CpE2210 Introduction to Digital Logic

Dr. Minsu Choi
CH 4: Combinational Logic Design

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

What is Combinational Logic Design?

combinational logic deals with networks hat use logic gates to combine the input ariables as needed to produce logic unctions -> the value of the output is letermined by the current values of the nputs.

ogic diagrams, truth tables (= <u>function</u> <u>ables</u>) and Boolean expressions are used o represent combinational logic designs.

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Canonical Logic Forms

- Two types of structured forms are especially useful in logic design -> Sum-of-Products (SOP) & Product-of-Sums (POS).
- SOP form
- A SOP expression consists of <u>AND terms</u> that are <u>ORed together</u>.
- For a function to be in <u>canonical SOP</u> structure, every variable must appear in each term in either normal or complemented form otherwise, the function is simply SOP form -> <u>Canonical SOP</u> ≠ SOP.

Example

F= ABC + ABC + ABC

ABC + ABC

ABC + ABC

ABC + ABC

EXAMPLE

EXAM

is not meanonical sup form because of V.

How to Convert SOP into Canonical SOP?

■ Ex)
$$h(x,y,z) = xy + yz$$
 we me $(x+x=1, z+z=1)$

$$= x \cdot y \cdot 1 + 1 \cdot y \cdot z = x \cdot y(z+z) + (x+x) \cdot y \cdot z$$

$$= xyz + xyz + xyz + xyz$$

$$= xyz + xyz + xyz + xyz$$

$$= xyz$$

Continued,

- Product-of-Sum form (POS): A POS express consists of <u>OR terms</u> that are <u>ANDed together</u>.
- $= Ex) f(x,y) = (\overline{x} + y) \cdot (x + \overline{y}) = \text{canonical pos}$ $g(x,y) = x \cdot (x + \overline{y}) = \text{pos}$

Extracting Canonical Forms

- Truth table (= function table) -> Boolean expression in canonical SOP.
 - 1. Select rows with output = 1.
 - Look up the input bits & construct AND terms.
 - 3. Then OR them to get the canonical SOP form.

Minterms & Maxterms

- Easy ways to express <u>C SOPs</u> & <u>C POSs</u>, respectively.
- Ex) Three variable case A, B, C
 - 1. If complemented -> 0, if not complicated -> 1.
 - 2. Then find binary #.
 - Convert it into decimal.

$$\overrightarrow{ABC} = M_0$$
 $\overrightarrow{ABC} = M_0$
 $\overrightarrow{ABC} = M_0$

```
Examples

If (A,B,C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}

= m_0 + m_3 + m_4 + m_7

Summation

Of windows = Em(0,3,4.7)

Summation

Situ sigma

to express CSOP functions.

explicitly expand the function g(a_1b_1C) = \overline{Em(1,1,5)}

= m_1 + m_2 + m_5

= abc + \overline{abc} + abc

m_1 + m_2 + m_5
```

Continued,

Maxterm:
$$M_1 = \overline{m_1}$$

Ex) 3-variable case DeMerganic theorem.

 $M_0 = \overline{m_0} = \overline{A \cdot B \cdot c} = A + B + c$
 $M_1 = \overline{m_1} = A + B + \overline{c}$
 $M_1 = \overline{m_2} = \overline{A + B + \overline{c}}$
 $M_2 = \overline{m_3} = \overline{A + B + \overline{c}}$
 $M_3 = \overline{m_4} = \overline{A + B + \overline{c}}$
 $M_4 = \overline{m_4} = \overline{A + B + \overline{c}}$
 $M_5 = \overline{m_5} = \overline{A + B + \overline{c}}$
 $M_7 = \overline{m_7} = \overline{A + B + \overline{c}}$
 $M_7 = \overline{m_7} = \overline{A + B + \overline{c}}$
 $M_7 = \overline{m_7} = \overline{A + B + \overline{c}}$
 $M_7 = \overline{m_7} = \overline{A + B + \overline{c}}$
 $M_7 = \overline{m_7} = \overline{A + B + \overline{c}}$
 $M_7 = \overline{m_7} = \overline{m_7}$

SOP <-> POS <-> T	ruth '	Table	
■ Ex) 3-var case easy.	ABC		(I)
$F = m_1 + m_2 + m_5 + m_6 \longrightarrow$	000	0	And Andrews (Andrews Andrews A
= Zm (1,2,5,6)	010	Ó	
(50P) chould look for entr	(4)	0	and the second second
(pus) When the marterinson &	Species Species Beautiful	O	
Mo = 100 M3 = 103 My	= M4	Mg= mg	
So, F= TT(0,3,4	-,7)		(M: = m;)
D select rows with output =	- 4 1,10	0 100 10	
D Find maxtern expressi	,	~ maxterm =	1 < 1 winterned

Exclusive-OR & Equivalence Operation

When only a single input is 1 exclusively the output is 1.

$$XNOR = ABB = AIC + AB MEOP.$$
 $ABB = I$ iff $A = B$
 $ABB = I$ iff

"equals to 1 "

Pros and Cons of Logic Arrays

- Pros: Rapid implementation & prototyping of complex digital networks.
- Cons: Resulting circuit will probably not be the most efficient use of gates and the design itself will not be the fastest implementation that can be achieved.
- Complex PLA-based programmable devices are called PLDs (Programmable Logic Devices).
- Good example of PLD: FPGAs (Field-Programmable Gate Arrays) -> very powerful logic circuits that can be used to implement highly
- complex logic networks.
- CAD tools are used to implement and program custom logic networks on FPGAs.

