(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 26 July 2001 (26.07.2001)

PCT

(10) International Publication Number WO 01/53455 A2

(51) International Patent Classification7:

C12N

(21) International Application Number: PCT/US00/35017

(22) International Filing Date:

22 December 2000 (22.12.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

09/471,275 23 December 1999 (23.12.1999) US 09/488,725 21 January 2000 (21.01.2000) US 09/552,317 25 April 2000 (25.04.2000) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US 09/488,725 (CIP) Filed on 21 January 2000 (21.01.2000) US 09/596,196 (CIP) 17 June 2000 (17.06.2000) Filed on US 09/653,274 (CIP) Filed on 31 August 2000 (31.08.2000)

(71) Applicant (for all designated States except US): HYSEQ, INC. [US/US]; 670 Almanor Avenue, Sunnyvalle, CA 94086 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TANG, Y., Tom

[US/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). LIU, Chenghua [CN/US]; 1125 Ranchero Way #14, San Jose, CA 95117 (US). DRMANAC, Radoje, T. [YU/US]; 850 East Greenwich Place, Palo Alto, CA 94303 (US).

(74) Agent: ELRIFI, Ivor, R.; Mintz, Levin, Cohn, Ferris, Glovsky, and Popeo, P.C., One Financial Center, Boston, MA 02111 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

(57) Abstract: The present invention provides novel nucleic acids, novel polypeptide sequences encoded by these nucleic acids and uses thereof.

NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

1. TECHNICAL FIELD

The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with uses for these polynucleotides and proteins, for example in therapeutic, diagnostic and research methods.

2. BACKGROUND

5

10

15

20

25

30

Technology aimed at the discovery of protein factors (including e.g., cytokines, such as lymphokines, interferons, CSFs, chemokines, and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides "directly" in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of expression cloning). More recent "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization-based cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have biological activity, for example, by virtue of their secreted nature in the case of leader sequence cloning, by virtue of their cell or tissue source in the case of PCR-based techniques, or by virtue of structural similarity to other genes of known biological activity.

Identified polynucleotide and polypeptide sequences have numerous applications in, for example, diagnostics, forensics, gene mapping; identification of mutations responsible for genetic disorders or other traits, to assess biodiversity, and to produce many other types of data and products dependent on DNA and amino acid sequences.

3. SUMMARY OF THE INVENTION

The compositions of the present invention include novel isolated polypeptides, novel isolated polynucleotides encoding such polypeptides, including recombinant DNA

molecules, cloned genes or degenerate variants thereof, especially naturally occurring variants such as allelic variants, antisense polynucleotide molecules, and antibodies that specifically recognize one or more epitopes present on such polypeptides, as well as hybridomas producing such antibodies.

5

10

15

20

25

30

The compositions of the present invention additionally include vectors, including expression vectors, containing the polynucleotides of the invention, cells genetically engineered to contain such polynucleotides and cells genetically engineered to express such polynucleotides.

The present invention relates to a collection or library of at least one novel nucleic acid sequence assembled from expressed sequence tags (ESTs) isolated mainly by sequencing by hybridization (SBH), and in some cases, sequences obtained from one or more public databases. The invention relates also to the proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins. These nucleic acid sequences are designated as SEQ ID NO: 1-739. The polypeptides sequences are designated SEQ ID NO: 740-1478. The nucleic acids and polypeptides are provided in the Sequence Listing. In the nucleic acids provided in the Sequence Listing, A is adenosine; C is cytosine; G is guanine; T is thymine; and N is any of the four bases. In the amino acids provided in the Sequence Listing, * corresponds to the stop codon.

The nucleic acid sequences of the present invention also include, nucleic acid sequences that hybridize to the complement of SEQ ID NO:1-739 under stringent hybridization conditions; nucleic acid sequences which are allelic variants or species homologues of any of the nucleic acid sequences recited above, or nucleic acid sequences that encode a peptide comprising a specific domain or truncation of the peptides encoded by SEQ ID NO:1-739. A polynucleotide comprising a nucleotide sequence having at least 90% identity to an identifying sequence of SEQ ID NO:1-739 or a degenerate variant or fragment thereof. The identifying sequence can be 100 base pairs in length.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO:1-739. The sequence information can be a segment of any one of SEQ ID NO:1-739 that uniquely identifies or represents the sequence information of SEQ ID NO:1-739.

A collection as used in this application can be a collection of only one polynucleotide. The collection of sequence information or identifying information of each sequence can be provided on a nucleic acid array. In one embodiment, segments of sequence information is provided on a nucleic acid array to detect the polynucleotide that contains the segment. The array can be designed to detect full-match or mismatch to the polynucleotide that contains the segment. The collection can also be provided in a computer-readable format.

5

10

15

20

25

30

This invention also includes the reverse or direct complement of any of the nucleic acid sequences recited above; cloning or expression vectors containing the nucleic acid sequences; and host cells or organisms transformed with these expression vectors. Nucleic acid sequences (or their reverse or direct complements) according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology, such as use as hybridization probes, use as primers for PCR, use in an array, use in computer-readable media, use in sequencing full-length genes, use for chromosome and gene mapping, use in the recombinant production of protein, and use in the generation of anti-sense DNA or RNA, their chemical analogs and the like.

In a preferred embodiment, the nucleic acid sequences of SEQ ID NO:1-739 or novel segments or parts of the nucleic acids of the invention are used as primers in expression assays that are well known in the art. In a particularly preferred embodiment, the nucleic acid sequences of SEQ ID NO:1-739 or novel segments or parts of the nucleic acids provided herein are used in diagnostics for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The isolated polynucleotides of the invention include, but are not limited to, a polynucleotide comprising any one of the nucleotide sequences set forth in SEQ ID NO:1-739; a polynucleotide comprising any of the full length protein coding sequences of SEQ ID NO:1-739; and a polynucleotide comprising any of the nucleotide sequences of the mature protein coding sequences of SEQ ID NO: 1-739. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent hybridization conditions to (a) the complement of any one of the nucleotide sequences set forth in SEQ ID NO:1-739; (b) a nucleotide sequence encoding any one of the

amino acid sequences set forth in the Sequence Listing; (c) a polynucleotide which is an allelic variant of any polynucleotides recited above; (d) a polynucleotide which encodes a species homolog (e.g. orthologs) of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of any of the polypeptides comprising an amino acid sequence set forth in the Sequence Listing.

5

10

15

20

25

30

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising any of the amino acid sequences set forth in the Sequence Listing; or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides with biological activity that are encoded by (a) any of the polynucleotides having a nucleotide sequence set forth in SEQ ID NO:1-739; or (b) polynucleotides that hybridize to the complement of the polynucleotides of (a) under stringent hybridization conditions. Biologically or immunologically active variants of any of the polypeptide sequences in the Sequence Listing, and "substantial equivalents" thereof (e.g., with at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% amino acid sequence identity) that preferably retain biological activity are also contemplated. The polypeptides of the invention may be wholly or partially chemically synthesized but are preferably produced by recombinant means using the genetically engineered cells (e.g. host cells) of the invention.

The invention also provides compositions comprising a polypeptide of the invention. Polypeptide compositions of the invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The invention also provides host cells transformed or transfected with a polynucleotide of the invention.

The invention also relates to methods for producing a polypeptide of the invention comprising growing a culture of the host cells of the invention in a suitable culture medium under conditions permitting expression of the desired polypeptide, and purifying the polypeptide from the culture or from the host cells. Preferred embodiments include those in which the protein produced by such process is a mature form of the protein.

Polynucleotides according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology. These techniques include use as hybridization probes, use as oligomers, or primers, for PCR, use for chromosome and gene mapping, use in the recombinant production of protein,

and use in generation of anti-sense DNA or RNA, their chemical analogs and the like. For example, when the expression of an mRNA is largely restricted to a particular cell or tissue type, polynucleotides of the invention can be used as hybridization probes to detect the presence of the particular cell or tissue mRNA in a sample using, e.g., in situ hybridization.

5

10

15

20

25

30

In other exemplary embodiments, the polynucleotides are used in diagnostics as expressed sequence tags for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The polypeptides according to the invention can be used in a variety of conventional procedures and methods that are currently applied to other proteins. For example, a polypeptide of the invention can be used to generate an antibody that specifically binds the polypeptide. Such antibodies, particularly monoclonal antibodies, are useful for detecting or quantitating the polypeptide in tissue. The polypeptides of the invention can also be used as molecular weight markers, and as a food supplement.

Methods are also provided for preventing, treating, or ameliorating a medical condition which comprises the step of administering to a mammalian subject a therapeutically effective amount of a composition comprising a polypeptide of the present invention and a pharmaceutically acceptable carrier.

In particular, the polypeptides and polynucleotides of the invention can be utilized, for example, in methods for the prevention and/or treatment of disorders involving aberrant protein expression or biological activity.

The present invention further relates to methods for detecting the presence of the polynucleotides or polypeptides of the invention in a sample. Such methods can, for example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited herein and for the identification of subjects exhibiting a predisposition to such conditions. The invention provides a method for detecting the polynucleotides of the invention in a sample, comprising contacting the sample with a compound that binds to and forms a complex with the polynucleotide of interest for a period sufficient to form the complex and under conditions sufficient to form a complex and detecting the complex such that if a complex is detected, the polynucleotide of interest is detected. The

invention also provides a method for detecting the polypeptides of the invention in a sample comprising contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex and detecting the formation of the complex such that if a complex is formed, the polypeptide is detected.

5

10

15

20

25

30

The invention also provides kits comprising polynucleotide probes and/or monoclonal antibodies, and optionally quantitative standards, for carrying out methods of the invention. Furthermore, the invention provides methods for evaluating the efficacy of drugs, and monitoring the progress of patients, involved in clinical trials for the treatment of disorders as recited above.

The invention also provides methods for the identification of compounds that modulate (i.e., increase or decrease) the expression or activity of the polynucleotides and/or polypeptides of the invention. Such methods can be utilized, for example, for the identification of compounds that can ameliorate symptoms of disorders as recited herein. Such methods can include, but are not limited to, assays for identifying compounds and other substances that interact with (e.g., bind to) the polypeptides of the invention. The invention provides a method for identifying a compound that binds to the polypeptides of the invention comprising contacting the compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and detecting the complex by detecting the reporter gene sequence expression such that if expression of the reporter gene is detected the compound the binds to a polypeptide of the invention is identified.

The methods of the invention also provides methods for treatment which involve the administration of the polynucleotides or polypeptides of the invention to individuals exhibiting symptoms or tendencies. In addition, the invention encompasses methods for treating diseases or disorders as recited herein comprising administering compounds and other substances that modulate the overall activity of the target gene products.

Compounds and other substances can effect such modulation either on the level of target gene/protein expression or target protein activity.

The polypeptides of the present invention and the polynucleotides encoding them are also useful for the same functions known to one of skill in the art as the polypeptides and polynucleotides to which they have homology (set forth in Table 2). If no homology is set forth for a sequence, then the polypeptides and polynucleotides of the present invention are useful for a variety of applications, as described herein, including use in arrays for detection.

4. DETAILED DESCRIPTION OF THE INVENTION

10

15

20

25

30

5

4.1 DEFINITIONS

It must be noted that as used herein and in the appended claims, the singular forms "a", "an" and "the" include plural references unless the context clearly dictates otherwise.

The term "active" refers to those forms of the polypeptide which retain the biologic and/or immunologic activities of any naturally occurring polypeptide. According to the invention, the terms "biologically active" or "biological activity" refer to a protein or peptide having structural, regulatory or biochemical functions of a naturally occurring molecule. Likewise "immunologically active" or "immunological activity" refers to the capability of the natural, recombinant or synthetic polypeptide to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The term "activated cells" as used in this application are those cells which are engaged in extracellular or intracellular membrane trafficking, including the export of secretory or enzymatic molecules as part of a normal or disease process.

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence 5'-AGT-3' binds to the complementary sequence 3'-TCA-5'. Complementarity between two single-stranded molecules may be "partial" such that only some of the nucleic acids bind or it may be "complete" such that total complementarity exists between the single stranded molecules. The degree of complementarity between the nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands.

The term "embryonic stem cells (ES)" refers to a cell that can give rise to many differentiated cell types in an embryo or an adult, including the germ cells. The term "germ line stem cells (GSCs)" refers to stem cells derived from primordial stem cells that provide a steady and continuous source of germ cells for the production of gametes. The term "primordial germ cells (PGCs)" refers to a small population of cells set aside from other cell lineages particularly from the yolk sac, mesenteries, or gonadal ridges during embryogenesis that have the potential to differentiate into germ cells and other cells. PGCs are the source from which GSCs and ES cells are derived. The PGCs, the GSCs and the ES cells are capable of self-renewal. Thus these cells not only populate the germ line and give rise to a plurality of terminally differentiated cells that comprise the adult specialized organs, but are able to regenerate themselves.

5

10

15

20

25

30

The term "expression modulating fragment," EMF, means a series of nucleotides which modulates the expression of an operably linked ORF or another EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are nucleic acid fragments which induce the expression of an operably linked ORF in response to a specific regulatory factor or physiological event.

The terms "nucleotide sequence" or "nucleic acid" or "polynucleotide" or "oligonculeotide" are used interchangeably and refer to a heteropolymer of nucleotides or the sequence of these nucleotides. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA) or to any DNA-like or RNA-like material. In the sequences herein A is adenine, C is cytosine, T is thymine, G is guanine and N is A, C, G or T (U). It is contemplated that where the polynucleotide is RNA, the T (thymine) in the sequences provided herein is substituted with U (uracil). Generally, nucleic acid segments provided by this invention may be assembled from fragments of the genome and short oligonucleotide linkers, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid

which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon, or a eukaryotic gene.

5

10

15

20

25

30

The terms "oligonucleotide fragment" or a "polynucleotide fragment", "portion," or "segment" or "probe" or "primer" are used interchangeably and refer to a sequence of nucleotide residues which are at least about 5 nucleotides, more preferably at least about 7 nucleotides, more preferably at least about 9 nucleotides, more preferably at least about 11 nucleotides and most preferably at least about 17 nucleotides. The fragment is preferably less than about 500 nucleotides, preferably less than about 200 nucleotides, more preferably less than about 50 nucleotides and most preferably less than 30 nucleotides. Preferably the probe is from about 6 nucleotides to about 200 nucleotides, preferably from about 15 to about 50 nucleotides, more preferably from about 17 to 30 nucleotides and most preferably from about 20 to 25 nucleotides. Preferably the fragments can be used in polymerase chain reaction (PCR), various hybridization procedures or microarray procedures to identify or amplify identical or related parts of mRNA or DNA molecules. A fragment or segment may uniquely identify each polynucleotide sequence of the present invention. Preferably the fragment comprises a sequence substantially similar to any one of SEQ ID NOs:1-20.

Probes may, for example, be used to determine whether specific mRNA molecules are present in a cell or tissue or to isolate similar nucleic acid sequences from chromosomal DNA as described by Walsh et al. (Walsh, P.S. et al., 1992, PCR Methods Appl 1:241-250). They may be labeled by nick translation, Klenow fill-in reaction, PCR, or other methods well known in the art. Probes of the present invention, their preparation and/or labeling are elaborated in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY; or Ausubel, F.M. et al., 1989, Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, both of which are incorporated herein by reference in their entirety.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO:1-739. The sequence information can be a segment of any one of SEQ ID NO:1-739 that uniquely identifies or represents the sequence information of that sequence of SEQ ID NO:1-739. One such segment can be a twenty-mer nucleic acid sequence because the probability that a twenty-

mer is fully matched in the human genome is 1 in 300. In the human genome, there are three billion base pairs in one set of chromosomes. Because 4²⁰ possible twenty-mers exist, there are 300 times more twenty-mers than there are base pairs in a set of human chromosomes. Using the same analysis, the probability for a seventeen-mer to be fully matched in the human genome is approximately 1 in 5. When these segments are used in arrays for expression studies, fifteen-mer segments can be used. The probability that the fifteen-mer is fully matched in the expressed sequences is also approximately one in five because expressed sequences comprise less than approximately 5% of the entire genome sequence.

5

10

15

20

25

30

Similarly, when using sequence information for detecting a single mismatch, a segment can be a twenty-five mer. The probability that the twenty-five mer would appear in a human genome with a single mismatch is calculated by multiplying the probability for a full match $(1 \div 4^{25})$ times the increased probability for mismatch at each nucleotide position (3×25) . The probability that an eighteen mer with a single mismatch can be detected in an array for expression studies is approximately one in five. The probability that a twenty-mer with a single mismatch can be detected in a human genome is approximately one in five.

The term "open reading frame," ORF, means a series of nucleotide triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

The terms "operably linked" or "operably associated" refer to functionally related nucleic acid sequences. For example, a promoter is operably associated or operably linked with a coding sequence if the promoter controls the transcription of the coding sequence. While operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements e.g. repressor genes are not contiguously linked to the coding sequence but still control transcription/translation of the coding sequence.

The term "pluripotent" refers to the capability of a cell to differentiate into a number of differentiated cell types that are present in an adult organism. A pluripotent cell is restricted in its differentiation capability in comparison to a totipotent cell.

The terms "polypeptide" or "peptide" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide or protein sequence or fragment thereof and to

naturally occurring or synthetic molecules. A polypeptide "fragment," "portion," or "segment" is a stretch of amino acid residues of at least about 5 amino acids, preferably at least about 7 amino acids, more preferably at least about 9 amino acids and most preferably at least about 17 or more amino acids. The peptide preferably is not greater than about 200 amino acids, more preferably less than 150 amino acids and most preferably less than 100 amino acids. Preferably the peptide is from about 5 to about 200 amino acids. To be active, any polypeptide must have sufficient length to display biological and/or immunological activity.

5

10

15

20

25

30

The term "naturally occurring polypeptide" refers to polypeptides produced by cells that have not been genetically engineered and specifically contemplates various polypeptides arising from post-translational modifications of the polypeptide including, but not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation.

The term "translated protein coding portion" means a sequence which encodes for the full length protein which may include any leader sequence or any processing sequence.

The term "mature protein coding sequence" means a sequence which encodes a peptide or protein without a signal or leader sequence. The "mature protein portion" means that portion of the protein which does not include a signal or leader sequence. The peptide may have been produced by processing in the cell which removes any leader/signal sequence. The mature protein portion may or may not include the initial methionine residue. The methionine residue may be removed from the protein during processing in the cell. The peptide may be produced synthetically or the protein may have been produced using a polynucleotide only encoding for the mature protein coding sequence.

The term "derivative" refers to polypeptides chemically modified by such techniques as ubiquitination, labeling (e.g., with radionuclides or various enzymes), covalent polymer attachment such as pegylation (derivatization with polyethylene glycol) and insertion or substitution by chemical synthesis of amino acids such as ornithine, which do not normally occur in human proteins.

The term "variant" (or "analog") refers to any polypeptide differing from naturally occurring polypeptides by amino acid insertions, deletions, and substitutions, created using, e.g., recombinant DNA techniques. Guidance in determining which amino acid residues may be replaced, added or deleted without abolishing activities of interest, may be found by comparing the sequence of the particular polypeptide with that of homologous peptides and minimizing the number of amino acid sequence changes made in regions of high homology (conserved regions) or by replacing amino acids with consensus sequence.

Alternatively, recombinant variants encoding these same or similar polypeptides may be synthesized or selected by making use of the "redundancy" in the genetic code. Various codon substitutions, such as the silent changes which produce various restriction sites, may be introduced to optimize cloning into a plasmid or viral vector or expression in a particular prokaryotic or eukaryotic system. Mutations in the polynucleotide sequence may be reflected in the polypeptide or domains of other peptides added to the polypeptide to modify the properties of any part of the polypeptide, to change characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate.

Preferably, amino acid "substitutions" are the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, *i.e.*, conservative amino acid replacements. "Conservative" amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophobicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. "Insertions" or "deletions" are preferably in the range of about 1 to 20 amino acids, more preferably 1 to 10 amino acids. The variation allowed may be experimentally determined by systematically making insertions, deletions, or substitutions of amino acids in a polypeptide molecule using recombinant DNA techniques and assaying the resulting recombinant variants for activity.

Alternatively, where alteration of function is desired, insertions, deletions or non-conservative alterations can be engineered to produce altered polypeptides. Such alterations can, for example, alter one or more of the biological functions or biochemical characteristics of the polypeptides of the invention. For example, such alterations may change polypeptide characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate. Further, such alterations can be selected so as to generate polypeptides that are better suited for expression, scale up and the like in the host cells chosen for expression. For example, cysteine residues can be deleted or substituted with another amino acid residue in order to eliminate disulfide bridges.

5

10

15

20

25

30

The terms "purified" or "substantially purified" as used herein denotes that the indicated nucleic acid or polypeptide is present in the substantial absence of other biological macromolecules, e.g., polynucleotides, proteins, and the like. In one embodiment, the polynucleotide or polypeptide is purified such that it constitutes at least 95% by weight, more preferably at least 99% by weight, of the indicated biological macromolecules present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 1000 daltons, can be present).

The term "isolated" as used herein refers to a nucleic acid or polypeptide separated from at least one other component (e.g., nucleic acid or polypeptide) present with the nucleic acid or polypeptide in its natural source. In one embodiment, the nucleic acid or polypeptide is found in the presence of (if anything) only a solvent, buffer, ion, or other component normally present in a solution of the same. The terms "isolated" and "purified" do not encompass nucleic acids or polypeptides present in their natural source.

The term "recombinant," when used herein to refer to a polypeptide or protein, means that a polypeptide or protein is derived from recombinant (e.g., microbial, insect, or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern in general different from those expressed in mammalian cells.

The term "recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. An expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an amino terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

The term "recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extrachromosomally. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed. This term also means host cells which have stably integrated a recombinant genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers. Recombinant expression systems as defined herein will express polypeptides or proteins endogenous to the cell upon induction of the regulatory elements linked to the endogenous DNA segment or gene to be expressed. The cells can be prokaryotic or eukaryotic.

The term "secreted" includes a protein that is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence when it is expressed in a suitable host cell. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins that are transported across the membrane of the endoplasmic reticulum. "Secreted" proteins are also intended to include proteins containing non-typical signal sequences (e.g. Interleukin-1 Beta, see Krasney, P.A. and Young, P.R. (1992) Cytokine 4(2):134

-143) and factors released from damaged cells (e.g. Interleukin-1 Receptor Antagonist, see Arend, W.P. et. al. (1998) Annu. Rev. Immunol. 16:27-55)

Where desired, an expression vector may be designed to contain a "signal or leader sequence" which will direct the polypeptide through the membrane of a cell. Such a sequence may be naturally present on the polypeptides of the present invention or provided from heterologous protein sources by recombinant DNA techniques.

5

10

15

20

25

30

The term "stringent" is used to refer to conditions that are commonly understood in the art as stringent. Stringent conditions can include highly stringent conditions (i.e., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1X SSC/0.1% SDS at 68°C), and moderately stringent conditions (i.e., washing in 0.2X SSC/0.1% SDS at 42°C). Other exemplary hybridization conditions are described herein in the examples.

In instances of hybridization of deoxyoligonucleotides, additional exemplary stringent hybridization conditions include washing in 6X SSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligonucleotides), 48°C (for 17-base oligos), 55°C (for 20-base oligonucleotides), and 60°C (for 23-base oligonucleotides).

As used herein, "substantially equivalent" can refer both to nucleotide and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between the reference and subject sequences.

Typically, such a substantially equivalent sequence varies from one of those listed herein by no more than about 35% (*i.e.*, the number of individual residue substitutions, additions, and/or deletions in a substantially equivalent sequence, as compared to the corresponding reference sequence, divided by the total number of residues in the substantially equivalent sequence is about 0.35 or less). Such a sequence is said to have 65% sequence identity to the listed sequence. In one embodiment, a substantially equivalent, *e.g.*, mutant, sequence of the invention varies from a listed sequence by no more than 30% (70% sequence identity); in a variation of this embodiment, by no more than 20% (80% sequence identity) and in a further variation of this embodiment, by no more than 10% (90% sequence identity) and in a further variation of this embodiment, by no more than 10% (90% sequence identity) and in a further variation of this embodiment,

by no more that 5% (95% sequence identity). Substantially equivalent, e.g., mutant, amino acid sequences according to the invention preferably have at least 80% sequence identity with a listed amino acid sequence, more preferably at least 90% sequence identity. Substantially equivalent nucleotide sequences of the invention can have lower percent sequence identities, taking into account, for example, the redundancy or degeneracy of the genetic code. Preferably, nucleotide sequence has at least about 65% identity, more preferably at least about 75% identity, and most preferably at least about 95% identity. For the purposes of the present invention, sequences having substantially equivalent biological activity and substantially equivalent expression characteristics are considered substantially equivalent. For the purposes of determining equivalence, truncation of the mature sequence (e.g., via a mutation which creates a spurious stop codon) should be disregarded. Sequence identity may be determined, e.g., using the Jotun Hein method (Hein, J. (1990) Methods Enzymol. 183:626-645). Identity between sequences can also be determined by other methods known in the art, e.g. by varying hybridization conditions.

5

10

15

20

25

30

The term "totipotent" refers to the capability of a cell to differentiate into all of the cell types of an adult organism.

The term "transformation" means introducing DNA into a suitable host cell so that the DNA is replicable, either as an extrachromosomal element, or by chromosomal integration. The term "transfection" refers to the taking up of an expression vector by a suitable host cell, whether or not any coding sequences are in fact expressed. The term "infection" refers to the introduction of nucleic acids into a suitable host cell by use of a virus or viral vector.

As used herein, an "uptake modulating fragment," UMF, means a series of nucleotides which mediate the uptake of a linked DNA fragment into a cell. UMFs can be readily identified using known UMFs as a target sequence or target motif with the computer-based systems described below. The presence and activity of a UMF can be confirmed by attaching the suspected UMF to a marker sequence. The resulting nucleic acid molecule is then incubated with an appropriate host under appropriate conditions and the uptake of the marker sequence is determined. As described above, a UMF will increase the frequency of uptake of a linked marker sequence.

Each of the above terms is meant to encompass all that is described for each, unless the context dictates otherwise.

4.2 NUCLEIC ACIDS OF THE INVENTION

5

10

15

20

25

30

Nucleotide sequences of the invention are set forth in the Sequence Listing.

The isolated polynucleotides of the invention include a polynucleotide comprising the nucleotide sequences of SEQ ID NO:1-739; a polynucleotide encoding any one of the peptide sequences of SEQ ID NO:740-1478; and a polynucleotide comprising the nucleotide sequence encoding the mature protein coding sequence of the polypeptides of any one of SEQ ID NO:740-1478. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent conditions to (a) the complement of any of the nucleotides sequences of SEO ID NO:1-739; (b) nucleotide sequences encoding any one of the amino acid sequences set forth in the Sequence Listing; (c) a polynucleotide which is an allelic variant of any polynucleotide recited above; (d) a polynucleotide which encodes a species homolog of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of the polypeptides of SEQ ID NO: 740-1478. Domains of interest may depend on the nature of the encoded polypeptide; e.g., domains in receptorlike polypeptides include ligand-binding, extracellular, transmembrane, or cytoplasmic domains, or combinations thereof; domains in immunoglobulin-like proteins include the variable immunoglobulin-like domains; domains in enzyme-like polypeptides include catalytic and substrate binding domains; and domains in ligand polypeptides include receptor-binding domains.

The polynucleotides of the invention include naturally occurring or wholly or partially synthetic DNA, e.g., cDNA and genomic DNA, and RNA, e.g., mRNA. The polynucleotides may include all of the coding region of the cDNA or may represent a portion of the coding region of the cDNA.

The present invention also provides genes corresponding to the cDNA sequences disclosed herein. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification

and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. Further 5' and 3' sequence can be obtained using methods known in the art. For example, full length cDNA or genomic DNA that corresponds to any of the polynucleotides of SEQ ID NO:1-739 can be obtained by screening appropriate cDNA or genomic DNA libraries under suitable hybridization conditions using any of the polynucleotides of SEQ ID NO:1-739 or a portion thereof as a probe. Alternatively, the polynucleotides of SEQ ID NO:1-739 may be used as the basis for suitable primer(s) that allow identification and/or amplification of genes in appropriate genomic DNA or cDNA libraries.

5

10

15

20

25

30

The nucleic acid sequences of the invention can be assembled from ESTs and sequences (including cDNA and genomic sequences) obtained from one or more public databases, such as dbEST, gbpri, and UniGene. The EST sequences can provide identifying sequence information, representative fragment or segment information, or novel segment information for the full-length gene.

The polynucleotides of the invention also provide polynucleotides including nucleotide sequences that are substantially equivalent to the polynucleotides recited above. Polynucleotides according to the invention can have, e.g., at least about 65%, at least about 70%, at least about 75%, at least about 80%, more typically at least about 90%, and even more typically at least about 95%, sequence identity to a polynucleotide recited above.

Included within the scope of the nucleic acid sequences of the invention are nucleic acid sequence fragments that hybridize under stringent conditions to any of the nucleotide sequences of SEQ ID NO:1-739, or complements thereof, which fragment is greater than about 5 nucleotides, preferably 7 nucleotides, more preferably greater than 9 nucleotides and most preferably greater than 17 nucleotides. Fragments of, e.g. 15, 17, or 20 nucleotides or more that are selective for (i.e. specifically hybridize to any one of the polynucleotides of the invention) are contemplated. Probes capable of specifically hybridizing to a polynucleotide can differentiate polynucleotide sequences of the invention from other polynucleotide sequences in the same family of genes or can differentiate human genes from genes of other species, and are preferably based on unique nucleotide sequences.

The sequences falling within the scope of the present invention are not limited to these specific sequences, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequence provided SEQ ID NO:1-739, a representative fragment thereof, or a nucleotide sequence at least 90% identical, preferably 95% identical, to SEQ ID NO:1-739 with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another codon that encodes the same amino acid is expressly contemplated.

5

10

15

20

25

30

The nearest neighbor or homology result for the nucleic acids of the present invention, including SEQ ID NO:1-739, can be obtained by searching a database using an algorithm or a program. Preferably, a BLAST which stands for Basic Local Alignment Search Tool is used to search for local sequence alignments (Altshul, S.F. J Mol. Evol. 36 290-300 (1993) and Altschul S.F. et al. J. Mol. Biol. 21:403-410 (1990)). Alternatively a FASTA version 3 search against Genpept, using Fastxy algorithm.

Species homologs (or orthologs) of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides.

The nucleic acid sequences of the invention are further directed to sequences which encode variants of the described nucleic acids. These amino acid sequence variants may be prepared by methods known in the art by introducing appropriate nucleotide changes into a native or variant polynucleotide. There are two variables in the construction of amino acid sequence variants: the location of the mutation and the nature of the mutation. Nucleic acids encoding the amino acid sequence variants are preferably constructed by mutating the polynucleotide to encode an amino acid sequence that does not occur in nature. These nucleic acid alterations can be made at sites that differ in the

nucleic acids from different species (variable positions) or in highly conserved regions (constant regions). Sites at such locations will typically be modified in series, e.g., by substituting first with conservative choices (e.g., hydrophobic amino acid to a different hydrophobic amino acid) and then with more distant choices (e.g., hydrophobic amino acid to a charged amino acid), and then deletions or insertions may be made at the target site. Amino acid sequence deletions generally range from about 1 to 30 residues, preferably about 1 to 10 residues, and are typically contiguous. Amino acid insertions include amino- and/or carboxyl-terminal fusions ranging in length from one to one hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence insertions may range generally from about 1 to 10 amino residues, preferably from 1 to 5 residues. Examples of terminal insertions include the heterologous signal sequences necessary for secretion or for intracellular targeting in different host cells and sequences such as FLAG or poly-histidine sequences useful for purifying the expressed protein.

5

10

15

20

25

30

In a preferred method, polynucleotides encoding the novel amino acid sequences are changed via site-directed mutagenesis. This method uses oligonucleotide sequences to alter a polynucleotide to encode the desired amino acid variant, as well as sufficient adjacent nucleotides on both sides of the changed amino acid to form a stable duplex on either side of the site of being changed. In general, the techniques of site-directed mutagenesis are well known to those of skill in the art and this technique is exemplified by publications such as, Edelman et al., DNA 2:183 (1983). A versatile and efficient method for producing site-specific changes in a polynucleotide sequence was published by Zoller and Smith, Nucleic Acids Res. 10:6487-6500 (1982). PCR may also be used to create amino acid sequence variants of the novel nucleic acids. When small amounts of template DNA are used as starting material, primer(s) that differs slightly in sequence from the corresponding region in the template DNA can generate the desired amino acid variant. PCR amplification results in a population of product DNA fragments that differ from the polynucleotide template encoding the polypeptide at the position specified by the primer. The product DNA fragments replace the corresponding region in the plasmid and this gives a polynucleotide encoding the desired amino acid variant.

A further technique for generating amino acid variants is the cassette mutagenesis technique described in Wells et al., *Gene* 34:315 (1985); and other mutagenesis techniques well known in the art, such as, for example, the techniques in Sambrook et al., supra, and *Current Protocols in Molecular Biology*, Ausubel et al. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be used in the practice of the invention for the cloning and expression of these novel nucleic acids. Such DNA sequences include those which are capable of hybridizing to the appropriate novel nucleic acid sequence under stringent conditions.

Polynucleotides encoding preferred polypeptide truncations of the invention can be used to generate polynucleotides encoding chimeric or fusion proteins comprising one or more domains of the invention and heterologous protein sequences.

10

15

20

25

30

The polynucleotides of the invention additionally include the complement of any of the polynucleotides recited above. The polynucleotide can be DNA (genomic, cDNA, amplified, or synthetic) or RNA. Methods and algorithms for obtaining such polynucleotides are well known to those of skill in the art and can include, for example, methods for determining hybridization conditions that can routinely isolate polynucleotides of the desired sequence identities.

In accordance with the invention, polynucleotide sequences comprising the mature protein coding sequences corresponding to any one of SEQ ID NO:1-739, or functional equivalents thereof, may be used to generate recombinant DNA molecules that direct the expression of that nucleic acid, or a functional equivalent thereof, in appropriate host cells. Also included are the cDNA inserts of any of the clones identified herein.

A polynucleotide according to the invention can be joined to any of a variety of other nucleotide sequences by well-established recombinant DNA techniques (see Sambrook J et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY). Useful nucleotide sequences for joining to polynucleotides include an assortment of vectors, e.g., plasmids, cosmids, lambda phage derivatives, phagemids, and the like, that are well known in the art. Accordingly, the invention also provides a vector including a polynucleotide of the invention and a host cell containing the polynucleotide.

In general, the vector contains an origin of replication functional in at least one organism, convenient restriction endonuclease sites, and a selectable marker for the host cell. Vectors according to the invention include expression vectors, replication vectors, probe generation vectors, and sequencing vectors. A host cell according to the invention can be a prokaryotic or eukaryotic cell and can be a unicellular organism or part of a multicellular organism.

The present invention further provides recombinant constructs comprising a nucleic acid having any of the nucleotide sequences of SEQ ID NO:1-739 or a fragment thereof or any other polynucleotides of the invention. In one embodiment, the recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a nucleic acid having any of the nucleotide sequences of SEQ ID NO:1-739 or a fragment thereof is inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSV2cat, pOG44, PXTI, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).

The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., *Nucleic Acids Res.* 19, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, *Methods in Enzymology* 185, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art. Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), a-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an amino terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product. Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include E. coli, Bacillus subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a matter of choice.

10

15

20

25

30

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example,

pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (Promega Biotech, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced or derepressed by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Polynucleotides of the invention can also be used to induce immune responses. For example, as described in Fan et al., *Nat. Biotech.* 17:870-872 (1999), incorporated herein by reference, nucleic acid sequences encoding a polypeptide may be used to generate antibodies against the encoded polypeptide following topical administration of naked plasmid DNA or following injection, and preferably intramuscular injection of the DNA. The nucleic acid sequences are preferably inserted in a recombinant expression vector and may be in the form of naked DNA.

4.3 ANTISENSE

5

10

15

20

25

30

Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1-739, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein, *e.g.*, complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a protein of any of SEQ ID NO:740-1478 or antisense nucleic acids complementary to a nucleic acid sequence of SEQ ID NO:1-739 are additionally provided.

In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence of the invention. The term "coding

region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence of the invention. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (*i.e.*, also referred to as 5' and 3' untranslated regions).

Given the coding strand sequences encoding a nucleic acid disclosed herein (e.g., SEQ ID NO:1-739, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of a mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of a mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of a mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.

Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine,

pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (*i.e.*, RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

5

10

15

20

25

30

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a protein according to the invention to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier *et al.* (1987) *Nucleic Acids Res* 15: 6625-6641). The antisense nucleic acid molecule can also comprise a

2'-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res 15: 6131-6148) or a chimeric RNA -DNA analogue (Inoue et al. (1987) FEBS Lett 215: 327-330).

4.4 RIBOZYMES AND PNA MOIETIES

5

10

15

20

25

30

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as a mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) *Nature* 334:585-591)) can be used to catalytically cleave a mRNA transcripts to thereby inhibit translation of a mRNA. A ribozyme having specificity for a nucleic acid of the invention can be designed based upon the nucleotide sequence of a DNA disclosed herein (i.e., SEQ ID NO:1-739). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a SECX-encoding mRNA. See, e.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742. Alternatively, SECX mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.

Alternatively, gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region (e.g., promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells. See generally, Helene. (1991) Anticancer Drug Des. 6: 569-84; Helene. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher (1992) Bioassays 14: 807-15.

In various embodiments, the nucleic acids of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorg Med Chem 4: 5-23). As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to

allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup *et al.* (1996) above; Perry-O'Keefe *et al.* (1996) *PNAS* 93: 14670-675.

5

10

15

20

25

30

PNAs of the invention can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of the invention can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (Hyrup B. (1996) above); or as probes or primers for DNA sequence and hybridization (Hyrup et al. (1996), above; Perry-O'Keefe (1996), above).

In another embodiment, PNAs of the invention can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated that may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNase H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996) above). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996) above and Finn et al. (1996) Nucl Acids Res 24: 3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g.,

5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA (Mag et al. (1989) Nucl Acid Res 17: 5973-88). PNA

5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA (Mag et al. (1989) Nucl Acid Res 17: 5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) above). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, Petersen et al. (1975) Bioorg Med Chem Lett 5: 1119-11124.

In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. W088/09810) or the blood-brain barrier (see, e.g., PCT Publication No. W089/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (See, e.g., Krol et al., 1988, BioTechniques 6:958-976) or intercalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, etc.

4.5 HOSTS

10

15

20

25

30

The present invention further provides host cells genetically engineered to contain the polynucleotides of the invention. For example, such host cells may contain nucleic acids of the invention introduced into the host cell using known transformation, transfection or infection methods. The present invention still further provides host cells genetically engineered to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell.

Knowledge of nucleic acid sequences allows for modification of cells to permit, or increase, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the polypeptide at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the encoding sequences. See, for example, PCT International Publication No. WO94/12650, PCT International Publication No. WO92/20808, and PCT International Publication No. WO91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If

linked to the coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE, dextran mediated transfection, or electroporation (Davis, L. et al., *Basic Methods in Molecular Biology* (1986)). The host cells containing one of the polynucleotides of the invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

10

15

20

25

30

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, Cv-1 cell, COS cells, 293 cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level. Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., in Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981). Other cell lines capable of expressing a compatible vector are, for example, the C127, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from *in vitro* culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells. Mammalian expression vectors will comprise an origin of replication, a

suitable promoter and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements. Recombinant polypeptides and proteins produced in bacterial culture are usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.

Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or insects or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations

of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequence include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

5

10

15

20

25

30

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the host cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

4.6 POLYPEPTIDES OF THE INVENTION

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising: the amino acid sequences set forth as any one of SEQ ID NO:740-1478 or an amino acid sequence encoded by any one of the nucleotide sequences 5 SEQ ID NO:1-739 or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides preferably with biological or immunological activity that are encoded by: (a) a polynucleotide having any one of the nucleotide sequences set forth in SEQ ID NO:1-739 or (b) polynucleotides encoding any one of the amino acid sequences set forth as SEQ ID NO:740-1478 or (c) polynucleotides that hybridize to the 10 complement of the polynucleotides of either (a) or (b) under stringent hybridization conditions. The invention also provides biologically active or immunologically active variants of any of the amino acid sequences set forth as SEQ ID NO:740-1478 or the corresponding full length or mature protein; and "substantial equivalents" thereof (e.g., with at least about 65%, at least about 70%, at least about 75%, at least about 80%, at 15 least about 85%, at least about 90%, typically at least about 95%, more typically at least about 98%, or most typically at least about 99% amino acid identity) that retain biological activity. Polypeptides encoded by allelic variants may have a similar, increased, or decreased activity compared to polypeptides comprising SEQ ID NO:740-1478. 20

Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H. U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites.

25

30

The present invention also provides both full-length and mature forms (for example, without a signal sequence or precursor sequence) of the disclosed proteins. The protein coding sequence is identified in the sequence listing by translation of the

disclosed nucleotide sequences. The mature form of such protein may be obtained by expression of a full-length polynucleotide in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein is also determinable from the amino acid sequence of the full-length form. Where proteins of the present invention are membrane bound, soluble forms of the proteins are also provided. In such forms, part or all of the regions causing the proteins to be membrane bound are deleted so that the proteins are fully secreted from the cell in which they are expressed.

5

10

15

20

25

30

Protein compositions of the present invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the genetic code, encode an identical polypeptide sequence. Preferred nucleic acid fragments of the present invention are the ORFs that encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. This technique is particularly useful in producing small peptides and fragments of larger polypeptides. Fragments are useful, for example, in generating antibodies against the native polypeptide. Thus, they may be employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.

The polypeptides and proteins of the present invention can alternatively be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein

which it normally does not produce or which the cell normally produces at a lower level. One skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

5

10

15

20

25

30

The invention also relates to methods for producing a polypeptide comprising growing a culture of host cells of the invention in a suitable culture medium, and purifying the protein from the cells or the culture in which the cells are grown. For example, the methods of the invention include a process for producing a polypeptide in which a host cell containing a suitable expression vector that includes a polynucleotide of the invention is cultured under conditions that allow expression of the encoded polypeptide. The polypeptide can be recovered from the culture, conveniently from the culture medium, or from a lysate prepared from the host cells and further purified. Preferred embodiments include those in which the protein produced by such process is a full length or mature form of the protein.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily follow known methods for isolating polypeptides and proteins in order to obtain one of the isolated polypeptides or proteins of the present invention. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography. See, e.g., Scopes, Protein Purification: Principles and Practice, Springer-Verlag (1994); Sambrook, et al., in Molecular Cloning: A Laboratory Manual; Ausubel et al., Current Protocols in Molecular Biology. Polypeptide fragments that retain biological/immunological activity include fragments comprising greater than about 100 amino acids, or greater than about 200 amino acids, and fragments that encode specific protein domains.

The purified polypeptides can be used in *in vitro* binding assays which are well known in the art to identify molecules which bind to the polypeptides. These molecules include but are not limited to, for e.g., small molecules, molecules from combinatorial libraries, antibodies or other proteins. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models

that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

In addition, the peptides of the invention or molecules capable of binding to the peptides may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for SEQ ID NO:740-1478.

5

10

1.5

20

25

30

The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.

The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications, in the peptide or DNA sequence, can be made by those skilled in the art using known techniques. Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Pat. No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein. Regions of the protein that are important for the protein function can be determined by various methods known in the art including the alanine-scanning method which involved systematic substitution of single or strings of amino acids with alanine, followed by testing the resulting alanine-containing variant for biological activity. This type of analysis determines the importance of the substituted amino acid(s) in biological activity. Regions of the protein that are important for protein function may be determined by the eMATRIX program.

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and are useful for screening or other

immunological methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are encompassed by the present invention.

The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MaxBatTM kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."

5

10

15

20

25

30

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (*i.e.*, from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearlTM or Cibacrom blue 3GA SepharoseTM; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.

Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin (TRX), or as a His tag. Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.), Pharmacia (Piscataway, N.J.) and Invitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("FLAG®") is commercially available from Kodak (New Haven, Conn.).

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

5

10

15

20

25

30

The polypeptides of the invention include analogs (variants). This embraces fragments, as well as peptides in which one or more amino acids has been deleted, inserted, or substituted. Also, analogs of the polypeptides of the invention embrace fusions of the polypeptides or modifications of the polypeptides of the invention, wherein the polypeptide or analog is fused to another moiety or moieties, e.g., targeting moiety or another therapeutic agent. Such analogs may exhibit improved properties such as activity and/or stability. Examples of moieties which may be fused to the polypeptide or an analog include, for example, targeting moieties which provide for the delivery of polypeptide to pancreatic cells, e.g., antibodies to pancreatic cells, antibodies to immune cells such as T-cells, monocytes, dendritic cells, granulocytes, etc., as well as receptor and ligands expressed on pancreatic or immune cells. Other moieties which may be fused to the polypeptide include therapeutic agents which are used for treatment, for example, immunosuppressive drugs such as cyclosporin, SK506, azathioprine, CD3 antibodies and steroids. Also, polypeptides may be fused to immune modulators, and other cytokines such as alpha or beta interferon.

4.6.1 DETERMINING POLYPEPTIDE AND POLYNUCLEOTIDE IDENTITY AND SIMILARITY

Preferred identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in computer programs including, but are not limited to, the GCG program package, including GAP (Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI), BLASTP, BLASTN, BLASTN, FASTA (Altschul, S.F. et al., J. Molec. Biol. 215:403-410 (1990), PSI-BLAST

(Altschul S.F. et al., Nucleic Acids Res. vol. 25, pp. 3389-3402, herein incorporated by reference), eMatrix software (Wu et al., J. Comp. Biol., Vol. 6, pp. 219-235 (1999), herein incorporated by reference), eMotif software (Nevill-Manning et al, ISMB-97, Vol. 4, pp. 202-209, herein incorporated by reference), pFam software (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1), pp. 320-322 (1998), herein incorporated by reference) and the Kyte-Doolittle hydrophobocity prediction algorithm (J. Mol Biol, 157, pp. 105-31 (1982), incorporated herein by reference). The BLAST programs are publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul, S., et al. NCB NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215:403-410 (1990).

4.7 CHIMERIC AND FUSION PROTEINS

15

20

30

The invention also provides chimeric or fusion proteins. As used herein, a "chimeric protein" or "fusion protein" comprises a polypeptide of the invention operatively linked to another polypeptide. Within a fusion protein the polypeptide according to the invention can correspond to all or a portion of a protein according to the invention. In one embodiment, a fusion protein comprises at least one biologically active portion of a protein according to the invention. In another embodiment, a fusion protein comprises at least two biologically active portions of a protein according to the invention. Within the fusion protein, the term "operatively linked" is intended to indicate that the polypeptide according to the invention and the other polypeptide are fused in-frame to each other. The polypeptide can be fused to the N-terminus or C-terminus.

For example, in one embodiment a fusion protein comprises a polypeptide according to the invention operably linked to the extracellular domain of a second protein.

In another embodiment, the fusion protein is a GST-fusion protein in which the polypeptide sequences of the invention are fused to the C-terminus of the GST (i.e., glutathione S-transferase) sequences.

In another embodiment, the fusion protein is an immunoglobulin fusion protein in which the polypeptide sequences according to the invention comprises one or more domains are fused to sequences derived from a member of the immunoglobulin protein family. The immunoglobulin fusion proteins of the invention can be incorporated into

pharmaceutical compositions and administered to a subject to inhibit an interaction between a ligand and a protein of the invention on the surface of a cell, to thereby suppress signal transduction *in vivo*. The immunoglobulin fusion proteins can be used to affect the bioavailability of a cognate ligand. Inhibition of the ligand/protein interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, *e,g.*, cancer as well as modulating (*e.g.*, promoting or inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodies in a subject, to purify ligands, and in screening assays to identify molecules that inhibit the interaction of a polypeptide of the invention with a ligand.

A chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Ausubel et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the protein of the invention.

4.8 GENE THERAPY

5

10

15

20

25

30

Mutations in the polynucleotides of the invention gene may result in loss of normal function of the encoded protein. The invention thus provides gene therapy to restore normal activity of the polypeptides of the invention; or to treat disease states

involving polypeptides of the invention. Delivery of a functional gene encoding polypeptides of the invention to appropriate cells is effected ex vivo, in situ, or in vivo by use of vectors, and more particularly viral vectors (e.g., adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., liposomes or chemical treatments). See, for example, Anderson, Nature, supplement to vol. 392, no. 6679, pp.25-20 (1998). For additional reviews of gene therapy technology see Friedmann, Science, 244: 1275-1281 (1989); Verma, Scientific American: 68-84 (1990); and Miller, Nature, 357: 455-460 (1992). Introduction of any one of the nucleotides of the present invention or a gene encoding the polypeptides of the present invention can also be accomplished with extrachromosomal substrates (transient expression) or artificial chromosomes (stable expression). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for the rapeutic purposes. Alternatively, it is contemplated that in other human disease states, preventing the expression of or inhibiting the activity of polypeptides of the invention will be useful in treating the disease states. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of polypeptides of the invention.

5

10

15

20

25

30

Other methods inhibiting expression of a protein include the introduction of antisense molecules to the nucleic acids of the present invention, their complements, or their translated RNA sequences, by methods known in the art. Further, the polypeptides of the present invention can be inhibited by using targeted deletion methods, or the insertion of a negative regulatory element such as a silencer, which is tissue specific.

The present invention still further provides cells genetically engineered *in vivo* to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell. These methods can be used to increase or decrease the expression of the polynucleotides of the present invention.

Knowledge of DNA sequences provided by the invention allows for modification of cells to permit, increase, or decrease, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression

by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the protein at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the desired protein encoding sequences. See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 92/20808, and PCT International Publication No. WO 91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the desired protein coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences.

Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequences include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a

tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

20

25

30

10

15

4.9 TRANSGENIC ANIMALS

In preferred methods to determine biological functions of the polypeptides of the invention in vivo, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in

disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

5

10

15

20

25

30

Transgenic animals can be prepared wherein all or part of a promoter of the polynucleotides of the invention is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

The polynucleotides of the present invention also make possible the development, through, e.g., homologous recombination or knock out strategies, of animals that fail to express polypeptides of the invention or that express a variant polypeptide. Such animals are useful as models for studying the *in vivo* activities of polypeptide as well as for studying modulators of the polypeptides of the invention.

In preferred methods to determine biological functions of the polypeptides of the invention *in vivo*, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of the polynucleotides of the invention promoter is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

4.10 USES AND BIOLOGICAL ACTIVITY

5

10

15

20

25

30

The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified herein. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA). The mechanism underlying the particular condition or pathology will dictate whether the polypeptides of the invention, the polynucleotides of the invention or modulators (activators or inhibitors) thereof would be beneficial to the subject in need of treatment. Thus, "therapeutic compositions of the invention" include compositions comprising isolated polynucleotides (including recombinant DNA molecules, cloned genes and degenerate variants thereof) or polypeptides of the invention (including full length protein, mature protein and truncations or domains thereof), or compounds and other substances that modulate the overall activity of the target gene products, either at the level of target gene/protein expression or target protein activity. Such modulators include polypeptides, analogs, (variants), including fragments and fusion proteins, antibodies and other binding proteins; chemical compounds that directly or indirectly activate or inhibit the polypeptides of the invention (identified, e.g., via drug screening assays as described herein); antisense polynucleotides and polynucleotides suitable for triple helix formation; and in particular antibodies or other binding partners that specifically recognize one or more epitopes of the polypeptides of the invention.

The polypeptides of the present invention may likewise be involved in cellular activation or in one of the other physiological pathways described herein.

4.10.1 RESEARCH USES AND UTILITIES

5

10

15

20

25

30

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The polypeptides provided by the present invention can similarly be used in assays to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding polypeptide is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of

course, to isolate correlative receptors or ligands. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or ago of the binding interaction.

Any or all of these research utilities are capable of being developed into reager grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

4.10.2 NUTRITIONAL USES

. 5

10

15

20

25

30

Polynucleotides and polypeptides of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the polypeptide or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the polypeptide or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

4.10.3 CYTOKINE AND CELL PROLIFERATION/DIFFERENTIATION ACTIVITY

A polypeptide of the present invention may exhibit activity relating to cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor-dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of therapeutic

compositions of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+(preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e, CMK, HUVEC, and Caco. Therapeutic compositions of the invention can be used in the following:

5

15

20

25

30

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., I. Immunol. 149:3778-3783, 1992; Bowman et al., I. Immunol. 152:1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A. M. and Shevach, E. M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human interleukin-γ, Schreiber, R. D. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L. S. and Lipsky, P. E. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6--Nordan, R. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Aced. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11--Bennett, F., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.15.1 John

Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9--Ciarletta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

4.10.4 STEM CELL GROWTH FACTOR ACTIVITY

5

10

15

20

25

30

A polypeptide of the present invention may exhibit stem cell growth factor activity and be involved in the proliferation, differentiation and survival of pluripotent and totipotent stem cells including primordial germ cells, embryonic stem cells, hematopoietic stem cells and/or germ line stem cells. Administration of the polypeptide of the invention to stem cells *in vivo* or *ex vivo* is expected to maintain and expand cell populations in a totipotential or pluripotential state which would be useful for reengineering damaged or diseased tissues, transplantation, manufacture of biopharmaceuticals and the development of bio-sensors. The ability to produce large quantities of human cells has important working applications for the production of human proteins which currently must be obtained from non-human sources or donors, implantation of cells to treat diseases such as Parkinson's, Alzheimer's and other neurodegenerative diseases; tissues for grafting such as bone marrow, skin, cartilage, tendons, bone, muscle (including cardiac muscle), blood vessels, cornea, neural cells, gastrointestinal cells and others; and organs for transplantation such as kidney, liver, pancreas (including islet cells), heart and lung.

It is contemplated that multiple different exogenous growth factors and/or cytokines may be administered in combination with the polypeptide of the invention to achieve the desired effect, including any of the growth factors listed herein, other stem cell maintenance factors, and specifically including stem cell factor (SCF), leukemia inhibitory factor (LIF), Flt-3 ligand (Flt-3L), any of the interleukins, recombinant soluble IL-6 receptor fused to IL-6, macrophage inflammatory protein 1-alpha (MIP-1-alpha), G-CSF, GM-CSF, thrombopoietin (TPO), platelet factor 4 (PF-4), platelet-derived growth factor (PDGF), neural growth factors and basic fibroblast growth factor (bFGF).

5

10

15

20

25

30

Since totipotent stem cells can give rise to virtually any mature cell type, expansion of these cells in culture will facilitate the production of large quantities of mature cells. Techniques for culturing stem cells are known in the art and administration of polypeptides of the invention, optionally with other growth factors and/or cytokines, is expected to enhance the survival and proliferation of the stem cell populations. This can be accomplished by direct administration of the polypeptide of the invention to the culture medium. Alternatively, stroma cells transfected with a polynucleotide that encodes for the polypeptide of the invention can be used as a feeder layer for the stem cell populations in culture or in vivo. Stromal support cells for feeder layers may include embryonic bone marrow fibroblasts, bone marrow stromal cells, fetal liver cells, or cultured embryonic fibroblasts (see U.S. Patent No. 5,690,926).

Stem cells themselves can be transfected with a polynucleotide of the invention to induce autocrine expression of the polypeptide of the invention. This will allow for generation of undifferentiated totipotential/pluripotential stem cell lines that are useful as is or that can then be differentiated into the desired mature cell types. These stable cell lines can also serve as a source of undifferentiated totipotential/pluripotential mRNA to create cDNA libraries and templates for polymerase chain reaction experiments. These studies would allow for the isolation and identification of differentially expressed genes in stem cell populations that regulate stem cell proliferation and/or maintenance.

Expansion and maintenance of totipotent stem cell populations will be useful in the treatment of many pathological conditions. For example, polypeptides of the present invention may be used to manipulate stem cells in culture to give rise to neuroepithelial cells that can be used to augment or replace cells damaged by illness, autoimmune

disease, accidental damage or genetic disorders. The polypeptide of the invention may be useful for inducing the proliferation of neural cells and for the regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders which involve degeneration, death or trauma to neural cells or nerve tissue. In addition, the expanded stem cell populations can also be genetically altered for gene therapy purposes and to decrease host rejection of replacement tissues after grafting or implantation.

5

10

15

20

25

30

Expression of the polypeptide of the invention and its effect on stem cells can also be manipulated to achieve controlled differentiation of the stem cells into more differentiated cell types. A broadly applicable method of obtaining pure populations of a specific differentiated cell type from undifferentiated stem cell populations involves the use of a cell-type specific promoter driving a selectable marker. The selectable marker allows only cells of the desired type to survive. For example, stem cells can be induced to differentiate into cardiomyocytes (Wobus et al., Differentiation, 48: 173-182, (1991); Klug et al., J. Clin. Invest., 98(1): 216-224, (1998)) or skeletal muscle cells (Browder, L. W. In: *Principles of Tissue Engineering eds.* Lanza et al., Academic Press (1997)). Alternatively, directed differentiation of stem cells can be accomplished by culturing the stem cells in the presence of a differentiation factor such as retinoic acid and an antagonist of the polypeptide of the invention which would inhibit the effects of endogenous stem cell factor activity and allow differentiation to proceed.

In vitro cultures of stem cells can be used to determine if the polypeptide of the invention exhibits stem cell growth factor activity. Stem cells are isolated from any one of various cell sources (including hematopoietic stem cells and embryonic stem cells) and cultured on a feeder layer, as described by Thompson et al. Proc. Natl. Acad. Sci, U.S.A., 92: 7844-7848 (1995), in the presence of the polypeptide of the invention alone or in combination with other growth factors or cytokines. The ability of the polypeptide of the invention to induce stem cells proliferation is determined by colony formation on semi-solid support e.g. as described by Bernstein et al., Blood, 77: 2316-2321 (1991).

4.10.5 HEMATOPOIESIS REGULATING ACTIVITY

5

10

15

20

25

30

A polypeptide of the present invention may be involved in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell disorders. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

Therapeutic compositions of the invention can be used in the following:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M. G. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, N.Y. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I. K. and Briddell, R. A. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, N.Y. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R. E. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, N.Y. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, N.Y. 1994; Long term culture initiating cell assay, Sutherland, H. J. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, N.Y. 1994.

4.10.6 TISSUE GROWTH ACTIVITY

5

10

15

20

25

30

A polypeptide of the present invention also may be involved in bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as in wound healing and tissue repair and replacement, and in healing of burns, incisions and ulcers.

A polypeptide of the present invention which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Compositions of a polypeptide, antibody, binding partner, or other modulator of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A polypeptide of this invention may also be involved in attracting bone-forming cells, stimulating growth of bone-forming cells, or inducing differentiation of progenitors of bone-forming cells. Treatment of osteoporosis, osteoarthritis, bone degenerative

disorders, or periodontal disease, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes may also be possible using the composition of the invention.

5 .

10

15

20

25

30

Another category of tissue regeneration activity that may involve the polypeptide of the present invention is tendon/ligament formation. Induction of tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The compositions of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a composition may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager

syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a composition of the invention.

Compositions of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

5

10

15

20

25

30

Compositions of the present invention may also be involved in the generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring may allow normal tissue to regenerate. A polypeptide of the present invention may also exhibit angiogenic activity.

A composition of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A composition of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

Therapeutic compositions of the invention can be used in the following:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon);

International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, H. I. and Rovee, D. T., eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

4.10.7 IMMUNE STIMULATING OR SUPPRESSING ACTIVITY

5

10

15

20

25

A polypeptide of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A polynucleotide of the invention can encode a polypeptide exhibiting such activities. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpes viruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, proteins of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein (or antagonists thereof, including antibodies) of the present invention may also to be useful in the treatment of allergic reactions and conditions (e.g., anaphylaxis, serum sickness, drug reactions, food allergies, insect venom allergies, mastocytosis, allergic rhinitis, hypersensitivity pneumonitis, urticaria, angioedema, eczema, atopic dermatitis, allergic contact dermatitis, erythema multiforme, Stevens-Johnson syndrome, allergic conjunctivitis, atopic keratoconjunctivitis, venereal keratoconjunctivitis, giant papillary conjunctivitis and contact allergies), such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein (or antagonists thereof) of the present invention. The therapeutic effects of the

polypeptides or antagonists thereof on allergic reactions can be evaluated by in vivo animals models such as the cumulative contact enhancement test (Lastborn et al., Toxicology 125: 59-66, 1998), skin prick test (Hoffmann et al., Allergy 54: 446-54, 1999), guinea pig skin sensitization test (Vohr et al., Arch. Toxocol. 73: 501-9), and murine local lymph node assay (Kimber et al., J. Toxicol. Environ. Health 53: 563-79).

Using the proteins of the invention it may also be possible to modulate immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a therapeutic composition of the invention may prevent cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, a lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a

subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular therapeutic compositions in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of therapeutic compositions of the invention on the development of that disease.

10

15

20

25

30

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block stimulation of T cells can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (e.g., a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or

eliciting an initial immune response. For example, enhancing an immune response may be useful in cases of viral infection, including systemic viral diseases such as influenza, the common cold, and encephalitis.

5

10

15

20

25

30

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

A polypeptide of the present invention may provide the necessary stimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient mounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I alpha chain protein and β_2 microglobulin protein or an MHC class II alpha chain protein and an MHC class II beta chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., I. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bowman et al., J. Virology 61:1992-1998; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J. J. and Brunswick, M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

15

20

25

30

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology

154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

4.10.8 ACTIVIN/INHIBIN ACTIVITY

5

10

15

20

25

30

A polypeptide of the present invention may also exhibit activin- or inhibin-related activities. A polynucleotide of the invention may encode a polypeptide exhibiting such characteristics. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a polypeptide of the present invention, alone or in heterodimers with a member of the inhibin family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the polypeptide of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, U.S. Pat. No. 4,798,885. A polypeptide of the invention may

also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as, but not limited to, cows, sheep and pigs.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods.

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

10

15

20

25

30

5

4.10.9 CHEMOTACTIC/CHEMOKINETIC ACTIVITY

A polypeptide of the present invention may be involved in chemotactic or chemokinetic activity for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Chemotactic and chemokinetic receptor activation can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic compositions (e.g. proteins, antibodies, binding partners, or modulators of the invention) provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

Therapeutic compositions of the invention can be used in the following:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the

migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Marguiles, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

10

15

20

25

30

5

4.10.10 HEMOSTATIC AND THROMBOLYTIC ACTIVITY

A polypeptide of the invention may also be involved in hemostatis or thrombolysis or thrombosis. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Compositions may be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A composition of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

Therapeutic compositions of the invention can be used in the following:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al.,

Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991);

Schaub, Prostaglandins 35:467-474, 1988.

4.10.11 CANCER DIAGNOSIS AND THERAPY

Polypeptides of the invention may be involved in cancer cell generation, proliferation or metastasis. Detection of the presence or amount of polynucleotides or polypeptides of the invention may be useful for the diagnosis and/or prognosis of one or more types of cancer. For example, the presence or increased expression of a

polynucleotide/polypeptide of the invention may indicate a hereditary risk of cancer, a precancerous condition, or an ongoing malignancy. Conversely, a defect in the gene or absence of the polypeptide may be associated with a cancer condition. Identification of single nucleotide polymorphisms associated with cancer or a predisposition to cancer may also be useful for diagnosis or prognosis.

5

10

15

20

25

30

Cancer treatments promote tumor regression by inhibiting tumor cell proliferation, inhibiting angiogenesis (growth of new blood vessels that is necessary to support tumor growth) and/or prohibiting metastasis by reducing tumor cell motility or invasiveness. Therapeutic compositions of the invention may be effective in adult and pediatric oncology including in solid phase tumors/malignancies, locally advanced tumors, human soft tissue sarcomas, metastatic cancer, including lymphatic metastases, blood cell malignancies including multiple myeloma, acute and chronic leukemias, and lymphomas, head and neck cancers including mouth cancer, larynx cancer and thyroid cancer, lung cancers including small cell carcinoma and non-small cell cancers, breast cancers including small cell carcinoma and ductal carcinoma, gastrointestinal cancers including esophageal cancer, stomach cancer, colon cancer, colorectal cancer and polyps associated with colorectal neoplasia, pancreatic cancers, liver cancer, urologic cancers including bladder cancer and prostate cancer, malignancies of the female genital tract including ovarian carcinoma, uterine (including endometrial) cancers, and solid tumor in the ovarian follicle, kidney cancers including renal cell carcinoma, brain cancers including intrinsic brain tumors, neuroblastoma, astrocytic brain tumors, gliomas, metastatic tumor cell invasion in the central nervous system, bone cancers including osteomas, skin cancers including malignant melanoma, tumor progression of human skin keratinocytes, squamous cell carcinoma, basal cell carcinoma, hemangiopericytoma and Karposi's sarcoma.

Polypeptides, polynucleotides, or modulators of polypeptides of the invention (including inhibitors and stimulators of the biological activity of the polypeptide of the invention) may be administered to treat cancer. Therapeutic compositions can be administered in therapeutically effective dosages alone or in combination with adjuvant cancer therapy such as surgery, chemotherapy, radiotherapy, thermotherapy, and laser therapy, and may provide a beneficial effect, e.g. reducing tumor size, slowing rate of

tumor growth, inhibiting metastasis, or otherwise improving overall clinical condition, without necessarily eradicating the cancer.

5

10

15

20

25

30

The composition can also be administered in therapeutically effective amounts as a portion of an anti-cancer cocktail. An anti-cancer cocktail is a mixture of the polypeptide or modulator of the invention with one or more anti-cancer drugs in addition to a pharmaceutically acceptable carrier for delivery. The use of anti-cancer cocktails as a cancer treatment is routine. Anti-cancer drugs that are well known in the art and can be used as a treatment in combination with the polypeptide or modulator of the invention include: Actinomycin D, Aminoglutethimide, Asparaginase, Bleomycin, Busulfan, Carboplatin, Carmustine, Chlorambucil, Cisplatin (cis-DDP), Cyclophosphamide, Cytarabine HCl (Cytosine arabinoside), Dacarbazine, Dactinomycin, Daunorubicin HCl, Doxorubicin HCl, Estramustine phosphate sodium, Etoposide (V16-213), Floxuridine, 5-Fluorouracil (5-Fu), Flutamide, Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alpha-2a, Interferon Alpha-2b, Leuprolide acetate (LHRH-releasing factor analog), Lomustine, Mechlorethamine HCl (nitrogen mustard), Melphalan, Mercaptopurine, Mesna, Methotrexate (MTX), Mitomycin, Mitoxantrone HCl, Octreotide, Plicamycin, Procarbazine HCl, Streptozocin, Tamoxifen citrate, Thioguanine, Thiotepa, Vinblastine sulfate, Vincristine sulfate, Amsacrine, Azacitidine, Hexamethylmelamine, Interleukin-2, Mitoguazone, Pentostatin, Semustine, Teniposide, and Vindesine sulfate.

In addition, therapeutic compositions of the invention may be used for prophylactic treatment of cancer. There are hereditary conditions and/or environmental situations (e.g. exposure to carcinogens) known in the art that predispose an individual to developing cancers. Under these circumstances, it may be beneficial to treat these individuals with therapeutically effective doses of the polypeptide of the invention to reduce the risk of developing cancers.

In vitro models can be used to determine the effective doses of the polypeptide of the invention as a potential cancer treatment. These *in vitro* models include proliferation assays of cultured tumor cells, growth of cultured tumor cells in soft agar (see Freshney, (1987) Culture of Animal Cells: A Manual of Basic Technique, Wily-Liss, New York, NY Ch 18 and Ch 21), tumor systems in nude mice as described in Giovanella et al., J. Natl. Can. Inst., 52: 921-30 (1974), mobility and invasive potential of tumor cells in

Boyden Chamber assays as described in Pilkington et al., Anticancer Res., 17: 4107-9 (1997), and angiogenesis assays such as induction of vascularization of the chick chorioallantoic membrane or induction of vascular endothelial cell migration as described in Ribatta et al., Intl. J. Dev. Biol., 40: 1189-97 (1999) and Li et al., Clin. Exp. Metastasis, 17:423-9 (1999), respectively. Suitable tumor cells lines are available, e.g. from American Type Tissue Culture Collection catalogs.

4.10.12 RECEPTOR/LIGAND ACTIVITY

5

10

15

20

25

30

A polypeptide of the present invention may also demonstrate activity as receptor, receptor ligand or inhibitor or agonist of receptor/ligand interactions. A polynucleotide of the invention can encode a polypeptide exhibiting such characteristics. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses. Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley- Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

By way of example, the polypeptides of the invention may be used as a receptor for a ligand(s) thereby transmitting the biological activity of that ligand(s). Ligands may be identified through binding assays, affinity chromatography, dihybrid screening assays, BIAcore assays, gel overlay assays, or other methods known in the art.

Studies characterizing drugs or proteins as agonist or antagonist or partial agonists or a partial antagonist require the use of other proteins as competing ligands. The polypeptides of the present invention or ligand(s) thereof may be labeled by being coupled to radioisotopes, colorimetric molecules or a toxin molecules by conventional methods. ("Guide to Protein Purification" Murray P. Deutscher (ed) Methods in Enzymology Vol. 182 (1990) Academic Press, Inc. San Diego). Examples of radioisotopes include, but are not limited to, tritium and carbon-14. Examples of colorimetric molecules include, but are not limited to, fluorescent molecules such as fluorescamine, or rhodamine or other colorimetric molecules. Examples of toxins include, but are not limited, to ricin.

15

20

25

30

10

5

4.10.13 DRUG SCREENING

This invention is particularly useful for screening chemical compounds by using the novel polypeptides or binding fragments thereof in any of a variety of drug screening techniques. The polypeptides or fragments employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or a fragment thereof. Drugs are screened against such transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between polypeptides of the invention or fragments and the agent being tested or examine the diminution in complex formation between the novel polypeptides and an appropriate cell line, which are well known in the art.

Sources for test compounds that may be screened for ability to bind to or modulate (i.e., increase or decrease) the activity of polypeptides of the invention include (1) inorganic and organic chemical libraries, (2) natural product libraries, and (3)

combinatorial libraries comprised of either random or mimetic peptides, oligonucleotides or organic molecules.

Chemical libraries may be readily synthesized or purchased from a number of commercial sources, and may include structural analogs of known compounds or compounds that are identified as "hits" or "leads" via natural product screening.

5

10

15

20

25

30

The sources of natural product libraries are microorganisms (including bacteria and fungi), animals, plants or other vegetation, or marine organisms, and libraries of mixtures for screening may be created by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of the organisms themselves.

Natural product libraries include polyketides, non-ribosomal peptides, and (non-naturally

occurring) variants thereof. For a review, see Science 282:63-68 (1998).

Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds and can be readily prepared by traditional automated synthesis methods, PCR, cloning or proprietary synthetic methods. Of particular interest are peptide and oligonucleotide combinatorial libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, *Curr. Opin. Biotechnol.* 8:701-707 (1997). For reviews and examples of peptidomimetic libraries, see Al-Obeidi et al., *Mol. Biotechnol.* 9(3):205-23 (1998); Hruby et al., *Curr Opin Chem Biol.*, 1(1):114-19 (1997); Dorner et al., *Bioorg Med Chem*, 4(5):709-15 (1996) (alkylated dipeptides).

Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the capacity of the "hit" to bind a polypeptide of the invention. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

The binding molecules thus identified may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells such as radioisotopes. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity

of the binding molecule for a polypeptide of the invention. Alternatively, the binding molecules may be complexed with imaging agents for targeting and imaging purposes.

4.10.14 ASSAY FOR RECEPTOR ACTIVITY

5

10

15

20

25

30

The invention also provides methods to detect specific binding of a polypeptide e.g. a ligand or a receptor. The art provides numerous assays particularly useful for identifying previously unknown binding partners for receptor polypeptides of the invention. For example, expression cloning using mammalian or bacterial cells, or dihybrid screening assays can be used to identify polynucleotides encoding binding partners. As another example, affinity chromatography with the appropriate immobilized polypeptide of the invention can be used to isolate polypeptides that recognize and bind polypeptides of the invention. There are a number of different libraries used for the identification of compounds, and in particular small molecules, that modulate (i.e., increase or decrease) biological activity of a polypeptide of the invention. Ligands for receptor polypeptides of the invention can also be identified by adding exogenous ligands, or cocktails of ligands to two cells populations that are genetically identical except for the expression of the receptor of the invention: one cell population expresses the receptor of the invention whereas the other does not. The response of the two cell populations to the addition of ligands(s) are then compared. Alternatively, an expression library can be co-expressed with the polypeptide of the invention in cells and assayed for an autocrine response to identify potential ligand(s). As still another example, BIAcore assays, gel overlay assays, or other methods known in the art can be used to identify binding partner polypeptides, including, (1) organic and inorganic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules.

The role of downstream intracellular signaling molecules in the signaling cascade of the polypeptide of the invention can be determined. For example, a chimeric protein in which the cytoplasmic domain of the polypeptide of the invention is fused to the extracellular portion of a protein, whose ligand has been identified, is produced in a host cell. The cell is then incubated with the ligand specific for the extracellular portion of the chimeric protein, thereby activating the chimeric receptor. Known downstream proteins

involved in intracellular signaling can then be assayed for expected modifications i.e. phosphorylation. Other methods known to those in the art can also be used to identify signaling molecules involved in receptor activity.

4.10.15 ANTI-INFLAMMATORY ACTIVITY

5

10

15

20

25

30

Compositions of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Compositions with such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation intimation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Compositions of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material. Compositions of this invention may be utilized to prevent or treat conditions such as, but not limited to, sepsis, acute pancreatitis, endotoxin shock, cytokine induced shock, rheumatoid arthritis, chronic inflammatory arthritis, pancreatic cell damage from diabetes mellitus type 1, graft versus host disease, inflammatory bowel disease, inflamation associated with pulmonary disease, other autoimmune disease or inflammatory disease, an antiproliferative agent such as for acute or chronic mylegenous leukemia or in the prevention of premature labor secondary to intrauterine infections.

4.10.16 LEUKEMIAS

Leukemias and related disorders may be treated or prevented by administration of a therapeutic that promotes or inhibits function of the polynucleotides and/or polypeptides of the invention. Such leukemias and related disorders include but are not

limited to acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, myeloblastic, promyelocytic, myelomonocytic, monocytic, erythroleukemia, chronic leukemia, chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia (for a review of such disorders, see Fishman et al., 1985, Medicine, 2d Ed., J.B.

5 Lippincott Co., Philadelphia).

10

15

20

25

30

4.10.17 NERVOUS SYSTEM DISORDERS

Nervous system disorders, involving cell types which can be tested for efficacy of intervention with compounds that modulate the activity of the polynucleotides and/or polypeptides of the invention, and which can be treated upon thus observing an indication of therapeutic utility, include but are not limited to nervous system injuries, and diseases or disorders which result in either a disconnection of axons, a diminution or degeneration of neurons, or demyelination. Nervous system lesions which may be treated in a patient (including human and non-human mammalian patients) according to the invention include but are not limited to the following lesions of either the central (including spinal cord, brain) or peripheral nervous systems:

- (i) traumatic lesions, including lesions caused by physical injury or associated with surgery, for example, lesions which sever a portion of the nervous system, or compression injuries;
- (ii) ischemic lesions, in which a lack of oxygen in a portion of the nervous system results in neuronal injury or death, including cerebral infarction or ischemia, or spinal cord infarction or ischemia;
- (iii) infectious lesions, in which a portion of the nervous system is destroyed or injured as a result of infection, for example, by an abscess or associated with infection by human immunodeficiency virus, herpes zoster, or herpes simplex virus or with Lyme disease, tuberculosis, syphilis;
- (iv) degenerative lesions, in which a portion of the nervous system is destroyed or injured as a result of a degenerative process including but not limited to degeneration associated with Parkinson's disease, Alzheimer's disease, Huntington's chorea, or amyotrophic lateral sclerosis;

(v) lesions associated with nutritional diseases or disorders, in which a portion of the nervous system is destroyed or injured by a nutritional disorder or disorder of metabolism including but not limited to, vitamin B12 deficiency, folic acid deficiency, Wernicke disease, tobacco-alcohol amblyopia, Marchiafava-Bignami disease (primary degeneration of the corpus callosum), and alcoholic cerebellar degeneration;

- (vi) neurological lesions associated with systemic diseases including but not limited to diabetes (diabetic neuropathy, Bell's palsy), systemic lupus erythematosus, carcinoma, or sarcoidosis;
- (vii) lesions caused by toxic substances including alcohol, lead, or particularneurotoxins; and

5

15

20

25

30

(viii) demyelinated lesions in which a portion of the nervous system is destroyed or injured by a demyelinating disease including but not limited to multiple sclerosis, human immunodeficiency virus-associated myelopathy, transverse myelopathy or various etiologies, progressive multifocal leukoencephalopathy, and central pontine myelinolysis.

Therapeutics which are useful according to the invention for treatment of a nervous system disorder may be selected by testing for biological activity in promoting the survival or differentiation of neurons. For example, and not by way of limitation, therapeutics which elicit any of the following effects may be useful according to the invention:

- (i) increased survival time of neurons in culture;
- (ii) increased sprouting of neurons in culture or in vivo;
- (iii) increased production of a neuron-associated molecule in culture or *in vivo*, e.g., choline acetyltransferase or acetylcholinesterase with respect to motor neurons; or
 - (iv) decreased symptoms of neuron dysfunction in vivo.

Such effects may be measured by any method known in the art. In preferred, non-limiting embodiments, increased survival of neurons may be measured by the method set forth in Arakawa et al. (1990, J. Neurosci. 10:3507-3515); increased sprouting of neurons may be detected by methods set forth in Pestronk et al. (1980, Exp. Neurol. 70:65-82) or Brown et al. (1981, Ann. Rev. Neurosci. 4:17-42); increased production of neuron-associated molecules may be measured by bioassay, enzymatic assay, antibody

binding, Northern blot assay, etc., depending on the molecule to be measured; and motor neuron dysfunction may be measured by assessing the physical manifestation of motor neuron disorder, e.g., weakness, motor neuron conduction velocity, or functional disability.

In specific embodiments, motor neuron disorders that may be treated according to the invention include but are not limited to disorders such as infarction, infection, exposure to toxin, trauma, surgical damage, degenerative disease or malignancy that may affect motor neurons as well as other components of the nervous system, as well as disorders that selectively affect neurons such as amyotrophic lateral sclerosis, and including but not limited to progressive spinal muscular atrophy, progressive bulbar palsy, primary lateral sclerosis, infantile and juvenile muscular atrophy, progressive bulbar paralysis of childhood (Fazio-Londe syndrome), poliomyelitis and the post polio syndrome, and Hereditary Motorsensory Neuropathy (Charcot-Marie-Tooth Disease).

15 4.10.18 OTHER ACTIVITIES

5

10

20

25

30

A polypeptide of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, co-factors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related

diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

4.10.19 IDENTIFICATION OF POLYMORPHISMS

5

10

15

20

25

30

The demonstration of polymorphisms makes possible the identification of such polymorphisms in human subjects and the pharmacogenetic use of this information for diagnosis and treatment. Such polymorphisms may be associated with, e.g., differential predisposition or susceptibility to various disease states (such as disorders involving inflammation or immune response) or a differential response to drug administration, and this genetic information can be used to tailor preventive or therapeutic treatment appropriately. For example, the existence of a polymorphism associated with a predisposition to inflammation or autoimmune disease makes possible the diagnosis of this condition in humans by identifying the presence of the polymorphism.

Polymorphisms can be identified in a variety of ways known in the art which all generally involve obtaining a sample from a patient, analyzing DNA from the sample, optionally involving isolation or amplification of the DNA, and identifying the presence of the polymorphism in the DNA. For example, PCR may be used to amplify an appropriate fragment of genomic DNA which may then be sequenced. Alternatively, the DNA may be subjected to allele-specific oligonucleotide hybridization (in which appropriate oligonucleotides are hybridized to the DNA under conditions permitting detection of a single base mismatch) or to a single nucleotide extension assay (in which an oligonucleotide that hybridizes immediately adjacent to the position of the polymorphism is extended with one or more labeled nucleotides). In addition, traditional restriction fragment length polymorphism analysis (using restriction enzymes that provide differential digestion of the genomic DNA depending on the presence or absence of the polymorphism) may be performed. Arrays with nucleotide sequences of the present invention can be used to detect polymorphisms. The array can comprise modified nucleotide sequences of the present invention in order to detect the nucleotide sequences

of the present invention. In the alternative, any one of the nucleotide sequences of the present invention can be placed on the array to detect changes from those sequences.

Alternatively a polymorphism resulting in a change in the amino acid sequence could also be detected by detecting a corresponding change in amino acid sequence of the protein, e.g., by an antibody specific to the variant sequence.

4.10.20 ARTHRITIS AND INFLAMMATION

The immunosuppressive effects of the compositions of the invention against rheumatoid arthritis is determined in an experimental animal model system. The experimental model system is adjuvant induced arthritis in rats, and the protocol is described by J. Holoshitz, et at., 1983, Science, 219:56, or by B. Waksman et al., 1963, Int. Arch. Allergy Appl. Immunol., 23:129. Induction of the disease can be caused by a single injection, generally intradermally, of a suspension of killed Mycobacterium tuberculosis in complete Freund's adjuvant (CFA). The route of injection can vary, but rats may be injected at the base of the tail with an adjuvant mixture. The polypeptide is administered in phosphate buffered solution (PBS) at a dose of about 1-5 mg/kg. The control consists of administering PBS only.

The procedure for testing the effects of the test compound would consist of intradermally injecting killed Mycobacterium tuberculosis in CFA followed by immediately administering the test compound and subsequent treatment every other day until day 24. At 14, 15, 18, 20, 22, and 24 days after injection of Mycobacterium CFA, an overall arthritis score may be obtained as described by J. Holoskitz above. An analysis of the data would reveal that the test compound would have a dramatic affect on the swelling of the joints as measured by a decrease of the arthritis score.

25

30

5

10

15

20

4.11 THERAPEUTIC METHODS

The compositions (including polypeptide fragments, analogs, variants and antibodies or other binding partners or modulators including antisense polynucleotides) of the invention have numerous applications in a variety of therapeutic methods.

Examples of therapeutic applications include, but are not limited to, those exemplified herein.

4.11.1 EXAMPLE

One embodiment of the invention is the administration of an effective amount of the polypeptides or other composition of the invention to individuals affected by a disease or disorder that can be modulated by regulating the peptides of the invention. While the mode of administration is not particularly important, parenteral administration is preferred. An exemplary mode of administration is to deliver an intravenous bolus. The dosage of the polypeptides or other composition of the invention will normally be determined by the prescribing physician. It is to be expected that the dosage will vary according to the age, weight, condition and response of the individual patient. Typically, the amount of polypeptide administered per dose will be in the range of about 0.01µg/kg to 100 mg/kg of body weight, with the preferred dose being about 0.1µg/kg to 10 mg/kg of patient body weight. For parenteral administration, polypeptides of the invention will be formulated in an injectable form combined with a pharmaceutically acceptable parenteral vehicle. Such vehicles are well known in the art and examples include water, saline, Ringer's solution, dextrose solution, and solutions consisting of small amounts of the human serum albumin. The vehicle may contain minor amounts of additives that maintain the isotonicity and stability of the polypeptide or other active ingredient. The preparation of such solutions is within the skill of the art.

20

25

30

5

10

15

4.12 PHARMACEUTICAL FORMULATIONS AND ROUTES OF ADMINISTRATION

A protein or other composition of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources and including antibodies and other binding partners of the polypeptides of the invention) may be administered to a patient in need, by itself, or in pharmaceutical compositions where it is mixed with suitable carriers or excipient(s) at doses to treat or ameliorate a variety of disorders. Such a composition may optionally contain (in addition to protein or other active ingredient and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity

of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNF0, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the disease or disorder in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth factors (TGF-α and TGF-β), insulin-like growth factor (IGF), as well as cytokines described herein.

The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or other active ingredient or complement its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein or other active ingredient of the invention, or to minimize side effects. Conversely, protein or other active ingredient of the present invention may be included in formulations of the particular clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent (such as IL-1Ra, IL-1 Hy1, IL-1 Hy2, anti-TNF, corticosteroids, immunosuppressive agents). A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

As an alternative to being included in a pharmaceutical composition of the invention including a first protein, a second protein or a therapeutic agent may be concurrently administered with the first protein (e.g., at the same time, or at differing times provided that therapeutic concentrations of the combination of agents is achieved at the treatment site). Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, latest edition. A therapeutically effective dose further refers

to that amount of the compound sufficient to result in amelioration of symptoms, e.g., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, a therapeutically effective dose refers to that ingredient alone. When applied to a combination, a therapeutically effective dose refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

5

10

15

20

25

30

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein or other active ingredient of the present invention is administered to a mammal having a condition to be treated. Protein or other active ingredient of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When coadministered with one or more cytokines, lymphokines or other hematopoietic factors, protein or other active ingredient of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein or other active ingredient of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.

4.12.1 ROUTES OF ADMINISTRATION

Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections. Administration of protein or other active ingredient of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or

cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection. Intravenous administration to the patient is preferred.

Alternately, one may administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into a arthritic joints or in fibrotic tissue, often in a depot or sustained release formulation. In order to prevent the scarring process frequently occurring as complication of glaucoma surgery, the compounds may be administered topically, for example, as eye drops. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome coated with a specific antibody, targeting, for example, arthritic or fibrotic tissue. The liposomes will be targeted to and taken up selectively by the afflicted tissue.

The polypeptides of the invention are administered by any route that delivers an effective dosage to the desired site of action. The determination of a suitable route of administration and an effective dosage for a particular indication is within the level of skill in the art. Preferably for wound treatment, one administers the therapeutic compound directly to the site. Suitable dosage ranges for the polypeptides of the invention can be extrapolated from these dosages or from similar studies in appropriate animal models. Dosages can then be adjusted as necessary by the clinician to provide maximal therapeutic benefit.

4.12.2 COMPOSITIONS/FORMULATIONS

5

10

15

20

25

30

Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. These pharmaceutical compositions may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Proper formulation is dependent upon the route of administration chosen. When a therapeutically effective amount of protein or other active ingredient of the present invention is administered orally, protein or other active ingredient of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the

pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein or other active ingredient of the present invention, and preferably from about 25 to 90% protein or other active ingredient of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein or other active ingredient of the present invention, and preferably from about 1 to 50% protein or other active ingredient of the present invention.

5

10

15

20

25

30

When a therapeutically effective amount of protein or other active ingredient of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein or other active ingredient of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein or other active ingredient solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein or other active ingredient of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art. For injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art.

Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained from a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

5

10

15

20

25

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon

dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, *e.g.*, sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides. In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

5

10

15

20

25

30

A pharmaceutical carrier for the hydrophobic compounds of the invention is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. The co-solvent system may be the VPD co-solvent system. VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. The VPD co-solvent system (VPD:5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar. surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g. polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose. Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity. Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various types of sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein or other active ingredient stabilization may be employed.

The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols. Many of the active ingredients of the invention may be provided as salts with pharmaceutically compatible counter ions. Such pharmaceutically acceptable base addition salts are those salts which retain the biological

effectiveness and properties of the free acids and which are obtained by reaction with inorganic or organic bases such as sodium hydroxide, magnesium hydroxide, ammonia, trialkylamine, dialkylamine, monoalkylamine, dibasic amino acids, sodium acetate, potassium benzoate, triethanol amine and the like.

5

10

15

20

25

30

The pharmaceutical composition of the invention may be in the form of a complex of the protein(s) or other active ingredient(s) of present invention along with protein or peptide antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunoglobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.

The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithins, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent Nos. 4,235,871; 4,501,728; 4,837,028; and 4,737,323, all of which are incorporated herein by reference.

The amount of protein or other active ingredient of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein or other active ingredient of the present invention with which to treat each

individual patient. Initially, the attending physician will administer low doses of protein or other active ingredient of the present invention and observe the patient's response. Larger doses of protein or other active ingredient of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 µg to about 100 mg (preferably about 0.1 µg to about 10 mg, more preferably about 0.1 µg to about 1 mg) of protein or other active ingredient of the present invention per kg body weight. For compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein or other active ingredient of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of delivering the protein-containing or other active ingredient-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

10

15

20

25

30

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalcium phosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure

proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalcium phosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability. Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.

A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, hydroxypropylcellulose, hydroxypropylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide,

10

15

20

25

30

carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 wt %, preferably 1-10 wt % based on total formulation weight, which represents the amount necessary to prevent desorption of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells. In further compositions, proteins or other active ingredients of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors

The therapeutic compositions are also presently valuable for veterinary applications. Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins or other active ingredients

(TGF- α and TGF- β), and insulin-like growth factor (IGF).

of the present invention. The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.

4.12.3 EFFECTIVE DOSAGE

5

10

15

20

25

30

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount effective to prevent development of or to alleviate the existing symptoms of the subject being treated. Determination of the effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from appropriate in vitro assays. For example, a dose can be formulated in animal models to achieve a circulating

concentration range that can be used to more accurately determine useful doses in humans. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC₅₀ as determined in cell culture (*i.e.*, the concentration of the test compound which achieves a half-maximal inhibition of the protein's biological activity). Such information can be used to more accurately determine useful doses in humans.

5

10

15

20

25

30

A therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD₅₀ and ED₅₀. Compounds which exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. See, e.g., Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p.1. Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the desired effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.

Dosage intervals can also be determined using MEC value. Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%.

In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.

An exemplary dosage regimen for polypeptides or other compositions of the invention will be in the range of about 0.01 μ g/kg to 100 mg/kg of body weight daily, with the preferred dose being about 0.1 μ g/kg to 25 mg/kg of patient body weight daily, varying in adults and children. Dosing may be once daily, or equivalent doses may be delivered at longer or shorter intervals.

The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's age and weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.

4.12.4 PACKAGING

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may, for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.

20

25

30

15

5

10

4.13 ANTIBODIES

Also included in the invention are antibodies to proteins, or fragments of proteins of the invention. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F_{ab} , F_{ab} and $F_{(ab)2}$ fragments, and an F_{ab} expression library. In general, an antibody molecule obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG₁, IgG₂, and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain.

Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.

5

10

15

20

25

An isolated related protein of the invention may be intended to serve as an antigen, or a portion or fragment thereof, and additionally can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as an amino acid sequence shown in SEQ ID NO: 4, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.

In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of -related protein that is located on the surface of the protein, e.g., a hydrophilic region. A hydrophobicity analysis of the human related protein sequence will indicate which regions of a related protein are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each of which is incorporated herein by reference in its entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.

A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.

Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, incorporated herein by reference). Some of these antibodies are discussed below.

10

15

20

25

30

5

5.13.1 Polyclonal Antibodies

For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).

The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide

primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia PA, Vol. 14, No. 8 (April 17, 2000), pp. 25-28).

5.13.2 Monoclonal Antibodies

5

10

15

20

25

30

The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.

Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.

The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or

survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

5

10

15

20

25

30

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, <u>J. Immunol.</u>, 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63).

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). Preferably, antibodies having a high degree of specificity and a high binding affinity for the target antigen are isolated.

After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.

The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures

such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a nonimmunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

20

25

30

5

10

15

5.13.2 Humanized Antibodies

The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')₂ or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536

(1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).

5.13.3 Human Antibodies

5

10

15

20

25

30

Fully human antibodies relate to antibody molecules in which essentially the entire sequences of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or "fully human antibodies" herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).

In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, <u>J. Mol. Biol.</u>, <u>227</u>:381 (1991); Marks et al., <u>J. Mol. Biol.</u>, <u>222</u>:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely

inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison (Nature 368, 812-13 (1994)); Fishwild et al,(Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).

5

10

15

20

25

30

Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the XenomouseTM as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.

An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to

prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.

A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.

In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.

5.13.4 Fab Fragments and Single Chain Antibodies

According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Patent No. 4,946,778). In addition, methods can be adapted for the construction of F_{ab} expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal F_{ab} fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an $F_{(ab')2}$ fragment produced by pepsin digestion of an antibody molecule; (ii) an F_{ab} fragment generated by reducing the disulfide bridges of an $F_{(ab')2}$ fragment; (iii) an F_{ab} fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) F_{v} fragments.

30

5

10

15

20

25

5.13.5 Bispecific Antibodies

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.

5

10

15

20

25

30

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker *et al.*, 1991 *EMBO J.*, 10:3655-3659.

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).

According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan).

Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

5

10

15

25

30

Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')₂ bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab'), fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Additionally, Fab' fragments can be directly recovered from E. coli and 20 chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody

homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., <u>Proc. Natl. Acad. Sci. USA</u> 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V_H) connected to a light-chain variable domain (V_L) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., <u>J. Immunol.</u> 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991). Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcyR), such as FcyRI (CD64), FcyRII (CD32) and FcyRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).

25

30

5

10

15

20

5.13.6 Heteroconjugate Antibodies

Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in

vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

5.13.7 Effector Function Engineering

It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).

20

25

30

5

10

15

5.13.8 Immunoconjugates

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin,

crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include ²¹²Bi, ¹³¹I, ¹³¹In, ⁹⁰Y, and ¹⁸⁶Re.

5 Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

In another embodiment, the antibody can be conjugated to a "receptor" (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is in turn conjugated to a cytotoxic agent.

4.14 COMPUTER READABLE SEQUENCES

20

25

30

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to

create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

5

10

15 -

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data processor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

20 representative fragment thereof; or a nucleotide sequence at least 95% identical to any of the nucleotide sequences of SEQ ID NO:1-739 in computer readable form, a skilled artisan can routinely access the sequence information for a variety of purposes.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system is used to identify open reading frames (ORFs) within a nucleic acid sequence. Such ORFs may be protein encoding fragments and may be useful in producing commercially important proteins such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

PCT/US00/35017 WO 01/53455

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit 5 (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention. As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

10

15

20

25

30

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of a known sequence which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, Smith-Waterman, MacPattern (EMBL), BLASTN and BLASTA (NPOLYPEPTIDEIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems. As used herein, a "target sequence" can be any nucleic acid or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 300 amino acids, more preferably from about 30 to 100 nucleotide residues. However, it is well recognized that searches for

commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzyme active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

10

15

25

30

4.15 TRIPLE HELIX FORMATION

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Polynucleotides suitable for use in these methods are preferably 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 15241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Olmno, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide.

4.16 DIAGNOSTIC ASSAYS AND KITS

The present invention further provides methods to identify the presence or expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using a nucleic acid probe or antibodies of the present invention, optionally conjugated or otherwise associated with a suitable label.

In general, methods for detecting a polynucleotide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polynucleotide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polynucleotide of the invention is detected in the sample. Such methods can also comprise contacting a sample under stringent hybridization conditions with nucleic acid primers that anneal to a polynucleotide of the invention under such conditions, and amplifying annealed polynucleotides, so that if a polynucleotide is amplified, a polynucleotide of the invention is detected in the sample.

5

10

15

20

25

30

In general, methods for detecting a polypeptide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polypeptide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polypeptide of the invention is detected in the sample.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the nucleic acid probes of the present invention and assaying for binding of the nucleic acid probes or antibodies to components within the test sample.

Conditions for incubating a nucleic acid probe or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid probe or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G.R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985). The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein

extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention. Specifically, the invention provides a compartment kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the probes or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound probe or antibody.

In detail, a compartment kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or probe. Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed probes and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

25

30

10

15

20

4.17 MEDICAL IMAGING

The novel polypeptides and binding partners of the invention are useful in medical imaging of sites expressing the molecules of the invention (e.g., where the polypeptide of the invention is involved in the immune response, for imaging sites of inflammation or infection). See, e.g., Kunkel et al., U.S. Pat. NO. 5,413,778. Such methods involve chemical attachment of a labeling or imaging agent, administration of

the labeled polypeptide to a subject in a pharmaceutically acceptable carrier, and imaging the labeled polypeptide *in vivo* at the target site.

4.18 SCREENING ASSAYS

5

10

15

20

25

30

Using the isolated proteins and polynucleotides of the invention, the present invention further provides methods of obtaining and identifying agents which bind to a polypeptide encoded by an ORF corresponding to any of the nucleotide sequences set forth in SEQ ID NO:1-739, or bind to a specific domain of the polypeptide encoded by the nucleic acid. In detail, said method comprises the steps of:

- (a) contacting an agent with an isolated protein encoded by an ORF of the present invention, or nucleic acid of the invention; and
- (b) determining whether the agent binds to said protein or said nucleic acid.

 In general, therefore, such methods for identifying compounds that bind to a polynucleotide of the invention can comprise contacting a compound with a polynucleotide of the invention for a time sufficient to form a polynucleotide/compound complex, and detecting the complex, so that if a polynucleotide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Likewise, in general, therefore, such methods for identifying compounds that bind to a polypeptide of the invention can comprise contacting a compound with a polypeptide of the invention for a time sufficient to form a polypeptide/compound complex, and detecting the complex, so that if a polypeptide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Methods for identifying compounds that bind to a polypeptide of the invention can also comprise contacting a compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a receptor gene sequence in the cell, and detecting the complex by detecting reporter gene sequence expression, so that if a polypeptide/compound complex is detected, a compound that binds a polypeptide of the invention is identified.

Compounds identified via such methods can include compounds which modulate the activity of a polypeptide of the invention (that is, increase or decrease its activity, relative to activity observed in the absence of the compound). Alternatively, compounds

identified via such methods can include compounds which modulate the expression of a polynucleotide of the invention (that is, increase or decrease expression relative to expression levels observed in the absence of the compound). Compounds, such as compounds identified via the methods of the invention, can be tested using standard assays well known to those of skill in the art for their ability to modulate activity/expression.

5

10

15

20

25

30

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention. Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like, capable of binding to a specific peptide sequence, in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control. One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix formation by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or

can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods preferably contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.

Agents which bind to a protein encoded by one of the ORFs of the present invention can be used as a diagnostic agent. Agents which bind to a protein encoded by one of the ORFs of the present invention can be formulated using known techniques to generate a pharmaceutical composition.

4.19 USE OF NUCLEIC ACIDS AS PROBES

5

10

15

20

25

30

Another aspect of the subject invention is to provide for polypeptide-specific nucleic acid hybridization probes capable of hybridizing with naturally occurring nucleotide sequences. The hybridization probes of the subject invention may be derived from any of the nucleotide sequences SEQ ID NO:1-739. Because the corresponding gene is only expressed in a limited number of tissues, a hybridization probe derived from of any of the nucleotide sequences SEQ ID NO:1-739 can be used as an indicator of the presence of RNA of cell type of such a tissue in a sample.

Any suitable hybridization technique can be employed, such as, for example, in situ hybridization. PCR as described in US Patents Nos. 4,683,195 and 4,965,188 provides additional uses for oligonucleotides based upon the nucleotide sequences. Such probes used in PCR may be of recombinant origin, may be chemically synthesized, or a mixture of both. The probe will comprise a discrete nucleotide sequence for the detection

of identical sequences or a degenerate pool of possible sequences for identification of closely related genomic sequences.

5

10

15

20

25

30

Other means for producing specific hybridization probes for nucleic acids include the cloning of nucleic acid sequences into vectors for the production of mRNA probes. Such vectors are known in the art and are commercially available and may be used to synthesize RNA probes *in vitro* by means of the addition of the appropriate RNA polymerase as T7 or SP6 RNA polymerase and the appropriate radioactively labeled nucleotides. The nucleotide sequences may be used to construct hybridization probes for mapping their respective genomic sequences. The nucleotide sequence provided herein may be mapped to a chromosome or specific regions of a chromosome using well known genetic and/or chromosomal mapping techniques. These techniques include in situ hybridization, linkage analysis against known chromosomal markers, hybridization screening with libraries or flow-sorted chromosomal preparations specific to known chromosomes, and the like. The technique of fluorescent in situ hybridization of chromosome spreads has been described, among other places, in Verma et al (1988) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York NY.

Fluorescent in situ hybridization of chromosomal preparations and other physical chromosome mapping techniques may be correlated with additional genetic map data. Examples of genetic map data can be found in the 1994 Genome Issue of Science (265:1981f). Correlation between the location of a nucleic acid on a physical chromosomal map and a specific disease (or predisposition to a specific disease) may help delimit the region of DNA associated with that genetic disease. The nucleotide sequences of the subject invention may be used to detect differences in gene sequences between normal, carrier or affected individuals.

4.20 PREPARATION OF SUPPORT BOUND OLIGONUCLEOTIDES

Oligonucleotides, i.e., small nucleic acid segments, may be readily prepared by, for example, directly synthesizing the oligonucleotide by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer.

Support bound oligonucleotides may be prepared by any of the methods known to those of skill in the art using any suitable support such as glass, polystyrene or Teflon. One strategy is to precisely spot oligonucleotides synthesized by standard synthesizers.

Immobilization can be achieved using passive adsorption (Inouye & Hondo, (1990) J. Clin. Microbiol. 28(6) 1469-72); using UV light (Nagata et al., 1985; Dahlen et al., 1987; Morrissey & Collins, (1989) Mol. Cell Probes 3(2) 189-207) or by covalent binding of base modified DNA (Keller et al., 1988; 1989); all references being specifically incorporated herein.

5

10

15

20

25

30

Another strategy that may be employed is the use of the strong biotin-streptavidin interaction as a linker. For example, Broude *et al.* (1994) Proc. Natl. Acad. Sci. USA 91(8) 3072-6, describe the use of biotinylated probes, although these are duplex probes, that are immobilized on streptavidin-coated magnetic beads. Streptavidin-coated beads may be purchased from Dynal, Oslo. Of course, this same linking chemistry is applicable to coating any surface with streptavidin. Biotinylated probes may be purchased from various sources, such as, e.g., Operon Technologies (Alameda, CA).

Nunc Laboratories (Naperville, IL) is also selling suitable material that could be used. Nunc Laboratories have developed a method by which DNA can be covalently bound to the microwell surface termed Covalink NH. CovaLink NH is a polystyrene surface grafted with secondary amino groups (>NH) that serve as bridge-heads for further covalent coupling. CovaLink Modules may be purchased from Nunc Laboratories. DNA molecules may be bound to CovaLink exclusively at the 5'-end by a phosphoramidate bond, allowing immobilization of more than 1 pmol of DNA (Rasmussen *et al.*, (1991) Anal. Biochem. 198(1) 138-42).

The use of CovaLink NH strips for covalent binding of DNA molecules at the 5'-end has been described (Rasmussen et al., (1991). In this technology, a phosphoramidate bond is employed (Chu et al., (1983) Nucleic Acids Res. 11(8) 6513-29). This is beneficial as immobilization using only a single covalent bond is preferred. The phosphoramidate bond joins the DNA to the CovaLink NH secondary amino groups that are positioned at the end of spacer arms covalently grafted onto the polystyrene surface through a 2 nm long spacer arm. To link an oligonucleotide to CovaLink NH via an phosphoramidate bond, the oligonucleotide terminus must have a 5'-end phosphate group. It is, perhaps, even possible for biotin to be covalently bound to CovaLink and then streptavidin used to bind the probes.

More specifically, the linkage method includes dissolving DNA in water (7.5 ng/ul) and denaturing for 10 min. at 95°C and cooling on ice for 10 min. Ice-cold 0.1 M

1-methylimidazole, pH 7.0 (1-MeIm₇), is then added to a final concentration of 10 mM 1-MeIm₇. A ss DNA solution is then dispensed into CovaLink NH strips (75 ul/well) standing on ice.

5

15

20

25

Carbodiimide 0.2 M 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), dissolved in 10 mM 1-MeIm₇, is made fresh and 25 ul added per well. The strips are incubated for 5 hours at 50°C. After incubation the strips are washed using, e.g., Nunc-Immuno Wash; first the wells are washed 3 times, then they are soaked with washing solution for 5 min., and finally they are washed 3 times (where in the washing solution is 0.4 N NaOH, 0.25% SDS heated to 50°C).

10 . It is contemplated that a further suitable method for use with the present invention is that described in PCT Patent Application WO 90/03382 (Southern & Maskos), incorporated herein by reference. This method of preparing an oligonucleotide bound to a support involves attaching a nucleoside 3'-reagent through the phosphate group by a covalent phosphodiester link to aliphatic hydroxyl groups carried by the support. The oligonucleotide is then synthesized on the supported nucleoside and protecting groups removed from the synthetic oligonucleotide chain under standard conditions that do not cleave the oligonucleotide from the support. Suitable reagents include nucleoside phosphoramidite and nucleoside hydrogen phosphorate.

An on-chip strategy for the preparation of DNA probe for the preparation of DNA probe arrays may be employed. For example, addressable laser-activated photodeprotection may be employed in the chemical synthesis of oligonucleotides directly on a glass surface, as described by Fodor et al. (1991) Science 251(4995) 767-73, incorporated herein by reference. Probes may also be immobilized on nylon supports as described by Van Ness et al. (1991) Nucleic Acids Res. 19(12) 3345-50; or linked to Teflon using the method of Duncan & Cavalier (1988) Anal. Biochem. 169(1) 104-8; all references being specifically incorporated herein.

To link an oligonucleotide to a nylon support, as described by Van Ness et al. (1991), requires activation of the nylon surface via alkylation and selective activation of the 5'-amine of oligonucleotides with cyanuric chloride.

30 One particular way to prepare support bound oligonucleotides is to utilize the light-generated synthesis described by Pease et al., (1994) PNAS USA 91(11) 5022-6,

incorporated herein by reference). These authors used current photolithographic techniques to generate arrays of immobilized oligonucleotide probes (DNA chips). These methods, in which light is used to direct the synthesis of oligonucleotide probes in high-density, miniaturized arrays, utilize photolabile 5'-protected N-acyl-deoxynucleoside phosphoramidites, surface linker chemistry and versatile combinatorial synthesis strategies. A matrix of 256 spatially defined oligonucleotide probes may be generated in this manner.

4.21 PREPARATION OF NUCLEIC ACID FRAGMENTS

5

10

15

20

25

30

The nucleic acids may be obtained from any appropriate source, such as cDNAs, genomic DNA, chromosomal DNA, microdissected chromosome bands, cosmid or YAC inserts, and RNA, including mRNA without any amplification steps. For example, Sambrook *et al.* (1989) describes three protocols for the isolation of high molecular weight DNA from mammalian cells (p. 9.14-9.23).

DNA fragments may be prepared as clones in M13, plasmid or lambda vectors and/or prepared directly from genomic DNA or cDNA by PCR or other amplification methods. Samples may be prepared or dispensed in multiwell plates. About 100-1000 ng of DNA samples may be prepared in 2-500 ml of final volume.

The nucleic acids would then be fragmented by any of the methods known to those of skill in the art including, for example, using restriction enzymes as described at 9.24-9.28 of Sambrook *et al.* (1989), shearing by ultrasound and NaOH treatment.

Low pressure shearing is also appropriate, as described by Schriefer *et al.* (1990) Nucleic Acids Res. 18(24) 7455-6, incorporated herein by reference). In this method, DNA samples are passed through a small French pressure cell at a variety of low to intermediate pressures. A lever device allows controlled application of low to intermediate pressures to the cell. The results of these studies indicate that low-pressure shearing is a useful alternative to sonic and enzymatic DNA fragmentation methods.

One particularly suitable way for fragmenting DNA is contemplated to be that using the two base recognition endonuclease, *CviJI*, described by Fitzgerald *et al.* (1992) Nucleic Acids Res. 20(14) 3753-62. These authors described an approach for the rapid fragmentation and fractionation of DNA into particular sizes that they contemplated to be suitable for shotgun cloning and sequencing.

The restriction endonuclease CviJI normally cleaves the recognition sequence PuGCPy between the G and C to leave blunt ends. Atypical reaction conditions, which alter the specificity of this enzyme (CviJI**), yield a quasi-random distribution of DNA fragments form the small molecule pUC19 (2688 base pairs). Fitzgerald et al. (1992) quantitatively evaluated the randomness of this fragmentation strategy, using a CviJI** digest of pUC19 that was size fractionated by a rapid gel filtration method and directly ligated, without end repair, to a lac Z minus M13 cloning vector. Sequence analysis of 76 clones showed that CviJI** restricts pyGCPy and PuGCPu, in addition to PuGCPy sites, and that new sequence data is accumulated at a rate consistent with random fragmentation.

As reported in the literature, advantages of this approach compared to sonication and agarose gel fractionation include: smaller amounts of DNA are required (0.2-0.5 ug instead of 2-5 ug); and fewer steps are involved (no preligation, end repair, chemical extraction, or agarose gel electrophoresis and elution are needed

Irrespective of the manner in which the nucleic acid fragments are obtained or prepared, it is important to denature the DNA to give single stranded pieces available for hybridization. This is achieved by incubating the DNA solution for 2-5 minutes at 80-90°C. The solution is then cooled quickly to 2°C to prevent renaturation of the DNA fragments before they are contacted with the chip. Phosphate groups must also be removed from genomic DNA by methods known in the art.

4.22 PREPARATION OF DNA ARRAYS

5

10

15

20

25

30

Arrays may be prepared by spotting DNA samples on a support such as a nylon membrane. Spotting may be performed by using arrays of metal pins (the positions of which correspond to an array of wells in a microtiter plate) to repeated by transfer of about 20 nl of a DNA solution to a nylon membrane. By offset printing, a density of dots higher than the density of the wells is achieved. One to 25 dots may be accommodated in 1 mm², depending on the type of label used. By avoiding spotting in some preselected number of rows and columns, separate subsets (subarrays) may be formed. Samples in one subarray may be the same genomic segment of DNA (or the same gene) from different individuals, or may be different, overlapped genomic clones. Each of the subarrays may represent replica spotting of the same samples. In one example, a selected gene segment may be in one 96-well plate from 64 patients. For each patient, the amplified gene segment may be in one 96-well plate

(all 96 wells containing the same sample). A plate for each of the 64 patients is prepared. By using a 96-pin device, all samples may be spotted on one 8×12 cm membrane. Subarrays may contain 64 samples, one from each patient. Where the 96 subarrays are identical, the dot span may be 1 mm^2 and there may be a 1 mm space between subarrays.

Another approach is to use membranes or plates (available from NUNC, Naperville, Illinois) which may be partitioned by physical spacers e.g. a plastic grid molded over the membrane, the grid being similar to the sort of membrane applied to the bottom of multiwell plates, or hydrophobic strips. A fixed physical spacer is not preferred for imaging by exposure to flat phosphor-storage screens or x-ray films.

The present invention is illustrated in the following examples. Upon consideration of the present disclosure, one of skill in the art will appreciate that many other embodiments and variations may be made in the scope of the present invention. Accordingly, it is intended that the broader aspects of the present invention not be limited to the disclosure of the following examples. The present invention is not to be limited in scope by the exemplified embodiments which are intended as illustrations of single aspects of the invention, and compositions and methods which are functionally equivalent are within the scope of the invention. Indeed, numerous modifications and variations in the practice of the invention are expected to occur to those skilled in the art upon consideration of the present preferred embodiments. Consequently, the only limitations which should be placed upon the scope of the invention are those which appear in the appended claims.

All references cited within the body of the instant specification are hereby incorporated by reference in their entirety.

5.0 EXAMPLES

5

10

15

20

25

30

5.1 EXAMPLE 1

Novel Nucleic Acid Sequences Obtained From Various Libraries

A plurality of novel nucleic acids were obtained from cDNA libraries prepared from various human tissues and in some cases isolated from a genomic library derived from human chromosome using standard PCR, SBH sequence signature analysis and Sanger sequencing techniques. The inserts of the library were amplified with PCR using primers specific for the vector sequences which flank the inserts. Clones from cDNA libraries were

spotted on nylon membrane filters and screened with oligonucleotide probes (e.g., 7-mers) to obtain signature sequences. The clones were clustered into groups of similar or identical sequences. Representative clones were selected for sequencing.

In some cases, the 5' sequence of the amplified inserts was then deduced using a typical Sanger sequencing protocol. PCR products were purified and subjected to fluorescent dye terminator cycle sequencing. Single pass gel sequencing was done using a 377 Applied Biosystems (ABI) sequencer to obtain the novel nucleic acid sequences. In some cases RACE (Random Amplification of cDNA Ends) was performed to further extend the sequence in the 5' direction.

10

15

20

25

30

5

5.2 EXAMPLE 2

Novel Contigs

The novel contigs of the invention were assembled from sequences that were obtained from a cDNA library by methods described in Example 1 above, and in some cases sequences obtained from one or more public databases. Chromatograms were base called and assembled using a software suite from University of Washington, Seattle containing three applications designated PHRED, PHRAP, and CONSED. The sequences for the resulting nucleic acid contigs are designated as SEQ ID NO: 1-739 and are provided in the attached Sequence Listing. The contigs were assembled using an EST sequence as a seed. Then a recursive algorithm was used to extend the seed EST into an extended assemblage, by pulling additional sequences from different databases (i.e., Hyseq's database containing EST sequences, dbEST version 120, gb pri 120, UniGene version 120, and Genpept 120) that belong to this assemblage. The algorithm terminated when there was no additional sequences from the above databases that would extend the assemblage. Inclusion of component sequences into the assemblage was based on a BLASTN hit to the extending assemblage with BLAST score greater than 300 and percent identity greater than 95%.

The nearest neighbor result for the assembled contig was obtained by a FASTA version 3 search against Genpept release 120, using FASTXY algorithm. FASTXY is an improved version of FASTA alignment which allows in-codon frame shifts. The nearest neighbor result showed the closest homologue for each assemblage from Genpept (and

contains the translated amino acid sequences for which the assemblage encodes). The nearest neighbor results for SEQ ID NO: 1-739 are shown in Table 2.

Tables 1, 2, and 3 follow. Table 1 shows the various tissue sources of SEQ ID NO: 1-739. Table 2 shows the nearest neighbor result for the assembled contig. The nearest neighbor result shows the closest homologue for each assemblage and contains the translated amino acid sequences for which the assemblage encodes. Table 2 also shows homologues with identifiable functions for SEQ ID NO: 1-739. The polypeptides were predicted using a software program called FASTY (available from http://fasta.bioch.virginia.edu) which selects a polypeptide based on a comparison of translated novel polynucleotides to known polynucleotides (W.R. Pearson, Methods in Enzymology, Vol. 183: pp. 63-98, (1990), herein incorporated by reference). Table 3 shows the predicted amino acid sequence corresponding to the novel nucleic acid contig sequences.

10

Table 1 - Tissue Sources

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin		Library	
·		Name	
adult brain	GIBCO	AB3001	28 46 54 62 95 117 134 175 188-189
			324 330 337 356 369 371 378 386
İ			389 396 432 435-436 468 472-473
			476-477 483 486 518 538-539 543
			545 557 565 571 573 578 582 598
			613-614 619 627 632 634 639 687
			709
adult brain	GIBCO	ABD003	5 12 46 52 57 66 79 91 97 134 144
			148 150 162 164 172 175-176 181
			186 193 250 323 325-327 330 334
		· ·	338 362 367 369 371 378-379 386
			388-389 392 396-397 399-401 403
1		1	416 422 435 444 449 451 454 461
			463-464 468 472-473 483 486 494
			506 511 513 516 520 523-524 526
1			529 533 536-537 539 545 548 552
			556 558-559 562-563 565 567 569
,			573-574 576 579-580 582-584 590
			593-594 598 602 606 613-614 619-
1		i	621 623-624 627 634 637 641 646
			648 659 675 688-689 694 696-698
			703 714 729
adult brain	Clontech	ABR001	57 162 164 227 266 316 334 356 367
			385 438 468 512 524 528 557 582
			590 621 627 631 634 689 714
adult brain	Clontech	ABR006	189 228 385 438 571 584 632 650
			677
adult brain	Clontech	ABR008	1 3 5 11-25 31-32 46-47 55-57 59

Tissue	RNA Source	Hyseq	SEO ID NOS:
1 3	MA BOULCO	Library	
Origin	i	Name	
		Name	61 65-67 69 75 79 91 103 108 111
}			113-114 126 132 150 160 162 164
			171-172 186 188-189 193 202-203
			206 210-212 220 222-224 227-229
			233 235-236 243-247 251-252 257
]			264-266 268 275 313 324 328-331
į į			334-335 338-339 343 346-347 351
			355 357 359-361 365 367 370-371
		•	378 380 382 386-389 391 396 399-
			400 402 406 413 419-420 423 426
]			432 434 437-438 442 446 448-449
		i	459-460 465 468 470 472-473 475
			481-483 487 489-490 495-497 499
			501 503-504 507-509 511 520 524
			526 528 532-533 536 539-540 543-
1			546 551-552 556-557 563 565-567
			569 572-573 576-577 579-580 582
			584 586 590-591 593 595-597 599-
			602 604 610-616 620-621 624-625
			627-628 632 634 637-638 641 643-
			644 646-647 650 653-657 660-662
			668 672 675 677-678 680-681 688-
			689 691 693 695-696 698 706-707
		·	
			709 711 713-727 729 731 733-734
			736 738-739
adult brain	Clontech	ABR011	334 476 634 677
adult brain	BioChain	ABR012	379 587
adult brain	Invitrogen	ABR013	334 634
adult brain	Invitrogen	ABT004	3 19 57 62 66 75 110 122 150 160
		<u> </u>	162 167 171 176 186 197 203 211
			230 232 259 328-331 334 369 382
			389 394 400 406 417 426 429 442
1			457 472 483-484 492 511 514 529
Ī			531 534 537 540 553 558 562 572
		1	580 582-584 590 604 611 613 615
		1	622 637 639 643-644 648 688-689
	ļ		692 695
	Ctwatage	ADP001	16 37-39 66 109 120 141 144 193
cultured	Strategene	ADPOOT	
preadipo-			273 316 331 333 338 389 415 429
cytes		1	442 444 464-465 475 489 501 511
1			513 531 534 539-540 545-546 557
			583-584 590 596 602 607 613 615
	1		619 622 629 632 634 643
adrenal	Clontech	ADR002	4-5 12 48 53 57 162 164 172 186
gland	1		188 192 196 203 207 213 258 316
	1		330-331 333 339 354 356-357 369
	1		383 385 388 392 395 402 406 411
			415 434 454-455 465 468 473 475
	1	1	477 491 498 501 509 511 517 528-
			529 532 537-539 542 545 558 560
	1		565 567 576-577 586 600 606 615
}		1	621 624 627 632 634 647 653 660
		1.	667 683 689 696 714
	1		<u> </u>

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin	10111 000000	Library	
Origin		Name	
adult heart	GIBCO	AHR001	28 39 57 64-65 75 79 89 97-98 108
aduit neart	GIBCO	MIRUUI	117 134 144 157 159-160 164-166
[169 171 174 184 192-193 203 207
			220 243 256 258 266-267 281 314
			316 318 328-329 331 338-339 341
			346 348 354 356-357 366-367 369
			371 377-379 382 385-386 388 393
			395-396 399-401 403 415 420 422
		,	425 431-432 435-436 445 451 459
1		:	465 472-473 477 483 486 488 490
			496 501 503 508 515 519-520 526
			528 531 533-534 537-538 540-541
	•		
	(544 546 552 556-557 562-563 566-
			571 573 576-581 583-584 586-587
}	•		594 602 606 608 611 613-615 618
			620-621 626-628 632 634 641 643
			646 648 653 659 667 676 678 687
			689 696 703-704 708 711 714 729-
			730
adult	GIBCO	AKD001	3 28-29 48 56-57 67 79 84 93 106
kidney			117 134 138 140 144 156 160-164
Reduce			168-170 172 177 183 188-189 192-
			193 199 203 207 235 251 257 275
			319 321-323 328-330 337 346-347
			1
			349 354-356 360 367-369 371 375
			378-381 383-386 388-389 392 396-
			397 399 401 404 407 409 411-412
			415-416 420-422 427 432 436-437
			439-440 444 451-456 458-459 464-
			465 468 470 472-473 477 481 483
			486-487 492 496 501 503 505-506
			508 511 513-516 518 524 526 529
			533 535 537-541 543 545-546 548
	-		552 557 559-560 562-563 565-569
			572-574 576-577 579-587 589-591
	{	·	593-594 602 604-607 613-614 617-
	1		618 620-624 627-628 630 632-635
	1		637-638 640-642 644-645 652 662
]		664 667-668 677 682 685 687 689
			694-696 698 703 716 723 728-729
			732 734
adult	Invitrogen	AKT002 ·	92 136 154 160 164 178 271 314 347
kidney			353 360 367 376 378-379 386 391
	1	l	402 409 423 432 449 451 477 490
	1		494 503 526 528 531 534 538-539
1	1	ĺ	541 545-546 559 566 579 584 588
]		594 602 613 621 624 632 647 652
	1	{	689
22.74 7	OTDGG -	AT COOT	
adult lung	GIBCO	ALG001	56-57 67 69 98 113 134 144 164 172
	1	1	191-192 270 321 328 338 369 371
1			374 378 380 388-389 396 405 411
		1	416 424 443-444 456 473-474 482-
		1	483 497 508 518 529 531 534 536

Tissue Origin RNA Source Library Name 540 552 556 559 563 568 573 579- 580 585-586 588-589 593 601-602 606 612-613 618 634 662 667 685 696 702 726 729-730 lymph node Clontech ALN001 28 57 79 113 164 172 179 193 240 325 332 367 378-379 386 388 402 485 526 580 586 603 613-614 621- 622 628 634 662 667 686 734 young liver GIBCO ALV001 3 24 28 54 60 117 134 137 154 160 193 196 242 273 316 328-329 334 351 354 370-371 388 392 395-396 401 406 411 415 432 435 439 448 454-455 477 483 486-487 495 506 509 514 518 523-524 526 529 531 534 537-538 540 544 548 566 568 571 573 579 587-588 591 594 602 621 641 645 686 713 723 adult liver Invitrogen ALV002 3 24 27 56-57 65-66 71 79 92 97 106 134 140 164 192 200 214 220 232 240 242 271-272 291 313 316 328 347 349-350 353 355 357 368-
Name S40 552 556 559 563 568 573 579-580 585-586 588-589 593 601-602 606 612-613 618 634 662 667 685 696 702 726 729-730 Sample Clontech ALNO01 28 57 79 113 164 172 179 193 240 325 332 367 378-379 386 388 402 485 526 580 586 603 613-614 621-622 628 634 662 667 686 734 Young liver GIBCO ALVO01 3 24 28 54 60 117 134 137 154 160 193 196 242 273 316 328-329 334 351 354 370-371 388 392 395-396 401 406 411 415 432 435 439 448 454-455 477 483 486-487 495 506 509 514 518 523-524 526 529 531 534 537-538 540 544 548 566 568 571 573 579 587-588 591 594 602 621 641 645 686 713 723 adult liver Invitrogen ALVO02 3 24 27 56-57 65-66 71 79 92 97 106 134 140 164 192 200 214 220 232 240 242 271-272 291 313 316 328 347 349-350 353 355 357 368-
S40 552 556 559 563 568 573 579- 580 585-586 588-589 593 601-602 606 612-613 618 634 662 667 685 696 702 726 729-730
S80 585-586 588-589 593 601-602 606 612-613 618 634 662 667 685 696 702 726 729-730 696 702 726 729-730 696 702 726 729-730 696 702 726 729-730 696 702 726 729-730 696 702 726 729-730 696 702 726 729-730 696 702 726 729-730 696 702 726 729-730 696 702 726 729-730 696 702 726 729-730 696 702 726 729-730 696 702 726 729-730 696 702 726 729-730 696 702 726 729-730 696 702 726 729-730 696 702 726 729-730 696 720 720 720 720 720 720 720 720 720 720
G06 612-613 618 634 662 667 685 696 702 726 729-730
Second
ALNOO1 28 57 79 113 164 172 179 193 240 325 332 367 378-379 386 388 402 485 526 580 586 603 613-614 621-622 628 634 662 667 686 734 324 28 54 60 117 134 137 154 160 193 196 242 273 316 328-329 334 351 354 370-371 388 392 395-396 401 406 411 415 432 435 439 448 454-455 477 483 486-487 495 506 509 514 518 523-524 526 529 531 534 537-538 540 544 548 566 568 571 573 579 587-588 591 594 602 621 641 645 686 713 723 adult liver Invitrogen ALVO02 3 24 27 56-57 65-66 71 79 92 97 106 134 140 164 192 200 214 220 232 240 242 271-272 291 313 316 328 347 349-350 353 355 357 368-
325 332 367 378-379 386 388 402 485 526 580 586 603 613-614 621- 622 628 634 662 667 686 734 young liver GIBCO ALVO01 3 24 28 54 60 117 134 137 154 160 193 196 242 273 316 328-329 334 351 354 370-371 388 392 395-396 401 406 411 415 432 435 439 448 454-455 477 483 486-487 495 506 509 514 518 523-524 526 529 531 534 537-538 540 544 548 566 568 571 573 579 587-588 591 594 602 621 641 645 686 713 723 adult liver Invitrogen ALVO02 3 24 27 56-57 65-66 71 79 92 97 106 134 140 164 192 200 214 220 232 240 242 271-272 291 313 316 328 347 349-350 353 355 357 368-
A85 526 580 586 603 613-614 621-622 628 634 662 667 686 734 Young liver GIBCO ALV001 3 24 28 54 60 117 134 137 154 160
young liver GIBCO ALVOO1 3 24 28 54 60 117 134 137 154 160 193 196 242 273 316 328-329 334 351 354 370-371 388 392 395-396 401 406 411 415 432 435 439 448 454-455 477 483 486-487 495 506 509 514 518 523-524 526 529 531 534 537-538 540 544 548 566 568 571 573 579 587-588 591 594 602 621 641 645 686 713 723 adult liver Invitrogen ALVO02 3 24 27 56-57 65-66 71 79 92 97 106 134 140 164 192 200 214 220 232 240 242 271-272 291 313 316 328 347 349-350 353 355 357 368-
young liver GIBCO ALV001 3 24 28 54 60 117 134 137 154 160 193 196 242 273 316 328-329 334 351 354 370-371 388 392 395-396 401 406 411 415 432 435 439 448 454-455 477 483 486-487 495 506 509 514 518 523-524 526 529 531 534 537-538 540 544 548 566 568 571 573 579 587-588 591 594 602 621 641 645 686 713 723 adult liver Invitrogen ALV002 3 24 27 56-57 65-66 71 79 92 97 106 134 140 164 192 200 214 220 232 240 242 271-272 291 313 316 328 347 349-350 353 355 357 368-
193 196 242 273 316 328-329 334 351 354 370-371 388 392 395-396 401 406 411 415 432 435 439 448 454-455 477 483 486-487 495 506 509 514 518 523-524 526 529 531 534 537-538 540 544 548 566 568 571 573 579 587-588 591 594 602 621 641 645 686 713 723 adult liver Invitrogen ALV002 3 24 27 56-57 65-66 71 79 92 97 106 134 140 164 192 200 214 220 232 240 242 271-272 291 313 316 328 347 349-350 353 355 357 368-
193 196 242 273 316 328-329 334 351 354 370-371 388 392 395-396 401 406 411 415 432 435 439 448 454-455 477 483 486-487 495 506 509 514 518 523-524 526 529 531 534 537-538 540 544 548 566 568 571 573 579 587-588 591 594 602 621 641 645 686 713 723 adult liver Invitrogen ALV002 3 24 27 56-57 65-66 71 79 92 97 106 134 140 164 192 200 214 220 232 240 242 271-272 291 313 316 328 347 349-350 353 355 357 368-
351 354 370-371 388 392 395-396 401 406 411 415 432 435 439 448 454-455 477 483 486-487 495 506 509 514 518 523-524 526 529 531 534 537-538 540 544 548 566 568 571 573 579 587-588 591 594 602 621 641 645 686 713 723 adult liver Invitrogen ALV002 3 24 27 56-57 65-66 71 79 92 97 106 134 140 164 192 200 214 220 232 240 242 271-272 291 313 316 328 347 349-350 353 355 357 368-
401 406 411 415 432 435 439 448 454-455 477 483 486-487 495 506 509 514 518 523-524 526 529 531 534 537-538 540 544 548 566 568 571 573 579 587-588 591 594 602 621 641 645 686 713 723 adult liver Invitrogen ALV002 3 24 27 56-57 65-66 71 79 92 97 106 134 140 164 192 200 214 220 232 240 242 271-272 291 313 316 328 347 349-350 353 355 357 368-
454-455 477 483 486-487 495 506 509 514 518 523-524 526 529 531 534 537-538 540 544 548 566 568 571 573 579 587-588 591 594 602 621 641 645 686 713 723 adult liver Invitrogen ALV002 3 24 27 56-57 65-66 71 79 92 97 106 134 140 164 192 200 214 220 232 240 242 271-272 291 313 316 328 347 349-350 353 355 357 368-
509 514 518 523-524 526 529 531 534 537-538 540 544 548 566 568 571 573 579 587-588 591 594 602 621 641 645 686 713 723 adult liver Invitrogen ALV002 3 24 27 56-57 65-66 71 79 92 97 106 134 140 164 192 200 214 220 232 240 242 271-272 291 313 316 328 347 349-350 353 355 357 368-
534 537-538 540 544 548 566 568 571 573 579 587-588 591 594 602 621 641 645 686 713 723
571 573 579 587-588 591 594 602 621 641 645 686 713 723 adult liver Invitrogen ALV002 3 24 27 56-57 65-66 71 79 92 97 106 134 140 164 192 200 214 220 232 240 242 271-272 291 313 316 328 347 349-350 353 355 357 368-
621 641 645 686 713 723 adult liver Invitrogen ALV002 3 24 27 56-57 65-66 71 79 92 97 106 134 140 164 192 200 214 220 232 240 242 271-272 291 313 316 328 347 349-350 353 355 357 368-
adult liver Invitrogen ALV002 3 24 27 56-57 65-66 71 79 92 97 106 134 140 164 192 200 214 220 232 240 242 271-272 291 313 316 328 347 349-350 353 355 357 368-
106 134 140 164 192 200 214 220 232 240 242 271-272 291 313 316 328 347 349-350 353 355 357 368-
232 240 242 271-272 291 313 316 328 347 349-350 353 355 357 368-
328 347 349-350 353 355 357 368-
369 371-372 378-379 381-382 385
397 430 435 448 457 459 471-472
475 485 487 502 505-506 511 520
530-531 533-534 537 540-541 543
548 566 574-575 579 582 588 590
612 623 640 648-649 681 687 689
710 714
adult ovary Invitrogen AOV001 3 10 14 28 54 56-58 62 65-66 68 73
75 79 98 127 144 154 162 164-165
172-174 182 186 188-189 192-196
206 213 224 234-235 241 243 248
253 261 273 275 289 314 316 321-
322 325-327 329-331 333-334 336-
338 340 343 345-348 354-357 367
369 371-372 378 382 386 388 395-
397 399-402 404 407 411 415-416
419-420 425 427 429 431 435-437
441 444 451 453-459 465 468-470
472-475 481 485 490 494 496 501
503 509-510 513 517-518 522-524
526 528-529 531-534 537-542 545-
546 548 552 554 556-557 559-560
562-563 565 567-569 572-579 581-
582 584-588 590-591 593-598 602-
604 606 611-615 618 620-623 627
629 631-632 635-638 643 647 652-
654 657 659 661-662 667 674-675
677-678 682 684 689 693 695-698
703 705-707 714 717-718 723 729
703 705-707 714 717-718 723 729
adult Clontech APL001 172 224 239 363 371 392 437 531
placenta 534 622 690 696

Tissue	RNA Source	Hyseq	SEO ID NOS:
Origin	Idia oddioo	Library	1
Origin		Name	·
_ _			
placenta	Invitrogen	APL002	57 66 122 161 172 241 326 329 334
			369 388 407 427 429 436 459 464
	'		506 508 511 539 541 545 566 573
			575 590 597 637 648 690
adult	GIBCO	ASP001	28 57 65 78 93 95 117 134 156-157
spleen			172 186 188 194 214 273 314 319
			331 334 338 344 354 371 374 392
			436 457 471-473 478-479 481 483
		• •	515 526 528-529 541 548 557 559
}			563 565 569 573 585-587 603 606
1			
			613 615 618 621-622 627 632 634
			637 643 654 671 689 696-698 701
			712 739
testis	GIBCO	ATS001	3 67 134 160 192 235 327 329 337
			342 371 375 378 380-381 396 399
			415 431 436 441 451 472 477-478
			483 486 494 496 503 522 524 526
			531 533-534 538 541-542 546 548
			557 568 573 577 579 581 584 594
			596 618 641 658 662 689 700 714
		777007	729-730
adult	Invitrogen	BLD001	28 57 112 161 164 172 192 194 250
bladder			334 354 370 397 404 487 513 526
			531 534 545 572 599 602 620 634
			651 659 672 689 713 725
bone marrow	Clontech	BMD001	10-11 28 31 54 57 62 75 78-83 88
		ţ	131-133 135-137 141-143 157 159
	l	1	
		1	164 171-173 176-177 187-189 192
			164 171-173 176-177 187-189 192 195 200 202 205 207 218 225 282
			195 200 202 205 207 218 225 282
			195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346-
			195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346- 348 367 369 372 378 383 386 388
			195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346- 348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436
			195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346- 348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475
			195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346- 348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534
			195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346- 348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567
	·		195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346-348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567 571 573-574 576 579-586 594 601-
			195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346-348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567 571 573-574 576 579-586 594 601-602 606 613 620-623 628-629 634
			195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346-348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567 571 573-574 576 579-586 594 601-602 606 613 620-623 628-629 634 638 642-643 646 656 659 666 686
			195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346-348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567 571 573-574 576 579-586 594 601-602 606 613 620-623 628-629 634
			195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346-348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567 571 573-574 576 579-586 594 601-602 606 613 620-623 628-629 634 638 642-643 646 656 659 666 686
bone marrow	Clontech	BMD002	195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346- 348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567 571 573-574 576 579-586 594 601- 602 606 613 620-623 628-629 634 638 642-643 646 656 659 666 686 689 691 696 698-699 703 705 714 720 726 729
bone marrow	Clontech	BMD002	195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346- 348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567 571 573-574 576 579-586 594 601- 602 606 613 620-623 628-629 634 638 642-643 646 656 659 666 686 689 691 696 698-699 703 705 714
bone marrow	Clontech	BMD002	195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346- 348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567 571 573-574 576 579-586 594 601- 602 606 613 620-623 628-629 634 638 642-643 646 656 659 666 686 689 691 696 698-699 703 705 714 720 726 729 2 15 23 35 49 54 57 59 78 81 114 156-157 164 171-172 189-190 202
bone marrow	Clontech	BMD002	195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346- 348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567 571 573-574 576 579-586 594 601- 602 606 613 620-623 628-629 634 638 642-643 646 656 659 666 686 689 691 696 698-699 703 705 714 720 726 729 2 15 23 35 49 54 57 59 78 81 114 156-157 164 171-172 189-190 202 223 240 325 334 346 357 367 379
bone marrow	Clontech	BMD002	195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346- 348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567 571 573-574 576 579-586 594 601- 602 606 613 620-623 628-629 634 638 642-643 646 656 659 666 686 689 691 696 698-699 703 705 714 720 726 729 2 15 23 35 49 54 57 59 78 81 114 156-157 164 171-172 189-190 202 223 240 325 334 346 357 367 379 381-382 388 397 412 454 465 482
bone marrow	Clontech	BMD002	195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346- 348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567 571 573-574 576 579-586 594 601- 602 606 613 620-623 628-629 634 638 642-643 646 656 659 666 686 689 691 696 698-699 703 705 714 720 726 729 2 15 23 35 49 54 57 59 78 81 114 156-157 164 171-172 189-190 202 223 240 325 334 346 357 367 379 381-382 388 397 412 454 465 482 490 509 516 526 535 537 563 566
bone marrow	Clontech	BMD002	195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346- 348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567 571 573-574 576 579-586 594 601- 602 606 613 620-623 628-629 634 638 642-643 646 656 659 666 686 689 691 696 698-699 703 705 714 720 726 729 2 15 23 35 49 54 57 59 78 81 114 156-157 164 171-172 189-190 202 223 240 325 334 346 357 367 379 381-382 388 397 412 454 465 482 490 509 516 526 535 537 563 566 579 595 600 638 640-641 654-655
			195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346- 348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567 571 573-574 576 579-586 594 601- 602 606 613 620-623 628-629 634 638 642-643 646 656 659 666 686 689 691 696 698-699 703 705 714 720 726 729 2 15 23 35 49 54 57 59 78 81 114 156-157 164 171-172 189-190 202 223 240 325 334 346 357 367 379 381-382 388 397 412 454 465 482 490 509 516 526 535 537 563 566 579 595 600 638 640-641 654-655 676 689 714
bone marrow	Clontech	BMD002	195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346- 348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567 571 573-574 576 579-586 594 601- 602 606 613 620-623 628-629 634 638 642-643 646 656 659 666 686 689 691 696 698-699 703 705 714 720 726 729 2 15 23 35 49 54 57 59 78 81 114 156-157 164 171-172 189-190 202 223 240 325 334 346 357 367 379 381-382 388 397 412 454 465 482 490 509 516 526 535 537 563 566 579 595 600 638 640-641 654-655
			195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346- 348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567 571 573-574 576 579-586 594 601- 602 606 613 620-623 628-629 634 638 642-643 646 656 659 666 686 689 691 696 698-699 703 705 714 720 726 729 2 15 23 35 49 54 57 59 78 81 114 156-157 164 171-172 189-190 202 223 240 325 334 346 357 367 379 381-382 388 397 412 454 465 482 490 509 516 526 535 537 563 566 579 595 600 638 640-641 654-655 676 689 714
			195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346- 348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567 571 573-574 576 579-586 594 601- 602 606 613 620-623 628-629 634 638 642-643 646 656 659 666 686 689 691 696 698-699 703 705 714 720 726 729 2 15 23 35 49 54 57 59 78 81 114 156-157 164 171-172 189-190 202 223 240 325 334 346 357 367 379 381-382 388 397 412 454 465 482 490 509 516 526 535 537 563 566 579 595 600 638 640-641 654-655 676 689 714 48. 79 94 138 162 167 189 333 368-
			195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346- 348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567 571 573-574 576 579-586 594 601- 602 606 613 620-623 628-629 634 638 642-643 646 656 659 666 686 689 691 696 698-699 703 705 714 720 726 729 2 15 23 35 49 54 57 59 78 81 114 156-157 164 171-172 189-190 202 223 240 325 334 346 357 367 379 381-382 388 397 412 454 465 482 490 509 516 526 535 537 563 566 579 595 600 638 640-641 654-655 676 689 714 48. 79 94 138 162 167 189 333 368- 369 375 386 404 409 414 435-436
adult colon	Invitrogen	CLN001	195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346- 348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567 571 573-574 576 579-586 594 601- 602 606 613 620-623 628-629 634 638 642-643 646 656 659 666 686 689 691 696 698-699 703 705 714 720 726 729 2 15 23 35 49 54 57 59 78 81 114 156-157 164 171-172 189-190 202 223 240 325 334 346 357 367 379 381-382 388 397 412 454 465 482 490 509 516 526 535 537 563 566 579 595 600 638 640-641 654-655 676 689 714 48. 79 94 138 162 167 189 333 368- 369 375 386 404 409 414 435-436 455 470 525 541 548 553 567 603 634 656 659 689 694 721
			195 200 202 205 207 218 225 282 314-318 325 330 334-335 337 346- 348 367 369 372 378 383 386 388 395 401 405 412-413 416 422 436 442-443 447 449 455 465 472 475 477 503 516 523 528-529 533-534 539 545 551 556 559 563 565-567 571 573-574 576 579-586 594 601- 602 606 613 620-623 628-629 634 638 642-643 646 656 659 666 686 689 691 696 698-699 703 705 714 720 726 729 2 15 23 35 49 54 57 59 78 81 114 156-157 164 171-172 189-190 202 223 240 325 334 346 357 367 379 381-382 388 397 412 454 465 482 490 509 516 526 535 537 563 566 579 595 600 638 640-641 654-655 676 689 714 48. 79 94 138 162 167 189 333 368- 369 375 386 404 409 414 435-436 455 470 525 541 548 553 567 603

Tissue	RNA Source	Hyseq	CEO TR NOC
Origin	I AUR DOULCE		SEQ ID NOS:
origin	[Library	
		Name	·
			249 321 327 329 333 338 346 348
			354 356 362 367-368 371 374-375
İ	1		378-379 386 388-389 395 401-402
	1	1	404 407 420 429 431 437 443 451
			459 468 475 477 479 483 485 490
		1	493 404 405 506 500 500 500
ĺ		Ī	493-494 496 506 508 511 517 526
			528 531 534 544 550 552 559 566
	j	J	569 571-573 575-576 581-583 588
			590 593-594 604 606 614 622 628
	1	1	631-635 639 661-662 675 689 692
		}	695 715 718 738
endothelial	Strategene	EDT001	3 28 31 39 54 58 65-66 79 89 144
cells			160 173 187 189 191 193 197-199
			207 220 220 267 267 267 264 264
1	1 .		207 220 230 267 273 314 324 326
	j .		329-331 336 347 354 369 372 378-
			379 384 386 388 391-394 396-397
i			399 401 407 420 422 429 431-432
			435-437 444 449 451 455 459 465
			472 474-475 481-482 486 490 499-
	[501 .503 506 511 513 515-517 520
			522-524 528 531-534 538-539 541
į.	1		545-546 548 550 552 557 559-560
		j	543 546 546 550 552 557 559-560
			563 565 567 569 571 573 577 579-
			580 583-584 587-590 593-594 596-
ļ		j	597 599 602 611 614-615 618 620-
· ·	1	ì	621 624 630 632-634 637-638 642-
			643 647-648 651 675 677 680 682
	ì		694 696-698 703 708 714 719 724-
			725 728-730 734
Genomic	Genomic	EPM001	38 41-45 118-121 164 198 292-312
clones from	DNA from		10 10 101 104 100 292-312
the short	Genetic	ł	i l
arm of	Research	ł	
chromosome	moscuron		
8	. [
Genomic	Genomic	EPM003	43 164 295
clones from	DNA from	ŀ	
the short	Genetic	i	
arm of	Research	l	
chromosome		j	
.8			
Genomic	Genomic	EPM004	121 164 206 400
clones from	DNA from	DF11004	121 164 306 482
the short		j	,
1	Genetic		
arm of	Research	- 1	
chromosome		1	1
8		1	
Genomic	Genomic	EPM006	293
clones from	DNA from		
the short	Genetic	j	
arm of		Ì	
chromosome	Research	ĺ	
-	1	1	
8			·

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin	1441 50-200	Library	
Origin	_	Name	
esophagus	BioChain	ESO002	513 526
fetal brain	Clontech	FBR001	57 468 563 634
fetal brain	Clontech	FBR001	162 186 254 265 491 582
fetal brain	Clontech	FBR006	1-2 5-6 11-12 22-23 49 57 62 73 94
			103 114 162 164 172 189 193 203
			218 240 244 251-252 259 279 330-
			331 334-335 346-347 351 367 378
			386 388-389 399 413 420 422 424
			434 442 444 448 465 468 470 472-
			473 490 496 501 503-504 511 520
			524 528 532-533 539 544-546 548
			551 553 563 571 573 576 587 591
			601 613 615-616 620-621 628 634
ļ.			641 644 648 653 657 662 672-673
			689 691 698 706 714 718 725-728
			733 735-739
fetal brain	Clontech	FBRs03	444 587
fetal brain	Invitrogen	FBT002	17 66 157 162 164 186 190 193 250
			270 324 331 334-335 338 346 354-
			355 374 382 389-390 426 429-430
1		•	437 442 453 467 471 475 481 485
			491 507-508 513-514 526 528 532
			540 544 548 550 552-553 557-558
	_		563 565-566 590 593 602 612 615
	•		637 641 648 654 662 672 676 692
l .			703 ·
fetal heart	Invitrogen	FHR001	57 75 164 547
fetal	Clontech	FKD001	57 164 172 179 188 194 208 218 230
kidney			240 250 330 334 369 388 401 413
			439 454 465 529 546 550 573 576
			581 583 594-596 602 634 648 667
1			676 689 698 706
fetal	Clontech	FKD002	2 560
kidney			
fetal	Invitrogen	FKD007	565 596-597
kidney	, 	-,,-,	•
fetal lung	Clontech	FLG001	75 164 355 386 428 455 513 524 528
	••••		631 689
fetal lung	Invitrogen	FLG003	30 157 162 169 188 243 253 256 283
		12005	330 392 400-401 404 407 424 428
			435-436 479 506 508 520 530-531
			534 572 578 584 602 611 613 631
			654 658 662 676 689 701 716
fetal lung	Clontech	FLG004	371
fetal	Columbia	FLS001	2-3 5 26 29 31 35 48 54-58 60 62
liver-		LTOORT	
TTAGE-	University		65 67 70 74-77 79-80 84-87 89 92
spleen			96 98-100 104 117 122-130 138 140
spleen			144-158 160 162 164 172-173 185-
spleen			144-158 160 162 164 172-173 185- 186 188-189 192-194 196 199-200
spleen			144-158 160 162 164 172-173 185- 186 188-189 192-194 196 199-200 207 214 218-219 237-238 241 269
spleen			144-158 160 162 164 172-173 185- 186 188-189 192-194 196 199-200 207 214 218-219 237-238 241 269 273 280 282 314-316 318-322 324
spleen			144-158 160 162 164 172-173 185- 186 188-189 192-194 196 199-200 207 214 218-219 237-238 241 269

Tissue	RNA Source	Hyseq	SEQ ID NOS:
	RNA SOULCE	Library	Sho ID NOO.
Origin		Name	
		Name	
			373 375 377-380 382-383 385-386
			388 394-396 399 402 409 411-412
	•		418 420-422 424 427 431 435-437
			440 442 448-451 453 455 459 461
			464-465 470 472-473 475 477-478
			480-485 488-490 501 503 505-506
			509 511-513 515-518 520 522-524
			526-534 538-539 541 543-547 549-
11		•	550 552-553 556-557 559-564 566-
			567 569 571 573 576 578-580 582-
			587 589 591-594 596-597 599-600
			602 611-615 618 620-625 627-628
		·	
			631-636 638 641-642 646 648 651
			659-660 662-664 667-668 675-678
	•		680-681 684 689-690 696-698 709
			714 723 738
fetal	Columbia	FLS002	15 31-32 39-40 47-49 52 56 60 65
liver-	University		69 72 75 78 84 97-98 100 104 115
spleen	_		123 138 140 144 146 152-153 157
- .			161 164 172-173 182 188 194 196
	1		199 220 241-242 246 249 253 255
·			266 273-275 280-281 288-291 314-
			316 318-319 321-322 324 329-331
			336-339 343 347-350 353-354 357-
			358 363 367 369-370 372 374 378-
	·		l i
	[380 382-383 386 388-389 393-397
			399 405 407 409-410 412 421 424
			432 435 439 448 450-451 453-457
			459 461 464-465 470 472-475 477
			479-481 483 485 488 490 497 501
•		i	503 506 509 511-513 516-518 520
			524 527-528 531-532 534 539 541-
	i	1	546 556 559-560 565-566 569 571
			574 576 579 582-586 588 590 597-
		Į	599 602-604 606 615 618 620-621
			623 625 627 632-634 639 641 644
1		1	648 666-668 675-676 681 684 689-
·			690 696-697 701 703 714 719 723
			734-735
fetal	Columbia	FLS003	60 79 157 190 690
liver-	University	111111111	00 /3 13/ 130 030
	OHIVELDICA		
spleen	T-137	777 770 0 7	2 27 25 40 50 56 57 66 75 02 64
fetal liver	Invitrogen	FLV001	3 27 35 48 50 56-57 66 75 92 94
·			105 157 161 164 176 189 209 220
			243 272 324 328 333 335 353 369-
	1		370 381 392 396 429-430 435 439-
		1	440 442 444 465 471 483 487 502
Ī			506 513-514 519 534-535 537 548
1			554 566 568 576-577 580 582 590
			613 621 645 648-649 689
fetal liver	Clontech	FLV002	343
fetal	Invitrogen	FMS001	51 79 97 108-110 166 194 196 266
muscle	Invictogen	FERSON	341 352 380 389 402 407 444 464
muscre			371 336 300 303 402 407 444 404

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin	IGIA DOGECC	Library	55 <u>2</u> -5 -1.05
Origin		Name	
		Name	475 501 513 524 546 552 554 560
			570 572 598 605 628 634 649 675
			7
			703-704 714 737
fetal	Invitrogen	FMS002	524
muscle		•	
fetal skin	Invitrogen	FSK001	31 33 35 48 57 63 67 75 112-114
			117 157 162 164 172 178 180 188
		,	196 220 243 254 319 324 328 330
			333-334 367 369 371 375 379-383
			386 388-389 400 404 407 412 419-
			420 429 444 455 472-473 491 499
			503 508 511 514 517 522-524 529
			531 534 537 540 542 547 552 554
			556-557 560 563 565 567 571-572
			574 576 579 590 596 599 616 621
			625 627 631-632 634 639-640 648
			653-654 662 689 708 714
fetal skin	Invitrogen	FSK002	501 537
fetal skin	BioChain	FSP001	465 729
	BIOCHAIN	FSFUUL	465 729
spleen	ni a Chaire	TITI CO O I	27-28 35 57 68 83 105 136 157 159-
umbilical	BioChain	FUC001	1
cord			160 164 188 191 225 279 315-316
			321 328 334 363 367 369 378-379
			383 386 388-389 392 397 406-407
			413 415-416 427 440 449 455 458
			461 464-465 468 473-475 479 485-
			486 488 490 496 514 517 522 524
			526 528-529 531 533-534 538 540
			546 550 552 556-558 572 582 584-
			585 587-588 594-597 602 606 613
			616 618-619 631 634 637 651 689
	-		696 698 706 729
fetal brain	GIBCO	HFB001	3 5 22 26 46 53 66 73 94 117 134
			139 164 172-173 188-189 212 215
			230-231 248 251 262 288-289 316
			325 329-331 334 337-338 348 352
	1		365-367 369 371 377-379 385-386
1 .		1	388 392 394 396 400 403 420 422
			429 437 444-446 449 451 455 459
		1	461-463 466-468 472-473 475 477
	1	1	481 483 485-486 488 490-491 496
			503-504 506 513 523-524 529 532-
			533 539-541 545 548 550 552 557-
1			560 563 565-566 569 571 576-577
			579-580 583-584 586 590 593-594
	1		596-599 601-602 604 606 611 613
	1	1	615 618 621-623 627-628 634-635
			637 641 643 647 662 664-665 667
			675 677 680 689 695-697 703 726
macrophage	Invitrogen	HMP001	97 518 532 569
infant	Columbia	IB2002	28 46 56-57 59 67 75 78 109 117
brain	University		122 129 144 157 162 164-165 172
			176 180 190 193 212 220 226 236-
		 	}

Tissue	RNA Source	Hyseq	SEO ID NOS:
Origin	RNA Source	Library	35g 15 1.351
Origin		Name	
		Name	237 251 261-262 316 318 324 328-
			330 334-335 337 340 354-356 361
			364-365 367 369 371-373 377-380
	!		382 385-386 389 392 395 397 400
			411 416 421-422 429 432 436 438
			444 448 451 456 464-465 469 471-
			475 484 486 496 504-506 511 520
			524 526 529 531 533-534 537-540
			544-546 548 553 556 558 562 565
	{		567 576 579-580 582 584 586 589-
			590 593 597-598 602 613-614 618
		-	620-621 627-628 632 634 636 641
			650 654 659 662 667 683 689 721
			730
infant	Columbia	IB2003	46 54 75 109 156 164 220 244 251
brain	University	ļ	314 324-325 331 335 340 361-362
	ļ	İ	367 369 377-379 400 408 438 442
1	ļ	ļ	456 460 464 469 472 496 506 523-
		Ì	524 526 529 538 540 544-545 547
			558 560-562 565 567 569 579 584
		ł	598 602 613 615 621 627 632 634
ļ			637 639 650 738
infant	Columbia	IBM002	262 340 432 436 438 472 531 534
brain	University	12.1002	569 613 634
infant	Columbia	IBS001	162 231 283 331 369 385 438 444
		182001	472 506 513 523 531 534 580 615
brain	University	!	636 689
		LFB001	28 54 57 65 172 188 233 321 331
lung,	Strategene	PEROOT	· · · · · · · · · · · · · · · · · · ·
fibroblast		ļ	340 347 367 369 378-379 388 401
			451 459 475 479 503 511 522 524
			532 534 559-560 573 580 583 587
	<u> </u>		597 615 632 634 638 686 689 708
lung tumor	Invitrogen	LGT002	3 7 21 24 26 28 31 54 56-57 62-63
·			66 92-93 101 109 112 162 164 171-
ļ			172 176 183 188-189 192-193 196
1			201-202 223 230 235 259 273-274
j]	316 321 329-331 333-334 338 345
ì		į.	347-348 356 367 369 371-372 378-
		1	379 381-382 386 388-390 396 399-
			404 406 409 416 424-425 427 429
}	1	ŀ	432 436-437 439 451 455-456 459
		1	464-465 467 473 475 484-486 490
			499 502-503 506 508 511 513-514
		1	517-518 522 524 526 528 531-532
		ł	534-535 538-539 541 543-546 553
Į.	1	1	557-559 563 567-568 571 573 575-
	1		576 579-580 585-588 590-591 593-
			594 598 601-604 609 611-613 615
1	1	1	621 627-628 631-632 636-637 645
1			648 651-652 654 662 667 672 677
1	-) -	1	681 683 689 698 701-702 714 718
<u></u>	1 200	7 20005	724 726 729 734
lymphocytes	ATCC	LPC001	4 31-32 35 57 65-66 70 110 116 156

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin		Library	
		Name	160 164 270 242 250 202 207 206
			162 164 230 243 250 282 287 326 328-330 334 336 346-347 359 378
	•		386 388 397 407 414 416 419 472
			497 520 525 539 545 549 551 582
			590 606 615 618 621 631 634 686
			692 698 701 714
leukocyte	GIBCO	LUC001	4 7 9-11 23 28 31 35 39 54 65 75-
		_	76 79 90 97 110 117 134 152 157
		•	159 162 164-167 171 173 176 188
			193 199 204 207 220 244 253 255
			314 316 318 321 324 326 329-330
			337-339 346-347 352 354 356 367
			369 371 378-379 382 388-389 392
= 6		·	396-397 400-402 405 415-416 420
			422 429 432 435-436 443-444 449
			454-455 457-459 465 479 481-486
			491 497 501 503-504 506 508 511
!			514 516 520 523-525 529 532-533
			535 538-539 545 548 552-554 556 559-560 562-563 565-566 569 571-
			573 576 579 581 585-587 590 593-
			594 598 600-602 604 606-609 613-
		+	614 618 620-622 624 627 630 632-
			634 636 638 643 645 660-662 667
			678 682 684 686 689 691 693 696-
			698 714 726
leukocyte	Clontech	LUC003	11 54 97 152 164 330 479 546 564-
		,	565 593 613 627 634 646 696 729
melanoma	Clontech	MEL004	2 57 67 79 164 171-173 188 193 196
from cell			232 321 337 341 346 367 379-380
line ATCC			388 407 427 454 472 477 482 501 520 539 545 552 556 579 588 593
#CRL 1424			598 611 621 631 648 665 714 730
mammary	Invitrogen	MMG001	3 20-21 29 31 54 56-57 63-66 79 94
gland	Invictogen	1	109 112-113 117 122 125 138 141
3202,			154 160 162 164 172 176 186 189
			192 204 214 220-221 232 238 251
		ļ	255 257 273 276-278 324 326 328-
			331 333 335 337 341-343 347 354-
			355 357 367-371 374-375 379 382-
			386 388-392 397 399-400 404 406-
	1	}	408 410-411 425 431 435-436 444
			451 455 457 459 461 464-465 470-
		Ì	471 475 479 483 485 487-488 491
		1	501 506-508 511 513-519 523-524
		1	526 529 531-532 534-535 537 539-
			540 542-545 552-554 557-560 563
·		1	566 569 572 577 580 584 587-588
		1	613 615 624 627 631-634 637 639-
			640 643 648-649 654 664 669-670
			672-673 676-679 681 689 691-695
			697-698 706 714 731 734 737
L	t	<u> </u>	

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin	ANA BOULCE	Library	
Origin		Name	
3-3-53	Shaphamana	NTD001	36 57 164 284 388 397 420 481 485
induced	Strategene	NIDOOI	501 524 528-529 539 542 545 560
neuron			
cells			571 579 582 595 602 620 637 654
			667 689 730
retinoid	Strategene	NTR001	524 584 693
acid	}	ļ	
induced		}	
neuronal			
cells			
neuronal	Strategene	NTU001	36-38 120 204 331 351 354 357 386
cells			388 399 411 442 459 516 533 539
			545 565 586 606 615 621 637-638
			642 646 648 714 730
placenta	Clontech	PLA003	503 579 690
prostate	Clontech	PRT001	15 40 65 164 187 207 229 337 348
problem	0.20		367 375 377-378 395 406 416 428
			458 468 476 511 524 526 531 534
			538 555 559 563 576 584 597 613
		i	622 624 631 642 667 672 677 684
			724 734
rectum	Invitrogen	REC001	57 67 164 260 331 343 370-371 380
			382 384 404 409 436 444 475 485
	1		498 513 524 526 540 542 552 554
			581 615 619 624 627 634 654 659
			671 689 714
salivary	Clontech	SAL001	21 84 106-107 152 179 238 246 255
	Cronccen	520001	21 04 100 10, 132 1,3 230 240 233
gland	Cronceen	DALLOUI	273 287 371 378 383 401 407 420
	CIONCON	BALLOUL	· ·
	Cronceen	JAHOUT	273 287 371 378 383 401 407 420
	CIONCCON	DALIOUT.	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541
	ATCC	SFB002	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606
gland			273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738
gland			273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738
gland skin fibroblast	ATCC	SFB002	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192
skin fibroblast skin fibroblast	ATCC	SFB002 SFB003	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192
skin fibroblast skin fibroblast small	ATCC	SFB002	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192 464
skin fibroblast skin fibroblast	ATCC	SFB002 SFB003	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192 464 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401-
skin fibroblast skin fibroblast small	ATCC	SFB002 SFB003	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192 464 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528
skin fibroblast skin fibroblast small	ATCC	SFB002 SFB003	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192 464 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678
skin fibroblast skin fibroblast small intestine	ATCC ATCC Clontech	SFB002 SFB003 SIN001	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192 464 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711
skin fibroblast skin fibroblast small intestine	ATCC	SFB002 SFB003	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192 464 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325
skin fibroblast skin fibroblast small intestine	ATCC ATCC Clontech	SFB002 SFB003 SIN001	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192 464 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552
skin fibroblast skin fibroblast small intestine	ATCC ATCC Clontech	SFB002 SFB003 SIN001	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192 464 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606
skin fibroblast skin fibroblast small intestine	ATCC ATCC Clontech Clontech	SFB002 SFB003 SIN001	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192 464 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738
skin fibroblast skin fibroblast small intestine	ATCC ATCC Clontech	SFB002 SFB003 SIN001	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192 464 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 10 54 57 66 75 100 102 114 144 164
skin fibroblast skin fibroblast small intestine	ATCC ATCC Clontech Clontech	SFB002 SFB003 SIN001	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192 464 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337
skin fibroblast skin fibroblast small intestine	ATCC ATCC Clontech Clontech	SFB002 SFB003 SIN001	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192 464 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413
skin fibroblast skin fibroblast small intestine	ATCC ATCC Clontech Clontech	SFB002 SFB003 SIN001	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192 464 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529
skin fibroblast skin fibroblast small intestine	ATCC ATCC Clontech Clontech	SFB002 SFB003 SIN001	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192 464 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604
skin fibroblast skin fibroblast small intestine	ATCC ATCC Clontech Clontech	SFB002 SFB003 SIN001	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192 464 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604 620-621 631-632 634 642 644 648
skin fibroblast skin fibroblast small intestine	ATCC ATCC Clontech Clontech	SFB002 SFB003 SIN001	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192 464 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604
skin fibroblast skin fibroblast small intestine	ATCC ATCC Clontech Clontech	SFB002 SFB003 SIN001	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192 464 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604 620-621 631-632 634 642 644 648
skin fibroblast skin fibroblast small intestine skeletal muscle	ATCC ATCC Clontech Clontech	SFB002 SFB003 SIN001 SKM001	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192 464 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604 620-621 631-632 634 642 644 648 659 688-689 691 693 695
skin fibroblast skin fibroblast small intestine skeletal muscle spinal cord	ATCC ATCC Clontech Clontech	SFB002 SFB003 SIN001 SKM001	273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 192 464 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604 620-621 631-632 634 642 644 648 659 688-689 691 693 695

Tissue	RNA Source	Hyseq	SEO ID NOS:
	KNA BOULCE	Library	bag ab noo.
Origin		_	
		Name	
			485 526 532 569 576 579 581 586
·			603 631 634 677 682 689
thalamus	Clontech	THA002	17 31 57 66 109 127 164 217-218
			262 315-316 324 330 357 369 386
			388 400 406 435 456 459 464 468-
			469 515-516 537 540-541 556 566
į	,	•	574 590 611 622 631 634 644 648
			656 677-678 680
4 he	Clontech	THM001	6 15 26 54 79 164 172 187 193 201
thymus	CIONTECH	IMMOOT	
	•		264 291 315 329 331 351 356 367
			397-398 401 407 412 424 427 429
			435-436 443 451 474 478 482 549
			563 565 567 569 576 578 581-582
			610 615 621 631-632 634 648 662
			667 669 679 689 693 696
thymus	Clontech	THMc02	3-6 8 11 16 18 34 58-59 67 132 149
	0_0000000000000000000000000000000000000		162 164 167 172-173 186 188-189
ł	1	5.	193 200 203 216 223 232 239 255
			263 265 319-320 331 333-334 355
			359 370 373 377-380 382 387-390
	i '		393 395 398-399 402 404 408 420
Ì			427 434 436 467 475-476 503 508
	}	ŀ	518 524 526 532 540 560 563 565
			571-572 576-577 579 582 598 601
			603 612-613 615 621 627 632 634
	1		639 641 648 651 657 659 662 672
,		ŀ	677-678 684-686 689 696 699 706
	1		714-716 722 726-729 732
thyroid	Clontech	THROO1	5 29-30 40 54 57 66 72 79 117 144
1 -	CIONCECH	IIIKOUI	160 164 166 170 172 176 183 188-
gland			189 208-209 219 230 285-286 314
	•		318 327 331 335 338 344 347 354
		->	363 367 375 377-380 382 384-386
1		ł	388 393 397 399 401-403 419 422
		1	429 436 442 444 451 456 458-461
	İ	ľ	464 467-468 470 472-473 476-477
			481 488 494 503 508-509 511 516
			519-521 524 528-529 533 537-538
			543 548 557 559-560 563 565-566
			571-574 576 582 585 587 590-591
		1	593-594 596-597 606 614-615 620-
		i	621 623-624 627 631-634 640 650-
		1	651 653 662 667 669-670 675 679
		1	689 708 712 714
trachea	Clontech	TRC001	156 164 171 240 375 378 390 400
			422 468 484 565 574 581 585 587
			631 654 689 714
uterus	Clontech	UTR001	65. 77 79 101 164 220 367 369 451
		ł	468 526 530 533 548 554 559 562
		1	568 573 582 594 637 648 689
L	1	<u> </u>	300 373 302 331 037 040 003

Table 2 - Nearest Neighbor Results

000	CEO	Acces-	Species	Description	Smith	8
SEQ ID	SEQ ID	sion	ohecies	Describeron	-	Identity
NO:	NO:	No.			Water	
INO:	in	110.			man	
	USSN				Score	
	09/48	İ				
	8,725		;			
1	1000	gi70214	Mus musculus	secretory	567	85
		84		carrier		
		٠.	•	membrane		
				protein 4		
2	10017	R06463	Homo sapiens	Derived	848	100
				protein of	\	
1				clone ICA13		
_		•		(ATCC 40553).		
3	10020	gi10659	Caenorhab-	similar to	325	36
)	67	ditis elegans	other protein		
				phosphatases		
				1, 2A and 2B		
4	10024	G03460	Homo sapiens	Human	439	98
				secreted		
		177.0505	******	protein, Human 5' EST	136	87
5	10032	Y12505	Homo sapiens	secreted	136	87
				protein		
	10042	Y29511	Homo sapiens	Human lung	701	100
6	10042	129511	nomo sapiens	tumour protein	'0-	
				SAL-25 1st		·
				predicted		
		l .		amino acid		
				sequence.		
7	1006	Y92324	Homo sapiens	Human alpha-	763	100
			-	2-delta-D		
		İ	,	polypeptide		
				from splice	-	
				variant 1.	1	
8	10064	gi45893	Homo sapiens	Gab2	425	58
		75	_			
9	1007	gi70183	Homo sapiens		151	75
l		98				
10	1008	gi89606	Homo sapiens	protein that	1226	99
ĺ		5		is immuno-	1	
		1	1	reactive with	1.	1
1				anti-PTH		
			2	polyclonal		
		l		antibodies	L	
11	10088	gi37792	Homo sapiens	Metallo-	1512	98
		44		protease 1		ļ
12	10089	gi29472	Homo sapiens	membrane	523	100
1		32		associated		1
	1			guanylate	1	
		1		kinase 2		
13	10091	gi33478	Mus musculus	cAMP-specific	223	54
1	1	63	<u> </u>	cyclic		L

SEQ	SEQ	Acces-	Species	Description	Smith	ક
ID	ID	sion			-	Identity
NO:	NO:	No.		,	Water	
	in				man	
	USSN				Score	
	09/48					. [
	8,725					
				nucleotide		
				phosphodi-		
			:	esterase PDE8;		·
				MMPDE8		
14	10098	gi69793	Homo sapiens	cysteine-rich	1068	100
		11		repeat-		
				containing	\	
			*	protein S52		
		607705	Trans contons	precursor Human	297	88
15	10102	G01395	Homo sapiens	secreted	231	
				protein,	ļ	
16	10103	gi85473	Rattus	casein kinase	293	84
10	10103	3	norvegicus	1 gamma 1	233	0.1
		ا ا		isoform	1	
17	10104	Y60017	Homo sapiens	Human	154	100
~ ′		2000		endometrium	Ì	,
				tumour EST		l i
ł				encoded		
l				protein 77.		
18	10108	G03290	Homo sapiens	Human	215	97
		·		secreted	l	1
]				protein,		
19	10110	gi72922	Drosophila	CG1271 gene	208	46
		99	melanogaster	product		
20	10111	gi45123	Rattus	0-1-33-3-3-3	822	89
ĺ		34	norvegicus	Ca/calmodulin-	ĺ	
]			_	dependent protein kinase		
1				kinase alpha,		
ļ	ļ			CaM-kinase	1	
1	İ			kinase alpha	}	
21	10113	¥41694	Homo sapiens	Human PRO382	633	97
"-				protein		'
				sequence.		
22	10114	gi34907	Rattus	calmodulin-	531	99
1		5	norvegicus	binding		
]				protein		
23	10116	gi16298	Bos taurus	endozepine-	937	87
		1		related		
1				protein		·
			<u></u>	precursor		
24	10121	gi89797	Canis	Band4.1-like5	643	100
		43	familiaris	protein		
25	10126	Y99420	Homo sapiens	Human PRO1486	607	100
				(UNQ755) amino		
				acid sequence	 	ļ <u></u>
26	1013	gi80475	Homo sapiens	protein	614	73
L	1			tyrosine	J	

SEQ	SEO	Acces-	Species	Description	Smith	8
ID	ID	sion	Special	Description	-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48					
	8,725		•			
				phosphatase		
27	10136	W02105	Homo sapiens	Human L-	1243	98
				asparaginase.		
28	10142	Y35924	Homo sapiens	Extended	862	89
l			•	human secreted		
İ				protein		•
29	10148	gi33349	Homo sapiens	sequence, R27216 1	329	98
23	10140	82	nomo saprens	R2/216_1	329	96
30	1015	G02485	Homo sapiens	Human	120	- 72
			-	secreted		
			•	protein,		
31	10154	gi10798	Homo sapiens	sperm antigen	2607	98
		804				
32	10175	Y96864	Homo sapiens	SEQ. ID. 37	536	100
				from		
		175050		WO0034474.	ļ <u></u>	
33	10196	gi55362 1	Homo sapiens	profilaggrin	346	39
34	10198	gi14190	Mus musculus	odorant	281	53
		16		receptor		
35	10200	Y57903	Homo sapiens	Human	448	100
			4	transmembrane		
ŀ				protein HTMPN-		
				27.		
36	10208	gi40624	Escherichia		505	100
		92	coli	0.000 60.40		
37	10212	gi88252 9	Escherichia coli	ORF_f141	625	96
38	10213	gi40627	Escherichia	Hypothetical	773	98
30	10213	78	coli	protein HI0761	'''	
39	10214	gi66938	Rattus	opioid growth	661	44
		32	norvegicus	factor		
			_	receptor		
. 40	10227	G01360	Homo sapiens	Human	384	100
		ļ		secreted		
		- 10		protein,		
41	10236	gi16512	Escherichia	•	373	100
		57	coli			
42	10241	gi27692	Escherichia	catabolite	178	96
		62	coli	gene activator		
43	10245	gi17895	Escherichia	protein orf,	679	98
43	10245	39	coli	hypothetical	6/9	20
			5522	protein		
44	10246	gi88249	Escherichia	ORF 0179	488	97
		2	coli			.
45	10247	gi17421	Escherichia	Sn-glycerol-	323	100
	·	49	coli	3-phosphate		

SEQ	SEQ	Acces-	Species	Description	Smith	*
ID	ID	sion	- E	•	-	Identity
NO:	NO:	No.			Water	· .]
	in				man	ļ
	USSN				Score	
	09/48	ļ				
	8,725		•			
				transport		
İ		ĺ		system		
				permease		
Ĺ				protein UgpA.		
46	10282	Y29817	Homo sapiens	Human synapse	521	96
				related	1	
				glycoprotein		
				2.		
47	1031	gi64351	Mus musculus	putative E1-	990	86
L	1010	30	**	E2 ATPase	471	63
48	1040	gi85412 4	Homo sapiens	Human giant	4/1	63
		1 4		homologue		
49	1043	gi38822	Homo sapiens	KIAA0782	154	61
4.5	1043	85	HOMO Sapiens	protein	134	**
50	1051	gi17821	Homo sapiens	anion	172	100
50	1031	6	HOMO Sapiens	exchange	1/2	100
ŀ				protein 1		
51	1053	Y76748	Homo sapiens	Human protein	180	92
"-	1000	1,0,10	nome bapiens	kinase	1	
				homologue,		!
			·	PKH-1.		
52	1062	gi96501	Mus musculus	ADAM 4	492	65
		4		protein		
				precursor		
53	1063	gi23938	Drosophila	A-kinase	580	60
ł		80.	melanogaster	anchor protein	1	}
				DAKAP550		
54	1066	gi27467	Caenorhabditi	contains	607	35
ļ		88	s elegans	similarity to		1
			·	transacylases		
55	107	G00357	Homo sapiens	Human	183	77
•	•			secreted		
				protein,		
. 56	1071	gi91059	Xylella	Acetylgluta-	505	36
L		37	fastidiosa	mate kinase		
57	1085	R95913	Homo sapiens	Neural thread	257	55
- 50	1000	1776336	W	protein.	1 202	F.
58	1086	Y76332	Homo sapiens	Fragment of	387	58
1	1		1	human secreted		
				protein encoded by] -
				gene 38.	1	1
59	1088	gi45896	Homo sapiens	KIAA0999	873	99
33	1333	42	omo paptens	protein	","	
60	109	gi76343	Homo sapiens	KIAA0999	360	85
"	1 .105	1	omo Dapteris	protein		""
61	1095	Y94907	Homo sapiens	Human	701	97
-	-555	1		secreted		1 -
Ь					<u> </u>	L

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	JP00100	262011201011	_	Identity
NO:	NO:	No.	V		Water	
	in				man	
	USSN				Score	
	09/48			•		
	8,725					ļ ,
				protein clone		
İ				ca106_19x		
				protein		
				sequence		
62	1102	Y07096	Homo sapiens	Colon cancer	1982	100
				associated		
				antigen	\	
		ŀ		precursor	,	
				sequence.		
63	1105	Y84907	Homo sapiens	A human	983	91
				proliferation		
l	1			and apoptosis related		i
				protein.		
64	1108	gi13989	Mus musculus	Ca2+	1307	89
04	1,100	03	rius musculus	dependent	1307	"
		03	,	activator		
1		ł	•	protein for		
1				secretion		
65	1109	Y91524	Homo sapiens	Human	2400	99
	1		,	secreted		
Ι.		1		protein		1
		ł		sequence	1	
1		1		encoded by		
				gene 74		
66	1113	gi16574	Sus scrofa	calcium/cal-	1348	94
		62		modulin-		
Į				dependent		
}			·	protein kinase		
1	ł	1		II isoform	i	
67	1117	Y32169	Homo sapiens	gamma-E Human growth-	2831	97
0'	1 111	132169	nomo sabrens	associated	2031	, ,
				protease] .	
	·			inhibitor	,	
				heavy chain		
				precursor.		
68	1118	gi30635	Homo sapiens		1138	98
		17				
69	1125	gi82482	Homo sapiens	sphingosine	1290	98
1		.85		kinase type 2		
		<u> </u>		isoform		
70	1132	Y94918	Homo sapiens	Human	437	59
				secreted	Į	
1			1	protein clone		
		1		dd504_18		
				protein sequence		1
71	1143	gi45806	Homo sapiens	prepro-major	209	40
L'-	1143	1 9143000	Tromo saptems	Propromajor	203	1 30

CTTO	SEQ	Acces-	Species	Description	Smith	*
SEQ	ID	sion	opecies	Description	-	Identity
1 :					Water	racincity
NO:	NO:	No.			man	
	in					
	USSN		1		Score	
	09/48					
	8,725					
		77		basic protein		
				homolog		
72	1146	gi18239	Homo sapiens	focal	131	87
		5	-	adhesion	·	
1)) .		kinase) .	}
73	1161	W90962	Homo sapiens	Human CSGP-2	931	100
/3	1101	1,50502	HOMO Supicas	protein.		
<u></u>		1160420	Warra garaiana	Human	159	93
74	117	W69428	Homo sapiens		139	93
			,	secreted		
ł		1		protein	1	4.0
1				bp537_4.		
75	1170	gi34339	Homo sapiens		586	87
76	1175	gi79602	Homo sapiens	SNARE protein	308	100
l		43		kinase SNAK]
77	118	gi53600	Homo sapiens	NY-REN-18	178	96
''		93		antigen		
78	1183	gi29203	Homo sapiens	helix-loop-	361	91
/ *	1103	7	nomo saprens	helix	1 301	
	ŀ	′		phosphoprotein	ļ	
					171	76
79	1193	gi18991	Rattus	polysialyltran	1/1	76
L	<u> </u>	86	norvegicus	sferase		
80	1195	gi13994	Homo sapiens	serine/threo-	208	71
}		62		nine-protein	1	
	1			kinase PRP4h	i	1
81	1198	gi18153	Homo sapiens	defensin	150	71
		5	_	precursor		
82	1201	gi56689	Rattus	plasma	244	73
		35	norvegicus	membrane Ca2+		
				ATPase isoform		
		j		1kb		1
	1207	mi60040	Homo sapiens	TANK binding	716	86
83	1207	gi62248	nomo sapiens	kinase TBK1	,10) "
		68			1 242	
84	1210	gi17964	Homo sapiens	complement	242	61
		. 6		component Cls		
. 85	1211	gi14831	Homo sapiens	1	296	65
		87	1			
86	1214	gi78006	Streptococcus	PspA	121	37
1		38	pneumoniae			
87	123	Y44810	Homo sapiens	Human	218	93
				Aspartic		
	ĺ	1	1	Protease-2		
1				(NHAP-2).		
<u> </u>	1350	6327766	Homo sapiens	EAR-1r	128	70
88	1259	gi21166	nomo sapiens	. PWK-TT	1. 140	1 '
		72			1.25-	<u> </u>
89	1266	gi72431	Homo sapiens	KIAA1372	403	53
		25		protein	<u></u>	<u> </u>
90	1270	gi12894	Homo sapiens	diacylglycerol	125	96
j		45		kinase epsilon]
				DGK		
				·		

SEQ	SEQ	Acces-	Species	Description	Smith	क्ष
ID	ID	sion	JP 00 0 0 0		_	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN		·		Score	İ
	09/48				33323	
	8,725				·	
	1290	gi14293	Drosophila	ubiquitin-	470	41
91	1290	71	melanogaster	specific	7,0	4.
	1	71	meranogascer	-		
				protease	000	
92	1291	Y66755	Homo sapiens	Membrane-bound	993	100
			-	protein		
	<u> </u>			PRO1185.		
93	1296	gi96520	Homo sapiens	scavenger	1183	99
		87		receptor	,	
			•	cysteine-rich	ļ	
	ļ	İ		type 1 protein		
l	1	ď	•	M160		
				precursor		
94	1299	gi73003	Drosophila	CG7683 gene	397	40
	ł	98	melanogaster	product		
95	1317	gi36951	Rattus	CL1AA	216	100
		15	norvegicus			
96	132	gi18717	Homo sapiens	12-	176	97
"	-5-	1		lipoxygenase	1	• •
97	1330	Y12482	Homo sapiens	Human 5' EST	65	44
"	1330	112402	IIOMO Bapaciis	secreted	"	
	1		. ,	protein		
98	1336	gi10798	Homo sapiens	MLTK-beta	2366	99
98	1336	814	HOMO Sapiens	MILIK-Deca	2300	99
	135	gi45609	Homo sapiens	effector cell	190	74
99	133	0	HOMO Sapiens		130	'*
	1			protease		
			M	receptor 1		
100	1356	gi19305	Mus musculus	envelope	131	36
l	1	7		polyprotein	ľ	į
· ·				precursor		
101	1369	gi45865	Homo sapiens	glucocorticoid	596	89
)	}] 7		receptor	ļ	}
Ter				alpha-2	l	
102	1392	gi84935	Mus musculus	nuclear	145	59
	1	19		localization		1
1.	1			signal binding		[
	1			protein		
103	1408	gi31270	Rattus	potassium	176	84
		51	norvegicus	channel		[]
	1		_	regulatory	1	1
				protein KChAP		'
104	141	gi64536	Mus musculus	putative	204	33
1		13		protein kinase		
105	1424	gi29825	Homo sapiens	neuropathy	769	100
1 203	1-12-1	01		target	.,,	
		1 3		esterase	1 .]
1	1 242	WEGGS	Home consider		1201	98
106	143	W50033	Homo sapiens	Human immunity	1201	36
1	}			related		
		1	1	factor.	 	 _
107	1431	gi10644	Heterodera	hypothetical	133	36

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	•	• .	-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48					
	8,725					
		565	glycines	esophageal		
			-	gland cell		
				secretory		
		1		protein 10		
108	1441	gi30440	Myxococcus	unknown	149	32
		86	xanthus			
109	1444	gi72483	Homo sapiens	adaptor	1615	97
202		81		protein		
				p130Cas		
110	1447	Y65168	Homo sapiens	Human 5' EST	403	97
110		103200	nome bagaons	related		
	ł		,	polypeptide ·		ļ
111	1457	W19919	Homo sapiens	Human Ksr-1	227	77
	1-3,	"		(kinase		
				suppressor of	1	
		}		Ras).	ļ	}
112	1471	G02532	Homo sapiens	Human	97	59
112	13/1	002332	nomo saprens	secreted	"	
				protein,		
113	1473	gi60628	Homo sapiens	candidate	581	100
113	14/3	74	nomo sapiens	tumor	301	100
		1 /=		suppressor		
••				protein DICE1		
114	1474	Y64896	Homo sapiens	Human 5' EST	197	100
114	14/4	104030	nomo bapieno	related		200
			j	polypeptide		1
115	1483	gi43621	Homo sapiens	KIAA0037	295	76
113	1.03	8	nomo supromo			
116	1486	gi58528	Homo sapiens	bridging	133	64
1.0		34		integrator-2		1 1
117	149	gi33271	Homo sapiens	KIAA0674	2243	98
		62	nomo bapzono	protein		
118	1503	gi17367	Escherichia		1270	97
		85	coli			
119	1506	gi40622	Escherichia	YhhI protein	612	90
1		98	coli	•		
120	1513	gi40623	Escherichia		556	94
		46	coli			,
121	1514	gi21660	Escherichia	PhoQ protein	661	90
	1	9	coli			
122	1523	gi57127	Rattus	calcium	1178	90
		56	norvegicus	transporter		[
		1		CaT1		1
123	1527	gi18539	Mus musculus	glucocorticoid	171	84
		80		receptor		
1			1	interacting	1	
	1			protein 1		
124	1536	Y17227	Homo sapiens	Human	452	100
	-550			secreted		
L	<u> </u>	L		1		J

SEQ ·	SEQ	Acces-	Species	Description	Smith	ફ
ID	ID	sion	op-ss	•	-	Identity
NO:	NO:	No.	ļ		Water	
	in				man	
	USSN				Score	
	09/48					
	8,725		<u> </u>		<u> </u>	
				protein (clone		
			·	ya1-1).		
125	154	gi85150	Pinus taeda	putative	81	40
		90		arabinogalacta		
				n protein		
126	1544	gi38799	Caenorhabditi	Similarity to	134	34
		33	s elegans	Xenopus F-		
		[spondin (DID		·
l	1			precursor (PIR Acc. No.		•
	į	<u> </u>		comes from	1	
				this gene		
157	1554	gi65238	Homo sapiens	S1R protein	255	84
127	1554	17	HOMO Saprens	SIR PIOCEIN	233	0.1
128	1555	gi66352	Homo sapiens	beta-	210	90
		05		ureidopropiona		
				se		
129	1556	Y39286	Homo sapiens	Phosphodiester	161	61
l			*	ase 10 (PDE10)		1
				clone FB93a.		
130	1564	gi89779	Streptomyces	putative	231	45
		45	coelicolor	secreted		
}			A3 (2)	serine	1	1
			B - L I	protease	183	97
131	1576	gi30258 28	Rattus norvegicus	signal transducer and	103	"
1		48	norvegicus	activator of		1
				transcription	İ	
	(Ì	4		İ
132	1578	gi51065	Homo sapiens	transcriptiona	758	98
		72		1 activator		·
1	1			SRCAP		
133	1579	gi85755	Homo sapiens	toll-like	595	99
		27		receptor 8		
134	158	gi40605	Mus musculus	protein kinase	168	70
1		8				
135	1580	gi63340	Gallus gallus	c-Rmil	231	90
136	1588	gi22179	Homo sapiens	PKU-alpha	127	92
		31				ļ
137	1589	gi12724	Mus musculus	Phosphoinositi	720	99
		22	 	de 3-kinase	215	43
138	159	gi22246 29	Homo sapiens	KIAA0344	215	43
139	1600	gi10160	Rattus	neural cell	543	93
239	1 1000	12	norvegicus	adhesion	""	
				protein BIG-2		1
	1	1		precursor		
140	161	gi66495	Homo sapiens	kidney and	1651	98
		83	_	liver proline		1
					<u> </u>	

SEQ	SEQ	Acces-	Species	Description	Smith	ક
ID	ID	sion	-		-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48					
	8,725			oxidase l	<u> </u>	·
141	1612	gi40611	Rattus	protein kinase	125	89
141	1012	3	norvegicus	I	123	
142	1615	gi21999	Homo sapiens	phSR2	150	78
		2	•	•		
143	1620	gi57146	Homo sapiens	serine/threo-	126	71
	:	36		nine protein		
	İ			kinase Kp78] `	
	ļ	ŀ		splice variant		
144	1644	Y13352	Homo sapiens	CTAK75a Amino acid	2542	100
1.3.3	T044	113332	Trough sabtetts	sequence of	2344	100
				protein	,	
	1			PRO228.	/	
145	1647	Y99444	Homo sapiens	Human PRO1575	704	100
				(UNQ781) amino		
				acid sequence		
146	1650	gi37897	Homo sapiens	transmembrane	271	. 100
	1663	65	¥=	receptor UNC5C		
147	1663	W75258	Homo sapiens	Fragment of human secreted	163	-96
				protein		
•				encoded by		1
		<u> </u>		gene 26.		
148	1665	gi10432	Homo sapiens	secreted	1428	99
		431		modular		
Ì				calcium-		
				binding		1
149	1671	gi67081	Mus musculus	protein inositol	169	97
143	10/1	69	Mas mascaras	phosphatase	109	"
				eSHIPD183		
150	1672	Y68773	Homo sapiens	Amino acid	1030	99
1		1	_	sequence of a		
١.				human	ļ	
1		ł		phosphorylatio	}	ł
				n effector		
151	1678	gi60630	Home ganians	PHSP-5. tousled-like	133	
1,21	10/8	17	Homo sapiens	kinase 1	132	86
152	1680	gi35106	Homo sapiens	nuclear	278	80
		03		receptor co-		"
				repressor N-		•
]				COR]	j j
153	1692	gi15460	Homo sapiens	farnesol	165	100
		84		receptor HRR-1		
154	1698	gi52046	Oryctolagus	597 aa	177	94
		9	cuniculus	protein] [
	<u> </u>	L	<u> </u>	related to		<u> </u>

SEQ SEQ Sign Species Description Smith Water w	CEO	SEO	Acces-	Species	Description	Smith	8
No: No: No.				Species	Deberry	_	Identity
In USSN 09/48 8,725						Water	
USSN 09/48 8,725	NO:		NO.				
Na/glucose							
155 1702 gi10432 Homo sapiens Signature Si			İ			00010	
155 1702 gi10432 Homo sapiens 382 156 1704 Y91668 Homo sapiens Human secreted protein sequence encoded by gene 73 1708 gi30807 Mus musculus growth factor independence-18 18 1716 gi29653 Homo sapiens Putative oncogene 18 1731 Y27581 Homo sapiens Human secreted protein kinase TAO1 Human secreted protein encoded by gene No. 15. 160 1731 Y27581 Homo sapiens Human secreted protein encoded by gene No. 15. 161 1732 gi96520 Homo sapiens Extended human secreted protein miscopiens 1025 98 100							
155 1702 gi10432 Homo sapiens 382 156 1704 Y91668 Homo sapiens Human secreted protein sequence encoded by gene 73 1708 gi30807 Mus musculus growth factor independence 18 1716 gi29653 Homo sapiens putative oncogene 159 173 gi34524 Rattus 73 norvegicus serine/threo-nine protein kinase TAO1 Human secreted protein mine protein kinase TAO1 Homo sapiens Searched 1740 1741 1752 1752 Homo sapiens Searched 1754 1755 1751 175		8,725			Na /alugada		
155 1702 gi10432 Homo sapiens 382 Homo sapiens 382 Homo sapiens Human 214 75		1			_	ļ	
1704 1704 1706 1704 1706 1706 1706 1706 1706 1706 1706 1706 1707 1708					cotransporters		
1704 Y91668 Homo sapiens Human secreted protein sequence encoded by gene 73 T8	155	1702	-	Homo sapiens		519	95
Secreted Secreted Secreted Secreted Secreted Sequence		7.704		Ware garriand		214	75
157 1708 gi30807 Mus musculus growth factor 1708 gi29653 Homo sapiens putative 220 92	156	1704	191000	HOIIO Saprens		211	, ,
Sequence		Î				İ	
157 1708 gi30807 Mus musculus growth factor independence- 18		1		•	. –		
157		1					
1708	ļ	1				ŀ	
158 1716 gi29653 Homo sapiens putative oncogene 159 173 gi34524 Rattus serine/threo-nine protein kinase TAO1 160 1731 Y27581 Homo sapiens Human secreted protein encoded by gene No. 15. 161 1732 gi96520 Homo sapiens Scavenger receptor cysteine-rich type 1 protein M160 precursor 162 174 Y35923 Homo sapiens Extended human secreted protein sequence, 163 1740 Y53014 Homo sapiens Human secreted protein sequence 164 1748 gi77702 Homo sapiens PRO2822 218 93 165 1751 gi89798 Homo sapiens Tumor necrosis factor receptor 1 death domain dea						\	
158	157	1708	, -	Mus musculus		457	/8
158 1716 gi29653 Homo sapiens putative oncogene 220 92 159 173 gi34524 Rattus norvegicus Serine/threo-nine protein kinase TAO1 160 1731 Y27581 Homo sapiens Human secreted protein encoded by gene No. 15. 161 1732 gi96520 Homo sapiens Scavenger receptor cysteine-rich type 1 protein M160 precursor 162 174 Y35923 Homo sapiens Extended human secreted protein sequence, 163 1740 Y53014 Homo sapiens Human secreted protein clone finis9_13 protein sequence 164 1748 gi77702 Homo sapiens PRO2822 218 93 165 1751 gi89798 Homo sapiens Tumor necrosis factor receptor 1 death domain 184	1		57		_	1	
159 173 g134524 Rattus Serine/threo- 699 100 160 1731 Y27581 Homo sapiens Human secreted protein encoded by gene No. 15. 161 1732 g196520 Homo sapiens Scavenger receptor cysteine-rich type 1 protein M160 precursor 162 174 Y35923 Homo sapiens Extended human secreted protein sequence, 163 1740 Y53014 Homo sapiens Human 337 60 164 1748 g177702 Homo sapiens PRO2822 218 93 165 1751 g189798 Homo sapiens Tumor necrosis factor receptor 1 death domain							
173	158	1716	gi29653	Homo sapiens	1 -	220	92
160	1						
Kinase TAO1	159	173	gi34524	Rattus	serine/threo-	699	100
160 1731 Y27581 Homo sapiens Human secreted protein encoded by gene No. 15.			73	norvegicus	nine protein		
Secreted Protein Encoded by gene No. 15.	ł	ļ			kinase TAO1	j	
Secreted protein encoded by gene No. 15.	160	1731	Y27581	Homo sapiens	Human	774	100
encoded by gene No. 15.				•	secreted	ļ	
encoded by gene No. 15.	į .	1	1		protein	1	
161 1732 gi96520 Homo sapiens Scavenger receptor cysteine-rich type 1 protein M160 precursor						l	1
161 1732 gi96520 Homo sapiens Scavenger receptor cysteine-rich type 1 protein M160 precursor		1				ĺ	
162 174 Y35923 Homo sapiens Extended human secreted protein sequence,	161	1732	gi 96520	Homo sapiens		1025	98
Cysteine-rich type 1 protein M160 precursor	101	1 -/32	1 -	200		1	
type 1 protein M160 precursor 162 174 Y35923 Homo sapiens Extended human secreted protein sequence, 163 1740 Y53014 Homo sapiens Human secreted protein clone fn189_13 protein sequence 164 1748 gi77702 Homo sapiens PRO2822 218 93 165 1751 gi89798 Homo sapiens PRO2822 218 93 166 1755 R95332 Homo sapiens Tumor necrosis factor receptor 1 death domain	1	İ	"				
M160 precursor 1691 100	ì	1	į	i		Ì	l
162 174 Y35923 Homo sapiens Extended human secreted protein sequence, 163 1740 Y53014 Homo sapiens Human secreted protein clone fn189_13 protein sequence 164 1748 gi77702 Homo sapiens PRO2822 218 93 37 165 1751 gi89798 Homo sapiens 306 50 25 166 1755 R95332 Homo sapiens Tumor necrosis factor receptor 1 death domain 184 62 1750 1840 18	.}	1				}	
162		1 '	1	ļ	l .		
human secreted protein sequence, 163 1740 Y53014 Homo sapiens Human secreted protein clone fn189_13 protein sequence 164 1748 gi77702 Homo sapiens PRO2822 218 93 165 1751 gi89798 Homo sapiens 306 50 25 166 1755 R95332 Homo sapiens Tumor necrosis factor receptor 1 death domain	1.50	1 777	V2.5022	Heme gamieng		1691	100
protein sequence,	162	1/4	135923	HOMO Saprems		1 1001	100
Sequence, Sequence, Sequence, Sequence, Sequence, Sequence, Sequence, Secreted Secreted Secreted Secreted Sequence Se		ì					Į
163 1740 Y53014 Homo sapiens Human secreted protein clone fn189_13 protein sequence 164 1748 gi77702 Homo sapiens sequence PRO2822 218 93 165 1751 gi89798 Homo sapiens 25 306 50 166 1755 R95332 Homo sapiens Tumor necrosis factor receptor 1 death domain 1184 62					-		
Secreted Secreted Secreted Secreted Secreted Secreted Sequence			1	L			60
protein clone fn189_13 protein sequence	163	1740	Y53014	Homo sapiens		33/	80
fn189_13 protein sequence 164 1748 gi77702 Homo sapiens PRO2822 218 93 37 165 1751 gi89798 Homo sapiens 306 50 25 166 1755 R95332 Homo sapiens Tumor necrosis factor receptor 1 death domain	1.		}		,	1	
protein sequence	Į		1				
Sequence Sequence		1	1	1			
164 1748 gi77702 Homo sapiens PRO2822 218 93 165 1751 gi89798 Homo sapiens 306 50 25 25 166 1755 R95332 Homo sapiens Tumor necrosis factor receptor 1 death domain 1184 62		1	1		II —		-
37 165 1751 gi89798 Homo sapiens 25 166 1755 R95332 Homo sapiens Tumor necrosis factor receptor 1 death domain	1	1					
165 1751 gi89798 Homo sapiens 306 50 25 166 1755 R95332 Homo sapiens Tumor 1184 62 necrosis factor receptor 1 death domain	164	1748	gi77702	Homo sapiens	PRO2822	218	93
25 166 1755 R95332 Homo sapiens Tumor 1184 62 necrosis factor receptor 1 death domain	1				<u> </u>		
166 1755 R95332 Homo sapiens Tumor 1184 62 necrosis factor receptor 1 death domain	165	1751		Homo sapiens		306	50
necrosis factor receptor 1 death domain	· .					1	
factor receptor 1 death domain	166	1755	R95332	Homo sapiens		1184	62
receptor 1 death domain	1					1	1
death domain			ſ			1	
			1			1	
	1		1 .			1	
		1	1]	ligand (clone		

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	_		-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48					
	8,725	<u> </u>				
	1.525		**	3TW).	1545	99
167	1762	gi73809 47	Homo sapiens	Gem- interacting	1545	99
		4 ′		protein		ŀ
168	1776	gi59122	Homo sapiens	hypothetical	224	100
100	1 1778	65	nomo Bapiens	protein		100
169	1777	Y70461	Homo sapiens	Human	413	95
		2.000		membrane		
				channel		1
				protein-11		
				(MECHP-11).		
170	1781	R26060	Homo sapiens	Growth Factor	398	98
	<u> </u>	1		Receptor Bound		
ĺ		_		protein GRB-		1
				1.		
171	1796	gi10312	Homo sapiens	serine	1381	99
		169		carboxypepti-		1
				dase 1		
		1		precursor protein		
172	180	gi30025	Homo sapiens	neuronal	477	61
1/2	180	27	nomo sapiens	thread protein	1	"
		1 "		AD7c-NTP		
173	182	gi73851	Homo sapiens	HBV pX	2066	82
		31	_	associated		
	İ			protein-8;		
	<u> </u>			XAP-8		
174	1820	G03249	Homo sapiens	Human	370	97
	1		•	secreted	ļ]
				protein,	7040	
175	1822	gi47396 9	Oryctolagus	one of the members of	1048	90
•	1	9	cuniculus	sodium-glucose		,
	Į.	İ	į	cotransporter		
				family		
176	1829	gi10440	Homo sapiens	FLJ00012	310	96 .
		355		protein		
177	1832	gi16565	Oryctolagus	phosphorylase	146	96
		0	cuniculus	kinase beta-	1	1
				subunit		
178	1834	W75132	Homo sapiens	Human	423	47
		1		secreted	1	
1		1		protein		
1				encoded by		
j				gene 11 clone]
	1	 	0-1-1-1	HCENJ40.		
179	1837	gi60369	Saimiriine	ORF	615	71
1			herpesvirus 2	48~EDLF5~sim. to EBV BRRF2		
L	<u> </u>	<u> </u>	<u> </u>	CO EDV BRREZ	<u> </u>	<u> </u>

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion		•	-	Identity
NO:	NO:	No.			Water	-
	in				man	
	USSN			n	Score	
	09/48]
	8,725					}
180	1859	gi99896	Homo sapiens	ROR2 protein	645	87
		96				
181	1880	gi73408	Mus musculus	chondroItin	275	40
		47		4-		
	i			sulfotransfera		
				se		
182	1881	gi75732	Homo sapiens		298	100
		91		0001 000		
183	1890	gi31499	Homo sapiens	ST1C2	183	94
100	1000	50	***	Dhambaina	346	98
184	1899	gi21432 60	Homo sapiens	Phosphoino- sitide 3-	346	98
]	60		kinase		
185	19	gi18085	Homo sapiens	U2AF1-RS2	224	46
182	19	82	Homo sapiens	UZAFI-KSZ	224	40
186	192	G03192	Homo sapiens	Human	267	86
-00		000222	1100 54.54.51.5	secreted		
İ	1			protein,		l
187	1922	gi48585	Mus musculus	IB3/5-	1206	78
		8		polypeptide		
188	1945	gi37261	Homo sapiens		1402	97
189	195	W67863	Homo sapiens	Human	551	98
			_	secreted		1
				protein		
]	·	encoded by	j]
				gene 57 clone		
		<u></u>		HFEBF41.		
190	1957	gi40673	Homo sapiens	Shb	263	44
	1000	8		Thurst DD0700	975	98
191	1969	Y41701	Homo sapiens	Human PRO708	9/5	98
i		1		protein sequence.		
100	1970	gi39798	Caenorhabditi	Weak	254	49
192	15/0	17	s elegans	similarity to	2.54	3
1	1	1 -	Cicgans	Human		
1.	1	ļ		tyrosine-		
1		1		protein kinase		
				CSK		}
193	1973	G00796	Homo sapiens	Human	365	98
				secreted	1	
				protein,		
194	1985	gi45586	Homo sapiens	Putative	1420	99
1		37		homolog of	1	
				hypoxia		1
				inducible	1	1
1				factor three		
		1		alpha	1-355	
195	1986	gi44550	Homo sapiens	host cell	367	50
	J	15	<u> </u>	factor homolog	<u> </u>	J

SEQ	SEQ	Acces-	Species	Description	Smith	*
ID	ID	sion	-	-	-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48					ĺ
	8,725					ł
	07.00			LCP		
196	2	G02532	Homo sapiens	Human	106	85
			_	secreted		
				protein,]
197	2004	gi10503	Homo sapiens	type A	961	100
		935	-	calpain-like		1 1
i				protease		
198	2023	gi16513	Escherichia		1075	97
170		41	coli	-		
199	2025	¥71069	Homo sapiens	Human	540	100
		•	-	membrane	1	
				transport		
	i			protein,	Ì	1
		1	- 6	MTRP-14		
200	2038	gi85725	Homo sapiens	membrane-	686	98
		43	•	associated	'	1
	-			lectin type-C]
201	2041	gi37400	Homo sapiens	trk-2h	228	89
		3	•	polypeptide		
202	2043	W75096	Homo sapiens	Human	290	38
202		"		secreted		
				protein		}
•				encoded by		1
l		İ		gene 40 clone	1	
l	}		Ì	HNEDJ57.		1
203	2068	G03394	Homo sapiens	Human	595	97
203	2000			secreted	ł	
	ļ	ļ	·	protein,		
204	2072	gi21165	Rattus	cationic	1025	85
204	20.2	52	norvegicus	amino acid		
			,,,	transporter 3		1
205	2076	gi15740	Drosophila	fat protein	369	39
-05	-3.0	9	melanogaster			
206	2078	gi10549	Gallus gallus	cSH-PTP2	605	94
====		40]			
207	2084	gi96631	Homo sapiens	hypothetical	874	99
-0.		28		protein		
208	2088	gi10567	Homo sapiens	sodium	609	100
		590		bicarbonate		•
1	1	1		cotransporter-	1	
1				like protein		
209	2089	gi17890	Escherichia	putative ATP-	961	98
1		01	coli	binding		
Į.	1	1		component of a		}
1				transport		Į.
	1			system	1	
210	2097	Y70460	Homo sapiens	Human	258	96
210	1			membrane		
1				channel	1	
				.1		

SEO	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	- Prozes		-	Identity
NO:	NO:	No.			Water	•
	in				man	
	USSN				Score	ĺ
	09/48]
}	8,725				}]
			***************************************	protein-10		
<u> </u>				(MECHP-10).		
211	2108	gi32075	Rattus	hexokinase	767	74
	<u> </u>	08	norvegicus			
212	2111	gi63302	Homo sapiens	KIAA1176	3710	99
		33	···	protein	155	
213	2118	W74797	Homo sapiens	Human	156	96
]				secreted	•	1
				protein	1	
i	ļ			encoded by		ļ [
				gene 68 clone HKIXR69.		
214	2134	gi17809	Homo sapiens	branched	209	97
	2151	91	nome suprems	chain acyl-CoA		-
				oxidase		
215	2146	gi76881	Homo sapiens	hypothetical	1038	100
		48	•	protein		
216	2149	gi22804	Homo sapiens	KIAA0376	917	100
	1	85				
217	2153	gi18424	Rattus	ankyrin	592	88
		29	norvegicus	binding cell		
				adhesion		
				molecule		1
				neurofascin		
218	2155	gi65267 91	Homo sapiens	Eps15R	1126	100
219	2161	gi73004	Drosophila	CG7709 gene	200	33
		27	melanogaster	product		
220	2163	Y52296	Homo sapiens	Human	186	91
{		1		isomerase		1
1				homologue-3 (HIH-3).	ļ	
221	2173	W34526	Homo sapiens	hTCP protein	164	93
~~~	22/3	1134320	"TOWO Dabrems	fragment.	103	-3
222	2178	gi33605	Rattus	Citron-K	299	94
1	]	12	norvegicus	kinase		] [
223	2180	Y74008	Homo sapiens	Human	261	41
1		W .	_ ·	prostate tumor		1
				EST fragment		
1				derived	1	
L		L		protein #195.		
224	2184	gi53041	Mus musculus		130	41
225	2186	gi40177	Homo sapiens	ribosomal	142	64
1		4		protein S6		
<u></u>	<u> </u>		ļ	kinase 3	<u> </u>	
226	2190	gi57729	Homo sapiens	The hal225	176	100
		5	[	gene product		
1	1	ľ	1	is related to		
L	L	<u> </u>	J	human alpha-	<u> </u>	L

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	-	_	-	Identity
NO:	NO:	No.			Water	ì
	in				man ·	
	USSN	1		; <u>,</u>	Score	1
	09/48			•		
	8,725					
				glucosidase.		
227	2210	gi20553	Rattus	transmembrane	620	90
		92	norvegicus	receptor		l
				UNC5H1		
228	2214	gi78617	Homo sapiens	low density	1360	98
ļ		33		lipoprotein		
1			•	receptor	\ \	
1				related	<b>[</b>	
ļ				protein- deleted in		
Ì				tumor		
229	2223	gi79591	Homo sapiens	KIAA1464	884	99
229	2223	89	HOMO Saprens	protein	004	''
230	223	W88627	Homo sapiens	Secreted	300	77
230	223	W00027	nomo sapiens	protein	300	''
l				encoded by	l	İ
l			*	gene 94 clone		1
İ				HPMBQ32.		
231	2233	gi78395	Homo sapiens	organic anion	1092	99
232		87		transporting		
				polypeptide 14		•
232	2237	gi10440	Homo sapiens	FLJ00033	1212	99
		400	-	protein		
233	2251	gi59237	Homo sapiens	zinc metallo-	277	44
		86		protease		
		1		ADAMTS6		
234	2256	W63698	Homo sapiens	Human secreted	516	100
l				protein 18.		
235	2259	gi46787	Homo sapiens	hypothetical	387	36
		22		protein		
236	2262	Y33741	Homo sapiens	Beta-	793	99
				secretase.		
237	2265	gi70185	Homo sapiens	hypothetical	608	94
	1 00 ==	45	 	protein	604	F2
.238	2271	gi41861	Homo sapiens	unknown	684	53
1-335	2272	83	Homo conions	KIAA1327	1031	100
239	2273	gi72430	Homo sapiens	protein	1031	100
240	2200	35 gi58096	Homo sapiens	sperm membrane	342	95
240	2280	78	TOUG SAPTELLS	protein BS-63	342	
241	2286	gi62246	Homo sapiens	Na+/sulfate	1221	99
241	2200	91	Tour papters	cotransporter		-
				SUT-1		
242	2291	gi20762	Rattus	uromodulin	345	50
		1	norvegicus			
243	2292	gi72963	Drosophila	CG5274 gene	272	35
		04	melanogaster	product		
244	2294	Y28503	Homo sapiens	HGFH3 Human	320	98
				Growth Factor		
<u> </u>		ــــــــــــــــــــــــــــــــــــــ	<del></del>			<u> </u>

SEQ	SEO	Acces-	Species	Description	Smith	8
ID	ID	sion	opecies	2000112	-	Identity
NO:	NO:	No.			Water	
	in				man	1
	USSN			•	Score	
	09/48					
	8,725		,			
				Homologue 3.		
245	2296	W88799	Homo sapiens	Polypeptide	223	86
				fragment		
			•	encoded by	1	
				gene 45.	2010	
246	2303	gi71101	Homo sapiens	guanine	1212	99
		60		nucleotide exchange	\	ļ.
	Ì			factor		
247	2306	gi64348	Mus musculus	calcium/calmod	576	84
241	2300	74	Mas mascaras	ulin dependent	3,0	"
		' -		protein kinase		1
				kinase alpha		
248	2309	Y95433	Homo sapiens	Human calcium	1203	99
- 10				channel SOC-	1	
				2/CRAC-1 C-	ļ	
	ì			terminal	1	1
				polypeptide.		
249	2313	gi73009	Drosophila	CG4677 gene	689	79
		43	melanogaster	product		1
250	2318	W48351	Homo sapiens	Human breast	202	59
				cancer related		
Ì	1		•	protein		1 1
				BCRB2.		
251	2329	G01772	Homo sapiens	Human	311	84
		1		secreted protein,	İ	
252	2330	Y41729	Homo sapiens	Human PRO1071	886	99
252	2330	141/29	nomo saprens	protein	880	
				sequence.		
253	2342	gi37864	Caenorhabditi		268	42
		30	s elegans			
254	2350	gi93010	Homo sapiens	protein-	571	79
		4	_	tyrosine		
1.		İ		phosphatase		
255	2359	gi93925	Homo sapiens	CC chemokine	679	99
		91		CCL28		
256	2361	gi16666	Mus musculus	alpha-NAC,	357	41
	1	89		muscle-	1	
1		1		specific form		
			17	gp220	112	70-
257	2374	G03172	Homo sapiens	Human secreted	112	78
	[	1		protein,		
250	2387	gi13991	Homo sapiens	pyruvate	201	85
258	2307	97	TOWO Babtens	dehydrogenase	201	33
		1		kinase isoform		
	]	1		4		
259	2401	G01757	Homo sapiens	Human	612	99
		4. ——		·		

Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   S	SEQ	SEQ	Acces-	Species	Description	Smith	8
NO: NO: NO: NO: NO: NO: NO: NO: NO: NO:	_			·	100000	_	Identity
In USN   09/48   8,725   Secreted   Secreted   Protein   Score		1	1		ļ	Water	•
USSN   09/48   8,725	2.0.				ì	man	
09/48   8,725						Score	
B,725   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein   Secreted protein   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,			· .		1		
Secreted protein,   Cleavage signal 1   Protein   Cleavage signal 1   Protein   Cleavage signal 1   Protein   Cleavage signal 1   Protein   Cleavage signal 1   Protein   Cleavage signal 1   Protein   Cleavage signal 1   Protein   Cleavage signal 1   Protein   Cleavage signal 1   Protein   Cleavage signal 1   Protein   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Protein   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 1   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signal 2   Cleavage signa			<b>]</b>		J	}	
2409   gi18112   Homo sapiens   Scleavage   Signal 1   Protein   Protein		0,725	<u>-</u>		secreted	<del> </del>	
3   Signal 1   Protein			ļ		protein,		
3   Signal 1   Protein	260	2409	qi18112	Homo sapiens	cleavage	194	86
261   2431   gi70185   Homo sapiens   hypothetical protein   262   2432   gi48264   Homo sapiens   327   39   39   326   326   326   48   Homo sapiens   Human secreted protein,   264   2471   gi76881   Homo sapiens   hypothetical protein,   265   2478   gi39270   Homo sapiens   Homo sapiens   Homo sapiens   hypothetical protein   266   2484   gi33270   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapiens   Homo sapi			_	<u>-</u>	-	1	
47				•	_		1
47	261	2431	gi70185	Homo sapiens	hypothetical	473	50
263   2467   G03667   Homo sapiens   Human secreted protein,   1284   91			1 -		protein		
263   2467   G03667   Homo sapiens   Human secreted protein,	262	2432	gi48264	Homo sapiens		327	39
Secreted protein,			96				
264   2471   g176881   Homo sapiens   hypothetical protein   1284   91	263	2467	G03667	Homo sapiens		640	97
264   2471   gi76881   Homo sapiens   hypothetical protein   polycystic kidney disease-associated protein   1747   99		İ			secreted		
48		1			1		
265   2478   gi79081   Homo sapiens   polycystic kidney disease-associated protein   266   2484   gi33270   Homo sapiens   KIAA0633   protein   267   249   G03793   Homo sapiens   Human secreted protein,   139   65	264	2471	gi76881	Homo sapiens		1284	91
Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second	1		1		_ · · · · · · · ·		
disease-associated protein	265	2478	gi79081	Homo sapiens		615	90
Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Second color   Seco		1	9		-		
266   2484   gi33270   Homo sapiens   KIAA0633   1747   99	ł				1		1
266   2484   gi33270   Homo sapiens   KIAA0633   protein		ŀ					
S0					1 -		
267   249   G03793   Homo sapiens	266	2484	gi33270	Homo sapiens	1	1747	99
Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted promone degrading ectoenzyme   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secr					_1_=		
268   2490   gi64673   Homo   Sapiens   Thyrotropin-releasing   Homone   degrading   ectoenzyme	267	249	G03793	Homo sapiens		139	65
268   2490   gi64673   Homo   Sapiens   Thyrotropin-releasing   hormone   degrading   ectoenzyme						ŀ	
71   releasing hormone degrading ectoenzyme							
hormone   degrading   ectoenzyme	268	2490	1 -	Homo sapiens		757	98
degrading ectoenzyme			71		_	ì	
269   25   G03203   Homo sapiens   Human   137   65							1
269 25 G03203 Homo sapiens Human secreted protein,  270 2504 Gi40977 Homo sapiens HBV associated factor  271 2506 Gi20727 Homo sapiens Na+/nucleoside cotransporter  272 2507 Gi59240 Homo sapiens O7  273 2510 Gi77173 Homo sapiens beta-site APP-cleaving enzyme 2, EC 3.4.23.  274 2523 Gi33970 Homo sapiens Serine/threonine protein kinase	1	İ				l	1
Secreted   Protein,							
270   2504   gi40977   Homo sapiens   HBV   associated   factor	269	25	G03203	Homo sapiens		137	65
270   2504   gi40977   Homo sapiens   HBV   associated   factor	l	ļ	1			1	
12						<del> </del>	
Table   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Factor   Fa	270	2504	1 -	Homo sapiens		100	/4
271   2506   gi20727   Homo sapiens   Na+/nucleoside cotransporter   201   95	1		12				
84		2500		Home geniene		201	05
272 2507 gi59240 Homo sapiens 335 38  273 2510 gi77173 Homo sapiens beta-site 383 89  85 APP-cleaving enzyme 2, EC 3.4.23.  274 2523 gi33970 Homo sapiens 9  275 253 gi36615 Homo sapiens serine/threo-nine protein kinase	271	2506	1 -	nomo sapiens		201	75
07	272	2507		Homo canions	Cottansporter	335	20
273 2510 gi77173 Homo sapiens beta-site APP-cleaving enzyme 2, EC 3.4.23.  274 2523 gi33970 Homo sapiens serine/threo-nine protein kinase	1 2/2	2307	_	TOWN Sabrens		335	30
85 APP-cleaving enzyme 2, EC 3.4.23.  274 2523 gi33970 Homo sapiens 150 96  275 253 gi36615 Homo sapiens serine/threo-nine protein kinase	272	2510		Homo saniene	beta-site	383	89
enzyme 2, EC 3.4.23.  274	213	2310					
3.4.23.  274 2523 gi33970 Homo sapiens 150 96  275 253 gi36615 Homo sapiens serine/threo-nine protein kinase	ļ		"	1			
274 2523 gi33970 Homo sapiens 150 96  275 253 gi36615 Homo sapiens serine/threo- nine protein kinase			1				
9   9   1   275   253   gi36615   Homo sapiens   serine/threo-   391   77   nine protein   kinase   1   1   1   1   1   1   1   1   1	274	2523	gi33970	Homo sapiens		150	96
nine protein kinase	1		_	_			
nine protein kinase	275	253	gi36615	Homo sapiens	serine/threo-	391	77
1					nine protein		
276   2533   gi45896   Homo sapiens   KIAA0985   191   61		1			kinase		
	276	2533	gi45896	Homo sapiens	KIAA0985	191	61

SEQ	SEO	Acces-	Species'	Description	Smith	*
	ID	sion	-	-		Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
ı l	09/48				·	
	8,725					
		14		protein		
277	2536	gi20886	Caenorhabditi	strong	419	55
		85	s elegans	similarity to the CDC2/CDX		
			•	subfamily of		
				ser/thr		
				protein		
		-		kinases	\	
278	2544	gi10024	Mus musculus	YSPL-1 form 2	280	80
	-	25				
279	2568	Y41738	Homo sapiens	Human PRO541	379	49
				protein	Ĭ.	
				sequence.	2	
280	2580	gi30044	Rattus	putative	382	49
i l		82	norvegicus	integral		
				membrane		
				transport protein		
281	2593	gi73000	Drosophila	CG4525 gene	582	50
201	2393	49	melanogaster	product	302	30
282	2600	gi45304	Homo sapiens	thyroid	334	90
		37		hormone		1
		·		receptor-		
1				associated	}	
				protein	ļ	
i i				complex		
				component	]	
		10000		TRAP240		
283	2625	gi80996	Homo sapiens	toll-like	761	96
•		52		receptor 9		
	2641	gi14801	Escherichia	form A tolA	692	100
284	2041	9	coli	COLA	092	100
285	2667	gi17503	Pseudomonas	Carbamoyl-	143	76
		87	aeruginosa	phosphate	<u> </u>	
				synthetase		
<u>[                                    </u>				large subunit		
286	2670	gi48834	Mus musculus	RNA binding	139	92
		37		protein		
287	2673	Y66656	Homo sapiens	Membrane-	1869	98
				bound protein		
288	2676	gi38859	Mus musculus	PRO943.	123	88
400	20/0	78	Fide musculus	specific	143	) "
		, ,		thymine-DNA		
				glycosylate	}	]
289	2680	gi64534	Homo sapiens	hypothetical	465	82
		38		protein		
	2682	gi18417	Mus musculus	GATA-5	527	77

SEQ	SEQ	Acces-	Species	Description	Smith	ક
ID	ID	sion	_	_	-	Identity
NO:	NO:	No.			Water	
	in				man	
,	USSN				Score	
	09/48					
	8,725					
		56		cardiac		
		4		transcription		
				factor		
291	2684	gi98449	Homo sapiens	nicotinic	294	88
		20		acetylcholine		
				receptor		· ]
				subunit alpha		
				10		
292	2695	gi17897	Escherichia	putative	879	98
		64	coli	transport		
293	2697	gi34922	Escherichia	peripheral	936	99
		9	coli	membrane	1	
				protein		
294	2698	gi40621	Escherichia	•	737	100
		94	coli			
295	2700	gi52924	Escherichia	homoserine	578	100
		0	coli	kinase		
296	2704	gi15528	Escherichia	hypothetical	420	100
		31	coli			
297	2712	gi17896	Escherichia	putative ATP-	262	100
		72	coli	binding		
				component of a		
				transport	-	'
				system		
298	2716	gi40624	Escherichia	Transmembrane	382	100
		09	coli	protein dppC		
299	2719	gi30497	Escherichia	matches	921	95
<u> </u>	ļ	6	coli	PS00017:	İ	
1	]	Į.	,	ATP_GTP_A and		
1	ļ			PS00301:		
1		1		EFACTOR_GTP;		
		12.4505	Ma - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	similar	645	0.5
300	2724	gi14585 6	Escherichia coli	nmpC	647	97
-303	2725	gi17894	Escherichia	putative	312	100
301	2125		coli	1	314	100
		73	COII	protein		<b>{</b>
302	2728	gi18055	Escherichia	Procern	222	97
302	2/28	61	coli	,	222	"
202	2729	gi43248	Escherichia	<del> </del>	655	91
303	4123	9143248	coli		055	31
304	2744	gi39629	Escherichia	similar to E.	675	100
1 304	2/33	9139029	coli	coli pyruvate	","	100
			5522	formate-lyase		
	1			activating		
				enzyme		
305	2749	gi17426	Escherichia		592	100
305	4/45	48	coli	1.	""	-50
306	2752	gi40622	Escherichia	Sensor kinase	357	100
1300	4/54	9170022		1 20000 1111000		1.00

SEQ	SEQ	Acces-	Species	Description	Smith	ક
ID	ID	sion	•	-	-	Identity
NO:	NO:	No.		•	Water	
i	in				man	,
	USSN				Score	
	09/48					
	8,725					
		36	coli	CitA		
307	2762	gi17877	Escherichia	putative	342	100
	,	95	coli	LACI-type	] .	
				transcriptiona		
		1.5.5005	#1	l regulator	151	84
308	2764	gi17997	Escherichia coli	putative	121	. 84
		43	COLL	LACI-type transcriptiona	\	[
	1	1		l regulator		
309	2768	gi40596	Escherichia	yohG	534	94
309	2700	9140330	coli	youd	334	7.
310	2774	gi40623	Escherichia	•	387	97
310	2//-	38	coli	•	""	] -
311	2790	gi40623	Escherichia		420	86
3	2,50	38	coli			
312	2800	gi17898	Escherichia	putative	572	100
		05	coli	transport	1	
313	2811	gi53053	Mus musculus	protein	421	49
		33		kinase Myak-S	]	1
314	2827	gi10047	Homo sapiens	KIAA1588	531	. 97
	,	251		protein.		}
315	2830	G02872	Homo sapiens	Human	185	62
				secreted		_
				protein,		
316	2836	gi19117	Cricetulus	CAMP-	1677	97
1	1	5	sp.	dependent	1	1
ļ		1		protein kinase alpha-	1	i l
Ì				catalytic	1	
		1		subunit		i
317	2851	gi55884	Homo sapiens	BCL2/adeno-	220	61
1 31,	2031	6	nome baggans	virus E1B		
l				19kD-		
1		ļ		interacting		1
		1		protein 3		
318	2856	gi38822	Homo sapiens	KIAA0745	232	93
		11		protein		
319	2866	gi63297	Homo sapiens	KIAA1119	1331	91
		08		protein		
320	2874	gi28530	Mus musculus	tousled-like	203	82
		33		kinase		
321	2882	gi10185	Schizosacchar	hypothetical	318	42 -
		134	omyces pombe	zinc-finger	-	1
				protein	1	
322	2886	G03797	Homo sapiens	Human	140	69
1			1	secreted	Ì	
	1	45455		protein, KIAA0918	1 222	-
323	2899	gi42403 25	Homo sapiens	protein	170	53
L			<u> </u>	brocern		<u> </u>

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	•	•	_	Identity
NO:	NO:	No.		(	Water	-
	in			\	man	
	USSN				Score	
	09/48		·			
	8,725				1	
324	2906	Y94988	Homo sapiens	Human	1738	100
				secreted		
				protein vl1_1,		
325	2920	gi94537	Homo sapiens		1926	100
		35				
326	2925	gi64348	Homo sapiens	CDK4-binding	1210	100
		76		protein	\ \	
			<u> </u>	p34SEI1		
327	2930	gi39413	Schistosoma	myosin	208	28
		20	japonicum			
328	2934	Y31645	Homo sapiens	Human	642	63
				transport-		
				associated protein-7		
				(TRANP-7).		
329	2955	G01165	Homo sapiens	Human	528	99
329	2933	901103	nomo saprens	secreted	1 320	33
				protein,		
330	2967	gi72639	Homo sapiens	Processy	466	100
330	2307	60	110.110 0012-0115			100
331	2980	gi45895	Homo sapiens	KIAA0943	1849	94
		30		protein		
332	2994	G03812	Homo sapiens	Human	124	61
1	ļ		_	secreted		
				protein,		
333	2996	gi98574	Homo sapiens	tumor	2666	98
İ	Ì	00		endothelial		
				marker 1		
				precursor		
334	2999	Y66697	Homo sapiens	Membrane-	2254	100
				bound protein		
				PRO1383.		
335	3	gi62890 72	Homo sapiens	JM24 protein	930	100
336	3008	Y45219	Homo sapiens	Human CASB47	557	92
337	3013	gi52626	Homo sapiens	hypothetical	1747	100
		78		protein		
338	3041	Y73335	Homo sapiens	HTRM clone	1315	99
				1850120	1	j
				protein	_	
				sequence.		
339	306	gi48684	Mesocricetus	Mx-	1867	95
		43	auratus	interacting		
		1		protein kinase		ļ
				PKM		
340	3061	gi43333	Homo sapiens	protein-	3934	94
{		8		tyrosine		1
L	<u> </u>	<u> </u>	<u></u>	kinase	<u> </u>	

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	op	2000000	-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
)	09/48					
	8,725					
341	309	Y76145	Homo sapiens	Human	1313	99
				secreted		
				protein		
			•	encoded by	[	
				gene 22.		
342	3095	gi73001	Drosophila	CG14899 gene	190	57
343	3098	59 gi53205	melanogaster	product	2641	
343	3098	g153205	Homo sapiens	protein- tyrosine-	2641	86
		•		phosphatase		
344	3105	gi28598	Homo sapiens	mitochondrial	192	71
7-14	3103	7	TOUC Saprens	outer membrane	1 24	′-
		<b>'</b>		protein 19		·
345	3118	gi99299	Macaca	hypothetical	180	61
3-3	3110	35	fascicularis	protein	100	61
346	3124	gi81319	Mus musculus	transient	226	100
310	3124	03	ab mascaras	receptor	220	100
		0.0		potential-		
				related		
		}		protein		
347	3126	Y02370	Homo sapiens	Polypeptide	261	100
				identified by		
				the signal		
	ļ.			sequence trap		
				method.		
348	3166	gi72908	Drosophila	CG1531 gene	534	42
		60	melanogaster	product		
349	3175	gi66495	Homo sapiens	kidney and	1752	95
		83	٠	liver proline		
				oxidase 1		
350	3176	gi72084	Homo sapiens	long-chain 2-	1048	95
		38		hydroxy acid		
35-	3500	700000	772	oxidase HAOX2		
351	3188	Y02693	Homo sapiens	Human	243	57
ļ ·				secreted		
				protein encoded by		
1				gene 44 clone		
	<u> </u>			HTDAD22.		
352	3191	gi71059	Homo sapiens	calcium	300	96
		26		channel		
	İ	-•		alpha2-delta3		
				subunit	1	
353	3208	gi10334	Homo sapiens	MUCDHL-FL	613	98
		774	1			
354	3226	Y87209	Homo sapiens	Human	3147	99
				secreted		
Ì				protein		
			<u> </u>	sequence	1	

ID	SEQ	SEQ	Acces-	Species	Description	Smith	8
No: No: in USSN 09/48 8,725 3235 3235 3235 3235 355 3235 3235 355 3235 3235 355 3235 355 3235 355 3235 3235 355 3237 3282 G03002 Homo sapiens protein protein, 358 3289 gi32884 Homo sapiens PRO1722 293 64 3329 3296 gi77701 Homo sapiens PRO1722 293 64 3329 gi21988 Ambystoma tigrinum Protein, NSC 3303 3298 321988 Ambystoma tigrinum Protein NSC 3303 3298 321988 Ambystoma tigrinum Protein NSC 3303 3298 321988 Ambystoma tigrinum Protein NSC 3303 3298 321988 Ambystoma tigrinum Protein NSC 3303 3298 321988 Ambystoma tigrinum Protein NSC 3303 3303 3235 3236 3236 Ambystoma tigrinum Protein NSC 3305 3308 3235 3236 Ambystoma tigrinum Protein NSC 3305 3308 3308 321994 Homo sapiens Protein Coupled Protein Coupled Trame ATG Codon is located at nucleotides NPPase. 34 34 3325 3341 W78899 Homo sapiens Protein Coupled The Protein Salizary 1, 192 94 34 34 34 34 34 355 3341 W78899 Homo sapiens Protein Salizary 1, 192 94 34 34 3350 3350 3350 3350 3350 3350 33		. ~		- <b>-</b>	<b>L</b>	-	Identity
USSN   09/48   8,725	NO:	NO:	No.			Water	•
09/48   8,725   3235   3267151   Homo sapiens   Fanconi anemia, complementatio on group F   326   42   3257   3282   603002   Homo sapiens   Human secreted protein,   358   3289   32884   Homo sapiens   F13-kinase   5832   97   359   3296   3177701   Homo sapiens   PR01722   293   64   3298   3180   3180   3180   3180   3181   3180   3180   321994   Homo sapiens   4   4   4   4   4   4   4   4   4		in				man	
8,725   3235   gi67151   Homo sapiens   Fanconi anemia, complementatio n group F   356   3257   gi54416   Canis   Zinc finger protein   326   42   5357   3282   G03002   Homo sapiens   Human secreted protein,   358   3289   gi32884   Homo sapiens   F13-kinase   5832   97   57   3296   gi77701   Homo sapiens   PR01722   293   64   3298   gi21988   Ambystoma tigrinum   Ambicarbonate cotransporter; NBC   15   S2   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC   NBC		USSN	(			Score	!
3235   gi67151   Homo sapiens   Panconi anemia, complementation in group F   326   42   3257   gi54416   Canis   familiaris   zinc finger protein   326   42   327   3282   G03002   Homo sapiens   Human secreted protein, 39   3298   Gi77701   39   39   39   39   39   39   39   3		09/48					
35		8,725					
Complementatio   Group F   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   Sinc finger   S	355	3235	gi67151	Homo sapiens	Fanconi	1947	99
			35				
356   3257   gi54416   15   familiaris   protein   15   familiaris   protein   15   familiaris   protein   161							
15							
357   3282   G03002   Homo sapiens   Human secreted protein,	356	3257	gi54416			326	42
Secreted protein,			_		protein		
Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   S	357	3282	G03002	Homo sapiens		211	61
358   3289   gi32884   Homo sapiens   FI3-kinase   5832   97   359   3296   gi77701   Homo sapiens   PRO1722   293   64   39   360   3298   gi21998   Ambystoma   electrogenic   1278   52   15		1		·		`	
S7							
3296   3296   377701   Homo sapiens   PRO1722   293   64     39	358	3289	-	Homo sapiens	PI3-kinase	5832	97
39	250	3306		·	DD01722	202	64
3298   gi21988   Ambystoma tigrinum   bicarbonate cotransporter; NBC	359	3296	_	Homo sapiens	PRO1722	293	04
15	360	3298	,	Ambystoma	electrogenic	1278	52
Bicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate   Sicarbonate	300	3230	_		1 -	12.0	J
Cotransporter; NBC	İ	l	-3	04544			1
NBC		ļ				1	
361   3303   gi40280   Homo sapiens   potassium   channel     15	1					ł	
15	361	3303	gi40280	Homo sapiens		1881	92
Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   S				and any and			
Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   S	362	3305	gi59029	Homo sapiens	very large G-	1770	100
Treceptor-1   The first inframe ATG codon is located at nucleotides NPPase.   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Section 190   Sectio			66				
363 3308 gi21994 Homo sapiens The first inframe ATG codon is located at nucleotides NPPase.  364 3325 gi35102 Homo sapiens R31237 1, partial CDS  365 3341 W78899 Homo sapiens Human UNC-5 homologue UNCSH-1.  366 3342 gi14782 Mus musculus PNG protein 341 70 05 05 05 06 0		1		,	coupled	ł	
4   frame ATG   codon is   located at   nucleotides   NPPase.							
Codon is located at nucleotides NPPase.   342   3325   3341   W78899   Homo sapiens   Human UNC-5   1614   90   90   90   90   90   90   90   9	363	3308	gi21994	Homo sapiens	The first in-	3967	86
located at nucleotides   NPPase.   3325   gi35102   Homo sapiens   R31237_1, partial CDS   34   Pomo sapiens   Human UNC-5   1614   90   Pomo sapiens   Human UNC-5   1614   90   Pomo sapiens   Human UNC-5   1614   90   Pomo sapiens   Pomo sapiens   Safe protein   Safe protein   Signaling   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein   Safe protein		ł	4				,
nucleotides   NPPase.     364   3325   gi35102   Homo sapiens   R31237_1, partial CDS     94   partial CDS     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   90     1614   1614   90     1614   1614   1614   1614   1614   1614   1614   1							
NPPase.   NPPase.   364   3325   gi35102   Homo sapiens   R31237_1, partial CDS   94							
364 3325 gi35102 Homo sapiens R31237_1, partial CDS  365 3341 W78899 Homo sapiens Human UNC-5 homologue UNC5H-1.  366 3342 gi14782 Mus musculus PNG protein 341 70 05  367 3350 gi27394 Bos taurus regulator of G-protein signaling 7  368 3372 gi76716 Homo sapiens 63  369 338 Y84322 Homo sapiens A human cardiovascular system associated protein kinase-3.		ĺ	1				[
34							
365 3341 W78899 Homo sapiens Human UNC-5 homologue UNC5H-1.  366 3342 gi14782 Mus musculus PNG protein 341 70 05 367 3350 gi27394 Bos taurus regulator of G-protein signaling 7 375 79 368 3372 gi76716 Homo sapiens 63 375 79 375 79 389 338 Y84322 Homo sapiens A human cardiovascular system associated protein kinase-3.	364	3325	1 -	Homo sapiens		192	94
homologue UNC5H-1.  366 3342 gi14782 Mus musculus PNG protein 341 70 05 367 3350 gi27394 Bos taurus regulator of G-protein signaling 7  368 3372 gi76716 Homo sapiens 63 375 79 375 79 3869 338 Y84322 Homo sapiens A human cardiovascular system associated protein kinase-3.							
UNC5H-1.   UNC5H-1.     UNC5H-1.	365	3341	W78899	Homo sapiens		1614	90
366 3342 gi14782 Mus musculus PNG protein 341 70 367 3350 gi27394 Bos taurus regulator of G-protein signaling 7 368 3372 gi76716 Homo sapiens 63 369 338 Y84322 Homo sapiens A human cardiovascular system associated protein kinase-3.							1
05	1355	1 3343	mi 1 4700	Mug muggetler		247	70
367 3350 gi27394 Bos taurus regulator of G-protein signaling 7  368 3372 gi76716 Homo sapiens 375 79  63 38 Y84322 Homo sapiens A human cardiovascular system associated protein kinase-3.	366	3342	1 -	mus musculus	I bwe broceru	341	, ,
60 G-protein signaling 7  368 3372 gi76716 Homo sapiens 375 79  63 Homo sapiens A human cardiovascular system associated protein kinase-3.	367	3350		Bos taurus	regulator of	2263	98
Signaling 7	1 36'	3330	-	205 caaras	1 -	2203	
368 3372 gi76716 Homo sapiens 375 79  369 338 Y84322 Homo sapiens A human cardiovascular system associated protein kinase-3.	]		]	}			) .
369 338 Y84322 Homo sapiens A human 2606 100 cardiovascular system associated protein kinase-3.	368	3372	gi76716	Homo sapiens		375	79
369 338 Y84322 Homo sapiens A human 2606 100 cardiovascular system associated protein kinase-3.	- 55		_				
cardiovascular system associated protein kinase-3.	369	338	1	Homo sapiens	A human	2606	100
system associated protein kinase-3.	1		}	1 -	•	j	
associated protein kinase-3.							1
protein kinase-3.	1		1	!	1 -	1	
			,	1	I .	İ	
370   3383   gil0441   Homo sapiens   protein   1127   100			]				
	370	3383	gi10441	Homo sapiens	protein	1127	100

SEQ	SEO	Acces-	Species	Description	Smith	8
ID	ID	sion	•	-	-	Identity
NO:	NO:	No.			Water	_
	in				man	1
	USSN				Score	
	09/48		1			
	8,725	382		kinase		
371	3395	gi53082	Homo sapiens	epidermal	402	47
3/1	3373	3	nomo sapiens	growth factor	102	- 7
				receptor		
			•	kinase	Ì	
				substrate		,
372	3405	¥29332	Homo sapiens	- Human	1220	94
				secreted	,	
				protein clone	Í	
				pe584_2	}	
·				protein sequence.		
373	3408	gi33347	Homo sapiens	shal-type	2888	90
3,3	2400	41	nomo sapiena	potassium	2000	, ,,
-				channel		}
374	345	gi45395	Homo sapiens	NAALADase L	600	72
		. 27		protein		
375	346	Y95434	Homo sapiens	Human calcium	1802	99
				channel SOC-		
				3/CRAC-2 C-		
				terminal polypeptide.		ļ
376	3470	gi97984	Homo sapiens	putative	277	100
] 3,0 ]	31/0	52	nomo bapieno	capacitative	]	100
				calcium	ł	
				channel		
377	3482	gi38185	Homo sapiens	cAMP-specific	2353 -	96
		72		phosphodiester		
	į		'	ase 8B;		
				PDE8B1; 3',5'- cyclic	,	
		ĺ		nucleotide		
				phosphodiester		*
				ase		
378	3492	gi16658	Homo sapiens		3878	99
		25		<u> </u>		
379	3530	gi50510 0	Homo sapiens	KIAA0066	3637	100
380	3533	Y32169	Homo sapiens	Human growth-	2860	99
			1	associated		Į į
		į		protease		
				inhibitor		
		1		heavy chain		
301	3545	gi66241	Homo saniona	precursor.	449	
381	3545	33	Homo sapiens		443	. 98
382	3549	gi14691	Homo sapiens		5374	99
		93		gene is		
L	<u></u>	L	<u>L</u>	related to	<u> </u>	

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion			-	Identity
NO:	NO:	No.	·		Water	
NO:		NO.		- 1	man	
	in				Score	]
	USSN				acore	1
	09/48					
	8,725					
				pim-1		
	•			oncogene.		
383	3595	gi63301	Homo sapiens	KIAA1169	1893	100
}		90	• .	protein		İ
384	3601	gi80891	Homo sapiens	tumor	992	99
304	3001	5		necrosis		
				factor	1	
				7	\	
				receptor type	f	1
		İ		1 associated	l .	1
				protein		
385	3612	gi53054	Mus musculus	SH2-B PH	1439	92
		48		domain		1
				containing	1	ļ l
				signaling	1	
	ļ			mediator 1		
	]	1		gamma isoform	l	1
386	3613	Y32194	Homo sapiens	Human	1438	100
300	3023	13223	1100 50p2022	receptor		
				molecule (REC)	ļ	
1	1			encoded by	1	
l	i	l			İ	i i
1	j			Incyte clone		
L .				266775.	ļ	
387	3621	gi89784	Mus musculus		393	68
1	1	9		ubiquitinating		
İ	İ			enzyme E2-230		ľ
<b>!</b>				kDa		
388	3624	R47858	Homo sapiens	Human LDL	2895	100
				receptor		}
				Domains 1 and	1	
	1	ţ		2.	1	
1300	3625	Y57949	Homo sapiens	Human	1868	100
389	3025	15/949	Hour sabtens	transmembrane	1300	1 100
1		[			İ	1
		1		protein HTMPN-		
				73.		<u> </u>
390	3626	W69342	Homo sapiens	Secreted	442	94
				protein of		
1			1	clone CJ424_9.		
391	3627	gi65371	Homo sapiens	putative	982	92
		36	_	organic anion		
j	1			transporter	1	1
392	3630	Y06886	Homo sapiens	ниннј20	1109	91
336	3030	100000	Tomo baptens	polypeptide.		1
1	1 3642	- 400C1	Homo sapiens	hypothetical	570	52
393	3642	gi48864	nomo sapiens		3/0	34
L		67	<u> </u>	protein	<del> </del>	
394	3645	gi95884	Homo sapiens		598	98
1		02				<u> </u>
395	3647	Y12050	Homo sapiens	Human 5' EST	517	98
				secreted	1	
		1		protein		
L			<del></del>	1		

SEQ	SEQ	Acces-	Species	Description	Smith	*
ID	ID	sion	Species	Deberre	-	Identity
NO:	NO:	No.			Water	
	in				man	
1	USSN				Score	
ı	09/48					
	8,725					
396	3653	Y70018	Homo sapiens	Human	2232	99
			-	Protease and	,	
İ				associated		
				protein-12	<b>!</b>	
			•	(PPRG-12).		
397	3676	W67818	Homo sapiens	Human	338	100
				secreted		
1				protein	\	ľ
.	•			encoded by		
				gene 12 clone		
				HMSJJ74.		
398	3677	gi32093	Homo sapiens	HGMP07J	650	52
399	3681	Y48443	Homo sapiens	Human	803	93
ĺ			,	prostate		
				cancer-		1
l		[		associated		1
				protein 140.		
400	3682	gi46917	Homo sapiens	ARF GTPase-	2435	91
		26		activating		
				protein GIT1	1995	99
401	3688	gi66938	Homo sapiens	ubiquitin- specific	1995	99
		24		protease		
402	3689	Y94927	Homo sapiens	Human	530	81
402	3003	194927	HOMO BAPTENS	secreted	330	"-
İ				protein clone		
				ck213 12	1	
		ļ		protein	ļ	j
				sequence		
403	3690	gi18716	Oryctolagus	ryanodine	594	95
		12	cuniculus	receptor		
404	3706	gi60027	Homo sapiens	membrane-type	2630	94
		14		serine		
			•	protease 1		
405	3714	gi26957	Homo sapiens	SPOP	553	81
·		08				
406	3720	gi93092	Homo sapiens	asc-type	566	95
'		93		amino acid		
	<u> </u>			transporter 1	<del> </del>	ļ
407	3726	gi10440	Homo sapiens	FLJ00026	1023	69
	<u> </u>	381		protein	1 242	ļ <u></u>
408	373	gi57146	Mus musculus	alpha 2 delta	243	95
		96	]	calcium		
				channel subunit		
<u></u>	1 2555	-: 60330	Wome gamian		0.43	100
409	3788	gi69112	Homo sapiens	type II membrane	841	100
	}	19	1	serine		1
	1			protease		
	J		L	152222		

CEO	SEQ	Acces-	Species	Description	Smith	8
SEQ	ID	sion	Species	Description	-	Identity
Į.	NO:	No.			Water	racincity
NO:		NO.			man	
	in			ļ	Score	
	USSN			ł	SCOLE	
ţ	09/48					
	8,725					
410	3789	Y45023	Homo sapiens	Human sensory	1084	95
			•	transduction		
				G-protein		·
				coupled		
			•	receptor-B3.		
411	3790	gi15240	Homo sapiens	Polio virus	1508	99
411	3/30	88	noino paprens	receptor	1300	"
1	ŀ			protein	\ \	
				. <del> </del>	2025	
412	3801	gi67236	Homo sapiens	mitotic	2035	99.
ł		75		kinase-like		
l				protein-1		
413	3803	gi96897	Homo sapiens	mitotic	332	86
		3		kinase-like		
ł	1			protein-1	1	
414	3820	gi17704	Homo sapiens	NK receptor	1988	99
		78	_			
415	3831	gi27813	Homo sapiens	<del> </del>	1493	99
413	3031	86	nome supreme	•		
1.35	2027	1	Homo sapiens	neuronal	2243	99
416	3837	gi93678	HOMO SAPTEMS		2243	33
		40		apoptosis		.
	t			inhibitory	1	
<u> </u>	<u> </u>			protein 2		
417	385	gi15269	Homo sapiens	ryanodine	149	96
	ļ	78		receptor 2		
418	3856	gi99565	Homo sapiens	interleukin-	147	100
		4		11 receptor		1
419	386	gi49600	Mus musculus	T2K protein	669	66
		38		kinase homolog		
420	3861	Y74129	Homo sapiens	Human	842	98
1 320	1 3001	1	l	prostate tumor		
		Ì		EST fragment	Į	
1	i	Į.	Ì	derived	i	
1		Ì				[
	L	1	ļ	protein #316.	1 7 5 5 5	100
421	3883	gi66352	Homo sapiens	beta-	1576	100
1		05		ureidopropiona		
				se		
422	3898	gi37231	Homo sapiens	DNA	8436	99
1	1			topoisomerasė	1	
			1	II		j
423	3921	gi86488	Homo sapiens	putative	131	100
		81		organic anion		
1	1			transporter		
120	3932	gi85757	Homo sapiens	KRAB zinc	1935	99
424	3734	-	Troug saprens	finger protein	1935	"
L.,	1	75	<del>  ,,</del> _ , _ , _ , _ , _ , _ , _ , _ , _ ,		<del> </del>	
425	3934	gi46891	Homo sapiens	SIH003	127	92
<u>.</u>		28				
426	3963	gi32129	Homo sapiens	]	339	. 64
		96				
427	3974	G03790	Homo sapiens	Human	232	63
ــــــــــــــــــــــــــــــــــــــ			<del></del>			

NO: NO: NO. Water man Score 09/48 8,725 secreted protein, 428 3983 gil8197 Homo sapiens vascular endothelial growth factor 429 3999 gil6574 Sus scrofa calcium/calmod ulin-dependent protein kinase II isoform gamma-G	85 75
in USSN 09/48 8,725  secreted protein,  428 3983 gil8197 Homo sapiens vascular endothelial growth factor  429 3999 gil6574 Sus scrofa 64 calcium/calmod ulin-dependent protein kinase II isoform gamma-G  430 4001 gi65722 Homo sapiens 329	75
USSN 09/48 8,725 secreted protein,  428 3983 gil8197 Homo sapiens vascular endothelial growth factor  429 3999 gil6574 Sus scrofa calcium/calmod ulin-dependent protein kinase II isoform gamma-G  430 4001 gi65722 Homo sapiens 329	75
09/48 8,725    Secreted protein,   428   3983   gil8197   Homo sapiens   vascular endothelial growth factor   433   429   3999   gil6574   Sus scrofa   Calcium/calmod ulin-dependent protein kinase II isoform gamma-G   430   4001   gi65722   Homo sapiens   329	75
8,725   secreted protein,   428   3983   gil8197   Homo sapiens   vascular endothelial growth factor   433   429   3999   gil6574   Sus scrofa   calcium/calmod ulin-dependent protein kinase II isoform gamma-G   430   4001   gi65722   Homo sapiens   329   329	75
secreted protein,  428 3983 gil8197 Homo sapiens vascular endothelial growth factor  429 3999 gil6574 Sus scrofa calcium/calmod ulin-dependent protein kinase II isoform gamma-G  430 4001 gi65722 Homo sapiens 329	75
1   protein,	75
428 3983 gil8197 Homo sapiens vascular endothelial growth factor  429 3999 gil6574 Sus scrofa calcium/calmod ulin-dependent protein kinase II isoform gamma-G  430 4001 gi65722 Homo sapiens 329	75
endothelial growth factor  429 3999 gil6574 Sus scrofa 64 calcium/calmod ulin-dependent protein kinase II isoform gamma-G  430 4001 gi65722 Homo sapiens 329	75
growth factor  429 3999 gil6574 Sus scrofa  64 calcium/calmod ulin-dependent protein kinase II isoform gamma-G  430 4001 gi65722 Homo sapiens 329	
429 3999 gil6574 Sus scrofa calcium/calmod ulin-dependent protein kinase II isoform gamma-G 329	
64 calcium/calmod ulin-dependent protein kinase II isoform gamma-G	
ulin-dependent protein kinase II isoform gamma-G  430 4001 gi65722 Homo sapiens 329	.00
protein kinase II isoform gamma-G  430 4001 gi65722 Homo sapiens 329	.00
II isoform gamma-G 329	.00
gamma-G   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329   329	.00
430 4001 gi65722 Homo sapiens 329	100
,   5   5	1
	_ 1
	99
60 phosphoinositi	
de 3-kinase	
432 401 gi65723 Homo sapiens 1372	56
79	
1 200   200   300   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	100
24 necrosis	
factor	
superfamily	ŀ
member LIGHT	
434 4024 Y21166 Homo sapiens Human bcl2 84	40
proto-oncogene	1
mutant protein fragment 14.	]
435 4040 Y57285 Homo sapiens Human GPCR 1726	99
435 4040 157285 Rollio Sapiens Rullian Grek 1720	
(HGPRP)	j
sequence	
(clone ID	
2214673).	
	100
secreted	
protein	ļ
encoded by	
gene 145	
clone HFXHL79.	
437 4066 G03714 Homo sapiens Human 92	70
secreted	
protein,	
438 4067 gi83317 Homo sapiens LU1 protein 1077	92
	100
transmembrane	
protein HTMPN-	
24.	
440 4120 gi18715 Homo sapiens mitogen- 927	100

SEQ	SEQ	Acces-	Species	Description	Smith	용
ID	ID	sion	_		-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN			Ì	Score	
	09/48					
	8,725					
		39		activated		
	ļ			protein kinase		
				phosphatase 4		
441	4123	gi53601	Homo sapiens	NY-REN-58	140	100
	ļ	25		antigen		
442	4130	gi62890	Homo sapiens	JM24 protein	604	100
		72				
443	4133	gi85755	Homo sapiens	toll-like	755`	100
		27		receptor 8	L	
444	4166	gi61185	Homo sapiens	DEAD-box	2512	100
		55		protein		
				abstrakt		
445	4167	gi38008	Rattus	putative four	615	93
	1	30	norvegicus	repeat ion	į	]
				channel	<u> </u>	
446	4172	gi72096	Homo sapiens	potassium	369	100
		76		channel Kv8.1		
447	4185	gi53054	Homo sapiens	Na+/H+	1769	100
ł	1	05		exchanger		
<u> </u>				isoform 2		
448	4197	gi28111 22	Xenopus laevis	NaDC-2	524	69
449	4203	Q89840_	Homo sapiens	Human death	198	97
		aal	ĺ	associated		Ì
		1		protein DAP-	}	]
	_			3.		
450	4262	gi59014	Marmota	olfactory	209	92
		78	marmota	receptor		
451	4276	gi32456	Homo sapiens	protein-	3270	99
1	İ			tyrosine	1	]
	·			phosphatase	<u> </u>	
452	4283	R41231	Homo sapiens	GAT-2	477	100
				transporter	ŀ	
		1 - 1 - 1 - 1	<u> </u>	gene.	445	
.453	4331	gi31719	Homo sapiens	RAMP2	443	98
1	1	12	I I I I I I I I I I I I I I I I I I I		1 222	1-300
454	4340	gi81182 23	Homo sapiens	unknown	1330	100
455	4351	gi17545	Rattus		2050	92
		15	norvegicus	aminopeptidase	1	1
				-B		L
456	4354	Y57906	Homo sapiens	Human	1402	100
				transmembrane		
				protein HTMPN-		1
				30.		
457	4385	gi55964	Homo sapiens	candidate	509	97
		33		tumor	1	
1				suppressor		1
1		1		protein NOC2	1	<u> </u>
		<del></del>	·	<del></del>		·

SEQ	SEQ	Acces-	Species	Description	Smith	*
ID	ID	sion	- P		-	Identity
NO:	NO:	No.		,	Water	_
	in				man	J
	USSN				Score	}
	09/48	1		•		}
	8,725					
458	4388	W78140	Homo sapiens	Human	100	94
				secreted		I
				protein		. 1
	1			encoded by		
	ļ			gene 15 clone	1	
1	1			HSDES04.		
459	4405	Y48226	Homo sapiens	Human	1246	99
1				prostate	`	
1	1			cancer-		1
}	}			associated		}
				protein 12.		
460	441	gi29153	Bovine	BICP4	106	35
		6	herpesvirus 1			
461	4417	gi65625	Homo sapiens	sialin	939	100
		33				
462	4419	gi18415	Homo sapiens	NG5	146	33
		55				
463	4443	gi49613	Mus musculus	AMPA	262	94
		9		selective		
1				glutamate		
				receptor		
464	4470	gi72483	Homo sapiens	adaptor	2592	100
1		81		protein		
				p130Cas		
465	4482	gi73299	Homo sapiens	apoptosis	2071	100
L		79		regulator		
466	4487	gi67066	Homo sapiens		405	100
		59				
467	4491	gi98373	Homo sapiens	CamKI-like	1044	100
	<u> </u>	41	<u></u>	protein kinase	- 506	
468	4492	Y42751	Homo sapiens		586	99
			<b>,</b> .	binding protein 2		1
1	[	-	ļ	(CaBP-2).		[
450	4405	gi61797	Homo sapiens	(Cabr-2).	352	37
.469	4497	g161797 40	nomo saprens	paraneoplastic	334	] 3'
		1 ***		cancer-testis-	1	1
	1	1		brain antigen		[
430	4502	gi63297	Homo sapiens	KIAA1124	327	100
470	4502	42	TOWO Baptens	protein	] ""	]
471	4519	Y99426	Homo sapiens	Human PRO1604	1563	100
*/1	4213	199420	TOWN SAPTEMS	(UNQ785) amino	1303	100
		1		acid sequence		
433	4526	Y08008	Homo sapiens	Human HLIG-1	4023	99
472	4526	108008	TOWN PAPTERIS	protein.	4023	
473	4547	gi45895	Homo sapiens	KIAA0959	4165	99
4/3	454/	62	TOWN PAPTERS	protein	4103	
474	4554	gi13810	Mus musculus	Processi	1164	77
4/4	4554	29	Mus musculus		1104	1
L		1 43	<del></del>	<del></del>	<del></del>	<u> </u>

SEQ	SEO	Acces-	Species	Description	Smith	*
ID	ID	sion	Opecico	Description	_	Identity
NO:	NO:	No.			Water	
10.	in	NO.			man	
	USSN				Score	į
	09/48				Deore	
1	8,725				·	
425		gi27923	Homo sapiens	unknown	4461	99
475	4555	_	HOWO Saprens		4401	99
		66	**	protein IT12 Human latent	1825	
476	457	Y70551	Homo sapiens		1825	100
i l				transforming		ŀ
				growth		
[ [				factor-beta		
				binding		
] ]				protein 3 (I).		
477	4571	gi53601	Homo sapiens	NY-REN-45	869	100
		15		antigen		
478	4613	Y05868	Homo sapiens	Human Toll	2413	100
				protein	1	
1				PRO358.		
479	4614	Y27129	Homo sapiens	Human bone	1815	100
			•	marrow-derived	ļ.	ا- ا
		ŀ		polypeptide		
1		i		(clone OAF038-	l	ĺ
				Leu).	}	
480	4622	G03789	Homo sapiens	Human	173	53
400	4022	003789	nomo saprens	secreted	1 -73	
				protein,	1	
481	4667	gi76736	Danio rerio	Dedd1	446	48
401	4007	38	Danie Terro	Dedui	1 1 1	40
482	4670	gi40264	Homo sapiens	c-rel	2309	100
482	4670	9140264	HOMO Saprens	C-161	2309	100
405	4683	Y68773	Home conjens	Amino acid	2234	99
483	4663	166773	Homo sapiens	sequence of a	2234	33
	1		[	human	1	l i
1	i		ļ			1
Į.	]	1		phosphorylatio n effector	}	]
İ	1				ŀ	{
				PHSP-5.		
484	4698	¥73470	Homo sapiens	Human	746	100
	1			secreted		
}				protein clone		
1		ł		yd141_1		1
1		1		protein		
				sequence	<u>]</u>	
485	4724	gi64568	Homo sapiens	hypothetical	1101	99
		46		protein	l	<u> </u>
486	4734	gi33349	Homo sapiens	R27216_1	1151	80
	-	82	1			!
487	4814	gi62744	Homo sapiens	pregnancy-	1348	100
	]	73		induced growth	}	1
1	1			inhibitor		
488	4819	Y07825	Homo sapiens	Human	117	67
-00				secreted		
Ì				protein		
[				fragment #4		1
1	1	1		encoded from	İ	[
L	<u> </u>	<u> </u>	L		1	

D	SEQ	SEQ	Acces-	Species	Description	Smith	ક
NO: in USSN 09/48 8,725	ID	ID	sion	_	_	-	Identity
USSN   09/48   8,725	NO:	NO:	No.			Water	•
09/48   8,725	1	in				man	
19/48   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/50   19/5	}	USSN			Į	Score	
8,725	[				İ		
Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate				,			
489   4821   Y81498   Homo sapiens   Human foetal bone-derived growth factor-like protein.   490   4851   gi56894   Homo sapiens   KIAA1077 protein   4364   99   4872   gi5589119   Homo sapiens   hypothetical protein   3723   99   4902   B08917   Homo sapiens   Human secreted protein   493   5006   gi43577   Homo sapiens   First long, FIIT4   Conteminal   494   5007   Y93951   Homo sapiens   Amino acid sequence of a Brainiac-5 polypeptide.   495   5027   gi35487   Homo sapiens   R33590   1606   100   496   5029   gi56895   Homo sapiens   KIAA1095   5722   99   497   5033   Y14482   Homo sapiens   KIAA1095   5722   99   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   7		57.20			gene 28.		
Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution	489	4821	V81498	Homo sapiens		1200	100
Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial   Secretarial		1022	102170		1		
Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like   Factor-like					<b>,</b>		
Solution				•	, -		
490		,					
91	490	4851	ai 56894	Homo saniens		4364	99
491   4872   gi59119   Homo sapiens   hypothetical protein   3723   99     492   4902   B08917   Homo sapiens   Human secreted protein   sequence encoded by gene 27     493   5006   gi43577   Homo sapiens   receptor tyrosine kinase isoform FLT4 long, FLT41 {C-terminal} }   494   5007   Y93951   Homo sapiens   Amino acid sequence of a Brainiac-5 polypeptide.     495   5027   gi35487   Homo sapiens   R33590_1   1606   100     496   5029   gi56895   Homo sapiens   KIAA1095 protein     497   5033   Y14482   Homo sapiens   Fragment of human secreted protein encoded by gene 17.     498   5040   Y95019   Homo sapiens   Human secreted protein encoded by gene 17.     499   5061   gi13044   Pseudorabies virus   Fragment of human secreted protein encoded by gene 17.     499   5061   gi13044   Pseudorabies virus   EPO	1 30	4031	l –	nomo saprens		4204	75
S3	401	4972	3	Womo caniens		3723	- 00
492   4902   B08917   Homo sapiens   Human secreted protein sequence encoded by gene 27     493   5006   gi43577   Homo sapiens   Faceptor tyrosine kinase isoform FLT4 long, FLT41   C-terminal     494   5007   Y93951   Homo sapiens   Amino acid sequence of a Brainiac-5 polypeptide.     495   5027   gi35487   Homo sapiens   R33590_1   1606   100     496   5029   gi56895   Homo sapiens   KIAA1095   protein     497   5033   Y14482   Homo sapiens   Fragment of human secreted protein encoded by gene 17.     498   5040   Y95019   Homo sapiens   Human secreted protein vq1_1,     499   5061   gi13044   Pseudorabies virus   Secreted protein vq1_1,     499   5061   gi40380   Homo sapiens   Vascular endothelial cell growth inhibitor     501   5129   gi31691   Homo sapiens   BC269730_2   2340   99     502   5139   gi40628   Homo sapiens   HEXIM1   293   47     503   Fragment   HEXIM1   293   47     504   Fragment   HEXIM1   293   47     505   506   Fragment   HEXIM1   293   47     506   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment   Fragment	491	4072		nomo saprens		3723	33
Secreted protein   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   S	402	4903	1	Home ganiong	1	717	7.00
Protein   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence	*32	2902	500317	TOWO Papters		'±'	100
Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence				•			
### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 100 ### 10					<b>-</b>	<u> </u>	
Solid   Gi43577   Homo sapiens   receptor   receptor   tyrosine   kinase isoform   FLT4 long,   FLT4 long,   FLT4 long   FLT4 long   FLT4 long   RIT41   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   C-terminal   RIT4   RIT4   RIT4   C-terminal   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT4   RIT					_	ł	
Solid   Gi43577   Homo sapiens   receptor tyrosine kinase isoform   FLT4 long,   FLT41   {C-terminal}					1	1	
4	403	5000	~643577	Home consons		205	7.00
	493	5006	-	Homo sapiens		385	100
FLT4 long, FLT41 {C- terminal}  494 5007 Y93951 Homo sapiens Amino acid sequence of a Brainiac-5 polypeptide.  495 5027 gi35487 Homo sapiens R33590_1 1606 100  496 5029 gi56895 Homo sapiens KIAA1095 protein  497 5033 Y14482 Homo sapiens Fragment of human secreted protein encoded by gene 17.  498 5040 Y95019 Homo sapiens Human 258 92  499 5061 gi13044 Pseudorabies secreted protein vql_1,  499 5081 gi40380 Homo sapiens Wascular endothelial cell growth inhibitor  501 5129 gi31691 Homo sapiens BC269730_2 2340 99  502 5139 gi40628 Homo sapiens HEXIM1 293 47			4				
### FIT41 {C-	j		,				
terminal}  494 5007 Y93951 Homo sapiens Amino acid sequence of a Brainiac-5 polypeptide.  495 5027 gi35487 Homo sapiens R33590_1 1606 100  496 5029 gi56895 Homo sapiens Fragment of human secreted protein encoded by gene 17.  497 5033 Y14482 Homo sapiens Human secreted protein encoded by gene 17.  498 5040 Y95019 Homo sapiens EPO 85 38  500 5081 gi40380 Homo sapiens vascular endothelial cell growth inhibitor  501 5129 gi31691 Homo sapiens BC269730_2 2340 99  502 5139 gi40628 Homo sapiens HEXIM1 protein		<b>!</b>		j			
Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Solid   Soli							
Sequence of a Brainiac-5   Polypeptide.	404	F007	702051	77000 000000		004	700
### Brainiac-5 polypeptide.  ### ### ### ### ### ### ### ### ### #	494	3007	133331	nomo sapiens		804	100
Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide   Polypeptide	j	ļ	ļ				
495       5027       gi35487 91       Homo sapiens       R33590_1       1606       100         496       5029 gi56895 27       Homo sapiens       KIAA1095 protein       5722 99         497       5033       Y14482       Homo sapiens       Fragment of human secreted protein encoded by gene 17.       166       66         498       5040       Y95019       Homo sapiens       Human secreted protein vql_1,       258 92         499       5061       gil3044       Pseudorabies virus       EP0       85 38         500       5081       gi40380 Homo sapiens       vascular endothelial cell growth inhibitor       134 100         501       5129       gi31691 Homo sapiens       BC269730_2       2340 99         502       5139       gi40628 Homo sapiens       HEXIM1 Protein       293 47	1				1	1	
91 496 5029 gi56895 Homo sapiens KIAA1095 protein 497 5033 Y14482 Homo sapiens Fragment of human secreted protein encoded by gene 17. 498 5040 Y95019 Homo sapiens Human secreted protein vql_1, 499 5061 gi13044 Pseudorabies protein vql_1, 500 5081 gi40380 Homo sapiens Vascular endothelial cell growth inhibitor 501 5129 gi31691 Homo sapiens BC269730_2 2340 99 58 502 5139 gi40628 Homo sapiens HEXIM1 protein	405	5027	mi 25407	Vena conione		1606	100
496       5029       gi56895       Homo sapiens       KIAA1095       5722       99         497       5033       Y14482       Homo sapiens       Fragment of human secreted protein encoded by gene 17.       166       66         498       5040       Y95019       Homo sapiens       Human secreted protein vql_1,       258       92         499       5061       gi13044 yirus       EPO       85       38         500       5081       gi40380 yirus       Homo sapiens       vascular endothelial cell growth inhibitor       134       100         501       5129       gi31691 yirus       Homo sapiens       BC269730_2       2340       99         502       5139       gi40628 yirus       Homo sapiens       HEXIM1 yrotein       293       47	495	3027	_	Homo sapiens	K33590_1	1000	100
27	1-405	5000			VT331005	F700	
### 497   5033   Y14482   Homo sapiens   Fragment of human secreted protein encoded by gene 17.   ### 498   5040   Y95019   Homo sapiens   Human secreted protein vq1_1,   ### 499   5061   gil3044   Pseudorabies virus   EPO   85   38   34   virus	496	5029	1 -	Homo sapiens		5/22	99
human secreted protein encoded by gene 17.  498 5040 Y95019 Homo sapiens Human 258 92 secreted protein vql_1,  499 5061 Gil3044 Pseudorabies EPO 85 38 virus  500 5081 Gi40380 Homo sapiens Vascular endothelial cell growth inhibitor  501 5129 Gi31691 Homo sapiens BC269730_2 2340 99 58 502 5139 Gi40628 Homo sapiens HEXIM1 293 47 protein	405	5022		77		1.66	
Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Protein   Prot	49/	5033	114482	Homo sapiens	_	100	66
encoded by gene 17.	1		Ì			ļ	
Solution   Gene   17.					1 -		
498       5040       Y95019       Homo sapiens       Human secreted protein vql_1,       258       92         499       5061       gil3044 yirus       EPO       85       38         500       5081       gi40380 yirus       Homo sapiens       vascular endothelial cell growth inhibitor       134       100         501       5129       gi31691 yirus       Homo sapiens       BC269730_2       2340       99         502       5139       gi40628 yirus       Homo sapiens       HEXIM1 yrotein       293       47						ŀ	
Secreted   Protein vql_1,	400	5040	VAEGIO	Vomo sami and		250	
Protein vql_1,	498	3040	132013	nomo sapiens		258	32
499       5061       gi13044       Pseudorabies virus       EPO       85       38         500       5081       gi40380       Homo sapiens       vascular endothelial cell growth inhibitor       134       100         501       5129       gi31691       Homo sapiens       BC269730_2       2340       99         502       5139       gi40628       Homo sapiens       HEXIM1 protein       293       47			1				
34   virus	100	5067	mi 1 2 0 4 6	Danidar-bio-	1		<u> </u>
500 5081 gi40380 Homo sapiens vascular endothelial cell growth inhibitor  501 5129 gi31691 Homo sapiens BC269730_2 2340 99  58  502 5139 gi40628 Homo sapiens HEXIM1 293 47 protein	499	2001		1	_ T.P.O	85	38
81 endothelial cell growth inhibitor  501 5129 gi31691 Homo sapiens BC269730_2 2340 99  58 BC269730_2 2340 99  58 BEXIM1 293 47 protein		F00=				<del> </del>	
Cell growth inhibitor	500	2081	1 -	nomo sapiens		134	100
inhibitor		1	₈₁				
501     5129     gi31691     Homo sapiens     BC269730_2     2340     99       58     58     Homo sapiens     HEXIM1     293     47       56     protein			1	1			
58	<u></u>		1			l	
502 5139 gi40628 Homo sapiens HEXIM1 293 47 protein	501	5129	_	Homo sapiens	BC269730_2	2340	99
56 protein			1				
	502	5139		Homo sapiens		293	47
503   5174   gi93685   Homo sapiens   140up gene   576   90			L .				
<del></del>	503	5174	g193685	Homo sapiens	140up gene	576	90

ID	SEQ	SEQ	Acces-	Species	Description	Smith	8
No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.		_		Species	Description	_	Identity
In USSN   09/48   8,725					1	Water	
USSN   09/48   8,725   40	NO.		1.0.		1	man	
09/48   8,725						Score	
8,725						]	]
40							
Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein,   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted protein   Secreted prot			40		product		
	504	524	G00329	Homo sapiens		565	100
Sob   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Secreted   Sec		1				1	
12.					, -		
Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Simi	505	5291	Y92515	Homo sapiens		1271	98
58						757	46
Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution   Solution	506	5335				753	46
Secreted   Protein vjl_1,		-5546				040	100
	507	5346	194987	nomo sapiens		043	100
Similar to							
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	E00	5279	G171445	Homo saniens		1353	99
Containing protein   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar to   Similar	308	33/3	· -	nomo saprens		1333	
						ĺ	
Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse Ehm2   Similar to mouse end of the mouse end of the mouse end of the mouse end of the mouse end of the mous							
51	509	5441	gi80965	Homo sapiens		1516	100
		}	. –	_	mouse Ehm2		
Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence   Sequence	510	549	Y22113	Homo sapiens	Human ZSMF-3	294	62
511   5542   Y76267   Homo sapiens   Fragment of human secreted protein encoded by gene 11.     512   5560   G03790   Homo sapiens   Human secreted protein,     513   5696   Gi79203   Homo sapiens   PTOV1   1904   91     514   5704   B08930   Homo sapiens   Human secreted protein   Secreted protein   Secreted protein     515   5758   W18878   Homo sapiens   Human protein   Sequence encoded by gene 2     515   5758   W18878   Homo sapiens   Human protein   368   100     516   5760   Gi65621   Homo sapiens   Human protein   100     517   5763   Y41706   Homo sapiens   Human PRO381   441   100     518   S763   Y41706   Homo sapiens   Human PRO381   441   100     519   S763   Y41706   Homo sapiens   Human PRO381   441   100     510   S760   S760   S760   Homo sapiens   Human PRO381   441   100     510   S760   S760   S760   Homo sapiens   Human PRO381   441   100     511   S760   S760   S760   Homo sapiens   Human PRO381   441   100     512   S760   S760   S760   Homo sapiens   Human PRO381   441   100     513   S760   S760   S760   Homo sapiens   Human PRO381   441   100     514   S760   S760   S760   Homo sapiens   Human PRO381   441   100     515   S760   S760   S760   Homo sapiens   Human PRO381   441   100     516   S760   S760   S760   Homo sapiens   Human PRO381   441   100     517   S760   S760   S760   Homo sapiens   Human PRO381   441   100     517   S760   S760   S760   Homo sapiens   Human PRO381   441   100     518   S760   S760   S760   Homo sapiens   Human PRO381   441   100     518   S760   S760   S760   Homo sapiens   Human PRO381   441   100     518   S760   S760   S760   Homo sapiens   Human PRO381   441   100     519   S760   S760   S760   Homo sapiens   Human PRO381   441   100     519   S760   S760   S760   Homo Sapiens   Human PRO381   441   100     510   S760   S760   S760   Homo Sapiens   Human PRO381   441   100     510   S760   S760   S760   S760   Homo Sapiens   Human PRO381   441   100     510   S760   S760   S760   Homo Sapiens   Human PRO381   441   100     510   S760   S760   Homo	}				protein		. 1
human secreted protein encoded by gene 11.    512   5560   G03790   Homo sapiens   Human secreted protein,   Human secreted protein,   Human secreted protein,   Human secreted protein,   Human secreted protein,   Human secreted protein,   Human secreted protein   Human secreted protein   Human secreted protein sequence encoded by gene 2   Human protein   S68   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Human protein   Hum	İ						
protein   encoded by   gene 11.	511	5542	Y76267	Homo sapiens		1066	100
Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Sizer   Size							
Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz   Siz					1 -		
512   5560   G03790   Homo sapiens   Human secreted protein,		}	1		_		
Secreted   Protein,		5550	603700	Tiome gamions		103	36
protein,	512	3560	G03/90	HOMO Saprens		103	30
513         5696         gi79203         Homo sapiens         PTOV1         1904         91           514         5704         B08930         Homo sapiens         Human secreted protein sequence encoded by gene 2         987         100           515         5758         W18878         Homo sapiens         Human protein kinase C inhibitor, IPKC-1.         368         100           516         5760         gi65621         Homo sapiens         hypothetical protein         425         100           517         5763         Y41706         Homo sapiens         Human PRO381         441         100			ļ		1		]
98   100   514   5704   B08930   Homo sapiens   Human   987   100   secreted   protein   sequence   encoded   by   gene 2   515   5758   W18878   Homo sapiens   Human protein   kinase C   inhibitor,   IPKC-1.   516   5760   gi65621   Homo sapiens   hypothetical   425   100   protein   517   5763   Y41706   Homo sapiens   Human PRO381   441   100	513	5696	gi 79203	Homo sapiens		1904	91
Secreted   protein   sequence   encoded   by   gene 2							
protein   sequence   encoded by   gene 2	514	5704	B08930	Homo sapiens	Human	987	100
Sequence   encoded by   gene 2	1					}	]
encoded by gene 2			1	İ		1	
gene 2	ŀ		1				
515   5758   W18878   Homo sapiens   Human protein   368   100	<b> </b> .		ţ			[	
kinase C   inhibitor,   IPKC-1.						260	100
inhibitor,   IPKC-1.	515	5758	MT8818	nomo sapiens		208	100
IPKC-1.	1		1				1.
516         5760         gi65621         Homo sapiens         hypothetical protein         425         100           517         5763         Y41706         Homo sapiens         Human PRO381         441         100	1		1		•		
76 protein 517 5763 Y41706 Homo sapiens Human PRO381 441 100	516	5760	g165621	Homo saniens		425	100
517 5763 Y41706 Homo sapiens Human PRO381 441 100	1 220	3,00	1 -				
	517	5763		Homo sapiens	1 <del>-</del>	441	100
I I I I I I I I				_	protein		
sequence.	[				sequence.		
518 5787 Y57907 Homo sapiens Human 952 100	518	5787	Y57907	Homo sapiens	Human	952	100
transmembrane					1		
protein HTMPN-		1			, <del>-</del>		1
31.		1	<u> </u>		31.	<u> </u>	<u> </u>

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	•	-	-	Identity
NO:	NO:	No.			Water	
	in				man	
1	USSN		•		Score	
	09/48					
	8,725					·
519	5823	gi98002	rat	pr5	153	36
		42	cytomegalovir	_		
	ļ		us Maastricht			
520	5886	gi17810	Mus musculus	neuronal	1135	52
1		37		tyrosine		
İ	į			threonine		İ
}			ı	phosphatase 1		
521	5924	W69221	Homo sapiens	Human parotid	710	96
				secretory		
				protein.	· ·	
522	5960	Y91529	Homo sapiens	Human	1300	99
				secreted		
	)	,		protein	Ì	]
				sequence		
1		1		encoded by		! 1
		1		gene 79		
523	5962	W69784	Homo sapiens	Protein	395	100
į				Kinase C	1	<b> </b>
1		1		Inhibitor-like		
				Protein	<u> </u>	1
				(IPKC-2).	<u></u>	
524	5969	Y79141	Homo sapiens	Human	1205	79
				haemopoietic	ļ	}
	]	1		stem cell	l	1 . 1
	1			regulatory		}
		ļ		protein		
				SCM113.	1000	-
525	5976	gi78031	Homo sapiens	natural	1808	91
l		0		killer		
	1			associated	İ	]
			,	transcript 4	4367	67
526	6002	gi21045	Homo sapiens		4367	"'
		53	112-2	Mombrono	822	100
527	6008	Y66765	Homo sapiens	Membrane-	022	100
<b>\</b> .		}		bound protein	1	1
	6030	G110115	Homo sapiens	cytochrome c-	322	50
528	6020	gi19115 48	HOWO Sabrens	like	""	
	1 -	48		polypeptide		1
F32	6036	W71362	Homo sapiens	Human	353	51
529	6036	W/1302	HOMO Saprens	cytokine/stero	333	
ļ	1	1		id receptor	[	
				protein.		
530	6070	¥42750	Homo sapiens	·Human calcium	626	100
330	1 8070	142/50	TOWN PAPTETTS	binding		
	1		1	protein 1		
				(CaBP-1).		
531	6075	gi10732	Homo sapiens	angiopoietin-	2164	100
331	30/3	648		like protein		
<u></u>	ــــــــــــــــــــــــــــــــــــــ	1 340		J	1	

SEQ	SEO	Acces-	Species	Description	Smith	કુ
ID	ID	sion		•	-	Identity
NO:	NO:	No.			Water	_
	in				man	
	USSN	j .			Score	
	09/48					
	8,725					İ
				PP1158		
532	6106	gi22179	Homo sapiens	p40	1349	96
		70		<u></u>		
533	6420	W82000	Homo sapiens	Human adult	929	100
	ļ	_		brain secreted		
	i			protein		
				dm26_2.		
534	6434	gi10732	Homo sapiens	angiopoietin-	2164	100
		648		like protein	}	
				PP1158	- 256	
535	6439	gi18970	Homo sapiens	endothelial	376	100
ļ		1		cell growth	İ	
	6.63	V43 7700	77	factor	360	
536	6463	Y41720	Homo sapiens	Human PRO792	360	82
ł	ł	ļ		protein	1	ļ
537	6466	gi48840	Homo sapiens	sequence. hypothetical	538	100
53/	6466	84	HOMO Sapiens	protein	536	100
538	6508	gi54420	Homo sapiens	procern	2317	96
336	6506	30	nomo saprens	aminopeptidase	231/	"
539	6570	gi59214	Homo sapiens	aminopeperdase	1591	99
	03.0	91	nomo saprens		1331	
540	6719	gi31847	Homo sapiens	glypican	1625	87.
541	6772	Y65432	Homo sapiens	Human 5' EST	180	53
Ì				related	1	
Į				polypeptide		
542	6789	gi53729	Homo sapiens	ICH-1L	1556	100
		2				
543	6805	gi44547	Homo sapiens	HSPC007	634 ·	84
		02				
544	6833	gi18906	Homo sapiens	protein	5726	87
		60		tyrosine		
			.*	phosphatase		[
1				receptor		
L:	6034	-15007	77	omicron	1746	
545	6834	gi59214	Homo sapiens		1746	88
EAC	6051	91	Home garions	nouron: 1:-	3000	90
546	6851	gi24076 41	Homo sapiens	neuropilin	3968	98
547	6868	gi67146	Drosophila	MAP kinase	218	49
'		41	melanogaster	phosphatase		
548	6876	Y13138	Homo sapiens	Human	414	76
				secreted		
	}		1	protein	1	1
1	1		!	encoded by 5'		}
				EST		[
549	688	Y73463	Homo sapiens	Human	701	98
				secreted		'
		1		protein clone	1	1
			1	<del></del>	ــــــــــــــــــــــــــــــــــــــ	

SEQ	SEQ	Acces-	Species	Description	Smith	ક
ID	ID	sion	<b>.</b>		-	Identity
NO:	NO:	No.		1	Water	_
	in				man	
	USSN				Score	
	09/48					
	8,725					
				yk199 1		
	i			protein		1
				sequence	-	İ
550	6897	gi58151	Homo sapiens	unknown	509	97
		80	_			
551	690	gi10645	Homo sapiens	meningioma-	522	100
	1	186	•	expressed		
	Į.			antigen 5s	\	
	1			splice variant		
552	6909	W78149	Homo sapiens	Human	485	100
~~~				secreted		
ł	}	ł		protein		
	1			encoded by		
]		gene 24 clone]
				HSVBF78.	İ	{
553	6924	Y35923	Homo sapiens	Extended	514	99
333	0,2,2	133333	include Supposite	human secreted		1 1
1				protein		ļ
		}		sequence,		
554	6937	G03798	Homo sapiens	Human	281	70
334]		nomo caprono	secreted		
1		1		protein,		
555	6951	gi51185	Homo sapiens	prostate-	364	95
333	"	7		specific		1 1
1				antigen		ļ
556	7008	G03200	Homo sapiens	Human	548	98
				secreted		
l				protein,		
557	7009	Y22213	Homo sapiens	Human V201	856	100
			•	protein		
	Ì			sequence.	ł	
558	7057	g160036	Homo sapiens	brain	1814	100
		54		specific		[
	[[membrane-		j l
				anchored	1.	
				protein BSMAP]1
559	7098	W27291	Homo sapiens	Human H1075-1	712	100
1				secreted		
)	1			protein 5'	1	}
1				end.		
560	7114	gi32121	Homo sapiens	prefoldin	534	98
		10		subunit 1		
561	712	gi45586	Homo sapiens	P85B_HUMAN;	470	74
		41	ļ	PTDINS-3-		1
Į		-	1	KINASE P85-	1	
1	}]]	BETA]
562	7215	gi48683	Homo sapiens	delta-6 fatty	2437	100
	1	66	_	acid		
}			1	desaturase		
L				<u> </u>		

