THE ALGEBRAIC GEOMETRY ALGEBRAIC TOPOLOGY DUMP

ERNEST YEUNG ERNESTYALUMNI@GMAIL.COM

From the beginning of 2016, I decided to cease all explicit crowdfunding for any of my materials on physics, math. I failed to raise any funds from previous crowdfunding efforts. I decided that if I was going to live in abundance, I must lose a scarcity attitude. I am committed to keeping all of my material **open-sourced**. I give all my stuff for free.

In the beginning of 2017, I received a very generous donation from a reader from Norway who found these notes useful, through PayPal. If you find these notes useful, feel free to donate directly and easily through PayPal, which won't go through a 3rd. party such as indiegogo, kickstarter, patreon. Otherwise, under the open-source MIT license, feel free to copy, edit, paste, make your own versions, share, use as you wish.

gmail: ernestvalumni

linkedin: ernestyalumni twitter: ernestyalumni

Contents

Part 1. Algebra; Groups, Rings, R-Modules, Categories

- 1. Prime numbers, GCD (greatest common denominator), integers, Euler's totient, Chinese Remainder Theorem, integer divison, modulus, remainders; Euclid's Lemma
- 2. Groups; normal subgroups
- 3. R-modules
- 4. Categories; Category Theory

Part 2. Reading notes on Cox, Little, O'Shea's Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra

- 5. Geometry, Algebra, and Algorithms
- 6. Groebner Bases
- 7. Elimination Theory
- 8. The Algebra-Geometry Dictionary
- 9. Polynomial and Rational Functions on a Variety
- 10. Robotics and Automatic Geometric Theorem Proving

Part 3. Reading notes on Cox, Little, O'Shea's Using Algebraic Geometry

- 11. Introduction
- 12. Solving Polynomial Equations
- 13. Resultants
- 14. Computation in Local Rings
- 15. 16.
- 17. Polytopes, Resultants, and Equations
- 18. Polyhedral Regions and Polynomials
- 19. Algebraic Coding Theory
- 20. The Berlekamp-Massey-Sakata Decoding Algorithm

Date: 5 mars 2017.

Key words and phrases. Algebraic Geometry, Algebraic Topology.

	Part 4. Algebraic Topology 21. Simplicial Complexes	1 1
1 1 3	Part 5. Graphs, Finite Graphs 22. Graphs, Finite Graphs, Trees References	1 1 1
4 5	Abstract. Everything about Algebraic Geometry, Algebraic Topology	

Part 1. Algebra; Groups, Rings, R-Modules, Categories

We should know some algebra. I will follow mostly Rotman (2010) [1].

```
1. Prime numbers, GCD (Greatest common denominator), integers, Euler's totient, Chinese Remainder Theorem, integer divison, modulus, remainders; Euclid's Lemma

1.1. Greatest Common Denominator (GCD); Euclid's Lemma.

Theorem 1 (1.7 of Rotman (2010) [1]). If a,b \in \mathbb{Z}, then gcd(a,b) \equiv (a,b) = d is linear combination of a and b, i.e. \exists s,t \in \mathbb{Z} s.t.

d = sa + tb

cf. pp.4, Thm. 1.7, Ch. 1 Things Past of Rotman (2010) [1]

Proof. Let I := 

I := \{sa + tb | s, t \in \mathbb{Z}\}

If I \neq \{0\}, let d be smallest positive integer in I.

d \in I, so d = sa + tb for some s, t \in \mathbb{Z}.

Claim: I = (d) \equiv \{kd | k \in \mathbb{Z}\} = set of all multiples of d.

Clearly (d) \subseteq I, since kd = k(sa + tb) = (ks)a + (kt)b \in I.

Let c \in I.
```

1

By division algorithm, c = qd + r, $0 \le r \le d$

$$r = c - qd = s'a + t'b - qsa - qtb = (s' - sq)a + (t' - qt)b \in I$$

If $r \in I$, but r < d, contradiction that $\min_{i \in I} i = d$.

So r = 0, and d|c = c/d.

$$c \in (d)$$
, so $I \subseteq (d) \Longrightarrow I = (d)$

Theorem 2 (Euclid's Lemma; 1.10 of Rotman (2010) [1]). If p prime and p|ab, then p|a or p|b.

More generally,

if prime p divides product $a_1 a_2 \dots a_n$,

then it must divide at least 1 of the factors a_i .

i.e. (notation),

If prime p, and $ab/p \in \mathbb{Z}$,

then $a/p \in \mathbb{Z}$ or $b/p \in \mathbb{Z}$.

More generally,

if prime p, s.t. $a_1 a_2 \dots a_n / p \in \mathbb{Z}$,

then $\exists 1 \ a_i \ s.t. \ a_i/p \in \mathbb{Z}$

Proof. If $p \nmid a$, i.e. $a/p \notin \mathbb{Z}$, then $gcd(p, a) \equiv (p, a) = 1$.

From Thm. 1,

$$1 = sp + ta$$

$$\implies b = spb + tab = p(sb + td)$$

ab/p and so ab = pd, so b = spb + tdp, i.e. b is a multiple of p ($b/p \in \mathbb{Z} \equiv p|b$).

Corollary 1 (1.11 of Rotman (2010) [1]). Let $a, b, c \in \mathbb{Z}$.

If c, a relatively prime, i.e. gcd(c, a) = 1, and if $c|ab \equiv ab/c \in \mathbb{Z}$, then $c|b \equiv b/c \in \mathbb{Z}$

Proof.

$$\gcd(c,a) = 1 = sc + ta \Longrightarrow b = sbc + tab = sbc + t(qc) = c(sb + tq) \Longrightarrow b/c = sb + tq$$

Theorem 3 (1.26 of Rotman (2010) [1]). If $qcd(a,m) \equiv (a,m) = 1$, then $\forall b \in \mathbb{Z}$, $\exists x \ s.t.$

$$ax = b \mod m$$

In fact, x = sb, where $sa \equiv 1 \mod m$

Proof. gcd(a, m) = 1 = sa + tm.

Then $b = b \cdot 1 = b(sa + tm) = sab + tmb$ or b = tbm + sab or a(sb) = -tbm + b.

So $a(sb) \mod m = b$.

Let x := sb and so $ax \mod m = b$.

Now suppose $x \neq sb$ s.t. $ax \mod m = b$. Then ax = qm + b. From $a(sb) \mod m = b$, we also get a(sb) = q'm + b. Then $a(x - sb) \mod m = 0$, so $m|a(x - sb) \equiv a(x - sb)/m \in \mathbb{Z}$.

By Corollary 1 (which says, if gcd(c, a) = 1 and if $ab/c \in \mathbb{Z}$, then $b/c \in \mathbb{Z}$), since gcd(m, a) = (m, a) = 1, and since $a(x - sb)/m \in \mathbb{Z}$, then $(x - sb)/m \in \mathbb{Z}$. So (x - sb) = qm or $(sb) \mod m = x$.

Proposition 1 (3.1 of Scheinerman (2006) [?]). Let $a, b \in \mathbb{Z}$, let $c = a \mod b$, i.e. a = qb + c s.t. $0 \le c < b$. Then

$$gcd(a,b) = gcd(b,c)$$

cf. Sec. 3.3 Euclid's method of Scheinerman (2006) [?]

Proof. If d common divisor of a, b, i.e. $a/d, b/d \in \mathbb{Z} \equiv d|a, d|b$. $c/d \in \mathbb{Z} \equiv d|c$ since c = a - qb.

If d is common divisor of b, c, i.e. $d|b, d|c \equiv c/d, b/d \in \mathbb{Z}$,

then $d|a \equiv a/d \in \mathbb{Z}$ since a = qb + c. So set of common divisors of a, b same as set of common divisors of b and c. Then $\gcd(a,b) = \gcd(b,c)$.

1.2. Euler's totient; relatively prime.

Definition 1. if $a, b \in \mathbb{Z}$,

a divisor of b, if $\exists d \in \mathbb{Z}$ s.t. b = ad.

Also, a **divides** b or b multiple of $a \equiv a|b$.

 $a|b \equiv b/a \in \mathbb{Z}$

cf. pp. 3 of Ch. 1 Things Past, Sec. 1.1 Some Number Theory of Rotman (2010) [1].

cf. Ch. 5 Arrays, Sec. 5.1 Euler's totient of Scheinerman (2006) [?]

For

 $\varphi: \mathbb{Z}^+ \to \mathbb{Z}^+$

 $\varphi: n \mapsto \varphi(n) := \text{ number of elements of } \{1, 2, \dots n\} \text{ that are relative prime to } n = |\{i | i \in \{1, 2, \dots n\}, (n, i) = 1 \text{ or equivalently } n \propto i\}|$

e.g.
$$\varphi(10) = 4$$
 since $\varphi(10) = |\{1, 3, 7, 9\}|$.
we want $|(a, b)| 1 \le a, b, \le n, \gcd(a, b) \equiv (a, b) = 1|$.

$$p_n = \frac{1}{n^2} \left[-1 + 2 \sum_{i=1}^n \varphi(k) \right] = \text{ probability that 2 integers, chosen uniformly and independently from } \{1, 2, \dots n\} \text{ are relatively prime}$$

If p is prime, $\forall i \in \{1, 2, \dots p\}$, $(p, i) \equiv \gcd(p, i) = 1$, i.e. relatively prime to p, except $1 \ i \in \{1, 2, \dots p\}$. Therefore

$$\varphi(p) = p - 1$$

Consider $\varphi(p^2)$.

