882 AUTOMATON

5.83 cond_lex_less

DESCRIPTION LINKS **AUTOMATON**

Origin Inspired by [437].

Constraint cond_lex_less(VECTOR1, VECTOR2, PREFERENCE_TABLE)

Type TUPLE_OF_VALS : collection(val-int)

Arguments VECTOR1 : collection(var-dvar) VECTOR2 : collection(var-dvar)

PREFERENCE_TABLE : collection(tuple - TUPLE_OF_VALS)

Restrictions

```
|\mathtt{TUPLE\_OF\_VALS}| \geq 1
required(TUPLE_OF_VALS, val)
required(VECTOR1, var)
required(VECTOR2, var)
|VECTOR1| = |VECTOR2|
|VECTOR1| = |TUPLE_OF_VALS|
required(PREFERENCE_TABLE, tuple)
same_size(PREFERENCE_TABLE, tuple)
distinct(PREFERENCE_TABLE, [])
in_relation(VECTOR1, PREFERENCE_TABLE)
in_relation(VECTOR2, PREFERENCE_TABLE)
```

Purpose

VECTOR1 and VECTOR2 are both assigned to the I^{th} and J^{th} items of the collection PREFERENCE_TABLE such that I < J.

Example

```
\langle 1, 0 \rangle,
\langle 0, 0 \rangle,
             \begin{split} & \texttt{tuple} - \left< 1, 0 \right>, \\ & \texttt{tuple} - \left< 0, 1 \right>, \\ & \texttt{tuple} - \left< 0, 0 \right>, \end{split}
               tuple - \langle 1, 1 \rangle
```

The cond_lex_less constraint holds since VECTOR1 and VECTOR2 are respectively assigned to the first and third items of the collection PREFERENCE_TABLE.

Typical

```
|\mathtt{TUPLE\_OF\_VALS}| > 1
|VECTOR1| > 1
|VECTOR2| > 1
|PREFERENCE\_TABLE| > 1
```

20060430 883

Symmetries

• Items of VECTOR1, VECTOR2 and PREFERENCE_TABLE.tuple are permutable (same permutation used).

 All occurrences of two distinct tuples of values in VECTOR1, VECTOR2 or PREFERENCE_TABLE.tuple can be swapped; all occurrences of a tuple of values in VECTOR1, VECTOR2 or PREFERENCE_TABLE.tuple can be renamed to any unused tuple of values.

Usage See cond_lex_cost.

See also common keyword: cond_lex_cost, cond_lex_greater, cond_lex_greatereq,

cond_lex_lesseq(preferences), lex_less(lexicographic order).

implies: cond_lex_lesseq.

Keywords characteristic of a constraint: vector, automaton.

constraint network structure: Berge-acyclic constraint network.

constraint type: order constraint.

filtering: arc-consistency. **modelling:** preferences.

symmetry: lexicographic order.

884 AUTOMATON

Automaton

Figure 5.208 depicts the automaton associated with the preference table of the cond_lex_less constraint given in the example. Let ${\tt VAR1}_k$ and ${\tt VAR2}_k$ respectively be the var attributes of the k^{th} items of the VECTOR1 and the VECTOR2 collections. Figure 5.209 depicts the reformulation of the cond_lex_less constraint. This reformulation uses:

- Two occurrences of the automaton depicted by Figure 5.208 for computing the positions I and J within the preference table corresponding to VECTOR1 and VECTOR2.
- The binary constraint I < J.

Figure 5.208: Automaton associated with the preference table of the cond_lex_less constraint given in the **Example** slot

Figure 5.209: Hypergraph of the reformulation corresponding to the cond_lex_less constraint: it uses two occurrences of the automaton of Figure 5.208 and the constraint $\rm I < \rm J$

20060430 885