

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

ИНСТИТУТ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Лабораторная работа 2

по дисциплине «Системы массового обслуживания»

ВАРИАНТ 6

Тема: Многоканальные системы массового обслуживания

Выполнил: Студент 4-го курса Едренников Д.А.

Группа: КМБО-01-20

MOCKBA - 2023

Задание

В рассматриваемых системах массового обслуживания (СМО) состояние в любой момент времени t характеризуется числом заявок, находящихся в системе. Для всех СМО задано количество приборов n, все приборы пронумерованы.

Событием в развитии СМО является переход из одного состояния в другое.

В СМО (D|M|n) и (M|M|n) события могут быть двух типов: 1- появление в системе новой заявки, 2- завершение обслуживания заявки прибором (при этом данный прибор освобождается, и, если есть заявки в очереди, то первая из них поступает сразу же на обслуживание в этот прибор). Если при появлении в системе новой заявки есть свободные приборы, то она сразу же принимается на обслуживание свободным прибором с наименьшим номером, в противном случае заявка становится в очередь типа FIFO.

В СМО (М|М|n |m) события могут быть двух типов: 1 — появление в СМО новой заявки, которая принимается на обслуживание свободным прибором или становится в очередь; 2 — появление в СМО новой заявки, которая получает отказ в обслуживании (все приборы и места в очереди заняты), 3 — завершение обслуживания заявки прибором (при этом данный прибор освобождается, и, если есть заявки в очереди, то первая из них поступает сразу же на обслуживание в этот прибор). Если при появлении в системе новой заявки есть свободные приборы, то она сразу же принимается на обслуживание свободным прибором с наименьшим номером и одновременно определяется время ее обслуживания. Если при появлении в системе новой заявки все приборы заняты и есть свободные места в очереди, то заявка становится в очередь типа FIFO.

- 1. Система массового обслуживания (D|M|n) Дано:
 - ightharpoonup время между приходом заявок ΔT_3 (заданная постоянная величина);
 - параметр μ показательного распределения времени обслуживания заявки каждым прибором.

Предполагается, что в начальный момент времени t=0 в СМО нет заявок, т.е. состояние системы 0, и через заданное время ΔT_3 в СМО поступает первая заявка (произойдет событие с номером 1). Момент наступления первого события (типа 1) равен $t_{co6}(1) = \Delta T_3$. После события 1 СМО находится в состоянии 1, в котором она будет оставаться время $t_{o6cn}(1)$, определяемое в соответствии с показательным законом распределения с параметром μ . После события 1 система находится в состоянии 1.

2. Система массового обслуживания (M|M|n) Дано:

- \triangleright среднее число заявок λ , поступающих за единицу времени (время между приходом заявок имеет показательное распределение с параметром λ);
- параметр μ показательного распределения времени обслуживания заявки каждым прибором.

Предполагается, что в начальный момент времени t=0 СМО находится в состоянии 0 и в этот момент определяется время поступления в СМО первой заявки $t_3(1)$ в соответствии с показательным законом распределения с параметром λ , а в момент поступления каждой заявки на обслуживание в прибор определяется $t_{\text{обсл}}(1)$ в соответствии с показательным законом распределения с параметром μ .

3. Система массового обслуживания (M|M|n|m) Дано:

- \triangleright среднее число заявок λ , поступающих за единицу времени (время между приходом заявок имеет показательное распределение с параметром λ);
- параметр μ показательного распределения времени обслуживания заявки каждым прибором.

Предполагается, что в начальный момент времени t=0 система находится в состоянии 0 и в этот момент определяется время поступления в систему первой заявки $t_3(1)$ в соответствии с показательным законом распределения с параметром λ , а в момент поступления каждой заявки на обслуживание в прибор определяется время её обслуживания $t_{\text{обсл}}(1)$ в соответствии с показательным законом распределения с параметром μ .

Требуется:

- 1. Провести моделирование первых 100 событий в развитии каждой системы.
- 2. Составить таблицу 1 с данными о событиях:
 - ▶ номер события 1;
 - ightharpoonup момент наступления события $t_{coo}(l)$;
 - ➤ тип события Туре (1);
 - ➤ состояние СМО C(l) после события l;
 - ightharpoonup оставшееся время $t_{oct}(l)$ обслуживания прибором заявки после события l (если после события все приборы свободны, то $t_{oct}(l) = -1$);
 - ightharpoonup время ожидания $t_{\text{ож3}}(1)$, через которое после события 1 в СМО появится новая заявка;
 - ▶ номер заявки j(1), участвующей в событии 1.
 - номер прибор k (1), участвующем в событии l (если заявка встала в очередь или получила отказ в обслуживании, то k(l) = -1):
- 3. Составить таблицу 2 с данными о всех поступивших заявках:
 - **>** номер заявки j;

- ▶ момент t₃(j) появления заявки j в СМО;
- номер места в очереди q(j), на которое попала заявка ј (если заявка сразу начала обслуживаться, то номер места в очереди q(j) = 0, если заявка получила отказ в обслуживании, то q(j) = -1);
- ightharpoonup время пребывания заявки в очереди $t_{oq}(j)$ (если заявка получила отказ в обслуживании, то $t_{oq}(j)$ =0;
- ightharpoonup момент начала обслуживания заявки $t_{\text{ноб}}(j)$ (если заявка получила отказ в обслуживании, то $t_{\text{ноб}}(j)$ =-1);
- ightharpoonup время $t_{\text{обсл}}(j)$ обслуживания прибором заявки j (если заявка получила отказ в обслуживании, то $t_{\text{обсл}}(j)$ =0);
- момент $t_{\kappa o \delta}(j)$ окончания обслуживания заявки j и выхода её из СМО (если заявка получила отказ в обслуживании, то $t_{\kappa o \delta}(j) = t_3(j)$);
- ▶ номер прибора k (j), который обслуживал заявку j (если заявка получила отказ в обслуживании, то k(j)=-2).

4. Составить таблицу 3 с данными о приборах вида:

		17	1 1	
k	N(k)	$t_{3Ha}(k)$	$t_{np}(k)$	$\Delta_{np}(\mathbf{k})$
1	N(1)	$t_{3Ha}(1)$	$t_{np}(1)$	$\Delta_{np}(1)$
	•••	•••	•••	•••
n	N(n)	$t_{3Ha}(n)$	$t_{np}(n)$	$\Delta_{np}(\mathbf{n})$
	$\sum_{k=0}^{n} N(k)$	$\frac{1}{n} \sum_{k=0}^{n} t_{\text{3Ha}}(k)$	$\frac{1}{n} \sum_{k=0}^{n} t_{np}(k)$	$\frac{1}{n} \sum_{k=0}^{n} \Delta_{np}(k)$

Где

k – номер прибора;

N(k) — общее число заявок, поступивших на обслуживание в прибор k на интервале [0, $t_{cof}(100)$];

 $t_{\mbox{\tiny 3aH}}(k)$ - общее время занятости прибора k на интервале [0, $t_{\mbox{\tiny cof}}(100)$];

 $t_{np}(k)$ — общее время простоя прибора k на интервале $[0,\,t_{co6}(100)];$

 $\Delta_{np}(k) = \frac{t_{np}(k)}{t_{co6}(100)}$ — коэффициент простоя прибора k на интервале [0, $t_{co6}(100)$];

5. Для СМО (D|M|n) составить таблицу 4 с данными о состояниях вида:

Состояние	R _i (100)	v _i (100)	T _i (100)	$\Delta_i(100)$
0	$R_0(100)$	$v_0(100)$	$T_0(100)$	$\Delta_0(100)$
1	$R_1(100)$	$v_1(100)$	$T_1(100)$	$\Delta_1(100)$
2	$R_2(100)$	v ₂ (100)	$T_2(100)$	$\Delta_2(100)$
	••••		••••	••••
	$\sum_{i} R_i(100)$	$\sum_{i} v_i(100)$	$\sum_i T_i(100)$	$\sum_i \Delta_i(100)$

Для СМО (M|M|n) и (M|M|n|m) составить таблицу 4 с данными о состояниях вида:

Состояни	r_{i}	$R_{i}(100)$	v _i (100)	$T_{i}(100)$	$\Delta_{i}(100)$
e					
0	r_{o}	$R_0(100)$	$v_0(100)$	$T_0(100)$	$\Delta_0(100)$
1	\mathbf{r}_1	$R_1(100)$	$v_1(100)$	$T_1(100)$	$\Delta_1(100)$
2	\mathbf{r}_2	$R_2(100)$	$v_2(100)$	$T_2(100)$	$\Delta_2(100)$
	•••	••••	••••	••••	••••
	$\sum_{i} r_i(100)$	$\sum_{i} R_i(100)$	$\sum_{i} v_i(100)$	$\sum_i T_i(100)$	$\sum_i \Delta_i(100)$

Где:

 $R_i(100)$ — число попаданий СМО в состояние і в событиях с 1-го по 100 ;

 $v_i(100) = \frac{R_i(100)}{100}$ — относительная частота попадания СМО в состояние і в событиях с 1-го по 100 ;

 $T_i(100)$ — общее время пребывания СМО в состоянии і на интервале [0, $t_{cof}(100)$];

 $\Delta_i(100) = \frac{T_i(100)}{t_{co6}(100)}$ — доля времени пребывания СМО в состоянии і на интервале [0, $t_{co6}(100)$];

 r_{i} — теоретическое значение стационарной вероятности для состояния i.

6. Найти:

- ightharpoonup число заявок J(100) , поступивших в СМО на интервале [0, $t_{co6}(100)$];
- ightharpoonup число ЈF(100) полностью обслуженных заявок на интервале [0, $t_{coo}(100)$];
- ightharpoonup среднее число заявок, находившихся в СМО, на интервале $[0, t_{coo}(100)]$, которое находится по формуле $\overline{z} = \frac{1}{100} \sum_{l=1}^{100} z(l)$, где z(l) число заявок в СМО после события 1;

- > среднее время пребывания заявок в очереди на интервале $[0, t_{cof}(100)],$ которое находится по формуле $\overline{t_{oq}}$ (100) = $\frac{1}{JF(100)} \sum_{j=1}^{JF(100)} t_{\text{oq}}(j);$
- **>** среднее время пребывания заявок в СМО на интервале [0, $t_{\rm coo}(100)$], которое находится по формуле $\overline{t_{\rm CMO}}(100)$ = $\frac{1}{JF(100)} \sum_{j=1}^{JF(100)} [t_{\text{KO6}}(j) - t_3(j)];$

Для СМО (M|M|n) и (M|M|n|m) найти дополнительно теоретические значения:

 \overline{k} – среднее число занятых приборов;

 \overline{r} — средняя длина очереди;

 \overline{z} – среднее число заявок в СМО;

 $\overline{t}_{ ext{OM}}$ — среднее время пребывания заявок в очереди; $\overline{t}_{ ext{CMO}}$ — среднее время пребывания заявок в СМО.

