20104016

DEENA

Importing Libraries

```
In [1]: import numpy as np
import pandas as pd
import seaborn as sns
```

Importing Datasets

In [2]: df=pd.re	ead_csv("r	nadrid	_2001.0	sv")				
Out[2]:	date	BEN	CO E	BE MXY	NMHC	NO 2	NOx OXY	O 3

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2001-08-01 01:00:00	NaN	0.37	NaN	NaN	NaN	58.400002	87.150002	NaN	34.529999	10
1	2001-08-01 01:00:00	1.50	0.34	1.49	4.10	0.07	56.250000	75.169998	2.11	42.160000	100
2	2001-08-01 01:00:00	NaN	0.28	NaN	NaN	NaN	50.660000	61.380001	NaN	46.310001	100
3	2001-08-01 01:00:00	NaN	0.47	NaN	NaN	NaN	69.790001	73.449997	NaN	40.650002	6!
4	2001-08-01 01:00:00	NaN	0.39	NaN	NaN	NaN	22.830000	24.799999	NaN	66.309998	7:
217867	2001-04-01 00:00:00	10.45	1.81	NaN	NaN	NaN	73.000000	264.399994	NaN	5.200000	4
217868	2001-04-01 00:00:00	5.20	0.69	4.56	NaN	0.13	71.080002	129.300003	NaN	13.460000	21
217869	2001-04-01 00:00:00	0.49	1.09	NaN	1.00	0.19	76.279999	128.399994	0.35	5.020000	41
217870	2001-04-01 00:00:00	5.62	1.01	5.04	11.38	NaN	80.019997	197.000000	2.58	5.840000	3
217871	2001-04-01 00:00:00	8.09	1.62	6.66	13.04	0.18	76.809998	206.300003	5.20	8.340000	3!

217872 rows × 16 columns

Data Cleaning and Data Preprocessing

```
Out[4]: Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3
               'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station'],
              dtype='object')
In [5]:
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 29669 entries, 1 to 217871
        Data columns (total 16 columns):
            Column Non-Null Count Dtype
         0
             date
                     29669 non-null object
         1
             BEN
                     29669 non-null float64
         2
             CO
                     29669 non-null float64
         3
            EBE
                     29669 non-null float64
            MXY
                     29669 non-null float64
         4
         5
             NMHC
                     29669 non-null float64
                     29669 non-null float64
             NO_2
         7
                     29669 non-null float64
             NOx
         8
             OXY
                     29669 non-null float64
         9
             0_3
                     29669 non-null float64
         10 PM10
                    29669 non-null float64
         11 PXY
                    29669 non-null float64
         12 SO_2
                     29669 non-null float64
         13 TCH
                     29669 non-null float64
         14 TOL
                     29669 non-null float64
         15 station 29669 non-null int64
        dtypes: float64(14), int64(1), object(1)
        memory usage: 3.8+ MB
```

```
In [6]: data=df[['CO' ,'station']]
Out[6]:
                  CO
                        station
               1 0.34 28079035
               5 0.63 28079006
                 0.43 28079024
                0.34
                      28079099
              23
              25 0.06 28079035
          217829 4.48 28079006
          217847 2.65 28079099
          217849
                1.22 28079035
          217853 1.83 28079006
          217871 1.62 28079099
         29669 rows × 2 columns
```

Line chart

Line chart

Out[8]: <AxesSubplot:>

Bar chart

Histogram

Area chart

Box chart

station

Pie chart

0.0

In [14]:

Out[14]: <AxesSubplot:ylabel='station'>

Scatter chart

```
In [15]:
```

Out[15]: <AxesSubplot:xlabel='CO', ylabel='station'>

In [16]:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 29669 entries, 1 to 217871
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	date	29669 non-null	object
1	BEN	29669 non-null	float64
2	CO	29669 non-null	float64
3	EBE	29669 non-null	float64
4	MXY	29669 non-null	float64
5	NMHC	29669 non-null	float64
6	NO_2	29669 non-null	float64
7	NOx	29669 non-null	float64
8	OXY	29669 non-null	float64
9	0_3	29669 non-null	float64
10	PM10	29669 non-null	float64
11	PXY	29669 non-null	float64
12	S0_2	29669 non-null	float64
13	TCH	29669 non-null	float64
4.4	TOI	2066011	C1 + C 4

