

GAATTCGGAG GAATTATTCA AAACATÁAAC ACAATAAACA ATTTGAGTAG TTGCCGCACA	60
CACACACACA CACAGCCCGT GGATTATTAC ACTAAAAGCG ACACTCAATC CAAAAAATCA	120
GCAACAAAAA CATCAATAAA C ATG CAT TGG ATT AAA TGT TTA TTA ACA GCA Met His Trp Ile Lys Cys Leu Leu Thr Ala 1 5 10	171
TTC ATT TGC TTC ACA GTC ATC GTG CAG GTT CAC AGT TCC GGC AGC TTT Phe Ile Cys Phe Thr Val Ile Val Gln Val His Ser Ser Gly Ser Phe 15 20 25	219
GAG TTG CGC CTG AAG TAC TTC AGC AAC GAT CAC GGG CGG GAC AAC GAG Glu Leu Arg Leu Lys Tyr Phe Ser Asn Asp His Gly Arg Asp Asn Glu 30 35 40	267
GGT CGC TGC TGC AGC GGG GAG TCG GAC GGA GCG ACG GGC AAG TGC CTG Gly Arg Cys Cys Ser Gly Glu Ser Asp Gly Ala Thr Gly Lys Cys Leu 45 50 55	315
GGC AGC TGC AAG ACG CGG TTT CGC GTC TGC CTA AAG CAC TAC CAG GCC Gly Ser Cys Lys Thr Arg Phe Arg Val Cys Leu Lys His Tyr Gln Ala 60 65 70	363
ACC ATC GAC ACC ACC TCC CAG TGC ACC TAC GGG GAC GTG ATC ACG CCC Thr I le Asp Thr Thr Ser Gln Cys Thr Tyr Gly Asp Val I le Thr Pro 80 85 90	411
ATT CTC GGC GAG AAC TCG GTC AAT CTG ACC GAC GCC CAG CGC TTC CAG Ile Leu Gly Glu Asn Ser Val Asn Leu Thr Asp Ala Gln Arg Phe Gln 95 100 105	459
AAC AAG GGC TTC ACG AAT CCC ATC CAG TTC CCC TTC TCG TTC TCA TGG Asn Lys Gly Phe Thr Asn Pro Ile Gln Phe Pro Phe Ser Phe Ser Trp 110 115 120	507

		ACC Thr 125	Phe									555
		AAT Asn			Lys							603
	Gln	GTA Val						Thr				651
		TAC Tyr										699
		TAC Tyr										747
		GGA Gly 205									_	795
		TGG Trp										843
_	_	CAT His								Gln		891
		AAG Lys				Glu						939

FIG.1B

			Cys					ATC I le					987
		Leu						TAC Tyr		Thr		CAC His	1 035
								ACC Thr 310					1083
				Pro				GAT Asp	_		_		1131
							-	TGC Cys					1179
						Thr		TAC Tyr					1227
GCC Ala								AAA Lys					1275
								AAC Asn 390					1323
TTG Leu 395								TGT Cys					1371

FIG.1C

							_	CCG Pro		1419
								ATT Ile 440	 	1467
								GAT Asp		1515
								GTC Val		1563
								TGT Cys		1611
								GGA Gly		1659
								GGA Gly 520		1707
								GGA Gly		1755
CAT His		 	Cys				_	_	 	1803

FIG.1D

	AAT Asn								1851
	ACC Thr								1899
	GGT Gly								1947
GTT Val	ATG Met 605								1995
	CGC Arg								2043
	CAG Gln	•							2091
AGT Ser									2139
GGC Gly									2187
AAA Lys							_	 	2235

FIG.1E

	GCG Ala 700														GGC	5583
_	TAT Tyr															2331
	GTG Val															2379
	CCC Pro								_							2427
_	GCG Ala									_					- - -	2475
	TTA Leu 780													_		2523
	GCG Ala							·			_	_				2571
	GCA Ala								•						GTG . Va l	2619
GTC Val						_	TAAC	TCCA	IAA A	ATCC	CGGAA	NG GC	CTCC	CTGGT	•	2670
GGGT	TCAA AAAA	NAA T	AATC GTGA AAAA	GAGA TCTC	AG AC	GCCA CAGG	AAAT CATA	GTT ACT	GTTC CGTA	TTG AAC	ATTC TCCC	SAAGO	AG T	TTAC	GGGTT STCGTC STATAG	2730 2790 2850 2892

FIG.1F

0.G. F.G.

APPROVED

FIG.2A

O.G. FIG. CLASS SUBCLASS

APPROVED

8

FIG. 3

DRAFTSHAN

DROSOPHLLA XENDPUS

F16.4

CLASS ISUBOLASS APPROVED O.G. FIG. ORAFTSMAN

CAATCCAGAGTGAATCCGAAACACTCCATCTAGATCGCCAACCAGCATCACGCTCGCA CCGAGTCGAGCGCCGTGCTTCGAGCGGTGATGAGCCCCTTTTCTGTCAACGCTAAAGATC

TCGTCGTTGGAGTCAACAATAGAATCAGCAGACAGCCTGGGAATGTCCAAGAAGACGGCG SerSerLeuGluSerThrIleGluSerAlaAspSerLeuGlyMetSerLysLysThrAla 481

361

241

12

CGCGATTGTCGATCATTAAAGTCTGCCTGCAACTTAATTGCTTTAATTTTATACTGTTA ArgAspCysArgSerLeuLysSerAlaCysAsnLeuTteAlaLeuTteLeuTeuTeu 601

AACAGCCATCTACTCAACGGCTATTGCTGCGGCATGCCAGCGGAACTTAGGGCCACCAAG Asn SerHisLeuLeuAsnGlyTyrCysCysGlyMetProAlaGluLeuArgAlaThrLys 721

lyCysSerPheGlyAsn|AlaThrLysIle ACCIGAGE AGGE TGC CAGE AT A TECCAC GG G C T G T T T G G C A C G C C C C C C C C A G A T A #2 Thr GluGlnGlyAlaSerIleSerThr G 841

ACGITICGITGGACGAAGTCGITTACGCTGATACTGCAGGCGTTGGATATGTACAACACA ThrPheArgIrpIhrLysSerPheIhrLeuIleLeuGInAlaLeuAspMetIyrAsnIhr 961

TCGCCGGAGTGGAAGACGCTGGACCACATCGGGGGGGGGCGGCGGGGATCACCTACCGTGTC leGiyArgAsnAlaArgileThrIyrArgVal SerProGluTrpLysThrLeuAspHisI 1081

GACGATCAGTTCGGTCAQTACGCCTGCGGCTCCGAGGGTCAGAAGCTCTGCCTGAATGGC lySerGluGlyGlnLysLeuCysLeuAsnGly AspAspGlnPheGlyHisTyrAlaCysG 1201

	CLASS ISUBOLASS	
00.10	CASS	
APPROVED O.C. F.D.		ORATISHAN

AACGCCCCCAGAATGTACAAATGTTTAGGAAACATTTTCGGCGAAAACCAGCTACGTCG MetPheArgLysHisPheArgArgLysProAlaThrSer TACAAAACATCAGCGCCTATCAAGTGGAAGTGTCAAGTGTGAAACAAAAAAAGGAGAG CCAAACAAACCAAACAAACGAAGGCAAAGTGGAGAAATGATACAGCATCCAGAGTAC CCAAAATCTGCATACATGGGCTAATTAAGGCTGCCCAGCGAATTTACATTTGTGTGGTGC

53 ACAAAAGGCAGCGTCCGAGGCATCGGGTACCCAAAATCGCGACCCTGCCATCGACGATC ThrLysArgGlnArgProArgHisArgValProLysIleAlaThrLeuProSerThrIle

93 GTCCATAAGATATCCGCAGCTGGTAACTTCGAGCTGGAATATTAGAAATCTCAAATACC ValHisLysIleSerAlaAlaGlyAsnPheGluLeuGluIleLeuGluIleSerAsnThr

Thr I leGlyCysSerProCysThrThrAldPheArgLeuCysLeuLysGluTyrGlnThr ACGATAGGCTGCTCGCCATGCACGGCA/TTCCGGCTGTGCCTGAAGGAGTACCAGACC

≠=

LeuGlyGlySerSerPheValLeuSerAspProGlyValGlyAlaIleValLeuProPhe CTGGGTGGCTCCAGGTTTGTGCTCAGCGATCCGGGTGTGGGAGCCATTGTGCTGCCTTT

TCCTATCCAGATGCGGAGAGGTTAATTGAGGAAACATCATACTCGGGCGTGATACTGCCG Ser Tyr ProAspAlaGluArg Leu Ile Glu Glu Thr Ser Tyr Ser Gly Val Ile Leu Pro

CGGGTGCAATGCGCCGTTACCTACAACACGACCTGCACGACCTTdTGCCGTCCGCGG ArgValGinCysAlaValThrTyrAsnThrThrCysThrThrPhqCysArgProArg

TrpGinGlyValAsnCysGluGluAlaİleCysLysAlaGlyCysAspProValHisGly TGGCAGGGCGTCAACTGCGAGGAGGCCATATGCAAGGCGGGCTGCGACCCCGTCCACGGC

FIG.5B

FIG. 6

1	GAATTCCGCT	GGGAGAATGG	TCTGAGCTAC	CTGCCCGTCC	TGCTGGGGCA	TCAATGGCAA
61	GTGGGGAAAG	CCACACTGGG	CAAACGGGCC	AGGCCATTTC	TGGAATGTGG	TACATGGTGG
121	GCAGGGGGCC	CGCAACAGCT	GGAGGGCAGG	TGGACTGAGG	CTGGGGATCC	CCCGCTGGTT
181	GGGCAATACT	GCCTTTACCC	ATGAGCTGGA	AAGTCACAAT	GGGGGGCAAG	GGCTCCCGAC
241	GGTGGTTATG	TGCTTCCTTC	AGGTGGC			

FIG.8A

1	GAATTCCTTC	CATTATACGT	GACTTTTCTG	AAACTGTAGC	CACCCTAGTG	TCTCTAACTC
61	CCTCTGGAGT	TTGTCAGCTT	TGGTCTTTTC	AAAGAGCAGG	CTCTCTTCAA	GCTCCTTAAT
121	GCGGGCATGC	TCCAGTTTGG	TCTGCGTCTC	AAGATCACCT	TTGGTAATTG	ATTCTTCTTC
181	AACCCGGAAC	TGAAGGCTGG	CTCTCACCCT	CTAGGCAGAG	CAGGAATTCC	GAGGTGGATG
241	TGTTAGATGT	GAATGTCCGT	GGCCCAGATG	GCTGCACCCC	ATTGATGTTG	GCTTCTCTCC
301	GAGGAGGCAG	CTCAGATTTG	AGTGATGAAG	ATGAAGATGC	AGAGGACTGT	TCTGCTAACA
361	TCATCACAGA	CTTGGTCTAC	CAGGGTGCCA	GCCTCCAGAC	CAGACAGACC	GGACTGGTGA
421	GATGGCCCTG	CACCTTGCAG	CCCGCTACTC	ACGGGCTGAT	GCTGCCAAGC	GTCTCCTGGA
481	TGCAGGTGCA	GATGCCAATG	CCCAGGACAA	CATGGGCCGC	TGTCCACTCC	ATGCTGCAGT
541	GGCACGTGAT	GCCAAGGTGT	ATTCAGATCT	GTTA		

FIG.8B

1	TCCAGATTCT	GATTCGCAAC	CGAGTAACTG	ATCTAGATGC	CAGGATGAAT	GATGGTACTA
61	CACCCCTGAT	CCTGGCTGCC	CGCCTGGCTG	TGGAGGGAAT	GGTGGCAGAA	CTGATCAACT
121	GCCAAGCGGA	TGTGAATGCA	GTGGATGACC	ATGGAAAATC	TGCTCTTCAC	TGGGCAGCTG
181	CTGTCAATAA	TGTGGAGGCA	ACTCTTTTGT	TGTTGAAAAA	TGGGGCCAAC	CGAGACATGC
241	AGGACAACAA	GGAAGAGACA	CCTCTGTTTC	TTGCTGCCCG	GGAGGAGCTA	TAAGC

1 GAATTCCATT CAGGAGGAAA GGGTGGGGAG AGAAGCAGGC ACCCACTTTC CCGTGGCTGG
61 ACTCGTTCCC AGGTGGCTCC ACCGGCAGCT GTGACCGCCG CAGGTGGGGG CGGAGTGCCA
121 TTCAGAAAAT TCCAGAAAAG CCCTACCCCA ACTCGGACGG CAACGTCACA CCCGTGGGTA
181 GCAACTGGCA CACAAACAGC CAGCGTGTCT GGGGCACGG GGGATGGCAC CCCCTGCAGG
241 CAGAGCTG

FIG.9A

1 CTAAAGGGAA CAAAAGCNGG AGCTCCACCG CGGGCGGCNC NGCTCTAGAA CTAGTGGANN
61 NCCCGGGCTG CAGGAATTCC GGCGGACTGG GCTCGGGCTC AGAGCGGCGC TGTGGAAGAG
121 ATTCTAGACC GGGAGAACAA GCGAATGGCT GACAGCTGGC CTCCAAAGTC ACCAGGCTCA
181 AATCGCTCGC CCTGGACATC GAGGGATGCA GAGGATCAGA ACCGGTACCT GGATGGCATG
241 ACTCGGATTT ACAAGCATGA CCAGCCTGCT TACAGGGAGC GTGANNTTTT CACATGCAGT
301 CGACAGACAC GAGCTCTATG CAT

FIG.9B

AAC NV GAC D> AGT S> GAC PV 190 * TTC GAC F D> 140 * TAC TTC Y AAT * AAC x CAG TGC CTC L H H H H 90 AAC N AAG K TGC C CTC CTG L 180 * * * GCC GGC 130 * TGC TGG C W AGC S 80 # * TCC S TCA 36 166 166 13C CAG O 170 TGC AAC C N AAG GTC K V AG CD CTG 120 * TCT S 70 * GGT * PB O 20 AAC N ် ညွ CAG CAG ACG 160 cac agc D S GAC D AGC S ည္ပမ TGG * 110 * TGC * 900 × AAC 10 * GAC D 9 * 9 9 9 * TGT AAG K GAG EAC EAC * FI C) C) 166 150 660 6 * CAG GAC 50 * CAC 700 C

