$\begin{array}{c} {\tt Math~4301~Mathematical~Analysis~I} \\ {\tt Lecture~5} \end{array}$

Topic: Upper and lower limits

• Recall, for a real sequence $\{x_n\}$, let C be the set of its all cluster points i.e.

$$C = \{x : x \text{ is a cluster point of } \{x_n\}\}.$$

• We define the upper and the lower limits of $\{x_n\}$ as follows.

Definition For a real $\{x_n\}$ sequence,

the *limit superior* of $\{x_n\}$ is defined as follows.

Let C be the set of cluster points of $\{x_n\}$:

If $C \neq \emptyset$ and $\{x_n\}$ is bounded from above, then

$$\limsup (x_n) = \sup (C).$$

If $C = \emptyset$ and $\{x_n\}$ is bounded from above, then

$$\limsup (x_n) = -\infty.$$

If $\{x_n\}$ is not bounded above, then

$$\lim\sup (x_n) = +\infty.$$

Definition For a real $\{x_n\}$ sequence,

the *limit inferior* of $\{x_n\}$ is defined as follows.

Let C be the set of cluster points of $\{x_n\}$:

If $C \neq \emptyset$ and $\{x_n\}$ is bounded from below, then

$$\lim \inf (x_n) = \inf (C)$$
.

If $C = \emptyset$ and $\{x_n\}$ is bounded from below, then

$$\lim\inf\left(x_n\right) = +\infty$$

If $\{x_n\}$ is not bounded below, then

$$\lim\inf\left(x_{n}\right)=-\infty.$$

Example: Let

$$x_n = \left(1 + \frac{(-1)^n}{n}\right)^n.$$

Find $\liminf (x_n)$ and $\limsup (x_n)$.

• We observe that

$$x_n = \begin{cases} \left(1 + \frac{1}{2k}\right)^{2k} & if & n = 2k\\ \left(1 - \frac{1}{2k-1}\right)^{2k-1} & if & n = 2k-1 \end{cases}$$

• It follows that

$$e = \lim_{k \to \infty} \left(1 + \frac{1}{2k} \right)^{2k}$$
 and $\frac{1}{e} = \lim_{k \to \infty} \left(1 - \frac{1}{2k-1} \right)^{2k-1}$

are cluster points of $\{x_n\}$.

• If $x \neq e, \frac{1}{e}$, then there is

$$\epsilon = \frac{1}{2}\min\left\{\left|x - \frac{1}{e}\right|, |x - e|\right\} > 0,$$

such that the set

$$\{n \in \mathbb{N} : |x_n - x| < \epsilon\}$$
 is finite.

• Indeed, we see that, since

$$e = \lim_{k \to \infty} \left(1 + \frac{1}{2k} \right)^{2k},$$

there is $N_1 \in \mathbb{N}$, such that,

for all $k > N_1$

$$|x_{2k} - e| < \epsilon$$

and there is $N_2 \in \mathbb{N}$, such that,

for all $k > N_2$:

$$\left| x_{2k-1} - \frac{1}{e} \right| < \epsilon$$

• Therefore, for

$$n > \max\left\{N_1, N_2\right\},\,$$

$$|x_{2k} - e| < \epsilon \text{ or } \left| x_{2k-1} - \frac{1}{e} \right| < \epsilon.$$

• So if $n > \max\{N_1, N_2\}$ and n is even,

$$|x_n - x| = |(x_n - e) + (e - x)| \ge ||x_n - e| - |e - x|| = |e - x| - |x_n - e||$$

 $\ge |e - x| - \epsilon \ge |e - x| - \frac{1}{2} |e - x| \ge \epsilon.$

• Analogously, if

$$n > \max\{N_1, N_2\}$$

and n is odd,

$$|x_n - x| = \left| \left(x_n - \frac{1}{e} \right) + \left(\frac{1}{e} - x \right) \right|$$

$$\geq \left| \left| x_n - \frac{1}{e} \right| - \left| \frac{1}{e} - x \right| \right|$$

$$= \left| \frac{1}{e} - x \right| - \left| x_n - \frac{1}{e} \right|$$

$$\geq \left| \frac{1}{e} - x \right| - \epsilon$$

$$\geq \left| \frac{1}{e} - x \right| - \frac{1}{2} \left| \frac{1}{e} - x \right|$$

$$\geq \epsilon.$$

• Thus, we showed that,

if
$$n > \max\{N_1, N_2\}$$
, then

$$|x_n - x| \ge \epsilon$$
,

so the set

$${n \in \mathbb{N} : |x_n - x| < \epsilon}$$
 is finite.

