

SEQUENCE LISTING**SEQ ID NO: 1 (MOUSE GCR1/FRAGILIS NUCLEIC ACID)**

Mouse GCR1 (Fragilis) full length nucleotide sequence

5 GCCGCAGAAAGGGCAGACCGCAGCGCGCTCCATCCTTGCCTCCAGTGCTGCCTTGCTCCGCA
 CCATGAACCACACTTCTCAAGCCTTCATCACCGCTGCCAGTGGAGGACAGCCCCAAACTACGAAA
 GAATCAAGGAAGAATATGAGGTGGCTGAGATGGGGCACCGCACGGATCGGCTCTGTCAGAACTA
 CTGTGATCAACATGCCAGAGAGGTGTCGGTGCCTGACCATGTGGTCTGGTCCCTGTTCAATACAC
 TCTTCATGAACCTCTGCTGCCTGGGCTTCATAGCCTATGCCACTCCGTGAAGTCTAGGGATCGGA
 AGATGGTGGGTGATGTGACTGGAGCCCAGGCCACTGCCTAACGCTAACAGTGCCTGAACATCAGCA
 10 CCTTGGTCCTCAGCATCCTGATGGTTATCACCATGTTAGTGTATCATCATCATTGTTCTTAACG
 CTCAAAACCTTCACACTTAATAGAGGATTCCGACTTCCGGTCTGAAGTGCTTCACCCTCCGCAGC
 TGCGTCCCTCTGCCCCCTACACGCAGGTGTAACACTCATTATCTATCCACAGTGGATTCA
 ATAAAGTGCACCTGATAACCACC

SEQ ID NO: 2 (MOUSE GCR1/FRAGILIS AMINO ACID)

15 Mouse GCR1 (Fragilis) amino acid sequence

MNHTSQAFITAASGGQPPNYERIKEEYEVEMGAPHGSASVRTTVINMPREVSVPDHVVWSLFNTL
 FMNFCLGFIAYAYSVKSDRKMGVDVTGAQAYASTAKCLNISTLVLISILMVVITIVSIIIVLNA
 QNLHT

SEQ ID NO: 3 (MOUSE GCR2/STELLA NUCLEIC ACID)

20 Mouse GCR2 (Stella) full length nucleotide sequence

GGATCACAGACTGACTGCTAATTGGTCTGGTTAGGTCTTCAAAGACTAAGCAATCTGTT
 CCGAGCTAGCTTGGAGGCTCTGCCATCGCATGCCATGGAGAACCATCAGAGAAAGTCGACC
 CAATGAAGGACCCCTGAAACTCCTCAGAAGAAAGATGAAGAGGACGCTTGGATGATAACAGACGTCC
 TACAACCAGAAACACTAGTAAAGTCATGAAAAGCTAACCCCTAACCCCCGGTGTCAAGCGGTCCG
 25 CACGCCGGCGCAGTCTACGGAACCGCATTGCAGCCGTACCTGTGGAGAACAAAGAGTGAAAAAATCC
 GGAGGGAAAGTCAAAGCGCTTCCCAAGAGAACGGTCCGACTTGTGCGGTGCTGAAAGACC
 CTATAGCAAAGATGAGAACAGTTGTCGGATTGAGCAGAGACAAAAAGGCTCGAAGGAAATGAGT
 TTGAACGGGACAGTGAAGCCATTCAAGATGTCTGCACCTTCTGCCATTATCAAAGATGGGATCCCT
 CTGAGAATGCGAAAATCGGAAGAATTAGGAGCTACATTGTACGCTGCCCTGGCTGTCGACGATG
 30 CCGCACAGCAGATGTGAAAGCTATTTTGTAAAGATTAACCTTTCTGGTGTGGAAATCTT
 AACTGTAAACCTTAAATTGTAGATAGGATGCACACGATCCAGATTTATGTGAAGTTAGAACG
 CTCAGCTGTGAGGCCAGGGCTGAGGAATAAAAGTAAATAGAATTGGAGTATGTACGTTCTAATT
 TCCAGAAATTGTAATAAAAGCATTGGT

SEQ ID NO: 4 (MOUSE GCR2/STELLA AMINO ACID)

Mouse GCR2 (Stella) amino acid sequence

MEEPSEKVDPMKDPTPKKDEEDALDDTDVLQPETLVKVMKKLTLNPGVKRSARRSLRNRIA
PVENKSEKIRREVQSAFPKRRVRTLLSVLKDPIAKMRLVRIEQRQKRLEGNEFERDSEPFRCLCT
5 FCHYQRWDPSENAKIGKN

SEQ ID NO: 5 (RAT GCR2 HOMOLOGUE NUCLEIC ACID)

Rat GCR2 (Stella) homologue genomic sequence; similar intron-exon structure as mouse-Stella. AC094826 contig No.5 (22671 - 27595: contig of 4925 bp in length)

10 CCCCCCCCCCCCCCCCCCCCCCCCCACCTCCGACGTATGATGGCTCCTAGACGCAA
CACGAAGCGGACTCCCCCATTCACGTAGACCCGCCTCTGCTTCCCTGTCGGGGTTTGGG
AAGCCCAGGCCCTCTCTCACCTTGCTCCACTAGCACGCCGCTGTTCACTGAGCCCAGCA
CTGGCTAAGTGGAGCACCAGGAGTTTCAGGCTATCCTCAGAGGGCAAGGTGAGTCCATGGTGGG
CTACAGGAGACCCTCTCTCCGTGAGTACAGAGAGGCAAACCCAAGCCAGACAGGGGTGATGATT
15 AGGAACATACTTCGTGGGGAGAAAATACCGGTTCATATAGGAATAAGAGGAACCAGGAGGTAGT
TAAGGCTGTGGTGTCTGGTTGCGGGGTTTTGACTCTCAACAACCACGTTAGAACGTGCTGAGTT
TTTATGATGGTGTAGAATTCTTATCAGCAATTGGTCTCCGCGGTGTTCTTTCTTTAAAT
TTTTAAGTATAATTGGTGTGAAAGCAACTGTACTTGGACTAGAACTCCCTGTGTAATCCAGAA
TGGAATCCCCAAATCCTAGGATAAAGGTTAGTGGGCTGAGTGTGGTGGGGTTGTTGAT
20 TACGTTGTAGCCCAGGCTGGCTCAATCTCAATCCTCCTGCCTCTGCTTCTAAACGCTAGGATTA
AAAGTGTGCGCCATGATCCTGCTGTAGCTTATTTATTTATTTATTTATTTGGCTCTT
TTTTTGAGCTGGGACCGAACCGAGGGCCTTGCTCTAGGCAAGCGCTCTACCAACTGAGC
TAAATCCCCAACCCCAGTGTAGCTTATTTAAGAACAGGAGTCTGTTCTCAAAACAGTTCT
CTGTAGCCCTGGTTGTCCTGAACTCCGTAACCAGGCTGGTTGGGACTCTGCCTTAAAACACT
25 GGGACTAAAGGCGGTACCACCTCCGTGGCTACACCGGAATCTTTAAGCTTCATTGAACCAGGGG
CTTTTCTTTCTCACCCACTTCTGAAAGCATTCTGCTAAATTCTCATTGTAATG
ACTCTGAGGGGAAATAGGAACCCAGAATAGATTGAGCCGGGGCTACCTGGGACCCGCACTCCCC
ACCCCCCAGCCGCTGTGAAGCTTTGCTGAGGGGCCTCGGGTTGATACCTCTAGCACTCC
GGGCTGAGGGCGTGGCTGGGAGGCCATTCTTGGAGAGGAAAACAACGTGCTGGCCTGAATC
30 TGCCCTAATACCTGACAGTTACATGGGACCTCCTTATTCCACAGGATTCTTAGTCTTGTTGG
GAGATTTCAAATCTTGAGACTGCTCAACCCCTCTGGCCTAACACTCACAGGCCAGGCTAGACC
CAAATTCTGTCAACCCCTCTGTGTCCAAACGGTGGGTGGCTAGCTGGCTCACCTGGTGTAC
TTGCTTAACTCGAAAAGTTGTGTTAGTTCTGTATAAAATAGGACCATCTACTGGGTGT
GGTCCCATGTAAGCAAGGTTGGTTCCAAAATACCCCTGTTACATAGATGTCCGGAAGCATTGG
35 AGCAGGTCAATTAGATTAGGTGGAAACAGCCTGTTTGGAAAGCTTCCAGGGCGGAAAATGAA
CCAGAGGCACTATTGGGCAAGCCCTCCGGCTAACAGCAACACAATTGGCTGAGGGTCTCTGGAAG
AGGTGTGAGACAAGAGAGAATATGCAGGTTCAAGGACCTCTGAACTAGAGTTAGGCTGCTGTAACA
TTGTAACATTGCTGTAAGCAGAACAGCCATGGTAAGAAGCTCAGTGGATCTACAAACACTAGG
40 ATATCTGCTCAGGGTTATGACCAAGGCCCTGTGCATATGGTTGCTTCTGGGATTACCTTGCAAATGCAA
AAGAGGGGTGATTATCTGTTACCCACTTCCTGTTCTGGGATTACCTTGCAAATGCAA
TGATATACTCACTAAATGTCTCATCTCTGTTCAAGAATCCTACAAACAGAAACTAGTAAAG
GTCATGAAAAAGCTAACCCCTGAACCCAGTGCCAAGCCGACAAAATATCATCGTCGTCAAAGGGTT
CGTCTCCAGGTTAAGAGCCAGCCTGTGGAGAACAGAAGTGAAGAATCATGAGGGAAAGTTCAAAGC

