavé	90	44.600434	Loire Valley	Sancerre	NaN
	72	Italy	This offers aromas of red rose, wild berry, da	Bussia Riserva	91	49.785122	Piedmont	Barolo	NaN
	82	Italy	Berry, baking spice, dried iris, mint and a hi	Palliano Riserva	91	49.785122	Piedmont	Roero	NaN
	116	Spain	Aromas of brandied cherry and crème de cassis	Dulce Tinto	86	23.861683	Levante	Jumilla	NaN

可以看出新数据中缺失的"price"值已经通过"points"值预测填充。

```
In [22]:

plt.subplot(1, 2, 1)
data.boxplot('price')
plt.xlabel('old')
plt.subplot(1, 2, 2)
new_data.boxplot('price')
plt.xlabel('new')
plt.tight_layout() # 调整整体空白
plt.show()
```


4) 通过数据对象之间的相似性来填补缺失值

full_data = data[data['price'].notna()]

以填充"price"为例,使用相同"variety"的数据对象的"price"均值来填充缺失数据,如果没有相同的"variety",则接下来依次考虑相同的"winery"、"designation"、"region_1"、"province"。

```
new data = data.copy()
          consider_fields = ['variety', 'winery', 'designation', 'region_1', 'province
          for i, row in tqdm.tqdm(list(new_data[data['price'].isna()].iterrows())):
              for field in consider_fields:
                  tmp data = full data[full data[field]==row[field]]
                  if len(tmp data) > 0:
                       new data['price'][i] = tmp data['price'].mean()
                      break
         100%
                         13695/13695 [06:13<00:00, 36.70it/s]
In [24]:
          data[data['price'].isna()].head(5)['price']
         32
               NaN
Out[24]:
               NaN
         56
         72
               NaN
         82
               NaN
         116
               NaN
         Name: price, dtype: float64
In [25]:
          new data[data['price'].isna()].head(5)['price']
                36.216047
         32
Out[25]:
                18.615296
         56
         72
                66.406802
                66.406802
         82
         116
                17.459459
         Name: price, dtype: float64
```

In [23]:

可以看出新数据中缺失的"price"值已经通过相似对象的"price"属性的均值进行填充。

```
In [26]:

plt.subplot(1, 2, 1)
data.boxplot('price')
plt.xlabel('old')
plt.subplot(1, 2, 2)
new_data.boxplot('price')
plt.xlabel('new')
plt.tight_layout() # 调整整体空白
plt.show()
```


通过上述分析可以看出在其他属性值相同的情况下,有缺失的属性值的变动很大,说明这些缺失值无法通过其他行来进行填补。