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	- <u>F</u>		-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48					1
	8,725					
563	7244	Y12445	Homo sapiens	Human 5' EST	428	100
				secreted		
				protein		
564	7248	gi31137	Homo sapiens	Humig	633	100
		6				
565	7252	gi56895	Homo sapiens	KIAA1097	5240	100
		31		protein	580	
566	7292	gi51069	Homo sapiens	HSPC040	580	100
	7206	98	Ware sanions	protein Human	1974	95
567	7306	Y32201	Homo sapiens	receptor	1 1 7 / 4	25
	1			molecule (REC)		
	1			encoded by	1	[]
				Incyte clone	}]
	Ì	ļ		2057886.		1
568	7338	¥73880	Homo sapiens	Human	1566	100
				prostate tumor		
	j			EST fragment	1	j
			+	derived]
	1			protein #67.		1
569	736	gi10178 317	Homo sapiens	·	1468	100
570	737	G00851	Homo sapiens	Human	522	98
1	,)		secreted		
1				protein,		
571	740	W85610	Homo sapiens	Secreted	1115	87
<u> </u>				protein clone]
L				eh80_1.		
572	7400	Y93948	Homo sapiens	Amino acid	1982	98
ļ]	ł		sequence of a	1	1
1				lectin ss3939		
F55	7415	-: 30436	Tromo geniani	polypeptide. KIAA0573	2392	100
573	/415	gi30436 70	Homo sapiens	protein	2392	1 100
574	7429	Y40864	Homo sapiens	A human	1183	99
1.5/=	,425	1 2 3 3 3 3	115mb Daptens	glutathione-S-		
			· .	transferase		[
			·	(hGST)		
				protein.		1
575	7458	Y53643	Homo sapiens	A bone marrow	554	99
			1	secreted	1	
}	i			protein	1	
	İ		1	designated		
				BMS6.		
576	7516	gi44683	Homo sapiens		1146	99
		11	77000 0000		255	
577	7526	gi41389	Homo sapiens	promyelocytic leukemia zinc	3571	99
1		22		finger	1	[
L	<u> </u>	<u> 1</u>	L	1	_L	<u></u>

SEQ	SEQ	Acces-	Species	Description	Smith	ક
ID	ID	sion	_	_	-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48	1				
	8,725					
				protein;		ļ
			,	kruppel-like		
				zinc finger protein; PLZF		
578	7571	G02915	Homo sapiens	Human	209	100
3/8	/5/1	G02913	Homo saprems	secreted	205	100
		<u> </u>		protein,		
579	7614	W74726	Homo sapiens	Human	1879	100
3,,5	,02-			secreted		[
		}		protein		
				fg949_3.		
580	7663	gi59125	Homo sapiens		1634	100
ļ		48				
581	7686	gi49297	Homo sapiens	CGI-121	870	100
		11		protein		
582	7714	gi38876	Homo sapiens	phospholipase	4428	99
		5		D · Human	570	100
583	7724	G03933	Homo sapiens	secreted	370	100
				protein,		
584	7834	gi89191	Homo sapiens	mesenchymal	1133	100
		66		stem cell		1
				protein DSC92		
585	7855	Y48505	Homo sapiens	Human breast	684	100
				tumour-		
1	i			associated]
L				protein 50.		
586	7870	Y13372	Homo sapiens	Amino acid	2559	100
ł				sequence of		1
İ		Ì		protein PRO223.		
587	7871	Y91689	Homo sapiens	Human	768	100
1 387	,3,1	1,100,	115mo Saprems	secreted		-35
1	ļ			protein	}	[
1				sequence		
1.	,	l		encoded by		
				gene 93	<u> </u>	
588	7892	gi34659	Homo sapiens	macrophage	532	100
]	inflammatory	1	
1		1		protein-2alpha		
	5005	-: 30555	Vomo carácte	precursor	183	91
589	7927	gi32575 gi16574	Homo sapiens Sus scrofa		2744	100
590	7944	58	Sus scrota	calcium/calmod	2/44	. 100
		1 36		ulin-dependent		1
1				protein kinase		
				II isoform		
1				gamma-B		
591	7947	G01131	Homo sapiens	Human	574	96

SEQ	SEQ	Acces-	Species	Description	Smith	ક્ર
ID	ID	sion		_	-	Identity
NO:	NO:	No.	•		Water	•
	in				man	
	USSN			•	Score	
	09/48	. 1				
	8,725					
				secreted		
				protein,		
592	800	gi30214	Homo sapiens	neutral	167	68
		28		sphingomyelina	[
				se		
593	8055	gi49296	Homo sapiens	CGI-84	1038	100
		37		protein		
594	8082	gi46790	Homo sapiens	HSPC014	715	100
		14				
595	8127	gi99556	Homo sapiens	twisted	905	. 95
		. 93		gastrulation		
				protein		
596	8174	gi55322	Homo sapiens	MUM2	767	100
		94			<u> </u>	
597	8178	gi45305	Homo sapiens	TADA1 protein	1132	100
		87				
598	8215	R66278	Homo sapiens	Therapeutic	830	100
		· ·		polypeptide	1	ļ
١ ٠	i	1		from	ì]
(ĺ		glioblastoma	1	
1				cell line.		
599	8263	Y48371	Homo sapiens	Human	713	98
	1			prostate	1	
	į.	1		cancer-	1	1
				associated		
		<u> </u>	<u> </u>	protein 68.		
600	827	gi31723	Cavia	phospholipase	955	73
	<u> </u>	37	porcellus	В	1.	
601	828	Y29517	Homo sapiens	Human lung	833	94
			•	tumour protein	1	
				SAL-82	1	
1			İ	predicted	1 .	
				amino acid	ł	
	<u> </u>			sequence.	1005	700
602	8294	gi49297	Homo sapiens	CGI-149	1085	100
		67	 	protein	052	100
603	8313	gi57714	Homo sapiens	group IID	852	100
1		20		secretory		!
]		1		phospholipase]
L		 	<u> </u>	A2	319	78
604	832	Y86260	Homo sapiens	Human	319	/8
				secreted		
1		1		protein		1
		1.,	\ <u>\</u>	HELHN47,	1-264	47
605	8357	gi41913	Mus musculus	claudin-7	164	47
	 	58			1666	100
606	8373	gi19452	Homo sapiens	protein phosphatase 6	1 7000	100
	1	71	1772	phosphatase 6	1226	100
607	8379	gi58529	Homo sapiens		1226	100

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion			-	Identity
NO:	NO:	No.			Water	
	in				man	·
	USSN				Score	
	09/48					
	8,725					
		81		cardiotrophin-		
				like cytokine		İ
				CLC	074	
608	8380	gi34022	Homo sapiens	protein	974	100
		16	••	M	1297	99
609	8386	gi38698	Homo sapiens	oncostatin M	1297	99
	0.4.7.0	8	**	Human TANGO	722	98
610	8418	Y70210	Homo sapiens	130 protein.	122	, , , , , , , , , , , , , , , , , , ,
		202005	77	Human	490	95
611	8442	G01895	Homo sapiens	secreted	430	93
			•	protein,	ł	
612	8457	G04048	Homo sapiens	Human	450	98
612	043/	G04048	nomo sapiens	secreted	130	50
		ì		protein,		1
613	8458	W97119	Homo sapiens	S-adenosyl-L-	1484	100
013	.0436	",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		methyltransfer		
				ase (SAM-MT)		
	•			protein.		
614	8469	gi71597	Homo sapiens		255	100
011	0.102	99				
615	8480	gi45895	Homo sapiens	KIAA0943	1998	100
		30		protein		. (1)
616	8521	gi57262	multiple	unknown	250	82
		35	sclerosis	protein U5/2	ł	
1	ļ	į .	associated		ł	
			retrovirus	(*)		
			element		610	
617	857	gi96639	Homo sapiens	cysteinyl	612	99
]	İ	58		leukotriene	1]
			İ	CysLT2	ľ	
	0554	-i C0472	Warra garriana	receptor HSPC305	1049	100
618	8574	gi68412 60	Homo sapiens	HSPC3U5	1049	100
619	8606	gi33677	Homo sapiens	scrapie	544	100
		07		responsive		
1				protein 1		
620	8632	G01158	Homo sapiens	Human	502	100
		1		secreted		
<u></u>	1			protein,		•
621	8646	gi38822	Homo sapiens	KIAA0764	2175	100
		49		protein	<u> </u>	ļ <u>. </u>
622	8666	Y66196	Homo sapiens	Human bladder	1080	95
i	1			tumour EST		
1	1	1		encoded	1	
	<u> </u>	1		protein 54.	435	
623	8675	gi99639	Homo sapiens	NPD009	432	96
-	1 0000	08 G04018	Homo sapiens	· Human	469	98
624	8683	1 604018	TOMO Saptens	nullian	1 - 303	

CEO	SEQ	Acces-	Species	Description	Smith	*
SEQ ID	ID	sion	Species	Description	-	Identity
NO:	NO:	No.			Water	
NO:		NO.			man	
	in	1			Score	
	USSN				SCOLE	İ
	09/48	,				
	8,725					
				secreted		
				protein,		
625	8708	gi16335	Homo sapiens	CB	364	98
	i	64				
626	8720	gi82484	Homo sapiens	_	191	69
	ļ	65		hepatocellular		
	. .			carcinoma-	\	
ļ	1		•	associated	`	
		}		antigen 56A		
627	8756	Y94984	Homo sapiens	Human	369	97
				secreted		
1	1			protein		
ł				ve11_1,		
628	8765	Y00346	Homo sapiens	Fragment of	1068	97
020	1 0.00	1		human secreted		
		ļ		protein	ŀ	·
	1	1		encoded by	l	
1				gene 2.	1	
		1	***	Human	1051	95
629	8783	Y27918	Homo sapiens		1031	95
1				secreted	i	
	1		^	protein	<u> </u>	
				encoded by	1	
Ĺ	<u> </u>	<u> </u>		gene No. 123.		
630	8804	Y25426	Homo sapiens	Human SIGIRR	887	100
				protein.		
631	8838	Y99409	Homo sapiens	Human PRO1343	1279	100
	}			(UNQ698) amino		
	1			acid sequence		
632	8851	W74785	Homo sapiens	Human	454	100
ĺ	Í	ſ		secreted	ĺ	•
	1			protein	}	
		ţ		encoded by		
]	}]]	gene 56 clone	j	
1			i	HSAXS65.	l .	
633	8853	W75116	Homo sapiens	Human	245	95
		1		secreted		
1		1		protein	1	ľ
.		1		encoded by	}	1
1				gene 60 clone	1	1
			1	HILCJ01.]
	0057	gi25651	Homo sapiens	non-	479	74
634	8857	96	Tomo saprens	functional	=/3	'"
1		ود ا				
1	1	1		folate binding		
L				protein	1	<u> </u>
635	8859	Y02690	Homo sapiens	Human	600	100
				secreted		
[1		protein		
1	1	1		encoded by	ļ	1
1				gene 41c lone		

SEQ	SEQ	Acces-	Species	Description	Smith	8
1	ID	sion	_		-	Identity
NO:	NO:	No.			Water	
	in.				man	
	USSN				Score	
	09/48					
	8,725				<u></u>	
		7705401		HSZAF47.	548	99
636	8901	Y86491	Homo sapiens	Human gene 59-encoded	340	99
		İ		protein		
			•	fragment,		
637	8907	W88745	Homo sapiens	Secreted	2004	99
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		protein		
				encoded by	`	
1				gene 30 clone		ļ
				HTSEV09.		
638	8934	W75088.	Homo sapiens	Human	421	98
				secreted		ļ
				protein		i i
				encoded by		
j				gene 32 clone		1
639	8960	Y02693	Homo sapiens	Human	267	72
639	0960	102093	nomo sapiens	secreted	207	'2
1				protein	ł	
		ļ		encoded by	:	
				gene 44 clone		1
		·		HTDAD22.		
640	8979	Y76143	Homo sapiens	Human	1374	98
		}		secreted		
				protein	ļ	
1		[encoded by		
		377.4.7.7	*****	gene 20. Human 5' EST	466	100
641	8980	Y11433	Homo sapiens	secreted	.400	100
				protein	Ì	
642	8986	G02626	Homo sapiens	Human	306	100
*				secreted		
				protein,		
643	8987	G02093	Homo sapiens	Human	486	97
		{		secreted		1 !
				protein,		
644	8995	Y12908	Homo sapiens	Human 5' EST	181	100
1 1			<u> </u>	secreted	Ì	}
		1		protein	L	100
645	9035	Y71108	Homo sapiens	Human Hydrolase	800	100
		1		protein-6		1
1		1		(HYDRL-6).		(
646	9062	gi88860	Homo sapiens		523	100
540	7002	05		lysophosphatid		-55
		1-		ic acid		•
]]		}	ŀ	acyltransferas		
				e-delta		
647	9074	Y25761	Homo sapiens	Human	1366	99

ID NO: N	8	Smith	Description	ecies	Sp	Acces-	SEQ	SEQ
NO: NO: in USSN 09/48 8,725 Secreted protein encoded from gene 51. 100 1852290 protein sequence. Secreted Secreted 1852290 protein sequence. Secreted Secreted Secreted Secreted 1852290 protein sequence. Secreted	dentity	-						
in USSN 09/48 8,725 secreted protein encoded from gene 51. 648 9075 Y73336 Homo sapiens Hrm clone 1852290 protein sequence. 649 9098 Y57878 Homo sapiens Human protein HrmPN-2. 650 9109 gi23903 Homo sapiens Gikba protein transmembrane protein HrmPN-2. 651 911 gi32456 Homo sapiens protein trycosine phosphatase 652 912 gill367 Homo sapiens human P5 212 46 653 9163 Y34129 Homo sapiens Human potassium channel K+Hnov28. 654 9164 Y41324 Homo sapiens Human potassium channel K+Hnov28. 655 9173 gi68512 Mus musculus protein encoded by gene 17 clone HNF1Y77. 656 9187 Y66721 Homo sapiens Membrane- phosphatase- like protein protein protein protein Protein PTPLB. 657 9190 W40378 Homo sapiens Human potast 792 81	-	Water					_	
USSN 09/48 8,725 Secreted protein encoded from gene 51.		man					i	2.0.
09/48 8,725		Score			'			
Secreted Secreted								
Secreted protein encoded from gene 51.								
Protein encoded from gene 51.	· · · · · · · · · · · · · · · · · · ·		secreted				07.23	
encoded from gene 51.				i				
100 1591 100 16852290 1691 100 16852290 1691 100 16852290 1691	4							
100 1591 100 16852290 1691 100 16852290 1691 100 16852290 1691			gene 51.					
1852290 protein sequence.	100	1591		sapiens	Homo	Y73336	9075	648
Sequence. Sequ			1852290	-			1	
Sequence. Sequ			protein					
Section Sect		\ \ \ \ \					1	
transmembrane protein HTMPN- 2. 650 9109 gi23903 Homo sapiens 63kDa protein kinase 651 911 gi32456 Homo sapiens protein- tyrosine phosphatase 652 912 gi11367 Homo sapiens human P5 212 46 653 9163 Y34129 Homo sapiens Human potassium channel K+Hnov28. 654 9164 Y41324 Homo sapiens Human secreted protein encoded by gene 17 clone HNFIY77. 655 9173 gi68512 Mus musculus protein tyrosine phosphatase- like protein PTPLB 656 9187 Y66721 Homo sapiens Membrane- bound protein PROS11. 657 9190 W40378 Homo sapiens Human breast cancer protein	100	516		sapiens	· Homo	Y57878	9098	649
protein HTMPN-2.						307373		0.15
2. 650 9109 gi23903 Homo sapiens 63kDa protein kinase 651 911 gi32456 Homo sapiens protein-tyrosine phosphatase 652 912 gill367 Homo sapiens human P5 212 46 43 653 9163 Y34129 Homo sapiens Human potassium channel K+Hnov28. 654 9164 Y41324 Homo sapiens Human secreted protein encoded by gene 17 clone HNFIY77. 655 9173 gi68512 Mus musculus protein protein phosphatase-like protein phosphatase-like protein protein PTPLB 656 9187 Y66721 Homo sapiens Membrane-bound protein PRO511. 657 9190 W40378 Homo sapiens Human breast 792 81 cancer protein 2591 100 20						,		
Signature Sign			_		ļ			
kinase	97	1141		sapiens	Homo	qi23903	9109	650
Signature Sign						3		
tyrosine phosphatase 652 912 gill367 Homo sapiens human P5 212 46 653 9163 Y34129 Homo sapiens Human potassium channel K+Hnov28. 654 9164 Y41324 Homo sapiens Human secreted protein encoded by gene 17 clone HNFIY77. 655 9173 gi68512 Mus musculus protein encoded by gene 17 clone HNFIY77. 656 9187 Y66721 Homo sapiens Membrane- like protein protei	100	2591		sapiens	Homo	gi32456	911	651
phosphatase phosphatase						3		
652 912 gill367 43 Homo sapiens human P5 212 46 653 9163 Y34129 Homo sapiens Human potassium channel K+Hnov28. 377 71 654 9164 Y41324 Homo sapiens Human secreted protein encoded by gene 17 clone HNFIY77. 655 9173 gi68512 Mus musculus protein tyrosine phosphatase-like protein PTPLB 631 93 656 9187 Y66721 Homo sapiens Membrane-bound protein PRO511. 95 657 9190 W40378 Homo sapiens Human breast cancer protein 792 81							ļ	i
43	46	212		sapiens	Homo	gi11367	912	652
potassium channel K+Hnov28.						-		
potassium channel K+Hnov28.	71	377	Human	sapiens	Homo	Y34129	9163	653
K+Hnov28.		1	potassium	-				
654 9164 Y41324 Homo sapiens Human secreted protein encoded by gene 17 clone HNFIY77. 655 9173 gi68512 Mus musculus protein for tyrosine phosphatase-like protein PTPLB 656 9187 Y66721 Homo sapiens Membrane-bound protein PRO511. 657 9190 W40378 Homo sapiens Human breast cancer protein		. 1			ļ		l	
secreted protein encoded by gene 17 clone HNFIY77. 655 9173 gi68512 Mus musculus protein for tyrosine phosphatase-like protein PTPLB 656 9187 Y66721 Homo sapiens Membrane-bound protein PRO511. 657 9190 W40378 Homo sapiens Human breast cancer protein			K+Hnov28.					
protein encoded by gene 17 clone HNFIY77.	99	1083	Human	sapiens	Homo	Y41324	9164	654
encoded by gene 17 clone HNFIY77. 655 9173 gi68512 Mus musculus protein tyrosine phosphatase-like protein PTPLB 656 9187 Y66721 Homo sapiens Membrane- 1173 95 bound protein PRO511. 657 9190 W40378 Homo sapiens Human breast 792 81 cancer protein			secreted					1
gene 17 clone HNFIY77.			protein					
HNFIY77.	•					1		
655 9173 gi68512 Mus musculus protein tyrosine phosphatase-like protein PTPLB 656 9187 Y66721 Homo sapiens Membrane- 1173 95 bound protein PRO511. 657 9190 W40378 Homo sapiens Human breast 792 81 cancer protein			gene 17 clone			1		
tyrosine phosphatase- like protein PTPLB 656 9187 Y66721 Homo sapiens Membrane- bound protein PRO511. 657 9190 W40378 Homo sapiens Human breast cancer protein			HNFIY77.		•			
phosphatase- like protein PTPLB 656 9187 Y66721 Homo sapiens Membrane- bound protein PRO511. 657 9190 W40378 Homo sapiens Human breast cancer protein	93	631		musculus	Mus	gi68512	9173	655
like protein PTPLB			tyrosine			56		
PTPLB			phosphatase-					ĺ
656 9187 Y66721 Homo sapiens Membrane- 1173 95 bound protein PRO511. 657 9190 W40378 Homo sapiens Human breast 792 81 cancer protein		\	like protein					
bound protein PRO511. 657 9190 W40378 Homo sapiens Human breast 792 81 cancer protein			1					
PRO511. 657 9190 W40378 Homo sapiens Human breast 792 81 cancer protein	95	1173		sapiens	Homo	Y66721	9187	656
657 9190 W40378 Homo sapiens Human breast 792 81 cancer protein							1]
cancer protein							<u></u> .	
	81	792	1	sapiens	Homo	W40378	9190	657
					1			
1 1 1 1			CH14-2a16-1			1		
from 2.0 kB		19			1	1		1
DNA fragment		-					1	
#2.					L			
1 000 020 1 100 100 1 111111111111	70	462		sapiens	Homo	Y02781	9194	658
secreted			.					
protein.					L			
1 333 1 3333 1	80	166	i e	sapiens	Homo	G02994	9210	659
secreted					1			
		I	protein,			1		1

SEQ	SEQ	Acces-	Species	Description	Smith	*
ID	ID	sion	•	-	-	Identity
NO:	NO:	No.			Water	
	in	,	·		man	1
١	USSN				Score	
l	09/48				·	İ
	8,725					
660	9222	G02520	Homo sapiens	Human	186	43
	1			secreted	[i
				protein,		
661	9230	gi67065	Homo sapiens	inositol	1315	95
		54		1,4,5-	İ	
		,		trisphosphate	1	
	l			3-kinase B		
662	9258	gi52214	Homo sapiens	B-cell growth	120	56
		5		factor	120	
663	9260	G04072	Homo sapiens	Human	138	51
}	}]		secreted protein.]
			77	·	317	67
664	9271	gi66900	Homo sapiens	tetraspanin protein	31/	"'
		95		factor	444	72
665	9272	gi16304	Bos taurus	activating	444	/2
1		2		exoenzyme S	}	}
-	0075	== 407.77	Vere carions	ribosomal	424	81
666	9275	gi40177	Homo sapiens	protein S6	724	"
1		4		kinase 3	i	ļ l
667	930	G02355	Homo sapiens	Human	167	41
667	930	G02355	HOMO Sapiens	secreted	1 -5'	1
'				protein,		1
668	9304	gi89797	Canis	Band4.1-like5	1493	93
000	3304	43	familiaris	protein		
669	9346	gi27389	Mus musculus	high mobility	384	89
333		89		group protein		
1			Į	homolog HMG4		
670	9347	gi36613	Homo sapiens		199	91
1				serine/threoni		
1	Ì	ł		ne protein		1
	İ	1	Ì	kinase		
671	935	gi55418	Homo sapiens	QA79 membrane	334	57
1		70		protein,		
١.				allelic	1	
1		ļ		variant airm-	1	1
				1b	 	ļ <u></u>
672	9350	gi33271	Homo sapiens	KIAA0655	757	87
		24	<u> </u>	protein	 	ļ
673	9351	W57260	Homo sapiens	Human	573	95
1	1-00-		Truman	semaphorin Y. tripartite	127	59
674	9356	gi59977	Human	fusion	1 -2'	39
1		1	endogenous retrovirus	transcript		-
1			TECTOATINE	PLA2L		
	1 0363	Y17834	Homo sapiens	Human PRO361	968	92
675	9363	11/834	Tomo sabrens	protein	1 308	1
1		1		sequence.	1	
676	9366	gi72431	Homo sapiens	KIAA1374	649	96
0/8	1 3300	191/2731	Tromo papacina	1		

SEQ	SEQ	Acces-	Species	Description	Smith	용
ID	ID	sion	-		-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	l l
	09/48					
	8,725					
		29		protein		
677	9369	G03793	Homo sapiens	Human	222	69
				secreted	'	
	ļ	}		protein,	ļ	}
678	9378	gi44683	Homo sapiens		163	39
		11	-		1	
679	9393	gi27389	Mus musculus	high mobility	384	89
		89		group protein	`	
	1			homolog HMG4	[
680	9444	G01399	Homo sapiens	Human	157	93
000	7444	002333	nomo bapieno	secreted		
				protein,		
681	9467	gi44547	Homo sapiens	HSPC007	230	71
991	3407	02	nomo saprens	IISEC007	230	'-
682	9486	gi10047	Homo sapiens	KIAA1584	605	93
002	1 3400	243	HOWO Saprems	protein	1 005))
683	949	Y30895	Homo sapiens	Human	704	99
683	949	130895	nomo saprens	secreted	704	33
l .		İ		protein		[
1		1		1 -	1	ĺ
	Į.			fragment	l .	
į	i			encoded from	{	(
	9499	W36002	Homo sapiens	gene 25. Human Fchd531	2173	96
684	3433	W36002	Homo sapiens	gene product.	21/3	
685	9510	gi16657	Homo sapiens	July Promote	867	83
		99				
686	9523	Y53022	Homo sapiens	Human	1252	89
	1		,	secreted]	
İ	ì			protein clone		
	l .	[qf116_2	ſ	
į.	Į.	İ		protein	1	
1				sequence		
687	9534	Y66670	Homo sapiens	Membrane-	998	100
1	1		_	bound protein	1	
ł				PRO1180. ·	ł	ì
688	9539	Y76144	Homo sapiens	Human	633	100
		1 .		secreted	i	
		1		protein	1	
	1	1		encoded by	1	ļ
				gene 21.	1]
689	954	G02490	Homo sapiens	Human	160	78
				secreted		}
		Į.		protein,		
690	9546	gi18112	Homo sapiens	chorionic	616	96
	1	1		somatomammotro	1	
				pin		
691	955	gi72431	Homo sapiens	KIAA1361	2042	100
""		03		protein		
692	9551	gi17723	Homo sapiens	ras-related	341	57
	1 2331	13	1		<u></u>	<u></u>

SEQ	SEQ	Acces-	Species	Description	Smith	ક
ID	ID	sion		•	-	Identity
NO:	NO:	No.			Water	_
	in				man	i
	USSN				Score	
j	09/48]				
Ì	8,725					
		45		GTP-binding		
				protein		
693	9558	W88403	Homo sapiens	Human adult	2252	100
		}		testis		
				secreted		
			•	protein		
				ga63_6.	100	30
694	9561	gi66900 17	Herpesvirus papio	NTR	100	30
695	957	Y86260	Homo sapiens	Human	319	78
093)))	100200	110mo odpieno	secreted	i	'
	•	1		protein	}	
	1	\		HELHN47,		
696	9572	gi97294	Mus musculus	Elf-1	806	92
930		0				
697	9576	gi32490	Homo sapiens	geminin	448	98
		05				1 200
698	9586	gi28872	Homo sapiens	mRNA cleavage	208	100
	Ī	88		factor I 25		[
			 	kDa subunit	726	99
699	9587	G00995	Homo sapiens	Human secreted	126	99
•		İ		protein,		
700	9592	gi49527	Rattus	ribosomal	202	78
/00	3332	3	norvegicus	protein S15a		
701	9595	gi77999	Homo sapiens	UBASH3A	453	47
1 /02	1333	12	nomo supromo	protein		
702	9610	Y07875	Homo sapiens	Human	574	100
			-	secreted		
	Ì	1		protein	İ	
	1	<u> </u>		fragment	į	
ŀ	· ·		ì	encoded from	İ	
				gene 24.		
703	9634	Y73325	Homo sapiens	HTRM clone	820	99
1.				001106 protein	1	
			*	sequence.		<u> </u>
704	9639	G00805	Homo sapiens	Human	155	67
1	1	1		secreted		
<u></u>				protein,		<u> </u>
705	9647	G03786	Homo sapiens	Human	196	73
1	1	·		secreted	1	
	1-0000		77	protein, KIAA0810	523	100
706	9653	gi38823 41	Homo sapiens	protein	543	1 100
707	9654	G01924	Homo sapiens	Human	469	100
1 ""	3034	901924	TOWN Saptems	secreted	100	
			1	protein,	1	(
708	9678	Y99376	Homo sapiens	Human PRO1244	474	100
'"	1 23.3		Start Duplemb	(UNQ628) amino		
L		<u> </u>	1	(Ongozo/ amino		

SEQ	SEQ	Acces-	Species	Description	Smith	*
ID	ID	sion	-	• •	-	Identity
NO:	NO:	No.	•		Water	_
ł	in				man	
	USSN			·	Score	
1	09/48			•		ł
	8,725					
				acid sequence		
709	9709	Y11825	Homo sapiens	Human 5' EST	657	100
	j			secreted	ļ	
				protein GTPase Rab37	189	75
710	9722	gi76774 22	Mus musculus	Grease Rabs/	189	/5
711	9731	Y12424	Homo sapiens	Human 5' EST	207	100
/) 7.31		nomo bapiono	secreted		
i	}	İ		protein		
712	9742	Y57954	Homo sapiens	Human	484	100
			•	transmembrane		
	[,		protein HTMPN-	[
	}			78.		
713	9749	gi36878 29	Homo sapiens	hT41	386	65
714	9755	gi20552	Homo sapiens	Similar to a	2583	100
		95		C.elegans		1
1	Į	<u>}</u>		protein in	}	
	1]		cosmid C14H10		
715	9762	G03436	Homo sapiens	Human	176	61
			•	secreted		
<u> </u>				protein,		
716	9763	gi61800	Homo sapiens	anaphase-	1016	100
·		11		promoting	ļ	
l	ļ	1.		complex subunit 4	ļ	
717	9784	G03570	Homo sapiens	Human	401	96
1 /1/	3704	303370	nomo sapiens	secreted	101	30
1				protein,		
718	9794	G00803	Homo sapiens	Human	333	69
		}	· *	secreted		
]				protein,		
719	9795	gi25162	Mus musculus	Rab33B	669	94
	<u></u>	42				
.720	9798	gi55859	Homo sapiens	ZID, zinc	605	96
	-	9		finger protein	-	1
	ļ		· .	with interaction		ļ
İ				domain		
721	9805	Y25881	Homo sapiens	Human	566	96
1 /21	7805	123001	omo paprena	secreted	500	1
1	1	Ì		protein		
				fragment		1
		1	1	encoded from		1
				gene 61.		
722	9816	gi53205	Homo sapiens	protein-	384	100
		6		tyrosine-		
L		<u> </u>		phosphatase		
723	9830	G00857	Homo sapiens	Human	539	96

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	. Species	Description	-	Identity
NO:	NO:	No.			Water	
1.0.	in				man	
	USSN				Score	
	09/48				000.0	
	8,725					
	-			secreted		
			,	protein,		i i
724	9836	G00914	Homo sapiens	Human	527	100
				secreted	ļ	
				protein,		
725	9837	gi26620	Homo sapiens	KIAA0409	230	67
		99			\	
726	984	Y29517	Homo sapiens	Human lung	833	94
				tumour protein	}	
ł		į.		SAL-82	1	·
				predicted		
			'	amino acid		
l				sequence.		
727	9849	gi72293	Homo sapiens	ZNF264,	140	90
Ĺ		05	 	partial cds		
728	9851	gi52625	Homo sapiens	hypothetical	369	64
		60		protein		
729	9859	gi38819	Homo sapiens	hypothetical	167	93
		76		protein		
730	9863	gi72957	Drosophila	CG15433 gene	837	78
		07	melanogaster	product	000	
731	9888	gi33196 77	Homo sapiens		209	72
732	989	gi45571	Rattus	zinc finger	604	92
'		43	norvegicus	protein RIN ZF		
733	9919	G01843	Homo sapiens	Human	586	100
i .	'		_	secreted		
)				protein,		
734	9922	W67869	Homo sapiens	Human	551	93
1		Į		secreted	l	}
				protein		
l	İ	İ	,	encoded by	i	
1	ļ			gene 63 clone		
		L		HHGDB72.	<u> </u>	
. 735	9947	W78239	Homo sapiens	Fragment of	251	78
				human secreted		
	1	1	ĺ	protein		
	}			encoded by		
736	0055	Y36203	Homo sapiens	gene 3.	273	77
736	9956	130203	TOWN PAPTERS	secreted	6/3	''
)	Ţ	protein #75.	ļ.	
737	9961	¥99357	Homo sapiens	Human PRO1190	650	99
1 '3'	1	******		(UNQ604) amino	550	1
				acid sequence		
738	9972	Y12149	Homo sapiens	Human 5' EST	284	100
/38				secreted	-0.	-55
				protein		
739	9977	gi10039	Homo sapiens	osteoblast	822	98
		1		<u> </u>		1

SEQ	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion			-	Identity
NO:	NO:	No.			Water	
	in				man	
}	USSN	j	ļ		Score	
!	09/48]		l	
	8,725					
		439		differentiatio		
1				n promoting	ĺ	1
				factor		

Table 3 - Amino Acids

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
1	740	2	557	FVGRLLRLGEALRLRPDPSGGCRLQPALVGETEMSEKENNFPP LPKF1PVKPCFYQNFSDE1PVEHQVLVKR1YRLWMFYCATLGV
				NLIACLAWWIGGGSGTNFGLAFVWLLLFTPCGYVCWFRPVYKA FRADSSFNFMAFFFIFRSPVCPDRHPGDWLLRLGRVRLAVGNW ILPVQPGRCRGHA
2	741	305	838	FLGAGADIFCAYLRMSSKQATSPFACAADGEDAMTQDLTSREK EEGSDQHVASHLPLHPIMHNKPHSEELPTLVSTIQQDADWDSV LSSQQRMESENNKLCSLYSFRNTSTSPHKPDEGSRDREIMTSV TFGTPERRKGSLADVVDTLKQKKLEEMTRTEQEDSSCMEKLLS KDWKE
3	742	12	1315	EGYLTGRPTRPVAVRGKSTADLRMMGRSPGFAMQHIVGVPHVL VRRGLLGRDLFMTRTLCSPGPSQPGEKRPEEVALGLHHRLPAL GRALGHSIQQRATSTAKTWWDRYEEFVGLNEVREAQGKVTEAE KVFMVARGLVREAREDLEVHQAKLKEVRDRLDRVSREDSQYLE LATLEHRMLQEEKRLRTAYLRAEDSEREKFSLFSAAVRESHEK ERTRAERTKNWSLIGSVLGALIGVAGSTYVNRVRLQELKALLL EAQKGPVSLQEAIREQASSYSRQQRDLHNLMVDLRGLVHAAGP GQDSGSQAGSPPTRDRDVDVLSAALKEQLSHSRQVHSCLEGLR EQLDGLEKTCSQMAGVVQLVKSAAHPGLVEPADGAMPSFLLEQ GSMILALSDTEQRLEAQVNRNTIYSTLVTCVTFVATLPVLYML FKAS
4	743	112	745	NLPPLTPQPGPRLAGSGPSHWFSPLSLPVASKAPGTMAQALGE DLVQPPELQDDSSSLGSDSELSGPGPYRQADRYGFIGGSSAEP GPGHPPADLIRQREMKWVEMTSHWEKTMSRRYKKVKMQCRKGI PSALRARCWPLLCGAHVCQKNSPGTYQELAEAPGDPQWMETIG RDLHRQFPLHEMFVSPQGHGQQGLLQVLKAYTLYRPEQG
5	744	99	265	LRGMAAAAAGPAASQRFFQSFSDALIDQDPQAALEVGEPFLLP PLPADPPPSSTA

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 758	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) WACFRSAHCSRHLRNRIFMYLYWDKTRSPVCKGPALREERPQP
				RLKLEDYKDRLKSGEHLNPDQLEAVEKYEEVLHNLEFAKELQK TFSGLSLDLLKAQKKAQRREHMLKLEAEKKKLRTILQVQYVLQ NLTQEHVQKDFKGGLNGAVYLPSKELDYLIKFSKLTCPERNES LRQTLEGSTV
7	746	48	450	XAGVQMKLEFLQRKFWAATRQCSTVDGPCTQSCEDSDLDCFVI DNNGFILISKRSRETGRFLGEVDGAVLTQLLSMGVFSQVTMYD YQAMCKPSSHHHSAAQPLVSPISAFLTATRWLLQELVLFLLEW SVWGSX*
8	747	1	469	CRGRLAQLEEAAVAATMSAGDAVCTGWLVKSPPERKLQRYAWR KRWFVLRRGRMSGNPDVLEYYRNKHSSKPIRVIDLSECAVWKH VGPSFVRKEFQNNFVFIVKTTSRTFYLVAKTEQEMQVWVHSIS QVCNLGHLEDGAADSMESLSYTRSYLQ
9	748	242	409	IPAVPLTSCVTVGSYSLSVRDYDPRQGDTVKHYKIRTL\DKRG FYISP\RSTFSTLQ
10	749	1	1146	KDSVLNIARGKKYGEKTKRVSSRKKPALKC/TSQKQPALKAIC DKEDSVPNTATEKKDEQISGTVSSQKQPALKATSDKKDSVSNI PTEIKDGQQSGTVSSQKQPAWKATSVKKDSVSNIATEIKDGQI \RGTVSSQRQPALKA\TGDEKDSVSNIAREIKDGEKSGTVSPQ KQSAQKVIFKKKVSLLNIATRITGGWKSGTEYPENLPTLKATI ENKNSVLNTATKMKDVQTSTPEQDLEMASEGEQKRLEEYENNQ PQVKNQIHSRDDLDDIIQSSQTVSEDGDSLCCNCKNVILLIDQ HEMKCKDCVHLLKIKKTFCLCKRLTELKDNHCEQLRVKIRKLK NKASVLQKRLSEKEEIKSQLKHETLELEKELCSLRFAIQQ
11	750	3	892	SPLRYRAGQSGSTISSSSCAMWRCGGRQGLCVLRRLSGGHAHH RAWRWISNRACERALQYKLGDKIHGFTVNQVTSVPELFLTAVK LTHDDTGARYLHLAREDTINILFSVQFRTTPMDSTGVPHILEHT VLCGSQKYPCRDPFFKMLNRSLSTFMNAFTASDYTLYPFSTQN PKDFQNLLSVYLDATFFPCLRELDFWQEGWRLEHENPSDPQTP LVFKGVVFNEMKGAFTDNERIFSQHLQNRLLPDHTYSVVSGGD PLCIPELTWEQLKQFHATHYHPSNARFFTYGNFPLDQH
12	751	367	856	RGAKAKSAVLPPGPPCSSILILSPPAPLTPRSPGTEATRPTAM SKSLKKKSHWTSKVHESVIGRNPEGQLGFELKGGAENGQFPYL GEVKPGKVAYESGSKLVSEELLLEVNETPVAGLTIRDVLAVIK HCKDPLRLKCVKQGESSGLLSVLPGGGTARGAGQ
13	752	144	442	SHRPQPDAWRQGNAFQCVQKEKMQVSSAEVRIGPMRLTQDPIQ VLLIFAKEDSQSDGFWWACDRAGYRCNIARTPESALECFLDKH HEIIVIDHRQTQN
14	753	1	581	FRLAGCGHLLVSLLGLLLLARSGTRALVCLPCDESKCEEPRN CPGSIVQGVCGCCYTCASQRNESCGGTFGIYGTCDRGLRCVIR PPLNGDSLTEYEAGVCEDENWTDDQLLGFKPCNENLIAGCNII NGKCECNTIRTCSNPFEFPSQDMCLSALKRIEEEKPDCSKARC EVQFSPRCPEDSVLIEGYAPP

CEO	CEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ	beginning	end	
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	согте-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
1		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
1 1		residue	residue	1 (-possible nacionale inscritory
1		of amino	of amino	, ·
\		acid	acid	
)		sequence	sequence	
15	754	1	219	FRMAANVGSMFQYWKRFDLQQLQRELDATATVLANRQDESEQS
			1	RKRLIEQSREFKKNTPEVRRVTIVFALKGS
16	755	313	562	ETLSCRIMDHPSREKDERQRTTKPMAQRSAHCSRPSGSSSSSG
10	, , , ,	313	302	VLMVGPNFRVGKKIGCGNFGELRLGEGLPQVYYFGPCGKY
17	756	273	574	GCCKD*HSGVIGRSWAMLFASGGFQVKLYDIEQQQIRNALENI
* '	/50	4/3	3/4	RWASRRSPEGMEVGLFLSVGLVCHILKAMRICDVTFSSDGYCS
j		}	,	ASELVKARPTVAGM
			200	NSRVDDFVSARPKPRPLPRARGMVVVTGREPDSRRQDGAMSSS
18	757	3	390	
}	ļ	l.		DAEDDFLEPATPTATQAGHAL/PPAAT/GSFLRLFPLTSEGLT
1		ĺ	{	SLHACPHCGATKTPCWQPCSVGGTTSPRTPRAGTSSTEMAHTL
		L		EMC
19	758	98	461	RALWVGGCSGEACGIGMSGLLTDPEQRAQEPRYPGFVLGLDVG
l i		l	1	SSVIRCHVYDRAARVCGSSVQKVENLYPQIGWVEIDPDVLWIQ
			<u> </u>	FVAVIKEAVKAAGIQMNQIVGLGISTQRATFITWN
20	759	100	731	GLAAEQSMQFVKLWCGCSGEFPTRLRRRTPLTEAMEGGPAVCC
				QDPRAELVERVAAIDVTHLEEADGGPEPTRNGVDPPPRARAAS
	1		•	VIPGSTSRLLPARPSLSARKLSLQERPAGSYLEAQAGPYATGP
				ASHISPRAWRRPTIESHHVAISDAEDCVQLNQYKLQSEIGKGA
		l		YGVVRLAYNESEDRHYAMKVLSKKKLLKQYGFPRRPPP
21	760	2	520	FVYGKPVTLWPTISSVVPSTFLGLGNYEVEVEAEPDVRGPEIV
1		ļ	}	TMGENDPPAVEAPFSFRSLFGLDDLKISPVAPDADAVAAQILS
		ĺ		LLPLKFFPIIVIGIIALILALAIGLGIHFDCSGKYRCRSSFKC
		Ì.	1	IELIARCDGVSDCKDGEDEYRCVRVGGQNAALQVFTAASRKTM
22	761	158	470	SLAMPFGCVTLGDKKNYNQPSEVTDRYDLGQVIKTEEFCEIFR
				AKDKTTGKLHTCKKFOKRDGRKVRKAAKNEIGILKMVKHPNIL
1	İ	1	· ·	OLVDVFVTRKEYFIFLEL
23	762	1	749	QRRRFRAGLWGGHGLTDGLRRNGGCGCSARVPRVGERLRGHRC
23	102	-	'	PDPLCLLLDMLFLSFHAGSWESWCCCCLIPADRPWDRGQHWQL
	1]	}	EMADTRSVHETRFEAAVKVIQSLPKNGSFQPTNEMMLKFYSFY
ļ	Ì	}	}	KOATEGPCKLSRPGFWDPIGRYKWDAWSSLGDMTKEEAMIAYV
ŀ	'	1	1	EEMKKIIETMPMTEKVEELLRVIGPFYEIVEDKKSGRSSDITS
Į			1	DLGNVLTSTPNAKTVNGKAESSDSGAESEEEEAC
1	1-263	 	-	SCFKGRTGGRSGSSGDSSRWARCGRHFSASTEEPPLSQPCSAL
24	763	3	558	-
1	1			PRSGRRGCAVPSSVTKMLSFFRRTLGRRSMRKHAEKERLREAQ
1		1		RAATHIPAAGDSKSIITCRVSLLDGTDVSVDLPKKAKGQELFD
1	1].	QIMYHLDLIESDYFGLRFMDSAQVAHWLDGTKSIKKQVKIGSP
		<u> </u>		YCLHLRVKFYSS
25	764	9	424	ESRERSGNRRGAEDRGTCGLQSPSAMLGAKPHWLPGPLHSPGL
ľ	[PLVLVLLALGAGWAQEGSEPVLLEGECLVVCEPGRAAAGGPGG
1	ľ	{	Ī	AALGEAPPGRVAFAAVRSHHHEPAGETGNGTSGAIYFDQVLVN
1				

				
SEQ	SEQ	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine,
ID .	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	согте-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acius	Acids •	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
. '		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	\-possible nucleonde inscriton)
		of amino	of amino	
		acid	acid	
		sequence	sequence	
26	765	2	507	EDVKSYYTVHLPQLENINSGETRTISHFHYTTWPDFGVPQSPA
}				SFLNFLFKVRESGSLNPDHGPVVIHRSAGTGRSSTFSVVHTCL
]		}		VLMEKGDDINIKQVLLNIRKFQMGLI\QTPDQLRFSYMAITEG
		·		AKCVKGDSSIQKRWKELSKE/DLPPAFDHSPNKIMTEKYNR
27	766	84	852	LNRORCGDOVLVPGTGLAAILRTLPMFHDEEHARARGLSEDTL
-	/ 33	3-	332	VLPPASRNORILYTVLECOPLFDSSDMTIAEWVCLAQTIKRHY
	'			EOYHGFVVIHGTDTMAFAASMLSFMLENLQKTVILTGAQVPIH
1	'	•	[ALWSDGRENLLGALLMAGQYVIPEVCLFFQNQLFRGNRATKVD
	1	ļ	1	ARRFAAFCSPNLLPLATVGADITINRELVRKVDGKAGLVVHSS
	ľ	}		MEQDVGLLRLYPGIPAALVRAFLQPPLKGVVMETFGSGNG
	767	992	210	LFRLAPGFLRSLAROGYHOIWAFPFLPSGATATWPAASRSRSL
28	1 /6 /	992	210	AARSLPRSPARPGPNDALLGEHDFRGOGVRAORFRFSEEPGPG
	ł	ł	ł	7 ~
		[l .	ADGAVLEVHVPQIGAGVSLPGILAAKCGAEVILSDSSELPHCL
1	1		1	EVCRQSCQMNNLPHLQVVGLTWGHISWDLLALPPQDIILASDV
				FFEPEDFEDILATIYFLMHKNPKVQLWSTYQVRSADWSLEALL
j	j	1	} '	YKWDMKCVHIPLESFDADKEDIAESTLPGRHTVEMLVISFAKD
				SL
29	768	23	624	SFIYKHTHRARFGPRAIVASPALTAGPHVSLTASCRVGMWVSC
				SPSPFLHPTNTLVAVLERDTLGIREVRLFNAVVRWSEAECQRQ
ì				QLQVTPENRRKVLGKALGLIRFPLMTIEEFAAGNRARAQGLVW
	1	1	-	EGSGTQVGIW/CTEDSAPEFTAESLADAWHIQIGRNLACEDAS
			<u> </u>	T/WAIC*PRPGSVPTVHTARPRLSCLSSCF
30	769	100	2	MASTQDAELAVSRXRAIALXPGXQSXXPSQKKK
31	770	158	1957	LLKSCGVLLSGVCIPCEGKGPTVLVIQTAVPQDRPTKSSMRSA
		1		AKPWNPAIRAGGHGPDRVRPLPAASSGMKSSKSSTSLAFESRL
ł		1	l	SRLKRASSEDTLNKPGSTAASGVVRLKKTATAGAISELTESRL
1			j	RSGTGAFTTTKRTGIPAPREFSVTVSRERSVPRGPSNPRKSVS
1	}	ļ		SPTSSNTPTPTKHLRTPSTKPKQENEGGEK\VRLSPK/FRELL
1	}	1	1	AEAKAKDSEINRLRSELKKYKEKRTLNAEGTDALGPNVDGTSV
1				SPGDTEPMIRALEEKNKNFQKELSDLEEENRVLKEKLIYLEHS
]			PNSEGAASHTGDSSCPTSITQESSFGSPTGNQLSSDIDEYKKN
			1	IHGNALRTSGSSSSDVTKASLSPDASDFEHITAETPSRPLSST
	1			SNPFKSSKCSTAGSSPNSVSELSLASLTEKIQKMEENHHSTAE
				ELQATLQELSDQQQMVQELTAENEKLVDEKTILETSFHQHRER
1				AEQLSQENEKLMNLLQERVKNEEPTTQEGKIIELEQKCTGILE
	1		1	QGRFEREKLLNIQQQLTCSLRKVEEENQGALEMIKRLKEENEK
			Į	LNEFLELERHNNNMAKTLEECRVTLEGLKMENGSLKSHLQG
32	771	203	514	SOMHRLIFVYTLICANFCSCRDTSATPQSASIKALRNANLRRD
1				ESNHLTDLYRRDETIOVKGNGYVOSPRFPNSYPRNLLLTWRLH
	1	1		SOENTRIOLVFDNOFGL
	<u> </u>		<u> </u>	J - z

CEA	CEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ ID	SEQ	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
VCIO	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	ļ	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
İ	Į	acid	acid	\=possible nucleotide insertion)
{	1	residue	residue	, possion necessary
	ĺ	of amino	of amino	·
l		acid	acid	
}	1	sequence	sequence	·
33	772	59	713	PFKKMTDLLRSVVTVIDVFYKYTKQDGECGTLSKGELKELLEK
		ļ	1	ELHPVLKNPDDPDTVDVIMHMLDRDHDRRLDFTEFLLMIFKLT
ļ	1			MACNKVLSKEYCKASGSKKHRRGHRHQEEESETEEDEEDTPGH
ĺ	1		[KSGYRHSSWSEGEEHGYSSGHSRGTVKCRHGSNSRRLGRQGNL
İ			ĺ	SSSGNOEGSOKRYHRSSCGHSWSGGKDRHGSSSVELRERINKS
				HIK
34	773	209	601	VPKISGPDHIDFIPWDQLFMASSSSVTEFLVLGFSSLGELQLV
1 3 4	1 ' ' 3	203	""	LFAVFLCLYLIILSGNIIIISVIHLDHSLHTPMYFFLGILSIS
ļ				EIFYTTVILPKMLINLFSVFRTLSFVSCATOMFYEIVGPGTOE
	1]	R
<u> </u>	774	373	987	DHSTETPGIPAAEPVSHGTGKLERAPTLPAGAELPAPAAVPCP
35	7/4	3/3	987	TL*VC/LYPOLLGLSVATMVTLTYFGAHFAVIRRASLEKNPYO
1	1		ļ	
ł	l	1	l	AVHQWGTQQRLIQHPESGSEGQSLLGPLRAFSAGLSLVGLLTL
l	ł	1		GAVLSAAATVREAQGLMAGGFLCFSLAFCAQVQVVFWRLHSPT
L		<u> </u>		QVEDAMLDTYDLVYEQAMKGTSHVRRQELAAIQ
36	775	102	466	QPGYSEYDKNRGQGMLLNMMCGRQLSAISLCLAVTFAPLFNAQ
				ADEPEVIPGDSPVAVSEQGEALPQAQATAIMAGIQPLPEGAAE
1				KARTQIESQLPAGYKPVYLNQLQLLYAARGISCSV
37	776	2	430	RTRAADVYVFSLTGKSRNVSSSTVRRSAVGGMSALALFDLLKP
1	ľ	l	İ	NYALATQVEFTDPEIVAEYITYPSPNGHGEVRGYLVKPAKMSG
ļ		1	1	KTPAVVVVHENRGLNPYIEDVARRVAKAGYIALAPDGLSSVGG
			ļ	YPGNDIKVVSAAA
38	777	106	556	VKQRHGNSLLTTETKCISCRLGVPLSPQRRFQAIRIEEVKLRW
				FAFLIVLLAGCSSKHDYTNPPWNAKVPVQRAMQWMPISQKAGA
		1	ì	AWGVDPQLITAIIAIESGGNPNAVSKSNAIGLMQLKASTSGRD
i		1		VYRRMGWSGEPTTSELKNSSR
39	778	3	892	HAAGIRHEAKPKRSFYAARDLYKYRHQYPNFKDIRYQNDLSNL
	1	-	1	RFYKNKIPFKPDGVYIEEVLSKWKGDYEKLEHNHTYIQWLFPL
1			}	REOGLNFYAKELTTYEIEEFKKTKEAIRRFLLAYKMMLEFFGI
	1	}		KLTDKTGNVARAVNWOERFOHLNESOHNYLRITRILKSLGELG
			1.	YESFKSPLVKFILHEALVENTIPNIKQSALEYFVYTIRDRRER
		1	1	RKLLRFAOKHYTPSENFIWGPPRKEOSEGSKAOKMSSPLASSH
1				NSQTSMHKKAKDSKNSSSAVHLNSKTAEDKKVAPKEPV
100	1	1222	1305	
40	779	123	395	ELQVFQPIGGMSDSGSQLGSMGSLTMKSQLQITVISAKLKENK
	1			KNWFGPSPYVEVTVDGQSKKTEKCNNTNSPKWKQPLTVIVTPV
	<u> </u>	1		SKLH
41	780	173	438	IETLSFVIRNWNTHAMSKPIVMERGVKYRDADKMALIPVKNVA
				TEREALLRKPEWMKIKLPADSTRIQGIKAAMRKNGLHSVCEEA
			i .	SC
42	781	287	393	PRMVLGKPQTDPTLEWFLSHCHIHKYPSKSTLIPQ
43	782	119	556	GLRISVQERIKACFTESIQTQIAAAEALPDAISRAAMTLVQSL
1		}		LNGNKILCCGNGTSAANAQHFAASMINRFETERPSLPAIALNT
]	1			DNVVLTAIANDRLHDEVYAKQVRALGHAGDVLLAISTRGNSRD
		1		IVKAVEAAVTRDTTIV
L			<u> </u>	

050	CEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ	beginning	end	Allitto acid segment containing signal popular (1-1 manne,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
i '	ļ	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	[acid	acid	\=possible nucleotide insertion)
i	l	residue	residue	1=possible nucleotide insertion/
1	1	of amino	of amino	
j	}	acid	acid	
		sequence	sequence	
44	783	248	554	KOTOHAPGMMKKYLALALIAPLLISCSTTKKGDTYNEAWVKDT
44	'83	240	334	NGFDILMGQFAHNIENIWGFKEVVIAGPKDYVKYTDQYQTRSH
			l '	INFDDGTITIEPIPGT
<u> </u>				TDRTALNPGOESAMNRLFSGRSDMPFALLLLAPSLLLLGGLVA
45	784	77	311	WPMVSNIEISFLRLPLNPNIESTFVGVSNYVRILS
L			<u> </u>	
46	785	184	627	KELVDEKSERGRAMDPVSQLASAGTFRVLKEPLAFLRALELLF
1			}	AIFAFATCGGYSGGLRLSVDCVNKTESNLSIDIAFAYPFRLHQ
['				VTFEVPTCEGKERQKLALIGDSSSSAEFFVTVAVFAFLYSLAA
		1	<u> </u>	TGRYIFFHNKNRENNRGPL
47	786	3	742	LGTVSYGADTMDEIQSHVRDSYSQMQSQAGGNNTGSTPLRKAQ
	1		1	SSAPKVRKSVSSRIHEAVKAIVLCHNVTPVYESRAGVTEETEF
ļ.	1		1	AEADQDFSDENRTYQASSPDEVALVQWTESVGLTLVSRDLTSM
	1	Į	Ì	QLKTPSGQVLSFCILQLFPFTSESKRMGVIVRDESTABITFYM
1	Į.	l	l	KGADVAMSPIVQYNDWLEEECGNMAREGLRTLVVAKKALTEEQ
l	1	1	1	YQDFEVSRLPGIPSSYDGAFLTLKLVLPVFV
48	787	864	335	EGPHR\RLFQMVKA/LQEAPEDPNQILIGYSRGLVVIWDLQGS
1.	1			RVLYHFLSSQQLENIWWQRDGRLLVSCHSDGSYCQW\PVSSEA
l l				QQPEPLRSLVPYGPFPCKAITRILWLTTRQGLPFTIFQGGMPR
		1		ASYGDRHCISVIHDGQQTAFDFTSRVIGFTVLTEADPAASRRA
1		ļ	1	SGVGAQG
10	788	410	951	KOGLEVRDLHFKEITSGRALLRVACKRPSMVPGGQLQRAGAGA
49	/08	1 410	331	OARITGLSPALWGARVHGWIPELPAGLPPGACLWPLIPACPSR
1		1		HWGWVSAPVKG/WAQAILGLALCL/RGEHRGLGAGVSKVRSLK
1				MDRKVWTETLIEVGMPLLATDTWGLPHSTAVWVSQPPPYLSDH
1			1	
		<u> </u>	125	STLELERDPL
50	789	1	437	LSCNSEQALLSLVPVQRELLRRRYQSSPAKPDSSFYKGLGTCP
		1		SQLRLSEPPPTPRHLSVASVSHHMFPSHRSLCPHLPDFFAAPF
	1	İ	İ	PSDNLPYTLQSPFPSPPPATPSDHALILHH\DLNGGPDDPLQQ
	1_			TGQLFGGLVRDIRRRYP
51	790	1	198	SPSSKLVGMWWAGRAGSSRTTSVSLLCLP/SAPFGASNLLVNP
-	1			LEPQNADKIKIKIADLGNACWVV
52	791	3	435 .	RVDPRVRAPRCGDKIKNHMY\KCDCGSLKDCASDRCCETSCTL
				SLGSVCNTGLCCHKCKYAAPGVVCRDLGGICDLPEYCDGKKEE
1			1	CPNDIYIQDGTPCSAVSVCIRGNCSDRDMQCQALFGYQVKDGS
1	1			PACYRKLNRIGNRFGT
53	792	1	728	PGRPTRPDASLAQ/DPRTTMFRIPEFKWSPMHQRLLTDLLFAL
"	1	-		ETDVHVWRS\HSTKSVMDFVNSNENIIFVHNTIHLISQMVDNI
1	·.		1	IIACGGILPLLSAATSPTGSKTELENIEVTQGMSAETAVTFLS
1	1	}		RLMAMVDVLVFASSLNFSEIEAEKNMSSGGLMRQCLKLVCCVA
1	1		1	VRNCLECRQRQRDRGNKSSHGSSKPQEVPQSVTATAASKTPLE
1	1		1	NVPGNLSPIKDPDRLLODVDINRLRAVVF
			<u> </u>	MAT OUTDE TUDE DUTHEN AD THERMOMA AT

SEQ ID NO: Of Nucleic Acids No: of Amino Acids No: of Amino Acids No: of Acids No: o	tion,
NO: of Nucleic Acids of Amino Acids of Sponding to first amino acid residue of amino acid sequence of Amino Acids of Amino Acids of Amino Acids of Amino Acids of Amino acid residue of Amino acid residue of Amino acid sequence of Amino acid sequence of Amino Acids of Amino acid residue of Amino acid sequence of Amino aci	tion,
location of Amino Acids	tion,
Nucleic Acids Amino Acids Acid Acids Acid Acid Acid Acid Acid Acid Acid Acid	tion,
Acids Acids sponding to first amino acid acid residue of amino acid acid sequence sequence sequence sequence sequence acid sequence sequen	GAA
to first amino amino acid residue of amino acid residue of amino acid sequence sequence sequence 54 793 2230 990 NSSGVKLLQALGLSPGNGKDHSILHSRNDLEEAFIHFMGI AERFFSDKETFHDIAQVASEFPGAQHYVGGNAALIGQKFJDLKVLLCGPVGPKLHEILDDNVFPPESLQEVVDEFHLILI GEEWGQLKAPHANRFIFSHDLSNGAMNMLEVFVSSLEEFG GGLSGLHMMEGQSKELQRKRLLEVVTSISDIPTGIPV\HI \SMTNRELMSSIV\LQQVFPAVTSLGLNEQELLFLTQSAS SSLSSWNGVPDVGMVSDILFWILKEHGRSKSRASDLTRII LVYHILATVDGHWANQLAAVAAGARVAGTQACATETIDTI LRAPQEFMTSHSEAGSRIVLNPNKPVVEWHREGISFHFTI CKDPIRTVGLGDAISAEGLFYSEVHPHY 55 794 249 3 DDSSGWGLEQLVVRWSLALWPRLECSGMISAHCNLCL/IA SPASAPRVAGITDVCHHAWLVFVFLVVMGFPHVGHVGLES APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARR. APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARR. APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARR. DSLEVTASLAKALRPTKI IFLNNTGGLRDSSHKVLSNVNI LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAAS TELFSNKGSGTLFRNAERMLRVRSLDKLDQGRLVDLVNAK KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTPFVVSSSRQGQGSGGMLWECLRRDLQTLFWRSRVTNPINPINFULSGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFH	GAA
acid residue of amino acid sequence sequence 54 793 2230 990 NSSGVKLLQALGLSPGNGKDHSILHSRNDLEEAFIHFMGI AERFFSDKETFHDIAQVASEFPGAQHYVGGNAALIGQKF/DLKVLLCGPVGPKLHELLDDNVFVPPESLQEVDEFHLILI GEEWGQLKAPHANRFIPSHDLSNGAMNMLEVFVSSLEEFG GGLSGLHMMEGQSKELQKKRLLEVVTSISDIPTGIPV\HI \SMTNRELMSSIV\LQQVFPAVTSLGLNEQELLFLTQSASSSLSSWNGVPDVGMVSDILFWILKEHGRSKSRASDLTRII LVYHILATVDGHWANQLAAVAAGARVAGTQACATETIDT: LRAPQEFMTSHSEAGSRIVLNPNKPVVEWHREGISFHFTI CKDPIRTVGLGDALSAEGLFYSEVHPHY 55 794 249 3 DDSSGWGLEQLVVRWSLALWPRLECSGMISAHCNLCL/LG SPASAPRVAGITDVCHHAWLVFVFLVVMGFPHVGHVGLEI LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLR. APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARR: DSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVN LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAA. TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNAK KLRDDYLASLRPRLHSIYVSEGYNAAALLTMEPVLGGTPFVVSSSRQQGGGOMLWECLRRDLQTLFWRSRVTNPINPINFHSGGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFH	GAA
residue of amino acid sequence sequence 54 793 2230 990 NSSGVKLLQALGLSPGNGKDHSILHSRNDLEEAFIHFMGI AERFFSDKETFHDIAQVASEFPGAQHYVGGNAALIGQKFJ DLKVLLCGPVGPKLHELLDDNVFVPPESLQEVDEFHLILI GEEWGQLKAPHANRFIFSHDLSNGAMNMLEVFVSSLEEFY GGLSGHMMEGQSKELQRKRLLEVVTSISDIPTGIPV\HI \SMTNRELMSSIV\LQQVFPAVTSLGLNEQELLFLTQSAS SSLSSWNGVPDVGMVSDILFWILKEHGRSKSRASDLTRII LVYHILATVDGHWANQLAAVAAGARVAGTQACATETIDT: LRAPQEFMTSHSEAGSRIVLNPNKPVVEWHREGISFHFTT CKDPIRTVGLGDAISAEGLFYSEVHPHY 55 794 249 3 DDSSGWCLEQLVVRWSLALWPRLECSGMISAHCNLCL/LG SPASAPRVAGITDVCHHAWLVFVFLVVMGFPPHVGHVGLES LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLR APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARR: DSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVN LDLVCNAEWVSTKERQQMRLIVDVVLSRLPHHSSAVITAA: TELFSNKGSGTLFKNAERMLRVRSLDKLDGGRLVDLVNAEKRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTPFVVSSSRQGGGGGGMLWECLRRDLQTLFWRSRVTNPINPFHSGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFHEDDGS	
of amino acid sequence 54 793 2230 990 NSSGVKLLQALGLSPGNGKDHSILHSRNDLEEAFIHFMGI AERFFSDKETFHDIAQVASEFPGAQHYVGGNAALIGQKFJ DLKVLLCGPVGPKHELLDDNVFVPPESLQEVDEFHLILL GEEWGQLKAPHANRFIFSHDLSNGAMNMLEVFVSSLEEFY GGLSGLHMMEGQSKELQRKRLLEVVTSISDIPTGIPV\HI \SMTNRELMSSIV\LQQVFPAVTSLGLNEQELLFLTQSASSLSSWNGVPDVGMVSDILFWILKEHGRSKSRASDLTRII LVYHILATVDGHWANQLAAVAAGARVAGTQACATETIDTI LRAPQEFMTSHSEAGSRIVLNPNKPVVEWHREGISFHFTI CKDPIRTVGLGDAISAEGLFYSEVHPHY 55 794 249 3 DDSSGWGLEQLVVRWSLALWPRLECSGMISAHCNLCL/LG SPASAPRVAGITDVCHHAWLVFVFLVVMGFFHVGHVGLEI LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLRAPHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARRIDSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVN LDLVCNAEWVSTKERQQMRLIVVDLSRLPHHSSAVITAASTELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVVDLVNAEKLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTFFVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINPHSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFHEDPGS	
acid sequence 54 793 2230 990 NSSGVKLLQALGLSPGNGKDHSILHSRNDLEEAFIHFMGI AERFFSDKETFHDIAQVASEFPGAQHYVGGNAALIGQKFJ DLKVLLCGPVGPKLHELLDDNVFVPPESLQEVDEFHLILD GEEWGQLKAPHANRFIFSHDLSNGAMNMLEVFVSSLEEFG GGLSGLHMMEGQSKELQRKRLLEVVTSISDIPTGIPV\HI \SmTnreLmssiv\LQQVFPAVTSLGLNEQELLFLTQSAS SSLSSWNGVPDVGMVSDILFWILKEHGRSKSRASDLTRII LVYHILATVDGHWANQLAAVAAGARVAGTQACATETIDT: LRAPQEFMTSHSEAGSRIVLNPNKPVVEWHREGISFHFTI CKDPIRTVGLGDAISAEGLFYSEVHPHY 55 794 249 3 DDSSGWGLEQLVVRWSLALWPRLECSGMISAHCNLCL/LG SPASAPRVAGITDVCHHAWLVFVFLVVMGFPHVGHVGLEI LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLR APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARRI DSLEVTASLAKALRPTKIIFLNTTGGLRDSSHKVLSNVNI LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAAS TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNAS KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTPFVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINPHSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFHIDPGS	
sequence sequence 54 793 2230 990 NSSGVKLLQALGLSPGNGKDHSILHSRNDLEEAFIHFMGI AERFFSDKETFHDIAQVASEFPGAQHYVGGNAALIGQKFI DLKVLLCGPVGPKLHELLDDNVFVPPESLQEVDEFHLILI GEEWGQLKAPHANRFIFSHDLSNGAMMMLEVFVSSLEEFY GGLSGLHMMEGQSKELQRKKLLEVVTSISDIPTGIPVH \smtnrelmssiv\lqqvfpavtslglneqellfltqsas SSLSSWNGVPDVGMVSDILFWILKEHGRSKSRASDLTRII LVYHILATVDGHWANQLAAVAAGARVAGTQACATETIDTS LRAPQEFMTSHSEAGSRIVLNPNKPVVEWHREGISFHFTI CKDPIRTVGLGDAISAEGLFYSEVHPHY 55 794 249 3 DDSSGWGLEQLVVRWSLALWPRLECSGMISAHCNLCL/LG SPASAPRVAGITDVCHHAWLVFVFLVVMGFPHVGHVGLEI 56 795 2 1176 LGEVLKCQQGVSSLAFALAFLQRMDMKPLVVLGLPAPTAI LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLR APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARN DSLEVTASLAKALRPTKIIFLNNTTGGLRDSSHKVLSNVNI LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAAL TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNAL KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTP FVVSSSRQGQGSQMLWECLRRDLQTLFWRSRVTNPINPI HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFHI DPGS	
793 2230 990 NSSGVKLLQALGLSPGNGKDHSILHSRNDLEEAFIHFMGI AERFFSDKETFHDIAQVASEFPGAQHYVGGNAALIGQKFJ DLKVLLCGPVGPKLHELLDDNVFVPPESLQEVDEFHLILI GEEWGQLKAPHANRFIFSHDLSNGAMMMLEVFVSSLEEFG GGLSGLHMMEGQSKELQRKRLLEVVTSISDIPTGIPV\HI \SMTNRELMSSIV\LQQVFPAVTSLGLNEQELLFLTQSAS SSLSSWNGVPPVGMVSDILFWILKEHGRSKSRASDLTRI LVYHILATVDGHWANQLAAVAAGARVAGTQACATETIDTS LRAPQEFMTSHSEAGSRIVLNNPNKPVVEWHREGISFHFTS CKDPIRTVGLGDAISAEGLFYSEVHPHY DDSSGWGLEQLVVRWSLALWPRLECSGMISAHCNLCL/LG SPASAPRVAGITDVCHHAWLVFVFLVVMGFPHVGHVGLES 16 795 2 1176 LGEVLKCQQGVSSLAFALAFLQRMDMKPLVVLGLPAPTAS LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLR APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARRS DSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVN LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAAS TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNAS KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTP FVVSSSRQGGGSGQMLWECLRRDLQTLFWRSRVTNPINPU HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFH	
AERFFSDKETFHDIAQVASEFPGAQHYVGGNAALIGQKFJ DLKVLLCGPVGPKLHELLDDNVFVPPESLQEVDEFHLILI GEEWGQLKAPHANRFIFSHDLSNGAMNMLEVFVSSLEEFG GGLSGLHMMEGQSKELQRKRLLEVVTSISDIPTGIPV\HI \SMTNRELMSSIV\LQQVFPAVTSLGLNEQELLFLTQSAS SSLSSWNGVPDVGMVSDILFWILKEHGRSKSRASDLTRII LVYHILATVDGHWANQLAAVAAGARVAGTQACATETIDTS LRAPQEFMTSHSEAGSRIVLNPNKPVVEWHREGISFHFTI CKDPIRTVGLGDAISAEGLFYSEVHPHY DDSSGWGLEQLVVRWSLALWPRLECSGMISAHCNLCL/LG SPASAPRVAGITDVCHHAWLVFVFLVVMGFPHVGHVGLEI LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLR APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARRS DSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVN LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAA TELFSNKGSGTLFRNAERMLRVRSLDKLDQGRLVDLVNAS KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTP FVVSSSRQGGGSGQMLWECLRRDLQTLFWRSRVTNPINPI HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFH	
DLKVLLCGPVGPKLHELLDDNVFVPPESLQEVDEFHLILI GEEWGQLKAPHANRFIFSHDLSNGAMNMLEVFVSSLEEF(GGLSGLHMMEGQSKELQRKRLLEVVTSISDIPTGIPV\HI \SMTNRELMSSIV\LQQVFPAVTSLGLNEQELLFLTQSAS SSLSSWNGVPDVGMVSDILFWILKEHGRSKSRASDLTRII LVYHILATVDGHWANQLAAVAAGARVAGTQACATETIDT: LRAPQEFMTSHSEAGSRIVLNPNKPVVEWHREGISFHFT: CKDPIRTVGLGDAISAEGLFYSEVHPHY 55 794 249 3 DDSSGWGLEQLVVRWSLALWPRLECSGMISAHCNLCL/LG SPASAPRVAGITDVCHHAWLVFVFLVVMGFPHVGHVGLES 56 795 2 1176 LGEVLKCQQGVSSLAFALAFLQRMDMKPLVVLGLPAPTAI LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLRI APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARR: DSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVNI LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAAS TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNAS KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTP FVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINPI HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFHI DPGS	PMA.
GEEWGQLKAPHANRFIFSHDLSNGAMNMLEVFVSSLEEFG GGLSGLHMMEGQSKELQRKRLLEVVTSISDIPTGIPV\HI \SMTNRELMSSIV\LQQVFPAVTSLGLNEQELLFLTQSAS SSLSSWNGVPDVGMVSDILFWILKEHGRSKSRASDLTRII LVYHILATVDGHWANQLAAVAAGARVAGTQACATETIDTS LRAPQEFMTSHSEAGSRIVLNPNKPVVEWHREGISFHFTS CKDPIRTVGLGDAISAEGLFYSEVHPHY 55 794 249 3 DDSSGWGLEQLVVRWSLALWPRLECSGMISAHCNLCL/LG SPASAPRVAGITDVCHHAWLVFVFLVVMGFPHVGHVGLES 56 795 2 1176 LGEVLKCQQGVSSLAFALAFLQRMDMKPLVVLGLPAPTA LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLR APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARRS DSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVN LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAAS TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNAS KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTP FVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINP HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFH	
GGLSGLHMMEGQSKELQRKRLLEVVTSISDIPTGIPV\Hi \SMTNRELMSSIV\LQQVFPAVTSLGLNEQELLFLTQSAS SSLSSWNGVPDVGMVSDILFWILKEHGRSKSRASDLTRII LVYHILATVDGHWANQLAAVAAGARVAGTQACATETIDTS LRAPQEFMTSHSEAGSRIVLNPNKPVVEWHREGISFHFTS CKDPIRTVGLGDAISAEGLFYSEVHPHY 55 794 249 3 DDSSGWGLEQLVVRWSLALWPRLECSGMISAHCNLCL/LG SPASAPRVAGITDVCHHAWLVFVFLVVMGFPHVGHVGLES 56 795 2 1176 LGEVLKCQQGVSSLAFALAFLQRMDMKPLVVLGLPAPTAS LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLRS APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARRS DSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVM LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAAS TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNAS KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTP FVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINPS HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFHS DPGS	
\SMTNRELMSSIV\LQQVFPAVTSLGLNEQELLFLTQSAS SSLSSWNGVPDVGMVSDILFWILKEHGRSKSRASDLTRIS LVYHILATVDGHWANQLAAVAAGARVAGTQACATETIDTS LRAPQEFMTSHSEAGSRIVLNPNKPVVEWHREGISFHFTS CKDPIRTVGLGDAISAEGLFYSEVHPHY 55 794 249 3 DDSSGWGLEQLVVRWSLALWPRLECSGMISAHCNLCL/LG SPASAPRVAGITDVCHHAWLVFVFLVVMGFPHVGHVGLES 56 795 2 1176 LGEVLKCQQGVSSLAFALAFLQRMDMKPLVVLGLPAPTAS LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLRS APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARRS DSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVNS LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAAS TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNAS KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTP FVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINPS HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFHS DPGS	
SSLSSWNGVPDVGMVSDILFWILKEHGRSKSRASDLTRID LVYHILATVDGHWANQLAAVAAGARVAGTQACATETIDTS LRAPQEFMTSHSEAGSRIVLNPNKPVVEWHREGISFHFTS CKDPIRTVGLGDAISAEGLFYSEVHPHY DDSSGWGLEQLVVRWSLALWPRLECSGMISAHCNLCL/LG SPASAPRVAGITDVCHHAWLVFVFLVVMGFPHVGHVGLES LGEVLKCQQGVSSLAFALAFLQRMDMKPLVVLGLPAPTA LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLR APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARRS DSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVN LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAAS TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNAS KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTP FVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINP HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFHS DPGS	
LVYHILATVDGHWANQLAAVAAGARVAGTQACATETIDTS LRAPQEFMTSHSEAGSRIVLNPNKPVVEWHREGISFHFTS CKDPIRTVGLGDAISAEGLFYSEVHPHY 55 794 249 3 DDSSGWGLEQLVVRWSLALWPRLECSGMISAHCNLCL/LG SPASAPRVAGITDVCHHAWLVFVFLVVMGFPHVGHVGLES 56 795 2 1176 LGEVLKCQQGVSSLAFALAFLQRMDMKPLVVLGLPAPTAI LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLRI APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARRI DSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVNI LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAAI TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNAI KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTP FVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINPI HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFHI DPGS	
LRAPQEFMTSHSEAGSRIVLNPNKPVVEWHREGISFHFTT CKDPIRTVGLGDAISAEGLFYSEVHPHY 55 794 249 3 DDSSGWGLEQLVVRWSLALWPRLECSGMISAHCNLCL/LG SPASAPRVAGITDVCHHAWLVFVFLVVMGFPHVGHVGLEI 56 795 2 1176 LGEVLKCQQGVSSLAFALAFLQRMDMKPLVVLGLPAPTAI LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLRA APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARRI DSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVNI LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAAI TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNAI KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTP FVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINPI HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFHI DPGS	
CKDPIRTVGLGDAISAEGLFYSEVHPHY 55 794 249 3 DDSSGWGLEQLVVRWSLALWPRLECSGMISAHCNLCL/LG SPASAPRVAGITDVCHHAWLVFVFLVVMGFPHVGHVGLEI 56 795 2 1176 LGEVLKCQQGVSSLAFALAFLQRMDMKPLVVLGLPAPTAI LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLRA APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARRI DSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVN LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAAI TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNAI KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTP FVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINPI HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFHI DPGS	
55 794 249 3 DDSSGWGLEQLVVRWSLALWPRLECSGMISAHCNLCL/LOUS SPASAPRVAGITDVCHHAWLVFVFLVVMGFPHVGHVGLES 56 795 2 1176 LGEVLKCQQGVSSLAFALAFLQRMDMKPLVVLGLPAPTA LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLRA APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARRID DSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVN LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAA TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNA KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTPFVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINPHSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFHDDPGS	
SPASAPRVAGITDVCHHAWLVFVFLVVMGFPHVGHVGLE 56 795 2 1176 LGEVLKCQQGVSSLAFALAFLQRMDMKPLVVLGLPAPTAI LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLR. APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARR: DSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVNL LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAA: TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNA: KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTP: FVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINP! HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFH: DPGS	SSD
LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLR. APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARR. DSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVN. LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAA. TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNA. KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTP. FVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINPI HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFH. DPGS	
LSFWEAKAQLAKSCKVLVDALRHNAAAAVPFFGGGSVLR. APHASYGGIVSVETDLLQWCLESGSIPILCPIGETAARR. DSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVN. LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAA. TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNA. KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTP. FVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINPI HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFH. DPGS	SGC
DSLEVTASLAKALRPTKIIFLNNTGGLRDSSHKVLSNVNI LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAA: TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNA: KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTP: FVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINP! HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFH: DPGS	
LDLVCNAEWVSTKERQQMRLIVDVLSRLPHHSSAVITAA: TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNA: KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTP: FVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINPI HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFH: DPGS	VLL
TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNA: KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTP FVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINP HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFH: DPGS	PAD
KLRDDYLASLRPRLHSIYVSEGYNAAAILTMEPVLGGTP FVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINP HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFH	TLL
FVVSSSRQGQGSGQMLWECLRRDLQTLFWRSRVTNPINPI HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFH DPGS	FGK
HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFH DPGS	LDK
DPGS	
	CPAS
57 796 755 374 YHAPALOPGOOSKTLSOEKKNEERPGAVAHTCNPSTLGG	
15, 1,50 1,55 15,4 I IIIII ME OX SECULD SECULD IN CONTROL OF THE C	GGR
ITRSGDRDHPG*HGETPSLLKIQKKLAGRDGGRL*SQLL	
QENGVNPGGGGCSEPRLRHCTPAW*QSETISRKKRKKER	
58 797 2 476 FRPIGIIRQALCSADGHQRRILTLRLGLLVIPFLPASNL	
GFVVPSVGCCVMLLFGFG/ALRKHTEKKKLIAAVVLGIL	
DAERLRCAVRGGEWRSE/EAVFRGAVSVCPLSAEVRCNIC	RNL
AAKGNQTGAIRYHREAVSLNPKTKSSTREFRPC	
59 798 3 711 KIADFGFSNLFTPGQLLKTWCGSPPYAAPELFEGKEYDG	KVD
IWSLGVVLYVLVCGALPFDGSTLQNLRARVLSGKFRIPF	
ECEHLIRHMLVLDPNKRLSMEQICKHKWMKLGDADPNFD	
ECQQLKEERQVDPLNEDVLLAMEDMGLDKEQTLQSLRSD	RLIA
YSAIYSLLCDRHKRHKTLRLGALPSMPRALGLSSTSQYP	ALLA AYDH
AGTAMNISVPQVQLINPENQIV	ALLA AYDH
60 799 2 344 AREFLGHRASITWS*ARVHHRFPKAEVA*P/SLLRTDLT	RLIA AYDH AEQ
KCCHGDLLECADDRADLVEDIWENQDSISTILIECCEKP	RLIA AYDH AEQ EDRT
SHCIAEVENDEMPADLPSLAADFVESKDV	RLIA AYDH AEQ EDRT

CCO	CCO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ	beginning	end	
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	1	anno	acid	
	İ	*	residue	\=possible nucleotide insertion)
]	i	residue		
İ		of amino	of amino	
i		acid	acid	
		sequence	sequence	THE PROPERTY WAS DOWNED BY GOOD THEY GOOD WAS AND ORDER
61	800	142	594	VPPKMKRGTSLHSRRGKPEAPKGSPQINRKSGQEMTAVMQSGR
l		ļ		PRSSSTTDAPTGSAMMEIACAAAAAAAACLPGEEGTAERIERL
ļ	1	1		EVSSLAQTSSAVASSTDGSIHTDSVDGTPDPQRTKAAIAHLQQ
{	l	ł		KILKLTEQIKIAQTARRNRRPGS*KDCTP*KCLRKSDEALNRV
]	ļ	Ì		LQQI\RVPPKMKRGTSLHSRRGKPEAPKGSPQINRKSGQEMTA
i	1	ì		VMQSGRPRSSSTTDAPTGSAMMEIACAAAAAAAACLPGEEGTA
1	1	1		ERIERLEVSSLAQTSSAVASSTDGSIHTDSVDGTPDPQRTKAA
ł	ł	i		IAHLOOKILKLTEQIKIAQTARRNRRPG
62	801	232	1299	MQTIERLVKERDDLMSALVSVRSSLADTQQREASAYEQVKQVL
""	001	232	****	QISEEANFEKTKALIQCDQLRKELERQAERLEKELASQQEKRA
			1.	IEKDMMKKEITKEREYMGSKMLILSQNIAQLEAQVEKVTKEKI
	1	į.	İ	SAINQLEEIQSQLASREMDVTKVCGEMRYQLNKTNMEKDEAEK
l	1	ł		1
l			1	EHREFRAKTNRDLEIKDQEIEKLRIELDESKQHLEQEQQKAAL
		ļ	1	AREECLRLTELLGESEHQLHLTRQEKDSIQQSFSKEAKAQALQ
{		•	ĺ	AQQREQELTQKIQQMEAQHDKTENEQYLLLTSQNTFLTKLKEE
1		{	ł	CCTLAKKLEQISQKTRSEIAQLSQEKRYTYDKLGKLQRRNEEL
				EEQCVQHGRST*
63	802	3	334	SYPVWWNSPLTAEVPPELLAAAGFFHTGHQDKVRCFFCYGGLQ
			1	SWKRGDDPWTEHAKWFPSCQFLLRSKGRDFVHSVQETHSQLLG
	1	\ .		SWDPWEEPEDAAPVAPSVPASGYPELPTPRREVQSESAQEPGG
1	i	1	ł	VSPAEAQRAWWVLEPPGARDVEAQLRRLQEERTCKVCLDRAVS
1		J	ļ	IVFVPCGHLVC\AECAPGLQLCPI\CRSPCGPLRPCLWVP
64	803	70	456	MCSYREKKAEPOELLOLDGYTVDYTDPOPGLEGGRAFFNAVKE
1 -		1	1	GDTVIFASDDEQDRILWVQAMYRATGQSHKPVPPTQVQKLNAK
1	1 .	1	1	GGNVPOLDAPISOFYADRAOKHGMDEFISSNPCNFDHASLFEM
1	1	i		+
-	1001	 	1376	
65	804	2	13/6	KQLIVLGNKVDLLPQDAPGYRQRLRERLWEDCARAGLLLAPGH
1	1	1	Ī	QGPQRPVKDEPQDGENPNPPNWSRTVVRDVRLISAKTGYGVEE
1	}	1	}	LISALQRSWRYRGDVYLVGATNAGKSTLFNTLLESDYCTAKGS
]	}	1]	EAIDRATISPWPGTTLNLLKFPICNPTPYRMFKRHQRLKKDST
1]	1	Ì	QAEEDLSEQEQNQLNVLKKHGYVVGRVGRTFLYSEEQKDNIPF
1	1	1	ł	EFDADSLAFDMENDPVMGTHKSTKQVELTAQDVKDAHWFYDTP
1	1	ł	ł	GITKENCILNLLTEKEVNIVLPTQSIVPRTFVLKPGMVLFLGA
	1	1	1	IGRIDFLQGNQSAWFTVVASNILPVHITSLDRADALYQKHAGH
	1	1	1	TLLOIPMGGKERMAGFPPLVAEDIMLKEGLGASEAVADIKFSS
1	1]	AGWVSVTPNFKDRLHLRGYTPEGTVLTVRPPLLPYIVNIKGOR
1				IKKSVAYKTKKPPSLMYNVRKKKGKINV
-	1005	 	874	STVASMMHRQETVECLRKFNARRKLKGAILTTMLVSRNFSAAK
66	805	1	8/4	
				SLLNKKSDGGVKPQSNNKNSLVSPAQEPAPLQTAMEPQTTVVH
1			1	NATDGIKGSTESCNTTTEDEDLKAAPLRTGNGSSVPEGRSSRD
	1		1	RTAPSAGMQPQPSLCSSAMRKQEIIKITEQLIEAINNGDFEAY
				TKICDPGLTSFEPEALGNLVEGMDFHKFYFENLLSKNSKPIHT
	1			TILNPHVHVIGEDAACIAYIRLTQYIDGQGRPSNPAKSEE\TR
1	1			VWH\RR\DGKWLNVHYHCSGAPCPHRCSELSHRGF
1	. 1	_t		

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID ID	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of ·	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding	
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino acid	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
i e	Ì	acid residue	residue	\=possible nucleotide insertion)
ļ	}	of amino	of amino	
ļ	ļ	acid	acid	
	Į	sequence	sequence	
67	806	3	1714	LPKNVVFVLDSSASMVGTKLRQTKDALFTILHDLRPQDRFSII
				GFSNRIKVWKDHLISVTPDSIRDGKVYIHHMSPTGGTDINGAL
				QRAIRLLNKYVAHSGIGDRRVSLIVFLTDGKPTVGETHTLKIL
]			1	NNTREAARGQVCIFTIGIGNDVDFRLLEKLSLENCGLTRRVHE
j	ļ	ļ)	EEDAGSQLIGFYDEIRTPLLSDIRIDYPPSSVVQATKTLFPNY
		ļ		FNGSEIIIAGKLVDRKLDHLHVEVTASNSKKFIILKTDVPVRP
i .			[QKAGKDVTGSPRPGGDGEGDTNHIERLWSYLTTKELLSSWLQS
į	•		[DDEPEKERLRQRAQALAVSYRFLTPFTSMKLRGPVPRMDGLEE
	Ì			AHGMSAAMGPEPVVQSVRGAGTQPGPLLKKPYQPRIKISKTSV
ŀ	}	ì	ì	DGDPHFVVDFPLSRLTVCFNIDGQPGDILRLVSDHRDSGVTVN
1	}	ł	}	GELIGAPAPPNGHKKQRTYLRTITILINKPERSYLEITPSRVI
]	}	} .	}	LDGGDRLVLPCNQSVVVGSWGLEVSVSANANVTVTIQGSIAFV
	1	1	ļ	ILIHLYKKPAPFQRHHLGFYIANSEGLSSNCRVFCESGILIQE
ļ	Ì			LTQQSVAVAGR
68	807	2	841	FFLEQVSQYTFAMCSYREKKSEPQELMQLEGYTVDYTDPHPGL
l	ł	l	1	QGGCMFFNAVKEGDTVIFASDDEQDRILWVQAMYRATGQSYKP
		ł	ļ !	VPAIQTQKLNPKGGTLHADAQLYADRFQKHGMDEFISANPCKL
į	ł	l	1	DHAFLFRILQRQTLDHRLNDSYSCLGWFSPGQVFVLDEYCARY
	1	İ	İ	GVRGCHRHLCYLAELMEHSENGAVIDPTLLHYSFAFCAS\HVH
ì				GNRPDGIGTVSVEEKERFEEIKERLSSLLENQISHFRYCFPFG
		<u> </u>	L	RPEGALKATLSLLERVLMKDIA
69	808	2	757	DGLLHEVLNGLLDRPDWEEAVKMPVGILPCGSGNALAGAVNQH
ł	1	İ		GGFEPALGLDLLLNCSLLLCRGGGHPLDLLSVTLASGSRCFSF
ł			ł	LSVAWGFVSDVDIQSERFRALGSARFTLGTVLGLATLHTYRGR LSYLPATVEPASPTPAHSLPRAKSELTLTPDPAPPMAHSPLHR
[İ		1 — -
	l			SVSDLPLPLPQPALASPGSPEPLPILSLNGGGPELAGDWGGAG DAPLSPDPOLSSPPGSPKAALHSPV*KKAPVIPPDM
70	809	3	530	KGVPTLLMAAGSFYDILAITGFNTCLGIAFSTGSTVFNVLRGV
70	809	13	330	LEVVIGVATGSVLGFFIQYFPSRDQDKLVCKRTFLVLGLSVLA
1 .	ĺ	İ	ĺ	VFSSVHFGFPGSGGLCTLVMAFLAGMGWTSEKAEVEKIIAVAW
Ì				DIFQPLLFGLIG\AEVSI\SSLRPETVGLCVATVGI\AVLIRI
}]		1	FDYIF
71	810	228	541	LLKEVVVQASPVCKTCCSQLVRTPVTFTEVQNV/CRCSAGYLI
'1	1 010	240	341	SVCSYTSSDHNQCYAGTASLALLWIGGILKGCLLWKOFRWTER
		[1	SHWNFGYWALWSPGNGNGC
72	811	173	404	ICTSTYLOIFPGKPSCFMCKGRLMCIYFILWYLGHYTSLHWNW
\ ['] *	021	1 - / 3	70-2	CRYISDPNVD/ACPDPRNAEVSMTHTVPALMELID
73	812	2	586	LESLPGFKEIVSRGVKVDYLTPDFPSLSYPNYYTLMTGRHCEV
, 3	"-"	-	555	HOMIGNYMWDPTTNKSFDIGVNKDSLMPLWWNGSEPLWVTLTK
)]	}	AKRKVYMYYWPGCEVEILGVRPTYCLEYKNVPTDINFANAVSD
			}	ALDSFKSGRADLAAIYHERIDVEGHHYGPASPORKDALKA\VD
1	Į.			TVLKYMTKWIQERGLQDRLNVII
L			<u> </u>	

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning mucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end mucleotide location corresponding to first amino acid residue of amino acid sequence 348	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) ARDFHPKQTLDFLRSDMANSKITEEVKRSIAQQYLDLTVA/LE
75	814	2	366	QVDPDAEVDAAPSTTSSCGH*DSHAGS*RVLSLLGD*GPA*TG ANSMAGKLLLVAWLGFPDPFWGKELSDPAFK KQSGDVTCNCTDGRLAPSCLTCVGHCIFGGYCTMNSKMMPECQ
76	0.5	120	681	SPPHMTGPRCEEHVFSQHQPGHITSILIPML*LLLLVLVAGVI FCHKRRVQGAKGFQHQRMTNGAMNAQIANPTYKMY TVENAGRWL*EEAEIQAELERLERVRNLHIRELKRINNEDNSO
76	815	420 37	428	TVENAGRWL*EEAEIQAELERLERVRNLHIRELKRINNEDNSQ FKDHPTLNERYLLLHLLGRGGFSEVYKVMYGLFWFFYTNVARI MCEEFLVMGKGCSCVF*ILLSNPOMWWLNDSNPETDNROESPS
	816	37	428	MCEEFLVMGKGCSCVF*ILLSNPQMWWLNDSNPEIDNRQESPS QENIDRVSD/MAFVPSAWTASGGVAWGNLGESGSRTGGVRAET LAPRLQV*PAHLRGHPRSNRGQGRPPWKAGKLGKCQEVLFRFA AF
78	817	1	358	FRAMFLAVQHDCRPMDKSAGSGHKSEEKREKMKRTLLKDWKTR LSYFLQNSSTPGKPKTGKKSKQQAFIK*VENPELANINS*LLN *KGEL**A*ANIQNLSCRPSPEEAQLWSEAFDE
79	818	1	169	GFFNFSSPKLKGWKINSSLVLEIRKNILRFLDAERDVSVVKSS FPSKDARHSSVHR*FTQLHWGPPSHTPARP*RGFFNFSSPKLK GWKINSSLVLEIRKNILRFLDAERDVSVVKSSFPSKDARHSSV HR
80	819	55	310	RIDDQQELKRVT*YSQKEYTKKKLHKKCNIIQADIKPDNILDN ESITILKLSDFGSASHVADNDITPSSSQTTSAASSPPRTLRR
81	820	1	134	SSKPWD*SLAPKHSG*TKNMDCYCIIPTCIGRERCYGTCIGDT V
82	821	187	360	NSSKKLVMEHQWKKYLRRNYQRMLNRLITLIGSCGVL*LISTI PTSRLKFLKETGHGTPMEEIPEEELSEDVEQIDHADRELRRGQ NLRCKGIHRLPTHIQVGQN
83	822	208	723	KWMLLHSFKIFCLSLYPQL*CPFEFFSHSATIFHELVYKQTKI ISSNQELIYEGRRLVLEPGRLAQHFPKTTEENPIFVVSREPLN TIGLIYEKISLPKVHPRYDLDGDASMAKAITGVVCYACRIAST LLLYQELMRKGIRWLIELIKDDYNETVHKKTEVVITLGFLVSR
84	823	1	314	GTRKMGPTVSPICLPGTWGDYNLMDGDLGLISGWGRTEKRDRA DRLKAGRSPAAG*RKWEPGRGDPTWEESEEDVHKSKWTRCVDE KGA*C*TDNKRPLRCGVT
85	824	3	302	HELENLIKSAHSYSLY*G*YLHGA*TAEPEASFCPRRGWNRQA GAAGSRMNFRPGVLSSRQLGLPGPPDGPDYTVYYPFHRLAMVT AASRLEREHLTHL
86	825	87	422	PVPLPHPILEVCPGQ*EPQSATSLTAFQVQAGASRASPGPPAP SSSKPGRKAKVASPCPDRPAPPPT*PRPAAAPGSESSPRPPRP RTGRRQQRAHARRAAARTAPWRPSC
87	826	3	289	HEGRRRGWASASQRFLRNWAFLTPSKVRRLKGQKAFGKLPSHS DTSLTSDLGFHHRFNPNASSSFKPSGTKFAIQYGTGRVDGILS EDKLTVSGL
88	827	1	101	GRNIMHYPNGHAICIANGHCIIL*NSHNIKVWV

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
89	828	1	535	INLGNTCYMNSVI*ALFMATDFRRQVLSLNLNGCNSLMKKLQH LFAFLAHTQREAYAPRIFFEASRPPWFTPRSQQDCSEYLRFLL DRLHEEEKILKVQASHKPSEILECSETSLQEVASKAAVLTETP RTSDGEKTLIEKMFGGKLRTHIRCLNCTSTSQKVEAFTDLSLA FWPSSS
90	829	1	434	ARDDPRVRLSLSPNFF*LASKLGKQWTPLIILANSLSGTNMGE
91	830	3	782	MHRIKLNDRMTFPEELDMSTFIDVEDEKSPQTESCTDSGAENE GSCHSDQMSNDFSNDDGVDEGICLETNSGTEKISKSGLEKNSL IYELFSVMVHSGSAAGGHYYACIKSFSDEQWYSFNDQHVSRIT QEDIKKTHGGSSGSRGYYSSAFASSTNAYMLIYRLKDPARNAK FLEVDEYPEHIKNLVQKERELEEQEKRQREIERNTCKIKLFCL HPTKQVMMED*IEVHKDKTLKEAVEMAYKMMDLEEVIPLDCCR L
92	831	2	604	SVMPVPALCLLWALAMVTRPASAAPMGGPELAQHEELTLLFHG TLQLGQALNGVYRTTEGRLTKARNSLGLYGRTIELLGQEVSRG RDAAQELRASLLETQMEEDILQLQAEATAEVLGEVAQAQKVLR DSVQRLEVQLRSAWLGPAYREFEVLKAHADKQSHILWALTGHV QRQRREMVAQQHRLRQIQERLHTAALPA
93	832	16	690	ITSVDPRVRGNASTGYGKIWLDDVSCDGDESDLWSCRNSGWGN NDCSHSEDVGVICSDASDMELRLVGGSSRCAGKVEVNVQGAVG ILCANGWGMNIAEVVCRQLECGSAIRVSREPHFTERTLHILMS NSGCAGGEASLWDCIRWEWKQTACHLNMEASLICSAHRQPRLV GADMPCSGRVEVKHAHTWRSVCDSDFSLHAANVLCRELNCGDA ISLSVGDHFG
94	833	108	727	SNYPSSRFRVAGITGVKLGMRSIPIATACTIYHKFFCETNLDA YDPYLIAMSSIYLAGKVEEQHLRTRDIINVSNRYFNPSGEPLE LDSRFWELRDSIVQCELLMLRVLRFQVSFQHPHKYLLHYLVSL QNWLNRHSWQRTPVAVTAWALLRDSYHGALCLRFQAQHIAVAV LYLALQVYGVEVPAEVEA/DEAVGWQIYAMDTEIP
95	834	118	376	RGSRHAVHGWAFGLLFINKESVVMAYLFTTFNAFQGVFIFVFH CALOKKVRSRRGPGSOPPLETFPGYPGEGGEGGGDSGAPSSPQ
96	835	3	333	ARKDDLPPNMRFHEEKRLDFEWTLKAG*EKG*PSK*NKGWEGQ E***TVRD*GIS**VKPQHLS*\ALQMALKRVYTLLSSWNCLE DFDQIFWGQKSALAGQWFPEVSIIP
97	836	740	951	GKQQRETLRRPSPTISVQRAGSPEHSSASH*HSPCPAPGQRVL PTALCTLMTSKHFHGCPLAGQGRAVTL

- CTC -	OTO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ	beginning	end	
ID	ID NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	согте-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	Acius	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
l		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
i		acid	acid	\=possible nucleotide insertion)
i		residue	residue	
i		of amino	of amino	
		acid	acid	•
		sequence	sequence	
98	837	81	1503	GVCGLPRFCGSIILCHYEMSSLGASFVQIKFDDLQFFENCGGG
ļ				SFGSVYRAKWISQDKEVAVKKLLKIEKEAEILSVLSHRNIIQF
			}	YGVILEPPNYGIVTEYASLGSLYDYINSNRSEEMDMDHIMTWA
-			ł	TDVAKGMHYLHMEAPVKVIHRDLKSRNVVIAADGVLKICDFGA
		[İ	SRFHNHTTHMSLVGTFPWMAPEVIQSLPVSETCDTYSYGVVLW
		i	1	EMLTREVPFKGLEGLQVAWLVVEKNERLTIPSSCPRSFAELLH
		1	İ	QCWEADAKKRPSFKQIISILESMSNDTSLPDKCNSFLHNKAEW
			Ì	RCEIEATLERLKKLERDLSFKEQELKERERRLKMWEQKLTEQS
		ĺ	i	NTPLLLPLAARMSEESYFESKTEESNSAEMSCQITATSNGEGH
			1	GMNPSLQAMMLMGFGDIFSMNKAGAVMHSGMQINMQAKQNSSK
				TTSKRRGKKVNMALGFSDFDLSEGDDDDDDDGEEEYNDMDNSE
99	838	185	328	MLWETGCSAACRVTVSPTVTFATFSTRGIDAMRPGPSFLWRQQ
		ļ	1	LSQG*
100	839	1	348	PTLGDQPDLHSITRASRPKLCTRKNCNPLTITVHDPNSTQ*YY
	l			GMSWELRFYIPGFDVGTMFTIQKILVSWSPPKPIGPLTDLGDP
				MFQKPPNKVDLTVPPPFLVIKDTLQKFEKI
101	840	1	416	SLNNVTLPQAKTEKDFIQLCTPGVIKQEKLGTVYCQASSPGAN
		1	1	MIGNKMSAISVHGVSTSGGQMYHYDMNTASLSQQ*DQKPIFNV
	į	1	Ì	IPPIPVGSENWNRCQGSGDDNLTSLGTLNFPGRTVSFSFEMES
	1	1	1	RSVAQAGVQ
102	841	105	354	RHTQECRCPHTHIHTHTHSHTHSHTHSHSHSHTTPRCSHTQPP
	ł	ł	ł	HAQAPALC*S*EDRGQPTWKLCAHRPRLKVIKEGGWLGG
103	842	171	347	NYSLSVYLVRQLTAGTLLQKLRAKGIRNPDHSRALSE*HLSSL
		ŀ		PHLIWIQVFLALQPS
104	843	2	690	ATYIVDFGFSTTFREGQMLTAFCGMYPYVAPERSLGQACQ*PA
			1	RDIQSLSVILYFRNTVGRRARTLPFYS/AEASKLQEKILTGRY
İ	İ	1	Ţ	HAPPLLALQLDSL/IKLLMLNARKCPSL*LMKNPWVKSSQKMP
	İ			LIPYEEPL/RGPPQTIQLMVAMGFQAKNISVAIIERKFNYPMA
1	1	1		TYLILEHTKQERKCSTIRELSLPPGVPTSPSPSTELSTFPLSL
1		1	Ì	MRAHREPAFNVQPPEESQ
105	844	2	777	AKQELAKLMRIEDPSLLNSRVLLHHAKAGTIIARQGDQDVSLH
1		-	1	FVLWGCLHVYORMIDKAEDVCLFVAQPGELVGQLAVLTGEPLI
1	l	į	ł	FTLRAORDCTFLRISKSDFYEIMRAOPSVVLSAAHTVAARMSP
				FVRQMDFAIDWTAVEAGRALYRCSSHRAAQARPRGGDLGVVRP
	1			C*PPRPLRQGDRSDCTYIVLNGRLRSVIQRGSGKKELVGEYGR
}	1			GDLIGVVSATPTH*PLAFSRPVPRQLTRIIPGNPGSGEVFPGA
106	845	3	709	HASGWTPGTTQTLGQGTAWDTVASTPGTSETTASAEGRRTPGA
1 100	045		1,00	TRPAAPGTGSWAEGSVKAPAPIPESPPSKSRSMSNTTEGVWEG
				TRSSVTNRARASKDRREMTTTKADRPREDIEGVRIALDAAKKV
	1	l		LGTIGPPALVSETLAWEILPOATPVSKQQSQGSIGETTPAAGM
	l	[WTLGTPAADVWILGTPAADVWTSMEAASGEGSAAGDLDAATGD
			1	RGPOATLSOTPAV*PWGPPG
1	1	.1		TOT KUTHOKIEUA THOEEO

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end mucleotide location corresponding to first amino acid residue of amino acid sequence 406	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) AGTSGTGDTGPGNTAVSGTPVVSPGATPGAPGSSTPGEADIGN
107	040	3	400	TSFGKSGTPTVSAASTTSSPVSKHTDAASATAVTISGSKPGTP GTPGGATSGGKITPGIA*PTLDQKSPCFSGYGGYFPVNPHQNP CADSL
108	847	1	565	RAHRCCLPLPSLSCEIQIGFS*SSIFPGQ*ACPCSCCRSCRN WPQSPRCPHHPPAPCSLLLSSCLPPPLSCSWRGTSGKPPSQSP AASRSMRPRCSPRTSSLRGASCRGPGGSAPAAASGPRCRGCSR SPRRCSRSGCAAASPPRSQRRSPPLSPPPFPTSGTLLLKTSRF GSATRE*SSPRPRPR
109	848	2	987	DDVPPPAPDLYDVPPGLRRPGPGTLYDVPRERVLPPEVADGGV VDSGVYAVPPPAEREAPAEGKRLSASSTGSTRSSQSASSLEVA GPGREPLELEVAVEALARLQQGVSATVAHLLDLAGSAGATGSW RSPSEPQEPLVQDLQAAVAAVQSAVHELLEFARSAVGNAAHTS DRALHAKLSRQLQKMEDVHQTLVAHGQALDAGRGGSGATLEDL DRLVACSRAVPEDAKQLASFLHGNASLLFRRTKATAPGPEGGG TLHPNPTDKTSSIQSRPLPSPPKFTSQDSPDGQYENSEGGWME DYDYVHLTGGRRSF*KTQKELLGKRAA
110	849	84	372	MATDEENVYGLEENAQSRQESTRRLILVGRTGAGKSATGNSIL GQRRFFSRLGATSVTRACTTGSRRWDKCHVEVVDTPDIFSSQV SKTDPGCEERX*
111	850	2	47	TLGLRSLTKEGGGGGDVAAFEVGTGAAASRALGQCGQLQKLIV IFIGSLCGLCTKCAVSNDLTQQEIQTPEIQQRNA*CDSRVTFT NEGGRWWG
112	851	1192	1040	FFFLVETRFHHIGQAGLELLTLSIK*SARLGLPKCWDDRREPP YLAGFMI
113	852	791	362	RRSPPPAPPPLPSPLSPPPRAPVSPASTMPILLFLIDTSASMN QRSHLGTTYLDTAKGAVETFMKLRARDPASRGDRYMLVTFEEP PYAIKAGWKENHATFMNELKNLQAEGLTTLGQSLRTAFDLLNL NRLVTGIDNYGQVG
114	853	812	348	NCRTYVFCFVLVFRLLFLHGSPLSPSLLSRAGLLCGSAENPTP FLCGITMAAGVSLLALVVRVILSTAILCPSGASRRQRSSEVEW GTDSGVYRLYCWRVGFLGPGGELRLGLSEARGGRVWGRGEKRC RVWAVRSLRKGFGSVAALRRGIWAG
115	854	93	170	VTPTPPQYYTCSCVLGFIACSIFLQMSLKPKVMLLTVALVACL VLFNLSQCWQRDCCSQGLGNLTEPSGTNR*GPAAVSWASLPAP SSCR
116	855	1	183	GKAGGAAGLFAKQVQKKFSRAQEK*TRRFGKTCQPEERAREER QEGPEIEFGFSFFSLSLY

D No: of Nucleich No: of Nucleich No: of Nucleich No: of Nucleich No: of Amino Acids Acids	SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
NO: of of short of cation corresponding to first amino acid residue of amino acid residue of amino acid residue of amino acid residue of amino acid residue of amino acid residue of amino acid residue of amino acid sequence sequence sequence sequence sequence popularly acid residue of amino acid residue of amino acid residue of amino acid residue of amino acid sequence sequence sequence sequence popularly acid residue of amino acid sequence sequence popularly acid residue of amino acid sequence sequence popularly acid residue of amino acid sequence sequence popularly acid residue of amino acid sequence popularly acid residue of amino acid sequence popularly acid residue of amino acid sequence popularly acid residue of amino acid sequence popularly acid residue of amino acid sequence popularly acid residue of amino acid residue of amino acid sequence popularly acid residue of amino acid residue of amino acid sequence popularly acid residue of amino acid sequence popularly acid residue of amino acid sequence popularly acid residue of amino acid sequence popularly acid residue of amino acid sequence popularly acid residue of amino acid sequence popularly acid residue of amino acid sequence popularly acid residue of amino acid sequence popularly acid residue of amino acid sequence popularly acid residue of amino acid sequence popularly acid residue of amino acid sequence popularly acid residue of amino acid acid residue of amino acid acid residue of amino acid acid residue of amino acid acid residue of amino acid acid residue of amino acid acid residue of amino acid acid residue of amino acid acid residue of amino acid acid residue of amino acid acid residue of amino acid acid residue of amino acid acid residue of amino acid acid residue of amino acid acid residue popularly acid acid residue of amino acid acid residue of amino acid acid residue popularly acid acid residue popularly acid acid residue popularly acid acid residue popularly acid acid acid acid acid acid acid acid		_			C—Custoine D—Aspertie Acid E— Clutamic Acid
of Amino Amino Acids south Corresponding to first amino acid residue of amino acid residue of amino acid sequence support of the sequence of amino acid sequence support of the sequence support of th		-			
Acids Acids for first sponding to first sponding to first sponding to first amino acid residue of amino acid seduces. 117 856 53 2400 PRELIFICAÇUE AND POPOSTOLOGIO PRELIFICAÇUE AND POPO			location	location	
Acids of first annino acid control of the control o			согте-	согте-	
to first amino acid acid residue of amino acid scid residue of amino acid scid residue of amino acid scid scid scid scid scid scid scid s	,	i	sponding	sponding	
acid residue of amino acid residue of amino acid sequence sequence popular	Acids	Acius			T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
acid residue of amino acid residue of amino acid sequence sequence popular	ł	4	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion.
residue of amino acid sequences sequence sequence sequence sequence sequence sequence sequences seq	ł	ł	acid	acid	
acid sequence Sequence Sequence Sequence Sequence	1	1	residue	residue	poolisis hassessary
Sequence Sequence	ł	1	of amino	of amino	
117 856 53 2400 PKRLFLEQDVNTLQGGGQPVVTESVQPAGMAQAY PQPSVTGLQAPSAALMQVSSLDSHSAVSGNAQSYQPYAGMQAY AYPQASAVTSQLQPVRPLYPAPLSQPPHFQGSGDMASFLMTEA RQHNTETRMAVSKVADKMDHLMTKVEELQKHSAGNSMLIPSMS VTMETSMIMSNIQRIIQENERLKQEILEKSNRIEEQDKKISEL IERNQRVVEQSNLMMEKRNNSLQTATENTQARVIHAEQEKAKV TEBLAAATAQVSHLQLKMTAHQKKETELOMQLTESLKETDLLR GQLTKVQAKLSELQETSEQAQSKFKSEKQNKKQLELKVTSLEE ELTDLRVEKSSLEKNLSERKKKSAQERSQAEEIDEIRKSYQE ELDKLRQLLKKTRVSTDQAAABQLSLVQABLQTQMEAKCHLL ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFAC\CLALQA QITALTKQNBQHIKELEKNKSQMSGVEAAASDPSEKVKKIMNQ VFQSLREEFELESSYNGRTILGTIMTIKMVTLQLLNQOBQEK EESSEEEEKEAERPRPSQBQSAASASGQQAQPLMRERPES PMVPSEQVVERAVPLPPQALTTSQDGHRRKGDSEAEALSEIKD GSLPPELSCIPSHRVLGPPTSIPPPDGPVSMDSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKES\CLEPTPGFQDP E\EGDPLALGLE\SPG\CPPQFCCE EGGPLALGLE\SPG\CPPQFQCCE EQGRFPQFCCE SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWPEXINRGKAIPLSYPAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLDSAAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVLLIAAAIATVYIVLGIPYERYVPP PTILL*RPGANLFLMAVQODIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSQQDNGAEMNLVYDRDTMARL GIDVQAANSLLINNAFGQRQISTTYQPMNQYKV WEVDPRYTYOD SALEKMYIVINNEGKAIPLSYPHYDP PTILL*RPGANLFLMAVQODIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSQQDNGAEMNLVYDRDTMARL GIDVQAANSLLINNAFGQRQISTTYQPMNQYKVWMEVDPRYTYD ISALEKMYIVINGKAIPLSYMHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVFQETMNSQVILLIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQODIRVGRQSNASYQVTLLSDDLAAL REWEPKIRKKLATLPELADVNSQQDNGAEMNLVYDRDTMARL GIDVQAANSLLINNAFGGRQISTTYQPMNQYKVWMEVDPRYTYDD ISALEKMYIVINMSGVGVFAVKMQPANAPLSYMHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVFQETMNSQVILLIAAIATVYIVLGIPYERYHPPTILL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVFQETMNSQVILLTAAATVYIVLGGYQTFTGRAFAGPAQVFQETMNSQVILTAAATVYIVLGTYPERYHPPTILL TIGGPDMFUKQSKLLTYNYS*SGNASYGNAGCRANCAFREKKT LTDL*HTATGRATEVILANAYFFFGYRFLHALRKAARRGVRIKLI IQGFDMFUKGSSALHVSYS*SGNAGNAVILHUKLKSKERERYDKAM DDHMATVGSSNLHPVS*SGNAGNAVILHUKLKSKERERYDKAM SQQLGYYLHRASMRGG		<u> </u>	acid	acid	
117 856 53 2400 PKRLFLEDUNTLQGGGDPVVTESVQPSLQPARPALPQMTSQA PQPSVTGLQAPSAALMQVSSLDSHSAVSGNQSFQPYAGMQAY AYPQASAVTSQLQPVRPLYPAPLSQPPHFQSGDMASFLMTEA RQHNTETRMAVSKVADKMDHLMTKVEELQKHSAGNSML1FSMS VTMETSMIMSNIQRIIQENERLKQEILEKSNRIEEQDMKISEL IERNQRVVEQSNLMMEKRNNSLQTATENTQARVLHAEQEKAKV TEBLAAATAQVSHLQLKMTAHQKKETELQMQLTESKLETDLLR GQLTKVQAKLSELQETSEQAQSKFKSEKQMRKQLELKVTSLEE ELTDLRVEKSSLEKNLSERKKKSAQERSQAEBEIDBIRKSYQE ELDKLRQLLKKTRVSTDQAAABQLSLVQABLQTQWEAKCHLL ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFACLALQA QITALITKQNBQHIKELEKNRSQMSGVEAAASDPSEKVKKIMNQ VFQSLREEFELBESYNGRTILGTIMTIKMVTLQLLMQOBQEK EESSEEEEKAERPRRPSQEQSASASSGQQAQPLMRERPES PMVPSEQVVERAVPLPPQALTTSQDGHRRKGDSEABALBEIKD GSLPPELSCTPSHRVLGPPTSIPPPDLGPVSMDSECESLAAS PMAAK\PDNPSGK\VCVQGK*ADPGTYKE\STEPPFGDQD E\EGDPLALGLE\SPG\VEPPPQLQKVDVH*VPPVPHKGAFQ EQGGRFPQFCCE EQGGRFPQFCCE EQGGRFPQFCCE EQGGRPPQFCCE EQGGR	1		sequence	sequence	
AYPQASAVTSQLQPVRPLYPAPLSQPPHFQGSGMASFIMTEA RQINTEIRMAVSKVADKMDHLMTKVEELQKHASAGNSMLPSMS VTMETSHMISMIGNEJ (IGENERLKQEILKEKSNIEBEQNDKISEL IERNQRYVEQSNLMMEKRNNSLQTATENTQARVLHAEQEKAKV TEBLAAATAQVSHLQLKMTAHQKKETELQMQLTESLKETDLLIK GGLTKVQAKLSELGETSEQAGSKFSEKGNRRQELKVTSLEKE ELTDLRVEKESLEKNLSERKKKSQERSQAEEEIDEIRKSYQE ELDKLRQLLKKTRVSTDQAAAEQLSLVQAELQTQMEAKCEHLL ASANDEBLQQYGEVCAQRDAYQGKLVQQLGKSVCFA\CLALQA QITALTKQNEQHIKELEKNKSQMSGVEAAASDPSEKVKKIMNQ VFQSLRREFELEESYNGRTILGTINNTITKMVILQLLNQEQEK EESSEEBEEKAEERPRPSPSGESASASSGQPQAPLNRERPES PMVPSEQVVEEAVPLPPQALTTSQDGHRRKGDSEAEALSEIKD GSLPPELSCITSHRVLGPFTSIPPEPLGPVSMDSECESLAAS PMAKK\PNPSGK\VCVQGK-APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRFPQFCRE 118 857 1 791 SETAQGITDRIGVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMQYKV VMEVDPBYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGGPAQVPQETTMSQVILLIAAIATVYIVLIGIPYERVVHP PTILL*PRGANLFLMAVQDIRVGGRGSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGGRQISTIYQPMQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILLIAAIATVYIVLGIPYERVVHPPTILL SEMELFKHFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGMSCKDIABKIQKGGFYLFAVKGNQGRLNKAFFEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFFGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVEYYRRPPHILMD 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEBALAKEV RELX*HTX*LLNPATTRELTSLGRNLNRLLKSSEREYHGKYLTT LTDLTHSLKTPLAVLQSTTRSLESEKMYSORDVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPPLLDNLTSALIKGKPR	117	856	53	2400	PKRLFLFQDVNTLQGGGQPVVTPSVQPSLQPAHPALPQMTSQA
RQHNTEIRMAVSKVADKMDHLMTKVEELQKHSAGNSMLIPSMS VTMETSMIMSNIQRIIQEMERLKQBILEKSNRIEBQNDKISEL IERNQKYVEQSNIMMEKRNISLQTATENTQARVLHAEQEKAKV TEELAAATAQVSHLQLKMTAHQKKETELQMQLTESLKETDLLR GQLTKVQAKLSELQETSBQQSKFKSEKQNRKQLELKVTSLEE ELTDLRVEKSSLEKNLSERKKKSAQERSQAEELDEIRKSYQE ELDKLRQLLKKTRVSTDQAAARQLSLVQAELQTQWEAKCEHLL ASAKDEBLQQYQEVCAQRDAYQQKLVQLQEKSVCFA\CLALQA QITALTKQNEQHIKELEKNKSQMSGVEAAASDPSEKVKKIMNQ VFQSLRREFELEESYNGRTILGTINNTIKMVTLQLLINQQEQEK EESSSEEEBEKAEERPRRPSQEQSASASSGQPQAPLINERPES PMVPSEQVVEEAVPLPPQALTTSQDGHRKKGDSAEASLSIKD GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTKKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGFFPGFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEFGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVVDRDTMARLGIDVQAANSLLINAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVVFGETMNSQVILIAATATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYNDTMARL GIDVQAANSLLINAFGQRQISTIYQPMNGYKVVMEDPPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAATATYVIVLGIPYERYVHEDPPTILL 119 858 3 417 IITDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKBLNNPEHDSYATSEKSHGKBEIRLHTVCDVPDELIDFTFE WKGLKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGADISV TALSGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRHJGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLMP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLKSSRERFYRDKYRTT LTDITHSLKTPLAVLQSTLRSKERSKMSDABPVMLEQISRI SQQIGYYLHRASMRGGTLLSREHMVADDLDNLTSALIKGKPR		}	}	1	PQPSVTGLQAPSAALMQVSSLDSHSAVSGNAQSFQPYAGMQAY
VTMETSMIMSNIQRIIQENERLKQEILEKSNRIEEQNDKISEL IERNQRYVEQSNIMMERKNNSLQTATENTQARVIHAGEKARV TEELAAATAQVSHLQLKNTARJKKETELQMQUTESLKETDLLR GQLTKVQAKLSELQETSEQAQSKFKSEKQNRKQLELKVTSLEE ELDLRQLLKKTRYSTDQAAASQLSLVOALEGTOMEAKCHHLL ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFA\CLALQA QITALITQNBCHIKELERKKSGMSGVEAAASDPSEKCKKIMNQ VFQSLREFELLEESYNGRTILGTIMTIKMVYIQLLNQQBQEK EESSSEEEEKAEERPRRPSQEQSASASSGQPQAPLNRERPES PMVPSEQVVEEAVPLPPQALTTSQDGHRRKGDSEABALSEIKD GSLPPELSCIPSHRVLGPPTSIPPPLGGPVSDECCESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRPFOFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFV\INNEKKAIPLSLAVRYDQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGGRQSISTIYQPMNQYKV VMEVDPRYTQDISALEKMFV\INNEKKAIPLSLAVRYDQDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWBPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVBPYTQD ISALEKMFVINNEGKAIPLSYPAKMQPANAPLSVHRQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITDAMGCQKDIABKIQKGGDYLFAVKGNGGGRLNKAFFEKF PLKBLNNPEHDSYAISEKSHGREEIRLHVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLNYLVKGGVQVEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHURVPTLMP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIERLAKEV RELX*HTR*LLNPATTRELTSLGRNLNRLLKSSRERYDGYTTT LTDITHSLKTPLAAVLQSTRSLESEKMSVDRYMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPPLLDNLTSALIKGKPR	1	Ì		•	AYPQASAVTSQLQPVRPLYPAPLSQPPHFQGSGDMASFLMTEA
IERNQRYVEQSNIMMEKRNNSLQTATENTQARVLHAEQEKAKV TEBLAAATAQVSHLQLKMTAHQKKETELQMQLTESLKETDLIR GQLTKVQAKLSELGETSEQAQSKFKSEKQNEKQBELKVTSLEE ELTDLRVEKESLEKNLSERKKKSAQERSQAEEEIDEIRKSYQE ELDKLRQLLKKTRVSTDQAAAEQLSLVQAELQTQMEAKCEHLL ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSYCFAACLALQA QTTALTKQNEQHIKELEKNKSQNSGVEAAASDPSEKVKKIMNQ VFGSLRREFELEESKNGRTILGTIMNTIKMTLQLLNQQEQEK EESSSEEEEKAEERPRRPSQEQSASASSGQQAPLNRERPES PMYPSEQVVEEAVPLPPQALITTSQDGHRRKGDSEAEALSEIKD GSLPPELSCIPSHRVLGPPTSIPPELGPVSMDSECESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRFPQFCRE 118 857 1 791 SETAQQTIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWBPKIRKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGFAQVVQETINNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPSTYQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVHHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRSFAGFAQVV QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TALSGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALKKAARRGVRIKLT IQGEPDMPIVRVGARLLYNYLVKGGVQVFFYRRPLHGKVALM DDEMATVGSSNLHPUS*SGRLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTT*LLMPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDTHSLKTPLAJVLQSTLRSLRSEKSDADEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLDNLTSALIKGKPR	1		Ì		ROHNTEIRMAVSKVADKMDHLMTKVEELQKHSAGNSMLIPSMS
IERNQRYVEQSNIMMEKRNNSLQTATENTQARVLHAEQEKAKV TEBLAAATAQVSHLQLKMTAHQKKETELQMQLTESLKETDLIR GQLTKVQAKLSELGETSEQAQSKFKSEKQNEKQBELKVTSLEE ELTDLRVEKESLEKNLSERKKKSAQERSQAEEEIDEIRKSYQE ELDKLRQLLKKTRVSTDQAAAEQLSLVQAELQTQMEAKCEHLL ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSYCFAACLALQA QTTALTKQNEQHIKELEKNKSQNSGVEAAASDPSEKVKKIMNQ VFGSLRREFELEESKNGRTILGTIMNTIKMTLQLLNQQEQEK EESSSEEEEKAEERPRRPSQEQSASASSGQQAPLNRERPES PMYPSEQVVEEAVPLPPQALITTSQDGHRRKGDSEAEALSEIKD GSLPPELSCIPSHRVLGPPTSIPPELGPVSMDSECESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRFPQFCRE 118 857 1 791 SETAQQTIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWBPKIRKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGFAQVVQETINNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPSTYQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVHHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRSFAGFAQVV QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TALSGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALKKAARRGVRIKLT IQGEPDMPIVRVGARLLYNYLVKGGVQVFFYRRPLHGKVALM DDEMATVGSSNLHPUS*SGRLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTT*LLMPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDTHSLKTPLAJVLQSTLRSLRSEKSDADEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLDNLTSALIKGKPR	[1	[VTMETSMIMSNIORIIOENERLKQEILEKSNRIEEONDKISEL
TEELAAATAQVSHLQLKMTAHQKKETELQMQLTESLKETDLLR GQLTKVQAKLSELQETSEQAQSKFKSEKQNRKQLELKVTSLEE ELTDLRVEKESLEKNLSERKKKSAQERSQAEE1DEIRKSYQE ELDKLRQLLKKTRVSTDQAAAEQLSLVQAELQTQWEAKCEHLL ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFA\CLALQA QITALTKQNEQHIKELEKNKSQMSGVEAAASDPSEKVKKIMNQ VPGSLRREFELEESYNGRTILGTIMNTIKMYTLQLLNQQEQEK EESSSEEEEKAEERPRRPSQEQSASASSGQPQAPLNRERPES PMYPSEQVVERAVPLPPQALTTSQDGHRRKGDSEAELSEIKD GSLPPELSCIPSHRVLGPPTSIPPELGPVSMDSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\SCDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRPPQFCRE 118 857 1 791 SETAQQTIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVVDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFYINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGBAQVPQETMNSQVILIIAAIATVYLVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVJDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPTYQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKGGGDVLFAVKGNGGRLNKAFFEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFF WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVITANAYFFPGYRFLHALRKAARRGVRIKLI LQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPLHGKVALM DDHMATVGSSNLHPWS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPTEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTI LTDLTHSLKTPLAJVLQSTLKSLSEKSMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLDNLTSALIKGKPR					
GQLTKVQAKLSELQETSEQAQSKFKSEKQNRKQLELKVTSLEE ELTDLRVEKESLEKNILSERKKKSAQERSQAEEEIDEIRKSYQE ELDKLRQLLKKTRVSTDQAABEQLSLVQAELQTQWEAKCEHLL ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFA\CLALQA QITALTKQNEQHIKELEKNKSQMSGVEAAASDPSEKVKKIMNQ VFQSLRREFELESYNGRTILGTİMNTIKMVTLQLLNQQEQEK EESSSEEEEKAERPRRPSQEQSASASSGQPQAPINRERPES PMVPSEQVVEEAVPLPPQALTTSQDGRRKGDSEAEALSEIKD GSLPPELLSCIPSHRVLGPTSIPPELGPVYSMDSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRFPQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVVDRDTMARIGIDVQAANSLLNNAFGGRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*PFGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REMFEKIRKKLATLPELADVNSDQQDNGAEMNLVXDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVHNQGLSAAL REMFEKIRKKLATLPELADVNSDQQDNGAEMNLVXDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVHNQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAALATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHUCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFFYRRPLHGKVALM DDHMATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLMPATTRELTSLGRNLNRLLKSSERREYDKYRTT LTDLTHSLKTPLAVLQSTLRSLASEKSHODBEPVMLEQLISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLDNLTSALIKGKPR	1		1	1	, , , , , , , , , , , , , , , , , , , ,
ELTDLRVEKESLEKNLSERKKKSAQERSQAEEEIDEIRKSYQE ELDKLRQLLKKTRVSTDQAABQUSLVQAELQTQWEARCEHLL ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFA\CLALQA QITALTKQNEGHIKELEKNKSQMSGVEAAASDPSEKVKKIMMQ VFQSLRREFELEESYNGRTILGTINNTIKMVTLQLLNQQEQEK EESSSEEEEEKAEERPRRPSQEGSASASGOQAPLNRERPES PMVPSEQVVEERVPLPPQALTTSQDGHRRKGDSEAEALSEIKD GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRFPQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDMGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVMHQGLSAALTISFNLPTGKSLSDASAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILLIAAIATVYIVLGIPYERYVHP PTILL*RFGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGGRQISTIYQPMNQYKVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILLIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TALSGTDD 120 859 2 373 HYLKMLTQAREVIIANAYFFPGYRFLHALRKAARGVRIKLT IQQEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAPHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV EEK*HTR*LLNPATTRELTSLGRNLNRLLKSERRYDKYRTT LTDLTHSLKTPLAVLQSTLRSIRSEKRWSDAEPVMLEGISRI LTDLTHSLKTPLAVLQSTLRSIRSEKRWSDAEPVMLEGISRI LTDLTHSLKTPLAVLQSTLRSIRSEKRWSDAEPVMLEGISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	l				1
ELDKLRQLLKKTRVSTDQAAABQLSLVQAELQTQWEAKCEHIL ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFA\CLALQA QITALTKQNEQHIKELEKNKSQMSGVEAAASDPSEKVKKIMNQ VFQSLRREFELEESYMGRTILGTINNTIKMVTLQLLNQQEQEK EESSSEEEEKAEERPRRPSQEQSASASSGQPQAPLNRERPES PMVPSEQVVERAVPLPPQALTTSQDGHRRKGDSEAEALSEIKD GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFFGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRFPGFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDMGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDRPYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVWMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILLIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDVLFAVKGNQGRLNKAFEEKF PLKELNPEHDSYAISEKSHGREEIRLHIVCDVPDELDDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TALSGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQQEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAM*SLRPIEALAKEV EELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSERKMVSDAEPVMLEGISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	1	1	ĺ		,
ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFA\CLALQA QITALTKQNEGHIKELEKNKSQMSGVERAASDPSEKVKKIMNQ VFQSLRREFELEESYNGRTILGTİMNITKMVTLQLLNQQEQEK EESSSEEEEEKAEERPRPSQEQSASASSGQPQAPLNRERPES PMVPSEQVVEEAVPLPPQALTTSQDGHRKGDSEAEALSEIKD GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGGPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRPQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIILAAIATVYIVLGIPVERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVWEVDPPTTDL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKQPANPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIILAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKQPGRNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCTVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	1				
QITALTKQNEQHIKELEKNKSQMSGVEAAASDPSEKVKKIMNQ VFQSLRREFELEESYNGRTILGTIMTIKMTUKQLLNQQEQEK EESSSEEEEKAEERPRRPSQEQSASASSGQPQAPLNRERPES PMVPSEQVVERAVPLPPQALTTSQDGHRRKGDSEAEALSEIKD GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRFPQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFIMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGGRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIÇKQGGYYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEBLAKEV LTDLITHSLKTPLAVLQSTLRSLRSEKMSVDARPVMLEQISRI SQQIGYYLHRASMRGGTLLSREIHPVAPLLDNLTSALIKGKPR	1		l	l	
VFQSLRREFELEESYNGRTILGTİMNTIKMVTLQLLNQQEQEK EESSSEEEKARERPRRPSQEQSASASSGQPQAPLNRERPES PMVPSEQVVEEAVPLPPQALTTSQDGHRRKGDSEAEALSEIKD GSLPPELSCIBSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGPPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRPPOFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEFGANLFIMAVQDIRVGGRQSNASVQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKVV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFIMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERVYHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGRBEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERRYDKYRTT LTDLTHSLKTPLAVLQSTLRSLEKSEKNSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSREKHPVAPLLDNLTSALIKGKPR		İ	1	1	
EESSSEEEEKAEERPRRPSQEQSASASSGQPQAPLNRERPES PMVPSEQVVEEAVPLPPQALTTSQDGHRRKGDSEAEALSEIKD GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS PMAAK\PDNPSGK\VCVQCK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRFPQFCRE 118 857 1 791 SETAQQIIDRIEVKLAKEPGANLFLIMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLINNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALITSFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFIMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVWEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSVAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR				ł	1
PMVPSEQVVEEAVPLPPQALTTSQDGHRRKGDSEAEALSEIKD GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRPPQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGGRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLMP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTI LTDLTHSLKTPLAVLQSTLRSLESEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSREEKMSVSDAEPVMLEQISRI			l	ļ	,
GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRFPQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVWEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTIMP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTI LTDLTHSLKTPLAVLQSTLRSLESEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSREEHPVAPLLDNLTSALIKGKPR	1].	1]	17 17 17
PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRPPQFCRE 118 857 1 791 SETAQQIIDRRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGYQVFEYRRPLHGKVAIM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV KELK*HTT*LLNPATTRELTSLGRNLNRLLKSSRERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTILSRELHPVAPLLDNLTSALIKGKPR		1	İ		1 " 1
E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ EQEGRFPQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGFAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGYQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTT*LLNPATTRELTSLGRNLNRLLKSSRERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTILSRELHPVAPLLDNLTSALIKGKPR)	ļ	}		
EQEGRFPQFCRE 118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATTYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLINNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTILSRELHPVAPLLDNLTSALIKGKPR					
118 857 1 791 SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQAREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	1	1	1	i	
YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	L			<u> </u>	-
LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	118	857	1	791	
VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	[[[1
SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFB WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	100		ł	} •	1
RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR		Ì	1	Ì	
PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFB WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR		1	ļ		SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV
REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFB WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	1		}	1	RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP
GIDVQAANSLINNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFB WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR		ļ	1	i	PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL
ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFB WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	1	1		1	REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL
TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFB WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	1				GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD
QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL 119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFB WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	1		1		ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL
119 858 3 417 IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFB WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	1		1		TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF
PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	t				QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL
PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	119	858	3	417	IITPDAMGCQKDIAEKIQKQGGDYLFAVKGNQGRLNKAFEEKF
WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR					1
TAISGTDD 120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR		1	}	1	
120 859 2 373 HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR				1	
IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	120	859	12	373	
DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP 121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	120	""	"		, ·
121 860 286 495 CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	}]			
RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	1222	1000	1306	1495	
LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	1 121	1 200	200	433	
SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR	1	1			
	1	1			
KGGNVTVFPFTAMYRDGH	1	İ			
	L	<u> </u>	<u> </u>	<u></u>	KGGNVTVFPFTAMYRDGH

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID ID	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		to first amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		amino	anino	
		residue	residue	\=possible nucleotide insertion)
		of amino	of amino	
		acid	acid	
]		sequence	sequence	
122	861	2	725	GNTVMFQHLMQKRKHTQWTYGPLTSTLYDLTEIDSSGDEQSLL
				ELIITTKKREARQILDQTPVKELVSLKWKRYGRPYFCMLGAIY
	·		Í	LLYIICFTMCCIYRPLKPRTNNRTSPRDNTLLQQKLLQEAYMT
	!		ĺ	PKDDIRLVGELVTVIGAIIILLVEVPDIFRMGVTRFFGQTILG
	ļ			GPFHVLIITYAFMVLVTMVMRLISASGEVVPMSFALVLGWCNV
	l	ł	l	MYFARGFQMLGPFTIMIQKMIFGDLM
123	862	1	135	EKAAAANIDEVQKSDVSSTGQGVIDKDALGPMMLEVAHLHFSA
			l	VF
124	863	2	364	LEVPSEVTPLGFAMQATKTLLLRTCCLQEFNIMEKNKGWALLG
		<u>.</u>		GKDGHLQGLFLLANALLERNQLLAQKVMYLLVPLLNRGNDKHK
				LTSAGFFVELLRSPVAKRLPSIYSVARFKDWLQD
125	864	1.	374	RPAPAPSAAPEEAPSP\GVKGRGMAKRRVPAPVWGGAGGGTKS
				ARRAAAAPDTERSEEGGRAVKEAYPSSRQPPPPSP*PLRCARR
				CHPNLAPSMPISNREGKGKRREEKIRPLSPASTHTSARA
126	865	3	364	LQGVHGSSSTFCSSLSSDFDPLEYCSPKGDPQRVDMQPSVTSR
ļ	}]	PRSLDSEVPTGETQVSSHVHYHRHRHHHYKKRFQRHGRKPGPE
<u></u>			0.50	TGVPQSRPPIPRTQPQPEPPSPDQQVTRSNSAAP
127	866	2	250	MADPDPRYPRSSIEDDFNYGSSEASDTVHIRMAFLRRVYSILS LODLLATVTSTDNLAFEDGRTDWLORPDCVSFKIHVLPM
128	867	194	375	AGMSVVVVPPIGSSYLGLISOEHFPNEFTSGDGKKAHODFGYF
128	867	134	373	YGSSYVAASDSSRTPGL
129	868	104	339	VAAALTLFPQQLSPPGAWGLGLSACFCCAEGFSRLNQQVLSSS
123	000	101	333	LLLLSRTNCPCKYSFLDNLKKLTPRRDVPTYPKVR
130	869	2	360	RDDACLYSPASAPEVITVGATNAQDOPVTLGTLGTNFGRCVDL
		_	1	FAPGEDIIGASSDCSTCFVSQSGTSQAAAHVAGIAAMMLSAEP
	ļ	l		ELTLAELRORLIHFSAKDVINEAWFPEDORVLT
131	870	2	105	LEIKFLEQVDQFYDDNFPMEIRHLLAQWIENQDW
132	871	2	466	EAGDADEDEADANSSDCEPEGPVEAEEPPQEDSSSQSDSVEDR
		}		SEDEEDEHSEEEETSGSSASEESESEESEDAQSQSQADEEEED
		1		DDFGVEYLLARDEEQSEADAGSGPPTPGPTTLGPKKEITDIAA
		1		AAESLQPKGYTLATTQVKTPIPLLL
133	872	1	354	LKNLRELLLEDNQLPQIPSGLPESLTELSLIQTNIYNITKEGI
				SRLINLKNLYLAWNCYFNKVCEKTNIEDGVFETLTNLELLSLS
				FNSLSHVPPKLPSSLRKLFLSNTQIKYISEED
134	873	59	184	MRSQALGQSAPSLTASLKELSLPRRGSFPVCPNAGRTSPLG*
135	874	1	210	LLCVCLPVGACPSLSLLTAPLNQLMRCLRKYQSRTPSPLLHSV
				PSEIVFDFEPGPVFRGSWALLSWSTRP
136	875	131	254	QTPDKKQNDQRNRKRKAEPYETSQGSNNFVSTKVLNSNVLR
137	876	84	504	YFIIKGMVELVPASDTLRKIQVEYGVTGSFKDKPLAEWLRKYN
1	1			PSEEEYEKASENFIYSCAGCCVATYVLGICDRHNDNIMLRSTG
	1		1	HMFHIDFGKFLGHAQMFGSFKRDRAPFVLTSDMAYVINGGEKP
L				TIRFQLFVDL

CEO	CEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ	beginning	end	Amino acid segment containing signal peptide (A-Atanine,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
,		residue	residue	(-possible nacicolide inscritory
	İ	of amino	of amino	
1	ĺ	acid	acid	
		sequence	sequence	
138	877	3'	215	PSPLPSLSLPPPVAPGGOESPSPHTAEVESEASPPPARPLPGE
130	• · ·	-		ARLAPISEEGKPQLVGRF\QVTSSK\NRLSLFPCSQHPPLSLV
Į.]	1		LQNLQPLSSLQRAQIQRTV/PGGGPETREALAESDRAAEGLGA
1		1	(GVEEEGDDGKEPOVGGSPQPLSHPSPVWMNYSYSSLCLSSEES
ł	i	į		ESSGEDEEFWAELQSLRQKHLSEVETLQTLQKKEIEDLYSRLG
		1		KOPPPGIVAPAAMLSSRQRRLSKGSFPTSRRNSLQRSEPPGPG
1]	ļ	ļ	ETA/GHPASIFSLRPLSVDCFSPGPGGLPRGNRPPLPTSPFLT
	1		ļ	*CSPSPHTAEVESEASPPPARPLPGEARLAPISEEGKPOLVGR
1	[[[
			<u> </u>	FPSDFIQGTG
1.39	878	1	337	RRFVSQETGNLYIAKVEKSDVGNYTCVVTNTVTNHKVLGPPTP
1	ļ	ļ	}	LILRNDGVMGEYEPKIEVQFPETVPTAKGATVKLECFALGNPV
]	•	j	}	PTIIWRRADGKPIARKARRHKSRVGK
140	879	72	917	MLRTCYVLCSQAGPRSRGWQSLSFDGGAFHLKGTGELTRALLV
	İ	1		LRLCAWPPLVTHGLLLQAWSRRLLGSRLSGAFLRASVYGQFVA
	İ		į.	GETAEEVKGCVQQLRTLSLRPLLAVPTEEEPDSAAKSGEAWYE
1	1	1	1	GNLGAMLRCVDLSRGLLEPPSLAEASLMQLKVTALTSTRLCKE
1.	'	1	l	LASWVRRPGASLELSPERLAEAMDSGQNLQVSCLNAEQNQHLR
			1	ASLSRLHRVAQYARAQHVRLLVDAEYTSLNPALSLLVAALAVR
			ļ	WNSPGEGGPWVWNTYQACLKDTF*
141	880	219	308	PHHRIAGDTAIDKNIHQSVSEQIKKNFAK
142	881	182	317	QMTNPFFLCFTTMISNCNFFKGPPGPPGEKGDRGPTGESGPRG
	""		1	FP
143	882	177	341	NGIIASFFLRTFIFCFIHIQGCQAGQTIKVQVSFDLLSLMFTF
1 143	1002	1		VSPCTNDLIIH
1744	883	3	1441	KLSVNHRRTHLTKLMHTVEQATLRISQSFQKTTEFDTNSTDIA
144	003	,	1.2.4.7	LKVFFFDSYNMKHIHPHMNMDGDYINIFPKRKAAYDSNGNVAV
1			1	AFLYYKSIGPLLSSSDNFLLKPQNYDNSEEEERVISSVISVSM
i	1		1	SSNPPTLYELEKITFTLSHRKVTDRYRSLCAFWNYSPDTMNGS
] .	1		-	
1				WSSEGCELTYSNETHTSCRCNHLTHFAILMSSGPSIGIKDYNI
	· ·			LTRITQLGIIISLICLAICIFTFWFFSEIQSTRTTIHKNLCCS
i	1	1		LFLAELVFLVGINTNTNKLFCSIIAGLLHYFFLAAFAWMCIEG
1	1		1	IHLYLIVVGVIYNKGFLHKNFYIFGYLSPAVVVGFSAALGYRY
}		1		YGTTKVCWLSTENNFIWSFIGPACLIILVNLLAFGVIIYKVFR
1.		1	1	HTAGLKPEVSCFENIRSCARGALALLFLLGTTWIFGVLHVVHA
1				SVVTAYLFTVSNAFQGMFIFLFLCVLSRKIQEEYYRLFKNVPC
1	1		1	CFGCLR
145	884	1	429	GTREAAPSRFMFLLFLLTCELAAEVAAEVEKSSDGPGAAQEPT
1	1			WLTDVPAAMEFIAATEVAVIGFFQDLEIPAVPILHSMVQKFPG
1	1			VSFGISTDSEVLTHYNITGNTICLFRLVDNEQLNLEDEDIESI
1	1			DATKLSRFIEINSL
146	885	1	156	DETSGLIVREVSIEISRQQVEELFGPEDYWCQCVAWSSAGTTK
140	""	1	120	SRKAYVRIA
7.47	886	1.	121	GTRSIHVKLDVGKLHTOPKLAAOLRMVDDGSGKVEGLPGI
147	080	1 1.	144	OTESTIANTS ACTUALLY TOWNS THE ACTUAL OF THE OTESTIANTS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
148	887	128	652	XCGEDGSFTQVQCHTYTGYCWCVTPDGKPISGSSVQNKTPVCS GSVTDKPLSQGNSGRKDDGSKPTPTMETQQVFDGDEITAPTLW IKHLVIKDSKLNNTNIRNSEKVYSCDQERQSALEEAQQNPREG IVIPECAPGGLYKPVQCHQSTGYCWCVLVDTGRPLPGTSTRYV MPSX*
149	888	128	273	VLQLIKSQKFLNKLVILVETEKEKILRKEYVFADSKVSDSKLL KWAVR
150	889	1	948	RRLSLLDLQLGPLGRDPPQECSTFSPTDSGEEPGQLSPGVQFQ RRQNQRRFSMEDVSKRLSLPMDIRLPQEFLQKLQMESPDLPKP LSRMSRRASLSDIGFGKLETYVKLDKLGEGTYATVFKGRSKLT ENLVALKEIRLEHEEGAPCTAIREVSLLKNLKHANIVTLHDLI HTDRSLTLVFEYLDSDLKQYLDHCGNLMSMHNVKVRPRGQGPP ILAATCPEAQCGDPLSPPGIRLLRWLKPSHVGKRERAMPSTSP GTGLSALPQEQTHTVCHCLAVGIKPTLNSEHQFPSLSNGSVSY LPKCREASGEARGYE
151	890	3	108	HERHEPSPTALAFGDHPIVQPKQLSFKIIQVNDN
152	891	2	208	ARGPSLLSEFHPGSDRPQERRTSYEPIHPGPSPVDHDSLESKR PRLEQASDSHYQGHITGESLPGRVH
153	892	1	116	GTRKEEFSAEENFLILTEMATNHVQVLVEFTKKLPGIF
154	893	74	661	HTHKLVAPRPGLPPTSQWPRDAGRQASGGLPSLSTGPPKGPRD GLARGHPAEWLAGSPGNNSPTQGSLPPQLDLYAGALFVHICLG WNFYLSTILTLGITALYTIAGMVPAAGRSTQGTCKGVRRPPPP TGPREQPRKWPQQEPQKFLPVSLLPGARAPSSNLASTGRGPGC CNLHGRPADAHHGGGGCHPDNQR
155	894	55	312	MVNHSLQETSEQNVILQHTLQQQQQMLQQETIRNGELEDTQTK LEKQVSKLEQELQKQRESSAEKLRKMEEKCESAAHEADLKRQK *
156	895	38	185	VCPKWCRFLTMLGHCCYFWHVWPAS*ALSAGPTPTSRSFSPSP LRSIST
157	896	37	462	MRGPPVLLLQAAPMECPVPQGIPAGSSPEPAPDPPGPHFLRQE RSFECRMCGKAFKRSSTLSTHLLIHSDTRPYPCQFCGKRFHQK SDMKKHTYIHTGEKPHKCQTQREPTMVLSPADKTNVKAAWX*
158	897	3	175	HEQLTNNTATAPSATPVFGQVAASTAPSLFGQQTGITASTAVA TPQVISSRFINLDF
159	898	187	677	VSVFKNCPMY*ICIFLTKMFCVLII*NKF*VHKKPLQEVEIA AITHGALQGLAYLHSHTMIHRDIKAGNILLTEPGQVKLADFGS ASMASPANSFVGTPYWMAPEVILAMDEGQYDGKVDVWSLGITC IELAERKPPLFNMNAMSALYHIAQNESPTLQSNEW

020	650	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ ID	beginning	end	Amino acid segment containing signal peptide (A - Alamine,
ID NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	·
		of amino	of amino acid	
		acid	sequence	,
160	899	sequence 2	1060	RHARPGGGGHSNORKMSLEQEEETQPGRLLGRRDAVPAFIEPN
100	رری	"	#000	VRFWITERQSFIRRFLQWTELLDPTNVFISVESIENSRQLLCT
l l				NEDVSSPASADQRIQEAWKRSLATVHPDSSNLIPKLFRPAAFL
				PFMAPTVFLSMTPLKGIKSVILPQVFLCAYMAAFNSINGNRSY
				TCKPLERSLLMAGAVASSTFLGVIPQFVQMKYGLTGPWIKRLL
				PVIFLVQASGMNVYMSRSLESIKGIAVMDKEGNVLGHSRIAGT
			ŀ	KAVRETLASRIVLFGTSALIPEVFTYFFKRTQYFRKNPGSLWI
[[LKLSCTVLAMGLMVPFSFSIFPQIGQIQYCSLEEKIQSPTEET
1				EIFYHRGV
161	900	3	564	HASGRLEVFYNGTWGSVGRRNITTAIAGIVCRQLGCGENGVVS
				LAPLSKTGSGFMWVDDIQCPKTHISIWQCLSAPWERRISSPAE
ĺ		Ì		ETWITCEDRIRVRGGDTECSGRVEIWHAGSWGTVCDDSWDLAE
{	{	{	1	AEVVCQQLGCGSALAALRDASFGQGTGTIWLDDMRCKGNESFL
				WDCHAKPWGQSDCG · ·
162	901	1099	2	LGDFPQPQRQRRPGASDLPPHLAGARQWEVRFFRHLPARTLPP
	l			SLRMPEGPELHLASQFVNEACRALVFGGCVEKSSVSRNPEVPF
	!	1		ESSAYRISASARGKELRLILSPLPGAQPQQEPLALVFRFGMSG
				SFQLVPREELPRHAHLRFYTAPPGPRLALCFVDIRRFGRWDLG
		i	i	GKWQPGRGPCVLQEYQQFRENVLRNLADKAFDRPICEALLDQR
	1	l		FFNGIGNYLRAEILYRLKIPPFEKARSVLEALQQHRPSPELTL
				SQKIRTKLQNPDLLELCHSVPKEVVQLGGRGYGSESGEEDFAA
		i		FRAWLRCYGMPGMSSLQDRHGRTIWFQGDPGPLAPKGRKSRKK
				KSKATQLSPEDRVEDALPPSK
163	902	3	335	LTWSACYWRDILRIQLWIAADILLRMLEKALLYSEHQNISNTG
]			ł	LSSQGLLIFAELIPAIKRTLARLLVIIASLDYGIEKPHLGTGM
				HRVIGLMLLYLIFANAESVIRVIG
164	903	2	135	FFFEMESRSAAQAGVQWCNLGSLQALPPRFTPFSCLSLPSSWD Y
165	904	74	645	YECEELAKKLENSQRDGISRNKLALAELYEDEVKCKSSKSNRP
[KATVFKSPRTPPQRFYSSEHEYSGLNIVRPSTGKIVNELFKEA
	j			REHGAVPLNEATRASGDDKSKSFTGGGYRLGSSFCKRSEYIYG
				ENQLQDVQILLKLWSNGFSLDDGELRPYNEPTNAQFLESVKRG
				VTLIACMPEIQQLMLEIF
166	905	14	1257	WPCGAAPGLTHASERMFTLTTMIQALAPVMGWDRKPLKMFSSE
				EMRGHLHHHHKCLTKILKVEGQYPDLPSCLPLTDNTRMLASIL
		1		INMLYDDLRCDPERDHFRKICEEYITGKFDPQDMDKNLNAIQT
1		}]	VSGILQGPFDLGNQLLGLKGVMEMMVALCGSERETDQLVAVEA
]	1	1	1	LIHASTKLSRATFIITNGVSLLKQIYKTTKNEKIKIRTLVGLC
				KLGSAGGTDYGLRQFAEGSTEKLAKQCRKWLCNMSIDTRTRRW
	1	1	1	AVEGLAYLTLDADVKDDFVQDVPALQAMFELAKTSDKTILYSV
1		1		ATTLVNCTNSYDVKEVIPELVQLAKFSKQHVPEEHPKDKKDFI
	1	1	1	DMRVKRLLKAGVISALACMVKADSAILTDQTKELLARVFLALC
		,	,	DNPKDRGTIVAQGGGKALIPLALEGTD

C 650			D . 11	The state of the s
SEQ ID	SEQ ID	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine,
NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, 1=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
)		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
j		acid	acid	\=possible nucleotide insertion)
	,	residue	residue	·
•		of amino	of amino acid	
		acid	sequence	'
167	906	sequence 3	894	VDSVGGGSESRSLDSPTSSPGAGTRQLVKASSTGTESSDDFEE
] ***/	100]	05.	RDPDLGDGLENGLGSPFGKWTLSSAAQTHQLRRLRGPAKCREC
l	}			EAFMVSGTECEECFLTCHKRCLETLLILCGHRRLPARTPLFGV
}		1		DFLOLPRDFPEEVPFVVTKCTAEIEHRALDVQGIYRVSGSRVR
]	ł	1		VERLCQAFENGRALVELSGNSPHDVSSVLKRFLQELTEPVIPF
]	ļ	ļ		HLYDAFISLAKTLHADPGDDPGTPSPSPEVIRSLKTLLVQLPD
]	SNYNTLRHLVAHLFRVAARFMENKMSANNLGIVFGPTL
168	907	1	394	GLHVISLHSADGRHWEDPLSELDSERVSAFLVTETLVFYLFCL
***]	-		LADETVVPPDVPSYLSSQGTLSDRQETVVRTEGGPQANGHIES
Į.	1		[NGKASVTVKQSSAVTVSLGAGGGLQVFTGQVPGIRWGKLGEAH
	1	{		AS
169	908	179	551	KIKHRPEEEPRWAAAGAQSAGPGAAEVAPPRPGTVAPGANGMT
			1	DSATANGDDRDPEIELFVKAGIDGESIGNCPFSQRLFMILWLK
l	ł			GVVFNVTTVDLKRKPADLRNLAPGTHPPFLAFNWYVKT
170	909	1	335	LGFSDGQEARPEEIGWLNGYNETTGERGDFPGTYVEYIGRKKI
		1	l	SPPTPKPRPPRPLPVAPGSSKTEADVEQQVLYKYRKKPSSSHR
				PQTPHNGKSKNFLHKQGLKKKKASL
171	910	1	895	RTRGVMELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKE
	1	İ	ļ	VWDYVTVRKDAYMFWWLYYATNSCKNFSELPLVMWLQGGPGGS
	Í			STGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSY
1	1	ĺ		VNGSGAYAKDLAMVASDMMGLLKTFFSCHKEFQTVPFYIFSES
ļ	•	ł		YGGKMAAGIGLELYKAIQRGTIKCNFAGVALGDSWISPVDSVL
l		ŀ		SWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYREATELW
			<u> </u>	GKAEMIIEQVKRGNTQRRACLAFSGGYRAHGWCCQTWSLH
172	911	553	194	PGWSRSPDLVIRLPRPPKVLGLQYYHFFFFLRWSL/DSVAQAE
Ì		1.		VQWHDLRSLQAPPPGFTPFSCLSLPGSWDYRCPPPRPANFLYF
}	1	1	ł	**RRGFTVLARMVSIS*PRDPPASASQSAGITVLSLFFFFEME
Ì	1		ĺ	SCSVAQAGVQWRYLGSLQALPPGFTPFSCLSLPSSWDYRRPPP
	 	1200	 _ · -	RPANFFVFLVETGVSPC*PGWSRSPDLVIRLPQPPKVLGLQV PSMKTGELEKETAPLRKDADSSISVLEIHSOKAOIEEPDPPEM
173	912	1761	1	
1		}	}	ETSLDSSEMAKDLSSKTALSSTESCTMKGEEKSPKTKKDKRPP ILECLEKLEKSKKTFLDKDAORLSPIPEEVPKSTLESEKPGSP
1		1	i i	EAAETSPPSNIIDHCEKLASEKEVVECQSTSTVGGQSVKKVDL
	1			ETLKEDSEFTKVEMDNLDNAOTSGIEEPSETKGSMOKSKFKYK
1	1	i	i	LVPEEETTASENTEITSERQKEGIKLTIRISSRKKKPDSPPKV
1		1	i	LEPENKOEKTEKEEEKTNVGRTLRRSPRISRPTAKVAEIRDQK
				ADKKRGEGEDEVEEESTALOKTDKKEILKKSEKDTNSKVSKVK
1	1			PKGKVRWTGSRTRGRWKYSSNDESEGSGSEKSSAASEEEEEKE
	1			SEEAILADDDEPCKKCGLPNHPELILLCDSCDSGYHTALPFAP
	1			PLMIHPQMGGW\F\CPTFCPTLNLLLLEKLEDQF\QDL\DVAL
	1	1		KKERALPERRK\ERLVYVGI\SIENIIPPQ\EPDFSEDQEEKK
	1			KDSKKSKANLL\ERRSTRTRKCISYRFDEFDEAIDEAIEDDIK
-		-		EADGGGVGRGKDISTITGHRGKDISTILDEER
I	L	1		

			D 1:	The state of the s
SEQ	SEQ	Predicted	Predicted end	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Nucleic	of Amino	corre-	сотте-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
110103	Acias	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
ļ	1	of amino	of amino	
ļ	ţ	acid	acid	·
174	913	sequence 3	sequence 539	KRRGSFKMAELDOLPDESSSAKALVSLKEGSLSNTWNEKYSSL
174	913	3	539	OKTPVWKGRNTSSAVEMPFRNSKRSRLFSDEDDRQINTRSPKR
[NORVAMVPOKFTATMSTPDKKASQKIGFRLRNLLKLPKAHKWC
1	ŀ	ł		IYEWFYSNIDKPLFEGDNDFCVCLKESFPNLKTRKLTRVEWGK
	1	}	ł	· IRRLMG
175	914	166	635	MPEYLRKRFGGIRIPIILAVLYLFIYIFTKISVDMYAGAIFIQ
1 - 1 - 1)	1 -00	""	OSLHLDLYLAIVGLLAITAVYTVAGGLAAVIYTDALOTLIMLI
1)		}	GALTLMGYSFAAVGGMEGLKEKYFLALASNRSENSSCGLPRED
1))	1	AFHIFRDPLTSDLPWPGVLFGMSIPSLX*
176	915	673	1025	XSASATSLTLSHCVDVVKGLLDFKKRRGHSIGGAPEQRYQIIP
				VMCCSLLATGGADRLIHLWNVVGSRLEANQTLEGAGGSITSVD
	١.,			FDPSGYQVLAATYNQVAQFWK*
177	916	3	139	QKRFPSNCGRDGKLFLWGQALHIIAKLLGKWRRLGMVFFSLLL
				SY
178	917	1	541	VHVCSSKMGALSTERLQYYTQELGVRERSGHSVSLIDLWGLLV
		ļ		EYLLYQEENPAKLSDQQEAVRQGQNPYPIYTSVNVRTNLSGED
1.	1	Į		FAEWCEFTPYEVGFPKYGAYVPTELFGSELFMGRLLQLQPEPR
1	İ	ļ		ICYLQGMWGSAFATSLDEIFLKTAGSGLSFLEWYRGSVNITDD
l	l			COKPOLHN
179	918	1	628	EFLGRPTRPAKDEGNDEGKDEGKDEGKDEGKDEGKDEK
	[}]	DEGKDEGKDEGKDEGKDEGKDEGKDEGKDEGKDEG
	1	1		NDEGKDEGKDEGKDEGKDEGKDERKDE
1	1	1		GKDEGKDEGKDEGKDEGKDEGKDEGKDEGKD
ł			ì	EGKDEGKDEGKDEGNDEGNDEGKDEGKDEGKDEGKDEGKDEGK
1		1	1	DEGKDEGKDEGKDEGKDEGKDEGKDEGKDEGKDEGKDEG
100	1070	27	471	NDEGKDERKDEGKDEGKDK PSLRPAWHEGEDFSYGLQPYCGYSFQVVGEMIRNREVLPCPDD
180	919	21	4/1	CPAWAYALMIEGWNEFPSRRARFKDIHSRLRAWGNLSNYNSSE
			1	OTSGGRNTTOTSSLSTSPLCNVSNAPYVGPKOKVPPFPQTQVI
	1	1		PMKGQIRPMVPPPQLYVP
181	920	2	454	RNSGRHPRVRWILEERKRVMQEACAKYRASSSRRAVTPRHVSR
1 202	920	1	3,3	IFVEDRHRVLYCEVPKAGCSNWKRVLMVLAGLASSTADIQHNT
	1			VHYGSALKRLDTFDRQGILHRLSTYTKMLFVREPFERLVSAFR
1				DKFEHPNSYYHPVFCMAILAR
182	921	12	378	IMYSISPANSEEGOELYVCTVKDDVNLDTVLLLPFLKEIAVSQ
1 - 52	·	-		LDQLSPEEQLLVKCAAIIGHSFHIDLLQHLLPGWDKNKLLQVL
1		}		RALVDIHVLCWSDKSQELPAEPILMPSSIDIIDGTKEKK
183	922	181	513	GPHVVLVLRRCFLLSYFKGVEKAKAMPSPRILKTHLSTQLLPP
				SFWENNCKVRYQQLPVTEGKVSQPKRVLQTPTQSIRDHLCLST
1				VSDAYQQRENIKFYIQQDIHLNSFK
184	923	32	239	FYYICRLSKEDKAFLWEKRYYCFKHPNCLPKILASAPNWKWVN
	[1		LAKTYSLLHQWPALYPLIALELLDSK

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue	Predicted end nucleotide location corre- sponding to first amino acid residue	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
		of amino acid sequence	of amino acid sequence	
185	924	3	361	KMMI*GLFEIQQCPIGKHCNFLQVLRN/PNRDL/WLVSSFGKS SKGRERMGHHDEYYRLRGR/HNPSPDHSYKRNGESERKRKKSH *HMSKSQERHNSPSRGRNSDRSGGRCSRSDNGRSRYR
186	925	443	1412	PLSLFARVAGSRVEMPEPPGLGDEGRPLLHPGRREAVGSWVSA FAGDSTPCGPGDLSVPRREPFRLTAL*PHRSPVVRTSLIGLLL GFSVKEELRGVGWAARTPLGIR
187	926	2	917	FDKRQHEARIQQMENEIHYLQENLKSMEEIQGLTDLQLQEADE EKERILAQLRELEKKKKLEDAKSQEQVFGLDKELKKLKKAVAT SDKLATAELTIAKDQLKSLHGTVMKINQERAEELQEAERFSRK AAQAARDLTRAEAEIELLQNLLRQKGEQFRLEMEKTGVGTGAN SQVLEIEKLNETMERQRTEIARLQNVLYLTGSDNKGGFENVLE EIAELRREGSYQNDYISSMADPFKRRGYWYFMPPPPSSKVSSH SSQATKDSGVGLKYSASTPVRKPRPGQQDGKEGSQPPPASGYW VYSP
188	927	171	1082	SDASSFKTRVIVVPRPRVFPLGSAITENSLESDSQIGQFGVGF YSAFLVADKVIVTSKHNNDTQHIWESDSNEFSVIADPRGNTLG RGTTITLVLKEEASDYLELDTIKNLVKKYSQFINFPIYVWSSK TETVEEPMEEEEAAKEEKEESDDEAAVEEEEEKKPKTKKVEK TVWDWELMNDIKPIWQRPSKEVEEDEYKAFYKSFSKESDDPMA YIHFTAEGEVTFKSILFVPTSAPRGLFDEYGSKKSDYIKLYVR RVFITDDFHDMMPKYLNFVKGVVDSDDLPLNVSRETLQQHKLL KV
189	928	718	275	CGSWMRRALIPPCRGGPSASDRCCSCSPSGFSAGRGRCPVQGC LRPHRVQLLRRWGPGSPAGQRLSKGFQLLRWWGPGSPAPEPRK GPFPPDPPWPVTAVTVMAGSVPSAQSVDALESPGPLALEGPS SPRNLLWREMSIFLPGIF
190	929	1	550	PGPTPPPRHGSPPHRLIRVETPGPPAPPADERISGPPASSDRL AILEDYADPFDVQETGEGSAGASGAPEKVPENDGYMEPYEAQK MMAEIRGSKETATQPLPLYDTPYEPEEDGATPEGEGAPWPRES RLPEDDERPPEEYDQPWEWKKERISKAFAVDIKVIKDLPWPPP VGQLDSSPSLP
191	930	1	562	QFFSLFLRYQIHTGLQHSIIRPTQPNCLPLDNATLPQKLKEVG YSTHMVGKWHLGFYRKECMPTRRGFDTFFGSLLGSGDYYTHYK CDSPGMCGYDLYENDNAAWDYDNGIYSTQMYTQRVQQILASHN PTKPIFLYIAYQAVHSPLQAPGRYFEHYRSIININRRRYAAML SCLDEAINNVTLALK
192	931	3	580	RVRKGRGGERLQSPLRVPQKPERPPLPPKPQFLNSGAYPQKPL RNQGVVRTLSSSAQEDIIRWFKEEQLPLRAGYQKTSDTIAPWF HGILTLKKANELLLSTGMPGSFLIRVSERIKGYALSYLSEDGC KHFLIDASADAYSFLGVDQLQHATLADLVEYHKEEPITSLGKE LLLYPCGQQDQLPDYLELFE

050	CEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ	beginning	end	Amino acid segment containing signal populae (A-Alamie,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Nucleic	of Amino	сотге-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acius	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
}	}	acid	acid	\=possible nucleotide insertion)
	l	residue	residue	,
1	l	of amino	of amino	
ł		acid	acid	
1	Ì	sequence	sequence	
193	932	3	1641	GSLEKALFQLLKVWGQWAEQTRRLQRLDVSLSVARVRSAGPSC
	1	1	[QNKGDLVMEALLEGIQNRGHGGGFLTSCEAELQELMKQIDIMV
]	ļ	l	}	AHKKSEWEGRTHALETCLKIREQELKSLRSQLDVTHKEVGMLH
ļ	1	l	1	QQVEEHEKIKQEMTMEYKQELKKLHEELCILKRSYEKLQKKQM
1	1	Ι.	1	REFRGNTKNHREDRSEIERLTAKIEEFRQKSLDWEKQRLIYQQ
	ł		1	QVSSLEAQRKALAEQSEIIQAQLVNRKQKLESVELSSQSEIQH
ł	1	1	1	LSSKLERANDTICANELEIERLTMRVNDLVGTSMTVLQEQQQK
	ļ	}		EEKLRESEKLLEALQEEKRELKAALQSQENLIHEARIQKEKLQ
{	{		{	EKVKATNTOHAVEAISLESVSATCKOLSQELMEKYEELKRMEA
}	1	}	ł	HNNEYKAEIKKLKEQILQGEQSYSSALEGMKMEISHLTQELHQ
		ł	ļ	RDITIASTKGSSSDMEKRLRAEMQKAEDKAVEHKEILDQLESL
	l	1	ł	KLENRHLSEMVMKLELGLHECSLPVSPLGSIATRFLEEEELRS
1		 		HHILERLDAHIEELKRESEKTVRQFTALK
194	933	159	1053	TGFLGWSQGPSLTPTSLSALYPSQVEETGVVLSLEQTEQHSRR
1 -3-	733	} ====	,	PIORGAPSOKDTPNPGDSLDTPGPRILAFLHPPSLSEAALAAD
		l l		PRRFCSPDLRRLLGPILDGASVAATPSTPLATRHPQSPLSADL
1		1	}	PDELPVGTENVHRLFTSGKDTEAVETDLDIAQDADALDLEMLA
		1	1	PYISMDDDFQLNASEQLPRAYHRPLGAVPRPRARSFHGLSPPA
		1	[LEPSLLPRWGSDPRLSCSSPSRGDPSASSPMAGARKRTLAQSS
1	1	1	1	KDEDEGVELLGVRPPKRSPSPEHENFLLFPLSLSFLLTG
195	934	 3	425	ELQDCFDVHDASWEEQIFWGWHNDVHIFDTKTQTWFQPEIKGG
133	734	} 3	423	VPPQPRAAHTCAVLGNKGYIFGGRVLQTRMNDLHYLNLDTWTW
1 -	1	1		SGRITINGESPKHRSWHTLTPIADDKLFLCGGLNAYNMPLSDG
	1	ł		WIHNVTTHCWK
100	1005	2	295	FFFLRTRSHSVTPRWECSDDITAHWQPQPWGSSDPLTFS/RPQ
196	935	2	295	VVVPPRHTTLCP\ANFFVFCIFCRNRISPCWPGWSRTPWAQLI
1	1	ł	1	1
	1	 	 	RLPRPPKVLGLQV
197	936	2	737	PREGOVKOGLIGDCWFLCACAALQKSRHLLDQVIPPGQPSWAD
	}	}		QEYRGSFTCRIWQFGRWVEVTTDDRLPCLAGRLCFSRCQREDV
	1	1		FWLPLLEKVYAKVHGSYEHLWAGQVADALVDLTGGLAERWNLK
1	1		1	GVAGSGGQQDRPGRWEHRTCRQLLHLKDQCLISCCVLSPRAGE
1			1	ARGOHGRAAASVPPTARPQAHCSFLCDWLHSPVRTKWEEVSLF
L			<u> </u>	SRVVSSVCDLPLLSSSRGTWPFSPLTSPFH
198	937	3	638	AECLEASIARYAHRVANSRYTFDGETVTLSPSQGVNQLHGGPE
				GFDKRRWQIVNQNDRQVLFALSSDDGDQGFPGNLGATVQYRLT
1			1	DDNRISITYRATVDKPCPVNMTNHVYFNLDGEQSDVRNHKLQI
			1	LADEYLPVDEGGIPHDGLKSVAGTSFDFRSAKIIASEFLADDD
			<u> </u>	QRKVKGYDHAFLLQAKGDGKKVAAHVWSADEKLQLKVYT
199	938	69	425	PLSRFLSKESQEDWGMERQSRVMSEKDEYQFQHQGAVELLVFN
			1	FLLILTILTIWLFKNHRFRFLHETGGAMVYDKPPKFAMSREQM
ļ	1	ļ	}	SQSCSHTAHNASLLTDAGPLSCGESRASCLFL

Section Sect	SEC	CEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
NO: of Nucleic Acids Acids	SEQ	SEQ			C—Custaine D—Acrestic Acid R= Clutamic Acid
of Macide Acids of Spring of Spring of School Research Acids of Spring Spring of State and School Research Acids of State and School Research Resea					C=Cysteme, D=Aspartic Acid, E= Globaline Acid,
Acids			location	location	F=Pnenylalanine, G=Glycille, H=Histotile, 1-isotelicille,
Acids Acids Sponding to first amino acid residue of amino acid residue of amino acid residue of amino acid residue of amino acid residue of amino acid sequence property of the state of the section of t		1	corre-		
to first amino acid residue of amino acid residue of amino acid sequence se			sponding		
acid residue of amino acid of amino acid residue of amino acid of amino acid sequence sequence sequence sequence sequence sequence sequence property of the sequence sequence sequence and acid sequence sequence sequence sequence and acid sequence sequence sequence sequence sequence and acid sequences sequence sequence sequence sequence sequence sequence sequence sequences sequence sequence sequences sequence sequences sequence sequences sequence sequence sequence sequence sequences s		1	to first		T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
residue of amino acid sequence					
of amino acid sequence sequenc	:	1			\=possible nucleotide insertion)
acid acid sequence sequence sequence sequence sequence sequence sequence sequence sequence 200 939 3 435 DSKEPRLQLGLLEEQLRGLGFRQTRGYKSLAGCLGHGPLVL QLLSFTLLAGLLVQVSKVPSSISGEQSRQDATYQNLTQLKAAV QLLSFTLLAGLLVQVSKVPSSISGEQSRQDATYQNLTQLKAAV QLLSFTLLAGLLVQVSKVPSSISGEQSRQDATYQNLTQLKAAV GELSERSKLQETYQBLTQKAAVGELPEKSKLQEIYQELTWLK AAVGELPEKSKNQE MQSIAWGHRDRGGSFLGWGQSSEASPSALTEAPKAAHTTRLG FLAANNPHORGSQFDSFLL* 202 941 1 714 FETLSMRGIPHMLALGPQQLLAQDEEGDTLLHLFAARGLRWAA YAAAAU'LQVYRRLDIRERKGKTPLLVAAAANQPLIVEDLLNIG AEPNAADHQGRSVLHVAATYGLGPGULAVUNSGQVDVDLEARDF EGITPLHTAILALNVAMRPSDLCPRVLSTQARDRLDCVHMLLQ MGANHTIQVSGDVGGQTLGDCVEWGHLDVRELQANADFASSL RALEHVTSLLCALRVPCLFLCQL RALEHVTSLLCALRVPCLFLCQL RALEHVTSLLCALRVPCLFLCQL RALEHVTSLLCALRVPCLFLCQL RALEHVTSLLCALRVPCLFLCQL RALEHVTSLLCALRVPCLFLCQL RALEHVTSLLCALRVPCLFLCQL RALEHVTSLLCALRVPCLFLCAL RALEHVTSLLCALRVPCLGERKVVERELDALLEQQNTIESKWV TLRMMGPNLQLIEGDAKQLAGMITFTCNLAENVSSKVRQLDLA KNRLYQAIQRADDILDLKFCMBGVGTALR ARAWSSAFDNLIGNHISKTLQGSTALRTFTGWNLILSTVIGTASV ARAWSSAFDNLIGNHISKTLQGSTALRTFTGWNLILSTVIGTASV ARAWSSAFDNLIGNHISKTLQGSTALRTFTGWNLILSTVIGTASV ARAWSSAFDNLIGNHISKTLQGSGFVVPFGFGILRGA ATCTYAFVGFDCLATTGEBAQNFQRSIFMGIGISLSVCFLADF AVSSALTLMMPYYQLQPESP EMVQDDFELHAISGETTNTHQFDRSSLMRRRGTAVFFFTVILAT DQGIPQPLKDQATVHVYMKDINDNAPKFLKDFYQATISESAAN LTQVLRVSASDVDEGNNGLIHYSILKGREEQFAIDSTSGQVT LIGKLDYEATPAYSLVIQAVDSGTIPLMSTCTLMIDILDENDN TPFFF/LLNQHFFYDLLNGHFGLGAGSGTATDS\DSGGDIADLY XKFTGTKHPPGTFSISPKHLGVFFLAQK 200 945 3 363 GDCZDLYGGEKFATLAELVQYYWEHRGGLKAGAGTATDS\DSGGDIADLY XKFTGTKHPPGTFSISPKHLGVFFLAQK 201 946 218 717 IDSGNQNGGNDDKTKNAERNYLUVLPGEFYTTRISNLSEIHVA VQFLVPGSGSGEMFFGLEKKKSSFLVTRSQSHFG DFVLSVCTGDDKGENDGLKKKAALLIVECKTBDITTISIPL LLVIBMSEEMTIPCKGRRABLVFKCVKGFMWEMASWDGGISRT VQFLVPQSISEMFFYQLSNMLPQIFRVSSTLTTSKNLSEIHVA VQFLVPQSISEMFFYQLSNMLPQIFRVSSTLTTSKNLSEIHVA VQFLVPQSISEMFFYQLSNMLPQIFRVSSTLTTIKNGGGQPV FLGVLPFFV GGLARALLYFTUNGGTVSTSTLTTTTT IEGGTGVSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LLVVRGGTATNTTUNGGTGVSGTTTVTINKSGRAFSIHNHV					
Sequence Sequence] ••	3	
200 939 3					·
QLLSFTLLAGLLYQUSKVPSSISQESRQDAIYQNLTQLKAAV GELSEKSKLQEIYQELTQLKAAVGELPEKSKKQE 201 940 657 469 MQSIAWGHRRDRGESPLGWGQESEASPSALTEAPKAAHTTRLG FLAANNFNGHSQPQSFLLA 202 941 1 714 FFTLSNRGIPHMLALGPQQLLAQDEEGDTLLHLFAARGLRWAA YAAAEVLQVYRRIDIREHKSKTPLLVAAAANQPLIVEDLLING AEFNAADHQGRSVLHVAATYGLPGVLLAVLNSGVQVDLERADF EGGLTPLHTAILALNVAMRPSDLCPRVLSTQARDRLDCVEMUL MGANHTIQVSGDVGQTLGDCVEWGHLDVRELQANADFASSLL RALEHVTSLLCALRVFCLFLCQL DAWADAWVGTKWADLDSPFKLSGVQQPSEGVGGGRCSEISAEL IRSLTELQELEAVYERLCGBEKVVERELDALLEQONTIESKWV TLHRMGFNLQLIEEGDAKQLAGMITFTCNLAENVSKXVRQLDLA KNRLYQAIQRADDILDLKFCMDGVQTALR ARAWSSAFDNLIGNHISKTLQGSIALHVPHVLAEYPOFFALGL VLLITGLALGASESALVTKVFTGVNLLVLGFVMISGFVKGDV HNWKLTEEDVELAMAELNDTYSLGPLGSGFVPFGFEGILRGA ATCFYAFVVGFDCLATTGEBAQNPQRSIPMGIGISLSVCFLADF AVSSALTLMMPYYQLQPESP GFHPNTTHYRRARAARAGAGSFVGEVSAVDKDFGPNGEVRSF EMVQPDFELHAISGEITNTHQFDRESLMRRRGTAVFSFTVIAT DQGIPQPLKDQATVHVYMKDINNNAKFFLKDFYQATISESAAN LTQULRVSASDVDEGNINGLHYSIIKGNEEROFAIDSTSGQVT LIGKLDYEATPASLVIQAVDSGTIPLNSTCTLINILDLENDN TPFF/LLNQHFFVDVLENMRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISFKHLGVFFLAQK 206 945 3 363 GDCYDLYGGEKFATLAELVQYVEHHGOLKERNGDVIELKNPL NCADPTSQRWFHGHLSGKRAEKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMHCQELK 207 946 218 717 IDSGNQNGGNDDKYKNAERNYLNVHJEFFYTITRISNLSELHVA FHLCVDDHVKSGNTTARDPAIMGLRNILKVCCTHDITTISIPL LLVEDMSEEWTIPVCLRAERLVFKCVKGFMMEAASNDGGISRT VQFILVPGSISEEMTYQLSINNEDGTFKYSTSTFMLTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ PLGVREGRYTGIIVPLITGISVFLAPLALLLLEDLFV GGSGRYEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQVYCGSTVETTTIKNGGEQRYYESRADDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNTTQHGGSQIVKQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVCGSTUSTTTSTRINGGERFYSSGALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNTTQHGGGALLKTNTTGGTTVSGTNSEGAFSIHNHV	200	020			DEVERBLOOLGLI FREOLDGI GEROTRGYKSLAGCI GHGPLVI.
GELSEKSKLQBIYQBLTQLKAAVGELPEKŠKLQBIYQELTWLK AAVGELPEKSKMQE PKAAVGELPEKSKMQE PKAAVGELPEKSKMQE PKAANFENDRGESPLGWGQGSEASPSALTEAPKAAHTTRIG FLAANFENDRGSPLGWGQGSEASPSALTEAPKAAHTTRIG FLAANFENDRGSPQDLLAQDEEGDTLLHLFAARGLRWAA YAAASULQVYRRLDIEHKGKTPLLVAAAANQPLIVEDLLNIG ABENAADHQGRSVLHVAATYGLPGVLLAVLNISGVQVDLEARDF EGLTPLHTAILALNVAMRPSDLCPRVLSTQARDRLDCVHMLLQ MGANHTIQVSGDVGGQTLGDCVEWGHLDVRELQANADFASSLL RALEHVTSLLCALRVFCLFLCQL MGANHTIQVSGDVGGGTLGDCVEWGHLDVRELQANADFASSLL RALEHVTSLLCALRVFCLFLCQL RALEHVTSLLCALRVFCLFLCQL MGANHTIQVSGDVGGGTCSEISAEL IRSITELQELEAVYERLCGEKVVERELDALLEQONTIESKMV TLHRMGFNLQLIEGDAKQLAGMITFTCNLAENVSSKVRQLDLA KNRLYQAIQRADDLLDKFCMGGVQTALR ARAWSSAFDNLIGNHISKTLQGSIAHHVPHVLAEYPDFFALGL VLLLITGILAIGASESALVTKVFTGVAILLYGYMISGFVKGDV HNWKLTEEDYELAMAELNDTYSLGPLGSGGFVFFFFALGL VLLLITGILAIGASESALVTKVFTGVAILLLYGYMISGFVKGDV HNWKLTEEDYELAMAELNDTYSLGPLGSGGFVFFFFFALGL VLLLITGILAIGASESALVTKVFTGVAILLUGFWISGFVKGDV HNWKLTEEDYELAMAELNDTYSLGPLGSGGFVFFFGFGILRGA ATCFYAFVGFDCIATTGEEAQNPQRSIPMGIGSLSVCFLADF AVSSALITHMPYYQLOPESP MCGDFPGFLAGAT MCGDFPGFLOATTVVMKDINNDAPKFLKDFYQATISESAAN LTQVLRVSASDVDEGNIGLHYSIIKGNERGFAIDSTSGQVT LIGKLDYEATPAYSLVIQAVDSTIPLNSTCTLNIDILDENDN TPFF/LLQUFFDVVLENMRIGELGASGTATDS\DSGQDIADLY KYFTGTKHPPGTFSISPKHLGVFFLAQK CDCYDLYGGEKFATLAELVQYYMEHGGLKEKNGDVIELKNPL NCADPTSQRWFHGHLSCKEARKLLTEKGKKSSFLVRESSSHPG DFVLSVCTGDDKGESNDGKSKVTFWMHCQELK MCADPTSQRWFHGHLSCKEARKLLTEKGKKSSFLVRESSSHPG DFVLSVCTGDDKGESNDGKSKVTFWMHCQELK FHLCVDDHVKSGNTTARDPAIMGLRNILKVCCTHDITTISPH LLVEMBSEEMTIFWCLRRAELVFKCVKGFMMEMASNDGGISRT VQFLVPQSISEEMFYQLSNMLPQTFRVSSTLTITSKH SILPALLVTILIFDQQITAVIVNKENKKKAAGHHLDLFW GILMALCSFMGLPWYAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFLIGGIGGGTVTVSGRADTTINKSGSQDVVQ GSLATNTTINGGRQYVEGSTVETTTIKNGGGRVYESSALDTT LEGGTQSLNSKSTAKNTHIYSGGTQUVNNTSSTDVIEVYSGGV LDVRGGTANNTQBIGGALKTNTNTGTTVSGTNSEGAPSIHNHV	200	939	13	433	
AAVGELPEKSKMGE PAGE		1	İ	1	
201 940 657 469 MQSIAWGHRRDRGESPIGWGQESEASPSALTEAPKAAHTTRLG FILANINPINCHSQPQDISTIL*			1	1	
PILAAINPINEHSQPQDEFILI* PETTISMRGIPHMIALGPQQILAQDEEGDTLIHLFAARGLRWAA YAAAEVIQVYRKIDIREHKGKTPILVAAAANQPIJVEDLINIG AEPNAADHQGRSVLHVAATYGLPGVILAVINSGVQVDLEARDF EGLTPIHTAILALNVANRPSDLCPRVLSTQARDRIBOCHMILQ MGANHTIQVSGDVGGQTIGDCVERGHLDVRELQANADFASSLL RALEHVTSLLCALRVFCLFLCQL 203 942 3 479 DAWADAWVGTKMADLDSPPKLSGVQQPSEGVGGGRCSEISAEL IRSLTELQELEAVYERLCGEBKVVERELDALLEQQNTIESKMV TLHRMGPNLQLIEGDAKQLAGMITFTCNLAENVSSKVRQLDLA KNRLYQAIQRADDILDLKFCMBGVGTALR 204 943 1 706 AVERTVPRSGGAYLYSYVTVGELWAFTTGWNLILSYVIGTASV ARAWSSAFDNLIGNHISKTLQGSIALHVPHVLAEYPDFFALGL VLLITGILALGASESALVTKVFTGVNLLVLGFVMISGFVKGDV HNKKLTEEDVELAMAELMDTVSLGFLASFFVKGDV HNKKLTEEDVELAMAELMDTVSLGFLASGFVFGFFGGILRGA ATCFYAFVGFDCIATTGEEAQNPQRSIPMGIGISLSVCFLADF AVSSALTIAMPYYQLQPESP 205 944 1 852 GFHPNTTHYRARAARAGAGSFVGEVSAVDKDFGPNGEVRYSF EMVQPDFELHAISGEITNTHGFDRESLMRRRGTAVFSFTVIAT DQGIPQPLKDQATVHVYMKDINDNAPKFLKDFYQATISESAAN LTQVLRVSASDVDEGNNGLIHYSIIKGNEERQFALDSTSGQVT LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNIDILDENNN TPFF/LLNQHFVDVLEMRRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISPKHLGVFFLAQK 206 945 3 363 GDCYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKNPL NCADPTSQRWFHGHLSGKEAKKLITEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMHCQELK FHLCVDDHVKSGNITARDPAIMGLKNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCASGNVGSNDDKYKNABERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCARAELVFFKCKFFMEMASMGGISRT VQFLVPQSISEMFYQLSNMLPQIFRVSSTLTITSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKENKLKAAGYHLDLFWVGILMALCSFMGLPWVAAATVISIAHIDSLKMETETSAGEQPQ FLGWRGQRVTGIVFILTISIVFLAPILKCTIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQVYEGSTVETTTIKNGGGQRVYESGALDTTIGGGGTATNNTYCHDGAILKTNTNGTTVSGTNSEGAFSIHNHV		040	657	469	
P41 T14	201	940	657	409	
YAAAEVLQVYRRLDIREHKGKTPLLVAAAANQPLIVEDLLINIG AEPNAADHQGRSVLHVAAATYGLPGVLLAVINGSGVVDLEARDE EGLTPLHTAILALAUNARPSDLCPRVLSTQARDRLDCYHMLDQ MGANHTIQVSGDVGGQTLGDCVEWGHLDVRELQANADFASSLL RALEHVTSLLCALRVFCLFLCQL 203 942 3 479 DAWADAWVGTKMADLDSPPKLSGVQQPSEGVGGGRCSEISAEL IRSLTELQELEAVYERLCGEEKVVERELDALLEQQNTIESKMV TLHRMGPNLQLIEGDAKQLAGMITFTCNLAENVSSKVRQLDLA KNRLYQAIQRADDILDLKFCMDGVQTALR 204 943 1 706 AVEFRVPRSGSAYLYSYVTVEGLWAFTTGNLLLSYVIGTASV ARAWSSAFDNLIGNHISKTLQGSIALHVPHVLAEYPDFFALGL VILLITGILALGASESALVTKVFTGWNLLVLGFWNISGFVKGDV HNWKLTEEDYELAMAELNDTYSLGPLGSGGFVFFGFGILRGA ATCFYAFVGFDCIATTGEEAQNPQRSIPMGIGISLSVCFLADF AVSSALTLMMPYYQLQPESP 205 944 1 852 GFHPNTTHYRARAARAGAGSFVGEVSAVDKDFGFNGEVRYSF EMVQPDFELHAISGEITNTHQFDRESLMRRRGTAVFSFTVIAT DQGIPQPLKDQATVHVYMKDINDNAPKFLKDFYQATISESAAN LTQVLRVSASDVDEGNNGLHYSIIKGNEERQFAIDSTSGQVT LIGKLDYBATPAYSLVIQAVDSGTIPLNSTCTLNIDILDENDN TPFF/LLNQHFFVDVLENNRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISPKHLGVFFLAQK 206 945 3 363 GDCYDLYGGEKFATLAELVQYYMEHGQLKEKNGDVIELKNPL NCADPTSQRWFGHLSGKEARKLLTEKGKKESFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMHCQELK 207 946 218 717 IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELUPKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKWETETSAPGEQPQ FLGVREGRVTGIIVFILTGISVFLAPILKCIPLEV 209 948 2 575 GASRVEAGSANGMLIGGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQVYQGSTVETTIKNGGSQRVYSRALDT IEGGTQSLNSKSTAKNTHIVSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	202	043	 	714	
ABPNAADHQGRSVLHVAATYGLPGVLLAVLNSGVQVDLEARDF EGLTPLHTAILALMVANRPSDLCPRVLSTQARDRIDCVHMLLQ MGANHTIQVSGUVGQTLGGCTUGGCCVEWGHLDVRELQANADFASSLL RALEHVTSLLCALRVFCLFLCQL DAWADAWVGTKMADLDSPPKLSGVQQPSEGVGGGCSEISAEL IRSLTELQELEAVYERLCGEEKVVERELDALLEQQNTIESKMV TLHRMGPNLQLIEGDAKQLAGMITTTCNLAENVSSKVRQLDLA KNRLYQAIQRADDILDLKFCMGVQTALR 204 943 1 706 AVEFRVPRSGSAYLYSVTVGELWAFTTGWNLILSYVIGTASV ARAWSSAFDNLIGNHISKTLQGSIALHVPHVLAEYPDFFALGL VLLLTGLLALGASESALVTKVFTGVNLLVLGFVMISGFVKGDV HNWKLTEEDVELAMAELNDTYSLGPLGSGGFVVPFFEGLIRGA ATCFYAFVGFDCIATTGEEAQNPQRSIPMGIGISLSVCFLADF AVSSALTLMMPYYQLQPESP 205 944 1 852 GFHPNTTHYRRAAARAGAGSFVGEVSAVDKDFGPNGEVRYSF EMVQPDFELHAISGEITNTHQFDRESLMRRRGTAVFSFTVIAT DQGIPQPLKDQATVHVYMKDINDNAPKFLKDFYQATISESAAN LTQVLRVSASDVDEGNNGLHYSIIKGNEERQFAIDSTSGQVT LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNDILDENDN TPFF/LLNQHFFVDVDLENNRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISPKHLGVFFFLAQK 206 945 3 363 GDCYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKNPL NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSFILVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMHCQELK 207 946 218 717 IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNTTARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVYKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKWETTSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVQGSTVETTTIKNGGEQRYVSGRDVUSGGLAFSIHNHV	402	941	1	/ + 4	
EGLTPLHTAILALNVAMRPSDLCPRVLSTQARDRLDCVHMLLQ MGANNTIQVSGDVGGQTLGDCVBWGHLDVRELQANADFASSLL RALEHVTSLLCALRVFCLFLCQL 203 942 3 479 DAWADAWGTKMADLDSPKLSGVQQPSEGVGGGRCSEISAEL IRSLTELQELEAVVERLCGEEKVVERELDALLEQONTIESKMV TLHRMGPNLQLIEGDAKQLAGMITFTCNLAENVSSKVRQLDLA KNRLYQAIQRADDILDLKFCMDGVQTALR 204 943 1 706 AVEFRVPRSGSAYLYSYVTVGELWAFTTGWNLILSYVIGTASV ARAWSSAFDNLIGNNISKTLQGSIALHVPHVLAEYPDFFALGL VLLLTGILALGASESALVTKVFTGVNLLVGFVMISGFVKGDV HNWKLTEEDVELAMAELNDTYSLGPLGSGGFVPFGFEGILRGA ATCFYAFVGFDCIATTGEEAQNPQRSIPMGIGISLSVCFLADF AVSSALTILMMPYYQLQPESP 205 944 1 852 GFHPNTTHYRARAARAGAGSFVGEVSAVDKDFGPNGEVRYSF EMVQPDFELHALSGEITNTHQFDRESLMRRRGTAVFSFTVIAT DQGIPQPLKDQATVHYMKDINDNAPKFLKDFYQATISESAAN LTQVLKVSABDVDEGNNGLIHYSILKGNEERQFAIDSTSGQVT LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTI.NIDILDENDN TPFF/LLNQHFFVDVLENMRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISPKHLGVFFLAQK 206 945 3 363 GDCYDLYGGSFATLAELVQYYMEHHGQLKEKNGDVIELKNPL NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHEG DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK 207 946 218 717 IDSGNQMGGNDDKTKNAERNYLNVLPGEFYITHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMRMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLITLSKH 208 947 3 368 SILPALLVTILIFMDQQITAVVRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHLDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQLVKVQGHADGTTINKSGSQDVVQ GSLATNTINGGRQYVEQSTVETTIKNGGSQDVVQ GSLATNTINGGRQYVEQSTVETTIKNGGSQDVVQ GSLATNTINGGRQYVEQSTVETTIKNGGSQDVVD GSLATNTINGGRQYVEQSTVETTIKNGGSQDVVD SALTHTINGGRQYVEQSTVETTIKNGGSGDRYFSGGL LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	1				
MGANHTIQVSGDVGGQTLGDCVEWGHLDVRELQANADFASSLL RALEHTTSLLCALRVFCLFLCQL DAWADAWGTKMADLDSPPKLSGVQQPSEGVGGGRCSEISAEL IRSLTELQELEAVVERLCGEEKVVERELDALLEQQNTIESKMV TLHRMGPNLQLIEGDAKQLAGMITFTCNLAENVSSKVRQLDLA KNRLYQAIQRADDILDLKFCMDGVQTALR AVEFRVPRGSAYLYSYVTVGELWAFTTGWNLILSYVIGTASV ARAWSSAFDNLIGNHISKTLQGSIALHVPHVLAEYPDFFALGL VLLLTGLLALGASESALVTKVFTGVNLLVLGFVMISGFVKGDV HNWKLTEEDVELAMAELNDTYSLGPLGSGGFVPFGFEGILRGA AVSSALTLMMPYYQLQPESP 205 944 1 852 GFHPNTTHYRARAARAGAGSFVGEVSAVDKDFGPNGEVRYSF EMVQPDFELHALSGEITNTHQFDRESLMRRGTAVFSFTVLAT DQGIPQPLKDQATVHVYMKDINDNAPKFLKDFYQATISESAAN LTQVLRVSASDVDEGNNGLHYSILKGNEERGFAIDSTSGQVT LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNIDILDENDN TPFF/LLNQHFFVDVLENMRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGFTSISPKHLGVFFLAQK NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK 207 946 218 717 IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FFILCVDDHVKSGNITARDPAIMGLENILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIRRVSSTLITISKH 208 947 3 368 SILPALLVTILIFMDQQITAVVLVRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTIKNGGGQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVVDNTSTSDVIETYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	}]	j	ļ	
RALEHVTSLLCALRVFCLFLCQL 203 942 3 479 DAWADAWGTKMADLDSPPKLSGVQQPSEGVGGRCSEISAEL IRSLTELQELEAVYERLCGEKVVERELDALLEQQNTIESKMV TLHRMGPNLQLIEGDAKQLAGMITFTCNLAENVSKVRQLDLA KNRLYQAIQRADDILDLKFCMDGVQTALR 204 943 1 706 AVEFRVPRSGSAYLYSYVTVGELWAFTTGWNLILSYVIGTASV ARAWSASFDNLIGNHISKTLQGSIALHVPHVLAEYPDFFALGL VLLLTGILALGASESALVTKVFTGWNLLVLGFVMISGFVKGDV HNWKLTEEDYELAMAELNDTYSLGPLGSGGFVPFGFGGILRGA ATCFYAFVGFPCIATTGEAQNPQRSIPMGIGISLSVCFLADF AVSSALTLMMPYYQLQPESP 205 944 1 852 GFHPNTTHYRRARAARAGAGSFVGEVSAVDKDFGPNGEVRYSF EMVQPDFELHAISGEITNTHQFDRESLMRRRGTAVFSFTVIAT DQGIPQPLKDQATVHYYMKDINDNAPKFLKDFYQATISESAAN LTQVLRVSASDVDEGNGLIHYSIIKGNEERQFAIDSTSGQVT LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNIDILDENDN TPFF/LINOHFFVDVLENMRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISPKHLGVFFLAQK NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMHHCQLKK NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMHTCQELK 207 946 218 717 IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTITLTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEASSANGHLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQVYEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV			Ì	ļ	
Page Page	i			ļ	THE STATE OF THE S
IRSLTELQELEAVYERLCGEEKVVERELDALLEQQNTIESKMV TLHRMGPNLQLIEGDAKQLAGMITFTCNLAENVSSKVRQLDLA KNRLYQAIQRADDILDLKFCMDGVQTALR AVEFRVPRSGSAYLYSVTVGELWAFTTGWNLILSYVIGTASV ARAWSAFDNLIGNHISKTLQGSIALHVPHVLAEYPDFFALGL VLLLTGLLALGASESALVTKVFTGVNLLVLGFVMISGFVKGDV HNWKLTEEDYBLAWABLNDTYSLGPLGSGGFVPFGFEGLLRGA ATCFYAFVGFDCIATTGEEAQNPQRSIPMGIGISLSVCFLADF AVSSALTLMMPYYQLQPESP 205 944 1 852 GFHPNTTHYRARAARAGAGSFVGEVSAVDKDFGPNGEVRYSF EMVQPDFELHAISGEITNTHQFDRESLMRRGTAVFSFTVIAT DQGIPQPLKDQATVHYYMKDINDNAPKFLKDFYQATISESAAN LTQVLRVSASDVDEGNNGLIHYSIIKGNEERQFAIDSTSGQVT LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNIDILDENDN TPFF/LLNQHFFVDVLENMRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISFKHLGVFFLAQK 206 945 3 363 GDCYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKNPL NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHFG DFVLSVCTGDDKGESNDGKSKVTHVMTHCQELK 207 946 218 717 IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMEMASWDGISRT VQFLVPQSISEEMFYQLSMMLPQIFRVSSTLTIJTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREGRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVERGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQVVEQSTVETTTIKNGGEQRYYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	202	043	 	179	
TIHRMGPNLQLIEGDAKQLAGMITFTCNLAENVSSKVRQLDLA KNRLYQAIQRADDILDLKFCMGOVQTALR AVERFVPRSGSAYLYSYVTVGELWAFTTGWNLILSYVIGTASV ARAWSSAFDNLIGNHISKTLQGSIALHVPHVLAEYPDFFALGL VLLLTGLIALGASESALVTKVFTGVNLLVLGFVMISGFVKGDV HNWKLTEEDYELAMAELNDTYSLGPLGSGGFVPFGFEGILRGA ATCFYAFVGFDCIATTGEEAQNPQRSIPMGIGISLSVCFLADF AVSSALTLMMPYYQLQPESP GFHPNTTHYRARAARAGAGSFVGEVSAVDKDFGFNGEVRYSF EMVQPDFELHAISGEITNTHQFDRESLMRRGTAVFSFTVIAT DQGIPQPLKDQATVHVYMKDINDNAPKFLKDFYQATISESAAN LTQVLRVSASDVDEGNNGLIHYSIIKGNEERQFAIDSTSQQVT LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNIDILDENDN TPFF/LLNQHFFVDVLEMMRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISPKHLGVFFLAQK 206 945 3 363 GDCYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKNPL NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMHCQELK 207 946 218 717 IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH 208 947 3 368 SILPALLVTILIFWDQQTTAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV GGLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHTYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	203	342	,	3,7	
KNRLYQAIQRADDILDLKFCMBGVQTALR	1	j	1		
204 943 1 706 AVEFRVPRSGSAYLYSYVTVGELWAFTTGWNLILSYVIGTASV ARAWSSAFDNLIGNHISKTLQGSIALHVPHVLAEYPDFFALGL VLLLTGILALGASESALVTKVFTGWNLIVLGFVMISGFVKGDV HNWKLTEEDYELAMAELNDTYSLGPLGGGFVPFGFGGILRGA ATCFYAFVGFDCIATTGEEAQNPQRSIPMGIGISLSVCFLADF AVSSALTLMMPYYQLQPESP 205 944 1 852 GFHPNTTHYRARAARAGAGSFVGEVSAVDKDFGPNGEVRYSF EMVQPDFELHAISGEITNTHQFDRESLMRRRGTAVFSFTVIAT DQGIPQPLKDQATVHVYMKDINDNAPKFLKDFYQATISESAAN LTQVLRVSASDVDBGNNGLIHYSIIKGNEERGFAIDSTSGQVT LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNIDILDENDN TPFF/LLNQHFFVDVLENMRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISPKHLGVFFLAQK 206 945 3 363 GDCYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKNPL NCADPTSQRWFHGHLSGKEABKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK 207 946 218 717 IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTITSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVVREGRVTGIIVFILTGISVFLAPILKCIPLFV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRYVESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV		İ	ļ		
ARAWSSAFDNLIGNHISKTLQGSIALHVPHVLAEYPDFFALGL VILLTGLIALGASESALVTKVFTGVNLLVLGFVMISGFVKGDV HNWKLTEEDYELAMAELNDTYSLGPLGSGGFVPFGFEGILRGA ATCFYAFVGFDCIATTGEEAQNPQRSIPMGIGISLSVCFLADF AVSSALTLMMPYYQLQPESP 205 944 1 852 GFHPNTTHYRARAARAGAGSFVGEVSAVDKDFGPNGEVRYSF EMVQPDFELHAISGEITNTHQFDRESLMRRRGTAVFSFTVIAT DQGIPQPLKDQATVHVYMKDINDNAPKFLKDFYQATISESAAN LTQVLRVSASDVDEGNNGLIHYSIIKGNEERGFAIDSTSGQVT LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNIDILDENDN TPFF/LLNQHFFVDVLENMRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISPKHLGVFFLAQK 206 945 3 363 GDCYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKNPL NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK 207 946 218 717 IDSGNQNGGNDDKTKNAERNYLVDFGEFYITHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKWETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYYEQSTVETTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	204	943	1	706	
VILLTGLLALGASESALVTKVFTGVNLLVLGFVMISGFVKGDV HNWKLTEEDYELAMAELNDTYSLGPLGSGGFVFFGFEGILRGA ATCFYAFVGFDCIATTGEEAQNPQRSIPMGIGISLSVCFLADF AVSSALTLMMPYYQLQPESP 205 944 1 852 GFHPNTTHYRARAARAGAGSFVGEVSAVDKDFGPNGEVRYSF EMVQPDFELHAISGEITNTHQFDRESLMRRRGTAVFSFTVIAT DQGIPQPLKDQATVHVYMKDINDNAPKFLKDFYQATISESAAN LTQVLRVSASDVDEGNNGLIHYSIIKGNEERQFAIDSTSGQVT LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNIDILDENDN TPFF/LLNQHFFVDVLENMRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISPKHLGVFFLAQK 206 945 3 363 GDCYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKNPL NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK 207 946 218 717 IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTILTSKH 208 947 3 368 SILPALLVTILIFFMDQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMTETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYYEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	204	743	1	/ / 55	
HNWKLTEEDYELAMAELNDTYSLGPLGSGGFVPFGFEGILRGA ATCFYAFVGFDCIATTGEAQNPQRSIPMGIGISLSVCFLADF AVSSALTLMMPYYQLQPESP 205 944 1 852 GFHPNTTHYRARAAARAGAGSFVGEVSAVDKDFGPNGEVRYSF EMVQPDFELHAISGEITNTHQFDRESLMRRRGTAVFSFTVIAT DQGIPQPLKDQATVHVYMKDINDNAPKFLKDFYQATISESAAN LTQVLRVSASDVDEGNNGLIHYSIIKGNEERQFAIDSTSGQVT LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNIDILDENDN TPFF/LLNQHFFVDVLENMRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISPKHLGVFFLAQK 206 945 3 363 GDCYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKNPL NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK 207 946 218 717 IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH 208 947 3 368 SILPALLVTILIFMQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	1	1		ļ	
ATCFYAFVGFDCIATTGEEAQNPQRSIPMGIGISLSVCFLADF AVSSALTLMMPYYQLQPESP 205 944 1 852 GFHPNTTHYRARAARAGAGSFVGEVSAVDKDFGPNGEVRYSF EMVQPDFELHAISGEITNTHQFDRESLMRRGTAVFSFTVIAT DQGIPQPLKDQATVHVYMKDINDNAPKFLKDFYQATISESAAN LTQVLRVSASDVDEGNNGLIHYSIIKGNEERQFAIDSTSGQVT LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNIDILDENDN TPFF/LLNQHFFVDVLENMRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISPKHLGVFFLAQK 206 945 3 363 GDCYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKNPL NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK 207 946 218 717 IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPGIFRVSTTLTTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVERGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	1	1		į.	l i
AVSSALTLMMPYYQLQPESP 205 944 1 852 GFHPNTTHYRARAARAGAGSFVGEVSAVDKDFGPNGEVRYSF EMVQPDFELHAISGEITNTHQFDRESLMRRGTAVFSFTVIAT DQGIPQPLKDQATVHVYMKDINDNAPKFLKDFYQATISESAAN LTQVLRVSASDVDEGNNGLIHYSIIKGNEERQFAIDSTSGQVT LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNIDLLDENDN TPFF/LLNQHFFVDVLENMRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISPKHLGVFFLAQK 206 945 3 363 GDCYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKNPL NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK 207 946 218 717 IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	1				ATCFYAFVGFDCIATTGEEAQNPQRSIPMGIGISLSVCFLADF
EMVQPDFELHAISGEITNTHQFDRESLMRRRGTAVFSFTVIAT DQGIPQPLKDQATVHVYMKDINDNAPKFLKDFYQATISESAAN LTQVLRVSASDVDEGNNGLIHYSIIKGNEERQFAIDSTSGQVT LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNIDILDENDN TPFF/LLNQHFFVDVLENMRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISPKHLGVFFLAQK 206 945 3 363 GDCYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKNPL NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK 207 946 218 717 IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	1			1	
EMVQPDFELHAISGEITNTHQFDRESLMRRRGTAVFSFTVIAT DQGIPQPLKDQATVHVYMKDINDNAPKFLKDFYQATISESAAN LTQVLRVSASDVDEGNNGLIHYSIIKGNEERQFAIDSTSGQVT LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNIDILDENDN TPFF/LLNQHFFVDVLENMRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISPKHLGVFFLAQK 206 945 3 363 GDCYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKNPL NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK TDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	205	944	1	852	GFHPNTTHYRARAAARAGAGSFVGEVSAVDKDFGPNGEVRYSF
LTQVLRVSASDVDEGNNGLIHYSIIKGNEERQFAIDSTSGQVT LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNIDILDENDN TPFF/LLNQHFFVDVLENMRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISPKHLGVFFLAQK 206 945 3 363 GDCYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKNPL NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK 207 946 218 717 IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV				1	EMVQPDFELHAISGEITNTHQFDRESLMRRRGTAVFSFTVIAT
LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNIDILDENDN TPFF/LLNQHFFVDVLENMRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISPKHLGVFFLAQK 206 945 3 363 GDCYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKNPL NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK 207 946 218 717 IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	į.			1	DQGIPQPLKDQATVHVYMKDINDNAPKFLKDFYQATISESAAN
TPFF/LLNQHFFVDVLENMRIGELGASGTATDS\DSGDIADLY YKFTGTKHPPGTFSISPKHLGVFFLAQK 206 945 3 363 GDCYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKNPL NCADPTSQRWFHGHLSGKEABKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK 207 946 218 717 IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	1				
YKFTGTKHPPGTFSISPKHLGVFFLAQK 206 945 3 363 GDCYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKNPL NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK 207 946 218 717 IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	ļ		1		LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNIDILDENDN
206 945 3 363 GDCYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKNPL NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK 207 946 218 717 IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	1		1		TPFF/LLNQHFFVDVLENMRIGELGASGTATDS\DSGDIADLY
NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHPG DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK 1DSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 3 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV		İ			YKFTGTKHPPGTFSISPKHLGVFFLAQK
DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK 207 946 218 717 IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	206	945	3	363	GDCYDLYGGEKFATLAELVQYYMEHHGQLKEKNGDVIELKNPL
207 946 218 717 IDSGNQNGGNDDKTKNAERNYLNVLPGEFYITRHSNLSEIHVA FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV			1	1	NCADPTSQRWFHGHLSGKEAEKLLTEKGKHSSFLVRESQSHPG
FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	1	1			
LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	207	946	218	717	
VQFLVPQSISEEMFYQLSNMLPQIFRVSSTLTLTSKH 208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	1	1			·
208 947 3 368 SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	1			1	
GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	1	Į.			
FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV 209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	208	947	3	368	
209 948 2 575 GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV					
GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	1		1	1	FLGVREQRVTGIIVFILTGISVFLAPILKCIPLPV
IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	209	948	2	575	,
LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV	1	ł	1		
		ł	1		
ADNVLLENGGHLDINAYGS		1	1		LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV
	1	1	1		ADNVLLENGGHLDINAYGS

Seq	050	CEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
NO: of of south of so	SEQ	SEQ			
No. defect No.					
Nedeck Acids of Sponding to first amino acid residue of amino acid residue of amino acid residue of amino acid residue of amino acid residue of amino acid sequence sequence sequence 290 1 296 FFSSIQLTDDQGPVLMTTVAMPVFSKQNETRSKGILLGVVGTD VPVKELLKTIPKYKVMDLLIPEIKATEMPRALFSQSSGFKLYF GAMPLLITITAC 211 950 3 594 SCSGTGTNACYMEDMINIDLVEGGEGRMCINTEWGAFGDDGAL EDITATEMPRALFSQSSGFKLYF GAMPLLITTAC 212 951 2 2167 FFSSIQLTDDQGPVLMTTVAMPVFSKQNETRSKGILLGVVGTD VPVKELLKTIPKYKVMDLLIPEIKATEMPRALFSQSSGFKLYF GAMPLLITTAC 213 951 2 2167 FFSSIQLTDDQGPVLMTTVAMPVFSKQNETRSKGILLGVVGTD VPVKELLKTIPKYKVMDLLIPEIKATEMPRALFSQSSGFKLYF GAMPLLITTAC 214 955 3 594 SCSGTGTNACYMEDMINIDLVEGGEGRMCINTEWGAFGDDGAL EDITATEFORELDLGSLNPGKQLFFKMISGLYGLIGLKM AKAGLLFGGEKSSALHTKGKIETRHVAAMEKYRGGLANTRELL VDLGLEPSRADCLAVGHVCTIVSFRSANLCAALAATLTRLEE NKKVERLRTTVGMCTLYKHTKHOYT 214 951 2 2167 FVALATNGVVPAGGSYYMISRSLGDEFGGAVGLCFYLGTTFAG AMYLLGTIEILLAYLFPAMAIFKAGDASGAAAMALNMRVYGT CVLTCMATVVFGWKYVMKFALMFLGCVULSILLAIVAGVIKSA FDPPNFPICLAGNRTLSRHGFDVCAKLAMEGMETVTTRLMGLF CSSFFLMATOGBFTFKNYTTTLMGLF CVLTCMATVVFGWKYVMKFALMFLGCVLSLALATALLAKTLAGVIKSA FDPPNTPICTLAGNSRNSGGLLADAGKSIPTOTLALATTSAVYLISSV VLFGACLEGULARFICGGLASAFALALLALEGUP HTKNWRYGTGGTGLGLASAFATALLALEGUP HTKNWRYGTGGTGLGLASAFATALLALEGUP HTKNWRYGTGGTGLGLASAFATALLALEGGP HTKNWRYGTGGTGLASAFATALLALEGGP HTKNWRYGTGGTGLASAFATALLALEGGP HTKNWRYGTGGTGLASAFATALLALEGGP HTKNWRYGTGGTGLASAFATALLALEGGP HTKNWRYGTGGTGGTGLASAFATALLALEGGP HTKNWRYGTGTGTAKAGKUSSILHPPIN LAGGLYKVTFTGGTAKAGGUNSILATAGAGGAGGTGTGTATALACTVVGFFTKMYGTGTAKAGGUNSILATAGAGGAGGTGTGTGTATAGAGGAGGTGTGGTGTGGT	-				
Acids Acids of irst amino sold residue of amino acid residue of amino acid sequence	1	T		1	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids to first amino acid acid residue of amino acid acid residue of amino acid acid residue of amino acid sequence sequ		1			P=Proline, Q=Glutamine, R=Arginine, S=Serine,
amino acid residue of amino acid residue of amino acid sequence se	Acias	Acids			
acid residue of amino acid sequence seq					
residue of amino acid sequence	İ	Ì			
of amino acid acid sequence se	ļ	ļ			(=possible illefeolide insertion)
acid sequence sequence sequence sequence sequence sequence sequence sequence 296 FFSSIQLTDDQGPVLMTTVAMPVFSKQNETRSKGILLGVVGTD VPVKELLKTIPKYKVMNDLIPEIKATEMPRALFSQSSGFKLYF GAMFLLTTITAC 211 950 3 594 SCSGTGTNACYMEDMSNIDLVEGDEGRMCINTEWGAFGDDGAL EDIRTEFDRELDLGSLNPCKQLFEKMISGLYLGELVRLILLEM AKAGLLFGGEKSSALHTKGKIETRHAAMEKYKEGLANTREIL VDLGLEPSEADCIAVQHVCTIVSFRSANLCAALAAILTRLEE NKKVERLRTTVGMDGTLYKIHQY 212 951 2 2167 FVAIATMGVPAGGSYMISRSIGPEFGGAVGLCFYLGTTFAG AMYILGTIELLAYLFPAMAIFKKKEGLANTREIL CULTCMATVVFVGVKXVNKFALVFLGCVILSILAIYAGVIKSA FDPPNFFICLLGMRTISRHGFDVCAKILAMEGBETTLIKMT KGVIVERSGMTSVGLADGTPIDMDHPYVFSDMTSYFTLLVGIY FPSVTGIMAGSNRSGDLRDAQKSIPTGTILAIATTSAVYISSV VLFGACIEGVVLRDKFGEAVNGALVVGTLAWPSPWVIVIGSFF STCGAGLQSLTGAPRLLQAISRNGGIVPFLQVFGHGKANGEPTW ALLITACICEIGILIASLDEVARILMEEGPP HTKNWRPRFRYYWWTLSFLGMSLCLALMFICSWYYALLVAM LLAGLIVKYIEYKGAKKEWGDGIRGJSLSAARYALLARLEEGPP HTKNWRPGLLVLVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG SVLEGTFLENHPQAQRAEESIRRLMBAEKVKGFCQVITSSNLR DGVSHLJCSGGLGGLGNTVLVGWPRNWRQKEDHOTWRFIEL VRETTAGHLALLVTKNVSMPPGNPERFSEGSIDRWGIGHDGGM LMLVPFILLRHKWWRKCKMRIFTVAQMVDMHAM LGSGLGGLGCLGNTVLVGWPRNWRQKEDHOTWRFIEL VRETTAGHLALLVTKNVSMPPGNPERFSEGSIDRWGIGHDGGM LMLVPFILLRHKWWRKCKMRIFTVAQMVDMHAM LAGGSDDAKGTV GSTLARHTVPIRSLGFFFQPEHEKRCWSVDPRLMPDFKLLAGGSDDAKGTV HAPITVPIRSLGPHPLDFKPIMLPQGTLPGGBPWPP CGTLILQARAYVGPHVLAVVTRTGFCTAKGGIVSSILHPRPIN FKFKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVVTVVPPALPAMTVCTLYAQSRIRRQGIFCHLPRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGGAFLPLVPBPRRLF GRECULVCPQHLSNTLKMARQDNKEAQGHTGALKERSHHMERI TESEQKKAALAATLEEYKATVASDQIEMRRLAGQLENGAKKWALLSULANLAGTTYSIFILYRNRVPLNEIVIRA CDLVVTVVPPALPAAMTVCTLYAQSRYMDLAENARF EREQLLGVQQHLSNTLKMARQDNKEAQEMIGALKERSHHMERI TESEQKKKAALAATLEEYKATVASDQIEMRRLKAQLENGRKWAALSYSINANRAQQDIKEAQEMIGALKERSHHMERI TESEQKKKAALAATLEEYKATVASDQIEMRRLAGQLENGRKWAALSYSINANRAQQTATAPATPTLYAT TTTTTAAATTTTAAT TTTTTAAATTTTTAAT TTTTTAAATTTTESPPTTTSGTKHBSAPDEQSIWNTVLPNS	1				
Sequence Sequence		l	1	3	
210 949 1 296			1		
VPVKELLKTIPKYKVMNDLIPEIKATEMPRALFSQSSGFKLYF GAMPILITTITAC 211 950 3 594 SCSGTGTNACYMEDMSNIDLVEGDEGRMCINTEWGAFGDDGAL EDIRTEFDRELDLGSLNPGKQLFEKMISGLYLGELVRLILLKM AKAGLLFGGEKSSALHTKGKIETHHVAAMEKYKSGLANTREIL VDLGLEBPSADCILAVOHVCTIVSFRSANLCAAALAAILTRIRE NKKVERLRTTVGMDGTLYKIHPQY 212 951 2 2167 FVALATINGVVPAGGSYYMISRSLGPEFGGAVGLCFYLGTTFAG AMYILGTIELLLAYLFPAMAIFKAEDASGEAAAMINNRVYGT CVLTCMATVVFVGVKYVNKFALVFLGCVILSILAIYAGVIKSA FDPPNFPICLLGMRTLSRHGFDVCAKLAWEGNETVTTLWGLF CSSFRINATCDEVFTRNNVTEILGJIFGAASGLIKENLWSSYLT KGVIVERSGMTSVGLADGTPIDMDHPYVFSDMTSYFTLLVGIY FPSVTGIMAGSNRSGDLADAKSIFTGTILAIATTSAYISSV VLFGACLGGVVLRKFGEAVMGNLVVGTLAMPSPWVIVIGSFF STCGAGLQSLTGAPRLLQAISRDGIVPLQVFGHGKANGEPTW ALLLTACICSIGLIASLDEVAPILSMFFLMCYMFVNLACAVQ TLLRTPMNPFFRFYYHTLSFLGMSLCLALMFICSWYALVAM LIAGLIYKYTEYRGAKKEWGDGIRGLSLSAARYALLARLEEGPP HTKNWRPPLLVLVVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG SVLEGTFLENHPQAQRAEESIRRLMEABKVKGFCCVVISSNLR DGYSHLIQSGGLGGLQINTVLVGMPRNWRQKEDHGTWRNFIEL VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDWGIGHDGGM LMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM 213 952 1 128 FYLRLLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV LMLVPFLLRHHKVWRKCKMRIFTTAQMVDMHAM HAFIVPTSLQDHTVLSUGDFLBLPSVGRSATHALVQAQLICSGARGM HAFIVPTSLQDHTPLPGKPFINLPGGTLPGGEPRWP 215 954 2 609 CGTLILQARAYVGPHVLAVVTTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVELNEIVRA LDLVTVVVPPALPAMTVCTLYAGSSLRGGFFCTHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRLP VGPLLRALATCHALSRLQDTFVGGPWDLKM GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTFVGGPWLLKMINLKAQLENEKQKV AELYSINNSGKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTTLPPTT VGAGGAVSSTDATALIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	210	949			FESSIOLTDDOGPVLMTTVAMPVESKONETRSKGTLLGVVGTD
GAMFLLTTITAC	210	رور	1 -	1 230	
SCSGTGTNACYMEDMSNIDLVEGDEGRMCINTEWGAFGDDGAL EDIRTEFDRELDLGSINDPKQLFEKMISGLYLGELVRILLKM ARGALLFGGEKSSALHTKGKIETHVAAMEKYKEGLANTREIL VDLGLEPSEADCIAVQHVCTIVSFRSANLCAAALAAILTRIRE NKKVERLRTTVGMDGTLYKHPQY STATTUGHDGTLYKHPQY FVALATIGVVPAGGSYYMIGSRSLGFEFGGAVGLCFYLGTTFAG AMYILGTIEILLAYLFPAMAIFKAEDASGEAAAMLINIMRVYGT CVLTCMATVVFVGVKYVNKFALVELGCVILSILAIYAGVIKSA FDPPNPFICLLGMRTLSRHGFDVCAKLAMEGNETVTTRLWGLF CSSRFLNATCDEYFTRNNVTEIQGIPGAASGLIKENLWSSYLT KGGIVERSGMTSVGLADGTFIDMDHYVFSDMTSYFTLLVGIY FPSVTGHAGSGNSGDLRDAQKSIFPTGTLLAITTSAVYISSV VLFGACIEGVVLRDKFGEAVMGNLVVGTLAWPSPWVLVIGSFF STCGAGLQSLTGAPRLLQAISRDGIVPFLQVFGHGKANGEFTW ALLLTACICSIGILIASLDEVAPLISMFLMCHFVNLACAVQ TTLRTTNWRPRFRYYHWTLSFLGMSLCLALMFICSWYYALVAM LIAGLIYKY1EYRGAKKEWGDGIRGLSLSARYALLREGFP HTKNWRPQLLVLVEVDODQNVVHPQLLSLTSQLKAGKGLTIVG SVLEGTFLENHPQAQRAEESIRRLMEAEKVKGFCQVVISSNLR DGYSHLIQSGGLGGIGNTVLVGMPRNWRQKEDHGYTWRFIEL VRETTAGHLALLVTKNVSMFPGNPERFSESSIDRWGIGHDGGM LMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM LTMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM LTMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM LTMLVPFLLSCHDTHPLGGTLPGGEPRWPP STGAGLGLGGARGM HAFIVPIRSLQDHTPLEGKPIMLPGGTLPGGEPRWPP GKTYKKMKFVAALSVLALLGTIYSIFILYRRVPINEIVIRA LDLVTVVPPALPAMTVCTLYAGSRATHALVQAQLICSGARGM HAFIVPIVSLQDHTPLEGKPIMLPGGTLPGGEPRWPP GKTYKKMKFVAALSVLALLGTIYSIFILYRRVPINEIVIRA GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRLP VGPLRALATCHALSRLQDTPVGDPMDLKM GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLRALATCHALSRLQDTPVGDPMDLKM EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKKAALAATLEEYKATVASOLJEMNRIKAQLEMKGKC ARYRFTLSARTQVCSGEAVTEESPAPPNEATPTAAPPTLPPTT RNDANRLQDAIAKGRG ARYRFTLSARTQVCSGEAVTEESPAPPNEATPTAAPPTLPPTT RNDANRLQDAIAKGRG ARYRFTLSARTQVCSGEAVTEESPAPPNEATPTAAPPTLPPTT TRUDANRLQDAIAKGRG ARYRFTLSARTQVCSGEAVTEESPAPPNEATPTAAPPTLPPTT TTTTTAAATTTTESPPTTTSGTKHESAPDEQSIWNTVLPNS TTTTTTAAATTTTESPPTTTSGTKHESAPDEQSIWNTVLPNS TTTTTTAAATTTTESPPTTTSGTKHESAPDEQSIWNTVLPNS TTTTTTTAAATTTTESPPTTTSGTKHESAPDEQSIWNTVLPNS TTTTTTAAATTTTESPPTTTSGTKHESAPDEQSIWNTVLPNS	l		l		, -
EDIRTEFDRELDLGSLNPGKQLFEKMISGLYLGELVRLILLKM AKAGILFGGEKSSALHTKGKLETRHVAAMEKYREGLANTREIL VDLGLEPSEADCLTAVGHVCTIVSFRSANLCAAALAAILTRLEE NKKVERLRTTVGMDGTLYKIHPQY 212 951 2 2167 FVALATNGVVPAGGSYYMISRSLGPEFGGAVGLCFYLGTTFAG AMYLGTIEILLAYLFPAMAIFKAEDASGEAAAMINNMRVYGT CVLTCMATVVFVGVKYVNKFALVFLGCVILSILAIYAGVIKSA FDPPNFPICLLGNRTLSRHGFDVCAKLAWBGNETVTTRLWGLF CSSRFLNATCDEYFTRNNVTEIQGIPGAASGLIKENLWSSYLT KGVIVERSGMTSVGLADGTPIDMDHPVFSDMTSYFTLLVGIY FPSVTGIMAGSNRSGDLRDAQKSIPTGTILAIATTSAVYISSV VLFGACIGGVLIGAFRILQAISRDGIVPFLQVFGHGKANGEFTW ALLLTACICEIGILIASLDEVAPILSMFFLMCYMFVNLACAVQ TTLRTPNWRPFRRYYHWTLSFLGMSLCLALMFICSWYALVAM LIAGLIYKYTEVGAKKEWGDGIRGLSSARVALLRLEEGPP HTKNWRPQLLVLVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG SVLEGTFLENHPQAQRAEESIRRLMBAEKVKGFCQVVISSNLR DGVSHLLQSGGLGGLGHTVLVCWPRRWGEHDQTWRMFIEL VRETTAGHLALLVTKNVSMFPGNPERFSGSIDRWGIGHDGMGM LMLVPFILLRHKVWRKCKMRIFTVAQMVDMHAM 2952 1 128 FYLRLLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV NEWTONG HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 214 953 3 244 RNSKAMHRSSCDGPLLSLFSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 215 954 2 609 CCTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTTYSTFILYNNRVPLNSIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTVAGPGMTGALKERSHHMERI LESQKGKAALAATLESTLYDTUTVAPTTNATTTRAT RNDANRLQDATAKGRG 217 956 2 400 ARYFFILSARTQCSGEAVTEESPAPPREATPTAAPPTLPPTT VGATGAGANSTDATATAATTEESPPTTTSGTKIHESAPDEQSIWNTVLPNS	-			504	
AKAGILFGGEKSSALHTKGKIETRHVAAMEKYKEGLANTREIL VDLGLEPSEADCIAVQHVCTIVSFRSANLCAAALAAILTRIRE NKKVERLRTTVGMDGTLYKIHBQY 212 951 2 2167 FVALATNGVVPAGGSYYMISRSLGPEFGGAVGLCFYLGTTFAG AMYILGTIEILLAYLFPAMAIFKAEDASGEAAMINNMRVYGT CVLTCMATVVFVGVKYVNKFALVFLGCVILSILAIYAGVIKSA FDPPNFPICLLGNRTLSRHGFDVCAKLAMEGNETVTTRLWGLF CSSRFLNATCDEYFTRNNVTEIQGIPGAASGLIKENLWSSYLT KGVIVERSGMTSVGLADGTPIDMDHPYVFSDMTSYFTLLVGIY FPSVTGIMAGSNRSGDLRDAGKSIPTGTILAIATTSAVYISSV VLFGACIEGVVLRDKFGEAVNGNLVVGTLAWPSPWVIVIGSFF STCGAGLQSLTGAPRLLQAISRDGIVPFLQVFGHGKANGEPTW ALLLTACICEIGILIASLDEVAPILSMFFLMCYMFVNLACAVQ TILRTPNWRPFRYYHWTLSFLGMSLCLALMFICSWYYALVAM LIAGLIYKYIEYRGAKKEWGDGIRGLSLSAARYALLRLEEGFP HTKNWRPQLLVLVRVDQDQNVVHPDLSLTSQLKAGKGLTTVG SVLEGTFLENNPQAQRAEESIRRLMEAEKVKGFCQVVISSNLR DGVSHLIQSGGLGGLQHNTVLVGWPRNWRQKEDHQTWRNFIEL VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM LMLVPFLRHHKVWRKCKMRIFTVAQMVDMHAM LMLVPIRRSLQDHTPLPGKPINLPQGTLPGGEPRWPP 213 952 1 128 FYLRLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV 214 953 3 244 RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAPIVPIRSLQDHTPLPGKPINLPQGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVTVVVPPALPAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTFVGDPHDLKM 216 955 292 855 QIEYFRSLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF ERRQLLGVQCHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKKAALAAATLEEYTATASDQIEMMIKAQLENEKGKV AELYSHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDATAKGRG 217 956 2 400 ARYFFTLSARTQSGEVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATATAATTEESPPTTTSGTKIHESAPDEQSIWNTVLVPNS	211	950	3	394	
VDLGLEPSEADCIAVQHVCTIVSFRSANLCAAALAAILTRLRE NKKVERLRTTVGMDGTLYKIHPQY PVAIATNGVVPAGGSYYMISRSLGPEFGGAVGLCFYLGTTFAG ANYLIGTIEILLAYLFPAMAIFKAEDASGEAAAMLNNMRVYGT CVLTCMATVVFVGYKYVMKFALVFLGCVILSILAIYAGVIKSA FDPPNFPICLLGNRTLSRHGFDVCAKLAWEGNETVTTRLWGLF CSSRFLNATCDEYFTRNNVTEIQGIPGAASGLIKENLWSSYLT KGVIVERSGMTSVGLADGTPIDMDHPYVFSDMTSYFTLLVGIY FPSVTGIMAGSNRSGDLRDAQKSIPTGTILAIATTSAVYISSV VLFGACIEGVVLNKFGERAVNCNLVVGTLAWBSPWVLVIGSFF STCGAGLQSLTGAPRLLQAISRDGIVPFLQVFGHGKANGEPTW ALLLTACICEIGILIASLDEVAPILSMFFLMCYMFVNLACAVQ TLLRTPNWRPFRYYHWILSFLGMSLCLALMFICSWYYALVAM LIAGLIYKYIEYRGAKKEWGDGIRGLSLSAARVALLRLEEGPP HTMNWRPGLLVLVWRVDODONVVHPQLLSLTSQLKAGKGLTIVG SVLEGTFLENHPQAQRAEESIRRLMEAEKVKGFCQVVISSNLR DGYSHLIQSGLGGLQHNTVLVGWPRNWRQKEDHQTWRNFIEL VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM LINLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM HAFIVPIRSLQHTPLPGKPINLPQGTLPGGEPRWPP 213 952 1 128 FYLLLSFFCFQEHEKCKVSVPDNLDDPKLLASGSDDAKGTV CGTLILQARAYVGPHVLAVVTRTGTAKGGLVSSILHPPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYNNRVPLNSIVIRA LDLVTVVVPPALPAAMTVCTLYAQSLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVWGVPLKGQAFPLVPEPRRLP VGPLLRALATCHALSRLQDTFVGDPPDLKM 216 955 292 855 QIEYFRSLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF ERRQLLGVQCHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLESEVATVASDQIEMNLKAQLENEKQKV AELYSIHNSGNKSDIQDLLESVALDKEKAETLASSLQEDLAHT RNDANRLQDATAKGRG 217 956 2 400 ARYFFILSARTQGGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATATAATTEESPPTTTSGTKIHESAPDEQSIWNTVLPNS		I			· · · · · · · · · · · · · · · · · · ·
NKKVERLRTTVGMDGTLYKIHPQY PVAIATNGVVPAGGSYYMISRSLGPERGGAVGLCFYLGTTFAG AMYILGTIEILLAYLFPAMAIFKAEDASGEAAAMLNNMRVYGT CVLTCMATVVFVGVKYVNKFALVFLGCVILSILAITAGVIKSA FDPPNFPICLLGNRTLSRHGFDVCAKLAWEGNETVTTRLWGLF CSSRFLNATCDEYFTRNNVTEIGGIPGAASGLIKENLWSSYLT KGVIVERSGMTSVGLADGTPIDMDHPYVFSDMTSYFTLLVGIY FPSVTGIMAGSNRSGDLRDAQKSIPTGTILAIATTSAVYISSV VLFGACIEGVVLRNKFGEAVNGNLVVGTLAWBSPWIVIGSFF STCGAGLQSLTGAPRLLQAISRDGIVPFLQVFGKANGEPTW ALLLTACICSIGILIASLDEVAPILSMFFLMCYMFVNILACAVQ TLLRTPNWRPRFRYYHWTLSFLGMSLCLALMFICSWYYALVAM LIAGLIYKYIEYRGAKKEWGDGIRGLSLSAARYALLRLEEGPP HTKNWRPQLLVLVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG SVLEGTFLENHPQAQRAEBSIRRLMEAEKVKGFCQVVISSNLR DGVSHLIQSGLGGLQHNTVLVGMPRNWRQKEDHQTWRNFIEL VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM LMLVPFLLRHHKVWRKCKWRIFTVAQWIDMHAM LIAGLIYKHLSFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV VRETTAGHLALLVTKNVSKFPGNPERFSEGSIDRWGIGHDGGM LMLVPFLLRHKVWRKCKWRIFTVAQWIDMHAM ARSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 214 953 3 244 RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPBVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISVIDEDVKSGRYMBLEQRYMDLAENARF EREQLLGVQQHLSNLATLEEYKATVASDJENNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDATAKGRG 217 956 2 400 ARYFFTLSARTVYGSGGAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEETTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS		1	1		
212 951 2 2167 FVAIATNGVVPAGGSYYMISRSIGPEFGGAVGLCFYLGTTFAG AMYILGTIEILLAYLFPAMAIFKAEDASGEAAAMINNMRVYGT CVLTCMATVVFVQVKYVNKFALVFLGCVILSILAIYAGVIKSA FDPPNFPICILIGNETISRRGFDVCAKLAWEGNETVTTRLWGLF CSSRFLNATCDEYFTRNNVTEIQGIPGAASGLIKENLWSSYLT KGVIVERSGMTSVGLADGTPIDMDHPYVFSDMTSYFTLLVGIY FPSVTGIMAGSNRSGDLRDAQKSIPTGTILAIATTSAVYISSV VLFGACIEGVVLRNKFGEAVNGNLVVGTLAWESPWVIVIGSFF STCGAGLQSLTGAPRLLQAISRDGIVPFLQVFGHGKANGEPTW ALLLTACICSIGILIASLDEVAPILSMFFLMCYMFVALACAVQ TLLRTPNWRPFRYYHWTLSFLGMSLCLALMFICSWYYALVAM LIAGLIYKYLEYRGAKKEWGDGIRGLSLSAARYALLRLEEGPP HTKNWRPQLLVLVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG SVLEGTFLENHPQAQRAEESIRLMEAEKVKGFCQVVISSNLR DGVSHLIQSGGLQGLQHNTVLVGWPRNWRGKEDHQTWRNFIEL VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM LMLVPFLLRHKKVWRKCKMRIFTVAQMVDMHAM 213 952 1 128 FYLRLLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV RNSKAMMRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGSPRWPP 214 953 3 244 RNSKAMMRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGSPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTITSIFILYRNVPLNEIVURA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPPRLP VGPLLRALATCHALSRLQDTFVGDPMDLKM GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPPRLP VGPLLRALATCHALSRLQDTFVGDPMDLKM EREQKKAAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANKLQDATAKGRG 217 956 2 400 ARYFFTLSARTQVGSGGAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEETYPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS			ļ		
AMYILGTIEILLAYLFPAMAIFKAEDASGEAAAMLNNMRVYGT CVLTCMATVVFVGVKYVNKFALVFLGCVILSILATYAGVIKSA FDPPNFPICLLGNRTLSRHGFDVCAKLAWEGNETVTTRLWGLF CSSRFINATCDEYFTRNNVTEIQGIPGAASGLIKENLWSSYLT KGVIVERSGMTSVGLADGTPIDMDHPYVFSDMTSYFTLLVGIY FPSVTGIMAGSNRSGDLRDAQKSIPTGTILAIATTSAVYISSV VLFGACIEGVVLRDKFGEAVNGNLVVGTLAWPSPWVIVIGSFF STCGAGLQSLTGAPRLLQAISRDGTVPFLQVFGHCKANGEPTW ALLLTACICEIGILIASLDEVAPILSMFFLMCYMFVNLACAVQ TLLRTPNWRPFRFYYHWTLSFLGMSLCLALMFICSWYYALVAM LIAGLIYKYISYTGAKKEWGDGIRGGLSLSAARYALLRLEEGPP HTKNWRPQLLVLVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG SVLEGTFLENHPQAQRAEESIRRLMEAEKVKGFCQVVISSNLR DGVSHLIQSGGLGGLGHNTVLVGWPRNWRQKEDHQTWRNFIEL VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM LMLVPFLRHHKVWRKCKMRIFTVAQMVDMHAM 213 952 1 128 FYLRLLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV 214 953 3 244 RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPTMLPQGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKISMKFVAALSVLALLGTIYSIFILYRNVVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLDEHHISVVIDEDVKSGRYMELEGRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRIKAQLENEKÇKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDAIAIAATTEETSPPTTTSGTKIHESAPDEQSIWNVTVLPNS		Í	[l
CVLTCMATVVFVGVKYVNKFALVFLGCVILSILAIYAGVIKSA FDPPMFPICLIGNRTLSRHGFDVCAKLAWEGNETVTTRLWGLF CSSRFLNATCDEYFTRNNVTEIQGIPGAASGLIKENLWSSYLT KGVIVERSGMTSVGLADGTPIDMDHPVFSDMTSYFTLLVGIY FPSVTGIMAGSNRSGDLRDAQKSIPTGTILAIATTSAVYISSV VLFGACIEGVVLRDKFGEAVMGNLVVGTLAWPSPWVIVIGSFF STCGAGLQSLTGAPRLLQAISRDGIVPFLQVFGHGKANGEPTW ALLITACICEIGILIASLDEVAPILSMFFLMCYMFVNLACAVQ TLLRTPNWRPRFRYYHWTLSFLGMSLCLALMFICSWYYALVAM LIAGLIYKYIEYRGAKKEWGDGIRGLSLSAARYALIRLEEGPP HTKNNWRPQLLVLVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG SVLEGTFLENHPQAGRAEESIRRLMEAEKVKGFCQVVISSNLR DGVSHLIQSGGLGGLQHNTVLVGWPRNWRQKEDHQTWRNFIEL VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM LMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM PYRLLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP CGTLILQARAVVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLRAALATCHALGSLQDTPVGDPMDLKM CKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLRAALATCHALGSLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLDEHHISVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKRAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAAGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	212	951	2	2167	FVAIATNGVVPAGGSYYMISRSLGPEFGGAVGLCFYLGTTFAG
FDPPNFPICLIGNRTLSRHGFDVCAKLAWEGNETVTTRLWGLF CSSRFLNATCDEYFTRNNVTETQGIPGAASGLIKENLWSSYLT KGVIVERSGMTSVGLADGTPIDMDHPYVFSDMTSYFTLLVGIY FPSVTGIMAGSNRSGDLRDQKSIPTGTILAIATTSAVYISSV VLFGACIEGVVLRDKFGEAVNGNLVVGTLAWPSPWVIVIGSFF STCGAGLQSLTGAPRLLQAISRBGIVPFLQVFGHGKANGEPTW ALLLTACICEIGILIASLDEVAPILSMFFLMCYMFVNLACAVQ TLLRTPNWRPRFRYYWTLSFLGMSLCLALMFICSWYYALVAM LIAGLIYKYIEYRGAKKEWGDGIRGLSLSAARYALLRLEEGPP HTKNWRPQLLVLVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG SVLEGTFLENHPQAQRAEESIRRLMEAEKVKGFCQVVISSNLR DGVSHLIQSGGLGGLQHNTVLVGWPRNWRQKEDHQTWRNFIEL VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM LMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM 213 952 1 128 FYLRLLSFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 214 953 3 244 RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFKHSMKFVAALSVLALLGTIYSIFILYRNRVYPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCTHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEFFSLLDEHHISVYIDEDVKSGRYMBLAERSHHMERI IESQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	ļ	į.			AMYILGTIEILLAYLFPAMAIFKAEDASGEAAAMLNNMRVYGT
CSSRFLNATCDEYFTRNNVTEIQGIPGAASGLIKENLWSSYLT KGVIVERSGMTSVGLADGTPIDMDHPYVFSDMTSYFTLLVGIY FPSVTGIMAGSNRSGDLRDAQKSIPTGTILAIATTSAVYISSV VLFGACIEGVVLROKFGEAVNGNLVVGTLAWPSPWIVIGSFF STCGAGLQSLTGAPRLLQAISRDGIVPFLQVFGHGKANGEPTW ALLLTACICEIGILIASLDEVAPILSMFFLMCYMFVNLACAVQ TLLRTPNWRPRFRYYWHTLSFLGMSLCLALMFICSWYYALVAM LIAGLIYKYIEYRGAKKEWGDGIRGLSSARYALLRLEEGPP HTKNWRPQLLVLIVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG SVLEGTFLENHPQAQRAEESIRRLMEAEKVKGFCQVVISSNLR DGVSHLIQSGGLGGLQEINTVLVGWPRNWRQKEDHQTWRNFTEL VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM LMLVPFLLRHKKVWRKCKMRIFTYAQMVDMHAM 213 952 1 128 FYLRLLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQCHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMMRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATALAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	ľ	Ì			CVLTCMATVVFVGVKYVNKFALVFLGCVILSILAIYAGVIKSA
KGVIVERSGMTSVGLADGTPIDMDHPYVFSDMTSYFTLLVGIY FPSVTGIMAGSNRSGDLRDAQKSIPTGILAIATTSAVYISSV VLFGACIEGVVIRDKFGEAVNGNLVVGTLAMPSPWVIVIGSFF STCGAGLQSLTGAPRLLQAISRDGIVPFLQVFGHGKANGEPTW ALLITACICETGILIASLDEVAPILSMFFLMCYMFVNLACAVQ TLLRTPNWRPRFRYYHWTLSFLGMSLCLALMFICSWYYALVAM LIAGLIYKYIEYRGAKKEWGDGIRGLSLSAARYALLRLEEGPP HTKNWRPQLLVLVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG SVLEGTFLENHPQAQRAEESIRRLMEAEKVKGFCQVVISSNLR DGVSSHLQSGGLGGLQHNTTVLVGWPRNWRQKEDHQTWRNFIEL VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM LMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM 213 952 1 128 FYLRILSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV 214 953 3 244 RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKFPIMLPQGTLPGGEPRWPP 215 954 2 609 CGTLTLQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSTHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS]	J])	FDPPNFPICLLGNRTLSRHGFDVCAKLAWEGNETVTTRLWGLF
FPSVTGIMAGSNRSGDLRDAQKSIPTGILAIATTSAVYISSV VLFGACIEGVVLRDKFGEAVNGNLVVGTLAWPSPWVIVIGSFF STCGAGLQSLTGAPRLLQAISRDGIVPFLQVFGHGKANGEPTW ALLITACICEIGILIASLDEVAPILSMFFLMCYMFVNLACAVQ TLLRTPNWRPRFRYYHWTLSFLGMSLCLALMFICSWYYALVAM LIAGLIYKYIEYRGAKKEWGDGIRGLSLSAARYALLRLEEGPP HTKNWRPQLLVLVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG SVLEGTFLENHPQAQRAEESIRRLMEAEKVKGFCQVVISSNLR DGVSHLIQSGGLGGLQHNTVLVGWPRNWRQKEDHQTWRNFIEL VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM LMLVPFLLRHKVWRKCKMRIFTVAQMVDMHAM 213 952 1 128 FYLRLLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV 214 953 3 244 RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVWGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSTHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	1	ł		ļ	CSSRFLNATCDEYFTRNNVTEIQGIPGAASGLIKENLWSSYLT
VLFGACIEGVVLRDKFGEAVNGNLVVGTLAWPSPWVIVIGSFF STCGAGLQSLTGAPRLLQAISRDGIVPFLQVFGHGKANGEPTW ALLITACICEIGILIASLDEVAPILSMFFLMCYMFVNLACAVQ TLLRTPNWRPRFRYYHWTLSFLGMSLCLALMFICSWYYALVAM LIAGLIYKYIEYRGAKKEWGGIRGLSLSAARYALLRLEEGPP HTKNWRPQLLVLVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG SVLEGTFLENHPQAQRAEESIRRLMEAEKVKGFCQVVISSNLR DGVSHLIQSGGLGGLQHNTVLVGWPRNWRQKEDHQTWRNFIEL VRETTAGHLALLVTKNVSMFPGNPFRFSEGSIDRWGIGHDGGM LMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM 213 952 1 128 FYLELSFFCFGEHEKRCWSVDFNLMDPKLLASGSDDAKGTV 214 953 3 244 RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILVRNVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMMRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYFFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	ļ	ļ	l		KGVIVERSGMTSVGLADGTPIDMDHPYVFSDMTSYFTLLVGIY
VLFGACIEGVVLRDKFGEAVNGNLVVGTLAWPSPWVIVIGSFF STCGAGLQSLTGAPRLLQAISRDGIVPFLQVFGHGKANGEPTW ALLITACICEIGILIASLDEVAPILSMFFLMCYMFVNLACAVQ TLLRTPNWRPRFRYYHWTLSFLGMSLCLALMFICSWYYALVAM LIAGLIYKYIEYRGAKKEWGGIRGLSLSAARYALLRLEEGPP HTKNWRPQLLVLVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG SVLEGTFLENHPQAQRAEESIRRLMEAEKVKGFCQVVISSNLR DGVSHLIQSGGLGGLQHNTVLVGWPRNWRQKEDHQTWRNFIEL VRETTAGHLALLVTKNVSMFPGNPFRFSEGSIDRWGIGHDGGM LMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM 213 952 1 128 FYLELSFFCFGEHEKRCWSVDFNLMDPKLLASGSDDAKGTV 214 953 3 244 RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILVRNVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMMRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYFFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	1		1	1	FPSVTGIMAGSNRSGDLRDAQKSIPTGTILAIATTSAVYISSV
STCGAGLQSLTGAPRLLQAISRDGIVPFLQVFGHGKANGEPTW ALLLTACICEIGILIASLDEVAPILSMFFLMCYMFVNLACAVQ TILRTPNWRPRFRYYHWTLSFLGMSLCLAIMFICSWYYALVAM LIAGLIYKYIEYRGAKKEWGDGIRGLSLSAARYALLRLEEGPP HTKNWRPQLLVLVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG SVLEGTFLENHPQAQRAEESIRRLMEAEKVKGFCQVVISSNLR DGVSHLIQSGGLGGLQHNTVLVGWPRNWRQKEDHQTWRNFIEL VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM LMLVPFLLRHKVWRKCKMRIFTVAQMVDMHAM 213 952 1 128 FYLRLLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV 214 953 3 244 RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	[1	[
ALLLTACICEIGILIASLDEVAPILSMFFLMCYMFVNLACAVQ TILRTPNWRPRFRYYHWTLSFLGMSLCLALMFICSWYYALVAM LIAGLIYKYIEYRGAKKEWGDGIRGLSLSAARYALLRLEEGPP HTKNWRPQLLVLVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG SVLEGTFLENHPQAQRAEESIRRLMEAEKVKGFCQVVISSNLR DGVSHLIQSGGLGGLQHNTVLVGWPRNWRQKEDHQTWRNFIEL VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM LMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM 213 952 1 128 FYLRLLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV 214 953 3 244 RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCTHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	1	1	1	ļ	1
TILRTPNWRPRFRYYHWTLSFLGMSLCLALMFICSWYYALVAM LIAGLIYKYIEYRGAKKEWGDGIRGLSLSAARYALLRLEEGPP HTKNWRPQLLVLVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG SVLEGTFLENHPQAQRAEESIRRIMEAEKVKGFCQVVISSNLR DGVSHLIQSGGLGGLQHNTVLVGWPRNWRQKEDHQTWRNFIEL VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM LMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM 213 952 1 128 FYLRLLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV 214 953 3 244 RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	'		j	1	
LIAGLIYKYIEYRGAKKEWGDGIRGLSLSAARYALLRLEEGPP HTKNWRPQLLVLVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG SVLEGTFLENHPQAQRAEESIRRLMEAEKVKGFCQVVISSNLR DGVSHLIQSGGLGGLQHNTVLVGWPRNWRQKEDHQTWRNFIEL VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM LMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM 213 952 1 128 FYLRLLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV 214 953 3 244 RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	1	[İ	ſ	
HTKNWRPQLLVLVRVDQDQNVVHPQLLSLTSQLKAGKGLTTVG SVLEGTFLENHPQAQRAEESIRRLMEAEKVKGFCQVVISSNLR DGVSHLIQSGGLGGLQHNTVLVGWPRNWRQKEDHQTWRNFIEL VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM LMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM 213 952 1 128 FYLRLLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV 214 953 3 244 RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS]	1	i]	1
SVLEGTFLENHPQAQRAEESIRRLMEAEKVKGFCQVVISSNLR DGVSHLIQSGGLGGLQHNTVLVGWPRNWRQKEDHQTWRNFIEL VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM LMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM 213 952 1 128 FYLRLLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV 214 953 3 244 RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS				1	
DGVSHLIQSGGLGGLQHNTVLVGWPRNWRQKEDHQTWRNFIEL VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM LMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM 213 952 1 128 FYLRLLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV 214 953 3 244 RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS		İ	i .		
VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM LMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM 213 952 1 128 FYLRLLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV 214 953 3 244 RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS]		1	, · ·	
LMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM 213 952 1 128 FYLRLLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV 214 953 3 244 RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTTESTPTTTSGTKIHESAPDEQSIWNVTVLPNS	1		1	1	
213 952 1 128 FYLRLLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV 214 953 3 244 RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS			ł	1	
214 953 3 244 RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS		<u> </u>			
HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP 215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS			1	1	l
215 954 2 609 CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	214	953	3	244	· · · · · · · · · · · · · · · · · · ·
FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS					
LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	215	954	2	609	
GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS		1			FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA
VGPLLRALATCHALSRLQDTPVGDPMDLKM 216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTTEATTVPIIPTVAPTTMATTTTVAT TTTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS					LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG
216 955 292 855 QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	1	ł	1		GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP
EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	1				VGPLLRALATCHALSRLQDTPVGDPMDLKM
EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	216	955	292	855	QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF
IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS					
AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	1	1			
RNDANRLQDAIAKGRG 217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	1				
217 956 2 400 ARYRFTLSARTQVGSGEAVTEESPAPPNEATPTAAPPTLPPTT VGATGAVSSTDATALAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	1		1		
VGATGAVSSTDATALAATTEATTVPIIPTVAPTTMATTTTVAT TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	277	1056	+	100	
TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS	217	956	4	400	
					1
KWA	1		[1	
		1	<u></u>		KWA

