A Proof of Section 4.1

A.1 Only one node in the environment

Recall that there is one node with a fixed opinion $p \in [-1, 1]$ in the environment. The opinion of the agent is updated as in Equation (4),

Lemma 3. If $w + \beta py(t) + 1 < 0$, the opinion of the agent stays at sgn(y(t)) for all t' > t.

Proof. As shown in Equation (4) that when $w+\beta py(t)+1<0$, $y(t+1)=\mathrm{sgn}(y(t))$. $w+\beta py(t)+1<0$ is equivalent to $\beta py(t)<-w-1<0$. Knowing that $|y(t+1)|=1\geq |y(t)|$,

$$\beta py(t+1) < -w-1$$

Therefore, $y(t') = \operatorname{sgn}(y(t+1)) = \operatorname{sgn}(y(t))$ for all t' > t.

Lemma 4. If $w+\beta py(t)+1>0$, there exist two fixed points where y(t+1)=y(t): p and $-\frac{1}{\beta p}$. p is attracting while $-\frac{1}{\beta p}$ is repelling.

Proof. The converged opinion y of the agent should satisfy

$$f(y) = \frac{wy + \beta p^2 y + p}{w + \beta py + 1}$$

$$f(y) - y = \frac{-\beta p y^2 + (\beta p^2 - 1)y + p}{w + \beta p y + 1} = \frac{u(y)}{v(y)} = 0 \quad (5)$$

where

$$u(y) = -\beta p y^2 + (\beta p^2 - 1)y + p$$

$$v(y) = \beta p y + w + 1$$

By solving u(y)=0, which is equivalent to f(y)-y=0 since u(y)>0, the two fixed points of f(y) are: p and $-\frac{1}{\beta p}$.

Next, we prove that p is attracting and $-\frac{1}{\beta p}$ is repelling.

$$f'(y) = \frac{w(w + \beta p^2)}{(w + \beta py + 1)^2} \ge 0$$

$$\begin{split} |f'(y)| &= f'(y) \text{, then } f'(p) = \frac{w(w+\beta p^2)}{(w+\beta p^2+1)^2} < 1 \text{, thus attracting; while } f'(y-\frac{1}{\beta p}) = \frac{w(w+\beta p^2)}{w^2} > 1 \text{, thus repelling.} \quad \ \, \Box \end{split}$$

Lemma 5. If $w + \beta py(t) + 1 > 0$ and $py(t) \ge 0$, y = p.

Proof. If p=0, $y(t+1)=\frac{w}{w+1}y(t)$, as the iteration goes, $\lim_{t\to\infty}y(t)=0$;

If py(t) > 0, e.g., they are both positive

- when 0 < y(t) < p, $y(t+1) y(t) = \frac{u(y(t))}{v(y(t))} > 0$, thus y(t+1) > y(t), the agent's opinion increases until it reaches p;
- when p < y(t) < 1, y(t+1) y(t) < 0, the agent's opinion decreases to p.

Lemma 6. If $w + \beta py(t) + 1 > 0$ and py(t) < 0,

1. If
$$\left| \frac{1}{\beta p} \right| > 1$$
, $\lim_{t \to \infty} y(t) = y^e$.

2. If
$$\left|\frac{1}{\beta p}\right| \leq 1$$
,

(a) If
$$|y(t)| < \left| \frac{1}{\beta p} \right|$$
, $y = p$.

(b) If
$$y(t) = -\frac{1}{\beta p}$$
, $y(t') = -\frac{1}{\beta p}$ for all $t' \ge t$.

(c) If
$$\left| \frac{1}{\beta p} \right| < |y(t)| \le 1$$
, $y = \text{sgn}(y(t))$.

Proof. Assume $y(t) \in (0,1]$ and $p \in (-1,0)$,

- if $\left|\frac{1}{\beta p}\right| > 1$, all $y(t) \in (0,1] < -\frac{1}{\beta p}$, y(t) is attracted to p as the updating goes;
- if $\left|\frac{1}{\beta p}\right| = 1$, y(t) is repelled by the extreme point and goes to the attracting one unless it starts with $-\frac{1}{\beta p}$ at time t;
- if $\left|\frac{1}{\beta p}\right| < 1$, when $0 < y(t) < -\frac{1}{\beta p}$, $y(t+1) y(t) = \frac{u(y(t))}{v(y(t))} < 0$, y(t+1) < y(t), the agent's opinion decreases to p; when $y(t) = -\frac{1}{\beta p}$, y(t) stays there; when $y(t) > -\frac{1}{\beta p}$, y(t+1) > y(t), the agent's opinion increases to the extreme value on its side.

A.2 A group of nodes in the environment

Assume there is a set of m neighbour with different fixed opinions, $\mathbf{p}=(p_1,p_2,...,p_m), m>1.$ We denote

• $q = \sum_{i} p_{i}^{2}$ the sum of the squares of the fixed opinions.

• $s = \sum_{i} p_{j}$ the sum of the fixed opinions.

• $m = \sum_{i} 1$ the number of nodes in the environment.

Lemma 7. $mq - s^2 \ge 0$, which is $m \sum_i p_i^2 \ge (\sum_i p_i)^2$.

