Análisis Matemático para Inteligencia Artificial

Martín Errázquin (merrazquin@fi.uba.ar)

Especialización en Inteligencia Artificial

Optimización convexa

Región Convexa

Un subconjunto $S \subset \mathbb{R}^n$ es convexo si para cada par de puntos $x, y \in S, \alpha \in [0, 1]$ se verifica que $z = \alpha x + (1 - \alpha)y \in S$.

Obs: X_1, X_2 son dos conjuntos convexos, entonces,

- $X_1 \cap X_2$ es convexo.
- si L es una transformación lineal, $L(X_1)$ es convexa.

Función Convexa

Sea $M \subset \mathbb{R}^n$, $M \neq \emptyset$ convexo, $f: M \to \mathbb{R}$. Entonces se dice que:

• f es convexa en M sii $\forall x, y \in M, \forall \alpha \in [0,1]$ se verifica que:

$$f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y)$$

• f es estrictamente convexa en M sii $\forall x, y \in M, \forall \alpha \in (0,1)$ se verifica que:

$$f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y)$$

$$\forall e \in (e_1, k_2)$$

$$f(e) < f(e)$$

Prop: Sea $M \subset \mathbb{R}^n$, $M \neq \emptyset$ abierto convexo, $f: M \to \mathbb{R}$, $f \in \mathcal{C}^2$. Entonces, f es convexa en M sii $\forall x \in M$, $y^T H_f(x) y \geqslant 0$, para cualquier $y \in \mathbb{R}^n$.

Condición de Slater

Sea el problema

min
$$f(x_1,...,x_n)$$

s.t. $g_i(x_1,...,x_n) = 0$
 $h_j(x_1,...,x_n) \le 0$

donde las f, h_j son funciones convexas y las g_i son funciones afines (lineales o constantes). Si existe un punto $\vec{x_0}$ estrictamente factible, es decir que $g_i(\vec{x_0}) = 0, h_i(\vec{x_0}) < 0 \ \forall i,j$ entonces:

- Hay dualidad fuerte: óptimo del dual coincide con óptimo del primal
- 2 Las condiciones KKT son necesarias y suficientes

Programación Lineal

Un problema de programación lineal es donde tanto la función objetivo como las funciones que definen las restricciones son lineales. La forma general es:

t, g:

Propiedades de la Programación Lineal

Definición: Sea $S \subset \mathbb{R}^n$ convexo $S \neq \emptyset$, $\bar{x^*} \in S$ es un punto extremo de S si $\bar{x^*}$ no puede expresarse como combinación lineal convexa de puntos de S distintos de él.

- Es un problema convexo ya sea de minimización o maximización.
- 2 La solución óptima, si existe, es global.
- 3 Nunca existen óptimos locales que no sean globales.
- Tiene 0, 1 o infinitas soluciones.

Forma estándar: Se busca hallar min $\bar{c}\bar{x}$, s.t. $A\bar{x} = \bar{b}$; $\bar{x} \geqslant 0$, donde $A \in \mathbb{R}^{m \times n}$, m < n, rg(A) = m.

Métodos típicos de solución: Algoritmo Simplex y revised Simplex, Interior Point (IPM).

Programación cuadrática

En el caso de que la función objetivo sea una cuadrática convexa:

$$\min_{x \in \mathbb{R}^d} \frac{1}{2} x^T Q x + c^T x$$
 f. cush.

 $s.t. : Ax \leq b$

donde $A \in \mathbb{R}^{m \times d}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^d$.

La matriz $Q \in \mathbb{R}^{d \times d}$ es simétrica y definida positiva, y por lo tanto la función objetivo es convexa. El lagrangiano está dado por:

$$\mathscr{L}(x,\lambda) = \frac{1}{2}x^{T}Qx + c^{T}x + \lambda^{T}(Ax - b)$$

Para obtener $D(\lambda) = \min_{x} \mathscr{L}(x, \lambda)$ buscamos x aplicando $\nabla \mathscr{L}(x) = 0$:

$$\nabla \mathcal{L}(x) = Qx + (c + A^{T}\lambda) = 0 \Rightarrow x = -Q^{-1}(c + A^{T}\lambda)$$

Y sustituyendo obtenemos el objetivo del dual:

$$D(\lambda) = -\frac{1}{2}(c + A^T\lambda) - Q^{-1}(c + A^T\lambda) - \lambda^Tb.$$