

第十一章

羧酸及其衍生物

(carboxylic acids and derivatives)

有机化学(Organic Chemistry)

本章主要内容

第一节 羧酸

第二节 羧酸衍生物

第一节 羧酸(Carboxylic Acids)

- 一、羧酸的分类
- 二、羧酸的命名
- 三、羧酸的制备
- 四、羧酸的物理性质
- 五、羧酸的结构
- 六、羧酸的化学性质**
- 七、重要的一元羧酸

第一节 羧酸(Carboxylic Acids)

酿造工艺

纯粮进行高温蒸煮 唤醒粮食本身香气

加曲入发酵池进行 发酵,每日手工翻醅

高温熏醅, 醋醅色泽 至棕红, 熏香浓郁

开水浸泡24小时套淋熏醅去除杂质

历经夏伏晒冬捞冰 数年之久可成陈醋

自然界中的羧酸

胆酸 (Cholic acid)

油酸 (Oleic acid)

$$C = C$$
 $C = C$
 $C =$

亚油酸 (Linoleic acid)

一、羧酸的结构

C=O: 键长 0.120 nm

C-O: 键长 0.134 nm

不和羰基试剂 2,4一二硝基苯肼反应

羧酸根负离子中,两个碳氧键的键长是一样 电子离域,键长平均化

一、羧酸的分类

■按烃基分类

■按羧基数目分类

一元酸、二元酸、多元酸

二、羧酸的命名

1.一元羧酸的命名

羧基始终编为1号;主链含烯键 \rightarrow 某烯酸; > C_{10} \rightarrow 某碳烯酸

$$H_3C$$
 H $3-甲基 $-Z-2$ 一戊烯酸 H_3CH_2C COOH$

2. 羧基直接连接在环上的

3-溴环己烷甲酸

3一乙基苯甲酸

1-环戊烯甲酸

3一苯丙烯酸

3. 二元羧酸

3-甲基-6-乙基辛二酸

邻苯二甲酸

三、羧酸的制备

1. 通过氧化反应制备

2. 由羧酸衍生物水解

$$\begin{array}{c}
O \\
R-C-X \\
O \\
R-C
\end{array}$$

$$\begin{array}{c}
O \\
R-C
\end{array}$$

$$\begin{array}{c}
O \\
R-C
\end{array}$$

$$\begin{array}{c}
O \\
R-C-OH \\
O \\
R-C-NH_2
\end{array}$$

■由腈水解

$$R-CN \xrightarrow{H_2O} R-C-OH$$

其中:

$$R - X \longrightarrow R - CN$$

可由卤代烃制备增加一个碳原子的羧酸

3. 格氏试剂与二氧化碳反应制备

$$RMgX + CO_2 \xrightarrow{Et_2O} RCO_2MgX \xrightarrow{H_2O} RCO_2H$$

$$CH_{3}CH_{2}CH_{$$

$$\xrightarrow{\text{CO}_2} \xrightarrow{\text{H}_2\text{O}} \text{CH}_3\text{CH}_2\text{CH}_2\text{CO}_2\text{H}$$

$$CH_{3} \xrightarrow{Br} CH_{3} \xrightarrow{Mg} CO_{2} \xrightarrow{H_{2}O} CH_{3} \xrightarrow{CO_{2}H} CH_{3}$$

$$CH_{3} \xrightarrow{Et_{2}O} CH_{3} \xrightarrow{CO_{2}} H_{2} \xrightarrow{CH_{3}} CH_{3}$$

四、羧酸的物理性质

1.性状

- ■低级脂肪酸 —— 液体,溶于水 C1-C3
- ■中级脂肪酸 ——液体,部分溶于水 C4-C9
- ■高级脂肪酸 ——固体,不溶于水 ≥C10
- ■二元羧酸和芳香羧酸——固体

