Digitaltechnik

Andrej Scheuer ascheuer@student.ethz.ch 31. Oktober 2020

AND

AND aus NOR

0 0

OR

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

NOR

OR aus NAND

Weitere Gates

		O NAND	NOR	вох Е	HONX F
A	В	C	D	E	F
0	0	1	1	0	1
0	1	1	0	1	0
1	0	1	0	1	0
1	1	0	0	0	1

$$XOR = (A \wedge \overline{B}) \vee (\overline{A} \wedge B)$$
$$XNOR = (A \wedge B) \vee (\overline{A \wedge B})$$

XOR aus NAND

XOR aus NOR: Gleiches Schema wie NAND + 1 Inverter

XNOR aus NAND: Gleiches Schema wie XOR aus NOR

XNOR aus NOR: Gleiches Schema wie XORaus NAND

Es versteht sich natürlich, dass wenn von "Gleichem Schema wie..." gesprochen wird, die Gates trotzdem getauscht werden müssen

PMOS

CMOS

NMOS

G	Schalter	Y
0	offen	1
1	zu	0
		•

G	Schalter	Y
0	zu	1
1	offen	0

Konstruktion von CMOS-Gates

Regeln für CMOS-Schaltungen

- 1. CMOS-Gates bestehen aus gleich vielen NMOS und PMOS.
- 2. m Eingänge: m NMOS und m PMOS.
- 3. NMOS in Serie \rightarrow PMOS parallel
- 4. NMOS parallel \rightarrow PMOS Serie

Allg. Aufbau CMOS

Umwandlung Pull-up zu Pull-down

- 1. Teilbereiche (Blöcke) identifizieren.
- 2. Schritt 1 wiederholen, bis nur noch einzelne Transistoren vorkommen.
- 3. Falls Pull-down:
 - Von GND aus mit äusserstem Block beginnen.
 - PMOS \rightarrow NMOS
- 4. Falls Pull-up:
 - Von V_{DD} aus mit äusserstem Block beginnen.
 - NMOS → PMOS.

Funktionsgleichung

parallel: \vee	Pull-Up: $y = 1$	alle $I: 0 \to I$ invert.
Serie: ∧	Pull-Down: $y = 0$	alle I : $1 \rightarrow Gl$. inver

Boolsche Algebra

Grundregeln

Kommutativität

$$A \wedge B = B \wedge A$$
$$A \vee B = B \vee A$$

Assoziativität

$$A \wedge (B \wedge C) = (A \wedge B) \wedge C$$
$$A \vee (B \vee C) = (A \vee B) \vee C$$

Distributivität

$$(A \land B) \lor (A \land C) = A \land (B \lor C)$$
$$(A \lor B) \land (A \lor C) = A \lor (B \land C)$$

Nicht	$\overline{\overline{A}} = A$	
Null-Th.	$A \lor 0 = A$	$A \wedge 0 = 0$
Eins-Th.	$A\vee 1=1$	$A \wedge 1 = A$
Idempotenz	$A \lor A = A$	$A \wedge A = A$
V. Komp.	$A \vee \overline{A} = 1$	$A\wedge \overline{A}=0$
Adsorp.	$A \vee (\overline{A} \wedge B)$	$= A \vee B$
	$A \wedge (\overline{A} \vee B)$	$=A\wedge B$
Adsorp.	$A \lor (A \land B)$	=A
	$A \wedge (A \vee B)$	=A
Nachbar.G.	$(A \wedge B) \vee (\overline{A})$	$\overline{A} \wedge B) = B$
	$(A \vee B) \wedge (\overline{A})$	$\bar{A} \vee B) = B$

De Morgan

- $\overline{A \wedge B} = \overline{A} \vee \overline{B}$ 1. Regel
- 2. Regel $\overline{A \vee B} = \overline{A} \wedge \overline{B}$

Regeln gelten auch für n verknüpfte Terme.

Normalformen

MintermMaxtermAND-AusdruckOR-AusdruckOutput: 1Output: 0 n Schaltvar. $\rightarrow 2^n$ mögl. n Schaltvar. $\rightarrow 2^n$ mögMinterme.Maxterme.
Output: 1 Output: 0 $n \text{ Schaltvar.} \rightarrow 2^n \text{ mögl.} n \text{ Schaltvar.} \rightarrow 2^n \text{ mögl}$
$n \text{ Schaltvar.} \to 2^n \text{ mögl.} n \text{ Schaltvar.} \to 2^n \text{ mögl}$
nicht-invertierte Var: 1
invertierte Var: 0 invertierte Var: 0

Disjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 1
- 2. Minterme für diese Zeilen aufstellen
- 3. Minterme mit **OR** verknüpfen

Konjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 0
- 2. Maxterme für diese Zeilen aufstellen
- 3. Maxterme mit AND verknüpfen

