Diferansiyel Denklemler

PROF.DR. METIN YAMAN

BÖLÜM 5

KUVVET SERİSİ YÖNTEMİ

Kuvvet Serisi Yardımı ile Lineer Denklemlerin Çözümü

Daha önce öğrendiğimiz yöntemle çözülemeyen denklemler için kuvvet serisinden faydalanabiliriz.

Tanım 5.1 a_0 , a_1 , a_2 , ... sabitler olmak üzere

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
 (5.1)

şeklindeki seriye kuvvet serisi denir. Daha genel yazmak istersek

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \cdots$$

serisi yazılır.

Bu seri x_0 noktasında yakınsaktır. Yani

$$\lim_{n\to\infty} \sum_{n=0}^N a_n (x-x_0)^n$$

limiti mevcut ve sonlu ise kuvvet serisi yakınsaktır denir. Aksi ıraksaktır denir.

Tanım 5.2 Bir f(x) fonksiyonunun bir $x = x_0$ civarında Taylor seri açılımı mevcut ise yani $x = x_0$ civarında her mertebeden türevi varsa ve $\sum_{n=0}^{\infty} f^{(n)}(x_0) \frac{(x-x_0)^n}{n!} \text{ serisi } x_0 \text{ civarında } f(x) \text{ fonksiyonuna yakınsıyorsa } f(x) \text{ fonksiyonuna } x_0 \text{ noktasında analitiktir denir.}$

 x^n , e^x , sinx, cosx gibi fonksiyonlar her yerde analitiktir. lnx fonksiyonu sadece x>0 için analitiktir. $\frac{1}{x-2}$ fonksiyonu; 2 noktası hariç her yerde analitiktir.

Uyarı. Bir fonksiyonun x_0 noktasında Taylor seri açılımı

$$\sum_{n=0}^{\infty} f^{(n)}(x_0) \frac{(x-x_0)^n}{n!} = f(x_0) + f'(x_0) \frac{(x-x_0)}{1!} + f''(x_0) \frac{(x-x_0)^2}{2!} + \cdots$$

şeklindedir. $x_0 = 0$ ise üsteki seri

$$\sum_{n=0}^{\infty} f^{(n)}(0) \frac{x^n}{n!} = f(0) + f'(0) \frac{x}{1!} + f''(0) \frac{x^2}{2!} + \cdots$$

şeklinde yazılır ki, bu açılıma Maclaurin seri açılımı denir.

Örnek 5.1 $f(x) = e^x$ fonksiyonunun Maclaurin seri açılımı

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

şeklinde yazılır.

Örnek 5.2 sinx ve cosx fonksiyonunun Maclaurin seri açılımları sırasıyla

$$sinx = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$cosx = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

şeklindedir.

Tanım 5.3 y'' + P(x)y' + Q(x)y = 0 (5.2)

ikinci mertebeden değişken katsayılı lineer denklemini ele alalım. P(x) ve Q(x) fonksiyonları aynı anda sıfır olmamak kaydıyla, her iki fonksiyon da x_0 noktasında analitik iseler x_0 noktasına denklemin adi noktası denir. Adi olmayan noktaya tekil (aykırı) nokta denir.

u durumda tekil nokta iki durumda karşımıza çıkar

- i) P(x) ve Q(x) fonksiyonlarının her ikisi de analitik değildir.
- ii) P(x) ve Q(x) fonksiyonlarından biri analitik diğeri değildir.

 x_0 tekil nokta olmak üzere;

 $(x - x_0)P(x)$ ve $(x - x_0)^2Q(x)$ fonksiyonlarının her ikisi x_0 da analitik iseler x_0 noktasına denklemin düzgün tekil noktası denir.

 x_0 tekil nokta olmak üzere;

 $(x - x_0)P(x)$ ve $(x - x_0)^2Q(x)$ fonksiyonlarının her ikisi x_0 da analitik iseler x_0 noktasına denklemin düzgün tekil noktası denir. Aksi halde düzgün olmayan tekil noktası adını alır.

