# Propiedades de relaciones

Clase 09

IIC 1253

Prof. Cristian Riveros

# Outline

Propiedades

Caracterizaciones

# Outline

Propiedades

Caracterizaciones

# Propiedades de relaciones binarias

- 1. Refleja
- 2. Irrefleja
- 3. Simétrica
- 4. Asimétrica
- 5. Antisimétrica
- 6. Transitiva
- 7. Conexa

# Relaciones reflejas e irreflejas

Sea A un conjunto y  $R \subseteq A \times A$  una relación binaria.

#### Definición

1. R es una relación refleja si para cada  $a \in A$  se tiene  $(a, a) \in R$ .

$$\forall a \in A. (a, a) \in R$$

2. R es una relación irrefleja si para cada  $a \in A$  se tiene  $(a, a) \notin R$ .

$$\forall a \in A. (a, a) \notin R$$

### Ejemplo

$$R = \{ (a,b), (b,b), (c,b), (c,d), (c,d), (d,a), (d,d) \}$$

NO es refleja ni irrefleja



## Relaciones reflejas e irreflejas

Sea A un conjunto y  $R \subseteq A \times A$  una relación binaria.

#### Definición

1. R es una relación refleja si para cada  $a \in A$  se tiene  $(a, a) \in R$ .

$$\forall a \in A. (a, a) \in R$$

2. R es una relación irrefleja si para cada  $a \in A$  se tiene  $(a, a) \notin R$ .

$$\forall a \in A. (a, a) \notin R$$

### Ejemplo

$$R = \{ (a,b), (a,a), (b,b), (c,b), \\ (c,c), (c,d), (d,a), (d,d) \}$$

$$Refleja$$

# Ejemplo de relaciones reflejas e irreflejas

Sea A un conjunto y  $R \subseteq A \times A$  una relación binaria.

#### Definición

- 1. Refleja:  $\forall a \in A. (a, a) \in R.$
- 2. Irrefleja:  $\forall a \in A. (a, a) \notin R.$

# ¿cuáles relaciones son reflejas o irreflejas?

- A ⊆ B
- n = m
- n < m
- $\blacksquare a \mid b \quad (a \text{ divide } b \text{ ssi } \exists k \in \mathbb{N}. \ a \cdot k = b)$

#### Si R NO es refleja, entonces ¿es R irrefleja?

# Relaciones simétricas y asimétricas

Sea A un conjunto y  $R \subseteq A \times A$  una relación binaria.

#### Definición

3. R es simétrica si para cada  $a, b \in A$ , si  $(a, b) \in R$ , entonces  $(b, a) \in R$ .

$$\forall a, b \in A. (a, b) \in R \rightarrow (b, a) \in R$$

4. R es asimétrica si para cada  $a, b \in A$ , si  $(a, b) \in R$ , entonces  $(b, a) \notin R$ .

$$\forall a, b \in A. (a, b) \in R \rightarrow (b, a) \notin R$$

### Ejemplo

$$R = \{ (a,b), (b,b), (c,b), (c,d), (c,d), (d,a), (d,d) \}$$

NO es simétrica ni asimétrica

# Relaciones simétricas y asimétricas

Sea A un conjunto y  $R \subseteq A \times A$  una relación binaria.

#### Definición

3. R es simétrica si para cada  $a, b \in A$ , si  $(a, b) \in R$ , entonces  $(b, a) \in R$ .

$$\forall a, b \in A. (a, b) \in R \rightarrow (b, a) \in R$$

4. R es asimétrica si para cada  $a, b \in A$ , si  $(a, b) \in R$ , entonces  $(b, a) \notin R$ .

$$\forall a, b \in A. (a, b) \in R \rightarrow (b, a) \notin R$$

### Ejemplo

$$R = \{ (a,b), (a,c), (b,a), \\ (b,b), (b,d), (c,a), (d,b) \}$$
Relación simétrica



### Relaciones antisimétricas

Sea A un conjunto y  $R \subseteq A \times A$  una relación binaria.