FIG. 10A

GIA V CIG AIG L M ပ္ပ CAT TAC GCG GAG C CTG CAG 330 280 AAC CCC (GAC GTG + 55 C TGT GTG GTG 320 * CTG GAC : TGC C CAC GTG 270 GCC GGC ACG CTG
A G T L 999 260 * TTC AGC F S TGG GAC 360 310 CGT GCG R A GAG E CAC 210 350 * CTG GCG L A GAC D 1 ပိုင္ပ * 62 300 GAG E ည် ပ AAG K . 1GC . GAC GCG A AGG * 200 cag Tac TTT GAG AGC S 340 ည္ * 25 5 290 * AAC N

FIG. 108

430 *	S S S	2. Σ	CAG	>		CAC	仝	4	k	CIG	<u>۵</u>
4. (H)) 	*	ည	7	*	AAG	×			CIG	ឯ
יט. * א יט	g E		CAC H		*	ည္သ	ĸ	570	k	ပ္ပပ္ပ	K
) * -	SCA A	52		CTG	ы	4	k	GAC	Ω
420 *) 	.	GAC)	- k	GAG	ា			CCT	٠ ر
* L) 4 [L ₁	*	CGT	4		GAG	្រ	099	k	J	K
) A		> *	AAG	510	*	GAG	ចា	Ŋ		ပ္ပပ္ပ	K
410 *) * 0 7	TTC	•	*	၁ဗ္ဗ၁	CC.	4	K	TGG	3
TCC	် လ	*	GTC	•		255		0 1	ĸ	ည္ဟ	ပ
* BGC	S		GTG	500	*	TAC	> 4	550		GAG GGC	ы
) 0 * AAC	Z v) *) "	AAC	U		TAC	> 4	4	r	ညည	A
	K	ŧ	ACC		*	CCC	ru L			999	æ
* £	1	•	S E	0	*	ITC	[zı	540	t	CGI	æ
	0 0	> *	CIG	490		ATC TTC	Н	•	?	AAG	×
390 * GAG	ы	•	GTG >		4.	CAG ATG	Σ			AIC	ы
₩	Ωι	*	က် က			CAG	Ø	530	:	C C C	Oı
•								- •			

FIG. 10C

88 720 670 GIC ICG 620 CAG CIC TCG ICC GAG S S ÷ 900 € ICC 999 AGC 999 ഗ 610 223 CGC 民 * 199 GT GTG CAG GIC CTG 750 650 * GAC CCT ATG TGT 900 Σ ж ССС Ф 740 GTG GCC V A * CTG L CAG O GCC TCG GAC 690 4 CGG R 640 * CTG GA L D GAC D * AAC GAC AG GAG ₩ AAG K ACC 680 * ATT GCC AGG GTG V *AGT 630 CGG GAG E CAG O * CGG * ည CTG L CAG

FIG. 10D

	CLASS SUBCLASS	
(D) (D) (D) (D) (D)	CLASS.	
APPROVED	<u>~</u>	DRAFTSMAN

.

GGC AGC CTC AAC ATC GAG GCC GTG CAG AGT GAG ACC G S L N I P Y K I E A V Q S E T>
--

GAC CAG GAG EV * 55 3 AAG KY 1150 GAC GGT GCC D G A * 05 0 ACC 1100 GAG 1050 GAC D 1000 ပ္သပ္ CTG CTG GCT TCA A S CCT GAC GAC 1140 GAG E 1090 GAG ე გ 1040 විරිට ප AAC CTG cac D 990 AAG K AAG AAG K K 999 1130 GTG > TGG ¥ CTG 1080 1030 CCC P * 000 a GAG EAG AAG K 980 AAG K AAT GAG AGC S 1120 GAG * 05 × 1070 AC CAG N Q CIC AAC 1020 * * * GTG GGC V G * H GAG GAC D TCC GAC 1110 * * TTC ¢ CTG 1060 * ATG G7 AAG. 1010 * GAC D AAA K

FIG. 10F

1200 * CTC CCG GAC GAC AGC S AAC ACC 1290 GTT 1240 GAG ညည TTC GGT G GAT GAG GAT CTG CAG 1280 CAG CAC CCT CCC CTG 1230 1180 999 CAG S 320 1270 1220 GCC CCC A AAT GTC N V CAG TGG ACT
Q W T * 696 696 AGC S 1170 1260 * * * ATG GAC GTC ; M D V * ATG TGC C 1310 TCC S CAC CGG (9 8 1210 * TCT GCC S A * dec GAC * ATG TGC ATC 1300 * ATG AT M I 1250 * GAC : ACA (က္လ

F16.106

* * *
TTG CAC CAG GGC Q GS 1440 GAG E> * 55.7 1390 CTG L CCG CGC CTG GCC ACC 1530 1480 1430 G ACC T TTC ATC F. I)) (GAG ည္ဟ * AAG K 1380 ည္ဟ GCC GAC ATG 1520) 2004 8 AAC 1470 ICC ACG 1420 ATC GAC GAT GAC D GTC TCT CAG O 151 * GCC 1460 * : CGC ATC ACA T 1410 CAG AAC N TCA S CCG P 1360 TAC Y GCG A * AAC N 900 A A E 1500 က္က GAC D GAT 1450 1400 ,GC CTG S L GCC * GG ~ GAG AGC GAG * SG & AGC S 1350 # 8 8 8 AAA E CTG GCC 1490

FIG. 10H

4 GIT AAG K> GAC 1680 \triangle 1630 ACG CIG GAG S S S 3 回 1580 * 99 s ATC GAC CTG CIG 999 1770 1720 CAG. ATG GAT GAT 1670 ပ္ပ GTG V CAT A* GAT 1620 出 Ŀ 1570 GIC GAG ATG GTA AAT Σ 1760 ы # GGT AAC GCC GIG AAC 1710 S K 1660 ည္ဟ GIG 9 8 CAA O Z F GAT GTC cTG* ညည 1560 175 900 **A** 1700 * CC GAC 000 R GAC D CTG 9 8 8 ညည ည္ဟ 1650 ACA GAC K 1600 CAC * TGG GCT A I CTG CAC CTG AAC TCA N S 1740 GIG Н 1690 ATC GCT CGA R Z 1640 * ATC 1 I CTG 9 8 8 1590 AAC Н K Z 1540 * 5 * CGG R CIC TCC CAT Ω₁

FIG. 10 I

GAG EV ATG ATC I> 1920 1870 GAC ACC CAT AGG R 1820 ÷ βg ω GAT AAC CAC 1960 AAC N TAC ACG CAT 1910 AGC S ATC CAG O 1860 * ATG 1810 GAC ATG ည္ပ S S S GAG CAG GAG AAC CGG N R AAT D 1950 R, 1900 1850 * GCC CGG A R AAA K AAC * 55 × 1800 * 55 × ATC GCT A TTT F 1940 GAC . ეც ს 1890 * * * GAC CAC D H CTG 1840 TIT * 00 % * AA × CTG CTG AAG CCG P 1930 1880 * GTG CTG V L CTG * CCC P CIG 1830 ACA T AAG GTG K V GIG CIC V L * က် က * GAG E GAC

FIG. 10J

* 58 4 AAG Y 2160 GAG GCC 2110 AAG K CCG CAG CTG CIC IGC 2060 AAG ပ္ပ 2010 Q CAG CCG GGA AGC 2150 ρι GGC GTG (GTG CGC AGC TCG CCC S P 2100 2050 IGI 2000 CTC AAG CCC L K P CCC ACC CTG
P T L GGC CTG GCC 2140 CTG 2040 1990 AGC C TAC *ACG AAA K SAG, 2030 * CTG GGG GGC 7 AGC AGC CTG GGC 2130 2080 GAC 1980 * CTG * TAC Y ည္သ 2120 * C AAG (* 500 * CTG L ည္ပ ဗ 2020 * GGA GCC (2070 * * * CCC AAC (GTC CGC AGG R GTG V

FIG. 10K

GGG ATG දි 0 2350 ည ဗ CIG CCC ' GAG 2300 TCC CTG (CCT GGC AAG G K 2250 2200 CIG AAC CAC TCC CAG GAT
S Q D GAC CCG CCA 2340 2290 GTG 2240 + JCG ညည CIC 2190 D. AAG AAG K K Gre Gec))) 769 S 2330 515 2280 2230 AGG R ATG TCC * GAC D 2180 CTG TCA L S . * ເກີ ຄ රිගිරි ක 000 000 2320 * & & TCC TCT 2270 2220 * * * GAC AGC ; D S TAC * & & AAG K 2170 CIC * ညီ ဗ SAG O AAG GAC K D CCC CAT CIG TTC 2310 2260 * OO O 2210 * CTG

FIG. 10L

2400 000 PV * G1C ACC AAG K ACT 999 2540 AGC ည္ဟ 2490 GAG 2440 * 95 × TIT ACC GTG 2390 GTG ည္ဟ * 55 ~ ACT TTC AAC CIG ICI Н 2480 ညည 2430 2380 CAC H GIG ပ္ပ ပ္ပ 520 D₁ 247 7 * 66 66 67 CTG ATC ဗ္ဗဗ္ဗ 2420 * \(\mathcal{G} \) **4**50 GGI * CAC 2370 TCC S AGC S * CTG CIG 2510 ACC CAC C 2460 * * * CGT CTC ' AGC S 90g **A** 2410 TCC A GCG 2360 GAC CCT CTG GGC L G * ATG M ა ეეე ა ეე GAG E SS 2450

FIG. 10 M

BY CLASS SUBCLISS

* CCA GGC P GS TAC Y> 2640 TCC CGG CTG CAG AGC GGC S R L Q S G> 2590 ည္ဟမ AGC S ATG GTA M V S A *
ATG ATG
M M 2730 2680 GTG 2630 * 89 5 CAG O AGT 2580 999 CTG CAG CAT
L Q H CIG ICC L S 2720 CIG CGG ක 2670 2620 GAG TGG E W 96C A CIG 2570 CCT P TCC S 2710 gcc * GCC CCC * ညီ ၁ 2660 GCT A TAC 2610 2560 * % O GGT G * \$ 0 CIT CAC AGT AGC
H S S 2700 AAC * AAT 2650 ATG GTG CCG TIG AGC AGT * CTG 2550 ACC + CCC P CIG

FIG. 10N

DRATTSHAN GLASS GUBCLASS

CAC CTG S & 7 CAG 2880 2830 AAC S a CAG GIG O 2780 CAG CCG CCA (* 58 0 CIG GAC GTG 2970 2920 AGC CAC SAG O S Ω 2870 SAG O CAG CCT Q P 2820 * 95 × K 2770 ATG CTG CAG Q 2960 CAG CAA AGC CTG GCC ACC L A T TCA CAG O AGC 2910 ഗ S 2860 AGC SSS AAC TTA N L 2810 GTG V 2760 ы_. 2950 2900 * T GGC GGA * \$ 0 CAG O
 O
 2850 * CAG ACC CH AGT CCA P S 2800 * AIC I AGC S CAC * CAG O CIG Н AAC N CCG P TIC ည် * GTG > 2940 [L₁ 2890 2840 A GCA . * CIG SAG O CAG O AGC S S S S 95 Q * \frac{1}{2} \text{ \text{\text{\$\sigma\$}}} 560 2790 ပ္ပ α 2740 * GAG CAG O * ACC T CCA P
 O
 2930

CCC GTG ACC
P V T> CAG GAG AGC
Q E S> TCG CCT S P> 3120 3070 3020 TCC S CAC AGC TAC 1
H S Y CCC S S G 3110 CTG GTC ATT CTG I L 3060 3010 GTG CAC ACT ccc rcg cAG
P S Q TCG S 3100 CCA TCC
P S 3050 3000 AGC CTG GCG S L A CTG L CCC P * * * CTG ACG TCG S 3090 3040 * ACG TC T 2990 TTC * 000 a AGC S # CCC # P 3080 * * * GCA GCC CAG A A Q CIG * * * CCC GCC PA * * CIG GGC L G 3030 2980

FIG. 10F

		GTA ATG	\$		*	ATC	A				
	*	GTA	>			TIG	ᆈ				
0	*	CCT		3210	*	ATT	н				
3160		GTT	>	()	*	TCA ATT	တ				
	*	CCT	Ω			TCA	S				
3150		GIG	>	3200	*	256	ტ				
	*	CAG GTG		32		AAA GO	×				
	*	CTA			*	TCT	တ				
3130 3140	,	CAG	O	90	*	GAT CCT	O.				
	*	CCC AGC CAC	m	3190		GAT	Ω				
		AGC	ഗ		*	TCG	ഗ			TGG	全
	*	CCC	ρι			TCT	လ	230	k	य	ഗ
	*	AAC ACC	E	3180	*	CGA	æ	32		GAC	Ω
		AAC	Z		*	AIC	Н		*	ညည	ρı
	*	GAC	Ω			ATG	Σ	50	*	GAA GCT	K
		GTG	>	170	*	GTA	>	3220		GAA	凶

F16. 100

ASPECTED AND

FIG. 11A

		CAA GCG GAT Gln Ala Asp 155	
	Ala Leu His	TGG GCA GCT Trp Ala Ala 170	
		AAT GGG GCC Asn Gly Ala 185	
		TTT CTT GCT Phe Leu Ala	
 Ala Ala Lys		GAC CAT TTT Asp His Phe	
•		CGG GAT GTG Arg Asp Val 235	
		GAT GAA TAC Asp Glu Tyr 250	
		GCT CTC TCA Ala Leu Ser 265	_
		AAG CAC ACC Lyn His Thr	

FIG.11B

AAG Lys						Lys		Thr					CCT Pro	910
		AAG Lys				Asp	Ala		Gly				AAG Lys	958
		GAG Glu		Val		Leu								1006
CCT Pro			Leu	Glu	Ser		His	Thr		Val			ACA Thr	1054
	Pro	ATG Met 355										-	_	1102
CCT Pro			<u>l</u>	•		_	_						 _	1150
GCA Ala														1198
GCC Ala 400											_			1246
ATT														1294
CCA Pro	 				_									1342