 $\{1,2,\ldots p^2\}$, only numbers not relatively prime to p^2 are multiples of p since $p,2p,3p,\ldots p^2$ all divide p^2 , i.e. $p|p^2,2p|p^2\ldots (p-1)p|p^2\equiv p^2/p,p^2/2p,\ldots p^2/p(1-p)$. Assume $\varphi(p^n)=p^2-p^{n-1}=p^{n-1}(p-1)$.

$$\varphi(p^{n+1}) = \varphi(pp^n) = p^n \varphi(p) = p^n (p-1)$$

Therefore,

Proposition 2 (5.1). Let p prime, $n \in \mathbb{Z}^+$

e.g.
$$\varphi(77)$$
.
 $\forall n \text{ s.t. } 1 < n < 77$.

$$\gcd(n, 77) = 1$$
$$\gcd(n, 7) = 1$$
$$\gcd(n, 11) = 1$$

By Prop. 1,

$$\gcd(n,7) = \gcd(7, n \mod 7)$$
$$\gcd(n,11) = \gcd(11, n \mod 11)$$

Scheinerman (2006) [?]

1.2.1. Chinese Remainder Theorem.

Theorem 4. If m, m' relatively prime (i.e. gcd(m, m') = 1), then for $x \equiv b \mod m$

$$x \equiv b' \mod m'$$

i.e. given b, b'm, m', and wanting to find x, $\exists x \text{ and } \forall 2x$'s, $x = x' \mod mm'$.

Proof. x = b'ms + bm's'

cf. Ch. 1 Things Past, Thm. 1.28 of Rotman (2010) [1], pp. 68 Thm. 5.2 (Chinese Remainder) of Scheinerman (2006) [?].

2. Groups; Normal Subgroups

Definition 2 (normal subgroup $K \triangleleft G$). normal subgroup K of $G \equiv K \triangleleft G$ subgroup $K \subset G$, if $\forall k \in K$, $\forall q \in G$,

$$gkg^{-1} \in K$$

Definition 3 (quotient group).

quotient group $G \mod K \equiv G/K$ -

if $G/K = family of all left cosets of subgroups <math>K \subset G =$

$$= \{gK | g \in G, K = \{gk | k \in K\}$$

and

 $K = normal \ subgroup \ of \ G, \ i.e. \ K \triangleleft G, \ and \ so$

$$aKbK = abK \qquad \forall a, b \in G,$$

so G/K group.

Definition 4 (exact sequence of groups). exact sequence if $imf_{n+1} = kerf_n$ and groups

 $\forall n \text{ for sequence of group homomorphisms}$

$$G_{n+1} \xrightarrow{f_{n+1}} G_n \xrightarrow{f_n} G_{n-1}$$

Theorem 5. (1)

$$1 A \xrightarrow{f} B$$

(2)

$$B \xrightarrow{g} C$$

(3)

1
$$A \xrightarrow{h} B$$
 1

(1) $\operatorname{im}(1 \to A) = 1$, since $1 \to A$ is a group homomorphism $((1 \to A)(1) = 1_A)$. if $1 \to A \stackrel{f}{\mapsto} B$ exact, $\ker f = \operatorname{im}(1 \to A) = 1$, so if f(x) = 1, x = 1, f injective.

If f injective, $\ker f = 1$. $1 = \operatorname{im}(1 \to A)$. $1 \to A \xrightarrow{f} B$, exact.

(2) $\ker(C \to 1) = C$, by def. of $C \to 1$

if $B \stackrel{g}{\mapsto} C \to 1$ exact, im $g = g(B) = \ker(C \to 1) = C$. g(B) = C implies g surjective.

If q surjective, $q(B) = C = \ker(C \to 1)$. $B \stackrel{g}{\mapsto} C \to 1$ exact.

(3) From (i), $1 \to A \xrightarrow{h} B$ exact iff h injective. From (ii), $A \xrightarrow{h} B \to 1$, exact iff h surjective. h isomorphism.

2.1. 1st, 2nd, 3rd Isomorphism Theorems.

Theorem 6 (1st Isomorphism Theorem (Modules) Thm. 7.8 of Rotman (2010) [1]). If $f: M \to N$ is R-map of modules, then \Box $\exists R$ -isomorphism s.t.

(3)
$$\varphi: M/kerf \to imf$$
$$\varphi: m + kerf \mapsto f(m)$$

Proof. View M, N as abelian groups.

Recall natural map $\pi: M \to M/N$

$$m \mapsto m + N$$

Define φ s.t. $\varphi \pi = f$.

 $(\varphi \text{ well-defined}). \text{ Let } m + \ker f = m' + \ker f, m, m' \in M, \text{ then } \exists n \in \ker f \text{ s.t. } m = m' + n.$

$$\varphi(m + \ker f) = \varphi \pi(m) = f(m) = f(m' + n) = f(m') + f(n) = \varphi \pi(m') + 0 = \varphi(m' + \ker f)$$

 $\Longrightarrow \varphi$ well-defined.

(φ surjective). Clearly, $\operatorname{im} \varphi \subseteq \operatorname{im} f$.

Let $y \in \operatorname{im} f$. So $\exists m \in M$ s.t. y = f(m). $f(m) = \varphi \pi(m) = \varphi(m + \ker f) = y$. So $y \in \operatorname{im} \varphi$. $\operatorname{im} f \subset \operatorname{im} \varphi$.

 $\Longrightarrow \varphi$ surjective.

 $(\varphi \text{ injective}) \text{ If } \varphi(a + \ker f) = \varphi(b + \ker f), \text{ then }$

$$\varphi \pi(a) = \varphi \pi(b)$$
 or $f(a) = f(b)$ or $0 = f(a) - f(b) = f(a-b)$ so $a-b \in \ker f(a-b) + \ker f = \ker f$ so $a + \ker f = b + \ker f$

 φ isomorphism.

 φ R-map. $\varphi(r(m+N)) = \varphi(rm+N) = f(rm)$.

Since f R-map, $f(rm) = rf(m) = r\varphi(m+N)$. φ is R-map indeed.

Theorem 7 (2nd Isomorphism Theorem (Modules) Thm. 7.9 of Rotman (2011) [1]). If S, T are submodules of module M, i.e. $S,T \in M$, then $\exists R-isomorphism$

$$S \xrightarrow{h} (S+T)/T = imh$$

$$\downarrow \pi|_{S}$$

$$S/(S \cap T) = S/kerh$$

$$(4) S/(S \cap T) \to (S+T)/T$$

Proof. Let natural map $\pi: M \to M/T$.

So $\ker \pi = T$.

Define $h := \pi|_{S}$, so $h : S \to M/T$, so $\ker h = S \cap T$,

$$(S+T)/T = \{(s+t) + T | a \in S + T, s \in S, t \in T\}$$

i.e. (S+T)/T consists of all those cosets in M/T having a representation in S.

By 1st. isomorphism theorem,

$$S/S \cap T \xrightarrow{\cong} (S+T)/T$$

Theorem 8 (3rd Isomorphism Theorem (Modules) Thm. 7.10 of Rotman (2011) [1]). If $T \subseteq S \subseteq M$ is a tower of submodules, then $\exists R$ -isomorphism

$$(5) (M/T)/(S/T) \to M/S$$

Proof. Define $g: M/T \to M/S$ to be **coset enlargement**, i.e.

$$g: M+T \mapsto m+S$$

g well-defined: if m+T=m'+T, then $m-m'\in T\subseteq S$, and $m+S=m'+S\Longrightarrow g(m+T)=g(m'+T)$ ker g=S/T since

$$g(s+T) = s + S = S$$
 $(S/T \subseteq \ker g)$
 $g(m+T) = m + S = 0 = S = s + S$, so $m = s \Longrightarrow \ker g \subseteq S/T$

im g = M/S since

$$g(m+T) = m+S \Longrightarrow \operatorname{im} g \subseteq M/S$$

 $m+S = g(m+T)$

Then by 1st isomorphism, and commutative diagram, done.

3. R-modules

Definition 5 (R-homomorphism (or R-map)). *If ring* R, R-modules M, N, then function $f: M \to N$, if $\forall m, m' \in M$, $\forall r \in R$,

$$f(m+m') = f(m) + f(m')$$
$$f(rm) = rf(m)$$

Definition 6 (quotient module M/N). quotient module M/N -

For submodule N of R-module M, then, remember M abelian group, N subgroup, quotient group M/N equipped with scalar multiplication

$$r(m+N) = rm + N$$
$$M/N = \{m+N|m \in M\}$$

ERNEST YEUNG ERNESTYALUMNI@GMAIL.COM

natural map

(7)
$$\begin{aligned} \pi : M \to M/N \\ m \mapsto m + N \end{aligned}$$

easily seen to be R-map.

Scalar multiplication in quotient module well-defined:

If m + N = m' + N, $m - m' \in N$, so $r(m - m') \in N$ (because N submodule), so

$$rm - rm' \in N \text{ and } rm + N = rm' + N$$

□ **Proposition 3** (7.15 of Rotman (2010) [1]). (i) $S \sqcup T \simeq M$

(ii)
$$\exists$$
 injective R -maps $i: S \to M$, s.t. $j: T \to M$

(8)
$$M = im(i) + im(j) \text{ and}$$
$$im(i) \bigcap im(j) = \{0\}$$

(iii) ∃ R-maps

$$i: S \to M$$

 $j: T \to M$

s.t. $\forall m \in M, \exists !$

$$s \in S$$
$$t \in T$$

with m = is + it.

(iv) $\exists R\text{-}maps$

$$i: S \to M$$
 $p: M \to S$
 $j: T \to M$ $q: M \to T$

s.t.