• We showed that, if $x \neq e$, $\frac{1}{e}$, then x is not a cluster point.

• Therefore,

$$C = \left\{ e, \ \frac{1}{e} \right\}$$

is the set of all cluster points of $\{x_n\}$.

• Hence,

$$\liminf \{x_n\} = \frac{1}{e} \text{ and } \limsup \{x_n\} = e.$$

Example: Let $x_n = (-1)^n n$.

Find $\liminf (x_n)$ and $\limsup (x_n)$.

• Notice that since

$$\lim_{k \to \infty} x_{2k} = \infty$$

and

$$\lim_{k \to \infty} x_{2k-1} = -\infty$$

the sequence $\{x_n\}$ is not bounded above and below.

• Therefore,

$$\liminf (x_n) = -\infty \text{ and } \limsup (x_n) = \infty.$$

Example: Let

$$x_n = 3^{n \sin\left(\frac{2\pi n}{3}\right)}.$$

Find $\liminf (x_n)$ and $\limsup (x_n)$.

• We observe that

$$\sin\left(\frac{2\pi}{3}n\right) = \begin{cases} \frac{\sqrt{3}}{2} & if \quad n = 3k - 2\\ -\frac{\sqrt{3}}{2} & if \quad n = 3k - 1\\ 0 & if \quad n = 3k \end{cases}, \ k = 1, 2, 3, \dots$$

Proposition Let $\{x_n\}$ be a sequence of real numbers and $x \in \mathbb{R}$. Then

1. If $\{x_n\}$ is bounded below,

$$x = \liminf (x_n)$$

if and only if

a. For all $\epsilon > 0$ there is an $N \in \mathbb{N}$, such that

$$x - \epsilon < x_n$$

whenever n > N, and

b. For all $\epsilon > 0$ and all M, there is n > M with

$$x_n < x + \epsilon$$

2. If $\{x_n\}$ is bounded above,

$$x = \lim \sup (x_n)$$

if and only if

a. For all $\epsilon > 0$ there is an $N \in \mathbb{N}$, such that

$$x_n < x + \epsilon$$

whenever $n \geq N$, and

b. For all $\epsilon > 0$ and all M, there is n > M with

$$x - \epsilon < x_n$$

Proof. We show that if $\{x_n\}$ is bounded below,

$$x = \liminf (x_n)$$

if and only if 1a) and 1b) hold.

- We start by showing **1b**).
- Let

$$C = \{y : y \text{ is a cluster point of } \{x_n\}\}.$$

Suppose that $x = \liminf (x_n)$, i.e. $x = \inf C$ (since $C \neq \emptyset$).

• Given $\epsilon > 0$, since $x + \frac{\epsilon}{2}$ is not a lower bound of C, there is $y \in C$, such that

$$y < x + \frac{\epsilon}{2};$$

• Since, $y \in C$, the set

$$\left\{n \in \mathbb{N} : |x_n - y| < \frac{\epsilon}{2}\right\}$$

is infinite.

• Therefore, given M, there is n > M, such that

$$|x_n - y| < \frac{\epsilon}{2}$$
, i.e. $-\frac{\epsilon}{2} < x_n - y < \frac{\epsilon}{2}$

• Hence

$$x_n < y + \frac{\epsilon}{2} < \left(x + \frac{\epsilon}{2}\right) + \frac{\epsilon}{2} = x + \epsilon.$$

for some n > M and condition **1b**) follows.

• Now, we show **1a**).

Suppose that, there is $\epsilon > 0$, such that, for all $N \in \mathbb{N}$, there is n > N, such that

$$x_n \le x - \epsilon$$
.

• Take N = 1, then there is $n_1 > N$, such that

$$x_{n_1} < x - \epsilon$$
.

• Take $N_2 = n_1$, then there is $n_2 > N_2 = n_1$, such that

$$x_{n_2} < x - \epsilon$$
.

• Using induction, we construct $\{x_{n_k}\}$ a subsequence of $\{x_n\}$, such that

$$x_{n_k} < x - \epsilon$$

for all k = 1, 2,

- Since $\{x_n\}$ is bounded below, its subsequence $\{x_{n_k}\}$ is **bounded below**.
- Moreover, since

$$x_{n_k} < x - \epsilon$$
,

for all k = 1, 2, ...,then also $\{x_{n_k}\}$ is bounded.