In [17]:		•1 /						
Out[17]:		BEN	со	EBE	MXY	NMHC	NO_2	
_	count	29669.000000	29669.000000	29669.000000	29669.000000	29669.000000	29669.000000	296
	mean	3.361895	1.005413	3.580229	8.113086	0.195222	67.652292	1
	std	3.176669	0.863135	3.744496	7.909701	0.192585	34.003120	1
	min	0.100000	0.000000	0.140000	0.210000	0.000000	1.180000	
	25%	1.280000	0.470000	1.390000	3.040000	0.080000	44.299999	
	50%	2.510000	0.760000	2.600000	5.830000	0.140000	64.449997	1
	75%	4.420000	1.270000	4.580000	10.640000	0.250000	86.540001	2
	max	54.560001	11.890000	77.260002	150.600006	2.880000	292.700012	19
In [18]: df1=df[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',								

EDA AND VISUALIZATION

In [19]:

Out[19]: <seaborn.axisgrid.PairGrid at 0x15de4ed45e0>


```
In [20]:
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[20]: <AxesSubplot:xlabel='station', ylabel='Density'>

In [21]:

Out[21]: <AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

11 of 20 02-08-2023, 17:34

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

Linear Regression

```
In [24]: from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
Out[24]: LinearRegression()
In [25]:
Out[25]: 28079007.830716707
         coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [26]:
Out[26]:
                  Co-efficient
                    7.510963
            BEN
             CO
                  -15.360601
             EBE
                    0.584675
            MXY
                   -0.062319
           NMHC
                   83.529834
           NO_2
                    0.105531
            NOx
                   -0.083335
            OXY
                   -3.222834
             O_3
                   -0.029922
           PM10
                   -0.068388
             PXY
                    1.535639
            SO_2
                   -0.297259
            TCH
                   36.864419
             TOL
                   -1.295623
```

```
In [27]: prediction =lr.predict(x_test)
```

Out[27]: <matplotlib.collections.PathCollection at 0x15df45f3c10>

ACCURACY

```
In [28]: (1.15333059191475773)

To [20]: (1.15333059191475773)
```

Out[29]: 0.16966115058624776

Ridge and Lasso

```
In [30]:
In [31]: rr=Ridge(alpha=10)
Out[31]: Ridge(alpha=10)
```

Accuracy(Ridge)

```
In [34]: la=Lasso(alpha=10)
Out[34]: Lasso(alpha=10)
In [35]:
Out[35]: 0.03909802571844945
        Accuracy(Lasso)
In [36]:
Out[36]: 0.03896350073644961
In [37]: from sklearn.linear_model import ElasticNet
        en=ElasticNet()
Out[37]: ElasticNet()
In [38]:
Out[38]: array([ 5.1196482 , 0.00858417, 0.58524365, -0.22278153, 0.09260819,
                0.05634334, -0.03149443, -2.55830102, -0.03761492, 0.06973542,
                0.96828664, -0.3129868 , 1.20899921, -0.7295048 ])
Out[39]: 28079049.39181029
Out[41]: 0.09871426228846358
        Evaluation Metrics
In [42]: from sklearn import metrics
        print(metrics.mean_absolute_error(y_test,prediction))
        print(metrics.mean_squared_error(y_test,prediction))
        30.47036132577808
        1226.7311838312069
        35.024722466155346
```

Logistic Regression

