# Computerized Control partial exam 1 (18%)

## Kjartan Halvorsen

**Time** September 12 19:05-20.35

**Place** 4203

**Permitted aids** The single colored page with your own notes, table of Laplace transforms, calculator

All answers should be readable and well motivated (if nothing else is written). Solutions/motivations should be written on the provided spaces in this exam. Use the last page if more space is needed.

#### Good luck!

Matricula and name:

#### Control of a frictionless mechanical system

Friction is ubiquous in mechanical systems, but can sometimes be neglected in a model. The textbook gives one such example: Control of the position of the arm of a hard disk drive. With the input signal u(t) being the torque applied to the arm, y(t) the angular position of the arm and J its moment of inertia, the system is described by the differential equation

$$J\ddot{y}(t) = u(t). \tag{1}$$



$$u(t)$$
  $G(s) = \frac{1}{Js^2}$   $y(t)$ 

## Problem 1

Calculations:

(a) Show that zero-order-hold sampling of the model (1) gives the pulse-transfer function

$$H(z) = \frac{\frac{h^2}{2J}(z+1)}{(z-1)^2}.$$

| (b) State as a mathematical expression how the continuous-time poles (in the s-plane) and the corresponding discrete-time poles (in the z-plane) are related, and verify that the relationship |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| holds in this particular case.  Answer:                                                                                                                                                        |
| Allswei.                                                                                                                                                                                       |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |
|                                                                                                                                                                                                |

**Problem 2** In the rest of the exam, consider the sampled system obtained with J = 0.5 and sampling time h = 1 (the time unit is 100  $\mu$ s).

$$H(z) = \frac{z+1}{(z-1)^2}.$$

The system is being controlled by the discrete-time controller

$$U(z) = F(z)E(z) = 0.4 \frac{z - 0.8}{z - 0.2} (Y_{ref}(z) - Y(z)).$$
(2)

| (a) | Draw a | a block-diagram | of the | closed-loop | $\operatorname{system}$ |
|-----|--------|-----------------|--------|-------------|-------------------------|
|-----|--------|-----------------|--------|-------------|-------------------------|

Block diagram:

(b) Show that the closed-loop pulse-transfer function from the reference signal  $y_{ref}(k)$  to the control error e(k) is

$$H_e(z) = \frac{(z-1)^2(z-0.2)}{(z-0.2)(z-1)^2 + 0.4(z-0.8)(z+1)}.$$
 (3)

Calculations:

(c) What is the gain of the pulse-transfer function  $H_e(z)$  for constant signals? Explain what this means for the response of the system to a step change in  $y_{ref}(k)$ .

Answer:

(d) Write the control law (2) as a difference equation. Calculations:

Problem 3 The closed-loop system with pulse-transfer function (3) has pulse-response as shown below



Which of the responses in figure 1 is the reponse of the system when the reference signal  $y_{ref}(k)$  is as shown below? **Motivate!** 



Figure 1: Responses to the closed-loop system.

k

k



## **Solutions**

#### Problem 1

(a) The idea with zero-order-hold sampling (a.k.a step-invariant sampling) is to solve the continuous-time system for a step input to obtain y(t), then sample this signal and apply the z-transform to obtain Y(z). Since the input signal (the step) has z-transform  $U(z) = \frac{z}{z-1}$ , we obtain the pulse-transfer function for the sampled system as  $H(z) = \frac{Y(z)}{U(z)} = \frac{z-1}{z}Y(z)$ .

$$y(t) = \mathcal{L}^{-1} \left\{ \frac{1}{Js^3} \right\} = \frac{1}{2J} t^2,$$
$$Y(z) = \mathcal{Z} \left\{ y(kh) \right\} = \mathcal{Z} \left\{ \frac{h^2}{2J} k^2 \right\} = \frac{h^2}{2J} \cdot \frac{z(z+1)}{(z-1)^3},$$

hence

$$H(z) = \frac{Y(z)}{U(z)} = \frac{z-1}{z} \frac{h^2}{2J} \frac{z(z+1)}{(z-1)^3} = \frac{\frac{h^2}{2J}(z+1)}{(z-1)^2}.$$

(b) A pole  $\lambda$  in the s-plane will be mapped to the pole  $p = e^{\lambda h}$  in the z-plane. Here we have two poles in the origin in the s-plane,  $\lambda = 0$ , and so both the poles are mapped to the point  $p = e^{0h} = 1$  in the z-plane.

#### Problem 2

(a)



(b) Using Mason's rule we get

$$H_e(z) = \frac{1}{1 + H(z)F(z)} = \frac{1}{1 + 0.4 \frac{z - 0.8}{z - 0.2} \frac{z + 1}{(z - 1)^2}} = \frac{(z - 0.2)(z - 1)^2}{(z - 0.2)(z - 1)^2 + 0.4(z - 0.8)(z + 1)}.$$

- (c) The static gain is  $H_e(1) = 0$ . So a step-change in  $y_{ref}$  will give no steady-state error.
- (d) Using the shift operator q, we can write the control law as

$$u(k) = 0.4 \frac{q - 0.8}{q - 0.2} e(k)$$

$$(q-0.2)u(k) = 0.4(q-0.8)e(k)$$

6

$$u(k+1)-0.2u(k)=0.4e(k+1)-0.32e(k)$$
 
$$u(k+1)=0.2u(k)+0.4e(k+1)-0.32e(k),$$
 with  $e(k)=y_{ref}(k)-y(k).$ 

**Problem 3** The correct response is **III**. The reference signal is a sum of two delayed and scaled pulses, and can be written  $y_{ref}(k) = \delta(k-4) + 0.3\delta(k-14)$ . Correspondingly, the output should look like the superposition of two delayed and scaled pulse-responses. Responses I and IV starts at the wrong time, and can be excluded. Response II starts at k = 4, and starts out looking correct. However, the superposed pulse response starting at k = 14 is negative. This leaves response III as the correct response.