第七章 微分方程

第一节 微分方程的基本概念

定义 表示自变量、未知函数及未知函数导数的方程称为微分方程。如

$$xy + (y^{(3)})^2 = 0, y' = 2, y^{(2)} = y', y^{(5)} = \sin x$$
 等都是微分方程。

注 微分方程中必须出现未知函数的导数,自变量或未知函数可以不出现。

微分方程中未知函数的最高阶导数的阶数称为**微分方程的阶**,如微分方程 $xy + (y^{(3)})^2 = 0, y' = 2, y^{(2)} = y', y^{(5)} = \sin x$ 的阶数分别为 3,1,2,5。

满足微分方程的函数称为**微分方程的解**,其中,不含任意常数的解称为**特解**,含任意常数且任意常数的个数等于微分方程阶数的解称为**通解**,存在既不是特解也不是通解的解;如函数 $y=2,y=C_1x+C_2,y=C_1x$ (C_1,C_2 为任意常数)都是二阶微分方程 y''=0 的解,其中 y=2 是特解, $y=C_1x+C_2$ 是通解, $y=C_1x$ 既不是特解也不是通解的解,这些解都是显示形式的解。

注 (1)微分方程的解除了以显示形式出现外,许多时候也以隐示形式出现,如函数 $y=\ln(xy)$ 确定的隐函数 y=y(x) 是微分方程 $(xy-x)y''+x(y')^2+yy'-2y'=0$ 的隐示形式的解,这是因为由 $y=\ln(xy)$,得 $y'=\frac{1}{xy}(y+xy')$ 即 (y-1)xy'=y ,再求导得 y'xy'+(y-1)(y'+xy'')=y' ,即 $(xy-x)y''+x(y')^2+yy'-2y'=0$ 。

(2) 通解不是包含所有解的解,如 $\sqrt{y} = \frac{1}{2}x^2 + C$,(C 是任意常数)为微分方程 $\frac{dy}{dx} = 2x\sqrt{y}$ 的通解, y = 0 也是解,但没包含在通解中,同理,函数 $y = \frac{-1}{x^2 + C}$,(C 是任意常数)为微分方程 $\frac{dy}{dx} = 2xy^2$ 的 通解,但特解 y = 0 也没包含在通解中。

将通解中所有任意常数确定为具体常数从而得到特解,所添加的条件称为<u>初始条件</u>(一个初始条件就是一个等式)。因为n阶微分方程的通解中有n个任意常数,将这n个任意常数都确定为具体常数需添加n个初始条件(即n个等式)建立n元代数方程组求解,所以n阶微分方程有n个初始条件。微分方程连同其初始条件称为**初值问题**。

定义 称 $\frac{dy}{dx} = f(x)g(y)$ 为<u>可分离变量的微分方程</u>。

其求解步骤为: 1.分离变量 即将原方程化为 $\frac{dy}{g(y)} = f(x)dx, (g(y) \neq 0)$;

- 2. 两边同时积分 $\int \frac{dy}{g(y)} = \int f(x) dx$ 得通解;
- 3. 若g(y) = 0得函数y = 常数,则y = 常数也是解。

例 求 $\frac{dy}{dx} = 2xy$ 的解

解 将方程分离变量得 $\frac{dy}{y}=2xdx,y\neq0$, 两边同时积分 $\int \frac{dy}{y}=\int 2xdx$ 得通解为 $\ln|y|=x^2+C_1,\ \, \text{另外},\ \, y=0$ 也是解。

注 方程的通解也可表示为 $y=Ce^{x^2}$,C 为任意常数,这是因为由通解 $\ln |y|=x^2+C_1$ 得 $y=\pm e^{C_1}\cdot e^{x^2}=C_2e^{x^2}$, $(C_2=\pm e^{C_1}$ 为任意非零常数),又 y=0 也是解,于是通解可合起来写。

例 求微分方程 xdy + 2ydx = 0, $y\Big|_{x=2} = 1$ 满足初始条件的特解

解 方程可化为 $\frac{dy}{dx} = \frac{-2y}{x}$, 为可分离变量方程,分离变量得 $\frac{dy}{y} = \frac{-2dx}{x}$, 两边同时积分得通解 $\ln |y| = -2 \ln |x| + C_1$, 亦即 $yx^2 = C_2$, 这里 $C_2 = \pm e^{C_1}$ 为任意非零常数,代入初始条件 $y|_{x=2} = 1$ 得 $C_2 = 4$,于是所求特解为 $yx^2 = 4$ 。

第三节 齐次微分方程

定义 称 $\frac{dy}{dx} = \varphi(\frac{y}{x})$ 为<u>齐次微分方程</u>,其中 $\varphi(\cdot)$ 为某个函数。

其求解步骤为: 1. 作变换 $u = \frac{y}{x}$;

