Assignment 2

Fulin Guo

- 1. Imputing age and gender
 - (a) First, conduct OLS regression based on observations from SurveyIncome.txt:

$$age = \beta_0 + \beta_1 tot _inc + \beta_2 wgt + \varepsilon_1$$

$$female = \eta_0 + \eta_1 tot _inc + \eta_2 wgt + \varepsilon_2$$
(1)

Second, we can use the above equations to impute age and gender variable in BestIncome.txt based on labor income, capital income and weight variable in that dataset:

For each individual i:

$$age_{i} = \beta_{0} + \beta_{1}(lab_inc_{i} + cap_inc_{i}) + \beta_{2}wgt_{i}$$

$$female_{i} = \eta_{0} + \eta_{1}(lab_inc_{i} + cap_inc_{i}) + \eta_{2}wgt_{i}$$
(2)

(We use the assumption that for each individual, total income equals to labor income plus capital income).

Lastly, we should ensure that the female variable be either 0 or 1 by making the following transformation:

If
$$female_i \ge 0.5$$
, then $female_i = 1$
If $female_i < 0.5$, then $female_i = 0$ (3)

(b) First, we conduct OLS regression for SurveyIncome.txt data, obtaining:

$$age = 44.2097 + 2.52*10^{-5}*tot_inc - 0.0067wgt + \varepsilon_{1}$$

$$female = 3.7611 - 5.25*10^{-6}*tot_inc - 0.0195wgt + \varepsilon_{2}$$
 (4)