П

$$pi = 1_S$$
 $pj = 0$ $ip + jq = 1_M$ $ip + jq = 1_M$

Proof. • (i) \rightarrow (ii) Given $S \sqcup T \simeq M$,

let $\varphi: S \coprod T \to M$ be this isomorphism.

Define

$$i := \varphi \lambda_S$$
 $(\lambda_S : s \mapsto (s, 0))$ $i : S \to M$
 $j := \varphi \lambda_T$ $(\lambda_T : t \mapsto (0, t))$ $j : T \to M$

i, j are injections, being composites of injections.

If
$$m \in M$$
, $\exists ! (s,t) \in S \mid T$, s.t. $\varphi(s,t) = m$.

Then

$$m = \varphi(s,t) = \varphi((s,0) + (0,t)) = \varphi \lambda_S(s) \varphi \lambda_T(t) = is + jt \in \operatorname{im}(i) + \operatorname{im}(j)$$

Let $c \in \text{im}(i) + \text{im}(j)$. Since $i : S \to M$, $c \in M$.

$$j:T\to M$$

 $\Longrightarrow M = \operatorname{im}(i) + \operatorname{im}(j).$ If $x \in \operatorname{im}(i) \cap \operatorname{im}(j)$,

$$x = i(s)$$
 for some $s \in S$

$$x = j(t)$$
 for some $t \in T$

$$is = jt = \varphi \lambda_S(s) = \varphi \lambda_T(t) = \varphi(s, 0) = \varphi(0, t)$$

 φ isomorphism, so $\exists \varphi^{-1} \Longrightarrow (s,0) = (0,t)$, so s=t=0. x=0

 • (ii)
 → (iii) Given
$$i:S\to M$$
 , s.t. $M=\operatorname{im}(i)+\operatorname{im}(j),$ so
$$j:T\to M$$

 $\forall\,m\in M,\,m=i(s)+j(t)\text{ for some }s\in S,t\in T.$

Suppose
$$s' \in S$$
, s.t. $m = i(s'_{+}j(t'))$.
 $t' \in T$

$$i(s - s') = j(t - t') \in im(i) \cap im(j) = \{0\}$$

So s = s', t = t', since i, j injective.

• $(iii) \rightarrow (iv)$

Given $\forall m \in M, \exists ! s \in S, t \in T \text{ s.t.}$

$$m = i(s) + j(t)$$

Define

$$p: M \to S \qquad q: M \to T$$

$$p(m):=s \qquad q(m):=t$$

$$pj(t)=0 \qquad (ip+jq)(m)=ip(m)+jq(m)=i(s)+j(t)=m$$

4. Categories; Category Theory

4.1. Categories. cf. 7.2 Categories of Rotman (2010) [1]

qj(t) = t

4.1.1. Russell paradox, Russell set.

Definition 7 (Russell set). Russell set - set S that's not a member of itself, i.e. $S \notin R$

qi(s) = 0

If R is family of all Russell sets,

Let $X \in R$. Then $X \notin X$. But $X \in R$. $X \notin R$.

Let $R \notin R$. Then R in family of Russell Sets. $R \in R$. Contradiction.

Then consider *class* as primitive term, instead of set.

Definition 8 (Category). Category C (Rotman's notation) $\equiv C$ (my notation), consists of class obj(C) (Rotman's notation) $\equiv Obj(C) \equiv Obj(C)$ (my notation) of objects, set of morphisms $Hom(A, B) \forall (A, B)$ of ordered tuples of objects, composition

$$Hom(A, B) \times Hom(B, C) \to Hom(A, C)$$

 $(f, g) \mapsto gf$

, s.t.

(1)
$$\exists \mathbf{1}, \forall f : A \to B, \exists \mathbf{1}_A : A \to A$$
, s.t. $\mathbf{1}_B \cdot f = f = f \cdot \mathbf{1}_A$, and $\mathbf{1}_B : B \to B$

(2) associativity,
$$\forall \begin{cases} f: A \to B \\ g: B \to C \end{cases}$$
, then $h \circ (g \circ f) = (h \circ g) \circ f$
 $h: C \to D$

In summary,

(9)
$$\mathbf{C} := (Obj(\mathbf{C}), Mor(\mathbf{C}, 0, 1)) \equiv (Obj(\mathbf{C}, Mor(\mathbf{C}, 0, 1)))$$

s.t.

$$Mor$$
C = $\bigcup_{A,B \in Obj$ **C** $Hom(A,B)$

Examples (7.25 of Rotman (2010)[1]):

- (i) $\mathbf{C} = \operatorname{Sets}$
- (ii) $\mathbf{C} = \text{Groups} = \text{Grps}$
- (iii) $\mathbf{C} = \text{CommRings}$
- (iv) $C = {}_{R}Mod$, if $R = \mathbb{Z}$, $\mathbb{Z}Mod = Ab$, i.e. \mathbb{Z} -modules are just abelian groups.
- (v) $\mathbf{C} = \mathbf{PO}(X)$, If partially ordered set X, regard X as category, s.t. $\mathbf{Obj}, \mathbf{PO}(X) = \{x | x \in X\}, \ \forall \operatorname{Hom}(x,y) \in \{x | x \neq y\}$

$$\mathbf{Mor_{PO}}(X), \, \mathrm{Hom}(x,y) = \begin{cases} \emptyset & \text{if } x \not\preceq y \\ \kappa_y^x & \text{if } x \preceq y \end{cases} \text{ where } \kappa_y^x \equiv \text{ unique element in Hom set when } x \preceq y) \text{ s.t.}$$

$$\kappa_z^y \kappa_y^x = \kappa_z^x$$

Also, notice that

$$1_x = \kappa_x^x$$

Definition 9 (isormorphisms or equivalences). $f: A \to B$, $f \in Hom(A, B)$, if \exists inverse $g: B \to A$, $g \in Hom(B, A)$, s.t.

$$gf = 1_A$$
$$fg = 1_B$$

and if C = Top, equivalences (isomorphisms) are homeomorphisms.

Feature of category $_R$ **Mod** not shared by more general categories: *Homomorphisms can be added.*

Definition 10 (pre-additive Category). category C

Part 2. Reading notes on Cox, Little, O'Shea's Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra

- 5. Geometry, Algebra, and Algorithms
- 5.1. Polynomials and Affine Space. fields are important is that linear algebra works over any field

Definition 11 (2). set of all polynomials in x_1, \ldots, x_n with coefficients in k, denoted $k[x_1, \ldots, x_n]$

polynomial f divides polynomial g provided g = fh for some $h \in k[x_1, \ldots, x_n]$

 $k[x_1, \ldots, x_n]$ satisfies all field axioms except for existence of multiplicative inverses; commutative ring, $k[x_1, \ldots, x_n]$ polynomial ring

Exercises for 1. Exercise 1. \mathbb{F}_2 commutative ring since it's an abelian group under addition, commutative in multiplication, and multiplicative identity exists, namely 1. It is a field since for $1 \neq 0$, the multiplicative identity is 1.

Exercise 2.

- (a)
- (b)
- (c)
- 5.2. Affine Varieties.
- 5.3. Parametrizations of Affine Varieties.
- 5.4. Ideals.

5.5. Polynomials of One Variable.

6. Groebner Bases

- 6.1. Introduction.
- 6.2. Orderings on the Monomials in $k[x_1, \ldots, x_n]$.
- 6.3. A Division Algorithm in $k[x_1, \ldots, x_n]$.
- 6.4. Monomial Ideals and Dickson's Lemma.
- 6.5. The Hilbert Basis Theorem and Groebner Bases.
- 6.6. Properties of Groebner Bases.
- 6.7. Buchberger's Algorithm.

7. Elimination Theory

- 7.1. The Elimination and Extension Theorems.
- 7.2. The Geometry of Elimination.

8. The Algebra-Geometry Dictionary

- 8.1. Hilbert's Nullstellensatz.
- 8.2. Radical Ideals and the Ideal-Variety Correspondence.
 - 9. Polynomial and Rational Functions on a Variety
- 9.1. Polynomial Mappings.
 - 10. ROBOTICS AND AUTOMATIC GEOMETRIC THEOREM PROVING
- 10.1. Geometric Description of Robots.

Part 3. Reading notes on Cox, Little, O'Shea's Using Algebraic Geometry

Using Algebraic Geometry. David A. Cox. John Little. Donal O'Shea. Second Edition. Springer. 2005. ISBN 0-387-20706-6 QA564.C6883 2004

11. Introduction

11.1. Polynomials and Ideals. monomial

$$(1.1) x_1^{\alpha_1} \dots x_n^{\alpha_n}$$

total degree of x^{α} is $\alpha_1 + \cdots + \alpha_n \equiv |\alpha|$

field $k, k[x_1 \dots x_n]$ collection of all polynomials in $x_1 \dots x_n$ with coefficients k.

polynomials in $k[x_1...x_n]$ can be added and multiplied as usual, so $k[x_1...x_n]$ has structure of commutative ring (with identity)

however, only nonzero constant polynomials have multiplicative inverses in $k[x_1 \dots x_n]$, so $k[x_1 \dots x_n]$ not a field however set of rational functions $\{f/g|f,g\in k[x_1\dots x_n],g\neq 0\}$ is a field, denoted $k(x_1\dots x_n)$

so

ERNEST YEUNG ERNESTYALUMNI@GMAIL.COM

$$f = \sum_{\alpha} c_{\alpha} x^{\alpha}$$

where $c_{\alpha} \in k$

$$f \in k[x_1 \dots x_n] = \{f | f = \sum_{\alpha} c_{\alpha} x^{\alpha}, x^{\alpha} = x_1^{\alpha_1} \dots x_n^{\alpha_n}, c_{\alpha} \in k\}$$

f homogeneous if all monomials have same total degrees polynomial f is homogeneous if all monomials have the same total degree

Given a collection of polynomials $f_1 \dots f_s \in k[x_1 \dots x_n]$, we can consider all polynomials which can be built up from these by multiplication by arbitrary polynomials and by taking sums

Definition 12 (1.3). Let
$$f_1 ... f_s \in k[x_1 ... x_n]$$

Let $\langle f_1 ... f_s \rangle = \{p_1 f_1 + \dots + p_s f_s | p_i \in k[x_1 ... x_n] \text{ for } i = 1 ... s\}$

Exercise 1.

