TMA4120, Oving 1 Gruppe 2, Rendell Cale Godkyent, Pal 61: 1) I(2t+8) = 2· L(t) + 8 L(1) $=\frac{2}{5^2} + \frac{8}{5}$ 7) $\sharp(cos(wt+\theta)) =: F(s)$ Using co(wt+0)= co(wt)coot-sin(0) F(s) = L{cos(wt)coso - sin(wt)sino3 = coo floorwell - sint [sincut)} $= \frac{5 \cdot \cos \theta}{S^2 + \omega^2} - \frac{\omega \cdot \sin \theta}{S^2 + \omega^2}$ 12) We have the graph $f(t) = \begin{cases} t, & 0 \le t < 1 \\ 1, & 1 \le < 2 \end{cases}$ Using the heaviside function we write this $g(t) = t_1(u - u_1) + (u_1 - u_2)$ = $t_1 - t_1 - t_2$

Taking the Laplace transform of figires FG) = \$2 \$3(5) = 2{t.u-ty+4,-48(5) Since \$ { \(\(\tau - a \) \quad \(\tau - \) \\ = e^{-as} \(\xi \) \\ \(\tau - \) \\ we get $= \frac{1}{52} - \frac{e^{-S}}{52} + \frac{e^{-S}}{5} - \frac{e^{2.5}}{5}$ 19) Since $sinh x = e^{x} - e^{-x}$ and $\cosh x = e^x + e^{-x}$, we have ex = sinh x + cosh x This means Leat? = I sinh at { + L {coshat} From table 6.1 we then get & {eat} = a + 5 = 2 = 2 (Sta(s-a) which is what we wanted to show.

21) a) et2 b) tt > Mext for all Mand K (proof below) so by theorem 3 it does not have a Laplace transform. Proof: tt = Mext => ten(t) = ln(M) + Kt (=) t(ln(t)-K) = ln11 non-constant constant This a contradiction so t # Mett for all MK 22) \$\{\frac{1}{4}\} = \(\lambda \left\{ \lambda - \frac{1}{2}\} $= T(-\frac{1}{5}+1)$ $5^{-\frac{1}{2}+1}$ $= T(\frac{1}{2})$ = 1

25) F(5) =
$$0.2 \cdot 5 + 1.4$$

 $5^2 + 1.96$
= $0.2 \cdot \frac{5}{5^2 + (1.4)^2} + \frac{1.4}{5^3 + (1.4)^2}$
We can then see

 $f(t) = 0.2 \cdot \cos(1.4t) + \sin(1.4t)$

26) $\frac{5 \cdot 5}{5^2 + 2.5} + \frac{1}{5} \cdot \frac{5}{5^2 - 5^2}$

We an then see

 $f(t) = 5 \cdot \frac{5}{5^2 - 5^2} + \frac{1}{5} \cdot \frac{5}{5^2 - 5^2}$

We an then see

 $f(t) = 5 \cdot \cosh(5t) + \frac{1}{5} \sinh(5t)$

41) F(5) = $\frac{\pi}{5^2 + 4\pi \cdot 5 + 3\pi^2}$

Want to factor $5^2 + 4\pi \cdot 5 + 3\pi^2$
 $-4\pi \pm \sqrt{16\pi^2 - 4 \cdot 3\pi^2}$
 $= -2\pi \pm \frac{2}{3} \sqrt{4\pi^2 - 3\pi^2}$

While a and b such that

$$\frac{2}{5+1} + \frac{1}{5+37} = \frac{77}{(5+7)5+37}$$

=) $a(S+37)+b(S+17)=17$

=) $aS+bS=0=0$
 $aS+bS=0=0$

6.2:

9)
$$y'' - 3y' + 2y = 4t - 8$$
, $y(e) = 2$, $y'(0) = 7$

Taking the Laplace transform we get

$$[s^2Y - s \cdot y(e) - y(e)] - 3[sY - y(e)] + 2Y = \frac{4}{5^2} - \frac{8}{5^2}$$

$$\Rightarrow Y[s^2 - 3s + 2] - 2s - 7 + 6 = \frac{4}{5^2} - \frac{8}{5}$$

$$\Rightarrow Y(s - 1)(s - 2) = \frac{4}{5^2} - \frac{8}{5^2} + 1 + 2 \cdot 5$$

$$= \frac{4}{5^2} - \frac{8}{5^2} + 1 + 2 \cdot 5$$

$$= \frac{4}{5^2} - \frac{8}{5^2} + 1 + 2 \cdot 5$$

$$= \frac{4}{5^2} - \frac{8}{5^2} + \frac{2}{5^2} + \frac{3}{5^2}$$

What to partially factor this so we sive

$$2s^3 + s^2 - 8s + 4 = 4 + 8 + 6 + 2$$

$$s^2(s - 1)(s - 2)$$

$$= 2s^3 + s^2 - 8s + 4 = 4 + 8 + 6 + 2$$

$$s^2(s - 1)(s - 2) + 8(s - 1)(s - 2) + 10(s^2(s - 1))$$
(i): At $(t + 0) = 2$

(i):
$$A + C + D = 2$$

(ii): $-3A + B - 2C - D = 1$
(iii): $2A - 3B = -8$

(iv):
$$2B = 4 = 3B = 2$$

$$\frac{5+8}{5(5^{2}+)} = \frac{2}{5} + \frac{-25+1}{5^{2}+4}$$

$$= \frac{2}{5} - 2 \cdot \frac{5}{5^{2}+2^{2}} + \frac{1}{2} \cdot \frac{2}{5^{2}+2^{2}}$$

$$g(t) = 2 - 2\cos 2t + \frac{1}{2}\sin 2t + \frac{1}{4}\cos 2t + \frac{1}{4}\sin 2t + \frac{1}{4}\cos 2t +$$