FIG.11C

		AAT Asn			Met						1390
	Pro	GGC Gly									1438
		CCT Pro					Val				1486
		GGC Gly									1534
		CCT Pro 515									1582
_		ATG Met									1630
		CAG Gln									1678
CAT His 560											1726
CAC His		Ala			Ala					AGT Ser	1774
GGT Gly	Leu			Pro				Ser			1822

FIG.11D

Pro Asp Gln Trp Ser Ser Ser Pro His Ser Ala Ser Asp Trp Ser 610 620	1070
GAT GTG ACC ACC AGC CCT ACC CCT GGG GGT GCT GGA GGA GGT CAG CGG Asp Val Thr Thr Ser Pro Thr Pro Gly Gly Ala Gly Gly Gly Gln Arg 625 630 635	1918
GGA CCT GGG ACA CAC ATG TCT GAG CCA CCA CAC AAC AAC ATG CAG GTT Gly Pro Gly Thr His Met Ser Glu Pro Pro His Asn Asn Met Gln Val 640 655	1966
TAT GCG TGAGAGAGTC CACCTCCAGT GTAGAGACAT AACTGACTTT TGTAAATGCT Tyr Ala	2022
GCTGAGGAAC AAATGAAGGT CATCCGGGAG AGAAATGAAG AAATCTCTGG AGCCAGCTTC	2082
TAGAGGTAGG AAAGAGAAGA TGTTCTTATT CAGATAATGC AAGAGAAGCA ATTCGTCAGT	2142
TICACTGGGT ATCTGCAAGG CTTATTGATT ATTCTAATCT AATAAGACAA GTTTGTGGAA	2025
ATGCAAGATG AATACAAGCC TIGGGTCCAT GTTTACTCTC TTCTATTTGG AGAATAAGAT	2565
GGATGCTTAT TGAAGCCCAG ACATTCTTGC AGCTTGGACT GCATTTTAAG CCCTGCAGGC	5355
TTCTGCCATA TCCATGAGAA GATTCTACAC TAGCGTCCTG TTGGGAATTA TGCCCTGGAA	5385
TICTGCCTGA ATTGACCTAC GCATCTCCTC CTCCTTGGAC ATTCTTTTGT CTTCATTTGG	2442
TGCTTTTGGT TTTGCACCTC TCCGTGATTG TAGCCCTACC AGCATGTTAT AGGGCAAGAC	2502
CTTTGTGCTT TTGATCATTC TGGCCCATGA AAGCAACTTT GGTCTCCTTT CCCCTCCTGT	2562
CTTCCCGGTA TCCCTTGGAG TCTCACAAGG TTTACTTTGG TATGGTTCTC AGCACAAACC	2622
TITCAAGTAT GITGTTTCTT TGGAAAATGG ACATACTGTA TIGTGTTCTC CTGCATATAT	2682
CATTCCTGGA GAGAGAAGGG GAGAAGAATA CTTTTCTTCA ACAAATTTTG GGGGCAGGAG	2742
ATCCCTTCAA GAGGCTGCAC CTTAATTTTT CTTGTCTGTG TGCAGGTCTT CATATAAACT	2802

CCT GAC CAG TGG TCA AGT TCA TCA CCC CAC TCT GCT TCT GAC TGG TCA

1870

5865 TTACCAGGAA GAAGGGTGTG AGTTTGTTGT TTTTCTGTGT ATGGGCCTGG TCAGTGTAAA 5955 GTTTTATCCT TGATAGTCTA GTTACTATGA CCCTCCCCAC TTTTTTAAAA CCAGAAAAAG GTTTGGAATG TTGGAATGAC CAAGAGACAA GTTAACTCGT GCAAGAGCCA GTTACCCACC 5985 CACAGGTCCC CCTACTTCCT GCCAAGCATT CCATTGACTG CCTGTATGGA ACACATTTGT 3042 3102 CCCAGATCTG AGCATTCTAG GCCTGTTTCA CTCACTCACC CAGCATATGA AACTAGTCTT AACTGTTGAG CCTTTCCTTT CATATCCACA GAAGACACTG TCTCAAATGT TGTACCCTTG 3162 3555 CCATTTAGGA CTGAACTTTC CTTAGCCCAA GGGACCCAGT GACAGTTGTC TTCCGTTTGT 3585 CAGATGATCA GTCTCTACTG ATTATCTTGC TGCTTAAAGG CCTGCTCACC AATCTTTCTT TCACACCGTG TGGTCCGTGT TACTGGTATA CCCAGTATGT TCTCACTGAA GACATGGACT 3342 3402 TTATATGTTC AAGTGCAGGA ATTGGAAAGT TGGACTTGTT TTCTATGATC CAAAACAGCC CTATAAGAAG GTTGGAAAAG GAGGAACTAT ATAGCAGCCT TTGCTATTTT CTGCTACCAT 3462 TICTITICCI CIGAAGCGGC CATGACATIC CCTTTGGCAA CTAACGTAGA AACTCAACAG 3522

FIG.11F

AACATTTTCC TTTCCTAGAG TCACCTTTTA GATGATAATG GACAACTATA GACTTGCTCA 3582 TTGTTCAGAC TGATTGCCCC TCACCTGAAT CCACTCTCTG TATTCATGCT CTTGGCAATT 3642 TCTTTGACTT TCTTTTAAGG GCAGAAGCAT TTTAGTTAAT TGTAGATAAA GAATAGTTTT 3702 CTTCCTCTTC TCCTTGGGCC AGTTAATAAT TGGTCCATGG CTACACTGCA ACTTCCGTCC 3762 AGTGCTGTGA TGCCCATGAC ACCTGCAAAA TAAGTTCTGC CTGGGCATTT TGTAGATATT 3855 AACAGGTGAA TTCCCGACTC TTTTGGTTTG AATGACAGTT CTCATTCCTT CTATGGCTGC 3885 AAGTATGCAT CAGTGCTTCC CACTTACCTG ATTTGTCTGT CGGTGGCCCC ATATGGAAAC 3942 CCTGCGTGTC TGTTGGCATA ATAGTTTACA AATGGTTTTT TCAGTCCTAT CCAAATTTAT 4002 TGAACCAACA AAAATAATTA CTTCTGCCCT GAGATAAGCA GATTAAGTTT GTTCATTCTC 4062 TGCTTTATTC TCTCCATGTG GCAACATTCT GTCAGCCTCT TTCATAGTGT GCAAACATTT 4122 TATCATTCTA AATGGTGACT CTCTGCCCTT GGACCCATTT ATTATTCACA GATGGGGAGA 4182 ACCTATCTGC ATGGACCCTC ACCATCCTCT GTGCAGCACA CACAGTGCAG GGAGCCAGTG 4242 GCGATGGCGA TGACTTTCTT CCCCTG 4268

FIG. 12A

•				· ·
OBA-TSVED	CDC10-1 CDC10-1 CDC10-1 CDC10-1 CDC10-2 TPPQAEQEVDVLDVNVRGPDGCTPLMLASLRGGSSDLS-DEDEDAEDSSANIITDLVYQGASLQAQTDRTGEMALHLAARYSRADAAKRLLEASA TPPQGEVDADCMDVNVRGPDGFTPLMIASCSGGGLETGNS-EEEEDAPA-VISDFIYQGASLHNQTDRTGETALHLAARYSRSDAAKRLLEASA TPPQGEVDADCMDVNVRGPDGFTPLMIASCSGGGLETGNS-EEEEDAPA-VISDFIYQGASLHNQTDRTGETALHLAARYSRSDAAKRLLESSA TPPQGEIEADCMDVNVRGPDGFTPLMIASCSGGGLETGNS-EEEEDAPS-ANMISDFIGQGAQLHNQTDRTGETALHLAARYARADAAKRLFSSA TPPQGEIEADCMDVNVRGPDGFTPLMIASCSGGGLETGNS-EEEEDAPS-ANMISDFIGQGAQLHNQTDRTGETALHLAARYARADAAKRLFHAGA CDC10-3 CDC10-3 CDC10-3 CDC10-3 CDC10-5	DANAGDNMGRCPLHAAVAADAGGVFOIL IRNRVTDL DARMNDGTTPL ILAARLAVEGMVAEL INCGADVNAV DDHGKSALHVAAAVNNVEATLLLLKNGANRDMOD DANIGDNMGRTPLHAAVSADAGGVFOIL IRNRATDL DARMHDGTTPL ILAARLAVEGMLEDL INSHADVNAV DDLGKSALHVAAAVNNVDAAVLLKNGANKDMON DANIGDNMGRTPLHAAVSADAGGVFOIL IRNRATDL DARMHDGTTPL ILAARLAVEGMVEEL INSHADVNAV DDLGKSALHVAAAVNNVDAAVLLKNGANKDMON DANVGDNMGRTPLHAAVAADAGGVFOIL IRNRATDL DARMHDGTTPL ILAARLAVEGMVEEL INAHADVNAV DEFGKSALHVAAAVNNV DAAVLLKNSANKDMON DANCQDNTGRTPLHAAVAADAGGVFOIL IRNRATNLNARMHDGTTPL ILAARLAVEGMVEEL INAHADVNAV DEFGKSALHVAAAVNNTEAVNILLMHANRDAGD GA ^C /T GCI AA ^C / _T GTI CA ^A C GA ^C / _T ATG GG	NKEETPLFLAAREGSYEAAKILLDHFANRDITDHMDRLPRDVARDRMHHDIVRLLDEYNVTPSPPGTVLTSALSPVICGPNRSFLSLKHTP NREETPLFLAAREGSYETAKVLLDHFANRDITDHMDRLPRDIAGERMHHDIVRLLDEYNLVRSPQLHGAPLGGTPTLSPLCSPNGYLGSLKPGV NKEETPLFLAAREGSYETAKVLLDHFANRDITDHMDRLPRDIAGERMHHDIVRLLDEYNLVRSPQLHGTALGGTPTLSPTLCSPNGYLGNLKSAT NKEETSLFLAAREGSYETAKVLLDHFANRDITDHMDRLPRDIAGERMHHDIVRLLDEYNLVRSPQLHGTALGGTPTLSPP	MGKKSRRPSAKSTMPTSL PNL AKEAKDAKGSPRKKSL SEKVQLSESSVTLSPVDSLESPHTPVSDTTSSPM
	1860	1952	2050	2154
	1857	1944	2050	2144
	1855	1950	2056	2149
	1883	1976	2056	2187
	hN5k	hN5k	hN5k	hnsk
	TAN-1	Tan-1	TAN-1	Tan-1
	rat NOTCH	rat NOTCH	rat NOTCH	rat notch
	XENOPUS NOTCH	XENOPUS NOTCH	XENOPUS NOTCH	Xenopus notch
	DROSOPH NOTCH	DROSOPH NOTCH	DROSOPH NOTCH	Drosoph notch

•

	SNLHEMQPLAHGASTVLPSVSQLLSHHHİVSPGSGSAGSLSRLHPVPVPADVMNRMEVNETQYNEMFGMVLAPAEG-THPGİ A-KPEMAALGGGGRLAFETGPPRLSHLPVASGTSTVLGSSSGGALNFTVGGSTSLNGQCEVLSRLQSGMVPNQYNPLRGSVAPGPLSTQAPSLQHG-MVGPLHSSL A-KPEMAALAGGSRLAFEPPPPRLSHLPVASSASTVLSTNGTGAMNFTVGAPASLNGQCEVLPRLQNGMVPSQYNPLRPGVTPGTLSTQAAGLQHGMM-SPİHSSL T-KQEMAAGSNRMAFDAMVPRLTHL-NASSPNTIMSNGSMHFTVGGAPTMNSQCDVLARLQNGMVQNQYDPIRNGIQQGN-AQQAQALQHGLMTS-LHNGL GGLCGMGGLSGAGNGNSHEQGLSPPYS-NQSPPHSVQSSLALSPHAYLGSPSPAKSRPSLPTSPTHİQAMRHATQQKQFGGSNLNSLLGGANGGGVVGGGGGGGGV	APOSRPPEGKHITTPREPLPP-IV-TFOLIPKGSIAOPAGAPOPOSTCPPAVAGPLPTMYOIPEMARL-P AASALSOMMSYOGLPSTRLATOPHLVOTOOVOPONLOMOOONLOPANIOOOOSLOPPPPPPPPPPPPPPLGVSSAASGHLGRSFLSGEPSOADVOPLGP STNTLSPIIYOGLPNTRLATOPHLVOTOOVOPONLOIOPONLOPPSOPHLSVSSAANGHLGRSFLSGEPSOADVOPLGP PATTLSOMMTYOAMPNTRLANOPHLMOAOOMOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
	·	
2218	2250	2354
2209	2242	2344
- 2214	- 2247	2343
- 2285	- 2390	2495
hN5k	hn5k	hNSk
TAN-1	Tan-1	TAN-1
rat NOTCH	rat NDTCH	rat NOTCH
XENOPUS NOTCH	XENDPUS NDTCH	XENOPUS NOTCH
DROSOPH NOTCH	DRDSDPH NDTCH	DROSOPH NOTCH

PPSQHSYASSNAAERTPSHSGHLQGEHPYLTPSPESPDQVSSSSPHSA-SDVSDVTTSPTP -GGHTPQHLVQTL-D-SYPTPSPESPGHVSSSSPRSN-SDVSEGVQSPAA SSLAVHTILPQ-ESPALPTSLPSSLVPPVTAAQFL|TPPSQHSY-SS-PVENTPSHQLQVP-EHPFLTPSPESPDQVSSSSPHSNVSDVSEGVSSPPT SSL PVHT IL PQ-ESQALPTSL PSSMVPPMTTTQFL|TPPSQHSY-SSSPVDNTPSHQLQVP-EHPFL TPSPESPDQWSSSSRHSNISDWSEGISSPPI PPSQHSY-SS-PMDNTPSHQLQVP-DHPFLTPSPESPDQVSSSSPHSNMSDVSEGISSPP1 S---IQSSMSG-SSPSTNMLSPSSQHNQQAFYQYL|TPSSQHS--SVAFPTAMMPQQDGQVAQT1LPAYHPFPASVGKYHIT SSNN]HSVMPQ-DTQIFAASLPSNLTQSMTTAQFL|T 2448 2423 2416 2599 XENDPUS NOTCH DROSOPH NOTCH rat NDICH TAN-1 る
交

