

Test report No. Page

Issued date FCC ID : 11212787H-A-R1 : 1 of 52

: VPYLB1JP

: September 27, 2016

RADIO TEST REPORT

Test Report No.: 11212787H-A-R1

Applicant

Murata Manufacturing Co., Ltd.

Type of Equipment

Communication Module

Model No.

: Type1JP

FCC ID

: VPYLB1JP

Test regulation

FCC Part 15 Subpart C: 2016

Test Result

Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. This report is a revised version of 11212787H-A. 11212787H-A is replaced with this report.

Date of test:

March 25 to April 4, 2016

Representative test engineer:

Takumi Shimada

Engineer

Consumer Technology Division

Approved by:

Takayuki Shimada

Engineer

Consumer Technology Division

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address, http://japan.ul.com/resources/emc_accredited/

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.
Page
Issued date

FCC ID

: 11212787H-A-R1 : 2 of 52

: September 27, 2016 : VPYLB1JP

REVISION HISTORY

Original Test Report No.: 11212787H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	11212787H-A	May 20, 2016	-	-
1	11212787H-A-R1	September 27, 2016	P 4	Correction of variant model.
1	11212787H-A-R1	September 27, 2016	P 9	Correction of unit configuration of voltage for conducted emission test.
1	11212787H-A-R1	September 27, 2016	P 10, 11	Correction of comment.
	l		l	

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. Page

Issued date FCC ID : 11212787H-A-R1 : 3 of 52

: September 27, 2016

: VPYLB1JP

CONTENTS PAGE SECTION 1: SECTION 2: SECTION 3: Operation of E.U.T. during testing......8 **SECTION 4: SECTION 5: SECTION 6: SECTION 7:** Conducted Emission 18 Average Output Power _______25

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1 Page : 4 of 52

Issued date : September 27, 2016

FCC ID : VPYLB1JP

SECTION 1: Customer information

Company Name Murata Manufacturing Co., Ltd.

Address 1-10-1 Higashikotari, Nagaokakyo-shi, Kyoto 617-8555 Japan

Telephone Number +81-75-955-6736 Facsimile Number +81-75-955-6634 Contact Person Motoo Hayashi

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment Communication Module

Model No. Type1JP

Serial No. Refer to Section 4, Clause 4.2 Rating DC 2.7 - 3.6V (typ. 3.3V)

Receipt Date of Sample March 24, 2016 Country of Mass-production Japan, China Condition of EUT Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT No Modification by the test lab

2.2 **Product Description**

Model: Type1JP (referred to as the EUT in this report) is a Communication Module.

General Specification

Clock frequency(ies) in the system 40 MHz, 32.768 kHz Operating temperature -40 deg. C to +85 deg. C

Radio Specification

WLAN (IEEE802.11b/g/n-20)

(1222002V112)(g/1120)	
Equipment Type	Transceiver
Frequency of Operation	2412 MHz - 2462 MHz
Type of Modulation	DSSS, OFDM
Bandwidth & Channel spacing	20 MHz & 5 MHz
Method of frequency generation	Synthesizer
Power Supply (inner)	DC 3.3 V *), DC 1.85 V
Antenna Type	Monopole Pattern Antenna
Antenna Gain	0.1 dBi

^{*} It does not affect the radio performance.

Variant model

This model has a variant model: Type1JO.

•	ins model has a variant model. Type 13 Q.					
		Type1JQ (CC3200)	Type1JP (CC3100)			
	Microcomputer (ARM)	Presence	Absence	l		

Two models are identical in RF characteristics.

The test was performed with Type1JP as a representative according to the customer's request.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1 Page : 5 of 52

Issued date : September 27, 2016

FCC ID : VPYLB1JP

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC part 15 final revised on April 6, 2016.

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928MHz,

2400-2483.5MHz, and 5725-5850MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013 6. Standard test methods IC: RSS-Gen 8.8	FCC: Section 15.207 IC: RSS-Gen 8.8	QP 19.4 dB, 5.49595 MHz, L AV 14.4 dB, 5.49595 MHz, L	Complied	-
6dB Bandwidth	FCC: KDB 558074 D01 DTS Meas Guidance v03r05 IC: -	FCC: Section 15.247(a)(2) IC: RSS-247 5.2(1)		Complied	Conducted
Maximum Peak Output Power	FCC: KDB 558074 D01 DTS Meas Guidance v03r05 IC: RSS-Gen 6.12	FCC: Section 15.247(b)(3) IC: RSS-247 5.4(4)	See data.	Complied	Conducted
Power Density	FCC: KDB 558074 D01 DTS Meas Guidance v03r05 IC: -	FCC: Section 15.247(e) IC: RSS-247 5.2(2)		Complied	Conducted
Spurious Emission Restricted Band Edges	FCC: KDB 558074 D01 DTS Meas Guidance v03r05 IC: RSS-Gen 6.13	FCC: Section15.247(d) IC: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	3.5 dB 2390.000 MHz, AV, Hori. 2483.500 MHz, AV, Vert.	Complied	Radiated

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

FCC Part 15.31 (e)

This EUT provides stable voltage (DC 1.85 V) constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203/212 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted on the circuit board. Therefore, the equipment complies with the antenna requirement of Section 15.203/212.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11212787H-A-R1 Test report No. : 6 of 52

Page

Issued date : September 27, 2016

: VPYLB1JP FCC ID

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied	IC: RSS-Gen 6.6	IC: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2. Ise EMC Lab.

	Antenna terminal test Uncertainty (+/-)						
Power meter Conducted emission and Power density Conducted emission Change				Channel			
Below	Above	Below	1 GHz	3 GHz	18 GHz	26.5 GHz	
1 GHz	1 GHz	1 GHz	-3 GHz	-18 GHz	-26.5 GHz	-40 GHz	power
0.9 dB	1.0 dB	1.4 dB	1.7 dB	2.8 dB	2.8 dB	2.9 dB	2.6 dB

Frequency range	Conducted emission using AMN(LISN) (+dB)
0.009 – 0.15MHz	3.5 dB
0.15 – 30MHz	2.9 dB

	Radiated emission
Test distance	(<u>+</u> dB)
	9 kHz - 30 MHz
3m	3.8 dB
10m	3.7 dB

	Radiated emission (Below 1GHz)				
Polarity	(3 m*)(<u>+</u> dE	(10 m*)(<u>+</u> dB)			
Totality	30 – 300 MHz	300 -	30 - 300	300 –	
	30 – 300 M HZ	1000MHz	MHz	1000MHz	
Horizontal	4.8 dB	5.2 dB	4.8 dB	5.0 dB	
Vertical	4.5 dB	5.9 dB	4.8 dB	5.1 dB	

Radiated emission					
(3 m*)(<u>+</u> dB)		(1 m*)(<u>+</u> dB)	(0.5 m*)(<u>+</u> dB)	(10 m*)(<u>+</u> dB)	
1 – 6GHz	6 – 18GHz	10 – 26.5 GHz	26.5 – 40GHz	1 -18 GHz	
5.1 dB	5.3 dB	5.1 dB	5.1 dB	5.3 dB	

^{*}M easurement distance

Conducted Emission test

The data listed in this test report has enough margin, more than the site margin.