Örnek 5.3 $x^2y'' + 2xy' + 2(x+1)y = 0$ denkleminin adi ve tekil noktalarını yazınız.

Çözüm Önce denklemi (5.2) formunda yazalım.

$$y'' + \frac{2}{x}y' + \frac{2(x+1)}{x^2}y = 0$$
. $P(x) = \frac{2}{x}$ ve $Q(x) = \frac{2(x+1)}{x^2}$

olup bu fonksiyonların her ikisi de $x_0 = 0$ noktası hariç her yerde analitiktir.

Dolayısıyla $x_0 = 0$ noktası denklemin tekil noktasıdır.

(x-0)P(x) = 2 ve $(x-0)^2Q(x) = 2(x+1)$ fonksiyonlarının her ikisi $x_0 = 0$ noktasında analitiktir. Dolayısıyla $x_0 = 0$ noktası denklemin düzgün tekil noktasıdır.

Örnek 5.4 $x^2y'' + 2y' + xy = 0$ denkleminin adi ve tekil noktalarını yazınız.

Çözüm Önce denklemi (5.2) formunda yazalım.

$$y'' + \frac{2}{x^2}y' + \frac{1}{x}y = 0$$
. $P(x) = \frac{2}{x^2}$ ve $Q(x) = \frac{1}{x}$

olup bu fonksiyonların her ikisi de $x_0 = 0$ noktasında analitik değildir. Dolayısıyla $x_0 = 0$ noktası denklemin tekil noktasıdır.

 $(x-0)P(x) = \frac{2}{x}$ ve $(x-0)^2Q(x) = x$ fonksiyonlarından ilki $x_0 = 0$ noktasında analitik değildir ama ikincisi analitiktir. Dolayısıyla $x_0 = 0$ noktası denklemin düzgün olmayan tekil noktasıdır.

Ornek 5.5 $7y'' - 2x^3y' + 5xy = 0$ denkleminin adi ve tekil noktalarını yazınız.

Çözüm Önce denklemi $y'' - \frac{2x^3}{7}y' + \frac{5x}{7}y = 0$ formunda yazalım. $P(x) = -\frac{2x^3}{7}$ ve $Q(x) = \frac{5x}{7}$ olup bu fonksiyonların her ikisi de tüm reel x_0 noktalarında analitiktir. Yani tüm noktalar denklemin birer adi noktasıdır.

BÖLÜM 5.1

KUVVET SERİSİ YÖNTEMLERİ

Bu bölümde iki çeşit çözüm yönteminden bahsedeceğiz.

- 1. Belirsiz Katsayılar Yöntemi
- 2. Frobenius Yöntemi

y'' + P(x)y' + Q(x)y = 0 denkleminde x_0 noktası, denklemin bir adi noktası ise bu nokta civarı çözüm bulmaya Belirsiz katsayılar yöntemi veya adi nokta civarı çözümler denir.

y'' + P(x)y' + Q(x)y = 0 denkleminde x_0 noktası, denklemin bir düzgün tekil noktası ise bu nokta civarı çözüm bulmaya da Frobenius yöntemi veya düzgün tekil nokta civarı çözümler denir.

BÖLÜM 5.1.1

BELİRSİZ KATSAYILAR YÖNTEMİ

Belirsiz Katsayılar Yöntemi

 x_0 noktası, y'' + P(x)y' + Q(x)y = 0 denkleminin bir adi noktası ise denklemin çözümleri

$$y = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots$$
 (5.3)

şeklinde aranır. a_0, a_1, a_2, \dots katsayıları bulunması gereken sabitlerdir. $x_0=0$ ise çözümler

$$y = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$$
 (5.4)

şeklinde aranır.

Örnek 5.1.1 y'' + y = 0 denklemini $x_0 = 0$ noktası civarında kuvvet serisi yöntemiyle çözünüz.