PEST-CONTAINING REGION

FIG. 12C

			Potentio	al signal ci	leavage site	? 7
						V
hum N	MP		ALRPAL	LWALLALWLC	CAAPA	HAL
TAN-1	MP		PL	LAPLLCLALL	PALAA	RGP
Xen N	MD			RIGLAVLLCS	LPVLT	QGL
Dros N	MQSQRSRRRS	RAPNTWICFW	INKMHAVASL	PASLPLLLT	LAFANLPNIV	RGTDTALVAA
hum N	MLGKATCRCA	SGFTGEDCQY	STSHPCFVSR	PCLNGGTCHM	LSRDT-YECT	CQVGFTGKEC
Tan-1	GVADYACSCA	LGFSGPLCLT	PLDNAC-LTN	PCRNGGTCDL	LT-LTEYKCR	CPPGWSGKSC
Xen N	NAIDFICHCP	VGFTDKVCLT	PVDNAC-VNN	PCRNGGTCEL	LNSVTEYKCR	CPPGWTGDSC
Dros N	GRPG I SCKCP	LGFDESLCE I	AVPNAC-DHV	TCLNCGTCQL	KT-LEEYTCA	CANGYTGERC
l.					***	
hum N	NLPGSYQCQC	PQGF TGQYCD	SLYVPCAPSP	CVNGGTCRQT	GDFTFECNCL	PGFEGSTCER
TAN-1	NEVGSYRCVC	RATHTGPNCE	RPYVPCSPSP	CQNGGTCRPT	GDVTHECACL	PGFTGQNCEE
Xen N	NEFGSYRCTC	QNRFTGRNCD	EPYVPCNPSP	CLNGGTCRQT	DDTSYDCTCL	PGFSGQNCEE
Dros N	NTHGSYQCMC	PTGYTGKDCD	TKYNPCSPSP	CQNAGICRSN	G-LSYECKCP	KGFEGKNCEQ

EGF-like Repeats OCRDGYEPCV NEGMCVTYHN GTGYCKCPEG FLGEYCQHRD PCE-KNRCQN GGTC--VAQA 83 80 RCSQPGETCL NGGKCEA-AN GTEACVCGGA FVGPRCQDPN PCL-STPCKN AGTCHVVDRR RCTQTAEMCL NGGRCEMTPG GTGVCLCGNL YFGERCQFPN PCTIKNQCMN FGTCEPVLQG 90 117 SCTSVG---CQ NGGTCVTQLN GKTYCACDSH YVGDYCEHRN PCN-SMRCQN GGTCQVTFRN 199 QWTDACLSHP CANGSTCTTV —ANQFSCKC LTGFTGQKCE TDVNEC-DIP GHCQHGGTCL 196 QQADPCASNP CANGGQCLPF -- EASYICHC PPSFHGPTCR QDVNECGQKP RLCRHGGTCH 195 QQADPCASNP CANGGKCLPF —EIQYICKC PPGFHGATCK QDINEC-S-Q NPCKNGGQCI ETKNLCASSP CRNGATCTAL AGSSSFTCSC PPGFTGDTCS YD1EEC-Q-S NPCKYGG1CV 233 NIDDCPNHRC QNGGVCVDGV NTYNCRCPPQ WTGQFCTEDV DECLLQPNA- CQNGGTCANR 318 315 NIDDCPGNNC KNGGACVDGV NTYNCPCPPE WTGQYCTEDV DECQLMPNA- CQNGGTCHNT 314 NIDDCPSNNC RNGGTCVDGV NTYNCQCPPD WTGQYCTEDV DECQLMPNA- CQNGGTCHNT NYDDCLGHLC QNGGTCIDGI SDYTCRCPPN FTGRFCQDDV DECAQRDHPV CQNGATCTNT 352

FIG. 13A

ORATISTAN GASS SUBCLASS

NGGYGCVCVN GWSGDDCSEN IDDCAFASCT PGSTCIDRVA SFSCMCPEGK AGLLCHLDDA hum N HGGYNCVCVN GWTGEDCSEN IDDCASAACF HGATCHDRVA SFYCECPHGR TGLLCHLNDA TAN-1 YGGYNCVCVN GWTGEDCSEN IDDCANAACH SGATCHDRVA SFYCECPHGR TGLLCHLDNA Xen N HGSYSCICVN GWAGLDCSNN TDDCKQAACF YGATCIDGVG SFYCQCTKGK TGLLCHLDDA Dros N AFHCECLKGY AGPRCEMDIN ECHSDPCQND ATCLDKIGGF TCLCMPGFKG VHCELEINEC hum N SFECQCLQGY TGPRCEIDVN ECVSNPCQND ATCLDQIGEF QCMCMPGYEG VHCEVNTDEC TAN-1 SFQCNCPQGY AGPRCEIDVN ECLSNPCQND STCLDQIGEF QCICMPGYEG LYCETNIDEC Xen N SYRCNCSQGF TGPRCETNIN ECESHPCQNE GSCLDDPGTF RCVCMPGFTG TQCEIDIDEC Dros N ATGFTGVLCE ENIDNCDPDP CHHGQCQDGI DSYTCICNPG YMGAICSDQI DECYSSPCLN hum N TAN-1 TEGYTGTHCE VDIDECDPDP CHYGSCKDGV ATFTCLCRPG YTGHHCETNI NECSSQPCRL TEGFTGRHCE QDINECIPDP CHYGTCKDGI ATFTCLCRPG YTGRLCDNDI Xen N PPGYTGTSCE ININDCDSNP CHRGKCIDDV NSFKCLCDPG YTGYICQKQI NECESNPCQF Dros N

> CISNPCHKGA LCDTNPLNGQ YICTCPQGYK GADCTEDVDE CAMANSNPCE HAGKCVNTDG 438 CISNPCNEGS NCDTNPVNGK AICTCPSGYT GPACSQDVDE CSLG-ANPCE HAGKCINTLG 434 CISNPCNEGS NCDTNPVNGK AICTCPPGYT GPACNNDVDE CSLG-ANPCE HGGRCTNTLG 433 470 CTSNPCHADA ICDTSPINGS YACSCATGYK GVDCSEDIDE CDQG—SPCE HNGICVNTPG 558 QSNPCVNNGQ CVDKVNRFQC LCPPGFTGPV CQIDIDDCSS TPCLNGAKCI DHPNGYECQC 554 ASSPCLHNGR CLDKINEFQC ECPTGFTGHL CQYDVDECAS TPCKNGAKCL DGPNTYTCVC 553 ASNPCLHNGK CIDKINEFRC DCPTGFSGNL CQHDFDECTS TPCKNGAKCL DGPNSYTCQC QSNPCLNDGT CHDKINGFKC SCALGFTGAR CQINIDDCQS QPCRNRGICH DSIAGYSCEC 590 DGRCIDLVNG YQCNCQPGTS GVNCEINFDD CASNPCIHG- ICMDGINRYS CVCSPGFTGQ 677 673 RGTCQDPDNA YLCFCLKGTT GPNCEINLDD CASSPCDSG- TCLDKIDGYE CACEPGYTGS 672 GGQCTDRENG YICTCPKGTT GVNCETKIDD CASNLCDNG- KCIDKIDGYE CTCEPGYTGK 710 DGHCQDRVGS YYCQCQAGTS GKNCEVNVNE CHSNPCNNGA TCIDGINSYK CQCVPGFTGQ

RCNIDIDECA SNPCRKGATC INGVNGFRCI CPEGPHHPSC YSQVNECLSN PCI-HGNCTG hum N MCNSNIDECA GNPCHNGGTC EDGINGFTCR CPEGYHDPTC LSEVNECNSN PCV-HGACRD TAN-1 LCNININECD SNPCRNGGTC KDQINGFTCV CPDGYHDHMC LSEVNECNSN PCI-HGACHD Xen N HCEKNVDECI SSPCANNGVC IDQVNGYKCE CPRGFYDAHC LSDVDECASN PCVNEGRCED Dros N DECASNPCLN QCTCFDDISG YTCHCVLPYT GKNCQTVLAP CSPNPCENAA VCKESPNFES hum N NECASNPCLN KGTCIDDVAG YKCNCLLPYT GATCEVVLAP CAPSPCRNGG ECRQSEDYES TAN-1 NECSSNPCLN HGTCIDDVAG YKCNCMLPYT GAICEAVLAP CAGSPCKNGG RCKESEDFET Xen N DDCVTNPCGN GGTCIDKVNG YKCVCKVPFT GRDCESKMDP CASNRCKNEA KCTPSSNFLD Dros N CLANPCONGG SCMDGVNTFS CLCLPGFTGD KCQTDNMECL SEPCKNGGTC SDYVNSYTCK hum N CRPNPCHNGG SCTDGINTAF CDCLPGFRGT FCEEDINECA SDPCRNGANC TDCVDSYTCT TAN-1 COPNPCHNGG SCSDGINMFF CNCPAGFRGP KCEEDINECA SNPCKNGANC TDCVNSYTCT Xen N CASFPCQNGG TCLDGIGDYS CLCVDGFDGK HCETDINECL SQPCQNGATC SQYVNSYTCT Dros N

> GLSGYKCLCD AGWYGINCEV DKNECLSNPC QNGGTCDNLV NGYRCTCKKG FKGYNCQVNI 796 SLNGYKCDCD PGWSGTNCDI NNNECESNPC VNGGTCKDMT SGIVCTCREG FSGPNCQTNI 792 GVNGYKCDCE AGWSGSNCDI NNNECESNPC MNGGTCKDMT GAYICTCKAG FSGPNCQTNI 791 GINEFICHCP PGYTGKRCEL DIDECSSNPC QHGGTCYDKL NAFSCQCMPG YTGQKCETNI 830 YTCLCA-PGW QGQRCTIDID EC-ISKPCMN HGLCHNTQGS YMCECPPGFS GMDCEEDIDD 914 FSCVCPTAGA KGQTCEVDIN EC-VLSPCRH GASCQNTHGG YRCHCQAGYS GRNCETDIDD 911 909 FSCECP-PGW QGQTCEIDMN EC-VNRPCRN GATCQNTNGS YKCNCKPGYT GRNCEMDIDD FSCTCK-LGY TGRYCDEDID ECSLSSPCRN GASCLNVPGS YRCLCTKGYE GRDCAINTDD 949 CQAGFDGVHC ENNINECTES SCFNGGTCVD GINSFSCLCP VGFTGSFCLH EINECSSHPC 1034 CPAGESGIHC ENNTPDCTES SCENGGTCVD GINSETCLCP PGETGSYCQH VVNECDSRPC 1031 1029 COPGESCIAC ESNIPOCTES SCENGGICID GINTETCOCP PGFTGSYCOH DINECDSKPC CPLGFSGINC QTNDEDCTES SCLNGGSCID GINGYNCSCL AGYSGANCQY KLNKCDSNPC 1069

PRATEGRAM CLASS SURCLASS

```
hum N
         LNEGTCVDGL GTYRCSCPLG YTGKNCQTLV NLCSRSPCKN KGTCVQKKAE SQCLCPSGWA
TAN-1
         LLGGTCQDGR GLHRCTCPQG YTGPNCQNLV HWCDSSPCKN GGKCWQTHTQ YRCECPSGWT
         LNGGTCQDSY GTYKCTCPQG YTGLNCQNLV RWCDSSPCKN GGKCWQTNNF YRCECKSGWT
Xen N
         LNGATCHEON NEYTCHCPSG FTGKQCSEYV DWCGQSPCEN GATCSQMKHQ FSCKCSAGWT
Dros N
hum N
         SNPCQHGATC SDFIGGYRCE CVPGYQGVNC EYEVDECQNQ PCQNGGTCID LVNHFKCSCP
TAN-1
         PSPCQNGATC TDYLGGYSCK CVAGYHGVNC SEEIDECLSH PCQNGGTCLD LPNTYKCSCP
         PNPCQNGATC TDYLGGYSCE CVAGYHGVNC SEEINECLSH PCQNGGTCID LINTYKCSCP
Xen N
         SQPCQNGGTC RDLIGAYECQ CRQGFQGQNC ELNIDDCAPN PCQNGGTCHD RVMNFSCSCP
Dros N
         CLSNPCSSEG SLDCIQLTND YLCVCRSAFT GRHCETFVDV CPQMPCLNGG TCAVASNMPD
hum N
TAN-1
         CLSNPCDARG TQNCVQRVND FHCECRAGHT GRRCESVING CKGKPCKNGG TCAVASNTAR
         CLSNPCDSRG TQNCIQLVND YRCECRQGFT GRRCESVVDG CKGMPCRNGG TCAVASNTER
Xen N
         CLSNPCSNAG TLDCVQLVNN YHCNCRPGHM GRHCEHKVDF CAQSPCQNGG NCNI----RQS
Dros N
```

```
GAYCDVPNVS CDIAASRRGV LVEHLCQHSG VCINAGNTHY CQCPLGYTGS YCEEQLDECA
                                                                   1154
GLYCDVPSVS CEVAAQRQGV DVARLCQHGG LCVDAGNTHH CRCQAGYTGS YCEDLVDECS
                                                                   1151
GVYCDVPSVS CEVAAKQQGV DIVHLCRNSG MCVDTGNTHF CRCQAGYTGS YCEEQVDECS
                                                                   1149
GKLCDVQTIS CQDAADRKGL SLRQLC-NNG TCKDYGNSHV CYCSQGYAGS YCQKEIDECQ
                                                                   1188
PGTRGLLCEE NIDDCAR---- GPHCLN GGQCMDRIGG YSCRCLPGFA GERCEGDINE
                                                                   1267
                                                                   1271
RGTQGVHCEI NVDDCNPPVD PVSRSPKCFN NGTCVDQVGG YSCTCPPGFV GERCEGDVNE
RGTQGVHCEI NVDDCTPFYD SFTLEPKCFN NGKCIDRVGG YNCICPPGFV GERCEGDVNE
                                                                   1269
PGTMGIICEI NKDDCKP--- ----GACHN NGSCIDRVGG FECVCQPGFV GARCEGDINE
                                                                   1300
GFICRCPPGF SGARCQS---- SCGQVKCRKG EQCVHTAS-- GPRCFCPSP- --RDCES-
                                                                   1376
GFICKCPAGF EGATCENDAR TCGSLRCLNG GTCISGPR-- SPTCLCLGPF TGPECQFPAS
                                                                   1389
GFICKCPPGF DGATCEYDSR TCSNLRCQNG GTCISVLT— SSKCVCSEGY TGATCQYPVI
                                                                   1387
GHHCICNNGF YGKNCELSGQ DCDSNPCRVG -NCVVADEGF GYRCECPRGT LGEHCEIDTL
                                                                   1415
```