A	В	Y	Minterme	Maxterme
0	0	1	$\overline{A} \wedge \overline{B}$	
0	1	0		$A \vee \overline{B}$
1	0	0		$\overline{A} \vee B$
1	1	1	$A \wedge B$	

$$\begin{array}{lll} \mathbf{DNF} & Y = (\overline{A} \wedge \overline{B}) \vee (A \wedge B) & 1 \text{ Mint. erf.} \to & 1 \\ \mathbf{KNF} & Y = (A \vee \overline{B}) \wedge (\overline{A} \vee B) & 1 \text{ Maxt. erf.} \to & 0 \\ \end{array}$$

Schaltung nur aus:

- NOR: KNF \rightarrow De Morgan
- NAND: DNF \rightarrow De Morgan Schaltung nur aus:
 - NOR: KNF \rightarrow De Morgan
 - XNOR: DNF \rightarrow De Morgan

Karnaugh Diagramme (KVD)

CD	00	01	11	10
00	0	1	X	
01				
11				
01				
				_

Hat das Karnaugh Diagramm 5 Dimensionen, wird die 5te Dimension auf zwei Tabellen aufgeteilt.

Don't-Care-Zustände $X \in \{0,1\}$ Redundante, überflüssige oder unmögliche Kombinationen der Eingangsvariablen werden mit einem X markiert.

Päckchen

- Päckchen immer rechteckig (Ausnahme: über Ecken).
- Umfassen möglichst grosse Zweierpotenz.
- Dürfen über Ecken und Grenzen hinausgehen und sich überlappen.

DNF

- KVD ausfüllen.
- 2. Päckchen mit $\mathbf{1}$ uo X.
- 3. Vereinfachte Minterme aufstellen.
- 4. Minterme mit OR verbinden.

KNF

- 1. KVD ausfüllen.
- 2. Päckchen mit $\mathbf{0}$ uo X.
- 3. Vereinfachte Maxterme aufstellen.
- 4. Maxterme mit AND verbinden.

Hazard

Kurzzeitige, unerwünschte Änderung der Signalwerte, die durch Zeitverzögerung der Gatter entstehen.

<u>Statische Hazards</u> Stellen im KVD, an denen sich Päckchen orthogonal berühren, aber nicht überlappen.

Lösung Berührende Päckchen mit zusätzlichen (möglichst grossen) Päckchen verbinden.

Zahlensysteme

 $D\quad \ \, {\rm zu}$ berechnende positive Zahl

R Basis/Radix von D

 b_i Koeffizient

$$D = \sum_{-\infty}^{\infty} b_i \cdot R^i$$

Darstellung D in Basis $R: \ldots b_2b_1b_0.b_{-1}b_{-2}\ldots R$

 $\begin{array}{lll} \text{Dezimal} & 10 & b_i \in \{0,1,\ldots,9\} \\ \text{Dual/Bin\"ar} & 2 & b_i \in \{0,1\} \\ \text{Oktal} & 8 & b_i \in \{0,1,\ldots,7\} \\ \text{Hexa} & 16 & b_i \in \{0,1,\ldots,9,A,B,C,D,E\} \end{array}$

Umwandlung Zahlensysteme

1. Ganzzahlige Division mit R: $D/R = Q_0 + r_0$. 2.

$$Q_i/R = Q_{i+1} + r_{i+1}$$

bis $Q_i = 0$.

3. Erste Operation gibt MSB, letze Operation gibt LSB (aka. unten nach oben lesen.)

Für $1 > D \ge 0$

$$D \cdot R = P_0 \quad K_{-1} = \text{floor}(P_0) \quad a_{-1} = P_0 - K_{-1}$$

 $a_{-1} \cdot R = P_{-1} \dots$

 K_i : Koeffizienten für Zahlensystem. Erste Operation gibt **MSB**, letze Operation gibt **LSB** (aka von oben nach unten lesen).

Byte

Binär zu Hex

0000	0	0100	4	1000	8	1100	C
0001	1	0101	5	1001	9	1101	D
0010	2	0110	6	1010	A	1110	E
0011	3	0100 0101 0110 0111	7	1011	B	1111	F

Zweierkomplement

Sign Bit 0: positiv 1: negativ

Konstruktion

- 1. Zahl |Z| in Binär B umwandeln.
- $2.\ B$ bitweise invertieren
- 3. 1 zu LSB addieren (! Übertrag)
- 4. Sign Bit hinzufügen (zuvorderst).

Ist die Blocklänge länger als Zahl, vorangehende 0(-en) miteinbeziehen.

2^{er}Komplement zu Dezimal

$$D_{(10)} = -b_{n-1} \cdot 2^{n-1} + \sum_{i=0}^{n-2} b_i \cdot 2^i$$

Wertebereich 2er-Komp. $\left[-2^{n-1}, 2^{n-1} - 1\right]$

mQn

$$D_{(10)} = -b_m \cdot 2^m + \sum_{i=0}^{m-1} b_i \cdot 2^i + \sum_{i=1}^n b_i \cdot 2^{-i}$$

m: Vorkommabits, n: Nachkommabits

 $b_i \in \{0, 1, \dots, 9, A, B, C, D, E, F\}$ | Sign-Bit muss nur einmal vor dem m codiert werden.