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid	Predicted end mucleotide location corre- sponding to first amino acid residue of amino acid	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
		sequence	sequence	
218	957	1	662	LKSTQDEINQARSKLSQLHESRQEAHRSLEQYDQVLDGAHGAS LTDLANLSEGVSLAERGSFGAMDDPFKNKALLFSNNTQELHPD PFQTEDPFKSDPFKGADPFKGDPFQNDPFAEQQTTSTDPFGGD PFKESDPFRGSATDDFFKKQTKNDPFTSDPFTKNPSLPSKLDP FESSDPFSSSSVSSKGSDPFGTLDPFGSGSFNSAEGFADFSTI EGRRG
219	958	1	752	RTRGGSGNSSQPSLREGHDKPVFNGAGKPHSSTSSPSVPKTSA SRTQKSAVEHKAKKSLSHPSHSRPGPMVTPHNKAKSPGVRQPG SSSSSAPGQPSTGVARPTVSSGPVPRRQNGSSSSGPERSISGS KKPTNDSNPSRRTVSGTCGPGQPASSSGGPGRPISGSVSSARP LGSSRGPGRPVSSPHELRRPVSGLGPPGRSVSGPGRSISGSIP AGRTVSNSVPGRPVSSLGPGQTVSSSGPTIKPKCT
220	959	439	582	RGKGITPRYHLCISDPHNLKICCRVNGEVVQSSNTNQMVFKTE DLIAW
221	960	230	420	VVAVTRWLCENGVSYLRKCVCSACRHGTRCAGEVAAAANNSHC TVGIAFNAKIGGMGNQLTWM
222	961	311	490	GAPPPFVPTLKSDDDTSNFDEPKKNSWVSSSPCQLSPSGFSGE ELPFVGFSYSKALGIL
223	962	2	422	FVERLAHLHAACAPRRKVALLLEVCRDVYAGLARGENQDPLGA DAFLPALTEELIWSPDIGDTQLDVEFLMELLDPDELRGEAGYY LTTWFGALHHIAHYQPETDRAPRGLSSEARASLHQWHRRRTLH RKDHPRAQQLD
224	963	385	844	FWMDPYNPLNFKAPFQTSGENEKGCRDSKTPSESIVAISECHT LLSCKVQLLGSQESECPDSVQRDVLSGGRHTHVKRKKVTFLEE VTEYYISGDEDRKGPWEEFARDGCRFQKRIQETEDAIGYCLTF EHRERMFNRLQGTCFKGLNVLKQC
225	964	3	166	AASTAYSFFGTVENMAPKVVNRPGHTQSADWGSFGGLMGRFEF GIFLKGKEIVK
226	965	1	118	GFVFLPGPMSVGLDFSLPGMEHVYGIPEHADNLRLKVTE
227	966	1	390	GSECQGTDLDTRNCTSDLCVHTASGPEDVALYVGLIAVAVCLV LLLLVLILVYCRKKEGLDSDVADSSILTSGFQPVSIKPSKADN PHLLTIQPDLSTTTTTYQGSLCPRQDGPSPKFQLTNGHLLSPL G
228	967	1	777	LIYNEDMICWIESRESSNQLKCIQITKAGGLTDEWTINILQSF HNVQQMAIDWLTRNLYFVDHVGDRIFVCNSNGSVCVTLIDLEL HNPKAIAVDPIAGKLFFTDYGNVAKVERCDMDGMNRTRIIDSK TEQPAALALDLVNKLVYWVDLYLDYVGVVDYQGKNRHAVIQGR QVRHLYGITVFEDYLYATNSDSYNIVRISRFNGTDIHSLIKIE NAWGIRIYQKRTQPTVRSHACEVDPYGMPGGCSHICLLSSSYT K
229	968	3	488	SSGNPQPGDSSGGAGGGLPSPGEQELSRRLQRLYPAVNQQET PLPRSWSPKDKYNYIGLSQGNLRVHYKGHGKNHKDAASVRATH PIPAACGIYYFEVKIVSKGRDGYMGIGLSAQGVNMNRLPGWDK HSYGYHGDDGHSFCSSGTGQPYGPTFTTGDVI

SEQ Predicted beginning Predicted beginning Predicted Dealth De	CEO	SEQ.	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
NO: of Nucleic Acids of Coation Corresponding to first amino acid residue of amino acid residue of amino acid sequence sequence of Acids and sequence sequen					Annio dell' segment containing signal popular (1 manne,
Country Coun					C=Cysteme, D=Aspartic Acid, E= Globaline Acid,
Acids Acids both first amino acid residue of amino acid residue of amino acid residue of amino acid residue of amino acid sequence sequenc			location		F=Phenylalanine, G=Glycine, H=Histidine, 1=Isoleucine,
Acids sponding to first amino acid residue of amino acid residue of amino acid sequence seque			corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
to first animo animo acid residue of amino acid residue of amino acid sequence			sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
acid residue of amino acid residue of amino acid sequence	Acius	Acias	to first		T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
acid residue of amino acid residue of amino acid sequence			amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
residue of amino acid sequence			acid	acid	
acid sequence sequenc			residue	residue	,
Sequence Sequence			of amino	of amino	
230 969 1 228 FFFFKMGSRSVTQAGVQCDVSSLQAPPPRFTLFCLSLPSSWD YRCVPPCPANFFVFLVETGFHRVSQYGLDLLTS 231 970 2 119 QLSLARGKVFLCALSFVYPAKALAEGYLKSTITQIERRVDIPS SLVGVIDGSPEIGNLLVITFVSYFGAKLHRPKIIGAGCVIMGV GTILLIAMPQFFMEQYKYERYSPSSNSTLSISPCLLESSSQLPV SVMEKSKSKISHDECEVDTSSSMMIYVFLGILLEGSGQLPV GIAYLDDFASEDNAAFYIGCVQTVAIIGPIFGFLLGSLCAKLY VDIGFVRL/DHF*VSAQLGTRKGVLVCLVFCLLCQSIGRRLSE EHHHSDREKG			acid	acid	
YRCVPPCPANFFVFLVETGFHRVSQYGLDLLTS 231 970 2 119 QLSLARGKVFLCALSFVYFAKALAEGYLKSTITQIERRVDIPS SLVGVIDGSFEIGNLLVITFVSYFGAKLARPKIIGAGCVIMGV GTLLIAMPQFFMEQYKYERYSPSSNSTLSISPCLLESSSQLPV SVMEKSKSKISNECEVDTSSSMMITVFLGNLLRGIGETFIQPL GIAYLDDFASEDNAAFYIGCVQTVAIIGPIFGFLLGSLCAKLY VDIGFVNL/DHF*VSAQLGTRKGVLVCLVFCLLCQSIGRLSE EHHHSDREKG 232 971 221 1068 QPAGRVERFCKFHMWAEGMTSLMKAALDLTYPITSMFSGAGFN SSIFSVFKDQQIEDLWIPYFAITTDITASAMRVHTDGSLWRYV RASMSLSGYMPPLCDPKDGHLLMDGGYINNLPADVARSMGAKV VIAIDVGSRDETDLTNYGDALSGWWLLWKRNNPLATKVKVILMM AEIQTRLAYVCCVRQLEVVKSSDYCEYLRPPIDSYSTLDFGKF NEICEVGYQHGRTVFDIWGRSGVLEKMLRQQQFSKKPASAVL TCPNASFTDLAEIVSRIEPAKPAM 233 972 133 635 LWVIMFVSYLITTLHVQTAVLARPGGESIGCDDYLGSDKVVD KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVCIPEGATKINI TEMYKSNNYLALRSRSGRSIINGNWALDRPGKYEGGGTMFTYK RPNEISSTAGESFLAEGPTMEILDVYVSLDVSGLFFGF 234 973 1 420 ISGGTRSAGPLRRNYNFIAAVVEKVAPSVVHVQLWGRNQQWIE VVLQNGARYEAVVKDIDLKLDLAVIKIRSNAELPVLMLGRSSD LRAGEFVVALGSPFSLQNTATAGIVSTKQRGGKELGMKDSDMD YVQLDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVWYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCARSVLKQLMKVDD AHRITAKELLDNQWLTGNKLSSVRPTNULEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGRVPETNYTSDEEEEKQVGRI TAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVWEGDLMQLTCKKTSGSKPAADIRWFNRDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEHHYTPSVKIIPSTFFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHDMVTASERIFVLNQLRDPTSPKF PEDFFDGGEHAKQKSVISWLLNHDPAKRPTATELLKSELLEPPQ			sequence	sequence	
970 2 119 QLSLARGKVFLCALSFVYFAKALAEGYLKSTITQIERRVDIPS SLVGVIDGSFEIGNLLVITFVSYFGAKLHRPKIIGAGCVIMGV GTLLIAMPQFFMEQYKYERYSPSSNSTLSISPCLLESSQLPV SVMEKSKSKISNECEVDTSSSMMIYVFLGNLLRGIGETPIQPL GIAYLDDFASEDNAFYIGCVQTVAIIGPIFGFLLGSLCAKLY VDIGFVNL/DHF*VSAQLGTRKGVLVCLVFCLLCQSIGRRLSE EHHHSDREKG	230	969	1	228	
SLVGVIDGSFEIGNLLVITFVSYFGAKLHRPKIIGAGCVIMGV GTLLIAMPQFFMEQYKYERYSPSSNSTLSISPCLLESSQLEV SVMEKSKSKISNECEUDTSSSMWIVVFLGNLLRGIGETPIQPL GIAYLDDFASEDNAFYIGCVQTVAIIGPIFGFLLGSLCAKLY VDIGFVNL/DHF*VSAQLGTRKGVLVCLVFCLLCQSIGRRLSE EHHHSDREKG 232 971 221 1068 EHHHSDREKG QPAGRVEAFCKFHMWAEGMTSLMKAALDLTYPITSMFSGAGFN SSIFSVFKDQQIEDLWIPYFAITTDITASAMRVHTDGSLWRYV RASMSLSGYMPPLCDPKDGHLLMDGGYINNLPADVARSMGAKV VIAIDVGSRDETDLTNYGDALSGWWLLWKRWNPLATKVKVLNM ABEIQTRLAYVCCVRQLEFVKSSDYCEFYLRPPIDSYSTLDFGKF NEICEVGYQHGRTVFDIWGRSGVLEKMLRDQQGPSKKPASAVL TCPNASFTDLABIVSRIEPARPAM 233 972 133 635 LWVIMFVSYLITLLHVQTAVLARPGGESIGCDDYLGSDKVVD KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVEIPEGATKINI TEMYKSNNYLALRSRSGRSIINGNWAIDRPGKYEGGGTMFTYK RPMEISSTAGESFLAEGPTNEILDVYVSLDVSGLFFGF VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELEVLMLGRSSD LRAGEFVVALGSPFSLQNTATAGIVSTKQRGGKELGMKDSDMD YVQIDATINYG DLKLENINVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDLWSIGVVMYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNGWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI LAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGGEHAKQKSVISWLLNINDPARRPTATELLKSELLPPPQ		ł	i	1	
GTLLIAMPQFFMEQYKYERYSPSSNSTLSISPCLLESSSQLPV SVMEKSKSKISNECEVDTSSSMWIVVFLGNLLKGIGETPIQPL GIAYLDDFASEDNAAFYIGCVQTVAIIGPIFGFLLGSLCAKLY VDIGFVNL/DHF*VSAQLGTRKGVLVCLVFCLLCQSIGRRLSE EHHHSDREKG 232 971 221 1068 QPAGRVERFCKFHMWAEGMTSLMKAALDLTYPITSMFSGAGFN SSIFSVFKDQQIEDLWIPYFAITTDITASAMRVHTDGSLWRYV RASMSLSGYMPPLCDPKDGHLLMDGGYINNLPADVARSMGAKV VIAIDVGSRDETDLTNYGDALSGWWLLWKRWNPLATKVKVLNM AEIQTRLAAVCCVRQLEVVKSSDYCEYLRPPIDSYSTLDFGKF NEICEVGYQHGRTVFDIWGRSGVLEKMLRDQQGPSKKPASAVL TCPNASFTDLAEIVSRIEPAKPAM 233 972 133 635 LWVIMFVSYLILTLLHVQTAVLARPGGESIGCDDYLGSDKVVD KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVEIPEGATKINI TEMYKSNNYLALRSRSGRSIINGNWAIDRPGKYEGGGTMFTYK RPNEISSTAGESFLAEGFTNEILDVXVSLDVSGLFFGF 234 973 1 420 ISGGTRSAGPLRRNYNFIAAVVEKVAPSVVHVQLWGRNQQWIE VVLQNGARYEAVVKGIDLKLDLAVIKIESNAELPVLMLGRSSD LRAGEFVVALGSPFSLQNTATAGIVSTKQRGKELGMKDSDMD VVQDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI LASSEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAPLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLITVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLERHYYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPWVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWILLNHDPAKRPTATELLKSELLPPPQ	231	970	2	119	QLSLARGKVFLCALSFVYFAKALAEGYLKSTITQIERRVDIPS
SVMEKSKSKISNECEVDTSSSMWIYVFLGNLLRGIGETPIQPL GIAYLDDFASEDNAAFYIGCVQTVAIIGPIFGFLLGSLCAKLY VDIGFVNL/DHF*VSAQLGTRKGVLVCLVFCLLCQSIGRRLSE EHHHSDREKG 232 971 221 1068 QPAGRVEAFCKFHMWAEGMTSLMKAALDLTYPITSMFSGAGFN SSIFSVFKDQQIEDLWIPYFAITTDITASAMRVHTDGSLWRYV RASMSLSGYMPPLCDPKDGHLLMDGGYINNLPADVARSMGAKV VIAIDVGSRDETDLITNYGDALSGWWLLWKRWNPLATKVKVLMM AEIQTRLAYVCCVRQLEVVKSSDYCEYLRPPIDSYSTLDFGKF NEICEVGYQHGRTVFDIWGRSGVLEKMLRDQQGPSKKPASAVL TCPNASFTDLAEIVSRIEPAKPAM 233 972 133 635 LWVIMFVSYLIITLLHVQTAVLARPGGESIGCDDYLGSDKVVD KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVEIPEGATKINI TEMYKSNNYLALRSRSGRSIINGNWALDRPGKYEGGGTMFTYK RPNEISSTAGESFLAEGPPNEILDVYVSLDVSGLFFGF 234 973 1 420 ISGGTRSAGPLRRNYNFIAAVVEKVAPSVVHVQLWGRNQQWIE VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD LRAGEFVVALGSFFSLQNTATAGIVSTKQRGKELGMKDSDMD YVQIDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASATAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPSVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGKKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI JAAFLPSVKYPHHTWNIFLQICLFVVSL SGFSSPVWEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEHHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPWVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLNHDPAKRPTATELLKSELLPPPQ			1	1	
GIAYLDDFASEDNAFYIGCVQTVAIIGPIFGFLLGSLCAKLY VDIGFVML/DHF*VSAQLGTRRGVLVCLVFCLLCQSIGRRLSE EHHHSDREKG QPAGRVEAFCKFHMWAEGMTSLMKAALDLTYPITSMFSGAGFN SSIFSVFKDQQIEDLWIPYFAITTDITASAMRVHTDGSLWRYV RASMSLSGYMPPLCDPKDGHLLMDGGYINNLPADVARSMGAKV VIAIDVGSRDETDLTNTGDALSGWWLLWKKMPLATKVKVLNM AEIQTRLAYVCCVRQLEVVKSSDYCEYLRPPIDSYSTLDFGKF NEICEVGYQHGRTVFDIWGRSGYLEKMLRDQQGPSKKPASAVL TCPNASFTDLAEIVSRIEPAKPAM 233 972 133 635 LWVIMFVSYLIITLLHVQTAVLARPGGESIGCDDYLGSDKVVD KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVEIPEGATKINI TEMYKSNNYLALRSRSGRSIINGNWAIDRPGKYEGGGTMFTYK RPNEISSTAGESFLAEGPTNEILDVYVSLDVSGLFFGF 234 973 1 420 ISGGTRSAGPLRRNYNFIAAVVEKVAPSVVHVQLWGRNQQWIE VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD LRRGEFVVALGSPFSLQNTATAGIVSTKQRGGKELGMKDSDMD YVQIDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVIKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSVQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVGRSDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTFPPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHBWVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLNHDPAKRPTATELLKSELLPPPQ		[ļ	GTLLIAMPQFFMEQYKYERYSPSSNSTLSISPCLLESSSQLPV
VDIGFYNL/DHF*VSAQLGTRKGVLVCLVFCLLCQSIGRRLSE EHHHSDREKG EHHHSDREKG 232 971 221 1068 QPAGRVEAFCKFHMWAEGMTSLMKAALDLTYPITSMFSGAGFN SSIFSVFKDQQIEDLWIPYFAITTDITASAMRVHTDGSLWRYV RASMSLSGYMPPLCDPKDGHLLMDGGYINNLPADVARSMGAKV VIAIDVGSRDETDLTNYGDALSGWNLLWKRWNPLATKVKVLMM AEIQTRLAYVCCVRQLEVVKSSDYCEYLRPIDSYSTLDFGKF NEICEVGYQHGRIVFDIWGRSGVLEKMLRDQQGPSKKPASAVL TCPNASFTDLAEIVSRIEPAKPAM 233 972 133 635 LWVIMFVSYLILTLLHVQTAVLARPGGESIGCDDYLGSDKVVD KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVEIPEGATKINI TEMYKSNNYLALRSRSGRSIINGNWAIDRPGKYEGGGTMFTYK RPNEISSTAGESFLAEGPTNEILDVYVSLDVSGLFFGF 234 973 1 420 ISGGTRSAGPLRRNYNFIAAVVEKVAPSVVHVQLWGRNQQWIE VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD LRAGEFVVALGSPFSLQNTATAGIVSTKQRGKELGMKDSDMD YVQIDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLINIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVWYMLLRGEPPF LASSEEKLFELIRRGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVWEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEHHYTPSVKIIPSTPFPQEG 1 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLHHDPAKRPTATELLKSELLPPPQ			1		SVMEKSKSKISNECEVDTSSSMWIYVFLGNLLRGIGETPIQPL
EHHHSDREKG 232 971 221 1068 QPAGRVEAFCKFHMWAEGMTSLMKAALDLTYPITSMFSGAGFN SSIFSVFKDQQIEDLWIPYFAITTDITASAMRVHTDGSLWRYV RASMSLSGYMPPLCDPKDGHLLMDGGYINNLPADVARSMGAKV VIAIDVGSRDETDLTNYGDALSGWWLLWKRWNPLATKVKVLMM AEIQTRLAYVCCVRQLEVVKSSDYCEYLRPPIDSYSTLDFGKF NEICEVGYQHGRTVFDIWGRSGVLEKMLRDQQGPSKKPASAVL TCPNASFTDLAEIVSRIEPAKPAM 233 972 133 635 LWVIMFVSYLILTLHVQTAVLARPGGESIGCDDYLGSDKVVD KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVEIPEGATKINI TEMYKSNNYLALRSRSGRSIINGNWAIDRPGKYEGGGTMFTYK RPNEISSTAGESFLAEGPTMEILDVXVSLDVSGLFFGF 234 973 1 420 ISGGTRSAGPLRRNYNFIAAVVEKVAPSVVHVQLWGRNQQWIE VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD LRAGEFVVALGSPFSLQNTATAGIVSTKQRGKELGMKDSDMD YVQIDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR OATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKRPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGGYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPWVTASERIFVLNQLRDPTSPKF PEDFDDGBHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ				1	GIAYLDDFASEDNAAFYIGCVQTVAIIGPIFGFLLGSLCAKLY
232 971 221 1068 QPAGRVEAFCKFHWWAEGMTSLMKAALDLTYPITSMFSGAGFN SSIFSVFKDQQIEDLWIPYFAITTDITASAMRVHTDGSLWRYV RASMSLSGYMPPLCDPKDGHLLMDGGYINNLPADVARSMGAKV VIAIDVGSRDETDLTNYGDALSGWWLLWKRWNPLATKVKVLNM AEIQTRLAYVCCVRQLEVVKSSDYCEYLRPPIDSYSTLDFGKF NEICEVGYQHGRTVFDIWGRSGVLEKMLRDQQGPSKKPASAVL TCPNASFTDLAEIVSRIEPAKPAM 233 972 133 635 LWVIMFVSYLILTLHVQTAVLARPGGESIGCDDYLGSDKVVD KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVEIPEGATKINI TEMYKSNNYLALRSRSGRSIINGNWAIDRPGKYEGGGTMFTYK RPNEISSTAGESFLAEGPTNEILDVYVSLDVSGLFFGF 234 973 1 420 ISGGTRSAGPLRRNYNFIAAVVEKVAPSVVHVQLWGRNQQWIE VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD LRAGEFVVALGSPFSLQNTATAGIVSTKQRGKELGMKDSDMD YVQIDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVPPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPWTASERIFVLNQLRDPTSPKF PEDFDDGBEHAKQKSVISWLLNHPPAKRPTATELLKSELLPPPQ	[l	1	VDIGFVNL/DHF*VSAQLGTRKGVLVCLVFCLLCQSIGRRLSE
SSIFSVFKDQQIEDLWIPYFAITTDITASAMRVHTDGSLWRYV RASMSLSGYMPPLCDPKDGHLLMDGGYINNLPADVARSMGAKV VIAIDVGSRDETDLTNYGDALSGWWLLWKRWNPLATKVKVLNM AEIQTRLAYVCCVRQLEVVKSSDYCEYLRPPIDSYSTLDFGKF NEICEVGYQHGRTVFDIWGRSGVLEKMLRDQQGPSKKPASAVL TCPNASFTDLAEIVSRIEPAKPAM 233 972 133 635 LWVIMFVSYLILTLLHVQTAVLARPGGESIGCDDYLGSDKVVD KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVEIPEGATKINI TEMYKSNNYLALRSRSGRSIINGNWAIDRPGKYEGGGTMFTYK RPNEISSTAGESFLAEGPTNEILDVYVSLDVSGLFFGF 234 973 1 420 ISGGTRSAGPLRRNYNFIAAVVEKVAPSVVHVQLWGRNQQWIE VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD LRAGEFVVALGSPFSLQNTATAGIVSTKQRGKELGMKDSDMD YVQIDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI 1AAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPWVTASERIFVLNQLRDPTSPKF PEDFDDGBEHAKQKSVLSWLLNHPPAKRPTATELLKSELLPPPQ					EHHHSDREKG
SSIFSVFKDQQIEDLWIPYFAITTDITASAMRVHTDGSLWRYV RASMSLSGYMPPLCDPKDGHLLMDGGYINNLPADVARSMGAKV VIAIDVGSRDETDLTNYGDALSGWWLLWKRWNPLATKVKVLNM AEIQTRLAYVCCVRQLEVVKSSDYCEYLRPPIDSYSTLDFGKF NEICEVGYQHGRITVFDIWGRSGVLEKMLRDQQGPSKKPASAVL TCPNASFTDLAEIVSRIEPAKPAM 233 972 133 635 LWVIMFVSYLILTLLHVQTAVLARPGGESIGCDDYLGSDKVVD KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVEIPEGATKINI TEMYKSNNYLALRSRSGRSIINGNWAIDRPGKYEGGGTMFTYK RPNEISSTAGESFLAEGPTNEILDVYVSLDVSGLFFGF 234 973 1 420 ISGGTRSAGPLRRNYNFIAAVVEKVAPSVVHVQLWGRNQQWIE VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD LRAGEFVVALGSPFSLQNTATAGIVSTKQRGKELGMKDSDMD YVQIDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLMIKVTDFGLAVKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI 1AAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPVTTASERIFVLNQLRDPTSPKF PEDFDDGBEHAKQKSVISWLLNHPPAKRPTATELLKSELLPPPQ	232	971	221	1068	QPAGRVEAFCKFHMWAEGMTSLMKAALDLTYPITSMFSGAGFN
VIAIDVGSRDETDLTNYGDALSGWWLLWKRWNPLATKVKVLNM AEIQTRLAYVCCVRQLEVVKSSDYCEYLRPPIDSYSTLDFGKF NEICEVGYQHGRTVFDIWGRSGVLEEMLRDQQGPSKKPASAVL TCPNASFTDLAEIVSRIEPAKPAM 233 972 133 635 LWVIMFVSYLILTLLHVQTAVLARPGGESIGCDDYLGSDKVVD KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVEIPEGATKINI TEMYKSNNYLALRSRSGRSIINGNWAIDRPGKYEGGGTMFTYK RPNEISSTAGESFLAEGPTNEILDVYVSLDVSGLFFGF 234 973 1 420 ISGGTRSAGPLRRNYMFIAAVVEKVAPSVVHVQLWGRNQQWIE VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD LRAGEFVVALGSPFSLQNTATAGIVSTKQRGGKELGMKDSDMD YVQIDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ		1	ł	ł	SSIFSVFKDQQIEDLWIPYFAITTDITASAMRVHTDGSLWRYV
AEIQTRLAYVCCVRQLEVVKSSDYCEYLRPPIDSYSTLDFGKF NEICEVGYQHGRTVFDIWGRSGVLEKMLRDQQGPSKKPASAVL TCPNASFTDLAEIVSRIEFAKPAM 233 972 133 635 LWVIMFVSYLILTLLHVQTAVLARPGGESIGCDDYLGSDKVVD KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVEIPEGATKINI TEMYKSNNYLALRSRSGRSIINGNWAIDRPGKYEGGGTMFTYK RPNEISSTAGESFLAEGPTMEILDVYVSLDVSGLFFGF 234 973 1 420 ISGGTRSAGPLRRNYNFIAAVVEKVAPSVVHVQLWGRNQQWIE VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD LRAGEFVVALGSPFSLQNTATAGIVSTKQRGGKELGMKDSDMD YVQIDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVWYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPWTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ	İ		1	ŀ	RASMSLSGYMPPLCDPKDGHLLMDGGYINNLPADVARSMGAKV
NEICEVGYQHGRTVFDIWGRSGVLEKMLRDQQGPSKKPASAVL TCPNASFTDLAEIVSRIEPAKPAM 233 972 133 635 LWVIMFVSYLILTLLHVQTAVLARPGGESIGCDDYLGSDKVVD KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVEIPEGATKINI TEMYKSNNYLALRSRSGRSIINGNWAIDRPGKYEGGGTMFTYK RPNEISSTAGESFLAEGPTNEILDVYVSLDVSGLFFGF 234 973 1 420 ISGGTRSAGPLRRNYNFIAAVVEKVAPSVHVQLWGRNQQWIE VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD LRAGEFVVALGSPFSLQNTATAGIVSTKQRGGKELGMKDSDMD YVQIDATINYG 235 974 2 860 PRVREIKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ			l	1	VIAIDVGSRDETDLTNYGDALSGWWLLWKRWNPLATKVKVLNM
NEICEVGYQHGRTVFDIWGRSGVLEKMLRDQQGPSKKPASAVL TCPNASFTDLAEIVSRIEPAKPAM 233 972 133 635 LWVIMFVSYLILTLLHVQTAVLARPGGESIGCDDYLGSDKVVD KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVEIPEGATKINI TEMYKSNNYLALRSRSGRSIINGNWAIDRPGKYEGGGTMFTYK RPNEISSTAGESFLAEGPTNEILDVYVSLDVSGLFFGF 234 973 1 420 ISGGTRSAGPLRRNYNFIAAVVEKVAPSVHVQLWGRNQQWIE VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD LRAGEFVVALGSPFSLQNTATAGIVSTKQRGGKELGMKDSDMD YVQIDATINYG 235 974 2 860 PRVREIKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ	ļ		•	1	AEIOTRLAYVCCVROLEVVKSSDYCEYLRPPIDSYSTLDFGKF
TCPNASFTDLAEIVSRIEPAKPAM 233 972 133 635 LWVIMFVSYLILTLLHVQTAVLARPGGESIGCDDYLGSDKVVD KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVEIPEGATKINI TEMYKSNNYLALRSRSGRSIINGRWAIDRPGKYEGGGTMFTYK RPNEISSTAGESFLAEGPTNEILDVYVSLDVSGLFFGF 234 973 1 420 ISGGTRSAGPLRRNYNFIAAVVEKVAPSVVHVQLWGRNQQWIE VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD LRAGEFVVALGSPFSLQNTATAGIVSTKQRGGKELGMKDSDMD YVQIDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKRPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ	ĺ	1	1	1	1 ~ -
233 972 133 635 LWVIMFVSYLILTLLHVQTAVLARPGGESIGCDDYLGSDKVVD KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVEIPEGATKINI TEMYKSNNYLALRSRSGRSIINGNWAIDRPGKYEGGGTMFTYK RPNEISSTAGESFLAEGPTNEILDVYVSLDVSGLFFGF 234 973 1 420 ISGGTRSAGPLRRNYNFIAAVVEKVAPSVVHVQLWGRNQQWIE VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD LRAGEFVVALGSPFSLQNTATAGIVSTKQRGGKELGMKDSDMD YVQIDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEEKLPELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ				Ì	1
KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVEIPEGATKINI TEMYKSNNYLALRSRSGRSIINGNWAIDRPGKYEGGGTMFTYK RPNEISSTAGESFLAEGPTNEILDVYVSLDVSGLFFGF 234 973 1 420 ISGGTRSAGPLRRNYNFIAAVVEKVAPSVVHVQLWGRNQQWIE VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD LRAGEFVVALGSPFSLQNTATAGIVSTKQRGKELGMKDSDMD YVQIDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVXYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ	233	972	133	635	
TEMYKSNNYLALRSRSGRSIINGNWAIDRPGKYEGGGTMFTYK RPNEISSTAGESFLAEGPTNEILDVYVSLDVSGLFFGF 234 973 1 420 ISGGTRSAGPLRRWYNFIAAVVEKVAPSVVHVQLWGRNQQWIE VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD LRAGEFVVALGSPFSLQNTATAGIVSTKQRGGKELGMKDSDMD YVQIDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ	233	1 - 1 -	1 - 3 - 3	1	- ·
RPNEISTAGESFLAEGPTNEILDVYVSLDVSGLFFGF 234 973 1 420 ISGGTRSAGPLRRNYNFIAAVVEKVAPSVVHVQLWGRNQQWIE VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD LRAGEFVVALGSPFSLQNTATAGIVSTKQRGGKELGMKDSDMD YVQIDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ		1			1
234 973 1 420 ISGTTSAGPLRRNYNFIAAVVEKVAPSVVHVQLWGRNQQWIE VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD LRAGEFVVALGSPFSLQNTATAGIVSTKQRGKELGMKDSDMD YVQIDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ			1		
VVLQNGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD LRAGEFVVALGSPFSLQNTATAGIVSTKQRGKELGMKDSDMD YVQIDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ	234	973	1,	420	
LRAGEFVVALGSPFSLQNTATAGIVSTKQRGGKELGMKDSDMD YVQIDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ	234	7,3	1	120	
YVQIDATINYG 235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ	Ì				l =-
235 974 2 860 PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ					7
DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKQSRSEAML QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ	225	974	12	860	
QATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ	235	3/4	4	800	-
LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ		ļ]	
AHRITAKELLDNQWLTGNKLSSVRPTNVLEMMKEWKNNPESVE ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ		1		1 .	
ENTTEEKNKPSTEEKLKSYQPWGNVPETNYTSDEEEEKQVGRI IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ		1			
IAAFLPSVKYPHHTWNIFLQICLFVVSL 236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ			1	1	1
236 975 1 467 LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ		1	1	l l	
SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ	000	1055	1,	163	
KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ	236	9/5	1 -	40/	
VAMQVLEMHYTPSVKIIPSTPFPQEG 237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ	1	1	1		
237 976 3 417 YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ	1	1	1		
PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ		<u> </u>	 	1	
	237	976	3	417	
	1	1	1		
YD\SDILKGN				<u> </u>	YD/SDILKGN

050		D-diand	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ	Predicted beginning	end end	Amino acid segment containing signal peptide (A—Alanine,
ID	ID I	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acias	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	(—possible hadicottae inscritori)
		of amino	of amino	
		acid	acid	
		sequence	sequence	
238	977	2	740	DODYKYDSTSDDSNFLNPPRGWDHTAPGHRTFETKDQPEYDST
			1	DGEGDWSLWSVCSVTCGNGNQKRTRSCGYACTATESRTCDRPN
		<u> </u>	j	CPGIEDTFRTAATEVSLLAGSEEFNATKLFEVDTDSCERWMSC
		-		KSEFLKKYMHKVMNDLPSCPCSYPTEVAYSTADIFDRIKRKDF
		1		RWKDASGPKEKLEIYKPTARYCIRSMLSLESTTLAAQHCCYGD
				NMQLITRGKGAGTPNLISTEFSAELHYKVDV
239	978	2	612	ESEENGESAMDSTVAKEGTNVPLVAAGPCDDEGIVTSTGAKEE
233]	~	014	DEEGEDVVTSTGRGNEIGHASTCTGLGEESEGVLICESAEGDS
	1		1	OIGTVVEHVEAEAGAAIMNANENNVDSMSGTEKGSKDTDICSS
	J]	AKGIVESSVTSAVSGKDEVTPVPGGCEGPMTSAASDQSDSQLE
		ł		KVEDTTISTGLVGGSYDVLVSGEVPECEVAH
240	979	79	361	VCIICLIFSYYSFDSALQSAKSSLGGNDELSATFLEMKGHFYM
				YAGSLLLKMGQHGNNVQWRALSELAALCYLIAFQVSLPLGAID
L				ISRSLDVF
241	980	2	681	QHPSQEKPQVLTPSPRKQKLNRKYRSHHDQMICKCLSLSISYS
				ATIGGLTTIIGTSTSLIFLEHFNNQYPASEVVNFGTWFLFSFP
		1	1	ISLIMLVVSWFWMHWLFLGCNFKETCSLSKKKKTKREQLSEKR
		į	ļ	IQEEYEKLGDISYPEMVTGFFFILMTVLWFTREPGFVPGWDSF
	-	1	l .	FEKKGYRTDATVSVFLGFLLFLIPAKKPCFGKKNDGENQEHSL
	}	1		GTEPIITWKDF
242	981	1	491	LEREGDKGTPVLRGFSSVSGSWSRRMPPFLLLTCLFITGTSVS
		}		PVALDPCSAYISLNEPWRNTDHQLDESQGPPLCDNHVNGEWYH
		i	1	FTGMAGDAMPTFCIPENHCGTHAPVWLNGSHPLEGDGIVQRQA
1		1		CASFNGNCCLWNTTVEVKACPGGYYVYRLTKPSV
243	982	1	983	CGRTMSDIRHSLLRRDALSAAKEVLYHLDIYFSSQLQSAPLPI
				VDKGPVELLEEFVFQVPKERSAQPKRLNSLQELQLLEIMCNYF
1		1		QEQTKDSVRQIIFSSLFSPQGNKADDSRMSLLGKLVSMAVAVC
		1	1	RIPVLECAASWLORTPVVYCVRLAKALVDDYCCLVPGSIQTLK
1	1			OIFSASPRFCCQFITSVTALYDLSSDDLIPPMDLLEMIVTWIF
1		}		EDPRLILITFLNTPIAANLPIGFLELTPLVGLIRWCVKAPLAY
1		ļ		KRKKPPLSNGHVSNKVTKDPGVGMDRDSHLLYSKLHLSVLQV
				LMTLOLHLTEKNLYGPPGADPLRPHG
244	983	32	362	SACSTGPELPGRATRSLTRPANQKGCDGDRLYYDGCAMIAMNG
444	703	32	302	SACSIGFEDFGRAIRSHIRFANGRGCDGDRHIIDGCANTAING
	1			VDTCVGCSSKTWKVAPFVRAWWRP
0.15	1	1.55	200	1
245	984	158	398	APLSRLCFPQVLVNEGGGFDRASGSFVAPVRGVYSFRFHVVKV
L		 _ _ _		YNRQTVQVTSALAPIPGSGGWGGRRGAQLTSGWTLH
246	985	2	707	PHIIGAEDDDFGTEHEQINGQCSCFQSIELLKSRPAHLAVFLR
				HVVSQFDPATLLCYLYSDLYKHTNSKETRRIFLEFHQFFLDRS
1	1	1	1	AHLKVSVPDEMSADLEKRRPELIPEDLHRHYIQTMQERVHPEV
	1	1		QRHLEDFRQKRSMGLTLAESELTKLDAERDKDRLTLEKERTCA
1		1	1	EQIVAKIEEVLMTAQAVEEDKSSTMQYVILMYMKHLGVKVKEP
	1	1		RNLEHKRGRIGFLPKIKQSM
<u> </u>		٠	_ _	<u> </u>

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of		corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-		P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		to first	to first	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		amino	amino	
	1	acid	acid	\=possible nucleotide insertion)
1	ŀ	residue	residue	
		of amino	of amino	
		acid	acid	·
		sequence	sequence	
247	986	18	441	SPGTGRGPGPTSFVCLPTPQCPFIDDFILALHRKIKNEPVVFP
	1	1		EGPEISEELKDLILKMLDKNPETRIGVPDIKLHPWVTKNGEEP
ĺ	1	{	ĺ	LPSEEEHCSVVEVTEEEVKNSVRLIPSWTTVILVKSMLRKRSF
				GNPFEPQARMA
248	987	3	732	HASGIKIDKTSDGPKLFLTEEDQKKLHDFEEQCVEMYFNEKDD
				KFHSGSEERIRVTFERVEQMCIQIKEVGDRVNYIKRSLQSLDS
				QIGHLQDLSALTVDTLKTLTAQKASEASKVHNEITRELSISKH
į.	Į.	Į		LAONLIDDGPVRPSVWKKHGVVNTLSSSLPQGDLESNNPFHCN
[1.		į .	ILMKDDKDPQCNIFGQDLPAVPQRKEFNFPEAGSSSGALFPSA
1	1		ļ	VSPPELRORLHGVELLKIFNKKOKKRA
249	988	3	468	CCRWIDCFALYDOOEELVRHIEKVHIDQRKGEDFTCFWAGCPR
243	1 300	3	100	RYKPFNARYKLLIHMRVHSGEKPNKCTFEGCEKAFSRLENLKI
	1	i	ļ	HLRSHTGEKPYLCQHPGCQKAFSNSSDRAKHQRTHLDTKPYAC
		<u> </u>		OIPGCTKRYTDPSSLRKHVKAHSSK
				LPLLWTLSDFGGTMDOSGMEIPVTLIIKAPNOKYSDOTISCFL
250	989	356	553	
L				NWTVGKLKTHLSNVYPSKPVSV
251	990	1	895	AGTRMCVVAAAEELVCGA\RGLWMRRTRRPRFVLMNKMDDLNL
İ	1	ł	ł	HYRFLNWRRRIREIREVRAFRYQERFKHILVDGDTLSYHGNSG
		1	1	EVGCYVASRPLTKDSNYFEVSIVDSGVRGTIAVGLVPQYYSLD
	1		ł	HQPGWLPDSVAYHADDGKLYNGRAKGRQFGSKCNSGDRIGCGI
İ	ĺ	1	1	EPVSFDVQTAQIFFTKNGKRVGSTIMPMSPDGLFPAVGMHSLG
				EEVRLHLNAELGREDDSVMMVDSYEDEWGRLHDVRVCGTLLEY
1	1			LGKGKSIVDVGLAQARHPLSTRSHYFEVEIVDPGEKCYIA
252	991	51	674	QQAEEHLAAYSVSDSDSGKDPSMECCRRATPGTLLLFLAFLLL
				SSRTARSEEDRDGLWDAWGPWSECSRTCGGGASYSLRRCLSSK
1	ł			SCEGRNIRYRTCSNVDCPPEAGDFRAQQCSAHNDVKHHGQFYE
i	1			WLPVSNDPDNPCSLKCQAKGTTLVVELAPKVLDGTRCYTESLD
1				MCISGLCQVSADLFSFNLSRGFQCLCVNGLHSLTL
253	992	2	554	RLLROELVVLCHLHHPSLISLLAAGIRPRMLVMELASKGSLDR
233	100	"	222	LLQQDKASLTRTLQHRIALHVADGLRYLHSAMIIYRDLKPHNV
				LLFTLYPNAAIIAKIADYGIAQYCCRMGIKTSEGTPGFRAPEV
1		1		ARGNVIYNQQADVYSFGLLLYDILTTGGRIVEGLKFPNEFDEL
	1			1
L		 	<u></u>	EIQGKLPDPVKE
254	993	3	437	KASNSTHEFRIGLPEGWESEKKAVIPLGIGPPLTLICLGVLGG
1		1		ILIYGRKGFQTAHFYLKDSPSPKVISTPPPPIFPISKEVGPIP
	1			IKHFPKHVANLHASRGFTEKFETLKKFYQEGQSCTVDLGITAN
		1]	SSNHPDNRHRNRSLI
255	994	3	445	SFPDRTASLVLLSVPVGQAGMQQRGLAIVALAVCAALHASPAI
1	1			LPIASSCCTEVSHHISRRLLERVNMCRIQRADGDCDLAAVILH
	1			VKRRRICVSPHNHTVKQWMKVQAAKKNGKGNVCHRKKHHGKRN
1	1		1.	SNRAHOGKHETYGHKTPY
				<u></u>

			D = 31 3	
SEQ	SEQ	Predicted beginning	Predicted :	Amino acid segment containing signal peptide (A=Alanine;
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Nucleic	of	corre-	согте-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Amino Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acias	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino	
		acid .	acid	
		sequence	sequence	·
256	995	2	737	FEQPGNPGDPRVRTPPPWGPHFFALIPSSPKEVPATPSSRRDP
				IAPTATLLSKKTPATLAPKEALIPPAMTVPSPKKTPAIPTPKE
1	·			APATPSSKEASSPPAVTPSTYKGAPSPKELLIPPAVTSPSPKE
	1			APTPPAVTPPSPEKGPATPAPKGTPTSPPVTPSSLKDSPTSPA
	İ			SVTCKMGATVPQASKGLPAKKGPTALKEVLVAPAPESTPIITA
		ļ	`	PTRKGPQTKKSSATSPPICPDPSAKNGSKG
257	996	79	3	FFLKIQGLGWARWLTPVIPVLWEAE
258	997	307	475 ·	AGFGYGLPISRLYAKYFQGDLNLYSLSGYGTDAIIYLKVSLEF
1			ĺ	NSKILFLKPLLLL
259	998	26	622	WMRAPMLQKQQAPRMDTPPPEERLEKQNEKLNNQEEETEFKEL
1				DGLREALANLRGLSEEERSEKAMLRSRIEEQSQLICILKRRSD
		1	i	EALERCQILELLNAELEEKMMQEAEKLKAQGEYSRKLEERFMT
1	1	Į.	ļ	LAANHELMLRFKDEYKSENIKLREENEKLRLENNSLFSQALKD
		1		EEAKVLQLTVRCEALTGELETLKERC
260	999	2	241	DPGASHASVQVQVLKEQLFAGRMPSPFRSCALMGMCGSRSADN
		i		LSCPSPLNVMEPVSFFPLKSLGKGMIQHFRHIVSLV
261	1000	1	620	VTTTTHSVGRGHELQLLNEELRNIELECQNIMQAHRLQKVTDQ
		ļ		YGDIWTLHDGGFRNYNTSIDMQRGKLDDIMEHPEKSDKDSSSA
	<u> </u>		t	YNTAESCRSTPLTVDRSPDSSLPRVINLTNKKNLRSTMAATQS
1	İ			SSGQSSKESTSTKAKTTEQGCSAESKEKVLEGSKLPDQEKAVS
		1		EHIPYLSPYHSSSYRYANIPAHARHYQSYMQLIQ
262	1001	3	420	VWGCLATVSTHKKIQGLPFGNCLPVSDGPFNNSTGIPFFYMTA
	ļ	ĺ	1	KDPVVADLMKNPMASLMLPESEGEFCRKNIVDPEDPRCVQLTL
	1	ŀ	1	TGQMIAVSPEEVEFAKQAMFSRHPGMRKWPRQYEWFFMKMRIE
ŀ	· ·	ł	} -	HIWLQKWYG
263	1002	43	441	QAANMAVARVDAALPPGEGSVVNWSGQGLQKLGPNLPCEADIH
1				TLILDKNQIIKLENLEKCKRLIQLSVANNRLVRMMGVAKLTLL
1			1	RVLNLPHNSIGCVEGLKELVHLEWLNLAGNNLIAMEQINSCTA
1				LQHL
264	1003	3	834	FRAAVGAVPEGAWKDTAQLHKSEEAKRVLRYYLFQGQRYIWIE
		-		TQQAFYQVSLLDHGRSCDDVHRSRHGLSLQDQMERKAIYGPNV
1			1	ISIPVKSYPQLLVDEAFSIALWLADHYYWYALCIFLISSISIC
	1		1	LSLYKTRKQSQTLRDMVKLSMRVCVCRPGGEEEWVDSSELVPG
		1 '		DCLVLSQEGGLMPCDAALVAGECMVNDSSLTGESIPVLKTALP
		1		EGLGPYCAETHRRHTLFCGTLILHARAYVGPHVLAVVTRTGMS
		1		REAGLERDPGSAPLKRWS
265	1004	2	670	FVGGGLHLHLCLLLCFMLPEDAAMAVLTASNHVSNVTVNYNIT
-00				VERMNRMQGLRVSTVPAVLSPNATLALTAGVLVDSAVEVAFLW
ļ				TFGDGEQALHQFQPPYNESFPVPDPSVAQVLVEHNVTHTYAAP
	1			GEYVLTVLASNAFENRTQQVLIRSGRVPIVSLECVSCKAQAVY
1	1			EVSRSSYVYLEGRCLNCSSGSKRGRWAARTFSNKTLVLDETTT
[1			STGSASM
		<u> </u>		1

CEO	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ ID	SEQ ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
	- 00	residue	residue	
]		of amino	of amino	
	!	acid	acid ·	•
266	1005	sequence 2	sequence 1093	PEFLGRLFRGKAATLHVHSDOKPLHDGALGSOONLVRMKEALR
266	1005	2	1093	ASTMDVTVVLPSGLEKRSVLNGSHAMMDLLVELCLQNHLNPSH
	;			HALEIRSSETOOPLSFKPNTLIGTLNVHTVFLKEKVPEEKVKP
				GPPKVPEKSVRLVVNYLRTQKAVVRVSPEVPLQNILPVICAKC
•				EVSPEHVVLLRDNIAGEELELSKSLNELGIKELYAWDNRRETF
ļ			1	RKSSLGNDETDKEKKKFLGFFKVNKRSNSKGCLTTPNSPSMHS
			İ	RSLTLGPSLSLGSISGVSVKSEMKKRRAPPPPGSGPPVODKAS
				EKVSLGSQIDLQKKKRRAPAPPPPQPPPPSPLIPNRTEDKEEN
1				RKSTMVYCCASFPTOAKRF
267	1006	686	400	VQWHNLHSLQPLPAGFK*FLCFSLPSSWDYRCAPPLP/APFFF
207	1000	000	1 400	YFLFLVELGFHHIG*AGLELTSTDLPASAS/ESAGITGMSHRA
				RPMDFFLLKIL
268	1007	1	453	GRRFRPPSDEEREPWEPWTQLRLSGHLKPLHYNLMLTAFMENF
200	1007	-	433	TFSGEVNVEIACRNATRYVVLHASRVAVEKVOLAEDRAFGAVP
		'		VAGFFLYPOTOVLVVVLNRTLDAORNYNLKIIYNALIENELLG
	ļ			FFRSSYVLHGERRFLGVTQFSP
269	1008	333	526	KELDPFYNS*RKIKYLRIYLTKEVKDLYKENYKTLLKEITDDT
_,			•	N/KKHIPSSWTGRINTVKMTIL
270	1009	699	882	VPHPLQAIHEQMNCKEYQEDLALRAQNDAAARRPSEMFKVRLA
·		Ì		QGRGLASLSSGIQSGVG
271.	1010	16	148	RWNSLTCVVLTFLGHRLLKRFLVPKLRRFLKPQGHPRLLLWFK
1				R
272	1011	1	659	YGEFVTYQGVAVTRSRKEGIAHNYKNETEWRANIDTVMAWFTE
<u> </u>				EDLDLVTLYFGEPDSTGHRYGPESPERREMVRQVDRTVGYLRE
Ì			ł	SIARNHLTDRLNLIITSDHGMTTVDKRAGDLVEFHKFPNFTFR
			1	DIEFELLDYGPNGMLLPKEGRLEKVYDALKDAHPKLHVYKKEA
			ľ	FPEAFHYANNPRVTPLLMYSDLGYVIHGVSRLLEAPPPGAPSP
,	ļ			GSGS
273	1012	146	413	RIPLLRLRSSTYRSKGFDVTVKHSHGSWTGFGGEDLATIPKGL
				NTYFLVNIATIFESKNFFLPGIKWNGILGLSYATLAKPSSSLE
				TFF
274	1013	3	251	IKSYSGPNGRSCQIWQRLRWGSRELLLGWKLSHSFSTCPFQFP
				DIVEFCEAMANAGKTVIVAALDGTFQRKVRRLIQVWSWD
275	1014	326	651	YCFCFDLLH*CIHRDVKPENILITKHSVIKLCDFGFARLLTGP
				SDYYTDYVATRWYRSPELPVGDTQY\GPPV\DVW\AIGCVSAE
			1	\LLSGKCLWWPGKS/DMLDQLYLIRK
276	1015	224	435	RGWALDWIGADLSLHLQEEVETEVAWEECGHVLLSLCYSSQQG
				GLLVGVLRCAHLAPMDANGYSDPFVRL
277	1016	2	429	GGILAMEYAPGGTLAEFIQKRCNSLLEEETILHFFVQILLALH
				HVHTHLILHRDLKTQNILLDKHRMVVKIGDFGISKILSSKSKA
1				YTVVGTPCYISPELCEGKPYNQKSDIWALGCVLYELASLKRAF
				EAANLPALVLKIM
L	<u> </u>			EMMINIPALIVIATIV

				· · · · · · · · · · · · · · · · · · ·
SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning nucleotide	end nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of		corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-		P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		to first		I = I incomine, v = varine, v = I typiophan, i = tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino	
		acid	acid	· ·
		sequence	sequence	
278 .	1017	1	262	VQCGGIHQVSGAVVVSGLLQGMMGLLGSPGHVFPHCGPLVLAP
				SLVVAGLSAHREVAQFCFTHWGLALLYVSPERRGMVPSGGVWG
				D ,
279	1018	1	480	PRMTGSTHASAPSYGGSCRNNLFYREETYTPKAETDEMNEVET
			<u> </u>	APIPEENHVWLQPRVMRPTKPKKTSAVNYMTQVVRCDTKMKDR
1				CIGSTCNRYQCPAGCLNHKAKIFGSLFYESFASICRAAIHYGI
		1		LDDKGGLVDITRNGKVPFFVKSERHGVQSLR
300	7010	271	792	VPQNIICAFFCVPCRFASTIPFWGLTLHLQHLGNNVFLLQTLF
280	1019	414	132	GAVTLLANCVAPWALNHMSRRLSOMLLMFLLATCLLAIIFVPQ
		ĺ	ļ	EMOTLRVVLATLGVGAASLGITCSTAQENELIPSIIRGRATGI
	1			
İ	ł			TGNFANIGGALASLVMILSIYSRPLPWIIYGVFAILSGLVVLL
				LP
281	1020	2	679	VLVSRDHMKSAQQFFQLVGGSASECDTIPGRQCMASCFFLLKQ
			* *** '	FDDVLIYLNSFKSHFYNDDIFNFNYAQAKAATGNTSEGEEAFL
İ	1			LIQSEKMKNDYIYLSWLARGYIMNKKPRLAWELYLKMETSGES
				FSLLQLIANDCYKMGQFYYSAKAFDVLERLDPNPEYWEGKRGA
1.	1 .	ł	1	CVGIFQMIIAGREPKETLREVLHLLRSTGNTQVEYMIRIMKKW
				AKENRVSILK
282	1021	3	359	LKVSDELVQQYQIKNQCLSAIASDAEQEPKIDPYAFVEGDEEF
202		-		LFPDKKDRQNSEREAGKKHKVREITVHQRVTVDFVALHIVTLL
		ł	1	LPQLSHFFCLRIERVIIYLEKPIFARLRWLMP
	1 000	3	538	GVPRNLPSSLEYLLLSYNRIVKLAPEDLANLTALRVLDVGGNC
283	1022	3	330	RRCDHAPNPCMECPRHFPQLHPDTFSHLSRLEGLVLKDSSLSW
1	1	1	ł	
	i		1	LNASWFRGLGNLRVLDLSENFLYKCITKTKAFQGLTQLRKLNL
			1	SFNYQKRVSFAHLVSGPPFLRGSLGRPLKGAGTWHGNLSFPLH
				FEWGKT
284	1023	3	442	ILFAALIWSSFDENIEASAGGGGGSSIDAVMVDSGAVVEQYKR
1			1	MQSQESSAKRSDEQRKMKEQQAAEELREKQAAEQERLKQLEKE
1	1			RLAAQEQKKQAEEAAKQAELKQKQAEEAAAKAAADAKAKAEAD
1		1	1	AKAAEEAAKKAAADAKK
285	1024	1	119	AMEIVHEPRDLERYMREAVKVSNDSPVLLDRFLNDAIEC
286	1025	67	227	MLSPGYDYGYVCVEFSLLEDAIGCMEANQVALYFGQMMLEGYI
1230	1 - 7 - 7	"		FLYMGREGFK
287	1026	2	1101	PRVRSSGQEDPASQQWARPRFTQPSKMRRRVIARPVGSSVRL
28%	1020	4	****	KCVASGHPRPDITWMKDDQALTRPEAAEPRKKKWTLSLKNLRP
1	1	1		EDSGKYTCRVSNRAGAINATYKVDVIQRTRSKPVLTGTHPVNT
	1	1		
	1			TVDFGGTTSFQCKVRSDVKPVIQWLKRVEYGAEGRHNSTIDVG
1	1			GQKFVVLPTGDVWSRPDGSYLNKLLITRARQDDAGMYICLGAN
	1	1		TMGYSFRSAFLTVLPDPKPPGPPVASSSSATSLPWPVVIGIPA
	1	1		GAVFILGTLLLWLCQAQKKPCTPAPAPPLPGHRPPGTARDRSG
				DKDLPSLAALSAGPGVGLCEEHGSPAAPQHLLGPGPVAGPKLY
	1	l .	l .	PKLYT\DIPHHTHTHTPHPPAN
1	1	1		PKLII (DIPHHIMIHIPHPPAN
288	1027	3	96	NFHFTGKCLFMSGLSEVQLTHMDDHTLPGY

SEQ ID ID ID NO: NO: of Nucleic Acids Acid	Acid, =Isoleucine, asparagine, erine,
NO: of Nucleic Acids Acids Acids Acids Acids Acids Acids Acids Acids Acid Acids Acid Acids Acid Acid Acid Acid Acid Acid Acid Acid	=Isoleucine, sparagine, crine,
of Nucleic Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acid Acids Acid Acids Acid Acids Acid Acid Acid Acid Acid Acid Acid Acid	sparagine, erine,
Nucleic Acids Acids Acids Acids Acids Acids Acids Acids Acids Acid Acids Acid Acid Acid Acid Acid Acid Acid Acid	erine,
Acids Acids sponding to first amino acid residue sponding to first amino acid residue residue sponding to first amino acid acid residue residue sponding to first amino acid acid residue sponding to first to first amino acid acid residue sponding to first T=Threonine, V=Valine, W=Tryptophan, Y=X=Unknown, *=Stop Codon, /=possible nucleotide insertion)	
to first amino acid residue residue to first to first amino acid residue residue T=Threonine, V=Valine, W=Tryptophan, Y=X=Unknown, *=Stop Codon, /=possible nucleotide insertion)	=Tyrosine,
amino amino acid x=Unknown, *=Stop Codon, /=possible nucleotide insertion) X=Unknown, *=Stop Codon, /=possible nucleotide insertion)	
acid acid \=possible nucleotide insertion) residue residue	eotide deletion,
residue residue	·
of amino of amino	
acid acid .	
sequence sequence	
289 1028 95 407 SPRKRKTRHSTNPPLECHVGWVMDSRDHGPGTS	SVSTSNASPS
EGAPLAGSYGCTPHSFPKFQHPSHELLKENGFT	TQQVYHKYRRR
CLSERKRLGIGQSQEMNT	
290 1029 1 359 PGSGGSAGGRDGSAYQGALLPREQFAAPLGRPV	/GTSYSATYPA
YVSPDVAQSWTAGPFDGSVLHGLPGRRPTFVSD	
ECVNCGALSTPLWRRDGTGHYLCNACGLYHKMN	
291 1030 2 513 PDHRHGALWWWYSCGVLPVTVSRNEGDERNQVI	
TDAYLRWDPNAYGGLDAIRIPSSLVWRPDIVLY	_
PLSYPSLDLPLAVGV**SPLPTT*PGCHAALEF	
TQPLHGTPTLGYPRPAQAERLLGTYCVVQGRCI	
292 1031 1 595 YALTGALVIVTGMVMGNIADYFNLPVSSMSNTE	
1 IFLNAWLMEIVPLKTOLRFGFLLMVLAVAGLME	
MFILGVVSGITMSIGTFLVTQMYEGRQRGSRLI	
MIFPMIAAFLLARSIEWYWVYACIGLVYVAIFI	IUIFGCEFPAU
CSHATKLGTASSYPSLDVVQLRTLNA	
293 1032 71 479 MAKVGLKTEHYDRYPHMFSGGQRQRIAIARGLM	
PVSALDVSVRAQVLNLMMDLQQELGLSYVFISH	
EVMVMYLGRCVEKGTKDQIFNNPRHPYTQALLS	SATPRLNPDDR
RERIKLSX*	
294 1033 2 427 SATLERVLNHPDETQARRLMTLEDIVSGYSNVI	
VYHSPGAPDIREFTRDAIPDKDAQGGEVYLLSC	
GHMEHSNWRMINLPVGPLVDGKPIYTLYIALS	IDFHLHYINDL
MNKLIMTASVII	
295 1034 3 342 VLAYPGIKVSTAEARAILPAQYRRQDCIAHGRI	
RQPELAAKLMKDVIAEPYRERLLPGFRQARQA	VAEIGAVASGI
SGSGPTLFALCDKPETAQRVADWLGK	
296. 1035 2 279 GQQQRVALARALILKPKVLLFDEPLSNLDANLI	RRSMRDKIREL
QKQFDITSLYVTHDQSEAFAVSDTVLVMNKGH:	IMQIGSPQDLR
VRRLNW	
297 1036 3 157 AVHYLERVRIAEHAHKFPGQISGGQQQRVAIA	RSLCMKPKIML
FDEPTSAL	
298 1037 1 217 APYDAENYFDYDNLNNGPSLQHWFGVDSLGRD	IFSRVLVGAQI
SLAAGVFAVFIGAAIGTLLGLLAGYYEGW	- -
299 1038 3 570 VFCLIADLDPIDELVDFPIVYASALNGIAGLD	HEDMAEDMTPL
YQAIVDHVPAPDVDLDGPFQMQISQLDYNSYV	
KVKPNOOVTIIDSEGKTRNAKVGKVLGHLGLE	
IVAITGLGELNISDTVCDTONVEALPALSVDE	
SPFCGKEGKFVTSRQI	
	CDNVCVAVDTC
AWTDVLPEFGGDTWTQTDVFMTQRATGVATYR	
NFAAQYQGKNDRSDFDNYTEGNGHGFGFSATY	
301 1040 3 201 DTYSVSIPLGATINMAGAAITITVLTLAAVNT	LGIPVDLPTAL
LLSVVASLCACGASGVAGGSLL	

€Q	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
-V		end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
O:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
mino	corre-	corre-	
cids		sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
į			T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
			X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
			\=possible nucleotide insertion)
	. 1		
i			•
			ANAQQGLPSGITLKLNNLVDKGLVDRLYAASSSGVPVNLLVRG
041	•	140	TCS
042	2	442	ARMTLIPGTHLLENIHNIWVNGVGTNSAPFWRMLLNSFVMAFS
			ITLGKITVSMLSAFAIVWFRFPLRNLFFWMIFITLMLPVEVRI
- 1			FPTVEVIANLQMLDSYAGLTLPLMASATATFLFRKLNMSGPDK
			VVPAARISGYGPRVRKQ
043	2	403	CAKCLRDADECPSGAFERIGRDISLDALEREVMKDDIFFRTSG
			GGVTLSGGEVLMQAEFATRFLQRLRLWGVSCAIETAGDAPASK
			LLPLAKLCDEVLFDLKIMDATQARDVVKMNLPRVLENLRLLVS
ļ			EGVN
044	1	346	YLLLFVCFLVMSLLVGLVYKFTAERAGKQSLDDLMNSSLYLMR
}		1	SELREIPPHDWGKTLKEMDLNLSFDLRVEPLSKYHLDDISMHR
- 1			LRGGEIVALDDQYTFLQRIPRSHYVLAVG
045	1	207	VELFLSDEGDDVVIEVADQGCGVPESLRDKIFEQGVSTRADEP
1			GEHGIGLYLIASYVTRCGGVITLEDN
046	3	213	DAIIAPDANALPAAAQAAENLKNDKVAIVGFSTPNVMRPYVER
			GTVKEFGLWDVVQQGKISVYVADALQ
047	1	129	YIVVTGKTHCGTPLTTVTGDATQSGYLTLNLPEMWEVSGYNRV
048	271	46	XEGVEPDINASKTRQQLNDVAGKMKIIEARLSALTNNQTKSLK
1			LNPVALPKVASQLLDELGYSLLARRADLQSAHX*
049	16	253	ENIAEEYATKRYRSNVINWGMLPLQMAEVPTFEVGDYIYIPGI
		1	KAALDNPGTTFKGYVIHEDAPVTEITLYMESQEART
.050	2	299	LQTEIGSMVYAVKPGDGSAREQAASCQRVIGGLANIAEEYATK
ŀ			RYRSNVINWGMLPLQMAEVPTFEVGDYIYILGFKAAKYSPGTA
- 1			FTVYAISGYGPRI
051	1	344	TLEDLLMALDGEQHLQQQVSEKVLADNVLIAPGSVKPDATFWS
-			ALIQDRYNVMTCIEKDACVLVEQDLNSDGQAERILFAFNDDRV
- 1			IVYGFDSDRKEWDALDMSLLPNEITKEK
.052	2	630	ESNSRCRKMPGERCRGGPARLSLLLDLPTRPLPHPRQVIDFGS
			ASIFSEVRYVKEPYIQSRFYRAPEILLGLPFCEKVDVWSLGCV
1			MDELHLGWPLYPGNNEYDQVRYICETQGLPKPHLLHAACKAHH
		}	FFKRNPHPDAANPWQLKSSADYLAETKVRPLERRKYMLKSLDQ
			IETVNGGSVASRLTFPDREALAEHADLKSMVEL/MKRLL
1053	1	302	RLVKKRVECRQCGKAGRNQSTLKTHMRSHTGEKPYECDHCGKA
		1	FSIGSNLNVHRRIHTGEKPYECLVCGEAFSDHSSLRSHVKTHR
			GEKLFVSSVWKRLQ
1054	1318	730	CGPGFSLSFFFLRWSF\ALVAQAGVQWHDLGSLQPPAPGFKRF
		{	SSLSLLSRWDYRHAHARLIFVFLVEMGFLHVGQAGLELPTSGD
ļ			PPTSASQSARITGVTTPLGTFFFFLRWSFALVAQAGGQCLDLG
	1	}	SLQLPPPGFKRLVCHFQTPQKHRCSCQAPGDCLQESFVMTGCV
l l	i	1	TO REAL PROPERTY OF THE PROPER
	D: mino cids 041 042 043 044 045 046 047 048 049 050 051	beginning nucleotide location corresponding to first amino acid residue of amino acid sequence 041 1 1 042 2 1 1 045 1 1 046 3 1 1 049 16 1 1 052 2 1 1 1 052 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	beginning nucleotide location corresponding to first amino acid residue of amino acid sequence of amino acid residue of amino acid sequence of amino acid sequence of amino acid residue of ami

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
316	1055	2486	1429	MGNAAAAKKGSEQESVKEFLAKAKEDFLKKWESPAQNTAHLDQ FERIKTLGTGSFGRVMLVKHKETGNHYAMKILD*QKVGKLKQI EHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMVMEYVPGGEM FSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPEN LLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKG YNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRF PSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWFATT DWIAIYQRKVEAPFIPKFKGPGDTS\NFDDYEEEEIRV\SINE KFG\KEFSEF
317	1056	867	461	SSSRSSHGDSPPHSQTPCDTNRGLDTKH*/DSQSIEEKDSSQS E*NRIERRKEVERILQTNSDYM*HWSN*PENILPKKFFSKHQK CTATLSMRNTSIM/KKEGLF*AQFPSLLLSHLPAVGLGIYTGT HLTTSTSTF
318	1057	544	784	TFHSSLEKNILQPCR*RRA\ICLPLLL*PSVPLLAPQYFSDLR NSIVNSQPPEKQQAMHLCFENLMEGIERNLLTKNRDR
319	1058	1606	250	GTSGVQQEISRLTNENLDLKELVEKLEKNERKLKKQLKIYMKK AQDLEAAQALAQSERKRHELNRQVTVQRKEKDFQGMLEYHKED EALLIRNLVTDLKPQMLSGTVPCLPAYILYMCIRHA\DYTNDD LKVHSLLTSTINGIKKVLKKHNDDFEMTSFWLSNTC\RLLHCL KQYSGDEGFMTQNTAKQN\EHCLKNFDLTEYRQV\L\SDLSIQ IYQQLIKIAEGVLQPMIVSAMLEN*SIQGLSGVKPTGSQKHSS SMADEDNSYRLEAIIRQMNAFHTVMCDQGLDPEIILQVFKQLF YMINAVTLNDLLLRKDVCSWSTGMQLRYNISQLEEWLRGRNLH QSGAVQTMEPLIQAAQLLQLKKKTQEDAEAICSLCTSLSTQQI VKILNLYTPLNEFEERVTVAFIRTIQAQLQERNDPQQLLLDAK HMFPVLFPFNPSSLTMDSIHIPACLNLEFLNEV
320	1059		1	QLACDP\YLLHYIQKLVFVSSPAGAAIASTFGVSNSCSSN
321	1060	1332	500	GTTDEIMTRWARVSTTYNKRPLPATSWEDMKKGSFEGTSQNLP KRKQLEANRLSLKNDAPQAKHKKNKKKKEYLNEDVNGFMEYLR QNSQMVHNGQIIATDSEEVREEIAVALKKDSRREGRRLKRQAA KKNAMVCFHCRKPGHGIADCPAALENQDMGTGICYRCGSTEHE ITKCKAKVDPALGEFPFAKCFVCGEMGHLSRSCPDNPKGLYAD GGGCKLCGSVEHLKKDCPESQNSERMVTVGRWAKGMSADYEEI LDVPKPQKPKTKIPKVVNF
322	1061	384	102	DHVRKSLLKNRAENIVNIFKCNVVSLPNLPAFGQAQWLTPVIP ALWEAEVGGS*GQEIETILANAVK/SPFLLKIQKKKISRAWWR AP/VSPRYSGG

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
323	1062		777	SDAWADAWARSLSVSPSSYPELHTEVPLSVLILGLLVVFILSV CFGAGLFVFVLKRRKGVPSVPRNTNNLDVSSFQLQYGSYNTET HDKTDGHVYNYIPPPVVQMCQNPIYMAGREGRPSSLLPKPGKE FQLLGNLEEKKEEPATPAYTISATELLEKQATPREPELLYQNI AE/PSQGTS/TAQA*STITFVPYLKGQFAPSYESRRQNQDRIN KTVLYGTPRKCFVGQSKPNHPLLQAKPQSEPDYLEVLEKQTAI SQL
324	1063	1	1496	ALCHIAVGQQMNLHWLHKIGLVVILASTVVAMSAVAQLWEDEW EVLLISLQGTAPFLHVGAVAAVTMLSWIVAGQFARAERTSSQV TILCTFFTVVFALYLAPLTISSPCIMEKKDLGPKPALIGHRGA PMLAPEHTLMSFRKALEQKLYGLQADITISLDGVPFLMHDTTL RRTTNVEEEFPELARRPASMLNWTTLQRLNAGQWFLKTDPFWT ASSLSPSDHREAQNQSICSLAELLELAKGNATLLLNLRDPPRE HPYRSSFINVTLEAVLHSGFPQHQVMWLPSRQRPLVRKVAPGF QQTSGSKEAVASLRRGHIQRLNLRYTQVSRQELRDYASWNLSV NLYTVNAPWLFSLLWCAGVPSVTSDNSHTLSQVPSPLWIMPPD EYCLMWVTADLVSFTLIVGIFVLQKWRLGGIRSYNPEQIMLSA AVRRTSRDVSIMKEKLIFSEISDGVEVSDVLSVCSDNSYDTYA NSTATPVGPRGGGSHTKTLIERSGR
325	1064	1899	776	NSADYGDGPDSSDADPDSGTEEGVLDFSDPFSTEVKPRILLMG LRRSGKSSIQKVVFHKMSPNETLFLESTNKICREDVSNSSFVN FQIWDFPGQIDFFDPTFDYEMIFRGTGALIFVIDSQDDYMEAL ARLHLTVTRAYKVNTDINFEVFIHKVDGLSDDHKIETQRDIHQ RANDDLADAGLEKIHLSFYLTSIYDHSIFEAFSKVVQKLIPQL PTLENLLNIFISNSGIEKAFLFDVVSKIYIATDSTPVDMQTYE LCCDMIDVVIDISCIYGLKEDGAGTPYDKESTAIIKLNNTTVL YLKEVTKFLALVCFVREESFERKGLIDYNFHCFRKAIHEVFEV RMKVVKSRKVQNRLQKKKRATPNGTPRVLL
326	1065	1181	346	RTRGRDPGAGFRRTANKRCCRRFFLIGCGWLPLRSDWPLVSKM LSKGLKRKREEEEEKEPLAVDSWWLDPGHAAVAQAPPAVASSS LFDLSVLKLHHSLQQSEPDLRHLVLVVNTLRRIQASMAPAAAL PPVPSPPAAPSVADNLLASSDAALSASMASLLEDLSHIEGLSQ APQPLADEGPPGRSIGGAAPSLGALDLLGPATGCLLDDGLEGL FEDIDTSMYDNELWAPASEGLKPGPEDGPGKEEAPELDEAELD YLMDVLVGTQALERPPGPGR

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location		K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		to first	to first	1 = Intestine, v = value, w = Tryptophan, 1 = Tytoshie,
()		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
1 1		acid	acid	\=possible nucleotide insertion)
1		residue	residue	
1	·	of amino	of amino	
1 1		acid	acid	
		sequence	sequence	
327	1066	1844	337	LQEVKARRNTLHKEKDHLVNDYEQNMKLLQTKYDADINLLKQE
1	i	1		HALSASKASSMIEELEQNVCQLKQQLQESELQRKQQLRDQENK
		}		FQMEKSHLKHIYEKKAHDLQSELDKGKEDTQKKIHKFEEALKW
1	[1		KKWRQI*LDPN/LLREKQSKEFLWQLEDIRQRYEQQIVELKLE
ł	ł	ł		HEQEKTHLLQQHNAEKDSLVRDHEREIENLEKQLRAANMEHEN
]	ĺ		QIQEFKKRDAQVIADMEAQVHKLREELINVNSQRKQQLVELGL
		1	1	LREEEKORATREHEIVVNKLKAESEKMKIELKKTHAAETEMTL
	1	1	[EKANSKLKQIEKEYTQKLAKSSQIIAELQTTISSLKEENSQQQ
1	j	1	(LAAERRLODVROKFEDEKKOLIRDNDQAIKVLQDELENRSNQV
	Ì	ŧ	}	RCAEKKLOHKELESOEQITYIRQEYETKLKGLMPASLRQELED
}		1	1	TISSLKSQVNFLQKRASILQEE/RDYISRQKVQPISR*LHERM
1		1	ł	QRMRISRLCCGTSSSRFEDLDIVNCEISGIF
		<u> </u>		
328	1067	1149	238	VINLVYLISSPRPELKPVDKESEVVMKFPDGFEKFSPPILQLD
1	1	l	1	EVDFYYDPKHVIFSRLSVSADLESRICVVGENGAGKSTMLKLL
1	ł	}		LGDLAPVRGIRHAHRNLKIGYFSQHHV\EQL\DLNVQCLWELA
1	1	1	l	GHASFPG\RPEEEY\RHQLGFGMGISGEL\AMRPLCQPVLGAR
1.	1	1	1	KKPKWPFAQMDYCPAPTFYIL\DEPTN\HLGHGRAIEALGPCL
	1	ł	1	QTISGVGVILVSHE*SALSRLVCRE\LWVC*G\GGVTRVERKD
1	ł	ł		FDQYRALLQGTVSAREGFPLGPPRLKDSPRDMGLVSQTPWGHH
}	l l	1	ì	VGYPLPGRG
329	1068	26	674	CSAVEVKMAARTAFGAVCRRLWQGLGNFSVNTSKGNTAKNGGL
		1	f · ·	LLSTNMKWVQFSNLHVDVPKDLTKPVVTISDEPDILYKRLSVL
]	<u> </u>	VKGHDKAVLDSYEYFAVLAAKELGISIKVHEPPRKIERFTLLQ
1	<u> </u> -	1	}	SVHIYKKHRVOYEMRTLYRCLELEHLTGSTADVYLEYIQRNLP
1	1	1	,	EGVAMEVTKFCFFIFL\TQLEQLPEHIKEPIWETLSEEKEESK
			ì	s
220	1069	2105	1283	DFWDTAGQERFQSMHASYYHKTHACIMVFDVQRKVTHRNLSTW
330	1003	2103	1203	YTELREFRPEIPCIVVANKIDGGAIPAPGC*QFTGDLPSYISS
1			1	SIPRAGNLQ*LVLPPTIRYNPWLVACILPTL*RSQLSRPALFP
1.			1	-
	1		1	RHRSLLTELFLGPVSQSSLPIPLSGMKASSGPPLQTFFPSLDR
{	1		1	QTNVLPSLY\ADINVTQKSFNFAKKFSLPLYFVSAADGTNVVK
1	1		ļ	LFNDAIRLAVSYKQNSQDFMDEIFQELENFSLEQEEEDVPDQE
1	1		1	QSSSIETPSEEVASPHS
331	1070	1	1109	GATPLGSVGGRTGKMDAATLTYDTLRFAEFEDFPETSEPVWIL
				GRKYSIFTEKDEILSDVASRLWFTYRKNFPAIGGTGPTSDTGW
1	}			GCMLRCGQMIFAQALVCRHLGRDWRWTQRKRQPDSYFSVLNAF
1	}			IDRKDSYYSIHQIAQMGVGEGKSIGQWYGPNTVAQVLKKLAVF
1	1	1	1	DTWSSLAVHIAMDNTVVMEEIRRLCRTSVPCAGATAFPADSDR
1	1		1	HCNGFPAGAEVTNRPSPWRPLVLLIPLRLGLTDINEAYVETLK
1	1		1	HCFM\MPQSLGVIGGKPNSAH\YFIG*VG\EELIYLDPHTTQP
1	1			AVEPTDGCFIPDESFHCQHPPCRMSIAELDPSIAVVRGGHLST
			1	QAFGAECCLGMTRKTFGFLRFFFSMLG
	1	1	1 204	QAFGAECCLGMTRATFGFLRFFFSMLG ALCVVPFNTFHN\DFLLLDKEGTLDPVMDSFSTHWTTIGPADM
332	1071	39	284	ALCVVPFNTFHN\DFLLLDREGTLDPVMDSFSTHWTTTGPADM FFS\FROHYKNFKSHGTNPSKSVWAHATCQSCAFPNLLGW

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
L		sequence	sequence	
333	1072	2	1484	TRLAEFGTRDPCAQAPCEQQCEPGGPQGYSCHCRLGFRPAEDD PHRCVDTDECQIAGVCQQMCVNYVGGFECYCSEGHELEADGIS CSPAGAMGAQASQDLGDELLDDGEDEEDEDEAWKAFNGGWTEM PGILWMEPTQPPDFALAYRPSFPEDREPQIPYPEPTWPPPLSA PRVPYHSSVLSVTRPVVVSATHPTLPSAHQPPVIPATHPALSR DHQIPVIAANYPDLPSAYQPGILSVSHSAQPPAHQPPMISTKY PELFPAHQSPMFPDTRVAGTQTTTHLPGIPPNHAPLVTTLGAQ LPPQAPDALVLRTQATQLPIIPTAQPSLTTTSRSPVSPAHQIS VPAATQPAALPTLLPSQSPTNQTSPISPTHPHSKAPQIPREDG PSPKLALWLPSPAPTAAPTALGEAGLAEHSQRDDRWLLVALLV PTCVFLVVLLALGIVYCTRCGPHAPNKRITDCYRWVIHAGSKS
334	1073	 	1406	LRVRRRPHLPAPPALRARRSDRRSSRAPAAFPPRPPHASPAPG
				PAMAQAVWSRLGRILWLACLLPWAPAGVAAGLYELNLTTDSPA TTGAVVTISASLVAKDNGSLALPADAHLYRFHWIHTPLVLTGK MEKGLSSTIRVVGHVPGEFPVSVWVTAADCWMCQPVARGFVVL PITEFLVGDLVVTQNTSLPWPSSYLTKTVLKVSFLLHDPSNFL KTALFLYSWDFGDGTQMVTEDSVVYYNYSIIGTFTVKLKVVAE WEEVEPDATRAVKQKTGDFSASLKLQETLRGIQVLGPTLIQTF QKMTVTLNFLGSPPLTVCWRLKPECLPLEEGECHPVSVASTAY NLTHTFRDPGDYCFSIRAENIISKTHQYHKIQVWPSRIQPAVF AFPCATLITVMLAFIMYMTLRNATQQKDMVENPEPPSGVRCCC QMCCGPFLLETPSEYLEIVRENHGLLPPLYKSVKTYTV
335	1074	1	866	VVEFAFQLSSVSVCLTVSFGWQLGTVSSCLSRDWFLKGNLLII IVSVLIILPLALMKHLGYLGYTSGLSLTCMLFFLVSVIYKKFQ LGCAIGHNETAMESEALVGLPSQGLNSSCEAQMFTVDSQMSYT VPIMAFAFVCHPEVLPIYTELCRPSKRRMQAVANVSIGAMFCM YGLTATFGYLTFYSSVKAEMLHMYSQKDPLILCVRLAVLLA\V TLTVPVVLFPIRRALQQLLFPGKAFSWPRHVAIALILLVLVNV LVICVPTIRDIFGVIGSTSAPSLIFILPSCI
336	1075	3	825	GAGSKSSMMQLMHLESFYEK\PPPGLIKEDDTKPEDCIPDVPG NEHAREFLAHTPTKGLWMPLEKEVKVKH/CTFHWIAS*FLGDG KFIPKATRLKDVWVSN*FTCLFWDLTRFIHDCIFF*NWSLMNK NFNIIY*FFISLR*NTLILQKYFPFSLLLGWHCKWYGHRTGYK ECPFFIKDNQKLQQFRVAHEDFMYDIIRDNKQHEKNVRIQQLK QLLEDSTSGEDRSSSSSSEGKEKHKKKKKKKEKHKKRKKEKKKK KKRKHKSSKSNEGSDSE

		D 2: 3	D	A :
SEQ	SEQ	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	согге-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
ł		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	ļ	acid	acid	
	1	residue	residue	\=possible nucleotide insertion)
	1	of amino	of amino	
1		acid	acid	
		1	sequence	·
337	1076	sequence	2451	EIAGAAAENMLGSLLCLPGSGSVLLDPCTGSTISETTSEAWSV
337	1076	3	2431	EVLPSDSEAPDLKQEERLQELESCSGLGSTSDDTDVREVSSRP
ĺ	1	ł	ł	STPGLSVVSGISATSEDIPNKIEDLRSECSSDFGGKDSVTSPD
ł	1		ľ	MDEITHDFLYILQPKQHFQHIEAEADMRIQLSSSAHQLTSPPS
[1	[{	
l	1	ł	ł	QSESLLAMFDPLSSHEGASAVVRPKVHYARPSHPPPDPPILEG
1		İ	1	AVGGNEARLPNFGSPMF*LPAEMEAFKQRHS/YTPERLVRSRS
1	ſ	i	ĺ	s\divssvrrpmsdpswnrrp\gneerelppaaaigatslvaa
1	1	ļ	ļ	PHSSSSSPSKDSSRGETEERKDSDDEKSDRNRPWWRKRFVSAM
1	l	ł	Į.	PKAPIPFRKKEKQEKDKDDLGPDRFSTLTDDPSPRLSAQAQVA
i	1	İ	ľ	EDILDKYRNAIKRTSPSDGAMANYESTEVMGDGESAHDSPRDE
	j	1	}	ALQNISADDLPDSASQAAHPQDSAFSYRDAKKKLRLALCSADS
		1		VAFPVLT\HSTRNGLPDHTDPEDNEIVCFLKVQIAEAINLQDK
	ļ	}	ł	NLMAQLQETMRCVCRFDNRTCRKLLASIAEDYRKRAPYIAYLT
}	1			RCROGLOTTOAHLERLLORVLRDKEVANRYFTTVCVRLLLESK
1	1	1		EKKIREFIQDFQKLTAADDKTAQVEDFLQFLYGAMAQDVIWQN
)		1	ŀ	ASEEQLQDAQLAIERSVMNRIFKLAFYPNQDGDILRDQVLHEH
	1	1	i .	IQRLSKVVTANHRALQIPEVYLREAPWPSAQSEIRTISAYKTP
	İ	ł	l .	RDKVQCILRMCSTIMNLLSLANEDSVPGADDFVPVLVFVLIKA
1		1	1	NPPCLLSTVQYISSFYASCLSGEESYWWMQFTAAVEFIKTIDD
1	1			RK
338	1077	536	1305	WPMSLARGHGDTAASTAAPLSEEGEVTSGLQALAVEDTGGPSA
338	10//	336	1303	SAGKAEDEGEGGREETEREGSGGEEAQGEVPSAGGEEPAEEDS
	1	ı	1	1
1	}		ł	EDWCVPCSDEEVELPADGQPWMPPPSEIQRLYELLAAHGTLEL
		1	1	QAEILPRRPPTPEAQSEEERSDEEPEAKEEEEEKPHMPTEFDF
1	1	1	Ī	DDEPVTPKDSLIDRRRTPGSSARSQKREARLDKVLSDMKRHKK
L		<u> </u>		LEEQILRTGRDLFSLDSEDPSPASPPLRSSGSSLFPRQRKY
339	1078	2	1771	LGRGTFGQVV*CWKRGTNEIVAIKILKNHPSYARQGQIEVSIL
1	(ARLSTESADDYNFVRAYECFQHKNHTCLVFEMLEQNLYDFLKQ
1	1		ļ	NKFSPLPLKYIRPVLQQVATALMKLKSLGLIHADLKPENIMLV
		1		DPSRQPYRVKVIDFGSASHVSKAVCSTYLQSRYYRAPEIILGL
ł				PFCEAIDMWSLGCVIAELFLGWPLYPGASEYDQI/RYISQTQG
1	1	1	}	LPAEYLLSAGTKTTRFFNRDTDSPYPLWRLKTPDDHEAETGIK
1	1	į.		SKEARKYIFNCLDDMAQVNMTTDLEGSDMLVEKAVRREFIDLL
1	1	}	1	KKMLSIDSVKRFSPVGSLNHPFVTMSLFLDFPHSTHVKSCFQN
1	1		1	MEICKRRVNMYDTVNQSKTPFITHVAPSTSTNLTMTFNNQLTT
1	1		1	VHNQPSAASMAAVAQRSMPLQTGTAQICARPDPFQQALIVCPP
1	1			GFOGLOASPSKHAGYSVRMENAVPIVTQAPGAQPLQIQPGLLA
	1			QQAWPSGTQQILLPPAWQQLTGVATHTSVQHAAVIPETMAGTQ
İ	1			QLADWRNTHAHGSHYNPIMQQPALLTGHVTLPAAQPLNVGVAH
	i			VMROOPTSTTSSRKSKOHLYCGRARVSKIASR
				ALIVÄÄS TOTTORUMINÄITTORUMARIKTURK

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
340	1079	2	2721	EFAICRYPLGMSGQIPDEDITASSQWSESTAAKYGRLDSEEG DGAWCPEIPVEPDDLKEFLQIDLHTLHFITLVGTQGRHAGGHG IEFAPMYKINYSRDGTRWISWRNRHGKQVLDGNSNPYDIFLKD LEPPIVARFVRFIPVTDHSMNVCMRVELYGCVWLDGLVSYNAP AGQQFVLPGGSIIYLNDSVYDGAVGYSMTEGLGQLTDGVSGLD DFTQTHEYHVWPGYDYVGWRNESATNGYIEIMFEFDRIRNFTT MKVHCNNMFAKGVKIFKEVQCYFRSEASEWEPNAISFPLVLDD VNPSARFVTVPLHHRMASAIKCQYHFADTWMMFSEITFQSDAA MYNNSEALPTSPMAPTTYDPMLKVDDSNTRILIGCLVAIIFIL LAIIVIILWRQFWQKMLEKASRRMLDDEMTVSLSLPSDSSMFN NNRSSSPSEQGSNSTYDRIFPLRPDYQEPSRLIRKLPEFAPGE EESGCSGVVKPVQPSGPEGVPHYAEADIVNLQGVTGGNTYSVP AVTMDLLSGKRCGCGREFPPGKLLTFKEKLGEGQFGEVHLCEV EGMEKFKDKDFALDVSANQPVLVAVKMLRADANKNARNDFLKE IKIMSRLKDPNIIHLLSVCITDDPLCMITEYMENGDLNQFLSR HEPPNSSSSDVRTVSYTNLKFMATQIASGMKYLSSLNFVHRDL ATRNCLVGKNYTIKIADFGMSRNLYSGDYYRIQGRAVLPIRWM SWESILLGKFTTASDVWAFG\VTLWE\TFTFCQRKGPYS\QLS \DETGY*RNTGEFFPRPKGGQTYLPSTSPFVPDSCVIKLMLSC WRRDTKNRPSFQEIHLLLLQQGDERCCQCLAMFLRLRSSLQDL PLTHAYATPSGHLMKLRDRGLFALPSFPGHPHSLPLTHIYFFF FTLKN
341	1080	916	3	CSASPLRPGLLAPDLLYLPGAGQPRRPEAEPGQKPVVPTLYVT
,				EAEAHSPALPGLSGPQPKWVEVEETIEVRVKKMGPQGVSPTTE VPRSSSGHLFTLPGATPGGDPNSNNSNNKLLAQEAWAQGTAMV GVREPLVFRVDARGSVDWAASGMGSLEEEGTMEEAGEEEGEDG DAFVTEESQDTHSLGDRDPKILTHNGRMLTLADLEDYVPGEGE TFHCGGPGPGAPDDPPCEVSVIQREIGEPTVG\SLCCSAWGMH WVPEALSASLGLSPMGR\HHRDPRSVALRAPPSSCGRPRLGLW AVLPG
342	1081	862	444	QGLAAEFLQVPAVTRAYTAACVLTTAAVQLELLSPFQLYFNPH LVFRKFQAPFLPWALMGFSLLLGNSILVDLLGIAVGHIYYFLE DVFPNQPGGKRLLQTPGFLGLQSSKAPAGSSLTIWTQQSQGGP GTAGELAAPS

D No. Of	SEQ	SEQ	Predicted	Predicted end	Amino acid segment containing signal peptide (A = Alanine,
location of Mucleic location of Amino Acids location corresponding to first amino acid residue of amino acid residue of amino acid residue of amino acid sequence EKNALEPTVYFGMGV*APQVPRFQQRTTGYQYYLQLRKDIWEE Sequence Sequence EKNALEPTVYFGMGV*APQVPRFQQRTTGYQYYLQLRKDIWEE GIPCTLEQPIHLAGLAVQAIFGDFQVESQDFLQKFALFPVGM LQDKKVLERATQKVALLHQKYRGLTAPDAEMLYMQEVERNDGY GEEYPAKDSQGSDISIGACLEGIFVKHINGRHPVFFRWIDIA NMSHNKSFFALELANKEETIGPQTEDMETAKYIWRLCVARHKFYRLMQCNLQTQTVTVTNPIRRRSSSRMSLPKRQPVVMPPDFQL HYNGHYTEPYASSQDNLFVPNQEG YYYQGQFTSINRQLDFNG RIR NNASVYSAHSTNSLNNPQPYLQPSFMSSNPSITGSDWNFR RIR NNASVYSAHSTNSLNNPQPYLQPSFMSSNPSITGSDWNFR RIR NNASVYSAHSTNSLNNPQPYLQPSFMSSNPSITGSDWNFR RIR NNASVYSAHSTNSLNNPQPYLQPSFMSSNPSITGSDWNFR RIR NNASVYSAHSTNSLNNPQPYLQPSFMSSNPSITGSDWNFR RIR NNASVYSAHSTNSLNNPQPYLQPSFMSSNPSITGSDWNFR RIR NNASVYSAHSTNSLNNPQPYLQPSFMSSNPSITGSDWNFR RIR NNASVYSAHSTNSLNNPQPYLQPSFMSNPSITGSDWNFR RIR NNASVYSAHSTNSLNNPQPYLQPSFMSSNPSITGSDWNFR RIR NNASVYSAHSTNSLNNPQPYLQPSFMSSNPSITGSDWNFR RIR NNASVYSAHSTNSLNNPQPYLQPSFMSSNPSITGSDWNFR RIR NNASVYSAHSTNSLNNPQPYLQPSFMSSNPSITGSDWNFR RIR NNASVYSAHSTNSLNNPQPYLQPSFMSNPSITGSDWNFR RIR NNASVYSAHSTNSLNNPQPYLQPSFMSNPSITGSDWNFR RIR NGVYLPPPYAPSFANTTPLSKRHVISSSSPNDLITRRVHH SVQTFQGBSLPVAHSLQEVSEPLTAARRAQLHKRNSLTEVAGLS RIS RIF RIF RIF RIF RIF RIF RIF RIF RIF RIF	ID	ID	beginning		C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
Amino Acids	1				F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Acids Acids brist amino sponding to first amino acid residue of amino acid residue of amino acid sequence seque		1		_	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
T=Threonine, V=Valine, W=Tryprophan, Y=Tyrosine, X=Uknown, *=Stop Codon, /=possible nucleotide deletion, acid residue of amino acid sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence (IPTILEQPIHLAGLAVQAIFGDFPQYSSQDFILQKFALFPVGW GESYPAKDSQGSDISIGACLEGIFVKHKNGRHPVVPRWIDIA NMSHNKSFFALELANKEETIQFQTEDMETAKYIWLCVARHKP YRINQCHLQTVTVNPIRRRSSSMSLPKPQEVVMPPPP\QLHYNGHYTEPYASSQDNIFVPNQEGYYQQFGTSINRAQIDFNG RIR\NaSVYSAHSTNSLIANMPQPYLQPSPMSNNPSTTOSDVMRP DYLPSHRHSAVIPPSYRPTPDYETVMKQLNRGLVHAERQSHSL KYSFHSBPSYPYPAERRPVYGAVVSVELTINAQLQADYPSPNIM RTQVYRPPPPPPPPPPPRPANSTPDLSRHLVISSSNPDLITRRVHH SVQTFQEDSLPVAHSQESTARQHIBM STOPYRPPPPPPPPPPPPPRPANSTPDLSRHLVISSSNPDLITRRVHH SVQTFQEDSLPVAHSQESTARAQLHKRNIEVAGLS GEBSYRKSLSPALVYSQPEIREHAQLHSRNSLEVAGLS YSFHSBPSYPYPAERRPVGGAVVSELTINAQLQADYPSPNIM RTQVYRPPPPPPPPPPPPPRPANSTPDLSRHLVISSSNPDLITRRVHH SVQTFQEDSLPVAHSQEVSEPLTARAQLHKRNSIEVAGLS GPERAEGLRYGHKKSLSDATMLIHSSEESEDEPFEESGGRAP PARAFERPFGLAQDPPGCRVLLAQPHILIBPRAHVDAKKR MDSSPVRTTABAQRPWRDGLLMPSMSESDLTTSGRYRARRDSL KKRPVSDLLSGKKNIVGGLPFVLJGHHILBPRAHVDAKKR MDSSPVRTTABAQRPWRTGLLMPSMSESDLTTSGRYRARRDSL KKRPVSDLLSGKKNIVGGLPFLJGHKKTRVDAKKIGPLKLAAL NGLSLSKVPLPPDEGKSVATRATNDERKILLGGREGGMVFTEY ERILKKKLVDGECSTARLPENAERRRFQDVLPYDDVRVELVFY ERILKKKLVDGECSTARLPENAERRRFQDVLPYDDVRVELVFY KENNTGYINASHIKVSVSGLEMDYATAGPLONTOOPPWOMW EQGIAIIAMVTAEEEGGREKSFRVWPRLGSRHNTVTYGRFKIT TRFRTDSGCVATTGLKMKHLLTGGSRTVWHLQYTDWBEHGCPB DLKGFLSYLEEIGSVKFRVNNTSTD9CSNPPLLUMGAQGAMLVOTLCQY TFVYRVLIQVPEKAPRLILLSSPQFPYGAGSCEAPTA GVULLSBIMIACLEHNEVLDIPRVLDMIR\QQRMMLVOTLCQY TFVYRVLIQVPEKAPRLILLSSPQFPYGAGSCEAPTA GVULLSBIMIACLEHNEVLDIPRVLDMIRQCRMPLUTLCQY TFVYRVLIQVPEKAPRLILLSSPQFPYGAGSCEAPTA GPVSFLFLGSSCGVARRGVROJ MRGRSLQPPPFGLKGFCL SLPSRWDERRHPPLRVP*FVFVFULVELGFHHYAQAGLKLLTLS DPPPAASHSGITHSGCVARRGVROJ MRGRSLQPPPFGLKGFCL SLPSRWDERRHPPLRVP*FVFVFULVELGFHHYAQAGLKLLTLS DPPPAASHSGITHSGCVYGARRGVROJ MRGRSLQPPPFGLKGFCULSLPFVVFFFLGSSGCQVARRGVROJ MRGRSLQPPPFGLKGFCULSLPFVVFFTLSGSCGVARRGVROJ MRGRSLQPPPFGLKGFCULSLPFVVFFTLSGSCGVARRGVROJ MRGRSCAPPPFGLKGFCULSLPGCCONGANG GFFTU		1			P=Proline, O=Glutamine, R=Arginine, S=Serine,
amino acid residue of amino acid residue of amino acid sequence 343 1082 3658 337 EKNALEPTVYFGMGV*APQVPRFQQRITGYQYYLQLRKDIWEE GIPCTLEQPIHLAGLAVQAIFGDFDQYESQDFLQKFALFPVGW LQDEKVLEEATQRVALLHQKYRGLTAPDABMLYMQSVERHDGY GERSYPAKDSQGSDISIGACLEGIFVKHKNGRIPVFRWBDGY HYNGHYTEPYASSQDMLFVPNQSGYYGFQFQTSTGYDWRPDYTGRALTWYSHERATGY FRINNGCNLQTQTVTVTWPIRRRSSRMSLPKPQPYVMPPPYQL HYNGHYTEPYASSQDMLFVPNQSGYYGFGFGTSHAPADFTSH RRINNIGSYAYSPRALVYSQPBITGRHQDYFNHR RRINNIGSYAYSPRALVYSQPBITGRHQDYFSHIM RTQVYRPPPPYPPPPPRPANSTPDLSRHLYISSSNPDLITRRVHH SVQTFGBDSLPVAHSLQEVSEPLTARAHQLHKRNSIEVAGLS HGLEGILRIKBRTLSASABEV\APPAVSVGSQP\SVFTERTQRE GPEEAEGLRYGHKKSLDATMLHSSEERBDEPFEESGARAP PARAREPRPGLAQDPPGCPRVLLAGPLHILEPKAHVPDAEKRM MDSSPVRTTAEAQRPWRDGLLMFMSSESDLTTSGRVARRDSL KKRPVSDLLSGKNIVTUSGLPPLAGMKTRVDAKKIGFLKLAAL NGLSLSRVPLPDEKEVATAATNDERCKLLEQRLEQGMVFTEY ERILKKRLVDGECSTARLPENAERNRFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEWDYIATQGPLQMTVELVUTT KENNTGYINASHIKVSVSGIEWDYIATQGPLQMTVELVUTT TRFTTDSGCYATTGLKKHLLTGQERTVWHLQYTDMPEHGCPE DLKGFLSYLEEIGSVRRTTNSTSDPOSPNPPLLVHCSAGVGRT GVVILSETMIACLEHNSVLDIPRVLDMLR\QQRMMLVQTLCQY TYPVILVLQVEKKAPRLILSSPOPPYAGASCEAFTA 344 1083 6 304 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTMPSAVCGGPQMLLGVLQCTLPLPVIQMLLTRPLPVNQ ELVSAG'SLAKDDUE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFIEGSCSPVEBRCVPSCAFGFLSCFPLLNSSGERFT LYGEEILAK GVDHLTRPLEVNP ELGFFLVVFFLESGSCGVARAGVRD/RDRGSLQPPPPELKGFC SLPSRWBRHPPPLRVVP*FVFVFLVELGFHNVAQAGLKLLTLS DPPAPASHSGITGVSQRDQPVLPLRWASCSELVG ERFSPWDFRHPPPLRVP*FVFVFLEIGFHNVAQAGLKLLTLS DPPAPASHSGITGVSQRDQPVLPLRWASCSELVG ERFSPWDFRHPPDLRVP*FVFVFLEIGFHNVAQAGLKLLTLS DPPAPASHSGITGVSQRDQPVLPLRWASCSELVG EGFFFRENGSCGSGCCCCRERRFFTDGYRFRRRRWSCCPSGVRPV RRMSCKSNIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGGTTLARMVSIS EGFTCLARMSSIS GUTTALAMVSIS EGFTCLARMSSIS GUTTALAMVSIS EGFTCLARRSFTDGYRGREKDSVMSANG	Acids	Acids	• •		
acid residue of amino acid sequence of amino acid sequences sequences sequenc	ļ				
residue of amino acid sequence	į.				
of amino acid acid acid sequence sequen	l				\=possible nucleoude insertion)
acid sequence sequenc		}			
Sequence Sequence Sequence Sequence SEKNALEPTVYFGMGV*APQVPRFQQRITGYQYYLQLRKDIWEE GIPCTLEQPIHLAGLAVQAIFGDFDQYBSQDFLQKFALFPVGM LQDEKVLEBATQKVALLHQKYRGLTAPDAEMLYMQBVERMDGY GEBSYPAKDSQGSDISIGACLEGIFVKHKNGRHPVVFRHDIA NMSHNKSPFALELANKEETIQFOFTDMETAKYIWRLCVARHKF YRLNQCNLQTQTTVTVNPIRRRSSSRMSLPKPQPYVMPPPPQL HYMGHYTEPYASSQDNLFVPNQGG\YYQGFQTSLMAQIDFNG RIR\NASVYSAHSTNSLNNPQPYLQPSPMSSTGSDVMRP DYLPSHRHSAVIPPSYRPTDYETVMKQLNRGLVHAERQSHSL RNILNIGSSYAYSRPAALVYSQPEIREHAQLPSPAAHCFFSLS YSFHSPSPYPYPAERRPVVGAVSVPELTNAQLQAQDYPSPNIM RTQVYRPPPPPPPPPPPANSTDLSRHLYISSSNPDLITRRVHH SVQTFQEDSLPVAHSLQEVSEPLTAARHAQLHKRNSIEVAGLS HGLEGLRKERTLSASAEV\APRAVSVGSQP\SVFTERTQRE GPEEABGLRYGHKKSLSDATMLIHSSEEEDEDFEESGARAP PARAREPRPGLAQDPPGCPRVLLAGPLHILEPKAHVPDAEKRM MDSSPVRTTAEAQRPWRDGLLMPSMSSDLTTSGYRARRDSL KKRPVSDLLSGKKNIVEGLPPLGGMKKTKVDAKKIGPLKLAAL NGLSLSRVPLPDEGKEVATRATNDERCKILEQRLQGMVFTEY ERILKKRLVDGECSTARLPENAERRFQDVLPYDDVELVPT KENNTGYINASHIKVSVGGIEMDYTATQQPLQNTCQDFMQMW EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLMKHLLTGGERTWHLQYTDWPEHGCPP DLKGFLSYLEELGSVGRRTHTNSTSDPQSNPPPLLVHCSAGYGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFYTRVLIQVEKAPRILISSPQFFYGAGSCEAFTA GVDHLTMPSAVCGQPQMLLQUTQPTLPDPVIQMLITKPLPVNQ RLVSAG/SLAKDDVB SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFTLGESCSPVDEPRCVPSCAFGFLSCFPLLMSAALERG LFFFVVFFFLESGSQVARAGVRD/RDRGSLQPPPEKKLLTLS DPPAPASHSAGITGVSQRDQPVLFLWASCSELVG SLPSRWDHRHPPPLRVP*FVFVLVLEGFHHVAAQGLKKLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTLARMYSIS SGFTLARMYSIS SGFTLARMYSCSELVG RGFTLARMYSIS SGFTLARMYSCSELVG RGFTLARMYSIS SGFTLARMYSCSELVG SLPSRWDHSHESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTLARMYSIS SGFTLARMYSCSELVG SCFTLARMYSIS SGFTLARMYSCSELVG SCFTLARMYSCSELVG SCFTLARMYSCSELVG SCFTLARMYSCSELVG SCFTLARMYSCSELVG SCFTLARMYSCSELVG SCFTLARMYSCSELVG SCFTLARMYSCSELVG SCFTLARMYSCSELVG SCFTLARMYSCSELVG SCFTLARMYSCS		}	**	1	·
343 1082 3658 337 EKNALEPTVYFGMGV*APQVPRFQQRTGYQYYLQLRKDIWEE GIPCTLEQPIHLAGLAVQAIFGDFDQYESQDFLQKFALFPVGW LQDEKVLEBATQKVALLHQKYRGLTAPDAEMLYMQSVERMDGY GEESYPAKDSQGSDISIGACLEGIFVKHKNGRHPVVFRHDIA NMSHNKSFFALELANKEETIQFQTEDMETAKYIWHLCVARHKF YRLNQCUNLOTQTVTVNPIRRSSSRMSLPKPQPYVMPPPP\QL HYMGHYTEPYASSQDNLFVPNQEG\YYQQFQTSLNRAQIDFNG RIK\NASVYSAHSTNSLNNPQPYLQPSFMSSENSITGSDVMRP DYLSPHRHSAVIPSYRPTPDYSTTYMKQLUNGKUVHAERQSHSL RNLNIGSSYAYSRPAALVYSQPEIREHAQLPSPAAAHCPFSLS YSFHSPSPYPYPABRRPVVGAVSVPELITMAGLQAQDYSPANIM RTQVYRPPPPYPPPPPAPNSTPDLSHHLVISSDDLITRSVHTSL SVQTFQEDSLPVAHSLQEVSEPLTAARHAQLHKRNSIEVAGLS HGLEGLRLKERTLSASAABV\APRAVSVGSQP\SVFEITTGRE GPEEBGGLRYGHKKSLSDATMLHSSEEDEDFFEESGARAP PARAFEPPGLAQDPGCPRVLLAGPLHILEPKAHVPDAEKRM MDSSPVETTAEAQRPWRDGLLMPSMSSDLITTSGRYARRDSL KKRPVSDLLSGKKNIVEGLPPLGGMKKTRVDAKKIGPLKLAAL NGLSLSRVPLPDEGKEVATRATNDERCKILEQRLEQGMVFTEY ERILKKRLVDGECSTARLPENAERNFCDVLPYDDVVRLVPT KENNTGYINASHIKVSUSGIEWDYIATQGPLONTCQDFMQMVW EQGIAILAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLKNKHLUTGQBRTVWHLQYTDWPEHGCPE DLKGFLSYLEEIQSVARTHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSSIMIACLEHNEVLDIPRVLDMLM QQRMMLVQTLQQV TFVVRVLIOVPEKAPRLLISSPQFPYGAGSCBAFTA RKXQKLAEE*VELSKLADLKDAAPAVQKFFLEEIL\GEEILAK GVUHLTMPSAVCGQPQWLLQVLQQTLPLPUJQMLITKPLPVNQ RLVSAG/SLAKDDVB GPVSFLFGESCSVDEPRCVPSCAFGFLSCFFLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDGSLQPPPGLKQFCL SLPSRWDHRHPPLRV*FVFFLVELGFHHVAQAGIKLLTLS DPPAPABASAGITGVSQRDQPVPLLQVLFLRWASCSELVG SPSFRWDHRHPPLRV*FVFFLEGFHHVAQAGIKLLTLS DPPAPABASAGITGVSQRDQPVJFLRWASCSELVG RGFFTLARMVSISS LVG RGFTZARAMVSIS CGFGGCCCLRRRFFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECYYIIPSSKDPHRCLPGCQICQQLVR RGFTVALAMVSIS GGFGGCCLTRRFFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECYYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS GGFGGCCLTRRFFPIDGYRPRRRRWSCCPSGVRPV RGFTLARMVSIS GGFGCCLTRRFFPIDGYRPRRRRWSCCPSGVRPV RGFTLARMVSIS GGFGCCLTRRFFPIDGYRPRRRRWSCCPSGVRPV RGFTLARMVSIS GGFGCCCLTRRFFPIDGYRPRRRRWSCCPSGVRPV RGFTLARMVSIS GGFGCCCLTRRFFPIDGYRPRRRRWSCCPSGVRPV RGFTLARMVSCCPSGVRFT RGFTLARMVSIS GGFTARMSCCPSGVRFT RGFTLARMVSCCPSGVRFT RGFTLARMVSCCPSGVRFT	[1		1	·
GIPCTLEQPIHLAGLAVQAIFGDFDQYESQDFLQKFALFPVGW LODEKVLEEATQKVALLHQKYRGLTAPDAEMLYWQEVERMDGY GESYPAKDSGSDISIGACLEGIFVKHKNGRHPVFFRWHDIA NNSHNKSFFALELANKEETIQFQTEDMETAKYIWRLCVARHKF YRLNQCNLQTQTVTVNDTRRRSSSRWSLPKPQPYVMPPPP\QL HYMGHYTEPYASSQDNLFVPNQEG\YYGQFQTSLNRAQIDFNG RIR\NASVYSAHSTNSLNNPQPYLQPSPMSNPSITGSDVMRP DYLPSHRHASAVIPPSYRPTPDVETVMKQLWRGLVHAERQSHSL RNLNIGSSYAYSRPAALVYSQPEIREHAQLPSPAAAHCPFSLS YSFHSPSPYPYPAERRPVVGAVSVPELITNAQLQAQDYPSPNIM RTQVYRPPPPYPPPPPABNSTPDLSRHLYISSSNPDLITRRVHH SVQTFFGEDSLPVAHSLQEVSEPLITAARHAQLHKRNSIEVAGLS HGLEGLKLKEETLSASAABVAPRAVSVGSQP\SVFTERTQRE GPEEAEGLRYGHKKSLSDATMLIHSSEEEEDEDFEEESGARAP PARAREPRPGLAQPPBGGCPRVLLAGPLHILEPKAHVPDAEKRM MDSSPVRTTARAQRPWNGGLLMPSMESDITTSGRYRARRDSL KKRPVSDLLSGKKNIVEGLPPLGGMKKTRVDAKKIGPLKLAAL NGLSLSRVPLPDEGKEVATRATNDERCKILEQRLEGGMVFTEY ERILKKRLVDGECSTARLPENAENRFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEMDYIATQGPLQNTCQDFWQMW EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLMKHLLTGQERTVWHLLGYTDWPEHGCPE DLKGFLSYLEEIQSVRRITNSTSDPQSPNPPLLVHCSAGVGRT GVVILSEIMIACLEHREVLDIPRVLDMLR\QQRMMLVQTLCQY TFYYRVLIQVPEKAPRLILSSPQFPYGAGSCEAFTA 344 1083 6 304 RKKQKLAEE*VELSKLADLKDAERVQKFLEEI*L\GEBILAK GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLBSGSCQVARRAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLUELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRFFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECYYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG	343	1082			EKNALEPTVYFGMGV*APOVPRFOORITGYOYYLOLRKDIWEE
LQDEKVLEBATQKVALLHQKYRGLTAPDAEMLYMQEVERMDGY GESSYPAKDSQSSDISIGACLEGIFVKHKGRHEVVFWHDIA NMSHNKSFPALELANKEETIQFQTEDMETAKYIVRLCVARHKF YRLNQCMLQTQTVTVINPIRRSSSRMSLPKPQPYVMPPPP\QL HYMGHTTEPVASSQDNLFVPNQSG\YYGQFQTSLNRAQIDFNS RIR\NASVYSAHSTNSLNNPQPYLQPSPMSSNPSITGSDVMRP DYLPSHRHSAVIPPSYRPTPDVETVMKQLNRGLVHAERQSHSL RNLNIGSSYAYSRPAALVYSQPEIREHAQLPSPAAAHCPFSLS YSFHSPSPYPYPABERRPVVGAVSVPELTNAQLQAQDYSPNIM RTQVYRPPPPPYPPPPADRSTPDLSRHLYISSNPDLITRRVHH SVQTFQEDSLPVAHSLQEVSEPLTAARHAQLHKRNSIEVAGLS HGLEGLELKERTLGASAAEV\APRAVSVGSQP\SVFTERTQRE GPEEAEGLRYGHKKSLSDATMLIHSSEEEEDFFEESGARAP PARAREPRFQGLAQDPPGCPRVLLAGPLHILEPKAHVPDAEKKM MDSSPVRTTAEAQRPWRDGLLMPSMSESDLTTSGRYRARRDSL KKRPVSDLLSGKKNIVEGLPPLGGMKKTRVDAKKLGPLKLAAL NGLSLSRVPLPEDEKGEVATRATNDERCKLIEQRLEQGMVTEY ERILKKRLVDGECSTARLPENAERNFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEMBYJATQGPLQNTCODFWQMVW EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLKMKHLLTQGERTVWHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTNSTSDPQSFNPPLLVHCSAGVGRT GVVILSSIMIACLEHNEVLDIPRVLDNLR\QQRMHLVQTLCQY TFYVRVLIQVPEKAPRLLLSSPQFPYGAQSCEAFTA 344 1083 6 304 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTMPSAVCGQPQWLLQVLQQTLPPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLINSAALERG LFFFVVFFFLESGSCQVARAGVRD\RDGRGLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVVFVIVLEGHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRFPFIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLQHQPLQTTTLLDQYIREQREKDSVMSANG	3.13	1000	3030		
GESYPAKDSQSDISIGACLEGIFVKHKNGRHPVVFRWHDIA NMSHNKSFFALELANKETIQPQTEDMETAKYIVRLCVARHKF YRLNQCNLQTQTVTVNPTRRSSSRMSLPKPQVYMPPPP\QL HYMGHTTEPYASSQDNLFVPNQEG\YYGQFQTSLNRAQIDFNG RIR\NASVYSAHSINSLNNPQPYLQPSPMSSNPSITGSDVMRP DYLPSHRHSAVIPPSYRPTPDYETVMKQLNRGLVHAERQSHSL RNLNIGSSYAYSRPAALVYSQPEIREHQALQAQDYPSPNIM RTQVYRPPPPPPPPPPRPANSTPDLSRHLYISSSNPDLITRRVHH SVQTFQBSLBVAHSLQEVSEPLTAARHAQLHKRNSIEVAGLS HGLEGLRLKERTLSASAAEV\APRAVSVGSQP\SVFTERTQRE GPEEAEGLRYGHKKSLSDATMLHHSSEEEBDEDFFEESGARAP PARAFPPPGLAQDPPGCPRVLLAGPLHILEPKAHVPDAEKKM MDSSPVRTTAEAQRPWRDGLLMFSMESDLTTSGRYRARDSL KKRPVSDLLSGKKNIVEGLPPLGGMKKTRVDAKKGPLKLAAL NGLSLSRVPLPDEGKEVATRATNDERCKILEQRLEQGMVFTEY ERILKKRLVDGEGSTARLPENAERNRPQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEWDYLATQGPLQNTCQDFWQMVW EQGIAILAMYTAEEEGGREKSFRYWPRLGSRHNTVYTGRFKIT TRPRTDSGCYATTGLKMKHLLTGQERTVHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSSIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA GVDHLTMPSAVCGQPQWLLQVLQQTLPPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD\RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFFVFLUEGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVUFLRWASCSELVG 346 1085 116 415 EGFFGRSLGGGCCRLRRFFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECYYIIPSSKDPHRCLPGCQICQQLVR RGFFTVLARMVSIS	}				1
MMSHNKSFFALELANKEETIQFQTEDMETAKYIWRLCVARHKF YRLNQCNLQTQTVTVNPIRRSSSRMSLPKPQPYVMPPPP\QL HYNGHYTEPYASSQDNLFVPNQEG\YYGQFQTSLNRAQIDFNG RIR\NASVYSAHSTNSLNNPQPYLQPSPMSSNFSITGSDVMRP DYLPSHRHSAVIPPSYRPTDYETVMKQLNRGLVHAERQSHSL RNLNIGSSYAYSRPAALVYSQPEIREHAQLDSPAAAHCPFSLS YSFHSPSPYPYPAERRPVVGAVSVPELTMAQLQAQDYSPNIM RTQVYRPPPPYPPPRANSTPDLSRHLYISSSNPDLITRRVHH SVQTFGEDSLPVAHSLQEVSEPLTAARHAQLHKRNSIEVAGLS HGLEGLRLKERTLSASAAEV\APRAVSVGSQP\SVFTERTQRE GPEEABGLRYGHKKSLSDATMLHISSEEEEDEDFEEESGARAP PARAREPRPGLAQDPPGCPRVLLAGPLHILEPKAHVPDAEKRM MDSSPVRTTAEAQRFWRDGLLMFSMSESDLTTSGRYRARRDSL KKRPVSDLLSGKKNIVEGLPPLGGMKKTRVDAKKIGPLKLAAL, NGLSLSRVPLPDEGKEVATRATNDERCKILEQRLEQGMVFTEY ERILKKRLVDGGCSTARLPENAERNRFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEWDYIATQGPLQNTCQDFWQMVW EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLKMKHLLTGQERTVWHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTTNSTSDPQSPMPPLLVHCSAGVGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFFYRVLIQVEKAPRLILSSPQFPYGAQSCEAFTA GVDHLTMPSAVCGQPQWLLQVLQQTLPLEVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLIGESCSPVDEPRCVPSCAFGFLSCFPLINSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPFGLKQCIL SLPSRWDRRHPPPLRVP*FVFFLUEIGFHRVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFFGRSLSGGLCCRLRRRFFIDGYRPRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTTLDQYIREQREKDSVMSANG	1				1 ~ ~ ~ 1
YRLNQCNLQTQTVTVNPIRRRSSSRMSLPKPQPYVMPPPPPQL HYMGHYTEPYASSQDNLFVPNQEG\YYGGFQTSLNRAQIDFNG RIR\NASVYSAHSTNSLNNPQPYLQPSPMSSNPSITGSDVMRP DYLPSHRHSAVIPPSYRPTPDYETVMKQLNRGLVHAERQSHSL RNLNIGSSYAYSRPAALVYSQPEIREHAQLPSPAAAHCPFSLS YSFHSPSPYPPPARRRPVVGAVSVPELTNAQLQAQDYPSPNIM RTQVYRPPPPPPPPPANSTPDLSHLYISSSNPDLITRRVHH SVQTFQEDSLPVAHSLQEVSEPLTAARHAQLHKRNSIEVAGLS HGLEGLRKERTLSASAAEV\APRAVSVGSQP\SVFTERTQRE GPEEABGLRYGHKKSLSDATMLHSSEEEEDEDFEEESGARAP PARAREPPPGLAQDPPGCPRVLLAGPLHILEPKAHVPDAEKRM MDSSPVRTTABAQRFWRDGLLMPSMSESDLTTGGRYRARRDSL KKRPVSDLLSGKKNIVEGLPPLGGMKKTRVDAKKIGPLKLAAL NGLSLSRVPLPDEGKEVATTATNDERCKLLEQRLEQGMVFTEY ERILKKRLVDGECSTARLPENAERNRFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEWDYIATQGPLQNTCQDFWQMVM EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGFFKIT TTFRTDSGCYATTGLKMKHLLTGGERTVWHLQYTDWEHHGCPE DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSSIMIACLEINEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA 344 1083 6 304 RKKQKLAEE*VELSKLADLKDAERVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLINSAALERG LPFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLUEIGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFFGRSLSGGLCCRLRRRFFIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG		<u> </u>		[· · · · · · · · · · · · · · · · · · ·
HYNGHYTEPYASSQDNLFVPNQEG\YYGQFQTSLNRAQIDFNG RIR\nasvysahstnsinnpqpylqpspmssnpsitgsdvirp DylpshrhavippsyrptpdyetvmkQlnrglvhaerQshsl Rninigsyaxsrpaalvysqpeitrmaqlqaqdypspnim Rtqvyrppppyppraerrpvvgavsvpeltnaqlqaqdypspnim Rtqvyrppppypprpranstpdlsrilyisssnpdltrruhh SvQtfQedslpvahslqevsepltaarhaqlhkrnsievagls HGLeglrikertlsasaaev\apravsvgsQp\svftertqke Gpeeaeglryghkksisdatmlihsseeeebdfeeesgarap Pararbprgclaqdppgcprullaghlhilepkahtpdaekrm MDSSPVRTTAEQRPWRDGLLMPSMSESDLTTSGRYRARRDSL KKRPVSDLLSGKKNIVEGLPPLGGMKKTRVDAKKIGPLKLAAL NGLSLSRVPLPDEGKEVATRATNDERCKILEQRLEQGMVFTEY ERILKKRLVDGECSTARLPENAERNRFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVGGIEMDYIATQGPLQNTCODFWQMVW EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLKMKHLLTGQERTVWHLQYTDWPEHGCPB DLKGFLSYLEEIQSVRRHTNSTDDQSPNPPLLVHCSAGVGRT GVVILSSIMIACLEHNEVLDIPRVLDMLR\QQRMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA 344 1083 6 304 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPQWLLQVIQQTLPLPVIQMLLTRPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCTFILLNSAALERG GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCTFILLNSAALERG GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCTFILLNSAALERG GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCTFILLNSAALERG GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCTFLLNSAALERG GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCTFLLNSAALERG GPVSFLFLGESCSPVDEPRCVPSCAFGFHSCTFLLNSAALERG GPSFLFLGESCSPVDEPRCVPSCAFGFHSCTFLLNSAALERG GFTVLRRWSISS 346 1085 116 415 EGFPGRSLGGLCCRLERRFFTDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS	1	ł		1	l
RIR\NASVYSAHSTNSLNNPQPYLQPSPMSSNPSITGSDVMRP DYLPSHRHSAVIPPSYRPTPDYETVMKQLNRGLVHAERQSHSL RNLNIGSSYAYSRPAALVYSQPEIREHAQLPSPAAAHCPFSLS YSFHSPSPYPVPAERRPVVGAVSVPEITNAQLQAQDYPSPNIM RTQVYRPPPPYPPPRPANSTPDLSRHLYISSSNPDLITRRVHH SVQTFQEDSLPVAHSLQEVSSPLTAARHAQLHKRNSIEVAGLS HGLEGLRIKERTLSASAAEV\APRAVSVGSQP\SVFTERTQRE GPEEAEGLRYGHKKSLSDATMLIHSSEEEEDEDFEEESGARAP PARAREPRPGLAQDPPGCPRVLLAGPLHILEPKAHVPDAEKRM MDSSPVRTTAEAQRPWRDGLLMPSMSESDLTTSGRYRARRDSL KKRPVSDLLSGKKNIVEGLPPLGGMKTVDAKKIGPLKLAAL NGLSLSRVPLPPDEGKEVATRATNDERCKILEQRLEQGMVFTEY ERILKKRLVDGECSTARLPENAERNRFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEMDYIATQGPLQNTCQDFWQMVW EQGIAIIAMVTAEEEGGREKSFRYWERLGSRHINTVTYGFFKIT TRFRTDSGCYATTGLKMKHLLTGQERTVWHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVEKAPRLILSSPQFPYGAQSCEAFTA 344 1083 6 304 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTMPSAVCGQPQMLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESSCQVARAGVRD/RDRGSLQPPPPGLKSCFL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLERRFFIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS	İ			}	1
DYLPSHRHSAVIPPSYRPTPDYETVMKQLNRGLVHAERQSHSL RNINIGSSYAYSRPAALVYSQPEIREHAQLPSPAAAHCPFSLS YSFHSPSPYPPAERRPVVGAVSVPELTNAQLQAQDYPSPNIM RTQVYRPPPPYPPPRPANSTPDLSRHLYISSSNPDLITRRVHH SVQTFQEDSLPVAHSLQEVSEPLTAARHAQLHKRNSIEVAGLS HGLEGLRLKERTLSASAAEV\APRAVSVGSQP\SVFTERTQRE GPEEAEGLRYGHKKSLSDATMLIHSSEEEEDEDFEEESGARAP PARARBPRPGLAQDPPGCPRVLLAGPLHILEPKAHVPDAERRM MDSSPVRTTAEAQRPWRDGLLMPSMSESDLTTSGRYRARRDSL KKRPVSDLLSGKKNIVEGLPPLGGMKKTRVDAKKIGPLKLAAL NGLSLSRVPLPDEGKEVATATNDERCKILEQGRLEQGMVFTEY ERILKKRLVDGECSTARLPENAERNRFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEWDYIATQGPLQNTCQDFWQMVW EQGIAIIAMVTAEEEGGREKSFRWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLKMKHLLTGQERTVWHLQYTDWPEHGCPB DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLQY TFVYRVLIQVPEKAPRLILSSPQPPYGAQSCEAFTA 344 1083 6 304 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTMPSAVCGQPQWLLQVLQQTLPLPVIQMLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLMSAALERG CPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLMSAALERG GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLMSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWPHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLWASCSELVG 346 1085 116 415 EGFPGRLSGGLCCRLRRFFIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG	ł			1 .	1
RNLNIGSSYAYSRPAALVYSQPEIREHAQLPSPAAAHCPFSLS YSFHSPSPYPYPAERRPVVGAVSVPELTNAQLQAQDYSPSNIM RTQVYRPPPPPYPPPRANSTPDLSRHLYISSSNPDLITRRVHH SVQTFQEDSLPVAHSLQEVSEPLTAARHAQLHKRNSIEVAGLS HGLEGLRIKERTLSASAAEV\APRAVSVGSQP\SVFTERTQRE GPEEAEGLRYGHKKSLSDATMLIHSSEEEEDEDFEEESGARAP PARARSPRPGLAQDPPGCPRVLLAGPLHILEPKAHVPDAEKRM MDSSPVRTTAEAQRPWRDGLLMPSMSESDLTTSGRYRARRDSL KKRPVSDLLSGKKNIVEGLPPLGGMKKTRVDAKKIGPLKLAAL NGLSLSRVPLPDEGKEVATRATNDERCKILEQRLEQGMVFTEY ERILKKRLVDGECSTARLPENAERNFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEWDYIATQGPLQNTCQDFWQMVW EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLKNKHLLTGQERTVMHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 344 1083 6 304 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTTLLDQYIREQREKDSVMSANG		l	l		1 ,
YSFHSPSYPYPAERRPVVGAVSVPELTNAQLQAQDYPSPNIM RTQVYRPPPPYPPPPANSTPDLSRHLYISSSNPDLITRRVHH SVQTTFQEDSLPVAHSLQEVSEPLTAARHAQLHKRNSIEVAGLS HGLEGLRLKERTLSASAAEV\APRAVSVGSQP\SVFTERTQRE GPEEAEGLRYGHKKSLSDATMLIHSSEEEEDEPFEESGARAP PARAREPRPGLAQDPPGCPRVLLAGPLHILEPKAHVPDAEKRM MDSSPVRTTAEAQRPWRDGLLMPSMSESDLTTSGRYRARRDSL KKRPVBDLLSGKKNIVEGLPPLGGMKKTRVDAKKIGPLKLAAL NGLSLSRVPLPPDEGKEVATRATNDERCKILEQRLEQGMVFTEY ERILKKRLVDGECSTARLPENAERNRFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEWDYIATQGPLQNTCQDFWQMVW EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNIVTYGRFKIT TRFRTDSGCYATTGLKMKHLLTGQERTVWHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTNSTSDGSPNPPLLVHCSAGVGRT GVVILSBIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA 344 1083 6 304 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTMPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGECCRLRRFFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG	ł		1	1	1
RTQVYRPPPPYPPPRANSTPDLSRHLYISSSNPDLITRRVHH SVQTFQEDSLPVAHSLQEVSEPLTAARHAQLHKRNSIEVAGLS HGLEGLRLKERTLSASAAEV\APRAVSVGSQP\SVFTERTQRE GPEEAEGLRYGHKKSLSDATMLIHSSEEEEDEDFEESGARAP PARAEBPRPGLAQDPPGCPRVILAGPLHILEPKAHVPDAEKRM MDSSPVRTTAEAQRPWRDGLLMPSMSESDLTTSGRYRARRDSL KKRPVSDLLSGKKNIVEGLPPLGGMKKTRVDAKKIGPLKLAAL NGLSLSRVPLPDEGKEVATRATNDERCKILEQRLEGGMVFTEY ERILKKRLVDGECSTARLPENAERNRFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEWDYIATQGPLQNTCQDFWQMVW EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLKMKHLLTGQERTVWHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA 344 1083 6 304 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGGSCSSPVDEPRCVPSCAFGFLSCFPLLNSAALERG GPVSFLFLGGSCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG GPVSFLFLGGSCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRFFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG	1	ĺ			1
SVQTFQEDSLPVAHSLQEVSEPLTAARHAQLHKRNSIEVAGLS HGLEGLRLKERTLSASAAEV\APRAVSVGSQP\SVFTERTQRE GPEEAEGLRYGHKKSLSDATMILHSSEEEEEDFEEESGARAP PARAREPRPGLAQDPPGCPRVLLAGPLHILEPKAHVPDAEKRM MDSSPVRTTAEAQRPWRDGLIMPSMSESDLTTSGRYRARRDSL KKRPVSDLLSGKKNIVEGLPPLGGMKKTRVDAKKIGPLKLAAL NGLSLSRVPLPDEGKEVATRATNDERCKILEQRLEQGMVFTEY ERILKKRLVDGECSTARLPENAERNRFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEMDYIATQGPLQNTCQDFWGMVW EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLKMKHLLTGGERTVWHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA 344 1083 6 304 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCQPPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRFFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTRRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG	1		[1	1
HGLEGLRLKERTLSASAAEV\APRAVSVGSQP\SVFTERTQRE GPEEAEGLRYGHKKSLSDATMLIHSSEEEEEDFEEESGARAP PARAREPRPGLAQDPPGCPRVLLAGPLHILEPKAHVPDAEKRM MDSSPVRTTAEAQRPWRDGLLMPSMSESDLTTSGRYRARRDSL KKRPVSDLLSGKKNIVEGLPPLGGMKKTRVDAKKIGPLKLAAL NGLSLSRVPLPDEGKEVATRATNDERCKILEQRLEQGMVFTEY ERILKKRLVDGECSTARLPENAERNRFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEMDYIATQGPLQNTCQDFWQMVW EQGIAIIAMVTAEEEGGREKSFRYWRLGSTHDTYTYGRFKIT TRFRTDSGCYATTGLKMKHLLTGQERTVWHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA 344 1083 6 304 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRFFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTRRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG	ì	1	(1.	
GPEEAEGLRYGHKKSLSDATMLIHSSEEEEDEDFEEESGARAP PARAREPRPGLAQDPPGCPRVLLAGPLHILEPKAHVPDAEKRM MDSSPVRTTAEAQRPWRDGLIMPSMSESDLTTSGRYRARRDSL KKRPVSDLLSGKKNIVEGLPPLGGMKKTRVDAKKIGPLKLAAL NGLSLSRVPLPDEGKEVATRATNDERCKILEQRLEQGMVFTEY ERILKKRLVDGECSTARLPENAERNRFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEWDYIATGGPLQNTCQDFWQMVW EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLKMKHLLTGQERTVWHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR.QQRMMLVQTLCQY TFYYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPPLRVP*FVVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRFFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG		İ	ļ	}	
PARAREPRPGLAQDPPGCPRVLLAGPLHILEPKAHVPDAEKRM MDSSPVRTTAEAQRPWRDGLLMPSMSESDLTTSGRYRARRDSL KKRPVSDLLSGKKNIVEGLPPLGGMKKTRVDAKKIGPLKLAAL NGLSLSRVPLPDEGKEVATRATNDERCKILEQRLEQGMVFTEY ERILKKRLVDGECSTARLPENAERNRFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEMQYIATQGPLQNTCQDFWQMVW EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLKMKHLLTGQERTVWHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA 344 1083 6 304 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRRFFIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTILLDQYIREQREKDSVMSANG		1	ļ	ļ .	1
MDSSPVRTTAEAQRPWRDGLLMPSMSESDLTTSGRYRARRDSL KKRPVSDLLSGKKNIVEGLPPLGGMKKTRVDAKKIGPLKLAAL NGLSLSRVPLPDEGKEVATRATNDERCKILEQRLEQGMVFTEY ERILKKRLVDGECSTARLPENAERNRFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEWDYIATQGPLQNTCQDFWQMVW EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLKMKHLLTGQERTVWHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA 344 1083 6 304 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRRFFIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG	l	1	\		
KKRPVSDLLSGKKNIVEGLPPLGGMKKTRVDAKKIGPLKLAAL NGLSLSRVPLPDEGKEVATRATNDERCKILEQRLEQGMVFTEY ERILKKRLVDGECSTARLPENAERNRFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEWDYIATQGPLQNTCQDFWQMVW EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLKMKHLLTGQERTVMHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRFFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS	l	<u> </u>	1	İ	1 - 1
NGLSLSRVPLPDEGKEVATRATNDERCKILEQRLEQGMVFTEY ERILKKRLVDGECSTARLPENAERNRFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEWDYIATQGPLQNTCQDFWQMVW EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLKMKHLLTGQERTVWHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRFFFIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG	1 .	1	1		1
ERILKKRLVDGECSTARLPENAERNRFQDVLPYDDVRVELVPT KENNTGYINASHIKVSVSGIEWDYIATQGPLQNTCQDFWQMVW EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLKMKHLLTGQERTVWHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA 344 1083 6 304 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRRFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG]]	Ì	l	
KENNTGYINASHIKVSVSGIEWDYIATQGPLQNTCQDFWQMVW EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLKMKHLLTGQERTVWHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA 344 1083 6 304 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRRFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG	1	1	1		
EQGIAIIAMVTAEEEGGREKSFRYWPRLGSRHNTVTYGRFKIT TRFRTDSGCYATTGLKMKHLLTGQERTVWHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA 344 1083 6 304 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRRFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG	l	1	ŀ		
TRFRTDSGCYATTGLKMKHLLTGQERTVWHLQYTDWPEHGCPE DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA 344 1083 6 304 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRRFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG		1	ł		
DLKGFLSYLEEIQSVRRHTNSTSDPQSPNPPLLVHCSAGVGRT GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA 344 1083 6 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRRFFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG]		ļ	ļ	1
GVVILSEIMIACLEHNEVLDIPRVLDMLR\QQRMMLVQTLCQY TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA 344 1083 6 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRRFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG	1		ļ	ļ	TRFRTDSGCYATTGLKMKHLLTGQERTVWHLQYTDWPEHGCPE
TFVYRVLIQVPEKAPRLILSSPQFPYGAQSCEAFTA 344 1083 6 304 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRRFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG			ļ	1	
344 1083 6 304 RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRRFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG	}		1	ł	1 1 1
GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE 345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG RMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG	1	}]	
RLVSAG/SLAKDDVE RLVSAG/SLAKDDVE SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG RMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS ONSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG	344	1083	6	304	
345 1084 1255 635 SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRRFFPLDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG	1.	1		İ	
GPVSFLFLGESCSPVDEPRCVPSCAFGFLSCFPLLNSAALERG LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRRFPIDGYRPRRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG		1	·		
LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDHRHPPPLRVP*FVFVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRRFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG	345	1084	1255	635	SFCLHEFGWLGSSPQSDHPVPALLGLGAFVHHSLLQVHSSPGA
SLPSRWDHRHPPPLRVP*FVFLVELGFHHVAQAGLKLLTLS DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRRFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG			1		
DPPAPASHSAGITGVSQRDQPVLFLRWASCSELVG 346 1085 116 415 EGFPGRSLSGGLCCRLRRRFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG	1	1			
346 1085 116 415 EGFPGRSLSGGLCCRLRRRFPIDGYRPRRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG		1	1		_
RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG	l	L _	<u> </u>	<u> </u>	
RGFTVLARMVSIS 347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG	346	1085	116	415	
347 1086 918 760 QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG					RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR
					· · · · · · · · · · · · · · · · · · ·
KPDPDTVPDS	347	1086	918	760	QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG
					KPDPDTVPDS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \text{=possible nucleotide insertion}
348	1087	1	1374	ASCLGLLPTFYQTEHPFISASCLDWPVPAFDIITHWCFEIKSF TERHAEQGKALLIQESKWKLPHLLQLPENYNTIFQYYHRKTCS VCTKVPKDPAVCLVCGTFVCLKGLCCKQQSYCECVLHSQNCGA GTGIFLLINASVIIIIRGHRFCLWGSVYLDAHGEEDRDLRRGK PLYICKERYKVLEQQWISHTFDHINKRWGPHYNGL KGQLVNLLPPENFPWCGGSQGPRMLRTCYVLCSQAGPRSRGWQ
349	1088	3		SISFDGGAFHLKGTGELTRALLVIRLCAWPPLVTHGLLLQAWS RRLLGSRLSGAFLRASVYGQFVAGETAEEVKGCVQQLRTLSLR PLLAVPTEEEPDSAAKSGEAWYEGNLGAMLRCVDLSRGLLEPP SLAEASLMQLKVTALTSTRLCKELASWVRRPGASLELSPERLA EAMDSGQNLQVSCLNAEQNQHLRASLSRLHRVAQYARAQHVRL LVDAEYTSLNPALSLLVAALAVRWNSPGEGGPWVWNTYQACLK DTFERLGRDAEAAHRAGLAFGVKLVRGAYLDKERAVAQL\HG\ MEDPPTQADYEATS\QSYS\RCLELMLTHVARHGPMCHLMVAS HNEESVRQATK\GQAGYVVYKSIPYGSLEEVIPYLIRRAQENR SVLQGARREQELLSQKLWRRLLPGCRRIPH
350	1089	1036	306	VVEFGEMSTARAPEGLRWFQLYVHPDLQLNKQLIQRVESLGFK ALVITLDTPVCGNRRHDIRNQLRRNLTLTDLQSPKKGNAIPYF QMTPISTSLCWNDLSWFQSITRLPIILKGILTKEDAELAVKHN VQGIIVSNHGGRQLDEVLASIDALTEVGAAE*GNMKYYLDAGV RTGNDVQKALALGAKCIFLGRPILWGLACKGEHGVKEVLNILT NEFHTSMA\LTGCRSVAEINRNLVQFSRL
351	1090	1229	957	FFLRWSFTL\LPRLE/CQWLNLGSLQPPPPGFK*SSCLRLLSS WGLQVPTSMLG*FFCIFSREGISPCWPGWSQTPKVIHLPRPPR VLRLQA
352	1091	1145	365	LLCFVHTALQSFQGELYEPHVVIAIVVFLVKLGICK*RASWRK KVTLVVK*S/LKICFTKYGSCYHPGEKSSSWLFN*RMVNDCLA TSCSNRSFVIQQIPSSNLFMVVVDSSCLCESVAPITMAPIEIR YILLCAGPLTTTETSKGYQW*GNLGEKY*RRKITSFPLLERES S*ESCHCQILTSEMQSRKKQSLETCLNYSQHNESLKCERLKAQ KIRRPESCHGFHPEENARECGGAPSLQAQTVLLLLPLLLMLF SR
353	1092	1140	790	VPSPTHDPKPAEAPMPA*PAPPGPASPGGALEPPAAARAGGSP TAVRSILTKERRPEGGYKAVWFGEDIGTEADVVVLNAPTLDVD GASDSGSGDEGEGAGRGGGPYDAPGGDDSYI

		D-141-1-4	Dendises	A sing and a second acceptains signal married (A = A1c=1)
SEQ	SEQ	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	согте-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	Toologo Adologico Martinaly
İ		of amino	of amino	
Ì	i i	acid	acid	
Ì	1	sequence	sequence	
354	1093	3	2293	LISLAGPTDDIQSTGPQVHALNILRALFRDTRLGENIIPYVAD
	1	ĺ		GAKAAILGFTSPVWAVRNSSTLLFSALITRIFGVKRAKDEHSK
Ì		1	j	TNRMTGREFFSRFPELYPFLLKQLETVANTVDSDMGEPNRHPS
]	1		MFLLLLVLERLYASPMDGTSSALSMGPFVPFIMRCGHSPVYHS
		ĺ	[REMAARALVPFVMIDHIPNTIRTLLSTLPSCTDQCFRQNHIHG
]		\	TLLQVFHLVQAYSDSKHGTNSDFQHELTDITVCTKAKLWLAKR
ì		ł	1	QNPCLVTRAVYIDILFLLTCCLNRSAKDNQPVLESLGFWEEVR
]]	}	GIISGSELITGFPWAFKVPGLPQYLQSLTRLAIAAVWAAAAKS
ŀ	· ·	}]	GERETNVPISFSQLLESAFPEVRSLTLEALLEKFLAAASGLGE
			l	KGVPPLLCNMGEKFLLLAMKENHPECFCKILKILHCMDPGEWL
ł	Ì	1	1	PQTEHCVHLTPKEFLIWTMDIASNERSEIQSVALRLASKVISH
1	ľ		1	HMQTCVENRELIAAELKQWVQLVILSCEDHLPTESRLAVVEVL
l	ļ	,		TSTTPLFLTNPHPILELQDTLALWKCVLTLLQSEEQAVRDAAT
1		ł	l	ETVTTAMSQENTCQSTEFAFCQVDASIALALALAVLCDLLQQW
ļ		İ		DQLAPGLPILLGWLLGESDDLVACVESMHQVEEDYLFEKAEVN
}	İ	į.	ļ	FWAETLIFVKYLCKHLFCLLSKSGWRPPSPEMLCHLQRMVSEQ
		1	ł	C\HLLSQFFRELPPAAEFVKTVEFTRLRIQEERTLACLRLLAF
		1	ĺ	LEGKEGEDTLVLSVWDSYAESRQLTLPRTEAAC
355	1094	25	1265	HAFRPIALQRGVSFRGCSNQYAESRRLQGESGSRAFAHLMESL
			ł	LQHLDRFSELLAVSSTTYVSTWDPATVRRALQWARYLRHIHRR
	1	1		FGRHGPIRTALERRLHNQWRQEGGFGRGPVPGLANFQALGHCD
	1	1	1	VLLSLRLLENRALGDAARYHLVQQLFPGPGVRDADEETLQESL
	1		1	ARLARRSAVHMLRFNGYRENPNLQEDSLMKTQAELLLERLQE
1	Ì	1	· ·	VGKAEAERPARFLSSLWERLPQNNFLKVIAVALLQPPLSRRPQ
(1	1	1	EELEPGIHKSPGEGSQVLVHWLLGNSEVFAAFCRALPAGLLTL
1	1	1	1	VTSRHPALSPVYLGLLTDWGQRLHYDLQKGIWVGTESQDVPWE
1	1	ł	1	ELHNRFQSLCQAPPPLKDKVLTALETCKAQDGDFEEPGLSIWT
1	1	}		DLLLALRSGAFRKRQVLGLSAGLSSV
356	1095	3 .	1027	SHLIQHQRIHT*E*AHECNECGKAFSQTSCLIQHHKMHRKEKS
1				YECNEYEGSFSHSSDLILQQEVLTRQKAFDCDVWEKNSSQRAH
1				LVQHQSIHTKE/K/PHECNEDGKIF/NQIQA/LIQHLRVHTRE
				K\YVCTACGKAFSHSSAIAQHQIIHTREKPSECDE*RKGISVK
	1	1	}	LLIDSC/RIYTSEKSYKCIECGKFFMLLVFSYLSHIWRIHMGI
		1	ł	KFHCCNECEKAISQRNYLV*YQIHAMQKDYKCN/EACMCVRRF
		}	1	SHNPTLIQHQRIYT*ENLFGCSK/C/GRSFNRSLTSLCHIRIS
1	1			I/RRQEFDVTQMEKLDTTFQA/STQHRNNGEKIVDYLFMKLLI
1				HSPNLFHCTKI
357	1096	2638	2867	AVTLTAKICSFTPEPSETMSPPAGTNNSRHAALRAVTLPVKVC
1 33.	-050			SFTPEPARSRTHQKEETPNTSEHQKEQTPEAPP
			_ 	

SEQ	SEQ	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Gidianic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic Acids	Amino Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acias	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
}	1	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
ì	,	acid	acid	\=possible nucleotide insertion)
ļ.	{	residue	residue	, position de la constant de la cons
į	·	of amino	of amino	
}		acid	acid	
		sequence	sequence	
358	1097	4747	4550	MAYSWQTDPNPNESHEKQYEHQEFLFVNQPHSSSQVSLGFDQI
	1	ł		VDEISGKIPHYESEIDENTFFVPTAPKWDSTGHSLNEAHQISL
	1			NEFTSKSRELSWHQVSKAPAIGFSPSVLPKPQNTNKECSWGSP
1	1	I	-	IGKHHGADDSRFSILAPSFTSLDKINLEKELENENHNYHIGFE
1	ł	ł	ł	SSIPPTNSSFSSDFMPKEENKRSGHVNIVEPSLMLLKGSLQPG
·	l	ŀ	ļ	MWESTWQKNIESIGCSIQLVEVPQSSNTSLASFCNKVKKIRER
1	ł		Į.	YHAADVNFNSGKIWSTTTAFPYQLFSKTKFNIHIFIDNSTQPL
1	Į.	ŀ	1	HFMPCANYLVKDLIAEILHFCTNDQLLPKDHILSVWGSEEFLQ
1	}	į		NDHCLGSHKMFQKDKSVIQLHLQKSREAPGKLSRKHEEDHSQF
	1	ļ		YLNQLLEFMHIWKVSRQCLLTLIRKYDFHLKYLLKTQENVYNI
		1	f -	IEEVKKICSVLGCVETKQITDAVNELSLILQRKGENFYQSSET
1				SAKGLIEKVTTELSTSIYQLINVYCNSFYADFQPVNVPRCTSY
i	·		i	LNPGLPSHLSFTVYAAHNIPETWVHRINFPLEIKSLPRESMLT
1		i	1	VKLFGIACATNNANLLAWTCLPLFPKEKSILGSMLFSMTLQSE
			İ	PPVEMITPGVWDVSQPSPVTLQIDFPATGWEYMKPDSEENRSN
				LEEPLKECIKHIARLSQKQTPLLLSEEKKRYLWFYRFYCNNEN
i	Ì		1	CSLPLVLGSAPGWDERTVSEMHTILRRWTFSQPLEALGLLTSS
	i	1	1	FPDQEIRKVAVQQLDNLLNDELLEYLPQLVQAVKFEWNLESPL
}	1	1	1	VQLLLHRSLQSIQVAHRLYWLLKNAENEAYFKSWYQKLLAALQ .
	}		}	FCAGKALNDEFSKEQKLIKILGDIGERVKSASDHQRQEVLKKE
1		1	i	IGRLEEFFQDVNTCHLPLNPALCIKGIDHDACSYFTSNALPLK
		1	1	ITFINANLMGKNISIIFKAGDDLRQDMLVLQLIQVMDNIWLQE
	}		· l	GLDMQMIIYRCLSTGKDQRLVQMVPDAVTLAKIHRHSGLIGPL
	İ	İ	Į.	KENTIKKWFSQHNHLKADYEKALRNFFYSCAGWCVVTFILGVC
İ	i	(1	DRHNDNIMLTKSGHMFHIDFGKFLGHAQTFGGIKRDRAPFIFT
1				SEM\EYFITEGG\KNPQHFQDFV\ELCCRAYNIIRKHSQLLL\
1	1		}	NLL\EMMLYAG\LPELSGI\QDLKYVYNNLRPQDTDLEATSHF
1	1		1	TKKIKESLECFPVKLNNLIHTLAQMSAISPAKSTSQTFPQESC
	1		1	LLSTTRSIERATILGFSKKSSNLYLIQVTHSNNETSLTEKSFE
1	1			QFSKLHSQLQKQFASLTLPEFPHWWHLPFTNSDHRRFRDLNHY
	1			MEQILNVSHEVTNSDCVLSFFLSEAGQQTVEESSPVYLGEKFP
1	1	1	1	DKKPKVQLVISYEDVKLTILVKHMKNIHLPDGSAPSAHVEFYL
			}	LPYPSEVRRRKTKSVPKCTDPTYNEIVVYDEVTELQGHVLMLI
1	1		I	VKSKTVFVGAINIRLCSVPLDKEKWYPLGNSII*PLLLFYTSN
				FMQSVLH
359	1098	679	346	FFLRWSLDSVTQAGVQSHDLSSLQPPPPGFKQSSLFGLPSSWE
1 333	1 -0,0	1	1	*RWVPPCPANFFVFLVETGFRHVGQAGLELLTSNDLPVSACQS
	1			AGITGVTTVPQRKSMILYEVTICYP
L				

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
360	1099	2	1601	FVREIRGPAVPRLTSAEDRHRHGPHAHSPELQRTGRDYSLDYL PFRLWVGIWVATFCLVLVATEASVLVRYFTRFTEEGFCALISL IFIYDAVGKMLNLTHTYPIQKPGSSAYGCLCQYPGPGGNESQW IRTRPKDRDDIVSMDLGLINASLLPPPECTRQGGHPRGPGCHT VPDIAFFSLLLFLTSFFFAMALKCVKTSRFFPSVVRKGLSDFS SVLAILLGCGLDAFLGLATPKLMVPREFKPTLPGRGWLVSPFG ANPWWWSVAAALPALLLSILIFMDQQITAVILNRMEYRLQKGA GFHLDLFWVAVLMLLTSALGLPWYVSATVISLAHMDSLRRESR ACAPGERPNFLGIREQRLTGLVVFILTGASIFLAPVLKFIPMP VLYGIFLYMGVAALSSIQFTNRVKLLL\MPAKHQPDLLLLRHV PLTRVHLFTAISFA\CLGLLW\IIKSTPAAIIFPLMLLGLVGV RKALERVFSPQELLWLDELMPEEERSIPEKGLEPEHSFSGSDS EDSELMYQPKAPEINISVN*LE*EFVREIRGPAVPRLTSAEDR HRHGPHAHSPELQRTGRDYSLDYLPFRLWVGIWVATFCLVLVA TEASVLVRYFTRFTEEGFCALISLIFIYDAVGKMLNLTHTYPI QKPGSSAYGCLCQYPGPGGNESQWIRTRPKDRDDIVSMDLGLI NASLLPPPECTRQGGHPRGPGCHTVPDIAFFSLLLFLTSFFPA MALKCVKTSRFFPSVVRKGLSDFSSVLAILLGCGLDAFLGLAT PKLMVPREFKPTLPGRGWLVSPFGANPWWWSVAAALPALLLSI LIFMDQQITAVILNRMEYRLQKGAGFHLDLFCVAVLMLLTSAL GLPWYVSATVISLAHMDSLRRESRACAPGERPNFLGIREQRLT GLVVFILTGASIFLAPVLKFIPMPVLYGIFLYMGVAALSSIQF TNRVKLLLDASKTPARPATLAACASDQGPPLHSHQLCPVWGCF GIIKSTPAAIIFPLMLLGLVGVRKALERVFSPQELLWLDELMP EEERSIPEKGLEPEHSFSGSDSEDSELMYQPKAPEINISVN

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
361		1	2636	MGLKARRAAGAAGGGGDGGGGGGAANPAGGDAAAAGDEERKV GLAPGDVEQVTLALGAGADKDGTLLLEGGGRDEGQRRTPQGIG LLAKTPLSRPVKRNNAKYRRIQTLIYDALERPRGWALLYH\AL VFLIVLG\CLILAVL\TTFKEYETVSGDWLLLLETFAIFIFGA EFALRIWAAGCCCRYKGWRGRLKFARKPLCMLDIFVLIASVPV VAVGNQGNVLATSLRSLRFLQILRMLRDGPGEGGTWKLLG\SA ICAHSKELITAWYIGFLTLILSSFLVYLVEKDVPEVDAQGEEM KEEFETYADALWWGLITLATIGYGDKTPKTWEGRLIAATFSLI GVSFFALPAGILGSGLALKVQEQHRQKHFEKRRKPAAELIQAA WRYYATNPNRIDLVATWRFYESVVSFPFFRKEQLEAASSQKLG LLDRVRLSNPRGSNTKGKLFTPLNVDAIEESPSKEPKPVGLNN KERFRTAFRMKAYAFWQSSEDAGTGDPMAEDRGYGNDFPIEDM IPTLKAAIRAVRILQFRLYKKKFKETLRPYDVKDVIEQYSAGH LDMLSRIKYLQTRIDMIFTPGPPSTPKHKKSQKGSAFTFPSQQ SPRNEPYV\ARPST\SEI\EDQRH*WGKFVKSLKGQV\QGLGR KLDFLVDMHMQHMERLQVQVTEYYPTKGTSSPAEAEKKEDNRY SDLKTIICNYSETGPPEPPYSFHQVTIDKVSPYGFFAHDPVNL PRGGPSSGKVQATPPSSATTYVERPTVLPILTLLDSRVSCHSQ ADLQGPYSDRISPRQRRSITRDSDTPLSLMSVNHEELERSPSG FSISQDRDDYVFGPNGGSSWMREKRYLAEGETDTDTDPFTPSG SMP\LSSTGDGISDSVWTPSNKPI

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid	Predicted end mucleotide location corresponding to first amino acid residue of amino acid	Amino acid segment containing signal peptide(A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
362	1101	sequence	sequence 5433	RTRGIIEFDPKYTAFEVEEDVGLIMIPVVRLHGTYGTVTADFISQSSSASPGG UVYILHGSTYTYGGGONSFINNSIIDNOSSEEPEFIEILITGATGGAVLGRH LVSRIILHKSDSPFGVIRFLNQSKISIANPNSTMILSLVLERTGGLIGGIQVN WETVOPNSQEALLPQNRDIADPVSGLFYFGEGEGGVRTIILTIYPHEEIEVEB TFIIKHLWKGEAKLDSRAKDVYLTIGGFGPDNGVVOPAPFETLSKKYTSSPLA LEQPLLITFFVPRWKGTGGLIMVYWELSSEPDITEDPLSTSGFFTIADGESSA SPDVHLLPDEVPSIEEDYVIQLVSVEGGAELDLEKSTHFSVANDDPHGVFA AKSAVLPVSEKANSQVGFESTAFQLMNITAGTSHVMISRRGTYGALSVAMTI GVAPGLEIPFFIVUGHMTPTIGSLSFSHGEQRKOVFLWTFPSPGWPEAFVLHL SGYQSSAGGOLRSGFTVASIEMBWCFFFTSSNRIINISRGTYGALSVAMTI GYAPGLEIPFFIVUGHMTPTIGSLSFSHGEQRKOVFLWTFPSPGWPEAFVLHL SGYQSSAGGOLRSGFTVASIEMBWCFFFTSSNRIINISREDTWALLAGWDIT SGYGSSAGGOLRSGFTVASIEMBWCFFFTSSNRIINISREDTWALLAGWDIS FEFTTVAVAVDTTLIDVETESTTYLETSKTTTILQPTMVAIVTILLAGWDIS FEITHAVAVAVDTTLIDVETESTTYLETSKTTTILQPTMVAIVTILARGSAP EKLYTLHGTPAVSEKPDVATVTANVSIHGTPSLGFSTVYTILTBYGGAQTVEGKDDT GYAAFAMVITGSLGKROUNTHFFFTSSSGGLELREGAWRRHLHLYTRQPRAF EDVLKYFWRVTLNKTVVVLOKOGVALMEELQSVSGTTTCTMGGTKCFISIELRP EKVPQVEVYFFVELYEATAGAAINNSARPAQIKILESDESOSLVYFSVGSGLA VAHKKATLISLQVARDSGTGLMMSVWPSTGLRSAFTIGRTIISPAISGGDFV ITEGTLVFEPGGRSTVLDVILTPETGSLSFFKRQTVLTFDKGGAGATUKVYG TANITLVSDADSGAIWGKSTTCKLVQFTEYSSQOMFISMNHTJKKVATENTDEQLSA MMHLIKKTTEGKLQAFSVASRTLFYSILCSLINFKKRDTRGFSHFAELFENF AFSLLTHVCGSFGGRSKTILDSCPTYSILAHMYPQOINGHKFREKGDYJR IPERLLDVQDASIMAGKSTCKLVQFTEYSSQOMFISMNHTJKKVATENTDEQLSA MYHLIKKTTEGKLQAFSVASRTLFYSILCSLINFKKRDTRGFSHFAELFENF AFSLLTHVMAASLGTQILFLASAVASPQLAEESCSANAVTHYLVLCQ SSMGITGLIHGDLCFIPNVYAALFTLAALPDLTCLVVVFVVFTHAYQVKQWK AYDDVFRGRTNAAEFILLYLAFALSTHLFFLLSHGAFVVILLVILKGIYH GSSMGIVGLIHGDLCFIPNVYAALFTAALVPLTCLVVVFVVFTHAYQVKQWK AYDDVFRGRTNAAEFILLYLAFALSTWLTGLGAFVVILLVILKGIYH GBPSGVGVTHTFYSPGGWBARVTHSPROGGALDFAVULLTURGTYH GBPSGVGVGPAPETLSKKTYSSPLALEGGLITFFYWKGTFGETWYWELSS EFDTEIDITUTAATGGAVLGRUHGTSNACHTVILLYGGTYH GBPSGGGGTTIILTIYPHEIEBVEFFIIKHLUKGGAALDSVAKTHDVLCQ FFTYFLILLYCATGGAVLGRHUSTIIASSTSFGGTUAEIEPMGVFQ GDPSGVTGCATHTVYAAFGTAALPBLICLVVFVVFTHAYGVFGCHANGSPR ELDLEKSTFFYSPGWPBAFVHLBGGVGGAFGAALLAGRANGTHATARGFT GDPSGVGTTTCTMGGGGGTGGATAFAVTTTABATTAGTGARGATANNSARP GDP
l				KKSTFVLTCLLSPDSKGLGVLCFLNTEWAFQVH

CEC	CEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ ID	SEQ ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
		nucleotide	nucleotide	C=Cysteme, D=Aspartic Acid, E= Gludanic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	сотге-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acius	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
]		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	(-possible nucleotide institution)
		of amino	of amino	
1		acid	acid	_
		sequence	sequence	·
363	1102	2	2855	AAGATMERDGCAGGGSRGGEGGRAPREGPAGNGRDRGRSHAAE
363	1102	~	====	APGDPQAAASLLAPMDVGEEPLEKAARARTAKDPNTYKVLSLV
1	Į.		[LSVCVLTTILGCIFGLKPSCAKEVKSCKGRCFERTFG\NCRCD
~		ļ	ľ	AACVELG\NCCLGLPGGTCI\EP\EHIW\TCNKFRCG\EKRLT
ł	ł.	ł	ł	RSLCACSDDCKD\RGDCLPSNLQFLCVQGE\KSWGRKNPCESH
	1]		
1	1	Ī	1	LMEP\QCP\AGFETPSLPLLIF/SLDGFRAEYLHTWGGLLPVI
I	ļ	'		SKLKKCGTYTKNMRPVYPTKTFPNHYSIVTGLYPESHGIINNK
	[1	1	MYDPKMNASFSLKSKEKFNPEWYKGEPIWVTAKYQGLKSGTFF
	1			WPGSDVEINGIFPDIYKMYNGSVPFEERILAVLQWLQLPKDER
1		ļ		PHFYTLYLEEPDSSGHSYGPVSSEVIKALQRVDGMVGMLMDGL
1			ł	KELNLHRCLNLILISDHGMEQGSCKKYIYLNKYLGDVKNIKVI
1	İ	1.		YGPAARLRPSDVPDKYYSFNYEGIARNLSCREPNQHFKPYLKH
1	1		1	FLPKRLHFAKSDRIEPLTFYLDPQWQLALNPSERKYCGSGFHG
	1		ł	SDNVFSNMQALFVGYGPGFKHGIEADTFENIEVYNLMCDLLNL
1 .	Ì		İ	TPAPNNGTHGSLNHLLKNPVYTPKHPKEVHPLVQCPFTRNPRD.
1		1	4	NLGCSCNPSILPIEDFOTOFNLTVAEEKIIKHETLPYGRPRVL
	1	ì	1	OKENTICLLSOHOFMSGYSQDILMPLWTSYTVDRNDSFSTEDF
· ·		1		SNCLYODFRIPLSPVHKCSFYKNNTKVSYGFLSPPQLNKNSSG
1		1	1	IYSEALLTTNIVPMYQSFQVIWRYFHDTLLRKYAEERNGVNVV
		1	i	SGPVFDFDYDG\RCDSL\ENLRQKRRVHPVTQENFWIPNSTSF
	1		ì	Y/VVLTSC\KDTSQTPLHC\ENL\DTLGFPFCLHRDWINSETC
1	1	1	1	
1	1	1	1	\VHG\KHDSSW\VEEFVKCLHRA\RITGC*GTSLGLSFYQQRK
			<u> </u>	EPVSDILKLKTHLPTFSQED
364	1103	657	1	TVPPPPGGPSPAPLHPKRSPTSTGEAELKEERLPGRKASCSTA
	1		1	GSGSRGLPPL\SPMVSSAHNPNKAEIPERRKDSTSTPNNLPPS
				MMTRRNTYVCTERPGAERPSLLPNGKENSSGTPRVPPASPSSH
1	1			SLAPPSGERSRLARGSTIRSTFHGGQVRDRRAGGWGWFFNKHA
j	1]	1	LQRAPRNAGAPSLMPGHRTVLINYGGGQDLKNWETCLAAPPNK
1		1	į .	HRR
365	1104	1	1313	HTLHHSSPTSEAEEFVSRLSTQNYFRSLPRGTSNMTYGTFNFL
1 303		-		GGRLMIPNTGISLLIPPDAIPRGKIYEIYLTLHKPEDVRLPLA
		1	1	GCQTLLSPIVSCGPPG\VLLTRPVILG\MDHCG\EPSPDSW\S
1			1	LRLKKQSCEGSWEDVLHLGEEAPSHLYYCQLEASACYVFTEQL
1			1	SRYALVGEALSVAAAKRLKLLLFAPVACTSLEYNILVYCLHDT
		1		
1	1	1	1	HDALNVVVQLEKQLQGQLIQEPLVLHFKDSYHNLRLSIHDVPS
1	1.		1	SLWKSKLLVSYQEIPFYHIWNGTQRYLHCTFTLERVSPSTSDL
	1			ACKLWVWQVEGDGQSFSINFNITKDTRFAELLALESEAGVPAL
	1		1	VGPSAFKIPFLIRQKIISSLDPPCRRGADWRTLAQKLHLDSHL
1	1		1	SFFASKPSPTAMILNLWEARHFPNGNLSQLAAAVAGTGPAGRW
		- [LLSQCSEAEC
366	1105	1	343	GSAAGQVQQQQRRHQQGKVTVKYDRKELRKRLVLEEWIVEQL
				GQLYGCEEEEMPEVEIDIDDLFDAYSDEQRASKLQEALVDCYK
				PTEEFIKELLSRIRGMRKLSP\PQKKSV
L				

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning mucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
367	1106	2	1398	IMLDGRVRWLTPVISALWEAEMEDVIARMQDEKNGIPIRTVKS FLSKIPSVFSGSDIVQWLIKNLTIEDPVEALHLGTLMAAHGYF FPISDHVLTLKDDGTFYRFQTPYFWPSNCWEPENTDYAVYLCK RTMQNKARLELADYEAESLARLQRAFARKWEFIFMQAEAQAKV DKKRDKIERKILDSQERAFWDVHRPVPGCVNTTEVDIKKSSRM RNPHKTRKSVYGLQNDIRSHSPTHTPTPETKPPTEDELQQQIK YWQIQLDRHRLKMSKVADSLLSYTEQYLEYDPFLLPPDPSNPW LSDDTTFWELEASKEPSQQRVKRWGFGMDEALKDPVGREQFLK FLESEFSSENLRFWLAVEDLKKRPIKEVPSRVQEIWQEFLAPG APSAINLDSKSYDKTTQNVKEPGRYTFEDAQEHIYKLMKSDSY PRFIRSSAYQELLQAKK\KGKSLTSKRLTSLAQSY
368	1107	1	461	GTRDYPRIVNHLDHTYVTAPQAFMMFQYFVKVVPTVYMKVDGE VLTTNQIYVTRHEKAAYVLMGDQGLPGVFILYELSPMMVNLTE IHTFFSLFLTIVGA\TIGGMFFEHFVINYLTHKWGLGFYFKNE NSLQGGHRTLYGVNFFMYWSLRGGS
369	1108	2	1522	SVWWNSQRQFVVRAWGCAGPCGRAVFLAFGLGLGLIEEKQAES RRAVSACQEIQAIFTQKSKPGPDPLDTRRLQGFRLEEYLIGQS IGKGCSAAVYEATMPTLPQNLEVTKSTGLLPGRGPGTSAPGEG QERAPGAPAFPLAIKMMWNISAGSSSEAILNTMSQELVPASRV ALAGEYGAVTYRKSKRGPKQLAPHPNIIRVLRAFTSSVPLLPG ALVDYPDVLPSRLHPEGLGHGRTLFLVMKNYPCTLRQYLCVNT PSPRLAAMMLLQLLEGVDHLVQQGIAHRDLKSDNILVELDPDG CPWLVIADFGCCLADESIGLQLPFSSWYVDRGGNGCLMAPEVS TARPGPRAVIDYSKADAWAVGAIAYEIFGLVNPFYGQGKAHLE SRSYQEAQLPALPESVPPDVRQLVRALLQREASKRPSARVAAN VLHLSLWGEHILALKNLKLDKMVGWLLQQSAATLLANRLTEKC CVETKMKMLFLANLECETLCQAALLLCSWRAAL
370	1109	105	1252	RPLLRLAELPDHCYRMNSSPAGTPSPQPSRANGNINLGPSANP NAQPTDFDFLKVIGKGNYGKVLLAKRKSDGAFYAVKVLQKKSI LKKKEQSHIMAERSVLLKNVRHPFLVGLRYSFQTPEKLYFVLD YVNGGELFFHLQRERRFLEPRARFYAAEVASAIGYLHSLNIIY RDLKPENILLDCQGHVVLTDFGLCKEGVEPEDTTSTFCGTPEY LAPEVL\RKEPYDRAVDWWCLGAVLYEMLHGLPPFYSQDVSQM YENILHQPLQIPGGRTVAACDLLQSLLHKDQRQRLGSKADFLE IKNHVFFSPINWDDLYHKRLTPPFNPNVTGPADLKHFDPEFTQ EAVSKSIGCTPDTVASSSGASSAFLGFSYAPEDDDILDC

			B 10	t t t t t t t t t t t t t t t t t t t
SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning nucleotide	end nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, O=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	A=Olikilowii, '=Stop Codon, '=possible nucleotide deletion,
		residue	residue	\=possible nucleotide insertion)
[of amino	of amino	
		acid	acid	
Ì			sequence	· '
371	1110	sequence 3	1608	RPOTLKGHQEKIRORQSILPPPQGPAPIPFQHRGGDSPEAKNR
3/1	1110	3	1000	VGPQVPLSEPGFRRRESQEEPRAVLAQKIĘKETQILNCALDDI
	Į		Į	EWFVARLQKAAEAFKQLNQRKKGKKKGKKAPAEGVLTLRARPP
		1		\SEGEFIDCFOKIKLAINLLAKLQKHIQNPSAAELVHFLFGPL
		Ì		DLIVNTCSGPDIARSVSCPLLSRDAVDFLRGHLVPKEMSLWES
ļ		ļ		I
				LGESWMRPRSEWPREPQVPLYVPKFHSGWEPPVDVLQEAPWEV
	<u> </u>			EGLASAPIEEVSPVSRQSIRNSQKHSPTSEPTPPGDALPPVSS PHTHRGYQPTPAMAKYVKILYDFTARNANELSVLKDEVLEVLE
}			1	
	ļ		1	DGRQWWKLRSRSGQAGYVPCNILGEARPEDAGAPFEQAGQKYW
1		1		GPASPTHKLPPSFPGNKDELMQHMDEVNDELIRKISNIRAQPQ
1		1		RHFRVERSQPVSQPLTYESGPDEVRAWLEAKAFSPRIVENLGI
				LTGPQLFSLNKEELKKVCGEEGVRVYSQLTMQKAFLEKQQSGS
		<u> </u>	<u> </u>	ELEELMNKFHSMNQRRGEDS
372	1111	3	1046	AWHEGLVSSPAIGAYLSASYGDSLVVLVATVVALLDICFILVA
	ļ	100	1	VPESLPEKMRPVSWGAQISWKQADPFASLKKVGKDSTVLL\IC
1		1		ITVCLSYLPEAG\QYSSFF\LYLR\QVIGFG\SVKIAAFIAMV
1 .	į	1	· ·	GILSIVAQTAFLSILMRSLGNKNTVLLGLGFQMLQLAWYGFGS
· ·	ı	1		QAWMMWAAGTVAAMSSITFPAISALVSRNAESDQQGVAQGIIT
	1	1		GIRGLCNGLGPALYGFIFYMFHVELTELGPKLNSNNVPLQGAV
1	ł			IPGPPFLFGACIVLMSFLAALFIPEYSKASGVQKHSNSSSGSL
1				TNTPERGSDEDIEPLLQDSSIWELSSFEEPGNQCTEL*TRQKV
ĺ		1	1	GFCIRHL
373	1112	1	1950	MAAGLATWLPFARAAAVGWLPLAQQPLPPAPGVKASRGDEVLV
		1)	VNVSGRRFETWKNTLDRYPDTLLGSSEKEFFYDADSGEYFFDR
	1		ł	DPDMFRHVLNFYRTGRLHCPRQECIQAFDEELAFYGLVPELVG
i	1			DCCLEEYRDRKKENAERLAEDEEAEQAGDGPALPAGSSLRQRL
	ļ	İ	1	WRAFENPHTSTAALVFYYVTGFFIAVSVIANVVETIPCRGSAR
		1	1	RSSREQPCGERFPQAFFCMDTACVLIFTGEYLLRLFAAPSRCR
1	1	1	1	FLRSVMSLIDVVAILPYYIGLLVPKNDDVSGAFVTLRVFRVFR
1		1	1	IFKFSRHSQGLRILGYTLKSCASELGFLLFSLTMAIIIFATVM
1	1	1	1	FYAEKGTNKTNFTSIPAAFWYTIVTMTTLGYGDMVPSTIAGKI
ì	1	1	1	FGSICSLSGVLVIALPVPVIVSNFSRIYHONORADKRRAOOKV
1	}			RLARIRLAKSGTTNAFLQYKQNGGLEDSGSGEEQAVCVRNRSA
}		1	i	FEQOHHHLLHCLEKTTCHEFTDELTFSEALGAVSPGGRTSRST
				SVSSQPVGPGSLLSSCCPRRAKRRAIRLANSTASVSRG\SMQE
1			1	LDMLAGL\RRSHAP\QSRSSL\NAKPHDSLDLNCDSG\DFVAA
				IISIPTPPANTPDESQPSSPGGGRAGSTLRNSSLGTPCLFPE
1			1	TVKISSL
274	1113	4	664	GWGKPFKDWTTGGQDTGGEPALLVGAGEGRAPRLNCPSGQIRS
374	1113	4	004	PGPGDLSIYDNWIRYFNRSSPVYGLVP/RSKTSARIYPTYHTA
1				FDTFDYVDKFLDPGEEGDKGHPETRTGEAED*ALALSPCRR\F
	1			FDTFDYVDKFLDPGEEGDKGHPETRTGEAED-ALAUSFCRR\F SSHQAVARTAGSVILRLSDSFFLPLKVSDYSETLRSFLQAAQQ
1	1			
	1	1		DLGALLEQHSISLGPLVTAVEKFEAEAAALGQRISTLQKGSPD
L				PLQVRML

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning mucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
375	1114	1	1147	GIRGGGSLASGGPGPGHASLSQRLRLYLADSWNQCDLVALTCF LLGVGCRLTPGLYHLGRTVLCIDFMVFTVRLLHIFTVNKQLGP KIVIVSKMMKDVFFFLFFLGVWLVAYGVATEGLLRPRDSDFPS ILRRVFYRPYLQIFGQIPQEDMDVALMEHSNCSSEPGFWAHPP GAQAGTCVSQYANWLVVLLLVIFLLVANILLVNLLIAMFSYTF GKVQGNSDLYWKAQRYRLIREFHSRPALAPPFIVISHLRLLLR QLCRRPRSPQPSSPALEHFRVYLSKEAERKLLTWESVHKENFL LARARDKRESDSERLKRTSQKVDLALKQLGHIREYEQRLKVLE REVQQCSRVLGWVAEALSRSALLPPGGPPPPDLPGSKD
376	1115	3	329	LIKLCKSKAKSCENDLEMGMLNSKFKKTRYQAGMRNSENLTAN NTLSKPTRY/QGELKEIKQDISSLRYELLEEKSQATGELADLI QQLSEKFGKNLNKDHLRVNKGKDI
377	1116	1	2043	LPLLHAGFNRFMENSSIIACYNELIQIEHGEVRSQFKLRACN SVFTALDHCHEAIEITSDDHVIQYVNPAFERMMGYHKGELLGK ELADLPKSDKNRADLLDTINTCIKKGKEWQGVYYARRKSGDSI QQHVKITPVIGQGGKIRHFVSLKKLCCTTDNNKQIHKIHRDSG DNSQTEPHSFRYKNRRKESIDVKSISSRGSDAPSLQNRRYPSM ARIHSMTIEAPITKVINIINAAQENSPVTVAEALDRVLEILRT TELYSPQLGTKDEDPHTSDLVGGLMTDGLRRLSGNEYVFTKNV HQSHSHLAMPITINDVPPCISQLLDNEESWDFNIFELEAITHK RPLVYLGLKVFSRFGVCEFLNCSETTLRAWFQVIEANYHSSNA YHNSTHAADVLHATAFFLGKERVKGSLDQLDEVAALIAATVHD VDHPGRTNSFL\CNAGSELAVLYNDT\AV\LESHHTALAFQ\L TVKDTK\CNIFKNID/RGNHYRTLRQAIIDMVLATEMTKHFEH VNKFVNSINKPMAAEIEGSDCECNPAGKNFPENQILIKRMMIK CADVANPCRPLDLCIEWAGRISEEYFAQTDEEKRQGLPVVMPV FDRNTCSIPKSQISFIDYFITDMFDAWDAFAHLPALMQHLADN YKHWKTLDDLKCKSLRLPSDRLKPSHRGGLLTDKGHCESQ

SEQ SEQ ID NO: NO: of of Nucleic Acids Acids	sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
378 111		3585	AFLSKVEEDDYPSEELLEDENAINAKRSKEKNPGNQGRQFDVN LQVPDRAVLGTIHPDPEIEESKQETSMILDSEKTSETAAKGVN TGGREPNTMVEKERPLADKKAQRPFERSDFSDSIKIQTPELGE VFQNKDSDYLKNDNPEEHLKTSGLAGEPEGELSKEDHENTEKY MGTESQGSAAAEPEDDSFHWTPHTSVEPGHSDKREDLLIISSF FKEQQSLQRFQKYFNVHELEALLQEMSSKLKSAQQESLPYNME KVLDKVFRASESQILSIAEKMLDTRVAENRDLGMNENNIFEEA AVLDDIQDLIYFVRYKHSTAEETATLVMAPPLEEGLGGAMEEM QPLHEDNFSREKTAELNVQVPEEPTHLDQRVIGDTHASEVSQK PNTEKDLDPGPVTTEDTPMDAIDANKQPETAAEEPASVTPLEN AILLIYSFMFYLTKSLVATLPDDVQPGPDFYGLPWKPVFITAF LGIASFAIFLWRTVLVVKDRVYQVTEQQISEKLKTIMKENTEL VQKLSNYEQKIKESKKHVQETRKQNMILSDEAIKYKDKIKTLE KNQEILDDTAKNLRVMLESEREQNVKNQDLISENKKSIEKLKD VISMNASEFSEVQIALNEAKLSEEKVKSECHRVQEENARLKKK KEQLQQEIEDWSKLHAELSEQIKSFEKSQKDLEVALTHKDDNI NALTNCITQLNLLECESESEGQNKGGNDSDELANGEVGGDRNE KMKNQIKQMMDVSRTQTAISVVEEDLKLLQLKL\RASVSTKC\ NLEDQVKKLEDDRNSLQAAKAGLEDECKTLRQKVEILNELYQQ KEMALQKKLSQEEYERQEREHRLSAADEKAVSAAEEVKTYKRR IEEMEDELQKTERSFKNQIATHEKKAHENWLKARAAERAIAEE KREAANLRHKLLDLTQKMAMLQEEPVIVKPMPGKPNTQNPPRR GPLSQNGSFGPSPVSGGECSPPLTVEPPVRPLSATLNRRDMPR SEFGSLDGPLPHPRWSAEASGKPSPSDPGSGTATMMNSSSRGS SPTRVLDEGKVNMAPKGPPPFFGVPLMSTPMGGPVPPPIRYGP PPQLCGPFGPRPLPPPFGPGMRPPLGLREFAPGVPPGRRDLPL HPRGFLPGHAPFRPLGSLGPREYFIPGTRLPPPTHGPQEYPPP PAVRDLLPSGSRDEPPPASQSTSQDCSQALKQSP

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
379	1118	3	2946	MAADSEPESEVFEITDFTTASEWERFISKVEEVLNDWKLIGNS LGKPLEKGIFTSGTWEEKSDEISFADFKFSVTHHYLVQESTDK EGKDELLEDVVPQSMQDLLGMNNDFPPRAHCLVRWYGLREFVV IAPAAHSDAVLSESKCNLLLSSVSIALGNTGCQVPLFVQIHHK WRRMYVGECQGPGVRTDFEMVHLRKVPNQYTHLSGLLDIFKSK IGCPLTPLPPVSIAIRFTYVLQDWQQYFWPQQPPDIDALVGGE VGGLEFGKLPFGACEDPISELHLATTW\PHLTEGIIVDNDVYS DLDPIQAPHWSVRVRKAENPQCLLGDFVTEFFKICRRKESTDE ILGRSAFEEEGKETADITHALSKLTEPASVPIHKLSVSNMVHT AKKKIRKHRGVEESPLNNDVLNTILLFLFPDAVSEKPLDGTTS TDNNNPPSESEDYNLYNQFKSAPSDSLTYKLALCLCMINFYHG GLKGVAHLWQEFVLEMRFRWENNFLIPGLASGPPDLRCCLLHQ KLQMLNCCIERKKARDEGKKTSASDVTNIYPGDAGKAGDQLVP DNLKETDKEKGEVGKSWDSWSDSEEEFFECLSDTEELKGNGQE SGKKGGPKEMANLRPEGRLYQHGKLTLLHNGEPLYIPVTQEPA PMTEDLLEEQSEVLAKLGTSAEGAHLRARMQSACLLSDMESFK AANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVVLKGELSARMK IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIQKP ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISHSS KVLHFPNPEDKKLEEIHQITNVEALIARARSLKAKFGTEKCE QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVNAQ RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILRTTV PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF
380	1119	2333	670	SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARGQV CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLIGF YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIIAGK LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTGSP RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERLRQ RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMGPE PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVDFP LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAPPN GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVLPC NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKPAP FQRHHLGFYIANSEGLSSNCHGLLGQFLNQDARLTEDPAGPSQ NLTHPLLLQVGEGPEAVLTVKGHQVPVVWKQRKIYNGEEQIDC WFARNNAAKLIDGEYKDYLASHPFDTGMTLGQGMSREL
381	1120	102	426	VPLESLSCSHADNWKQELTKFISPDQLPVEFGGTMTDPDGNPK CLTKINYGGEVPKSYYLCKQVRLQYEHTRSVGRGSSLQVENEI LFPGCVLRCPEVLQHLQPGSF

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
!		residue	residue	·
		of amino	of amino	
ļ		acid	acid	•
		sequence	sequence	
382	1121	3	3726	PAAPEHTDPSEPRGSVSCCSLLRGLSSGWSSPLLPAPVCNPNK
				AIFTVDAKTTEILVANDKACGLLGYSSQDLIGQKLTQFFLRSD
İ				SDVVEALSEEHMEADGHAAVVFGTVVDIISRSGEKIPVSVWMK
			ŀ	RMRQERRLCCVVVLEPVERVSTWVAFQSDGTVTSCDSLFAHLH
	1		}	GYVSGEDVAGQHITDLIPSVQLPPSGQHIPKNLKIQRSVGRAR
	{			DGTTFPLSLKLKSQPSSEEATTGEAAPVSGYRASVWVFCTISG
			Ì	LITLLPDGTIHGINHSFALTLFGYGKTELLGKNITFLIPGFYS
				YMDLAYNSSLQLPDLASCLDVGNESGCGERTLDPWQGQDPAEG
Ì		-	Ì	GQDPRINVVLAGGHVVPRDEIRKLMESQDIFTGTQTELIAGGQ
			l	LLSCLSPQPAPGVDNVPEGSLPVHGEQALPKDQQITALGREEP
]				VAIESPGQDLLGESRSEPVDVKPFASCEDSEAPVPAEDGGSDA
	Ι.	ŀ		GMCGLCQKAQLERMGVSGPSGSDLWAGAAVAKPQAKGQLAGGS
	1			LLMHCPCYGSEWGLWWRSQDLAPSPSGMAGLSFGTPTLDEPWL
1			[GVENDREELQTCLIKEQLSQLSLAGALDVPHAELVPTECQAVT
				APVSSCDLGGRDLCGGCTGSSSACYALATDLPGGLEAVEAQEV
			1	DVNSFSWNLKELFFSDQTDQTSSNCSCATSELRETPSSLAVGS
١.	l		l	DPDVGSLQEQGSCVLDDRELLLLTGTCVDLGQGRRFRESCVGH
	,	1 .	1	DPTEPLEVCLVSSEHYAASDRESPGHVPSTLDAGPEDTCPSAE
1	1		ĺ	EPRLNVQVTSTPVIVMRGAAGLQREIQEGAYSGSCYHRDGLRL
1				SIQFEVRRVELQGPTPLFCCWLVKDLLHSQRDSAARTRLFLAS
1	· ·	1		LPGSTHSTAAELTGPSLVEVLRARPWFEEPPKAVELEGLAACE
				GEYSQKYSTMSPLGSGAFGFVWTAVDKEKNKEVVVKFIKKEKV
	l		1	LEDCWIEDPKLGKVTLEIAILSRVEHANIIKVLDIFENQGFFQ
1	1	•		LVMEKHGSGLDLFAFIDRHPRLDEPLASYIFRQVRAG\QSRLV
	1	1	Ì	SAVGYLRLKDIIHRDIKDENIVIAEDFTIKLIDFGSAAYLERG
	1			KLFYTFCGTIEYCAPEVLMGNPYRGPELEMWSLGVTLYTLVFE
1	ļ		l	ENPFCELEETVEAAIHPPYLVSKELMSLVSGLLQPVPERRTTL
1				EKLVTDPWVTQPVNLADYTWEEVFRVNKPESGVLSAASLEMGN
	ĺ	1	1	RSLSDVAQAQELCGGPVPGEAPNGQGCLHPGDPRLLTS
383	1122	177	1365	PGTSAATCRFLSPPVISLSFTGLCISDLVVAVNGVWILVETFM
1				LKGGNFFSKHVPWSYLVFLTIYGVELFLKVAGLGPVEYLSSGW
1	1		}	NLFDFSVTVFAFLGLLALALNMEPFYFIVVLRPLQLLRLFKLK
			1	ERYRNVLDTMFELLPRMASLGLTLLIFYYSFAIVGMEFFCGIV
				FPNCCNTSTVADAYRWRNHTVGNRTVVEEGYYYLNNFDNILNS
			1	FVTLFELTVVNNWYIIMEGVTSQTSHWSRLYFMTFYIVTMVVM
				TIIVAFILEAFVFRMNYSRKNODSEVDGGITLEKEISKEELVA
1	}			VLELYREARGASSDVTRLLETLSQMERYQQHSMVFLGRRSRTK
			1	SDLSLKMYQEEIQEWYEEHAREQEQQRQLSSSAAPAAQQPPGS
1				RORSOTVT
L	J	L	1	

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
384	1123	1	986	LAGVGTQAPPRRPGGEMAAGQNGHEEWVGSAYLFVESSLDKVV LSDAYAHPQQKVAVYRALQAALAESGGSPDVLQMLKIHRSDPQ LIVQLRFCGRQPCGRFLRAYREGALRAALQRSLAAALAQHSVP LQL\DLRAGAERLEALLADEERCLSCILAQQPDRLRDEELAEL EDALRNLKCGSGARGGDGEVASAPLQPPVPSLSEVKPPPPPPP AQTFLFQGQPVVNRPLSLKDQQTFARSVGLKWRKVGRSLQRGC RALRDPALDSLAYEYEREGLYEQAFQLLRRFVQAEGRRATLQR LVEALEENELTSLAEDLLGLTDPNGGLA
385	1124	2409	399	SSKPKLKKRFSLRSVGRSVRGSVRGILQWRGTVDPPSSAGPLE TSSGPPVLGGNSNSNSSGGAGTVGRGLVSDGTSPGERWTHRFE RLRLSRGGGALKDGAGMVQREELLSFMGAEEAAPDPAGVGRGG GVAGPPSGGGGQPQWQKCRLLLRSEGEGGGGSRLEFFVPPKAS RPRLSIPCSSITDVRTTTALEMPDRENTFVVKVEGPSEYIMET VDAQHVKAWVSDIQECLSPGPCPATSPRPMTLPLAPGTSFLTR ENTDSLELSCLNHSESLPSQDLLLGPSESNDRLSQGAYGGLSD RPSASISPSSASIAASHFDSMELLPPELPPRIPIEEGPPAGTV HPLSAPYPPLDTPETATGSFLFQG\EPEGGEGDQPLSGYPWFH GMLSRLKAAQLVLTGGTGSHGVFLVRQSETRRGEYVLTFNFQG KAKHLRLSLNEEGQCRVQHLWFQSIFDMLEHFRVHPIPLESGG SSDVVLVSYVPSSQRQQGEQSRSAGEEVPVHPRSEAGSRLGAM RGCAREMDATPNASCTLMPFGASDC\EPTTSHDPPQPPEPPSW TDPPQPGEE\EASR\APGSGGQQAAAAAKERQEKEKAGG\GGV PEE\LVPVV*LVPVGELGEGHRPQAQEAQGRLGPGGDAGVPP\ MVQLQQSPLGG\DGEEGGHPR\AI\NNQYSFV
386	1125	2204	1042	FRAPVGTAARSPQVVIRRLPPGLTKEQLEEQLRPLPAHDYFEF FAADLSLYPHLYSRAYINFRNPDDILLFRDRFDGYIFLDSKDP EYKKFLETYCVEEEKTSANPETLLGEMEAKTRELIARRTTPLL EYIKNRKLEKQRIREEKREERRRELEKKRLREEEKRRREEE RCKKKETDKQKKIAEKEVRIKLLKKPEKGEEPTTEKPKERGEE IDTGGGKQESCAPGAVVKARPMEGSLEEPQETSHSGSDKEHRD VERSQEQESEAQRYHVDDGRRHRAHHEPERLSRRSEDEQRWGK GPGQDRGKKGSQDSGAPGRAMERLGRAQRCDDSPAPRKERLAN KDRPALQLYDPGARFRARECGGNRRICKAEGSGTGPEKREEAE
387	1126	176	800	GVWGVCVSGLLQVGSQRAQAWRAWSPMETPLTGTFLWPHIPQG LFFDDSYGFYPGQVLIGPAKIFSSVQWLSGVKPVLSTKSKFRV VVEEVQVVELKVTWITKSFCPGGTDSVSPP/PSVITQENLGRV KRLGCFDHAQR/HAWGALSVCLPSQGRASQDCLGMSRKKLRPG GGLYGQEGEAPVEEAGCADHVMLPRHPVFPGPFHGRPR

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID SEQ	ID	beginning	end	
NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	сотте-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	710.00	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino	
		acid	acid	•
		sequence	sequence	
388	1127	1	2017	FRDSSPCSAFEFHCLSGECIHSSWRCDGGPDCKDKSDEENCAV
				ATCRPDEFQCSDGNCIHGSRQCDREYDCKDMSDEVGCVNVTLC
	i			EGPNKFKCHSGECITLDKVCNMARDCRDWSDEPIKECGTNECL
				DNNGGCSHVCNDLKIGYECLCPDGFQLVAQRRCEDIDECQDPD
1				TCSQLCVNLEGGYKCQCEEGFQLDPHTKACKAVGSIAYLFFTN
				RHEVRKMTLDRSEYTSLIPNLRNVVALDTEVASNRIYWSDLSQ
ŀ				RMICSTQLDRAHGVSSYDTVISRDIQAPDGLAVDWIHSNIYWT
				DSVLGTVSVADTKGVKRKTLFRENGSKPRAIVVDPVHGFMYWT
				DWGTPAKIKKGGLNGVDIYSLVTENIQWPNGITLDLLSGRLYW
ĺ	1			VDSKLHSISSIDVNGGNRKTILEDEKRLAHPFSLAVFEDKVFW
j		i i		TDIINEAIFSANRLTGSDVNLLAENLLSPEDMVLFHNLTQPRG
	<u> </u>	•		VNWCERTTLSNGGCQYLCLPAPQINPHSPKFTCACPDGMLLAR
				DMRSCLTEG\EAAVATQETSTVRLKVSSTAVRTQHTTTRPVPD
	1		}	TSRLPGATPGLTTVEIVTMSHQALGDVAG\RGN\EKKPSSVRA
		ļ		LSIVLPIV\LLVFLCLGVFLLWKNWRLKNINSINFDNPVYQKT
			•	TEDEVHICHNQDGYSYPSRQMVSLEDDVA
389	1128	2299	1148	RIPGLGPPGSPPPPPHVRGMPGCPCPGCGMAGPRLLFLTALAL
				ELLGRAGGSQPALRSRGTATACRLDNKESESWGALLSGERLDT
				WICSLLGSLMVGLSGVFPLLVIPLEMGTMLRSEAGAWRLKOLL
1	l			SFALGGLLGNVFLHLLPEAWAYTCSASPGGEGQSLQQQQQLGL
1			ł	WVIAGILTFLALEKMFLDSKEEGTSQAPNKDPTAAAAALNGGH
			1	CLAQPAAEPGLGAVVRSIKVSGYLNLLANTIDNFTHGLAVAAS
				FLVSKKIGLLTTMAILLHEIPHEVGDFAILLRAGFDRWSAAKL
		[· ·	QLSTALGGLLGAGFAICTQSPKGVEETAAWVLPFTSGGFLYIA
				LVNVLPDLLEEEDPWRSLQQLLLLCAGIVVMVLFSLFVD
390	1129	1	523	GKVSAGQAGADRTLRRAPEPRFSQEPTGNSAYPQLRPFLDPQG
		-		RDLKPSALVPPTRSHTGRRPWLHTOPLPGPOGRAWGPTC/TPA
	1		1	CVDRVLESEEGRREYLAFPTSKSSGQKGRKELLKGNGRRIDYM
		1	1	LHAEEGLCPDWKAEVEEFSFITQLSGLTDHLPVAMRLMVSSGE
1				EEA
391	1130	1459	765	PCGGIRLSASEAATLFGYLVVPAGGGGTFLGGFFVNKLRLRGS
""			'``	AVIKFCLFCTVVSLLGILVFSLHCPSVPMAGVTASYGGSLLPE
			1	GHLNLTAPCNAACSCOPEHYSPVCGSDGLMYFSLCHAGCPAAT
		1		ETNVDGQKVSGAAAYRPCPPLDPGKGPPCLPLVIGAIVGLPRC
1	1		}	TETVAVSLRIFPLVLAM\HCREMHFNLSEKAPPSGFHIRCNFL
1202	1122	1660	063	YIPQQHSCTNGNSTMCP
392	1131	1668	962	LLRKVGAPGGARGVIRLLDWFERPDGFLLVLERPEPA\QD\LF
				DFITERGALDEPLARRF\FAQVLAAVRHCHSCGVVHRDIKDEN
		1		LLVDLRSGELKLIDFGSGALLKDTVYTDFDGTRVYSPPEWIRY
1	ł	ŀ	1	HRYHGRSATVWSLGVLLYDMVCGDIPFEQDEEILRGRLLFRRR
I	1	B	1	
				VSPECQQLIRWCLSLRPSERPSLDQIAAHPWMLGADGGAPESC DLRLCTLDPDDVASTTSSSESL

CCO	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A = Alanine,
SEQ	D SEQ	beginning	end	
ID	_	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Nuclais	of	согте-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acias	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	(-possible nucleotide insertion)
		of amino	of amino	· · · · · · · · · · · · · · · · · · ·
·		acid	acid	
		sequence	sequence	·
393	1132	3	817	GKNSOKASPVDDEQLSVCLSGFLDEVMKKYGSLVPLSEKEVLG
		j -		RLKDVFNEDFSNRKPFINREITNYRARHOKCNFRIFYNKHMLD
				MDDLATLDGQNWLNDQVINMYGELIMDAVPDKVHFFNSFFHRQ
				LVTKGYNGVKRWTKKVDLFKKSLLLIPIHLEVHWSLITVTLSN
				RIISFYDSOGIHFKFCVENIRKYLLTEAREKNR\LNLOGWOTA
1	1	ł		VTKCIPQQKNDSDCGVFVLQYCKCLAL\KQPFQFSQEDMPRVR
				KRIYKELCECRLMD
			600	PPGG*OGSAAKHR/FP/KGYRHPALEARLGRRRTVOEARALLR
394	1133	1252	628	, ,
	·		İ	CRRAGISAPVVFFVDYASNCLYMEEIEGSVTVRDYIQSTMETE
	1			K\TPQGLSNLAKTIGQVLARMHDEDLIHGDLTTSNMLLKPPLE
İ			l	QLNIVLIDFGLSFISALPEDKGVDLYVLEKAFLSTHPNTETVF
				EAFLKSYSTSSKKARPVLKKLDEVRLRGKKRSMVG
395	1134	2	1595	RACVFRPEDMMQGEAHPSASLIDRTIKMRKETEARKVVLAWGL
			i	LNVSMAGMIYTEMTGKLISSYYNVTYWPLWYIELALASLFSLN
ì				ALFDFWRYFKYTVAPTSLVVSPGQQTLLGLKTAVVQTTPPHDL
	1		Ì	AATQIPPAPPSPSIQGQSVLSYSPSRSPSTSPKFTTSCMTGYS
			ļ.	PQLQGLSSGGSGSYSPGVTYSPVSGYNKLASFSPSPPSPYPTT
•	1	1		VGPVESSGLRSRYRSSPTVYNSPTDKEDYMTDLRTLDTFLRSE
1	i		1	EEKQHRVKLGSPDSTSPSSSPTFWNYSRSMGDYAQTLKKFQYQ
j				LACRSQAPCANKDEADLSSKQAAEEVWARVAMNRQLLDHMDSW
İ	1	i		TAKFRNWINETILVPLVQEIESVSTQMRRMGCPELQIGEASIT
ì	1	į.		SLKQAALVKAPLIPTLNTIVQYLDLTPNQEYLFERIKELSQGG
			1	CMSSFRWNRGGDFKGRKWDTDLPTDSAIIMHVFCTYLDSRLPP
0			1	HPKYPDGKTFTSQHFVQTPNKPDVTNENVFCIYQSAINPPHYE
-	į.			LIYQRHVYIPAKGQK
396	1135	16	1542	SSAVEFINRNNSVVQVLLAAGADPNLGDDFSSVYKTAKEQGIH
1				SLEVLITREDDFNNRLNNRASFKGCTALHYAVLADDYRTVKEL
1				LDGGANPLQRNEMGHTPLDYAREGEVMKLLRTSEAKYQEKQRK
1	1			REAEERRRFPLEQRLKEHIIGQESAIATVGAAIRRKENGWYDE
1.				EHPLVFLFLGSSGIGKTELAKOTAKYMHKDAKKGFIRLDMSEF
				QERHEVAKFIGSPPGYVGHEEGGQLTKKLKQCPNAVVLFDEVD
				KAHPDVLTIMLQLFDEGRLTDGKGKTIDCKDAIFIMTSNVASD
1	1	1		EIAOHALOLRQEALEMSRNRIAENLGDVQISDKITISKNFKEN
1				VIRPILKAHFRRDEFLGRINEIVYFLPFCHSELIQLVNKELNF
1	1			WAKRAKORHNITLLWDREVADVLVDGYNVHYGARSIKHEVERR
1				VGNOLAAAYEODLLP\GGCTLRITVEDSDKOLLKSPELPSPQA
		1		VGNQLAAATEQDLLP\GGCTLRTTVEDSDKQLLKSPELPSPQA EKRLPKLRLEIIDKDSKTRRLDIRAPLHPEKVCNTI
	1	1010	1.600	SSCDRERHGSLGMMSGSFILCLALVTRWSPOASSVPLAVYESK
397	1136	1848	1602	-
				TRKSYRSQRDRDGKDRSQGMGLSLLVETRKLLLSANQG

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
398	1137	1497	717	HTPMA/FFL/SFLSTSET/VYTFVILPKMLINLLSVARTISFN CCALQMFFFLGFAITNCLLLGVMGYDRYAAICHPLHYPTLMSW QVCGKLAAACAIGGFLASLTVVNLVFSLPFCSTNKVNHYFCDI SAVILLACTNTDVNGFVIFICGVLVLVVPFLFICVSYFCILRT ILKIPSAEGRRKAFSTCASHLSVVIVHYGCASFIYLRPTANYV SNKDRLVTVTYTIVTPLLNPMVYSLRNKDVQLAIRKVLGKKGS LKLYN
399	1138	2	1185	RPPAATRYPREKLKSMTSRDNYKAGSREAA\AAAAAVAAAAA AAAAAEPYPVSGAKRKYLEDSDPERSDYEEQQLQEEEEARKVK SGIRQMRLFSQDECAKIEARIDEVVSRAEKGLYNEHTVDRAPL RNKYFFGEGYTYGAQLQKRGPGQERLYPPGDVDEIPEWVHQLV IQKLVEHRVIPEGFVNSAVINDYQPGGCIVSHVDPIHIFERPI VSVSFFSDSALCFGCKFQFKPIRVSEPVLSLPVRRGSVTVLSG YAADEITHCIRPQDIKERRAVIILRKTRLDAPRLETKSLSSSV LPPSYASDRLSGNNRDPALKPKRSHRKADPDAAHRPRILEMDK EENRRSVLLPTHRRRGSFSSENYWRKSYESSEDCSEAAGSPAR KVKMRRH
400	1139	60	1699	VTWHFYFCSDHKNGHYIIPQMADRSRQKCMSQSLDLSELAKAA KKKLQALSNRLFEELAMDVYDEVDRRENDAVWLATQNHSTLVT ERSAVPFLPVNPEYSATRNQGRQKLARFNAREFATLIIDILSE AKRRQQGKSLSSPTDNLELSLRSQSDLDDQHDYDSVASDEDTD QEPLRSTGATRSNRARSMDSSDLSDGAVT\LQEYLELKKALAT SEAKVQQLMKVNSSLSDEL\RRLQREHFAPI\IHKLQAENLQL RQPPGPVPTPPLPSERAEHTPMAPGGSTHRRDRQAFSMYEPGS ALKPFGGPPGDELTTRLQPFHSTELEDDAIYSVHVPAGLYRIR KGVSASAVPFTPSSPLLSCSQEGSRHTSKLSRHGSGADSDYEN TQSGDPLLGLEGKRFLELGKEEDFHPELESLDGDLDPGLPSTE DVILKTEQVTKNIQELLRAAQEFKHDSFVPCSEKIHLAVTEMA SLFPKRPALEPVRSSLRLLNASAYRLQSECRKTVPPEPGAPVD FQLLTQQVIQCAYDIAKAAKQLVTITTREKKQ

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID ID	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine.
of	of	location	location	
Nucleic	Amino	corre-	согге-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
!		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
1		of amino	of amino	
}		acid	acid	•
401	1140	sequence	sequence 1863	RYLSYGSGPKRFPLVDVLOYALEFASSKPVCTSPVDDIDASSP
401	1140	*	1863	PSGSIPSQTLPSTTEQQGALSSELPSTSPSSVAAISSRSVIHK
				PFTOSRIPPDLPMHPAPRHITEEELSVLESCLHRWRTEIENDT
	l l			RDLOESISRIHRTIELMYSDKSMIQVPYRLHAVLVHEGQANAG
				HYWAYIFDHRESRWMKYNDIAVTKSSWEELVRDSFGGYRNASA
1		}	}	YCLMYINDKAQFLIQEEFN/K/ETGQPLVGIETLPPDLRDFVE
			l .	EDNORFEKELEEWDAOLAOKALOEKLLASOKLRESETSVTTAO
1				AAGDPKYLEQPSRSDFSKHLKEETIQIITKASHEHEDKSPETV
	1			LOSAIKLEYARLVKLAOEDTPPETDYRLHHVVVYFIQNQAPKK
İ				IIEKTLLEOFGDRNLSFDERCHNIMKVAOAKLEMIKPEEVNLE
Į.	ļ		1	EYEEWHODYRKFRETTMYLIIGLENFORESYIDSLLFLICAYO
1.		.		NNKELLSKGLYRGHDEELISHYRRECLLKLNEQAAELFESGED
ļ '	ļ	Ì		REVNIGLIIMNEFIVPFLPLLLVDEMEEKDILAVEDMRNRWCS
				YLGOEMEPHLOEKLTDFLPKLLDCSMEIKSFHEPPKLPSYSTH
		1		ELCERFARIMLSLSRTPADGR
402	1141	1	465	AOVYVRMDSFDEDLARPSGLLAOERKLCRDLVHSNKKEOEFRS
402	1147	1	1 203	IFQHIQSAQSQRSPSELFAQHM\VPIVHHVKEHHFGSSGMTLH
				ERFT\KYLKRG\TEQEAAKNKKSPEIHRRIDISPSTFRKHGLA
				HDEMKSPREPGYKDGHNSKNELQRVNFY .
403	1142	2	369	TYTFCFSLMI\ILLTIIQGLILEAFGELRDQLDQVKEDMETKC
1 203		~		FICGIGNDYFDTVPHGFETHTLQEHNLANYLFFLMYLINKDET
1	1	ļ	ŀ	EHTGQESYVWKMYQERCWEFFPAGDCFRKQYEDQLN
404	1143	3115	557	FRRKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKV
				EKHGPGRWVVLAAVLIGLLLVLLGIGFLVWHLOYRDVRVQKVF
1		i		NGYMRITNENFVDAYENSNSTEFVSLASKVKDALKLLYSGVPF
		1		LGPYHKESAVTAFSEGSVIAYYWSEFSIPOHLVEEAERVMAEE
ł			1	RVVMLPPRARSLKSFVVTSVVAFPTDSKTVQRTQDNSCSFGLH
	i			ARGVELMRFTTPGFPDSPYPAHARCQWALRGDADSVLSLTFRS
· ·				FDLASCDERGRHLV\TVYNT\LSPMEPHA\LVQLCGTYPPSYN
				LTFHS\S\QNVLLITLITNTERRHPG\FEATFFOLPRMSSCGG
		1	1	RLRKAOGTFNSPYYPGHYPPNIDCTWNIEVPNNOHVKVRFKFF
1	1.			YLLEPGVPAGTCPKDYVEINGEKYCGERSOFVVTSNSNKITVR
		-		FHSDOSYTDTGFLAEYLSYDSSDPCPGQFTCRTGRCIRKELRC
				DGWADCTDHSDELNCSCDAGHQFTCKNKFCKPLFWVCDSLNDC
1				GDNSDEQGCSCP\AQTFRCSNGKCLSKSQQCNGKDDCGDGSDE
				ASCPKVNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDE
				KDCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICG
	1		}	ASLISPNWLVSAAHCYIDDRGFRYSDPTQWTAFLGLHDQSQRS
	1			APGVOERRLKRIISHPFFNDFTFDYDIALLELEKPAEYSSMVR
1		1		PICLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVI
1				NOTTCENLLPQQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEA
ļ				DGRIFOAGVVSWGDGCAORNKPGVYTRLPLFRDWIKENTGV

SEQ ID NO: of	SEQ ID NO: of	Predicted beginning nucleotide location	Predicted end nucleotide location corre-	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre- sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino acid	
		acid sequence	sequence	
405	1144	3cquence	424	RHEEDLGNLWENTRFTDCSFFVRGQEFKAHKSVLAARSPVFNA
103		_	1	MFEHEMEESKKNRVEINDLDPEVFKEMMRFIYTGRAPNLDKMA
				DNLLAAADKYALERLKVMCEKALCSNLSVENVADTLVLADLHS
				\AEQLKAQAIDFINRCSVLRQLGCKDGKNWNSNQATDIMETSG
	l			GKSMIQSHPHLVAEAFRALASAQGPQFGIPRKRLKQS*NLGNL
				WENTRFTDCSFFVRGQEFKAHKSVLAARSPVFNAMFEHEMEES
	ł		ł	KKNRVEINDLDPEVFKEMMRFIYTGRAPNLDKMADNLLAAADK
	ļ			YALERLKVMCEKALCSNLSVENVADTLVLADLHSGRTVESTSH
	<u> </u>			RLY
406	1145	1	1021	QRGGIPGKFQEDSGSVDWALGPFWGIFQADFGCMRFYLSAQTS
				DPVLRM*WGPSPISHPTSLCPGGGGAGQTTGSLCLGQQCCPLS
ļ			ļ	CPNIPSRHKRWRL*AALVAGSRGSCTLRS*R*RTPLPVTRNLP R/CHLHLHPTGDLRVHVHOHCLLHGHVPPGAALLOCGGCDLRG
				EAAGLLFLGHACLRGSVNLRRDQWLPV\PYSRLCFSGAREGHL
]				PSLLAMIHVRHCTPIPALLVC\PIKVNLLIPVAYLVFWAFLLV
}				FSFISEHMVCGVGVIIILTGVPIFFLGVFWRSKPKCVHRLTES
				MTHWGQELCFVVYPQDAPEEEENGPCPPSLLPATDKPSKPQ
407	1146	2	1280	AAALVAEYLALLEDHRHLPVGCVSFQNISSNVLEESAISDDIL
1		-		SPDEEGFCSGKHFTELGLVGLLEQAAGYFTMGGLYEAVNEVYK
	İ			NLIPILEAHRDYKKLAAVHGKLQEAFTKIMHQSSGWERVFGTY
	l			FRVGFYGAHFGDLDEQEFVYKEPSITKLAEISHRLEEFYTERF
	1			GDDVVEIIKDSNPVDKSKLDSQKAYIQITYVEPYFDTYELKDR
		ł		VTYFDRNYGLRTFLFCTPFTPDGRAHGELPEQHKRKTLLSTDH
	1			AFPYIKTRIRVCHREETVLTP\VEVAIEDMQKKTRELAFATEQ
ļ	1		1	DPPDAKMLQMVLQGSVGPTVNQGPLEVAQVFLAEIPEDPKLFR
	1	į		HHNKLRLCFKDF*KKCEDALRKNKALIGPDQKEYHRELERNY
	1	<u> </u>		CRLREALQPLLTQRLPQLMAPTPPGLRNSLNRASFRKADL
408	1147	55	651	GEGQQWQSTPLSPLQPTVADFLNLAWWTSAAAW*VLSGRWVEK
1				VLPGREGSEEK*GMASSSADHLHSAPRALQ\SLFQQLLYGLIY HSWFOAGR*GFGGASSSPGPOSELRRLHGEGGVYD*GRPETLP
1				GSVGGAEALWALADPAEAEGSPETRESSCVMKOTOYYFGSVNA
			1	SYNAIIDCGNCSRCWQWGGTRGQGRNL
409	1148	1855	904	VAGIPACFDN/FTEALAETACROMGYSSKPTFRAVEIGPDQDL
1 303	1	1000	""	DVVEITENSOELRMRNSSGPCLSGSLVSLHCLACGESLKTPRV
				VGGEEASVDSWPWQVSIQYDKQHVCGGSILDPHWVLTAAHCFR
				KHTDVFNWKVRAGSDKLGSFPSLAVAKIIIIEFNPMYPKDNDI
	1			ALMKLQFPLTFSGTVRPICLPFFDEELTPATPLWIIGWGFTKQ
				NGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPE
I	1			GGVDTCQGDSGGPLMYQSDQWHVVGIVSWGYGCGGPSTPGVYT
				KVSAYLNWIYNVWKAEL

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first arnino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A = Alanine, C = Cysteine, D = Aspartic Acid, E = Glutamic Acid, F = Phenylalanine, G = Glycine, H = Histidine, I = Isoleucine, K = Lysine, L = Leucine, M = Methionine, N = Asparagine, P = Proline, Q = Glutamine, R = Arginine, S = Serine, T = Threonine, V = Valine, W = Tryptophan, Y = Tyrosine, X = Unknown, *= Stop Codon, /= possible nucleotide deletion, \ = possible nucleotide insertion)
410	1149		964	TISTVRWNSRIGMVLGVAIQKRAV\PGLY\AFEEAYARADKEA PRPCHKGSWCSSNQLCRECQAFMAHTMPKLKAFSMSSAYNAYR AVYAVAHGLHQLLGCASGACSRGRVYPWQLLEQIHKVHFLLHK DTVAFNDNRDPLSSYNIIAWDWNGPKWTFTVLGSSTWSPVQLN INETKIQWHGKDNQVPKSVCSSDCLEGHQRVVTGFHHCCFECV PCGAGTFLNKS/SYLGKDLPENYNEAKCVTFSLLFNFVSWIAF FTTASVYDGKYLPAANMMAGLSSLSSGFGGYFLPKCYVILCRP DLNSTEHFQASIQDYTRRCGST
411	1150	2	1378	VARGAFHPKMGPSFPSPKPGSERLSFVSAKQSTGQDTEAELQD ATLALHGLTVEDEGNYTCEFATFPKGSVRGMTWLRVIAKPKNQ AEAQKVTFSQDPTTVALCISKEGRPPARISWLSSLDWEAKETQ VSGTLAGTVTVTSRFTLVPSGRADGVTVTCKVEHESFEEPALI PVTLSVRYPPEVSISGYDDNWYLGRTDATLSCDVRSNPEPTGY DWSTTSGTFPTSAVAQGSQLVIHAVDSLFNTTFVCTVTNAVGM GRAEQVIFVRETPNTAGAGATGGIIGGIIAAIIATADA\TGIL ICRQQRKEQTLQGAEEDEDLEGPPSYKPPTPKAKLEAQEMPSQ LFTLGASEHSPLKTPYFDAGASCTEQEMPRYHELPTLEERSGP LHPGATSLGSPIPVPPGPPAVEDVSLDLEDEEGEEEEYLDKI NPIYDALSYSSPSDSYQGKGFVMSRAMYV
412		1	1828	GTRLREDKNHNMYVAGCTEVEVKSTEEAFEVFWRGQKKRRIAN THLNRESSRSHSVFNIKLVQAPLDADGDNVLQEKEQITISQLS LVDLAGSERTNRTRAEGNRLREAGNINQSLMTLRTCMDVLREN QMYGTNKMVPYRDSKLTHLFKNYFDGEGKVRMIVCVNPKAEDY EENLQVMRFAEVTQEVEVARPVDKAICGLTPGRRYRNQPRGP\ IGNEPLVTDVVLQSFPPLPSCEILDINDEQTLPRLIEALEKRH NLRQMMIDEFNKQSNAFKALLQEFDNAVLSKENHMQGKLNEKE KMISGQKLBIERLEKKNKTLEYKIEILEKTTTIYEEDKRNLQQ ELETQNQKLQRQFSDKRRLEARLQGMVTETTMKWEKECERRVA AKQLEMQNKLWVKDEKLKQLKAIVTEPKTEKPERPSRERDREK VTQRSVSPSPVPLLFQPDQNAPPIRLRHRSRSSAGDRWVDHKP ASNMQTETVMQPHVPHAITVSVANEKALAKCEKYMLTHQELAS DGEIETKLIKGDIYKTRGGGQSVQFTDIETLKQESPNGSRKRR SSTVAPAQPDGAESEWTDVETRCSVAVEMRAGSQLGPGYQHHA QPKRKKP
413	1152	1	336	PFSSSSVSSKGSDPFGTLDPFGSGSFNSAEGFADFSQMS/KGK STPVSQLGSADFPEAPDPFQPLGADSGDPFQSKKGFGDPFSGK DPFVPSSAAKPSKASASGFADFTSVS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning mucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end mucleotide location corresponding to first amino acid residue of amino acid sequence 1334	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion) MSLMVVSMACVGLFLVQRAGPHMGGQDKPFLSAWPSAVVPRGG
				HVTLRCHYRHRFNNFMLYKEDRIHIPIFHGRIFQESFNMSPVT TAHAGNYTCRGSHPHSPTGWSAPSNPVVIMVTGNHRKPSLLAH PGPLVKSGERVILQCWSDIMFEHFFLHKEGISKDPSRLVGQIH DGVSKANFSIGPMMQDLAGTYRCYGSVTHSPYQLSAPSDPLDI VITGLYEKPSLSAQPGPTVLAGESVTLSCSSRSSYDMYHLSRE GEAHERRFSAGPKVNGTFQADFPLGPATHGGTYRCFGSFRDSP YEWSNSSDPLLVSVTGNPSNSWPSPTEPSSETGNPRHLHVLIG TSVVIILFILLLFFLLHRWCSN\KKNAAVMDQESAGNRTANSE DSDEQDPQEVTYTQLNHCVFTQRKITRPSQRPKTPPTDIIVYT ELPNAESRSKVVSCP
415	1154	1	1570	MSLRVHTLPTLLGAVVRPGCRELLCLLMITVTVGPGASGVCPT ACICATDIVSCTNKNLSKVPGNLFRLIKRLDLSYNRIGLLDSE WIPVSFAKLNTLILRHNNITSISTGSFSTTPNLKCLDLSSNKL KT\VKNAVFQELKVLEVLLLYNNHISYLDPSAFGGLSQLQKLY LSGNFLTQFPMDLYVGRFKLAELMFLDVSYNRIPSMPMHHINL VPGKQLRGIYLHGNPFVCD\CSLVSLLVFWYRRHFSSVMDFKN DYTCRLWSDSRHSRQVLLLQDSFMNCSDSIINGSFRALGFIHE AQVGERLMVHCDSKTGNANTDFIWVGPDNRLLEPDKEMENFYV FHNGSLVIESPRFEDAGVYSCIAMNKQRLLNETVDVTINVSNF TVSRSHAHEAFNTAFTTLAACVASIVLVLLYLYLTPCPCKCKT KRQKNMLHQSNAHSSILSPGPASDASADERKAGAGKRVVFLEP LKDTAAGQNGKVRLFPSEAVIAEGILKSTRGKSDSDSVNSVFS DTPFVAST
416	1155	2	1928	ASDFIRSLDHCGYLSLEGVFSHKFDFELQDVSSVNEDVLLTTG LLCKYTAQRFKPKYKFFHKSFQEYTAGRRLSSLLTSHEPEEVT KGNGYLQKMVSISDITSTYSSLLRYTCGSSVEATRAVMKHLAA VYQHGCLLGLSIAKRPLWRQESLQSVKNTTEQEILKAININSF VECGIHLYQESTSKSALSQEFEAFFQGKSLYINSGNIPDYLFD FFEHLPNCASALDFIKLGFYGGAMASWEKAAEDTGGIHMEEAP ETYIPSRAVSLFFNWKQEFRTLEVTLRDFSKLNKQDIRYLGKI FSSATSLRLQIKRCAGVAGSLSLVLSTCKNIYSLMVEASPLTI EDERHITSVTNLKTLSIHDLQNQRLPGGLTDSLGNLKNLTKLI MDNIKMNEEDAIKLAEGLKNLKKMCLFHLTHLSDIGEGMDYIV KSLSSEPCDLEEIQLVSCCLSANAVKILAQNLHNLVKLSILDL SENYLEKDGNEALHELIDRMNVLEQLTALMLPWGCDVQGSLSS LLKHLEEVPQLVKLGLKNWRLTDTEIRILGAFFGKNPLKNFQQ LNLAGNRVSSDGWLAFMGVFENLKQLVFFDFSTKEFLPDPALV RKLSQVLSKLTFLQEARLVGWQFDDDDLSVITGAFKLVTA
417	1156	342	718	ASDRKVAMTCDCFWFRTMLDQHASCMEVGTERERQAG\GLVMF DPSGFPTGEKVLQDDEFTCDLFRFLQLLCEGHNSGL*VPGTSD DTKA*IMFSSQ**QEPVSSNYASF*RQQIILEHGSALGSG

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
418	1157	1	135	EITHIVGETAAFLCPRLRLRRGGKDGSPKPGFLASVIPVDRRP GE*DITHIVGETAAFLCPRLRLRRGGKDGSPKPGFLASVIPVD RRPGE
419	1158	173	943	SKFIFYVDSQSMIFFFQTPTRHKVLIMEFCPCGSLYTVLEEPS NAYGLPESEFLIVLRDVVGGMNHLRENGIVHRDIKPGNIMRVI GEDGQSVYKLTDFGAARELEDDEQFVSLYGTEEYLHPDMYERA VLRKDHQ\KKYGAT\VDLW\SIGVTFYQGKPTGS\LAI*HPFE GASVRNKASDGIKIITGKGLLGAIS\GVQKSKKNG\PI\DWEW EDMPVSCSPSSGVLRVPNLPPVLA\NILESRSRKKCWGF*PSF LQEN
420	1159	987	500	GSTISCERSLRSLWTAHWALPEMDSRIPYDDYPVVFLPAYENP PAWIPPHERVHHPDYNNELTQFLPRTITLKKPPGAQLGFNIRG GKASQLGIFISKVIPDSDAHRAGLQEGDQVLAVNDVDFQDIEH SKAVEILKTAREISMRVRFFPYNYHRQKERTVH
421	1160	3	890	HEQVSALHRRIKAIVEVAAMCGVNIICFQEAWTMPFAFCTREK LPWTEFAESAEDGPTTRFCQKLAKNHDMVVVSPILERDSEHGD VLWNTAVVISNSGAVLGKTRKNHIPRVGDFNESTYYMEGNLGH PVFQTQFGRIAVNICYGRHHPLNWLMYSINGAEIIFNPSATIG ALSESLWPIEARNAAIANHCFTCAINRVGTEHFPNEFTSGDGK KAHQDFGYFYGSSYVAAPDSSRTPGLSRSRDGLLVAKLDLNLC QQVNDVWNFKMTGRYEMYARELAEAVKSNYSPTIVKE

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID `	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
ì		to first	to first	
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid residue	\=possible nucleotide insertion)
		residue of amino	of amino	<u>.</u>
		acid	acid	
İ		sequence	sequence	·
422	1161	5214	352	MAKSGGCGAGAGVGGGNGALTWVNNAAKKEESETANKNDSSKK
122	1101	3214	332	LSVERVYOKKTOLEHILLRPDTYIGSVEPLTOFMWVYDEDVGM
				NCREVTFVPGLYKIFDEILVNAADNKORDKNMTCIKVSIDPES
	ļ			NIISIWNNGKGIPVVEHKVEKVYVPALIFGQLLTSSNYDDDEK
	1			KVTGGRNGYGAKLCNIFSTKFTVETACKEYKHSFKQTWMNNMM
1.		ŀ	1	KTSEAKIKHFDGEDYTCITFQPDLSKFKMEKLDKDIVALMTRR
	l			AYDLAGSCRGVKVMFNGKKLPVNGFRSYVDLYVKDKLDETGVA
	Į.		1	LKVIHELANERWDVCLTLSEKGFQQISFVNSIATTKGGRHVDY
		!		VVDQVVGKLIEVVKKKNKAGVSVKPFQVKNHIWVFINCLIENP
	1			TFDSOTKENMTLOPKSFGSKCOLSEKFFKAASNCGIVESILNW
1		İ		VKFKAOTOLNKKCSSVKYSKIKGIPKLDDANDAGGKHSLECTL
]	j]	ILTEGDSAKSLAVSGLGVIGRDRYGVFPLRGKILNVREASHKQ
				IMENAEINNIIKIVGLQYKKSYDDAQSLKTLRYGKIMIMTDOD
				ODGSHIKGLLINFIHHNWPSLLKHGFLEEFITPIVKASKNKQE
'	ļ	<u> </u>		LSFYSIPEFDEWKKHIENQKAWKIKYYKGLGTSTAKEAKEYFA
			i	DMERHRILFRYAGPEDDAAITLAFSKKKIDDRKEWLTNFMEDR
1				RORRLHGLPEQFLYGTATKHLTYNDFINKELILFSNSDNERSI
	, "			PSLVDGFKPGQRKVLFTCFKRNDKREVKVAQLAGSVAEMSAYH
	İ			HGEQALMMTIVNLAQNFVGSNNINLLQPIGQFGTRLHGGKDAA
	1			SPRYIFTMLSTLARLLFPAVDDNLLKFLYDDNORVEPEWYIPI
1	ł			IPMVLINGAEGIGTGWACKLPNYDAREIVNNVRRMLDGLDPHP
				MLPNYKNFKGTIQELGQNQYAVSGEIFVVDRNTVEITELPVRT
				WTQVYKEQVLEPMLNGTDKTPALISDYKEYHTDTTVKFVVKMT
			1	EEKLAQAEAAGLHKVFKLQTTLTCNSMVLFDHMGCLKKYETVQ
			ŀ	DILKEFFDLRLSYYGLRKEWLVGMLGAEFTKLNNOARFILEKI
İ				QGKITI*NRSKKDLIQMLVQRGYESDPVKAWKEAQEKAAEEDE
1		1	1	TONOHDDSSSDSGTPSGPDFNYILNMSLWSLTKEKVEELIKOR
-	1			DAKGREVNDLKRKSPSDLWKEDLAAFVEELDKVESOEREDVLA
		1	į.	GMSGKAIKGKVGKPKVKKLQLEETMPSPYGRRIIPEITAMKAD
		-	1	ASKKLLKKKKGDLDTAAVKVEFDEEFSGAPVEGAGEEALTPSV
1	1	[PINKGPKPKREKKEPGTRVRKTPTSSGKPSAKKVKKRNPWSDD
1				ESKSESDLEETEPVVIPRDSLLRRAAAERPKYTFDFSEEEDDD
1		1		ADDDDDDNNDLEELKVKASPITNDGEDEFVPSDGLDKDEYTFS
1				PGKSKATPEKSLHDKKSODFGNLFSFPSYSOKSEDDSAKFDSN
1		1		EEDSASVFSPSFGLKQTDKVPSKTVAAKKGKPSSDTVPKPKRA
				PKOKKVVEAVNSDSDSEFGIPKKTTTPKGKGRGAKKRKASGSE
1				
]			NEGDYNPGRKTSKTTSKKPKKTSFDQDSDVDIFPSDFPTEPPS
422	11760	 	210	LPRTGRARKEVKYPAESDEEEDDVDFAMFN
423	1162	1	219	KGCLAASFNCIFLYTGELYPTMIR*VEA*WENDSLFLGKDILL
		1	<u> </u>	CTGQTPELNQVHPSPKAPPNTHHCKAHSSH

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue	Predicted end nucleotide location corre- sponding to first amino acid residue	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
		of amino acid sequence	of amino acid sequence	
424	1163	1454	446	ENSFECKDCGKAFSRGYQLSHHQKIHTGEKPYECKECKKAFRW GNQLTQHQKIHTGEKPYECKDCGKAFRWGSSLVIHKRIHTGEK PYECKDCGKAFRRGDELTQHQRFHTGEKDYECKDCGKTFSRVY KLIQHKRIHSGEKPYECKDCGKAFICGSSLIQHKRIHTGEKPY ECQECGKAFTRVNYLTQHQKIHTGEKPHECKECGKAFRWGSSL VKHERIHTGEKPYKCTECGKAFNCGYHLTQHERIHTGETPYKC KECGKAFIYGSSLVKHERIHTGVKPYGCTECGKSFSHGHQLTQ HQKTHSGAKSYECKECGKACNHLNHLREHQRIHNS
425	1164	826	407	HQYLDDLYPLHVMTILLKSHFFTMLKRPVGSSSFASLPFYHQS ILLRKNQMKRKKTQQDLTHINWTLQAVSIQTCIWLQKKPSSYF HQLPNQVL*PENSGPESCLYDLAAVVVHHGSG
426	1165	464	29	XLDPDTLPAVATLLMDVMFYSNGVKDPMATGDDCGHIRFFSFS LIEGYISLVMDVQTQQRFPSNLLFTSASGELWKMVRIGGQPLG FGPVWESGPTGPTSPLILPVTPSSSHRQAASQVTTTKQGQWLC LKRPSARSPDHTACLG*
427	1166	649	901	EAPLTSVCFSLERRFGSSSNTTSFGTLASQNAPTFGSLSQQTS GFGTQSSGFSGFGSGTGGFSFGSNNS*VSPFLSLTLIKSIK
428	1167	3	340	EEPQGSPIWVWLAGSLTSVSCFLPFQRMRIKPHQGQYIGEMSF LQHHKGECRPQKD*ARQENPCGPCSERRKHLLGQDPKTCKCSC KNTDSRCKARPLELNERTCRCDKPRR
429	1168	355	1312	TLWAGPGLCPQSHSSSSVPAPWEPHVERALRTDRNQGQRPLLS ASWAPAPARPLFLTSPVLLPKSRAIPAARDPS*AGIFCLLEMA GGQASVVIIGSAGVLGCRWGSSGKSHSLSPSRKGNLHLLSQEP QTTVVHNATDGIKGSTESCNTTTEDEDLKVRKQEIIKITEQLI EAINNGDFEAYTKICDPGLTSFEPEALGNLVEGMDFHKFYFEN REWVRAADILLPAPLPLCLCLLLTFSSQLPTFPLFDLRAALLL CMLVPLCPDGCRQAPLKALLLSSKCHSFCSCFVAVPVTTIKLT YFLPGAVAYACNPNTLGG
430	1169	439	728	ERAGAGGAAACRAGTRSGATSRTPWPLHRQLSMMLMLAQSNPQ LFALMGTRAGIARELERVEQQSRLEQLSAAELQSRNQGHWADW LQAYRARLGQ
431	1170	3	440	NGTLFIMVMHIKDLVSDYKE*WL*RKPLPW*EALLLRDCFFF* VTENGADPNPYVKTYLLPDNHKTSKRKTKISRKTRNPTFNEML VYSGYSKETLRQRELQLSVLSAESLRENFFLGGVTLPLKDFNL SKETVKWYQLTAATYL

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	
	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:		location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Nucleic	of	согте-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Amino Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acias	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
•		residue	residue	(—possible indefeding insertion)
		of amino	of amino	
		acid	acid	
		sequence	sequence	
432	1171	433	1824	LHRIMQLAVVVSQVLENGSSVLVCLEEGWDITAQVTSLVQLLS
		ļ	ļ	DPFYRTLEGFQMLVEKEWLSFGHKFSQRSSLTLNCQGSGFAPV
				FLQFLDCVHQVHNQYPTEFEFNLYYLKFLAFHYVSNRFKTFLL
				DSDYERLEHGTLFDDKGEKHAKKGVCIWECIDRMHKRSPIFFN
'				YLYSPLEIEALKPNVNVSSLKKWDYYIEETLSTGPSYDWMMLT
				PKHFPSEDSDLAGEAGPRSQRRTVWPCYDDVSCTQPDALTSLF
				SEIEKLEHKLNOAPEKWOOLWERVTVDLKEEPRTDRSORHLSR
				SPGIVSTNLPSYQKRSLLHLPDSSMGEEQNSSISPSNGVERRA
l				ATLYSOYTSKNDENRSFEGTLYKRGALLKGWKPRWFVLDVTKH
	ļ	ļ		QLRYYDSGEDTSCKGHIDLAEVEMVIPAGPSMGAPKHTSDKAF
	ŀ	1		FDLKTSKRVYNFCAQDGQSAQQWMDKIQSCISDA
433	1172	1714	946	EVEGPRRVSPAPETLGMEESVVRPSVFVVDGOTDIPFTRLGRS
133		1		HRROSCSVARVGLGLLLLLMGAGLAVOGWFLLOLHWRLGEMVT
ŀ	1			RLPDGPAGSWEQLIQERRSHEVNPAAHLTGANSSLTGSGGPLL
İ				WETOLGLAFLRGLSYHDGALVVTKAGYYYIYSKVOLGGVGCPL
}				GLASTITHGLYKRTPRYPEELELLVSQQSPCGRATSSSRVWWD
				SSFLGGVVHLEAGEEVVVRVLDERLVRLRDGTRSYFGAFMV
434	1173	16	367	QSAELGPRREGSRRPSCTKASKPWRRRPGGPTSGLG*GPLSP
332	1173	1 -0	1 30 /	GPYQCRPSLPAQLYPOSLMAAATLRTPTOVSAASSRPHTPSPT
	l			HVLKPSVRGACSSPRCPGSGTLRRSWVGPFF
435	1174	27	1139	LWWPPLSRHAAHRQWPGPTAPRGLGHKVKGRGASPAAMWSCSW
433	11/4	2 '	1 1139	FNGTGLVEELPACQDLQLGLSLLSLLGLVVGVPVGLCYNALLV
Ì			ļ	-
				LANLHSKASMTMPDVYFVNMAVAGLVLSALAPVHLLGPPSSRW
	l			ALWSVGGEVHVALQIPFNVSSLVAMYSTALLSLDHYIERALPR
			-	TYMASVYNTRHVCGFVWGGALLTSFSSLLFYICSHVSTRALEC
				AKMQNAEAADATLVFIGYVVPALATLYALVLLSRVRREDTPLD
	1			RDTGRLEPSAHRLLVATVCTQFGLWTPHYLILLGHTVIISRGK
				PVDAHYLGLLHFVKDFSKLLAFSSSFVTPLLYRYMNQSFPSKL
435	1177	222	756	QRLMKKLPCGDRHCSPDHMGVQQVLA
436	1175	322	756	SESELFTLMPSLPTTNCVHSLQMIPPLSPAPNQELVLGLCYMS
				YLAFLYMTFDFCCLYFSTVYAPSFKYICVHTDTHICVCVCIYL
1				SSVVSKSSAEADGVLQPRRHPASLLIVFATSISESSLLIFSFQ
	<u> </u>	<u></u>		KTEAKLIVFAVSLAAK
437	1176	2	153	FFFLRQSLTLSPRLECSGATSASPSAGITGMSHHSQPIVNFLR
				ACIPISK
438	1177	1	692	ROHAEERGRRNPKTGLTLERVGPESSPYLLRRHQRQGQEGEHY
				HSCVQLAPTRGLEES/GHGPL/SLAGGPRVGGV/AAAATEAPR
1]			MEWKVKVRSDGTRYVAKRPVRDRLLKARALKIREERSGMTTDD
1	l		1 .	DAVSEMKMGRYWSKEERKQHLIRAREQRKRREFMMQSRLECLR
1	1			EQQNGDSKPELNIIALSHRKTMKKRNKKILDNWITIQEMLAHG
				ARSADGKRVYNPLLSVTTV
			-	

CCC	CEC	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ	beginning	endi	Amino acid segment containing signal peptide (A-Ataline,
ID NO.	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Nucleic	of Amino	согге-	согте-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acius	Acias	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
}	!	acid	acid	\=possible nucleotide insertion)
		residue	residue	, Possioio 1120100110
1		of amino	of amino	
	l	acid	acid	
	1	sequence	sequence	
439	1178	2	616	SDRGCSAAAGRNMTAVGVQAQRPLGQRQPRRSFFESFIRTLII
		İ		TCVALAVVLSSVSICDGHWLLAEDRLFGLWHFCTTTNQSVPIC
1	1		ì	FRDLGQAHVPGLAVGMGLVRSVGALAVVAAIFGLEFLMVSQLC
1				EDKHSQCKWVMGSILLLVSFVLSSGGLLGFVILLRNQVTLIGF
İ		1	1	TLMFWCEFTASFLLFLNAISGLHINSITHPWE
440	1179	2	540	QILPNLYLGSARDSANLESLAKLGIRYILNVTPNLPNFFEKNG
				DFHYKQIPISDHWSQNLSRFFPEAIEFIDEALSQNCGVLVHCL
1		1	ļ	AGVSRSVTVTVAYLMQKLHLSLNDAYDLVKRKKSNISPNFNFM
1	1			GQLLDFERSLRLEERHSQEQGSGGQASAASNPPSFFTTPTSDG
1	1		1	AFELAPT ·
441	1180	940	463	RKSLHENKLKRLQEKVEVLEAKKEELETENQVLNRQNVPFEDY
	1			TRLQKRLKDIQRRHNEFRSLILVPNMPPTASINPVSFQSSAMG
		1	ļ	SKHGTTISSSYAGGTTSKGTLSTSQKTRRTGNNTKKTTRGTWI
		ļ		FRRMMFLENRQIKRGEVGDSVKLDILTCGI
442	1181	1	986	GRPGAGASELFPSVTTDLSVSKQNACLTCVDFVTVHVCMGFWG
				IGPGALSTSCIPYPLSHGPGSVKAEMLHMYSQKDPLILCVRLA
1	1		1	VLLAVTLTVPVVLFPIRRALQQLLFPGKAFSWPRHVAIALILL
1		1	1	VLVNVLVICVPTIRDIFGVIGSTSAPSLIFILPSIFYLRIVPS
				EVEPFLSWPKIQALCFGVLGVLFMAVSLGFMFANWATGQSRMS
	1	1		GH*SGPAGPGPCAHAHGGVRAAP*GPSCPTCGGGWFP*TWLSE
1		1	ł	AGDSRGCRLAHFPPPQGCQAWIMALIPTPTPWEEEEEEEEEE
			1	EEEEEEEEARSWWSLCPAQSSLPPPG
443	1182	460	27	INELRYHLEESRDKNVLLCLEERDWDPGLAIIDNLMQSINQSK
				KTVFVLTKKYAKSWNFKTAFYLALQRLMDENMDVIIFILLEPV
	Ì			LQHSQYLRLRQRICKSSILQWPDNPKAEGLFWQTLRNVVLTEN
			1	DSRYNNMYVDSIKQY
444	1183	1682	230	DDPIKTSWTPPRYVLSMSEERHERVRKKYHILVEGDGIPPPIK
1				SFKEMKFPAAILRGLKKKGIHHPTPIQIQGIPTILSGRDMIGI
1	1	}		AFTGSGKTLVFTLPVIMFCLEQEKRLPFSKREGPYGLIICPSR
1	1	1	1	ELAROTHGILEYYCRLLOEDSSPLLRCALCIGGMSVKEQMETI
ł				RHGVHMMVATPGRLMDLLQKKMVSLDICRYLALDEADRMIDMG
1	1			FEGDIRTIFSYFKGQRQTLLFSATMPKKIQNFAKSALVKPVTI
				NVGRAGAASLDVIQEVEYVKEEAKMVYLLECLQKTPPPVLIFA
	1		1	EKKADVDAIHEYLLLKGVEAVAIHGGKDQEERTKAIEAFREGK
	1			KDVLVATDVASKGLDFPAIQHVINYDMPEEIENYVHRIGRTGR
	1		1	SGNTGIATTFINKACDESVLMDLKALLLEAKQKVPPVLQVLHC
				GDESMLDIGGERGCAFCGGLGHRITDCPKLEAMQTKQVSNIGR
			i	KDYLAHSSMDF
445	1184	1	375	IETTOPSEDTNANSODNSMQPETSSQQQLLSPTLSDRGGSRQD
1 3	1104	_	1	AADAGKPORKFGOWRLPSAPKPISHSVSSVNLRFGGRTTMKSV
1		1		VCKMNPMTDAASCGSEVKKWWTRQLTVESDESGDDLLDI
446	1185	2	223	NDRFSACYFTLKLKEAAVRQREALKKLTKNIATDSYISVNLRD
7.40	1 1103	"	1223	VYARSIMEMLRLKGRERASTRSSGGDDFWF
L			_1	

SEO SEO Predicted Predicted Amino acid segment containing signal peptide	:(A≡Alanine i
SEQ SEQ Predicted Predicted Amino acid segment containing signal peptide ID ID beginning end C=Cysteine, D=Aspartic Acid, E=Glutami	ic Acid
NO: NO: nucleotide nucleotide E = Phonylalanine G = Clycine H = Histidine	
of of location location I I I wise I I wise M-Methopine N-	
Nucleic Amino corre- Co	
Acids Acids Spottering Spottering	
amino amino X=Unknown, *=Stop Codon, /=possible nu	icleotide deletion,
acid acid \=possible nucleotide insertion)	
of amino of amino	
acid acid	
sequence sequence	
447 1186 2 1031 FTVFILGITIRPLVEFLDVKRSNKKQQAVSE	BIYCRLFDHVKT
GIEDVCGHWGHNFWRDKFKKFDDKYLRKLLI	
YKKLEIKHAIEMAETGMISTVPTFASLNDCR	
DEIRELLSRNLYOIRORTLSYNRHSLTADTS	
HSLRESIRKDSSLNREHRASTSTSRYLSLPK	NTKLPEKLOKRR
TISIADGNSSDSDADAGTTVLNLQPRARRFL	PEQFSKKSPQSY
KMEWKNEVDVDSGRDMPSTPPTPHSREKGTQ	
DQSGSEREDSLTEGIPPKPPPRLVWRASEPG	SRKARFGSEKP
448 1187 3 444 HEEASGLSVWMGKQMEPLHAVPPAAITLILS	LLVAVFTECTSN
VATTTLFLPIFASMSRSIGLNPLYIMLPCTI	SASFAFMLPVAT
PPNAIVFTYGHLKVADMVKTGVIMNIIGVFC	VFLAVNTWGRAI
FDLDHFPDWANVTHIET	
449 1188 3 125 HELENNWLQHEKAPTEEGKKELLALSNANPS	LLERHCAYL
450 1189 1 188 GNIIYMYMQPGARSSQDQGKFLTLFYNIVTE	LLNPLIYTLRNR
EVKGALGRLLLGKRELGKE	
451 1190 10 1879 PLEQRSNCRVDPRVRTHTMASDTSSLVQSHT	YKKREPADVPYQ
TGQLHPAIRVADLLQHITQMKCAEGYGFKEE	YESFFEGQSAPW
DSAKKDENRMKNRYGNIIAYDHSRVRLQTIE	GDTNSDYINGNY
IDGYHRPNHYIATQGPMQETIYDFWRMVWHE	NTASIIMVTNLV
EVGRVKCCKYWPDDTEIYKDIKVTLIETELI	AEYVIRTFAVEK
RGVHEIREIRQFHFTGWPDHGVPYHATGLLG	FVRQVKSKSPPS
AGPLVVHCSAGAGRTGCFIVIDIMLDMAERE	EGVVDIYNCVREL
RSRRVNMVQTEEQYVFIHDAILEACLCGDTS	VPASQVRSLYYD
MNKLDPQTNSSQIKEEFRTLNMVTPTLRVEI	CSIALLPRNHEK
NRCMDILPPDRCLPFLITIDGESSNYINAAI	MDSYKQPSAFIV
TQHPLPNTVKDFWRLVLDYHCTSVVMLNDVI	
GVHRHGPIQVEFVSADLEEDIISRIFRIYNA	
FQFLGWPMYRDTPVSKRSFLKLIRQVDKWQF	
CLNGGGRSGTFCAISIVCEMLRHQRTVDVFF	HAVKTLRNNKPNM
VDLLDQYKFCYEVALEYLNSG	
452 1191 603 342 PLTYNKKYTYPWWGDALGWLLALSSMVCIPA	
FRERIRQLMCPAEDLPQRNPAGPSAPATPR	
453 1192 120 449 TLSESGALFSLGPPPLSLKSSSAPRPYSTLI	
GFPNPLAERIIFETHQIHFANCSLGQPTFSI	DESERVEDATIA
PICLIPFLITLVVWRSKDSEAQA .	
454 1193 1838 1066 CEEREQEKDDVDVALLPTIVEKVILPKLTV	- -
TSRMVGITLKLINGYPSVVNAENKNTQVYLI	
DVFMPLYPKNVLENKNSGPYLFFQRQFWSS	
FSNKTLQELSIDGLLNRYILMAFQNSEYGDI	-
PKQWFMNLKGERTISQLENFCRYLVHLADT	

OF C	CEC	Dandisand	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ	Predicted beginning	end	Amino acid segment containing signal peptide (A=Alamile,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
				1 - I mediane, v - vaine, v - 11yptophan, 1 - 1ytoshe,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
,		acid	acid	\=possible nucleotide insertion)
! ·		residue	residue	
		of amino	of amino	
		acid	acid	•
		sequence	sequence	
455	1194	112	1361	TPFCFLCSLVFRSRVWAEPCLIDAAKEEYNGVIEEFLATGEKL
ĺ	[FGPYVWGRYDLLFMPPSFPFGGMENPCLTFVTPCLLAGDRSLA
				DVIIHEISHSWFGNLVTNANWGEFWLNEGF ¹ TMYAQRRISTILF
		ļ		GAAYTCLEAATGRALLRQHMDITGEENPLNKLRVKIEPGVDPD
				DTYNETPYEKGFCFVSYLAHLVGDQDQFDSFLKAYVHEFKFRS
i		1		ILADDFLDFYLEYFPELKKKRVDIIPGFEFDRWLNTPGWPPYL
		1		PDLSPGDSLMKPAEELAQLWAAEELDMKAIEAVAISPWKTYQL
		\		VYFLDKILOKSPLPPGNVKKLGDTYPSISNARNAELRLRWGOI
			1	VLKNDHOEDFWKVKEFLHNQGKQKYTLPLYHAMMGGSEVAQTL
			1	AKETFASTASQLHSNVVNYVQQIVAPKGS
156	2205	ļ	889	CASGSSGWRPVLWAGAFTMASAELDYTIEIPDOPCWSOKNSPS
456	1195	1	889	PGGKEAETROPVVILLGWGGCKDKNLAKYSAIYHKRGCIVIRY
1				
l	l .			TAPWHMVFFSESLGIPSLRVLAQKLLELLFDYEIEKEPLLFHV
1 .		1		FSNGGVMLYRYVLELLQTRRFCRLRVVGTIFDSAPGDSNLVGA
			1	LRALAAILERRAAMLRLLLLVAFALVVVLFHVLLAPITALFHT
		ļ	i	HFYDRLQDAGSRWPELYLYSRADEVVLARDIERMVEARLARRV
			ł	LARSVDFVSSAHVSHLRDYPTYYTSLCVDFMR\NWVRC
457	1196	2	295	PRVRDRLPSTGVRDRKGDKPWKESGGSVEAPRMGFTHPPGHLS
		İ	1	GCQSSLASGETGTGSADPPGGPRPGLTRRAPVKDTPGRAPAAD
1	1		ł	AAPAGPSSCLG
458	1197	1299	682	QGRTSCIGLYTYQRRICKYRDQYNWFFLARPTTFAIIENLKYF
			1	LLKKDPSOPFYLGHTIKSGDLEYVGMEGGIVLSVESMKRLNSL
	1 .	1		LNIPEKCPEQGGMIWKISEDKQLAVCLKYAGVFAENAEDADGK
,	1		1	DVFNTKSVGLSIKEAMTYHPNQVVEGCCSDMAVTFNGLTPNQM
	1	1	i	HVMMYGVYRLRAFG\HIFNDALVFLPPNGSDND
1.50	1	770	 	HEGKPTRGRGGGSLSTRGRGSEVPDSAHLAPTPLFSESGCCG
459	1198	779	61	
			ì	LRSRFLTDCKMEEGGNLGGLIKMVHLLVLSGAWGMQMWVTFVS
		İ		GFLLFRSLPRHTFGLVQSKLFPFYFHISMGCAFINLCILASQH
			1.	AWAQLTFWEASQLYLLFLSLTLATVNARWLEPRTTAAMWALQT
]				VEKERGLGGEVPGSHQGPDPYRQLREKDPKYSALRQNFFRYHG
	1			LSSLCNLGCVLSNGLCLA\ALPWK
460	1199	517	815	KQLDKQLRADPSGSLPPLPPSPPPPLEAGGRPPEVP/PRGPSA
				VPSFPSVSGDWGGPVEAG/EGGQQGRGRARARPCSLPPLLPPS
				PVCRLSGSRAPLGCDG
461	1200	1	583	RNQLSSQKSVPWVPILKSLPLWAIVVAHFSYNWTFYTLLTLLP
101		-		TYMKEILRFNVQENGFLSSLPYLGSWLCMILSGQAADNLRAKW
1	1	1	1	NFSTLCVRRIFSLIGMIGPAVFLVAAGFIGCDYSLAVAFLTIS
1				TTLGGFCSSGFSINHLDIAPSYAGILLGITNTFATIPGMVGPV
1	-			
			<u> </u>	IAKSLTPDMGISLHRPGWSAVA -
462	1201	25	383	GPSGTTHASAHSGHPGSPRGSLSRHPSSQLAGPGVEGGEGTQK
1		1		PRDYIILAILSCFCPMWPVNIVAFAYAVMSRNSLQQGDVDGAQ
1		į		RLGRVAKLLSIVALVGGVLIIIASCVINLGVYK
463	1202	573	372	SLFLSFPPLSFKMTLNDAMRNKARLSITGSTGENGRVMTPEFP
	1 2202			
	1202			KAVHAVPYVSPGMGMNVSVTDLS

CEO	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ ID	ID ID	beginning	end	
NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	согге-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acius	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
Į		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
	1	residue	residue	,
		of amino	of amino	
ŀ	ł	acid	acid	
]	sequence	sequence	
464	1203	2018	491	DDVPPPAPDLYDVPPGLRRPGPGTLYDVPRERVLPPEVADGGV
			,	VDSGVYAVPPPAEREAPAEGKRLSASSTGSTRSSQSASSLEVA
	1	1	1	GPGREPLELEVAVEALARLQQGVSATVAHLLDLAGSAGATGSW
	ļ		l	RSPSEPQEPLVQDLQAAVAAVQSAVHELLEFARSAVGNAAHTS
	1			DRALHAKLSRQLQKMEDVHQTLVAHGQALDAGRGGSGATLEDL
				DRLVACSRAVPEDAKQLASFLHGNASLLFRRTKATAPGPEGGG
				TLHPNPTDKTSSIQSRPLPSPPKFTSQDSPDGQYENSEGGWME
1	Į]	Į	DYDYVHLQGKEEFEKTQKELLEKGSITRQGKSQLELQQLKQFE
			1	RLEQEVSRPIDHDLANWTPAQPLAPGRTGGLGPSDRQLLLFYL
	ļ		İ	EOCEANLTTLTNAVDAFFTAVATNOPPKIFVAHSKFVILSAHK
	1		i	LVFIGDTLSRQAKAADVRSQVTHYSNLLCDLLRGIVATTKAAA
	ł	1	Į	LOYPSPSAAQDMVERVKELGHSTQQFRRVLGQLAAA
465	1204	299	189	EMEEPOKSYVNTMDLERDEPLKSTGPQISVSEFSCHCCYDILV
100	1201			NPTTLNCGHSFCRHCLALWWASSKKTECPECREKWEGFPKVSI
	ļ			LLRDAIEKLFPDAIRLRFEDIQQNNDIVQSLAAFQKYGNDQIP
1	1			LAPNTGRANOOMGGGFFSGVLTALTGVAVVLLVYHWSSRESEH
1	1]	ļ	DLLVHKAVAKWTAEEVVLWLEQLGPWASLYRERFLSERVNGRL
1	1		ļ	LLTLTEEEFSKTPYTIENSSHRRAILMELERVKALGVKPPONL
	Į.		l	WEYKAVNPGRSLFLLYALKSSPRLSLLYLYLFDYTDTFLPFIH
1	l '		Į.	TICPLOEDSSGEDIVTKLLDLKEPTWKOWREFLVKYSFLPYQL
1 .	1	ŀ	l	IAEFAWDWLEVHYWTSRFLIINAMLLSVLELFSFWRIWSRSEL
1		1	1	K*VGFRFLRLGVAALGSVEVAGLRGVVKGERPLLYGHGAGARF
	1		1	PHSVLLLPVAKPLPLPLPRGLC
466	1205	2	242	EKARMIYEDYISILSPKEVSLDSRVREVINRNLLDPNPHMYED
400	1203	*	2.12	AQLQIYTLMHRDSFPRFLNSQIYKSFVESTAGSSSES
467	1206	2	619	LYYSODEESKIMISDFGLSKMEGKGDVMSTACGTPGYVAPEVL
46/	1206	4	1019	AOKPYSKAVDCWSIGVIAYILLCGYPPFYDENDSKLFEQILKA
	1			EYEFDSPYWDDISDSAKDFIRNLMEKDPNKRYTCEQAARHPWI
	1	1		-
1	1	1	1	AGDTALNKNIHESVSAQIRKNFAKSKWRQAFNATAVVRHMRKL
460	1200	1-	1353	HLGSSLDSSNASVSSSLSLASQKDCASGTFHAL
468	1207	1	352	RTRGGAVSFEDFIKGLSILLRGTVQEKLNWAFNLYDINKDGYI
	1	1		TKEEMLDIMKAIYDMMGKCTYPVLKEDAPRQHVETFFQKMDKN
	1			KDGVVTIDEFIESCQKDENIMRSMQLFENVI
469	1208	3	1015	PRSPEHHTPAWHEGRSLGPIMASMADRNMKLFSGRVVPAQGEE
1	1			TFENWLTQVNGVLPDWNMSEEEKLKRLMKTLRGPAREVMRVLQ
1				ATNPNLSVADFLRAMKLVFGESESSVTAHGKFFNTLQAQGEKA
	1		1	SLYVIRLEVQLQNAIQAGIIAEKDANRTRLQQLLLGGELSRDL
1				RLRLKDFLRMYANEQERLPNFLELIKMVREEEDWDDAFIKRKR
1				PKRSESMVERAVSPVAFQGSPPIVIGSADCNVIEIDDTLDDSD
				EDVILVESQDPPLPSWGAPPLRDRARPQDEVLVIDSPHNSRAQ
				FPSTSGGSGYKNNGPGEMRRARKRKHTIRCSYCGEE
470	1209	1543	1351	SVACTVPLRSMSDPDQDFDKEPDSDSTKHSTPSNSSNPSGPPS
		 		PNSPHRSQLPLEGLEQPACDT
				······································

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \perpossible nucleotide insertion)
471	1210	3	952	YSAVEFAERGSGGSSGDELREDDEPVKKRGRKGRGRGPPSSSD SEPEAELEREAKKSAKKPQSSSTEPARKPGQKEKRVRPEEKQQ AKPVKVERTRKRSEGFSMDRKVEKKKEPSVÈEKLQKLHSEIKF ALKVDSPDVKRCLNALEELGTLQVTSQILQKNTDVVATLKKIR RYKANKDVMEKAAEVYTRLKSRVLGPKIEAVQKVNKAGMEKEK AEEKLAGEELAGEEAPQEKAEDKPSTDLSAPVNGEATSQKGES AEDKEHEEGRDSEEGPRCGSSEDLHDSVREGPDLDRPGSDRQE RERARGDSEALDEES
472	1211	5204	2901	LAELSSLSVLRLSHNSISHIAEGAFKGLRSLRVLDLDHNEISG TIEDTSGAFSGLDSLSKLTLFGNKIKSVAKRAFSGLEGLEHLN LGGNAIRSVQFDAFVKMKNLKELHISSDSFLCDCQLKWLPPWL IGRMLQAFVTATCAHPESLKGQSIFSVPPESFVCDDFLKPQII TQPETTMAMVGKDIRFTCSAASSSSSPMTFAWKKDNEVLTNAD MENFVHVHAQDGEVMEYTTILHLRQVTFGHEGRYQCVITNHFG STYSHKARLTVNVLPSFTKTPHDITIRTTTMARLECAATGHPN PQIAWQKDGGTDFPAARERRMHVMPDDDVFFITDVKIDDAGVY SCTAQNSAGSISANATLTVLETPSLVVPLEDRVVSVGETVALQ CKATGNPPPRITWFKGDRPLSLTERHHLTPDNQLLVVQNVVAE DAGRYTCEMSNTLGTERAHSQLSVLPAAGCRKDGTTVGIFTIA VVSSIVLTSLVWVCIIYQTRKKSEEYSVTNTDETVVPPDVPSY LSSQGTLSDRQETVVRTEGGPQANGHIESNGVCPRDASHFPEP DTHSVACRQPKLCAGSAYHKKPWKAMEKAEGTPGPHKMEHGGR VVCSDCNTEVDCYSRGQAFHPQPVSRDSAQPSAPNGPEPGGSD QEHSPHHQCSRTAAGSCPECQGSLYPSNHDRMLTAVKKKPMAS LDGKGDSSWTLARLYHPDSTELQPASSLTSGSPERAEAQYLLV SNGHLPKACDASPESTPLTGQLPGKQRVPLLLAPKS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
473	1212	2	2466	AAAGAARRVSVRCGRSGPGPGRGAAGLSPADIALASEQGASCS VRAPERKLRMKLLWQAKMSSIQDWGEEVEGAVYHVTLKRVQI QQAANKGARWLGVEGDQLPPGHTVSQYETCKIRTIKAGTLEKL VENLLTAFGDNDFTYISIFLSTYRGFASTKEVLELLLDRYGNL TSPNCEEDGSQSSSESKMVIRNAIASILRAWLDQCAEDFREPP HFPCLQKLLDYLTRMMPGSDPERRAQNLLEQFQKQEVETDNGL PNTISFSLEEEEELEGGESAEFTCFSEDLVAEQLTYMDAQLFK KVVPHHCLGCIWSRRDKKENKHLAPTIRATISQFNTLTKCVVS TILGGKELKTQQRAKIIEKWINIAHECRLLKNFSSLRAIVSAL QSNSIYRLKKTWAAVPRDRMLMFEELSDIFSDHNNHLTSRELL MKEGTSKFANLDSSVKENQKRTQRRLQLQKDMGVMQGTVPYLG TFLTDLTMLDTALQDYIEGGLINFEKRRREFEVIAQIKLLQSA CNSYCMTPDQKFIQWFQRQQLLTEEESYALSCEIEAAADASTT SPKPWKSMVKRLNLLFLGADMITSPTPTKEQPKSTASGSSGES MDSVSVSSCESNHSEAEEGYITPMDTPDEPQKKLSESSYCSS IHSMDTNFLQGMSSLINPLSSPPSCNNNPKIHKRSVSVTSITS TVLPPVYNQQNEDTCIIRISVEDNNGNMYKSIMLTSQDKTPAV IQRAMLKHNLDSDPAEEYELVQVISEDKELVIPDSANVFYAMN SQVNFDFILRKKNSMEEQVKLRSRTSLTLPRTAKRGCWSNRHS KITL
474	1213	1	867	AREKMDSCIEAFGTTKQKRALNTRRMNRVGNESLNRAVAKAAE TIIDTKGVTALVSDAIHNDLQDDSLYLPPCYDDAAKPEDVYKF EDLLSPAEYEALQSPSEAFRNVTSEEILKMIEENSHCTFVIEA LKSLPSDVESRDRQARCIWFLDTLIKFRAHRVVKRKSALGPGV PHIINTKLLKHFTCLTYNNGRLRNLISDSMKAKITAYVIILAL HIHDFQIDLTVLQRDLKLSEKRMMEIAKAMRLKISKRRVSVAA GSEEDHKLGTLSLPLPPAQTSDRLAKRRKIT

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
475	1214		2621	LSLFGSRALGRSGARAMAKAKKVGARRKASGAPAGARGGPAKA NSNPFEVKVNRQKFQILGRKTRHDVGLPGVSRARALRKRTQTL LKEYKERDKSNVFRDKRFGEYNSNMSPEEKMMKRFALEQQRHH EKKSIYNLNEDEELTHYGQSLADIEKHNDIVDSDSDAEDRGTL SGELTAAHFGGGGGLLHKKTQQEGEEREKPKSRKELIEELIAK SKQEKRERQAQREDALELTEKLDQDWKEIQTLLSHKTPKSENR DKKEKPKPDAYDMMVRELGFEMKAQPSNRMKTEAELAKEEQEH LRKLEAERLRRMLGKDEDENVKKPKHMSADDLNDGFVLDKDDR RLLSYKDGKMNVEEDVQEEQSKEASDPESNEEEGDSSGGEDTE ESDSPDSHLDLESNVESEEENEKPAKEQRQTPGKGLISGKERA GKATRDELPYTFAAPESYEELRSLLLGRSMEEQLLVVERIQKC NHPSLAEGNKAKLEKLFGFLLEYVGDLATDDPPDLTVIDKLVV HLYHLCQMFPESASDAIKFVLRDAMHEMEEMIETKGRAALPGL DVLIYLKITGLLFPTSDFWHPVVTPALVCLSQLLTKCPILSLQ DVVKGLFVCCLFLEYVALSQRFIPELINFLLGILYIATPNKAS QGSTLVHPFRALGKNSELLVVSAREDVATWQQSSLSLRWASRL RAPTSTEANHIRLSCLAVGLALLKRCVLMYGSLPSFHAIMGPL RALLTDHLADCSHPQELQELCQSTLTEMESQKQLCRPLTCEKS KPVPLKLFTPRLVKVLEFGRKQGSSKEEQERKRLIHKHKREFK GAVREIRKDNQFLARMQLSEIMERDAERKRKVKQLFNSLATQE GEWKALKRKKFKK
476	1215	3	961	LTKQEDCCGSIGTAWGQSKCHKCPQLQYTGVQKPGPVRGEVGA DCPQGYKRLNSTHCQDINECAMPGVCRHGDCLNNPGSYRCVCP PGHSLGPSRTQCIADKPEEKSLCFRLVSPEHQCQHPLTTRLTR QLCCCSVGKAWGARCQRCPTDGTAAFKEICPAGKGYHILTSHQ TLTIQGESDFSLFLHPDGPPKPQQLPESPSQAPPPEDTEERG VTTDSPVSEERSVQQSHPTATTTPARPYPELISRPSPPTMRWF LPDLPPSRSAVEIAPTQVTETDECRLNQNICGHGECVPGPPDY SCHCNPGYRSHPQHRYCV

CEO	SEO.	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ ID	SEQ ID	beginning	end	
		nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Nucleic	of Amino	согге-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acius	Acias	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
Į I		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	(-possible nacicolide insertion)
		of amino	of amino	
		acid	acid	
]		sequence	sequence	
477	1216	3652	1207	MAGGHCGSFPAAAAGSGEIVQLNVGGTRFSTSRQTLMWIPDSF
]				FSSLLSGRISTLRDETGAIFIDRDPAAFAPILNFLRTKELDLR
ľ				GVSINVLRHEAEFYGITPLVRRLLLCEELERSSCGSVLFHGYL
Ì	ļ			PPPGIPSRKINNTVRSADSRNGLNSTEGEARGNGTQPVLSGTG
	1			EETVRLGFPVDPRKVLIVAGHHNWIVAAYAHFAVWYRIKESSG
1				WOOVFTSPYLDWTIERVALNAKVVGGPHGDKDKMVAVASESSI
				ILWSVQDGGSGSEIGVFSLGVPVDALFFIGNQLVATSHTGKVG
1	l			VWNAVTOHWOVODVVPITSYDTAGSFLLLGCNNGSIYYIDMQK
				FPLRMKDNDLLVTELYHDPSNDAITALSVYLTPKTSVSGNWIE
	ļ			
1	1			IAYGTSSGAVRVIVQHPETVGSGPQLFQTFTVHRSPVTKIMLS
1 .		1		EKHLVSVCADNNHVRTWTVTRFRGMISTQPGSTPLASFKILSL
			1	EETESHGSYSSGNDIGPFGERDDQQVFIQKVVPITNKLFVRLS
			l	STGKRICEIQAVDCTTISSFTGRECEGSSRMGSRPRRYLFTGH
1	1		1	TNGSIQMWDLTTAMDMVNKSEDKDVGGPTEEELLKLLDQCDLS
1	Į			TSRCATPNISPATSVVQHSHLRESNSSLQLQHHDTTHEAATYG
		Į /		SMRPYRESPLLARARRIESFHSYRDFQTINLNRNVERAVPENG
1.		ł		NLGPIQAEVKGATGECNISERKSPGVEIKSLRELDSGLEVHKI
	İ		l	AEGFSESKKRSSEDENENKIEFRKKGGFEGGGFLGRKKVPYLA
1				SSPSTSDGGTDSPGTASPSPTKTTPSPRHKKSDSSGQEYSL
478	1217	1	1379	RRPTRPILTDELFKRTIQLPHLKTLILNGNKLETLSLVSCFAN
	- 0	İ		NTPLEHLDLSQNLLQHKNDENCSWPETVVNMNLSYNKLSDSVF
1			1	RCLPKSIQILDLNNNQIQTVPKETIHLMALRELNIAFNFLTDL
	1		1	PGCSHFSRLSVLNIEMNFILSPSLDFVQSCQEVKTLNAGRNPF
		ļ	1	RCTCELKNFIQLETYSEVMMVGWSDSYTCEYPLNLRGTRLKDV
1	1			HLHELSCNTALLIVTIVVIMLVLGLAVAFCCLHFDLPWYLRML
				GOCTOTWHRVRKTTOEOLKRNVRFHAFISYSEHDSLWVKNELI
1	İ	1		PNLEKEDGSILICLYESYFDPGKSISENIVSFIEKSYKSIFVL
1				SPNFVQNEWCHYEFYFAHHNLFHENSDHIILILLEPIPFYCIP
1		1		TRYHKLKALLEKKAYLEWPKDRRKCGLFWANLRAAINVNVLAT
1.	.]		1	REMYELOTFTELNEESRGSTISLMRTDCL
479	1218	1,	1099	PTRPPTRPPTRPLLTPSWTSTGRMWSHLNRLLFWSIFSSVTCR
1 3/3	1210	*	1000	KAVLDCEAMKTNEFPSPCLDSKTKVVMKGQNVSMFCSHKNKSL
1		1		QITYSLFRRKTHLGTQDGKGEPAIFNLSITEAHESGPYKCKAQ
		1		VTSCSKYSRDFSFTIVDPVTSPVLNIMVIQTETDRHITLHCLS
	1			
				VNGSLPINYTFFENHVAISPAISKYDREPAEFNLTKKNPGEEE
1	1			EYRCEAKNRLPNYATYSHPVTMPSTGGDSCPFCLKLLLPGLLL
1		1		LLVVIILILAFWVLPKYKTRKAMRNNVPRDRGDTAMEVGIYAN
1				ILEKQAKEESVPEVGSRPCVSTAQDEAKHSQELQYATPVFQEV
			<u> </u>	APREQEACDSYKSGYVYSELNF
480	1219	1	293	FFFFEERRTGSHSVGHPRMEYSGVSMAHCSLNLLGSSNSPSSA
	i			SQDARTTGACQHAQLIGFFFF\VETASPQVTHAG/LKHLVSRN
				PSAVTSQSARIKT
L		<u> </u>		1

