<u> </u>	、单项选择题				
1.	下列物理量具有强度性质的是		(A)
	(A) 电极电势 φ	(B) 自由能 G (D) 熵 S			
	(C) 摩尔数 n	(D) 熵 S			
2.	下列说法正确的是(A) 放热反应总是自发进行的		(D)
	(A) 放热反应总是自发进行的	(B) 稳定的纯单质 $\Delta_f H_m^\theta$, $\Delta_f G_m^\theta$, ΔS_m^θ)均;	为零	-
	(C) 一级反应必定是基元反应				
	(D) 冰在室温下自动融化成水,是烟				
3.	绝热箱中装有水,水中绕有电阻丝,				
		若以电池为体系,以水和电阻丝为			
		(D) 0 10 W 10 1 W 10	(D)
	(A) $Q = 0, W > 0, \Delta U > 0$	(B) $Q < 0$, $W < 0$, $\Delta U < 0$			
	(C) $Q > 0$, $W = 0$, $\Delta U > 0$	· / · -			
4.	在标准态下,石墨燃烧反应的焓				
	-395.6kJ·mol ⁻¹ ,则石墨转变为金刚石	T的反应焓变为	(C)
	(A) -789.3 kJ·mol ⁻¹ (B) 0	(C) $+1.9 \text{ kJ} \cdot \text{mol}^{-1}$ (D) $-1.9 \text{ kJ} \cdot \text{mol}^{-1}$			
5.	下列关于反应进度的说法错误的是		(В)
	(A) 反应进度是针对一个有确定计量	量系数的反应式而言的			
	(B) 同一反应的各反应物种的计量系	《数不同,它们在同一时刻的反应进身。	更也	小不材	目同
	(C) 当反应进度为 1mol 时,每种反	应物消耗的摩尔数和每种产物生成的	摩	尔数	,均
	等于反应方程式中各自的计量数				
	(D) $\Delta_r H_m^{\theta}$ 中 m 的含义是指按指定的				
6.			(D)
	(A) 对同一种物质而言, $S_{\rm m}^{\theta}(g) < S_{\rm m}$	$S_{\mathrm{m}}^{\theta}(1) \leq S_{\mathrm{m}}^{\theta}(s)$			
	(B) 物质熵的绝对数值无法测出	12.6			
	(C) 热力学第二定律规定了熵的绝对				
_	(D) 熵和体系的微观状态数都可以表		<i>/</i> イフ	र्गास	-1: 44
/.	某反应的速率方程式是 $v = k \cdot [c(A)]$	ʃ*[<i>c</i> (B)]',ヨ <i>c</i> (A)佩少一丰时,ν 降 14 倍,则 x、y 分别为			
			(C)
	(A) $x = 0.5$, $y = 0.707$ (C) $x = 2$, $y = 0.5$				
8	已知某反应的活化能为 114kJ·mol ⁻¹ ,		—	<u>4</u> .	
0.		约为)
	(A) 1×10 ² 倍 (B) 1×10 ¹⁰ 倍	(C) 1×10 ⁶ 倍 (D) 1×10 ⁸ 倍	(D	,
9.	若基元反应 A \rightarrow 2B 的活化能为 E_a ,				
	若加入催化剂后		_(В)
	(A) E _a 和 E _a ' 均基本不变	(B) E _a 和 E _a '均降低	\		,
	(C) Ea 降低, Ea 基本不变	(D) Ea 降低, Ea 升高			
10	. 关于化学反应的活化络合物理论,	下列说法不正确的是	(D)
	(A) 吸热反应和放热反应,均要经历	万一个中间过渡状态。			
	(B) 正逆反应经过同一过渡态,正边	色反应的活化能之差为反应热。			
	(C) 基元反应的逆反应一定是基元反	芝应			
	(D) 活化络合物分子具有较高的平均				