13) We have
$$\frac{3}{3} = \frac{3}{5} = \frac{4}{5} \frac{1 - e^{\pi s}}{5^{2} + 2^{2}} \frac{1}{5^{2} + 2^{2}}$$

$$= 2, \frac{2}{5^{2} + 2^{2}} - 2, \frac{2e^{\pi s}}{5^{2} + 2^{2}}$$

$$= 2, \frac{2}{5^{2} + 2^{2}}$$

$$= 2, \frac{2e^{\pi s}}{5^{2} + 2^{2}}$$

$$= 2, \frac{2e^{\pi s}}{5^{2}$$

$$T = 255 \cdot \frac{5}{5^2 + 1} \cdot \frac{1}{5^2 + 25 + 10} \cdot \left(1 - e^{-2\pi s}\right)$$

$$255 \cdot s$$

$$(s^3 + 1)(s^3 + 2s + 10) = \frac{4}{5^2 + 10} \cdot \frac{1}{5^2 + 2s + 10} \cdot \frac{1}{5^2$$

We get

$$I = \begin{bmatrix} 275+6 & 27+5+60 \\ 5^2+1 & 5^2+25+10 \end{bmatrix} (1-e^{-2\pi r s})$$

$$S^2+2s+10 = (s-a)^2+w^2$$

$$A = -1 \text{ and } w = 3 \text{ gives}$$

$$(s-a)^2+w^2 = (s^2+1)^2+3^2 - s^2+2s+10$$

$$S_0 = \frac{27-s+60}{s^2+2s+10} = \frac{27-s+60}{(s+1)^2t 3^2} = \frac{2}{(s+1)^2t 3^2} (9s+20)$$

$$Expanding I...we get$$

$$I = \begin{bmatrix} 275 + 6 & 275 & 60 \\ 5^2+1 & 5^2+1 & (s^2+1)^2+3^2 & (s+1)^2+3^2 \end{bmatrix} (9s+20)$$

$$= \begin{bmatrix} 275 + 6 & 275 & 60 \\ 5^2+1 & 5^2+1 & (s^2+1)^2+3^2 & (s+1)^2+3^2 \end{bmatrix} (1-e^{2\pi r s})$$

$$= \begin{bmatrix} 275 + 6 & 275 & 60 \\ 5^2+1 & 5^2+1 & (s^2+1)^2+3^2 & (s+1)^2+3^2 \end{bmatrix} (1-e^{2\pi r s})$$

$$= \begin{bmatrix} 275 + 6 & 275 & 60 \\ 5^2+1 & 5^2+1 & (s^2+1)^2+3^2 & (s+1)^2+3^2 \end{bmatrix} (1-e^{2\pi r s})$$

$$= \begin{bmatrix} 275 + 6 & 275 & 60 \\ 5^2+1 & 5^2+1 & (s^2+1)^2+3^2 & (s+1)^2+3^2 \end{bmatrix} (1-e^{2\pi r s})$$

$$= \begin{bmatrix} 275 + 6 & 275 & 60 \\ 5^2+1 & 5^2+1 & (s+1)^2+3^2 & (s+1)^2+3^2 \end{bmatrix} (1-e^{2\pi r s})$$

$$= \begin{bmatrix} 275 + 6 & 275 & 60 \\ 5^2+1 & 5^2+1 & (s+1)^2+3^2 & (s+1)^2+3^2 \end{bmatrix} (1-e^{2\pi r s})$$

$$= \begin{bmatrix} 275 + 6 & 275 & 60 \\ 5^2+1 & 5^2+1 & (s+1)^2+3^2 & (s+1)^2+3^2 \end{bmatrix} (1-e^{2\pi r s})$$

$$= \begin{bmatrix} 275 + 6 & 275 & 60 \\ 5^2+1 & 5^2+1 & (s+1)^2+3^2 & (s+1)^2$$

$$i(t) = 27 \cos t (1 - u(t - 2\pi))$$

$$+ 6 \sin t (1 - u(t - 2\pi))$$

$$- 27 e^{t} \cos t (1 - e^{2\pi} u(t - 2\pi))$$

$$- 11 e^{t} \sin t (1 - e^{2\pi} u(t - 2\pi))$$

$$- 11 e^{t} \sin t (1 - e^{2\pi} u(t - 2\pi))$$

$$- 11 e^{t} \sin t (1 - e^{2\pi} u(t - 2\pi))$$

$$- 11 e^{t} \sin t (1 - e^{2\pi} u(t - 2\pi))$$

$$- 11 e^{t} \sin t (1 - e^{2\pi} u(t - 2\pi))$$

$$- 11 e^{t} \sin t (1 - e^{2\pi} u(t - 2\pi))$$

$$- 11 e^{t} \sin t (1 - e^{2\pi} u(t - 2\pi))$$

$$- 11 e^{t} \sin t (1 - e^{2\pi} u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t} \cos t (1 - u(t - 2\pi))$$

$$- 12 e^{t$$

White AB, C such that
$$\frac{A}{56} = \frac{A}{5} + \frac{B}{54} + \frac{C}{542}$$

$$-2 + \frac{A}{5} = \frac{A}{54} + \frac{B}{542}$$

$$-2 + \frac{A}{5} = \frac{A}{542} + \frac{B}{542}$$

$$-2 + \frac{A}{5} = \frac{A}{542} + \frac{A}{542}$$

$$-2 + \frac{A}{542} = \frac{A}{542}$$

$$-2 + \frac$$