Çözüm $x_0 = 0$ noktası denklemin adi noktası olup çözümleri (5.4) formunda aramalıyız.

$$y = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \dots$$

$$y' = \sum_{n=1}^{\infty} n a_n x^{n-1} = a_1 + 2a_2 x + 3a_3 x^2 + 4a_4 x^3 \dots$$

$$y'' = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} = 2a_2 + 3.2a_3 x + 4.3a_4 x^3 \dots$$

ifadeleri denklemde yerine yazılarak

$$(2a_2 + 3.2a_3x + 4.3a_4x^2 + \cdots) + (a_0 + a_1x + a_2x^2 + \cdots) = 0$$
 veya
$$(2a_2 + a_0) + (3.2a_3 + a_1)x + (4.3a_4 + a_2)x^2 + (5.4a_5 + a_3)x^3 + \cdots = 0$$

yazılarak tüm katsayılar sıfıra eşitlenir.

$$2a_2 + a_0 = 0,$$
 $3.2a_3 + a_1 = 0$
 $4.3a_4 + a_2 = 0,$ $5.4a_5 + a_3 = 0$
...

Buradan;

$$a_2 = \frac{-1}{2}a_0$$
, $a_3 = \frac{-1}{3.2}a_1$, $a_4 = \frac{-1}{4.3}a_2 = \frac{1}{4.3.2}a_0$, $a_5 = \frac{-1}{5.4}a_3 = \frac{1}{5.4.3.2}a_1$ buluruz.

$$y = a_0 + a_1 x + \left(\frac{-1}{2}a_0\right)x^2 + \left(\frac{-1}{3.2}a_1\right)x^3 + \left(\frac{1}{4.3.2}a_0\right)x^4 + \left(\frac{1}{5.4.3.2}a_1\right)x^5 \dots$$

$$y = \left(1 + \frac{-1}{2!}x^2 + \frac{1}{4!}x^4 + \frac{-1}{6!}x^6 + \cdots\right)a_0 + \left(x + \frac{-1}{3!}x^3 + \frac{1}{5!}x^5 + \frac{-1}{7!}x^7 + \cdots\right)a_1$$

$$y = a_0 \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} + a_1 \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

çözümü elde edilir. Sağdaki ilk toplam *cosx*, ikincisi ise *sinx* in seri açılımıdır. Dolayısıyla denklemin genel çözümü

$$y = a_0 cos x + a_1 sin x$$

şeklinde bulunur.

Uyarı y'' + y = 0 denklemini $x_0 = 0$ noktası civarında kuvvet serisi yöntemiyle çözümünü toplamlar üzerinden işlemlerle de yapabiliriz. Şöyleki;

1.adım.
$$y = \sum_{n=0}^{\infty} a_n x^n$$
, $y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$, $y'' = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2}$

ifadeleri denklemde yerine yazılır.

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + \sum_{n=0}^{\infty} a_n x^n = 0.$$

2.adım. x lerin kuvvetleri eşitlenir.

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + \sum_{n=0}^{\infty} a_n x^n = 0$$

3.adım. Toplamlar aynı sayıdan başlatılır. (Bu örnekte aynı)

$$\sum_{n=0}^{\infty} [(n+2)(n+1)a_{n+2} + a_n]x^n = 0$$

4.adım. Toplam içi sıfıra eşitlenir. $(n+2)(n+1)a_{n+2} + a_n = 0$ veya

$$a_{n+2} = \frac{-1}{(n+2)(n+1)} a_n$$
, $n = 0,1,2,...$ (5.5)

(5.5) eşitliğine denklemin rekurans bağıntısı denir. Buradan istenen katsayılar hesaplanır.

