

Análise Matemática II C

14 de Junho de 2023 - Teste 2 - Versão A (2h)

- 1. Considere a superfície não limitada $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 z^2 = 1\}$. Seja P o ponto $(2\sqrt{2},0,0)$. Escolha a afirmação verdadeira.
 - A. Existem exatamente 2 pontos de S à distancia mínima, $\sqrt{3}$, de P.
 - B. Existem exatamente 4 pontos de S à distancia mínima, $\sqrt{3}$, de P.
 - C. Existe apenas 1 ponto de S à distancia mínima, 3, de P.
 - D. Existem exatamente 2 pontos de S à distancia mínima, $2\sqrt{2} 1$, de P.
 - E. Nenhuma das afirmações anteriores é verdadeira.
- 2. Seja D a região do plano limitada pelas curvas $y=x^2$ e $x=y^2$.

O valor do integral $\iint_{\mathbb{R}} xy \, dx dy$ é:

- A. $\frac{1}{2}$, B. $-\frac{1}{4}$, C. $-\frac{1}{2}$, D. $\frac{1}{4}$, E. Nenhum dos anteriores.
- 3. Considere o integral $I = \int_0^1 \int_{x^{\frac{1}{2}}}^{\sqrt{2-y^2}} y \, dx dy$. Tem-se:
 - A. $I = \int_0^1 \int_0^{x^2} y \, dy dx + \int_1^{\sqrt{2}} \int_0^{y^2 + x^2} y \, dy dx$, B. $I = \int_0^1 \int_0^{\sqrt{2 x^2}} y \, dy dx + \int_1^{\sqrt{2}} \int_1^{x^2} y \, dy dx$,
 - C. $I = \int_0^1 \int_0^{x^2} y \, dy dx + \int_1^{\sqrt{2}} \int_0^{\sqrt{2-x^2}} y \, dy dx$, D. $I = \int_0^1 \int_0^{\sqrt{2-x^2}} y \, dy dx + \int_1^2 \int_1^{x^2} y \, dy dx$,
 - E. Nenhum dos casos anteriores.
- 4. Considere o domínio de \mathbb{R}^2 definido por

$$R = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0, 1 \le x + y \le 4\}.$$

Usando a transformação de variáveis x = u - uv, y = uv. Tem-se:

- A. $\iint_R \frac{y}{x+y} dxdy = \int_1^4 \left(\int_0^1 v dv \right) du,$
- B. $\iint_R \frac{1}{x+y} dx dy = 3,$
- C. $\iint_{R} \frac{y}{x+y} dxdy = \int_{0}^{4} \left(\int_{0}^{4} v dv \right) du,$
- D. $\iint_R \frac{1}{x+y} dx dy = \int_1^4 \left(\int_0^4 \frac{1}{u} dv \right) du$,
- E. Nenhum dos casos anteriores.

5. Recorrendo a coordenadas esféricas ρ , θ , ϕ , o volume do sólido

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 16 \land z^2 \le 3x^2 + 3y^2\}$$

é igual a:

- A. $\int_0^{2\pi} \left(\int_0^4 \left(\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \rho^2 \sin \phi \, d\phi \right) d\rho \right) d\theta, \quad \text{B. } \int_0^{2\pi} \left(\int_0^4 \left(\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \rho^2 \cos \phi \, d\phi \right) d\rho \right) d\theta,$
- C. $4 \int_0^{\frac{\pi}{2}} \left(\int_0^4 \left(\int_{\frac{\pi}{6}}^{\frac{5\pi}{6}} \rho^2 \sin \phi \, d\phi \right) d\rho \right) d\theta$, D. $4 \int_0^{\frac{\pi}{2}} \left(\int_0^4 \left(\int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \rho^2 \sin \phi \, d\phi \right) d\rho \right) d\theta$,
- E. $\int_0^{2\pi} \left(\int_0^4 \left(\int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \rho^2 \cos \phi \, d\phi \right) d\rho \right) d\theta.$
- 6. Considere o seguinte campo vetorial conservativo definido em \mathbb{R}^2

$$\vec{F}(x,y) = (y^2 e^{xy^2} + \frac{2x}{y^2 + x^2})\vec{i} + (2yxe^{xy^2} + \frac{2y}{y^2 + x^2})\vec{j}.$$

