Задача «27. Нейронный XOR»

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Сдайте решение этой задачи в еджадж. Номер задачи: 27.

У Миши есть нейрон, который представляет из себя функцию. Она принимает на вход n аргументов $x_1, x_2, ..., x_n$, каждый из которых принимает значение 0 или 1. Результат вычисления этой функции задаётся, как $w_0 \oplus (w_1 \cdot x_1) \oplus (w_2 \cdot x_2) \oplus ... \oplus (w_n \cdot x_n)$, где w_i выставляются Мишей лично и могут быть целыми неотрицательными числами до 10^9 .

Но, как оказалось, Миша является счастливым обладателем ещё одной функции также от n аргументов, они аналогично нейрону могут быть только 0 или 1. Это верно и для значения самой функции, оно либо 0, либо 1. Функция задаётся в формате таблицы истинности, где сначала даётся двоичная строка s, где i-й символ равен значению x_i , то есть если строка $s = s_1 s_2 = 01$, то $x_1 = 0$, $x_2 = 1$, а потом значение функции для данного набора аргументов. Строчки подаются в отсортированном порядке. Так например функция побитового M для M и M будет выглядеть как:

```
00 0 так как x_1=0, x_2=0, значит 0 \wedge 0=0 01 0 так как x_1=0, x_2=1, значит 0 \wedge 1=0 10 0 так как x_1=1, x_2=0, значит 1 \wedge 0=0 11 1 так как x_1=1, x_2=1, значит 1 \wedge 1=1
```

Вы очень завидуете Мише, потому что у него есть аж две функции, а у вас ни одной. Поэтому одной тёмной ночью, пока Миша спит, вы решаете подкрасться к его нейрону и выставить значения w_i так, чтобы его первая функция стала выдавать такие же значение, как и у второй, при одинаковых аргументах.

Формат входного файла

В первой строке входных данных находится изначальное число аргументов $n \ (1 \le n \le 16)$.

Следующие 2^n строк описывают строчки таблицы истинности в отсортированном порядке. В каждой из этих строк сначала идут значения n аргументов без пробелов (каждый аргумент 0 или 1), а затем значение функции для данных аргументов, также 0 или 1.

Формат выходного файла

В единственной строке выведите по порядку через пробел, начиная с w_0 , заканчивая w_n , такие выбранные вами значения w_i ($0 \le w_i \le 10^9$), что обе функции при одних и тех же значениях аргументов $x_1, x_2, ..., x_n$ дают одинаковый результат. Если ответов несколько, то выведите любой. Если такого набора из n+1 числа не существует, то выведите просто -1.

ЛКШ 2023.Зима. Олимпиада Лисий Нос, Санкт-Петербург, 31 декабря 2023 г.

стандартный ввод	стандартный вывод
2	0 1 1
00 0	
01 1	
10 1	
11 0	
2	-1
00 0	
01 0	
10 0	
11 1	
3	1 1 1 1
000 1	
001 0	
010 0	
011 1	
100 0	
101 1	
110 1	
111 0	

Примечание

В первом тестовом случае $w_0=0,\,w_1=1,\,w_2=1.$ Проверим, что такой набор подходит: $w_0\oplus w_1\cdot x_1\oplus w_2\cdot x_2=0\oplus 1\cdot x_1\oplus 1\cdot x_2=1\cdot x_1\oplus 1\cdot x_2=x_1\oplus x_2,$ то есть эта функция обычный ХОR. Теперь подставим числа вместо аргументов $0\oplus 0=0,0\oplus 1=1,1\oplus 0=1,1\oplus 1=1.$ Получили, что при данном наборе у нейрона те же значения. Значит эти w_i нам подходят.