Univerzita Karlova v Praze Matematicko-fyzikální fakulta

MATEMATIKA

Martin Brajer

Matematická analýza

bakalářské studium v letech 2009 až 2012

Přednášející: doc. Mgr. Petr Kaplický, Ph.D.

Studijní program: Fyzika

Studijní obor: FOF

Praha 2020

Obsah

Ú	vod		1
	0.1	Diferenciální počet	1
	0.2	Integrální počet	1
1	Úvo	od, základní pojmy	3
	1.1	Reálná čísla	4
	1.2	Význačné podm nožiny $\mathbb R$	7
2	Reá	lné funkce, limita a spojitost	12

Věty a definice

A	Lemma (Čtverec lichého čísla)
A	Věta (Reálná čísla)
A1	Definice (Algebraická struktura)
1.1	Příklad
A2	Definice (Uspořádání)
1.2	Příklad
1.1	Definice (Absolutní hodnota)
1.1	Lemma (Vlastnosti absolutní hodnoty)
1.1	Věta (Trojúhelníková nerovnost)
1.2	Definice (Maximum)
1.2	Lemma (Jednoznačnost max)
1.3	Definice (Supremum)
1.4	Definice (Infimum)
A3	Definice (Supremum a infimum)
1.5	Definice (Odmocnina)
В	Lemma (Čtverec dělitelný třema)
1.2	Věta (Iracionální čísla)
A4	Definice (Vlastnosti N)
1.3	Věta (Velikost intervalu)
2.1	Definice (Prostá funkce, injekce, monomorfismus)
2.2	Definice (Na funkce, surjekce, epimorfismus)
2.3	Definice (Vzájemně jednoznačné zobrazení, bijekce , isomorfismus) 12
2.4	Definice (Restrikce, zúžení)
2.1	Příklad
2.5	Definice (Složená funkce, superpozice)
2.6	Definice (Definiční obor a obor hodnot)
2.2	Příklad
2.7	Definice (Monotónost funkce)
2.8	Definice (Omezenost funkce)
2.9	Definice (Symetrie funkce)
2 10	Definice (Okolí)

2.1	Věta (Hausedorfův princip oddělení)	15
2.11	Definice (Limita)	15
В	Věta (Jednoznačnost limity)	15
2.3	Příklad	16
2.12	Definice (Jednostranné limity)	16
2.4	Příklad	16
2.2	Věta (Jednostranné vs oboustranná limita)	17
2.5	Příklad	17
\mathbf{C}	Věta (Ekvivalentní limity)	17
2.1	Lemma (Chování funkce v okolí limity)	17
2.2	Lemma (Limita součinu)	18
2.6	Příklad	18
2.3	Věta (Aritmetika limit)	19
2.4	Věta (O strážnících)	20
2.7	Příklad	21
2.5	Věta (Limita nerovností)	21
2.6	Věta (Monotonie a limita)	22

Semestry

1																					-
1																					_

$\mathbf{\acute{U}vod}$

Přednášející:

- Petr Kaplický, KMA
- kaplicky@karlin.mff.cuni.cz
- \bullet www.karlin.mff.cuni.cz/ \sim kaplicky

Literatura:

- J. Kopáček: Matematická analýza (nejen) pro fyziky I (II) + příklady
- J. Souček: www.karlin.mff.cuni.cz/soucek
- V. Jarník: Diferenciální počet I
- V. Jarník: Integrální počet I
- W. Rudin: Principles of MA
- I. Černý, M. Rokyta: Differential and integral calculus of one real variable

Semestr 1

0.1 Diferenciální počet

Mějme funkci f(t) vyjadřující pozici bodu v čase. Základní úloha:

průměrná rychlost:
$$\frac{f(t) - f(t_0)}{t - t_0}$$
 (1)

okamžitá rychlost:
$$\lim_{t \to t_0} \frac{f(t) - f(t_0)}{t - t_0} = f'(t_0)$$
 (2)

0.2 Integrální počet

Plocha pod grafem. Interval [a,b] rozdělme na n částí délky Δ_n v bodech a_n . Označme $a_0 = a, a_n = b$.

přibližně:
$$f(a_0)\Delta_1 + f(a_1)\Delta_2 + \dots + f(a_{n-1})\Delta_n =$$
$$= S(\Delta) = \sum_{j=1}^n f(a_{j-1})\Delta_j$$
(3)

přesně:
$$\lim_{\Delta \to 0} S(\Delta) = \int_a^b f(x) dx$$
 (4)

1. kapitola: Úvod, základní pojmy

Výrok - má pravdivostní hodnotu 0 nebo 1. Mějme A, B výroky:

		$A \wedge B$			$(A \Rightarrow B) \land (A \Leftarrow B)$	
A	B	A&B	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$	$\neg A$
0	0	0	0	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	0	0
1	1	1	1	1	1	0

Obrázek 1.1: Tabulka pravdivostních hodnot

Důkaz implikace $A \Rightarrow B$:

1. přímý: ukážeme, že když A = 1, pak B = 1

2. nepřímý: plyne z $\neg B \Rightarrow \neg A$

3. sporem: předpokládáme, že $A=1 \wedge B=0$ a odvodíme spor (např.: 1=2)

Lemma A (Čtverec lichého čísla). $(tvrzení) \ \forall n \in \mathbb{N} : n^2 \ liché \Rightarrow n \ liché$

 $D\mathring{u}kaz$ 1. Fixuj $n \in \mathbb{N}$. Prvočíselný rozklad:

$$n = p_1^{\alpha_1} \cdot \dots \cdot p_k^{\alpha_k} \tag{1.1}$$

$$n^2 = p_1^{2\alpha_1} \cdot \dots \cdot p_k^{2\alpha_k} \tag{1.2}$$

$$\forall j \in \{1, \dots, k\} : 2 \neq P_j \tag{1.3}$$

V rozvoji n^2 není 2, tak v rozvoji n také není (liší se pouze mocninou). QED

 $D\mathring{u}kaz$ 2. Chci: $\forall n \in \mathbb{N} : n \text{ sud\'e} \Rightarrow n^2 \text{ sud\'e}$

$$n = 2k, k \in \mathbb{N} \tag{1.4}$$

$$n^2 = 4k^2 = 2(2k^2) (1.5)$$

QED

Důkaz 3. Předpokládejme: n^2 liché a n sudé. Pak:

$$n^2 + n$$
 liché (1.6)

$$n(n+1)$$
 liché a sudé zároveň (spor) (1.7)

