Complex numbers

$$x^2 + 1 = 0 \Rightarrow x = \pm \sqrt{-1} = \pm i$$

Fundamental thm of algebra: Every real or complex polynomial of degree "n" has "n" roots (can be complex AND repeated)

Example: $x^4 - 1 = 0$ has 4 roots \Rightarrow

$$x = +1, -1, +i, -i$$

Euler's formula: $\cos(\theta) + i\sin(\theta) = e^{i\theta}$

Proof: (Taylor expansion)

$$e^{i\theta} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \dots = 1 - \frac{\theta^2}{2} + \dots + i(\theta - \frac{\theta^3}{6} + \dots)$$
$$= \cos(\theta) + i\sin(\theta)$$

This means that $e^{i\theta}e^{-i\theta}=1$

Proof:

$$(\cos(\theta) + i\sin(\theta))(\cos(\theta) - i\sin(\theta)) = \cos^2\theta + \sin^2\theta + i\sin\theta\cos\theta - i\sin\theta\cos\theta$$
$$= 1$$

Roots of unity: an nth root of unity $z^n=1$

$$\exp\left(\frac{2k\pi i}{n}\right) = \cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}, \qquad k = 0, 1, \dots, n-1$$

Euler's method

Differential equation governs the rate of change of a variable.

$$\frac{dx}{dt} = -x$$

This example is exponential decay.

If we know $x(t_0)$ we can compute x shortly after $(x(t_0 + \Delta t))$ with an approximation:

$$x(t_0 + \Delta t) = x(t_0) + \Delta t \frac{dx(t_0)}{dt}$$

Example:

Find x(0.1) given x(0) = 5 using Euler's method:

$$\frac{dx(t)}{dt} = -x$$

1

Eigenvalues and eigenvectors

Example:

$$A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

Find vectors that stay on their own span, e.g. $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

$$\begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Example: Consider a 3D rotation, the eigenvector of the rotation is the AXIS OF ROTATION with eigenvalue $\lambda=1$

$$\begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

 $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue 1.

 $A \vec{v} = \lambda \vec{v}$, λ : eigenvalue, \vec{v} : eigenvector

$$A\vec{v} = \lambda I\vec{v}$$
$$A\vec{v} - \lambda I\vec{v} = \vec{0}$$

$$(A - \lambda I)\vec{v} = \vec{0}$$

Trivial solution $\vec{v} = \vec{0}$. Only other way to get zero:

$$\det(A - \lambda I) = 0$$

Example: Find eigenvalues of $A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$

$$\begin{split} \det \begin{pmatrix} \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} &= \det \begin{pmatrix} \begin{bmatrix} 3 - \lambda & 1 \\ 0 & 2 - \lambda \end{bmatrix} \end{pmatrix} = 0 \\ &\Rightarrow (3 - \lambda)(2 - \lambda) = 0 \\ &\Rightarrow \lambda = 3, 2 \end{split}$$

2

Example: Find eigenvalues of $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

$$\det \begin{pmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} = \det \begin{pmatrix} \begin{bmatrix} -\lambda & -1 \\ 1 & -\lambda \end{bmatrix} \end{pmatrix} = 0$$

$$\Rightarrow \lambda^2 + 1 = 0$$

$$\Rightarrow \lambda = +i, -i$$

All vectors in the REAL plane are rotated \Rightarrow no REAL vectors that stay on their own span.

Example: Find eigenvalues of $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

$$\det \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} = \det \begin{pmatrix} \begin{bmatrix} 1 - \lambda & 1 \\ 0 & 1 - \lambda \end{bmatrix} \end{pmatrix} = 0$$

$$\Rightarrow (1 - \lambda)(1 - \lambda) = 0$$

$$\Rightarrow \lambda = 1$$

Only ONE eigenvalue/eigenvector. Find the eigenvector:

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 1 \begin{bmatrix} a \\ b \end{bmatrix} \Rightarrow a + b = a \Rightarrow b = 0$$

The eigenvector is $\begin{bmatrix} a \\ 0 \end{bmatrix}$ where $a \in \mathbb{R}$.

