Computabilidad y Algoritmia Curso 2024-2025

Hoja de problemas

Tema 3: Lenguajes y gramáticas independientes del contexto

- 1. Describir los lenguajes generados por las siguientes gramáticas:
 - a) $S \to XYX$ $X \to aX|bX|\varepsilon$ $Y \to bbb$
 - $b) S \to aX$ $X \to aX|bX|\varepsilon$
- 2. Obtener a partir de la gramática regular $G \equiv (\{S,B\},\{1,0\},P,S)$ con las producciones $P = \{S \rightarrow 110B, B \rightarrow 1B, B \rightarrow 0B, B \rightarrow \varepsilon\}$ el DFA que reconoce el lenguaje generado por esta gramática.
- 3. Para el lenguaje representado por la expresión regular (01)*0 obtener:
 - a) Una gramática lineal por la derecha que genere L.
 - b) Una gramática lineal por la izquierda que genere L.
 - c) El DFA mínimo que reconoce L.
- 4. Proponer si es posible una gramática lineal por la derecha o una gramática independiente del contexto que genere el lenguaje $L \subset \{a, b, c\}^*$ tal que:
 - a) $w \in L \Leftrightarrow w$ no contiene dos símbolos "a" consecutivos.
 - b) $w \in L \Leftrightarrow w$ contiene dos símbolos "b" consecutivos.
- 5. La gramática G independiente del contexto dada por:

$$S \to aSb|aSa|bSa|bSb|\varepsilon$$

no es una gramática regular, aunque L(G) es un lenguaje regular. Obtener una gramática regular G' tal que L(G') = L(G). Obtener también un autómata finito y una expresión regular para L(G').

Computabilidad y Algoritmia Curso 2024-2025

6. Construir un autómata finito para la gramática regular siguiente:

 $S \to abA|B|baB|\varepsilon$

 $A \rightarrow bS|b$

 $B \rightarrow aS$

- 7. Obtener una gramática independiente del contexto para cada uno de los siguientes lenguajes independientes del contexto:
 - $a) \{a^m b^n \mid m \ge n\}$
 - b) $\{w \in \{a,b\}^* \mid w \text{ tiene el doble de } aes \text{ que de } bes\}$
 - $c) \{a^m b^n c^p d^q \mid m+n \ge p+q\}$
- 8. Demostrar que los siguientes lenguajes no son independientes del contexto:

a)
$$L_1 = \{a^p \mid p \text{ es primo}\}$$

b)
$$L_2 = \{a^{n^2} \mid n > 1\}$$

9. Determinar si los siguientes lenguajes son regulares o independientes del contexto. Justificar las respuestas.

a)
$$\{0^i b^j \mid i = 2j \text{ \'o } 2i = j\}$$

$$b) \ \{ww^{-1} \mid w \in \{0,1\}^*\}$$

c)
$$\{0^i 1^j 2^k \mid i = j \text{ ó } j = k\}$$

10. Demostrar que la siguiente gramática es ambigua:

 $S \to bA|aB$

$$A \to a|aS|bAA$$

$$B \rightarrow b|bS|aBB$$

11. Determinar si las cadenas $w_1 = aabaab$ y $w_2 = bbaaa$ son generadas por la siguiente gramática independiente del contexto:

$$S \to aAB|aBA|\varepsilon$$

$$A \rightarrow aS|bAAA$$

$$B \rightarrow aABB|aBAB|aBBA|bS$$

Computabilidad y Algoritmia Curso 2024-2025

- 12. Convertir las siguientes gramáticas a forma normal de Chomsky:
 - $a) S \rightarrow CBa|D$
 - $A \rightarrow bbC$
 - $B \to Sc|ddd$
 - $C \to eA|f|C$
 - $D \to E|SABC$
 - $E \to gh$
 - b) $S \to aAb|cHB|CH$
 - $A \rightarrow dBH|eeC$
 - $B \to ff|D$
 - $C \to gFB|ah$
 - $D \rightarrow i$
 - $E \rightarrow jF$
 - $F \to dcGGG|cF$
 - $G \to kF$
 - $H \to Hlm$
- 13. Sea $L=\{(ab)^n\ c^{2m-1}\}$, sobre el alfabeto $\Sigma=\{a,b,c\}$, con $n\geq 0$ y $m\geq 1$
 - a) Obtener una gramática independiente del contexto que genere el lenguaje L.
 - b) Partiendo de la gramática obtenida (y no de la propia definición del lenguaje), demuestre si las cadenas $w_1 = ababccc$ y $w_2 = abcc$ pertenecen o no al lenguaje.
 - c) ¿Es L un lenguaje regular? Justifique su respuesta.
- 14. Sea $L=\{a^n\ c^r\ b^{r+s}\ c^s\ a^n\}$ sobre el alfabeto $\Sigma=\{a,b,c\}$ tal que $n\geq 0, r\geq 0$ y $s\geq 0$
 - a) Obtener una gramática independiente del contexto que genere el lenguaje L.
 - b) Partiendo de la gramática obtenida (y no de la propia definición del lenguaje), demuestre si las cadenas $w_1 = accbbbbbccca$ y $w_2 = acbbc$ pertenecen o no al lenguaje.

Computabilidad y Algoritmia Curso 2024-2025

- 15. Sea $L = \{yxy \text{ tal que } |y| = 2, |yxy| \text{ es par, } x, y \in \{a, b\}^*\}$
 - a) Obtener una gramática independiente del contexto que genere el lenguaje L.
 - b) Partiendo de la gramática obtenida (y no de la propia definición del lenguaje), demuestre si las cadenas $w_1 = abbab$ y $w_2 = abbbaaab$ pertenecen o no al lenguaje.
 - c) ¿Es L un lenguaje regular? Justifique su respuesta.
- 16. Considere el lenguaje $L=\{a^{3n}\ b^{5m}\ c^r\}$ sobre el alfabeto $\Sigma=\{a,b,c\}$ tal que $n,\ m\geq 0$ y donde r=n o bien r=m
 - a) Definir una gramática G con no más de 5 símbolos no terminales que genere L. Indicar si la gramática diseñada es regular y/o independiente del contexto.
 - b) Simplificar la gramática eliminando las producciones vacías, las producciones unitarias y también los símbolos y/o producciones inútiles.
- 17. Considere el lenguaje $L\subset\{0,1\}^*$ formado por todas las cadenas de longitud impar tales que el primer símbolo, el símbolo central y el último símbolo coinciden. Si L es independiente del contexto, especificar una gramática independiente del contexto con no más de 3 símbolos no terminales que lo genere. Si no lo es, demostrarlo.
- 18. Sea $P_5(x)$ el prefijo de x de longitud 5 si |x| > 5 o x si |x| < 5. Se define $P_5(L) = \{P_5(x) \mid x \in L\}$. ¿Es el conjunto de los lenguajes independientes del contexto cerrado bajo la operación P_5 ? Justificar la respuesta.
- 19. Considere la expresión regular siguiente:

$$r = (0^+1)^* \ 0 \ (0^+1)^* \ 0 \ (0^+1)^*$$

- a) Diseñar una gramática que genere L(r).
- b) A partir de la expresión regular r o de la gramática obtenida en el apartado anterior, diseñar un autómata finito que reconozca L(r).