2.沸点

■大多数羧酸在固态和液态时以二缔和体形式 存在,b.p.比相应的醇高

CH₃CH₂OH b.p.(°C) 78 HCOOH 100.7

五、羧酸的化学性质*

(一) 酸性和诱导效应

$$R-C$$
 \longrightarrow
 $RCOO^{-}$
 $+$
 H^{+}

1.酸性和成盐

RCOOH + NaHCO₃
$$\rightarrow$$
 RCOONa + CO₂↑ + H₂O \downarrow H⁺ RCOOH

- ■酸性比醇强得多
- ■仍是一种弱酸
- 一元饱和脂肪族羧酸的pKa值一般在3~5 之间

HCl RCOOH H₂CO₃

 pK_a -7

3~5

6.36

酸性

2. 诱导效应对脂肪族羧酸酸性的影响

1) 吸电子基和给电子基

pKa

- ■吸电子取代基使酸性增强
- 给电子取代基使酸性减弱

CICH₂COOH HCOOH CH₃COOH
2.86 3.77 4.74

2) 吸电子强弱的影响

FCH₂COOH CICH₂COOH BrCH₂COOH ICH₂COOH pKa 2.66 2.86 2.89 3.12

3)方向和

CICH₂COOH Cl₂CHCOOH CCl₃COOH pKa 2.86 1.29 0.65

4) 卤原子与羧基距离的远近

Structure	pKa	
CH ₃ CH ₂ CHClCOOH	2.86	
CH ₃ CHClCH ₂ COOH	4.05	
CICH ₂ CH ₂ CH ₂ COOH	4.52	
CH ₃ CH ₂ CH ₂ COOH	4.82	

3. 取代基对芳香羧酸酸性的影响

1)取代基在羧基的对位

2) 取代基在羧基的间位

4. C原子杂化状态的影响

CH₃CH₂COOH CH₂=CHCOOH C₆H₅COOH CH≡CCOOH

C的杂化状态 SP3

SP²

SP²

SP

S所占比例 1/4

1/3

1/3

1/2

吸电子能力

强

pKa

4.87

4.28

4.20

1.84

P₃₁₈ 各种基团的诱导效应

P₃₅₁ 4

(二) 羧酸衍生物的生成(一OH被取代)

1) 酯化反应

$$CH_3CO_2H + CH_3CH_2OH \xrightarrow{H_2SO_4}$$

$$CH_3CO_2CH_2CH_3 + H_2O$$

- ■可逆反应
- ■需要酸催化
- ■常用催化剂:浓硫酸,对甲苯磺酸,强 酸型离子交换树脂,过渡金属氧化物......

2) 形成酰卤

- $\mathbf{P}X_3$, $\mathbf{P}X_5$
- ■SOCl₂

实验室中用SOCl2与羧酸反应形成酰氯:

$$R - C - OH + SOCl_2 \longrightarrow$$

$$R - C - Cl + SO_2 + HCl$$

产率高,纯度好。

3) 形成酸酐

$$\begin{array}{c|c}
 & O \\
 & C \\$$

4) 形成酰胺和腈

CH₃CO₂H + NH₃
$$\rightarrow$$
 CH₃CO₂NH₄

$$\begin{array}{c}
100^{\circ}\text{C} \\
 & \rightarrow \\
 &$$

(三) 羧酸 α -氢的反应

 \blacksquare 与卤素在红磷或酰卤催化下发生 α -卤代:

卤代酸中的卤原子与卤代烃中的卤原子相似,可进行亲核取代及消除反应,能否制格氏试剂?

(四) 羧酸的还原

■ 只有LiAlH₄和B₂H₆能还原羧酸

$$RCO_2H$$
 LiAlH₄ H_2O RCH_2OH 或 B_2H_6 LiAlH₄ H_2O $H_2C=CH-CH_2CO_2H$ 或 B_2H_6

(五) 脱羧反应

- ■羧酸在一定条件下失去羧基放出二氧化碳的反应 称为脱羧反应。
- ■当羧基的α-碳原子上连有吸电子基团时,可在适当的条件下发生脱羧反应。

$$A = -CO_2H - CN - COR - NO_2$$

$$-CX_3 C = O - C_6H_5$$

适当条件:碱、热、特殊催化剂

$$\frac{\triangle}{\text{NCCH}_2\text{CO}_2\text{H}} \xrightarrow{\triangle} \frac{\triangle}{\text{NCCH}_3} + \text{CO}_2$$

■当羧基的β-碳原子上连有羰基,会发生脱羧反应

$$COOH$$
 C_2H_5
 C_2H_5

七、重要的一元羧酸(P₃₂₀)

第二节 羧酸衍生物

(Carboxylic Acids Derivatives)

- 一、羧酸衍生物的含义和命名
- 二、羧酸衍生物的物理性质
- 三、羧酸衍生物的制备
- 四、羧酸衍生物的化学性质**
- 五、油脂和蜡
- 六、多官能团化合物的命名