(a)
$$x^2 = x \cdot (x - y^2) + y \cdot (xy)$$

(b)

$$p \cdot (x - y^2) = px - py^2$$

and for pxy = (py)x

(c)

$$p(y)(x - y^2) = p(y)x - p(y)y^2 \notin \langle x^2, xy \rangle$$

Exercise 2

$$\sum_{i=1}^{s} p_i f_i + \sum_{j=1}^{s} q_j f_j = \sum_{i=1}^{s} (p_i + q_i) f_i, \quad p_i + q_i \in k[x_1 \dots x_n]$$

 $\langle f_1 \dots f_s \rangle$ closed under sums in $k[x_1 \dots x_n]$

If
$$f \in \langle f_1 \dots f_s \rangle$$
, $p \in k[x_1 \dots x_n]$

$$p \cdot f = p \sum_{i=1}^{s} q_j f_j = \sum_{i=1}^{s} p q_j f_j, \quad p q_j \in k[x_1 \dots x_n] \text{ so}$$

 $p \cdot f \in \langle f_1 \dots f_s \rangle$

Done.

The 2 properties in Ex. 2 are defining properties of ideals in the ring $k[x_1 \dots x_n]$

Definition 13 (1.5). Let $I \subset k[x_1 \dots x_n]$, $I \neq \emptyset$ I ideal if

- (a) $f + g \in I$, $\forall f, g \in I$
- (b) $pf \in I$, $\forall f \in I$, arbitrary $p \in k[x_1 \dots x_n]$

Thus $\langle f_1 \dots f_s \rangle$ is an ideal by Ex. 2.

we call it the ideal generated by $f_1 \dots f_s$.

Exercise 3. Suppose
$$\exists$$
 ideal J , $f_1 \dots f_s \in J$ s.t. $J \subset \langle f_1 \dots f_s \rangle$ if $f \in \langle f_1 \dots f_s \rangle$, $f = \sum_{i=1}^s p_i f_i$, $p_i \in k[x_1 \dots x_n]$

 $\forall i = 1 \dots s, p_i f_i \in J$ and so $\sum_{i=1}^s p_i f_i \in J$, by def. of J as an ideal.

$$\langle f_1 \dots f_s \rangle \subseteq J \qquad \Longrightarrow J = \langle f_1 \dots f_s \rangle$$

 $\Longrightarrow \langle f_1 \dots f_s \rangle$ is smallest ideal in $k[x_1 \dots x_n]$ containing $f_1 \dots f_s$

Exercise 4. For $I = \langle f_1 \dots f_s \rangle$

$$J = \langle g_1 \dots g_t \rangle$$

 $I = J \text{ iff } s = t \text{ and } \forall f \in I, \ f = \sum_{i=1}^t q_i g_i \text{ and if } 0 = \sum_{i=1}^t q_i g_i, \ q_i = 0, \quad \forall i = 1 \dots t, \text{ and if } 0 = \sum_{i=1}^s p_i f_i, \quad p_i = 0, \quad I \text{ ideal if } f + g \in I \quad \forall f, g \in I \text{ arb}$

Definition 14 (1.6).

$$\sqrt{I} = \{g \in k[x_1 \dots x_n] | g^m \in I \text{ for some } m \ge 1\}$$

e.g.
$$x + y \in \sqrt{\langle x^2 + 3xy, 3xy + y^2 \rangle}$$

in $\mathbb{Q}[x, y]$ since

$$(x+y)^3 = x(x^2+3xy) + y(3xy+y^2) \in \langle x^2+3xy, 3xy+y^2 \rangle$$

- (Radical Ideal Property) \forall ideal $I \subset k[x_1 \dots x_n], \sqrt{I}$ ideal, $\sqrt{I} \supset I$
- (Hilbert basis Thm.) \forall ideal $I \subset k[x_1 \dots x_n]$ \exists finite generating set,

i.e. $\exists \{f_1 \dots f_2\} \subset k[x_1 \dots x_n] \text{ s.t. } I = \langle f_1 \dots f_s \rangle$

• (Division Algorithm in k[x]) $\forall f, g \in k[x]$ (EY: in 1 variable) $\forall f, g \in k[x]$ (in 1 variable) $f = qg + r, \exists !$ quotient q, \exists remainder r

11.2.

11.3. Gröbner Bases.

Definition 15 (3.1). Gröbner basis for $I \equiv G = \{g_1 \dots g_k\} \subset I$ s.t. $\forall f \in I$, LT(f) divisible by $LT(g_i)$ for some i

• (Uniqueness of Remainders) let ideal $I \subset k[x_1 \dots x_n]$ division of $f \in k[x_1 \dots x_n]$ by Grö bner basis for I, produces f = g + r, $g \in I$, and no term in r divisible by any element of LT(I)

11.4. Affine Varieties. affine n-dim. space over k $k^n = \{(a_1 \dots a_n) | a_1 \dots a_n \in k\}$ \forall polynomial $f \in k[x_1 \dots x_n], (a_1 \dots a_n) \in k^n$ $f:k^n\to k$ $f(a_1 \dots a_n)$ s.t. $x_i = a_i$ i.e. if $f = \sum_{\alpha} c_{\alpha} x^{\alpha}$ for $c_{\alpha} \in k$, then $f(a_1 \dots a_n) = \sum_{\alpha} c_{\alpha} a^{\alpha} \in k$, where $a^{\alpha} = a_1^{\alpha_1} \dots a_n^{\alpha_n}$ **Definition 16** (4.1). affine variety $V(f_1 ... f_s) = \{(a_1 ... a_n) | (a_1 ... a_n) \in k^n, f_1(x_1 ... x_n) = \cdots = f_s(x_1 ... x_n) = 0\}$ subset $V \subset k^n$ is affine variety if $V = V(f_1 \dots f_s)$ for some $\{f_i\}$, polynomial $f_i \in k[x_1 \dots x_n]$ • (Equal Ideals Have Equal Varieties) If $\langle f_1 \dots f_s \rangle = \langle g_1 \dots g_t \rangle$ in $k[x_1 \dots x_n]$, then $\mathbf{V}(f_1 \dots f_s) = \mathbf{V}(g_1 \dots g_t)$ so, recap if $\langle f_1 \dots f_s \rangle = \langle g_1 \dots g_t \rangle$ in $k[x_1 \dots x_n]$, then $V(f_1 \dots f_s) = V(g_1 \dots g_t)$ Recall Hilbert basis Thm. \forall ideal $I \subset k[x_1 \dots x_n]$ $I = \langle f_1 \dots f_s \rangle$ \implies if I = J, then V(I) = V(J)think of V defined by I, rather than $f_1 = \cdots = f_s = 0$ Exercise 3. Recall Def. 1.5 Let $I \subset k[x_1 \dots x_n]$ $pf \in I, \quad \forall f \in I \text{ arbitrary } p \in k[x_1 \dots x_n]$ Let $f, g \in I(V)$ $(f+q)(a_1 \dots a_n) = f(a_1 \dots a_n) + g(a_1 \dots a_n) = 0 + 0 = 0$ $f+q \in I(V)$ $pf(a_1 \dots a_n) = p(a_1 \dots a_n) f(a_1 \dots a_n) = 0$ $pf \in I(V)$ Then I(V) an ideal. $V = V(x^2)$ in \mathbb{R}^2 $I = \langle x^2 \rangle$ in $\mathbb{R}[x, y], I = \{px^2 | p \in k[x, y]\}$ $I \subset I(V)$, since $px^2 = 0$ for $x^2 = 0$, (0, b), $b \in \mathbb{R}$ But $p(x,y) = x \in I(V)$, as $I(V) = \{ f \in k[x_1 \dots x_n] | f(a_1 \dots a_n) = 0, \forall (a_1 \dots a_n) \in V \}$ p(0,b) = x = 0But $x \notin I$ Exercise 4. $I \subset \sqrt{I}$ Recall Def. 1.6 $\sqrt{I} = \{g \in k[x_1 \dots x_n] | g^m \in I \text{ for some } m \geq 1\}$ $\forall f \in I, f = f^1, m = 1, \text{ so } f \in \sqrt{I}, \quad I \subset \sqrt{I}$ Hilbert basis thm., \forall ideal $I \subset k[x_1 \dots x_n]$ s.t. $I = \langle f_1 \dots f_s \rangle$ $V(I) = \{(a_1...a_n) | (a_1...a_n) \in k^n, f_1(a_1...a_n) = \dots = f_s(a_1...a_n) = 0\}$ $\mathbf{I}(\mathbf{V}(I)) = \{ f \in k[x_1 \dots x_n] | f(a_1 \dots a_n) = 0 \quad \forall (a_1 \dots a_n) \in V(I) \}$ Let $q \in \sqrt{I}$, $q^m \in I$, $q^m = q^{m-1}q$ $g^{m}(a_{1} \ldots a_{n}) = 0 = g^{m-1}(a_{1} \ldots a_{n})g(a_{1} \ldots a_{n}) = 0$. Then $g(a_{1} \ldots a_{n}) = 0$ or $g^{m-1}(a_{1} \ldots a_{m}) = 0$

• (Strong Nullstellensatz) if k algebraically closed (e.g. \mathbb{C}), I ideal in $k[x_1 \dots x_n]$, then

as $g^m \in I$, and V(I) is s.t. $f_1(a_1 \dots a_n) = \dots = f_s(a_1 \dots a_n) = 0$ for $I = \langle f_1 \dots f_s \rangle$

$$\mathbf{I}(\mathbf{V}(I) = \sqrt{I}$$

• (Ideal-variety correspondence) Let k arbitrary field

$$I \subset I(V(I))$$

 $V(I(V)) = V \quad \forall V$

Additional Exercises for Sec.4. Exercise 6.