Radiated emission test
The data listed in this report meets the limits unless the uncertainty is taken into consideration.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1

Page : 7 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

3.5 Test Location

UL Japan, Inc. Ise EMC Lab. *NVLAP Lab. code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

	,				
Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measuremen t distance
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.6 shielded room	-	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	-	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	-	4.7 x 7.5 x 2.7	4.7 x 7.5	_	_
No.8 measurement room	-	3.1 x 5.0 x 2.7	N/A	-	-
No.9 measurement room	-	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	-	6.2 x 4.7 x 3.0	4.8 x 4.6	-	_

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 m x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1

Page : 8 of 52

Issued date : September 27, 2016

FCC ID : VPYLB1JP

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Mode(s)

Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing - Managing Complex Regulatory Approvals - " of TCB Council Workshop October 2009.

Mode	Remarks*
IEEE 802.11b (11b)	11 Mbps, PN9
IEEE 802.11g (11g)	6 Mbps, PN9
IEEE 802.11n SISO 20 MHz BW (11n-20)	MCS 5, PN9

^{*}The worst condition was determined based on the test result of Maximum Peak Output Power (Mid Channel)

*Power of the EUT was set by the software as follows;

Power settings: Same as production model

Software: cc3100/cc3200 Radio Tool V1.1.5540.33372

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

*The details of Operating mode(s)

Test Item	Operating Mode	Tested frequency *3)
Conducted Emission	11g Tx	2442 MHz
Spurious Emission (Below 1GHz) *1)		
Spurious Emission (Above 1GHz)	11b Tx	2412 MHz
	11g Tx	2442 MHz
		2462 MHz
	11n-20 Tx *2)	2412 MHz
		2462 MHz
6dB Bandwidth	11b Tx	2412 MHz
Power Density	11g Tx	2442 MHz
99% Occupied Bandwidth	11n-20 Tx	2462 MHz
Maximum Peak Output Power	11b Tx	2412 MHz
	11g Tx	2437 MHz
	11n-20 Tx	2442 MHz
		2462 MHz

^{*1)} The mode was tested as a representative, because it had the highest power at antenna terminal test.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Since 11g and 11n-20 have the same modulation method and no differences in transmitting specification, test was performed on the representative mode that had the highest peak output power

^{*3)} After the comparison between 2437 MHz and 2442 MHz of the Mid channel, test was performed with 2442 MHz that had higher peak output power as a representative.

Test report No. : 11212787H-A-R1

Page : 9 of 52

Issued date : September 27, 2016

FCC ID : VPYLB1JP

4.2 Configuration and peripherals

[Conducted emission test]

[Antenna terminal conducted tests]

: Standard Ferrite Core

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Test report No. : 11212787H-A-R1 Page : 10 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

Description of EUT

No.	Item	Model number	Manufacturer	Remarks	
Α	Communication	Type1JP	6 *1)	Murata Manufacturing	EUT
Λ	Module		2 *2)	Co., Ltd.	
В	Jig Board	-	-	Murata Manufacturing	*3)
Ь				Co., Ltd.	
C	Jig Board	-	-	Murata Manufacturing	-
C			Co., Ltd.		
D	Laptop PC	PC-VY25AFZ77	C-VY25AFZ77 99023431A NEC -		-
Е	AC Adapter	PA-1750-07	9605505LB NEC		-
F	DC Power supply	PMC35-2A	13090501	KIKUSUI	-

^{*1)} Used for conducted emission test

List of cables used

List U	t capies useu				_
No.	Name	Length (m)	Sh	Remarks	
			Cable	Connector	
1	DC Cable	0.6	Unshielded	Unshielded	-
2	Signal Cable	0.3	Unshielded Unshielded Unshielded		-
3	USB Cable	1.5	Shielded	Shielded	-
4	DC Cable	1.8	Unshielded	Unshielded	-
5	AC Cable	1.8	Unshielded	Unshielded	-
6	AC Cable	2.0	Unshielded	Unshielded	-

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Used for antenna terminal conducted tests

^{*3)} The test was performed with the module that as normal assumed implementation conditions. (without a solid ground)

Test report No. : 11212787H-A-R1 Page : 11 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

[Spurious emission test]

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	mber Serial number Manufacturer		Remarks
A	Communication Module	Type1JP	11	Murata Manufacturing Co., Ltd.	EUT
В	Jig Board			Murata Manufacturing Co., Ltd.	*1)

^{*1)} The test was performed with the module that as normal assumed implementation conditions. (without a solid ground)

List of cables used

No.	Name	Length (m)		Shield	Remarks
			Cable Connector		
1	DC Cable	3.0	Unshielded	Unshielded	-

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1
Page : 12 of 52
Issued date : September 27, 2016
FCC ID : VPYLBIJP

SECTION 5: Conducted Emission

Test Procedure and conditions

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.

The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR AV
Measurement range : 0.15 MHz – 30 MHz

Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. Page Issued date

: 11212787H-A-R1 : 13 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "11.0 Emissions in non-restricted frequency bands" of "558074 D01 DTS Meas Guidance v03r05".

[For below 1GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1 Page : 14 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 300 MHz	300 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

Frequency: From 9 kHz to 30 MHz at distance 3 m

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for vertical polarization (antenna angle: 0 deg.).

These tests were performed in semi anechoic chamber. Therefore the measured level of emissions may be higher than if measurements were made without a ground plane. However test results were confirmed to pass against standard limit.

Figure 1: Direction of the Loop Antenna

.....

Front side: 0 deg.

Forward direction: clockwise

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Refer to Figure 1 about Direction of the Loop Antenna.

Test report No. : 11212787H-A-R1
Page : 15 of 52
Issued date : September 27, 2016
FCC ID : VPYLB1JP

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(IC) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (IC).

estricted band of FCC13,203 / Table of RSS-Gen 8.10 (IC).								
Frequency	From 9 kHz	From 90 kHz to	From 150 kHz	From 490 kHz	From 30 MHz			
	to 90 kHz	110 kHz	to 490 kHz	to 30 MHz	to 1 GHz			
	and							
	From 110 kHz							
	to 150 kHz							
Instrument used			Test Receiver					
Detector	PK / AV	QP	PK / AV	QP	QP			
IF Bandwidth	BW 200 Hz	BW 200 Hz	BW 9 kHz	BW 9 kHz	BW 120 kHz			
Test Distance	3 m *1)	3 m *1)	3 m *1)	3 m *2)	3 m			
	· ·							

Frequency	Above 1 GHz		20 dBc
Instrument used	Spectrum Analy	zer	Spectrum Analyzer
Detector	PK	AV *5)	PK
IF Bandwidth	RBW: 1 MHz	Average Power Method:	RBW: 100 kHz
	VBW: 3 MHz	12.2.5.2	VBW: 300kHz
		RBW: 1 MHz	
		VBW: 3 MHz	
		Detector:	
		Power Averaging (RMS)	
		Trace: 100 traces	
		Duty factor was added to the results.	
		Integration Method:	
		13.3.2	
		RBW: 100kHz	
		VBW: 300kHz	
		Span: 2MHz	
		Band Power: 1MHz	
		Detector:	
		Power Averaging (RMS)	
		Trace: 100 traces	
		Duty factor was added to the results.	
Test Distance	4.5 m *3) (1 GH	**	4.5 m *3) (1 GHz – 10GHz),
	1 m *4) (10 GHz	z – 26.5 GHz)	1 m *4) (10 GHz – 26.5 GHz)