```
In [45]:
Out[45]: (29669, 14)
Out[46]: (29669,)
In [47]:
In [49]: logr=LogisticRegression(max_iter=10000)
Out[49]: LogisticRegression(max_iter=10000)
In [51]: prediction=logr.predict(observation)
     [28079035]
In [52]:
Out[52]: array([28079006, 28079024, 28079035, 28079099], dtype=int64)
Out[53]: 0.8087229094340894
In [54]:
Out[54]: 1.724527777144498e-43
In [55]:
Out[55]: array([[1.72452778e-43, 2.43756289e-56, 9.99998565e-01, 1.43537418e-06]])
     Random Forest
In [57]: rfc=RandomForestClassifier()
out[57]: RandomForestClassifier()
```

```
In [70]: from sklearn.tree import plot_tree
                 plt.figure(figsize=(80,40))
Out[70]: [Text(2334.3, 1993.2, 'OXY <= 4.115\ngini = 0.733\nsamples = 13169\nvalue =</pre>
                  [6029, 2860, 5938, 5941]\nclass = a'),
                   Text(1190.4, 1630.800000000000, 'NOx <= 26.22\ngini = 0.725\nsamples = 901
                  6\nvalue = [2206, 2689, 4428, 4900]\nclass = d'),
                   Text(595.2, 1268.4, 'SO_2 \le 8.2 \neq 0.379 \le 885 \neq 0.379 \le 885 = 885 = 6.379 \le 885 \le 885 = 6.379 \le 885 = 6.379 \le 885 \le 885 = 6.379 \le 885 
                  1073, 145, 118]\nclass = b'),
                   Text(297.6, 906.0, NO_2 \le 19.83 \text{ ngini} = 0.55 \text{ nsamples} = 123 \text{ nvalue} = [18, 10.5]
                 9, 119, 47]\nclass = c'),
                   Text(148.8, 543.599999999999, 'OXY <= 0.64\ngini = 0.64\nsamples = 78\nvalu
                 e = [16, 5, 52, 46] \setminus class = c'),
                   Text(74.4, 181.199999999999, 'gini = 0.184\nsamples = 26\nvalue = [0, 4, 3
                  [5, 0] \nclass = c'),
                   Text(223.2000000000000, 181.1999999999982, 'gini = 0.584\nsamples = 52\nva
                  lue = [16, 1, 17, 46] \setminus class = d'),
                   Text(446.40000000000003, 543.599999999999, 'NOx <= 24.725 \cdot min = 0.176 \cdot msa
                 mples = 45\nvalue = [2, 4, 67, 1]\nclass = c'),
                   Text(372.0, 181.1999999999982, 'gini = 0.0\nsamples = 30\nvalue = [0, 0, 4
                 8, 0] \setminus class = c'),
                   Text(520.800000000001, 181.1999999999982, 'gini = 0.435\nsamples = 15\nval
                 ue = [2, 4, 19, 1] \setminus class = c'),
                   Text(892.800000000001, 906.0, 'OXY <= 1.005\ngini = 0.196\nsamples = 762\nv
                  alue = [29, 1064, 26, 71]\nclass = b'),
                   Text(744.0, 543.59999999999, 'NMHC <= 0.035\ngini = 0.101\nsamples = 678\n
                 value = [5, 1008, 20, 31]\nclass = b'),
                   Text(669.6, 181.199999999999, 'gini = 0.706\nsamples = 45\nvalue = [5, 17,
                  17, 23]\nclass = d'),
                   Text(818.400000000001, 181.1999999999982, 'gini = 0.022\nsamples = 633\nva
                  lue = [0, 991, 3, 8] \setminus class = b'),
                   Text(1041.600000000001, 543.59999999999, 'EBE <= 1.135\ngini = 0.663\nsam
                  ples = 84\nvalue = [24, 56, 6, 40]\nclass = b'),
                   Text(967.2, 181.199999999999, 'gini = 0.595\nsamples = 36\nvalue = [4, 12,
                  6, 30]\nclass = d'),
                   Text(1116.0, 181.199999999999, 'gini = 0.555\nsamples = 48\nvalue = [20, 4
                 4, 0, 10]\nclass = b'),
                   Text(1785.600000000001, 1268.4, 'NMHC <= 0.045\ngini = 0.706\nsamples = 813
                  1\nvalue = [2159, 1616, 4283, 4782]\nclass = d'),
                   Text(1488.0, 906.0, 'PXY <= 0.815\ngini = 0.572\nsamples = 1191\nvalue = [91
                  1, 0, 775, 159]\nclass = a'),
                   Text(1339.2, 543.59999999999, 'PXY <= 0.675\ngini = 0.332\nsamples = 395\n
                 value = [53, 0, 502, 68]\nclass = c'),
                   Text(1264.8000000000000, 181.1999999999982, 'gini = 0.221\nsamples = 283\nv
                  alue = [24, 0, 391, 30] \setminus class = c'),
                   Text(1413.6000000000001, 181.1999999999982, 'gini = 0.539\nsamples = 112\nv
                  alue = [29, 0, 111, 38]\nclass = c'),
                   Text(1636.8000000000002, 543.59999999999, 'EBE <= 1.045\ngini = 0.452\nsam
                  ples = 796\nvalue = [858, 0, 273, 91]\nclass = a'),
                   Text(1562.4, 181.199999999999, 'gini = 0.428\nsamples = 111\nvalue = [19,
                  0, 120, 25]\nclass = c'),
                   Text(1711.2, 181.199999999999, 'gini = 0.346\nsamples = 685\nvalue = [839,
                  0, 153, 66]\nclass = a'),
                   Text(2083.2000000000003, 906.0, 'SO_2 <= 9.325 \setminus = 0.687 \setminus = 694
                  0\nvalue = [1248, 1616, 3508, 4623]\nclass = d'),
```