一、羧酸衍生物的含义和命名

1. 含义

羧酸衍生物是指羧酸中的<mark>羟基</mark>被其它原子或基团取代后生成的化合物,这些化合物 水解后可转变成羧酸。

羧酸衍生物

■酰卤(Acid halides) 酰基名 + 卤素名

$$CH_3CCI$$
 CH_3CCI CH_3CI CH_3C

Acetyl chloride Benzoyl bromide Cyclohexanecarbonyl chloride

■酸酐(Acid anhydrides)

- ■根据相应的羧酸命名
- ■×酸 →×(酸)酐 ×酸×酸酐

$$CH_{3}C - O - C - CH_{3}$$
 $CH_{3}C - O - C - CH_{3}$ $CH_{3}C - O - C - CH_{3}$

$$\begin{array}{ccc} \mathbf{O} & \mathbf{O} \\ \mathbf{HC} - \mathbf{O} - \mathbf{C} - \mathbf{CH}_3 \end{array}$$

乙酸酐 Acetic anhydride 甲(酸)乙(酸)酐 Acetic formic anhydride

丁二酸酐 Butanedioic anhydride

■酯(Esters)

- ■根据形成酯的羧酸和醇命名
- ■×酸×(烃基名)酯

$$\begin{array}{ccc}
O & O \\
R-C-OH & \Longrightarrow & R-C-OR'
\end{array}$$

羧酸的氢被烃基取代

乙酸乙酯
Ethyl acetate

苯甲酸甲酯 Methyl benzoate

环己烷甲酸叔丁酯
tert-Buthyl
cyclohexanecarboxylate

- ■酰胺(Amides)
- ■×酸→×酰胺 N-烃基×酰胺
- ■与酰卤相似

DMF

二、羧酸衍生物的物理性质(P₃₃₁)

沸点: (同分子量) 酰胺是羧酸衍生物中最高的。

溶解性:一般在水中溶解性较差。

羧酸、酸酐、酰卤有强刺激性气味, 酯味芳香

三、羧酸衍生物的制备

1. 酰卤的制备

$$CH_3CH_2CO_2H \xrightarrow{PCl_3} CH_3CH_2COC1 + H_3PO_3$$

$$CH_3(CH_2)_6CO_2H \xrightarrow{PCl_5} CH_3(CH_2)_6COC1 + POCl_3$$

2. 酸酐的制备

$$2 \text{ CH}_3\text{CO}_2\text{H} \xrightarrow{\text{P}_2\text{O}_5} (\text{CH}_3\text{CO})_2\text{O}$$

$$\begin{array}{c}
O \\
C \\
-C \\
-OH + (CH_3CO)_2O
\end{array}$$

$$HCO_2Na + CH_3COC1 \longrightarrow HC-O-C-CH_3$$

3. 酯的制备

4. 酰胺的制备

$$CH_3CH_2-C-OH + NH_3$$
 $200^{\circ}C$ $CH_3CH_2-C-NH_2$ CH_3COCl $+ C_2H_5NH_2$ $- CH_3-C-NHC_2H_5$ $(CH_3CO)_2O$

四、羧酸衍生物的化学性质**

反应性增强

(一) 羧酸衍生物的水解、醇解、氨解反应

1. 水解成酸

活性递减

2. 醇解成酯

$$CH_3COC1 + C_2H_5OH$$
 \longrightarrow $CH_3CO_2C_2H_5 + HCI$ $(CH_3CO)_2O + C_2H_5OH$ \longrightarrow $CH_3CO_2C_2H_5 + CH_3CO_2H$ \longrightarrow $CH_3CO_2C_4H_5 + CH_3CO_4H$ \longrightarrow $CH_3CO_2C_4H_5 + CH_3OH$ \longrightarrow $CH_3CO_2C_4H_5 + CH_3OH$ \longrightarrow \Longrightarrow 前醇

活性递减

酰胺的醇解是可逆,需用过量的醇才能生成酯

3. 氨解反应 羧酸衍生物氨解都得到酰胺

反应活性: 酰卤>酸酐>酯

(二) 与格利雅试剂的反应

$$R-C-CI^{+} R'MgX \longrightarrow R-C-CI \xrightarrow{H_{2}O} R-C-R'$$

$$1.R'MgX \longrightarrow R-C-R'$$

$$2.H_{2}O \longrightarrow R-C-R'$$

$$R'$$

$$CH_{3} - C - O - C - CH_{3} = \frac{1.2CH_{3}Mgl}{2. H_{2}O} - CH_{3} - C - CH_{3}$$

