Solzinho - Energia limpa

Alunos: RA:

Brian dos Santos, 140146

Marcus Vinicius Judice Duarte Silva, 142577

Henrique José da Costa Manço, 140129

Não é de hoje em que os meios de energias, limpas, renováveis e sustentáveis estão sendo cada vez mais procurados, seja com o foco no baixo custo a longo prazo, preocupações ambientais ou simplesmente status. Com isto, utilizando como base a ODS 7 - Energia Acessível e Limpa, a proposta torna-se em utilizar de um meio de energia limpa e renovável otimizada de tal forma a somar recursos disponíveis.

Um ciclo se inicia na obtenção de energia solar, por forma de painéis solares, onde estes desempenham um papel de captar e transforma a energia solar em energia elétrica como seu objetivo primário e energia térmica como secundário, os painéis terão o papel de transferir sua energia térmica adquirida durante o processo de funcionamento para as serpentinas e assim aquecer a água, que em seguida será armazenada em um reservatório destinado a usos do chuveiro.

Um sistema inteligente irá sinalizar alertas sobre o funcionamento, a eficiência atingida na captação de energia, além de ser integrado em responder a possibilidade de banhos com água quente disponível para o usuário.

Sendo assim, podemos apresentar um fluxograma que exemplifica a forma de trabalho do sistema.

Dado o contexto, temos uma tabela verdade que exemplifica a forma ideal de funcionamento por meio de sensores de temperatura alocados na placa solar, onde a tabela nos apresentará três faixas específicas de funcionamento. Sendo a primeira que corresponde à destacada em amarelo, onde a temperatura apresentada é abaixo da ideal, neste ponto haverá fornecimento de energia, mas o sistema não será capaz de transferir calor suficiente para esquentar a água para o reservatório. A segunda faixa, destacada em verde, corresponde à temperatura ideal, onde temos pleno funcionamento do sistema, fornecendo energia e aquecimento da água. Na terceira faixa, indicada em vermelho, temos um alerta, em

que a placa está com temperatura acima do esperado e pode apresentar mau funcionamento, defeitos e até acarretar em danos ao sistemas.

Temperatura da Placa Solar					
Sensor T 1	Sensor T 2	Sensor T 3	Sensor T 4	Saída	Temperatura
0	0	0	0	0	40,0°C
0	0	0	1	0	40,5°C
0	0	1	0	0	41,0°C
0	0	1	1	0	41,5°C
0	1	0	0	0	42,0°C
0	1	0	1	0	42,5°C
0	1	1	0	0	43,0°C
0	1	1	1	0	43,5°C
1	0	0	0	0	44,0°C
1	0	0	1	0	44,5°C
1	0	1	0	1	45,0°C
1	0	1	1	1	45,5°C
1	1	0	0	1	46,0°C
1	1	0	1	1	46,5°C
1	1	1	0	0	47,0°C
1	1	1	1	0	47,5°C

Uma vez obtida a tabela verdade da temperatura, usando o método de simplificação do mapa de Karnaugh, temos:

S3/S4	S1' S2'	S1' S2	S1 S2'	S1 S2
S3' S4'	0	0	0	1
S3' S4	0	0	0	1
S3 S4'	0	0	1	0
S3 S4	0	0	1	0

Saída = S1.S2'.S3 + S1.S2.S3'

Com a saída simplificada podemos seguir para o panda:

O circuito apresentado anteriormente fornece a seguinte forma de onda.

É estimado que em um banho, sejam gastos 10 litros de água por minuto e o tempo médio de um banho fica entre 10 e 20 minutos. Com isto, foi estipulado um sistema que utilizará quatro sensores para verificar o nível de água aquecida no reservatório e dirá se será possível tomar um banho quente com a água lá disponível. Usando um reservatório de 600 litros como base, obtivemos a seguinte tabela verdade. Onde temos duas faixas sinalizadas, sendo uma em verde que alerta ter água suficiente para um banho e em vermelho onde sinaliza que no reservatório tem menos água esperada para um banho.