^{*1)} Distance Factor: $40 \times \log (3 \text{ m} / 300 \text{ m}) = -80 \text{ dB}$

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Distance Factor: $40 \times \log (3 \text{ m} / 30 \text{ m}) = -40 \text{ dB}$

^{*3)} Distance Factor: $20 \times \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.5 \text{ dB}$

^{*4)} Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

^{*5)} Average Power Measurement was performed based on 6. 0 & 12.2.5 of "KDB 558074 D01 DTS Meas Guidance v03r05"

Test report No. : 11212787H-A-R1 Page : 16 of 52

Issued date : September 27, 2016

FCC ID : VPYLB1JP

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 M - 26.5 GHz Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1 Page : 17 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used
6dB Bandwidth	20 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)

^{*1)} Peak hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data : APPENDIX

Test result : Pass

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Reference data

^{*3)} Section 10.2 Method PKPSD (peak PSD) of "KDB 558074 D01 DTS Meas Guidance v03r05".

: 11212787H-A-R1 Test report No. Page : 18 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

APPENDIX 1: Test data

Conducted Emission

DATA OF CONDUCTED EMISSION TEST

UL Japan, Inc. Ise EMC Lab. No.2 Semi Anechoic Chamber Date : 2016/03/26

Report No. : 11212787H

Temp./Humi. Engineer : 22deg. C / 46% RH : Takumi Shimada

Mode / Remarks : Tx 11g 2442MHz

LIMIT : FCC15. 207 QP FCC15. 207 AV

F			Lin	nit	Mar	gin					
Frequency	QP	AV	Factor	QP	AV	QP	AV	QP	AV	Phase	Comment
[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
0. 15145	19.0	0.3	13. 2	32. 2	13. 5	65. 9	55. 9	33.7	42. 4	N	
4. 13530	11.3	6. 1	13. 7	25.0	19.8	56.0	46. 0	31.0	26. 2	N	
5. 45902	26. 1	21. 1	13. 9	40.0	35.0	60.0	50.0	20.0	15.0	N	
7. 56730	17. 3	12. 1	14. 0	31.3	26. 1	60.0	50.0	28. 7	23. 9	N	
8. 62931	18.8	13.6	14. 2	33.0	27. 8	60.0	50.0	27. 0	22. 2	N	
11. 95139	16.0	10.9	14. 3	30.3	25. 2	60.0	50.0	29.7	24. 8	N	
0. 15216	19.1	0.3	13. 2	32. 3	13. 5	65. 9	55. 9	33.6	42. 4	L	
4. 13297	10.4	5.4	13. 7	24. 1	19.1	56.0	46. 0	31.9	26. 9	L	
5. 49595	26. 7	21. 7	13. 9	40.6	35. 6	60.0	50.0	19.4	14. 4	L	
7. 51378	17. 5	12. 4	14. 0	31.5	26. 4	60.0	50.0	28. 5	23. 6	L	
8. 63778	18. 4	13. 3	14. 2	32.6	27. 5	60.0	50.0	27.4	22. 5	L	
11. 92443	13. 4	8.3	14. 3	27.7	22. 6	60.0	50.0	32. 3	27. 4	L	

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1 Page : 19 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

6dB Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11212787H
Date March 25, 2016
Temperature / Humidity 23 deg. C / 37 % RH
Engineer Kazuya Yoshioka

Mode Tx

Mode	Frequency	6dB Bandwidth	Limit
	[MHz]	[MHz]	[kHz]
11b	2412	10.061	> 500
	2442	10.056	> 500
	2462	10.081	> 500
11g	2412	15.120	> 500
	2442	15.101	> 500
	2462	15.007	> 500
11n-20	2412	17.718	> 500
	2442	17.753	> 500
	2462	17.708	> 500

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11212787H-A-R1 Test report No. Page : 20 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

6dB Bandwidth

UL Japan, Inc. Ise EMC Lab.

x dB Bandwidth

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1
Page : 21 of 52
Issued date : September 27, 2016
FCC ID : VPYLB1JP

6dB Bandwidth

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1 Page : 22 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

Maximum Peak Output Power

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11212787H
Date March 25, 2016
Temperature / Humidity Engineer Kazuya Yoshioka

Mode Tx 11b

Freq.	Reading	Cable	Atten.	Result		Liı	Margin	
		Loss	Loss					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm] [mW]		[mW]	[dB]
2412	5.88	1.00	10.03	16.91	49.07	30.00	1000	13.09
2437	6.91	1.01	10.03	17.94	17.94 62.29		1000	12.06
2442	7.39	1.01	10.03	18.43	69.67	30.00	1000	11.57
2462	6.16	1.01	10.03	17.20	52.49	30.00	1000	12.80

Sample Calculation:

Result = Reading + Cable Loss + Attenuator Loss

2412MHz

Rate	Reading	Remark
[Mbps]	[dBm]	
1	5.64	
2	5.71	
5.5	5.86	
11	5.88	*

*: Worst Rate

All comparison were carried out on same frequency and measurement factors.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1 Page : 23 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

Maximum Peak Output Power

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11212787H
Date March 25, 2016
Temperature / Humidity Engineer Kazuya Yoshioka

Mode Tx 11g

Freq.	Reading	Cable	Atten.	Result		Liı	Margin	
		Loss	Loss					
[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dBm]	[mW]	[dB]
2412	8.82	1.00	10.03	19.85	96.57	30.00	1000	10.15
2437	8.96	1.01	10.03	19.99	99.87	30.00	1000	10.01
2442	9.00	1.01	10.03	20.04	100.94	30.00	1000	9.96
2462	8.39	1.01	10.03	19.43	87.71	30.00	1000	10.57

Sample Calculation:

Result = Reading + Cable Loss + Attenuator Loss

2412 MHz

Rate	Reading	Remark
[Mbps]	[dBm]	
6	8.82	*
9	8.80	
12	8.61	
18	8.69	
24	8.52	
36	8.56	
48	8.66	
54	8.67	

*: Worst Rate

All comparison were carried out on same frequency and measurement factors.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1 Page : 24 of 52

: September 27, 2016 **Issued date** FCC ID : VPYLB1JP

Maximum Peak Output Power

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11212787H Date March 25, 2016 23 deg. C / 37 % RH Temperature / Humidity Engineer Kazuya Yoshioka Mode Tx 11n-20

Freq.	Reading	Cable	Atten.	Result		Li	Margin	
		Loss	Loss					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm] [mW]		[mW]	[dB]
2412	8.67	1.00	10.03	19.70	93.29	30.00	1000	10.30
2437	8.68	1.01	10.03	19.71	93.64	30.00	1000	10.29
2442	8.77	1.01	10.03	19.81	95.73	30.00	1000	10.19
2462	8.41	1.01	10.03	19.45	88.11	30.00	1000	10.55

