WEEK 9: ANOMALY DETECTION

STK-INF 3000/4000
DIRK HESSE

ANOMALY DETECTION

EXAMPLES

- Detect if a credit card was stolen.
- Detect if a account has been hacked.
- Detect if a piece of equipment functions normally.
 - Predicting hard disk failures.
 - Predicting plane engines about to break.
 - Detect production errors.
- Detect if a insurance claim is fraudulent.

TYPES OF ANOMALY DETECTION.

- Expert systems.
- Statistical anomaly detection.
- Network analysis.

EXPERT SYSTEMS

- A lot of *if* then rules.
 - If the vibration of an engine increases and the temperature sinks, ring an alarm.
 - If a stock price went down by more than a standard deviation in a week, short it.
- Used a lot in the past.

WHY RULES FAIL...

- Rigid.
- Hard to maintain.
- Hard to explain.
- Will only find what you're looking for.

ANOMALY DETECTION

UNSUPERVISED LEARNING

- Anomaly detection uses (usually) unsupervised learning.
- Have a bunch of x_i , no target.
 - Cases of fraud might be unknown.
 - Or too rare to make a good predictor.
- Try to make sense of the x_i .
 - \circ Usually means finding an approximation of p(X=x) given the training data.
 - Gives a measure how improbable the observation is.

EXAMPLE: PREDICTING MACHINE MALFUNCTION.

THE NORMAL DISTRIBUTION

THE Z VALUE

- Assume we have data x_1, \ldots, x_N .
- ullet Calculate the mean $\overline{x}=rac{1}{N}\sum_i x_i$.
- ullet Calculate the standard deviation $\sigma = \sqrt{rac{1}{N} \sum_i (x_i \overline{x})^2}$
- ullet Calculate the z-value $z_i=(x_i-\overline{x})/\sigma$.
- ullet Flag everything with $z>z_{
 m max}$ as anomaly.

CHEBYSHEV'S INEQUALITY

- Valid for a wide variety of probability distributions.
- Statement:

$$|Pr(|X-\mu| \geq k\sigma) \leq rac{1}{k^2}$$

 I.e. looking at z values for anomaly detection makes sense.

SIGMAS AND PROBABILITIES

For the normal distribution:

Threshold	Fraction Outside		
3σ	1 / 370		
4σ	1 / 15 787		
5σ	1 / 1 744 278		
6σ	1 / 506 797 346		

CHEBYSHEV GUARANTEES

Threshold	Percent Outside		
3σ	11.1111%		
4σ	6.25%		
5σ	4%		
6σ	2.7778%		

EXAMPLE: PREDICTING MACHINE MALFUNCTION.

MULTIDIMENSIONAL DATA

Can fit a multivariate normal distribution

$$f(x) = rac{\exp\left(-rac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)
ight)}{\sqrt{(2\pi)^d|\Sigma|}}$$

$$\mu = rac{1}{N} \sum_i x_i$$

$$\Sigma = rac{1}{N-1} \sum_i (x_i - \mu) (x_i - \mu)^T.$$

Flag everything with $f(x) < \epsilon$ as anomaly.

THE NEED FOR CLUSTERING

- There might be natural variations in data.
 - Weekend vs. weekday spending patterns.
 - Heart rhythms at rest vs. during sport.
- Fit a bunch of (multivariate) normal distributions.
 - How? We generally don't have labels.
- Enter: Cluster methods.

CLUSTERING

CLUSTERING 101

- Needed: Some measure for distance between measurements.
 - ∘ I.e. a metric.
- Objective: Find k clusters of points that are close together.
 - \circ Some methods find k automatically.
 - Most methods need it as input.

TYPES OF CLUSTERING

- Hierarchical
 - Arranges samples in a hierarchy, according to distance.
 - Types:
 - Agglomerative (bottom-up)
 - Divisive (top-down, not terribly common)
- Non-hierarchical
 - Examples:
 - K-Means.
 - DBSCAN.

AGGLOMERATIVE CLUSTERING

- Start with each x_i defining its own cluster.
- At each step, merge the closest two clusters.
 - Closest according to linkage you've chosen.
- Keep going until you have only one cluster.
- Choose a place to 'cut' the resulting tree.

AGGLOMERATIVE CLUSTERING

DISTANCE BETWEEN TWO CLUSTERS?

- Linkage
 - Single (closest points of clusters).
 - Full (furthest points of clusters).
 - Average (average distance of points).
 - Centroid (distance of cluster centers).

HOW TO FIND THE NUMBER OF CLUSTERS?

- Sometimes given.
 - \circ Want to distribute customers to k service people.
- Sometimes can be 'eyeballed' by looking at the dendrogram.
- Sometimes we need to work a little.
 - Number of classes might be unknown.
 - Might be questionable if there is structure at all.

PREPARATIONS FOR FINDING K NUMERICALLY.

- Given clustering with k cluster centers μ_l .
- Assign each x_i a cluster $C(x_i)$, such that

$$C(x_i) = \operatorname*{argmin}_{l} \|x_i - \mu_l\|$$

ullet For agglomerative clustering we'll often have the $C(x_i)$ first and calculate

$$\mu_l = rac{1}{N_l} \sum_{i; C(x_i) = l} x_i$$

Define the inertia (or within-cluster RSS)

$$\sum_l \sum_{i;C(x_i)=l} \|\mu_l - x_i\|^2$$

FINDING K NUMERICALLY.

- Set a range k you want to explore.
- Calculate the inertia for each of them.
- Plot vs. k.
- Often you'll see a knee-shape.
 - Less clusters than optimal: High reduction in variance.
 - More clusters than optimal: Don't gain much.
- Choose k at or close to 'knee'.

K-SCAN FOR THE IRIS DATA SET.

Iris data clustering

HOW DO YOU KNOW YOU DID WELL?

- ullet Inspect per-cluster means of $X^{(i)}$.
 - Oo they separate well?
- Inspect known labels.
 - O Do we classify correctly?
 - Beware of cluster label mismatch.

EVALUATING THE IRIS CLUSTERS.

Iris data clustering

K-MEANS CLUSTERING

- Start with k random cluster means μ_l .
- ullet Given the data x_i , calculate new cluster centers, again using

$$C(x_i) = rgmin_l \|x_i - \mu_l\| \ \mu_l' = rac{1}{N_l} \sum_{i:C(x_i)=l} x_i$$

Iterate until the assignment stops changing.

PROS AND CONS

- K-Means
 - \circ Fast ($O(N^2)$).
 - Good for sphere shaped clusters.
 - Some randomness.
 - Starts with random center assignments.
 - Outcome might vary from run to run.
- Hierarchical clustering.
 - \circ Slower ($O(n^2)$).
 - Works well with any cluster shape.
 - Can eyeball k from dendrogram.

PRACTICAL CONSIDERATIONS

- Needs a good metric.
- Observations might need to be standardized.
- Metric chosen might be of interest.
 - 1-Norm (aka Manhattan distance).
 - ∘ *l*-Norm (usually Euclidean).

CLUSTERING FOR FRAUD DETECTION

Calculate the per-cluster standard deviation

$$\sigma_l = \sqrt{rac{1}{N_l}\sum_{i;C(x_i)=l}\|x_i-\mu_l\|^2}.$$

And the per-cluster z-value

$$z_i = rac{x_i - \mu_{C(x_i)}}{\sigma_{C(x_i)}}.$$

Classify points as an anomaly if

$$z_i > z_{\max}$$
.

QUESTIONS?