$$n = 0 \text{ için } a_2 = \frac{-1}{2.1} a_0$$

$$n = 1 \text{ için } a_3 = \frac{-1}{3.2} a_1$$

$$n = 2 \text{ için } a_4 = \frac{-1}{4.3} a_2 = \frac{1}{4!} a_0$$

$$n = 3 \text{ için } a_5 = \frac{-1}{5.4} a_3 = \frac{1}{5!} a_1$$

$$n = 4 \text{ için } a_6 = \frac{-1}{6.5} a_4 = \frac{-1}{6!} a_0$$

$$n = 5 \text{ için } a_7 = \frac{-1}{7.6} a_5 = \frac{1}{7!} a_1$$

$$y = a_0 + a_1 x + \left(\frac{-1}{2}a_0\right)x^2 + \left(\frac{-1}{3.2}a_1\right)x^3 + \left(\frac{1}{4.3.2}a_0\right)x^4 + \left(\frac{1}{5.4.3.2}a_1\right)x^5 \dots$$

$$y = \left(1 + \frac{-1}{2!}x^2 + \frac{1}{4!}x^4 + \frac{-1}{6!}x^6 + \cdots\right)a_0 + \left(x + \frac{-1}{3!}x^3 + \frac{1}{5!}x^5 + \frac{-1}{7!}x^7 + \cdots\right)a_1$$

$$y = a_0 \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} + a_1 \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

çözümü elde edilir.

Dolayısıyla denklemin genel çözümü

$$y = a_0 cos x + a_1 sin x$$

şeklinde bulunur.

Örnek 5.1.2 y' - y = 0 denklemini $x_0 = 0$ noktası civarında kuvvet serisi yöntemiyle çözünüz.

Çözüm.

1.adım.
$$y = \sum_{n=0}^{\infty} a_n x^n$$
, $y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$

ifadeleri denklemde yerine yazılır.

$$\sum_{n=1}^{\infty} n a_n x^{n-1} - \sum_{n=0}^{\infty} a_n x^n = 0.$$

2.adım. x lerin kuvvetleri eşitlenir.

$$\sum_{n=0}^{\infty} (n+1)a_{n+1}x^n + \sum_{n=0}^{\infty} a_n x^n = 0$$

3.adım. Toplamlar aynı sayıdan başlatılır.

$$\sum_{n=0}^{\infty} [(n+1)a_{n+1} - a_n]x^n = 0$$

4.adım. Toplam içi sıfıra eşitlenir. $(n+1)a_{n+1} - a_n = 0$ veya

$$a_{n+1} = \frac{1}{n+1}a_n$$
, $n = 0,1,2,...$

şeklinde denklemin rekurans bağıntısı elde edilir. Buradan istenen katsayılar hesaplanır.

$$n = 0$$
 için $a_1 = \frac{1}{1}a_0$ $n = 1$ için $a_2 = \frac{1}{2}a_1 = \frac{1}{2!}a_0$ $n = 2$ için $a_3 = \frac{1}{3}a_2 = \frac{1}{3!}a_0$ $n = 3$ için $a_4 = \frac{1}{4}a_3 = \frac{1}{4!}a_0$

••

$$y = a_0 + \left(\frac{1}{1!}a_0\right)x + \left(\frac{1}{2!}a_0\right)x^2 + \left(\frac{1}{3!}a_0\right)x^3 + \left(\frac{1}{4!}a_0\right)x^4 + \cdots$$

$$y = a_0 \left(1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 + \cdots \right)$$

$$y = a_0 \sum_{n=0}^{\infty} \frac{x^n}{n!} = a_0 e^x$$
 genel çözümü elde edilir.

Örnek 5.1.3 y'' + xy' - y = 0 denklemini $x_0 = 0$ noktası civarında kuvvet serisi yöntemiyle çözünüz.

Çözüm.

1.adım. $y = \sum_{n=0}^{\infty} a_n x^n$, $y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$, $y'' = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2}$ ifadeleri denklemde yerine yazılır.

$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + x(\sum_{n=1}^{\infty} na_n x^{n-1}) - \sum_{n=0}^{\infty} a_n x^n = 0$$
 veya
$$\sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + \sum_{n=1}^{\infty} na_n x^n - \sum_{n=0}^{\infty} a_n x^n = 0$$
 yazılır.

2.adım. x lerin kuvvetleri eşitlenir. Şöyleki; soldaki ilk toplamda n yerine n+2 yazılır. Amacımız tüm toplamları x^n şeklinde biraraya getirmektir.

