Contradiction

• How to be so wrong that you end up being right

// Problem 1

Let $a, b, c, d \in \mathbb{Z}$. Show that if $a^2 + b^2 = c^2$, then a or b is even.

- Take negation, $a^2+b^2=c^2$ and a and b are odd
- Let a=2j+1 and $b=2k+1, j,k\in\mathbb{Z}$
- $ullet a^2+b^2=(2j+1)^2+(2k+1)^2=4(j^2+k^2)+4(j+k)+2=4(k^2+j^2+k+j)+2$
- So we have $2 \equiv c^2 \pmod{4}$
- We must show that this is impossible

Proof I

Proof by contradiction: Assume a and b are odd

Let
$$a=2j+1$$
 and $b=2k+1, j,k\in\mathbb{Z}$

Then
$$a^2 + b^2 = c^2 \Rightarrow 4(k^2 + j^2 + k + j) + 2 = c^2$$

We get
$$2 \equiv c^2 \pmod{4}$$

Now
$$0^2 \equiv 0 \pmod{4}, 1^2 \equiv 1 \pmod{4}, 2^2 \equiv 0 \pmod{4}$$
 and $3^2 \equiv 1 \pmod{4}$

So there is no $c \in \mathbb{Z}$ s.t. $c^2 \equiv 2 \pmod{4} \Rightarrow \Leftarrow$

- Another way instead of modular arithmetic
- We notice that $2 \mid c^2 \Rightarrow 2 \mid c$ so we write $c = 2l, l \in \mathbb{Z}$
- So we get $4k^2 + 4j^2 + 4k + 4j + 2 = 4l^2$
- $\Rightarrow 4(k^2 + j^2 + k + j l^2) = -2$
- ullet \Rightarrow $4\mid -2$ this is a contradiction because 4 does not divide -2 \Longrightarrow

Procedure

- Assume the negation you want to prove
- Do some math
- Obtain a contradiction
- Conclude the assumption is false

\equiv Example

Prove that $\sqrt{2}$ is irrational

Prove by contradiction: Assume $\sqrt{2} \in \mathbb{Q}$. Then $\exists a,b \in \mathbb{Z}, b \neq 0, \gcd(a,b) = 1$ s.t.

$$\sqrt{2} = \frac{a}{b}$$

$$\Rightarrow 2=rac{a^2}{b^2}$$
 , $2b^2=a^2$

So $2 \mid a^2$. Recall if p is prime and $m, n \in \mathbb{Z}$ then $p \mid mn \Rightarrow p \mid m \vee p \mid n$

So we write $a=2k, k\in\mathbb{Z}$, then $2b^2=4k^2\implies b^2=2k^2\implies 2\mid b^2\implies 2\mid b$

This is a contradiction since $\gcd{(a,b)}=1$. So $\sqrt{2}\notin\mathbb{Q}$

- Now lets try this with $\sqrt{7}$
 - Assume $\sqrt{7} \in \mathbb{Q}$. Then $\exists a,b \in \mathbb{Z}, b \neq 0, \gcd(a,b) = 1$ s.t. $\sqrt{7} = \frac{a}{b}$
 - Then we have $7b^2 = a^2$
 - $7 \mid a^2$ so $7 \mid a, a = 7k, k \in \mathbb{Z}$
 - So we have $7b^2 = 49k^2$
 - Then $b^2 = 7k^2 \implies 7 \mid b$
 - This is a contradiction since $\gcd{(a,b)}=1.$ So $\sqrt{7}
 ot\in\mathbb{Q}$
- And again for $\sqrt{49}$
 - Assume $\sqrt{49} \in \mathbb{Q}$. Then $\exists a,b \in \mathbb{Z}, b \neq 0, \gcd(a,b) = 1$ s.t. $\sqrt{49} = \frac{a}{b}$
 - Then we have $49b^2 = a^2$
 - $49 \mid a^2$ so $49 \mid a,a=49k,k \in \mathbb{Z}$, proof fails here because 49 is not prime so the statement $49 \mid a^2 \implies 49 \mid a$ may not be true
 - But we have $7 \mid a, a = 7k, k \in \mathbb{Z}$
 - Then $49b^2=49k^2 \implies b^2=k^2$ so this also doesn't work

Problem 2

Let \mathbb{I} be the set of irrational numbers. That is $\mathbb{I}=\mathbb{R}-\mathbb{Q}$

Prove the following statements

- I. Let $x \in \mathbb{R}$. If $x \in \mathbb{I}$ then $\frac{1}{x} \in \mathbb{I}$
- 2. Let $n \in \mathbb{Z}$ and $x \in \mathbb{R}$. If $x \in \mathbb{I}$ then $n + x \in \mathbb{I}$

Solution

- I. Proof by contradiction: Assume $\frac{1}{x} \in \mathbb{Q}$. Then $\frac{1}{x} = \frac{a}{b}$, $a, b \in \mathbb{Z}$, $b \neq 0$. Note that $a \neq 0$, otherwise $\frac{1}{x} = 0 \implies 1 = 0$ which is silly
 - Then $\frac{1}{x} = \frac{a}{b}$ rest of proof is in lecture 21 notes
- **2.** Proof by contradiction: Assume $n + x \in \mathbb{Q}$.

So
$$n+x=rac{a}{b}, a,b\in \mathbb{Z}, b
eq 0$$

$$\implies x = \frac{a-nb}{b}$$

Since $(a-nb), b \in \mathbb{Z}, x \in \mathbb{Q}$. This is a contradiction

• Make sure you do the question on the slides because it is a hard finals question