Seja $I=\int_C \vec{F}.d\vec{r}$, onde C é a curva regular definida por $(x,y)=(3\cos t, 2\sin t)$, com $0\leq t\leq \frac{\pi}{2}$, percorrida no sentido crescente do parâmetro t. Tem-se:

- A. $I = \ln(\frac{4}{9})$, B. $I = \ln(\frac{9}{4})$, C. $I = e + \ln(4)$, D. $I = e + \ln(3)$,
- E. Nenhum dos anteriores.
- 7. Considere a região do plano

$$\mathcal{R} = \left\{ (x, y) \in \mathbb{R}^2 : x \ge 0, \ y \ge \sqrt{3}x, \ 1 \le x^2 + y^2 \le 4 \right\}.$$

Seja $\vec{F}(x,y) = F_1(x,y)\vec{i} + F_2(x,y)\vec{j}$ um campo vetorial em \mathbb{R}^2 de classe C^1 tal que

$$\frac{\partial F_2}{\partial x}(x,y) - \frac{\partial F_1}{\partial y}(x,y) = 2, \text{ para todo o } (x,y) \in \mathbb{R}^2.$$

Seja C a fronteira de $\mathcal R$ orientada no sentido horário.

O valor do integral $\int_C F_1(x,y) dx + F_2(x,y) dy$ é:

- A. 0, B. $-\frac{\pi}{3}$, C. $\frac{\pi}{3}$, D. $-\frac{\pi}{2}$, E. Nenhum dos casos anteriores.
- 8. Seja $\mathcal C$ o arco da parábola $y+1=x^2$ que une o ponto (-1,0) ao ponto (0,-1). O valor do integral

$$\int_{\mathcal{C}} x \ ds$$

é:

A. 0, B. 1, C. $-\sqrt{2}$, D. $1-5\sqrt{5}$, E. Nenhum dos casos anteriores.

9. Denote por W o trabalho realizado pelo campo de forças $\vec{F}(x,y,z)=x\;\vec{i}+y^3\;\vec{j}-\vec{k}$ ao longo da curva C definida por $\left\{ \begin{array}{l} x=1\\ z=y^4 \end{array} \right.$, percorrida desde o ponto (1,0,0) até ao ponto (1,1,1). Tem-se:

A. $W=-\frac{1}{4},$ B. $W=\frac{1}{4},$ C. $W=-\frac{3}{4},$ D. $W=\frac{3}{4},$ E. Nenhum dos casos anteriores.

10. Considere a superfície $\sigma=\{(x,y,z)\in\mathbb{R}^3:x^2\leq y\leq 1 \land z=y-x\}$ em $\mathbb{R}^3,$ orientada segundo a normal dirigida para cima. Considere o campo vetorial $\vec{F}(x,y,z) = 1\vec{i} + (2y-1)\vec{k}$.

O valor de $\iint \vec{F} \cdot \vec{n} \, dS$ é:

A. $\frac{6}{5}$, B. $\frac{4}{5}$, C. $\frac{2}{5}$, D. $\frac{8}{5}$, E. Nenhum dos casos anteriores.

11. Seja \mathcal{E} um sólido simples de volume V e com fronteira σ , uma superfície orientada com a normal interior. Considere o campo vetorial

$$\vec{F}(x, y, z) = (x^2y + z^2)\vec{i} - xy^2\vec{j} + 3z\vec{k}$$

O fluxo de \vec{F} através de σ é:

A. V, B. -3V, C. -V,

D. 2V,

E. Nenhum dos casos anteriores.

12. Considere o campo vetorial $\vec{\Phi}(x,y,z) = -y\vec{i} + x\vec{j} + (y+z)\vec{k}$. Considere a superfície

$$\sigma = \{(x, y, z) \in \mathbb{R}^3 : z^2 + 3x^2 + \frac{y^2}{3} = 4 \land z \ge 1\}$$

orientada segundo a normal dirigida para cima. O valor de $\iint_{\mathbb{R}} \operatorname{rot} \vec{\Phi} \cdot \vec{n} \, dS$ é:

