1 Aspects of Brownian motion

- (a) Model or many processes fluctuating continuously (e.g. stock markets)
- (b) Limit of RVs with small step size
- (c) Gaussian process (multivariate normal over finite subsets)
- (d) Diffusion: continuous-path Markov processes
- (e) Martingale properties

Definition 1.1. *Brownian motion* $(B(t), 0 \le t \le \infty)$ has the proeprties

- (a) For s < t, $B(t) B(s) \stackrel{d}{=} N(0, t s)$
- (b) For $0 \le t_1 < t_2 < \cdots < t_n$, the increments $(B(t_{i+1}) B(t_i), 1 \le i \le n-1)$ are independent
- (c) Sample paths $t \mapsto B(t)$ are continuous

1.1 Continuous-time martingales

Let $(\mathcal{F}_t, 0 \le t < \infty)$ be a filtration. (M_t, \mathcal{F}_t) is a martingale (MG) if

- $\mathbb{E}|M_t| < \infty$, $\forall t$
- M_t is adapted to \mathcal{F}_t
- For st, $\mathbb{E}[M_t \mid \mathcal{F}_s] = M_s$ a.s.

All our MGs will have continuous paths — theory requires only right-continuity.

Definition 1.2. $T: \Omega \to [0, \infty]$ is a *stopping time* if $\{T \le t\} \in \mathcal{F}_t$, all $0 \le t < \infty$

Theorem 1.3. *If* (M_t) *is a MG, T a stopping time,* $P(T \le t_0) = 1$ *, then* $\mathbb{E}M_T = \mathbb{E}M_0$.

Proof. Fix m, look at times that are multiples of 2^{-m} .

Define $T_m = \inf\{2^{-m}i : 2^{-m}i > T\}$. This T_m is a stopping time for $(M_{2^{-m}i}, \mathcal{F}_{2^{-m}i}, i \geq 0)$ and $T_m \leq t_0 + 1$. Apply discrete-time OST $\implies \mathbb{E}M_{T_m} = \mathbb{E}M_0$ and $M_{T_m} = \mathbb{E}[M_{t_0+1} \mid \mathcal{F}_{T_m}]$ (i.e. $(M_{T_m}, m \geq 1)$ is UI).

As
$$m \to \infty$$
, $T_m \downarrow T$, so right-continuity $\Longrightarrow M_{T_m} \stackrel{\text{a.s.}}{\to} M_T$.
Since $(M_{T_m}, m \ge 1)$ is UI, $\mathbb{E} M_{T_m} \to \mathbb{E} M_T$.

With BM we associate the natural filtration $\mathcal{F}_t = \sigma(B_s, 0 \le s \le t)$ which makes all the B_s measurable.

Proposition 1.4. The following are MGs

(a) B_t

(b)
$$B_t^2 - t$$

(c)
$$\exp(\theta B_t - \theta^2 t/2)$$

(*d*)
$$B_t^3 - 3tB_t$$

(e)
$$B_t^4 - 6tB_t^2 + 3t^2$$

Proof. Fix s < t.

$$B_t = B_s + (B_t - B_s).$$

$$\mathbb{E}[B_t \mid \mathcal{F}_s] = B_s + \mathbb{E}[B_t - B_s \mid \mathcal{F}_s].$$

$$B_t - B_s$$
 is independent of $(B_{s_1}, B_{s_2}, \dots, B_{s_n})$ for all $0 \le s_1 < s_2 < \dots < s_n \le s$.

By measure theory on independence, independent increments on finite subsets \Longrightarrow $B_t - B_s$ independent of $\mathcal{F}_s \stackrel{\text{def}}{=} \sigma(B_u, 0 \le u \le s)$.

Hence

$$\mathbb{E}[B_t \mid \mathcal{F}_s] = B_s + \mathbb{E}[B_t - B_s \mid \mathcal{F}_s] \tag{1.1}$$

$$= B_s + \mathbb{E}[B_t - B_s] \tag{1.2}$$

$$= B_s + 0 = B_s \tag{1.3}$$

Write
$$Y_t = B_t^2 - t = (B_t + (B_t - B_s))^2 - t$$
.
 $Y_t = Y_s + 2B_s(B_t - B_s) + (B_t - B_s)^2 - (t - s)$.
 $\mathbb{E}[Y_t \mid \mathcal{F}_s] = Y_s + 2B_s \underbrace{\mathbb{E}[B_t - B_s \mid \mathcal{F}_s]}_{=0} + \underbrace{\mathbb{E}[(B_t - B_s)^2 \mid \mathcal{F}_s)}_{=\mathbb{E}(B_t - B_s)^2} - (t - s) = Y_s$.

Remark 1.5. If $W \sim N(0, \sigma^2)$, then $\mathbb{E} \exp(\theta W) = \exp(\theta^2 \sigma^2/2)$.