OLS Regression Results

0.001

Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	s: :	nonrol	2018 7:00 1000 997 2 bust	F-stat Prob (Log-Li AIC: BIC:	R-squared: tistic: (F-statist ikelihood:	ic):	0.00 -0.00 0.632 0.53 -3199. 6405 6419
	coef	std err		t	P> t	[0.025	0.975
	4.2097 52e-05 0.0067	1.490 2.26e-05 0.010		29.666 1.114 -0.686	0.000 0.266 0.493	41.285 -1.92e-05 -0.026	47.13 6.96e-0 0.01
Omnibus: Prob(Omnibus): Skew: Kurtosis:		2 0 -0 3	.460 .292 .109	Durbin Jarque Prob(S Cond.	n-Watson: e-Bera (JB JB): No.):	1.92 2.32 0.31 5.20e+0
==========							
			ıress	ion Resu	lts		
		OLS Reg	ıress	ion Resu	lts		
 Dep. Variable: Model:		OLS Reg fema	gress ===== ale OLS	ion Resu ======= R-squar Adj. R-	lts ======= ed: squared:		0.834 0.834
 Dep. Variable: Model: Method:		OLS Reg fema C Least Squar	gress ===== ale OLS :es	sion Resu ======= R-squar Adj. R- F-stati	lts ======= ed: squared: stic:		0.834 0.834 2513.
 Dep. Variable: Model: Method: Date:		OLS Reg fema C Least Squar ne, 16 Oct 20	gress ==== ale oLS ces	rion Resu R-squar Adj. R- F-stati Prob (F	lts ====== ed: squared: stic: -statistic		0.834 0.834 2513. 0.00
Dep. Variable: Model: Method: Date: Time:	 Tu	OLS Reg fema C Least Squar Le, 16 Oct 20 19:47:	gress ale DLS ces 018	R-squar Adj. R- F-stati Prob (F Log-Lik	lts ====== ed: squared: stic: -statistic		0.834 0.834 2513. 0.00 173.49
 Dep. Variable: Model: Method: Date:	 Tu	OLS Reg fema fema C Least Squar Le, 16 Oct 20 19:47:	gress ale DLS ces 018	rion Resu R-squar Adj. R- F-stati Prob (F	lts ====== ed: squared: stic: -statistic		0.834 0.834 2513. 0.00
Dep. Variable: Model: Method: Date: Time: No. Observations	 Tu	OLS Reg fema fema C Least Squar Le, 16 Oct 20 19:47:	gress ale ols ces ols cos olo olo olo olo olo olo olo olo olo o	Rion Resu R-squar Adj. R- F-stati Prob (F Log-Lik	lts ====== ed: squared: stic: -statistic		0.834 0.834 2513. 0.00 173.49
Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:	 Tu :	OLS Reg	gress ===== ale DLS ces 018 000 000 997 2	R-squar Adj. R- F-stati Prob (F Log-Lik AIC: BIC:	lts ======== ed: squared: stic: -statistic elihood:	 2):	0.834 0.834 2513. 0.00 173.49 -341.0
Dep. Variable: Model: Method: Date: Time: No. Observations Df Mesiduals: Df Model: Covariance Type:	Tu:	OLS Reg	gress ale DLS ces 018 000 000 997 2	R-squar Adj. R- F-stati Prob (F Log-Lik AIC: BIC:	lts ======== ed: squared: stic: -statistic elihood:	2): 	0.834 0.834 2513. 0.00 173.49 -341.0 -326.3
Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:	Tu: coef	OLS Reg	gress ==== ale DLS ces 018 000 097 2 ast =====	R-squar Adj. R- F-stati Prob (F Log-Lik AIC: BIC:	lts ed: squared: stic: -statistic elihood: P> t 0.000	[0.025	0.834 0.834 2513. 0.00 173.49 -341.0 -326.3
Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:	Tu: coef	OLS Reg	gress ==== ale DLS ces 018 000 097 2 ast =====	R-squar Adj. R- F-stati Prob (F Log-Lik AIC: BIC:	lts ed: squared: stic: -statistic elihood: P> t 0.000	[0.025	0.834 0.834 2513. 0.00 173.49 -341.0 -326.3
Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:	Tu: coef7611 5e-06 .0195	OLS Reg	73 -6-58	Resure Resure Resquar Adj. Reference (For the Air For	lts ====================================	[0.025 3.661 -6.77e-06 -0.020	0.834 0.834 2513. 0.00 173.49 -341.0 -326.3
Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:	Tu: coef7611 5e-06 .0195	OLS Reg	73 -68	R-squar Adj. R- F-stati Prob (F Log-Lik AIC: BIC: t	lts	[0.025 3.661 -6.77e-06 -0.020	0.834 0.834 2513. 0.00 173.49 -341.0 -326.3
Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:	Tu: coef7611 5e-06 .0195	OLS Reg	yress 	R-squar Adj. R- F-stati Prob (F Log-Lik AIC: BIC: t .600 .765 .098	lts	[0.025 3.661 -6.77e-06 -0.020	0.834 0.834 2513. 0.00 173.49 -341.0 -326.3
Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:	Tu: coef7611 5e-06 .0195	OLS Reg fema C Least Squar Re, 16 Oct 20 19:47: 10 nonrobu std err 0.051 7.76e-07 0.000	73 -68 -58 -58 -70 -618	R-squar Adj. R- F-stati Prob (F Log-Lik AIC: BIC: t .600 .765 .098	lts ====================================	[0.025 3.661 -6.77e-06 -0.020	0.834 0.834 2513. 0.00 173.49 -341.0 -326.3

Second, we use equation (4) to input age and female variable in BestIncome.txt data.

$$age_{i} = 44.2097 + 2.52*10^{-5}*(lab_inc_{i} + cap_inc_{i}) - 0.0067wgt_{i}$$
 female_i = 3.7611 - 5.25*10⁻⁶*(lab_inc_{i} + cap_inc_{i}) - 0.0195wgt_{i} (5) Lastly, If female_i \geq 0.5 , then female_i = 1 If female_i < 0.5 , then female_i = 0 (6)

The first five rows in SurveyIncome.txt data after imputing are showed as follows:

	<pre>imputed_age</pre>	<pre>imputed_female</pre>
0	44.745897	0
1	45.157777	0
2	44.745701	0
3	44.919024	0
4	44.554687	0

(c) Using python, I obtain the descriptive statistics of imputed age and gender variables.

	Imputed age	Imputed female
Mean	44.8940	0.4705
Standard deviation	0.21907	0.4992
Minimum	43.9800	0.0000
Maximum	45.7068	1.0000
Number of observations	10,0000	10,000

Results in python:

```
[5 rows x 6 columns]
         10000.000000
count
            44.894036
mean
             0.219066
std
min
            43.980016
25%
            44.747065
50%
            44.890281
75%
            45.042239
            45.706849
max
Name: imputed_age, dtype: float64
count
         10000.000000
mean
             0.470500
std
             0.499154
min
             0.000000
25%
             0.000000
50%
             0.000000
75%
             1.000000
             1.000000
max
Name: imputed_female, dtype: float64
```

(d) I obtain the correlation matrix for the six variables in the BestIncome.txt data by coding in python.