GCCTTTCCCAGGAGAAGGGTCCGCAC TCT GTTGTCCGTGCTGAAAGACCCATAGCAAGGATGAGA
 AGATTTGTCGGGTGAGTTGCGTTGTGGCGGGGATAGATCTAACAGAGCAACTCTAGCCTCAGGA
 ATGGCACCTAGGTAAACAGGGATGTAGACAAGGATAGTGACTACCTGTGATTCCCAGCTCAAGA
 AAACAAGCTCCAAGGCATCCTCTACTGCGCAGTCTGAAGCTGGCCAGAGCTATATGCAAATTGAT
 5 AAGTCAGTATAACATTATTTGGATTTTCAAGACTCCTCCCCATAGTCAAACACTGGCCCTCCAG
 TTCAGTCCACGGCTCTGCTTCTCCCCGGTCTAGGCTTTGAGTGATAAGGCTGACTTAGACTGG
 ATCTCAGAGCTGAAGTGGACCTGTTAGTCTTGAGACCAGGCTGGGTGGTTCTGCTTCTCAG
 CGCCTAGCTCACATAGTAGGCATTTAACTTGTCTTAATAGTAATTGAGTAATTGTTGTTTCT
 CTTGAAGATTGAGCAGAGACAAAGACAGCTGAAGGAAATGAGGTAATGCATATGGATGGTAGG
 10 GTGTCTATGGATGGGTAGGGTCTGTGTTTACTGTTCTTAGACAAGGAGTGTATGTGGAG
 AGTTACCTCTCAACACAGGGATCTGGTTATTAAAGCAGTACTTTAAAAATAAAATAAAATA
 AAATAAAATAAAAGCAGTAGAAGGGGATTACATTCTTTGAGTTGCAATATCCTGATTAACATT
 TTTCTTCAGAGACGAGATGAGCCATTCACTGCTCTGCACCTCTGCCATTATCAGAGATGGGA
 15 TCCTCTGAGAATGCTAAAATCGGGCAGAACCCAGAAGAATTAGGGCAGTTGAATTGTACACCGTC
 CTTGCCGTTACGGTGCATGCAGCAGATGTGAAAGCTGTTTTGTTAAGATTAAACTTTCT
 TGGTGTGGGAAATCTCTTAATTGCTAACCTTAAATTATATAGGATGTGACATTGGATT
 CATGGGAATGACAGATTACCCAAAGAATTGAGCATGAGTCAAAGCCTGGTAGTTGATTAGAAGG
 TAATTGGAATAAAATCTTTATTAGTTCTAGTTGAGAGAAATTGTAATAAAAGGCAAAT
 TTGTTATCTTAATAAAATACAGAACAGATTAGAATGAGCCATTGGAGATGGGGACTCGTTTTA
 20 CAGGTGCATGTGGGTGTGATGTTCAAGACTGTCATGGCTACCCCTGATTCTGCTTGAGG
 CAAGGTCTCCATGAGGCCCTAGCTGGCTAACCTCTGGCTCGCCTTTGTTTCCCTGAGTTTG
 ACACCATAGGCTTGTGGCAAGATCTGGAAAGGGCTTGTGTTGTTGCTGTGTAATAAAC
 AATTGGTTGACATATTCTAAAGTGTGGCACTGTATTGACCTGTCATGAGGAAGTAAATG
 ACCGGAGCATATTGATGCTTATTCTGAGAGAACAGATTGTCAGGAAAGGAGGAGTTAGGAAGAAA
 25 GCCCCAGGCTGGGTTAAGAGCACTGGCTGTTTCCAGAGGTCTGAGTTCAATTCCAGCAATC
 ACCTGGTGGCTCCGAAACATCTGTAACAGGATCCAATGCCCTCTTGGTGTGCTAAGAACTCCC
 TAGGCATGCAGAGGATTTGTTGTTGTTTTTTTTTTTTTCAGAG
 CTGGGGAACCGAACCCAGGGCCTGCGCTTGCTAACAGCAGCTTACACTGAGCTAAATCCCCA
 ACCCCTACAATGGCCTTTCTACCTGCTTTGATTATCAATAAAAGACTGGGCAAAAGAAAG
 30 CTGGAGTGAATGAGAGAACATGTGAAGAGTAATGAGAGAGAGCATGAGGAATGAATGAGAGA
 GTGAATGTGAGAACGAATGTGAGAGCGAGTGAGAGAACATGAGAAGAACACGTTAAGAGTGAGTGA
 AGAGAGAACATGTGAGGTGTATGAAGAGATTGTTGAGGGATTAGCTCAGTGGTAGAGTG
 CTTGCCTAGGAAGCACAAAGGCCCTGGGTCGGTCCCCAGCTCCAAAAAAAGACCCAAAAAA
 AAAAAAAAAAAGATTGTGTGTGTGAAAGGAGAGTCATGTTGAGATATGTGCAA
 35 GGTGTGTATCAAGAGTGTGTGAGAGTGAAGGGTAATGAACAGAGGTGTGCATGAGCGTGGGAG
 TTTGAGAAAAGAAAACAGCAATAAAAAAAAGCAGAGTGACAGAGAGAACATGAGAGTGTC
 CCTCAAGCTGAGACAGAGACAGAGAGAACAGAGAGAGAGAGAGACTTTAACGCTTGAATTAC
 CTGTCAGTTGTACCAAATAGTAGTCTGTGTTATATTATTGAGCCTCCAGATCCCTGCTTCC
 AGTGGAGAACACTGATCTGATTGTGAGGCTGGACCTGGCAATAGTGGCTCTTGAAAAATAGTC
 40 AAAGGAAACAGTGTACACCATGACTTAAGCCTTAGACTCAGTTCTGGCTCAAGAGCAGCTGT
 CAGAAAATAAGTGTAACTACTTGCAGTCGAACCTGAATC

SEQ ID NO: 6 (RAT GCR2 HOMOLOGUE NUCLEIC ACID)

Rat GCR2 (Stella) homologue genomic sequence; different intron-exon structure
 45 from mouse-Stella (fused exons). AC097234 (131006 132449: contig of 1444 bp in
 length)

CCAGGATT CAGACGAGCTAGGCCTCATGCATGGAGACCTTGCCTCAAGCAGAAATAAACAGGGTAG
 CACACATTGA ACTCTGAACATCACGAGTGTGCACACACCCCACACATGCATCTGTAAAAAACGAGTC
 CCCATCTCCAATGGCTCGTTCTAATCTGTTCTGTATTTATTAAAGATAACAAATTGCCTCTAT
 TACAAATTCTCTGCAAACATAGAAAATCTAAAATAAAAGATCTATTCCAATTACCTTCTAAATCAA
 5 ACTACCGGGCTTGTACTCATGCCTCAATTCTGGTAAATCTGTCTTCCATGAACTCAAATGTCA
 CACATCCTATATAATTAAAGGTAGCAAGTAGAGATTCCCCAGCACCAAGAAAAGTTAATCTT
 AAACAAAAAAACAGCTTCACATCTGCTGCATGGCACCGTTAACGGCAAGGACAGTGTATGATTCA
 AACTGCCCTAATTCTCTGGTTCTGCCAATTAGCATTCTCAGAAGGATCCCCTCTGATAAT
 GGCAGAAAAGTACAGAGACATCTGAATGGCTCAACTCTCTCATTTCCCTCAAGCTGTCTTGTC
 10. TCTGCTCAATCCGAACAAATCTCTCATCCCTGCTATGGGTCTTCAGCACCGACAACAGTGTGC
 GGACCCCTCTCTGGAAAGGCCTTGAACCTCCCTCATGATTCTTCACCTCTGTTCTCCACAG
 GCTGGCTCTTAATCTGGAGACGAACCCCTTGACGAAGATGATATTGGCCGATTGAGATAGAATA
 TCAAAACAACATTAAACATTAAACTTAACGATATAACACACCTTTTTTCCACCTCCCCA
 15. CACAGACAAAAAAACACCCTATTCTTACAACCCCGCTAACGAAAGCGATTAGTAAC
 GACCAATCATAGAAAGGAAACACCACAGACCACATCAAATAAAATAAAACCGCCCAACCCCA
 CCCCTATAAAAAACCCCGCGACCACACCACATATACTCCCCCCCCCGCACCATCACTACATCAC
 CCTCTCCACCCATTCCCACCTCCCCCCCCAACATTAACCCCCACCCCATCAGGAAACCCCCAACAC
 CAACAAATAAAATTAGACACATCGCATTACATAAAATTGACACAAGACCCACCCAAAAGAGCAGCAA
 AGATTAGAGCCACATCTCGGCCAACACAATACACTCAACCTGCATAGTATCTATCTCCACCCCA
 20. ACCTAGAAACAAAAATCTAATCAGCACCAGGCACCCAAAGTATCACGCACACTCAAAACATACCC
 CCAATTAAACACGCCAACCCACCCACCCCTGACAACACACTTCGGAACTACCCCTC
 AACATCACAAAAGCAATCGCAAGTTACGATGACTCCAACCACCTCACTCTCATTTG

SEQ ID NO: 7 (RAT GCR2 HOMOLOGUE NUCLEIC ACID)

Rat GCR2 (Stella) homologue genomic sequence; different intron-exon structure
 25 from mouse-Stella (fused exons). AC093991 (1 - 7657: contig of 7657 bp in length)