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
481	1220		727	NREGARKIQNKWLRPSPRSHRTPESVSPERYSYGTSSSSKRTE GSCRRRRQSSSSANSQQGQWETGSPPTKRQRRSRGRPSGGAKR RRRGAPAAPQQQSEPARPSSEGKVTCDIRLRVRAEYCEHGPAL EQGVASRRPQALARQLDVFGQATAVLRSRDLGSVVCDIKFSEL SYLDAFWGDYLSGALLQALRGVFLTEALREAVGREAVRLLVSV DEADYEAGRRRLLLMEEEGGRRPTEAS
482	1221	1	1321	APNTAELRICRVNKNCGSVRGGDEIFLLCDKVQKDDIEVRFVL NDWEAKGIFSQADVHRQVAIVFKTPPYCKAITEPVTVKMQLRR PSDQEVSESMDFRYLPDEKDTYGNKAKKQKTTLLFQKLCQDHV ETGFRHVDQDGLELLTSGDPPTLASQSAGITVNFPERPRPGLL GSIGEGRYFKKEPNLFSHDAVVREMPTGVSSQAESYYPSPGPI SSGLSHHASMAPLPSSSWSSVAHPTPRSGNTNPLSSFSTRTLP SNSQGIPPFLRIPVGNDLNASNACIYNNADDIVGMEASSMPSA DLYGISDPNMLSNCSVNMMTTSSDSMGETDNPRLLSMNLENPS CNSVLDPRDLRQLHQMSSSSMSAGANSNTTVFVSQSDAFEGSD FSCADNSMINESGPSNSTNPNSHGFVQDSQYSGIGSMQNEQLS DSFPYEFFQV
483	1222	1	1311	RRLSLLDLQLGPLGRDPPQECSTFSPTDSGEEPGQLSPGVQFQ RRQNQRRFSMEDVSKRLSLPMDIRLPQEFLQKLQMESPDLPKP LSRMSRRASLSDIGFGKLETYVKLDKLGEGTYATVFKGRSKLT ENLVALKEIRLEHEEGAPCTAIREVSLLKNLKHANIVTLHDLI HTDRSLTLVFEYLDSDLKQYLDHCGNLMSMHNVKIFMFQLLRG LAYCHHRKILHRDLKPQNLLINERGELKLADFGLARAKSVPTK TYSNEVVTLWYRPPDVLLGSTEYSTPIDMWGVGCIHYEMATGR PLFPGSTVKEELHKINRLLGTPTEETWPGVTAFSEFRTYSFPC YLPQPLINHAPRLDTDGIHLLSSLLLYESKSRMSAEAALSHSY FRSLGERVHQLEDTASIFSLKEIQLQKDPGYRGLAFQQPGRGK NRRQSIF
484	1223	807	356	CTPHGSSSSWKIPLWPRHMSPLHSCLPVGTSTSSGPLAVPRDC FHLCCLWGQLLLISCPLACGQGCRVAGGQQHVPGQALGTLSPL VSLLTWAGPSLDWPHPGSLVTPRCPILPAVPVLVKGLGGWPPT RPSRAAPVSGPWDQLPYFPGL
485	1224	1199	370	LISPVWGNIQRSRSVPLFPSGLVLGGIWARGPLLALLASFNII SVLNAECYLKQILHPTSHFTVSETPPLSGNDTDSLSCDSGSSA TSTPCVSRLVTGHHLWASKNGRHVLGLIEDYEALLKQISQGQR LLAEMDIQTQEAPSSTSQELGTKGPHPAPLSKFVSSVSTAKLT LEEAYRRLKLLWRVSLPEDGQCPLHCEQIGEMKAEVTKLHKKL FEQEKKLQNTMKLLQLSKRQEKVIFDQLVVTHKILRKARGNLE LRPGGAHPGTCSPSRPGS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
	Ì	sequence	sequence	
486	1225	2469	1660	LGLFCILPIDTLCAVLERDTLSIRESRLFGAVVRWAEAECQRQ QLPVTFGNKQKVLGKALSLIRFPLMTIEEFAAGPAQSGILSDR EVVNLFLHFTVNPKPRVEYIDRPRCCLRGKECCINRFQQVESR WGYSGTSDRIRFTVNRRISIVGFGLYGSIHGPTDYQVNIQIIE YEKKQTLGQNDTGFSCDGTANTFRVMFKEPIEILPNVCYTACA TLKGPDSHYGTKGLKKVVHETPAASKTVFFFFSSPGNNNGTSI EDGQIPEIIFYT
487	1226	1193	372	SVWWNSEVKDWMQKKRRGLRNSRATAGDIAHYYRDYVVKKGLG HNFVSGAVVTAVEWGTPDPSSCGAQDSSPLFQVSGFLTRNQAQ QPFSLWARNVVLATGTFDSPARLGIPGEALPFIHHELSALEAA TRVGAVTPASDPVLIIGAGLSAADAVLYARHYNIPVIHAFRRA VDDPGLVFNQLPKMLYPEYHKVHQMMREQSILSPSPYEGYRSL PRHQLLCFKEDCQAVFQDLEGVEKVFGVSLVLVLIGSHPDLSF LPGAG\LTLQWILTSR
488	1227	756	1016	KLRPFIFSNQSLWLHSYEGAELEKTFIKGSWATFWVKVASCWA CVLLYLGLLLAPLCWPPTQKPQPLILRRRRHRIISPDNKYPPV
489	1228	1	747	QLIHLSHGYQIHWTDYYNVGTGRPEFGTRAAHKSLAGAELKTL KDFVTVLAKLFPGRPPVKKLLEMLQEWLASLPLDRIPYNAVLD LVNNKMRISGIFLTNHIKWVGCQGSRSELRGYPCSLWKLFHTL TVEASTHPDALVGTGFEDDPQAVLQTMRRYVHTFFGCKECGEH FEEMAKESMDSVKTPDQAILWLWKKHNMVNGRLAGEKPLGMGG SARAEGGPGPGTARTARLPWGLSLSFAASCHPLC
490	1229	4797	2398	HGGATFINAFVTTPMCCPSRSSMLTGKYVHNHNVYTNNENCSS PSWQAMHEPRTFAVYLNNTGYRTAFFGKYLNEYNGSYIPPGWR EWLGLIKNSRFYNYTVCRNGIKEKHGFDYAKDYFTDLITNESI NYFKMSKRMYPHRPVMMVISHAEPHGPEDSAPQFSKLYPNASQ HITPSYNYAPNMDKHWIMQYTGPMLPIHMEFTNILQRKRLQTL MSVDDSVERLYNMLVETGELENTYIIYTADHGYHIGQFGLVKG KSMPYDFDIRVPFFIRGPSVEPGSIVPQIVLNIDLAPTILDIA GLDTPPDVDGKSVLKLLDPEKPGNRFRTNKKAKIWRDTFLVER GKFLRKKEESSKNIQQSNHLPKYERVKELCQQARYQTACEQPG QKWQCIEDTSGKLRIHKCKGPSDLLTVRQSTRNLYARGFHDKD KECSCRESGYRASRSQRKSQRQFLRNQGTPKYKPRFVHTRQTR SLSVEFEGEIYDINLEEEEELQVLQPRNIAKRHDEGHKGPRDL QASSGGNRGRMLADSSNAVGPPTTVRVTHKCFILPNDSIHCER ELYQSARAWKDHKAYIDEEIEALQDKIKNLREVRGHLKRRKPE ECSCSKQSYYNKEKGVKKQEKLKSHLHPFKEAAQEVDSKLQLF KENNRRKKERKEKRRQRKGEECSLPGLTCFTHDNNHWQTAPF WNLGSFCACTSSNNNTYWCLRTVNETHNFLFCEFATGFLEYFD MNTDPYQLTNTVHTVERGILNQLHVQLMELRSCQGYKQCNPRP KNLDVGNKDGGSYDLHRGQLWDGWEG

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
491	1230	2480	385	HILLIAQELADRVGEGRACWSLGNAYVSMGRPAQALTFAKKHLQ ISQEIGDRHGELTARMNVAQLQLVLGRLTSPAASEKPDLAGYE AQGARPKRTQRLSAETWDLLRLPLEREQNGDSHHSGDWRGPSR DSLPLPVRSRKYQEGPDAERRPREGSHSPLDSADVRVHVPRTS IPRAPSSDEECFFDLLTKFQSSRMDDQRCPLDDGQAGAAEATA APTLEDRIAQPSMTASPQTEEFFDLIASSQSRRLDDQRASVGS LPGLRITHSNAGHLRGHGEPQEPGDDFFNMLIKYQSSRIDDQR CPPPDVLPRGPTMPDEDFFSLIQRVQAKRMDEQRVDLAGGPGA GGRRPARAPAAVPAWCELRPCAHRQAHPAPTPGRRSHSHSHVL PRPLPRTGTGHAAPRPPRPRATGSGQAARGGRACFHPGLAPMA LSFLPSAPAAGRTGPSACRPRPGAVRLPHPLPQALPVLPCPAK CETLLSPSPSPKVSLSRLLGPPRTGPCSVPPELVLGWPCDRHA PPLQLRPGAGLPPSLSPHSPARGQQPQKAPQTTHGRPGCSGSP EVPPAESQGPAGASTGAGPISKAEGMAGHELRHSKTPSQEKGQ GLVLGMLTGSKSSAQSGWEVAPGSVTLTQVGGWSVEAGEASLS STLQTPHMRTPLLPPAGGDDITALSMGRGLTGHQVRDPRTGRT CWSLRWAPGA
492	1231	3	398	NSAADLAIFALWGLKPVVYLLASSFLGLGLHPISGHFVAEHYM FLKGHETYSYYGPLNWITFNVGYHVEHHDFPSIPGYNLPLVRK IAPEYYDHLPQHHSWVKVLWDFVFEDSLGPYARVKRVYRLAKD GL
493	1232	1	214	QESGFSCKGPGQNVAVTRAHPDSQGRRRRPERGARGGQVFYNS EYGELSEPSEEDHCSPSARVTFFTDNSY
494	1233	3	443	VIVHARPIRTRASKYYIPEAVYGLPAYPAYAGGGGFVLSGATL HRLAGACAQVELFPIDDVFLGMCLQRLRLTPEPHPAFRTFGIP QPSAAPHLSTFDPCFYRELVVVHGLSAADIWLMWRLLHGPHGP ACAHPQPVAAGPFQWDS
495	1234	1	897	MASAACSMDPIDSFELLDLLFDRQDGILRHVELGEGWGHVKDQ VLPNPDSDDFLSSILGSGDSLPSSPLWSPEGSDSGISEDLPSD PQDTPPRSGPATSPAGCHPAQPGKGPCLSYHPGNSCSTTTPGP VIQQQHHLGASYLLRPGAGHCQELVLTEDEKKLLAKEGITLPT QLPLTKYEERVLKKIRRKIRNKQSAQESRKKKKEYIDGLETRS CCCPLPSSSSPPSALLAPTKPRALGTLRLYECSPELCTTMLPP AWLLMLCQAPRPQDPDPRLTQPEKSLQEAPGQTGASRTPRT

SEQ ID NO: of	SEQ ID NO: of	Predicted beginning nucleotide location corre-	Predicted end nucleotide location corre-	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic Acids	Amino Acids	sponding to first amino acid	sponding to first amino acid	P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
		residue of amino acid sequence	residue of amino acid sequence	
496	1235	4235	940	ARGRRSRPVWAASWGGRGRPAARRRPRGLAATMGFELDRFDGD VDPDLKCALCHKVLEDPLTTPCGHVFCAGCVLPWVVQEGSCPA RCRGRLSAKELNHVLPLKRLILKLDIKCAYATRGCGRVVKLQQ LPEHLERCDFAPARCRHAGCGQVLLRRDVEAHMRDACDARPVG RCQEGCGLPLTHGEQRAGGHCCARALRAHNGALQARLGALHKA LKKEALRAGKREKSLVAQLAAAQLELQMTALRYQKKFTEYSAR LDSLSRCVAAPPGGKGEETKSLTLVLHRDSGSLGFNIIGGRPS VDNHDGSSSEGIFVSKIVDSGPAAKEGGLQIHDRIIEVNGRDL SRATHDQAVEAFKTAKEPIVVQVLRRTPRTKMFTPPSESQLVD TGTQTDITFEHIMALTKMSSPSPPVLDPYLLPEEHPSAHEYYD PNDYIGDIHQEMDREELELEEVDLYRMNSQDKLGLTVCYRTDD EDDIGIYISEIDPNSIAAKDGRIREGDRIIQINGIEVQNREEA VALLTSEENKNFSLLIARAELQLDEGWMDDDRNDFLDDLHMDM LEEQHHQAMQFTASVLQQKKHDEDGGTTDTATILSNQHEKDSG VGRTDESTRNDESSEQENNGDDATASSNPLAGQRKLTCSQDTL GSGDLPFSNKSFISPECTGAAYLGIPVDECERFRELLELKCQV KSATPYGLYYPSGPLDAGKSDPESVDKELBLLNEELRSIELEC LSIVRAHKMQQLKEQYRESWMLHNSGFRNYNTSIDVRRHELSD ITELPEKSDKDSSSAYNTGESCRSTPLTLEISPDNSLRRAAEG ISCPSSEGAVGTTEAYGPASKNLLSITEDPEVGTPTYSPSLKE LDPNQPLESKERRASDGSRSPTPSQKLGSAYLPSYHHSPYKHA HIPAHAQHYQSYMQLIQQKSAVEYAQSQMSLVSMCKDLSSPTP SEPRMEWKVKIRSDGTRYITKRPVRDRLLRERALKIREERSGM TTDDDAVSEMKMGRYWSKEERKQHLVKAKEQRRREFMMQSRL DCLKEQQAADDRKEMNILELSHKKMMKKRNKKIFDNWMTIQEL LTHGTKSPDGTRVYNSFLSVTTV
497	1236	2	157	FFFLVEMGFCHVGQGGLTLIGSSNLPASASKSAGITGVSHCAR PDFKSCVE
498	1237	1	211	LAGRKVLLFVSGYVVGWGPITWLLMSEVLPLRARGVASGLCVL ASWLTAFVLTKSFLPGGVSVQPQAPGP
499	1238	2	345	FWAPGPPGVGAAVGDASTRSLRESCPSPSPGRLRRTTAPWSSQ ARAAAPAPSSSCRGPDGASSPRDLPWRPWKILRRTPLSGDVEL SQVHPDQRILRRFILSRTCGNTIPGMAE
500	1239	1	523	MRRFLSKVYSFPMRKLILFLVFPVVRQTPTQHFKNQFPALHWE HELGLAFTKNRMNYTNKFLLIPESGDYFIYSQVTFRGMTSECS EIRQAGRPNKPDSITVVITKVTDSYPEPTQLLMGTKSVCEVGS NWFQPIYLGAMFSLQEGDKLMVNVSDISLVDYTKEDKTFFGAF LL

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
D D	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	согте-	
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
l .	·	residue	residue	·
1		of amino	of amino	•
		acid	acid	• *
		sequence	sequence	
501	1240	2	1277	FVWDEVAQRSGCEERWLVIDRKVYNISEFTRRHPGGSRVISHY
				AGQDATDPFVAFHINKGLVKKYMNSLLIGELSPEQPSFEPTKN
			ļ	KELTDEFRELRATVERMGLMKANHVFFLLYLLHILLLDGAAWL
				TLWVFGTSFLPFLLCAVLLSAVQAQAGWLQHDFGHLSVFSTSK
				WNHLLHHFVIGHLKGAPASWWNHMHFQHHAKPNCFRKDPDINM
1]		HPFFFALGKILSVELGKQKKKYMPYNHQHKYFFLIGPPALLPL
			1	YFQWYIFYFVIQRKKWVDLAWMITFYVRFFLTYVPLLGLKAFL
1	l	1		GLFFIVRFLESNWFVWVTQMNHIPMHIDHDRNMDWVSTQLQAT
Į.	1			CNVHKSAFNDWFSGHLNFQIEHHLFPTMPRHNYHKVAPLVQSL
				CAKHGIEYQSKPLLSAFADIIHSLKESGQLWLDAYLHQ
502	1241	999	540	QCGGIPYNTTQFLMNDRDPEEPNLDVPHGISHPGSSGESEAGD
1		}	ł	SDGRGRAHGEFQRKDFSETYERFHTESLQGRSKQELVRDYLEL
ŀ				EKRLSQAEEETRRLQQLQACTGQQSCRQVEELAAEVQRLRTEN
				QRLRQENQMWNREGCRCDEEPGT
503	1242	1448	875	SPERSSLSVGREKAMEVPPPAPRSFLCRALCLFPRVFAAEAVT
***				ADSEVLEERQKRLPYVPEPYYPESGWDRLRELFGKD\VTGSLF
	ŀ			RINVGLRGLVAGGIIGALLGTPVGGLLMAFOKYSGETVOERKO
			ŀ	KDRKALHELKLEEWKGRLOVTEHLPEKIESSLOEDEPENDAKK
			j	IEALLNLPRNPSVIDKODKD
504	1243	149	1293	RSLGLAVTEMVPWVRTMGQKLKQRLRLDVGREICRQYPLFCFL
302	1223	1	1223	LLCLSAASLLLNRYIHILMIFWSFVAGVVTFYCSLGPDSLLPN
			1	IFFTIKYKPKQLGLOELFPQGHSCAVCGKVKCKRHRPSLLLEN
	l			YOPWLDLKISSKVDASLSEVLELVLENFVYPWYRDVTDDESFV
				DELRITLRFFASVLIRRIHKVDIPSIITKKLLKAAMKHIEVIV
	}			KAROKVKNTEFLOOAALEEYGPELHVALRSRRDELHYLRKLTE
1	ł		į	LLFPYILPPKATDCRSLTLLIREILSGSVFLPSLDFLADPDTV
				NHLLIIFIDDSPPEKATEPASPLVPFLQKFAEPRNKKPSVLKL
		1		· · · · · · · · · · · · · · · · · · ·
	1000	<u> </u>	-	ELKQIREQQDLLFRFMNFLKQEGAVHVLHVLFDCGGI
505	1244	2	1116	QSLAEVLQQLGASSELQAVLSYIFPTYGVTPNHSAFSMHALLV
	1	{		NHYMKGGFYPRGVTSEIAFHTIPVIQRAGGAVLTKATVQSVLL
		ŀ	1	DSAGKACGVSVKKGHELVNIYCPIVVSNAGLFNTYEHLLPGNA
1		1		RCLPGVKQQLGTVRPGLGMTSVFICLRGTKEDLHLPSTNYYVY
	1			YDTDMDQAMERYVSMPREEAAEHIPLLFFAFPSAKDPTWEDRF
1				PGRSTMIMLIPTAYEWFEEWQAELKGK\RGSDYETFKNSFVEA
1				SMSVVLKLFPQLEGKVESVTAGSPLTNQFYL\AAPRGACYGAD
1		i	1	HDLGRLHPCVMASLRAQSPIPNLYLTGQDIFTCGLVGALQGAL
1		<u></u>		LCSSTILKRNLYSDLKNLDSRIRAQKKKN
506	1245	1759	873	RPQETRVLQVSCGRAHSLVLTDREGVFSMGNNSYGQCGRKVVE
1	1			NEIYSESHRVHRMQDFDGQVVQVACGQDHSLFLTDKGEVYSCG
1			1	WGADGQTGLGHYNITSSPTKLGGDLAGVNVIQVATYGDCCLAV
				SADGGLFGWGNSEYLQLASVTDSTQVNVPRCLHFSGVGKVRQA
				ACGGTGCAVLNGEGHVFVWGYGILGKGPNLVESAVPEMIPPTL
1.		1		FGLTEFNPEIQVSRIRCGLSHFAALTNKGELFVWGKNIRGCLG
	1			IGRLEDQYFPWRVTMPGEPVDVACGVDHMVTLAKSFI
L				Z-1

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
				SRARIRSSFSRTSSRRAGALYSGMLAGWPFPCFCWVLSASSSL SSQVRSLRSICSRFSHADCSWVRACCSFSTFSTYACFSRNSSS SLMTLAWALLKAWSRISMCLRWSSLAVRTAANSISNFSFSFKN
508	1247	1	1083	MQAVRATASQSLSCARAPREPTQHALRAHWFPPAAAVQPSPHS GVAAAAGTWSSAFRGEHPLVSSGLLLGVREQSFRLLRSKAGTH MYLEHTSHCPHHDDDTAMDTPLPRPRPLLAVERTGQRPLWAPS LELPKPDMQPLPAGAFLEEVAEGTPAQTESEPKVLDPEEDLLC IAKTFSYLRESGWYWGSITASEARQHLQKMPEGTFLVRDSTHP SYLFTLSVKTTRGPTNVRIEYADSSFRLDSNCLSRPRILAFPD VVSLVQHYVASCTADTRSDSPDPAPTPALPMPKEDAPSDPALP APPPATAVHLKLVQPFVRRSSARSLQHLCRLVINRLVADVDCL PLPRRMADYLRQYPFQL
509	1248	2	841	FVDIFQRWKECRGKSPAQAELSYLNKAKWLEMYGVDMHVVRGR DGCEYSLGLTPTGILIFEGANKIGLFFWPKITKMDFKKSKLTL VVVEDDDQGREQEHTFVFRLDSARTCKHLWKCAVEHHAFFRLR TPGNSKSNRSDFIRLGSRFRFSGRTEYQATHGSRLRRTSTFER KPSKRYPSRRHSTFKASNPVIAAQLCSKTNPEVHNYQPQYHPN IHPSQPRWHPHSPNVRPSFQDDRSHWKASASGDDSHFDYVHDQ NQKNLGGMQSMMYRDKLMTAL
510	1249	2	763	GGIRLIQKLTWRSRQQDRENCAMKGKHKDECHNFIKVFVPRND EMVFVCGTNAFNPMCRYYRVSIFYVICFF*STFLPSLICC*S* NLSAFQ*FVLSLVQ*KNKDRILQMEF*YK*NSIAFKRAR*IDM TLAIYFSFV\LSTL*YDGEEISGLARCPFDARQTNGALFADGK LYSATVADFLASDAVIYRSMGDGSALRTIKYDSKWIKE/PHFL YAIK/Y/GNYVYFSFREIVAT**LG/KAVDS/RVARYEKQLVG PTV
511	1250	1555	629	ARALARERESESARADDVTLGVSAILAVDRGGNLGSA\DGWAY IDVEVRRPWAFVGPGCSRSSGNGSTAYGLVGSPRWLSPFHTGG AVSLPRRPRGPGPVLGVARPCLRCVLRPE\HYEPGSHYSGFAG RDASRAFVTGDCSEAGLVDDVSDLSAAEMLTLHNWLSFYEKNY VCVGRVTGRFYGEDGLPTPALTQVEAAITRGLEANKLQLQEKQ TFPPCNAEWSSARGSRLWCSQKSGGVSRDWIGVPRKLYKPGAK EPRCVCVRTTGPPSGQMPDNPPHRNRGDLDHPNLAEYTGCPPL AITCSFPL
512	1251	1100	798	YFIICRDGVLLFCPGWSQTPGAQAILLHWATQNAGMTDMSHSA QPIYLFIYLIRTRSHYVAQAGQLLDSNDSPNVASQNVGITGMS HHAWLKIVLYFCII

SEQ	SEQ	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A = Alanine,
ID NO.	ID NO:	micleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	Notas	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino	•
		acid .	acid	•
	1355	sequence 3	sequence 1395	PAARPPSLVRLSPSPPKPRARARAPOSVEPAAPLVARGSSPPA
513	1252	3	1395	~
				RPAPAMVRPRRAPYRSGAGGPLGGRGRPPRPLVVRAVRSRSWP
				ASPRGPQPPR\IRARSAPPMEGARVFGALGPIGPSSPGLTLGG LAVSEHRLSNKLLAWSGVLEWQEKRRPYSDSTAKLKRTLPCOA
		1		YVNQGENLETDQWPQKLIMQLIPQQLLTTLGPLFRNSQLAQFH
		ļ		FTNRDCDSLKGLCRIMGNGFAGCMLFPHISPCEVRVLMLLYSS
				KKKIFMGLIPYDQSGFVSAIRQVITTRKQAVGPGGVNSGPVOI
		İ		VNNKFLAWSGVMEWQEPRPEPNSRSKRWLPSHVYVNQGEILRT
		· ·		EQWPRKLYMQLIPQQLLTTLVPLFRNSRLVQFHFTKDLETLKS
		ŀ		LCRIMDNGFAGCVHFSYKASCEIRVLMLLYSSEKKIFIGLIPH
				DQGNFVNGIRRVIANQQQVLQRNLEQEQQQRGMGG
514	1253	320	964	GRPALGREAPPOAGLSSTPPPCSETCTMGPHSILRTVHCRPTK
274	1233	320	704	TPPEPSAEPHPLSLLTSSNTSLAGTSLGRDLTPGGGKPPSQT
	1	i		PRNPESPRHRLGSPRGRRWLASPTPTGSGRSGPASRGORRLSC
	,			AAODPTSEGASVGAMEAGLGPPTAAPRGVVSEAAESLGGTLSW
ļ			l	GAWGRPPAGPSGLAGRRSRREALRPDRKEASVMMAAVSAIOP
515	1254	704	107	PGVPTHGWPRSRVLTRVRGSRGSGKMAAAVVLAAGLRAARRAV
313	1234	'0"	10,	AATGVRGGQVRGAAGVTDGNEVAKAQQATPGGAAPTIFSRILD
		1	1	KSLPADILYEDOOCLVFRDVAPOAPVHFLVIPKKPIPRISOAE
1		l		EEDQQ/LTYVPPLSL*LLGHLLLVAKQTAKAEGLGDGYRLVIN
		1		DGKLGAQSVYHLHIHVLGGRQLQWPPG
516	1255	2299	924	VPNYLPSVSSAIGGEVPQRYVWRFCIGLHSAPRFLVAFAYWNH
320				YLSCTSPCSCYRPLCRLNFGLNVVENLALLVLTYVSSSEDF/T
	l	ļ		WVPG*GRSGEVFPEGTGLPLPHSDLPTSWCGHSLQCGSQSSFP
		İ		PAIHENAFIVFIASSLGHMLLTCILWRLTKKHTVSQE\DGLSL
				AGAPROPRRKSRTSVLRIRVMVRWELSSNGNPGRGVLGLGLGL
	}		-	GNKLRVVGQNLGL*HCVWVVWETGE*KRWRLQMGIE*GVASRR
				Q*VRNSVRGLVCHNSSAPPMYMGFFSPTVFGGGVGG*LHVTFI
				LHPPEVEAAGIPLLLGPSLPQRQGREHIVVILAAPACAPFHDR
			1.	*WEPREIRPSP*ELGLRGEPTLSYPASCRVIRQPIP*DRKSYS
}			1	WKQRLFIINFISFFSALAVYFRHNMYCEAGVYTIFAILEYTVV
				LTNMAFHMTAWWDFGNKELLITSQPEEKRF
517	1256	3	254	IDLLEIRNGPRSHESFQEMDLNDDWKLSKDEVKAYLKKEFEKH
				GAVVNESHHDALVEDIFDKEDEDKDGFISAREFTYKHDEL
518	1257	2	611	PRVRGRVGKEGAAAKPRSLLRRFQLLSWSVCGGNKDPWVQELM
		1		SCLDLKECGHAYSGIVAHQKHLLPTSPPISQASEGASSDIHTP
1				AQMLLSTLQSTQRPTLPVGSLSSDKELTRPNETTIHTAGHSLA
1	ì	1		AGPEAGENQKQPEKNAGPTARTSATVPVLCLLAIIFILTAALS
	1			YVLCKRRRGQSPQSSPDLPVHYIPVAPDSNT
519	1258	1002	418	LIISNFLKAKQKPGSTPNLQQKKSQARLAPDIVSASQYRKFDE
			1	FQTGILIYELLHQPNPFEVRAQLRERDYRQEDLPPLPALSLYS
1	Į.	1		PGLQQLAHLLLEADPIKRIRIGEAKRVLQCLLWGPRRELVQQP
1.			1	GTSEEALCGTLHNWIDMKRALMMMKFAEKAVDRRRGVELEDWL
1				CCQYLASAEPGALLQSLKLLQLL
				the second secon

SEQ	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A = Alanine,
ID ID	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	согге-	согге-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
````	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
ļ		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
]	Ì	acid	acid	\=possible nucleotide insertion)
		residue	residue	•
		of amino	of amino	
		acid	acid	
		sequence	sequence	
520	1259	2	2019	KRGLIVVMAHEMIGTQIVTERGVALLESGTEKVLLIDSRPFVE
ļ				YNTSHILEAININCSKLMKRRLQQDKVLITELIQHSAKHKVDI
				DCSQKVVVYDQSSQDVASLSSDCFLTVLLGRLEKSFNSVHLLA
		İ		GGFAEFSRCFPGLCEGKSTLVPTCISQPCLPVANIGPTRILPN
				LYLGCQRDVLNKELMQQNGIGYVLNASNTCPKPDFIPESHFLR
				VPVNDSFCEKILPWLDKSVDFIEKAKASNGCVLVHCLAGISRS
ļ	İ		l	ATIAIAYIMKRMDMSLDEAYRFVKEKRPTISPNFNFLGQLLDY
1			1	EKKIKNQTGASGPKSKLKLLHLEKPNEPVPAVSEGGQKSETPL
				SPPCADSATSEAAGQRPVHPASVPSVPSVQPSLLEDSPLVQAL
	ļ			SGLHLSADRLEDSNKLKRSFSLDIKSVSYSASMAASLHGFSSS
		1		EDALEYYKPSTTLDGTNKLCQFSPVQEL/CGADSRNQS**GGS
	1		1	Q/PSPRSCRPPGLQTARASDCIRSEPAAVAPPRGPFYLHCIEV
	1	1		GAWRTITTPASFSAFPP\PAAPHEVCWPGP*GLA\PDILAPQT
1		· · · ·		STPSLTSSWYFATESSHFYSASAIYGGSASYSAYSCSQLPTCG
İ	Į.		•	DQVYSVRRRQKPSDRADSRRSWHEESPFEKQFKRRSCQMEFGE
				SIMSENRSREELGKVGSQSSFSGSMEIIEVS
521	1260	20	803	ASSSKRVSRQKMLQLWKLVLLCGVLTGTSESLLDNLGNDLSNV
İ	İ			VDKLEPVLHEGLETVDNTLKGILEKLKVDLGVLQKSSAWQLAK
		j		QKAQEAEKLLNNVISKLLPTNTDIFGLKISNSLILDVKAEPID
	1		İ	DGKGLNLSFPVTANVTEAGPIIDQIIN\LRASLDLLTAVTIET
		1	1 .	DPQTHHPVAGLGECARDPTSISLCLLDKHSQIINKFVNSVINT
1				LKSTVSSLLQKEICPLIRIFIHSLDVNVIQQVVDNPQHKTQLQ
		ļ	1	TLI
522	1261	1246	411	CSLRRPRSAAEPDADHVPLLGLLRLQLRAARQPGAMRPQGPAA
	ļ		i	SPQRLRGLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLY
1	1			NGMCLQGPAGVPGRDGSPGANGIPGTPGIPGRDGFKGEKGECL
1		1	1	RESFEESWTPNYKQCSWSSLNYGIDLGKIAECTFTKMRSNSAL
	1		1	RVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQ
			1	GSPEMNSTINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPK
	Ì			GDASTGWNSVSRIIIEELPK
523	1262	2009	921	MHSAMLGTRVNLSVSDFWRVMMRVCWLVRQDSRHQRIRLPHLE
				AVVIGRGPETKITDKKCSRQQVQLKAECNKGYVKVKQVGVNPT
				SIDSVVIGKDQEVKLQPGQVLHMVNELYPYIVEFEEEAKNPGL
				ETHRKRKRSGNSDSIERDAAQEAEAGTGLEPGSNSGQCSVPLK
				KGKDAPIKKESLGHWSQGLKISMQDPKMQVYKDEQVVVIKDKY
				PKARYHWLVLPWTSISSLKAVAR\EHLELLKHMHTVGEKVIVD
				FAGSSKLRFRLGYHAIPSMSHVHLHVISQDFDSPCLKNKKHWN
1	1			SFNTEYFLESQAVIEMVQEAGRVTVRDGMPELLKLPLRCHECQ
1	1	1		QLLPSIPQLKEHLRKHWTQ
L		.L		<u> </u>

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
524	1263	2067	198	DMSDTSESGAGLTRFQAEASEKDSSSMMQTLLTVTQNVEVPET PKASKALEVSEDVKVSKASGVSKATEVSKTPEAREAPATQASS TTQLTDTQVLAAENKSLAADTKKQNADPQAVTMPATETKKVSH VADTKVNTKAQETEAAPSQAPADEPEPESAAAQSQENQDTRPK VKAKKARKVKHLDGEEDGSSDQSQASGTTGGRRVSKALMASMA RRASRGPIAFWARRASRTRLACFGPGEPLLSPWRSP\KARRQR GFAVRVAKFQ\SSQEPEAPPPW\DVALLQGRAN\DLVKYLLAK DQTKIPIKRS\DMLKDIIKEYTDVYPEII\ERAGYSLE\KVFG IQLKEIDKNDHLYILLSTLEPTDAGILGTTKDSPKLGLLMVLL SIIF\MNGNRS\SEAVIWEVLR/RSLGLRLGIHHS\LLGDVK\ KLITDEV\VKQKYL\DYARVPHSNSP\EYEFFWG\LRSYYEDQ QR*KSFKFACK\VQK\KDPK\EWAAQSPPGKAR/ERMEAD\LK AAS*GSPWKPRLRAEIKARMGIGLGSENAAGPCNWDEADIGPW AKARIQAGAEAKAKAQESGSASTGASTSTNNSASASASTSGGF SAGASLTATLTFGLFAGLGGAGASTSGSSGACGFSYK
525	1264	1	1397	ARPPVCTGSTMSLTVVSMACVGFFLLQGAWPLMGGQDKPFLSA RPSTVVPRGGHVALQCHYRRGFNNFMLYKEDRSHVPIFHGRIF QESFIMGPVTPAHAGTYRCRGSRPHSLTGWSAPSNPLVIMVTG NHRKPSLLAHPGPLLKSGETVILQCWSDIMFEHFFLHKEGISK DPSRLVGQIHDGVSKANFSIGPMMLALAGTYRCYGSVTHTPYQ LSAPSDPLDIVVTGPYEKPSLSAQPGPKVQAGESVTLSCSSRS SYDMYHLSREGGAHERRLPAVRKVNRTFQADFPLGPATHGGTY RCFGSFRHSPYEWSDPSDPLLVSVTGNPSSSWPSPTEPSSKSG NLRHLHILIGTSVVKIPFTILLFFLLHRWCSNKK\NAAVMDQE PAGNR\VNSEDSDEQDHQEVSYP*LEHCVFTQRKITRPSQRPK TPPTDTSMYIELPNAEPRSKVVFCPRAPQSGLEGIF

			5 12 1	
SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of			K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		to first	to first	
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
( !		acid	acid	\=possible nucleotide insertion)
ł		residue	residue	
		of amino	of amino	•
		acid	acid	
		sequence	sequence	
526	1265	6657	988	LHNLRERYFSGLIYTYSGLFCVVVNPYKHLPIYSEKIVDMYKG
[				KKRHEMPPHIYAIADTAYRSMLQDREDQSILCTGESGAGKTEN
				TKKVIQYLAVVASSHKGKKDTSITGELEKQLLQANPILEAFGN
'				AKTVKNDNSSRFGKFIRINFDVTGYIVGANIETYLLEKSRAIR
1		ļ		OARDERTFHIFYYMIAGAKEKMRSDLLLEGFNNYTFLSNGFVP
	1		ŀ	IPAAQDDEMFQETVEAMAIMGFSEEEQLSILKVVSSVLQLGNI
		1	ļ	VFKKERNTDQASMPDNTAAQKVCHLMGINVTDFTRSILTPRIK
1			1	VFRERNIDQASMPDNIAAQRVCHIMGIRVIDFIRSIDIFRIR VGRDVVOKAQTKEQADFAVEALAKATYERLFRWILTRVNKALD
	l	1		1
	{	i		KTHRQGASFLGILDIAGFEIFEVNSFEQLCINYTNEKLQQLFN
i		ļ		HTMFIL\EQEEYQREGIEWNFIDFGLDLQPCIELIERPNNPPG
			}	VLALLDEECWFPKATDKSFVEKLCTEQGSHPKFQKPKQLKDKT
				EFSIIHYAGKVDYNASAWLTKNMDPLNDNVTSLLNASSDKFVA
		ļ		DLWKDVDRIVGLDQMAKMTESSLPSASKTKKGMFRTVGQLYKE
1		1		QLGKLMTTLRNTTPNFVRCIIPNHEKRSGKLDAFLVLEQLRCN
		ł		GVLEGIRICRQGFPNRIVFQEFRQRYEILAANAIPKGFMDGKQ
	1	l		ACILMIKALELDPNLYRIGQSKIFFRTGVLAHLEEERDLKITD
j		1	į.	VIMAFOAMCRGYLARKAFAKRQQQLTAMKVIQRNCAAYIKLRN
	1			WOWCRLFTKV*PLLQVTRQE*EMQAKEDELQKTKERQQKAENE
	ļ		1	LKELEOKHSOLTEEKNLLQEOLQAETELYAEAEEMRVRLAAKK
				QELEEILHEMEARLEEEEDRGQQLQAERKKMAQQMLDLEEQLE
l			.]	EEEAAROKLOLEKVTAEAKIKKLEDEILVMDDQNNKLSKERKL
	Į.		Ì	LEERISDLTTNLAEEEEKAKNLTKLKNKHESMISELEVRLKKE
ì				\ <del></del>
	ļ		1	EKSRQELEKLKRKLEGDASDFHEQIADLQAQIAELKMQLAKKE
1		1		EELQAALARLDDEIAQKNNALKKIRELEGHISDLQEDLDSERA
1		1	ł	ARNKAEKQKRDLGEELEALKTELEDTLDSTATQQELRAKREQE
	i			VTVLKR\ALNEETRSHEAQVQEMRQKHAQAVQSLTEQLEQ*K
ł	}	}		RAKANLDKNKQTLEKENTD\LAGELRVLGQA\KQEVEHRMKKL
	1			QAQVQELQSKCSDGERARAELNDKVHK\LQNEVESVTG\MLNE
}	ł	1.		AEGKAIKLAKDVASLSSQL\QDTQELLQEESRQKLNVST\SLR
1	1			\QLEEERNSLQDQLDEEMEAKQNLERHISTLNIQLSDSKKKLQ
1.	1	1	1	DFASTVEALEEGKKRFQKEIENLTQQYEEKAAAYDKLEKTKNR
	1			LOQELDDLVVDLDNQRQLVSNLEKKQRKFDQLLAEEKNISSKY
1	1	1		ADERDRVEAEAREKETKALSL\ARALEEALEAKEELERTNKML
1	1	1		KA\EMGRPGSASKD\DVGQELSHDL\EKSK\RALGDPRLEEMK
	1			KA\EMGRPGSASKD\DVGQELSHDL\EKSK\KALGDPRDEEMK T\QLEELGRTELASPRRDA\KLRLEVNMQAPSRASFER\DLQA
1				
	1			RTEQNE\ESRR\HLQRQLHEYETELEDERKQRALAAAKIKLG
			1	WDPVRTLDL+ADSAIKGRGGKAIKQLRKLQAQMKDFQRELEDA
	1	l		\RASRDEIF\ATA\KENEKKAKSLEA\DLMQLQE\DLAAAEEG
			1	RKQ\ADLE\KEELAEEL\ASSLSGRNALQDEKRRLEARIAQLE
1	1	1		EELEEEQGNMEAMSDRVRKATQQAEQLSNELATERSTAQKNES
1	1		1	ARQOLERONKELRSKLHEMEGAVKSKFKSTIAALEAKIAQLEE
	[		1	OVEOEAREKOAATKSLKOKDKKLKEILLQVEDERKMAEQYKEQ
	1			AEKGNARVKOLKROLEEAEEESQRINANRRKLQRELDEATESN
1	1			EAMGREVNALKSKLRRGNETSFVPSRRSGGRRVIENADGSEEE
	1		1	
	ــــــــــــــــــــــــــــــــــــــ			TDTRDADFNGTKASE

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID ID	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	
Nucleic	Amino	corre-	согте-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
1.0.00	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
1		acid	acid	\=possible nucleotide insertion)
		residue	residue	1
1		of amino	of amino	·
		acid	acid	
		sequence	sequence	
527	1266	1	775	KLHFAKSLNSELSCSTREAMQDEDGYITLNIKTRKPALVSVGP
	•			ASSSWWRVMALILLILCVGMVVGLVALGIWSVMQRNYLQDENE
1	ł			NRTGTLQQLAKRFCQYVVKQSELKGTFKGHKCSPCDTNWRYYG
				DSCYGFFRHNLTWEESKQYCTDMNATLLKIDNRNIVEYIKAR\
				THLIRWVGLSRQKSNEVWKWEDGSVISENMFEFLEDGKGNMNC
			ļ	AYFHNGKMHPTFCENKHYL\MCE\RKAGHDPRWTQLPLMPKRW
		}		TG
528	1267	1053	424	NQGLRDVGLCRTCLVNKIFASSILGKSHHHSLVSINQGHNAPW
] 320				KAAGS\LPLKAAYC\QGFSPCDCLKYG\SWDEKDLMVPQPDTH
1	ļ			KGSVLRWISKRGKPLAVEMEEGHCL\CLPLGTECLGVKP\IVH
1		Ì		LFNSEMGEK\RPVAG\ARHVGSSAALLFFTPLRCLGGEKHKSG
1				LRARPGIVPSLELNYDIDSFAHMFF/SVDLLLIITLLSYYIPF
<b>\</b>		ł	<b>,</b>	C
529	1268	1435	1560	MWWRLAPTOAIWRAAGCCMRFSRRRSTCCCLASCIFLLYKIVR
323	1200	1433	1300	GDQPAAKRRQRRRAAPSAPPQAARLHPPPKLRRFDGVQDPAP
	1	1	l	YSWAINGKVFDVTQRPANFLRGPRGPETLSDWESQFTFKYHHV
	1			GKLLKEGEEPTVYSDEEEPKDESARKND*
530	1269	705	166	GPRMAKFLSQDQINEYKECFSLYDKQQRGKIKATDLMVAMRCL
530	1209	/05	100	GASPTPGEVQRHLQTHGIDGNGELDFSTFLTIMHMQIKQEDPK
l .	1	ł		KEILLAMLMVDKEKKGYVMASDLRSKLTSLGEKLTHKEV\DDL
	1		Ì	FRE\ADIEPNGKVKYDEFIHKI/TLLPGRDLLKEENGRASPGP
1	i			· · · · · · · · · · · · · · · · · · ·
	1000	<u> </u>		ENLEQLIFL
531	1270	25	1396	ADPHTTVIRFFPAASATKRVLPPVLRVSSPRTWNPNVPESPRI
		1		PAPRLPKRMSGAPTAGAALMLCAATAVLLSAQGGPVQSKSPRF
		1	}	ASWDEMNVLAHGLLQLGQGLREHAERTRSQLSALERRLSACGS
İ			1	ACQGTEGSTDLPLAPESRVDPEVLHSLQTQLKAQNSRIQQLFH
		i		KVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVAKPARRKR
1	1	1		LPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQ
				GSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGD
				PHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHL
			1	GGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLR
j	j	1	1	RDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIF
				WKTWRGRYYPLQATTMLIQPMAAEAAS
532	1271	1276	90	ALDFGDSCQWPRPQDTMKQLPVLEPGDKPRKATWYTLTVPGDS
	ı			PCARVGHSCSYLPPVGNAKRGKVFIVGGANPNRSFSDVHTMDL
1.	1	1		GKHQWDLDTCKGLLPRYEHASFIPSCTPDRIWVFGGANQSGNR
				NCLQVLNPETRTWTTPEVTSPPPSPRTFHTSSAAIGNQLYVFG
		1		GGERGAQPVQDTKLHVFDANTLTWSQPETLGNPPSPRHGHVMV
				AAGTKLFIHGGLAGDRFYDDLHCIDISDMKWQKLNPTGAA\PA
				GCAS/HTPAVAMGK\HVYI\FGGMTPAGAPGTQCTQYHTEEQH
ŀ				WDPCLKF\DTPSYPPGTIGTHSHVVSFPW\PVTCASEKEDS\N
	1	1		SLTLNHEAEKEDSADKVMSHSGDSHEESQTATLLCLVFGGMNT
	1		1	EGEIYDDCIVTVVD
		<u> </u>		1 2022200277770

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)  GFSIGKATDRMDAFRKAKNRAVHHLHYIERYEDHTIFHDISLR
533	1272	1169	639	FKRTHIKMKKQPKGYGLRCHRAIITICRLĮGIKDMYAKVSGSI NMLSLTQGLFRGLSRQETHQQLADKKGLHVVEIREECGPLPIV VASPRGPLRKDPEPEDEVPDVKLDWEDVKTAQGMKRSVWSNLK RAAT
534	1273	25	1396	ADPHTTVIRFFPAASATKRVLPPVLRVSSPRTWNPNVPESPRI PAPRLPKRMSGAPTAGAALMLCAATAVLLSAQGGPVQSKSPRF ASWDEMNVLAHGLLQLGQGLREHAERTRSQLSALERRLSACGS ACQGTEGSTDLPLAPESRVDPEVLHSLQTQLKAQNSRIQQLFH KVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVAKPARRKR LPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQ GSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGD PHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHL GGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLR RDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIF WKTWRGRYYPLQATTMLIQPMAAEAAS
535	1274	23	1102	TLRSRPAGEAGYLGWDPEQAGEGSALSRPGAMAALMTPGTGAP PAPGDFSGEGSQGLPDPSPEPKQLPELIRMKRDGGRLSEADIR GFVAAVVNGSAQGAQIGAWGGLGVPDPDWEVSPRDFGSLGVRR CPTTSTGPRVPHRCGLPPSRVPPHTRG\MLMAIRLRGMDLEET SVLTQALAQSGQQLEWPEAWRQQLVDKHSTGGVGDKVSLVLAP ALAACGCKVINHLLSRREPIPHMQQPVHPQAAPNLKPGPKPPR PYQGFSPPCSPAQFSPPRSPAQRLGPLWLQTRPLGAGKRSTDG IQTPFPLGPQTAPPREELRTSLPLPQALFPQGQVPTSSPTDTS QPRKLPFHSLTSWAPL
536	1275	3	439	RALRELRERVTHGLAEAGRDREDVSTELYRALEAVRLQNSEGS CEPCPTSWLPFGGSCYYFSVPKTTWAEAQGHCADASAHLA/IV GGLGEQDFLSRDTSALEYWIGRRAVQHLRKVQGYSWVDGVPLS FR*/WEG/HPGETWGPQVRL
537	1276	1		RWPRSWPPRAGAARGAAEAAMVGALCGCWFRLGGARPLIPLGP TVVQTSMSRSQVALLGLSLLLMLLLYVGLPGPPEQTSCLWGDP NVTVLAGLTPGNSPIFYREVLPLNQAHRVEV\CCFMERPLTLT RGSSWAHCSYCHRGATGPWPLTFQVLGTRHLQRRQAQRQGGQR CWSGRCGTWRYRMPCW

CEC	CEC	Deadinted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ	Predicted beginning	end	Ainmo acid segment containing signal peptide (A=Aianine,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
ļ .		residue	residue	1-possible nucleonide insertion)
	ł	of amino	of amino	
•	1	acid	acid	
ł	}	sequence	sequence	·
538	1277	102	1549	OENOLEKKMKFLIFAFFGGVHLLSLCSGKAICKNGISKRTFEE
338	12 / /	102	1315	IKEEIASCGDVAKAIINLAVYGKAONRSYERLALLVDTVGPRL
1	ł	1		SGSKNLEKAIQIMYQNLQQDGLEKVHLEPVRIPHWERGEESAV
1		Ì		MLEPRIHKIAILGLGSSIGTPPEGITAEVLVVTSFDELQRRAS
İ	i	ł	i	•
1	1	•	1	EARGKIVVYNQPYINYSRTVQYRTQGAVEAAKVGALASLIRSV
			<b>!</b>	ASFSIYSPHTGIQEYQDGVPKIPTACITVEDAEMMSRMASHGI
{	Į.	l	ł	KIVIQLKMGAKTYPDTDSFNTVAEITGSKYPEQVVLVSGHLDS
ļ		1	ì	WDVGQGAMDDGGGAFISWEALSLIKDLGLRPKRTLRLVLWTAE
1				EQGGVGAFQYYQLHKVNISNYSLVMESDAGTFLPTGLQFTGSE
i				KARAIMEEVMSLLQPLNITQVLSHGEGTDINFWIQAGVPGASL
	Į.	1		LDDLYKYFFFHHSHGDTMTVHGIQTQMNV\AAAV\WAVVSYV\
[	i		<u> </u>	VADMEEMLPRS
539	1278	2438	1148	TKPRKRRHQPASQRQRPWSSDSTGDLLARGKGRKEENKGSDRV
	٠.			SLAPPSLRRPMMCQSEARQGPELRAAKWLHFPQLALRRRLGQL
	1.	l		SCMSRPALKLRSWPLTVLYYLLPFGALRPLSRVGWRPVSRVAL
	l	1	1	YKSVPTRLLSRAWGRLNQVELPHWLRRPVYSLYIWTFGVNMKE
		ļ	i	AAVEDLHHYRNLSEFFRRKLKPQARPVCGLHSVISPSDGRILN
1	ŀ	ł	į	FGQVKNCEVEQVKGVTYSLESFLGPRMCTEDLPFPPAASCDSF
1		1	ŀ	KNQLVTREGNELYHCVIYLAPGDYHCFHSPTDWTVSHRRHFPG
1		1	ŀ	SLMSVNPGMARWIKELFCHNERVVLTGDWKHGFFSLTAVGAT\
-		ŀ	1	NWGSIRIYFDRDLHTNSPRHSKGSYNDFSFVTHTNREGVPMRK
		<b>\</b>	1	GEHLGEFNLGSTIVLIFEAPKDFNFQLKTGQKI\RFGEALGSL
540	1279	3	1911	LPERAFGPRTPRAPRRRRRLLLSPPPRPPPPLDREPRAPGPW
310	1			LCPSRAGTAODPARIRERRGRVAGGAAGPAMELRARGWWLLCA
	1	1 .	Ì	AAALVACARGDPASKSRSCGEVRQIYGAKGFSSS\DVPQAEIS
1			1	GEHLRICPOGYTCCTSEMEENLANRSHAELETALRDSSRVLQA
1		1		MLATOLRSFDDHFOHLLNDSERTLOATFPGAFGELYTQNARAF
	İ	1		RDLYSELRLYYRGANLHLEETLAEFWARLLERLFKQLHPQLLL
ł	1			PDDYLDCLGKQAEALRPF\GEAP\RELRLRAT\RA\FVAAR\S
1				FVQGLGVAS\DVVRKVAQVPLG\PEC\SRAVIEAGSYC/ALHC
		1	1	VGVPGARPCPDYCRNVLKGCLANOADLDAEWRNLLDSMVLITD
	ļ		1	~
				KFWGTSGVESVIGSVHTWLAEAINALQDNRDTLTAKVIQGCGN
				PKVNPQGPGPEEKRRRGKLAPRERPPSGTLEKLVSEAKAQLRD
				VQDFWISLPGTLCSEKMALSTASDDRCWNGMARGRYLPEVMGD
1				GLANQINNPEVEVDITKPDMTIRQQIMQLKIMTNRLRSAYNGN
1	1	1	1	DVDFQDASDDGSGSGSGDGCLDDLCGRKVSRKSSSSRTPLTHA
				LPGLSEQEGQKTSAASCPQPPTFLLPLLLFLALTVARPRWR
541	1280	590	189	ATELTRAGMEASALTKSA\VTSVAKVVR\VASGSAVVLPLARI
1		1	1	ATSCD*RVGGP/VQAVPMVL\SAMGLQLRAGIASSSIAAKMMS
				AAAIA\NGGGVSPGQPLWLLLQSLGATGL\SGLTKFILGSIGS
1		1	1	AIA\AVIARFY
				<u> </u>

SEQ ID NO: of Nucleic Acids	SEQ ID NO: . of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
542	1281	41	1415	TNGRNLLHHWILGVCGMHPHHQETLKKNRVVLAKQLLLSELLE HLLEKDIITLEMRELIQAKVGSFSQNVELLNLLPKRGPQAFDA FCEALRETKQGHLEDMLLTTLSGLQHVLPPLSCDYDLSLPFPV CESCPLYKKLRLSTDTVEHSLDNKDGPVCLQVKPCTPEFYQTH FQLAYRLQSRPRGLALVLSNVHFTGEKELEFRSGGDVDHSTLV TLFKLLGYDVHVLCDQTAQEMQEKLQNFAQLPAHRVTDSCIVA LLSHGVEGAIYGVDGKLLQLQEVFQLFDNANCPSLQNKPKMFF IQACRGGAIGSLGHLLLFTAATASLAL\ETDRGVDQQDGKNHA GSPGCEESDAGKEKLPKMRLPTRSDMICGYACLKGTAAMRNTK RGSWYIEALAQVFSERACDMHVADMLVKVNALIKDREGYAPGT EFHRCKEMSEYCSTLCRHLYLFPGHPPT
543	1282	862	275	VRGKEVMAALCRTRAVAAESHFLRVFLFFRPFRGVGTESGSES GSSNAKEPKTRAGGFASALERHSELLQKVEPLQKGSPKNVESF ASMLRHSPLTQMGPAKDKLVIGRIFHIVENDL\YIDFGGKFHC VCRRPEVDGEKY\QKGTRVR\LRLLDLELTSRFLGATTD\TTV LEANAVLLGIQESKDSRSKEEHLEKYI

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
544	1283		4503	IPGASPAPRRAAPLRLGLRLASGWARAPGGVSPVPGPGMGGDA PTMARAQALVLELTFQLCAPETETPEVGCTFEEGSDPAVPCEY SQAQYDDFQWEQVRIHPGTRAPADLPHGSYLMVNTSQHAPGQR AHVIFQSLSENDTHCVQFSYLYSRDGHSPGTLGVYVRVNGGP LGSAVWNMTGSHGRQWHQAELAVSTFWPNEYQVLFEALISPDR RGYMGLDDILLLSYPCAKAPHFSRLGDVEVNAGQNASFQCMAA GRAAEAERFLLQRQSGALVPAAGVRHISHRRFLATFPLAAVSR AEQDLYRCVSQAPRGRGTSLNFAEFMV/KEPPTPIAPPQLLRA GPTYLIIQLNTNSIIGDGPIVRKEIEYRMARGPWAEVHAVSLQ TYKLWHLDPDTEYEISVLLTRPGDGGTGRPGPPLISRTKCAEP MRAPKGLAFAEIQARQLTLQWEPLGYNVTRCHTYTVSLCYHYT LGSSHNQTI\RECVKTEQGVSRYTMKNLLPYRNVHVRLVLTNP EGRKEGKEVTFQTDEDVPSGIAAESLTFTPLEDMIFLKWEEPQ EPNGLITQYEISYQSIESSDPAVNVPGPRRTISKLRNETYHVF SNLHPGTTYLFSVRARTGKGFGQAALTEITTNISAPSFDYADM PSPLGESENTITVLLRPAQGRGAPISVYQVIVEEEQGSRRLRR EPGGQDCFPVPLTFEAALARGLVDYFGAELAASSLPEAMPFTV GDNKTYRGFWNPPLEPRKAYLIYFQAASHLKGETRLNCIRIAR KAACKESKRPLEVSQRSEEMGLILGICAGGLAVLILLLGAIIV IIRKGRDHYAYSYYPKPVNMTKATVNYRQEKTHMMSAVDRSFT DQSTLQEDERLGLSFMDTHGYSTRGDQRSGGVTEASSLLGGSP RRPCGRKGSPYHTGQLHPAVRVADLLQHINQMKTAEGYGFKQE YESFFEGWDATKKKDKVKGSRQEPMPAYDRHVKLHPMLGDPN ADYINANYIDIRINREGYHRSNHFIATQGPKPEMVYDFWRMVW QEHCSSIVMITKLVEVGRVKCSRYWPEDSDTYGDIKIMLVKTE TLAEYVVRTFALERRGYSARHEVRQFHFTAWPEHGVPYHATGL LAFIRRVKASTPPDAGPIVIHCSAGTGRTGCYIVLDVMLDMAE CEGVVDIYNCVKTLCSRRVNMIQTEEQYIFIHDAILEACLCGE TTIPVSEFKATYKEMIRIDPQSNSSQLREEFQTLNSVTPPLDV EECSIALLPRNRDKNRSMDVLPPDRCLPFLISTDGDSNNYINA ALTDSYTRSAAFIVTLHPLQSTTPDFWGLVYDYGCTSIVMLNQ LNQSNSAWPCLQYWPEPGRQQYGLMEVEFMSGTADEDLVARVF RVQNISRLQEGHLLVRHFQFLRWSAYRDTPDSKKAFLHLLAEG DKWQAESGDGRTIVHCLNGGGRSGTFCA\CATVLEMIRCHNLV DVFFAAKTLRNYKPNMVETMDQYHFCYDVALEYLEGLESR

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence 2443	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)  TKPRKRRHOPASORORPWSSDSTGDLLARGKGRKEENKGSDRV
				SLAPPSLRRPMMCQSEARQGPELRAAKWLHFPQLALRRRLGQL SCMSRPALKLRSWPLTVLYYLLPFGALRPLSRVGWRPVSRVAL YKSVPTRLLSRAWGRLNQVELPHWLRRPVYSLYIWTFGVNMKE AAVEDLHHYRNLSEFFRRKLKPQARPVCGLHSVISPSDGRILN FGQVKNCEVEQVKGVTYSLESFLGPRMCTEDLPFPPAASCDSF KNQLVTREGNELYHCVIYLAPGDYHCFHSPTDWTVSHRRHFPG SLMSVNPGMARWIKELFCHNERVVLTGDWKHGFFSLTAVGAT\ NWGSIRIYFDRDLHTNSPRHSKGSYNDFSFVTHTNREGVPMAL RGEHLG/QSFNLGSTIVLIFEAPKDFNFQLKTGQKIRFGEALG SL
546	1285	185	3057	AELGLFGSLRFSSLLHFPPRPRSPASACGPGEGRMERGLPLLC AVLALVLAPAGAFRNDKCGDTIKIESPGYLTSPGYPHSYHPSE KCEWLIQAPDPYQRIMINFNPHFDLEDRDCKYDYVEVFDGENE NGHFRGKFCGKIAPPPVVSSGPFLFIKFVSDYETHGAGFSIRY EIFKRGPECSQNYTTPSGVIKSPGFPEKYPNSLECTYI\VFAP KMSEIIL\DFESFDLEPDSNPPGGMFCRYDRLEIWDGFPDVGP HIGRYCGQKTPGRIRSSSGILSMVFYTDSAIAKEGFSANYSVL QSSVSEDFKCMEALGMESGEIHSDQITASSQYSTNWSAERSRL NYPENGWTPGEDSYREWIQVDLGLLRFVTAVGTQGAISKETKK KYYVKTYKIDVSSNGEDWITIKEGNKPVLFQGNTNPTDVVVAV FPKPLITRFVRIKPATWETGISMRFEVYGCKITDYPCSGMLGM VSGLISDSQITSSNQGDRNWMPENIRLVTSRSGWALPPAPHSY INEWLQIDLGEEKIVRGIIIQGGKHRENKVFMRKFKIGYSNNG SDWKMIMDDSKRKAKSFEGNNNYDTPELRTFPALSTRFIRIYP ERATHGGLGLRMELLGCEVEAPTAGPTTPNGNLVDECDDDQAN CHSGTGDDFQLTGGTTVLATEKPTVIDSTIQSEFPTYGFNCEF GWGSHKTFCHWEHDNHVQLKWSVLTSKTGPIQDHTGDGNFIYS QADENQKGKVARLVSPVVYSQNSAHCMTFWYHMSGSHVGTLRV KLRYQKPEEYDQLVWMAIGHQGDHWKEGRVLLHKSLKLYQVIF EGEIGKGNLGGIAVDDISINNHISQEDCAKPADLDKKNPEIKI DETGSTPGYEGEGEGDKNISRKPGNVLKTLEPILITIIAMSAL GVLLGAVCGVVLYCACWHNGMSERNLSALENYNFELVDGVKLK
547	1286	3	521	HEGSALTWASHYQERLNSEQSCLNEWTAMADLESLRPPSAEPG GSVCGGEGLGGGEGRIMQWGAWWRGERAP*LRGSAPRSSEQEQ MEQAIRAELWKVLDVSDLESVTSKEIRQALELRLGLPLQ/PVP *LHRQPDAAAGGTAGPSLPHLPPPLPGLRVERSKPGGAAEEQV GL
548	1287	1742	1200	MAALDLRAELDSLVLQLLGDLEELEGKRTVLNARVEEGWLSLA KARYAMGAKSVGPLQYASHMEPQVCLHASEAQEGLQKFKVVRA GVHAPEEVGPREAGLRRRKGPTKTPEPESSEAPQDPLNWFGIL VPHSLRQAQASFRDGLQLAADIASLQNRIDWGRSQLRGLQEKL KQLEPGAA*

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
549	1288	1	649	HSDVGAATAVLPLLTAVLGVTVVTRRDTEGPGRAALVHLTGSP RQKVGTSGREGLPGLGASCAESELERETQEPRSRGRCIFGAAR WRQVPLASPQRPFLLSPGPRLHRMGLPVSWAPPALWVLGCCAL LLSLWALCTACRRPEDAVAPRKRARRQRARLQGSATAAEAVSA KLSRGPGWGPQGTDQPSSPPVPTEADPPLLPQQVGHQTARAAP G
550	1289	433	632	LTGPGQRLAGTTEGPRRCRGSSQAPTPTWKLVDTRLCAAAPWL ASRAPGHYSQMLLVN*PCRKDWLVSKWMRTPVCGQSPAMTDRP RSEAGRDHRRAKALPGLIPGSNPNLEACGHQALCSSSVASVQG PWPLLPNASSPPTPGQPQP
551	1290	102	612	KHRLCSLEQLMTLISAAREYEIEFIYAISPGLDITFSNPKEVS TLKRKLDQVSQFGCRSFALLFDDIDHNMCAADKEVFSSFAHAQ VSITNEIYQYLGEPETFLFCPT/EYCI*WLYI*LVFLEYITYK GPWAPFSLHFPPPLVCKSRNLFLEDIFQDPKLEKF*ELINDN
552	1291	269	565	TSALTQGLERIPDQLGYLVLSEGAVLASSGDLENDEQAASAIS ELVSTACGFRLHRGMNVPFKRLSVVFGEHTLLVTVSGQRVFVV KRQNRGREPIDV
553	1292	660	233	AKRAERTSRLQGLQHPSPPYPPATLGVTPGQDRTLQLQHQCPA GRKSRKKKSKATQLSPEDRVEDALPPSKAPSRTRRAKRDLPKR TATQRPEGTSLQQDPEAPTVPKKGRRKGRQAASGHCRPRKVKA DIPSLEPEGTSAS
554	1293	590	323	RKSSWLGAVAHACNPSSLGGPGRQITRSGVRDQPGQYGETPSL LKIQTLAGRGGACL*SHILRRLRQKNRLNLGGRGCSELRSRHC APA
555	1294	1	242	AWNSARGAVSPLWVPGCFLTLSVTWIGAAPLILSRIVGGWECE KHSQPWQVLVASRGRAVCGGVLVHPQWVLTAAHCIRK
556	1295	1074	230	AEMADDLGDEWWENQPTGAGSSPEASDGEGEGDTEVMQQETVP VPVPSEKTKQPKECFLIQPKERKENTTKTRKRRKKKITDVLAK SEPKPGLPEDLQKLMKDYYSSRRLVIELEELNLPDSCFLKAND LTHSLSSYLKEICPKWVKLRKNHSEKKSVLMLIICSSAVRALE LIRSMTAFRGDGKVIKLFAKHIKVQAQVKLLEKRVVHLGVGTP GRIKELVKQGGLNLSPLKFLVFDWNWRDQKLRRMMDIPEIRKE VFELLEMGVLSLCKSESLKLGLF
557	1296	929	289	RPGTAIWVVECEHGRPIAESEGQEGRGHSPPGPCSVAGFLRGR LGRNLEIMGSTWGSPGWVRLALCLTGLVLSLYALHVKAARARD RDYRALCDVGTAISCSRVFSSRWGRGFGLVEHVLGQDSILNQS NSIFGCIFYTLQLLLGCLRTRWASVLMLLSSLVSLAGSVYLAW ILFFVLYDFCIVCITTYAINVSLMWLSFRKVQEPQGKAKRH

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 1063	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
				APQLGDTQNCQLRCRDRDLGPQPSQAGLEGASESPYDRAVLIS ACERGCRLFSICRFVARSSKPNATQTECEAACVEAYVKEAEQQ ACSHGCWSQPAEPEPEQKRKVLEAPSGALSLLDLFSTLCNDLV NSAQGFVSSTWTYYLQTDNGKVVVFQTQPIVESLGFQGGRLQR VEVTWRGSHPEALEVHVDPVGPLDKVRKAKIRVKTSSKAKVES EEPQDNDFLSCMSRRSGLPRWILACCLFLSVLVMLWLSCSTLV TAPGQHLKFQPLTLEQHKGFMMEPDWPLYPPPSHACEDSLPPY KLKLDLTKL
559	1298	2	485	FPELGTSLSAMRFLAATFLLLALSTAAQAEPVQFKDCGSVDGV IKEVNVSPCPTQPCQLSKGQSYSVNVTFTSNIQSKSSKAVVHG ILMGVPVPFPIPEPDGCKSGINCPIQKDKTYSYLNKLPVKSEY PSIKLVVEWQLQDDKNQSLFCWEIPVQIVSHL
560	1299	1304	919	APETFRCVWRLQGLTFIAFTELQAKVIDTQQKVKLADIQIEQL NRTKKHAHLTDTEIMTLVDETNMYEGVGRMFILQSKEAIHSQL LEKQKIAEEKIKELEQKKSYLERSVKEAEDNIREMLMARRAQ
561	1300		799	HSLLLGTRVRDASSKIQGEYTLTLRKGGNNKLSRVFHRDGHYG FSEPLTFCSVVDLINHYRHESLAQYNAKLDTRLLYPVSKYQQV RAGLGAREGSTWLAPGLSFLGRPDQAMHLPSFRHVSP\DQIVK EDSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSQELQMKR TAIEAFNETIKIFEEQGQTQEKCSKEYLERFRREGN/QTKEMQ RILLNSERLKSRIA\EIHESPHRSWEQQLLVPRASDNKRD/ID KPH*TSLKPDL
562	1301	1772	301	AAAAAGRGRSSGRRRRRRPGALFASLGVLLGPRPPPGIPRTRA CSMGGVGEPGPREGPAQPGAPLPTFCWEQIRAHDQPGDKWLVI ERRVYDISRWAQRHPGGSRLIGHHGAEDATDAFRAFHQDLNFV RKFLQPLLIGELAPEEPSQDGPLNAQLVEDFRALHQAAEDMKL FDASPTFFAFILGHILAMEVLAWLLIYLLGPGWVPSALAAFIL AISQAQSWCLQHDLGHASIFKKSWWNHVAQKFVMGQLKGFSAH WWNFRHFQHHAKPNIFHKDPDVTVAPVFLLGESSVEYGKKKRR YLPYNQQHLYFFLIGPPLLTLVNFEVENLAYMLVCMQWADLLW AASFYARFFLSYLPFYGVPGVLLFFVAVRVLESHWFVWITQMN HIPKEIGHEKHRDWVSSQLAATCNVEPSLFTNWFSGHLNFQIE HHLFPRMPRHNYSRVAPLVKSLCAKHGLSYEVKPFLTALVDIV RSLKKSGDIWLDAYLHQ
563	1302	424	93	KSRATRLRESAEMTGFLLPPASRGTRRSCSRSRKRQTRRRRNP SSFVASCPTLLPFACVPGASPTTLAFPPVVLTGPSTDGIPFAL SLQRVPFVLPSPQVASLPLGHSRG
564	1303	1	414	IQYRSDLELHSITMKKSGVLFLLGIILLVLIGVQGTPVVRKGR CSCISTNQGTIHLQSLKDLKQFAPSPSCEKIEIIATLKNGVQT CLNPDSADVKELIKKWEKQVSQKKKQKNGKKHQKKKVLKVRKS QRSRQKKTT

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID ID	ID ID	beginning	end	
NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
1		location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acius	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	(-possible flucteoride insertion)
ļ		of amino	of amino	
		acid	acid	
1		sequence	sequence	·
565	1304	7	3007	IPGSTISCRGCCGKWPVOEADPPRAALRGRFPALLTRHCPSPR
303	1304	<b>'</b>	3007	AEKEKRSLRRCGCRPLLVELAGPAGQAVEVLPHFESLGKOEKI
		1		PNKMSAFRNHCPHLDSVGEITKEDLIQKSLGTCQDCKVQGPNL
	}		ļ	
1	1	!		WACLENRCSYVGCGESQVDHSTIHSQETKHYLTVNLTTLRVWC
ł	1			YACSKEVFLDRKLGTQPSLPHVRQPHQIQENSVQDFKIPSNTT
1				LKTPLVAVFDDLDIEADEEDELRARGLTGLKNIGNTCYMNAAL
		]		QALSNCPPLTQFFLDCGGLARTDKKPAICKSYLKLMTELWYKS
	ţ			RPGSVVPTTLFQGIKTVNPTFRGYSQQDAQEFLRCLMDLLHEE
		1		LKEQVMEVEEDPQTITTEETMEEDKSQSDVDFQSCESCSNSDR
1	ł	l	ł	AENENGSRCFSEDNNETTMLIQDDENNSEMSKDWQKEKMCNKI
		Ì		NKVNSEGEFDKDRDSISETVDLNNQETVKVQIHSRASEYITDV
l	ļ			HSNDLSTPQILPSNEGVNPRLSASPPKSGNLWPGLAPPHKKAQ
	1		į.	SASPKRKKQHKKYRSVISDIFDGTIISSVQCLTCDRVSVTLET
1	i	ł	1	FQDLSLPIPGKEDLAKLHSSSHPTSIVKAGSCGEAYAPQGWIA
		İ		FFMEYVKRFVVSCVPSWFWGPVVTLQDCLAAFFARDELKGDNM
	1	1	ŀ	YSCEKCKKLRNGVKFCKVONFPEILCIHLKRFRHELMFSTKIS
				THVSFPLEGLDLQPFLAKDSPAQIVTYDLLSVICHHGTASSGH
			Į.	YIAYCRNNLNNLWYEFDDQSVTEVSESTVQNAEAYVLFYRKSS
1	l	l	ł	EEAQKERRRISNLLNIMEPSLLOFYISROWLNKFKTFAEPGPI
			1	~ ~
				SNNDFLCIHGGVPPRKAGYIEDLVLMLPQNIWDNLYSRYGGGP
			l	AVNHLYICHTCQIEAEKIEKRRKTELEIFIRLNRAFQKEDSPA
	1			TFYCISMQWFREWESFVKGKDGDPPGPIDNTKIAVTKCGNVML
	ļ	1	j	RQGADSGQISEETWNFLQSIYGGGPEVILRPPVVHVDPDILQA
				EEKIEVETRSL
566	1305	28	450	SPSAAGGLAWVSLALGSGSRGRDHSGSGVGTAMAGALVRKAAD
				YVRSKDFRDYLMSTHFWGPVANWGLPIAAINDMKKSPEIISGR
				MTFALCCYSLTFMRFAYKVQPRNWLLFACHATNEVAQLIQGGR
	1	<u> </u>	<u> </u>	LIKHEMTKTASA
567	1306	133	1292	LGSRQAAGTMRGQRSLLLGPARLCLRLLLLLGYRRRCPPLLRG
	١.			LVQRWRYGKVCLRSLLYNSFGGSDTAVDAAFEPVYWLVDNVIR
	1 .			WFGVVFVVLVIVLTGSIVAIAYLCVLPLILRTYSVPRLCWHFF
1	ł		1	YSHWNLILIVFHYYQAITTPPGYPPQGRNDIATVSICKKCIYP
1 ,	1			KPARTHHCSICNRCVLKMDHHCPWLNNCVGHYNHRYFFSFCFF
1	1			MTLGCVYCSYGSWDLFREAYAAIEKMKOLDKNKLOAVANOTYH
	]		1	OTPPPTFSFRERMTHKSLVYLWFLCSSVALALGALTVWHAVLI
	]			SRGETSIERHINKKERRRLQAKGRVFRNPYNYGCLDNWKVFLG
	1		1	VDTGRHWLTRVLLPSSHLPHGNGMSWEPPPWVTAHSASVMAV
568	1307	66	962	ATRRAAEAGMAAVLORVERLSNRVVRVLGCNPGPMTLOGTNT
500	130/	00	302	
				YLVGTGPRRILIDTGEPAIPEYISCLKQALTEFNTAIQEIVVT
				HWHRDHSGGIGDICKSINNDTTYCIKKLPRNPQREEIIGNGEQ
1			]	QYVYLKDGDVIKTEGATLRVLYTPGHTDDHMALLLEEENAIFS
1	1	!		GDCILGEGTTVFEDLYDYMNSLKELLKIKADIIYPGHGPVIHN
1				AEAKIQQYISHRNIREQQILTLFRENFEKSFTVMELVKIIYKN
				TPENLHEMAKHNLLLHLKKLEKEGKIFSNTDPDKKWKAHL

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
569	1308	96	1017	ELHRAGQVAGGARRSRRESMELERIVSAALLAFVQTHLPEADL SGLDEVIFSYVLGVLEDLGPSGPSEENFDMEAFTEMMEAYVPG FAHIPRGTIGDMMQKLSGQLSDARNKENLQPQSSGVQGQVPIS PEPLQRPEMLKEETRSSAAAAADTQDEATGAEEELLPGVDVLL EVFPTCSVEQAQWVLAKARGDLEEAVQMLVEGKEEGPAAWEGP NQDLPRRLRGPQKDELKSFILQKYMMVDSAEDQKIHRPMAPKE APKKLIRYIDNQVVSTKGERFKDVRNPEAEEMKATYINLKPAR KYRFH
570	1309	3	526	FITGKGIVAILRCLQFNETLTELRFHNQRHMLGHHAEMEIARL LKANNTLLKMGYHFELPGPRMVVTNLLTRNQDKQRQKRQEEQK QQQLKEQKKLIAMLENGLGLPPGMWELLGGPKPDSRMQEFFQP PPPRPPNPQNVPFSQRSEMMKKPSQAPKYRTDPDSFRVVKLKR IQ
571	1310	3	1858	GGRAGTQCCWRAGARLRGISPSPALPEAPGLCRVRAGLGAGAL GRSPAGRRRGPRVSSSPAPHPRRVLCRCLLFLFFSCHDRRGD SQPYQALKYSSKSHPSSGDHRHEKMRDAGDPSPPNKMLRRSDS PENKYSDSTGHSKAKNVHTHRVRERDGGTSYSPQENSHNHSAL HSSNFTFFLIPSN*PQGKTFRIAPYDS\ADDW/SLEHISSSGE KYYYNCRTEVSQWGKTPKSGLERGQRQKEANKMAVNSFPKDRD YRREVMQATATSGFASGKSTSGDKPVSHSCTTPSTSSASGLNP TSAPPTSASA\VPVSP\VPQ\SPIPPLLQDPNLLRQLL\PALE ATLQLNNSNVDI\SIINEVLTGDVTQASLQTIIHKCLTAGPSV FKITSLISQAAQLSTQAQASNQSPMSLTSDASSPR\SYVSPRN KAHLKLNTVPIQTFGFSTPPVSSQPKVSTPVVKQGPVSQSATQ QPVTADKQQGHEPVSPRSLQRSSSQRSPSPGPNHTSNSSNASN ATVVPQNSSARSTCSLTPALAAHFSENLIKHVQGWPADHAEKQ ASRLREEAHNMGTIHMSEICTELKNLRSLVRVCEIQATLREQR ILFLRQQIKELEKLKNQNSFMV
572	1311	2	1165	VAPECRGAYPFRAMMPGTALKAVLLAVLLVGLQTATGRLLSGQ PVCRGGTQRPCYKVIYFHDTSRRLNFEEAKEACRRDGGQLVSI ESEDEQKLIEKFIENLLPSDGDFWIGLRRREEKQSNSTACQDL YAWTDGSISQFRNWYVDEPSCGSEVCVVMYHQPSAPAGIGGPY MFQWNDDRCNMKNNFICKYSDEKPAVPSREAEGEETELTTPVL PEETQEEDAKKTFKESREAALNLAYILIPSIPLLLLLVVTTVV CWVWICRKRKREQPDPSTKKQHTIWPSPHQGNSPDLEVYNVIR KQSEADLAETRPDLKNISFRVCSGEATPDDMSCDYDNMAVNPS ESGFVTLVSVESGFVTNDIYEFSPDQMGRSKESGWVENEIYGY

) .

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
573	1312	3	1416	TEWGLSGSCPGCSPLEPGSRGRGAAAWRILRCRRLPEPSPFLT QPNLAQSQPPAPVPVTDPSVTMHPAVFLSLPDLRCSLLLLVTW VFTPVTTEITSLDTENIDEILNNADVALVNFYADWCRFSQMLH PIFEEASDVIKEEFPNENQVVFARVDCDQHSDIAQRYRISKYP TLKLFRNGMMKREYRGQRSVKALADYIRQQKSDPIQEIRDLA EITTLDRSKRNIIGYFEQKDSDNYRVFERVANILHDDCAFLSA FGDVSKPERYSGDNIIYKPPGHSAPDMVYLGAMTNFDVTYNWI QDKCVPLVREITFENGEELTEEGLPFLILFHMKEDTESLEIFQ NEVARQLISEKGTINFLHADCDKFRHPLLHIQKTPADCPVIAI DSFRHMYVFGDFKDVLIPGKLKQFVFDLHSGKLHREFHHGPDP TDTAPGEQAQDVASSPPESSFQKLAPSEYRYTLLRDRDEL
574	1313	928	363	LTPSVGPVFPGRPTRPLASPFPVPLHRCSAGSQPPGPVPEGLI RIYSMRFCPYSHRTRLVLKAKDIRHEVVNINLRNKPEWYYTKH PFGHIPVLETSQCQLIYESVIACEYLDDAYPGRKLFPYDPYER ARQKMLLELFCKVPHLTKECLVALRCGRECTNLKAALRQEFSN LEEILEYQNTTFFGGTCISMIDYLLWPWFERLDVYGILDCVSH TPALRLWISAMKWDPTVCALLMDKSIFQGFLNLYFQNNPNAFD FGLC NTATNMTQPNAGTRKYSVPAISVHTSSSSFAYDREFLRTLPGF LIVAEIVLGLLVWTLIAGTEYFRVPAFGWVMFVAVFYWVLTVF
				FLIIYITMTYTRIPQVPWTTVGLCFNGSAFVLYLSAAVVDASS VSPERDSHNFNSWAASSFFAFLVTICYAGNTYFSFIAWRSRTI Q
576	1315	165	944	GLRDPFRRKRRLKPQVKMSNYVNDMWPGSPQEKDSPSTSRSGG SSRLSSRSRSFSRSSRSHSRVSSRFSSRSRRSKSRSRSRR HQRKYRRYSRSYSRSRSRSRRYRERRYGFTRRYYRSPSRYR SRSRSRSRGRSYCGRAYAIARGQRYYGFGRTVYPEEHSRWR DRSRTRSRSRTPFRLSEKDRMELLEIAKTNAAKALGTTNIDLP ASLRTVPSAKETSRGIGVSSNGAKPEVSILGLSEQNFQKANCQ I

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID ID	ID ID	beginning	end	
NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of	of .	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	согте-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acius	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
]		residue	residue	t—possible nacional inscritory
		of amino	of amino	
	,	acid	acid	:
	ļ	sequence	sequence	
577	1316	265	2300	AEGSTMDLTKMGMIOLONPNHPTGLLCKANOMRLAGTLCDVVI
				MVDSQEFHAHRTVLACTSKMFEILFHRNSQHYTLDFLSPKTFO
1		}		QILEYAYTATLOAKAEDLDDLLYAAEILEIEYLEEOCLKMLET
1	[ ·	İ		IQASDDNDTEATMADGGAEEKKDRKARYLKNIFISKHSSEESG
		]		YASVAGQSLPGPMVDQSPSVSTSFGLSAMSPTKAAVDSLMTIG
1		<b>{</b>		
ł	ł	1		QSLLQGTLQPPAGPEEPTLAGGGRHPGVAEVKTEMMQVDEVPS
		ļ		QDSPGAAESSISGGMGDKVEERGKEGPGTPTRSSVITSARELH
		}		YGREESAEQVPPPAEAGQAPTGRPEHPAPPPEKHLGIYSVLPN
Į		1		HKADAVLSMPSSVTSGLHVQPALAVSMDFSTYGGLLPQGFIQR
İ	1	ĺ		ELFSKLGELAVGMKSESRTIGEQCSVCGVELPDNEAVEQHRKL
ļ	ł	l		HSGMKTYGCELCGKRFLDSLRLRMHLLAHSAGAKAFVCDQCGA
ł				QFSKEDALETHRQTHTGTDMAVFCLLCGKRFQAQSALQQHMEV
	i			HAGVRSYICSECNRTFPSHTALKRHLRSHTGDHPYECEFCGSC
	l			FRDESTLKSHKRIHTGEKPYECNGCGKKFSLKHQLETHYRVHT
				GEKPFECKLCHQRSRDYSAMIKHLRTHNGASPYQCTICTEYCP
		İ	ŀ	SLSSMQKHMKGHKPEEIPPDWRIEKTYLYLCYV
578	1317	686	908	IWEAPTLIFTLAGGRALGHPPMOKGSOGCALPHPLPGASLPAO
				PGPADHRGWECRIGGEASVFTHLFCLPHSPT
579	1318	150	1204	ASGSPAPSSSSAMAAACGPGAAGYCLLLGLHLFLLTAGPALGW
1				NDPDRMLLRDVKALTLHYDRYTTSRRLDPIPOLKCVGGTAGCD
	1	l		SYTPKVIQCQNKGWDGYDVQWECKTDLDIAYKFGKTVVSCEGY
		l		ESSEDQYVLRGSCGLEYNLDYTELGLQKLKESGKQHGFASFSD
	•	1	ľ	YYYKWSSADSCNMSGLITIVVLLGIAFVVYKLFLSDGQYSPPP
				YSEYPPFSHRYQRFTNSAGPPPPGFKSEFTGPQNTGHGATSGF
1				GSAFTGQQGYENSGPGFWTGLGTGGILGYLFGSNRAATPFSDS
i	Ì	1	İ	WYYPSYPPSYPGTWNRAYSPLHGGSGSYSVCSNSDTKTRTASG
				YGGTRRR
580	1319	1208	276	GRCGAMAAGLARLLLLLGLSAGGPAPAGAAKMKVVEEPNAFGV
				NNPFLPQASRLQAKRDPSPVSGPVHLFRLSGKCFSLVESTYKY
				EFCPFHNVTQHEQTFRWNAYSGILGIWHEWEIANNTFTGMWMR
	[			DGDACRSRSRQSKVELACGKSNRLAHVSEPSTCVYALTFETPL
	i			VCHPHALLVYPTLPEALQRQWDQVEQDLADELITPQGHEKLLR
	1			TLFEDAGYLKTPEENEPTQLEGGPDSLGFETLENCRKAHKELS
1				KEIKRLKGLLTQHGIPYTRPTETSNLEHLGHETPRAKSPEQLR
			1	GDPGLRGSL
581	1320	1074	132	NSFWSVLFLVOEETEVARCNAOHRLROSRDSKPDPSFRSOPID
731	1320	10,4	132	SSISFAGSDIOPLFSFASVDGTOVGEAEEWAGPWAEATLLPGP
				-2
	1			GNRWPPRAGLSGNWLEEDGDWPSLPEVVGFVSERELFRDALGA
				GCRILLICEMQLTHQLDLFPECRVTLLLFKDVKNAGDLRRKAM
	1			EGTIDGSLINPTVIVDPFQILVAANKAVHLYKLGKMKTRTLST
	1	1		EIIFNLSPNNNISEALKKFGISANDTSILIVYIEEGEKQINQE
				YLISQVEGHQVSLKNLPEIMNITEVKKIYKLSSQEESIGTLLD
1				AIICRMSTKDVL
				<del></del>

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
582	1321	5021	7694	QRSWAGPGAGPEAGTRPPARGRRRQPGNVDPRRRAPQLRSQMQ VAMARATTATGNRLWPGLLIMLGSLCHRGSPCGLSTHIEIGHR ALEFLQLHNGRVNYRELLLEHQDAYQAGIVFPDCFYPSICKGG KFHDVSESTHWTPFLNASVHYIRENYPLPWEKDTEKLVAFLFG ITSHMAADVSWHSLGLEQGFLRTMGAIDFHGSYSEAHSAGDFG GDVLSQFEFNFNYLARRWYVPVKDLLGIYEKLYGRKVITENVI VDCSHIQFLEMYGEMLAVSKLYPTYSTKSPFLVEQFQEYFLGG LDDMAFWSTNIYHLTIFMLENGTSDCNLPENPLFIACGGQQNH TQGSKMQKNDFHRNLTTSLTESVDRNINYTERGVFFSVNSWTP DSMSFIYKALERNIRTMFIGGSQLSQKHVSSPLASYFLSFPYA RLGWAMTSADLNQDGHGDLVVGAPGYSRPGHIHIGRVYLIYGN DLGLPPVDLDLDKEAHRILEGFQPSGRFGSALAVLDFNVDGVP DLAVGAPSVGSEQLTYKGAVYVYFGSKQGGMSSSPNITISCQD IYCNLGWTLLAADVNGDSEPDLVIGSPFAPGGGKQKGIVAAFY SGPSLSDKEKLNVEAANWTVRGEEDFSWFGYSLHGVTVDNRTL LLVGSPTWKNASRLGHLLHIRDEKKSLGRVYGYFPPNGQSWFT ISGDKAMGKLGTSLSSGHVLMNGTLKQVLLVGAPTYDDVSKVA FLTVTLHQGGATRMYALTSDAQPLLLSTFSGDRRFSRFGGVLH LSDLDDDGLDEIIMAAPLRIADVTSGLIGGEDGRVYVYNGKET TLGDMTGKCKSWITPCPEEKAQYVLISPEASSRFGSSLITVRS KAKNQVVIAAGRSSLGARLSGALHVYSLGSD
583	1322	1	357	SLRNSARGLKMAASAARGAAALRRSINQPVAFVRRIPWTAASS QLKEHFAQFGHVRRCILPFDKETGFHRGLGWVQFSSEEGLRNA LQQENHIIDGVKVQVHTRRPKLPQTSDDEKKDF
584	1323	1205	433	GSSNIHSASTHGFCHWFSSPSTLKRQKQAIRFQKIRRQMEAPG APPRTLTWEAMEQIRYLHEEFPESWSVPRLAEGFDVSTDVIRR VLKSKFLPTLEQKLKQDQKVLKKAGLAHSLQHLRGSGNTSKLL PAGHSVSGSLLMPGHEASSKDPNHSTALKVIESDTHRTNTPRR RKGRNKEIQDLEESFVPVAAPLGHPRELQKYSSDSESPRGTGS GALPSGQKLEELKAEEPDNFSSKVVQRGREFFDSNGNFLYRI
585	1324	134	954	ETRVKTSLELLRTQLEPTGTVGNTIMTSQPVPNETIIVLPSNV INFSQAEKPEPTNQGQDSLKKHLHAEIKVIGTIQILCGMMVLS LGIILASASFSPNFTQVTSTLLNSAYPFIGPFFFIISGSLSIA TEKRLTKLLVHSSLVGSILSALSALVGFIILSVKQATLNPASL QCELDKNNIPTRSYVSYFYHDSLYTTDCYTAKASLAGTLSLML ICTLLEFCLAVLTAVLRWKQAYSDFPGSVLFLPHSYIGNSGMS SKMTHDCGYEELLTS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino	Predicted end nucleotide location corre- sponding to first amino acid residue of amino	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
586	1325	acid sequence 106	acid sequence 1537	EMVGAMWKVIVSLVLLMPGPCDGLFRSLYRSVSMPPKGDSGQP
				LFLTPYIEAGKIQKGRELSLVGPFPGLNMKSYAGFLTVNKTYN SNLFFWFFPAQIQPEDAPVVLWLQGGPGGSSMFGLFVEHGPYV VTSNMTLRDRDFPWTTTLSMLYIDNPVGTGFSFTDDTHGYAVN EDDVARDLYSALIQFFQIFPEYKNNDFYVTGESYAGKYVPAIA HLIHSLNPVREVKINLNGIAIGDGYSDPESIIGGYAEFLYQIG LLDEKQKKYFQKQCHECIEHIRKQNWFEAFEILDKLLDGDLTS DPSYFQNVTGCSNYYNFLRCTEPEDQLYYVKFLSLPEVRQAIH VGNQTFNDGTIVEKYLREDTVQSVKPWLTEIMNNYKVLIYNGQ LDIIVAAALTERSLMGMDWKGSQEYKKAEKKVWKIFKSDSEVA GYIRQAGDFHQVIIRGGGHILPYDQPLRAFDMINRFIYGKGWD PYVG
587	1326	883	541	RDERAKVPFRSTEG\GRRRRRRMEAVVFVFSLLDCCALIFLSV YFIITLSDLECDYINARSCCSKLNKWVIPELIGHTIVTVLLLM SLHWFIFLLNLPVATWNIYRYIMVPSGNMGVFDPTEIHNRGQL KSHMKEAMIKLGFHLLCFFMYLYSMILALIND
588	1327	1126	732	QSPGHGAPCQLSSSHSRSNRLLSPMARATLSAAPSNPRLLRVA LLLLLVAASRRAAGAPLATELRCQCLQTLQGIHLKNIQSVKV KSPGPHCAQTEVIATLKNGQKACLNPASPMVKKIIEKMLKNGK SN
589	1328	197	330	HPLSLVFLALNTGKEKSHPGGGGERPGLAGQGEPDHPAGARDG R
590	1329	1	1575	CTPVARSMATTATCTRFTDDYQLFEELGKGAFSVVRRCVKKTS TQEYAAKIINTKKLSARDHQKLEREARICRLLKHPNIVRLHDS ISEEGFHYLVFDLVTGGELFEDIVAREYYSEADASHCIHQILE SVNHIHQHDIVHRDLKPENLLLASKCKGAAVKLADFGLAIEVQ GEQQAWFGFAGTPGYLSPEVLRKDPYGKPVDIWACGVILYILL VGYPPFWDEDQHKLYQQIKAGAYDFPSPEWDTVTPEAKNLINQ MLTINPAKRITADQALKHPWVCQRSTVASMMHRQETVECLRKF NARRKLKGAILTTMLVSRNFSAAKSLLNKKSDGGVKPQSNNKN SLVSPAQEPAPLQTAMEPQTTVVHNATDGIKGSTESCNTTTED EDLKVRKQEIIKITEQLIEAINNGDFEAYTKICDPGLTSFEPE ALGNLVEGMDFHKFYFENLLSKNSKPIHTTILNPHVHVIGEDA ACIAYIRLTQYIDGQGRPRTSQSEETRVWHRRDGKWLNVHYHC SGAPAAPLQ NRRTVKMLLELSEEHKEHLAFLPOVDSAVVAEFGRIAVEFLRR
591	1330	17	636	GANPKIYEGAARKLNVSSDTVQHGVEGLTYLLTESSKLMISEL DFQDSVFVLGFSEELNKLLLQLYLDNRKEIRTILSEL\APSLP SYHNLEWRLDVQLASRSLRQQIKPAVTIKLHLNQNGDHNTKVL QTDPATLLHLVQQLEQALEEMKTNHCRRVVRNIK
592	1331	1	237	GTSIYLAHRVA\RAWELAQFIHHTSKKADVVLACGDSIVHPED LICCPLTGRSCLCDVHLLSSLLARLGRGYAVSLTNL

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID D	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding	
1		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
l		acid	acid	\=possible nucleotide insertion)
1	]	residue	residue	
		of amino	of amino	
1		acid	acid	•
593	1332	sequence 2506	sequence 1684	RGCGSCGYKPSAGPAWRPRPPPPAVSPLRHPEPAKVLSFSSCPL
593	1332	2506	1004	PALGRTGPSRAARAQSLTMASLFKKKTVDDVIKEQNRELRGTQ
1	l	1		RAIIRDRAALEKOEKOLELEIKKMAKIGNKEACKVLAKOLVHL
1		1		_ ~
1			[	RKQKTRTFAVSSKVTSMSTQTKVMNSQMKMAGAMSTTAKTMQA
<b>!</b>		1		VNKKMDPQKTLQTMQNFQKENMKMEMTEEMINDTLDDIFDGSD
		1	ļ	DEEESQDIVNQVLDEIGIEISGKMAKAPSAARSLPSASTSKAT
				ISDEEIERQLKALGVD
594	1333	905	432	STDGNGAERLFAELRKMNARGLGSELKDSIPVTELSASGPFES
			ļ	HDLLRKGFSCVKNELLPSHPLELSEKNFQLNQDKMNFSTLRNI
1		1	ĺ	QGLFAPLKLQMEFKAVQQVQRLPFLSSSNLSLDVLRGNDETIG
		<u> </u>		FEDILNDPSQSEVMGEPHLMVEYKLGLL
595	1334	111	117	RNMKLHYVAVLTLAILMFLTWLPESLSCNKALCASDVSKCLIQ
		1		ELCQCRPGEGNCSCCKECMLCLGALWDECCDCVGMCNPRNYSD
]		ļ	1	TPPTSKSTVEELHEPIPSLFRALTEGDTQLNWNIVSFPVAEEL
1	•			SHHENLVSFLETVNQPHHQNVSVPSNNVHAPYSSDK/E*LPTV
	<u> </u>			DFFHSAPSCGLSM*SIIFFEET
596	1335	817	278	VGGVPTWLEGCGSGNPSPRSGGGPGARLTLPALQMTVHNLYLF
			į	DRNGVCLHYSEWHRKKQAGIPKEEEYKLMYGMLFSIRSFVSKM
	1	1	i	SPLDMKDGFLAFQTSRYKLHYYETPTGIKVVMNTDLGVGPIRD
	ŀ			VLHHIYSALYVELVVKNPLCPLGQTVQSELFRSRLDSYVRSLP
			ļ	FFSARAG
597	1336	171	881	PGLSQEPSGSMETVVIVAIGVLATIFLASFAALVLVCRQRYCR
1	ļ	1		PRDLLQRYDSKPIVDLIGAMETQSEPSELELDDVVITNPHIEA
			1	ILENEDWIEDASGLMSHCIAILKICHTLTEKLVAMTMGSGAKM
ì		1		KTSASVSDIIVVAKRISPRVDDVVKSMYPPLDPKLLDARTTAL
	ł			LLSVSHLVLVTRNACHLTGGLDWIDQSLSAAEEHLEVLREAAL
				ASEPDKGLPGPEGFLQEQSAI .
598	1337	1078	594	VGMELPAVNLKVILLGHWLLTTWGCIVFSGSYAWANFTILALG
1	] .		1	VWAVAQRDSIDAISMFLGGLLATIFLDIVHISIFYPRVSLTDT
1	1		}	GRFGVGMAILSLLLKPLSCCFVYHMYRERGGELLVHTGFLGSS
	L			QDRSAYQTIDSAEAPADPFAVPEGRSQDARGY
599	1338	717	116	PASRPLLGPDTGSVANIFKGLVILPEMSLVIRNLQRVIPIRRA
1.	Į.	1		PLRSKIEIVRRILGVQKFDLGIICVDNKNIQHINRIYRDRNVP
				TDVLSFPFHEHLKAGEFPQPDFPDDYNLGDIFLGVEYIFHQCK
İ				ENEDYNDVLTVTATHGLCHLLGFTHGTEAEWQQMFQKEKAVLD
	1			ELGRRTGTRLQPLTPGPLPEGAEGRVPF
600	1339	1	804	LRNALDVLHREVPRVLVNLVDFLNPTIMRQVFLGNPDKCPVQQ
				A/MLEPLGSKTETLDLRAEMPITCPTQNEPFLRTPRNSNYTYP
			1	IKPAIENWGSDFLCTEWKASNSVPTSVHQLRPADIKVVAALGD
1	1			SLTTAVGARPNNSSDLPTSWRGLSWSIGGDGNLETHTTLPNIL
			1	KKFNPYLLGFSTSTWEGTAGLNVAAEGARARDMPAQAWDLVER
				MKNSPDINLEKDWKLVTLFIGGNDLCHYCENPEAHLATEYVQH
	1	1		IQQALDILSE
				<u></u>

OFO I	070	Des diamed	Destinad	
SEQ	SEQ	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine,
ID	ID III	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acias	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
]		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	1—possible nucleotide insertion)
1		of amino	of amino	
		acid	acid	
1		sequence	sequence	•
601	1340	1	860	VVEFLWSRRPSGSSDPRPRRPASKCOMMEERANLMHMMKLSIK
		_		VLLQSALSLGRSLDADHAPLQQFFVVMEHCLKHGLKVKKSFIG
ļ			·	QNKSFFGPLELVEKLCPEASDIATSVRNLPELKTAVGRGRAWL
1			ŀ	YLALMOKKLADYLKVLIDNKHLLSEFYEPEALMMEEEGMVIVG
,				LLVGLNVLDANL\CLKGEDLDSQVGVIDFSLYLKDVQDLDGGK
1 1			1	EHERITDVLDQKNYVEELNRHLSCTVGDLQTKIDGLEKTNSKL
				QERVSAATDRICSLQEEQQQLREQNELIR
602	1341	60	762	KPEGARRVQFVMGLFGKTQEKPPKELVNEWSLKIRKEMRVVDR
002	1341	٥٥	/02	QIRDIQREEEKVKRSVKDAAKKGQKDVCIVLAKEMIRSRKAVS
			Ì	•
			ļ	KLYASKAHMNSVLMGMKNQLAVLRVAGSLQKSTEVMKAMQSLV
1 1			Ì	KIPEIQATMRELSKEMMKAGIIEEMLEDTFESMDDQEEMEEEA
		-		EMEIDRILFEITAGALGKAPSKVTDALPEPEPPGAMAASEDEE
				EEEEALEAMQSRLATLRS
603	1342	3	456	RWNSIMELALLCGLVVMAGVIPIQGGILNLNKMVKQVTGKMPI
1		ĺ	l .	LSYWPYGCHCGLGGRGQPKDATDWCCQTHDCCYDHLKTQGCGI
	ļ			YKDYYRYNFSQGNIHCSDKGSWCEQQLCACDKEVAFCLKRNLD
			·	TYQKRLRFYWRPHCRGQTPGC
604	1343	249	632	KTVAEEASVGNPEGAFMKMLQARKQHMSTELTIESEAPSDSSG
		1	į.	INLSGFGSEQLDTNDESDVSSALSYILPYLSLRNLGAESILLP
<u></u>		l		FTEQLFSNVQDGDRLLSILKNNRKSPSQSSLLGNKFKNKIF
605	1344	2	382	LPLTLLLAAPFAHLLLPPGHDQSPCWHPGPALSPGTLGPLSWA
	ļ		l	MANSGLQLLGYFLALGGWVGIIASTALPQWKQSSYAGDASIQL
		1	1	RSKVFVLESEWGGDSLGLPRDCGWSCLLHSAVRSEKGFWS
606	1345	2	987	DPRVRPPLLQPPPPLLPRLVILKMAPLDLDKYVEIARLCKYLP
<b>1</b> .		1		ENDLKRLCDYVCDLLLEESNVQPVSTPVTVCGDIHGQFYDLCE
	l			LFRTGGQVPDTNYIFMGDFVDRGYYSLETFTYLLALKAKWPDR
			-	ITLLRGNHESRQITQVYGFYDECQTKYGNANAWRYCTKVFDML
1	l			TVAALIDEQILCVHGGLSPDIKTLDQIRTIERNQEIPHKGAFC
	1	Į		DLVWSDPEDVDTWAISPRGAGWLFGAKVTNEFVHINNLKLICR
7.				AHQLVHEGYKFMFDEKLVTVWSAPNYCYRCGNIASIMVFKDVN
	1			TREPKLFRAVPDSERVIPPRTTTPYFL
607	1346	10	768	SFAGAAARPSTPPASGRGAAPGRPGPSPMDLRAGDSWGMLACL
			'	CTVLWHLPAVPALNRTGDPGPGPSIQKTYDLTRYLEHQLRSLA
		0_0	1	GTYLNYLGPPFNEPDFNPPRLGAETLPRATVDLEVWRSLNDKL
	Ι΄.	· · ·	}	RLTONYEAYSHLLCYLRGLNRQAATAELRRSLAHFCTSLOGLL
				GSIAGVMAALGYPLPQPLPGTEPTWTPGPAHSDFLOKMDDFWL
			Į.	LKELOTWLWRSAKDFNRLKKKMOPPAAAVTLHLGAHGF
608	1347	114	700	IKISLKKRSMSGISGCPFFLWGLLALLGLALVISLIFNISHYV
808	134/	1 77.4	700	EKORODKMYSYSSDHTRVDEYYIEDTPIYGNLDDMISEPMDEN
	1			, - ~
		1		CYEQMKARPEKSVNKMQEATPSAQATNETQMCYASLDHSVKGK
	}	1	1	RRKPRKQNTHFSDKDGDEQLHAIDASVSKTTLVDSFSPESQAV
1		<u> </u>	<u> </u>	EENIHDDPIRLFGLIRAKREPIN

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
609	1348		807	VEFHPQRARAGARAPSMGVILTQRTLLSLVLALLFPSMASMAA IGSCSKEYRVLLGQLQKQTDLMQDTSRLLDPYIRIQGLDVPKL REHCRERPGAFPSEETLRGLGRRCFLQTLNATLGCVLHRLADL EQRLPKAQDLERSGLNIEDLEKLQMARPNILGLRNNIYCMAQL LDNSDTAEPTKAGRGASQPPTPTPASDAFQRKLEGCRFLHGYH RFMHSVGRVFSKWGESPNRSRRHSPHQALRKGVRRTRPSRKGK RLMTRGQLPR
610	1349	2	418	DFPGRRFRLVWLLVLRLPWRVPGQLDPTTGRRFSEHKLCADDE CSMLMYRGEALEDFTGPDCRFVNFKKGDPVYVYYKLARGWPEV WAGSVGRTFGYFPKDLIQVVHEYTKEELQVPTNETDFVCFDGG RDDFHNYNV
611	1350	823	115	SPLGKEGQEEVRVKIKDLNEHIVCCLCAGYFVDATTITECLHT FCKSCIVKYLQTSKYCPMCNIKIHETQPLLNLKLDRVMQDIVY KLVPGLQDSEEKRIREFYQSRGLDRVTQPTGEEPALSNLGLPF SSFDHSKAHYYRYDEQLNLCLERLSSGKDKNKSVLQNKYVRCS VRAEVRHLRRVLCHRLMLNPQHVQLLFDNEVLPDHMTMKQIWL SRWFGKPSPLLLQYSVKEKRR
612	1351	9	545	LWWYSAHAAVDAMMDVFGVGFPSKVPWKKMSAEELENQYCPSR WVVRLGAEEALRTYSQIGIEATTRARATRKSLLHVPYGDGEGE KVDIYFPDESSEATTRARATRKSLLHVPYGDGEGEKVDIYFPD ESSEALPFFLFFHGGYWQSGRHPGPHGRPGDPQRCVCPEAVSK QQAFSW
613	1352	49	902	GVRMASRGRRPEHGGPPELFYDETEARKYVRNSRMIDIQTRMA GRALELLYLPENKPCYLLDIGCGTGLSGSYLSDEGHYWVGLDI SPAMLDEAVDREIEGDLLLGDMGQGIPFKPGTFDGCISISAVQ WLCNANKKSENPAKRLYCFFASLFSVLVRGSRAVLQLYPENSE QLELITTQATKAGFSGGMVVDYPNSAKAKKFYLCLFSGPSTFI PEGLSENQDEVEPRESVFTNERFPLRMSRRGMVRKSRAWVLEK KERHRRQGREVRPDTQYTGRKRKPRF
614	1353	1960	871	TLICRMAGCGEIDHSINMLPTNRKANESCSNTAPSLTVPECAI CLQTCVHPVSLPCKHVFCYLCVKGASWLGKRCALCRQEIPEDF LDKPTLLSPEELKAASRGNGEYAWYYEGRNGWWQYDERTSREL EDAFSKGKKNTEMLIAGFLYVADLENMVQYRRNEHGRRRKIKR DIIDIPKKGVAGLRLDCDANTVNLARESSADGADSVSAQSGAS VQPLVSSVRPLTSVDGQLTSPATPSPDASTSLEDSFAHLQLSG DNTAERSHRGEGEEDHESPSSGRVPAPDTSIEETESDASSDSE DVSAVVAQHSLTQQRLLVSNANQTVPDRSDRSGTDRSVAGGGT VSVSVRSRRPDGQCTVTEV

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
615	1354	5653	4549	GATPLGSVGGRTGKMDAATLTYDTLRFAEFEDFPETSEPVWIL GRKYSIFTEKDEILSDVASRLWFTYRKNFPAIGGTGPTSDTGW GCMLRCGQMIFAQALVCRHLGRDWRWTQRKRQPDSYFSVLNAF IDRKDSYYSIHQIAQMGVGEGKSIGQWYGPNTVAQVLKKLAVF DTWSSLAVHIAMDNTVVMEEIRRLCRTSVPCAGATAFPADSDR HCNGFPAGAEVTNRPSPWRPLVLLIPLRLGLTDINEAYVETLK HCFMMPQSLGVIGGKPNSAHYFIGYVGEELIYLDPHTTQPAVE PTDGCFIPDESFHCQHPPCRMSIAELDPSIAVVRGGHLSTQAF GAECCLGMTRKTFGFLRFFFSMLG
616	1355	416	65	PTTSNRAITLTAWPKIPFLGICEAKNPRSENMRLATILEVACH HLGSGPPPSWELWEQGPPGNSSRYIEFLNKHTYIKGTLRVYTK KFCMLVIKSFESKSCVCVYDFDSKSSVNVTV
617	1356	2	382	PRVRFRLLHVTSIRSAWILCGIIWILIMASSIMLLDSGSEQNG SVTSCLELNLYKIAKLQTVNYIALVVGCLLPFFTLSICYLLII RVLLKVEVPESGLRVSHRKALTTIIITLIIFFLCFLPYHT
618	1357	3	672	GRHWLGSAQLTDGGSARKPKMAVPAALILRESPSMKKAVSLIN AIDTGRFPRLLTRILQKLHLKAESSFSEEEEEKLQAAFSLEKQ DLHLVLETISFILEQAVYHNVKPAALQQQLENIHLRQDKAEAF VNTWSSMGQETVEKFRQRILAPCKLETVGWQLNLQMAHSAQAK LKSPQAVLQLGVNNEDSKSLEKVLVEFSHKELFDFYNKLETIQ AQLDSLT
619	1358	557	208	EASSAKTKRKEEKGPKAKMKLMVLVFTIGLTLLLGVQAMPANR LSCYRKILKDHNCHNLPEGVADLTQIDVNVQDHFWDGKGCEMI CYCNFSELLCCPKDVFFGPKISFVIPCNNQ
620	1359	335	1735	KMAEAVFHAPKRKRRVYETYESPLPIPFGQDHGPLKEFKIFRA EMINNNVIVRNAEDIEQLYGKGYFGKGILSRSRPSFTISDPKL VAKWKDMKTNMPIITSKRYQHSVEWAAELMRRQGQDESTVRRI LKDYTKPLEHPPVKRNEEAQVHDKLNSGMVSNMEGTAGGERPS VVNGDSGKSGGVGDPREPLGCLQEGSGCHPTTESFEKSVREDA SPLPHVCCCKQDALILQRGLHHEDGSQHIGLLHPGDRGPDHEY VLVEEAECAMSEREAAPNEELVQRNRLICRRNPYRIFEYLQLS LEEAFFLVYALGCLSIYYEKEPLTIVKLWKAFTVVQPTFRTTY MAYHYFRSKGWVPKVGLKYGTDLLLYRKGPPFYHASYSVIIEL VDDHFEGSLRRPLSWKSLAALSRVSVNVSKELMLCYLIKPSTM TDKEMESPECMKRIKVQEVILSRWVSSRERSDQDDL

SEQ ID NO: NO: of Nucleic Acids Acids SEQ Amino Acids SEQ No: of Nucleic Acids Acids SEQ No: No: of Nucleic Acids Acids No: No: of Nucleic Acids Acids No: No: No: of Nucleic Acids Acids No: No: No: No: No: No: No: No: No: No:	d,
NO: of Nucleic Acids  NO: of Acids  NO: of Amino Acids  NO: of Acids  NO: of Amino Acids  NO: of Acids  NO: of Amino Acids  NO: of Amino Acids  NO: of Amino Acids  NO: of Nucleic Amino Acids  NO: of Nucleic Amino Acids  NO: of Nucleic Amino Acids  NO: of No: of Nucleotide location corresponding to first  NO: of No: of No: of No: of No: of Nucleotide location corresponding to first  NO: of No: of No: of No: of No: of Nucleotide location corresponding to first  NO: of No: of No: of No: of No: of Nucleotide location corresponding to first  NO: of No: of No: of Nucleotide location corresponding to first  NO: of No: of No: of No: of No: of Nucleotide location corresponding to first  NO: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of No: of N	
of Nucleic Acids Acids Acids Acids Acids Note of Incation Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Acids Ac	
Nucleic Acids  Acids  Orresponding to first to first  Nucleic Acids  Corresponding to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first to first t	
Acids Acids Sponding Sponding to first to first P=Proline, Q=Glutamine, R=Arginine, S=Serine T=Threonine, V=Valine, W=Tryptophan, Y=Ty	
to first to first T=Threonine, V=Valine, W=Tryptophan, Y=Ty	
	rosine,
amino amino X=Unknown, *=Stop Codon, /=possible nucleoti	ide deletion.
acid   acid   \=possible nucleotide insertion)	·
residue residue	
of amino of amino	ļ
acid acid .	
sequence sequence	
621 1360 5693 4435 RDIWTMNLQRYWGEIPISSSQTNRSSFDLLPREFR	LVEVHDPP
LHQPSANKPKPPTMLDIPSEPCSLTIHTIQLIQHN	RRLRNLIA
TAQAQNQQQTEGVKTEESEPLPSCPGSPPLPDDLL	PLDCKNPN
APFQIRHSDPESDFYRGKGEPVTELSWHSCRQLLY	QAVATILA
HAGFDCANESVLETLTDVAHEYCLKFTKLLRFAVD	REARLGQT
PFPDVMEQVFHEVGIGSVLSLQKFWQHRIKDYHSY	MLQISKQL
SEEYERIVNPEKATEDAKPVKIKEEPVSDITFPVS	EELEADLA
SGDQSLPMGVLGAQSERFPSNLEVEASPQASSAEV	NASPLWNL
AHVKMEPQESEEGNVSGHGVLGSDVFEEPMSGMSE	EAGIPQSPD
DSDSSYGSHSTDSLMGSSPVFNQRCKKRMRKI	ŀ
622 1361 15 678 REQILFIEIRDTAKGGETEQPPSLSPLHGGRMPEM	GEGIQSLA
RETOSHRGRROGWDATWVTRCRESLNRGGAGAGKR	VHHALADAS
FLALIEPNLAEREASEEEVKACSDETVVADLLVKV	VYVLGAIL
KIFLREGNVLNOHSGMDIEKYSEHYOHDHSPGAED	DAAGGOLR
PTAQERRHKEGSRGSPRCKRARKAVGESPGCPRPR	VRPRVRPR
VRPRV	
623 1362 1080 835 GTRGCCREGTAYAKAYQFMASHLSLGKPVSTGSIF	PRFNKALFN
KOAKCKPNHYSFIGLSMLSPENFSIGCKYSVWFSE	TKGF
624 1363 872 441 GAQGVRVGIGEVGRVQAPRVSLLHSQGVPRGGTGE	AVKEEGRG
SSLHPPLPPQGLGEYAACQSHAFMKGVFTFVTGTG	
IORKFPYPLOWSLLVAVVAGSVVSYGVTRVESEKO	
TGOLPKDRSTDORS	
625 1364 1 585 GTSELLCIQRWNWGPAFPPRPGLALAPTLQLLVEN	MGSAKSVPV
TPARPPPHNKHLARVADPRSPSAGILRTPIQVESS	
EOLEGLKHAQDSDPRSPLGKN*GHGWQVGQGSDLC	
ASHL/YSSRASRCSQPPCLSLPWFGVRSSPANTYF	
SPALHYTALQAGIISTSQARAPR	
626 1365 36 381 PLLLPRFIDIPCLLCYLTQVTPDDMYAKAFLIKPN	ALLCAL VAL
RKL\RADETTDFP\TLGTDQIYELLPGKDELNIVE	
*TAYVSGENHILSEP*KNLYPAVNTLSSYP	
	MOCOGTET W
627 1366 763 1003 SRQPPPLLTMVFLLEFLFLVFFPGCVNQLLLSYPV	
628 1367 296 1199 KSREQSSLFAADAERSWGGKSCCLLRWRFVGKASH GEERPETKERAWKMEOTWTRDYFAEDDGEMVPRTS	
LTAFLSDTKDRGPPVOSQIWRSGEKVPFVOTYSLI	•
QTQALRDFEKHLNDLKKENFSLKLLIYFLEERMQ	
IYKRNTELKVEVESLKRELQDKKQHLDKTWADVEI	<del>-</del>
LRRQFEERQQEMEHVYELLENKMQLLQEESRLAKI	
VEAEKECNLELSEKLKGVTKNWEDVPGDQVKPDQ	I LEALACKD
1   K	

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end mucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
629	1368	191	1116	TRRRGTTWRSPRPRRASTSRPSTRPRGVASWPWETAGTATTGP GPSARTRRAARRRRSRPRRRAHGGLSQPAGWQSLLSFTILFL AWLAGFSSRLFAVIRFESIIHEFDPWFNYRSTHHLASHGFYEF LNWFDERAWYPLGRIVGGTVYPGLMITAGLIHWILNTLNITVH IRDVCVFLAPTFSGLTSISTFLLTRELWNQGAGLLAACFIAIV PGYISRSVAGSFDNEGIAIFALQFTYYLWVKSVKTGSVFWTMC CCLSYFYMVSAWGGYVFIINLIPLHAFVLVLM/Q/RYSKRVYI *YSTFYIVG
630	1369	852	214	RRLIVVLSDAFLSRAWCSHSF/RVGPARGWVGPSVAPTPLTVP PRREGLCRLLELTRRPIFITFEGQRRDPAHPALRLLRQHRHLV TLLLWRPGSVTPSSDFWKEVQLALPRKVRYRPVEGDPQTQLQD DKDPMLILRGRVPEGRALDSEVDPDPEGDLGVRGPVFGEPSAP PHTSGVSLGESRSSEVDVSDLGSRNYSARTDFYCLVSKDDM
631	1370	246	1091	LSHEGWRRGREGERINSSVASLAPLCILPDLPSNMHLARLVGS CSLLLLLGALSGWAASDDPIEKVIEGINRGLSNAEREVGKALD GINSGITHAGREVEKVFNGLSNMGSHTGKELDKGVQGLNHGMD KVAHEINHGIGQAGKEAEKLGHGVNNAAGQAGKEADKAVQGFH TGVHQAGKEAEKLGQGVNHAADQAGKEVEKLGQGAHHAAGQAG KELQNAHNGVNQASKEANQLLNGNHQSGSSSHQGGATTTPLAS GASVNTPFINLPALWRSVANIMP
632	1371	3150	2792	SASGGLGMTVEGPEGSEREHRPPEKPPRPPRPLHLSDRSFRRK KDSVESHPTWVDDTRIDADAIVEKIVQSQDFTDGSNTEDSNLR LFVSRDGSATLSGIQLATRVSSGVYEPVVIESH
633	1372	667	993	ERSGWPQPEGTVTAQGPLFWERLSGAVTVSSGYKADMWPSFPQ \VRVGSFLFGILFFSFGSSSLPPGLPPPASLLCCAVQWGARAL FLPCLKERALGMEMRNNTLSFRQ
634	1373	636	2	SSSNLRLSFLINENTLGKCFRSGPSCAGPRISPLAAQYECPRP SLLIMASVPKTNKIEPRSYSIIPSCGI\RRLGPALNTLIF\QS KRFGPRG\HSAKSIEGAPRGKGRGRAVARLAADRPPAPKIQLR AF*LQQL*YTLLELELPRLLAPDLPSNGSSLKDLKWTHSNYRA SKESCIVIF\VTTSPGREWVICALAAFLGCGS\LSQAPSPES
635	1374	61	519	LRIINTYFCFKFLIVNYIHGTTKARKPHVLGESLISAMSRQEP KMFVLLYVTSFAICASGQPRGNQLKGENYSPRYICSIPGLPGP PGPPGANGSPGPHGRIGLPGRDGRKGEKGEKGTAGLRGKT GPLGLAGEKGDQGETGKKGPIGPE
636	1375	129	579	FASAMLGSRVDRPKLSVAPSVVLEEDQVLVSPAVDLEAGCRLR DFTEKIMNVKGKVILSMLVVSTVIIVFWEFINSTEGSFLWIYH SKNPEVDDSSAQKGWWFLSWFNNGIHNYQQGEEDIDKEKGREE TKGRKMTQQSFGYGTGLIQT

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
637	1376		1376	GSHRFSLASPLDPEVGPYCDTPTMRTLFNLLWLALACSPVHTT LSKSDAKKAASKTLLEKSQFSDKPVQDRGLVVTDLKAESVVLE HRSYCSAKARDRHFAGDVLGYVTPWNSHGYDVTKVFGSKFTQI SPVWLQLKRRGREMFEVTGLHDVDQGWMRAVRKHAKGLHIVPR LLFEDWTYDDFRNVLDSEDEIEELSKTVVQVAKNQHFDGFVVE VWNQLLSQKRVGLIHMLTHLAEALHQARLLALLVIPPAITPGT DQLGMFTHKEFEQLAPVLDGFSLMTYDYSTAHQPGPNAPLSWV RACVQVLDPKSKWRSKILLGLNFYGMDYATSKDAREPVVGARY IQTLKDHRPRMVWDSQVSEHFFEYKKSRSGRHVVFYPTLKSLQ VRLELARELGVGVSIWELGQGLDYFYDLL
638	1377	998	48	GREGTGWGPAMSEVTRSLLQRWGASFRRGADFDSWGQLVEAID EYQILARHLQKEAQAQHNNSEFTEEQKKTIGKIATCLELRSAA LQSTQSQEEFKLEDLKKLEPILKNILTYNKEFPFDVQPVPLRR ILAPGEEENLEFEEDEEEGGAGAGSPDSFPARVPGTLLPRLPS EPGMTLLTIRIEKIGLKDAGQCINPYITVSVKDLNGIDLTPVQ DTPVASRKEDTYVHFNVDIELQKHVEKLTKGAAIFFEFKHYKP KKRFTSTKCFAFMEMDEIKLGPIVIELYKKPTDFKRKQLQLLT KKPLYLHLHQTLHKE
639	1378	1298	1569	GSITSEPSLDSLQPLPPGFKRFSCLSLPSSWDYRRPPPGLAYF CIFSRDEVSPCWPGCSPSPDLMIRLPRPPSVGITGVSHRAWPT IDNF
640	1379	196	1197	KMPVPWFLLSLALGRSPVVLSLERLVGPQDATHCSPGLSCRLW DSDILCLPGDIVPAPGPVLAPTHLQTELVLRCQKETDCDLCLR VAVHLAVHGHWEEPEDEEKFGGAADSGVEEPRNASLQAQVVLS FQAYPTARCVLLEVQVPAALVQFGQSVGSVVYDCFEAALGSEV RIWSYTQPRYEKELNHTQQLPDCRGLEVWNSIPSCWALPWLNV SADGDNVHLVLNVSEEQHFGLSLYWNQVQGPPKPRWHKNLVRP PPSQVHSHCRP\CLCK\DAVPYQRGSLKRTHPKQGKIGGGTSA FLVSLTLASSSSSLSSPTSFLYLFHRLDRRSLP
641	1380	756	1110	LRLWNRNQMMHNIIVKELIVTFFLGITVVQMLISVTGLKGVEA QNGSESEVFVGKYETLVFYWPSLLCLAFLLGRFLHMFVKALRV HLGWELQVEEKSVLEVHQGEHVKQLLRIPRP
642	1381	631	1278	KVNRKLRKKGKISHDKRKKSRSKAIGSDTSDIVHIWCPEGMKT SDIKELNIVLPEFEKTHLEHQQRIESKVCKAAIATFYVNVKEQ FIKMLKESQMLTNLKRKNAKMISDIEKKRQRMIEVQDELLRLE PQLKQLQTKYDELKERKSSLRNAAYFLSNLKQLYQDYSDVQAQ EPNVKETYDSSSLPALLFKARTLLGAESHLRNINHQLEKLLDQ G
643	1382	1167	755	VWVAMEEPPVREEE*EEGEEDEERDEVGPEGALGKSPFQLTAE DVYDISYLLGRELMALGSDPRVTQLQFKVVRVLEMLEALVNEG SLALEELKMERDHLRKEVEGLRRQSPPASGEWPDSTKRRPRRK KRKRCCGY

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID I	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
' I	i	acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino	
		acid	acid	
644	1383	sequence	sequence 271	PRNDHRLTOSRRDSSSKTRAFLVPRFLPAHAGVTSEERTAMKR
044	1303	_	275	EGGAAHLCSDSLPESQQQDGNHAPNFSSHGSCRRRQRRRHDKA
				· LHAR
645	1384	1	499	THASEKSRATMSSWSRORPKSPGGIOPHVSRTLFLLLLLAASA
043	1304	-	300	WGVTLSPKDCQVFRSDHGSSISCQPPAEIPGYLPADTVHLAVE
				FFNLTHLPANLLQGASKLQELHLSSNGLESLSPEFLRPVPQLR
				VLDLTRNALTGLPPGLFQASATLDTLVLKENOLEVLE
646	1385	178	675	ERPRIMDLAGLLKSQFLCHLVFCYVFIASGLIINTIQLFTLLL
040	1303	1,0	075	WPINKOLFRKINCRLSYCISSOLVMLLEWWSGTECTIFTDPRA
				YLKYGKENAIVVLNHKF\EI\DFLCGWSLSERFGLLGVSQKCI
		İ		PPCLTHFFGSAPPLVFLLLVIQNLQKNQQSFYLMKWS
647	1386	630	1499	MIVFGWAVFLASRSLGQGLLLTLEEHIAHFLGTGGAATTMGNS
04/	1300	630	1433	
			ĺ	CICRDDSGTDDSVDTQQQQAENSAVPTADTRSQPRDPVRPPRR GRGPHEPRRKKONVDGLVLDTLAVIRTLVDNDOEPPYSMITLH
			ŀ	EMAETDEGWLDVVQSLIRVIPLEDPLGPAVITLLLDECPLPTK
			1	DALQKLTEILNLNGEVACQDSSHPAKHRNTSAVLGCLAEKLAG
			ļ	PASIGLLSPGILEYLLQCLLQSHPTVMLFALIALEKFAOTSEN
		]	]	KLTISESSISDRL\VTLESW\ANDPDYLKRQVG
648	1387	1	962	RFGTRGLAKSKGVVLMALCALTRALRSLNLAPPTVAAPAPSLF
040	1367	*	1962	PAAQMMNNGLLQQPSALMLLPCRPVLTSVALNANFVSWKSRTK
				YTITPVKMRKSGGRDHTGRIRVHGIGGGHKORYRMIDFLRFRP
1	l	l	1	EETKSGPFEEKVIQVRYDPCRSADIALVAGGSRKRWIIATENM
			9	QAGDTILNSNHIGRMAVAAREGDAHPLGALPVGTLINNVESEP
	-	<b>,</b>		GRGAQYIRAAGTCGVLLRKVNGTAIIQLPSKRQMQVLETCVAT
		1		VGRVSNVDHNKRVIGKAGRNRWLGKRPNSGRWHRKGGWAGRKI
		1.	ļ	RPLPPMKSYVKLPSASAOS
649	1388	291	714	PVQGARCWLDARRNVRVFSGVCCGCGIHGYWAEPCGGCGAMEG
049	1300	1 2 2 2	/ 1 =	LRSSVELDPELTPGKLDEEMVGLPPHDASPOVTFHSLDGKTVV
1	ł			CPHFMGLLLGLLLLTLSVRNOLCVRGEROLAETLHSOVKEKS
]·	]			QLIGKKTDCRD
650	1389	874	2220	GARGRPLAETWPFLTAPVLPGQLQITEPTMAEKGDCIASVYGY
	1309	3,3	2220	DLGGRFVDFQPLGFGVNGLVLSAVDSRACRKVAVKKIALSDAR
'	Į.			SMKHALREIKIIRRLDHDNIVKVYEVLGPKGTDLOGELFKFSV
	ł			AYIVQEYMETDLARLLEQGTLAEEHAKLFMYQLLRGLKYIHSA
	1			NVLHRDLKPANIFISTEDLVLKIGDFGLARIVDOHYS\HKGYL
1	]	]		SEGLVTKWYRSPRLLLSPNNYTKAIDMWAAGCILAEMLTGRML
,	1			FAGAHELEOMOLILETIPVIREEDKDELLRVMPSFVSSTWEVK
				RPLRKLLPEVNSEAIDFLEKILTFNPMDRLTAEMGLOHPYMSP
				YSCPEDEPTSQHPFRIEDEIDDIVLMAANQSQLSNWDTCSSRY
}		1		PVSLSSDLEWRPDRCQDASEVQRDPRAGSAPLAENVOVDPRKD
			-	SHSSSASCOAGRNGVSRYQ
	1	1	1	PUDDENC AUGUSTA AUGUSTA

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end mucleotide location corresponding to first amino acid residue of amino acid sequence 2451	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)  MRTLGTCLATLAGLLLTAAGETFSGGCLFDEPYSTCGYSQSEG
				DDFNWEQVNTLTKPTSDPWMPSGSFMLVNASGRPEGQRAHLLL PQLKENDTHCIDFHYFVSSKSNSPPGLLNVYVKVNNGPLGNPI WNISGDPTRTWNRAELAISTFWPNFYQVIFEVITSGHQGYLAI DEVKVLGHPCTRTPHFLRIQNVEVNAGQFATFQCSAIGRTVAG DRLWLQGIDVRDAPLKEIKVTSSRRFIASFNVVNTTKRDAGKY RCMI\RTEGGVGISNYAEL\VVKEPPVPIAPPQLASVGATYLW IQLNANSINGDGPIVAREVEYCTASGSWNDRQPVDSTSYKIGH LDPDTEYEISVLLTRPGEGGTGSPGPALRTRTKCADPMRGPRK LEVVEVKSRQITIRWEPFGYNVTRCHSYNLTVHYCYQVGGQEQ VREEVSWDTENSHPQHTITNLSPYTNVSVKLILMNPEGRKESQ ELIVQTDEDLPGAVPTESIQGSTFEEKIFLQWREPTQTYGVIT LYEITYKAVSSFDPEIDLSNQSGRVSKLGNETHFLFFGLYPGT TYSFTIRASTAKGFGPPATNQFTTKISAPSMPAYELETPLNQT DNTVTVMLKPAHSRGAPVSVYQIVVEEERPRTKKTTEILKCY PVPIHFQNASLLNSQYYFAAEFPADSLQAAQPFTIGDNKTYNG YWNTPLLPYKSYRIYFQAASRANGETKIDCVQVATKGAATPKP VPEPEKQTDHTVKIAGVIAGILLFVIIFLGVVLVMKKRLYKHG ASICSASGEASGSFQSWRKAKHKQACPMARAGARERAGGCLKL
652	1391	30	459	GIRQLLQLSRASMAARKSWTALRLCATVVVLDMVVCKGFVQDL DESFKENRNDDIWLVHFYAPWCGHCKKLEPIWNEAGLEMKSIG SPVKAGKMDATSYSSIASEFGVRGYPTIKLALIRPLPSQQMFE HMHKRHRVFFVYV
653	1392	168	1016	GLVIVISHFSPSPGLLPATQSPAMSDPITLNVGGKLYTTSLAT LTSFPDSMLGAMFSGKMPTKRDSQGNCFIDRDGKVFRYILNFL RTSHLDLPEDFQEMGLLRREADFYQVQPLIEALQEKEVELSKA EKNAMLNITLNQRVQTVHFTVREAPQIYSLSSSSMEVFNANIF STSCLFLKLLGSKLFYCSNGNLSSITSHLQDPNHLTLDWVANV EGLPEEEYTKQNLKRLWVVPANKQINSFQVFVEEVLKIALSDG FCIDSSHPHALDFMNNKIIRLIRY
654	1393	3	927	SCADNLVAASGGCWFVLGERRAGSLLSASYGTFAMPGMVLFGR RWAIASDDLVFPGFFELVVRVLWWIGILTLYLMHRGKLDCAGG ALLSSYLIVLMILLAVVICTVSAIMCVSMRGTICNPGPRKSMS KLLYIRLALFFPEMVWASLGAAWVADGVQCDRTVVNGIIATVV VSWIIIAATVVSIIIVFDPLGGKMAPYSSAGPSHLDSHDSSQL LNGLKTAATSVWETRIKLLCCCIGKDDHTRVAFSSTAELFSTY FSDTDLVPSDIAAGLALLHQQQDNIRNNQ\DLPRWSAMPQGAP RKLIWMQN
655	1394	1	716	FRAATAAAKGNGGGGGRAGAGDASGTRKKKGPGPLATAYLVIY NVVMTAGWLVIAVGLVRAYLAKGSYHSLYYSIEKPLKFFQTGA LLEILHCAIGIVPSSVVLTSFQVMSRVFLIWAVTHSVKEVQSE DSVL\FVIAWTITEIIRYSFYTFSLLNHLPYLIKRARYTLFIV LYPMGVSGELLTIYAALPFVRQAGLYSISLPNSTKKIFLISQV WWHMLAVSADAKAAEMPAVLKPGP

SEQ   Doctor   Predicted beginning   Included location   Not of Minito   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Acids   Aci		676	<b>.</b>		
NO: of of mulceoide location of off mulceoide location of off off off off off off off off of	SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
Note   Amino				****	
Some					F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Acids		of			K=Lysine L=Leucine, M=Methionine, N=Asparagine.
Acids to first amino acid residue of amino acid residue of amino acid residue of amino acid residue of amino acid residue of amino acid residue of amino acid sequence sequence sequence sequence sequence (Physical Residue)    556 1395 72 766 MLTGVGCLVSSESLSCVQCNSWEKSCVNSIASECPSHANTSCI SSSASSLETPVRLYQNMFCSAENCSEETHITAFTVHVSAEEH FHFVSQCCEGKECSNTSDALDPPLKNVSSNÄECPACYESNGTS CRKFWKCYEEEQCVFLVAELKADLISKSLVLKGCSNVSNATC QFLSGENKTIGGVIFRKFECANVNSLTPTSAFTTSHNVGSKAS LYLLALASLLLEGLLP  557 1396 97 746 VPARRAMEIGTEISKIRSAIKGKLQELGAYVDEELPDYIMV WANKKSQDQMTEDLSSFLCNNTIRFTWLHIGVLDKLGSNVSNATC QFLSGENKTIGGVIFRKFECANVNSLTPTSAFTTSHNVGSKAS LYLLALASLLLEGLLP  558 287 VPARRAMEIGTEISKIRSAIKGKLQELGAYVDEELPDYIMV WANKKSQDQMTEDLSSFLCNNTIRFTWLHIGVLDKLRSVTTE PSSLKSSDTNIFDSNVSNNSNSRGDERRIEAAVPPL\AIPS ARPEKDSRSVSTSGGERTINVAQTYDDGAATRIMSTV, KPLR EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPLSQKKPTVTLTVG SSR  558 1397 155 560 ASRVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYTP QITAWDLECKVTATTFSLEQPRCVFDGLASASDTVWLVVAFSN ASRGFQNPETLADIPASPQLLFOGHMAGSGSAP  559 1398 416 539 NSLNNFFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL KSLPACHAGAN ARAIGKRVFKSTSDTVTVKCYCRESWLRERKVVVLDTPDLF SSLACABDKQRNIQHLLELSAP  660 1399 281 736 KSLPLQKHPKPSCQEDQGLGRGSLSGHSPLTILLIGKCRSGKSATG NAILGKRVFKSFSDTVTVKCYCRESWLRERKVVLDTPDLF SSLACABDKQRNIQHLLELSAP  661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEERASGAPVGGG RWQLSDRVERGSPTIGLLGGSPSAQPGTGNVERAGLSWT RGTGVQSEGTWESQQDDSDALPSFELLPQQDKPFLKKSSSSASTG PSSSYEDSEEDISSDPESTLDPNSALHTHLDQXKPRVVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHAA RIIFGFLVERGFHVQQDGLYLLLIL  662 1401 232 3 KICSSYPLRICITCICKERGPSNLYTSCDFFSPAFYFVIYRLY NFKHWPGAVAHTYSPSTLGGRGRSNLYTSCDFFSPAFYFVIYRLY NFKHWPGAVAHTYSPSTLGGRGRSNLYTSCGFFSPAFYFVIYRLY NFKHWPGAVAHTYSPSTLGGRGRSNLYTSCGFFSPAFYFVIYRLY NFKHWPGAVAHTYSPSTLGGRGRSNLYTSCGFFSPAFYFVIYRLY NFKHWPGAVAHTYSPSTLGGRGRSNLYTSCGFFSPAFYFVIYRLY NFKHWPGAVAHTYSPSTLGGRGRSNLYTSCGFFSYSGFSYILA VRLIAGIALVYNVIPRSSRALVELVVLLRFLLSRHPS NEENNLLSDAHTNAVARRSSWMAA*RIEQKTEGADTQQMAP DCREFFATELEDICDOVLSLLEKLLIPNASHA*SLVYYLEMIG DVYRYWL  665 1404 3 413 NAEHFGWDRFAQLADPWQMAVESPSD			1		
amino acid residue of amino acid residue of amino acid residue of amino acid sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequenc	Acids	Acids			
acid residue of amino acid   residue of amino acid   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   residue   r					
residue of amino acid sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence					
of amino acid sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequence sequenc			1		\=possible nucleotide insertion)
acid   acid   sequence   sequence		Ì			
			of amino		·
			acid		
SSSASSLETPVRLYQNMFCSAENCSEETHITAFTVHVSAEEH FHFVSQCCEGKECSHTSDALDPLKRVSSNÄECPACYESHGTS CRKEPMKCVEEBQCVFLVAELKNDLESKSLUKKGGSNVSNATC QFLSGENKTLGGVIFRKFECANVNSLTPTSAPTTSHNVGSKAS LYLLALASILLRRLLP  657 1396 97 746 VPARRRAMEIGTEISKKIRSAIKGKLQELGAYVDEELPDYIMV MVANKKSQDQMTEDLSLFI,GNNTIRFTVWLHGYLDKLRSVTTE PSSLKSSDTNIFDSNVPSNKSNFSRGDERRHEAAVPPL\AIPS ARPEKRDSSVSTSSQESKTTNVQTYDDGAATRLMSTV/KPLR EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPLSQKKPTVTLTYG SSR  658 1397 155 560 ASRVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYTP QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTWLVVAFSN ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPMA GSGSAP  659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL 660 1399 281 736 KSLPLQKHPKPSCQEDQGLGRGSLSGHSPLTLLTFLTSCALGD QQLLPPRTSGSLQGEMSSQSCQMSELRILLLGKCRSGKSATG NATLGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP SSIACAEDKQRNIQHLELSAP RWGLSDRVEGGSFTLGLLGGSPSAQFGTGNVERGIFSGRMLEP LPCWDAAKDLKEPQCPPGDRVGYQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTWESQRGDSDALBSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPLKKSSSSASTG FSSSYEDSEDISSDPERTLDNSAFLHTLDQKPRVVESRGV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYPLRITCILGKARQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFAFFNKYLNVCVLIF THIKRVVPALGGTNUVGGSLEPRRLRQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLITYSFVFWITGVILLAGGVWGKLTLGSY ISLIAENSTVAPVVILTYGTTIVAYPLV*FFFSYSSGFFSYILA VRLIAGIALVYNYIPRSSRALVRLVVLLRFLLSRPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHBERDDDMAACKKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA**RIEGKTRGADTQQMAP DCREIFATELRDLCDDVLSLLEKLLIPNASHA*SLVYYLEMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL			sequence	sequence	
FHFVSQCCEGKECSNTSDALDPPLKNVSSNÄECPACYESNGTS CRGKPWKCYESPGCVFUVAELKNDIESKSLVLKGGSNVSNATC QFLSGENKTLGGVIFKFECANVNSLTPTSAPTTSHNVGSNATA CYLLALASLLIKGLLP  746 VPARRRAMEIGTEISRKTRSAIKGKLQELGAVVDEELPDYIMV MVANKKSQDQMTEDLSLFIGNNTIRFTVWLHGVLDKLRSVTTE PSSLKSSDTNIFDSNVPSNKSNFSRGDERRHEAAVPPL\AIPS ARPEKRDSRVSTSSQESKTTNVQTYDDGAATRLMSTV/KPLR EPAPSEDVIDIRPEPDDLIDEDLNFVQEKPLSQKKPTVVLLTYG SSR  750 ASRVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYTP QITAWDLEGKVTATTFSLEQPRCVFGGLASASDTVWLVVAFSN ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPMA GSGSAP  750 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL VSLPLQKHPKPSCQEDQGLGRGSLSGHSPLTLLITFLTSCALGD QQLLPPRTSGSLCQSSMSDSCQMSSLRLLLLGKSGKSATG NAILGKHVFKSKFSQTVIKMCQRESWVLRERKVVVIDTPDLF SSIACAEDDKQRNIQHLLELSAP  751 PVETTVSVQSAESSDAISWSRLPRALASVGPEEARSGAPVGGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGMLEP LPCWDAAKDLKEPQCPPGDRVGVQCBNSRVWGGTMEKAGLANT RGTGVGSGETWESQRODSDALPSPELLPQDOMPFILRKACSPS NIPAVIITDMGTQEGGALEETQGSPRGNLPLRKLSSSSASTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQCKPFVVERSVV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFTLAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL  662 1401 232 3 KICSSYFLRICIQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM RIIFGFLVERGFHVGQDGLYLLIL  663 1402 250 556 LILSLPLLYGGLKSYTFPSEHYLHLLQTFATFMKYLNVCVLIF 1HKKPVVPAIQETNVGSSLEPRRLRLQQAMIVPLHFGKRNVR PCLKKQQQQQQQQCK  664 1403 1 373 RMFTKPVITCLKTLLITYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTVAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRILAGIALVYNNTPRSSSRALVRLVVLLEFFLISREPS  665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVISLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL  666 1405 2 334 GGGGLGKMPRQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLERVLRQGSL	656	1395	72	766	MLTGVGCLVSSESLSCVQCNSWEKSCVNSIASECPSHANTSCI
CRKPWKCYEEQCVFLVABLKNDIESKSLULKGCSNVSNATC QFLSGENKTIGGVIFRKFECANVNSLTPTSAPTTSHNVGSKAS LYLLALASILLRGLLP  746 VPARRAMEIGTEISRKIRSAIKGKLQELGAYVDEELPDYIMV MVANKKSQDQMTEDLSLFLGNNTIRFTYWHHGVLDKKRSVTTE PSSLKSSDTNIFDSNNYSNKSNFSRGDERRHEAVPPL\AIPS ARPEKRDSRVSTSSQESKTTNVRQTYDDGAATRLMSTV/KPLR EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPLSQKKPTVTLTYG SSR  658 1397 155 560 ASRVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYTP QITAMDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVAFSN ASRGFQNPETLADIPASPQLLITDGHYMTLPLSPDQLPCGDPMA GSGSAP  659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL 660 1399 281 736 KSLPLQKHPKPSCQEDQGLGRGSLSGHSPLTLHTFLTSCSLGD QQLLPPRTSGSLCQESMSQSCQMSELRLLLIGKCRSGKSATG NALIGKHVFKSKFSDQTVIKNCQRESWLRERKVVVIDTPDLF SSIACAEDKQRNTQHLLELSAP SSIACAEDKQRNTQHLLELSAP RRYGGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPHLRKLSSSASSTG FSSYEDSEDISDSDPSRTLDPNSAFLHILDQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVQGDLYLLIL 662 1401 232 3 KICSSYPLRICTIQKERQESANLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLELLYGHLKSTFPSENYLHLLQTFATFNKYLNVCVLIF THKKYVVPAIGGTNVGGSLEFRRILQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKEVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTVAPYVLIVTGTTIVAPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCCKAKLÆBABRDDDMACKKTVTDQGABLS NEERNLLSDAHTNAVARRSSWMGA*RIEQKTEGADTQQMAP DCREIFATELRDLCDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGGLGKMPRAQLADPWQMMAVESPSDCADNGQUMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKAAPSQIELLRVLRQGSL			[		SSSASSSLETPVRLYQNMFCSAENCSEETHITAFTVHVSAEEH
QFLSGENKTLGGVIFRKFECANVNSLTPTSAPTTSHNVGSKAS LYLLALSILLRGLLP VPARRAMEIGTEISRKIRSAIKGKLQELGAYVDEELFDYIMV MVANKKSQDQMTEDLSLFLGNNTIRFTVWLHGVLDKLRSVTTE PSSLKSSDTNIFDSNVPSNKSNFSRGBERRHEAAVPPL\AIPS ARPEKKDSRVSTSSQESKTTNVKQTYDDGAATRIMSTV/KPLR EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPLSQKKPTVTLTYG SSR 658 1397 155 560 ASSVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELUPYTP QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFSN ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPMA GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL 660 1399 281 736 KSLPLQKHPKPSCQEDGLGRGSLSGHSPLTLLTFLTSCALGB QSLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSATG NAILGKHVFKSKFSDQTVIKMCQRESWLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP ANGLERHVFKSKFSDQTVIKMCQRESWLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTWESQRQDSDALPSFELLPQDQDKFFLRKACSPS NIPAVITIOMGTQEDGALEFTQGSPGRMLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHVGQGGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHMPGAVAHTYSPSTLGGRGRWT'SGREM 663 1402 250 556 LILSLPLLYGHLKSTFSSEYHLLLLGYFATFNKYLNVCVLIF IHKKPVVPAIQGTNVGGSLEFRRLRLQQAMTVPLHFGLGNRVR PCLKKQQQQQQQQCKK 664 1403 1 373 RMETKPVITCKHTLLIYSFVFWITGVILLAAGVWGKLTLGSY 1SLIAENSTYAPYVLIVTGTTIVAPPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLUVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRYDLCQKAKLAEHAERDAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKREGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGGLGGKMPRQLADPWQMMAVESSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL		1	i	1	FHFVSQCCEGKECSNTSDALDPPLKNVSSNAECPACYESNGTS
QFLSGENKTLGGVIFRKFECANVNSLTPTSAPTTSHNVGSKAS LYLLALSILLRGLLP VPARRAMEIGTEISRKIRSAIKGKLQELGAYVDEELFDYIMV MVANKKSQDQMTEDLSLFLGNNTIRFTVWLHGVLDKLRSVTTE PSSLKSSDTNIFDSNVPSNKSNFSRGBERRHEAAVPPL\AIPS ARPEKKDSRVSTSSQESKTTNVKQTYDDGAATRIMSTV/KPLR EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPLSQKKPTVTLTYG SSR 658 1397 155 560 ASSVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELUPYTP QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFSN ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPMA GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL 660 1399 281 736 KSLPLQKHPKPSCQEDGLGRGSLSGHSPLTLLTFLTSCALGB QSLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSATG NAILGKHVFKSKFSDQTVIKMCQRESWLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP ANGLERHVFKSKFSDQTVIKMCQRESWLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTWESQRQDSDALPSFELLPQDQDKFFLRKACSPS NIPAVITIOMGTQEDGALEFTQGSPGRMLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHVGQGGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHMPGAVAHTYSPSTLGGRGRWT'SGREM 663 1402 250 556 LILSLPLLYGHLKSTFSSEYHLLLLGYFATFNKYLNVCVLIF IHKKPVVPAIQGTNVGGSLEFRRLRLQQAMTVPLHFGLGNRVR PCLKKQQQQQQQQCKK 664 1403 1 373 RMETKPVITCKHTLLIYSFVFWITGVILLAAGVWGKLTLGSY 1SLIAENSTYAPYVLIVTGTTIVAPPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLUVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRYDLCQKAKLAEHAERDAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKREGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGGLGGKMPRQLADPWQMMAVESSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL			İ		CRGKPWKCYEEEOCVFLVAELKNDIESKSLVLKGCSNVSNATC
LYLLALASLLIRGLLP	ì	1	İ		-
	ļ	{	1		
MVANKKSQDQMTEDLSLFLGNNTIRFTVWLHGVLDKLRSVTTE PSSLKSSDTNIFDSNVPSNKSNFSRGDERRHEAAVPPL\AIPS ARPEKRDSRVSTSSQESKTTNVRQTYDDGAATRIMSTV/KPLR EPAPSEDVIDIRPEPDDLIDEDLNFVQEKPLSQKKFTVTLTYG SSR  658 1397 155 560 ASRVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYTP QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFSN ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPMA GSGSAP  659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL 660 1399 281 736 KSLPLQKHFKPSCQEDQGLGRGSLSGHSPLTLLTFLTSCALGD QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSATG NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP  661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGGG RWQLSDRVEGGSPTLGLLGSFSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALETTQSSPRGNLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQXFRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLLL  662 1401 232 3 KICSSYLRICICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGGRWVT*GREFM  663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQKK  664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VXLLAGIALVYNYIPRSSSRALVRLVVLLERFLSRHPS  665 1404 3 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIECKTEGADTQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYML  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	657	1395	97	746	
PSSLKSSDTNIFDSNVPSNKSNFSRGDERRHEAAVPPL\AIPS ARPEKRDSRVSTSSQESKTTNVRQTYDDGAATRIMSTV/KPLR EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPPLSQKKPTVTLTYG SSR  658 1397 155 560 ASRVLAAVMGLPWGQPHLGLQMILLALNWLRPSLSLELVPYTP QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFSN ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPMA GSGSAP  659 1398 416 539 NSLNNFFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL  660 1399 281 736 KSLPLQKHPKPSCQEDQGLGRGSLGAPPPGFKRFSCL QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSATG NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP  661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQCKPRVVESRSV TOAGVQWMDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL  662 1401 232 3 KXCSSYFLRIICTLQKERQESMULTYSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSENTHLLQCAMIVPLHFGLGNRVR PCLKKQQQQQQQCK  664 1403 1 373 REETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VXLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VXLIAGIALVYNYIPRSSSRALVRLVVLLRFLESHPS NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIECKTEGADTQQQMAP DCREIFATELRDICDDVLSLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	05/	1220	) "	140	~
ARPEKRDSRVSTSSQESKTTNVRQTYDDGAATRLMSTV/KPLR EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPLSQKKPTVTLTYG SSR  ASRVILAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYTP QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFSN ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPMA GSGSAP  659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSATG NAILGKHVFRSKFSDQTVIKMCQRESWVLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP  661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWGGTMEKAGLAWT RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKFFLRKACSPS NIPAVIITDMGTGEDGALEETQGSPRGNLPLKKSSSSSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLLL  662 1401 232 3 KICSSYFLRICLQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKLHWPGAVAHTYSPSTLGGRGRWVT*GREM  663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQKK  664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVILVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSRAURLVVLLERHPS  665 1404 3 413 NAEHPGWDRHDLCQKAKLABEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYYLHMIG DYYRYWL  666 1405 2 334 GGGPLGKMPRQLADPWQMMAVESPSDCADNGQQIMDEPMGED BISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	ŀ	Į	Į.		1
EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPLSQKKPTVTLTYG   SSR	1	i	1		
SSR	ļ	Į.	ļ.	ļ	,
1397   155			1	1	EPAPSEDVIDIKPEPDDLIDEDLNFVQEKPLSQKKPTVTLTYG
QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFSN ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPMA GSGSAP 659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL 660 1399 281 736 KSLPIQKHPKPSCQEDQGLGRGSLSGHSPLTLLTFLTSCALGD QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSATG NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP 661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGYQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQXFRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL 662 1401 232 3 KICSSYFLRIICILQKEAQAEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSSPLLYGHLKSYTTPSEEHYLHLQTFATFNKYLNVCVLIF IHKKPVVPAIQGTNVGGSLEPRRLRQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPPVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVXNYIPSSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERILLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL		1	j		SSR
ASRGFQNPETLADIPASPQLLTDGHYMTLPLSPDQLPCGDPMA GSGSAP  659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRFSCL  736 KSLPLQKHPKPSCQEDQGLGRGSLSGHSPLTLLTFLTSCALGD QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSATG NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP  661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGYQSEGTWESQRQDSDALPSPELLPQDQDKPFLKKACSPS NIPAVIITDMGTQEDGALEETQGSPRGRHLPLKKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL  662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKXINVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQKK  664 1403 1 373 RMETRPVITCLKTLLITYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLLVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLISRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	658	1397	155	560	ASRVLAAVMGLPWGQPHLGLQMLLLALNWLRPSLSLELVPYTP
GSGSAP				1	QITAWDLEGKVTATTFSLEQPRCVFDGLASASDTVWLVVAFSN
			l .		ASRGFONPETLADIPASPOLLTDGHYMTLPLSPDQLPCGDPMA
RSLPLQKHPKPSCQEDQGLGRGSLSGHSPLTLLTFLTSCALGD   QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSATG   NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDLF   SSIACAEDKQRNIQHLLELSAP			1		GSGSAP
RSLPLQKHPKPSCQEDQGLGRGSLSGHSPLTLLTFLTSCALGD   QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSATG   NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDLF   SSIACAEDKQRNIQHLLELSAP	659	1398	416	539	NSLNNFFFETESCCVAOAGVOWRDLGSLOAPPPGFKRFSCL
QQLLPPRTSGSLCQESMSEQSCQMSELRLLLLGKCRSGKSATG NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP  661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL  662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL		<u> </u>	I	<u> </u>	
NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVIDTPDLF SSIACAEDKQRNIQHLLELSAP  1400 2 974 FVETTVSVQSAESDALSWSRLPRALASVGPEEARSGAPVGGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL  662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM 663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK  664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	333	1000		1,00	
SSIACAEDKQRNIQHLLELSAP  661 1400 2 974 FVETTVSVQSAESSDALSWSRLPRALASVGPEEARSGAPVGGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHRVGQDGLYLLIL  662 1401 232 3 KICSSYFLRITCILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM  663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQKK  664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSRALVRLVVLLRFLLSRHPS  665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	ĺ	1	1	1	1
FVETTVSVQSAESDALSWSRLPRALASVGPEEARSGAPVGGG RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL  662 1401 232 3 KICSSYFLRIICTLQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM  663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK  664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL			1	j	ł
RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSGRMLEP LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL  662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM  663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHKKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK  664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS  665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL		1 400	<del> </del>	1004	
LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKAGLAWT RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL  662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM  663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK  664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS  665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	991	1400	2	9/4	1 ~
RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRKACSPS NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL  662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM  663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQKK  664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS  665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	İ		1	1	
NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL  662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM  663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQKK  664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS  665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	ł		Ì	1	1
FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL  662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM  663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQK 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS  665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	1		l	1.	
TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA RIIFGFLVERGFHHVGQDGLYLLIL  662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM  663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQX 664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS  665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL			1		NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSSASSTG
RIIFGFLVERGFHHVGQDGLYLLIL  662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM  663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK  664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS  665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	1	1	1	1	FSSSYEDSEEDISSDPERTLDPNSAFLHTLDQQKPRVVESRSV
RIIFGFLVERGFHHVGQDGLYLLIL  662 1401 232 3 KICSSYFLRIICILQKEAQEASNLYTSCDFFSPAFYFVIYRLY NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM  663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK  664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS  665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	j	]	]	}	TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTGACHHA
NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM  663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF	}	1	1	1	
NFKIHWPGAVAHTYSPSTLGGRGRWVT*GREFM  663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF	662	1401	232	3	KICSSYFLRIICILOKEAOEASNLYTSCDFFSPAFYFVIYRLY
663 1402 250 556 LILSLPLLYGHLKSYTFPSEHYLHLLQTFATFNKYLNVCVLIF IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQKK  664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS  665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL					
IHHKPVVPAIQGTNVGGSLEPRRLRLQQAMIVPLHFGLGNRVR PCLKKQQQQQQQQQKK  664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSRALVRLVVLLRFLLSRHPS  665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	663	1402	250	556	
PCLKKQQQQQQQQKK  664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS  665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	003	1 402	250	333	-
664 1403 1 373 RMETKPVITCLKTLLIIYSFVFWITGVILLAAGVWGKLTLGSY ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS 665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL		1		1	1
ISLIAENSTYAPYVLIVTGTTIVAYPLV*FFFSYSSGFSYILA VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS  665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL		1	<u> </u>		
VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS  665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	664	1403	1	373	
665 1404 3 413 NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL		1			
NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTQQQMAP  DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG  DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED  EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL					VRLIAGIALVYNYIPRSSSRALVRLVVLLRFLLSRHPS
DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	665	1404	3	413	NAEHPGMDRHDLCQKAKLAEHAERDDDMAACMKTVTDQGAELS
DCREIFATELRDICDDVLSLLEKLLIPNASHA*SLVYYLHMIG DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	1				NEERNLLSDAHTNAV*ARRSSWMGA*RIEQKTEGADTOOOMAP
DYYRYWL  666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL					
666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDEPMGED EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL		1			<b>1</b>
EISPQTE*VSIKEVAVTHCVKEGHDKADPSQIELLRVLRQGSL	666	1405	+	224	
) ) ;	000	1405	"	334	_ ~
GKVYLGKKVSGSDAKQLYAMKVLT	}	1	1	1	1
	L	1	<u></u> _		GKVYLGKKVSGSDAKQLYAMKVLT

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 332	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)  DAAGIRHEAHFGKLECLVQLVRAGA\SLFVSTTRYAQTPA\HI
	1100	-		AAFGGHPQCLVWLIQAGANINKPDCEGETPIHKAARSGSLECI SALVANGAHVDNPKKGIRVLEWLFE
668	1407	242	1157	LLKLMFIAELGDYDLAEHSPELVSEFRFVPIQTEEMELAIFEK WKEYRGQTPAQAETNYLNKAKWLEMYGVDMHVVKARDGNDYSL GLTPTGVLVFEGDTKIGLFFWPKITRLDFKKNKLTLVVVEDDD QGKEQEHTFVFRLDHPKACKHLWKCAVEHHAFFRLRGPVQKSS HRSGFIRLGSRFRYSGKTEYQTTKTNKARRSTSFERRPSKRYS RRTLQMKACATKPEELSVHNNVSTQSNGSQQAWGMRSALPVSP SISSAPVPVEIENLPQSPGTDQHDRKWLSAASDCCQRGGNQWN TRAL
669	1408	278	1	ATAPGLFNFF*FLFQCREEHKKKNPEVPVNFAEFSKKCSGRWK TMSSKEKFKFGEMAKADEVCYDREMKDYGPAKGGKKKDPNAPK RPPSGF
670	1409	139	646	AEGLGSWAVWAGLGWAGRHMEAGGATGALGVGSKLPSAFCFPG SSVAMDMFQKVEKIGEGTYGVVYKAKNRETGQLVALKKIRLDL *VLGRPLSYPPWAITTWALPDPFPLSWSPRLTPLGAAQQPLPV LSPVHCLLTSLCRGPDCGVWWMTCQGAQVSIAGALVILWG
671	1410	3 .	442	LCVSVLCSFSYLQNGWTASDPVHGYWFR\AGDHVSRNIPVATN NPVRAVQEETRDRFHLLGDPQNKDCTLSIRDTRESDAGTYVFC VERGNMKWNYKYDQLSVNVTASQDLLSRYRLEVPESVTVQEGL CVSVP/WQCPLPPLQLDCL
672	1411	84	836	QLQLCQNCTKRGECHCVPFDTYIKTKKEKKRLSVLPPTRLMEA RFSPINQILPWCRQDLAISISKAINTQEAPVKEKHARRIILGT HHEKGAFTFWSYAIGLPLPSSSILSWKFCHVLHKVLRDGHPNV LHDCQRYRSNIREIGDLWGHLHDRYGQLVNVYTKLLLTKISFH LKHPQFPAGLEVTDEVLEKAAGTDVNNM*VTLHGYMASSPRLP HSFLPRLTPRRPHGAVGLNESVALLVDAHAPRDRG
673	1412	307	664	AAPHRMPRAPHFMPLLILLLLLSLPHTQAAFPQDPLPLLISDL QGTSPLSWLPSLEDDAVAA*LGLDFQRFLTLNRTLLVAARDHV FSFDLQAEEEGEGLVPNKYLTWRSQDVENCAVR*KLTLNRTLL VAARDHVFSFDLQAEEEGEGLVPNKYLTWRSQDVENCAVR
674	1413	24	420	HLVPKTRGRGTPSGDQSPVLTLTP*GDPPTILGPQTNQPKEHL TNFKSGKRSFHSLLQPLLLLLHPSISPFLNFGSFPFLVETEET CFIHKLKTPALVTPDSLPLVFNHCGDACLIIHPHFRDVEFHHT GN

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning mucleotide location corre- sponding to first amino acid	Predicted end nucleotide location corre- sponding to first amino acid	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, _possible nucleotide insertion)
j		residue of amino acid	residue of amino acid	
<b>†</b>	ŀ	sequence	sequence	
675	1414	1	1101	CCSTKNISGDKACNLMIFDTRKTARQPNCYLFFCPNEEACPLK PAKGLMSYRIITDFPSLTRNLPSQELPQEDSLLHGQFSQAVTP
			  -	LAHHHTDYSKPTDISWRDTLSQKFGSSDHLEKLFKMDEASAQL LAYKEKGHSQSSQFSSDQEIAHLLPENVSALPATVAVASPHTT
				SATPKPATLL\PTNASVTPSGTSQPQLA\TTAPPVTTVTSQPP TTLISTVFTRAAATLQAMATTAVLTTTFQAPTDSKGSLETIPF
		<u> </u>		TEISNLTLNTGNVYNPTALSMSNVESSTMNKTASWEGREASPG SSSQGSVPENQYGLPFEKWLLIGSLLFGVLFLVIGLVLLGRIL
				SESLRRKRYSRLDYLINGIYVDI
676	1415	178.	621	IFAGSGVMRLKISLLKEPKHQELVSCVGWTTAEELYSCSDDHH IVKWNLLTSETTQIVKLPDDIYPIDFHWFPKSLGVKKQTHAES FVLTSSDGKFHLISKLGRVEKSVEAHCGAVLAGRWNYEGTALV TVGEDGQI*IWSKTGMLIS
677	1416	1258	944	ARATTKRHFILLFLFFLRRC\LFLSPRMECNGAILAHCNLHLP GSSSSSASAS*VAGITDVRHHAQLILFVFLVETGFHRVGQAGL KLLTSGDLLTSASQSAGIIMGISHCAQPKKAF*TKTF
678	1417	876	1291	EAGSNDDLAT*KTCGRARPSSRSRQFGSRVWNHRQGVRSSPGE GAGSRSPCRRHRRKHRRNVQSP*RRRSRSCSRRSGRCSVALL GACPVAGHSRGKVVCRRAHAITQRRRCCGFDPMVHPKEHRG*R ERSRKWSRS
679	1418	262	539	ATAPGLFNFF*FLFQCREEHKKKNPEVPVNFAEFSKKCSGRWK TMSSKEKFKFGEMAKADEVCYDREMKDYGPAKGGKKKDPNAPK RPPSGF
680	1419	104	236	LTVNYVLVFSRDSGLRAIENLMQKKGKFDYILLETTGLADPGK K
681	1420	3	277	HEAALCRTRAVAAERHFLRVFLFFRPFRGVGTESGSESGSKA KEPRTPSSSYGTAQYRRWPIAQEYKHCTAHNDTGTLCSELREP WRRPQ
682	1421	3	576	EGSSQANTLRSRKENRNNLLACLESHVLR*QFTESHLCSLMGD NPFQPKSNSKMAELFMECEEEELEPWQKKVKEVEDDDDDEPIF VGEISSSKPAISNILNRVNPSSYSRGLKNGALSRGITAAFKPT SQHYTNPTSNPVPASPINFHPESRSSDSSVIGQPFSKPVSVSK TIRPAQGSIGCCLSISTV
683	1422	6	627	CFSLEDILNFFLQGFSAGLFAFYHDKDGNPLTSRFADGLPPFN YSLGLYQWSDKVVRKVERLWDVRDNKIVRHTVYLLVTPRVVEE ARKHFDCPVLEGMELENQGGVGTELNHWEKRLLENEAMTGSHT QNRVLSRITLALMEDTGRQMLSPYCDTLRSNPLQLTCRQDQRA VAV\CNLQKFPKPLPQEYQYFDELSGIPAEDLPYYG

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning mucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
684	1423	1	1272	AARRRQLVSRRTAE\YPRRRSSPSARPPDVPGQQPKAAKS PSPVQGKKSPRLLCIEKVTTDKDPKEEKEEEDDSALPQEVSIA ASRPSRGWRSSRTSVSRHRDTENTRSSRSKTGSLQLICKSEPN TDQLDYDVGEEHQSPGGISSEEEEEEEEEMLISEEEIPFKDDP RDETYKPHLERETPKPRRKSGKVKEEKEKKEIKVEVEVEVKEE ENEIREDEEPPRKRGRRRKDDKSPRLPKRRKKPPIQYVRCEME GCGTVLAHPRYLQHHIKYQHLLKKKYVCPHPSCGRLFRLQKQL LRHAKHHTDQRDYICEYCARAFKSSHNLAVHRMIHTGEKPLQC EICGFTCRQKASLNWHMKKHDADSFYQFSCNICGKKFEKKDSV VAHKAKSHPEVLIAEALAANAGALITSTDILGTNPES
685	1424	56	526	MTANRIAESLLALSQQEELADLPKDYLLSESEDEGDNDGERKH QKLLEAISSLDGKNRRKLAERSEASLKVSEFNVSSEGSGEKLV LADLLEPVKTSSSLATVKKQLSRVKSKKTVELPLNKEEIERIH REVAFNKTAQVLSKWDPVVLKNRQAEQL*
686	1425	132	344	RIDFMFHSSAMVNSHRKPMFNIHRGFYCLTAILPQICICSQFS VPSSYHFTEDPGAFPVATNGERFPWQELRLPSVVIPLHYDLFV HPNLTSLDFVASEKIEVLVSNATQLIILHSKDLEITNATLQSE EDSRYMKPGKELKVLSYPAHEQIALLVPEKLTPHLKYYVAMDF QAKLGDGFEGFYKSTYRTLGGETRILAVTDFEPTQARMAFPCF DEPLFKANFSIKIRRESRHIALSNMPKVKTIELEGGLLEDHFE TTVKMSTYLVAYI/DL*FPLMGNDFLGRS
687	1426	3	678	RSKIPRSDPRVRTPAPAEAEQGKSQCPSGSTAQSWSAMDILVP LLQLLVLLLTLPLHLMALLGCWQPLCKSYFPYLMAVLTPKSNR KMESKKRELFSQIKGLTGASGKVALLELGCGTGANFQFYPPGC RVTCLDPNPHFEKFLTKSMAENRHLQYERFVVAPGEDMRQLAD GSMDVVVCTLVLCSVQSPRKVLQEVRRVLRPGGVLFFWEHVAE PYGSWAFMW
688	1427	240	641	RLQNSSLMDPKLGRMAASLLAVLLLLLLERGMFSSPSPPPALL EKVFQYIDLHQDEFVQTLKEWVAIESDSVQPVPRFRQELFRMM AVAADTLQRLGARVASVDMGPQQLPDGQSLPIPPVILAELGSD PTKG
689	1428	1	116	FFFFEMESCSVTQAGVPWHDLSSLQPPPPRFKRFSCLS
690	1429	75	511	DPKAQLPEPLRVLWTAHLVAMAPGSRTSLLLAFALLCLPWLQE AGAVQTVPLSRLFDHAMLQAHRAHQLAIDTYQEFEETYIPKDQ KYSFLHDSQTSFCFSDSIPTPSNMEETQQKSNLELLRISLLLI ESWLEPVRILMSIVPN

CEC	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,			
SEQ ID	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,			
NO:	NO:	nucleotide	nucleotide	C=Cystelle, D=Aspartic Acid, L= Ordanic Acid,			
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine,			
Nucleic	Amino	согте-	согте-				
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,			
1 100.00	710143	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,			
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,			
1		acid	acid	\=possible nucleotide insertion)			
ļ		residue	residue	•			
}		of amino _	of amino				
ĺ	ĺ	acid	acid	·			
	1430	sequence	sequence	FVKLIKKHQAAMEKEAKVMSNEEKKFQQHIQAQQKKELNSFLE			
691	1430	2	1364	SOKREYKLRKEOLKEELNENOSTPKKEKOEWLSKOKENIOHFO			
<b> </b>		ŧ		AEEEANLLRRQRQYLELECRRFKRRMLLGRHNLEQDLVREELN			
1		<b>,</b>					
1	l			KRQTQKDLEHAMLLRQHESMQELEFRHLNTIQKMRCELIRLQH			
	1	1		QTELTNQLEYNKRRERELRRKHVMEVRQQPKSLKSKELQIKKQ FODTCKIOTROYKALRNHLLETTPKSEHKAVLKRLKEEQTRKL			
1	1	1	}	AILAEQYDHSINEMLSTQALRLDEAQEAECQVLKMQLQQELEL			
1		1		LNAYOSKIKMQAEAOHDRELRELEQRVSLRRALLEQKIEEEML			
İ		İ		ALONERTERIRSLLERQAREIEAFDSESMRLGFSNMVLSNLSP			
i	1			EAFSHSYPGASGWSHNPTGGPGPHWGHPMGGPPQAWGHPMQGG			
		ì		POPWGHPS\GPMQ\GVPR/GSSMGVR			
692	1431	50	504	LAHGSFGVSDFPAPAAAPAHTLTSFSGSLSPQFRKPLGRAPAM			
692	1437	30	304	PLVRYRKVVILGYRCVGKTSLAHQFVEGEFSEGYDPTVENTYS			
	1		<b>{</b>	KIVTLGKDEFHLHLVDTAGQDEYSILPYSFIIGVHGYVLVYSV			
1	İ			TSLHSFOVIESLYOKLHEGHGK			
693	1432	130	1671	SSPSRELCFYGFWIASSWWSRWVGSLGPGILPSPPARGRTFAS			
093	1432	130	10/1	VSRLPPPWSAGITLTPFLICQSGSVCPGLGAGFGVRSFHHPVA			
		ļ		RSAVLLLPLAPAAAODSTOASTPGSPLSPTEYERFFALLTPTW			
		ĺ		KAETTCRLRATHGCRNPTLVQLDQYENHGLVPDGAVCSNLPYA			
1	1	į		SWFESFCOFTHYRCSNHVYYAKRVLCSQPVSILSPNTLKEIEA			
1	ł			SAEVSPTIMTSPISPHFTVTERQTFQPWPERLSNNVEELLQSS			
		1	ļ	LSLGGQEQAPEHKQEQGVEHRQEPTQEHKQEEGQKQEEQEEEQ			
				EEEGKQEEGQGTKEGREAVSQLQTDSEPKFHSESLSSNPSSFA			
1	1	ı		PRVREVESTPMIMENIQELIRSAQEIDEMNEIYDENSYWRNQN			
	1	Į		PGSLLOLPHTEALLVLCYSIVENTCIITPTAKAWKYMEEEILG			
		1	ļ	FGKSVCDSLGRRHMSTCALCDFCSLKLEQCHSEASLQRQQCDT			
			1	SHKTPFVSPLLASQSLSIGNQVGSPESGRFYGLDLYGGLHM			
694	1433	517	578	VSWVPSKDGDVEGARRPFTRLNTSLGPGLQEGRRRTWLVPIPG			
1				AVLPGRTQEQPRASPLY*PGAPPCQPQGLVAGPWAQ*AGLRSD			
1			l	GFGPWPW\RLVGTAGPREKKVQKSKCWHFRCGRHPARRSGWAG			
1				RHASLLATGRPCSSAPSQQPLGTAGDSRQELLRPPLV*VNGAQ			
1 .			}	SSAAGDWGSSPRTAQALARPHRLGHHPAAVAPAARLRTQSGHS			
	İ			PRGPLCRSPGSPRRMGTWRGPAGHSHD			
695	1434	249	632	KTVAEEASVGNPEGAFMKMLQARKQHMSTELTIESEAPSDSSG			
			1	INLSGFGSEQLDTNDESDVSSALSYILPYLSLRNLGAESILLP			
				FTEQLFSNVQDGDRLLSILKNNRKSPSQSSLLGNKFKNKIF			
696	1435	333	881	GECFIMAAVVQQNDLVFEFASNVMEDERQLGDPAIFPAVIVEH			
	1			VPGADILNSYAGLACVEEPNDMITESSLDVAEEEIIDDDDDDI			
1	1			TLTVEASCHDGDETIETIEAAEALLNMDSPGPMLDEKRINNNI			
1	1	1		FSSPEDDMVVAPVTHVSVTLDGIPEVMETQQVQEKYADSPGAS			
	1			SPEQPKRKKK			
L		<del></del>					

CEC	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ ID	ID	beginning	end	
NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, l=Isoleucine,
Nucleic	Amino	corre-	согте-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
/ telus	Acius	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
l		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	,
ì	ł	of amino	of amino	
	<b>,</b>	acid	acid	
·	[	sequence	sequence	
697	1436	3	466	HEASGVSRALLQSAPGTPATVGISVGELWPFARCCSHSYVRSL
				RGLSVSTHLLCFTIYIMNPSMKQKQEEIKENIKTSSVPRRTLK
	1	1	ŀ	MIQPSASGSLVGRENELSAGLSKRKHRNDHLTSTTSSPGVIVP
				ESSENKNLGGVTQESFDLMIKGMKK
698	1437	50	241	PLPARGKSTLPATFCSPSAPELASMSVVPPNRSQTGWPRGVTQ
				FGNKYIQQTKPLTLERTINL
699	1438	1	422	AEGEDVPPLPTSSGDGWEKDLEEALEAGGCDLETLRNIIQGRP
		1	[	LPADLRAKVWKIALNVAGKGDSLASWDGILDLPEQNTIHKDCL
İ		1.	]	OFIDOLSVPEEKAAELLLDIESVITFYCKSRNIKYSTSLSWIH
		1	ļ	LLKPLVHLOLP
700	1439	161	413	ALPKFLTHGVKSNERVVVWLFPPSFRAATMVHMNVLPDALKSI
1,00	1433	1 -0-	123	NNAERRGKPOVLIRLCSKIIIWFLTVMVKYGYIGKFEPTRP
701	1440	211	977	AMAQYGHPSPLGMAAREELYSKVTPRRNRQQRPGTIKHGSALD
1,01	1440	211	311	VLLSMGFPRARAQKALASTGGRSVQAACDWLFSHVGDPFLDDP
1	ļ		ł	LPREYVLYLRPTGPLAOKLSDFWOOSKOICGKNKAHNIFPHIT
	}		ŀ	LCQFFMCEDSKVDALGEALQTTVSRWKCKFSAPLPLELYTSSN
1	}	]	]	FIGLFVKEDSAEVLKKFAADFAAEAASKTEVHVEPHKKQLHVT
	l .	Į.	1	LAYHFQASHLPTLEKLAQNIDVKLGCDWVATIFSRDIRFA
	7.44	ļ	408	QTRPASPRTARESVLGVSQNMSFNLQSSKKLFIFLGKSLFSLL
702	1441	3	408	
	1	l l		EAMIFALLPKPRKNVAGEIVLITGAGSGLGRLLALQFARLGSV
1		1 -	1	LVLWDINKEGNEETCKMAREAGATRVHAYTCDCSQKEGVYRVA
-	<u> </u>		l	DQVKK
703	1442	708	244	MVARKGQKSPRFRRVTCFLRLGRSTLLELEPAGRPCSGRTRHR
			İ	ALHRRLVACVTVSSRRHRKEAGRGRAESFIAVGMAAPSMKERQ
Ì	l .	1		VCWGARDEYWKCLDENLEDASQCKKLRSSFESSCPQQWIKYFD
		<u> </u>		KRRDYLKFKEKFEAGQFEPSETTAKS
704	1443	3	475	PAPAARSRELLKELRNGQDMDTVVFEDVVVDFTLEEWALLNPA
1				QRKLYRDVMLETFKHLASVDNEAQLKASGSISQQDTSGEKLSL
1			1 .	KQKIEKFTRKNIWASLLGKNWEEHSVKDKHNTKERHLSRNPRV
	Ì	l	1	ERPCKSSKGNKRGRTFRKTRNCNRHLRR
705	1444	276	437	CVCGFFVCFETKSCFVAQAGVQWHNLSSLQALPPGFKQFSCLS
				LLSSWHYRRV
706	1445	2	322	GTRLRRREAVWFEVVNMDFSRLHMYSPPQCVPENTGYTYALS
				SSYSSDALDFETEHKLDPVFDSPRMSRRSLRLATTACTLGDGE
				AVGADSGTSSAVSLKNRAAR
707	1446	123	410	DTMQAVVPLNKMTAISPEPQTLASTEQNEVPRVVTSGEQEAIL
			}	RGNAADAESFRQRFRWFCYSEVAGPRKALSQLWELCNQWLRPD
. [				IHTKE\QILE
708	1447	12	384	PICLFSRPTLRPSRSKVSLIEGRGANMAARWRFWCVSVTMVVA
, 00				LLIVCDVPSASAORKKEMVLSEKVSQLMEWTNKRPVIRMNGDK
			1	FRRLVKAPPRNYSVIVMFTALOLHROCVVCKYELQLRFKIK
L			<u> </u>	Trees Area French Tare Turn Shirt Schart City

SEQ ID NO: of Nucleic Acids	SEQ ID NO: . of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 535	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)  QMRVKDPTKALPEKAKRSKRPTVPHDEDSSDDIAVGLTCQHVS HAISVNHVKRAIAENLWSVCSECLKERRFYDGQLVLTSDIWLC
		136	470	LKCGFQGCGKNSESQHSLKHFKSSRTEPHCIIINLSTWIIWWY EWDEKIFTPLNKKG
710	1449	116	479	AKERGEERQGEGGGWLSGSRWPLVRSAFVPAPSSLILSMCLSP GIPEAAPDSPLTASAPTP*VMLLGDTGVGKTCFLIQFKDGAFL SGTFIATVGIDFRVRWLQALASSREPGLWLRHGGV
711	1450	2	232	FYPRSSADLPFQTTRCEFQTSVMELAHSLLLNEEALAQITEAK RPVFIFEWLRFLDKVLVAANKVWYCSFFPVALT
712	1451	105	393	MNMKQKSVYQQTKALLCKNFLKKWRMKRESLLEWGLSILLGLC   IALFSSSMRNVQFPGMAPQNLGRVDKFNSSSLMVVYTPISNLT   QQIMNKTAL
713	1452	2	525	SPQGNGCPDVTGDSVIRVPLTLLVHNLAGLTGLLHHCLSGPLP APSPPPAMSSSRKDHLGASSSEPLPVIIVGNGPSGICLSYLLS GYTPYTKPDAIHPHPLLQRKLTEAPGVSILDQDLDYLSEGLEG RSQSPVALLFDALLRPDTDFGGNMKSVLTWKHRKEHAIPHVVL GR
714	1453	2	1557	NRRTRAQRCQRGRSCGAREEEVEPGTARPPPAASAMDASLEKI ADPTLAEMGKNLKEAVKMLEDSQRRTEEENGKKLISGDIPGPL QGSGQDMVSILQLVQNLMHGDEDEEPQSPRIQNIGEQGHMALL GHSLGAYISTLDKEKLRKLTTRILSDTTLWLCRIFRYENGCAY FHEEEREGLAKICRLAIHSRYEDFVVDGFNVLYNKKPVIYLSA AARPGLGQYLCNQLGLPFPCLCRVPCNTVFGSQHQMDVAFLEK LIKDDIERGRLPLLLVANAGTAAVGHTDKIGRLKELCEQYGIW LHVEGVNLATLALGYVSSSVLAAAKCDSMTMTPGPWLGLPAVP AVTLYKHDDPALTLVAGLTSNKPTDKLRALPLWLSLQYLGLDG FVERIKHACQLSQRLQESLKKVNYIKILVEDELSSPVVVFRFF QELPGSDPVFKAVPVPNMTPSGVGRERHSCDALNRWLGEQLKQ LVPASGLTVMDLEAEGTCLRFSPLMTAAGKPGLVDIPCFCSGA AG
715	1454	319	873	LCIMDTKEEKKERKQSYFARLKKKKQAKQNAETASAVATRTHT GKEDNNTVVLEPDKCNIAVEEEYMTDEKKKRKSNQLKEIRRTE LKRYYSIDDNQNKTHDKKEKKMVVQKPHGTMEYTAGNQDTLNS IALKFNITPNKLVELNKLFTHTIVPGQVLFVPDANSPSSTLRL SSSSPGATVSPSS
716	1455	60	681	SAGGDSCRAVPMLRFPTCFPSFRVVGEKQLPQEIIFLVWSPKR DLIALANTAGEVLLHRLASFHRVWSFPPNENTGKEVTCLAWRP DGKLLAFALADTKKIVLCDVEKPESLHSFSVEAPVSCMHWMEV TVESSVLTSFYNAEDESNLLLPKLPTLPKNYSNTSKIFSEENS DEIIKLLGDVRLNILVLGGSSGFIELYAYGMFKI
717	1456	357	658	PRDPVTDRARAMPRRGLVAGPDLEYFQRHYFTPAEVAQHNRPE DLWVSYLGRVYDLTSLAQEYKGNLLLKPIVEVAGQDISHWFDP KTRDVSYAGTWDCG

- T	CEO.	Dan diamed	P-di-4-d	
SEQ	SEQ	Predicted	Predicted end	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
[ [		acid	acid	
1		residue	residue	\=possible nucleotide insertion)
<b>{</b>		of amino	of amino	
} }		acid	acid	,
l 1		sequence	sequence	
718	1457	2	481	RIPGRRFRAAFVLGSANVASSVRLRCSFPLSLGGPSGPAAASV
'+"	1431	_	401	ALGPAGPGRSLGRTPDTGDWEMDSVSFEDVAVAFTQEEWALLD
[ [				PSQKNLYRDVMQEIFRNLASVGNKSEDQNIQDDFKNPGRNLSS
]				HVVERLFEIKEGSQYGETFSQDSNLNLNKI
770	1450		460-	
719	1458	6	469	SISLSVSPFIRISIGRVGGMAEEMESSLEASFSSSGAVSGASG
				FLPPARSRIFKIIVIGDSNVGKTCLTYRFCAGRFPDRTEATIG
<b>[</b> [				VDFRERAVEIDGERIKIQLWDTAGQERFRKSMVQHYYRNVHAV
				VFVYDMTNMASFHSLPSWIEECKQH
720	1459	82	490	RRPSPGSIVIMAAESDVLHFQFEQQGDVVLQKMNLLRQQNLFC
1 1			ļ	DVSIYINDTEFQGHKVILAACSTFMRDQFLLTQSKHVRITILQ
] ]				SAEVGRKLLLSCYTGALEVKRKELLKYLTAASYLQMVHIAEKR
				TEAFVKF
721	1460	48	708	AEGLQSAAGIRIDTKAGPPEMLKPLWKAAVAPTWPCSMPPRRP
		1		WDRQAGTLQVLGALAVLWLGSVALICLLWQVPRPPTWGQVQPK
		ļ		DVPRSWEHGSSPAWEPLEAEARQQRDSCQLVLVESIPQDLPSA
		ĺ		AGSPSAQPLGQAWLQLLDTAQESVHVASYYWSLTGPDIGVNDS
			1	SSQLGEALLQKLQQLLGRNISLAVATSSPTLARTSTDLQVLAA
	]			RGAH
722	1461	436	677	RKKKMPLPFGLKLKRTRRYTVSSKSCLVARIQLLNNEFVEFTL
		Į.	1	SVESTGQESLEAVAQRLELREVTYFSLWYYNKQNQRR
723	1462	45	569	LQPLSSWESASEVTRSPVSPEDVKQATSNFENLQKQLARKMKL
		ł	1	PIFIADAFTARAFRGNPAAVCLLENELDEDMHQKIAREMNLSE
	1		1	TAFIRKLHPTDNFAQSSCFGLRWFTPASEVPLCGHATLASAAV
Ì		1		LFHKIKNMNSTLTFVTLSGELRARRAEDGIVLDLPLYPAHPQD
	1			FHE*
724	1463	79	530	AADTMQSDDVIWDTLGNKQFCSFKIRTKTQSFCRNEYSLTGLC
1			1	NRSSCPLANSQYATIKEEKGQCYLYMKVIERAAFPRRLWERVR
	Į.			LSKNYEKALEOIDENLIYWPRFIRHKCKORFTKITOYLIRIRK
		1		LTLKRORKLVPLSKKVERREK
725	1464	2	261	FVERGLGDPALPTLMFEEPEWAEAAPVAAGLGPVISRPPPAAS
	1.	~		SONKVSDSREQWELFQAAKRTLVDPSAVCIAGRDTCGTVKGES
726	1465	1	860	VVEFLWSRRPSGSSDPRPRRPASKCOMMEERANLMHMMKLSIK
120	1402	*	333	VLLQSALSLGRSLDADHAPLQQFFVVMEHCLKHGLKVKKSFIG
		1		ONKSFFGPLELVEKLCPEASDIATSVRNLPELKTAVGRGRAWL
	4		1	YLALMOKKLADYLKVLIDNKHLLSEFYEPEALMMEEEGMVIVG
	1		1	~
1		1	l	LLVGLNVLDANL\CLKGEDLDSQVGVIDFSLYLKDVQDLDGGK
1	1	I	1	EHERITOVLDQKNYVEELNRHLSCTVGDLQTKIDGLEKTNSKL
1	ŀ	1		
			<u> </u>	QERVSAATDRICSLQEEQQQLREQNELIR
727	1466	69	452	GCYAPSPHLGGSLTPRFFPNGVFHRRLPRPRPPQPPSVSSAPT
727	1466	69	452	

SEO	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID I	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine.
of	of	location	location	
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
{		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
]		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
] ]		residue of amino	residue of amino	
1 1		acid	acid	
1 1		sequence	sequence	·
728	1467	1	439	FRGSLSSPSSLRGRRLVTGQTSPRGTWCLYPGFCRSVACAMPC
1				CSHRSCREDPGTSESREMDPVVFEDVAVNFTQEEWTLLDISQK
1	!			NLFREVMLETFRNLTSIGKKWSDQNIEYEYQNPRRSFRSLIEE
				KVNEIKEDSHCGETFTQ ·
729	1468	103	236	LNFANSAAFAVTMPQNEYIELHRKRYGFRLDYHEKKRKKQSRE
1 1				A
730	1469	213	809	SGDLSPAELMMLTIGDVIKQLIEAHEQGKDIDLNKVKTKTAAK
		[		YGLSAQPRLVDIIAAVPPQYRKVLMPKLKAKPIRTASGIAVVA
				VMCKPHRCPHISFTGNICVYCPGGPDSDFEYSTQSYTGYEPTS
				MRAIRARYDPFLQTRHRIEQLKQLGHSVDKVEFIEMGGTFMAL
				PEEYRDYFIRNLHDALSGHTSNNIYE
731	1470	264	799	WESDVGEGLRPPPPPPPPPRRRTQEPRARDAATVIFACPAALL
				ETLIAYGSSSPSFCKHRAARPLIFLLHRLTAEATARCPICALE
	1	(		ARNPGRWGICASWPGMKTPFGKAAAGQRSRTGAGHGSVSVTMI
	1			KRKAAHKKHRSRPTSQPRGNIVGCIIQHGWKDGDEPLTQWKGT
1 220	1471		763	VLDQLL
732	14/1	2	/63	RDLGVALEAFQWARAGDCGSGAGRAGGEGVDAGRRVPERQHRG RGGGGEPGRRQRGGRRQ\RSSSRRSGGDGGDEVEGSGVGAGEG
	}	1		ETVQHFPLARPKSLMQKLQCSFQTSWLKDFPWLRYSKDTGLMS
				CGWCQKTPADGGSVDLPPVGHDELSRGTRNYKKTLLLRHHVST
'	Ì		}	EHKLHEANAQESEIPSEEGYCDFNSRPNENSYCYOLLROLNEO
	i	1		RKKGILCDVSIVVSGKIFKAHKNILVAGSRFFKTLYCFS
733	1472	82	523	SLRAAAAMADVTARSLQYEYKANSNLVLQADRSLIDRTRRDEP
1.55		"-	1 525	TGEVLSLVGKLEGTRMGDKAORTKPOMOEERRAKRRKRDEDRH
'	Ì	ł	ł	DINKMKGYTLLSEGIDEMVGIIYKPKTKETRETYEVLLSFIOA
				ALGDOPRDILCGAADEVL
734	1473	536	110	CNSAESRMDVLFVAIFAVPLILGQEYEDEERLGEDEYYQVVYY
			1	YTVTPSYDDFSADFTIDYSIFESEDRLNRLDKDITEAIETTIS
	ĺ		[	LETARADHPKPVTVKPVTTEPQSP\DL\NDAVSS\LRSPIPL\
				LLS\CAFVQVGMYFM
735	1474	2	557	FVRGPGEEQAPAFRKPAPGAMGAQVRLPPGEPCREGYVLSLVC
	1	[	1	PNSSQAWCEITNVSQLLASPVLYTDLNYSINNLSISANVENKY
		ł		SLYVGLVLAVSSSIFIGSSFILKKKGLLQLASKGFTRAGQGGH
	1		1	SYLKEWLWWVGLLSILSWNAREKVDL*NITF*PQTSCIFFTIT
				IEKSTFLSYFPTS
736	1475	127	401	ARGSCPTRPRPANGRMAETKDAAQMLVTFKDVAVTFTREEWRQ
				LDLAQRTLYREVMLETCGLLVSLGHRVPKPELVHLLKHGQELW
		ļ		IVKRG
737	1476	311	790	YTMLRGTMTAWRGMRPEVTLACLLLATAGCFADLNEVPQVTVQ
				PASTVQKPGGTVILGCVVEPPRMNVTWRLNGKELNGSDDALGV
}		1		LITHGTLVITALNNHTVGRYQCVARMPAGAVASVPATVTLASE
L	l	<u> </u>	<u> </u>	SAPLPPCHGAVPPHLSHPEAPTIHAASCYS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning mucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
738	1477	2	421	WGRRRQLVSEAARAQGDPVCSTMSEEEAAQIPRSSVWEQDQQN VVQRVVALPLVRATCTAVCDVYSAAKDRHPLLGSACRLAENCV CGLTTRALDHAQPLLEHLQPQLATMNSLACRGLDKLEEKLPFL QQPSETVVTS
739	1478	256	1250	AKAFTMAESPGCCSVWARCLHCLYSCHWRKCPRERMQTSKCDC IWFGLLFLTFLLSLSWLYIGLVLLNDLHNFNEFLFRRWGHWMD WSLAFLLVISLLGTYASLLLVLALLRLCRQPLHLHSLHKVLL LLIMLLVAAGLVGLDIQWQQERHSLRVSL/QDCR*L*TPAVRP *EESGEGHWRRAHLTSSCPQATAPFLHIGAAAGIALLAWPVAD TFYRIHRREPKILLLLLFFGVVLVIYLAPLCISSPCIMEPRDL PPKPGLVGHRGAPMLAPENTLMSLRKTAECGATVFETDVMVSS DGVPFLMHDEHLSRTTNVASVFPTRITAHSS

# WHAT IS CLAIMED IS:

1. An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1-739, a mature protein coding portion of SEQ ID NO:1-739, an active domain of SEQ ID NO: 1-739, and complementary sequences thereof.

- 2. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide hybridizes to the polynucleotide of claim 1 under stringent hybridization conditions.
- 3. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide has greater than about 90% sequence identity with the polynucleotide of claim 1.
- 4. The polynucleotide of claim 1 wherein said polynucleotide is DNA.
- 5. An isolated polynucleotide of claim 1 wherein said polynucleotide comprises the complementary sequences.
- 6. A vector comprising the polynucleotide of claim 1.
- 7. An expression vector comprising the polynucleotide of claim 1.
- 8. A host cell genetically engineered to comprise the polynucleotide of claim 1.
- 9. A host cell genetically engineered to comprise the polynucleotide of claim 1 operatively associated with a regulatory sequence that modulates expression of the polynucleotide in the host cell.
- 10. An isolated polypeptide, wherein the polypeptide is selected from the group consisting of:

(a) a polypeptide encoded by any one of the polynucleotides of claim 1; and

- (b) a polypeptide encoded by a polynucleotide hybridizing under stringent conditions with any one of SEQ ID NO:1-739.
- 11. A composition comprising the polypeptide of claim 10 and a carrier.
- 12. An antibody directed against the polypeptide of claim 10.
- 13. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample with a compound that binds to and forms a complex with the polynucleotide of claim 1 for a period sufficient to form the complex;
   and
- b) detecting the complex, so that if a complex is detected, the polynucleotide of claim 1 is detected.
- 14. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample under stringent hybridization conditions
   with nucleic acid primers that anneal to the polynucleotide of claim 1 under such
   conditions;
- b) amplifying a product comprising at least a portion of the polynucleotide of claim 1; and
- c) detecting said product and thereby the polynucleotide of claim 1 in the sample.
- 15. The method of claim 14, wherein the polynucleotide is an RNA molecule and the method further comprises reverse transcribing an annealed RNA molecule into a cDNA polynucleotide.
- 16. A method for detecting the polypeptide of claim 10 in a sample, comprising:

 a) contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex; and

- b) detecting formation of the complex, so that if a complex formation is detected, the polypeptide of claim 10 is detected.
- 17. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
- a) contacting the compound with the polypeptide of claim 10 under conditions sufficient to form a polypeptide/compound complex; and
- b) detecting the complex, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
- 18. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
- a) contacting the compound with the polypeptide of claim 10, in a cell, under conditions sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and
- b) detecting the complex by detecting reporter gene sequence expression, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
- 19. A method of producing the polypeptide of claim 10, comprising,
- a) culturing a host cell comprising a polynucleotide sequence selected from the group consisting of a polynucleotide sequence of SEQ ID NO: 1-739, a mature protein coding portion of SEQ ID NO: 1-739, an active domain of SEQ ID NO: 1-739, complementary sequences thereof and a polynucleotide sequence hybridizing under stringent conditions to SEQ ID NO: 1-739, under conditions sufficient to express the polypeptide in said cell; and
  - b) isolating the polypeptide from the cell culture or cells of step (a).

20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 740-1478, the mature protein portion thereof, or the active domain thereof.

- 21. The polypeptide of claim 20 wherein the polypeptide is provided on a polypeptide array.
- 22. A collection of polynucleotides, wherein the collection comprises the sequence information of at least one of SEQ ID NO: 1-739.
- 23. The collection of claim 22, wherein the collection is provided on a nucleic acid array.
- 24. The collection of claim 23, wherein the array detects full-matches to any one of the polynucleotides in the collection.
- 25. The collection of claim 23, wherein the array detects mismatches to any one of the polynucleotides in the collection.
- 26. The collection of claim 22, wherein the collection is provided in a computer-readable format.
- 27. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.
- 28. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising an antibody that specifically binds to a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.

## SEQUENCE LISTING

```
<110> Hyseq Inc
<120> Novel Nucleic Acids and Polypeptides
<130> 784PCT
<140> To be assigned
<150> US09/488,725
<151> 2000-01-21
<150> US09/552,317
<151> 2000-04-25
<160> 739
<170> Pt_CT_1
<210> 1
<211> 556
<212> DNA
<213> Homo sapiens
```

<400>	1					
tttcgtgggc	cggttgctaa	gacttggcga	agcgctgcgc	ttgcgcccgg	atccctcagg	60
cggctgcagg	cttcagcctg	cgctggttgg	tgaaacagag	atgtcagaaa	aggagaacaa	120
cttcccgcca	ctgcccaagt	tcatccctgt	gaagccctgc	ttctaccaga	acttctccga	180
cgagatccca	gtggagcacc	aggtcctggt	gaagaggatc	taccggctgt	ggatgtttta	240
ctgcgccacc	ctcggcgtca	acctcattgc	ctgcctggcc	tggtggatcg	gcggaggctc	300
ggggaccaac	ttcggcctgg	ccttcgtgtg	gctgctcctg	ttcacgcctt	gcggctacgt	360
gtgctggttc	cggcctgtct	acaaggcctt	ccgagccgac	agctccttta	atttcatggc	420
gtttttcttc	atctttcgga	gcccagtttg	tcctgaccgt	catccaggcg	attggcttct	480
ccggctgggg	cgcgtgcggc	tggctgtcgg	caattggatt	cttccagtac	agcccgggcg	540
ctgccgtggt						556

<210> 2 <211> 837 <212> DNA <213> Homo sapiens

<400> 2 gagatgagtc ccagggagta cggagtcagc tctgagccga ggtcaccgca gaagggagct cggtcttcgg ccaggaccgg agcagttgga acaaagggaa tgtggaaatg aaagagagag 120 ggagagagag gctggcagat gtaatgagac gcggtgaagg tgtacgcaga ctggcactcc 180 cactectece ttetgetete actgeagece tgggtaacte geaggetaac acaaacaget 240 tttctcccgc agcctgccct ctgtcactgt cactttcatg aattcaaagg caatttacca 300 gtgatttctg ggtgctgggg ctgatattt ttgtgcatat ttaagaatgt cttccaagca 360 agccacctct ccatttgcct gtgcagctga tggagaggat gcaatgaccc aggatttaac 420 ctcaagggaa aaggaagagg gcagtgatca acatgtggcc tcccatctgc ctctgcaccc 480 cataatgcac aacaaacete actetgagga getaccaaca ettgteagta ecatteaaca 540

agatgctgac	tgggacagcg	ttctgtcatc	tcagcaaaga	atggaatcag	agaataataa	600
gttatgttcc	ctatattcct	tccgaaatac	ctctacctca	ccacataagc	ctgacgaagg	660
gagtcgggac	cgtgagataa	tgaccagtgt	tacttttgga	accccagagc	gccgcaaagg	720
gagtettgee	gatgtggtgg	acacactgaa	acagaagaag	cttgaggaaa	tgactcggac	780
tgaacaagag	gattcctcct	gcatggaaaa	actactttca	aaagattgga	aggaaac	837

<210> 3 <211> 1562 <212> DNA <213> Homo sapiens

<400> 3 cggaaccgta ggaggggtac ttaaccggac ggcctaccag gcctgtggcc gtgcgcggga agagcactgc agatctcagg atgatggggc gcagccctgg gtttgccatg cagcacatcg 120 tgggtgtgcc ccacgtactg gttcggaggg gcctccttgg aagggacctc ttcatgacca 180 ggactetetg eageceagge ecaagecage eeggagagaa aagacetgag gaggtggeee 240 tggggctgca ccaccgcctc ccagcactgg gaagagccct ggggcacagc attcagcaac 300 gagegacete cacagecaag aettggtggg acagatatga agagtttgtt ggaetcaaeg 360 aggttcgaga ggcccaggga aaggtgacag aggctgagaa agtgttcatg gtggctcgag 420 ggcttgtccg agaggctcgg gaggacttgg aagttcacca ggccaagctg aaggaggtga 480 gggaccgctt ggaccgtgtc tccagggagg acagtcagta cttggaactg gctactctcg 540 agcacaggat gctgcaggag gagaagaggc ttcgcacagc ctatctgcgt gcagaagact 600 ctgagcgaga gaagttctcc ctcttctctg cagctgtgcg ggaaagtcat gagaaggagc 660 gcacaagggc tgagaggacc aagaactggt ccctcattgg ctcagtcctg ggggccctga 720 ttggtgtgge tggetecace tatgtgaace gtgtgegact acaggagetg aaggetttae 780 tcctggaggc gcagaagggg cctgtgagtc tccaagaggc cattcgagaa caggcgtcta 840 gctactcccg ccagcagagg gacctccaca atctcatggt ggacttgagg ggcctggtac 900 atgctgctgg gccagggcag gactctgggt cacaggcagg tagtcccccg accagagaca 960 gagatgtaga tgtcctttca gctgccttga aagagcagct tagtcattcc aggcaagtcc 1020 attcatgtct agaaggctta cgagagcagc ttgatggcct agaaaagact tgtagccaaa 1080 tggctggggt ggttcagctt gtaaagtctg cagcacaccc aggcctggtg gaaccagcag 1140 acggggctat gcccagette ttgctggage aggggageat gatettggca etgtcagaca 1200 cggagcagag actagaagcc caagtcaaca ggaacaccat ctatagcacc ctggtcacct 1260 gtgtgacatt tgtggccaca ctgcctgtgc tctacatgct attcaaagcc agctaacccc 1320 tggcccctcc tccagagggt ctgaggcaat agctgtgaat gtggatttaa gtagagaatc 1380 gtagcaatga agcgagcctt tgggggcatg tacaacctca atctgaagga gcagtatctg 1440 tgtggctcac cagcaggcat gcttcgcttt gtagacaagg ttcatttaca ttaattatca 1500 aaactttgtg ctaatgtcca attaaaatat cctgagtttt attatttaaa acaaaaaaaa 1560 1562

<210> 4 <211> 745 <212> DNA <213> Homo sapiens

<400> 4
agggcttggg gctgggtctc cgtgacagag gcctggcttt tctgtcaggg cagggcctag
cccctgcccc cataaaagag gagacatagg gggcttggtg agataccctg aaacctcccc 120

```
cetetgacce egeageeagg ecceaggetg geegggagtg geeceteaca etggttetee
 180
ecaetttete tgeetgtgge ategaaggee eegggeacea tggeecagge eetgggggag
 240
gacctggtgc agcctcccga gctgcaggat gactccagct ccttggggtc cgactcagag
 300
etcageggge etggeecata tegeeaggee gaeegetatg gatteattgg gggeagetea
 360
gcagagccag ggccgggcca cccacctgca gacctcatcc gccaacggga gatgaagtgg
 420
gtggagatga cetegeactg ggagaaaace atgteeegge ggtacaagaa ggtaaagatg
 480
cagtgccgga aaggcatccc gtctgccctg cgcgcccgat gctggcccct gttgtgtggg
 540
gcccatgtgt gccagaagaa cagccctggc acctatcagg.agctggcaga ggcccctgga
 600
gacccacagt ggatggagac cattggcagg gacctgcacc gtcaattccc tctgcacgag
 660
atgtttgtgt cgcctcaagg ccacgggcag caggggctcc tgcaggtgct caaggcctac
 720
accetgtate gaceggagea agget
 745
```

<210> 5 <211> 536 <212> DNA

<213> Homo sapiens

<400> 5 acggaagete ggttgatgtt tetgeagaag ttttccccct tggtcggtgg cggagetget 60 gagcgcgata gtagcagctc cggcggcagc aacattgact acgaggaatg gcggcggctg 120 ccgcaggacc tgcagcatcc cagaggtttt tccagagctt ctcagatgct ctaatcgacc 180 aggaccccca ggcggcgtta gaggtgggag agccttttct gcttcctcca ctcccggctg 240 accegectee ttecageace geetgattag gacteagget etagtgatge tgegteteag 300 ccccagtatt gagatteteg gteteettte teteteteac ggtageegeg ttaceteaga 360 ctcctgtctt gccctttcca cttccagact cttgcattcc tgaagcttct gagaaaaact 420 tcctctattt attgggagca tggttggcat ctgcagttgg gctgaaagga ttttttttt 480 ttaatgacta aaaaagaaaa ggggactctg ggctcgatga aaattaattt tttctt 536

<210> 6 <211> 780 <212> DNA <213> Homo sapiens

<400> 6 attttatcga ctattccgtc agacgccctc ttgcctttag tgaactgcgg ggacctggcc 60 tttgccggta ggggccagcg cagaaaagcc tgggagatgc gcgtccaggg ccgcgagtgc 120 ggggaagetg cgggaccgca gagtccgctc ggcagccggt agtcagggcg ccggggcgtt 180 aggetteaga tttaetteaa tgtteetaat gggettgett eagaagtget eactgttete 240 gccacctgag gaaccgcatt ttcatgtatt tgtattggga caagacgcgg agtccggtgt 300 gtaaagggcc tgctttgagg gaagaaaggc cgcagcccag gctcaaactg gaggattata 360 aggategect gaaaagtgga gageatetta ateeagacea gttggaaget gtagagaaat 420 atgaagaagt gctacataat ttggaatttg ccaaggagct tcaaaaaaacc ttttctgggt 480 tgagcctaga tctactaaaa gcgcaaaaga aggcccagag aagggagcac atgctaaaac 540 ttgaggctga gaagaaaaag cttcgaacta tacttcaagt tcagtatgta ttgcagaact 600 tgacacagga gcacgtacaa aaagacttca aagggggttt gaatggtgca gtgtatttgc 660 cttcaaaaga acttgactac ctcattaagt tttcaaaact gacctgccct gaaagaaatg 720 aaagtetgag acaaacaett gaaggateta etgtetaaat tgetgaacte aggetatttt 780

```
<210> 7
<211> 654
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(654)
<223> n = a,t,c or g
```

```
<400> 7
ctccccgtct cttccctggc cttgccctct ctctttctgc cctgtagccg cgggcgtcca
 60
aatgaagetg gaatteetee agegeaaatt etgggeggea aegeggeagt geageaetgt
 120
ggatgggccg tgcacacaga gctgcgagga cagtgatctg gactgcttcg tcatcgacaa
 180
caacgggttc attctgatct ccaagaggtc ccgagagacg ggaagatttc tgggggaggt
 240
ggatggtgct gtcctgaccc agctgctcag catgggggtg ttcagccaag tgactatgta
 300
tgactatcag gccatgtgca aaccctegag teaccaccac agtgcagece ageccetggt
 360
cagcccaatt tetgeettet tgaeggegae caggtggetg etgeaggage tggtgetgtt
 420
cctgctggag tggagtgtct ggggctcctg gtacgacaga ggggccgagg ccaaaagttg
 480
tettecatea eteccacaaa cacaagaage aggaceeget geageeetge gacaeggagt
 540
accordigtt ogigtaceag coeggocate ogggaggoca acggggatte giggagigeg
 600
ggcccttncc agaaagggta tttgttggtg cangcagatt ccnaacatta aact
 654
```

```
<210> 8
<211> 469
<212> DNA
<213> Homo sapiens
```

```
<400> 8
tgccgtgggc ggctggccca gctggaggaa gcggcggtgg cggccacgat gagtgcgggc
 60
gacgcagtgt gcaccggctg gctcgttaag tcgccccccg agaggaagct acagcgctac
 120
 180
gcctggcgca agcgctggtt tgtcctccgg cgaggccgca tgagcggcaa ccccgatgtc
ttggagtact acaggaacaa gcactccagc aagcccatcc gggtgataga cctcagcgag
 240
tgtgcagtgt ggaagcatgt gggccccagc tttgttcgga aggaatttca gaataatttc
 300
gtgttcattg tcaagactac ttcccgtaca ttctacctgg tggccaaaac tgagcaagaa
 360
atgcaggtgt gggtgcacag catcagtcag gtctgcaacc ttggccacct ggaggatggt
 420
gcagcagatt ccatggagag cctctcttac acgcgctcct acctgcagc
 469
```

```
<210> 9
<211> 409
<212> DNA
<213> Homo sapiens
```

```
<221> misc_feature
<222> (1)...(409)
<223> n = a,t,c or g
```

<400> 9
agaaaccnaa cagatctgtg gggcaggaaa atgtttcttt tccagctttc acagctctct 60
gagaaggggc atggtgggaa ttttagccga tttaataaaa gctgcagcat gagacctgtg 120
aatcccaccc tgctgcttcc tggatcctgc cacaccccat ccagcagcaa ccaagccagt 180
ctcgcccctg actgggacag agtggctgag aggggctctg gagccagctg cctggatttg 240
aatcccagct gtgccactta ccagctgtgt gactgtagga agctactctt tgtccgtgcg 300
agactacgac cctcggcagg gagataccgt gaaacattac aagatccgga cccttgaaca 360
aacggggctt ctacatatcc ccccgaagc accttcagca ctctgcagg

<210> 10 <211> 1145 <212> DNA <213> Homo sapiens

<400> 10 aaagattctg ttttgaatat agccagagga aaaaagtatg gagaaaaaac taagagagtg 60 tettetegga aaaaaccage ettgaagtgt etteteagaa acaaccagea ttgaaggeta 120 tetgtgacaa ggaagattet gtteegaata eggeeaegga aaaaaaggat gaacaaatat 180 ctgggacagt gtcttctcag aaacaaccag ccttgaaggc tacaagtgac aagaaagatt 240 ctgtttcgaa tatacccaca gaaataaagg atggacaaca atctggaaca gtgtcttctc 300 agaaacaacc ggcctggaag gctacaagtg tcaagaaaga ttctgtttcg aatatagcca 360 cagaaataaa ggatggacaa ataccgtggg acagtgtctt ctcagagaca accagccttg 420 aaggettaca ggtgatgaga aagattetgt, ttegaatata gecagagaaa taaaggatgg 480 agaaaaatct gggacagtgt ctcctcagaa acaatcggcc cagaaggtta tatttaaaaa 540 gaaagtttct cttttgaata ttgccacaag aataacgggc ggttggaaat ctggaacaga 600 gtateetgag aatetgeeca eettgaagge tacaattgaa aataaaaatt etgttetgaa 660 tacagecace aaaatgaaag atgtacaaac atecacacca gaacaagact tagaaatgge 720 atcagaggga gagcaaaaga ggcttgaaga atatgaaaat aaccagccac aggtgaaaaa 780 ccaaatacat tctagggatg accttgatga cataattcag tcatctcaaa cagtctcaga 840 ggacggtgac tcgctttgct gtaattgtaa gaatgtcata ttactcattg atcaacatga 900 aatgaagtgt aaagattgtg ttcacctatt gaaaattaaa aagacatttt gtttatgtaa 960 aagattaaca gaacttaaag ataatcactg tqaqcaactt aqaqtaaaaa ttcqaaaact 1020 gaaaaataag gctagtgtac tacaaaagag actatctgaa aaagaagaaa taaaatcgca 1080 gttaaagcat gaaacacttg aattggaaaa agaactctgt agtttgagat ttgccataca 1140 gcaag 1145

<210> 11 <211> 890

<212> DNA

<213> Homo sapiens

```
<400> 11
gtagtccgct gcggtaccgg gccggacaat ctgggtcgac gatttcgagc tcgtcatgcg
 60
caatgtggcg ctgcggcggg cggcagggcc tgtgtgtgct gaggcggctg agcggcggac
 120
atgcacacca cagagegtgg egatggaaca gtaaccgggc ttgtgagagg gctctgcagt
 180
ataaactagg agacaagatc catggattca ccgtaaacca ggtgacatct gttcccgagc
 240
tgttcctgac tgcagtgaag ctcacccatg atgacacagg agccaggtat ttacacctgg
 300
ccagagaaga cacgaataat ctgttcagcg tgcagttccg taccactccc atggacagta
 360
ctggtgttcc tcacattctt gagcataccg tcctttgtgg gtctcagaaa tatccgtgca
 420
gagaccettt etteaaaatg ttgaaceggt ceetetecae gtteatgaac geetteacag
 480
ctagtgatta tactetgtat ccattttcca cacaaaatec caaggacttt cagaatetec
 540
tctcggtgta tttggatgcc acctttttcc catgtttacg cgagctggat ttctggcagg
 600
aaggatggcg gctggaacat gagaatccga gcgaccccca gacgcccttg gtctttaaag
 660
gagtcgtctt taatgagatg aagggagcgt ttacagacaa tgagaggata ttctcccagc
 720
accttcagaa cagacttctt cctgaccaca cgtactcagt ggtctccggg ggtgacccac
 780
tgtgcatccc ggagcttaca tgggagcagc ttaagcagtt tcatgccact cactatcacc
 840
caagcaatgc taggttcttc acgtacggta attttccctt agaccagcat
 890
```

```
<210> 12
<211> 982
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (982)
<223> n = a,t,c or g
```

. .

### <400> 12 tttcgtcaca cacgcacacg caccetgcca etgcagcege catggatate agetaacaac 60 acacacccag gegegegege gegtteccae tegcaccaeg caggagtgge ecceggeate 120 cetaccetec ttecceacec ceaceacace egeteaceag eteggetact getegeteeg 180 getgeegeeg eggegeege egaegeeace accaetgett cetetgetge ggggeeacag 240 cettgagtgt cattcaaggg acagcacaac etcatecaag etctectace tetgeccage 300 cqtqcctctc atcctcccca ttcctcqtcc acactccatc caaaqaaqaq qqaaaqcacc 360 gaatagaggg gggcgaaggc aaagtctgct gttcttcccc ctgggccccc ttgctcctcc 420 atcctcattc tctcaccacc agccccccta accccaagga gcccaggaac tgaggcgact 480 cgccccactg ccatgtccaa aagcttgaaa aagaaaagcc actggactag caaagtccat 540 gagagtgtca ttggcaggaa cccggagggc cagctgggct ttgaactgaa ggggggcgcc 600 gagaatggac agttccccta cctgggggag gtgaagcccg gcaaggtggc ctatgagagc 660 ggcagcaaat tggtgtcgga ggagctgctg ctggaggtga acgagacccc cgtggcgggg 720 ctcaccatca gggacgtgct ggccgtgatc aaacactgca aggaccccct ccggctcaag 780 tgtgtcaagc aaggtgagag cagcggcttg ctcagtgttt tgccgggcgg tgggaccgct 840 cggggcgcag ggcaatgaaa gggtggccgc gcatgttgaa gggggtgtgt tgcgcgatga 900 960 tggggtgggg gccagagagc acccgcagtg caagtgagtt tegccgggga ttcgacgaaa tcgtnncccg ggaattccgg ac 982

<210> 13 <211> 440 <212> DNA <213> Homo sapiens

```
<400> 13
ccgtgccgga attcccgcgt cgacgatttc gtggctaagg cgccaggcac gggcaccacc
 60
agggegeeca ggageegeec geegeeggea tggaecaget gtactgeeca cegagegegt
 120
gccagtcttt tggtaagaac tagtcacaca gacctcaacc tgatgcgtgg agacaaggaa
 180
atgettttea gtgtgteeag aaagagaaaa tgeaggtgte ttetgeggag gtgegeateg
 240
ggcccatgag actgacgcag gaccctattc aggttttgct gatctttgca aaggaagata
 300
gtcagagcga tggcttctgg tgggcctgcg acagagctgg ttatagatgc aatattgctc
 360
ggactccaga gtcagccctt gaatgctttc ttgataagca tcatgaaatt attgtaattg
 420
atcatagaca aactcagaac
 440
```

<210> 14 <211> 581 <212> DNA

<213> Homo sapiens

<400> 14 tttcgtttgg ccggctgcgg gcacctcctg gtctcgctgc tggggctgct gctgctgctg 60 gegegeteeg geacceggge getggtetge etgecetgtg acgagteeaa gtgcgaggag 120 cccaggaact gcccggggag catcgtgcag ggcgtctgcg gctgctgcta cacgtgcgcc 180 agccagagga acgagagctg cggcggcacc ttcgggattt acggaacctg cgaccggggg 240 etgegttgtg teateegeee eeegeteaat ggegaeteee teaeegagta egaageggge 300 gtttgcgaag atgagaactg gactgatgac caactgcttg gttttaaacc atgcaatgaa 360 aaccttattg ctggctgcaa tataatcaat gggaaatgtg aatgtaacac cattcgaacc 420 tgcagcaatc cctttgagtt tccaagtcag gatatgtgcc tttcagcttt aaagagaatt 480 gaagaagaga agccagattg ctccaaggcc cgctgtgaag tccagttctc tccacgttgt 540 cctgaagatt ctgttctgat cgagggttat gctcctcctg g 581

<210> 15 <211> 693 <212> DNA <213> Homo sapiens

<400> 15 tttcgtatgg cggccaatgt gggatcgatg tttcaatatt ggaagcgctt tgatttacag 60 cagetgeaga gagaactega tgccacegea aeggtattgg egaaceggea ggatgaaagt 120 gagcagtcca gaaagcggct tatcgaacag agccgggagt tcaagaagaa cactccagag 180 gtgaggcgcg tgaccatcgt gttcgctttg aagggatctt agaatgctgg tgcatgttca 240 ggcgacgctc cgtgagcgtt tcattttcat cagatgaacg cacggccggc aaacaacccg 300 tttetttece cagatgtett cageeceatt tecageagaa egeatgeeat eetgeagget 360 gtggggatgt ggaaattgat aggttgtctg gaaatatgaa agtcagagcc aattccaggt 420 gcagatactg gacaagcttg gtctgtaaga acacgtgggc aggtgtgtgg gtgtctcaaa 480 cectegaget cateceagae cetgteceat gteagttage aagecaceaa agtecataag 540 ggatcctgtg gggtggaagg tccgcggggc ctgcttccct gttgctggtg caggcggagt 600 gtctgaaggc tgcacgcatc tgggcatagc agtgcgccta acgcttcttg taaaacagac 660

WO 01/53455

atttcgcctg ctaagccttt taaatgcctc tct

693

<210> 16 <211> 562 <212> DNA <213> Homo sapiens

<400> 16 tttcgtggaa agagagaaac caccgctgcg ggtgggtaga gaagcacttg gcgcctcggg 60 gaggggaccg cgcccgcctc atttgcgcct tgcagcactg ctggaccagg ttacaagatg 120 ttcacctaag attgagacct agtgactaca tttcctacgg gaacaaataa atggtttttc 180 atctcccgga gatacattac aaacaaatat ggtgctaaaa gaactcctta cctttctctg 240 actacaattt atttggacat acttttgtat tgaagagagg tatacatact gaagctactt 300 gctgtactat aggagactct gtcctgtagg atcatggacc atcctagtag ggaaaaggat 360 gaaagacaac ggacaactaa acccatggca caaaggagtg cacactgctc tcgaccatct 420 ggeteeteat egteetetgg ggttettatg gtgggaecea aetteagggt tggeaagaag 480 ataggatgtg ggaacttcgg agagctcaga ttaggtgaag gtctcccaca ggtgtattac 540 tttggaccat gtgggaaata ta 562

<210> 17 <211> 899 <212> DNA <213> Homo sapiens

<400> 17 tttcgtgcgt ccccggccca accatggcgt cctccgcggc cggctgcgtg gtgatcgttg 60 gcaggaagtc tgaaacagca gttggagtgt agtggttaag aggaaggact caggagtcag 120 attgcttggc ttcatctcat agatccataa cttatcaccc ttgtggactt aattcctcca 180 tgcctcagtt tatcacttat gtaggcttaa ttcctccatg cctcagtttc cctacatata 240 aaatggaaat actaataaca cttatcttgt agggttgttg taaagattaa catagtggag 300 tcattgggcg aagetgggcc atgetgtttg ccagtggagg cttccaggtg aaactctatg 360 acattgagca acagcagata aggaatgccc tggaaaacat caggtgggcc agccggcgct 420 ctccagaagg aatggaagtg ggtctgtttc tctcagttgg tcttgtttgt catatcctca 480 aggetatgag gatetgtgat gteacatttt egtetgatgg etactgeagt geetetgagt 540 tggtaaaggc caggcctaca gtggctggaa tgtgaattca cactggggaa gggctcccat 600 gggggaggaa acgaccette ttgctaagag gatetgcate aagegtgagt gaetttgcag 660 gettetecag etgtttgece eggggetgga gggetggggt tteetgette catetaggea 720 ggaggaactc gcttccagca tgtgacagcc atagctgcag gggcattaca gtttaagaac 780 agaggtcctg cagcttgttt tgacctgttg atctagtaat ggtaggaccc aaatgaaaac 840 atcttgaatt ttagttagag gtttagcact catgtgagag gacagaactg gagctgttt 899

<210> 18 <211> 519 <212> DNA

## <213> Homo sapiens

<400> 18 . ggaattcccg ggtcgacgat ttcgtctccg cccgcccgaa gccgcgccca ctgcccagag ccagagggat ggtggtagtc acggggcggg agccagacag ccgtcgtcag gacggtgcca 120 tgtccagctc tgacgccgaa gacgactttc tggagccggc cacgccgacg gccacgcagg 180 cggggcacgc gctgcccctg ctgccacagg agtttcctga ggttgttccc cttaacatcg 240 gaggggetea etteaetaea egeetgteea eaetgeggtg etaegaagae aceatgttgg 300 cagccatgtt cagtgggcgg cactacatec ccacggactc cgagggccgg tacttcateg 360 accgagatgg cacacacttt ggagatgtgc tgaattteet gegeteaggg gaceteecae 420 ccagggagcg tgttcgagct gtgtacaaag aggcccagta ctatgccatc gggcccctcc 480 tggagcagct ggagaacatg ccgccactga aaggcgaga 519

<210> 19 <211> 460 . <212> DNA

<213> Homo sapiens

<400> 19 tttcgtgcag gggccaggcc tctctaggct ctccggctga gccgggttgg ggcccgggtt 60 gggccgcccg gggactctgg agcattggga tttgtagcgc gccctctggg taggcqqctq 120 tagcggagag gcgtgcggga tcgggatgtc ggggctgctc acggacccgg agcagagagc 180 gcaggagccg cggtaccccg gcttcgtgct ggggctggat gtgggcaqtt ctqtqatccq 240 ctgccacgtc tatgaccggg cggcgcgggt ctgcggctcc agcgtgcaga aggtagaaaa 300 totttatcct caaattggct gggtagaaat tgatcctgat gttctttgga ttcaatttgt 360 tgccgtaata aaagaagcag tcaaagctgc aggaatacag atgaatcaaa ttgttggtct 420 tggcatttca acacagagag caacttttat tacgtggaac 460

<210> 20 <211> 731 <212> DNA <213> Homo sapiens

<400> 20 gagatcaagg agggctcaga agaggcgatg tetgatetgt cetecaggca gcaaaggaaa gggaggtgtg ttcctggcag aaggcacagc ttgtactgag gcctggcagc agaacagagt 120 atgcaatttg tgaagctgtg gtgtggctgc agtggagagt tcccaacaag gctacgcaga 180 agaaccccct tgactgaagc aatggagggg ggtccagctg tctgctgcca ggatcctcgg 240 gcagagctgg tagaacgggt ggcagccatc gatgtgactc acttggagga ggcagatggt 300 ggcccagagc ctactagaaa cggtgtggac cccccaccac gggccagagc tgcctctgtg 360 atccctggca gtacttcaag actgctccca gcccggccta gcctctcagc caggaagctt 420 tecetacagg ageggeeage aggaagetat etggaggege aggetgggee ttatgeeaeg 480 gggcctgcca gccacatctc cccccgggcc tggcggaggc ccaccatcga gtcccaccac 540 gtggccatct cagatgcaga ggactgcgtg cagctgaacc agtacaagct gcagagtgag 600

attggcaagg gtgcctacgg tgtggtgagg ctggcctaca acgaaagtga agacagacac 660 tatgcaatga aagtcctttc caaaaagaag ttactgaagc agtatggctt tccacgtcgc 720 cctcccccga a 731

<210> 21 <211> 519 <212> DNA <213> Homo sapiens

<400> 21 tttcgtttat gggaagccag taacactgtg gcctactatc tcttccgtgg tgccatctac 60 atttttggga ctcgggaatt atgaggtaga ggtggaggcg gagccggatg tcagaggtcc 120 tgaaatagtc accatggggg aaaatgatcc gcctgctgtt gaagccccct tctcattccg 180 ategettttt ggeettgatg atttgaaaat aagteetgtt geaceagatg cagatgetgt 240 tgctgcacag atcctgtcac tgctgccatt gaagtttttt ccaatcatcg tcattgggat 300 cattgcattg atattagcac tggccattgg tctgggcatc cacttcgact gctcagggaa 360 gtacagatgt cgctcatcct ttaagtgtat cgagctgata gctcgatgtg acggagtctc 420 ggattgcaaa gacggggagg acgagtaccg ctgtgtccgg gtgggtggtc agaatgccgc 480 gctccaggtg ttcacagctg cttcgcggaa gaccatgtg 519

<210> 22 <211> 544 <212> DNA <213> Homo sapiens

<400> 22 tttegtgetg gaggtteget agecgaageg getgeatetg gegeegegte tgeecegegt 60 geteggageg gattetgece geegteeeeg gageeetegg egeeeegetg ageeegegat 120 180 cacttectee etgtgaceaa eeggegetge aggttagage etggeaatge egtttgggtg tgtgactctg ggcgacaaga agaactataa ccagccatcg gaggtgactg acagatatga 240 tttgggacag gtcatcaaga ctgaggagtt ttgtgaaatc ttccgggcca aggacaagac 300 gacaggcaag ctgcacacct gcaagaagtt ccagaagcgg gacggccgca aggtgcggaa 360 agctgccaag aacgagatag gcatcctcaa gatggtgaag catcccaaca tcctacagct 420 ggtggatgtg tttgtgaccc gcaaggagta ctttatcttc ctggagctgt gagtgtgggt 480 ctggggaccc aaaattcccc agcgcccagg gctttcacct gtcccaccct ctgcagctaa 540 544 ggag

<210> 23 <211> 749 <212> DNA

<213> Homo sapiens

```
<400> 23
caacgtcgac gatttcgtgc ggggctgtgg ggagggcacg gactgacaga cggactccgg
 60
 eggaatgggg ggtgtggetg eteegeeagg gteeceaggg tgggagageg geteegegge
 120
 caccgatgee eggaceeect etgtettetg etagacatge tetteetete gttteatgea
 180
 ggctcttggg aaagctggtg ctgctgctgc ctgattcccg ccgacagacc ttgggaccgg
 240
 ggccaacact ggcagctgga gatggcggac acgagatccg tgcacgagac taggtttgag
 300
 geggeegtga aggtgateca gagtttgeeg aagaatggtt catteeagee aacaaatgaa
 360
 atgatgetta aattttatag ettetataag eaggeaactg aaggaeeetg taaaetttea
 420
 aggcctggat tttgggatcc tattggaaga tataaatggg atgcttggag ttcactgggt
 480
 gatatgacca aagaggaagc catgattgca tatgttgaag aaatgaaaaa gattattgaa
 540
 actatgccaa tgactgagaa agttgaagaa ttgctgcgtg tcataggtcc attttatgaa
 600
 attgtcgagg acaaaaagag tggcaggagt tctgatataa cctcagatct tggtaatgtt
 660
 ctcacttcta ctccaaacgc caaaaccgtt aatggtaaag ctgaaagcag tgacagtgga
 720
 gccgagtctg aggaagaaga ggcgtgtgt
 749
```

<210> 24 <211> 556 <212> DNA <213> Homo sapiens

<400> 24 tttcgtgctt taaggggcgg acgggcggga ggtcggggtc ctccggggat tcgagccggt gggctcgttg tgggcgccat ttctcggcgt ctaccgagga gccgcccctt tctcagcctt 120 geteggetet teecegetet ggtegeeggg getgegeegt eeccagetea gtgacaaaaa 180 tgctgagttt cttccgtaga acactagggc gtcggtctat gcgtaaacat gcagagaagg 240 aacgactccg agaagcacaa cgcgccgcca cacatattcc tgcagctgga gattctaagt 300 ccatcatcac gtgtcgggtg tcccttctgg atggtactga tgttagtgtg gacttgccaa 360 aaaaagccaa aggacaagag ttgtttgatc agattatgta ccacctggac ctgattgaaa 420 gcgactattt tggtctgaga tttatggatt cagcacaagt agcacattgg ttggatggta 480 caaaaagcat caaaaagcaa gtaaaaattg gttcacccta ttgtctgcat cttcgagtta 540 agttttattc ctcaga 556

<210> 25 <211> 422 <212> DNA <213> Homo sapiens

<400> 25 gtcggtgaga atccagggag aggagcggaa acagaagag ggcagaagac cggggcactt 60 gtgggttgca gagcccctca gccatgttgg gagccaagcc acactggcta ccaggtcccc 120 tacacagtec egggetgeec tragttergg tgettergge certgggggee gggrtgggeec 180 aggaggggtc agagcccgtc ctgctggagg gggagtgcct ggtggtctgt gagcctggcc 240 300 gagetgetge aggggggeee gggggageag coetgggaga ggeaeceeet gggegagtgg catttgctgc ggtccgaagc caccaccatg agccagcagg ggaaaccggc aatggcacca 360 gtggggccat ctacttcgac caggtcctgg tgaacgaggg cggtggcttt gaccgggcct 420 422 ct

```
<210> 26
<211> 506
<212> DNA
<213> Homo sapiens
```

<400> 26 agaagatgtg aagtcgtatt atacagtaca tctaccacaa ttagaaaata tcaatagtgg 60 tgaaaccaga acaatatete aettteatta taetaettgg eeagattttg gagteeetea 120 atcaccaget teatttetea atttettgtt taaagtgaga gaatetgget cettgaacce 180 tgaccatgga cctgtggtga tccaccgtag tgcaggcact ggacgctcca gcaccttctc 240 tgtggtacac acttgtcttg ttttgatgga aaaaggagat gatattaaca ttaaacaagt 300 gttactgaac ataagaaaat tccaaatggg tcttatctca gaccccagat caactgagat 360 tctcatacat ggctataaca gaaggagcaa aatgtgtaaa gggagattct agtatacaga 420 aacgatggaa agaactttct aaggaagact ccctcctgct tttgatcatt caccaaacaa 480 aataatgact gaaaaataca atagga 506

```
<210> 27
<211> 850
<212> DNA
<213> Homo sapiens
```

<400> 27 caggcctttg tgtaaggcca gaggaggatc acgggtgcca taaaccttca cggggccaag ggctggtgtc ccggggctgg tgacttaaca ggcagagatg tggagaccag gtgcttgtgc 120 ccgggacggg cctggctgcc atcctgagga cactgcccat gttccatgac gaggagcacg 180 cccgagcccg cggcctctct gaggacaccc tggtgctacc cccggccagc cgcaaccaga 240 ggatteteta cacegtgetg gagtgecage ceetettega etecagtgae atgaceateg 300 ctgagtgggt ttgccttgcc cagaccatca agaggcacta cgagcagtac cacggctttg 360 tggtcatcca cggcaccgac accatggcct ttgctgcctc gatgctgtcc ttcatgctgg 420 agaacctgca gaagactgtc atcctcactg gggcccaggt gcccatccat gccctgtgga 480 gcgacggccg tgagaacctg ctgggggcac tgctcatggc tggccagtat gtgatcccag 540 aggtctgcct tttcttccag aatcagctgt ttcggggcaa ccgggcaacc aaggtagacg 600 eteggaggtt egeagettte tgeteecega acetgetgee tetggecaca gtgggtgetg 660 acatcacaat caacagggag ctggtgcgga aggtggacgg gaaggctggg ctggtggtgc 720 acagcagcat ggagcaggac gtgggcctgc tgcgcctcta ccctgggatc cctgccgccc 780 840 tggttcgggc cttcttgcag cctcccctga agggcgtggt catggagacc ttcggttcag 850 ggaacggacc

```
<210> 28
<211> 990
<212> DNA
<213> Homo sapiens
```

```
<400> 28
tttttttttt ttacttgtaa tacqtatttt aatttttgtt tcatatgagt ttaagtgttg
tctaggtgac atcaaaatct aaggcaaaca gacttgacca tcttcagacc cactgcattc
 120
tcaagetgaa gtggtetget catagtttgt gtgecaggtt geteatcagt attgatactg
 180
teccagaaca ggttgtaggt ataatteaga gaetgteett tgeaaaggaa atgaecagea
 240
tttcaactgt atgtcttcct ggaagggtag attctgctat atcttctttg tctgcatcaa
 300
aagactcaag aggaatgtgg acacatttca tatcccattt gtagagtaaa gcttcaagtg
 360
accagtcage actectaact tgataagtag accacaattg gacettggga ttettgtgca
 420
tcaaaaaata tattgtagcc aaaatgtctt caaaatcttc tggttcaaag aacacatcag
 480
atgcaaggat aatatettgt ggtggtagag ccagaagate ccaagatata tgaccccatg
 540
ttagtcctac cacctgcaga tgtggcaggt tattcatttg gcagctttgc cgacagactt
 600
ccagacagtg aggcagttct gagctgtctg acagtattac ttctgcacca catttggcag
 660
ccaaaattcc tggaaggctc actccagctc caatctgcgg gacgtggacc tccaggacag
 720
ccccgtcggc ccccggaccc ggctcctccg agaatcgaaa gcgctgggcc cggaccccct
 780
gteeteggaa ategtgeteg eecagtaggg egtegttggg eecegggegg gegggggace
 840
geggaagget cegggetgee agactgegeg agegggaage egegggeeae gtggeegtag
 900
cacctgacgg caagaagggg aaagcccaga tctggtgata accctgccgc gctagcgagc
 960
gaagaaagcc cggagcaagg cgaaagagac
 990
```

```
<210> 29
<211> 622
<212> DNA
<213> Homo sapiens
```

```
<400> 29
ttttttttt ttgtgttgat aaagetttat ttataaacac actcacaggg ccagatttgg
 60
gccacgggcc atagttgcca gcccggcttt aactgctggt cctcacgtta gtctcactgc
 120
ctcctgcagg gtgggcatgt gggtgtcgtg ttcacccagc cccttcctcc accccacaaa
 180
caccetggtg getgteetgg agegegacae actgggeate egtgaggtge ggetgtteaa
 240
tgccgttgtc cgctggtccg aggccgagtg tcagcggcag cagctgcagg tgacgccaga
 300
gaacaggcgg aaggttctgg gcaaggccct gggcctcatt cgcttcccgc tcatgaccat
 360
cgaggagttc getgcaggta acagageteg ggetcagggg etggtttggg aggggagtgg
 420
cacacaggtg ggcatctggg taccgaggat agtgcccccg agttcactgc ggaaagcctg
 480
gcagatgcct ggcatataca gataggaaga aacctggctt gtgaggacgc gtccacaggg
 540
ccatctgtta gecceggece ggetetgtee ecacegtgea caetgecaga eccegectet
 600
cgtgtctgtc cagctgtttt gg
 622
```

```
<210> 30
<211> 181
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(181)
<223> n = a,t,c or g
```

# <400> 30 tttttttttt ttgagacgga gntgngctct gtnacccagg ntagagtgca atggcacgnt 60 ctcggctcac tgcaagctct gcgtcctggg ttgacgccat tctcctgcct cagcctcccg 120 agtagctggg actacaggag cttcgccacc aattccagcc tggggtggac agagtgataa 180 g

<210> 31 <211> 1956 <212> DNA <213> Homo sapiens

<400> 31 aaactccgaa cacatccaaa catcagaagg aacaaactcc agacacaccg cctttaagaa 60 etgttaeget cacegegagg gtccaegget teatteteca agtcagacca agaacceace 120 aattccggac acaaaaggcg tagcgtgcct cctgtgattg ttgaagagct gtggtgtqct 180 gctgagtggc gtgtgtattc catgtgaggg gaagggtcca acagtcctgg tcattcagac 240 tgcagttccc caggacagac ccacgaagtc aagcatgcgg agtgcagcca agccctggaa 300 cccagccatc agagcagggg gccacggccc agaccgggtg cggcctctgc ctgcagcctc 360 ttccggcatg aagagttcta agtcttcaac ttccttggct tttgagtccc gactcagcag 420 gctcaagagg gccagcagtg aggacacgct caacaagcca ggaagtaccg ctgcatcggg 480 ggtggttcgc ctgaagaaga ccgccactgc cggagccatc tcggagctca cggagagccg 540 cctgaggagc ggcacagggg cctttacaac aactaaacgg acaggcattc cagcccacg 600 ggaattttca gtaactgtct caagagagag gtctgtgcca cgtggtccct ccaaccccag 660 gaaatcagtg tecagtecaa ettectecaa cacteceaet cetacgaaac acetgaggae 720 cccttccaca aagcccaagc aagagaatga aggtggagaa aaggctgcgc ttgagtccca 780 agttcgggaa cttttggcag aagccaaagc aaaagatagt gaaattaaca ggcttcgaag 840 tgaactaaag aaatacaaag agaaaaggac tetgaacget gaggggaetg atgetttggg 900 cccaaatgtc gatggaacat cagtctcccc aggtgacacg gaacctatga taagagctct 960 tgaggagaag aacaagaact ttcagaaaga gctttccgat ctagaggaag aaaaccgggt 1020 cctgaaggag aaactgatct atcttgagca ctccccaaat tcagaagggg cagcaagtca 1080 cactggcgac agcagetgcc caacatccat aactcaagag tcaagettcg gaageccaac 1140 tggaaatcag ttgtccagtg acattgatga gtataaaaaa aacatacatg gaaatgcatt 1200 acggacatca ggctcctcaa gtagcgatgt taccaaagct tctttgtcgc cagatgcttc 1260 cgactttgag cacattacag cagagacacc ctcaaggccc ctgtcctcca ccagtaaccc 1320 ctttaagagt tcaaagtgtt ctactgctgg gagttcccca aacagcgtaa gtgaattgtc 1380 cctggcttcc ctcacagaga agatacaaaa gatggaagaa aaccaccata gcactgcaga 1440 agaactacag getaetetae aagaattate agaecageaa caaatggtae aggaattgae 1500 agctgaaaat gagaagctgg tggatgaaaa gacgatttta gagacatcct ttcatcagca 1560 tcgagagagg gcagagcagc taagtcaaga aaatgagaag ctgatgaatc ttttacaaga 1620 gcgagtaaag aatgaagagc ccaccactca ggaaggaaaa attattgaac tggagcagaa 1680 gtgcacaggt attcttgaac agggccgctt tgaaagagag aagctactca acattcagca 1740 gcagttgacc tgtagcttgc ggaaggttga ggaagaaaac caaggagctt tagaaatgat 1800 taaacgtctg aaggaagaaa atgaaaaact gaatgagttt ctagaactgg aacggcataa 1860 taataacatg atggccaaaa ctttggaaga gtgtagagtt accttggaag ggctaaaaat 1920 ggagaatgga tctttgaagt ctcatttgca gggtga 1956

<210> 32 <211> 513

<212> DNA

# <213> Homo sapiens

### <400> 32 ctcagcacca caaggaagtg cgggacccac acgcgctcgg aaagttcagc atgcatgaag tttggggaga gctcggcgat taacacagcg acccgggcca gcgcagggcg agcgcaggcg 120 gcgagagcgc agggcggcgc ggcgtcggtc ccgggagcag aacccggctt tttcttggag 180 cgacgctgtc tctagtcgct gatcccaaat gcaccggctc atctttgtct acactctaat 240 ctgcgcaaac ttttgcagct gtcgggacac ttctgcaacc ccgcagagcg catccatcaa 300 agctttgcgc aacgccaacc tcaggcgaga tgagagcaat cacctcacag acttgtaccg 360 aagagatgag accatccagg tgaaaggaaa cggctacgtg cagagtccta gattcccgaa 420 cagctacccc aggaacctgc tcctgacatg gcggcttcac tctcaggaga atacacggat 480 acagctagtg tttgacaatc agtttggatt aac 513

<210> 33 <211> 712 <212> DNA

<213> Homo sapiens

<400>	33					
acagacatgg	ttccagctct	gtagaactga	gagaaagaat	aaacaagtca	cacattagcc	60
cttcaaaaag	atgaccgacc	tcttgagaag	tgttgtcacc	gtaattgatg	ttttctacaa	120
atacaccaag	caagatgggg	agtgtggcac	actgagcaag	ggtgaactaa	aggaacttct	180
ggagaaagag	cttcatccag	ttctgaagaa	cccagatgat	ccagacacag	tggatgtcat	240
catgcatatg	ctggatcgag	atcatgacag	aagattggac	tttactgagt	ttcttttgat	300
gatattcaag	ctgactatgg	cctgcaacaa	ggtcctcagc	aaagaatact	gcaaagcttc	360
agggtcaaag	aagcataggc	gtggtcaccg	acaccaagaa	gaagaaagtg	aaacagaaga	420
ggatgaagag	gatacaccag	gacataaatc	aggttacaga	cattcaagtt	ggagtgaggg	480
agaggagcat	ggatatagtt	ctgggcactc	aaggggaact	gtgaaatgta	gacatgggtc	540
caactccagg	aggctaggaa-	gacaaggtaa	tttatccagc	tctgggaacc	aagagggatc	600
tcagaaaaga	taccacaggt	ccagctgtgg	tcattcatgg	agtggtggca	aagacagaca	660
tggttccagc	tctgtagaac	tgagagaaag	aataaacaag	tcacacatta	aa	712

<210> 34 <211> 600 <212> DNA <213> Homo sapiens

<400> 34

cagatttctc aggtgagetc agatageaat ccactgtgtt cetttatete cageagatat 60
atateaatat cttgaageag ttttetaete aatttagaag aacttetggt taaatttaea 120
attettttt cteteceatg cttgttgttt cteatteaaa caagaetgge atagetaett 180
tatgagggta ggteteeetg aattttaagt tecaaagate tetggaeetg ateatattga 240
ctttatteeg tgggateaae tetteatgge cagttettee tetgteaetg agttettagt 300
getgggette tetageettg gggaattgea gettgteete tttgeagtet ttetetgeet 360

PCT/US00/35017 WO 01/53455

ctatttgatt atcttgagtg	gaaacatcat	catcatctca	gtcattcatt	tggatcacag	420
cctccacaca cccatgtact	tctttctagg	tattctttct	atctctgaaa	tcttctacac	480
aactgttatt ctgcccaaga	tgcttatcaa	cttattctct	gtattcagga	cactctcctt	540
tgtgagttgt gccacccaaa	tgttctacga	aatcgtcggc	ccgggaactc	aggaacggtc	600

<210> 35 <211> 985 <212> DNA <213> Homo sapiens

<400> 35

tttcgtccta ctgtccctgt cctgcccttg cagacatgtg tcctgccctt gcagacagcc gcaggcaggc agggaccacc atgagcaacc ccgtctctcc tcctgagggg cagcacagag cctggaggag gcctgagtgg ggttgaggcc tggggcgagc tggggtggag gggcactggc tgccgggctc cagggatett eteceettee tgccccggag ggtgctggca caggggtggg gctcactccc actccgtaga cacaatgatc agaggtcctg ggtgtctggg gaagctgggc tgtgcgtgta tgcgtctacc atgtgggggt gcctgtgagt gtgctggggc gtctgcagtg aaggcctcct gagaccactc cacggaaaca ccgggaatcc ctgcagctga gcctgtctct

cacgggaccg ggaagctgga gagagcccca accctgcccg ctggggccga gctccctgct

60

120

180

240

300

360

420

480

60

120

cctgcagcag tcccgtgccc cacactctga gtctgcccta tccacagctg ctgggcctct 540 ctgtggccac catggtgact cttacctact tcggggccca ctttgctgtc atccgccgag 600 cgtccctgga gaagaacccg taccaggctg tgcaccaatg ggggactcag cagcgactta 660 tecaacatec agagagegg agegagggec agageetget ggggecaete agggeettet 720 ctgcggggtt gagcctggtg ggcctcctga ctctgggagc cgtgctgagc gctgcagcca 780 ccgtgaggga ggcccagggc ctcatggcag ggggcttcct gtgcttctcc ctggcgttct 840 gcgcacaggt gcaggtggtg ttctggagac tccacagccc cacccaggtg gaggacgcca 900 960

tgctggacac ctacgacctg gtatatgagc aggcgatgaa aggtacgtcc cacgtccggc ggcaggaget ggcggccatc cagga 985

<210> 36 <211> 464 <212> DNA <213> Homo sapiens

<400> 36 ccgtatcggc gtttatatac tgaagataag cctgatgagt aacaggcttg ctcgtcatac tttcgtgagt attggcgttg tacaggcaag tcgtaaaata acagcctggc tattcagagt

atgataaaaa cagggggcaa gggatgttgc ttaatatgat gtgtggtcgt cagctgtcgg 180 caatcagttt gtgcctggcc gtaacattcg ctccactgtt caatgcgcag gccgatgagc 240 ctgaagtaat ccctggcgac agcccggtgg ctgtcagtga acagggcgag gcactgccgc 300 aggegeaage caeggeaata atggegggga teeageeatt geetgaaggt geggeagaaa 360 aageeegeae geaaategaa teteaattae eegeaggtta caageeggtt tatettaace 420 agetteaact gttgtatgee geaegeggta ttteetgeag egtg 464

<210> 37 <211> 429 <212> DNA <213> Homo sapiens

<400> 37 tegeacaaga getgetgatg tetatgtett ttegetcaeg ggaaaatete gaaacgtgag 60 ttcctcaacc gtgcggcgaa gtgcggtagg cgggatgtcg gcattagcgt tgtttgattt 120 gctcaagcca aattatgcgc tggcgactca ggtagagttt accgacccgg aaattgttgc 180 tgagtacatc acgtatcett cgccaaatgg tcacggcgag gtgcggggtt atctggtgaa 240 gcccgcaaag atgagcggca aaacgccagc cgtagtggtg gtgcatgaga atcgtggact 300 gaatccgtat atcgaagatg tggcacggcg agtggcgaag gcggggtata tcgccctqqc 360 acctgacggc ttaagttccg ttggaggtta tccgggaaat gatataaagg tggtatccgc 420 ageggeece 429

<210> 38 <211> 556 <212> DNA <213> Homo sapiens

<400> 38 gagaataacc tagacgttat tgacttgatg ccccgcgtcg gtaaggcgct ggataccacg 60 cagegeggeg tgetgtttaa tgeagtaace egatggggca attaagtgaa acagagacat 120 ggcaatteet tgetgacaac agaaacgaaa tgtatateat geegettagg tgtgeegttg 180 tcacctcaac ggcgattcca ggctataagg atagaagaag tgaaattgag atggtttgcc 240 tttttgattg tgttattagc gggttgttca tcaaagcatg actatacgaa cccgccgtgg 300 aacgcgaaag ttccggtgca acgtgcgatg cagtggatgc caataagcca gaaagccggt 360 gcagcctggg gcgtcgatcc acaattgatc acggcgatta tcgctatcga atcgggtggt 420 aatccgaacg cggtgagtaa atcgaatgcc attggtttga tgcagttaaa agcttcaacc 480 teeggaegtg atgtttateg eegtatggge tggagtggtg ageegaegae eagegagetg 540 aagaatteet caagae

<210> 39 <211> 890 <212> DNA <213> Homo sapiens

<400> 39
 accaegetge aggaattegg cacgaggeea aaccaaagag aagtttttat getgecaggg 60
 atttgtacaa gtaccgacae cagtacccaa acttcaaaga tatcegatat caaaatgact 120
 tgagcaatet tegttttat aagaataaaa ttecattcaa gecagatggt gttacattg 180
 aagaagttet aagtaaatgg aaaggagatt atgaaaaact ggagcacaae cacaettaca 240
 ttcaatgget ttteccetg agagaacaag gettgaactt etatgecaaa gaactaacta 300
 catatgaaat tgaggaatte aaaaaacaa aagaagcaat tagaagatte eteetggett 360

PCT/US00/35017 WO 01/53455

```
ataaaatgat gctaqaattt tttggaataa aactgactga taaaactgga aatgttgctc
gggctgttaa ctggcaggaa agatttcagc atctgaatga gtcccagcac aactatttaa
 480
gaatcactcg tattcttaaa agccttggtg agcttggata tgaaagtttt aaatctcctc
 540
ttgtaaaatt tattcttcat gaagctcttg tggagaatac tattcccaat attaagcaga
 600
gtgctctaga gtattttgtt tatacaatta gagacagaag agaaaggaga aagctcctgc
 660
ggttcgccca gaaacactac acgccttcag agaactttat ctggggaccg cctcqaaaaq
 720
aacagtcgga gggaagcaaa gcccagaaaa tgtcttcccc tctcgcctcc aqtcataaca
 780
gtcaaacttc tatgcacaaa aaagccaagg actccaaaaa ttcctcctca gctgttcatt
 840
taaatagcaa aacagctgaa qacaaaaaaag tggcaccaaa agagcctgtg
 890
```

<210> 40 <211> 393 <212> DNA

<213> Homo sapiens

### <400> 40 accegetgee atettagtet agggaetgag gagtegeege egeecegagt eccegetacea 60 tgcatttcac ggtggccttg tggagacaac gccttaaccc aaggaagtga ctcaaactgt 120 gagaactica ggttttccaa cctattggtg gtatgtctga cagtggatca caacttggtt 180 caatgggtag cctcaccatg aaatcacagc ttcagatcac tqtcatctca qcaaaactta 240 aggaaaataa gaagaattgg tttggaccaa gtccttacgt agaggtcaca gtagatggac 300 agtcaaagaa gacagaaaaa tgcaacaaca caaacagtcc caagtggaag caacccctta 360 cagttatcgt tacccctgtg agtaaattac att 393

<210> 41 <211> 437 <212> DNA <213> Homo sapiens

<400> 41 gcattecttg aaagaaatgt tacagecaga teacagegea gaacgataaa atggcacaat 60 ccaacaacaa ttttacattt tegegacege tttggetget ttcaggteeg tttcaatgat 120 atactgccag tegttaatte aaaaatagtt gataattaca acaatetatt gaattgaaac 180 gctttccttc gtaattcgca actggaacac gcacgctatg agtaaaccca ttgtgatgga 240 acgoggtgtt aaataccgcg atgoogataa gatggccott atcooggtta aaaacgtggc 300 aacagagege gaageeetge tgegeaagee ggaatggatg aaaateaage ttecagegga 360 etetacaegt atecagggea teaaageege aatgegeaaa aatggeetge attetgtetg 420 cgaggaagcc tcctgcc 437

<210> 42 <211> 392 <212> DNA <213> Homo sapiens

<400>	42 .			•		
tcccctgcgt	caattttcct	gacagagtac	gcgtaataac	caaatcgcgc	aacggaaggc	60
gacctgggtc	atgctgaagc	gagccaccag	gagacacaaa	gcgaaagcta	tgctaaaaca	120
gtcaggatgc	tacagtaata	cattgatgta	ctgcatgtat	gcaaaggacg	tcacattacc	180
gtgcagtaca	gttgatagcc	ccttcccagg	tagcgggaag	catatttcgg	caatccagag	240
acagcggcgt	tatctggctc	tggagaaagc	ttataacaga	ggataaccgc	gcatggtgct	300
tggcaaaccg	caaacagacc	cgactctcga	atggttcttg	tctcattgcc	acattcataa	360
gtacccatcc	aagagcacgc	ttattcccca	99	•	•	392

<210> 43 <211> 555 <212> DNA

<213> Homo sapiens

<400> 43 tggctcgcgc gtcataatgg gagttttgat actgtggatt gccggttcga tgtggtagcc 60 ttcaccggga atgaggttga gtggattaag gatgccttta atggccactc ataattaagg 120 tttaaggatt agcgtgcaag aaagaattaa agcttgcttc actgaaagca ttcaaactca 180 aattgeggeg geagaggege tteeggatge eateteeegt geagecatga egetggttea 240 gtctctgctc aatggcaaca aaatcctctg ttgtggtaat ggaacttccg ctgccaatgc 300 acagcatttt gctgccagca tgatcaaccg tttcgaaacg gagcggccca gcttacctgc 360 cattgcacta aatactgata atgttgtctt aacggcgatt gccaacgatc gcttacatga 420 tgaagtgtat gcaaaacagg tgcgggcgct gggtcatgcg ggagatgtat tgttagccat 480 ttccacccgt ggcaacagce gcgatattgt taaagcagtt gaagccgccg ttacgcgtga 540 tacgaccatt gtggc 555

<210> 44 <211> 553 <212> DNA <213> Homo sapiens

<400> 44 ctatgacctg attacaattc aggteegacc cgagatetec aaaatgecag gacgetgtgg 60 ctacacaagc taaccatgct gattaatgaa aagaaactca acatgatgaa tgccgagcac 120 cgcaagctgc ttgagcagga gatggtcaac ttcctgttcg agggtaaaga ggtgcatatc 180 gagggctata cgccggaaga taaaaaataa aaacagtgcc ggagcacgcc tccggcaact 240 300 tgcataaaaa caaacacaac acgcacccgg aatgatgaaa aaatatctcg cgctggcttt 360 gattgcgccg ttgctcatct cctgttcgac gaccaaaaaa ggcgatacct ataacgaagc ctgggtcaaa gataccaacg gttttgatat tctgatgggg caatttgccc acaatattga 420 gaacatctgg ggcttcaaag aggtggtgat cgctggtcct aaggactacg tgaaatacac 480 cgatcaatat cagaccegca gecacatcaa cttcgatgac ggtacgatta ctatcgaacc 540 catccccggg aca 553

<210> 45 <211> 310 <212> DNA <213> Homo sapiens

<400> 45
tctcgttacg acttcgagcg ttggacccgg ggatctctct actatcgctg caagcgagcc 60
agaaaaaact ggatgaactg atcgaacagc actaaaccca ggacaggaat ccgcaatgaa 120
caggcttttt tcaggtcgtt ccgatatgcc ctttgcgctg ctgcttctcg cgcccagctt 180
attactgctg ggcggtctgg tggcgtggcc gatggtgtcg aatatcgaaa tcagttttt 240
acgtctgccg ctcaatccca acatcgagtc aacgtttgtt ggggtgagca actatgtgcg 300
tatcctctcc

<210> 46 <211> 627 <212> DNA <213> Homo sapiens

<400> 46 60 ctcgctgact cgcttcgctt ccccgacgcg ctgggttccc ggagcgcaga gcccagcgtt agegggtggg cteecegagg ccccetgecc tegeeggget getecagggt gtegeteete 120 180 tggctgctcc cgaaggggct tctggccctg aggacggtgg tgccaagcga acttcatttt 240 taaaaagaac tggtggatga gaagagcgag cgagggcgag ctatggaccc tgtgagtcag ctggcctctg cgggcacctt ccgggtgctg aaggagcccc ttgccttcct gcgagccctg 300 gaattgcttt ttgcaatctt tgcatttgca acatgcggtg gctattctgg aggcctgcgg 360 ctgagtgtgg actgcgtcaa caagacagaa agtaacctca gcatcgacat agcgtttgcc 420 480 tacccattca ggttgcacca ggtgacgttt gaggtgccca cctgcgaggg aaaggaacgg 540 cagaagetgg cattgattgg tgactecteg tetteageag agttettegt caetgttget 600 gtcttcgcct tcctctactc tttggctgcc actggtcgtt acattttctt tcacaacaaa aaccgggaaa acaaccgggg cccactg 627

<210> 47 <211> 998 <212> DNA <213> Homo sapiens

<400> 47
acctgggcac cgtgtcctat ggcgccgaca cgatggatga gatccagagc catgtcaggg 60
actcctactc acagatgcag tctcaagctg gtggaaacaa tactggttca actccactaa 120
gaaaagccca atcttcagct cccaaagtta ggaaaagtgt cagtagtcga atccatgaag 180
ccgtgaaagc catcgtgctg tgtcacaacg tgaccccgt gtatgagtct cgggccggcg 240

```
ttactgagga gactgagttc gcagaggctg accaagactt cagtgatgag aatcgcacct
 300
accaggette cageceggat gaggtegete tggtgeagtg gacagagagt gtgggeetea
 360
cgctggtcag cagggacete acetecatge agetgaagac ceccagtgge caggteetea
 420
gettetgeat tetgeagetg ttteeettea eeteegagag caageggatg ggegteateg
 480
tcagggatga atccacggca gaaatcacat tctacatgaa gggcgctgac gtggccatgt
 540
ctcctatcgt gcagtataat gactggctgg aagaggagtg cggaaacatg gctcgcgaag
 600
gactgcggac cctcgtggtt gcaaagaagg cgttgacaga ggagcagtac caggactttg
 660
aggtgagccg actcccaggc atcccatcct cctacgacgg tgccttcctt acgctgaaat
 720
tagttettee tgtetttgta tgaaattaga getgggateg etatagteta ggagtgaagg
 780
cagcttcgct cagcaggagc atggggggat cctgtctgca tttctgtttc caccatttct
 840
ccagcttgct ggggaaggag ggttacagaa gcaaagaagt gccagtttcc ttagaattgt
 900
gettgataae teeteaatga teacaegeea geegagetga gtacacataa gagtatgtge
 960
acataggege etececetet gteeceagag eccatgeg
 998
```

```
<210> 48
<211> 864
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(864)
<223> n = a,t,c or q
```

```
<400> 48
tttttttttt ttgagacaca gtctggctat gtcacccagg ctgagtacag tagcatgatc
 60
ctggttcgct gcaacctcca cctcccaggc tcaagtgatc ctcccacctc agcctcctga
 120
gtagctagga ctacaggtac gtgccacaac acctggctaa tttttttatt ttttgtagag
 180
acaagggtet ecctaegttg tecaggetgg acttgaacte etgggtteaa gegateetae
 240
caccttggcc tcccacagca ctggggttac aggcaggagc cactgcacct ggccctgtct
 300
ttactgatgg tcctgcccca tgcctcccac acctaaccct gggcacccac tcccgaagct
 360
ctcctactgg ctgcagggtc tgcctctgtg aggacagtga agccgatgac acgggaggtg
 420
aagtegaagg cegtetgetg gecategtgg atcaetgaga tgeagtggeg gteeeegtag
 480
ctggcccgtg gcatgccacc ctggaagatg gtgaagggca acccctgcct agtggtcagc
 540
cagaggattc tggtaatcgc tttgcaagga aagggaccgt aaggcacgag gctgcggagg
 600
ggetetggtt getgggette getggacaeg ggeceaetgg eagtagetge egteagagtg
 660
acagetgacg ageaggegge egtecegetg ecaceagatg ttetecagtt getggetget
 720
gaggaagtgg tagagcacgc ggctgccctg taggtcccag atgacaacga ggcctcggct
 780
gtagccgatc aggatctggt tggggtcttc aggtgcttcc tgcatgcttt caccatttng
 840
aacaaacagc cggtgggggc cctc
 864
```

<210> 49 <211> 1327 <212> DNA <213> Homo sapiens

<400> 49
tttcgtgagc atttgagggc tgtttatgat ctatggggta aaactctctg actgactgga

```
tgaggaaaat gaaatgcgag agggttgagc ccaaggttca ttcatctgct caatcgaggc
 120
cactcattct ggccactgtg tgccagatgc tggggattct gtcctcttgg gagctgacgt
 180
agcccaggtg gtggctgtgg gctgctggag gtggggatcc aggtggagga gcaagtctag
 240
ggaagtgtgc tggggaggcc ctctctgagg aggtgacatg ccagctgaga tctgaatggc
 300
aggaaggagt ggccatgagg acatgggtga tgacagtctg ggtagaaaga tgaaggaggg
 360
gaagcaggta aggagttgtg atctaattct gggagccact ggagggtgaa agcagggatt
 420
agaagtcagg gatttacatt ttaaagagat cacctctggc agggctttgt taagagtggc
 480
ctgcaagagg ccaagcatgg ttccaggggg ccagttgcag agggctggtg caggagccca
 540
ggcaaggatt acggggctca gtcctgccct gtggggagca agagtacacg gctggattcc
 600
agagetgeca geaggeetae eccetgggge etgeetgtgg ceteteatee etgeetgtee
 660
cagtagacac tgggggtggg taagtgctcc cgtgaagggg gggcccaggc gattctgggt
 720
ctggccctgt gtctacaggg gagcaccgtg gcctgggcgc tggcgtctcc aaggtgcgga
 780
gcctgaagat ggacaggaag gtgtggacag aaacacttat cgaggtgggg atgccctgc
 840
ttgccaccga tacttggggt ctgccccatt caacagetgt ctgggtctcc cagcccctc
 900
cctatctcag tgaccacagc accttggagc tggaaagaga ccctttgtga taatatagtg
 960
ggtggggatt tcggaaaagc aatttttggc aaagtcagca aactggccag tgagctaaga
 1020
atgtttttat agttgtaaag tgttattttt ttttaaagaa aaaaaaagga agaaaatgca
 1080
gcagagactg tatgtgttct gtaaagccga aaataattac tatttcgccc tttagagaaa
 1140
gaatttgcta acttctgatc taatttcact gtcatccatt gaatagatgt gtaaactgag
 1200
gtcctgggca gggctgtaat ctgcctgaga ttaccctgta aatgcatatt gaccaccatc
 1260
cotgectott totgtoccae ttotgaatga cocagggeet toteccetae ettqcacage
 1320 -
 1327
```

<210> 50 <211> 436 <212> DNA <213> Homo sapiens

<400> 50 ctgtcgtgca attccgagca ggcactgctc agtctggtgc ctgtgcagag ggagctactt 60 cgaaggcgct atcagtccag ccctgccaag ccagactcca gcttctacaa gggcctaggt 120 acctgccctt cccagctgag gctttctgag ccccaccga cccccagaca cctcagcgta 180 gestetgtet cecateacat gtteccetet categetece tttgcccaca tettecagae 240 ttettegeeg ecceattece ateagacaat etceectaca ecctecagte eccttteece 300 tcacctcctc cagctactcc ctctgaccat gctcttatcc tccaccacag acttaaatgg 360 gggcccagat gaccetetge ageagacagg ccagetette gggggcctgg tgegtgatat 420 ccggcgccgc tacccc 436

<210> 51 <211> 481 <212> DNA <213> Homo sapiens

<400> 51

tcgcctagca gtaagttggt tggcatgtgg tgggcaggca gggctggcag tagtcggacc 60
acttcagtct ccctgctctg ccttccccag caccattcgg tgcctcgaac ctcctggtga 120
accccctgga gccccaaaat gcagataaga tcaagatcaa gatcgcagac ctgggcaacg 180
cctgctgggt ggtatgagca agtgtgggag agcagagtgg ggggccctgc tccaagggtg 240

```
gaggcacagg gccgctcttg gggagcccta ccccagtctg cagtgcacgt gaaccgtcgg 300 ctgggtgggc actggtcctg cccagtcaac agcactgggg ccatggccaa gggcaggggc 360 cactaggaag ggatcagcct cagcctcaga tcactgggcc tgtccctctt ggaggacctg 420 gggaccccga ggctcacagc aaaccccact gagcttctcg ggtaggcgga tcggggtggg 480 g
```

<210> 52 <211> 435 <212> DNA <213> Homo sapiens

<400> 52 cccgggtcga cccacgcgtc cgagetcctc gttgtggaga caagatcaaa aatcatatgt 60 atagaatgtg actgtggctc ccttaaagat tgtgccagtg atagatgttg tgagacctct 120 tgtacccttt ctcttggcag tgtttgcaat acaggacttt gctgccataa gtgtaaatat 180 gctgcccctg gagtggtttg cagagacttg ggtggtatat gtgatctacc ggaatactgt 240 gatgggaaaa aggaagagtg tccaaatgac atctacatcc aggatggaac cccatgttca 300 gcagtatctg tttgtataag aggaaactgc agtgaccgtg atatgcagtg tcaaqccctt 360 tttggctacc aagtgaaaga cggttcccca gcgtgctatc gaaaattgaa taggattggt 420 aaccgatttg gaacg 435

<210> 53 <211> 728 <212> DNA <213> Homo sapiens

<400> 53 cegggtegac ccacgegtec ggacgccagt ttagcccagg tccacggact acaatgtttc 60 gtattcctga gtttaaatgg tctccaatgc accageggct tctcactgat ttactatttg 120 cattagaaac tgatgtacat gtttggagga gcccattcta caaagtctgt aatggatttt 180 gtcaatagca atgaaaatat tattittgta cataacacaa ttcacctcat ttcccaaatg 240 gtagacaaca tcatcattgc ttgtggagga attttacctt tgctctctgc tgctacatca 300 ccaactggtt ctaagacgga attggaaaat attgaagtga cacaaggcat gtcagctgag 360 acagcagtaa ctttcctcag ccggctgatg gctatggttg atgtacttgt gtttgcaagc 420 tetetaaatt ttagtgagat tgaagetgag aaaaacatgt ettetggagg tttaatgega 480 cagtgcctaa aattagtttg ttgtgttgct gtgagaaact gtttagaatg tcggcaaaga 540 cagagagaca ggggaaataa atcttcccat ggaagcagta aacctcagga agttcctcaa 600 agtgtgactg ctacagcagc ttcgaagact ccattggaaa atgttccagg taacctttct 660 cctattaagg atccggatag acttcttcag gatgttgata tcaatcgcct tcgtgctgtt 720 gtctttcg 728

<210> 54 <211> 2228

<212> DNA

## <213> Homo sapiens