12. Solving Polynomial Equations

12.1.

12.2. **Finite-Dimensional Algebras.** Gröbner basis $G = \{g_1 \dots g_t\}$ of ideal $I \subset k[x_1 \dots x_n]$, recall def.: Gröbner basis $G = \{g_1 \dots g_t\} \subset I$ of ideal $I, \forall f \in I, \mathrm{LT}(f)$ divisible by $\mathrm{LT}(g_i)$ for some i $f \in k[x_1 \dots x_n]$ divide by G produces $f = g + r, g \in I, r$ not divisible by any $\mathrm{LT}(I)$ uniqueness of r $f \in k[x_1 \dots x_n]$ divide by G,

Recall from Ch. 1, divide $f \in k[x_1 \dots x_n]$ by G, the division algorithm yields

$$(2.1) f = h_1 g_1 + \dots + h_t g_t + \overline{f}^G$$

where remainder \overline{f}^G is a linear combination of monomials $x^\alpha \notin \langle \operatorname{LT}(I) \rangle$ since Gröbner basis, $f \in I$ iff $\overline{f}^G = 0$ $\forall f \in k[x_1 \dots x_n]$, we have coset $[f] = f + I = \{f + h | h \in I\}$ s.t. [f] = [g] iff $f - g \in I$ We have a 1-to-1 correspondence

remainders
$$\leftrightarrow$$
 cosets

$$\overline{f}^G \leftrightarrow [f]$$

algebraic

$$\overline{f}^G + \overline{g}^G \leftrightarrow [f] + [g]$$
$$\overline{f}^G \cdot \overline{g}^G \leftrightarrow [f] \cdot [g]$$

 $B = \{x^{\alpha} | x^{\alpha} \notin \langle LT(I) \rangle \}$ is a basis of A, basis monomials, standard monomials 20141023 EY's take $\forall [f] \in A = k[x_1 \dots x_n]/I$, $[f] = p_i b_i$; $b_i \in B = \{x^{\alpha} | x^{\alpha} \notin \langle LT(I) \rangle \}$ For $I = \langle G \rangle$

e.g.
$$G = \{x^2 + \frac{3}{2}xy + \frac{1}{2}y^2 - \frac{3}{2}x - \frac{3}{2}y, xy^2 - x, y^3 - y\}$$

 $\langle LT(I) \rangle = \langle x^2, xy^2, y^3 \rangle$

e.g. $B = \{1, x, y, xy, y^2\}$

$$[f] \cdot [g] = [fg]$$

e.g. $f = x, g = xy, [fg] = [x^2y]$

now $f = h_1 g_1 + \dots + h_t g_t + \overline{f}^C$

12.3.

12.4. Solving Equations via Eigenvalues and Eigenvectors.

13. Resultants

14. Computation in Local Rings

14.1. Local Rings.

Definition 17 (1.1).

$$k[x_1 \dots x_n]_{\langle x_1 \dots x_n \rangle} \equiv \{\frac{f}{g} | \text{ rational functions } \frac{f}{g} \text{ of } x_1 \dots x_n \text{ with } g(p) \neq 0 \text{ at } p\}$$

main properties of $k[x_1 \dots x_n]_{\langle x_1 \dots x_n \rangle}$

Proposition 4 (1.2). Let $R = k[x_1 \dots x_n]_{\langle x_1 \dots x_n \rangle}$. Then

- (a) R subring of field of rational functions $k(x_1...x_n) \supset k[x_1...x_n]$
- (b) Let $M = \langle x_1 \dots x_n \rangle \subset R$ (ideal generated by $x_1 \dots X_n$ in R) Then $\forall \frac{f}{g} \in R \backslash M$, $\frac{f}{g}$ unit in R (i.e. multiplicative inverse in R)
- (c) M maximal ideal in R

Exercise 1. if $p = (a_1 \dots a_n) \in k^n$, $R = \{\frac{f}{g} | f, g \in k[x_1 \dots x_n], g(p) \neq 0\}$

- (a) R subring of field of rational functions $k(x_1 ... x_n)$
- (b) Let M ideal generated by $x_1 a_1 \dots x_n a_n$ in RThen $\forall \frac{f}{g} \in R \backslash M$, $\frac{f}{g}$ unit in R (i.e. multiplicative inverse in R)
- (c) M maximal ideal in R

Proof. let $p = (a_1 \dots a_n) \in k^n$ let $g_1(p) \neq 0$, $g_2(p) \neq 0$

$$\frac{f_1}{g_1} + \frac{f_2}{g_2} = \frac{f_1 g_2 + f_2 g_1}{g_1 g_2} \qquad g_1(p) g_2(p) \neq 0 \text{ so } \frac{f_1}{g_1} + \frac{f_2}{g_2} \in R$$

$$\frac{f_1}{g_1} \cdot \frac{f_2}{g_2} = \frac{f_1 f_2}{g_1 g_2} \qquad g_1(p) g_2(p) \neq 0 \text{ so } \frac{f_1}{g_1} \frac{f_2}{g_2} \in R$$

$$f = \frac{f}{I} \in R$$
, $\forall f \in k[x_1 \dots x_n]$, so $k[x_1 \dots x_n] \subset R$

EY: 20141027, to recap.

Let $V = k^n$

Let $p = (a_1 \dots a_n)$

single pt. $\{p\}$ is (an example of) a variety

$$I(\{p\}) = \{x_1 - a_1 \dots x_n - a_n\} \subset k[x_1 \dots x_n]$$

 $R \equiv k[x_1 \dots x_n]_{\langle x_1 - a_1 \dots x_n - a_n \rangle}$

$$R = \{\frac{f}{g} | \text{ rational function } \frac{f}{g} \text{ of } x_1 \dots x_n, g(p) \neq 0, p = (a_1 \dots a_n) \}$$

Prop. 1.2. properties

- (a) R subring of field of rational functions $k(x_1 ... x_n) = k(x_1 ... x_n) \subset R$
- (b) $M = \langle x_1 \dots a_1 \dots x_n a_n \rangle \subset R$. ideal generated by $x_1 a_1 \dots x_n a_n$ Then $\forall \frac{f}{g} \in R \backslash M$, $\frac{f}{g}$ unit in R (\exists multiplicative inverse in R)
- (c) M maximal ideal in R.

in R we allow denominators that are not elements of this ideal $I(\{p\})$

Definition 18 (1.3). local ring is a ring that has exactly 1 maximal ideal

Proposition 5 (1.4). ring R with proper ideal $M \subset R$ is local ring if $\forall \frac{f}{g} \in R \backslash M$ is unit in R

localization Ex. 8, Ex. 9 parametrization

Exercise 2.

$$x = x(t) = \frac{-2t^2}{1+t^2}$$
$$y = y(t) = \frac{2t}{1+t^2}$$

$$\begin{array}{ll} k[t]_{\langle t \rangle} & \frac{-2t^2}{1+t^2} \text{ rational function of } t. \ 1+t^2 \neq 0 \\ \text{if } k = \mathbb{C} \text{ or } \mathbb{R} \end{array}$$

Consider set of convergent power series in n variables

(12)
$$k\{x_1 \dots x_n\} = \{ \sum_{\alpha \in \mathbb{Z}_{\geq 0}^n} c_\alpha x^\alpha | c_\alpha \in k, \text{ series converges in some open } U \ni 0 \in k^n \}$$

Consider set $k[[x_1 \dots x_n]]$ of formal power series

(13)
$$k[[x_1 \dots x_n]] = \{ \sum_{\alpha \in \mathbb{Z}_{\geq 0}^n} c_{\alpha} x^{\alpha} | c_{\alpha} \in k \} \text{ series need not converge}$$

variety V

$$k[x_1 \dots x_n]/\mathbf{I}(V)$$
 variety V

14.2. Multiplicities and Milnor Numbers. if I ideal in $k[x_1 ... x_n]$, then denote $Ik[x_1 ... x_n]_{\langle x_1 ... x_n \rangle}$ ideal generated by I in larger ring $k[x_1 ... x_n]_{\langle x_1 ... x_n \rangle}$

Definition 19 (2.1). Let I 0-dim. ideal in $k[x_1 \dots x_n]$, so V(I) consists of finitely many pts. in k^n . Assume $(0 \dots 0) \in V(I)$

multiplicity of $(0...0) \in V(I)$ is

$$dim_k k[x_1 \dots x_n]_{\langle x_1 \dots x_n \rangle} / Ik[x_1 \dots x_n]_{\langle x_1 \dots x_n \rangle}$$

generally, if $p = (a_1 \dots a_n) \in V(I)$ multiplicity of p, $m(p) = \dim k[x_1 \dots x_n]_M / Ik[x_1 \dots x_n]_M$

$$\dim k[x_1 \dots x_n]_M / Ik[x_1 \dots x_n]_M$$

localizing $k[x_1 \dots x_n]$ at maximal ideal $M = I(\{p\}) = \langle x_1 - a_1 \dots x_n - a_n \rangle$

15.