11. 反应速率随温度升高而加快的主要原因是 (A) 分子碰撞次数增多 (B) 分子每次平均碰撞能量增大 (C) 活化能随温度升高而下降 (D) 活化分子所占的百分数增加	(D)
12. 在 500K 时,反应 $SO_2(g) + \frac{1}{2}O_2(g) \longleftrightarrow SO_3(g)$ 的 $K_p=50$,同一温度下	,反	並	
$2SO_3(g)$ \Longrightarrow $2SO_2(g) + O_2(g)$ 的 K_p 为	(В)
(A) 2×10 ⁻² (B) 4×10 ⁻⁴ (C) 1×10 ⁻² (D) 2.5×10 ² 13. 一个反应达到平衡的标志是	(C)
(C) 各物质浓度不随时间改变而改变 (D) $\Delta_r G_m$ $\theta=0$	但长》	日由	上休
14. 在反应 $4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(g)$ 达到平衡的容器中,积不变,加入惰性气体以增加体系的压强,这时			
 (A) 平衡时 NH₃ 的浓度不变 (B) 平衡时 NH₃ 的浓度增大 (C) 平衡时 NH₃ 的浓度减小 (D) 平衡时 NH₃ 和 NO 的总浓度 15. 已知 K^θ(HF) = 6.7×10⁻⁴, K^θ(HCN) = 7.2×10⁻¹⁰, K^θ(HAc) = 1.8×10⁻⁵。 		D	,
可配成 pH=9 的缓冲溶液的是	(В)
16. 0.2 mol·L ⁻¹ 的甲酸溶液中 3.2%的甲酸电离,它的电离常数是	(В)
(A) 9.6×10-3(B) 2.1×10-4(C) 1.25×10-6(D) 4.8×10-517. CdS 和 PbS 在稀盐酸中不溶,但可在浓盐酸中溶解,是基于 (A) 酸溶解(B) 酸溶解和配位溶解(C) 酸溶解和氧化还原溶解(D) 酸溶解、配位溶解和氧化还原	·)
18. 下列哪种卤化物不能作为路易斯酸)
(A) SnCl ₄ (B) SbCl ₅ (C) BF ₃ (D) CCl ₄			
19. 已知 $Ksp^{\theta}(Ag_3[Fe(CN)_6])=9.8\times10^{-26}$,若不考虑阴、阳离子的副反应,贝			
在水中的溶解度为	(С)
20. AgI 对 AgCl 的溶度积之比为 2×10 ⁻⁶ ,若将同一浓度的 Ag ⁺ (10 ⁻⁵ mol·L ⁻ 有相同浓度的 Cl ⁻ 和 I ⁻ (10 ⁻⁵ mol·L ⁻¹) 溶液中,可能发生的现象是			
(A) Cl ⁻ 和 I ⁻ 以相同量沉淀 (B) I ⁻ 比 Cl ⁻ 沉淀略少一些 (C) Cl ⁻ 沉淀更多 (D) I ⁻ 沉淀更多			•
21. 根据氧化还原反应式拟定出来的电池,如果计算出来的电池电动势小下列说法错误的是)
(A) 这种反应不可能实现 (B) 实现这一反应必须外加能量 (C) 这个反应条件不是平衡状态 (D) 装置出来的电池不是自发电池	也		