2. 将
$$\frac{dy}{dx} = u + x \frac{du}{dx}$$
 代入齐次方程 $\frac{dy}{dx} = \varphi(\frac{y}{x})$ 得可分离变量方程

$$\frac{du}{\varphi(u)-u} = \frac{dx}{x}$$
, 求得通解后再代回 $u = \frac{y}{x}$ 即得齐次方程通解。

例 求
$$y^2 + x^2 \frac{dy}{dx} = xy \frac{dy}{dx}$$
 的解

解 将方程化为
$$\frac{dy}{dx} = \frac{y^2}{xy - x^2} = \frac{\left(\frac{y}{x}\right)^2}{\frac{y}{x} - 1}$$
, 为齐次方程,令 $u = \frac{y}{x}$ 代入得 $u + x \frac{du}{dx} = \frac{u^2}{u - 1}$ 即得可

分离变量方程 $x\frac{du}{dx}=\frac{u}{u-1}$,分离变量得 $(1-\frac{1}{u})du=\frac{dx}{x}$,两边同时积分得通解为 $u-\ln|u|=\ln|x|+C$,从而原方程通解为 $\frac{y}{x}=\ln|y|+C$ 。

注 因该题中 $x^2 \neq 0$ (否则原方程不是微分方程),故求解第一步可分子分母分别除以 x^2 。

例 求
$$y' = \frac{x}{y} + \frac{y}{x}$$
, $y|_{x=1} = 2$ 满足初始条件 $y|_{x=1} = 2$ 的特解

解 令 $u=\frac{y}{x}$ 代入原方程得 $u+x\frac{du}{dx}=u+\frac{1}{u}$ 即得可分离变量方程 $x\frac{du}{dx}=\frac{1}{u}$,分离变量得 $udu=\frac{dx}{x}$, 两边同时积分得通解为 $\frac{1}{2}u^2=\ln|x|+C$,代入初始条件 $y\big|_{x=1}=2$ 得 C=2 ,于 是所求特解为 $(\frac{y}{x})^2=\ln x^2+4$ 。

第四节 一阶线性微分方程

定义 分别称 $\frac{dy}{dx} + P(x)y = 0$, $\frac{dy}{dx} + P(x)y = Q(x)$ 为一阶线性齐次微分方程和一阶线性非齐次微分方程,这里线性是指未知函数及其导数 y, y' 都是 1 次方,右端等于零称为齐次,右端不等于称为非齐次。

1. 一阶线性齐次微分方程 $\frac{dy}{dx} + P(x)y = 0$ 的通解为 $y = Ce^{-\int P(x)dx}$, 其中的不定积分 $\int P(x)dx \, \underline{\text{不含任意常数}};$

推导: 方程变形为 $\frac{dy}{y} = -P(x)dx$, $y \neq 0$, 为可分离变量方程,两边同时积分得通解为 $\ln |y| = -\int P(x)dx + C_1$, 这里 $\int P(x)dx$ 中的任意常数已提出来并入了任意常数 C_1 中,从而不含任意常数。此通解再化为 $y = \pm e^{C_1} \cdot e^{-\int P(x)dx} = C_2 e^{-\int P(x)dx}$, $C_2 = \pm e^{C_1}$ 为任意非零常数,又 y = 0 也是原方程的解,故原方程通解为 $y = Ce^{-\int P(x)dx}$,其中积分 $e^{-\int P(x)dx}$ 不含任意常数。

2. 一阶线性非齐次微分方程 $\frac{dy}{dx}$ + P(x)y = Q(x) 的通解为

 $y = e^{-\int P(x)dx} \left(\int Q(x)e^{\int P(x)dx} dx + C \right)$, 其中的不定积分均不含任意常数。

推导: $\frac{dy}{dx} + P(x)y = 0$ 的通解为 $y = Ce^{-\int P(x)dx}$ (积分不含任意常数), 对比 $\frac{dy}{dx} + P(x)y = 0$ 和 $\frac{dy}{dx} + P(x)y = Q(x)$ 的结构, 猜想 $\frac{dy}{dx} + P(x)y = Q(x)$ 的解为 $y = u(x)e^{-\int P(x)dx}$ (积分不含任意常

数),下面看函数u(x)是否存在?存在时是什么表达式(这种方法称为常数变易法)。

将
$$y=u(x)e^{-\int P(x)dx}$$
、 $\frac{dy}{dx}=u'(x)e^{-\int P(x)dx}-P(x)u(x)e^{-\int P(x)dx}$ 代入 $\frac{dy}{dx}+P(x)y=Q(x)$ 得 $u'(x)e^{-\int P(x)dx}-P(x)u(x)e^{-\int P(x)dx}+P(x)u(x)e^{-\int P(x)dx}=Q(x)$,即 $\frac{du(x)}{dx}=Q(x)e^{\int P(x)dx}$,两边积分得 $u(x)=\int Q(x)e^{\int P(x)dx}dx+C$,这里 $e^{\int P(x)dx}$ 不含任意常数, $\int Q(x)e^{\int P(x)dx}dx$ 中的任意常数已提出来并入了任意常数 C 中。于是原方程通解为 $y=e^{-\int P(x)dx}\left(\int Q(x)e^{\int P(x)dx}dx+C\right)$.