QED

O čem budou výroky? O definovaných pojmech:

- množina: soubor prvků (př.: množina mužů, žen)
- $x \in A$ x je prvkem
- $x \notin A \quad \neg(x \in A)$
- $A \subset B$ A je podmnožinou $B: \forall x \in A: x \in B$
- Ø prázdná množina
- množinové operace:

$$\circ \ A \cup B = \{x; (x \in A) \lor (x \in B)\}$$

$$\circ \ A \cap B = \{x; (x \in A) \land (x \in B)\}$$

$$\circ A - B = \{x; (x \in A) \lor (x \notin B)\}\$$

- kvantifikátory:
 - $\circ \ \forall x$ pro všechna x
 - $\circ \exists y$ existuje y
 - o př.: V(x,y) je vlastnost, že y je matka x. M je množina mužů, Z je množina žen.
 - * $\forall x \in M \ \exists y \in Z : V(x,y)$
 - * $\exists y \in Z : \forall x \in M : V(x, y)$

1.1 Reálná čísla

Věta A (Reálná čísla). Existuje množina \mathbb{R} s operacemi \oplus a \otimes a relací < tak, že splňuje vlastnosti D A1 až D A4.

Definice A1 (Algebraická struktura).

I Komutativita: $\forall x, y \in \mathbb{R} : x + y = y + x; \ x \cdot y = y \cdot x$

II Asociativita: $\forall x, y, z \in \mathbb{R} : x + (y + z) = (x + y) + z; \ (x \cdot y) \cdot z = x \cdot (y \cdot z)$

III Nulový prvek \oplus : $\exists \ 0 \in \mathbb{R} : \forall x \in \mathbb{R} : 0 + x = x$ $Jednotka \otimes : \exists \ 1 \in \mathbb{R} : \forall x \in \mathbb{R} : 1 \cdot x = x$

IV Inverzní prvek: $\forall x \in \mathbb{R}, \forall z \in \mathbb{R} \exists ! y : x + y = z \ (právě jedno; ozn. \ y = z - x)$ $\forall x, z \in \mathbb{R}, x \neq 0 \ \exists ! y \in \mathbb{R} : x \cdot y = z \ (ozn. \ y = z/x)$

V Distributivita: $\forall x, y, z \in \mathbb{R} : x(y+z) = xy + xz$

VI Násobení nulou: $\forall x \in \mathbb{R} : 0 \cdot x = 0$

$$\forall x, y \in \mathbb{R} : x \cdot y = 0 \Rightarrow ((x = 0) \lor (y = 0))$$

Další vlastnosti lze odvodit:

$$-(-x) = x \tag{1.8}$$

$$-(x \cdot y) = (-x) \cdot y \tag{1.9}$$

Další značení:

$$x^n = x \cdot x \cdot \dots \cdot x \text{ (n-krát)} \tag{1.10}$$

$$-x = 0 - x \tag{1.11}$$

$$\forall x \neq 0 : x^{-1} = \frac{1}{x} \tag{1.12}$$

$$\forall x \neq 0 : x^{-n} = \left(\frac{1}{x}\right)^n \tag{1.13}$$

I. - IV. říká $(\mathbb{R}, +)$ a $(\mathbb{R} - \{0\}, \cdot)$ jsou grupy.

I. - VI. říká $(\mathbb{R}, +, \cdot)$ je těleso.

Ověřte, že D A1 platí pro \mathbb{C} (komplexní čísla).

Příklad 1.1. Definujme $\mathbb{C} = \{z = (z_1, z_2); z_1, z_2 \in \mathbb{R}\}$ a operace $\oplus, \otimes \forall z, u \in \mathbb{C}$:

$$(z_1, z_2) + (u_1, u_2) = (z_1 + u_1, z_2, u_2)$$
(1.14)

$$(z_1, z_2) \cdot (u_1, u_2) = (z_1 u_1 - z_2 u_2, z_1 u_2 + z_2 u_1) \tag{1.15}$$

Nulový prvek: (0,0)

Jednotkový prvek: (1,0)

Lze zapisovat $z \in \mathbb{C}$, $z = (z_1, z_2)$, ozn. $z = z_1 + iz_2$ pro $i^2 = -1$.

Definice A2 (Uspořádání).

I Relace: $\forall x, y \in \mathbb{R}$ nastane právě jedna z možností:

$$(x < y)$$
 nebo $(x > y)$ nebo $(x = y)$

II Tranzitivita: $(x < y) \land (y < z) \Rightarrow (x < z)$

III Vztah uspořádání a sčítání: $(x < y) \Rightarrow x + z < y + z$

IV Vztah relace k násobení: $(0 < x) \land (0 < y) \Rightarrow 0 < xy$

Značení:

• $x > y \Leftrightarrow y < x$

•
$$(x \le y) \Leftrightarrow (x < y) \lor (x = y)$$

•
$$(x \ge y) \Leftrightarrow (x > y) \lor (x = y)$$

Lze odvodit další pravidla:

$$x < y \Leftrightarrow -x > -y \tag{1.16}$$

Důkaz.

$$x < y$$

$$x - x < y - x \qquad / \text{bod III}$$

$$0 < y - x$$

$$0 - y < y - y - x \qquad / \text{bod III}$$

$$-y < -x$$

$$-x > -y \qquad \text{funguje} \Leftrightarrow$$

QED

DÚ:

$$\forall x \in \mathbb{R} : x > 0 \Rightarrow \frac{1}{x} > 0 \tag{1.17}$$

Důkaz. Sporem:

$$x > 0 \text{ a } \frac{1}{x} < 0$$
$$-\frac{1}{x} > 0$$
$$0 < x \cdot \left(-\frac{1}{x}\right) = -1$$
$$1 < 0$$

Pokud 0 < 1, pak spor! 0 < 1 < 0.