```
<400> 54
tttttttttt ttcctgaaat gtaaattgtt tttaatatat ttaagagcac acagaagtct
 60
tgatttataa aaaaataaat atataacatg acaaatttac tgatgatcct ggagctctga
 120
ggtcaaactc tttaaatgat cagtgaaaac ataaaacatc catgatctgt taacacacac
 180
aggagcatat tccagttgta aaaaacaaat tccttgaagg ctcagaacga acaaaaatca
 240
gtctttatgg cagaaagcac atccaaagct aggcaatgaa gttcagcctg ggccacgtga
 300
acctttcacc agccagccta taacctatgg agccaggaca ggaaagcatg atccttcagc
 360
tcatgacgcc acccaggctt ccagacaact gcagaatgaa agagtccctc agaggctccc
 420
cagcccctgc tgccatcata aagcacggga gggattgttt tgtccttagc ggctctgtcc
 480
taaatttgag agcaggagac tgagaaggtt atgctcatta aatattgtca ttgtaacacg
 540
gaatggaaat catgatcctt gcccatgggc actgagctga aagaaagagg aacctcacat
 600
gaggetttee tagagaceag gatgttgggt gagtgggegt geaettetea agtgggeaag
 660
gaagaactgc ttttctccag ctgacatgct ctcaggggtg aagaagttta gcttaaaata
 720
cetgatggcg etgcataaac tggggatttg ggaactgagt ttttagetet gtgacacaca
 780
acataaaaaa caaaaatcca gtctcattag ctaaattcgg attaaaatct gaaatgtttt
 840
tatggagttg ccaacagget ggaatgtace tgatacaatt taatetgett ttatttettt
 900
ggctgtcttc caaaccactt tcttcctgta attcttaagt tggctagttc tccttcctca
 960
gaaaaattac ccctaagaat cttcctaata gtgagggtgt acttccgaat agaagagtcc
 1020
ttcggctgaa atggcatctc caaggcctac agttcgaatg gggtctttac acaccaatac
 1080
tggtgtgaag tggaaggata ttccctctct gtgccattct actactggct tgtttgggtt
 1140
taatacaatc ctggagcctg cctccgaatg ggaagtcatg aactcttggg gtgccctcag
 1200
agacactegg etggtgteta tggtttetgt ggegeaggee tgtgteeeag eeacaegage
 1260
tectgeagee aeggetgeea getggttgge ceagtgteea tecaeagttg ceaggatgtg
 1320
gtagaccage gtgtggaaat ggateetggt gagateegag getetgettt tacteeteee
 1380
atgttctttc aagatccaga agaggatgtc actgaccatg cccacatcag gaacaccgtt
 1440
ccaggaagag agagaagagt gaggtccaga ggctgactgg gtgagaaata acagctcctg
 1500
ttcattcagc ccaagggaag tcaccgcggg aaagacctgc tgaaggaaca atgctgctca
 1560
tgagctccct gttagtcata ctggcccagc tctaggtgaa actggaatac cagtggggat
 1620
gtcagaaatg gaggttacaa cctccaagag tctcttcctc tggagctcct tgctttgtcc
 1680
etccateatg tgcaatccag agaggeeece caggtetgge tgaaacteet ecaggetaga
 1740
cacaaacacc tccagcatat tcatggcccc gttggagagg tcgtgagaga agatgaatcg
 1800
gttggcatgg ggagctttta actggcccca ctcctcccct gcttgatact ctaaaatgag
 1860
gtggaactca tccacttcct gcaatgactc tggtggaaca aagacattgt catcaagaag
 1920
ctcatgtagc tttggaccaa ctggaccgca aagaagaacc tttaaatctg agttggctgc
 1980
aaatttetgt eeaattaaag etgeatttee teetacatag tgetgggete etgggaacte
 2040
tgacgcaacc tgggcaatgt cgtgaaaagt ttccttatca ctgaagaagc gctcagcagc
 2100
tgetecette eccatgaagt gaatgaagge ttetteeaga teatteettg aatgeagaat
 2160
gctgtgatct ttcccattcc caggactaag gccaagtgcc tgcaagagct tcaccctga
 2220
ggaattca
 2228
```

```
<210> 55
<211> 405
<212> DNA
<213> Homo sapiens
```

# <400> 55 gcaggagttc aagaccaacg tggccaacat ggggaaagcc catcactact aaaaatacaa 60 aaactagcca ggcgtggtga cacacatctg taatcccagc tactcgaggc gctgaggcag 120 gagaatcact tgaaccagga ggcagaggtt gcagtgagcc gagatcatgc cactgcactc 180 cagcctgggc cacagagcaa gactccatct gacaactagc tgttccagcc cccagccact 240

tgagtcatct	cagctgaggc	cccacacacc	aagaagcaga	ggtgagtcta	atccacagag	300
ccctggtcag	acatgatgac	ggtggcttca	cccgggggtc	tccgcacagc	agcggcctcg	360
ggtaagcaga	acctcgctcc	ggggtttaca	aatccttcct	cgtgc	•	405

<210> 56 <211> 1652 <212> DNA <213> Homo sapiens

<400> 56 actaggggag gtgctcaagt gccagcaggg cgtatccagt ctggcctttg ccctggcctt 60 cttgcagege atggacatga agecgetggt ggtcetgggg etgeeggeee etaeggetee 120 ctegggctgt ctttccttct gggaggccaa ggcgcagctg gccaagagct gcaaggtgct 180 ggtagaegeg ettegaeaca aegeegeege tgetgtgeea tttttttggeg gegggtetgt 240 gctacgcgct gccgagccgg ctccccatgc cagctacggc ggcatcgtct cggtggagac 300 agacctgctg cagtggtgcc tggagtcggg cagcatcccc atcctgtgcc ccatcgggga 360 gaeggeegeg egeegeteeg tgettetega etecetggag gtgaeegegt egetggeeaa 420 ggcgctgcgg cccaccaaaa tcatcttcct caataacaca ggcggcctgc gcgacagcag 480 tcataaggtc ctgagtaacg tgaacctgcc cgccgacctg gacctggtgt gcaacgccga 540 gtgggtgagc acaaaagaac ggcagcagat gcggctcatc gtggacgtgc tcagccgcct 600 660 gccccaccac tecteggeeg teateacege egetageaeg etgeteaetg agetetttag caacaagggg teegggacce tgttcaagaa egeegagega atgetaeggg tgegeageet 720 · 780 ggacaagetg gaccagggcc gtctagtgga cetggtcaac gecagetteg geaagaaget cagggacgac tacctggcct cgctgcgccc gcggctgcac tccatctacg tctccgaggg 840 gtacaacgcc gccgccattc tgaccatgga gcccgtcctg gggggcaccc cgtacctgga 900 caaatttgtg gtgagctcca gccgccaggg ccaaggctcc ggccagatgc tgtgggagtg 960 cctgcggcgg gaccttcaga cacttttctg gcgctcccgg gtcaccaacc ccatcaatcc 1020 etggtactte aaacacagtg atggcagett etccaacaag cagtggatet tettetggtt 1080 tggcctggct gatatccggg actcctatga gttggtcaac cacgccaagg gactgccaga 1140 etcetttcae aagecagett etgacecagg cagetgacec teaccatgga caetacagge 1200 ectggaatgg ccagggtgga ccaaaagcca tgcccagctg ggcatgaccc caggcagcca 1260 gccacaggct gaagggggct tgttggctga gtgatctgca gaggagaaag cagccccag 1320 ctctgcccca gaggaggcgc tgaagtggga caagcacagg aaagaagggg accagtctag 1380 gaccccaact tgactcactc taaagctaca accaaatggc cttcgatttt caacctgggg 1440 attaggggag gggagggtgc cttccagggc tcttactcag gacttaaccc ttaagggtga 1500 gettagttte tgteetettg tgettatgtt ttgaggetee ettaeceaaa ataataeeee 1560 tgcctgcgtg atattctacc attcatttta attcctttgg gtcttgcagt ttttcaggag 1620 gccttgatta aaatgcaaat acttgtctga ga 1652

<210> 57 <211> 1129 <212> DNA <213> Homo sapiens

<400> 57
ttttttttt ttgagacgga gtctcgctct gtggcccagg ctggagtgca gtggcgcgat 60
ctcggctcac tgcaagctcc gcctcccggg ttcacgccat tctcctgcct cagcctcccg 120
agtagctggg actacaggcg cccgctacca cgcccggcta attttttgta tttttagtag 180

```
agacggggtt tcaccqtqtt agccaggatg gtctcgatct cctgacctcg tgatccgcc
 240
gcctcggcct cccaaagtgc tgggattaca ggcgtgagcc accgcgcccg gcccatttac
 300
taaatgttaa gttccttata attccatctc tttcagcacc caatacaggg gtttacatag
 360
aggaagtact caatatttcc tttcttttt tcttttttt ctggagatag tctcgctctg
 420
teaccagget ggagtgeagt ggegtaatet eggeteaetg caacetecae etectgggtt
 480
cacgccattc tcctgcctca gcctcccgag tagctgggac tacaggcgcc caccatcacg
 540
cccggctaat ttttttgta tttttagtag agatggggtt tcaccgtgtt agccaggatg
 600
gtetegatet cetgacettg tgateegeee geeteggeet ceeaaagtge tgggattaca
 660
ggtgtgagcc accgcgcccg gcctaaaaaa atttttttt tcttgagaca aagtcttgct
 720
etgttgeeca ggetgaagtg caggggeatg atatcagete attgeaacet ceaceteecg
 780
ggttcaageg attetectge etcageetee egagtagetg ggattacagg tgeeeteege
 840
cacgtccagc taattttctg ttttttagta gagacggggt ttcaccgtgt tagccaggat
 900
ggtctcgatc tcctgacctc gtgatccacc tgcctcagcc tcccaaagtg ctgggattac
 960
aggegtgage cactgagece agececattt tattteattt etetaacage aatgatatat
 1020
atacatecea tagtatatee taetgatata atageeeett teeeeattea acaeetgtgt
 1080
aatcaggaaa taaaaccctc gtgcagcatt ggcgtctgga tagtcctcg
 1129
```

<210> 58

<211> 475

<212> DNA

<213> Homo sapiens

```
<400> 58
gttccgccca attggcataa tacgccaagc cctgtgctct gcagacggcc accagagaag
 60
gatecttact ctgcgcctgg gattgctcgt tatcccgttt ctccccgcaa gtaacctgtt
 120
cttccgagtg ggcttcgtgg tcccgagcgt ggggtgctgt gtgatgctgc tttttggatt
 180
eggageetge geaaacacac egagaaaaag aageteateg etgeegtggt getgggaate
 240
 300
ctactcagca agatgctgag aggctgagat gcgcggtgcg cggcggcgag tggcggagcg
aggggeggtt tteagaggeg etgtgtetgt gtgteeeete agtgetgagg ttegetgeaa
 360
 420
categgeaga aacetggetg etaaaggeaa ecaaaeggge gecateagat aecaceggga
agetgtaage ttaaateeca agacgaaate gtegacaegg gaatteegge ettge
 475
```

<210> 59

<211> 711

<212> DNA

<213> Homo sapiens

```
<400> 59
ggaaaatagc agattttggg ttcagtaacc tcttcactcc tgggcagctg ctgaagacct
 60
ggtgtggcag ccctccctat gctgcacctg aactctttga aggaaaagaa tatgatgggc
 120
ccaaagtgga catctggagc cttggagttg tcctctacgt gcttgtgtgc ggtgccctgc
 180
catttgatgg aagcacactg cagaatctgc gggcccgcgt gctgagtgga aagttccgca
 240
teccattttt tatgteeaca gaatgtgage atttgateeg ceatatgttg gtgttagate
 300
ccaataagcg cctctccatg gagcagatct gcaagcacaa gtggatgaag ctaggggacg
 360
cegateceaa etttgacagg ttaatagetg aatgecaaca aetaaaggaa gaaagacagg
 420
 480
tggaccccct gaatgaggat gtcctcttgg ccatggagga catgggactg gacaaagaac
agacactgca gtcattaaga tcagatgcct atgatcacta tagtgcaatc tacagcctgc
 540
 600
tgtgtgatcg acataagaga cataaaaccc tgcgtctcgg agcacttcct agcatgcccc
```

gagecetggg cettteaage accagteaat atceaggegg ageaggeagg tactgetatg 660 aacateageg tteeceaggt geagetgate aacceagaga accaaattgt g 711

<210> 60 <211> 344 <212> DNA <213> Homo sapiens

<400> 60
ggcacgagaa tttttaggcc accgagcttc tataacatgg tcatgagctc gggtgcacca 60
tagatttccc aaagctgagg ttgcataacc cctctgctga ggacagatct taccgaagat 120
cgcacgaagt gctgccatgg agatctgctt gaatgcgctg atgacagggc agaccttgtc 180
gaggatatct gggaaaatca agattcaatc tccactatac tgattgaatg ctgtgaaaaa 240
cctctgttgg aaaaatccca ctgcattgcc gaagtggaaa atgatgagat gcctgctgac 300
ttgccttcat tagctgctga ttttgttgaa agtaaggatg tttg
344

<210> 61 <211> 594 <212> DNA <213> Homo sapiens

<400> 61 gettgagete gagegaegge getggeggag aegeeggetg etecteecet eeeegeeget 60 tttcctaaaa ggattgtaca ccttagaagt gcttaaggaa gagtgatgaa gctctgaatc 120 gtgtcctgca gcagattctg agtgccaccc aagatgaaga gagggacaag cttgcatagt 180 aggeggggca agceagagge eccaaaggga agteeccaaa teaacaggaa gtetggteag 240 gagatgacag ctgttatgca gtcaggccga cccaggtctt catccacaac tgatgcacct 300 accegetete etatgatega aatagettet getegeteete etgeteete teeatgeteta 360 ccaggagagg agggaactgc ggagcggatc gaacggttgg aagtaagcag ccttgcccaa 420 acatecagtg cagtggcete cagtacegat ggcagcatec acacagacte tgtggatgga 480 acaccagace etcagegeac aaaggetgee attgeteace tgeageagaa gateetgaag 540 ctcacagaac aaatcaagat tgcacaaaca gcccgacgaa atcgtcgacc cggg 594

<210> 62 <211> 1609 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(1609) <223> n = a,t,c or g

```
<400> 62
cgaagttatg gccttcctta taaggaaaag gggtggattg gaggaatcgc caattgaagt
 60
ttcgaaggat cgctttagct gaatatcaga gaaccttgtg aagatcttaa agagcaacta
 120
aagcataaag aatttettet ggetgetaat aettgtaaee gtgttggtgg tetttgtttg
 180
aaatgtgete ageatgaage tgttetttee caaacecata etaatgttea tatgeagace
 240
atcgaaagac tggttaaaga aagagatgac ttgatgtctg cactagtttc cgtaaggagc
 300
agettggeag ataegeagea aagagaagea agtgettatg aacaggtgaa acaagttttg
 360
caaatatctg aggaagccaa ttttgaaaaa accaaggett taatccagtg tgaccagttg
 420
aggaaggagc tggagaggca ggcggagcga cttgaaaaag aacttgcatc tcagcaagag
 480
aaaagggcca ttgagaaaga catgatgaaa aaggaaataa cgaaagaaag ggagtacatg
 540
ggatcaaaga tgttgatctt gtctcagaat attgcccaac tggaggccca ggtggaaaag
 600
gttacaaagg aaaagatttc agctattaat caactggagg aaattcagag ccagctggct
 660
tctcgggaaa tggatgtcac aaaggtgtgt ggagaaatgc gctatcagct gaataaaacc
 720
aacatggaga aggatgaggc agaaaaggag cacagagagt tcagagcaaa aactaacagg
 780
gatcttgaaa ttaaagatca ggaaatagag aaattgagaa tagaactgga tgaaagcaaa
 840
caacacttgg aacaggagca gcagaaggca gccctggcca gagaggagtg cctgagacta
 . 900
acagaactgc tgggcgaatc tgagcaccaa ctgcacctca ccagacagga aaaagatagc
 960
attcagcaga gctttagcaa ggaagcaaag gcccaagccc ttcaggccca gcaaagagag
 1020
caggagetga cacagaagat acagcaaatg gaggeecage atgacaaaac tgaaaatgaa
 1080
cagtatttgt tgctgacctc ccagaataca tttttgacaa agttaaagga agaatgctgt
 1140
acattagcca agaaactgga acaaatctct caaaaaacca gatctgaaat agctcaactc
 1200
agtcaagaaa aaaggtatac atatgataaa ttgggaaagt tacagagaag aaatgaagaa
 1260
ttggaggaac agtgtgtcca gcatgggagg agtacatgag acgatgaagc aaaggctaag
 1320
gcaggtggat aagcacaggc aggccacagc ccaggaggtg gtgcaggtcc ccagaagcag
 1380
gaccngcttc ttccnggaga gggagggnct gtcggaagag gtgggnccgn cttggggncc
 1440
nngttaccca gnatncncaa tettttttgg ttgacccggt tggacagggt ggacttnant
 1500
gttttncaaa ggngnttttt cattccanct tgttttngct taatttngcn caacgnaccc
 1560
acggcctncc cggnntgaaa cccccnccc tgaggggggg ttntcccc
 1609
```

```
<210> 63
<211> 615
<212> DNA
<213> Homo sapiens
```

```
<400> 63
catectatec egtgtggtgg aattegeege tgaetgetga ggtgeeacee gagetgetgg
 60
etgetgeegg ettetteeae acaggeeate aggacaaggt gaggtgette ttetgetatg
 120
ggggcctgca gagctggaag cgcggggacg acccctggac ggagcatgcc aagtggttcc
 180
 240
ccagctgtca gttcctgctc cggtcaaaag gaagagactt tgtccacagt gtgcaggaga
etcactecca getgetggge tettgggace egtgggaaga aceggaagac geageceetg
 300
tggccccctc cgtccctgcc tctgggtacc ctgagctgcc cacacccagg agagaggtcc
 360
agtctgaaag tgcccaggag ccaggagggg tcagtccagc cgaggcccag agggcgtggt
 420
gggttcttga gcccccagga gccagggatg tggaggcgca gctgcggcgg ctgcaggagg
 480
agaggacgtg caaggtgtgc ctggaccgcg ccgtgtccat cgtctttgtg ccgtgcggcc
 540
acctggtctg tggctgagtg tgccccggc ctgcagctgt gccccatctg gcagaagccc
 600
ccgtcccgca gccgg
 615
```

<210> 64 <211> 839

<212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(839) <223> n = a,t,c or g

<400> 64 aagaatgtct ggaagagatg gaagaaaagg ttttttgtat tggtgcaggt cattcagtac 60 acgtttgcca tgtgcagtta tcgggagaag aaagcggagc ctcaggaact tctacaattg 120 gatggctaca ctgtggatta caccgacccc cagccaggtt tggagggtgg ccgagccttc 180 ttcaatgctg tcaaggaggg agacaccgtg atatttgcca gtgacgatga acaagaccgc 240 atcctgtggg tccaggccat gtatcgggcc acggggcagt cacacaagcc tgtgcccccg 300 acccaagtcc agaaactcaa cgccaaggga ggaaatgtac ctcagctgga tgcccctatc 360 teteaatttt aegeagatag ageteaaaaa catggeatgg atgaatttat etetteeaae 420 ccctgtaact ttgaccacgc ttccctcttt gagatggtac aacgccttac tttggatcac 480 agacttaatg attectatte ttgeetggge tggtteagte etggeeaggt gtttgtacta 540 gacgagtatt gcgcccgaaa tggagtccgg gggtgtcacc gacatctctg ctacctcaga 600 gacttgcttg aacgggcaga aaatggcgcc atgatcgacc ccacccttnt tcactacagc 660 tttgccttct gtgcatccca tgtccatggg aacaggcctg atggaattgg gaactgttga 720 ctgttgaaga aaaggaacgt tttttgaagg aaatcaaaag aggaggnttc cgnagttctg 780 ctaagaaaaa tcaggttaca acattttagg naattgcttt tcccatttgg gtcgaacct 839

<210> 65 <211> 1678 <212> DNA <213> Homo sapiens

<400> 65 caagcagetg atcgtgctgg gaaacaaagt ggacctcctg ccccaggatg ctcctggcta 60 ccggcagagg ctgcgggagc gactgtggga ggactgtgcc cgcgccgggc tcctgctggc 120 ccctggccac caagggccac agcgccccgt caaggacgag ccacaggacg gggagaatcc 180 gaatccgccg aactggtccc gcacagtggt cagggacgtg cggctgatca gcgccaaqac 240 eggetatgga gtggaagagt tgatetetge cetteagege teetggeget acegtgggga 300 cgtctactta gtgggcgcca ccaacgccgg caaatccact ctctttaaca cgctcctgga 360 gtccgattac tgcactgcca agggctccga ggccatcgac agagccacca tctccccttg 420 gccaggtact acattaaacc ttctgaagtt tcctatttgc aacccaactc cttacagaat 480 gtttaaaagg catcaaagac ttaaaaaaga ttcaactcaa gctgaagaag atcttagtga 540 gcaagaacaa aatcagctta atgtcctcaa aaagcatggt tatgtcgtag gaagagttgg 600 aaggacatto ttgtattcag aagaacagaa ggataacatt ccctttgagt ttgatgctga 660 ttcacttgcc tttgacatgg aaaatgaccc tgttatgggt acacacaaat ccaccaaaca 720 agtagaattg actgcacaag atgtgaaaga tgcccactgg ttttatgaca cccctggaat 780 tacaaaagaa aattgtattt taaatcttct aacagaaaaa gaagtaaata ttgttttgcc 840 aacacagtcc attgttccaa gaacttttgt gcttaaacca ggaatggttc tgtttttggg 900 tgctataggc cgcatagatt tcctgcaggg aaatcagtca gcttggttta cagtcgtggc 960 ttccaacatc ctccctgtgc atatcacctc cttggacagg gcagacgctc tgtatcagaa 1020 gcatgcaggt catacgttac tccagattcc aatgggtgga aaagaacgaa tggcaggatt 1080 tectectett gttgetgaag acattatgtt aaaagaagga etgggggeat etgaageagt 1140 ggccgacatc aagttttcct ctgcaggttg ggtttcagta acacctaatt ttaaggacag 1200 actgcatctc cgaggctata cacctgaagg aacagttttg accdtccggc cccctctctt 1260 gccatatatt gttaacatca aaggacagcg catcaagaaa agtgtggcct ataaaaccaa 1320

```
gaagceteet teeettatgt acaacgtgag gaagaagaaa ggaaagataa atgtatgaga 1380 eegacettgt teaeteeaga tattaactgt attgaacaca acaaaataca ttgaatttgt 1440 attaaacata taacgcataa ataaagetee cattettace ettaaaaata aaaggagaat 1500 gaaaaaaaaaa gatgecaata ggcatatacg tggttttggg tatteegggg tetteecegtg 1560 gtetgtteae tttgeggtgg tggtgatata ttaggeagte ggggegeetg atgtacgeet 1620 tettatagag gtacatggtt ggatgeageg tettgacgtg ggattegett tatteegee 1678
```

<210> 66 <211> 1888 <212> DNA <213> Homo sapiens

<400> 66 tccacggtgg catccatgat gcatcgtcag gagactgtgg agtgtttgcg caagttcaat 60 gcccggagaa aactgaaggg tgccatcctc acgaccatgc ttgtctccag gaacttctca 120 gctgccaaaa gcctattgaa caagaagtcg gatggcggtg tcaagccaca gagcaacaac 180 aaaaacagte tegtaageee ageecaagag ceegegeeet tgeagaegge catggageea 240 caaaccactg tggtacacaa cgctacagat gggatcaagg gctccacaga gagctgcaac 300 accaccacag aagatgagga ceteaaaget geeeegetee geaetgggaa tggeageteg 360 gtgcctgaag gacggagctc ccgggacaga acagccccct ctgcaggcat gcagcccag 420 cettetetet geteeteage catgegaaaa caggagatea ttaagattae agaacagetg 480 attgaagcca tcaacaatgg ggactttgag gcctacacga agatttgtga tccaggcctc 540 acttectttg agectgagge cettggtaac etegtggagg ggatggattt ecataagttt 600 tactttgaga atctcctgtc caagaacagc aagcctatcc ataccaccat cctaaaccca 660 cacgtccacg tgattgggga ggacgcagcg tgcatcgcct acatccgcct cacccagtac 720 atcgacgggc agggtcggcc ttcgaaccca gccaagtcag aagaagaccc gggtctggca 780 cccgtcggga atggcaagtg gctcaatgtc cactatcact gctcaggggc cccctgcccg 840 caccgctgca gtgagctcag ccacaggggc ttttaggaga ttccagccgg aggtccgaac 900 ettegeagee agtggetetg gagggeetga gtgacagegg ceagteetgt ttgtttgaag 960 gtttaaaaca attcaattac aaaagcggca agcagccaat gcacgccct gcatgcagcc 1020 ctcccgcccg cccttcgtgt ctgtctctgc tgtaccgagg tgttttttac atttaagaaa 1080 aaaaaaaaag aaaaaaagat tgtttaaaaa aaaaaggaat ccataccatg atgcgtttta 1140 aaaccacega cagecettgg gttggcaaga aggcaggagt atgtatgagg tecatectgg 1200 catgagcagt ggctcaccca ccggccttga agaggtgagc ttggcctctc tggtccccat 1260 ggacttaggg ggaccaggca agaactctga cagagctttg ggggccgtga tgtgattgca 1320 geteetgagg tggeetgett acceeaggte taggaatgaa ettetttgga acttgeatag 1380 gegeetagaa tggggetgat gagaacateg tgaccateag acetaettgg gagagaacge 1440 agageteeca geetgetgtg gaggeagetg agaagtggtg geeteaggae tgagageeeg 1500 gacgttgctg tactgtcttg tttagtgtag aagggaagag aattggtgct gcagaagtgt 1560 accogcoatg aagcogatga gaaacctogt gttagtotga catgoactca ctcatcoatt 1620 tctataggat gcacaatgca tgtgggccct aatattgagg ccttatccct gcagctagga 1680 gggggagggg ttgttgctgc tttgcttcgt gttttcttct aacctgggca aggagagagc 1740 caggecetgg geaaggetee egtgeegeet ttgggtteet tgttttettg ttgettgate 1800 tggaccatct ttgtctttgc cttttcacgg tagggtcccc atgctgaccc tcatcttggg 1860 cctgggcctc ttgccaaagt tgccctg 1888

<210> 67 <211> 1712 <212> DNA <213> Homo sapiens

```
<400> 67
ctttacccaa gaatgtggta ttcgtgcttg acagcagtgc ttctatggtg ggaaccaaac
 60
teeggeagae caaggatgee etetteacaa ttetecatga ceteegaeee caggacegtt
 120
tcagtatcat tggattttcc aaccggatca aagtatggaa ggaccacttg atatcagtca
 180
ctccagacag catcagggat gggaaagtgt acattcacca tatgtcaccc actggaggca
 240
cagacatcaa cggggccctg cagagggcca tcaggctcct caacaagtac gtggcccaca
 300
gtggcattgg agaccggaga gtgtccctca tcgtcttcct gacggatggg aagcccacgg
 360
teggggagae geacacete aagateetea acaacaceeg agaggeegee egaggeeaag
 420
tetgeatett caccattgge ateggeaacg acgtggactt caggetgetg gagaaactgt
 480
cgctggagaa ctgtggcctc acacggcgcg tgcacgagga ggaggacgca ggctcgcagc
 540
teategggtt etaegatgaa ateaggacee egeteetete tgacateege ategattate
 600
cccccagctc agtggtgcag gccaccaaga ccctgttccc caactacttc aacggctcgg
 660
agatcatcat tgcggggaag ctggtggaca ggaagctgga tcacctgcac gtggaggtca
 720
ccgccagcaa cagtaagaaa ttcatcatcc tgaagacaga tgtgcctgtg cggcctcaga
 780
aggcagggaa agatgtcaca ggaagcccca ggcctggagg cgatggagag ggggacacca
 840
accacatcga gcgtctctgg agctacctca ccacaaagga gctgctgagc tcctggctgc
 900
aaagtgacga tgaaccggag aaggagcggc tgcggcagcg ggcccaggcc ctggctgtga
 960
gctaccgctt cctcactccc ttcacctcca tgaagctgag ggggccggtc ccacgcatgg
 1020
atggcctgga ggaggcccac ggcatgtcgg ctgccatggg acccgaaccg gtggtgcaga
 1080
gcgtgcgagg agctggcacg cagccaggac ctttgctcaa gaagccatac cagccaagaa
 1140
ttaaaatctc taaaacatca gtggatggtg atccccactt tgttgtggat ttccccctga
 1200
gcagactcac cgtgtgcttc aacattgatg ggcagcccgg ggacatcctc aggctggtct
 1260
ctgatcacag ggactctggt gtcacagtga acggagagtt aattggggca cccgccctc
 1320
caaatggcca caagaaacag cgcacttact tgcgcactat caccatcctc atcaacaagc
 1380
cagagagate ttatetegag ateacacega geagagteat ettggatggt ggggacagae
 1440
tggtgctccc ctgcaaccag agtgtggtgg tggggagctg ggggctggag gtgtccgtgt
 1500
etgecaaege caatgteace gteaceatee agggeteeat ageetttgte atceteatee
 1560
acctetacaa aaageeggeg ceettecage gacaccacet gggtttetac attgccaaca
 1620
gcgagggeet ttccagcaac tgcagggtet tetgtgagte tggcateetg attcaggaac
 1680
tgacccagca gtccgtggca gttgctggtc ga
 1712
```

```
<210> 68
<211> 839
<212> DNA
<213> Homo sapiens
```

## <400> 68 gttttttctc gagcaggtta gccaatatac ctttgctatg tgcagttata gagaaaagaa 60 gtctgaacca caagaattaa tgcagcttga aggctatact gtggattata ccgatccca 120 cccaggcctt cagggtggtt gtatgttctt taatgctgtt aaagaaggag atactgtaat 180 ctttgccagt gatgatgaac aggacagaat attatgggtt caagccatgt atagggccac 240 aggtcaatca tataaaccag ttcctgcaat tcaaacccag aaactgaatc ctaaaggagg 300 aactctccat gcagatgctc agctttatgc agatcgtttt cagaaacatg gtatggatga 360 gtttatttct gcaaacccct gcaagcttga tcatgccttc ctttttagaa tactccagag 420 gcagactttg gatcacagac tgaatgattc ctattcttgc ttgggatggt ttagccctgg 480 ccaagtettt gtgttagatg agtactgtge cegttatggt gtgagagget gtcacagaca 540 tetetgetae ettgeagaac tgatggaaca tteagaaaat ggtgetgtea ttgaecetae 600 cetgetecat tacagetttg cattetgtge etetegatgt geacggeaac aggeetgatg 660 gaattgggac tgtttcagtg gaagaaaaag aaagatttga ggagataaaa gagagactct 720 cttccctttt agaaaatcag ataagccatt tcagatactg ttttcccttt ggacgacctg 780 aaggtgetet aaaagetaca ettteattae ttgaaagggt tttaatgaaa gatattgee 839

```
<210> 69
<211> 801
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(801)
<223> n = a,t,c or g
```

### <400> 69 agacgggctg ctccatgagg tgctgaacgg gctcctagat cgccctgact gggaggaagc 60 tgtgaagatg cctgtgggca tcctcccctg cggctcgggc aacgcgctgg ccggagcagt 120 gaaccagcac gggggatttg agccagccct gggcctcgac ctgttgctca actgctcact 180 gttgctgtgc cggggtggtg gccacccact ggacctgctc tccgtgacgc tggcctcggg 240 etecegetgt tteteettee tgtetgtgge etggggette gtgteagatg tggatateea 300 gagcgagcgc ttcagggcct tgggcagtgc ccgcttcaca ctgggcacgg tgctgggcct 360 egecacactg cacacetace geggacgeet etectacete eeegecactg tggaacetge 420 ctcgcccacc cctgcccata gcctgcctcg tgccaagtcg gagctgaccc taaccccaga 480 eccageceeg eccategeee acteaeceet geategttet gtgtetgaee tgeetettee 540 cetgeeceag cetgeectgg cetetectgg etegecagaa eccetgeeca teetgteect 600 caacggtggg ggcccagagc tggctgggga ctggggtggg gctggggatg ctccactgtc 660 cccggaccca cagctgtctt cacctcctgg ctctcccaag gcagctctac actcacccgt 720 ctaaaaaaag gcccccgtaa ttccccccga catgnnnccc cgctctagag gatcaagcaa 780 ctacgcggcg gctcacgacg c 801

<210> 70 <211> 531 <212> DNA <213> Homo sapiens

```
<400> 70
agaagggtgt cccaaccttg ctcatggcag ctggcagctt ctatgacatt ctggccatca
 60
ctggcttcaa cacatgcttg ggcatagcct tttccacagg ctctactgtc tttaatgtcc
 120
tcagaggagt tttggaggtg gtaattggtg tggcaactgg atctgttctt ggatttttca
 180
ttcagtactt tccaagccgt gaccaggaca aacttgtgtg taagagaaca ttccttgtgt
 240
tggggttgtc tgtgctagct gtgttcagca gtgtgcattt tggtttccct ggatcaggag
 300
gactgtgcac gttggtcatg gctttccttg caggcatggg atggaccagc gaaaaggcag
 360
aggttgaaaa gataattgca gttgcctggg acatttttca gccccttctt tttggactaa
 420
ttgggagcag aggtatctat ttgcatctct cagaccagaa actgtaggcc tttgtgttgc
 480
caccgtaggc atttgcagta ttgatacgaa tttttgacta cattttctga a
 531
```

<210> 71 <211> 540 <212> DNA

## <213> Homo sapiens

<400>	71	•				
tgtgcgagga	attcgaatca	ggtaatggag	aggactggca	tgaagggggc	acaggactgt	60
gaaaacctga	gtgattctgt	ccttccctca	tectctatec	ctgaaccagg	gcagacatag	120
atggaatcag	agcaggagtt	ggtgttgatg	tggtttcagg	tccacctatc	agagtttgag	180
agatttaggc	catgaaccat	tatgaatata	gatgagaacc	tttgtaattg	ctgaaggagg	240
tagtagtgca	ggcaagtcct	gtgtgcaaga	cctgctgctc	ccagttagta	cggacccctg	300
tgacattcac	agaagttcag	aatgtctgag	atgctctgca	ggctacctta	tctccgtctg	360
cagctacacc	tccagtgatc	acaatcagtg	ctacgctggc	acagccagcc	tggccctgct	420
ctggattgga	ggcatcctca	agggctgctt	gctgtggaag	cagtttcgct	ggaccgagag	480
gagccactgg	aattttgggt	actgggcctt	atggtcaccc	gggaatggga	atggctgctg	540

<210> 72

<211> 428

<212> DNA

.<213> Homo sapiens

## <400> 72 cggacgcgtc cgcccacgcg tccgccacg cgtccgctag aaatttctgt ggaactccat 60 ttgactttct atctgtgaaa tccaaactgt ctctgaagaa ataagaaaaa tagtgttttg 120 acttttagga gacaactatg tttattattt tgccttgcaa attaatgtct aaatttgtac 180 aagcacctat ctacagattt ttccaggtaa accatcatgt tttatgtgta aaggtagatt 240 gatgtgcatt tactttatac tttggtactt aggccattac acatetttgc actggaattg 300 gtgcagatat ataagtgatc ctaatgttga tgctgcccag accccaggaa tgcagaggtg 360 agcatgacac acacagtccc tgccctgatg gagctcatag actagtgaag gaatagggct 420 ctatgacc 428 -

<210> 73

<211> 584

<212> DNA

<213> Homo sapiens

## <400> 73 getggagtea ttgcctggtt tcaaagagat tgtgagcagg ggagtaaaag tggattactt 60 gactecagae tteectagte tetegtatee caattattat accetaatga etggeegeea 120 ttgtgaagtc catcagatga tcgggaacta catgtgggac cccaccacca acaagtcctt 180 tgacattggc gtcaacaaag acagcctaat gcctctctgg tggaatggat cagaacctct 240 gtgggtcact ctgaccaagg ccaaaaggaa ggtctacatg tactactggc caggctgtga 300 ggttgagatt ctgggtgtca gacccaccta ctgcctagaa tataaaaatg tcccaacgga 360 tatcaatttt gccaatgcag tcagegatgc tcttgactcc ttcaagagtg gccgggccga 420 cctggcagec atataccatg agegcattga cgtggaaggc caccactacg ggcctgcatc 480 teegeagagg aaagatgeee teaaggetgg tagacactgt cetgaagtae atgaceaagt 540 ggatccagga gcggggcctg caggaccgcc tgaacgtcat tatt 584

<210> 74 <211> 348 <212> DNA <213> Homo sapiens <400> 74 ggcacgagat tttcatccaa aacaaacact ggacttcctg cggagtgaca tggctaattc gaaaatcaca gaagaggtga aaaggagtat agcacaacag tatctagatt tgacagtagc 120 ccggaacaag tggaccctga tgccgaagtc gatgcagccc catctaccac atcttcatgt 180 ggacattgag attcacacgc tggctcctga agggtgctca gtctccttgg tgattaaggt 240 cctgcttgaa ctggtgccaa ctccatggca gggaagttgc ttttggttgc ctggctgggt 300 ttcccagatc ccttctgggg caaggagcta tcagaccctg ctttcaag 348 <210> 75 <211> 365 <212> DNA <213> Homo sapiens <400> 75 caagcaaagt ggggatgtca cetgcaactg cactgatggg cgettggece ccagetgeet 60 gacctgcgtc ggccactgca tttttggcgg ctactgtacc atgaacagca aaatgatgcc 120 tgaatgccag agcccacccc acatgacagg gccccggtgt gaggagcacg tcttcagcca 180 gcatcagcca ggacatataa cctccatcct aatccctatg ctgtagctgc tgctgctggt 240 tetggtggee ggagtgatat tetgecataa aeggegagte caaggggeta agggetteca 300 gcaccaacgg atgaccaacg gggccatgaa cgcgcagatt gcaaacccca cctacaagat 360 gtacc 365 <210> 76 <211> 700 <212> DNA <213> Homo sapiens <400> 76 caagaaccat cagcaccaac acaaatgtat ctttgcagac cgaaggaatc agctaaacaa tttacagtca tctcaatctc tactaaaaca aaaatcacat ccaacatgcc acctgacacc 120 atttettet etetetet tttgeteett gegatgagge atteatetet cettgageet 180 cegttetgaa gagataacag tatagcaaca actetgecae tgaaateetg ttetetgace 240

300

360

gatattggca cctgcaaaga gaaacaacca gtaacaggca gcagcagcat cagtattaat

cttccatgat gaaatcttta caggtcaaga acaagtacac agctcttttc tcactccttc

```
acagtggacc atgcaactag ttgaggtgga agacaatgga ttgtctacaa gccttttgaa 420 cagtggagaa tgcagggcgt tggctttagg aagaggcaga aatccaggca gaacttgaac 480 gtttggaaag agtcagaaat cttcacatac gtgagctgaa aagaataaac aatgaagata 540 attcacagtt caaagatcac ccaacattaa atgaaagata tttattactt catctgcttg 600 gtagaggtgg ctttagtgaa gtgtataagg taatgtagg tttattctgg ttttttaca 660 ctaatgtagc aaggatatag gagtatgtgg ttaagaagtg
```

<210> 77 <211> 426

<212> DNA

<213> Homo sapiens

## <400> 77 ttgcctagca catggcaggg tgcagcgcct gtctgaatgt gtgaagagtt cttagtgatg 60 ggtaaagggt gttcctgtgt gttttagatt ctgctcagca atcctcagat gtggtggtta 120 aatgattcca atcctgaaac cgacaaccgt caagaaagtc cttcccagga aaacattgac 180 cgagtgagtg acaggccttt gtgccctcag cttggacagc ctcgggtggg gttgcttggg 240 gtaacctggg tgaatcaggc agcaggactg ggggagtccg tgctgaaacc ttggctccca 300 ggctccaggt gtaacctgcc cacctcagag gccacccacg cagtaacaga gggcagggga 360 ggcctccttg gaaagcagga aaactgggga agtgtcagga agttctcttt aggtttgctg 420 cctttg 426

<210> 78 <211> 358 <212> DNA <213> Homo sapiens

<400> 78
tttcgtgcta tgttcttggc tgttcaacac gactgcagac ccatggacaa gagcgcaggc 60
agtggccaca agagcgagga gaagcgagaa aagatgaaac ggaccctttt aaaagattgg 120
aagacccgtt tgagctactt cttacaaaat tcctctactc ctgggaagcc caaaaccggc 180
aaaaaaagca aacagcaagc tttcatcaag taagttgaga atcctgagct tgcaaatatc 240
aatagttagc tgctgaactg aaaaggggaa ctctgatgag cgtaagctaa catacagaac 300
ctctcttgca ggccttctcc tgaggaagca cagctgtggt cagaagcatt tgacgagg 358

<210> 79 <211> 322 <212> DNA

<213> Homo sapiens

WO 01/53455	•				PCT/US00	/35017
ctagagataa aagagcagtt ctgcattggg tctgcgcaaa	atttttccag ggaagaacat ttccaagcaa gaccgccctc	cccaaagtta acttcgtttc agacgccaga tcatactcca gccgttggga cg	ttagatgcag cactccagtg gccaggccgt	aacgagatgt tgcaccggta gacgtgaccg	gtcagtggtc gttcacccaa acctccgact	60 120 180 240 300 322
\ <210> <211> <211> <212> <213>	310	ns			. *	
gatgatcaac aaactccata aatgaatcca	ccagaaaaca aagaattaaa aaaaatgcaa taactattct	aaataaaagc acgcgtaaca tatcatacag aaagcttagc ttctcagacc	tagtatagtc gcagatatca gattttgggt	aaaaagaata agccagacaa cggcttcaca	cacgaaaaag tatcctggat tgttgcggat	60 120 180 240 300 310
<212>	134	ns				·
	catgggacta gcataatacc	aagcttggct aacgtgcatt				60 120 134
<210> <211> <212> <213>	358	ıs				-,
	gaaagactaa	tgggcaggat cctttagtat				60 120

120 180

tactctcacc acttttaata cctttagtat tacagttgat cagattacct ttacttgata tgaattattt ctaagttcat tcccctgtgt tgtagcttat ttcaacaatt ccaactagcc

PCT/US00/35017 WO 01/53455

gtttaaaatt	cctcaaagaa	actggtcatg	gaacaccaat	ggaagaaata	cctgaggagg	240
aattatcaga	ggatgttgaa	cagattgatc	acgctgatag	ggagttgcgg	cgtggccaaa	300
acttgaggtg	caaaggaatt	catagattgc	ctactcatat	acaagtaggg	caaaatcg	358

<210> 83

<211> 723 <212> DNA

<213> Homo sapiens

<400> 83

tacacacaca	cacacacaca	cacacacact	cactctctca	gaggagagaa	aatattaaga	60
atcgtgtatt	ttacacaggt	atccaaacat	aaaaatactt	tagaattgct	tactgtatgg	120
acaggttata	tggaatggag	tttgtagtat	ccacattaac	aaagcaagtt	tatatggact	180
ggttatgata	ttagggatat	gaattagaaa	tggatgttgt	tgcactcatt	taaaatattt	240
tgcctctcac	tttatcccca	gttatagtgt	ccttttgaat	ttttctcaca	cagtgctact	300
atatttcatg	aactggtata	taaacaaacc	aaaattattt	cttcaaatca	agaacttatc	360
tacgaagggc	gacgcttagt	cttagaacct	ggaaggctgg	cacaacattt	ccctaaaact.	420
actgaggaaa	accctatatt	tgtagtaagc	cgggaacctc	tgaataccat	aggattaata	480
tatgaaaaaa	tttccctccc	taaagtacat	ccacgttatg	atttagacgg	ggatgctagc	540
atggctaagg	caataacagg	ggttgtgtgt	tatgcctgca	gaattgccag	taccttactg	600
ctttatcagg	aattaatgcg	aaaggggata	cgatggctga	ttgaattaat	taaagatgat	660
tacaatgaaa	ctgttcacaa	aaagacagaa	gttgtgatca	cattgggatt	tctggtatcc	720
aga						723

<210> 84

<211> 407 <212> DNA

<213> Homo sapiens

<400> 84

ggcacgagga	aaatgggacc	caccgtctct	cccatctgcc	taccaggcac	ctggggcgac	60
tacaacctca	tggatgggga	cctgggactg	atctcaggct	ggggccgaac	agagaagaga	120
gatcgtgctg	atcgcctcaa	ggcggggagg	tcacccgcag	ctgggtaaag	aaaatgggaa	180
cccgggagag	gggaccctac	gtgggaagaa	tcagaggaag	atgtacataa	gagtaagtgg	240
acaagatgtg	tggatgagaa	gggcgcgtag	tgctaaacag	acaataagag	accgctcagg	300
tgtggggtga	cctaatgggg	agacgtggaa	tatgtttggt	ggcacggagg	aaagtctaat	360
ggatatcgtg	tttaggagga	cgatggagtc	ttacgtgctc	gttgatg		407

<210> 85

<211> 342

<212> DNA

<213> Homo sapiens

# <400> 85 ggcacgagct cgaaaattta atcaagagtg cgcactctta ttccctttac tgagggtaat 60 atctacacgg agcctagaca gccgaaccag aggcttcctt ttgtccaaga agaggatgga 120 atagacaagc tggagctgct ggctcccgga tgaatttcag acctggggtt ctcagctcca 180 ggcaacttgg actcccagga cctcctgacg gtcctgacta tactgtttac tacccgttcc 240 atcgacttgc catggtgact gctgcctcac gattggagcg tgaacacctt acgcatctat 300 gacactaggg atacaatgga gaggtataga gcaaccctag cg 342

<210> 86 <211> 420

<212> DNA

<213> Homo sapiens

## 

<210> 87 <211> 392 <212> DNA <213> Homo sapiens

<400> 87
ggcacgaggg gagaaggcgg ggctgggcct cagcttccca aaggtttttg aggaactggg 60
cttttctgac accctcaaag gtcagaaggt taaaggggca gaaggcattc ggaaagctcc 120
cctcccacag tgacacctct ctgacttctg acctagggt ccaccaccgc ttcaatccca 180
atgcctccag ctccttcaag cccagtggga ccaagtttgc cattcagtat ggaactgggc 240
gggtagatgg aatcctgagt gaggacaagc tgactgtgag tggcctttga ctccaggaag 300
cctcgagcct gggagaaccc tgttgtctaa gatcatctgg cttagggagg ggcttgaggt 360
gcaggggctt cctgagccga tggatgggc tt

<210> 88 <211> 332 <212> DNA <213> Homo sapiens

## <400> 88 gggaggaata taatgcatta cccaaatggt catgccatat gtattgcaaa tggacattgt 60 atcatcttgt gaaatagtca taacattaaa gtttgggtat agtagttagc atattttcat 120 ggccagtatt gatgctattt tttcccttac ctatcagact ctttcaaaga gaaaagaggg 180 agcagttgga attttatgtt tgttgttcta ttttgtctat tatgaattgt gacaaaacca 240 ttataaaaga tgacaagtgt gtgtgttct tttttcttt ttaaactgta gggaacatag 300 tcattagtga tctcaaatac cgaaagacat tt 332

<210> 89 <211> 535 <212> DNA

<213> Homo sapiens

## <400> 89 attaacctag gaaatacatg ttatatgaac agtgttattt aagccttgtt tatggccaca 60 gatttcagga gacaagtatt atctttaaat ctaaatgggt gcaattcatt aatgaaaaa 120 ttacagcatc tttttgcctt tctggcccat acacagaggg aagcatacgc acctcggata 180 ttctttgagg cttccagacc tccatggttt actcccagat cacagcaaga ctgttctgaa 240 tacctcagat ttctccttga caggctccat gaagaagaaa agatcttgaa agttcaggcc 300 tcacacaagc cttctgaaat tctggaatgc agtgaaactt ctttacagga agtagctagt 360 aaagcagcag tactaacaga gacccctcgt acaagtgacg gtgagaagac tttaatagaa 420 aaaatgtttg gaggaaaact acgaactcac atacgttgtt tgaactgcac gagtacctca 480 caaaaagtgg aagcetttac agatettteg ettgeetttt ggeetteete ttetg 535

<210> 90 <211> 432 <212> DNA <213> Homo sapiens

<400> 90 gcccgggacg acccacgcgt acgactcagt ttaagtccaa actttctaat aatttgatgt 60 agcagogtaa tgggotgcat tactagtgag ttccttatgt gagtgtgoga gcatatgctg 120 gatgacttat ctagaataat gtagaagaga attaaacatt gaatgggagc ttaaattagt 180 taatttctga ggttcccttc cattcttaga attctttgat ttttatattg aattgagaga 240 actagtatag tttttatttc agcaaattat aacaccattg ttctcaaggc atggaaaatg 300 tgcttttcat ctttaagata ctaaaccttt tcactcatgg caattttttt tagctagcct 360 ctaagcttgg aaagcagtgg accccattaa taatcctggc caactctctt agtggaacta 420 atatgggaga ag 432

<210> 91

<211> 780
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (780)
<223> n = a,t,c or g

<400> 91 ccatgcatag gattaaactg aatgatcgaa tgacatttcc cgaggaacta gatatgagta 60 cttttattga tgttgaagat gagaaatctc ctcagactga aagttgcact gacagtggag 120 cagaaaatga aggtagttgt cacagtgatc agatgagcaa cgatttctcc aatgatgatg 180 gtgttgatga aggaatctgt cttgaaacca atagtggaac tgaaaagatc tcaaaatctg 240 gacttgaaaa gaattccttg atctatgaac ttttctctgt tatggttcat tctgggagcg 300 ctgctggtgg tcattattat gcatgtataa agtcattcag tgatgagcag tggtacagct 360 tcaatgatca acatgtcagc aggataacac aagaggacat taagaaaaca catggtggat 420 cttcaggaag cagaggatat tattctagtg ctttcgcaag ttccacaaat gcatatatgc 480 tgatctatag actgaaggat ccagccagaa atgcaaaatt tctagaagtg gatgaatacc 540 cagaacatat taaaaacttg gtgcagaaag agagagagtt ggaagaacaa gaaaagagac 600 aacgagaaat tgagcgcaat acatgcaaga taaaattatt ctgtttgcat cctacaaaac 660 aagtaatgat ggaaaantaa attgaggttc ataaggataa gacattaaag gaaqcagtag 720 aaatggctta taagatgatg gatttagaag aggtaatacc cctggattgc tgtcgccttg 780

<210> 92 <211> 867 <212> DNA <213> Homo sapiens

<400> 92 ctcagtcatg ccagtgcctg ctctgtgcct gctctgggcc ctggcaatgg tgacccggcc tgcctcagcg gcccccatgg gcggcccaga actggcacag catgaggagc tgaccctgct 120 cttccatggg accctgcagc tgggccaggc cctcaacggt gtgtacagga ccacggaggg 180 acggctgaca aaggccagga acagcctggg tetetatgge egeacaatag aacteetggg 240 gcaggaggtc agccggggcc gggatgcagc ccaggaactt cgggcaagcc tgttggagac 300 tcagatggag gaggatattc tgcagctgca ggcagaggcc acagctgagg tgctggggga 360 ggtggcccag gcacagaagg tgctacggga cagcgtgcag cggctagaag tccagctgag 420 gagegeetgg etgggeeetg eetacegaga atttgaggte ttaaaggete acgetgacaa 480 gcagagccac atcctatggg ccctcacagg ccacgtgcag cggcagaggc gggagatggt 540 ggcacagcag catcggctgc gacagatcca ggagagactc cacacagcgg cgctcccagc 600 ctgaatctgc ctggatggaa ctgaggacca atcatgctgc aaggaacact tccacgcccc 660 gtgaggcccc tgtgcaggga ggagctgcct gttcactggg atcagccagg gcgccgggcc 720 ccacttttga gcacagagca gagacagacg caggegggga caaaggcaga ggatgtagcc 780 ccattgggga ggggtggagg aaggacatgt accetttcat gcccacacac ccctcattaa 840 agcagagtca aggcatctca aaaaaaa 867

<210> 93 <211> 690

```
<212> DNA
<213> Homo sapiens
```

<400> 93 teggaacege eetgaattae etetgtegae eeaegegtee ggggaaaege ttetaeagga tatggaaaaa tttggctcga tgatgtttcc tgtgatggag atgagtcaga tctctggtca 120 tgcaggaaca gtgggtgggg aaataatgac tgcagtcaca gtgaagatgt tggagtgatc 180 tgttctgatg catcggatat ggagctgagg cttgtgggtg gaagcagcag gtgtgctgga 240 aaagttgagg tgaatgtcca gggtgccgtg ggaattctgt gtgctaatgg ctggggaatg 300 aacattgctg aagttgtttg caggcaactt gaatgtgggt ctgcaatcag ggtctccaga 360 gagceteatt teacagaaag aacattacae atettaatgt ecaattetgg etgegetgga 420 ggggaagcct ctctctggga ttgtatacga tgggagtgga aacagactgc gtgtcattta 480 aatatggaag caagtttgat ctgctcagcc cacaggcagc ccaggctggt tggagctgat 540 atgecetget etggacgtgt tgaagtgaaa catgcacaca catggcgete tgtetgtgat 600 totgatttot otottoatgo tgocaatgtg otgtgoagag aattaaactg tggagatgoo 660 atatctcttt ctgtgggaga tcactttggg 690

<210> 94 <211> 948 <212> DNA <213> Homo sapiens

<400> 94 cgagtggcga ggttcatcat ggaggcagac ggagtctcgc tctgttggcc aggctggagt gcaggggcgt gatctcggct cactgcaacc tccgtctccc ggactaaagc aattatcctt 120 cctcacgctt ccgagtagct ggaattacag gtgtcaagct agggatgcgg tccattccca 180 ttgccactgc ttgcaccatt taccataagt tcttttgcga gaccaacctg gacgcctatg 240 accettacet gattgecatg tetteaattt aettggeegg caaagtggaa gageageace 300 tgcggactcg tgacatcatc aatgtgtcca acaggtactt taacccaagc ggtgagcccc 360 tggaattgga etecegette tgggaaetee gggaeageat egtgeagtgt gagettetea 420 480 tgctgagagt tctgcgcttc caggtctcct tccagcatcc acacaagtac ctgctccact acctggtttc cctccagaac tggctgaacc gccacagctg gcagcggacc cctgttgccg 540 tcaccgcctg ggccctgctg cgggacagct accatggggc gctgtgcctc cgcttccagg 600 cccagcacat cgccgtggcg gtgctctacc tggccctgca ggtctacgga gttgaggtgc 660 ccgccgaggt cgaggctgag aagccgttgg gtggcagatt tatgccatgg acacagagat 720 cccctaaggt cctggcccag gcctgcccaa agagaagcca catctgcgtt tgtcctttga 780 gaggactttg actacaatac aggcatgaca tcaatgaaag gaaagtcatg aaatcgatga 840 gactgaatcc ctacggattt cttaaaagcc agatttgtag ggagaatgaa tgtgcaacgt 900 ggctgaaatc tattttgtgt aataaaaggt gatacaagtc aaaaaaaa 948

<210> 95 <211> 541 <212> DNA <213> Homo sapiens

## <400> 95 ttagtttata aagaaaagac atttaattgg ctcatagttc tgcaggctgt acaggaagca 60 tagtagette tgettetggg gaggeeteag gaaacttaca ateacageag aaggtgaagg 120 ggaagcaggc acgccgtaca tggctgggct ttcggcctcc tcttcatcaa caaggagtcg 180 gtggtcatgg cctatctctt caccaccttc aacgccttcc agggggtctt catcttcgtc 240 tttcactgcg ccttacagaa gaaggtgagg tcgaggcggg gtcctgggtc acagcctccc 300 ttggagacgt ttcctgggta cccaggagaa ggcggcgagg gtggagggga ctcaggggct 360 ccetcaagec cccagtgagt getgeaggge ttetgtggte aggtetgegt ceceegggag 420 gggagcacga gctcagggtt agggagggtt taaccacggg tgaagagggt tctgttgaca 480 gacgetgagg cegeaaaege teeteetete tetteaeaet egeeaaeaee geggtggege 540 541

<210> 96 <211> 603 <212> DNA <213> Homo sapiens

<400> 96 cagecegtaa ggatgateta eetecaaata tgagatteea tgaqqaqaaq aqqetqqaet 60 ttgaatggac actgaaggca gggtgagaaa aaggctagcc ctcgaagtga aataagggct 120 gggagggcca agaatgatga tagacggtga gggactgagg gatcagctga tgagttaagc 180 ctcaacacct gtcctagggc tttgcagatg gccctcaaac gtgtttacac cctcctgagc 240 tcctggaact gcctagaaga ctttgatcag atcttctggg gccagaagag tgccctggct 300 ggtcagtggt tccccgaggt ctccataatc ccttaatggc ccctctggat gactcatcac 360 actocacagt coccogtaac totttgcaag aagagacott atcatatotg gtcaactcag 420 agaggeettg agaatgaaaa egeagaaget gggtteaggg agggttatat acetgaacee 480 ctggggtaga ttttggagaa gggatatgca ggctgtggta catatatcct cctttcaccg 540 cccaccaaag agaacgttcg ccagtgctgg caggatgatg agttgttcag cttccctcqt 600 qcc 603

<210> 97 <211> 1385 <212> DNA <213> Homo sapiens

<400> 97 tettteagea aggtggggge aageagaatg ceteccaqqa ttteacacet qaqeeetqee 60 ccaccctgct gagaaaacac tccgccacgt gaagagacag aggaggatgg caggagttac 120 ctegggaaac aaacaggate ttetetgeec tgetecagte gagttggeet gaccegettg 180 gatcagtgac catttgctgg cagacagggg agagcagctt ccagcctggg tcagaagggg 240 tgggcgagcc cctcggcccc tcaccctcca ggctgctgtq agagtqtcaa qtqtqtaagg 300 gcccaaactc aggttcagtg cagaaccagg tcagcaggta tgcccgcccg tacgttaagg 360 gggccctcta aaccccttgc ctggcctcac ctggccagct cacccctttt gggtgtaggg 420 gaaaagaatg cctgaccctg ggaaggctcc ctggtagaat acaccacact tttcaggttg 480 ttgcaacaca ggtcctgagt tgacctctgg ttcagccaag gaccaaagaa ggtgtgtaag 540 tgaagtggtt ctcagtcccc agacatgtgc ccctttgctg ctggctacca ctcttcccca 600 gagcagcagg ccccgagccc cttcaggccc agcactgccc cagactcgct ggcactcagt 660

tccctcatct	gtaaaggtga	agggtgatgc	aggatatgcc	tgacaggaac	agtctgtgga	720
tggacatgat	cagtgctaag	gaaagcagca	gagagagacg	ctccggcgcc	ccagccccac	780
tatcagtgtc	cagcgtgctg	gttccccaga	gcacagctca	gcatcacact	gacactcacc	840
ctgccctgcc	cctggccaga	gggtactgcc	gacggcactt	tgcactctga	tgacctcaaa	900
gcactttcat	ggctgccctc	tggcagggca	gggcagggca	gtgacactgt	aggagcatag	960
caagccagga	gatggggtga	agggacacag	tcttgagctg	tccacatgca	tgtgactcct	1020
caaacctctt	ccagatttct	ctaagaatag	caccccttc	cccattgccc	cagcttagcc	1080
tcttctccca	ggggagctac	tcaggactca	cgtagcatta	aatcagctgt	gaatcgtcag	1140
ggggtgtctg	ctagcctcaa	cctcctgggg	caggggacgc	cgagactccg	tgggagaagc	1200
tcattcccac	atcttgccaa	gacagccttt	gtccagctgt	ccacattgag	tcagactgct	1260
cccggggaga	gagccccggc	ccccagcaca	taaagaactg	cagccttggt	actgcagagt	1320
ctgggttgta	gagaactctt	tgtaagcaat	aaagtttggg	gtgatgacaa	atgttaaaaa	1380
aaaaa						1385

<210> 98 <211> 2191 <212> DNA

<213> Homo sapiens

<400> 98 accaccaccc gtgcgggggg atatctgagc catttctctg tgggcttttg tttttcaaag 60 actgggcagg ttgttgttga ggtgtgtgtg ggctgccacg attttgtgga agtataatac 120 tttgtcatta tgagatgtcg tctctcggtg cctcctttgt gcaaattaaa tttgatgact 180 tgcagttttt tgaaaactgc ggtggaggaa gttttgggag tgtttatcga gccaaatgga 240 tatcacagga caaggaggtg gctgtaaaga agctcctcaa aatagagaaa gaggcagaaa 300 tactcagtgt cctcagtcac agaaacatca tccagtttta tggagtaatt cttgaacctc 360 ccaactatgg cattgtcaca gaatatgctt ctctgggatc actctatgat tacattaaca 420 gtaacagaag tgaggagatg gatatggatc acattatgac ctgggccact gatgtagcca 480 aaggaatgca ttatttacat atggaggctc ctgtcaaggt gattcacaga gacctcaagt 540 caagaaacgt tgttatagct gctgatggag tattgaagat ctgtgacttt ggtgcctctc 600 ggttccataa ccatacaaca cacatgtcct tggttggaac tttcccatgg atggctccag 660 aagttatcca gagtctccct gtgtcagaaa cttgtgacac atattcctat ggtgtggttc 720 tetgggagat getaacaagg gaggteeect ttaaaggttt ggaaggatta caagtagett 780 ggcttgtagt ggaaaaaac gagagattaa ccattccaag cagttgcccc agaagttttg 840 ctgaactgtt acatcagtgt tgggaagctg atgccaagaa acggccatca ttcaagcaaa 900 tcatttcaat cctggagtcc atgtcaaatg acacgagcct tcctgacaag tgtaactcat 960 tectacacaa caaggeggag tggaggtgeg aaattgagge aactettgag aggetaaaga 1020 aactagageg tgateteage tttaaggage aggagettaa agaacgagaa agaegtttaa 1080 agatgtggga gcaaaagctg acagagcagt ccaacaccc gcttctcttg cctcttgctg 1140 caagaatgtc tgaggagtct tactttgaat ctaaaacaga ggagtcaaac agtgcagaga 1200 tgtcatgtca gatcacagca acaagtaacg gggagggcca tggcatgaac ccaagtctgc 1260 aggccatgat gctgatgggc tttggggata tcttctcaat gaacaaagca ggagctgtga 1320 tgcattctgg gatgcagata aacatgcaag ccaagcagaa ttcttccaaa accacatcta 1380 agagaagggg gaagaaagtc aacatggctc tggggttcag tgattttgac ttgtcagaag 1440 gtgacgatga tgatgatgat gacggtgagg aggagtataa tgacatggat aatagtgaat 1500 gaaagcagaa agcaaagtaa taaaatcaca aatgtttgga aaacacaaaa gtaacttgtt 1560 tatctcagtc tgtacaaaaa cagtaaggag gcagaaagcc aagcactgca tttttaggcc 1620 aatcacattt acatgaccgt aatttcttat caattctact tttatttttg cttacagaaa 1680 aacgggggga gaattaagcc aaagaagtat atttatgaat cagcaaatgt ggtgcctgat 1740 tatagaaatt tgtgatccta tatacaatat aggactttta aagttgtgac attctggctt 1800 tttcttttaa tgaatacttt ttagtttgta tttgacttta tttcctttat tcaaatcatt 1860 tttaaaaact tacattttga acaaacactc ttaactccta attgttcttt gacacgtagt 1920 aattotgtga catacttttt ttttcttata gcaatacact gtaatatcag aaatggttgg 1980 cctgagcaac ctagtaagac ctcgtctcta ctaataatta aaaaactagc tggcatggta 2040 2100 gcacacct gtagtcccag atacttggga ggccaaggca ggaggattgc ttgagaccta gcaatcagtc agggctgcag tgagccatga tggcaccact gcactctagc ctgggcaaga 2160

gaacaagatc ctgtctcaaa aaacagggaa a

2191

<210> 99
<211> 335
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(335)
<223> n = a,t,c or q

<400> 99

ggcacgaggc tgaacttcag gtggatgatg agacaaaata gaccgatagg aatcgtctgg 60
ctatatactc cttgttgcca ctgctgagtg actagactgg cccagagatc cgcggtgcac 120
atgctggccg ctcctccctc agaaaaaggc aatggcctaa atactgttta aatgacctga 180
ctcgatgctg tgggaaactg gctgctctgc tgcatgccgt gtgactgtca gtccaaccgt 240
tacatttgcc acgttctcca cacgggggat agacgcaatg cgcccaggtc ccagtttct 300
ttggaggcag cagctctcgc agggctgaat gttgn 335

. . .

<210> 100 <211> 348 <212> DNA <213> Homo sapiens

<400> 100

cctactctgg gggatcaacc agatcttcat tccataactc gtgcttctcg tcctaaatta 60
tgtactagaa aaaattgtaa tcctcttact ataactgtcc atgaccctaa ttcaactcag 120
tagtattatg gcatgtcatg ggaattaaga ttttatatcc caggatttga tgttgggact 180
atgttcacca tccaaaaaat cctggtctca tggagcccac ccaagccaat cgggccttta 240
actgatctag gtgaccctat gttccagaaa ccccctaaca aagttgattt aactgttcct 300
ccaccattct tagtcataaa agatacactc caaaagttcg agaaaatc 348

<210> 101 <211> 416 <212> DNA <213> Homo sapiens

<400> 101
agcctcaata atgtaacact gccccaagcg aaaacagaaa aagatttcat ccaactctgc

```
acccctgggg taattaagca agagaaactg ggcacagttt actgtcaggc aagctctcct 120 ggagcaaata tgattggtaa taaaatgtct gccatttctg ttcacggtgt gagtacctct 180 ggaggacaga tgtaccacta tgacatgaat acagcatccc tttctcaaca gtaggatcag 240 aagcctattt ttaatgtcat cccacaatt cccgttggtt ctgaaaattg gaataggtgt 300 caaggatctg gagatgacaa cttgacttcc ttggggactc tgaatttccc tggtcgaacg gtttctttt cttttgagat ggagtctcgc tctgtcgcc aggctggagt gcagtg 416
```

<210> 102 <211> 352 <212> DNA <213> Homo sapiens

<210> 103 <211> 702 <212> DNA <213> Homo sapiens

<400> 103 aaagcaggtg cctggaaaag cctgctgagg gtgaagggga accatccaqt qtcctqqqtt 60 ggggaagcat tttcctcttt atgagtctgt ctctggtcct catggaacaa aagtgggcag 120 tggtggtatg agaagcagag gctaattgtc tacccctgc ctccaagtag aattactcct 180 tgtctgtgta cctggtgagg cagttgactg caggaaccct tctacaaaaa ctcagagcaa 240 agggtatccg gaacccagac cactcgcggg cactgagtga gtaacatctt tcctctctc 300 cccacctgat ctggattcaa gtcttcctgg ccctccagcc ttcataatta aacccatacc 360 tetttttga caacttacte ccetteteac atgaacceca accetecce tetaccectg 420 accagtette cagtetttat agttgaagtt ggaccaetee caggeaceet tgaattteca 480 atcatgtate tgetttgeae etcacagtee ctaactecag ecetgetaga atatgggete 540 tccggactgg aaagaatctt aggggtcctc taatctaacc ctcacatgat gcttcaactc 600 ctccagatca tctctaacat agccagagtg tcacgctatg tttaagcatc ttcagggatg 660 ggaaaatccc ccacacccat gtattgcggc cgctctagag ga 702

<210> 104 <211> 689 <212> DNA <213> Homo sapiens

```
<400> 104
ggcaacatac attgtggact ttggcttcag tacaacattc agagagggc agatgctgac
 60
agctttttgt ggcatgtacc cctacgtggc cccagaacgc tccctgggcc aggcatgcca
 120
gtgacccgcc agggacatac aaagcctcag tgtcatactg tatttcagga atacagtagg
 180
tagaagggcc aggactttgc ccttttactc agggaagcct ccaaacttca agaaaaaatt
 240
ctcacaggaa gatatcatgc cccaccactt cttgcccttc aacttgactc attaaaaaat
 300
tactaatgct gaacgccagg aagtgtcctt cactgtaact gatgaaaaat ccatgggtga
 360
aaagtagcca gaagatgcca ctgataccat acgaagagcc actcctggac caccccaaac
 420
aatccagctc atggtggcca tgggatttca ggccaagaac atctctgtgg caatcataga
 480
aagaaaatto aactatooca tggocacota cotoatttta gagoacacaa aacaagagag
 540
gaagtgetee accateagag aactgteest tecteeggg gtteecacet etectteece
 600
atccactgaa ctttccacct tecetetete actgatgegg geteataggg agecagettt
 660
taacgttcag cctcccgaag aaagccagg
 689
```

<210> 105 <211> 776 <212> DNA

<213> Homo sapiens

```
<400> 105
 agcaaagcag gagctggcca agctgatgcg gattgaggac ccctccctcc tgaacagcag
 60
 agtettgetg caccaegeca aagetggeae cateattgee egecagggag accaggaegt
 120
 gagectgeae ttegtgetet ggggetgeet geaegtgtae cagegeatga tegacaagge
 180
 ggaggacgtg tgcctgttcg tagcgcagcc cggggaactg gtggggcagc tggcggtgct
 240
 cactggcgaa cctctcatct tcacactgcg agcccaacgc gactgcacct tcctgcggat
ctccaagtcc gacttctatg agatcatgcg cgcacagccc agtgtggtgc tgagtgcggc
 gcacacggtg gcagccagga tgtcgccctt cgtgcgccag atggacttcg ccatcgactg
 420
 gactgcagtg gaggcgggac gcgcgctgta caggtgcagc tcccaccgcg ctgctcaggc
 480
 ceggeetagg ggtggggace tgggggtggt cagacettge tgacetecae geceaeteag
 540
 gcagggcgac cgctccgact gcacttacat cgtgctcaat gggcggctgc gtagcgtgat
 600
 ccagcgagge agtggcaaga aggagctggt gggcgagtac ggccgcggcg acctcatcgg
 660
 cgtggtgage gcgacccca cccactgacc tctggccttt tccaggccag tccctcggca
 720
 actcacacge atcatecegg gtaatccagg gagtggtgaa gttttteeeg gggete
 776
```

<210> 106 <211> 707 <212> DNA <213> Homo sapiens

<400> 106

cccacgcgtc cggatggacc ccaggaacca cccagacctt aggacagggg acagcatggg 60
acacagttgc ttccactcca ggaaccagcg agactacagc ttcagctgag ggaagacgaa 120
ccccaggagc aaccaggcca gcagctccag ggacaggcag ctgggcagag ggttctgtca 180
aagcacctgc tccgattcca gagagtccac cttcaaagag cagaagcatg tccaatacaa 240

```
cagaaggtgt ttgggagggc accagaagct cggtgacaaa cagggctaga gccagcaagg
 300
acaggaggga gatgacaact accaaggetg ataggecaag ggaggacata gagggggtca
 360
ggatagetet tgatgeagee aaaaaggtee taggaaceat tgggeeacea getetggtet
 420
cagaaacttt ggcctgggaa atcctcccac aagcaacgcc agtttctaag caacaatctc
 480
agggttecat tggagaaaca actecagetg caggeatgtg gacettggga actecagetg
 540
cagatgtgtg gatcttggga actccagctg cagatgtgtg gaccagcatg gaggcagcat
 600
ctggggaagg aagcgctgca ggggacctag atgctgccac tggagacaga ggtccccaag
 660
caacactgag ccagaccccg gcagtatgac cctggggacc ccctggg
 707
```

<210> 107 <211> 485 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(485) <223> n = a,t,c or g

<400> 107 ccgctggaac atcaggtact ggggacactg gccctggtaa cacagcagtc tcaggcacac 60 ctgtggtatc acctggagca actcctggag ctccaggtag cagcacccct ggggaagcag 120 acattggaaa caccagtttt ggaaaatcag ggaccccaac agtatctgct gcctcaacta 180 ccagtagccc tgtgagtaaa cacaccgatg cagcetcagc cacagcagtg acaatetetg 240 gaagcaaacc aggtacacct ggaacaccag gtggtgcaac tagtggaggc aaaattacac 300 ctggaattgc atgacccacc ctggaccaaa agagcccctg cttctccqqq tatqqaqqtt 360 atttccctgt aaatcctcac cagaacccat gtgctgattc cctgtaatct tcccacaata 420 aatttttage agetetgnnn nnnnnnnnn nggggegeee gttttaaggg acceaecttt 480 actcg 485

<210> 108 <211> 565 <212> DNA <213> Homo sapiens

<400> 108 egggeteace getgetgtet eeegeteeca agtetttett gtgaaateea aattggatte 60 tettgatett ceatetttee agggeagtga gettgteett gtteetgetg cagaagttgt 120 agaaggaact ggcctcagag cccacgctgt cctcatcatc ctcccgcacc ctgctccctg 180 cttetgaget eetgtetgee geeteetete tettgetett ggegtggtae eteegggaag 240 cetecttete aateteeage ageetetegt tecatgegte ceaggtgete tecgaggaca 300 tegagtetge geggegeete etgeegtggt eegggeggtt eageteeage tgetgettea 360 ggacccagat gtcgtggctg ctcacgctct cccaggcgct gctctcgctc agggtgcgcc 420 geogeeteee cacegaggag ceagegtege tetecteete ttteteetee teeetteeee 480 acctccggta cccttctgct aaaaacctct cgtttcggct ctgccactcg tgaatgatcc 540 tetecacgte etegteeteg acceg 565

```
<210> 109
<211> 986
<212> DNA
<213> Homo sapiens
```

```
<400> 109
ggatgacgtg ccgccccgg ctcctgacct ctacgacgtg ccccctggct tgcggcgcc
 60
tggcccgggc accetgtacg atgtgccccg tgaacgggtg cttcctcctg aggtggctga
 120
tggtggcgtg gtcgacagtg gtgtgtatgc ggtgcctccc ccagctgaac gtgaagcccc
 180
ggcagagggc aagcgcctgt cggcctccag caccggcagc acacgcagca gccagtctgc
 240
gtcctccttg gaggtggcag ggccgggccg ggaacccctg gagctggaag ttgctgtgga
 300
ggccctggca cggctgcagc agggtgtgag cgccaccgtt gcccaccttc tggacctggc
 360
aggeagegee ggtgegaetg ggagetggeg tageceetet gageeacagg ageegetggt
 420
graggaretg caggetgetg tggcegecgt ccagagtgec gtccaegage tgttggagtt
 480
tgcccgcagc gcggtgggca atgctgccca cacatctgac cgtgccctgc atgccaaget
 540
tagccggcag ctgcagaaga tggaggacgt gcaccagacg ctggtggcac atggtcaggc
 600
cetegacget ggeeggggag getetggage caccettgag gacetggace ggetggtgge
 660
etgetegegg getgtgeeeg aggaegeeaa geagetggee teetteetge aeggeaatge
 720
ctcactgctc ttcagacgga ccaaggccac tgccccgggg cctgaggggg gtggcaccct
 780
geaccecaac cecaetgaca agaccageag catecagtea egacecetge ceteaccece
 840
taagttcacc teccaggact egecagatgg geagtacgag aacagegagg ggggetggat
 900
 960
ggaggactat gactacgtcc accttacagg gggaaggagg agtttttaga agacccagaa
ggagcttctg ggaaaaaggg cagcat
 986
```

```
<210> 110
<211> 414
<212> DNA
<213> Homo sapiens
```

```
<400> 110
cgaagggaaa gcagcaggtt ggggcttctt gtggccaact tcagagcctg tcaccaggaa 60
aggtaagcat gggaggaagg aagatggcga cagatgaaga aaatgtctat ggtttagaag 120
agaacgctca gtcccggcag gagtccacgc ggaggctcat ccttgttggg agaacagggg 180
ccgggaagag cgccactggg aacagcatcc tgggccagag acggttcttc tccaggctgg
gggccacgtc tgtgaccagg gcctgcacca cgggcagccg caggtgggac aagtgccacg 300
tggaagtcgt ggacactccg gacattttca gctcccaagt gtccaagaca gatcctggct 360
gtgaggagag aggtcactgc tacctgctct cggccccgg accccacgcg ctgg
```

```
<210> 111
<211> 419
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
```

```
<222> (1)...(419)
<223> n = a,t,c or g
```

```
<210> 112
<211> 1191
<212> DNA
```

<213> Homo sapiens

```
<400> 112
gtgcaaggtg ctgtcactca cgtgtgccct cgaccctccc gttcacccgc agccttctca
 60
gegeetetee etgggeegga ggeeteetea ceageetace tgttgetetg gaaaaaaate
 120
cegtececeg actecgtece tacececagt etteggeegg etetggeece tggggagggg
 180
getgeaeggt ggaaggagge tggetatggg ceeqqetqee eqetqeatqt aceteeteet
 240
ccacccateg cetettgeet gggggtaact ttgcctgggg ctcattettt ggttaagetg
 300
aagctgccgt gggtggccaa accgcagatt ctttgcaaat tctgagctgg cagagctcgc
agcegggage eggeegggga agaggagaet tgegegeege aageegeetg cetecaeeet
 420
getetecate tecegeteta gaagggetgg gaagetegeg geeggggtte cacetggaag
 480
etgettgeat ggetgaacce agettaggte cetgaegggg etgetggtgg aatteteece
 540
cttcgaagct ggggaggttt aggagggga aggcttctgt gaagctctca aaccactaat
 600
agageeeet eeccaacagt gaeggegeag atgeteeeee ttttettagt tgacaceaee
 660
aggcagette etggeegttg gtaggtteet geagetgget gagggaacag ggaeeggeag
 720
gggactttgt taggggaggg ttgggatggg cagtgggccc ctgaaagtta atatattgga
 780
acctageteg agtgtegtte tttecaatte egaaagtaga aagagtaaaa ataggggtga
 840
ttggggtggg gttagtagaa tgcctctctc agggcgctcc cccctccccc accgttttag
 900
agagetagge etcagecagt ettgecaete ecateteagt getteetgaa gaggetgttt
 960
tgagtgttga tgaaaagcaa tgcaattatg ccaaacagta ttgagcagaa taatttattt
 1020
ettttttttttttt ttttgettta aatcatgaat eeggeeggt aeggtggete aegeetgtea
 1080
teccageact ttgggaggee aaggegggeg gattaettaa taettaaggt caggagtteg
 1140
1191
```

```
<210> 113
<211> 1240
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(1240)
<223> n = a,t,c or g
```

```
<400> 113
agaacacgaa ctagtgtctc taagccacta taatagttgc acatacaaca tgagtgtggt
 60
gtggtaggat getttteett ttaggtettt actgaacttt caagggatta aaaccaatgt
 120
atgtcaactt tatagcaaaa gattcagatt ctaatcctga ataccaatgc attttagagg
 180
gggaaaaaat gagggatgta aaatatatat agtagggtaa gagttttgcc tttgaacaat
 240
gtgcatattc tattttaatt tggaatgttt tatacttgca tttcatgtta tgtagttttt
 300
ggactggact gtgtttttcc acaaaatgaa aaatcaacta ttttgccacc ttattattca
 360
acctacctgc ccatagttgt ctatgccagt tactaatcta tttaaattta ataaatcaaa
 420
agetgteett agggattgge caagagtegt aagteettea geetgaaggt tttteaatte
 480
atteataaac gttgcatggt tttctttcca tccagccttg atagcatagg gcggctcttc
 540
gaaagtgacc agcatatacc tgtctcctct gctggcaggg tcccgggcac ggagcttcat
 600
gaaggtetet accgegeett tggeegtgte caggtaggtg gtgeecagat ggetgegetg
 660
gttcatagag gcagacgtgt ctatcaggaa cagtaagatg ggcatagtgc tggccgggga
 720
caccggggcc cgaggtggtg gagaaagagg agatggtaga ggtggaggcg ccggtggcgg
 780
cgaccgccgc tagcggggcg ggggagcacg gcccccggga ggaaaacact gtctgggtct
 840
ttcctccggc tgcggggaat tcctcccccg atagttgaga ggaaactccc cagacccagt
 900
geteccegte gtaceneege etecgeetee teetgeetge etgecegetg gggegggege
 960
ccagccgtct gtctgtcggt tcgtccccc cgcctcgggg gtcccgtccc cgctcccggc
 1020
ccctgtgtgt gtcccagcgg gagacgggcc tggctcccca ccccaccccc ggtacaggag
 1080
tggggacctg ggagctggcg aagaggggag tgggctgagg gaagattggc cctggggctg
 1140
ttgggagaag tttcagggac tccctccgca caccggcggt gtcaccactt tctcagcccc
 1200
 1240
tctcgcggac gcgtgggtcg cgccggggtt tccgcaggca
```

```
<210> 114
<211> 810
<212> DNA
<213> Homo sapiens
```

```
<400> 114
aatagaattc cgtcggcaca cgcacgcgta cctaggatcg tatagagcgg ccgcaataca
 60
tgccgtcttc ttaaatcaac tcctctctct caaaaagcct ttctttccgt gtcgcgaata
 120
teatecetee ggteetgtee egeagegagt teeceggegt tgggettete tattatgeeg
 180
gccagcggag tccaattggt ctgacttcac tgtccggaga atcctctcgc tcccaaacct
 240
ccctgagaga cgacctttaa ccgtgccagc cggacctgcc tacaaagacc ctcctcttca
 300
acctgtcccc tgtgttactc cacaaaacgg acacagaagt tcgtcaacct gcccagatac
 360
caegecteaa ageggeaaca gageegaace cettteteag getteggaeg geeeagaeee
 420
ggcatctctt ttctcctctt ccccagaccc ttccacctct ggcctccgag agccccagcc
 480
teagtteece tecaggeect aggaaceeta etetecagea gtacagtetg tagaceeceg
 540
aatcagttcc ccactcaacc tcagaactcc tctggcgccg actggcccca ctcgggcaaa
 600
ggatggcggt ggataggatg acccgaacca ccagagccag caaacttacc ccagccgcca
 660
tggtgattcc gcaaagaaag ggggtggggt tctcggcgct gccgcaaagt aagcccgccc
 720
 780
gggagagaag ggaggggaa agaggagagc cgtggagaaa cagcagccga aaaacgagga
 810
cgaaacagaa gacatacgta cgacagttcg
```

```
<210> 115
<211> 320
<212> DNA
```

## <213> Homo sapiens

<400>	115					•
caagagcacg	atgctgaagc	actggagagt	ggggctctgg	ggtcagtgct	ggatcagagg	60
caagaggagg	tgatgatgcg	gccctgtcct	gagtgacacc	aacccctccc	cagtactaca	120
cctgcagctg	tgtcctgggc	ttcattgcct	gctccatctt	cttgcagatg	agcctgaagc	180
caaaggtcat	gctgctgaca	gtggccctgg	tggcctgtct	cgtgctcttc	aacctctccc	240
agtgctggca	gcgggactgc	tgcagccaag	gcctgggcaa	cctcactgag	cccagtggca	300
ccaacaggta	.dddccccdcc			• •		320

<210> 116 <211> 456 <212> DNA <213> Homo sapiens

## <400> 116 ggcaaggcag gcggcgcggc cggcctcttc gccaagcagg tgcagaagaa gtttagcagg 60 gcccaggaga agtagacaag gcggtttggg aagacatgtc agccagaaga aagagcgagg 120 gaagaaagac aagaaggacc tgagatagag tttgggtttt cctttttttc tctctctt 180 tattaagccc aacctgcctt ctacaacgga gaagttttgg ttttctaaga gctgatggac 240 ttagaagcat ttggatgaac agctctgctt accaactgaa atatccctat tatcttctaa 300 aagtggagca ctgctttgag ccctgggaag gcttaaaggc aaccagctct cccgagttga 360 tttatcagca gaaaactgat ggaatgtaga tgtagctcct gactttaaga gaccacaatg 420 gaagggaggt tattttctat catttgaggt catgtg 456

<210> 117 <211> 2398 <212> DNA <213> Homo sapiens

<400> 117 cccaegegte eggteageet eagtetteaa tgagggaeee egtacagagt aacccaaaeg 60 cttgttccta tttcaggatg tgaacactct gcaaggaggt gggcagcctg tggtgactcc 120 gtccgtccag ccctctcttc agccggccca tccagcgtta ccacagatga cctcacaggc 180 acctcagcca totgttactg ggctccaggc accttctgct gccttaatgc aagtgtcatc 240 totogattoc cactoagotg tatotggaaa tgcccaatcc tttcagccct atgcaggtat 300 gcaagectac gettateece aggeatetge egteacetee eagetgeage eegtteggee 360 tttgtaccca gcaccgctct ctcagcctcc ccatttccaa ggatcaggtg atatggcttc 420 atttctcatg actgaagccc ggcaacataa cactgaaatt cgaatggcag tcagcaaagt 480 ggctgataaa atggatcatc tcatgactaa ggttgaagag ttacagaaac atagtgctgg 540 caattccatg cttattccta gcatgtcagt tacaatggaa acaagcatga ttatgagcaa 600 catccagcga atcattcagg aaaatgaaag attgaagcaa gagatccttg aaaagagcaa 660 tcggatagaa gaacagaatg acaagattag tgaactaatt gaacgaaatc agaggtatgt 720 tgagcagagt aacctgatga tggagaagag gaacaactca cttcagacag ccacagaaaa 780

```
cacacaggca agagtattgc atgctgaaca agagaaggcc aaggtgacag aggagttagc
ageggeeact geacaggtet eteatetgea getgaaaatg aetgeteace aaaaaaagga
 900
aacagagetg cagatgeage tgacagaaag cetgaaggag acagatette teaggggeea
 960
gctcaccaaa gtgcaggcaa agctctcaga gctccaagaa acctctgagc aagcacagtc
 1020
caaattcaaa agtgaaaagc agaaccggaa acaactggaa ctcaaggtga catccctgga
 1080
ggaggaactg actgaccttc gagttgagaa ggagtccttg gaaaagaacc tctcagaaag
 1140
gaaaaagaag tcagctcaag agcgttctca ggccgaggag gagatagatg aaattcgcaa
 1200
gtcataccag gaggaattgg acaaacttcg acagctcttg aaaaagactc gagtgtccac
 1260
agaccaagca gctgcagagc agctgtcttt agtacaggct qagctacaga cccagtggga
 1320
agcaaaatgt gaacatttgt tggcctccgc caaggatgag cacctgcagc agtaccagga
 1380
ggtgtgcgca cagagagatg cctaccagca gaagctggta caacttcagg aaaagtctgt
 1440
ttgttttgca gtgtttagcc ctccaggccc aaatcacagc tctcaccaag caaaatgaac
 1500
agcacatcaa ggaactagag aagaacaagt cccagatgtc tggggttgaa gctgctgcat
 1560
ctgacccctc agagaaggtc aagaagatca tgaaccaggt gttccagtcc ttacggagag
 1620
agtttgagct ggaggaatct tacaatggca ggaccattct gggaaccatc atgaatacga
 1680
tcaagatggt gactcttcag ctgttaaacc aacaggagca agagaaggaa gagagcagca
 1740
gtgaagaaga agaagaaaaa gcagaagagc ggccacgaag accttcccag gagcagtcag
 1800
cctcagccag ttctgggcag cctcaagcac ccctgaatag ggagaggcca gagtccccca
 1860
tggtgccctc agagcaggtg gtcgaggaag ctgtcccgtt gcctcctcag gccctcacca
 1920
cttcccagga tggacacaga aggaaagggg actcagaagc tgaggcactc tcagagataa
 1980
aagatggtte cetteeacce gaactgtett geateceate ceacagagtt etagggeece
 2040
cgacttcaat tccacctgag cccctaggcc ctgtatccat ggactctgag tgtgaggagt
 2100
cacttgctgc cagcccaatg gcagctaaag cccgacaacc catcagggaa aggtctgtgt
 2160
teaggggaag taggeaceag atgggeceae ttacaaggaa aggtteeaca agattgttee
 2220
ctggatttca ggaccccgag ggagggggac ccactggcct tagggcttqa aaaqcccaqq
 2280
gagageetea geeteeacag etteaaggaa aggttgatgt teactaggtt ceaceggtte
 2340
cccacaaggg agcttttcaa gaacaggagg gcaggtttcc acagttttgc agggagca
 2398
```

```
<210> 118
<211> 800
<212> DNA
```

<213> Homo sapiens

```
<400> 118
agcgaaacgg cgcagcaaat tatcgaccgt ctgcgcgtaa aactggcgaa agaaccgggg
 60
gcgaatctgt tcctgatggc ggtacaggat attcgcgttg gtgggcgtca gtcgaacgcc
 120
agctaccagt acacgttgtt atccgacgac ctggcggcac tgcgagaatg ggagccgaaa
 180
atccgcaaaa aactggcgac gttgccggaa ctggcggacg tgaactccga tcagcaggat
 240
aacggcgcgg agatgaatct ggtttacgac cgcgacacca tggcacggct gggaatcgac
 300
gtacaagccg ccaacagtct gttaaataac gccttcggtc agcggcaaat ctcgaccatt
 360
taccageega tgaaccagta taaagtggtg atggaagtgg atcegegeta tacccaggae
 420
atcagtgcgc tggaaaaaat gttcgttatc aataacgaag gcaaagcgat cccgctgtca
 480
tatttcgcta aatggcaacc ggcgaatgcc ccactatcgg tgaatcatca gggattatcg
 540
gcggccttga ccatttcgtt taacctgccg accggaaaat cgctctcgga cgccagtgcg
 600
gcgatcgatc gcgcaatgag ccagcttggt gtgccttcga cggtgcgcgg cagttttgcc
 660
ggcccggcgc aggtgttcca ggagaccatg aactcgcagg tgatcctgat tattgccgcc
 720
ategecaegg tgtatategt getgggaate cettaegaga ggtaegtaea teegeegaeg
 780
attctcttgt gaaggccgcc
 800
```

<210> 119 <211> 427 <212> DNA

## <213> Homo sapiens

<400>	119		·			
aaatcatcac	acctgatgcg	atgggttgcc	agaaagatat	tgcagagaag	atacaaaaac	60
agggaggtga	ttatttattc	gctgtaaaag	gaaaccaggg	gcggcttaat	aaagcctttg	120
aggaaaaatt	tccgctgaaa	gaattaaata	atccagagca	tgacagttac	gcaatcagtg	180
aaaagagtca	cggcagagaa	gaaatccgtc	ttcatattgt	ttgcgatgtc	cctgatgaac	240
ttattgattt	cacgtttgaa	tggaaagggc	tgaagaaatt	atgcgtggca	gtctcctttc	300
ggtccataat	agcagaacaa	aagaaagagc	cagaaatgac	ggtcagatac	aatatcagtt	360
agttgggtat	cgccggggat	atatcagtca	cagcgatctc	cgggacggac	gattgaatct	420
cgtaatc						427

<210> 120 <211> 378 <212> DNA <213> Homo sapiens

<400> 120
ccattatttg aaaatgetca ctcaggegeg gcgggaagtg attategeca acgcetactt 60
cttccccggc tategatttt tacacgcett gcgtaaagcg gcacggegeg gggtgeggat 120
caaactgatc attcagggeg aaccggatat gccgattgtc agagteggtg cgcgcttget 180
gtataactat ctggttaaag gcggcgttca ggtttttgag taccgcegec gcccgctcca 240
cggcaaagtg gcattgatgg acgatcactg ggcgacagta gggtccagta atctccatcc 300
ggtcagttag tcggggaatc tccaagcaaa tgtcatcctc cacgttctac gggtaccgac 360

378

<210> 121 <211> 508 <212> DNA <213> Homo sapiens

attgaatccg taatcatg

<400> 121 etgeegeetg gtgaagttta egeeceateg aageeetgge aaaagaagte egtgaactga 60 aataacatac tegttaattg ctcaatccag ccacaacgeg agaactgacc agtctgggac 120 gaaacctgaa ccgattgtta aaaagtgaac gcgaacgtta cgacaaatac cgtacgacgc 180 tcaccgacct gacccatagt ctgaaaacgc cactggcggt gctgcaaagt acgctgcgtt 240 ctctgcgtag tgaaaagatg agcgtcagtg atgctgagcc ggtaatgctg gagcaaatca 300 gccgcatttc acagcaaatt ggctactacc tgcatcgtgc cagtatgcgc ggcgggacat 360 tgctcagccg cgagctgcat ccggtcgccc cactgctgga caatctcacc tcagcgctga 420 tcaaaggcaa gccgcgtaaa gggggcaacg tcactgtttt tccattcaca gcgatgtaca 480 gggacggaca ttgaatccgt gatcagtg 508

<210> 122 <211> 724 <212> DNA <213> Homo sapiens

```
<400> 122
gggtaacact gtgatgtttc agcacctgat gcagaagcgg aagcacaccc agtggacgta
 60
tggaccactg acctcgactc tctatgacct cacagagatc gactcctcag gggatgagca
 120
gtccctgctg gaacttatca tcaccaccaa gaagcgggag gctcgccaga tcctggacca
 180
gacgccggtg aaggagctgg tgagcctcaa gtggaagcgg tacgggcggc cgtacttctg
 240
catgetgggt gccatatate tgetgtacat catetgette accatgtget gcatetaceg
 300
ccccctcaag cccaggacca ataaccgcac gagccccegg gacaacaccc tcttacagca
 360
gaagctactt caggaagcct acatgacccc taaggacgat atccggctgg tcggggagct
 420
ggtgactgtc attggggcta tcatcatcct gctggtagag gttccagaca tcttcagaat
 480
gggggtcact cgcttctttg gacagaccat ccttgggggc ccattccatg tcctcatcat
 540
cacctatgcc ttcatggtgc tggtgaccat ggtgatgcgg ctcatcagtg ccagcgggga
 600
ggtggtacce atgtcctttg cactcgtgct gggctggtgc aacgtcatgt acttcgcccg
 660
 720
aggattccag atgctaggcc ccttcaccat catgattcag aagatgattt ttggcgacct
gatg
 724
```

<210> 123 <211> 435 <212> DNA <213> Homo sapiens

<400> 123 gagaaagcag cagctgccaa catagatgaa gtgcagaagt cagatgtatc ctctacaggg 60 cagggtgtca tegacaagga tgcgctgggg cctatgatgc ttgaggtagc acatcttcat 120 tttagtgctg tattttaaaa tcttgttgat cttcacatta ttacatttaa tttcaggtga 180 atataattta aggagaatcc acactagtac tagtactatg gacctcttga gcttgctgat 240 atgcctgtgt gtctctatgt atgttttggc tcctgctgcc agtatatgtg tgtttgaaat 300 taacatagaa ttaaattaac tagattagag tagacattgg caagttgtaa ttgccagttg 360 agcatttatt tgaaaaactg tattcacaag tcctactaaa ttctgtgttg attttagctt 420 gaaatgttct caaaa 435

<210> 124 <211> 363 <212> DNA <213> Homo sapiens

<400> 124
actggaagtg ccttcagagg tcaccccttt gggctttgcc atgcaggcta caaagactct

60

```
cctcctcaga acatgctgct tgcaggaatt caacatcatg gaaaagaata aaggatgggc
 120
teteetggga ggaaaagatg gecatettea gggaetattt eteettgeea aegeattget
 180
ggaaagaaat cageteettg cacagaaggt catgtactta ttagteette ttettaaceg
 240
agggaatgat aaacataaac tcacatctgc aggetttttt gtggagette tccggagtec
 300
agtggccaag agactgccca gcatatactc tgttgcccgc tttaaagact ggctacaaga
 360
 363
```

<210> 125

<211> 373

<212> DNA

<213> Homo sapiens

<400> 125 agaceggeec eegeteette agetgegeeg gaggaggege eeagteeteg gggtgaaggg 60 tegggggatg gegaagegaa gagtgeeege teeggtgtgg gggggageag gaggagggae 120 gaagteegee egeegegeeg eegeegegee tgacacegag eggagegagg aaggaggaeg 180 ageggtgaag gaageetace ettecageeg teageegeeg eegeegtege egtgaceeet 240 gcgttgcgcc cggcgctgcc acccgaactt agccccctcg atgccaattt caaataggga 300 aggaaaaggg aaaagaaggg aagagaaaat ccggccgctg agtcccgcgt ccactcacac 360 ctccgctcgt gcc 373

<210> 126 <211> 362 <212> DNA <213> Homo sapiens

<400> 126 gcctacaggg ggtccatggc agcagttcta ctttctgcag ctccctaagc agtgactttg 60 accccctaga gtactgcagc cctaaagggg atccccagcg agtggacatg cagcctagtg 120 tgaccteteg geotegitee tiggactegg aggigeceae aggggaaace caggitteea 180 gccatgtcca ctaccaccgc caccggcacc accactacaa aaagcggttc cagaggcatg 240 gcaggaagcc tggcccagaa accggagtcc cccagtccag gcctcctatt cctcggacac 300 agccccagcc agagccacct tctcctgatc agcaagtcac cagatccaac tcagcagccc 360 ct. . 362

<210> 127 <211> 351

<212> DNA

<213> Homo sapiens

## <400> 127 catggetgac cccgacccc ggtaccctcg ctcctcgatc gaggacgact tcaactatgg 60 cagcagcgag gcctccgaca ccgtgcacat tcgaatggcc tttctgagaa gagtctacag 120 cattctatct ctgcaggatc tcttagctac tgtgacttcg acagataatt tagcctttga 180 ggatggacgg actgactggc tgcaaaggcc tgactgtgtc tccttcaaaa ttcatgtgct 240 gccaatgtga cggtattaag aggagggcc ttagaggggg attagatcct gaaaggtcct 300 tactttttgg agtgacgagg atgcatacga tgaaagcatc tcgtagatac g 351

<210> 128 <211> 374 <212> DNA <213> Homo sapiens

<400> 128
gaactcccca aaggcaccat ccaggtttt accccgcttg tcaaattccc ctctggccca 60
gggctggctg ctcagcagga gtgtttaata agcacttaat tgcccggtga gtacagacca 120
ttccagctca ccttaactgt ttcctggctg actcgcctct cggcctgatt gccctgctca 180
tctggctgag tgagctggaa tgagtgtagt ggtagtgcca cctataggtt cctcttacct 240
tggtcttatt tcacaggagc acttcccgaa cgagtttacc tcgggagatg gaaagaaagc 300
tcaccaggac tttggctact tttatggctc gagctatgtg gcagcctctg acagcagccg 360
gactcctggg ctgt

<210> 129 <211> 392 <212> DNA <213> Homo sapiens

<400> 129
taccaccacg cccagccca acatatgact ttetgtgtgt tttccaagag tctagtgtga 60
ggtcagaggt cagacaggtc atcaggaatt ttgcttcaag tgagttgctg ctgccctgac 120
tcttttcccc cagcaattaa gtccccccgg ggcttggggg ttgggtttgt cagcttgctt 180
ttgctgtgct gagggcttct ccagactgaa tcagcaggtc ctcagctcat ctctgctcct 240
tctctctagg accaactgcc cctgtaagta cagtttttg gataacctca agaagttgac 300
tcctcgacgc gatgttcca cttaccccaa ggtaagatga gattccggcc cagaagaagc 360
tgcagctgtg tccccagccc cacgccgagc cc

<210> 130 <211> 359 <212> DNA <213> Homo sapiens

```
<400> 130
cogggacgat gcctgcctct actccccagc ctcagctccc gaggtcatca cagtaggggc
 60
caccaatgcc caggaccagc cggtgaccct ggggactttg gggaccaact ttggccgctg
 120
tgtggacctc tttgccccag gggaggacat cattggagcc tccagcgact gcagcacctg
 180
ctttgtgtca cagagtggga catcacaggc tgctgcccac gtggctggca ttgcagccat
 240
gatgctgtct gccgagccgg agctcaccct ggccgagttg aggcagagac tgatccactt
 300
ctctgccaaa qatgtcatca atgaggcctg gttccctgag gaccagcggg tactgaccc
 359
 <210> 131
 <211> 389
 <212> DNA
 <213> Homo sapiens
 <400> 131
gttagaaatc aagtttttgg agcaggtgga tcaattctat gatgacaact ttcccatgga
 60
aatteggeat etgttggeee aatggattga aaateaagae tggtaggate aaacatattt
 120
tccctagaag ttgatgcaca aatgtctgat gctctatcca tgtgaattta ttttatggtc
 180
cactttttac tcagtagatg cattcttttc aggtaaagaa ctttctcaag gatttgaaag
 240
ccttcccaaa gaaggggaat aattgtcctt tctggttcca ttcattgtaa atgaaaagtt
 300
aatggttcca gtgcttcttt tctctgtaaa caaaaaccca aataattttt catgtattaa
 360
 389
aaaaagaagc aaatcaattg attgtcagt
 <210> 132
 <211>' 465
 <212> DNA
 <213> Homo sapiens
 <400> 132
ggaggcagga gatgcggatg aagatgaggc tgatgctaat agctctgact gtgaaccaga
 60
ggggcccgtg gaagcggaag agcctcctca ggaggatagt agcagtcagt cagactctgt
 120
ggaggaccgg agtgaggatg aggaagatga acattcagag gaggaagaaa caagtggaag
 180
ttcagcatca gaggaatctg agtctgaaga gtctgaggat gcccaatcac agagccaagc
 240
agatgaagag gaggaagatg atgattttgg ggtggagtac ttgcttgcca gggatgaaga
 300
gcagagtgag gcagatgcag gcagtgggcc tcctactcca gggcccacta ctctaggtcc
 360
aaagaaagaa attactgaca ttgctgcagc agctgaaagt ctccagccca agggttacac
 420
gctggccacg acccaggtaa agacgcccat tcccctgctt ctgcg
 465
```

<210> 133 <211> 354 <212> DNA <213> Homo sapiens

```
<400> 133
ctaaaaaacc taagggagtt actgcttgaa gacaaccagt taccccaaat accctctggt
 60
ttqccaqagt ctttgacaga acttagtcta attcaaacca atatatacaa cataactaaa
 120
gagggcattt caagacttat aaacttgaaa aatctctatt tggcctggaa ctgctatttt
 180
aacaaagttt gcgagaaaac taacatagaa gatggagtat ttgaaacgct gacaaatttg
 240
gagttgctat cactatettt caattetett teacaegtge cacecaaact gecaagetee
 300
ctacgcaaac tttttctgag caacacccag atcaaataca ttagtgaaga agat
 354
 <210> 134
 <211> 326
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <222> (1)...(326)
 <223> n = a,t,c or g
 <400> 134
cccacqcqtc cqqnqacagq cctggccggc ctctgcagag acgtccaacc tcgtgcgcat
 60
 120
gcqcaqccaq gccctgggcc agtcggcgcc ctcgctcacc gccagcctga aggagctgag
 180
tetececaga agaggaagtt teeetgtgtg teeaaatget gggagaacat caccecttgg
atgaattgcc accacattaa ataaaatata tccaaagctc nnnnnnnnn nnnngggggg
 240
gccgttttaa aggacccttg ggggggccaa ggtttacgcg ggctggcaag gtaatagttt
 300
 326
tttccttata gggagccgaa ttaaaa
 <210> 135
 <211> 210
 <212> DNA
 <213> Homo sapiens
 <400> 135
cttctgtgtg tctgtcttcc tgtgggtgcc tgcccgtctc tttctcttct aacagcccct
 60
ttgaaccagc tgatgcgctg tcttcggaaa taccaatccc ggactcccag tcccctccta
 120
cattetgtee ceagtgaaat agtgtttgat tttgageetg geecagtgtt cagaggtagt
 180
 210
tgggetette tttettggte gaegeggeeg
```

<210> 136 <211> 310 <212> DNA <213> Homo sapiens

<400>	136					
tttttccaat	acacatataa	accatcattc	actaaaatgt	actatatatt	caatattttg	60
tgtatactca	ctgcttttcc	taacgtgaaa	aatttaccaa	aatgctaatt	gtgacttata	120
aggtatttaa	cagactcccg	acaaaaagca	gaatgatcag	cgaaatcgga	aaagaaaagc	180
tgaaccatat	gaaactagcc	aaggtagtaa	taatttcgta	tcaacaaaag	tactcaattc	240
taatgtactt	agatagaatt	ttctaactca	tactaaataa	ttagtttgta	cacagggatt	300
cctgataaag						310

<210> 137 <211> 502 <212> DNA <213> Homo sapiens

<400> 137 cttaaagtga aatttaaaaa gtaataataa tttttaaaaa tgtttaaagg cttactttgg 60 agagacagtt ttacatagct taatatttta tcattaaagg catggtggag ctggttcctg 120 cttccgatac cctcaggaaa atccaagtgg aatatggtgt gacaggatcc tttaaagata 180 aaccacttgc agagtggcta aggaaataca atccctctga agaagaatat gaaaaggctt 240 cagagaactt tatctattcc tgtgctggat gctgtgtagc cacctatgtt ttaggcatct 300 gtgatcgaca caatgacaat ataatgcttc gaagcacggg acacatgttt cacattgact 360 ttggaaagtt tttgggacat gcacagatgt ttggcagctt caaaagggat cgggctcctt 420 ttgtgctgac ctctgatatg gcatatgtca ttaatggggg tgaaaagccc accattcgtt 480 ttcagttgtt tgtggacctc tg 502

<210> 138 <211> 963 <212> DNA <213> Homo sapiens

<400> 138 ctectagtee ectecetage etgtecette etectecegt tgeteetggt ggecaggaga 60 gcccttcacc ccacacaget gaggtggaga gtgaggcctc accacctcct gctcggcccc 120 tcccagggga agccaggctg gcgcccatct ctgaagaggg aaagccgcag cttgttgggc 180 gtttcccaag tgacttcatc caaggaaccg gctgagcctc ttcccttgca gccaacatcc 240 cccactetet etggttetee aaaacettea accceteage teactteaga gageteagat 300 acagaggaca gtgctggagg cgggccagag accagggaag ctctggctga gagcgaccgt 360 gcagctgagg gtctgggggc tggagttgag gaggaaggag atgatgggaa ggaaccccaa 420 480 agcagcctgt gtttgagcag cgaggagtca gaaagcagtg gggaagatga ggagttctgg 540 gctgagctgc agagtettcg gcagaagcac ttgtcagagg tggaaacact acagacacta 600 cagaaaaaag aaattgaaga tttgtacagc cggctgggga agcagccccc accgggtatt 660 gtggccccag ctgctatgct gtccagccgc cagcgccgcc tctccaaggg cagcttcccc 720 acctecegee geaacageet acagegetet gageececag geeetggtga gaetgeagte 780

```
acccagette catetttee etgagacee tttetgtega etgttttet ecaggeeetg 840 ggggtetgee eeggggaat agaceeete teeceacete ecettteete acttagtget 900 eteetteee eateetgget ecaggeatea tgegaaggaa etetetgagt ggeageagea 960 eeg 963
```

```
<210> 139
<211> 376
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (376)
<223> n = a,t,c or g
```

<400> 139
cgccgctttg tttctcaaga gactgggaat ctgtatattg ccaaagtaga aaaatcagat 60
gttgggaatt atacctgtgt ggttaccaat accgtgacaa accacaaggt cctggggcca 120
cctacaccac taatattgag aaatgatgga gtgatgggtg aatatgagcc caaaatagaa 180
gtgcagttcc cagaaacagt tccgactgca aaaggagcaa cggtgaagct ggaatgcttt 240
gctttaggaa atccagtacc aactattatc tggcgaagag ctgatggaaa gccaatagca 300
aggaaagcca gaagacacaa gtcaagagtg gggaaanntc ttgagaaatc ccttaatttt 360
tcagcaggga ggatgc

```
<210> 140
<211> 968
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (968)
<223> n = a,t,c or g
```

```
<400> 140
gcaaggggca gttggtgaac ttgctgcctc cagagaattt tccctggtgt ggaggcagcc
 120
agggacccag gatgctccgg acctgttacg tgctctgttc ccaagctggt ccccgctcca
 180
ggggctggca gtccctgagc tttgatggcg gggccttcca ccttaagggc acaggagagc
 240
tgacacgggc cttgctggtt ctccggctgt gtgcctggcc cccactcgtc actcacgggc
 300
tgttgctcca ggcctggtct cggcgactcc tgggctcccg gctctcaggc gcatttctcc
 360
gagcatccgt ctatgggcag tttgtggctg gtgagacagc agaggaggtg aagggctgcg
 420
tgcagcagct gcggaccctc agcctccgac cactgctggc agtgcccact gaggaggagc
 480
cggactctgc tgccaagagt ggtgaggcgt ggtatgaggg gaacctcggt gctatgctgc
 540
qqtgtgtgga cctgtcacgg ggcctcctgg aqccccccag cctggctgag gccagcctca
 600
tgcagctgaa ggtgacggcg ctgaccagta ctcggctctg taaggagcta gcctcgtggg
 660
tcagaaggcc aggagcctcc ttggagctga gccccgagag gctggctgaa gctatggact
 720
ctgggcagaa cctccaggtc tcctgcctca atgctgagca gaaccagcac ctccgggcct
 780
ccctcagccg cctgcatcgg gtggcacagt atgcccgggc ccagcacgtg cggctcctgg
```

tggatgegga gtacacetca etgaaceetg egeteteget getggtgget gecetggetg 840 tgegetggaa eageeegggt gaaggeggge eetgggtgtg gaacacetae eaggeetgte 900 taaaggacae attetagegg etggggaggg atgeanagge tgegeacagg geeggeetgg 960 eetteggg

<210> 141

<211> 306

<212> DNA

<213> Homo sapiens

<400> 141

agacggctga a	aagggaggg	gtattgaggg	cggttcagag	ggcgaggaga	ggggcgtaga	60
gaacctgtgg a	gaagaagtt	cactggaggg	gcattaggcc	tcgcactatg	tatccagatc	120
atcagtaggg g	aagagaaaa	gatgggcaat	atgtatagtc	agacgagaag	tgggatcaaa	180
cagagggctc a	tggagaagt	aggctaccca	ccacataacc	ccatcatagg	attgcaggag	240
atacagctat a	gataagaat	atccaccagt	cggtgagtga	gcagatcaag	aagaactttg	300
ccaaga						306

<210> 142

<211> 316

<212> DNA

<213> Homo sapiens

<400> 142

ccacactcac	atttaatata	ctgttaggtt	gtttactttg	aggcaatgtc	atcctcatta	60
gtatagggca	ttatattcct	gaatagcaga	atactcctcc	attcatgaag	ttcagtatta	120
tacattctta	ttattgcaca	acaaatagaa	gactttggat	ttccttatat	aagtaccttg	180
acagatgact	aacccatttt	tcctatgctt	tacaactatg	atcagtaact	gtaattttt	240
taaaggtcct	cctggacccc	cgggtgaaaa	aggagatcga	ggtcccactg	gagaaagtgg	300
tccacgagga	tttcca				•	316

<210> 143

<211> 339

<212> DNA

<213> Homo sapiens

<400> 143

gacaatacca	aatgaatgaa	cgtgactgtg	ttccaacaaa	actttattta	caaaaacagg	60
gatgggccgg	atgtagccag	aggccataat	ttgccaaccc	ctgatttaga	cgaaggaaag	120
gagcagtgct	tcactgcttt	taaattaatt	ctgtattctc	acaaggccta	cattgaaatg	180

```
gaattatage eteatitit ettagaacet tiatatitig tittaticat atacagggit 240 gicaagetgg acagactati aaagiteaag teteetitga titigetiagi etgatgitta 300 cattigtaag teeatgiace aaegatitaa teatacaeg 339
```

<210> 144 <211> 2018 <212> DNA <213> Homo sapiens

<400> 144 acaagttatc tgtgaatcat aggagaacac atcttacaaa actcatgcac actgttgaac 60 aagctacttt aaggatatcc cagagcttcc aaaagaccac agagtttgat acaaattcaa 120 cggatatage teteaaagtt ttettttttg atteatataa catgaaacat atteateete 180 atatgaatat ggatggagac tacataaata tatttccaaa gagaaaagct gcatatgatt 240 caaatggcaa tgttgcagtt gcatttttat attataagag tattggtcct ttgctttcat 300 catctgacaa cttcttattg aaacctcaaa attatgataa ttctgaagag gaggaaagag 360 tcatatcttc agtaatttca gtctcaatga gctcaaaccc acccacatta tatgaacttg 420 aaaaaataac atttacatta agtcatcgaa aggtcacaga taggtatagg agtctatgtg 480 cattttggaa ttactcacct gataccatga atggcagctg gtcttcagag ggctgtgagc 540 tgacatactc aaatgagacc cacacctcat gccgctgtaa tcacctgaca cattttgcaa 600 ttttgatgtc ctctggtcct tccattggta ttaaagatta taatattctt acaaggatca 660 ctcaactagg aataattatt tcactgattt gtcttgccat atgcattttt accttctggt 720 tetteagtga aatteaaage accaggacaa caatteacaa aaatetttge tqtageetat 780 ttcttgctga acttgttttt cttgttggga tcaatacaaa tactaataag ctcttctgtt 840 caatcattgc cggactgcta cactacttct ttttagctgc ttttgcatgg atgtgcattg 900 aaggcataca tctctatctc attgttgtgg gtgtcatcta caacaaggga tttttgcaca 960 agaattttta tatetttggc tatetaagec cageegtggt agttggattt teggeageac 1020 taggatacag atattatggc acaaccaaag tatgttggct tagcaccgaa aacaacttta 1080 tttggagttt tataggacca gcatgcctaa tcattcttgt taatctcttg gcttttggag 1140 tcatcatata caaagttttt cgtcacactg cagggttgaa accagaagtt agttgctttg 1200 agaacataag gtcttgtgca agaggagccc tcgctcttct gttccttctc ggcaccacct 1260 ggatetttgg ggttetecat gttgtgcaeg cateagtggt taeagettae etetteaeag 1320 tcagcaatgc tttccagggg atgttcattt ttttattcct gtgtgtttta tctagaaaga 1380 ttcaagaaga atattacaga ttgttcaaaa atgtcccctg ttgttttgga tgtttaaggt 1440 aaacatagag aatggtggat aattacaact gcacaaaaat aaaaattcca agctgtggat 1500 gaccaatgta taaaaatgac tcatcaaatt atccaattat taactactag acaaaaagta 1560 ttttaaatca gtttttctgt ttatgctata ggaactgtag ataataaggt aaaattatgt 1620 atcatataga tatactatgt ttttctatgt gaaataggtc ctgtccaaaa atagtattgg 1680 ccagatattt gggaaaagta aattgggttt cctcagggag tgatatcccc ttgcacccaa 1740 gggaaaagat tttctttcta acacgagaag tatatgaatg tcctgaaggg aaaccctggg 1800 cettgatatt tetgtgacte gtgttgeett tgaaactagt cecetaceae eteggtaatg 1860 agctccatta cagaaagtgg aacataagag aatgaagggg cagaatatca aacagtgaaa 1920 agggaatgat aagatgtatt ttgaatgaac tgtttttct gtagactagc tgagaaattg 1980 ttgacataaa ataaagaatt gaagaaacaa aaaaaaaa 2018

<210> 145 <211> 429

<212> DNA

<213> Homo sapiens

#### <400> 145 ggcacgaggg aagctgcccc gtccaggttc atgttcctct tatttctcct cacgtgtgag 60 ctggctgcag aagttgctgc agaagttgag aaatcctcag atggtcctgg tgctgcccag 120 gaacccacgt ggctcacaga tgtcccagct gccatggaat tcattgctgc cactgaggtg 180 getgteatag gettetteca ggatttagaa ataccageag tgeceataet ceatageatg 240 gtgcaaaaat tcccaggcgt gtcatttggg atcagcactg attctgaggt tctgacacac 300 tacaacatca ctgggaacac catctgcctc tttcgcctgg tagacaatga acaactgaat 360 ttagaggacg aagacattga aagcattgat gccaccaaat tgagccgttt cattgagatc 420 429 aacagcctc .

<210> 146 <211> 717 <212> DNA <213> Homo sapiens

<400> 146 gatgaaactt ccggtctcat tgtccgggaa gtgagcattg agatttcgcg ccagcaagtg 60 gaagaactet ttggacetga agattaetgg tgecagtgtg tggeetggag etcagegggt 120 180 accacaaaga gccggaaggc gtatgtgcgc attgcatagg aactcatgac ctgacatcca ttagcagagt catcagagte atctggetge tgtgttgaga atggaccatg ctgggcaagg 240 ggagaagcag gaagaccagt gatgagactg cagctatgag agatgttaag ctactgtaga 300 ttggaagcag tggaggtggt gaggccagga tttcagatat atttaaaagt agagataaca 360 420 gcttttgttg agaccttgga tgtgtgatgt gagagaaaga agagaaagga tgattttgaa agggectaag cetttateca aggatttett teaaatgtet ttagtgaage catteetgee 480 tcacagaggg aggaggctgg gcattccttt ctcaatactt tcagagcagt ttgtccatac 540 ccctaatata gtgcttgtct catttcgaat tatattcact cgtaaaattt gtgtttcatg 600 ccagtgagtt ccatgagatc aagaattcta ttgtacttaa ttttatatct ctcctgctta .÷660 gcacaatace tagagtatea cagatgttta acaattttet tgaattaaaa etgttat 717

> <210> 147 <211> 367 <212> DNA <213> Homo sapiens

<400> 147
ggcacgagat cgattcatgt aaagetggac gtgggcaage tgcacaceca gcctaagtta 60 gcggcccage tcaggatggt ggacgacggc tctgggaagg tggagggcct acctgggatt 120 tgaccagagt ccgcctggct ccaggctctg ccacccacag gaagaagaaa ctacactgac 180 agatgtgaga cagtgttcc ccttcagtct ttgaacaggc tttgtgttt ctaaatgaca 240 ctggataaaa gggaattcat tcaagagctc caaggcttcc ctttccgcc ggcttctgtt 300 gccctggcct gagcagcag cagctggag gggactgaac tgcccctaac cagggttgtg 360 gctggcg

```
<210> 148
<211> 791
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(791)
<223> n = a,t,c or g
```

<400> 148 cgagaccega ccctgggcgt ggtgcatcga ggtagatgca aagatgctgg ccagagcaag 60 tgtcgcctgg agcgggctca agccctggag caagccaaga agcctcagga agctgtgttt 120 gtcccagagt gtggcgagga tggctccttt acccaggtgc agtgccatac ttacactggg 180 tactgctggt gtgtcacccc ggatgggaag cccatcagtg gctcttctgt gcagaataaa 240 actcctgtat gttcaggttc agtcaccgac aagcccttga gccagggtaa ctcaggaagg 300 aaagatgacg ggtctaagcc gacacccacg atggagaccc agccggtgtt cgatggagat 360 gaaatcacag ccccaactct atggattaaa cacttggtga tcaaggactc caaactgaac 420 aacaccaaca taagaaatto agagaaagto tattogtgtg accaggagag gcagagtgco 480 ctggaagagg cccagcagaa tccccgtgag ggtattgtca tccctgaatg tgcccctggg 540 ggactctata agccagtgca atgccaccag tccactggct actgctggtg tgtgctggtg 600 gacacagggc gcccgctgcc tgggacctcc acacgctacg tgatgcccag ttgtgagagc 660 gacgccaggg ccaagactac agaggcggat gaccccttca aggacaggga gctaccaggc 720 tgtccagaag ggaagaaaat ggagtttatc accagcctac tggatgctct caccactgac 780 atggntcagg g 791

<210> 149 <211> 335 <212> DNA <213> Homo sapiens

<400> 149

ggcacgagca aactcggggc tcagcttggg gacgggagtt gatagtcagg tgcctggaac 60
ataatggaga ccgtccatat tggttgaatg agtggatgaa tgaattaatg aatttctttt 120
ctcttaagtc ctgcagctga ttaagtcaca gaaatttctg aataagttgg tgatcttggt 180
ggaaacggag aaggagaaga tcctgcggaa ggaatatgtt tttgctgact ccaaagtaag 240
tgacagcaaa cttctaaagt gggctgtgag gtagggaggg gacacaagcg ttttgaggct 300
cgctgtgtgc cagggagtgt atcattagct cactc 335

<210> 150 <211> 1293 <212> DNA <213> Homo sapiens

```
<400> 150
cgacgcctgt ccctcttaga cttgcagctc ggtcctcttg gcagagaccc cccgcaggag
tgcagcacct tctccccaac agacagcggg gaggagccgg ggcagctctc ccctggcgtg ·
 120
cagttccage ggeggeagaa ceagegeege ttetecatgg aggaegteag caagaggete
 180
tetetgeeca tggatateeg eetgeeceag gaatteetae agaagetaea gatggagage
 240
ccagatetge ccaageeget cageegeatg tecegeeggg cetecetgte agacattgge
 300
tttgggaaac tggaaacata cgtgaaactg gacaaactgg gagagggcac ctatgccaca
 360
gtcttcaaag ggcgcagcaa actgacggag aaccttgtgg ccctgaaaga gatccggctg
 420
gagcacgagg agggagcgcc ctgcactgcc atccgagagg tgtctctgct gaagaacctg
 480
aagcacgcca atattgtgac cetgcatgac ctcatccaca cagatcggtc cetcaccctg
 540
gtgtttgagt acctggacag tgacctgaag cagtatctgg accactgtgg gaacctcatg
 600
agcatgcaca acgtcaaggt gaggcctcgg gggcagggtc cccccatctt ggcagccacc
 660
tgtccagaag cccagtgtgg ggacccactc tcaccaccag ggatccggct gctgaggtgg
 720
ctcaaacctt cccacgtagg aaagagggag agggcaatgc catcaacgag tccaggaact
 780
gggttgagcg ctttacccca agaacagaca cacactgtct gccactgtct agctgttggt
 840
ataaaaccca ctctcaactc tgaacatcag tttcccagtc tgtcaaatgg gagtgtgagc
 900
tacctgccaa aatgcaggga ggcttctggg gaagctcggg gttatgaatg acctctcctg
 960
gtgtttgtta aagaatcaag actgggcatg gtggcccacg cctgtaatcc cagcactggg
 1020
aggccaaggc aggaagatgg cttgagccca ggagtttgag accagcctgg gcaacatggc
 1080
aagacctcat ctctactaaa aattgaaaaa ttagccgggc acagtagcgt gcacccatag
 1140
teccagetge ttgagagget gaggeaggag ggeeacttga geeegggagg ttgaggetge
 1200
agtgagccat gatcacacca ctgcactcca gcatgggtga cagagtaaaa ccctgacatg
 1260 .
 1293
tattgcgggc gctctagagg ataacaagca tac
```

<210> 151 <211> 349 <212> DNA <213> Homo sapiens

<400> 151
ggcacgagcg gcacgagcct tctcctactg cattagcatt tggggaccac cctattgtac 60
aaccaaagca attatccttt aaaattattc aggtaaatga taattaaaat gttttttct 120
atggcttcta agaaaccatt gactaactta ctaacaacta agatgtctgt ttgttttata 180
tgtagtcata aagcagaatt acacatcaag aaagataact tactaaacaa aaacaacaga 240
atttgtagga aggagtgaga aactgaaaca cacaatttac tatcagcttt ttaaacaacc 300
gttaacatgt cagttctgtt tactgattct ttctgaactt aatttccag 349

<210> 152 <211> 324 <212> DNA <213> Homo sapiens

<400> 152
ggcacgagga ccttccttgc tttcagaatt tcacccaggg tctgacaggc ctcaagaaag 60
gagaactagt tatgaaccga ttcatccagg cccatcccca gtggatcatg attcactgga 120
atcgaagcga ccacgtctgg aacaggcttc tgattctcat tatcagggtc acatcactgg 180
cgaatcccta ccaggacgtg tacactagca gctcctcact gtggaatctg atgggcaatg 240

ccatggtgat tacccactat atccgtctta ccccatatgt tcaaagtaaa ctcggttccc 300 tagggaacct gatgccatgt tacc 324

<210> 153 <211> 377 <212> DNA <213> Homo sapiens

<400> 153
ggcacgagaa aagaagaatt cagtgcagaa gaaaattttc tcattttgac ggaaatggca 60
accaatcatg tacaggttct tgtagaattc acaaaaaagc taccaggtat tttttaaata 120
atcacagtta atatttattg agagtttaaa tatgtgccca cagattagat tacctatttt 180
acatacggtg ttttaatttt caaaacattc ctgtgagatc agctctattt tcactattac 240
tttgccaagt attttcacat gtacttattt cactgctatt ctctacaata gtcttgtgac 300
attgagaaag gcaggtctgt tctttgtaaa atgaaaatca tttaatact gatttaaagt 360
aactgtcgaa ctactat

<210> 154 <211> 1224 <212> DNA <213> Homo sapiens

<400> 154 ggtttttttt ttttttcttt tgggaaaggc attggccact ttggacttta ttagcaacag 60 taatgteece tgacataege acaagettgt ageteeaegg eeaggtette eeceaacete 120 acaatggccc cgtgatgcag gcaggcaggc gagtgggggt ctcccctcct tatccacagg 180 240 gccaccgaaa ggcccacgag acggccttgc ccgaggtcac ccagcggagt ggcttgctgg gagecetggg aataacagte ceacacaagg etetetecet eegeagetgg acetgtaege 300 gggggetetg tttgtgeaca tetgeetggg etggaaette taceteteca ecatecteae 360 geteggeate acageeetgt acaceatege aggtatggtg cetgeageag ggaggteeae 420 ccaggggacg tgtaaagggg tcagaaggcc acctcccct acaggcccga gggagcagcc 480 caggaagtgg ccccagcagg agccccagaa gttcctcccc gtgtccctcc tccctggggc 540 cagggccccc tccagcaacc ttgcttccac tggcaggggg cctggctgct gtaatctaca 600 660 eggaegeeet geagaegete ateatggtgg tgggggetgt cateetgaea ateaaaggtg 720 aggacagagt ctgtggccat ggcggggctg tccccacagc gagccctttg gagtctggca 780 etgeceggea etgtgeagga tteatgeegt tggggttetg ggtageateg etgggagtgg gtgggttcag gaggttgagc cactaggcag tcagccccc tgctggcccc tcagggactg 840 ccctggctgg tagaggctac ccaccctgct gccccgctgt taccagctct ggccctggca 900 aggagetgae teaggaaete agggeeagee acaecegeat tggeteageg ettgatggtg 960 aggtggggct gtaggcgggt gtgaaggcac acaaccagga ggccataaaa ctgcctgggc 1020 agctcctcca attgtttaaa agcatgtaca aaatgccaag aggtgatgct acctcctgca 1080 ggacaaaggc cagggaggaa agaagagagc tgggagagat tggcgatact agtctggaac 1140 1200 agataggaaa ctcacagggc tgcccggaga gagcgtgagc tcaccgtccc tggaagtatg 1224 taagcagagc caggagctcg tgcc

```
<210> 155
<211> 345
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(345)
<223> n = a,t,c or g
```

# <400> 155 ggcacgagcg gcacgagatc tgaagaggta tattgcttac agaaagagcg ggagatggta 60 aatcacagtc ttcaagagac ttctgagcaa aacgttattc tacagcatac tcttcagcaa 120 cagcagcaaa tgttacaaca agagacaatt agaaatggag agctagaaga tactcaaact 180 aaacttgaaa aacaggtgtc aaaactggaa caagaacttc aaaaacaaag ggaaagttca 240 gctgaaaagt tgagaaaaat ggaggagaa tgtgaatcag ctgcacatga agcagatttg 300 aaaaggcaaa aagtgattga gcttactggc actgccaggc aagtn 345

<210> 156 <211> 340 <212> DNA <213> Homo sapiens

```
<210> 157
<211> 478
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (478)
<223> n = a,t,c or g
```

<400> 157
gagactccaa gccccagttt cacctcagag gcagagatga ggggtccccc ggtcctgctc

```
etccaggecg ceccaatgga gtgtcctgtt cegcagggga teceggecgg gtccagtect 120 gagectgac ctgaccece ggggcctcat ttcctccggc aggagegcag cttcgagtgc 180 cgcatgtgeg geaaggectt caagegeteg tecacgetgt ceacceacet getcatecac 240 tcagacacge ggccctacec ctgccagttc tgeggcaage gtttccacca gaagtccgac 300 atgaaggage acacctacat ccacacaggt gagaagccgc acaagtgcca ggtgtgegga 360 aaggccttca gccagagetc caacctcatc acccacagac tcagagagaa cccaccatgg 420 tgetgtctcc tgccgacaag accaacgtca aggccgcctg gngtaagggt cgcgcga 478
```

<210> 158

<211> 332

<212> DNA

<213> Homo sapiens

### <400> 158

ggcacgagca gctcaccaac					60
aagtggcagc cagcaccgca					120
cagcagttgc cactccacag	gtaatcagct	caaggttcat	taatctagat	ttttagtata	180
tagtattatt gaatatatat					240
ataatttatg tataactgtt			agattagaaa	attctattaa	300
tttattaatg aattatatct	aattatgtga	ca			332

<210> 159

<211> 868

<212> DNA

<213> Homo sapiens

## <400> 159

```
cccacgcgtc cggaataaag agagaactct gttactattg tttttacatc accaaataat
 60
tatttaatat cgttagctaa gagaagaatt ggctatgaac tgtactttaa caactgacac
 120
aactgcatac aagttataaa gtttaataat ctttatcatc ttggaaaata aatctcttct
 180
tgctaagtat cagtttttaa aaattgcccc atgtattaga tatgtatttt tttaacaaaa
 240
atgttctgtg tattaattat tttgaaataa attttaagtt cacaaaaagc cattacaaga
 300
agtggaaata gcagcaatta cacatggtgc tcttcaggga ttagcctact tacattctca
 360
tactatgatt catagagata tcaaagcagg aaatatcctt ctgacagaac caggccaggt
 420
gaaacttgct gactttggct ctgcttccat ggcatcacct gccaattcct ttgtgggaac
 480
geegtattgg atggeeceag aagtaatttt ageeatggat gaaggaeaat atgatggeaa
 540
agtagatgtg tggtctcttg gaataacatg tattgaacta gcggaaagga agcctccttt
 600
atttaatatg aatgcaatga gtgccttata tcacatagcc caaaatgaat cccctacact
 660
acagtctaat gaatggtgag tattgttaat atatatattg ctcagtgttg aataaatgaa
 720
atgetttttc ataatetgtt atcaaagtga tttaatttca gttaggtaaa atgtatcacc
 780
ttataagata ttaaaataga tgtattttac ccttttaaat atatttattc tttatcatgt
 840
ttccatttca tggcatacgt ataactgg
 868
```

<210> 160

```
<211> 1404
```

<212> DNA

<213> Homo sapiens

```
<400> 160
gegecaegeg eggeetggeg geggeggeea etetaaecag egeaaaatgt eeetqqaaea
 60
ggaggaggaa acgcaacctg ggcggctcct aggacgcaga gacgccgtcc ccgccttcat
 120
tgagcccaac gtgcgcttct ggatcaccga gcgccaatcc tttattcgac gatttcttca
 180
atggacagaa ttattagatc ctacaaatgt gttcatttca gttgaaagta tagaaaactc
 240
gaggcaacta ttgtgcacaa atgaagatgt ttccagccct gcctcggcgg accaaaggat
 300
acaggaaget tggaagegga gtettgcaac agtgcatece gacagcagea acetgatece
 360
caagettttt egacetgeag egtteetgee ttteatggeg eecaeggtat ttttgteaat
 420
gacgccactg aaagggatca agtccgtgat tttacctcag gttttcctct gtgcctacat
 480
ggcagcgttc aacagcatca atggaaacag aagttacact tgtaagccac tagaaagatc
 540
attactaatg gcgggagccg ttgcttcttc aactttctta ggagtaatcc ctcagtttgt
 600
ccagatgaag tatggcctga ctggcccttg gattaaaaga ctcttacctg tgatcttcct
 660
cgtgcaagcc agtggaatga atgtctacat gtcccgaagt cttgaatcca ttaaggggat
 720
tgcggtcatg gacaaggaag gcaatgtcct gggtcattcc agaattgctq ggacaaaggc
 780
tgttagagaa acgctagcat ccagaatagt gctgtttggg acctcagctc tgattcctga
 840
agtetteace taetttttta aaaggaceca gtattteagg aaaaacecag ggteattgtg
 900
gattttgaaa ctgtcttgta ctgtcctggc aatgggactg atggtgccat tttcttttaq
 960
tatatttcca cagattggac agatacagta ctgtagtctt gaagagaaaa ttcagtctcc
 1020
aacagaagaa acagaaatct tttatcacag aggggtgtag gccgtgagtt ttaggtgaat
 1080
ttatgtggtt ccctgcttga aaaccttccc cctctcccag gttcggttta gagaactttg
 1140
cccacaggtc ttctggggac cccagaggtg tctgtgctga caaggcgact tcagattcca
 1200
tactgagatc gttcccaggc tggcgtctct ggggttttta aggctggctg gagaagacag
 1260
tgggaagggt gccccgtctg acacccctgg ggttgctgag ggaacggttg gagtggggat
 1320
cggcctgcga aaggatactg tgaaatcact aattaactaa taaacctgtc tcaagttgag
 1380
gatttgaaga aaaaaaaaa aaag
 1404
```

```
<210> 161
<211> 562
<212> DNA
<213> Homo sapiens
```

```
<400> 161
cccacgcgtc cgggagattg gaagtcttct ataacgggac ctggggcagc gtcggcagga
 60
ggaacatcac cacagccata gcaggcattg tgtgcaggca gctgggctgt ggggagaatg
 120
gagttgtcag cctcgccct ttatctaaga caggctctgg tttcatgtgg gtggatgaca
 180
ttcagtgtcc taaaacgcat atctccatat ggcagtgcct gtctgcccca tgggagcgaa
 240
gaatctccag cccagcagaa gagacctgga tcacatgtga agatagaata agagtgcgtg
 300
gaggagacac cgagtgctct gggagagtgg agatctggca cgcaggctcc tggggcacag
 360
tgtgtgatga ctcctgggac ctggccgagg cggaagtggt gtgtcagcag ctgggctgtg
 420
getetgetet ggetgeeetg agggaegett egtttggeea gggaactgga accatetggt
 480
tggatgacat gcggtgcaaa ggaaatgagt catttctatg ggactgtcac gccaaaccct
 540
ggggacagag tgactgtgga ca
 562
```

<210> 162

```
<211> 1812
<212> DNA
<213> Homo sapiens
```

```
<400> 162
gccttgcttg gaggcaaagc gtcctccact ctgtcctcag gactcagctg tgtggccttg
 60
gatttctttt tgcgggactt gcgccctttg ggtgccaacg gtccaggatc cccctggaac
 120
cagatggtac ggccatgccg gtcctgcagg gagctcatgc ctggcatgcc atagcagcgc
 180
agccaggete gaaaggeage aaagteetee teecegetet etgaceegta geecetgeee
 240
cccaactgga ccacttcctt gggcactgag tgacatagct ccagcaggtc tggattctgc
 300
agettggtcc ttatettetg getcagggtc agetcegggc teggeetgtg etgetgeagg
 360
gcctccagga ccgagcgggc cttctcaaag ggggggatct tcagccggta caggatctct
 420
gcccgcagat agttgccaat gccattgaag aacctctggt ccaggagggc ctcgcagatg
 480
ggccggtcaa aggccttatc cgctaggttt cgtagcacat tctccctgaa ctgctggtac
tectgeaaga cacagggeee geggeeegge tgecaettte eeccaaggte ceageggeeg
 600
aaccggcgga tgtccacgaa acatagggcg agccgggggc caggcggggc cgtgtaaaag
 660
cgcaggtggg catggcgtgg cagctectcg cggggcacca getgaaaaga gccggacatg
 .720
 780
ccgaagcgga agaccagggc cagtggctcc tgttggggct gggccccagg cagagggctc
 840
agtatcagge geageteett geegegget gaagetgaga tgeggtagge aetgetetea
 900
aagggcacct cagggttgcg gctgacagag gactteteca cgcagccgcc gaacaccagc
gccctgcagg cctcattcac aaactggctg gccaggtgca gctcggggcc ctcaggcatc
 960
 1020
ctgagggagg gtggcagagt cctggctggg aggtggcgga agaacctgac ttcccactgc
ctggcgccgg cgagatgcgg gggcaggtct gaggccccgg gtcgccgctg tctctgcggt
 1080
tgggggaagt cacccagcta gcgtgggaca gggtcggcac ccccagcagg aaacagcagc
 1140
gacgagccag agcggagtcg cctgcagctg cgcgcaggac gtgcacaggt gcgcggtacg
 1200
cacaggeeet agggaeeegg tggggatett aageaeeaae gaacagteag aeetaaetea
 1260
taaacaaca tcatcacggc ctgccctgtc agaagcgcag ccaagcaaca acaacaacaa
 1320
aaaaaggcga ggaggtagac ccacttgaga tggttctgtt gcggagagtc tctgaaatca
 1380
gaaagegeca gteegeaaaa aegaggaaae eegaegtgte eggeggaagg aacegecagt
 1440
acaaaggccc tgaggcgaga aagagattgg tcactgaaag aactcaaaga agtcctgtgt
 1500
ggctggagta tagctgcggg ttagtgctgg caggtgaaga cagagaagca aacccaggtc
 1560
aggteeggtt gggeeteggg agggeeteeg tgtggagtet geactteatt etaagtgtat
 1620
acctaaccca togocacgat ttoccotoot toacactaco otgotacgto toottattag
 1680
gcgtaataaa attatgtggc tttgtaagaa attggttttt agagatgcat gttaaagtat
 1740
tgggtatgaa atgtcatgat ttgtctaatt tactttaaaa tacttctgcc ataataaatg
 1800
 1812
aatagaatta ac
```

```
<210> 163
<211> 333
<212> DNA
<213> Homo sapiens
```

. : :-

```
<400> 163
agctgacgtg gtctgcctgt tattggagag atatattaag aatccagttg tggattgcag 60
ctgatattct tttgcgaatg cttgaaaaag cacttcttta tagtgaacac cagaacatca 120
gcaacactgg actgtcatcc caaggcttat tgatatttgc ggagttgatt cctgccatta 180
agaggacgtt ggctcgcctt ctcgtgatca ttgcgagcct ggactatggc attgagaaac 240
ctcatttagg aacaggcatg caccgtgtga tcggactgat gctctatac ttaatctttg 300
caaatgctga aagcgtgatt agagtcattg ggg 3333
```

<210> 164 <211> 134 <212> DNA <213> Homo sapiens

<400> 164
ttttttttt gagatggagt ctcgctctgc tgcccaggct ggagtgcagt ggtgcaatct 60
tggctcactg caagctctgc ctcccaggtt cacgccattc tcctgcctca gcctcccgag 120
tagctgggac taca 134

<210> 165 <211> 839 <212> DNA <213> Homo sapiens

<400> 165 cctgagcccg gcgagcagga gaggaggtct tccgggccgc ggcctccgag cgcgcgggat 60 ttgcagaact taatatgaat gtgaagaact tgcaaagaaa cttgaaaaca gccaaaggga 120 180 tggcatatca agaaataaat tggccttggc agaattgtat gaagatgaag tgaagtgcaa 240 atettecaag tetaatagae etaaageeae agtetteaag ageeeaegga caccacetea 300 acggttttac tcaagtgaac atgaatacag tggattaaat atagttcgac cttcaactgg 360 gaaaattgtg aatgaacttt tcaaagaggc aagggaacat ggggctgtcc ctctgaatga 420 agecacaaga getteaggtg atgataaate taagteattt acaggtggag gatacagatt gggtagttct ttttgtaagc ggtctgaata tatctatgga gaaaatcagc tgcaagatgt 480 540 tragattttg cttaaartgt ggagraatgg tttragttta gatgatggag aattgagarr ttacaatgaa ccaacaaatg ctcaatttct ggagtctgtt aagagagggg tgactctcat 600 660 tgcatgtatg cctgaaattc agcaacttat gttagaaatc ttttaatgtg gcattactgc 720 tggcagaaga tttcaaaagg ttagtttgaa gttataattt gtgaaagtaa actcagatat tragtgetet carceatrea aagaacattg taacttarea getettettg ctaaaggatg 780 aggaatcaag tgattttgct atgataataa aagcttttct gtgttatgat taaaaaaaa 839

<210> 166 <211> 1256 <212> DNA <213> Homo sapiens

tgacccggag	cgcgatcact	tccgcaagat	ctgtgaggaa	tatatcacgg	gcaagtttga	360
		acttgaatgc				420
		agctgctggg				480
		agacggacca				540
		ccaccttcat				600
		atgagaagat				660
		cagactacgg				720
		gcaagtggct				780
		tggcctacct				840
		tgcaggccat			and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	900
		ccaccctggt		_		960
		agctcgccaa				1020
		ttatagacat				1080
		tggtgaaagc				1140
		tcctggcact				1200
		aggccctgat				1256
222200000	33-33-33	-5555				

<210> 167 <211> 892 <212> DNA <213> Homo sapiens

<400> 167 atgtggacag cgtgggtggc ggcagcgagt ctcggtccct ggactcaccc acttccagcc 60 caggegetgg cacgaggeag etggtgaagg ettegteeae aggeaetgag teeteagatg 120 actttgagga gcgagaccct gacctgggag acgggctgga gaatgggctg ggcagcccct 180 240 tegggaagtg gacactgtee agegeggete agacceaeca getgeggega etgeggggee cagccaagtg ccgcgagtgc gaagccttca tggtcagcgg gacggagtgt gaggagtgct 300 360 ttetgacetg ecacaagege tgeetggaga eteteetgat eetetgtgga cacaggegge 420 teccageeg gacaceeett tttggggttg actteetgea getaceeagg gactteeegg 480 aggaggtacc ctttgtggtc acgaagtgca cggctgagat agaacaccgt gccctggatg 540 tgcagggcat ttaccgggtc agcgggtccc gggtccgtgt ggagcggctg tgccaggctt 600 tegagaatgg cegagegttg gtggagetgt eggggaaete geeteatgae gtetegagtg toctcaageg atttcttcag gagetcaceg agecegtgat cecettecac etctacgaeg 660 cetteatete tetggetaag acettgeatg cagaccetgg ggacgaccet gggaccecca 720 gccccagccc tgaggttatc cgctcgctga agaccctctt ggtacagctg cctgactcta 780 840 actacaacac cctgcggcac ctggtggccc atctgttcag ggtggctgca cgatttatgg 892 aaaacaagat gtctgccaac aacctgggca ttgtgtttgg gccgacactg ct

<210> 168 <211> 394 <212> DNA <213> Homo sapiens

<400> 168
ggactccatg tcatctctct gcacagcgct gatggtcgtc actgggagga tcccctttct 60
gagcttgaca gtgaacgtgt gtctgcattt cttgtcactg agaccctggt gttctatttg 120
ttctgtctcc ttgcagatga aaccgtcgtg ccaccagatg ttccaagcta cctctcttct 180

```
caggggaccetttctgaccgacaagaaacegtggtcaggaccgagggtggccctcaggceaatgggcacattgagagcaatggtaaggcetcagtaaccgtgaagcagagctctgctgtgactgtgtctctgggtgctccaggtctttacagggcaggtacctggcattagatgggcaaacttggtgaagccacgcgtccg
```

<210> 169 <211> 550

<212> DNA

<213> Homo sapiens

<400> 169 ctgtgacacc teegggeage eeggeacttg ttgeteecac gaeetgttgt catteeetta 60 accoggettt eccegtggee eccegeetee teeeggette geteetttte atgtgageat 120 ctgggacact gatctctcag accccgctgc tcgggctgga gaatagatgg ttttgtgaaa 180 aattaaacac cgccctgaag aggagccccg ctgggcagcg gcaggagcgc agagtgctgg 240 cccaggtget gcagaggtgg cgcctccccg gcccgggacg gtagccccgg gcgccaacgg 300 catgacagac teggegacag etaaegggga egacagggac eeegagateg agetetttgt 360 gaaggetgga ategatggag aaagcategg caactgteet tteteteage geetetteat 420 gatcctctgg ctgaaaggag tcgtgttcaa tgtcaccact gtggatctga aaagaaagcc 480 agetgacetg egeaacetag eeceeggaae geaceegeee titetggeet teaactggta 540 cgtgaagaca

<210> 170 <211> 422 <212> DNA <213> Homo sapiens

<400> 170 cttggattca gtgatggaca ggaagccagg cctgaagaaa ttggctggtt aaatggctat 60 aatgaaacca caggggaaag gggggacttt ccgggaactt acgtagaata tattggaagg 120 aaaaaaatct cgcctcccac accaaagccc cggccacctc ggcctcttcc tgttgcacca 180 ggttcttcga aaactgaagc agatgttgaa caacaagtgc tctacaagta tagaaagaag 240 ccttcctctt cccaccgtcc ccagacacca cataatggaa aaagcaagaa ttttctgcat 300 aagcaaggcc ttaaaaaaaa aaaagccagc ctctgatggg acttttttcc tgccaaaaat 360 cccactggtc cactgtcgca atttttacaa aaggccacga taaaagagta aggcccattt 420 422

<210> 171

<211> 1042

<212> DNA

<213> Homo sapiens

```
eggacgegtg gggteatgga getggeactg eggegetete eegteeegeg gtggttgetg
ctgctgccgc tgctgctggg cctgaacgca ggagctgtca ttgactggcc cacagaggag
 120
ggcaaggaag tatgggatta tgtgacggtc cgcaaggatg cctacatgtt ctggtggctc
 180
tattatgcca ccaactcctg caagaacttc tcagaactgc ccctggtcat gtggcttcag
 240
ggcggtccag gcggttctag cactggattt ggaaactttg aggaaattgg gccccttgac
 300
agtgatetea aaceaeggaa aaceaeetgg etecaggetg eeagteteet atttgtggat
 360
aatcccgtgg gcactgggtt cagttatgtg aatggtagtg gtgcctatgc caaggacctg
 420
gctatggtgg cttcagacat gatgggtctc ctgaagacct tcttcagttg ccacaaagaa
 480
ttccagacag ttccattcta cattttctca gagtcctatg gaggaaaaat ggcagctggc
 540
attggtctag agctttataa ggccattcag cgagggacca tcaagtgcaa ctttgcgggg
 600
gttgccttgg gtgattcctg gatctcccct gttgattcgg tgctctcctg gggaccttac
 660
ctgtacagca tgtctcttct cgaagacaaa ggtctggcag aggtgtctaa ggttgcagag
 720
caagtactga atgccgtaaa taaggggctc tacagagagg ccacagagct gtgggggaaa
 780
gcagaaatga tcattgaaca ggtaaaaagg ggaaacactc agaggcgagc ctgcttggct
 840
ttttctggtg ggtacagggc ccatggttgg tgttgtcaaa cttggagtct acactgaggc
 900
tccccacata tctgcaaatg attgcatgct ggataataaa tctcttgggt ctaagcaqtg
 960
atgtagtggc tccttacaga gtcagaaagc cacccaggcc tgcaagactt gcttgtcctt
 1020
cactaaatgt aaaaattcta tt
 1042
```

<210> 172 <211> 890 <212> DNA

<213> Homo sapiens

```
<400> 172
aaagtagtag gttggtgcaa acgtagtaat aaattggttt ggccctgttt tcatagaact
 60
atagaggttg gacctttgtc cccttccaga tgcctacaaa caaactgatg tttttgattt
 120
tttttttcttt ttaaattttg gttgccacta attcttataa aaatcctcac acaaggctgg
 180
gctcagtggc tcacacctgt aatcccagca ctttgggagg ctgaggcagg cggatcacga
 240
ggtcaggaga tcgagaccat cctggctaac acggtgaaac ccccgtctct actaaaaata
 300
caaaaaaatt agccgggcgt ggtggcgggc gcctgtagtc ccagctactc gggaggctga
 360
ggcaggagaa tggcgtgaac ccgggaggca gagcttgcag tgagccgaga tagcgccact
 420
gcactccagc ctgggcgaca gagcaagact ccatctcaaa aaaaaaaaa agtgataata
 480
ctgtaatecc ageactttgg gaggeegagg caggeggate aegaggteag gagategaga
 540
ccatcctggc taacacggtq aaaccccqtc tctactaaaa atacaaaaaa ttagctgggc
 600
gtggtggcgg gcacctgtag tcccagctac ctgggaggct gaggcaggag aatggcgtga
 660
acccaggagg cggagettgc agtgagegga gatcatgeca ctgcacttca gcctgggcga
 720
780
atagaaaaat aataatagtt ttaagcacct ctaaagtaca gatattgtgc caagcaattt
 840
atgtgaattg attagattga taactctaaa aatagtttcc ctaatcaact
 890
```

<210> 173 <211> 1922 <212> DNA

<213> Homo sapiens

```
<400> 173
tttctttctt catccaaaat agtagagatg tctttcccac gatgacctgt gatggtggag
atatetttte eteggeeaae teeteeteea teggettett tgatgteate tteaataget
 120
tcatcaattg cttcatcaaa ctcatcaaat ctgtagctta tacatttcct tgttcttgtt
 180
gaceteettt caaagcaagt ttgctttgga ttttttttgaa tcttttttct tttcttcttq
 240
atcttcagaa aagtctggct ctttgtggag gaatgatgtt ttcaatactg gataccaaca
 300
tacaccaage gttettttee ttegtteegg caacgetett teettettta aggeaacate
 360
ccaaatcctg gaaactggtc ctctaatttt tccaacaaga gcaagtttaa tgttgggcaa
 420
aaggtggggc aagaacccat cctcccatct ggggatggat catcagagga ggggcgaaag
 480
gcagggcagt atggtatcca ctatcgcaag agtcacacag aagaattagc tcaggatggt
 540
ttggaaggec acattttttg catggttcat catcatctgc taggatgget tettcacttt
 600
cettttette etectettet gaagetgeag atgatttte actgeeagae cetteaettt
 660
catcattgct ggaatatttc catctgccac gtgtccgaga accagtccat cgaactttgc
 720
ctttgggttt taccttgctt actttagaat ttgtatcttt ctctgatttt ttcaaaattt
 780
cctttttgtc agttttttgc aaagctgttg actcttcttc cacctcatct tctccttccc
 840
ctetttttt atcagettte tgatetetga teteageeae ttttgeagtg ggtetagata
 900
ttettggaga tettettaaa gtacgaecca catttgtttt eteetettee ttttetgtet
 960
tetettgett gttttetggt tetagaactt tggggggaga atcgggette tttttecqae
 1020
ttgatatect gattgttaat ttgatgeet ettetgeet tteagaggtt atetetgtat
 1080
tttctgaggc agtggtttct tcttcaggaa ccaacttata tttgaatttg cttttttgca
 1140
tagaaccctt tgtctcagaa ggctcctcta tgccagaggt ctgggcattg tccagattat
 1200
ccattlctac ctttgtgaac tcagaatcct cttttagggt ttctaggtct actttttca
 1260
cagactggcc accaacagta cttgtactct ggcattctac cacttcttt tctgaggcta
 1320
gtttctcaca gtggtcaatg atattagatg gtggagaagt ttcagctgcc tcaggagage
 1380
caggetttte tgactetaga gtactetttg gaacttette tggtattgga etcaatettt
 1440
gtgcgtcctt atcaagaaaa gtctttttgg acttctctaa cttttcaaga cattctagga
 1500
ttggtgggcg cttatccttc ttagttttgg gagacttctc ttcacctttc atggtacacg
 1560
actoggtgga agataaagca gtttttgaag agagatottt tgccatotca gaagaatcaa
 1620
gagaagtttc catttctgga ggatcgggtt cctctatttg tgctttttga ctatqgatct
 1680
ctaagactga tattgaacta tctgcatctt tcctcaaagg ggctgtttct ttctcaagct
 1740
caccigittit catacitiggi taigacagaa titaaqqact cigiticcatt tccctccqtq
 1800
atgatatttc tgtccttagg ggggctatag ctctcttcct ttgtctcata aaactttqtc
 1860
totacttggt totgtottaa aatttggago taccotttca toactaactt otcoatttac
 1920
ca
 1922
```

```
<210> 174
<211> 537
<212> DNA
<213> Homo sapiens
```

<400> 174 aaaagcggcg cggctcgttc aagatggcgg agctcgacca gttgcctgac gagagctctt 60 cagcaaaagc ccttgtcagt ttaaaagaag gaagcttatc taacacgtgg aatgaaaagt 120 acagttettt acagaaaaca eetgtttgga aaggeaggaa tacaagetet getgtggaaa 180 tgcctttcag aaattcaaaa cgaagtcgac ttttttctga tgaagatgat aggcaaataa 240 atacaaggtc acctaaaaga aaccagaggg ttgcaatggt tccacagaaa tttacagcaa 300 caatgtcaac accagataag aaagcttcac agaagattgg ttttcgatta cgtaatctgc 360 tcaagcttcc taaagcacat aaatggtgta tatacgagtg gttctattca aatatagata 420 aaccactttt tgaaggtgat aatgactttt gtgtatgtct aaaggaatct tttcctaatt 480 tgaaaacaag aaagttaaca agagtagaat ggggaaaaat tcggcggctt atgggaa 537

```
<210> 175
<211> 659
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(659)
<223> n = a,t,c or g
```

```
<400> 175
totototttg coagtaatgt tggaagtgga catttoattg gootggcagg gtcaggtgct
 60
gctacgggca tttctgtatc agcttatgaa cttaatggct tgttttctgt gctgatgttg
 120
180
eggaageget teggtggcat cagaateeee ateateetgg etgtaeteta eetatttate
 240
tacatcttca ccaagatctc ggtagacatg tatgcgggtg ccatcttcat ccagcagtct
 300
ttgcacctgg atctgtacct ggccatagtt gggctactgg ccatcactgc tgtatacacg
 360
gttgctggtg gcctggctgc tgtgatctac acggatgccc tgcagacgct gatcatgctt
 420
ataggagege teacettgat gggetaeagt ttegeegegg ttggtgggat ggaaggaetg
 480
aaggagaagt acttcttggc cctggctagc aaccggagtg agaacagcag ctgcgggctg
 540
eccegggaag atgeetttea tatttttega gateegetga catetgatet eccegtggeeg
 600
ggggtcctat ttggaatgtc catcccatcc ctctggtact ggngcacgga tcaggtgaa
 659
```

```
<210> 176
<211> 1033
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(1033)
<223> n = a,t,c or g
```

```
<400> 176
cccacgcgtc cggatgtgtg ctcacacttg ggggacctga ttggggcttc agaccttggg
 60
ggcctgtccg cagggtctcc tccatccttc ttgatttgcc tgtcattgag gctgcccgct
 120
ctgggcgcca ttccccagcc taacacctct tctcagtctt tccttgcagg tccctggagt
 180
ccaggccttg gggcagtgaa gaaaccgtgg ggaggggcat gagatgccag tccccaaagt
 240
cettgggage cettgtggge caagtcattg taggacacac cetetcetgg geattgctga
 300
 360
ggtcacccag tgagcctagg ctccccctc ctcccatccc cagcctgggg gaaccttcag
 420
egteteteet eeetgtagge eeeggeteag etteeeagga aettttgttg gtgggtaeta
gtagggtaag gcagttette ccateatgag ggagacettg ggagacette attaccaaat
 480
 540
ccattgctgc cccgaccttc ctgggactga tctgggtcac cctggtctcc tgatcttgga
 600
gaagtcaagt tettateeca gaettgagag gttacaagee tecaggtete tggcaaagtg
tggagatgat ggacagccat ttgtacacac accagccagt cccttagcat atctctcttg
 660
gttttgtete aggtetgeet cagecacete cetgaegetg teccaetgtg tggatgtggt
 720
gaaggggett ctggatttta agaagaggag aggtcactca attgggggag cccctgagca
 780
gcgataccag atcatccctg tgtgtgtggc tgcccgactt cctacccggg ctcaggatgt
 840
getgeageet cetggeeact ggaggggetg accgeetgat ceaectetgg aatgttgtgg
 900
gaagtcgcct ggaggccaac cagaccctgg agggagctgg tggcagcatc accagtgtgg
 960
actttgaccc ctcgggctac caggttttag cagcaactta caaccaggtt gcccagtttt
 1020
ggaaggtngg gga
 1033
```

```
<210> 177
<211> 335
<212> DNA
<213> Homo sapiens
```

<400> 177
gtcaaaaacg atttcctagc aactgtggcc gtgatggaaa actgtttctt tggggacaag 60
cacttcatat catcgcaaaa ctcctgggta agtggagaag attgggaatg gtatttttt 120
ccttgttatt aagctattag aaataaatat gcctttgctg gcacataata gtactttggt 180
acaacaggat atcctatgga gtttaaaaat aagtatttaa aatataacaa atctgtatta
gtccattctc atgctactaa taaagatata cccaagactg ggtaatttat aaaggaagga 300
gttttaatgg cctcacagtt ccgtcgacgc gggcg
335

```
<210> 178
<211> 556
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(556)
<223> n = a,t,c or g
```

e de san

```
<400> 178
gttcacgtct gcagcagtaa gatgggagct ttgtccacgg agcggctaca gtactacact
 60
caggaactgg gggtccggga gcgcagtggc cacagcgtgt ccctcatcga cctctggggc
 120
ctccttgttg agtatctcct gtaccaggag gagaaccctg ccaagctgtc tgaccaacag
 180
gaggeggtec gecagggtea gaaccettae eccatttaca ecagtgteaa egteegeace
 240
aacttgagtg gggaagattt tgcagagtgg tgcgagttca cgccctatga ggttggcttc
 300
cccaagtacg gggcttatgt tcccaccgag ctcttcggct cagaactctt catgggacga
 360
ttgctgcagc tccagcctga accccggatc tgttacctgc aaggtatgtg gggcagcgcc
 420
 480
tttgccacca gcctggatga gatcttccta aagaccgccg gctcgggcct cagcttcctg
 540
gagtggtaca gaggcagtgt gaatatcaca gacgactgcc agaagcctca gctgcacaac
 556
ncctcgacgc gggaat
```

```
<210> 179
<211> 631
<212> DNA
<213> Homo sapiens
```

```
<400> 179
gaatttetgg gtegteecac gegteecgea aaggatgagg gaaacgatga gggaaaggat
 60
gagggaaagg atgagggaaa ggatgaggga aaggatgagg gaaaggatga gggaaaggat
 120
gagagaaagg atgagggaaa ggatgaggga aaggatgaga gaaaggatga gggaaaggat
 180
gagggaaagg atgagggaaa ggatgaggga aaggatgagg gaaaggatga gggaaaggat
 240
gagggaaagg atgagggaaa cgatgaggga aaggatgagg gaaaggatga gggaaaggat
 300
gagggaaagg atgagggaaa ggatgaggga aaggatgagg gaaacgatga gggaaacgat
 360
 420
gagggaaacg atgagggaaa ggatgaggga aaggatgaga gaaacgatga gggaaaggat
gagggaaagg atgagggaaa ggatgaggga aaggatgaga gaaacgatga gggaaaggat
 480
gagagaaagg atgagggaaa ggatgaggga aaggatgagg gaaaggatga gggaaaggat
 540
gagggaaagg atgagggaaa cgatgaggga aaggatgaga gaaaggatga gggaaaggat
 600
gagggaaagg atgagggaaa ggataagtaa g
 631
```

```
<210> 180
<211> 469
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(469)
<223> n = a,t,c or g
```

```
<400> 180
ggcggggctc ntttgagacc tgatgaccat cattacgccc agcttggcac gagggggagg
 60
acttcagcta cggcctgcag ccctactgcg ggtactcctt ccaggttgtg ggggagatga
 120
teeggaaceg ggaggtgetg cettgeeceg atgaetgtee egeetgggeg tatgeetea
 180
tgatcgaggg ctggaacgag ttccccagcc ggagggcccg ctttaaggac atccacagcc
 240
ggetecgage etggggeaac etttecaaet acaacagete ggageagace teggggggea
 300
gaaacaccac gcagaccage teectgagea ccageccact gtgcaatgtg agcaacgece
 360
cctacgtggg gcccaagcag aaggtcccgc cctttccaca gacccaggtc atccccatga
 420
agggccagat cagacccatg gtgcccccgc cgcagctata cgtccccgg
 469
```

<210> 181 <211> 453 <212> DNA <213> Homo sapiens

```
<400> 181
caggaattcc gggcgccacc cacgcgttcg atggatcctg gaagagcgca agcgggtgat
gcaggaggcc tgcgccaagt accgggcgag cagcagccgc cgggccgtca cgccccgcca
 120
egtgteeegt atettegtgg aggacegeea eegegtgete taetgegagg tgeeeaagge
 180
240
egacatecag cacaacaceg tecaetatgg cagegetete aagegeetgg acacettega
 300
cegecagggt atchtgeace gteteageac ctacaceaag atgetetttg teegegagee
 360
cttcgagagg ctggtgtccg ccttccgcga caagtttgag caccccaaca gctactatca
 420
cccggtcttc tgcatggcca tactggcccg gta
 453
```

<210> 182 <211> 377 <212> DNA <213> Homo sapiens

<400> 182
cataatgtat agtatttete etgecaacte tgaggaagge eaggaacttt atgtetgeae 60
agteaaggat gatgtgaact tggatacagt actteteeta ecetttttga aagaaatage 120
agtaageeaa etggateaae tgageeeaga ggaacagttg etggteaagt gtgetgeaat 180
cattggteae teetteeata tagatttget geageacete etgeetgget gggataaaaa 240
taagetaett eaggtettga gagetettgt ggatatacat gtgetetget ggtetgaeaa 300
gageeaagag etteetgetg ageeeatatt aatgeettee tetategaea teattgatgg 360
aaccaaagag aagaaga

<210> 183 <211> 621 <212> DNA <213> Homo sapiens

<400> 183 ctcatcctta aagtgacaga gtaaattaac tctaaggccc catccaggac tcaagctgtg 60 tgattttaca aaaatgaaaa ttatattaat aatcccattg taaaatccca aaagaaagtc 120 aagagactag cagaaagaca ggtgggtgat gggatgtcct ggacagagcc tggatcatga 180 ggtccccatg tagtgcttgt actacgcaga tgtttcctct tgagctattt taaaqqtqtq 240 gaaaaagcca aagcaatgcc ctctccacgg atactaaaga ctcacctttc cactcagctg 300 ctgccaccgt ctttctggga aaacaactgc aaggtaagat accaacagct ccctgtgaca 360 gaagggaaag taagccaacc aaagcgagtc ctgcagaccc caacgcagag cattcgtgat 420 cacctttgcc tctccactgt ctctgatgct taccagcaaa gagaaaacat aaagttctac 480 attcagcagg acattcacct gaacagtttc aaataggaca tgaaggcagg atccagattg 540 aatgtttgga gggaactaga gacatgggga ggcagtgagt gcagtaagcg tagctgtgaa 600 atgaagggga gaagatggtg g 621

<210> 184 <211> 415 <212> DNA <213> Homo sapiens

<400> 184
accgggacga cccacgcgtc cgggaattta attctattat atatgcagac tttctaaaga

PCT/US00/35017 WO 01/53455

```
agataaagct tttttatggg agaaacgtta ttattgcttc aaacacccaa attgtcttcc
 120
taaaatatta gcaagcgccc caaactggaa atgggttaat cttgccaaaa cttactcatt
 180
getteaceag tggcetgeat tgtacceact aattgcattg gaacttettg atteaaagta
 240
agtcaaatac atttatttgc tcttgtttta ttgtcagttt ttccagtaag gtatgttgcc
 300
agaagtattt cctttccttt taacatgaaa gcaattcaat ataatccaaa tgtgtaaatg
 360
tatatttata caaacatatc ttctgcattg aagttgtcaa taaagcattg catgt
 415
```

<210> 185 <211> 359 <212> DNA <213> Homo sapiens

<400> 185 ggaaaatgat gatttgaggt ttatttgaaa tacaacaatg tccaatagga aaacactgca 60 actttettea ggtgttgaga aateeaatag agaeetetge ttgteteete etttggeaag 120 agctccaagg ggagagagag gatgggccac cacgatgaat actacaggct gcggggaagg 180 ataaccctag tccagaccat tcctacaaaa gaaatgggga atccgaaagg aaaaggaaga 240 aatctcacta gcacatgtca aagagccagg agaggcacaa ttcaccaagc agaggaagaa 300 atagtgaccg cagcgggggc cggtgcagcc gcagtgataa cggtcggagc cgttacagg 359

<210> 186 <211> 1616 <212> DNA <213> Homo sapiens

<400> 186 ggaggttgeg geggeggetg eggegeagee eggggeggeg ggtgggaaga ggaetaecag 60 aggggcctgc gggagaccca gggtcggacc cataggagtc ctgtcgtcag gacctccttg 120 ateggtette tgettgggtt eteggtgaag gaggagette ggggtgtegg etgggetgeg 180 cggactcctc ttgggatccg atgatggatc ccacccggtg atcgggaatg gggttacaat 240 gcagtgaggc ggaaaggctc tcgccggggc acagaaagat ccccagggcc gcaaggcgtg 300 ctgtcgcctg caaaggcact gacccacgag cccactgcct ccctccttcc tgggtggagc 360 aggggeetge etteatetee aaggeeeggg ggeteeggea tetegaegeg getteeggeg 420 acacgggcaa agagagacag aggctagtcc gagccggagc cagtgtgacc acacgtggca 480 etgaegteee eeaagageae atgeagtgag cetgtgtete tgaggeegta gtgggegaeg 540 acgagacgga cagtgatgtc caggcctgcg cccgggggcc actggagacc tgcccctcaa 600 agcggaggaa acgccaagct cacctgaaaa cctgcgagac agggcctgtg cacgagtcca 660 gtactcctac ttcgccaagt ctcagggacc catccccgag caacggtggc ggcgcagaga 720 agagcacggc gccggcgcag gtgcagagag acaggaggct gatgggggga agttgaggca 780 cctggggcag agaaaaaat gcattgccaa gaggtttctg ggtcatctac tgacgaaaat 840 gtottoccat cagocottge gotggtocco agggaccotg goatcogtog ttggogocca 900 gggtgcgcgt cgggccacta ggggtacccc aactcggaca gaaggcccat gagttgaatt 960 1020 tgaagtttgt gggaatagag gtgaggcacc aggggcagaa aaaaaacagg agacctcgcc tcagacaagc ggggcctggg tcccccatgg atqaaagtgc cttcccatta tgctgtaccc 1080 tgggcagagt ggacagtgac gaccctggtt cgagcccagg gtgcgcttcg ggaccgcttg 1140 cggttaccag aaagcgaaca aatggtecat gagcggaagg tgaggcacct gaggcagaga 1200 aagtaaagaa acgcgccgcc gagaagcagt gcctgggtcc ctcacggagg aaattgtctt 1260 ctccttagcc cgttcgcttg gcagtgaggt ccctggcgtc cctggtttga tcccagggta 1320

```
cgcctcgggc cactagtgtt accccaaggt gggcagaaag cccataaggg gaaggcgagg 1380 cacctggggc agagaaaaa aaaaacttcg ccgcaaagaa gcgcggcctg attccccacg 1440 gacgaaagtg tcttcccatc agtccctgca ctgggacccg gggaccctgg tgtccctggt 1500 tcgagctcag ggtgtgcctc agccgctacg tgcaccccaa ggggagcttt gggagcccaa 1560 aagccaataa gggaaagtaa tttttaaggc ccccagtggt gaggcccctg tcacag 1616
```

<210> 187 <211> 916 <212> DNA <213> Homo sapiens

<400> 187 ttttgataag aggcaacatg aagcaagaat ccagcaaatg gagaatgaaa ttcactattt 60 gcaagaaaat ctaaaaagta tggaggaaat ccaaggcctt acagatctcc aacttcagga 120 agctgatgaa gagaaggaga gaattctggc ccaactccga gagttagaga aaaagaagaa 180 acttgaagat gccaaatctc aggagcaagt ttttggttta gataaagaac tgaagaaact 240 aaagaaagcc gtggccacct ctgataagct agccacagct gagctcacca ttgccaaaga 300 ccagctgaag tcccttcatg gaactgttat gaaaattaac caggagcgag cagaggagtt 360 gcaggaagca gagaggttca gcagaaaggc agcacaagca gccagagatc tcacccgagc 420 agaagctgag atcgaactcc tgcagaatct cctcaggcag aagggggagc agtttcqact 480 tgagatggag aaaacaggtg taggtactgg agcaaactca caggtcctag aaattgagaa 540 actgaatgag acaatggaac gacaaaggac agagattgca aggctgcaga atgtactata .600 cctcactgga agtgacaaca aaggaggctt tgaaaatgtt ttagaagaaa ttgctgaact 660 tcgacgtgaa ggttcttatc agaatgatta cataagcagc atggcagatc ctttcaaaag 720 acgaggetat tggtaettta tgccaccacc accatcatca aaagttteca gccatagtte 780 ccaggccacc aaggactctg gtgttggcct taagtactca gcctcaactc ctgttagaaa 840 accacgccct gggcagcagg atgggaagga aggcagtcaa cctccccctg cctcaggata 900 ctgggtttat tctccc 916

<210> 188 <211> 1080 <212> DNA <213> Homo sapiens

<400> 188 cctctactgc agcttcatca tcagattctt ctttctgttc ttggggtgct tcttcttcct 60 ccatgggctc ctcaacagtt tcagtcttgc tgctccatac ataaatagga aagtttatga 120 actgtgaata ttttttgacg agatttttaa ttgtatccaa ttcaaggtaa tcagatgctt 180 cttcttttaa gacaagggta attgtcgttc cccgtcctag agtgtttcct cttgggtcag 240 caattacaga aaattcattg gagtcagact cccagattgg ccagtttggt gtcggtttct 300 attccgcctt ccttgtagca gataaggtta ttgtcacttc aaaacacaac aacgataccc 360 agcacatetg ggagtetgae tecaatgaat tttetgtaat tgetgaeeca agaggaaaca 420 ctctaggacg gggaacgaca attacccttg tcttaaaaga agaagcatct gattaccttg 480 aattggatac aattaaaaat ctcgtcaaaa aatattcaca gttcataaac tttcctattt 540 atgtatggag cagcaagact gaaactgttg aggagcccat ggaggaagaa gaagcagcca 600 aagaagagaa agaagaatet gatgatgaag etgeagtaga ggaagaagaa gaagaaaaga 660 aaccaaagac taaaaaagtt gaaaaaactg tctgggactg ggaacttatg aatgatatca 720 aaccaatatg gcagagacea tcaaaagaag tagaagaaga tgaatacaaa gctttctaca 780

```
aatcatttte aaaggaaagt gatgaceca tggettatat teaetttaet getgaagggg 840
aagttacett caaatcaatt ttatttgtae ceaeatetge teeaegtggt etgtttgaeg 900
aatatggate taaaaagage gattacatta agetetatgt gegeegtgta tteatcaeag 960
aegaetteea tgatatgatg eetaaataee teaattttgt eaagggtgtg gtggacteag 1020
atgateteee ettgaatgtt teeegegaga etetteagea acataaaetg ettaaggtga 1080
```

<210> 189 <211> 1344 <212> DNA <213> Homo sapiens

<400> 189 tttttttttt ttgctgctgg gtcgggtttt atttcaaatg cagccacaga ggcggtttct 60 gcacaggtac gtgatccgac tccacaagct cccaccaggg gctccccatg acccgcaatg 120 acgctgtgtg gggtcaaagg aaaacaggcc acagccaggc ccctcgatgg acgcaggcag 180 gggaccagga atgcggccca cgcaggggga tcgggaatca ggcggaaggt gcaggtttgc 240 agctggcggg aggagccagc atgccccaat ctctaaaata ttcccggtag aaaaatagac 300 atttccctcc aaagcagatt cctggggctg gagggtccct ccaaggccag gggtccgggt 360 gattccagag catccacgct ctgcgctgaa ggcactgaac ctgccatcac tgtcacagec 420 gtcaccggcc aaggagggtc tggaggaggg aaggggccct tgcgaggctc tggtgctggt 480 gateceggee eccaecag gaggagetga aagecettge teageegetg ecctgetggt 540 gaacceggee eccacegeeg gaggagetge accetgtgtg gtetgaggea gecetgeact 600 gggcagegge ecegeeege getgaaceca etaggagage agetgeagea eetgteggat 660 gegetgggee etecceggea gggggggate agageeetee teatecaget eeegcateag 720 ggetteegee ttetgeaceg teageteteg ggeeeggeee tgeageeeet eeaggtagge 780 cagcagggtg gagaagtgct catcgggaac cttgtcactg tcatacatgt gcagcaggag 840 ccaegtetge etegtettet gaaaceteca gttettgtge ttttgggeee atetgeagag 900 gtagtccagg gccagttcgg cccccgagcg cctggcaggc gggtgctggg ccacaaggcc 960 tgcctcccgc agacgetgcc tetectettt ettecgttcc tttttcaget teetttccag 1020 gaccetetge teetetgggg acagetetgg etetgegtee agecegggee tgagcacage 1080 ttcgcccttg gagccggctc cttcgccact tggtgcagcc tcagggccca gcagtggccc 1140 ctctgctgac gccttcttca gctttttgtt ctttttctct gtcacttcag gaacttttct 1200 cttctgtttt gccatcctgc gcccacctgc gcccacgtcg cccacctaag cgtgaacagc 1260 tgcgtcgcgg acgccgcctt ccggcaggga cccgcggacg cgtgggtcga cccggcaaaa 1320 cgggtccaac ctagggcgtc gagg 1344

<210> 190 <211> 550 <212> DNA <213> Homo sapiens

<400> 190
cccggaccca cgccgcccc gcgccacggc tctcccccac accgccttat tcgggtcgag 60
accccggggc ccccggcgcc gcctgctgat gagcggatct ccggacccc cgccagcagc 120
gataggctag ctatcctaga agactatgcg gacccgtttg atgttcagga gactggcgaa 180
ggctcagcag gagcttcagg agccccagag aaggtccctg aaaatgatgg ctacatggag 240
ccctatgagg ctcaaaagat gatggccgag atccggggct ccaaggagac agcactcag 300
cccttgcctc tgtatgacac accctatgag ccaqaggagg atggggccac cccggaaggt 360

gagggggccc cctggccccg gga	gtcccgc ctgccagagg	atgatgagag g	gcccctgag 420
gagtatgacc agccctggga gtg	gaagaag gagcggattt	ccaaagcctt t	tgcagttgac 480
attaaggtca tcaaagacct acc	tggcct ccacctgtgg	gacagetgga d	cagcagcccc 540
teeetgeetg			550

<210> 191 <211> 562 <212> DNA <213> Homo sapiens

<400> 191 caattttttt ctctttctt aaggtatcag atacacaccg gacttcaaca ttctatcata 60 agacetacce aacecaactg tttacctetg gacaatgeca cectacetea gaaactgaag 120 gaggttggat attcaacgca tatggtcgga aaatggcact tgggttttta cagaaaagaa 180 tgcatgccca ccagaagagg atttgatacc ttttttggtt cccttttggg aagtggggat 240 tactatacac actacaaatg tgacagteet gggatgtgtg getatgaett gtatgaaaac 300 gacaatgctg cctgggacta tgacaatggc atatactcca cacagatgta cactcagaga 360 gtacagcaaa tettagette ecataacee acaaageeta tattttata tattgeetat 420 caagetgtte atteaceact geaageteet ggeaggtatt tegaacacta cegatecatt 480 atcaacataa acaggaggag atatgctgcc atgctttcct gcttagatga agcaatcaac 540 aacgtgacat tggctctaaa ag

<210> 192 <211> 2171 <212> DNA <213> Homo sapiens

<400> 192

cacgcgtccg gaaaggaaga ggcggtgaga ggctgcaaag ccccttgcgt gttccgcaga 60 aaccagaaag acctcccctt ccacccaagc ctcagttcct aaactcaggg gcatatcctc 120 aaaaacctct tagaaatcag ggagtggtga ggacactgtc cagctctgcc caagaggaca 180 tcatccggtg gtttaaagag gagcagctac cacttcgagc gggctaccag aaaacctcag 240 acaccatage eccetggtte catggaatte teacacteaa gaaagcaaat gaacttette 300 tgagcacagg catgcccggc agttttctca tccgagtcag tgaaaggatc aaaggctatg 360 ccctgtccta tctgtcggag gacggctgta aacatttcct catcgatgcc tctgcagacg 420 cctacagctt cctgggcgtg gaccagctac agcatgccac cttggcggat ttggtggaat 480 atcacaagga ggaacccatc acttccctgg ggaaggagct ccttctctat ccctgtggtc 540 agcaggacca gctgcctgac tacctggagc tgtttgagtg acagcctcca tcagggtcat 600 cctacagcct ccaagcgggc tttcccctgg acaaatgcca ctgcaacatt tatgtgtgaa 660 gccaaaatca ccctgcagca gagccaatac tgatcaactg aaagtatcca tggagtcctc 720 attgacacct cttttctgca caaatactgg aattcaatgt caagagaaaa tgacctctgc tcaaaaggga gaagagtete aattteagea agtacetgte atgaagggta tgacettaat 840 gatgtacata aaataaaaca aatgaagaaa tggaaaactt ttagaaatta aggtgtactt 900 gaaaacgagt atctatcata tgacccctgc actccctctg tatcatctca ggaggtttca 960 ggggcctgtt gacatgaagt ttcgaagttt catgttggct ttggaatggt agcaaaagcc 1020 tttcctggct gagatgatgc ttaaaacaca cctcacttat tgtacatgtt ggaaccagga 1080 catgagagac atagaaaaac agaagtcatg aatgtaaatt gaatgagagg cttaacatgc 1140 atgaaaatac agatggacct gcaggaaagt gagcaaacat cgctgagttt gttttcttgt 1200

```
tegggagaat ggggeegggg etggeetgge eteceetgga tataetetat agtgeaceaa
 1260
aaggataaag catctgtaca tgtatttttt tattttttat cagaagtgct tagacaagaa
 1320
cagaataagc aggctgtttg gatgctactt gtggttgaat tgtgttcccc caaaatatat
 1380
ggtgaagtet taacccccat ccccgtgaat gggaccttgt ttggaaatag ggtetttgca
 1440
gatatagtca agatgaggtc acattggatt agggtgggcc ccaaatccaa tgactggcat
 1500
ccttaggaga agagagagtt ttggtaatag acacaaatgc agtgggaaga agaccagggg
 1560
1620
ccagcagaag ccagcagaga ggcatgggac aggttcccca caagccttag aaggaagcat
 1680
ggccctgact tcagaattcc agactccaga actggaagaa taaatgtctg ttgttttaag
 1740
etgettagtt catgetgagt teatgetgae ttgttaetat agecceagaa agetaataea
 1800
gtcgtttatg taattacata acctgacaca caagatcgac ccattcactg ctgcccagtc
 1860
caccattttc ataatgaagt agaaatggga ggtaagaaaa acattccagc cagttctgtt
 1920
tagccetggg acacatattt gtccegtcag gaatettatg ccctcetgga acccccgccc
 1980
accteagtee agteceagte aggegaacgg cetetggaca gggaetgagg tggetttgag
 2040
ccactggaga tcatttttct tggaggatgg agattggcta gtacctctgg cctaactgtg
 2100
taggtcaata ctcttttaca ttgccttcta ataaaagcag aatgatacag cagtgttgtt
 2160
aaaaaaaaa a
 2171
```

<210> 193 <211> 2095 <212> DNA

<213> Homo sapiens

<400> 193 ggggaagtct ggagaaggca ttgtttcaat tattaaaagt gtgggggcag tgggcggaac 60 aaacgcgccg actacagagg ctggacgtaa gcttatcggt ggcgcgcgtg cgcagcgccg 120 gcccgagttg ccaaaacaaa ggggatttgg tgatggaggc tttgttagaa ggaatacaaa 180 atcgagggca tggtggggga tttttgacat cttgtgaagc agaactacag gagctcatga 240 aacagattga cataatggtg gctcataaaa aatctgaatg ggaaggacgt acacatgctc 300 tagaaacttg cttgaaaatc cgtgaacagg aacttaagag tcttaggagt cagttggatg 360 tgacacataa ggaggttgga atgttgcatc agcaggtaga agaacatgaa aaaatcaagc 420 aagagatgac catggaatat aagcaggagt tgaagaaact acatgaagaa ttatgcatac 480 tgaagagaag ctatgaaaag cttcagaaaa agcaaatgag ggaattcaga ggaaatacca 540 aaaatcacag ggaagatcgg tctgaaattg agaggttaac tgcaaaaata gaggaattcc 600 gtcagaaatc gctggactgg gagaagcaac gcttgattta tcagcaacag gtatcttcac 660 tggaggcaca aaggaaggct ctggctgaac aatcagagat aattcaggct cagcttgtca 720 ateggaaaca gaaattagag tetgtggaac tttetageca ateagaaatt caacaettaa 780 gcagtaaact ggagcgggct aatgacacta tctgtgccaa tgagttggaa atagagcgcc 840 tcaccatgag ggtcaatgac ttggttggaa ccagtatgac tgtcctacag gagcagcagc 900 aaaaagaaga aaaattgagg gaatctgaaa aactattaga ggctctgcag gaagaaaaga 960 gagaattgaa ggcagctctt cagtctcaag aaaatctcat acatgaggcc agaatacaaa 1020 aggagaagtt acaagaaaaa gtaaaggcaa ctaacactca acatgctgta gaagctataa 1080 gtttggaatc tgtgagtgca acgtgtaaac agctgagcca agaactaatg gaaaaatatg 1140 aagaactgaa gaggatggaa gcacataaca atgaatacaa agcagagatt aagaagttga 1200 aagaacagat tttacagggt gaacaaagtt acagttctgc actagaagga atgaagatgg 1260 aaatctccca tctaactcag gagttacatc agcgagatat cactattgct tccaccaaag 1320 gttcttcctc agacatggaa aagcgactca gagcagagat gcaaaaggca gaagacaaag 1380 cagtagagca taaggagatt ttggatcagc tggagtcact caaattagaa aatcgtcatc 1440 tttctgaaat ggtgatgaaa ttggaattgg gtttacatga gtgttccttg cctgtatctc 1500 cccttggttc aatagctacc agatttttgg aagaggagga actgaggtct catcacattc 1560 tagagcgctt ggatgcccat attgaagaac taaaaagaga gagtgaaaag acagtgagac 1620 aattcacago ottaaagtag ootottaaaa aaatcacaat ottggaaata aaaataaaca 1680 ccaaagagtt actgtcatct gaagtagcag ctctttaaaa acatgaagag ataaaattat 1740 aaaaatgata catctaaagc agtggtgaag aaagctgaaa aactgatact tttgataggc 1800 attttctctg cactggtttt tttaaaggac ttcttccagc aataagttga aagaataaac 1860 cactttgcta gactttttc tcatacgaat atttattatc ataaagtgat acttaccttg 1920

ctgacttaaa tgtgaatagc tatgtactaa ttgaaataag gattttatga tacatgttga 1980 aaataaagta actgcaggaa ctttctttag gggaaatgtg tagaagcatg gatttagggg 2040 tcaaacatac ctggatcgat agactggttt tgccacttac cagccaacgg ggctt 2095

<210> 194 <211> 1051 <212> DNA <213> Homo sapiens

<400> 194 gagaccttgt cttaaaaaaa taaaatgctg tcagaataaa aagcagtcaa cagaaatgaa accettataa gagacaaata aatgtgggca attattttct gcaaaatgcc ctccaagccc 120 ctgggcgcca ttgccttctg taataggaca tcacctgaac aggctttctg ggctggagcc 180 aaggaccete cetgacteee aceteeettt etgeettgta eeccageeag gtggaagaga 240 ccggagtggt gctgtccctg gagcaaacgg agcaacactc tcgcagaccc attcagcggg 300 gegececte teagaaggae acceetaace etggggaeag cettgaeace eetggeecee . 360 ggatcettge ettectgeac cegeetteec tgagegagge tgecetggec getgaccee 420 gccgtttctg cagccctgac ctccgtcgcc tcctgggacc catcctggat ggggcttcag 480 tagcagccac teccagcace eegetggeea caeggeacee ceaaagteet ettteggetg 540 atctcccaga tgaactacct gtgggcaccg agaatgtgca cagactcttc acctccggga 600 aagacactga ggcagtggag acagatttag atatagctca ggatgctgat gctctggatt 660 tggagatgct ggccccctac atctccatgg atgatgactt ccagctcaac gccagcgagc 720 agctacccag ggcctaccac agacctctgg gggctgtccc ccggccccgt gctcggagct 780 tecatggeet gteaceteea geeettgage cetecetget acceegetgg gggagtgace 840 cccggctgag ctgctccagc ccttccagag gggacccctc agcatcctct cccatggctg 900 gggctcggaa gaggaccctg gcccagagct caaaggacga ggacgaggga gtggagctgc 960 tgggagtgag acctcccaaa aggtccccca gcccagaaca cgaaaacttt ctgctctttc 1020 ctctcagcct gagtttcctt ctgacaggag g 1051

<210> 195 <211> 423 <212> DNA <213> Homo sapiens

<400> 195 gtgaactcca agactgtttt gatgttcatg atgcatcttg ggaagagcag atattctggg 60 gatggcataa tgatgtccac atatttgaca caaagacaca gacttggttt caaccagaaa 120 ttaaaggtgg agttccacca cagccacgag ccgcgcatac gtgtgcagtt cttggaaata 180 agggttatat ctttggcgga cgtgttctgc aaactaggat gaatgatttg cactatctaa 240 acctagacac ctggacttgg tctggaagga ttactattaa tggagaaagc ccaaaacatc 300 ggtcatggca tactttaaca cctatagctg atgataaact tttcctatgt ggtggactaa 360 atgcatataa tatgccatta agtgatggtt ggattcataa tgtcacaaca cattgttgga 420 aac 423

<210> 196 <211> 411

<212> DNA

<213> Homo sapiens

<400> 196
ttttttttt ttgaggacaa ggtctcactc tgtcacccca aggtgggagt gcagtgacga 60
catcacagct cactggcagc ctcaaccctg gggttcaagt gatcctctca ccttcagcct 120
ccccaagtag ttgtgcctcc taggcacaca acactatgcc ccggcaaatt tttttgtatt 180
ttgtattttt tgtagaaaca ggatttcgcc atgttggcca ggctggtctc gaacaccctg 240
ggctcaactg atccgcctgc ctcggcctcc caaagtgctg ggattacagg tgtgagccac 300
cctgctcaac caggttttat tatttaagtt agttaaactt tggatagatt gtataatata 360
tagtttaatg taatcatgct catattttt aaataaataa aacactatac t 411

<210> 197 <211> 751 <212> DNA

<213> Homo sapiens

<400> 197 cccacgggaa gggcaggtga agcaggggct gctgggggat tgctggttcc tgtgtgcctg 60 egeegegetg eagaagagea ggeaceteet ggaceaggte attecteegg gaeageegag 120 ctgggccgac caggagtacc ggggctcctt cacctgtcgc atttggcagt ttggacgctg 180 ggtggaggtg accacagatg accgcctgcc gtgccttgca gggagactct gtttctcccg 240 ctgccagagg gaggatgtgt tctggctccc cttactggaa aaggtctacg ccaaggtcca 300 tgggtcctac gagcacctgt gggccgggca ggtggcggat gccctggtgg acctgaccgg 360 cggcctggca gaaagatgga acctgaaggg cgtagcagga agcggaggcc agcaggacag 420 gccaggccgc tgggagcaca ggacttgtcg gcagctgctc cacctgaagg accagtgtct 480 gatcagetge tgegtgetca geeccagage aggtgaggea egtggeeage atgggaggge 540 tgcagccagc gtgcccccca ctgccaggcc tcaggcacac tgtagctttt tatgtgactg 600 gctacacage cetgteagga etaagtggga agaagtaage ttgtteteaa gggtggtgte 660 ctcagtttgt gaccttcccc tgctgtcctc ttccagaggg acgtggccct tctctcccct 720 gaccagtcct ttccactagt gcgaggcagg g 751

<210> 198 <211> 636 <212> DNA <213> Homo sapiens

<400> 198

gggccgagtg tctggaggcc tctattgccc gatatgccca ccgtgtcgcc aatagccgtt 60
atacctttga cggtgaaacc gtgacgcttt cgccaagtca gggcgttaac cagctgcacg 120
gcgggccgga agggttcgac aaacgtcgct ggcagattgt gaaccagaac gatcgtcagg 180
tgctgtttgc cctgagttca gatgatggtg atcagggctt cccgggtaat ctcggcgcga 240

cggtgcaata	tcgtctgacc	gacgataacc	gtatctccat	tacttatcgc	gccacagttg	300
ataaaccttg	cccggtgaat	atgactaatc	acgtctattt	caatcttgac	ggcgagcagt	360
ctgacgtgcg	caatcacaag	ttgcagattc	tggcggacga	atatctgccg	gttgatgaag	420
gcggcattcc	gcacgacggc	ctgaaatctg	tcgccggaac	gtcttttgat	ttccgcagcg	480
ccaaaatcat	cgccagtgag	tttcttgccg	acgacgatca	gcgcaaagtg	aaaggttacg	540
atcacgcatt	cttgttacag	gccaaaggcg	atggcaagaa	agtggcggcg	catgtctggt	600
		ctgaaggtct				636

<210> 199 <211> 690 <212> DNA

<213> Homo sapiens

#### <400> 199 aaagtggcag tgtttcttct gaaattctca ggcagtcaga ctgtcttagg caaatcttga 60 taaaatagec ettateeagg tittitateta aggaateeea agaagaetgg ggaatggaga 120 gacagtcaag ggttatgtca gaaaaggatg agtatcagtt tcaacatcag ggagcggtgg 180 agetgettgt etteaatttt ttgeteatee ttaccatttt gacaatetgg ttatttaaaa 240 atcategatt cegettettg catgaaactg gaggagcaat ggtgtatgae aagcegeega 300 aatttgccat gtcacgagag caaatgtcac agtcatgttc tcacacggca cataatgcaa 360 gtctgttgac agatgegggt ccattgtcat gtggggagte gagggegage tgtttgtttt 420 tgtaacgatg ttgggaagtg atggctctgc agtcacaaag agcagccttc tctcactggc 480 tgcaccgatg aacattacga agttctagaa caaacatcac ttcaaaatgc ctggagtaat 540 tcctcttata tcaactaatt tcaagaagaa aacctgcaga aactaacccc acccctctca 600 acgagaatat tgtgtccacg tcctctttac ttatacgacc cgtctcttat tctcttataa 660 cacaacgtca taactaaacg agcacaacac 690

<210> 200 <211> 433 <212> DNA <213> Homo sapiens

<400> 200 gtgactccaa ggaaccaaga ctgcagcagc tgggcctcct ggaggaggaa cagctgagag 60 gccttggatt ccgacagact cgaggataca agagcttagc agggtgtctt ggccatggtc 120 ccetggtget gcaactcete teetteaege tettggetgg geteettgte caagtgteea 180 aggteeccag etecataagt caggaacaat ccaggcaaga egegatetae cagaacetga 240 cccagcttaa agctgcagtg ggtgagctct cagagaaatc caagctgcag gagatctacc 300 aggagetgae ccagetgaag getgeagtgg gtgagettee agagaaatet aagetgeagg 360 agatetacca ggagetgace tggetgaagg etgeagtggg tgagetteca gagaaateta 420 agatgcagga gag 433

<210> 201 <211> 782

```
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(782)
<223> n = a,t,c or g
```

<400> 201 gaagaagggg aaaagagget ccaggeceet tetecaatea etecetgeea ecetttetee 60 tttggattcc ttggctgctt tagcaggtct tcctagaggc taactttgat ctttcttgct 120 gcagtttctt tttgggagag ctagtcagtc ccacagagtg gtatccctag aagggagaag 180 taaggattgc cctcttcttt aaaatgaaag ccagctattt ttcacgccct ttaactgcag 240 gtctgctcta ttttcttttc tctctctgga gctgagagtc agagggccct tctcctcctc 300 ctttcagccc ccaacactaa gctgatggat tgataaatac ctcagcccct cqcctttctc 360 aacceacetg geaagtette ttaggatetg atcceagttt tetggaagea atcetacece 420 ageceattet teccagagte gageettaat cetteteact teteagtgte agageagaaa 480 tgaatcctgg ggttgactgt gtccattcgg gttattagca gctaagaagc ccagacgagt 540 agtgtgaget geettgggag eetcagtgag ggeactggga etggeetcae tetettgeee 600 ccagcctagt gggctttctc ctctgtctct ccggtggccc caggcaatcg actgcatcac 660 gcanggacgt gagttggagc ggccacgtgc ctgcccacca gaggtctacg ccatcatgcc 720 gggctgctgg gcagcggagc cccagcaacg ccacagcatc aaggatgtgc acgcccgctg 780 782

<210> 202 <211> 714 <212> DNA <213> Homo sapiens

. . .

<400> 202 ttcgagaccc tatccatgag gggaatteet cacatgetgg ctttggggcc acagcagetg ctggcccagg atgaggaggg ggacacgctc cttcacctgt ttgcggctcg ggggctgcgc 120 tgggcggcat atgctgcggc tgaggtgctc caggtgtacc ggcgtcttga cattcgtgag 180 cataagggca agaccectct cctggtggcg gctqctgcca accaqcccct qattqtqqaq 240 gatetgttga_acctgggage agageecaat geegetgace atcagggaeg tteggtettg 300 cacgtggccg ctacctacgg gctcccagga gttctcttgg ctgtgcttaa ctctggggtc 360 caggttgacc tggaagccag agacttcgag ggcctcaccc cgctccacac ggccatcctg 420 gecettaacg ttgctatgcg ceettecgae etetgteece gggtgetgag cacacaggee 480 cgagacaggc tggattgtgt ccacatgttg ctgcaaatgg gtgctaatca caccatccag 540 gtgagcgggg atgtgggcgg tcagaccctg ggagattgtg tggaatgggg ccacttggat 600 gtccgggagc tccaggcaaa tgctgacttt gcctcttcct tgctgcgtgc ccttgaacat 660 gttacttcac ttctctgtgc cttaagggtt ttttgcttgt ttctttgtca gtta 714

<210> 203 <211> 477 <212> DNA <213> Homo sapiens

#### <400> 203 cggacgcgtg ggcggacgcg tgggtgggga ccaagatggc ggaccttgat tcgcctccga agetgteagg ggtgeageag eegtetgagg gggtgggagg tggeegetge teegaaatet 120 ccgctgaget cattegetee ctgacagage tgcaggaget ggaggetgta tacgaacgge 180 tctgcggcga ggagaaagtg gtggagagag agctggatgc tcttttggaa cagcaaaaca 240 ccattgaaag taagatggtc actetecacc gaatgggtcc taatctgcag ctgattgagg 300 gagatgcaaa gcagctggct ggaatgatca cctttacctg caacctggct gagaatgtgt 360 ccagcaaagt tegtcagett gacetggeca agaacegeet etateaggee atteagagag 420 ctgatgacat cttggacctg aagttctgca tggatggagt tcagactgct ttgagga 477

<210> 204 <211> 706 <212> DNA

<213> Homo sapiens

#### <400> 204 gcggtggaat tccgggttcc ccgttctggt tcggcatatc tctacagcta tgtcactgtg 60 ggtgaactct gggccttcac cactggctgg aacctcatcc tctcctatgt cattggtaca 120 gccagtgtgg cccgggcctg gagctctgct tttgacaacc tgattgggaa ccacatctct 180 aagactetge aggggteeat tgeaetgeae gtgeeceatg teettgeaga atateeagat 240 ttetttgett tgggeetegt gttgetgete aetggattgt tggetetegg ggetagtgag 300 teggecetgg ttaccaaagt gttcacagge gtgaacettt tggttcttgg gttegtcatg 360 atctctggct tcgttaaggg ggacgtgcac aactggaagc tcacagaaga ggactacgaa 420 ttggccatgg ctgaactcaa tgacacctat agcttgggtc ctctgggctc tggaggattt 480 gtgcctttcg gcttcgaggg aattetccgt ggagcagcga cctgtttcta tgcatttgtt 540 ggtttcgact gtattgctac cactggagaa gaagcccaga atccccagcg ttccatcccg 600 atgggcattg ggateteact gtetgtetge ttttttggegg attttgetgt etettetgea 660 ctcaccctga tgatgcctta ctaccagctt cagcctgaga gccctg 706

<210> 205 <211> 852 <212> DNA <213> Homo sapiens

<400> 205 ggettecate etaataegae teaetatagg getegagegg eegeeeggge aggtgetggg tegtttgtgg gegaagtaag tgetgtagat aaagaetttg ggeeaaatgg agaagtaagg 120 tattcttttg aaatggtgca gccagatttt gagttgcatg ccatcagtgg ggaaattaca 180 aatactcatc agtttgacag ggagtctctt atgaggcgga gagggactgc tgtgtttagc 240 tttacagtca tagcaacaga tcaggggatc cctcagcctc tcaaggatca ggccactgta 300 catgittaca tgaaggatat aaatgataat gctcccaaat ttttaaaaga cttttaccaa 360 gctacaatat cagaatcagc agccaatctg acacaagtgt taagagtatc tgcctcagat 420 gttgatgaag gtaataatgg acttattcac tattctataa taaaaggaaa tgaagaaaga 480. cagtttgcta tagacagtac ctctggtcag gtaacactaa ttggcaaatt agactatgaa 540

gcaacacctg cctattccct tgtaattcaa gcagtggatt cagggacaat ccccctcaat 600 tcaacgtgta ctttaaatat tgatattta gatgaaaatg acaatacccc tttctttccc 660 taaatcaaca cttctttgtt gatgttttgg aaaacatgag aattggtgaa ctcggggcct 720 ctggtactgc aactgattcc cgattcaggt gacattgctg atttatatta caagtttact 780 gggactaaac accccccgg aacttttagc attagccca aacacttggg agtatttttc 840 ttggcccaaa aa

<210> 206 <211> 361 <212> DNA <213> Homo sapiens

<400> 206
ctggtgattg ctatgacctg tatggagggg agaagtttgc cactttggct gagttggtcc 60
agtattacat ggaacatcat gggcaattaa aagagaagaa tggagatgtt attgagctta 120
aaaatcctct gaactgtgca gatcctactt ctcaaaggtg gtttcatgga cacctctctg 180
gaaaagaagc agagaaattg ttaactgaaa aaggaaagca tagtagcttt cttgtacgag 240
agagccagag ccaccctgga gattttgttc tctccgtgtg caccggtgat gacaaaggag 300
agagcaatga cggcaagtct aaagtgactc atgtcatgat tcactgtcag gaactgaaat 360
c

277

<210> 207 <211> 2483 <212> DNA <213> Homo sapiens

<400> 207 ataaaatgga catagtagta ggacttacct cccagggctg tggttataga ggttttgtaa 60 gaattaaatg acatcateca tgtaaagcat atagcagaat gcctggcaca tagatgccct 120 taqtqaattt ttqctqttqt tgtqattctt ttggqagcag tcataqtaac atattctcat 180 atgttggtat gttctttcat attgcattgt cttatgaata gattctggaa accaaaatgg 240 300 aggaaatgat gataagacta agaatgctga gaggaactat ttaaatgttt tacctgggga 360 attttatatt acacggcatt ctaatctctc agaaatccat gttgctttcc atctctgtgt ggatgaccat gtgaaatcgg gaaacatcac tgctcgtgat cctgccatta tgggactccg 420 480 aaatatactc aaagtttgct gtacccatga catcacaaca ataagcattc ctctcttgct ggtacatgat atgtcagagg aaatgactat accetggtgc ttaaggagag cggaacttgt 540 600 gttcaagtgt gtcaaaggtt tcatgatgga aatggcttca tgggatggag gaatttctag 660 gacagtgcaa tttctagtac cacagagtat ttctgaagaa atgttttatc aacttagtaa catgettece cagatettee gagtateate aacacteact etgacateca ageactaaac 720 780 cettatagat tgacatgetg geagaagatg attgttaaac tetecaggaa ettgtgetat 840 gctgggaatc tgtcaagcaa aagatgccca gaaagagaac ttgcagctca atccacaaat caagatacat gtgtgtgaaa cccattccaa aaatttatat actggcacaa actggtggat 900 caacccctaa cttaaacact taaagtctct ttatgaattt ctctttttt cttctctgtg 960 1020 ttacctgtgg aatattaggt aatctaaaac tttttattta ttcacacagg gacacttggg 1080 gggaaaggga aacttgatta tatttacatg ggagggcatt tgactttttt caaggagggc ttggacttcg tcttcaggtg gcaatcctta attaaacata caaacaaaat tttcctttta 1140 1200 ctttctttgc caaaacaaaa tgtaaaagca ctgaaatata cattgcaagt acaaatttcc tgtgaaaatc tttttataga aacacaaatg tataagacaa atgtgcttgt tcttttaaat 1260

```
tctcctgttt cagaatctct ttttaatcta ctcctaagga tgtacaagtt agagtcagaa
 1320
gacgttttgg attttttccc tctctctcat cctcccgctg tgcccttgca cttgcatatt
 1380
aataacattt catggactgg gaaatagtgt tottttttgc aagottgatg toaagttagt
 1440
ctaaaccagc acctggcagt attttagtgc tcatcaacat tgtgacaatc acacaaggaa
 1500
gateatttet acatttetgt cetecetgeg tteteagett gettaaceat teetetaeet
 1560
cttgcatttt titgcggata aatgtatece catttetget tetetgttte eceteetttt
 1620
ccattgtttt tecttatggt actactttct caggtgctac atatcatata tttgteccat
 1680
ctataacata tttaaatgct ataagtagta actccattaa acaaaggcat ttacaaaagc
 1740
acacaggtgt ttagaaaagc aatagtttca tcaattccaa gttatgtgga tattgtaact
 1800
ggccacaaga atgaaatgga gggcatttgg tgtcataaga tggcatgtct tgatgacaag
 1860
aaacaaaacg cccttcatta atatgcctca gtgtaataac tattatagaa actgttggca
 1920
agcagagtgc tttcctataa cagaatgtgt cttaattttc tacttgaggg aaaggtttgt
 1980
ccaggtaaca acactaaaga caaccctaag aacacccact ccagcagtat gtccattaga
 2040
cactaaaact ctccaaatta tttgtcaggg agcctggcga ttctgccaag aaggcaggtg
 2100
ttttgccctt agagcctata cagttctctt ggagaaattg tctttcaggc accactgtta
 2160 .
atcactgaga ctgattctaa tgcaaagcag ggaagacaga ggcagaaacc aggagagtgg
 2220
tagatcagtg cagcccagat atcggaatgg aggagcaaag tttcattcac ggatgtttgt
 2280
tgaatgctgc tgcccaactc ttcctttgtc acctctaggc tattccacta agttacttat
 2340
aaactggtgg ctttaactga gggctgtgta aaggtactat ttggcatgtg aagtcaggat
 2400
aaatttatcg aatgtccgtt ttccacatgc aactgtgtta cagaagtagt aaaattggaa
 2460
gaatcatgtt tatggtgtta cca
 2483
```

<210> 208

<211> 366

<212> DNA

<213> Homo sapiens

```
<400> 208
caagcatect geegeectg etggtgacea teetgatett catggaceag cagateactg 60
cegteattgt caaceggaag gagaacaaac tgaagaagge tgeeggetae catetggace 120
tgttetgggt gggeatecte atggetttgt geteetttat ggggeteece tggtaegtgg 180
ctgeeaeggt cateteeate geecacateg acageeteaa gatggagaca gagaceagtg 240
ceeetgggga geageecag tttetgggag teagggaaca gagagtaace ggeateateg 300
tetteatect gaegggaate tetgtettee tggeteecat cetaaagtgt ateceeetge 360
eggtge
```

<210> 209 <211> 574 <212> DNA <213> Homo sapiens

```
tgttattgaa gtttattctg gtggcgtgct tgatgttagg ggtggtacgg caacaaatgt 420 tacccagcac gatggtgcaa ttttaaaaac taacactaac ggtacgacgg tgagcggtac 480 gaatagtgaa ggtgcattct ccatccacaa tcacgtggca gacaatgtgt tgctggaaaa 540 cggtggtcat ttagacataa acgcatatgg ttcg 574
```

<210> 210
<211> 383
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(383)
<223> n = a,t,c or g

<400> 210

ttttctctt ccatccagct gactgatgat cagggccccg tcctgatgac cactgtagcc 60
atgcctgtgt ttagtaagca gaacgaaacc agatcgaagg gcattcttct gggagtggtt 120
ggcacagatg tcccagtgaa agaacttctg aagaccatcc ccaaatacaa ggtaatgaat 180
gacctaatcc ctgaaatcaa agcaacagag atgcccagag ccttgtttc acaaagttca 240
ggcttcaaac tctactttgg agcgatgttt ttgctcacca ctattacagc ctgttagctt 300
gtctttatac catctgcaca gttatttaaa aggnnnnnn nnnattattt acaaggactg 360
gctgttttc ttatttacct cct

<210> 211 <211> 592 <212> DNA <213> Homo sapiens

<400> 211 tttcgtgttc aggaactggc accaatgcgt gttacatgga ggacatgagc aacattgacc 60 tggtggaggg cgacgagggc aggatgtgca tcaacacaga gtggggggcc ttcggggacg 120 acggggccct ggaggacatt cgcactgagt tcgacaggga gctggacctc ggctctctca 180 acccaggaaa gcaactgttc gagaagatga tcagtggcct gtacctgggg gagcttgtca 240 ggcttatctt gctgaagatg gccaaggctg gcctcctgtt tggtggtgag aaatcttctg 300 ctctccacac taagggcaag atcgaaacac ggcacgtggc tgccatggag aagtataaag 360 aaggeettge taatacaaga gagateetgg tggacetggg tetggaaceg tetgaggetg 420 actgcattgc cgtccagcat gtctgtacca tcgtctcctt ccgctcggcc aatctctgtg 480 cagcagetet ggeggeeate etgacaegee teegggagaa caagaaggtg gaaeggetee 540 ggaccacagt gggcatggac ggcaccctct acaagataca ccctcagtac cc 592

<210> 212 <211> 2166 <212> DNA

## <213> Homo sapiens

```
<400> 212
tttcgttgca attgcaacga atggtgttgt gcctgctggt ggctcctact acatgatttc
 60
caggitetetg ggeccagagi tigggggige egigggeete igettetace igggeactae
 120
ctttgcagga gccatgtaca tcctgggcac catcgaaatc ctgctggctt acctcttccc
 180
agccatggcc atcttcaagg cagaagatgc cagtggggag gcagcagcca tgctgaacaa
 240
catgcgtgtt tacggcacct gtgtgctcac ctgcatggcc actgtggtgt ttgtgggtgt
 300
caagtatgtc aacaagtttg cccttgtctt cctgggttgt gtcatcctct ccatcctggc
 360
catchatget ggggtcatca agtetgeett egacecaece aactteeega tetgeeteet
 420
gggtaaccgc acgctgtctc gccatggctt tgatgtctgt gccaagctgg cttgggaagg
 480
aaatgagacg gtgaccacac ggctatgggg cettttetge teeteteget teeteaacge
 540
cacctgtgat gaatacttca cccgaaacaa tgtcacagag atccagggca tccctggtgc
 600
tgccagtggc ctcatcaaag agaacetetg gagetectac etgaccaagg gegtgattgt
 660
ggagaggagt gggatgacet cggtgggcet ggccgatgge actcctatcg acatggacea
 720
contratgte throughput transfer
 780
ctcagtcaca gggatcatgg ctggttctaa ccgctctggg gacctgaggg atgcccagaa
 840
gtcaatcccc actggcacca tcctggccat cgccaccacc tctgctgtct acatcagctc
 900
cgttgttctg tttggggcct gcattgaggg ggtcgtcctg cgggacaagt ttggcgaagc
 960
tgtgaatggc aacctcgtgg tgggcactct ggcctggcca tctccatggg taattgtcat
 1020
cggatcette ttetecacet gtggggetgg getgeagage etcaeggggg ceceaegeet
 1080 .
gctgcaggcc atctcgaggg atggcattgt gcccttcctg caggtctttg gccatggcaa
 1140
ggccaatgga gagccgacct gggccctgct cctgactgcc tgcatctgcg agattggcat
 1200
cctcattgca tccctcgacg aggtggcccc catcctctct atgttcttcc tgatgtgcta
 1260
catgtttgtg aatctggcct gtgcagtgca gacgctgctg aggacaccca actggaggcc
 1320
acgetttega tattaceaet ggaccetete etteetggge atgageetet geetggeeet
 1380
catgiticate tgetectggt attatgeact ggtagecatg cteattgctg gacteateta
 1440
caagtacatt gagtaccgtg gggcaaagaa ggagtggggc gatgggatac gaggtctgtc
 1500
teteagtgeg getegetatg ceetettaeg eetggaggaa gggeeceeae acaccaagaa
 1560
ctggaggcca cagctgctgg tgctggtgcg tgtggaccaa gaccagaatg tggtgcaccc
 1620.
ccagctgctc tcactgacct cccagctgaa ggcagggaag ggcctgacca tcgtgggctc
 1680
tgtccttgag ggcacctttc tggaaaatca tccacaggcc cagcgggcag aagagtctat
 1740
caggogcetg atggaggcag agaaggtgaa gggettetge caggtggtga tetectecaa
 1800
cttgcgtgat ggcgtgtccc atctgatcca gtctgggggc ctcggggggc tgcagcacaa
 1860
cactgtgctt gttggctggc cccgcaactg gcgccagaag gaagatcatc agacgtggag
 1920
gaacttcatt gagctggtcc gggaaaccac agctggccac ttagccctgc tggtcaccaa
 1980
gaacgtttcc atgtttcctg ggaaccctga gcgcttctct gaaggcagca tcgaccgttg
 2040
ggggattggg cacgatggag gcatgctcat gctggtgccc ttcctgctgc ggcaccacaa
 2100
ggtctggcgg aagtgcaaga tgcgtatctt cactgtggcc cagatggttg acatgcatgc
 2160
catgag
 2166
```

```
<210> 213
<211> 392
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(392)
<223> n = a,t,c or g
```

<400> 213

ttctatctga	ggctactgtc	ttttttctgc	tttcaggagc	atgagaagag	gtgttggagc	60
gttgacttta	atttgatgga	tcctaaactc	ttggcttcag	gttctgatga	tgcaaaaggt	120
actgtttgaa	tctcttctc	agcacctcct	tctccctggc	cctcttaact	gtaattcctt	180
tcatcggcag	aaatacaaat	atttactcaa	actcatgtca	gtcctttgtg	attactgatt	240
attattattc	cccannnnnn	nnnnnnnnn	nnnnnnnn	nnnnnnnnn	nnnnnnnnn	300
nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	360
nnnnnnnn	nnnnnnnnn	nnnnnnnn	nn	•		392

<210> 214

<211> 425 <212> DNA

<213> Homo sapiens

# <400> 214

ggcggaattc	aaaagcaatg	cacaggtctt	cctgtgacgg	gccgctactc	tctctgccct	60
cagtgggacg	gtcagccacc	catgccctgg	tccaggccca	gctgatctgc	tcaggagcca	120
ggcggggcat	gcacgctttt	attgtgccaa	teeggagtet	tcaggaccac	accecactge	180
caggtaagcc	cataatgctc	cctcaaggaa	ccctgccagg	aggagagccc	aggtggcctc	240
cctgacctgg	ggccccagag	ggccacagga	gtagctaaga	catgtctccc	ttgggcaggg	300
agcggtccag	ttggacagac	ttggtgctaa	ctggctaggt	gaacttgagc	aagatttagc	360
atctttctga	cctcagcttg	ttcacctgca	aaataggtac	aataatccca	gtgtcacagg	420
ctact						425

<210> 215

<211> 608

<212> DNA

<213> Homo sapiens

## <400> 215

			the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon			
ctgcgggacc	ctcatcttgc	aggcccgggc	ctatgtggga	ccgcacgtcc	tggcagtggt	60
gacccgcaca	gggttctgca	cggcaaaagg	gggcctggtg	agctccatct	tgcacccccg	120
gcccatcaac	ttcaagttct	ataaacacag	catgaagttt	gtggctgccc	tctctgtcct	180
ggctctcctc	ggcaccatct	acagcatctt	catcctctac	cgaaaccggg	tgcctctgaa	240
tgagattgta	atccgggctc	tcgacctggt	gaccgtggtg	gtgccacctg	ccctgcctgc	300
tgccatgact	gtgtgcacgc	tctacgccca	gagccgactg	cggagacagg	gcattttctg	360
catccaccca	ctgcgcatca	acctgggggg	caagctgcag	ctggtgtgtt	tcgacaagac	420
gggcaccete	actgaggacg	gcttagacgt	gatgggggtg	gtgcccctga	aggggcaggc	480
attcctgccc	ctggtcccag	agcctcgccg	cctgcctgtg	gggcccctgc	tccgagcact	540
ggccacctgc	catgccctca	gccggctcca	ggacaccccc	gtgggcgacc	ccatggactt	600
gaagatgt		•				608

<210> 216

<211> 858

<212> DNA

# <213> Homo sapiens

<400>						
	actggccact					. 60
ttcctttctg	ctcagactca	ataattcgct	ccatatggtg	actgcgttct	ttgagtgccc	120
ctatcatttc	ttgagettee	ttattgtctt	gttctgccat	tttcaaagta	ttgcttaaat	180
gctgctggac	accaagaagc	tgctcccgtt	caaaacgggc	attctcagcg	aggtccatgt	.240
aacgttgctc	taattccata	tagcgcccac	tttttacatc	ttcatctatg	acagattgaa	300
	ctcttctaga					360
	atatggaatt					420
gaacgggagc	agcttcttgg	tgtccagcag	catttaagca	atactttgaa	aatggcagaa	480
caagacaata	aggaagctca	agaaatgata	ggggcactca	aagaacgcag	tcaccatatg	540
gagcgaatta	ttgagtctga	gcagaaagga	aaagcagcct	tggcagccac	gttagaggaa	. 600
	cagtggccag					660
	agaaagtggc					720
	tcctggagag					780
	aagatctggc					840
gctaaaggta						858

<210> 217

<211> 399

<212> DNA

<213> Homo sapiens

<400>	217					
agcacgctac	cgctttaccc	tcagcgccag	gacgcaggtg	ggctctgggg	aagccgtcac	60
	ccagcacccc					120
	gtgggtgcga					180
	gccacaacag					240
_	gtcgccacaa					300
tecteccace	accacctccg	ggactaagat	acacgaatcc	gcccctgatg	agcagtccat	360
	acqqtqctcc					399

<210> 218

<211> 662

<212> DNA

<213> Homo sapiens

<400>	218					
ctgaagtcaa	cgcaagacga	aatcaaccag	gcaaggagca	aactgtccca	gctgcatgaa	60
agccgccagg						120
ggtgccagcc						180
agttttggag						240
caagagttgc	atccggatcc	tttccagaca	gaagacccct	tcaaatctga	cccatttaaa	300

```
ggagetgace cetteaaagg egaceegtte cagaatgace cetttgeaga acageagaca 360 actteaacag atceatttgg aggggaceet tteaaagaaa gtgaceeatt cegtggetet 420 gecactgacg acttetteaa gaaacagaca aagaatgace catttacete ggateeatte 480 acgaaaaaace etteettace ttegaagete gaceeetttg aatceagtga teeetttea 540 teetecagtg teteeteaaa aggateagat eeetttggaa cettagatee etteggaagt 600 gggteettea atagtgetga aggetttgee gactteagea etattgaagg tegaegegge 660 cg
```

<210> 219 <211> 752 <212> DNA

<213> Homo sapiens

#### <400> 219 eggaegegtg ggggatetgg caataqetee caaceeteae tteqtgaqqq ccaeqacaaa 60 cctgttttta atggagctgg aaagcctcat tccagcacct cttcaccaag tgtcccaaag 120 actictgcta gcaggactca gaaatctgct gttgagcaca aagccaaaaa atctctgtcc 180 catectagee attecaggee tgggeceatg gteaceceae acaataagge taagagteea 240 ggtgtcaggc agccaggcag cagctctagc tcagcccctg ggcagcccag cacaggggtt 300 gctcgaccca cagttagttc tggccctgtg cctaggcgcc agaatggcag ctccagctca 360 ggacctgagc gatcaatcag tgggtccaag aagccaacca atgactcaaa tccctctagg 420 eggacagtea gtggtacatg tggccetgga caacetgcaa gcageteagg tggccetggg 480 cgacccatca gtggttcagt tagttctgca agacccttgg gcagctctcg tggccctggc 540 cggcctgtga gcagtccaca tgaacttcga cgaccagtga gtggcttggg ccccccgggg 600 cggtctgtca gtggccctgg gagatccata agtggctcaa ttccagctgg acggactgtc 660 agtaattcag teecaggaag accagtgage agettgggae etgggeaaac agttagtage 720 tcaggtccca ctataaagcc taagtgcact gt 752

<210> 220 <211> 582. <212> DNA <213> Homo sapiens

<400> 220 ttattattat tttgcataga gacaagcact cactgtgtta cccaggctgg ttttgaactc 60 ctgagettaa teagttetea cetgetttge ceteceaaag tgetatgatt acaggtgtga 120 gccaccacgc ttggccctgc ccaggagtca tttttgtatc tacaggtatc ttcctatgct 180 gtagacagat gccctttttc aaggcaaaaa ccctagccat ttttctcttc tccttcagag 240 tetgeaacat ceteteaact catecaagtg actaetgeet ggtgetettg gggatgeagg 300 gaggcctgag aaggccaatg tctatacaga aagttctaac atagtgcact gagtcaatgt 360 gggcacttta aagccctttc acctgccaag tcacgaagca cccctatagt tgtgtttgta 420 aaatactggg gggtttgaag gggaaaaggg ataactccaa ggtaccatct ttgcatttca 480 gatccacaca acttaaagat ctgctgtcga gtgaatgggg aagtggtcca gagcagcaac 540 accaaccaga tggtattcaa gacagaggac ctgatagcct gg 582

<210> 221 <211> 440 <212> DNA <213> Homo sapiens

<400> 221 ggaattcgat cagtagaagt ttgggggata tagaaacgaa ggttttctaa cttttagctt 60 tcaaggagat tgtccggttg ggaaagcaag atatgaaaaa taaatatgtc aagaatataa 120 tccaaaacaa tctaattaag tgctagaagt ttgccatgga cagacaaagt gctacttggg 180 aaggaagttc cagaaacacc acagctgggt acattcttca ccactctgag tggtggcagt 240 gacgcgttgg ctttgtgaga atggtgtgtc ttacttgaga aagtgtgtgt gttctgcctg 300 caggcatggg actegetgtg ctggagaagt ggcageeget gcaaacaatt egcaetgeae 360 agtoggaatt gotttoaacg coaagatogg aggtatggga aaccaactoa ogtggatgta 420 gaaatgcgcc agttagctct 440

<210> 222 <211> 489 <212> DNA <213> Homo sapiens

<400> 222 ccgacgattt cgtgaggcgg cagccaggtg gggttccagc cagagcacgc acgcacggag 60 eegggageat geageetgea etgeggggga tgtgatgete ggetetaaet egeetggetg 120 geoegecacg gacgeeteag ettgcaacca tggtaacgtt tetggegggg gacacececg 180 ggagcccacc gcgatgggca gcctcctggt gactgatgga cgagtgtcca cctcccagac 240 cgagagcgct tagtaggtcg gaggaagtgg agaggatgta acacgcccc agccgggagt 300 gaagccctga ggagctcctc cccccttcgt tcccaccctc aagtctgacg atgacacctc 360 caatittgat gaaccaaaga agaattegtg ggtttcatce teteegtgee agetgageee 420 ctcaggcttc tcgggtgaag aactgccgtt tgtggggttt tcgtacagca aggcactggg 480 gattcttgg 489

<210> 223 <211> 493 <212> DNA <213> Homo sapiens

<400> 223
tttcgtcgag cgccttgcgc acctccacgc tgcctgcgc ccgcgcgca aggtggcgct 60
cctcttggag gtgtgcagag atgtctatgc gggcctggct cgaggggaga accaagatcc 120
cctgggggcc gacgccttcc tgccggcgct gaccgaggaa ctcatctgga gcccggacat 180
tggggacacg cagctggacg tagagtttct tatggagctc ttagatccag atgagctgcg 240
gggagaggct gggtactacc tgaccacgtg gtttggggcg ctgcaccaca ttgcccacta 300
ccagcccgaa acagaccgc ctcccgggg gctcagctcc gaggcccgcg cctccctgca 360

ccagtggcac cgcaggcgga cgctgcacag aaaggatcat cccagagccc aacagctgga 420 ctgaccctgg ctggtcgaag agccctggcc agatgtcctg tggacagacc caatttctgg 480 cctcgtctgc tgg

<210> 224 <211> 883 <212> DNA <213> Homo sapiens

<400> 224 60 aqtqacctqq aaacaagttc tgatccagaa ggtgaggatt gggatgagga agctgaggat 120 qatgqttttg atagtqatag ctcactgtca gactcagacc ttgaacaaga ccctgaaggg 180 cttcaccttt ggaactcttt ctgcagtgta gatccttata atccccagaa ctttacagca 240 acaattcaga ctgctgccag aattgttcct gaagagcctt ctgattcaga gaaggatttg 300 totggcaagt otgatotaga gaattootoo cagtotggaa goottootga gaccootgag catagttctg gggaggaaga tgactgggaa tctagtgcag atgaagcaga gagtcttcaa 360 actgtgggaa cttcattctg ttaattctgg atggacccct acaacccttt aaattttaag 420 gctccttttc aaacatcagg ggaaaatgag aaaggctgtc gtgactcaaa gaccccatct 480 gagtecattg tggccattte tgagtgteac acettaettt ettgtaaggt geagetgttg 540 600 gggagccaag aaagtgaatg tccagactcg gtacagcgtg acgttctttc tggaggaaga cacacacaty tcaáaagaaa aaaggtaacc ttccttgaag aagttactga gtattatata 660 aqtqqtqatq aqqatcqcaa aggaccatgg gaagaatttg caagggatgg atgcaggttc 720 caqaaacqaa ttcaagaaac agaagatgct attggatatt gcttgacatt tgaacacaga 780 gaaagaatgt ttaatagact ccagggaaca tgcttcaaag gacttaatgt tctcaagcaa . 840 tgttgagttg gcagcctgta gtcctagcta gcatacacta cct 883

<210> 225 <211> 389 <212> DNA <213> Homo sapiens

<400> 225
cggccgcgtc tacggcatat tcttttttg gaactgtgga gaatatggct ccaaaagtgg 60
ttaatcgtcc aggtcatact cagagtgctg actgggggtc ttttgggggg ttaatgggaa 120
ggtttgaatt tgggatttt ttaaagggga aggagattgt taagtgagga tcaacaggga 180
atggtaaaga aactgggggt tttattttct ttattttatg ccctatgtaa taaataacca 240
aaaaacatta ttgcgtgcag tataaaagga ctatgaaatc tgttagctgc gtctatctca 300
tcctaatttg aaagggcaaa aaaaaatatt accatagatt tcctgctaat agtaacaatc 360
taaagcatta atggtgttgg gtcttttgg

<210> 226 <211> 412

<212> DNA

<213> Homo sapiens

# c400> 226 gggtttgttt ttcttcagg ccccatgtct gtgggtttgg acttctctct gccaggcatg 60 gagcatgtct atgggatcc tgagcatgca gacaacctga ggctgaaggt cactgagtga 120 gtcctatggt gacatcagga agatggaggt gggcaggaag gagtcaggcc tttagggaga 180 tgggtgtgca tattggatac tctaggcaag catgggtcat ttcttgtgtc cagaatcacc 240 tttggtgata gaaaatttt tgagaaagga caagaggagc ctttgcttat ctctcacctg 300 tgtctgtgga gtggtgttag catataacgc agcctgggc cagttagcag cccaagtctg 360 tctgtttgcc tgcagggtg gggagccata tcgcctctac aatttggatg tg 412

<210> 227 <211> 390 <212> DNA

<213> Homo sapiens

```
c400> 227

gggagtgagt gccagggcac tgacctggac accegcaact gtaccagtga cctctgtgta 60
cacactgett ctggccctga ggacgtggcc ctctatgtgg gcctcatcgc cgtggccgtc 120
tgcctggtcc tgctgctgct tgtcctcatc ctcgtttatt gccggaagaa ggaggggctg 180
gactcagatg tggctgactc gtccattctc acctcaggct tccagcccgt cagcatcaag 240
cccagcaaag cagacaaccc ccatctgctc accatccagc cggacctcag caccaccacc 300
accacctacc agggcagtct ctgtccccgg caggatggc ccagcccaa gttccagctc 360
accaatgggc acctgctcag cccctgggt
```

<210> 228 <211> 777 <212> DNA <213> Homo sapiens

<400> 228 cttatttata atgaagatat gatttgttgg attgaatcaa gagaatcttc aaatcaactc aaatgtatcc agataacaaa agcaggagga ttaacagatg aatggacaat caatattctt 120 caatccttcc acaatgtgca acaaatggcg attgactggc tcactcgaaa tctctatttt 180 gtggaccatg tcggtgaccg gatctttgtt tgtaattcca acggttctgt atgtgtcacc 240 ctgattgatc tggagcttca caatcctaaa gcaatagcag tagatccaat agcaggaaaa 300 360 aaccgaacaa ggataattga ttcaaagaca gagcagccag ctgcactggc actagaccta 420 gtcaacaaat tggtttactg ggtagatctt tacttggact atgtgggagt agtggactat 480 caaggaaaaa atagacacgc tgtcattcaa ggcagacaag tcagacatct ttatggtata 540 actgtgtttg aagattattt gtatgcaacc aattctgata gctacaatat cgtaaggata 600 agccgattta atgggactga tattcactca ttaattaaaa ttgagaatgc ttggggaatc 660 cgaatttatc aaaaaagaac tcaaccaaca gtcagaagcc atgcatgtga agtcgatcca 720 tatggaatgc cagggggctg ttcacacatc tgtctactca gcagcagtta cacgaaa 777

<210> 229 <211> 486 <212> DNA <213> Homo sapiens

<400> 229 tttcgtctgg gaacccgcag cctggggact cctccggcgg gggcgctggg ggcgggctgc 60 egteccetgg ggagcaggag etgageegge gettgeageg eetgtateee geggteaace 120 agcaagagac teegetgeeg egeteetgga geeceaagga caaatacaac tacattggte 180 teteccaggg caaceteege gtecaetaca aaggteatgg caaaaateae aaagatgegg 240 cctcagtgcg tgccacccac cccatacctg ctgcctgtgg catttattac tttgaagtga 300 agattgtcag caaaggaaga gatggttaca tgggaatagg actctcggct caaggcgtca 360 acatgaacag acttcctggt tgggacaaac attcctatgg ttaccatggt gatgatgggc 420 attegttetg etectegggg aetggecage cetatggtee cacatteace acaggagaeg 480 tgatcg 486

<210> 230 <211> 396 <212> DNA <213> Homo sapiens

<400> 230

ttttttttt ttaagatggg gtctcgctct gtcacccagg ctggagtgca gtggtgtgat 60
gtcagctcac tgcaagctcc gcctccagg ttcacactat tctgcctcag cctcccaagt 120
agctgggact acaggtgcgt gccaccatgc ccggctaatt tttttgtatt tttagtagag 180
acggggtttc accgtgttag ccagtatggt cttgatctcc tgacctcgtg atccacctgc 240
ctcggcctcc caaaagtgct gggattacag gtgtgagctg ctgcgcctgg cttatgagtc 300
gtatgttctg atcctcctc ttgaagttgc cttctgtggt ctaaggaggg cctgaaggtt 360
caggtaaaaa cttcagggtg accttcactg ggggtg

<210> 231 <211> 713 <212> DNA <213> Homo sapiens

<400> 231
tcagctcagc ttggcacgag gaaaggtgtt cttgtgtgcc ttgtcttttg tttactttgc 60
caaagcattg gcagaaggct atctgaagag caccatcact cagatagaga gaagggttga 120
tatcccttct tcactggtgg gagttattga tggtagtttt gaaattggga atctcttagt 180
tataacattt gttagctact ttggagccaa acttcacagg ccaaaaataa ttggagcagg 240

gtgtgtaatc atgggag	gttg gaacactgct	cattgcaatg	cctcagttct	tcatggagca	300
gtacaaatat gagagai	att ctccttcctc	caattccact	ctcagcatct	ctccgtgtct	360
cctagagtca agcagto	caat taccagtttc	agttatggaa	aaatcaaaat	ccaaaataag	420
taacgaatgt gaagtg	gaca ctagetette	catgtggatt	tatgttttcc	tgggcaatct	480
tcttcgtgga ataggag	gaaa ctcccattca	gcctttgggc	attgcctacc	tggatgattt	540
tgccagtgaa gacaatg	cag ctttctatat	tgggtgtgtg	cagacggttg	caattatagg	600
accaatcttt ggtttco	etgt taggeteatt	atgtgccaaa	ctatatgttg	acattggctt	660
tgtaaaccta gtcattt	tta ggtggaagca	tgttacagca	cattatcgag	gaa	713

<210> 232 <211> 1067 <212> DNA <213> Homo sapiens

<400> 232 cagcetteca aggtagggca caccaaggee taaggaatea gaaagggeee gagggtggge tgtgtcctgg ctttcaggcc ctggggcgac caccagcctc tgctcactct gaggetccag 120 ccagggcgcc aagcctcagg accgtgggtg gggcccaagg acactctgga cccccgttcc 180 atteatgaga ggeeeteage aegeeaegtg tetgetgtga eageeegeag ggagggtgga 240 agocttotgt aaattocaca tgtgggooga gggoatgaog toottgatga aggoogoget 300 ggacctcacc taccccatca cgtccatgtt ctccggagcc ggcttcaaca gcagcatctt 360 cagcgtcttc aaggaccagc agatcgagga cctgtggatt ccttatttcg ccatcaccac 420 cgacatcaca gcctcggcca tgcgggtcca caccgacggc tccctgtggc ggtacgtgcg 480 tgccagcatg tccctgtccg gttacatgcc ccctctctgt gacccgaagg acggacacct 540 gctgatggac gggggctaca tcaacaacct cccagcggat gtggcccggt ccatgggggc 600 aaaagtggtg ategeeattg aegtgggeag eegagatgag aeggaeetea eeaaetatgg 660 ggatgegetg tetgggtggt ggetgetgtg gaaacgetgg aacceettgg ecacgaaagt 720 caaggtgttg aacatggcag agattcagac gcgcctggcc tacgtgtgtt gcgtgcgca 780 gctggaggtg gtgaagagca gtgactactg cgagtacctg cgcccccca tcgacagcta 840 cagcaccctg gacttcggca agttcaacga gatctgcgaa gtgggctacc agcacgggcg 900 cacggtgttt gacatetggg geegeagegg egtgetggag aagatgetee gegaecagea 960 ggggccgagc aagaagcccg cgagtgcggt cctcacctgt cccaacgcct ccttcacgga 1020 ccttgccgaa attgtgtctc gcattgagcc cgccaagccc gccatgg 1067 

<210> 233 <211> 704 <212> DNA <213> Homo sapiens

<400> 233 tttcgtgtga gggagagccg agggaaccag cgcggtgcct agcggaactc cagggctgga 60 ' atcccgagac acaagtgcat ctgctagctg ttagcacttg gcagacggag ttctcctcta 120 gggtagttet aactttgggt aataatgttt gteagetace tgatattaae attgeteeae 180 gttcaaacag cagtgttagc aagacctggg ggagagagca ttggctgtga tgactactta 240 ggctccgaca aagtcgtgga caaatgtggg gtgtgtggag gagacaacac gggctgtcag 300 gttgtgtcgg gcgtgtttaa gcatgccctc accagcctgg gctaccaccg cgtcgtggag 360 420 attecegagg gagecaegaa aateaacate aeggagatgt acaagageaa caactatttg gecetgagaa gtegttetgg acgetecate ateaatggga actgggeaat tgategacea 480

ggaaaatacg	agggcggagg	gaccatgttc	acctacaagc	gtccaaatga	gatttcgagc	540
actgccggag	agtccttttt	ggcggaaggt	cccaccaacg	agatcttgga	tgtctacgtg	600
agtttggatg	tttctggact	gttctttgga	ttttgaatct	tgtcacttct	aaggaacata	· 660
ctctgaacaa	ataagcaaca	aatcattgcc	catactcaat	aaaa		704

<210> 234 <211> 420 <212> DNA <213> Homo sapiens

<400> 234
atttcaggag ggaccagaag cgcaggcccg ctcaggagga attacaactt catcgccgcg 60
gtggtggaga aggtggcgcc atcggtggtt cacgtgcagc tgtggggcag gaaccagcag 120
tggattgagg tggtgctcca gaatggggcc cgttatgaag ctgttgtcaa ggatattgac 180
cttaaattgg atcttgcggt gattaagatt gaatcaaatg ctgaacttcc tgtactgatg 240
ctgggaagat catctgacct tcgggctgga gagtttgtgg tggctttggg cagcccattt 300
tctctgcaga acacagctac tgcaggaatt gtcagcacca aacagcgagg gggcaaagaa 360
ctggggatga aggattcaga tatggactac gtccagattg atgccacaat taactatggg 420

<210> 235 <211> 1057 <212> DNA <213> Homo sapiens

<400> 235

cccacgcgtc cgagaactca aagaaattct ggataggaaa gggcatttct cagagaatga 60 gacaaggtgg atcattcaaa gtctcgcatc agctatagca tatcttcaca ataatgatat 120 tgtacataga gatctgaaac tggaaaatat aatggttaaa agcagtctta ttgatgataa 180 caatgaaata aacttaaaca taaaggtgac tgattttggc ttagcggtga agaagcaaag 240 taggagtgaa gccatgctgc aggccacatg tgggactcct atctatatgg cccctgaagt 300 tatcagtgcc cacgactata gccagcagtg tgacatttgg agcataggcg tcgtaatgta 360 catgitatta cgiggagaac cacccttitt ggcaagetca gaagagaage tittigagit 420 aataagaaaa ggagaactac attttgaaaa tgcagtctgg aattccataa gtgactgtgc 480 taaaagtgtt ttgaaacaac ttatgaaagt agatcctgct cacagaatca cagctaagga 540 actactagat aaccagtggt taacaggcaa taaactttct tcggtgagac caaccaatgt 600 attagagatg atgaaggaat ggaaaaataa cccagaaagt gttgaggaaa acacaacaga 660 agagaagaat aagccgtcca ctgaagaaaa gttgaaaagt taccaaccct ggggaaatgt 720 ccctgagacc aattacactt cagatgaaga ggaggaaaaa caggtaggaa gaatcattgc 780 tgcatttctc ccaagtgtaa aataccctca ccacacctgg aacatttttt tgcaaatctg 840 tetttttgtt gttagtttgt aacaaaggee gagegttata tageaagtaa agttetttet 900 gccttataag gctagcatga tttagcgagg tggcctacat gtttatttta aggttggtga 960 ttatgtaggg caggtgtctg caaacttttt ctgtaaggga acaaacagta aatatttag 1020 gctttgtggg ccctagtagt ctttgtcaca actactc 1057

```
<210> 236
<211> 467
<212> DNA
<213> Homo sapiens
```

<400> 236 ttgagtatta gtgtcagtga tgtgtctctc tctgatgaag gacagtacac ctgttcttta tttacaatgc ctgtcaaaac ttccaaggca tatctcaccg ttctgggtgt tcctgaa'aag 120 cctcagatta gtggattctc atcaccagtt atggagggtg acttgatgca gctgacttgc 180 aaaacatctg gtagtaaacc tgcagctgat ataagatggt tcaaaaaatga caaagagatt 240 aaagatgtaa aatatttaaa agaagaggat gcaaatcgca agacattcac tgtcagcagc 300 acactggact tccgagtgga ccggagtgat gatggagtgg cggtcatctg cagagtagat 360 cacgaatccc tcaatgccac ccctcaggta gccatgcagg tgctagaaat gcactataca .420 ccatcagtta agattatacc atcgactcct tttccacaag aaggacg 467

```
<210> 237
<211> 416
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (416)
<223> n = a,t,c or g
```

<400> 237

ggtacaacca gaaagtggat ctcttcagcc tgggaattat cttctttgag atgtcctatc 60
accccatggt cacggcttca gaaaggatct ttgttctcaa ccaactcaga gatcccactt 120
cgcctaagtt tccagaagac tttgacgatg gagagcatgc aaagcagaaa tcagtcatct 180
cctggctgtt gaaccacgat ccagcaaaac ggcccacagc cacagaactg ctcaagagtg 240
agctgctgcc cccacccag atggaggagt cagagctgca tgaagtgctg caccacacgc 300
tgaccaacgt ggatggaaag gcctaccgca ccattgatgg gcccagatct tttcggcagc 360
gcatctcccc tgccatcgnt ttacacctat gaccagcgac atattgaagg gcaact 416

<210> 238 <211> 739 <212> DNA <213> Homo sapiens

<400> 238
ggaccaggac tacaagtacg acagtacctc agacgacagc aacttcctca accccccag ggggtgggac catacagccc caggccaccg gacttttgaa accaaagatc agccagaata tgattccaca gatggcgagg gtgactggag tctctggtct gtctgcagcg tcacctgcgg 180
gaacggcaac cagaaacgga cccggtcttg tggctacgcg tgcactgcaa cagaatcgag 240

gacctgtgac	cgtccaaact	gcccaggaat	tgaagacact	tttaggacag	ctgccaccga	300
agtgagtctg	cttgcgggaa	gcgaggagtt	taatgccacc	aaactgtttg	aagttgacac	360
agacagctgt	gagcgctgga	tgagctgcaa	aagcgagttc	ttaaagaagt	acatgcacaa	420
ggtgatgaat	gacctgccca	gctgcccctg	ctcctacccc	actgaggtgg	cctacagcac	480
ggccgacatc	ttcgaccgca	tcaagcgcaa	ggacttccgc	tggaaggacg	ccagcgggcc	540
caaggagaag	ctggagatct	acaagcccac	tgcccggtac	tgcatccgct	ccatgctgtc	600
cctggagagc	accacgctgg	cggcacagca	ctgctgctac	ggcgacaaca	tgcagctcat	660
caccaggggc	aagggggcgg	gcacgcccaa	cctcatcagc	accgagttct	ccgcggagct	720
ccactacaag	gtggacgtc					739

<210> 239 <211> 611 <212> DNA

<213> Homo sapiens

<400> 239 ggaatcggaa gaaaatggag agagtgcaat ggacagcaca gtggccaaag aaggcactaa 60 tgtaccatta gttgctgctg gtccttgtga tgatgaaggc attgtgacta gcacaggcgc 120 180 tgggcatgct tcaacttgta cagggttagg agaagaaagt gaaggggtct tgatttgtga 240 aagtgcagaa ggggacagtc agattggtac tgtggtagag catgtggaag ctgaggctgg 300 agctgccatc atgaatgcaa atgaaaataa tgttgacagc atgagtggca cagagaaagg 360 aagtaaagac acagatatet getecagtge aaaagggatt gtagaaagca gtgtgaceag 420 tgcagtctca ggaaaggatg aagtgacacc agttccagga ggttgtgagg gtcctatgac 480 tagtgctgca tctgatcaaa gtgacagtca gctcgaaaaa gttgaagata ccactatttc 540 cactggcctg gtcgggggta gttacgatgt tcttgtatct ggtgaagtcc cagaatgtga 600 agttgctcac a 611

<210> 240 <211> 1090 <212> DNA <213> Homo sapiens

<400> 240 ttttttttt ttaagcttga aataaaattt ttattttgtt ttgaattaaa tcaaccatga 60 ttattcacag tgcagtaagt gtgtatcatc tgtttgatat tttcatatta cagttttgat 120 agtgetette agtetgegaa atettetttg ggtggaaatg atgaactgte agetaettte 180 ttagaaatga aaggacattt ctatatgtat gctggttctc tgctcttgaa gatgggtcag 240 catggtaata atgttcaatg gcgagctctt tctgagctgg ctgcgttgtg ctatctcata 300 gcatttcagg taagtcttcc acttggagca attgacattt cacggagtct tgatgtgttt 360 taaatgaagg tgtgctctgg tatgtaatga caatatgtga acaaacctgt ggaattaaag 420 ttaaaatgaa atagtcaatt tgatacagtg gaaaataact aagcatacac aatactggtg 480 aggetggtga aacagggatg ttgaatgcac tettgtegaa ageetgeatt gecatgattt 540 gtttgtagac aaatttgaag agtttgatct ttttactctg ccatttttgg gaacatgata 600 aagatgtaat ctcgtattat gggtaaagct tgattcaaaa agatgtgtta cttggacaaa 660 atcctaataa gtagacgtag ggcaatggct ttatagccta tgatagaaga atatgattgc 720 aatttaacat gttaattgaa acacatgtat ataacattta tgactgtatt gtgtatatgt 780 aacagtatat ctattaatct ttgaaaacat aaaacctttt cttattttt attttttat 840

tttttttga gaccaagtct ctctctgtcg ccaggctgga gtgcagtggt gtgatctcgg 900 ctcactgcag cctccacctc ctgggttcga gtgattctcc tgcctcagcc tcccgagtag 960 ctgggactac aggcccatgc taccaagcc agctaatttt ttgtattttt aatagagatg 1020 gggtttcacc atgttggcca ggatggtcgc aatctcttga cctcttgatc tacctgcctt 1080 ggtctcccaa 1090

<210> 241 <211> 680 <212> DNA

<213> Homo sapiens

<400> 241 gcaacaccca teccaggaaa agccacaagt cetgacccc agccccagga agcagaaget 60 gaacagaaag tacaggtccc accatgacca gatgatctgc aagtgcctct ccctgagcat 120 atcetactee getaceattg geggeetgae eaceateate ggeaceteea eeageeteat 180 cttcctggaa cacttcaaca accagtatcc agcctcagag gtggtgaact ttggcacctg 240 gtteetette agetteecea tateeeteat eatgetggtg gteagetggt tetggatgea 300 ctggctgttc ctgggctgca attttaaaga gacctgctct ctgagcaaga agaagaagac 360 caaaagggaa cagttgtcag agaagaggat ccaagaagaa tatgaaaaac tgggagacat 420 tagetaccca gaaatggtga ctggattttt cttcatcctg atgaccgtac tgtggtttac 480 ccgggagcct ggctttgtcc ctggctggga ttctttcttt gaaaagaaag gctaccgtac 540 tgatgccaca gtctctgtct tccttggctt cctcctcttc ctcattccag cgaagaagcc 600 ctgctttggg aaaaagaatg atggagagaa ccaggagcac tcactgggga ccgagcccat 660 catcacgtgg aaggacttcc 680

<210> 242 <211> 491 <212> DNA <213> Homo sapiens

<400> 242 cttgaaagag aaggggacaa aggaacacca gtattaagag gattttccag tgtttctggc 60 agttggtcca gaaggatgcc tccattcctg cttctcacct gcctcttcat cacaggcacc 120 teegtgteac eegtggeeet agateettgt tetgettaca teageetgaa tgageeetgg 180 aggaacactg accaccagtt ggatgagtet caaggteete etetatgtga caaccatgtg 240 aatggggagt ggtaccactt cacgggcatg gcgggagatg ccatgcctac cttctgcata 300 ccagaaaacc actgtggaac ccacgcacct gtctggctca atggcagcca ccccctagaa 360 ggcgacggca ttgtgcaacg ccaggcttgt gccagcttca atgggaactg ctgtctctgg 420 aacaccacgg tggaagtcaa ggcttgccct ggaggctact atgtgtatcg tctgaccaag 480 cccagcgttt g 491

<210> 243 <211> 983

<212> DNA

### <213> Homo sapiens

```
<400> 243
tgeggeegea ccatgagega catcegeeae tegetgetge geegegatge getgagegee
gccaaggagg tgttgtacca cctggacatc tacttcagca gccagctgca gagcgcccg
 120
ctgcccatcg tggacaaggg ccccgtggag ctgctggagg agttcgtgtt ccaggtgccc
 180
aaggagcgca gcgcgcagcc caagagactg aattcccttc aggagcttca acttcttgaa
 240
atcatgtgca attatttcca ggagcaaacc aaggactctg ttcggcagat tatttttca
 300
tecettttea geeeteaagg gaacaaagee gatgacagee ggatgagett gttgggaaaa
 360
ctggtctcca tggcggtggc tgtgtgtcga atcccggtgt tggagtgtgc tgcctcctgg
 420
cttcagcgga cgcccgtggt ttactgtgtg aggttagcca aggcccttgt agatgactac
 480
tgctgtttgg tgccgggatc cattcagacg ctgaagcaga tattcagtgc cagcccgaga
 540
ttctqctqcc aqttcatcac ctccgttacc gcgctctatg acctgtcatc agatgacctc
 600
 660
attocaccta togacttgct tgaaatgatt gtcacctgga tttttgagga cccaaggttg
 720
atteteatea ettittaaa taeteegatt geggeeaate tgeeaatagg attettagag
 780
ctcaccccgc tcgttggatt gatccgctgg tgcgtgaagg cacccctggc ttataaaagg
 840
aaaaagaagc cccccttatc caatggccat gtcagcaaca aggtcacaaa ggacccgggc
 900
gtggggatgg acagagactc ccacctcttg tactcaaaac tccacctcag cgtcctgcaa
 960
gtgctcatga cgctgcagct gcacctgacc gagaagaatc tgtatgggcc gcctggggct
 983
gatectette gaccacatgg tee
```

```
<210> 244

<211> 526

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(526)

<223> n = a,t,c or g
```

```
<400> 244
 60
eggetegtee nnatttgaac ceettetttg ateggeetge agtaceggge eggaattace
 120 .
eggtegagee acgegttege teacgegtee ggeeaaceag aagggttgeg acggggaceg
 180
cctgtactac gacggctgtg ccatgatcgc catgaacgga agcgtctttg ctcaaggatc
 240
ccagttttct ctggatgacg tggaagtcct gacggccacg ctggatctgg aggacgtccg
gagetacagg geggagattt catetegaaa eetggeggtg agtgetecag tagacacetg
 300
 360
tgtgggatgc tcatcaaaga cgtggaaagt ggccccattc gtgcgggcct ggtggaggcc
gtgagggtgc agtgcctgaa aagtctgaca gggaagttcc ggacttcccg agcgtggaaa
 420
ggggetggtg cegcagaeag aacetgette catetgttee cegteateet etgettggge
 480
caggccctga gctggggtga gctggggaca ggcaggcagg tgtatt
 526
```

106

```
<210> 245
<211> 418
<212> DNA
. <213> Homo sapiens
```

# <400> 245 ggggcgggcc ccccaggtag gcatggctgc tgccccagc ccatttcttt tgaatctgtt 60 cactcctatt cactcctact tgccactcct tctattcatt actcactgcc cctgccccta 120 gtccccatgg tacccctgag ccatgggcat ttcctgagcc ccactcagca ggctctgctt 180 cccccaggtc ctggtgaacg agggcggtgg ctttgaccgg gcctctggct ccttcgtagc 240 ccctgtccgg ggtgtctaca gcttccggtt ccatgtggtg aaggtgtaca accgccaaac 300 tgtccaggtg acctcagcac tggccccat ccccggctca ggagggtggg gagggggaag 360 aaggggagcc cagctgacct ccgggtggac tctccattga cctgtgtcct ggacgaaa 418

<210> 246 <211> 706

<212> DNA

<213> Homo sapiens

### <400> 246 acctcatatt attggagcag aagatgatga ttttggtact gaacatgaac agatcaatgg 60 acagtgcage tgtttccaga gcattgaatt gctaaaatct cgcccggctc atttggctgt 120 tttcttacgc catgtagttt cacaatttga ccctgcgact ttgctttgtt atctctattc 180 agacctgtat aaacatacca attccaaaga aactcgtcgc atcttccttg agtttcatca 240 gttctttcta gatcgatcag cacacctgaa agtttctgtt cctgatgaaa tgtctgcaga 300 tctagaaaag agaagacctg agctcattcc tgaggatctg catcgccact atatccaaac 360 tatgcaagaa agagtccatc cagaagttca aaggcactta gaagattttc ggcagaaacg 420 tagtatggga ctgaccttgg ctgaaagcga gctgactaaa cttgatgcag agcgagacaa 480 ggaccgattg actttggaga aggagcggac atgtgcagaa cagattgttg ccaaaattga 540 agaagtattg atgactgctc aggctgtaga ggaagataag agctccacca tgcagtatgt 600 tattctcatg tatatgaagc atttgggagt aaaagtgaaa gagcctcgaa atttggagca 660 caaacggggt cggattggat ttcttcccaa aatcaagcaa agtatg 706

<210> 247 <211> 439 <212> DNA <213> Homo sapiens

<400> 247 caagggaggg gggttgatcc cctggcacag gtcgaggccc tggacccaca tcctttgtct 60 gectececae eccaeagtge cegtteateg acgattteat ectggecete cataggaaga 120 tcaagaatga gcccgtggtg tttcctgagg ggccagaaat cagcgaggag ctcaaggacc 180. tgatcctgaa gatgttagac aagaatcccg agacgagaat tggggtgcca gacatcaagt 240 tgcaccettg ggtgaccaag aacggggagg agccettee ttcggaggag gagcactgca 300 gcgtggtgga ggtgacagag gaggaggtta agaactcagt caggctcatc cccagctgga 360 ccacggtgat cctggtgaag tccatgctga ggaagcgttc ctttgggaac ccgtttgagc 420 cccaagcacg aatggcgaa 439

<210> 248 <211> 730 <212> DNA <213> Homo sapiens

<400> 248 cccacgcgtc cggaataaag atagataaga cttccgatgg accaaaactt ttcttaacag 60 aagaagatca aaagaaactt catgattttg aagagcagtg tgttgaaatg tatttcaatg 120 aaaaagatga caaatttcat tetgggagtg aagagagaat tegtgteact tttgaaagag 180 tggaacagat gtgcattcag attaaagaag ttggagatcg tgtcaactac ataaaaagat 240 cattacaatc attagattct caaattggcc atttgcaaga tctttcagcc ctgacggtag 300 atacattaaa aacactcact gcccagaaag cgtcggaagc tagcaaagtt cataatgaaa tcacacqaqa actqaqcatt tccaaacact tqqctcaaaa ccttattgat gatggtcctg 420 taaqacette tqtatqqaaa aaqeatqqtq ttqtaaatac acttagetee tetetteete 480 aaggggatet tgaaagtaat aateetttte attgtaatat tttaatgaaa gatgacaaag 540 atccccagtg taatatattt ggtcaagact tacctgcagt accccagaga aaagaattta 600 660 attttccaga ggctggttcc tcttctggtg ccttattccc aagtgctgtt tcccctccag 720 aactgcgaca gagactacat ggggtagaac tcttaaaaat atttaataaa aaacaaaaaa 730 aaagggcggc

<210> 249 <211> 466 <212> DNA <213> Homo sapiens

<400> 249 attgctgccg ctggatcgac tgctttgcct tgtacgacca gcaggaggag ctcgtgcggc 60 acategagaa ggtecacate gaccagegea aaggggagga etteacttge ttetgggeeg 120 gttgccctcg aagatacaag cccttcaacg cccgctataa actgctgatc cacatgagag 180 tccactctgg ggagaagccc aacaagtgta cgtttgaagg ttgcgagaag gccttttcaa 240 ggcttgaaaa tctcaagatc cacttgcgga gccacacagg cgagaagccg tatttgtgcc 300 agcatceggg ttgtcagaag gccttcagta actccagtga cegegecaaa caccagegga 360 420 cgcatctgga cactaaacct tatgcttgtc aaattccagg atgtaccaaa cgctacacag 466 acccaagttc cctaagaaag catgtgaagg cacattcttc caaaga

<210> 250 <211> 963 <212> DNA <213> Homo sapiens

<400> 250
ggagcggctq ccacqqaaaa cqcctggccg gacggtggct ggcggccctg cctgggcgcg

60

```
gagggeggeg gtggegggee cegeggeett eteteagett eettteteet caegaeggee
 120
tccacagtcc ggagcccggc ggagcccgga cctggogggg agagctgcct ccacggccgg
 180
gcacccagac cccaccgtcg cagtcgccac cacctcagtc catccttggt accggcaatg
 240
ggettegtat cetecagtge acttgtaact gaettggaca eggaatacta agaacteact
 300
tetgteetea teccagtege geeggeggtg accatetegg etettttggg ettaactgee
 360
gctcctctgg actctgtctg actttggggg caccatggac caaagtggga tggagattcc
 420
tgtgaccete atcattaaag caccgaatca gaaatacagt gaccagacta ttagetgett
 480
 540
cttgaactgg accgtgggga aactaaaaac gcatctatct aacgtttacc ctagcaaacc
agtaagtgtg taaaagctgg gggcagctgc tetgagcagc agettttegt geegtgtace
 600
ctcctttttc ctgcttctcc cctccagtct tgaatgaaat aggtctcttt tggtagaccg
 660
cgaggtattt tgagttctga ggttgtgtct cctgagtgtt cgaaccatca ttaatatttt
 720
octgatgagg ttcagttaat tagtaagagg aagcagaaat atcaagggac ttaagaattg
 780
gcaggcaaag accgggcgcg gtggctcacg cctgtaatcc cagcactttg ggaggccaag
 840
gegggeggat cacgaggtca ggagttcgag accagcetta ceggcatggt gaaaccetgt
 900
 960
gtotactgaa aatacaaaaa ttaactgggc gtggtggcgc atgcttgtaa tcccagctac
 963
```

<210> 251 <211> 894 <212> DNA <213> Homo sapiens

<400> 251· gcggggaccc ggatgtgtgt ggtggcggcg gccgaagagc ttgtgtgcgg agctgagagg cctatggatg aggaggacgc ggcggccccg gtttgttctc atgaacaaga tggatgacct 120 caacetgcae taceggttte tgaattggcg ceggoggate egggagatte gagaggteeg agettteega tateaggaga ggtteaaaca tateettgta gatggagata etttaagtta 180 tcatggaaac tctggtgaag ttggctgcta cgtggcttct cgacccctga ccaaggacag 360 caattatttt gaggtgtota ttgtggacag tggagtccgg ggcaccattg ctgtggggct ggtccctcag tactacaget tggatcacca gcctggctgg ttgcctgact ctgtagecta 420 ccatgctgat gatggcaagc tgtacaatgg ccgagccaag ggccgccagt ttgggtcaaa 480 gtgcaactcc ggggaccgga ttggctgtgg cattgagcct gtgtcctttg atgtgcagac 540 cgcccagate ttetteacea aaaatgggaa gegggtggge tetaccatea tgcccatgte 600 cccagatgga ctgttcccag cagtgggcat gcactccctg ggtgaggagg tgcggctgca 660 cctcaacgct gagctgggcc gtgaggacga cagcgtcatg atggtggaca gttacgagga 720 tgaatggggc cggctacatg atgtcagagt ctgtgggact ctgctggagt acttagggaa 780 840 gggcaaaagc atcgtggatg tggggctggc ccaggcccgg cacccactca gcacccgcag ccactacttc gaggtggaga tcgtggaccc tggagagaaa tgctacatcg ccct

<210> 252 <211> 861 <212> DNA <213> Homo sapiens

<400> 252
tcccgggtog acgatttcgt ctggagtgtt agcaccagta ctggatgtga cagcaggcag 60
aggagcactt agcagcttat tcagtgtccg attctgattc cggcaaggat ccaagcatgg 120
aatgctgccg tcgggcaact cctggcacac tgctctctt tctggctttc ctgctcctga

```
240
gttccaggac cgcacgctcc gaggaggacc gggacggcct atgggatgcc tggggcccat
 300
ggagtgaatg etcaegeace tgegggggag gggeeteeta etetetgagg egetgeetga
gcagcaagag ctgtgaagga agaaatatcc gatacagaac atgcagtaat gtggactgcc
 360
caccagaagc aggtgatttc cgagctcagc aatgctcagc tcataatgat gtcaagcacc
 420
atggccagtt ttatgaatgg cttcctgtgt ctaatgaccc tgacaaccca tgttcactca
 480
agtgccaagc caaaggaaca accetggttg ttgaactagc acctaaggtc ttagatggta
 540
cgcgttgcta tacagaatct ttggatatgt gcatcagtgg tttatgccaa gtaagtgctg
 600
attigttctc attcaactig tccagagggt ttcaatgtct ttgtgtaaat ggtttacata
 660
gtctcactct ctgaatcact catctttaca ctttttagag tttgtaaatg gtgaaagatt
 720
tgaaaattaa ggtatgattt cagtgaaaag taccaagtgt tgtattgtgc gaaggaaaag
 780
tagactagag ttatttttct ttccttgagt gtcacttgaa tataaaagaa taaaaatttt
 840
tgaatagtgt taaaaaaaaa a
 861
```

<210> 253

<211> 556

<212> DNA

<213> Homo sapiens

<400>	253					
caggctgtta	agacaagagc	ttgtggtgct	ttgccacctt	caccaccca	gtttgatatc	60
tttgctggca	gctgggattc	gtccccggat	gttggtgatg	gagttagcct	ccaagggttc	120
cttggatcgc	ctgcttcagc	aggacaaagc	cagcctcact	agaaccctac	agcacaggat	180
tgcactccac	gtagctgatg	gtttgagata	cctccactca	gccatgatta	tataccgaga	240
cctgaaaccc	cacaatgtgc	tgcttttcac	actgtatccc	aatgctgcca	tcattgcaaa	300
gattgctgac	tacggcattg	ctcagtactg	ctgtagaatg	gggataaaaa	catcagaggg	360
cacaccaggg	tttcgtgcac	ctgaagttgc	cagaggaaat	gtcatttata	accaacaggc	420
tgatgtttat	tcatttggtt	tactactcta	tgacattttg	acaactggag	gtagaatagt	480
agagggtttg	aagtttccaa	atgagtttga	tgaattagaa	atacaaggaa	aattacctga	540
tccagttaaa	gaatag					556

<210> 254 <211> 435 <212> DNA <213> Homo sapiens

<400> 254 caaaggccag taatagtacc catgagtttc gtattggcct acctgagggg tgggaatccg 60 aaaaaaaggc agttatcccc ctggggatcg ggccacccct gactttaatc tgcctagggg 120 ttctgggggg tattctcatc tacgggagga aaggetteca aactgeceae ttttacttaa 180 aggacagtcc atcccctaaa gtaatatcca cccctccacc acctatcttt ccaatttcaa 240 aggaggtegg accaatteca ataaageact tteeaaagea tgtggcaaat ttacatgeaa 300 360 gtagggggtt tactgaaaaa tttgaaacac tgaaaaagtt ttaccaggaa gggcaaagct gtactgttga cttaggtatt acagcaaaca gctccaacca cccagacaac aggcacagga 420 atcgatcctt aattg 435

