ÁLGEBRA VECTORIAL

- **14.** Sejam os vectores $\vec{u} = (1, -2, 3)$ e $\vec{v} = (3, 1, 2)$. Em cada alínea seguinte, obtenha os vectores unitários e paralelos ao vector dado.
 - **a**) $\vec{u} + \vec{v}$.

b) $\vec{u} - \vec{v}$.

c) $\vec{u} + 2\vec{v}$.

- **d**) $2\vec{u} \vec{v}$.
- 17. Determine os vectores com norma igual a 4 e paralelos a $(1, \sqrt{3}, -2)$.
- **21.** Considere o triângulo [PQR], em que P = (-1, 2, -2) e Q = (-3, 0, -4).
 - a) Calcule o ponto R do eixo dos zz, de modo que o triângulo seja isósceles de base [PQ].
 - **b**) Determine o seu perímetro.
- 37. Considere o conjunto de vectores do espaço linear \mathbb{R}^3 , $A = \{(1,0,\sqrt{2}), (1,\sqrt{2},0), (\sqrt{2},1,1)\}$.
 - a) Verifique se o conjunto A é linearmente independente.
 - **b**) Obtenha o subespaço, L(A), gerado por A e indique a sua dimensão.
 - c) Identifique uma base, U, para o subespaço L(A).
 - ${f d}$) Obtenha uma base, S, para o espaço linear ${\Bbb R}^3$ que seja uma extensão de U.
- **38.** Seja o conjunto de vectores do espaço linear \mathbb{R}^3 , $T = \{(2,-1,6),(0,2,-1)\}$; considere os vectores $\vec{u} = (-4,-4,-9)$ e $\vec{v} = (10,7,25)$.
 - a) Mostre, recorrendo à noção de combinação linear, que apenas um dos vectores \vec{u} e \vec{v} pertence ao subespaço gerado por T.
 - b) Calcule o subespaço gerado por T e confirme o resultado encontrado na alínea anterior.
 - c) Justifique que T é um conjunto linearmente independente.
 - **d**) Obtenha uma base para o espaço linear \mathbb{R}^3 que seja uma extensão de T.

J.A.T.B.

- **43.** Obtenha os valores de $\alpha \in \mathbb{R}$, de forma que o conjunto de vectores $\{(\alpha,0,1),(0,\alpha,1),(1,0,\alpha)\}$ seja uma base para o espaço linear \mathbb{R}^3 .
- **44.** Determine os valores de $a,b,c \in \mathbb{R}$, de forma que o conjunto de vectores $\{(0,b,-c),(c,-a,0),(b,0,a)\}$ seja uma base para o espaço linear \mathbb{R}^3 .
- **45.** Considere o conjunto de vectores do espaço linear \mathbb{R}^3 , $P = \{(1,1,2), (2,-1,1), (1,-1,0)\}$.
 - a) Verifique se o vector $\vec{u} = (2, 4, -6)$ é combinação linear dos vectores de P.
 - **b**) Verifique se o vector $\vec{v} = (3, -5, -2)$ é combinação linear dos vectores de P.
 - c) Mostre que é possível escrever de duas formas distintas o vector $\vec{s} = (-2,5,3)$ como combinação linear dos vectores de P.
 - **d**) Obtenha os valores de $\alpha \in \mathbb{R}$ para os quais o vector $\vec{t} = (-4, \alpha, 3)$ é combinação linear dos vectores de P.
- **47.** Será que o conjunto de vectores $U = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\} = \{(1, -1, 3), (-2, 4, 5), (3, -2, -1)\}$ constitui uma base para o espaço linear \mathbb{R}^3 ? Justifique a resposta.
- **48.** Sejam os vectores do espaço linear \mathbb{R}^3 , $\vec{u} = \vec{i} + \vec{k}$, $\vec{v} = \vec{i} \vec{j} + \vec{k}$ e $\vec{w} = \vec{i} + 2\vec{j} 3\vec{k}$.
 - a) Mostre que o conjunto $T = \{\vec{u}, \vec{v}, \vec{w}\}$ é linearmente independente.
 - **b**) Prove que T é uma base para o espaço \mathbb{R}^3 .
 - c) Exprima os vectores \vec{j} e \vec{k} como combinação linear dos vectores do conjunto T.
 - **d**) Obtenha as coordenadas do vector $\vec{s} = 2\vec{i} 4\vec{j} + 6\vec{k}$ em relação à base ordenada T.

