Line Following Robot

#define Define in3, in4, and enB in 3 & in 4 as motor direction enB as motor speed #define Right_Dir1 12 #define Right_Dir2 11 #define Right_Speed 10 Define in1, in2, and enA in 1 & in 2 as motor direction enA as motor speed #define Left_Dir1 7 #define Left_Dir2 8 #define Left_Speed 6

IR left module is connected to A0 pin on Arduino IR middle left module is connected to A1 pin on Arduino IR middle right module is connected to A2 pin on Arduino IR right module is connected to A3 pin on Arduino

#define IR_Left A0 #define IR_Middle_Left A1 #define IR_Middle_Right A2 #define IR_Right A3

Declare a nominal speed of Right Motor int nom_Rspeed = 100; Declare a nominal speed of Left Motor int nom_Lspeed = 110; Declare IR for each side int IR_L = 0; int IR_ML = 0; int IR_MR = 0; int IR_R = 0; int IR_R = 0; int sensor_4 = 0; int sensor_3 = 0; int sensor_2 = 0; int sensor_1 = 0;

void loop () Calling function analog read Read_Analog_IR(); void Read_Analog_IR() Read Analog IR for every side the sensor3 = 1IR_L = analogRead(IR_Left); IR_ML = analogRead(IR_Middle_Left); IR_MR = analogRead(IR_Middle_Right); $sensor_3 = 1;$ IR_R = analogRead(IR_Right); No No Make Condition for the IR Make Condition for the IR else if(IR_ML < LimitBlackLine) if(IR_L >= LimitBlackLine) Yes Yes the sensor3 = 0the sensor4 = 1 $sensor_4 = 1;$ $sensor_3 = 0;$ No No Make Condition for the IR Make Condition for the IR else if(IR_L < LimitBlackLine) if(IR_MR >= LimitBlackLine) Yes Yes the sensor4 = 0the sensor2 = 1 $sensor_4 = 0;$ $sensor_2 = 1;$ В Yes Make Condition for the IR if(IR_ML >= LimitBlackLine) No

Read_Analog_IR();

Calling function for line following programme

linefollowing();

Calling Function (Initiate) for motor motion

void Stop()

Both Motor Direction: stop: Left_Speed = 0, Right_Speed = 0 analogWrite(Left_Speed,0); analogWrite(Right_Speed,0);

void Forward()

Foward:

Left Motor CCW; Rigt Motor CW:

Left_Forward(); Right_Forward();

void Reverse()

Reverse;

Left Motor CW; Rigt Motor CCW:

Left_Reverse(); Right_Reverse();

void Turn_Left()

Turn Left;

Left Motor CW ; Rigt Motor CW:

Left_Reverse(); Right_Forward();

void Turn_Right()

Turn Right;

Left Motor CCW; Rigt Motor CCW:

Left_Forward(); Right_Reverse();

void Turn_Left_Slight()

Turn Left Slightt;

Left Motor CCW; Rigt Motor CW;

- Nominal Speed at Left Motor + Nominal Speed at Right Motor

Left_Forward(); Right_Forward();

void loop ()

Calling Function (Initiate) for motor motion

void Turn_Right_Slight()

Turn Righ Slightt;
Left Motor CCW; Rigt Motor CW;

+ Nominal Speed at Left Motor - Nominal Speed at Right Motor

> Left_Forward(); Right_Forward();

void Reverse_Left_Slight()

Reverse Left Slightt;

eft Motor CW; Rigt Motor CCW;

- Nominal Speed at Left Motor + Nominal Speed at Right Motor

Left_Reverse();

void Reverse_Right_Slight()

Reverse Right Slightt;

Right_Reverse();

.eft Motor CW; Rigt Motor CCW;

+ Nominal Speed at Left Motor

- Nominal Speed at Right Motor

Left_Reverse(); Right_Reverse();

E

void loop () Calling Function (Initiate) for motor Speed **Control Instruction** void Left_Forward() **Left Motor rotate CCW** digitalWrite(Left_Dir1, HIGH); digitalWrite(Left_Dir2, LOW); void Left_Reverse() **Left Motor rotate CW** digitalWrite(Left_Dir1, LOW); digitalWrite(Left_Dir2, HIGH); void Right_Forward() **Right Motor rotate CW** digitalWrite(Right_Dir1, LOW); digitalWrite(Right_Dir2, HIGH); void Right_Reverse() **Right Motor rotate CCW** digitalWrite(Right_Dir1, HIGH); digitalWrite(Right_Dir2, LOW); void Go(int a, int b) **Changes Speed Motors** analogWrite(Left_Speed, a); analogWrite(Right_Speed, b);