Example: Find eigenvalues of $A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$.

$$\det \begin{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} = \det \begin{pmatrix} \begin{bmatrix} 2 - \lambda & 0 \\ 0 & 2 - \lambda \end{bmatrix} \end{pmatrix} = 0$$

$$\Rightarrow (2 - \lambda)(2 - \lambda) = 0$$

$$\Rightarrow \lambda = 2$$

Find the eigenvectors:

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 2 \begin{bmatrix} a \\ b \end{bmatrix} \Rightarrow 2a = 2a; 2b = 2b \Rightarrow a \in \mathbb{R}, b \in \mathbb{R}$$

All vectors are eigenvectors of diagonal matrices!

Uses of eigenvalues/eigenvectors

- dynamical systems governs timescales
- low-dimensional representations

Differential Equations

systems of equations governing dynamics

Example: Exponential decay

x= firing rate of a neuron, au= timescale of neuron

$$\begin{split} \frac{dx}{dt} &= -x/\tau \qquad \text{(firing rate decays to zero)} \\ \Rightarrow \int \frac{dx}{x} &= \int \frac{-dt}{\tau} \\ \Rightarrow \ln(x) &= -t/\tau + c \\ \Rightarrow x(t) &= e^{-t/\tau + c} = e^{-t/\tau} e^c \\ x(t) &= c e^{-t/\tau} \quad \text{where} \quad c = x(0) \end{split}$$

Example: Add another neuron as input:

$$\frac{dx}{dt} = -x + 2y$$
$$\frac{dy}{dt} = -y + 2x$$

We can rewrite this as a matrix multiplication:

$$\begin{bmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{bmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Suppose the solution takes the form $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} e^{\lambda t}$, what are λ and $\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$?

LHS:
$$\begin{bmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{bmatrix} = \begin{bmatrix} \frac{d}{dt} \begin{pmatrix} a_1 e^{\lambda t} \\ a_2 e^{\lambda t} \end{pmatrix} \end{bmatrix} = \begin{bmatrix} a_1 (\lambda e^{\lambda t}) \\ a_2 (\lambda e^{\lambda t}) \end{bmatrix} = \lambda \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} e^{\lambda t}$$

Plug this into the equation:

$$\lambda \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} e^{\lambda t} = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} e^{\lambda t}$$
$$\Rightarrow \lambda \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

Let
$$\vec{v} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$
 and $A = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$

$$\Rightarrow \lambda \vec{v} = A\vec{v}$$

What are λ and $\vec{v} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$?

^{*} neuron's firing rate decays with timescale τ *

Find the eigenvalues:

$$\det \begin{pmatrix} \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} = \det \begin{pmatrix} \begin{bmatrix} -1 - \lambda & 2 \\ 2 & -1 - \lambda \end{bmatrix} \end{pmatrix} = 0$$

$$\Rightarrow (-1 - \lambda)(-1 - \lambda) - 4 = 0$$

$$\Rightarrow \lambda^2 + 2\lambda - 3 = 0$$

$$\Rightarrow (\lambda + 3)(\lambda - 1) = 0$$

$$\Rightarrow \lambda = -3, +1$$

Find the eigenvectors:

$$\begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = -3 \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \Rightarrow -a_1 + 2a_2 = -3a_1 \Rightarrow a_2 = -a_1 \Rightarrow \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$\begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = +1 \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \Rightarrow -a_1 + 2a_2 = a_1 \Rightarrow a_2 = a_1 \Rightarrow \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

On your own check that these are eigenvectors.