Sample Calculation:

Result = Reading + Cable Loss + Attenuator Loss

2412 MHz

Rate	Reading	Remark
MCS	[dBm]	
0	8.61	
1	8.54	
2	8.63	
3	8.52	
4	8.61	
5	8.67	*
6	8.62	
7	8.21	

*: Worst Rate

All comparison were carried out on same frequency and measurement factors.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1
Page : 25 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

<u>Average Output Power</u> (<u>Reference data</u>)

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11212787H
Date March 25, 2016
Temperature / Humidity 23 deg. C / 37 % RH
Engineer Kazuya Yoshioka

Mode Tx

11b **11 Mbps**

Freq.	Reading	Cable	Atten.	Result		Duty	Result	
		Loss	Loss	(Time average)		factor	(Burst power average	
[MHz]	[dBm]	[dB]	[dB]	[dBm]			[dBm]	[mW]
2412	2.92	1.00	10.03	13.95	24.82	1.12	15.07	32.12
2437	3.76	1.01	10.03	14.79	30.16	1.12	15.91	39.03
2442	4.35	1.01	10.03	15.39	34.60	1.12	16.51	44.78
2462	3.05	1.01	10.03	14.09	25.65	1.12	15.21	33.19

11g **6 Mbps**

Freq.	Reading	Cable	Atten.	Result		Duty	Result		
		Loss	Loss	(Time a	verage)	factor	(Burst power average)		
[MHz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dB]	[dBm]	[mW]	
2412	1.52	1.00	10.03	12.55	17.98	0.38	12.93	19.63	
2437	3.86	1.01	10.03	14.89	30.86	0.38	15.27	33.69	
2442	3.87	1.01	10.03	14.91	30.98	0.38	15.29	33.81	
2462	1.16	1.01	10.03	12.20	16.60	0.38	12.58	18.12	

11n-20 MCS 2

F	req.	Reading	Cable	Atten.	Result		Duty	Result					
			Loss	Loss	(Time average)		factor	(Burst power average					
[N	MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]				
2	412	0.10	1.00	10.03	11.13	12.97	1.14	12.27	16.86				
2	437	2.67	1.01	10.03	13.70	23.47	1.14	14.84	30.51				
2	442	2.75	1.01	10.03	13.79	23.94	1.14	14.93	31.12				
2	462	-0.05	1.01	10.03	10.99	12.56	1.14	12.13	16.33				

Sample Calculation:

Result (Time average) = Reading + Cable Loss + Attenuator Result (Burst power average) = Time average + Duty factor

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1
Page : 26 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

<u>Average Output Power</u> (<u>Reference data</u>)

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11212787H
Date March 25, 2016
Temperature / Humidity 23 deg. C / 37 % RH
Engineer Kazuya Yoshioka
Mode Tx

2412 MHz

Mode	Rate	Reading	Duty	Burst	Remarks
			factor	power average	
	Mbps	[dBm]	[dB]	[dBm]	
11b	1	3.25	0.16	3.41	
	2	3.17	0.28	3.45	
	5.5	3.28	0.64	3.92	
	11	2.92	1.12	4.04	*
11g	6	1.52	0.38	1.90	*
	9	1.22	0.42	1.64	
	12	0.64	0.86	1.50	
	18	0.47	1.04	1.51	
	24	-1.86	2.80	0.94	
	36	-3.41	3.73	0.32	
	48	-5.06	4.82	-0.24	
	54	-5.56	5.30	-0.26	

^{*} Worst rate

Sample Calculation:

Burst power average = Reading (Time average) + Duty factor All comparison were carried out on same frequency and measurement factors.

2412 MHz

Mode	Rate	Reading	Duty	Burst	Remarks
			factor	power average	
	MCS	[dBm]	[dB] [dBm]		
11n-20	0	0.81	0.31	1.12	
	1	0.60	0.39	0.99	
	2	0.10	1.14	1.24	*
	3	-1.90	2.24	0.34	
	4	-3.42	3.83	0.41	
	5	-5.22	4.91	-0.31	
	6	-5.58	5.25	-0.33	
	7	-7.67	7.45	-0.22	

^{*} Worst rate

Sample Calculation:

 $Burst\ power\ average = Reading\ (Time\ average) + Duty\ factor$ All comparison were carried out on same frequency and measurement factors.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1
Page : 27 of 52
Issued date : September 27, 2016
FCC ID : VPYLB1JP

Burst rate confirmation

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11212787H
Date March 25, 2016
Temperature / Humidity Engineer Cay 23 deg. C / 37 % RH
Kazuya Yoshioka

Mode Tx

11b 11 Mbps

11g 6 Mbps

11n-20 MCS 2

11n-20 MCS 5

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1
Page : 28 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11212787H
Date April 1, 2016
Temperature / Humidity Engineer Takumi Shimada
(Above 1GHz)

Mode Tx 11b 2412 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2390.000	PK	51.9	26.9	6.2	32.7	-	52.3	73.9	21.6	
Hori	4018.746	PK	42.5	30.0	7.9	31.9	-	48.5	73.9	25.4	
Hori	4824.000	PK	45.4	31.8	8.1	31.8	-	53.5	73.9	20.4	
Hori	7236.000	PK	40.1	36.0	8.8	32.6	-	52.3	73.9	21.6	Floor Noise
Hori	9648.000	PK	41.5	38.2	9.6	33.3	-	56.0	73.9	17.9	Floor Noise
Hori	2390.000	AV	40.4	26.9	6.2	32.7	1.1	41.9	53.9	12.0	*1)
Hori	4018.746	AV	32.8	30.0	7.9	31.9	1.1	39.9	53.9	14.0	
Hori	4824.000	AV	33.4	31.8	8.1	31.8	1.1	42.6	53.9	11.3	
Hori	7236.000	AV	29.4	36.0	8.8	32.6	-	41.6	53.9	12.3	Floor Noise
Hori	9648.000	AV	30.1	38.2	9.6	33.3	-	44.6	53.9	9.3	Floor Noise
Vert	2390.000	PK	54.2	26.9	6.2	32.7	-	54.6	73.9	19.3	
Vert	4018.746	PK	44.8	30.0	7.9	31.9	-	50.8	73.9	23.1	
Vert	4824.000	PK	46.9	31.8	8.1	31.8	-	55.0	73.9	18.9	
Vert	7236.000	PK	41.4	36.0	8.8	32.6	-	53.6	73.9	20.3	Floor Noise
Vert	9648.000	PK	41.6	38.2	9.6	33.3	-	56.1	73.9	17.8	Floor Noise
Vert	2390.000	AV	44.3	26.9	6.2	32.7	1.1	45.8	53.9	8.1	*1)
Vert	4018.746	AV	35.2	30.0	7.9	31.9	1.1	42.3	53.9	11.6	
Vert	4824.000	AV	34.5	31.8	8.1	31.8	1.1	43.7	53.9	10.2	
Vert	7236.000	AV	29.5	36.0	8.8	32.6	-	41.7	53.9	12.2	Floor Noise
Vert	9648.000	AV	30.4	38.2	9.6	33.3	-	44.9	53.9	9.0	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: $1 \text{ GHz} - 10 \text{ GHz} \quad 20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.5 \text{ dB}$ $10 \text{ GHz} - 26.5 \text{ GHz} \cdot 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