• Therefore, by Bolzano-Weierstrass thm., $\left\{x_{n_k}\right\} \text{ has a convergent subsequence } \left\{x_{n_{k_l}}\right\} \text{ and }$

$$a = \lim_{l \to \infty} x_{n_{k_l}}.$$

Since,

let

$$x_{n_{k_{I}}} < x - \epsilon$$

for all l = 1, 2, ..., then $a \le x - \epsilon$.

• Therefore, a is a cluster point of $\{x_n\}$ and

$$a < x = \inf C$$
.

Contradiction.

- Conversely, suppose that $x \in \mathbb{R}$ satisfies conditions 1a) and 1b).
- If y is a cluster point of (x_n) and

$$y < x$$
,

we let

$$\epsilon = \frac{1}{2} \left(x - y \right) > 0,$$

then the set

$$\{n \in \mathbb{N} : |x_n - y| < \epsilon\}$$

is infinite, that is

$$y - \epsilon < x_n < y + \epsilon$$

for infinitely many $n \in \mathbb{N}$.

 \bullet Since

$$x_n < y + \epsilon$$

$$= y + \frac{1}{2}(x - y)$$

$$= \frac{1}{2}(x + y)$$

$$= x - \frac{1}{2}(x - y)$$

$$= x - \epsilon$$

it follows that

$$x_n < x - \epsilon$$

for infinitely many $n \in \mathbb{N}$.

- This **contradicts** to condition **1a**).
- It follows that x is a lower bound for the set of all cluster points of (x_n) .
- We show that x is the greatest lower bound of the set of all cluster points of (x_n) , that is, if $\epsilon > 0$, then $x + \epsilon$ is not a lower bound.
- By 1b), taking $N_1 = 1$, there is $n_1 > N_1$, such that

$$x_{n_1} < x + \epsilon$$

• Taking $N_2 = n_1$, there is $n_2 > N_2 = n_1$, such that

$$x_{n_2} < x + \epsilon$$
.

• By induction, taking $N_k = n_{k-1}$, there is $n_k > N_k = n_{k-1}$, such that

$$x_{n_k} < x + \epsilon$$
.

• Thus, we construct a subsequence $\{x_{n_k}\}$ of the sequence $\{x_n\}$, such that, for all $k \in \mathbb{N}$,

$$x_{n_k} < x + \epsilon$$
.

• By 1a), there is $N \in \mathbb{N}$, such that, for all n > N,

$$x - \epsilon < x_n$$
.

• Therefore, if k > N, then $n_k \ge k > N$, so for k > N

$$x - \epsilon < x_{n_k}$$
.

• Hence, for k > N,

$$x - \epsilon < x_{n_k} < x + \epsilon$$
, i.e. $|x_{n_k} - x| < \epsilon$.

 $\bullet\,$ It follows that

$$x_{n_k} \to x$$
,

so x is a cluster point of (x_n) .

• Since $x < x + \epsilon$, so we showed that

$$x + \epsilon$$

is not a lower bound, so

$$x = \lim \inf (x_n)$$
.

Proof for $x = \limsup (x_n)$ is analogous.

• Corollary Let $\{x_n\}$ be a bounded sequence of real numbers and C denotes the set of its cluster points. Then

$$\lim\inf\left(x_{n}\right)\in C$$

and

$$\limsup (x_n) \in C.$$

• Let $\{x_n\}$ be a real sequence and

$$S_n = \{x_k : k \ge n+1\}.$$

• Define sequence

$$a_n = \inf S_n$$
 and $b_n = \sup S_n$.

• Clearly,

$$S_1 \supseteq S_2 \supseteq \dots$$

therefore, for $k \geq n$,

$$S_k \subset S_n$$

thus

$$a_n \le a_k \le b_k$$
.

• If $k \leq n$, then

$$S_n \subseteq S_k$$
,

so

$$a_k \le a_n \le b_n$$
.