The correlation matrix for the six variables:

	lab_inc	cap_inc	hgt	wgt	imputed_age	imputed_female
lab_inc	1.000000	0.005325	0.002790	0.004507	0.924329	-0.164857
cap_inc	0.005325	1.000000	0.021572	0.006299	0.234234	-0.046594
hgt	0.002790	0.021572	1.000000	0.172103	-0.044927	-0.134172
wgt	0.004507	0.006299	0.172103	1.000000	-0.299395	-0.778537
imputed_age	0.924329	0.234234	-0.044927	-0.299395	1.000000	0.074288
imputed_female	-0.164857	-0.046594	-0.134172	-0.778537	0.074288	1.000000

2. Stationarity and data drift

(a) The dependent variable is salary_p4, and the explanatory variable is gre_gnt. Coding in python, I obtain the following outcomes.

OLS Regression Results									
========			=====				========		
Dep. Varia	able:	salar	у р4	R-squ	ared:		0.263		
Model:			OLS	Adj.	R-squared:		0.262		
Method:		Least Squ	ares	F-sta	tistic:		356.3		
Date:	Tu	e, 16 Oct		Prob	(F-statistic):	3.43e-68		
Time:		19:5	7:42		ikelihood:		-10673.		
No. Observ	vations:		1000	AIC:			2.135e+04		
Df Residua				BIC:			2.136e+04		
Df Model:			1	210.			2.1300.01		
Covariance	Tune.	nonro	_						
========	. 19pc:		======						
	coef	std err		t	P> t	[0.025	0.975]		
const	8.954e+04	878.764	101	.895	0.000	8.78e+04	9.13e+04		
gre_qnt	-25.7632	1.365	-18	.875	0.000	-28.442	-23.085		
Omnibus:		 9	.118	===== Durbi	.n-Watson:		1.424		
Prob(Omnib	ous):	0	.010	Jarqu	e-Bera (JB):		9.100		
Skew:	,		.230	Prob(, ,		0.0106		
Kurtosis:		3	.077	Cond.	No.		1.71e+03		

The estimated $oldsymbol{eta}_{\scriptscriptstyle 0}$ is 8.95*10⁴, the standard errors of $oldsymbol{eta}_{\scriptscriptstyle 0}$ is 878.764.

The estimated $eta_{_1}$ is -25.7632, the standard errors of $eta_{_1}$ is 1.365. The p-value is 0.000.

(b) The scatter of GRE and graduation year is:

The problem is that the gre_gnt variable has an obvious relationship with grad_year. That is, the gre_gnt variable is between 600 and 800 when grad_year is smaller than 2011 and less than 200 when grad_year is larger than or equal to 2011. This is a potential problem when testing the hypothesis since the correlation between gre_qnt and salary_p4 showed in part(a) might just because the two variables both have a correlation with the third variable grad_year and there is no causal correlation between gre_qnt and salary_p4. This is a biased estimation.

To solve this problem, I remove the influence of grad_year on gre_qnt by conducting the OLS regression:

$$gre_qnt = \alpha_0 + \alpha_1 after_2011 + \varepsilon$$

$$after_2011 = 1 \text{ if grad_year is larger or equal to 2011. Otherwise, } after_2011 = 0$$

The result of this regression is:

			OLS Re	egress	ion Re	sults		
========								
Dep. Varial	ole:		gre	_qnt	R-squ	ared:		0.993
Model:				OLS	Adj.	R-squared:		0.993
Method:		Leas	st Squa	ares	F-sta	tistic:		1.363e+05
Date:		Tue, 1	oct :	2018	Prob	(F-statistic)):	0.00
Time:			20:1	7:43	Log-I	ikelihood:		-4446.7
No. Observa	ations:			1000	AIC:			8897.
Df Residua	ls:			998	BIC:			8907.
Df Model:				1				
Covariance	Type:		nonrol	bust				
========								
	CO	ef sto				P> t	[0.025	0.975]
aft_2011	-573.527	72				0.000	-576.575	-570.479
const	728.42	L4 (745	977	.806	0.000	726.960	729.883
Omnibus:			10	 .161	Durbi	.n-Watson:		 1.952
Prob(Omnib	us):		0	.006	Jarqu	e-Bera (JB):		15.242
Skew:	•			.003	_	, ,		0.000490
Kurtosis:			3	.605	Cond.	No.		2.53
=======								