```
Text(1934.4, 543.59999999999, '0_3 <= 5.435\ngini = 0.631\nsamples = 1837\
nvalue = [300, 358, 1573, 718]\nclass = c'),
 Text(1860.0000000000000, 181.1999999999982, 'gini = 0.0\nsamples = 128\nval
ue = [0, 203, 0, 0] \setminus class = b'),
Text(2008.8000000000002, 181.1999999999982, 'gini = 0.588\nsamples = 1709\n
value = [300, 155, 1573, 718]\nclass = c'),
 Text(2232.0, 543.599999999999, 'PXY <= 0.905\ngini = 0.668\nsamples = 5103\
nvalue = [948, 1258, 1935, 3905]\nclass = d'),
Text(2157.6000000000004, 181.1999999999982, 'gini = 0.513\nsamples = 573\nv
alue = [13, 569, 105, 182]\nclass = b'),
Text(2306.4, 181.199999999999, 'gini = 0.64\nsamples = 4530\nvalue = [935,
689, 1830, 3723]\nclass = d'),
Text(3478.2000000000003, 1630.8000000000002, 'SO_2 <= 23.085\ngini = 0.58\ns
amples = 4153\nvalue = [3823, 171, 1510, 1041]\nclass = a'),
Text(2976.0, 1268.4, 'CO <= 0.985\ngini = 0.649\nsamples = 1755\nvalue = [12
36, 170, 987, 359]\nclass = a'),
Text(2678.4, 906.0, 'NO_2 <= 91.085\ngini = 0.587\nsamples = 585\nvalue = [5
35, 29, 176, 182]\nclass = a'),
Text(2529.600000000004, 543.59999999999, 'BEN <= 3.065\ngini = 0.532\nsam
ples = 515\nvalue = [524, 26, 113, 153]\nclass = a'),
Text(2455.2000000000003, 181.1999999999982, 'gini = 0.412\nsamples = 169\nv
alue = [194, 13, 5, 50] \setminus nclass = a'),
Text(2604.0, 181.199999999999, 'gini = 0.572\nsamples = 346\nvalue = [330,
13, 108, 103]\nclass = a'),
Text(2827.200000000003, 543.59999999999, 'MXY <= 13.35\ngini = 0.56\nsamp
les = 70\nvalue = [11, 3, 63, 29]\nclass = c'),
Text(2752.8, 181.199999999999, 'gini = 0.489\nsamples = 57\nvalue = [3, 3,
58, 24]\nclass = c'),
Text(2901.600000000004, 181.1999999999982, 'gini = 0.648\nsamples = 13\nva
lue = [8, 0, 5, 5] \setminus ass = a'),
Text(3273.600000000004, 906.0, 'TCH <= 1.885\ngini = 0.642\nsamples = 1170\
nvalue = [701, 141, 811, 177]\nclass = c'),
Text(3124.8, 543.59999999999, 'NO_2 <= 75.525\ngini = 0.631\nsamples = 102
9\nvalue = [678, 98, 685, 153]\nclass = c'),
Text(3050.4, 181.199999999999, 'gini = 0.614\nsamples = 319\nvalue = [281,
44, 107, 70]\nclass = a'),