Example Consider sequence

$$x_n = (-1)^n + \frac{1}{n}, n \in \mathbb{N}.$$

Then

$$a_{1} = \inf S_{1} = \inf \left\{ (-1)^{n} + \frac{1}{n} : n \ge 1 \right\} = -1$$

$$a_{2} = \inf S_{2} = \inf \left\{ (-1)^{n} + \frac{1}{n} : n \ge 2 \right\} = -1$$

$$a_{3} = \inf S_{3} = \inf \left\{ (-1)^{n} + \frac{1}{n} : n \ge 3 \right\} = -1$$

$$\vdots$$

$$a_n = -1$$

Observe that

$$a_1 \le a_2 \le a_3 \le \dots$$

We also see that

$$b_{1} = \sup S_{1} = \sup \left\{ (-1)^{n} + \frac{1}{n} : n \ge 1 \right\}$$

$$= (-1)^{2} + \frac{1}{2} = \frac{3}{2}$$

$$b_{2} = \sup S_{2} = \sup \left\{ (-1)^{n} + \frac{1}{n} : n \ge 2 \right\}$$

$$= (-1)^{2} + \frac{1}{2} = \frac{3}{2}$$

$$b_{3} = \sup S_{3} = \sup \left\{ (-1)^{n} + \frac{1}{n} : n \ge 3 \right\}$$

$$= (-1)^{4} + \frac{1}{4} = \frac{5}{4}$$

$$\vdots$$

$$b_{n} = \begin{cases} 1 + \frac{1}{2k} & \text{if } n = 2k - 1 \\ 1 + \frac{1}{2k} & \text{if } n = 2k \end{cases}$$

 \mathbf{SO}

$$b_1 \ge b_2 \ge b_3 \ge \dots$$

• We observe that

$$\lim \sup (x_n) = \lim_{n \to \infty} b_n = 1$$

$$= \inf \{b_n : n \ge 1\}$$

$$\lim \inf (x_n) = \lim_{n \to \infty} a_n = -1$$

$$= \sup \{a_n : n \ge 1\}$$

• Note that if sequence $\{x_n\}$ is not bounded then the sequences $\{a_n\}$ and $\{b_n\}$ might not take their values in \mathbb{R} . For instance, if $x_n = n$, then

$$a_n = \inf S_n = n, \ n \in \mathbb{N}, \text{ but}$$

 $b_n = \sup S_n = +\infty, \text{ for all } n \in \mathbb{N}.$

We see that still

$$a_1 \leq a_2 \leq \dots$$
 and $b_1 \geq b_2 \geq \dots$

so

$$\limsup (x_n) = \lim_{n \to \infty} b_n$$

$$= +\infty$$

$$\liminf (x_n) = \lim_{n \to \infty} a_n$$

$$= \lim_{n \to \infty} n$$

$$= +\infty$$

as we have seen it before.

• In general, the following result holds.

Proposition If $\{x_n\}$ is a sequence of real numbers, then

$$\limsup (x_n) = \inf \{ \sup S_n : n \in \mathbb{N} \}$$

$$= \inf \{ b_n : n \ge 1 \}$$

$$= \lim_{n \to \infty} b_n \text{ and}$$

$$\lim \inf (x_n) = \sup \{ \inf S_n : n \in \mathbb{N} \}$$

$$= \sup \{ a_n : n \ge 1 \}$$

$$= \lim_{n \to \infty} a_n.$$

Proof. We show that

$$\limsup (x_n) = \inf \left\{ \sup S_n : n \in \mathbb{N} \right\}.$$

• If $\{x_n\}$ is not bounded above,

then by the definition

$$\limsup (x_n) = \infty$$

and since,

$$b_n = \sup S_n = +\infty$$

for all n = 1, 2, ...

$$\lim_{n\to\infty}b_n=+\infty,$$

(with the understanding that $\inf \{\infty\} = \infty$), so

$$\lim \sup (x_n) = \inf \{b_n : n \in \mathbb{N}\}.$$

- Assume that $\{x_n\}$ is bounded above:
- If $\{x_n\}$ has no cluster points, then by the definition

$$\limsup (x_n) = -\infty.$$

• Since $\{x_n\}$ has no cluster points, $\{x_n\}$ cannot be bounded below and for each $M \in \mathbb{R}$, the set

$$\{n \in \mathbb{N} : M < x_n\}$$

must be finite.

• Therefore, for each $M \in \mathbb{R}$, there is $N \in \mathbb{N}$, such that, for n > N,

$$x_n < M$$
.

