Kody Tunstalla. Kodowanie arytmetyczne

Kodowanie i kompresja danych - Wykład 3

Maciek Gębala

11 marca 2020

Maciek Gebala

Kody Tunstalla. Kodowanie arytmetyczne

Kody Tunstalla

- Wszystkie słowa kodowe mają tą samą długość, ale jeden kod może kodować różną liczbę liter alfabetu wejściowego.
- Chcemy zmaksymalizować średnią liczbę symboli z pierwotnego alfabetu reprezentowanych przez słowa kodowe.
- Alfabet wejściowy: litery a_1,a_2,\ldots,a_N z prawdopodobieństwami p_1,p_2,\ldots,p_N (N symboli).
- Kody są długości n bitów.

Maciek Gębal

Kody Tunstalla. Kodowanie arytmetyczne

Kody Tunstalla

Algorytm tworzenia kodów Tunstalla

- Przyporządkowujemy symbolom alfabetu N różnych słów kodowych (o długości n).
- Dopóki liczba niewykorzystanych słów kodowych jest większa niż N-1:
 - wybierz słowo kodowe e odpowiadające ciągowi o największym prawdopodobieństwie;
 - usuń e z kodu;
 - dodaj do kodu ciągi powstałe z dodania a₁,..., a_N jako sufiksów ciągu odpowiadającego kodowi e (przypisz im odpowiednie prawdopodobieństwa).

Co najmniej jedno słowo kodowe zostanie niewykorzystane.

Maciek Gębala

Kody Tunstalla. Kodowanie arytmetyczn

Przykład

- Weźmy alfabet a, b, c (N = 3) z prawdopodobieństwami P(a) = 0.6, P(b) = 0.3 i P(c) = 0.1.
- Ustalmy n = 3 (8 słów kodowych).
- Mamy 3 słowa kodowe odpowiadające $a o 0.6, \, b o 0.3$ i c o 0.1.
- Zastępujemy a i otrzymujemy 5 kodów: $aa \to 0.36, \, ab \to 0.18, \, ac \to 0.06, \, b \to 0.3 \, c \to 0.1.$
- Zastępujemy aa i otrzymujemy 7 kodów: $aaa \to 0.216$, $aab \to 0.108$, $aac \to 0.036$, $ab \to 0.18$, $ac \to 0.06$, $b \to 0.3$ i $c \to 0.1$.

						С	
000	001	010	011	100	101	110	111

Notatki
Notatki
Notatki

Przykład

aaa 000	aab	aac	ab	ac	b	С	???
000	001	010	011	100	101	110	111

- Zakodujmy tekst abcaabbaa.
- Otrzymujemy: 001110001101??.
- Na końcu tekstu może pojawić się blok dla którego nie ma słowa kodowego, wtedy wysyłamy specjalny kod i normalne kody liter.
- 0011100011011111kod(a)kod(a)

Maciek Gebala

K 1 T . H K 1

Notatki

Średnia długość

• Średnia liczba bitów na jeden symbol wejściowy.

$$\sum_{i=1}^{2^n-1} P(e_i) \frac{n}{|e_i|},$$

gdzie e_i - słowo odpowiadające i-temu kodowi.

- Dla przykładu z poprzedniego slajdu: $(0.216+0.108+0.036)\frac{3}{3}+(0.18+0.06)\frac{3}{2}+(0.3+0.1)\frac{3}{1}=1.92$
- Średnia długość kodu Huffmana dla tego przypadku to 1.4.

Maciek Gębala

Kody Tunstalla. Kodowanie arytmetyczn

Kody Tunstalla - podsumowanie

- Zmienna długość bloków wejściowych, stała długość wyjściowych.
- Kompresja i odporność na przekłamania.
- Jednoznaczność kodowania i dekodowania.

Maciek Gebal

Kody Tunstalla. Kodowanie arytmetyczni

Kodowanie arytmetyczne

- Tekst wejściowy zostaje odwzorowany na liczbę z przedziału [0,1).
- Kod tekstu to liczba n długość tekstu i liczba z (znacznik) reprezentowany z odpowiednio dobraną dokładnością.
- Elementom alfabetu a_1,\ldots,a_N z prawdopodobieństwami p_1,\ldots,p_N przyporządkowujemy przedziały [F(i),F(i+1)), gdzie $F(i)=\sum_{j=1}^{i-1}p_i$.

Kodowanie

- Mamy ciąg liter $x_1 x_2 \dots x_m$ z alfabetu a_1, \dots, a_N .
- Na początku przedział [I, p) = [0, 1).
- Dla i = 1, 2, ..., m:
 - Niech $x_i = a_j$.
 - Wtedy $d \leftarrow p l$, $p \leftarrow l + F(j+1)d$ i $l \leftarrow l + F(j)d$.
- Znacznik to dowolna liczba z przedziału [I, p), np. z = (I + p)/2.

Notatki
Notatki
Notatki

Przykład

- Weźmy alfabet a, b, c z prawdopodobieństwami 0.7, 0.1, 0.2.
- Zakodujmy tekst abc.
- Na początku mamy przedział: [0,1).
- F(1) = 0, F(2) = 0.7, F(3) = 0.8, F(4) = 1.
- Kodujemy a i otrzymujemy przedział [0, 0.7).
- Kodujemy b i otrzymujemy przedział [0.49, 0.56).
- Kodujemy *c* i otrzymujemy przedział [0.546, 0.56).
- Za znacznik możemy przyjąć 0.553.