```
<210> 255
<211> 698
<212> DNA
<213> Homo sapiens
```

<400> 255 cctcatttcc tgatcgaaca gcctcacttg tgttgctgtc agtgccagta gggcaggcag 60 gaatgcagca gagaggactc gccatcgtgg ccttggctgt ctgtgcggcc ctacatgcct 120 caccagecat actteceatt geetecaget gttgcaegga ggtttcaeat catattteca . 180 gaaggeteet ggaaagagtg aatatgtgte geateeagag agetgatggg gattgtgaet 240 tggctgctgt catccttcat gtcaagcgca gaagaatctg tgtcagcccg cacaaccata 300 ctgttaagca gtggatgaaa gtgcaagctg ccaagaaaaa tggtaaagga aatgtttgcc 360 acaggaagaa acaccatggc aagaggaaca gtaacagggc acatcagggg aaacacgaaa 420 catacggcca taaaactcct tattagagag tctacagata aatctacaga gacaattcct 480 caagtggact tggccatgat tggttagtct cgctctgtca cacaggctgg agggcagtgg 540 egggateteg gttcacecca acctttgcct caegggttca agggattctc gtqcctcage 600 cttccaagtg gctgggattg caggtgtgcg ccagtacgcc tggctagttt tagtattttt 660 tgttacagac ggggtttcac catgttggct gggctggt 698

<210> 256 <211> 736 <212> DNA <213> Homo sapiens

<400> 256 gtttgaacag cccggaaacc cgggcgaccc acgcgtacga actccgcccc catgggggcc 60 ccactttttc getttgattc cttcttcccc caaagaggtc ccagctaccc catcctccag 120 aagggacccc attgccccaa cagcgactct tctctctaaa aagaccccag caactctagc 180 ccccaaagag gccctcattc ccccagctat gactgttccc tcccctaaaa agaccccagc 240 aattccaacc cccaaagaag ccccagctac cccatcctcc aaagaggcct ccagtccccc 300 agcagtgact cettecactt acaaagggge cecateceee aaagagetee teattecace 360 agetgtgaet teteetteee ecaaagagge acetaeteet ecaqetgtga eteeteeate 420 ccccgaaaag ggcccagcaa ctccagccc caaagggact cccacttccc cacctgtgac 480 tecttectec etcaaagact eccetactte eccagettet gteacatgta aaatggggge 540 cactgttcct caagcatcta aagggcttcc agcaaagaaa ggccccacag ctctgaaaga 600 agtacttgtt gccccagctc cagaaagcac gccaatcatc acagctccca ctcggaaagg 660 tccacagacc aaaaagagtt ctgctacttc acctcctata tgcccagatc cctcagctaa 720 gaatggttct aaagga 736

<210> 257 <211> 77 <212> DNA <213> Homo sapiens

<400> ctccgcctcc tatctttaaa	caaagtactg	ggattacagg	tgtgagccac ·	cgtgcccagc	caagaccttg	60 77
<210> <211> <212> <213>	499	ns				
tgtagagcaa atgaaggata attggaagta ttcctgcttg ctctaggctg ggagatctga	tggtaagaac ggattgcaag taagaatgaa gaagatattt tttgtatttc gttttggtta atctctactc aattcaatag	ggattattta tgataaagca atttaggttc agtgatcaca cggcttgcca tttatcagga	gacaagttca agctaaaaat taggacatta tacacttctt atttctcgtc tatggaacag	tcaattaagt ggtgaaacaa gtatcagtga tacctgataa tgtatgccaa atgctatcat	aaaattagac gggatgtctg ggacagtaat cgtctctctt gtactttcaa ctacttaaag	60 120 180 240 300 360 420 480 499
<210> <211> <212> <213>	621 .	ns				
tcccaggatg caaccaggaa cctccgggga agagcagtcc ccagatccta gctcaaggcc caaccacgag ggaggagaat tgaggaggcg	259 gtagtcagcc gacaccccgc gaggagacgg ctgtcagagg cagctcatct gagctgctca cagggtgagt ttgatgctcc gagaagctga aaagtattac gagaggtgtg	cccctgaaga agtttaagga aggagaggag gcatcctgaa atgcagagct acagtcggaa gcttcaagga ggctggagaa agctcacagt	acgettagag actggaeggt egagaagget geggaggtea ggaggagaag actagaggaa tgaatacaag taacageete	aagcaaaatg ctgagggaag atgcttcgct gatgaggccc atgatgcagg cgctttatga agtgagaaca ttcagccagg	aaaaactgaa ccttggcaaa cccgcattga tggagcgctg aggctgagaa ccctagcagc tcaagctgag ctctgaagga	60 120 180 240 300 360 420 480 540 600 621

<210> 260 <211> 414 <212> DNA

<213> Homo sapiens

```
<400> 260
agatccgggt gcgagccacg cgtccgtgca ggtgcaggta ctgaaagagc aactttttgc 60
tgggcgtatg ccttcaccct tccgctcctg cgcactcatg ggaatgtgtg gcagtagaag 120
cgctgataac ttgtcatgcc cttctccatt gaatgtaatg gaaccagtaa gcttctttcc 180
tcttaaatca ctggggaagg gaatgataca acatttcaga cacatagttt ccctagttta 240
gatgaaatat atgtttattt taaatacata atttgataaa ttattgttga ttggaagtga 300
ctttcacctt tgaaagtcca ttgctgtctg aagccactag aaagccacct gaattgcaat 360
agtgatttat ctttctgact aaaggaggta atgcaccata aaaacatgta cagt 414
```

<210> 261 <211> 620 <212> DNA

<213> Homo sapiens

<400> 261 gtaaccacca ctactcatag cgttggacga gggcatgagc tacagttgct taatgaagaa 60 ctgagaaaca ttgagcttga gtgtcagaat atcatgcagg ctcacaggct ccagaaagtg 120 acagaccagt atggagacat ctggacattg catgatggag gattccggaa ttataacacc 180 agcatagata tgcaaagggg aaagctagat gacatcatgg agcatccaga aaagtctgac 240 aaggacagtt ctagtgctta caacacagct gagagctgca gaagtactcc gctcactgta 300 gaccgttccc ctgacagttc ccttccaagg gtgatcaacc tcaccaataa gaaaaacctg 360 agaagcacaa tggcagccac ccagtcctct tccggacaga gcagtaaaga gtcgacctcc 420 accaaagcca aaaccactga gcaaggttgt agcgctgaaa gcaaggagaa ggttttagaa 480 ggcagcaagc ttcctgatca agagaaggca gtcagcgaac acatccctta cctctctcct 540 taccacaget ceteatatag atatgeaaac ateccageae aegeceggea ttateaaage 600 tacatgcagt taattcaacg 620

<210> 262 <211> 418 <212> DNA <213> Homo sapiens

<210> 263 <211> 441 <212> DNA <213> Homo sapiens

<400> 263 tttcgtcaga gccgcgggag gacggttgcc tggtattatt agcaagcagc aaatatggcg gtggcgcgcg tggacgcggc tttgcctccc ggagaaggat cagtggtcaa ttggtcagga 120 cagggactac agaaattagg tccaaattta ccctgtgaag ctgatattca cactttgatt 180 ctggataaaa atcagattat taaattggaa aatctggaga aatgcaaacg attaatacag 240 300 ttatcagtag ctaataatcg gctggttcgg atgatgggtg tggccaagct gacgttgctt cgtgtattaa atttgcctca taatagcatt ggctgtgtgg aagggctaaa ggaactagta 360 catctggaat ggctgaattt ggcaggaaat aatcttatag ccatggaaca gatcaatagc 420 tgcacageté tacageatet e 441

<210> 264 <211> 832 <212> DNA <213> Homo sapiens

<400> 264 tatttcgagc ggcagttggg gcggtaccag agggtgcctg gaaggatacg gcccagctcc 60 acaagagcga ggaggcgaag cgggtgctgc ggtattacct cttccagggc cagcgctata 120 tetggatega gacceageaa geettetace aggteageet eetggaceat ggeegetett 180 gtgacgacgt ccaccgctcc cgccatggcc tcagcctcca ggaccaaatg gagaggaagg 240 ccatttacgg ccccaacgtg atcagcatac cggtcaagtc ctaccccaag ctgctggtgg 300 acgaggeett cagcategeg etgtggetgg etgaceacta etactggtac geeetgtgca tettecteat trectecate tecatetgee tgtegetgta caagaccaga aagcaaagee 420 agactctaag ggacatggtc aagttgtcca tgcgggtgtg cgtgtgccgg ccagggggag 480 aggaagagtg ggtggactcc agtgagctag tgcccggaga ctgcctggtg ctgtcccagg 540 agggtggget gatgeeetgt gatgeegeee tggtggeegg egagtgeatg gtgaatgata 600 660 gctctctgac aggagagagc attccagtgc tgaagacggc actgccggag gggctggggc 720 cctactgtgc agagacacac cggcggcaca cactettctg cggaaccetc atettgcatg 780 cccgggccta tgtgggaccg cacgtcctgg cagtggtgac ccgcacaggt atgagccggg 832 aggetggget tgagagagat cegggeteag caccettgaa gaggtggagt gg

<210> 265 <211> 714 <212> DNA <213> Homo sapiens

<400> 265
tttcgtcggg ggcgggctcc accttcacct ctgccttctg ctctgcttca tgctgcccga

```
ggacgctgcc atggctgtgc tgacggcctc caaccacgtg agcaacgtca ccgtgaacta
caacatcacc gtggagcgga tgaacaggat gcagggcctg cgggtctcta cagtgccagc
 180
cgtgctgtcc cccaatgcca cgctggcact gacggcggc gtgctggtgg actcggccgt
 240
ggaggtggcc ttcctgtgga cctttgggga tggggagcag gccctccacc agttccagcc
 300
tccatacaac gagtccttcc cggttccaga cccctcggtg gcccaggtgc tggtggagca
 360
caatgtcacc cacacctacg ctgccccagg tgagtacgtc ctgaccgtgc tggcatctaa
 420
tgccttcgag aaccggacgc agcaggtgct gatccgcagt ggccgggtgc ccattgtgtc
 480
cttqqaqtqt qtqtcctqca aqqcacaggc cqtqtacgaa gtgagccgca gctcctacgt
 540
qtacctqqaq qqccqctqcc tcaattgcag cagcggctcc aagcgagggc ggtgggctgc
 600
acgtacgttc agcaacaaga cgctggtgct ggatgagacc accacatcca cgggcagcgc
 660
aagcatgtga ctggtgctgc ggcggggcgt gctgcgggac ggcgagggat acac
 714
```

<210> 266 <211> 1872 <212> DNA <213> Homo sapiens

<400> 266 cccggaattc ctgggtcgac tatttcgtgg aaaggctgcc actctgcatg tgcacagtga 60 ccagaagccc cttcacgatg gggccctcgg gtcgcagcag aacttggttc gcatgaagga 120 ggcgctgagg gccagcacca tggacgtcac cgtggtcctg cctagtgggc tggagaagag 180 gagogtgoto aatgggagoo atgogatgat ggacotactg gttgaacttt goottcagaa 240 ccacctgaat ccatcccacc atgcccttga aattcggtct tcagaaaccc aacaaccttt 300 gagttttaag ccaaatactt tgattgggac cctgaatgtg catactgtgt ttctgaaaga 360 aaaagttcct gaagagagg ttaagcctgg tccccctaag gtgcctgaga aatctgtgcg 420 tttggtcgtg aattacctgc ggacacaaaa agctgttgtg cgtgtgagcc ctgaggttcc 480 tetecagaat atteteccag teatttgtge aaagtgtgag gteageecag ageaegtggt 540 tetecteagg gacaacattg eeggagagga getggagetg tecaagteee tgaaegaget cgggataaag gagctctacg cgtgggacaa cagaagagaa acctttagga aatcatcact 660 tggcaatgat gagacagata aagagaagaa aaaatttctg ggatttttca aagttaataa 720 aagaagcaat agtaaggget gtttaacgae eeccaaetee eeatecatge acteaegtte 780 tettacgetg ggtecatece tetegetggg cageatetea ggggtgteeg tgaagtegga 840 gatgaagaag cgccgagccc ctcctcctcc aggttcaggg ccacctgtgc aagacaaggc 900 ateggaaaag gtatetettg ggteaeagat tgatttaeag aagaagaage ggegagegee 960 agetececet ceaccacage caccaccace gagtecectg atecceaace geactgagga 1020 taaggaggag aacaggaaga gcacgatggt ttattgctgt gcgtcattcc ctactcaggc 1080 caagegette tgatggaegg geetetteet gaeeteggae ettteeeagt gtetettetg 1140 ccctggctct gattttcctg ttgttcttcc tcctttcagg ataaaagggc tcattgtata 1200 cccagaattt acttcctttg gggtttacat ataaatgcat taataacaga gatttgtttg 1260 attgaggttt atattttttt gaaggaggta aattatatgc aaattttagg ttgataatat 1320 teacetytet gaaatteact gataettyga aatytteety tyaagaaete tyetttattt 1380 taattcatta ttaattcatg tttttcttat tggatattca gttccagaat ttattgccaa 1440 tttttcttaa aactagattg tatccataaa ttgaccagta tagtcaattt ggatagaact 1500 gaaactttct gtctacctgg taaaactaag tgcctaaaaa catgaactat aaatgtagtt 1560 actaggaact cacaacttat atatactatc cattcaatga tacataggac ccaatgtctt 1620 tgtgtttttg aggttttcct gttactgtgt actttgccat tttacatagt tcactaaaaa 1680 gaaagaagtg ggagaagaag gggggtctat tcattattct atattatgat tctcttcatt 1740 attetgttet etteattatt etatteattt etteacecat ttatteaeta aacagtgaca 1800 tagtacttac ttgatgctag gtattacacc agttttgtgg gctataagag tgaataacaa 1860 gcacgtgacc tt 1872

<210> 267

<211> 684 <212> DNA

<213> Homo sapiens

<400> 267 tgtagataca gagtagetaa ttetaaaatt catatggaag geaaagaaac taaattagee 60 aaaacaattt tgaaaaagat ttcaaaaaaa ttttgaagga atcatgctgc ccagttttaa 120 gacttactat aaagctgtga taatcaaggc aatctggtat ttatgaaagg ataaacacat 180 agatcaatgg aataaagtcc aaaaccagac tcacataaat agcaattgat ttctgacaaa 240 ggtgaaaaga caactcaatg gggaatggag agtttttcaa cagatgattt taaaacaact 300 gaacatccat atgcaaaaaa ataaacctac ctaaatttca cagcttatac aaaaattaac 360 ctaaaatgga tcacggatct aaatgtagaa ctaaatttat aaaatttta gaagaaaaaa 420 atccatagge egggeaeggt ggeteatgee tgtaateeea geaetteaga ggetgaggeg 480 540 actaaaaata aaaaataaaa aaaaatggg ctgggagtgg tggtgcacac ctgtagtccc 600 agctacttgg gagactgaag cacaagaatc acttgaaccc agcaggcaga ggttgcagtg 660 agtggagatt gtgccactgc accc 684

<210> 268

<211> 453

<212> DNA

<213> Homo sapiens

<400> 268 ggtegacgat ttcgcccgcc gtcggacgag gagcgggagc cgtgggagcc gtggacgcag 60 etgegeetgt egggeeacet gaageegetg cactacaate tgatgeteac egeetteatg 120 gagaacttca cetteteegg ggaggteaac gtggagateg egtgeeggaa egeeaceege 180 tacgtagtgc tgcacgcttc ccgagtggcg gtggagaaag tgcagctggc cgaggaccgg 240 gcgttcgggg ctgtccctgt agccggtttt ttcctctacc cgcaaaccca ggtcttagtg 300 gtggtgctga ataggacact ggacgcgcag aggaattaca atctgaagat tatctacaac 360 gcgctcatcg agaatgagct cctgggcttc tttcgcagct cctatgtgct ccacggggag 420 agaagattcc ttggggttac tcagttttcg cct 453

<210> 269 <211> 525 <212> DNA

<213> Homo sapiens

<400> 269

ggcacgagaa ctggtgctta atttaatgcc aattcatgat gtaggtttct aagcagcaca 60
taaaaggggc tttttaggta gcactgagta ctttactaaa aatacaaaaa ttagccaggg gggggggtgc acgtctttaa tcccagctac tcagggcggg ggccaggggg tggggtaggg tggggtaggg tgggggctga gacaggagaa gcacttgaac ccaggaggcg gaggttgcag tgagctgaga 240
ttgtgctact gtactccaac ctgggcaaca aacagagtga gacactgtct caaataaata 300

```
aataaataga taaataaaat aaaataaaat aaaaagaact cgaccctttt tacaatagct 360 aaaggaaaat aaaatactta agaatatact taaccaagga ggtgaaagac ctctacaaag 420 aaaactacaa aacactgctg aaagaaatca cagatgacac aaacaaaaac acatcccaag 480 ctcatggaca ggtagaatca atactgtgaa aatgactata ctgcc 525
```

```
<210> 270
<211> 880
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(880)
<223> n = a,t,c or g
```

<400> 270 cccagtccca cattgagccc tgatcccatc caagtccata gacttggcct ctgaccaaac 60 etgaccetge acttgtcact taaggtggte ceatatteag etcagaceet gaaccgaget ctgaccctgg cttctgactg aatctgtgac agactaaggc ctgaccctgg ccctatacca cgtctccacc cgtgtcctca actgagtgct gaccccaaac ctagacagcc ctacctgatc 240 cttcccccag gcctgtcccc gccgcttcat ctcaaaagtt gaaggtgagg agccggtaaa 300 caggtetgga geetggtete agaeteagee tgageaaget cagtetgggg teattgggee 360 tgtaaccccg ggcaggccct tgttagggat gcagggtctc accctagggg tataagggat 420 480 nnnnnnnnn nnnnnnnnn attttgctgt tagcatatgt gatgacettg acttcacete 540 cctggcgcca atatcctctt ctgtaaaatg ġcttatgcat tacaaagtga ggtcctgcca 600 gtgactacac ctagaggcat taagtgcctt tgtggactcc tgccctgcac ctcacctctc 660 ccagcttttt aaccccctga ggaaccttct taccttgagt ccctcacccg ctacaggcca 720 tccatgagca gatgaactgc aaggagtatc aggaggacct ggccctgcgg gctcagaacg 780 atgeggetge eeggeggeeg teagagatgt ttaaggtgag getggeteag ggtegtggee 840 tagcatcttt aagttetggg atccagtetg gggtagggag 880

```
<210> 271
<211> 1066
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (1066)
<223> n = a,t,c or g
```

```
acaaagcagc atctttgtgg tgtttcacca gttcttagtc ccagttacag caggtgactg
tggtggacga aaactggact caacagtttc ctccattcag ggatcccagg ccatggagca
 420
aggagggccc gaatcagtac ctccctcaga tcacctggac agtgtgagac aaaaagccgc
 480
agggaccatc cctggagggg gattcagcag gctcgatcgg ggtccaggtg ctggtatttt
 540
tcattagcct ccaggggatt ctgatgtagc cagcagcgtc cttggacaac agtttgagat
 600
ctgctgcttt tcaaactgga ttccttggag cgctggaaat ctcagcgatg tcacagggca
 660
ggagagggag gttgtggagg gaaaattcag acttcccgcc cagcccacca tttcaccagg
 720
cagctctaaa tttatgtgtt ttataagcca aggttcacac aaaaaagaaa attcgctggg
 780
gggaaaaaaa cagtttctat ggcttaaaaa aaagtctgaa gaccaccagt ctatttcaat
 840
actctatttt gttgatgaag aagctggtga ccaaagatac ccaaagacta agtcaggggg
 900
atgcaggggt acaggggtgc ctctcacttt cccaaagtga gatccacata ccacagcaaa
 960
atgatttgag ccagcctgtg gatgaacaca tttaaaattt tatttataaa tacatttact
 1020
gttacatttg acttctcttt attaaataca tttgtgattt ataaaa
 1066
```

<210> 272 <211> 659 <212> DNA

<213> Homo sapiens

<400> 272 tacggggaat tcgtcaccta ccaaggggtg gctgtgacgc ggagccggaa agaaggcatc 60 gcacacaact acaaaaatga gacggagtgg.agagcgaaca tcgacacagt gatggcgtgg 120 ttcacagagg aggacctgga tctggtcaca ctctacttcg gggagccgga ctccacgggc 180 240 gtgggctacc teegggagag categegege aaccacetea cagacegeet caacetgate 300 atcacatccg accacggcat gacgaccgtg gacaaacggg ctggcgacct ggttgaattc 360 cacaagttcc ccaacttcac cttccgggac atcgagtttg agctcctgga ctacggacca 420 aacgggatgc tgctccctaa agaagggagg ctggagaagg tgtacgatgc cctcaaggac 480 gcccacccca agctccacgt ctacaagaag gaggcgttcc ccgaggcctt ccactacgcc 540 aacaacccca gggtcacacc cctgctgatg tacagcgacc ttggctacgt catccatggg 600 gtgagtcgcc tgctggaggc accacctcca ggggctccct ccccaggctc tgggtcttc 659

<210> 273 <211> 412 <212> DNA <213> Homo sapiens

<400> 273
acgcgacttc tcgggtcgac ccacgcgtcc gcacatataa cacatcacgc accttttgag 60
tggctacctt ggttctcgcc tttcttttca agagaccatt cttcaacaga actgtaagga 120
ttcttcttgg ctgaatcaga tgtgacgcat cccacttctg cgtttgaggt ctagcacata 180
ccgctccaag ggctttgacg tcacagtgaa gcactcacac ggaagctgga cgggcttcgg 240
tggggaagac ctcgccacca tccccaaagg gttgaatact tattttcttg tcaacattgc 300
cactattttt gaatcaaaga atttctttt gcctgggatt aaatggaatg gaatacttgg 360
cctatcttat gccacacttg ccaagccatc aagttctctg gagaccttct tc 412

<210> 274 <211> 522 <212> DNA <213> Homo sapiens

<400> 274 gaattaagag ttactccggg ccaaatggcc ggagttgtca gatctggcag cgtcttcgct 60 ggggetecag ggagetgetg etggggtgga ageteteaea etetttetee aegtgeeett 120 tecagtteec tgacategtg gagttetgeg aggecatgge caacgeeggg aagacegtaa 180 ttgtggctgc actggatggg accttccaga ggaaggtaag gcgtctgatc caggtctgga 240 gctgggattg aggagggcaa gaggcttctg gatgggcaca gagacaccag ctctgggtga 300 ccagggctca gccaccacag ggttacggcc gagctgctca ggccttggct gagccaaggg 360 actecatggt ctgtgcagae tgcgtgccat ctgttgcggc aggtgctttg aattggcaaa 420 gggacagagc cgggcatggt gctctggggg ttgggggaag gactaaggtc agagcaaact 480 ctcctggctt cagtacttgt gaatcagagg gtttaaaaga aa 522

<210> 275
<211> 650
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (650)
<223> n = a,t,c or g

<400> 275 gaattctgct tatgcaccaa tttgcagctc ctgcaaccat gatgcagcct cacccggacc 60 tttcaacatt ttccctttca cctaaaactg tatttttctc tgctaagacc ggctacccta 120 ettteatttt cettteacte ttettggete ttttgggeet tttaggaatt tgggatgatt 180 caggetetga caggeatggt actagattta ttttaggetg etettttget gttgtecaac 240 aggccaagga gagatttaaa tgatttatcc aatatttgct aaatagtcat gtgtttcatt 300 tateceatat atagtteage ettaatattg tttttgtttt gatttgttac actagtgeat 360 acatagagac gtgaagccag aaaatatcct catcacgaaa cattccgtga ttaagctttg 420 tgactttgga tttgctcggc ttttgactgg accgagtgac tactatacag actacgtggc 480 taccaggtgg taccgctccc ctgagctgcn ggtgggggac acgcagtacc ggcccccgg 540 tgggatgttt ggggcaattg gctgtgtctn tgctgagctn gctgtcaggg aagtgcctct 600 ggtggccagg aaaatcggaa tgttggatca gctgtatctg attaggaaga 650

<210> 276 <211> 497 <212> DNA <213> Homo sapiens

```
<400> 276
cccttgatga ccatctagtc agtgcggtgg aattcccatg acagacgtat ctgactggtc
atgtggtcag caagcetege etttggtcag geeetggagg gtacagetga eecataggge
 120
cacttccatg gcactgggca agtggctgta ttggaaatga agtcgttgcc cccgatttct
 180
ttggggccag gttgagcttt cctgcccaga gcacggaggc taaagggggt gggctttgga
 240
ctggattggg gctgacctca gcctacacct gcaggaggag gtggagacag aggtggcctg
 300
ggaggaatgt gggcacgtcc tactgtcact gtgctacagc tetcagcagg gtggcttgct
 360
ggtaggtgtg ctgcgctgcg cccacctggc ccccatggat gccaatggtt actcggaccc
 420
cttcgtgcgc ctgtgagtga actggggtag gcaggcggga ggtgaggata aggcggtgac
 480
 497
tecteacete tecaggg
```

<210> 277 <211> 428 <212> DNA

<213> Homo sapiens

<400> 277 tggtggaatt ctcgccatgg aatatgcacc aggcggcact ctggctgagt tcatccaaaa 60 gegetgtaat teeetgetgg aggaggagae cateetgeae ttettegtge agateetget 120 tgcactgcat catgtgcaca cccacctcat cctgcaccga gacctcaaga cccagaacat 180 cctgcttgac aaacaccgca tggtcgtcaa gatcggtgat ttcggcatct ccaagatcct 240 tagcagcaag agcaaggcct acacggtggt gggtacccca tgctatatct cccctgagct 300 gtgtgagggc aagccctaca accagaagag tgacatctgg gccctgggct gtgtcctcta 360 cgagctggcc agcctcaaga gggctttcga ggctgcgaac ttgccagcac tggtgctgaa 420 428 gatcatgg

<210> 278 <211> 427 <212> DNA <213> Homo sapiens

<400> 278 gtccagtgtg gtggaattca ccaggtgtcc ggggcagtgg tagtatctgg gctgctgcag . ggcatgatgg ggctgctggg gagtcccggc cacgtgttcc cccactgtgg gcccctggtg 120 ctggctccca gcctggttgt ggcagggctc tctgcccaca gggaggtagc ccagttctgc 180 ttcacacact gggggttggc cttgctgtac gtgagtcctg agaggcgtgg gatggtgcc 240 300 agtgggggtg tatgggggga ctaggggagg gcagaactgc tggtcctatc agattcagca 360 gegactggaa tagggacata ttttatattt ggaatccaag acttttcctt gattcatctg gteteettga attteacaet gttttetget gtececcaag gteactteet atteetteea 420 427 tgggagt

<210> 279

<211> 561 <212> DNA

<213> Homo sapiens

<400> 279 cccagaatga ccgggtcgac ccacgcgtcc gcacccagct atggaggcag ctgcaggaac 60 aacttgtttt accgagaaga aacctacact ccaaaagctg agacggacga gatgaatgag 120 gtggaaacgg ctcccattcc tgaagaaaac catgtttggc tccaaccgag ggtgatgaga 180 cccaccaagc ccaagaaaac ctctgcggtc aactacatga cccaagtcgt cagatgtqac 240 accaagatga aggacaggtg catagggtcc acgtgtaaca ggtaccagtg cccagcaggc 300 tgcctgaacc acaaggcgaa gatctttgga agtctgttct atgaaagctt cgctagcata 360 tgccgcgccg ccatccacta cgggatcctg gatgacaagg gaggcctggt ggatatcacc 420 aggaacggga aggtcccctt cttcgtgaag tctgagagac acggcgtgca gtccctcagg 480 taactactct gtgatcgggg ctctgtgaaa cggttttcct gtttatgacg gtgttgttga 540 aattttgaaa aataccacac a 561

<210> 280 <211> 792

<212> DNA

<213> Homo sapiens

<400> 280 atttttgatg ccatgtggct acattggttt tagaatacta ataaaatcca ttgcttttaa 60 aataaataaa taaaccccat agcacatcct ccatacaaca tctgttgtcc ctcaagatac 120 aattgttacc actatcatct aaccattatt ttatgataac tttaaaaatat caacttggca 180 agaaaatatt ccacaaaaca cactctgcct ttttacttta aagagtcctt ggctacctgg 240 gccaatatta ttctcatttg taggatttag gttccacaga atataatatg tgcctttttc 300 tgtgttccct gcagatttgc aagtaccatc cctttttggg gccttacttt gcacctccag 360 catctgggaa acaatgtttt cctgttgcag actctctttg gtgcagtcac cctcctggcc 420 aattgtgttg caccttgggc actgaatcac atgagccgtc gactaagcca gatgcttctc 480 atgttcctac tggcaacctg ccttctggcc atcatatttg tgcctcaaga aatgcagacc 540 etgegtgtgg ttttggeaac cetgggtgtg ggagetgett etettggeat tacetgttet 600 actgcccaag aaaatgaact aattccttcc ataatcaggg gaagagctac tggaatcact 660 ggaaactttg ctaatattgg gggagccctg gcttccctcg tgatgatcct aagcatatat 720 tetegacee tgeeetggat catetatgga gtetttgeea teetetetgg eettgttgte 780 ctcctccttc cg 792

<210> 281 <211> 1047 <212> DNA

<213> Homo sapiens

<400> 281
ggtcttggtt tcaagggatc atatgaaaag tgcccagcag ttcttccagt tggtgggagg

121

60

```
atcagctagt gaatgtgata caataccagg gaggcagtgc atggcttcct gtttcttcct
gettaageaa tttgatgatg ttttgattta eetcaaetca tttaagagee aettetataa
 180
tgatgacatc tttaacttta attatgccca agccaaagct gcaacaggca ataccagtga
 240
gggcgaagag gcgttcctct tgatccaaag tgagaagatg aaaaatgatt acatttacct
 300
cagctggtta gctcqqqqct atattatgaa taagaaacca agactagcct gggaacttta
 360
tottaagatg gaaacctccg gcgagtcctt cagtototta cagotcattg ctaatgactg
 420
ctacaagatg ggccagtttt actattctgc caaagctttt gatgtccttg agaggctgga
 480
tcctaaccct gaatattggg aaggcaaacg gggtgcctgt gtgggcattt tccagatgat
 540
catagctggg agagaaccca aagagaccct tcgagaagtg ctccatttac tgagaagcac
 600
aggtaacacc caagtagaat acatgatccg gatcatgaag aaatgggcca aagaaaacag
 660
agtgtccatc ctaaaatagc gccagtgcac taggaaccag cttctacttt gacataaaac
 720
tggaaatcat tttcactcca gctttaatct gtgatacagg gctctgtttt attgacattt
 780
teetteettg etetttaage eteaaggtea gagaetgaet tgetgagaet tagteteetg
 840
gctgaacaga gtgccatagt ctgtgaccct gtatgatcct agtagcaata agattttgga
 900
cttatctqqt qcctttcttc caaaaatqct caqaqtactt ttatqcaatt tactqacttt
 960
aaggaaaaca gtataacttt tttttgttag cattttatgg cattgtctcc tggctgcaat
 1020
aacaaacatc tttgatgttc aagaatc
 1047
```

<210> 282 <211> 357 <212> DNA <213> Homo sapiens

<400> 282
ctttaaaagt ttctgatgaa ttagtgcagc aatatcaaat taaaaaccag tgtctttcag 60
caatagcatc tgatgcagaa caagaaccta aaattgatcc atatgcattt gttgaaggag 120
atgaggaatt cctttttcct gataaaaaag atagacaaaa tagtgagaga gaagctggaa 180
aaaaacacaa ggtaagagaa atcacagtac accaaagggt cactgttgat tttgtagcac 240
tgcatatagt aacactetta ctaccacagt tatctcactt cttttgtctt agaatagaaa 300
gagtaatcat ttatttagaa aaacctattt ttgcccggct gcggtggctc atgcctg 357

: · · :

<210> 283 <211> 536 <212> DNA <213> Homo sapiens

<400> 283 ctggggtgcc ccgcaacctg ccttccagcc tggagtatct gctgttgtcc tacaaccgca 60 tegteaaact ggegeetgag gaeetggeea atetgaeege eetgegtgtg etegatgtgg 120 geggaaattg cegeegetge gaccaegete ceaaceeetg catggagtge cetegteact 180 teccecaget acatecegat acetteagee acetgageeg tettgaagge etggtgttga 240 aggacagtte teteteetgg etgaatgeea gttggtteeg tgggetggga aaceteegag 300 tgctggacct gagtgagaac ttcctctaca aatgcatcac taaaaccaag gccttccagg 360 gcctaacaca gctgcgcaag cttaacctgt ccttcaatta ccaaaagagg gtgtcctttg 420 eccacettgt etetgggeee cettteette ggggaageet gggtegeee ttgaagggag 480 ctgggacatg gcacggcaat ctttctttcc cgctccactt cgaatggggg aagacc 536

<210> 284 <211> 440 <212> DNA <213> Homo sapiens

<400> 284 gtatettatt tgeggegetg atetggagtt egttegatga gaatatagaa getteageeg 60 gaggeggegg tggttegtee ategaegetg teatggttga tteaggtgeg gtagttgage 120 agtacaaacg catgcaaagc caggaatcaa gcgcgaagcg ttctgatgaa cagcgcaaga 180 tgaaggaaca gcaggctgct gaagaactgc gtgagaaaca agcggctgaa caggaacgcc 240 300 tgaagcaact tgagaaagag cggttagcgg ctcaggagca gaaaaagcag gctgaagaag ccgcaaaaca ggccgagtta aagcagaagc aagctgaaga ggcggcagcg aaagcggcgg 360 cagatgctaa agcgaaggcc gaagcagatg ctaaagctgc ggaagaagca gcgaagaaag 420 cggctgcaga cgcaaagaaa 440

<210> 285 <211> 119 <212> DNA <213> Homo sapiens

<400> 285
gcgatggaaa tcgtccacga gccgcgcgac ctcgagcgtt acatgcgcga ggccgtgaag 60
gtgtcgaacg attcgccggt gctgctcgac cgcttcctga acgacgcgat cgagtgcga 119

<210> 286 <211> 398 <212> DNA <213> Homo sapiens

<400> 286
aaacagggga tttaagtgtg tcttttgtgt ttgcaaggca ctaacaccac tcccgtctgt 60
atttaaatgc tgtccccagg ttacgactat ggctatgtct gcgtggagtt ttcactcttg 120
gaagatgcca tcggatgcat ggaggccaac caggttgctt tatacttcgg tcaaatgatg 180
ctggaaggat atatttttt atatatgggg agggaggtt tcaaatgatt ttactttgga 240
aaggtacaag aagtctatct gtggagcata ctgtattcca accatcggtt gtgaggaaaa 300
tctttaaaaa ggctggaaag ctttctctag aaaacttaat gggcacagag tgcatttaa 360
aagctagagc ccagttgctt ttggactaga ttccaaaa

```
<210> 287
<211> 1177
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (1177)
<223> n = a,t,c or g
```

<400> 287 cecaegegte egeteetetg ggggteaaga ggaceeegee agecageagt gggcaegace gegetteaca cageceteca agatgaggeg cegggtgate geaeggeeeg tgggtagete cgtgcggctc aagtgcgtgg ccagcgggca ccctcggccc gacatcacgt ggatgaagga 180 cgaccaggcc ttgacgcgcc cagaggccgc tgagcccagg aagaagaagt ggacactgag 240 cctgaagaac ctgcggccgg aggacagcgg caaatacacc tgccgcgtgt cgaaccgcgc 300 gggcgccatc aacgccacct acaaggtgga tgtgatccag cggacccgtt ccaagcccgt 360 getcacagge acgeacceg tgaacacgae ggtggactte ggggggacca cgtcetteca 420 gtgcaaggtg cgcagcgacg tgaagccggt gatccagtgg ctgaagcgcg tggagtacgg 480 cgccgagggc cgccacaact ccaccatcga tgtgggcggc cagaagtttg tggtgctgcc 540 cacgggtgac gtgtggtcgc ggcccgacgg ctcctacctc aataagctgc tcatcacccg 600 tgcccgccag gacgatgcgg gcatgtacat ctgccttggc gccaacacca tgggctacag 660 cttccgcage gccttcctca ccgtgctgcc agacccaaaa ccgccagggc cacctgtggc 720 ctcctcgtcc tcggccacta gcctgccgtg gcccgtggtc atcggcatcc cagccggcgc 780 tgtetteate etgggeacce tgeteetgtg getttgeeag geeeagaaga ageegtgeac 840 ccccgcgcct gcccctcccc tgcctgggca ccgcccgccg gggacggccc gcgaccgcag 900 eggagacaag gacettecet egttggeege ceteageget ggeeetggtg tggggetgtg 960 tgaggagcat gggtctccgg cagccccca gcacttactg ggcccaggcc cagttgctgg 1020 ccctaagttg taccccaaac tctacacagg acattccaca ccacacacat acacacacc 1080 cccaccctcc tgccaattaa acagtagcca ttccccnaaa atnnnnnnn nnnnnnnnnn 1140 nnnnnnnn nnnnctegg cecegeeta tteaceg 1177

```
<210> 288
<211> 100
<212> DNA
<213> Homo sapiens
```

<400> 288
tgaattttca ttttacaggg aagtgtttgt ttatgtcagg gctcagtgag gtccagctga 60
cccatatgga tgatcacact ctaccagggt attgaagctc 100

<210> 289 <211> 406 <212> DNA <213> Homo sapiens

# <400> 289 cggcacgagc ggcacgagag tcagagggtt ttaatttact tgtgaagctc acactattga 60 aactaattgc aatgettgac tttattttct ttagagtcca agaaagagaa aaacaaggca 120 tagcacaaat ccccctctag agtgtcatgt tggttgggta atggattcca gagaccatgg 180 gccaggaaca tcctctgtca gcacttcaaa tgcttcacct tcagaaggcg caccactagc 240 aggaagttat ggatgtactc ctcattcatt cccaaagttc cagcatcctt ctcatgaact 300 tttgaaggaa aatggcttta cccaacaagt gtaccacaag tatcgtcgaa gatgcctaag 360 tgagagaaaa cgcttgggaa ttggtcagtc ccaagaaatg aatacc 406

<210> 290 <211> 359 <212> DNA

<213> Homo sapiens

### <400> 290 cccggcagcg gcggcagcg gggggccga gacggcagtg cctaccaggg cgcgctgttg cctcgagaac agttcgcgg cccgcttggg cggccggtgg ggacctcgta ctccgccacc tacccggcct acgtgagcc cgacgtggc cagtcctgga ctgccgggc cttcgatggc agcgtcctgc acggcctccc aggccgcagg cccaccttcg tgtccgactt cttggaggag ttcccgggtg agggtcgtga gtgtgtcaac tgcggggcc tgtccacac gctgtggcg cggagatggca ccggccacta cctgtgcaat gcctgcggc tctaccaca gatgaatgg

<210> 291 <211> 954 <212> DNA <213> Homo sapiens

<400> 291 cccagateat cgacatggtg cgttgtggtg gtggtacage tgtggagtet tacctgtcae 60 agtgtcaaga aatgaagggg atgaacggaa ccaggtgctg accetgtate tgtggatacg 120 gcaggagtgg acagatgcct acctacgatg ggaccccaat gcctatggtg gcctggatgc 180 catecgcate eccageagte ttgtgtggeg gecagacate gtactetata acaagtactg 240 cetatetggg ecceteetet etettaceee tetetagaet tgeeettage tgtgggggtg 300 tagtgatece etetecetae cacataacet ggttgecaeg etgeeetgga agetttteee 360 caggaccett ctaagetgee aageacteag ecectecatg geacececae tttaggetat 420 cccaggccag cccaggetga acgtetecte ggaacetact gtgtggteca gggcagatgt 480 ctgaatcaca agggcctctc tagggcacac ttttagctct aagtctctca gggctccccc 540 aagageetgt ctaagggtet ettteeteea ggacatagee etetggaaca etgetttatg 600 teteettgac cagtteegtg teteccagee ageacatage tetgeatatt ttetetgggg 660 ccettctaca agttttgcag atgtccccca agggaagtca ctgtgtgtcc cggagctacc 720 tetgggttet geagaggeet ttttataeat cetetggeta egtetgtgte cettetggeg 780 cetteaggea ceaccette caggeetega aaggeagegg gtetetetag gtgeacteea 840 ccctctgtgt tgctttgttc tgaaaacaag aatcaaatta acgaaaaaaa aacaagcaca 900 agtttattta tttatttgag acacagcctg ggcaagagag tgagacttca tctc 954

```
<210> 292
<211> 595
<212> DNA
<213> Homo sapiens
```

<400> 292 tacgcactga ctggtgcgtt ggttattgtc accgggatgg tgatgggaaa tatcgccgat 60 tatttcaatc tgcctgtttc cagtatgagt aataccttca ccttcctcaa cgccggcatt 120 ttaatctcta tcttcctcaa cgcctggctg atggaaatcg tcccgttgaa aacgcagtta 180 cgttttggct ttctcctgat ggtgctggcg gttgccggtt tgatgttcag ccacagcctg 240 gegetgttet eggeggegat gtteattete ggggtggtea geggeateae catgtegatt 300 ggtacattcc tggtaacaca aatgtatgaa gggcgtcagc gcggttcccg cctgttattt 360 accgactcct tettcagtat ggctgggatg attttcccaa tgatcgccgc gtttctactg 420 gcgcgcagca ttgagtggta ctgggtttat gcctgcatcg ggctggtgta tgtcgctatt 480 tttattctga ccttcggctg tgagttcccg gcgctgtgca gccatgcgac taagttgggt 540 accgccagta gttatcccag tctggacgtt gtacagctac ggacattgaa tgcgt 595

```
<210> 293
<211> 552
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(552)
<223> n = a,t,c or g
```

<400> 293 tettgaagag cegetgetga teaacaccag ettaagcaaa gaacagegte gggaaaaage 60 cctgtcgatg atggcgaaag tcggcctgaa aaccgagcac tatgaccgct atccgcatat 120 gtteteegge ggteagegte agegtatege categeeegt ggtetgatge tegaceegga 180 tgtggtgatt gccgatgaac cggtttccgc gctggatgtt tcagtgcgcg cgcaggtgct 240 gaatctgatg atggatttgc agcaggagtt ggggctgtct tatgtcttta tctcccacga 300 cctgtcggtg gtggagcaca ttgctgatga agtgatggtg atgtacctgg gccgctgcgt 360 ggagaaggga acgaaagacc aaatcttcaa taacccgcgc catccgtaca ctcaggcgct 420 actttccgcg acgccgcgcc tgaacccgga cgatcgccgc gagcgcatca agctcagcgg 480 tgaactacca ageccactga atecacegee gggttgegee tteaacgeee getgttgteg 540 gcgnttcggc cc 552

```
<210> 294
<211> 426
<212> DNA
<213> Homo sapiens
```

<400>	294					
tagcgccacc	cttgaacggg	tactaaatca	ccctgacgaa	acgcaagccc	gacgcttaat	60
gacgctggaa	gatatcgtca	gtggttattc	caatgtgttg	atttccctgg	cagatagtca	120
gggtaaaacg	gtgtatcact	cccccggtgc	gccggatatc	cgcgagttta	cgcgtgacgc	. 180
catacccgat	aaagacgctc	agggtggcga	ggtgtatctc	ctttccggcc	cgacgatgat	240
gatgccaggc	cacggtcacg	ggcatatgga	acacagcaac	tggcggatga	ttaacttgcc	300
ggttggcccg	ttggtggacg	gcaaaccgat	ttatacgctc	tacatcgcgc	tttcgatcga	360
ttttcatctt	cattacataa	atgatttgat	gaataaactt	attatgaccg	catcggtaat	420
catcat						426

<210> 295

<211> 340

<212> DNA

<213> Homo sapiens

<400> 295
gggtgctggc gtatccgggg attaaagtct cgacggcaga agccagggct attttaccgg 60
cgcagtatcg ccgccaggat tgcattgcgc acgggcgaca tctggcaggc ttcattcacg 120
cctgctattc ccgtcagcct gagcttgccg cgaagctgat gaaagatgtt atcgctgaac 180
cctaccgtga acggttactg ccaggcttcc ggcaggcgcg gcaggcggtc gcggaaatcg 240
gcgcggtagc gagcggtatc tccggctccg gcccgacctt gttcgctctg tgtgacaagc 300
cggaaaccgc ccagcggtt gccgactggt tgggtaaaat

<210> 296 <211> 281 <212> DNA <213> Homo sapiens

<400> 296

cgggcagcag cagcgcgtgg cgctggcccg cgcgctgatc ctcaagccga aagtgctgct 60
gtttgatgag ccgttgagta acctcgacgc caacctgcgt cgcagcatgc gcgacaagat 120
ccgcgagttg caaaagcagt ttgatatcac ctcgctgtac gtcacccacg atcagagcga 180
agcctttgcg gtttctgata ctgtgctggt gatgaacaag gggcacatca tgcagatcgg 240
ctcaccgcag gatctccggg tacggagatt gaattggtaa t 281

<210> 297

<211> 155

<212> DNA

<213> Homo sapiens

agatttcagg	297 ttacctagag tggtcagcag gtttgatgag	caacgcgttg	ccattgcgcg			60 120 155
<210> <211> <212> <213>	217	1s				
cagcactggt gcgcaaatct	298 acgccgaaaa ttggcgtcga cgctggcggc tgctcgctgg	ttcactgggg gggcgtgttt	cgtgacattt gccgtgttta	tcagccgtgt	cctggttggt	60 120 180 217
<210> <211> <212> <213>	568					
tttacgette tgaccccget gtccgttcca ttggccgcat aaggcaaaac tcgaaaccga acatttctga atgagccgac	299 tetgateget tgegetgaae gtaceaggeg gatgeagat caagegegt cegeaaegeg tetggeggaa cacegtttge egtttetatg aaegtetegt	ggtatcgcgg attgttgacc tctcagctcg aaagtgaagc aaagtcggta gctggcgata gacacgcaaa ttcttctgcg	gtetggacca acgtteetge attacaacag egaaccagca aagtgetggg tegttgegat acgttgaage	cgaagatatg gccggacgtt ctatgttggc ggtcactatc ccacctcggt cacgggcctt gctgccggca	gcggaagaca gaccttgacg gttatcggca atcgatagcg ctggaacgta ggcgaactga ctctccgttg	60 120 180 240 300 360 420 480 540

<210> 300 <211> 366 <212> DNA

<213> Homo sapiens

ggcctgaaat gacatcggtg gacgtgttca ggtctggttg	300 gcgctgaatc tcggtgacta cgtggactga tgactcaacg atggtctgaa acactgaagg	cggctccatc cgtcctgcca tgcaactggt ctttgctgct	gattacggcc gaattcggtg gttgcaacct cagtaccaag	gtaactacgg gtgacacttg atcgtaacaa gcaaaaacga	tgtagcatac gactcaaacc cgacttcttt tcgtagcgat	60 120 180 240 300 360 366
<210> <211> <212> <213>	199	ns	· :			
tcactattac	ttccgtttct cgtgttgacg gctgttgagc	ctggctgcgg	ttaatacgct	gggtattccg	gtcgatctgc	60 120 180 199
<210> <211> <212> <213>	140	ıs			·	
<400> gccaacgcgc aaaggcctgg gttcgcggaa	agcaagggct ttgatcgtct	gcccagtggt gtatgcggcc	atcaccctga tccagctcgg	agctaaataa gcgttccggt	ccttgtcgat taatctgctg	60 120 140
<210> <211> <212> <213>	441	.s				
<400> cgcgcgaatg gaacggggta	303 acgeteatee ggcaegaata	ccggcacaca gcgcgccgtt	tctgctggaa ctggcggatg	aacatccaca ttgcttaaca	acatetgggt getttgtgat	60 120

```
ggcgttcagc attacgctcg gcaaaattac cgtctcgatg ctctcggcat ttgccattgt 180 ctggtttcgt tttccgctac gtaacctctt cttctggatg atttttatca ccctgatgct 240 gccggttgaa gtacgtatct tcccgacggt ggaagtcatc gccaacctgc agatgctcga 300 cagctacgcc ggtttaacgc tgccgctgat ggcctcggcg accgctactt tcctgttccg 360 caagttaaat atgtcggggc cggacaaggt ggtgccagcc gcgcggatct ccgggtacgg 420 acctagagtt cgtaagcaag a
```

<210> 304

<211> 402

<212> DNA

<213> Homo sapiens

<400> 304
ctgtgcgaaa tgtttgcgtg atgcggatga atgcccctcc ggggcgtttg aacggattgg 60
tcgcgatatc agccttgacg ctctggaacg ggaagtgatg aaagatgaca ttttctttcg 120
cacgtccggc ggcggcgtca cgctttctgg cggcgaagtg ttaatgcagg cggagtttgc 180
tacccgtttt ttacagcgac tgcggctgtg gggtgtgtca tgcgccattg aaactgccgg 240
agacgcacca gccagcaagc tattaccgct ggcgaaattg tgcgatgaag tgttgttcga 300
tttaaaaatt atggacgca ctcaggcgcg ggatgtggtg aagatgaacc tgccacgcgt 360
gctggagaat ctgcgtttgc tggtgagtga gggcgtcaac gt

<210> 305 <211> 346 <212> DNA <213> Homo sapiens

<400> 305
tacctgttat tgtttgtctg cttccttgtg atgtctctgc tggttgggct ggtgtacaaa 60
tttaccgccg aacgcgggg caaacagtcg ctggatgatt tgatgaacag ttcgctgtat 120
ctgatgcgca gcgaattgcg tgagatcccc ccacacgact ggggtaaaac tctgaaagag 180
atggatttaa atctctcttt cgatctgcgt gtcgagccac tgagtaaata ccatcttgat 240
gatatttcca tgcaccgact gcgtggcggc gaaattgtcg ccctggacga tcagtacacg 300
tttttgcagc gtatcccgcg cagccactac gtgctggcag ttggtc
346

<210> 306

<211> 207

<212> DNA

<213> Homo sapiens

<400> 306

tgeggegtte gaegageeeg	teeteagega cagagtetet gtgaacatgg teactetega	acgagacaaa cattgggttg	atatttgagc	agggggtcag	tacgcgtgct	60 120 180 207
<210> <211> <212> <213>	214	ns				
acttgaaaaa atgtagagcg	307 tategeeece tgacaaagta eggcaeggtg tgtggeggat	gcgattgtcg aaagaatttg	gattcagtac gcctgtggga	gccaaatgtg	atgcgcccgt	60 120 180 214
<210> <211> <212> <213>	129	ıs				
<400> tacatcgtag gcaacgcaat aaccgtgtt	308 tgacggggaa cgggttatct	aacacattgc gacgctgaac	ggtacgccac ctgcctgaaa	ttactacegt tgtgggaagt	tacaggagac gtcaggttat	60 120 129
<220> <221> <222>	358	re		ж		
aaatctgccc	309 ccgcatcaat gccgggccag cgaccggatt	taaggagtac	cccagttcat	caagaagctg	gcttgccact	60 120 180

aaccgtgcct caataatttt cattttcccc gcgacatcgt tgagctgctg ccgggttttg 240 ctggcattaa tatcgggttc cacaccttca actgaagaag taatcccgtt ctgatatagc 300 tggcgatcgg tcgcgataat ggcgntctgc tctttttcta tttgctgcaa gaccgtgg 358

<210> 310

<211> 253

<212> DNA

<213> Homo sapiens

<400> 310
tggcggcctt cctgagagaa tattgccgag gagtacgcga ctaaacgcta tcgttctaac 60
gtcatcaact gggggatgtt accgctgcaa atggcggaag taccaacctt tgaagtgggg 120
gattacattt acatccctgg cattaaagcg gcgctggata atccgggtac gacgtttaaa 180
ggttatgtga tccatgaaga tgcgccggta acggaaatta cgctctatat ggaaagtcag 240
gaagccagaa cag

<210> 311

<211> 304

<212> DNA

<213> Homo sapiens

<400> 311
gctgcaaact gaaattggca gcatggtcta tgcggtgaaa ccaggcgatg gttctgcgcg 60
tgaacaggcg gcgagctgcc agcgtgtgat tggcggtctg gcgaatattg ccgaggagta 120
cgcgactaaa cgctatcgtt ctaacgtcat caactggggg atgttaccgc tgcaaatggc 180
ggaagtacca acctttgaag tgggggatta catttacatc cttggcttta aagcggctaa 240
gtatagtccg ggcacggcgt ttacagtcta tgcgatctcc gggtacggac ctcgaatctg 300
ataa

<210> 312

<211> 344

<212> DNA

<213> Homo sapiens

<400> 312
actctagagg atctgctgat ggcgttagat ggagagcaac atcttcagca acaggtatcg
gaaaaagtat tagccgataa tgtgttaatt gcccctggtt ctgttaaacc tgatgcgaca 120
ttctggtcgg ccttaatcca ggatcgctat aacgtgatga cctgtattga aaaagacgcc 180
tgcgtcctgg tcgagcaaga tctgaatagt gatggtcagg cggagcggat cctgtttgct 240
tttaatgatg acagagtcat tgtctatggc tttgactcag acagaaaaga atgggacgcg 300

cttgatatga gtttacttcc gaacgaaata acgaaagaaa aatt

344

<210> 313 <211> 630 <212> DNA <213> Homo sapiens

<400>	313					
agagtcaaat	agcagatgca	ggaagatgcc	aggtgaaaga	tgccggggtg	gcccagctcg	60
gctgtccctg	ctgcttgacc	tgcccactcg	ccctcttccc	cacccccgac	aggtgattga	120
cttcggatcc	gccagcattt	tcagcgaggt	gcgctacgtg	aaggagccat	acatccagtc	180
gcgcttctac	cgggcccctg	agatcctgct	ggggctgccc	ttctgcgaga	aggtggacgt	240
gtggtccctg	ggctgcgtca	tggatgagct	gcacctgggc	tggcctctct	accccggcaa	300
caacgagtac	gaccaggtgc	gctacatctg	cgaaacccag	ggcctgccca	agccacacct	360
gttgcacgcc	gcctgcaagg	cccaccactt	cttcaagcgc	aacccccacc	ctgacgctgc	420
	cagctcaagt					480
ggagcgccgc	aagtatatgc	tcaagtcgtt	ggaccagatt	gagacagtga	atggtggcag	540
tgtggccagt	cggctaacct	tecetgaceg	ggaggcgctg	gcggagcacg	ccgacctcaa	600
	gagctgataa					630

<210> 314 <211> 2285 <212> DNA <213> Homo sapiens

<400> 314 cgccttgtaa agaaacgagt tgagtgtagg cagtgtggga aggccggcag gaaccagtca acgctgaaga cgcacatgcg aagccacacg ggggagaaac cgtacgaatg cgatcactgt 120 ggtaaggcct tcagcatagg ctccaacctg aatgtgcaca ggcggatcca caccggggag 180 aagccctacg aatgccttgt ctgcggggaa gccttcagcg accactcatc cctcaggagc 240 cacgtgaaaa ctcaccgggg agagaagctc tttgtgtcat ccgtgtggaa aaggctccag 300 tgagcgcgcc tgctttagag acacaggatg attcagaccg gaaacagacc tcgtgggtgt 360 aagaggaagc ctctgtgagc tcgcacctta ctgggtgcaa aagaatccac ggaacttggg 420 agaagtccag ttcctgtaaa aactgggaag acgaggcgtt ctcatcccat aggaggtttg 480 tgagaactca cgccgggggt gaaaatgtac gtctgtagca tggagaagcc ttcagggtac 540. attcagetet taacaaacae aggaggaett aatggeaget tggeatttaa tgtcaaaate 600 caageegtgg catttaatgt caaaatgaet teagaeeact tetageette tgggeeeatg 660 agtaataatg agcacactag ggagcatctc tgtaaacaca gtggctgggg aaacccttcc 720 tagtctcact tgattcctca tgacggaaat cacactaaag agagaaatca gtgaagtaag 780 gaacgtggaa ggtcatgaat gggccgcaaa ccacggccag ctgcttgtct ttgtatggct 840 tgccagctaa caatagtggt tccatcttta aggaagaaga atgtttgatg gagaaaattt 900 gtggccaatg aagtctgaaa tacttcctgt catctgcccc tttccagaaa aacttggccg 960 accettggte tacageacgg gttetcagte gggegacgat ttggetgtgt aggegteatt 1020 tggcaatgtc tagagacatt tttggtagtt agaatggggg gaagatactc ctgacttgta 1080 ataagaagac atcagagatg ctgctaagtc ggctccagca cacaggagcc ccccacaacg 1140 aagagttagt gcccccaaac gtcactgttg ctgaggttga aaataatcat gcagtcattc 1200 ctcaattact gcctccagca attcctccat ttttatgaat cttgtgagca cttacgctag 1260 gagaaatttc ttttacaaaa cttttaaaat acagttagtg ctgataattc ctatgtggaa 1320

```
atgattccag ccatggtccc ctcacttgag catgtgaata ttctcacgga gagaagcccc
agcgagattt tccggtgaat acgggattgc acttactctt tcatcacgga aacagacccc
 1440
cgagagaagc cccaacgaga ttttccggtg aatacgggac tgcacgtact ctatcatcat
 1500
gaaaacagag ccccgttcat aaatttttca tctttatttt taaggttata ctcctctaaa
 1560
taaccettaa geeteateaa gaaaggtttg tttatagtat ttttactata getteateet
 1620
tgataacgtc ctaatttect tetggacaac eteettgacc aatggeatat tgagatetat
 1680
gtgacatgag gatatttete agtaceaett tgttactggt acctgatgca cacggattge
 1740
gaccagagca tgatgcctcc atcaagtggt aatatgtttg cagcctgctg tccagccaag
 1800
agtgacagat acttetagtg actteccegg tatecactet catettette caatateaag
 1860
agaatccagg ttctgtcaga ttagtaaggt gtgctaatct aaattttaaa aaatctctta
 1920
caggittict tgcagctggt accatccatg tctcacagcc ctggccactg acagatcagc
 1980
agatgtcacc acatgggctt ctgagaaagc tcttgaatgg ggatcgttct taaacatgaa
 2040
ttcctccctg tatgttttgt tctttgcttt acttttcacc ttgcaaagag atccagtacc
 2100
tagtattgga agatecacet taacgacegt gcatatgaaa accacagtet aaggaagtga
 2160
ctgcagaaag ctcacagcga ccctgqcctc ccctgtggcc tctttgagtg tctgcagcag
 2220
ccctggactt ccagacttct atcacatgag aaaaaataaa actgattatt ggtttaaaaa
 2280
aaaaa
 2285
```

<210> 315 <211> 1316 <212> DNA <213> Homo sapiens

<213> Homo sapiens

<400>	315					
ggctgtctat	cagtggataa	ggtgggggct	gtctatcagg	ggagaaggtg	ggggctgtct	60
atcagtggag	aaggtggggg	ctgtctgtca	gtggagatgg	tgggggctgt	ctgtcagtgg	120
agatggtggg	ggctgtctgt	cggtggagat	ggtgggggct	gtctgtcggt	gtagatggtg	180
ggggctgtct	gtcggtggag	atggtggggg	ctgtctgtcg	gtggagatgg	tgggggctgt	240
ctgtcggtgg	agaaggtgga	agcttgtact	cagagcaggg	gatatttaga	cttgaagggg	300
ccagggagga	aggtactggt	tctactaagc	cccatgttca	ctgggcagcc	actaagttag	360
ggaccgtgtg	tgtaccgagt	ggattccgac	aaagaagctg	tctcaggagc	cccagccagc	420
tgcagagggg	ggcccaagct	ccaaggctgg	gtgtcaggtt	tgccaggtgc	tggctccgct	480
aggggccgca	ggctgcgctg	ggcgggactg	ggctgggctg	gtacctgtgc	ccggtgtcag	540
gccagctgta	gttgcagcgg	tcagctgccg	ctctctggcc	ccatgcgaac	tgctgtgcca	600
ggtgcaccct	gggggaccag	gctgcctggg	cttcctggaa	ctggtgaagc	tgccgccact	660
tcctctatgc	tgtctccagc	aggcaattct	gggtaaacga	tetteatttg	cctataaagc	720
tgcacagctc	acaggccttg	gaccgtttct	gccccagccc	cagcattggc	cctttggaca	780
gactctgaaa	ccgtgcgcag	aacgcaccct	gtcattacaa	atgactcctg	gaggcagtcc	840
ccgggggcct	ggcaggagca	cctgtgtttc	tgtggggtct	gaaaatgaca	gaccaatcgc .	900
ttgaacccgg	gaggcggaag	ttgcagtgag	ccgagatcga	gacattgccc	tecagectgg	960
gcaacaagag	caaaactcca	tctcaaaaaa	aagaaaaaag	tgccgagtgg	agtcgtcacg	1020
cccgtaatcc	tagcactttg	ggaggcagag	gtgggcggat	cacctgaggt	cgggagttcg	1080
agaccagcct	gaccaacatg	gagaaacccc	atctctacta	aaaacacaaa	aattagccgg	1140
gcgtgtgcat	gcctgtaatc	ccacctactc	aggaggctga	gggaggagaa	tcgcttgaaa	1200
ccgggagccg	gaggttgcag	tgagccgaga	tegtgecatt	gcactccagc	ctgggcaaca	1260
agagcaaaaa	ctccatctca	aaaaaaaaa	ggagagagag	aaaccgggac	cgcaag	1316

<210> 316

<211> 2486

<212> DNA

<213> Homo sapiens

```
<400> 316
ttttttttt ttaaacaaaa ctttattggt aatagttttc aaatatgttt acaacagcac
 60
actgttcaag aggaagtete gteettegea geacacaggt tgaategeee eegeaceeae
 120
ccggggcccc accccaggcc tgagaactcc tcctgggatg gggagaagtt atgagagggg
 180
gaaatacggg gatgaatggg gtggctcccc agcggctccc cacttttcta ttacgagaga
 240
aaaaagcaca aatgagaaag tgggggagag gtgatggaca gctgacagct aagctggagg
 300
aggggcgccc aggatggggg aggcggaagc tggtgggtga gtaaaacagg cagccctcc
 360
ecagcagete tagcettgaa eccegggeeg tggettgggg ggaettggee tettetgtte
 420
cettttgcag ggatgccctc cccactcagc tgagggaagg ctggacgtta aaatctagcg
 480
gagaataaaa ttaaggagtt ggggggaaac gctgctggga ggaaagacit gggcttgggg
 540
ctccccctct gtctttttgg gggatgactc ctctttggca gggagagggg cagctgcttt
 600
gtctggcttt caaagcccaa gggtgaagac aggtctgttg gggaaaaaga gagcggaggc
 660
tteetaaagg ggeetagaee etegeaggat tggeagagag gatteeeegg ggaggggeee
 720
aggggagatt agcagcgggg aggttcaaac cccagcgcct ccctttccaa agtcagtctg
 780
cttctcttta aaatggattt gaggaatggg gggacatggg aggggtggga gtagaggaag
 840
gagggaggga ggcactggtg gaacttaaat aagattttaa attgttgttt ttttaaaaaa
 900
attetageaa geaaceeact gaacatgtea etaaaaatet eteetteeea ggeaggatta
 960
ctccgaaagg aaggttggcg cttcgttcat ttgcccttag caagtggggc ctgtggttgg
 1020
gtgggatggg ggtgtgggtg ggggctggag ttaagcgtga gcccctcttt ccataccctg
 1080
tecetggata caccageaag acetggtetg actggagttg agaaactegt ttaaaacagg
 1140
cagaagtggg ctgggagggc tgaggggctg gggggctgtg gggaaagaga aagggaaaag
 1200
tgggagaggg ggcaggaggg tgaagggggat gagggggagc agctggtgtt tctgtccctc
 1260
tgattatctg ggcttcctgc tccccctacc cctggagggt ggggtggggg tgaaattaga
 1320
tgcaaggaac tetggggeec tetggetgtt caatecaace etcecacec ceegaccaaa
 1380
aaaaagaaaa aagaaaaaag aaaacccatg ggggcacagg catgccccta aaactcagaa
 1440
aactccttgc ccaaacttct cattgatgga aaacccggat ttcttcttcc tcatagtcgt
 1500
caaagttaac tcgtatcccc agggccttta aactttggta tgaagggagc ttccaccttc
 1560
ctctggtaga tggcaatcca gtcagttgtg gcaaaccact tgtggttctt gatatcgttg
 1620
accccattct tgaggttccc aaagcgcttg gtgagatcta cctgcaggag gttccgcagc
 1680
aggtccttca agtcagagct gaagtgggaa gggaagcgca ccttcccaga gacgatcttc
 1740
teatagatet ggatgggetg gtetgegaag aagggegggt agceagegge cattteatag
 1800
ataagaaccc ccagggccca ccagtccacg gccttgttgt agcctttgct caggataatc
 1860
teaggggcca ggtacteagg ggtgccgcac aaggtccaag tgcggccctt cacgcgcttg
 1920
gegaaacega agtetgteac etgaatgtag eeetgetggt caatgageag atteteegge
ttcaggtccc tgtagatgag atccagcgag tgcagatact caaaggtcag gacgatctgg
 2040
gccgcgtaga aacgggcatg gggctcactg aaccttccga tccgccgtag gtgtgagaac
 2100
atctccccgc cgggcacgta ctccatgacc atgtataagt ttgagttgtc cttgaaggag
 2160
aactcgagtt tgacgaggaa cggaaagttg acagcttgca ggatgcgctt ttcattcagg
 2220
gtgtgttcga tctgtttcag tttccccacc ttctgttagt cgaggatctt catggcatag
 2280
tggttcccgg tctccttgtg tttcaccagc atcacccgcc cgaaggagcc cgtgccgagg
 2340
gtcttgattc gttcaaactg atccaagtgg gctgtgttct gagcgggact ttcccatttt
 2400
ttaagaaaat cttctttggc tttggctaag aattctttca cgctctcctg ctcgctgccc
 2460
ttettggegg eggeggegtt geceat
 2486
```

```
<210> 317
<211> 867
<212> DNA
<213> Homo sapiens
```

<400> 317
ttttttttaa gtttatataa ctttattata agtattaatt tgtttgaatt aagtttatat 60
aactttaata taagcattaa tttgtttgaa atataaagta ttataaaata ttgtaattaa 120

```
gottacagat aattittaaa atatatacat tatgactaat ataccaaaat tattitatatg
 180
tacacattta tatttaatac ccaaagaaaa tttactacca cattgctaca gtagatatta
 240
acctgacatg tttattaatt gatcctatag gtataattat aggtcagcat aattttacag
 300
tctattcttt tattttacta aattaggaat gccactattc ccggacaaat aaatgcaggt
 360
gatgtggcca cccaaqaatc atagtagctc ttcagttagc tatcttgcaa tctctgatat
 420
aattotacta tgtqaataga gtgaattoca attottoato aaaaagtgot ggtggaggtt
 480
gtcaggtgtg ttccagtata gattcccaat ccaacggccg gcagatggga gagcagcaga
 540
gatggaaatt gtgctcagaa taagccctct ttctcataat acttgtattt ctcatgctga
 600
gagtagetgt geacttttgg tgtttagaga agaacttett tggaagaata ttttetggte
 660
aatttgacca atgttacatg taatctgaat tagtctgtaa gattctttca acctcttttc
 720
tteteteaat aeggitttae teagactgag agetgtettt etetteaatg etttgggaat
 780
tcagtgcttt gtgtctaagc ccctattagt atcacatggt gtctgtgagt gagggggct
 840
gtcaccgtga gaactcctgg agctgct
 867
```

```
<210> 318
<211> 1683
<212> DNA
<213> Homo sapiens
```

<400> 318 ggcacgaggt aggaaccagt ggtctatgtc ccgaccacta cttggcttga tagggcttaa 60 tgaaaaggtg agagagccag ctccctggtg ccaacccaga agcagtggca accacgcact 120 tggtatcacc aagccctggg agaaatgtgt atagaaacac cccacggtgg tgaaacaggg 180 aaaatgggtc atttactgag caagtcccat ttgtqctttc agtatcacat aatcatttaa 240 ctgttagaag tcagcatgtg tggtagctca cagacacagg ataaaggagt gtttccccta 300 ggcagtaaga gaaacctttc aaggaaataa tgtacctggg tatcagagga cctaagacct 360 aagttetagt tetagetetg etataaacaa gtettgagat tetggtaaaa gaaaggtetg 420 gataagatga cccttttaaa gtgctttaca atttaaaaaat tcttgatatt cttagtagga 480 tgaagccata ttatcccaca agtgcttgcc tgaatttctt ttttaagggt ccaattttag 540 tagacattcc attoctcctt agagaagaac attottcaac cotgoagatg acggagggot 600 aatetgeett eccetgette tetaacette tgtteeacte ettgeeceae agtattitte 660 tgacctaaga aacagtattg tgaacagcca gccaccggag aagcagcagg ccatgcacct 720 gtgttttgag aacctgatgg aaggcatcga gcgaaatctt cttacgaaaa acagagacag 780 gtgagtataa agcgtcctgc ctagaaatct cagacaattg ctatttttca aatcaacgaa 840 acaggeagtt getttaaagt etttgacate tgtgtttgga ggecatetaa agcaatgeaa 900 tccaatagaa aagtgagcca tgttaaacag gcaaaattca ttttaataat atattttatt 960 taacccattg tatctaaaat attgtatcag tgtgtaatca gtattttaaa attgtgggtt 1020 ttcacattct ttttgtacta catttccaaa atcctgtgta ctttacattt aacagcatat 1080 ctcagttcat acgttttcat cagaaatact tgatctgtat ttagatttca taaatttaca 1140 gttgacaaag tagattcctg taatacccag attgtttcaa acacacctag ggactttcca gtaactgcat tgagtatctg ggctttgcaa ttaactttta aattttattt aattttaatt 1260 aatttaaaac aaggcatttt aatttaaaat taagatgcag ttggggagct gaatgttaaa 1320 ttgtatttaa tttggattca tgttctcagt cacactggcc ataattcagg ggcacggtag 1380 ceatatgtgg ttaggcagcc gccctattgg gacaggcata gcactgcacc acctgggtct 1440 tgctggcatt aaggaaatga ggatgggctt cattgggctt tactggccct tcacgtgtga 1500 gggcaacttc ctacttctgt cagtgagatt tcttttgtgc tgccatgagc ccaaggtagc 1560 cetcagggcc ccagatttga ccagatetet aagecaactt ttetettaga gtettaagac 1620 tgaaattaac tgatctttga aacagaaccc atcaattcat acattctact tcccatgctt 1680 1683

<210> 319 <211> 1606

<212> DNA <213> Homo sapiens

```
<400> 319
ttttttttt ttcgtatttc aagggttttt attctgagca gtaggtacaa aaaataatga
 60
catagttgtg totaattctg tatagttcag geacceteca caggetgtca atetetgatt
 120
tgatctactt ttaccagatt taacagatcc ttgaatttac tttactgtat atacttcctt
 180
cttgctcaca ttgggaatca aactaatgct ggaaacatgc atcttcagac ttcattgagg
 240
aattccagat tgagacacgc tgggatgtgg attgagtcca tggttagaga agatggatta
 300
aatggaaaca aaacaggaaa catgtgcttg gcatctaata gcagttgctg agggtcattc
 360
cgctcttgta gttgtgcctg gattgttcgt ataaaggcca ctgttacccg ttcttcaaat
 420
tcattcaggg gagtataaag gtttaaaatt ttgacaatct gctgggtgct gagggaggta
 480
cacagggage agatageete tgegteetee tgggttttet tetttaattg caggagetgg
 540
gctgcttgga tcagaggttc catggtctga actgctccac tctggtgaag gtttcttccc
 600
cgaagccact cctcaagctg acttatattg tacctgagtt gcatgcctgt gctccaagag
 660
cagacgtect teegeaggag caggteatta agagteactg egttgateat gtagaagage
 720
tgtttgaata cctgcaggat gatctcaggg tccaagccct ggtcacacat gactgtatga
 780
aaggcattca tetggeggat gatagettee aggeggtatg agttateete atetgecatg
 840
ctggaggagt gcttctggga gccagtgggc ttcacaccag atagaccctg aatgctctaa
 900
ttttccaaca tggcagaaac tatcatcggc tgtaacacac cctcggcaat tttaatgagc
 960
tgctggtaga tctgaatgga aaggtcacgt caggcacctg acggtattcg gtgaggtcaa
 1020
aattettaag acagtgttca attetgettt geagtgttet gagteatgaa geeetcatee
 1080
ccgctgtact gcttcagaca gtgaagaagg cgggcaggtg ttggataacc agaatgacgt
 1140
catctcaaag tcatcattgt gctttttcag gactttctta atgccgttga tggtggaggt
 1200
cagcagggag tgcaccttga gatcgtcgtt ggtgtagtcc cgcgtgccgg atgcacatgt
 1260
agaggatgta ggcggggaga cagggcactg tgcccgacag catctggggc ttcaaqtctg
 1320
tcaccaggtt ccggatgagg agggcctcgt cctctttgtg gtactccagc atgccctgga
 1380
aatcettete ttteegetgg accgtgacet geetgttgag eteatggege tteeteteae
 1440
tetgggeeaa tgeetgggea gettetaggt eetgggettt etteatgtaa atetteagtt
 1500
gctttttgag cttcctctca ttcttttcca gcttttctac cagttcttta aggtccagat
 1560
tetegttggt cageegggat attteetget gaaegeeget egtgee
 1606
```

<210> 320 <211> 676 <212> DNA <213> Homo sapiens

```
<400> 320
ggcacgagga gaatactatt cttaaagctg ctgaagtgca ggtcccacca aaatgagtag
 60
taacacctga agcaaaggcg tttatttgac gatgtttggc ctaccaaaag gaggactgca
 120
ttgatgccca gcaactggcc tgtgaccccc tacttgctgc attatatcca aaaattggtc
 180
tttgtgagta gccctgctgg ggctgctatt gcatcaacct ttggggtgtc caacagctgt
 240
tcttcgaatt gagactgact ccaaggccac aaactgttca acacacaca agtggacaaa
 300
tagcatttag cagcaggttt ggaacgtaga gaatctgaat ggatctgatg aaacctgaac
 360
caggtgctta ttttgttgct tttttcccat ccactgagca tgacagcatg gattctcttt
 420
aaggagaaac catgggcagc tccagccagg cctcatagga aaaggcccgg catgaggttc
 480
tggcgtcaat ggccactgtg tatggctgct ctgagtgagg aaaaaactaa aaagaaaaac
 540
tggttccatg tactgtgaac ttgaaaacat gcagactcac gggggttcct gatgcaatgc
 600
ttcagatgaa gattgtggac ttgaaaatac agactagaag gccgggcaca gtggctcatg
 660
cctgtaatct cagcac
 676
```

```
<210> 321
<211> 1502
<212> DNA
<213> Homo sapiens
```

```
<400> 321
tttttttttt ttttctattg cttaatagaa aacatatttt tattccgtac tttaaaaata
 60
tagactttct agcaacttat aaatttctat tataataata aattgatact ttgagccaag
 120
aaaacaatat aaccaaaaat tcatttgttc cctttgttta ggggtgtttt acatttatgc
 180
ataattttgc ttttataaaa gatgattgtt acaatcaggt atacaactac ttggttatgt
 240
ctaagttctg tctcttaaaa tatgttcttt tagagaattc atttaatcat cttattcttt
 300
tettcaattt tetecaaaca gtggtagaag taetatttga tagacagaat aaagaaaatt
 360
gtttttggcc acacccagat catactgata tctacagcat agtcctggct acaggggagc
 420
tcaactctaa ctcgtgaagc gggcctggtt tagaaagtaa caatgaggta gtaactcatg
 480
540 ·
gtttaggtac atccaaaatt tcttcatagt ctgcactcat tccctttgcc cagcgaccaa
 600
ctgtgaccat tegetetgaa ttetgacttt cagggcaate tttetttaaa tgttecacag
 660
agccacaaag tttgcaaccg ccaccatcag catagagtcc tttgggatta tcaggacaag
 720
atctagacag gtgccccatt tctccacaaa caaaacattt tgcaaaagga aattcgccaa
 780
gagccgggtc tactttagcc ttacacttgg ttatttcgtg ctctgtggac ccacacctgt
aacatatece agtgeecatg tettgatttt caagggegge ggggeaatet geaattecat
 900
gaccaggttt totacaatgg aaacacacca ttgcattttt ctttgccgct tgtcttttta
 960
atcttcttcc ttcccgtcga ctgtctttct ttaaagcaac tgcaatttct tcccttactt
ceteactgte tgttgetata atttgeecat tgtgaaccat etgtgaatte tgtettaggt
 1080
attocatgaa tocattoaca tottoattta agtactottt tttotttttg ttottttat
 1140
gttttgcttg gggtgcatca tttttgaggg atagcctatt ggcttcaagt tgtttacgct
 1200
ttggtaggtt ttggcttgtt ccctcaaagg atcccttctt catgtcctcc catgatgttg
 1260
caggcaaggg tctcttgtta tatgtggtac taactcgggc ccacctggtc ataatttcat
 1320
cagtggtacc ttatcaattt ttaagacaag caggggtggt tagccatcaa caacaaaaac
 1380
aacaaaacta aagagacatg ctatatcact atatgtcaca tatgcccata tgttaaactt
 1440
ttaattatta aaacactttt tatttcagtt agatatctgt atacatattt aatggctata
 1500
at
```

```
<210> 322
<211> 989
<212> DNA
<213> Homo sapiens
```

```
<400> 322
gttggggtct cactetgtcg cctaggctgg agtgcagtgg cgtggatctc tgctcactgc
aageteegee teeegggtte atgecattet cetqacteag ceteeggagt ageggggact
 120
acaggcgcac gccaccaggc ccggctaatt ttttttttt qtatttttag tagaaacggg
 180
gtttcaccgc gttagccaga atggtttcta tctcctqacc tcatgatccg cccacctcgg
 240
cctcccaaag tgctgggatt acaggcgtga gccactgtgc ctggccaaac gctggtaggt
 300
ttgggagtga gaccacatta catttaaata tatttacaat gttttctgct ctattcttta
 360
gtagactttt cctcacgtgg tcctacgcat ttctttctaa gtttattttc atatagccta
 420
tecetgteta caatttaaat tgggatette tatattetag ttattatttg taaataagaa
 480
aactactgac ttttttctag tatattttct cagaatagga ttttctattt ttctataaaa
 540
tgaccaatgt tatgaagctt cgtaagtttt gtcaaagtga tacacacata cagcaaaaaa
 600
```

```
tcaaatagta cagaagtata aaagcaacaa cctctgcctt gccccttctc caccttcagg 660 tccccttccc agatacaata atttttagct ttttatttt aattattctg gttgttacct 720 acataactct gggcaatatg gaaaagttat tgattttgta tattaatttc ataatcagtt 780 accttgatga attctcttgt ttctagtagt ttttcttag ggttttaaag ggatacaatc 840 ataccatttg cagttagtaa ccattttatc tcctcttatt tccaacttcg tactgtttc 900 tcttgtctaa tttgtttta attggtggt acctctagaa caaggttaaa taaaagtggt 960 gttggtggc gtccttattt ctgatata ctgatata
```

<210> 323 <211> 1106 <212> DNA <213> Homo sapiens

<400> 323 teggaegegt gggeggaege gtgggetegg tegettagtg tgteteetag tteetateet 60 gaactacaca ctgaagttcc actgtctgtc ttaattctgg gattgcttgt tgttttcatc 120 ttatctgtct gttttggggc tggtttattc gtctttgtct tgaaacgccg aaagggagtg 180 ccgagcgttc ccaggaatac caacaactta gacgtaagct cctttcaatt acagtatggg 240 tettacaaca etgagactea egataaaaca gaeggeeatg tetacaacta tateeceea 360 agcetattae egaaacetgg caaggagttt cagetattag gcaacetgga ggagaaaaaa 420 gaagagccag ccacacctgc ttacacaata agtgccactg agctgctaga aaagcaggcc 480 acaccaagag agcctgagct gctgtatcaa aatattgctg agcgagtcaa ggaacttccc 540 agegeaggee tagteeacta taacttttgt acettaceta aaagggeagt ttgeeectte 600 ctatgaatct cgacgccaaa accaagacag aatcaataaa accgttttat atggaactcc 660 caggaaatgc tttgtggggc agtcaaaacc caaccaccct ttactgcaag ctaagccgca 720 atcagaaccg gactacctcg aagttctgga aaaacaaact gcaatcagtc agctgtgaag 780 ggaaatcatt tacaacccta aggcatcaga ggatgctgct ccgaactgtt ggaaacaagg 840 acattagett ttgtgtttgt ttttgttctc cctttcccag tgttaatggg ggactttgaa 900 aatgtttggg agataggatg aagtcatgat tttgcttttg caagttttcc tttaaattat 960 ttctctctcg ctctcctctt cccactccca cactgaaaaa caaagaagaa aaaagaaaca 1020 aaaccataaa caaaatctat gaagaaatgc attgtagaaa cattcatgtc cactgatggt 1080 tcctaagaag agaagggaaa aagaaa 1106

<210> 324 <211> 2366 <212> DNA <213> Homo sapiens

<400> 324 gcactatgtc acattgccgt ggggcagcag atgaacctgc actggctgca caagatcggg 60 ctggtggtca tcctggcttc cacggtggtg gccatgtcgg ccgtggccca gctgtgggag 120 gacgagtggg aggtgctgct gatctccctg cagggcacag cgccattcct gcatgtgggg 180 gctgtggcag cagtcaccat gctctcctgg atcgtggcag gacagttcgc ccgtgcagag 240 cggaceteet eccaggtgac cattetetgt acettettea ecgtggtgtt tgccetetae 300 ctggcccctc tcaccatctc ctctccctgc atcatggaga agaaagacct cggccccaag 360 cetgetetea ttggccaceg eggggecece atgetggete cagagcacae geteatgtee 420 ttccggaagg ccctcgagca gaagctgtac gggctccagg ctgacattac catcagcctg 480

```
gacggcgtgc ccttcctcat gcatgacacc accctgcggc gcaccaccaa cgtggaggag
 540
qagttcccgg agctggcccg caggcctgcc tccatgctta actggaccac cctgcagaga
 600
ctcaacgctg gccagtggtt cctgaagact gaccccttct ggacagccag ctccctgtca
 660
ccctccgacc acagagaggc ccagaaccag tccatctgca gcctggcaga gctcctggag
 720
ctggccaagg gcaatgccac actgctgctc aacctgcgtg acccgccccg ggagcacccc
 780
taccgcagca gttttatcaa cgtgactctg gaggccgtgc tgcactccgg cttcccccag
 840
caccaggtca tgtggctgcc tagcaggcag aggcccctgg tgcggaaggt ggctcccggc
 900
ttccaacaga catcaggctc caaggaggca gtcgccagcc tgcggagagg ccacatccag
 960
cggctgaacc tgcgctacac tcaggtgtcc cgccaggagc tcagggacta cgcgtcctgg
 1020
aacctgagtg tgaacctcta cacagtcaac gcaccgtggc tcttctccct gctgtggtgt
 1080
gegggggtee catecgteae etetgaeaae teceaeaeee tgteeeaggt geetteeeee
 1140
 1200
ctctqqatca tqcccccgga cgagtactgt ctcatgtggg tcactgccga cctggtctcc
 1260
ttcaccctca tcgtgggcat cttcgtgctc cagaagtggc gcctgggtgg catacggagc
 1320
tacaaccetg agcagatcat getgagtget geggtgegee ggaccageeg ggacgtcage
atcatgaagg agaagcttat tttctcagag atcagcgatg gtgtagaggt ctccgatgtg
 1380
 1440
ctctccgtat gttcagacaa cagttatgac acatatgcca acagcaccgc cacccctgtg
 1500
ggcccccgag ggggtggcag ccacaccaag accctcatag agcggagtgg gcgttagctg
aagacatgtc tgtcccacct gtacctgaca cagaagctgg ggagcctagg agagctggtg
 1560
gaagtgtgtc tgaactcgga gtgctctggg agcgggctcc acagcctcct tgtgggctcc
 1620
agccccttgt cagccgcagc ctctcttgag ggggactccc tgtctcctga ggcccagctg
 1680
ggccaggact ccatecttte agatgeeeet geaggeetgg ggeteettet gggaagtatg
 1740
gggcctaggg cttggtcccc ctcttctgag gccctctcct gtatcccgac ctggaagctt
 1800
 1860
tgatgggtca tgggccatgc cataccccct gtggcaatgg agtgtgtgga tgctcacctg
tgccatctgt cctcctgtct gtgccaggag gcacctgagt tctctgctgt tatcctgccc
 1920
caagggcctg ggccgagcct ctacctgaag caactctgct cttcctgtca gtctcaaagc
 1980
 2040
acaaggaggt teageecagg aggaagecag etgeaatgtg gagaeaegte eteeteecea
 2100
acceaectea tgecaeegee aacceeetge ceeaggageg ggeetgagee aegteeeeta
ggagcagctg gagatggcca aaagagtgag ctcaggacta ctggatccca tgcccaggtg
 2160
 2220
tccagcagac ctcaaggcag aagggtcacc taacccagga gttccacaga ctgatgtgac
 2280
ctcaggttcc cacatcagtg gccaccaggc agggcccacc tggtagaagt gttctggata
tggcccaggg tgggtgtgtg gctaagtggg cctgaacaga gggaacccta gggcccttgg
 2340
 2366
ccaatgtgat taaagctgcc atcttg
```

```
<210> 325
<211> 1925
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(1925)
<223> n = a,t,c or g
```

```
<400> 325
ttttttgaaa tctggtccca aagtttcaaa agaatactaa tgcaacaaaa agaaataacc
 60
tctctgtata aagtgattat agagatgtgt gttgaggtaa acagcttcat aaaaaccgtt
 120
 180
gagcagggaa gcacagccac tgctatagaa atttttaggt aagtctggtg ctagcattat
 240
tctacaaaac tgtttacacc cattataaat aggggacagt tcttattgct cctggagctt
gtagetecaa tetgttecag etecaetgaa aaatgatttt teteaacaat tggtageaaa
 300
 360
gatttccaaa tttacaaaaa gtcattacca atgcatcact ttttgattaa tttctgattg
 420
ccatatagat atggactaca gtatgcatgt ccttgacacc aagtacagaa aaaaagctta
 480
gaaaagtcgt tttatcaaag ttcagttcaa tgagaaacat gaaaaagtgc aaaatatgta
caattcctgg cagttctcac acgggatttt tttgactaca gaccataaaa gtttacattt
 540
gtgtaatgaa atgacgatgg atttcacatc actgttaata tacaagtttt tgcttcaaag
 600
 660
tgcttacttt atttataaaa gagaagatca agagggttgc aggaattttt ttttttaac
aacaaatcaa tggtatgtgt cccaatctcc ttcttcctct tcctttagtg caacatggcg
 720
```

PCT/US00/35017 WO 01/53455

cagcagcctc	atggataagg	tctgatttca	aaagacattc	ctgaaacctc	acctacagca	780
gcactctagg	ggtcccatta	ggggtggctc	tctttttctt	ctgcagccga	ttctgaacct	840
ttcgagattt	tactactttc	attctcacct	caaaaacttc	atgaatggcc	ttccggaagc	900
aatgaaaatt	atagtcaatt	agcccttttc	tttcaaagct	ttcctctctg	acaaagcaaa	960
cgagagccag	gaactttgtc	acctcttta	aataaagcac	ggttgtatta	ttaagcttta	1020
tgatggctgt	ggattccttg	tcataggggg	ttcctgctcc	atcttctttg	agaccataaa	1080
tacaagagat	gtcaataacc	acatctatca	tatcacagca	gagctcatag	gtttgcatat	1140
ccaccggagt	actatcagtt	gcaatataaa	ttttactgac	cacatcaaat	agaaatgcct	1200
tttcaattcc	agaatttgag	ataaagatgt	tcagcaaatt	ctccagagtt	gggagttgtg	1260
gaatcagttt	ctgaacaact	ttgctaaaag	cttcaaatat	tgaatgatca	tatatgcttg	1320
tcagataaaa	gctgaggtga	attttttcta	atccagcatc	tgcaaggtca	tcgtttgccc	1380
tctggtgaat	atctctttgg	gtttcaattt	tgtggtcatc	tgacagacca	tccactttat	1440
gaataaacac	ctcgaagttg	atgtcagtat	tcactttgta	ggccctggtc	accgtgaggt	1500
ggagcctggc	cagggcttcc	atgtaatcat	cctgtgagtc	aatgacaaat	atcagtgctc	1560
ctgttccccg	gaagatcatc	tcatagtcaa	atgtagggtc	aaaaaagtca	atctgtcctg	1620
ggaagtccca	aatctgaaaa	ttgacaaagg	agctgttgga	aacatcttcc	cggcatatct	1680
tattagtgct	ctccaagaac	agagtttcgt	tgggagacat	tttgtgaaag	acaactttct	1740
gaatagacga	cttgccgctt	ctcctcaggc	ccatgagcag	gattctcggc	ttcacttcag	1800
tgctgaaggg	gtcactgaag	tccagaactc	cctcctctgt	gccgctgtcc	ggatcggcgt	1860
cggaggagtc	gggcccgtct	ccgtagtccg	ctgaattccn	ccgcngtgac	tgagtctcat	1920
tccca				• • •		1925

<210> 326 <211> 1181 <212> DNA <213> Homo sapiens

•						
<400>	326					
tttttttt	ttgagatttc	ccaggactgg	ctttaatttg	aaaaatctga	ttggggtctc	60
ttcccgtatc	agagaaggaa	cagcccaagc	tatgacccca	gggccaggga	attcagtccc	120
caccagaccc	tgtcattcca	tcactagggg	gtaattccag	gctcccctg	ccagccctga	180
gacaggagga	cggatgtgaa	gttgcccagg	actagattct	gtctctccaa	agtggcccaa	240
gccctgttct	ctgtactagg	gaagccagct	gtgtcttttc	gaggacagtt	ggtccagcca	300
gcaggctcag	ttcagatacc	agacaaccat	tccagcacga	gggctcagcg	ccctggcccc	360
ggcggtcgct	ccagtgcctg	tgtgcccacc	agcacatcca	tgaggtagtc	caattcggcc	420
tcgtccagct	ccggagcttc	ctccttgccc	ggcccatcct	cagggcctgg	tttgaggccc	480
tcagaggctg	gtgcccaaag	ttcattgtca	tacatagagg	tgtcaatatc	ctcaaacagg	540
ccctcaagcc	catcgtccag	tagacagcca	gtggctgggc	ccagcaggtc	caaggcaccc	600
aggctgggcg	ctgctccccc	gatgctacgg	cctggtggcc	cctcgtctgc	caagggttgg	660
ggagcctgac	tcaggccctc	aatgtggctg	aggtcctcca	ggaggetgge	catggaggct	720
gaaagggcag	cgtccgagct	tgccagtaag	ttgtcagcca	cactgggggc	tgcaggtggg	780
ctaggcacag	gtggcagggc	agccgcgggt	gccatggacg	cctggatgcg	ccgcagagtg	840
ttcacgacca	gcaccaggtg	ccgcaggtcc	ggctcactct	gctgcaggct	gtggtggagc	900
ttgagcactg	agaggtcaaa	gagggagcta	gaggccacgg	ccgggggtgc	ctgtgccacc	960
gctgcgtggc	caggatctag	ccaccaggag	tegactgeca	gaggttcctt	ctcctcctcc	1020
tectecegtt	tccgcttcag	accettgete	agcatcttgc	tcactagcgg	ccaatcagaa	1080
cgaagaggta	gccacccaca	accaatcagg	aaacggcggc	ggcagcatcg	cttgttggct	1140
gtcctccgga	aacccgcgcc	tgggtcgcgc	ccacgcgtcc	g		1181

<210> 327 <211> 1842

<212> DNA

<213> Homo sapiens

```
<400> 327
aagtacaaaa taatattta ataacatagg aacatgaaca tgaaaacaat gtaaacaggt
 60
tagaattttt ggatatgata cctaccaaac gtgatttgga accgtaccgc aactgggtaa
 120
aatttetatg gcaaaaggat taaccaaggc atatcatagg aaatccactt tgcccaatat
 180
aagcagttct cagcacatac tcaaatgcac acaaacatga aaatcggaaa taaaggaatg
 240
ttaaaaaaat aacttaggca gacacaaata aaaccacccc actagtgtat gaatgatgcc
 300
acgtttctta tgatcttaat tacatttaag gatttaaaaa atgccactga tctcacagtt
 360
tacaatatcc aaatcttcaa acctgctgga agaagtccca cagcacagcc tggaaattcg
 420
catcogttgc attetetegt geagttacet gettatgggc tgtacettet geettgatat
 480
gtagtcagtt cttcctgaag gatggaagct ctcttttgca gaaaattaac ctgtgatttt
 540
agggaggaaa tggtgtcttc aagttcttgt cttagggatg ctggcatcaa tcctttcaat
 600
tttgtttcat attcttgtcg tatgtaagtt atctgttcct gtgactccaa ttctttgtgt
 660
tgtaattttt tctctgcaca tcgcacctga ttagaacggt tttctaattc atcttgtaaa
 720
accttgattg cttggtcatt atctctaatc agctgcttct tctcatcttc aaacttttgt
 780
ctaacatect ggageegeet ttetgeagea agetgetget ggetgttete ttettteaga
 840
gaggaaatgg ttgtctgaag ttctgctatg atctgtgaag atttggcaag cttctgagtg
 900
tatteettet eaatetgett eagettgetg ttggeetttt eeagtgteat etetgtetea
 960
gcagcatgag tctttttcag ctctattttc atcttttctg attcagcctt cagtttattg
 1020
acgacaatct catgttccct tgtagccctt tgcttttcct cttcacgaag aagaccaagc
 1080
tetaccaget getgttteeg etgtgagtte acattgatea attettetet caacttgtga
 1140
acctgggcct ccatgtcggc aataacctgt gcatctcgtt tcttgaactc ctgaatttga
 1200
ttttcgtgct ccatattggc agcgcgaagc tgtttttcca ggttttcaat ttcccgttca
 1260
tggtctcgga ctaggctatc cttctctgcg ttatgctgct gtaataggtg cgtcttctcc
 1320
tgttcatgct ccagcttcag ctctactatc tgttgttcat accgctgtct gatgtcctcc
 1380
agttgccata aaaactcctt tgattgtttc tcacgaagag atttggatct agttagatct
 1440
geetecactt tttecattte aaagetteet caaatttatg aattttettt tgagtatett
 1500
cttttccttt atcaagttca ctctgcaagt catgagcctt tttttcatag atgtgtttta
 1560
gatgactttt ctccatctga aacttatttt cttgatccct tagttgttgc tttctttgaa
 1620
gttctgattc ctgtaactgc tgttttaatt gacagacatt ctgctctaat tcttcaatca
 1680
tactagatgc cttagaagct gaaagagcat gttcttgttt tagaaggttt atatcagcat
 1740 ·
catatttggt ttgtaacagt ttcatgtttt gctcataatc atttacaaga tggtccttct
 1800
ctttatgcag tgtgttacgc cttgccttta cttcttgtaa tt
 1842
```

```
<210> 328
<211> 1293
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(1293)
<223> n = a,t,c or g
```

```
<400> 328
ttttttttt ttgacgcggg gagagattta atttacatag cagccacttg gggtccagtc 60
agagctgggg cagtgggga atctataacc ccagagggta cccccagac ccccacccc 120
gggagaccag tcctcaccaa cccttggatg ggctcccaag gttgtgcaga agatgctcca 180
gtcaaaagga tagagacatt tgggaaataa aggctgtccc caaagttggg gggaangtcc 240
acggcctggg agtggatagc ctacatggtg gccccagggg gtctgagaga ccagtcccat 300
gtccctgggc gagtccttca gcctgggtgg ccctagagga aagccttcgc gggcggaaac 360
```

```
tgttccctgg aggagggege ggtactggtc aaaateette etttccacae gggtgaegee
 420
gcetteetta gcatacecae aactteeegg cacaceagee ttgataaage getteatteg
 480
tgggacacca gaatcacacc aacccctgaa attgtttgaa ggcaaggccc cagagcctca
 540
atggctctcc catgtccaag gtgggtttgt gggttcatcc cagaatgtag aaagttgggg
 600
cagggcaata gtccatctga gcaaaaggcc acttcggctt ctttctggcc cccaagacag
 660
gctggcaaag aggacgcatg gcccagttct ccggagatgc ccataccgaa cccaagctgg
 720
tgacnggtac tectecteag geegeeeeag gaaaaettge gtgeeeagea agtteeeaea
 780
agcactgaac gtttaggtcc cagctgctcc cacatggtgc tggctgaaat agccaatctt
 840
cagattectg tgagegtgte tgatgeeecq aacaqqtgee aggteeeca aaaqcaqett .
 900
cagcatggta gactteccag ceccattete tecaaceaca cagatgegag actegagate
 960
agcagacaca gagaggcgac tgaagatgac gtgcttcgga tcgtagtaga aatccacctc
 1020
atctagetge agaattggeg gegagaactt etcaaaceca teagggaact teattaegae
 1080
ctctgattcc ttgtccacag gcttcagctc aggcctggga gaagagatga ggtagactag
 1140
atttattact taaaaaaata acttcctaca cgagtaatat atgttcagag aaaacttaga
 1200
aagggettgt actectacea eteaggtate attactttag agtecattet teteatttae
 1260
tgtatgctaa aaaatagaat taggcttttt gtg
 1293
```

<210> 329 <211> 1734 <212> DNA

<213> Homo sapiens

<400> 329 aaatttgtat ttcgataacc attagtgcag tgcggtggaa gtcaagatgg cggcgcggac 60 agcgttcggt gctgtgtgcc ggcgcctctg gcagggattg gggaattttt ctgtaaacac 120 ttctaagggc aatacagcca aaaatggtgg cttgettete agtaccaata tgaagtgggt 180 acagttttca aacctacacg ttgatgttcc aaaggatttg accaaacctg tggtaacaat 240 ctctgatgaa ccagacatat tatataagcg cctctcggtt ttggtgaaag gtcacgataa 300 ggctgtattg gacagttatg aatattttgc tgtgcttgct gctaaagaac ttggtatctc 360 tattaaagta catgaacctc caaggaaaat agagcgattt actcttctcc aatcagtgca 420 tatttacaag aagcacagag ttcagtatga aatgagaaca ctttacagat gtttagagtt 480 agaacateta aetggaagea eageagatgt etaettggaa tatatteage gaaaettaee 540 tgaaggggtt gccatggaag taacaaagtt ttgtttcttt attttttag acacaattag 600 aacagttacc agaacacatc aaggagccaa tetgggaaac actatcagaa gaaaaagaag 660 aaagcaagtc ataaagcctc agggaggcca tttttgccta aatttgaaat gagggtgggc 720 cagatgagta tgtttaagtg gagagtgctt ccagctgaga tgatttgagt ctgtcctaac 780 tgctccattg agttctcgtg ccctcatcag ctgagggcag ggaatggaac tttaatggaa 840 gaaccacttt tatctattct ttttattcat tgtttcagtt ctgatttcag caaacatgag 900 caaaccactt tgactgaaag cagaaagagt gaaaattcta ttttgttacg ctactggtgt 960 tcaattatta gtttgtacca tttttaattt atgtcagttg atgcatctga aaataagtgc 1020 ttggagtgtt cgtaccetta tttttttta agatteetag aaggaatett tggttaatte 1080 agattgagca gttaaagttt ttgctattta cctttgtgca ggctggcata tgctaatttg 1140 ggggtggtaa ccaaccgatt ttatctcatg taagcattac attttgaaga ctgaatatac 1200 ttcacagcag atcaaacaca tttatggcat gcactgacct cttcttggag cccagaactt 1260 tatagagttg cctaccaggg ttactgtaat ggaatttatg atcttaagaa attactagtt 1320 gtattattta tcctatgatt cattcattca ataagetttt actgcataaa etttacatce 1380 agcactgtag ttaagtaccc aaaattgaat agaaataatg gcttttgaaa attgcacaaa 1440 gcaggccagg cacggtggct cacgcctgta atcccagcac tttgggaggc cgaggcaggc 1500 ggatcacgag gtcaagagat ccagaccatc ctggctaaca cggtgaaacc ccgtctctaa 1560 taaaaataca aaaattagct ggacatggtg gcacgtgcct gtaatcccag ctactcagga 1620 ggctgaggca ggagaatcgc gtgaacccgg gcccggtgga ggctgcagtg agacgagatc 1680 gegecaetge actecageet ggegacagag egagacaceg tetcaaaaaa aaaa 1734

```
<210> 330
<211> 2105
<212> DNA
<213> Homo sapiens
```

```
<400> 330
ttttttttt ttatgtcatt cagcctttac tgtaaaaaag gaaacaataa aaacaaaacc
 60
ctattaataa acacaatgca aacaatgccc gagattatca taaaaacata ctagcaagcc
 120
acaagtacca gagagggtg aacaggcata totgotaget etcetottgc agtoctcage
 180
ctcccacagg aggcacaagg tccaaactat tcctcaaaaa aaaggacagc ctctttatgc
 240
tgaaatagga actttaaagg aagetettet tgtagteeaa atggaegtae ettgtggtat
 300
ggctgtaagg actcgatttt acggcttgtg tattcctaac tatagctagg cctgtcacct
 360
getgtteetg tgateteage tttacetaga agageteetg aaacagaatg ggtacacgaa
 420
aatctggaat gaatagctat ctgctcaaaa acgattgttt aaaaacagat gattggggcc
 480
gggcgcggtg gctcatgcct gtaatcccag cactttggga ggccgaggcg ggcggatcac
 540
gaggtgagga gatcgagacc atcctgggca acatggtgaa accccgtctc tactaaaaat
 600
acaaaaatta gctgggcgtg gtgatgccag ccactcggga ggctgaggca ggagaatcgt
 660
ttgaaccagg gagtcagagg ttgcagcgag ccgagactgc gccactgcac tccagcctgg
 720
cgacagagcg agactccgtc tcagaacgaa caaagaaaca aacaaaccag atgactggga
 780
gactgaagag gaaaaaagat gggagaaaac gtagggaaag gatggggcct cacagactca
 840
gctgtgggtg ggggggtaaa tcattacctc aggagaagcc caaggaattg tccccgaggt
 900
gagetttgga aagaaaacaa aaacaaaaac aaaaacacca aaaaacacct aaattteetg
 960
tattaaagtg acacataatc atgttttctg attctcttca ctgtctgcct gcggggaggg
 1020
ggtggggaag gtgttaatga tgctgatccc tacttctgct tcaaggagat ctggtgggga
 1080
attettecae cagtecagag tttgetggtg etgaceteat ecetgtatea egggeetaga
 1140
atgtgggagg ctaataggat gggtgggttg caggaggtag aagaggggat ggcctagaga
 1200
1260
cacccctage eccageeeet cagetgtggg gagaggeeae eteetetgat ggggtetega
 1320
tgctgctgct ctgttcctgg tctggcacgt cctcctcttc ctgctccaag ctgaagttct
 1380
cgagctcctg aaaaatctca tccatgaagt cctgggagtt ctgtttgtaa gacacagcta
 1440
atcgaattgc atcattgaag agcttcacaa cattggtacc atcagcagcc gagacgaaat
 1500
acaggggcag ggagaacttc ttggcaaaat tgaagctttt ttgggtcacg tttatgtctg
 1560
ctgtagagag aaggtaggac attggtctgt ctgtcaaggg aagggaagaa ggtttggagg
 1620
ggggggccac tggaggcctt cattccagaa agtgggatag gcagggatga ttgggaaaca
 1680
ggtcctagaa agagctcagt taatagggat ctgtgtcttg gaaagagggc aggtcggctt
 1740
agctggcttc tttataaggt gggaagaatg caagcaacca accaagggtt gtatcttatc
 1800
gtgggaggga ggaccaatca ctgaaggttg cctgcccggg gaatggagga ggaaatgtat
 1860
gagggcaggt ccccagtgaa ttgctaacac ccaggtgcag ggatggcccc accatcaatt
 1920
ttattggcca ccacgatgca tgggatctct ggcctgaact cccgaagctc tgtataccag
 1980
gtgctcaggt tcctatgggt gactttcctc tggacatcaa acaccatgat gcaagcgtgg
 2040
gtettgtggt agtaggagge atgeatgete tggaacegtt cetggeetge egtgteceaa
 2100
aagtc
 2105
```

```
<210> 331
<211> 5654
<212> DNA
<213> Homo sapiens
```

<400> 331
ggagegaege egetegggte agteggegge eggaetggga agatggaege agetaetetg
60
acctaegaea eteteeggtt tgetgagttt gaagatttte etgagaeete agageeegtt
120

						•
tggatactgg	gtaqaaaata	cagcattttc	acagaaaagg	acgagatctt	gtctgatgtg	180
gcatctagac	tttggtttac	atacaggaaa	aactttccag	ccattggggg	gacaggcccc	240
		ctgcatgctg				300
		ccgagattgg				360
		cgcattcatc				420
cagatagcgc	aaatgggagt	tggcgaaggc	aagtccatag	gccagtggta	cgggcccaac	480
actgtcgccc	aggtcctgaa	gaagcttgct	gtcttcgata	cgtggagctc	cttggcggtc	540 [°]
cacattgcaa	tggacaacac	tgttgtgatg	gaggaaatca	gaaggttgtg	caggaccagc	600
		tgcgtttcct				660
		caacaggccg				720
		ggacatcaac				. 780
		tgggcgtcat				840
		ggagctcatc				900
gtggagccca	ctgatggctg	cttcatcccg	gacgagagct	tccactgcca	gcacccgccg	960
tgccgcatga	gcatcgcgga	gcttgacccg	tccatcgctg	tggtacgtgg	cggccacctg	1020
agcacacagg	catttggtgc	tgaatgctgt	ttgggaatga	cgaggaaaac	tttcggattt	1080
		gttgggataa				1140
		tgtccttgca				1200
						1260
		tcgagtggcc				
		catggatgag				1320
		gcggcccctc				1380
cacatttaaa	cacgggcggc	ccctccaccc	acccactcct	gcaccacctt	ttgttttccg	1440
gaggctctga	cttgacctct	ctgggggatt	tcctaagaag	gagcttccct	gtttttccat	1500
tttgattacc	tagttgtgat	ttttggtgtg	tgatttatgc	agacctgcct	gccctcaaat	1560
		ccaaaaaacc				1620
		aatcgggggc				1680
		ctgaaatggg				1740
		acctcctggg				1800
		tttgtttgtt				1860
		tggcgcgatc				1920
tcacgccatt	ctcctgcctc	agcctctgga	ttagctggga	ctacaggcac	ccgccaccac	1980
gcctggctaa	ttttctgtat	ttttaataga	gacgggtttt	cactgtgtta	gccaggatgg	2040
tcttgatctc	ctgacctcat	gatccaccca	cctcggcctc	ccaaagtgct	gggattacag	2100
		cctggcgcac				2160
		atgtttgtta				2220
		tcaggctaga				2280
		ccaaaggggc				2340
		tccccggggg				2400
		agagagtgcc				2460
		catctggcag				2520
ggcggcagct	ttaaggatgt	gattgccggt	gacccttggc	cggtcccctg	teteetgget	2580
cctcagcagg	aggctccctg	tgtcacggtg	tccttgggca	gttctcggtg	gcctttgccg	2640
ccaagcttcc	agggagctgc	tgggcgaagg	ctgagaccca	gcggccctgt	ctcacagtca	2700
		ttggccctaa				2760
		caccacgtaa				2820
		ccgggcactg				2880
						2940
		ggagccaagg				
		ggcagtggga				3000
		ctcatcgtca				3060
aagatgactt	cagtgattgg	tgccagcaag	tcaaaaagct	gtctctgctt	ggaggtgccc	3120
tgcccatgtt	tgagctggtg	gagcagcagc	cttcacatct	ggcctgcccc	gacgtcctga	3180
acctgtccct	aggtgagagc	tgccaagtcc	aggtggggtc	cctcggaggt	acgatctgtg	3240
		gccccttgg				3300
		gttcgcctgt				3360
		gcccaggacc				3420
		cgtgctacca				3480
		cgcagtcctg				3540
		cctcggacca				3600
		gccgtgagcg				3660
aactctacaa	acaaggcaat	ggcaatggaa	ccactcctga	tgaccacgag	ggtcagacgc	3720
		ctgagattgt				3780
		cctccccca				3840
		agctgtctgt				3900
cccacaccaa	gggcccttga	ctcacaccca	gataacccac	ccaagatgcc	tgatgcgcta	3960
			23-3300000		-33-3	

```
tgtcctgttc cttctagatt cttctgatgt agagcgactg gaaagattct tcgactcaga
 4020
agatgaagac tttgaaatcc tgtccctttg aaaatcctgg ggtcgggggt ggcacctgtg
 4080
agagectggg getectggtg cegetgegtt teatecatee egecegeteg eetgeegagg
 4140
getgegeece gtgetgeete eccecagagg gecaeceget gtgetegtgg actgaggetg
 4200
cgctqcccgg gaggccttac tgcttggtgt cagactgccc agctcagagt gcccgtcagg
 4260
gcctgtgcat ccgcacgcgg agccgtctgt taggagcttc cagagcgttc tctcgacact
 4320
qccaqcccq tqttaqcacc tqqqcctcag tcccacttqc tcccaggcqc cggttctqtq
 4380
qttqqtttqq aattaaaqtc ctgtttqaag ttgtcagaca cagacatgaa tttctgqqqc
 4440
qctccctqaq tcaqtctcag aagacctgtg caggctggcg tgaqaggagc ggcagccaca
 4500
ctgcggcccc acgcccaagg actgggctgc tctcgagggg ggcgcgccca ccgctgtgtc
 4560
ctctctgccc agcctggctt accaagggct acctcagtgg gagatgaggt tggaggaacg
 4620
aaggcgaggt teeteettge tttggggaga aaagtattea ggaagtgggt gtgtgggaaa
 4680
cctgaagatg gcgtgcacag gacacagcgt ggtcggcctg ggcagaaggg cggctggctg
 4740
tcctggagct gctgctggag cctgccctca gagtgtccct ttccagtgct gtggcattct
 4800
gtggcagctt ccccaggtgt ggtgacgggg ggggggcggg gcctccacct gtgacagcca
 4860
ggcttgaggg tggacggcgt gcctctccca ggagccttcc ccatgtcctt gccttgctga
 4920
gaattgccct cccatgccgc tgaggtgtta ggtggtttag ggccaaaagg ggaaaaccac
 4980
ttgagtcttg tggtgtgtgg tgggcagaca ccacagggtg gcatcacctg gtggcatttc
 5040
cagaacctca geocegatte cageacceae cacegeetga ceetgtgtaa cetgetgtee
 5100
egggteecag agtgeactet geeceactge tetgetgeet gteetgggaa agtagetttg
 5160
ccccactagg aaatgtaaac aggagggctt ggggagcgtg ggcacttttc tcatgagcag
 5220
ctactgcggc gttggcagga ctcgctgctg ctgctgctgc tgcttgtgta ggtcggggag
 5280
ccggagatcc ccgaggacgc gcgccggaca gtcggcactg accggcccat ctggtagcag
 5340
aggacacccc cagcccccca agcattgaag acatagtgta tttcctcgta tcctttctcc
 5400
ettgggtgta gttggggtgg ggaagcaggg aaggetggtg egatetecat teettggget
 5460
cegegteega gttcatggtg egeegetgtg etgggagetg eagtgggaat gtgtgggaca
 5520
ccttgaccaa aggggagctt tgtctcgtgt gttttgaaaa aggcttaatg aagagaatgt
 5580
tgttcattct tagtagtata gtttgcaatt cttaatggca aataataagt ttcagtagaa
 5640
acccaaaaaa aaaa
 5654
```

```
<210> 332
<211> 283
<212> DNA
<213> Homo sapiens
```

```
<400> 332
ggagccaccg cgccccccgc caaatttaga ctttttgagc tetgtgcgtt gtgcctttca 60
acacttttca caatggattt tetgcttctt gataaggaag gcacccttga tectgtcatg 120
gattcattta gcacacattg gaccacgata ggccctgctg acatgttttt ttcattgtag 180
acagcattat aagaacttta aatctcacgg cacaaacccc tegaagtctg tetgggcaca 240
tgccacatgc caatcttgtg cetttcccaa cettettggt tgg 283
```

```
<210> 333
<211> 1759
<212> DNA
<213> Homo sapiens
```

<400> 333

gacccgcctt	gcggaattcg	gcacgaggga	cccctgtgcc	caggctccgt	gcgagcagca	60
gtgtgagccc	ggtgggccac	aaggctacag	ctgccactgt	cgcctgggtt	tccggccage	120
ggaggatgat	ccgcaccgct	gtgtggacac	agatgagtgc	cagattgccg	gtgtgtgcca	180
gcagatgtgt	gtcaactacg	ttggtggctt	cgagtgttat	tgtagcgagg	gacatgagct	240
ggaggctgat	ggcatcagct	gcagccctgc	aggggccatg	ggtgcccagg	cttcccagga	300
cctcggagat	gagttgctgg	atgacgggga	ggatgaggaa	gatgaagacg	aggcctggaa	360
ggccttcaac	ggtggctgga	cggagatgcc	tgggatcctg	tggatggagc	ctacgcagcc	420
gcctgacttt	gccctggcct	atagaccgag	cttcccagag	gacagagagc	cacagatacc	480
ctacccggag	cccacctggc	cacccccgct	cagtgccccc	agggtcccct	accactcctc	540
agtgctctcc	gtcacccggc	ctgtggtggt	ctctgccacg	catcccacac	tgccttctgc	600
ccaccagcct	cctgtgatcc	ctgccacaca	cccagetttg	tcccgtgacc	accagatccc	660
cgtgatcgca	gccaactatc	cagatctgcc	ttctgcctac	caacccggta	ttctctctgt	720
ctctcattca	gcacagcctc	ctgcccacca	gccccctatg	atctcaacca	aatatccgga	780
gctcttccct	gcccaccagt	ccccatgtt	tccagacacc	cgggtcgctg	gcacccagac	840
caccactcat	ttgcctggaa	tcccacctaa	ccatgcccct	ctggtcacca	ccctcggtgc	900
ccagctaccc	cctcaagccc	cagatgccct	tgtcctcaga	acccaggcca	cccagcttcc	960
cattatccca	actgcccagc	cctctctgac	caccacctcc	aggtcccctg	tgtctcctgc	1020
ccatcaaatc	tctgtgcctg	ctgccaccca	gcccgcagcc	ctccccaccc	tectgeeete	1080
tcagagcccc	actaaccaga	cctcacccat	cagccctaca	catccccatt	ccaaagcccc	1140
ccaaatccca	agggaagatg	gccccagtcc	caagttggcc	ctgtggctgc	cctcaccagc	1200
tcccacagca	gccccaacag	ccctggggga	ggctggtctt	gccgagcaca	gccagaggga	1260
	ctgctggtgg					1320
	atcgtgtact					1380
	cgctgggtca					1440
caggggcagc	ctcacagggg	tgcagacctg	cagaaccagc	gtgtgatggg	gtgcagaccc	1500
ccctcatgga	gtatggggcg	ctggacacat	ggccggggct	gcaccaggga	cccatggggg	1560
ctgcccagct	ggacagatgg	cttcctgctc	cccaggccca	gccagggtcc	tctctcaacc	1620
actagacttg	gctctcagga	actctgcttc	ctggcccagc	gctcgtgacc	aaggatacac	1680
caaagccctt	aagacctcag	ggggcgggtg	ctggggtctt	ctccaataaa	tggggtgtca	1740
accttaccca	aaaaaaaa					1759

```
<210> 334
<211> 2852
<212> DNA
```

<213> Homo sapiens

```
<400> 334
ctacgagtac gtcggcgccc gcacctcccc gcaccgcccg cgctgcgcgc ccggaggagc
 60
gaccgccgca gttctcgagc tccagctgca ttccctccgc gtccgcccca cgcttctccc
 120
gctccgggcc ccgcaatggc ccaggcagtg tggtcgcgcc tcggccgcat cctctggctt
 180
gcctgcctcc tgccctgggc cccggcaggg gtggccgcag gcctgtatga actcaatctc
 240
accaccgata gccctgccac cacgggagcg gtggtgacca tctcggccag cctggtggcc
 300
aaggacaacg gcagcctggc cctgcccgct gacgcccacc tctaccgctt ccactggatc
 360
cacaccccgc tggtgcttac tggcaagatg gagaagggtc tcagctccac catccgtgtt
 420
gtcggccacg tgcccgggga attcccggtc tctgtctggg tcactgccgc tgactgctgg
 480
atgtgccage ctgtggccag gggctttgtg gtcctcccca tcacagagtt cctcgtgggg
 540
gaccttgttg tcacccagaa cacttcccta ccctggccca gctcctatct cactaagacc
 600
gtcctgaaag tctccttcct cctccacgac ccgagcaact tcctcaagac cgccttgttt
 660
ctctacaget gggacttegg ggacgggacc cagatggtga ctgaagactc cgtggtctat
 720
tataactatt ccatcatcgg gaccttcacc gtgaagctca aagtggtggc ggagtgggaa
 780
gaggtggagc cggatgccac gagggctgtg aagcagaaga ccggggactt ctccgcctcg
 840
ctgaagctgc aggaaaccct tcgaggcatc caagtgttgg ggcccaccct aattcagacc
 900
ttccaaaaga tgaccgtgac cttgaacttc ctggggagcc ctcctctgac tgtgtgctgg
 960
cgtctcaagc ctgagtgcct cccgctggag gaaggggagt gccaccctgt gtccgtggcc
 1020
agcacagegt acaacetgae ceacacette agggaeeetg gggaetaetg etteageate
 1080
cgggccgaga atatcatcag caagacacat cagtaccaca agatccaggt gtggcctcc
 1140
```

agaatccagc	cggctgtctt	tgctttccca	tgtgctacac	ttatcactgt	gatgttggcc	1200
ttcatcatgt	acatgaccct	gcggaatgcc	actcagcaaa	aggacatggt	ggagaacccg	1260
gagccaccct	ctggggtcag	gtgctgctgc	cagatgtgct	gtgggccttt	cttgctggag	1320
actccatctg	agtacctgga	aattgttcgt	gagaaccacg	ggctgctccc	gcccctctat	1380
aagtctgtca	aaacttacac	cgtgtgagca	ctcccctcc	ccaccccatc	tcagtgttaa	1440
ctgactgctg	acttggagtt	tccagcaggg	tggtgtgcac	cactgaccag	gaggggttca	1500
tttgcgtggg	gctgttggcc	tggatcatcc	atccatctgt	acagttcagc	cactgccaca	1560
agcccctccc	tctctgtcac	ccctgacccc	agccattcac	ccatctgtac	agtccagcca	1620
ctgacataag	ccccactcgg	ttaccacccc	cttgaccccc	tacctttgaa	gaggcttcgt	1680
gcaggacttt	gatgcttggg	gtgttccgtg	ttgactccca	ggtgggcctg	gctgcccact	1740
gcccattcct	ctcatattgg	cacatctgct	gtccattggg	ggttctcagt	ttcctcccc	1800
agacagccct	acctgtgcca	gagagctaga	aagaaggtca	taaagggtta	aaaatccata	1860
actaaaggtt	gtacacatag	atgggcacac	tcacagagag	aagtgtgcat	gtacacacac	1920
cacacacaca	cacacacaca	cacacagaga	aatataaaca	catgcgtcac	atgggcattt	1980
cagatgatca	gctctgtatc	tggttaagtc	ggttgctggg	atgcaccctg	cactagagct	2040
gaaaggaaat	ttgacctcca	agcagccctg	acaggttctg	ggcccgggcc	ctccctttgt	2100
gctttgtctc	tgcagttctt	gcgcccttta	taaggccatc	ctagtccctg	ctggctggca	2160
gggggctgga	tggggggcag	gactaatact	gagtgattgc	agagtgcttt	ataaatatca	2220
ccttatttta	tcgaaaccca	tctgtgaaac	tttcactgag	gaaaaggcct	tgcagcggta	2280
gaagaggttg	agtcaaggcc	gggcgcggtg	gctcacgcct	gtaatcccag	cactttggga	2340
ggccgaggcg	ggtggatcac	gagatcagga	gatcgagacc	accctggcta	acacggtgaa	2400
accccgtctc	tactaaaaaa	atacaaaaag	ttagccgggc	gtggtggtgg	gtgcctgtag	2460
tcccagctac	tcgggaggct	gaggcaggag	aatggtgcga	acccgggagg	cggagcttgc	2520
agtgagccca	gatggcgcca	ctgcactcca	gcctgagtga	cagagcgaga	ctctgtctcc	2580
aaaaaaaaa	aggccgggcg	cggtggctca	cgcttgtaat	cccagcactt	tgggaggccg	2640
aggcgggcgg	atcacgaggt	caggagatcg	agaccatcct	ggctaacacg	gtgaaacccc	2700
gtctctacta	aaaatacaaa	aaaaattagc	cgggcgtgat	ggtgggcgcc	tgtagtccca	2760
tctactcggg	aggctgaggc	aggagaatgg	cgtgaacccg	ggaggtggag	gttgcagtga	2820
gccgagattg	cgccactgca	ctcccgcctg	99			2852

```
<210> 335
<211> 865
```

<212> DNA

<213> Homo sapiens

```
<400> 335
gtcgtggaat tcgccttcca gctgtcttct gtgagtgtct gcctgacagt ttcctttggc
 60
 tggcagctag gcactgtgtc ttectgtctc tctagggact ggttcttgaa gggaaacctc
 120
 ctcatcatca tegtcagtgt gttaatcatc etgeceeteg ceetcatgaa acaettggge
 180
 tacctggggt acaccagtgg tetetetetg acctgcatge tgttttteet tgttteggte
 240
 atctacaaga agttccaact tggctgtgct ataggccaca atgaaacagc aatggagagt
 300
 gaageteteg tgggaeteee cagecaagga eteaacagea getgtgagge ceagatgtte
 360
 acagttgact cacagatgtc ctacacagtg cccattatgg cttttgcttt tgtctgccac
 420
 cctgaggtgc tgcccatcta tacggagctc tgccggccct ccaagcgcag gatgcaggcc
 480
 gtggccaacg tgtccattgg ggccatgttc tgcatgtatg ggctcacagc aacctttgga
 540
 tacctcacct tctacagcag tgtgaaggcg gagatgctgc acatgtacag ccagaaggac
 600
 ccgctcatcc tctgtgtgcg cctggccgtg ctgctcgcgg gtgaccctca ctgtgccagt
 660
 egtgetgtte cetateegee gggeeetgea geagetgett tteecaggea aggeetteag
 720
 ctggccacga catgtggcca tagctctgat cctgcttgtt ttggtcaatg tccttgtcat
 780
 ctgtgtgcca accatccggg atatctttgg agttatcggg tccacctcag cccccagcct
 840
 catcttcatc ctccccagct gtatt
 865
```

```
<210> 336
<211> 1126
<212> DNA
<213> Homo sapiens
```

```
<400> 336
gtggcgccgg gagcaaaagc agcatgatgc agctcatgca cctggagtcc ttttatgaaa
aaacctcctc ctgggcttat caaggaagat gacactaagc cagaagactg cataccagat
 120
gtaccaggca atgaacatgc cagggaattt ctggctcaca caccaactaa aggactttgg
 180
atgccactgg agaaagaagt caaagttaag cacttacttt tcattggatt gcttcataat
 240
ttcttggtga tggaaaattc attcctaaag caacaagatt aaaggatgtt tgggtaagca
 300
attagtttac etgtetttte tgggacetta caeggtteat ceatgattge attttetttt
 360
agaattggag tttaatgaat aaaaacttta atataatcta ctgattcttt atctcactaa
 420
ggtgaaacac tettatetta cagaaatatt teceetttte tttgetttta ggttggeatt
 480
gcaaatggta cggtcaccga acaggctaca aagaatgccc tttctttatc aaagacaacc
 540
aaaagttaca acagttcaga gtagcacatg aggatttcat gtatgacatc atacgagaca
 600
 660
ataaacaaca tgaaaagaat gtaaggatac agcagttaaa acagttactg gaggattcta
cctcaggtga agataggagc agctccagtt cctctgaagg taaagagaaa cacaagaaaa
 720
 780
840
agcacaaatc ttccaagtca aatgagggtt ctgactcaga gtgacaagga tgtgacttgt
tcaacattct cttctcaaac actgaccaag gaacagagga agatgcagtc agagaaagca
 900
gcaggataga gacgccgaga gaggagtata tgtgggtcac agcagtgagc tcccacccgc
 960
cttgcagtga agatgtgacc ccaggagagg gagtgtctcc ttccaggtgc tagctctgga
 1020
cagcagctga ttttaggcag gaaagtttct tcatcgttgt cctccctgct ggtcacatga
 1080
gtttacgatt cctttgaagt gtctcccaca gggtggcagg actggg
 1126
```

```
<210> 337
<211> 4280
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(4280)
<223> n = a,t,c or g
```

```
<400> 337
aagaaattgc aggtgctgca gcagagaaca tgttaggcag tttgctgtgc ctcccaggtt
 60
cagggtcagt gcttcttgac ccctgcactg gttctaccat atcagagaca acaagtgaag
 120
cttggagtgt agaggtattg ccaagtgact cagaggcccc agacctaaag caggaggagc
 180
gtetgeaaga aetggagage tgttetggae tgggtageae atetgatgat aeggatgtea
 240
gggaggtcag ttcccgcccc agcacaccag gcctcagtgt tgtgtccggc ataagtgcaa
 300
cctctgagga tattcccaat aagattgaag acctgagatc tgagtgcagc tctgattttg
 360
ggggtaaaga ttctgtcact agtccagaca tggatgaaat aactcacgat tttctttata
 420
 480
tacttcagce aaaacaacat tttcaacaca ttgaagcaga agcagacatg agaatccagc
 540
tgtettetag tgeecaceag etgacetete eteettetea gteagagtet etgetggeea
 600
tgtttgatcc actgtcttca catgaagggg cttctgctgt ggtaaggcca aaggttcact
atgctaggcc atcgcatcca ccaccagatc ccccaatcct ggaaggagct gtgggaggaa
 660
atgaggccag gttgccaaac tttggttccc ccatgtttta actcccagct gaaatggagg
 720
 780
cattcaagca aaggcattcc ttacccctga gagactagtt cgaagcagga gctctgaata
 840
tagtatette tgteeggaga eccatgagtg acceeagetg gaaceggegt eccaggaaat
 900
gaagagcgag aactccctcc agctgcagcc attggtgcta cttctttggt ggctgcacct
```

cattcatcat	cttcatcccc	gagtaaggac	tcctcaagag	gagagactga	agaacgcaaa	960
gatagcgatg	atgagaaatc	agacaggaac	agaccttggt	ggagaaaacg	ttttgtttca	1020
gccatgccta	aagctcctat	accatttaga	aagaaagaaa	aacaagaaaa	agacaaagat	1080
gatctggggc	ctgacagatt	ctcaacactc	acagatgatc	ccagccctag	actcagtgca	1140
caagctcagg	tggctgagga	tattctggac	aaatacagga	atgccattaa	acggaccagc	1200
cccagtgatg	gagcaatggc	aaactatgaa	agtacagagg	ttatgggtga	tggtgaaagt	1260
gcacatgatt	ctccccgtga	cgaagcactg	cagaacatct	cggctgatga	tctcccagac	1320
tctgcaagcc	aagcagccca	cccgcaggat	tcagctttct	cttacagaga	tgcaaaaaag	1380
		ctctgcggac				1440
aacaaggaat	ggtttaccag	accacacaga	cccagaagac	aatgaaattg	tatgettett	1500
		caattaattt				1560
agaaacaatg	cgctgtgtgt	gccgttttga	taataggact	tgtaggaaac	tgctggcttc	1620
gattgctgag	gactacagaa	aaagagcccc	atatattgct	tatctcactc	gttgtcgaca	1680
		ctcacctgga				1740
agaagtggcc	aatcgatact	ttaccactgt	ctgtgtgaga	ttactgcttg	agagcaaaga	1800
		ttcaagactt				1860
		tgcagtttct				1920
		agcttcaaga				1980
		ccttctaccc				2040
		agagattgtc				2100
tcagatacca	gaggtttatc	ttcgagaagc	accatggcca	tctgcacaat	cagaaatcag	2160
gacaataagt	gcttataaaa	cccccggga	caaagtgcag	tgcatcctga	gaatgtgctc	2220
tacgattatg	aacctcctga	gcctggccaa	tgaggactct	gtccctggag	cggatgactt	2280
tgttcctgtg	ttggtgtttg	tgttgataaa	ggcaaatcca	ccctgtttgc	tgtctactgt	2340
		atgctagctg				2400
		aattcattaa				2460
		actgttaatc				2520
gctgctttga	aggctgaaga	ttgttttgta	tgatactgca	cagcatcagg	cattttaaag	2580
		taatgagcta				2640
tcctttctga	gttgcatatt	ctattttctt	gtccccaagt	agagactagt	actacaaaaa	2700
		tttctaagta				2760
		gattcccttt				2820
ccctcttta	agatgctgtc	ttacattaat	gagcatctaa	tggaaagaag	gtatgagttg	2880
cactgaggat	tagaatagtg	gtgcgttagt	ggcattatct	ataaatacac	tcacctaaat	2940
tgaaagctaa	gaaggaaatg	taaatataat	atatatttat	atttgatgta	atatggacat	3000
		ggactattgc				3060
aaatggtttc	cttgacaaaa	tttaagctga	gcttaaaagc	aaaaaaacaa	aaagtacaca	3120
gaaatattta	ttaaaatgta	atacagttta	ttgaactttc	taggtatgga	gtttgatgga	3180
		gtgaaggtca				3240
tttgtgagcc	tgcattagga	gatagactga	ttaccataca	tgacataaaa	aggaacagtg	3300
		ggttcttctc				3360
		ttaattgtaa				3420
cacagaccaa	gaattcagtg	aatgtcattt	tttaaaaaac	taatttgtat	tgtctgctct	3480
		tgataaacta				3540
		tttctgtgcc				_. 3600
		attgtatatc				3660
tgaaaaattg	gccatggagg	cacaccaaag	cttcaagcac	aagtcttgta	catgggccat	3720
cactgtctgg	tttcacttcg	tgtgtttcct	aaacacattt	agctgctttt	ttaacaaact	3780
		ttgttgttgg				3840
		gatgaacacg				3900
		agattttatt				3960
		ctcaccctgt				4020
		ctcccagttc				4080
		tgtcacccaa				4140
		ttgggccagg				4200
		ccaaagtgcc	gggatttaca	agcgtggaac	cacctgnccc	4260
agccagaaat	taggatttt					4280

<210> 338 <211> 1796

<212> DNA <213> Homo sapiens

```
<400> 338
tggccatctt tactgtgggc tgaagcctgt gcgcttactc gcgcatgtgc aagccttccc
 60
tegettteet ettecaagta geettgeeta gageggagee teeegegeea tttetgtgeg
 120
cctgcgtagc gtgaccctgc gcagcctggg aggcgggtct tagctccagg tgcgtacggc
 180
atctgacttg acgtggccca caactgaaag gtctggggag aaggcgccgt gtccgggtgt
 240
ggagaggggc gtcgtggaag cgagaagagt ggcccgtccc tctcctcccc ctttccctct
 300
ttcggaaagt ggtttctgcg gggcccggga gcctcggagt accgaacctc gatctccggg
 360
gcggggtcct tggtggggac tgagcgcccc ctcccgggga cgggcggtct ggccgcggag
 420
teccetgegg gagegtgatt ggetggaaac ggteeegaac ceecagggga geecgateee
 480
tgggggaccc tggcttcgga ctccagtatc tgtcgtcgca gggtccctgc cctagtggcc
 540
tatgtccctt gctcggggcc atggagacac tgcggccagt acggcggcgc ctctgtctga
 600
agaaggggaa gtgacctccg gcctccaggc tctggccgtg gaggataccg gaggccctc
 660
tgcctcggcc ggtaaggccg aggacgaggg ggaaggaggc cgagaggaga ccgagcgtga
 720
ggggtccggg ggcgaggagg cgcagggaga agtccccagc gctgggggag aagagcctgc
 780
cgaggaggac tccgaggact ggtgcgtgcc ctgcagcgac gaggaggtgg agctgcctgc
 840
ggatgggcag ccctggatgc ccccgccctc cgaaatccag cggctctatg aactgctggc
 900
tgcccacggt actctggagc tgcaagccga gatcctgccc cgccggcctc ccacgccgga
 960
ggcccagagc gaagaggaga gatccgatga ggagccggag gccaaagaag aggaagagga
 1020
aaaaccacac atgcccacgg aatttgattt tgatgatgag ccagtgacac caaaggactc
 1080
cctgattgac cggagacgca ccccaggaag ctcagcccgg agccagaaac gggaggcccg
 1140
cctggacaag gtgctgtcgg acatgaagag acacaagaag ctggaggagc agatccttcg
 1200
taccgggagg gacctcttca gcctggactc ggaggacccc agccccgcca gccccccact
 1260
ccgatcctcc gggagtagtc tcttccctcg gcagcggaaa tactgattcc cactgctcct
 1320
gcctctaggg tgcagtgtcc gtacctgctg gagcctgggc cctccttccc cagcccagac
 1380
attgagaaac ttgggaagaa gagagaaacc tcaagctccc aaacagcacg ttgcgggaaa
 1440
gaggaagaga gagtgtgagt gtgtgtgtgt gttttttcta ttgaacacct gtagagtgtq
 1500
tgtgtgtgtt ttctattgaa cacctataga gagagtgtgt gtgttttcta ttgaacatct
atatagagag agtgtgtgag tgtgtgtttt ctattgaaca cctattcaga gacctggact
gaattttctg agtctgaaat aaaagatgca gagctatcat ctcttaaaag gaggggctgt
 1680
agetgtaget caacagttag geceeacttg aagggagagg cagaattgta etcacecaga
 1740
ttggaaaatg aaagccagat gggtagaggt gccctcagtt agcacctgtc ccatct
 1796
```

```
<210> 339
<211> 1771
<212> DNA
<213> Homo sapiens
```

<400> 339 cttgggccga gggacgtttg ggcaagtggt ttagtgctgg aaacggggca ccaatgagat 60 cgtagccatc aagatcctga agaaccaccc atcctatgcc cgacaaggtc agattgaagt 120 gagcatcctg gcccggttga gcacggagag tgccgatgac tataacttcg tccgggccta 180 cgaatgcttc cagcacaaga accacacgtg cttggtcttc gagatgttgg agcagaacct 240 ctatgacttt ctgaagcaaa acaagtttag ccccttgccc ctcaaataca ttcgcccagt 300 tetecageag gtagecaeag ecctgatgaa acteaaaage etaggtetta tecaegetga 360 cctcaaacca gaaaacatca tgctggtgga tccatctaga caaccataca gagtcaaggt 420 catcgacttt ggttcagcca gccacgtctc caaggctgtg tgctccacct acttgcagtc 480 cagatattac agggcccctg agatcatcct tggtttacca ttttgtgagg caattgacat 540 gtggtccctg ggctgtgtta ttgcagaatt gttcctgggt tggccgttat atccaggagc 600 ttctgagtat gatcagattc gtatatttca caaacacagg gtttgcctgc tgaatattta 660

ttaagcgccg	ggacaaagac	aactaggttt	ttcaaccgtg	acacggactc	accatatect	720
ttgtggagac	tgaagacacc	agatgaccat	gaagcagaga	cagggattaa	gtcaaaagaa	780
gcaagaaagt	acattttcaa	ctgtttagat	gatatggccc	aggtgaacat	gacgacagat	840
ttggaaggga	gcgacatgtt	ggtagaaaag	gctgtccggc	gggagttcat	tgacctgttg	900
aagaagatgc	tgtccattga	ttctgtcaag	agattctctc	cagtcggatc	cctgaaccat	960
ccctttgtca	ccatgtcact	ctttctcgat	tttccccaca	gcacacacgt	caaatcatgt	1020
ttccagaaca	tggagatctg	caagcgtcgg	gtgaatatgt	atgacacggt	gaaccagagc	1080
aaaacccctt	tcatcacgca	cgtggccccc	agcacgtcca	ccaacctgac	catgaccttt	1140
aacaaccagc	tgaccactgt	ccacaaccag	ccctcagcgg	catccatggc	tgcagtggcc	1200
cagcggagca	tgcccctgca	gacaggaaca	gcccagattt	gtgcccggcc	tgacccgttc	1260
cagcaagctc	tcatcgtgtg	tcccccggc	ttccaaggct	tgcaggcctc	tccctctaag	1320
cacgctggct	actcggtgcg	aatggaaaat	gcagttccca	tcgtcactca	agccccagga	1380
gctcagcctc	ttcagatcca	accaggtctg	cttgcccagc	aggcttggcc	aagtgggacc	1440
cagcagatcc	tgcttccccc	agcatggcag	caactgactg	gagtggccac	ccacacatca	1500
gtgcagcatg	ccgccgtgat	tcccgagacc	atggcaggca	cccagcagct	ggcggactgg	1560
agaaatacgc	atgctcacgg	aagccattat	aatcccatca	tgcagcagcc	tgcactattg	1620
accggtcatg	tgacccttcc	agcagcacag	cccttaaatg	tgggtgtggc	ccacgtgatg	1680
cggcagcagc	caaccagcac	cacctcctcc	cggaagagta	agcagcacct	gtattgcggc	1740
cgcgctagag	tatccaagat	tgcgtctcgc	t			1771

<210> 340

<211> 2725

<212> DNA

<213> Homo sapiens

## <400> 340 ggaatteget atatgeeget ateetetggg catgteagga ggeeagatte eagatgagga 60 catcacaget tecagteagt ggtcagagte cacagetgee aaatatggaa ggetggaete 120 agaagaaggg gatggageet ggtgeeetga gatteeagtg gaacetgatg acetgaagga 180 gtttctgcag attgacttgc acaccctcca ttttatcact ctggtgggga cccaggggcg 240 ccatgcagga ggtcatggca tcgagtttgc ccccatgtac aagatcaatt acagtcggga 300 tggcactcgc tggatctctt ggcggaaccg tcatgggaaa caggtgctgg atggaaatag 360 taacccctat gacattttcc taaaggactt ggagccgccc attgtagcca gatttgtccg 420 gttcattcca gtcaccgacc actccatgaa tgtgtgtatg agagtggagc tttacggctg 480 tgtctggcta gatggcttgg tgtcttacaa tgctccagct gggcagcagt ttgtactccc 540 tggaggttcc atcatttatc tgaatgattc tgtctatgat ggagctgttg gatacagcat 600 gacagaaggg ctaggccaat tgaccgatgg tgtgtctggc ctggacgatt tcacccagac 660 ccatgaatac cacgtgtggc ccggctatga ctatgtgggc tggcggaacg agagtgccac 720 caatggctac attgagatca tgtttgaatt tgaccgcatc aggaatttca ctaccatgaa 780 ggtccactgc aacaacatgt ttgctaaagg tgtgaagatc tttaaggagg tacagtgcta 840 cttccgctct gaagccagtg agtgggaacc taatgccatt tccttccccc ttgtcctgga 900 tgacgtcaac cccagtgctc ggtttgtcac ggtgcctctc caccaccgaa tggccagtgc 960 catcaagtgt caataccatt ttgcagatac ctggatgatg ttcagtgaga tcaccttcca 1020 atcagatget geaatgtaca acaactetga ageeetgeee aceteteeta tggcaeeeae 1080 aacctatgat ccaatgetta aagttgatga cagcaacact eggateetga ttggetgett 1140 ggtggccatc atctttatcc tcctggccat cattgtcatc atcctctgga ggcagttctg 1200 gcagaaaatg ctggagaagg cttctcggag gatgctggat gatgaaatga cagtcagcct 1260 ttccctgcca agtgattcta gcatgttcaa caataaccgc tcctcatcac ctagtgaaca 1320 agggtccaac tcgacttacg atcgcatctt tccccttcgc cctgactacc aggagccatc 1380 caggctgata cgaaaactcc cagaatttgc tccaggggag gaggagtcag gctgcagcgg 1440 tgttgtgaag ccagtccagc ccagtggccc tgagggggtg ccccactatg cagaggctga 1500 catagtgaac ctccaaggag tgacaggagg caacacatac tcagtgcctg ccgtcaccat 1560 1620 ggacctgctc tcagggaaaa gatgtggctg tgggagggag tttcccccag ggaaactcct aactttcaaa gagaagctgg gagaaggaca gtttggggag gttcatctct gtgaagtgga 1680 gggaatggaa aaattcaaag acaaagattt tgccctagat gtcagtgcca accagcctgt 1740 cctggtggct gtgaaaatgc tccgagcaga tgccaacaag aatgccagga atgattttct 1800

```
taaggagata aagatcatgt ctcggctcaa ggacccaaac atcatccatc tattatctgt
gtgtatcact gatgaccctc tctgtatgat cactgaatac atggagaatg gagatctcaa
 1920
tragtttett teregeraeg agereretaa ttetteetee agegatgtae geaetgteag
 1980
ttacaccaat ctgaagttta tggctaccca aattgcctct ggcatgaagt acctttcctc
 2040
tettaatttt gtteacegag atetggeeae aegaaaetgt ttagtgggta agaaetaeae
 2100
aatcaagata getgaetttg gaatgageag gaacetgtae agtggtgaet attaceggat
 2160
ccagggccgg gcagtgctcc ctatccgctg gatgtcttgg gagagtatct tgctgggcaa
 2220
gttcactaca gcaagtgatg tgtgggcctt tgggggttac tttgtgggaa aactttcacc
 2280
ttttgtcaaa gaaaaggccc ctattcccca gctgtccaga tgaaacaggt tattgaagaa
 2340
atactggaga gttcttcccg agacccaagg gagggcagac ttacctcccc tcaaccagcc
 2400
catttgtccc tgactcctgt gtaataaagc tgatgctcag ctgctggaga agagatacga
 2460
agaaccgtcc ctcattccaa gaaatccacc ttctgctcct tcaacaaggc gacgagcgat
 2520
getgteagtg cetggeeatg ttectaegge teaggteete cetacaagae etaceaetea
 2580
cccatgccta tgccactcca tctggacatt taatgaaact gagagacaga ggcttgtttg
 2640
ctttgccctc ttttcctggt cacccccact ccctacccct gactcatata tactttttt
 2700
tttttacatt aaagaactaa aaaaa
 2725
```

<210> 341 <211> 916

<212> DNA

<213> Homo sapiens

<400> 341 cgtccaggga gcactgccca caggccgagc cggggcctcc cgcaagagga aggaggtgcc 60 ctcaaggcta cggacctggg gtcccggtgg tggacgccc atggggctca ggcctaaaga 120 ggccgagagg gcctcgggga cccagtgcat gccccacgct gagcagcaca ggctgcccca 180 cegtgggete ecegatetet etetggatea eegagacete geagggaggg teateagggg 240 cgccaggccc agggccacca cagtggaagg tctccccttc cccaggcacg taatcttcca 300 ggtcagccag tgtcagcatg cggccgttgt gcgtgaggat cttggggtca cgatcccaa 360 ggctgtgtgt gtcctgggac tectecgtca caaaggegte teegtettee ecetetteet 420 etcccgcctc ctccatggtg ccctcctcct ccaggctgcc catgccagaa gcagcccagt 480 ccacactgcc tctggcatcc acgcggaaga caaggggctc tctgacgccg accatggctg 540 tgccctgggc ccaggcctcc tgggccagca gcttgttgtt ggagttgttg gaattggggt 600 cccctccggg ggtcgcaccg ggcagtgtga agagatgccc cgatgagctc ctgggcacct 660 ctgtggtggg agacacaccc tgcgggccca tcttcttcac ccggacttca atggtctcct 720 ccacctccac ccacttgggc tggggccccg agagtccggg cagagctgga gagtgggcct 780 eggeeteegt cacatacagt gtgggcacca egggettetg geetggttet geeteeggee 840 tgcggggctg gccagcacct ggcaggtaca gcaggtcggg ggccagtagg cctggcctca 900 gegggetgge agagea 916

<210> 342 <211> 860 <212> DNA

<213> Homo sapiens

<400> 342
caagatcccg acaggcttaa tcgctccctt aaggaaaaag ttattccttg catccgcggt 60
aaacttgggc cccccaagg atcctttaaa cgggccgcc ctttttttt ttttcaattt 120

```
cttcaacagg tcatgttcaa tttcttcaaa gttttaacat aaaaataatg agagccagga
gtggggccgg ggcctggggg gacgaaggtg gtatgtgaaa caaggttggc acacaggcct
 240
 300
caccctcctc tgcctcagat tcccaagtgg gcaggtgggg gtgaatgggg ctccgggtag
cacctcaget cetetcaget eccetcagee tgtteteett ceagacecag agagetgaga
 360
agagtagetg tgaggeteag ggeagagget etetgeettt caggaacage cettaaceet
 420
gctccccttg cttgggcctc aggaaggtgc cgcgagctct cctgccgtcc ctgggccgcc
 480
ctggctctgc tgtgtccaga tggtcaggct actgccagct ggggccttgc tgctctgaag
 540
tcccaggaag ccaggggtet gcaggageet ettgeeteea ggetggttgg ggaagaegte
 600
ctccaggaag tagtagatat ggcccaccgc aatccccagc aggtccacga ggatggagtt
 660
gcccagcagc agcgagaagc ccatgagcgc ccaaggcagg aacggtgcct ggaacttccg
 720
gaacacaagg tgcgggttga agtagagttg aaaggggctg aggagctcca gctgcaccgc
 780
 840
ggcggtggtg aggacacagg ctgcggtgta agcccgcgtc accgccggca cctgcaggaa
 860
ctcggccgct agtccctgcc
```

```
<210> 343
<211> 3658
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(3658)
<223> n = a,t,c or g
```

<400> 343 ttttttttt tttaagatag aaatctatgc actttaatga ttgccagaat tgcccagcat agetteagta aaatagagaa ttgtetagaa aatacaatet eeaaaatgtg tgeaagtaet 120 gcaaaccgga cagaccgggg cagggcaagg cccttgaaac caagtcctcc ttgagcacct 180 ttcccaggtt agaaacccct cttcagcctg tgcttcgcac gtttccttca gcgtgccgcc 240 catteagact gegecaactt aegteeceag tgeceaegee tgngtggate aagtgteeaa 300 cgggaaagta tgagttaggg caagcgcttt ttttttaagc tgtaaacgct tcacatgact 360 gggccccgta aggaaattgt ggggagctta ggatgagcct gggagctttt tcagggactt 420 ggatgaggac tetgtacaca aatgtgtact ggcagagagt etgcaccage atcattetet 480 540 gttgccctca gcatgtccag cactctcggg atgtccagca cctcattgtg ttccaggcag 600 gegateatga teteegacaa aateaceaeg ceagteette etaeeecage aetgeagtgg accaacaacg gagggttggg gctttgggga tcacttgtgc tatttgtatg gcgtcgaaca 660 gactggatct cttcaagata tgataaaaat cccttgaggt cttctggaca gccatgttca 720 ggccagtctg tgtattggag gtgccagacg gtcctctctt gcccggtaag gaggtgcttc 780 840 atcttcaggc ctgtggtggc atagcagcca gagtctgtgc ggaaccgggt cgtgatctta 900 aaccttccat aggtgacagt gttgtgcctg gaaccaagtc gtggccagta cctaaagctc ttotocotto caccotocto ttotgotgto accattgota taattgoaat tocotgttoo 960 1020 cataccatet gecaaaaate ttgacaggta ttetgtaatg gteeetgtgt ggcaatataa teceattega ttecaetgae agagacetta atatgtgatg egttgatgta accagtgttg 1080 1140 ttttctttag ttgggaccaa ctccactctc acatcatcat aaggaagaac atcttggaat cgatttcttt ctgcattttc agggagtcgt gctgttgagc actccccatc aactagccgt 1200 1260 ttcttaagaa ttctttcata ttctgtgaat accattcctt gttctaatcg ttgttccaga attitacace titeateatt egitgetetg glagecactt cettleette aleaggeaga 1320 1380 ggcactcgag atagggagag tccatttagg gcagccagtt taagaggacc aattttttt 1440 gcatctactc gagtcttttt cattccccct agaggcggga gcccttccac gatgttcttc 1500 ttcccagaga gaaggtccga caccggcctt ttcttcagag agtccctccg ggctcggtag 1560 eggeetgaeg tggtgaggte ggaeteegae atggagggea teageageee gteteteeag 1620 ggccgctggg cctctgcggt cgtgcggacg gggctgctgt ccatcatcct cttctccgcg 1680 totgggacgt gggccttggg ctccaggatg tgcaggggcc cggcgagcag gacgcgaggg 1740 cagecaggtg ggtcctgggc caggccgggc cgaggctcgc gcgcacgtgc agggggcgcc 1800 egggeceege tetecteete gaagteeteg teeteeteet eetegetget gtggattage 1860 atggtggcgt ccgacaggga cttcttatgg ccgtacctca agccctccgc ctcctccggc

```
cetteteget gtgteetete ggtgaaaacg etggggetgg gageecaceg agaeggeteg
cggcgcccac ctctgccgcc gacgcggata gggtgcgctc cttgagccgc aggccctcca
 1980
ggoogtgget gagooggee acctegatge tgttccgttt gtgcagetge gegtggegeg
 2040
eggeggtgag gggetegetg aceteetgea gegagtgege caegggeagg etgteeteet
 2100
ggaacgtttg caccgagtgg tgcacgcgcc gcgtgatgag gtcggggttg ctgctgctga
 2160
tgtaaaggtg gcgggacagg tctggcgtgc tgttggcggg cctggggggc gggtagggtg
 2220
ggggtggccg gtacacctgc gtccgcatga tgttgggaga cgggtagtcc tgcgcctgca
 2280
getgegeatt ggteagetee ggeaegetga cegegeecae caegggeege egeteggeag
 2340
ggtaggggta gggagacggg ctgtggaagc tgtagctcag gctgaacggg cagtgtgcgg
 2400
ccgctggcga ggggagctgt gcgtgctcgc ggatctcggg ctggctgtag accagcgccg
 2460
cgggcctgct gtaggcgtac gagctgccga tgttgaggtt tcgcagcgag tggctctgcc
 2520
gttccgcatg caccaggccc ctgttgagct gcttcatcac agtctcatag tctggggtgg
 2580
ggcggtagga cgggggtatc acggcgctgt gccgatggga cgggaggtag tcaggcctca
 2640
tgacgtcact cccggtgatg ctagggttgg acgacatcgg cgagggctgc aagtagggct
 2700
gaggattatt taaggagttg gtgctgtgtg cactgtagac actggcattt acggatccga
 2760
ccgttgaagt caatctgggc tctattcaag cttgtctgaa attgaccata gtatcccttc
 2820
ctggttgggc acaaagaggt tatcttggga agaagcatat ggttctgtat aatgtccatt
 2880
atagtgcaac tggcggtggg ggaggcatca cgtagggctg gggtttaggc agagacatcc
 2940
ttgaagaaga ceteeteetg attgggttca etgtgacagt etgagtttge aggttacaet
 3000
ggtttagtct gtaaaacttg tgtcgcgcaa cacagagtct ccaaatgtat tttgctgttt
 3060
ccatgtette agtttgaaat tgaatggtet cetetttatt tgecagetet aatgcaaaaa
 3120
aggacttgtt gtgggacatg ttggcaatgt catgccacct aaataccaca ggatgccttc
 3180
cattettgtg tttcacaaag atacettcaa gacacgetee aatggatatg tcactteett
 3240
ggctatectt ageagggtag etetettete catagecate cattetetet aceteetgea
 3300
tgtacagcat ttcagcatca ggagctgtga gccctctgta tttctgatgt agtaaggcca
 3360
ctttttgggt tgcttcttcc aatacttttt catcttgtaa ccatcccaca ggaaacaagg
 3420
caaatttetg aagaaagtee tgggatteat actgateaaa gteaceaaaa ategettgaa
 3480
cagctaagcc tgctaggtga attggctgtt ccaaggtaca agggatacct tcttcccaga
 3540
tatecttect cagttgcaga taatactggt acceggtaat cetetgetgg aagegaggaa
 3600
cctgaggcgc ttaaaccccc attccaaaat agacggtagg ttccaaggcg tttttttc
 3658
```

```
<210> 344
<211> 419
<212> DNA
<213> Homo sapiens
```

```
<400> 344
aataaagaaa gaaacagaag ctggccgagg agtgagttga gctttccaag ttagctgacc 60 ttaaagatgc tgaagctgtc cagaaattct tcctggaaga gatatagctt tggtgaagag 120 atcctagcta aaggtgtaga ccacctgaca aatccaagtg ctgtgtgtgg acagccacag 180 tggttactgc aagtgttaca acaaactctt ccactaccag tgatccagat gcttctgaca 240 aagcccctac cagttaatca gagacttgta agtgctggcg cttggccaaa gacgatgtgg 300 aatgagaaac aaatgtcaac ataataaaat ctcagttaaa atacttgaaa aattcttaac 360 ttggtagttg agcagaaggg caaatatgct tgttatgaac tattctacat tgaaatcta 419
```

<210> 345 <211> 1253 <212> DNA <213> .Homo sapiens

```
<400> 345
ggaatteete tgteeegeea tacacagggt gggaegggge agggegggea ttgagetttg
tgtcctgggg tcagggtgct tcccctgccg gcctcacccc accaagcgga tctcatggtg
 120
etectetgge tgggeceaec egeagtggta teettetggg ggecettatg ggageetgee
 180
gggggtgcag atcctgccgg gggtgcagag cctgctgggg gtgcagatga tttctgggtc
 240
ccaggaccat gagggggctg ctctacacac agccggaaga tgctgcggac ccaaactggc
 300
cctttccctc ccacaccacc ccaggaccaa tgggctggct ggaggccacc catgctaaaa
 360
taggetcaag ggectacttt agettetggg caaaggtett ggeetgggee tgaetetgtg
 420
gccttcctga gctgcctccc cagtaggcct cagtgctggg ctacaggcct cctccattcc
 480
ctccattcat gtgaccccac ccctcccage agaaactctc ttccgtagcc caggagcage
 540
tgttgagggt ttcacctgcc catgccccag cctaaggccg gcttccccag agcagacggg
 600
ttgcactetc ctgcccctca ggcccactet gtcatccaac aagetcactg caactggccc
 660
atcttaaaaa caacaccggc tggtcacgct ggctcacacc tgtaatccca gcgctgtggg
 720
aggcoggggc ggggggatca cttaaagtca ggagtttaag accagcctgg gcaacatggt
 780
gaaacccgag ctccactaaa aacacaaaaa caaattaagg caccctgagt ggtggtgggt
 840
gcctgtggtc ccagcgactc gggaggctga ggcagaattg cttgagccca ggaggtggag
 900
gctgcagtga gccacgatcg catcacgcac tecagcccgg gcaacctggc aagaccctga
 960
ctctaaaaag aaaaaaacaa caaaaaaaaa aagcccacgt tcaagggcag cactattcaa
 1020
aagagggaag caactcagga atccaaacge geaggaggga acacateggg gttcatecae
 1080
aggggaacac gattcaccca aaaaaaggaa ggaaaccggc ccggccccgg gacttgaatg
 1140
cacctggagg agactgtgat gaacaaaagc acccaaaccc aaaagggcag ggacggggtg
 1200
atctgactga ggtgaggacc ccagccagcc aaattcatgg agacagaaag aag
 1253
```

```
<210> 346
<211> 807
<212> DNA
<213> Homo sapiens
```

```
<400> 346
tttcgtcgga ggcgggcgcg ggcgcgtccc tgtggccagt cacccggagg agttggtcgc
 60
acaattatga aagactcggc ttctgctgct agcgccggag ctgagttagt tctgagaagg
 120
tttccctggg cgttccttgt ccggcggcct ctgctgccgc ctccggagac gcttcccgat
 180
agatggetae aggeegegga ggaggaggag gtggagttge tgeeetteeg gagteegeee
 240
cgtgaggaga atgtcccaga aatcctggat agaaagcact ttgaccaaga gggaatgtgt
 300
atatattata ccaagttcca aggaccctca cagatgcctt ccaggatgtc aaatttgtca
 360
geaactegte agacggggtt teactgtgtt agecaggatg gtetegatet cetgaceteg
 420
tgatccaccc gcctcggctt cccaaagtgc tgggattaca ggcgtgagcc accacgcccg
 480
gccaatattt tgtaattttt agtagagatg gggtttcact atgttggcca ggctagtctt
 540
asactectgt cetegtgate eteceacete ggeeteceaa agtgetgaga ttacaggtgt
 600
gagccactgc atccagccaa taatatgctc tttaacaaac aatggatcaa aggagaaatc
 660
acaagggaaa tagaaaaata cttaaaaatg aatgaacatg aaagaaaaca taccaaacgt
 720
atgggaaaca gtgaaaacag tgcaaacgag gcaatttata gctatacacc attaaattta
 780
aagataagaa agacgtcaaa ccaacaa
 807
```

<210> 347 <211> 918 <212> DNA <213> Homo sapiens

```
<400> 347
tttttttttt ttagaatata tttcatttta ttataaagca gtgctcccaa acttttcaca
 60
gcgtacacct cgagggtgga gaactaacat ccaagcacac ctggatggtg gatgggaccc
 120
acttetgggt aacetgatga ggaageteta gtgaagaaat teaggacgeg gtetteagag
 180
cagagggett ggttcaagte cetgttctge caettactaa etgeatgace ttgagcaage
 240
cacttaattt etetgeteet tetetgtgaa atgggtacaa tgtggteage agtaaaggaa
 300
ctaatacatg tacagcactc agcacaaagc ctggcacaca gcaggctctc accaggtgcc
 360
atteteagea caactgettg gttgagetae tgtggeagtg geaggttgtg ceceaagggg
 420
gtgggctcag gagcccgtgc agcaagaggc agtgaccaag gaggcagggg acaatagccc
 480
tatettttea ggatetetge ettggacetg gagaatggag agaetttget cetateaegt
 540
cccaagttgg gaaaactaag gacgaagccg gtgactgaca tctgaaatgg aatcctctgc
 600
atctccaagt ggccctatac ctgacaatat cattactagt gaaaaccaag tgacaaacac
 660
actoctegac cecaagttet tecacatgte ceattgagga gageacagee aataacgeag
 720
agtgtattta tgcgcagggc tggctaaaca ggctggctac gagtccggaa cagtgtcagg
 780
atctggcttc ccattggccg acatgacaga atccttctcg cgttgctctc tgatgtactg
 840
gtccaacagg gtggtcagct ggaggggctg gtgctggagc agggagtggg tctgggctgt
 900
gaggcaggtg gagttctg
 918
```

<210> 348 <211> 1893 <212> DNA <213> Homo sapiens

<400> 348 ctgaatccat ggaaaaacgc tttacaggac ttctgcttac cttttctcag aatcaccagc 60 ettetteage accacetttt tggggaagat ttacetaget geeaggaaga agaagaattt 120 tragttettg cragetgeet gggarttetg craacgtttt accaaaraga acatroatte 180 atcagtgcct cctgtctgga ttggccagtt ccagcatttg atattataac tcattggtgt 240 tttgagataa aatcatttac tgaaagacat gcagaacaag gaaaggcctt gcttatccaa 300 gagtcaaaat ggaaattacc acacctacta cagttgcctg agaattataa caccattttt 360 cagtactacc acagaaaaac ctgtagtgtc tgcaccaagg ttcctaaaga tcctgctgtt 420 tgccttgtgt gtggtacttt tgtatgcctg aaaggacttt gctgcaagca acaaagttac 480 tgtgaatgtg tactgcactc tcagaactgt ggtgcaggaa caggtatttt ccttttgatc 540 aatgcatcgg taattatcat cattcgaggt caccgcttct gcctctgggg ttccgtgtat 600 ttggatgctc atggagagga agaccgggat cttaggcgag gcaaacctct ctacatttgt 660 aaggaaagat acaaagttet tgagcaacag tggatttete atacttttga teacateaat 720 aaaagatggg gtccacatta caatgggctg tgactctcca cctcagcatt gcatcgtatc 780 atcattttcg ctacgaattt atttttcaac aataagcttt aacttaattt gggggattaa 840 cacttttgct gagggagaaa aagaaaacat acattatgaa gcctttccaa aattaggtgc 900 ttggtaatca cgttaatggt ataatttttt ttttttaata tctggagaac attaataaca 960 agttaaatta ttctttagtg gtcatttttt aagtgcacaa ttaataagaa gcacaacttg 1020 ttcacaaact cattcagaaa tgattctccc aacaatgcat atcagctatt cattgatact 1080 tagagtgggt gtgatttatt tgacatttta ctgcttcttt ctgtctgtgt gttttaattt 1140 gcatctgcca agcataatgc atctttttc ctctgccatt cttgtgttga ttggagaatt -1200 tttctgtatg taattagaaa aaaatgtaaa acatgattta tgtgaaatac tgtatagtaa 1260 aagttggtct aatagtagaa ctttaaaatt ttttcttatt gtgaggaatc tgttaaaagt 1320 ttaaagettt getgaaaaet gaatteatte teaggaattt cataaatett eteeceaggt 1380 aaataattga aatagetgta aaataagtag atagetgetg ttaatataat acagtacatt 1440 ttggggggca tatgtgtggt tggggggtcc ttaaaaatca aaatttgcca tttcagttgg 1500 atgaattact agaggtaata acaaatctta ctataaaatc aagaggttta aqaacataca 1560 ctgggcagat gttgattccg tgcatgccca ccttttatta ccaaacaagg ttttgtttat 1620 atgattgtat tagaaatgct cagacttccc cagaaatgaa ccataaattt tggaacttcc 1680 tttcagctca agaggttcag ctatattgta tttgtgcagt ggtaatcact acctatttct 1740

ggctcgggtt tccctaaaag gaaaaaaaag gcggcagtgg gtgatgaccc tcatggaatg 1800 agccacgctt cctgcattcc tccttaggaa ctggctgtgg aaaaccaatt tatggtttgc 1860 aggggtttaa aaatccagta aaaatggggg atg 1893

<210> 349 <211> 1433 <212> DNA <213> Homo sapiens

<400> 349 60 gcaaggggca gttggtgaac ttgctgcctc cagagaattt tccctggtgt ggaggcagcc 120 agggacceag gatgeteegg acctgttacg tgetetgtte ccaagetggt ccccgeteea ggggctggca gtccctgagc tttgatggcg gggccttcca ccttaagggc acaggagagc 180 240 tgacaeggge ettgetggtt eteeggetgt gtgeetggee eecaetegte aeteaeggge tgttgctcca ggcctggtct cggcgactcc tgggctcccg gctctcaggc gcatttctcc 300 gagcatccgt ctatgggcag tttgtggctg gtgagacagc agaggaggtg aagggctgcg 360 tgcagcagct gcggaccctc agcctccgac cactgctggc agtgcccact gaggaggagc 420 cggactctgc tgccaagagt ggtgaggcgt ggtatgaggg gaacctcggt gctatgctgc 480 ggtgtgtgga cetgteaegg ggeeteetgg ageeceeeag eetggetgag geeageetea 540 tgcagctgaa ggtgacggcg ctgaccagta ctcggctctg taaggagcta gcctcgtggg 600 tcagaaggcc aggagcctcc ttggagctga gccccgagag gctggctgaa gctatggact 660 ctgggcagaa cctccaggtc tcctgcctca atgctgagca gaaccagcac ctccgggcct 720 ccctcagccg cctgcatcgg gtggcacagt atgcccgggc ccagcacgtg cggctcctgg 780 tggatgcgga gtacacctca ctgaaccctg cgctctcgct gctggtggct gccctggctg 840 900 tgegetggaa cageeegggt gaaggeggge eetgggtgtg gaacacetae caggeetgte taaaggacac attcgagcgg ctggggaggg atgcagaggc tgcgcacagg gccggcctgg 960 cetteggagt gaagetggta egaggtgcat atetggacaa ggagagageg gtggcccage 1020 teccatggaa atggaagaee eeeecaetea ggetgaetat gaggeeaeea gtteagagtt 1080 acageceget geetggaact gatgetgaeg caegtggeec geeatggeec catgtgecae ctcatggtgg cttcccacaa tgaggaatct gttcgccagg caaccaagcg ggcaggccgg 1200 ctatgtagtg tataagtcca ttccctatgg ctccttggag gaggtaatcc cctacctgat 1260 ccggagggcc caggagaacc ggagcgtgct tcagggtgcc cgcagggaac aggagctgct 1320 cagocaaaaa ctgtggcggc ggctgctgcc aggatgccga aggatacccc actagcaccc 1380 1433 ctgaggggt catgtggtca ataaaagtcc ttaggtgctg cctaaaaaaa aaa

<210> 350 <211> 1062 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(1062) <223> n = a,t,c or g

<400> 350
tttttttttt ttccagtcat taatgatctg tccttttgag atcttttact tcagaggaag 60
atttaggcaa gagagcaaca tataatagtc agtgatacaa agaagggcat ggaacatttg 120

```
gggaacacag qqqtttqqaq ggcctgaagc acaggggtgg tggtattaga aatgtgggaa
atatgggcca tgagcctccg gacagaatgg ggtccaggaa ggacagcatc acacactggt
 240
gctggaattt ggggatcctt ctgtgggcaa cctcagcagt ctggttattg gccctttttt
 300
cttacagcct ggaaaactgg accaagtttc tattgatctc agcgaccgac cggcagcctg
 360
taaggggcca tggaagtgtg gaactcattt gttaaaatgt tcaaaacttc cttaacacca
 420
tgttcaccet tgcaggcaag gccccatagg attggtctcc caagaaaaat gcacttagct
 480
ccaagggcca gagcettetg cacateattg ccagttetga ccceggcate caggtagtac
 540
ttcatgttcc cctattcagc agctcctact tctgtcaaag catcaattga agcaagaacc
 600
tcatcaagct gcctcccacc atggttggaa acaatgatac cctggacatt gtgcttcaca
 660
gctaactctg catcctcttt tgtcaaaatc cctttcagga tgatgggcaa tcgagttatg
 720
ctctgaaacc aggagagatc attccagcag agagaagtgc tgataggagt catctggaaa
 780
taaggtattg cattteeett tttaggtgat tgaagatetg ttagtgttaa gtteeteete
 840
aactggtttc gaatgtcatg tcgcctgttg ccacatacag gtgtatccaa agttattacc
 900
aaagetttga aacetaggga ttetaceete tggatcaact gtttgtteag etgeaggtet
 960
ggatgcacat agagttggaa ccatcggagg ccttcgggag ctcttgctgt gctcatttcc
 1020
ccgaattcca ccacnctgga ctagtgttct caaaannntc ga
 1062
```

<210> 351 <211> 1227 <212> DNA <213> Homo sapiens

<400> 351 cagttttttt tttttttt tgctgcatga ttttattact ataaatatac agtaaaaacg 60 aaccaacgat gagcccatct gagcacatca gacggcagca catgggagtc ccagcgggcc 120 actotgoggo cogaacttoa ogcaaageto tggcaccagg actgatggco agaggotggg 180 gccttggtgg gggcgggggg cgggcggtgc agggggctgt gtgtgttgtt ggggagaggt 240 gcatggggg agagaggtgc ttggggtggg gtagaggtgc gtgggagatg ctcggtccga 300 gtgcacacac atgcatggga acatgtgcag gagtatgtgc gtgtgtgtat gcgtgacagc 360 atgtgtgage gtgagtgtge atgtgtgaae gtgtgegtga geatgtgeaa gtgggegtge 420 atttgtgtgt gtgtacgtgt gagcgcatct gcgtgcctgt gcacgagcgg gaggggtggc 480 tggcctgggt gtgcagggag ctgggtgtga ggaccgtgct gtccactgct gggtctcgcc 540 caggaggcag ageteatget eggagecace gtgageetea gggagggtae tgagetgeee 600 cacagoogac etgtecccag geocccaetg cagggcagec etccagagec aggtgageag 660 cagacacett geetggeeca aggeteegea.ggggtggate catgeeetgg gteaceaegg 720 cccaggcact ccctttgcca tctgcggccc caggaggttt acctataaaa aaaacaaaca 780 840 aacaaacaaa caaaacagga cgaggtcgcc cagaggccaa gcctccccgg ccgggacccc attecccagg tgtgctgctg gettectect ecctgggece agectgecae agaaageetg 900 agacagaaca aaccaaatca gagagaactg caagggggcc gggcgcggag gctcacgcct 960 gtaatctcag cactctggga ggccgaggca ggtggatgac cttaggagtt tgagaccagc 1020 ccggccaaca tggtgaaatc ccttctctac taaaaataca aaaaaattag ccgagcatgc 1080 tggtaggcac ctgtaatccc cagctactca ggagcctaag gcaggacgat cacttgaacc 1140 cgggaggcgg aggttgcagt gacccgagat tgagccactg cactccagcc tgggcagcaa 1200 gagtgaaact ccatctcaaa aaaaaaa 1227

<210> 352 <211> 1194 <212> DNA <213> Homo sapiens

<400> 352					
ttttttttt ttat	gatttt aatatacttt	atttatttaa	aaagtacaca	gttttaaatt	60
ggtttcaata ggtt	tcaagc agaagggaca	ctgcctacca	cttgcggtcc	catttctgat	120
gaagggtgat tatc	atgtgg caaactcaca	tttgcatgac	tggcaaagta	aaaagataga	180
taactttttg tcaa	catatc tttaagagtt	tatatcacgc	acagtttaaa	atcatgacga	240
gatgctgatg gttg	gactat attcatgtct	cgtatgttgc	accatatttt	ggttcacagt	300
ttatccatga tttag	gcatgc caagagaaca	tctcagtcag	taagagaaca	tctcagtcag	360
tgtcaccttg agaag	gagcat caaaagcaga	gggagcagaa	ggaggaccgt	ctgggcttgg	420
agactcggcg cacc	cccaca ctccctcgca	ttctcctcag	gatggaagcc	atgacaagat	480
tetgggegee ttetg	gatett etgggeettt	agacgttcac	acttaaggga	ttcattatgt	540
	gcatgt ttccaaggat				600
	acaact ctcttaacta				660
attttccttc tcta	atattt ctcccccagg	tttccttacc	actgataccc	cttactggtt	720
	tggacc tgcacacaa				780
	agattc acagaggcag				840
	ctggat gacaaaggac				900
	attaaa gagccatgag				960
	gcaaat tttggagact				1020
atgaggctct tcact	ttacaa atacctagct	tcactaggaa	aacaacaata	gctatgacga	1080
catgcggctc ataca	aactca ccttggaaag	actgaagtgc	tgtatgtaca	aaacacaaga	1140
gtcagagttg gctga	aatcac ctgttcccaa	ggtttaagag	gtcagacttt	caaa	1194

<210> 353 <211> 1140 <212> DNA <213> Homo sapiens

```
<400> 353
acteteacaa ttaaaacatt tggaaaggaa ttaatggtgt atttecatta gggaaagtge
 60
tgacaagccg caagggatcc cttgatggtt ctgggcatgg gcgcccagcc tgggctctgg
 120
ctttgggagc agcgaggga atgtgtctct cacccctagg cctcctggtc tggctcctgc
 180
tcaggccaca cggcgcaccc accccagcg cgcctcagtc caggtcactg ggcagggtgt
 240
ttactgctgc gctccaaccc aagcatgtag atttcagaag gggactagga cccccggcag
 300
gtgtttgaga ccaccggctc ccaagtgcgt cgccttgggg gtttgcatcg gctcctcagc
 360
ctccccaggc aatctctgtg tagggtcggg agcgggaggt ctgagttgag ccgggtgcct
 420
gagatetecg gtgcaggteg ggggagggga gececeeteg ggetgtggtt agagegggag
 480
aggaacttcc cagactagct ggcacagagc ctcgggaagg cggcgggcac tgcaggtggt
 540
ttacgggaag tgctgcagcc ttggggtggg gacagcgtgg ccagacccac cgcctcatct
 600
gcacacctgg gctcaagcgc taatgacgac aggggactga gtgaatggga cccccatgga
 660
cccgcgcgcc tgccccacgc catggcctgg gtttcgggag ccttgcttta ttctgcctcg
 720
ggtcggaggc tgggggagcg agacctccag tgcccgtgcg gctgggggag agggtggagg
 780
ggccaettag atgtaggagt catcaccaec gggcgcatcg tagggacccc cacccctccc
 840
cgcgccctcg ccctcatcgc cgctgccgga gtcactggcg ccatccacgt ccagggtggg
 900
cgcgttgaga acgaccacgt ctgcctccgt cccgatgtcc tcgccaaacc agacagcctt
 960
gtaccegece tetggeegee geteettggt caggatggac etcacegeeg tggggettee
 1020
gccagetcgg gccgctgcgg ggggctcaag ggcaccgcct ggggaggcag ggccggggg
 1080
tgcgggctat gcgggcatcg gtgcctccgc gggcttgggg tcgtgcgtgg ggctggggac
 1140
```

<210> 354 <211> 2401

<212> DNA <213> Homo sapiens

```
<400> 354
agttaatete tttggetggg cetacagatg acatacagag tacaggeece caggtteatg
 60
ctttaaatat ccttagagca ttgttcagag atacgcgcct gggagaaaat attattcctt
 120
atgttgctga tggagctaag gctgcaattc tgggttttac atcaccggtc tgggcagtgc
 180
gaaattcatc cacacttctc tttagtgcct tgatcacaag aatttttgga gttaaaaggg
 240
caaaggatga acattccaaa acaaatagaa tgacagggag agagtttttc tctcgtttcc
 300
cagaactcta tccttttctt ctcaaacagt tggaaactgt agccaataca gtagacagtg
 360
atatgggaga accaaatcgt catccaagca tgtttctctt acttttggtg ttggagagac
 420
tetaegette eeegatggat ggtaettett etgeteteag catgggaeet tttgtteeet
 480
tcattatgag gtgtggtcac tcacctgtct accactcccg tgaaatggca gctcgtgcct
 540
tggtcccatt tgttatgata gatcacattc ctaataccat tcgaactctg ttgtccacac
 600
tecceagetg caetgaceag tgttteegge aaaaccaeat teatgggaca etteteeagg
 660
tttttcattt ggtgcaagcc tactcagact ccaaacacgg aacgaattca gacttccagc
 720
acgagetgae tgacateact gtttgtacca aagecaaact etggetggee aagaggeaaa
 780
atccatgttt ggtgaccaga gctgtatata ttgatattct cttcctattg acttgctgcc
 840
tcaacagatc tgcaaaggac aaccagccag ttctggagag tcttggcttc tgggaggaag
 900
tcagagggat tatctcagga tcagagctga taacgggatt cccttgggcc ttcaaggtgc
 960
caggeotgee ceagtacete cagageotea ceagactage cattgetgea gtgtgggeeg
 1020
cggcagccaa gagtggagag cgggagacga atgtccccat ctctttctct cagctgttag
 1080
aatctgcctt ccctgaagtg cgctcactaa cactgqaaqc cctcttqqaa aagttcttaq
 1140
cagcagcete tggaettgga gagaagggeg tgecaceett getqtqcaac atqqqaqaqa
 1200
agttettatt gttggccatg aaggaaaate acceagaatg ettetgeaag atactgaaaa
 1260
ttetecaetg catggaecet ggtgagtgge ttececagae ggageactgt gtecatetga
 1320
ccccaaagga gttcttgatc tggacgatgg atattgcttc caatgaaaga tctgaaattc
 1380
agagtgtagc totgagactt gottocaaag toatttocca coacatgcag acatgtgtgg
 1440
agaacaggga attgatagct gctgagctga agcagtgggt tcagctggtc atcttgtcat
 1500
gtgaagacca tetteetaca gagtetagge tggeegtegt tgaagteete accagtacta
 1560
caccactttt cctcaccaac ccccatccta ttcttgagtt gcaggataca cttgctctct
 1620
ggaagtgtgt ccttaccctt ctgcagagtg aggagcaagc tgttagagat gcagccacgg
 1680
aaaccgtgac aactgccatg tcacaagaaa atacctgcca gtcaacagag tttgccttct
 1740
gecaggtgga tgcctccatc gctctggccc tggccctggc cgtcctgtgt gatctgctcc
 1800
agcagtggga ccagttggcc cctggactgc ccatcctgct gggatggctg ttgggagaga
 1860
gtgatgacet egtggeetgt gtggagagea tgcatcaggt ggaagaagac tacetgtttg
 1920
aaaaagcaga agtcaacttt tgggccgaga ccctgatctt tgtgaaatac ctctgcaagc
 1980
acctettetg teteetetea aagteegget ggegteeece aageeetgag atgetetgte
 2040
accttcaaag gatggtgtca gagcagtgcc cacctcctgt ctcagttctt cagagagett
 2100
ccaccagctg ctgagtttgt gaagacagtg gagttcacaa gactacgcat tcaagaggaa
 2160
aggactttgg cttgcttgag gctgctggcc tttttggaag gaaaggaagg ggaagacacc
 2220
ctagttctca gtgtttggga ctcttatgca gaatcgaggc agttaactct tccaagaaca
 2280
gaagcggcat gttgaagaaa atctggggga ttgggatggg ggtatgtgtg gatttttcct
 2340
ccactaaatc tgcaggaaac atgttgaaca taaattcaaa aattttatcc caaaaaaaaa
 2400
 2401
```

<210> 355

<211> 2186

<212> DNA

<213> Homo sapiens

cggataaaga	cgctgggaga	ttgacatgca	tttcgaccaa	tagcattgca	gagaggcgta	60
tcatttcgcg	gatgttccaa	tcagtacgca	gagagtcgcc	gtctccaagg	tgaaagcgga	120
agtagggcct	tegegeacet	catggaatcc	cttctgcagc	acctggatcg	cttttccgag	180
cttctggcgg	tctcaagcac	tacctacgtc	agcacctggg	accccgccac	cgtgcgccgg	240
gccttgcagt	gggcgcgcta	cctgcgccac	atccatcggc	gctttggtcg	gcatggcccc	300
attcgcacgg	ctctggagcg	gcggctgcac	aaccagtgga	ggcaagaggg	cggctttggg	360
cggggtccag	ttccgggatt	agcgaacttc	caggccctcg	gtcactgtga	cgtcctgctc	420
tctctgcgcc	tgctggagaa	cegggeeete	ggggatgcag	ctcgttacca	cctggtgcag	480
caactctttc	ccggcccggg	cgtccgggac	gccgatgagg	agacactcca	agagagectg	540
gcccgccttg	cccgccggcg	gtctgcggtg	cacatgctgc	gcttcaatgg	ctatagagag	600
aacccaaatc	tccaggagga	ctctctgatg	aagacccagg	cggagctgct	gctggagcgt	660
ctgcaggagg	tggggaaggc	cgaagcggag	cgtcccgcca	ggtttctcag	cagcctgtgg	720
gagcgcttgc	ctcagaaçaa	cttcctgaag	gtgatagcgg	tggcgctgtt	gcagccgcct	780
ttgtctcgtc	ggccccaaga	agagttggaa	cccggcatcc	acaaatcacc	tggagagggg	840
agccaagtgc	tagtccactg	gcttctgggg	aattcggaag	tctttgctgc	cttttgtcgc	900
gccctcccag	ccgggctttt	gactttagtg	actagccgcc	acccagcgct	gtctcctgtc	960
tatctgggtc	tgctaacaga	ctggggtcaa	cgtttgcact	atgaccttca	gaaaggcatt	1020
tgggttggaa	ctgagtccca	agatgtgccc	tgggaggagt	tgcacaatag	gtttcaaagc	1080
ctctgtcagg	cccctccacc	tctgaaagat	aaagttctaa	ctgccctgga	gacctgtaaa	1140
	gagattttga					1500
cttcgtagtg	gtgcatttag	gaaaagacaa	gttttgggtc	tcagcgcagg	cctcagttct	1260
gtataggcaa	tgctgtgtta	ttacttgaat	atagaatata	tagtttacaa	aatgaaaatt	1320
ccaatgttct	caccaaatat	atgccttcgt	gtgtccaaag	tataattatt	ttagatgcta	1380
	gtttattaaa					1440
	atagaggaag					1500
	ttaatagaag					1560
•	gctttaaagt			_		1620
	tctgtccctc					1680
	tttgaaaagc					1740
	aaccagcctt					1800
	aaattcttac					1860
	gacaaatgtt			_		1920
_	gatgataaaa	_				1980
	tggagggcag					2040
	ttgactcacc					2100
	tttgtatttt		ggggtttaac	catgetggee	aggetggtet	2160
caaacacctg	accttgggat	ccgtcc			•	2186

<210> 356 <211> 1142 <212> DNA

<213> Homo sapiens

## <400> 356 atteacatet tatteageat caaagaatte acacatgaga gtaageacat gaatgtaatg 60 aatgtggaaa agctttcagt caaacctcat gccttattca gcatcacaaa atgcatagga 120 aagagaaatc gtatgaatgt aatgagtatg agggcagttt cagtcatagc tcagatctta 180 tectgeaaca agaagteete accagacaga aageetttga ttgtgatgta tgggaaaaga 240 actccagtca gagagcacat ctagttcaac atcagagcat tcataccaaa gagaactcat 300 gaatgtaatg aagatgggaa gatatttatc aaattcaggc ttcattcagc atctgagagt 360 420 tcacaccagg gagaaatcat gtatgtactg catgtggtaa agccttcagt catagctcag ccattgctca gcatcagata attcacacca gagagaaacc ctctgaatgt gacgaatgaa 480 gaaaaggtat tagtgttaaa ctcttaatcg actcctgcaa atctatacca gtgagaaatc 540 600 ttacaaatgt attgaatgtg gcaaattttt catgctatta gtattttcat accttagtca 660 catttggaga attcacatgg gaataaaatt ccattgctgc aatgaatgtg aaaaagccat. cagtcaaaga aactaccttg tttagtatca aattcacgcc atgcaaaaag attataaatg 720

```
taataagcat gtatgtgtt gaggagatte agteataace caaegeteat teaacateaa 780 agaatttata eetaagagaa ettatttggg tgtagtaaat ggeagatett teaataggag 840 tttaactagt etttgteata teagaatate eatagtagae aagaatttga tgtaaegeaa 900 atggaaaaac tegacaceae attteagget ttaceeaaca tegaaataat ggagagaaaa 960 ttgttgatta tttgtttatg aaattgttaa tacatagtee eaatetttt eattgeaeaa 1020 aaatetaggg ttgacttggt aaatgeagtg acattttete atggagttee tttattaat 1080 atgtateta agtaggtaeg tttatttta etttttatt ataattttga tattaaaaaag 1140 aa
```

<210> 357 <211> 3167 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(3167) <223> n = a,t,c or g

<400> 357

ggaattegeg agegeaggge geatgaetgg eaggeagete caectgeage eetggtgeeg 60 gatecaetag gtgaageeag etgggeteet gagtetggtg gggaegtgga gagtetttat 120 atctagetca gggattataa acacaccaat cagcaccetg tgtctagetc aaggtttgtg 180 agtgcaccaa tcgacactgt atctagctgc tctggtgggg ccttggagaa cctttatgcc 240 tageteaggg attgtaaata caccaateag caccetgtgt ttageteaag gtttgtgaat 300 gcaccaatcg acactctgta tctagctgcc ctgatgggga cgtggagaac ctttgtatct 360 ageteaggga ttggaaaege accaateage geeetgaega aacaggeeac teggetetae 420 480 caatcagcag gatgtaggtg gggccagata agagaataaa agcgggctgc ccgagccagc attggcaacc cgctcgggtc cccttccaca ctgtggaagc tttgttcttt cgctctttgc 540 aataaatctt gctactgttc actctttggg tccacactgc ttttatgagc tataacactc 600 accgcaaagg tetgcagett cacteetgaa gecagegaga ceacaageee actgggagga 660 acgaacaact ccaggcgcgc aatgaacaac tccaggcgcg ccgccttaag agctgtaaca 720 ctcaccgcga aggtctgcag tttcactcct aagccagcga gaccacgaac ccaccagaag 780 gaagaaactc caaacacatc tgaacattag aaggaacaaa ctccagatgc gccaccttaa 840 gagetgtaac actcaccgcg agggtccacg gcttcattct tgaagtcagt gagagaccaa 900 gaacccacca attccggaca cattttggcg accatgaagg gactttcgcc tattgccaag 960 cggtgagaca atcgctgagc agtgagacca tcacctattg ccgagcggtg agaccattgc 1020 1080 ctatcgccaa gcaaatcgag gccatcaagc tacagatggt cttacaaatg gaaccccaaa tgagttcaac taacaacttc taccgaggac ccctggactg accagctggt cctggcactt 1140 cccctggcct agagagttcc cctctgaagg acactacaac tgcaaagccc cttcttcgcc 1200 cctatccagc aggaagtagc tagagcagtc atcggccaaa ttcccaacag cagttggggt 1260 gtcctgttga ttgaggggtg acagcatget ggcagtecte acagccetca etcgcteget 1320 cactetegge accteetetg cetgggetee caetttggea geaettgagg agecetteag 1380 etetgtatet agetactetg atgggteett ggagaacett tatgtetage teagggattg 1440 taatacacca teageaccet gtgtetaget eaggtttgtg aatgeaccaa tggacactet 1500 gtatctagct actctggtgg ggccttggag aaccttgtgt caacactctg tatctaacta 1560 acctggtggg gatgtggaga accttgtgtc tagctcaggg atgtaaacgc accaatcagt 1620 gccctgtcaa accactcggc tctaccaatc agcaggatgt gggtggggcc agataagaga 1680 1740 ataaaagcag gctgcccgag ccagcagtgg caacccgctc aggtcccctt ccacactgtg gaagetttgt tettttgete tttgeaataa atettgtaet geteaetett tgggteecea 1800 1860 etgettttat gagetgtaac acteaetgeg aaggtetgea getteaetee tgageeagtg 1920 aaaccatgaa cccaccagaa ggaagaaacg ctgaacacac ctgaacatca gaagaaacaa actocagacg cgccacctta agagctggaa cacttaccgc aagggtccgt ggcttcattc 1980 ttgaagtcag tgagaccaag aaccccccaa ttccggatac aatatcgaca aaacatgcat 2040 2100 ctttgatgtc tgatagttac agagagaaga aattagttcc tgtggtttac ceccattcta gcactccctc cttccagtaa ttcctggaag gagggagtgc accaatcgac actctgtatc 2160

```
tatetactet ggtggggeet tggagaacet ttatgtetag etcagggatt gtaaatgeae
caattggcac tetgtateta getcaaggtt tgtaaacaca ecaatcagca ceetgtgtet
 2280
ageteagggt ttgtgaatge accaattgae actetgtate tagetgetet ggtggggeet
 2340
tggagaacct ttatgtcgac actctgtatc tagctaatct ggaggggatg tggagaaact
 2400
ttgtgtctag ctcagggatt gtaaacgcac caatcagcgc cctgtcaaaa caggccactc
 2460
agetetacea ateageagga tgtgggtggg geeagataaa agaataaaag eaggetgeee
 2520
caaccagcat tggcaacccc gctcgggtcc ccttgcacac tgtggaagct ttgttctttc
 2580
gctctttgca ataaatcttg caactgctca ctctttgggt ccacgctgct tttatgagct
 2640
gtaacactca ccgcgaagat ctgcagcttc actcctgagc ccagcgagac catgagccca
 2700
ccggcaggaa cgaacaactc cagacacgct gccttaagag ctgtaacact ccccgtgaag
 2760
gtctgcagct tcactcctga gccagcgaga tcacgaaccc accagaagga agaaactccg
 2820
aacacatccg aacatcagaa ggaacaaact ccggaggcgc caccttaaaa gctgtagcac
 2880
tcactgcgag ggtccgcggc ttcattcttg aagtcagtga gaccaagaac ccaccaattc
 2940
cggacacaaa accetgtete tactaaaaaa tacaaaaaaa ttagegeggt ggggtggeeg
 3000
gegeetgtag teeggetaet cangaggetg aggeaggaga atggegggaa eeegggagge
 3060
ggagcttgca gtgagccaag atggcaccac tgcactccag cctggtggac agagtgacat
 3120
tctgtctcan aaaaaaaaag aaaaaaaccc attggttaaa aacaaaa
 3167
```

<210> 358 <211> 4747 <212> DNA <213> Homo sapiens

<400> 358 . ttttttttt ttgaattaat tgatgaggtt tatttgattg tctttcttat aaaatacatt 60 aaaaatactg cttttaactg taggcacaca attaaaacaa atgtaaacct atgtttaatt 120 taaaatatat taaaatgatt taataaaggt cttttattat tttacacatc aaatttcatg 180 caatcagtac tccactgaag gagaaaagga ttatgaaaaa acaatgaaag cacagggtag 240 gaaaataaac aacacaaaag actaattetg gattttttt ctgtgteett aataceetgt 300 gctgtctttg acaacaaaga tgccttactt atgtgattca gaggcccgga agtgaaaaaa 360 atacaagtag ttaatgaata atgcatatgt tcatagcaat ggtcaaatta tactgtttcc 420 taatggatac catttttctt tatcgagtgg gacactacag agtcggatgt taattgctcc 480 cacaaataca gttttactct tcacaataag cattaagaca tgtccttgga gctctgtgac 540 ttcatcatat actacaattt cattgtaagt ggggtccgta cattttggaa cagattttgt 600 tttcctccta cgaacttcac tgggatatgg taaaagataa aattcaacat gtgcactggg 660 cgcagagcca tctgggagat gaatgttttt catgtgtttc actagtatgg tcagcttcac 720 atcctcgtag gatatgacta actgcacctt aggcttcttg tctggaaact tctcacctag 780 gtacacaggt gatgattett caactgtttg ttgcccagcc tcagagagga aaaagctaag 840 tacacaatca ctgtttgtaa cttcatgtga tacatttaat atctgttcca tgtaatgatt 900 tagatetetg aatettetgt gatetgaatt tgtaaaaggt aggtgeeace aatgaggaaa 960 ctctgggaga gtcagtgatg caaactgctt ctgaagttgg ctgtgaagtt ttgaaaactg 1020 ctcaaatgat ttttctgtca ggcttgtttc gttgttgctg tgtgtcacct ggatcagata 1080 cagattactg gatttettge tgaaccetaa aattgttget ettteaateg aectagttgt 1140 actcagcaaa caggattcct gaggaaaagt ctgtgaagta gatttggcag ggcttatggc 1200 tgacatttgt gcaagtgtgt ggatcaagtt attcaattta acagggaaac actccagact 1260 ttcctttatt ttcttggtaa aatgacttgt tgcttccagg tctgtgtctt gtggacgaag 1320 attattatac acatatttca ggtcttgaaa tcccacttag ctcaggcagt ccctgcatac 1380 agcatcattt cccagcaggt tccaagagca gttggctgtg ctttctgata atattataag 1440 cacgacagea aagtteecae aaaatettga aaatgetgtg ggttttteec caccetetgt 1500 aataaagtat teecatetet gaagtaaaaa tgaaaggage teggteeett tttateeete 1560 caaatgtttg tgcatgacct aagaattttc caaagtcaat atgaaacatg tggcccgact 1620 ttgtcagcat gatattatca ttgtgacggt cacatactcc caggatgaat gttaccacac 1680 accagccage acaggagtag aaaaagttee teaaggeett tteataatet geetttaagt 1740 ggttgtgctg actgaaccac tttttaatgg tattttcttt caatggtcct atcagtccag 1800 aatggcgatg aatctttgct agggtcacag catcaggtac catctgcacc aatcgttggt 1860 cttttcctgt ggatagacat ctataaatga tcatttgcat atccaagcct tcctgcagcc 1920

```
aaatattgtc catcacttga ataagctgca gaacaagcat atcctgacga agatcatctc
cagcettaaa aataatgetg atgtttttgc ccatcagatt agcattgatg aaagtaatet
 2040
tcaatggcaa agcattagat gtaaaatatg aacatgcatc gtgatcaatc ccttttatac
 2100
atagggcagg gttcagagga agatgacaag tatttacatc ttgaaagaac tcttctagtc
 2160
tgccaatttc tttcttcagt acctcctgtc tttgatggtc actggcagac ttgactcttt
 2220
ccccaatatc tcccagaatt ttgataagtt tctgctcctt ggaaaactca tcattcaagg
 2280
ctttacctgc acagaattgg agagcagcta gtagcttctg ataccagctt ttaaaataag
 2340
cttcattttc tgcatttttt agcagccagt aaagacgatg ggcaacctgg atgctctgca
 2400
aggageggtg gagtagaagt tgeactaaag gaeteteaag gtteeattea aaettgacag
 2460
cctgaactag ctgtgggaga tattccagta gttcatcatt caagaggttg tctaattgtt
 2520
gaactgccac tttacgaatt tcttgatctg gaaaactgga agtcaaaagc ccaagagcct
 2580
ctaaaggttg agaaaatgtc catcttctca aaatggtatg catttctgaa acagtccttt
 2640
cateceatee aggggeacta eccaggaeta aaggaaggga geagttttea ttattgeagt
 2700
agaagcgata aaaccataaa tatcttttct tttcttcaga gagtagtagg ggagtctgtt
 2760
tctgtgaaag tctggcaata tgttttatac actcctttag tggctcttca agattacttc
 2820
tattetette agaateaggt tteatataet cecaceagt agetggaaaa teaatetgea
 2880
gggtcaccgg ggatggctga cttacatccc acactcctgg agttatcatt tctacgggag
 2940
geteactety taatgteaty etgaacagea tagaceegag aatggatttt tettttggaa
 3000
acagtggaag acaagtccac gccagtaaat ttgcattgtt ggttgcacag gcaatcccaa
 3060
acagttttac agtgagcatg gattcccttg gaagtgactt tatttcaagg ggaaaattga
 3120
tcctgtgcac ccaggtttct ggaatgttgt gtgctgcata cactgtgaag ctgaggtggg
 3180
aaggaagccc gggatttaga taggaagtgc atctaggtac atttacaggc tgaaaatctg
 3240
cataaaagct gttacagtag acattgatta gctggtagat ggatgtggat agttcagttg
 3300
ttaccttctc tatcaagcct tttgctgaag tctctgaact ttgataaaaa ttctctcctt
 3360
ttctctgaag aattagactt agttcattta ctgcatctgt aatttgtttg gtttccacac
 3420
accctagaac actgcatatt tttttaactt cttcaataat attatacacg ttttcctggg
 3480
ttttcaatag gtatttcagg tggaagtcat attttctgat gagtgttaag agacattgtc
 3540
tggatacttt ccaaatatgc ataaattcta gaagttgatt cagataaaac tgactgtggt
 3600
cetetteatg etttegagat agettteetg gagetteeet aettttetge aggtggaget
 3660
gaataacaga tttatctttt tgaaacattt tgtggctccc caaacagtgg tcgttttgta
 3720
aaaattette agageeecat acaettagaa tatgatettt ggggagtage tggteatttg
 3780
tgcaaaaatg cagaatttct gcaattagat ctttgacaag ataattagca catggcataa
 3840
aatgaagagg ttgtgttgag ttatcaataa aaatatgtat attaaacttg gtcttagaaa
 3900
agagetgata eggaaatget gtagtagtge tecagatett eecagaattg aaattaacat
 3960
cagetgeatg atatetttet etgatttttt ttaetttgtt geaaaaagag gecagaeteg
 4020
tattgctgct ttgaggtact tccactagct gaatggaaca acctattgac tctatattct
 4080
tetgecatgt actiteceae atteegggtt gaagagagee titeaaaage ateaaagatg
 4140
gttccacaat gttcacatgt ccactccttt tattctcttc tttcggcatg aagtcacttg
 4200
agaaggatga atttgttgga ggaatgctac tttcaaatcc tatatggtag ttatgatttt
 4260
cattttctaa ttctttctct agattaattt tatccaaact tgtgaatgat ggagctaaaa
 4320
tactgaatct ggaatcatca gcaccatgat gttttcctat ggggcttccc caggagcatt
 4380
ctttattcgt attttgaggt tttggtaaca cagaaggact aaaaccaatt gctggtgctt
 4440
tgctaacttg atgccaggag agttcacggc ttttagaagt gaattcattc aaggatattt
 4500
ggtgtgcttc atttaatgaa tgccctgttg agtcccattt tggtgcagtg ggcacaaaaa
 4560
aggtgttttc atcaatttca ctctcgtagt gtggaatttt gccactgatc tcatctacta
 4620
tetgateaaa acceagactg acttggetag aagaatgggg ttgatttaca aagagaaatt
 4680
cttggtgttc atactgcttt tcgtgtgatt cattaggatt tggatccgtt tgccaagaat
 4740
atgccat
 4747
```

```
<210> 359
<211> 679
<212> DNA
<213> Homo sapiens
```

<400> 359
ccagacatca tcctagcact taaggagctg gaagcagagg tatcatttaa actacttcct

```
ctgcttccag acatcatcct agcacttaag gagctggaag gttgaacaga aattcttctt
ggaatcettg aaggtttaga etceattett aaagattgga ttetgaatat caggtaacat
 180
ttttatttgg aatatatgta tacagcettt ttcaaaatcc ctagggecac tcttttgggg
 240
gtatttaaaa aatgtgttag ctggatctga ggcatcctgt aatcaaaacc aatatatatg
 300
tagcaaaatg aataacattt ttcaaacttt ttggacttca gaattatgga taacagattg
 360
taacctcata taaaatcata cttttgcgct ggggaacggt cgtcacgcct gtaatcccag
 420
cactttggca ggctgagact ggcagatcat ttgaggtcag gagttcgaga ccagcctggc
 480
caacatgacg aaaccccgtc tcgactaaaa atacaaaaaa attagctgga catggtggca
 540
cccatctcta ctcccagcta cttgggaggc cgaagaggga ggattgcttg aacccaggag
 600
gtggaggttg cagtgagctg agatcatgag actgcactcc agcctgggtg acagagtcga
 660
gactccatct caaaaaaaa
 679
```

<210> 360 <211> 2017 <212> DNA

<213> Homo sapiens

<400> 360 tttcgtgcgg gagatcagag gtcccgccgt cccgcgcctg acctcggctg aggacaggca 60 ccgccatggg ccacacgcac acagcccgga gttgcagcgg accggcagag attacagcct 120 ggactacctg cccttccgcc tatgggtggg catctgggtg gctacctttt gcctggtgct 180 ggtggccaca gaggccagtg tgctggtgcg ctacttcacc cgcttcactg aggaaggttt 240 ctgtgccctc atcagcctca tcttcatcta cgatgctgtg ggcaaaatgc tgaacttgac 300 ccatacctat cctatccaga agcctgggtc ctctgcctac gggtgcctct gccaataccc 360 aggcccagga ggaaatgagt ctcaatggat aaggacaagg ccaaaagaca gagacgacat 420 cgtaagcatg gacttaggcc tgatcaatgc atcettgctg ccgccacctg agtgcacccg 480 gcagggaggc caccetegtg gccctggctg tcatacagtc ccagacattg ccttettetc 540 cettetecte tteettaett etttettett tgetatggce etcaagtgtg taaagaccag 600 ccgcttcttc ccctctgtgg tgcgcaaagg gctcagcgac ttctcctcag tcctggccat 660 cctgctcggc tgtggccttg atgctttcct gggcctagcc acaccaaagc tcatggtacc 720 cagagagttc aagcccacac tccctgggcg tggctggctg gtgtcacctt ttggagccaa 780 cccctggtgg tggagtgtgg cagctgccct gcctgccctg ctgctgtcta tcctcatctt 840 catggaccaa cagatcacag cagtcatcct caaccgcatg gaatacagac tgcagaaggg 900 agctggcttc cacctggacc tcttctgtgt ggctgtgctg atgctactca catcagcgct 960 tggactgcct tggtatgtct cagccactgt catctccctg gctcacatgg acagtcttcg 1020 gagagagagc agagectgtg cccccgggga gcgccccaac ttcctgggta tcagggaaca 1080 gaggctgaca ggcctggtgg tgttcatcct tacaggagcc tccatcttcc tggcacctgt 1140 gctcaagttc attccaatgc ctgtgctcta tggcatcttc ctgtatatgg gggtggcagc 1200 gctcagcagc attcagttca ctaatagggt gaagctgttg cttgatgcca gcaaaacacc 1260 agccagacct gctactcttg cggcatgtgc ctctgaccag ggtccacctc ttcacagcca 1320 teagetttge cetgtetggg getgetttgg gataatcaag tetacecetg cagecateat 1380 cttccccctc atgttgctgg gccttgtggg ggtccgaaag gccctggaga gggttttttc 1440 accacaggaa ctcctctggc tggatgagct gatgccagag gaggagagaa gcatccctga 1500 gaaggggctg gagccagaac actcattcag tggaagtgac agtgaagatt cagagctgat 1560 gtatcagcca aaggeteeag aaatcaacat ttetgtgaat tagetggagt aggagtetgg 1620 gagtggagac cccaggaaac agcatgaggt gcttactcag gaagtcagga catttttggc 1680 ctttggctta acttccagat gctcagtcgg cttggggaag gactgaaggg cagctgccaa 1740 gacctcagtt acctcctgac ctgagggtgg agagtggcag gaagcaagca tgtttgctgt 1800 gcacttagga aaggetggtg agccagaggg actgatcagg ccccattcac tctctactca 1860 ttaaaaaggtc ctgagccacg aagcgcttcc cattttgaac tttctgtcct cacagattct 1920 gtttgacaga atctaagggc catcagggaa ctcttttcat cttgcaaaga gaaaaagcca 1980 gtctttccag aataaatatt catctgtttg aaataaa 2017

PCT/US00/35017 WO 01/53455

<210> 361 <211> 2900 <212> DNA <213> Homo sapiens

•	<400>						
	atggggctca	aggcgcgcag	ggcggcgggg	gcggctggcg	gcggcggcga	cgggggcggc	60
	ggaggcggcg	gggcggctaa	cccagccgga	ggggacgcgg	cggcggccgg	cgacgaggag	120
	cggaaagtgg	ggctggcgcc	cggcgacgtg	gagcaagtca	ccttggcgct	cggggccgga	180
	gccgacaaag	acgggaccct	gctgctggag	ggcggcggcc	gcgacgaggg	gcagcggagg	240
		gcatcgggct					300
		accggcgcat					360
		tttaccacag					420
	ctgtcctgga	ccacattcaa	ggagtatgag	actgtctcgg	gagactggct	tctgttactg	480
		ctattttcat					540
	tgttgctgcc	gatacaaagg	ctggcggggc	cgactgaagt	ttgccaggaa	gcccctgtgc	600
	atgttggaca	tctttgtgct	gattgcctct	gtgccagtgg	ttgctgtggg	aaaccaaggc	660
	aatgttctgg	ccacctccct	gcgaagcctg	cgcttcctgc	agatcctgcg	catgctgcgg	720
	gatggaccgg	gagaaggtgg	cacctggaag	cttctggggc	tcagccatct	gtgcccacag	780
	caaagaactc	atcacggcct	ggtacatcgg	tttcctgaca	ctcatccttt	cttcatttct	840
		gttgagaaag					900
		acctatgcag					960
		aagacaccca					1020
		tccttttttg					1080
	ggtgcaggag	caacaccgtc	agaagcactt	tgagaaaagg	aggaagccag	ctgctgagct	1140
	cattcaggct	gcctggaggt	attatgctac	caaccccaac	aggattgacc	tggtggcgac	1200
	atggagattt	tatgaatcag	tcgtctcttt	tcctttcttc	aggaaagaac	agctggaggc	1260
	agcatccagc	caaaagctgg	gtctcttgga	tcgggttcgc	ctttctaatc	ctcgtggtag	1320
	caatactaaa	ggaaagctat	ttacccctct	gaatgtagat	gccatagaag	aaagtccttc	1380
	taaagaacca	aagcctgttg	gcttaaacaa	taaagagcgt	ttccgcacgg	ccttccgcat	1440
	gaaagcctac	gctttctggc	agagttctga	agatgccggg	acaggtgacc	ccatggcgga	1500
	agacaggggc	tatgggaatg	acttccccat	cgaagacatg	atccccaccc	tgaaggccgc	1560
	catccgagcc	gtcagaattc	tacaattccg	tctctataaa	aaaaaattca	aggagacttt	1620
	gaggccttac	gatgtgaagg	atgtgattga	gcagtattct	gccgggcatc	tcgacatgct	1680
	ttccaggata	aagtaccttc	agacgagaat	agatatgatt	ttcacccctg	gacctccctc	1740
	cacgccaaaa	cacaagaagt	ctcagaaagg	gtcagcattc	accttcccat	cccagcaatc	1800
	tcccaggaat	gaaccatatg	taggccagac	catccacatt	cagaaattcg	aagaccaaag	1860
		gggaagtttg					1920
	agctggactt	cctcgtggat	atgcacatgc	aacacatgga	acggttgcag	gtgcaggtca	1980
	cggagtatta	cccaaccaag	ggcacctcct	cgccagctga	agcagagaag	aaggaggaca	2040
		cgatttgaaa					2100
	caccctacag	cttccaccag	gtgaccattg	acaaagtcag	cccctatggg	ttttttgcac	2160
						gcaactcctc.	2220
	cttcctcagc	aacaacgtat	gtggagaggc	ccacggtcct	gcctatcttg	actcttctcg	2280
	actcccgagt	gagctgccac	tcccaggctg	acctgcaggg	cccctactcg	gaccgaatct	2340
		gagacgtagc					2400
		ggagctggag					2460
	attatgtgtt	cggccccaat	ggggggtcga	gctggatgag	ggagaagcgg	tacctcgccg	2520
	agggtgagac	ggacacagac	acggacccct	tcacgcccag	cggctccatg	ccctctgtcg	2580
		atgggatttc			_		2640
		ctgacccctc	_	-	-		2700
		cttaccagcg					2760
		caggcagggg					2820
		tcagcatggt	ttgcatgact	ttacactata	taaatggttc	ccgctaatct	2880
	cttctaggat	aaaaaaaaa					2900

<210> 362 <211> 5433 <212> DNA <213> Homo sapiens

<400> 362

cggacgcgtg ggatcattga atttgaccca aagtatactg ccttcgaagt ggaggaagat 60 gttgggctga tcatgatccc agtggtgagg ctacatggaa cttatggcta tgtgacagct 120 gatttcatct ctcagagctc ctctgccagt cccggaggtg ttgattacat tttgcatggc 180 agtacagtca cctttcagca tgggcaaaac ttaagtttta taaatatctc catcattgat 240 gacaatgaaa gtgaatttga ggagcccatt gaaattctac tcactggagc tactggagga 300 gcggtccttg ggcgccacct agtgagcaga atcataatag ctaagagtga ctctcccttt 360 ggagttataa ggtttctcaa tcaaagcaaa atttctattg ctaatcccaa ttccacaatg 420 attttatcac tggtgctgga gcggactgga ggactcttgg gagagattca ggtgaactgg 480 gagacagtag gacccaactc tcaagaagcc ttactgccac agaatagaga cattgcagac 540 ccagtgagcg ggttgttcta ttttggagaa ggagaaggag gagtgagaac cataattctg 600 acaatctatc ctcatgaaga aattgaagtt gaagagacat tcattattaa acttcatctt 660 gtgaaaggag aagctaaatt agactccaga gctaaagatg ttacattaac catacaagag 720 tttggtgacc caaatggagt tgttcagttt gctcctgaaa ctttgtctaa gaagacttat 780 teagageete tggetetgga agggeeeetg eteattaeet tetttgteag aagagteaag 840 ggcacctttg gagagattat ggtttactgg gaattaagta gtgagtttga cattactgaa 900 gactttettt ccaccagtgg atttttcacc attgetgatg gagagagtga agetagettt 960 gatgttcatt tgctaccaga tgaggtacct gagatagagg aagattatgt gatccagctt 1020 gtttctgtag agggaggagc cgaactggat ctggagaaga gtatcacatg gttctctgtt 1080 tatgcaaatg atgacccaca tggagtattt gccctgtatt cggatcgcca gtcaatactt 1140 attgggcaga accttattag atccatccaa attaacataa cccggcttgc tggaacattt 1200 ggagatgtgg ctgttgggct tcgaatatca tcggatcata aagaacagcc gattgttacc 1260 gaaaatgcag agaggcagct ggtggtcaaa gatggtgcca catataaagt ggacgtggtg 1320 ccaataaaga atcaggtctt cctatcactg ggctctaatt tcactttgca actggtgact 1380 gtgatgcttg tcggtggacg tttctatgga atgccaacaa ttcttcagga agcaaaatct 1440 getgteette cagtetetga gaaagetgee aatteteagg teggatttga atceactget 1500 tttcaactca tgaacatcac tgctggcaca agccacgtta tgatttctag gagaggcaca 1560 tatggagete teteggitge etggaecaet ggatatgete etgggitaga aatteetgaa 1620 ttcattgttg ttggcaacat gaccccaaca ctggggagcc tttcattttc ccacggtgaa 1680 caaaggaaag gagttttcct gtggacgttt cctagccctg gttggccaga ggcctttgtt 1740 cttcacctat caggagtgca gagcagtgct cctggcggag ctcaactccg atcaggtttc 1800 attgttgctg aaattgaacc aatgggcgtc ttccaatttt ccactagctc aagaaatatc 1860 atagtgtcag aagatacaca gatgatcaga ttacatgtac aaagactatt tgggttccac 1920 agcgatctta ttaaagtttc ttatcagacc actgcaggaa gcgccaagcc actggaagat 1980 tttgagcctg ttcagaatgg ggaactgttt tttcaaaaat tccaaactga ggttgatttt 2040 gaaataacca ttattaatga teagetttet gagatagaag aattttttta cattaacett 2100 acttcagtag aaattagggg attacaaaag tttgatgtta attggagccc acgcctgaat 2160 ctagatttca gtgttgcagt gattacaata ttggataatg atgacctggc aggaatggat 2220 atttccttcc ccgagacaac tgtggctgta gcagttgaca caactctcat tcctgtagaa 2280 actgaatcca ccacatacct cagcacaagc aagacgacta ccattctgca gccaaccaac 2340 gtggttgcca ttgttactga ggcaactggt gtatctgcca tccctgagaa acttgtcacc 2400 cttcatggca cacctgctgt gtctgaaaag cctgatgtgg ccactgtaac tgccaatgtt 2460 tccattcatg gaacattcag ccttgggcca tccattgttt atattgaaga ggagatgaag 2520 aatggcacat tcaacactgc agaagttctt atccgaagaa ctggtgggtt tactggcaat 2580 gtcagcataa cagttaaaac tttcggtgaa agatgtgctc agatggaacc aaatgcattg 2640 ccctttcgtg gtatctatgg gatttccaac ctaacatggg cagttgaaga agaagacttt 2700 gaagaacaaa ctcttaccct tatattccta gatggagaaa gagaacgtaa agtatcagtt 2760 caaattttgg atgatgatga gcctgagggg caggaattct tctacgtgtt tctcacaaac 2820 cctcaagggg gagcacagat tgtggagggg aaggatgata ctggatttgc agcttttgcc 2880 atggttatta ttacagggag tgacettcac aatggcatca taggattcag tgaggagtce 2940 cagagtggac tagaactcag ggaaggaget gttatgagaa gattgcacct tattgtcaca 3000 agacagccaa acagggcctt tgaagatgtc aaggtctttt ggcgagtcac acttaacaaa 3060 acagtegteg tgetecagaa ggatggggta aacetgatgg aggaaettea gtetgtgtea 3120 gggaccacaa cctgtacaat gggtcaaaca aaatgcttta tcagcattga actcaaacca 3180

```
gaaaaggtac cacaggttga agtgtatttt tttgtggaac tatatgaagc tactgctgga
gcagcaataa acaacagtgc cagattcgca cagattaaaa tcttagaaag tgatgaatct
 3300
caaagccttg tgtatttttc tgtgggttct cggctggcag tggctcacaa gaaggccact
 3360
ttaatcagtc tgcaggtggc cagagattct gggacaggac taatgatgtc tgttaacttt
 3420
agtacccagg agttgaggag tgctgaaaca attggtcgta ccatcatatc tccagctatt
 3480
tctggaaagg attttgtgat aactgaaggc acattggtct ttgaacctgg ccagagaagc
 3540
actgtattgg atgtcatcct aacgccagag acaggatctt taaattcatt tcctaaacgc
 3600
ttccagattg tcctttttga cccaaaaggt ggtgccagaa ttgataaagt gtatgggact
 3660
gccaacatca ctcttgtctc agatgcagat tegcaggcca tttgggggct tgcagatcag
 3720
ctacatcagc ctgtgaatga tgatattctc aacagagtgc tccataccat cagcatgaaa
 3780
gtggccacag aaaacacaga tgaacaactc agtgccatga tgcatctaat agaaaagata
 3840
actactgaag gaaaaattca agctttcagt gttgccagcc gaactctttt ctatgagatt
 3900
ctttgttctc ttattaaccc aaagcgcaag gacactaggg gattcagtca ctttgctgaa
 3960
ttgactgaga attttgcctt ttctctgctg actaatgtta cttgcggctc tcctggtgaa
 4020
aaaagcaaaa ccatccttga tagttgccca tatttgtcaa tattggctct tcactggtat
 4080
cctcagcaaa tcaatggaca caagtttgaa ggaaaggaag gagattacat tcgaattcca
 4140
gagaggctac tggatgtcca ggatgcagaa ataatggctg ggaaaagtac atgtaaatta
 4200
gtccagttta cagagtatag cagccaacag tggtttataa gtggaaacaa tcttcctacc
 4260
ctaaaaaata aggtattatc tttgagtgtg aaaggtcaga gttcacaact cctgactaat
 4320
gacaatgagg ttctctacag gatttatgct gctgagccta gaattattcc tcagacatct
 4380
ctgtgtctcc tttggaatca ggctgctgca agctggttgt ctgacagtca gttttgcaaa
 4440
gtgattgagg aaactgcaga ctatgtggaa tgtgcctgtt tacacatgtc tgtgtatgct
 4500
gtotatgoto ggactgacaa cttgtottca tacaatgaag cottottcac ttotggattt
 4560
atatgtatet caggtetttg ettggetgtt ettteccata tettetgtge caggtactee
 4620
atgtttgcag ctaaacttct gactcacatg atggcagcca gcttaggtac acagattctg
 4680
tttctggcgt ctgcatacgc aagtccccaa ctcgctgagg agagctgttc agctatggct
 4740
gctgtcacac attacctgta tctttgccag tttagctgga tgctcattca gtctgtgaat
 4800
ttctggtacg tgctggtgat gaatgatgag cacacagaga ggcgatatct gctgtttttc
 4860
cttctgagtt ggggactacc agcttttgtg gtgattctcc tcatagttat tttgaaagga
 4920
atctatcatc agagcatgtc acagatctat ggactcattc atggtgacct gtgttttatt
 4980
ccaaacgtct atgctgcttt gttcactgca gctcttgttc ctttgacgtg cctcgtggtg
 5040
gtgttcgtgg tgttcatcca tgcctaccag gtgaagccac agtggaaagc atatgatgat
 5100
gtetteagag gaaggacaaa tgetgeagaa atteeactga ttttatatet etttgetetg
 5160
atttccgtga catggctttg gggaggacta cacatggcct acagacactt ctggatgttg
 5220
gttctctttg tcattttcaa cagtctgcag cttctagtac cctctgttct actttttact
 5280
tctatgagat caacattttt tagcttccac acagggactc tgacttcaag agagaagaaa
 5340
agtacttttg tacttacatg cetactgage ecagatteea aaggeettgg ggttetatgt
 5400
ttccttaaca ctgaatgggc tttccaagtg cat
 5433
```

```
<210> 363
<211> 3569
<212> DNA
<213> Homo sapiens
```

```
<400> 363
ageggeeggg gecaegatgg agegegaegg etgegegggg ggegggagee geggeggega
 60
gggcgggcgc gctccccggg agggcccggc ggggaacggc cgcgatcggg gccgcagcca
 120
cgctgccgag gcgcccgggg acccgcaggc ggccgcgtcc ttgctggccc ctatggacgt
 180
gggggaggag cegetggaga aggeggegeg egecegeaet gecaaggaee eeaacaceta
 240
taaagtactc tegetggtat tgtcagtatg tgtgttaaca acaatacttg gttgtatatt
 300
tgggttgaaa ccaagctgtg ccaaagaagt taaaagttgc aaaggtcgct gtttcgagag
 360
aacatttggg gaactgtege tgtgatgetg cetgtgttga gettgggaaa etgetgttta
 420
ggattaccag gggggacgtg cataggaacc aggaacatat atgggacttg caacaaattc
 480
aggtgtgggt gagaaaaggt tgaccagaag cctctgtgcc tgttcagatg actgcaagga
 540
ccaggggcga ctgcctgcca tccaacctac agttcctgtg tgtccaaggt gaagaaaagt
 600
tggggtagaa agaacccatg tgagagccat ttaatggagc ccacagtgcc ccagcagggt
 660
```

		ctccttattt				720
acacacttgg	ggtggacttc	ttcctgttat	tagcaaacta	aaaaaatgtg	gaacatatac	780
		atccaacaaa				840
		atggcataat				900
_		gtaaagagaa				960
aatttgggtc	acagctaagt	atcaaggcct	caagtctggc	acatttttct	ggccaggatc	1020
agatgtggaa	attaacggaa	ttttcccaga	catctataaa	atgtataatg	gttcagtacc	1080
atttgaagaa	aggattttag	ctgttcttca	gtggctacag	cttcctaaag	atgaaagacc	1140
acacttttac	actctgtatt	tagaagaacc	agattcttca	ggtcattcat	atggaccagt	1200
cagcagtgaa	gtcatcaaag	ccttgcagag	ggttgatggt	atggttggta	tgctgatgga	1260
tggtctgaaa	gagctgaact	tgcacagatg	cctgaacctc	atccttattt	cagatcatgg	1320
catggaacaa	ggcagttgta	agaaatacat	atatctgaat	aaatatttgg	gggatgttaa	1380
aaatattaaa	gttatctatg	gacctgcagc	tcgattgaga	ccctctgatg	tcccagataa	1440
atactattca	tttaactatg	aaggcattgc	ccgaaatctt	tcttgccggg	aaccaaacca	1500
gcacttcaaa	ccttacctga	aacatttctt	acctaagcgt	ttgcactttg	ctaagagtga	1560
		tctatttgga				1620
		gtggatttca				1680
		gacctggatt				1740
		taatgtgtga				1800
		accaccttct				1860
		tacagtgccc	_	_	_	1920
		ttttgccgat				1980
	_	ttaagcatga		_	_	2040
		gtcttcttc				2100
		ggacatccta				2160
		tgtaccagga				2220
		acaccaaagt				2280
		tatattctga				2340
		tatggcgcta				2400
		atgtcgtcag		-		2460
		gaatctgagg				2520
	_	ctccacttcc	-		_	2580
		ctgtggaaaa				2640
	-	<del>-</del>			_	2700
		agcgagacgt			_	2760
		tgtttacaca				2820
		tcaacaaaga		_		2880
		tagccaagaa				
		ttatatttta	_	_		2940
		ttagaacgga				3000
	-	gtggagagtg		_		3060
		atcaagttcg				3120
		ggagaagtag				3180
		aataaacctt				3240
		tgttatgtga				3300
		gtttcatttc	_			3360
		gagaccttgt				3420
		tgttttcgtt				3480
		ttcaactttt	gaggggacga	tetttgaata	tacttaccta	3540
ttataaaatc	ttactttgta	tttgtattt				3569

<210> 364

<211> 832

<212> DNA

<213> Homo sapiens

```
tecttetatg ettattegga ggggeggeaa ggeatgttte eeagttttta agatettgee
cececcata atttatgagg acceptetgt gteegggeat cagtgatggt geceetgeat
 120
ttcggggtgc tctttggagg gcgtgtttgt tgaaaaacca cccccaaccc cctgcccgcc
 180
ggtcccggac ctggccacca tggaaggtgc tgcggatggt ggatccgcgt gccaggcggc
 240
tecgetecee tgatgggggt gecaggetgt gactggaggg ggaggeaggg ggcaecegtg
 300
 360
qqqtqcctqa qctqttttct ttcccatttg gcaacagtga cgggcgctca gcccccgggc
qttctqtgca aacgtaggtg ttcctgcggg tcatcatgct aggagggagg ttgttggggg
 420
 480
tgctcgtgct gtccttccgc cgctctggga tctctgcctt gttgggggttg tgggcgctgc
tgaccatggg gctgaagggg gggcagccct cgactcccac tccccgcggt gctgcagctc
 540
geetteegge etggeageeg etecteette ageteegeet eeceegtget egtegggetg
 600
cgtttggggt gcaggggtgc agggggtggg ccacctgggg gagggggtac cgtttagagc
 660
tggcatcacc acggaaaccc agaactgact ctgggggatc gttggaacct gagaattcct
 720
cacgtgggtt gcaatctctg tgtgggccat tctgacaata tctgtcaaaa ttacctcaag
 780
 832
attaccaacg cacatatact gacttagaaa ctccaaatca atgacatcat gc
```

<210> 365 <211> 1321 <212> DNA <213> Homo sapiens

<400> 365 60 cacacactgc accacagete teccacetet gaggeegagg agttegtete eegeetetee acccagaact acttccgctc cctgccccga ggcaccagca acatgaccta tgggaccttc 120 aacttecteg ggggeegget gatgateeet aatacaggaa teageeteet cateeeeeca 180 gatgecatae eeegagggaa gatetatgag atetaeetea egetgeacaa geeggaagae 240 gtgaggttgc ccctagctgg ctgtcagacc ctgctgagtc ccatcgttag ctgtggaccc 300 cctgggcgtc ctgcttaccc ggccagtcat cctggggtat ggaccactgt gggggagccc 360 420 agccctgaca gctgggagcc tgcgcctcaa aaagcagtcg tgcgagggca gctgggagga 480 tgtgctgcac ctgggcgagg aggcgcctc ccacctctac tactgccagc tggaggccag 540 tgcctgctac gtcttcaccg agcagctgag ccgctatgcc ctggtgggag aggccctcag cgtggctgcc gccaagcgcc tcaagctgct tctgtttgcg ccggtggcct gcacctccct 600 cgagtacaac atactggtct actgcctgca tgacactcac gatgcactca acgtagtggt 660 gcagctggag aagcagctgc agggacagct gatccaggag ccactggtac tgcacttcaa 720 ggacagttac cacaacctgc gcctatccat ccacgatgtg cccagctccc tgtggaagag 780 taageteett gteagetaee aggagateee ettttateae atetggaatg geaegeageg 840 900 gtacttgcac tgcaccttca ccctggagcg tgtcagcccc agcactagtg acctggcctg caagctgtgg gtgtggcagg tggagggcga cgggcagagc ttcagcatca acttcaacat 960 1020 caccaaggac acaaggtttg ctgagctgct ggctctggag agtgaagcgg gggtcccagc cctggtgggc cccagtgcct tcaagatccc cttcctcatt cggcagaaga taatttccag 1080 cctggaccca ccctgtaggc ggggtgccga ctggcggact ctggcccaga aactccacct 1140 ggacagecat ctcagettet ttgeeteeaa geecageece acagecatga teeteaacet 1200 gtgggaggcg cggcacttcc ccaacggcaa cctcagccag ctggctgcag cagtggctgg 1260 gactgggcca gcaggacggt ggcttctttc acagtgttcg gaggctgagt gctgaggccg 1320 1321

<210> 366

<211> 777

<212> DNA

<213> Homo sapiens

<400>	366					
gggtccgctg	cagggcaggt	tcagcagcaa	cagcagcggc	gacaccagca	gggaaaagtg	60
acagtgaaat	acgatcgtaa	ggagcttcgg	aagcggctgg	tgctggagga	atggatcgtg	120
gagcagctgg	gtcagctcta	cggctgcgag	gaagaagaaa	tgccagaggt	agaaattgac	180
attgatgatc	tttttgatgc	atacagtgat	gaacagagag	cttcaaaatt	acaggaagct	240
cttgtagact	gctacaaacc	aacagaggaa	tttatcaaag	agctgctttc	tcggataaga	300
ggcatgagga	aactgagccc	ctccgcagaa	gaagagtgta	tgattctgga	acagggtgaa	360
actctcccag	agatgaagaa	agagtcctgg	gatttgtact	tcatgaagac	ttttgtgaaa	420
gaataggtgt	ccttatgaac	aacgtttttg	tttttttt	ttcttttttg	ggggtaaagg	480
tgggggggtc	tattagacat	ttattcaaga	gcgttctttt	ttgggtttta	aaggtttttg	540
ttaatgtaat	atttaaatac	caaaaatatc	ttgactttag	ccacagccta	cccagggttt	600
atcaagggag	ggggaccctc	agggaagggc	cccccaggt	tgcgtttcct	gcagggactc	660
aaatgttaat	tcccttatga	tcccggaaaa	atagttttt	tacaagaagt	tgggcaaaat	720
ttttttccta	aagttggaca	ttggactcaa	ttggcaaatt	tttcaacctg	gtatttt	7 <b>77</b>

<210> 367 <211> 2056 <212> DNA <213> Homo sapiens

<400> 367 aattatgtta gatggccggg tgcggtggct cacgcctgta atctcagcac tttgggaggc 60 cgagatggaa gacgtcatag cacggatgca agatgaaaaa aatggaattc ctattcgtac 120 180 ggtcaaaagc tttctttcca agatacctag cgtcttctct ggttcagaca ttgttcaatg 240 gttgataaag aacttaacta tagaagatcc agtggaggcg ctccatttgg gaacattaat ggctgcccac ggctacttct ttccaatctc agatcatgtc ctcacactca aggatgatgg 300 caccttttac cggtttcaaa ccccctattt ttggccatca aattgttggg agccggaaaa 360 cacagattat gccgtttacc tctgcaagag aacaatgcaa aacaaggcac gactggagct 420 cgcagactat gaggctgaga gcctggccag gctgcagaga gcatttgccc ggaagtggga 480 540 gttcattttc atgcaagcag aagcacaagc aaaagtggac aagaagagag acaagattga aaggaagate ettgacagee aagagagage gttetgggae gtgcacagge cegtgeetgg 600 atgtgtaaat acaactgaag tggacattaa gaagtcatcc agaatgagaa acccccacaa 660 aacacggaag tetgtetatg gtttacaaaa tgatattaga agtcacagte etacecacae 720 780 acccacacca gaaactaaac ctccaacaga agatgagtta caacaacaga taaaatattg gcaaatacag ttagatagac atcggttaaa aatgtcaaaa gtcgctgaca gtctactaag 840 900 ttacacggaa cagtatttag aatacgaccc gtttcttttg ccacctgacc cttctaaccc atggetgtee gatgacacca etttetggga aettgaggea agcaaagaac egageeagea 960 1020 gagggtaaaa cgatggggtt ttggcatgga cgaggcattg aaagacccag ttgggagaga acagtteett aaatttetag agteagaatt eageteggaa aatttaagat tetggetgge 1080 agtggaggac ctgaaaaaga ggcctattaa agaagtaccc tcaagagttc aggaaatatg 1140 gcaagagttt ctggctcccg gagcccccag tgctattaac ttggattcca agagttatga 1200 caaaaccaca cagaacgtga aggaacctgg acgatacaca tttgaagatg ctcaggagca 1260 catttacaaa ctgatgaaaa gtgattcata cccacgtttt ataagatcca gtgcctatca 1320 1380 ggagetteta caggeaaaga aaagagggga aateteteac gtecaagagg ttaacaagee 1440 ttgctcagtc ttactaaacg gatcatcttg tagcatgaat gcagactgga gtcactgcac acactttgta gctcaatgtt gtgacctgga gcagaggaca ttagaacaag atgttgcatg 1500 agcaaaggac ctaaattgtt atttttgtgt gtacattcca tctccaatgg actcttccgt 1560 ctcaatgcct ccattccaaa ctgttgtctg ctttctttct ccttctacta tgctggatct 1620 gtgtctcttc ctttttaaca agttcaagtg aagtaaaacc ttttctttt ttccttctt 1680 ctctctctct ctctctcaaa gcttcagtta gacacacagt tcactgaaaa ttcagtcagt 1740 caaaaactgg aagaactgta aaagaaaaaa gtatatatca ataagtatac atgtggcttc 1800 acatttatta aacaataaat toogoacaga aagtttoatt toaccaatgt gtoacagtoa 1860 1920 gaaacaaact catgtetteg gtetgttgte tgtacattet eegttaatgt ttetegeatt 1980 tatttttata ccatatttaa agaagaaaca ccttttactc caaatgtatt aaagttgatc

ccttctctgt aaatttgtgt atgtttatat tgttgtttta tctttcatta aaagatgtca 2040 gaatctcaaa aaaaaa 2056

<210> 368 <211> 460 <212> DNA <213> Homo sapiens

<400> 368 ggcacgaggg actatecacg cattgtgaac cacetggace acacetatgt cactgegeee caagcettca tgatgttcca gtactttgtg aaggtggtgc ccactgtgta catgaaggtg 120 gacggagagg tactgacgac aaatcagatc tatgtgacca gacatgagaa ggctgcctat 180 gtgctgatgg gcgaccaagg cetteccgga gtcttcatcc tctatgaget ctcgcccatg 240 atggtgaacc tgacggagat acacacgttc ttctctctct tcctgacaat tgtgggcgct 300 caccataggt ggcatgttct ttgagcattt tgtcattaat tacttaaccc ataagtgggg 360 gettgggtte tattteaaaa atgaaaaete tttacagggt ggecatagga etttatatgg 420 agtgaacttt tttatgtatt ggagtttacg ggggggctct 460

<210> 369 <211> 2355 <212> DNA <213> Homo sapiens

<400> 369 gtccgtgtgg tggaattcgc agcggcagtt cgtggtgcgg gcctggggct gcgcgggccc 60 ttgcggccgg gcagtetttc tggccttcgg gctagggctg ggcctcatcg aggaaaaaca 120 ggcggagagc cggcgggcgg tctcggcctg tcaggagatc caggcaattt ttacccagaa 180 aageaageeg gggeetgaee egttggaeae gagaegettg cagggettte ggetggagga 240 gtatctgata gggcagtcca ttggtaaggg ctgcagtgct gctgtgtatg aagccaccat 300 gcctacattg ccccagaacc tggaggtgac aaagagcacc gggttgcttc cagggagagg 360 eccaggtace agtgcaccag gagaagggca ggagcgaget ecgggggece etgeetteee 420 cttggccatc aagatgatgt ggaacatete ggcaggttee tecagegaag ccatettgaa 480 cacaatgage caggagetgg teccagegag eegagtggee ttggetgggg agtatggage 540 agteacttac agaaaateea agagaggtee caageaacta gececteace ecaacateat 600 cogggttete egegeettea ectetteegt geogetgetg ceaggggeee tggtegaeta 660 ccctgatgtg ctgccctcac gcctccaccc tgaaggcctg ggccatggcc ggacgctgtt 720 cctcgttatg aagaactatc cctgtaccct gcgccagtac ctttgtgtga acacacccag 780 ecceegecte geegecatga tgetgetgea getgetggaa ggegtggace atetggttea 840 acagggcatc gcgcacagag acctgaaatc cgacaacatc cttgtggagc tggacccaga 900 eggetgeece tggetggtga tegeagattt tggetgetge etggetgatg agageategg 960 cctgcagttg cccttcagca gctggtacgt ggatcggggc ggaaacggct gtctgatggc 1020 cccagaggtg tccacggccc gtcctggccc cagggcagtg attgactaca gcaaggctga 1080 tgcctgggca gtgggagcca tcgcctatga aatcttcggg cttgtcaatc ccttctacgg 1140 ccagggcaag gcccaccttg aaagccgcag ctaccaagag gctcagctac ctgcactgcc 1200 cgagtcagtg cctccagacg tgagacagtt ggtgagggca ctgctccagc gagaggccag 1260 caagagacca tetgeeegag tageegeaaa tgtgetteat etaageetet ggggtgaaca 1320 tattctagcc ctgaagaatc tgaagttaga caagatggtt ggctggctcc tccaacaatc 1380 1440 ggccgccact ttgttggcca acaggctcac agagaagtgt tgtgtggaaa caaaaatgaa

```
gatgetettt etggetaace tggagtgtga aacgetetge caggeageee teeteetetg
 1500
ctcatggagg gcagccctgt gatgtccctg catggagctg gtgaattact aaaagaactt
 1560
1620
gcgcagagag ggctggttag ccggaaaagg cctcgggctt ggcaaatgga agaacttgag
 1680
tgagagttca gtctgcagtc ctgtgctcac agacatctga aaagtgaatg gccaagctgg
 1740
tetagtagat gaggetggae tgaggagggg taggeetgea teeacataga ggateeagge
 1800
caaggcactg gctgtcagtg gcagagtttg gctgtgacct ttgcccctaa cacgaggaac
 1860
tegtttgaag ggggeagegt ageatgtetg atttgecace tggatgaagg cagacateaa
 1920
catgggtcag cacgttcagt tacgggagtg ggaaattaca tgaggcctgg gcctctgcgt
 1980
teccaagetg tgegttetgg accagetact gaattattaa teteaettag egaaagtgae
 2040
ggatgagcag taagtaagta agtgtgggga tttaaacttg agggtttccc tcctgactag
 2100
cctctcttac aggaattgtg aaatattaaa tgcaaattta caactgcaga tgacgtatgt
 2160
gccttgaact gaatatttgg ctttaagaat gattcttata ctctgaaggt gagaatattt
 2220
tgtgggcagg tatcaacatt ggggaagaga tttcatgtct aactaactaa ctttatacat
 2280
gatttttagg aagctattgc ctaaatcagc gtcaacatgc agtaaaggtt gtcttcaact
 2340
qaaaaaaaa aaaaa
 2355
```

<210> 370 <211> 1333 <212> DNA <213> Homo sapiens

<400> 370 gccaggccgg caccaggcac agacacttat gcccttgttg ggagaacaga gagaggctct 60 cttgtccact gcctgtcttc ggttccaact gctggttctc ctaqaqqcct ctcctcaqac 120 tegeagaget geetgateat tgetacagaa tgaactetag eecagetggg acceeaagte 180 cacagecete cagggecaat gggaacatea acetggggee tteagecaae ecaaatgeee 240 ageceaegga ettegaette etcaaagtea teggeaaagg gaactaeggg aaggteetae 300 tggccaagcg caagtctgat ggggcgttct atgcagtgaa ggtactacag aaaaagtcca 360 tettaaagaa gaaagageag ageeacatea tggeagageg eagtgtgett etgaagaaeg 420 tgeggeacce ettectegtg ggeetgeget acteetteea gacacetgag aagetetaet 480 tcgtgctcga ctatgtcaac gggggagagc tcttcttcca cctgcagcgg gagcgccggt 540 teetggagee eegggeeagg ttetaegetg etgaggtgge cagegeeatt ggetacetge 600 actocotoaa catoatttac agggatotga aaccagagaa cattotottg gactgocagg 660 gacacgtggt gctgacggat tttggcctct gcaaggaagg tgtagagcct gaagacacca 720 catccacatt ctgtggtacc cctgagtact tggcacctga agtgcttctg gaaagagcct 780 tatgatcgag cagtggactg gtggtgcttg ggggcagtcc tctacgagat gctccatggc 840 etgeegeeet tetacageea agatgtatee cagatgtatg agaacattet geaccageeg 900 ctacagatcc ccggaggccg gacagtggcc gcctgtgacc tcctgcaaag ccttctccac 960 aaggaccaga ggcagcggct gggctccaaa gcagactttc ttgagattaa gaaccatgta 1020 ttetteagee ceataaactg ggatgaeetg taccacaaga ggetaactee accetteaac 1080 ccaaatgtga caggacctgc tgacttgaag cattttgacc cagagttcac ccaggaagct 1140 gtgtccaagt ccattggctg tacccctgac actgtggcca gcagctctgg ggcctcaagt 1200 gcattcctgg gattttctta tgcgccagag gatgatgaca tcttggattg ctagaagaga 1260 aggacctgtg aaactactga ggccagctgg tattagtaag gaattacctt cagctgctag 1320 gaagagctgt att 1333

<210> 371 <211> 2457 <212> DNA

<213> Homo sapiens

```
<400> 371
ageggeegea gaccetgaag ggacaccagg agaagatteg geageggeag tecateetge
 60
ctcctcccca gggcccggcg cccatcccct tccagcaccg cggcggggat tccccggagg
 120
ccaagaatcg cgtgggcccg caggtgccac tcagcgagcc aggtttccgc cgtcgggagt
 180
 240
cqcaqqaqqa qccqcqggcc gtgctggctc agaagataga gaaggagacg caaatcctca
 300
actgcgccct ggacgacatc gagtggtttg tggcccggct gcagaaggca gccgaggctt
 360
tcaagcagct gaaccagcgg aaaaagggga agaagaaggg caagaaggcg ccagcagagg
 420
gcgtcctcac actgcgggca cggccccccc tctgagggcg agttcatcga ctgcttccag
 480
aaaatcaagc tggcgattaa cttgctggca aagctgcaga agcacatcca gaaccccagc
geogeggage tegtgeactt cetetteggg cetetggace tgategteaa cacetgeagt
 540
ggcccagaca tegcaegete egteteetge ecaetgetet ecegagatge egtggaette
 600
etgegeggee acetggteee taaggagatg tegetgtggg agteaetggg agagagetgg
 660
atgeggeece gtteegagtg geegegggag ceaeaggtge eeetetacgt geecaagtte
 720
cacagegget gggageetee tgtggatgtg etgeaggagg ecceetggga ggtggagggg
 780
ctggcgtctg cccccatcga ggaggtgagt ccagtgagcc gacagtccat aagaaactcc
 840
cagaagcaca gccccacttc agagcccacc cccccggggg atgccctacc accagtcagc
 900
tccccacata ctcacagggg ctaccagcca acaccagcca tggccaagta cgtcaagatc
 960
 1020
ctgtatgact tcacagcccg aaatgccaac gagctatcgg tgctcaagga tgaggtccta
gaggtgctgg aggacggccg gcagtggtgg aagctgcgca gccgcagcgg ccaggcgggg
 1080
tacgtgccct gcaacatcct aggcgaggcg cgaccggagg acgccggcgc cccgttcgag
 1140
caggeoggte agaagtactg gggeocegee agecegaeee acaagetace cecaagette
 1200
ccggggaaca aagacgaget catgcagcac atggacgagg tcaacgacga getcatccgg
 1260
 1320
aaaatcagca acatcagggc gcagccacag aggcacttcc gcgtggagcg cagccagccc
 1380
gtgagccagc cgctcaccta cgagtcgggt ccggacgagg tccgcgcctg gctggaagcc
aaggeettea geeegeggat egtggagaac etgggeatee tgaeegggee geagetette
 1440
 1500
teceteaaca aggaggaget gaagaaagtg tgeggegagg agggegteeg egtgtacage
cagctcacca tgcagaaggc cttcctggag aagcagcaaa gtgggtcgga gctggaagaa
 1560
ctcatgaaca agtttcattc catgaatcag aggaggggg aggacagcta ggcccagctg
 1620
cettgggetg gggcetgegg aggggaagee cacceacaat geatggagta ttattttat
atgtgtatgt attttgtatc aaggacacgg agggggtgtg gtgctggcta gaggtccctg
cccctgtctg gaggcacaac gcccatcctt aggccaaaca gtacccaagg cctcagcca
caccaagact aatctcagcc aaacctgctg cttggtggtg ccagcccctt gtccaccttc
tettgaggee acagaaetee etggggetgg ggeetettte tetggeetee eetgtgeaee
 1920
 1980
tggggggtcc tggcccctgt gatgctcccc catccccacc cacttctaca tccatccaca
 2040
ccccagggtg agctggagct ccaggctggc caggctgaac ctcgcacaca cgcagagttc
 2100
tgctccctga ggggggcccg ggaggggctc cagcaggagg ccgtgggtgc cattcggggg
aaagtggggg aacgacacac acttcacctg caagggccga caacgcaggg gacaccgtgc
 2160
cggcttcaga cactcccage geccactett acaggeccag gaetggaget ttetetggee
 2220
 2280
aagtttcagg ccaatgatcc ccgcatggtg ttgggggtgc tggtgtgtct tggtgcctgg
acttgagtct caccctacag atgagaggtg gctgaggcac cagggctaag caattaaacc
 2340
 2400
agttaagtet caaaaaaaa aaaaaggggg ggeegtttta aagaaceett gggggggeee
aagttaacgc gggctggcaa ggtaaaagtt ttttccttat agggagccgt ataaaac
 2457
```

```
<210> 372
<211> 1333
<212> DNA
<213> Homo sapiens
```

```
<400> 372
aagcttggca cgagggtctt gtcagcagcc cggccattgg agcatatctt tctgccagtt 60
acggagacag cctcgttgtg ctggtggcca cagtggtggc tcttctggac atctgcttca 120
tcttagtggc tgttccagaa tctctgcctg agaaaatgag accggtttcc tggggagctc 180
```

agatttcttg gaaacaagca	gacccttttg	cgtcgttgaa	gaaagttgga	aaagattcta	240
ctgtcttact aaatctgcat	caccgtgtgt	ctttcatacc	ttcctgaagc	tgggacagta	300
ttcaagtttt ttttctctat	ctcagggcag	gtcatagggt	ttgggatctg	ttaaaattgc	360
agcattcata gctatggtag	gaattctgtc	tattgtggct	cagacggcct	ttcttagcat	420
cttgatgaga tcattaggaa	ataagaatac	tgtcctcctt	ggcttgggct	tccagatgct	480
ccagttagcc tggtacggtt	ttggatcaca	ggcctggatg	atgtgggcag	cagggaccgt	540
ggctgccatg tccagcatca	cgtttccggc	aatcagtgcc	ctcgtctctc	ggaatgcaga	600
gtcagatcag caaggagttg	cccaggggat	cataactgga	ataagaggac	tatgcaatgg	660
cctggggcca gcactgtatg	gcttcatatt	ctacatgttc	catgtggaac	tgactgagtt	720
gggcccgaaa ttgaattcta	acaacgttcc	cctgcaggga	gctgtcatcc	caggcccgcc	780
gtttttattt ggggcatgta	tagtccttat	gtcttttctg	gctgccttat	tcattcctga	840
atacagtaaa gccagtggàg	ttcaaaaaca	cagtaacagc	agcagcggca	gcctgaccaa	900
cacccagaa cggggcagtg	atgaggacat	tgagccacta	ctgcaagaca	gcagcatetg	960
ggagetetet teatttgagg	agcctgggaa	tcagtgcact	gagctgtaaa	ctcggcagaa	1020
agtgggattc tgcatacgcc	atctctgaga	gccatggagg	gagccacacc	cctggtgact	1080
tcatggtgct ggatgggaga	cgctagcggc	atccttcagg	gccaagtttg	ataaatacca	1140
ccgccatcat tctgctcatc	ctcctcctgt	tttttttt	ctcttacatt	ctttttttt	1200
tcccggttaa tccttaaaac	cagaaaaaaa	ttggaaaaac	ttctttgcaa	aaagggggca	1260
actcccaggg ggaacctcaa	ataaaaaaag	cattcttttg	tgaaaaaagg	agggcttcct	1320
tgaaaggaca aaa					1333

<210> 373

<211> 2578

<212> DNA

<213> Homo sapiens

## <400> 373 atggeggeag geetggeeac gtggetgeet tttgeteggg cageageagt gggetggetg 60 cccctggccc agcaacccct gcccccggca ccgggggtga aggcatctcg aggagatgag 120 gttctggtgg tgaacgtgag cggacggcgc tttgagactt ggaagaatac gctggaccgc 180 tacccagaca ccttgctggg cagctcggag aaggaattct tctacgatgc tgactcaggc 240 gagtacttct tegategega ccetgacatg tteegecatg tgetgaactt etacegaacg 300 gggeggetge attgeecacg geaggagtge atceaggeet tegacgaaga getggettte 360 tacggcctgg ttcccgagct agtcggtgac tgctgccttg aagagtatcg ggaccgaaag 420 aaggagaatg cegagegeet ggeagaggat gaggaggeag ageaggeegg ggaeggeeca 480 gccctgccag caggcagetc cetgcggcag cggctctggc gggccttcga gaatccacac 540 acgageaccg cagecetegt tttetactat gtgacegget tetteatege egtgteggte 600 660 ategecaatg tggtggagae cateceatge egeggetetg caegeaggte eteaagggag cagecetgtg gegaaegett eccaeaggee tttttetgea tggacaeage etgtgtaete 720 atattcacag gtgaatacct cctgcggctg tttgccgccc ccagccgttg ccgcttcctg 780 cggagtgtca tgagcctcat cgacgtggtg gccatcctgc cctactacat tgggcttttg 840 gtgcccaaga acgacgatgt ctctggcgcc tttgtcaccc tgcgtgtgtt ccgggtgttt 900 cgcatcttca agttctccag gcattcacag ggcttgagga ttctgggcta cacactcaag 960 agetgtgeet etgagetggg ettteteete tttteeetaa eeatggeeat eateatettt 1020 gccactgtca tgttttatgc tgagaagggc acaaacaaga ccaactttac aagcatccct 1080 geggeettet ggtataceat tgteaceatg accaegettg getaeggaga catggtgeee 1140 agcaccattg ctggcaagat tttcgggtcc atctgctcac tcagtggcgt cttggtcatt 1200 gccctgcctg tgccagtcat tgtgtccaac tttagccgca tctaccacca gaaccagcgg 1260 gctgacaagc gccgagcaca gcagaaggtg cgcttggcaa ggatccgatt ggcaaagagt 1320 ggtaccacca atgccttcct gcagtacaag cagaatgggg gccttgagga cagcggcagt 1380 ggcgaggaac aggctgtttg tgtcaggaac cgttctgcct ttgaacagca acatcaccac 1440 ttgctgcact gtctagagaa gacaacgtgc catgagttca cagatgagct caccttcagt 1500 gaagecetgg gagecgtete geegggtgge egeaceagee gtageacete tgtgtettee 1560 cagccagtgg gacccggaag cetgetgtet tettgetgee etegeaggge caagegeege 1620 gccatccgcc ttgccaactc cactgcctca gtcagccgtg gcaggcatgc aggagctgga 1680 catgctggca gggcttgcgc aggagccatg coccttcaga gccgctccag ccttcaatgc 1740

caagccccat	gacagccttg	acctgaactg	cgacagcggg	ggacttcgtg	gctgccatta	1800
	tacccctcct					1860
	ggccggcagc					1920
	caagatctca					1980
tcatttttgg	gaactccttt	ccaaagccat	atttttggga	ggcagagagg	ggcaggcttg	2040
ggcacccctt	ctgcccccc	cactgagaac	tatgcaatgg	agtttcatga	aatggtccac	2100
	agtagccagg					2160
gggagctgaa	gcactgggct	tccacaggcc	cctggcctcc	ttgccctagc	acactgggac	2220
tggccccact	ctcccagctg	gactcctgca	tgctcctccc	cttgggctct	cagatgaagg	2280
caaagctttg	atccgacatc	tgagctctag	cctaagaagg	agagttgaga	tttcctcctc	2340
cctctggctg	ggatatggag	ctttggaggt	tcagagaaga	gaaccctcac	ctctgatctg	2400
gcctctacga	gaggtcctca	tctccatctg	gcccaacaat	tcccagattc	tgaagcttgg	2460
gaatgcaaac	acaggcttca	tggggctgtg	gccttctggc	aggcgacctg	ccatccccag	2520
ggccttgcct	gaggggttc	aggcttgcct	tttcccaaca	cacactcaga	taggcaca	2578

<210> 374 <211> 664

<212> DNA

<213> Homo sapiens

<400>	374					
tgaggctggg	gcaagccttt	taaggactgg	accacgggtg	ggcaggatac	cgggggagaa	60
cccgccctgt	tagttggggc	tggggagggc	cgcgcaccga	gactaaattg	tectteeggg	120
	caccaggccc					180
aaccgcagca	gcccggtgta	cggcctggtc	cccagagcaa	gacttcagcc	aggatctacc	240
ccacctacca	cacagccttt	gacacctttg	actatgtgga	caagtttttg	gacccgggtg	300
aggagggaga	caaggggcat	cctgagacca	ggacaggaga	ggctgaagac	tgagccctgg	360
ccttgtcacc	ttgccgcagg	cttcagcagc	catcaggctg	tggcccggac	agcggggagt	420
gtgattctcc	ggctcagtga	cagcttcttc	ctgcccctca	aagtcagtga	ctacagtgag	480
acactccgca	gcttcctgca	ggcagcccag	caagatcttg	gggccctgct	ggagcagcac	540
agcatcagcc	tggggcctct	ggtgactgca	gtggagaagt	ttgaggcaga	agctgcagcc	600
	gcatatcaac					660
ctca	•					664

<210> 375 <211> 1495

<212> DNA

<213> Homo sapiens

<400> 375 ggaattcgag gcgggggcag cctcgccagc gggggccccg ggcctggcca tgcctcactg 60 agccagegee tgegeeteta cetegeegae agetggaaee agtgegaeet agtggetete 120 acctgettee teetgggegt gggetgeegg etgaeecegg gtttgtaeea eetgggeege 180 actgtcctct gcatcgactt catggttttc acggtgcggc tgcttcacat cttcacggtc 240 aacaaacagc tggggcccaa gatcgtcatc gtgagcaaga tgatgaagga cgtgttcttc 300 360 ttcctcttct tcctcggcgt gtggctggta gcctatggcg tggccacgga ggggctcctg 420 aggecaeggg acagtgaett cecaagtate etgegeegeg tettetaceg tecetacetg 480 cagatetteg ggcagattee ecaggaggae atggaegtgg eceteatgga geacageaac

```
tgctcgtcgg agcccggctt ctgggcacac cctcctgggg cccaggcggg cacctgcgtc
 540
teccagtatg ccaactgget ggtggtgetg etectegtea tetteetget egtggecaae
 600
atcctgctgg tcaacttgct cattgccatg ttcagttaca cattcggcaa agtacagggc
 660
aacagegate tetaetggaa ggegeagegt taeegeetea teegggaatt eeactetegg
 720
cccgcgctgg ccccgccctt tatcgtcatc teccacttgc gcctcctgct caqqcaattq
 780
tgcaggcgac cccggagccc ccagccgtcc tccccggccc tcgagcattt ccgggtttac
 840
ctttctaagg aagecgageg gaagetgeta aegtgggaat eggtgeataa ggagaacttt
 900
ctgctggcac gcgctaggga caagcgggag agcgactccg agcgtctgaa gcgcacgtcc
 960
cagaaggtgg acttggcact gaaacagctg ggacacatcc gcgagtacga acagcgcctg
 1020
aaagtgetgg agegggaggt eeageagtgt ageegegtee tggggtgggt ggeegaggee
 1080
etgageeget etgeettget geececaggt gggeegeeac eccetgaeet geetgggtee
 1140
aaagactgag ccctgctggc ggacttcaag gagaagcccc cacaggggat tttgctccta
 1200
gagtaagget catetgggee teggeeeeeg cacetggtgg cettgteett gaggtgagee
 1260
ccatgtccat ctgggccact gtcaggacca cctttgggag tgtcatcctt acaaaccaca
 1320
gcatgcccgg ctcctcccag aaccagtccc agcctgggag gatcaaggcc tggatcccgg
 1380
gccgttatcc atctggaggc tgcagggtcc ttggggtaac agggaccaca gacccctcac
 1440
cactcacaga ttcctcacac tggggaaata aagccatttc agaggaaaaa aaaaa
 1495
```

<210> 376

<211> 373

<212> DNA

<213> Homo sapiens

<400>	376					
gcctcataaa	actctgcaaa	tctaaggcca	aaagctgtga	aaatgacctt	gaaatgggca	60
tgctgaattc	caaattcaag	aagactcgct	accaggctgg	catgaggaat	tctgaaaatc	120
tgacagcaaa	taacactttg	agcaagccca	ccagatacca	ggcgagctga	aggaaatcaa	180
gcaagatatc	tccagcctgc	gctatgagct	tcttgaggaa	aaatctcaag	ctactggtga	240
gctggcagac	ctgattcaac	aactcagcga	gaagtttgga	aagaacttaa	acaaagacca	300
cctgagggtg	aacaagggca	aagacattta	gcagcccaca	tcggcgtctg	tgacttctac	360
cagcattcca	agg					373

<210> 377 <211> 2867 <212> DNA <213> Homo sapiens

<400> 377 cttcctcttc tccacgcagg cttcaacagg agatttatgg agaatagcag cataattgct 60 tgctataatg aactgattca aatagaacat ggggaagttc gctcccagtt caaattacgg 120 gcctgtaatt cagtgtttac agcattagat cactgtcatg aagccataga aataacaagc 180 gatgaccacg tgattcagta tgtcaaccca gccttcgaaa ggatgatggg ctaccacaaa 240 ggtgagetee tgggaaaaga actegetgat etgeccaaaa gegataagaa eegggeagae 300 cttctcgaca ccatcaatac atgcatcaag aagggaaagg agtggcaggg ggtttactat 360 gecagaegga aateegggga eageateeaa eageaegtga agateaeeee agtgattgge 420 caaggaggga aaattaggca ttttgtctcg ctcaagaaac tgtgttgtac cactgacaat 480 aataagcaga ttcacaagat tcatcgtgat tcaggagata attctcagac agagcctcat 540 tcattcagat ataagaacag gaggaaagag tccattgacg tgaaatcgat atcatctcga 600

```
ggcagtgatg caccaagect geagaategt egetateegt ecatggegag gatecactee
atgaccatcg aggctcccat cacaaaggtt ataaatataa tcaatgcagc ccaagaaaac
 720
ageccagtea cagtagegga ageettggae agagttetag agattttaeg gaecaeagaa
 780
etgtaetece eteagetggg taccaaagat gaagateece acaccagtga tettgttgga
 840
ggcctgatga ctgacggctt gagaagactg tcaggaaacg agtatgtgtt tactaagaat
 900
gtgcaccaga gtcacagtca ccttgcaatg ccaataacca tcaatgatgt tcccccttgt
 960
ateteteaat taettgataa tgaggagagt tgggaettea acatetttga attggaagee
 1020
attacgcata aaaggccatt ggtttatctg ggcttaaagg tcttctctcg gtttggagta
 1080
tgtgagtttt taaactgttc tgaaaccact cttcgggcct ggttccaagt gatcgaagcc
 1140
aactaccact cttccaatgc ctaccacaac tccacccatg ctgccgacgt cctgcacgcc
 1200
acceptttct ttcttggaaa ggaaagagta aagggaagcc tegatcagtt ggatgaggtg
 1260
gcagecetea ttgetgceae agtecatgae gtggateace egggaaggae caactettte
 1320
ctcctgcaat gcaggcagtg agcttgctgt gctctacaat gacacctgct gttcctggag
 1380
agtcaccaca ccgccctggc cttccagcct cacggtcaag gacaccaaaa tgcaacattt
 1440
tcaagaatat tgacaaggga accattatcg aacgctgcgc caggctatta ttgacatggt
 1500
tttggcaaca gagatgacaa aacactttga acatgtgaat aagtttgtga acagcatcaa
 1560
caagccaatg gcagctgaga ttgaaggcag cgactgtgaa tgcaaccctg ctgggaagaa
 1620
cttccctgaa aaccaaatcc tgatcaaacg catgatgatt aagtgtgctg acgtggccaa
 1680
cccatgccgc cccttggacc tgtgcattga atgggctggg aggatctctg aggagtattt
 1740
tgcacagact gatgaagaga agagacaggg actacctgtg gtgatgccag tgtttgaccg
 1800
gaatacctgt agcatcccca agtctcagat ctctttcatt gactacttca taacagacat
 1860
gtttgatget tgggatgeet ttgeacatet accageeetg atgeaacatt tggetgacaa
 1920
ctacaaacac tggaagacac tagatgacct aaagtgcaaa agtttgaggc ttccatctga
 1980
caggetaaag ccaagecaca gagggggeet ettgacegae aaaggacaet gtgaateaca
 2040
gtagcgtaaa caagaggcct tcctttctaa tgacaatgac aggtattggt gaaggagcta
 2100
atgtttaata tttgacettg aatecattee aagteeeca aattteeatt eettagaaag
 2160
ttatgttccc atgaagaaaa atatatgttc cttttgaata cttaaatgac agaacaaata
 2220
cttgggcaaa ctccctttgc tctgcctgtc atccctgtgt acccttgtca atcccatggg
 2280
ggctggttca ctgtaactag caggccacag ggaaggcaaa gccttgggtg cctgtgagct
 2340
catctcccgg gatgggtgac taagtaggct taggctaggt gatcagctca tcctttacca
 2400
taaaagtcat cattgctgtt tagcttgact gttttcctca agaacatcga tctgaaggat
 2460
tcataaggag cttatctgaa cagatttatc taagaaaaaa aaaaaaccga cttaaaatag
 2520
gggaagcaac taggaccaaa ttacagataa actagttagc ttcacagcct ctatggctac
 2580
atggttette tggcegatgg tatgacacet aagttagaac acagcettgg etggggggtg
 2640
ccctctctag actggtatca gcagcctgtg taaccccttt cctgtaaaag gggttcatct
 2700
taacaaagtc atccatgatg agggaaaaag tggcatttca tttttgggga atccatgagc
 2760
ttcctttatt tctggctcac agaggcagcc acgaggcact acaccaagta ttatataaaa
 2820
gccattaaat ttgaatgccc ttggacaagc ttttcttaaa aaaaaaa
 2867
```