FIG. 13D

DRATE OF SECUSES

```
-GC-ASSPCQ HGGSCHPQRQ PPYYSCQCAP PFSGSRCEL - YTAPP-
hum N
TAN-1
         SPCLGGNPCY NQGTCEPTSE SPFYRCLCPA KFNGLLCHIL DYSFGG---- -GAGRDIPPP
Xen N
         SPC-ASHPCY NGGTCQFFAE EPFFQCFCPK NFNGLFCHIL DYEFPG----
         DEC-SPNPCA QGAACEDLLG D-YECLCPS KWKGKRCDIY DANYPGWNGG SGSGNDRYAA
Dros N
         NN-QCDELCN TVECLFDNFE CQGNSKTCK- -YDKYCADHF KDNHCNQGCN SEECGWDGLD
hum N
TAN-1
         SDGHCDSQCN SAGCLFDGFD CQRAEGQCNP LYDQYCKDHF SDGHCDQGCN SAECEWDGLD
         NDGKCDSQCN NTGCLYDGFD CQKVEVQCNP LYDQYCKDHF QDGHCDQGCN NAECEWDGLD
Xen N
Dros N
         KNGKCNEECN NAACHYDGHD CERKLKSCDS LFDAYCQKHY GDGFCDYGCN NAECSWDGLD
hum N
         YYGEKSAAMK KQ---R---- --
                                         - -----MTRRSL PGEQ-----E QEVAGSKVFL
         YYGREEELRK HPIKRAAEGW AAPDALLGQV KASLLPGGSE GGRRRRELDP MDVRGSIVYL
TAN-1
         YYGNEEELKK HHIKRSTDYW SDAPSAI--- -FSTMKESIL LGRHRRELDE MEVRGSIVYL
Xen N
Dros N
         WKDNVRVPEI EDTDFARKNK ILYTQQVHQ- -----
                                                                 ---TGIQIYL
```

LNR (Notch/Lin-12 Repeats)

```
----A----TCL SQYCADKARD GVCDEACNSH ACQWDGGDCS LTMENPWANC SSPLPCWDY!
                                                                     1476
LIEE---ACE LPECQEDAGN KVCSLQCNNH ACGWDGGDCS LNFNDPWKNC TQSLQCWKYF
                                                                    1501
DNDD----ICE NEQCSELADN KVCNANCNNH ACGWDGGDCS LNFNDPWKNC TQSLQCWKYF
                                                                    1498
DLEQQRAMCD KRGCTEKQGN GICDSDCNTY ACNFDGNDCS LGI-NPWANC TAN-EXWNKF
                                                                    1531
CAADQPEN-L AEGTLVIVVL MPPEQLLQDA R-SFLRALGT LLHTNLRIKR DSQGELMVYP
                                                                    1591
CAEHVPER-L AAGTL-VVVV LMPPEQLRNS SFHFLRELSR VLHTNVVFKR DAHGQQMIFP
                                                                    1619
C-ANMPEN-L AEGTLVLVVL MPPERLKNNS V-NFLRELSR VLHTNVVFKK DSKGEYKIYP
                                                                    1615
CENKTQSPVL AEGAMSVVML MNVEAFREIQ A-QFLRNMSH MLRTTVRLKK DALGHDIIIN
                                                                    1650
                                                                TM
EIDNRQCVQD SDHCFKNTDA AAALLASHAI QG---TLSYP LVSVVSESLT PERT-Q-LLY
                                                                    1680
EIDNRQCVQA SSQCFQSATD VAAFLGALAS LGSL-NIPYK IEAVQSETVE PPPPAQ-LHF
                                                                    1737
EIDNRQCYKS SSQCFNSATD VAAFLGALAS LGSLDTLSYK IEAVKSENME TPKPST-LYP
                                                                    1730
EIDNRKCTEC FTHAVEAAEF LAATAAKHQL RNDFQ-IHSV RGIKNPGDED NGEPPANVKY
                                                                    1745
```

FIG.13E

Section of the sectio

LLAVAVVIIL FIILLGVIMA KRKRK--HGS LWLPEGFTLR RDASNHKRRE PVGQDAVGLK hum N TAN-1 MYVAAAAFVL LFFVGCGVLL SRKRRRQHGQ LWFPEGFKV- SEASKKKRRE ELGEDSVGLK Xen N MLSMLVIPLL IIFVFMMVIV NKKRRREHDS FGSPTALFQK NPA-KRNGET PW-EDSVGLK VITGIILVII ALAFFGMVL- STQRKRAHGV TWFPEGFRAP AAVMSRRRRD PHGQEMRNLN Dros N CDC-10/Ankyrin Repeats hum N PIDRRPWTQQ HLEAADIRRT PSLALTPPQA EQEVDVLDVN VRGPDGCTPL MLASLRGGSS TAN-1 QTDHRQWTQQ HLDAADL-RM SAMAPTPPQG EVDADCMDVN VRGPDGFTPL MIASCSGGGL Xen N KTDPRQWTRQ HLDAADL-RI SSMAPTPPQG EIEADCMDVN VRGPDGFTPL MIASCSGGGL EADQRVWSQA HLDVVDV-R- AIM--TPP-A HQDGGKHDVD ARGPCGLTPL MIAAVRGGGL Dros N ANAQDNMGRC PLHAAVAADA QGVFQILIRN RVTDLDARMN DGTTPLILAA RLAVEGMVAE hum N TAN-1 ANIQDNMGRT PLHAAVSADA QGVFQILIRN RATDLDARMH DGTTPLILAA RLAVEGMLED Xen N ANVQDNMGRT PLHAAVAADA QGVFQILIRN RATDLDARMF DGTTPLILAA RLAVEGMVEE Dros N ANCQDNTGRT PLHAAVAADA MGVFQILLRN RATNLNARMH DGTTPLILAA RLAIEGMVED

```
NLSVQVSEAN LIGTGTSEHW VDDE-
                               - -----G PQPKKVKAED EALLSE-EDD
                                                                  1782
PLK-NASDGA LMDDNQNE-W GDED------ LETKKFRFEE PVVLPD-LDD
                                                                  1837
PIK-NMTDGS FMDDNQNE-W GDEET----- LENKRFRFEE QVILPELVDD
                                                                  1831
KQVAMQSQGV GQPGAH----W SDDESDMPLP KRQRSDPVSG VGLGNNGGYA SDHTMVSEYE
                                                                  1861
DLSDEDEDAE DSSANIITDL VYQGASLQAQ TDRTGEMALH LAARYSRADA AKRLLDAGAD
                                                                  1902
ETGNSEEE-E DAPA-VISDF IYQGASLHNQ TDRTGETALH LAARYSRSDA AKRLLEASAD
                                                                  1954
ETGNSEEE-E DASANMISDF IGQGAQLHNQ TDRTGETALH LAARYARADA AKRLLESSAD
                                                                  1949
DTGEDIENNE DSTAQVISDL LAQGAELNAT MOKTGETSLH LAARFARADA AKRLLDAGAD
                                                                 1976
LINCQADVNA VDDHGKSALH WAAAVNNVEA TLLLLKNGAN RDMQDNKEET PLFLAAREGS
                                                                 2022
LINSHADVNA VDDLGKSALH WAAAVNNVDA AVVLLKNGAN KDMQNNREET PLFLAAREGS
                                                                 2074
LINAHADVNA VDEFGKSALH WAAAVNNVDA AAVLLKNSAN KDMQNNKEET SLFLAAREGS
                                                                 2069
LITADADINA ADNSGKTALH WAAAVNNTEA VNILLMHHAN RDAQDDKDET PLFLAAREGS
                                                                 2096
```

FIG.13F

SPROVED O.G. T.C.

ORM TSPAN OLASS SUBCINSS

_						
hum N					DEYNVTPSPP	
TAN-1	YETAKVLLDH	FANRDITOHM	DRLPRDIAQE	RMHHDIVRLL	DEYNLVRSPQ	LHGAPLGGTP
Xen N	YETAKVLLDH	YANRDITDHM	DRLPRD I AQE	RMHHD I VHLL	DEYNLVKSPT	LHNGPLGAT-
Dros N	YEACKALLDN	FANRE I TOHM	DRLPRDVASE	RLHHDIVRLL	DE-HVPRSPQ	MLSMTPQAMI
'						
	NLS		<u>CK I</u> I	cdc2	cdc2	
hum N	GSRRKKSLSE	KVQLSESS	VTLSPVDSLE	SPHTYVSDTT	SSPM	
TAN-1	A-RRKKSQDG	KGCLLDSS	GML SPVD SLE	SPHGYLSDVA	SPPL	
Xen N		KTTLLDSGSS				
Dros N	GS-PDNGLDA	TGSLRRKASS	KKTSAASKKA	ANLNGLNPGQ	LTGGVSGVPG	VPPTNSAAQA
	BNTS					
	_					
hum N				ITSPGILQAS	PNPMLATA	APPAPVHAQH
TAN-1				LPSPF-QQS	PSVPLNHLPG	MPDTHLG IGH
Xen N				MTSPF-QQS	PSMPLNHLTS	MPESQLGMNH
Dros N	YEDCIKNAQS	MQSLQGNGLD	MIKLDNYAYS	MGSPFQQE	LLNGQGLGMN	GNGQRNGVGP
1	CK 11			cdc2		_

TLSPP	LCSP	NGYLGSLKPG NGYMGNMKPS	PMGKKSRRPS VQGKKVRKPS VQSKKARKPS NASGKQSNQT	SKGLACGSIKGNGC	KEAKDLK	2127 2178 2170 2208
					PNTGAKQPPS	2169 2219 2213 2327
LNVAA-KPEM INMAT-KQEM	AALGGGGRLA AAGSNRMA	FETGPPRLSH FDAMVPRLTH	LPVASGTSTV L-NASSPNTI	LGSSSGGALN MSNGSMH		2235 2306 2294 2445

FIG.13G

```
ORAFTSHAW GLASS GUBCLASS
```

```
GSAGSLSRLH PVPVPADW-- MNRMEVNETQ YNEMFGMVLA PAEG-THPGI APQSRPPEGK
hum N
TAN-1
         GQCEWLSRLQ SGMVPNQYNP LRGSVAPGPL STQAPSLQHG -MVGPLHSSL AASALSQMMS
         SQCDWLARLQ NGMVQNQYDP IRNGIQQGN- AQQAQALQHG LMTS-LHNGL PATTLSQMMT
Xen N
         PSLPTSPTHI QAMRHATQQK QFGGSNLNSL LGGANGGGVV GGGGGGGGGV GQGPQNSPVS
Dros N
         APQPQSTCPP AVAGPLPTMY QIP----EM ARL-PSVAFP TAMMPQQDGQ VAQTILPAYH
hum N
         PPQPHLGVSS AASGHLGRSF LSGEPSQADV QPLGPSSLAV HTILPQ-ESP ALPTSLPSSL
TAN-1
Xen N
         MQQQHHN-SS TTSTHINSPF CSSDISQTDL QQM-SSNNI HSVMPQ-DTQ IFAASLPSNL
         QQQLGGLEFG SAGLDLNG-F CGSPDSFHSG QMNPPS---- I QSSMSG-SSP STNMLSPSSQ
Dros N
         SDWSDVTTSP
                    TPGGAGGGQR GPGTHMSEPPHNN MQVYA
hum N
                           -SMQ SQIARIPEAFK
         SDWSEGVSSP PT
TAN-1
         SDWSEGISSP PT-
                         ----SMQ PQRTHIPEAFK
Xen N
         SDWSEGVQSP AANNLYISGG HQANKGSEAIYI
Dros N
```

```
2320
              -HITTPRE PLPP-IV-TF QLIPKGSIAQ PAG-
                                                                     2414
            -YQGLPSTRL ATQPHLVQTQ QVQPQNLQMQ QQNLQPANIQ QQQSLQPPPP
           -YQAMPNTRL ANQPHLMQAQ QMQQQQN-
                                                                     2384
                                                             -LQLHQS
LGIISPTGSD MGIMLAPPQS SKNSAIMQTI SPQQQQQQQQ QQQQQHQQQQ QQQQQQQQQQQQQQ
                                                                     2565
           PEST -containing Region
                                                                     2433
PFPASVGKYP TPPSQHSYAS SNAAERTPSH SGHLQGEHPY LTPSPESPDQ WSSSSPHSA-
VPPVTAAQFL TPPSQHSY-S S-PVENTPSH QLQVP-EGPF LTPSPESPDQ WSSSSPHSNV
                                                                     2530
                                                                     2497
           TPPSQHSY-S S-PMDNTPSH QLQVP-DHPF LTPSPESPDQ WSSSSPHSNM
TQSMTTAQFL
           TPSSQHS---- CGHTPQH LVQTL-D-SY PTPSPESPGH WSSSSPRSN-
                                                                     2671
HNQQAFYQYL
                                                                     2471
                                                                     2556
                                                                     2523
                                                                     2703
```