Binäre Rechenoperationen

Addition

Subtraktion

Bitweise Addition der Binärzahlen. Leere Slots werden mit 0 aufgefüllt. Addition via 2^{er}Komp. Übertrag von MSB ignorieren.

Multiplikation

• Bitweise Multiplikation des Multiplikanden a mit b_i des Multiplikator.

• Sukzessive Multiplikationen werden um ein Bit (0) nach links verschoben.

• Anzahl Nachkommabits ergibt +b: sich aus der Summe der Anzahl Nachk.bits der Operatoren.

 $b_0 \cdot a$ $+b_1 \cdot a \cdot 0$ $+b_2 \cdot a \cdot 0 \cdot 0$

Division

- Identifiziere Teil des Divident > Divisor (Unterblock). Für jede Stelle, sodass Divident < Divisor, 0 in Quotient.
- Unterblock Divisor, 1 an Quotient anhängen, Rest behalten.
- 3. An das Resultat der Subtraktion Bits des Dividenten anhängen. Wiederholen bis Subtraktion 0 ergibt.

Parity-Bits

Hilft Bit-Fehler zu finden.

Bitsequenz wird in 4 Bits unterteilt. Pro Nibble wird ein Parity-Bit angefügt. Nach 4 Blöcken folgt ein Prüfwort.

Parity-Bit	Anz. 1	PB	Nibble + PB
Even P_E	ungerade gerade	1 0	gerade
Odd P_O	ungerade gerade	0 1	ungerade

01010 11011 10111 00101 00011

Fehler P_E

Korrekt P_E

)	1	0	1	0	0	1
L	1	0	1 1 1 0	1	1	1
L	0	1	1	1	1	0
)	0	1	0	1	0	0
			1		0	0

Diverses

Schaltelemente

Multiplexer

Sendet eines von 2^n Eingangssignalen an den Ausgang. Hat n Auswahlbits. Sendet 1 Eingangssignal an einen von 2^n Ausgänge. n Auswahlbits.

Demultiplexer

Halbaddierer

Addiert 2 Binärzahlen A und B. Produziert Summe und Carry-Out.

$$SUM = A \oplus B$$
 $CO = A \wedge B$

Volladdierer

Nimmt einen zusätzlichen Input CI entgegen.

$$SUM = (A \oplus B) \oplus CI$$
 $CO = (A \land B) \lor (S_{AB} \land CI)$

Serienaddierer

Addition einer Stelle pro Taktschritt.

Paralleladdierer (Normalform)

Addition aller Stellen pro Taktschritt.

Vorteil

- Maximal 3 Grundgatter zwischen Input und Output.
- Laufzeit ist unabhängig von Stellenzahl der Summanden.

 $\begin{array}{lll} {\color{red} {\bf Nachteile}} & {\rm Bei} & {\rm Addition} \\ {\color{red} {\bf von}} & n\text{-stelligen} & {\rm Summanden} \\ {\color{red} {\bf den}} & {\color{red} {\bf müssen}} & \sim & n \cdot 2^{2n-1} \\ {\color{red} {\bf Min-/Maxterme}} & {\color{red} {\bf verknüpft}} \\ {\color{red} {\bf wurden}}. \end{array}$

→ Schnell aber Schaltungsaufwendig

Ripple-Carry Addierer (Paralleladdierer)

Vorteile

 Durch Kaskadierung einfach skalierbar.

 Schaltungsaufwand linear zur Stellenzahl.

Nachteile

- SUM und CO für die *i*-te Stelle können erst nach der Berechnung der (*i* – 1)-ten Stelle gebildet werden.
- Addierzeit linear zu Stellenzahl

Langsamer als Normalformaddierer aber einfacher zu realisieren.

Carry-Look-Ahead Addierer (Paralleladdierer)

Kombination der Vorteile des Normalform- und Ripple-Carry-Addierer \to schnelle Schaltung mit begrenztem Aufwand.

Praktische Realisierung Addierer werden kaskadiert, Berechnung der Überträge erfolgt parallel zur Summenbildung.

Berechnungsaufwand ist linear zur Stellenzahl, Laufzeit bleibt konstant.

Booth-Algorithmus

Dient der Multiplikation von Binärzahlen (A & B). Berechnung über Zwischenprodukte P_i .

Division durch 2 bedeutet: Verschiebung des Kommas nach links (shift), mit Vorzeichenverdoppelung falls nötig.

a_i	a_{i-1}	Operation
0	0	$P_i = P_{i-1}/2$
0	1	$P_i = (P_{i-1} + B)/2$
1	0	$P_i = (P_{i-1} - B)/2$
1	1	$P_{i} = P_{i-1}/2$

Anfangswerte: $P_{-1} = 0$, $a_{-1} = 0$ Beim letzten Schritt entfällt die Division durch 2.