#### Definición

5. R es antisimétrica si para cada  $a, b \in A$ , si  $(a, b) \in R$  y  $(b, a) \in R$ , entonces a = b.

$$\forall a, b \in A. \ ((a, b) \in R \land (b, a) \in R) \rightarrow a = b$$

### Ejemplo

$$R = \{ (a,b), (b,b), (c,b), (c,d), (c,d), (d,a), (d,d) \}$$

Relación antisimétrica



# Ejemplo de relaciones (a, anti)simétricas

#### **Definiciones**

- 3. Simétrica:  $\forall a, b \in A$ .  $(a, b) \in R \rightarrow (b, a) \in R$ .
- 4. Asimétrica:  $\forall a, b \in A$ .  $(a, b) \in R \rightarrow (b, a) \notin R$ .
- 5. Antisimétrica:  $\forall a, b \in A$ .  $((a,b) \in R \land (b,a) \in R) \rightarrow a = b$ .

```
¿cuáles relaciones son (a, anti)simétricas?
```

- A ⊆ B
- n = m
- n < m
- **a**  $\mid b \mid (a \text{ divide } b \text{ ssi } \exists k \in \mathbb{N}. \ a \cdot k = b)$

# Ejemplo de relaciones (a, anti)simétricas

#### **Definiciones**

- 3. Simétrica:  $\forall a, b \in A$ .  $(a, b) \in R \rightarrow (b, a) \in R$ .
- 4. Asimétrica:  $\forall a, b \in A$ .  $(a, b) \in R \rightarrow (b, a) \notin R$ .
- 5. Antisimétrica:  $\forall a, b \in A$ .  $((a,b) \in R \land (b,a) \in R) \rightarrow a = b$ .



Encuentre un ejemplo para cada intersección.

## Relaciones transitivas y conexas

#### Definición

6. R es transitiva si para cada  $a, b, c \in A$ , si  $(a, b) \in R$  y  $(b, c) \in R$ , entonces  $(a, c) \in R$ .

$$\forall a, b, c \in A. \ \left( (a, b) \in R \land (b, c) \in R \right) \rightarrow (a, c) \in R$$

7. R es conexa si para cada  $a, b \in A$ ,  $(a, b) \in R$  o  $(b, a) \in R$ .

$$\forall a, b \in A. (a, b) \in R \lor (b, a) \in R$$

### Ejemplo

$$R = \{ (a,b), (b,b), (c,b), (c,d), (c,d), (d,a), (d,d) \}$$

NO es transitiva ni conexa



## Relaciones transitivas y conexas

#### Definición

6. R es transitiva si para cada  $a,b,c\in A$ , si  $(a,b)\in R$  y  $(b,c)\in R$ , entonces  $(a,c)\in R$ .

$$\forall a, b, c \in A. ((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R$$

7. R es conexa si para cada  $a, b \in A$ ,  $(a, b) \in R$  o  $(b, a) \in R$ .

$$\forall a, b \in A. (a, b) \in R \lor (b, a) \in R$$

### Ejemplo

$$R = \{ (a,b), (b,a), (b,b), (c,a), (c,b) \}$$

No es conexa ni transitiva



## Relaciones transitivas y conexas

#### Definición

6. R es transitiva si para cada  $a, b, c \in A$ , si  $(a, b) \in R$  y  $(b, c) \in R$ , entonces  $(a, c) \in R$ .

$$\forall a, b, c \in A. \ \left( (a, b) \in R \ \land \ (b, c) \in R \right) \rightarrow (a, c) \in R$$

7. R es conexa si para cada  $a, b \in A$ ,  $(a, b) \in R$  o  $(b, a) \in R$ .

$$\forall a, b \in A. (a, b) \in R \lor (b, a) \in R$$

### Ejemplo

$$R = \{ (a,b), (b,b), (c,a), (c,b), (c,d), (d,b), (d,d) \}$$

Relación transitiva no conexa



# Ejemplo de relaciones transitivas y conexas

#### **Definiciones**

- 6. Transitiva:  $\forall a, b, c \in A$ .  $((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R$ .
- 7. Conexa:  $\forall a, b \in A$ .  $(a, b) \in R \lor (b, a) \in R$ .