16.

- 17. Polytopes, Resultants, and Equations
- 18. POLYHEDRAL REGIONS AND POLYNOMIALS

18.1. Integer Programming. Prop. 1.12.

Suppose 2 customers A, B ship to same location

A: ship 400 kg pallet taking up $2 m^3$ volume

B: ship 500 kg pallet taking up $3 m^3$ volume

shipping firm trucks carry up to 3700 kg, up to $20 m^3$

B's product more perishable, paying \$ 15 per pallet

A pays \$ 11 per pallet

How many pallets from A, B each in truck to maximize revenues?

(14)
$$4A + 5B \le 37$$

$$2A + 3B \le 20$$

$$A, B \in \mathbb{Z}_{>0}^*$$

maximize 11A + 15B

integer programming.

max. or min. value of some linear function

$$l(A_1 \dots A_n) = \sum_{i=1}^n c_i A_i$$

on set $(A_1 \dots A_n) \in \mathbb{Z}_{>0}^n$ s.t.

3. Finally, by introducing additional variables; rewrite linear constraint inequalities as equalities. The new variables are called "slack variables"

$$(1.4) a_{ij}A_j = b_i, A_j \in \mathbb{Z}_{\geq 0}$$

introduce indeterminate z_i , \forall equation in (1.4)

$$z_i^{a_{ij}A_j} = z_i^{b_i}$$

m constraints

$$\prod_{i=1}^{m} z_i^{a_{ij}A_j} = \prod_{i=1}^{m} z_i^{b_i} = \left(\prod_{i=1}^{m} z_i^{a_{ij}}\right)^{A_j}$$

Proposition 6 (1.6). Let k field, define $\varphi : k[w_1 \dots w_n] \to k[z_1 \dots z_m]$ by

$$\varphi(w_j) = \prod_{i=1}^m z_i^{a_{ij}} \qquad \forall j = 1 \dots n$$

and

$$\varphi(g(w_1 \dots w_n)) = g(\varphi(w_1) \dots \varphi(w_n))$$

 $\forall \ general \ polynomial \ g \in k[w_1 \dots w_n]$

Then $(A_1 \ldots A_n)$ integer pt. in feasible region iff $\varphi : w_1^{A_1} \ldots w_n^{A_n} \mapsto z_1^{b_1} \ldots z_m^{b_m}$

Exercise 3.

Now

$$\varphi(w_j) = \prod_{i=1}^m z_i^{a_{ij}}$$

$$z_i^{a_{ij}A_j} z_i^{b_i}$$

If $(A_1 \dots A_n)$ an integer pt. in feasible region, $a_{ij}A_j = b_i$

10 ERNEST YEUNG ERNESTYALUMNI@GMAIL.COM

$$z_i^{a_{ij}A_j} = z_i^{b_i} = \prod_{j=1}^n z_i^{a_{ij}A_j} \Longrightarrow \prod_{j=1}^n \prod_{i=1}^m (z_i^{a_{ij}})^{A_j} = \prod_{i=1}^m z_i^{b_i} = \prod_{j=1}^n \varphi(w_j)^{A_j} = \prod_{j=1}^n \varphi(w_j)^{A_j} = \varphi\left(\prod_{j=1}^n w_j^{A_j}\right) = \prod_{i=1}^m z_i^{b_i}$$

since $\varphi(g(w_1 \dots w_n)) = g(\varphi(w_1) \dots \varphi(w_n))$

If
$$\varphi: \prod_{j=1}^n w_j^{A_j} \mapsto \prod_{i=1}^m z_i^{b_i}$$

$$\varphi\left(\prod_{j=1}^{n} w_{j}^{A_{j}}\right) = \prod_{j=1}^{n} (\varphi(w_{j}))^{A_{j}} = \prod_{i=1}^{m} z_{i}^{b_{i}} = \prod_{j=1}^{n} \left(\prod_{i=1}^{m} z_{i}^{a_{ij}}\right)^{A_{j}} \Longrightarrow \prod_{j=1}^{n} z_{i}^{a_{ij}A_{j}} = z_{i}^{b_{i}}$$

or $a_{ij}A_j = b_i$. So $(A_1 \dots A_n)$ integer pt.

Exercise 4.

$$\prod_{i=1}^{m} z_i^{b_i} = \prod_{i=1}^{m} \prod_{j=1}^{n} z_i^{a_{ij} A_j} = \prod_{j=1}^{n} \left(\prod_{i=1}^{m} z_i^{a_{ij}} \right)^{A_j} = \prod_{j=1}^{n} \varphi(w_j)^{A_j} = \varphi\left(\prod_{j=1}^{n} w_j^{A_j} \right)^{A_j}$$

So if given $(b_1 \dots b_m) \in \mathbb{Z}^m$, and for a given a_{ij} , $a_{ij}A_j = b_i$

For $m \leq n$, then a_{ij} is surjective, so $\exists A_j$ s.t. $\prod_{i=1}^m z_i^{b_i} = \varphi\left(\prod_{i=1}^n w_i^{A_j}\right)$

Proposition 7 (1.8). Suppose $f_1 ldots f_n \in k[z_1 ldots z_m]$ given

Fix monomial order in $k[z_1 \ldots z_n, w_1 \ldots w_n]$ with elimination property:

 \forall monomial containing 1 of z_i greater than any monomial containing only w_i

Let G Gröbner basis for ideal

$$I = \langle f_1 - w_1 \dots f_n - w_n \rangle \subset k[z_1 \dots z_m, w_1 \dots w_n]$$

 $\forall f \in k[z_1 \dots z_m], let \overline{f}^{\mathcal{G}}$ be remainder on division of f by \mathcal{G} Then

- (a) polynomial f s.t. $f \in k[f_1 \dots f_n]$ iff $g = \overline{f}^{\mathcal{G}} \in k[w_1 \dots w_n]$
- (b) if $f \in k[f_1 \dots f_n]$ as in part (a), $g = \overline{f}^{\mathcal{G}} \in k[w_1 \dots w_n]$

then $f = g(f_1 \dots f_n)$, giving an expression for f as polynomial in f_j

(c) if $\forall f_i, f \text{ monomials, } f \in k[f_1 \dots f_n],$ then g also a monomial.

18.2. Integer Programming and Combinatorics.

19. Algebraic Coding Theory

20. The Berlekamp-Massey-Sakata Decoding Algorithm

Gröbner Bases, Martin R. Albrecht of the DTU Crypto Group

Part 4. Algebraic Topology

cf. Bredon (1997) [4]

21. Simplicial Complexes

cf. pp. 245, from Sec. 21 Simplicial Complexes of Ch. 4 Homology Theory in Bredon (1997) [4] $\mathbf{v}_0, \dots \mathbf{v}_n \in \mathbb{R}^{\infty}$, "affinely independent" if they span an affine *n*-plane, i.e.

if
$$\left(\sum_{i=0}^{n} \lambda_i \mathbf{v}_i = 0, \sum_{i=0}^{n} \lambda_i = 0\right)$$
, then $\Longrightarrow \forall \lambda_i = 0$

If not, then, e.g. $\lambda_0 \neq 0$, assume $\lambda_0 = -1$, and solve the equations to get

$$\mathbf{v}_0 = \sum_{i=1}^n \lambda_i \mathbf{v}_i$$
$$\sum_{i=1}^n \lambda_i = 1$$

i.e. \mathbf{v}_0 is in affine space spanned by $\mathbf{v}_1 \dots \mathbf{v}_n$.

If $\mathbf{v}_0, \dots \mathbf{v}_n$ affinely independent, then

(16)
$$\sigma = (\mathbf{v}_0, \dots \mathbf{v}_n) = \{ \sum_{i=0}^n \lambda_i \mathbf{v}_i | \sum_{i=0}^n \lambda_i = 1, \lambda_i \ge 0 \}$$

is "affine simplex" spanned by \mathbf{v}_i ; also convex hull of \mathbf{v}_i .

 $\forall k \leq n, k$ -face of σ is any affine simplex of form $(\mathbf{v}_{i_1}, \dots \mathbf{v}_{i_k})$, where vertices all distinct, so are affinely independent.

Definition 20. (geometric) simplicial complex K := collection of affine simplices s.t.

- (1) $\sigma \in K \Longrightarrow any face of \sigma \in K$: and
- (2) $\sigma, \tau \in K \Longrightarrow \sigma \cap \tau$ is a face of both σ and τ , or $\sigma \cap \tau = \emptyset$

If K simplicial complex, $|K| = \bigcup \{\sigma | \sigma \in K\} \equiv \text{"polyhedron" of } K$

Definition 21 (Def. 21.2 of Bredon (1997) [4]). polyhedron := space X if \exists homeomorphism $h: |K| \xrightarrow{\approx} X$ for some simplicial complex K. h, K is triangulation of X; (map h, complex K)

Let K finite simplicial complex.

Choose ordering of vertices $\mathbf{v}_0, \mathbf{v}_1 \dots$ of K.

