COMS W3261

Computer Science Theory

Lecture 11

Closure and Decision Properties of CFL's

Alexander Roth

2014 - 10 - 08

Outline

- 1. Closure properties of CFL's
- 2. Nonclosure properties of CFL's
- 3. Cocke-Younger-Kasami algorithm
- 4. Testing emptiness of a CFG
- 5. Undecidable CFL problems

1 Closure Properties of CFL's

- The context-free languages are closed under the following operations:
 - Substitution
 - * Let Σ be an alphabet and let L_a be a language for each symbol a in Σ . These languages define a substitution s on Σ .
 - * If $w = a_1 a_2 \dots a_n$ is a string in Σ^* , then $s(w) = \{x_1 x_2 \dots x_n \mid x_i \text{ is a string in } s(a_i) \text{ for } 1 \leq i \leq n\}.$
 - * If L is a language, $s(L) = \{s(w) | w \text{ is in } L\}.$
 - * If L is a CFL over Σ and s(a) is a CFL for each a in Σ , then s(L) is a CFL.
 - Union
 - Concatenation
 - Kleene star
 - Homomorphism

- Reversal
- Intersection with a regular set
- Inverse Homomorphism

2 Nonclosure Properties of CFL's

- The context-free languages are not closed under the following operations:
 - Intersection
 - * $L_1 = \{a^n b^n c^i \mid n, i \leq 0\}$ and $L_2 = \{a^i b^n c^n \mid n, i \leq 0\}$ are CFL's. But $L = L_1 \cap L_2 = \{a^n b^n c^n \mid n \geq 0\}$ is not a CFL.
 - Complement
 - * Suppose comp(L) is context free if L is context free. Since $L_1 \cap L_2 = comp(comp(L_1) \cup comp(L_2))$, this would imply the CFL's are closed under intersection.
 - Difference
 - * Suppose $L_1 L_2$ is context free if L_1 and L_2 are context free. If L is a CFL over Σ , then $comp(L) = \Sigma^* L$ would be context free.

Class Notes

$$L = \{a^n b^n c^n \mid n \ge 0\}$$

Prove L is Context Free! half $(L) = \{x \mid xy \text{ is in } L \text{ and } |x| = |y|\}.$

3 Cocke – Younger – Kasami Algorithm for Testing Membership in a CFL

- Input: a Chomsky normal form CFG G = (V, T, P, S) and a string $w = a_1 a_2 \dots a_n$ in T^* .
- Output: "yes" if w is in L(G), "no" otherwise.
- Method: The CYK algorithm is a dynamic programming algorithm that fils in a triangular table x_{ij} with nonterminals A such that $A \stackrel{*}{\Rightarrow} a_i a_i + j \dots a_j$.
- The algorithm adds nonterminal A to x_{ij} iff there is a production $A \to BC$ in P where $B \stackrel{*}{\Rightarrow} a_i a_{i+1} \dots a_k$ and $C \stackrel{*}{\Rightarrow} a_{k+1} a_{k+2} \dots a_j$.
- To compute entry x_{ij} , we examine at most n pairs of entries: $(x_{ii}, x_{i+1}, j), (x_{i,i+1}, x_{i+2}, j),$ and so on until $(x_{i,j-1}, x_{j,j})$.
- The running time of the CYK algorithm is $O(n^3)$.

4 Testing Emptiness of a CFG

- Problem: Given a CFG G, is L(G) empty?
 - A problem is decidable if there is an algorithm to solve it.
- Emptiness problem is decidable: determine whether the start symbol of G is generating.
 - Naive algorithm has $O(n^2)$ time complexity where n is the size of G (sum of the lengths of the productions).
 - With a more sophisticated list-processing algorithm, emptiness problems can be solved in linear time. See HMU, p. 302.

5 Undecidable CFL Problems

- We say a problem that cannot be solved by any Turing machine is *unde-cidable*. There is no algorithm that can solve an undecidable problem.
- We shall see that several fundamental questions about context-free grammars and languages are undecidable, such as:
 - 1. Is a given CFG ambiguous?
 - 2. Given a CFG, is there another equivalent CFG that is unambiguous?
 - 3. Do two given CFG's generate the same language?
 - 4. Is the intersection of the languages generated by two CFG's empty?
 - 5. Given a CFG G = (V, T, P, s), is $L(G) = T^*$?

6 Class Notes

1. Given a CNF CFG G and an input string w is w in L(G)? This is decidable. Runs in $O(|w|^3)$ time.

```
for i = 1 to n do if A \rightarrow a_i is in P then add A to X_{ii} fill in the table, row-by-row, from row 2 to row n fill in the cells in each row from left-to-right if (A \rightarrow BC \text{ is in P}) and for some i \leq k < j (B is in X_{ik}) and (C is in X_{k+1,j}) then add A to X_{ij} if S is in X_{1n} then output "yes" else output "no"
```

Figure 1: The CYK Algorithm in Pseudocode