A. 6π ,

B. 3π ,

C. 2π .

D. 12π ,

E. Nenhum dos casos anteriores.

13. Considere a superfície Γ em \mathbb{R}^3 com parametrização

$$\vec{r}(u,v) = (u\cos v, 2u\cos v, v), \quad (u,v) \in [0,1] \times [0,2\pi].$$

Seja λ a área de Γ . Tem-se:

A.
$$\lambda = \sqrt{5} \int_0^1 \left(\int_0^{2\pi} |\cos v| dv \right) du$$
,

B.
$$\lambda = \sqrt{5} \int_0^1 \left(\int_0^{2\pi} \sin v \, dv \right) du$$
,

C.
$$\lambda = \sqrt{5} \int_0^1 \left(\int_0^{2\pi} \cos u \, dv \right) du$$
,

D.
$$\lambda = \sqrt{5} \int_0^1 \left(\int_0^{2\pi} |\sin u| dv \right) du$$
,

E. Nenhum dos casos anteriores.

14. Seja S o sólido de \mathbb{R}^3 , limitado pelas $z=2-(x^2+y^2)$ e $z=x^2+y^2$. Seja σ a fronteira de S, orientada com a normal exterior. Considere o campo vetorial \vec{F} definido em \mathbb{R}^3 por

$$\vec{F}(x,y,z) = (xz)\vec{i} + (yz)\vec{j} + \vec{k}.$$

Considere o fluxo $F = \iint_{\sigma} \vec{F} \cdot \vec{n} \, dS$. Usando coordenadas cilíndricas $r, \, \theta, \, z$, tem-se:

A.
$$F = \int_0^{2\pi} \left(\int_0^1 \left(\int_{r^2}^{2-r^2} zr \, dz \right) dr \right) d\theta$$
,

B.
$$F = 2 \int_0^1 \left(\int_0^{2\pi} \left(\int_{r^2}^{2-r^2} zr \, dz \right) d\theta \right) dr$$
,

C.
$$F = 2 \int_0^1 \left(\int_0^{2\pi} \left(\int_{2-r^2}^{r^2} z \, dz \right) d\theta \right) dr$$

D.
$$F = 2 \int_0^{2\pi} \left(\int_0^1 \left(\int_0^2 z \, dz \right) dr \right) d\theta$$
,

E.
$$F = -2 \int_0^1 \left(\int_0^{2\pi} \left(\int_{r^2}^{2-r^2} zr \, dz \right) d\theta \right) dr$$
.

15. Seja $h: \mathbb{R}^2 \to \mathbb{R}$ um função de classe C^1 . Sabe-se que

$$\int_{\gamma} (2xy + h(x,y))dx + (x^2 + x\cos y) \, dy = 0$$

para toda a curva γ regular e fechada em \mathbb{R}^2 . Um possível valor para a função h é:

A.
$$h(x,y) = yx^2 + x\sin y$$
,

A.
$$h(x,y)=yx^2+x\sin y,$$
 B. $h(x,y)=\frac{x^2}{2}+\sin y,$ C. $h(x,y)=-\cos y,$ D. $h(x,y)=-x^2-x\cos y,$ E. Nenhum dos casos anteriores.

D.
$$h(x, y) = -x^2 - x \cos y$$

- 16. Considere o campo vetorial $\vec{F}(x,y) = (2xe^{x^2+y^3}+1)\vec{i}+3y^2e^{x^2+y^3}\vec{j}$ em \mathbb{R}^2 . Seja C uma curva seccionalmente regular que começa em (1,1) e termina em (0,0) e

$$A = \int_C (2xe^{x^2+y^3} + 1) dx + 3y^2 e^{x^2+y^3} dy.$$

Tem-se:

- A. A função $f(x,y) = e^{x^2+y^3} + x + \frac{\pi}{\sqrt{3}}$ é uma função potencial de $\vec{F}(x,y)$ e $A = -e^2$.
- B. A função $f(x,y)=e^{x^2+y^3}$ é uma função potencial de $\vec{F}(x,y)$ e $A=1-e^2$.
- C. O campo vetorial \vec{F} é conservativo e $A = 3e^2$.
- D. O campo vetorial não é conservativo.
- E. Nenhum dos casos anteriores.