20dBc Data Sheet

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2412.000	PK	102.3	26.9	6.2	32.7	102.7	-	-	Carrier
Hori	2400.000	PK	52.4	26.9	6.2	32.7	52.8	82.7	29.9	
Vert	2412.000	PK	100.8	26.9	6.2	32.7	101.2	-	-	Carrier
Vert	2400.000	PK	52.6	26.9	6.2	32.7	53.0	81.2	28.2	

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amprifier)$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 $^{{}^{*}}$ Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 11212787H-A-R1
Page : 29 of 52
Issued date : September 27, 2016
FCC ID : VPYLB1JP

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11212787H
Date April 1, 2016
Temperature / Humidity Engineer Takumi Shimada
(Above 1GHz)

Mode Tx 11b 2412 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1 Page : 30 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11212787H
Date April 1, 2016
Temperature / Humidity Engineer Takumi Shimada
(Above 1GHz)

Mode Tx 11b 2442 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	4070.319	PK	43.8	30.1	7.9	31.9	-	49.9	73.9	24.0	
Hori	4884.000	PK	46.9	32.0	8.1	31.7	-	55.3	73.9	18.6	
Hori	7326.000	PK	40.4	36.0	8.9	32.6	-	52.7	73.9	21.2	Floor Noise
Hori	9768.000	PK	39.9	38.2	9.6	33.3	-	54.4	73.9	19.5	Floor Noise
Hori	4070.319	AV	36.4	30.1	7.9	31.9	1.1	43.6	53.9	10.3	
Hori	4884.000	AV	38.8	32.0	8.1	31.7	1.1	48.3	53.9	5.6	
Hori	7326.000	AV	32.0	36.0	8.9	32.6	-	44.3	53.9	9.6	Floor Noise
Hori	9768.000	AV	31.5	38.2	9.6	33.3	-	46.0	53.9	7.9	Floor Noise
Vert	4070.319	PK	43.1	30.1	7.9	31.9	-	49.2	73.9	24.7	
Vert	4884.000	PK	45.5	32.0	8.1	31.7	-	53.9	73.9	20.0	
Vert	7326.000	PK	40.3	36.0	8.9	32.6	-	52.6	73.9	21.3	Floor Noise
Vert	9768.000	PK	40.1	38.2	9.6	33.3	-	54.6	73.9	19.3	Floor Noise
Vert	4070.319	AV	35.2	30.1	7.9	31.9	1.1	42.4	53.9	11.5	
Vert	4884.000	AV	37.1	32.0	8.1	31.7	1.1	46.6	53.9	7.3	
Vert	7326.000	AV	32.1	36.0	8.9	32.6	-	44.4	53.9	9.5	Floor Noise
Vert	9768.000	AV	31.6	38.2	9.6	33.3	-	46.1	53.9	7.8	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz $20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.5 \text{ dB}$

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 11212787H-A-R1 : 31 of 52 Page

Issued date : September 27, 2016 : VPYLB1JP FCC ID

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11212787H April 1, 2016 Date Temperature / Humidity $2\bar{4}$ deg. C / 40 % RH Takumi Shimada Engineer (Above 1GHz)

Mode Tx 11b 2462 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2483.500	PK	52.8	26.9	6.2	32.6	-	53.3	73.9	20.6	
Hori	4103.220	PK	44.3	30.2	7.9	31.9	-	50.5	73.9	23.4	
Hori	4924.000	PK	43.8	32.0	8.0	31.7	-	52.1	73.9	21.8	
Hori	7386.000	PK	39.7	36.0	8.9	32.7	-	51.9	73.9	22.0	Floor Noise
Hori	9848.000	PK	41.0	38.2	9.6	33.3	-	55.5	73.9	18.4	Floor Noise
Hori	2483.500	AV	41.1	26.9	6.2	32.6	1.1	42.7	53.9	11.2	*1)
Hori	4103.220	AV	34.1	30.2	7.9	31.9	1.1	41.4	53.9	12.5	
Hori	4924.000	AV	31.9	32.0	8.0	31.7	1.1	41.3	53.9	12.6	
Hori	7386.000	AV	29.8	36.0	8.9	32.7	-	42.0	53.9	11.9	Floor Noise
Hori	9848.000	AV	30.3	38.2	9.6	33.3	-	44.8	53.9	9.1	Floor Noise
Vert	2483.500	PK	51.8	26.9	6.2	32.6	-	52.3	73.9	21.6	
Vert	4103.220	PK	43.5	30.2	7.9	31.9	-	49.7	73.9	24.2	
Vert	4924.000	PK	44.7	32.0	8.0	31.7	-	53.0	73.9	20.9	
Vert	7386.000	PK	40.0	36.0	8.9	32.7	-	52.2	73.9	21.7	Floor Noise
Vert	9848.000	PK	40.7	38.2	9.6	33.3	-	55.2	73.9	18.7	Floor Noise
Vert	2483.500	AV	43.1	26.9	6.2	32.6	1.1	44.7	53.9	9.2	*1)
Vert	4103.220	AV	34.1	30.2	7.9	31.9	1.1	41.4	53.9	12.5	
Vert	4924.000	AV	32.0	32.0	8.0	31.7	1.1	41.4	53.9	12.5	
Vert	7386.000	AV	29.7	36.0	8.9	32.7	-	41.9	53.9	12.0	Floor Noise
Vert	9848.000	AV	30.2	38.2	9.6	33.3	-	44.7	53.9	9.2	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). Distance factor: $1 \text{ GHz} - 10 \text{ GHz} = 20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.5 \text{ dB}$

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 11212787H-A-R1
Page : 32 of 52
Issued date : September 27, 2016
FCC ID : VPYLB1JP

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11212787H
Date April 1, 2016
Temperature / Humidity Engineer Takumi Shimada
(Above 1GHz)

Mode Tx 11b 2462 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1
Page : 33 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11212787H
Date April 1, 2016
Temperature / Humidity Engineer Takumi Shimada
(Above 1GHz)