Máme
$$0 < -1 \xrightarrow{bod IV} 0 < (-1)(-1) = 1$$
 QED

Příklad 1.2. Komplexní čísla nelze uspořádat podle D A2

Důkaz. Sporem: předpokládejme, že to lze.

$$i < 0$$

$$(0,1) < (0,0)$$

$$-i > 0 \xrightarrow{D \ A2:bod \ IV} 0 < (-i)(-i) = -1$$

Pozn.:
$$i > 0 \xrightarrow{D A2:bod IV} 0 < (i)(i) = -1$$
 QED

1.2 Význačné podmnožiny $\mathbb R$

- $\mathbb{N} = \{1, 2, \dots\}$ přirozená čísla
- $\mathbb{Z} = \{0, -1, -2, \dots\} \cup \mathbb{N}$ celá čísla
- $\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N} \right\}$ racionální čísla
- $\bullet \ \mathbb{R} \mathbb{Q}$ iracionální čísla

Poznámka: $\mathbb Q$ má obě vlastnosti $\mathbb D$ A1, $\mathbb D$ A2 Intervaly:

- $(a,b) = \{x \in \mathbb{R}; a < x < b\}$ otevřený
- $[a, b] = (a, b) \cup \{a, b\}$ uzavřený
- [a,b),(a,b] polootevřené
- $(a, +\infty) = \{x \in \mathbb{R}; x > a\}$ neomezený otevřený
- $(-\infty, a) = \{x \in \mathbb{R}; x < a\}$ neomezený otevřený
- \bullet podobně: $[a, +\infty), (-\infty, a]$ neomezený uzavřený

Definice 1.1 (Absolutní hodnota). Pro $x \in \mathbb{R}$ definuji

$$|x| = \begin{cases} x & pokud \ x \ge 0 \\ -x & pokud \ x < 0 \end{cases}$$

Lemma 1.1 (Vlastnosti absolutní hodnoty). Nechť a > 0, pak |x| < a právě když - a < x < a

Důkaz. Podle znaménka x:

- 1. Ať $x \ge 0$ pak |x| = x a máme ukázat, že $x < a \Leftrightarrow -a < x < a$ " \Leftarrow "jasná " \Rightarrow "víme $-a < 0 \le x < a$
- 2. Ať x < 0, pak |x| = -x a máme ukázat, že $-x < a \Leftrightarrow -a < x < a$ x > -a pak pokračujeme podobně jako v bodě 1: -a < x < 0 < a

QED

Věta 1.1 (Trojúhelníková nerovnost).

$$|x + y| \le |x| + |y| \tag{1.18}$$

$$|x - y| \le |x| + |y| \tag{1.19}$$

$$|x+y| \ge ||x| - |y|| \tag{1.20}$$

$$|x - y| \ge ||x| - |y|| \tag{1.21}$$

 $D\mathring{u}kaz$. Eq 1.18 a Eq 1.19 plyne z L 1.1

Eq 1.20 a Eq 1.21 plyne z předešlého řádku pomocí triku

$$x = x + y - y \tag{1.22}$$

$$|x| = |x + y - y| \le |x + y| + |y| \tag{1.23}$$

$$|y| \le |x+y| + |x| \tag{1.24}$$

$$|x| - |y| \le |x + y| \tag{1.25}$$

$$|y| - |x| \le |x + y| / \cdot (-1) \tag{1.26}$$

$$|x| - |y| \ge -|x + y|$$
 plyne z Eq 1.26 a Eq 1.16 (1.27)

QED

Definice 1.2 (Maximum). Nechť $M \subset \mathbb{R}$

- $x \in M$ nazveme maximum M, pokud $\forall y \in M : y \leq x$ Ozn. x = max M
 - $P\check{r}.: (0,1)$ nemá max
- $K \in \mathbb{R}$ nazveme horní odhad M, pokud $\forall x \in M : x \leq K$ $P\check{r}.: (0,1)$ má horní odhad 4, 1, . . .

Lemma 1.2 (Jednoznačnost max). Existuje nejvýše 1 max. $M \subset \mathbb{R}$

 $D\mathring{u}kaz$. Ať existují dvě: $x_1, x_2 \in M$ maxima

$$x_1 \text{ je max}; x_2 \in M \Rightarrow x_1 \ge x_2$$
 (1.28)

$$x_2$$
 je max; $x_1 \in M \Rightarrow x_2 \ge x_1$ (1.29)

$$\Rightarrow x_1 \le x_2 \le x_1 \tag{1.30}$$

Tedy
$$x_1 = x_2$$
 QED

Pozn.: analogicky def. minimum a dolní odhad.

Definice 1.3 (Supremum). Číslo $s \in \mathbb{R}$ nazvu supremem množiny $M \subset \mathbb{R}$, pokud

$$I \ \forall x \in M : x \leq s$$

 $II \ \forall s' < s, s' \in \mathbb{R} : \exists x \in M : s' < x$

Supremum M značíme $s = \sup M$

Pozn.: bod I říká, že s je horní odhad, bod II říká, že s je nejmenší možný horní odhad

Pozn.: pokud supremum náleží do intervalu, je to jeho maximum

Definice 1.4 (Infimum). Nechť $M \subset \mathbb{R}$. řekneme, že $s \in \mathbb{R}$ je infimum množiny M (ozn. inf M), pokud

$$I \ \forall x \in M : s \leq x$$

$$II \ \forall s' > s, s' \in \mathbb{R} : \exists x < s' : x \in M$$

 $Infimum\ M\ značíme\ s=inf\ M$

Definice A3 (Supremum a infimum). $Ka\check{z}d\acute{a}$ neprázdná shora omezená $M \subset \mathbb{R}$ má supremum $v \mathbb{R}$. $Ka\check{z}d\acute{a}$ neprázdná zdola omezená $M \subset \mathbb{R}$ má infimum $v \mathbb{R}$.

Definice 1.5 (Odmocnina).

