PROBABILIDAD CONDICIONAL

La probabilidad de que ocurra un evento puede verse afectada por la ocurrencia o no de un evento anterior

Sean A y B dos eventos cualesquiera definidos en un espacio muestral S, entonces la probabilidad condicional de que ocurra el evento a dado que ocurrió el evento B, la cual se denota cómo P(A|B)

Se calcula mediante

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Probabilidad de que ocurra A dado que ocurrió B

donde:

 $P(A \cap B)$ Es la probabilidad de que ocurra A y B.

 $P(B) = \text{Es la probabilidad de que ocurra B} P(B) \neq 0$

Por otro lado, sí ocurre B dado que ocurrió A se denota P(A|B) y se calcula por medio de Se calcula mediante

$$P(B|A) = \frac{P(B \cap A)}{P(A)}$$

Probabilidad de que ocurra B dado que ocurrió A

donde:

 $P(A \cap B)$ Es la probabilidad de que ocurra A y B.

 $P(A) = \text{Es la probabilidad de que ocurra A} \quad P(A) \neq 0$

EJEMPLO 1.

Sí él 65% de los estudiantes de primer año de una Universidad cursan matemática, mientras el 48% cursan filosofía y por otro lado el 40% cursan ambas materias.

A) ¿Cuál es la probabilidad de que un estudiante de primer año que se identifica como estudiante de filosofía curse también la materia de matemática?

Solución:

1. Definir los eventos: Evento M= El estudiante cursa matemática Evento F= El estudiante cursa filosofía

$$P\left(F\right) = 0.48$$
 , $P(M) = 0.65$, $P(F \cap M) = 0.40$

2. Calcular probabilidad:

$$P(M|F) = \frac{P(M \cap F)}{P(F)} = \frac{0.40}{0.48} = \frac{5}{6} = 0.8333$$

B) ¿Cuál es la probabilidad de que un estudiante de primer año que se identifica como estudiante de matemática curse también la materia de filosofía?

Solución:

1. Definir los eventos:

Evento M= El estudiante cursa matemática

Evento F= El estudiante cursa filosofía

$$P(F) = 0.48$$
 , $P(M) = 0.65$, $P(F \cap M) = 0.40$

2. Calcular probabilidad:

$$P(M|F) = \frac{P(F \cap M)}{P(M)} = \frac{0.40}{0.65} = 0.61538$$

EJEMPLO 2.

En una oficina de estadística se cuenta con 50 calculadoras científicas, algunas son nuevas y otras antiguas, el número de calculadoras de cada clase se muestra a continuación

CALCULADORA	CIENTIFICA	FINANCIERA	TOTAL
NUEVA	20	15	35
ANTIGUA	10	5	15
TOTAL	30	20	50

Un empleado llegue a la oficina y origen y elige al azar una calculadora.

a) Cuál es cuál es la probabilidad de que sea científica sí se sabe que es nueva
Solución:

1. Definir los eventos:

Evento C= La calculadora es Científica

Evento N= La calculadora es Nueva

$$P(C) = \frac{30}{50}$$
 , $P(N) = \frac{35}{50}$, $P(C \cap N) = \frac{20}{50}$

2. Calcular probabilidad:

$$P(C|N) = \frac{P(C \cap N)}{P(N)} = \frac{\frac{20}{50}}{\frac{35}{50}} = \frac{4}{7} = 0.571428$$

- b) ¿Cuál es la probabilidad de que sea antigua sí se sabe que es financiera? Solución:
 - 1. Definir los eventos:

Evento F= La calculadora es Financiera

Evento A= La calculadora es Antigua.

$$P(F) = \frac{20}{50}$$
 , $P(A) = \frac{15}{50}$, $P(A \cap F) = \frac{5}{50}$

2. Calcular probabilidad:

$$P(A|F) = \frac{P(A \cap F)}{P(F)} = \frac{\frac{5}{50}}{\frac{20}{50}} = \frac{1}{4} = 0.25$$

EJEMPLO 3.

En cierta ciudad el 35% de la población tiene cabello castaños el 20% ojos castaños y el 10% tiene cabellos y ojos castaños . Se selecciona una persona al azar de esa población

- a) Si tiene ojos castaños ¿ cuál es la probabilidad de que también tenga cabellos castaños ? Solución:
 - 1. Definir los eventos:

Evento OC= Tiene ojos castaños

Evento CC= Tiene cabellos castaños.

$$P(OC) = 0.20$$
 , $P(CC) = 0.35$, $P(OC \cap CC) = 0.10$

2. Calcular probabilidad:

$$P(CC|OC) = \frac{P(CC \cap OC)}{P(OC)} = \frac{0.10}{0.20} = 0.50$$

b) Sí tiene cabello Castaño ¿cuál es la probabilidad de que no tenga ojos castaños?

Solución:

1. Definir los eventos:

Evento CC= Tiene cabellos castaños

Evento NO= No tiene ojos castaños.

$$P(CC) = 0.35$$
 , $P(NO) = 1 - 0.20 = 0.80$

Calcular

$$P(NO \cap CC) = P(OC^{C} \cap CC) = P(CC) - P(OC \cap CC)$$

$$P(NO \cap CC) = 0.35 - 0.10 = 0.25$$

2. Calcular probabilidad:

$$P(NO|CC) = \frac{P(NO \cap CC)}{P(CC)} = \frac{0.25}{0.35} = \frac{5}{7} = 0.71428$$

EJERCICIOS

- 1. En una institución educativa el 25% de los alumnos reprobaron matemáticas el 15% reprobó inglés y el 10% de los alumnos Reprobó ambas materias . se selecciona un estudiante al azar
 - a) Si reprobó inglés ¿cuál es la probabilidad que haya reprobado matemáticas ?
 - b) Si reprobó reprobó matemática "¿cuál es la probabilidad que haya reprobado inglés?
- 2. La población de adultos de una pequena ciudad que cumplen con los requisitos para obtener un titulo universitario. Debemos clasificarlos de acuerdo con su genero y situacion laboral.

Los datos se presentan en la tabla

Clasificación de los adultos de una pequeña ciudad

	Empleado	Desempleado	Total
Hombre	460		
Mujer		260	400
Total	600	300	900

Responda lo que se le prgunta a continuación

a) Complete la tabla.

Se seleccionara al azar a uno de estos individuos para que realice un viaje a traves del pais con el fin de promover las ventajas de establecer industrias nuevas en la ciudad.

- b) ¿Cuál es la probabilidad de que sea hombre?
- c) ¿Cuál es la probabilidad de sea una mujer y que tenga empleo?
- d) ¿Cuál es la probabilidad de que no tenga empleo?
- e) ¿Cuál es la probabilidad de que sea hombre o que tenga empleo?
- f) Se selecciona una persona de este grupo y se sabe que tiene empleo ¿Cuál es la probabilidad que sea mujer?
- g) Se selecciona una persona y se observa que es hombre. ¿Cuál es la probabilidad de que este desempleado?

Respuestas ejercicio No. 2:

b) $\frac{5}{9}$ c) $\frac{7}{45}$ d) $\frac{1}{3}$ e) $\frac{32}{45}$ f) $\frac{7}{30}$ g) $\frac{2}{25}$