Volume do reservatório de água quente					
Sensor N1	Sensor N2	Sensor N3	Sensor N4	Saída	Nível de água
0	0	0	0	0	0L
0	0	0	1	0	40L
0	0	1	0	0	80L
0	0	1	1	0	120L
0	1	0	0	1	160L
0	1	0	1	1	200L
0	1	1	0	1	240L
0	1	1	1	1	280L
1	0	0	0	1	320L
1	0	0	1	1	360L
1	0	1	0	1	400L
1	0	1	1	1	440L
1	1	0	0	1	480L
1	1	0	1	1	520L
1	1	1	0	1	560L
1	1	1	1	1	600L

Com essa tabela decidimos fazer um comparador de magnitude na qual diz se tem disponível água para nenhum banho, um banho ou mais de um.

Assim como a temperatura, o sistema tem uma tensão ideal para trabalho, por meio de sensores que mede tensão ela é apresentada na seguinte tabela, se o sistema apresentar uma tensão maior que o esperada, ou seja, 45 ou superior, teremos um alerta de mau funcionamento.

Tensão da Placa Solar					
Sensor C1	Sensor C2	Sensor C3	Sensor C4	Saída	Tensão
0	0	0	0	0	115V
0	0	0	1	0	110V
0	0	1	0	0	105V
0	0	1	1	0	100V
0	1	0	0	0	95V
0	1	0	1	0	90V
0	1	1	0	0	85V
0	1	1	1	0	80V
1	0	0	0	0	75V
1	0	0	1	0	70V
1	0	1	0	0	65V
1	0	1	1	0	60V
1	1	0	0	0	55V
1	1	0	1	0	50V
1	1	1	0	0	45V
1	1	1	1	1	40V

A partir da tabela verdade, temos o seguinte circuito lógico a respeito do funcionamento, seguido da forma de onda que ele apresenta.

Com os dois parâmetros principais de funcionamento já adquiridos, foi gerado um circuito lógico somador a partir da seguinte tabela, onde este circuito será encarregado dos alertas de funcionamento, uma vez que ele pode unificar e mostrar a faixa ideal para trabalho do sistema. Temos indicado em verde a faixa ideal para trabalho e indicado em vermelho as faixas críticas, onde apresenta algum mau funcionamento no sistema, para assim sempre gerar um alerta ao usuário.

Soma de temperatura e tensão ideal					
Tensão	Temperatura	Mínimo	Máximo		
0000 (0)	0000 a 1001b	0	8		
0001 (1)	0000 a 1001b	1	9		
0010 (2)	0000 a 1001b	2	10		
0011 (3)	0000 a 1001b	3	11		
0100 (4)	0000 a 1001b	4	12		
0101 (5)	0000 a 1001b	5	13		
0110 (6)	0000 a 1001b	6	14		
0111 (7)	0000 a 1001b	7	15		
1000 (8)	0000 a 1001b	8	16		
1001 (9)	0000 a 1001b	9	17		
1010 (10)	0000 a 1001b	10	18		
1011 (11)	0000 a 1001b	11	19		
1100 (12)	0000 a 1001b	12	20		
1101 (13)	0000 a 1001b	13	21		
1110 (14)	0000 a 1001b	14	22		
1111 (15)	1001b	23			
1111(15)	1010b	24			
1111(15)	1011b	25			
1111(15)	1100b	26			
1111(15)	1101b	27			
1111(15)	1110b	28			
1111(15)	1111b	29			

Como as saídas iriam dar overflow, decidimos adicionar mais um somador completo para possuir uma saída com 5 bits. Quando a saída for 24, 25, 26 e 27, há energia solar para ser utilizada pela casa

Dentro do circuito foi feito somador, um comparador de magnitude e os circuitos relacionados a tensão e temperatura também foram adicionados. Quando as entradas S0 e S1 estiverem em baixa o circuito demonstrará se a tensão está boa ou não, quando S0 estiver em alta e S1 em baixa o circuito irá utilizar o somador e quando o S1 estiver em alta e S0 em baixa verá se a tensão está boa. Temos outro circuito vinculado que é o volume do reservatório, e nele mostra se a pessoa pode tomar banho ou não.

Material usado para pesquisa e desenvolvimento do projeto

https://www.ecycle.com.br/placa-solar/

NREL Power point slide template - cover and main slide (sandia.gov) [slide(4)NOCT - para ver qual a temperatura que ele funciona normalmente = 46.3 or 45.3 em °C]

Sensor de corrente : Funcionamento do Sensor

Placa de referência (550Wp)

Tensão (40,83 V aproximadamente 41V) : (Painel Solar)

(Tabelas Verdade)

600l Boyle = Boyle