 \bullet It follows that

$$b_N = \sup \{x_n : n > N\} \le M.$$

- Since $b_1 \geq b_2 \geq ...$, we see that, for all n > N, $b_n \leq M$.
- Consequently,

$$\lim_{n\to\infty} b_n = -\infty.$$

• We showed that

$$\lim \sup (x_n) = \inf \{b_n : n \in \mathbb{N}\}.$$

- Assume that $\{x_n\}$ is bounded below.
- Therefore, $\{x_n\}$ is bounded (since $\{x_n\}$ is also bounded above), so by the Bolzano-Weierstrass thm., the set of cluster points C of $\{x_n\}$ is not empty and bounded.
- Let

$$\lim \sup (x_n) = \sup C.$$

• Since $b_1 \geq b_2 \geq ...$ and $\{b_n\}$ is bounded below, then $\{b_n\}$ converges and let

$$b = \lim_{n \to \infty} b_n = \inf \{b_n : n \in \mathbb{N}\}.$$

• Now we show that

$$b = \limsup (x_n) = \sup C.$$

• Our strategy is to use the following:

If $\{x_n\}$ is bounded above,

$$x = \lim \sup (x_n)$$

if and only if

a. For all $\epsilon > 0$ there is an $N \in \mathbb{N}$, such that

$$x_n < x + \epsilon$$

whenever $n \geq N$, and

b. For all $\epsilon > 0$ and all M, there is n > M with

$$x - \epsilon < x_n$$

• We first show **a**):

Let $\epsilon > 0$ be given,

since $b + \epsilon$ is not a lower bound for

$$\{b_n:n\in\mathbb{N}\}\,$$

there is $N \in \mathbb{N}$, such that,

$$b_N < b + \epsilon$$
.

• Since

$$b_n \leq b_N$$
,

for all $n \geq N$, we see that,

for all $n \geq N$

$$b_n < b + \epsilon$$
,

• Since

$$x_{n+1} \leq b_n$$

for all n (by the definition of b_n).

• Therefore, if n > N,

$$x_n < b + \epsilon$$
.

- This gives us condition a).
- Now, we show **b**): Let $\epsilon > 0$ and $N \in \mathbb{N}$ be given.
- Since $b \leq b_N$:

$$b - \epsilon \le b_N - \epsilon$$
.

• Since

$$b_N = \sup \left\{ x_k : k > N \right\},\,$$

• there is n > N, such that

$$b_N - \epsilon < x_n.$$

• Therefore, there is n > N, such that

$$b - \epsilon \le b_N - \epsilon < x_n$$
, so $b - \epsilon < x_n$.

• By previous result, we showed that indeed

$$b = \lim \sup (x_n)$$
.

• Therefore, we showed that

$$\lim \sup (x_n) = \inf \{b_n : n \in \mathbb{N}\}.$$

• Analogous argument shows that

$$\lim\inf (x_n) = \sup \left\{\inf S_n : n \in \mathbb{N}\right\}.$$

This finishes our proof. ■

- **Proposition** Let $\{x_n\}$ be a sequence of real numbers. Then
- 1. $\liminf (x_n) \le \limsup (x_n)$
- 2. If $x_n \leq M$, for all $n \in \mathbb{N}$, then

$$\limsup (x_n) \le M$$

3. If $M \leq x_n$, for all $n \in \mathbb{N}$, then

$$M \leq \liminf (x_n)$$

- 4. $\limsup (x_n) = \infty$ if and only if $\{x_n\}$ is not bounded above.
- 5. $\liminf (x_n) = -\infty$ if and only if $\{x_n\}$ is not bounded below.
- 6. If x is a cluster point of $\{x_n\}$, then

$$\liminf (x_n) \le x \le \limsup (x_n)$$

7. If $x = \liminf (x_n)$ is finite then x is a cluster point of $\{x_n\}$

- 8. If $x = \limsup (x_n)$ is finite than x is a cluster point of $\{x_n\}$
- 9. $x_n \to x \in \mathbb{R} \text{ as } n \to \infty \text{ iff}$

$$\lim\inf (x_n) = \lim\sup (x_n) = x \in \mathbb{R}.$$

Proof. We show each statement 1) - 9.

1. For statement (1): Let

$$S_n = \{x_k : k > n\},$$

 $a_n = \inf S_n \text{ and }$
 $b_n = \sup S_n$

 $(a_n = -\infty \text{ if } \{x_n\} \text{ is not bounded below and } b_n = \infty \text{ if } \{x_n\} \text{ is not bounded above}).$

• Since $S_n \subseteq S_k$, for $n \ge k$, therefore

$$\inf S_k \le \inf S_n \le \sup S_n \le \sup S_k$$

• Hence, for all $n \ge k$,

$$a_n \leq b_k$$
.