- 1. Nechť a>0 a n sudé, $n\in\mathbb{N}$, pak existuje právě jedno číslo b>0: $b^n=a$
- 2. Nechť a>0 a n liché, $n\in\mathbb{N}$, pak existuje právě jedno číslo $b\in\mathbb{R}:b^n=a$ Značení: $b=\sqrt[n]{a}$

Lemma B (Čtverec dělitelný třema). k^2 je dělitelné $3 \Rightarrow k$ je děl. 3

 $D\mathring{u}kaz$. Jak zapsat k? $\exists m \in \mathbb{Z}$:

$$k = 3m + 0$$
 k^2 je děl. 3 (1.31)

$$k = 3m + 1 \Rightarrow k^2 = 9m^2 + 6m + 1$$
 není děl. 3 (1.32)

$$k = 3m + 2 \Rightarrow k^2 = 9m^2 + 12m + 4$$
 není děl. 3 (1.33)

QED

Věta 1.2 (Iracionální čísla). Existují iracionální čísla

 $D\mathring{u}kaz$. Tvrdíme, že $\sqrt{3}$ není racionální. Sporem:

Ať
$$\sqrt{3}$$
 je rac. $\Rightarrow \exists k \in \mathbb{Z}, l \in \mathbb{N}$ nesoudělná: $\sqrt{3} = \frac{k}{l}$ (1.34)

$$3 = \frac{k^2}{l^2} \Rightarrow k^2 = 3l^2 \tag{1.35}$$

$$k^2$$
 je dělitelné 3 $\stackrel{L}{\Longrightarrow} k$ je děl. 3 (1.36)

$$n \in \mathbb{Z} : (k = 3n \Rightarrow k^2 = 9n^2) \Rightarrow k^2 \text{ je děl } 9$$
 (1.37)

$$k^2 = 9n^2 = 3l^2 \Rightarrow l^2 = 3n^2 \tag{1.38}$$

$$l^2$$
 je děl. $3 \stackrel{\underline{L} \ B}{\Longrightarrow} l$ je děl. 3 (1.39)

Což je spor, protože k, l jsou nesoudělná.

QED

Definice A4 (Vlastnosti \mathbb{N}).

 $I \ \forall x \in \mathbb{R} \exists n \in \mathbb{N} : x < n$

II Princip indukce: nechť $M \subset \mathbb{N}$ a

- (a) $1 \in M$
- (b) $n \in M \Rightarrow n+1 \in M$

 $Pak \ m = \mathbb{N}$

Pozn.: bod I plyne z vlastnosti D A3

Pozn.: Archimédova vlastnost:

$$\forall m \in \mathbb{N}, \forall \epsilon > 0 \text{ (tedy reálné) } \exists n \in \mathbb{N} : n\epsilon > m$$
 (1.40)

 $D\mathring{u}kaz$. Polož $x = m/\epsilon$ v bodě I QED

Věta 1.3 (Velikost intervalu). Každý otevřený interval obsahuje nekonečně racionálních i nekonečně iracionálních čísel.

Důkaz. Ve zkratce:

$$\frac{k}{l} + \frac{n}{n+1} \frac{1}{l} \qquad \text{je racionální } \forall n \in \mathbb{N}$$
 (1.41)

$$\frac{k}{l} + \frac{n}{n+1} \frac{1}{l} \qquad \text{je racionální } \forall n \in \mathbb{N}$$

$$\frac{k}{l} + \frac{\sqrt{3}}{3} \frac{n}{n+1} \frac{1}{l} \qquad \text{je iracionální } \forall n \in \mathbb{N}$$

$$\tag{1.41}$$

Obrázek 1.2: Vizualizace hledání l a k.

Mějme otevřený interval (a, b). Stačí mít rac. č. k/l tak, aby $k/l, (k+1)/l \in (a,b).$

Jak hledám l? Z D A4:bod I pomocí l > 2/(b-a) plyne

$$\frac{1}{l} < \frac{b-a}{2} \tag{1.43}$$

Jak hledám k? Definujme

$$M = \left\{ n \in \mathbb{Z}; \frac{n}{l} < a \right\} \tag{1.44}$$

Potom podle D A3 $\exists s \in \mathbb{R} : s = \sup M$

Tvrdíme: $s \in M$:

Podle D 1.3:bod II: $\forall s' < s \ \exists n \in M : s' < n$

Volme $s' \in (s - \frac{1}{2}, s)$, pak $\exists n' \in M : s' < n'$. Zafixujme n' a tvrdíme:

$$\forall s' \in (s - \frac{1}{2}, s) : s' < n' \le s \tag{1.45}$$

A tedy $s \leq n' \leq s$. Definujme

$$k := s + 1 \Rightarrow \frac{k}{l} \in (a, b) \tag{1.46}$$

$$k+1 := s+2 \Rightarrow \frac{k+1}{l} \in (a,b)$$
 (1.47)

Potom

$$a < \frac{k}{l} < \frac{k+s}{l} = \frac{s+2}{l} < a + \frac{2}{l} < a + b - 1 = b$$
 (1.48)

QED

 $D\mathring{u}kaz.$ Eq
 1.45 Vol. $s'' \in (s-\frac{1}{2},s)$ pak $\exists n'' \in M: s'' < n''$

$$s - \frac{1}{2} < s' < n' \le s \tag{1.49}$$

$$s - \frac{1}{2} < s'' < n'' \le s \tag{1.50}$$

Tedy:

$$n', n'' \in \left(s - \frac{1}{2}, s\right] \cap \mathbb{Z} \Rightarrow n' = n''$$
 (1.51)

QED

2. kapitola: Reálné funkce, limita a spojitost

Funkce z Mdo Nje předpis, který každému prvku M přiřadí nejvýše jeden prvek z N

- $A \subset M : f(A) = \{f(x); x \in A\} \subset N$
- $B \subset M : f^{-1}(B) = \{x \in M : f(x) \in B\} \subset M$

Definice 2.1 (Prostá funkce, injekce, monomorfismus). Funkce je prostá, pokud

$$x \neq y \Rightarrow f(x) \neq f(y) \tag{2.1}$$

Definice 2.2 (Na funkce, surjekce, epimorfismus). Funkce $f: M \to N$ je na (zobrazuje M na N), pokud

$$\forall n \in \mathbb{N} \ \exists m \in M : f(m) = n \tag{2.2}$$

Obrázek 2.1: Funkce a) je na, funkce b) není.

