Below
$$f_{i}(t) = f(x^{*} + te_{i}), i = i_{i}..., n$$

e: i-k standard barryschlar

f has at challerman: $t \neq 0$

3; has at elabreman: $t = 0$

-1 $g_{i}^{(1)}(0) = 0$

First: $2f_{i} = g_{i}^{(1)}(0)$

galler det, at

 $Of(x^{n}) = (g_{i}^{(1)}(0), g_{i}^{(1)}(0), ..., g_{i}^{(1)}(0)) = 0$

(a) f banker

 x^{*} globalt make $=$) x^{*} kritisk

 x^{*} kritisk $=$) lead terran 24.1
 $f(x) = f(x^{*}) = (\nabla f(x^{*}), x - x^{*})$
 $=$) $f(x) = f(x^{*})$

(b) Samme argument for $= f_{i}$ Some

 $f(x_{i}, ..., x_{i}) = 0$
 $f(x_{i}, x_{i}) = 0$
 f