DRATTSMAN CLASS SUBCLASS

FIG. 14

ORAFTSMAN GUASS SUBCLASS

FIG. 15B

ORAFTSTAN CLASS SUBCLASS

FIG. 15A

FIG. 16A

FIG.16B

ORATIONED O G FISS SURCINES

GGGGAATATT GTCAACATCG AGACCCCTGT GAGAAGAACC GCTGCCAGAA TGGTGGGACT TGTGTGGCCC AGGCCATGCT GGGGAAAGCC G E Y C Q H R D P C E K N R C Q N G G T C V A Q A M L G K A>	10	20	30	40	50	60	70	80	90
100 110 120 130 140 150 160 170 180 CCACATGCCT ATGAACCCTG TGTAAATGAA GGAATGTGTG TTACCTACCA CAATGGCACA GGATACTGCA AATGTCCAGA AGGCTTCTTG R D G Y E P C V N E G M C V T Y H N G T G Y C K C P E G F L> 190 200 210 220 230 240 250 260 270 GCGGAATATT GTCAACATCG AGACCCCTGT GAGAAGAACC GCTGCCAGAA TGGTGGGACT TGTGTGGCCC AGGCCATGCT GGGGAAAGCC G E Y C Q H R D P C E K N R C Q N G G T C V A Q A M L G K A> 280 290 300 310 320 330 340 350 360	GGAATTCCGC		CCCCCCTCTC	CTGTGGGGGC	TGCTGGCGCT		TGCGCGGCCC	CCGCGCATGC	ATTGCAGTGT
CGAGATGCCT ATGAACCCTG TGTAAATGAA GGAATGTGTG TTACCTACCA CAATGGCACA GGATACTGCA AATGTCCAGA AGGCTTCTTG R D G Y E P C V N E G M C V T Y H N G T G Y C K C P E G F L> 190 200 210 220 230 240 250 260 270 GGGGAATATT GTCAACATCG AGACCCCTGT GAGAAGAACC GCTGCCAGAA TGGTGGGACT TGTGTGGCCC AGGCCATGCT GGGGAAAGCC G E Y C Q H R D P C E K N R C Q N G G T C V A Q A M L G K A> 280 290 300 310 320 330 340 350 360		PALR	PAL	L W A .	LLAL	WLC	CAA	PAHA	
R D G Y E P C V N E G M C V T Y H N G T G Y C K C P E G F L> 190 200 210 220 230 240 250 260 270 CGCGAATATT GTCAACATCG AGACCCCTGT GAGAAGAACC GCTGCCAGAA TGGTGGGACT TGTGTGGCCC AGGCCATGCT GGGGAAAGCC G E Y C Q H R D P C E K N R C Q N G G T C V A Q A M L G K A> 280 290 300 310 320 330 340 350 360	100	110	120	130	140	150	160	170	180
190 200 210 220 230 240 250 260 270 GGGGAATATT GTCAACATCG AGACCCCTGT GAGAAGAACC GCTGCCAGAA TGGTGGGGACT TGTGTGGCCC AGGCCATGCT GGGGAAAGCC G E Y C Q H R D P C E K N R C Q N G G T C V A Q A M L G K A> 280 290 300 310 320 330 340 350 360	CCACATGGCT	ATGAACCCTG	·				CCATACTCCA	AATGTCCAGA	AGGCTTCTTG
GGGGAATATT GTCAACATCG AGACCCCTGT GAGAAGACC GCTGCCAGAA TGGTGGGACT TGTGTGGCCC AGGCCATGCT GGGGAAAGCC GC E Y C Q H R D P C E K N R C Q N G G T C V A Q A M L G K A>	, א ט ט	† E P C	VNE	GMC	V I I H	N G I		K C P E	6 1 12
GEYCQHRDPCEKNRCQNGGTCVAQAMLGKA> 280 290 300 310 320 330 340 350 360 * * * * * * * * * * * * * * * * * * *	190	200 *	210	220	230	240	250	260	270
280 290 300 310 320 330 340 350 360	CCCCAATATT	GTCAACATCG	AGACCCCTGT				TGTGTGGCCC	AGGCCATGCT	CCCAAAGCC
	G E T	C U n K	UPC	E N N	K C Q N		C V A	Q A M L	G K A>
ACCIOCONI CICOCIOACO CITIACACOA CACOACIOCO ACIACIOAAC AICIOATOCA ICCITICICI CICOACCOIO COICAAICOC	÷ 280	290	300 *	•	320	330	340	350	360
	ACGTGCCGAT	GTGCCTCAGG	GTTTACAGGA	GAGGACTGCC					_
TCRCASGFTGEDCQYSTSHPCFVSRPCLNG>	1 C K	C A 5 G	r I G		V I S I	3 п Р	Crv	3 R P C	L N G>
370 380 390 400 410 420 430 440 450 * * * * * * * * * * * * * * * * * * *	370	380	390	400	410	420	430	440	450 *
GCCACATGCC ATATGCTCAG CCGCGATACC TATGAGTGCA CCTGTCAAGT CCGGTTTACA GGTAAGGAGT GCCAATGGAC GGATGCCTGC	GGCACATGCC	ATATGCTCAG		TATGAGTGCA			CKE	GCCAATGGAC	
	0 1 6	пмгэ		1 [[ICQV	Gri	UKE	CUNI	D A C>
460 470 480 490 500 510 520 530 540 * * * * * * *	460 *	470 *	480	490	500 •	510 *	520 *	530	540 *
CIGICICATO COTGIGOAAA IGGAAGTACO IGTACCACTG IGGCCAACCA GIICICCTGC AAATGCCTCA CAGGCTICAC AGGGCAGAAA I S H P C A N G S I C I I V A N Q F S C K C L I G F I G Q K>				TGTACCACTG	1		AAATGCCTCA	CAGGCTTCAC	AGGGCAGAAA G Q K>
		, , , ,		V 1 1			N U L		
550 560 570 580 590 600 610 620 630 * * * * * * * * * * * * * * * * * * *	550	560 *	570 +	580	590	600	610 *	620 *	630
TGTGAGACTG ATGTCAATGA GTGTGACATT CCAGGACACT GCCAGCATGG TGGCACCTGC CTCAACCTGC CTGGTTCCTA CCAGTGCCAG C E T D V N E C D J P G H C O H G G T C L N L P G S Y O C O>	TGTGAGACTG	ATGTCAATGA	GTGTGACATT				CTCAACCTGC	••	CCAGTGCCAG
	0 L 1	0.00	c o i	:			700		700
640 650 660 670 680 690 700 710 720 * * * * * * * * *	b40 ∗	650 . *	\$ t	67U *	\$ *	*	/UU *	/10	/20 +
TICCCCTCAGG GCTTCACAGG CCAGTACTGT GACAGCCTGT ATGTGCCCTG TGCACCCTCA CCTTGTGTCA ATGGAGGCAC CTGTCGGCAG	TGCCCTCAGG C P 0	GCTTCACAGG G F T G	CCAGTACTGT O Y C	GACAGCCTGT D S L				ATGGAGGCAC N G G I	CTGTCGGCAG C R O>
770 740 750 760 770 790 700 900 910	770	740	750	` '760	` 770	700	700	gnn	910
730 740 750 760 770 780 790 800 810 * * * * * * * * *			*	*	•	•	+	*	• • • • • • • • • • • • • • • • • • •
ACTGGTGACT TCACTITIGA GTGCAACTGC CTTCCAGGTT TTGAAGGGAG CACCTGTGAG AGGAATATTG ATGACTGCCC TAACCACAGG T G D F T F E C N C L P G F E G S T C E R N I D D C P N H R>	ACTGGTGACT T G D	TCACTITICA F T F E		•					

FIG.17A

DRATISHAN GLASS SUBCLASS

820 830	840 850	860	870 880	890 900
TGTCAGAATG GAGGGGTTTG C Q N G G V C	TGTGGATGGG GTCAACACTT V D G V N T		CCCCCA CAATGGACAC	GACAGTICIG CACAGAGGAT G Q F C T E D>
910 920		950	960 970	980 990
GTGGATGAAT GCCTGCTGCA V D E C L L Q		GGGGCACCTG TGCCA	AACCGC AATGGAGGCT N R N G G	ATGCCTGTGT ATGTGTCAAC Y G C V C V N>
1000 1010	1020 1030	1040	1050 1060	1070 1080
GGCTGGAGTG GAGATGACTG G W S G D D C	CAGTGAGAAC ATTGATGATT S E N I D D	GTGCCTTCGC CTCCT	TGTACT CCAGGCTCCA C T P G S	CCTGCATCGA CCGTGTGGCC T C I D R V A>
1090 1100	1110 1120	1130	1140 1150	1160 1170
TCCTTCTCTT GCATGTGCCC S F S C M C P			GATGCA TGCATCAGCA D A C I S	ATCCTTGCCA CAAGGGGGCA N P C H K G A>
1180 1190	1200 1210	1220	1230 1240	1250 1260
CTGTGTGACA CCAACCCCCT L C D T N P L	AAATGGGCAA TATATTTGCA N G Q Y I C	CCTGCCCACA AGGC1	TACAAA GGGGCTGACT Y K G A D	GCACAGAAGA TGTGGATGAA C T E D V D E>
1270 1280	1290 1300	1310	1320 1330	1340 1350
TGTGCCATGG CCAATAGCAA C A M A N S N		AATGTGTGAA CACGG	CATGGC GCCTTCCACT	GTGAGTGTCT GAAGGGTTAT C E C L K G Y>
1360 1370	1380 1390	1400	1410 1420	1430 1440
GCAGGACCTC GTIGTGAGAT A G P R C E M	GGACATCAAT GAGTGCCATT D I N E C H		AATGAT GCTACCTGTC N D A T C	TGGATAAGAT TGGAGGCTTC L D K I G G F>
1450 1460	1470 1480	1490	1500 1510	1520 1530
ACATGICIGI GCATGCCAGG I C L C M P G	TTTCAAAGGT GTGCATTGTG F K G V H C	AATTAGAAAT AAATG E L E I N	GAATGT CAGAGCAACC E C Q S N	CTTGTGTGAA CAATGGGCAG P C V N N G Q>
1540 1550	1560 1570	1580 *	1590 1600	1610 1620
IGTGTGGATA AAGTCAATCG C V D K V N R	TTTCCAGTGC CTGTGTCCTC	CTGGTTTCAC TGGGC	CAGTT TGCCAGATTG	ATATIGATGA CIGITCCAGT D I D D C S S>

FIG.17B

1630	1640	1650	1660	1670	1680	1690	1700	1710
ACTCCGTGTC T P C	TGAATGGGGC L N G A	AAAGTGTATC K C I	GATCACCCGA D H P	ATGCCTATGA N G Y E	0 0 0 1	CCACAGGTT A T G I	TCACTGGTGT (GTTGTGTGAG L C E>
1720	1730	1740	1750	1760	1770	1780	1790	1800
GAGAACATTG E N I	ACAACTGTGA D N C D	CCCCGATCCT P D P	TGCCACCATG C H H	GTCAGTGTCA G Q C Q	GGATGGTATT GA	ATTCCTACA (D S Y	CCTGCATCTG T C I C	CAATCCCGGG N P G>
1810	1820	1830	1840	1850	1860	1870	1880	1890
TACATGGGCG Y M G	CCATCTGCAG A I C S	TGACCAGATT D Q I	GATGAATGTT D E C	ACAGCAGCCC Y S S P		ATGGTCGCT (D G R	GCATTGACCT (C I D L	GGTCAATGGC V N G>
1900	1910	1920	1930	1940	1950	1960	1970	1980
TACCAGTGCA Y Q C	ACTGCCAGCC N C Q P	AGGCACGTCA G T S	GGGGTTAATT G V N	GTGAAATTAA C E I N	TTTTGATGAC TO		ACCCTTGTAT	CCATGGAATC H G I>
1990	2000	2010	2020	2030	2040	2050	2060	2070
TGTATGGATG C M D	GCATTAATCG G I N R	CTACAGTTGT Y S C	GTCTGCTCAC V C S	CAGGATTCAC P G F T	AGGGCAGAGA TO	GTAACATTG A	ACATTGATGA (D 1 D E	GTGTGCCTCC C A S>
2080	2090	2100	2110	2120	2130	2140	2150	2160
AATCCCTGTC N P C	GCAAGGGTGC R K G A	AACATGTATC T C I	AACGGTGTGA N G V	ATGGTTTCCG N G F R	CTGTATATGC CC		CCCATCACCC (P H H P	CAGCTGCTAC S C Y>
2170	2180	2190	2200	2210	2220	2230	2240	2250
TCACAGGTGA S Q V	ACGAATGCCT N E C L	GAGCAATCCC S N P	TGCATCCATG C I H	GAAACTGTAC G N C T	TGGAGGTCTC AG	GTGGATATA / S G Y F	AGTGTCTCTG K C L C	TGATGCAGGC D A G>
2260	2270	2280	2290	2300	2310	2320	2330	2340
TGGGTTGGCA W V G	TCAACTGTGA I N C E	AGTGGACAAA V D K	AATGAATGCC N E C	TTTCGAATCC L S N P	ATGCCAGAAT GG C Q N G	GAGGAACTT (G G T (GTGACAATCT (C D N L	GGTGAATGGA V N G>
2350	2360	2370	2380	2390	2400	2410	2420	2430
TACAGGTGTA Y R C	CTTGCAAGAA T C K F	GGGCTTTAAA G F K	GCTATAACT G Y N	GCCAGGTGAA C Q V N	TATTGATGAA TG		ATCCATGCCT (N P C L	GAACCAAGGA N Q G>