Write

$$Z_t = \exp(\theta B_t - \theta^2 t/2) \tag{1.4}$$

$$= Z_s \exp(\theta(B_t - B_s)) \exp\left(-\frac{\theta^2}{2}(t - s)\right)$$
(1.5)

$$\mathbb{E}[Z_t \mid \mathcal{F}_s] = Z_s \exp\left(-\frac{\theta^2}{2}(t-s)\right) \underbrace{\mathbb{E}\exp(\theta(B_t - B_s))}_{=\exp(\theta^2(t-s)/2)} = Z_s \tag{1.6}$$

For the rest, informally: $(Z_t^{\theta}, 0 \le t < \infty)$ is a MG and since differentiation is linear

$$\left(\frac{d^k}{d\theta^k} Z_t^{\theta}, 0 \le t < \infty\right)$$
(1.7)

should be a MG.

If we differentiate k times, set $\theta = 0$, we get a sequence of polynomials in B_t .

Typical stopping time is $T_b = \inf\{t : B(t) = b\} = \inf\{t : B(t) \ge b > 0\}$.

Also, for b > 0, t > 0, $\{T_b \le t\} = \{\sup_{s \le t} B(t) \ge b\}$. Even though sup is an uncountable operation, this is measurable because

$$\sup_{s \le t} B(t) = \sup_{\substack{u \le t \\ u \in \mathbb{Q}}} B(u), \ \mathcal{F}_n\text{-meas.}$$
 (1.8)

Lemma 1.6. Fix -a < 0 < b. Consider $T = \min\{T_{-a}, T_b\}$ and $\mathbb{E}T = ab$. Then $P(B_T = b) = \frac{a}{a+b} = P(T_b < T_{-a}) = P(T_b < T_{-a})$ and $P(B_t = -a) = \frac{b}{a+b}$.

Proof. Apply OST to 0 and $T \wedge t$.

$$0 = \mathbb{E}B_0 = \mathbb{E}B_{T \wedge t} \tag{1.9}$$

As $t \to \infty$, $B_{T \wedge t} \stackrel{\text{a.s.}}{\to} B_T$ and $|B_{T \wedge t}| \le \max(a, b) \implies 0 = \mathbb{E}B_T$.

 B_T takes values (-a, b) only, so it must have the desired distribution.

Apply OST to $B_t^2 - t \implies \mathbb{E}B_{T \wedge t}^2 = \mathbb{E}[T \wedge t]$. Let $t \to \infty$, so $\mathbb{E}B_T^2 = \mathbb{E}T = b^2 \frac{a}{a+b} + (-a)^2 \frac{b}{a+b} = ab$.

Note that
$$P(T_b < \infty) \ge P(T_b < T_{-a}) \to 1$$
 as $a \to \infty$, so $T_b < \infty$ a.s.

Fix c > 0 and $-\infty < d < \infty$. Consider $T = \inf\{t : B_t = c + dt\} \le \infty$. TODO: Fig 27.1

Lemma 1.7. $\mathbb{E} \exp(-\lambda T) = \exp(-c(d + \sqrt{d^2 + 2\lambda}))$ for $0 \le \lambda < \infty$, the Laplace transform of T.

Proof. Consider $\theta > \max(0, 2d)$. Apply OST to $\exp(\cdot)$ and $T \wedge t$.

$$1 = \mathbb{E} \exp \left(\theta B_{T \wedge t} - \frac{\theta^2}{2} (T \wedge t)\right).$$

Case $d \leq 0$, $\theta > 0$. Here, $\theta B_{T \wedge t} - \frac{\theta^2}{2} (T \wedge t) \leq \theta c$, $T \leq T_c < \infty$.

Case d > 0, $\theta > 2d$. Then $\theta B_{T \wedge t} - \frac{\theta^2}{2}(T \wedge t) \leq \sup \left(\theta(c + ds) - \frac{\theta^2}{2}s\right) = \theta c$ and $\to -\infty$ as $t \to \infty$ on $\{T = \infty\}$.

Let $t \to \infty$. $1 = \mathbb{E}[\exp\left(\theta B_T - \frac{\theta^2}{2}T\right)]1_{T<\infty}$. But $B_t = c + dT$ on $\{T = \infty\}$.

$$1 = \mathbb{E} \exp\left(\theta c + \left(\theta d - \frac{\theta^2}{2}\right) T\right) 1_{T < \infty} \tag{1.10}$$

Given $\lambda > 0$, define $\theta = \theta(x)$ as solution of $\theta d - \theta^2/2 = -\lambda$, so

$$\theta(\lambda) = d + \sqrt{d^2 + 2\lambda} \stackrel{?}{>} \max(0, 2d) \tag{1.11}$$

$$1 = \mathbb{E} \exp\left(c\theta(\lambda) - \lambda T\right) \tag{1.12}$$

$$\mathbb{E}\exp(-\lambda T) = \exp(-c\theta(\lambda)) \tag{1.13}$$