23.	己知 H ₂ O ₂ 的电势图,说明(A)
	已知 H_2O_2 的电势图,说明 (A) 酸性介质: $O_2 = \frac{0.67V}{1.77V} H_2O_3$,碱性介质: $O_2 = \frac{0.08V}{1.77V} H_2O_3$ 0.87V 2 OH^-
	(A) H_2O_2 在酸性介质中主要表现出氧化性,但也具备一定程度的还原性
	(B) H ₂ O ₂ 在碱性介质中, 只具备还原性
	(C) H ₂ O ₂ 的歧化反应只在酸性介质中发生
	(D) H ₂ O ₂ 的歧化反应只在碱性介质中发生
	已知 $\varphi^{\theta}(Fe^{3+}/Fe^{2+})=0.771V$, $\varphi^{\theta}(Fe^{2+}/Fe)=-0.447V$,则 $\varphi^{\theta}(Fe^{3+}/Fe)$ 应为(A)
25	(A) -0.041V (B) 0.324V (C) 1.218V (D) 1.419V pH=14 时,水作为氧化剂的半反应为(B)
	(A) $O_2 + 4H^+ + 4e \rightleftharpoons 2H_2O$ (B) $H_2O + e \rightleftharpoons 1/2 H_2 + OH^-$
	(C) $O_2 + 2H_2O + 4e \rightleftharpoons 4OH^-$ (D) $H^+ + e \rightleftharpoons 1/2 H_2$
	已知 $\varphi^{\theta}(Pb^{2+}/Pb)$ =-0.1266V, $K_{sp}^{\theta}(PbCl_2)$ =1.7×10 ⁻⁵ ,则 $\varphi^{\theta}(PbCl_2/Pb)$ 为(D)
	(A) $0.268V$ (B) $-0.409V$ (C) $-0.016V$ (D) $-0.268V$
二,	填空题(共20分,每空1分)
1.	用 $\Delta_r G_m^{\theta} > 0$ 、< 0、= 0 作为化学反应方向的判据时,需满足_等温等压不做非体积功,
	参加反应的各物质均处于标准状态(不写明等温等压不做非体积功
	-0.5)条件。用 $\Delta_{r}G_{m}>0$ 、 <0 、 $=0$ 作为化学反应方向
	的判据时,需满足_等温等压不做非体积功条件。
2.	某一个化学反应进行到某时刻,其恒压热效应为 $\Delta_r H$,则该化学反应的 $\Delta_r H_m$ 与 $\Delta_r H$
	的关系为。
3.	根据热力学第三定律, _处于绝对零度时的完美晶体(不写明绝对零度
	-1)的微观状态数为 1。
4.	碰撞理论认为,大多数的碰撞都是无效碰撞,有效碰撞需满足_碰撞有分子均为活
	化分子,且处于有利的碰撞方位上(缺一条减 0.5 分)
	条件。
5.	三 级 反 应 的 速 率 系 数 (k) 的 单 位 为
	$\text{mol}^{-2} \cdot \text{L}^2 \cdot \text{s}^{-1}$
6.	
	$\underline{\hspace{1cm}}_{K_{a2}}^{\theta}\underline{\hspace{1cm}}_{\circ}$
7.	在 298K 时浓度为 0.010mol·L ⁻¹ 的某一元弱酸溶液的 pH 为 4.00, 当把该酸溶液稀释
	一 倍 后 , 其 pH 变 为4.15, 解 离 度 (α) 将 变 为 原 来 的
	1.414
8.	根据酸碱电子理论,反应 NaH+H ₂ O ← NaOH+H ₂ 中 NaH 称为Lewis 碱
	, H ₂ 称为酸碱 配合物(或加合物)。
9.	铅酸蓄电池的阴极为海绵状铅,阳极为 PbO ₂ ,两极之间的电解液为 30%的硫酸溶液。
	请写出该电池的电池符号(-)Pb PbSO4 H2SO4(30%) PbSO4 PbO2(+)(未
	写出 30%者不扣分)。
10.	标准氢电极是一种 气体-离子 电极(写出电极类型)。

三、判断题(共10分,每题1分)

- 1. 标准电极电势 φ 的数据不适用于非水溶液。 \checkmark
- 2. ΔH , ΔU , Q 均为状态函数, 故与反应的过程无关。 \mathbf{x}
- 3. 对于一个放热熵增的反应,其在任何温度下均可自发向右进行。✓
- 4. 平衡状态是封闭体系中可逆反应进行的最大限度。✓
- 5. 沉淀的转化反应只有溶解度较大的沉淀才能转化为溶解度较小的沉淀。*
- 6. 一个等温等压,不做非体积功的化学反应,其在任意某时刻时的反应方向可以用反应商判据来判断。**✓**

四、计算题(共40分,每题10分)

- 1. 在 500K 时, 硝基甲烷的分解反应为一级反应, 其半衰期为 650s, 并测得 1000s 时 硝基甲烷的浓度为 0.05mol/L
 - 求: (1) 该反应的速率常数。
 - (2) 硝基甲烷的初始浓度。

$$\ln \frac{\text{LAI}}{\text{LAoI}} = -kt$$

$$\ln \frac{1}{2} = -k \cdot 650s$$

$$\ln \frac{1}{2}$$

- 2. 混合溶液中含有 0.010 mol·L^{-1} 的 Pb^{2+} 和 0.10 mol·L^{-1} 的 Ba^{2+} ,问能否用 K_2CrO_4 溶液 将 Pb^{2+} 和 Ba^{2+} 有效分离? (已知 $PbCrO_4$ 的 $K_{sp}^{\theta}=2.8\times10^{-13}$, $BaCrO_4$ 的 $K_{sp}^{\theta}=1.2\times10^{-10}$)
- **解** Pb²⁺开始沉淀时需 CrO₄²⁻ 浓度为

$$\left[\text{CrO}_4^{2-}\right] = \frac{K_{\text{sp}}(\text{PbCrO}_4)}{\left[\text{Pb}^{2+}\right]} = \frac{2.8 \times 10^{-13}}{0.010} = 2.8 \times 10^{-11} (\text{mol} \cdot \text{L}^{-1})$$