J.A.T.B. NAL-1.2

49. Considere que $U = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ é um conjunto de vectores linearmente independentes do espaço linear \mathbb{R}^3 . Verifique se algum dos seguintes conjuntos é uma base para \mathbb{R}^3 .

a)
$$P = \{2\vec{u}_1 - \vec{u}_2, \vec{u}_1 + \vec{u}_2, -\vec{u}_1 + 5\vec{u}_2\}$$
.

b)
$$Q = \{2\vec{u}_1, 3\vec{u}_2, \vec{u}_1 + \vec{u}_2 - \vec{u}_3\}$$
.

c)
$$R = {\vec{u}_1 - \vec{u}_2, \vec{u}_1 + 2\vec{u}_2 + \vec{u}_3, \vec{u}_2 + \vec{u}_3}$$
.

d)
$$S = \{\vec{u}_1 + 2\vec{u}_3, \vec{u}_1 + \vec{u}_2, 2\vec{u}_1 - \vec{u}_2 + 6\vec{u}_3\}$$
.

- **52.** Sejam $\vec{s}_1 = (1,1,-1,0)$, $\vec{s}_2 = (0,-1,1,1)$ e $\vec{s}_3 = (1,1,0,0)$ três vectores do espaço linear \mathbb{R}^4 .
 - a) Verifique se $S_1 = \{\vec{s}_1, \vec{s}_2, \vec{s}_3\}$ é conjunto linearmente independente.
 - **b**) Determine $L(S_1)$, o subespaço gerado pelo conjunto S_1 .
 - c) Obtenha um vector não nulo \vec{v} , de forma que $V = \{\vec{s}_1, \vec{s}_2, \vec{s}_3, \vec{v}\}$ seja um conjunto linearmente dependente.
 - **d**) Seleccione um vector \vec{s}_4 , de modo que $S = \{\vec{s}_1, \vec{s}_2, \vec{s}_3, \vec{s}_4\}$ seja um conjunto linearmente independente.
 - e) Mostre que o conjunto S é uma base para o espaço linear \mathbb{R}^4 .
 - **f**) Obtenha as coordenadas do vector $\vec{w} = (1, -1, -2, 5) \in \mathbb{R}^4$ em relação à base ordenada S.
- **53.** Seja o conjunto de vectores $S = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_2 + 2x_3 \land x_4 = 2x_2 x_3 \}$ do espaço linear \mathbb{R}^4 .
 - a) Mostre que S é um subespaço de \mathbb{R}^4 .
 - b) Identifique uma base, U, para S e indique a dimensão do subespaço.
 - ${f c}$) Obtenha uma base ordenada V para o espaço linear ${\Bbb R}^4$ que seja uma extensão de U.
 - **d**) Exprima o vector $(1,-1,2,-3) \in \mathbb{R}^4$ como combinação linear dos elementos da base ordenada V.

J.A.T.B.

- **55.** Sejam os vectores do espaço linear \mathbb{R}^4 , $\vec{u}_1 = (1, 2, 0, 0)$, $\vec{u}_2 = (1, -2, 1, -1)$ e $\vec{u}_3 = (2, 1, -1, 1)$.
 - a) Prove que $U_1 = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ é conjunto linearmente independente.
 - ${\bf b}$) Qual a dimensão do subespaço gerado pelo conjunto ${\bf U}_1$? Justifique a resposta.
 - c) Será que $L(\vec{r}, \vec{s}) = L((1,1,1,-1), (0,1,-1,1)) = L(U_1)$? Justifique a resposta.
 - **d**) Obtenha um conjunto U, que contenha U_1 e que seja uma base para o espaço \mathbb{R}^4 .
 - e) Obtenha as coordenadas do vector $\vec{w} = (2,0,4,1) \in \mathbb{R}^4$ em relação à base ordenada U.
- **63.** Sejam os vectores do espaço linear \mathbb{R}^4 , $\vec{u} = (1, \varepsilon, 0, 0)$, $\vec{v} = (\varepsilon, 0, 1, 0)$, $\vec{w} = (0, 1, \varepsilon, 0)$ e $\vec{z} = (0, 1, 0, \varepsilon)$.
 - a) Obtenha os valores de $\varepsilon \in \mathbb{R}$, tais que o conjunto $T = \{\vec{u}, \vec{v}, \vec{w}, \vec{z}\}$ seja uma base para o espaço \mathbb{R}^4 .
 - **b**) Considerando $\varepsilon = 1$, calcule as coordenadas dos vectores $\vec{s} = (1, -1, 0, 1)$ e $\vec{t} = (2, 3, -1, 0)$ em relação à base ordenada T.

J.A.T.B.