注 (1) 通解
$$y = e^{-\int P(x)dx} \left(\int Q(x)e^{\int P(x)dx} dx + C \right) + e^{-\int P(x)dx}$$
 和 $e^{\int P(x)dx}$ 互为倒数;

(2)
$$\frac{dx}{dy} + P(y)x = 0$$
 的通解为 $x = Ce^{-\int P(y)dy}$, $\frac{dx}{dy} + P(y)x = Q(y)$ 的通解为

$$x = e^{-\int P(y)dy} \left(\int Q(y)e^{\int P(y)dy} dy + C \right)$$
, 其中的不定积分均不含任意常数。

例 求方程
$$\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^{\frac{5}{2}}$$
 的通解

解
$$P(x) = \frac{-2}{x+1}, Q(x) = (x+1)^{\frac{5}{2}}$$
,于是原方程通解为

$$y = e^{-\int P(x)dx} \left(\int Q(x)e^{\int P(x)dx} dx + C \right) = e^{\int \frac{2}{x+1}dx} \left(\int (x+1)^{\frac{5}{2}} e^{-\int \frac{2}{x+1}dx} + C \right)$$
$$= (x+1)^2 \left(\int (x+1)^{\frac{5}{2}} (x+1)^{-2} dx + C \right) = (x+1)^2 \left(\int (x+1)^{\frac{1}{2}} dx + C \right)$$

$$= (x+1)^{2} \left(\frac{2}{3} (x+1)^{\frac{3}{2}} + C\right)$$

例 解方程
$$\frac{dy}{dx} = \frac{1}{x+y}$$

解 表面上看原方程 $\frac{dy}{dx} = \frac{1}{x+y}$ 是没学过的方程类型,但将方程变为 $\frac{dx}{dy} = x+y$,则得一阶

线性非齐次微分方程 $\frac{dx}{dy} - x = y$, 其中 P(y) = -1, Q(y) = y, 通解为

$$x = e^{-\int P(y)dy} \left(\int Q(y) e^{\int P(y)dy} dy + C \right) = e^{-\int (-1)dy} \left(\int y e^{\int (-1)dy} dy + C \right)$$
$$= e^{y} \left(\int y e^{-y} dy + C \right) = e^{y} \left(C - \int y de^{-y} \right) = e^{y} \left(C - \left(y e^{-y} - \int e^{-y} dy \right) \right)$$
$$= e^{y} \left(C - y e^{-y} - e^{-y} \right) = C e^{y} - y - 1.$$

注 方程 $\frac{dy}{dx} = \frac{1}{x+y}$ 实质上是一阶线性非齐次微分方程。

例 求解
$$\frac{dy}{dx} + \frac{y}{x} = \frac{\sin x}{x}, y|_{x=\pi} = 1$$

解
$$P(x) = \frac{1}{x}, Q(x) = \frac{\sin x}{x}$$
, 通解 $y = e^{-\int \frac{1}{x} dx} \left(\int \frac{\sin x}{x} e^{\int \frac{1}{x} dx} dx + C_1 \right) = \frac{1}{|x|} \left(\int \frac{\sin x}{x} |x| dx + C_1 \right)$

$$= \begin{cases} \frac{1}{x} (\int \sin x dx + C_1), x > 0 \\ -\frac{1}{x} (-\int \sin x dx + C_1), x < 0 \end{cases} = \begin{cases} \frac{1}{x} (-\cos x + C_1), x > 0 \\ -\frac{1}{x} (\cos x + C_1), x < 0 \end{cases} = \frac{1}{x} (-\cos x + C), \quad C = \pm C_1 \text{ in } E \text{$$

数。代入初始条件
$$y|_{x=\pi} = 1$$
 得 $C = \pi - 1$,故特解为 $y = \frac{\pi - 1 - \cos x}{x}$ 。

第五节 可降阶的高阶微分方程

$$-, y^{(n)} = f(x)$$

解法: 由
$$y^{(n-1)} = \int y^{(n)} dx = \int f(x) dx$$
, $y^{(n-2)} = \int y^{(n-1)} dx = \int (\int f(x) dx) dx$, …,

$$y = y^{(0)} = y^{(n-n)} = f(x)$$
不定积分 n 次,即得通解。

例 求微分 $y'' = \sin x$ 的通解

解
$$y' = \int y'' dx = \int \sin x dx = -\cos x + C_1$$
, 得

$$y = \int y'dx = \int (-\cos x + C_1)dx = -\sin x + C_1x + C_2$$
 为原方程通解。

例 求微分 $y''' = e^{2x} - \cos x$ 的通解

解
$$y'' = \int y''' dx = \int (e^{2x} - \cos x) dx = \frac{1}{2}e^{2x} - \sin x + C_1,$$

 $y' = \int y'' dx = \int (\frac{1}{2}e^{2x} - \sin x + C_1) dx = \frac{1}{4}e^{2x} + \cos x + C_1x + C_2,$
 $y = \int y' dx = \int (\frac{1}{4}e^{2x} + \cos x + C_1x + C_2) dx = \frac{1}{8}e^{2x} + \sin x + \frac{C_1}{2}x^2 + C_2x + C_3$ 即为通解.