- Therefore, each b_k is an upper bound for $\{a_1, a_2, ...\}$.
- It follows that, for all k:

$$\liminf (x_n) = \sup \{a_n : n \in \mathbb{N}\}
\leq b_k.$$

• Hence, $\liminf (x_n)$ is a lower bound for $\{b_1, b_2, ...\}$, so

$$\liminf (x_n) \leq \inf \{b_n : n \in \mathbb{N}\}
= \limsup (x_n).$$

2. For statement (2):

Since $x_n \leq M$ for all $n \in \mathbb{N}$,

$$b_n = \sup \{x_k : k > n\}$$

 $\leq M$, for all $n \in \mathbb{N}$.

Consequently,

$$\limsup (x_n) = \inf \{b_n : n \in \mathbb{N}\}
\leq M.$$

3. Analogous argument shows that,

if
$$M \leq x_n$$
, then

$$M \leq \liminf (x_n)$$
.

4. For statement (4):

Suppose that

$$\lim\sup\left(x_{n}\right)=+\infty$$

and $\{x_n\}$ is bounded above, i.e. there is $M \in \mathbb{R}$, such that

$$x_n \leq M$$
,

for all $n \in \mathbb{N}$.

• Then by (2),

 $\limsup (x_n) \leq M$, a contradiction.

• Conversely, if $\{x_n\}$ is not bounded above, then by the definition,

$$\lim\sup (x_n) = \infty.$$

5. Analogous arguments can be used to prove (5).

6. For statement (6):

Let C be the set of all cluster points of $\{x_n\}$.

• If $x \in C$ then clearly

$$\liminf (x_n) \le \inf C \le x \le \sup C \le \limsup (x_n)$$
, so $\liminf (x_n) \le x \le \limsup (x_n)$

7. For statement (7):

Let C be the set of all cluster points of $\{x_n\}$ and

assume that

$$x = \lim \inf (x_n)$$
.

- By previous theorem 1a)
- Given $\epsilon > 0$, there is $N \in \mathbb{N}$, such that, for all n > N

$$x - \epsilon < x_n$$
.

• Moreover, by previous theorem 1b), there is $n_1 > N$, such that

$$x_{n_1} < x + \epsilon$$
.

• Therefore,

$$x - \epsilon < x_{n_1} < x + \epsilon$$

• Taking $N = n_1$, there is

$$n_2 > N = n_1$$
,

such that,

$$x - \epsilon < x_{n_2} < x + \epsilon$$

• Using induction, we construct a sequence of natural numbers

$$n_1 < n_2 < ...,$$

such that

$$x - \epsilon < x_{n_k} < x + \epsilon$$
, for all $k = 1, 2, ...$

• Therefore, for every $\epsilon > 0$, the set

$$\{n \in \mathbb{N} : |x_n - x| < \epsilon\}$$

is infinite.

• By the definition,

$$x = \lim \inf (x_n)$$

is a cluster point of $\{x_n\}$, i.e. $x \in C$.

- 8. Similar argument can be used to prove (8).
- 9. For statement (9):

Assume that $x_n \to x$,

then $\{x_n\}$ is bounded and

the set of cluster points of $\{x_n\}$ is $C = \{x\}$,

hence

$$\liminf (x_n) = \inf C = x = \sup C = \limsup (x_n), \text{ that is}$$
$$\liminf (x_n) = \limsup (x_n) = x$$

• Conversely, if

$$\lim\inf (x_n) = \lim\sup (x_n) = x \in \mathbb{R},$$

then by theorem,

there are N_1 and N_2 , such that,

for $n > N_1$,

$$x_n < x + \epsilon$$

and for $n > N_2$,

$$x - \epsilon < x_n$$
.

• Therefore, if

$$n > \max\{N_1, N_2\},$$

then

$$x - \epsilon < x_n < x + \epsilon$$
, so $|x_n - x| < \epsilon$.

• It follows that $x_n \to x$ as $n \to \infty$.

This finishes our proof. ■

• **Example**: Find $\liminf (x_n)$ and $\limsup (x_n)$, for

$$x_n = 4 + (-1)^n \left(1 - \frac{1}{n}\right).$$

Justify your answer.

