Probabilités conditionnelles M01

EXERCICE N°1 Remise en forme n°1

VOIR LE CORRIGÉ

Dans sa trousse, Bernadette a des styles bleus ou rouges, qui peuvent être avec ou sans capuchon, selon la répartition ci-après :

	Bleu	Rouge	Total
Avec capuchon	3	7	10
Sans capuchon	5	12	17
Total	8	19	27

Pour écrire, elle prend un de ses stylos au hasard et on considère les événements :

A: « Le stylo est bleu. »

D: « Le stylo a un capuchon. »

- 1) Déterminer les probabilités P(A) et P(D).
- 2) Décrire chacun des événements $A\cap D$, $A\cup D$, $\overline{A}\cap D$, par une phrase et donner sa probabilité.
- 3) Écrire l'événement « Le stylo est rouge et sans capuchon » à l'aide des événements A et D.
- 4) Associer les événements suivants à la valeur qui correspond :

Probabilité qu'un stylo rouge ait un capuchon.	•	■ 7 27
Probabilité qu'un stylo avec capuchon est rouge.	•	■ ⁷ / ₁₀
Probabilité qu'un stylo soit rouge avec capuchon.	•	• $\frac{7}{19}$

EXERCICE N°2 Remise en forme n°2

VOIR LE CORRIGÉ

On considère une urne contenant 3 jetons numérotés de 1 à 3.

On tire un jeton dans cette urne puis **on le remet dans l'urne** et on en tire un second : le résultat de l'expérience aléatoire est la somme des deux nombres obtenus.

- 1) Représenter cette expérience aléatoire par un arbre puis par un tableau.
- 2) Donner la loi de probabilité associée à cette expérience aléatoire.
- 3) Quelle est la probabilité que le résultat de cette expérience aléatoire soit pair ?

EXERCICE N°3 Remise en forme n°3

VOIR LE CORRIGÉ

Dans un jeu à gratter, le montant des gains possibles est 0, 5, 10, 15 et 200 euros avec les probabilités suivantes :

Gain en euros	0	5	10	15	20
Probabilité	0,7	0,15		0,04	0,01

- 1) Déterminer la probabilité de gagner 10 euros.
- 2) Déterminer la probabilité de gagner au plus 10 euros.
- 3) Déterminer la probabilité de gagner plus de 10 euros.
- 4) Déterminer la probabilité de gagner au moins 10 euros.
- 5) Déterminer la probabilité de gagner moins de 10 euros.

PROBABILITÉS CONDITIONNELLES M01C

EXERCICE N°1 Remise en forme n°1

RETOUR À L'EXERCICE

Dans sa trousse, Bernadette a des styles bleus ou rouges, qui peuvent être avec ou sans capuchon, selon la répartition ci-après:

		1				
	Bleu	Rouge	Total			
Avec capuchon	3	7	10			
Sans capuchon	5	12	17			
Total	8	19	27			

Pour écrire, elle prend un de ses stylos au hasard et on considère les événements :

A: « Le stylo est bleu. »

D: « Le stylo a un capuchon. »

1) Déterminer les probabilités P(A) et P(D).

$$P(A) = \frac{8}{27}$$
, $P(D) = \frac{10}{27}$

- 2) Décrire chacun des événements $A\cap D$, $A\cup D$, $\overline{A}\cap D$, par une phrase et donner sa probabilité.
- $A \cap D$: Le stylo est bleu avec capuchon.

$$P(A \cap D) = \frac{3}{27} = \frac{1}{9}$$

 $A \cap D$ est l'événement, c'est à dire « une chose décrite par une phrase »

 $P(A \cap D)$ est la probabilité, c'est à dire un nombre compris entre 0 et 1.

• $A \cup D$: Le stylo est bleu ou possède un capuchon.

$$P(A \cup D) = \frac{5+3+7}{27} = \frac{15}{27} = \frac{5}{9}$$

(En utilisant directement le tableau)

$$P(A \cup D) = P(A) + P(D) - P(A \cap D) = \frac{8}{27} + \frac{10}{27} - \frac{3}{27} = \frac{15}{27} = \frac{5}{9}$$

(En utilisant la formule du crible)

• $\overline{A} \cap D$: Le stylo n'est pas bleu ET possède un capuchon.