Two solutions of the differential equation:

$$\begin{bmatrix} x \\ y \end{bmatrix} = c_1 e^{-3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad \begin{bmatrix} x \\ y \end{bmatrix} = c_2 e^t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Any linear combinations are also solutions, let's check this. Let

$$\begin{bmatrix} x \\ y \end{bmatrix} = c_1 e^{\lambda_1 t} \vec{v}_1 + c_2 e^{\lambda_2 t} \vec{v}_2$$

$$\text{LHS: } \begin{bmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{bmatrix} = c_1 (\lambda_1 e^{\lambda_1 t}) \vec{v}_1 + c_2 (\lambda_2 e^{\lambda_2 t}) \vec{v}_2 = c_1 e^{\lambda_1 t} (\lambda_1 \vec{v}_1) + c_2 e^{\lambda_2 t} (\lambda_2 \vec{v}_2)$$

$$\text{RHS: } A(c_1 e^{\lambda_1 t} \vec{v}_1 + c_2 e^{\lambda_1 t} \vec{v}_2) = c_1 e^{\lambda_1 t} (A \vec{v}_1) + c_2 e^{\lambda_2 t} (A \vec{v}_2) = c_1 e^{\lambda_1 t} (\lambda_1 \vec{v}_1) + c_2 e^{\lambda_2 t} (\lambda_2 \vec{v}_2) \checkmark$$

Can also do it the looong way. Let

$$\begin{bmatrix} x \\ y \end{bmatrix} = c_1 e^{-3t} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + c_2 e^t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\text{LHS:} \quad \begin{bmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{bmatrix} = \begin{bmatrix} c_1(-3)e^{\lambda t} + c_2(1)e^{\lambda t} \\ c_1(-3)(-1)e^{\lambda t} + c_2(1)e^{\lambda t} \end{bmatrix} = \begin{bmatrix} -3c_1e^{\lambda t} + c_2e^{\lambda t} \\ 3c_1e^{\lambda t} + c_2e^{\lambda t} \end{bmatrix}$$

$$\text{RHS:} \quad \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix} \left(c_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-3t} + c_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^t \right) = \begin{bmatrix} -3c_1e^{-3t} + c_2e^t \\ 3c_1e^{-3t} + c_2e^t \end{bmatrix} \checkmark$$

Theorem: If you start on an eigenvector, you STAY on an eigenvector.

"Proof": (using Euler's method)

$$\begin{bmatrix} x(t + \Delta t) \\ y(t + \Delta t) \end{bmatrix} \approx \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} + \Delta t \begin{bmatrix} \frac{dx(t)}{dt} \\ \frac{dy(t)}{dt} \end{bmatrix}$$

If
$$\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \vec{v}$$
 (eigenvector of A), then $\begin{bmatrix} \frac{dx(t)}{dt} \\ \frac{dy(t)}{dt} \end{bmatrix} = A\vec{v} = \lambda\vec{v} \Rightarrow$
$$\begin{bmatrix} x(t+\Delta t) \\ y(t+\Delta t) \end{bmatrix} \approx \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} + \Delta t \ \lambda \left[x(t)y(t) \right] = (1+\Delta t\lambda)\vec{v}$$

still on eigenvector

What does $\lambda > 0$ versus $\lambda < 0$ mean?

* note we can think about these neurons as "groups of neurons" *

How can we make the system stable? (don't want $x \to \infty, y \to \infty$)

$$\begin{bmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{bmatrix} = \begin{bmatrix} -3 & 2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix} - 2I \end{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

The neurons will decay faster, why would this make this stable?

$$\det(A - \lambda I) = 0$$

Now subtract 2I and find new eigenvalues

$$\det(A - 2I - \lambda_{\text{new}}I) = \det(A - (2 + \lambda_{\text{new}})I) = 0$$

$$\Rightarrow 2 + \lambda_{\text{new}} = \lambda$$

$$\Rightarrow \lambda_{\text{new}} = \lambda - 2$$

Theorem: Eigenvalues of A+bI are $\lambda+b$ where λ are eigenvalues of A and eigenvectors are the same as the eigenvectors of A.

Proof:

$$(A+bI)\vec{v} = (\lambda+b)\vec{v}$$
$$A\vec{v} + bI\vec{v} = \lambda\vec{v} + b\vec{v}$$

 $\Rightarrow \vec{v}$ is also an eigenvector of A + bI

New system
$$\begin{bmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{bmatrix} = \begin{bmatrix} -3 & 2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
 has eigenvalues $\lambda = -5, -1$ and eigenvectors $\vec{v} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

How else can we prevent neurons from $\to \infty$? add inhibitory neurons!

