Electric Circuit Theory

Course Objectives:

To continue work in Basic Electrical Engineering including the use of the Laplace Transform to determine the time and frequency domain responses of electric circuits.

- 1. Network Analysis of AC circuit & Dependent Sources (8 hours)
 - a.Mesh Analysis
 - b. Nodal Analysis
 - c. Series & parallel resonance in RLC circuits
 - i.Impedance and phase angle of series Resonant Circuit
 - ii. Voltage and current in series resonant circuit
 - iii.Band width of the RLC circuit.
 - iv. High-Q and Low-Q circuits
- 2. Initial Conditions (2 hours)
 - a.Characteristics of various network elements
 - b.Initial value of Derivatives
 - c. Procedure for evaluating initial conditions
 - d.Initial condition in the case of RLC network
- 3. Transient analysis in RLC circuit by direct solution (10 hours)
 - a.Introduction
 - b. First order Differential equation
 - c. Higher order homogeneous and non-homogeneous differential equations
 - d.Particular integral by method of undetermined coefficients
 - e. Response of R-L circuit with
 - i.DC excitation
 - ii. Exponential excitation
 - iii. Sinusoidal excitation
 - f.Response of R-C circuit with
 - i.DC excitation
 - ii. Exponential excitation
 - iii. Sinusoidal excitation
 - g. Response of series RLC circuit with
 - i.DC excitation
 - ii. Exponential excitation
 - iii. Sinusoidal excitation
 - h.Response of parallel RLC circuit with DC excitation
- 4. Transient analysis in RLC circuit by Laplace Transform(8 hours)
 - a.Introduction
 - b.The Laplace Transformation
 - c.Important properties of Laplace transformation
 - d. Use of Partial Fraction expansion in analysis using Laplace Transformations
 - e. Heaviside's partial fraction expansion theorem
 - f.Response RL circuit with
 - i.DC excitation
 - ii. Exponential excitation
 - iii. Sinusoidal excitation

- g. Response of RC circuit with
 - DC excitation
 - Exponential excitation
 - Sinusoidal excitation
- h. Response of series RLC circuit with
 - DC excitation
 - Exponential excitation
 - Sinusoidal excitation
- i. Response of parallel RLC circuit with exponential excitation
- j. Transfer functions Poles and Zeros of Networks
- 5. Frequency Response of Network(6 hours)
 - a.Introduction
 - b. Magnitude and Phase response
 - c. Bode Diagrams
 - d.Bandwidth of Series & parallel Resonance circuits
 - e.Basic concept of filters, high pass, low pass, band pass and band stop filters
- 6. Fourier Series and transform (5 hours)
 - a.Basic concept of Fourier series and analysis
 - b.Evaluation of Fourier coefficients for periodic non-sinusoidal waveforms in electric networks
 - c.Introduction of Fourier transforms
- 7. Two-port Parameter of Networks(6 hours)
 - a. Definition of two-port networks
 - b. Short Circuit admittance parameters
 - c.Open Circuits impedance parameters
 - d. Transmission Short Circuit admittance parameters
 - e. Hybrid Parameters
 - f.Relationship and Transformations between sets of parameters
 - a. Application to Filters
 - h. Applications to Transmission Lines
 - i.Interconnection of two-port network(Cascade, series, parallel)

References:

- 1.M. E. Van Valkenburg, "Network Analysis", third edition Prentice Hall, 2010.
- 2. William H. Hyat. Jr. & Jack E. Kemmerly, "Engineering Circuits Analysis", Fourth edition, McGraw Hill International Editions, Electrical Engineering Series, 1987.
- 3. Michel D. Cilletti, "Introduction to Circuit Analysis and Design", Holt, Hot Rinehart and Winston International Edition, New York, 1988.