 $P\check{r}$.: φ není prostá, zobrazuje \mathbb{R} na $[0,+\infty)$

$$\varphi: \mathbb{R} \to \mathbb{R} \tag{2.3}$$

$$x \to x^2 \tag{2.4}$$

$$\varphi((-1,1)) = [0,1)] \tag{2.5}$$

$$\varphi^{-1}([1,4]) = [-2,-1] \cup [1,2]$$
 (2.6)

Definice 2.3 (Vzájemně jednoznačné zobrazení, bijekce , isomorfismus). *Je-li* $f:M\to N$ prostá a na říkáme, že je vzájemně jednoznačná

Pro vzájemně jednoznačnou funkci lze definovat inverzní funkci:

$$f_{-1}: N \to M; y \in N \to \text{jediné } x \in M: f(x) = y$$
 (2.7)

Pozor!
$$\begin{cases} f^{-1} & \text{pro každou hodnotu zvlášť, je to množina} \\ f_{-1} & \text{inverzní funkce} \end{cases}$$

Definice 2.4 (Restrikce, zúžení). *Je-li f* : $M \to N$ a $A \subset M$: $f|_A$ nazvu restrikce (zúžení) f na A

Příklad 2.1. $\varphi(x) = x^2 : \varphi|_{[0,+\infty)}$ zobrazuje $[0,+\infty)$ na $[0,+\infty)$ vzájemně jednoznačně. Lze tedy definovat $\varphi_{-1} = (\varphi|_{[0,+\infty)})_{-1}(x) = \sqrt{x}$

Definice 2.5 (Složená funkce, superpozice). Pro M, N, K množiny a $f: M \to N; g: N \to K$ funkce definujeme složenou funkci

$$g \circ f: M \to K \qquad M \xrightarrow{f} N \xrightarrow{g} K$$
 (2.8)

$$x \in M \to (g(f(x))) \quad x \to f(x) \to (g(f(x)))$$
 (2.9)

Budeme psát: $\varphi: M \to N$ i když $\varphi(x)$ není definované $\forall x \in M$

Definice 2.6 (Definiční obor a obor hodnot).

$$D(\varphi) = \{ x \in M : f(x) \text{ je definovaná} \}$$
 (2.10)

$$H(\varphi) = f\{D(\varphi)\} \tag{2.11}$$

Příklad 2.2.

$$x^{-1}: \mathbb{R} \to \mathbb{R} \quad D(x^{-1}) = \mathbb{R} - \{0\} \quad H(x^{-1}) = \mathbb{R} - \{0\}$$

Definice 2.7 (Monotónost funkce). Nechť $f: \mathbb{R} \to \mathbb{R}$; $M \subset D(f)$. Řeknu, že f

$$je \begin{cases} rostouci \\ klesajíci \\ nerostouci \\ neklesajíci \end{cases} na M, pokud \forall x_1, x_2 \in M : x_1 < x_2 \Rightarrow f(x_1) \begin{cases} < \\ > \\ \ge \\ \le \end{cases} f(X_2)$$

Obrázek 2.2: Ilustrace.

Definice 2.8 (Omezenost funkce). *Řekněme*, *že f*

$$je \left\{ \begin{array}{l} omezen\'{a} \ shora \\ omezen\'{a} \ zdola \\ omezen\'{a} \end{array} \right\} na \ M, \ pokud \ \exists K \in \mathbb{R} : \forall x \in M : \left\{ \begin{array}{l} f(x) < K \\ f(x) > K \\ |f(x)| < K \end{array} \right\}$$

Definice 2.9 (Symetrie funkce). Řekněme, že f

$$je \begin{cases} lich\acute{a}, \\ sud\acute{a}, \\ periodick\acute{a}, \end{cases} pokud \begin{cases} \forall x \in D(f) \\ \forall x \in D(f) \\ \exists p \in \mathbb{R} : \forall x \in D(f) \end{cases} plat\acute{i}$$

$$\begin{cases} -x \in D(f) & \& f(x) = -f(-x) \\ -x \in D(f) & \& f(x) = f(-x) \\ x + p \in D(f) & \& f(x) = f(x + p) \end{cases}$$

$$(2.12)$$

Budeme zkoumat: $f: \mathbb{R} \to \mathbb{R}$ nebo $f: \mathbb{R} \to \mathbb{C}$. Druhou variantu chápeme jako:

$$f = f_1 + i f_2; \ f_1, f_2 : \mathbb{R} \to \mathbb{R}$$
 (2.13)

Definice 2.10 (Okolí). Nechť $x_0\mathbb{R}, \delta \in (0, \infty)$

- kruhové okolí $U(x_0, \delta) := (x_0 \delta, x_0 + \delta) = \{x \in \mathbb{R} : x_0 \delta < x < x_0 + \delta\}$ (v aj B: ball)
- prstencové okolí $P(x_0, \delta) := U(x_0, \delta) \{x_0\}$
- pravé kruhové okolí $U_+(x_0, \delta) := [x_0, x_0 + \delta)$
- obdobně definujeme levé kruhové okolí, pravé prstencové okolí
 a levé prstencové okolí

Poznámky:

• Pro
$$0 < \delta_1 < \delta_2 \Rightarrow U(x_0, \delta_1) \subset U(x_0, \delta_2)$$

• Budeme psát: "na jistém $U(x_0)$ platí...", což znamená $\exists \delta > 0 : \forall x \in U(x_0, \delta)$ platí...

Věta 2.1 (Hausedorfův princip oddělení). Nechť $x_1, x_2 \in \mathbb{R}$; $x_1 \neq x_2$, pak $\exists \delta > 0 \ tak, \ \check{z}e \ U(x_1, \delta) \cap U(x_2, \delta) = \varnothing$ $Speciálně: x_1 \notin U(x_2, \delta); \ x_2 \notin U(x_1, \delta)$

 $D\mathring{u}kaz$. Volme $\delta=\frac{|x_1-x_2|}{2}$. Tvrdím, že $U(x_1,\delta)\cap U(x_2,\delta)=\varnothing$ Sporem: ať $\exists y\in U(x_1,\delta)\cap U(x_2,\delta)$, pak

$$|x_1 - x_2| = |x_1 - y + y - x_2| \stackrel{V \ 1.1}{\leq}$$

$$|x_1 - y| + |y - x_2| < 2\delta = |x_1 - x_2|$$
(2.14)

Tedy $|x_1 - x_2| < |x_1 - x_2|$, což je spor. QED

Definice 2.11 (Limita). Nechť $x_0 \in \mathbb{R}$ a f je fce def na jistém $P(x_0)$ Číslo $A \in \mathbb{R}$ nazvu limitou f v x_0 , pokud

$$\forall \epsilon > 0 \ \exists \delta > 0 : x \in P(x_0, \delta) \Rightarrow f(x) \in U(A, \epsilon)$$
 (2.15)

Značení:

