Assignment 4

A4Q1

A4Q1b)

View em.py and bn.py

A4Q1c)

Before EM

A4Q2 A4Q2a

Variables

• First door: Decision variable, which door we choose first

• Reveal goat: Random variable, which door we reveal to have a goat

• Second door: Decision variable, which door we choose next

• Reveal car: Random variable, where the car is located

• Utility: Utility function

Reveal car	Value	
1	p_1	
2	p_2	
3	$1-p_1-p_2$	

First door	Second door	Reveal car	Value	
1	Stay	1	1	
1	Stay	2	0	
1	Stay	3	0	
1	Switch	1	0	
1	Switch	2	1	
1	Switch	3	1	
2	Stay	1	0	

2	Stay	2	1	
2	Stay	3	0	
2	Switch	1	0	
2	Switch	2	1	
2	Switch	3	1	
3	Stay	1	0	
3	Stay	2	0	
3	Stay	3	1	
3	Switch	1	1	
3	Switch	2	1	
3	Switch	3	0	

First door	Reveal car	Reveal goat	Value	
1	1	1	0	
1	1	2	0.5	
1	1	3	0.5	
1	2	1	0	
1	2	2	0	
1	2	3	1	
1	3	1	0	
1	3	2	1	
1	3	3	0	
2	1	1	0	
2	1	2	0	
2	1	3	1	
2	2	1	0.5	
2	2	2	0	
2	2	3	0.5	
			0.0	

2	3	1	1	
2	3	2	0	
2	3	3	0	
3	1	1	0	
3	1	2	1	
3	1	3	0	
3	2	1	1	
3	2	2	0	
3	2	3	0	
3	3	1	0.5	
3	3	2	0.5	
3	3	3	0	

A4Q2b)

(Answer is based on intuition for part marks)

The optimal policy is to pick any door initially, and then always switch.

We set
$$p_1=rac{1}{3}$$
 and $p_2=rac{1}{3}$
We sumout on **Reveal Car**

First door	Reveal goat	Value	
1	1	0	
1	2	1/6	
1	3	1/6	
2	1	1/6	
2	2	0	
2	3	1/6	
3	1	1/6	
3	2	1/6	

3	3	0	

A4Q2c)

The optimal policy is to pick door 3. If door 1 is revealed to have a goat, then stay. Otherwise, if door 2 is revealed to have a goat, then swap to door 1.