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n + \sum_{n=1}^{\infty} na_n x^n - \sum_{n=0}^{\infty} a_n x^n = 0$$

3.adım. Toplamlar aynı sayıdan başlatılır. Şöyleki; ilk terim ve son terim sıfırdan, ortadaki terim ise 1 den başlamaktadır. İlk ve son toplamdan birer terim açarsak onlarında toplamları artık 1 den başlayacaktır.

$$(2.1a_2 - a_0) + \sum_{n=1}^{\infty} [(n+2)(n+1)a_{n+2} + (n-1)a_n]x^n = 0$$
 yazarız.

4.adım. $2.1a_2 - a_0$ ve toplam içi sıfıra eşitlenir.

$$2.1a_2 - a_0 = 0$$

ve

$$(n+2)(n+1)a_{n+2} + (n-1)a_n = 0$$
.

Denklemin rekurans (yineleme) bağıntısı

$$a_{n+2} = -\frac{n-1}{(n+2)(n+1)}a_n$$
, $n = 1,2,...$

şeklinde yazılır. Buradan istenen katsayılar hesaplanır. Önce $2.1a_2 - a_0 = 0$ eşitliğinden $a_2 = \frac{1}{2!}a_0$ bulunur.

Yineleme bağıntısından

$$n = 1 \text{ için } a_3 = 0$$
 $n = 2 \text{ için } a_4 = -\frac{1}{4.3} a_2 = \frac{-1}{4!} a_0$
 $n = 3 \text{ için } a_5 = -\frac{2}{5.4} a_3 = 0$ $n = 4 \text{ için } a_6 = -\frac{3}{6.5} a_4 = \frac{3}{6!} a_0$

katsayıları bulunur. Yerlerine yazarsak

$$y = a_0 + a_1 x + \left(\frac{1}{2!}a_0\right)x^2 + 0.x^3 + \left(\frac{-1}{4!}a_0\right)x^4 + 0.x^5 + \cdots$$

$$y = a_0 \left(1 + \frac{1}{2!} x^2 - \frac{1}{4!} x^4 + \dots \right) + a_1 x$$

 $y = a_0 y_1 + a_1 y_2$ genel çözümü elde edilir.

Örnek 5.1.4 $(x^2 - 1)y'' + 3xy' + xy = 0$ denklemini $x_0 = 0$ noktası civarında kuvvet serisi yöntemiyle çözünüz.

Çözüm.

1.adım. $y = \sum_{n=0}^{\infty} a_n x^n$, $y' = \sum_{n=1}^{\infty} n a_n x^{n-1}$, $y'' = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2}$ ifadeleri denklemde yerine yazılır.

$$(x^2 - 1) \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2} + 3x \left(\sum_{n=1}^{\infty} n a_n x^{n-1} \right) + x \sum_{n=0}^{\infty} a_n x^n = 0$$
veya

$$\sum_{n=2}^{\infty} n(n-1)a_n x^n - \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2} + \sum_{n=1}^{\infty} 3na_n x^n + \sum_{n=0}^{\infty} a_n x^{n+1} = 0$$

yazılır.

2.adım. x lerin kuvvetleri eşitlenir. Şöyleki; soldaki ikinci toplamda n yerine n+2, son toplamda ise n-1 yazılır. Amacımız tüm toplamları x^n şeklinde biraraya getirmektir.

$$\sum_{n=2}^{\infty} n(n-1)a_n x^n - \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n + \sum_{n=1}^{\infty} 3na_n x^n + \sum_{n=1}^{\infty} a_{n-1} x^n = 0$$

yazılır.