(On peut écrire : Le stylo est rouge et possède un capuchon)

$$P(\overline{A} \cap D) = \frac{7}{27}$$

- 3) Écrire l'événement « Le stylo est rouge et sans capuchon » à l'aide des événements A et D. $\overline{A} \cap \overline{D}$
- 4) Associer les événements suivants à la valeur qui correspond :

Probabilité qu'un stylo rouge ait un capuchon.

Probabilité qu'un stylo avec capuchon est rouge.

Probabilité qu'un stylo soit rouge avec capuchon.

 $\frac{7}{27}$

10

 $\frac{7}{19}$

PROBABILITÉS CONDITIONNELLES M01C

EXERCICE N°2 Remise en forme n°2

RETOUR À L'EXERCICE

On considère une urne contenant 3 jetons numérotés de 1 à 3.

On tire un jeton dans cette urne puis **on le remet dans l'urne** et on en tire un second : le résultat de l'expérience aléatoire est la somme des deux nombres obtenus.

1) Représenter cette expérience aléatoire par un arbre puis par un tableau.

Étape 1 Étape 2	1	2	3
1	2	3	4
2	3	4	5
3	4	5	6

2) Donner la loi de probabilité associée à cette expérience aléatoire.

Issue	2	3	4	5	6	total
Probabilité	<u>1</u> 9	$\frac{2}{9}$	$\frac{3}{9} = \frac{1}{3}$	<u>2</u> 9	<u>1</u> 9	1

3) Quelle est la probabilité que le résultat de cette expérience aléatoire soit pair ?

$$P(2)+P(4)+P(6) = \frac{1}{9} + \frac{3}{9} + \frac{1}{9} = \frac{5}{9}$$

Ainsi la probabilité que le résultat de cette expérience aléatoire soit pair vaut $\left| \frac{5}{9} \right|$

PROBABILITÉS CONDITIONNELLES M01C

EXERCICE N°3 Remise en forme n°3

RETOUR À L'EXERCICE

Dans un jeu à gratter, le montant des gains possibles est 0, 5, 10, 15 et 200 euros avec les probabilités suivantes :

Gain en euros	0	5	10	15	20
Probabilité	0,7	0,15		0,04	0,01

1) Déterminer la probabilité de gagner 10 euros.

Dans une expérience aléatoire, la somme des probabilités des issues vaut 1, donc :

$$P(10) = 1 - (0.7 + 0.15 + 0.04 + 0.01) = 0.1$$

Ainsi la probabilité de gagner 10 euros vaut 0,1

2) Déterminer la probabilité de gagner au plus 10 euros.

$$P(0) + P(5) + P(10) = 0.7 + 0.15 + 0.1 = 0.95$$

Ainsi, la probabilité de gagner au plus 10 euros vaut 0,95 .

« au plus » signifie « On prend tout jusque » et correspond à « 🔌 ».

(en lisant de gauche à droite)

3) Déterminer la probabilité de gagner plus de 10 euros.

$$P(15) + P(20) = 0.04 + 0.01 = 0.05$$
.

Ainsi, la probabilité de gagner plus de 10 euros vaut 0,05.

« plus de » signifie : « On prend ce qui est strictement au dessus » et correspond à « > ». (en lisant de gauche à droite)

4) Déterminer la probabilité de gagner au moins 10 euros.

$$P(10)+P(15) + P(20) = 0.1+0.04+0.01 = 0.15$$
.

Ainsi, la probabilité de gagner au moins 10 euros vaut 0,15.

« au moins » signifie : « On prend à partir de » et correspond à « > ».

(en lisant de gauche à droite)

5) Déterminer la probabilité de gagner moins de 10 euros.

$$P(0) + P(5) = 0.7 + 0.15$$
.

Ainsi, la probabilité de gagner moins de 10 euros vaut 0,85

« moins de » signifie : « On prend ce qui est strictement en dessous » et correspond à « < ». (en lisant de gauche à droite)