Example: Inhibitory neuron

$$\begin{bmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Which neuron in this system is the "excitatory neuron" and which is the "inhibitory neuron"?

Find eigenvalues (recall from video):

$$\det \begin{pmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} = \det \begin{pmatrix} \begin{bmatrix} -\lambda & -1 \\ 1 & -\lambda \end{bmatrix} \end{pmatrix} = 0$$

$$\Rightarrow \lambda^2 + 1 = 0$$

$$\Rightarrow \lambda = +i, -i$$

Therefore, x and y are functions of $e^{it} = \cos(t)i\sin(t) \Rightarrow \mathsf{OSCILLATIONS!}$

Make phase diagram and show oscillation.

See what happens when $\lambda = -1 \pm i$.

Diagonalizing a matrix

Let A be a matrix, with λ_1, λ_2 eigenvalues and \vec{x}_1, \vec{x}_2 eigenvectors. Let's multiply A with its eigenvectors:

$$A\begin{bmatrix} \vec{x}_1 & \vec{x}_2 \end{bmatrix} = \begin{bmatrix} A\vec{x}_1 & A\vec{x}_2 \end{bmatrix} = \begin{bmatrix} \lambda_1 \vec{x}_1 & \lambda_2 \vec{x}_2 \end{bmatrix}.$$

We can rewrite the RHS side as a matrix multiplication:

$$\begin{bmatrix} \lambda_1 \vec{x}_1 & \lambda_2 \vec{x}_2 \end{bmatrix} = \begin{bmatrix} \vec{x}_1 & \vec{x}_2 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = V \Lambda$$

where we term the eigenvector matrix V and the diagonal matrix with the eigenvalues Λ . Now let's rewrite the first expression and try to **diagonalize** A:

$$AV = \Lambda V$$

Multiply by V^{-1} on both sides.

$$V^{-1}AV = V^{-1}V\Lambda = \Lambda$$

V diagonalizes A.

Can decompose A into V e'vectors and Λ e'values:

$$A = V\Lambda V^{-1}$$

This also makes it easy to compute powers of A:

$$A^{2} = (V\Lambda V^{-1})(V\Lambda V^{-1}) = V\Lambda^{2}V^{-1}$$
$$\Rightarrow A^{n} = V\Lambda^{n}V^{-1}$$

As $n \to \infty$, $\lambda > 1$ will dominate and therefore the transformation will tend towards its corresponding eigenvector.

Similar matrices

Let B be similar to A: $B = M^{-1}AM$ and $B\vec{x} = \lambda \vec{x}$. What are the eigenvalues and eigenvectors of A?

$$B\vec{x} = M^{-1}AM\vec{x} = \lambda \vec{x}$$

Multiply both sides by M

$$M(M^{-1}AM)\vec{x} = M(\lambda \vec{x})$$

 $\Rightarrow A(M\vec{x}) = \lambda(M\vec{x})$

Same eigenvalues, eigenvectors transformed by M.

* any matrix is similar to the diagonal matrix (through eigenvectors): $\Lambda = V^{-1}AV$ *

Symmetric matrices

Definition: A is symmetric if $A = A^{T}$.

Example: Recall from last class, $A = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}$ has $\lambda = -3, +1$ and eigenvectors $\begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

These eigenvalues are **real** numbers. These eigenvectors are also **orthogonal**. How do we check orthogonality?

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}^{\top} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 - 1 = 0 \checkmark$$

Orthonormal matrices are orthogonal matrices with columns with unit norm - how do we make $V = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix}$ have columns of unit norm?

$$V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

Prove for yourself that this works.

Theorem: Matrix V orthonormal $\iff V^{-1} = V^{\top}$.

Proof: (right-direction) We will show for a two column matrix, but applies to an N-D matrix:

$$V = egin{bmatrix} ec{v}_1 & ec{v}_2 \end{bmatrix} \quad ext{and} \quad V^ op = egin{bmatrix} ec{v}_1 \ ec{v}_2 \end{bmatrix}$$

$$\Rightarrow V^\top V = \begin{bmatrix} \vec{v}_1^\top \\ \vec{v}_2^\top \end{bmatrix} \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix} = \begin{bmatrix} \vec{v}_1^\top \vec{v}_1 & \vec{v}_1^\top \vec{v}_2 \\ \vec{v}_2^\top \vec{v}_1 & \vec{v}_2^\top \vec{v}_2 \end{bmatrix}$$

Since \vec{v}_1 and \vec{v}_2 are orthogonal, $\vec{v}_1^\top \vec{v}_2 = 0$. Since \vec{v}_1 and \vec{v}_2 are unit norm, $\vec{v}_1^\top \vec{v}_1 = 1$ and $\vec{v}_2^\top \vec{v}_2 = 1 \Rightarrow$

$$V^{\top}V = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I \Rightarrow V^{\top} = V^{-1}$$

Check for $V=\frac{1}{\sqrt{2}}\begin{bmatrix}1&1\\-1&1\end{bmatrix}$ that the inverse is the transpose.

Theorem: Symmetric matrices $(A = A^{T})$ have real eigenvalues and orthogonal eigenvectors.

Proof: (for orthogonal eigenvectors)

Rewrite A as $A=V^{-1}\Lambda V$

$$\Rightarrow A^{\top} = (V^{-1}\Lambda V)^{\top} = V^{\top}\Lambda (V^{-1})^{\top}$$

By definition,

$$A = A^{\top} \Rightarrow V^{-1} \Lambda V = V^{\top} \Lambda (V^{-1})^{\top}$$

How do we achieve equality for this expression? $V^{-1} = V^{\top}$

Thus, V is an orthonormal matrix \Rightarrow eigenvectors are orthogonal.

Positive semi-definite matrices

Definition: S is positive semi-definite if $S = A^{T}A$.

Theorem: Positive semi-definite matrices are symmetric.

Proof:

$$S = A^{\mathsf{T}} A \Rightarrow S^{\mathsf{T}} = (A^{\mathsf{T}} A)^{\mathsf{T}} = A^{\mathsf{T}} (A^{\mathsf{T}})^{\mathsf{T}} = A^{\mathsf{T}} A$$
$$\Rightarrow S = S^{\mathsf{T}}$$

Theorem: Positive semi-definite matrices have all eigenvalues $\lambda \geq 0$

Proof: Let λ , \vec{v} be eigenvalues and eigenvectors of S

$$\begin{split} A^\top A \vec{v} &= \lambda \vec{v} \\ \vec{v}^\top (A^\top A \vec{v}) &= \vec{v}^\top (\lambda \vec{v}) \\ \vec{v}^\top (A^\top A \vec{v}) &= \vec{v}^\top (\lambda \vec{v}) \\ (A \vec{v})^\top (A \vec{v}) &= \lambda \vec{v}^\top \vec{v} \\ ||A \vec{v}||^2 &= \lambda ||\vec{v}||^2 \quad \text{norm is always positive} \\ \Rightarrow \lambda &\geq 0 \quad \forall S = A^\top A \end{split}$$

When will $\lambda = 0$?

* if S does not have independent columns (determinant = 0) *

Example: $S = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, find eigenvalues λ_1, λ_2 and eigenvectors \vec{v}_1, \vec{v}_2 .

$$\begin{split} \det \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} &= \det \begin{pmatrix} \begin{bmatrix} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{bmatrix} \end{pmatrix} = 0 \\ &\Rightarrow \lambda^2 - 2\lambda + 1 = 0 \\ &\Rightarrow \lambda(\lambda - 2) = 0 \\ &\Rightarrow \lambda = 0, 2 \end{split}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 2 \begin{bmatrix} a \\ b \end{bmatrix} \Rightarrow a + b = 2a \Rightarrow b = a \Rightarrow \vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 0 \begin{bmatrix} a \\ b \end{bmatrix} \Rightarrow a + b = 0 \Rightarrow b = -a \Rightarrow \vec{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Rewrite S as diagonalization:

$$S = V^{\top} \Lambda V = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}^{\top} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

There is a full column of zeros $\Rightarrow \vec{v}_2$ doesn't matter. Can then write S as

$$S = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}^{\top} (2) \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}^{\top} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

What is the rank of S?