ACTGCAAGTAGTTCATTTACAGATCAAAAGAAGAAGATAAAAAACAGGTGTATGATCC
 CTCCAAAAGAGTGGAACACTTCAACTGCCAGATCCAAGATACTGAAATGGGTAGCATGCTGGAGAA
 AGAATTCAAAAGTTAGGTAGAGAATCTGGTTGAGCAGAGCACTTGCTTTCTCCAGAGGATCTGA
 GTTCAAGTCCCAGGACCTATATCACAGTTCTGTAACTCTAGCTCCAGAGGGTCTGACACTCTG
 30 TTCACTGTGGCACCTGCATTCACAGACAAACATAAAGTAGTTCATCACCCCTTCACAGAAAACC
 CACAGCATGTGAGGAAATCCGGGTCTCGCGCAATGCCACAGCAGAAGGGGGAGCTGGAGAG
 ATGGTTCATCTGTTAGCCATTATTGCTCTGAAAGAGAACCCAGGGTCTCCATAGCACCCATAG
 CAGCTACAACCCTCCAGTTCCAGGAGATCCAATGCCCTGTTGACCTCAGGTACCGGCATA
 CACAATGAACCTGCACACATAAAAGTCATAGAGCCATAGTTACATTGTGAGCTCTGAGAAC
 35 AAATCCGTGTTCTGCAAGAGCGACATGCACGCTGAGAACCGAGCACCTTCCCCTGCCTCTG
 AGACAAGATCTCACTATGTAGTTCACACTGGCTCCGACTTGCCACCATCTCCCTGCCTCTGCTA
 TAAAGAATGCTAGGATTATATAGGTACAAAATCACACCTGGCTGTTAGGTTCTGGCTGTT
 TTTTTCACCCCCATGAATGATTGAAAATAGTTGAGCTGTTACATTAATAAAACAAATCAGA
 TGGAGACTATATGTCAATTATCATGAATCAAATGACTAGTAACAAACTGAGTTATTTTATAGCT
 40 TTTCTATTTGTTAAATTTATTTCTTTTTTTTTCTTTAGTTGCTTTGCTTTGTT
 TTGTTTGAGGCTCTCACTGTTGAGCTGCTGGGTGATCTGGAACTTACTAGGTAACAAAGGATA
 GCCTTAAACTCAAGAAATTGCTTGCCTCTGTCTCCAGAGTGTGCTGAGTTAAAGTTGACACCGCC
 ATGTTAGGTGTTTATTAGTGTGTGTATGTCTGTGTGTGTGTGTGTGTT
 GAGGCCATGTAGGCGCATGTTGAACCAAGAACAGAGGAAGTGTGTTACAGTTACCCCTGGGAGGC
 45 CAGAAGAGGGCAGGAGATGCCCTGGAACCTGGAATTCTGGTAGTGGTTAACGCTAAAGTGTGG
 GACCTAACACTCTAACCTGAGCCATGGCTCTAGTCCCTGGGCCCCCTTCTTTATGA
 CTATGCAGACTATACAAATTATTAAGGTCTACGGGAGCAGTTGCCCTGGCAGAGA

GTATATATATCTCATGGT GACATACATATCTCATGGT GACACACATATCTCATGGT GACACACATA
 TCTCATGGT GACATACATATCTCATGGT GACATACATATCTCATGGT GACACAATTGAGCATT
 GAGAGCAGCTACAGACCGATTAGATCAGACTTAAATTCTGCCAAGTATGTGGTGACGCAGGC
 CTGCAATGCCAGTAACTTGGAGACTGAGCCAAGCAGATCACCTGAGCCTAGAGACTCAAGGCCAC
 5 CCTGGACAACATAGAGATATCCTGTTCAAAATGAAACAAGCTAAGTCTTGTACATAGCAGCCT
 CTCTATTGACTGTGGCAGGGCAGCTGACAGTGTTCACCTAGTCACAGATGTTCTTAGAGGG
 AACAGACCCGATGAATACAAACATTAGCTCAAGTAAAAGTCTATACTATGAAGGAACACTTC
 TTCAAACATCATAACATTTAAATGAGAGATTTACAAACCTTTAAAGATTATTTGTTAT
 GATAAGTACACTGTCACTGTCTTCAGACACACCAGAATTGGGCATCAGATCTCATTACAGATGGT
 10 GTGAGGCCACCATGTGGTGTGGAAATTGAACTCAGGACCTCTGGAAGGACAGTCAGCACTTTT
 TTTTTTTTTTTCTTCATTTTGGAGCTGGGACCGAACCCAGGGCCTGTGCTTGCTA
 GGCAAGCGCTCTACCACTGAGCTAAATCCCCAACCCCCAGCCAGTGCTCTTAAC TGCTGAGCCATC
 TTCCCAGCCCCAACATCAATTGGTCTAGATGTTACCCCTGGTCTGCCATGCCATCTCGATG
 15 GCCCTTGTGGCAGGGTGCCGGTAAGGCAGCCCTAGGGCATGAGTTAGGGAGAGCAAACCTGAC
 CCAGAACCTGACTGCCATGAAGTGATGGAGATGCCGTTGAGTACATGGGTTTTGGTGGTTGT
 TGTGTTGTTGTTGTTGTTGTTGACTTGACACATGCTACAGTCATCTGAGAGTGAAACTTA
 ATTGAGAAAATGCCTCTGTATTCTCCGGCCCCCTAAGTGTGTTGATGAGTGTATTGTTATCA
 CAGCAATAGAAAACCTAACTAAGATAGATTGGTATTAGAAGTAGAAATTGCTGTAACAGACCCCTA
 ACCATGTTCTCTGGGGAGGATTGTGGGAAGACTTGGAACTTGGAACAGGAGAAGCCA
 20 TTGGGTACTTAGAGCTTAATGGGCTGTTCTGAGCTGGAAAGGTGCTGGAGAAATGCGGATGA
 TACTGTAAAGTTGAGAGCACCTCAAAGATGTTCAGGACAGTGTCAGGACATTTGAGTTAAG
 AATCTATGGGTCTGGTCAGCTGGAGCTGAAGATTCACTGTTGAGTAAATAAGACCACTAAAGTAA
 ACTTTGCTTACTGGTACAATCAGTGCTGGTAGCTAAGGGTTGACAGATGAGCAGTGACTAATA
 AGAGACTGGCATCAGAAACTGATCCAGAGAGGCCAAGGCTGCATCTAACTGGCAGCCAAATT
 25 GATCACATGTAAGAATCTCCCTCATGGGGTTGGGATTAGCTCAGTGGTAGAGCGCTTGCTAG
 GAAGCACAAGGTCTGGTCGGCCCCAGCTCCGAAAAAAAGAACAAAAAAAGAACAAAAAA
 GAATCTCCCTCATGTTACAGGCTTGGTGGCATGAGAGCTTAGGGTTGAAGGATCATGGAGAGCA
 GCCGAGGCTCCGCACCATGTGGGGGGCAGAGGTACAGCCAGTACCCAGTACACAGAGACAC
 CAGCATATTGGAGGTGCCAGGATCATGGATAATTGCCATAAGACAGGAGGCTGGCTGACTTG
 30 TAGGACAAGGATCTGGCAGGACTGGAGAAACAGAGCTGTAAGGGAAATGAGGACACAGCTGTT
 AAGATATGATTGGAGAGAACGGGTTTCATTGCACTGAGGAGAGAGGGCTAAGAGGACCAAAAG
 AGGCTGTGAGCTGGTAGCTGGGAGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG
 CAAATTATCAGGGTTATAGAGAAAACAGATGCTTGGAAAGAGAACGGGGAGGCCCTGAGCTGG
 AGATTAAAGTAGGGGCAGGATGAGAAGTGGCTGGGCAGGATGAGAAGTGTGAGGAGGCCAAAG
 35 GCACTCAGTGAACCTAGAGGCCAAGGATACATTTGACATGCTAATAGGCTTTAGTCATTTGTC
 CTGCATTTCTTCTAGGACAGGCCAAGCTGCCGGTCATTGTGAGTCCCAGATAATTCTCTGAAAT
 AAAATGTTTTAAAGAGAGGAGGGAAAGGTTGGGGAGGGTGTGAAGTTAAGAGACTTTGGAG
 TATTAAGACATTGGATATTAGAGAAAATTGAACTTTAAGAAGACTGACCTTAAAGTGT
 TGAATTAAAGACCAGGATACATCAGGGTGTAGGGACACATGACCCCTGCTCGCCCCCCCC
 40 CAAAATTATAATTAAAGACTGTGGAGCTGGGTGGTATAGGCCCTTAATCCTAGCA
 CCCAGGAGGCAGAAGCAGGCAGATCTGAGTTGAGACCAGCCTGATCTATAGCATGATTCCAG
 GACAATCAAGGCTACACAGTGAAGCCTATCTTAGAAAAAAAGATTGAGTTAGTTGCGATG
 TATTTTATATTGAGGTGCTGACATTAAATGAAATCTTGTGAGTGGCAAGAAAATAAGACTAA
 AGCTGAATACTGATGCCACTTGTGTCAGATTGACAAGGGTTTGGAAATTTTTATT
 45 TTTTTTTAGGAATATCAACCAATTGTTATTACACAGCATGAAACAAACACAAAATCAAGCC
 TTTCCAGATCTGCTGACAAGCCTATGGTGTCAAAACTCGGAAACGAGAGGCAGGACAGGAGT
 AAAAGACCAAGCGAGGCTCATGGAGACCTTGTCTCAAGCAGAAATAACAGGGTTGGTAGCACACA
 CGAACTCTGAACATCACGAGTGTGCACATACCCACACATGCACCTGTAACAAATCCCCATCT
 CCAATGTCTCGTTCTAATCTGTTCTGTATTATTAAAGATAACAAATTGCTTATACAAATT
 50 TCTCTGCAAACTAGAAAATCTGAAAGATCTATTCAAAATTACCTCTAAATCAAACACCAGGCTT
 GACTCATGCTCAATTCTGGTAAATTGTCATTGCAATGACACATCCTATATA
 ATTAAAGGTTAACAGTAGAAGAGATGTCCCTAGCACCAAGAAAAGTTAATCTAACAGAAAAC