二、y'' = f(x, y'), 不显含未知函数 y。

解法 作变换 p=y',将 $\frac{dp}{dx}=y''$ 代入 y''=f(x,y') 得 $\frac{dp}{dx}=f(x,p)$,设该方程通解为 $p=\varphi(x,C_1)$,即 $\frac{dy}{dx}=\varphi(x,C_1)$,则原方程通解为 $y=\int \varphi(x,C_1)dx+C_2$.

例 求
$$(x^2+1)y''=2xy'$$
, $y|_{x=0}=1$, $y'|_{x=0}=3$ 。

解 方程化为 $y'' = \frac{2x}{1+x^2}y'$,令 p = y',将 $y'' = \frac{dp}{dx}$ 代入方程得 $\frac{dp}{dx} - \frac{2x}{1+x^2}p = 0$,为一阶 线性齐次微分方程,其通解为 $p = Ce^{-\int \frac{-2x}{1+x^2}dx} = Ce^{\ln(1+x^2)} = C(1+x^2)$,即 $\frac{dy}{dx} = C(1+x^2)$,

故原方程通解为 $y = C(x + \frac{1}{3}x^3) + C_1$,代入初始条件 $y\big|_{x=0} = 1$, $y'\big|_{x=0} = 3$ 得 $C_1 = 1$,C = 3,故原方程的特解为 $y = x^3 + 3x + 1$ 。

三、y'' = f(y, y'), 不显含自变量x。

四、(期中期末考试不要求)

解法 作变换 p = y', 将 $\frac{dp}{dx} = y''$ 代入原方程 y'' = f(y, y')得 $\frac{dp}{dx} = f(y, p)$, 该方程有两个未知函数 p, y 和一个自变量 x , 该一阶微分方程无法求解。

注意到
$$y'' = \frac{dp}{dx} = \frac{dp}{dy} \cdot \frac{dy}{dx} = p \frac{dp}{dy}$$
,代入原方程 $y'' = f(y, y')$ 得 $p \frac{dp}{dy} = f(y, p)$,该方

程只有一个自变量 y 和一个未知函数 p ,有可能求解。设该方程通解为 $p = \varphi(y, C_1)$,即

$$\frac{dy}{dx} = \varphi(y, C_1)$$
, 分离变量得 $\frac{dy}{\varphi(y, C_1)} = dx$, 则原方程通解为 $x = \int \frac{dy}{\varphi(y, C_1)} + C_2$.

例 求 $yy'' - (y')^2 = 0$ 。

解 作变换 p=y',将 $y''=p\frac{dp}{dy}$ 代入原方程得 $yp\frac{dp}{dy}-p^2=0$,即 $p(y\frac{dp}{dy}-p)=0$ 。

(1) 若 p=0, 即 y=常数,是原方程的解;

(2) 若
$$p \neq 0$$
 得方程 $\frac{dp}{dy} - \frac{1}{y} p = 0$,其通解为 $p = Ce^{-\int (-\frac{1}{y})dy} = Ce^{\ln|y|} = C|y| = \pm Cy = C_1 y$,
$$C_1 = \pm C$$
 为任意常数。于是得 $\frac{dy}{dx} - C_1 y = 0$,解得原方程通解为 $y = C_2 e^{-\int (-C_1)dx} = C_2 e^{C_1 x}$. 综上,原方程通解为 $y = C_2 e^{C_1 x}$, C_1, C_2 为任意常数。

例 求 $y'' - a(y')^2 = 0$, $y|_{x=0} = 0$, $y'|_{x=0} = -1$ 的特解。

解 当 a=0 , 原方程化为 y''=0 , 得通解 $y=C_1x+C_2$ 。 代入初始条件得特解 y=-x ;

当 $a \neq 0$ 时,作变换 p = y',将 p = y',次" = $\frac{dp}{dx}$ 代入原方程得 $\frac{dp}{dx} = ap^2$ 为可分离变量方程,

分离变量得 $\frac{dp}{p^2} = adx$, 两边积分得通解 $-\frac{1}{p} = ax + C_1$, 即 $\frac{dx}{dy} + ax = -C_1$, 其通解为

$$x = e^{-\int ady} \left(\int (-C_1) e^{\int ady} dy + C_2 \right) = e^{-ay} \left(-C_1 \int e^{ay} dy + C_2 \right) = e^{-ay} \left(-\frac{C_1}{a} e^{ay} + C_2 \right) = C_2 e^{-ay} - \frac{C_1}{a},$$