Для СМО (M|M|n|m) найти теоретическую вероятность отказа в обслуживании.

Вывод результатов проводить с округлением до 0,00001.

Краткие теоретические сведения

Система массового обслуживания (СМО) - это математическая модель систем, предназначенных для обслуживания заявок (требований, запросов, клиентов, заказчиков...), поступающих в нее, как правило, в случайные моменты времени.

Для (M|M|n):

— стационарные вероятности состояний (при $\nu < 1$):

$$\begin{cases} r_0 = (1 + \rho + \frac{\rho^2}{2!} + \dots + \frac{\rho^{n-1}}{(n-1)!} + \frac{\rho^n}{n!} * \frac{1}{\nu - 1})^{-1} \\ r_k = \frac{\rho^k}{k!} r_0, 1 \le k \le n \\ \rho = \frac{\lambda}{\mu} \\ \nu = \frac{\lambda}{n\mu} = \frac{\rho}{n} \end{cases}$$

— среднее число занятых приборов:

$$\overline{k} = \rho$$

— средняя длина очереди:

$$\overline{r} = \frac{v r_n}{(1-v)^2}$$

— среднее время пребывания в очереди:

$$\overline{t}_{o4} = \frac{\overline{r}}{\lambda}$$

— среднее время пребывания заявок в СМО:

$$\overline{t}_{\rm CMO} = \frac{\overline{z}}{\lambda}$$

Для (M|M|n|m):

— стационарные вероятности состояний (при ν < 1):

$$\begin{cases} r_0 = (1 + \rho + \frac{\rho^2}{2!} + \dots + \frac{\rho^{n-1}}{(n-1)!} + \frac{\rho^n}{n!} * \frac{1}{\nu - 1})^{-1} \\ r_k = \frac{\rho^k}{k!} r_0, 1 \le k \le n \\ r_{n+l} = \nu^l r_n, l = 1, \dots \\ \rho = \frac{\lambda}{\mu} \\ \nu = \frac{\lambda}{n\mu} = \frac{\rho}{n} \end{cases}$$

— вероятность отказа:

 $P_{\text{отк}} = r_{n+m} \ --$ среднее число занятых приборов:

$$\overline{k} = \rho (1 - P_{\text{OTK}})$$

— средняя длина очереди:

$$\overline{r} = \nu r_n * \frac{1 - (m+1)\nu^m + m\nu^{m+1}}{(1-\nu)^2}$$

— среднее число заявок:

$$\overline{z} = \overline{r} + \overline{k}$$

— среднее время пребывания в очереди:

$$\overline{t}_{o_{}} = \frac{\overline{r}}{\lambda}$$

— среднее время пребывания заявок в СМО:

$$\overline{t}_{\text{CMO}} = \frac{\overline{z}}{\lambda}$$

Используемые функции из языка python:

expon.rvs(scale=1 / u, size=100) - генерации случайных значений из экспоненциального распределения.

Результаты расчетов

CMO (D|M5):

Вариант 6. $\Delta T_3 = 0.17$; $\mu = 1.214$

1	$t_{coo}(1)$	Type(l)	состояние СМО С(1) после события 1	t _{oct} (l)	t _{ож3} (1)	j(1)	k(l)
1	0.17	1	1	0.20894	0.17	1	1
2	0.34	1	2	0.03894	0.17	2	2
3	0.37894	2	1	0.20148	0.13106	1	2
4	0.51	1	2	0.07042	0.17	3	1
5	0.58042	2	1	0.10361	0.09958	2	1
6	0.68	1	2	0.00403	0.17	4	2
7	0.68403	2	1	0.28348	0.16597	3	2
8	0.85	1	2	0.11751	0.17	5	1
9	0.96751	2	1	0.46103	0.05249	4	1
10	1.02	1	2	0.32818	0.17	6	2
11	1.19	1	3	0.15818	0.17	7	3
12	1.34818	2	2	0.08036	0.01182	6	1
13	1.36	1	3	0.05176	0.17	8	2
14	1.41176	2	2	0.01678	0.11824	8	1
15	1.42854	2	1	0.40366	0.10146	5	3
16	1.53	1	2	0.3022	0.17	9	1
17	1.7	1	3	0.12154	0.17	10	2
18	1.82154	2	2	0.01066	0.04846	10	3
19	1.8322	2	1	0.21578	0.0378	7	1
20	1.87	1	2	0.08447	0.17	11	2
21	1.95447	2	1	0.09352	0.08553	11	1
22	2.04	1	2	0.00799	0.17	12	2
23	2.04799	2	1	0.5086	0.16201	9	2
24	2.21	1	2	0.07558	0.17	13	1
25	2.28558	2	1	0.271	0.09442	13	2
26	2.38	1	2	0.17658	0.17	14	1
27	2.55	1	3	0.00658	0.17	15	3
28	2.55658	2	2	0.78794	0.16342	12	1
29	2.72	1	3	0.16168	0.17	16	2
30	2.88168	2	2	0.46285	0.00832	16	1

31	2.89	1	3	0.44373	0.17	17	2
32	3.06	1	4	0.02876	0.17	18	4
33	3.08876	2	3	0.24497	0.14124	18	2
34	3.23	1	4	0.10373	0.17	19	4
35	3.33373	2	3	0.0024	0.06627	17	4
36	3.33614	2	2	0.00839	0.06386	19	1
37	3.34452	2	1	0.44583	0.05548	14	3
38	3.4	1	2	0.39036	0.17	20	1
39	3.57	1	3	0.22036	0.17	21	2
40	3.74	1	4	0.05036	0.17	22	4
41	3.79036	2	3	0.79964	0.11964	15	2
42	3.91	1	4	0.02906	0.17	23	3
43	3.93906	2	3	0.65093	0.14094	23	2
44	4.08	1	4	0.50999	0.17	24	3
45	4.25	1	5	0.33999	0.17	25	5
46	4.42	1	6	0.16999	0.17	26	-1
47	4.58999	2	5	0.14903	0.	21	1
48	4.59	1	6	0.14902	0.17	27	-1
49	4.73902	2	5	0.17888	0.	20	4
50	4.76	1	6	0.1579	0.17	28	-1
51	4.9179	2	5	0.01487	0.	22	5
52	4.93	1	6	0.00277	0.17	29	-1
53	4.93277	2	5	0.03655	0.	25	5
54	4.96933	2	4	0.10145	0.13067	29	3
55	5.07077	2	3	0.09448	0.02923	24	4
56	5.1	1	4	0.06525	0.17	30	3
57	5.16525	2	3	0.57365	0.10475	28	3
58	5.27	1	4	0.04985	0.17	31	4
59	5.31985	2	3	0.41906	0.12015	31	3
60	5.44	1	4	0.29891	0.17	32	4
61	5.61	1	5	0.12891	0.17	33	5
62	5.73891	2	4	0.16277	0.04109	30	1
63	5.78	1	5	0.12168	0.17	34	3
64	5.90168	2	4	1.53772	0.04832	27	3
65	5.95	1	5	0.37415	0.17	35	1
66	6.12	1	6	0.20415	0.17	36	-1
67	6.29	1	7	0.03415	0.17	37	-1
68	6.32415	2	6	0.43366	0.	35	1
69	6.46	1	7	0.29781	0.17	38	-1
70	6.63	1	8	0.12781	0.17	39	-1
71	6.75781	2	7	0.10008	0.	36	1
72	6.8	1	8	0.05789	0.17	40	-1
73	6.85789	2	7	0.58151	0.	37	3

74	6.97	1	8	0.4694	0.17	41	-1
75	7.14	1	9	0.2994	0.17	42	-1
76	7.31	1	10	0.1294	0.17	43	-1
77	7.4394	2	9	0.0993	0.	34	1
78	7.48	1	10	0.0587	0.17	44	-1
79	7.5387	2	9	0.01495	0.	38	3
80	7.55365	2	8	0.03297	0.	39	2
81	7.58662	2	7	0.26934	0.	26	3
82	7.65	1	8	0.20596	0.17	45	-1
83	7.82	1	9	0.03596	0.17	46	-1
84	7.85596	2	8	0.23878	0.	41	1
85	7.99	1	9	0.10474	0.17	47	-1
86	8.09474	2	8	0.03636	0.	40	1
87	8.1311	2	7	0.17168	0.	44	2
88	8.16	1	8	0.14277	0.17	48	-1
89	8.30277	2	7	0.43516	0.	42	2
90	8.33	1	8	0.40793	0.17	49	-1
91	8.5	1	9	0.23793	0.17	50	-1
92	8.67	1	10	0.06793	0.17	51	-1
93	8.73793	2	9	0.04635	0.	46	4
94	8.78428	2	8	0.06107	0.	32	5
95	8.84	1	9	0.00535	0.17	52	-1
96	8.84535	2	8	0.01544	0.	33	4
97	8.86079	2	7	0.03259	0.	48	4
98	8.89338	2	6	0.1513	0.	50	1
99	9.01	1	7	0.03468	0.17	53	-1
100	9.04468	2	6	0.0514	0	45	2

	t ₃ (j)	q(j)	t _{ou} (j)	$t_{\text{ноб}}(j)$	t _{обсл} (j)	$t_{\text{коб}(j)}$	k(j)
j							
1	0.17	0	0.	0.17	0.20894	0.37894	1
2	0.34	0	0.	0.34	0.24042	0.58042	2
3	0.51	0	0.	0.51	0.17403	0.68403	1
4	0.68	0	0.	0.68	0.28751	0.96751	2
5	0.85	0	0.	0.85	0.57854	1.42854	1
6	1.02	0	0.	1.02	0.32818	1.34818	2
7	1.19	0	0.	1.19	0.6422	1.8322	3
8	1.36	0	0.	1.36	0.05176	1.41176	2
9	1.53	0	0.	1.53	0.51799	2.04799	1

