

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

# The IOTA Ring: Present Status and Plans

Sergei Nagaitsev HB2014 East Lansing, MI 11 November 2014

# Fermilab 400-kW (now) to 700-kW (2016) complex





# **Building for Discovery**

# Strategic Plan for U.S. Particle Physics in the Global Context



#### The P5 report, May 2014

The enormous physics potential of the LHC, which will be entering a new era with its planned high-luminosity upgrades, will be fully exploited. The U.S. will host a world-leading neutrino program that will have an optimized set of short-and long-baseline neutrino oscillation experiments, and its long-term focus is a reformulated venture referred to here as the Long Baseline Neutrino Facility (LBNF). The Proton Improvement Plan-II (PIP-II) project at Fermilab will provide the needed neutrino physics capability. To meet budget constraints, physics needs, and readiness criteria, large projects are ordered by peak construction time: the Mu2e experiment, the high-luminosity LHC upgrades, and LBNF.



# **Proton Improvement Plan-II (PIP-II, Fermilab)**

- Goal: Provide >1 MW at the time of LBNF startup (~2023)
- 800 MeV superconducting pulsed linac + enhancements to existing complex; extendible to support >2 MW operations and upgradable to continuous wave (CW) operations
  - Builds on significant existing infrastructure
  - Capitalizes on major investment in superconducting rf technologies
  - Eliminates significant operational risks inherent in existing linac
  - Siting consistent with eventual replacement of the Booster as the source of protons for injection into Main Injector
- Whitepaper available at <u>projectx-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1232</u>



# **PIP-II schematic**





#### **PIP-II Performance Goals**

| Performance Parameter                           | PIP-II               |      |
|-------------------------------------------------|----------------------|------|
| Linac Beam Energy                               | 800                  | MeV  |
| Linac Beam Current                              | 2                    | mA   |
| Linac Beam Pulse Length                         | 0.5                  | msec |
| Linac Pulse Repetition Rate                     | 20                   | Hz   |
| Linac Beam Power to Booster                     | 13                   | kW   |
| Linac Beam Power Capability (@>10% Duty Factor) | ~200                 | kW   |
| Mu2e Upgrade Potential (800 MeV)                | >100                 | kW   |
| Booster Protons per Pulse                       | 6.4×10 <sup>12</sup> |      |
| Booster Pulse Repetition Rate                   | 20                   | Hz   |
| Booster Beam Power @ 8 GeV                      | 120                  | kW   |
| Beam Power to 8 GeV Program (max)               | 80                   | kW   |
| Main Injector Protons per Pulse                 | 7.5×10 <sup>13</sup> |      |
| Main Injector Cycle Time @ 120 GeV              | 1.2                  | sec  |
| LBNF Beam Power @ 120 GeV*                      | 1.2                  | MW   |
| LBNF Upgrade Potential @ 60-120 GeV             | >2                   | MW   |

<sup>\*</sup>LBNF beam power can be maintained to ~60 GeV, then scales with energy



#### **PIP-II Status**

- Development phase
  - R&D program supports
     2018-2019 construction
     start
  - Collaboration with India
- Strong support from P5, U.S. DoE, and the Fermilab Director
- Five year construction period would support operations startup in 2023





# R&D toward multi-MW beams and targets at Fermilab

PIP-II Beyond PIP-II (mid-term)

|             | 1st 10 years   | 2nd 10 years   |          |          |
|-------------|----------------|----------------|----------|----------|
| To Achieve: | 100 kT-MW-year | 500 kT-MW-year |          |          |
| We combine: |                | Option 1       | Option 2 | Option 3 |
| Mass        | 10 kT          | 50 kT          | 20 kT    | 10 kT    |
| Power       | 1 MW           | 1 MW           | 2.5 MW   | 5 MW     |

- Strategy after PIP-II depends on the technical feasibility of each option and the analysis of costs/kiloton versus costs/MW
- R&D on cost-effective SRF, control of beam losses in proton machines with significantly higher currents (Q<sub>SC</sub>) and on multi-MW targets

# PIP-III "multi-MW" - Option A





# PIP-III "multi-MW" - Option B





10

# PIP-III "multi-MW" - Option C



# PIP-III: Intelligent choice requires analysis and R&D

- Either increase the performance of synchrotrons by a factor of 3-4:
  - E.g. space-charge tune shift >1
  - Space-charge compensation
  - Increased Landau damping
  - Suppress beam losses
- Or reduce the cost of SRF / GeV by a factor of 3-4:
  - Several opportunities



# A roadmap for high-intensity rings

- Increase dynamic aperture of rings with strong sextupoles and octupoles
  - Single particle dynamics
  - Also, addressed by the light-source community
- 2. Develop the theoretical basis of beam instabilities with strong space charge
- Develop highly-nonlinear focusing lattices with reduced chaos
- 4. Reduce chaos in beam-beam effects
- Ultimately, develop accelerators for super-high beam intensity
  - Self-consistent or compensated space-charge
  - Strong non-linearity (for Landau damping) to suppress instabilities
  - Stable particle motion at large amplitudes

