7. Use Single Source Shortest Path to obtain the lengths of Shortest Paths from vertex V₁ to all remaining vertices in the diagraph (See Fig.)

Unit-4

- 8. (a) What is Travelling Salesman Problem? Explain with example 8
 - (b) Differentiate between NP, NP-Complete, and NP-hard Problem. 8
- 9. Explain with example:

8×2=16

- Bin Packing
- Naive String Matching algorithm.

Printed Pages: 3

Scane seri ?

MCA/D-16

DESIGNAND ANALYSIS OF ALGORITHMS Paper-MCA-14-33

Time allowed: 3 hours]

[Maximum marks: 80

Note: Question No. 1 is compulsory. Attempt four more questions selecting one question from each unit.

All questions carry equal marks.

(Compulsory Question)

- 1. (a) What do you understand by asymptotic notation? 2×8
 - (b) Give all the four conditions which need to be satisfied by a binary search tree, if it is not empty.
 - (c) Explain the term "Lower bound of a problem"
 - (d) Differentiate between Time and Space complexity.
 - (e) Name various types of complexity classes.
 - (f) Give the limitations of Dijkstra's algorithm.
 - (g) Explain the term Transitive Closure.
 - (h) What is an algorithm? What is its role in computing?

Unit-1

2. What is Bucket Sort? Explain the algorithm for Bucket Sort.

Sort the following list using the same algorithm:

16

20 4 10 8 47 58

Also find Time Complexity

10316

[P.T.O.

3.	(a)	What is recurrence relation? Explain their use we example.	ith 8
	(b)	What do you understand by the term sorting? Wr. down the algorithm for heap sort.	ite 8
		Unit-2	
4.	(a)	What are hash tables? Explain their use wi examples.	th 8
	(b)	Write an algorithm to delete as element X from a bina search tree T. What is the time complexity of you algorithm.	
5.	Subs	e down the algorithm for finding out the Longest Commosequence (LCS). Find the LCS of: 1 a a b c d a e f	on 6
		= b e a d f Unit-3	
6.	(a) (b)	Apply O/I knapsack to find optimal solution suc	8 h 8
10	316		