If $\sigma = (\mathbf{v}_{\sigma_0}, \dots \mathbf{v}_{\sigma_n})$ is simplex of K, where $\sigma_0 < \dots < \sigma_n$, then

let
$$f_{\sigma}: \Delta_n \to |K|$$
 be

$$f_{\sigma} = [\mathbf{v}_{\sigma_b}, \dots \mathbf{v}_{\sigma_n}]$$

in notation of Def. 1.2. Bredon (1997) [4].

Then this gives CW-complex structure on |K| with f_{σ} as characteristic maps.

Part 5. Graphs, Finite Graphs

22. Graphs, Finite Graphs, Trees

Serre (1980) [5]

cf. Chapter I. Trees and Amalgams, Section 1 Amalgams, Subsection 1.1 Direct limits of Serre (1980) [5]

Let $(G_i)_{i \in I}$, family of groups.

 \forall pair (i,j), let F_{ij} = set of homomorphisms of G_i into G_j

Want: group $G = \underline{\lim} G_i$ and

$$\{f_i|f_i:G_i\to G\}$$
s.t. $f_j\circ f=f_i\quad \forall\, f\in F_{ij}$

group G and family $\{f_i\}$ universal in that

(*) if H group, if $\{h_i|h_i:G_i\to H;h_j\circ f=h_i \quad \forall f\in F_{ij}\},$

then $\exists !h: G \to H \text{ s.t. } h_i = h \circ f_i$

i.e. $\operatorname{Hom}(G, H) \simeq \varprojlim \operatorname{Hom}(G_i, H)$, the inverse limit being taken relative to F_{ij} . i.e. G direct limit of G_i relative to the F_{ij} .

Proposition 8. \exists ! pair G, family $(f_i)_{i \in I}$, i.e. (pair consisting of G, $(f_i)_{i \in I}$, unique up to unique isomorphism.

Proof. Define G by generators and relations.

Take generating family to be disjoint union of those for G_i .

relations - xyz^{-1} where $x, y, z \in G_i$, $z = xy \in G_i$

$$xy^{-1}$$
 where $x \in G_i$, $y \in G_i$, $y = f(x)$ for at least $f \in F_{ij}$.

Thus, existence of G, $\{f_i\}$.

G represents functor $H \mapsto \lim \operatorname{Hom}(G_i, H)$.

Thus, uniqueness (also from universal property).

e.g. groups A, G_1, G_2 , homomorphisms $f_1: A \to G_1$.

$$f_2:A\to G_2$$

G obtained by amalgamating A in G_1, G_2 by $f_1, f_2 \equiv G_1 *_A G_2$.

1 can have $G = \{1\}$, even though f_1, f_2 non-trivial.

Application: (Van Kampen Thm.)

Let topological space X be covered by open U_1, U_2 .

Suppose $U_1, U_2, U_{12} = U_1 \cap U_2$ arcwise connected.

Let basept. $x \in U_{12}$.

Then $\pi_1(X;x)$ obtained by taking 3 groups

$$\pi_1(U_1; x), \pi_1(U_2; x), \pi_1(U_{12}; x)$$

and amalagamating them according to homomorphism

$$\pi_1(U_{12};x) \to \pi_1(U_1;x)$$

$$\pi_1(U_{12};x) \to \pi_1(U_2;x)$$

Exercise 1. Let homomorphisms $f_1: A \to G_1$ amalgam $G = G_1 *_A G_2$.

$$f_2:A\to G_2$$

Define subgroups A^n, G_1^n, G_2^n , of A, G_1, G_2 recursively by

$$A^1 = \{1\}$$

$$G_1^1 = \{1\}$$

$$G_2^1 = \{1\}$$

 A^n = subgroup of A generated by $f_1^{-1}(G_1^{n-1})$ and $f_2^{-1}(G_2^{n-1})$

$$G_1^n = \text{subgroup of } G_i \text{ generated by } f_i(A^n)$$

Let A^{∞}, G_i^{∞} be unions of A^n, G_i^n resp.

Show that f_i defines injection $A/A^{\infty} \to G_i/G_i^{\infty}$.

So the amalgamation is $G \simeq G_1/G_1^{\infty} *_{A/A^{\infty}} G_2/G_2^{\infty}$.

Take the first induction case (for intuition about the solution).

$$A^2 = \langle f_1^{-1}(G_1^1), f_2^{-1}(G_2^1) \rangle = \langle f_1^{-1}(\{1\}), f_2^{-1}(\{1\}) \rangle$$

$$G_i^2 = f_i(A^2)$$

Let $f_i(a) = f_i(b) \in G_i/G_i^{\infty}$; $a, b \in A/A^{\infty}$.

Then since $f_i(a), f_i(b) \in G_i/G_i^{\infty}, f_i(a), f_i(b) \in \{gG_i^{\infty} | g \in G_i\}$ (quotient is defined to be the set of all left cosets of G_i^{∞} , which has to be a normal subgroup for G_i/G_i^{∞} to be a quotient group).

Since $a, b \in A/A^{\infty}$, suppose we take $a, b \in A$.

And suppose we take

$$f_i(a) = f_i(a)G_i^{\infty} = f_i(a)f_i(A^{n_a}) = f_i(aA^{n_a})$$

 $f_i(b) = f_i(b)G_i^{\infty} = f_i(b)f_i(A^{n_b}) = f_i(bA^{n_b})$

Taking f_i^{-1} (recall for group homomorphisms, they map inverse of element of 1st. group to inverse of image of this element).

 $aA^{n_a} = bA^{n_b} \in A/A^{\infty}$ (This is okay as we've "quotiented out A^{∞} ; so indeed, they're equal)

cf. Subsection 1.2 Structure of amalgams of Serre (1980) [5]

Suppose given group A, family of groups $(G_i)_{i \in I}$, and, $\forall i \in I$, injective homomorphism $A \to G_i$.

 $*_A G_i \equiv \text{direct limit (cf. no. 1.1) of family } (A, G_i) \text{ with respect to these homomorphisms, call it } sum \text{ (in category theory sense, i.e. product) of } G_i \text{ with } A \text{ amalgamated.}$

e.g.
$$A = \{1\},\$$

 $*G_i \equiv \text{free product of } G_i.$

22.0.1. reduced word. $\forall i \in I$, choose set S_i of right coset representations of G_i modulo A, assume $1 \in S_i$.

 $(a, s) \mapsto as$ is bijection of $A \times S_i$ onto G_i ,

$$A \times (S_i - \{1\}) \to G_i - A \text{ (onto)}$$

Let
$$\mathbf{i} = (i_1 \dots i_n), n \ge 0, i_i \in I, \text{ s.t.}$$

(17)
$$i_m \neq i_{m+1} \text{ for } 1 \leq m \leq n-1$$

cf. (T) of Serre (1980) [5].

So reduced word m is defined as

$$m = (a; s_1 \dots s_n)$$

where $a \in A, s_1 \in S_{i_1} \dots s_n \in S_{i_n}$, and $s - j \neq 1 \forall j$.

 $f \equiv \text{canonical homomorphism of } A \text{ into group } G = *_A G_i$

 $f_i \equiv \text{canonical homomorphism of } G_i \text{ into group } G = *_A G_i$

EY: 20170611 (Further explanations, basic examples, from me):

Given $A, \{G_i\}_{i \in I}$, injective (group) homomorphisms $\{f_i : A \to G_i\}_i$.

 $G_i \backslash f_i(A) = \{ f_i(A)g | g \in G_i \}.$

Right coset representation of $f_i(A)q \mapsto q$.

e.g.
$$A, G_1, G_2, f_1 : A \to G_1$$
.
 $f_2 : A \to G_2$

$$G_1 \backslash f_1(A) = \{ f_1(A)g | g \in G_1 \}$$

$$G_2 \backslash f_2(A) = \{ f_2(A)g | g \in G_2 \}$$

$$\mathbf{i} = (i_1 \dots i_n), i_j \in I, i_m \neq i_{m+1} \text{ for } 1 \leq m \leq n-1.$$

Consider (1212...12)

 $m = (a; f_1g_2f_3g_4 \dots f_{2n-1}, g_{2n})$ where f's $\in S_1 \subset G_1$, g's $\in S_2 \subset G_2$.

Definition 22 (reduced word). *reduced word of type* i, m,

$$(18) m = (a; s_1 \dots s_n)$$

where
$$a \in A, s_1 \in S_{i_1}, \dots s_n \in S_{i_n}, s_j \neq 1 \quad \forall j,$$

 $\mathbf{i} = (i_1 \dots i_n), i_j \in I, \text{ s.t. } i_m \neq i_{m+1} \text{ for } 1 \leq m \leq n-1,$
with $S_i = \{q | q \in f_i(A)q \in f_i(A)G_i\}$

Theorem 9 (1 of Serre (1980) [5]). $\forall g \in G, \exists sequence i s.t. i_m \neq i_{m+1} for 1 \leq m \leq n-1 and reduced word$

$$m = (a; s_1 \dots s_n)$$

of type i s.t.

$$g = f(a)f_{i_1}(s_1)\dots f_{i_n}(s_n)$$

Furthermore, \mathbf{i} and m unique.

Remark. Thm. 1 implies f; f_i injective.

Then identify A and G_i with images $f(A), f_i(G_i)$ in G, and reduced decomposition (*) of $g \in G$

$$g = as_1 \dots s_n, \quad a \in A, s_1 \in S_{i_1} - \{1\} \dots s_n \in S_{i_n} - \{1\}$$

Likewise, $G_i \cap G_i = A$ if $i \neq j$.

In particular, $S_i - \{1\}$ pairwise disjoint in G.

