Parallel Computing with GPUs

Introduction Part 2 - Supercomputing and Software

Dr Paul Richmond http://paulrichmond.shef.ac.uk/teaching/COM4521/

This Lecture (learning objectives)

- **□**Supercomputing
 - ☐ Analyse High Performance Computing (HPC) observations
 - ☐ Predict future hardware trends in HPC
 - ☐ Contrast types of super computing system
- **□**Software
 - ☐ Explain the limitations of parallelism with respect to speedup
 - ☐ Classify programming models and types of parallelism

Top Supercomputers

Supercomputing Observations

- ☐ Exascale computing
 - \Box 1 Exaflop = 1M Gigaflops
 - ☐ Estimated for mid 2020s
- ☐Pace of change
 - ☐ Desktop GPU top supercomputer in 2002
 - ☐ A desktop with a GPU would be in Top 500 in 2008
 - ☐ A Teraflop of performance took 1MW in 2000
- ☐ Extrapolating the trend
 - ☐ Current gen top500 on every desktop in < 10 years

HPC Observations

- Improvements at individua computer node level are greatest
 - ☐ Better parallelism
 - ☐ Hybrid processing
 - □3D fabrication
- ☐ Communication costs are increasing
 - ☐ Memory per core is reducing
- ☐ Throughput > Latency

http://sc16.supercomputing.org/2016/10/07/sc16-invited-talk-spotlight-dr-john-d-mccalpin-presents-memory-bandwidth-system-balance-hpc-systems/

Supercomputing Observations

	• •
TOP	500
	The List.

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	DOE/SC/Oak Ridge National Laboratory United States	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband IBM	2,414,592	148,600.0	200,794.9	10,096
2	DOE/NNSA/LLNL United States	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband IBM / NVIDIA / Mellanox	1,572,480	94,640.0	125,712.0	7,438
3	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93,014.6	125,435.9	15,371
4	National Super Computer Center in Guangzhou China	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000 NUDT	4,981,760	61,444.5	100,678.7	18,482
5	Texas Advanced Computing Center/Univ. of Texas United States	Frontera - Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR Dell EMC	448,448	23,516.4	38,745.9	
6	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC50, Xeon E5- 2690v3 12C 2.6GHz, Aries interconnect, NVIDIA Tesla P100 Cray/HPE	387,872	21,230.0	27,154.3	2,384
7	DOE/NNSA/LANL/SNL United States	Trinity - Cray XC40, Xeon E5-2698v3 16C 2.3GHz Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect Cray/HPE	979,072	20,158.7	41,461.2	7,578
8	National Institute of Advanced Industrial Science and Technology (AIST) Japan	Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, nfiniband EDR Fujitsu	391,680	19,880.0	32,576.6	1,649

Accelerator/CP Family System Share

Green 500

Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)		Power Efficiency (GFlops/watts)
1	159	A64FX prototype - Fujitsu A64FX, Fujitsu A64FX 48C 2GHz, Tofu interconnect D , Fujitsu Fujitsu Numazu Plant Japan	36,864	1,999.5	118	16.876
2	420	NA-1 - ZettaScaler-2.2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2 700Mhz, PEZY Computing / Exascaler Inc. PEZY Computing K.K. Japan	1,271,040	1,303.2	80	16.256
3	24	AiMOS - IBM Power System AC922, IBM POWER9 20C 3.45GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Volta GV100 , IBM Rensselaer Polytechnic Institute Center for Computational Innovations (CCI) United States	130,000	8,045.0	510	15.771
4	373	Satori - IBM Power System AC922, IBM POWER9 20C 2.4GHz, Infiniband EDR, NVIDIA Tesla V100 SXM2, IBM MIT/MGHPCC Holyoke, MA United States	23,040	1,464.0	94	15.574
5	1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM D0E/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	10,096	14.719
6	8	AI Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2570 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR , Fujitsu National Institute of Advanced Industrial Science and Technology (AIST) Japan	391,680	19,880.0	1,649	14.423
7	494	MareNostrum P9 CTE - IBM Power System AC922, IBM POWER9 22C 3.1GHz, Dual-rail Mellanox EDR Infiniband, NVIDIA Tesla V100 , IBM Barcelona Supercomputing Center Spain	18,360	1,145.0	81	14.131
8	23	TSUBAME3.0 - SGI ICE XA, IP139-SXM2, Xeon E5-2680v4 14C 2.4GHz, Intel Omni-Path, NVIDIA Tesla P100 SXM2 , HPE GSIC Center, Tokyo Institute of Technology Japan	135,828	8,125.0	792	13.704

☐ Top energy efficient supercomputers

Software Challenge

☐ How to use this hardware efficiently?

- ☐ Software approaches
 - ☐ Parallel languages: some limited impact but not as flexible as sequential programming
 - □Automatic parallelisation of serial code: >30 years of research hasn't solved this yet
 - ☐ Design software with many core parallelisation in mind

Amdahl's Law

☐Speedup of a program is limited by the proportion than can be parallelised

$$Speedup(S) = \frac{1}{1 - P}$$

Amdahl's Law cont.

☐ Addition of processing cores gives diminishing returns

Speedup (S) =
$$\frac{1}{\frac{P}{N} + (1 - P)}$$

Parallel Programming Models

- ☐ Distributed Memory
 - ☐Geographically distributed processors (clusters)
 - ☐ Information exchanged via messages
- ☐Shared Memory
 - ☐ Independent tasks share memory space
 - ☐ Asynchronous memory access
 - ☐ Serialisation and synchronisation to ensure <u>correctness</u>
 - ☐ No clear ownership of data
 - □Not necessarily performance oriented

Types of Parallelism

- **□**Bit-level
 - ☐ Parallelism over size of word, 8, 16, 32, or 64 bit.
- ☐ Instruction Level (ILP)
 - □ Pipelining
- ☐ Task Parallel
 - ☐ Program consists of many independent tasks
 - ☐ Tasks execute on asynchronous cores
- ☐ Data Parallel
 - ☐ Program has many similar threads of execution
 - ☐ Each thread performs the same behaviour on different data

Summary

- **□**Supercomputing
 - ☐ Analyse High Performance Computing (HPC) observations
 - ☐ Predict future hardware trends in HPC
 - ☐ Contrast types of super computing system
- **□**Software
 - ☐ Explain the limitations of parallelism with respect to speedup
 - □Classify programming models and types of parallelism

■ Next Lecture: Module Details