3.adım. Toplamlar aynı sayıdan yani 2 den başlatılmalıdır. Şöyleki; ikinci toplamda n=0, n=1 için iki terimi, üçüncü toplamda n=1 için bir terimi ve son toplamda n=1 için bir terimi açıp toplam sembolunun dışında yazmalıyız.

$$\sum_{n=2}^{\infty} n(n-1)a_n x^n - (2.1a_2 + 3.2a_3 x) + \sum_{n=2}^{\infty} (n+2)(n+1)a_{n+2} x^n + 3a_1 x + \sum_{n=2}^{\infty} 3na_n x^n + a_0 x + \sum_{n=2}^{\infty} a_{n-1} x^n = 0$$
 veya

 $-2a_2 + (3a_1 + a_0 - 6a_3)x + \sum_{n=2}^{\infty} [-(n+2)(n+1)a_{n+2} + n(n+2)a_n + a_{n-1}]x^n = 0$

yazılır.

4.adım.
$$a_2 = 0$$
, $3a_1 + a_0 - 6a_3 = 0$ ve $-(n+2)(n+1)a_{n+2} + n(n+2)a_n + a_{n-1} = 0$

eşitliklerinden denklemin rekurans (yineleme) bağıntısı

$$a_{n+2} = \frac{a_{n-1} + n(n+2)a_n}{(n+2)(n+1)}, n = 2,3,...$$

yazılır.

$$a_2 = 0$$
, $a_3 = \frac{a_0 + 3a_1}{6}$ ve $a_{n+2} = \frac{a_{n-1} + n(n+2)a_n}{(n+2)(n+1)}$, $n = 2,3,...$ yineleme bağıntısından

$$n = 2 i \sin a_4 = \frac{a_1 + 2.4a_2}{4.3} = \frac{1}{4.3} a_1 + \frac{2.4}{4.3} a_2 = \frac{1}{12} a_1$$

$$n = 3 \text{ için } a_5 = \frac{a_2 + 3.5a_3}{5.4} = \frac{1}{5.4}a_2 + \frac{3.5}{5.4}a_3 = \frac{3.5}{5.4} \left(\frac{a_0 + 3a_1}{6}\right) = \frac{1}{8}a_0 + \frac{3}{8}a_1$$

katsayıları bulunur. Yerlerine yazılırsa

$$y = a_0 + a_1 x + 0.x^2 + \left(\frac{a_0 + 3a_1}{6}\right)x^3 + \left(\frac{1}{12}a_1\right)x^4 + \left(\frac{1}{8}a_0 + \frac{3}{8}a_1\right)x^5 + \cdots$$

$$y = a_0 \left(1 + \frac{1}{6}x^3 + \frac{1}{8}x^5 + \dots \right) + a_1 \left(x + \frac{1}{2}x^3 + \frac{1}{12}x^4 + \frac{3}{8}x^5 + \dots \right)$$

 $y = a_0 y_1 + a_1 y_2$ genel çözümü elde edilir.

PROBLEMLER

1. y' + y = 0 denkleminin genel çözümü bulunuz.

C:
$$y = a_0 \left(1 - x + \frac{1}{2!} x^2 - \frac{1}{3!} x^3 + \cdots \right) = a_0 e^{-x}$$

2. y'' + xy = 0 denkleminin genel çözümünü bulunuz

C:
$$y = a_0 \left(1 - \frac{1}{3.2} x^3 + \frac{1}{6.5.3.2} x^6 - \dots \right) + a_1 \left(x - \frac{1}{4.3} x^4 + \frac{1}{7.6.4.3} x^7 - \dots \right)$$

3. y'' + xy' + (x - 1) y = 0 denkleminin $y = \sum_{n=0}^{\infty} a_n (x - 1)^n$ şeklinde seri çözümünü bulunuz. (Not. x-1=t dönüşümü yapınız.)

C:
$$y = a_0 \left(1 - \frac{1}{6}t^3 + \frac{1}{24}t^4 + \frac{1}{60}t^5 + \dots \right) + a_1 \left(t - \frac{1}{2}t^2 + \frac{1}{40}t^5 + \dots \right)$$

4. (1-x)y'' + xy' - y = 0 denkleminin genel çözümünü bulunuz

C:
$$y = a_0 \left(1 + \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{24}x^4 + \dots \right) + a_1 \left(x + \frac{1}{2}x^4 - \frac{1}{20}x^6 + \dots \right)$$