AGCTTTCACATCTGCTGTGGCACCTTAACGGCAAGGACGGCGTACAATTGAACTGCCCTAAT
 TCTTCTGGTTCTGCCGATTTAGCATTCTCAGACGGATCCCCTCTGATAATGGCAGAAAGTG
 AGAGACATCTAAATGGCTCATCTCTGTTCTCATTCCCTCAAGCTGTTGCTCTGCTCAATCC
 GAACAAATCTTCTCATCCTGCTACAGGTTCTCAGCACCAGACACAACAATGTGTGGACCCTC
 5 TCTTGGGAAAGGCCTTGAACCTCCCTCATGATTCTTCACTTCTGTTCTCCACAGGCTGGTTCT
 GAACCCGGTGACGAAGGCTGTGATGACGATGATATTGGCCACTTGGCACTGGGTTCAAGGTTA
 GCTTTTCTGACCTTACTAGTGTCTGGTTGAGGTTCTGAATCATTGGGTGAGTCCTCT
 CCACCTTCCCTCTGAGATCTATCATCTGAGTTCTGGATACACAACGGTCAACTTCTGTGATG
 GCTCGCCATGGCGGTGGGAGAACGCTCAAAGCCAGCTCCGAACAAATTGCTAGCTAATCTT
 10 GGAAAGACCTAGACTTGGCCCCAACTAGCAGACTGAAGTGTGGAATTTTTTTTTTTT
 TTTTTTTGTAATCAACTTGAACAAACAAATTGAGAAAATGCTCCATAAGGTTAAATCCTGTGCC
 ACCATGCCTGGACCTAAGCTTCTGACCTTCACTGGCCACTATTCTCGAGGGTCTGGATCAGAAGCTGTGAT
 TTCATTCCGGATTGTCGTTACTCCAGATAAAAGTCAAATGAAAGCAATAGCCATGTAATAAT
 GCCTAGATATAACTCTCCTGTTAGCAGCAAATGCAAAAGCAATAAGCAAGCTTAGCTGGTGGGATC
 15 TTCCAAAGCTACTCTGCTCTTTCTTCTGGACATAGGATTAGCAACATTCTACTTCTTGATGC
 CCCTTATTCTTGAACCATACTTTACTTTCTTCTGTTAGCTTCTCCTTCTGATCAAAGA
 TTCTTCATAAGAGTGAATTGGGTTAGAGAGATGGTTAGCTGTTAATAGCACTGACTGCTCT
 CCAGAGGTCTGAATTCAATTCTAGCAACCACATGGTAGCTATAACCCTGTAATAGGATCTG
 ATGCCCTCTTGGTGTGTAAGAAGACAGCAACAGTACTAACATACATAAAAATAAA
 20 TCAACATACATAAAATAATTTAAAAAAAGGTGAAATTAAACCACACAACAGAATT
 TATGCCAGGCTTGTGAGACTTTGTCAAAGCAATTAACTCTTCACTTACCTAGCCTCAGG
 TAGACTCTCTGGACAATGGCAAAAGCAGCCACATTCTTCATCAAATATTACAAGAACGGTCTCT
 CAGCCACATACTAAAATTCTCTGAAACTCTAGAGCCAGGCTCCACAGTCAAACACCCTC
 AGCAACAAAGTCTCTATATTCTACGATGATAGCCCCACTTAAAGCATTCACTGA
 25 ATTCAAATCTAAAGTCTCAAATCTATATTCTCAAATAAAAGCATGGTCAAGACCTACCTATCA
 CAGCAATATCCCAGTCCCTGGTACCAACCTCTGTTAGTTAGGGTTCCATTGTTGAGAGAC
 ACCATGACCAAAGAAACACTTTTTTTAATATTATTATGTCATGAGTACACTGTTGC
 TGCTTCAGACACACCAGAAGAGGGCATCAGATCTCATTACAAAGGCTGTGAGCCACTACGTAGT
 TGCTGGGAATTGAACCTCAGGACCTCTGGAAGAGCAGGCCAGTGTCTTAACCAGGCGAGCCATTCT
 30 CCAGTCCAAAGAAACACTTATAAAGGACAATGTTTTGGTTTTAAAGGTTATTATT
 TTATGTATATGAGTACACTGTAGCTGTTAGATAACACCAGAAGAGGGCATCAGATCTTACTATA
 GATGGTTGTGAACCACCATGTGGTTGCTGGGATTGAACCTCAGGACCTCTGGAAGAGCAGTCAGTG
 CTCTTAACCCTTAGCCATCTCTCAGTTCAAAGGACAATGTTAATCGGGCTGGCTCACAGGT
 TCAGAGGTTAGTCATTATCATTGAGACAGGAGCGTGGCAGCATCCAGGAGGTGTGGGCTGAA
 35 GGAGCTGAAAGTCTACCTTGTGATCCAAAGGCAGACAAAAAAAGACTGGCTACGGGCTTACCC
 ATAAGCAGCTAAGAGGAAGGTCTCAAAGCCCACCCCTACAGTGGCATGTTCTCCAACAAGGCCACAT
 CTCTTAATAGTGCCACTCCCCGGGCCATGCATATTCAAGTCGCCACACCCACTGAGCCATCTCTCC
 AACCTGCTCCAGACCATCTCCCTGCTTTACCTAAGCTCATTAGGCAGCAATATGCCCTTATTG
 TTTGAGCTCAGCATCTGTTTCAAAGGCTGTTGTCATCACAGTGGTTGTTCCACAACCTCTC
 40 CCAGTTCTTGTNAAAACACCAATGCCTAGAGAGATGCTCTCTGTCATATCGCATGTGCAGAA
 GAAAGGGTGCCAGATCCTTCACTGTGGACCNTGTCATGTCATTACCCACGTAGTCGTCGCTCTGA
 CTCTCTCGAGATGCTGANAACGTGATTGAGCGTAGGATGCTCTGGGTATGTGCATGGACAATT
 G

SEQ ID NO: 8 (RAT GCR2 HOMOLOGUE NUCLEIC ACID)

45 Rat GCR2 (Stella) homologue genomic sequence; different intron-exon structure
 from mouse-Stella (fused exons). AC103122 (11084 - 13244: contig of 2161 bp in length)

CGAAGGACGGTAAGGAGAGAAGAGGGGAGAGGATCAGGACTGAGGGGAGATATGCACTGAACGGGG
GAGTTAGTAACGAGGAAAAGATAGGGAGAAAAGTGGGAGAAAAAGGCCGGGGAGGGGGAGGGCAT
GGAAAGAAAGCGGGGGGGAGATAACATGCGGGGGAAGTAAGAGGGGGGGTAAGGAGGGTAC
AGGTAGCACAGGTGGGGGAAGAGAGGGGAGGGGGGAATGGGAAGGTGAGGGTGGGTGGGGAG
5 TTTCGGCGAAAGGGCCGGAGTGTGGATTATCGCGTGGACCAGAACGGGGAAGGCCACATTG
GGTGGCGGGAACAGAAAGGAAATCTTTAAATCGGTTGGTCGCAGGGTGGGACATTGAGA
AAAAAATCATCAAAGCCCCTAAGGAGCATTGTTGGAGTTACGTATGGATATTATAT
GGGACGAGAGATAAAGAATCTCTTAAGTAATCCCTTAAAAAATGTCAGGCTGGAGAAATGG
10 TTTCATGGGTAAAGCAAGTGTGAGAGATGAGCGCAGACCCCCAGGACCTGTAGACTTAATGAGA
GGTGGATGCACGCCTGTAATCTCAGCATGCCTACAGCCAGATAGGAGATGGGGACAGAGAAGTGTG
GGGGCCAACTAGCCTGGTGTCTACAGCCTGGTGTCAACAGCAGCCTCCTACCTCAAACAAGGTGGA
AGGTAAAGGCTGATACTGAGATCGTTGTGACCTCCACACACATTGTGCTTACACAC
15 ATACTCACACTCACACATACACATACACATACACATACCTGGTCTCCATTAGGCTTATTGCTGTGATA
AAGATTACGACCGAGGTCTTCAAAGACTAAGCAGTTGTTGAGCTAGTTTGAGGCTTCT
GCCACCACCATGGAGGAGCATTAGAGAAATCGACCCAGTTGTGGACCCAGAAACTCCTCAGACG
AAAGATGAAAAGGACGCATCCGTATTAGAGAAATCGACCCAGTTGTGGACCCAGAAACTCCTCAGACG
AAACGCTAGCCCTGAACCCCCAGTGCCAAGCGGTCAAGCAGCCTCCGTCTCCGGATT
20 AGAGAAGACCTGTGGAGAACAGAAGTGAAGAATTTCGAGGGAGTTCAAAGCCTTACCAAGA
GAAGGGTCCGACGTTGTTGCGGTGCTGAGAGATCCTATAGCAAGGATGAGAACACTTGTGGGA
TTGAGCAGAGACAACACAGGCTGGAAGGAAATGAGTAGAAACGGAAGAGTGTGCCATTAGACTCA
25 CTGTGCTTCTGCCATTATCAGAGACGGATCCGTCTGAGAACGCTAAATCGGGAAAGCATTAGGA
CAGCTTAGATTGTACACTGTCCTGTGTTAATGATGCCATGCAGCAGACCTGAAAGCTGGCTTTG
CTTTTAAGATTAACCTTCTGGTCTGGGACTCTCTAACTGTTAACCTTAAATTATATA
GGTGCCTGATGTTGGATTATGTGAATGACTAAATTACCAAAGAATTGAGAACAGTCAAA
GCATTCTGTAATTGAGCTCAAGCCGGGGCCAGAAACAATGTTAATAGAATTGGAATA
30 GTTGGTTAGAAGGTAATTGGGATAGATCTCTGAATTCTAGTTGCAAAAACAAAAACAAAA
AAAAGACTAAAAAAACAACGGGAGGAGTAAGGTTATTGAGCTCCATGCTTGATCCAGTC
ATCATGAAAGGAAGTCAGGACAGGAACCTCAAGTCAGGACCGTGGAGTAGGTAGCATCTGAAGCAG
AGACTTCTGGGATGAAAGCCTGCTTCTGACTCGCTCCCCACAAATTGGTCCCTGAGCCTTCTG
TCCACCCCTCGGACCCCTGCTAGGGTTGGCACCACCAATGGGCTGAGCCTCCCATGCAAT
CACTAATTAAAGAAAATGCTGTACAGCCTGCTACAAACCAGCTTAAGGAGGCGTTCTCATT
GTGGCTCTCTTCTGTATAACTCTAGCTGTGAAATTGACAACCAACCAGCCAGCACACAA
CANTAAAAAGATAGAAATAATGTTAGTNNTNCATCGAGCAAGAGTC