两端对 x 求导得 $1=C_2e^{-ay}(-a)y'$,代入初始条件得 $\begin{cases} C_2-\frac{C_1}{a}=0\\ 1=-aC_2(-1) \end{cases}$, $C_1=1,C_2=\frac{1}{a}$,于是

所求特解为 $ax = e^{-ay} - 1$ 。

法二 当a=0,原方程特解y=-x,同上;

当 $a \neq 0$ 时,作变换 p = y',将 p = y',奖" = $p \frac{dp}{dv}$ 代入原方程得 $p \frac{dp}{dv} - ap^2 = 0$,即

 $p(\frac{dp}{dy}-ap)=0$ 。当 p=0,即 y=常数为原方程的解,不满足初始条件;当 $p\neq 0$ 时,得

方程
$$\frac{dp}{dv} - ap = 0$$
 的通解为 $p = C_1 e^{-\int -ady} = C_1 e^{ay}$, 即 $\frac{dy}{dx} = C_1 e^{ay}$, 分离变量得

 $e^{-ay}dy=C_1dx$,通解为 $e^{-ay}=-aC_1x+C_2$,两端对x求导得 $e^{-ay}(-a)y'=-aC_1$,代入初始条件x=0,y=0,y'=-1得 $\begin{cases} C_2=1\\ -a(-1)=-aC_1 \end{cases}$, $C_1=-1,C_2=1$,于是所求特解为 $e^{-ay}=ax+1$ 。

第六节 高阶线性微分方程

二阶线性微分方程解的结构

对二阶线性齐次微分方程 y'' + P(x)y' + Q(x)y = 0 (6)

定理 1 方程(6)的两个解 $y_1(x), y_2(x)$ 的任意倍数和 $C_1y_1(x) + C_2y_2(x)$, C_1, C_2 均为任意常数,仍是(6)的解。

证 由 $y_1(x), y_2(x)$ 是(6)的两个解, 故 $y_1'' + P(x)y_1' + Q(x)y_1 = 0$, $y_2'' + P(x)y_2' + Q(x)y_2 = 0$,

得到
$$[C_1y_1(x) + C_2y_2(x)]'' + P(x)[C_1y_1(x) + C_2y_2(x)]' + Q(x)[C_1y_1(x) + C_2y_2(x)]$$

$$=C_1[y_1''+P(x)y_1'+Q(x)y_1]+C_2[y_2''+P(x)y_2'+Q(x)y_2]=0$$
。故结论成立。

定理 2 方程 (6) 的两个比值不等于常数的解 $y_1(x), y_2(x)$ 的任意倍数和

 $C_1y_1(x) + C_2y_2(x)$, C_1, C_2 均为任意常数,是(6)的通解。

注 两个函数 $y_1(x), y_2(x)$ 比值不等于常数也称为 $y_1(x), y_2(x)$ 线性无关。

证 由定理 1, $C_1y_1(x) + C_2y_2(x)$, C_1 , C_2 均为任意常数, 仍是(6)的解。当 $\frac{y_1(x)}{y_2(x)} \neq$ 常数, 即 $\frac{y_1(x)}{y_2(x)} = x$

的函数 $\varphi(x)$ 时,解 $C_1y_1(x)+C_2y_2(x)=C_1\varphi(x)y_2(x)+C_2y_2(x)=(C_1\varphi(x)+C_2)y_2(x)$ 中含有两个不能合并的任意常数。故是(6)的通解。

对二阶线性非齐次微分方程 y'' + P(x)y' + Q(x)y = f(x) (5)

定理 3 方程(6)的通解 Y(x) 与(5)的一个特解 $y^*(x)$ 之和 $Y(x)+y^*(x)$ 为(5)的通解。证 由己知, Y''(x)+P(x)Y'(x)+Q(x)Y(x)=0, $[y^*(x)]''+P(x)[y^*(x)]'+Q(x)y^*(x)=f(x)$,得到 $[Y(x)+y^*(x)]''+P(x)[Y(x)+y^*(x)]'+Q(x)[Y(x)+y^*(x)]$

$$=Y''(x)+P(x)Y(x)+Q(x)Y(x)+[(y^*(x))''+P(x)(y^*(x))'+Q(x)y^*(x)]=0+f(x)=f(x).$$

又Y(x)含两个任意常数, $y^*(x)$ 不含任意常数,故 $Y(x)+y^*(x)$ 含两个任意常数。综上即证。

定理4 设 y_1^*, y_2^* 分别为方程 $y'' + P(x)y' + Q(x)y = f_1(x)$ 和 $y'' + P(x)y' + Q(x)y = f_2(x)$ 的两个特解,则 $y_1^* + y_2^*$ 是方程 $y'' + P(x)y' + Q(x)y = f_1(x) + f_2(x)$ 的特解。