```
<210> 378
<211> 8053
<212> DNA
```

<213> Homo sapiens

<400> 378 gctttccttt ctaaagtaga agaggatgat tatccctctg aagaactact agaggatgaa 60 aacgctataa atgcaaaacg gtctaaagaa aaaaaccctg ggaatcaggg caggcagttt 120 gatgttaatc tgcaagtccc tgacagagca gttttaggga ccattcatcc agatccagaa 180 attgaagaaa gcaagcaaga aactagtatg attttggata gtgaaaaaac aagtgagact 240 gctgccaaag gggtcaacac aggaggcagg gaaccaaata caatggtgga aaaagaacgc 300 cctctggcag ataagaaagc acagagacca tttgaacgaa gtgacttttc tgacagcata 360 aaaattcaga ctccagaatt aggtgaagtg tttcagaata aagattctga ttatctgaag 420 aacgacaacc ctgaggaaca tctgaagacc tcagggcttg caggggagcc tgagggagaa 480 ctctcaaaag aggaccatga gaacacagag aagtacatgg gcacagaaag ccaggggtct 540 getgetgeag aacetgaaga tgactegtte caetggaete caeatacaag tgtagageea 600 gggcatagtg acaagaggga ggacttactt atcataagca gcttctttaa agaacaacag 660

tctttgcagc	ggttccagaa	gtactttaat	gtccatgagc	tggaagcctt	gctacaagaa	720
	aactgaagtc					780
	tcttccgtġc					840
	tggctgaaaa					900
	ttgatgacat					960
	cagccacact					1020
	tgcaaccact					1080
	ttcctgaaga					1140
gcctcagaag	tgtcacagaa	gccaaatact	gagaaagacc	tggacccagg	gccagttaca	1200
acagaagaca	ctcctatgga	tgctattgat	gcaaacaagc	aaccagagac	agccgccgaa	1260
gagccggcaa	gtgtcacacc	tttggaaaac	gcaatccttc	taatatattc	attcatgttt	1320
	agtcgctagt					1380
	catggaaacc					1440
attttcttat	ggagaactgt	ccttgttgtg	aaggatagag	tatatcaagt	cacggaacag	1500
caaatttctg	agaagttgaa	gactatcatg	aaagaaaata	cagaacttgt	acaaaaattg	1560
tcaaattatg	aacagaagat	caaggaatca	aagaaacatg	ttcaggaaac	caggaaacaa	1620
	tctctgatga					1680
	ttctggatga					1740
gaacagaatg	tcaagaatca	ggacttgata	tcagaaaaca	agaaatctat	agagaagtta	1800
aaggatgtta	tttcaatgaa	tgcctcagaa	ttttcagagg	ttcagattgc	acttaatgaa	1860
gctaagctta	gtgaagagaa	ggtgaagtct	gaatgccatc	gggttcaaga	agaaaatgct	1920
aggettaaga	agaaaaaaga	gcagttgcag	caggaaatcg	aagactggag	taaattacat	1980
	gtgagcaaat					2040
	aggatgataa					2100
ccagagegeg	aatctgaatc	tgagggtcaa	aataaaggtg	gaaatgattc	agatgaatta	2160
gcaaatggag	aagtgggagg	tgaccggaat	gagaagatga	aaaatcaaat	taagcagatg	2220
arggatgtet	ctcggacaca	gactgcaata	teggtagttg	aagaggatet	aaagettta	2280
agettagaage	tcaagagcct	tasatasasa	caaatgtaaa	cctggaagac	caggtaaaga	2340
aaccggaaga	tgaccgcaac	gagattetas	atgacatata	tggactggaa	gatgaatgca	2400
tacaaaaaa	gcagaaagtg	gagactetga	acgageteta	cagcagaag	gagatggett	2460
ctgcagatga	actgagtcaa aaaggcagtt	tegactacea	aacygcaaga	aagagagcac	aggergreag	2520
aagaaatgga	ggatgaatta	cadaadacad	aggaagtaaa	tassascea	ateactacea	2580 2640
	agctcatgaa					2700
	ggaagctgcc					2760
caatgctgca	agaagaacct	gtgattgtaa	aaccaatgcc	aggaaaaacca	aatacacaaa	2820
accetecacq	gagaggtcct	ctgagccaga	atgggtcttt	tggcccatcc	cctataaata	2880
gtggagaatg	ctccctcca	ttgacagtgg	agccacccgt	gagacctctc	tetgetacte	2940
	agatatgcct					3000
	agctgaggca					3060
	gaacagcagc					3120
	ggctccaaaa					3180
	ccctgtacca					3240
cttttgggcc	teggecaett	cctccaccct	ttaaccctaa	tatqcqtcca	ccactagget	3300
taagagaatt	tgcaccaggc	gttccaccag	qaaqacqqqa	cctqcctctc	cacceteggg	3360
gatttttacc	tggacacgca	ccatttagac'	ctttaggttc	acttggccca	agagagtact	3420
	tacccgatta					3480
ctgctgtaag	agacttactg	ccgtcaggct	ctagagatga	gcctccacct	gcctctcaga	3540
gcactagcca	ggactgttca	caggctttaa	aacagageee	ataaaactat	gacctctgag	3600
gtttcattgg	aaagaaagtg	tactgtgcat	tatccattac	agtaaaggat	ttcattggct	3660
tcaaaatcca	aaagtttatt	ttaaaaggtt	tgttgttaga	actaagctgc	cttggcagtg	3720
tgcatttttg	agccaaacaa	ttcaaaaatg	tcatttcttc	cctaaataaa	aatcaccttt	3780
taagctagag	cgtccttaca	actttgaaat	gtgcaataaa	gaatacctgt	gttttagcta	3840
atgtagcata	tgtaattgca	aaatgattta	gaatgtcatg	aaaaatatga	acatttcctg	3900
tggaaatgct	ttaagaacat	gtatttccat	tatcctattt	ttagtgtaca	ccagctgaat	3960
acggagcaat	ggtgtttata	agcgtttttt	taaactatct	ggtcacaaag	actgttacgc	4020
taaaaatgtt	tactaaaaga	tcactaaact	atctcccctc	ttgctgaagt	tctttgtagt	4080
aatagctcat	aaaaatttgt	ttattaatat	ttcccaagtg	tctgttgact	cattggactg	4140
ttatgaggct	tgtgccattt	ggggaacatg	taaactcagg	ctcccagaac	tgaagatggt	4200
ggctggtggc	acacttccgg	ctgctcctcc	gtcacctgtg	aactctacaa	gtgacgtctt	4260
tttatttcaa	agaagtttta	tttccccact	tgtaatagca	ttccacatgc	ctttccttta	4320
cgatcctcat	tgtcctattt	gagaatggtt	ttcctgagag	tgagtttacc	attagtagcc	4380
aagagttgtt	tgaccctgat	gttcccattg	tttttaccca	ttccctgtag	aaaaagggtg	4440
ccacaacaga	aaaatgaaaa	tgatgtgtca	tggccgtaaa	agtatagaaa	tctttaaaaa	4500

	tacagtccct					4560
tataataaaa	agattggaag	agtataatgc	catgagaaag	aatgatttag	gactgtgagg	4620
gttataacat	gccctaggtc	agcaaccaag	ggttgaaatc	agttctgttt	tagggggaaa	4680
tggggggggc	gacagatatt	attccaaaat	taatattaat	taatatttaa	acgttggtgt	4740
ttttatttaa	aaatcagtaa	ctaaccatct	ggaattgcac	catacttaaa	gtcttatcca	4800
	gtctttaaaa					4860
	ttttaattac					4920
	aatcataaaa					4980
	cctatgatgt					5040
	gattaagaat					5100
	atactaaaca					5160
	ctgtcaaagt					5220
						5280
	cctcccgttt gccactttta					5340
	tcaatatctc					5400
	tcatttaagt					5460
	ttttaaaatt					5520
	tgtatctgac					5580
	aagttgtgag					5640
	cagcaaaccc					5700
	cccctcagcc					5760
	catctccaac					5820
tttatgaagc	agcaatattc	agcctgaaag	catttctgcc	atagttgttg	tagttatatc	5880
gccaatggct	gattttttc	attggaaagt	aaatttaagt	aattcgtggg	atgtggtata	5940
ttctgtgtca	acttcaagat	aatcactcat	tttctcgtta	tattcaggtc	tgaattaaag	6000
ttaagttaat	cacccagtgt	tcaatttaag	cttctttaat	gttgatgaaa	ggtatttgta	6060
gttcatataa	actatactta	tgtgaaggat	agcagatgct	tcatataaat	tatcattttg	6120
atatacatat	cttatggttt	atgagaaaag	agaaaaaata	atacatcggt	tttgctacac	6180
	tttttttta					6240
	tactccacag					6300
	atgcgcctct					6360
	gaactgggca					6420
	tagaatttgg					6480
	ttcaggctcg					6540
	actgaaagta					6600
	cttattttaa					6660
	ataggccagg					6720
	taaaatatgt					6780
	aaatatccac					6840
						6900
	attatagtaa					
	ggaaataaat				_	6960
	gcatactcct					7020
	aaaaacagca					7080
	cattgtttag					7140
	aatgttaacc					7200
	tcgacatgac					7260
	acagctacaa					7320
	taagcaggaa					7380
	acatccagac					7440
	cactacccta					7500
tattggagca	aaagtgaaca	gatgtgtaaa	ctctagcaca	ttcttattgc	tgtattaagt	7560
ctgaagatga	gcacatccta	cccacaacag	tattgttcca	ggaagcaggg	taggagtagt	7620
ggtaaattag	aaaatagact	attaattgca	caattaatag	aaaagtaaaa	acatgtttca	7680
	taaacctgta					7740
	ggtacagctt					7800
	ctgttgaagg					7860
	acagaagttc					7920
	agataaagtg					7980
	ttgtatagtt					8040
gaaagcaaaa			-550000550			8053
Janageddad						5055

<210> 379 <211> 4455 <212> DNA <213> Homo sapiens

<400> 379

agatggctgc cgacagtgag cccgaatccg aggtatttga gatcacggac ttcaccactg 60 cctcggaatg ggaaaggttt atttccaaag ttgaagaagt cttgaatgac tggaaactga 120 ttggaaactc tttgggaaag ccactcgaaa agggtatatt tacttctggc acatgggaag 180 agaaatcaga tgaaatttcc tttgctgact tcaagttctc agtcactcat cattatcttg 240 tacaagaqtc cactgataaa gaaggaaagg atgagttatt agaggatgtt gttccacaat 300 360 ctatgcaaga tttgctgggt atgaataatg actttcctcc aagagcacat tgcctggtaa gatggtatgg gctacgtgag ttcgtggtga ttgcccctgc tgcacacagt gacgetgttc 420 480 tragegaate taagtgraac ettettetga gttetgttte tattgrettg ggaaacaetg 540 gctgtcaggt gccactcttt gtgcaaattc accacaaatg gcgaagaatg tatgtaggag 600 aatgtcaagg tcctggtgta cgaactgatt tcgaaatggt tcatcttaga aaagtgccaa atcagtacac tcacttatca ggtctgctgg atatcttcaa atcaaagatt ggatgtcctt 660 720 taactccatt gcctccagtt agtattgcta ttcgatttac ctatgtactt caagattggc 780 agcagtattt ttggcctcag caacctccag acatagatgc ccttgtagga ggagaagttg gaggettgga gtttggcaag ttaccatttg gtgcctgcga agatectatt agtgaactec 840 atttagetae tacatggeae teatetgaee gaagggatea ttgtggataa tgatgtttat 900 totgatttgg atoctattca agotccacat tggtctgtta gagttcgaaa agotgagaat 960 cctcagtgtt tgctaggtga ttttgtcact gaatttttta aaatttgccg tcgaaaggag 1020 tcaactgatg agattettgg acgatetgea tttgaggaag aaggeaaaga aactgetgat 1080 ataactcatg ctttgtcaaa attgacagag ccggcatcag ttccaattca taaattatca 1140 1200 gtttcaaata tggtacacac tgcaaagaag aaaatccgaa aacacagagg tgtagaggag tcaccgctaa ataatgatgt tcttaatact attctcctgt tcttattccc tgatgctgtt 1260 totgagaaac cattagatgg aactacttca acagataata ataatcctcc atcagagagt 1320 gaagactata atctctacaa tcagttcaag tctgcaccat ctgacagttt aacatacaaa 1380 ctggctttgt gtctctgtat gatcaatttt taccatggag ggttgaaagg agtggcacac 1440 ctctggcagg aatttgttct tgaaatgcgt ttccgatggg aaaacaactt tctgattcca 1500 ggattagcaa gtggaccccc agatctgagg tgttgtttac tgcatcagaa actacagatg 1560 ttaaattgtt gtattgaaag aaagaaggca cgtgatgagg ggaaaaagac aagtgcttca 1620 gatgtcacta atatatatcc aggggatgct ggaaaagcag gagaccagtt ggtgccagat 1680 1740 aatctaaaag aaacagataa ggaaaaggga gaggtaggaa aatcttggga ttcctggagt gacagegaag aagaattttt tgaatgeeta agtgataetg aagaaettaa aggaaatgga 1800 1860 caagagagtg gcaagaaagg aggacctaag gagatggcaa atttaaggcc ggaaggacgg ctctatcagc atgggaaact tacactgctg cataatggag aacctctcta cattccagta 1920 acccaggaac cagcacctat gacagaagat ctgctagaag agcagtctga agttttagct 1980 2040 aaattaggta categgeaga gggggeteac ettegageac geatgeagag tgeetgtetg ctctcagata tggagtcttt taaggcagct aatccaggtt gctccctgga agattttgtg 2100 aggtggtatt cacccggga ttatattgaa gaggaggtga ttgatgaaaa gggcaatgtg 2160 2220 gtgctgaaag gagaactgag tgcccggatg aagattccaa gcaatatgtg ggtagaagcc 2280 tgggaaacag ctaagccaat tcctgctaga aggcaaagga gactcttcga tgatacacgg gaagcagaaa aggtgctgca ctatctggca atccagaaac ctgcagacct tgctcggcac 2340 ctgttacctt gtgtgattca tgcagctgta ctcaaggtaa aggaagaaga aagtctcgaa 2400 aacatttctt cagttaagaa gatcataaag cagataatat cccattccag taaagttttg 2460 2520 cacttcccca atccagaaga caagaaattg gaagaaatca ttcaccagat tactaatgtg 2580 gaagetetea ttgecagage teggteacta aaagecaagt ttggaactga gaaatgtgaa 2640 caggaggagg aaaaggaaga tcttgaaagg tttgtgagtt gcctgctgga gcagcctgaa gtgttagtca ccggtgcagg aagaggacat gctggcagga tcattcacaa gctgtttgtg 2700 2760 aatgcccaga gggctgcagc tatgactcca ccagaggagg aattgaagag aatgggctcc ccagaggaaa gaaggcagaa ctccgtgtca gacttcccac cccctgctgg ccgggaattc 2820 attttgcgca ccactgtgcc gcgccctgct ccctactcca aagctctgcc tcagcggatg 2880 tacagtgttc tcaccaaaga ggactttaga cttgcaggtg ccttttcatc agatacttcc 2940 ttettetgat tettetagea ttactegttg gtggetteag agacagtget geeteeteet 3000 3060 gagggaggga aggtaccagg gagaacctgg gaggtcctgg agagggccct gtccagttgg 3120 gtgatcagga atcaaaccag catcggaaag acttcccagc accaagcttg agctgtgtcg 3180 tttcgtggag ggggcagcga ggatgggctt gagctgttga gagatttctg ccctagagat

ggcctttgta tatg	gggggg tggtggggg	acacaaacac	atcagacact	ccgtcctcac	3240
actggcagga cggt	gttcat cgcattctct	tctgtgacca	gcctctaggc	tagcggctgc -	3300
attcgtggtc tgtg	caaaca cttcgtggtt	ctatatatca	gcagcaagtg	tgcaaaataa	3360
aggacctgtt aact	cagatt tctggatatt	: ttggtggtag	cttctagtcc	cagaatctgt	3420
gtttttaaaa tact	acatga cattctgtct	attcaatcac	ctggtggtca	tctttcttgt	3480
actaattaac tgtt	gatgag cattttggat	attctaggag	aaagcctata	atttcacata	3540
gtttctcttt ttca	tgtaac tgtaacctaa	atgtattact	tctgataaaa	ctatatatca	3600
aatgtcactg caaa	ttagtt ttatatctgt	catgtgagat	ttgtcttact	tatttțtctt	3660
ttggttgcca tgga	agttat ggccctgaaa	atcgtctccc	teceettete	ttgctgtaca	3720
gcatgcgttc tctt	tttgtg gttgctggct	gggtactgta	tttaatgaag	tagagaatag	3780
cacttgcaaa aata	cagtct tggtacctag	agactgtcat	gcagatagta	taatttggta	3840
tatgtgctaa tgca	ttgagt agaggattat	tttaacacac	tattttgctt	ttgtatttta	3900
gttaaaataa tcga	tgggga tgtgtagcco	ccccgtgtga	ggatgacatc	accacatttc	3960
tagtttcatg gagc	tcaaga tgtcttgtgt	ctgtgtggct	agatggcctc	tgcttggtaa	4020
tcttattttt aggc	ctaaaa ttcccactta	aatccaaagt	aaaaatggtt	atactgaagc	4080
ataaaccttg cctg	tgtaat tttaaaaaat	taatagagct	gtgcaaaccc	tgttattttt	4140
gtaaaaaaaa aaaa	aataca tatctatata	taatatgtgt	gtgtgtgtga	catatgcaca	4200
cgtctctgtg tatg	tgaagt aggggaggco	ctgggggatg	acctcccagc	ctttatgaat	4260
cttttctcta tgct	gctgga cttcattctt	actggtcacg	cgatgcaggc	ggcctgaggc	4320
cagtgctgta ccaa	gtagaa gacggttcct	aaggacagag	tttgtctgtt'	ttctaacaaa	4380
gaaaaattct acaa	aggagt ggttaaagtt	acaaaggcat	tgtgaatcta	ataaaaggaa	4440
aggtgtcgct taaa	a,				4455

<210> 380 <211> 2333 <212> DNA <213> Homo sapiens

<400> 380 ttttttttt ttctatttc aatcaaattt ctttttaatg aaaactaatt tttaagggca 60 agataccaca gcagaagaaa aacgtcttgc aagaaaagac ttcatggttt acaacgatca 120 aatgtatggg ctatttgcct gattggtggc ctggactcag caagagattc ctttgcagca 180 gaggttggcc acacatetgg gggctgcaac accactgaaa agacagcttt ctaagcatta 240 gtgtaaggca aaaagcagag tgcctaaact tggccatttc caccaagaaa aaaagtttca 300 tagcaacctt ccttcaccag aaaggcttac tttatgatat gctaacagaa cagaaaagca 360 ggttgggaca agatacagac tttgttgcat ttagctatga cccttctctc ccctctgtgg 420 atgtgggcag ggtggggaga ggcaggaaga ggcagtagag ggaaatgaca tttgcactca 480 ggettecege ecctaeceae ecctaecett egeceagaea gaegteggat etatgetgea 540 ccaggggtgg gtcatggagt ccagctaatt gccaggaget gaggcgtgta caagccatga 600 aaagagetge eccaeggeet ecceacatea etgteettea tgeaettgea tetttaagge 660 tgccagette agageteeet ggacatteee tggccaagtg teatecetgt gtcaaatgga 720 tgggatgcca ggtaatcctt gtactccccg tcaatcagtt tggcggcatt gttcctggca 780 aaccagcagt ctatctgctc ttccccgttg taaatcttcc tttgcttcca gaccactggg 840 acttggtggc ctttcactgt taggacggcc tcaggcccct ctcccacctg aaggagcaga 900 gggtgagtga ggttctggct gggccctgca gggtcttctg tgagtctggc atcctgattc 960 aggaactgac ccagcagtcc gtggcagttg ctggaaaggc cctcgctgtt ggcaatgtag 1020 aaacccaggt ggtgtcgctg gaagggcgcc ggctttttgt agaggtggat gaggatgaca 1080 1140 aaggetatgg agceetggat ggtgaeggtg acattggegt tggeagaeac ggaeaectee agececcage tecceaceae caeactetgg ttgcagggga geaceagtet gtecceacea 1200 tccaagatga ctctgctcgg tgtgatctcg agataagatc tctctggctt gttgatgagg 1260 atggtgatag tgcgcaagta agtgcgctgt ttcttgtggc catttggagg ggcgggtgcc 1320 ccaattaact ctccgttcac tgtgacacca gagtccctgt gatcagagac cagcctgagg 1380 atgtccccgg gctgcccatc aatgttgaag cacacggtga gtctgctcag ggggaaatcc 1440 acaacaaagt ggggatcacc atccactgat gttttagaga ttttaattct tggctggtat 1500 ggcttcttga gcaaaggtcc tggctgcgtg ccagctcctc gcacgctctg caccaccggt 1560 tegggteeca tggeageega catgeegtgg geeteeteea ggeeateeat gegtgggaee 1620

```
ggccccctca gcttcatgga ggtgaaggga gtgaggaagc ggtagctcac agccagggcc
tgggcccgct gccgcagccg ctccttctcc ggttcatcgt cactttgcag ccaggagctc
agcagetect ttgtggtgag gtagetecag agaegetega tgtggttggt gteceeetet
 1800
ccatcgcctc caggcctggg gcttcctgtg acatctttcc ctgccttctg aggccgcaca
 1860
ggcacatctg tcttcaggat gatgaatttc ttactgttgc tggcggtgac ctccacgtgc
 1920
aggtgateca getteetgte caccagette ceegcaatga tgateteega geegttgaag
 1980
tagttgggga acagggtett ggtggeetge accaetgage tggggggata ategatgegg
 2040
atgtcagaga ggagcggggt cctgatttca tcgtagaacc cgatgagctg cgagcctgcg
 2100
 2160
tectectect egtgeaegeg eegtgtgagg ceacagttet eeagegacag tttetecage
agectgaagt ecaegtegtt geegatgeea atggtgaaga tgeagaettg geetegggeg
 2220
geeteteggg tgttgttgag gatettgagg gtgtgegtet eeeegaeegt gggettgeet
 2280
 2333
tccgtcagga agacgatgag ggacacgctc cggtctcccg tacgcgtggg cga
```

<210> 381 <211> 607 <212> DNA

<213> Homo sapiens

<400> 381 cctgggcgtg ctccccggg cacctactcc taagagtacc cattacatat cagtttccct 60 caccaagete agreecetet geeetetggt gagteteetg agreecetttg gagtecetet 120 cttgctccca tgcagacaac tggaagcagg agctgacaaa attcatcagc cccgaccagc 180 tgcctgtgga gtttgggggg accatgactg accccgatgg caaccccaag tgcctgacca 240 agatcaacta tgggggtgag gtgcccaaga gctactacct gtgcaagcag gtgaggctgc 300 agtatgagca cacgaggtcc gtgggccgcg gctcctccct gcaggtggag aacgagatcc 360 tgttcccggg ctgtgtgctc agatgtcctg aggttttaca acacctacag cctggttcat 420 tetaaaegea teagetaeae egtggaggta etgeteeeag accaaacett catggagaag 480 atggagaaat tetaggtgaa eeteatggte eecacaceet eetetttgat etetgaatee 540 acaatgagtt cacagcette cetggecaga ceetgtteaa eeteteagga acagggatte 600 607 tacaaca

and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o

<210> 382 <211> 4197 <212> DNA <213> Homo sapiens

<400> 382 gccctgctgc ccctgagcac acggacccgt ccgaaccgcg gggcagtgtg tcctgctgct 60 cectgetgeg gggactgtee teagggtggt ceteacetet getteeggee eetgtgtgea 120 accctaacaa ggccatcttc acggtggatg ccaagaccac agagatcctc gttgctaacg 180 acaaagcttg cgggctcctg gggtacagca gccaggacct gattggccag aagctcacgc 240 agttetttet gaggteagat tetgatgtgg tggaggeeet cagegaggag cacatggagg 300 ccgacggcca cgctgcggtg gtgtttggca cggtggtgga catcatcagc cgtagtgggg 360 agaagattcc agtgtctgtg tggatgaaga ggatgcggca ggagcgccgc ctatgctgcg 420 tggtggtcct ggagcccgtg gagagggtct cgacctgggt cgctttccag agcgatggca 480 eegteaegte atgtgaeagt etetttgete atetteaegg gtaegtgtet ggggaggaeg 540 tggctgggca gcatatcaca gacctgatcc cttctgtgca gctccctcct tctggccagc 600 acateceaaa gaateteaag atteagaggt etgttggaag ageeagggae ggtaceaeet 660

		•				
teeetetgag	cttaaagctg	aaatcccaac	ccagcagcga	ggaggcgacc	accggtgagg	720
cggcccctgt	gagcggctac	cgggcatctg	tctgggtgtt	ctgcaccatc	agtggcctca	780
tcaccetcet	gccggatggg	accatccacg	gcatcaacca	cagcttcgcg	ctgacactgt	840
	aaagacggag					900
	ggaccttgcg					960
	caatgagagt					1020
	ggggggccag					1080
taccccaaga	tgagatccgg	aagctgatgg	aaagccaaga	catcttcacc	gggactcaga	1140
ctgagetgat	tgctggaggc	cageteettt	cetacetete	acctcagcct	acticeagga	1200
tagacaatat	cccagaagga	acctaccaa	tacacaataa	acaddocto	2000003333	1260
agraaatrac	tgccttgggg	agacaccas	ctataacaat	acaggegeeg	ggacc	1320
	aagcaggtct					1380
						•
	agtcccagct					1440
agaaggccca	gctagagcgg	acgggagtca	gtggtcccag	cgggtcagac	ctttgggetg	1500
	ggccaagccc					1560
	ctatgggagt					1620
	gatggcaggc					1680
gagtggaaaa	cgaccgagaa	gagctgcaga	cctgcttgat	taaggagcag	ctgtcccagt	1740
	aggagccctg					1800
	tcctgtgtcg					1860
	ctcagcctgc					1920
tggaggccca	ggaggttgat	gtgaattcgt	tttcctggaa	cctcaaggaa	ctcttttca	1980
gtgaccagac	agaccaaacg	tcatcaaatt	gttcctgtgc	tacgtctgaa	ctcagagaga	2040
caccctcttc	cttggcagtg	ggctccgatc	cagatgtagg	cagtctccag	gaacaggggt	2100
	ggatgacagg					2160
aaggccgacg	gttccgggag	agctgtgtgg	gacatgatcc	aacagaaccg	cttgaggttt	2220
gtttggtgtc	ctctgagcat	tatgcagcaa	gegacagaga	aagcccagga	cacgttcctt	2280
	tgctggccct					2340
	ctccacgccc					2400
	tgcctactcc					2460
	gaggcgggtg					2520
	cctccacage					2580
	ctccacccac					2640
tactcagage	cagaccctgg	tttgaggagg	ccccaaggc	tatagaacta	gagggttgg	2700
cgacctataa	gggcgagtac	tcccaaaaqt	acagtaccat	gagcccacta	gacagtaga	2760
ccttcggctt	cgtgtggact	gctgtggaca	aggaaaaaaa	caaggaggtg	ataataaaat	2820
ttattaagaa	ggagaaggtc	ttggaggatt	attagattaa	ggatcccaaa	cttaggaaag	2880
ttactttaga	gatcgcaatt	ctatccaggg	tagagcacac	castatcatc	aaaatattaa	2940
atatatttga	aaaccaaggg	ttcttccage	ttgtgatgga	daadcacddc	tecaacetaa	3000
	tttcatcgac					3060
	gagagcaggg					3120
aargacatca	tccaccgtga	catcaaccat	cagagatag	tastagagaca	gazattazaz	· 3180
	tagactttgg					
	ccatcgagta					3240 3300
ccccgcggga	agatatagata	tatagasata	gaagttttta	cggggaaccc	teacagaggg	
coggagetgg	agatgtggtc	cougggagee	acticiguaca	egetggtett	cgaggagaac	3360
accepted	agctggagga	gaccgcggag	getgecatae	accegecata	eetggtgtee	3420
	tgagccttgt					3480
	tggtgacaga					3540
	tgtttcgagt					3600
	acaggagcct					3660
greecaggeg	aggetectaa	tggccaaggc	tgtttgcatc	ccggggatcc	ccgtctgctg	3720
accagctaaa	caccaatttc	tteetgettt	tetecaettg	gtttggaaaa	tcacacagtt	3780
rrcaggetee	atctgtttgg	agaaaataca	ttctgaagca	tccccaattc	accttctaaa	3840
aactcatgtg	caggtttgat	aaacaccaga	acagaagaca	gtgatgctgt	attattttag	3900
atttattaca	tagatttgga	attcactttt	ttcatgacct	agaaaaaaac	attccagtgt	3960
tcaactgttt	tatattatta	aagggctttt	aatttgtgaa	cttctgaagg	catgagtgtt	4020
ttctctttct	acttttgtat	atgtgcatgt	tttgtttcct	ctgacttggt	atatgctcat	4080
ctgagtgacg	gatatgtgaa	atttgtagaa	ctggttagtc	aaatggccag	actatttcat	4140
taatttattt	cctcaaatgc	ttttcaaatt	aaagcacctt	tgttagtaaa	cagttaa	4197

```
<210> 383
<211> 1843
<212> DNA
<213> Homo sapiens
```

<400> 383 ctggtattca tacagtgaca gagggagtgt ttttagaaat ttatagctgt ttctaggtga 60 aaacactggt tgatttagct cccttggtaa gagcactgag cagaaagaag ttccctatca 120 aatgggtgtg tggagcagcc ctgttctccc catcccgtag agctccagga agttaaccag 180 ggacttcagc tgcgacctgc agatttctaa gccccctgt tatttctctg tcttttacgg 240 gcctgtgtat ttcagacttg gtggtggcag tcaacggggt ctggatcctc gtggagacat 300 ttatgctgaa aggtgggaac ttcttctcca agcacgtgcc ctggagttac ctcgtctttc 360 taactatcta tggggtggag ctgttcctga aggttgccgg cctgggccct gtggagtact 420 tgtcttccgg atggaacttg tttgacttct ccgtgacagt gttcgccttc ctgggactgc 480 tggcgctggc cctcaacatg gagcccttct atttcatcgt ggtcctgcgc cccctccagc 540 tgctgaggtt gtttaagttg aaggagcgct accgcaacgt gctggacacc atgttcgagc 600 tgctgccccg gatggccagc ctgggcctca ccctgctcat cttttactac tccttcgcca 660 tcgtgggcat ggagttcttc tgcgggatcg tcttccccaa ctgctgcaac acgagtacag 720 tggcagatgc ctaccgctgg cgcaaccaca ccgtgggcaa caggaccgtg gtggaggaag 780 gctactatta tctcaataat tttgacaaca tcctcaacag ctttgtgacc ctgtttgagc 840 teacagttgt caacaactgg tacateatea tggaaggegt caceteteag accteecact 900 ggagccgcct ctacttcatg accttttaca ttgtgaccat ggtggtgatg acgatcattg 960 tegeetttat cetegaggee ttegtettee gaatgaacta eageegeaag aaccaggaet 1020 cggaagttga tggtggcatc accettgaga aggaaatete caaagaagag etggttgeeg 1080 tectggaget ctacegggag geaegggggg ceteetegga tgteaecagg etgetggaga 1140 ccctctccca gatggagaga taccagcaac attccatggt gtttctggga cggcgatcaa 1200 ggaccaagag cgacctgagc ctgaagatgt accaggagga gatccaggag tggtatgagg 1260 agcatgccag ggagcaagag cagcagcgac aactcagcag cagtgcagcc cccgccgccc 1320 agcagecece aggeageege cagegetece agacegttae etageceage geeegaaage 1380 cgtctcttct atgcaataac acaatagtat tactctactg cgatgtacgg aactgcggtg 1440 tgtgtacaca tactcacgta tatgcacata tttatataca ggaagaaaaa agacagacaa 1500 gatggggett ggtttataac caccttgccc tgtcttcctt aactccagaa gccagtttgg 1560 tgaggggtgg gggtgcggcc accaggtctg agetetteet actgtggaag getecagaag 1620 gecetteaca aggagaeece teacetggat ecagtegaet geggggettg ececteatgt 1680 gggctggcct ccatcggcca cgtccaaagc tgtcactgct actgcttcag gctcacatcc 1740 eccegacetg atggegtgee egeeceetet ecctgeggge catgecacag gtttetgtgt 1800 tttgctttag ggacagaacc acttaggaag gaaagaactc ccg 1843

```
<210> 384
<211> 1459
<212> DNA
<213> Homo sapiens
```

<400> 384 ctggcgggcg tgggaaccca ggccccgccg aggcggccag gaggtgagat ggcagctggg 60 caaaatgggc acgaagagtg ggtgggcagc gcatacctgt ttgtggagtc ctcgctggac 120 aaggtggtee tgteggatge etaegegeae eeceageaga aggtggeagt gtacaggget 180 ctgcaggctg ccttggcaga gagcggcggg agcccggacg tgctgcagat gctgaagatc 240 caccgcagcg acccgcagct gatcgtgcag ctgcgattct gcgggcggca gccctgtggc 300 cgcttcctcc gcgcctaccg cgagggggcg ctgcgccgcg cgctgcagag gagcctggcg 360 geogegeteg eccageacte ggtgeogetg caactggtat etgegegeeg gegeogageg 420 getggagget ttgetggegg aegaggageg etgtttgagt tgeateetag eecageagee 480

```
cgaccggctc cgggatgaag aactggctga gctggaggat gcgctgcgaa atctgaagtg
 540
cggctcgggg gcccggggtg gcgacgggga ggtcgcttcg gcccccttgc agcccccggt
 600
 660
geoetetetg teggaggtga ageogeegee geogeegeea eetgeecaga ettttetgtt
 720
ccagggtcag cctgtagtga atcggccgct gagcctgaag gaccaacaga cgttcgcgcg
ctctgtgggt ctcaaatggc gcaaggtggg gcgctcactg cagcgaggct gccgggcgct
 780
gcgggacccg gcgctggact cgctggccta cgagtacgag cgcgagggac tgtacgagca
 840
ggccttccag ctgctgcggc gcttcgtgca ggccgagggc cgccgcgcca cgctgcagcg
 900
cctggtggag gcactcgagg agaacgagct caccagcctg gcagaggact tgctgggcct
 960
gaccgatccc aatggcggcc tggcctagac caggggtgca gccagctttt ggagaacctg
 1020
gatggeetta gggtteette tgeggetatt getgaaceee tgtecateea egggaceetg
 1080
aaactccact tggcctatct gctggacctg ctggggcaga gttgattgcc ttccccagga
 1140
gccagaccac tgggggtgca tcattgggga ttctgcctca ggtactttga tagagtgtgg
 1200
ggtgggggg acctgctttg gagatcagcc tcaccttctc ccatcccaga agcggggctt
 1260
acagecagee ettacagttt cacteatgaa geacettgat etttggtgte etggaettea
 1320
tcctgggtgc tqcaqatact gcagtgaagt aaaacaggaa tcaatcttgc ctgcccccag
 1380
ctcacactca gcgtgggacc ccgaatgtta agcaatgata ataaagtata acacggattt
 1440
tgatgtgaga aaaaaaaa
 1459
```

```
<210> 385
<211> 2408
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(2408)
<223> n = a,t,c or g
```

<400> 385 tttttttttt ttcgagataa acctttttat ttatttatgc ttctccattt tgtttaaaac 60 aacaacaaca accacettaa tgtaactgac agecetteec ceteaceetg cetegggetg 120 ggggtagtta atggggaaat ggcccccagg gtggggctga ccagaagagc ccctcaagga 180 gctcatggag cccaaatccc ctgccctggg gaggggacct gtagtgtgtg acgggagcct 240 ctcccgagcc tctgcttgta ccatcaaaga tgcccttggc caacaagggt caggaagcat 300 gggggaggga tttcggcctc ctctgtccct acccagccca atctcacgag cagggctggg 360 gggtttaaaa agggtggagc gggtggggtt ggctcacacg aaggagtact ggttgttaaa 420 tggcccctgg ggtggccccc ttcctctcca tcacccccct agtggtgact gctgcagctg 480 caccaattgg gggcaccccc gcgtccccac caggacccag gcgcccttgg gcctcttgag 540 ectggggeet atggeeetet eccaatteae eeacegggae cagetaaace acggggaeca 600 gcctcttccg ggacccctcc acccgcccgc tttctctttc tcttgcctct ctttggctgc 660 tgeggetgee tnttgecege cactteetgg egeceetega egectettte tteeceagge 720 tgtgggggat ctgtccatga agggggttca gggggctggg gtgggtcatg ggaggtggtc 780 ggttacacag tcactcgctc cgaagggcat gagggtgcag gaggcattcg gggtggcatc 840 catchecte geacacece geatggetee cageetgete ceggeeteac ttettgggtg 900 cacgggcacc tectecectg cagacetget etgetcacce tgetgteget gggaggatgg 960 gacatagetg acaaggacaa catcactgga gcctcccgac tccaaaggga tggggtgcac 1020 ceggaagtge tegageatat egaaaatgga etggaaceae aggtgetgga eeeggeactg 1080 accetecteg tteagegaca aaegeaggtg ettggeettg ceetggaagt tgaaggtgag 1140 gacgtattca eccegecttg teteactetg gegeaceagg aagacacegt gggagecagt 1200 geogecagte ageaceaact gtgcagcett gagecgagag ageatecegt ggaaceaagg 1260 ataccetgag aggggetggt ecceetcace geeetetgge tecceeetgg aacaggaagg 1320 accetgtgge tgttteegga gtgteeaagg gagggtaggg ggctgagagg ggatgaactg 1380 1440 tecctgctgg gggtccctct tcaatgggga tgcggggggg caactctggg ggaagcagtt 1500 ccatcgagtc aaaatgggag gcggcaatgg aggcagagct gggggagatg gatgccgagg 1560 ggcggtctga gaggccccca tatgccccct gcgacaggcg gtcattgctc tcgctgggtc caagcagcag gtcctggctg ggtagactct ccgagtgatt caggcaggac agctccaggc 1620

```
tgtctgtgtt ctcccttgta aggaatgagg tcccaggggc cagagggagg gtcatggggc
 1680
ggggactggt agcagggcag ggtcctgggc tcaggcattc ttggatgtca gacacccagg
 1740
cetteacatg etgggeater actgtetera tgatatacte ggatggacet tecacettaa
 1800
ccacaaacgt gttctcccgg tcaggcatct ccagggctgt ggttgtccgg acgtctgtga
 1860
tagaagagca ggggatgctg agtcggggcc gagaggcctt gggtggtaca aagaactcca
 1920
ggcgacttcc tectectect tetectteae ttegaageag caggegaeae ttetgecaet
 1980
 2040
gaggetgeec tecteceet gaaggaggee cagecaceec tecteceegg eccaeteegg
ctgggtcagg ggctgcctcc tcagccccca tgaaactcag cagctcttcc ctctgcacca
 2100
tecetgetee ateetteaag gegeeecete eeegaetgag teteageete teaaaaeggt
 2160
gagtecatet tteeccaggg gaegtteeat caetgaecag teecetaeca aeggteecag
 2220
ccccgccaga ggagttggag ttgctgtttc cacctaagac tggggggcct gacgaggtct
 2280
ccaggggccc agcggaggag ggagggtcaa cggtcccccg ccactgcagg atgccacgga
 2340
ctgagcctcg gacagagcga cccactgaac gcagggaaaa gcgcttcttg agcttcgqct
 2400
tggaggag
 2408
```

```
<210> 386
<211> 2204
<212> DNA
<213> Homo sapiens
```

<400> 386 ttggggaacc cccagggttt tcccatcccc ccggtgtaaa accgcggccc aggaaatgga 60 ttttgggggc cccataaaaa aacttttgcg ttgccagccc ccggacgtta acctggatcc 120 tttaaaacgg ccccccttt ttttttttt tctttaacaa aatttttatt taataaatgg 180 ttaaaatcgc agtgccaaaa atacattgac atttagcaat ttcactgaaa ggaagaaact 240 acagaatgca cggtttcaga aagctatttt aagttattta caaataaagt atctaaaact 300 caaaaacagg ctctgtatgc tatatctagt ttatcccttc ccgaacaaaa tttctgttat 360 ttgggcaaat tcttaaacca tggtttaaac cgtaatggtt acaaaccaca aacacatcca 420 tccagagact gaaaccgttt ctatccggtc agtggcaaaa ctgttgaaag ggcaatagtt 480 gaagetgttg ggttttatat agtgtgaact etgataaata tteetaceag gaetaaaaca 540 cagcacgett tgegggcatg getgacteac aaaggttgta acaaacaaga actactette 600 actogacace atggetcaga ggccacegag aagcacgagt gactgacage teetetgett 660 acaaacgaat gaaacccaaa gtggatgtcg ttctcacagc actgaaagtg cttcaggact 720 cacactgatc caatactaac tttcttccct attttacaca tatttttcta ctgtccagtg 780 gaaatcattt tctgttttgg ctaaacaaca aatactagtt tataacagga atggtaaaat 840 ctgtgagaat tctgctcaat ttaatacaag atcactactt tctttagaat ggtttctgcg 900 tgtttctacg tcaccctctg tatttttagc ttccagtttc ctggtaagga ataagttctc 960 cttcccagtc acactcgggg tcatttacac gtttctggga tgcccttgct cgtccatgga 1020 ggecaggtgc gtgcagtgac teactetgcc tettecetet tetcaggacc agtececgaa 1080 cettetgeet tgeagateet cetgttteeg ceacactete gegeteggaa gegageteet 1140 ggatcataca gctgcaaggc tggccggtcc ttgtttgcca gtcgctcttt tctgggtgct 1200 ggactgtegt cacacetetg egetetteec agteteteca tggceteece eggageeceg 1260 ctgtcctggc teccettett cectetgtet tggccaggte etttececca tetetgetea 1320 tecteactee ttetggaaag eegtteagge tegtggtgag etetgtgeet eetgeegtea 1380 tccacatggt atctttgtgc ttcagattct tgttcttgag atctctccac atccctgtgc 1440 tetttateae tgeegetgtg tgaegtetee tggggeteet ceagegagee tteeatggge 1500 ctggctttta cgactgcacc gggggcacag gattcctgct tgccacctcc agtatcaatc 1560 teeteteete tttettttgg tttetetgtg gttggtteet eteeettte tggtttetta 1620 agaagettaa teettaette tttetetgea attttettet gtttatetgt etetttttt 1680 ttgcatcttt cttcttctt tcttcttctt ttttcctctt cccgcaaacq tttcttttct 1740 aactetetee teeteegtte ttetegette tettetegaa ttetetgett ttetaatttt 1800 ctatttttaa tatattccaa aagaggtgtg qttcttctag caatgagctc tcttqtcttc 1860 gestecatet secseageag agteteaggg ttggsactgg tettetette stecasacag 1920 taggtttcta aaaacttctt atattctgga tctttgctgt caaggaagat atatccatca 1980 aaacgatctc taaaaagaag gatgtcatca ggattcctaa aattaatgta tgctcttgag 2040 tagagatgag gataaagact caggtcggcg gcgaagaact cgaagtagtc gtgtgctggc 2100

agegggegea getgeteete eagetgetee ttggtgagge eeggaggeag geggeggatg 2160 accacetgeg gggagegege ggeegtteee aceggggeae gaaa 2204

<210> 387 <211> 798 <212> DNA <213> Homo sapiens

<400> 387 tttcgtagca aacaggtttc acgaccactg ctctctggag tcttattcct cagagtatga 60 gcccttgacc aaggagcatg gaatgcatca cctatgtttg aacaagggcg ccagatgacc 120 tctgcggacc cagggtttgg gaagtgctga tgtggagcca caggacttgt tttagggcgt 180 gtggggcgtg tgtgtgagtg ggcttctgca ggtgggcagc cagcgggcac aggcgtggag 240 agcatggtca cccatggaga caccgctcac ggggactttc ctttggcccc acatcccgca 300 gggtctcttc ttcgatgatt cctatggctt ctacccaggc caggtgctca ttggccctgc 360 caagatette tecagegtee agtggetgte aggtgteaag ecegtgetea geaceaagag 420 caagttccga gtggtggtgg aagaggtgca ggttgtagag ttgaaagtta catggattac 480 caagagtttc tgtccagggg gcacggacag cgtcagcccc ccacgtctgt catcacccag 540 gaaaacctag gcagggtgaa gcgtctcgga tgctttgacc atgctcagcg gcagcttggg 600 gagcgctgtc tgtatgtctt cccagccaag gtagagccag ccaagattgc ctgggaatgt 660 ccagaaaaaa actgcgccca gggggagggc tctatggcca agaaggtgaa gcgcctgttg 720 aagaagcagg ttgtgcggat catgtcatgc tccccagaca cccagtgttc ccgggaccat 780 tccatggaag acccagac 798

<210> 388 <211> 4530 <212> DNA <213> Homo sapiens

<400> 388 tttcgtgaca gtagcccctg ctcggccttc gagttccact gcctaagtgg cgagtgcatc 60 cactccagct ggcgctgtga tggtggcccc gactgcaagg acaaatctga cgaggaaaac 120 tgcgctgtgg ccacctgtcg ccctgacgaa ttccagtgct ctgatggaaa ctgcatccat 180 ggcagccggc agtgtgaccg ggaatatgac tgcaaggaca tgagcgatga agttggctgc 240 gttaatgtga cactetgega gggacecaac aagtteaagt gteacagegg egaatgeate 300 accetggaca aagtetgeaa catggetaga gaetgeeggg aetggteaga tgaacceate 360 aaagagtgcg ggaccaacga atgcttggac aacaacggcg gctgttccca cgtctgcaat 420 gaccttaaga teggetaega gtgeetgtge ceegaegget teeagetggt ggeeeagega 480 agatgcgaag atatcgatga gtgtcaggat cccgacacct gcagccagct ctgcgtgaac 540 ctggaggtg gctacaagtg ccagtgtgag gaaggcttcc agetggaccc ccacacgaag 600 gcctgcaagg ctgtgggetc catcgcctac ctcttcttca ccaaccggca cgaggtcagg 660 aagatgacgc tggaccggag cgagtacacc agcctcatcc ccaacctgag gaacgtggtc 720 gctctggaca cggaggtggc cagcaataga atctactggt ctgacctgtc ccagagaatg 780 atetgeagea eccagettga cagageeeac ggegtetett eetatgaeac egteateage 840 agagacatec aggececega egggetgget gtggaetgga tecacageaa catetaetgg 900 accgaetetg teetgggeac tgtetetgtt geggatacca agggegtgaa gaggaaaacg 960 ttattcaggg agaacggctc caagccaagg gccatcgtgg tggatcctgt tcatggcttc 1020 atgtactgga ctgactgggg aactcccgcc aagatcaaga aagggggcct gaatggtgtg 1080

	cgctggtgac					1140
ctcagtggcc	gcctctactg	ggttgactcc	aaacttcact	ccatctcaag	catcgatgtc	1200
	accggaagac					1260
ttggccgtct	ttgaggacaa	agtattttgg	acagatatca	tcaacgaagc	cattttcagt	1320
gccaaccgcc	tcacaggttc	cgatgtcaac	ttgttggctg	aaaacctact	gtccccagag	1380
gatatggtcc	tcttccacaa	cctcacccag	ccaagaggag	tgaactggtg	tgagaggacc	1440
	atggcggctg					1500
	ttacctgcgc					1560
	agggttgagg					1620
	acageegtaa					1680
	ggggccaccc					1740
	gacgttgctg					1800
	tcctccccat					1860
	tggcggctta					1920
	gaggatgagg					1980
						2040
	gtcagtctgg					2100
	ccttcctgag					
	tgccagagct					2160
	cccatgcaat					2220
	aacaggcccg					2280
	ctccaccgtg					2340
	agaagcaagt					2400
	cctcatccac					2460
	ctatgcaagc					2520
	ccacccagtg					2580
	cgtcggaaat					2640
	atgccacttc					2700
	tgagacaccc					2760
	ggacaccagc					2820
	tgcactttct					2880
	cactgttttc					2940
	gaatgccggg					3000
	cgagaactgc					3060
	gcctccaage					3120
	cggtgaggcc					3180
	ggtggatcat					3240
accccgtctc	tactaaaaat	acaaaaaatt	agccgggcgt	ggtggcgggc	acctgtagtc	3300
ccagctactc	gggaggctga	ggcaggagaa	tggtgtgaac	ccgggaagcg	gagcttgcag	3360
tgagccgaga	ttgcgccact	gcagtccgca	gtctggcctg	ggcgacagag	cgagactccg	3420
	aaaaaccaaa					3480
gccaggcatg	gcgaggctga	ggtgggagga	tggtttgagc	tcaggcattt	gaggctgtcg	3540
	ttatgccact					3600
aaaaatgaat	ttggccagac	acaggtgcct	cacgcctgta	atcccagcac	tttgggaggc	3660
tgagctggat	cacttgagtt	caggagttgg	agaccaggcc	tgagcaacaa	agcgagatcc	3720.
	aaaaccaaaa					3780
	tgggaggctg					3840
gtgagccatg	atcgagccac	tgcactccag	cctgggcaac	agatgaagac	cctatttcag	3900
	ataaaaaaat					3960
gttctttctg	aaatcgccgt	gttactgttg	cactgatgtc	cggagagaca	gtgacagcct	4020
ccgtcagact	cccgcgtgaa	gatgtcacaa	gggattggca	attgtcccca	gggacaaaac	4080
actgtgtccc	ccccagtgca	gggaaccgtg	ataagccttt	ctggtttcgg	agcacgtaaa	4140
tgcgtccctg	tacagatagt	ggggattttt	tgttatgttt	gcactttgta	tattggttga	4200
	acttatatat					4260
	ctggttgctg					4320
	tgaaatgcct					4380
	ttttgggaga					4440
	ttttaaacca					4500
	ttcttaaatg			·		4530

```
<211> 2343
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(2343)
<223> n = a,t,c or g
```

<400> 389 ttttttttt ttatgtggat aatatttatt tgtatcttat ctatagaaca aatatttaca 60 gatacaaacg gaatcacagc aaagttgcta taaaaccatc cagacctctc gatggccact 120 tetgaaaaca tecaeggtga agggeaggge caggeetgge tgtggagtgg geeagetgag 180 tacctgggcg tcagccaagg gaaatggttg gggattatgg cttcagcact ctgccggagc 240 acattectga gegetgacaa egtggagece teacegecee cacetaceee aaceteaatg 300 gggaaggaaa ggggcctgag ctgggcaggg ctgcccgggc tcactatgtg cctgctccag 360 gagtccctgg cccctgtgct ggcaggagca tccctgagct ggaccgggag gcctctctgg 420 cctggggctg ctccctgccc ggcaggctgc tgtttggcag ctggaggtgg caagagctgc 480 tggtgctgcc agggcgtgtt ggccaggaat gagctcccag ggcagccctg aggaaagggt 540 cttaggaagc gcctcccagc tcactactag gagctgggga ctgtcagtgc tgagtggggc 600 tggggtacag gagcacetge eteteettte tttggettag aagtggggaa ggaagggeca 660 ggaaaaggga ccaaagccgc cccagccttg gcccctaggc cgcctgggga ctgtgtgtgt 720 getgaggggg cagtgggagg tgggcagete tggagtteec tgeaceetgg gateettggg 780 ctgctctcac teccggggtc ccagcagggc aaggcctctg cttgggacca gtgctgctct 840 tectegetge ttactecagg aggtgaaggt gacagggegg caaggagagg taaccacage 900 atggetgggg acaggegeta cactgggece eggacecage acagggatea cagtgteggt 960 ctegegeaca cacetetgge cacatgtgea caceacatac atecacaege acetecetee 1020 tgtctggcgg gaggctcatt ctctctcgca gccactcgcc ctctctgcct ctcacatatg 1080 cggtcacaga gtgaatccga gcatcttatt gctgcagggg gcaggggggt cggcatcagg 1140 gaaagttaat ccacgaagag cgagaacagc accattacca cgatgcccgc acagagcaga 1200 agcagetget geagggageg ceaegggtee tettetteea agaggteagg gageaegtte 1260 accaaggcga tgtagagaaa gccgccagag gtgaagggca ggacccaggc tgccgtctcc 1320 tetactecet tgggggactg ggtacagatg gegaagecag egeceagtag geececage 1380 gctgttgaga gttgcagctt ggctgcgctc catcggtcaa agccggcccg gagcaggatg 1440 gcaaagtcgc ccacctcatg ggggatctca tgcaggagga tggccatggt tgtcaggagc 1500 ccgatcttct tgctcacaag gaagctggca gccacagcca gcccgtgggt gaagttatcg 1560 atggtgttgg ccagcaggtt gaggtagccg ctgactttga tgctccggac cacggcaccg 1620 aggccgggct ctgcagccgg ctgggccaga cagtggcctc cattgagcgc ggcggcagca 1680 geagtggggt ctttgttggg ggcctggctg gtcccctcct ccttgctgtc caggaacatc 1740 ttetecaacg ccaggaaggt caggatgeca gcaatgacec acageeccag etgttgetge 1800 tgctgcaggc tctgcccctc accaccaggg ctggcgctgc acgtgtaggc ccaggcttcg 1860 ggcagcagat gcagaaacac attgcccaag agtcccccca gggcgaagct gagcagctgc 1920 ttcaggcgcc aggccccagc ttctgagcgc agcatggtcc ccatctctag gggaatgaca 1980 agcaacggga agaccccact gagccccacc atgagggaac ccaggaggga gcagatccag 2040 gtgtccagcc gctctccgct cagcagagcc ccccaggact cgctttcctt gttgtccagg 2100 cgacaggccg tegcagtece ceggeteegg agggeegget gggaaceece agecetteee 2160 aagageteea gggeaaggge agtgaggaag aggageettg ggeeegeeat geeacageea 2220 gggcagggac atccaggcat gccacgtacg tgcggcggcg gcggcggcga tccgggcggc 2280 cccagcccgg gaattcggtn ncggtcgtcg tgcgtacggc ttcaatnatc aaanngnggc 2340 acg . 2343

```
<210> 390
<211> 1325
<212> DNA
<213> Homo sapiens
```

<400> 390 gggaaagtga gtgctggcca ggctggggcg gacagaacac ttcgacgggc tccggagccc 60 agattcagcc aggaacccac aggcaactcg gcctaccccc agctgaggcc ctttttggac 120 ccgcagggga gagatettaa acccagcget ttggteccae ccacccgete ccacactggg 180 aggagaccat ggctccacac acagcccctg ccaggcccac aggggcgggc atgggggccc 240 acctgcctcc tgcatgtgtg gacagggtcc tggagagtga ggagggccgc agggagtacc 300 tggcgtttcc caccagcaag agctcgggcc agaagggcg gaaggagctg ctgaagggca 360 acggccggcg catcgactac atgctgcatg cagaggaggg gctgtgccca gactggaagg 420 ccgaggtgga agaattcagt tttatcaccc agctgtccgg cctgacggac cacctgccag 480 tagecatgeg actgatggtg tetteggggg aggaggge atagacegte eggageagtg 540 gggcctctgc cagcccttgc agctgcagcc catccctggg ccatgtcccc tccatcgagt 600 geceggtget tgggggagga gggcagggac agggagggag ecacagteag tgecegggaa 660 cctggaagct gcgctgctct gcgcctctgg gcctcactgt ggacagagga gtcaggcccg 720 ecccaggage etccagetge ctaaccagtg ccattette acaacacgat tttetacaaa 780 totacagoac aaccgagttt gtaacccgtg ggttagtatg aggaccgggt tcgtgtactc 840 tetgtatete etettaaget tegteeaggg ttetttattt ttgtetgetg ceaatgtegt 900 ctcgcatgcc tgcaccctcg catgcacgct gcccgcatgc cacgtgccac gctgtagcca 960 cagacccctt gctcgggcct cacccaaggc caaactccaa acacaatcag aaccagccaa 1020 agaagcactt cctgggcacg gccaccagct ctcccgcctc cagtgtgggc cggctcctgc 1080 agggtccgag ggctgcatct ctaccagcca gcccagggct cttcccaggg tctcgcattc 1140 aagggcaatt acattttaaa aagaaaaaca gaaaaaggtt aatcacaaaa ccaaccctca 1200 cttcacaggg tctgtaagtc actcatagaa ctttgctctt cccgagacag ggtcccttcc 1260 ccagctcagg cacaacagag tctggcaggc tctggcaccc tgggcctcct ccgggagcct 1320 1325

```
<210> 391
<211> 1458
<212> DNA
<213> Homo sapiens
```

<400> 391 ttttttttt ttcaggctta aataacaaaa tatatttcag atatgcacag ttttaactga 60 ggactacaca agcettecte gggetgeagg ecegeegeee teceagtggg atteacagee 120 cctgcggagt ttgtcctcac gcacaccaca cacgatcggg tataaaacac attctataaa 180 cacgttctga tgcaaactgt gtgtccataa atatatattt atgcaagttc ctcccaccca 240 ctgcagggcc gtacagctct ggggacagga ggtcacagcc gactttaaac cacaggttaa 300 gtagaaggtt gcaggtcaaa tagaagttcc cgtgtgattg catcacccaa cggcactgtt 360 ctgtcatcag gaaatgctga gtgcccgccg tggccgggtg ggcgcgggcg gtggtcagac 420 gctgctctgg agctggctat ctgtggcact gtcaggggct gaggactggc tgggcagaca 480 agtttccagg ccatctgaag actccgacag gggcttgtat aagaagcagg ctatggcaaa 540 gaagaggacg cccagcacct tgtacaggag ccccatgatg agtatgtagc ggctcatggc 600 cgaattetgg tacaccaage aggageeetg etggeeacae tggteetgee acageagaea 660 ggccttgtcg atcacccagc cgaaggcgat gggccccggg atgcccccta gtattctaac 720 tacaatccac tggattccca gggcaaagga tctctgaggg tcacggacac atcgtagagt 780 tgccgttagt gcaggaatgc tgctgaggaa tgtaaagaaa attacaacga atatgaaaac 840 cagaaggagg ggctttctct gacaagttga agtgcatttc cctgcagtgg catggccaaa 900 accagaggaa agattctgag ggatacagct acagtctcgg tacacctggg aagcccaaca 960 atageteega ttacaagggg aaggeaeggg ggeeeettee cagggteeag gggaggaeag 1020 gggcggtagg cagcggctcc actcaccttc tggccgtcca cattcgtctc cgtggctgca 1080 gggcaccctg cgtggcacag tgagaagtac atgaggccgt ccgagccgca cacagggctg 1140 tagtgttetg getggeaget geaggeageg ttgeagggag eegttaggtt caggtggeet 1200 tegggeagga ggeteeegee gtagetgget gtgaegeeeg ceatgggeac aetggggeag 1260

```
tgcagtgaga agacgaggat gcccagcagg ctgacaacgg tgcagaacag gcagaacttg 1320
atgaccgcgg agccccggag cctgagcttg ttcacaaaga agccgcccag gaaggtgccg 1380
ccaccacccg ctggcaccac caggtaccca aacaaggtgg cagcttctga ggcactcagg 1440
cgaattccac cacacgga 1458
```

```
<210> 392
<211> 1667
<212> DNA
<213> Homo sapiens
```

<400> 392 ttttttttt ttctatgtac aaaaacattt taattgaaat acctgtataa aaaaatatga 60 tetecagaca teteaetttt gaactgaaag aacceccate tgcgatgeet geacacaceg 120 cattcacaca aacacaggta ctgaataaat taaacgctca ggctctggcc ccaccccagc 180 tttcagagcc cacaagcaga ctgtacaaag tcaataattt aaaacccaaa ccctgggcac 240 agtgcctgga agtgtcaggg tcacccactc cccttaagtt agccactata catgttcatc 300 ttctgacagg cggggccagg acagacgcca ggcacaggaa tcagggcctg gggtccctgg 360 accacageca ecceetecee tgeeteceea etgteceetg gggettggga gaggeagaet 420 gctcagagga aataacctca acaaataaat taaacaataa atagccccgg tgggccgagg 480 gcacctccag ggggtcacac cataaataac agagttggcg gcgggtacgg ctcgcgtggg 540 cgggcgggcg cggaggccag gacttgcatt gtgtgtgcag gacgtgccca gacgcacacc 600 gcaggactga gggcgggagg tgggcttggg accetgegee ggeggaaaga geteegggtg 660 ggcaggcaga tgggaaggcc gcctccggac acagcagcac agaggggcgt ctggggttca 720 agtatecace cagggcagge gggacetega ceggagegte tttggacaga cagagettga 780 gaaaaccaag tocogoggga ccagogttca aaaggcactc aaagcgaagg tcaccagggg 840 teagaggtea etgetteege aggaggagae ggeecaegea ggaaaaagte agggtetggg 900 ggcgtcccag gtctggccaa ggcaggtggt cccctagctc ccagtcaggt gcagctcctc 960 acaagetete getgetggae gtggtgetgg ceaegteate agggtegagg gtgcacagee 1020 gcaggtcaca gctctccggg gcgcccccgt cagcccccag catccaggga tgggccgcaa 1080 tetgatecag egaeggeege tetgagggee geagggaeag geaecaeegg ateagetget 1140 ggcactctgg agagaccctc ctccggaaga gcaggcggcc tcggaggatc tcctcgtcct 1200 getegaaggg gatgteecea cacaccatat cgtagagaag cacgeecage gaccacaegg 1260 tggccgagcg cccgtggtag cggtggtagc ggatccactc cgggggggctg tacactcggg 1320 tgocgtcgaa gtcggtgtag accgtgtcct tgagcagcgc acccgaaccg aagtcgatga 1380 gettgagete teeggagege aggteeacaa geagatttte gteettaatg tegeggtgea 1440 cgaccccgca gctgtggcag tggcgcacgg cggccagcac ctgcgcgaag aaagcggcgc 1500 gccagcggct cgtccagggc gccgcgctcc gtgataaagt cgaagatggt cctagcgccg 1560 gctcgggccg ctccagcacc agcaggaage cgtcgggccg ctcgaaccag tccagcaggc 1620 ggatgacgcc gcgcgccgc cccggcgcgc ccaccttgcg cagcagc 1667

```
<210> 393

<211> 1938

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(1938)

<223> n = a,t,c or g
```

```
<400> 393
gtggaaagaa cagtcagaaa gcctctcctg tggatgatga acagctgtca gtctgtcttt
 60
ctggattcct agatgaggtt atgaagaagt atggcagttt ggttccactc agtgaaaaaq
 120
aagtccttgg aagattaaaa gatgtcttta atgaagactt ttctaataga aaaccattta
 180
tcaataggga aataacaaac tatcgggcca gacatcaaaa atgtaacttc cgtatcttct
 240
ataataaaca catgctggat atggacgacc tggcgactct ggatggtcag aactggctga
 300
atgaccaggt cattaatatg tatggtgagc tgataatgga tgcagtccca gacaaagttc
 360
acttetteaa cagettittt catagacage tggtaaccaa aggatataat ggagtaaaaa
 420
gatggactaa aaaggtggat ttgtttaaaa agagtcttct gttgattcct attcacctgg
 480
aagtecactg gteteteatt aetgtgaeae tetetaateg aattatttea ttttatgatt
 540
cccaaggcat tcattttaag ttttgtgtag agaatataag aaagtatttg ctgactgaag
 600
ccagagaaaa aaatagacct gaatcttcag ggttggcaga ctgctgttac gaagtgtatt
 660
ccacaacaga aaaacgacag tgactgtgga gtctttgtgc tccagtactg caagtgcctc
 720
gecettagag cageetttee agtttteaca agaagacatg eecegagtge ggaagaggat
 780
ttacaaggag ctatgtgagt gccggctcat ggactgaaac tcagcaggga ctctgggaag
 840
tetgaccaag ttggagcaga tggtttgtta ettgaatete caaacaetta gttgaatttt
 900
960
ttgcccttaa ttccatttct cccagctacc atgtactatt gtttaatgtt cagtttggtt
 1020
tcatttttaa ttttatggtt ctgtgcgtcc cccatattta atatttatta ttcaaacgca
 1080
tgcatataga cagagcatgc agtgaagagt attaaaaaaa aaagcttagt agatttggtg
 1140
cagcttttga aacttaggtt agacgtgaaa ctgaaataca ggtttcaaat ttacttcccc
 1200
agaacctaaa aatgcaagat gtttttgata ccaaccataa cctcctgaga atagtaagtg
 1260
ttcccccggg gcattaaggg taagcctggg ggtggttttt gaccaaatcc cagtccctgt
 1320
tttaccttta cccagcggca actttcaccc aacttcccct ctcccaagtg agtcttagag
 1380
agtgcagtcc cattcctttt tgaagggtga gatggaagtg gtcgtaaact gactggtgtc
 1440
ttctgtttct gggaggcaca cttgtaaggc acagtggctg ctttgggagg agtaaggtgt
 1500
gagaaaaagc aaccttggag gccagtaaca atgacagatt tcaatcgtgg ttttaggaat
 1560
tataatacgt ggcatacatc tcataaaggc ttttgctggg atattgaatt ccctgaattt
 1620
ttctgttttc gacctgttaa aaaaatctta acatccatca aactagtggt caaacaaatg
 1680
agaatgcage tgttctcaga gtaattttta agttgtcatt tccctgtgtt gcctcccaat
 1740
tggaagaagt taaggtttac caaatgcatt tctatttcaa gggtatctga aacgtaaaca
 1800
ttcaaaactg aaggctgact gacttnagat gttttgcagg tggctggaga gaacagggaa
 1860
ggtaatagag acacacttag teccatggga agegeageae egttgtaggt tettteteet
 1920
gtcccattag cgacctca
 1938
```

```
<210> 394

<211> 1283

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(1283)

<223> n = a,t,c or g
```

```
<400> 394
gatttcagtt gcctgaaagc tgtaagtctg cttttttaaa agagaaattg gagttaagca
 60
gacttttcat tttttgatca tgaccctgga aagagaaata tatttgacat caaaactcag
 120
cacatatect tggtetatat atacacatga aagttteata aaacaataca etgatatttt
 180
ccatgctgta ttctatttca ttttttaaaa tgctggttgt atcccattaa actggtttca
 240
aaataaatat aacatgtaca caacaacaac aaaaaaaaac actgggttag agggccagta
 300
ageteagega gtateageaa etgagaette ateettgtet cacaaggaet aaaaagagaa
 360
taatgttete attatgtggt teaatgeeae acceatgtat etgagatata catgteacaa
 420
tetgggagaa geetgteete aatttaettt aaataeeeaa ttetgeetag aacatgaatt
 480
```

agacacatag	taagctcttg	agtgaagtgc	agatgataat	gacacgatca	cataccactt	540
aaaaatatct	taacaccttt	acttagatct	catctcatac	ttgtagcatt	tcttcaaatt	600
tactttgaaa	aaagagcttc	actgtgtgtg	gttgtcatac	acattcttct	acccaaccat	660
ggacctcttt	tttcctctca	ggcgcacttc	atctaatttt	tttagcactg	gcctggcctt	720
tttggaggag	gtggagtagc	tcttcagaaa	ggcttcaaac	acagtttcag	tgttgggatg	. 780
ggtactgagg	aaggccttct	ccaggacata	gaggtctact	cccttatcct	ctggaagtgc	840
tgaaatgaaa	ctcagcccaa	agtctatgag	cacaatgttc	agctgttcca	ggggggttt	900
caggagcatg	ttggaggtgg	tgagatcacc	atgaatgagg	tcttcatcgt	gcattcgage	960
caaaacctgc	ccaattgtct	tggctaagtt	ggagagaccc	tggggagttt	ttttcagtct	1020
ccatagtgga	ctgaatataa	tctcgaacag	tcactgagcc.	ttcaatttct	tccatatata	1080
agcagttgga	agcatagtcc	acaaaaaaga	caactggggc	agatattcca	gegeggegae	1140
agcggaggag	cgcccgggcc	tcctgcaccg	tccgccgtct	gccaagccgc	gcctccagcg	1200
ccgggtgccg	gtagccttgg	gaagcggtgc	ttnnttnenn	ggccttgcta	gccccctggc	1260
tcattnnccc	cggcccggtc	tcc				1283

<210> 395 <211> 2149 <212> DNA

<213> Homo sapiens

<400> 395 acgagectge gttttccgge cagaggacat gatgcagggg gaggcacace ctagtgette 60 ccttattgac agaaccatca agatgagaaa agaaacagag gctaggaaag tggtcttagc 120 ctggggactc ctaaatgtat ctatggctgg aatgatatat actgaaatga ctggaaaatt 180 gattagttca tactacaatg tgacatactg gcccctctgg tatattgagc ttgcccttgc atctctcttc agccttaatg ccttatttga tttttggaga tatttcaaat atactgtggc 300 accaacaagt ctggttgtta gtcctggaca gcaaacactt ttagggttga aaacagctgt 360 tgtacagact acgectecae atgatetgge ageaacceaa ateceteceg etecacette 420 cccttcaatt cagggtcaga gtgtgttgag ttatagccct tctcgttcgc ccagtaccag 480 teccaagtte accaceaget gtatgactgg ttacageeet cagetgeaag gtetgteete 540 aggtggcagt ggttcttata gccctggagt gacctactcg cccgtcagtg gttataataa 600 gttggcgagc tttagcccct ctcctccttc tccgtaccct accactgttg gaccagtgga 660 gagcagtgga ttgagatete getacegtte tteacetace gtetacaaet cacetactga 720 caaagaagac tacatgaccg acctacgaac tttggatact tttctcagaa gtgaagagga 780 gaaacagcat agggttaagc tggggagccc agattctacc tctccttcca gcagtcctac 840 tttctggaac tatagtcgtt ctatggggga ttatgcacaa actttaaaga agtttcagta 900 teagettgee tgtaggtete aggeeecatg tgetaacaaa gatgaageeg ateteagete 960 taaacaagee geagaagagg tetgggeaag agtggetatg aatagacaae ttettgatea 1020 tatggattca tggacageta aatttagaaa ttggatcaat gagacaatat tagtgecact 1080 tgttcaagag attgagtctg tcagcacaca gatgagacga atgggttgtc cagagctaca 1140 gataggagag gctagtatta ctagcttgaa acaagctgcc ctggttaaag cgcctctcat 1200 teegaetttg aacacaateg tteagtatet agaeettaet eeaaateagg aataettgtt 1260 tgaaaggatc aaagaactat ctcagggagg ttgtatgagc tcatttcgat ggaacagagg 1320 tggcgacttc aaaggacgaa agtgggatac agacctgccc accgattctg ctatcatcat 1380 gcatgtattt tgcacctacc ttgattccag attacctcca catccgaagt atcccgacgg 1440 aaaaactttt acttctcagc actttgttca gacaccaaat aaaccagatg ttacaaatga 1500 gaatgttttt tgcatttatc agagtgctat caaccctccc cattatgagc tcatctacca 1560 gcgtcatgta tacatacctg ccaaagggca gaaataatat gtttcataca ttgttgatgt 1620 ttctctacat cataaagacc aaagagtcag gaatgcttgg gagagttaat cttggtctat 1680 ctggtgtgaa tatattgtgg atctttggcg agtagcaagt catatattta attctgacat 1740 ttagactatt tcactgaacc agaagtcgaa actaaacatc tctgagccac tgactcttct 1800 gaaataaaat acacatgggt gtatgttaca gactctttag atttaacaga aaatgtagct 1860 gttatgaaat gtaattgtaa aaatatgtcc cgtatcttct atatcgagac attgccttta 1920 attttatate getttteaga aattteagtt gaetacaaaa etgeaaceet teggattttt 1980 attgactcaa aatagtgcca ttccccttaa tgaaatagat tttgagtctt tttttcattg 2040 taacccccaa atgagaatca tctacctgat tcttgtacca aaaaaaaatt tttttcagtc 2100

ttttttttt ttaaagaggg tttttgccaa cccaaactgg agggcaggg

2149

```
<210> 396
<211> 1895
<212> DNA
<213> Homo sapiens
```

```
<400> 396
actgtagacc attagtccag tgcggtggaa ttcatcaacc gaaacaacag tgtggtacag
gtcctgcttg ctgctggggc tgatccaaac cttggagatg atttcaqcaq tqtttacaaq
 120
actgccaagg aacagggaat ccattctttg gaagtcctga tcacccgaga ggatgacttc
 180
aacaacagge tgaacaaceg egecagttte aagggetgea eggeettgea etatgetgtt
 240
cttgctgatg actaccgcac tgtcaaggag ctgcttgatg gaggagccaa cccctgcag
 300
aggaatgaaa tgggacacac accettggat tatgeeegag aaggggaagt gatgaagett
 360
ctgaggactt ctgaagccaa gtaccaagag aagcagcgga agcgtgaggc tgaggagcgg
 420
cgccgcttcc ccctggagca gcgactaaag gagcacatca ttggccagga gagcgccatc
 480
gccacagtgg gtgctgcgat ccggaggaag gagaatggct ggtacgatga agaacaccct
 540
ctggtcttcc tcttcttggg atcatctgga ataggaaaaa cagagctggc caagcagaca
 600
gccaaatata tgcacaaaga tgctaaaaag ggcttcatca ggctggacat gtccgagttc
 660
caggagegae acgaggtgge caagtttatt gggtetecae caggetaegt tggccatgag
 720
gagggtggcc agctgaccaa gaagttgaag cagtgcccca atgctgtggt gctctttgat
 780
gaagtagaca aggcccatcc agatgtgctc accatcatgc tgcagctgtt tgatgagggc
 840
cggctgacag atggaaaagg gaagaccatt gattgcaagg acgccatctt catcatgacc
 900
tccaatgtgg ccagcgacga gatcgcacag cacgcgctgc agctgaggca ggaagctttg
 960
gagatgagcc gtaaccgtat tgccgaaaac ctgggggatg tccagataag tgacaagatc
 1020
accatctcaa agaacttcaa ggagaatgtg attcgcccta tcctgaaagc tcacttccgg
 1080
agggatgagt ttctgggacg gatcaatgag atcgtctact tcctccctt ctgccactcg
 1140
gageteatee aactegteaa caaggaacta aacttetggg ccaagagage caagcaaagg
 1200
cacaacatca cgctgctctg ggaccgcgag gtggcagatg tgctggtcga cggctacaat
 1260
gtgcactatg gcgcccgctc catcaaacat gaggtagaac gccgtgtggg gaaccagctg
 1320
gcagcagcct atgagcagga cctgctgccc agggggctgt actttgcgca tcacggtgga
ggactcagac aagcagctac tcaaaagccc agaactgccc tcaccccagg ctgagaagcg
 1440
cctccccaag ctgcgtctgg agatcatcga caaggacagc aagactcgca gactggacat
 1500
cogggcacca ctgcaccctg agaaggtgtg caacaccatc tagcagccac ctgcctgctc
 1560
agggggggcc gtttaaaaga acccttgggg ggcccaaatt taacccgggc gggcaaggaa
aaatttttt ccttatgggg ggccgaataa aaaccaacct gggaattttg ggaaagaacc
 1740
cttattttgg gggggggaca aattgggcca acctccctac aaaaattaaa ggctttaggg
 1800
aaaaaaaaaa tttttaaggg gaaaaggggg aaaaacaacc ggcataccct ggcggttgga
 1860
aagttttgtt tacggagtat gatttagaaa aattt
 1895
```

```
<210> 397
<211> 2416
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(2416)
<223> n = a,t,c or g
```

```
<400> 397
ttttttttt ttttttca caagttatat tttattttaa cacgaggatt aacatatagt
 60
tacaaggtca atacaagcct ccagtggaag ctctttattt ggtttaattc catctccaga
 120
gacaaacagg caactctagg acctttacag tggcgatcgg cctccacnac agcaaaatgc
 180
ctccaaagtt tagaattagt gcaacacaca tacgaacgtt ttaaaggtgc tcaacatcag
 240
gttaaaatag aattotggac otttttaaaa agtttttgga tgatataago acaggaggca
 300
gagccaataa gaaacatgaa accaatattt ctggaaaaac acttagcatg aacgtcactt
 360
tttgacgtcg tgtaaacttt cttctgcaat gacggatgtt accaaaaggc attgagacct
 420
ttgcgctgcg ctggttagac aagccgcagg cttatctcca cggtgagcag gataaaaacc
 480
cccaaggaac agcccatgac aaccttctgt gcctttttat actttcccat cctacaaagg
 540
aaaaactggg taaaggacaa gttcctccct ttcattgcgt ttctaagaac ttttcagggc
 600
aggttetttt aaaattagte atettacaac acaacagtat tetagcaegg tggegaagtg
 660
acaggcggca gatacggggg aggaaggaga cgttcacggg aaattccaca ttctactcta
 720
tgtgaactgc tccagaaaaa tacagacatg atttcacagt aggattccca gagtaaatga
 780
tgatacatag gacaactgac ctcctctaag aagcccggct ggggcagcag tgagcttttc
 840
atggagccac gcagactggc ccggaagcaa cacccaggtt caacatttaa gagcactcgc
 900
tataacattc tttttggacg caggtggtgg aaaagtttaa aaaacaggcg gaggagtgac
 960
ggggggatac aagcatatcc tatactgggg gtgacggtca ttcaaagagc aaattactgc
 1020
agcttatatc ttttccacta tgttgcaaga aatgaatcta tcctgaccca taatatgaaa
 1080
gatgcgacgc acatgcattc ccgaggctct aaaatcccat tttaaagaac cgtttcacat
 1140
cctcgtggag tggagagtgg tccacttgac ttggtgaggt cagaagttcc tgaagatccc
 1200
tgtcgtcccc gttggcgggg gagcccattg tggagctgtg gggactgcca cactcaccat
 1260
geacetgttg gtttgeaggg acagaggtge ggeettgaet etteteaece tgtgteatee
 1320
gggcttgtct ttcgtctgtc aagtcagtcc tcctgcgtga ctgatgggtg caccacgctt
 1380
aggtcacccg ttgcagggac cggaagtcca tggctctgcc gcaaccctga gcggtttgca
 1440
gtccccccg gggaagaagc agtcagagag gctcacgctc acctacttta aaaacccaaa
 1500
gccacttcct cttcacctgc ctgggcctca gcgtctctgc gcttgtggtt tctcgtcccc
 1560
gagggetgae tgagetgete eggaagggtg gtgtgtggte aacettggtt ggetgagagg
 1620
agcaatttcc tggtttccac aagtaaagac agccccatcc cttgggacct gtcctttccg
tecetgteee tttggettet ataggaette ettgtettag atteataaac agcaagagga
 1740
actgaggatg cttgagggga ccacctagtt accaaagcca agcaaagaat aaagctgccc
 1800
gacatcatcc ccaggettec gtggcgetet cggtcacagg agetttaggc caatggttec
 1860
tcttgactgt ttttgcccca aatgagagga ggggctgctt tgctttaagg cgtggcggcg
 1920
ggggggggt ggtggccaca gattagggga cctcaggttt tcctcaaaaa cccacacagg
 1980
gaaagaaact tggctctaaa agcaaactca acgaattcca catgccctga agagcacgtg
 2040
ataaaataca agggtggtgg cggcgggatc cctcaaagga ccacgagagg cacggggtct
 2100
ttggtgatga aagtgetaac eteggegggg tgeggtaget cacacetgta ateteageae
 2160
tttgggaggc tgaggcggc ggatcacctg aggtcaggag tttgagacca gcctgaccaa
 2220
cacggtgaaa ccctgtctct actaaaaata caaacattag ccgggcgtgg tggtgcacgc
 2280
ctgtaatcac agetatttgg gaggetgagg caggagaatc getggaaccc aggaggtgga
 2340
ggttgtagtg agecgagate atgccaetge actecagtet gaacaataga gegagaetee
 2400
cgtctcaaaa aaaaaa
 2416
```

```
<210> 398
<211> 1495
<212> DNA
<213> Homo sapiens
```

```
<400> 398
tggccattta ggaaaaattg tccttgggga tcctctaaaa aatccttttg tgtccaatag caccttaaaa aacctgggcc ccagataatt gttgaacctc agatttagga aggaaaattt 120 ccaagctgtc agctaaaggc agtttccccc atttcacaga atatgtggta gaagttccga gtaaggaatt ttttcagcag ccatgaaagc tccctgcata aggaagactc agtgtgcaac 240
```

atctgaaagc	agtattgcca	gagcatgact	gtggcaatga	agcaaaatgt	tccctccacc	300
tatccctccc	tcccatgtat	aatgcttgaa	gggtcagtcc	ctgaaataag	tagagagaaa	360
agtgtttgct	gaaagagcta	atacataagt	caaccttcac	tggtaccaat	gaaggcttcc	420
cagttcaaaa	ttcaacaccc	agaaaaggca	gaaattttag	ctttaaatta	agtttaaatt	480
ttcagttatc	ccagtggact	aggcatttaa	atctgaggag	ttccctgaga	ttccatatga	540
ggaaatgaaa	aacattagct	tgtggattaa	atttaaagag	actgtaagga	gaaaaacata	600
ttttatgaca	tgcctcttaa	ggactcctat	tatttcaatg	aatttgttac	agttataata	660
tgcttgtgat	aaaaaggcat	tatttattaa	gaaatctaaa	atgtaataat	atttcaatta	720
tatagtttta	gagaaccttt	cttgcccaac	acttttctga	tagcaagttg	gacatccttg	780
tttctgaggc	tataaaccat	ggggtttagt	aatggagtga	caatcgtgta	tgtcaccgtc	840
accagcctgt	ctttgttgga	cacatagttt	gctgtaggcc	tcaggtagat	gaaggaagca	900
cagccataat	gaacaataac	aacactgagg	tgagaggcgc	aggtggaaaa	cgctttccgt	960
ctgccctcag	ctgagggaat	cttcaggata	gtcctcagaa	tgcagaaata	agaaacacag	1020
ataaacagaa	agggaaccac	aagtacaaga	actccacaaa	tgaatatcac	aaatccgtta	1080
acatctgtgt	tggtacaagc	cagaagaatg	actgctgaga	tgtcacagaa	gtaatgattg	1140
actttgttgg	tgctacaaaa	agggaggctg	aaaactaaat	ttactactgt	aagagaggcc	1200
aagaagccac	caattgcaca	ggcagctgcc	agttttccac	acacctgcca	gctcataaga	1260
gtggggtaat	gcagagggtg	acaaatggca	gcatagcgat	cataacccat	cacacccaat	1320
agcaggcagt	tggtaatggc	aaaaccaagg	aagaagaaca	tttgaagagc	acaacagttg	1380
aaggagattg	tcctggccac	agaaagtaga	ttgatgagca	tcttgggtag	aatgacaaag	1440
gtgtagaagt	ctcagatgtt	gagagaaagc	caggaagagg	ccattggtgt	gtgga	1495

<210> 399

<211> 2752

<212> DNA

<213> Homo sapiens

## <400> 399 gegacegeca geggetacae ggtaceegeg tgagaagete aagteeatga egteeeggga 60 caactataag gegggeagee gggaggeege gegeegetge egeageegee gtageegeeg 120 cagccgcage egecgetgee geegaacett accetgtgte eggggeeaag egeaagtate 180 tggaggactc ggaccccgag cgcagcgact atgaggagca gcagctgcag gaggaggagg 240 aggegegeaa ggtgaagage ggeateegee agatgegeet etteageeag gaegagtgeg 300 ccaagatcga ggcccgcatt gacgaggtgg tgtcccgcgc tgagaagggc ctgtacaacg 360 agcacacggt ggaccgggcc ccactgcgca acaagtactt cttcggcgaa ggctacactt 420 acggegecea getgeagaag egegggeeeg geeaggageg cetetaceeg eegggegaeg 480 tggacgagat ccccgagtgg gtgcaccagc tggtgatcca aaagctggtg gagcaccgcg 540 tcatccccga gggcttcgtc aacagcgccg tcatcaacga ctaccagccc ggcggctgca 600 togtgtotca ogtggaccoc atocacatot togagegece categtgtoc gtgtocttot 660 ttagcgactc tgcgctgtgc ttcggctgca agttccagtt caagcctatt cgggtgtcgg 720 aaccagtgct ttccctgccg gtgcgcaggg gaagcgtgac tgtgctcagt ggatatgctg 780 ctgatgaaat cactcactgc atacggcctc aggacatcaa ggagcgccga gcagtcatca 840 tecteaggaa gacaagatta gatgeaceee ggttggaaae aaagteeetg ageageteeg 900 tgttaccacc cagctatgct tcagatcgcc tgtcaggaaa caacagggac cctgctctga 960 aacccaagcg gtcccaccgc aaggcagacc ctgatgctgc ccacaggcca cggatcctgg 1020 agatggacaa ggaagagaac cggcgctcgg tgctgctgcc cacacaccgg cggaggggta 1080 getteagete tgagaactae tggegeaagt catacgagte etcagaggae tgetetgagg 1140 cagcaggcag ccctgcccga aaggtgaaga tgcggcggca ctgagtctac ccgccgccct 1200 cctgggaact ctggctcatc cttacgtagt tgcccctcct tttgttttga gggttttgtt 1260 tttgttcatt ggggggtttt tgttttttgg tttttgtttt ttttgattct atatatttt 1320 ccttggtttt gttgcctgtt aaggctgaac aatagaattg gccaggacct aggttctcat 1380 attettggta tteeteetgg atggaaagge tgttggeate aataggggae agaggetgat 1440 gctggagtgg ccagtagagg tggtggagca gagcacccat cttttaagtg gggctgtatc 1500 aggetgggtt tatttaaaag caacaaaatg ttttggttaa gaaaattatt ttgetttcag 1560 tgtaaatett cgcagtgtte taaacaaagt teagtettet gettgeeest tteesteact 1620 gatgtctgca cttggttgag gtctcctgga gcctcacagg ctctgctgtt ctccacttct 1680

```
cacctgccat ccacgccctg caagctcatg caaacaccct ttcttcctcc tgcggcagag
 1740
ttgttcaggt tgcctgggca ggggcttaaa cagtgccagc ccctgccatc ccaaagctat
 1800
tgttaagccc cccaggcgtc ctccacccac gcccactagc ctgccatgtc cacagttcct
 1860
tgggctgctg aggggctagt gcagtggtcc tgacctctct tatcaagagc acacttcttt
 1920
gctggttgct ccttttgagc atatgcgtgt gattatttgg aacagttaga cttgccacgt
 1980
tgggtcagtt ttagaaattg tttctagcta gagggactgg tgtccttcca agtctagcat
 2040
ttggggtatg gaaaattgtt gtggtgtgtg gtagggtttt tgttttcttt tttgagtttt
 2100
ttttccccct ttagtctccc tggctttttc ctttcccttc ccttctccac tggccagctt
 2160
gggcctcatc ctcatgtcat ccttctagga aggcgcctgc cccatcttgt ctgccggcag
 2220
catgcatcca aggccagage teaggeetge agactggget ggtgeeteet eegetteagg
 2280 -
gtatgggagt tggtgaaggg gctttcaaaa aataataaga aaaaaaaggt aaagtctttg
 2340
gtagetteta tecaeteaga teetggaagg eageaaggtt ttgtggatet agatteatta
 2400
ggaatgtett ettgteagee aggeeaggae eegggettge caagageaga ggeeeteeea
 2460
gcaaccagga taccaccact ttgggggctt tgtgtacaga ggtccgggtc tgagacctca
 2520
taggetgeag aaatetgggg cageeaceat caagaageee eteteagggg ceagaactee
 2580
tttgccagcg tggatttctc aagtcgggac tgcataatta aagcagttgc agttttattt
 2640
tttttacage ttttttccca aaaatgattt atagttgtgt gtgcagcact tegecetgaa
 2700
atgtgtgctc tacaataaac aaccaaatct aatatatttt gaaaaaaaaa aa
 2752
```

<210> 400 <211> 2354 <212> DNA

<213> Homo sapiens

<400> 400 agecetgete atggeagtga ggtgggetee eagetgetga ggeeaceeag eactagtgag 60 tgacttggca tttttatttt tgttcagatc acaagaatgg gcattacatc atcccacaga 120 tggctgacag atctcggcaa aagtgcatgt ctcagagcct tgacttatcc gaattggcca 180 aagetgetaa gaagaagetg caggegetea geaacegget ttttgaggaa etegecatgg 240 acgtgtatga cgaggtggat cgaagagaaa atgatgcagt gtggctggct acccaaaacc 300 acagcactet ggtgacagag cgcagtgctg tgcccttcct gcctgttaac ccggaatact 360 cagccacgcg gaatcagggg cgacaaaagc tggcccgctt taatgcccga gagtttgcca 420 ccttgatcat cgacattctc agtgaggcca agcggagaca gcagggcaag agcctgagca 480 gccccacaga caacctcgag ctgtctctgc ggagccagag tgacctcgac gaccaacacg 540 actacgacag cgtggcctct gacgaggaca cagaccagga gcccctgcgc agcaccggcg 600 ccacteggag caacegggee eggageatgg acteetegga ettgtetgae ggggetgtga 660 cgcctgcagg agtacctgga gctgaagaag gccctggcta catcggaggc aaaggtgcag 720 cageteatga aggteaacag tageetgage gaegagette eggaggetge agegagagea 780 ctttgcaccc atagatccac aagctgcagg cggagaacct gcagctccgg cagcctccag 840 ggccggtgcc cacacctcca ctccccagtg aacgggcgga acacacaccc atggcgccag 900 gcgggagcac acaccgcagg gatcgccagg ccttttccat gtatgaacct ggctctgccc 960 tgaagccett tgggggcccc cctggggacg agctcactac gcggctgcag cctttccaca 1020 gcactgaget agaggaegae gccatetatt cagtgeaegt ccctgctgge ctttaccgga 1080 teeggaaagg ggtgtetgee teagetgtge cetteactee eteeteeceg etgetgteet 1140 geteccagga gggaageege cacacgagea agettteeeg ceaeggeagt ggageegaea 1200 gtgactatga gaacacgcaa agtggggacc cactgctggg gctggaaggg aagaggtttc 1260 tagagctggg caaagaggaa gacttccacc cagagctgga aagcctggat ggagacctag 1320 atectggget teccageaca gaggatgtea tettgaagae agageaggte aecaagaaca 1380 ttcaggaact gttgcgggca gcccaggagt tcaagcatga cagcttcgtg ccctgctcag 1440 agaagatcca tttggctgtg accgagatgg cctccctctt cccaaagagg ccagcctgg 1500 agccagtgcg gagctcactg cggctgctca acgccagcgc ctaccggctg cagagtgagt 1560 gccggaagac agtgccccca gagcccggcg ccccagtgga cttccagctg ctgactcagc 1620 aggtgatcca gtgcgcctat gacatcgcca aggctgccaa gcagctggtc accatcacca 1680 cccgagagaa gaagcagtga cctctctccc cacaccctca cctgcaccct aggacctcac 1740 tggccatagg agetgggcca etecagacat taateeceae eccaacagag ecaetggcae 1800 aagtgeeett agtgetgeea caeteeetgg cageeaggtg ceetggtgee caeceetgte 1860

PCT/US00/35017 WO 01/53455

```
gagcccctaa ggatggggag gtgggggggc aggagcttct gtcccccaca ttccatgcac
 1920
ctcccctctg tatatagcat ctcccccctc ctagtgagca ggggcctgca aggcatcact
 1980
cccageceet egeettetag ggcaceetea gcaaagggge aggtggggae actecaagtg
 2040
gggcagetet cegtacatge geeccaeeee catgageeag tteageeeta etgggggetg
 2100
agegggggea teceeteett tgtacatagt etecatggat gteeetgeee tgtageeace
 2160
ageccettge tgetetecet ttaatgecat atggeeeetg cetagggeae aggeeeeaae
 2220
etgtgtgctg gggtccccag cagcaaacac tggaaagtct gtttttttt tttctttctt
 2280
ettecceace cettaatttt aacttigtgg taactgagtg eecegogtg eetgegtgtt
 2340
gagtgtgtgg gcgg
 2354
```

<210> 401 <211> 3455 -<212> DNA <213> Homo sapiens

<400> 401

agatatttaa gctatggttc cggtcccaaa cgattcccct tggtagatgt tcttcagtat gcattggaat ttgcctcaag taaacctgtt tgcacttctc ctgttgacga tattgacgct 120 agttccccac ctagtggttc cataccatca cagacattac caagcacaac agaacaacag 180 ggagecetat etteagaact gecaageaca teacetteat eagttgetge eattteateg 240 agatcagtaa tacacaaacc atttactcag tcccggatac ctccagattt gcccatgcat 300 ccggcaccaa ggcacataac ggaggaagaa ctttctgtgc tggaaagttg tttacatcgc tggaggacag aaatagaaaa tgacaccaga gatttgcagg aaagcatatc cagaatccat 420 cgaacaattg aattaatgta ctctgacaaa tctatgatac aagttcctta tcgattacat 480 gccgttttag ttcacgaagg ccaagctaat gctgggcact actgggcata tatttttgat 540 catcgtgaaa gcagatggat gaagtacaat gatattgctg tgacaaaatc atcatgggaa 600 gagctagtga gggactcttt tggtggttat agaaatgcca gtgcatactg tttaatgtac 660 ataaatgata aggcacagtt cctaatacaa gaggagttta ataaaaactg ggcagccct 720 tgttggtata gaaacattac caccggattt gagagatttt gttgaggaag acaaccaacg 780 atttgaaaaa gaactagaag aatgggatgc acaacttgcc cagaaagctt tgcaggaaaa 840 gettttageg teteagaaat tgagagagte agagaettet gtgacaacag cacaagcage 900 aggagaccca aaatatctag agcagccatc aagaagtgat ttctcaaagc acttgaaaga 960 agaaactatt caaataatta ccaaggcatc acatgagcat gaagataaaa gtcctgaaac 1020 agttttgcag tcggcaatta agttggaata tgcaaggttg gttaagttgg cccaagaaga 1080 caccccacca gaaaccgatt atcgtttaca tcatgtagtg gtctacttta tccagaacca 1140 ggcaccaaag aaaattattg agaaaacatt actagaacaa tttggagata gaaatttgag 1200 ttttgatgaa aggtgtcaca acataatgaa agttgctcaa gccaaactgg aaatgataaa 1260 acctgaagaa gtaaacttgg aggaatatga ggagtggcat caggattata ggaaattcag 1320 ggaaacaact atgtatctca taattgggct agaaaatttt caaagagaaa gttatataga 1380 ttccttgctg ttcctcatct gtgcttatca gaataacaaa gaactcttgt ctaaaggctt 1440 atacagagga catgatgaag aattgatatc acattataga agagaatgtt tgctaaaatt 1500 aaatgagcaa geegeagaac tettegaate tggagaggat egagaagtaa acaatggttt 1560

gattatcatg aatgagttta ttgtcccatt tttgccatta ttactggtgg atgaaatgga

agaaaaggat atactagctg tagaagatat gagaaatcga tggtgttcct accttggtca

agaaatggaa ccacacctcc aagaaaagct gacagatttt ttgccaaaac tgcttgattg

ttctatggag attaaaagtt tccatgagcc accgaagtta ccttcatatt ccacgcatga

actctgtgag cgatttgccc gaatcatgtt gtccctcagt cgaactcctg ctgatggaag

ataaactgca cactttccct gaacacactg tataaactct ttttagttct taacccttgc

cttcctgtca cagggtttgc ttgttgctgc tataqttttt aactttttt tattttaata

actgcaaaag acaaaatgac tatacagact ttagtcagac tgcagacaat aaagctgaaa

ategeatgge geteagaeat tttaacegga aetgatgtat aateacaaat etaattgatt

ttattatggc aaaactatgc ttttgccacc ttcctqttgc agtattactt tqcttttatc

ttttctttct caacagcttt ccattcagtc tggatccttc catgactaca gccatttaag

tgttcagcac tgtgtacgat acataatatt tggtagcttg taaatgaaat aaagaataaa

gttttattta tggctaccta tgtgtttgta agcaggtata ttgtatatta gtgtattagt

60

1620

1680

1740

1800

1860

1920

1980

2040

2100

2160

2220

2280

2340

2400

```
atcttttaat tctgctctaa tgctagcaaa ttggaaaatg tttaagtctt tgacacttaa
atttatctat atttttaaca aagttcttga acttagtatg gcaccggaac ctgttttgaa
 2520
ttcagtcagg tttttactca agtaagtggt tgattttttt taagtcaaac tacactgaaa
 2580
cttttatcct tttcttagat taatcttact ttttaaatgt atttacaata tacagcaagg
 2640
tgattatttc aagagaatcc caaagtactt gaataagggc tattgtaaaa tttaaaagaa
 2700
atatttatat atacacatat atacacatac acacatgtat atatatattc ttcataatgg
 2760
aggacaatgt tttgcaatat ataaatcatt ctatttttgt aaattgtata tcactttaat
 2820
tgaaaatgtt ctctactaat taatactgtg aaacaaaatt gatgttgttt aactagaagt
 2880
tatgagtatc ttaactgcct ttattccttt tcaaaaagga aaaagctgta gaacattttg
 2940
tagatgaaac tactgtttaa gattaatgaa ttaatattgt gaatgaaaat caaaatccat
 3000
actttaaagg taatcatgtt actaacaacc tatttttgaa ttcataaaaa tttctttata
 3060
aatgatgttt tgtgaacata gtaaaataga ccattatact atgtgtatgt ttgatacagc
 3120
gtcgccaaaa ctagtgttct ttattagtgc ctctcacaaa agatcctgga tggaggagta
 3180
agatgaaata ttatgctatt atatgatgct gtttgtaaag gtattaatgt actagtaagg
 3240
tgttaatgac aaggaattag tactatteet gttgtaaagt tagattttgc atattgtate
 3300
tatcaaaata tgtttgggtt tagattttaa gttgtctact gagcagattt ctgcattggt
 3360
tttccagtcc tgttaaaagt ttagaaactt catatgtgtc atcacagctt ttgtaaagaa
 3420
agtateetta atattttatg acattetace acaaa
 3455
```

<210> 402 <211> 1266 <212> DNA <213> Homo sapiens

<400> 402 gcacaggtct atqtccgqat gqactctttt gatgaggacc tcqcacgacc caqtgqctta 60 ttggctcagg aacgcaagct ttgccgagat ctagtccata gcaacaaaaa ggaacaggag 120 tttcgttcca ttttccagca catacaatca gctcagtctc agcgtagccc ctcagaactg 180 tttgcccaac atatgggtgc ccattgttca ccatgttaaa gagcatcact ttgggtcctc 240 300 aggaatgaca ttacatgaac gctttactta aatacctaaa aagagggaac tgagcaggag gcagccaaaa acaagaaaag cccagagata cacaggagaa tagacatttc ccccagtaca 360 ttcagaaaac atggtttggc tcatgatgaa atgaaaagtc cccgggaacc tggctacaag 420 gatgggcata attctaaaaa tgaactacaa agggttaatt tttattaaat gtatcaacaa 480 cctttgtgaa gtggttagaa tatggtaaat gaccccaaag tctattgagg tgagcttgag 540 aaaaaaaaga gaggagtttt ggaacaagtg cccatgatga gagaagaaac tttttgtgat 600 atttttctgc ttgtaagtat tatcaaatca actgtataca tgcactattt ccaaccatga 660 tttcagaaag acatgcatgt cagagaagag tgaaatattc atgtcttaac ttaagtagac 720 tgtttttaaa cagctggtcc agtttttttt cctaacattg taccatatct atcatctgtc 780 aattactgtt actttaaagc taaagattac tttgatggcc cagctacatt tgcaatgatg 840 tgcacgtaaa cactgttaag aggttaaagc ttgtatacaa tctgttactg tgaaataact 900 aaattgggct ttaaaaaaat cttagtattt attgatcttc attcacatat acagttgaaa 960 tttaaaataa cagatggtta ttccaatgct gctgaaacct tttctaaaaa atacttgttt 1020 tgttggttga atgtgatgag aggegettet gggeagtete tettetetee caecegtett 1080 tectecteeg agtacecett etecagettt gtactageca tgtaaaacce aaggtttet 1140 ttaaaacatc agaagagatc tcgtcctcca tgccccaaaa aagccaactc attggaggtg 1200 ttacccctgg gagcagtgtt gcatttgtct ttttgtcttt ttttgctctt tggaggatgc 1260 agaggc 1266

<210> 403

1-3

<211> 1006

<212> DNA

<213> Homo sapiens

<400> 403 gacatacact ttctgctttt cgttaatgat caattctctt gaccataatt cagggtctaa ttcttgaagc ttttggagaa ctaagggacc aactggacca agtcaaagaa gacatggaga 120 ccaaatgett catctgtggg ataggcaatg attacttcga cacagtgcca catggetttg 180 aaacccacac tttacaggag cacaacttgg ctaattactt gttttttctg atgtatctta 240 taaacaaaga tgaaacagaa cacacaggac aggaatctta tgtctggaag atgtatcaag 300 aaaggtgttg ggaatttttc ccagcagggg attgcttccg gaaacagtat gaagaccagc 360 taaattaaac tcagacccaa tcacctctaa aaaccaaaac cctacccctc tctctccctc 420 totcaattto totgetetet tggaaacatt ttgctgattt tgtgaattgc cagegttgtg 480 tgttttctgg gagcatcgaa getetgtttc ggaagagetg tttcctcccc ccaccttttg 540 tatttacttt gagactaaag actgaagaat aatctaaatt catactcaga caaaaaaagg 600 aattotggaa agaaaaccat totggacact gtoataacac acatagatag attttottot 660 gagactcccg gagtettete gagetacgag acetteacag agacacgtgg cagecacact 720 cacccagcct ctttatttca ccatcctgga aggaaactgt ctgtctaatg gtcacagagc 780 actgtagcac ttaacagatt gccatggaca ccagttgcga agggaaatag tgccttacta 840 tatgtgggtt gagctatgca gaagatacgt gcatgaaaaa acatctttat tttctttatg 900 tegacettte ttttettaga ttgattttgt gaggtttttt tttttteett tageetttte 960 tttagggggg gagggtaaaa aaagcagttt gcccttaaaa aaaaaa 1006

<210> 404 <211> 3115 <212> DNA <213> Homo sapiens

<400> 404 ttttttttta cctaaaaaga aataaaatgt tttactcatt tacacaaata cacacactga 60 agtccaccct gggagctggt aaaacaattt cagtctcaga cccgtctgtt ttccagggtc 120 ctccgagcct gggcttcctc aagagcgtgg cccaagggcc ccacagccca gatccgggca 180 geoceace etteactgag gaggeteega ageteegtte eegetgetee ttacagacag 240 gggaggcaga tatacacaaa cgcgcctcgg cccagcttgg ggctggcggg ggaggctgtg 300 tetteaaace tttgececca gttgggteag tagaaceace agtgteetee cettetaeet 360 cccagctcca ctttggaggc tgaggaagcg agaggttttc taggcagatt tggagccctg 420 gagattgagt tcacagtgta tgttctgggg gcgctggtgc agtcagcggt ccagtctcca 480 gcctgcaggc gtgcacactg gggtggacga tgggtggccc cgcaggtgta cacatttggg 540 tggccccggc ccctataccc cagtgttctc tttgatccag tcccgaaaca gagggagcct 600 tgtgtacacg cetggettgt teetetgage geageegtet eeccagetea eeacacegge 660 ctggaagatc cgcccatccg cctccacgct ggacaggggt cccccggaat caccctggca 720 ggagtccacg ccgccgctga ggaagcccac gcacatcatg cgcggcgtga tctgctgcgg 780 caggaggttc tcgcaggtgg tctggttgat gacgcggatc tcaccctttt gcaggatcag 840 egegeeagtg cetecatact gggtgtgtee ceageegtg acceagatgg cettgeegge . 900 agggaagaca tgggaggcgt ccggcaggca gatgggccgc accatggagc tgtactctgc 960 cggtttctcc agctccagca gcgcgatgtc atagtcgaag gtgaagtcat tgaagaaggg 1020 gtgggagatg atgcgcttga gcctgcgctc ctgcacccca ggggcgctgc gctggctctg 1080 gtcgtgcaag cccaggaagg ccgtccactg cgtggggtct gagtacctga atcctctgtc 1140 atcgatgtag cagtgtgcgg cagagaccag ccagttggga gagatgaggg aagcaccgca 1200 gatgtggecc tggcccagag catgcaggct tacctgccag ggccactcgc cctcatccgc 1260 atcegtgece ceaacaacae gageetgtet egtgaatgae egeageecae agtegeagte 1320 etteteatet gageegtege tacagteete ettecegtea cacteagggt tgecettget 1380 caagcagagc ccattgaggc agcggtaggt gtgtttggta caagtgacga cgttcacctt 1440 ggggcaggag gcctcgtcgg acccgtcccc acagtcgtcc ttcccattgc actgctggct 1500 tttcgagagg cacttcccat tggaacacct gaaggtctgg gtccggacaa ctgcaccct 1560

gctcgtcgct gttgtctccg cagtcgttca aactgtcgca gacccagaag aggggcttgc 1620 agaacttgtt cttgcacgtg aactggtggc cggcgtcgca actgcagttg agctcatcgc 1680 tgtggtcggt gcagtcggcc cagccatcac agcgcagctc cttccggata caccgccccg 1740 tgcggcacgt gaactgcccc gggcatgggt cactggagtc gtaggagagg tattcagcta 1800 agaageeggt gteggtgtag gaetgatetg agtggaageg aaetgtgate ttgttgetgt 1860 tgctggtgac gacgaactgg gacctctctc cgcagtattt ctccccattg atctccacgt 1920 agteettggg geaggtgeee geaggeaege egggeteeag eaggtagaag aatttgaage 1980 geacetteae atgetggttg ttgggeacet caatgtteea tgtgeagtea atgttgggtg 2040 ggtagtggcc tgggtagtag gggctgttga atgtcccctg ggctttacgt aagcggcctc 2100 cacagetget catectagge agetggaaga aggtggeete aaageeeggg atgeegeege 2160 tcagtgttgg ttatcagtgt gatgagcagg acgttcgtgg gagggagtgg aaggtcaggt 2220 tgtaggaggg agggtaggtg ccacacaact gcaccagggg cgtggggctc catggggctc 2280 atgggtgttg tacaccgtca accaggtgtc tgccgcgctc gtcgcaggac gcaaggtcaa 2340 agetgeggaa ggtgaggete ageaetgagt eggegteeee eegeagggee eaetggeage 2400 gggcatgagc ggggtagggg ctgtcaggga agccgggcgt ggtgaagcgc atcagctcca 2460 cacegeggge gtgcaggcca aagetgcage tgttgteetg ggteetetgt aetgttttgg 2520 agtccgtggg gaaagccacc actgaggtga ccacaaagga cttcagggag cgcgccgcg 2580 ggggcagcat gactacgcgc tcctcggcca tgacgcgctc ggcctcctcc accaggtgct 2640 gegggatget gaacteagae eagtagtagg egatgaeget geeetegetg aaggeegtea 2700 cagccgactc cttgtggtag gggcccagga atgggactcc gctgtacagc agcttcagcg 2760 cgtccttcac cttgctggcc aggcttacaa actcagtgga gttggagttc tcgtaggcat 2820 ccacaaaatt ctcatttgtg atcctcatgt agccattgaa gaccttctgg acacgcacgt 2880 cccggtactg caaatgccac accaggaagc cgatccccag caagaccaag aggaggccga 2940 teageaegge tgeeageace acceagegee eegggeeatg ettitecace tiettgaegt 3000 tgttgactgg caggaactcc acgccttcct ccaagccatt cactttctcg tgccgggagt 3060 tgtacttgag tcccgcgcg aagtecttcg ggccccctcc gcccttgcga cgaaa 3115

<210> 405 <211> 1264 <212> DNA

<213> Homo sapiens

## <400> 405

cggcacgagg aagatttagg taatctctgg gaaaacacaa gatttacaga ctgcagtttt 60 ttcgtgagag gacaagaatt taaagctcat aaatctgtgc ttgcagctcg atctccagtt 120 tttaacgcca tgtttgaaca tgaaatggaa gaaagcaaaa agaatcgagt ggaaataaat 180 gatttagacc ctgaagtttt taaagaaatg atgagattca tttacacagg gagagcacca 240 aaccttgaca aaatggctga caacttgttg gcagctgcag acaaatatgc actggaacgg 300 ctgaaggtca tgtgcgaaaa agctttgtgt agtaacctct cagtagagaa tgttgcagat 360 accettgtce ttgcagattt gcacagtggc agaacagttg aaagcacaag ccatagactt 420 tattaatagg tgcagtgtac ttcgacaact tgggtgtaaa gatgggaaaa actggaacag 480 caaccaagca accgacataa tggaaacatc aggggggaag tccatgattc agtctcaccc 540 tcatttagta gcagaagcet ttcgagcact agcatctgca cagggtccac agtttggcat 600 tccacgcaaa cggctaaaac agtcctgaaa tcttccatga acagttgaaa aatggaattg 660 actttcactc ctccaggtcc agaaggattc taatacacaa accataagca agagttgttt 720 ctgttatttt gtccacagaa cagaagctga aaaagcatat tgcttgcatt tcaggtggat 780 aatttatggt ttattettea getttaaatt agaetgatta atteaettea aggeettaaa 840 ttatcttcaa tgacttctct tgttcatata atactttaat tttttttat tgtgccttgt 900 cattttgacc aaggetatgc aggattgcac tagetccata atgcagtaat attgataact 960 gaagatacta agtttcaaaa ggatcttcca ttattttgca aaaagaaaaa tgaattttat 1020 agggtttgtc ctatgctatc tcaaagttta agttctcttt aaaagcactt gtattggaga 1080 ttaccagtaa tatctccaat ctaagttcta taaatatggg agaaccctct taccttcaag 1140 gtaagttatg gcaatacact gcttcaattc taatttattt ttcattcag ggggcaaata 1200 tgcaatgagt tggcctagat ttttagtgac atttatgatg tttgtcttgt atgttaactg 1260 tcca 1264

```
<210> 406
<211> 2001
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (2001)
<223> n = a,t,c or g
```

<400> 406

cagegtggeg gaatteetgg aaagtteeag gaagaetetg ggtetgtgga etgggetetg 60 gggccatttt ggggaatttt ccaggctgat tttggctgta tgcgatttta tctttctgca 120 cagacatcag accetgicet caggatgiga tggggccect cececatete ceatectace 180 agcctgtgtc caggtggggg tggggcaggg cagacaacag ggtccctgtg tctcgggcag 240 caatgctgcc ccctttcctg ccccaacatc cccagcagac acaagagatg gagactatga 300 getgeteteg tggetgggte tegggggtee tgeaccetea ggagetgaeg etgaegeaet 360 ccactgcctg tcaccaggaa cctacctcgc gccatcttca tctccatccc actggtqacc 420 ttcgtgtaca cgttcaccaa cattgcctac ttcacggcca tgtcccccca ggagctgctc 480 tectecaatg eggggetgt gacetteggg gagaagetge tgggetaett ttettgggte atgcctgtct ccgtggctct gtcaaccttc ggagggatca atggttacct gttcacctac tecaggetgt gettetetgg agecegegag gggeacetge ceageetget ggecatgate 660 cacgtcagac actgcacccc catccccgcc ctcctcgtct gtgcccatca aggtgaacct 720 teteatecce gtggcgtact tggtettetg ggcetteetg etggtettea getteatete 780 agageatatg gtetgtgggg teggegteat cateateett aegggggtge ceattttett 840 tetgggagtg ttetggagaa ġcaaaccaaa gtgtgtgcac agactcacag agtccatgac 900 acactgggge caggagetgt gtttcgtggt ctacccccag gacgcccccg aagaggagga 960 gaatggcccc tgcccaccct ccctgctgcc tgccacagac aagccctcga agccacaatg 1020 agatttttgt agagactgaa gcagttgttt ctgtttacat gttgtttatt gaggaggtgt 1080 tttggcaaaa aagttttgtt ttgtttttt ctggaaaaaa aagaaaaaag atacgactct 1140 cagaagcctg ttttaaggaa gccctaaaat gtggactggg tttcctgtct tagcactgcc 1200 ctgctagete ttcctgaaaa ggcctataaa taaacagggc tggctgttcg ctcgtqctat 1260 ggggagtece tgatgggcae agacgggagt ggetggggeg taceteggtg ggtgcacaca 1320 tgttgctggc caggaagatg ccgtggcagg ccctggagga ggctcttgac attagggggc 1380 tttgctgctt gacacaggcg ctccctacca tggcacccag agtccccctg ccctaaaggg 1440 atgtegagga tggggtagea geteagteeg eccetacece aggeeeeteg atgeeagtet 1500 gageteggee acceaggaga geteagggge tecaggetgg gattgtettt ettecegtaa 1560 atcaccacag agtgaaggtc aggacttcag agcccacagt ctcaccctgg cttacaggtg 1620 gggaaaccga ggccctgaga taggatggaa cagacgtggc cactgctgtt ggtgcctcgg 1680 cetetetgte eccagaaage acagageage atgteetggg ggetttgagg cetgeaggga 1740 actocagggg cttcatgtac agcaggcaca caccccagcc cttccacggt gcccaggaga 1800 ttggaccttc agggaggca aagggcgcct gcctggccag gggcatgagg gtttggcagg 1860 agccacccaa cccaggtcct ccagaggcct tgctggacag gaagagggtg aggcgtgagc 1920 aaaatagtca ccacggatga gacccagcgt cccgaattcc tccacatgga ctagtgatgt 1980 cgaacaaann nnnttgtcct a 2001

```
<210> 407
<211> 1652
<212> DNA
<213> Homo sapiens
```

```
<400> 407
tgeggeegee etegtggetg agtacetege cetgetegag gaccacegee acetgeeegt
 60
gggctgcgtt tccttccaga acatctcatc caatgtgcta gaggagtccg ccatctccga
 120
cgacatcetg tegecegacg aggagggett etgeteeggg aageaettea etgagetggg
 180
gctggtaggg ttgctggaac aggcagccgg ctacttcacc atgggcgggc tctacgaggc
 240
ggtgaatgag gtctacaaga acetcatece cateetggaa geecacegtg actacaagaa
 300
gctggccgcg gtgcacggca aactgcagga ggccttcacc aagatcatgc accagagttc
 360
eggetgggag egegtgtteg ggaegtattt eegegtggge ttetaeggeg eecacttegg
 420
tgacctggat gagcaggagt ttgtgtacaa ggagccatcg atcacgaagc tggcagagat
 480
ctcacaccgg ctggaggagt tctacacgga gagatttggc gacgacgtcg ttgagattat
 540
caaagactct aaccctgtgg acaagtccaa gcttgactca caaaaggcct acatccagat
 600
cacgtatgtg gaaccgtact ttgataccta cgagctcaag gaccgggtga cctactttga
 660
cegeaactat gggettegea catteetgtt etgeaegeeg tteaegeegg atgggegege
 720
acacggggag ctgcccgagc aacacaagcg taagacgctg ctcagcaccg accacgcctt
 780
eccetacate aagactegea teegtgtgtg ceaeegggag gagaeggtge tgaegeeaag
 840
tggaggtggc catcgaggac atgcagaaga agacacggga gctggccttt gccaccgagc
 900
aggacccacc agatgetaag atgetacaga tggtgettea gggetetgta gggeccaecg
 960
tgaaccaggg teceetggag gtggeecagg tgtttttage agagateeeg gaagaceeca
 1020
agetetteeg geateaeaac aaattgegge tetgetteaa ggaettetge aaagaaatgt
 1080
gaggatgege tgeggaaaaa taaggeeetg attgggeegg accagaagga gtaecaeegt
 1140
gagetggage geaactactg eegeetgegg gaggetetge ageceetget tacceagege
 1200
etgececage tgatggeace caceceace ggeeteagga acteettgaa cagageaagt
 1260
ttccgaaagg cagacctctg agcccacaag gaccaaagct gtacctagag gaaccagcac
 1320
ccgggcctca gctgtctgtg ctgcgagggg agtctgccct ggtgcccact gggctgtggg
 1380
gtgaccacac tgtacttggg gctgggccct ctgcccctgt gtccccatct gtgtgcactg
 1440
atgetteete eetttttaa tttaaaatgg tttttataag caaaaaaaaa aaaaaggggg
 1500
ggccctttta aaggaaccaa ttttaacgcc cgggggttgg gaaggaaaaa tttttttaag
 1560
ggggccccaa aattaaattc cggggccggg gtttaaaaac ggggggaggg gaaaaacccg
 1620
ggggttaccc aatttaatcc ccttgggaaa ag
 1652
```

```
<210> 408
```

```
<400> 408
ggcccacaga tgacccccta cctctgacat ttgataaagc tgggggtgac ctagggcgag
 60
gggcagcagt ggcagtccac geceetetet ceaetgeage ecaeegttge agattteett
 120
aacctggcct ggtggacctc tgctgccgcc tggtgagtcc tgagcgggag gtgggtagag
 180
aaggtgctcc ctggccggga gggctcagaa gagaagtagg gcatggcatc gtcctctgct
 240
gaccacctgc actoggotec cogtgogotg caggtocotg thocagoago thototacgg
 300
cctcatctac cacagctggt tccaagcagg taggtagggc tttggaggcg cctcctcaag
 360
teegggteee caatetgage taagacgaet ceatggggag ggtggggtet acgaetgagg
 420
gaggccggag accttgccag ggtctgtggg cggagctgag gcgctctggg ccctcgcaga
 480
ccccgcggag gccgagggga gccccgagac gcgcgagagc agctgcgtca tgaaacagac
 540
ccagtactac ttcggctcgg taaacgcctc ctacaacgcc atcatcgact gcggaaactg
 600
etecaggtge tggeagtggg gegggaecag aggecaaggg eggaacetgt gageggeete
 660
atgccgaa
 668
```

<211> 668

<212> DNA

<213> Homo sapiens

```
<210> 409
<211> 1854
<212> DNA
<213> Homo sapiens
```

<400> 409 gagagetage accatagett caataccetg attgaatgte accettgact geetaactea 60 tetettteee aagteatagg ttateeetgg teetggetga ttateaeagg eagggaggga 120 gggaaagagg caaagggaga aggccctgtg tgggactcaa acttgctcac cccttttctg 180 taatctgcag ctcactcttg ctgccactca gcagatctgg tctccctaac tctttttcc 240 cetgeeteta etttgagaet caattgette eecaggaett tttttetece caagecaaag 300 aatgaaagtt caatcatccc agctcagttc ttatcaagca ttccagctag cctatgccag 360 agatgttaca cagctettta ataatagtgg ccatagetgt aataacaatg acaacagtag 420 gtageggtag teataceaac agtagggeag tgeattttat attacaactg gtttettget 480 ctagtagget tggggatggg tgaagacgga cagggctggc gcagaccett teetteete 540 ctccagccca cagtgatgtg ggcttttgca agacagcctg cttccattca gtagtgtggg 600 aaaagtteet tittggetta acaataeeee tgagaeettg tteagtggge tgtgtetete 660 cctgggatgc tgggagcacc aagtgtggcc cgagctaggg ctgctgactt cctctgggcg 720 cctctgggct gcgagggtct cttacaggaa ttgaggccct ttgctgctcc aagaaatgct 780 gaggetgtgg geagagggt gtacecaagg ggactettge tetgtgtetg actttggggg 840 atccccaggt gggcagggca ggaaggaagc ggctcccagc actgcaaagg ggcagcagca 900 ttacagetea geetteeaga eattgtagat eeagttgaga taggetgaga eettggtgta 960 tactcctggg gtgctcgggc ccccgcagcc atagccccag ctaacgatgc ccaccacatg 1020 ccactggtca gattggtaca tcaggggccc accactgtca ccctggcagg tgtccacacc 1080 cccttccggg atgcctgcac acatcatctt ctcggtgact tccccctggt acgcatcgtc 1140 tgcattgcac cgtgtgctgt caatgacctg gactgacgcc tgcagcagta tgtcagacat 1200 cttccctcca ttctgcttcg taaagcccca tccaatgatc cagagtgggg tggctggagt 1260 gageteetea teaaagaagg geagaeagat gggeetgaet gtgeetgaga aagtgagtgg 1320 gaactgcage ttcatgaggg cgatgtcatt gtctttgggg tacatggggt tgaattcaat 1380 gatgatgatc ttggccacag ccagggatgg gaagetgccc agtttgtctg agectgcccg 1440 caccttccag ttgaacacat cggtatgttt cctgaagcag tgggctgccg tgaggaccca 1500 gtgggggtcc aggatgctcc ctccacagac gtgctgtttg tcgtactgga tgctgacctg 1560 ccaaggccaa gaatccacag aggcctcctc cccacccacc acacgggggg tcttcaggct ctccccacag gcaagacagt gcagggagac cagggagcct gagagacagg gcccacttga - 1680 gitcogcatg ogaageteet ggetgtttte tgtgatttea acaacateea gateetggte 1740 tgggccaatc tccacagctc tgaaagtggg tttgctgctg tagcccatct gcctacaggc 1800 tgtctcagcg agagcttctg taagttgtcg aaacaggcag gaattcctgc caca 1854

```
<210> 410
<211> 1147
<212> DNA
<213> Homo sapiens
```

```
<400> 410
ggaccattag tacagtgcgg tggaattcgc gcattgggat ggtgctgggc gtggccatcc
 60
agaagaggge tgttetetgg cetgtattge gtttgaagaa geetatgeee gggeagacaa
 120
ggaggcccct aggccttgcc acaagggctc ctggtgcagc agcaatcagc tctgcagaga
 180
atgccaaget tteatggcae acaegatgee caageteaaa geetteteea tgagttetge
 240
ctacaacgca taccgggctg tgtatgcggt ggcccatggc ctccaccagc tcctgggctg
 300
tgcctctgga gcttgttcca ggggccgagt ctacccctgg cagcttttgg agcagatcca
 360
caaggtgcat ttccttctac acaaggacac tgtggcgttt aatgacaaca gagatcccct
 420
cagtagetat aacataattg cetgggactg gaatggacec aagtggacet teaeggteet
 480
```

cggttcctcc	acatggtctc	cagttcagct	aaacataaat	gagaccaaaa	tccagtggca	540
		ctaagtctgt				600
gcgagtggtt	acgggtttcc	atcactgctg	ctttgagtgt	gtgccctgtg	gggctgggac	660
		cctgggtaag				720
		cttcaacttc				780
		cctgcctgcg				840
		ttttctgcct				900
		ccaggcctcc				960
acctgaccag	tgggtcagca	ggcacggctg	gcagccttct	ctgccctgag	ggtcgaaggt	1020
		gggaggtctt				1080
aagcgcctgg	gagagcctag	accaggctcc	gggctgccaa	taaagaaaaa	aaatgcgtaa	1140
aaaaaaa						1147

<210> 411 <211> 2234 <212> DNA

<213> Homo sapiens

### <400> 411

ggtggcacga ggcgccttcc accctaagat gggtcccagc ttccccagcc cgaagcctgg 60 cagcgagcgg ctgtccttcg tctctgccaa gcagagcact gggcaagaca cagaggcaga 120 getecaggae gecaegetgg ecetecaegg geteaeggtg gaggaegagg geaactaeae 180 ttgcgagttt gccaccttcc ccaaggggtc cgtccgaggg atgacctggc tcagagtcat 240 agccaagccc aagaaccaag ctgaggccca gaaggtcacg ttcagccagg accctacgac 300 agtggccctc tgcatctcca aagagggccg cccacctgcc cggatctcct ggctctcatc 360 cctggactgg gaagccaaag agactcaggt gtcagggacc ctggccggaa ctgtcactgt 420 caccageege theacettgg tgeeeteggg cegageagat ggtgteaegg teacetgeaa 480 agtggagcat gagagctteg aggaaccage eetgataeet gtgaeeetet etgtaegeta 540 ccctcctgaa gtgtccatct ccggctatga tgacaactgg tacctcggcc gtactgatgc 600 caccetgage tgtgacgtcc gcagcaaccc agageccacg ggctatgact ggageacgae 660 ctcaggcacc ttcccgacct ccgcagtggc ccagggctcc cagctggtca tccacgcagt 720 ggacagtctg ttcaatacca ccttcgtctg cacagtcacc aatgccgtgg gcatgggccg 780 cgctgagcag gtcatctttg tccgagaaac ccccaacaca gcaggcgcag gggccacagg 840 cggcatcatc ggggggcatca tcgccgccat cattgctact gctgatgctc acgggcatcc 900 ttatctgccg gcagcagcgg aaggagcaga cgctgcaggg ggcagaggag gacgaagacc 960 tggagggacc tccctcctac aagccaccga ccccaaaagc gaagctggag gcacaggaga 1020 tgccctccca gctcttcact ctgggggcct cggagcacag cccactcaag accccctact 1080 ttgatgctgg cgcctcatgc actgagcagg aaatgcctcg ataccatgag ctgcccacct tggaagaacg gtcaggaccc ttgcaccctg gagccacaag cctggggtcc cccatcccgg 1200 tgcctccagg gccacctgct gtggaagacg tttccctgga tctagaggat gaggagggg 1260 aggaggagga agagtatetg gacaagatea accecateta tgatgetetg tectatagea 1320 geocetetga tteetaceag ggeaaagget ttgteatgte eegggeeatg tatgtgtgag 1380 ctgccatgcg cctggcgtct cacatctcac ctgttgatcc cttagctttc ttgccaagga 1440 tctagtgccc cctgacctct ggccaggcca ctgtcagtta acacatatgc attccatttg 1500 taaatgtcta ccttggtggc tccactatga cccctaaccc atgagcccag agaaattcac 1560 cgtgataatg gaatcctggc aaccttatct catgaggcag gaggtgggga aggtgcttct 1620 gcacaacctc tgatcccaag gactcctctc ccagactgtg accttagacc atacctctca 1680 ccccccaatg cctcgactcc cccaaaatca caaagaagac cctagaccta taatttgtct 1740 tcaggtagta aattcccaat aggtctgctg gagtgggcgc tgagggctcc ctgctgctca 1800 gacctgagcc ctccaggcag cagggtccca cttaccccct ccccaccctg ttccccaaag 1860 gtgggaaaga ggggattccc cagcccaagg cagggttttc ccagcaccct cctgtaagca 1920 gaagteteag ggteeagace etteeetgag eecceacee caceceaatt eetgeetace 1980 aagcaagcag ccccagccta gggtcagaca gggtgagcct catacagact gtgccttgat 2040 ggccccagcc ttgggagaag aatttactgt taacctggaa gactactgaa tcattttacc 2100 cttgcccagt ggaataggac ctaaacatcc cccttccggg gaaagtgggt catctgaatt 2160 gggggtagca attgatactg ttttgtaaac tacatttcct acaaaatatg aatttatact 2220

ttgaaactcg tgcc

2234

<210> 412 <211> 2457 <212> DNA <213> Homo sapiens

<400> 412 ggcacgaggc ttcgtgaaga taagaaccat aacatgtatg ttgcaggatg tacagaagtt 60 gaagtgaaat ctactgagga ggcttttgaa gttttctgga gaggccagaa aaagagacgt 120 attgctaata cccatttgaa tcgtgagtcc agccgttccc atagcgtgtt caacattaaa 180 ttagttcagg ctcccttgga tgcagatgga gacaatgtct tacaggaaaa agaacaaatc 240 actataagtc agttgtcctt ggtagatctt gctggaagtg aaagaactaa ccggaccaga 300 gcagaaggga acagattacg tgaagctggt aatattaatc agtcactaat gacgctaaga 360 acatgtatgg atgtcctaag agagaaccaa atgtatggaa ctaacaagat ggttccatat 420 cgagattcaa agttaaccca tctgttcaag aactactttg atggggaagg aaaagtgcgg 480 atgategtgt gtgtgaaece caaggetgaa gattatgaag aaaaettgea agteatgaga 540 tttgcggaag tgactcaaga agttgaagta gcaagacctg tagacaaggc aatatgtggt 600 ttaacgcctg ggaggagata cagaaaccag cctcgaggtc ccacttggaa atgaaccatt 660 ggttactgac gtggttttgc agagttttcc acctttgccg tcatgcgaaa ttttggatat 720 caacgatgag cagacacttc caaggctgat tgaagcctta gagaaacgac ataacttacg 780 acaaatgatg attgatgagt ttaacaaaca atctaatgct tttaaagctt tgttacaaga 840 atttgacaat gctgttttaa gtaaagaaaa ccacatgcaa gggaaactaa atgaaaagga 900 960 agaatataag attgagattt tagagaaaac aactactatc tatgaggaag ataaacgcaa 1020 tttgcaacag gaacttgaaa ctcagaacca gaaacttcag cgacagtttt ctgacaaacg 1080 cagattagaa gccaggttgc aaggcatggt gacagaaacg acaatgaagt gggagaaaga 1140 atgtgagcgt agagtggcag ccaaacagct ggagatgcag aataaactct gggttaaaga 1200 tgaaaagctg aaacaactga aggctattgt tactgaacct aaaactgaga agccagagag 1260 accetetegg gagegagate gagaaaaagt tacteaaaga tetgtttete cateacetgt 1320 gcctttactc tttcaacctg atcagaacgc accaccaatt cgtctccgac acagacgatc 1380 acgctetgca ggagacagat gggtagatca taagcccgcc tctaacatgc aaactgaaac 1440 agtcatgcag ccacatgtcc ctcatgccat cacagtatct gttgcaaatg aaaaggcact 1500 agctaagtgt gagaagtaca tgctgaccca ccaggaacta gcctccgatg gggagattga 1560 aactaaacta attaagggtg atatttataa aacaaggggt ggtggacaat ctgttcagtt 1620 tactgatatt gagactttaa agcaagaatc accaaatggt agtcgaaaac gaagatcttc 1680 cacagtagca cetgeecaac cagatggtge agagtetgaa tggacegatg tagaaacaag 1740 gtgttctgtg gctgtggaga tgagagcagg atcccagctg ggacctggat atcagcatca 1800 cgcacaaccc aagcgcaaaa agccatgaac tgacagtccc agtactgaaa gaacattttc 1860 atttgtgtgg atgatttctc gaaagccatg ccagaagcag tcttccaggt catcttgtag 1920 aactccagct ttgttgaaaa tcacggacct cagctacatc atacactgac ccagagcaaa 1980 gettteecta tggtteeaaa gacaactagt atteaacaaa cettgtatag tgtatgtttt 2040 gccatattta atattaatag cagaggaaga ctcctttttt catcactgta tgaatttttt 2100 ataatgtttt tttaaaatat atttcatgta tacttataaa ctaattcaca caagtgtttg 2160 tettagatga ttaaggaaga etatatetag atcatgtetg atttttatt gtgacttete 2220 cagccctggt ctgaatttct taaggtttta taaacaaatg ctgctattta ttagctgcaa 2280 gaatgcactt tagaactatt tgacaattca gactttcaaa ataaagatgt aaatgactgg 2340 ccaataataa ccattttagg aaggtgtttt gaattctgta tgtatatatt cactttctga 2400 catttagata tgccaaaaga attaaaatca aaagcactaa gaaatacaaa aaaaaaa 2457

<210> 413

<211> 1042

<212> DNA <213> Homo sapiens

<400> 413 cccttttcat cctccagtgt ctcctcaaaa ggatcagatc cctttggaac cttagatccc 60 ttcggaagtg ggtccttcaa tagtgctgaa ggctttgccg acttcagcca gatgtccaag 120 gtaaaagtac acctgtaagc cagcttggtt ccgcagactt tcccgaggcc cccgatccat 180 tecagecact eggggetgac ageggegace egttecaaag taaaaagggg tttggggace 240 egtttagtgg aaaagaceca tttgteeeet eetetgeage taaacettet aaggeetetg 300 cctcgggctt tgcagacttc acctctgtaa gttgagtcct ccgcctccgg gccaccccac 360 tecetteege tigeagette cetgggatti tigteteett tiaaaggeaa aceteecage 420 ttetttagee tettggtace teacactete tgtecetege gttatttatt etacactgee 480 acttctgtaa gaaaaacagt ttctcaataa aaaaaaaaag agccgcagtt tggatgctct 540 atcataaggg cacgttttct tccagcaggg aggcgggacc tatctgtcct tcacggtaga 600 ttcattgtat tatttctgac gcaccgaggc tgttgggttc actggttttt ggaagccaaa 660 atgtcaaaca cttccgaagt atgaaaagaa gattgcgaaa gttacattag ggttctgctg 720 tececaaaaa geeetttgtg cacaagttet cacagteeeg eeecatgeat tttgtgeeae 780 acgtgcaaat tgaaggactt caggcagatc gcgccaggga agagcaattt gaagtttttt 840 tttttttaaa gettttaaat teeaceeec aceteeaaga aaaaaaaaaa teeaggttaa 900 aacagccctt ttgaaagcca aaccaaaaag agctccaaaa acctgtggag caaagttaag 960 ggccttttcg aaagcaaatc tgggaattac aaaagcctgc ctttttttt ttttggggga 1020 aaaaaaattc caaattgtaa cc 1042

<210> 414 <211> 1849 <212> DNA

<213> Homo sapiens

# <400> 414

atgtcgctca tggtcgtcag catggcgtgt gttgggttgt tcttggtcca gagggccggt 60 ccacacatgg gtggtcagga caaaccette etgtetgeet ggeccagege tgtggtgeet 120 cgaggaggac acgtgactct tcggtgtcac tatcgtcata ggtttaacaa tttcatgcta 180 tacaaagaag acagaatcca cattcccatc ttccatggca gaatattcca ggagagcttc 240 aacatgagcc ctgtgaccac agcacatgca gggaactaca catgtcgggg ttcacaccca 300 cactececca etgggtggte ggeacceage aacceegtgg tgateatggt cacaggaaac 360 cacagaaaac etteceteet ggeteaceea ggteeeetgg tgaaateagg agagagagte 420 atcctgcaat gttggtcaga tatcatgttt gaacacttct ttctgcacaa agaggggatc 480 tctaaggacc cctcacgcct cgttggacag atccatgatg gggtctccaa ggccaacttc 540 tccatcggtc ccatgatgca agaccttgca gggacctaca gatgctacgg ttctgttact 600 cactecect atcagttgte ageteceagt gaccetetgg acategteat cacaggteta 660 tatgagaaac cttctctctc agcccagccg ggccccacgg ttctggcagg agagagcgtg 720 accttgteet geageteeeg gageteetat gacatgtaee atetateeag ggaggggag 780 gcccatgaac gtaggttctc tgcagggccc aaggtcaacg gaacattcca ggccgacttt 840 cctctgggcc ctgccaccca cggaggaacc tacagatgct tcggctcttt ccgtgactct 900 ccatacgagt ggtcaaactc gagtgaccca ctgcttgttt ctgtcacagg aaacccttca 960 aatagttggc cttcacccac tgaaccaagc tccgaaaccg gtaaccccag acacctgcat 1020 gttctgattg ggacctcagt ggtcatcatc ctcttcatcc tcctcctctt ctttctcctt 1080 catcgctggt gctccaacaa taaaaaatgc tgcggtaatg gaccaagagt ctgcaggaaa 1140 cagaacagcg aatagcgagg actctgatga acaagaccct caggaggtga catacacaca 1200 gttgaatcac tgcgttttca cacagagaaa aatcactcgc ccttctcaga ggcccaagac 1260 acccccaaca gatatcatcg tgtacacgga acttccaaat gctgagtcca gatccaaagt 1320 tgteteetge ceatgageae cacagteagg cettgaggge gtettetagg gagacaacag 1380

ccctgtctca aaaccgggtt gccagctccc atgtaccagc agctggaatc tgaaggcatg 1440 agtotgcato ttagggcato gatottocto acaccacaaa totgaatgtg cototcactt 1500 gcttacaaat gtctaaggtc cccactgcct gctggagaaa aaacacactc ctttgcttag 1560 cccacagtte tecattteae ttgaccectg eccacetete caacetaact ggettaette 1620 ctagtctact tgaggctgca atcacactga ggaactcaca attccaaaca tacaagaggc 1680 tecetettaa egeageaett agaeaegtgt tgttecaeet teceteatge tgttecaeet 1740 cccctcagac tagctttcag tcttctgtca gcagtaaaac ttatatattt tttaaaataa 1800 cttcaatgta gttttccatc cttcaaataa acatgtctgc ccccatggt 1849

<210> 415 <211> 2555 <212> DNA <213> Homo sapiens

<400> 415

atgtcgttac gtgtacacac tctgcccacc ctgcttggag ccgtcgtcag accgggctgc 60 agggagetge tgtgtttget gatgateaea gtgaetgtgg geeetggtge etetggggtg 120 tgccccaccg cttgcatctg tgccactgac atcgtcagct gcaccaacaa aaacctgtcc 180 aaggtgcctg ggaacctttt cagactgatt aagagactgg acctgagtta taacagaatt 240 gggcttctgg attctgagtg gattccagta tcgtttgcaa agctgaacac cctaattctt 300 cgtcataaca acatcaccag catttccacg ggcagttttt ccacaactcc aaatttgaag 360 tgtcttgact tatcgtccaa taagctgaag accggtgaaa aatgctgtat tccaagagtt 420 gaaggttctg gaagtgcttc tgctttacaa caatcacata tcctatctcg atccttcagc 480 gtttggaggg ctctcccagt tgcagaaact ctacttaagt ggaaattttc tcacacagtt 540 tccgatggat ttgtatgttg gaaggttcaa gctggcagaa ctgatgtttt tagatgtttc 600 ttataaccga attectteca tgccaatgca ccacataaat ttagtgccag gaaaacagct 660 gagaggcate tacettcatg gaaacccatt tgtetgtgae tggtteeetg gteteettge 720 tggtcttttg gtatcgtagg cactttagct cagtgatgga ttttaagaac gattacacct 780 gtcgcctgtg gtctgactcc aggcactcgc gtcaggtact tctgctccag gatagcttta 840 tgaattgctc tgacagcatc atcaatggtt cctttcgtgc gcttggcttt attcatgagg 900 ctcaggtcgg ggaaagactg atggtccact gtgacagcaa gacaggtaat gcaaatacgg 960 atttcatctg ggtgggtcca gataacagac tgctagagcc ggataaagag atggaaaact 1020 tttacgtgtt tcacaatgga agtctggtta tagaaagccc tcgttttgag gatgctggag 1080 tgtattcttg tatcgcaatg aataagcaac gcctgttaaa tgaaactgtg gacgtcacaa 1140 taaatgtgag caatttcact gtaagcagat cccatgctca tgaggcattt aacacagctt 1200 ttaccactet tgetgettge gtggecagta tegttttggt acttttgtac etetatetga 1260 ctccatgccc ctgcaagtgt aaaaccaaga gacagaaaaa tatgctacac caaagcaatg 1320 cccattcatc gattctcagt cctggccccg ctagtgatgc ctccgctgat gaacggaagg 1380 caggtgcagg taaaagagtg gtgtttttgg aacccctgaa ggatactgca gcagggcaga 1440 acgggaaagt caggctettt cecagegagg cagtgatage tgagggcate etaaagteca 1500 cgaggggaa atctgactca gattcagtca attcagtgtt ttctgacaca ccttttgtgg 1560 cgtccactta atttgtgcct atatttgtat gatgtcataa tttaatctgt tcatatttaa 1620 ctttgtgtgt ggtctgcaaa ataaacagca ggacagaaat tgtgttgttt tgttctttga 1680 aatacaacca aattototta aaatgattgg taggaaatga ggtaaagtac ttcagttoot 1740 caatgtgcca gagaaagatg gggttgtttt ccaaagttta agttctagat cacaatatct 1800 tagettttag cactattggt aatttcagag taggeccaaa ggtgatatga eteccattgt 1860 ccctttattt aggatattga aagaaaaaat aaactttatg tattagtgtc ctttaaaaat 1920 agactttgct aacttactag taccagagtt attttaaaga aaaacactag tqtccaattt 1980 catttttaaa agatgtagaa agaagaatca agcatcaatt aattataaag cctaaagcaa 2040 agttagattt gggggttatt cagccaaaat taccqtttta gaccaqaatq aatagactac 2100 actgataaaa tgtactggat aatgccacat cctatatggt gttatagaaa tagtgcaagg 2160 aaagtacatt tgtttgcctg tcttttcatt ttgtacattc ttcccattct gtattcttgt 2220 acaaaagatc tcattgaaaa tttaaagtca tcataatttg ttgccataaa tatgtaagtg 2280 tcaataccaa aatgtctgag taacttctta aatccctgtt ctagcaaact aatattggtt 2340 catgtgcttg tgtatatgta aatcttaaat tatgtgaact attaaataga ccctactgta 2400 ctgtgctttg gacatttgaa ttaatgtaaa tatatgtaat ctgtgacttt gatattttgt 2460

tttatttggc tatttaaaaa cataaatcta aaatgtctta tgttatcaga ttatgctatt 2520 ttgtataaag caccactgat agcaaatctc tctcc 2555

<210> 416 <211> 2950 <212> DNA <213> Homo sapiens

<400> 416

tgcaagtgac ttcattcgga gcctggacca ctgtggatac ctatctctgg agggtgtgtt ctcccacaag tttgatttcg aactgcagga tgtgtccagc gtgaatgagg atgtcctgct 120 gacaactggg ctcctctgta aatatacagc tcaaaggttc aagccaaagt ataaattctt 180 tcacaagtca ttccaggagt acacagcagg acgaagactc agcagtttat tgacgtctca 240 tgagccagag gaggtgacca aggggaatgg ttacttgcag aaaatggttt ccatttcgga 300 cattacatec acttatagea geetgeteeg gtacacetgt gggtcatetg tggaagecac 360 cagggctgtt atgaagcacc tcgcagcagt gtatcaacac ggctgccttc tcggactttc 420 categecaag aggeetetet ggagacagga atetttgeaa agtgtgaaaa acaceaetga 480 gcaagaaatt ctgaaagcca taaacatcaa ttcctttgta gagtgtggca tccatttata 540 tcaagagagt acatccaaat cagccctgag ccaagaattt gaagctttct ttcaaggtaa 600 aagcttatat atcaactcag ggaacatccc cgattactta tttgacttct ttgaacattt 660 gcccaattgt gcaagtgctc tggacttcat taaactgggc ttttatgggg gagctatggc 720 ttcatgggaa aaggctgcag aagacacagg tggaatccac atggaagagg ccccagaaac 780 etacattece ageaggetg tatetttgtt etteaaetgg aageaggaat teaggaetet 840 ggaggtcaca ctccgggatt tcagcaagtt gaataagcaa gatatcagat atctggggaa 900 aatattcage tetgeeacaa geeteagget geaaataaag agatgtgetg gtgtggetgg 960 aagcctcagt ttggtcctca gcacctgtaa gaacatttat tctctcatgg tggaagccag 1020 teceetcace atagaagatg agaggeacat cacatetgta acaaacetga aaacettgag 1080 tattcatgac ctacagaatc aacggctgcc gggtggtctg actgacagct tgggtaactt 1140 gaagaacctt acaaagctca taatggataa cataaagatg aatgaagaag atgctataaa 1200 actagetgaa ggeetgaaaa acetgaagaa gatgtgttta ttteatttga eecaettgte 1260 tgacattgga gagggaatgg attacatagt caagtetetg teaagtgaac cetgtgacet 1320 tgaagaaatt caattagtot ootgotgott gtotgoaaat goagtgaaaa tootagotoa 1380 gaatetteae aatttggtea aactgageat tettgattta teagaaaatt acetggaaaa 1440 agatggaaat gaagctcttc atgaactgat cgacaggatg aacgtgctag aacagctcac 1500 egeactgatg etgecetggg getgtgaegt geaaggeage etgageagee tgttgaaaca 1560 tttggaggag gtcccacaac tcgtcaagct tgggttgaaa aactggagac tcacagatac 1620 agagattaga attttaggtg cattttttgg aaagaaccct ctgaaaaact tccagcagtt 1680 gaatttggcg ggaaatcgtg tgagcagtga tggatggctt gccttcatgg gtgtatttga 1740 gaatettaag caattagtgt tttttgactt tagtactaaa gaatttetac etgatecage 1800 attagtcaga aaacttagcc aagtgttatc caagttaact tttctgcaag aagctaggct 1860 tgttgggtgg caatttgatg atgatgatct cagtgttatt acaggtgctt ttaaactagt 1920 aactgcttaa ataaagtgta ctcgaagcca gtaagtgctc tgggacctca ttattttaag 1980 cctggtagtt aaaaaaaatc ttgcaaaagg atgccaaaga agataaggac gtggaaagaa 2040 gtttaatttg atgattaaaa acatgcaaca gttttgtgtc ttagctctcc tactaggatt 2100 atcggcgcct tgaaggaatt ctcattcatc tttgtgttac ctttggtctg ggtcacacca 2160 actggtatac tgaatgcata ttaacttagt atagtgcctg gcatgtaaga gattctcaac 2220 aatattetea ataaatatte getgaatatg agataaatta ttaatageta etgaataaag 2280 aaagattatt taaaaccaga gaggaaactc catatatgtt ctttaatcca aacagtttaa 2340 ttcaagcaat ctggaatata aaaagcactt tctgatatta gaaggagatc agactcccaa 2400 aaaagatcag cattetttag teaageaaaa ettggaagtt tacaaacage taaatcagaa 2460 gcttgaaatt caggtcctct ccaqtacctq ctacattata tqtaattcca aacatqactt 2520 cagagattaa agaagaaagg gaagatgttt cccattcttt tgtaccctat ataaactaag 2580 ggtaccetge cetaatettt tttecaacae ttececaaat aaccetteet tacaaagaaa 2640 gaagtetaag agaaetetet catetaaata tatttaagta gaggeaagee tgaaaaaaaa 2700 acaaaaacct aaatggtgtt aggetgtggt teacetatte teatggcace teaaattaat 2760 ggcttgggtg ttggtgtagg taacgcttgg cctgtatgtt gaggtagtca ctagataaaa 2820

ttctgggcac aacatccgtt tagcaattgg gcatacattc tacagattta gccataacgt 2880 tctgaagctg attatttac agatcaacta attaattcct ctccctaact ttacagatga 2940 gaaagctcag 2950

<211> 850 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1) ... (850) <223> n = a,t,c or g

<210> 417

ctttcacaaa aatccatgaa ttattcttta ataaaagaaa ctcttggccc cgcttttttg 60 gatacacaga atgctttcca ttgaatcatt tggtcataat ccgggtacaa agcaaattta 120 acacgtgtga gagatgcaga aaaaggtccc ttctatgtac accttgccaa atacaagaac 180 ataaagaaag aaaaaagcaa agtttaagcc tttaggtcat ttgtaaaatg ttgccaaacc 240 catgctgcta cttttaacag agaagtctga gttttaaaat tcaaacqttc ttttcttaca 300 aagaaaaagt gcctctatct gccaagcgca tgatcttatg agcttcagat agaaaagtgg 360 ctatgacttg tgactgtttt tggttcagaa caatgctaga tcaacatgca agttqtatqq 420 aggtggggac agaaagggag cggcaggctg gggtggctgg taatgtttga tccctctgga 480 tttcccacag gagaaaaggt tctgcaggac gatgagttca cctgtgacct cttccgattc 540 ctgcaactac tctgtgaggg acacaactca ggtttgtgag tccccggaac ttctgatgat 600 actaaggcat aaataatgtt ttcaagccag taataacaag agcctgttag ttccaattat 660 gcatcgttct agagacagca aatcattcta gagcatggct ctgcattggg atctgggncg 720 ttttatnttt ggggtccgcg cacgtccaca atntcaaann nncggcgccc aggggtcccg 780 cccccgaga cgaattagat agatggaagg tgtgaatggt ggtaaagatg gacaaagtga 840 tgcggggtgg 850

<210> 418 <211> 360 <212> DNA <213> Homo sapiens

<400> 418
gagataaccc acattgttgg agagacagct gcctttctat gccccaggct gaggctgaga 60
cggggtggga aggatggatc cccaaagcct gggttcttgg cctcagtgat tccagtggac 120
aggcgtccag gtgagtagga catccagaag atttggactt ggagatgttt ccccctattt 180
tgagtgtcca gattaagagc tggctgccct agtcatttta aaacatgctg ggaatccaag 240
ttgggtctcc tcattttaat gatgtctagg ctgagggctg ggcctttcat tcttgagtcc ctggggctcag aagtgggtct ctttccctcc tctcagggta ctgaggaagg accccaggtg 360

```
<210> 419
<211> 949
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(949)
<223> n = a,t,c or g
```

<400> 419 atttgatggt aatttgetgg gattacagge gtgageeace acaeeeggee ggaagatatt 60 aattottata tgtgtatgtt caacagatac tgaatotcag gtgaagcaaa gtgcottcat 120 cattgtagca aatcctacat ttaaatgaaa tcagataagt actggcatat aatcaaaatt 180 tattttttat gttgattccc aatcaatgat ttttttttt caaacaccaa caagacataa 240 agtacttatt atggaatttt gtccatgtgg gagtttatac actgttttag aagaaccttc -300 taatgeetat ggaetaeeag aatetgaatt ettaattgtt ttgegagatg tggtgggtgg 360 aatgaatcat ctacgagaga atggtatagt gcaccgtgat atcaagccag gaaatatcat 420 gcgtgttata ggggaagatg gacagtctgt gtacaaactc acagattttg gtgcagctag 480 agaattagaa gatgatgage agtttgttte tetgtatgge acagaagaat atttgcacce 540 tgatatgtat gagagagcag tgctaagaaa agatcatcaa gaagaaatat ggagcaacaa 600 gttgatettt ggaggeattg gggtaacatt ttaccaagge aageetactg gateaactgg 660 ccatttaana cccctttgaa ggggcctccg tanggaataa agnaagtgat ggtataaaaa 720 taattacagg gaaaggcctt ctgggtgcaa tatcctggag tacagaaaaag caagaaaaat 780 gggaccaatt tgactgggag tgggaagaca tgcctgtttc ctgcagtcct tcctcggggg 840 tecteagggt tectaactta ecceetgtte ttgcaaaaca teettgaaag cagatcaagg 900 aaaaagtgtt gggggttttg accaagtttt ttgcaagaaa actagtggg 949

<210> 420 <211> 986 <212> DNA <213> Homo sapiens

<400> 420 ttttttttt ttcttcagca ttgtgtttta ctttttggga gagaggctag gaggaggaag gggtgaaaac agcatctcac tggagtctca aaagtgtatg aatcttctgg tagtgcaagg 120 atgggataag atggccaggg aagtcagatg gaaaatcccc aagattcttt ttgctactga 180 tttctataat taaaatatga catatgtaag ggactagtgc atgatattca ataaatgtca 240 gttgtctttc ctaactaggt tcctcacagg ctaggttatg cctagatatc atcatcctcc 300 tttcagggaa tgaagctcac ctagaaaact agggaactaa aagtgcaata tggtttgggt 360 aatgcagttg gttagctgtc tccccatcct cccaactcac tattccaggg aggggctgaa 420 aacagaagtg gctcccctga agtctagtta gcatgtcatg acagagtcca catgaagggc 480 tgtgggctgc aactttctag tgcacagtcc tctctttttg gcgatgataa ttgtagggaa 540 agaagcgcac acgcatgctg atttcacgag ctgtcttcag gatctcaaca gccttgctgt 600 getcaatate ttggaaatee acateattea cagetagaae ttggteeeet teetgeagte 660 ctgctctatg tgcatcagag tcaggaatca ccttggagat gaagatgcct agctgggagg 720 cetttectee teggatgtta aateceaact gageteeagg aggettette agtgtgatgg 780 ttcggggcag aaactgggtc aactcattgt tgtagtccgg gtggtgtacc ctctcatgag 840 gaggaatcca tgctggagga ttctcatagg caggcaagaa aaccaccggg tagtcatcat 900 aaggaatceg getgteeate tegggeaagg eecagtggge agteeacage gaeetcagae 960 tecgeteaca egaaategte gaceeg 986

```
<210> 421
<211> 1209
<212> DNA
<213> Homo sapiens
```

#### <400> 421 ggcacgagca ggtctctgcc cttcatagac gcataaaggc tatcgtagag gtggctgcaa 60 tgtgtggagt caacatcatc tgtttccagg aagcatggac tatgcccttt gccttctgta 120 cgagagagaa getteettgg acagaatttg etgagteage agaggatggg eccaceacea 180 gattetgtea gaagetggeg aagaaceatg acatggtggt ggtgteteee atcetggaae 240 gagacagcga gcatggggat gttttgtgga atacagccgt ggtgatctcc aattccggag 300 cagtcctggg aaagaccagg aaaaaccaca tccccagagt gggtgatttc aacgagtcaa 360 cttactacat ggagggaaac ctgggccacc ccgtgttcca gacgcagttc ggaaggatcg 420 cggtgaacat ttgctacggg cggcaccacc ccctcaactg gcttatgtac agcatcaacg 480 gggctgagat catcttcaac ccctcggcca cgataggagc actcagcgag tccctgtggc 540 ccatcgaggc cagaaacgca gccattgcca atcactgctt cacctgcgcc atcaatcgag 600 tgggcaccga gcacttcccg aacgagttta cctcgggaga tggaaagaaa gctcaccagg 660 actitiggeta etittatgge tegagetatg tggcagecee tgacageage eggacteetg 720 ggctgtcccg tagccgggat ggactgctag ttgctaagct cgacctaaac ctctgccagc 780 aggtgaatga tgtctggaac ttcaagatga cgggcaggta tgagatqtac qcacqqqaqc 840 togocgaage tgtcaagtcc aactacagcc ccaccatcgt gaaagagtag ccggcttcag 900 tgcctgcctt ggggtgagga agacacctct gccccagtgg attagcaagt gtggcaggct 960 taacatgtcc aggttctccc caataacatt gtccaggtgg ttttaaaatt cccaggcagg 1020 gggagagtgg catggggagt gacttettaa tgggtaaggg getgettaet tetggggtat. 1080 tggaaatgtt tggggactag gtagaggtga atgtactaaa tgccactgaa tttgtatact 1140 tcagaatgtt tgttatgtaa attttacctc aactaaaaaa aaaaaatgcc caggtaaaaa 1200 aaaaaaaa 1209

```
<210> 422
<211> 5214
<212> DNA
<213> Homo sapiens
```

```
<400> 422
60
aaaagcaggt ctgtagtttg taaccatgac aattaaaatc tgtqctaatq cacqqcaqtc
 120
tataacaatt ctacaagcca atcagacagt acgtgacatt tcaatgagta aaaaagagca
 180
taaaactgta tgtgtaagaa caaaatgtta aaaggcctac cacaataata aaaaaccgtc
 240
aattacatca tcacattaaa ataagccaga tgtacaaaag tctgagacag agaagacaaa
 300
aggacaacac aagatatttg ttgaaaaatg tttgtgctct ttgggcactt aattaaacat
 360
tgcaaaatca acatcatctt cttcttcatc agactctgca aaatatttta cttctttcct
 420
agcccgaccg gttcgtggca gagaaggtgg ctcagtaggg aagtctgagg ggaagatgtc
 480
cacatctgaa tcctgatcaa aagatgtctt cttcggtttc ttgcttgttg ttttggatgt
 540
tttcctgcca gggttataat cgccttcatt ttcagagcca gatgctttcc ttttctttgc
 600
ccctcggcct ttaccttttg gtgttgtagt cttctttgga atgccaaatt ctgaatccga
 660
gtcagagttt acagcctcta ctactttctt ctgttttggg gctctcttgg gcttagggac
 720
tgtatctgaa gacggttttc cctttttagc agctaccgtt ttacttggaa ctttatctgt
 780
ctgtttcaga ccaaatgatg gtgaaaaaac agaagcagaa tcttcttcat tactgtcaaa
 840
```

tttagctgaa tcatcttctg acttctgaga atatgaagga aatgagaaga gatttccaaa 900 atcctgactt tttttgtcat gcaaagattt ttctggagtg gcttttgatt tgcctggtga 960 aaatgtatat tcatctttat ctaacccatc tgaaggaaca aattcatctt ccccatcatt 1020 tgttatggga gatgctttaa ctttcaattc ctctaaatca ttattgtcat catcatcatc 1080 atcagcatca tcatcctctt cttctgagaa atcaaatgtg tatttaggtc tttcggctgc 1140 tgctctccta agcaaagaat ctcttggaat aaccacaggt tctgtttctt ccaaatcact 1200 ttctgacttg gattcatcat ctgaccaagg attccgtttc ttcactttct ttgcactagg 1260 tttaccagat gatgtaggtg tttttctcac tctggtacca ggctccttct tctccctctt 1320 aggtttggga cctttattta taggaactga tggagtcaat gcctcttctc ctgcaccttc 1380 tactggtgct ccactgaatt cttcatcaaa ttccactttt actgctgcag tatcaagatc 1440 accettette ttetteagea actttttget ggeatetgee tteatagetg taattteagg 1500 aattattett etgecataag gtgagggeat tgtetettee aaetggagtt tetteaeett 1560 aggittgcca actitaccti taattgctti tccagacatt ccagccagaa catctictcg 1620 ttcttgagat tccactttat ccagttcttc aacaaatgcc gctaaatcct ctttccaaag 1680 atctgaagga gattttcttt taagatcatt gacctctcgc ccttttgcat ctctctgttt 1740 aatcagttct tcaacttttt ctttagtaag agaccacaga gacatattta aaatataatt 1800 aaaatctggg cctgaaggag ttcctgaatc ggaggaacta tcatcatgct ggttttgtgt 1860 ttcatcctct tctgctgcct tttcttgtgc ttctttccag gctttcactg ggtcagattc 1920 ataacctctc tggactaaca tttgaatcaa atctttcttt gacctattct atatagtaat 1980 tttcccttgt atcttctcta aaatgaaacg ggcttgattg ttaagcttcg taaattctgc .2040teccaacatt eccaeaagee acteettaeg taaceegtaa taacttaate gtaaateaaa 2100 gaattette agaatgtett geacagttte atatttette agacateeca tatgateaaa 2160 aagtaccatg gaattacaag taagagtagt ttgaagttta aaaactttat gcagtccagc 2220 agcttctgct tgtgctagtt tctcttcagt cattttcacc acaaatttca cagttgtgtc 2280 agtatgatat tetttataat cagaaattaa tgetggtgtt ttatetgtte catttageat 2340 aggttctaaa acctgttctt tatatacctg tgtccaagtt ctaactggaa gctctgtaat 2400 ttctactgtg tttctgtcca ctacaaatat ttcaccactg actgcatact ggttttgacc 2460 aagttettga ategtgeett taaagttttt gtagtttgga ageatgggat gaggateeag. 2520 gccatctagc attcgtctga cattgttcac aatttcccta gcatcatagt tgggtagttt 2580 2640 acaagcccat ccagtaccaa tgccctcagc accatttatt aaaaccatgg gaattatagg aatataccac tcaggetcta cacgttgatt atcatcataa aggaacttaa ggaggttgtc 2700 atccacagca ggaaaaagta gccttgctaa agtgcttaac attgtgaaaa tataacgagg 2760 gettgeagea tetttgecae catgaageeg agttecaaae tgaccaatag getgaageaa 2820 gttaatgttg ttacttccca caaagttctg agccaaattc acaatagtca tcatcaatgc 2880 ttgtteteca tgatgataag ccgacatete agcaacagag ccagccaaet gggcaaettt 2940 tacttcacgt ttatcattcc tcttgaaaca ggtaaataaa actttccgct ggccaggttt 3000 aaagccatca acaagagatg gtatagatct ttcattgtct gagtttgaga agagaatcaa 3060 ttccttgttg atgaaatcat tataagtcaa atgctttgtt gcagtaccat ataaaaattg 3120 ctctggtaag ccatgtagcc tacgctgtct ccggtcttcc ataaaatttg ttaaccattc 3180 ttttctgtca tcaatcttct tcttactaaa tgccaaggta atggcagcat catcttcagg 3240 accagcatat ctaaacaaga tgcgatgcct ttccatatca gcaaaatatt cctttgcttc 3300 tttagctgta ctagtaccca atcctttata gtactttatt ttccaggctt tctggttttc 3360 tatatgtttt ttccattcgt caaattcagg aatactgtag aaggaaagtt cctgcttatt 3420 tttgettgec tttacaatag gagtaatgaa ctettcaaga aaaccatget tcaaaagtga 3480 tggccaattg tgatggatga aattaataag caggcctttt atgtgagaac catcttgatc 3540 ctgatcggtc ataatcataa tctttccata gcgtaaggtt ttcagagatt gtgcatcatc 3600 gtaacttttc ttatattgta gaccaactat tttaataata ttatttattt caqcattttc 3660 catgatctgt ttatgagaag cttcccgtac attaagaatt ttgcccctga gtggaaaaac 3720 teegtatetg tetegteeaa teacacetaa tecagacaca geeagtgatt tggeagagte 3780 tecetetgtt aatateagtg tacaetecag ggaatgttta ecaecageat cattageate 3840 atecagtitg ggaatacett tgattttact gtattttact gatgaacact tettattcag. 3900 ctgagtctga gccttaaatt tcacccagtt caggatactt tctacaatgc cacaattaga 3960 ggctgcttta aaaaattttt ctgacagctg gcatttagac ccaaaacttt tgggctgcag 4020 agtcatgttt tccttagtct gagaatcaaa agttggattt tcaataaggc aattaataaa 4080 aacccatata tggtttttta cttgaaatgg tttcactgat acaccagctt tgttcttttt 4140 cttaactact tcaatcagtt taccaacaac ttgatctacc acataatcca egtgeegtee 4200 accttttgta gttgcaatac tatttacaaa gctgatttgc tggaatcctt tttcactcaa 4260 tgtgagacaa acateceate ttteatttge aageteatga ataaetttea gggeeaceee 4320 agtttcatcc aatttgtctt tcacataaag atctacataa ctgcgaaatc catttacagg 4380 caatttettt ccattaaaca tgacettgac ccetetacac gaaccageca aatcatatge 4440 ccttctagtc atgagggcca caatatcctt gtcaagtttt tccatcttaa atttggacag 4500 atctggttgg aatgttatgc atgtgtaatc ttcaccatca aaatgtttaa ttttggcttc 4560 agaagtette atcatattat teatecatgt etgettaaaa etgtgtttgt attetttgea 4620 agctgtttct actgtaaact ttgtactgaa aatattacaa agttttqcac cataaccatt 4680

acgaccacct	gtaacttttt	tctcatcatc	atcatagtta	ctggatgtta	aaagctgtcc	4740
aaaaattaaa	gcaggaacat	aaactttctc	caccttgtgt	tctactactg	gaatgccttt	4800
cccattattc	caaatgctta	taatgttaga	ttcaggatca	atagaaactt	taatacaagt	4860
catgttctta	tccctctgtt	tattgtcagc	agcattaacc	aaaatttcat	caaagatctt	4920
gtataaacct	ggcacaaagg	taacctccct	gcaattcatt	cctacatctt	catcatacac	4980
ccacatgaac	tgcgtcaatg	gctccactga	cccaatatat	gtatcaggac	gaagaagaat	5040
gtgttcaagt	tgtgtcttct	tctgatacac	tctctcaaca	gacaacttct	ttgaagaatc	5100
atttttgttg	gcagtttctg	actcttcttt	ttttgcagca	ttgttcaccc	aggtcagtgc	5160
cccgttgccg	ccgcccacgc	cggctcccgc	gccgcagcca	cccgacttgg	ccat	5214

<210> 423 <211> 474

<212> DNA

<213> Homo sapiens

<400>	423					
aagggttgtc	tggctgcctc	cttcaactgc	atcttcctgt	atactgggga	actgtatecc	60
acaatgatcc	ggtgagtgga	agcctaatgg	gagaatgaca	gccttttcct	ggggaaagac	120
attcttctgt	gcacaggtca	gaccccagag	ctaaatcaag	tacatcccag	cccaaaggcc	180
cctcccaaca	ctcatcattg	caaggcacat	agtagccact	gagtacacac	ctcatggcct	240
agctaacaca	ggtgttactg	tectetaage	ccttacggga	ccctagaaga	tctcaaaagt	300
agccaccaac	tggggcaggg	taaggaacca	agaagacaca	tctcagagac	aacaaatcga	360
agtcttcctt	taatctccaa	aacacaaatt	agaagetgee	accacatcta	cattccatct	420
ataaaccaag	tgatatatct	gaaagcaaag	gccacaaaca	tgaaagcaat	ttcc	474

<210> 424 <211> 1453 <212> DNA <213> Homo sapiens

<400> 424 tttaagttga gaactttcac cttttcattt aaaaggaagc actttgtggc ttctctttgg 60 catatccgaa tcaccagcat catcactact cctgctctct ggggccactg ttaagcaaag 120 tgaggactgc ttggtcacag gcactgtgaa tgctgggata gttgatctga tcaccaagac 180 ggctactaag tcactagcag ggtgggtggc gtatacagcg tggatgtgct ggaccaaggg 240 300 atgactcaca tecceggeeg getggageeg gacagegaga gattteatea egetacteag aagggcacac catttgagac ttaaaattct ttatttctgg aattttccat ttaatatttt 360 tgaactgcag ttgactgcag gtaacaaact gtggaaagcg aaaccataga tacgagcggg 420 480 ctactgcgtt caaaaggctc ttcaactgtt gtggatcctc tgatgttctc ggagatggtt 540 taggtggtta catgeettee egeacteett acattegtag gatttegeec caetgtgegt 600 tttctgatgt tgtgtaagct gatggccgtg actaaagctc ttcccacatt ctgtacaccc 660 atagggtttc accccggtat gaattctctc atgtttcacg aggctcgatc cataaatgaa 720 agecttecea cacteettae atttataegg ggtttegeet gtgtggatte tetegtgetg 780 agtgaggtga tagccacaat tgaaggcctt cccacattct gtgcacttgt acggcttctc gecegtatgt atcetetegt gettaacgag getegaacce cagegaaagg cetteceaca 840 ctccttacat tcgtgaggct tctcaccggt gtggatcttc tgatgctgag taaggtaatt 900 960 gactogagta aaggoottoo cacattottg acattoatag ggtttotcac otgtgtgaat tettttatge tgaatgagge ttgaaccaca aataaaagee tteccacagt etttacaete 1020

```
gtaaggette tecceactat gaattetett gtgetgaata agtttataca caeggetaaa
 1080
ggtcttccca cagtctttgc attcgtagtc tttctcccca gtgtggaatc tctggtgctg
 1140
agtgagetca teaceaegee gaaaggeett teeacagtet ttacatteat agggttttte
 1200
accagtatga atcetettat gaataacgag gettgageee categaaaag cetteceaca
 1260
gtctttacat tcgtagggct tctccccagt atgaattttt tgatgttgag taagctgatt
 1320
gccccaacgg aaggccttct tacattcttt acattcataa ggtttctcac cagtatggat
 1380
tttctgatgg tgactaagtt gatagccacg actaaaggcc ttcccacagt ccttacattc
 1440
aaaggaattc tcc
 1453
```

<210> 425 <211> 1131 <212> DNA <213> Homo sapiens

<400> 425 gtttccctca tgattttatt gtctcctggg gaccctgctt tgggcggtct ggatgtctgc cttgggccta gtttgaggcg ccccgaaggt ggagccatct tggtctcgta atttgctctt 120 ecetgecece caagagggaa gecagageta geggggecag caetgeteag gaggeaaggt 180 ggcctacctg tcgcacaccc ggaggaggaa atcattgacc aggctctcgt gccggctgca 240 gatgettete ttggaaggea etettgagee agteeteaat getgeacace tgeaegegge 300 tggagtgcca gcagatggag aggctgcgga gtgccgggcc caggaggaag ttgtccttct 360 ggagttcagt gagggaacgg aagtgcagca gggaccagag tgcggggtcc tcaaacacgt 420 cgtggagctg ggagcaggtc ctggcaaggc tcttcctgct gtccttgtct aggaaggaga 480 agaggtgcag caggcactcc cggttgagct gggttatgtg catggtgagc agtggccaca 540 tgtcacttca tcctggccca ggtactgcag ctccaaatcg tggggattct gtaagagctt 600 gctacctgtt gactgaggag gcccacgagt tgagaagaac tagcaagagt ggtacaaaac 660 tgcaggtcat tgggctggcc accaggtatt cccacccacc agaagctggc tgttgtactc 720 acceggaace atggtgeace accaeagegg egaggteata caggeagete teegggeeae .780 tgttctcagg ctacagaaca aggaagaagg agcagtggtc aatgacatca gtatctcgat 840 gacctctacc ctctccatgt gatgacaatc ttactgaaga gccattttt caccatgcta 900 aaaaggccag ttgggtccag cagctttgcc tctctaccct tttatcacca aagtatactg 960 ctgagaaaga atcaaatgaa aagaaaaaag actcaacaag acctcactca tattaactgg 1020 actetacaag cagtgageat ecagacetge atttggttae aaaagaagee tteaagetat 1080 tttcatcago ttoctaatca agttaaaaaa taaaccacaa aactgagaaa a 1131

<210> 426
<211> 551
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(551)
<223> n = a,t,c or g

<400> 426
gcttgggetg tcctctgatg ccatgttgtc agcccagaca ggcagtgtga tcagggctcc 60
tggcagaggg tctcttgaga cacagccact gcccctgctt ggtggtcgtg acttgggacg 120

cagcctgcct	gtgactggag	ctgggggtga	cgggtaagat	gagtggagat	gttgggccag	180
tggggcctga	ttcccagact	ggaccaaacc	ccaggggctg	tcctccaatc	cggaccatct	240
tccagagctc	tccggatgcg	cttgtgaaca	gcaagttact	aggaaacctc	tgctgcgtct	300
gcacgtccat	caccagggag	atgtagccct	cgatgaggga	gaaggagaag	aagcggatgt	360
ggccgcagtc	atccccagtg	gccatggggt	ccttcactcc	attggagtag	aacatgacat	420
ccatgaggag	tgtggcaaca	gcaggcagcg	tgtcagggtc	caggctggtg	acacagaacc	480
tgttgctcgg	gctggccgaa	ttccaccacn	tggactaagg	tctactatna	ggggcctcaa	540
ttggacgtgc	C					551

<210> 427 <211> 1579 <212> DNA <213> Homo sapiens

<400> 427 agteacetee agaeeceaga ageteteece aacecageeg agtteetetg caaacaatte aaggggctct gataggtcac acagtgccac cttgtgtgct ggaccatatc tggagggaga 120 actgagtgag ggggcacagg ggattgtctc caggtggggc gagcagggga aggaaaatag 180 tggccacttt tacattggtt tgggtagtaa ttattgattc aggaagcaaa tacaaaatcc 240 tgaatgaaat gacttggaaa aagtaaatag aatcaagatc ccaagaggag ctgaagataa 300 ataaatggga gcaggatgtg ggggaatggt cggtaagtga gaaatgctaa aatgatagaa 360 taaagettaa ggattgttgg aggtagagea ggaaetgtgt aetgeatagt teccaaatge 420 cctggtgttc caatggggga tggaaactaa aacactggcc aggttggatt tcatactgta 480 gtcctgccat ttttcttcct agagcagaga taaaagttgg ccctgggcga tagctcattc 540 tetetgaaag getgetagtt aggeecagee tgteaccetg gateatgagt gtegtgtgta 600 ttgggactta cggcaggggg ctgaggcttg cagatgggca agtggtgaga ggccccactg 660 acctcagtet gttteteact ggagegeagg tttgggagea geageaacae cacateette 720 ggcacgetcg egagtcagaa tgcccccact tteggatcac tgtcccaaca gacttetggt 780 tttgggaccc agagtagcgg attctctggt tttggatcag gcacaggagg gttcagcttt 840 gggtcaaata actcgtaagt atcccccttt ttgagtctca ccttaattaa aagcattaaa 900 taaggttgga agtgtgtgga tettgetgga tittgtgeatt tiettitegt tittieetgt 960 ttttagagtt tgtcctggaa gtgtgggggt tcagcagcag ggtttgggtt ttgtggactt 1020 gctcttctct gtagcaatat ggcaggaggt gccaggcctc gccttcttaa gaggcgtggt 1080 tcaaagagaa aagagcacgc ctgccagtga gctgggcctg agggcagcgc tgaggagatg 1140 ctgctcctga cttccctgga ggtttctcag aagctgcatg ctaacccctg ggctctgggc 1200 catcaccagg teteatgtgt tgatecacce tetgtgette tgtgtaaaat tteatggegt 1260 taaaattcag tottagocag gtgggtggtt cacgoctata atcocagcac tttgggaggo 1320 tgaggtggga ggattgcttg agcccaggag tcaagaccag cctgggcaac agagtgagac 1380 cccatctcta ctaaaaatta aaaaaattag ccgtgcatgc tggcttatgc ctgtggtccc 1440 agctactcca gaagctgagg cgggaggatc acttgagcct gggaggttga ggctgcagtg 1500 agccaagatg gtaccactac cgtctagcct gggtgacagc cagaccctat atcaaaaaaa 1560 aaaaaagggg gggcccttt 1579

<210> 428 <211> 413 <212> DNA <213> Homo sapiens

```
<400> 428
tcgaggagcc ccagggtagt cccatctggg tatggctggc tgggtcacta acttctgtga 60
gctgcttcct tcctttccag aggatgcgga tcaaacctca ccaaggccag tacataggag 120
agatgagctt cctacagcac cacaaaggtg aatgccgac acagaaagat tgagcacgac 180
aagacagtgtaa atgttcctgc aaaaacacag actcgcgttg caaggcgagg ccgcttgagt 300
taaacgaacg tacttgcaga tgtgacaagc cgaggcggtg agccgggcag gaggaatgag 360
ccttcctcag gggttcggga accaccttct ctcaccagga aagactgata cag 413
```

```
<210> 429
<211> 1567
<212> DNA
<213> Homo sapiens
```

<400> 429 cccacgcgtc cgctccaggc tcctggagtg cctcatgctg gctaagttct ctctgggctc 60 ctccaggggt tctgtgtgct cttggaggtc cctctgctag tggtggctaa ctagagagtc 120 agcagggggg tgactgggaa agagggagag gtgatgttgc ctgctactcc cctccttgcg 180 gacceteata ceacatgaeg tggeggegtg gggeeaggaa etagggaagg cagaaggegg 240 gcgcagtggg cagctctctg ggctcagctt gctgaggggg cctcctgtcc tggctctttc 300 tgggagacet cattettetg eccatgttee tgeetcacae atteccegtg atgaacgetg 360 tgggcggggc ccggcctgtg ccctcagtcc cacagctcct ctagtgtacc tgccccgtgg 420 gaaccccatg tggaaagagc cctcagaact gacaggaatc agggacagag gcccttgctg 480 teagectect gggeacetge acetgeeagg cetetette ttaceagece agtgetgetg 540 ccaaaatcca gggctatccc agctgcccgg gaccccagtt gagccgggat attttgtctt 600 ctggagatgg ctggtgggca ggcctcagtg gtcatcatag ggtctgcggg ggtcctgggg 660 tgcaggtggg gctcctcagg gaagagccat agtctgtccc caagtcggaa gggtaatctt 720 catcttctct cacaggagcc acaaaccact gtggtacaca acgctacaga tgggatcaag 780 ggctccacag agagctgcaa caccaccaca gaagatgagg acctcaaagt gcgaaaacag 840 gagatcatta agattacaga acagctgatt gaagccatca acaatgggga ctttgaggcc 900 tacacgaaga tttgtgatcc aggcctcact tcctttgagc ctgaggccct tggtaacctc 960 gtggagggga tggatttcca taagttttac tttgagaatc gtgagtgggt tcgtgct-1020 gatatactec tgcctgcccc tttacccctt tgtctctgtc tcctgctcac cttctcatcc 1080 cagttgccca cttttccctt atttgacctt cgtgctgcac tcctactctg tatgcttgtc 1140 cccttgtgcc ccgatggttg tagacaggca cctttgaagg ccctgctcct gagctccaag 1200 tgccattcat tctgcagctg ctttgtggca gtgccagtca ccacaatcaa gctcacttat 1260 ttcttgccgg gcgcggtggc ttacgcctgt aatcccaaca ctttgggagg ctgaggctgg 1320 cggatcacga ggtcaggaga tcgaggccat cctggctaac acggtgaaac cccatctcta 1380 ctaaaaatac aaaaaattag ccgggcgtgg tggcggtgcc tgtagtccca gctactcggg 1440 tggctgaggc aggagaatga tgtgaacctg ggaggcagag cttgcagtga gccaagatca 1500 ggccactgca ctccagcctg ggcaacagag caagactcca tctcaaaaaa aaagaaaaaa 1560 ttattta 1567

```
<210> 430
<211> 728
<212> DNA
<213> Homo sapiens
```

```
<400>.430
ctttccacac catggtccaa gggaagggct gccctgtctg aagagtcceg cccacttgta
 60
ggatgagacg tggaaaatat tgttgctgta acttaaaaaa caagaccagg ggggttggct
 120
gggagcaccg gccagcaggc cctgctgagc ataaaccccc tccactggag aaggcgtggc
 180
ccctgcccac ctggaccctt ctggaaatga gggaagtgct aacagcagtg cccatcccac
 240
aagcattaaa etegggaggt ggagaetete cagcagaaag etgggeagea gagtggteet
 300
gcccctcggc ccacaaaggg ccttggccga gcatgggcat gcctggtgtg tgcccactgg
 360
ggtccatccc tgccagtggg gttccaggga cctcggggac cgggctgctt gggcccttgg
 420
480
acacggtcag gggctacctc ccggacaccc tggcctctcc acaggcagct atccatgatg
 540
ctgatgctgg cgcagtcaaa cccgcagctg ttcgcgctta tgggcacccg ggcaggcatc
 600
gccagggagc tggagcgtgt ggagcagcag tctcggctgg agcagctgag tgcggcagag
 660
ctgcagagca ggaaccaggg ccactggget gactggctac aggcgtacag agcccggctg
 720
ggacagga
 728
```

<210> 431 <211> 1524 <212> DNA <213> Homo sapiens

<400> 431 gaaatggtac tettttcatc atggtgatgc atatcaaaga tettgtgagt gattacaaag 60 aatgatggtt gtagaggaaa cccttacctt ggtaggaagc attactatta agggactgct 120 ttttttttta ggttactgaa aatggagetg acceaaatec atatqteaaa acatacetae 180 ttccagataa ccacaaaaca tccaaacgta aaaccaaaat ttcacgaaaa acgaggaatc cgacattcaa tgaaatgctt gtatacagtg gatatagcaa agaaacccta agacagcgag 300 aacttcaact aagtgtactc agtgcagaat ctctgcggga gaattttttc ttgggtggag 360 taaccctgcc tttgaaagat ttcaacttga gcaaagagac ggttaaatgg tatcagctga 420 ctgcggcaac atacttgtaa actagtgaat gtctgagctt tggaagcatg aacagttata 480 aacgtgcatg catacatgca cacacacaca gacacacaca cacacacttg ttaattttgt 540 atagtatttt tatacttgga cagaacttat aaagttaaat atacttgctg catttcaaca 600 catctgttgg accaacagtc acataactaa cctttttgaa tttttggaag ccattgctgt 660 tttaaagtca ttatgtagaa tgctacaaac cctaaactta atatacta attcctqaaa 720 aagactttga gacagtacta tgtcagttca gccacctatt ttgcattgtt ttctataagg 780 aggcaaagca tatgtgtttt cctgttatgc accttttata gcctttacca ctgtgtaatg 840 ttcacaaaca ccaaagtaaa ggaaaaatgc aggatgttac cgtaaaatcc agctgctatt 900 catggagctg aaaaacaaag cacaaataat agatagctaa gttaagaact actaagtagt 960 ttatagaagt agggaaaaac gtaatactgc tttttattca tgtctttaaa gcctttttca 1020 gaataagtgc caatcactga tgttgtaaat aatggtgcct taactttata tgcttccctg 1080 gcacttcgtt tctgatttt ttcctgattt gataaataat tagtacatag ttttcactca 1140 cttgcagctt actaaagaca agaaattatg tacatgtact aatgtttttc ccacaaaaaa 1200 atcctttact tctgatgtat gaattagtta tctaaatagt taagcctaat acctgaataa 1260 gactcaccaa tgtgattgta caataaattc tatcattcca ttaaaatcct acatttattc 1320 ccaggaatgg taatttcacc tccctacatc tatactccac tccctcagta aataagtgaa 1380 aattgttaac ccatgtgccc attcctgagt agggcagact cttcacaaga ggcccatgac 1440 aagaattota gggtocagat tgaactttaa tatagacott tgtotgtgta gaccagtttg 1500 tcttgtaaac tgtcttactt atgt 1524

<210> 432 <211> 1908 <212> DNA <213> Homo sapiens

```
<400> 432
qtctctatgg aattatagct cacctacttt tgggggaatc atgtaaggta attttatttc
 60
attatgtatt actagaatgt attgttttaa aatgtgtcta cttttttgaa gtgtcatttt
 120
qttgttgttt tcattgagat ggggtcttac tatgttgccc aggctggtct cgaactccga
 180
acctcaaatg acctgcccgg ctcggcctcc caaagtgctg ggattatggg catgagtcat
 240
tgcatccaga caaaagtgtc attgtttaat cttgatttga aagaacttta ggtatttaaa
 300
 360
acattatgtg gttcttttgt gcaagcgctt tatccctaag tcgtttgatt atccagggtt
gadagcaact ctctctgact tctgcactca gaaagcgctt ggtctaattg tgttctcctt
 420
cctgtctctt agcttcacag gataatgcag ctggctgtgg ttgtatcaca agtacttgag
 480
aatggttcct cagttttggt ctgtttggag gaaggctggg acatcactgc acaagtgaca
 540
tccctggttc agttactcag tgatcccttt tataggacac ttgaaggctt ccagatgttg
 600
gttgaaaaag agtggctctc ttttggtcac aaattcagtc agaggagcag cttgaccctc
 660
aactgtcagg ggagtggttt tgctccagtc ttcttacagt tcttagactg tgtacaccag
 .720
gttcacaacc agtatccaac tgagtttgaa ttcaatctct attacttaaa gttcttggct
 780
ttccactatg tgtctaatcg ctttaaaaca tttctcctgg attcagacta tgaaagatta
 840
 900
gagcacggaa ctttatttga tgataaagga gaaaagcatg ccaaaaaagg agtctgtatt
tgggaatgta ttgacagaat gcacaagagg agtcccattt tctttaatta tttatattca
 960
ccattggaaa tagaggctct aaagcccaat gtaaacgtct ctagcctcaa gaagtgggat
 1020
tactacatag aagagaccct gtccacaggc ccttcctatg actggatgat gctaaccccc
 1080
aagcacttcc cctccgaaga ctctgacctg gctggagaag ctgggccacg gagccagagg
 1140
agaacagtgt ggccatgcta tgatgatgtc agctgtactc agcctgatgc tctcaccagc
 1200
cttttcagtg aaattgaaaa attggagcac aaattgaacc aagcccctga gaagtggcag
 1260
 1320
cagctgtggg aaagggtaac cgtggacctt aaagaagaac caagaacaga tcgctcccaa
agacacctgt cgagatcccc aggaattgtg tctaccaacc taccttccta tcagaagagg
 1380
tetetgetac ateteccaga cagcagcatg ggggaggaac agaattecag cateteccca
 1440
tccaatggag tggagcgaag agcagccacg ctctatagcc agtatacatc caagaatgat
 1500
gaaaacaggt cctttgaggg aacactttat aaaagagggg ctttgctgaa aggttggaag
 1560
ccccgttggt ttgttttgga tgtaacaaaa catcagctgc gctactatga ctcaggtgag
 1620
gacacaaget gtaaaggeca cattgatetg getgaagtag aaatggteat ceetgetgge
 1680
cccagcatgg gagccccaaa gcacacaagt gacaaggett tetttgatet caagaccage
 1740
 1800
aaacgtgtgt ataacttctg cgcccaggat ggacagagtg cccagcaatg gatggacaag
atccagagtt gtatctctga tgcctgatgc ccatggtcaa cccacgcaga agaaacagaa
 1860
 1908
gaactcatgc tgccagatag atagaacaag aagcatggat ccttgagg
```

```
<210> 433
<211> 1714
<212> DNA
<213> Homo sapiens
```

```
<400> 433
 60
tttttttttt ttgacaagtt tgcaagtttt attgaattaa tggctggctt tcacagatgt
 120
taatcactgg cgggcggttg aataggggga acaggaaaat gctctccaga ggttcccact
 180
gaageeettt eatetgeeet geeceaaeee aceaetgaag eeagaggtea tgggagttgg
gatetaaeta eactetgtga aettaeeaee aeeeatteea teeeeaagee eatattttat
 240
 300
ttgggactag gccactgatg cccgggccct tcctcttcca gtagggtggg agggtgggag
 360
gtggggacac ggaccaaccc tcaaggaaag aaaagaggtt aaggtggggg gttttgctga
 420
atgtetaaga aatgteagtg gaacaggget ggggcacggt ggeteaegee tgtaateeca
 480
gcactttggg aggccaaggc aggtggatca cctgaggtca ggagttcgag accagcctgg
 540
ctaacatggt gaaaccccat ctctactaaa aatacaaaaa ttagccaggc gtggtggcag
 600
gtacctgtaa teccagetae ttgggagget gagacacagt etegetetgt ggeecagget
 660
ggatggagtg cagtggtgca atcteggete actgcaacet cegeeteeeg ggtttaagca
```

```
aaattateet geeteageet eetgagtage tggattaeag geaggeacea eeaegteegg
 720
ctaatttttg tattttagt agagatgggg ttttgccatg ttagccaggc tggtctcgaa
 780
etectgacet caggtgatec geetgeettg geeteccaaa gtgetgggat tacaggegag
 840
agccaccacg cccagcctct gcttcgtgag ttttctttcc cctgaggcac cctctgagtt
 900
ctccacgtgt cagacccatg tccaatgcac cacgctcctt ccttcacacc atgaaagccc
 960
cgaagtaaga ccgggtacca tcacgcagtc gaaccaggcg ttcatccagc acacggacga
 1020
ccaectecte eccageetee aggtgtacea caecaceag gaagetgetg teccaecaga
 1080
cccgggagct gctggtggcc cgtccgcagg gtgactgctg gctgaccaac agctccagct
 1140
ccteggggta geggggtgtg egettgtaga ggeegtgggt gatggtgetg gecaggeeca
 1200
gegggeagee cacacegeee agetgeacet tggagtagat gtagtagtag ceagetttgg
 1260
tgaccacaag ggccccatcg tggtagctga ggcccctcag gaaggccagg cccagctgag
 1320
toteccataa cagoggooco cogotgoogg toaagotgga gttggoocot gtgagatgog
 1380
ctgctgggtt gacctcgtga gaccttcgct cttgtatcag ctgctcccag gagcctgcag
 1440
gtccgtcagg caggcgggtg accatctctc ctagacgcca gtgcagctgc aggaggaacc
 1500
ageettggae ggeeageeca geececatea geaacageaa gagaeecaga cecaceeggg
 1560
ccacactgca cgactgtctc cggtggcttc gtcccagcct cgtgaatggg atgtcggtct
 1620
gtccatccac cacaaacact gagggccgta cgacactctc ctccatgccc aaggtctctg
 1680
gagcagggct gacacgcctg ggtccttcaa cctc
 1714
```

<210> 434 <211> 478 <212> DNA <213> Homo sapiens

<400> 434 tttcgtcaga gatagcagag cgccgagttg gggccacgaa ggcgtgaggg gagtcgtcgt 60 ccctcctgca cgaaagcgtc taagccttgg cgacgccgcc ctgggggacc cacgtcaggc 120 ctgggatagg gaccgctgtc cccgggtccc taccaatgtc gcccgtcgct cccggcccag 180 ctctacccgc agagtctgat ggcagcggcc actctgagga cgccaactca ggtgagtgcg 240 gegtettece gteetcaeae acettecece acceaegtte taaageeate agtgagggge 300 gcctgctcga gtccccgctg cccagggtcg gggacactga ggcgttcgtg ggtggggccc 360 tttttttgac actgcgtgtg acgaggtgtg ggagagcgtg acaggcggag gaaccggcgc 420 gtgcaaaggt tgaggcgcga ctgagccagg agaattcgga aagctgtttt ctgcaggc 478

<210> 435 <211> 1893 <212> DNA <213> Homo sapiens

<400> 435 cagcagegeg caggicetea ceatagetet ggtggecace tetgteeege catgetgete 60 accgacagtg gccagggccc acagcaccaa gaggcttggg ccacaaagta aagggtcgcg 120 gageetegee ggeegeeatg tggagetgea getggtteaa eggeacaggg etggtggagg 180 agetgeetge etgeeaggae etgeagetgg ggetgteaet gttgtegetg etgggeetgg 240 tggtgggegt gccagtgggc ctgtgctaca acgccctgct ggtgctggcc aacctacaca 300 gcaaggccag catgaccatg ccggacgtgt actttgtcaa catggcagtg gcaggcctgg 360 420 tgctcagege cetggeecet gtgcacetge teggeeceee gageteeegg tgggegetgt 480 ggagtgtggg cggcgaagtc cacgtggcac tgcagatccc cttcaatgtg tcctcactgg

tggccatgta ctccaccgcc ctgctgagcc tcgaccacta catcgagcgt gcactgccgc. 540 ggacctacat ggccagcgtg tacaacacgc ggcacgtgtg cggcttcgtg tggggtggcg 600 cgctgctgac cagcttctcc tcgctgctct tctacatctg cagccatgtg tccacccgcg 660 720 cyctagagty cyccaagaty cagaacycay aagetyccya cyccacycty ytyttcatcy 780 gctacgtggt gccagcactg gccaccctct acgcgctggt gctactctcc cgcgtccgca qqqaqqacac gccctgqac cqggacacqq gccggctqga gccctcgqca cacaqqctqc 840 900 tggtggccac cgtgtgcacg cagtttgggc tctggacgcc acactatctg atcctgctgg ggcacacggt catcatctcg cgagggaagc ccgtggatgc acactacctg gggctactgc 960 actttgtgaa ggatttctcc aaactcctgg ccttctccag cagctttgtg acaccacttc 1020 tctaccgcta catgaaccag agettcccca gcaagctcca acggctgatg aaaaagctgc 1080 1140 cctgcgggga ccggcactgc tccccggacc acatgggggt gcagcaggtg ctggcgtagg cggcccagcc ctcctgggga gacgtgactc tggtggacgc agagcactta gttaccctgg 1200 acgetececa cateetteca gaaggagaeg agetgetgga agagaageag gaggggtgtt 1260 tttcttgaag tttccttttt cccacaaatg ccactcttgg gccaaggctg tggtccccgt 1320 ggctggcatc tggcttgagt ctccccgagg cctgtgcgtc tcccaaacac gcagctcaag 1380 gtccacatcc gcaaaagcct cctcgccttc agcctcctca gcattcagtt tgtcaatgaa 1440 gtgatgaaag cttagagcca gtatttatac tttgtggtta aaatacttga ttcccccttg 1500 1560 tttgttttac aaaaacagat gtttcctaga aaaatgacaa atagtaaaat gaacaaaacc ctacgaaaga atggcaacag ccagggtggc cgggccctgc cagtgggcgg cgtgtgctag 1620 caaggcctgc cgggtgtgcc gcagtcacca cagggttctg agaacatttc acagaagtgc 1680 ctgagacgcg gagacatggc tggtgttaaa tggagctatt caatagcagt gacgcgctct 1740 ceteagecae caaatgteee tgacaceete eccageceee acagataaca teagetgagg 1800 tttttttcag tatgaacctg tcctaaatca attcctcaaa gtgtgcacaa aactaaagaa 1860 1893 tataaataaa ccaaagaaag gtgaaaaaaa aaa

<210> 436 <211> 1968 <212> DNA <213> Homo sapiens

<400> 436 60 ccttgcttgc aggaagccat gcagttagtt tctgcagtta gtcgtgtgag gctaggtggt tgggcaggcc tcgggctgta ggtgttgggt gggaaaaaga cccaagggcc tgaaagggag 120 ggaaagggga gggtagcggg agggtagcag gtgagttcct agggctggaa ggtttaacag 180 cagcotggtg cagtgccotg toatcaagac aaacccacgg tootcotggg tgcctaccaa 240 300 gcttggtttg tacaaaagca aggtgggagt ctatttttgt acatgagata catcacactt acctgtgggc cagtattgtg aagtgagtct gagttgttta cactgatgcc ttccctgccc 360 420 accacaatt gtgtacatag tetteagatg ataccaecce ttteeccage teccaaccaa gagetggtte taggeetgtg ttatatgtea tatttagegt ttttatatat gacetttgat 480 ttctgttgtt tgtattttag cacagtgtat gcaccttcat ttaaatacat ctgtgtgcat 540 600 acagatacgc atatatgtgt gtgcgtatgc atatatctct catctgtagt ttccaagagt tragetgaag cagatggagt cetgeagere aggagacace etgeateret getaatagtg 660 720 tttgccacaa gtattagtga gtcttcctta ttaatatttt catttcagaa gactgaagca 780 aagctgatag tgtttgctgt ttctttggca gctaagtgag ggtcttggga tgacttgctg 840 tgttcctcaa gctgcacttt ggggccatct ctgcagtatt agcccccttt ttgcttggtg 900 gtactctgtc tgtgcctgtg tgtgtgtgtg atagtcactc ttgcatggct tccatgtctg 960 gtttgtggca tttggggata aggtgctgaa gccagagcat ttgcagtttg tttgaggcct 1020 cgttgccaat gatagatcac tcctgttgac ctggtatgtc tgcttgcttg ctgcttttcc 1080 ttgctttctc ttggaagagg aaaggactct ggtcaggccc aggctgagtg agatgagctg 1140 cagctggctc atggccttct tagagcagag agaggagtat gtcattttac taagttccta aacaaacatt tatgcaggca acactccttg cagatccaga aactgaggca caatagggtt 1200 atgacttgct caagaatatg tagctgctag ggggtaaatc aaggcatcac aatttctgtt 1260 cagogggcag gaataggctg tgaattgcta gcactttttt tttttaagca attacttttt 1320 gacttgttcc tctgaaaggg caagaggcgt acacctttcc caaatgtaaa ctaaaatctg 1380 caggatgcca cccactgtat agttctgctt tcccagagag gaagaacttt tagaaaccaa 1440 1500 atgatettaa ttgttattge eeaeeeetgg etttteeggg tagaaaatte aeagtaggaa

```
tgattgttaa gagagagtgc ttggaaccat gggttaacag gaaaggctac ctaacttcac
 1560
atatctgcaa ccagagcagc caccaagcat tacttagcag caggaaaatg attgtatttg
 1620
agttcctgtg tgtccaaaac tgaggcacca tgttctttga aaacatgcca cctcaaggct
 1680
 1740
gggcgcggtg gctcacacct gtaatcccag cactttggga ggccgaggcg ggcggatcac
 1800
cggaggtcgg gagtttgaga ccagcctgac caacatggag aaaccccatc tctactaaaa
atacaaaatt agccgggcgt ggtggcatgc gcctataatc tcagctactt gggaggctga
 1860
 1920
ggcaggagaa ttgcttgaac ccaggaggcg gaggttgcgg tgagttgaga tcgtgccatt
 1968
gcactccggc ctgggcaaca acagcaaaac tccgtctcaa aaaaaaaa
```

<210> 437 <211> 422 <212> DNA <213> Homo sapiens

<400> 437 60 ttttttttt ttgaggcaga gtctcactct gtcacccagg ctggagtgta gtggcgcaac ctcagcctct ccaagtgctg ggattacagg catgagccac cactcccagc caatagtgaa 120 ttttctaaga gcatgtatcc ctatcagtaa gtaacaggga tacatgaaga tacttataaa 180 240 atacagaaaa actgcccagc aaatcagggc cctaaacagt tggtagattc cataaattca actggctacc atgtatagcc ctcactgtaa ggtaggtggt taggtttcta gagagcatta 300 gtcttagaat tatgaagagc catattaacc caaatgattt ctaaatttag atatatattt 360 tccctgctac ataaaaactc tgggtaataa ctagaaatag acccacaatt tagagacaat 420 422 qt

<210> 438 <211> 1319 <212> DNA <213> Homo sapiens

<400> 438 aggeageacg eggaggageg eggeegeege aaccecaaga eggggttgac eetggagegt 60 gtgggeettg aaageageee ttaceteetg eggegeeaee agegeeaggg eeaggaggge 120 gagcactacc acagctgcgt gcagctggcc ccgacgcgag gcctggagga gtctgccacg 180 geoceetgag cttgeeggtg geoctegggt gggeggggtg gegeegegge caetgaagea 240 300 ccgcgcatgg agtggaaagt gaaggtgcgc agcgacggaa cccgctacgt ggccaagcgg 360 cccgtgcgag atcggctgct gaaagcccgt gccctgaaga tccgggagga gcgcagcggt 420 atgacgaccg acgacgacgc ggtgagcgag atgaagatgg gccgctactg gagcaaggag 480 gageggaage ageacetgat eegggeeegt gageagegga ageggegega gttcatgatg 540 cagageegge tggagtgeet gegggageag cagaatggeg acageaagee egageteaac 600 atcattgccc tgagccaccg caaaaccatg aagaagcgga acaagaagat cctggacaac tggatcacca tccaggagat getggcccac ggcgcgcgct ccgccgatgg caagcgggtc 660 tacaaccete tteteteagt caceaeegtg tgagetgeee gggegggtae aeggeeeagg 720 cccagggaac cccctggggc cccggccctc actctcctat agagattgtg tgtgtgtgt 780 tgtgcgcgcg cgcgtgctcg ctgtgcgcac gcacacatct cgtctgggtg tgcgcacagg 840 getttgttag cagagagaag ceeetgagga gaagggaege ttttetteet tetgeecaag 900 .960 taaagtgacc atgccagtgg ccagcactgg gggcacacct gtgatgggca ccccttcagc tgtqcqtgtg cattccccat cccccatgct cttgcgtgtg cttgcacgtg cacgcacaca 1020 cacacccagt gctctctcca cccgacccgt gtacttgcag acagggaagc tgagctgaaa 1080

```
ggagcacaag agagtgtccg gcttcgctgc tgagcgcggc ctctccccgc cgctgcgcac 1140 tgcagttatt tgtagacaaa ggcaccctg atttttgtgg tttttctccc tttctgtgct 1200 tgccaatagt tgttttgttt tgtggacctg ccctgggggc tggcagctcc ttcaggcagc 1260 ctggcagaag tggaactccc ctctccactg atggctggga agggagttgg ggaggaaga 1319
```

<210> 439 <211> 1689 <212> DNA <213> Homo sapiens

<400> 439 gagcgatcga ggctgcagcg cggccgccgg gcgcaacatg actgccgtcg gcgtgcaggc 60 ccagaggcct ttgggccaaa ggcagccccg ccggtccttc tttgaatcct tcatccggac 120 cctcatcatc acgtgtgtgg ccctggctgt ggtcctgtcc tcggtctcca tttgtgatgg 180 gcactggete etggetgagg accgeetett egggetetgg eacttetgea ecaccaccaa 240 ccagagtgtg ccgatctgct tcagagacct gggccaggcc catgtgcccg ggctggccgt 300 gggcatgggc ctggtacgca gcgtgggcgc cttggccgtg gtggccgcca tttttggcct 360 ggagttcctc atggtgtccc agttgtgcga ggacaaacac tcacagtgca agtgggtcat 420 gggttccatc ctcctcctgg tgtctttcgt cctctcctcc ggcgggctcc tgggttttgt 480 gatectecte aggaaccaag teacacteat eggetteace etaatgtttt ggtgegaatt 540 cactgcctcc ttcctcctct tcctgaacgc catcageggc cttcacatca acagcatcac 600 ccatccctgg gaatgaccgt ggaaatttta ggccccctcc agggacatca gattccacaa 660 gaaaatatgg tcaaaatggg acttttccag catgtggcct ctggtggggc tgggttggac 720 aagggccttg aaacggctgc ctgtttgccg ataacttgtg ggtggtcagc cagaaatggc 780 cggggggcct ctgcacctgg tctgcagggc cagaggccag gagggtgcct cagtgccacc 840 aactgcacag gcttagccag atgttgattt tagaggaaga aaaaaacatt ttaaaactcc 900 ttcttgaatt ttcttccctg gactggaata cagttggaag cacaggggta actggtacct 960 gagetagetg cacagecaag gatagtteat geetgtttea ttgacaegtg etgggatagg 1020 ggctgcagaa tccctggggc tcccagggtt gttaagaatg gatcattctt ccagctaagg 1080 gtccaatcag tgcctattct tccaccagct caaagggcct tcgtatgtat gtccctggct tragetttgg tratgeraaa gaggragagt traggattre etragaatge eetgracaca 1200 gtaggtttcc aaaccatttg actcggtttg cctccctgcc cgttgtttaa accttacaaa 1260 ecctggataa ecceatette tageagetgg etgteecete tgggagetet geetateaga 1320 accetacett aaggtgggtt teetteegag aagagttett gageaagete teecaggagg 1380 geceaectga etgetaatae acagecetee ecaaggeeeg tgtgtgeatg tgtetgtett 1440 ttgtgagggt tagacagcct cagggcacca tttttaatcc cagaacacat ttcaaagagc 1500 acgtatctag acctgctgga ctctgcaggg ggtgaggggg aacagcgaga gcttgggtaa 1560 tgattaacac ccatgctggg gatgcatgga ggtgaagggg gccaggaacc agtggagatt 1620 tocatcottg ccagcacgtc tgtacttctg ttcattaaag tgctcccttt ctagtcctta 1680 aaaaaaaa 1689

<210> 440 <211> 1574 <212> DNA <213> Homo sapiens

<400> 440
ccagatectg cccaacetet atetgggeag tgecegggat teegeeaatt tggagageet

225

```
ggccaaactg ggcatccgct acatcctcaa tgtcaccccc aacctcccaa acttcttcga
qaagaatggt gactttcact acaagcagat ccccatctcc gaccactgga qccagaacct
 180
gtegeggtte tttceggagg ccattgagtt cattgatgag gccttgtccc agaactgegg
 240
ggtgetegte caetgettgg egggggteag eegttetgte acegteactg tggeetacet
 300
catgcagaag ctccacctct ctctcaacga tgcctatgac ctggtcaaga ggaagaagtc
 360
taacatetee eccaacttea aetteatggg geagttgetg gaetttgage geagettgeg
 420
gctggaggag cgccactcgc aggagcaggg cagtgggggg caggcatctg cggcctccaa
 480
coegcetee ttetteacca eccecaccag tgatggegee ttegagetgg cececaceta
 540
gggccccgtg gccggcaggc cggccctgc cccacccca cccacgggtg tccctgcca
 600
ctcgtgtggc aagggaggg agggcaggag ggctcggcct gagcagggtg ctggggggag
 660
agegeaatac cteacgeggg ctgccgtcct aatcaacgtg cctatggcgg gaccacgctc
 720
ggagcctgcc tcttctgcga ctgttacttt ttctttgcgg gatgggggtg ggggttccct
 780
ctccaggtgg ttgtccaggc ccaggtcccg gccctgggtg ctcagccagc tcggctaggc
 840
cetgegeete cetgegette eccetteagg aagggtgtgt gecaectegt tgeactggat
 900
eccagtgget gettggggga gaggegtttg ccatcactgg tgttgtcacc tecctgttte
 960
tecaccaagg gettgggeet eteggggetg gggeeteeca ggggatgggg acccagaggt
 1020
geagtggeeg eccacateca tggeetagga getaetggge aggtteeegg ecacacatet
 1080
ggtgggctgt tttgtttttt ttttttcctc ttcccccaaa tgtcttgacg ggatcactgg
 1140
ggctctttgt gagggagggg ggccaaacta ccgccggagg aaatggggtc tcagagcgag
 1200
agctgcggag ggggagggga aaaaaaaggc ctcacttttg ctgcctgcgg ggccccacac
 1260
agccgctgct actttggggg gtgggggaag gggccaaagc tgaagacaca cacagtcatt
 1320
catttctgtc caacaccct gtgggtggcg ggtgtgccgt gtgtgtgctt gtgtgtgcgc
 1380
acgtgtcggc gctcacacac acatgctagc ccactgatgc acccagccca gggctggcag
 1440
tetttgcage gtggggccgt ctcaccetgg agectggaga ggatctatge ttgtttgttt
 1500
ttgtaatcca tatcatagtt gctttcttta attgttcctt ctgaataaac agtttattta
 1560
agataaaaaa aaaa
 1574
```

```
<210> 441
```

## <400> 441

```
tttttttta aaaaaaaatt aagctcttta attatgtgca cacagatttt agaaaaggta
 60
gccttttgta tatagatacc tttacattct ttaggctgac ttttaaattg fcatcttttt
 120
tcaactacag tttttgtata tagtaaacca gaagatgtgt atggaccctg ttatggccaa
 180
gcatctcaaa gatgaagaga gaattaatga tagttatatt tcactcaaaa tgccaaaaaa
 240
aaaaattcaa caaagtaaaa attttaaaac ttgactctaa ctagttcctt tttgttttac
 300
atteteaaae eattgteaaa tattetaaat atetetgaga atttetett taatgettea
 360
cttgtataat cttaaaatcc tgacagtcat acaatacagc atgtagtagg taccttttct
 420
tgaggcacat tcaagtgttt tggcaaacag taaaaagtat ctaaatgcca caggttaaaa
 480
tgtcaagttt tactgagtca ccaacttcac ctcttttgat ctgcctgttc tccaagaaca
 540
teatteteeg gaagateeaa gtteetetag ttgttttett tgtgttgttt ceagttette
 600
tagtcttttg cgaagtagag agagttccct ttgatgttgt tcctcctgca tatgaggagg
 660
aaatggtagt tocatgottg gaacccatgg ctgatgactg aaagctaaca ggattgatag
 720
atgctgttgg aggcatgtta ggaaccaaaa ttagacttcg aaattcatta tgtcttctct
 780
gtatatettt tagtetttt tgaageettg tatagtette aaaaggaaca ttttgtetat
 840
ttaagacctg attitictgtt tocaattott ctttctttgc ctccaagact tctactitct
 900
cttgtagtct tttcaatttg ttttcatgaa gagattttct ctaaaaagag aaatatgaac
 960
aagtatgtta atacataatc tcttatttga acaaaactat atagaaaata ttttactcac
 1020
caaaaactgt gtttagatat gaatgttttc agtgaatact agaaacaaag gttagtagac
 1080
atggctctta ctgaaaattg ca
 1102
```

<211> 1102

<212> DNA

<213> Homo sapiens

```
<210> 442
<211> 1049
<212> DNA
<213> Homo sapiens
```

```
<400> 442
ggaaggcetg gtgcaggagc etctgagete ttteettetg tgaccaegga ectgteagtt
 60
tccaaacaaa acgcgtgcct cacttgtgtg gattttgtca ctgtgcatgt atgtatgggt
 120
ttetggggea ttggteetgg tgetetetee acateetgea teeegtacee tetgteteat
 180
ggcccaggca gtgtgaaggc ggagatgctg cacatgtaca gccagaagga cccgctcatc
 240
ctctgtgtgc gcctggccgt gctgctcgcg gtgaccctca ctgtgccagt cgtgctgttc
 300
cetatecgec gggccetgca geagetgett tteccaggca aggeetteag etggccaega
 360
catgtggcca tagctctgat cctgcttgtt ttggtcaatg tccttgtcat ctgtgtgcca
 420
accateeggg atatetttgg agttateggg tecaceteag ecceeageet catetteate
 480
ctccccagca tcttctacct ccgcattgta ccctctgagg tggagccttt cttatcctgg
 540
cccaagatcc aggccctgtg ctttggagtc ctgggagtcc tcttcatggc cgtcagtcta
 600
ggetttatgt ttgccaactg ggccacagge cagageegea tgtetggaea etgateagge
 660
cetgetggee caggteeetg tgegeatgea catggagggg teagggeege teeetagggt
 720
ccctectgce caacatgtgg aggtggctgg ttcccatgaa cgtggttgtc agaggcgggg
 780
gacagcagag getgeagact ggeceaette ceteeteece agggatgeea agettggate
 840
atggccctaa tcccaacccc aaccccatgg gaggaggagg aggaggaaga agaggaggag
 900
gaggaggagg aggaggagga ggaggaggag gccaggtcct ggtggagcct ttgcccagcc
 960
cagtectete tgeeteetee tggetgaage tgtttgteea ggattaeeet eggggetaaa
 1020
gaggaaaaat aaagatgttg agctaccaa
 1049
```

```
<210> 443
<211> 458
<212> DNA
<213> Homo sapiens
```

```
<400> 443
gaattcatga cttaacgtca gttagtattg cttaatggaa tcgacataca tattgttata
 60
ccgtgaatca ttttcagtca agaccacatt tctcagaqtt tgccaaaaca aaccttctgc
 120
cttcgggttg tcaggccact ggaggatgga gctcttacag atccgctgcc gtagcctcaa
 180
atactgagaa tgctgtaaca ctggctccag caggataaat ataatcacat ccatgttctc
 240
atccattagc ctctgcaaag ccaagtaaaa agctgtttta aagttccagc tttttgcata
 300
ttttttggtt aaaacaaata ctgttttctt gctttggttg atgctctgca tgaggttgtc
 360
gatgatggcc aatcccgggt cccaatccct ctcctctaqa caaaqqagaa cgtttttgtc
 420
teggetetet teaaggtggt agegeagete atttatea
 458
```

```
<210> 444
<211> 1681
<212> DNA
<213> Homo sapiens
```

```
<400> 444
tttttttttt ttgggctaga ggtttgggct ttaatggcag ctggggtaaa aggaaacaaa
 60
aacagtaatt ctgaagagca cagggaacag gcagccagga ccagcctggc ccattccagg
 120
ccagctgagc tgaaatgctg attetgtcca gggggctgct gtatgtgtag actggtggca
 180
gtcttgggga ctgaggcctc ttggagagaa gggaagactg tcggctcaga agtccatgga
 240
gctgtgggcc aggtagtcct tgcgaccgat gttgctgacc tgcttggtct gcatagcctc
 300
gagtttgggg cagtcagtga tccgatgacc caggcccccg cagaaggcac agccgcgctc
 360
tectecaatg tecageatgg acteatecee geaatgeage acetgeagea egggeggeae
 420
cttctgcttg gcttctagca gcagcgcttt gaggtccatc agcactgact catcacacgc
 480
tttgttgatg aaggtagtgg cgatgcctgt gtttcccgag cgcccggtgc ggccaatccg
 540
gtgtacatag ttctcaatct cctctggcat gtcataattg atgacgtgct ggatggcagg
 600
gaagtecagg ccettggagg caaegtetgt ggetactagg acateettet tgeeeteeeg
 660
gaatgeeteg atggeettag teegtteete etggtetttg ceeccatgga tggetaegge
 720
ctcaacccc ttgagcagca ggtactcgtg gatggcgtcc acgtctgcct tcttctctgc
 780
aaagatgagt acaggegggg gtgtcttctg caggcactcg agcaggtaca ccatcttggc
 840
 900
ctcctccttc acatattcta cctcctggat gacatccagg ctggcagccc cagcgcgccc
cacattgatg gtcacaggct ttacaagggc actcttagca aagttctgaa tcttcttcgg
 960
catggtggca ctgaagagca gggtctgtcg ctggcccttg aagtaggaga agatggtacg
 1020
gatgtcaccc tcgaagccca tgtcgatcat gcggtcagcc tcgtccaggg ccaggtagcg
 1080
acagatgtct aggctgacca tcttcttctg cagcaaatcc atgaggcgcc ccggggtggc
 1140
caccatcatg tgtacaccgt gtcggatggt ctccatctgc tctttcacgg acatgccccc
 1200
aatgcagagg gegcagegca ggagtggtga getgteetee tgcagcagge ggcagtagta
 1260
ctccaggatg ccatgggtct gccgggccag ctcccgcgag gggcagatga tgagtccata
 1320
gggcccctcg cgctttgaga agggtaacct cttctcttgt tccaggcaga acatgatgac
 1380
gggcaacgtg aacaccagtg tcttgcctga acccgtgaaa gcgatgccta tcatgtcacg
 1440
gccagataga atggtgggga tgccctggat ctgaatgggt gttgggtggt gaatgccttt
 1500
cttcttcagg cctctcagga tggctgcagg aaacttcatt tccttgaagc tcttgatggg
 1560
tggtgggata ccgtctccct ccaccaggat gtggtatttc ttccgcacgc gctcatgtcg
 1620
ctcttcagac atgctcagaa cataacgggg tggagtccag ctggttttga tggggtcatc
 1680
 1681
```

```
<210> 445
<211> 621
<212> DNA
<213> Homo sapiens
```

```
<400> 445
atcgagacca cccagcccag tgaggacacg aatgccaaca gtcaggacaa cagcatgcaa
 60
 120
cetgagacaa geagecagea geageteetg ageceeaege tgteggateg aggaggaagt
cggcaagatg cagccgacgc agggaaaccc cagaggaaat ttgggcagtg gcgtctgccc
 180
tcagccccaa aaccaataag ccattcagtg tcctcagtca acttacggtt tggaggaagg
 240
acaaccatga aatctgtcgt gtgcaaaatg aaccccatga ctgacgcggc ttcctgcggt
 300
tetgaagtta agaagtggtg gacceggeag etgaetgtgg agagegaega aagtggggat
 360
gaccttctgg atatttaggt ggatgtcaat gtagatgaat ttctagtggt ggaaaccgtt
 420
ttctaataat gtccttgatt gtccagtgag caatctgtaa ttgatctata actgaattcc
 480
agettgteae aagatgttta taaattgatt tteateetge cacagaaagg cataagetge
 540
atgtatgatg ggttactatc aatcattgct caaaaaaatt tttgtataat gacagtactg
 600
ataatattag aaatgatacc g
 621
```

<210> 446

```
<211> 468
<212> DNA
<213> Homo sapiens
```

<400> 446 taacgatcgc ttctctgctt gctacttcac cttgaaactc aaggaagcag ctgttagaca 60 gegtgaagec etaaagaage ttaccaagaa tatagecact gaeteatata teagtgttaa 120 cttgagagat gtctatgccc ggagtatcat ggagatgctg cgactgaaag gcagagaaag 180 agcaagtact aggagcagcg ggggagatga tttctggttt tgaattaatt ttcaatttat 240 ttacaaaagc tatgtacaat taactaaaat gataaagcag tgatgtggat ttctgtattc 300 tgatgatgag tetetteaga gtactgetea tettaattaa tttttgetga tatattgett 360 catctactag aatatttcac atcacctata acaactgcac agtgttctga cacatttgag 420 tgtccaaaat agccaattaa cacaaccaaa tacaactggg catgtatt 468

```
<210> 447
<211> 1030
<212> DNA
<213> Homo sapiens
```

<400> 447 ctttactgtc ttcattctgg gaataactat tcgaccactg gtggagtttc ttgatgtcaa 60 gaggtccaat aagaaacaac aagctgtcag tgaaqaaatc tattgtcggt tgtttgatca 120 tgtgaagact ggaattgaag atgtttgtgg acattggggt cacaactttt ggagagacaa 180 gtttaagaag tttgatgata aatatctgcg gaagcttttg attcgggaaa accaaccaaa 240 gtcaagtatt gtatctttat ataaaaagct tgaaataaaa catgccattg agatggcaga 300 gactgggatg ataagtactg tccctacatt tgcatctcta aatgattgtc gtgaagaaaa 360 aataaggaag gtcacgtcca gtgaaactga tgaaattcga gaactcttat caagaaatct 420 ctatcaaatc cgtcagcgaa ctttatccta caacagacac agtctgacag ccgacacaag 480 tgagagacaa gccaaggaga ttctgattcg ccggcgacac agtttgcgag aaagcattag 540 gaaggacage agettgaate gagaacacag ggetteeact teaaceteec gatatttate 600 cttacctaaa aatacgaagc ttccagaaaa gctacaaaag aggaggacta tttctattgc 660 agatggcaat agcagcgact cagacgcaga tgccgggacc accgtgctca atttgcagcc 720 cagagecagg egettettge cagaacagtt etecaagaaa teececcagt eetataaaat 780 ggaatggaag aatgaggtag atgttgattc tggccgagat atgcccagca cccccccaac 840 accecacage agagaaaagg gcacceagac gteaggetta ctacageage ecettetete 900 taaagaccag tctggctcag agagggaaga cagtttgact gaaqqcatcc cgcccaaqce 960 gccaccacgg ctggtctgga gggcatcgga acctggaagc cggaaagccc gatttgggag 1020 tgagaagcct 1030

```
<210> 448
<211> 1936
<212> DNA
<213> Homo sapiens
```

```
<400> 448
ggcacgagga ggcctcgggg ctgtccgtgt ggatggggaa gcagatggag cccttgcacg
cagtgcccc ggcagccatc accttgatct tgtccttgct cgttgccgtg ttcactgagt
 120
gcacaagcaa cqtqqccacc accaccttgt tcctgcccat ctttgcctcc atgtctcqct
 180
ccatcggcct caatccgctg tacatcatgc tgccctgtac cctgagtgcc tcctttgcct
 240
teatgttgee tgtggeeace cetecaaatg ceategtgtt cacetatggg caceteaagg
 300
ttgctgacat ggtgaaaaca ggagtcataa tgaacataat tggagtcttc tgtgtgtttt
 360
tggctgtcaa cacctgggga cgggccatat ttgacttgga tcatttccct gactgggcta
 420
atgtgacaca tattgagact taggaagagc cacaagacca cacacacagc ccttaccctc
 480
ctcaggacta ccgaaccttc tggcacacct tgtacagagt tttggggttc acaccccaaa
 540
atgacceaac gatgtccaca caccaccaaa acccagccaa tgggccacct cttcctccaa
 600
gcccagatgc agagatggtc atgggcagct ggagggtagg ctcagaaatg aagggaaccc
 660
ctcagtgggc tgctggaccc atctttccca agccttgcca ttatctctgt gagggaggcc
 720
aggtagccga gggatcagga tgcaggctgc tgtacccgct ctgcctcaag catccccac
 780
acagggetet ggtttteact egettegtee tagatagttt aaatgggaat cagateecet
 840
ggttgagagc taagacaacc acctaccagt gcccatgtcc cttccagctc accttgagca
 900
gcctcagatc atctctgtca ctctggaagg gacaccccag ccagggacgg aatgcctggt
 960
cttgagcaac ctcccactgc tggagtgcga gtgggaatca gagcctcctg aagcctctgg
 1020
gaactcctcc tgtggccacc accaaaggat gaggaatctg agttgccaac ttcaggacga
 1080
cacctggctt gccacccaca gtgcaccaca ggccaaccta cgcccttcat cacttggttc
 1140
tgttttaatc gactggcccc ctgtcccacc tctccagtga gcctccttca actccttggt
 1200
cccctgttgt ctgggtcaac atttgccgag acgccttggc tggcaccctc tggggtcccc
 1260
ettttetece aggeaggtea tettttetgg gagatgette ceetgeeate cecaaatage
 1320
taggatcaca ctccaagtat gggcagtgat ggcgctctgg ggaccacagt gggctatcta
ggtcetccct cacctgaggc ccagagtgga cacagctgtt aatttccact ggctatgcca
 1440
cttcagagtc tttcatgcca gcgtttgagc tcctctgggt aaaatcttcc ctttgttgac
 1500
tggccttcac agccatggct ggtgacaaca gaggatcgtt gagattgagc agcgcttggt
 1560
gateteteag caaacaacee etgecegtgg gecaatetae ttgaagttae teggacaaag-
 1620
accccaaagt ggggcaacaa ctccagagag gctgtgggaa tcttcagaac cccctgtaa
 1680
gagacagaca tgagagacaa gcatcttctt tcccccgcaa gtccatttta tttccttctt
 1740
gtgctgctct ggaagacagg cagtagcaaa gagatgagct cctggatggc attttccagg
 1800
gcaggagaaa gtatgagagc ctcaggaaac cccatcaagg accgagtatg tgtctggttc
 1860
cttgggtggg acgattcctg accacactgt ccagctcttg ctctcattaa atgctctgtc
 1920
tcccgcggaa agctcc
 1936
```

```
<210> 449
<211> 354
<212> DNA
<213> Homo sapiens
```

```
<400> 449
ggcacgagct ggaaaacaat tggcttcaac atgagaaagc tcctacagaa gaagggaaaa
 60
aagagetget ggeeetaagt aacgegaace cetegetget ggageggeae tgtgeetaee
 120
tetaagecaa gateaetgaa tgageggaeg aetgaggaea tatgetttaa getegaeeca
 180
ttcccatage gacgetcate actetgettg catgetette aaccetcage tgteggetet
 240
cgagetacce ceteaatgte atgeggeete etteccatee gecetteete geegetgete
 300
agtactccgc gttaggagac cttcgtactt agcggcccgc tccagagtac cgcc
 354
```

<210> 450 <211> 1073 <212> DNA

<213> Homo sapiens

<400> 450 ggaaacatca tetacatgta catgeageea ggageeaggt etteeeagga eeagggeaag 60 ttectcaege tettetacaa cattgteace eccetectea atecteteat etacaceete 120 agaaacagag aggtgaaggg ggcactggga aggttgcttc tggggaagag agagctagga 180 aaggagtaaa ggcatctcca cctgacttca cctccatcca gggccactgg cagcatctgg 240 aacggctgaa ttccagctga tattagccca cgactcccaa cttgcctttt tctggacttt 300 tgtgaggctg tttcagttct gacattatgt gtttttgttg ttgctcttaa aattgagacg 360 gggtctcact ctgtcaccta gggtggagtg cagtggtgcc accatagctc cttcgactat 420 tgggcttaag cgatcctccc ccacctcagc cttccaagta actgggacta caggtgtgca 480 tcactggcag tgggaattgt ggcttttctg tcttctatgg agacggggtc ttgcctgtgt 540 tgccccagge tggtcccaaa ccccctggcc tcatgtgatc ctcctgccat ggcctcctaa 600 agttctggga ttacaagtgt gagtcactgt gactggccaa cattatgtga tttatgtgtg 660 aacctatata acacaaatca teecceaaaa ceecateetg gatetgtaaa geagetgeea 720 aagaatgaag tgagagaaac agttgtaaag atgagtttcc caccctactt atacccagag 780 tgcctaagag gaaatcaact cttcctcaat cagagetttg cetttgtttg ttgttgtttg 840 cctttaaagt ctaacaccc tgacatgttt cagtcagaat gaccccaaat gcatcactgt 900 tetecaegtg gteceaagtg cetetetgtt tagggeeate aaateatgga atgeageaea 960 gtttgatatt ttctatattc ccaattccta cccaaacctt ttcatgaaat cgtagagttt 1020 gttttaccct ttatctggtg taagattctg cataaaccaa gaagtgaacc tgt 1073

<210> 451 <211> 2674 <212> DNA <213> Homo sapiens

<400> 451 gcgcattgac ccctagaaca gcgctcgaat tgccgcgtcg acccacgcgt gcgaacccac 60 acaatggcca gcgataccag cagcctggtg cagtcccata cttacaagaa gcgagagccg 120 gccgacgtgc cctatcagac tgggcagetc caccccgcca tccgggtggc agacctcctt 180 cagcacatca cacagatgaa gtgtgcggag ggctacggct tcaaggagga atacgagagc 240 ttctttgaag ggcagtctgc accatgggac tcggctaaga aagatgagaa cagaatgaag 300 aacagatacg ggaatatcat tgcatacgat cattcccgag tgaggctgca gacaatagaa 360 ggagacacaa actcagacta tatcaatggc aattatatcg atggttatca tcgacccaat 420 cattacattg ctacccaagg gccaatgcag gaaaccatct atgacttctg gaggatggtg 480 tggcacgaaa acactgcaag tatcatcatg gtgaccaatc ttgtggaagt gggaagggtc 540 aaatgetgea aataetggee agatgacaca gagatatata aagacattaa agttaeeeta 600 atagaaacag aactactggc agaatatgtg ataagaacat ttgctgttga aaagagaggt 660 gtgcatgaaa tccgagagat cagacagttt cacttcactg gctggccgga tcatggggtc 720 ccctaccatg ccaccggcct gctgggattc gtgcggcaag tcaagtccaa gagcccgccc 780 agtgcaggcc cactggtggt gcactgcagt gctggtgcag ggaggactgg ctgtttcatc 840 gtcattgata tcatgttgga catggccgaa agggaagggg tcgtagacat ctacaactgc 900 gtcagggagc tgcggtcacg gagggtgaac atggtgcaaa cagaggagca gtatgtgttt 960 atccacgatg cgatcctgga agcctgtctt tgtggggaca cctctgtgcc tgcttcccaa 1020 gttaggtctc tgtattatga catgaacaaa ctggatccac agacaaactc aagccagatt 1080 aaagaggaat teeggaeget aaacatggtg acaccaaege tgegagtaga ggaetgeage 1140 atcgcactgt tgccccggaa ccatgagaaa aaccggtgca tggacatcct gcccccagac 1200 cgctgcctgc ccttcctcat caccatcgat ggggagagca gcaactacat caatgctgcc 1260 ctcatggaca gctataaaca gccttcagct tttatagtca cccagcatcc tttgccaaac 1320 acagtgaaag acttttggag actggtcctg gattatcact gcacatccgt agttatgcta 1380 aatgatgtgg atcctgccca gttgtgtcca cagtactggc cagaaaacgg agtacacaga 1440 cacggcccca tccaggtgga atttgtctct gctgacctgg aagaggacat catcagcagg 1500

```
atattccgca tttacaatgc cgccagaccc caagatggat atcggatggt gcagcaattc
cagttcctgg gctggccgat gtacagggac acaccagtgt ctaagcgctc cttcttgaag
 1620
ctcattcgcc aggtggacaa gtggcaagag gaatacaatg gcggggaagg ccgcaccgtt · 1680
gtgcactgct tgaacggggg aggccgcagt gggacgttct gcgccatcag catcgtatgt
gagatgetee ggcaecagag aaccgtggat gtettteacg etgtgaagae aetgaggaae
aacaagccca acatggtcga cctcctggat cagtacaagt tctgctacga ggtggccctg
 1860
gaatacttga attctggctg atggtgtaaa cagctctgca aacaatccct ttcataccac
 1920
aaagccaaga cgttccatgg tatttgtgca aaagagatga agacttctca atatgcttat
 1980
tttgctttgc ataattggct ctttttaaga gcccaagaaa gtgtttctaa aattgcttgc
 2040
actgcccaat cccagtaatg ctgctgcctg acagaaacac acacacagcc acagttgcca
 2100
aatcccgtac teettgecac eggetteeta gageagegta gaeagetggt aaactgaaga
 2160
gcacaactat attettatga aggaatttgt acctttgggg tattattttg tggcccgtga
 2220
ccctcgttat tgttacagct gagtgtatgt ttttgttctg tggagaatgc tatctggcat
 2280
tatggtaata tattatttta ggtaatattt gtactttaac atgttgcata atatatgctt
 2340
atgtagcttt ccaggactaa cagataaatg tgtaatgaac aaagatatgt tgtatgagtc
 2400
gtcgtttctg tcagatttgt attgtttcca agggaaaagc ttgggggagg actcagttca
 2460
caaaatgcaa aactcaacga tcagattcac ggacccagag cttttccatg tgtttatatt
 2520
gtaaatattt ttgatttcat cgaaattatt tattcattaa aagaaatttt tgtgaagcac
 2580
agtgagtgac aatcattttt cttaaggcct ggaaacgatt ttctgtatga tgttacttta
 2640
tgtgaattct catctcaata aatgatgacc cgtg.
 2674
```

<210> 452 <211> 601 <212> DNA <213> Homo sapiens

<400> 452 tttttttttt tttcagcggg aaaaatgtgg atttaatgga atgaaggatg aaagggcccg 60 aagccagcaa gtctcgcccc acctaccagc ccccacccag cttcccaagg gtctcagagg 120 gacactettg geactggeet tteacatetg tteaacaace eetgagetga aaagttgeag 180 tgggaggeet ccageteage aggtggaete caaaatacee etettgtett atecaeteea 240 ggtcgggggc agggaagcac atggggctgc ttctgccacg ttccctccac agccatcccc 300 aaggccaggc acacaggcac catccaaggg cetgeceet agcagtgaga etetagetet 360 gtgagtctga gcagtgaggt cctggggggtg gcgggagccg agggtcctgc tgggttccgc 420 tggggcaggt cctcggctgg gcacatgagc tgacggattc tctctctgaa ggggcccttg 480 agggttccga gtctgtagag gctccaggca ggaatgcaga ccatggagga cagagccagg 540 agccagccca gggcatcgcc ccaccacggg tacgtgtact tcttgttgta ggtcagcgga 600 601

<210> 453 <211> 474 <212> DNA <213> Homo sapiens

<400> 453

cgacccacgc gtgcgggatc ctatcgaaaa ggattggtgc gactgggcca tgattagcag 60
gtaggggcag tgatggaggg tggctcaggc cagggggtgg acctgctcat tgcaggtaga 120
ccctgagtga gagtggggca ctcttctcc tgggtccacc ccctctctca ctcaagtcct 180

```
cttetgeece taggeettat ageaceetge gagattgeet ggageaettt geagagttgt 240 ttgacetggg etteceeaat ecettggeag agaggateat etttgagaet eaceagatee 300 actttgeeaa etgeteeetg gggeageea eettetetga eeeeceagag gatgtaetee 360 tggeeatgat eatageeee atetgeetea teeeetteet eateaetett gtagtatgga 420 ggagtaaaga eagtgaggee eaggeetaag gggeeaegag etteteaeaa eeat 474
```

<210> 454 <211> 1838 <212> DNA <213> Homo sapiens

<400> 454 tttttttttt ttatatttaa aaattaattt aatgettgge taaatettaa ttacatatat 60 aattatcaaa cgatagtoot taatttocaa aaaaattoot ottttgaaaa tocagaatca 120 gaaagcataa acttttaaac caagttcccc tgaatattta caatgtggta taaacattat 180 agaagaccat ggatattaaa ttgcctgggg tgtggctaat cagcaaggcg tattctttat 240 tgcatattta actcacatat gtgggatttt aaatatgaca gactactaaa attcaaatgc. 300 atgtatctgc aagctgggca gggagtaaaa tcatgaatga gacaggacgg tcagcccaaa 360 accatgcaat taggttgtgg gtttattatt ttcaaaagtg aaatttctat gttccatttg 420 aaactatgtt gcatattcat ttagcattca cattaaaccc acatttgact ctaacgctga 480 ttcaaggaag aaagttcaac attcactcaa tgactaagtc cacaactcaa ctctcaatgt 540 taaggcagca cagctacagt gatagcaacg ctaaccaaaa ggtaatgaac atttagtcac 600 ttgccaqccc ttttgttaca acaqtgtaqt aatttcccta agacaatttq ctaccqqata 660 attttctgct gttaaaaggc ttcctctgtg gaaaaacacc acaaatttcc agtgtgaaag 720 taagtecatg gtggtataaa tatatatatg cataattaca caatttacac tgcacacate 780 gtttacaggg gacaattaac tgagagggtt aatttaaatg accatacaaa atacttcagt 840 aaacaaagta tgacaggcag taaagaaaac attcatagac tcctagaaat aatctgaatt 900 cctttcattc tgaagaaata tcatttaagg acacagtatt gaatataatg ttttttgtat 960 taaaacaaga attgctattt tacagtttaa gaaactttac atatatacaa aatttacaca 1020 ttgggaatgg taatcaagca aataggtttt tcagtctcat agatctattt tccttcgatc 1080 aaagacttaa attettteae attgtggtea ettgeaacag acatageatg atceaaaget 1140 cgaacacttg caaggagttt tactatctgt tttatgtttt cccttgcatt tctttttcc 1200 acatcagaac accegatact atttetataa attgtateeg etaaqtgtac aaggtategg 1260 caaaagtttt ctaactgaga aatagtcctt tctcctttca gattcatgaa ccattgtttg 1320 gggaaacaat tgattacatt ttgggctttt ttgatgetgt catetecata ttetgaatte 1380 tgaaaagcca tgagaatata tcgatttaat aaaccatcta ttgataactc ttgcagagtt ttatttgaga aaatgccata ccactgaaga aaattgccta acagcttaac tgaagaccaa 1500 aactgtcgtt gaaaaaacaa gtaaggccca gaatttttat tttctaagac atttttggga 1560 tataagggca taaatacatc atcatctaaa gttcttctca ttctcaataa aagtgccttt 1620 aggtatacct gtgtattttt attttctgca ttcactactg aaggatatcc attgattaat 1680 tttagtgtaa ttcccaccat tcttgaagte tgtgttgtag aaaaagggtc ccacatattt 1740 tcagctatca ctgttagttt aggaagaatc accttttcca caatggtagg tagtagggca 1800 acatctacat catctttttc ttgctctcgt tcttcaca 1838

<210> 455

<211> 1790

<212> DNA

<213> Homo sapiens

```
<400> 455
tgatccgatc ttgcactccg tcactgtggc tgactgcatt gtcacattca cttggcggag
gccaatttcc tacaggtgct ttcaggatca ggtcactgcg atggtctcta aacaccattc
 120
tgctttctct gctctcttgt ctttaggagc cgggtgtggg ctgagccctg cctgattgat
 180
gctgccaagg aggagtacaa cggggtgata gaagaatttt tggcaacagg agagaagctt
 240
tttggacctt atgtttgggg aaggtatgac ttgctcttca tgccaccgtc ctttccattt
 300
ggaggaatgg agaaccettg tetgacettt gteaccecet geetgetage tggggacege
 360
tccttggcag atgtcatcat ccatgagatc tcccacagtt ggtttgggaa cctggtcacc
 420
aacgccaact ggggtgaatt ctggctcaat gaaggtttca ccatgtacgc ccagaggagg
 480
atotocacca toototttgg cgctgcgtac acctgcttgg aggctgcaac ggggcgggct
 540
ctgctgcgtc aacacatgga catcactgga gaggaaaacc cactcaacaa gctccgcgtg
 600
aagattgaac caggcgttga cccggacgac acctataatg agacccccta cgagaaaggt
 660
ttctgctttg tctcatacct ggcccacttg gtgggtgatc aggatcagtt tgacagtttt
 720
ctcaaggcct atgtgcatga attcaaattc cgaagcatct tagccgatga ctttctggac
 780
ttctacttgg aatatttccc tgagcttaag aaaaagagag tggatatcat tccaggtttt
 840
gagtttgate gatggetgaa tacccccgge tggeecccgt acctecctga teteteccet
 900
ggggactcac tcatgaagcc tgctgaagag ctagcccaac tgtgggcagc cgaggagctg
 960
gacatgaagg ccattgaagc cgtggccatc tctccctgga agacctacca gctggtctac
 1020
tteetggata agateeteea gaaateeeet eteeeteetg ggaatgtgaa aaaaettgga
 1080
gacacatace caagtatete aaatgeeegg aatgeagage teeggetgeg atggggeeaa
 1140
atcgtcctta agaacgacca ccaggaagat ttctggaaag tgaaggagtt cctgcataac
 1200
caggggaagc agaagtatac acttccgctg taccacgcaa tgatgggtgg cagtgaggtg
 1260
geccagacce tegecaagga gaettttgea tecacegeet eecageteea cagcaatgtt
 1320
gtcaactatg tccagcagat cgtggcaccc aagggcagtt agaggctcgt gtgcatggcc
 1380
cetgeetett caggetetee aggettteag aataattgtt tgtteecaaa tteetgttee
 1440
ctgatcaact tcctggagtt tatatcccct caggataatc tattctctag cttaggtatc
 1500
tgtgactctt gggcctctgc tctggtggga acttacttct ctatagccca ctgagccccg
 1560
agacagagaa cctgcccaca gctctccccg ctacaggctg caggcactgc agggcagcgg
 1620
gtattctcct ccccacctaa gtctctggga agaagtggag aggactgatg ctcttctttt
 1680
ttctctttct gtcctttttc ttgctgattt tatgcaaagg gctggcattc tgattgttct
 1740
1790
```

```
<210> 456

<211> 1293

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(1293)

<223> n = a,t,c or g
```

#### <400> 456 tgcgcaagcg ggagttccgg ctggagaccc gtgctctggg ccggcgcctt caccatggcc 60 teggeagage tggaetaeae categagate eeggateage eetgetggag ceagaagaae 120 agccccagcc caggtgggaa ggaggcagaa actcggcagc ctgtggtgat tctcttgggc 180 tggggtggct gcaaggacaa gaaccttgcc aagtacagtg ccatctacca caaaaggggc 240 tgcatcgtaa tccgatacac agccccgtgg cacatggtct tcttctccga gtcactgggt 300 atcccttcac ttcgtgtttt ggcccagaag ctgctcgagc tgctctttga ttatgagatt 360 gagaaggagc ccctgctctt ccatgtcttc agcaacggtg gcgtcatgct gtaccgctac 420 gtgctggagc tcctgcagac ccgtcgcttc tgccgcctgc gtgtggtggg caccatcttt 480 gacagcgctc ctggtgacag caacctggta ggggctctgc gggccctggc agccatcctg 540 gagegeeggg eegeeatget gegeetgttg etgetggtgg cetttgeeet ggtggtegte 600 ctgttccacg tcctgcttgc tcccatcaca gccctcttcc acacccactt ctatgacagg 660 ctacaggacg cgggctctcg ctggcccgag ctctacctct actcgagggc tgácgaagta 720

```
gtcctggcca gagacataga acgcatggtg gaggcacgcc tggcacgccg ggtcctggcg
 780
cgttctgtgg atttcgtgtc atctgcacac gtcagccacc tccgtgacta ccctacttac
 840
tacacaagcc tetgtgtega etteatgege aaactgggte egetgetgaa ggecattget
 900
ccatctcacc tctgctccca gaaaataaat gccctgaaac cctcccccca naacctgcaa
 960
totgteggge actetteteg tteaacteee tgtagecett tgggaetttg eggteeeeta
 1020
agtagaaaat tectatggge etgteteetg ggggeetetg tetgetggtg gtetgettae
 1080
cacagaatcc taaggggcag gagtgcctgg gcatgtgtct gtgggagcct tgcagtcagt
 1140
tgtgtttgga caagtgcaac agtcaggctg ctgattcctg tggcatgcag gctgtagagg
 1200
ttgacaaatg gagggggtg ttgagggtga gccctagttg atttttaaa atttaaactc
 1260
tggtaagaac atttaatatg aaaaaaaaaa aaa
 1293
```

<210> 457 <211> 1155 <212> DNA <213> Homo sapiens

<400> 457 cccacgegtc egggacagac teccatecac tggggtcagg gaceggaaag gegacaaacc 60 ctggaaggag tcaggtggca gcgtggaggc ccccaggatg gggttcaccc acccgccggg 120 ccacctetet gggtgecaga geageetgge cagtggtgag acggggacag getetgetga 180 cccgccaggg ggaccccgcc ccgggctgac ccgaagggcc ccggtaaaag acacacctgg 240 acgagecece getgetgaeg cagetecage aggecectee agetgeetgg getgaggtgt 300 etggtgeetg gaacagactt ecetgtggag gatteetgee agaceetgee eggeteetee 360 ctgaccggtc cttgtgccct caccagacac cctgttggcc atgactcaac aaaccagtgt 420 tgggagccgt ctgcctcccc agctcagtgc ctttctgcac cccttctctc ctggggagct 480 gtctgcatcc gccacccct ccaaccactg ccctcagccc ccgaccttat ttattaccct 540 cccctcccac acccccaate tacctggtga tgattttaag tttgcgcgtg tcttgggttg 600 ggctgggggg tttcccacat gcagtgtcag aggggccgcc cggtggggct atctccgttg 660 ctatattaat ggcaagacta aatgaaacct agggcacggc ctccgaagct gcgtgtggcc 720 cettagaggt gagcateaga gecagageag tgagggggag acteaceac ceteteeete 780 tecettcage tetgggagge aggegeagtg eccecetece gtgggetgge ceaggacege 840 gggtgaaacc tgggtctgtt tagtttcttt ggtttttgta tgtttgtttg tttttgacac 900 agtetegett tgttgeecag getggggtge agtggeaega tegeggetea etgeaacete 960 cacctcccgg gctcaagcga ttctctcacc tcagcctcct gagtaggtgg gattacagat 1020 gcccgccacc acacccagtt aattittgta titttagaag agatggggtt tctccatgtt 1080 ggccaggctg gtcttgaact cctggtctca agtgatccgc ccgcctcggc ctcccaaagt 1140 gctgggatta caggg 1155

<210> 458 <211> 1297 <212> DNA <213> Homo sapiens

<400> 458
ggcaccaatc caatgtcagt atctgcaggc tgaagtacag acagttacac tgaaattgcg 60
tatgctctga ggaatgacac taaattcgct tccaggaaaa ttactcaatt ttgtaagtaa 120
ttttcagttt tttttctcag ggatattttt caactttcac tttaattttc tttagttgct 180
tagttgtaca ttttgagaag gcaaatccat tggaacttgg ggaggcttag aacataaatc 240

```
agtattagaa gtaaagggaa cacacagcta aaagttttac tttaatcaca aattcacaac
 300
tagagatatc atttgcatat cttagaacgc taaagacctg ttaaaaatttt ttaaccaatc
 360
agcaaaaata tgtgccccac agatttctaa tgttcataat ttagaattta tcacatataa
 420
tatttattaa tagtttattt gcaaaattat tattcttaaa acacttcttt ccaacacatt
 480
tacaatgttc atgtgtttta aagaaaaaaa ccaccctcat ttaaaaaatgt actactgact
 540
ttaatgtgtg gttataccag tgccaccaaa ttagaaaaga aaaagaaaca tacagctgta
 600
ttggatatgt agttactact acaaataatg acaacacacg tcctatacaa agatcatatt
 660
cacgettttc taccacttct cagtcattgt cagaaccatt tggaggtaag aaaaccaatg
 720
catcattgaa aatatggccc aaatgcccta aggcggtata ccccatacat catcacatgc
 780
atctgatttg gagtcagtcc attaaaagta acagccatat ctgaacaaca gccttctact
 840
acctggttgg ggtgataagt cattgcctct ttaatagaaa gcccaacaga tttggtatta
 900
aatacatett ttecateage atettetgea ttttetgeaa atactecage atattteagg
 960
caaactgcta gctgtttatc ttcagatatc ttccaaatca tccctccctg ttcaggacac
 1020
ttttctggga tattgagaag gctgttaagt cttttcattg attctacact taagacaatt
 1080
cctccttcca tacccacata ttcaaggtct ccagatttta tagtgtggcc tagatagaaa
 1140
ggctgtgatg gatccttttt taacaaaaaa tactttaggt tttcaatgat agcaaacgta
 1200
gtggggegtg caaggaagaa ccagttgtat tggtetetat aettacaaat aegeetttga
 1260
taagtataga gaccaataca actggttctt ccttgca
 1297
```

<210> 459 <211> 777 <212> DNA

<213> Homo sapiens

<400> 459 tttttttttt ttctgaagaa gcatttatta gcatgcaggg cccatgctag aggctcctta 60 tttccagggc aaggccagcg agacagagcc cattgctcag gacgcagccc agattgcaaa 120 gagaggacag cccatggtag cggaagaaat tctggcggag agcactgtac ttggggtcct 180 tetetegeag etggeggtag ggategggae eetggtgget geetggtace teeceaceca 240 ggcctcgctc cttctccacg gtttgcaggg cccacatggc agctgtggtg cggggttcca 300 gccageggge gttgacagtg gccagegtaa ggctcaggaa cagcaggtaa agctggctgg 360 cctcccagaa tgtgagctga gcccaagcat gctgtgaagc caagatgcag aggttgatga 420 aggcacagec catggagatg tggaagtaga aggggaagag tttgetetge actagteega 480 aggtatgteg gggaaggett eggaaaagea ggaageetga gaegaaggte acceaeattt 540 gcatgcccca ggcacctgac aagaccagta gatggaccat cttaatcagg cctcctaggt 600 tecegeette etecatettg eagteegtta ggaaceggga eeteaateeg eageaceegg 660 attecgagaa cagaggegte ggggeeaaat gggetgaate tggtacetea eteceaegee 720 ecegggtgga cagegaeeet eeteggeege gteeeetegt gggttteeee tegtgee 777

<210> 460 <211> 859 <212> DNA <213> Homo sapiens

gttgctcact	gtagggctgc	ccgggttgtt	gttctccccg	ctgctgcctc	gctggagccc	240
actccgatgg	gccaggtcca	ggcagcagtt	gcagcagtcg	aggccgacag	gtgagcggca	300
atcgagcttg	gactgggcca	tcttctcagg	ctcggaggtc	gcctggcctg	cgaggtcagg	360
ggcggctggc	aggtgcgcgc	ccaccgaget	ggcctgaggg	gactccaggg	tgcctggaaa	420
agacaagctg	tgaggaaaag	agttggaaat	tagcgcctaa	agccagccac	cttcggctcg	480
gcccccttct	ggctgtactg	ctccgggtgc	gaatagaaac	agctggacaa	acageteega	540
gcggatcctt	cgggctcact	tectectett	cctccttctc	ctcccctcc	tcttgaggcc	600
gggggccgcc	cccctgaggt	gccacacgcg	gccccagcgc	agtcccaagt	ttcccaagtg	660
tgagcgggga	ttggggcgga	cctgtggagg	caggaagggc	gggcagcagg	gcagaggag	720
agccagggcg	cgcccttgct	ccctccctcc	tttgctccct	ccctccccgg	tttgcaggct	780
ctcaggctct	cgggctcccc	tgggctgtga	cggctgagcg	gtggcaggag	ctgagagcga	840
gtgagctacg	aaatcgtcg					859

<210> 461 <211> 1975 <212> DNA <213> Homo sapiens

<400> 461 agaaatcagc tttcttcaca gaagtcagtg ccgtgggtac ccattttaaa atccctgcca 60 ctttgggcta tcgtagttgc acacttttct tacaactgga ctttttatac tttattgaca 120 ttattgccta cttatatgaa ggagatccta aggttcaatg ttcaagagaa tgggtttta 180 tetteattge ettatttagg etettggtta tgtatgatee tgtetggtea agetgetgae 240 aatttaaggg caaaatggaa tttttcaact ttatgtgttc gcagaatttt tagccttata 300 ggaatgattg gacctgcagt attectggta getgetgget teattggetg tgattattet 360 ttggccgttg ctttcctaac tatatcaaca acactgggag gcttttgctc ttctggattt 420 agcatcaacc atctggatat tgctccttcg tatgctggta tcctcctggg catcacaaat 480 acatttgcca ctattccagg aatggttggg cccgtcattg ctaaaagtct gacccctgat 540 atggggatet cgctccatcg cccaggctgg agtgcagtgg cgtgatettg gttcactgca 600 acticcatet eccaggitea agigattete etaceteage etectgagia tetgggatta 660 caggegeeeg teaceaegee eagetaattt titgtatttt tagtagagat ggggttteae 720 catgetggcc aggetggtct egaacteetg ateteatgat tegeceaect cageceecea 780 aagtgetggg attacaggca tgagecaccg tgcccggccg cttcgcattt ttcttttgca 840 ggttgcatgc cagccaatat tcctctgtgc tgggaaggga aagtttgagg atgtatcaag 900 accatagoag tggatotoac tgotottgoc tactoagggo tttatotaca cattgatago 960 ccctcagagg aaaggcacca gccgaagagt cgacactggc tctgggcttg gatgctgcct 1020 ctgataaacg ctgggcactc tgaccctgaa gccagggagg gagtgcttgg cagctgcctg 1080 ggcacactcc cctcagtcca gttgccaggc gaaattatac agtggatggc agctccacag 1140 agatgctaaa gtttgaggtc taagtgtcag agagagctga caatttttat gaggaaagtg 1200 aacaacaaca qgtgtttatc agtacctgag aattatcatc taqtttaatt aagcaaaggt 1260 atcaggaggt ctgtttcagc tcattccctt tagtatggcc ctaaaaaatc aacagaactg 1320 tectaettea tgttgeeega etageaggea ggtatgtgaa eetaaagtag aagteetage 1380 ttacatatta ttcataatta aacacagttc attttattat tctggcaact agtgatattt 1440 catgattata ggccttaaaa atctaataca agtacaatta aaaaaagaca tagaatgctt 1500 acacaataca gaaggcactt tgaggttaca tgataaataa aaatacatta atagaggcag 1560 gattatttat tggttccttc agtgtctgtg tccatggtga tcattgagag cccagttttg 1620 tacttcacct ttggcgaaat agtgttaaag aaaatggcac caaaaacatt aatagcagca 1680 gcaatataga acacggtttg ccattctcca acagtgttat caggggtcag acttttagca 1740 atgacgggcc caaccattcc tggaatagtg gcaaatgtat ttgtgatgcc caggaggata 1800 ccagcatacg aaggagcaat atccagatgg ttgatgctaa atccagaaga gcaaaagcct 1860 cccagtgttg ttgatatagt taggaaagca acggccaaag aataatcaca gccaatgaag 1920 1975 ccagcageta ccaggaatac tgcaggtcca atcattccta taaggctaaa aattc

```
<210> 462
<211> 716
<212> DNA
<213> Homo sapiens
```

<400> 462 actgatagec ctegaaaceg ttgaggaece teegggaega ceeaegegte egeaeaeagt 60 gggcatccag gatetecceg aggtageetg ageegeeace eeageteeca getggeaggt 120 cctggggtgg aggggggtga aggcacccag aaacctcggg actacatcat ccttgccatc 180 ctgtcctgct tctgccccat gtggcctgtc aacatcgtgg ccttcgctta tgctgtcatg 240 tcccggaaca gcctgcagca gggggacgtg gacggggccc agcgtctggg ccgggtagcc 300 aagetettaa geategtgge getggtgggg ggagteetea teateatege eteetgegte 360 atcaacttag gegtgtataa gtgaggggct ctgccccgca tcccaagact tttcttcctg 420 ttgggagetg cettgggece attecetece etggggggag cecaactgat ggccetggee 480 ccacccctaa ggaccaaggg agcctgagcg gccttgttta cagcttctgt cctgctcctg 540 catctttgcc agggtccttt tgccaactgt aagggccttg cctcattccc tggcaatggt 600 tecaacetee etgeactaat geetgeatee eeteeggeet ettggeeeee tateeetgea 660 cttctgggaa acctccctgg cactctggga aacctccctg gaacaacttc ccaaat 716

<210> 463 <211> 595 <212> DNA <213> Homo sapiens

<400> 463 ctttttttct tttttttata aaacatgtca catcttgatg cagttgatgt caagtgtgct 60 taagtcatta tgaatcaaga gactaacaat agtggctgca gaaacaggtt tgttgtctgt 120 acaaagactt caggtaaatt atagtacttc catgttagct gtgcatgtcc accacgcttt 180 240 gtctgtaact cgagtagaaa aagatgttgt gttttaatta atcattcctt acaattcaag atgaactcca catatttaag aattcttggc tgaaagaaaa gtcttcaaga tactggatgc 300 ctctcaccac tttgacaata aacacacaag aaaaccattg tgtaaggcac tcaaaaggtt 360 cttatcaatc acgagagatc agtcacactg acattcattc ccatgccagg actcacgtaa 420 gggacagcat gcactgcttt gggaaattct ggagtcataa cacgtccatt ttctccagta 480 cttcctgtaa ttgacagcct tgccttgttc ctcatggcat cattcaaggt catcttaaat 540 gagagaggag ggaaagaaag aaaaagagat catacgttat ggttttcaaa tgcat 595

<210> 464 <211> 2017 <212> DNA <213> Homo sapiens

<400> 464
tttttttttt ttcctttaa aaactttatt taaatggaga ctcttagtca aatgattgga

```
aaaccaataa cgaaaaatag ttcttcaggt tcttctcctg gaaaggcgga ggacacacca
aactgcactg gccctgtcag gggacacggc accctcgtgg gaccaggctc agccctcggg
 180
gtggcacgag gtcctgcagg ctgcaggacc ctcacactcc agccccgtct ggtgacccaa
 240
ecogggeecg tggtgeatge tggggaagge caetggeegg eceetggget teggeteetg
 300
aggaggcatg gccccacacc ctgcccggcc ataaatatat acagattcct gggcatccag
 360
ggcaccagga ccgacgcaga gctggggtcc tgtccctaag cctgtggcac agcgactctt
 420
gacatgggag ccagggaget gggaccgccg cacccetece etgcetecet cetggggtca
 480
ccaccctcag geggetgcca getggcctag gacgeggcgg aactgetggg tgetgtggcc
 540
cageteettg acceteteca ceatgteetg ggeegeggaa ggegatgggt actgeaagge
 600
ageggeettg gtggtggeea egatgeegeg eaggaggteg eacageaggt tgetgtagtg
 660
ggtcacctgg ctgcgcacgt cagcagcctt ggcctgccgt gacagtgtgt ccccgatgaa
 720
caccagettg tgggegetga ggatgaegaa ettgetgtge gecacaaaga tettgggegg
 780
ctggttggtg gccacggcgg taaagaaggc gtccacggcg ttggtcagtg tggtcaggtt
 840
ggcctcacac tgctccaggt agaagagcag cagctgccgg tccgagggcc ccaggccgcc
 900
tgttegeece ggggeeaggg gttgggetgg egteeagttg geeaggtegt ggtetatggg
 960
cegtgacace tectgtteca gtegtteaaa etgetteage tgetgeaact ceagetgget
 1020
cttgccctgc cgcgtgatgc tgcccttttc cagcagctcc ttctgggtct tctcaaactc
 1080
ctecttecce tgtaggtgga cgtagteata gtectecate cageeceect cgetgttete
 1140
gtactgccca tetggcgagt cetgggaggt gaacttaggg ggtgagggca ggggtcgtga
 1200
ctggatgetg ctggtcttgt cagtggggtt ggggtgcagg gtgccacccc cctcaggccc
 1260
eggggeagtg geettggtee gtetgaagag eagtgaggea ttgeegtgea ggaaggagge
 1320
cagetgettg gegteetegg geacageegg egageaggee accageeggt ecaggteete
 1380
aagggtggct ccagagcctc cccggccagc gtcgagggcc tgaccatgtg ccaccagcgt
 1440
ctggtgcacg tectecatet tetgcagetg ceggetaage ttggcatgca gggcacggte
 1500
agatgtgtgg gcagcattgc ccaccgcgct gcgggcaaac tccaacagct cgtggacggc
 1560
actotggacg geggecacag cageetgeag gteetgeace ageggeteet gtggeteaga
 1620
ggggctacgc cageteccag tegeacegge getgeetgee aggtecagaa ggtgggcaac
 1680
ggtggcgctc acaccetgct gcagccgtgc cagggcctcc acagcaactt ccagctccag
 1740
gggttcccgg cccggccctg ccacctccaa ggaggacgca gactggctgc tgcgtgct
 1800
geoggtgetg gaggeegaca ggegettgee etetgeeggg getteaegtt eagetggggg
 1860
aggeacegea tacaceac tgtegaceae gecaceatea gecaceteag gaggaageae
 1920
ccgttcacgg ggcacatcgt acagggtgcc cgggccaggc cgccgcaagc cagggggcac
 1980
gtcgtagagg tcaggagccg ggggcggcac gtcatcc
 2017
```

```
<210> 465
```

```
<400> 465
ggatttcgtt tectccgget gggagtggec getctaggca gegttgaggt cgcggggttg
 60
aggggggttg tgaaaggaga geggeetete etetatggte aeggggeegg ggeaegette
 120
ceceaetetg tettgttact teeggtageg aageetetee etetteetet geteeegegg
 180
ggtctgtgct gagaataatg gcccggttgg cccgggacga gtggaatgat taatgatgtt
 240
ttgcagcagt tttctacgtc tgaaattttt tatgtctctg gaacccagaa tttgctaaga
 300
gatggaggaa cctcagaaaa gctatgtgaa cacaatggac cttgagagag atgaacctct
 360
caaaagcacc ggccctcaga tttctgttag tgaattttct tgccactgct gctacgacat
 420
cctggttaac cccaccacct tgaactgtgg gcacagcttc tgccgtcact gccttgcttt
 480
atggtgggca tcttcaaaga aaacagaatg tccagaatgc agagaaaaat gggaaggttt
 540
ccccaaagtc agtattctcc tcagggatgc cattgaaaag ttatttcctg atgccattag
 600
actgagattt gaagacattc agcagaataa tgacatagtc caaagtcttg cagcctttca
 660
gaaatatggg aatgatcaga ttcctttagc tcctaacaca ggccgagcga atcagcagat
 720
gggaggggga ttctttccg gtgtgctcac agctttaact ggagtggcag tggtcctgct
 780
cgtctatcac tggagcagca gggaatctga acacgacctc ctggtccaca aggctgtggc
 840
caaatggacg gcggaagaag ttgtcctctg gctggagcag ctgggccctt gggcatctct
 900
ttacagggaa aggtttttat ctgaacgagt aaatggaagg ttgcttttaa ctttgacaga
 960
```

<211> 1575

<212> DNA

<213> Homo sapiens

```
ggaagaattt tecaagaege eetataeeat agaaaaeage ageeacagga gageeateet
catggagcta gaacgtgtca aagcattagg cgtgaagccc ccccagaatc tctgggaata
 1080
taaggetgtg aacccaggca ggteectgtt cetgetatac geectcaaga geteeccag
 1140
gctgagtctg ctctacctgt acctgtttga ctacaccgac accttcctac ctttcatcca
 1200
caccatctgc cctctgcaag aagacagctc tggggaggac atcgtcacca agcttctgga
 1260
tettaaggag cetacgtgga agcagtggag agagtteetg gteaaataet cetteettee
 1320
ataccagctg attgctgagt ttgcttggga ctggttggag gtccattact ggacatcacg
 1380
gtttctcatc atcaatgcta tgttactctc agttctggaa ttattctcct tttggagaat
 1440
ctggtcgaga agtgaactga agtaagtatg ttttaatggt tgtcacaaca ggggatggga
 1500
aagaaatacc aagtgagaga aagatcctct tttatttctc acacttgaaa taaatcctcc
 1560
atccacccag aaaaa
 1575
```

<210> 466 <211> 493 <212> DNA

<213> Homo sapiens

<400> 466 agaaaaggct aggatgatat atgaagatta catttctata ctatcaccaa aagaggtcag 60 tettgattet egagttagag aggtgateaa tagaaatetg ttggateeca atceteacat 120 gtatgaagat gcccaacttc agatatatac tttaatgcac agagattctt ttccaaggtt 180 tttgaactct caaatttata agtcatttgt tgaaagtact gctggctctt cttctgaatc 240 ttaatgttca tttaaaaaca atcattttgg agggctgaga tgggaaataa aagtagttaa 300 ataacatcag aaactgagtt cctggagaac tacagtttag cattcctcag gctactgtga 360 aaacacaacc gttatggtct ttgtctccat ttttatcaag gttttccatg gttaagtttg 420 gagaaaatac cacacaaaac aatgaattgc caaattgttt gttttattca agactcaatc 480 tactttgcaa gcg 493

<210> 467 <211> 1572 <212> DNA <213> Homo sapiens

<400> 467 cttgtactac agtcaagatg aggagtccaa aataatgatc agtgactttg gattgtcaaa 60 aatggagggc aaaggagatg tgatgtccac tgcctgtgga actccaggct atgtcgctcc 120 tgaagtcctc gcccagaaac cttacagcaa agccgttgac tgctggtcca tcggagtgat 180 tgcctacatc ttgctctgcg gctaccctcc tttttatgat gaaaatgact ccaagctctt 240 tgagcagatc ctcaaggcgg aatatgagtt tgactctccc tactgggatg acatctccga 300 ctctgcaaaa gacttcattc ggaacctgat ggagaaggac ccgaataaaa gatacacgtg 360 tgagcaggca gctcggcacc catggatcgc tggtgacaca gccctcaaca aaaacatcca 420 cgagtccgtc agcgcccaga tccggaaaaa ctttgccaag agcaaatgga gacaagcatt 480 taatgecacg geegtegtea gacatatgag aaaactacac eteggeagea geetggacag 540 ttcaaatgca agtgtttcga gcagcctcag tttggccagc caaaaagact gtgcgtctgg 600 caccttecac getetgtagt tteatttett ettegteggg ggteteagga gttggageeg 660 agcggagacc caggcccacc actgtgacgg cagtgcactc tggaagcaag tgactggccc 720 tggaggtggg gcccggggtc ggggctgggg aaggggagcc ccagggtcgc cagagccgcg 780 agecaeteca gegagaeeee acettgeatg gtgeeeette etgeatagga etggaagaee 840