• Since

$$x_n = \begin{cases} 4 + \left(1 - \frac{1}{2k}\right) & if & n = 2k \\ 4 - \left(1 - \frac{1}{2k - 1}\right) & if & n = 2k - 1 \end{cases}$$

we see that

$$x_{2k} \to 5$$
 and $x_{2k-1} \to 3$

• Show that $C = \{3, 5\}$ is the set of cluster points and that

$$|x_n| \leq 5$$
.

• Then by the definition

$$\liminf (x_n) = \inf C = 3$$
 and $\limsup (x_n) = \sup C = 5$.

Example: Find a sequence x_n with

$$\lim\sup\left(x_n\right) = 3$$

and

$$\lim\inf\left(x_{n}\right)=-2.$$

• Let

$$x_n = \begin{cases} 3 - \frac{1}{2k_1} & if & n = 2k \\ -2 + \frac{1}{2k-1} & if & n = 2k-1 \end{cases}$$

and then show that

$$\limsup (x_n) = 3 \text{ and}$$

$$\liminf (x_n) = -2$$

Example: Let $\{x_n\}$ be a sequence with

$$\lim\inf\left(x_n\right) = x$$

and

$$\limsup (x_n) = y,$$

where $x, y \in \mathbb{R}$.

Show that $\{x_n\}$ has subsequences $\{a_n\}$ and $\{b_n\}$, such that

$$a_n \to x$$
 and $b_n \to y$.

Hint: Use proof from the last proposition (see 7) and 8)).

Example: Is it true that if

$$\lim \sup (x_n) = 2,$$

then there is $n \in \mathbb{N}$, such that

$$1.99 < x_n$$
.

Justify your answer.

Hint: Use the following result:

Proposition If $\{x_n\}$ is bounded above,

$$x = \lim \sup (x_n)$$

if and only if

a. For all $\epsilon > 0$ there is an $N \in \mathbb{N}$, such that

$$x_n < x + \epsilon$$

whenever $n \geq N$, and

b. For all $\epsilon > 0$ and all M, there is n > M with

$$x - \epsilon < x_n$$

Example: Is it true that if

$$\limsup (x_n) = x,$$

then there is $n \in \mathbb{N}$, such that,

$$x_n \leq x$$
.

Hint: Use the following result

Proposition If $\{x_n\}$ is bounded above,

$$x = \lim \sup (x_n)$$

if and only if

a. For all $\epsilon > 0$ there is an $N \in \mathbb{N}$, such that

$$x_n < x + \epsilon$$

whenever $n \geq N$, and

b. For all $\epsilon > 0$ and all M, there is n > M with

$$x - \epsilon < x_n$$

Topology of Real Numbers

- Let us start with a simple motivation from the Mathematical Analysis in which the notion of an open set arises in natural context of defining limit, continuity, and differentiation.
- Recall, the notions of *open* and *closed* are built on the notion of a distance of points in \mathbb{R} .

- For any $x, y \in \mathbb{R}$, to find distance between x and y $(x \le y)$ we need to find the length of the interval [x, y].
- The length of this interval is calculated using the absolute value function | | defined for all real numbers in a following way

$$d\left(x,y\right) = \left|y - x\right|$$

• For instance,

$$d(-1,2) = |2 - (-1)| = 3.$$

- As we showed it before, the absolute value | | satisfies the following properties:
- i) $\forall x, y \in \mathbb{R}, |y x| \ge 0$ and $\forall x, y \in \mathbb{R}, ((|y x| = 0) \iff (x = y))$
- ii) $\forall x, y \in \mathbb{R}, |y x| = |x y|$
- iii) $\forall x, y, z \in \mathbb{R}, |y x| \le |y z| + |z y|$
 - Remark The property (ii) is called the *symmetry* and the property (iii) is called the *triangle inequality*.
 - The notions such as *limit* and *continuity* that we are familiar with from calculus classes are based on the notion of "being close" for points $x, y \in \mathbb{R}$.
 - For instance, we say that a function

$$f:A\to\mathbb{R},$$

where $A \subseteq \mathbb{R}$ is continuous at point $x_0 \in A$, if for any point x that is "close" to the point x_0 the image f(x) of x, is "close" to $f(x_0)$.

