Problem Set 1

Haotian Deng (SUFE, Student ID: 2023310114)

Problem 1

Consider a new model of preferences, the PI-model. The primitives of this model are two binary relations, P and I, defined on X, where P is interpreted as the "strictly better than" relation, and I is interpreted as the "indifference" relation. We impose three conditions on P and I in this model: (1) for any $x \in X$, xIx and $x\bar{P}x$; (2) for any $x, y \in X$ with $x \neq y$, exactly one of the following three is true: xPy, yPx and xIy; (3) both P and I are transitive. Based on the construction in this model, prove the following results.

- (a) I is symmetric.
- (b) If xPy and yIz, then xPz; If xIy and yPz, then xPz.
- (c) The PI-model is equivalent to the \succeq -model.

Answer to problem 1

(a) I is symmetric.

Consider any $x, y \in X$ with xIy, hence by the second condition of this model, both xPy and yPx are not true. Then consider a similar argument, if both yPx and xPy are not true, we have yIx for all $x, y \in X$. Therefore, for any $x, y \in X$ with $x \neq y$, xIy implies yIx, I is symmetric.

(b) If xPy and yIz, then xPz; If xIy and yPz, then xPz.

(1) If xPy and yIz, then xPz.

Suppose xIz, as I is transitive and yIz, we have zIy, contradiction. Suppose zPx, as P is transitive and xPy, we have zPy, contradiction. Hence by the second condition of this model, we have xPz.

(2) If xIy and yPz, then xPz.

Suppose xIz, as I is transitive and xIy, we have zIy, contradiction. Suppose zPx, as P is transitive and yPz, we have yPx, contradiction. Hence by the second condition of this model, we have xPz.

(c) The PI-model is equivalent to the \succeq -model.

Proposition:

(1) Given the complete and transitive \succeq , define two new binary relations, P' and I' as follows: for any $x, y \in X$, xP'y if $x \succeq y$ and $y \not\succeq x$, xI'y if $x \succeq y$

and $y \succeq x$. Then P' and I' satisfy the three conditions above.

(2) Given the three conditions on P and I, define a new binary relation \succeq' as followers: for any $x, y \in X$, $x \succeq' y$ if xPy or xIy. Then \succeq' is completeness and transitivity.

Proof:

$(1) \succeq -model \rightarrow PI-model$

Condition(1):

For any $x, y \in X$ with x = y, by the construction of I' and P' and the completeness of \succeq , xI'x and $x\bar{P}'x$.

Condition(2):

If xP'y, then $x \succeq y$ and $y \not\succeq x$, obviously both yP'x and xI'y are not true. So by a similar argument, it can be shown that only one of xP'y, yP'x and xI'y is true.

Condition(3):

Consider any $x, y, z \in X$ with xP'y and yP'z. By the definition of P' and the transitivity and the negatively transitivity of \succeq , we have xP'z. Consider any $x, y, z \in X$ with xI'y and yI'z. By the definition of I' and the transitivity of \succeq , we have xI'z.

(2) PI-model $\rightarrow \succeq$ -model

Completeness:

For any $x, y \in X$, by the definition of \succeq' and the second condition of PI-model, we have $x \succeq' y$ or $y \succeq' x$.

Transitivity:

Consider any $x, y, z \in X$ with $x \succeq' y$ and $y \succeq' z$. By the definition \succeq' , we have xPy or xIy and yPz or yIz. Then by the transitivity of P and I and second result above, we have $x \succeq' z$.

Problem 2

Let C be a choice correspondence defined on the domain \mathscr{D} . Assume that for any $A, B \in \mathscr{D}$ with $A \cap B \neq \emptyset$, $A \cap B \in \mathscr{D}$. Show that if C satisfies Sen's properties α and β , then C satisfies the weak axiom of revealed preference.

Answer to problem 2

Assume that C satisfies Sen's properties α and β while C does not satisfy WARP. If C does not satisfy WARP, it means that if for some $A \in \mathcal{D}$ with $x, y \in A$, $x \in C(A)$ and $y \notin C(A)$, there exists $y \in C(B)$ for some $B \in \mathcal{D}$ with $x, y \in B$.

Let $\{x,y\} \subseteq A \cap B \subseteq A$, $x \in C(A)$ and $y \notin C(A)$, by Sens properties α , $x \in C(A \cap B)$. And since there exists $y \in C(B)$ and $y \in A \cap B \subseteq B$, then by Sens properties α , we have $y \in C(A \cap B)$. Thus, we have both $x,y \in C(A \cap B)$. As we also know that $A \cap B \subseteq A$ and $x \in C(A)$, then by Sens properties β , we have $y \in C(A)$, contradiction.

Hence when C satisfies Sen's properties α and β , it must satisfy WARP.

Problem 3

Let \succeq be a preference relation defined on a finite set X, and \succ is the asymmetric component of \succeq . Notice that \succeq is not assumed to be rational. We say \succ is acyclic if there does not exist a list $(x_1, x_2, \ldots, x_{n1}, x_n)$ such that $x_k \in X$ for each $k \in 1, 2, \ldots, n, n \geq 2$, and $x_1 \succ x_2 \succ \ldots \succ x_{n1} \succ x_n \succ x_1$. For any $A \subseteq X$, let

$$C_{\succ}(A) = \{x \in A : \text{there does not exist } y \in A \text{ such that } y \succ x\}.$$

Prove the following results.

