

Критические точки функции: максимумы и минимумы. Применение производной к исследованию функции

В этом уроке

- Критические точки функции: максимумы и минимумы
- Применение производной для исследования функций на монотонность и экстремумы

Рассмотрим функцию:

$$y = x^3 - 3x^2$$

Основные определения

Точка x_0 называется точкой максимума функции f(x), если существует окрестность точки x_0 , такая, что для всех x, не равных x_0 , из этой окрестности, выполняется неравенство

$$f(x) < f(x_0)$$

Точка x_0 называется точкой минимума функции f(x), если существует окрестность точки x_0 , такая, что для всех x, не равных x_0 , из этой окрестности, выполняется неравенство

$$f(x) > f(x_0)$$

Точки, в которых значение производной функции равно нулю, называются стационарными точками.

Признаки монотонности

Признак возрастания функции

Если f'(x)>0 на некотором промежутке, то функция f(x) возрастает на данном промежутке.

Признак убывания функции

Если f'(x) < 0 на некотором промежутке, то функция f(x) убывает на данном промежутке.

Пример 1

Найти промежутки возрастания и убывания функции $f(x) = x^3 - 2x^2 + x$.

Решение:

- $f'(x) = (x^3 2x^2 + x)' = 3x^2 4x + 1$
- Решим уравнение f'(x) = 0.
- $x_1 = 1/3, x_2 = 1$

Ответ: при $x \in (-\infty; 1/3] \cup [1; +\infty)$ функция возрастает; при $x \in [1/3; 1]$ функция убывает.

Достаточное условие экстремума в точке

Пусть f(x) некоторая дифференцируемая на интервале (a;b) функция, точка $x_0\in(a;b)$ и $f'(x_0)=0.$ Тогда:

- lacktriangledown если при переходе через стационарную точку x_0 производная функции f(x) меняет знак, с «плюса» на «минус», то точка x_0 является точкой максимума функции.
- f 2 если при переходе через стационарную точку x_0 производная функции f(x) меняет знак, с «минуса» на «плюс», то точка x_0 является точкой минимума функции.

Пример 2

Найти экстремумы функции $f(x) = x^3 - 2x^2 + x$.

Решение:

- $f'(x) = (x^3 2x^2 + x)' = 3x^2 4x + 1$
- Решим уравнение f'(x) = 0.
- $x_1 = 1/3, x_2 = 1$

 $\it Oтвет$: в точке $x_1=1/3$ — максимум; в точке $x_2=1$ — минимум.

Пример 3

Найти промежутки возрастания и убывания функции $f(x) = \frac{x^2}{x-1}$.

Решение:

$$f'(x) = \left(\frac{x^2}{x-1}\right)' = \frac{(x^2)'(x-1) - x^2(x-1)'}{(x-1)^2} = \frac{2x(x-1) - x^2}{(x-1)^2} = \frac{x(x-2)}{(x-1)^2}$$

2 Точки, в которых f'(x) = 0 (или не существует):

$(-\infty;0)$	(0;1)	(1;2)	$(2;\infty)$
+	_	_	+

Продолжение примера 3

 $\it O$ твет: x=0 — точка максимума; x=2 — точка минимума.