- To make the notion of "being close" precise,
 we may say that x is close to x₀
 if the distance of x from x₀ is "small enough",
- That is, if we fix a "small" positive number $\epsilon > 0$, then x is close to x_0 if

$$|x-x_0|<\epsilon$$
,

i.e. distance between x and x_0 is smaller than ϵ :

$$d(x, x_0) = |x - x_0| < \epsilon.$$

• Therefore, we regard each point x as close to x_0 if

$$d(x, x_0) < \epsilon$$

- For a given $\epsilon > 0$, there are, of course, infinitely many points $x \in \mathbb{R}$ that are "close" to x_0 .
- That is, all points x that are close to x_0 form set

$$D(x_0, \epsilon) = \{x \in \mathbb{R} \mid |x - x_0| < \epsilon\}$$
$$= \{x \in \mathbb{R} \mid d(x, x_0) < \epsilon\}.$$

that we call ϵ -disk centered at x_0 .

Definition Let $x_0 \in \mathbb{R}$ and $\epsilon > 0$.

An open disk centered at x_0 (or an ϵ -neighborhood of x_0) is the set

$$D(x_0, \epsilon) = \{x \in \mathbb{R} \mid d(x, x_0) < \epsilon\},\$$

where $d(x, y) = |x - y|, x, y \in \mathbb{R}$.

The number $\epsilon > 0$ is referred to as the **radius** of $D(x_0, \epsilon)$.

- Observe that an ϵ -disk centered at x_0 is simply an open interval with endpoints $x_0 \epsilon$, $x_0 + \epsilon$.
- Indeed, we see that

$$D(x_0, \epsilon) = \{x \in \mathbb{R} \mid d(x, x_0) < \epsilon\}$$

$$= \{x \in \mathbb{R} \mid |x - x_0| < \epsilon\}$$

$$= \{x \in \mathbb{R} \mid -\epsilon < x - x_0 < \epsilon\}$$

$$= \{x \in \mathbb{R} \mid x_0 - \epsilon < x < x_0 + \epsilon\}$$

$$= (x_0 - \epsilon, x_0 + \epsilon)$$

an open interval with the endpoints $x_0 - \epsilon$ and $x_0 + \epsilon$, whose center is at x_0 .

- Note that endpoints $x_0 \epsilon$ and $x_0 + \epsilon$ are of the distance ϵ from the center x_0 of the interval.
- The notion of an ϵ -disk centered at x_0 is used in the definition of an open set in \mathbb{R} as follows.

Definition Let $U \subseteq \mathbb{R}$. We say that U is open in \mathbb{R} , if

$$\forall x_0 \in U, \ \exists \epsilon > 0 \ni D(x_0, \ \epsilon) \subseteq U.$$

Example Show that an open interval $(a, b) \subseteq \mathbb{R}$, where a < b is open.

Solution: We need to show that

$$\forall x_0 \in (a, b), \exists \epsilon > 0 \ni D(x_0, \epsilon) \subseteq (a, b).$$

• To show the above statement, let $x_0 \in (a, b)$, and we need to find $\epsilon > 0$, such that

$$D(x_0, \epsilon) \subseteq (a, b)$$
.

• Since $x_0 \in (a, b), a < x_0 < b$.

• Therefore, both numbers:

$$x_0 - a > 0$$
 and $b - x_0 > 0$.

• If we take

$$\epsilon = \min\left\{x_0 - a, \ b - x_0\right\},\,$$

we see that $\epsilon > 0$

(since $x_0 - a > 0$ and $b - x_0 > 0$, so the minimum of two positive numbers is also a positive number).

• Moreover,

$$(x_0 - \epsilon, x_0 + \epsilon) \subseteq (a, b)$$
.

• This is clear, since for all $x \in (x_0 - \epsilon, x_0 + \epsilon)$,

$$x_0 - \epsilon < x < x_0 + \epsilon$$

• Since $x_0 - a \ge \min\{x_0 - a, b - x_0\}$,

$$a = x_0 - (x_0 - a) \le x_0 - \min\{x_0 - a, b - x_0\}$$

= $x_0 - \epsilon$
< x

and $b - x_0 \ge \min \{x_0 - a, b - x_0\}$,

$$x < x_0 + \epsilon = x_0 + \min\{x_0 - a, b - x_0\}$$

 $\leq x_0 + b - x_0$
 $= b.$

• It follows that, for all $x \in (x_0 - \epsilon, x_0 + \epsilon)$,

$$a < x < b$$
,

• Thus, we showed that

$$D(x_0, \epsilon) = (x_0 - \epsilon, x_0 + \epsilon) \subset (a, b).$$

• By the definition of an open set, we conclude that an open interval (a, b) is open in \mathbb{R} .