Mode Tx 11g 2412 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2390.000	PK	63.1	26.9	6.2	32.7	-	63.5	73.9	10.4	
Hori	4824.000	PK	40.7	31.8	8.1	31.8	-	48.8	73.9	25.1	Floor Noise
Hori	6432.018	PK	40.5	34.4	8.7	32.2	-	51.4	73.9	22.5	
Hori	7236.000	PK	39.5	36.0	8.8	32.6	-	51.7	73.9	22.2	Floor Noise
Hori	9648.000	PK	41.1	38.2	9.6	33.3	-	55.6	73.9	18.3	Floor Noise
Hori	2390.000	AV	49.6	26.9	6.2	32.7	0.4	50.4	53.9	3.5	*1)
Hori	4824.000	AV	32.0	31.8	8.1	31.8	-	40.1	53.9	13.8	Floor Noise
Hori	6432.018	AV	32.0	34.4	8.7	32.2	0.4	43.3	53.9	10.6	
Hori	7236.000	AV	30.2	36.0	8.8	32.6	-	42.4	53.9	11.5	Floor Noise
Hori	9648.000	AV	31.2	38.2	9.6	33.3	-	45.7	53.9	8.2	Floor Noise
Vert	2390.000	PK	62.1	26.9	6.2	32.7	-	62.5	73.9	11.4	
Vert	4824.000	PK	40.2	31.8	8.1	31.8	-	48.3	73.9	25.6	Floor Noise
Vert	6432.017	PK	42.5	34.4	8.7	32.2	-	53.4	73.9	20.5	
Vert	7236.000	PK	39.7	36.0	8.8	32.6	-	51.9	73.9	22.0	Floor Noise
Vert	9648.000	PK	40.9	38.2	9.6	33.3	-	55.4	73.9	18.5	Floor Noise
Vert	2390.000	AV	48.2	26.9	6.2	32.7	0.4	49.0	53.9	4.9	*1)
Vert	4824.000	AV	29.7	31.8	8.1	31.8	-	37.8	53.9	16.1	Floor Noise
Vert	6432.017	AV	35.8	34.4	8.7	32.2	0.4	47.1	53.9	6.8	
Vert	7236.000	AV	29.7	36.0	8.8	32.6	-	41.9	53.9	12.0	Floor Noise
Vert	9648.000	AV	30.0	38.2	9.6	33.3	-	44.5	53.9	9.4	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 10 GHz \sim 20log (4.5 m / 3.0 m) = 3.5 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

20dBc Data Sheet

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2412.000	PK	96.1	26.9	6.2	32.7	96.5	-	-	Carrier
Hori	2400.000	PK	63.8	26.9	6.2	32.7	64.2	76.5	12.3	
Vert	2412.000	PK	95.9	26.9	6.2	32.7	96.3	-	-	Carrier
Vert	2400.000	PK	64.8	26.9	6.2	32.7	65.2	76.3	11.1	

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amprifier)$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 11212787H-A-R1
Page : 34 of 52
Issued date : September 27, 2016
FCC ID : VPYLB1JP

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11212787H
Date April 1, 2016
Temperature / Humidity 24 deg. C / 40 % RH
Engineer Takumi Shimada
(Above 1GHz)

Mode Tx 11g 2412 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1
Page : 35 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

Radiated Spurious Emission

Test place Ise EMC Lab. Report No. 11212787H

Semi Anechoic Chamber No.2 No.3 No.1

 Date
 March 30, 2016
 April 1, 2016
 April 4, 2016

 Temperature / Humidity
 20 deg. C / 34 % RH
 24 deg. C / 40 % RH
 25 deg. C / 47 % RH

 Engineer
 Takafumi Noguchi
 Takumi Shimada
 Tomoki Matsui

 (30 - 1000MHz)
 (Above 1GHz)
 (Below 30MHz)

Mode Tx 11g 2442 MHz

Below 30MHz

OP

	_	_	- 41		_	- 1	_		- 1 1		
Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
or				Factor			Factor				
Polarity [Hori/Vert	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	3.63200	QP	30.2	19.5	-33.5	32.3	-	-16.1	29.5	45.6	Floor Noise

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)

Above 30MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	114.220	QP	29.5	12.1	7.6	28.1	-	21.1	43.5	22.4	
Hori	160.001	QP	31.0	15.3	7.9	27.9	-	26.3	43.5	17.2	
Hori	236.901	QP	33.0	17.6	8.3	27.5	-	31.4	46.0	14.6	
Hori	249.370	QP	31.0	17.9	8.4	27.4	-	29.9	46.0	16.1	
Hori	274.307	QP	30.0	18.9	8.6	27.4	-	30.1	46.0	15.9	
Hori	299.243	QP	32.0	19.7	8.8	27.4	-	33.1	46.0	12.9	
Hori	4884.000	PK	39.3	32.0	8.1	31.7	-	47.7	73.9	26.2	Floor Noise
Hori	6512.027	PK	40.8	34.6	8.8	32.2	-	52.0	73.9	21.9	
Hori	7326.000	PK	40.1	36.0	8.9	32.6	-	52.4	73.9	21.5	Floor Noise
Hori	9768.000	PK	39.8	38.2	9.6	33.3	-	54.3	73.9	19.6	Floor Noise
Hori	4884.000	AV	31.2	32.0	8.1	31.7	-	39.6	53.9	14.3	Floor Noise
Hori	6512.027	AV	32.8	34.6	8.8	32.2	0.4	44.4	53.9	9.5	
Hori	7326.000	AV	32.0	36.0	8.9	32.6	-	44.3	53.9	9.6	Floor Noise
Hori	9768.000	AV	31.9	38.2	9.6	33.3	-	46.4	53.9	7.5	Floor Noise
Vert	113.690	QP	34.2	12.0	7.5	28.1	-	25.6	43.5	17.9	
Vert	160.001	QP	25.9	15.3	7.9	27.9	-	21.2	43.5	22.3	
Vert	236.901	QP	32.8	17.6	8.3	27.5	-	31.2	46.0	14.8	
Vert	249.370	QP	30.5	17.9	8.4	27.4	-	29.4	46.0	16.6	
Vert	274.307	QP	31.6	18.9	8.6	27.4	-	31.7	46.0	14.3	
Vert	299.243	QP	29.6	19.7	8.8	27.4	-	30.7	46.0	15.3	
Vert	4884.000	PK	40.8	32.0	8.1	31.7	-	49.2	73.9	24.7	Floor Noise
Vert	6512.027	PK	41.6	34.6	8.8	32.2	-	52.8	73.9	21.1	
Vert	7326.000	PK	40.1	36.0	8.9	32.6	-	52.4	73.9	21.5	Floor Noise
Vert	9768.000	PK	39.6	38.2	9.6	33.3	-	54.1	73.9	19.8	Floor Noise
Vert	4884.000	AV	32.4	32.0	8.1	31.7	-	40.8	53.9	13.1	Floor Noise
Vert	6512.027	AV	34.7	34.6	8.8	32.2	0.4	46.3	53.9	7.6	
Vert	7326.000	AV	32.3	36.0	8.9	32.6	-	44.6	53.9	9.3	Floor Noise
Vert	9768.000	AV	31.6	38.2	9.6	33.3	-	46.1	53.9	7.8	Floor Noise

 $Result = Reading + \\ \overline{Ant} \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor (Amplifier) + Duty$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GHz 20log (4.5 m/3.0 m) = 3.5 dB

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1 Page : 36 of 52

Issued date : September 27, 2016 : VPYLB1JP FCC ID

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11212787H April 1, 2016 Date Temperature / Humidity $2\bar{4}$ deg. C / 40 % RH Engineer Takumi Shimada (Above 1GHz)

