Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Arbitrary image segmentation

References

Combination of MRF and ShapeBM for Image Labeling

Alexander Kirillov, Dmitry Vetrov

arhipisk@gmail.com

2013

Table of Contents

Combination of MRF and ShapeBM for Image Labeling

Kirillov,

Arbitrary image segmentation

D-f----

Arbitrary image segmentation

Arbitrary image segmentation

Combination of MRF and ShapeBM for Image Labeling

> Kirillov Vetrov

Arbitrary image segmentation

Reference

The task is to label arbitrary images of objects using a shape prior

- arbitrary location of multiple objects on the image
- distinct size and rotation of objects

ShapeBM tuning

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Arbitrary image segmentation

References

ShapeBM is a model of shape which is tuned on the shapes:

- centered in the middle of the image,
- in the same direction (e.g. horses facing left),
- uniformly scaled relative to the size of the image.

ShapeBM + MRF — pros and cons

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Arbitrary image segmentation

- + Stores probability distribution on shapes which is tuned to a train dataset
- + Generates new shapes different from a training data
- + Cope an occlusion problem
- Not applicable for segmentation in case of arbitrary images
- Not effective in case of there are more than one object on an image.

Object detection + shape prior segmentation

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Arbitrary image segmentation

References

Two step method:

- use an object detector to find a bounding box
- apply the segmentation method for the bounding box. The image areas may have wide variance of resolution, however our method allows use one ShapeBM regardless of the resolution.

Object detection + shape prior segmentation disadvantages

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Arbitrary image segmentation

- In case of object detection problem the bounding box is usually parallel to image sides. It doesn't take into account an object rotation (horse on a hillside)
- The bounding box doesn't have an information about object pose (horse facing left or right).

Part based object detection [Felzenszwalb P. et al. 2008]

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Arbitrary image segmentation

References

Part based approach to object detection get the bounding boxes both for whole object and for parts of object (head, croup, legs, etc).

Part based object detection + shape prior segmentation

Combination of MRF and ShapeBM for Image Labeling

> Kirillov, Vetrov

Arbitrary image segmentation

References

The bounding boxes for parts of object allow to determinate an image area for shape prior segmentation. It also gives an information about object.

Table of Contents

Combination of MRF and ShapeBM for Image Labeling

> Kirillov Vetrov

Arbitrary image segmentation

References

Arbitrary image segmentation

References

Combination of MRF and ShapeBM for Image Labeling

> Kirillov Vetrov

Arbitrary image segmentation

- Felzenszwalb P., McAllester D., Ramanan D. A Discriminatively Trained, Multiscale, Deformable Part Model, CVPR, 2008
- Felzenszwalb P., Girshick R., McAllester D. Cascade Object Detection with Deformable Part Models, CVPR, 2010
- Girshick R., Felzenszwalb P., McAllester D. Object Detection with Grammar Models, NIPS, 2011.