证 因为 $(y_1^*)'' + P(x)(y_1^*)' + Q(x)y_1^* = f_1(x)$, $(y_2^*)'' + P(x)(y_2^*)' + Q(x)y_2^* = f_2(x)$, 得到 $(y_1^* + y_2^*)'' + P(x)(y_1^* + y_2^*)' + Q(x)(y_1^* + y_2^*) = (y_1^*)'' + P(x)(y_1^*)' + Q(x)y_1^* + [(y_2^*)'' + P(x)(y_2^*)' + Q(x)y_2^*]$ $= f_1(x) + f_2(x)$ 。故结论得证。

定理 5 设 y_1^*, y_2^* 分别为方程 y'' + P(x)y' + Q(x)y = f(x) 的解,则 $y_1^* - y_2^*$ 是方程 y'' + P(x)y' + Q(x)y = 0的解。

证 因为 $(y_1^*)'' + P(x)(y_1^*)' + Q(x)y_1^* = f(x)$, $(y_2^*)'' + P(x)(y_2^*)' + Q(x)y_2^* = f(x)$, 得到 $(y_1^* - y_2^*)'' + P(x)(y_1^* - y_2^*)' + Q(x)(y_1^* - y_2^*) = (y_1^*)'' + P(x)(y_1^*)' + Q(x)y_1^* - [(y_2^*)'' + P(x)(y_2^*)' + Q(x)y_2^*]$ = f(x) - f(x) = 0 a b tive field

例 已知 $y=1, y=x, y=x^2$ 为二阶线性非齐次微分方程 y''+P(x)y'+Q(x)y=f(x) 的三个解,求该方程的通解。

解 由解的结构定理 5 知, x-1 和 x^2-1 均为二阶线性齐次微分方程 y''+P(x)y'+Q(x)y=0 的解,且比值不等于常数,再由解的结构定理 3 知,所求方程的 通解为 $y=C_1(x-1)+C_2(x^2-1)+1$.

对二阶常系数齐次线性微分方程 y'' + py' + qy = 0, p,q 为常数 (1)

 $r^2 + pr + q = 0$ 为微分方程 y'' + py' + qy = 0 , p, q 为常数, 的**特征方程**。

 $(e^{rx})'' + p(e^{rx})' + qe^{rx} = 0$, 即 $e^{rx}(r^2 + pr + q) = 0$, 亦即 $r^2 + pr + q = 0$ (2) 因此,函数 $y = e^{rx}$ 为方程(1)的解 \Leftrightarrow 常数 r 是二次代数方程 $r^2 + pr + q = 0$ 的根。故称

注意到当r 为常数时,函数 $v = e^{rx}$ 的导数 $v' = re^{rx}$, $v'' = r^2 e^{rx}$ 代入方程(1)得到

- (1) <u>当特征方程有两个不等实数根</u> r_1, r_2 <u>时</u>, e^{r_1x}, e^{r_2x} 为方程(1)的两个比值不等于常数的解,故由解的结构定理 2 知, $y = C_1 e^{r_1x} + C_2 e^{r_2x}$ 为方程(1)的通解。
- (2) <u>当特征方程有两个相等实数根</u> r_1 , $(=r_2)$ 时, $y_1 = e^{r_1 x}$ 为方程(1)的解,设 y_2 也为(1)

的解,且
$$\frac{y_2}{y_1} \neq$$
 常数。设 $\frac{y_2}{y_1} = u(x)$,将 $y_2 = u(x)e^{r_1x}$, $y_2' = e^{r_1x}(u'(x) + u(x)r_1)$ 和

 $y_2'' = e^{r_1 x} (u''(x) + 2u'(x)r_1 + u(x)r_1^2)$ 代入方程(1)并消去 $e^{r_1 x}$ 得 $u''(x) + (2r_1 + p)u'(x) + (r_1^2 + pr_1 + q)u(x) = 0$,

因为 r_1 是二重特征根,故 $2r_1+p=0$, $r_1^2+2pr_1+q=0$,故得u''(x)=0,得u(x)=ax+b,a,为任意常数。故此时 $y_2=e^{r_1x}(ax+b)$ 均是(1)的解,这里选其中最简单的一个 $y_2=xe^{r_1x}$,由解的结构定理 2 知, $y=C_1e^{r_1x}+C_2xe^{r_1\cdot x}=e^{r_1x}(C_1+C_2x)$ 为方程(1)的通解。

(3) <u>当特征方程有两个共轭复根</u> $r_1 = \alpha + i\beta$, $r_2 = \alpha - i\beta$ 时, $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$ 为方程(1)的复数通解。为得到实数通解,运用欧拉公式 $e^{i\theta} = \cos\theta + i\sin\theta$,(1)的两个复数解化为 $y_1 = e^{r_1 x} = e^{\alpha x + i\beta x} = e^{\alpha x} (\cos\beta x + i\sin\beta x)$, $y_2 = e^{r_2 x} = e^{\alpha x + i(-\beta)x} = e^{\alpha x} (\cos\beta x - i\sin\beta x)$,由解的结构定理 1 得, $\frac{y_1 + y_2}{2} = e^{\alpha x} \cos\beta x$, $\frac{y_1 - y_2}{2i} = e^{\alpha x} \sin\beta x$ 仍为方程(1)的两个解(但为实数解)且比值不等于常数(因 $\frac{e^{\alpha x} \cos\beta x}{e^{\alpha x} \sin\beta x} = \cot\beta x \neq 常数$),根据解的结构定理 2 知,