10	1.7	0	0.	1.7	0.12154	1.82154	2
11	1.87	0	0.	1.87	0.08447	1.95447	2
12	2.04	0	0.	2.04	0.51658	2.55658	2
13	2.21	0	0.	2.21	0.07558	2.28558	1
14	2.38	0	0.	2.38	0.96452	3.34452	1
15	2.55	0	0.	2.55	1.24036	3.79036	3
16	2.72	0	0.	2.72	0.16168	2.88168	2
17	2.89	0	0.	2.89	0.44373	3.33373	2
18	3.06	0	0.	3.06	0.02876	3.08876	4
19	3.23	0	0.	3.23	0.10614	3.33614	4
20	3.4	0	0.	3.4	1.33902	4.73902	1
21	3.57	0	0.	3.57	1.01999	4.58999	2
22	3.74	0	0.	3.74	1.1779	4.9179	4
23	3.91	0	0.	3.91	0.02906	3.93906	3
24	4.08	0	0.	4.08	0.99077	5.07077	3
25	4.25	0	0.	4.25	0.68277	4.93277	5
26	4.42	1	2.18046	4.58999	2.99662	7.58662	2
27	4.59	1	2.15948	4.73902	1.16266	5.90168	1
28	4.76	1	2.16836	4.9179	0.24735	5.16525	4
29	4.93	1	2.01323	4.93277	0.03655	4.96933	5
30	5.1	0	0.	5.1	0.63891	5.73891	3
31	5.27	0	0.	5.27	0.04985	5.31985	4
32	5.44	0	0.	5.44	3.34428	8.78428	4
33	5.61	0	0.	5.61	3.23535	8.84535	5
34	5.78	0	0.	5.78	1.6594	7.4394	3
35	5.95	0	0.	5.95	0.37415	6.32415	1
36	6.12	1	2.21461	6.32415	0.43366	6.75781	1
37	6.29	2	2.09637	6.75781	0.10008	6.85789	1
38	6.46	2	2.36003	6.85789	0.68081	7.5387	1
39	6.63	3	2.70801	7.4394	0.11425	7.55365	3
40	6.8	3	2.6381	7.5387	0.55604	8.09474	1
41	6.97	3	3.04961	7.55365	0.30231	7.85596	3
42	7.14	4	3.00115	7.58662	0.71616	8.30277	2
43	7.31	5	2.91561	7.85596	1.31168	9.16764	3
44	7.48	5	2.84491	8.09474	0.03636	8.1311	1
45	7.65	3	2.78617	8.1311	0.91358	9.04468	1
46	7.82	4	2.73771	8.30277	0.43516	8.73793	2
47	7.99	4	2.80649	8.73793	0.35815	9.09608	2
48	8.16	3	2.72298	8.78428	0.07651	8.86079	4
49	8.33	3	2.98814	8.84535	0.85657	9.70192	5
50	8.5	4	2.93968	8.86079	0.03259	8.89338	4
51	8.67	5	2.85414	8.89338	0.41607	9.30945	4
52	8.84	4	2.7071	9.04468	2.12136	11.16604	1

53	9.01	2	-1	-1	-1	-1	-1

k	N(K)	$t_{3aH}(k)$	$t_{np}(k)$	$\Delta_{np}(\mathbf{k})$
1	15	8.11596	0.92872	0.10268
2	13	7.71055	1.33413	0.1475
3	8	6.80598	2.2387	0.24752
4	8	5.21468	3.83	0.42345
5	3	4.15401	4.89067	0.54072
	47	7.38746	2.64444	0.29237

Таблица №4

Состояние	$R_{i}(100)$	v _i (100)	$T_{i}(100)$	$\Delta_i(100)$
0	1	0.01	0.17	0.0188
1	10	0.1	1.1558	0.12779
2	17	0.17	1.29833	0.14355
3	14	0.14	1.49808	0.16563
4	11	0.11	0.85788	0.09485
5	8	0.08	0.66022	0.073
6	8	0.08	0.90216	0.09975
7	9	0.09	0.54524	0.06028
8	11	0.11	1.11299	0.12305
9	8	0.08	0.58794	0.065
10	3	0.03	0.25603	0.02831
	100	1	9.04468	1

Число заявок J(100), поступивших в СМО на интервале [0, 9.04468] = 53. Число JF(100) полностью обслуженных заявок на интервале [0, 9.04468] = 47. Среднее число заявок, находившихся в СМО, на интервале [0, 9.04468] = 4.71. Среднее время пребывания заявок в очереди на интервале [0, 9.04468] = 1.21254.

Среднее время пребывания заявок в СМО на интервале [0, 9.04468] = 0.6416.

CMO (M|M|5):

Вариант 6; $\lambda = 5,865$; $\mu = 1,214$;

1	t _{co6} (1)	Type(l)	состояние СМО C(l) после	t _{oct} (1)	t _{ож3} (1)	j(1)	k(j)
	0.10170		события 1	0.1.100.1	0.1		
1	0.13453	1	1	0.14096	0.1552	1	1
2	0.27549	2	0	-1.	0.01423	1	1
3	0.28972	1	1	1.526	0.02833	2	1
4	0.31805	1	2	1.36619	0.04747	3	2
5	0.36552	1	3	1.31872	0.05784	4	3
6	0.42336	1	4	0.01551	0.09628	5	4
7	0.43887	2	3	1.24538	0.08077	5	2
8	0.51964	1	4	0.50005	0.16774	6	4
9	0.68739	1	5	0.31878	0.04122	7	5
10	0.72861	1	6	0.27756	0.26759	8	-1
11	0.9962	1	7	0.00997	0.02089	9	-1
12	1.00617	2	6	0.01353	0.	7	4
13	1.01709	1	7	0.00261	0.00621	10	-1
14	1.0197	2	6	0.4722	0.	6	4
15	1.0233	1	7	0.46859	0.12036	11	-1
16	1.14366	1	8	0.34823	0.01673	12	-1
17	1.1604	1	9	0.3315	0.49141	13	-1
18	1.4919	2	8	0.19235	0.	9	2
19	1.65181	1	9	0.03244	0.13555	14	-1
20	1.68425	2	8	0.13148	0.	3	1
21	1.78736	1	9	0.02836	0.24225	15	-1
22	1.81572	2	8	0.02245	0.	2	4
23	1.83817	2	7	0.28873	0.	10	1
24	2.02961	1	8	0.09729	0.03841	16	-1
25	2.06802	1	9	0.05888	0.01128	17	-1
26	2.0793	1	10	0.04761	0.20049	18	-1
27	2.1269	2	9	0.18899	0.	12	2
28	2.27979	1	10	0.03611	0.21556	19	-1
29	2.31589	2	9	0.38736	0.	11	1
30	2.49534	1	10	0.20791	0.33838	20	-1
31	2.70325	2	9	0.02513	0.	14	4
32	2.72838	2	8	0.00023	0.	13	2
33	2.72861	2	7	0.32237	0.	15	1
34	2.83372	1	8	0.21726	0.04806	21	-1
35	2.88178	1	9	0.1692	0.08154	22	-1
36	2.96333	1	10	0.08765	0.03342	23	-1

37	2.99674	1	11	0.05424	0.01886	24	-1
38	3.0156	1	12	0.03538	0.58151	25	-1
39	3.05098	2	11	0.08192	0.	16	2
40	3.1329	2	10	0.0145	0.	18	3
41	3.1474	2	9	0.0143	0.	4	3
42	3.1617	2	8	0.04209	0.	21	1
43	3.20379	2	7	0.18538	0.	19	3
44	3.38918	2	6	0.04088	0.	22	5
45	3.43006	2	5	0.05239	0.	8	4
46	3.48244	2	4	0.06946	0.11467	17	5
47	3.5519	2	3	0.07959	0.04521	25	1
48	3.59711	1	4	0.03438	0.18704	26	4
49	3.63149	2	3	0.46643	0.15266	23	2
50	3.78415	1	4	0.2595	0.03363	27	1
51	3.81778	1	5	0.22587	0.16355	28	5
52	3.98133	1	6	0.06232	1.05524	29	-1
53	4.04365	2	5	0.05426	0.	27	2
54	4.09791	2	4	0.7335	0.93865	20	3
55	4.83141	2	3	0.12833	0.20515	24	5
56	4.95974	2	2	0.19146	0.07683	28	4
57	5.03657	1	3	0.11463	0.20401	30	2
58	5.1512	2	2	0.09644	0.08938	26	2
59	5.24058	1	3	0.00706	0.08977	31	3
60	5.24764	2	2	0.38857	0.08271	30	1
61	5.33035	1	3	0.03299	0.07839	32	2
62	5.36334	2	2	0.27286	0.0454	32	1
63	5.40874	1	3	0.16091	0.00064	33	2
64	5.40938	1	4	0.16026	0.11498	34	4
65	5.52437	1	5	0.04528	0.09689	35	5
66	5.56965	2	4	0.06656	0.05161	33	1
67	5.62125	1	5	0.01495	0.18284	36	2
68	5.63621	2	4	0.62664	0.16788	29	4
69	5.80409	1	5	0.45875	0.28195	37	1
70	6.08604	1	6	0.1768	0.09634	38	-1
71	6.18238	1	7	0.08046	0.05746	39	-1
72	6.23984	1	8	0.023	0.2999	40	-1
73	6.26284	2	7	0.23946	0.	34	1
74	6.50231	2	6	0.10134	0.	37	5
75	6.53974	1	7	0.0639	0.31262	41	-1
76	6.60365	2	6	0.13056	0.	35	4
77	6.73421	2	5	0.01687	<u>0.</u>	38	5
78	6.75107	2	4	0.1121	0.10129	40	2
79	6.85237	1	5	0.01081	0.52179	42	5

80	6.86317	2	4	0.11609	0.51098	36	5
81	6.97927	2	3	0.33219	0.39489	42	4
82	7.31146	2	2	0.04217	0.0627	41	1
83	7.35363	2	1	0.10657	0.02052	39	3
84	7.37415	1	2	0.08605	0.07495	43	1
85	7.4491	1	3	0.01109	0.32229	44	2
86	7.4602	2	2	0.07442	0.3112	31	2
87	7.53462	2	1	0.0886	0.23678	44	1
88	7.62322	2	0	-1.	0.14818	43	1
89	7.7714	1	1	0.86465	0.69479	45	1
90	8.46619	1	2	0.08699	0.34853	46	2
91	8.55318	2	1	0.08287	0.26154	46	1
92	8.63605	2	0	-1.	0.17867	45	1
93	8.81472	1	1	0.45011	0.00979	47	1
94	8.8245	1	2	0.44032	0.34456	48	2
95	9.16906	1	3	0.09576	0.1441	49	3
96	9.26482	2	2	0.81427	0.04833	47	3
97	9.31316	1	3	0.76593	0.00159	50	1
98	9.31474	1	4	0.76435	0.24096	51	4
99	9.5557	1	5	0.52339	0.20725	52	5
100	9.76295	1	6	0.31614	0.14154	53	-1

j	t ₃ (j)	q(j)	$t_{o4}(j)$	$t_{\text{Hoб}}(j)$	$t_{\text{обсл}}(j)$	$t_{\text{коб}(j)}$	k(j)
1	0.13453	0	0.	0.13453	0.14096	0.27549	1.
2	0.28972	0	0.	0.28972	1.526	1.81572	1.
3	0.31805	0	0.	0.31805	1.36619	1.68425	2.
4	0.36552	0	0.	0.36552	2.78188	3.1474	3.
-							