- (a) $C_{\succ}(A) \neq \phi$ for all non-empty $A \subseteq X$ if and only if \succ is acyclic.
- (b) Assume \succ is *acyclic*. C_{\succ} satisfies Sen's property α , but may not satisfy property β .

Answer to problem 3

- (a) $C_{\succ}(A) \neq \phi$ for all non-empty $A \subseteq X$ if and only if \succ is *acyclic*.
- (1) $C_{\succ}(A) \neq \phi$ for all non-empty $A \subseteq X \rightarrow \succ$ is acyclic

Assume to the contrary, \succ is not acyclic, which means there exists a list $(x_1, x_2, \ldots, x_{n1}, x_n)$ such that $x_k \succ x_{k+1} (k \in 1, 2, \ldots, n-1)$ and $x_n \succ x_1$. That is to say, for every $x_k \in X$, there always exists $y \succ x$, hence $C_{\succ}(A) = \phi$, contradiction. Thus, \succ must be acyclic.

(2) \succ is $acyclic \to C_{\succ}(A) \neq \phi$ for all non-empty $A \subseteq X$ Assume to the contrary, \exists a non-empty $A \subseteq X$, $C_{\succ}(A) = \phi$. Consider any $x \in A$. Since $x \notin C_{\succ}(A)$, there exists $y \in A$ such that $y \succ x$. Let $A = \{x_1\}$ and $x_1 \succ x_2 \succ \cdots \succ x_k (k \ge 2)$, if there exists $y \in A$ such that $y \succ x$, we have $x_1 \succ x_1$, which contradicts to the presumption that \succ is acyclic. Thus, $C_{\succ}(A) \ne \phi$ for all non-empty $A \subseteq X$.

(b) Assume \succ is *acyclic*. C_{\succ} satisfies Sen's property α , but may not satisfy property β .

(1) Sen's property α

Define $A \subseteq B \in \mathcal{D}$, since \succ is acyclic, we have $C_{\succ}(B) \neq \phi$, so that $x \in C_{\succ}(B)$. By the definition of $C_{\succ}(B)$, there does not exist $y \in B$ such that $y \succ x$. Since $A \subseteq B$, it also means there does not exist $y \in A$ such that $y \succ x$. Hence $x \in C_{\succ}(A)$, C_{\succ} satisfies Sen's property α .

(2) Sen's property β

Let $\mathscr{D} = \{x_1, x_2, x_3\}$, since \succ is *acyclic*, we can assume that $x_1 \succ x_2 \succ x_3$, $x_3 \not\succ x_1$ and $A = \{x_1, x_3\} \subseteq B = \{x_1, x_2, x_3\} \in \mathscr{D}$. Notice that \succ is not assumed to be transitive, we don't have $x_1 \succ x_3$. Thus we have $C_{\succ}(A) = \{x_1, x_3\}$ and $C_{\succ}(B) = \{x_1\}$.

Problem 4

Show that if a choice correspondence C (defined on the domain \mathscr{D}) can be rationalized, then it satisfies the *path-invariance* property: for any $B_1, B_2 \in \mathscr{D}$ such that $B_1 \cup B_2 \in \mathscr{D}$ and $C(B_1) \cup C(B_2) \in \mathscr{D}$, we have $C(B_1 \cup B_2) = C(C(B_1) \cup C(B_2))$.

Answer to problem 4

Obviously, $C(C(B_1) \cup C(B_2)) \subseteq C(B_1 \cup B_2)$. Then we only need to prove that $C(B_1 \cup B_2) \subseteq C(C(B_1) \cup C(B_2))$, that is to say, we want to for that for any $x \in C(B_1 \cup B_2)$, $x \in C(C(B_1) \cup C(B_2))$.

If C can be rationalized, then there exists rational \succeq such that $C = C_{\succeq}$. We know that C_{\succeq} satisfies WARP, hence Sen's property α . Since $x \in C(B_1 \cup B_2)$, $B_1 \subseteq (B_1 \cup B_2)$, $B_2 \subseteq (B_1 \cup B_2)$ and Sen's property α , we have $x \in C(B_1)$ and $x \in C(B_2)$. Since $x \in C(B_1) \subseteq B_1$ and $x \in C(B_2) \subseteq B_2$, we have $x \in C(B_1) \cup C(B_2) \subseteq B_1 \cup B_2$. According to Sen's property α , $x \in C(B_1) \cup C(B_2) \subseteq B_1 \cup B_2$ and $x \in C(B_1 \cup B_2)$, we have $x \in C(C(B_1) \cup C(B_2))$. Hence $C(B_1 \cup B_2) \subseteq C(C(B_1) \cup C(B_2))$.

Combining both $C\left(C\left(B_{1}\right)\cup C\left(B_{2}\right)\right)\subseteq C\left(B_{1}\cup B_{2}\right)$ and $C\left(B_{1}\cup B_{2}\right)\subseteq C\left(C\left(B_{1}\right)\cup C\left(B_{2}\right)\right)$, we have $C\left(B_{1}\cup B_{2}\right)=C\left(C\left(B_{1}\right)\cup C\left(B_{2}\right)\right)$. Q.E.D.