- $\lim_{x \to x_0} f(x) = A$
- $f(x) \to A \ pro \ x \to x_0$

Terminologie: pokud existuje $\lim_{x\to x_0} f(x) \in \mathbb{R}$ říkáme, že f má vlastní limitu ve vlastním bodě

Poznámky:

- Limita závisí na f v okolí x_0
- Jiné zápisy Eq 2.15

$$\forall \epsilon > 0 \; \exists \delta > 0 : f(P(x_0, \delta)) \subset U(A, \epsilon) \tag{2.16}$$

$$\forall \epsilon > 0 \ \exists \delta > 0 : \forall x \in \mathbb{R} : [0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \epsilon] \tag{2.17}$$

Věta B (Jednoznačnost limity). $Bud' \lim_{x\to x_0} f(x) = A \ a \lim_{x\to x_0} f(x) = B$ $Pak \ A = B$ $D\mathring{u}kaz$. Sporem: at $A \neq B$

$$V 2.1 \quad \exists \epsilon > 0 : U(A, \epsilon) \cap U(B, \epsilon) = \emptyset$$
 (2.18)

Eq 2.15 pro
$$A \quad \exists \delta_1 > 0 : x \in P(x_0, \delta_1) \Rightarrow f(x) \in U(A, \epsilon)$$
 (2.19)

Eq 2.15 pro
$$B \quad \exists \delta_2 > 0 : x \in P(x_0, \delta_2) \Rightarrow f(x) \in U(B, \epsilon)$$
 (2.20)

Definujme
$$\delta = min(\delta_1, \delta_1)$$
 (2.21)

Odvodíme spor
$$\forall x \in U(x_0, \delta) : f(x) \in U(A, \epsilon) \cap U(B, \epsilon) = \emptyset$$
 (2.22)

QED

Příklad 2.3.

$$\lim_{x \to 2} x^2 = 4 \tag{2.23}$$

cil:
$$\forall \epsilon > 0 \; \exists \delta > 0 : x \in P(2, \delta) \Rightarrow f(x) \in U(4, \epsilon)$$
 (2.24)

$$fix \epsilon > 0 \quad hled\acute{a}m \ \delta > 0$$
 (2.25)

$$chci: \quad 4 - \epsilon < x^2 < 4 + \epsilon \tag{2.26}$$

lze předpokládat, že $\epsilon < 1$, protože pokud $\epsilon \ge 1$, pak $U(4, \frac{1}{2}) \subset U(4, \epsilon)$ (2.27)

$$vidíme: \sqrt{4-\epsilon} < x < \sqrt{4+\epsilon}$$
 (2.28)

volme:
$$\delta = min(2 - \sqrt{4 - \epsilon}, \sqrt{4 + \epsilon} - 2)$$
 (2.29)

$$volme: \quad x \in P(2, \delta) \tag{2.30}$$

chci dokázat, že platí cíl:
$$f(x) \in U(4, \epsilon)$$
 (2.31)

odhad shora:
$$x^2 - 4 \le (2 + \delta)^2 - 4 = 4 + 4\delta + \delta^2 - 4 = (4 + \delta)\delta$$
 (2.32)

$$< (4 + \sqrt{4 + \epsilon} - 2)(\sqrt{4 + \epsilon} - 2) \tag{2.33}$$

$$=(\sqrt{4+\epsilon}+2)(\sqrt{4+\epsilon}-2)=4+\epsilon-4=\epsilon$$
 (2.34)

odhad odspodu:
$$x^2 - 4 \ge (2 - \delta)^2 - 4 = 4 - 4\delta + \delta^2 - 4 = \delta(\delta - 4)$$
 (2.35)

$$\dots zbytek\ obdobn\check{e}$$
 (2.36)

Definice 2.12 (Jednostranné limity). Nechť $x_0 \in \mathbb{R}$, f definovaná na jistém $P_+(x_0)$ (resp. $P_-(x_0)$). Pak číslo A nazvu limitou f v bodě x_0 zprava (zleva), pokud:

$$\forall \epsilon > 0 \ \exists \delta > 0 : \forall x \in P_{+(-)}(x_0, \delta) : f(x) \in U(A, \epsilon)$$
 (2.37)

Značení (zleva obdobně):

- $\lim_{x\to x_0+} f(x) = A$
- $f(x) \rightarrow A \ pro \ x \rightarrow x_0 +$

Příklad 2.4.

$$\lim_{x \to 0+} sgn(x) = 1 \tag{2.38}$$

$$\lim_{x \to 0-} sgn(x) = -1 \tag{2.39}$$

Věta 2.2 (Jednostranné vs oboustranná limita). Buď $x_0 \in \mathbb{R}$, f definovaná na jistém $P(x_0, \delta)$, pak následující tvrzení jsou ekvivalentní

$$\lim_{x \to x_0} = A \tag{2.40}$$

$$\lim_{x \to x_0 +} = A \wedge \lim_{x \to x_0 -} = A \tag{2.41}$$

 $D\mathring{u}kaz$. Eq 2.40 \Rightarrow Eq 2.41 triviální

Eq $2.41 \Rightarrow$ Eq 2.40 volme $\epsilon > 0$, podle Eq 2.41

$$\exists \delta_1 > 0 : \forall x \in P_+(x_0, \delta_1) : f(x) \in U(A, \epsilon)$$
(2.42)

$$\exists \delta_2 > 0 : \forall x \in P_-(x_0, \delta_1) : f(x) \in U(A, \epsilon)$$

$$\tag{2.43}$$

volme
$$\delta = min(\delta_1, \delta_2)$$
 (protože $P(x_0, \delta) \subset P(x_0, \delta_1) \cup P(x_0, \delta_2)$)
Potom $P(x_0, \delta) : f(x) \in U(A, \epsilon)$ QED

Příklad 2.5. Neexistuje $\lim_{x\to 0} sgn(x)$

Věta C (Ekvivalentní limity). Buď $x_0 \in \mathbb{R}$, f definovaná na jistém $P(x_0)$. Pak

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow \lim_{x \to x_0} f(x) - A = 0 \Leftrightarrow \lim_{x \to x_0} |f(x) - A| = 0$$
 (2.44)

Důkaz.

$$\forall \epsilon > 0 \ \exists \delta > 0 : \forall x \in P(x_0, \delta) : |f(x) - A| < \epsilon \tag{2.45}$$

$$|f(x) - A| < \epsilon \Leftrightarrow f(x) \in U(A, \epsilon) \tag{2.46}$$

QED

Lemma 2.1 (Chování funkce v okolí limity).