SEQ ID NO: 9 (RAT GCR2 HOMOLOGUE NUCLEIC ACID)

35 Rat GCR2 (Stella) homologue genomic sequence; different intron-exon structure
from mouse-Stella (fused exons). AC099436 (1 - 21688: contig of 21688 bp in length)

ACCTCTGGAAAAGCAGTCAAGGAAGCCAGAGTGGCCGGAACCTCTGAAAATGGAGTAACAACAGGT
 TGGTGTGAGGGTAATTGAACTCAGGTCTATGCAAGAGCAACAAGAGGTCTTAGCCCTTATTATT
 TTTAATATCTAATTATTTTATTTTATTTTATTATATAAGTACACTGT
 GCTGTCTTCAGATACACCAGAAGAGGGCATCAGATCTTACAGATGGTGTGAGCCACCATGTG
 5 GTTGCTGGAAATTGAACTCATGACCTCTGGAAGAGCAGTCGGGTGCTCTAACCACTGAGCCATCT
 CTCCAGCCCTAATTATTTATGTATGTGAGTACACTGTAGTTGCTTAAGACACACCAGAAG
 AGGGCATGGTATCAGATCACCATTACAGATGGTGTGAGCCACCATGTGGTGTGGAAATTGA
 ACTCAGGACCTCTGAAGAGCAGTCAGCATTCTAACGACTGAGCCATCTCCAGCCCCAACCCCC
 CCTCCATTTTAATACAAAAAAGGAGCTCCTGCAAGAGAACATGCCATATACATCCACCCC
 10 TCTTCTTGAGGTTTGATAGTGTGCTGCTCCTGCTGCTTGGAAAAGAAAATCCTCTAGGACTA
 AGCTAAAAGAGCCAGATGGATGGAATTGCGGTTGCCATGGCAACACCATGTGAGGAACTGAGCCT
 GCTGTCTCTCCAGTTATGACATTGGTGTGGTTCCATGCTGAACACTGAAGTGTCTGTCC
 ACTATGAAAGAGAGGCCGTTCCAGAGGTCTTAATTATCTGCTCCATCAGTAGCATTGGACTG
 15 CTACATTTATGTCGACACCATTGGCAGGAGGTAGAAGAGGATGGAGGAAGGCCAGACCTG
 GCTGGGTACTATCGGATCTAGTGAAGCTGTATAGAATCTGCTGGGTTATTTACTCCAACTGG
 AGCAGAGGCAGGTGCTCAGGAAGGCAGTAATGAGATGACCTTACACAGGAAATAAGTACTAC
 TGTTGGATACCCTGGGATGGATCACCCTGAGCCACTCCACCCCTCAGAACAAAGCTACCATATCG
 TTAAAGTGTCTGAGCTCAGGGGAAGGCCCTGCTGCCTGTGAGTAGAGCCAGGTAACCTAACAA
 GCCCTATCTACACTCATCTAACGGCATTGTTACATACAAAGAATTCTACTCTTAATGAGCAG
 20 ACTTTAAAAAAATGAGCCAACTTACACTTCAGAAGTTGATCCTGATTGCACATGCCGTGAGAC
 AGATGGCCAGTCTCAAGGACAGGCCCTCCACACTGAAGTTAGTCTTCAGCAGTATGTCTGACCC
 TAGGCAACCAATAAGAGCTCACCTAAGAAATTCCACTTACCTGGTAAAGAGCGTATCTCCCTC
 CCTTCTCTCAATTAGCATCCTCACTTCCAGACTCCCTACTACCGACTTAAAAGATCAAAGCC
 AGGCACGATAGCACAGGCTGAGGTGCGGAAGGCAGAACAGGAAAGATCTATGTGATTCCAGGCTA
 25 CTAGCACACACAGTGAGACCTGCTAACAAATGGAGGTGGGAGGCATGGCAGTAACCTGAAC
 CTACAAATTATCAAATTCAATTAGAACATTGGTTTTGAGGGCAGAACATCCTACAG
 TAGAGTGGGTTACACCCAGTTCAATTAGAACATTAAAGGCTGGAGAGATGGCTCAGCTGTT
 AAGAGCACTGCCACTCTTCCAAGGTCTGAGTACAATTCCAGAACACATGATGGCTCACAA
 CCATCTGTAATGAGGCTGATGCCCTTCTCTGTGCTGAAGACAGCTACAGTGTCTCATTAA
 30 AATAAAAAACATTAAATAGAAAATCCAACAGGGAGGCTGATGAGAAACGACATAACCTTGTC
 CAGGAGTGTGGTTAAGGGGAATGAAACCATAGTAGAGTCCATTCTTTCTCTTGAGCCAAA
 AAGTTTATTATTATCATGTCCTCATTTGAAGTACTCCTGGTGGCATCCTAACGCTGAGATTCTT
 TGCCATACGTAGTTCTAACCAACTACCAACTGCAACCAACTGTTCTGTGGCATCCCTCTTGAT
 GACTTTACACAGGGGTTGGGAGTTAGCTCAGTGGTAGAGCGCTTGCCTAGGAAGCACAAGGCC
 35 TGGGTTCGGCCAGCTCCGGAAAAAAAAAGATTTACACGGGCACACCCACTCCACTAGTT
 CTCATGATCAAGTATAATCAGATTGATCTGGTCTGGCACAAAGTGCCTCTCCAGCTGACACA
 CACGAGCTCATCACAGTCGGATTGAGCACACAGATGGGTTGGCAGTGTCTAACGGCTCAGGAG
 CTTGTGTTGCCAACGTGCTGGCTATGTGGATGAGGGCGGTCTCAGCACCTCTGTAGAGCA
 GTGTTGACATCCACACTCCAGTGGCAGTGCCCTGCTCCGCTCGGAAGCTGAGGTGGAATAGCA
 40 AGTCAGTTCTCTCATTTCCAGACACCAATTATGGATGCCCTAGTGTCACTGTTCAATTGTC
 ACTTACTTTACAATTGTGTTATTATTATGATAGATTATGTCCTGTCACTAGCTACCGAGGC
 AGGGTCTCACAGGACTATCCAATTGTTCTGCCTCCCTGAGCTAACGCTAACACGTTAACACTGGGCCAT
 ATTATGTACGATGTAATTAAATCCTCGAGCAACTGGCACACAGCCCTAAAGAAAAAAATCCAG
 45 AACCAAACAAACCAAAACAGGCACGAATGGTGGCACACACCTCAATCTTACACTTGGAGGTG
 GATCCAGGAGGAGTAGGAATTGAAAGCCGGCTAGAGTACCACTAGTAGTTGAAGGCCAGCATCTGTCT
 CAAAGCAAACACGATAATAAAGACTTGTTCAGCTGGGAGGTGGTACATTGTGGAGGGAGA
 GGCAGACCTGAAACACTGGGTTCAAGGCCAGCCTGGCTAGAGATCAGATCCCCAAACAGCCAGG
 GATAGACAGAGAAGGCCCTGTCAAAACGTGAGGCTGGAGAGATGGCTTAGTGGTTAAGAGCACTG
 50 ACTGCTCTCTAGAGATCCTGAGTTCAATTCCAGCAGCTATATGGTGGCTCACAACCACATGTAA
 TGGGATCTGATGCCCTTCTGTGCTGAGACAGCTACAGTGTACTTATATACATGAAATAAA
 TCTAAAATAATAACGTGCACAATGTTCTGCCTGCCTATATGCCTGCAAGCCATCCCTCCAAC