5	0.42336	0	0.	0.42336	0.01551	0.43887	4.
6	0.51964	0	0.	0.51964	0.50005	1.0197	4.
7	0.68739	0	0.	0.68739	0.31878	1.00617	5.
8	0.72861	1	6.31767	1.00617	2.42389	3.43006	5.
9	0.9962	2	6.52228	1.0197	0.4722	1.4919	4.
10	1.01709	2	4.07931	1.4919	0.34627	1.83817	4.
11	1.0233	2	5.16143	1.68425	0.63165	2.31589	2.
12	1.14366	3	5.35226	1.81572	0.31118	2.1269	1.
13	1.1604	4	6.22574	1.83817	0.89021	2.72838	4.
14	1.65181	4	6.00297	2.1269	0.57635	2.70325	1.
15	1.78736	4	6.09283	2.31589	0.41272	2.72861	2.
16	2.02961	3	3.6134	2.70325	0.34773	3.05098	1.
17	2.06802	4	4.32905	2.72838	0.75406	3.48244	4.
18	2.0793	5	4.72207	2.72861	0.40429	3.1329	2.
19	2.27979	5	4.5171	3.05098	0.15281	3.20379	1.

20	2.49534	5	5.02227	3.1329	0.96501	4.09791	2.
21	2.83372	3	3.26818	3.1474	0.0143	3.1617	3.
22	2.88178	4	3.44759	3.1617	0.22747	3.38918	3.
23	2.96333	5	3.79375	3.20379	0.4277	3.63149	1.
24	2.99674	6	5.20257	3.38918	1.44224	4.83141	3.
25	3.0156	7	5.30556	3.43006	0.12185	3.5519	5.
26	3.59711	0	0.	3.59711	1.55409	5.1512	4.
27	3.78415	0	0.	3.78415	0.2595	4.04365	1.
28	3.81778	0	0.	3.81778	1.14196	4.95974	5.
29	3.98133	1	4.73227	4.04365	1.59255	5.63621	1.
30	5.03657	0	0.	5.03657	0.21107	5.24764	2.
31	5.24058	0	0.	5.24058	2.21962	7.4602	3.
32	5.33035	0	0.	5.33035	0.03299	5.36334	2.
33	5.40874	0	0.	5.40874	0.16091	5.56965	2.
34	5.40938	0	0.	5.40938	0.85346	6.26284	4.

35	5.52437	0	0.	5.52437	1.07928	6.60365	5.
36	5.62125	0	0.	5.62125	1.24192	6.86317	2.
37	5.80409	0	0.	5.80409	0.69822	6.50231	1.
38	6.08604	1	4.52104	6.26284	0.47136	6.73421	4.
39	6.18238	2	5.27602	6.50231	0.85132	7.35363	1.
40	6.23984	3	5.36599	6.60365	0.14743	6.75107	5.
41	6.53974	2	4.05141	6.73421	0.57725	7.31146	4.
42	6.85237	0	0.	6.85237	0.1269	6.97927	5.
43	7.37415	0	0.	7.37415	0.24906	7.62322	1.
44	7.4491	0	0.	7.4491	0.08552	7.53462	2.
45	7.7714	0	0.	7.7714	0.86465	8.63605	1.
46	8.46619	0	0.	8.46619	0.08699	8.55318	2.
47	8.81472	0	0.	8.81472	0.45011	9.26482	1.
48	8.8245	0	0.	8.8245	1.72124	10.54574	2
49	9.16906	0	0.	9.16906	0.91003	10.07909	3

50	9.31316	0	0.	9.31316	0.86918	10.18233	1
51	9.31474	0	0.	9.31474	0.8197	10.13444	4
52	9.5557	0	0.	9.5557	1.00405	10.55975	5
53	9.76295	1	-1	-1	-1	-1	-1

k	N(K)	t _{зан} (k)	t _{np} (k)	$\Delta_{np}(\mathbf{k})$
1	14	8.02876	1.73419	0.17763
2	11	4.81646	4.94649	0.50666
3	5	6.36936	3.39358	0.3476
4	10	6.06297	3.69998	0.37898
5	7	4.56328	5.19967	0.53259
	<mark>47</mark>	5.96816	3.79478	0,38869

Таблица №4

Состояние	\mathbf{r}_{i}	$R_{i}(100)$	$v_{i}(100)$	$T_{i}(100)$	$\Delta_{i}(100)$
0	0.00529	4	0.04	0.47561	0.04872
1	0.02557	6	0.06	1.06586	0.10917
2	0.06178	11	0.11	1.01321	0.10378
3	0.0995	13	0.13	1.06077	0.10865
4	0.12017	12	0.12	1.84703	0.18919
5	0.11611	10	0.1	0.88852	0.09101
6	0.11219	9	0.09	0.64966	0.06654
7	0.1084	9	0.09	0.9757	0.09994
8	0.10474	9	0.09	0.45401	0.0465
9	0.10121	9	0.09	0.85688	0.08777
10	0.09779	5	0.05	0.33954	0.03478
11	0.09448	2	0.02	0.10078	0.01032
12	0.09129	1	0.01	0.03538	0.00362
	1.13852	100	1	9.04468	1

Число заявок J(100), поступивших в СМО на интервале [0, 9.04468] = 53.

Число JF(100) полностью обслуженных заявок на интервале [0, 9.04468] = 47. Среднее число заявок, находившихся в СМО, на интервале [0, 9.04468] = 5.19. Среднее время пребывания заявок в очереди на интервале [0, 9.04468] = 2.49354.

Среднее время пребывания заявок в СМО на интервале [0, 9.04468] = 0.69207.

Теоритические значения:

 $\overline{k} = 4.83114$

 $\overline{r} = 0.09342$

 $\overline{z} = 5.02193$

 $\overline{t_{\text{ou}}} = 0.01593$

 $\overline{t_{\rm CMO}} = 0.83965$

CMO (M|M|5|14):

Вариант 6. $\lambda = 1,052$. $\mu = 1,254$.

Вариант 6; $\lambda = 5,865$; $\mu = 1,214$;

Таблица №1

1	t _{coo} (l)	Type(l)	состояние СМО С(1)	t _{oct} (1)	t _{ож3} (1)	j(l)	k(j)
			после				
			события 1				
1	0.07727	1	1	0.44527	0.20885	1	1
2	0.28612	1	2	0.23642	0.48474	2	2
3	0.52254	3	1	2.19402	0.24832	1	2
4	0.77086	1	2	0.71822	0.04441	3	1
5	0.81527	1	3	0.29004	0.0266	4	3
6	0.84187	1	4	0.26344	0.15149	5	4
7	0.99336	1	5	0.11196	0.00845	6	5
8	1.0018	1	6	0.10351	0.55378	7	-1
9	1.10531	3	5	0.38377	0.	4	1
10	1.48908	3	4	0.10876	0.0665	3	3
11	1.55558	1	5	0.04226	0.09504	8	1
12	1.59784	3	4	0.00915	0.05279	7	5
13	1.60699	3	3	0.26393	0.04363	6	1
14	1.65063	1	4	0.16131	0.03592	9	3
15	1.68654	1	5	0.1254	0.07718	10	5
16	1.76373	1	6	0.04822	0.47999	11	-1

17	1.81194	3	5	0.05898	0.	9	1
18	1.87092	3	4	0.06856	0.3728	8	5
19	1.93948	3	3	0.00030	0.3728	10	3
20	2.01463	3	2	0.61968	0.30423	11	4
21	2.24371	1	3	0.3906	0.22308	12	1
22	2.27639	1	4	0.35792	0.31399	13	3
23	2.59038	1	5	0.04393	0.67474	14	5
24	2.63431	3	4	0.03072	0.63081	5	3
25	2.66503	3	3	0.05152	0.60009	13	2
26	2.71656	3	2	0.2447	0.54856	2	5
27	2.96126	3	1	4.54992	0.30386	14	1
28	3.26512	1	2	1.1203	0.03334	15	2
29	3.29846	1	3	0.96927	0.00621	16	3
30	3.30467	1	4	0.33544	0.00575	17	4
31	3.31043	1	5	0.10027	0.02085	18	5
32	3.33128	1	6	0.07941	0.45789	19	-1
33	3.41069	3	5	0.22943	0.	18	4
34	3.64012	3	4	0.04526	0.14905	17	5
35	3.68538	3	3	0.58235	0.10379	19	3
36	3.78917	1	4	0.47857	0.06942	20	4
37	3.85859	1	5	0.40915	0.16502	21	5
38	4.0236	1	6	0.24413	0.14355	22	-1
39	4.16716	1	7	0.10058	0.24903	23	-1
40	4.26774	3	6	0.07034	0.	16	4
41	4.33808	3	5	0.04366	0.	20	3
42	4.38174	3	4	0.00369	0.03445	22	2
43	4.38543	3	3	0.08287	0.03076	15	4
44	4.41619	1	4	0.05211	1.34814	24	2
45	4.4683	3	3	0.03147	1.29604	23	2
46	4.49976	3	2	0.09034	1.26457	24	5
47	4.5901	3	1	2.92107	1.17423	21	1
48	5.76433	1	2	1.74684	0.01314	25	2
49	5.77748	1	3	0.21863	0.05132	26	3
50	5.8288	1	4	0.16731	0.20123	27	4
51	5.99611	3	3	0.09051	0.03392	26	4
52	6.03002	1	4	0.05659	0.01974	28	3
53	6.04977	1	5	0.03685	0.19044	29	5
54	6.08662	3	4	0.59844	0.15359	27	3
55	6.24021	1	5	0.44485	0.25026	30	4
56	6.49046	1	6	0.19459	0.32338	31	-1
57	6.68506	3	5	0.16751	0.	28	5
58	6.81384	1	6	0.03872	0.20151	32	-1
59	6.85256	3	5	0.65861	0.	29	1