1. Nechť f má v $x_0 \in \mathbb{R}$ limitu $A \in \mathbb{R}$. Pak existuje $P(x_0)$ takové, že f je na $P(x_0)$ omezená. Tj.

$$\exists \delta > 0 \exists K > 0 : \forall x \in P(x_O, \delta) : |f(x)| < K \tag{2.47}$$

2. Nechť f má $v x_0 \in \mathbb{R}$ limitu $A \neq 0$, pak

$$\exists \Delta > 0 \exists \delta > 0 : \forall x \in P(x_O, \delta) : |f(x)| > \Delta \tag{2.48}$$

Důkaz.

1. Volme $\epsilon = 1$ v definici limity. Pak

$$\exists \delta > 0 : \forall x \in P(x_0, \delta) : A - 1 < f(x) < A + 1 \tag{2.49}$$

tj. $f(x) \in U(x_0, \delta)$. Stačí volit K = max(|A-1|, |A+1|). pak

$$\forall x \in P(x_0, \delta) : -K < leq A - 1 < f(x) < A + 1 \le K$$
 (2.50)

2. $A \neq 0$, předpokládejme A > 0 (A < 0 podobně)

dle V 2.1
$$\exists \epsilon > 0 : U(A, \epsilon) \cap U(0, \epsilon) = \emptyset$$
 (2.51)

$$z D 2.11 \exists \delta > 0 : \forall x \in P(x_0, \delta) : f(x) \in U(A, \epsilon) (2.52)$$

máme
$$\delta > 0$$
 a volíme $\Delta = \epsilon/2$ (2.53)

$$\forall x \in P(x_0, \delta) : f(x) \in U(A, \epsilon)$$
 (2.54)

$$U(A,\epsilon) \cap U(0,\epsilon) = \varnothing$$
 (2.55)

$$|f(x) - 0| \ge \epsilon > \Delta \tag{2.56}$$

QED

Lemma 2.2 (Limita součinu). Buďte f, g definované na jistém $P(x_0)$, f omezená na $P(x_0)$ a $\lim_{x\to x_0} g(x)=0$. Pak

$$\lim_{x \to x_0} f(x)g(x) = 0 \tag{2.57}$$

 $D\mathring{u}kaz$. Volme $\epsilon > 0$ libovolné. Vím

$$\exists \delta_1 > 0, K > 0 : \forall x \in P(x_0, \delta_1) : |f(X)| < K \tag{2.58}$$

$$\exists \delta_2 > 0 : \forall x \in P(x_0, \delta_2) : |g(X)| < \epsilon/K \tag{2.59}$$

Chci součin odhadnout epsilonem

$$|f(x)g(x)| < K|g(x)| < \epsilon \tag{2.60}$$

Volme $\delta = min(\delta_1, \delta_2)$. Potom platí

$$\forall x \in P(x_0, \delta) : |f(x)g(x)| \stackrel{Eq \ 2.58}{<} K|g(x)| \stackrel{Eq \ 2.59}{<} K\frac{\epsilon}{K} = \epsilon \tag{2.61}$$

Tzn.
$$f(x)g(x) \in U(0,\epsilon)$$
 QED

Příklad 2.6.

- 1. $\lim_{x\to 0} sgn(x)x^2 = 0$, $protože \lim_{x\to 0} x^2 = 0$ (z definice) $a |sgn(x)| \le 1$. $Pozor: \lim_{x\to 0} sgn(x)$ neexistuje!
- 2. $\lim_{x\to 0} x \sin(1/x) = 0$

Obrázek 2.3: Graf funkce $x \sin(1/x)$.

Věta 2.3 (Aritmetika limit). Nechť $x_0 \in \mathbb{R}$, $A, B \in \mathbb{R}$: $\lim_{x\to x_0} f(x) = A$, $\lim_{x\to x_0} g(x) = B$. Pak platí

$$\lim_{x \to x_0} (f(x) \pm g(x)) = A \pm B \tag{2.62}$$

$$\lim_{x \to x_0} (f(x)g(x)) = AB \tag{2.63}$$

je-li navíc
$$B \neq 0$$
 $\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{A}{B}$ (2.64)

 $D\mathring{u}kaz$.

1. Eq 2.62 pro \oplus (\ominus obdobně).

Chceme

$$\forall \epsilon > 0 \exists \delta > 0 : \forall x \in P(x_0, \delta) : f(x) + g(x) \in U(A + B, \epsilon)$$
 (2.65)

Víme

$$\forall \epsilon' > 0 \ \exists \delta' > 0 : \forall x \in P(x_0, \delta') : \ f(x) \in U(A, \epsilon')$$
 (2.66)

$$\forall \epsilon'' > 0 \exists \delta'' > 0 : \forall x \in P(x_0, \delta'') : g(x) \in U(B, \epsilon'')$$
(2.67)

Předběžně

$$|f(x) + g(x) - A - B| \stackrel{V \text{ 1.1}}{\leq} |f(x) - A| + |g(x) - B|$$
 (2.68)

Fix $\epsilon > 0$ libovolné.

Z Eq 2.66 s $\epsilon' = \epsilon/2$ dostanu $\delta' > 0$ (takové, že platí zbytek Eq 2.66)

Z Eq 2.67 s $\epsilon'' = \epsilon/2$ dostanu $\delta'' > 0$

Definujme $\delta = min(\delta', \delta'')$ (aby pro δ platily obe rovnice). Pak

$$\forall x \in P(x_0, \delta) \subset P(x_0, \delta') \cap P(x_0, \delta'') : f(x) + g(x) \in U(A + B, \epsilon) \quad (2.69)$$