Mode Tx 11g 2462 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2483.500	PK	65.8	26.9	6.2	32.6	-	66.3	73.9	7.6	
Hori	4924.000	PK	40.7	32.0	8.0	31.7	-	49.0	73.9	24.9	Floor Noise
Hori	6565.370	PK	40.4	34.7	8.8	32.3	-	51.6	73.9	22.3	
Hori	7386.000	PK	40.4	36.0	8.9	32.7	-	52.6	73.9	21.3	Floor Noise
Hori	9848.000	PK	41.1	38.2	9.6	33.3	-	55.6	73.9	18.3	Floor Noise
Hori	2483.500	AV	47.9	26.9	6.2	32.6	0.4	48.8	53.9	5.1	*1)
Hori	4924.000	AV	29.1	32.0	8.0	31.7	-	37.4	53.9	16.5	Floor Noise
Hori	6565.370	AV	30.2	34.7	8.8	32.3	0.4	41.8	53.9	12.1	
Hori	7386.000	AV	29.7	36.0	8.9	32.7	-	41.9	53.9	12.0	Floor Noise
Hori	9848.000	AV	30.3	38.2	9.6	33.3	-	44.8	53.9	9.1	Floor Noise
Vert	2483.500	PK	64.8	26.9	6.2	32.6	-	65.3	73.9	8.6	
Vert	4924.000	PK	40.4	32.0	8.0	31.7	-	48.7	73.9	25.2	Floor Noise
Vert	6565.370	PK	41.9	34.7	8.8	32.3	-	53.1	73.9	20.8	
Vert	7386.000	PK	40.7	36.0	8.9	32.7	-	52.9	73.9	21.0	Floor Noise
Vert	9848.000	PK	40.7	38.2	9.6	33.3	-	55.2	73.9	18.7	Floor Noise
Vert	2483.500	AV	49.5	26.9	6.2	32.6	0.4	50.4	53.9	3.5	*1)
Vert	4924.000	AV	29.4	32.0	8.0	31.7	-	37.7	53.9	16.2	Floor Noise
Vert	6565.370	AV	33.3	34.7	8.8	32.3	0.4	44.9	53.9	9.0	
Vert	7386.000	AV	29.6	36.0	8.9	32.7	-	41.8	53.9	12.1	Floor Noise
Vert	9848.000	AV	30.2	38.2	9.6	33.3	-	44.7	53.9	9.2	Floor Noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

 $10 \text{ GHz} - 26.5 \text{ GHz} \ 20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). Distance factor: $1 \text{ GHz} - 10 \text{ GHz} = 20 \log (4.5 \text{ m} / 3.0 \text{ m}) = 3.5 \text{ dB}$

^{*1)} Not Out of Band emission(Leakage Power)

Test report No. : 11212787H-A-R1
Page : 37 of 52
Issued date : September 27, 2016
FCC ID : VPYLB1JP

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11212787H
Date April 1, 2016
Temperature / Humidity 24 deg. C / 40 % RH
Engineer Takumi Shimada
(Above 1GHz)

Mode Tx 11g 2462 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11212787H-A-R1 Test report No. Page : 38 of 52

Issued date : September 27, 2016

: VPYLB1JP FCC ID

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11212787H Date April 1, 2016 Temperature / Humidity $2\bar{4}$ deg. C / 40 % RH Engineer Takumi Shimada (Above 1GHz)

Mode Tx 11n-20 2412 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2390.000	PK	64.7	26.9	6.2	32.7	-	65.1	73.9	8.8	
Hori	2390.000	AV	40.1	26.9	6.2	32.7	4.9	45.4	53.9	8.5	*1),*2)
Vert	2390.000	PK	66.2	26.9	6.2	32.7	-	66.6	73.9	7.3	
Vert	2390.000	AV	42.2	26.9	6.2	32.7	4.9	47.5	53.9	6.4	*1),*2)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). Distance factor: $1~GHz - 10~GHz \qquad 20log~(4.5~m/3.0~m) = 3.5~dB$ 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

20dBc Data Sheet

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2412.000	PK	93.4	26.9	6.2	32.7	93.8	-	-	Carrier
Hori	2400.000	PK	63.3	26.9	6.2	32.7	63.7	73.8	10.1	
Vert	2412.000	PK	94.0	26.9	6.2	32.7	94.4	-	-	Carrier
Vert	2400.000	PK	62.5	26.9	6.2	32.7	62.9	74.4	11.5	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} Not Out of Band emission(Leakage Power)

^{*2)} Integration Method

Test report No. : 11212787H-A-R1
Page : 39 of 52
Issued date : September 27, 2016
FCC ID : VPYLB1JP

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11212787H
Date April 1, 2016
Temperature / Humidity 24 deg. C / 40 % RH
Engineer Takumi Shimada
(Above 1GHz)

Mode Tx 11n-20 2412 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11212787H-A-R1 Test report No. Page : 40 of 52

Issued date : September 27, 2016

: VPYLB1JP FCC ID

Radiated Spurious Emission

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11212787H April 1, 2016 Date Temperature / Humidity $2\bar{4}$ deg. C / 40 % RH Engineer Takumi Shimada (Above 1GHz)

Mode Tx 11n-20 2462 MHz

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2483.500	PK	66.6	26.9	6.2	32.6	•	67.1	73.9	6.8	
Hori	2483.500	AV	43.7	26.9	6.2	32.6	4.9	49.1	53.9	4.8	*1),*2)
Vert	2483.500	PK	67.9	26.9	6.2	32.6	-	68.4	73.9	5.5	
Vert	2483.500	AV	45.0	26.9	6.2	32.6	4.9	50.4	53.9	3.5	*1),*2)

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). Distance factor: $1~GHz-10~GHz \qquad 20log~(4.5~m/3.0~m)=3.5~dB$

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} Not Out of Band emission(Leakage Power)

^{*2)} Integration Method

Test report No. : 11212787H-A-R1
Page : 41 of 52
Issued date : September 27, 2016
FCC ID : VPYLB1JP

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Report No. 11212787H
Date April 1, 2016
Temperature / Humidity 24 deg. C / 40 % RH
Engineer Takumi Shimada
(Above 1GHz)

Mode Tx 11n-20 2462 MHz

^{*} Final result of restricted band edge was shown in tabular data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11212787H-A-R1 Test report No. Page : 42 of 52 Issued date : September 27, 2016 : VPYLB1JP FCC ID

Radiated Spurious Emission (Plot data, Worst case)

Test place Ise EMC Lab. Report No. 11212787H

Semi Anechoic Chamber No.2 No.3

March 30, 2016 April 1, 2016 24 deg. C / 40 % RH Temperature / Humidity 20 deg. C / 34 % RH Takafumi Noguchi Takumi Shimada Engineer (Below 1 GHz) (Above 1GHz)

Mode Tx 11g 2442 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1
Page : 43 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

Power Density

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11212787H

Date March 25, 2016

Temperature / Humidity 23 deg. C / 37 % RH

Engineer Kazuya Yoshioka

Mode T:

11b

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2412.00	-20.44	1.00	10.03	-9.41	8.00	17.41
2442.00	-18.90	1.01	10.03	-7.87	8.00	15.87
2462.00	-21.13	1.01	10.03	-10.09	8.00	18.09

11g

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2412.00	-23.12	1.00	10.03	-12.09	8.00	20.09
2442.00	-21.01	1.01	10.03	-9.98	8.00	17.98
2462.00	-23.34	1.01	10.03	-12.30	8.00	20.30

11n-20

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2412.00	-27.00	1.00	10.03	-15.97	8.00	23.97
2442.00	-25.08	1.01	10.03	-14.05	8.00	22.05
2462.00	-26.78	1.01	10.03	-15.74	8.00	23.74