61 7.40259 1 7 0.10858 0.31276 34 - 62 7.51118 3 6 0.03024 0. 12 3 63 7.54141 3 5 0.09898 0. 31 2 64 7.6404 3 4 0.0926 0.07496 25 3 65 7.71535 1 5 0.01764 0.05456 35 2 66 7.733 3 4 0.03066 0.03692 33 2 67 7.76366 3 3 0.09991 0.00626 30 2 68 7.76992 1 4 0.09365 0.40824 36 3 69 7.86357 3 3 0.05168 0.31459 35 3	-1 -1 3 2 1 2 4 2 1 1 5
62 7.51118 3 6 0.03024 0. 12 3 63 7.54141 3 5 0.09898 0. 31 2 64 7.6404 3 4 0.0926 0.07496 25 3 65 7.71535 1 5 0.01764 0.05456 35 2 66 7.733 3 4 0.03066 0.03692 33 4 67 7.76366 3 3 0.09991 0.00626 30 2 68 7.76992 1 4 0.09365 0.40824 36 1 69 7.86357 3 3 0.05168 0.31459 35 1	3 2 1 2 4 2 1 1 1 5
63 7.54141 3 5 0.09898 0. 31 2 64 7.6404 3 4 0.0926 0.07496 25 1 65 7.71535 1 5 0.01764 0.05456 35 2 66 7.733 3 4 0.03066 0.03692 33 4 67 7.76366 3 3 0.09991 0.00626 30 2 68 7.76992 1 4 0.09365 0.40824 36 1 69 7.86357 3 3 0.05168 0.31459 35 1	2 1 2 4 2 1 1 5
64 7.6404 3 4 0.0926 0.07496 25 65 7.71535 1 5 0.01764 0.05456 35 66 7.733 3 4 0.03066 0.03692 33 67 7.76366 3 3 0.09991 0.00626 30 2 68 7.76992 1 4 0.09365 0.40824 36 1 69 7.86357 3 3 0.05168 0.31459 35	1 2 4 2 1 1 5
65 7.71535 1 5 0.01764 0.05456 35 2 66 7.733 3 4 0.03066 0.03692 33 4 67 7.76366 3 3 0.09991 0.00626 30 2 68 7.76992 1 4 0.09365 0.40824 36 3 69 7.86357 3 3 0.05168 0.31459 35 1	2 4 2 1 1 5
66 7.733 3 4 0.03066 0.03692 33 4 67 7.76366 3 3 0.09991 0.00626 30 2 68 7.76992 1 4 0.09365 0.40824 36 3 69 7.86357 3 3 0.05168 0.31459 35 3	4 2 1 1 5
67 7.76366 3 0.09991 0.00626 30 2 68 7.76992 1 4 0.09365 0.40824 36 1 69 7.86357 3 3 0.05168 0.31459 35 1	2 1 1 5
68 7.76992 1 4 0.09365 0.40824 36 1 69 7.86357 3 3 0.05168 0.31459 35 1	1 1 5
69 7.86357 3 3 0.05168 0.31459 35	<u>1</u> 5
	5
70 7.91524 3 2 0.56318 0.26291 36 5	
	1
71 8.17815 1 3 0.30027 0.42762 37	1
72 8.47842 3 2 0.05794 0.12735 32 3	3
73 8.53636 3 1 0.02857 0.06941 34	1
74 8.56493 3 0 -1. 0.04085 37	1
75 8.60578 1 1 0.29642 0.18346 38 1	1
76 8.78924 1 2 0.11295 0.33519 39 2	2
77 8.90219 3 1 0.58254 0.22224 38 2	2
78 9.12443 1 2 0.04392 0.08839 40 1	1
79 9.16835 3 1 0.31638 0.04447 40 2	2
80 9.21282 1 2 0.27191 0.03096 41	1
81 9.24378 1 3 0.24095 0.01959 42 3	3
82 9.26338 1 4 0.22135 0.09482 43	4
83 9.3582 1 5 0.12653 0.04993 44 5	5
84 9.40812 1 6 0.07661 0.04386 45 -	-1
85 9.45199 1 7 0.03274 0.24445 46 -	-1
86 9.48473 3 6 0.10073 0. 39	5
87 9.58546 3 5 0.00955 0. 44	1
88 9.59501 3 4 0.10624 0.10143 41 2	2
89 9.69644 1 5 0.00481 0.03495 47	1
90 9.70124 3 4 0.01649 0.03015 45 3	3
	5
	2
	5
	2
	4
	1
	2
	1
	2
	1

j	t ₃ (j)	q(j)	t _{ou} (j)	t _{ноб} (j)	t _{обсл} (j)	t _{коб(j)}	k(j)
1	0.07727	0.	0.	0.07727	0.44527	0.52254	1.
2	0.28612	0.	0.	0.28612	2.43044	2.71656	2.
3	0.77086	0.	0.	0.77086	0.71822	1.48908	1.
4	0.81527	0.	0.	0.81527	0.29004	1.10531	3.
5	0.84187	0.	0.	0.84187	1.79244	2.63431	4.
6	0.99336	0.	0.	0.99336	0.61364	1.60699	5.
7	1.0018	1.	4.01038	1.10531	0.49253	1.59784	3.
8	1.55558	0.	0.	1.55558	0.31534	1.87092	1.
9	1.65063	0.	0.	1.65063	0.16131	1.81194	3.
10	1.68654	0.	0.	1.68654	0.25294	1.93948	5.
11	1.76373	1.	1.47303	1.81194	0.20269	2.01463	3.
12	2.24371	0.	0.	2.24371	5.26746	7.51118	1.
13	2.27639	0.	0.	2.27639	0.38864	2.66503	3.

14	2.59038	0.	0.	2.59038	0.37088	2.96126	5.
15	3.26512	0.	0.	3.26512	1.1203	4.38543	2.
16	3.29846	0.	0.	3.29846	0.96927	4.26774	3.
17	3.30467	0.	0.	3.30467	0.33544	3.64012	4.
18	3.31043	0.	0.	3.31043	0.10027	3.41069	5.
19	3.33128	1.	2.87939	3.41069	0.27469	3.68538	5.
20	3.78917	0.	0.	3.78917	0.54891	4.33808	4.
21	3.85859	0.	0.	3.85859	0.73152	4.5901	5.
22	4.0236	1.	2.01351	4.26774	0.114	4.38174	3.
23	4.16716	2.	2.00018	4.33808	0.13022	4.4683	4.
24	4.41619	0.	0.	4.41619	0.08357	4.49976	2.
25	5.76433	0.	0.	5.76433	1.87606	7.6404	2.
26	5.77748	0.	0.	5.77748	0.21863	5.99611	3.
27	5.8288	0.	0.	5.8288	0.25782	6.08662	4.
28	6.03002	0.	0.	6.03002	0.65503	6.68506	3.

29	6.04977	0.	0.	6.04977	0.8028	6.85256	5.
30	6.24021	0.	0.	6.24021	1.52345	7.76366	4.
31	6.49046	1.	4.29006	6.68506	0.85636	7.54141	3.
32	6.81384	1.	5.50222	6.85256	1.62586	8.47842	5.
33	7.01535	1.	5.52611	7.51118	0.22182	7.733	1.
34	7.40259	2.	6.13381	7.54141	0.99495	8.53636	3.
35	7.71535	0.	0.	7.71535	0.14821	7.86357	2.
36	7.76992	0.	0.	7.76992	0.14533	7.91524	1.
37	8.17815	0.	0.	8.17815	0.38677	8.56493	1.
38	8.60578	0.	0.	8.60578	0.29642	8.90219	1.
39	8.78924	0.	0.	8.78924	0.69549	9.48473	2.
40	9.12443	0.	0.	9.12443	0.04392	9.16835	1.
41	9.21282	0.	0.	9.21282	0.38219	9.59501	1.
42	9.24378	0.	0.	9.24378	0.47395	9.71773	3.
43	9.26338	0.	0.	9.26338	0.98299	10.24637	4.

44	9.3582	0.	0.	9.3582	0.22726	9.58546	5.
45	9.40812	1.	2.35951	9.48473	0.21651	9.70124	2.
46	9.45199	2.	2.90585	9.58546	0.59021	10.17566	5.
47	9.69644	0.	0.	9.69644	0.5633	10.25974	1.
48	9.73139	0.	0.	9.73139	0.0814	9.81279	2.
49	10.10437	0.	0.	10.10437	0.46379	10.56816	2
50	10.31083	0.	0.	10.31083	0.1098	10.42064	1.
51	10.47771	0.	0.	10.47771	0.91358	11.39129	1

k	N(K)	t _{зан} (k)	$t_{np}(k)$	$\Delta_{np}(\mathbf{k})$
1	12	4.42374	6.05396	0.57779
2	8	6.56154	3.91617	0.37376
3	12	5.81742	4.66029	0.44478
4	7	5.57128	4.90643	0.46827
5	10	5.59005	4.88766	0.46648
	<mark>49</mark>	5,59281	4,8849	0,46622

Состояние	\mathbf{r}_{i}	$R_{i}(100)$	$v_{i}(100)$	$T_{i}(100)$	$\Delta_{i}(100)$
0	0.01081	2	0.02	0.11812	0.01127
1	0.05224	9	0.09	2.52217	0.24072
2	0.12618	15	0.15	1.52329	0.14538
3	0.20321	18	0.18	1.24079	0.11842
4	0.24543	23	0.23	1.7579	0.16778

5	0.23714	19	0.19	1.8331	0.17495
6	0.04007	11	0.11	1.24042	0.11839
7	0.01382	3	0.03	0.2419	0.02309
	0.92894	100	1	10.47771	1

Число заявок J(100), поступивших в СМО на интервале [0, 9.04468] = 51. Число JF(100) полностью обслуженных заявок на интервале [0, 9.04468] = 49. Среднее число заявок, находившихся в СМО, на интервале [0, 9.04468] = 3.67. Среднее время пребывания заявок в очереди на интервале [0, 9.04468] = 0.79784.

Среднее время пребывания заявок в СМО на интервале [0, 9.04468] = 0.66381.

Теоритические значения:

 $\overline{k} = 4.83114$

 $\overline{r} = 0.19079$

 $\overline{z} = 5.02193$

 $\overline{t_{04}} = 0.03253$

 $\overline{t_{\rm CMO}} = 0.85625$

Теоритическая вероятность отказа в обслуживании – 0.0

Список литературы

- 1. Кирпичников А.П. Методы прикладной теории массового обслуживания. M.: URSS, 2018 224 с.
- 2. Ивченко Г.И., Каштанов В.А., Коваленко И.Н. Теория массового обслуживания. М.: URSS, $2012-304\ c$
- 3. Введение в теорию массового обслуживания [Электронный ресурс]: учебное пособие для студентов, обучающихся по направлению «Информационные системы и технологии» / Е. К. Белый. --- Петрозаводск: Издательство ПетрГУ, 2014 76 с.
- 4. Лобузов А.А., Гумляева С.Д., Норин Н.В. Задачи по теории случайных процессов. М.: МИРЭА, 1993 68 с.

Приложение

```
import math
     import numpy as np
     from scipy.stats import expon
     from decimal import Decimal
     f = open('answer.txt', 'r+')
     np.set_printoptions(suppress=True)
     u = 1.214
     lambd = 5.865
     Tt = 0.17
     n = 5
     m = 14
     # Время между заявками
     L = list(range(1, 101))
     k = [float('inf'), float('inf'), float('inf'), float('inf')]
     ki = [-1, -1, -1, -1, -1]
     service_time = expon.rvs(scale=1 / u, size=100)
     service\_time = [0.2089425, 0.24042362, 0.17402998,
                                                               0.28750913.
0.57853876, 0.3281805, 0.64220276, 0.05176051, 0.51798679,
               0.12153939, 0.08446545, 0.51658193, 0.0755792, 0.96452253,
1.24035621, 0.1616758, 0.44373353, 0.02876248,
               0.10613567, 1.33902265, 1.01999454, 1.1779021, 0.02906335,
0.99077037, 0.68277089, 2.99662216, 1.16265632,
               0.24735046, 0.03655438, 0.63890711, 0.04985124, 3.34427941,
3.2353478, 1.65940145, 0.37414538, 0.43366022,
               0.10008147, 0.68081293, 0.11424763, 0.55604128, 0.30231069,
0.71615587, 1.31168242, 0.0363553, 0.91358345,
               0.43515835, 0.35815254, 0.07650709, 0.85657331, 0.03259491,
0.41606914, 2.12135799, 1.19049445, 0.11147616,
               0.64662056, 0.14681455, 0.65388675, 1.46099198, 2.28533155,
0.63652264, 0.03639166, 1.06086346, 0.20777427,
               0.64148374, 0.42320609, 0.55148203, 0.65518179, 0.46765486,
0.70194748, 0.1279088, 1.17681095, 0.3871591,
               1.23335323, 0.76315801, 0.90589213, 2.12009595, 0.25639081,
0.68965077, 1.14325731, 0.64423279, 1.22593882,
               0.48603955, 0.36128709, 0.71295673, 1.04207984, 0.7153235,
0.33775967, 0.66214228, 0.32824737, 2.90752264,
               1.37187689, 1.41407363, 0.82795116, 0.35135893, 0.03515003,
0.23388852, 0.55634401, 0.04169105, 0.07508141,
               0.24626046]
```

- Ttime = []
- Ttype = []
- condition = []
- Tremained = []
- Tnew = []
- numj = []
- numk = []
- jN = np.zeros(100)
- jP = np.zeros(100)
- jQ = np.zeros(100)
- jQt = np.zeros(100)
- jS = np.zeros(100)
- jD = np.zeros(100)
- jF = np.zeros(100)
- jk = np.zeros(100)
- R = np.zeros(100)
- V = np.zeros(100)
- k41 = np.zeros(n)
- k42 = np.zeros(n)
- k43 = np.zeros(n)
- k44 = np.zeros(n)
- i = 0
- it = 0
- $S_{con} = 0$
- trimen = 0
- R[0] += 1
- V[0] += Tt
- J5 = 0
- JF5 = 0
- Z5 = 0
- Tq = 0
- T1 = 0
- Ttime.append(Tt)
- jN[it] = i + 1
- jP[it] = Tt

```
jQ[it] = 0
iQt[it] = 0
jS[it] = Tt
jD[it] = service_time[0]
jF[it] = Tt + service\_time[0]
jk[it] = it + 1
Ttype.append(1)
condition.append(1)
# T1 += service_time[i]
Tremained.append(service_time[0])
Tnew.append(Tt)
numj.append(it + 1)
numk.append(it + 1)
trimen = Tt - service_time[0]
S_{con} = 1
k[0] = service_time[it]
k_{i}[0] = it+1
i += 1
it += 1
J5 += 1
while len(Ttime) != 100:
  if S_{con} == 0:
     iN[i] = i + 1
     jP[i] = Ttime[-1] + Tnew[-1]
     jQ[i] = 0
     jQt[i] = 0
     jS[i] = Ttime[-1] + Tnew[-1]
     jk[it] = S\_con + 1
     V[S\_con] += Tnew[-1]
     Ttime.append(Ttime[-1] + Tnew[-1])
     Ttype.append(1)
     condition.append(S\_con + 1)
     # T1 += service_time[i]
     k[S_con] = service_time[i]
```

```
Tremained.append(service_time[i])
           Tnew.append(Tt)
           numi.append(i + 1)
           numk.append(S_con + 1)
           trimen = Tt - service_time[i]
           S con += 1
           R[S_{con}] += 1
           k[0] = service\_time[i]
           ki[0] = i+1
           k41[0] += 1
           k42[0] += service\_time[i]
           \# V[S\_con] += min(Ts, arrive\_time[it + 1])
           it += 1
           i += 1
           J5 += 1
           Z5 += S_{con}
        elif trimen > 0:
           iS[ki[np.argmin(k)]-1]
                                          Ttime[-1]
                                                            k[np.argmin(k)]
                                    =
                                                     +
service_time[kj[np.argmin(k)]-1]
          iD[ki[np.argmin(k)]-1] = service\_time[ki[np.argmin(k)]-1]
           jF[kj[np.argmin(k)]-1] = Ttime[-1] + Tremained[-1]
           jk[kj[np.argmin(k)]-1] = np.argmin(k) + 1
           V[S\_con] += k[np.argmin(k)]
           numj.append(kj[np.argmin(k)])
           Ttime.append(Ttime[-1] + k[np.argmin(k)])
           k41[np.argmin(k)] += 1
           k42[np.argmin(k)] += service_time[ki[np.argmin(k)]-1]
           k = np.subtract(k, k[np.argmin(k)])
           Ttype.append(2)
           condition.append(S_con - 1)
           if S_{con} \le n:
             ki[np.argmin(k)] = -1
             k[np.argmin(k)] = float('inf')
           else:
             k[np.argmin(k)] = float('inf')
             iop = np.argmax(k)
             iS[i] = Ttime[-1]
             iD[j] = service_time[j]
             jF[j] = Ttime[-1] + service\_time[j]
             ik[i] = np.argmax(k) + 1
             k[iop] = service_time[j]
             ki[iop] = i+1
             j += 1
```

```
if j>i:
       i+=1
  if S_{con} - 1 == 0:
     Tremained.append(-1)
     Tnew.append(trimen)
     Tl += trimen
  else:
     Tremained.append(min(k))
     if S_{con} \le n:
       Tnew.append(trimen)
     else:
       Tnew.append(0)
  trimen = trimen - min(k)
  numk.append(np.argmin(k) + 1)
  S_{con} = 1
  R[S_{con}] += 1
  JF5 += 1
  Z5 += S_{con}
elif trimen < 0:
  tp = trimen + min(k)
  k = np.subtract(k, tp)
  jN[i] = i + 1
  jP[i] = Ttime[-1] + tp
  jQ[i] = S\_con
  if S_{con} < n:
    jQt[i] = 0
  else:
     for d in range(S_con):
       jQt[i] += service\_time[d + it + 1]
    jQt[i] -= trimen
  if max(k) == float('inf'):
     numk.append(np.argmax(k) + 1)
    iS[it] = (i + 1) * Tt + iQt[i]
    iD[it] = service_time[i]
    jF[it] = (i + 1) * Tt + jQt[i] + service\_time[i]
    ik[i] = np.argmax(k) + 1
     ki[np.argmax(k)] = i+1
     k[np.argmax(k)] = service_time[i]
    j = i+1
  else:
     numk.append(-1)
  V[S\_con] += tp
```

```
Ttime.append((i + 1) * Tt)
     Ttype.append(1)
     condition.append(S\_con + 1)
     Tremained.append(min(k))
     Tnew.append(Tt)
     i += 1
     S_{con} += 1
     R[S_{con}] += 1
     numj.append(i)
     trimen = Tt - min(k)
     J5 += 1
     Z5 += S_{con}
Rot = R / 100
Vot = V / Ttime[-1]
Z5 = Z5 / 100
wer = 0
for d3 in range(len(jF)):
  if iF[d3] > 0:
     wer += (jF[d3] - jS[d3])
Tq5 = sum(jQt) / JF5
Tm5 = wer / JF5
for d1 in range(len(jQ)):
  if jQ[d1] < 5:
     jQ[d1] = 0
  else:
     jQ[d1] = 4
for d2 in range(n):
  if k[d2] != float('inf'):
     k42[d2] = k[d2]
  k43[d2] = Ttime[-1] - k42[d2]
  k44[d2] = k43[d2] / Ttime[-1]
f.write(str(np.around(L, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Ttime, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Ttype, 5)))
f.write('\n')
f.write('\n')
```

```
f.write('\n')
f.write(str(np.around(condition, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Tremained, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Tnew, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(numj, 5)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(np.around(numk, 5)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(np.around(jN, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(jP, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(jQ, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(jQt, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(jS, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(jD, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(jF, 5)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(np.around(jk, 5)))
```

```
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(np.around(R, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(V, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Rot, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Vot, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(sum(R), 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(sum(V), 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(sum(Rot), 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(sum(Vot), 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(J5, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(JF5, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Z5, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Tq5, 5)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(np.around(Tm5, 5)))
f.write('\n')
```

```
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(np.around(k41, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(k42, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(k43, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(k44, 5)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
k = [float('inf'), float('inf'), float('inf'), float('inf')]
kj = [-1, -1, -1, -1, -1]
Ttime = []
Ttype = []
condition = []
Tremained = []
Tnew = []
numj = []
numk = []
jN = np.zeros(100)
iP = np.zeros(100)
iQ = np.zeros(100)
iQt = np.zeros(100)
jS = np.zeros(100)
iD = np.zeros(100)
iF = np.zeros(100)
jk = np.zeros(100)
R = np.zeros(100)
V = np.zeros(100)
```

```
k41 = np.zeros(n)
```

k42 = np.zeros(n)

k43 = np.zeros(n)

k44 = np.zeros(n)

T0 = Tt

T1 = 0

arrive_time = expon.rvs(scale=1 / lambd, size=105)

arrive_time = [0.13452634, 0.15519843, 0.0283299, 0.04746884, 0.05783817, 0.09628136, 0.16774346, 0.04122172, 0.26758845,

0.02089449, 0.0062113, 0.1203606, 0.01673303, 0.49141359, 0.13555423, 0.24224803, 0.0384094, 0.01127594,