Example: 2 neurons' firing rates in response to 6 different stimuli (normalized to zero average firing rate):

$$X = \begin{bmatrix} 5 & 7 \\ -4 & 2 \\ 8 & 7 \\ -10 & -9 \\ 1 & 0 \\ 0 & -3 \end{bmatrix}$$

How are these neurons' firing rates covarying? $\mathrm{cov}(x,y) = \frac{1}{N_{\mathrm{stim}}} \Sigma_i(x_i - \bar{x})(y_i - \bar{y})$ where i is for different stimuli

$$\Rightarrow$$
 covariance matrix $S = \frac{1}{N_{\text{stim}}} X X^{\top} = \begin{bmatrix} 34 & 32 \\ 32 & 32 \end{bmatrix}$.

What are the eigenvalues and eigenvectors? S is positive semi-definite so $\lambda \geq 0$.

$$\lambda = 65, 2; \quad \vec{v}_1 = \begin{bmatrix} 0.72 \\ 0.69 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} -0.69 \\ 0.72 \end{bmatrix}$$

What do you notice when you plot these vectors?

What is the projection of X onto \vec{v}_1 and \vec{v}_2 ? Neuron 1 \vec{x}_1 onto \vec{v}_1 :

$$\mathsf{proj}_{\vec{v}_1} \vec{x}_1 = \frac{\vec{x}_1^\top \vec{v}_1}{||\vec{v}_1||^2} \vec{v}_1 = (\vec{x}_1^\top \vec{v}_1) \vec{v}_1$$

```
1 import numpy as np
                    import matplotlib.pyplot as plt
                    %matplotlib inline
               5 n1 = np.array([5,-4,8,-10,1,0])
6 n2 = np.array([7,-2,7,-9,0,-3])
               8 A = np.concatenate((n1[np.newaxis,:], n2[np.newaxis,:]), axis=0)
              10
              11 # plot neuron activity
              fig = plt.figure(figsize=(4,4))
ax = fig.add_subplot(111)
              14 ax.scatter(n1,n2,s=60)
15 ax.set_xlabel('neuron 1')
              16 ax.set_ylabel('neuron 2')
              17 ax.set_xlim(-11,11)
18 ax.set_ylim(-11,11)
              19 plt.show()
              (2, 6)
                    10.0
                     7.5
                     5.0
                     2.5
                     0.0
                   -2.5
                    -5.0
                   -7.5
                  -10.0
                          -10
In [2]:
               1 print('covariance matrix')
                2 covA = A @ A.T / A.shape[]
3 print('[[ %2.0f, %2.0f ],\n [ %2.0f, %2.0f ]]'%(covA[0,0],covA[0,1],covA[1,0],covA[1,1]))
               # find eigenvalues and eigenvectors of covariance matrix lam, v = np.linalg.eig(A @ A.T / A.shape[1])
               print('eigenvalues: %2.0f, %2.0f'%(lam[0],lam[1]))
print('eigenvectors: [%2.2f,%2.2f], [%2.2f,%2.2f]'%(v[0,0],v[1,0],v[0,1],v[1,1]))
              covariance matrix
             [[ 34, 32 ],
[ 32, 32 ]]
             eigenvalues: 65, 2
eigenvectors: [0.72,0.69], [-0.69,0.72]
In [3]: 1 # plot EIGENVECTOR on top
2 fig = plt.figure(figsize=(4,4))
3 ax = fig.add_subplot(111)
               ax = rig.add_subplot(111)
ax.scatter(n1,n2,s=60)
ax.plot(np.array([-11,11]), np.array([-11,11])*v[1,0]/v[0,0],color='k', zorder=0, lw=3)
ax.text(7,5,'evector1',fontsize=15)
ax.plot(np.array([-3,3]), np.array([-3,3])*v[1,1]/v[0,1],'--',color='k', zorder=0)
ax.text(5,-4,'evector2',fontsize=15)
ax.set xlabel('neuron 1')
ax.set xlabel('neuron 2')
              10 ax.set_ylabel('neuron 2')
              11 ax.set_xlim(-11,11)
12 ax.set_ylim(-11,11)
13 plt.show()
                    10.0
                     7.5
                                                              evector1
                     5.0
                     2.5
                     0.0
                   -2.5
                                                          evector2
                    -5.0
                   -7.5
                  -10.0 -
```

-10

10

Principal components analysis

- most data is HIGH-dimensional, how do we visualize/understand it?
- PCA is a linear dimensionality reduction technique
- The first PC is a projection that captures the MOST variance in the data
- find a low-dimensional space that preserves as much variance in the original data as possible.
- can use low-D summary and it may be more interpretable
- can also use as a **pre-processing** step before doing classification or regression a low-dimensional regression has FEWER parameters so it acts as a "regularization" step

PCA derivation: (maximum variance)

$$X = \begin{bmatrix} \vec{x}_1 & \dots & \vec{x}_n \end{bmatrix}$$
 N neurons $\vec{x}_i \in \mathbb{R}^D$

If \vec{x}_i are mean 0, then covariance $S = \frac{1}{N_{\text{stim}}} X X^{\top}$. We want to find principal component \vec{u}_1 that maximizes variance of projection of data onto it.

$$\begin{aligned} \max_{\vec{u}_1} \ \operatorname{var}_i(\vec{u}_1^\top \vec{x}_i) &= \frac{1}{N_{\mathsf{stim}}} \Sigma_i(\vec{u}_1^\top \vec{x}_i) (\vec{u}_1^\top \vec{x}_i)^\top \\ &= \frac{1}{N_{\mathsf{stim}}} \Sigma_i \vec{u}_1^\top (\vec{x}_i \vec{x}_i^\top) \vec{u}_1 \\ &= \vec{u}_1^\top S \vec{u}_1 \end{aligned}$$

if $||\vec{u}_1|| \to \infty$, then variance will $\to \infty$. We therefore need to **constrain** this optimization such that the norm of $\vec{u}_1 < \infty$. We choose $\vec{u}_1 = 1$. To do constrained optimization we use **Lagrange multipliers**:

$$\mathcal{L}(\vec{u}_{1}, \lambda) = \vec{u}_{1}^{\top} S \vec{u}_{1} - \lambda (\vec{u}_{1}^{\top} \vec{u}_{1} - 1)$$

$$\frac{\partial}{\partial \vec{u}_{1}} \mathcal{L}(\vec{u}_{1}, \lambda) = \frac{\partial}{\partial \vec{u}_{1}} \left(\vec{u}_{1}^{\top} S \vec{u}_{1} - \lambda (\vec{u}_{1}^{\top} \vec{u}_{1} - 1) \right) \qquad \frac{\partial}{\partial \lambda} \mathcal{L}(\vec{u}_{1}, \lambda) = \frac{\partial}{\partial \lambda} \left(\vec{u}_{1}^{\top} S \vec{u}_{1} - \lambda (\vec{u}_{1}^{\top} \vec{u}_{1} - 1) \right)$$

$$\frac{\partial}{\partial \vec{u}_{1}} \mathcal{L}(\vec{u}_{1}, \lambda) = 2S \vec{u}_{1} - 2\lambda \vec{u}_{1} = 0 \qquad \qquad \frac{\partial}{\partial \lambda} \mathcal{L}(\vec{u}_{1}, \lambda) = \vec{u}_{1}^{\top} \vec{u}_{1} - 1 = 0$$

$$\Rightarrow S \vec{u}_{1} = \lambda \vec{u}_{1} \qquad \Rightarrow ||\vec{u}_{1}||^{2} = 1$$

Can you tell what \vec{u}_1 should be to satisfy this equation?

Let \vec{u}_1 be an eigenvector of the covariance matrix S, which eigenvector maximuizes the variance?

$$\begin{aligned} \max_{\vec{u}_1} \ \text{var}_i(\vec{u}_1^\top \vec{x}_i) &= \vec{u}_1^\top S \vec{u}_1 \text{ where } \vec{u}_1 \text{ is an eigenvector} \\ &= \vec{u}_1^\top (\lambda \vec{u}_1) \\ &= \lambda \vec{u}_1^\top \vec{u}_1 = \lambda ||\vec{u}_1||^2 = \lambda \end{aligned}$$

PCA: The eigenvector with the largest eigenvalue is the first principal component. The next principal components are the following eigenvectors.

PCA derivation: (minimize residuals)

Introduce D orthonormal basis vectors \vec{u}_i such that $\vec{u}_i\vec{u}_j=\delta_{ij}$. We can represent each neuron \vec{x}_n as

$$\vec{x}_n = \sum_{i=1}^D (\vec{x}_n^\top \vec{u}_i) \vec{u}_i$$

where each neuron is a sum of \vec{u}_i with weights of the projection of \vec{x}_n onto the vectors \vec{u}_i . How do we choose \vec{u}_i to minimize the error of the reconstruction of the original data with only M vectors?

$$\hat{\vec{x}}_n = \sum_{i=1}^{M} z_{ni} \vec{u}_i + \sum_{i=M+1}^{D} b_i \vec{u}_i$$

 b_i are the same for all neurons (to make an M dimensional representation). Minimize reconstruction error:

$$J = \frac{1}{N} \sum_{n=1}^{N} ||\vec{x}_n - \hat{\vec{x}}_n||^2 = \frac{1}{N} \sum_{n=1}^{N} \vec{x}_n^{\top} \vec{x}_n - 2\hat{\vec{x}}_n \vec{x}_n + \hat{\vec{x}}_n^{\top} \hat{\vec{x}}_n$$

How do we minimize? Take derivative with respect to each variable.

$$\frac{\partial J}{\partial z_{ni}} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial}{\partial z_{ni}} \left(-2\hat{\vec{x}}_{n}^{\top} \vec{x}_{n} + \hat{\vec{x}}_{n}^{\top} \hat{\vec{x}}_{n} \right) = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial}{\partial z_{ni}} \left(-2 \left(\sum_{i=1}^{M} z_{ni} \vec{u}_{i} \right)^{\top} \vec{x}_{n} + \left(\sum_{i=1}^{M} z_{ni} \vec{u}_{i} \right)^{\top} \left(\sum_{i=1}^{M} z_{ni} \vec{u}_{i} \right) \right)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \left(-2 \left(\sum_{i=1}^{M} \frac{\partial}{\partial z_{ni}} z_{ni} \vec{u}_{i} \right)^{\top} \vec{x}_{n} + \frac{\partial}{\partial z_{ni}} \left(\sum_{i=1}^{M} z_{ni} \vec{u}_{i} \right)^{\top} \left(\sum_{i=1}^{M} z_{ni} \vec{u}_{i} \right) \right)$$

. . .

continue this as an exercise (see PRML by Bishop for help)

Singular value decomposition (is basically PCA)

Definition: Singular value decomposition of a matrix M decomposes it into 3 matrices $U\Sigma V^{\top}$ where U and V are orthonormal and Σ is diagonal. If M has only real (not complex) entries, then U, V and Σ are also real. (pic from wikipedia)

$$M = U \cdot \Sigma \cdot V^*$$

What are U and V and how do they relate to PCA?

Suppose $X = U\Sigma V^{\top}$. Compute covariance:

$$\begin{split} XX^\top &= (U\Sigma V^\top)(U\Sigma V^\top)^\top \\ &= U\Sigma V^\top V\Sigma^\top U^\top \\ &= U\Sigma^2 U^\top \text{ (because } V \text{ is orthonormal)} \end{split}$$

U are the eigenvectors of $S=XX^\top$ which from above are the principal components. Solve for V:

$$X = U\Sigma V^{\top}$$

$$\Sigma^{-1}U^{\top}X = V^{\top}$$

$$X^{\top}U\Sigma^{-1} = V$$

So $V = X^{\top}U\Sigma^{-1}$, data rotated by U and then inverse scaled by Σ .