# Addressed by IOTA



# Landau damping rate estimate

A. Burov, "Head-Tail Modes for Strong Space Charge", PRST-AB, 2009

Landau damping rate is computed as

$$\Lambda_x \cong -\frac{Q_s}{\pi} \int \Delta x^2 J_x \frac{\partial f}{\partial J_x} d^3 J$$

$$f(\mathbf{J}) = \exp(-J_x - J_y - J_z)$$

This yields

For octupoles:

$$dQ_x = a_{xx}J_x + a_{xy}J_y =$$

$$= dQ_{xx} + dQ_{xy}$$

$$\Lambda_{x} \cong \frac{\delta Q_{xx}^{2}}{\Delta Q_{sc}} F(\operatorname{sgn}(a_{xx}), |a_{xy}/a_{xx}|); \quad \delta Q_{xx} \propto a_{xx}$$

Damping factor



# **Does Focusing Need to be Linear?**

- Are there "magic" nonlinearities with zero resonance strength?
- The answer is yes (we call them "integrable")
- Search for a lattice design that is strongly nonlinear yet stable
  - Orlov (1963) -- attempt failed (non-integrable)
  - McMillan (1967) first successfull 1-D example
  - Perevedentsev, Danilov (1990 1995) several 1D, 2D examples
  - Cary and colleagues (1994) approximate integrability
- Our goal (with IOTA) is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion in the presence of large space charge.
  - Danilov, Nagaitsev, Phys. Rev. ST Accel. Beams 13, 084002 (2010)



# **Motivation and Strategy**

- We propose an R&D program centered at Fermilab's ASTA/IOTA – Advanced Superconducting Test Accelerator / Integrable Optics Test Accelerator
- ASTA/IOTA will become a unique machine for revolutionary proof-of-principle R&D towards future high intensity machines
  - push performance limits of rings by 3-5 times to enable multi-MW beam power –  $\Delta Q_{SC}$ >1, lower losses, stable beams
  - become the focal point for collaboration and training
- There is a lack of dedicated ring-based accelerator test facilities in the US for high intensity research
  - This hampers the training of next generation of accelerator scientists for HEP
  - At present, the only machine to study SC effects is UMER at University of Maryland with very low (10keV) electrons



# **ASTA Facility**









#### **ASTA Schematic**





# **Integrable Optics Test Accelerator**

# Unique features:

- Can operate with either electrons or protons (up to 150 MeV/c momentum)
- Large aperture
- Significant flexibility of the lattice
- Precise control of the optics quality and stability
- Set up for very high intensity operation (with protons)
- Based on conventional technology (magnets, RF)
- Cost-effective solution



# **IOTA** Ring





# **IOTA Physics Drivers**

- Experimental demonstration of Nonlinear Integrable
   Optics lattice
- Space Charge Compensation in high intensity circular accelerators



We are constructing the Integrable Optics Test Accelerator ring with the *goal to demonstrate the possibility to implement nonlinear integrable optics in a realistic accelerator design*Staged approach

- •<u>Phase I</u> will concentrate on the academic aspect of single-particle motion stability using e<sup>-</sup> beams
  - Achieve large nonlinear tune shift/spread without degradation of dynamic aperture by "painting" the accelerator aperture with a "pencil" beam
  - Suppress strong lattice resonances = cross the integer resonance by part of the beam without intensity loss
  - Investigate stability of nonlinear systems to perturbations, develop practical designs of nonlinear magnets
  - The measure of success will be the achievement of high nonlinear tune shift = 0.25



- In <u>Phase II</u>, using the proton beam, work will be directed towards
  - Achievement of large tune spread within a circulating beam
  - Achievement of space charge suppression in a nonlinear accelerator lattice
    - Studies of applications in future high intensity machines
- IOTA is a multi-purpose machine. In addition to the primary goal, the ring can accommodate other Advanced Accelerator R&D experiments and/or users
  - Optical Stochastic Cooling
- Excellent potential for collaboration. Present collaboration: BINP,
   ORNL, RadiaBeam, RadiaSoft, U.Chicago, UMD, IIT, TechX, JINR
- Educating the next generation of accelerator physicists



#### **Plan of Activities**

# Phase 1: FY15-17

- Construction of main elements of the ASTA/IOTA facility: a)
   IOTA ring; b) electron injector based on existing ASTA
   electron linac; c) proton injector based on the existing proton
   source and 2.5-MeV RFQ; d) special equipment for AARD
   experiments.
- 2. Commissioning of the IOTA ring with electron beam.
- Study of single-particle dynamics in integrable optics with electron beams.

#### **Plan of Activities**

# Phase 2: FY18-20

- 1. Commission IOTA operation with proton beams.
- 2. Carry out space-charge compensation experiments with nonlinear optics and electron lenses.