Sample Calculation:

Result = Reading + Cable Loss + Attenuator

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1
Page : 44 of 52
Issued date : September 27, 2016
FCC ID : VPYLB1JP

Power Density

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1
Page : 45 of 52
Issued date : September 27, 2016
FCC ID : VPYLB1JP

Power Density

11n-20

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1 Page : 46 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

99% Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11212787H

Date March 25, 2016

Temperature / Humidity Engineer 23 deg. C / 37 % RH

Kazuya Yoshioka

Mode T:

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11212787H-A-R1 Test report No. Page : 47 of 52 Issued date : September 27, 2016 FCC ID : VPYLB1JP

99% Occupied Bandwidth

Test place Ise EMC Lab. No.6 Measurement Room

Report No. 11212787H Date March 25, 2016 Temperature / Humidity 23 deg. C / 37 % RH Engineer Kazuya Yoshioka

Mode Tx

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 11212787H-A-R1 Test report No. Page : 48 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

APPENDIX 2: Test instruments

Cest equipme Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MSA-16	Spectrum Analyzer	Agilent	E4440A	MY46186390	AT	2016/02/08 * 12
MPM-08	Power Meter	Anritsu	ML2495A	6K00003338	AT	2015/10/08 * 12
MPSE-11	Power sensor	Anritsu	MA2411B	011737	AT	2015/10/08 * 12
MAT-22	Attenuator(10dB)	Orient Microwave	BX10-0476-00	011/3/	AT	2016/03/18 * 12
WIA 1-22	1-18GHz	Official Microwave	BX10-0470-00	-	AI	2010/03/18 12
MCC-174	Microwave Cable	Junkosha	MWX221	1409S497	AT	2016/03/11 * 12
MCC-38	Coaxial Cable	UL Japan	=	-	AT	2015/12/07 * 12
MAT-10	Attenuator(10dB)	Weinschel Corp	2	BL1173	AT	2015/11/10 * 12
MOS-14	Thermo-Hygrometer	Custom	CTH-201	1401	AT	2016/01/21 * 12
MMM-12	DIGITAL HITESTER	Hioki	3805	060500120	AT	2016/02/23 * 12
MAEC-02	Semi Anechoic	TDK	Semi Anechoic	DA-06902	CE/RE	2015/07/01 * 12
	Chamber(NSA)		Chamber 3m			
MOS-22	Thermo-Hygrometer	Custom	CTH-201	0003	CE/RE	2016/01/21 * 12
MJM-14	Measure	KOMELON	KMC-36	-	CE/RE	=
COTS-MEMI	EMI measurement	TSJ	TEPTO-DV	-	CE/RE	=
	program					
MSA-10	Spectrum Analyzer	Agilent	E4448A	MY46180655	CE	2016/02/24 * 12
MTR-03	Test Receiver	Rohde & Schwarz	ESCI	100300	CE/RE	2015/10/11 * 12
MLS-23	LISN(AMN)	Schwarzbeck	NSLK8127	8127-729	CE(EUT)	2015/07/10 * 12
MLS-24	LISN(AMN)	Schwarzbeck	NSLK8127	8127-730	CE(AE)	2015/07/10 * 12
MTA-31	Terminator	TME	CT-01	-	CE	2016/01/12 * 12
MCC-13	Coaxial Cable	Fujikura	3D-2W(12m)/5D-2	-	CE	2016/02/08 * 12
			W(5m)/5D-2W(0.8 m)/5D-2W(1m)			
MAT-65	Attenuator(13dB)	JFW Industries, Inc.	50FP-013H2 N	-	CE	2016/01/14 * 12
MMM-01	Digital Tester	Fluke	FLUKE 26-3	78030611	CE/RE	2015/08/19 * 12
MAEC-03	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2015/10/01 * 12
MOS-13	Thermo-Hygrometer	Custom	CTH-180	1301	RE	2016/01/21 * 12
MJM-16	Measure	KOMELON	KMC-36	-	RE	=
MSA-03	Spectrum Analyzer	Agilent	E4448A	MY44020357	RE	2015/05/18 * 12
MHA-20	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	258	RE	2015/05/18 * 12
MHF-25	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	RE	2015/09/16 * 12
MCC-167	Microwave Cable	Junkosha	MWX221	1404S374(1m) / 1405S074(5m)	RE	2015/05/21 * 12
MPA-11	MicroWave System Amplifier	Agilent	83017A	MY39500779	RE	2016/03/24 * 12
MMM-08	DIGITAL HITESTER	Hioki	3805	051201197	RE	2016/01/13 * 12
MBA-02	Biconical Antenna	Schwarzbeck	BBA9106	VHA91032008	RE	2015/10/11 * 12
MLA-05	Logperiodic Antenna	Rohde & Schwarz	ESLP9145	2	RE	Pre Check
MCC-12	Coaxial Cable	Fujikura/Agilent	-	_	RE	2016/02/08 * 12
MAT-07	Attenuator(6dB)	Weinschel Corp	2	BK7970	RE	2015/11/10 * 12
MPA-09	Pre Amplifier	Agilent	8447D	2944A10845	RE	2015/09/04 * 12
MAEC-01	Semi Anechoic	TDK	Semi Anechoic	DA-06881	RE	2015/09/04 * 12
WIALC-UI	Chamber(NSA)		Chamber 10m	DV-00001	KE	2013/03/19 12
MOS-27	Thermo-Hygrometer	CUSTOM	CTH-201	A08Q26	RE	2016/01/21 * 12
MJM-25	Measure	KOMELON	KMC-36	-	RE	-
MTR-09	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	RE	2015/06/08 * 12
MLPA-01	Loop Antenna	Rohde & Schwarz	HFH2-Z2	100017	RE	2015/10/24 * 12
MCC-143	Coaxial Cable	UL Japan	L	-	RE	2015/06/24 * 12

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 11212787H-A-R1

Page : 49 of 52

Issued date : September 27, 2016 FCC ID : VPYLB1JP

Test equipment (2/2)

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MCC-03	Coaxial Cable	Fujikura/Suhner/TSJ	5D-2W(20m)/3D-2 W(7.5m)/RG400u(1. 5m)/RFM-E421(Switcher)		RE	2015/09/29 * 12
MPA-13	Pre Amplifier	SONOMA INSTRUMENT	310	260834	RE	2016/03/24 * 12
MAT-08	Attenuator(6dB)	Weinschel Corp	2	BK7971	RE	2015/11/10 * 12
MMM-03	Digital Tester	Fluke	FLUKE 26-3	78030621	RE	2015/08/19 * 12
MSA-15	Spectrum Analyzer	Agilent	E4440A	MY46187105	RE	2015/11/11 * 12
MHA-16	Horn Antenna 15-40GHz	Schwarzbeck	BBHA9170	BBHA9170306	RE	2015/05/19 * 12
MHF-06	High Pass Filter 3.5-24GHz	TOKIMEC	TF323DCA	601	RE	2015/05/15 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item: CE: Conducted Emission test

RE: Radiated Emission test

AT: Antenna Terminal Conducted test

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN