Traceroute

Software Documentation

Author: matiwa

Table of contents

Table of contents	2
Introduction	3
Describing of the application's operation	3
What is needed for use?	9
Algorithm used	9
Interface description	10
Source code description	11
List of drawings	12
List of listings.	13
Bibliography	13

Introduction

This software documentation includes: description of the application's operation, what is needed for use, algorithms used, interface description and source code description. This application is used to study the route of packets in an IP network.

Describing of the application's operation

Drawing 1: The beginning of the application's operation [own study]

Drawing 2: The effect after entering the IPv4 address of the localhost [own study]

Drawing 3: The effect after entering the website [own study]

Drawing 4: Effect after entering a wrong address [own study]

Drawing 5: Effect after entering random characters [own study]

Drawing 6: Effect after typing nothing [own study]

After starting the program, the user enters the IP address or website into the text field. By clicking the Send button, the program procedure for examining the packet route in the IP network is started, the operation of which is based on the UDP and ICMP protocols. If there is a network connection (when connecting to a host other than localhost) and the IP Address or WWW are correct, feedback is displayed. Otherwise, "Error" will be displayed in case of invalid address, random characters (not IP and WWW address) or no connection. It is possible

that the user is not staring at anything and typing nothing, then the "Error" message will also appear. There are certainly bugs that the developer did not discover while working on the application.

What is needed for use?

The application does not require installation. It only needs the Windows operating system.

Algorithm used

The basic form of the algorithm can be deduced from the previous section. It only needs the Windows operating system. In summary, the application is the command line equivalent of Tracert on Windows systems, and Traceroute on Unix systems.

The traceroute operation relies on the UDP and ICMP communication protocols.

- The packet is sent first with the TTL (Time To Live) field set to 1. This value is decreased as it traverses subsequent routers in the route. If the TTL field reaches the value 0, the packet is dropped by the router which then sends back an ICMP "Time Exceeded" message. This is how the source computer obtains the IP address of the first router in the route.
- In the next packet sent from the source computer, the TTL field is set to 2. The first router will reduce this value to 1 and pass it to the second router in the route. The second router will behave like the first one before, ie it will reduce TTL to 0 and discard the packet sending "Time Exceeded" message to the source computer.
- Information about the next routers on the route is obtained in the same way as in the above two points. You just incrementally increment the TTL field value by 1 in the outgoing packets.
- If the packet eventually reaches the target host, an ICMP "Port Unreachable" message will most likely be returned. This is because Unix traceroute implementations are deliberately sending UDP packets with a port number greater than 30000. Typically, no services are running on a port with this high number, so no process on the target computer will try to handle the incoming packet. In this case, the route study is terminated.

Similar tools as mtr and the tracert program in the Microsoft Windows family are implemented slightly differently. The main principle of operation, consisting in gradually increasing the TTL field in the sent packets, remains the same. The difference is that the packets sent are not UDP datagrams, but ICMP "Echo Request" messages. If such a message reaches its destination, an "Echo Reply" will always be returned. This saves you from having to rely on the assumption of high port numbers for UDP datagrams, and you can bypass some firewalls. [1]

Interface description

Drawing 7: Graphical interface [own study]

The interface is typical for a Windows Presentation Foundation. There are essential components: listbox, textbox and two buttons.

Source code description

The project was made in the C# programming language, in the Visual Studio Community 2017 programming environment. All work was done on the Windows 10 operating system. The application's source code looks like this.

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
using System.Net.NetworkInformation;
using System.Threading.Tasks;
using System.Diagnostics;
namespace Traceroute
    public partial class MainWindow : Window
        public MainWindow()
            InitializeComponent();
        private void SendButton_Click(object sender, RoutedEventArgs e)
            outlist.Items.Clear();
            string hostname = addresslist.Text;
            int timeout = 1000;
            int max_ttl = 30;
            int current ttl = 0;
            const int bufferSize = 32;
            Stopwatch s1 = new Stopwatch();
            Stopwatch s2 = new Stopwatch();
            byte[] buffer = new byte[bufferSize];
            new Random().NextBytes(buffer);
            Ping pinger = new Ping();
            Task.Factory.StartNew(() =>
                WriteListBox($"Started ICMP Trace route on {hostname}");
                for(int ttl = 1; ttl <= max_ttl; ttl++)</pre>
                {
                    current_ttl++;
                    s1.Start();
                    s2.Start();
                    PingOptions options = new PingOptions(ttl, true);
                    PingReply reply = null;
                    try
                    {
                        reply = pinger.Send(hostname, timeout, buffer, options);
                    }
                    catch
                    {
                        WriteListBox("Error");
```

```
break;
                    if (reply != null)
                        if (reply.Status == IPStatus.TtlExpired)
                            WriteListBox($"[{ttl}] - Route: {reply.Address} - Time:
{s1.ElapsedMilliseconds} ms -
                                $"Total Time: {s2.ElapsedMilliseconds} ms");
                            continue;
                        if (reply.Status == IPStatus.TimedOut)
                            WriteListBox($"Timeout on {hostname}. Continuing.");
                            continue;
                        if (reply.Status == IPStatus.Success)
                            WriteListBox($"Successful Traceroute to {hostname} in
{s1.ElapsedMilliseconds} ms - " +
                                $"Total Time: {s2.ElapsedMilliseconds} ms");
                            s1.Stop();
                            s2.Stop();
                        }
                    }
                }
            });
        }
        private void WriteListBox(string text)
            Dispatcher.BeginInvoke(new Action(() =>
                outlist.Items.Add(text);
            }));
        }
        private void BExit Click(object sender, RoutedEventArgs e)
            Environment.Exit(0);
    }
}
                           Listing 1: Source code [own study]
```

List of drawings

Drawing 1: The beginning of the application's operation [own study]	.3
Drawing 2: The effect after entering the IPv4 address of the localhost [own study]	4
Drawing 3: The effect after entering the website [own study]	5
Drawing 4: Effect after entering a wrong address [own study]	.6
Drawing 5: Effect after entering random characters [own study]	7
Drawing 6: Effect after typing nothing [own study]	.8
Drawing 7: Graphical interface [own study]	11

List of listings
Listing 1: Source code [own study]
Bibliography
[1] https://pl.wikipedia.org/wiki/Traceroute