Universidade Federal da Bahia Departamento de Matemática

Matemática Discreta II Prof. Ciro Russo Primeira unidade (prova substitutiva) – 20 de abril de 2015

1. Seja | a relação de divisibilidade em \mathbb{Z} , isto é,

$$a|b$$
 sse $\exists c \in \mathbb{Z}$ tal que $ac = b$.

- (a) Demonstre que \mid não é uma relação de ordem em \mathbb{Z} .
- (b) Apresente dois números inteiros distintos a e b tais que a|b e b|a.
- (c) Prove que, se $d \in \operatorname{mdc}(a, b)$ e c|d, então c|a e c|b.
- (d) Prove que | é compatível com o produto, isto é:

se a|b e c|d, então ac|bd.

- **2.** (a) Seja $a_0 = a_1 = a_2 = 1$ e, para todo $n \ge 3$, $a_n = 2(a_{n-1} + a_{n-3})$. Encontre todos os elementos da sequência $(a_n)_{n \in \mathbb{N}}$ até a_7 .
 - (b) Defina por recorrência uma sequência $\{b_n\}_{n\in\mathbb{N}}$ tal que $a_n < b_n$ para todo $n \in \mathbb{N}$.
- **3.** Demonstre, por indução (e usando apenas os axiomas de Peano), a propriedade distributiva à esquerda do produto respeito à soma, ou seja, que para todo $m, n, p \in \mathbb{N}$,

$$m(n+p) = mn + mp.$$

- 4. Demonstre, usando a indução, as seguintes:
 - (a) para todo $n \ge 6, 5n + 5 \le n^2$;
 - (b) para todo $n \in \mathbb{N}$, n(n+1) é par.