CCAATAATAAATATTAAAAAAAGCACAAACCAAAGTAAAATAAACAA
 CTTTATTCTACCAAGAGAACACTTCCTGAGAACTAAGGACAACATGTTATGGTAGAA
 CACAGAAGAGAATAAGAGCACAGCTCAGCTGGAGAACAAAGTGTCTGGGACAAGGAGCCTC
 TTCCCTGCCCTACAGTGGCAGATTGAACCTCTGGTACGACAGTCAAGTGGTGTGAGTTC
 5 AAGTTGAAAGTCACACTTCTAAATCAGGATCAAAGCAAGCTGGAGGCTCCCTCACTCAGCTCAC
 AAGTCCTGTGAAATCAGGAAAAAAATATCAGTTAGACACTGAGTTCCAGGCAGCCAAAACCAA
 GATTCCACCACAAAGACAAGGTATCTGGATTTCAAGGGAACAGAAATGAGAAACTTATATCTC
 TGACTGGCATTAAATCCTACAGCCATCCCTCTCCAGCACATCCTTCTCCAGGGATGGTCCA
 GCACCCATGTCAGGCACTACCAAGTAGTCATCCATCAGAGGCCAATAGCAAACGTGAGAGGA
 10 AAGGGAGAAAGGATGGTGAGGGGGCCCCACCCATTCCGAGCCTCTGTATCTATTCCCTGCT
 CATGGACACAGAGCACAGGCCAACAACTGTGGATGGCAAGAGGTCAACAGCGCAGATGGGA
 AAGAGCTGCTCCAACCTGATGACCTGACCTCCACCCAAAATCCACAGCAGCATGCGATGACC
 TGAAGGCAGTCTAAATGTCACACTGTGGCAGTGTATGCCACACATCACATAATATGTT
 ACAAAAGAAACGAGAAACCCACAGCTGTCAAGTAGTCAAGAGACTCACATGTCATTCTGTACACGTG
 15 CTACCCAGGAGGCTAAGGCAGGCCAGTCAGCAAGAGACTCACATGTCATTCTGTGGAAAGGAGAG
 CAGGGTCATCAAGCAGACTCAGGCCCTGCTCATCCCTCACCAACTCCTCATTGCTCAC
 CTCATCCATGGCTTGTAACAAGGGGGTTCGAATTGGATCAAACCTCCATCTGAAGGGATGGA
 CTAGAAGGAAATTGACACAAAGGTTAGCATTCAAATAGTCATCAAAGGATGAGAGTCAGGGC
 20 TGGTTCTCCTCCCTGGCCTACCCACACGCCAGACTCACGTGTCAGAGATGAAGCAGGACAT
 GGGCCAATTCTGTGAAAAGTCAACCTAGAAGGAAATGACCGTGTCTCAAACGCTCTGAAGCA
 TCTTACCTGATTCAGGCACATTATTCTATGTTCTAACAGTTAAATTGTAGCATTTGTTTA
 ATTCCTCTGTGTAATCTTCATTCTTACATTGTTGTCATTATTATGTGTAAGAAT
 ATTCTGACCTCACATGTGCTGCAACATGTACCTGCACTGCCCCATGGAAGCCAGGAGAGGTAT
 25 TGGGACCTGCAAAATTAGGAGTTACAGATTATTGTGAGCCATTGGCTGGGTGCTGGAGTC
 CCAGGTCTTATAGAACCAAGTAGGTGCTCTAAACCAACTGAGCTATAGACCCCTAGCCTTAAGAAA
 CTTAATTCTGAGGCTAGAGAGATAGCTCAGTGGTAAGAGCACTGACTGCTCTCCATGGCTCT
 GAGTTCAATTCCCAGCAACCACATGGTGGCTACAACCATCTGTAATGAGATCTGATGCCCTCTC
 TGGTGTGCTGAAGAGAGCTACAGAGGAGTGTGTATAATAAAATCAGGGCTAGAGAGATGGC
 30 TCAGCGGTTAAGAGCACTGATTGCTCTTCCAATGATCATGAGTTCAATTCTCAGCAATCACATAGT
 GGCTCATAATCATCTGTAATGGGATCTGATGCCCTCTGTGATGTGTCAGCAAGACAACAGTGTACT
 CATATAAAATAAAACAAACAAACCTAAAAAAAGAAAAGAAAACCCAAA
 ACTAAGATAAAATAAAATCTGACAACCACAAAGGCTTAAGGCAACTAAAGTGGACTGG
 GAATTGAACTCTCACCTTAGGAAATACCCGTAACCTTCTTTTTTTTTTTCTTCTT
 35 TTTTCGGAGCTGAGGACCGAACCCAGGACCTGCACTCTCTAGGCAAGCGCTCTACCACTGAGC
 CAAATCCCCAACCCATAACCTTCTATAAAATAACTCTTACCTGTTGACCTGAGTGACCACAG
 CATCCACCACTCCCCCTTAAAGGGCGGGAAACAAATAGCTTGTATTCACTGGATAAAAGAACAA
 AACCTGGCCCGGCTGGATCACACCAGCACCAATATTGCGATGGTAGTGACAGCAATCACAAAGC
 CATATCTGCAGGAAAGATGAAAAAGACAGCTACTGTATGTGAAGAGCCTCTAAAGGCCACCAGC
 40 AATAGTCTCGTGTGATGGAACCTCTGCTCGAACAGCTCGATGACCAAGAAGAGACAGAACTCAGA
 TTAGCACCTGAAATATTAAATGGTGTCTCACATTGTCAGTAAATGCCAAGAAGGCACAGATA
 TGCTGACATACACCTATTCTCTCAGTACCAAGGACTTGCCAGGTCAGTGGTGAGACAGGTCTTCTG
 AAACCCACAAATCAGACAGAAAATTGTGACGAAAACCTTAAATCCAGCAGTCACTGAGGAGCAGT
 CTCTGAATTAGAGGCCAGCTTGGTCCACATAGTGAGGCCATCTGAAACCCAAAACATTGCTAA
 45 TAACGGTCTGATCTGCATAAGCGAAGAAAATTGGTTAGCAACCTTTAGAAGGGCCAAAATAG
 GCAAAACTGGCTGCTCGGATGCCTGGAGTGGTGAAGAGTTCTCAGAGTAAGTAACAAGCCCT
 GACTGAAGGAGTGAAGTAGAGGTTACAGAGTAGCGTTATTGTGCTGCAATTGAGCAGACACTG
 TGAATCAGACACTTACTTCCCAGTGCAGGCTCCACCTCGGTGAACAGCTTCTGCTTCACCGT
 GTTGAGCAAGTTGGGACCAAAGTAGCGTGGGTGCAAGTAGGATCTCGTGTCCAGGGAAATCTGCA
 50 AGAAAGGAAGATGAAGACTCCGCCAGGCCACACTGAGAACAGGAGGCAGCCGTCGGCCCTCCAGGC
 TCCTCCTGTCCTGCCCTCACCGCTACCCCGTCCAGTCACATGATAAAACATCTGCA
 GCTTGGACCGCAGAGGCCAGAACCTCCCCAGGAAGGGACCTCGCCGGAAAGCACTAGCAGAAGTCCCA