Proof. Let $X_i \equiv \text{set of reduced words of type } \mathbf{i}, X = [X_i]$

Make G act on X.

In view of universal property of G, sufficient to make $\forall i, G_i$ act,

check action induced on A doesn't depend on i

Suppose then that $i \in I$, and let $Y_i = \text{set of reduced words of form } (1; s_1 \dots s_n)$, with $i_1 \neq i$.

EY: 20170611 Recall that

$$S_i = \{g | g \in f_i(A)g \in f_i(A)G_i\}$$

 $A \times S_i \to G_i \text{ onto}$
 $A \times (S_i - \{1\}) \to G_i - A \text{ onto}$
 $(a, s) \mapsto as \text{ bijection}$

Let $Y_i = \text{set of reduced words of form } (1; s_1 \dots s_n) = \{(1; s_1 \dots s_n) | 1 \in A; s_1 \in S_{i_1} \dots s_n \in S_{i_n}; \mathbf{i} = (i_1 \dots i_n), i_j \in I \text{ s.t. } i_m \neq i_{m+1} \text{ for } 1 \leq m \leq n-1\}.$

$$A \times Y_i \to X = \coprod_i X_i$$

$$(a, (1; s_1 \dots s_n)) \mapsto (a; s_1 \dots s_n)$$

$$A \times \{S_i - \{1\}\} \times Y_i \to X$$

$$((a, s), (1; s_1 \dots s_n)) \mapsto (a; s, s_1 \dots s_n)$$

and remember that $X_i = \text{set of reduced words of type } \mathbf{i}$.

It's clear that this yields a bijection $A \times Y_i \bigcup A \times (S_i - \{1\}) \times Y_i \to X$.

Let $x \in X$. Then $x \in X_i$ for some **i**. So x is a reduced word of type **i**: $x = (a; s_1 \dots s_n)$. Then clearly $x = (a; s_1 \dots s_n) \mapsto (a, (1; s_1 \dots s_n)) \in A \times Y_i$.

cf. pp. 13, Sec. 2. Trees, 2.1 Graphs of Serre (1980) [5]

Definition 23 (1. of Serre (1980) [5]).
$$\operatorname{graph} \Gamma = (X,Y,Y \to X \times X,Y \to Y), \text{ where } \operatorname{set} X = \operatorname{vert} \Gamma$$
 $\operatorname{set} Y = \operatorname{edge} \Gamma$ $Y \to X \times X$ $y \mapsto (o(y),t(y))$ $Y \to Y$ $y \mapsto \overline{y}$

 $s.t. \ \forall y \in Y, \ \overline{\overline{y}} = y, \ \overline{y} \neq y, \ o(y) = t(\overline{y}).$ $vertex \ P \in X \ of \ \Gamma.$ $(oriented) \ edge \ y \in Y, \ \overline{y} \equiv inverse \ edge.$ $origin \ of \ y := vertex \ o(y) = t(\overline{y}).$ $terminus \ of \ y := vertex \ t(y) = o(\overline{y})$ $extremities \ of \ y := \{o(y), t(y)\}$ $If \ 2 \ vertices \ adjacent, \ they're \ extremities \ of \ some \ edge.$ $orientation \ of \ graph \ \Gamma = Y_+ \subset Y = \ edge \ \Gamma \ s.t. \ Y = Y_+ \coprod \overline{Y}_+. \ It \ always \ exists.$ $oriented \ graph \ defined, \ up \ to \ isomorphism, \ by \ giving \ 2 \ sets \ X, Y_+ \ and \ Y+ \to X \times X.$ $corresponding \ set \ of \ edges \ is \ Y = Y_+ \coprod \overline{Y}_+ \ where \ \overline{Y}_+ \equiv copy \ of \ Y_+$

22.0.2. Realization of a Graph. cf. Realization of a Graph in Serre (1980) [5]. Let graph Γ , $X = \text{vert}\Gamma$, $Y = \text{edge}\Gamma$. topological space $T = X \coprod Y \times [0, 1]$, where X, Y provided with discrete topology. Let R be finest equivalence relation on T for which

$$(y,t) \equiv (\overline{y}, 1-t)$$

$$(y,0) \equiv o(y) \qquad \forall y \in Y, \forall t \in [0,1]$$

$$(y,1) \equiv t(y)$$

quotient space real(Γ) = T/R is realization of graph Γ . (realization is a functor which commutes with direct limits). Let $n \in \mathbb{Z}^+$. Consider oriented graph of n+1 vertices $0,1,\ldots n$,

Definition 24. path (of length n) in graph Γ is morphism c of Path_n into Γ

orientation given by n edges $[i,i+1],\, 0 \leq i < n, \ o([i,i+1]) = i$ t([i,i+1]) = i+1 For $n \geq 1,$

 $(y_1 \dots y_n)$ sequence of edges $y_i = c([i-1,i])$ s.t.

$$t(y_i) = o(y_{i+1}), \qquad 1 \le i < n \text{ determine } c$$

If $P_i = c(i)$, c is a path from P_0 to P_n , and P_0 and P_n are extremities of the path c. pair of form $(y_i, y_{i+1}) = (y_i, \overline{y}_i)$ in path is **backtracking**. path (of length n-2), from P_0 to P_n given (for n>2) by $(y_1 \dots y_{i-1}, y_{i+2} \dots y_n)$ If \exists path from P to Q in Γ , \exists one without backtracking (by induction) direct limit $Path_{\infty} = \varinjlim Path_n$ provides notion of infinite path. $Path_{\infty} \ni \inf$ infinite sequence (y_1, y_2, \dots) of edges s.t. $t(y_i) = o(y_{i+1}) \quad \forall i > 1$.

Definition 25 (connected graph; Def. 3 of Serre (1980) [5]). graph connected if \forall 2 vertices, 2 vertices are extremities of at least 1 path.

maximal connected subgraphs (under relation of inclusion) are connected components of graph.

22.0.3. Circuits. Let $n \in \mathbb{Z}^+$, $n \ge 1$. Consider

set of vertices $\mathbb{Z}/n\mathbb{Z}$, orientation given by n edges [i, i+1], $(i \in \mathbb{Z}/n\mathbb{Z})$ with o([i, i+1]) = it([i, i+1]) = i+1

Definition 26 (circuit; Def. 4 of Serre (1980) [5]). circuit (length n) in graph is subgraph isormorphic to Circ_n.

i.e. subgraph = path $(y_1 \dots y_n)$, without backtracking, s.t. $P_i = t(y_i)$, $(1 \le i \le n)$ distinct, s.t. $P_n = o(y_1)$

$$n = 1$$
 case: Circ₁, $\mathbb{Z}/\mathbb{Z} = \{0\}$, 1 edge, $[0, 1]$, $0 \in \mathbb{Z}/1\mathbb{Z}$, $o([0, 1]) = 0$

Note Circ₁ has automorphism of order 2, which changes its orientation, i.e.

 \exists automorphism $\sigma \in Aut(Circ_1)$ s.t. $|\sigma| = 2$, i.e. $\sigma^2 = 1$.

loop := circuit of length 1; so loop $\in \overline{\text{Circ}}_1$.

path (y_1) , $P_1 = t(y_1) = o(y_1)$.

n = 2 case: Circ₂, $\mathbb{Z}/2\mathbb{Z} = \{0, 1\}, 2$ edges [0, 1], [1, 2],

path
$$(y_1, y_2)$$
, $(1 \le i \le 2)$, $P_1 = t(y_1)$
 $P_2 = t(y_2) = o(y_1)$

22.1. Combinatorial graphs. Let $(X, S) \equiv \text{simplicial complex of dim.} \leq 1$, with

 $X \equiv \text{set}$

 $S \equiv$ set of subsets of X with 1 or 2 elements, containing all the 1-element subsets. associates with it a graph $\Gamma = (X, \{(P, Q)\})$.

X is its set of vertices.

edges =
$$\{(P,Q) \in X \times X\}$$
 s.t. $P \neq Q$, $\{P,Q\} \in S$, with $\overline{(P,Q)} = (Q,P)$
$$o(P,Q) = P$$

$$t(P,Q) = Q$$

In this graph, 2 edges with same origin and same terminus are equal. This is equivalent to (see following Def.)

Definition 27 (combinatorial; Def. 5 of Serre (1980) [5]). graph is combinatorial if it has no circuit of length ≤ 2

Conversely, it's easy to see that

every combinatorial graph Γ derived (up to isomorphism) by construction above from simplicial complex (X, S), where

 $X = \text{vert}\Gamma$

 $S = \text{set of subset } \{P, Q\} \text{ of } X \text{ s.t. } P \text{ and } Q \text{ either adjacent or equal.}$

References

- [1] Joseph J. Rotman, Advanced Modern Algebra (Graduate Studies in Mathematics) 2nd Edition, American Mathematical Society; 2 edition (August 10, 2010), ISBN-13: 978-0821847411
- [2] David A. Cox. John Little. Donal O'Shea. Using Algebraic Geometry. Second Edition. Springer. 2005. ISBN 0-387-20706-6 QA564.C6883 2004
- [3] David Cox, John Little, Donal O'Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Fourth Edition, Springer
- [4] Glen E. Bredon. Topology and Geometry. Graduate Texts in Mathematics (Book 139). Springer; Corrected edition (October 17, 1997). ISBN-13: 978-0387979267
- [5] Jean-Pierre Serre (Author), J. Stilwell (Translator). Trees (Springer Monographs in Mathematics) 1st ed. 1980. Corr. 2nd printing 2002 Edition. ISBN-13: 978-3540442370