## ¿cuáles relaciones son transitivas o conexas?

- A ⊆ B
- n = m
- n < m
- $a \mid b$  (a divide  $b \text{ ssi } \exists k \in \mathbb{N}. \ a \cdot k = b$ )

# Outline

Propiedades

Caracterizaciones

# Tipos de relaciones (resumen)

- 1. Refleja:  $\forall a \in A. (a, a) \in R.$
- 2. Irrefleja:  $\forall a \in A$ .  $(a, a) \notin R$ .
- 3. Simétrica:  $\forall a, b \in A$ .  $(a, b) \in R \rightarrow (b, a) \in R$ .
- 4. Asimétrica:  $\forall a, b \in A$ .  $(a, b) \in R \rightarrow (b, a) \notin R$ .
- 5. Antisimétrica:  $\forall a, b \in A$ .  $((a,b) \in R \land (b,a) \in R) \rightarrow a = b$ .
- 6. Transitiva:  $\forall a, b, c \in A$ .  $((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R$ .
- 7. Conexa:  $\forall a, b \in A$ .  $(a, b) \in R \lor (b, a) \in R$ .

¿es posible caracterizar cada propiedad en termino de operaciones entre relaciones?

## Recordatorio: operaciones entre relaciones

Sea A un conjunto y R,  $R_1$  y  $R_2$  relaciones sobre A.

#### Definición

Se definen las siguientes operaciones entre relaciones:

■ Unión:  $R_1 \cup R_2$  son todos los pares (x, y) tal que  $(x, y) \in R_1$  o  $(x, y) \in R_2$ .

$$R_1 \cup R_2 = \{(x,y) \mid (x,y) \in R_1 \text{ o } (x,y) \in R_2\}$$

Intersección:  $R_1 \cap R_2$  son todos los pares (x, y) tal que  $(x, y) \in R_1$  y  $(x, y) \in R_2$ .

$$R_1 \cap R_2 = \{(x,y) \mid (x,y) \in R_1 \text{ y } (x,y) \in R_2\}$$

## Recordatorio: operaciones entre relaciones

Sea A un conjunto y R,  $R_1$  y  $R_2$  relaciones sobre A.

#### Definición

Se definen las siguientes operaciones entre relaciones:

■ Inverso:  $R^{-1}$  son todos los pares (x,y) tal que  $(y,x) \in R$ .

$$R^{-1} = \{(x,y) \mid (y,x) \in R\}$$

**Composición**:  $R_1 \circ R_2$  son todos los elementos (x, y) tal que existe un z que cumple  $(x, z) \in R_1$  y  $(z, y) \in R_2$ .

$$R_1 \circ R_2 = \{(x,y) \mid \exists z \in A. (x,z) \in R_1 \ y \ (z,y) \in R_2\}$$

**Relación identidad**:  $I_A$  contiene solo los pares (x,x) para todo  $x \in A$ .

$$I_A = \{(x,x) \mid x \in A\}$$

# Caracterización de propiedades en termino de operaciones

#### Teorema

Sea A un conjunto y  $R \subseteq A \times A$  una relación binaria.

- 1. R es refleja ssi  $I_A \subseteq R$ .
- 2. R es irrefleja ssi  $R \cap I_A = \emptyset$ .
- 3. R es simétrica ssi  $R = R^{-1}$ .
- 4. R es asimétrica ssi  $R \cap R^{-1} = \emptyset$ .
- 5. R es antisimétrica ssi  $R \cap R^{-1} \subseteq I_A$ .
- 6. R es transitiva ssi  $R \circ R \subseteq R$ .
- 7. R es conexa ssi  $R \cup R^{-1} = A \times A$ .

#### Demostración: ejercicio.