```
gaagtttttt tatggccata ttttctactg caattctgaa gtgttcattt ctcacaaact
gtactgactc gaggggcgct gatttcatag gatctggtgc tgtatatacg aatcttgcaa
 960
agetetaact gaacggacet tettatteet etcecetaac accategttt ecactettet
 1020
cagtgtaggt aaccgtctat ggtgtgtttt ttcattaatg acaaaaaaaa aagggtttca
 1080
actggattat ttaaatattg gtaaatattg tgcattaggg tttgtttttc cttttaagaa
 1140
gtatgtcctt tgtatctcta agttacatga cctatatctt ttcctcttta atagtagttt
 1200
tatgttaacc tttaagagat ttgtttttcc tcaaaggaga atttaaaggt attttttaa
 1260
aattctaata agaggatcag ccgggtgcaa tgactcatgc ctgtaatccc agcacgttgg
 1320
gaggccaagt cgggcggatc acaaggtcag gagatcaagg ccatcctggt tctatactgt
 1380
gtagattgct ggctactaaa aatacaaaaa attagccggg cgtggtggca cacacctagt
 1440
agtcccggct actcgggtag gctgaggcag gagaattgct tgaacccggg agacggaggt
 1500
tgcagtgagc tgagatcgtg ccactgcact ccagcctggg tgacagagca agactctgtc
 1560
tcaaaaaaaa aa
 1572
```

<210> 468 <211> 1927

<212> DNA

<213> Homo sapiens

## <400> 468

cggacgcgtg ggggagctgt gagtttcgag gatttcatca aaggtctttc cattttgctc 60 cgggggacag tacaagaaaa actcaattgg gcatttaatc tqtatqacat aaataaaqat 120 ggctacatca ctaaagagga aatgcttgat ataatgaaag caatatacga tatgatgggt 180 aaatgtacat atcctgtcct caaagaagat gctcccagac aacacgttga aacatttttt 240 cagaaaatgg acaaaaataa agatggggtt gttaccatag atgagttcat tgaaagctgc 300 caaaaagatg aaaacataat gcgctccatg cagctctttg aaaatgtgat ttaacttgtc 360 aaatagatcc tgaatccaac agacaaatgt gaactattct accaccctta aagttggagc 420 taccactttt agcatagatt geteagettg acactgaage atattatgea aacaagettt 480 gttttaatat aaagcaatcc ccaaaagatt tgagctttca gttataaatt tgcatccttt 540 tcataatgcc actgagttca ggggatggtc taactcattt catactctgt gaatattcaa 600 aagtaataga atctggcata tagttttatt ggttccttag ccatgggatt attgaggctt 660 tcacatatca gtgattttaa aatatcagtg ttttttgcta ctcatttgta tgtattcagt 720 cctaggattt tgaatggttt tctaatatag tgacatctgc atttaatttc cagaaattaa 780 attaattttc atgtttgaat gctgtaattc catttaaatt ccatttatat actttaagga 840 aacaagatta caacaattaa aaaaacacat agttccagtt tctatggcct tcccaccttc 900 tgttagaaat tagttttatc tggcattttt aaacatttaa aaattattaa acatttaaaa 960 attagtttat tatcagatat cagcatatgc ctaataaaac ttattttaat aagcatttaa 1020 ttttccataa tatgttacag ccaaggccta tataataatt ttggatttgt tcaatctttc 1080 ttacaggctg ttttctattg tatcaatcat tagtatcaat cattaagtgg aagttgaaga 1140 aggcatcaaa caaaacaagg atgtttacag acatatgcaa agggtcagga tatctatcct 1200 ccagtatata gtaatgctta ataacaagta atcctaacag cattaaaggc caaatctgtc 1260 ctettteece tgaetteett acageatgtt tatttatatt acaagecatt cagggacaaa 1320 gaaagaaacc ttgactaccc cactgtctac taagaacaaa cagcaagcaa aattagcaag 1380 caaaattcac tttgaaagca ccagtggttc cattacattg acaactacta ccaagattta 1440 gtagaaaata agtgctcaac aactaatcca gattacagta tgatttagct catcataatt 1500 cagattattt ttaatcatct tagccaaaac tgtaaagttg ccacattact aaagccacac 1560 acatcgtccc tgttttgtag aaatatcaca aagaccaaga ggctacagaa ggaggaaatt 1620 tgcaactgtc tttgcaacaa taaatcaggt atctattctg gtgtagagat aggatgttga 1680 aagctgccct gctatcacca gtgtagaaat taagagtagt acaatacatg tacactgaaa 1740 tttgccatca cgtgtttgtg taaactcaat gtgcacattt tgtatttcaa aaagaaaaaa 1800 taaaagcaaa ataaaatgtt aaaaaaaaaa aaaaggggcg gccgttttaa aggatccagt 1860 tttacgaccg cgggctggca aggaaaaatt tttttatgg ggccccctaa attcaattcc 1920 cgggccg 1927

<210> 469 <211> 1013 <212> DNA <213> Homo sapiens

<400> 469 eccetaggag ccetgaacae cataegecag ettggcaega ggggagaagt eteggteeta 60 taatggccag catggcagac agaaacatga agttgttctc ggggagggtg gtgccagccc 120 aaggggaaga aacctttgaa aactggctga cccaagtcaa tggcgtcctg ccagattgga 180 atatgtctga ggaggaaaag ctcaagcgct tgatgaaaac ccttaggggc cctgcccgcg 240 aggtcatgcg tgtgcttcag gcgaccaacc ctaacctaag tgtggcagat ttcttgcgag 300 ccatgaaatt ggtgtttggg gagtctgaaa gcagtgtgac tgcccatggt aaatttttta 360 acaccetaca ageteaaggg gagaaageet eeetttatgt gateegttta gaggtgeage 420 tecagaaege tatteaggea ggeattatag etgagaaaga tgeaaaeegg aetegettge 480 agcageteet tttaggeggt gagetgagta gggaeeteeg acteagaett aaggatttte 540 tcaggatgta tgcaaatgag caggagcggc ttcccaactt tctggagtta atcaaaatgg 600 taagggagga agaggattgg gatgatgctt ttattaaacg gaagcgtcca aaaaggtctg 660 agtcaatggt ggagagggca gtcagccctg tggcatttca gggctcccca ccgatagtga 720 teggeagtge tgaetgeaat gtgatagaga tagatgatae cetegaegae teegatgagg 780 atgtgatect ggtggagtet caggaccete cacttecate etggggtgee ceteceetea 840 gagacagggc cagaceteag gatgaagtge tggtcattga ttecececae aattecaggg 900 ctcagtttcc ttccaccagt ggtggttctg gctataagaa taacggtcct ggggagatgc 960 gtagagccag gaagcgaaaa cacacaatcc gctgttcgta ttgtggtgag gag 1013

<210> 470 <211> 1543 <212> DNA <213> Homo sapiens

<400> 470 ttttttttt ttaactttaa aactgoogto ttotgottta ttgacaggta aattgttcaa aaatgttctc acaattcaat aattaattac aaagactgag acttacatta aaaaagtaaa 120 aaccagaacc ccccaggtgc ccatccagca gaaggcccag gagggcagtg gggtggcagg 180 gctaggcggt gctgggccac tcagtgccga cttggggaag tgcacgtcct gaacagcctt 240 gccaagcagc cgaccggtgg gaggacaggg gaagcctggc ccaagctgtg gacaagctgt 300 gtctgccgcc acagttaatc acaagcctct gacgacacag ggccacagag ctggtcactc 360 aacatctggt acaaagggtg aggtgaaatc cacgcgcagg ggattgctgt gccgtgggcc 420 ggggccagtg tgcaggagtg tgttgggtgg gtctacgtga tcatacgggc tactaatcac 480 540 tggggtatcc cagtggctgc ttcgtgggcg ccctggggct ctgacttccc tcagcccagc 600 aggecaeagg ggetgeetge accaegaeae tegetggttt tatggeagga ggeagaagee 660 gtggaagcga atggaaaaca gcacagctga cttcacagta gtagatactg gtgacacttc 720 atggctgcga cccagaatga acttaacgca cacagggacg cagggtgtca ctggtcctgg 780 geetttgtee atgaetaggt ggteageagg aettetgeag etgaetgtge aatggetaaa 840 tgaaaaaaag gccacagact aacctccact ttcctgtctt caaaattcta gtgacactgg 900 gaatgetata ggaceteeta etattetett aaggteetag gaaagtttea ggaaetaggg 960 aaaagactgg gtactgaggc tgtgtcccca gatgtctgct tccgaagcag ccgcgtcatg 1020 acgggtttet getgaggaag tggtgttgge agggeeceat atgeeetete gggttgteag 1080 999tgggaga caggctgtat gggggtcctt catgtgcaga tggaacagca tcgcctcaca 1140 getgtgeaga egaacagatg tggtetaetg ceaegaacaa tgeggeataa aaetgateaa 1200

```
tattataata aagatttgtc ttcttcatct cccatatcta caaagtgatt ctacatttcc 1260 ttggacaaca ctggagggc cgctcagtct tggcactgac gctggaggcc atctccagct 1320 ccctggcccc tgtggcgagc tggcggcttc aggtgtcaca ggccggctgc tccaggcctt 1380 cgagggggag ctggctcctg tgggggagt tggggctcgg tgggccgctg gggttggagc 1440 tattcgatgg agttgagtgt ttggtggagt ccgaatcagg ctctttgtca aagtcctggt 1500 ctggatcaga catacttctc agaggcacag tgcacgctac gct 1543
```

<210> 471 <211> 1154 <212> DNA <213> Homo sapiens

#### <400> 471 actacagtgc ggtggaattc gctgagcgag gcagcggcgg cagcagcggg gacgagctca 60 gggaggacga tgagcccgtc aagaagcggg gacgcaaggg ccgggggccgg ggtcccccgt 120 cctcctctga ctccgagccc gaggccgagc tggagagaga ggccaagaaa tcagcgaaga 180 ageegeagte eteaageaca gageeegeea ggaaacetgg eeagaaggag aagagagtge 240 ggcccgagga gaagcaacaa gccaagcccg tgaaggtgga gcggacccgg aagcggtccg 300 agggettete gatggacagg aaggtagaga agaagaaaga geeeteegtg gaggagaage 360 tgcagaaget gcacagtgag atcaagtttg ccctaaaggt cgacagcccg gacgtgaaga 420 ggtgcctgaa tgccctagag gagctgggaa ccctgcaggt gacctctcag atcctccaga 480 agaacacaga cgtggtggcc accttgaaga agattcgccg ttacaaagcg aacaaggacg . 540 taatggagaa ggcagcagaa gtctataccc ggctcaagtc gcgggtcctc ggcccaaaga 600 tegaggeggt geagaaagtg aacaaggetg ggatggagaa ggagaaggee gaggagaage 660 tggccgggga ggagctggcc ggggaggagg ccccccagga gaaggcggag gacaagccca 720 gcaccgatct ctcagcccca gtgaatggcg aggccacatc acagaagggg gagagcgcag 780 aggacaagga gcacgaggag ggtcgggact cggaggaggg gccaaggtgt ggctcctctg 840 aagacetgca cgacagegta egggagggte eegacetgga eaggeetggg agegacegge 900 aggagcgcga gagggcacgg ggggactcgg aggccctgga cgaggagagc tgagccgcgg 960 gcagccagge ccagcccccg cccgagctca ggctgcccct ctccttcccc ggctcgcagg 1020 agagcagagc agagaactgt ggggaacgct gtgctgtttg tatttgttcc cttgggtttt 1080 tttttcctgc ctaatttctg tgatttccaa ccaacatgaa atgactataa acggtttttt 1140 aatgaaaaaa aaaa ' 1154

<210> 472 <211> 5202 <212> DNA <213> Homo sapiens

```
<400> 472
atccaagggt tgtatcgagc ctataaaagc acagttttaa gagagattcc ctttttcttt
ggtccagttt cccttatggg agtccttaaa agcccttggg tcctggaggc agtatcatgt
 120
ggtggattct tggcagtcag cagtctgtgc agcttttgca ggtggatctg ccgctgcagt
 180
caccaccct ctagacgtgg caaagacaag aattacgctg gcaaaggctg tgctccagca
 240
actgctgatg ggaatgtgct ctctgtcctg catggggtct tgccgttcca aggggctggc
 300
agggattatt gccaggtgtc cttcccctcc gaaatggcca gcccatcaag tctggggagg
 360
tttccatctt tctgggggcc ttatgacccg aaacgcacag cttgctgttg gaagttggca
 420
gaaagagtcc cttgaagcag agacaagcct cacctccact tctgtcaaga gaggggcctg
 480
```

	cctcttccgc					540
	agataccggc					600
	cctgtatgcc					660
	cctcagaacc					720
	atttgatctg					780
	agatggttat					840
	tggggaagag					900
	aggctttgtt					960
	ggtaactagg					1020
geacaattgt	attattttac	agagatgtgt	ccagegeeee	ctgtggtgtg	tgagagaaag	1080
					gcacggtggg	
	tegecattet					1200
	aatggaaagg					1260
	aaaattcaaa gtatgtgatt					1320
attaaaggga	gaatgactgc	atttatasss	Cattttttt	cancentage	ggggaagata	1380
	tattaaagac					1440 1500
attttcaata	tacactgtac	casastttct	ataaataaat	acacttcaat	attitudate	1560
tactccctct	ttcacattgc	ctctcagaag	caccasatto	accettytac	tagaagtaa	1620
	taactgtcaa					1680
	gtaattgtta					1740
aacatttgaa	ggaccttgtt	tctatttaag	ttttactaaa	tracacattr	rcactcataa	1800
	taccagtctc					1860
	cccagctcag					1920
gggtccttag	tagaaataag	gtagccctga	aaagtcagaa	cttcctcctt	tetatecee	1980
aaggccaatg	taatactcat	tatattogca	aaacgaaaac	atcagtatag	aaaaatccac	2040
aggtaccaac	accagcagcc	tttaccttaa	tttaaaagtc	tcaaatagca	atcgaatgat	2100
actgagaagg	ccacatttgc	ttttatcata	aaataaqaqq	aggaggaaag	gcagtgttta	2160
actgttctga	ccttttgctt	gtgatggatt	aacaaccctc	attetacqee	ttacagacgg	2220
acagattcta	cgccttacag	acagacagga	cttaaaccta	aaaqqaaaaq	ccattcactq	2280
caagtgtgga	tggcacttgc	acccctggct	ctacagacag	ggaagcctgt	tqcaqqqqca	2340
	agcagtgctc					2400
agcagcctag	gggtctatga	agtgcaatat	aaatccaagg	ccttccatcc	ttcccacccc	2460
gcaccaaaaa	ctcctgtgaa	caaatgtggt	tgtagcctct	ataaattcca	gccatgcgtt	2520
aaggcaccag	aactatttcc	ccaccccctc	caaaattaaa	cagcaacctg	atacgaaaaa	2580
taatattgtc	aaaattgtat	aattttttc	tgttaaccat	gcactaaaga	ttaaaatagc	2640
ctctgtaaaa	gatatatatg	aaatctctga	aaactcttat	gtacaatgat	atcaaatact	2700
tttttttgcc	ttttgtacac	aaatcccctc	ttgcgtttac	tgtgcttcag	atccaagtcc.	2760
tgtgagcgac	tgatactcca	catgggagtt	acaactatgt	acagatgagt	gacgcttgaa	2820
cccaagcttc	ctcgcagcct	ctcctacctc	tatttcccgt	agagattggt	atgacaagaa	2880
ctgaggtaga	caaaacctag	ctttttggtg	ccaacagcag	tggcaccctc	tgtttcccgg	2940
ggagetgtee	tgtcagtggc	gtggactcgg	gactggcgtc	acatgctttg	gggaggtggc	3000
cattggaaac	aagcaagtac	tgggcttccg	cgcgctctgg	actgcctgaa	gttaatgaag	3060
atgcaggetg	tagctctgtg	gagtccgggt	gatacaacct	tgctaaagtc	caggaagaat	3120
ccccttccc	atctagagat	gccattggct	ttttcttcac	agccgtcagc	attctatcgt	3180
ggttactggg	gtagagcgac	ccttggcact	cggggcagga	cccagcggca	gteetgetge	3240
	tggagaatgc					3300
artcracttr	gctgtctctg	tasataasta	gggggtggaa	ggcttgtccc	ctggagtaac	3360
ageceaetee	ggtgttgcag	ttotoostoo	cyacecygee	acceptetee	accitatgig	3420
cadcacadad	cccttcagct ctttggctgc	ctocccaccy	cactatacat	atagagatat	caegeagaee	3480 3540
ttgcatctct	todacacaca	ccattagtat	cactataca	attagagtas	gggccaccct	
cogtectose	cacggtttct	tatcastcaa	aaaggggccc	attaggeetga	gggccacccc	3660
gaacatctgg	tggcacgacg	atttcatcta	tattagtasa	actotactot	taratattat	3720
tectaateta	gtagatgatg	cacacccaca	ccaataacat	carracrata	ctactccccc	3780
cagcaatggt	gaagatgcct	accotootec	catecttect	acadectact	acadacada	3840
cgctcaqctq	gctgtgagct	cactecatae	ccagggtgtt	ggacatotoa	caggtatate	3900
ggcccgcatc	ctctgccacc	acotteteaa	ccaccaccac	ctaattatca	aggat caact	3960
ggtgccactc	agtgaggctc	agegaaegat	ccccttcaa	ccagatgata	Sagacada	4020
ggttccccqt	ggctttgcat	tggaggggga	ctatttetee	cacagatace	acacootett	4080
ccaaggggac	caccaaggat	ggggtctcta	ggacagtcag	qqtqqcatta	gctgaaatag	4140
aaccggctga	gttctgagca	gtacagetat	aaacccctqc	gtcatctatt	ttcacatcag	4200
tgatgaaaaa	cacgtcgtca	tccggcatga	catgcatgcg	tegeteacqq	gcagcqqqqa	4260
aatccgtgcc	tecateette	tgccaggcaa	tetgagggtt	tgggtgacct	gtggcagcac	4320

```
attegaggeg ggecatggtg gtggteegga tggttatgte gtggggegtt ttggtgaatg
 4380
atggcaacac attcacggtg agcctggcct tatgtgaata ggtggagcca aagtggttgg
 4440
tgatgacaca ttggtagegg ecetegtgee egaaagtgae etgaeggagg tgeaggatgg
 4500
tggtgtactc catcacttcc ccgtcctgcg cgtggacgtg gacaaagttc tccatgtctg
 4560
cattggtcag gacttcattg tctttcttcc aggcaaaggt catgggggag ctgctgctgc
 4620
tggctgctga gcatgtaaac cggatgtcct tgcccaccat agccatggtg gtttctggct
 4680
gggtgatgat ctgtggcttc aggaagtcat cgcacacgaa actctctggt ggcacagaga
 4740
aaatgetetg accetteagt gattetgggt gggeacaggt ggetgteaca aaggeetgea
 4800
gcatcctgcc aattagccac gggggcagcc acttcagctg gcagtcacac aggaagctgt
 4860
cgctgctgat atggagctct ttaagattct tcatcttcac aaaggcatca aactggacag
 4920
atetgatege atteceteca aggtteaggt getecaggee ttecageece gagaatgete
 4980
tettagecae agaettgate ttgtttecaa acagagteag ettgetgagg etgtegagee
 5040
ctgagaaggc gccgctcgtg tcctctattg tgcccgaaat ctcgttatgg tccagatcca
 5100
 5160
agactegeag geteetgagt ceettgaagg cacceteege aatgtggetg atggaattgt
ggctgagacg caggacactc aggctgctca gctcggccag gc
 5202
```

<210> 473

<211> 4715

<212> DNA

<213> Homo sapiens

<400> 473 ggcggcggcg ggggcagcgc ggcgcgtgtc tgtgcgctgc ggtcgctcgg gaccgggacc 60 ggggcgaggc gccgcggggc tgagcccagc agacattgcg ttggcctccg agcagggcgc 120 atcatgcagc gttcgcgcac cggagagaaa actgagaatg aaattgcttt ggcaagctaa 180 aatgageteg atteaggaet ggggtgaaga ggtagaggaa ggagetgttt aceatgteae 240 cctcaaaaga gtccagattc aacaggctgc caataaagga gcaagatggc taggggttga 300 aggggaccag ctgcctccag gacacacagt cagtcaatat gaaacctgta agatcaggac 360 cataaaagct ggcaccttgg agaagcttgt ggagaacctg ctgacagctt ttggggacaa 420 tgactttacc tatatcagca tetttette aacgtacaga ggetttgeet ecactaaaga 480 agtgctggaa ctactgctgg acaggtatgg aaacctgaca agcccaaact gtgaagaaga 540 tggaagccaa agttcatcag agtccaaaat ggtgatcagg aatgcaatcg cttccatact 600 aagggeetgg ettgaceagt gtgeagaaga etteegagag eeeeeteaet teeettgett 660 acagaaactg ctggattatc tcacacggat gatgccgggc tctgacccag aaagaagagc 720 acaaaatett ettgageagt tteagaagea agaagtggaa aetgacaatg ggetteecaa 780 cacgatetee tteageetgg aagaggaaga ggaactggag ggtggagagt cagcagaatt 840 cacgtgcttc tcagaagatc tcgtggcaga gcagctgacc tacatggatg cacaactctt 900 caagaaagta gtgcctcacc actgcctggg ctgcatttgg tctcgaaggg ataagaagga 960 aaacaaacat ttggctccta cgatccgtgc caccatctct cagtttaata ccctcaccaa 1020 atgtgttgtc agcaccatcc tggggggcaa agaactcaaa actcagcaga gagccaaaat 1080 cattgagaag tggatcaaca tcgctcatga atgtagactc ctgaagaatt tttcctcctt 1140 gagggccatc gtttcggcac tgcagtctaa ttccatctat cggttaaaaa agacttgggc 1200 tgccgtccca agggaccgaa tgctgatgtt tgaagaactt tcagatatct tctcagacca 1260 taataaccat ttgaccagcc gagaactact gatgaaggaa ggaacctcaa aatttgcaaa 1320 cctggacagc agtgtgaaag aaaaccagaa gcgtacccag aggcggctgc agctccagaa 1380 1440 catgcttgac actgcccttc aggactacat cgagggtgga ctgataaact ttgagaaaag 1500 gagaagggaa tttgaagtga ttgcccagat aaagctctta cagtctgcct gcaacagcta 1560 ttgcatgacc ccagaccaaa agttcatcca gtggttccag aggcagcagc tcctgacaga 1620 ggaggagage tatgccctgt catgtgagat tgaagcagct gctgacgcca gcaccacctc 1680 geccaageet tggaagagea tggtgaagag aeteaaceta etgtttetag gggetgaeat 1740 gatcaccagt cccactccca ccaaagagca gcccaagtcc actgccagcg ggagctctgg 1800 tgaaagcatg gactetgtea gegtgteate etgegagteg aaccaeteag aggetgagga 1860 gggctacatt actcccatgg acacccctga tgagcctcaa aaaaagctct ctgagtcctc 1920 etcatactgt tettetatee attecatgga cacaaattte etteagggga tgtetteett 1980 aatcaacccc ctctcctccc ctccgtcctg caacaacaac cccaaaatcc acaagcgctc 2040

```
tgtctcggtg acgtccatta cctcgactgt gctgcctcct gtttacaacc aacagaatga
 2100
agacacetge ataateegea teagtgtgga agacaataae ggcaacatgt acaagageat
 2160
catgttgacg agccaggata aaacccccgc tgtgatccag agagccatgc tgaagcacaa
 2220
tetggaetea gaeeeegeeg aggagtaega getggtgeag gteatetegg aggaeaaaqa
 2280
acttgtgatt ccagactcag caaatgtctt ttatgccatg aacagccaag tgaactttga
 2340
cttcattttg cgcaaaaaga actccatgga agaacaagtg aaactgcgta gccggaccag
 2400
cttgacgttg cccaggacag ctaaacgggg ctgctggagt aacagacaca gcaaaatcac
 2460
cctctgaagg gagggaccag tggccccttg tttgccaaag gcagagtggg gctgagaaac
 2520
aggetgeggt gattgeaatt accateeggt gttegaggat cattggtgaa gteageagat
 2580
atttattgag ttcctgtggt gtgcaaagca ttatgatagg caccgtgggg aaactggaaa
 2640
tgaatttgac atgaaaagga tgaacgattc actgattctc.tttgactcat ttgagactaa
 2700
aatgcagaat taccaacatt taaaacatat atatgcacat gtatttggta tgcatgtgta
 2760
tatatataaa aatatataag agggacttta tgggatagta tggactatgg aaaaacaaat
 2820
ttgcacaatg gcctgggaag ttgaggtcac tttttacagg gaaatagaag aaactgagaa
 2880
cctagtctcg tatattctga gtaaatggaa tcagtcctgg gaatagagag tgtcctttgt
 2940
gccagtatta caagaagccc aaactttatt tttataaagg gagaggatga ctttctcaat
 3000
caagtgccac cagataaaaa caactgcaga ggctggaact gccacaggct gtatgaaagg
 3060
ccactttgga aagggtttgg atgagctggt ggccttcaac ctctgcctgc atctgccact
 3120
ttctgctacc ctagggaggc caggaggagc ttcggaggac catcgcccca ctggtctagc
 3180
catcatgaca cctctggagg tgtcaagctc ctgaaacaag ctcatttcag tttctggcaa
 3240
ccccgtgtat ttccgttttc cccctaaaga acatatcata atcattgcac aaataaccat
 3300
gttctttggt aatgaagcca gaaaagaaag cgcaaaagaa tggtgactca tttggactct
 3360
tatctgtctt ggaatgtcac tgcttcattg ccttctctga ttgccttttg catgtaaaac
 3420
tatgtgtctg gagtcttttg ccatctggat cttagtacct ctttattatg tgcaatttat
 3480
tectcaggtg tggaaattte tactgcaatt gactacgttt gattattttg agettgtgaa
 3540
agatttctga acagtgattg tcccgttaat agcccctcag aagatgttcc ctgctgataa
 3600 .
cagcatccta ttttacttac ttttatagca ttactgtgcc tagtcgtggg gaaagagatg
 3660
gggctgtata gattatctga atcatttgtc taagaggtac attcttccag atggaatcaa
 3720
taactttttt tttccaggtt cccgtgcttg ctatcacagt atcattgtta agtgacactt
 3780
ttgtctctca taacaccatc acactcttcc ttccaagtct gagctgtgct ggggtttgaa
 3840
ctaaaagcca tatgtggaat attgacatgt gtaagaagca ctttcagaat gttgtccttt
 3900
ttaagaaatg attctcaaaa taccagtttt tattccaaaa atttagagaa caaacccgga
 3960
atatgaagtg cagattgtaa catggagcta tttttttttc ctaatcccat aatacagctc
 4020
ctaaaagttg tgtgggattt gcgttgcata aatagccatg tgaattccac aaqaaqcacc
 4080
agggaaagtt tagagatttg cggcaatgga ccgaagaacg ggccaggaag tectccaatt
 4140
teetttggte ttteeaggag attggaetae acattgtaaa gaetgaetgg gttteaacta
 4200
gtcaaaaagc actttettet gttttcaatc cetgttegat ttgtgettet gtgcttgtag
 4260
gagagatggc cagggtggca gccctcatgc aggttgaagt atatgtagcc tcagcctgat
 4320
attettggtg cgaaggtaaa aaaaaaaaa taaataaaac cattggcctg gttgagggcg
 4380
tgaccaccaa aacatatatg ttgggcccgg gttcatcctg ggtatttata ctgtatatgt
 4440
agagtctaaa tttatatact gcaatgtaaa atatatatat atttaccttt tttaaagaca
 4500
atggaaatto caagtageta aaacttaget teatttattt aatgecaett taaatgtett
 4560
aaatttgttt cotggtggac agcogggtaa tgcttttagc tgctcgcatg cttgtctttc
 4620
tgcatctcca tcatctgttt accttttggt taaactaata aactagtttg ggacttggct
 4680
ggcatgtgct gccagaccca aagggaaaaa aaaaa
 4715
```

```
<210> 474
<211> 1374
<212> DNA
<213> Homo sapiens
```

<400> 474
gcacgagaaa agatggattc ttgtattgaa gcctttggta ccaccaaaca gaagcgagct 60
ctgaacacca ggagaatgaa cagagttggc aatgaatctt tgaatcgtgc agtggctaaa 120
gctgcagaga ctatcattga tacgaagggt gtgactgctc tggtcagcga tgctatccac 180
aatgacttgc aagatgactc cctctacctt cctccctgct atgatgatgc agccaagcct 240

```
gaagacgtgt ataaatttga agatcttctt tcccctgcgg agtatgaagc tcttcagagc
 300
ccatctgaag ctttcaggaa cgtcacgtca gaagaaatac tgaagatgat tgaggagaac
 360
agccattgca cctttgtcat agaagcgttg aagtctttgc catcagatgt ggagagccga
 420
gaccgccagg cccgatgcat atggtttctg gataccctca tcaaatttcg agctcatagg
 480
gtagttaagc ggaaaagtgc tetgggacet ggagtteece acateateaa caccaaactg
 540
ctgaagcact ttacttgctt gacctacaac aatggcagat tacggaactt aatttcggat
 600
tetatgaagg egaagattae tgeatatgtg ateatacttg cettgeacat acatgactte
 660
caaattgacc tgacagtgtt acagagggac ttgaagctca gtgagaaaag gatgatggag
 720
atagccaaag ccatgaggct gaagatctcc aaaagaaggg tgtctgtggc cgccggcagt
 780
gaagaagate acaaactggg caccetgtee etecegetge etecageeca gaceteagae
 840
cgcctggcaa agcggaggaa gattacctag acgcatgctt tccagacagg gcgttttggc
 900
tgcatcacag ccactggctg gtcctattca tttccatttt tatgtatgtt ttgaaaagaa
 960
aaggteeggg gatggtgget cacacetgaa ateecageae tttgggagge egaggeagga
 1020
agatcattga gctcaggagt ttgaaaccag tctggacaac atagggagac cccatctcta
 1080
ccggaggaaa aaaaaaagag tcaggcctgg tggtgtgcgc ctgtaatccc agctactcgg
 1140
gaggetgagg caggacgatt acttgagett gggaaatcaa ggttgeagtg agetatgatt
 1200
gtgtggccac actccatcct gggtcacaga gtgagacctt gtctcaaaaa agtaacataa
 1260
ggaaaaaaga agccttgctt tagcacaggt atgaagccag aagccagcat ctcaactgtg
 1320
cttgtcttat gcagaaatat aaagcgatgg ccaggttgga cttcaaaaaa aaaa
 1374
```

<210> 475 <211> 3076

<212> DNA <213> Homo sapiens

# <400> 475

cetgtetete ttegggtete gggceettgg gegcageggg gegcgcca tggcgaaggc gaagaaggtc ggggcgcgaa ggaaggcctc cggggcgccg gcgggagcgc gagggggccc 120 ggcgaaggcc aactccaatc cgttcgaggt gaaagttaac aggcagaagt tccagatcct 180 gggccggaag acgcgccacg acgtgggact gcccggggtg tctcgcgcac gggccctcag 240 gaagcgtaca cagactttac taaaagagta caaagaaagg gataaatcca atgtattcag 300 agataaacgc ttcggagaat acaacagcaa catgagcccc gaggagaaga tgatgaagag 360 gtttgctctg gaacagcagc gacatcatga gaaaaaaagc atctacaatc taaatgaaga 420 tgaagaattg actcattatg gccagtcttt ggcagacatc gagaagcata atgacattgt 480 ggacagtgac agcgatgctg aggatcgagg aacgttgtct ggtgagctga ctgctgccca 540 etttggagga ggeggtggge teetteacaa gaagaeteaa caggaaggeg aggageggga 600 gaaaccgaag teeeggaaag agetgattga agageteatt geeaagteaa aacaagagaa 660 gagggagaga caagctcaac gagaagatgc cctcgagctc acggagaagc tagaccaaga 720 ctggaaagaa attcagactc tcctgtccca caaaactccc aagtcagaga acagagacaa 780 aaaggaaaaa cccaagcccg atgcatatga catgatggtt cgcgagcttg gctttgaaat 840 gaaggegeag ceetetaaca ggatgaagae ggaggeagaa ttggeaaagg aagageagga 900 geaceteagg aagetggagg etgagagaet tegaagaatg ettggaaagg atgaggatga 960 aaatgttaag aaaccaaaac atatgtcagc agatgatctg aatgatggct tcgtgctaga 1020 taaagatgac aggcgtttgc tttcctacaa agatggaaag atgaatgtcg aggaagatgt 1080 ccaggaagag caaagcaagg aagccagtga ccctgagagc aacgaggaag aaggtgacag 1140 ttcaggcggg gaggacacag aggagagcga cageccagat agccaettgg acetggaate 1200 caacgtggag agtgaggaag aaaacgagaa gccagcaaaa gagcagaggc agactcctgg 1260 gaaagggttg ataagcggca aggaaagagc tggaaaagct accagagacg agctgcccta 1320 cacgttcgca gcccctgaat cctatgagga actgagatct ctgttgttag gaagatcgat 1380 ggaagagcag cttttggtgg tggagagaat tcagaagtgc aaccacccga gtctcgcaga 1440 aggaaacaaa gcaaaattag aaaaactgtt tggctttctt ttggaatacg ttggcgattt 1500 ggctacagat gacccaccag acctcacagt cattgataag ttggttgtgc acttatatca 1560 tetttgecag atgttteetg aatetgeaag tgaegetate aaatttgtte teegagatge 1620 gatgcatgag atggaagaaa tgattgagac caaaggccgg gcggcattgc cagggttgga 1680 tgtgctcatt tatttgaaaa tcactgggct gctatttcca acttccgact tctggcaccc 1740 agtggtgacc cctgccctcg tgtgcctcag tcagctgctc accaagtgcc ccatcctgtc 1800

```
cctccaggac gtggtgaagg gectgttcgt gtgctgcctg ttcctggagt atgtggcttt
 1860
gtcccagagg tttatacctg agcttattaa ttttcttctt gggattcttt acatagcaac
 1920
tccaaacaaa gcaagccaag gttccactct ggtgcaccct ttcagagcgc ttgggaagaa
 1980
ctcggaactg ctcgtggtgt ctgctagaga ggatgtggcc acgtggcagc agagcagcct
 2040
ctccctccqc tqqqcqagta gactgagggc cccaacttcg acagaggcca atcacatccg
 2100
actqtcctqc ctqqctqtgg gcctggccct gctgaagcgc tgcgtgctca tgtacgggtc
 2160
cctgccatcc ttccacgcca tcatggggcc tctccgagcc ctcctcacgg atcacctggc
 2220
ggactgcagc cacccgcagg agctccagga gctgtgtcag agcacactga ccgaaatgga
 2280
aagccagaag cagctctgcc ggccgctgac ctgtgagaag agcaagcctg tcccactgaa
 2340
gcttttcaca ccccggctgg tcaaagtcct cgagtttgga agaaaacaag gcagtagtaa
 2400
ggaggaacag gaaaggaaga ggctgatcca caaacacaag cgtgaattta aaggggccgt
 2460
tcgagaaatc cgcaaggaca atcagttcct ggcgaggatg caactctcag aaatcatgga
 2520
acgggatgcg gaaagaaagc ggaaagtaaa gcagcttttt aacagcctgg ctacacagga
 2580
aggogaatgg aaggototga agaggaaaaa gttcaaaaaa taaattacat tttataaata
 2640
aggeaaggaa etggaeatta eeteacatet geaatteeaa eeetetggte tegaatteee
 2700
gacctcaggt aatccacctg cettggeece ecaattatag gtgtgageca cagcacccag
 2760
ccaaaaaagt aattttttt agagtaataa tgctataatg ttggtgtgat tccaacctcc
 2820
ageteeece acceptige tigeggtittig titetigtiaa aacgteaect gatgaaatag
 2880
aatgaateet gaaatgeace tetgggateg ggaatggtet gtgtgttate agetgegaet
 2940
ggttcactgc gtctggacaa gcctcatggg gactggggat tctggccagt gtaatttctg
 3000
tcaaccacgg acgtttgcct tcatgtgtag aatttactgt tgttatgcaa attatatttt
 3060
caattataaa tgaaaa
 3076
```

<210> 476

<211> 959

<212> DNA

<213> Homo sapiens

#### <400> 476 gcctcaccaa gcaggaagac tgctgcggta gcatcggcac tgcctggggc cagagcaagt 60 120 gccacaagtg tccccagctg cagtacacag gagtgcagaa gccagggcct gtacgtgggg aagtggggg tgactgtccc cagggctaca agaggcttaa cagcacccac tgccaggaca 180 teaacgagtg egeaatgeeg ggegtgtgte geeatggtga etgeeteaac aaccetgget 240 cctategetg tgtctgccca cctggccata gtttaggccc ctcccgtaca cagtgcattg 300 cagacaaacc ggaggagaag agcctgtgtt tccgcctggt gagccctgag caccagtgcc 360 agcacccact gaccacccgc ctgacccgcc agctctgctg ctgcagtgtc ggcaaggcct 420 ggggegegeg gtgteagege tgeecaacag atggeacege tgegtteaag gagatetgee 480 cagetgggaa gggataccae atteteacet cecaccagae geteaceatt cagggegaga 540 gtgacttttc cettttectg caccetgacg ggecacecaa gececageag etteeggaga 600 gecetageca ggetecacea eetgaggaca cagaggaaga gagaggggtg accaeggact 660 caccggtgag tgaggagagg tcagtgcagc agagccaccc aactgccacc acgactcctg 720 ceeggeeeta eccegagetg atetecegte cetegeeece gaccatgege tggtteetge 780 eggaettgee teetteeege agegeegtag agategetee cacteaggte acagagactg 840 atgagtgccg actgaaccag aacatctgtg gccacggaga gtgcgtgccg ggcccccctg 900 959 actactectg ccactgeaac cccggetacc ggtcacatcc ccagcaccgc tactgcgtg

<210> 477

<211> 3652

<212> DNA

<213> Homo sapiens

<400> 477 ttttttttga cataatcatt tttatttgat ttaattgata aataaataca agagaactgt 60 tgtgaaacca cttggcaata tagtaaattt taaagatttt atttcaactt cactcactta 120 tatttcttgg gaatggggat atatacatta ttcaccaata aatcgctaat gctttaaatt 180 tacaattacc ctatttgtag aaacctgaaa gatcattcca attaaatgaa aaaaaaattg 240 tacaaaaacg ttcttttgct cttacaattc aaaatacatt caaattcaca ttcttaccag 300 cagccaaaac ctttaaccca aaattcagaa actgcagtcc tacaagtgaa caaactagtg 360 ttttaattta attatcatga ttgttgttaa cactgaaaaa aaaacatgat ggctcctgaa 420 acaagacagg ttagcaactg gtacagcttt cccttctggg cactcaaagc tttgcccttg 480 attattattt ttatttcatc ttttcaaaca cagacaattg ctccaacttg aaagtttcaa 540 tggaattttg gcatttaata ttgctaatgc ttgctaagat ttaagatctc ccaatgatga 600 gaatcagaaa atgacgcacg actaaattaa aatcatccta aaagacttac tacatagtgg 660 tatctggtat tcaatatcaa tagtgttttt gaattacatg atatgttttt cacaaacata 720 gcacctcatc aaatatctgg taaacacttt gcaatcacaa taagtgttgg gagaccaagt 780 tccaaagaca attatgtgat tcacttaaag gtaacattgt aagacaagtc tcaggcataa 840 tgaagattag gaatgcagtc tgctggttcc catgatctaa agggatgctc acctatatgg 900 gcaccatect attaagaegt ggtaatatgt ttecaaaeca aaaaaagteg gtaagtgtta 960 aaatggactc ctgctttata aatgatctgt taaatgtact tgtaaaatta aaaaaatttc 1020 caaaatgtca aaagagatat gattattgta totocattat toocaagtaa ttotgttaaa 1080 aagatactaa atgaagtcca attttatctt gtaaagtttt agtgtaaaaa ctaatgtact 1140 gaaattcagt aaagtttaac tttcatctaa atgtaacgaa acaactattc attttggtga 1200 gttttcacaa gctgtactcc tgacctgaag aatcactttt tttatgccga ggagatggag 1260 tagtetttgt aggagatggg gacgcagtac caggtgagtc agtteeteea teggaagtac 1320 ttggtgatga tgccagatag ggaactttct ttcttccaag gaatcctccc ccttcaaatc 1380 ctcctttctt cctaaactct attttatttt cattttcatc ttctgatgac cttttcttgg 1440 attotgaaaa accttoagot attttatgoa ottocaatoo actatocaat tototcaaac 1500 tttttatttc tactccagga gactttctct cagatatatt acattcccct gttgcccctt 1560 tcacttcage ttgtattgga cccaagttac cattttcagg gacagetett tetacattte 1620 tgttcaaatt aatagtctgg aagtccctat aactgtgaaa gctctcagtc cttcttgccc 1680 ttgctaataa aggactttct ctgtaaggcc tcatggaacc gtaagtagct gcttcatggg tggtatcatg gtgctgaagc tgaaggctag aatttgattc tcgtaagtgg ctatgctgaa 1800 ctacggaagt tgctggactg atgttaggag tagcacagcg agatgtgctc aaatcacatt 1860 gategagtaa titgagtage tettettegg tiggaceace tacateetta tetteaetti 1920 tgttaaccat atccatagca gtggtcagat cccacatttg aatactgcca tttgtatggc 1980 ctgtgaacaa gtagcgcctt ggtcttgagc ccatcctact ggatccctca cattccctcc 2040 ctgtaaatga ggatattgta gtacagtcaa cagcctggat ctcacatatt ctttttccag 2100 tcgatgagag tcttacaaat agtttgttgg tgatgggaac aactttctgg ataaacacct 2160 gttgatcgtc tcgctctcca aaaggtccta tgtcatttcc agaggaatag ctaccatgac 2220 tttctgtctc ctccagggat agtatcttga atgacgctaa aggagtagaa cctggctgag 2280 tagagatcat tectetgaat egtgttaetg tecaegteeg gacatgatta ttatetgeae 2340 agactgatac aagatgcttc tctgatagca tgatttttgt tacgggactt cggtgaactg tgaaagtctg aaaaagctga ggacctgacc caactgtctc tgggtgttgt acaatcactc 2460 gtactgctcc agagctcgta ccataggcga tctcgatcca gttaccactg acacttgttt 2520 tgggtgtgag gtaaacactc agagcagtaa tagcatcatt tgaaggatca tgatacagtt 2580 cagttacaag aagatcatta totttcatto gcaaggggaa ottotgcata totatgtaat 2640 atattgatcc attgttacat ccaagcagaa ggaatgatcc agcagtgtca taactagtta 2700 taggaacaac atcttgaacc tgccagtgct gagtgacagc attccacact cccactttcc 2760 ctgtatgact cgtggccacc aactggttac caataaagaa gagagcatct acaggaacac 2820 ccaggetgaa cactecaatt teaettecae tteececate etgaacaete cacaagatga 2880 tgctactctc tgaggcaaca gcaaccattt tgtctttgtc tccatgtggc cctccaacca 2940 cetttgeatt taaagetact egttegatag tecaatecaa atatgggete gtaaacaett 3000 gctgccatcc tgaagattct ttgattctgt aacacacagc aaaatgggca tatgcagcta 3060 caatccagtt gtgatggcca gctactatta gcacctttcg tggatccaca ggaaatccta 3120 gcctaacagt ttcttctccc gttccagaga gaacaggctg tgtaccattt ccccgggctt 3180 caccttetgt agaatttaga ccattectag aatcagcaga tetgactgtg ttgtttattt 3240 tacgactagg aatacetggt gggggcaagt aaccatgaaa aaggacactg ccacaagagg 3300 aacgctccaa ttcttcacat aagagaagcc ttcttactaa tggagtgatc ccgtaaaatt 3360 ctgcttcatg cctgagaaca ttaatactca ctccccttaa gtctagttct tttgtccgaa 3420 gaaaatttaa aatgggtgca aatgctgctg gatctctatc aataaatata gcaccagttt 3480 catctcgaag tgttgaaatt ctcccactca gcaaactgga aaaaaaagaa tctggaatcc 3540 acataagagt ttgtcttgag gtactaaatc tggtcccccc tacgttcagt tggacgatct 3600

egecgetgee ggeegeegee geggggaage tgeegeagtg eecteeegee at

3652

```
<210> 478
<211> 2477
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (2477)
<223> n = a,t,c or g
```

1 60 <400> 478 cgtcgaccca cgcgtccgat cttaacagac gagttgttta aaagaactat ccaactgcct 60 cacttgaaaa ctctcatttt gaatggcaat aaactggaga cactttcttt agtaagttgc 120 tttgctaaca acacaccett ggaacacttg gatetgagte aaaatetatt acaacataaa aatgatgaaa attgctcatg gccagaaact gtggtcaata tgaatctgtc atacaataaa . 240 ttgtctgatt ctgtcttcag gtgcttgccc aaaagtattc aaatacttga cctaaataat 300 aaccaaatcc aaactgtacc taaagagact attcatctga tggccttacg agaactaaat 360 attgcattta attttctaac tgatctccct ggatgcagtc atttcagtag actttcagtt 420 ctgaacattg aaatgaactt cattctcagc ccatctctgg attttgttca gagctgccag 480 gaagttaaaa ctctaaatgc gggaagaaat ccattccggt gtacctgtga attaaaaaaat 540 ttcattcagc ttgaaacata ttcagaggtc atgatggttg gatggtcaga ttcatacacc 600 tgtgaatacc ctttaaacct aaggggaact aggttaaaag acgttcatct ccacgaatta 660 tettgcaaca cagetetgtt gattgtcace attgtggtta ttatgctagt tetggggttg 720 gctgtggcct tctgctgtct ccactttgat ctgccctggt atctcaggat gctaggtcaa 780 tgcacacaaa catggcacag ggttaggaaa acaacccaag aacaactcaa gagaaatgtc 840 cgattccacg catttatttc atacagtgaa catgattctc tgtgggtgaa gaatgaattg 900 atccccaatc tagagaagga agatggttct atcttgattt gcctttatga aagctacttt 960 gaccetggca aaagcattag tgaaaatatt gtaagettea ttgagaaaag etataagtee 1020 atctttgttt tgtctcccaa ctttgtccag aatgagtggt gccattatga attctacttt 1080 gcccaccaca atctcttcca tgaaaattct gatcatataa ttcttatctt actggaaccc .1140 attocattot attgcattoc caccaggtat cataaactga aagototoot ggaaaaaaaa 1200 gcatacttgg aatggcccaa ggataggcgt aaatgtgggc ttttctgggc aaaccttcga 1260 gctgctatta atgttaatgt attagccacc agagaaatgt atgaactgca gacattcaca 1320 gagttaaatg aagagtctcg aggttctaca atctctctga tgagaacaga ttgtctataa 1380 aatcccacag tccttgggaa gttggggacc acatacactg ttgggatgta cattgataca 1440 acctttatga tggcaatttg acaatattta ttaaaataaa aaatggttat tcccttcata 1500 tcagtttcta gaaggatttc taagaatgta tcctatagaa acaccttcac aagtttataa 1560 gggcttatgg aaaaggtgtt catcccagga ttgtttataa tcatgaaaaa tgtggccagg 1620 tgcagtggct cactcttgta atcccagcac tatgggaggc caaggtgggt gaacccacga 1680 ggtcaagaga tggagaccat cctggccaac atggtgaaac cctgtctcta ctaaaaatac 1740 aaaaattago tgggogtgat ggtgcacgoo tgtagtcoca gctacttggg aggotgaggo 1800 aggagaatcg cttgaacccg ggaggtggca gttgcagtga gctgagatcg agccactgca 1860 ctccagcctg gtgacagagc gagactccat ctcaaaaaaa agaaaaaaaa aaaaggaaaa 1920 aatgggaaaa cttcctcttg gccccaaaat agggtctaat tcaataaatt atagcccttt 1980 aaggtaatat aatattactg gcccctaaaa aaaataggga agctgtttat ttccgggttg 2040 ggaaaaacca tattaatatg ttttaacctt ttaggtgggg gcaaaactaa tgggggtttt 2100 tgccattgaa agggctttga aataaaaggg taaagaaatt tatcccaaat gtagtaccag 2160 gggttggggt ctgggaggtt ggattacggg gagcattgga tttctatgtg gggaatttct 2220 ataaggttgg aatggttaaa aaggaatctg tattttttt ataagtagaa aaaaaataag 2280 gatggttttt acagcctaca cttcctaaaa aaaaagggat ttttttttta ggggccccgg 2340 gttttttccc tttggggggg gggaatttaa ttttgggccg ggccgggctt tttaacaccg 2400 ggggcagggg gaaaaacccg ggggggtccc ccctttaatg cccttgggga caaaaaaana 2460 naccattgtg ccggagg 2477

```
<210> 479
<211> 1297
<212> DNA
<213> Homo sapiens
```

#### <400> 479 cceacgegte egeceaegeg teegeceaeg egteegette tgacceegte ttggacttea 60 actgggagaa tqtggagcca tttgaacagg ctcctcttct ggagcatatt ttcttctgtc 120 acttgtagaa aagctgtatt ggattgtgag gcaatgaaaa caaatgaatt cccttctcca 180 tgtttggact caaagactaa ggtggttatg aagggtcaaa atgtatctat gttttgttcc 240 cataagaaca aatcactgca gatcacctat tcattgtttc gacgtaagac acacctggga 300 acccaggatg gaaaaggtga acctgcgatt tttaacctaa gcatcacaga agcccatgaa 360 teaggecect acadatgeaa ageceaagtt accagetgtt caaaatacag tegtgactte 420 agetteacga ttgtegacce ggtgacttee ceagtgetga acattatggt catteaaaca 480 gaaacagacc gacatataac attacattgc ctctcagtca atggctcgct gcccatcaat 540 tacactttct ttgaaaacca tgttgccata tcaccagcta tttccaagta tgacagggag 600 cctgctgaat ttaacttaac caagaagaat cctggagaag aggaagagta taggtgtgaa 660 gctaaaaaca gattgcctaa ctatgcaaca tacagtcacc ctgtcaccat gccctcaaca 720 ggcggagaca gctgtccttt ctgtctgaag ctactacttc cagggttatt actgttgctg 780 gtggtgataa tcctaattct ggctttttgg gtactgccca aatacaaaac aagaaaagct 840 atgagaaata atgtgcccag ggaccgtgga gacacagcca tggaagttgg aatctatgca 900 aatatoottg aaaaacaago aaaggaggaa totgtgocag aagtgggato caggoogtgt 960 gtttccacag cccaagatga ggccaaacac tcccaggagc tacagtatgc caccccgtg 1020 ttccaggagg tggcaccaag agagcaagaa gcctgtgatt cttataaatc tggatatgtc 1080 tattetgaae teaacttetg aaatttacag aaacaaacta cateteagga tggagtetea 1140 ctctgttgcc caggctggag ttcggtggcg cgatcttggc tcacttcaat ctccatcttc 1200 ccagttcaag cgattctcat gcctcgacct cccgagtagc tgggaattac aggtgcccgc 1260 taccacgccc agctaatttt tggattttta gtagagc 1297

```
<210> 480
<211> 569
<212> DNA
<213> Homo sapiens
```

```
<400> 480
ttttttttt ttgaagagag acggacaggc tctcactctg taggccaccc taggatggaa
 60
tacagtggtg tgtctatggc tcactgcagc ctcaacctcc tgggctcaag caattctcct
 120
tetteageet eccaagatge taggactaca ggtgeatgte aacatgeeca getaattggt
 180
ttttttttt tttgtagaga cagcatetec ccaggttacc catgetggte caaacacetg
 240
gtotoaagaa atoottotgo tgtgacotoo caaaqtgota gqattaaaac atgacocaco
 300
atgotoagag tocattitoa titotgatti qaqtaattti aaacttitot cittititot
 360
tagtcaatct agttaatggt tgtcaatttt gttgatttta ttttgaagaa tcaacttttg
 420
gtttcattaa tttcctctat tctttttcca ttctccattt tatttatgtc cactctaatc
 480
cttattattt ccctcattca ctgtgcttgg gtttagtttg ttcttctttc atatcctgaa
 540
gtattaaagt aggttgttga cctgaaaaa
 569
```

```
<210> 481
<211> 1570
<212> DNA
<213> Homo sapiens
```

<400> 481 aatagagaag gtgccagaaa gatccaaaac aagtggctgc ggccgtcgcc caggagtcat 60 eggaegeeag aatetgtgte teeagaaege tatagetatg geaceteeag etetteaaag 120 aggacagagg gtagctgccg tcgccgtcgg cagtcaagca gttctgcaaa ttctcagcag 180 ggtcagtggg agacaggctc ccccccaacc aagcggcagc ggcggagtcg gggccggccc 240 agtggtggtg ccaaacggcg gcggagaggg gccccagccg caccccagca gcagtcagag 300 cccgccagac cttcctctga aggcaaagtg acctgtgaca tccggctccg ggttcgagca 360 gagtactgcg agcatgggcc agccttggag cagggcgtgg catcccggcg gccccaggcg 420 ctggcgcggc agctggacgt gtttgggcag gccaccgcag tgctgcgctc aagggacctg 480 ggetetgtgg tttgtgacat caagttetea gageteteet atetggaege ettetgggge 540 gactacetga gtggcgccct gctgcaggcc ctgcggggcg tgttcctgac tgaggccctg 600 cgagaggetg tgggccggga ggctgttcgc ctgctggtca gtgtggatga ggctgactat 660 gaggetggee ggegeegeet gttgetgatg gaggaggaag gggggeggeg eeegaeagag 720 gcctcctgat ccaggactgg caggattgat cccacctcca agtctccggg ccaccttctc 780 ctgggaggac gaccatctct acccctagag gactgtcact ctagcatctt tgaggactgc 840 gacaggaccg ggacagcagg ccccttgaca gcccctccca caggatgtgg gctctgaggc 900 ctaaaccatt tecagetgag ttteetteec agacteetee taeccecagg tgtgeeceet 960 tagcctccgg aggcggggc tgggcctgta tctcagaagg gaggggcaca gctacacact 1020 caccaaaggc ccccctgcac attgtatctc tgatcttggg ctgtctgcac tgtcacaggt 1080 gcacacacte geteatgete acactgeece tgetgagate tteeetggge etetgeectg 1140 gcctgcttcc cagcacacac ttctttggcc taagggcttc tctctcagga cctctaattt 1200 gaccacaacc aacctgggct tcagccacat cagtgggcac tggagctggg gtgcacatgg 1260 ggcctgctca ccttgcccac acatctccag ccagccaggg ccctgcccag cttcaattta 1320 cagacetgae tetecteace tteececetg etgtecagag etgaacatag aettgeaett 1380 ggatgtcacc tggagtgtca catgggagtg ttatggcagc atcataccaa ggcctactgt 1440 tgcacatggg gccaaaacca gtaaacagcc accttcttgg aaagggaatg caaaggcttt 1500 gggggtgatg gaaaagacct ttttacaaat gataccaatt aaactgccct gggaaagggc 1560 attaggtggg 1570

```
<210> 482
<211> 1774
<212> DNA
<213> Homo sapiens
```

```
<400> 482
gctccaaata ctgcagaatt aaggatttgt cgtgtaaaca agaattgtgg aagtgtcaga
 60
ggaggagatg aaatatttct actttgtgac aaagttcaga aagatgacat agaagttcgt
 120
tttgtgttga acgattggga agcaaaaggc atcttttcac aagctgatgt acaccgtcaa
 180
gtagccattg ttttcaaaac tccaccatat tgcaaagcta tcacagaacc cgtaacagta
 240
aaaatgcagt tgcggagacc ttctgaccag gaagttagtg aatctatgga ttttagatat
 300
ctgccagatg aaaaagatac ttacggcaat aaagcaaaga aacaaaagac aactctgctt
 360
ttccagaaac tgtgccagga tcacgtagaa acagggtttc gccatgttga ccaggatggt
 420
cttgaactcc tgacatcagg tgatccaccc accttggcct cccaaagtgc tgggattaca
 480
gttaattttc ctgagagacc aagacctggt ctcctcggtt caattggaga aggaagatac
 540
ttcaaaaaag aaccaaactt gttttctcat gatgcagttg tgagagaaat gcctacaggg
 600
```

gtttcaagtc aagcagaatc ctactatccc tcacctgggc ccatctcaag tggattgtca 660 catcatgcct caatggcacc tetgcettet teaagetggt catcagtgge ccaccccace 720 ccacgctcag gcaatacaaa cccactgagt agtttttcaa caaggacact tccttctaat 780 tegeaaggta teceaceatt cetgagaata eetgttggga atgatttaaa tgettetaat 840 gcttgcattt acaacaatgc cgatgacata gtcggaatgg aagcgtcatc catgccatca 900 gcagatttat atggtatttc tgatcccaac atgctgtcta attgttctgt gaatatgatg 960 acaaccagca gtgacagcat gggagagact gataatccaa gacttctgag catgaatctt 1020 gaaaacccct catgtaattc agtgttagac ccaagagact tgagacagct ccatcagatg 1080 tectetteca gtatgteage aggegeeaat tecaataeta etgtttttgt tteacaatea 1140 gatgcatttg agggatctga cttcagttgt gcagataaca gcatgataaa tgagtcggga 1200 ccatcaaaca gtactaatcc aaacagtcat ggttttgttc aagatagtca gtattcaggt 1260 attggcagta tgcaaaatga gcaattgagt gactcctttc catatgaatt ttttcaagta 1320 taacttgcaa gatttaaatc cttttaaatc ttgataccac ctatatagat gcagcatttt 1380 gtatttgtct aactggggat ataatactat atttatactg tatatataat actgactgag 1440 aatataatac tgtatttgag aatataaaaa acttttttca gggaagaagc atacaacttt 1500 ggacatagcg aatacaaaat tggaagctgt cataaaaaga caactcagag gccaggcgca 1560 ggggctcaca cctgtaatcc tagcactttg ggaggccaag gcgggtggat cacttgagac 1620 caggaattcg agaccagcct ggccaacatg gtgaaacccc gtctctacta aaaatacaaa 1680 aattagetga geatggtggt acgtgeetgt actgteaget acttgggagg etgaggeaca 1740 ataattgttt gaacccagga agcagaggtt gcag 1774

<210> 483 <211> 3024 <212> DNA <213> Homo sapiens

<400> 483 cgacgcctgt ccctcttaga cttgcagctc ggtcctcttg gcagagaccc cccgcaggag 60 tgcagcacct tctccccaac agacagcggg gaggagccgg ggcagctctc ccctggcgtg 120 cagttccagc ggcggcagaa ccagcgccgc ttctccatgg aggacgtcag caagaggctc 180 240 tctctgccca tggatatccg cctgccccag gaattcctac agaagctaca gatggagagc ccagatotgo ccaageogot cageogoatg tecegeoggg ceteéetgte agaeattgge 300 tttgggaaac tggaaacata cgtgaaactg gacaaactgg gagagggcac ctatgccaca 360. gicticaaag ggcgcagcaa actgacggag aaccttgtgg ccctgaaaga gatccggctg 420 gagcacgagg agggagcgcc etgcactgcc atccgagagg tgtetetgct gaagaacctg 480 aagcacgcca atattgtgac cctgcatgac ctcatccaca cagatcggtc cctcaccctg 540 gtgtttgagt acctggacag tgacctgaag cagtatctgg accactgtgg gaacctcatg 600 agcatgcaca acgtcaagat tttcatgttc cagctgctcc ggggcctcgc ctactgtcac 660 caccgcaaga tcctgcaccg ggacctgaag ccccagaacc tgctcatcaa cgagaggggg 720 gagetgaage tggeegaett tggaetggee agggeeaagt cagtgeecae aaagaettae 780 840 tecaatgagg tggtgacect gtggtacagg ceceegatg tgetgetggg atceacagag tactccaccc ccattgatat gtggggcgtg ggctgcatcc actacgagat ggccacaggg 900 aggeceetet teeegggete cacagteaag gaggagetge acaaaateaa tegeeteete 960 gggaccccca cagaagagac gtggcccggc gtgaccgcct tctctgagtt ccgcacctac 1020 agetteecet getaceteec geageegete ateaaceaeg egeeeaggtt ggataeggat 1080 ggcatccacc tectgagcag cetgeteetg tatgaatcca agagtegcat gtcagcagag 1140 getgeeetga gteacteeta etteeggtet etgggagage gtgtgeacea gettgaagae 🕙 actgcctcca tettetecct gaaggagate cagetecaga aggacecagg ctacegagge ttggccttcc agcagccagg acgagggaag aacaggcggc agagcatctt ctgagccacg 1320 cccaccttgc tgtggccaag ggacaagaga tcacatggag cacaaattcg ggtaggatgg 1380 agcetgtgtg geceteggag gaetgaagaa egagggetga cageeageet ggaagaeege 1440 ttggcagece ttetggecae ggetgtttet tetttgtget teeegtgtge eteeceagta 1500 gccctcacct gcataccaac ccctccttta cccacgttgg ggctggcata agctgettcc 1560 ctgagaggac atgagggggg ggcggtcctc gtaccctctc ccaccctggt gtttgggcac 1620 1680 ctgcgtggga tgcacacgga tgacagaatc aaggcgccag gatgggcact ctgccctgga 1740 tacaggetet acceteetee ceeaggacet geetagtgee agtttggtag teeceettte

tggccccttg	gagcccacac	acgtttcatc	tttttcccct	ctgagagcaa	gaagagacat	1800
ggcatgttct	ctgggaccct	ggaatcctag	gtacccacat	gtgtgccaaa	gcctacccca	1860
		aacagaagga				1920
		caccctctgg				1980
cgctttgccg	gcatgcttgg	atgcccagct	gtgtccagag	gtggcctggg	accgccagtt	2040
gcacgcctgc	cacctcagec	agcccccgcc	cagctcatca	gtctgaatgg	agttgcctta	2100
aattggcagg	tggtaccgta	ctcactgccc	ttggagctgt	gaccggctcc	tgcctgtcca	2160
ccccttcccg	aggtggctcc	tgcttacctt	atcatcccag	ggctctgatt	agccaggcct	2220
ggtcagggtc	ctggggacgg	cacccagata	tgcagagtca	ccctgacact	ggtgccgggc,	2280
tgacctcagc	tecegaagge	tcgcacagcc	tccccatcct	tccttcccag	cccttgtggc	2340
		accagcttcc				2400
cgacagggag	aggtgtagat	gccaccatct	gagggagagg	aacgtggaac	aggagcaggc	2460
tctgatgctg	agaggcttgc	ctccgggggc	tggaagcctg	ggtggccggg	gcccctgaag	2520
		ccaggtctcc				2580
gccaagggga	ggccagcctc	gcctttctac	ccaggccccc	tgccctgccc	acctcaggcc	2640
cccaccctcc	actcctcccc	acggtactgt	gaacgtcgtg	tgactcagtg	cagagacaga	2700
taatatattt	aattcatgta	caaaaaaaa	aaaaaggggg	gcccttttaa	aagaaccctt	2760
ggggggccca	aatttaaccc	gggctggcaa	ggtaaaattt	ttttccttat	ggggggccga	2820
ataaaaacca	acttgggaat	tttgggaaag	aaccttttt	ttgggggggg	gacaaattgg	2880
cccaacctcc	ctccaaaaat	taaaggcttt	agggaaaaaa	aaaattttta	aggggaaaag .	2940
ggggaaaaac	aacctccata	tectggeggt	tgaaaagttt	tctttccggg	gtttatttta	3000
aaaaaatttt	ttccccgggg	cctg				3024

<210> 484 <211> 1148

<212> DNA

<213> Homo sapiens

### <400> 484

aagetgaagg teettgeaag acettatete teetgteett tatageatee egecateeag 60 agcactgcca ggaacctgca tggtgagcga atgactccca gcagtgcgca ggtgattggg 120 ccttgggacc agagtgaggc tgagataaag gggagcccag ggccagaccc ctgtcaccca 180 catteetgte ecetteeett teeageeage eeagagacea eageageaca agaggtggee 240 agettaaaaa agtttaattg etgaaaacat eeaaggeagg tgegggeeag teeetgeggg 300 geteacacce ecettattgg accateaget etgtgatgee ecetteteet ggetacaaac 360 ctgggaagta gggcagctgg tcccagggcc ctgagactgg tgctgctcta gaaggcctgg 420 tggggggcca gcccccaagg cccttgacca gaactggaac agcaggcaag atggggcagc 480 gtggggtgac caaagatcct ggatgaggcc aatccaggct gggaccagcc caggtcagca 540 gtgagaccag gggagacagg gtgcccaggg cctgcccagg gacatgctgc tgaccccccg 600 ccaccetgca ecectggeca catgetageg ggeagetgat gageageage tgaccecaga 660 gacagcagag gtgaaaacag tccctgggaa ctgccagagg cccagaggat gtggaagtgc 720 ccaegggaag gcaggagtge aggggtgaca tgtgccgggg ccagagaggt atcttccage 780 ttgaggatga gccgtgaggt gtgcactagg aagtggcagc acaggtgagg tggaggtgac 840 gggggcgcag gctagtccca ctcgtcctcg tccacgcctt caaaggagtc ctgggggagt 900 gggtcctccc ggttccccag ttttgccacc atggcattca gcagetcctc cttcttttgc 960 1020 tggtcagact tttcttccag gtactgcgct gaggatgggg cccgacgagc aggggcctct 1080 cggggggctt ggctcactgg gctcatgtca ggaggctgca ggctgagaag ccagggctgc ccattagcgc cttgcagcca ggcctcggca ctgagcacag gctcccagat cacagccgtg 1140 1148 tctgggaa

<210> 485 <211> 1256 <212> DNA <213> Homo sapiens

<400> 485 ttttttttga aatgaaatga atcatttaat gagaatcttc aaactgtggc actggctgag 60 tactaagcaa atccagggga agacgtgaag cccaccaagg cgcacagcct caactccggt 120 gcctgcccct gatctgaaat acaacatcca agagctcgag gcctttttac cacccgtttg 180 tggagcacct gcacctttct gacaacaact ctcaagccaa ctttcagaga gaaaacatga 240 agggaaaaaa tagattteet ttggeeagae agetetttet teeteaataa ataggaacea 300 cacttggaac aaagagacag cgtgagctcg gtgggggaag cacaagcttt attggctgaa 360 agttettete aggageetgg tetgetggga etgeatgtte etggatggge tececeagge 420 ctaageteca ggttteetet ggeetteega aggattttgt gggttaegae caattgatea 480 aagatgactt tttcctggcg cttgctcagc tgcaaaagct tcatggtgtt ttgcaacttc 540 ttttcttgtt caaacaattt tttatgtagt ttggtgacct ctgccttcat ttctccaatc 600 tgctcacagt gaagggggca ctggccatcc tcggggagtg agactctcca gagaagcttc 660 720 agcegeetgt aggeetette eagggteage ttggeegtge teacactget cacaaacttg ctcagtggtg ctgggtgtgg accetttgtt cccagetett gaettgtgga getgggagee 780 840 tettgggttt gaatgteeat tteageaagg ageetetgte eetggetgat etgtttgage agggeeteat agteeteaat eaggeeeagg acatggegge cattettget ggeeeaeagg 900 tggtggccag tgaccaggcg ggacacacac ggagtgctag ttgccgaact gccactgtcg 960 caggagagg agtccgtgtc attcccagag agtggaggag tctctgaaac tgtaaaatga 1020 gaagtaggat gtaaaatctg tttcaggtaa cactctgcgt tcaagacgct tatgatgttg 1080 aagctagcta ggagggctag aagaggccct cgtgcccaaa tgccacccaa cacaagccca gaggggaaaa gaggcacgct cctggacctc tgtatattac cccacactgg gcttatgagt catcttgtag gagaggetca agtcaactca accaacactt atcaaccacc cactcg

<210> 486 <211> 2547 <212> DNA <213> Homo sapiens

<400> 486 ttttttttt ttatatatat atatatattt atttatttt aaaaactcca ggggatgtcc 60 caaagttagt aaacagttct gtttcttgtc ccttttatgg ctgcatgcag tttcaattgt 120 tcagtacaac agatgaggca tttaaaaggt ctccaacgtc aagaaacact aactcatctc 180 tggcatatca tatttttaa ggcagaagta ttttctgtaa tggttactac cggaggtgtt 240 tactgggtta atttttaggt taaccaggaa ccacacatcc cataggataa ttccatttaa 300 ctgaggttta tatccgtaag agcattacca tagaaaaatt tccctttagc aatttcaaga 360 gacctcagcc accaatatac ctaccttctt tacaatataa agtgaaatat tactttagat 420 gaaaattttt tgtatcttac ttagaaaaaa ttaagttgat atttaaaaga attttgattt 480 ttaatcacct tccacaacga tttgatatac cttaaactcc actttcattt tttataagag 540 aatcactttc aagggaaaaa aatggatgtt actatatttt aaaatctgct ttataaaaaa 600 gtgtataaat gtcaatctgc cagatatact tcctatcccc aacacagctg taacactgac 660 taatggggtc atgaccatga agcaaatttt acttcctaaa tagaaatgtg taggtggcag 720 aaagcgtatt tttcagcagg agtgattctg ttggatctct ttacaatgtc agagcagttg 780 ttagaaatgt tagtatttta ttcggtttct tgctgtgaag gattatcaca atgttgaagt 840 gatggctqtt cacccagtcg tcatcaccgt catcatctca atcttgggaa tcatcagcag 900 tgtccccac acagagagac aggtatagtg gtgcagttta gtgacaggga atccagtctt 960 agatectgtt tatateacat ttttgtgaat ttacacaaaa ttecatttat agetttaaaa 1020 ctgtactaca taacacatta ctatactact acaaaatatc cttctctata aatgcactga 1080 1140 atattttctt gggcatttta ttaggccttt tttagcatta ttacaaatgc taacaacaag 1200 atacttcaaa ccaccaaata taaagtcagc ttcttaattt tctgaaattt agttatttga

```
gttaataaga attotqtagg aatactgacc catctetttt catccaacct tcaaaataqt
taagcctatt tgcccatctc acctaacctt caaaatagtt aaaacaaaaa caaacccaaa
 1320
ctagctatat ataacaagaa tctttcaatt cccaaactat tgaaagaccc taagtcagcc
 1380
aatctatgaa attatacaag atgaaggtga aaaagctgtg cttttttta aaccattaaa
 1440
cccagttctt ttctcttaaa gttgtaagaa aatggaaaat ctgtttttaa atcatgcaaa
 1500
gatttaaata agcatttttc tatctgctct aagaaactgt ttcttatctt acaattttaa
 1560
atattcataa cactcaaact acttttttgt ggccatttat gtttttgaca ctagattgta
 1620
tggtattatt tagccaagat gtattataat gctaaattat gtataaaata tgatttctgg
 1680
aatttgtcca tcttctattg aagtgccatt attattgcca ggggaactaa aaaaqaaaaa
 1740
aacagtottg cttgcagcag gtgtctcatg cactactttc ttcaatcctt ttgtgccata
 1800
gtgggaatct ggacctttga gtgttgcaca tgctgtgtag cacacattgg gcaggatctc
 1860
tatgggttcc ttgaacatga ccctgaatgt gttagctgtc ccatcacaac taaagccqqt
 1920
atcattctgt cccagggttt gctttttctc atattcaatg atctgtatat tcacttgata
 1980
atctgtaggg ccatgaataq atccatacaa qccaaatcca actatagaqa tccttctatt
 2040
aactgtgaat ctgattcgat cactcgtccc actgtaaccc caqcggcttt ctacttgctg
 2100
gaatetattg atgeageatt cettteecet gagacageat ettggteggt caatgtatte
 2160
aacteggggt ttagggttga cagtaaaatg aagaaagagg tttaccactt cacgatetga
 2220
caaaattcca gattgagcag gacctgctgc aaattcctca attgtcatca gtgggaaccg
 2280
gattaaggaa agtgcttttc ctagaacttt ttgtttattc ccaaaagtca caggtaattg
 2340
ttgtctctga cattctgctt ctgcccagcg tacaacagct ccaaaaagtc gactttctcg
 2400
aatactgagt gtgtctctct ctaaaactgc acagagtgta tctataggca aaatacaaaa
 2460
taaacccaat tagaaatatt ttagetetet aaccaagcaa taccaacaga cacaettata
 2520
ttaagttttc agatctcaac aaaaaat
 2547
```

```
<210> 487
<211> 1228
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(1228)
<223> n = a,t,c or g
```

<400> 487 tgcggccgct gttaccacct cagacactgg tctaagtcca gggcagcctg ggatccctac 60 tectettgae cecaaaggee ageaacgtgg getgacaece eteceegggg catetttgga 120 egggteetge atecageagg gatgtggtea tetetgteet eteagggeet gggageeage 180 gggtctggcc gagtgttagg gtggcttcct ggtctccttc cttagcaggg agctggccac 240 agccaaggcg cecectgca caaaceteae gaagttgtee eeggceageg geeceatgge 300 gtacaggece teetggeggg tgetetggta ggtgaagggg teeacgteaa tggggtteet 360 ettggegete ageggetggt eaggateeac tgeaaagtea geeeetgeee eaggeaggaa 420 ggagaggtcg gggtgggagc cgatgaggac cagcaccagg gagaccccaa acaccttctc 480 gacacceteg aggteetgga acaeggeetg geagtettee ttgaageaca geagetggtg 540 cctggggagg ctgcggtaac cctcataggg gctgggcgac aggatggact gctcccgcat 600 catctggtgc accttgtggt actcggggta cagcatcttg ggcagctggt tgaacaccag 660 gccagggtcg tccacggccc ggcggaaggc atggatcacc gggatgttgt agtggcgggc 720 gtagaggacc gcgtcggccg ctgacagccc cgcgccaatg atgaggacag ggtctgaggc 780 cggggtcacc gcacccaccc ttgtggcggc ctccagggca gacagctcat ggtggatgaa 840 gggeagggee teecegggga tgeecageeg ggeegggetg tegaaegtge etgtggegag 900 gaccacgttg cgggcccaca gcgagaaggg ctgctgggcc tggttcctgg tcaggaagcc 960 getcacetgg aagaggggc tggagteetg qqccccacaq etqetqqqat cqqqqqtccc 1020 ccactccacg getgtgacta cagcaccgga cacaaagtta tgccccagac ccttcttgac 1080 cacgtagtcc ctgtagtagt gggcgatgtc cccggcagtg gcccggctgt tgcgaagacc 1140 tettegette ttetgeatee agteettgae eteegaatte caccacactg actagaggte 1200 tacagtgggn ntcaggneng gaccccct 1228

```
<210> 488
<211> 1410
<212> DNA
<213> Homo sapiens
<220> .
<221> misc_feature
<222> (1) ... (1410)
<223> n = a,t,c or g
```

```
<400> 488
tttttttttt ttacttttac ataatctcat ttaatttaac cctcacaaca accctgtgag
 60
gtaggtattt gctccatttt acaaatggag aaatcgaggc acaaaagatt aaacatctta
 120
ccaaagtctg cacagccact tatatgctgg agctagaatt tgaacccagg tgtgcctcca
 180
ctttttaata ctagaccaat cttttcacgg gggaagtttc ctagattaac accctcacat
 240
cttttaagac cattccaaaa cctgcgttct gttttgcaga agccctcact gtgtttctgc
 300
tgccctgaaa cagtggaggc agacaaaggt gagtgccaag tgaggaacca taagaagtgg
 360
tagatetetg tggagtgeea taagaaceet caagageett aacaaaggta gttgggggag
 420
aggggaagag gtgtttcagc agctctgctc ccagcagcca tttcctctct ccagggcaaa
ggggtggggc tgcgaggcca gctgaccaag aaacccctcc agctcctcca gtccaagtcc
 540
ageatettte etacaactat tetgeettee acttegtett etteettgee teactetatg
 600
tcatggttac ccttaccaac tggttcaggt aagatggagt gggccttaga tactctcctg
 660
aagagctagc tattttaagg aaagagcaat tcaaggccat tccagacaca catgggtctg
 720
ccattatatt tggtgaggag gtagaacagg tctaaaagct aaggcccttc atattctcta
 780
accagageet ttggttacae agetatgagg gageagaact ggaaaagaee tteateaagg
 840
gtagctgggc caccttctgg gtcaaggttg cctcatgctg ggcctgcgta ctcctctatc
 900
tggggctgtt actggcacca ctctgttggc cccccaccca gaaaccccaq ccccttatct
 960
tgaggegeeg cegecacege atcatatece cagataacaa atateeteea gtetaagtee
 1020
ttttcacaaa ctggggttcc cctgacattg tactcctaga gttggctcaa ggggagctgt
 1080
ccagcccagc tcaatacctc aaggacacac agggagttat ctccgtttgg gctgaagtca
 1140
atactatgaa ctggaagaag tggtcaaaca cagtctaatg tgctgggcag agtgtctgac
 1200
tcactggagc tactgttaca tctgcatccc agctcaagag cctaacaccc aaatcagcag
 1260
ctcaaagaac caccgctgat cccagcagac agtgtgcacc agccctttcc tggctcttgg
 1320
gettettata teegtgtnee agggetgaae teettatttt eettteteea naggeagage
 1380
cgagtcttca gtccctgttg gtctttcccc
 1410
```

```
<210> 489
<211> 1050
<212> DNA
<213> Homo sapiens
```

```
<400> 489
caattgatac acctatcaca tggataccag attcactgga ctgactatta caacgtcggg
actgggagac cagaattcgg cacgagggca gcccacaagt ccctggccgg agcagagctg
aagacgctca aggactttgt gactgtcttg gccaagctgt tccctggacg gccgccagtc
aagaagctgt tggagatgct gcaggagtgg ctggccagcc ttcccctgga caggatcccc
tacaacgccg tgcttgacct ggtcaacaac aagatgcgga tttctggaat attccttact
300
```

aatcacataa	agtgggttgg	atgtcaagga	agccgatctg	agttgagggg	ttacccgtgt	360
tctctctgga	aactgttcca	cactttgact	gttgaagcct	cgacccaccc	agatgcactg	420
gttggcacag	gctttgaaga	cgacccccag	gctgtgctgc	agacaatgag	gaggtacgtt	480
cacaccttct	ttgggtgtaa	ggaatgtggt	gagcactttg	aggaaatggc	taaagaatcc	540
atggactcgg	tgaaaacccc	agaccaagcc	atcctctggc	tgtggaagaa	gcataatatg	600
gtgaacggcc	gcctggcagg	tgagaagccc	ctgggcatgg	ggggctcagc	acgggcggag	660
ggaggccctg	gtcctgggac	agcaaggacg	gcacggctgc	cgtggggctt	gtccctgagc	720
tttgcggcct	cgtgccaccc	actgtgctga	cgggatcagg	acttgggtgg	ctgagagctg	780
ccagagctgc	agcctttccc	aggctgcttc	tgtccccggc	tttctagatg	cttctctcac	840
tccgggggct	cttcgacccc	gtggaaatgg	gtgtggctct	ttcttcccc	atcggtaccc	900
actggtagcc	cgttagactc	tgaagatgtt	tttgactctg	gaaagcttgg	aacgtaatta	960
atttttgatg	aggaatttta	gtagtatgga	aatctgttgt	ccaaacgtaa	accaaacctc	1020
tcaaagtgct	ttgttttgtt	aaaaaaaaa				1050

<210> 490

<211> 4797

<212> DNA

<213> Homo sapiens

<400> 490 ttttttttt ttaaagttta aacacctttt atttgaagaa atattgcttc tagactttcc 60 tgaagccaga attgttctat aaaagtatca tggaatatta tacatgatta aaaaacagag 120 tatgetteet aataaettga aatettttta caaageaeat tatteatgat cataaatatg 180 tttgttctgt catcccaccg atgatacaca catcaggcaa gcagctaatt tgaacatatg 240 tacagagtet atgataaaga tttaaagtta ecaaaaagat teagetataa eatattaaat 300 tttctttaaa agagtttacc ataaacactt aaagaaaaca taatttatct aagcacttga 360 attatctaaa aataagaaga aaacctctct tagggtaagc aaaaacacat catcttgggg 420 agetgaataa aagggtaetg atgacteagt gaggtaatee etttagetgg tatttaaaaa 480 cctaatacac aacaaggata ttttcaagaa tacagatttt caaaagcaat tttgaactat 540 gtetttaaaa gatateagaa ettggtgaag gtettaeaaa taateataga acacaatgtt 600 aagaaattaa cttctcttgt ggtatgttga aattgtggag cattcatgat tttcttttat .660 tgagaagttc ttggtgtaaa ttcaaaacta gtcatatttt atcaacattt aagcttctta 720 gtcatgccaa gaaaaccaaa aaagatgaaa ataaaagatc tttagatctt tttctcctgt 780 caagaaaata acccaaaata tagcaatctt aaaggtatga tgtatgatga acgctttgag 840 gctaggcaca gagagagcag gcaatcttca ttttgtttac ttatttattt attttcacca 900 ccaacattat tagccatgcc tttctgctaa tcgattttag caagtcgagg taaaacacat 960 gcaacatttt ctggcaaaag cttaatgtca aacaatatgt gatccatact gtgtgtcgtc 1020 cttgggggtt tatttgactt tgtcacaatg acagccaaca gtgagactga taagcctgta 1080 aaaataaaaa aataagacta atcaaataga catggcattt taatctcaaa gtgcaaaatc 1140 atctaactga aaatgacggc attgaaaaat tccagtggtt aaaaatgaat caaaacttca 1200 ttacgcaggc agtggaagtg tgttgaaaga tttaccaggg gtgtcaagtt ttagacactc 1260 agaaaggcac cattctagcc atcttgattg gataacatgt atatacttat gtccctacga 1320 tattcaaaag ataatactgt tttagtacaa aacaaacaaa caaqcaaaaa atcaaaacca 1380 agccaaccca aatatcccca gcctttcttt ctactcttgg cagatagtaa attataacga 1440 tgagtetecg tgtgcacace gettgeteac atgeteacta gettetactq cacaaaqqta 1500 cccagggtag cttggaatgt tggtggctgt gattaccttt attagtttac aaataaaaaa 1560 gttaaaaaga aatactgtgt ttagggtaag gtaacagttt ccacctaatc aagaggagag 1620 tgaaagagga agegetgeet teetaggtge tgtgacttet cettttegtg attettetee 1680 accttggtca acatcttccc cgctatgctg gaattacttc ggtgttctgc ggtggccatg 1740 gtgaacatct gatgaactga aattccatcg gaatgcacag gaagatatag ttgatcttca 1800 aaaatgteet tteeaggace accatactgg ggaagttett tegggtgeet gegaatggge 1860 tgcagcctgg ggctgggccc gagctctagc tctgtcatgc catcgccact gaaatcggtt 1920 tccagatgat tagtctcttc atgccccgtc catttttcgg tttttctcca gtgttcagaa 1980 ttcaaatgat taacttctgg aatgtcgtta ttccattcaa gtttactctc tggacttaat 2040 gttggtcggt tcaaatgcag ggtttgaagg tcagctggca aggtcaaatg aggtgttttc 2100 ccaaccttat gccttgggtc ttcatctgag tcagcagagg ccatctccat tgacacagcg 2160

```
tgctcagcag agacaaccaa gaacccgtca ctttgagcag tttgagtctt atttgtttta
 2220
ttttgctcat agtgactctt cagcagtgca aatactctat ctaaatcctt caagtaatta
 2280
gtccagtcca ccagactaag tctgtagttt tgtctgtact catagatgtt ttcattcaca
 2340
ctgtgtagct cctctaggcc ttgccagttg atgtctgcag tgagacgggg ctgattaacc
 2400
ttcccatcca tcccataact gtcctctgtg taggtcatag cttcctccat ctttatttcc
 2460
aacatcaaga ttcttaggtc ttgggttgca ctgcttatat ccttgacagc ttctgagctc
 2520
cattagttgt acgtgtagct gattcaaaat gcctcgttct accgtgtgca ctgtatttgt
 2580
gagctgataa ggatctgtat tcatatcaaa atactccaaa aagccagtag caaactcaca
 2640
gaaaagaaaa ttatgcgtct cattaactgt acgcaaacac cagtaggtgt tattgttaga
 2700.
actcgtgcaa gcacagaaag atcccaggtt ccagaacggg gctgtctgcc agtggttgtt
 2760
gtcatgcgtg aagcaagtga ggccaggcag gctgcactct tcccccttcc tctgccgtct
 2820
cttctccttc ctctccttct tcctcctacg gttgttctcc ttgaaaagtt gcagtttgct
 2880
atctactice tgageagect cettgaatgg gtgaagatgg etetttaatt tetettgett
 2940
ttttacacct ttctctttat tgtaatagct ttgtttactg cagctacatt cctcaggctt
 3000
cettetette agatgteete teaettetet taaattetta attttatett geagagette
 3060
aatctcttcg tcaatgtatg ccttatggtc cttccacgct ctggccgatt ggtacagttc
 3120
teteteacaa tggatagagt cattgggaag aataaaacae ttgtgtgtea eteggacagt
 3180
ggtaggtggg cccacggcgt tgctgctatc tgccagcatc ctgcccctgt tgccaccact
 3240
ggaagcctgg agatctcttg gccccttgtg gccttcatca tgacgcttag caatgtttct
 3300
tggttgcaac acttgcaatt cttcttcttc ttccagattt atgtcatata tttcaccttc
 3360
aaattcgacg gacaaggaac gtgtctgccg agtatggaca aatctgggct tgtactttgg
 3420
agtoccotgg tttctcaaga attgccgttg actotttctt tggcttctgc tggcacggta
 3480
accagaetce etacaactge actetttgte tttgtcatgg aagcegegag egtagaggtt
 3540
ccgcgtgctc tgccggactg tgagcaggtc actgggtcct ttacacttgt gaattcgaag
 3600
cttgccagat gtatcctcaa tgcattgcca cttctgcccc ggttgttcac aggctgtctg
 3660
gtacctggcc tgctggcata gttctttgac ccgttcatat ttgggcaagt gatttgactg
 3720
ttggatattc ttgctggatt cttccttctt acgtagaaat ttgcctcttt ccactaggaa
 3780
tgtatcacgc caaattttgg cettettgtt tgttcgaaac etgttacetg gettttetgg
 3840
gtccagaagt ttgaggacag acttgccgtc cacatcagga ggtgtgtcga gcccagcaat
 3900
atccaggatc gtgggggcca agtcaatgtt gagaacgatc tgtgggacta ttgatcctgg
 3960
ttctacactt ggaccacgaa taaaaaaagg cacacgaata tcaaagtcat atggcatgga
 4020
tttccccttg accagtccaa actgcccaat atggtaacca tggtcggcgg tgtaaatgat
 4080
gtaagtattc tecageteec cegteteeac gageatgtta tacageetet ceacagaate
 4140
atccactgac atcaaagtct ggagcctttt gcgctgtaga atgtttgtaa attccatgtg
 4200
gatgggcagc attggtcctg tgtactgcat aatccagtgt ttatccatat ttggtgcata
 4260
gttataacta ggagttatgt gttgggaagc attggggtac agtttagaaa actgtggggc
 4320
tgagtcctcg gggccgtggg gctcggcgtg gctgatcacc atcataacgg gcctatgggg
 4380
atacattctc ttagacattt tgaagtaatt aatgctctcg ttagtgatta agtctgtgaa
 4440
gtagtccttt gcataatcaa atccatgctt ttctttgatg ccattgcgac aaacagtgta
 4500
attatagaag cgagaattct tgattaatcc aagccattct cgccacccag gggggatgta
 4560
gctgccatta tattcattga ggtattttcc aaaaaaggct gttctgtagc cagtgttgtt
 4620
aagatataca gcaaaagtcc gaggctcatg catggcctgc cacgaggggg aagagcagtt
 4680
ctcgttgttg gtgtagacat tgtgattgtg cacatacttc ccggtgagca tggaggaccg
 4740
tgacgggcag cacatgggtg tagtcacaaa ggcattgatg aaggtggccc ccccatg
 4797
```

```
<210> 491
<211> 2480
<212> DNA
<213> Homo sapiens
```

```
<400> 491

ttttttttt ttctcacttg gccgacttta tttttcagga aaaacagaaa aacaaatgta 60
cctcttgggt tggaaaggac ccattgacaa catggcacag acgtgagcaa taaatacgca 120
catacattca agtatgcggg ggggcgctac gtcctggaga ccctgtgttc gggcacctgt 180
ccctgctctc gggtgcggcc ctgccctcc agaagcaggt cacctcacca ggcccagatc 240
tgcctctcca tcctagcctg agagtgggc ctagaggcac cctcctagat ggaactgcca 300
```

```
gccctggggg ctgtggggcc atggtagggc ccttggcagt cttgggaggt gccaaggctg
ggtctggaca ggaggaggca acctcaggcc cctggggccc atctcaggct ccagcaggtc
 420
ctgccagtcc taggatcccg aacttggtgc cctgtgagcc ccctccccat ggagagagca
 480
gtgatgtcat ctcccccagc tggtgggagg aggggggttc tcatatgggg ggtctgcagg
 540
gttgagctga gtgaagcctc cccagcttcc actgaccacc ccccacttg ggtgagggtc
 600
acagageetg gtgetacete ecaecetgae tgggcaetge tettgetgee agtaageate
 660
cctaggacca ggccctgccc tttttcctgg cttggggttt tggaatgtcg aagttcatgc
 720
ccagccattc cctctgcttt agagataggc ccggctcctg tcgaggcccc tgcagggccc
 780
tgggactegg cggggggcac ctcagggctg ccactgcagc ctggtctgcc atgcgtggtc
 840
tggggggcct tctgtggttg ctgacctctg gccggggagt ggggagacag gcttggaggg
 900
agccctgccc caggacgaag ctggaggggt ggagcatgcc tgtcacacgg ccatcccaag
 960
accagetetg gggggacaga acatggeeet gteettggtg geeecaagag geggeteaga
 1020
gacacctttg gggagggtga gggagacagc agggtttcac atttggcagg gcagggcaga
 1080
acgggaaggg cttgggggag aggatgcggg agtctgacag caccaggtcg gggccgacat
 1140
gccgaaggcc ccgtccggcc tgcggcaggg gcagaaggga ggaagctgag ggccatgggg
 1200
gccagcccgg gatggaagca cgccctccca ccacgggcag cttggcctga gcctgtcgcc
 1260
etgggteggg gaggeegtgg ggetgeatge ceagtgeetg teeteggeaa tggeeteggg
 1320
aggacgtggc tgtgactgtg agaccggcgt ccaggagtgg gggcagggtg ggcctggcgg
 1380
tgggcacagg gccttagete gcaccagget ggcactgetg ctggggeteg ggcgggccge
 1440
etgececetg etcegggeee eceggegagg tecaceeget getegtecat gegettagee
 1500
tgcaccetet gaatgagget gaagaagtee tegteeggea tggtagggee eeggggeagt
 1560
acgtcaggtg gtgggcagcg ctggtcatcg atcctggagg actggtactt gatgagcatg
 1620
ttgaagaagt cgtcccccgg ctcctggggc tcgccgtggc ctcggaggtg ccctgcattg
 1680
ctgtgggtga ttcgcagccc cggcaggctg cccacgctgg cccgctggtc gtccagccgg
 1740
cggctctggg agctggcgat gaggtcgaag aattcctcgg tctggggcga ggccgtcatc
 1800
gagggetggg egateetgte etceagggtg ggggeggeeg tggeetegge ageeeeggee
 1860
tggccatcgt ccaggggaca acgctggtcg tccatgcggc tgctctggaa cttqqtcaac
 1920
aggtcaaaga agcactcctc gtccgaagac ggggccctcg ggatgctcgt gcgtggcacg
 1980
tgeaccegga egteggeget gteeageggg gagtggetge cetecegggg cetectetea
 2040
gcgtccgggc cttcctggta cttcctgctc ctcacgggga ggggtagcga gtccctgctg
 2100
ggccccgcc agtcccctga atggtggctg tctccattct gctcccgctc cagggggagt
 2160
ctcagcaggt cccaggtctc cgcgctcagc ctctgcgtcc tcttgggtct ggcccctgg
 2220
gcetcatage eggccaggte aggettetet gaggetgeeg ggetggteag geggeegage
 2280
accagetgea getgegeeac gtteatgegg geegtgaget ecceatggeg gteecegate
 2340
teetgggaga tetgeaggtg ettettggeg aaggteaggg eetgegetgg gegeeceatg
 2400
gacacgtagg cattteccag getecageae geeeggeeet egeecaetet gteggeeage
 2460
tcctgggcaa tgagcaggtg
 2480
```

<210> 492 <211> 738 <212> DNA <213> Homo sapiens

<400> 492 ggaattcggc ggccgacctg gccatctttg ccctttgggg gctcaagccc gtggtctacc 60 tgctggccag ctccttcctg ggcctgggcc tgcaccccat ctcgggccac ttcgtggccg 120 agcactacat gttcctcaag ggccacgaga cctactccta ctatgggcct ctcaactgga 180 tcaccttcaa tgtgggctac cacgtggagc accacgactt ccccagcatc ccgggctaca 240 acctgccgct ggtgcggaag atcgcgcccg agtactacga ccacctgccg cagcaccact 300 cctgggtgaa ggtgctctgg gattttgtgt ttgaggactc cctggggccc tatgccaggg 360 tgaagcgggt gtacaggctg gcaaaagatg gtctgtgagc ccgggctgcc tcctggtggt 420 ggccattgtc ccccatcggc ccctcagcct tgcaccccag cactgagaag ctacatttcc 480 ttcctgtgct ctggactgct gcccttgtcc ccgaggagtg tcccgcgcag ccacacctgg 540 caacagcagt gtgggctgca gggctccgtc tgcacgtgga cttgccctgg accttgagtg 600 tggccctccc tttctgggcc tccccaggtg aggcctggcc ctgccccacc atgacctggg 660 tgctctgagc ccacggttcc cacggagctg acttctccgg ggtgcctgtg ccctacatta 720

aacccggcgt ttgtttca

tttca 738

<210> 493 <211> 574 <212> DNA <213> Homo sapiens

<400> 493 caagaaagcg gcttcagctg taaaggacct ggccagaatg tggctgtgac cagggcacac 60 cctgactccc aagggaggcg gcggcggcct gagcgggggg cccgaggagg ccaggtgttt 120 tacaacageg agtatgggga getgteggag ceaagegagg aggaceactg etceeegtet 180 gcccgcgtga ctttcttcac agacaacagc tactaagcag catcggacaa gacccccagc 240 acttgggggt tcaggcccgg cagggcgggc agagggctgg aggcccaggc tgggaactca 300 tetggttgaa etetggtgge acaggagtgt cetetteeet etetgeagae tteecageta 360 ggaagagcag gactccaggc ccaaggctcc cggaattccg tcaccacgac tggccagggc 420 cacgetecag etgeceegge ecetececet gagatteaga tagaatgtga ectetaggea 480 tgatttgcta ggggtgggag cagcatcttt ctgtcaccat tgtgtgaaca gcagggtcag 540 atgttcctag tgatatcacg ggaagccttg tttc 574

<210> 494 <211> 1179 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(1179) <223> n = a,t,c or g

<400> 494 acgtaattgt gcatgcgcgg cccatccgca cgcgggctag caagtactac atccccgagg 60 ccgtgtacgg cctgcccgcc tatccggcct acgcgggcgg cggtggcttt gtgctttccg 120 gggccacget gcaccgcctg gctggcgcct gtgcgcaggt cgagctcttc cccatcgacg 180 acgtetttet gggeatgtgt etgeagegee tgeggeteae geeegageet eaccetgeet 240 tecgcacett tggcatecec cageetteag cegegeegea tttgageace ttegacecet 300 gettttaccg tgagetggtt gtagtgcacg ggetetegge egetgacate tggettatgt 360 ggcgcctgct gcacgggccg catgggccag cctgtgcgca tccacagcct gtcgctgcag 420 gecectteca atgggactee tagetececa etacagecee aageteetaa eteagaceea 480 gaatggagcc ggtttcccag attattgccg tgtatgtggt tcttccctga tcaccaqqtq 540 cetgteteca caggatecea ggggatgggg gttaagettg geteetggeg gtecaceetg 600 ctggaaccag ttgaaacccg tgtaatggtg accetttgag cgagccaagg ctgggtggta 660 gatgaccatc tcttgtccaa caggtcccag agcagtggat atgtctggtc ctcctagtag 720 cacagaggtg tgttctggtg tggtggcagg gacttaggga atcctaccac tctgctggat 780 ttggaacccc ctaggctgac gcggacgtat gcagaggctc tcaaggccag gcccacagg 840 gaggtggagg ggctccggcc gccacagcct gaattcatga acctggcagg cactttgcca 900 tageteatet gaaaacagat attatgette ecacaacete teetgggeee aggtgtgget 960 gagcaccagg gatggagcca cacataaggg acaaatgagt gcacggtcct acctagtctt 1020 ttcctcacct tcctgaactt cagacaacna ttggccantc tcccactgga aggctgtatc 1080

ccctcaagan ggagccaagg aatgtttttc ccctggagat gccacactaa ttaattttcc 1140 ccatatggtt taancaaccc cttgggtgaa aaaanccaa 1179

<210> 495 <211> 900 <212> DNA <213> Homo sapiens

<400> 495 atggettetg etgeetgete catggacece ategacaget ttgageteet ggateteetg tttgaccggc aggacggcat cctgagacac gtggagctgg gcgagggctg gggtcacgtc 120 aaggaccagg tootgocaaa coccgactot gacgacttoc toagctocat cotgggotot 180 ggagactcae tgeccagete eccaetetgg tecccegaag geagtgatag tggeatetee 240 gaagacetce ceteegacee ceaggacace ceteeaegca geggaceage caceteeece 300 geoggetgee atcetgeeca geetggeaag gggeeetgee teteetatea teetggeaac 360 tettgeteca ccacaacce agggecagtg atccaacaac agcateacet gggggeetec 420 tacctcctgc gacctggggc tgggcactgt caggagctgg tgctcaccga ggatgagaag 480 aagctgctgg ctaaagaagg catcaccctg cccactcagc tgcccctcac taagtacgag 540 gagegagtge tgaaaaaaat cegeeggaaa ateeggaaca ageagtegge geaagaaage 600 aggaagaaga agaaggaata tatcgatggc ctggagactc ggtcctgttg ctgtcctttg 660 contrateat cotococtee atcagecett ttggccccaa caaaaccgag agecetgggg 720 actitigegee tgtaegagtg ttetecagaa ctitigeacaa egatgetgee teeegegtgg 780 etgetgatge tgtgccagge teegaggeee caggaceeeg accegagget gacacaacee 840 gagaagagte tecaggaage eeeggggeag actggggett ceaggacace gegaacetga 900

<210> 496 <211> 4235 <212> DNA <213> Homo sapiens

tttgaacact gcaaaaggct tttattttat aggcaccact gcaaaatgag gaatcacatc 60 aaaacatatc aaatagaaaa taataattta ttttaacttc attttactqt ttqtaactaa 120 teatgatttt gtgaacttge etgtataagt etgtacette aaatetacaa ageaaaagtt 180 tactacaatg agcacttaaa attccacaaa ccgtctccat ccacaacttt cctgtacatg 240 caaattettt cagtgggetg caatatttgc aaacatgett taaactteca taaagatgca 300 agatattttg ctttctgcta aaacctttac actctcttgg gaaccttaac caggaaaatg 360 tttaaatgta tatcccaact ctaaacgctg ccggtttggt tatatgtatt aaatcgttaa 420 ccaccgggtt gggtggtttt gagttgaaac cttcacctaa atgataatat cttaacggtc 480 acgcatatga aacacattca gtaacgtacc attataaaat aqqqttccat taaaaataca 540 tactggcagt tgtatttgtg ttttaggcag gaaaaaaagc gtgtttaact tttttatatg 600 aatatagttt aaacaagtta ttctgtgaaa gtatgcttaa taaaagatct ttctgaaatt 660 taaacacttt atgtaaaagg gtacaggtag aaaagtacaa ttgctatttg aaaaaagctc 720 tgtttgttaa tattgccttc caagatagta agggtgtttt tctctcttt cccttaaaat 780 agacctatga cacccagagt tgtagggttt gcaaatttgg actataaaca tgaagaccgt 840 acttatetta tatacaaaaa ettgeegeat tgaacgagge aggaatttet acceeagtgg 900 tagtggtctc ctttatgtac ataatgcaga agtgaaaatt atacagtagt caccgatagg 960 aaggaattgt atactctagt geegteeggg gattttgtge egtgggttaa gagttettgg 1020

atcotcatco	agttatcgaa	gattttctta	ttcctcttct	tcatcatctt	tttataactc	1080
	tgttcatctc	_				1140
	gcatcatgaa					1200
	cctccttgct					1260
	tgccgctgcg					1320
	gcctcttggt					1380
tecatgegeg	gctccgacgg	gatagaaaaa	ctcaggtcct	tgcacatgct	caccaggete	1440
	gcgcgtactc					1500
	cgtgcgccgg					1560
	tgcccagctt					1620
	tttccagggg					1680
	cttcgggatc					1740
	tececacage					1800
	tgtcggggga					1860
	cgctcgagct					1920
	tgcgcacgtc					1980
atccaggact	cgcggtactg	ctccttgage	tactacetet	tataaacaca	caccatacta	2040
	gctcgatgct					2100
	cactcttgcc					2160
	tcacctggca					2220
	ccaggtaggc					2280
	egeegetgee					
						2340
	aggatgcggt					2400
	tetegteggt					2460
	tatctgtggt					2520
getgtgaatt	gcatggcctg	atastass	coctocagea	catacactt	caggicatec	2580
agaaageege	tcctgtcatc	atteattea	etecteacea	getggagete	agecerrgea	2640
ttotageaacg	aaaagttttt	actiticate	etggttagaa	gagecacage	ececteaegg	2700
	ctatcccatt					2760
	tgctgttagg					2820
acttectees	agcacacagt	gaggeeeage	atatastast	rgiteattet	gtagaggtee	2880
tttaattaat	gctccagctc	ccccccgccc	tactectgat	ggatgtetee	aatgtagtca	2940
	agtattcatg					3000
	tgggagagga					3060
	ccgtgtccac					3120
	tcaacacctg					3180
atttagagg	gagttgctct	ggataagtet	ccgccgccga	ccccaacaac	cetgteatga	3240
	ctccttcctt					3300
ccccaccag	atgatccatc	atagagaaa	acacteggee	ggccaccaac	ttooccatto	3360
cccagggage	cggagtcccg	acycayyaca	agagccagac	äaaaaaaaa	atattacata	3420
aatttcttct	gcgcggccac	caccatasta	tacaaataaa	ggegegeget	gracicggrg	3480
	ggtagcgcag					3540
accordages	acttctcgcg	creeceageg	ttataaaaa	cettettgag	egeettgtge	3600
	ggegggeetg					3660
	cgcgctgctc					3720
acctagged	gegegtegea	agazagaga	acgegegeee	ceaegregeg	cegeageage	3780
	aacccgcgtg					3840
	gctgcagctt					3900
	tgaggataag					3960
	ggcagcgcgc					4020
accoccase	agacgtggcc	gtacyguyug	greagegggt	ceteeaggae	couguageae	4080
atagagaga	tcaggtccgg	tagaggagg	cogregaage	ygtccagctc	gaageceatg	4140
gragagagaga	ggccccgggg	ccgccgccgg	geggeeggge	geeceeteee	Ecccacgag	4200
geggeeeaga	caggccggct	acycogcccg	cgcgc			4235

<210> 497

<211> 498

<212> DNA

<213> Homo sapiens

```
<400> 497
tttttttttt ttagtagaga tggggttttg ccatgttggc cagggtggtc tcacactcat
aggeteaagt aatetgeeeg ceteageete caaaagtget gggattacag gegtgageea
 120
ctgtgcccgg cctgacttca aatcctgtgt tgaatagaag tagtgagagc gggcatcctt
 180
ctcttgttcc tgatcttgga ggcaaagatt tcagtctttc atctaaaatg actgaaagac
 240
tttcagccat gggccttgca tgactggcct ttattttgtt gcagtatatt ccttctcttc
 300
ctggtttgtg gagtgtttta ccaggaaagg gtgttcaggc tgggcacagt ggctcaagtc
 360
acacaaaagt gtcaagtcag ccctgcccaa gggccccagt gcccatcttc ctgctgaggg
 420
getgggeete acettggetg getgggeeee teceacetgg atecetgeag aceceacege
 480
actcagcctc acacgaaa
 498
```

<210> 498 <211> 421 <212> DNA

<213> Homo sapiens

<400> 498 ctcgcaggcc gcaaggtgct gctcttcgtc tcaggctacg tcgtgggctg gggtcccatc 60 120 tgcgtgctgg ccagctggct caccgccttc gtcctcacca agtccttcct gccaggggg 180 gtgagtgttc agccccaggc cccaggcccc taggccctct ctgactggcc aggacccttc 240 tragtgrown gggotgtgrown aaggortget gtraggaroom taartetrag tgarootagg 300 agatgagcac acaccccctg aactcagaga ccccagagtg gtcacgtgat agcctagcaa 360 acgetettea ttataagaaa eaggaaeggg egtatgeaae tgetetggta agteaggtta 420 421

<210> 499 <211> 572 <212> DNA <213> Homo sapiens

<400> 499 tttttggget cegggaecec egggagtggg ageggeagte ggggaegeet caactegtte . 60 actcagggaa tcctgcccat cgccttctcc aggccgactt cgcagaacta ctgctccctg 120 gagcagccag gccagggcgg cagcaccagc gccttcgagc agctgcagag gtcccgacgg 180 cgcctcatct cccagagatc ttccttggag accctggaag atattgagga gaacgcccct 240 ctccggagat gtcgaactct ctcaggttca cccagaccaa agaattttaa gaagattcat 300 tttatcaaga acatgcggca acacgatacc aggaatggca gaatagtcct tatcagtggc 360 agaagateet tetgtagtat atttteagtg etgeegtate gegaeagtae eeaagteggg 420 tatgtatatg catgcatgct ttgtagttct ctgggtgaaa agatctcaca ccaatgtaca 480 taatgtggcc atcettteca tttteaagaa gttgeettge tttgataetg caaatteagt 540 atttgtacac tggaatgata aaaagatgtt cc 572

```
<210> 500
<211> 1642
<212> DNA
<213> Homo sapiens
```

```
<400> 500
atgagacgct ttttaagcaa agtctacagt ttcccaatga gaaaattaat cctctttctt
 60
gtetttecag ttgtgagaca aacteecaca cageacttta aaaateagtt eecagetetg
 120
cactgggaac atgaactagg cctggccttc accaagaacc gaatgaacta taccaacaaa
 180
 240
ttcctgctga tcccagagtc gggagactac ttcatttact cccaggtcac attccgtggg
 300
atgacetetg agtgeagtga aateagaeaa geaggeegae caaacaagee agaeteeate
actgtggtca tcaccaaggt aacagacagc taccctgagc caacccagct cctcatgggg
 360
accaagtetg tgtgcgaagt aggtagcaac tggttccagc ccatctacct cggagccatg
 420
ttctccttgc aagaagggga caagctaatg gtgaacgtca gtgacatctc tttggtggat
 480
tacacaaaag aagataaaac cttctttgga gccttcttac tataggagga gagcaaatat
 540
cattatatga aagtoctotg coaccgagtt cotaatttto tttgttcaaa tgtaattata
 600
accaggggtt ttcttggggc cgggagtagg gggcattcca cagggacaac ggtttagcta
 660
tgaaatttgg ggccaaaatt tcacacttca tgtgccttac tgatgagagt actaactgga
 720
aaaaggctga agagagcaaa tatattatta agatgggttg gaggattggc gagtttctaa
 780
atattaagac actgatcact aaatgaatgg atgatctact cgggtcagga ttgaaagaga
 840
aatatttcaa cacctcctgc tatacaatgg tcaccagtgg tccagttatt gttcaatttg
 900
atcataaatt tgcttcaatt caggagcttt gaaggaagtc caaggaaagc tctagaaaac
 960
agtataaact ttcagaggca aaatccttca ccaatttttc cacatacttt catgccttgc
 1020
ctaaaaaaaa tgaaaagaga gttggtatgt ctcatgaatg ttcacacaga aggagttggt
 1080
tttcatgtca tctacagcat atgagaaaag ctacctttct tttgattatg tacacagata
 1140
tctaaataag gaagtatgag tttcacatgt atatcaaaaa tacaacagtt gcttgtattc
 1200
agtagagttt tettgeecae etattttgtg etgggtteta eettaaceca gaagacaeta
 1260
tgaaaaacaa gacagactcc actcaaaatt tatatgaaca ccactagata cttcctgatc
 1320
aaacatcagt caacatactc taaagaataa ctccaagtct tggccaggcg cagtggctca
 1380
cacctgtaat cccaacactt tgggaggcca aggtgggtgg atcatctaag gccgggagtt
 1440
 1500
caagaccage etgaccaacg tggagaaace ccatetetac taaaaataca aaattageeg
 1560
ggcgtggtag cgcatggctg taatcetggc tactcaggag gccgaggcag aagaattgct
tgaactgggg aggcagaggt tgcggtgagc ccagatcgcg ccattgcact ccagcctggg
 1620
 1642
taacaagagc aaaactctgt cc
```

```
<210> 501
<211> 2629
<212> DNA
<213> Homo sapiens
```

```
<400> 501
 60
tttcgtctgg gacgaggtgg cccagcgctc agggtgcgag gagcggtggc tagtgatcga
ecgtaaggtg tacaacatca gegagtteac cegeeggeat ceaggggget ecegggteat
 120
cagecactae geegggeagg atgecaegga teeetttgtg geetteeaca teaacaaggg
 180
 240
ccttgtgaag aagtatatga actctctcct gattggagaa ctgtctccag agcagcccag
ctttgagccc accaagaata aagagctgac agatgagttc cgggagctgc gggccacagt
 300
ggagcggatg gggctcatga aggccaacca tgtcttcttc ctgctgtacc tgctgcacat
 360
cttgctgctg gatggtgcag cctggctcac cctttgggtc tttgggacgt cctttttgcc
 420
ettectecte tgtgeggtge tgeteagtge agtteaggee caggetgget ggetgeagea
 480
```

```
tgactttggg cacctgtcgg tcttcagcac ctcaaagtgg aaccatctgc tacatcattt
 540
tgtgattggc cacctgaagg gggcccccgc cagttggtgg aaccacatgc acttccagca
 600
ccatgccaag cccaactgct tccgcaaaga cccagacatc aacatgcatc ccttcttctt
 660
tgccttgggg aagatcctct ctgtggagct tgggaaacag aagaaaaaat atatgccgta
 720
caaccaccag cacaaatact tcttcctaat tgggccccca gccttgctgc ctctctactt
 780
ccagtggtat attttctatt ttgttatcca gcgaaagaag tgggtggact tggcctggat
 840
gattacette taegteeget tetteeteae ttatgtgeea etattgggge tgaaageett
 900
cctgggcctt ttcttcatag tcaggttcct ggaaagcaac tggtttgtgt gggtgacaca
 960
gatgaaccat attcccatgc acattgatca tgaccggaac atggactggg tttccaccca
 1020
gctccaggcc acatgcaatg tccacaagtc tgccttcaat gactggttca gtggacacct
 1080
caacttccag attgagcacc atcttttcc cacgatgcct cgacacaatt accacaagt
 1140
ggctcccctg gtgcagtcct tgtgtgccaa gcatggcata gagtaccagt ccaagccct
 1200
getgteagee ttegeegaca teatecacte actaaaggag teagggeage tetggetaga
 1260
tqcctatctt caccaataac aacagccacc ctgcccagtc tggaagaaga ggaggaagac
 1320
tctggagcca aagcagaggg gagcttgagg gacaatgcca ctatagttta atactcagag
 1380
ggggttgggt ttggggacat aaagcctctg actcaaactc ctccctttta tcttctagcc
 1440
acagttctaa gacccaaagt ggggggtgga cacagaagtc cctatgaggg aaggagctgt
 1500
tggggcaggg gtgtaaatta tttccttttt ctagtttggc acatgcaggt agttggtgaa
 1560
cagagagaac caggagggta acagaagagg agggacctac tgaacccaga gtcaggaaga
 1620
gatttaacac taaaattcca ctcatgccgg gcgtggtggc acgcgcctgt aatcccagct
 1680 -
acccaggagg ctgaggcagg agaatcgctt gaaccgggga ggtggaggtt gcagtgagct
 1740
gagatcacgc cattgtactc cagcctgggc gacaaagcaa gactccatct caaaaaataa
 1800
ataaataaaa aaataaaata aaatggtctg gatttggtca acaccttatt cagtaaatcc
 1860
ttaatttacc ttgagacata caaagacatt cttttaaaga gctattttct tggtattgca
 1920
caaaggttaa ttttaaagca atccaggcaa gtaagctcac aaaaagaagt acattcatct
 1980
aatccattta gcaaatgttg caaatcagct tccaccaata aaacgtagaa atctgtgaaa
 2040
etetateett egtgteagtt ttaacattgt gttgatggca geeattteag geagaggtag
 2100
ccaagttcca tatatatggg gaaggcaaaa agcagaaaaa cattgcagga gacttagcag
 2160
ttctctggct tctaatgact atagagcaat ttcgaatatg agccatgttt ctatgcagaa
 2220
ttettettt atgeettaaa cacaaaagag ettgttgetg eettgggeag atatactgga
 2280
attgtcctct ttgagcttac tttctctttt ctctaaggtc aagtaaaaaa tgtgagacgt
 2340
tttcatatac cacaaaggta atacagcagg ctggagtcac tctaatcaaa ttaggagcaa
 2400
ttcccttgta aaatccaccg acgccttctt tcctccatgt ctttgtgatt acatctatta
 2460
caccactgta aaacatgtgt tgatcctgaa gacgagctct tacgacttga tatgggtatg
 2520
ttgctgcgac agcaaatatt ttggatagtg ctgcaacaga tatatattct actgtgctca
 2580
actgggcttc tggtaatcta ttgatatgct ggttgtactt caacttcag
 2629
```

```
<210> 502
<211> 997
<212> DNA
```

<213> Homo sapiens

```
<400> 502
cgttctctcc tgcagggaaa gctcacaact cctcacagcg atctggtatc ttgagcgtca
 60
gtttctggcc gaaactgggg gctcctgact gaactccctc ccacctagaa aaccttctgt
 120
geagtetgat tgetecaaca eccaeagage aggatteagg tateeeggag acettgggag
 180
gtccccatcc agaggtctgc tgtcctgcca ggcttggggc agcagggact gggaccccac
 240
tcagacctct ctggggcaaa tgttttggtt ctcacaacag ccctagtgaa atcaatccta
 300
gatactccca tttggtccca ccaaggccat ttaatttctc tgtaaagggt aagatgacac
 360
aaaagagcca actatggaaa cggtgaggtg ggagtctgaa ccgatttagc tgttctcagg
 420.
gcgcacaggg tgttgacggt ggttttcatc tqccacctqc ctccttgaga cccagctggc
 480
ctgagtgtgc acgaaatggg accttctcct tqqqtccacc agqctgggag gcacccctag
 540
gtaccegget ceteateaca geggeageee teteggttee acatetggtt eteetgaega
 600
agcegetggt ttteggteeg gageetetgg aceteggeag eeageteete cacetggegg
 660
caggactget ggccggtgca cgcctgcagc tgctgcagcc tectagtete etectecgce
 720
tgcgacagec gettetecag etecaggtag tetegeacea getectgett getgeggeee
 780
```

tgcaggctct	cggtgtggaa	gcgttcgtaa	gtctcagaga	agtccttccg	ctggaactca	840
ccgtgcgctc	ggccccgccc	atcactgtcc	ccggcctcac	tctccccact	ggaacctggg	900
tgggagatcc	catggggcac	atccaagttg	ggeteeteeg	ggtccctgtc	attcatcagg	960
aactgggtgg	tgttgtaggg	aattccacca	cactgga			997

<210> 503 <211> 1586 <212> DNA <213> Homo sapiens

<400> 503 aaatgcacat ctcatggcag ctaagccaca tggctgggat ttaaagcctt tagagccagc 60 ccatggcttt agctacctca ctatgctgct tcacaaacct tgctcctgtg taaaactata 120 ttctcagtgt agggcagaga ggtctaacac caacataagg tactagcagt gtttcccgta 180 ttgacaggaa tacttaactc aataattett ttetttteea tttagtaaca gttgtgatga 240 ctatgtttct attctaagta attcctgtat tctacagcag atactttgtc agcaatacta 300 agggaagaaa caaagttgaa ccgtttcttt aataatgctg atctactttt tgttgaattt 360 gtattttatt tcaagtgtca aagaaatcat ctttgtttat ttagatgaaa ccaaacacta 420 cacatttaca etcacactge ttecaggace caagggttte acagaccatt tgeetacetg 480 gttctttcct ctcctctttc cagtgatttc tagaataccc tttcaaagga ccacatgaat atacgaactg taaaattcaa ctttgatctt ttgcgaaatg ttttatttac tgcttaaaat 600 ctaggtgggt ggatatattc atgtatgcat atattgatag attaatacaa acataagtat 660 gtatttaaat tgaaggataa gtaaagtgag agtacaacag ccccattctt agttaaaaag 720 aaaagaaaaa gacaagagca agccactgcc accacaggta ccagcactta aatttgtcag 780 caggetgace aaagagtgge etgtetgttg geatteateg gacatggeag etceetteag 840 ctctccagtg agtttcaagt tcagagcact ttcagtcctt gtcttgttta tctattactg 900 aagggtttct aggaaggttt agcagtgctt caattttctt agcatcattc tcaggttcat 960 cttcctgtaa actactttca attttctcag ggaggtgctc agtaacttgt agtctgcctt 1020 tecactette cagtittage teatggagtg cettiegate ettetgitti etticetgaa 1080 cagteteace agagtactte tgaaatgeea teageaggee teetacagga gtgeecagea 1140 aggetecaat tatgecaeca gecaecagge caegeaggee taegtttate etaaaaagae tteccgtgae agtetttgcc aaacagetec cggaggeggt cccatecaga ttecgggtaa 1260 tagggetetg ggacgtaggg aageegette tgacgeteet caaggactte egaateggea 1320 gteacagett eggeageaaa gaetegggga aataggeaea atgetetaea gagaaagete 1380 cgcggtgccg gtggcggcac ctccatggcc ttctctcgac ctacggacaa acttgagcgc 1440 teaggaette aagteetege ggaegtgeeg egggagageg taactgtaeg aggtgagaat 1500 ccgtgcattt gacccaggtt aaccctctgc cagagggctc gacacccaca ccttcagtcc 1560 ccggcctcgc tttgcggacg cgtggg 1586

<210> 504 <211> 1442 <212> DNA <213> Homo sapiens

<400> 504
cggggggcgt ggggctgggc ccagccggac gcgacctcag cctgcggcgg ctaactgccg 60
gtaggcgtct gtgtgcgccg ccaagtcggt ggggcgggga cgcgaggtgt ggatgggggg 120
tcgccttgac ctctgcctca gccagtagcg cagtctcggc ctcgccgtta cggagatggt 180

```
gccctgggtg cggacgatgg ggcagaagct gaagcagcgg ctgcgactgg acgtgggacg
 240
cgagatotgo ogcoagtaco ogotgttotg ottootgotg ototgtotca gegoogeeto
 300
cctgcttctt aacaggtata ttcatatttt aatgatcttc tggtcatttg ttgctggagt
 360
tgtcacattc tactgctcac taggacctga ttctctctta ccaaatatat tcttcacaat
 420
aaaatacaaa cccaagcagt taggacttca ggaattattt cctcaaggtc atagctgtgc
 480
 540
tqtttqtqqt aaaqtgaaat gtaaacgaca taggccttct ttgctacttg aaaactacca
gccatggcta gacctgaaaa tttcttccaa ggttgatgca tctctctcag aggttcttga
 600
attagtgttg gaaaactttg tttatccgtg gtacagggat gtgacagatg atgaatcctt
 660
tgttgatgaa ctgagaataa cattacgttt ttttgcatct gtcttaataa gaaggattca
 720
 780
caaggtggat attccatcta ttataaccaa gaaactatta aaagcagcaa tgaagcatat
agaagtgata gttaaagcca gacagaaagt aaaaaataca gagtttttac agcaagctgc
 840
 900
tttagaagaa tatggtccag agcttcatgt tgctttgaga agtcgaagag atgaattgca
 960
ctatttaagg aaacttactg aactgctttt tccttatatt ttgcctccta aagcaacaga
 1020
ctqcaqatct ctqaccttac ttataagaga gattctgtct ggctctgtgt tccttccttc
tttggatttc ctagctgatc cagatactgt gaatcatttg cttatcatct tcatagatga
 1080
cagtecacet gaaaaageaa etgaaeegge tteteetttg gttecattet tgeagaaatt
 1140
tgcagaacct agaaataaaa agccatctgt gctgaagtta gaattgaagc aaatcagaga
 1200
gcaacaagat cttttatttc gttttatgaa ctttctgaaa caagaaggcg cagtgcacgt
 1260
gttgcacgtt ttgtttgact gtggaggaat ttaatgatag aattttacga ccagaattat 1320
caaatggatg aaatgctgtc tcttcatgaa gaattgcaga agatttataa aacatactgt
 1380
 1440
ttggatgaaa gtattgacca aattagattt gatcccttca ttggtagaag agattccaag
 1442
```

```
<210> 505
<211> 1284
<212> DNA
<213> Homo sapiens
```

<400> 505 ccagagectg getgaggtee tgeageaget gggggeetee tetgagetee aggeagtact 60 cagctacate ttececactt aeggtgteac ecceaaceae agtgeetttt ecatgeaege 120 cctgctggtc aaccactaca tgaaaggagg cttttatccc cgaggggtta ccagtgaaat 180 240 tgccttccac accatccctg tgattcagcg ggctgggggc gctgtcctca caaaggccac 300 tgtgcagagt gtgttgctgg actcagctgg gaaagcctgt ggtgtcagtg tgaagaaggg geatgagetg gtgaacatet attgeeceat egtggtetee aaegeaggae tgtteaacae 360 ctatgaacac ctactgccgg ggaacgcccg ctgcctgcca ggtgtgaagc agcaactggg 420 gacggtgcgg cccggcttag gcatgacctc tgttttcatc tgcctgcgag gcaccaagga 480 540 agacctgcat ctgccgtcca ccaactacta tgtttactat gacacggaca tggaccaggc 600 gatggagcgc tacgteteca tgcccaggga agaggetgcg gaacacatec etettetett 660 cttcgctttc ccatcagcca aagatccgac ctgggaggac cgattcccag gccggtccac 720 catgateatg eteataceca etgeetaega gtggtttgag gagtggeagg eggagetgaa 780 agggaaagcg gggcagtgac tatgagacct tcaaaaactc ctttgtggaa gcctctatgt 840 cagtggtcct gaaactgttc ccacagctgg aggggaaggt ggagagtgtg actgcaggat ccccactcac caaccagttc tatctgggct gctccccgag gtgcctgcta cggggctgac 900 catgacetgg geogeetgca ecettgtgtg atggeeteet tgagggeeca gageeceate 960 cccaacctct atctgacagg ccaggatate ttcacctgtg gactggtcgg ggccctgcaa 1020 ggtgccctgc tgtgcagcag caccatcctg aageggaact tgtactcaga ccttaagaat 1080 cttgattcta ggatccgggc acagaagaaa aagaattagt tccatcaggg aggagtcaga 1140 1200 ggaatttgee caatggetgg ggeateteee ttgaettaee cataatgtet ttetgeatta gtteettgea egtataaage aetetaattt ggåtetgatg eetgaagaga ggeetagtta 1260 1284 aatcacaatt ccgaatctgg ggcc

```
<210> 506
<211> 1757
<212> DNA
<213> Homo sapiens
```

<400> 506 ttttttttt ttcagagctt aaaaaccaaa aggcagaaaa tagactttat tccaagacag 60 atttgtaaaa gatgttttta aagggaaagg caagtcacgc tactaaatca aacattgttc 120 acaatttctg gatcttcctc ctccgcctgg cactgcagct gagccttggc ggatatgctc 180 ggggccctcg gcgcagagga acttagcctc gattctcttc ctgaggggct tcttaacttt 240 tecaagecag geagtgageg tggtgggagg etggggetgg tgeetgegga eagetecaga 300 tggaatccca ggccacggtg cttctagtgt ccccccagcg agcttgcggt gtggcaggcg 360 gccaggaagg gccatgagca gggtggcctg aatgaaaacc gagggccgaa gccagcctga 420 ctccctcgcc taagctgggg ctcggtccga ggcacacgca tggccttggc cagacacaaa 480 ccaagagact gccatgacag acagagcaga aacctcccga gcactgtgtt caagctaagc 540 tttcctaaga cgggcttctc aggcgagacg tgacaccaga caccgtcgca tgttacttgg 600 agagaacaga gacgtgcggg ccacagcggc ccaccaaagg ctgccatcca agctgagttc 660 cgcaggcctc acctgcagct ggagagggac cttgccctga tcctcctggt aggtacccgc 720 taagggattc aggacagagc gtcacactgc acgcagggtc ctccgccacc accatccaag 780 aaccccgggg ggctggccac gcgctggcct ctgccaagga gtgccagtgg ttcccgggac 840 ggggccgccc aagcaggtga gggaggttta gatgaatgac ttggccaggg tcaccatgtg 900 gtecacgcca catgccacgt ccacaggete eccaggcate gteaccetee atgggaaata ctggtcctcc aggcgaccga ttcccaggca ccctcggatg ttcttgcccc atacaacag 1020 ctctcctttg ttggtcagtg cagcaaagtg gctgagtcca catcggatgc gggaaacctg 1080 gatttctggg ttgaactccg tcaagccaaa gagagtgggt ggaatcattt cagggacggc 1140 actiticcact aggittiggac ctttcccaag aattccatag ccccagacaa aaacatgtcc 1200 tteteegttt aacaetgeae ageeegtgee acegeatgea geetgtegea eetteeecae 1260 tectgagaag tgtaagcage ggggcacatt cacetgtgtg gagtcagtga cagaggccag 1320 ctgcaggtac tccgagtttc cccaaccaaa aagtcctccg tcggcggaca cggccaggca 1380 gcaatcaccg taggtggcaa cttggataac gttcactccc gccaggtctc cacccagctt 1440 ggtgggcgag ctggtgatat tgtagtgacc cagacctgtt tgcccatcag caccccatcc 1500 acaagaatag acttctcctt tatccgtcag gaacagacta tgatcctgac cacaggcgac 1560 ctggaccacc tggccatcga agtcctgcat cctgtggact ctgtgacttt cactgtaaat 1620 ttcattttcg accacctttc ttccacattg cccataagaa ttgtttccca tgctgaagac 1680 teetteeetg teagteaaca caagagagtg ageteggeeg caggagaett geageaceeg 1740 . tgtctcctga ggtctgt 1757

```
<210> 507
<211> 618
<212> DNA
<213> Homo sapiens
```

```
<400> 507
gaattettga aggaaaagga gaaattagaa atggagttag cagcagtgeg gaetgeaagt
 60
120
gtcatcaagc tggaagagga gttacgagag aagcaagcat atgttgagaa agttgagaag
 180
ctgcagcagg ccctgaccca gctgcagtct gcatgtgaga agcgagaaca gatggagcgg
 240
agactgcgga cttggctgga gagagagctg gatgcactga gaacccagca gaaacatgga
 300
aatggccagc cagccaacat gccggaatac aatgccccag ccctcctgga acttgtgcgg
 360
gagaaggagg agcggatcct ggccctggag gccgacatga caaagtggga gcagaagtac
 420
ctggaggaga gcaccatccg acactttgcc atgaatgccg cagccactgc agcagctgag
 480
agggacacca cgatcatcaa ccactcacgg aatggcagct acggagagag ctcgctggag
 540
```

gcccacatct ggcaagagga ggaggaggtg gtgcaggcca acagaaggtg tcaggacatg 600 gaatacacta ttaaaaat 618

<210> 508 <211> 2214 <212> DNA <213> Homo sapiens

<400> 508 atgeaggegg teegggeeae tgeeteteag teeetgteet gegeeeggg geeeegggag 60 cetacecage acgegetecg egeceaetgg treectecag eegeegeegt ecageegagt 120 ccccactccg gagtcgccgc tgccgcgggg acatggtcct ctgcgttcag gggtgagcac 180 ccccttgtaa gctcagggct actgttgggt gtcagggaac aaagttttag actgctgcgc 240 tecaaagegg geacacacat gtacetagaa cacaceagee actgteecea ceatgatgat 300 gacacagcca tggacacacc cctgcccaga cctcgccctt tgctggctgt ggagcggact 360 gggcageggc ccctgtgggc cccgtccctg gaactgccca agccagacat gcagcccttg 420 cctgctgggg ccttcctcga ggaggtggca gagggtaccc cagcccagac agagagtgag 480 ccaaaggtgc tggacccaga ggaggatctg ctgtgcatag ccaagacctt ctcctacctt 540 cgggaatctg gctggtattg gggttccatt acggccagcg aggcccgaca acacctgcag 600 aagatgccag aaggcacgtt cttagtacgt gacagcacgc accccagcta cctgttcacg 660 ctgtcagtga aaaccactcg tggccccacc aatgtacgca ttgagtatgc tgactccagc 720 ttccgtctgg actccaactg cttgtccagg ccacgcatcc tggcctttcc ggatqtqqtc 780 agcettgtge agcactatgt ggcetcetge actgetgata ceegaagega cageeegat 840 cctgctccca ccccggccct gcctatgcct aaggaggatg cgcctagtga cccagcactg 900 cctgctcctc caccagccac tgctgtacac ctaaaactgg tgcagccctt tgtacgcaga 960 agcagtgccc gcagcctgca acacctgtgc cgccttgtca tcaaccgtct ggtggccgac 1020 gtggactgcc tgccactgcc ceggegeatg gecgactacc tccgacagta ccccttccag 1080 ctctgactgt acggggcaat ctgcccaccc tcacccagtc gcaccctgga ggggacatca 1140 gccccagetg gacttgggcc cccactgtcc ctcctccagg catcctggtg cctgcatacc 1200 tetggcaget ggcccaggaa gagccagcaa gagcaaggca tgggagaggg gaggtgtcac 1260 acaacttgga ggtaaatgcc cccaggccgc atgtggcttc attatactga gccatgtgtc 1320 agaggatggg gagacaggca ggaccttgtc tcacctgtgg gctgggccca gacctccact 1380 cgcttgcctg ccctggccac ctgaactgta tgggcactct cagccctggt ttttcaatcc 1440 ccagggtcgg gtaggacccc tactggcagc cagcctctgt ttctgggagg atgacatgca 1500 gaggaactga gatcgacagt gactagtgac cccttgttga ggggtaagcc aggctagggg 1560 actgcacaat tatacactat ttatttattt attctccttg gggttggtgt caggggcgag 1620 ccaaccccac ctctatgccc tgagccctgg tagtccagag accccaactc tgccctggct 1680 tetetggtte tteeetgtgg aaageeeate etgagacate ttgetggaac caaggeaate 1740 ctggatgtcc tggtactgac ccacccgtct gtgaatgtgt ccactctctt ctgccccag 1800 ccatatttgg ggaggatgga caactacaat aggtaagaaa atgcagccgg agcctcagtc 1860 eccagcagag cetgtgtete acceceteae aggacagage tgtatetgea tagagetggt 1920 etcactgtgg ccgcaggccc cggggggagt gcctgtgctg tcaggaagag ggggtgctgg 1980 tttgagggcc gccactgcag ttctgctagg tctgcttcct gcccaggaag gtgcctgcac 2040 atgagaggag agaaatacac gtctgataag acttcatgaa ataataatta tagcaaagaa 2100 cagtttggtg gtcttttctc ttccactgat ttttctgtaa tgacattata cctttattac 2160 ctctttattt tattacctct ataataaaat gatacctttc atgtaaaaaa aaaa 2214

<210> 509

<211> 2355

<212> DNA

<213> Homo sapiens

```
<400> 509
tttcgttgat atcttccaga gatggaaaga gtgcagggga aagagccctg cccaggcgga
 60
actetectat etgaataaag egaagtgget ggaaatgtat ggggtagaea tgeaegttgt
 120
caggggaaga gatggctgtg aatattetet tggactgace cegacaggea tattaatett
 180
tgaaggagct aacaaaatag gcttattctt ttggcctaaa attaccaaaa tggattttaa
 240
aaagagcaaa ttgacactcg tggtggtcga ggatgatgat cagggacgtg agcaagagca
 300
cacgtttgtg ttccggttag acagtgccag gacctgcaaa cacctttgga agtgtgcagt
 360
tgagcaccac gcattettee gactgeggae gccaggaaac agcaaatcca ataqateeqa
 420
ctttatcagg ctgggctctc gcttcagatt cagtgggcgg acagaatatc aagctacaca
 480
tggctccagg ttacgaagaa ccagcacctt tgagaggaag cctagtaaac gttatccatc
 540
ccggagacat tcaacgttca aagcaagcaa cccagtgata gcagcccagc tctgctctaa
 600
aacaaatcca gaagtccata attaccagcc tcaatatcat cctaatatcc atcccagcca
 660
gccccggtgg catcctcact ctccaaatgt caggccatcc tttcaggatg acaggtcgca
 720
ttggaaagca tcggccagtg gagatgacag ccattttgat tatgtccacg accagaacca
 780
gaagaactta ggagggatgc aaagtatgat gtatcgagat aaactcatga ctgcactttg
 840
agagactgaa gcatctctct tecattcace tteatagttt cattgcatte catgaaaagt
 900
gtcttggcct cagatggatg gatgtgtttg gacgagtgtc tttaaggagt agtcctgaaa
 960
ggtgtttttg gtgtccatgt aaatatttga agataaaacc actatagctt gtcataattt
 1020
actgttgact gcattctcat taaaatgaag gtaaaggctc aggaatcata ttgatqttct
 1080
gattttaaaa ttggagtcaa agtctatgtt tatcatttta ctatgttcct gatgttcttt
 1140
gttatttaat taatgggagc aaataaaacc agaagagctt gggaagattg ctcagcatat
 1200
attectgteg tagaagttga gattgetagg gteeagttte cetagtgtgg cetggaegag
 1260
tcatttcccc ttcattgacc tcattttccc catctgaaaa gagagggttg gactaagtga
 1320
tetecaaggt cetttecaac tetaaaatte tgcaatttgt taacatttea ttttgtttag
 1380
gttgaggaca tacattcaaa ctaattttat cacaaggaaa actgcaatac ccacttcctt
gacagagtta ctcctttcag aagctaaata aagtatataa cttattagat gttatataga
tacaggggga ctttgaattt cacatcttaa agcagttgag ctactttgaa tttaagcagt
cgtactaatc ttaaattgca tagcatttgt tttgatcgaa tttgctgctc aagtatggga
 1620
ataattttta atgtcttaat gattggtgct gctaacttgc gtgatttcag aagacataat
 1680
tgtgaataca cactgtcaga attgggggat tggtttttac cctagacttc actcttaaaa
 1740
agcaacgtgc aatcaagatc atttatggct caaatgaaag catataaggt tttcttgaag
 1800
ttgtgccaaa gcattctgta gagtaggatg agatggttgt tgccctagtc tgttggtaga
 1860
accagaaatc aatatgttgt cttttaggtt aaagcttgta ccaaaatatt tatttccccc
 1920
atttcaagcc ctgagtcaaa cattttttc tcttaataat agacctgaaa tgttttatta
 1980
gtatttctgt gaaatcagtt gattcttgtg ccatttttgt atatgtaatt gtaattttgc
 2040
ccatgttagg ccctctaaaa aatgtttgac atcctttgag atattttatt actaaaatct
 2100
gatcttttt ggctactgca aaaatctatt cagcaagaag gtatcagctg cataccttgc
 2160
acagtggagc tgactaccta taaactctcc ctaaggcatt tgtttacagg tgtattccat
 2220
tttagcagac gttctgatgc tcagtgtatg tgctgcatac aaataaatgt gttctgaatc
 2280
ttttcatctt attgatagca ttttaacaaa tgtgtttcca aggaataaag attattcttg
 2340
cttttaaaaa aaaaa
 2355
```

```
<210> 510
<211> 775
<212> DNA
<213> Homo sapiens
```

```
<400> 510

tggtggaatt cgattaatac agaaactgac atggcgatca agacaacagg atcgagaaaa 60
ctgtgctatg aaaggcaagc ataaagatga atgccacaac tttatcaaag tatttgttcc 120
aagaaacgat gagatggttt ttgtttgtgg taccaatgca ttcaatccca tgtgtagata 180
ctacagggta agtatatttt atgtgatatg cttcttttga tcaacttttc tcccttcact 240
```

```
gatatgctgt tagagttgaa atctttctgc tttccagtaa tttgttttat ctctagtgca
 300
atgaaagaat aaagacagaa ttcttcaaat ggaattttaa tacaaataaa atagtattgc
 360
cttcaaacgg gcacgttgaa tagatatgac actggctatt tacttttctt ttgtaqttqa
 420
gtaccttata atatgatggg gaagaaatta gtggcctggc aagatgccca tttgatqcca
 480
gacaaaccaa tggtgccctc tttgctgatg ggaagctgta ttctgccaca gtggctgact
 540
tettggccag egatgeegtt atttategaa geatgggtga tggatetgee ettegeaeaa
 600
taaaatatga ttocaaatgg ataaaagagc ccactttctt tatgccataa aaatggaact
 660
atgtctattt ttcttttcga gaaatcgtgg caacataata attaggcagg ctgtggattc
 720
ccggtggccc gatatgaaaa acaactggtt ggtcccacgg tctgagaaca ttgat
 775
```

<210> 511 <211> 1553 <212> DNA

<213> Homo sapiens

<400> 511 ttttttttt ttaagtttga agccttgccc aagctttaat gtcatgctaa ccagttacct tgttagagct gggaagccac cttttgctca aaatgcagac ttctgccttt gaaaacacac 120 cacacctgat tttaagtgct taaaggacag aaaatgtcgt tgctttaaat tgttgctttg 180 ttcagagaca tctggatttg ctgtatccat acaagcaaaa gcttttccaa ttccagaatc 240 aacccacact aatttgttat tgcctcgtac tgtattggcc cagctgtaat caactcagca 300 ggcttttggt tgtaaattca agtggaaatt gagttggtct tatttgtgcc cgttgatatc 360 tgagggctgt gaggaagatg gccagtaggt caaagggaat agtgttgaaa agctgaccag 420 tactgggcag gtggccggct gtccctcagg caccacaacg ccgagccacg gtaaggggca 480 tgagccacat ttgcagaata tagccagagt ccttccagaa cctcctgatt cgcgccagga 540 ggcatcccag ggcacacaag tgtcaagggc ctactcaggt gcttggcaga gctctctgtg 600 tgttattaac agaagaggct acggcttaga gtggaaagga gcatgtgatg gctagcggtg 660 ggcagcctgt gtactctgcc aagtttgggt ggtccaggtc cccacgattt ctgtgtggag 720 ggttgtccgg catctggcca ctaggggggc cggtggttct cacacacacg cagcggggct 780 cettageace tggettatac agetteetgg ggacgecaat ceagtetetg etcacacete 840 cactettetg ggageaccag ageeggetge ecetggetga getecactee gegttgeacg 900 gegggaatgt etgettetet tgeagetgta gtttgttgge etceaageet etggtgateg 960 cagettetae etgggteagt geeggggtgg geageceate eteteegtag aacegteetg 1020 teacectece aacacacac taattettet catagaatga aagecaattg tgaagtgtea 1080 gcatctcagc ggctgacagg tcggatacgt catccacgag gcctgcttca gaacagtccc 1140 cggtcacgaa agctctggat gcgtctcggc ctgcgaagcc gctatagtgg gacccaggct 1200 cgtagtgcct ccggccggag gacacatcgt agacacggcc gagcaacgcc aagtacaggc 1260 ccgggtcccc tgggccgccg cggtagcgag acagctcctc cggtatgaaa aggcgaaagc 1320 cagegegggg accecaccag cecataagee gtgetgeeat tacegetget geggetacag 1380 ccaggeccaa caaaagecca eggeeteege aceteaacat etatatagge ecaceegete 1440 cgcacttccg aggttgccgc ctctatctac agctaagatg gccgagacgc cgagcgtgac 1500 gteateggeg egegegetet egetetetet etegegeget agtgetegeg ete 1553

<210> 512 <211> 1260 <212> DNA

<213> Homo sapiens

<400> 512 tecttetetg geettgeest tgesetgtte estttetggt estgesatgt ttetggeset 60 geeetgteea tgteetggae etgaetetgg ceetggaeet eeetgteeet geeetgeeat 120 acettggeec gtteettget etacaetgae eetgeeetge ettggeeetg tgetaeeeta 180 gcectgeect ggeettetge tgaccetgat cetgecatgg ceetggeect gecatgteec 240 tgecetggee etggttetge eetgettetg geeetggeet tggteetete atgteeetgg 300 ctgtgaccet geceetggtt tttctctgge catgaccetg ecceggttet gtectatece 360 tggccctgtc tcagttctgt cctagccctg gcctttcaca gtactttatg cttagtaagg 420 gctccatggt gtctgtgagt tgaatgttgt attcatagta tctgccaaaa cagaaagaaa 480 aaaaacaaaa tattttgata agaagttaaa gctttgtata taatatgcct tgaattgtaa 540 gtgcctgtta ttagttgtat tacatatagg tcatggtttt gtacacataa ctccaaacca 600 ttgatactgt taaaagaata tatgaatata tgaaagaatg tataaacgta agaatgtatc 660 agtatctaat gacctttcca aattaatttt tatttttagc tctgttagat ttttctcagt 720 gtaacaaatg tttattccta tgtaattaag ggcgtatttc ctgtacagaa tattcatatt 780 acctaattga aaattatatg atacaaaaat ataatactat ttttagccag gcatggtggc 840 tcatacctgt aatcccaaca ttttgagagg ccacgtttgg agaatcattt gagtccagga 900 gttgaccagc ctgggcaaca tagtgagacc ttgtccttat taaataaata aataaataaa 960 taggttgggc actgtggctc atatctgtca tcccagcatt ttgggttgcc caatgcagga 1020 ggattgcttg agccccagga gtttgagacc agcctgggca gaatagcaag actccatctc 1080 tacaaataat aaaatattaa ccaggtgtgg tggtgtgcac ctggggtacc agccacctgg 1140 gaggetaagg tgggaggttt getegagget geagtgaact gtgaatgeac caetgeatte 1200 cagcctaggc catagaacag gatcttgtct ataaataaag aaataägtaa aaatataaat 1260

<210> 513 <211> 1596 <212> DNA

<213> Homo sapiens

#### <400> 513 ctccggcggc gcgtcccccg agcttggtac ggctcagccc gtctcccccg aagccgcgcg 60 ceegegeeeg egeceeteag teggtggage cegeageeee cettgtggee egeggeaget 120 eccegecege teggecegeg eccgecatgg teegteegeg ecgtgeceeg taccgeteeg 180 gegeeggggg ceeecteggg ggtegeggge geeeteegeg geeeetegtg gtgegegeeg 240 teegetegeg eteetggeet geeageeeee gaggeeegea geeteegegg gateegggee. 300 cgctcggccc ctcccatgga aggtgctcgg gtcttcgggg cactgggtcc catcggtccc 360 tectcacetg ggeteacect egggggtetg geegtgageg ageacegget cageaacaag 420 ctgctggctt ggagcggcgt cctcgagtgg caggagaagc gcagacccta ctctgactcc 480 actgcaaagc tgaagcggac cetgcectgc caagcetacg tgaaccaagg cgagaacetg 540 gagaccgacc agtggccgca gaagctgatc atgcagctga tccctcagca gctgctgacc 600 accetgggcc ccetgttccg gaactcccag ttggcacagt tccacttcac caacagagac 660 tgcgactcgc tcaagggget ctgccgcatc atgggcaacg gcttcgcggg ctgcatgctg 720 tteccecaca teteccectg tgaggtgege gtgeteatge teetgtaete gtecaagaag 780 aagatettea tgggeeteat eeeetaegae eagagegget tegteagtge eateeggeag 840 gtcatcacca cccgcaagca ggcagtggga cctggtggtg tcaactcagg cccagtccag 900 ategteaaca acaagtttet ggeatggagt ggtgteatgg agtggeagga geeeaggeet 960 gagcccaaca gtcggtccaa gaggtggctg ccatcccacg tctacgtgaa ccagggggag 1020 atcctgagga ccgagcagtg gccaaggaag ctgtacatgc agctcatccc gcagcagctg 1080 ctgaccaccc tagtgccgct gttccggaac tcgcgcctgg tccagttcca cttcaccaag 1140 gacctggaga cactgaagag cetgtgcegg atcatggaca atggcttcgc eggetgcgtg 1200 cacttttcct acaaagcatc gtgtgagatc cgcgtgctta tgctcctgta ctcttcagag 1260 aagaaaatet teattggeet cateeeceat gaecagggea aetttgteaa eggeateegg 1320 cytytcatty ccaaccayca gcayytccty caycygaacc tygaycayga ycaacaycaa 1380 cgagggatgg gggggtagtg gttaccccgg gctgggcccc tccaggagtc acagatgagg 1440 cccccgcaga gactggtgac acgcttctga gcaggggccc ctgggggactt caactgccca 1500 gcaacatgga ggatggtgtc ctgaggcctc caaggacggt ccccacccct ctacgtttcc 1560 ccaataaagc cttttaaaaa cctgccaaaa aaaaaa 1596

```
<210> 514
<211> 963
<212> DNA
<213> Homo sapiens
```

<400> 514 ttttttttt ttgccgctgt caacagacag tttattctat atacaaacac aattttgtac 60 actgcaatta aatagaatgg aatgagcgct cctccgcatt cctccccgag tgactggttt 120 ggccgccggc ccactccatc cccgagtggg actggaccac ggccctggct gctgccactg 180 atgttggcgc ctgcacccca cgtccctatg cccgaggcgc aagctctgct ctcccgggga 240 ccccaggcct ggcgcacacg cggggagggc ggggccatgg agaaggcact gcagggagca 300 ccaggcagag ccgggctgag gccggccggc actagggcgc gaggccccac cccaagccgg 360 cctctcctcc acacctccgc cttgctcaga gacctgcacc atgggacccc actccatcct 420 caggacggtt cactgcagac ctaccaagac ccctccagaa ccttccgcgg aaccccaccc 480 ceteteettg etgaccaget caaacacete actagegggt acaageeteg ggegegacet 540 cacaccaggg ggaggaaagc cgccttccgg gcaaacccca cgaaaccctg aaagcccccg 600 acacaggetg ggcagtecca gaggaaggag gtggetggee teceecacee ecaegggete 660 gggaaggtca ggcccagcca gcaggggtca gaggcggctc agctgtgcgg ctcaggaccc 720 cacctccgag ggcgcctccg ttggggccat ggaggccggg ctaggcccgc ctaccgcagc 780 ccccagggga gttgtgtcag aagctgcgga gtcactcggg gggacactgt cctggggggc 840 gtgggggagg cccccagcag ggcccagcgg gctggctgga cgccgctcca ggagggaggc 900 geteaggeeg gaeaggaagg aggegtetgt gatgatggea geggtetetg ceatecaace 960 963

```
<210> 515
<211> 777
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(777)
<223> n = a,t,c or g
```

```
<400> 515
ttttttttt ttaagggaga acagttttat tagcatcaca gggtccattt ttccctttcc
 60
atccaagcat ccagagtetg gtgteettta atcagttgge aggtteaace tggaggeeae
 120
tggagetgee ggeeceeaag tacatgaatg tgeagatgat acacagattg tgeaceeage
 180
ttcccatcgt tgatcacaag tcggtatcca tctcccaggc cctcagcctt tgctgtctgc
 240
ttggccacaa ggagtaggtg tcctagaagc tatagagaga gcggagggac ataggtggct
 300
gctggtcttc ttcttcagcc tggctaatcc gaggaatggg cttcttagga atgaccagga
 360
agtgcacagg agcctgaggg gccacatcac ggaacacaag acactgctgg tcctcataga
 420
gaatgtcagc tgggaggctc ttgtccagga tccgggagaa gatggttggg gctgctcccc
 480
caggagttgc ctgctgggcc ttggccactt cattcccatc agtcacacct gcagctcctc
 540
ggacctgccc cccgcgcacc cccgtggccg ccacggctct gcgcgccgcg cgcaacccag
 600
cagecageae caeggetgee gecatettee etgageegeg ggaacetete aceegggtea
 660
gcactegget ccgcggccaa ccgtgggtgg ggactccggg cncggcgaac gcgtgggcgn
 720
```

acgentnete acceanngth naachnnthe taaattteee nhnaaagaaa geageet

777

```
<210> 516
<211> 3206
<212> DNA
<213> Homo sapiens
```

<400> 516 ttttttttcc taggcaactg ttggcccaaa aaaaaaattt attttccttt caaataaaat 60 gtacaaccaa aatttagggt ttggagcagt agggaagaca ggagatacca gggagcccat 120 tttacagtag agatctgcat ctgacccctc tatcccatac ctttgcaaag gaagggaggg 180 gtctacaagc cagaactttc agaagagaag aaaatacatg ctgtgctggt gctgtttctg 240 gagcaggtca teetttaggt atagaacaec acetecaece gatgacatea gaaccaetga 300 ctggtagage cettggaaat catacagtee acceatecee egecagacae atggacaeae 360 cgaggctcag atggggaagg gtacataccc tagggcacac accaaatcaa aaaggtgaag 420 tcaggactag aacacctgag caactttagc aggggactgt ggccacaggc ctggatgtgc 480 acagtagatc atgaaataca ttagtcctag tgaatgaccc ccgtgcagag aaatggcttg 540 tggttgtcag ggagcagcca cttgcctcag gggctccctg accctcagtg aaaggtgact 600 gtgtaaaggc caaaaactgg atggtggtca tgaacctcag gacgtttttt ttttttagca 660 ccaaatggtg gagetetetg ceageteage ttettgggge eteteaggta aaggtgatgt 720 ttgaggaccc cacgcccata tgaggggtgg agagaagcca gcagcactgg ggtgagcctt 780 ggcctacacc cttccttctt acccttcccc catcttcagt aaggccaaga gaggatgtgg 840 ggtggggaag gccagaatgg tatcgtgttt cttgtttctg ggcagtgggc tgcgtcctcc 900 caagcaggac tgaagggttc agaatcgctt ttcctcaggc tgagaggtta tgagcagctc 960 cttgttcccg aagtcccacc aggccgtcat gtggaacgcc atgttggtta agacaacagt 1020 gtactccagg atggcaaaga tggtgtacac tccagcctca caatacatgt tgtgccqaaa 1080 gtagacagcc agcgccgaga agaaggagat gaagttgatg atgaagagcc gctgtttcca 1140 gctgtaggac ttgcgatcct agggaatggg ctgtctgatc actctgcagc ttgctgggta 1200 tgagagcgtg ggctcccctc tcagccctaa ctcctaaggg ctgggcctta tctcccttgg ctcccactag cggtcatgga agggagcaca ggcaggggca gcaagaatga cgactatgtg 1320 ttcacgtccc tgcctctggg ggagtgatgg gccgaggagc agtggtattc ctgccgcttc 1380 cacttcaggg ggatggagta tgaaagttac atggagtcac ccaccaaccc cacctccaaa 1440 tactgtgggg gaaaagaaac ccatgtacat gggtggggcg ctggaattat gacagaccag 1500 tectetgaca etgtteetaa eteaetgeeg eetagatgeg acteeteatt etateeceat 1560 ttgcagcete catetettet attetecagt eteccacaet acceaaacae agtgetatag 1620 tectagatte tgaccaacca coctcagttt gttcccaage cccageccca accccageac 1680 ecetetgeca gggtteceat tagaacteag tteccacete accattacce gaateetgag 1740 gacagatgte cttgatttte ttctgggetg ccttggagec cccgctaggg atagaccgta 1800 cctcctgact tactgtgtgc ttcttggtca accgccagag aatgcaggtg aggagcatgt 1860 gcccgaggga tgaggcaatg aacacaatga aagcattttc gtggatggct ggagggaaag 1920 aggattggga gccacattgc agggagtgcc cacaccacga agtaggaagg tccgaatgtg 1980 gtaggggcag gcccgtcccc tcagggaaca cttccccact cctcctcat ccaggcaccc 2040 actgaagtcc tcggaggagg agacataagt gagcactagc aacgcgaggt tctccacgac 2100 attgaggccg aagttgaggc ggcagagcgg gcgatagcag gaacacgggg aggtgcagct 2160 gaggtagtgg ttccagtagg cgaaggccac caagaagcga ggcgccgagt gcaggccgat 2220 gcagaaacgc cacacgtagc gctggggcac ctccccgccg atggctgagc tcaccgaggg 2280 caggtaattg ggcacctaga gagttgtgac ctgtctgggc atctgcctct gccagccccg 2340 cccatgtgga gaaccttctc tccatctgac aaaatcactc ttgcctctgc tccagcccct 2400 cccettccaa gaagtcctcc ttcagatgtc cccatacctc tcccaaaaga cctctccttc 2460 caggtcctag gcccaaagtg ctggattctc attccccagc tatcctggga tttgtgcagc 2520 agcatggtgg caccttetee atcteeceeg cagactggaa cetgeetgtg tttggtcaat 2580 gtgtagatgg gttcagatgc tcttcaccca tagctcagag ctgtgcctcc actaagaccc 2640 tgggtgagtt ccaaggcctc agattcagtc cagaggacag ggatgagtca cagaccatct 2700 gagetteett agaacagtge tggatteaet geteagetaa gatgtteete agtetgetee 2760 cagcgccact cactcctcta ggcaggtgtg ccaaggtggt agaatggcac ccctgctctg 2820 atcatgatta acaaagtggg tgggctgggc acgatggctc acatctgtaa tcccagcaag 2880

```
aatatggatt tttaaaagtt tccaaaactg tggaaatggc cagtccattg cccacacttt 2940 ctgtgcactt ctgcagacct ccaacgaggg ccagcgcagt gccagagccc agcaacccag 3000 caagggaatg aatttgctct aactatggag ggacagtctt cggaagtgga gttcttaagg 3060 accatcattc ctttcttca atgagatgcc agactgctga gaaggtgagc aatgctgcag 3120 gcggctcata gggcagcca caggtaggce tggggcaaga ctagccatgg ggcttcacag 3180 cctccacaaa aaaggagatg gattcc 3206
```

```
<210> 517
<211> 1731
<212> DNA
<213> Homo sapiens
```

<400> 517 atattgatct cctggagatt cgaaatggac caagatccca tgaatcattc caagaaatgg 60 atettaatga tgactggaaa etetetaaag atgaggttaa ageatattta aagaaggagt 120 ttgaaaaaca tggtgcggtg gtgaatgaaa gtcatcatga tgctttggtg gaggatattt 180 ttgataaaga agatgaagac aaagatgggt ttatatctgc cagagaattt acatataaac 240 acgatgagtt atagagatac atctaccctt ttaatatagc actcatcttt caagagaggg 300 cagtcatctt taaagaacat tttattttta tacaatgttc tttcttgctt tgttttttat 360 ttttatatat tttttctgac tcctatttaa agaacccctt aggtttctaa gtacccattt 420 ctttctgata agttattggg aagaaaaagc taattggtct ttgaatagaa gacttctgga 480 caatttttca ctttcacaga tatgaagctt tgttttactt tctcacttat aaatttaaaa 540 tgttgcaact gggaatatac cacgacatga gaccaggtta tagcacaaat tagcacccta 600 tatttctgct tccctctatt ttctccaagt tagaggtcaa catttgaaaa gccttttgca 660 atageceaag gettgetatt tteatgttat aatgaaatag tttatgtgta actggetetg 720 agtetetget tgaggaccag aggaaaatgg ttgttggacc tgacttgtta atggetactg 780 ctttactaag gagatgtgca atgctqaagt tagaaacaag qttaatagcc aggcatggtg 840 geteatgeet gtaateeeag eactttggga ggetgaggeg ggeggateae etgaggttgg 900 gagttcgaga ccagcctgac caacacggag aaaccctatc tctactaaaa atacaaaagt 960 agcegggegt ggtgatgegt geetgtaate ceagetacee aggaaggetg aggeggeaga 1020 ateacttgaa cccggaggcg gaggttgcgg taagccgaga tcacctccag cctggacact 1080 ctgtctcgaa aaaaagaaaa gaaacacggt taataacata taaatatgta tgcattgaga 1140 catgctacct aggacttaag ctgatgaagc ttggctccta gtgattggtg gcctattatg 1200 ataaatagac caaatcattt atgtgtgagt ttctttgtaa taaaatgtat caatatgtta 1260 tagatgaggt agaaagttat atttatattc aatatttact tcttaaggct agcgqaatat 1320 ccttcctggt tctttaatgg gtagtctata gtatattata ctacaataac attgtatcat 1380 aagataaagt agtaaaccag tctacatttt cccatttctg tctcatcaaa aactgaagtt 1440 agetgggtgt ggtggeteat geetgtaate ceageaettt gggggeeaag gagggtggat 1500 cacttgagat caggagttca agaccagcct ggccaacatg gtgaaacctt gtctctacta 1560 aaaatacaaa aattagccag gcgtggtggt gcacacctgt agtcccagct actcgggagg 1620 ctgagacagg agatttgctt gaacccggga ggcggaggtt gcagtgagcc aagattgtgc 1680 cactgcactc cagcctgggt gacagagcaa gactccatct caaaaaaaaa a 1731

```
<210> 518
<211> 1327
<212> DNA
<213> Homo sapiens
```

```
<400> 518
cccaegegtc cgcggacgcg tggggaaaga aggcgccgca gctaagccca ggtctctcct
 60
ccgcaggttc cagctccttt cctggagcgt gtgtgggggc aacaaggacc catgggttca
 120
ggaattgatg agctgtcttg atctcaaaga atgtggacat gcttactcgg ggattgtggc
 180
ccaccagaag catttacttc ctaccagccc cccaatttct caggcctcag agggggcatc
 240
ttcagatatc cacaccctg cccagatgct cctgtccacc ttgcagtcca ctcagcgccc
 300
caccetecca gtaggateae tgteetegga caaagagete actegteeca atgaaaceae
 360
cattcacact gegggecaca gtctggcage tgggcctgag gctggggaga accagaagca
 420
gccggaaaaa aatgctggtc ccacagccag gacatcagcc acagtgccgg tcctgtgcct
 480
cctggccatc atcttcatcc tcaccgcage cctttcctat gtgctgtgca agaggaggag
 540
ggggcagtca ccgcagtcct ctccagatct gccggttcat tatatacctg tggcacctga
 600
etetaatace tgageeaaga atggaagett gtgaggagae ggaetetatg ttgeecagge
 660
tgttatggaa ctcctgagtc aagtgatcct cccaccttgg cctctgaagg tgcgaggatt
 720
ataggegtea cetaceacat ceagectaca egtatttgtt aatatetaac ataggactaa
 780
ccagccactg ccctctctta ggcccctcat ttaaaaacqq ttatactata aaatctqctt
 840
ttcacactgg gtgataataa cttggacaaa ttctatgtgt attttgttt gttttgcttt
 900
getttgtttt gagaeggagt etegetetgt catecagget ggagtgeagt ggcatgatet
 960
cggctcactg caacccccat ctcccaggtt caagcgattc tccctggcct cctcctgagt
 1020
aagctgggac tacaggtgct caccaccaca cccggctaat tttttgtatt tttagtagag
 1080
atggggcgct gagtggactg caaggtggac aggagcatct gggcaggggt gtggatatct
 1140
gaagatgccc cctctgaggc ctgagaaatt ggggggctgg taggaagtaa atgcttctgg
 1200
tgggccacaa tccccgagta agcatgtcca cattetttga gatcaagaca gctcatcaat
 1260
tectgaacce atgggteett gttgeeteea cacaegetee aggaaaggaq etggaacctg
 1320
cggagga
 1327
```

<210> 519 <211> 1002 <212> DNA <213> Homo sapiens

<400> 519 ttttcaacct taaaaaattt taatggaatt ttcttctttt ttttttttct ttaaataaca 60 atttgacaaa agggtgaaaa aatcctaaac aaggtattqa qqccaqtqtc caqqctqcat 120 teagtteaca aaactgteet caggaegttg catggaactg gaaatgtgta taattacaga 180 agaaaacagg gaggacttag tgcagagagg agacgagtgt ggacgggcaa cagcatcctt 240 agtettteat atttatatat ggtatatgta ttttetatat atatatttat atattttaca 300 tccaggtatc ccagtcatct gtaccatttc ccagggagac atgggtgctt ccaaggcgag 360 acaggaaagg gttaggcagg gaaggggcag cgacggtgca ggctggggct tggctcacag 420 aagctgcagg agcttcagcg actgtaagag ggccccgggc tccgcagacg ccaggtactg 480 geageaaage cagteeteca getecaegee cegeetgega tecaeegeet teteegeaaa 540 cttcatcatc atcagggccc gcttcatgtc gatccagttg tgcagcgtgc cgcacagcgc 600 ctcctccgag gtgcccggct gctgcaccag ctcgcgccga ggcccccaca gcaggcactg 660 cagcacgcgc ttggcctcgc cgatgcggat acgcttgatg gggtcggcct ccagtagcag 720 atgtgccagc tgctgcaggc cgggtgagta gagggacagc gcgggcaggc gcggcaggtc 780 ctcctgccgg tagtetetet cccgcagetg ggcgcgcacc tcgaacgggt tgggttggtg 840 cagcagctcg tagatgagga tgcctgtctg gaactcatcg aacttgcggt actgggaagc 900 agacacgata tcgggggcca gccgggcctg gctcttcttc tgctgcaggt ttggggtgct 960 gcccggcttc tgcttggcct tcaaaaagtt gctgatgatg ag 1002

<210> 520 <211> 2966 <212> DNA

<213> Homo sapiens

<220>
.<221> misc_feature
<222> (1) ... (2966)
<223> n = a,t,c or g

<400> 520

gaaaagagga cttattgttg tcatggccca tgagatgatt ggaactcaaa ttgttactga 60 gaggggggtg getetgetgg aaagtggaac ggaaaaagtg etgetaattg atageeggee 120 atttgtggaa tacaatacat cccacatttt ggaagccatt aatatcaact gctccaagct 180 tatgaagcga aggttgcaac aggacaaagt gttaattaca gagctcatcc agcattcagc 240 gaaacataag gttgacattg attgcagtca gaaggttgta gtttacgatc aaagctccca 300 agatgttgcc tetetetett cagactgttt teteactgta ettetgggta aactggagaa 360 gagetteaac tetgtteacc tgettgeagg tgggtttget gagttetete gttgttteec 420 tggcctctgt gaaggaaaat ccactctagt ccctacctgc atttctcagc cttgcttacc 480 tgttgccaac attgggccaa cccgaattct tcccaatctt tatcttggct gccagcgaqa 540 tgtcctcaac aaggagctga tgcagcagaa tgggattggt tatgtgttaa atgccagcaa 600 tacctgtcca aagectgact ttatccccga gtctcatttc ctgcgtgtgc ctgtgaatga 660 cagcttttgt gagaaaattt tgccgtggtt ggacaaatca gtagatttca ttgagaaagc 720 aaaagcctcc aatggatgtg ttctagtgca ctgtttagct gggatctccc gctccqccac 780 catcgctatc gcctacatca tgaagaggat ggacatgtct ttagatgaag cttacagatt 840 tgtgaaagaa aaaagaccta ctatatctcc aaacttcaat tttctgggcc aactcctgga 900 ctatgagaag aagattaaga accagactgg agcatcaggg ccaaagagca aactcaagct 960 gctgcacctg gagaagccaa atgaacctgt ccctgctgtc tcagagggtg gacagaaaag 1020 cgagacgccc ctcagtccac cctgtgccga ctctgctacc tcagaggcag caggacaaag 1080 gcccgtgcat cccgccagcg tgcccagcgt gcccagcgtg cagccgtcgc tgttagagga 1140 cagecegetg gtacaggege teagtggget geacetgtee geagacagge tggaagacag 1200 caataagctc aagcgttcct tctctctgga tatcaaatca gtttcatatt cagccagcat 1260 ggcagcatcc ttacatggct tctcctcatc agaagatgct ttggaatact acaaaccttc 1320 cactactotg gatgggacca acaagctatg ccagttctcc cctgttcagg aactatcgga 1380 gcagactccc gaaaccagtc ctgataagga ggaagccagc atccccaaga agctgcagac 1440 cgccaggcct tcagacagcc agagcaagcg attgcattcg gtcagaacca gcagcagtgg 1500 caccgcccag aggtcccttt tatctccact gcatcgaagt gggagcgtgg aggacaatta 1560 ccacaccage tteetttteg geettteeac cagecageag caceteacga agtetgetgg 1620 cotgggcctt aagggctggc actcggatat cttggccccc cagacctcta ccccttccct 1680 gaccagcage tggtattttg ccacagagte etcacaette tactetgeet cagccateta 1740 cggaggcagt gccagttact ctgcctacag ctgcagccag ctgcccactt gcggagacca 1800 agtctattct gtgcgcaggc ggcagaagcc aagtgacaga gctgactcgc ggcggagctg 1860 gcatgaagag agcccctttg aaaagcagtt taaacgcaga agctgccaaa tggaatttgg 1920 agagagcatc atgtcagaga acaggtcacg ggaagagctg gggaaagtgg gcagtcagtc 1980 tagetttteg ggeageatgg aaateattga ggteteetga gaagaaagae acttgtgaet 2040 tctatagaca atttttttt cttgttcaca aaaaaattcc ctgtaaatct gaaatatata 2100 tatgtacata catatatt tttggaaaat ggagctatgg tgtaaaagca acaggtggat 2160 caacccagtt gttactctct taacatctgc atttgagaga tcagctaata cttctctcaa 2220 caaaaatgga agggcagatg ctagaatccc ccctagacgg aggaaaacca ttttattcag 2280 tgaattacac atcctcttgt tcttaaaaaa gcaagtgtct ttggtgttgg aggacaaaat 2340 cccctaccat tttcacgttg tgctactaag agatctcaaa tattagtctt tgtccggacc 2400 cttccatagt acaccttage getgagactg agecagettg ggggtcaggt aggtagacce 2460 tgttagggac agagcctagt ggtaaatcca agagaaatga tcctatccaa agctgattca 2520 caaacccacg ctcacctgac agccgaggga cacgagcatc actctgctgg acggaccatt 2580 aggggccttg ccaaggtcta ccttagagca aacccagtac ctcagacagg aaagtcgggg 2640 ctttgaccac taccatatct ggtagcccat tttctaggca ttgtgaatag gtaggtagct 2700 agtcacactt ttcagaccaa ttcaaactgt ctatgcacaa aattcccgtg ggcctagatg 2760 gagataattt ttttttcttc tcagctttat gaagagaagg gaaactgtct aggattcagc 2820 tgaaccacca ggaacctggc aacatcacga tttaagctaa ggttgggagg ctaacgagtc 2880 tacctccctc tttgtaaatc aaagaattgt ttnaaatggg attgtcaatc ctttaaataa 2940 agatgaactt ggtttcaaaa aaaaaa 2966

```
<210> 521
<211> 1041
<212> DNA
<213> Homo sapiens
```

<400> 521 tggggcaagg atttcatgag catceteete taaacgegtg tcaagacaaa agatgettca 60 gctttggaaa cttgttctcc tgtgcggcgt gctcactggg acctcagagt ctcttcttga 120 caatcttggc aatgacctaa gcaatgtcgt ggataagctg gaacctgttc ttcacgaggg 180 acttgagaca gttgacaata ctcttaaagg catccttgag aaactgaagg tcgacctagg 240 agtgcttcag aaatccagtg cttggcaact ggccaagcag aaggcccagg aagctgagaa 300 attgctgaac aatgtcattt ctaagctgct tccaactaac acggacattt ttgggttgaa 360 aatcagcaac tccctcatcc tggatgtcaa agctgaaccg atcgatgatg gcaaaggcct 420 taacctgagc ttccctgtca ccgcgaatgt cactgaggcc gggcccatca ttgaccagat 480 tatcaacact gagageetee ttggacetee tgacegeagt cacaattgaa actgateece 540 agacacacca teetgttgee ggaetgggag aatgegeeag agacecaace ageateteae 600 tttgcttgct ggacaaacac agccaaatca tcaacaagtt cgtgaatagc gtgatcaaca 660 cgctgaaaag cactgtatcc tecctgctgc agaaggagat atgtccactg atccgcatct 720 teatecacte cetggatgtg aatgteatte ageaggtegt egataateet cageacaaaa 780 cccagctgca aaccctcatc tgaagaggac gaatgaggag gaccactgtg gtgcatgctg 840 attggttccc agtggcttgc cccacccct tatagcatct ccctccagga agctgctgcc 900 accacctaac cagogtgaaa gootgagtoo caccagaagg accttoccag atacccetto 960 tecteacagt cagaacagea geetetacae atgttgteet geecetggea ataaaggeee 1020 atttctgcac caaaaaaaaa a 1041

<210> 522 <211> 1295 <212> DNA <213> Homo sapiens

<400> 522 60 aacatttaca aattgtacaa agattggtag cttttatatt tttttaaaaa tgctatacta 120 agagaaaaaa caaaagacca caacaatatt ccaaattata ggttgagaga atgtgactat 180 gaagaaagta ttctaaccaa ctaaaaaaaa tattgaaacc acttttgatt gaagcaaaat 240 gaataatgct agatttaaaa acagtgtgaa atcacacttt ggtctgtaaa catatttagc 300 tttgcttttc attcagatgt atacataaac ttatttaaaa tgtcatttaa gtgaaccatt 360 ccaaggcata ataaaaaaag aggtagcaaa tgaaaattaa agcatttatt ttggtagttc 420 ttcaataatg atgcgagaaa ctgaattcca tccagtagaa gcatctcctt ttgggtaatc 480 tgaacaagta ccaacccaga tagcaacatc cactaatcca gcaccaattc cttcacaaag 540 tecttecaca gaagaagtge gatgaatatt aattgttgaa tteattteag ggetteettg 600 gtccaaataa attatagctt caatgggaag aggtcctgaa cattcagctc cattgaatgt 660 gaaataccaa cgctgacagc atgcatttct gcattttagc cgaagtgagc cactgaacaa 720 aactettaga geactatttg aacgeatett tgtaaatgta cacteegeaa tttteeceaag 780 atctatgcca taattcaatg aactccatga acactgcttg tagttgggtg tccaggactc 840 ctcaaagctt tccctcagac attccccctt ttctcctttg aatccatccc gacctgggat 900 cccaggtgta cccggaatgc cattggcccc agggctcccg tctcgaccag gcactcctgc 960 tggcccttgt aagcacattc cattatacag gtccaccacc tccctctgcc ggagctgcgc 1020 cttttgcttc cccttgggga tctcagaggc gctcgacggc gcgggcagct gcagcagcag 1080

```
gagcagcagg aggccgcgga gccgctgcgg ggaggcggcg gggccctggg gtcgcatggc 1140
tcccggctgc cgggcagcgc ggagctggag gcggaggaga ccgaggagag gaacgtggtc 1200
agcgtctggc tccgcaggccg tccgaggccg ccgcaggctg catcaatgcg cctttcaccc 1260
gagcgcctct ctccctccct taattcctcc cgccc 1295
```

```
<210> 523
<211> 2014
<212> DNA
<213> Homo sapiens
```

<400> 523 ttttttttt ttactgtttt atccaaattt attctcaggg aaaaagaaag tagtggctct acgeaacttt tteatteace aaceacettt ceatgeatea gaacetatge tgtgattgtt 120 agetgaactt caatagttte cacctactta agagagatge etcaaacaaa ttaactttat 180 tttcagacaa caggtccaag aagacttcac agctcaatca tgacgaacat gtggctgttt 240 cctcacagcc aggaaccctc ggtattagaa gaaaactcca acccccaca ccatcatcta 300 gcctcttttc tcactgtgaa gaactgatga gacagaattc ctgagaaggg aacatttagg 360 taatctggga tagaagggca tggaaggact ggacaaaact aaggcctccc catggaagga 420 agggaaaaga atattacaaa acagactaac cagaaaaacc aagaccccat caagtatcct 480 tcagggataa aacaagaggc cactcctaga tgcctcctga ttaaaaggtt gtcccatgcc 540 ctacagaggc ggaggataaa tcctaagaaa cagaaatgta taaccagccc caatgcttcc 600 catacttctg cattaggtca gtgtgaacat ggctttgctc ccaatggtca gacctgacat 660 gggtccttct gaagatggtg ggtcaggtat atcccageca ccctcaccag agaatacatc tatgacaaac ccaaattect aateetgaag taetttgage caetetacat tgtggecaet 780 caataataga ataaatttgt gaaaaagctg catgttttaa tttaggaaat gagtagaagt 840 900 tcacaagcaa cccagaatag gtgccagcag tttgctccag tgggccacac cacagcagca 960 gctcaggctc tgcagaatca ctgtgtccag tgcttcctga gatgttcttt cagctgagga atggaaggca gcagctgctg gcactcatga caacgaaggg gcagcttcaa gagctcaggc 1020 atcccatctc ggacagttac tctaccagcc tcttgtacca tctcgatcac agcttgtgat 1080 tctaggaagt attctgtatt gaaagaattc caatgttttt tgtttttaag gcaaggagaa 1140 tcaaaatcct ggctgatcac atgaagatgt acatggctca tactcggaat ggcgtggtag 1200 cccaatcgga ageggagttt gctggaccca gcaaaatcta caatcacctt ttcccccaca 1260 gtgtgcatat gcttaaggag ttcaaggtgt tcccctggcc acagccttca gactggaaat 1320 ggaggtccac ggtaagacca gccaatggta acgggccttt gggtatttat cctttatcac 1380 caccacctgc tcatctttgt aaacctgcat tttggggtcc tgcatagaaa tcttcaagcc 1440 ttgactccag tggcccaggg attccttttt gataggtgca tcttttccct tctttagggg 1500 cacagagcat tggccagagt tgctcccagg ttccagccct gtcccagcct cagcttcctg 1560 ageageatee etttetatag aateaetgtt geetgatete titetettee tgtgtgttte 1620 caggecaggg ttetttgeet etteeteaaa etetacaata tatggataaa gtteatteae 1680 catgtggaga acctggccag gctgcagctt cacctcttgg tccttcccaa ttacgactga 1740 gtcaatgctg gtgggattga ctcctacctg ctttaccttg acatatccct tgttacactc 1800 tgctttcaac tgtacttgct gtcgagaaca tttcttatca gtgatcttgg tctctgggcc 1860 acgcccaatc acaactgctt ccaaatgtgg aagtctgatt cgctggtgcc ggctgtcctg 1920 totcaccaac cagcacacco gcatcatcac totccagaag toggagacgg acaaattcac 1980 cctcgtgcca agcatggcgg aatgcatcta acag 2014

```
<210> 524
```

<211> 2151

<212> DNA

<213> Homo sapiens

```
<221> misc_feature
<222> (1)...(2151)
<223> n = a,t,c or g
```

```
<400> 524
gcccgcggta gtaaacctgg atcctttaaa acggcccccc ctttttttt tttttaatgg
 60
caaatagatt taatgcagag tgtcaacttc aattgattga tagtggctgc ctagagtgct
 120
gtgttgagta ggtttctgag gatgcaccct ggcttgaaga gaaagactgg caggattaac
 180
aatatctaaa atctcacttg taggagaaac cacaggcacc agagctgcca ctggtgctgg
 240
caccaqetee accaaqqeea qeqaaqaqee caaatqtgag agtggeggte aggetggeae
 300
carcactraa recaccaetr respective transcription activitation of the carcactration of the carca
 360
tggcaccagt gctggcactg ccactetett gggetttgge tttagettet geteeegeet
 420
ggatccgggc tttggcccag ggtccgatat cagettcgtc ccagttgcag ggcccggcag
 480
cattetecga geegageeca atgeceatte gagetttaat eteggeecta ageettgget
 540
tocaaggtga gcctcagctt gcagccttca aaatecgctt ccattcgccc cttnctttcc
 600
cggggggga ctgagctgcc cattcccttt ggatccttcc ttttgtaccc ttgcaggcaa
 660
acttgaagga ctttcatctt tgctggtcct catagtaaga gcgcaggccc ccagaagaac
 720
tcatattcaa ggggaattgc tatgggggac tctggcatag tcccaggtac ttctgcttca
 780
caaacctcat cagtgatgag cttccttcac gtcccccaag agttgaatga tgtatcccca
 840
ggcgcagccc caaacttggc gcagcacctc ccagatgaca gcctcacttg gaccgatttc
 900
cattcattga agatgatgct aagaagcacc atgagcagac ccagcttggg tgagtcctta
 960
gtcgttccca gtatgcctgc atcagtgggc tctaaggtgc tgagaagaat gtacaagtgg
 1020
tcattcttat caatttcctt caattgaatc ccaaatacct tcttccaagg aatagcctgc
 1080
tegtteaaat gatttegggg tacacateag tgtattettt gatgatgtee tteageatgt
 1140
teegageget tgatgggaat ettegtetgg tetttageea aaaggtaett caccaaatte
 1200
atttgccctc cettgcaaaa gggccacatc cccaagntgg tggtgcttca ggctcttggg
 1260
 1320
atgaactgga acttggcaac tctaacggcg aagccccttt gcctacgggc tttaaggtga
 1380
tetecaaggg gagageaaag geteteeggg cecaaageaa gecaacegag teettgatge
 1440
cctgcgggcc caaaaggcta tgggacccct tgaagccctg cgggccattg aggccattag
agectttgag accettegge cacetgtggt tecagaagee tgaetetgat caetgetgee
 1500
atcetettee ceatecagat getteacett tegggettte ttggetttga eettgggeeg
 1560
agtatectga tteteetgag actgggeage tgeaetetea ggeteaggtt catetgetgg
 1620
ggcctgagag ggtgcagcct cagtctcctg agcctttgta ttgaccttcg tatcagccac
 1680
 1740
atggetgace titttggtet eagtggeagg cattgteaca geetgegggt eageattetg
tttcttggtg tcagctgcta gactcttgtt ttcagctgcc agaacctggg tatcagtcag
 1800
ctgagtagta gatgaggeet gggtggeagg tgceteecga geetetgggg tetttgagae
 1860
etetatagee titgagacce cagaggettt tgagacette acateetetg agacetecag
 1920
tgcctttgag gccttcggtg tctctgggac ctccacattc tgggtcactg tcaacagagt
 1980
ctgcatcatc gagctactgt ccttttctga agcttcagcc tggaagcgag ttagacctgc
 2040
accacteteg ettgtgteag acatgtetea atttggeetg geaagagetg ageetegtee
 2100
 2151
tectacaatt eeegagtgeg tecaetcaet ceaageeect eegaageteg g
```

```
<210> 525
<211> 1869
<212> DNA
<213> Homo sapiens
```

```
<400> 525
gcgcggcctc ctgtctgcac cggcagcacc atgtcgctca cggtcgtcag catggcgtgc 60
gttgggttct tcttgctgca gggggcctgg ccactcatgg gtggtcagga caaacccttc 120
ctgtctgccc ggccagcac tgtggtgcct cgaggaggac acgtggctct tcagtgtcac 180
tatcgtcgtg ggtttaacaa tttcatgctg tacaaagaag acagaagcca cgttcccatc 240
```

ttccacggca gaatattcca ggagagcttc atcatgggcc ctgtgacccc agcacatgca 300 gggacctaca gatgtcgggg ttcacgccca cactccctca ctgggtggtc ggcacccagc 360 aaccccctqq tqatcatqqt cacaqgaaac cacaqaaaac cttccctcct qqcccaccca 420 gggcccctgc tgaaatcagg agagacagtc atectgcaat gttggtcaga tatcatgttt 480 gageaettet ttetgeacaa agaggggate tetaaggace eeteaegeet egttggacag 540 atccatgatg gggtctccaa ggccaatttc tccatcggtc ccatgatgct tgcccttgca 600 gggacctaca gatgctacgg ttctgttact cacaccccct atcagttgtc agctcccagt 660 gateceetgg acategtggt cacaggteca tatgagaaac ettetetete ageceageeg 720 ggccccaagg ttcaggcagg agagagcgtg accttgtcct gtagctcccg gagctcctat 780 gacatgtace atetatecag ggagggggga geceatgaae gtaggetece tgeagtgege 840 aaggtcaaca gaacattcca ggcagatttc cctctgggcc ctgccaccca cggagggacc 900 tacagatget teggetettt cegteactet ecetacgagt ggteagacec gagtgaceca 960 ctgcttgttt ctgtcacagg aaacccttca agtagttggc cttcacccac agaaccaagc 1020 tecaaatetg gtaaceteag acaeetgeae attetgattg ggaeeteagt ggteaaaatt 1080 cettteacea tecteetett ettteteett categetggt getecaacaa aaaaaaatge 1140 tgctgtaatg gaccaagagc ctgcagggaa cagaagtgaa cagcgaggat tctgatgaac 1200 aagaccatca ggaggtgtca tacccataat tggaacactg tgttttcaca cagagaaaaa 1260 tcactcgccc ttctcagagg cccaagacac ccccaacaga taccagcatg tacatagaac 1320 ttccaaatgc tgagcccaga tccaaagttg tcttctgtcc acgagcacca cagtcaggcc 1380 ttgaggggat cttctaggga gacaacagcc ctgtctcaaa accgagttgc cagctcccat 1440 gtaccageag ctggaatctg aaggegtgag tetteatett agggeatege teeteeteac 1500 gccacaaatc tggtgcctct ctcttgctta caaatgtcta ggtccccact gcctgctgga 1560 aagaaaacac acteetttge ttageecaca gtteteeatt teaettgace eetgeecace 1620 tctccaacct aactggctta cttcctagtc tacttgaggc tgcaatcaca ctgaggaact 1680 cacaatteca aacatacaag aggeteecte ttgacgtgge acttacecae gtgetgttee 1740 accttccctc atgctgtttc acctttcttc ggactatttt ccagccttct gtcagcagtg 1800 aaacttataa aattttttgt gatttcaatg tagctgtctc ctcttcaaat aaacatgtct 1860 1869

<210> 526 <211> 6655 <212> DNA <213> Homo sapiens

<400> 526 ataaccattt attagtcgaa agtgttttta agcacagtca gggtgtaaac agtgcagcat 60 tectgetece etcegtggga geagegtete etttteaatt catgtgacta cagaaggeae 120 ttggtgaact gtgcgtgtct gaggtgtgga aaccaggaga cgctgctccc acagtcaggg 180 tgtaaacagt gcagcattcc tgctcccctc cgtgggagca gcgtctcctt ttcaattcat 240 gtgactacag aaggcacttg gtgaactgtg cgtgtctgag gtgtggaaac caggagaggg 300 ggaaagaatt ctcaaaggcc tgacgtgaga agttggaaag gtttgcaggt tagggaatga 360 attgggagtg ggggccggcg gcacccattt cggtgacttt ctccccattt catgtaaaca 420 gaattgccag ggaccggtta ccgtggatat gtttttctaa aaactcagtg tctgcacaat 480 ccattgatag aactggagga tgtgtctgtg tttcctgttg ggtttttctc atctcttaca 540 tcatacaaac ttcaattttt accttgaata caggggtagt aggggtggtg gtggtggtgg 600 tggttgagac agggtctctg ttgcccaggc tggagtgcaa tgatgcaatt atagctcatt 660 gcagcetcga agtectggge tggagegtte tteetggete ageeteecta gtagetggga 720 ccacaggtgt gtaccaccac gcccagctta tttttaaatt cttgtataga tgaggtttta 780 ctacgttgcc caggctggag ggtggtggtt tttatattcc ttgtgtgagg ggtgtctgtg 840 atatttggaa tttgagaatg gatttagaca atgctaagta caqtctgctq qqttttgctt 900 960 gtggtgcaaa actgtagaaa gttgcttatt cactggcctt ggttccattg aagtetgcgt 1020 ctcgagtgtc cgtttcctcc tcagaaccat ctgcattttc aataactcta cgtcctccag 1080 accttctaga aggaacgaaa gaggtctcgt ttcctcgcct gagcttgctc ttgagtgcgt 1140 tracetegeg geocatggee tegitgetet cegitggeete atceagetee egetgeaget 1200 tectgeggtt ggegttgatg egetgggaet ceteetetge etecteeage tgeetettga 1260

gctgcttgac	cctggcattg	cctttctctg	cctgctcctt	gtactgctcg	gccatcttgc	1320
	cacctgcagc					1380
tggtggccgc	ctgtttctct	ctggcctcct	gctcgacctg	ctcctctagc	tgtgcaatct	1440
	cgccgcgatg					1500
	ccggagctcc					1560
	getgegetet					1620
	ccggtcgctc					1680
	gatccgggcc					1740
	ggcccagctc					1800
	agcggcggcg					1860
	ttctcattct					1920
	agctctcttt					1980
	cctccctcc					2040
	cccagcttta					2100
	gtctcatact					2160
	ttcgggcttg					2220
	agccgcagtt					2280
						2340
	ctggcgtctt					
	atcatgggac					2400
	ctggctttga					2460
	agggcccgag					2520
	gtccctctca					2580
	tttcctctgc					2640
	caggtcgtcc					2700
	cgccttctcc					2760
	ctcttccaga					2820
	ctggatgttg					2880
	cagctggtct					2940
	ttgagcttct					3000
	gagggacgcc					3060
	ctgtgacgct					3120
	gcccgctccc					3180
	attctatgtt					3240
	ctgtgttctc					3300
	gactgctcaa					3360
	tggacctgag					3420
gcaccgtcac	ctcctgctcc	ctcttggccc	tgagctcctg	ctgagtggct	gtgctgtcca	3480
	cagctctgtc					3540
tttcagcctt	gttcctggcg	gcccgctctg	agtccaggtc	ctcctggagg	tctgagatgt	3600
	ctcccggatc					3660
gcctggccag	ggccgcctgc	agctcctcct	ccttcttggc	càgctgcatc	ttgagctctg	3720
	ctggaggtca					3780
tccgtttcag	cttctccagc	tectgtegge	tettetette	cttctttagc	cgcacttcca	3840
	catagattca					3900
cctcttctgc	aagatttgtc	gttaagtcac	taatcctctc	ctcaaggagt	tttcgttctt	3960
ttgatagttt	attgttctga	tcatccatga	ccaggatctc	atcctccagt	ttcttgatct	4020
tggcctcagc	cgtgaccttc	tcaagttgca	gettetgeet	ggcagcttcc	tcctcctcca	4080
gctgttcttc	aaggtccagc	atctgctggg	ccatcttctt	cctttcagcc	tgtagctgct	4140
ggcccctgtc	ttectcctcc	tccaggcggg	cctccatctc	atgcagtatc	tcctccagct	4200
cctgcttctt	ggccgccagc	cgcacccgca	tetectcage	ctctgcatac	agctctgtct	4260
ctgcctgcag	ctgttcctgt	agcaggttct	teteeteggt	cagctgcgag	tgcttctgtt	4320
	aagctcattc					4380
	ctgcatctcc					4440
	gcaccactgc					4500
	ggcggtcagc					4560
	cgcctggaag					4620
	caggacgcca					4680
	ttccagggct					4740
	ggcattcgcc					4800
	gaagccctgc					4860
	caccaggaac					4920
						4980
	gaagttgggc					5040
	ctgccccact					5100
gegagetete	cgtcatcttg	godardeggt	ccaggeecae	gatgeggtee	acgueerree	PTOO

```
acaggtcggc cacaaacttg tcggaggagg cattgagcag ggaagtcacg ttgtcattca
gcgggtccat attcttggtc agccaggcac tcgcattata gtctaccttc ccagcataat
 5220
ggatgatgqa gaactcagtc ttgtccttga gctgcttggg cttctggaac ttggggtggc
 5280
tgccctgctc cgtgcacagc ttctccacga aagacttgtc cgtggctttg gggaaccagc
 5340
attoctogto cagcagggoo agcacacotg gagggttgtt cggtcgctcg atgagctcga
 5400
tgcagggctq taggtccage ccaaagtcga tgaagttcca ctcgatgccc tcgcgctggt
 5460
actectectq ctccaaggat gaacatggtg tggttgaaga getgetgeag ettetegttg
 5520
gtgtagttga tgcacagctg ctcgaaggag ttcacctcaa agatctcaaa tccagctata
 5580
tocaggatee ceaggaagga ageceettge egatgggtet tgtecaggge tttgtteaeg
 5640
cgggtgagta tccagcggaa aaggcgctca tatgttgcct tggccaaagc ctctacagca
 5700
aagtcagcct gttcttttgt ctgagctttc tgtaccacat ctcgcccaac cttgatacga
 5760
ggagtgagga tggatctggt gaaatctgtc acattaattc ccatgaggtg gcaaactttc
 5820
tgagcagctg tgttatctgg catggacgcc tggtctgtgt ttctttcctt cttgaagacg
 5880
atatttccaa gctgcaggac cgatgatacc accttcaata tggatagctg ctcctcctcg
 5940
ctgaaaccca tgattgccat ggcctccacg gtttcctgga acatctcatc atcctgggct
 6000
gctgggatgg gcacaaagcc attggagagg aaggtgtagt tgttgaagcc ctccaaaagc
 6060
aagteacttc teatettete ettggeteea geaateatgt agtaaaagat gtggaatgte
 6120
ctctcgtctc tggcttggcg aattgcccgt gatttttcta gcagataggt ctcaatgttg
 6180
gctcccacga tgtaacccgt gacgtcgaag ttgatgcgga tgaatttgcc gaatcgtgag
 6240
gagttgtcgt tcttcactgt ttttggcgttg ccgaaagcct ccagaatcgg gtttgcttgt
 6300
agaagctgct tttccagctc tcccgtgata cttgtgtctt tcttgccctt gtgggaggag
 6360
gccaccacgg ccaggtactg aatgaccttc ttggtgtttt cggttttccc ggctccagac
 6420
tegeetgtge atagaatgga etggteetee egatettgaa geatgeteeg gtaggeegtg
 6480
totgcgatgg cgtagatgtg aggcggcatc tcgtgcctct tcttgccctt gtacatgtcg
 6540
acgatettet eegagtagat gggeaggtgt ttataggggt tgaccaccae geagaagagg
 6600
ccagagtacg tatatattag ccctgagaag taccgctccc tcaggttgtg tagca
 6655
```

```
<210> 527
<211> 1081
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(1081)
<223> n = a,t,c or q
```

<400> 527 aaactacatt ttgcaaagtc attgaactct gagctcagtt gcagtactcg ggaagccatg 60 caggatgaag atggatacat caccttaaat attaaaactc ggaaaccagc tctcgtctcc 120 gttggccctg catcctcctc ctggtggcgt gtgatggctt tgattctgct gatcctgtgc 180 gtggggatgg ttgtcgggct ggtggctctg gggatttggt ctgtcatgca gcgcaattac 240 ctacaagatg agaatgaaaa tcgcacagga actctgcaac aattagcaaa gcgcttctgt 300 caatatgtgg taaaacaatc agaactaaag ggcactttca aaggtcataa atgcagcccc 360 tgtgacacaa actggagata ttatggagat agetgetatg ggttetteag geacaactta 420 acatgggaag agagtaagca gtactgcact gacatgaatg ctactctcct gaagattgac 480 aaccggaaca ttgtggagta catcaaagcc agggactcat ttaattcgtt gggtcggatt 540 atctcgccag aagtcgaatg aggtctggaa gtgggaggat ggctcggtta tctcagaaaa · 600 tatgtttgag tttttggaag atggaaaagg aaatatgaat tgtgcttatt ttcataatgg 660 gaaaatgcac cctaccttct gtgagaacaa acattattta aatgtgtgaa gaggaaggct 720 ggccatgacc caaggtggac ccaactaccc ttaatgccaa agaggtggac aggataacac 780 agataagggc tttattgtac aataaaagat atgtatgaat gcatcagtag cctgaaaatt 840 gccttatttc tccctttctt ctcactggag ttatttttaa tattatcttt cctatcagaa 900 ttacctagtc ccttcttga atatacagaa gccatcacgt gagtttatca tttgcttccc 960 aattgttcta ttttccttta attttctttc ttcttgtcct tcatttctaa ttacctgaac 1020 atggtatgat ttactgcatc ttcagatata cacatataac atcaaaantn aggccaatat 1080

1081

```
<210> 528
<211> 1098
<212> DNA
<213> Homo sapiens
```

. <400>	528					
tttaactccc	cctcttctta	agagaatttt	aatgaagctg	agataagagg	catatttact	60
tgcagtttgc	cccattgtta	ccctggattc	ctccgagcgc	acaagcttac	cgcaaggctg	120
actgtggatg	tacttgggaa	tetetegteg	gctgtcctca	atgctcacgt	tcttagcata	180
ccttcaccct	agagaaaggc	ccccacatcg	ggcgccagat	gaaggggtgg	catgacacta	240
cacacctgtg	ggtatttcta	gtcaggtggg	atgagagact	gagaaaagaa	agaagacaca	300
gagacaaagt	atagagaaac	aacagtgggc	ccaggggacc	ggcactcagc	acaccaagga	360
cctgcaccgg	caccggcctc	tgagttccct	cagtttttat	tgactattat	tttcattatt	420
tcagcaaaaa	ggaatgtagt	aggacagcag	ggtgataata	aggagaaggt	caacaaaaa	480
aacatgtgag	caaaagaatc	tatatcataa	ttaagttcaa	gggaaggtac	tatgcctgga	540
cgtgcacgta	ggccagattt	atgtttctct	ccacccaaac	atctcagtgg	agtaaagaat	600
aacaaggcag	cactactgcc	aacatgtctc	gcctcccgcc	acagggcagc	ttttctccca	660
tctcagagtt	gaacaaatgt	acgatcgggt	tttacaccga	gacattcagt	tcccaggggc	720
aagcaggaga	cagtggcctt	cctccatctc	aactgcaaga	ggctttcctc	ttttactaat	780
ccacctcagc	acagaccctt	tatgggtgtc	aggctggggg	accatcaggt	ctttctcatc	840
ccacgaggcc	atatttcaga	caatcacatg	gggagaaacc	ttggacaata	cgccgctttc	900
aagggcaggg	ctccctgcgg	ctttccacgg	tgcattgtgc	ccctggttta	ttgagactag	960
agaatggtga	tgacttttac	caagtatact	gcttgcaaat	attttgttaa	caaggcacgt	1020
cctgcacagc	cctacatccc	ttaaaccttg	atttcataca	cacatgtttt	tgtgagctcc	1080
aggttgggtc	aaagtggt					1098

```
<210> 529
<211> 1998
<212> DNA
<213> Homo sapiens
```

```
<400> 529
tttttttttt ttgtgggtaa aaccattttt attaactgac caaagcacat cattttgttt
 60
tctgatttga ggtaaaatca taaaacacag ttcacaagaa aatacaatga ctatttaacc
 120
acaattacaa gtttgaaatc tcactaggtg ttcatatact tttacaaatt catacaactg
 180
tatagtotac ttaagcttag tgttaaccaa aagagcaata tcaaagacct agacacttga
 240
ctactacttt tgcagtgggt atagttttat aacaacagaa taactgttac cttatgaata
 300
360
tgcatgaagg ctcttaggag agcaaacacc tgttcctatt ctgtatgtcc ctccctcatt
 420
tcaaatgaga gtaaccaatt gagtaaaata accaaataac cattgcccca ccatgaacat
 480
ggggcttggg aagacagtcc tacaatcttc atcatatat taggttttta ggccagccag
 540
ctctttttt ccaaagettt cttttgaatg ttcagatect attaatecta actatagaet
 600
actgtgtttg tgagggtgtc tgagtgtcta tgtgagggca aggacaacag tgcagtccag
 660
aaacacagaa aatatgettt tttgeagetg agetetgttt tgagatttea ttttgttact
 720
ggacageget taatecatae caaagtettt ggaacaetge agatttgett tagaggtaga
 780
taaaacagaa atcatgcagt taagtcaatt gagaaaaaaa aagggatttg ttgtctttac
 840
```

```
agaacatcat gactaaaagt tgatcctttg ctcttggtgc acatttaaga tttttacctq
ttttgggaaa tacccaagtc ttccttgtct ctcaggaaaa acacatttaa attcatcctg
 960
tactaactac agatagaaga acagcagtat taccatgtgt attgcagcac tgcagttcac
 1020
tttctggatt tgtgacacac aaacacatca tgtgacgtcg catgcacgcg tkkgcttggg
 1080
kccctcgagg gatcctctag agcggccgcc cttttttttt tcttttcat tctaagaagt
 1140
taattttatt agtgtcacta gtgatgttaa ttaaaaaact tatagcaagt gctcaaaact
 1200
ttctaaatat tgtaatcact atgttttaaa gacagagtgg actgttacaa atgattttgc
 1260
aaaatacaaa aatagatata etteeactga aatgetttaa teatttttee gggeactete
 1320
atettttggt tetteeteat etgagtacae agtgggetee teeeceteet teageagttt
 1380
gcccacgtga tgatacttga aagtgaactg agactcccag tcactcagag tctccctgct
 1440
gggcagcaag tgaggtcaga aagggtcatc gttactcatc cttcaggggc ttccttatcc
 1500
agggcaaaat tgtaggcaag gcccctggga tgcattttct tccagcaaag accccatacg
 1560
ggcccctcgg gccccgtaag aaatttgcgg gcctttgggt cacatcgaac accttgccgt
 1620
tgatggccca tgagtatggc gcggggtcct ggacgccgtc gaagcgccgc agcttcggcg
 1680
gggggtgaag tegegeeget tgaggegggg cagaggggge ggetegtegt egtegetgte
 1740
geogettgge egeoggetgg teccegegea egatettgta gageaggaag atgeatgagg
 1800
ccaagcagca gcaggttgag cggcgacgtg aaaatctcat gcagcagccc gccgctctcc
 1860
agategettg ggteggegee agtegecaee acatectegg cagecatgat etetggagta
 1920
aaggttggge egegetagge agggateegg aactegeeac titeteetee etetgagega
 1980
gcgagtggcg cgcggggt
 1998
```

```
<210> 530
<211> 766
<212> DNA
<213> Homo sapiens
```

```
<400> 530
ttttttttt ttaataaaac cataacaaat ctttcattaa agatctactg agaccttggc
 60
tgaaatcatc tattattgtt gctagttagc ctctcttcta tagttgggta atgtgtgtct
 120
tgccactgtg tttgccagct ctcccaagtg aaaagaacac tttttataaa aaaattaatt
 180
getecaagtt tteaggeeca ggggaggete teccattete etectteaat aagteeegte
 240
caggtaagag gtgatcttgt ggataaattc atcatacttc actttgccat tgggttcgat
 300
atctgccttc cctgaagaga tcatcccact tccttgtggg tgagcttctc ccccagactc
 360
gtgagttttg accgcaggtc ggacgccatg acgtaacctt tcttctcctt gtccaccatc
 420
aacatggcta gaagaatttc tttctttggg tcttcttgtt ttatttgcat gtgcataatg
 480
gtcagaaaag tggagaaatc cagctctcca tttccgtcta tcccgtgggt ctgcaggtgc
 540
egetgeacet eccetggegt egggetggee eccaggeace teatggeeac catgaggteg
 600
gtggctttta tettececet etgetgettg teatacaggg agaagcatte ettgtactea
 660
ttaatttggt cttgggaaag aaacttggcc attctggggc ctcagctgct acccgtgggc
 720
ttgctgctcc cagaaccgcg ttcagttccc tttcctccct cgtgcc
 766
```

```
<210> 531
<211> 1891
<212> DNA
<213> Homo sapiens
```

<400> 531
tgcaggaatt cggcacgagg ctgagcggat cctcacacga ctgtgatccg attctttcca

60

geggettetg caaccaageg ggtettacec ceggteetec gegtetecag teetegeace tggaacccca acgtccccga gagtccccga atccccgctc ccaggctacc taagaggatg 180 ageggtgete egacggeegg ggeagecetg atgetetgeg eegeeaeege egtgetaetg 240 agegeteagg geggaceegt geagteeaag tegeegeget ttgegteetg ggacgagatg 300 aatgteetgg egeaeggaet eetgeagete ggeeagggge tgegegaaca egeggagege 360 accegcagte agetgagege getggagegg egeetgageg egtgegggte egeetgteag 420 ggaaccgagg ggtccaccga cctcccgtta gcccctgaga gccgggtgga ccctgaggtc 480 cttcacagcc tgcagacaca actcaaggct cagaacagca ggatccagca actcttccac 540 aaggtggecc agcagcagcg gcacctggag aagcagcacc tgcgaattca gcatctgcaa 600 agccagtttg gcctcctgga ccacaagcac ctagaccatg aggtggccaa gcctgcccga 660 agaaagaggc tgcccgagat ggcccagcca gttgacccgg ctcacaatgt cagccgcctg 720 caccygctyc ccagggatty ccaggagcty ttccaggtty gggagaggca gagtggacta 780 tttgaaatcc agcctcaggg gtctccgcca tttttggtga actgcaagat gacctcagat 840 ggaggctgga cagtaattca gaggcgccac gatggctcag tggacttcaa ccggccctgg 900 gaagcctaca aggcggggtt tggggatccc cacggcgagt tctggctggg tctggagaag 960 gtgcatagca tcacggggga ccgcaacagc cgcctggccg tgcagctgcg ggactgggat 1020 ggcaacgccg agttgctgca gttctccgtg cacctgggtg gcgaggacac ggcctatagc 1080 etgeagetea etgeaceegt ggeeggeeag etgggegeea ecacegteec acceagegge 1140 etetecgtae cettetecae ttgggaccag gateacgaee tecgcaggga caagaactge 1200 gccaagagcc tetetggagg etggtggttt ggcaeetgca gecattecaa eetcaaegge 1260 cagtacttcc gctccatccc acagcagcgg cagaagctta agaagggaat cttctggaag 1320 acctggeggg geegetacta eeegetgeag geeaecacca tgttgateea geeeatggea 1380 gcagaggcag cetectageg teetggetgg geetggteee aggeecaega aagaeggtga 1440 ctettggete tgecegagga tgtggeegtt ceetgeetgg geaggggete eaaggaggg 1500 ccatctggaa acttgtggac agagaagaag accacgactg gagaagcccc ctttctgagt 1560 gcaggggggc tgcatgcgtt gcctcctgag atcgaggctg caggatatgc tcagactcta 1620 gaggcgtgga ccaaggggca tggagcttca ctccttgctg gccagggagt tggggactca 1680 gagggaccac ttggggccag ccagactggc ctcaatggcg gactcagtca cattgactga 1740 cggggaccag ggcttgtgtg ggtcgagagc gccctcatgg tgctggtgct gttgtgtgta 1800 ggtcccctgg ggacacaagc aggcgccaat ggtatctggg cggagctcac agagttcttg 1860 gaataaaagc aacctcagaa caaaaaaaaa a 1891

```
<210> 532
<211> 1381
```

<213> Homo sapiens

## <400> 532. ttttttttt ttgaaggtat aaaacagcta atgttttact taactattct gaaagtaact 60 gacaggtaat aaaaatgtgg gttttattag tccactacag tcacaataca atcgtcatag 120 atttcccctt ctgtattcat cccaccaaac accaaacaga gcagtgtagc agtctggctt 180 tecteatgtg agteaceact gtggeteatt actitigteag etgaateete titeteaget 240 tcatggttca gagtgagaga gttgggaatc ttctttctca gaagcacacg tcactggccc 300 atgggaatga taccacatgg gaatgggtcc caatcgtccc aggggggtag gaaggagtat 360 ccaaatttaa ggcaagggtc ccaatgctgc tcttctgtgt gatactgggt acattgtgtc 420 ccaggtgctc ctgcaggagt cattccacca aaggatgtac acatgttttt cccatggcca 480 cagctggagt ggggaagcac agcctgctgg aggcagcccc agtgggattt agcttctgcc 540 atttcatgtc acttatatca atgcagtgga ggtcatcata gaatctgtcc cccgccaagc 600 ctccgtggat gaagagcttt gtccctgctg ccaccatcac atgaccatgc cggggagatg 660 gaggatttcc aagtgtctct ggctgtgacc aggtcagagt gtttgcgtca aacacatgca 720 gettegtgte etgeaeggge tgggeaecte teteteegee eccaaagaca tatagetggt 780 ttccaatggc tgccgatgat gtgtggaatg ttcttgggga tggtgggggg ctggtcactt 840 ctggcgtggt ccacgtcctg gtttcaggat tcaggacttg tagacaattt cgatttcctg 900 attggttggc acctccaaat acccagatac ggtcaggtgt gcaggaggga atgaagctag 960 catgttcata ccggggcaag aggcccttgc aggtatctaa gtcccactgg tgttttccca 1020 gatecatggt gtgcacgtet gagaagette tgtttggatt tgctccccca acaatgaaga 1080

<212> DNA

```
ccttccctct cttggcatta ccaactgggg gtaaatatga acagctgtgg ccaactcgag
cacagggget gtetecaggg acagteaagg tgtaccatgt tgettteetg ggettgtete
 1200
caggttccaa gactggcagt tgcttcatgg tgtcctgcgg cctaggccac tgacagctgt
 1260
ccccaaagtc cagagetcag ttaggetgge tteacgtggg cgggacetec cgcagcagec
 1320
geegetaeea geecageaaa teteateeee aegtggeagt tetgeggega ettaggeeag
 1380
 1381
```

<210> 533 <211> 1986 <212> DNA <213> Homo sapiens

<400> 533 taataataaa aaataacttt ttaaatgggc aaaggctctg aatagacatt tctccaaaaa 60 acatatacaa atggccaatc agcacatgaa aagatgttca acatcatcag ccatcaggga 120 aatacaagtc aaaattgcaa tggtatacaa ttaatatacc atttaacatt cccaatagta 180 gcctacaact tccatttcca ctgtggaaaa cggtttggaa gttcctcacg gtagtcaagt 240 tacttaactg ctctgtaaaa tgaagttaat cacattcact ttggatgaat gagttcatat 300 atattageta taattaetae ageaattate attgtgtaea ttattaetga ttgggteaaa 360 ttattaaccc cgtctcccta attcatttac ttttgttact ttggatgaat atttaaagta 420 gtcttgaact gagatatgta tgtaaaggtt ctatcacatt gqcatataac atqtqctcaa 480 caaatgaaag ctataattat ttatttccaa agagtttaaa gattaaactt ccctcaaaac 540 aaacaaaagg caaggtaaca teecaagetg tgaggggetg agteteteet aggtqeaggg cagcacagga actggctgca caaggccaga gaggttacgt ggcggctctc ttcaaattag 660 accacacaga gegetteatt ecetgtgeag tetteacate tteccagtee agtttgaegt 720 ctggaacctc atcttctggc tctggatcct tcctcaaggg cccccggggg gacgcaacca 780 caatgggcag agggccacat tcctcccgga tttccacaac atggaggccc ttcttatcag 840 ccagctgttg atgggtttcc tgtctggaga gcccacggaa gaggccctgg gtgaggctga 900 gcatattaat ggacccagag accttggcat acatgtcttt gatgccaatg agccggcaga 960 tggtgatgat ggccctgtgg cagcggaggc cgtaaccttt gggttgtttc ttcatcttga 1020 tatgcgtcct tttaaatctt aatgaaatat catggaatat tgtatggtct tcatatcgtt 1080 ctatataatg caaatggtga actgctctgt tctttgcttt cctgaaagca tccatccgat 1140 cagtagettt cecaatagaa aaaceteaag tateetggta teaaaateet eatatgttte 1200 tccacaggga ccagggtcag gggggccaag actgatgcct ccccatgagt ttccactcca 1260 testegetes egittaacet teatettett ettteggtes caetettete tetgetggat 1320 catgtetgcc tecacettet cetgetette ettgettett tgggcaatgg tetgeactge 1380 tecattttte ataagaggga cattcagtcc gggccataga aaaccataac gcccttcacc 1440 aatgatetga eccetgitea gateettiet titettetti tiagitetti tigeetettee 1500 tttttttgct ccagcaccag tctctgctaa agcgcctttc cacagctcat ctgcagtcaa 1560 tttagtgaag aaactatatg gtctatactg ctggctcatc aggtgactgg gagaagaaat 1620 acagcattgt gtctgcagtg cacggctcaa gctggcgtag ggatgggtgt ctctggttcc 1680 cagtgatgac aaatggccat tgccgagaac actcttccat gccaaaatgg aagctgctgg 1740 taaggtgttt agggaacact gcctccccaa taaatgacct gccgtcccgc tacacagcac 1800 ggggaggcag cccacagcgc gcaccgcggt cgccatgctg gagtccgagc cgcgcctcgg 1860 cctccgccca gggcagcctt gcccaccgcc taccgcgact gctcctcgtc aaacggcaag 1920 ccttgggccg cagcggaatt cctgaggccc gagtccacgc agcagcgcag gccggggtga 1980 gggact 1986

<210> 534 <211> 1891

<212> DNA

<213> Homo sapiens

```
<400> 534
tgcaggaatt cggcacgagg ctgagcggat cctcacacga ctgtgatccg attctttcca
 60
geggettetg caaccaageg ggtettacee eeggteetee gegteteeag teetegeace
 120
 180
togaacccca acqtccccga gagtccccga atccccgctc ccaggctacc taagaggatg
ageggtgete egacggeegg ggeagecetg atgetetgeg eegecaeege egtgetaetg
 240
 300
agegeteagg geggaecegt geagteeaag tegeegeget ttgegteetg ggaegagatg
 360
aatgteetgg egeaeggaet eetgeagete ggeeagggge tgegegaaca egeggagege
 420
accegcagte agetgagege getggagegg egeetgageg egtgegggte egeetgteag
 480
ggaaccgagg ggtccaccga cctcccgtta gcccctgaga gccgggtgga ccctgaggtc
 540
cttcacagcc tgcagacaca actcaaggct cagaacagca ggatccagca actcttccac
aaggtggeee ageageageg geacetggag aageageace tgegaattea geatetgeaa
 600
agecagtttg geeteetgga ecacaageae etagaceatg aggtggeeaa geetgeeega
 660
agaaagagge tgcccgagat ggcccagcca gttgacccgg ctcacaatgt cagccgcctg
 720
 780
caccggctgc ccagggattg ccaggagctg ttccaggttg gggagaggca gagtggacta
tttgaaatcc agcctcaggg gtctccgcca tttttggtga actgcaagat gacctcagat
 840
 900
ggaggetgga cagtaattca gaggegecac gatggetcag tggaettcaa ceggeeetgg
gaagcctaca aggcggggtt tggggatccc cacggcgagt tctggctggg tctggagaag
 960
gtgcatagca tcacggggga ccgcaacagc cgcctggccg tgcagctgcg ggactgggat
 1020
ggcaacgccg agttgctgca gttctccgtg cacctgggtg gcgaggacac ggcctatagc
 1080
ctgcagctca ctgcacccgt ggccggccag ctgggcgcca ccaccgtccc acccagcggc
 1140
 1200
ctctccgtac ccttctccac ttgggaccag gatcacgacc tccgcaggga caagaactgc
 1260
gccaagagcc tctctggagg ctggtggttt ggcacctgca gccattccaa cctcaacggc
 1320
cagtacttcc gctccatccc acagcagegg cagaagetta agaagggaat cttctggaag
acctggcggg gccgctacta cccgctgcag gccaccacca tgttgatcca gcccatggca
 1380
 1440
gcagaggcag cetectageg teetggetgg geetggteee aggeeeacga aagaeggtga
ctcttggctc tgcccgagga tgtggccgtt ccctgcctgg gcaggggctc caaggagggg
 1500
ccatctggaa acttgtggac agagaagaag accacgactg gagaagcccc ctttctgagt
 1560
gcaggggggc tgcatgcgtt gcctcctgag atcgaggctg caggatatgc tcagactcta
 1620
 1680
gaggogtgga ccaaggggca tggagcttca ctccttgctg gccagggagt tggggactca
 1740
gagggaccae ttggggccag ccagactggc ctcaatggcg gactcagtca cattgactga
cggggaccag ggcttgtgtg ggtcgagagc gccctcatgg tgctggtgct gttgtgtgta
 1800
ggtcccctgg ggacacaagc aggcgccaat ggtatctggg cggagctcac agagttcttg
 1860
 1891
gaataaaagc aacctcagaa caaaaaaaaa a
```

```
<210> 535
<211> 1874
<212> DNA
<213> Homo sapiens
```

```
<400> 535
 60
eggacgegtg ggegaaceet gaaceetaeg gteeegaeee gegggegagg cegggtaeet
gggctgggat ccggagcaag cgggcgaggg cagcgcccta agcaggcccg gagcgatggc
 120
 180
agcettgatg acceegggaa eeggggeeee accegegeet ggtgaettet eeggggaagg
 240
gagecaggga ettecegace ettegecaga geceaageag eteceggage tgateegeat
 300
gaagegagae ggaggeegee tgagegaage ggacateagg ggettegtgg cegetgtggt
gaatgggagc gcgcagggcg cacagatcgg tgcgtgggga gggttgggcg ttcctgaccc
 360
 420
cgactgggag gtcagcccga gagactttgg gtccctgggg gtgcgacggt gccccactac
cagcaccggc cccagggtgc cccaccgctg tgggctgcca ccctcacgcg tacccccaca
 480
 540
taccaggggc catgctgatg gccatccgac ttcggggcat ggatctggag gagacctcgg
 600
tgctgaccca ggccctggct cagtcgggac agcagctgga gtggccagag gcctggcgcc
 660
agcagettgt ggacaageat tecacagggg gtgtgggtga caaggteage etggteeteg
```

```
cacctgccct ggcggcatgt ggctgcaagg ttataaacca cctcctttcc agacgggagc
 720
ctataccgca catgcagcaa ccagtccatc cacaggcagc tcccaacctc aagcctggcc
 780
caaagcctcc aagaccctac caaggcttct ccccaccctg ctccccagca cagttctccc
 840
caccccgttc cccagcacag cgcttggggc ccctctggct ccagaccagg ccccttggag
 900
caggaaaaag atccactgat ggaattcaga cccctttccc cttgggtccc cagacagctc
 960
ccccaaggga ggagctgagg acttccctcc ctctgcccca agccttgttt ccccaaggac
 1020
aggtaccaac ctcctccct actgacactt ctcaaccaag aaaacttcct ttccattccc
 1080
traccagetg ggcaccceta tagetgetta aatactttee aaatecaget geacteetag
 1140
ccagggaagg tgaagggatg cacagaggtg ggggaggggt actgtgcagg gtactcagca
 1200
tecetgacea ecaggtgeca atgateageg gaegtggtet ggggcacaca ggaggcacet
 1260
tggataaget ggagtetatt cetggattea atgteateea gageecagag caggtacggg
 1320
gcgccacgga tcagtcattg atccaggttg atgatggaga ccctggccag aatcactaaa
 1380
agatcactgg tggatcatta gggtcactaa tgagaacact ggtcaaggtt actcatgagt
 1440
cactgggcct gggccgaaat catcagtgga actttgatta ggatcataaa atgggaagtt
 1500
ggtcaaaatc acagatggct ggcggggcac ggtggctcac acctgtagtc ctagcacttg
 1560
gggaggccga agagggcaga tcccttgaac ccaggagttc aaaaccagcc tggataacac
 1620
ggcaaaaccc catctctaca aaatagttcg ctgcgtgtgg tggtgcacgc atgtggttcc
 1680
agctactcag gaggctgagg caggaggatc acttgagcct gggaggtcta ggctgcagtg
 1740
ageegggaeg atgecaetge actecageet gggeaacaga gtgagaeeet gteceageae
 1800
totgggaggc agaggagccc agttggagat cagcotgggt aatatagtga aacttgatot
 1860
ctacaaaaaa aaaa
 1874
```

<210> 536 <211> 704 <212> DNA <213> Homo sapiens

<400> 536 agagagccct gcgggaactg cgtgagcgcg tgacccatgg cttggctgaa gccggcaggg 60 acegegagga egteageace gagetgtace gggegetgga ggeegtgagg etgeagaaca 120 gtgagggttc ctgtgagccg tgccctacgt cgtggctgcc cttcgggggc tcctgctact 180 atttetetgt geegaagaee aegtgggeag aggegeaggg eeaetgegee gatgeeageg 240 cacatetgge gatgtagggg geetggggga geaggaette etgagtegtg acaetagtge 300 cettgaatac tggateggee geagggeegt geaacacetg egeaaggtte agggetacte 360 gtgggtggac ggagtcccac tcagcttcag gtaggggaag ggctcctggt gaaacctggg 420 ggccacaggt tagactctag aggacatgtt ttgaggccga ggtgggcgga tcacctgagg 480 tcaggagttc aagaccagca tgggaaacgt ggcgaaaccc catctctact aaaaatacaa 540 aaaattagcc gggcgtggtg gcacacgcct gtaatcccag ctaaccctgg atgctgaggc 600 acgagaatca cttgaaccca ggaggcagag gttgcagtga gccgagattg cgccactgca 660 ctccagcctg ggagacagag ttagactccg tctcaaaaaa aaaa 704

<210> 537 <211> 1058 <212> DNA <213> Homo sapiens

<400> 537
agatggccgc gctcctggcc gcctagagcc ggagcggccc gcggagctgc ggaggcagcc

```
120
ttgggcccga ctgtggtaca gacctccatg agccggtccc aggtagccct gctgggcctg
 180
agtotgotgo toatgotoot actgtatgtg gggotgocag goccocotga goagacttoo
 240
tgcctctggg gagaccccaa tgtcacagtc ctggctggtc tcacccctgg caactcgccc
 300
atcttttacc gegaggtget cecaeteaac caggeacaca gggtggaggt ggtgetgett
 360
catggaaagg cetttaacte teacaegtgg gageagetgg geacaetgea getaetgtea
 420
cagagggget accgggccgt ggcccttgac cttccaggtt ttgggaactc ggcaccttca
 480
aaggaggcaa gcacagaggc agggcgggca gcgctgctgg agcgggcgct gcgggacctg
 540
gaggtacaga atgeogtgtt ggtgagecec tegetgagtg gecactatge cetgecette
 600
ctgatgcgag gccaccacca gctacatgga tttgtgccca tcgcacccac ctccacccag
 660
aactacaccc aggagcaatt ctgggctgtg aagactccaa cccttatcct gtatggagag
 720
ctggaccaca tcctggctcg agagtcactg cggcagctcc gccacctgcc caaccactct
 780
gtggtgaagc tacgcaatgc aggccatgcc tgttacctcc acaagccgca aqacttccac
 840
cttgtcctgc ttgccttcct tgaccatcta ccttgaacta acccactcce agctcccaqc
 900
ctggcatgag cttggacagt ctggaccgcc accetecetg aaccagggag acagcetetq
 960
ggattggagg ccagaggcca gggtcagacc cagccaggac tcctcatttc atctcacaga
 1020
cacaataaaa aagcatattt gtcctgccaa aaaaaaaa
 1058
```

<210> 538 <211> 1895

<212> DNA

<213> Homo sapiens

## <400> 538 cccacgcgtc cgccgccgcc accgtaaggc taggccgcga gcttagtcct gggagccgcc 60 teegtegeeg eegteagage egeeetatea gattatetta acaagaaaac caactggaaa .120 aaaaaatgaa attoottato ttogoatttt toggtggtgt toacotttta tooctgtgot 180 ctgggaaagc tatatgcaag aatggcatct ctaagaggac ttttgaagaa ataaaagaag 240 aaatagccag ctgtggagat gttgctaaag caatcatcaa cctagctgtt tatggtaaag 300 eccagaacag atectatgag egattggeae ttetggttga taetgttgga eccagaetga 360 gtggctccaa gaacctagaa aaagccatcc aaattatgta ccaaaacctg cagcaagatg 420 ggctggagaa agttcacctg gagccagtga gaatacccca ctgggagagg ggagaagaat 480 cagctgtgat gctggagcca agaattcata agatagccat cctgggtctt ggcagcagca 540 ttgggactcc tccagaaggc attacagcag aagttctggt ggtgacctct ttcgatgaac 600 tgcagagaag ggcctcagaa gcaagaggga agattgttgt ttataaccaa ccttacatca 660 actactcaag gacggtgcaa taccgaacgc agggggcggt ggaagctgcc aaggttgggg 720 ctttggcatc tctcattcga tccgtggcct ccttctccat ctacagtcct cacacaggta 780 ttcaggaata ccaggatggc gtgcccaaga ttccaacagc ctgtattacg gtggaagatg 840 cagaaatgat gtcaagaatg gcttctcatg ggatcaaaat tgtcattcag ctaaagatgg 900 gggcaaagac ctacccagat actgattcct tcaacactgt agcagagatc actgggagca 960 aatatccaga acaggttgta ctggtcagtg gacatctgga cagctgggat gttgggcagg 1020 gtgccatgga tgatggcggt ggagccttta tatcatggga agcactctca cttattaaag 1080 atettggget gegtecaaag aggaetetge ggetggtget etggaetgea gaagaacaag 1140 gtggagttgg tgccttccag tattatcagt tacacaaggt aaatatttcc aactacagtc 1200 tggtgatgga gtctgacgca ggaaccttct tacccactgg gctgcaattc actggcagtg 1260 aaaaggccag ggccatcatg gaggaggtta tgagcctgct gcagcccctc aatatcactc 1320 aggteetgag ecatggagaa gggacagaca teaacttttg gatecaaget ggagtgeetg 1380 gagccagtet acttgatgae ttatacaagt atttettett ceateactee caeggagaea 1440 ccatgactgt ccatgggatc caaacgcaga tgaatgtttg ctgctgctgt tttgggctgt 1500 tgtttcttat gtgtgttgca gacatggaag aaatgctgcc taggtcctag aaacagtaag 1560 aaagaaaccg ttttcatgct tctggcccag gaatccctgg gtctgcaact ttgggaaaac 1620 ccctcttcac ataaccattt tcatcccaat tcatcttcaa agcacaactc taatttcatg 1680 ctttctcgtt attatctttc ttggatactt tccaaattct ctggattcta ggaaaaaggg 1740 aatcattete eccteecete eccacecaca tagaatcaac atatggtagg gattacagtg 1800 ggggcatttt ctttatatca cctcttaaaa acattgtttc cactttaaaa agttaaacac 1860 ttaataaatt tttggaaata atctgaaaaa aaaaa 1895

```
<210> 539
<211> 2730
<212> DNA
<213> Homo sapiens
```

```
<400> 539
tttttttgtt ttttattttt tctttttaag tttgattttt tttatttcaa aatgctttgc
 60
aattaaatga attactgttc agaagtctcc cacttttcat acaaaaatac tgtgctactg
 120
atacagttga aaaaattcaa tgatgtctct cctgcaggag aaattcacag catccccagg
 180
gtcaacatga aatctggccc tgtccccgcc actgggggct ccccaggcct gcgttcctga
 240
taaactggga caggttttcc aggcactgac caactatcca ccaagggtcc tctgcctcca
 300
agacagaccc tgaatcaata gcagcaactt tcccatattt catgtaggga tatgtggagg
 360
gggacaggaa ctctcccatt tccccagetg ggcctactac ctgcctgccc tgttcactct
 420
ggtgccatga ggcaggttca gtgattgatt ggtcttgcct gctgcagagg acctggccag
 480
ctccagaagg gtcactcatc aggtcctgca aaggtctgta tcattaatca gtgtcatcag
 540
tgtcctcaga agacactage agagtccagg gtgatgcgtt cagccacaag cacaaagact
 600
gctttttcta aagagcagga tgaggtgaat gtggggaacgg aaagcagttg tcacgaaggc
 660
tgtgtggctc tgctggggga gaggcatcca cagtctgtgc caaggaggta cctcaccctg
 720
tgcagcagga gcgttaaggc caaaaaacaa aaggggccaa cagaaaacag ctcaggtgat
 780
gggggagga gcagcaagaa aaaacgacaa ccgagaccaa ctgaaggttc ggtcaggaat
 840
gcaggetett cegtetatae agtgtttaaa aagateeaaa tgtgaetgag ateatteeag
 900
cctgcacttt ttatttgtag gcagaaggaa cgggataggt tgaggggcat gacgggggct
 960
ctcgccacct cttgtctgca cctctggaac aggtgggagc cgaatcattc aagtcctacc
 1020
tggtcagact cccaaccacg ctgaggcagg cccttacctt ggattgcctc atgggcctcc
 1080
ctcttgaaaa gaccctcact ctgtttggaa aagatccctt agcagccata atcaggaaag
 1140
agactctaga gcgagcccag ggcttcccca aagcgggatt ttctgtcctg ttttcagctg
 1200
gaaattgaag teettggggg eetegaagat gageaegatg gtggageeca ggttgaacte
 1260
geccaggtge tegecettae geatggggae geceteteta ttggtgtgeg teacgaaget
 1320
gaagtcattg taggagccct tgctgtgcct tgggctgttt gtgtgcaggt cccggtcaaa
 1380
gtagatgcga atggagcccc agttgggtgg cccccacagc tgtcagtgag aagaagccat
 1440
gtttccagtc ccccgtcagg accacccgct cgttatggca gaagagctct ttgatccagc
 1500
gagccatgcc agggttcact gacatcaggg agcctgggaa gtggcgccgg tgggacacag
 1560
tccagtcggt gggggagtgg aagcagtggt agtccccagg ggccaggtag atgacacagt
 1620
gatagagete attecettee egggtgaeea getggttett gaaggagtea caegaegegg
 1680
ctggtgggaa gggcaggtcc tctgtgcaca tacgcgggcc caggaacgac tccagggagt
 1740
aggtgacccc ctttacctgc tccacctcac agttcttcac ctgcccaaag ttgaggatcc
 1800
ttccatccga tgggctaatc acgctgtgca ggccacagac aggccgggcc tgcggcttca
 1860
gettgegeeg gaagaacteg etgaggttge ggtagtgatg eaggteetee acageggeet
 1920
ctttcatgtt caccccaaac gtccagatgt acaggctgta gacgggcctg cgcagccagt
 1980
gtggcagete cacetgattg aggegacece aggecegtga cageaagege gttggcaetg
 2040
acttgtacaa agccaccctg cttacgggcc tccatcccac ccggctgagc ggtctgaggg
 2100
cgccgaaggg caggaggtag tagaggacgg tcaagggcca ggagcgcagt ttcagagcgg
 2160
gtctggacat gcagctcagc tgccccagcc tccgcctcag ggccagctgg gggaagtgca
 2220
accatttege egegeggage tetggteett geegegeete tgaetgaeae atcatgggee
 2280
ggcgcaggga gggcggggcg aggctcactc gatcactccc tttgttttcc tctttcctcc
 2340
cettecceg agecageaga tetectgtge tgtcactget ceagggeete tgeetetgeg
 2400
aggetggttg gtggegeege tteetgggtt tggtteagte teggtggete acagggtgea
 2460
gaatagaggg tcagggccgc gcccggcagg agataagatg tggaggaagt gagctcacgc
 2520
agcccgggcc gtgcccacgt ggggacggaa aaaaagccca cgactcgctc aaccttgtcc
 2580
geggggetee teaggeeggg geegegtegt cacagetggg agageecace tgegaeegaa
 2640
ggccctagaa gggcaccccc acccggcact ggccctctga gcgggcaggg tggggcgcct
 2700
ccctgagaag tcacctgggg ctccacgaaa
 2730
```

<210> 540 <211> 3707 <212> DNA <213> Homo sapiens

<400> 540

```
ggctgcccga gcgagcgttc ggacctcgca ccccgcgcgc cccgcgccgc cgccgccgcc
ggcttttgtt gtctccgcct cctcggccgc cgccgcctct ggaccgcgag ccgcgcgcg
 120
cgggaccttg gctctgccct tcgcgggcgg gaactgcgca ggacccggcc aggatccgag
 180
agaggegegg gegggtggee gggggegeeg eeggeeeege catggagete egggeeegag
 240
getggtgget getatgtgeg geegeagege tggtegeetg egeeegeggg gaeeeggeea
 300
gcaagagccg gagctgcggc gaggtccgcc agatctacgg agccaagggc ttcagctcga
 360
gcgtacgtgc cccaggcgga gatctcgggt gagcacctgc ggatctgtcc ccagggctac
 420
acctgctgca ccagcgagat ggaggagaac ctggccaacc gcagccatgc cgagctggag
 480
accgegetee gggacageag cegegteetg caggecatge ttgccaccca getgegeage
 540
ttcgatgacc acttccagca cctgctgaac gactcggagc ggacgctgca ggccaccttc
 600
cccggcgcct tcggagagct gtacacgcag aacgcgaggg ccttccggga cctgtactca
 660
gagetgegee tgtactaceg eggtgecaac etgeacetgg aggagaeget ggeegagtte
 720
tgggcccgcc tgctcgagcg cctcttcaag cagctgcacc cccagctgct gctgcctgat
 780
gactacctgg actgectggg caagcaggec gaggegetge ggecettteg gggaggecee
 840
gagtagaget gegeetgegg gecaeceagt geegttegtg getgetegeg teetttgtge
 900
agggcctggg cgtggccagc cgacgtggtc cggaaagtgg ctcaggtccc cctgggccgc
 960
ggagtgette gagagetgta attgaagetg ggtettaetg tggetteaet gegtgggagt
 1020
ccccggcgcc aggccatgcc ctgactattg ccgaaatgtg ctcaagggct gccttgccaa
 1080
ccaggccgac ctggacgccg agtggaggaa cctcctggac tccatggtgc tcatcaccga
 1140
caagttetgg ggtacategg gtgtggagag tgtcategge agegtgeaca egtggetgge
 1200
ggaggccatc aacgccctcc aggacaacag ggacacgctc acggccaagg tcatccaggg
 1260
ctgcgggaac cccaaggtca acccccaggg ccctgggcct gaggagaagc ggcgccgggg
 1320
caagetggee cegegggaga ggecaeette aggeaegetg gagaagetgg teteegaage
 1380
caaggeccag etcegegacg tecaggactt etggateage etcecaggga caetgtgcag
 1440
tgagaagatg gccctgagca ctgccagtga tgaccgctgc tggaacggga tggccagagg
 1500
ccggtacctc cccgaggtca tgggtgacgg cctggccaac cagatcaaca accccgaggt
 1560
ggaggtggac atcaccaagc cggacatgac catccggcag cagatcatgc agctgaagat
 1620
catgaccaac cggctgcgca gcgcctacaa cggcaacgac gtggacttcc aggacgccag
 1680
tgacgacggc agcggctcgg gcagcggtga tggctgtctg gatgacctct gcggccggaa
 1740
ggtcagcagg aagagctcca gctcccggac gcccttgacc catgccctcc caggcctgtc
 1800
agagcaggaa ggacagaaga cctcggctgc cagctgcccc cagcccccga ccttcctcct
 1860
geceetecte etetteetgg eeettacagt agecaggece eggtggeggt aaetgeecea
 1920
aggececagg gacagaggee aaggaetgae tttgecaaaa atacaacaca gacgatattt
 1980
aattcacctc agcctggaga ggcctggggt gggacaggga gggccggcgg ctctgagcag
 2040
gggcaggcgc agaggtccca gccccaggcc tggcctcgcc tgcctttctg ccttttaatt
 2100
ttgtatgagg tcctcaggtc agctgggagc cagtgtgccc aaaagccatg tatttcaggg
 2160
acctcagggg cacctcegge tgcctagccc teccccagc tccctgcacc gccgcagaag
 2220
cagececteg aggeetacag aggaggeete aaageaacee getggageee acagegagee
 2280
tgtgcettcc tccccgcctc etcccactgg gactcccagc agageccacc agccagecet
 2340
ggcccacccc ccagcctcca gagaagcccc gcacgggctg tctgggtgtc cgccatccag
 2400
ggtctggcag agcctctgag atgatgcatg atgccctccc ctcagcgcag gctgcagagc
 2460
ccggccccac ctccctgcgc ccttgagggg ccccagcgtc tgcagggtga cgcctgagac
 2520
agcaccactg ctgaggagtc tgaggactgt cctcccacag acctgcagtg aggggccctc
 2580
catgcgcaga tgaggggcca ctgacccacc tgcgcttctg ctggaggagg ggaagctggg
 2640
cccaaaggcc cagggaggca gcgtgggctc tgccaatgtg ggctgcccct cgcacacagg
 2700
gctcacaggg caggcettge tggggtccag ggctgttgga ggaccccgag ggctgaggag
 2760
cagccaggac ccgcctgctc ccatcctcac ccagatcagg aaccagggcc tccctgttca
 2820
cggtgacaca ggtcagggct cagagtgacc ctcagctgtc acctgctcac agggatgctg
 2880
gtggctggtg agaccccgca ctgcagacgg gaatgcctag gtcccttccc gacccagcca
 2940
gctgcagggc acggggacct ggatagttaa gggcttttcc aaacatgcat ccatttactg
 3000
acactteetg teettgttea tggagagetg ttegeteete ecagatgget teggaggeee
 3060
gcagggccca ccttggaccc tggtgacctc ctgtcactca ctgaggccat cagggccctg
 3120
```

```
ccccaggcct ggacgggccc tecttecete etgtgcccca getgccagge ggccetgggg
aggggtggtg tggtgttggg aaggggtcct gcagggggag gaggacttgg agggtctggg
ggcagctgtc ctgaaccgac tgaccctgag gaggccgctt agtgctgctt tgcttttcat
 3300
caccetecce cacagites egagetecce getigetegt cagetecca igentiete
 3360
totggaacot gactttagat gttttgggat caggagcoco caacacaggo aagtocacoo
 3420
cataataacc ctgccagtgc cagggtgggc tggggactct ggcacagtga tgccgggcgc
 3480
caggacagea geacteeege tgeacacaga eggeetaggg gtggegetea gaccecacee
 3540
tacgeteate tetggaaggg geageeetga gtggteaetg gteagggeag tggceaagee
 3600
tgctgtgtcc ttcctccaca aggtcccccc accgctcagt gtcagcgggt gacgtgtgtt
 3660
cttttgagtc cttgtatgaa taaaaggctg gaaacctaaa aaaaaaa
 3707
```

<210> 541 <211> 620 <212> DNA <213> Homo sapiens

<400> 541 ttttttttt ttttggggag ttgcaacaat tcatctttat ttcttatttt cctctggaga 60 tgcagaattt ggtatatttc accccaggta tatttgggat agttggctcc tcgctgggtc 120 aggatggctg ggtgccttct cccctggcat ggttctcttc tctgcagggc gaggggcagg 180 gagetagtaa aacetegeaa tgacageeeg caatggeaga cecaatggag cecaggatga 240 acttggtcaa teeggagaag teeagttget eecagtgaet geagaagtag eeacaaagge 300 tgccccgggg aaactccacc cccattgggc aatggccgcc gcggacatca tcttggctgc 360 tatggaggac gaggegattc ccgcgcgcag ttgaagcccc atggcacttg agcaccatgg 420 gcacagcetg catgggccac caactettca atcacaactt gtagcaatce tggccagggg 480 caaaactacg gcagagccag aggccacccc tgaccacttt ggccacactg gtcacttgct 540 gatttagtga gagcagaggc ctccatgcct gctcgggtta attccgtggc ttagagagta 600 agagatecte aactteaget 620

<211> 2475 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(2475) <223> n = a,t,c or g

<210> 542

<400> 542 agagggaggg aacgatttaa ggagcgaata ctactggtaa actaatggaa gaaatctgct 60 gcaccactgg atattgggag tgtgtggcat gcatcctcat catcaggaaa ctctaaaaaa 120 gaaccgagtg gtgctagcca aacagctgtt gttgagcgaa ttgttagaac atcttctgga 180 gaaggacatc atcaccttgg aaatgaggga gctcatccag gccaaagtgg gcagtttcag 240 300 ccagaatgtg gaactcctca acttgctgcc taagaggggt ccccaagctt ttgatgcctt ctgtgaagca ctgagggaga ccaagcaagg ccacctggag gatatgttgc tcaccaccct 360 ttctgggett cagcatgtac teccacegtt gagetgtgac taegaettga gtcteeettt 420 teeggtgtgt gagteetgte eeetttaeaa gaageteege etgtegaeag ataetgtgga 480

```
acacteceta gacaataaag atggteetgt etgeetteag gtgaageett geacteetga
attttatcaa acacacttcc agctggcata taggttgcag tctcggcctc gtggcctagc
 600
actggtgttq agcaatgtgc acttcactgg agagaaagaa ctggaatttc gctctggagg
 660
ggatgtggac cacagtacte tagtcaccet ettcaagett ttgggetatg aegtecatgt
 720
tetatgtgae cagaetgeae aggaaatgea agagaaactg cagaattttg cacagttace
 780
tgcacaccga gtcacggact cctgcatcgt ggcactcctc tcgcatggtg tggagggcgc
 840
catctatggt gtggatggga aactgctcca gctccaagag gtttttcagc tctttgacaa
 900
cgccaactgc ccaagcctac agaacaaacc aaaaatgttc ttcatccagg cctgccgtgg
 960
aggtgctatt ggatecettg ggcaectect tetgttcact getgccaceg cetetettge
 1020
tctatgagac tgatcgtggg gttgaccaac aagatggaaa gaaccacgca ggatcccctg
 1080
ggtgcgagga gagtgatgcc ggtaaagaaa agttgccgaa gatgagactg cccacgcgct
 1140
cagacatgat atgcggctat gcctgcctca aagggactgc cgccatgcgg aacaccaaac
 1200
gaggttcctg gtacatcgag gctcttgctc aagtgttttc tgagcgggct tgtgatatgc
 1260
acgtggccga catgctggtt aaggtgaacg cacttatcaa ggatcgggaa ggttatgctc
 1320
ctggcacaga attccaccgg tgcaaggaga tgtctgaata ctgcagcact ctgtgccgcc
 1380
acctetacet gtteccagga caccetecca catgatgtea cetecceate atecaegeea
 1440
agtggaagcc actggaccac aggaggtgtg atagagcctt tgatcttcag gatgcacggt
 1500
ttctgttctg cccctcagg gatgtgggaa tctcccagac ttgtttcctg tgcccatcat
 1560
ctctgccttg gagtgtggga ctccaggcca gctccttttc tgtgaagccc tttgcctgta
 1620
gagecagect tggttggace tattgccagg aatgtttcag etgcagttga agagectgac
 1680
aagtgaagtt gtaaacacag tgtggttatg gggagagggc atataaattc cccatatttg
 1740
tgttcagttc cagcttttgt agatggcact ttagtgattg cttttattac attagttaag
 1800
atgtcttgag agaccatctc ctatctttta tttcattcat atcctccgcc ctttttgtcc
 1860
tagagtgaga gtttggaagg tgtccaaatt taatgtagac attatctttt ggctctgaag
 1920
aagcaaacat gactagagac gcaccttgct gcagtgtcca gaagcggcct gtgcgttccc
 1980
ttcagtactg cagcgccacc cagtggaagg acactcttgg ctcgtttggg ctcaaggcac
 2040
cgcagcctgt cagccaacat tgccttgcat ttgtacctta ttgatctttg cccatggaag
 2100
teteaaagat etttegttgg ttgtttetet gagetttgtt aetgaaatga geetegtggg
 2160
gagcatcaga gaaggccagg aagaatggtg tgtttcccta gactctgtaa ccacctctct
 2220
gtctttttcc ttcctgagaa acgtccatct ctctccctta ctattcccac tttcattcaa
 2280
tcaacctgca cttcatatct agatttctag aaaagcttcc tagcttatct ccctgcttca
 2340
tatetetece ttetttaeet teattteate etgttggetg etgecaecaa atetgtetag
 2400
aatcctgctt tacaggatca tgtaaatgct caaagatgta atgtagntct ttgttcctgc
 2460
tttctctttc agtat
 2475
```

```
<210> 543
<211> 862
<212> DNA
<213> Homo sapiens
```

```
<400> 543
gttttttttg tggaccccac tcaaaacgta tttattgaat gacaatttct tagtacagtg
 60
tatactatcc ccaccaaagg aaaaaaacat taagagcaaa acaaggggtg gggggtggga
 120
atattgctaa agaaaattct aataagagtt atctataatt atagctttta tttattatat
 180
cttcattcaa tcatttatat cacaattagt ctaattgcat tcttgatgaa taactgactt
 240
cagcaaagga gtcaatccac taagcaaagt tcatatatat ttttcaagat gttcttcttt
 300
cgatcttgag tctttactct cctggattcc caagagaact gcattagcct ctagtacagt
 360
tgtaatctgt tgttgctccc aggaacctag acgtaagttc aagatctaat agccgcaaac
 420
cggaccctgg ttectttctg ggtatttetc tecatecact tetggtettc tacatacaca
 480
atgaaacttt ccaccaaaat ctatgtacca gatcattctc cacaatatga aagatccgtc
 54.0
caatgaccag tttatccttt gcaggtccca tctgtgtaag aggagaatgt ctcagcatag
 600
atgcaaagga ttccacattt tttggagaac ccttctgtag gggctccacc ttctgtagaa
 660
gctccgagtg ccgctccaac gcgctcgcga aaccgcctgc gcgcgtctta ggctccttgg
 720
cattggaact accactttcg gatccactct cagtgcctac accccgaaag ggcctgaaga
 780
agagaaacac tcgcagaaaa tggctctcgg cagccacagc acgggtccga cacagcgccg
 840
ccatgacttc tttacctctg ac
 862
```

<210> 544 <211> 5656 <212> DNA <213> Homo sapiens

## <400> 544 60 aatteeggge geeagteeeg eteegegeeg egeegeteeg eteeggeteg ggeteegget egecteggge tgggeteggg etcegggggg ggtgteecce gtgeegggte eeggtatggg: 120 tggggacgct ccaaccatgg cccgtgccca ggcgctcgtg ttggaactca ccttccagct 180 240 etgegegeeg gagacegaga eteeggaagt tggttgeace ttegaggagg gaagtgaeee agcagtgccc tgcgagtaca gccaggccca gtacgatgac ttccagtggg agcaagtgcg 300 360 aatecaeeet ggeaeeeggg caeetgegga eetgeeeeae ggeteetaet tgatggteaa cactteccag catgecccag gecagegage ceatgteate ttecagagee tgagegagaa 420 tgatacccac tgtgtgcagt tcagctactt cctgtacagc cgggacgggc acagcccggg 480 caccetgggc gtctacgtgc gcgttaatgg gggccccetg ggcagtgctg tgtggaatat 540 600 gactggatec caeggeegte agtggeacea ggetgagetg getgteagea etttetggee 660 caatgaatat caggtgctgt ttgaggccct catctcccca gaccgcaggg gctacatggg cctagatgac atcctgcttc tcagctaccc ctgcgcaaag gccccacact tctcccgcct 720 gggcgacgtg gaggtcaacg cgggccagaa cgcgtcgttc cagtgcatgg ccgcgggcag 780 ageggeegag geegaaeget teetettgea aeggeagage ggggegetgg tgeeggegge 840 900 gggcgtgcgg cacatcagcc accggcgctt cctggccact ttcccgctgg ctgccgtgag 960 ccgcgccgag caggacctgt accgctgtgt gtcccaggcc ccgcgcggac gcgggacgtc 1020 teteaaette geggagttta tggteaagag cececaaete ceategegee cecacagetg 1080 ctgcgtgctg gccccaccta cctcatcatc cagctcaaca ccaactccat cattggcgac 1140 gggccgatcg tgcgcaagga gattgagtac cgcatggcgc gcgggccctg ggctgaggtg cacgccgtca gcctgcagac ctacaagctg tggcacctcg accccgacac agagtatgag 1200 atcagegtge tgeteaegeg teeeggagae ggeggeaetg geegeeetgg geeaeeeete 1260 atcageegea ceaaatgege agageecatg agggeeeeca aaggeetgge ttttgetgag 1320 1380 atccaggece gtcagetgae cetgeagtgg gaaccaetgg getacaaegt gaegegttge cacacctata ctgtgtcgct gtgctatcac tacaccctgg gcagcagcca caaccagacc 1440 ataccgagag tgtgtgaaga cagagcaagg tgtcagccgc tacaccatga agaacctgct 1500 gccctatcgg aacgttcacg tgaggcttgt cctcactaac cctgaggggc gcaaagaggg 1560 1620 caaggaggtc actttccaga cggatgagga tgtgcccagt gggattgcag ccgagtccct gacetteact ceaetggagg acatgatett ceteaagtgg gaggageece aggageecaa 1680 1740 tggtctcatc acccagtatg agatcagcta ccagagcatc gagtcatcag acccggcagt gaacgtgcca ggcccacgac gtaccatete caageteege aatgagaeet accatgtett 1800 1860 ctccaacctg cacccaggca ccacctacct gttctccgtg cgggcccgca caggcaaagg cttcggccag gcggcactca ctgagataac cactaacatc tctgctccca gctttgatta 1920 tgccgacatg ccgtcacccc tgggcgagtc tgagaacacc atcaccgtgc tgctgaggcc 1980 ggcacagggc cgcggtgcgc ccatcagtgt gtaccaggtg attgtggagg aggagcaggg 2040 2100 cagcaggagg ctgcggcggg agccaggtgg acaggactgc ttcccagtgc cattgacctt 2160 cgaggcggcg ctggcccgag ggctggtgga ctacttcggg gccgaactgg cggccagcag tctacctgag gccatgccct ttaccgtggg tgacaacaag acctaccgag gcttctggaa 2220 cccaccactt gagcctagga aggcctatct catctacttc caggcagcaa gccacctgaa 2280 gggggagacc cggctgaatt gcatccgcat tgccaggaaa gctgcctgca aggaaagcaa 2340 geggeeetg gaggtgteee agagategga ggagatgggg ettateetgg geatetgtge 2400 2460 aggggggett getgteetea teetteteet gggtgeeate attgteatea teegeaaagg gagagaccac tatgcctact cctactaccc gaagccggtg aacatgacca aggccaccgt 2520 2580 caactacege caggagaaga cacacatgat gagegeegtg gacegeaget teacagacea 2640 gagcaccetg caggaggacg ageggetggg cetgteette atggacacce atggetacag 2700 caccegggga gaccagegea geggtggggt cactgaggee ageageetee tggggggete 2760 cccgaggcgt ccctgtggcc ggaagggctc cccataccac acggggcagc tgcaccctgc 2820 ggtgcgtgtc gcagaccttc tgcagcacat caaccagatg aagacggccg agggttacgg 2880 cttcaagcag gagtatgaga gcttctttga aggctgggac gccacaaaga agaaagacaa ggtcaagggc agccggcagg agccaatgcc tgcctatgat cggcaccgag tgaaactgca 2940

```
cccgatgctg ggagacccca atgccgacta cattaatgcc aactacatag atattcggat
 3000
aaaccgagaa ggttaccaca ggtcaaacca cttcatagcc actcaagggc cgaagcctga
 3060
gatggtctat gacttctggc gtatggtgtg gcaggagcac tgttccagca tcgtcatgat
 3120
caccaagctg gtcgaggtgg gcagggtgaa atgctcacgg tactggccgg aggactcaga
 3180
cacctacggg gacatcaaga ttatgctggt gaagacagag accctggctg agtatgtcgt
 3240
gegeaetttt geeetggage ggagaggeta etetgeeegg caegaggtee geeagtteea
 3300
cttcacageg tggccagage atggcgtece ctaccatgcc acggggetge tggctttcat
 3360
ccggcgcgtg aaggetteca ccccacetga tgccgggccc attgtcatec actgcagege
 3420
gggcaccggc cgcacaggtt gctatatcgt cctggatgtg atgctggaca tggcagagtg
 3480
tgagggcgtc gtggacattt acaactgtgt gaagactctc tgctcccggc gtgtcaacat
 3540
gatecagaet gaggageagt acatetteat teatgatgea atectggagg cetgeetgtg
 3600
tggggagacc accatccctg tcagtgagtt caaggccacc tacaaggaga tgatccgcat
 3660
tgatcctcag agtaattcct cccagctgcg ggaagagttc cagacgctga actcggtcac
 3720
cccgccgctg gacgtggagg agtgcagcat cgccctgttg ccccggaacc gcgacaagaa
 3780
ccgcagcatg gacgtcctgc cgcccgaccg ctgcctgccc ttcctcatct ccactgatgg
 3840
ggactccaac aactacatta atgcagcct gactgacagc tacacacgga gtgcggcctt
 3900
catcgtgacc ctgcacccgc tgcagagcac cacgcccgac ttctgggggc tggtctacga
 3960
ttacgggtgc acetecateg tcatgctcaa ccagetgaac cagtccaact ccgcctggcc
 4020
ctgcctgcag tactggccag agccaggccg gcagcaatat ggcctcatgg aggtggagtt
 4080
tatgteggge acagetgatg aagaettagt ggetegagte tteegggtge agaacatete
 4140
teggttgeag gaggggeace tgetggtgeg geaetteeag tteetgeget ggtetgeata
 4200
ccgggacaca cctgactcca agaaggcctt cttgcacctg ctggctgagg gggacaagtg
 4260
gcaggccgag agtggggatg ggcgcaccat cgtgcactgc ctaaacgggg gaggacgcag
 4320
eggeacette tgegeeetge gecaeggtee tggagatgat cegetgeeac aacttggtgg
acgttttctt tgctgccaaa accctccgga actacaaacc caacatggtg gagaccatgg
atcagtacca cttttgctac gatgtggccc tggagtactt ggaggggctg gagtcaagat
 4500
ageggggeee tggeetgggg cacceaetge acaeteaggg ceagaceeae cateetggae
 4560
tggcgaggaa gatcagtgcc tcctgctctg cccaaacaca ctcccatggg gcaagcactg
 4620
gagtggatgc tgggctatct tgctcccct tccactgtgg gcagggcctt tcgcttgtcc
 4680
 4740
catgggcggg tggtgggcca aggaggagct tagcaagtet gcagcccagc cccacctcca
tagggteetg caggeetgtg etgagaggee tggtgetgee tggeagagtg acaaaggete
 4800
aggacggctg gctctggggg actcaggcca agccccttgg caccatcctg gcttttggca
 4860
gggatgagtg aggccctgca gagagcatcc caggccaagg ttcccactca gcctgcccc
 4920
tetgeatgtg ggtagaggat gtaetgggae ttggeattta ggatteeate tggeecagee
 4980
cctgaaggtc ctggggaagc aggtctcaat tctgaatagc cagtggggca cactgactgt
 5040
ccetcccag gggaactgca gegecectec tecccaetgc cceetgcaac eccetgagat
 5100
attitigetea etateceete ceccactige ticectgata igigetetga geticectga
 5160
accaggatet geetattact getgtgeece atgggggget cettecetge etgacecaet
 5220
gttgcagaat gaagtcacct cgccccctc ttcctttaat cttcaggcct cactggcctg
 5280
tectgetcag ettgggecag tgacaatetg caaggetgaa caacageeee tggggttgag
 5340
geceetgtgg eteetggtea ggetgeeegt tgtggggagg ggeagtgtta gageaggget
 5400
ggtcataccc tctggagttc agaggaagag gtaggaccag tgcttttttg tttcttttgt
 5460
tatttttggt tgggtgggtg ggaaggtctc tttaaaatgg ggcaggccac acccccattc -
 5520
cgtgcctcaa tttccccatc tgtaaactgt agatatgact actgacctac ctcgcagggg
 5580
getgtgggga ggcataaget gatgtttgta aagegetttg taaataaaeg tgetetetga
 5640
atgcctaaaa aaaaaa
 5656
```

```
<210> 545
<211> 2735
<212> DNA
<213> Homo sapiens
```

<400> 545

tttttttgtt ttttattttt tctttttaag tttgattttt tttatttcaa aatgctttgc 60
aattaaatga attactgttc agaagtctcc cacttttcat acaaaaatac tgtgctactg 120
atacagttga aaaaattcaa tgatgtctct cctgcaggag aaattcacag catccccagg 180

```
gtcaacatga aatctggccc tgtccccgcc actgggggct ccccaggcct gcgttcctga
 240
taaactggga caggttttcc aggcactgac caactatcca ccaagggtcc tctgcctcca
 300
agacagaccc tgaatcaata gcagcaactt tcccatattt catgtaggga tatgtggagg
 360
gggacaggaa ctctcccatt tccccagctg ggcctactac ctgcctgccc tgttcactct
 420
ggtgccatga ggcaggttca gtgattgatt ggtcttgcct gctgcagagg acctggccag
 480
ctccagaagg gtcactcatc aggtcctgca aaggtctgta tcattaatca gtgtcatcag
 540
tgtcctcaga agacactage agagtecagg gtgatgegtt cagccacaag cacaaagact
 600
gctttttcta aagagcagga tgaggtgaat gtgggaacgg aaagcagttg tcacgaaggc
 660
tgtgtggctc tgctggggga gaggcatcca cagtctgtgc caaggaggta cctcaccctg
 720
tgcagcagga gcgttaaggc caaaaaacaa aaggggccaa cagaaaacag ctcaggtgat
 780
ggggggagga gcagcaagaa aaaacgacaa ccgagaccaa ctgaaggttc ggtcaggaat
 840
gcaggctctt ccgtctatac agtgtttaaa aagatccaaa tgtgactgag atcattccag
 900
cctgcacttt ttatttgtag gcagaaggaa cgggataggt tgaggggcat gacgggggct
 960
ctegceacet cttgtetgea cetetggaac aggtgggage egaateatte aagteetace
 1020
tggtcagact cccaaccacg ctgaggcagg cccttacctt ggattgcctc atgggcctcc
 1080
ctcttgaaaa agaccctcac tctgtttgga aaagatccct tagcagccat aatcaggaaa
 1140
gagactetag agegageeca gggetteece aaageggatt ttetgteetg tttteagetg
 1200
gaaattgaag toottggggg ootogaagat gagcacgatg gtggagcoca ggttgaaact
 1260
cgccccaggt gctcgcccct taacgccatg gggacgccct ctctattggt gtgcgtcacg
 1320
aagetgaagt cattgtagga gecettgetg tgeettggge tgtttgtgtg caggteeegg
 1380
tcaaagtaga tgcgaatgga gccccagttg ggtggccccc acagctgtca gtgagaagaa
 1440
gccatgtttc cagtcccccg tcaggaccac ccgctcgtta tggcagaaga gctctttgat
 1500
ccagcgagcc atgccagggt tcactgacat cagggagcct gggaagtggc gccggtggga
 1560
cacagtccag teggtgggg agtggaagca gtggtagtcc ecaggggcca ggtagatgac
 1620
acagtgatag ageteattee ettecegggt gaecagetgg ttettgaagg agteacaega
 1680
cgcggctggt gggaagggca ggtcctctgt gcacatacgc gggcccagga acgactccag
 1740
ggagtaggtg accecttta cetgetecae etcaeagtte tteaeetgee caaagttgag
 1800
gatectteca teegatggge taateaeget gtgeaggeea eagaeaggee gggeetgegg
 1860
cttcagcttg cgccggaaga actcgctgag gttgcggtag tgatgcaggt cctccacagc
 1920
ggcctctttc atgttcaccc caaacgtcca gatgtacagg ctgtagacgg gcctgcgcag
 1980
ccagtgtggc agctccacct gattgaggcg accccaggcc cgtgacagca agcgcgttgg
 2040
cactgacttg tacaaagcca ccctgcttac gggcctccat cccacccggc tgagcggtct
 2100
gagggcgccg aagggcagga ggtagtagag gacggtcaag ggccaggagc gcagtttcag
 2160
agcgggtctg gacatgcagc tcagctgccc cagcctccgc ctcagggcca gctgggggaa
 2220
gtgcaaccat ttcgccgcgc ggagctctgg tccttgccgc gcctctgact gacacatcat
 2280
gggccggcgc agggaggcg gggcgaggct cactcgatca ctccctttgt tttcctcttt
 2340
ceteceette eccegageea geagatetee tgtgetgtea etgeteeagg geetetgeet
 2400
etgegagget ggttggtgge geegetteet gggtttggtt cagteteggt ggeteacagg
 2460
gtgcagaata gagggtcagg gccgcgcccg gcaggagata agatgtggag gaagtgagct
 2520
cacgcagccc gggccgtgcc cacgtgggga cggaaaaaaa gcccacgact cgctcaacct
 2580
tgtccgcggg gctcctcagg ccggggccgc gtcgtcacag ctgggagagc ccacctgcga
 2640
ccgaaggccc tagaagggca cccccacccg gcactggccc tctgagcggg cagggtgggg
 2700
cgcctccctg agaagtcacc tggggctcca cgaaa
 2735
```

```
<210> 546
<211> 4146
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(4146)
```

<223> n = a,t,c or g

<400> 546
gagacatggc ccgggcagtg gctcctggaa gaggaacaag tgtgggaaaa gggagaggaa

accagaacta	aatgacagga	tacaaacaac	ttgagacaca	aaaaqaqaaq	cattcctctc.	120
gastagagaa	attgcctcgc	tactttcttt	totocaadac	adactasaas	ttatacaact	180
	ttggggctct					240
	tetecegegt					300
	tgcgccgtgc					360
taaatgtggc	gatactataa	aaattgaaag	ccccgggtac	cttacatctc	ctggttatcc	420
tcattcttat	cacccaagtg	aaaaatqcga	atggctgatt	caggeteegg	acccatacca	480
gagaattatg	atcaacttca	acceteactt	coatttogag	gacagagact	gcaagtatga	540
ctacataasa	gtcttcgatg	generator	aaatooacat	tttaggggaa	agttctgtgg	600
ccacgcggaa	geceegacg	5 to to to to to	addreggatat	ettttatea	agtitutes	660
	cctcctcctg					
	acacatggtg					720
	cagaactaca					780
aaaatatccc	aacagccttg	aatgcactta	tatttgtctt	tgcgccaaag	atgtcagaga	840
ttatcctggg	attttgaaag	ctttgacctg	gagectgact	caaatcctcc	aggggggatg	900
	acgaccggct					960
	gtggacagaa					1020
						1080
	acaccgacag					
	gtgtctcaga					1140
	ctgaccagat					1200
cgctcccgcc	tgaactaccc	tgagaatggg	tggactcccg	gagaggattc	ctaccgagag	1260
tggatacagg	tagacttggg	ccttctgcgc	tttgtcacgg	ctgtcgggac	acagggcgcc	1320
	aaaccaagaa					1380
	actggatcac					1440
	cagatgttgt					1500
						1560
	ctgcaacttg					
	attatccttg					1620
tcccagatca	catcatccaa	ccaaggggac	agaaactgga	tgcctgaaaa	catccgcctg	1680
gtaaccagtc	gctctggctg	ggcacttcca	cccgcacctc	attcctacat	caatgagtgg	1740
ctccaaatag	acctggggga	ggagaagatc	gtgaggggca	tcatcattca	gggtgggaag	1800
	acaaggtgtt					1860
	tgatcatgga					1920
	cacctgaget					1980
						2040
	gagccactca					2100
	ctacagctgg					
	ccaactgcca					2160
	ccacagaaaa					2220
acatatggtt	ttaactgtga	atttggctgg	ggctctcaca	agaccttctg	ccactgggaa	2280
catgacaatc	acgtgcagct	caagtggagt	gtgttgacca	gcaagacggg	acccattcag	2340
gatcacacag	gagatggcaa	cttcatctat	tcccaagctg	acgaaaatca	gaagggcaaa	2400
	tggtgagccc					2460
	tgtctgggtc					2520
	acgatcagct					2580
						2640
	tcttgctcca					
	gaaaccttgg					2700
	attgtgcaaa					2760
	ggagcacgcc					2820
aggaagccag	gcaatgtgtt	gaagacctta	gaacccatcc	tcatcaccat	catagccatg	2880
agegeeetgg	gggtcctcct	gggggctgtc	tgtggggtcg	tgctgtactg	tgcctgttgg	2940
	tgtcagaaag					3000
	agttgaaaaa					3060
	agatgaaaag					3120
						3180
	atctttcact					3240
	agcttcaatg					
tcggactcat	gtgcagtcag	cttttttcct	gttggtttca	tttgaataat	cagatgctgg	3300
	aagtatgatt					3360
ctctctcctc	teceetttgt	ggattctttt	tggaaactga	gcgaaatcca	agatgctggc	3420
accaagcgta	ttccgtgtgg	ccctttggat	ggacatgcta	cctgaaaccc	agtgcccaga	3480
	atcaccgcat					3540
acateataca	taggcaaaga	aggattagge	tattttcttt	ttaaagtact	gtagcctcag	3600
tactoototo	gtgtgtcagc	tototttace	aarcaatart	atccaattt	chtactattt	3660
						3720
	gtactaaacc					
	ggccactggg					3780
	agtctatgtc					3840
cattaacgac	ccactctgct	tettgetggt	gaaagccctg	ctctttaatc	aaactctggt	3900

```
ggcccactga ctaagaagaa agtttattt cgtgtgagat gccagccct ccgggcaggc 3960 aagggctctg aagatttggg caacgtgggc ttaaattgtt ctgctttttc tgtagttcaa 4020 tttcatgttt cttgnaccct ttttgtataa agctgcaata ttctctctta ttgttcnttt 4080 catatggaat gtaatttctc gtgccgaatt cctgcaggcn aatcaattaa aatccccccg 4140 gcgccc
```

<210> 547 <211> 1348 <212> DNA <213> Homo sapiens

<400> 547 ggcacgaggg cagtgccctc acctgggcca gccactacca ggagagactg aactccgaac agagetgeet caatgagtgg aeggetatgg cegacetgga gtetetgegg ceteceageg 120 ccgagcctgg cgggtcagtg tgtggagggg agggactggg tggaggggaa ggcaggataa 180 tgcagtgggg ggcatggtgg agaggggaaa gggccccttg actgaggggc tctgctccca 240 ggtcctcaga acaggagcag atggagcagg cgatccgtgc tgagctgtgg aaagtgttgg 300 atgtcagtga cctggagagt gtcacttcca aagagatccg ccaggetctg gagetgegee 360 tggggctccc cctccagcag taccgtgact tcatcgacaa ccagatgctg ctgctggtgg 420 cacagoggga cogagoetco ogcatottoo cocacotota cotgggotoa gagtggaacg 480 cagcaaacct ggaggagctg cagaggaaca ggtagggcta tgagcccctc gggccaccca 540 ccccatcttc ccttctcctg gcctccccgc attgggtggt agccagcttc aaaaacccct 600 ggaccaccct cagcagetge tagetetget tetaactetg teetgggget gttgeeetgg 660 tgtgggetce caggtgggga caggagacet getggecage eccegeceae teteeteece 720 catccacact gtgaaacaag gacagaaaca aagggcetca gecacgecaa gacgagaage agcagegeat actgetgtaa etgeettgga caagcagaaa aaggeteete ttgaatgege 840 ctgtgggccc agctacttgg gaggctgagg caggaggatc gcttgagccc tggagattga 900 ggccgcagtg agccgtgatc acgccactgc actccagcct gggcaacaga gagagaccct 960 gtctctaaaa aataagaaaa aagaaagaga gaaaaagcct tttctccacc ttgccctgtc 1020 tcagggaaga aggaactgcc cttctccccg tggggacctg gctgcctgct ctgacaggta 1080 cctgtcatct gcccaccatg ggcttctggg acctgctgta gcccctgcca cccactgctg 1140 cagacccacc cactctcagc ttagctcaaa agctgttctc taactcattt ctgagaataa 1200 ctgaagggct ggagttgcag ttggcccagc tgtctggacc agatggggaa acaagcccag 1260 cagggcaaga tgattggtct aaggtcgcag ccaggtgaca gctgggtcac ttctcctccc 1320 actgtcactg ctgcctccat ctgacttg 1348

<210> 548 <211> 1864 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(1864) <223> n = a,t,c or g

<400> 548
tttttttttt tttaaaacaa tgtggtactg gtgtattgac agtaatgtcc acgaaacaga

300

60