FIG.17C

			2440		·	2450		2	460			2470			24	80		Z	2490			2500			251	10		2	520
	ACC T	TG C	CTTTG F	A D	TGAC. D	ATAAG I S	TCCC G	CTAC Y	ACT T	TGC C	CAC H	CTGTG C	TG V	CT(L	CCA P	TA Y	CACA	AGG(G	CAAG K	AAT N	TG1 C	CAGA Q	CA(GTA' V	r tg o L	GC A	TCCC P	TGT C	TCC S>
			2530			2540		2	550			2560			25	70		2	2580			2590			260	00		2	610
	CC#	AA N	CCCTT P	G	TGAG. E	AATGC N A	TGC1	GTT V	TGC C	AAA K	IGAC E	STCAC S	CA P	IAA1 N	TTTT(F	¢ GA E	GAG1	[AT] Y	FACT T	TGC C	:TTC L	STGTG C	CT(CCT(P	GC1	* C W	GCAA Q	GGT(CAG Q>
			2620			2630		2	640			2650			26	60		2	2670			2680			269	90		2	700
	CGG R	TG C	TACCA	Ţ	TGAC. D	ATTGA I D	CGA0	TGT C	ATC I	TCC S	CAAC K	SCCCT P	GC C	ATC M	GAAC N	CA H	TGGT G	ICT(TGC C	CAT H	AA(N	ACCC T	AG(GGC/	4GCT S	‡ ГА Ү	CATG M	TGT(C	# GAA E>
			2710	,		2720		2	730			2740			27	50		2	2760			2770			278	30		2	790
	TGT C	CC.	ACCAG P	G G	CTTC. F	AGTGG S G		GAC D	t TGT C	GAG E	GAC E	GACA D	I	GA1 D	IGAC D	TG C	CCT1	IGCO A	* CAAT N	CCT P	TG(C	CAGA Q	ATO N	GGA(G	G G	* [C S	CTGT C	ATG(M	# GAT D>
			2800			2810	-	2	820			2830			28	40		2	2850			2860			287	70		28	880
	GGA G	GT(V	GAATA N	C	TTTC F	TCCTG S C	CCTC	TGC C	ctt L	CCG P	GGT G	TTCA F	CT T	GG(GATA D	* AA K	GTG(C	CAC Q	GACA T	GAC D	ATC M	AATG N	AG E	IGT(C	CTGA L	* \G S	TGAA E	P P	# TGT C>
			2890			2900		2	910			2920			29.	30		2	940			2950			296	60		29	970
	aag K	AA N	TGGAG G	G(GACC [*] T	IGCTC C S	TGAC D	TAC Y	GTC V	AAC N	AGT S	TACA Y	CT T	TGC C	CAAG` K	TG C	CCAG Q	GCA A	* AGGA G	TTT F	GA1 D	GGAG G	V TC(CAT? H	_	* GA (GAAC N	AAC/ N	ATC >
			2980			2990		3	000			3010			302	20		3	6030			3040			305	0		3(060
	AAT N	GA(E	GTGCA C	CI	rgag <i>i</i> E	AGCTC S S	CTGT C	TTC F	AAT N	GGT(GGC G	ACAT T	GT(GTT V	GAT(D	G G	GATT [AAC N	TCC S	TTC F	TCT S	TGCT C	TGT L	rgco C	CTG P	* CT (V	GGGT G	TTC/ F	* ACT T>
			3070			3080		3	090			3100			311	10		3	120			3130			314	0		3	150
-	GGA G	TC(S	CTTCT F	G(C	CTC(ATGA H E	GATC I	AAT(N	GAA E	TGC C	AGC S	TCTC S	AT(CCA P	TGC(C	e CT L	GAAT N	GAG E	GGA G	ACG T	TGT C	GTTG V	AT(D	G G	:TGG L	* G	TACC T	TAC(Y	CC R>
			3160			3170		3	180			3190			320	00		3	210			3220			323	0		32	240
			CTGCC C	CC P		GCTA G Y	CACT	GGG			TGT C		CC	CTG L		AA N	TCTC L	TGC C	AGT S	CGG R	TCT S	_	GTA C		ACA N	* A / K	AGGT/ G	ACTI T	GT C>

ORAFTS-IAN GLASS SUBCLASS

FIG.17D

3250 3260	3270	3280	3290	3300	3310	3320	3330
GTTCAGAAAA AAGCAGAGTC	CCAGTGCCTA	TGTCCATCIG	GATGGGCTGG	IGCCTATTGT	GACGTGCCCA	ATGTCTCTTG	TGACATAGCA
	Q C L	C P S	G W A G	A Y C	D V P	N V S C	D I A>
3340 3350	3360	3370	3380	3390	3400	3410	3420 *
GCCTCCAGGA GAGGTGTGC1	TGTTGAACAC	TTGTGCCAGC	ACTCAGGTGT	CTGCATCAAT	GCTGGCAACA	CGCATTACTG	TCAGTGCCCC
A S R R G V L	V E H	L C Q	H S G V	C I N	A G N	T H Y C	Q C P>
3430 3440	3450	3460	3470	3480	3490	3500	3510
	*	*	*	*	*	*	*
CTGGGCTATA CTGGGAGCTA	CTGTGAGGAG	CAACTCGATG	AGTGTGCGTC	CAACCCCTGC	CAGCACGGGG	CAACATGCAG	TGACTTCATT
L G Y T G S Y	C E E	Q L D	E C A S	N P C	Q H G	A T C S	D F 1>
3520 3530	3540	3550	3560	3570	3580	3590	3600
	*	*	*	*	*	*	*
GGTGGATACA GATGCGAGTG	TGTCCCAGGC	TATCAGGGTG	TCAACTGTGA	GTATGAAGTG	GATGAGTGCC	AGAATCAGCC	CTGCCAGAAT
G G Y R C E C	V P G	Y Q G	V N C E	Y E V	D E C	Q N Q P	C Q N>
3610 3620	3630	3640 *	3650	3660	3670	3680	3690
GGAGGCACCT GTATTGACCT	TGTGAACCAT	TTCAAGTGCT	CTTGCCCACC	AGGCACTCGG	GCCTACTCT	GTGAAGAGAA	CATTGATGAC
G G T C I D L	V N H	F K C	S C P P	G T R	G L L	C E E N	I D D>
3700 3710	3720 *	3730 *	3740	3750 *	3760	3770 *	3780 *
TGTGCCCGGG GTCCCCATTG	CCTTAATGGT	GGTCAGTGCA	TGGATAGGAT	TGGAGGCTAC	AGTIGICGCT	GCTTGCCTGG	CTTTGCTGGG
	L N G	G Q C	M D R I	G G Y	S C R	C L P G	F A G>
3790 3800	3810	3820	3830	3840	3850	3860	3870
* *		*	*	*	*	•	•
CACCGTTGTG AGGGAGACAT	CAACGAGTGC	CTCTCCAACC	CCTGCAGCTC	TGAGGGCAGC	CTGGACTGTA	TACAGCTCAC	CAATGACTAC
E R C E G D I	N E C	L S N	P C S S	E G S	L D C	[Q L T	N D Y>
3880 3890	3900	3910	3920	3930	3940	3950	3960
* *	*	*	*		*	•	*
CTGTGTGTTT GCCGTAGTGC	CTTTACTGGC	CCGCACTGTG	AAACCTTCGT	CGATGTGTGT	CCCCAGATGC	CCTGCCTGAA	TGGAGGGACT
	F T G	R H C	E T F V	D V C	P Q M	P C L N	G G T>
3970 3980 * *	3990 *	4000	4010 *	4020 *	4030	4040	4050 *
TGTGCTGTGG CCAGTAACAT	GCCTGATGGT	TICATTIGCC	GTTGTCCCCC	GGGATTTTCC	GGGGCAAGGT	GCCAGAGCAG	CTGTGGACAA
C A V A S N M	P D G	F I C	R C P P	G F S	G A R	C Q S S	C G Q>

FIG.17E

4060 4070 4080 4090 4100 4110 4120 4130 4140 GTGAAATGTA GGAAGGGGA GCAGTGTGTG CACACCGCCT CTGGACCCCG CTGCTTCTGC CCCAGTCCCC GGGACTGCGA GTCAGGCTGT RKGE SGPR QCV C SP C F R D C E 4150 4160 4170 4180 4190 4200 4210 4220 4230 GCCAGTAGCC CCTGCCAGCA CGGGGCAGC TGCCACCCTC AGCGCCAGCC TCCTTATTAC TCCTGCCAGT GTGCCCCACC ATTCTCGGGT S QRQP CQHG H P Р YY S 4250 4260 4270 4280 4240 4290 4300 4310 4320 AGCCGCTGTG AACTCTACAC GGCACCCCCC AGCACCCCTC CTGCCACCTG TCTGAGCCAG TATTGTGCCG ACAAAGCTCG GGATGGCGTC APP L STP A T C SQ C 4330 4350 4360 4340 4370 4380 4390 4400 4410 TGTGATGAGG CCTGCAACAG CCATGCCTGC CAGTGGGATG GGGGTGACTG TTCTCTCACC ATGGAGAACC CCTGGGCCAA CTGCTCCTCC ACNS H A C Q D G G D CS 4420 4430 4440 4450 4460 4470 4480 4490 4500 CCACTICCCT GCTGGGATTA TATCAACAAC CAGTGTGATG AGCTGTGCAA CACGGTCGAG TGCCTGTTTG ACAACTTTGA ATGCCAGGGG CWDY I N N QCD ELCN E ٧ 4520 4530 4510 4540 4550 4560 4570 4580 4590 AACAGCAAGA CATGCAAGTA TGACAAATAC TGTGCAGACC ACTTCAAAGA CAACCACTGT AACCAGGGGT GCAACAGTGA GGAGTGTGGT NSK TCKY DKY CAD H FKD N H C N Q G C N S E E C G> 4610 4620 4630 4640 4650 4600 4660 4670 4680 TGGGATGGGC TGGACTGTGC TGCTGACCAA CCTGAGAACC TGGCAGAAGG TACCCTGGTT ATTGTGGTAT TGATGCCACC TGAACAACTG WDG LDCA ADQ PENLAEG TLV IVV LMPPEQL> 4690 4700 4710 4720 4730 4740 4750 4760 4770 CTCCAGGATG CTCGCAGCTT CTTGCGGGCA CTGGGTACCC TGCTCCACAC CAACCTGCGC ATTAAGCGGG ACTCCCAGGG GGAACTCATG LQD ARSFLRA LGT LLHT NLR 1 KR DS QG E L MD 4780 4790 4800 4810 4820 4830 4840 4850 4860 GTGTACCCCT ATTATGGTGA GAAGTCAGCT GCTATGAAGA AACAGAGGAT GACACGCAGA TCCCTTCCTG GTGAACAAGA ACAGGAGGTG

5090

200

が子がいると

FIG.17F

V Y P Y Y G E K S A A M K K Q R M T R R S L P G E Q E V>

4870 4880	4890 4900	4910 4920	4930	4940 4950
GCTGGCTCTA AAGTCTTTCT A G S K V F L	GGAAATTGAC AACCGCCAGT E I D N R Q	GTGTTCAAGA CTCAGACCAC C V Q D S D H	TGCTTCAAGA ACA	ACGGATGC AGCAGCAGCT T D A A A A>
4960 4970 * *	• •		5020 *	5030 5040 * *
CTCCTGGCCT CTCACGCCAT L L A S H A I	ACAGGGGACC CTGTCATACC Q G T L S Y	C CTCTTGTGTC TGTCGTCAGT P L V S V V S	GAATCCCTGA CTO ESLT	CCAGAACG CACTCAGCTC PERTQL>
5050 5060 * *	5070 5080 * *	5090 5100	5110 *	5120 5130 * *
CTCTATCTCC TTGCTGTTGC L Y L L A V A	TGTTGTCATC ATTCTGTTTA V V I I L F	A TTATICTGCT GGGGGTAATC I I L L G V I	ATGGCAAAAC GA/ M A K R I	AAGCGTAA GCATGGCTCT K R K H G S>
5140 5150 * *	5160 5170 * *	5180 5190	5200 *	5210 5220 *
CTCTGGCTGC CTGAAGGTTT L W L P E G F	CACTCTTCGC CGAGATGCAA T L R R D A	A GCAATCACAA GCGTCGTGAG S N H K R R E	CCAGTGGGAC AGO PVGQ	GATGCTGT GGGGCTGAAA D A V G L K>
5230 5240 * *	5250 5260 * *	5270 5280	5290 *	5300 5310
AATCTCTCAG TGCAAGTCTC N L S V Q V S	AGAAGCTAAC CTAATTGGTA E A N L I G	A CTGGAACAAG TGAACACTGG T G T S E H W	GTCGATGATG AA(V D D E	GGCCCCA GCCAAAGAAA G P Q P K K>
5320 5330	5340 5350	5360 5370	5380	5390 5400
GTAAAGGCTG AAGATGAGGC V K A E D E A	CTTACTCTCA GAAGAAGATG L L S E E D	D P I D R R P	TGGACACAGC AGO W T Q Q	CACCTTGA AGCTGCAGAC H L E A A D>
5410 5420	5430 5440	5450 5460	5470	5480 5490
ATCCGTAGGA CACCATCGCT I R R T P S L	GGCTCTCACC CCTCCTCAGG A L T P P Q	CAGAGCAGGA GGTGGATGTG A E Q E V D V	TTAGATGTGA ATO L D V N	GTCCGTGG CCCAGATGGC V R G P D G>
5500 5510	5520 5530	5540 5550	5560	5570 5580
TGCACCCCAT TGATGTTGGC C T P L M L A	TTCTCTCCGA GGAGGCAGCT S L R G G S	CAGATTIGAG TGATGAAGAT (S D L S D E D	GAAGATGCAG AGO E D A E	GACTOTTC TGCTAACATC D S S A N I>
5590 5600	5610 5620	5630 5640	5650	5660 5670
ATCACAGACT IGGTCTACCA I T D L V Y Q	GGGTGCCAGC CTCCAGGCCC G A S L Q A	AGACAGACCG GACTGGTGAG Q T D R T G E	ATGGCCCTGC ACC	CTTGCAGC CCGCTACTCA L A A R Y S>