 $y = C_1 e^{\alpha x} \cos \beta x + C_2 e^{\alpha x} \sin \beta x = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$ 为(1)的实数值通解。

例 求 y'' - 2y' - 3y = 0 满足初始条件 $y|_{y=0} = 1$, $y'|_{y=0} = 2$ 的特解

解 特征方程为 $r^2 - 2r - 3 = 0$ 的根为 $r_1 = 3$, $r_2 = -1$, 故通解为 $y = C_1 e^{3x} + C_2 e^{-x}$ 。

由于 $y' = 3C_1e^{3x} - C_2e^{-x}$,代入初始条件 $y|_{x=0} = 1$, $y'|_{x=0} = 2$ 得

$$\begin{cases} C_1 + C_2 = 1 \\ 3C_1 - C_2 = 2 \end{cases}, C_1 = \frac{3}{4}, C_2 = \frac{1}{4}, 故所求特解为 y = \frac{3}{4}e^{3x} + \frac{1}{4}e^{-x}.$$

例 求
$$4\frac{d^2x}{dt} - 20\frac{dx}{dt} + 25x = 0$$
 的通解

解 特征方程 $4r^2-20r+25=0$ 的根为 $r_{1,2}=\frac{5}{2}$, 故通解为 $x=e^{\frac{5}{2}t}(C_1+C_2t)$ 。

例 求 y'' - 2y' + 5y = 0 的通解

解 特征方程 $r^2 - 2r + 5 = 0$ 的根为 $r_{1,2} = \frac{2 \pm 4i}{2} = 1 \pm 2i$,故通解为 $y = e^x (C_1 \cos 2x + C_2 \sin 2x)$ 。

例 求通解为 $y = C_1 e^x + C_2 e^{2x}$ 的二阶常系数齐次线性微分方程。

解 因为特征根 $r_{1,2}=1,2$,所以特征方程为 $r^2-3r+2=0$,由 y''+py'+qy=0,p,q 为常数与其特征方程 $r^2+pr+q=0$ 的对应关系,故所求方程为 y''-3y'+2y=0。

第八节 常系数非齐次线性微分方程

由解的结构定理 3 知,常系数非齐次线性微分方程 y''+py'+qy=f(x), (p,q为已知常数)的通解等于它的一个特解 y^* 加上常系数齐次线性微分方程 y''+py'+qy=0 的通解 Y(x)。

下面我们求 $f(x) = e^{\lambda x} P_m(x)$, (λ 为已知常数, $P_m(x)$ 是已知的x的m次多项式)时的特解 y^* 。

对方程 $y''+py'+qy=e^{\lambda x}P_m(x)$, $(\lambda$ 为已知常数, $P_m(x)$ 是已知的 x 的 m 次多项式)……………(1) 由于多项式与 $e^{\lambda x}$ 乘积的一、二阶导数仍然是多项式与 $e^{\lambda x}$ 乘积形式的函数,故多项式 Q(x) 与 $e^{\lambda x}$ 乘积表示的函数 $y^*=Q(x)e^{\lambda x}$ 有可能满足方程(1),成为方程(1)的解,下面用待定系数法求 Q(x)。

将 $y^* = Q(x)e^{\lambda x}$, $(y^*)' = e^{\lambda x}(Q'(x) + \lambda Q(x))$, $(y^*)'' = e^{\lambda x}(Q''(x) + 2\lambda Q'(x) + \lambda^2 Q(x))$ 代入方程 (1) 消去 $e^{\lambda x}$, 得 $Q''(x) + (2\lambda + p)Q'(x) + (\lambda^2 + p\lambda + q)Q(x) = P_m(x)$ (2) (1) 当 λ 不是特征方程 $r^2 + pr + q = 0$ 的根,即 $\lambda^2 + p\lambda + q \neq 0$ 时,(3)式中 Q(x) 为 x 的 m 次多项式,设 $Q(x) = Q_m(x) = b_0 x^m + b_1 x^{m-1} + \cdots + b_{m-1} x + b_m$,代入式(3)比较 x^m , x^{m-1} , …,x 的同次幂系数和常数项,建立关于待定系数 b_0 , b_1 , …, b_m 为未知数的 m+1 个代数方程可解出 b_0 , b_1 , …, b_m ,从而确定 $Q_m(x)$,于是得到特解 $y^* = Q_m(x)e^{\lambda x}$;

