$\frac{\text{Homework } 2}{\text{CIS770}: \text{Formal Language Theory}}$

Assigned: Febuary 9, 2016 Due on: Febuary 16, 2016

Instructions: This homework has 4 problems that can be solved **individually**. Please follow the homework guidelines given on the class website, for example including your name etc. Solutions not following these guidelines will not be graded.

Recommended Reading: Lectures 3,4,5 and 6.

Problem 1. [Category: Design+Proof] Consider the language $A_2 \subseteq \{a,b\}^*$, from Homework 1, which was defined to be the collection of strings w where there is a position i in w such that the symbol at position i (in w) is a, and the symbol at position i + 2 is b.

- 1. Design an NFA for language A_2 that has at most 4 states. You need not prove that your construction is correct, but the intuition behind your solution should be clear and understandable. [5 points]
- 2. Prove that any DFA recognizing A_2 has at least 5 states.

[5 points]

Problem 2. [Category: Design+Proof] For a string $w \in \Sigma^*$, let w^R denote the reverse of w, i.e., if $w = w_1 w_2 \cdots w_n$, where $w_i \in \Sigma$ then $w^R = w_n w_{n-1} \cdots w_1$. For a language L, let $L^R = \{w^R \mid w \in L\}$. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

- 1. Design a DFA M^R that recognizes $\mathbf{L}(M)^R$, i.e., $\mathbf{L}(M) = (\mathbf{L}(M))^R$. [5 points]
- 2. Prove that your DFA M^R in the previous part is correct.

[5 points]

Problem 3. [Category: Comprehension+Design] An *all*-NFA M is a 5 tuple $(Q, \Sigma, \delta, q_0, F)$ like an NFA, where Q is a finite set of states, Σ is the input alphabet, $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q$ is the transition function, $q_0 \in Q$ is the initial state, and $F \subseteq Q$ is the set of final states. The only difference between an *all*-NFA and an NFA is that M accepts $u \in \Sigma^*$ iff every possible state that M could be in after reading u is in F (and at least one state is in F, i.e., all threads cannot die).

- 1. Taking $q_1 \xrightarrow{w}_M q_2$ to be the same as definition 4 in lecture 4, define formally when an **all**-NFA M accepts u, and the language recognized by M (definitions similar to definitions 5 and 6 in lecture 4). [4 points]
- 2. Give a formal definition of a DFA dfa(M) such that $\mathbf{L}(dfa(M)) = \mathbf{L}(M)$. You need not prove your construction to be correct. [6 points]

Problem 4. [Category: Comprehension+Design]

1. Describe the language of the following regular expressions. A clear, crisp one-level interpretable English description is acceptable, like "This is the set of all binary strings with at least three 0s and at most

hundred 1s", or like " $\{0^n(10)^m | n \text{ and } m \text{ are integers}\}$ ". A vague, recursive or multi-level-interpretable description is not, like "This is a set of binary strings that starts and ends in 1, and the rest of the string starts and ends in 0, and the remainder of the string is a smaller string of the same form!" or "This is a set of strings like 010, 00100, 0001000, and so on!". You need not prove the correctness of your answer.

(a) $(0^* \cup 0 \cup 1^*)^*$	[1 points]
(b) 0(10)*1	[2 points]
(c) $1*(0 \cup 111*)*1*$	[2 points]

- 2. Give regular expressions that accurately describe the following languages. You need not prove the correctness of your answer.
 - (a) All binary strings with no more than three 0s. [1 points]
 - (b) All binary strings such that in every prefix, the number of 0s and 1s differ by at most 1. [2 points]
 - (c) All binary strings with exactly one occurrence of the substring 000. [2 points]