0.20048834, 0.2155568, 0.33837971, 0.04805961, 0.08154375, 0.03341779, 0.01885529, 0.58151262, 0.18703896,

0.03363032, 0.16354833, 1.05523772, 0.20401247, 0.0897726, 0.07839006, 0.00064297, 0.11498224, 0.0968871,

0.18283561, 0.28195189, 0.09633881, 0.05745809, 0.29990406, 0.31262433, 0.52178662, 0.07495145, 0.32229107,

0.69479259, 0.3485287, 0.00978547, 0.34455846, 0.14409691, 0.0015866, 0.24095841, 0.20724527, 0.14153678, 0.21186249,

0.11534158, 0.27668605, 0.23990952, 0.12584108, 0.02072617, 0.18680627, 0.10086884, 0.23286964, 1.29150504,

0.19749515, 0.14165763, 0.01949458, 0.07271728, 0.06531828, 0.16581318, 0.08882034, 0.26548143, 0.17186677,

0.04648546, 0.06211913, 0.06518982, 0.12855165, 0.35920409, 0.0315275, 0.0637701, 0.23644445, 0.0669599,

0.13345968, 0.09329895, 0.041594, 0.19948896, 0.20128085, 0.0413679, 0.05342318, 0.20120517, 0.3631961,

 $0.38923137,\ 0.09698655,\ 0.04347043,\ 0.01412543,\ 0.38276278,\ 0.20002275,\ 0.07304276,\ 0.07767907,\ 0.20347489,$

0.0347942, 0.16591234, 0.12607382, 0.00059887, 0.18488854] service_time = expon.rvs(scale=1 / u, size=105)

service_time = [0.14096427, 1.52599583, 1.36619083, 2.78187587, 0.01550708, 0.50005387, 0.31878136, 2.42388767, 0.47219829,

0.34627476, 0.63164567, 0.31118265, 0.89021229, 0.57634907, 0.41271947, 0.34772789, 0.75406021, 0.40428931,

0.15281013, 0.96501346, 0.01430193, 0.22747386, 0.42769759, 1.44223716, 0.1218457, 1.55408956, 0.25950125,

1.14195904, 1.59255417, 0.2110721, 2.21962061, 0.03299088, 0.16090538, 0.85345717, 1.07927905, 1.24191927,

