Corrente elettrica

Esercizio 1

Un cilindro circolare retto, conduttore, è percorso longitudinalmente da una corrente di densità $J=J_0\left(\frac{r}{R}\right)^2$, essendo r la distanza da un punto generico dell'asse e R il raggio del cilindro. i) Calcolare l'intensità di corrente I attraverso la generica sezione del cilindro; ii) assumendo pari a η la resistività del conduttore, calcolare la potenza dissipata per unità di lunghezza.

$$\[I = \frac{J_0 \pi R^2}{2}, \quad P_{\ell} = \frac{\eta J_0^2 R^2 \pi}{3}\]$$

Esercizio 2

Calcolare la resistenza dei seguenti elementi: (i) resistore piano-parallelo; (ii) resistore cilindrico con corrente che scorre longitudinalmente; (iii) resistore cilindrico con corrente che scorre radialmente; (iv) resistore sferico.

$$\left[R_{\mathrm{piano}} = \frac{\eta \ell}{S}, \quad R_{\mathrm{cil,long}} = \frac{\eta \ell}{\pi \left(R_2^2 - R_1^2\right)}, \quad R_{\mathrm{cil,rad}} = \frac{\eta}{2\pi \ell} \log \left(\frac{R_2}{R_1}\right), \quad R_{\mathrm{sfe}} = \frac{\eta}{4\pi} \left(\frac{1}{R_1} - \frac{1}{R_2}\right)\right]$$

Esercizio 3

Due cilindri conduttori aventi la stessa sezione S e resistività η_1 e η_2 sono posti a contatto lungo una sezione retta. Se il filo è percorso dalla corrente I stazionaria, nella sezione di contatto si accumula carica elettrica con densità superficiale σ . Calcolare σ .

$$\left[\sigma = \epsilon_0 \frac{I}{S} \left(\eta_2 - \eta_1\right)\right]$$

Esercizio 4

Un condensatore piano di area S viene riempito completamente con due mezzi dielettrici imperfetti di costanti dielettriche relative ϵ_{r1} e ϵ_{r2} , conducibilità g_1 , g_2 e spessori d_1 e d_2 . Assumendo che tra le armature venga applicata una d.d.p. costante V_0 e che il sistema sia a regime, determinare: (i) i campi elettrici E_1 e E_2 ; (ii) l'intensità di corrente I; (iii) la densità di carica libera e di polarizzazione alla superficie di separazione tra i due materiali; (iv) la resistenza del sistema.

$$\left[E_{1} = \frac{V_{0}}{d_{1} + \frac{g_{1}}{g_{2}}d_{2}}, E_{2} = \frac{V_{0}}{\frac{g_{2}}{g_{1}}d_{1} + d_{2}}, I = \frac{SV_{0}}{\frac{d_{1}}{g_{1}} + \frac{d_{2}}{g_{2}}}, R = \frac{d_{1}}{g_{1}S} + \frac{d_{2}}{g_{2}S}, \sigma_{L} = \epsilon_{0}\left(\epsilon_{r2}E_{2} - \epsilon_{r1}E_{1}\right), \sigma_{p} = \epsilon_{0}\left[\left(\epsilon_{r1} - 1\right)E_{1} - \left(\epsilon_{r2} - 1\right)E_{2}\right]\right]$$