- (2) 当 λ 是特征方程 $r^2 + pr + q = 0$ 的二重根,即 $\lambda^2 + p\lambda + q = 0$, $2\lambda + p = 0$ 时,(3)式中 Q(x) 为 x 的 m+2 次多项式,设 $Q(x) = x^2 Q_m(x) = b_0 x^{m+2} + b_1 x^{m+1} + \cdots + b_{m-1} x^3 + b_m x^2$,代入式(3)比较 x^m, x^{m-1}, \cdots, x 的同次幂系数和常数项,建立关于待定系数 b_0, b_1, \cdots, b_m 为未知数的 m+1 个代数方程可解出 b_0, b_1, \cdots, b_m ,从而确定 $Q_m(x)$,于是得到特解 $y^* = x^2 Q_m(x) e^{\lambda x}$;
- (3) 当 λ 是特征方程 $r^2 + pr + q = 0$ 的单重根,即 $\lambda^2 + p\lambda + q = 0$, $2\lambda + p \neq 0$ 时,(3)式中 Q(x) 为 x 的 m+1 次多项式,设 $Q(x) = xQ_m(x) = b_0x^{m+1} + b_1x^m + \cdots + b_{m-1}x^2 + b_mx$,代入式(3)比较 x^m, x^{m-1}, \cdots, x 的同次幂系数和常数项,建立关于特定系数 b_0, b_1, \cdots, b_m 为未知数的 m+1 个代数方程 可解出 b_0, b_1, \cdots, b_m ,从而确定 $Q_m(x)$,于是得到特解 $y^* = xQ_m(x)e^{\lambda x}$ 。

注 在第二种情形中,若设 $Q(x)=b_0x^{m+2}+b_1x^{m+1}+\cdots+b_{m-1}x^3+b_mx^2+b_{m+1}x+b_{m+2}$,代入 (3) 比较 x^m,x^{m-1},\cdots,x 的同次幂系数和常数项,只能建立关于待定系数 $b_0,b_1,\cdots,b_{m+1},b_{m+2}$ 为未知数的m+1个代数方程,无法确定出 $b_0,b_1,\cdots,b_{m+1},b_{m+2}$ 。第三种情形的说明类似。

结论: 二阶常系数非齐次线性微分方程方程 $y''+py'+qy=e^{\lambda x}P_m(x), (p,q,\lambda$ 为已知常数, $P_m(x)$ 是已知的 x 的 m 次多项式)的一个特解可设为 $y^*=x^k(b_0x^m+b_1x^{m-1}+\cdots+b_{m-1}x+b_m)e^{\lambda x}$,当 λ 不是特征方程的根时 k=0;当 λ 是特征方程的单重根时 k=1;当 λ 是特征方程的二重根时 k=2。将 y^* 代入 $y''+py'+qy=e^{\lambda x}P_m(x)$ 建立 待定系数 b_0,b_1,\cdots,b_m 为未知数的 m+1 个代数方程可解出 b_0,b_1,\cdots,b_m ,从而得到特解 $y^*=x^k(b_0x^m+b_1x^{m-1}+\cdots+b_{m-1}x+b_m)e^{\lambda x}$ 。

例 求 y'' - 3y' + 2y = 5 的通解

解 特征方程 $r^2-3r+2=0$ 的特征根为 $r_{1,2}=1,2$, $f(x)=5=5e^{0x}$, 设特解 $y^*=b_0e^{0x}$,代入原方程得 $2b_0=5$,解得 $b_0=\frac{5}{2}$,于是原方程的通解为 $y=C_1e^x+C_2e^{2x}+\frac{5}{2}$ 。

例 求 $y'' + a^2 y = e^x$ 的通解

解 特征方程 $r^2+a^2=0$ 的特征根为 $r_{1,2}=\pm ai$, $f(x)=e^x$, 设特解 $y^*=b_0e^x$, 代入原方程得

$$b_0 + a^2 b_0 = 1$$
,解得 $b_0 = \frac{1}{1+a^2}$,于是原方程的通解为 $y = C_1 \cos ax + C_2 \sin ax + \frac{e^x}{1+a^2}$ 。

例 求 y'' - 2y' = 4x 满足初始条件 $y|_{x=0} = 0$, $y'|_{x=0} = 1$ 的特解

解 特征方程 $r^2-2r=0$ 的特征根为 $r_{1,2}=0,2$, $f(x)=4x=4xe^{0x}$, 设特解

 $y^* = x(b_0x + b_1)e^{0x} = b_0x^2 + b_1x$,代入原方程得 $2b_0 - 2(2b_0x + b_1) = 4x$,比较 x 的同次幂系数

和常数项得到 $\begin{cases} -4b_0 = 4 \\ 2b_0 - 2b_1 = 0 \end{cases}$ 解得 $b_0 = -1, b_1 = -1$,于是原方程的通解为 $y = C_1 e^{0x} + C_2 e^{2x} - x^2 - x$ 。

代入初始条件 $y\big|_{x=0}=0, y'\big|_{x=0}=1$,得 $\begin{cases} C_1+C_2=0\\ 2C_2-1=1 \end{cases}$, $C_1=-1, C_2=1$,故所求特解为

$$y = e^{2x} - x^2 - x - 1$$