 $0.69821569,\, 0.47136381,\, 0.85132492,\, 0.14742841,\, 0.57725097,\\ 0.12689934,\, 0.24906341,\, 0.08551547,\, 0.86465192,$

```
0.08699023, 0.45010711, 1.72123805, 0.91003177, 0.86917588,
0.81969871, 1.00404901, 0.35450958, 0.13491099,
               0.61593932, 0.08734727, 1.32834542, 2.77345115, 2.84737523,
0.11407401, 2.18020131, 0.58461787, 1.20795147,
               0.17302712, 0.62418966, 0.29549693, 0.19365026, 0.12110518,
0.0660802, 0.73917226, 0.69735931, 0.37485889,
               0.5456252, 1.83985775, 2.70396212, 0.07995836, 0.06215885,
1.99436774, 0.77589616, 0.05003577, 2.45220238,
               1.14352085, 0.91552118, 0.43143425, 0.91820335, 0.33512254,
1.63188178, 0.45073285, 0.11618706, 0.98611168,
               0.6218516, 0.13076004, 0.49089057, 0.4967578, 0.63775862,
1.16009522, 0.29896259, 0.58792701, 1.153215,
               1.56923019, 0.54900448, 0.7352573, 0.87693621, 1.33628879,
0.440526831
     i = 0
     i = 0
     it = i
      S_{con} = 0
      trimen = 0
      R[0] += 1
      V[0] += arrive\_time[i]
     J5 = 0
      JF5 = 0
      Z5 = 0
     T1 = 0
      Ttime.append(arrive_time[i])
     iN[it] = i + 1
     jP[it] = arrive_time[i]
     iQ[it] = 0
     iQt[it] = 0
     iS[it] = arrive_time[i]
     iD[it] = service time[0]
     iF[it] = arrive_time[i] + service_time[0]
     ik[it] = it + 1
      Ttype.append(1)
      condition.append(1)
     # T1 += service_time[i]
```

```
Tremained.append(service_time[j])
Tnew.append(arrive_time[i + 1])
k[0] = service\_time[j]
k_{1}[0] = it+1
numj.append(it + 1)
numk.append(it + 1)
trimen = arrive_time[it + 1] - service_time[i]
S_{con} = 1
# V[S_con] += min(service_time[j],arrive_time[i + 1])
i += 1
it += 1
J5 += 1
while len(Ttime) != 100:
  if S_{con} == 0:
     jN[i] = i + 1
     jP[i] = Ttime[-1] + Tnew[-1]
     \mathbf{jQ}[\mathbf{i}] = 0
     \mathbf{jQt}[\mathbf{i}] = 0
     jS[i] = Ttime[-1] + Tnew[-1]
     jk[i] = 1
     V[S\_con] += Tnew[-1]
     Ttime.append(Ttime[-1] + Tnew[-1])
     Ttype.append(1)
     condition.append(S\_con + 1)
     # T1 += service_time[i]
     Tremained.append(service_time[i])
     Tnew.append(arrive_time[i + 1])
     numi.append(i + 1)
     numk.append(1)
     trimen = arrive_time[i + 1] - service_time[i]
     S_{con} += 1
     R[S_{con}] += 1
     k[0] = service\_time[j]
     kj[0] = i+1
     # V[S_con] += min(service_time[i], arrive_time[i + 1])
     it += 1
     i += 1
     J5 += 1
```

```
Z5 += S_{con}
        elif trimen > 0:
           iS[ki[np.argmin(k)] - 1] = Ttime[-1] + k[np.argmin(k)]
service_time[kj[np.argmin(k)] - 1]
           iD[ki[np.argmin(k)] - 1] = service\_time[ki[np.argmin(k)] - 1]
          jF[kj[np.argmin(k)] - 1] = Ttime[-1] + Tremained[-1]
           jk[kj[np.argmin(k)] - 1] = np.argmin(k) + 1
           V[S\_con] += k[np.argmin(k)]
           numj.append(kj[np.argmin(k)])
           Ttime.append(Ttime[-1] + k[np.argmin(k)])
           k41[np.argmin(k)] += 1
           k42[np.argmin(k)] += service_time[kj[np.argmin(k)] - 1]
           k = np.subtract(k, k[np.argmin(k)])
           Ttype.append(2)
           condition.append(S con - 1)
           i += 1
           if S_{con} \le n:
             ki[np.argmin(k)] = -1
             k[np.argmin(k)] = float('inf')
           else:
             k[np.argmin(k)] = float('inf')
             iop = np.argmax(k)
             iS[it] = Ttime[-1]
             iD[it] = service_time[it]
             iF[it] = Ttime[-1] + service_time[it]
             ik[it] = np.argmax(k) + 1
             k[iop] = service_time[it]
             ki[iop] = it + 1
             it+=1
             if it>i:
                i+=1
           if S con - 1 == 0:
             Tremained.append(-1)
             Tnew.append(trimen)
             Tl += trimen
           else:
             Tremained.append(min(k))
             if S_{con} \le n:
                Tnew.append(trimen)
             else:
                Tnew.append(0)
```

```
trimen = trimen - min(k)
  numk.append(np.argmin(k) + 1)
  S_{con} = 1
  R[S_{con}] += 1
  JF5 += 1
  Z5 += S_{con}
elif trimen < 0:
  tp = trimen + min(k)
  k = np.subtract(k, tp)
  V[S\_con] += tp
  iN[i] = i + 1
  iP[i] = Ttime[-1] + tp
  iQ[i] = S_{con}
  if S_{con} < n:
    iQt[i] = 0
  else:
     for d in range(S_con):
       jQt[i] += service\_time[d + j + 1]
    iQt[i] -= trimen
  if max(k) == float('inf'):
     numk.append(np.argmax(k) + 1)
    jk[i] = np.argmax(k) + 1
    jS[it] = Ttime[-1] + tp + jQt[i]
    jD[it] = service_time[i]
    jF[it] = Ttime[-1] + tp + service\_time[i]
     ki[np.argmax(k)] = i+1
     k[np.argmax(k)] = service_time[i]
     it = i+1
  else:
     numk.append(-1)
  Ttime.append(Ttime[-1] + tp)
  Ttype.append(1)
  condition.append(S\_con + 1)
  Tremained.append(min(k))
  Tnew.append(arrive_time[i + 1])
  i += 1
  S con += 1
  R[S\_con] += 1
  numj.append(i)
  trimen = arrive_time[i] - min(k)
  J5 += 1
  Z5 += S_{con}
```

```
Rot = R / 100
print(sum(V))
print(Ttime[-1])
Vot = V / Ttime[-1]
Z5 = Z5 / 100
wer = 0
for d3 in range(len(jF)):
  if jF[d3] > 0:
     wer += (jF[d3] - jS[d3])
Tq5 = sum(jQt) / JF5
Tm5 = wer / JF5
for d1 in range(len(jQ)):
  if jQ[d1] < 5:
     jQ[d1] = 0
  else:
     iQ[d1] = 4
for d2 in range(n):
  if k[d2] != float('inf'):
     k42[d2] = k[d2]
  k43[d2] = Ttime[-1] - k42[d2]
  k44[d2] = k43[d2] / Ttime[-1]
f.write(str(np.around(L, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Ttime, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Ttype, 5)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(np.around(condition, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Tremained, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Tnew, 5)))
f.write('\n')
f.write('\n')
```

```
f.write(str(np.around(numj, 5)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(np.around(numk, 5)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(np.around(iN, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(jP, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(jQ, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(jQt, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(jS, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(jD, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(jF, 5)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(np.around(jk, 5)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(np.around(R, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(V, 5)))
f.write('\n')
f.write('\n')
```

```
f.write(str(np.around(Rot, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Vot, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(sum(R), 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(sum(V), 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(sum(Rot), 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(sum(Vot), 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(J5, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(JF5, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Z5, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Tq5, 5)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(np.around(Tm5, 5)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(np.around(k41, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(k42, 5)))
f.write('\n')
```

```
f.write('\n')
f.write(str(np.around(k43, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(k44, 5)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
k = [float('inf'), float('inf'), float('inf'), float('inf')]
kj = [-1, -1, -1, -1, -1]
m = 14
baned = []
Ttime = []
Ttype = []
condition = []
Tremained = []
Tnew = []
numj = []
numk = []
jN = np.zeros(100)
jP = np.zeros(100)
jQ = np.zeros(100)
jQt = np.zeros(100)
jS = np.zeros(100)
jD = np.zeros(100)
iF = np.zeros(100)
jk = np.zeros(100)
R = np.zeros(100)
V = np.zeros(100)
k41 = np.zeros(n)
k42 = np.zeros(n)
k43 = np.zeros(n)
k44 = np.zeros(n)
T0 = Tt
T1 = 0
```

```
arrive_time = expon.rvs(scale=1 / lambd, size=105)
print(arrive_time)
service_time = expon.rvs(scale=1 / u, size=105)
print(service_time)
i = 0
j = 0
it = i
S_{con} = 0
trimen = 0
R[0] += 1
V[0] += arrive_time[i]
J5 = 0
JF5 = 0
Z5 = 0
T1 = 0
Ttime.append(arrive_time[i])
iN[it] = i + 1
jP[it] = arrive_time[i]
jQ[it] = 0
jQt[it] = 0
iS[it] = arrive_time[i]
iD[it] = service_time[0]
jF[it] = arrive_time[i] + service_time[0]
jk[it] = it + 1
Ttype.append(1)
condition.append(1)
# T1 += service_time[i]
Tremained.append(service_time[i])
Tnew.append(arrive_time[i + 1])
k[0] = service\_time[i]
k_{i}[0] = it+1
numj.append(it + 1)
numk.append(it + 1)
trimen = arrive_time[it + 1] - service_time[j]
S con = 1
# V[S_con] += min(service_time[j],arrive_time[i + 1])
```

```
i += 1
      it += 1
      J5 += 1
      while len(Ttime) != 100:
        if S_{con} == 0:
          jN[i] = i + 1
          jP[i] = Ttime[-1] + Tnew[-1]
           jQ[i] = 0
           iQt[i] = 0
           jS[i] = Ttime[-1] + Tnew[-1]
           jk[i] = 1
           V[S con] += Tnew[-1]
           Ttime.append(Ttime[-1] + Tnew[-1])
           Ttype.append(1)
           condition.append(S\_con + 1)
           # T1 += service_time[i]
           Tremained.append(service_time[j])
           Tnew.append(arrive_time[i + 1])
           numj.append(i+1)
           numk.append(1)
           trimen = arrive\_time[i + 1] - service\_time[i]
           S_{con} += 1
           R[S_{con}] += 1
           k[0] = service\_time[j]
           ki[0] = i+1
           it += 1
           while it in baned:
             it += 1
           i += 1
           J5 += 1
           Z5 += S_{con}
        elif trimen > 0:
           jS[kj[np.argmin(k)] - 1] = Ttime[-1] + k[np.argmin(k)]
service_time[kj[np.argmin(k)] - 1]
           iD[ki[np.argmin(k)] - 1] = service\_time[ki[np.argmin(k)] - 1]
          jF[kj[np.argmin(k)] - 1] = Ttime[-1] + Tremained[-1]
           jk[kj[np.argmin(k)] - 1] = np.argmin(k) + 1
```

```
V[S\_con] += k[np.argmin(k)]
  numj.append(kj[np.argmin(k)])
  Ttime.append(Ttime[-1] + k[np.argmin(k)])
  k41[np.argmin(k)] += 1
  k42[np.argmin(k)] += service_time[kj[np.argmin(k)] - 1]
  k = np.subtract(k, k[np.argmin(k)])
  Ttype.append(3)
  condition.append(S_con - 1)
  i += 1
  if S_{con} \le n:
     ki[np.argmin(k)] = -1
     k[np.argmin(k)] = float('inf')
  else:
     k[np.argmin(k)] = float('inf')
     iop = np.argmax(k)
     k[iop] = service_time[it]
     ki[iop] = it + 1
     it += 1
     while it in baned:
       it += 1
     if it > i:
       i += 1
  if S_{con} - 1 == 0:
     Tremained.append(-1)
     Tnew.append(trimen)
     Tl += trimen
  else:
     Tremained.append(min(k))
     if S_{con} \le n:
       Tnew.append(trimen)
     else:
       Tnew.append(0)
  trimen = trimen - min(k)
  numk.append(np.argmin(k) + 1)
  S_{con} = 1
  R[S_{con}] += 1
  JF5 += 1
  Z5 += S con
elif trimen < 0:
  if S_{con} < n + m:
     tp = trimen + min(k)
     k = np.subtract(k, tp)
     V[S\_con] += tp
```

```
jN[i] = i + 1
  iP[i] = Ttime[-1] + tp
  jQ[i] = S_{con}
  if S_{con} < n:
    jQt[i] = 0
  else:
     for d in range(S_con):
       jQt[i] += service\_time[d + j + 1]
    jQt[i] = trimen
  if max(k) == float('inf'):
     numk.append(np.argmax(k) + 1)
    ik[i] = np.argmax(k) + 1
    ki[np.argmax(k)] = i + 1
    k[np.argmax(k)] = service_time[i]
    it = i+1
  else:
     numk.append(-1)
  Ttime.append(Ttime[-1] + tp)
  Ttype.append(1)
  condition.append(S\_con + 1)
  Tremained.append(min(k))
  Tnew.append(arrive_time[i + 1])
  i += 1
  S_{con} += 1
  R[S_{con}] += 1
  numj.append(i)
  trimen = arrive_time[i] - min(k)
  J5 += 1
  Z5 += S_{con}
else:
  tp = trimen + min(k)
  k = np.subtract(k, tp)
  V[S_{con}] += tp
  iN[i] = i + 1
  jP[i] = Ttime[-1] + tp
  iQ[i] = -1
  iQt[i] = 0
  jS[it] = -1
  jD[it] = 0
  jF[it] = jP[i]
  jk[it] = -2
```

```
Ttime.append(Ttime[-1] + tp)
       Ttype.append(2)
       numk.append(-1)
       condition.append(S_con)
       Tremained.append(min(k))
       Tnew.append(arrive_time[i + 1])
       baned.append(i)
       i += 1
       R[S_{con}] += 1
       # V[S_con] += min(-trimen, arrive_time[i])
       numj.append(i)
       trimen = arrive_time[i] - min(k)
       J5 += 1
       Z5 += S con
Rot = R / 100
print(sum(V))
print(Ttime[-1])
Vot = V / Ttime[-1]
Z5 = Z5 / 100
wer = 0
for d3 in range(len(jF)):
  if jF[d3] > 0:
     wer += (jF[d3] - jS[d3])
Tq5 = sum(jQt) / JF5
Tm5 = wer / JF5
for d1 in range(len(jQ)):
  if jQ[d1] < 5:
    jQ[d1] = 0
  else:
    iQ[d1] = 4
for d2 in range(n):
  if k[d2] != float('inf'):
     k42[d2] = k[d2]
  k43[d2] = Ttime[-1] - k42[d2]
  k44[d2] = k43[d2] / Ttime[-1]
f.write(str(np.around(L, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Ttime, 5)))
f.write('\n')
```

```
f.write('\n')
f.write(str(np.around(Ttype, 5)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(np.around(condition, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Tremained, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Tnew, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(numi, 5)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(np.around(numk, 5)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(np.around(jN, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(jP, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(jQ, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(iQt, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(jS, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(jD, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(jF, 5)))
f.write('\n')
```

```
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(np.around(jk, 5)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(np.around(R, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(V, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Rot, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Vot, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(sum(R), 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(sum(V), 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(sum(Rot), 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(sum(Vot), 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(J5, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(JF5, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Z5, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Tq5, 5)))
f.write('\n')
f.write('\n')
```

```
f.write('\n')
                  f.write('\n')
                  f.write(str(np.around(Tm5, 5)))
                  f.write('\n')
                  f.write('\n')
                  f.write('\n')
                  f.write('\n')
                  f.write('\n')
                  f.write('\n')
                  f.write(str(np.around(k41, 5)))
                  f.write('\n')
                  f.write('\n')
                  f.write(str(np.around(k42, 5)))
                  f.write('\n')
                  f.write('\n')
                  f.write(str(np.around(k43, 5)))
                  f.write('\n')
                  f.write('\n')
                  f.write(str(np.around(k44, 5)))
                  f.write('\n')
                  f.write('\n')
                  f.write('\n')
                  f.write('\n')
                  f.write('\n')
                  f.write('\n')
                  ro = lambd / u
                  v = ro / m
                  Ro1 = \frac{1}{1 + ro + (ro * ro)} / 2 + (ro * ro * ro) / 6 + (ro * ro * ro * ro) / 24 + (ro * ro) / 24 + (ro) / 24 + 
(ro * ro * ro * ro * ro / 120)/(n-ro))
                  Ro2 = 1/(1 + ro + ro * ro / 2 + ro * ro * ro / 6 + ro * ro * ro * ro / 24 + (ro
* ro * ro * ro * ro / 120) * (
                                        1 + v + pow(v, 2) + pow(v, 3) + pow(v, 4) + pow(v, 5)
                                        + pow(v, 6) + pow(v, 7) + pow(v, 8) + pow(v, 9)
                                        + pow(v, 10) + pow(v, 11) + pow(v, 12) + pow(v, 13)
                                        + pow(v, 14)))
                  K1 = ro
                  K2 = ro * (1 - ((pow(ro, 5) / 120) * pow(v, m-n) * Ro2))
                  print(K2)
                  Q1 = v * pow(ro, n) / 120 * Ro1 / ((1 - v) * (1 - v))
                  Q2 = v * pow(ro, n) / 120 * Ro2 * (1 - (m + 1) * pow(v, m) + m * pow(v, m))
(m+1) / ((1 - v) * (1 - v))
                  Z1 = K1 + Q1
                  Z2 = K2 + Q2
```

```
tq1 = Q1 / lambd
tq2 = Q2 / lambd
tin1 = Z1 / lambd
tin2 = Z2 / lambd
```

```
f.write(str(np.around(K1, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Q1, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Z1, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(tq1, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(tin1, 5)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write(str(np.around(K2, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Q2, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(Z2, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(tq2, 5)))
f.write('\n')
f.write('\n')
f.write(str(np.around(tin2, 5)))
f.write('\n')
f.write('\n')
t = Ro2 * pow(ro, n) * pow(v, m) / 120
print(t)
f.write(str(np.around(t, 16)))
```

```
f.write('\n')
f.write(str(np.around(t, 5)))
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
f.write('\n')
r5 = Ro1*pow(ro,5)/math.factorial(5)
1 = 0
for i in range(6):
  print(i)
  print(Ro2*pow(ro,i)/math.factorial(i))
  1 += (Ro2*pow(ro,i)/math.factorial(i))
for i in range(6,8):
  print(i)
  print(r5*pow(ro/m,i-n))
  l += (r5*pow(ro/m,i-n))
print(1)))
```