Then I update the gre qnt:

If the grad_year is larger or equal to 2011, updated_gre = gre_qnt (do not change). If the grad_year is smaller than 2011, updated_gre = gre_qnt - 573.5272

(In this method, I actually make all gre_qnt has the scoring scale between 130 and 170. However, another way to eliminate the problem is to get the residual of the above regression, which also eliminates the impact of grad_year on gre_qnt)

Here is the first five rows of the updated_gre variable.

updated_gre
166.211872
148.286473
2162.752708
3196.973285
4161.477661

(c) The scatter of income four years after graduation and graduation year is:

The problem is that the salary_p4 variable has an obvious relationship with grad_year variable. That is, the salary_p4 variable has an increasing trend. This is a potential problem when testing the hypothesis since the correlation between gre_qnt and salary_p4 showed in part(a) might just because the two variables both have a correlation with the third variable grad_year and there is no causal correlation between gre_qnt and salary_p4, which results in a biased estimation.

To solve this problem, I remove the influence of grad_year on salary_p4 by estimating the following OLS regression:

$$\ln(salary_p4) = \delta_0 + \delta_1 grad_year + \varepsilon$$

			OLS Re	egress	ion R	esults			
Dep. Variab	le:	====	y R-squared:					0.490	
Model:				OLS	Adj.	R-squared:		0.489	
Method:			Least Squa	ares	F-st	atistic:		957.7	
Date:		Tu	-			(F-statistic)	:	5.73e-148	
Time:						Likelihood:	720.33		
No. Observations:			1000		AIC:			-1437.	
Df Residual	.s:		998		BIC:			-1427.	
Df Model:			1						
Covariance	Type:		nonrol	oust					
	co	==== ef	std err	=====	===== t	P> t	[0.025	0.975]	
grad year	0.03	 09	0.001	30	 .947	0.000	0.029	0.033	
const	-50.71	69	2.001	-25	.349	0.000	-54.643	-46.791	
Omnibus:	======	====	 16	===== .351	==== Durb	========= in-Watson:	=======	2.019	
Prob(Omnibus):				.000	Jarque-Bera (JB):			16.700	
Skew:				.304	-	(JB):		0.000236	
Kurtosis:				.177		. No.		1.08e+06	

Then I update the salary_p4:

$$updated_sal = salary_p4 - \exp(\hat{\delta}_0 + \hat{\delta}_1 grad_year)$$

Using this method, I eliminate the influence of graduation year on salary_p4.

Here are the first five rows of updated_sal:

(d) Because I have eliminated the influence of grad_year on both salary_p4 and gre_qnt, using updated_sal and updated_gre variable to test the hypothesis will reflect the net correlation between salary and GRE score (without the influence of grad_year). I conduct the OLS regression in python and obtain the following outcomes:

OLS Regression Results

===========				
Dep. Variable:	updated_sal	R-squared:		0.000
Model:	OLS	Adj. R-squared:		-0.001
Method:	Least Squares	F-statistic:		0.3956
Date:	Tue, 16 Oct 2018	Prob (F-statistic)	:	0.529
Time:	20:58:58	Log-Likelihood:		-10495.
No. Observations:	1000	AIC:		2.099e+04
Df Residuals:	998	BIC:		2.100e+04
Df Model:	1			
Covariance Type:	nonrobust			
===========				
	coef std err	t P> t	[0.025	0.975]
const -5819	.1738 2094.231	-2.779 0.006	-9928.776	-1709.572
updated_gre -8	.4296 13.402	-0.629 0.529	-34.728	17.869
Omnibus:	1.261	Durbin-Watson:		2.030
Prob(Omnibus):	0.532	Jarque-Bera (JB):		1.164
Skew:	-0.006	Prob(JB):		0.559
Kurtosis:	3.167	Cond. No.		1.18e+03
===========			=======	=======

The estimated $m{\beta}_0$ is -5819.7318, the standard errors of $m{\beta}_0$ is 2094.231. The estimated $m{\beta}_1$ is -8.4296, the standard errors of $m{\beta}_1$ is 13.402.