Ba²⁺开始沉淀时需 CrO₄⁻ 浓度为

$$[\,\mathrm{CrO_4^{2^-}}] = \frac{K_{sp}(\,\mathrm{BaCrO_4})}{[\,\mathrm{Ba}^{2^+}\,]} = \frac{1.2 \times 10^{-10}}{0.10} = 1.2 \times 10^{-9} (\,\mathrm{mol} \cdot \mathrm{L}^{-1})$$

生成 $PbCrO_4$ 沉淀所需 $[CrO_4^{2-}]$ 低,可见先生成 $PbCrO_4$ 沉淀,后生成 $BaCrO_4$ 沉淀。

当开始生成 BaCrO₄ 沉淀时,溶液中 Pb²⁺浓度为

$$[Pb^{2+}] = \frac{K_{\rm sp}(PbCrO_4)}{[CrO_4^{2-}]} = \frac{2.8 \times 10^{-13}}{1.2 \times 10^{-9}} = 2.3 \times 10^{-4} (\text{mol} \cdot \text{L}^{-1})$$

即[Pb^{2+}]>1.0×10⁻⁵ mol· L^{-1} , Ba^{2+} 开始沉淀时, Pb^{2+} 尚未沉淀完全,因此不能用 K_2CrO_4 将 Ba^{2+} 和 Pb^{2+} 有效分开。

3. 100ml 0.030mol·L⁻¹ NaH₂PO₄ 和 50ml 0.030mol·L⁻¹ 的 Na₃PO₄ 溶液混合后,溶液的 pH 值是多少? 若往此溶液中加入 0.10mmol 的 NaOH(设加入 NaOH 前后体积不变),溶液的 pH 值又是多少? (H₃PO₄: *K*_{a,1}⁰=7.5×10⁻³, *K*_{a,2}⁰=6.2×10⁻⁸, *K*_{a,3}⁰=2.2×10⁻¹³)

$$H_2PO_4^- + PO_4^{3-} \rightarrow HPO_4^{2-} + HPO_4^{2-}$$
 $K = K_2/K_3 = 2.8 \times 10^5$,反应完全 3.0 mmol 1.0 mmol
 ∴ 溶液组成为 $H_2PO_4^- \sim HPO_4^{2-} \sim$ $pH = pK_2 + lg(C_{HPO42}/C_{H2PO4-}) = 7.21 + lg1/1 = 7.21$ 加碱后:
$$pH = pK_2 + lg(2.0 + 0.10)/(2.0 - 0.10) = 7.21 + lg(2.1/1.9) = 7.25$$

4. 298K 时,在 Ag^+/Ag 电极中加入过量 I^- ,设达到平衡时 $[I^-] = 0.10 \text{ mol·}L^{-1}$,另一个电极为 Cu^{2+}/Cu , $[Cu^{2+}] = 0.010 \text{ mol·}L^{-1}$ 。现将两电极组成原电池,写出原电池的符号、电池反应式、并计算电池反应的平衡常数。

```
已知: \phi^{\theta} (Ag<sup>+</sup>/Ag) = 0.80V, \phi^{\theta} (Co<sup>2+</sup>/Cu) = 0.34V, K^{\theta}_{sp}(AgI)=1.8×10<sup>-18</sup> 解: \phi (Cu<sup>2+</sup>/Cu) = 0.34 + (0.0591/2) lg(0.010) = 0.28 (V) \phi (AgI/Ag) = 0.80 + (0.0591/1) lg(K_{sp}/[I<sup>-</sup>]) = 0.80 + 0.0591 lg(1.0 × 10<sup>-18</sup>/ 0.10) = -0.20 (V) 所以原电池符号: Ag | AgI(s) | I<sup>-</sup>(0.10 mol • dm<sup>-3</sup>) || Cu<sup>2+</sup>(0.010 mol • dm<sup>-3</sup>) || Cu(s) 电池反应式: 2Ag + Cu<sup>2+</sup> + 2I<sup>-</sup> = 2AgI + Cu \phi^{\Theta} (AgI/Ag) = \phi^{\Theta} (Ag<sup>+</sup>/Ag) + 0.0591 lg K_{sp}(AgI) = 0.80 + 0.059 lg(1.0 × 10<sup>-18</sup>) = -0.26 (V) E^{\Theta} = \phi^{\Theta} (Cu<sup>2+</sup>/Cu) -\phi^{\Theta} (AgI/Ag) = 0.34 - (-0.26) = 0.60 (V) lg K^{\Theta} = nE^{\Box} /0.0591 = 2 × 0.60 / 0.0591 = 20.34 所以平衡常数 K^{\Theta} = 2.2 \times 10^{20}
```