PRANVEER SINGH INSTITUTE OF TECHNOLOGY, KANPUR

Session 2021-22

Even Semester

B. Tech. II Semester

Engineering Mathematics II (KAS203T)

CO Course Outcome (Please include all COs of your Course here)	
CO	
Number	Define (L1-Remember) the basic terms and concepts of differential equations,
CO1	sequence and series, calculus and functions of complete in differential equations,
CO2	Compute (L2-Understand) various variables in the convergence of sequence and integral residues and explain the process of finding convergence of sequence and
	series including health and society.
CO3	Apply (L3-Apply) the concepts to solve various protections of complex variables equations, sequence and series, calculus and functions of complex variables related to applications in engineering including environment and sustainability.
CO4	problems to prove and verify (LS-Evaluate) analytical results of differential Evaluate) the value of variables involved in various problems of differential equations, sequence and series, calculus and functions of complex variables
	including life-long learning.

Time: 1.5 Hrs.

M. M. 15

Q1. Attempt all questions:

Section A

(1X3 = 3 Marks)

- COI Find the value of b_n if $f(x) = x \sin x$ is expanded in Fourier series defined in $(-\pi, \pi)$. COI Write formula to find volume of a solid of revolution of y = f(x) about x - axis.
- b) COI Find the value of a_0 if f(x) = 1 is expanded in half range cosine series defined in $(0, \pi)$. c)

Section B

Q2. Attempt all questions:

(2X4 = 8 Marks)

Compute volume, by Dirichlet's theorem, of the solid bounded by the coordinate planes CO2 and the surface $\sqrt{\frac{x}{a}} + \sqrt{\frac{y}{b}} + \sqrt{\frac{z}{c}} = 1$.

Compute the volume of a spherical cap of height 'h' cut-off from a sphere of radius 'a'. CO₂ ii)

Compute mass, by Dirichlet's .theorem, of the region enclosed by the plane.

CO₂ $\frac{x^2}{2} + \frac{y^2}{k^2} + \frac{z^2}{c^2} = 1$ in the positive octant. The density at any point being $\rho = kxyz$. bi) Or

Compute area of the surface formed by the revolution of the parabola $y^2 = 4ax$ about the CO₂ ii) x – axis by the arc from the vertex to one end of the latus rectum.

CO₃ Examine the convergence of the series $\frac{1}{123} + \frac{3}{234} + \frac{5}{3.4.5} + \dots$ ci)

- Apply the concept of Fourier series find half range cosine series of $f(x) = x \sin x$ in the **CO3** ii)
- interval $(0,\pi)$. Examine the convergence of the series $1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^3}{10} + \dots + \frac{x^n}{n^2 + 1} + \dots$ CO₃ d i)

Apply Cauchy-Riemann equations to obtain c_1 and c_2 for the following analytic function CO₃ $f(z) = x^2 + c_1 y^2 - 2xy + i(c_2 x^2 - y^2 + 2xy)$ ii)

Section C

(4X1 = 4 Marks)

Q3

Prove that $\iiint \frac{dx \, dy \, dz}{(x+y+z+1)^3} = \frac{1}{2} \log 2 - \frac{5}{16}$, the integral being taken over all positive CO₄ i) values of the variables x, y, z such that x + y + z = 1

Obtain Fourier series of $f(x) = x^2$ in $-\pi \le x \le \pi$ and hence prove that

CO₄ (a) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{6}$ (a) $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \dots = \frac{\pi^2}{12}$