# Phase 3: FY21 and beyond

- 1. Study the application of space-charge compensation techiques to next generation high intensity machines.
- 2. Expand the program beyond these high priority goals to allow Fermilab scientists and a broader accelerator HEP community to utilize unique proton and electron beam capabilities of the ASTA/IOTA facility



The concept of IO rests on the idea of interleaving nonlinear potential (Magnets or Electron Lenses placed in drifts with equal  $\beta$ -functions) with axially symmetric focusing blocks (T-

inserts)



- T-insert
  - Betatron phase advance is 0.5 or 1.0, achromatic.
  - May be built using conventional dipole and quadrupole magnets
  - N.B.: an existing machine may be re-tuned such that its arcs become one or more T-inserts

# **IOTA Layout (1-Magnet Option)**





# **Design Goals and Features**

- Machine lattice must provide enough flexibility to accommodate
  - 1 or 2 for nonlinear magnets (~2 m each), and corresponding number of elements of periodicity (T-Inserts)
  - An Electron Lens (2 m)
  - Optical Stochastic Cooling (5 m for undulators and chicane)
- The magnet quality, optics stability, instrumentation system and optics measurement techniques must be of highest standards in order to meet the requirements for integrable optics
  - 1% or better measurement and control of  $\beta$ -function, and 0.001 or better control of betatron phase
  - This is why Phase I will make use of e- beams as such parameters are not reachable in such a small ring operating with protons



# **IOTA Optics (1-Magnet Option)**





# **Design Goals and Features**

- Since we intend to sample the nonlinearities with a pencil beam
  - machine aperture must be large enough beam pipe Φ=2"
  - must have a h-v kicker
- The machine must be capable of operating with electrons as well as protons
- The machine must fit in the existing hall area
- Be inexpensive and reuse available components whenever possible

# **IOTA Layout**





# **Ring Elements in Hand**







Dipole magnets (ordered)

32 quads from JINR (Dubna) received



Vacuum chambers for dipoles (received)



Magnet support stands from **MIT** (received)

# Also: BPMs and electronics Vacuum system Dipole power supply Corrector power supplies



# **IOTA Parameters**

| Nominal e- beam energy        | 150 MeV(g=295) or lower              |
|-------------------------------|--------------------------------------|
| Nominal e- beam intensity     | 1×10 <sup>9</sup>                    |
| Circumference                 | 40 m                                 |
| Bending field                 | 0.7 T                                |
| Beam pipe aperture            | 50 mm dia.                           |
| Maximum b-function (x,y)      | 12, 5 m                              |
| Momentum compaction           | 0.02 ÷ 0.1                           |
| Betatron tune                 | 3 ÷ 5                                |
| Natural chromaticity          | -5 ÷ -10                             |
| Transverse emittance r.m.s.   | 0.1 <i>μ</i> m                       |
| SR damping time               | $0.6s (5 \times 10^6 \text{ turns})$ |
| RF V,f,q                      | 10 kV, 30 MHz, 4                     |
| Synchrotron tune              | 0.002 ÷ 0.005                        |
| Bunch length, momentum spread | 2 cm, 1.4 × 10 <sup>-4</sup>         |



# **Nonlinear Magnet**

Practical design – approximate continuously-varying potential with constant cross-section short magnets





# **Nonlinear Magnet**

Joint effort with RadiaBeam Technologies (Phase I and II SBIR)



FNAL Concept: 2-m long nonlinear magnet



RadiaBeam short prototype. The full 2-m magnet will be designed, fabricated and delivered to IOTA in **♣ Fermilab** 

Phase II

# Tune foot-print for an ideal nonlinear lens

A single 2-m long nonlinear lens creates a tune spread of ~0.25.



# **Space Charge Compensation**



A. Burov, G. Foster, V. Shiltsev, FNAL-TM-2125 (2000)



# **Possible Implementations**

# E-column concept

# E-lens concept





1. The impact of electrons is equal to the total impact of space-charge over the ring

$$\left|\Delta v_{sc}\right| = \frac{N_{b,tot}r_{cb}}{2\pi\beta_b^2\gamma_b^3\varepsilon}\frac{\hat{I}}{\bar{I}} = \Delta v_e = \frac{N_e r_{cb}}{2\pi\beta_b^2\gamma\varepsilon} \qquad \frac{N_e}{N_{b,tot}(\hat{I}/\bar{I})} = \frac{1}{\gamma_b^2} = \eta_0 \frac{N_{ec}L_{ec}}{C}$$

- 2. The transverse profile of the electron is made the same as that of the proton beam
- → use of solenoid
- 3. The system of magnetized electrons and protons is now dynamically stable

#### **IOTA Electron Lens**

- Capitalize on the Tevatron experience and recent LARP work
- Re-use Tevatron EL components



# **Summary**

- Theory and modeling to develop the basis for the next generatio high intensity circular machines – in progress
- Proof-of-principle experiments at ASTA/IOTA First experiments planned for 2016
- Ultimately, develop a recipe for a new generation rapid cycling synchrotron for super-high beam intensity (× 3-5 present)
  - Self-consistent or compensated space-charge
  - Strong non-linearity (for Landau damping) to suppress instabilities
  - Stable particle motion at large amplitudes