CCAAGTCTCCGAGTCGCTTCCGAGATTGAGTCTTAACGCCATGGCGGGAAACGTGAAGCCC
 CGCCCCCTCAGGCCTTCCCATCAGCGCTCATCAGCACAGCCAGGATTACACAGAAAAACCCGGTCTC
 GAAAAAACCTAAAAAAAAAAAAAAAAGGTTAAGAGGTCTGGCTGTGCCACAT
 GCCTTAAACCCAGCCGTGGCAGACAGATCTCAAATTCAAGGCTAACGCCACATCTACAAAGTGAG
 5 TTCCAGGATAACCAAGACTGTGTATACAAACCCCTATAAAAAAATTGTTTGGGGTTGGGGATT
 GGCTCAGAGGTAGAGCGCTTGCCTAGCAACCGCAAGGCCCTGGGTCGGTCCCCAGCTCCGAAAAA
 GAGAAAAAAAATTGTTTTAAATTTATTAGGGCTGAAGAATTAGCTCAGTCCTTAAGAGC
 ACTTGCCAGCCCCACAGGATAGCTCACAACTTATCTGTAACACTACAGTTAGAGAGAACTGACAC
 CCTCTCTGGCTTCATTCAAGCACTGCATGCTAGTGGTACACAGACATAATGCAGGCAGAACACCGA
 10 TGCTTGTAAAATAAAAGATGAGGTAGTTGGGAGATTGCTAACAGTTAAATCAATGGTT
 GCTCCTCCGAGGATCCAGGTTGATTCCCTAGAACAAACATGGTAACACTAACAGCTATATTCAA
 TCCTAGGGGATCCAGTGCCTATCTGGGCCTCCATGGACACTTCTCCCTGTGGTGAACAGGCATAG
 ATACAGCCAGAACATTACATACATATAAAATAAAAGGTTTACACATAAAATAAAATAAA
 GCTCTCGAAGAGGACCTGAGTTCAATTACTAACACTGCACCCAGGTCTCACAACTCCAGCTCGAA
 15 GGGGATCTGAAACTTCTCATTGCCTCAGGAGGTACCAGCACTTGTGGCTGTACTCACATACAG
 ATAACAGACATCATTGAGTACACCTAATTAAAGAAGAAGTCACTTGGAAGTGTGGCACACGCCTAA
 ATCCCAATATTCAAGAACAAAGGCAGGTGGGCTTCAAGTTCAAGGCCAACCTGGTACAGCAT
 GAGTTCCAGAACAGCCAGGGATACATTAAAAATGAAGGTGTCGGGTTGGGGATTAGCTCAGCGG
 TAGAGCGCTGCCTAGCAAGTGAAGGCCCTGGGTCGGTCCCCAGCTCCGGAAAAAAATGAA
 20 AGTGTCTTGTAAACAAAACAAAAGACAACAAGCAAAAGATTACTTATGTGGGCACGCACGG
 CTTACTTTCTTTCTATTGAGGGACGGTTTATTATGTGACCATGGATGACCTGAGATTGCTT
 GTAGAGTAAGCTGCCCTGAACCTTTTCTGGAGCTGAGGACCTAACCCAGGGTGGTGGGTT
 TTATAGGCAAGCGCTTACCACTGAGCTAAATCCCCAACCCCCCACCTTCACTTTAGGATACCA
 AGCAGACTCCTGGCTAGGAACACCTCAGCCTCGGGACTTTTTTACACTAGGTTCCG
 25 CTCCTGTTAGACTAGACTCTCCACCCCTCAGTACATTACTACTAGGACACTAGGACAAACCAT
 AGCAAATCTGTACAGCACCAGTGCAGGCCCTAACGCCCTGACTCCATCTTCTTTCTTTAA
 ATATTATTTATTTATGTAGTACACTGTCTTGTGACACACACCAGAAGAGGGCATCG
 GATCCCATTACAGATGGTGTGAGCCACCATGGTGTGGGAATTGAACCTCAGGACCTCTGGGA
 GAGCAGTCAGTGCTCTAACCGCTGAGCCATCTCCAGGCCCACTGAAGACTTTGATCTGGTT
 30 ACCATCTGACCCCAACTCTTGCACAAAGCCTCCCTCTCCAGAAGAAACTCTTACGTCTTTA
 TGTCCTGGCCCATGACTTGTATTAAATCAGCAACAACTGACAAGACCTGTATGTCTCCCTAGC
 TCAGAAGACAGATCCTGTCCTGTTAATGTTGATTTCTGGTCTGTCCGTGGGACAGTCTG
 ATAGTTCTAAGACTGATAGCTTGAGGGATCTAAACTCACAAACAGGGCTATTGTTACCGATGGG
 ACAATAACAAGGCTGCCATTGCTTGGAGTGGGACCATATCTGACAGAAAGAATTACCAAAACC
 35 CTAGCTGTGATTGCTCCGGAGTCCATGCTAACAAACTGCCACGCCCTCAGGAAACTTCTC
 ACAGAGTGTGCTCTGGAAATGACTGTGTAACCTCTACTGTCCACCTGCAGCAGCCATACCGA
 AATAACAGTCTAATAACCTCTCAACTCTGCAATTCTTAGTCTGGTGAACCTTTCTGCCCTCAATGT
 CATGACCTTCAAAGTCACCTCACATAGCAGTCTGCAGCGAGAACAGGTAATTCAAGGGCTGGGA
 TTAGCTCAGTGGTAGAGCGCTTACCTAGGAAGCGCAAGGCCCTGGGTCGGTCCCCAGCTCCGG
 40 AAAAAAAAGAACCAAAAAAAAGAGAGAACAGGTAATTCAAGCTAACACTGGTGAACACA
 AGTGTAAATTAAATACCTAGGAGGTTAGGGCGAGCGCATCTGGAGTTGGATTAACCTGGACTCCA
 TAGTGAATATTGGGCTAGCTTAGGCTACATAAGCAAGCCTCTCTCTCTGTCTGTCTGT
 CTCTATCTCTGTCTCTCAACACACAAAGAGAGAACGGAAAAAGGAAGAAATTAAAGAGAA
 AGAAAAACAAAAGAAATTCTCTAAGCAAAGCATATTATTTATTATTATTGTTTCAAGACA
 45 GTGTTTGTCTATGTAGCATTGGCTGTCTAGAACAACTCGTTGTAAGGCCAAGCTGGCCTGTGACTCA
 TAGGCCTGCCCTTGCCTTCCAAACTGGAAATTGAAGCCTTGTGGCAGCAGCCAGCGACACCT
 GGAATTTTAAAATTATTATTATTATTATTATTATTATTATTATTATTATACACTCC
 AGATATTATCCCCTCTGGTCCATCCCCCACTGTTCCACATGTCAACCTTCCCCACCCCCCA
 GTCTCCACAAGGATGTCCTAACCCACCCACCCCTCTCTAATTATTATTGTACATTCTCTTCTT
 50 CTTTTTTTTTTTTTTGGGTCTTTTCCGGAGCTGGGACCGAACCCAGGGCCTGCG
 CTCCTAGGTAAGCGCTCTACCACTGAGCTAACGCCCCACATTCTCTTCAACTTCT
 TTGGCACAGCATCTGGAGGGTGCAAATCAAGAGACAGCTTTCTTTGTGATGCCAACTT

TCAAGCATTACATTTGGGTGGGTTGGGTGTGATTTTTTTGTCTTCGAAATCTGCATTT
 TTTCTTCCCTTTTTTTCTCAGAGCTGGGACCTAACCCAGGGCTTGCCTGCTAGGC
 AACCGCTAAAACACTGAGCTAAATCCCCAECTCTAAATCTGTATTTTATTGTAACAACGTAT
 TTCTTTCTATATCCTTAACCTGGAGTTCATTCCTCCCTGCCCTACATACTATAGTC
 5 ACAGTTAAACTGTGTTATCAGGAATTCAAGAAAGGGCCTGATGAAACAGATCAGGACAGGAGCT
 CTGACCAGTAGTCAGTCTTCCTCTAGAATAAGTAAAATGAAACCAACCAAACCTTCT
 CTCTTCTTCTTTCTTTTTTTTGACGTGTCTCTGTGCTTGTCACTAGCATG
 AATTTCATTTTTTTTGGTTAAAAAAGGCAACCTCAAAACCAAACCTTTATTG
 TCAGGGAAAAGGAACTGCAATGACTGAATTGAGGATGTGGTACTGCCTCACTCACACACATT
 10 CTCAGACTGTGATGCCCTGCACACCTGAGAACAGTTACATGTATGCACTGTATTGCCC
 TATTAGAACAGGACCTGCAGGGAAAGTCTACCTAACCCGAAACTCCCCAGTGGAACAGGCAGGGTGG
 GTGGAGGGCTGGGACAGACAAGGACTCGGCGCACACATACAGTACCAACATAAAACAGTACAGTGA
 GGTGGGCTCAAGACCCAGGCAGCTTCTCTTCAGTAACAGGGCCCAGGCTGCCTTCACAGCA
 CAACCCCACAGCTGAACCCAGGCTCTCTCAAAACCAGCCATCTCACTCAGCAGCGCAAAGGAA
 15 AAGTAGATGTAGCCTCCCTGCAGAGAACAGCTTTCTTGTGTTAAATAAGTAAGTAAATCC
 ACCATCCCTCTGCTCCAAGATGGCTGATGTACACTTTCTACCAGATTGGTGCCTGCTTAGCTCA
 CTAACAGTGCTGCCCTCGCCGGCTGTGGCAGAGTTCCAGTGTGGTGTGTTCAAGCCTCACCCACT
 CATCCTCTCATTCCAAACATTCACTGCCCCCTCACTTAGGGGTTTCGAAATGTTAAATTG
 TATTACTTAAATATATATTGTTTATTTCATGCGTCTGTGTATGCTGTGAGTTACACACA
 20 TGCTGTGTGACAGGAATCTATGAAAGCAGAACAGGGCATCAGATCTACAGGAAGAACCAAG
 TGTCCAAAAGGAAAGAACGAGATCCATCTGCCCTGTGGTGTGAAATTGAAAGGTGTACATCAC
 TACAACCACGGGGATGGTATGTATGTATATATATATATATATATGTGTGTGTGTGT
 GTGTGTGTGTGTGTGTAAGGGTGTCAAGCTCTGGAACTGGAGTTAGACAGTTGTGAGCTG
 CCATGTGGGTGCTGGGATGAACCTGGCCCTCTAGAGAACAGCTGATGCTCTTAACGTGAGC
 25 CATCTCTCCGGCCCTTATTTTATTGTTGTGAGAGAGTGGAGGGTCAAGGGACAAACTGAGAGAC
 TTGGTTCTCTCCTCTGCCATGTGAATGCCAGGGATTGAATGCCAGGTTGTAGCCTTGGCAGTGAG
 TGCTTCCCCGCAAGGGCATTCTGTCACTCTTGTGATTACATTGTAACCCCTGGCACTGTGTTATT
 TGCTGGAAATGTTTAGTTGTGGATGACTCAGCTTAGCACATGCCCTTAATCCGAGAGCTT
 CTGCTGTATATTGTAAGCAGGATAAAATAAGTCAAATCTTAGGTCAAGAGATGGAGCAAGCAA
 30 GAGTTGACAGGAAATGAACATAGAACATTGAGAAAAACATATAGGGTTGGGATTGGCTCAG
 TGGTAGAGCGCTTACCTAGGAAGCGCAAGGCTGGGTCGGTCCCAGCACCGGAAAAAAAAAAA
 AAAACATATAGAGTAAGGGGGAGTCGGGTTAAACTGTACAGAACGACTCCATGTCTATTATAA
 TGTAAAGCAGGTCTGCAAAGCCTGCCGTTGTGCTCTGCTTCTCTGGCAGTGAAAGAGGATC
 AGTTTGAAGGCAGGCAGAACAGGTGCGGAGAGATGGCTGGCAGTTAACAGAGTATATGCTGCTCTT
 35 GCAGAGGACTGCATGCAACTGCAGCACCCACACAGTGGCTGTAGCTACCTGTAACCTCGTTCC
 ATGGGATCCGATGCCCTCTGACCTCTGAGAGCACCGACCATGCACATAGTCATGAACATACA
 TCGGGGTGAAAGACTCACATAAAAGTAAAGTGAATACATCTAATTAAATAAGACCACTTATGG
 CTGGAGAGATGGCTCAGGGTTAACAGACTGACTGCTCTCTGAGGTTCTGAGTTAACATTCCA
 GCAACAGATGGTGGCTACAACCATCTGTAATGAGATGTGATCCCTCTCTGGTGTGAG
 40 ACAGCTCCAGTGTACTCAATACACCCCTCCCTCCCTGAATGGAAAAAAAGCCTGG
 GTTGGGGATTGGCTCAGGGTAAAAAAACACCTATGAAAGCACAAGGTCTGGGTTGGTCCCC
 AGCCCCGAAAAAAAGAAAAAAAGACCACTTACACGTAACAGTAAAGATGGCAG
 ATTAGGCCCTGTACTAACAGGATTCTTAGAGGAACGTGAAATGAGTGTGTGTGTATTCA
 TTTTTTAAAGATTATTATGATATGAAGACACTGTTGCTATCTCAGACACACCAGA
 45 AGAGGGCATCAGATGCCCTAAAGATGGCTGTGAGCCATCATGTGGTACTGGGATTGAACTCAG
 GACCTCTGGAAAAGCAGCCCCGTGTACTCATTTATATGAAATATACACACATACACAG
 TGTTGTTAGATTGGCTCTGATGGTCAAGGTAAATCATCAATGAGAACATCAGTAGTACTCAGT
 CTACAAAGCTGAATGTCGCAACATTCTGATCTGGCACTTAGACCTAGAGGACTCTGGAGAGTC
 TACATGGGAATCCTGGACATCTGGAGATCCTACACAAACCTGCCATTCCCACCAAGGGCAGCT
 50 GTGAATGGCTGTGGGAAACATTCTTAAGCTAACGCTGAAGACCTAAATCCAATCCCTGGAAACCC
 GTGTGGTAGATGGAGAGAACTGACTCTGTTCATCTGACCTCCACTGGTGTAGCCGCACATACAT
 GCATGCAAAACAGTCGTATAAATCTAAAAAGTTAGAGCACCTGTAATAGATAAGTATA