2. Chci $f(x)g(x) - AB \to 0$ pro $x \to x_0$

$$f(x)g(x) \pm f(x)B - AB = f(x)(g(x) - B) + (f(x) - A)B \tag{2.70}$$

- f(x) je omezená na jistém $P(x_0)$ podle L 2.1
- $(g(x) B) \rightarrow 0$ podle V C
- $f(x)(g(x) B) \rightarrow 0$ podle L 2.2 a prvních dvou bodů
- \bullet obdobně $(f(x)-A)B \to 0$ (konstantaB je omezená funkce)
- \bullet a tedy celá pravá strana $\to 0$ podle V 2.3:Eq 2.62
- 3. Ukážu $1/g(x) \to 1/B$ pro $x \to x_0$, respektive

$$\frac{1}{g(x)} - \frac{1}{B} \to 0 \text{ pro } x \to x_0 \tag{2.71}$$

$$\frac{1}{g(x)} - \frac{1}{B} = (B - g(x)) \frac{1}{Bg(x)}$$
 (2.72)

- $(B g(x)) \to 0$ podle V C
- $\exists \Delta > 0 : |g(x)| > \Delta$ na jistém $P(x_0)$ podle L 2.1:bod 2, protože $B \neq 0$
- tedy 1/Bg(x) je omezená na jistém $P(x_0)$, protože $|1/Bg(x)| < 1/B\Delta$ (dá se odhadnout)
- tedy celý výraz na pravé straně $\rightarrow 0$ podle L 2.2

QED

Pozn.: platí jednostranné verze V 2.3

Věta 2.4 (O strážnících). Buď $x_0, A \in \mathbb{R}$, (tiše předpokládám, že f, g, h jsou definované na jistém $P(x_0)$)

$$\lim_{x \to x_0} f(x) = A \tag{2.73}$$

$$\lim_{x \to x_0} g(x) = A \tag{2.74}$$

$$\exists \delta > 0 : \forall x \in P(x_0, \delta) : f(x) \le h(x) \le g(x) \tag{2.75}$$

Obrázek 2.4: Graf strážníků (černá a červená křivka) a sevřené funkce (modrá).

Důkaz. Z definice (zkusit také podle L 2.2). Chci

$$\forall \epsilon > 0 \exists \delta_1 > 0 : \forall x \in P(x_0, \delta_1) : h(x) \in U(A, \epsilon)$$
(2.76)

Fixujme $\epsilon > 0$

$$\exists \delta_2 > 0 : \forall x \in P(x_0, \delta_2) : f(x) \in U(A, \epsilon) \text{ speciálně } f(x) > A - \epsilon$$
 (2.77)

$$\exists \delta_3 > 0 : \forall x \in P(x_0, \delta_3) : g(x) \in U(A, \epsilon)$$
 speciálně $g(x) < A + \epsilon$ (2.78)

navíc
$$\exists \delta > 0 \forall x \in P(x_0, \delta) : f(x) \le h(x) \le g(x)$$
 (2.79)

Volím $\delta_1 = min(\delta, \delta_2, \delta_3)$. Potom

$$\forall x \in P(x_0, \delta_1) : A - \epsilon < f(x) \le h(x) \le g(x) < A + \epsilon \tag{2.80}$$

neboli
$$h(x) \in U(A, \epsilon)$$
 QED

Příklad 2.7. Pro $h(x)=x^2sin(1/x),\ g(x)=x^2,\ f(x)=-x^2$ spočtěte $\lim_{x\to 0}h(x).$ Tato limita se rovná nule, protože f i g se v nule blíží nule a zároveň $f\le h\le g.$

Věta 2.5 (Limita nerovností). Nechť $x_0, A, B \in \mathbb{R}$, $\lim_{x\to x_0} f(x) = A$, $\lim_{x\to x_0} g(x) = B$ Nechť

$$\exists \delta > 0 : \forall x \in P(x_0, \delta) : f \le g \tag{2.81}$$

 $Pak A \leq B$

Varování! Neplatí $f < g \implies A < B$. Například pro $x^2 < x^4$ pro $x \in P(0,1)$

 $D\mathring{u}kaz$. Obměnou. Buď A > B. Dle V 2.1

$$\exists \epsilon > 0 : U(A, \epsilon) \cap U(B, \epsilon) = \emptyset$$
 (2.82)

speciálně
$$B < B + \epsilon < A - \epsilon < A$$
 (2.83)

Z definice limity D 2.11

$$\exists \delta_1 > 0 : \forall x \in P(x_0, \delta_1) : f(x) \in U(A, \epsilon) \text{ speciálně } f(x) > A - \epsilon$$
 (2.84)

$$\exists \delta_2 > 0 : \forall x \in P(x_0, \delta_2) : g(x) \in U(B, \epsilon) \quad \text{speciálně } g(x) < B + \epsilon \qquad (2.85)$$

(2.86)

Definujme $\delta_3 = min(\delta_1, \delta_2)$. Pak

$$\forall x \in P(x_0, \delta_3) : g(x) < B + \epsilon \le A - \epsilon < f(x)$$
(2.87)

QED

Věta 2.6 (Monotonie a limita). *Je-li f monotónní a omezená v intervalu* (a, b), $a, b \in \mathbb{R}$, a < b, potom existují $\lim_{x \to a^+} f(x)$ a $\lim_{x \to b^-} f(x)$

 $D\mathring{u}kaz$. Pouze pro neklesající f, $\lim_{x\to b^-} f(x)$. Ostatní d.ú.

Hlavní idea důkazu

$$\lim_{x \to b^{-}} f(x) = \sup_{x \in (a,b)} f(x) = s \tag{2.88}$$

Toto supremum existuje, podle D A3 ($\{f(x), x \in (a, b)\}$ je omezená). Chceme

$$\forall \epsilon > 0 \exists \delta > 0 : \forall x \in P_{-}(b, \delta) : s - \epsilon < f(x) < s + \epsilon$$
 (2.89)

Fixujme ϵ . Pozorování (podle D 1.3:bod I)

$$\forall x \in (a, b) : f(x) \le s < s + \epsilon \tag{2.90}$$

Podle D 1.3:bod II $\exists x_1 \in (a,b) : f(x_1) \geq s - \epsilon$

Definujme $\delta = |x_1 - b| = b - x_1$. Pak díky monotónnosti (f je neklesající)

$$\forall x \in P_{-}(b, \delta) : f(x) \ge f(x_1) > s - \epsilon \tag{2.91}$$

protože $x > b - \delta = x_1$

Obrázek 2.5: Grafické znázornění důkazu.

QED

Poznámka: monotónní je i každý podinterval (a,b), tedy každý bod z (a,b) má \lim_+ a \lim_- . Neříká nic o obecné limitě.