Compare the result of (d) and (a), firstly, I find that the estimated constant β_0 is smaller in (d) than (a). This is just because the updated_sal is smaller than the origin variable salary_p4 because in part(c), we remove the influence of grad_year on salary_p4 by $updated_sal = salary_p4 - \exp(\hat{\delta}_0 + \hat{\delta}_1 grad_year)$, where $\exp(\hat{\delta}_0 + \hat{\delta}_1 grad_year)$ is the fitted value of salary_p4.

The important change is $\beta_{\rm I}$, which is larger in (d) than it is in part (a). The p-value in part (a) is 0.000, but in part (d), the p=value is 0.529. This means we cannot reject the hypothesis that $\beta_{\rm I}=0$ in part (d), but I need to reject this hypothesis in part(a). This big difference is because in part (a), we do not remove the influence of grad_year on gre_qnt and salary_p4. The salary_p4 variable increases as the grad_year increases and gre_qnt is smaller when the grad_year is larger than 2011 than when the grad_year is smaller than 2011. Because the positive correlation between salary_p4 and grad_year as well as the negative correlation (although not linear) between gre_qnt and grad_year, the salary_p4 and gre_qnt will have a negative correlation due to the third variable grad_year, which means in part(a), I underestimate the coefficient $\beta_{\rm I}$. In part(d), the result shows there is no significant negative correlation between salary and GRE after removing the influence of graduation year. In conclusion, there is no evidence that "higher intelligence is associated with higher income".

3. Assessment of Kossinets and Watts (2009)

The research question in the paper is "To what extent can observed homophily be attributed to individual preference (choice homophily) and structural constraints (induced homophily) respectively?"

To answer this question, the authors utilize a network data which records interactions between students, faculty, and staff as well as individual features and structural organizations. There are three different data sources: The first is the logs of e-mail interactions between individuals in a U.S. university. The second is the data of individual attributes, including status, gender, age, etc. The third data source is the record of course registration. There are 30396 individuals in the data, including undergraduate students (21%), graduate and professional students (27%), faculty (13%), and staff (13.4%) in the university (There were 43,553 individuals who used university e-mail to both send and receive messages during the academic year. However, the authors only include 30,396 individuals among them who exchanged messages with others that are active in both fall and spring semester). The authors only include email that were sent to singer recipient other than the sender, which has 7,156,162 messages, accounting for 82% of all email. The time period is one fall semester and one spring semester, 270 days in total (Though the full data set spans two calendar years, the authors only analyze one calendar years). The description and definition of all variable are in appendix A of the paper.

In the footnote 23 on the page 423 of the paper, the authors indicate the method of treating missing variables when calculating the aggregate measure of pairwise similarity, which is using the population mean for this similarity-scale component. The authors said that the missing values are nonrandom, like nonstudents having more missing data than students. The problem is that the group that has more missing data might also has higher/lower similarity (i.e. There is a correlation between the proportion of missing data and similarity). For example, if faculty have more missing values of age than others, suppose that either faculty i or j has a missing value age, and according to the authors' suggestions, we would assign age match (i, j) = 0.175 for faculty i and j because 17.5% of all pairs are of the same age in the university. The problem is that the differences in age between faculty might be larger than that between students, indicating that 0.175 overestimates the similarity between faculty i and j. Similarity is a very important variable in the paper. If at the same time, faculty are more or less likely to form new ties with others, there would be a biased estimation of the correlation between similarity and relationship forming.

There are some weakness of the match of data source and theoretical construct. For instance, some email contact might not represent interpersonal relationship, like the email sent from an administrative staff to all students in a department. The authors address this weakness by including only messages that were sent to a single recipient other than the sender (eliminating multi-recipient e-mail). The authors also eliminate the simultaneous messages from the same sender that differed in size by less than 100 bytes. Therefore, after eliminating the email logs which do not represent interpersonal communication, the match between theoretical construct and data improves.