(三) 酰基化合物的还原

1.酰氯:
$$R-\overset{O}{C}-CI$$
 $\xrightarrow{1. \text{LiAlH}_4}$ RCH_2OH

$$R - \stackrel{O}{C} - CI + H_2 \xrightarrow{Pd-BaSO_4} R - \stackrel{O}{\longleftarrow} H$$

2.酸酐、酯还原成醇

$$\begin{array}{c} O \\ \parallel \\ R-C-O-C-R' \end{array} \xrightarrow{\begin{array}{c} 1. \text{ LiAlH}_4 \\ \hline 2. \text{ H}_2O \end{array}} \text{ RCH}_2\text{OH} + \text{ R'CH}_2\text{OH} \\ \\ R-C-OR' \end{array} \xrightarrow{\begin{array}{c} 1. \text{ LiAlH}_4 \\ \hline 2. \text{ H}_2O \end{array}} \text{ RCH}_2\text{OH} + \text{ R'OH} \\ \\ R-C-OR' \end{array} \xrightarrow{\begin{array}{c} \text{Na, EtOH} \\ \hline \end{array}} \text{ RCH}_2\text{OH} + \text{ R'OH} \\ \end{array}$$

3.酰胺还原到胺

$$R-C-NH_2 \qquad \frac{1. \text{ LiAlH}_4}{2. \text{ H}_2O} \qquad RCH_2NH_2$$

$$\begin{array}{c} O \\ R-C-NHR' \end{array} \xrightarrow{\begin{array}{c} 1. \text{ LiAlH}_4 \\ \hline 2. \text{ H}_2O \end{array}} \quad \text{RCH}_2\text{NHR}'$$

$$R-C-NR_2 \xrightarrow{1. \text{ LiAlH}_4} RCH_2NR_2$$

(四) 酰胺特性

1.酰胺的酸碱性

酰胺的碱性比氨弱,为什么?

NH₃ CH₃C-NH₂ NH NH NH SO₂NH₂

$$pKa 34 \sim 15.1 \sim 9.6 \sim 8.3 \sim 10$$

2.酰胺的脱水反应

$$R - C - NH_2 \xrightarrow{P_2O_5} R - C \equiv N$$

3. 霍夫曼(Hofmann)降级反应

RCOOH → RCONH₂
$$\xrightarrow{Br_2, OH^-}$$
 RNH₂

$$\begin{array}{c|c}
O \\
C \\
NH_{3}
\end{array}$$

$$\begin{array}{c|c}
Br_{2}, NaOH \\
CI
\end{array}$$

$$H_{2}N$$

五、油脂和蜡(Fats and Waxes)

都是直链高级羧酸所成的酯

蜡:含偶数碳原子的高级脂肪酸和高级一元醇 所组成的酯

$$CH_3(CH_2)_{14}CO(CH_2)_{29}CH_3$$

Beeswax

蜂蜡(十六酸三十醇酯)

油脂:含偶数碳原子的高级脂肪酸的甘油酯。常温为液态的叫做油,固态或半固态的是脂

油脂的皂化(酯的碱性水解)

$$CH_{2}^{-}O^{-}COC_{17}H_{33}$$
 $CH^{-}O^{-}COC_{15}H_{31}^{+} 3NaOH \longrightarrow CH_{2}^{-}O^{-}COC_{17}H_{35}$

六、多官能团化合物的命名

一般常用的取代基团的先后次序

$$-COOH$$
 $-SO_3H$ $-COOR$ $-COX$ $-CONH_2$ $-CN$ $-CHO$ $-C=O$ $-OH$ $(醇)$ $-OH$ $(酚)$ $-SH$ $-NH_2$ $-C=C -C=C -OR$ $-X$ $-NO_2$

排在前面的为母体,其余作为取代基

4-甲基一3一羟基戊酸

3-羟基苯甲醇

2一甲氧基一1一萘甲醛

2-硝基-4-磺酸基苯甲酸

■羧酸的性质 酸性,衍生物的生成,脱羧反应,α-氢的反应

■衍生物的性质 酰卤、酸酐、酯、酰胺的稳定性 酰胺的特性(hofmann降级反应)

作业

P₃₅₀ 1 6 9 10

11(1)(2)(7~(10)

13 ②③