ACTTAAAAGTGAACGAAGCCTATGCTTTAAATCGTAAGGACTGGGAGGCAGTCAGGCACATATC
 CAGGTTCCAGACCAGCCTGATGTATGTAATGAGTTCCAGACCAATTAGGGCTATATCATGAGACCA
 TGTCTAAAACCAAAAAACAAAAGAAAAGAAGAAAAAGAAGAACATCAAGTCAAGCATGATAAAAT
 CACATAATCCTATAATCCTAATAATGGGGAGGCTGAAGCAGAATGCCATGCCCTTGAGCTTAGCC
 5 TGGGCAGGACAACCAACTGGGCTACACAGGAATACTACAGCATTAGAAAAAGCAGT
 GCTGACTTCGTCAGTCTAGTTGGGCTGGGTTAGGTCTTTCAAACACTAAGCAATTGGTTC
 GGAGCTAGTTTGAGCCCTGCCACGCCATGGAGGAGCCACAGAGAAAAGTCGACCCAGTTG
 TAGTCCCAGAAGCTCCTCAAATGAAAGATGACGAGGACGCGTCCGCTGATTCAAGAAGTCCTACAA
 CAGAAACACTAGTAAAGGTCAACCGCTAACCCCTGAACCCCCAGTGCCGAACGGTCAGCACGTC
 10 ATCACAGCCTCAGTGTCCGGATTCAAGGCCTGGGCTGTGGAGAACAGATGTGAAGGAATCTTGAGGG
 AAGTTCAAAGCCTTCCCAAGAGAACGGGTCACACATTGTTGGGTGCTGAGAGATGCCGGAGCA
 AGGATGAGAAGATTGTTGGGATTGAGCAGAGACAACAAAGGTTGAAGGAAATGAGTAGGAAGGG
 AAGAGTGAGCCACTCAGACGTCTGTGCTCCTGCCATCGTCAGAGATGGAATCGTCTAAGAA
 15 GCTAAAATCCGGAAGAATTAGGACAGTCGGTTATGTACACTATCCTGCTGCTCATGATGCCATG
 CAGCAGACCTGAAAACGGTTTGTGTTAAAGATAAAACTTTCTGGTCTGGGAAACACGTT
 CTGTTAACCTTCAACTATGTAGGAAGTGTGACGGTTGAATTGATGTGAAGGACTAAATTAC
 CAAAGTATGGAGAATGAGTTAAAGCATTGTAACCTGCTGAACTTAAAGCTCAAGCTGGGGCTGAGAA
 CACTGTAACTAGAATTGGGGTAGTTGCTTAGAAGGTAATTGGAATAGGCCTTGGATTTC
 20 GTTGCAGAAATGTGTAATAAAGGCAATTGTTATCTTAAACAAACACAGAACAGATTAGAAT
 GAGCCATTGGAGATGGGGGTTGTTTACAGGAGCACGTGTTGGTGCACACTCCTGATGTCCA
 GAGTTCAATGTTGCTAACCCCTGTTATTCTGCTCCAGGCTGGGCTCCATGAGCCTAGCCA
 GTCTCTCAGCTCGTGGCCTGCCCTGTTGCCAAGTTTGACGCCACAGGCTGACAGCAAG
 ATCTAGAAAATGTTGCTTGATTTGTTGTTCATGCTGTAATAAAAAGAACAAATTGGTTG
 ATGTATTCTAAATTAAAAAAAGCACCAGGTGATGGTGGCTCACCCCTTAATCCC
 25 AACGCTCAGAAGGCAGAGACGGGATCTGAAATTGATGCCAGGGCTACACAGCAAAAC
 CCTGCTTGAGAAAAGAGACTTGTGGGTTGGGATTGGCTCAGGGTAGAGCGCTTGCTACCC
 GGGTCGGTCCCAGCTCCGAAAAAAAGAACATGAAAAAAAGAACAAAGAACAGACTCGTA
 AGCAAGCAAAGCTGGTAGCTAAAGAACATGAGAACATCTTAGAGCTACCTAGAGCTAGAAAAG
 CAGGACATTTCAGGCAGAGAGCTGGTACGGAAGCCAAAGGCTCAGGCCGGTTATACCATGT
 30 AAGGTTATCTGAGGGCTGGAGAACATGACAGCAACACTAACACGTCTACTGTCTGGCCAA
 GTATCAACTACCATGGCTTATAGATCCTGCTCTTGAGGAAAGGGTAGATCAAGGGTAATCAAG
 GATAGATTACCCCTTGGCAATAGGACGGAGGGTAGATCCCTCCAACAGTGTGAGTAGGTCC
 AAGAGTATGAATCATCTATGGCTCTAAACACTGCTAGGCTAATTACCATGAGCTACATCC
 CAAATATCAAAGTTGGGAGAGGGGATGCATGGAGACAGGTTCTAATGTGAATCTTACTG
 35 TCCTGGAACTCCCTCCATAGACCGTGCTGGCTTGAACCTACAGAGTTCTCACAGGAGACTTAAC
 GCCTTGTCTCAAAGTGCTGGGATCAAAGGCGTGACCCACATCCAGCCTTATTAAATTAA
 TATAATCAATTATAATTATAATCATAAATTAAATTAGTTGATCATATTATCGATGTAT
 TATGGAAGTGGGGCTGCTGATGTCTTGTGTTAAGGTCAGGAGATAAAACTACTTGGT
 AAAATAAGAAAACCAAGTTAAGAACAGATGGAGAAAAAAACAAATTATAGTTAAAAAA
 40 ACTTGGTCTTAAAAAATACAGGGGCTGGGATTAGCTCAGTGGTAGAGCGCTTACCTA
 GGAAGCACAAGGCCCTGGGTTCGCTCCCAGCTCTGAAAAAAAGAACAAAAAAAGAAAA
 AAGAAAATACAGGGCTGGAGAGATGCTCAGGGCTAACAGACTGACTGCTCTCCAGGGCTG
 AGTTCAATTCCAGCAACCACATGGTGGCTCACACCCATTGTAATGGGATCTGATGCCCTTCT
 GGTGTGCTGAAGACAGCTACAGTGTACATGAATACTAAATAATTCTTAAAAAAATGAAA
 45 AAAATACATGTCTATGTTATCAAACAAACTACTTGGACAGGGTTGGAGATTAGCTCA
 GTGGCCGAGCAGTGCCTAGCAAGTGCAAGACCCCTGGGTCGGTCTCAGCTCTGAAAAAA
 TACTACTTGGAGAAGTAGGTTCTCCCTCCACTCAAGTTGAGAAATCCAACCTAGATGTCAGGA
 GGCAAGCTCTCGTACCAACGGAACCTAAGATTGGTTTGAAGTCTGAGAGACCAGGCTATC
 CTGAAATCAAGATTAAATTACCCAGCTCCAAAAAAAGATTAAATTAAAGTAGCTG
 50 TTCCATGCCCTTGATCCAGCACTCTGGACAAGAGAGGAGCAGATGCAAGGTTGGTGTGAGTTGAG
 ATCAGTCTCAAAGCTGGTCCACATGGAAAGTTCTAGAACAGCCAAGGCTTCATGAGATCGTGTCT
 CAAAACAGCAAAGACAGTGACGATGACGTGATGAGCAACATAGACTCAAGCGTCTAGGC

GGGGGTGCGTTGGGGTGGAGGGCAGTGGGGCGGGTGC GGTTGCTGGCGCGGGCGGCCGGAACGG
TAGCCGGGCGCGCGGGAGCGCGCGCGCGCTCGCGAGGGGGTGC GGCGAGAGGGGTGC GGAG
GTCCGGTGAGCTGACTGACGATGCCCGTAGCTGCTGGCGCGTGGCGACCGTCATGCCGTGGCG
CGGGTGGGGCGGGCGCGGTGCATGCGGAGCGTCCTCGGTCTGGCGACCGTAGCGCCTCTGTC
5 GGGGCCGCGGACCGCGGTGAGGGTCGGGGCGGGGTGC GTGGCTGGAAGGCAGTGGTGTC
GGGTAGAGGGCGCGATAGGGGGCGCGTGATGTGATAT