Text(3199.2000000000003, 181.1999999999982, 'gini = 0.594\nsamples = 710\nv
alue = [397, 54, 578, 83]\nclass = c'),
value = [23, 43, 126, 24] \setminus class = c'),
Text(3348.000000000005, 181.1999999999982, 'gini = 0.702\nsamples = 37\nva
lue = [5, 20, 18, 11]\nclass = b'),
Text(3496.8, 181.199999999999, 'gini = 0.517\nsamples = 104\nvalue = [18,
23, 108, 13]\nclass = c'),
Text(3980.4, 1268.4, 'NMHC <= 0.225\ngini = 0.483\nsamples = 2398\nvalue =
[2587, 1, 523, 682]\nclass = a'),
Text(3794.4, 906.0, 'PXY <= 15.455\ngini = 0.227\nsamples = 562\nvalue = [77
7, 0, 59, 52]\nclass = a'),
Text(3720.000000000005, 543.59999999999, '0_3 <= 19.21\ngini = 0.199\nsam
ples = 551\nvalue = [776, 0, 50, 44]\nclass = a'),
Text(3645.6000000000004, 181.1999999999982, 'gini = 0.266\nsamples = 348\nv
alue = [464, 0, 44, 38] \setminus class = a'),
Text(3794.4, 181.199999999999, 'gini = 0.072\nsamples = 203\nvalue = [312,
0, 6, 6] \nclass = a'),
Text(3868.8, 543.59999999999, 'gini = 0.549\nsamples = 11\nvalue = [1, 0,
9, 81 \cdot class = c'),
```

Text(4166.400000000001, 906.0, 'SO_2 <= 59.47\ngini = 0.539\nsamples = 1836\nvalue = [1810, 1, 464, 630]\nclass = a'),

Text(4017.6000000000004, 543.599999999999, 'TCH <= 1.535\ngini = 0.593\nsam ples = 1446\nvalue = [1261, 1, 431, 592]\nclass = a'),

Text(3943.200000000003, 181.1999999999982, 'gini = 0.24\nsamples = 323\nva lue = [454, 0, 36, 34]\nclass = a'),

Text(4092.000000000005, 181.1999999999982, 'gini = 0.639\nsamples = 1123\n value = [807, 1, 395, 558]\nclass = a'),

Text(4315.200000000001, 543.599999999999, 'NOx <= 457.45\ngini = 0.209\nsam ples = 390\nvalue = [549, 0, 33, 38]\nclass = a'),

Text(4240.8, 181.199999999999, 'gini = 0.074\nsamples = 201\nvalue = [301, 0, 3, 9]\nclass = a'),

Text(4389.6, 181.199999999999, 'gini = 0.329\nsamples = 189\nvalue = [248, 0, 30, 29]\nclass = a')]

Conclusion

Accuracy

Linear Regression:0.15333059191475773

Ridge Regression:0.15336555741871216

Lasso Regression:0.03896350073644961

ElasticNet Regression:0.09871426228846358

Logistic Regression:0.8087229094340894

Random Forest: 0.7331953004622496

Logistic Regression is suitable for this dataset

20 of 20