BCD & 7-Segment Display

 Binary-Coded Decimal (BCD) is a binary counting system for the base-10 digits 0 through 9 -> 4 bits required & A, B, C, D denote individual bits.

•					
ABCD	Decimal	ABCD	Decimal		
0000	ometrik digi kara izan yanginta di telebah perimbalan karanta di t	0101			
0001	WESTAGE	0110	6		
0010	2	CII	7		
0(00	3	1000	8		
0100	4	1001	9		

Binary combinations 1010 through 1111 are not used.

> 4 bit bindword to expless single bec digit.

Ex) An application of BCD: BCD to 7-segment decoder.

 7-segment display: a common type of numerical display that usually uses 7 LEDs (Light-Emitting Diodes) to represent decimal digits.

Karnaugh Maps (= K-maps)

- Canonical SOP & POS forms can be simplified, but the types of gates and their placement in the logic network will be "random" in that they cannot be predicted -> This design technique is called random logic -> More systematic way? K-maps.
- Karnaugh maps allow us to simply Boolean functions using a visual mapping technique that helps us recognize Boolean reductions by their locations on a grid.
- The technique of K-maps relies on the following two identities:

Continued, = AB((+2) + A((B+B) = AB +AC = A(B+c)

- -> K-maps can do reductions in a systematic way.
- Start with a function table.
- 2. Map the input-output combinations to a rectangular grid array.
- 3. Locate the terms where the identity $(x + \overline{x}) = 1$ can be used to simply the function.

Continued,

- K-maps can be applied to functions with arbitrary # of variables.
- Only 2, 3, and 4-variable cases will be discussed.
- For more # of variables, computer programs can be used.

(Since they are complitationally complex).

2-Variable K-maps

- Express the function in grid-like table.
- List all possible minterms & the resulting output value of the function -> ĀB, ĀB, ĀB and AB
- Construct a basic map.

A B AB (M2) (M2) (M2) (M2) (M3)

- Lookup truth table & construct K-map.
- Locate groups of 1, 2 or 4 adjacent 1s and simplify weach group called forme cell

■ Create a map using the variable A with B,C (or A,B with C) so that adjacent boxes differ by only one bit entry. >

- 1, 2, 4 or 8 adjacent 1s can be grouped and reduced.
- Left and right edges are also adjacent; allowing us to "wrap" the map into a cylinder.

Summary of Simplification Rules

- A group of one minterm gives a term with all three factors A, B and C.
- A group of two minterms reduces to a term with two factors.
- A group of four minterms reduces to a term with one factor.
- A group of all eight minterms is equivalent to a logic 1.

15 should be grouped in order that teduction rule (A+A). (= can be need.

of groups should be mainited (2 15 in each group should be maximited)

"Don't Care" Conditions

■ The output produced by a particular set of inputs can be either 0 or 1 without affecting the behavior of the function -> called "don't care" condition & denoted by X.

$$(A+\overline{A}) \cdot (B+\overline{B}) \cdot \overline{C} = \overline{C}$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B + \overline{C}$$

$$A \cdot B + \overline{C}$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

$$A \cdot B \cdot (C+\overline{C}) = A \cdot B$$

f=ABC+B.Z

Alternative 3-Variable Layout

Group ALB rather than BLC

$$\overrightarrow{A}B(c+\overline{c}) = \overline{A}B$$
 $\overrightarrow{A}B(c+\overline{c}) = \overline{B}\overline{c}$

DONG care Minterm notation [EXM (2,6)

" Maytorm " TTXM (2) 6)

4-Variable K-Maps

- Group A,B and C,D to draw a K-map.
- Group 1, 2, 4, 8 or 16 adjacent entries of 1s.
- Top-down and left-right edges are adjacent.

Minterm notation & NAND-NAND logic

- Any Boolean expression in Minterm notation can be directly realized in NAND-NAND logic.
- Simple (NAND gates only) and fast (only –3 two gate delay).
 - Minimal NAND-NAND expression can be found by K-map.

Maxterm notation & NOR-NOR logic

- Any Boolean express in Maxterm notation can be directly realized in NOR-NOR logic.
- Simple and fast.
- Minimal NOR-NOR expression can be found by K-map.

Program Completed

University of Missouri-Rolla

© 2003 Curators of University of Missouri

UNIVERSITY OF MISSOURI-ROLLA The Name. The Degree. The Difference.