Proof

$$m \sum_{j} p_j^2 - (\sum_{j} x_j)^2 = \frac{1}{2} \sum_{i} \sum_{j} (p_i - p_j)^2 \ge 0$$

The agent's opinion is updated by

$$y(t+1) = \begin{cases} \operatorname{sgn}(y(t)) & \text{if } w + \beta s y(t) + m \le 0, \\ \frac{wy(t) + \beta q y(t) + s}{w + \beta s y(t) + m} & \text{otherwise.} \end{cases}$$

Lemma 8. If $w + \beta sy(t) + m > 0$, there exist two fixed points where y(t+1) = y(t):

$$y^a = \frac{\beta q - m + \sqrt{\Delta}}{2\beta s}$$
 $y^r = \frac{\beta q - m - \sqrt{\Delta}}{2\beta s}$

where $\Delta = (\beta q - m)^2 + 4\beta s^2$. y^a is attracting while y^r is repelling.

Proof. The function is $f(y) = \frac{wy + \beta qy + s}{w + \beta sy + m}$. The two fixed points satisfy f(y) = y. |f'(y)| = f'(y) since

$$f'(y) = \frac{(w + \beta q)(w + m) - \beta s^2}{(\beta sy + w + m)^2} = \frac{w(w + m) + \beta qw + \beta (qm - s)}{(\beta sy + w + m)^2}$$

For
$$y^a = \frac{\beta q - m + \sqrt{\Delta}}{2\beta s}$$
, $f'(y^a) < 1$ because

$$f'(y^a) - 1 = -\frac{1}{2} \frac{(m - \beta q)^2 + 4\beta s^2 + (2w + m + \beta q)\sqrt{\Delta}}{(\beta s y^a + w + m)^2} < 0$$
the absolute value of 1, thus for any $i \in V$, $\lim_{t \to \infty} |y_i(t)| = 0$ 1.

For
$$y^r = \frac{\beta q - m - \sqrt{\Delta}}{2\beta s}$$
, $f'(y^r) > 1$ because

$$f'(y^r) - 1 = -\frac{1}{2} \frac{(m - \beta q)^2 + 4\beta s^2 - (2w + m + \beta q)\sqrt{\Delta}}{(\beta s y^r + w + m)^2}$$

 $\frac{A}{B} < 0$ since B > 0 and it can be proved as below that A < 0.

$$\left[(m - \beta q)^2 + 4\beta s^2 \right]^2 - \left[(2w + m + \beta q)\sqrt{\Delta} \right]^2$$

$$= 4 \left[(m - \beta q)^2 + 4\beta s^2 \right] \left[\beta (s^2 - qm) - w(m + w + \beta q) \right] < 0$$
Therefore, u^a is attracting and u^r is repelling.

Proof of Theorem 2

Recall that $y_i(t) \in (-1,0) \cup (0,1)$. Given any opinion vector $\mathbf{y}(0)$ of a given connected network G = (V, E), the opinions can be divided into two groups V_1 and V_2 at any time t: a) $\forall i \in V_1, y_i(t) > 0$; b) $\forall i \in V_2, y_i(t) < 0$, and $V = V_1 \cup V_2$. Denote $n_i^s(t)$ the number of node i's neighbors node that are in the same group with i at time t, and $n_i^d(t)$ the number of neighbors in the different group. Specifically, they are denoted as

$$\begin{aligned} &n_i^s(t) = &|N(i)^s|, N(i)^s = \{j|j \in N(i), \text{ and } y_i(t)y_j(t) > 0\} \\ &n_i^d(t) = &|N(i)^d|, N(i)^d = \{k|k \in N(i), \text{ and } y_i(t)y_k(t) < 0\} \\ &\textbf{Lemma 9. For node } i \in V \text{ fix } \beta_i = \beta > 0, \text{ if } \beta > \\ &\frac{1}{[\min(|\mathbf{y}(0)|)]^2}, \lim_{t \to \infty} |y_i(t)| = 1. \end{aligned}$$

Proof. For node $i \in V$, the opinion is updated as in Equation (3). If $\gamma = 1 + \sum_{j \in N(i)} w_{ij} \leq 0$, $y_i(t+1)$ reaches the extreme value in one iteration due to strong backfire effect.

While when $\gamma > 0$, for any t > 0, $y_i(t+1)$ is updated as

$$y_{i}(t) \frac{1 + \sum_{j \in N(i)^{s}} w_{ij} \frac{y_{j}(t)}{y_{i}(t)} + \sum_{k \in N(i)^{d}} w_{ik} \frac{y_{k}(t)}{y_{i}(t)}}{1 + \sum_{j \in N(i)^{s}} w_{ij} + \sum_{k \in N(i)^{d}} w_{ik}} = y_{i}(t) \frac{C}{D}$$
(7)