FIG.17G

5680 5690	5700 5710	5720 5730	5740 5750 5760
CGGGCTGATG CTGCCAAGCG R A D A A K R	TCTCCTGGAT GCAGGTGCAG L L D A G A	ATGCCAATGC CCAGGACAAC D A N A Q D N	ATGGGCCGCT GTCCACTCCA TGCTGCAGTG M G R C P L H A A V>
5770 5780	5790 5800	5810 5820	5830 5840 5850
* * GCAGCTGATG CCCAAGGTGT	* * CTTCCAGATT CTGATTCGCA	* * ACCGAGTAAC TGATCTAGAT	* * * * GCCAGGATGA ATGATGGTAC TACACCCCTG
A A D A Q G V	FQILIR	N R V T D L D	ARMNDGTTPL>
5860 5870 * *	5880 5890 * *	5900 5910 * *	5920 5930 5940 * * *
ATCCTGGCTG CCCGCCTGGC I L A A R L A	TGTGGAGGGA ATGGTGGCAG V E G M V A	AACTGATCAA CTGCCAAGCG E L 1 N C Q A	CATGTGAATG CAGTGGATGA CCATGGAAAA D V N A V D D H G K>
5950 5960	5970 5980	5990 6000	6010 6020 6030
TCTGCTCTTC ACTGGGCAGC			AATGGGGCCA ACCGAGACAT GCAGGACAAC
SAL HWAA		A T L L L K	N G A N R D M Q D N>
6040 6050	6060 6070	6080 6090	6100 6110 6120
AAGGAAGAGA CACCTCTGTT K E E T P L F	TCTTGCTGCC CGGGAGGGGA L A A R E G	GCTATGAAGC AGCCAAGATC S Y E A A K I	CTGTTAGACC ATTTTGCCAA TCGAGACATC L L D H F A N R D 1>
6130 6140	6150 6160	6170 6180	6190 6200 6210
ACAGACCATA TGGATCGTCT		0 0 11 11 11 0 1	GTGCGCCTTC TGGATGAATA CAATGTGACC
T D H M D R L	PRD VAR	DRMHHDI	V R L L D E Y N V T>
6220 6230	6240 6250	6260 6270 * *	6280 6290 6300
CCAAGCCCTC CAGGCACCGT PSPPGTV	GTIGACTICT GCTCTCTCAC L T S A L S	CTGTCATCTG TGGGCCCAAC	AGATCTTTCC TCAGCCTGAA GCACACCCCA R S F L S L K H T P>
6310 6320	6340 6350	6360 6370	6380 6390 6400
ATGGGCAAGA AGTCTAGACG	GCCCAGTGCC AAGAGTACCA	TGCCTACTAG CCTCCCTAAC	CTTGCCAAGG AGGCAAAGGA TGCCAAGGGT
M G K K S R R	PSAKST	MPTSLPN	LAKEAKD AKG>
6400 6410	6420 6430	6440 6450	6460 6470 6480
AGTAGGAGGA AGAAGTCTCT S R R K K S L	GAGTGAGAAG GTCCAACTGT S E K V O L	CTGAGAGTTC AGTAACTTTA S E S S V T L	TCCCCTGTTG ATTCCCTAGA ATCTCCTCAC S P V D S L E S P H>

FIG.17H

6490	6500	6510	6520	6530	6540	6550	6560	6570
ACGTATGTTT	CCGACACCAC	ATCCTCTCCA	ATGATTACAT M I T	CCCCTGGGAT	CTTACAGGCC	TCACCCAACC	CTATGTTGGC	CACTGCCGCC
T Y V	S D T T	S S P		S P G I	L Q A	S P N	P M L A	T A A>
6580 *	6590 *	6600	6610	6620	6630	6640 *	6650	6660
CCTCCTGCCC	CAGTCCATGC	CCAGCATGCA	CTATCTTTT	CTAACCTTCA	TGAAATGCAG	CCTTTGGCAC	ATGGGGCCAG	CACTGTGCTT
P P A	P V H A	Q H A	L S F	S N L H	E M Q	P L A	H G A S	T V L>
6670	6680	6690	6700	6710	6720	6730	6740	6750
CCCTCAGTGA	GCCAGTTGCT	ATCCCACCAC	CACATIGIGI	CTCCACGCAG	TGGCAGTGCT	GGAAGCTTGA	GTAGGCTCCA	TCCAGTCCCA
P S V	S Q L L	S H H	H I V	S P G S	G S A	G S L	S R L H	P V P>
6760	6770	6780	6790	6800	6810	6820	6830	6840
GTCCCAGCAG	ATTGGATGAA	CCGCATGGAG	GTGAATGAGA	CCCAGTACAA	TGAGATGTTT	GGTATGGTCC	TGGCTCCAGC	TGAGGGCACC
V P A	D W M N	R M E	V N E	T Q Y N	E M F	G M V	L A P A	E G T>
6850	6860	6870	6880	6890	6900	6910	6920	6930
CATCCTGGCA	TAGCTCCCCA	GAGCAGGCCA	CCTGAAGGGA	AGCACATAAC	CACCCCTCGG	GAGCCCTTGC	CCCCCATTGT	GACTITCCAG
H P G	I A P Q	S R P	P E G	K H I T	T P R	E P L	P P I V	T F Q>
6940	6950	6960	6970	6980	6990	7000	7010	7020
CTCATCCCTA	AAGGCAGTAT	TGCCCAACCA	GCGGGGGCTC	CCCAGCCTCA	GTCCACCTGC	CCTCCAGCTG	TTGCGGGCCC	CCTGCCCACC
L I P	K G S I	A Q P	A G A	P Q P Q	S T C	P P A	V A G P	L P T>
7030	7040	7050	7060	7070	7080	7090	7100	7110
ATGTACCAGA	TTCCAGAAAT	GGCCCGTTTG	CCCAGTGTGG	CTTTCCCCAC	TGCCATGATG	CCCCAGCAGG	ACGGGCAGGT	AGCTCAGACC
M Y Q	I P E M	A R L	P S V	A F P T	A M M	PQQ	D G Q V	A Q T>
7120	7130	7140	7150	7160	7170	7180	7190	7200
ATTCTCCCAG	CCTATCATCC	TTTCCCAGCC	TCTGTGGGCA	AGTACCCCAC	ACCCCCTTCA	CAGCACAGTT	ATGCTTCCTC	AAATGCTGCT
I L P	A Y H P	F P A	S V G	K Y P T	P P S	Q H S	Y A S S	N A A>
7210	7220	7230	7240	7250	7260	7270	7280	7290
GAGCGAACAC	CCAGTCACAG	TGGTCACCTC	CAGGGTGAGC	ATCCCTACCT	GACACCATCC	CCAGAGTCTC	CTGACCAGTG	GTCAAGTTCA
E R T	P S H S	G H L	Q G E	H P Y L	T P S	P E S	P D Q W	S S S>

FIG. 171

7300	7310	7320	7330	7340	7350	7360	7370	7380
TCACCCCACT S P H	CTGCTTCTGA S A S D	CTGGTCAGAT W S D	GTGACCACCA V T T	GCCCTACCCC S P T P	TGGGGGTGCT G G A	GGAGGAGGTC G G G	AGCGGGGACC Q R G P	TGGGACACAC G T H>
7390 * ATGTCTGAGC M S E	7400 * CACCACACAA P P H N	7410 * CAACATGCAG N M Q	7420 GTTTATGCGT V Y A>	7430 * GAGAGAGTCC	7440 * ACCTCCAGTG	7450 * TAGAGACATA	7460 * ACTGACTTTT	7470 • GTAAATGCTG
7480 * CTGAGGAACA	7490 * AATGAAGGTC	7500 * ATCCGGGAGA	7510 * GAAATGAAGA	*	7530 * GCCAGCTTCT	7540 * AGAGGTAGGA	7550 * AAGAGAAGAT	7560 • GTTCTTATTC
7570 * AGATAATGCA	7580 * AGAGAAGCAA	7590 * TTCGTCAGTT	7600 * TCACTGGGTA	7610 * TCTGCAAGGC	7620 * TTATIGATTA	7630 * TICTAATCTA	7640 * ATAAGACAAG	7650 * TTTCTCGAAA
7660 * TGCAAGATGA	7670 * ATACAAGCCT	7680 * TGGGTCCATG	7690 *	7700 * ICTATTIGGA	7710 * GAATAAGATG	7720 * GATGCTTATT	7730 GAAGCCCAGA	7740 * CATTCTTGCA
7750 * GCTTGGACTG	7760 * CATTTTAAGC	7770 * CCTGCAGGCT	7780 *	7790 * CCATGAGAAG	7800 * ATTCTACACT	7810 * AGCGTCCTGT	7820 • TCCCAATTAT	7830 * GCCCTGGAAT
7840 *	7850 * TTGACCTACG	7860 *	7870 •	7880 *	7890 •	7900 * GCTTTTGGTT	7910 * TIGCACCTCT	7920 * CCGTGATTGT
7930 •	7940 * GCATGTTATA	7950 •	7960 *	7970 *	7980	7990 •	8000 GTCTCCTTTC	8010
8020 *	8030 CCCTTGGAGT	8040 * CTCACAAGGT	8050 *	8060	8070 *	8080 *	8090 *	8100 * GGAAAATGGA
8110	8120	8130	8140	8150	8160	8170	8180 * CAAATTTTGG	8190
8200	8210 •	8220 •	8230 *	8240 *	8250 •	8260 •	8270 * AAGGGTGTGA	8280

FIG.17J

8290	8300	8310	8320	8330	8340	8350	8360	8370
TTTCTGTGTA	TGGGCCTGGT	CAGTGTAAAG	TTTTATCCTT	GATAGTCTAG	TTACTATGAC	CCTCCCCACT	TTTTTAAAAC	CAGAAAAAGG
8380	8390	8400	8410	8420	8430	8440	8450	8460
TTTGGAATGT	TGGAATGACC	AAGAGACAAG	TTAACTCGTG	CAAGAGCCAG	TTACCCACCC	ACAGGTCCCC	CTACTICCTG	CCAAGCATTC
8470	8480	8490	8500	8510	8520	8530	8540	8550
CATTGACTGC	CTGTATGGAA	CACATTTGTC	CCAGATCTGA	GCATTCTAGG	CCTGTTTCAC	TCACTCACCC	AGCATATGAA	ACTAGTCTTA
8560	8570	8580	8590	8600	8610	8620	8630	8640
ACTGTTGAGC	CITICCITIC	ATATCCACAG	AAGACACTGT	CTCAAATGTT	GTACCCTTGC	CATTTAGGAC	TGAACTTTCC	TTAGCCCAAG
8650	8660	8670	8680	8690	8700	8710	8720	8730
GGACCCAGTG	* ACAGTTGTCT	† TCCGTTTGTC	* AGATGATCAG	TCTCTACTGA	TTATCTTCCT	GCTTAAAGGC	CTGCTCACCA	ATCTITCTTT
8740	8750	8760	8770	8780	8790	8800	8810	8820
CACACCGTGT	GGTCCGTGTT	* ACTGGTATAC	* CCAGTATGTT	* CTCACTGAAG	* ACATGGACTT	TATATGTTCA	AGTGCAGGAA	TTGGAAAGTT
8830	8840	8850	8860	8870	8880	8890	8900	8910
GGACTIGTTT	TCTATGATCC	AAAACAGCCC	TATAAGAAGG	TTGGAAAAGG	AGGAACTATA	TAGCAGCCTT	TGCTATTTTC	TGCTACCATT
8920	8930	8940	8950	8960	8970	8980	8990	9000
TCTTTTCCTC	TGAAGCGGCC	* ATGACATTCC	ctttggcaac	TAACGTAGAA	* ACTCAACAGA	ACATTTCCT	TTCCTAGAGT	CACCTTTTAG
9010	9020	9030	9040	9050	9060	9070	9080	9090
ATGATAATGG	ACAACTATAG	ACTIGCTCAT	TGTTCAGACT	GATTGCCCCT	CACCTGAATC	CACTCTCTGT	ATTCATGCTC	TTGGCAATTT
9100	9110	9120	9130	9140	9150	9160	9170	9180
CTTTGACTTT	CTTTTAAGGG	CAGAAGCATT	TTAGTTAATT	• GTAGATAAAG	AATAGTTTTC	TTCCTCTTCT	CCTTGGGCCA	GTTAATAATT
9190	9200	9210	9220	9230	9240	9250	9260	9270
GGTCCATGGC	TACACTGCAA	CTTCCGTCCA	GTGCTGTGAT	GCCCATGACA	CCTGCAAAAT	AAGTTCTGCC	TGGGCATTII	GTAGATATTA

FIG.17K

9280	9290	9300	9310	9320	9330	9340	9350	9360
	•	*		•	•			
ACAGGTGAAT	TCCCGACTCT	TTTGGTTTGA	ATGACAGTTC	TCATTCCTTC	TATGGCTGCA	AGTATGCATC	AGTGCTTCCC	ACTTACCTGA
9370	9380	9390	9400	9410	9420	9430	9440	9450
		*						*
TTIGICTGTC	GGTGGCCCCA	TATGGAAACC	CTGCGTGTCT	GTTGGCATAA	TAGTTTACAA	ATGGTTTTTT	CAGTCCTATC	CAAATTTATT
9460	9470	9480	9490	9500	9510	9520	9530	9540
3100	3170	3100	3.50	3000		0020	•	•
*	*	*	*	*	*	*	0010140010	CAACATTOTO
GAACCAACAA	AAATAATTAC	TICIGCCCIG	AGATAAGCAG	ATTAAGTTTG	HEATICICI	GCITIATICI	CTCCATGTGG	CAACATICIG
9550	9560	9570	9580	9590	9600	9610	9620	9630
				•				•
TCAGCCTCTT	TCATACTCTC	CAAACATTTT	ATCATTCTAA	ATCCTCACTC	TOTOCCCTTC	GACCCATITA	TTATTCACAG	ATGGGGAGAA
TONOCCICII	ICATACIOTO	UNINONTITI	7110711101741	711001071010	1010000110	0/1000/1111//	1111110110110	
9640	9650	9660	9670	9680	9690	9700	9710	9720
*		±						
CCTATCTCCA	TOCACOCTOA	CONTOCTOTO	TOCACOACAO	ACACTCCACC	CACCCACTCC	CCATCCCCAT	GACTITCTTC	CCCTCCCAAT
CCTATCTGCA	IGGACCC ICA	CCATCCTCTG	TOCADUACAC	ACAG I GCAGO	UNUCCHO 100	WAIWWAI	ONCITICITO	CCCTOOOAA
TCC								·

FIG.17L