25th CMWR Computational Methods in Water Resources

The Conference on Computational Methods in Water Resources

THE UNIVERSITY OF ARIZONA

Global Near Real-Time Daily Inundation Mapping using VIIRS Satellite Imagery and Deep Learning

Alex Saunders¹, Jonathan Giezendanner¹, Fritz Policelli², Beth Tellman¹ ¹School of Geography, Development & Environment, University of Arizona; ²NASA Goddard Space Flight Center

1) NASA provides daily near-global flood maps to the public using MODIS

- → 250-meter resolution detected from twice-daily overpass of the Moderate Resolution Imaging Spectroradiometer onboard NASA Terra and Aqua
- 2012, the last 7 days available via NASA WorldView

NEAR REAL-TIME FLOOD DASHBOARD

2) With MODIS data coming to an end, can we use VIIRS and deep learning to improve NASA's mapping services?

- → Visible Infrared Imaging Radiometer Suite (VIIRS) similar sensor characteristics offering potential for continuity
- → Deep learning has widely been shown to improve accuracy versus traditional "thresholding" approaches for flood mapping

3) Generating "weak labels" to train a global inundation model

- taking scenes containing water and zero cloud cover
- → "Chips" of 256x256 pixels @ 375-meter resolution

4) Training a UNet model with a fusion of input features at varying resolutions

→ Each feature ingested at its native spatial resolution, then fed into a UNet Convolutional Neural Network

5) Using VIIRS surface reflectance bands to predict per-pixel fractional inundation

6) Challenges and next steps

- → Inconsistent predictions between adjacent chips and overly smooth predictions at water edges
- → Next: data augmentation and additional stratified sampling by permanent water content
- → Then: evaluation against existing global products: NASA MODIS Flood, NOAA VIIRS Flood

Acknowledgements

This work is undertaken as part of NASA ACCESS (80NSSC23K1415).

Alex Saunders is a PhD Student in the Social[Pixel] Lab (PI Dr Beth Tellman). More info at: https://alex-saunders00.github.io/

Research in the Social[Pixel] lab seeks to understand and address the consequences of global environmental change using data driven approaches. More info at: https://beth-tellman.github.io/