When $\beta>\frac{1}{[\min(|\mathbf{y}(t)|)]^2}$, for all $k\in N(i)^d$, $w_{ik}=\beta y_i(t)y_k(t)+1<0$. The sums in Equation (7) satisfy: $\sum_{j \in N(i)^s} w_{ij} \frac{y_j(t)}{y_i(t)}, \sum_{j \in N(i)^s} w_{ij}, \sum_{k \in N(i)^d} w_{ik} \frac{y_k(t)}{y_i(t)} > 0,$ and $\sum_{k \in N(i)^d} w_{ik} < 0.$

Now we focus on the node that has the most moderate opinion, namely the node with absolute value of opinion $\min |\mathbf{y}(t)|$ at each time step, starting from time 0. Knowing C, D > 0,

$$C - D = \sum_{j \in N(i)^s} w_{ij} \left(\frac{y_j(t)}{y_i(t)} - 1 \right) + \sum_{k \in N(i)^d} w_{ik} \left(\frac{y_k(t)}{y_i(t)} - 1 \right)$$
(8)

Since $y_i(t)$ has the smallest absolute opinion value, for any $j\in N(i)^s, \frac{y_j(t)}{y_i(t)}\geq 1$, thus $C>D, \frac{C}{D}>1$, and $|y_i(t+1)|>1$

After every iteration from time t to t+1, the opinion of the most moderate node becomes more extreme, until it reaches

 $f'(y^r) - 1 = -\frac{1}{2} \frac{(m - \beta q)^2 + 4\beta s^2 - (2w + m + \beta q)\sqrt{\Delta}}{(\beta s y^r + w + m)^2} = \frac{\text{ists a unique } y^* \in [-\max{(|\mathbf{y}(0)|)}, \max{(|\mathbf{y}(0)|)}]^2, \text{ there exists a unique } y^* \in [-\max{(|\mathbf{y}(0)|)}, \max{(|\mathbf{y}(0)|)}] \text{ such that } y^* \in [-\max{(|\mathbf{y}(0)|)}, \max{(|\mathbf{y}(0)|)}] \text{ such$ **Lemma 10.** For node $i \in V$, if $\beta < \frac{1}{\lceil \max(|\mathbf{y}(0)|) \rceil^2}$, there ex-

Proof. When $\beta < \frac{1}{[\max(|\mathbf{y}(0)|)]^2}, \ \gamma = 1 + \sum_{j \in N(i)} w_{ij} > 0$ because for any $j \in N(i), w_{ij} = \beta y_i(t) y_j(t) + 1 > 0$. For any t > 1, $y_i(t+1)$ is updated as in Equation (7), however, the sums have different values: $=4\left[(m-\beta q)^2+4\beta s^2\right]\left[\beta(s^2-qm)-w(m+w+\beta q)\right]<0 \quad \sum_{j\in N(i)^s}w_{ij}\frac{y_j(t)}{y_i(t)}, \sum_{j\in N(i)^s}w_{ij}, \sum_{k\in N(i)^d}w_{ik}>0, \text{ and} \\ \sum_{k\in N(i)^d}w_{ik}\frac{y_k(t)}{y_i(t)}<0.$ Therefore, y^a is attracting and y^r is repelling. \square

Then we focus on the most opinionated node, which means the node has the largest absolution value of its opinion $\max |\mathbf{y}(t)|$, starting from time 0. Knowing D > 0,

- when C > 0, C D is shown in Equation (8). With ibeing the most opinionated node, $\frac{y_j(\bar{t})}{y_i(t)} \leq 1$ for all $j \in$ $N(i)^s$; $\frac{y_k(t)}{y_i(t)} < 0$ for all $k \in N(i)^d$. Therefore, C < D, $0 < \frac{C}{D} < 1$ and $|y_i(t+1)| < |y_i(t)|$.
- when C = 0, $y_i(t+1) = 0$.
- when C < 0, -C D is shown in Equation (9). As $-1 \le$ $\frac{y_k(t)}{y_i(t)} \leq 0$ for $k \in N(i)^d, -C-D < 0, 0 < \left|\frac{C}{D}\right| < 1$, thus $|y_i(t+1)| < |y_i(t)|.$

$$-C - D = -2 - \sum_{j \in N(i)^s} w_{ij} \left(\frac{y_j(t)}{y_i(t)} + 1 \right) - \sum_{k \in N(i)^d} w_{ik} \left(\frac{y_k(t)}{y_i(t)} + 1 \right)$$
(9)

At every time step, the most opinionated node get moderated until they reach consensus - there is no such node and the updating process stops because consensus is reached.

Lemma 11. For node $i \in V_1$, $y_i(0) = y_0$, where $0 < y_0 < 1$; $\forall i \in V_2$, $y_i(0) = -y_0$. If $\beta = \frac{1}{y_0^2}$, $y_i(t) = y_i(0)$ for all $t \ge 0$.

Proof. When $\beta = \frac{1}{u_o^2}$, $w_{ij} = \frac{1}{u_o^2} y_i(t) y_j(t)$. At time 1,

$$y_i(1) = \frac{y_i(0) + 2n_i^s(0)y_i(0)}{1 + 2n_i^s(0)} = y_i(0)$$

For any $t \geq 1$,

$$y_i(t+1) = \frac{y_i(t) + 2n_i^s(t)y_i(t)}{1 + 2n_i^s(t)} = y_i(t) = y_i(0)$$