Kodowanie arytmetyczne

Dla ustalonej długości tekstu n, każdy ciąg jest odwzorowany na przedział rozłączny z przedziałami odpowiadającymi innym ciągom. Gwarantuje to jednoznaczność kodowania.

Wygenerowanie znacznika dla konkretnego ciągu nie wymaga wyznaczania bądź pamiętania znaczników innych ciągów.

- Dostajemy n długość tekstu i z znacznik tekstu.
- $I \leftarrow 0$ i $p \leftarrow 1$.
- Dla i = 1, 2, ..., n:
 - Wybieramy j takie, że $l + F(j)(p l) \le z < l + F(j + 1)(p l)$;

 - Przyjmujemy, że $x_i = a_j$; $d \leftarrow p l$, $p \leftarrow l + F(j+1)d$ i $l \leftarrow l + F(j)d$.
- Ciąg oryginalny to x_1, \ldots, x_n .

Przykład

- P(a) = 0.7, P(b) = 0.1, P(c) = 0.2, z = 0.55 i n = 3.
- F(1) = 0, F(2) = 0.7, F(3) = 0.8 i F(4) = 1.
- l = 0 i p = 1.
- Dla *a* mamy $0 \le 0.55 < 0.7$, stąd $x_1 = a$, l = 0 i p = 0.7.
- Dla *b* mamy $0.49 \le 0.55 < 0.56$, stad $x_2 = b$, l = 0.49 i p = 0.56.
- $\bullet~$ Dla c mamy 0.546 \leqslant 0.55 < 0.56, stąd $x_3=c,\,l=$ 0.546 i p = 0.56.
- Odkodowany ciąg to abc

Własności

Jak reprezentować znacznik (liczba rzeczywista) aby był jak najkrótszy

• Niech $x = x_1, \dots, x_n$ będzie ciągiem danych o prawdopodobieństwie wystąpienia $P(x) = \prod_{i=1}^n P(x_i)$. Zaokrąglenie z' znacznika z do

$$m(x) = \left\lceil \log \frac{1}{P(X)} \right\rceil + 1$$

bitów gwarantuje jednoznaczność kodowania.

• Kod arytmetyczny dla ustalonej długości tekstu jest kodem prefiksowym.

Notatki
Notatki
Notatki
Notatki
Notatki
Notatki
Notatki

			۰
Przy	112	-	3
PIZI	/ K 1	211	a

- P(a) = 0.7, P(b) = 0.1, P(c) = 0.2.
- Kod dla tekstu abc to 0.553 = (0.100011011)₂.
- P(abc) = 0.014.
- $\bullet \ \left\lceil \log \tfrac{1}{0.014} \right\rceil + 1 = 8$
- Czyli do zakodowania tekstu wystarczy wysłać 10001101.

Usprawnienia

- Dla długich ciągów potrzebujemy długich liczb i przetwarzanie wymaga przeczytania całego ciągu.
- Można zmodyfikować algorytm do pracy przyrostowej znacznik powstaje etapami i można wysyłać go fragmentami.

Kodowanie ze skalowaniem

Po zakodowaniu kolejnej litery:

- Jeśli [I, p) ⊆ [0, 0.5):

 - zamień [I, p) na [2I, 2p);
 dołącz do kodu słowo 01 licznik;
 - licznik ← 0.
- Jeśli $[I, p) \subseteq [0.5, 1)$:
 - zamień [I,p) = [0.0; T]. zamień [I,p) na [2I-1,2p-1); dołącz do kodu słowo $10^{licznik}$;

 - licznik ← 0.
- Jeśli I < 0.5 < p i $[I, p) \subseteq [0.25, 0.75)$:
 - zamień [I,p) na [2I-0.5,2p-0.5); $licznik \leftarrow licznik + 1$.

Analogicznie można zmodyfikować procedurę dekodowania aby dekodowanie odbywało się na podstawie otrzymywanych fragmentów.

Dalsze możliwe usprawnienia

- Przejście z arytmetyki zmiennoprzecinkowej na arytmetykę całkowitoliczbowa: zastąpienie przedziału [0,1) przez przedział liczb całkowitych $[0,2^m-1]$.
- Problem: Jak dobrać m aby uniknąć błędów zaokrągleń.

Notatki
Notati
Notatki
Notatki
Notatki
Notatki
Notatki
Notatki

Kodowanie arytmetyczne – algorytm całkowitoliczbowy

- - odwzorowujemy 0 na $\overbrace{000...0}^{m \text{ razy}}$
 - odwzorowujemy 1 na 111...1
 - odwzorowujemy 0,5 na 1 00...0
- Zamieniamy wyrażenia aktualizujące tak, aby uwzględniały zaokrąglenia.
- Skalowanie działa tak, jak w przypadku oryginalnego algorytmu.

Maciek Gebala

Kody Tunstalla. Kodowanie arytmetyczne

Porównanie kodowania arytmetycznego i Huffmana

Niech H(S) oznacza entropię źródła S, I_A średnią długość kodu arytmetycznego, I_H średnią długość kodu Huffmana a m długość bloku:

$$H(S) \leqslant I_A \leqslant H(S) + \frac{2}{m}$$

oraz

$$H(S) \leqslant I_H \leqslant H(S) + \frac{1}{m}$$

W przypadku kodowania Huffmana teoretyczna wartość jest mała, jednak dla dużych wartości m kody Huffmana są niepraktyczne.

Maciek Gęb

ody Tunstalla. Kodowanie arytmetyczn

Notatki
Notatki
Notatki
Notatki
Notatki