Input B_H_R	REFv1.10_Market_eco	onomic_simulation.txt	The EnergyF	PLAN model 16	6.1
· · · · · · · · · · · · · · · · · · ·	ked imp/exp. 0,00 ansportation 0,06 btal 11,16 Gr.1 Gr.2 Gr.3 Sum 13 0,00 0,50 1,63 00 0,00 0,00 0,00 40 0,00 0,00 0,00 8oil Boil	eat Pump 0 0 3,00 siller 0 0,90 soup 3: HP 443 82 0,21 0,47 seat Pump 0 0 3,00	Regulation Strategy:Market regulation NEW CEEP regulation 0000000000 Minimum Stabilisation share 0,98 Stabilisation share of CHP 0,00 Minimum CHP gr 3 load 0 MW Minimum PP 0 MW Heat Pump maximum share 1,00 Maximum import/export 2100 MW	Elec. Storage MW-e G Charge 1: 0 Discharge 1: 0 Charge 2: 420 Discharge 2: 420 Electrolysers: 0	orage Efficiencies Wh Elec. Ther. 0 0,80 0,90 3 0,80 0,90 0 0,80 0,00 0 1,00
Wind 87 MW Photo Voltaic 35 MW River Hydro 172 MW	0,16 TWh/year 0,00 Grid Hea 0,08 TWh/year 0,00 stabili-	eatstorage: gr.2: 0 GWh gr.30 GWh ked Boiler: gr.2:0,0 Per cent gr.0,0 Per cent	Addition factor 0,00 EUR/MWh Multiplication factor 1,00 Dependency factor 0,00 EUR/MWh pr. MW Average Market Price 39 EUR/MWh	CAES fuel ratio: 0,00 (TWh/year) Coal Oil Transport 0,00 13,43	0 Ngas Biomass 0,01 0,00
River Hydro 0 MW Hydro Power 1685 MW Geothermal/Nuclear 0 MW	0 TWh/year 0,00 share Gr./ 4,28 TWh/year Gr./ 0 TWh/year Gr./	.2: 0,00 0,00	Gas Storage 0 GWh Syngas capacity 0 MW Biogas max to grid 0 MW	Household 1,15 0,41 Industry 2,47 1,32 Various 5,83 1,87	0,71 13,47 0,89 0,20 1,07 0,39
Output					
Γ	District Heating		Electricity		Exchange
Demand Distr. Waste heating Solar CSHP DH	Production Ba- HP CHP HP ELT Boiler EH land	Consumption Legislation Consumption Legislation Consumption Legislation Consumption Legislation Legislatio	Production Hy- Geo- Waste State RES dro thermal CSHP CHP PP Load		Payment Imp Exp

_				Dis	trict He	ating					Electricity														Exc	hange				
_	Demand	emand Production									Consumption Production Balance											!		Payn	nent					
	Distr. heating MW	Solar MW	Waste CSHP MW		CHP MW	HP MW	ELT MW	Boiler MW	EH MW	Ba- lance MW	Elec. demar MW	Flex.& ndTransp MW	HP MW	Elec- trolyse MW	r EH MW	Hydro Pump MW		RES MW	Hy- dro t MW	Geo- hermal MW	Waste CSHF MW	e·· P CHP MW	PP MW	Stab- Load %	Imp MW	Exp MW	CEEP MW	P EEP MW	Imp Millio	Ex
January	391	0	0	271	119	0	0	0	0	0	795	7	4	0	701	80	58	100	1153	0	0	53	1587	127	89	1454	0	1454	2	(
February	307	0	0	213	94	0	0	0	0	0	822	7	3	0	550	76	55	84	440	0	0	42	1266	144	224	653	0	653	5	
March	283	0	0	197	86	0	0	0	0	0	761	7	3	0	508	96	69	108	106	0	0	39	952	151	299	199	0	199	6	
April	190	0	0	132	58	0	0	0	0	0	806	7	2	0	341	106	76	61	35	0	0	26	866	161	279	81	0	81	4	
May	114	0	0	79	35	0	0	0	0	0	874	7	1	0	204	112	77	50	27	0	0	16	867	163	244	83	0	83	4	
June	70	0	0	49	21	0	0	0	0	0	1010	7	1	0	126	78	56	59	40	0	0	10	923	162	267	134	0	134	5	
July	48	0	0	33	15	0	0	0	0	0	1121	7	1	0	86	53	42	62	258	0	0	7	1139	154	214	453	0	453	5	
August	41	0	0	28	12	0	0	0	0	0	1079	7	0	0	73	79	54	58	319	0	0	6	1135	153	201	534	0	534	5	
Septemb	er 62	0	0	43	19	0	0	0	0	0	1058	7	1	0	111	85	64	67	844	0	0	8	1279	140	129	1130	0	1130	3	
October	147	0	0	102	45	0	0	0	0	0	984	7	2	0	263	97	71	81	548	0	0	20	1226	145	194	787	0	787	4	
Novembe	er 256	0	0	178	78	0	0	0	0	0	917	7	3	0	459	95	68	85	957	0	0	35	1462	134	124	1250	0	1250	3	
Decembe	er 315	0	0	219	96	0	0	0	0	0	924	7	4	0	565	102	74	109	1109	0	0	43	1531	129	118	1384	0	1384	3	
Average	185	0	0	129	56	0	0	0	0	0	930	7	2	0	332	88	64	77	487	0	0	25	1186	147	198	679	0	679	Avera	
Maximum		0	0	424	186	0	0	0	0	0	1577	13	7	0	1094	420	420	233	1685	0	0	83	1889		1009	2100	0	2100	(EUF	R/MW
Minimum	9	0	0	6	3	0	0	0	0	0	65	0	0	0	17	0	0	0	0	0	0	1	832	112	0	0	0	0	28	
TWh/yea	r 1,63	0,00	0,00	1,13	0,50	0,00	0,00	0,00	0,00	0,00	8,17	0,06	0,02	0,00	2,91	0,78	0,56	0,68	4,28	0,00	0,00	0,22	10,42		1,74	5,96	0,00	5,96	49	3
FUEL B	ALANCE	(TWh/y	/ear):							Wa	ste/ C	AES Bio	Con-E	lectro-		PV ar	nd Wind	off					Indus	try	Imt	p/Exp C	orrecte	∌d CC	2 emiss	sion (
	DHP	CHP	2 CHF	23 Bo	oiler2 E	3oiler	PP	Geo/N	lu.Hydr	o HT	L EI	c.ly. ver	sion F	uel	Wind	CSP	Wav	е Нус	dro S	olar.Th	Transp	.house	h.Variou	us Tota	al _I Ir	mp/Exp	Net	7	otal N	et
Coal	0,54	-	0,96	6	-	- 3	6,74	-	-	-				-	-	-	-	-	-	-	-	1,15	8,29	47,67	7 -14	4,44	33,23	19	9,74 13	,76
Oil	0,01	-	0,01		-	-	1,70	-	-	-				-	-	-	-	-	-	- 13	3,43	0,41	3,18	18,7	5 0	0,00	18,75	1	1,90 4	,90
N.Gas	0,40	-	0,01		-	-	1,63	-	-	-				-	-	-	-	-		- 0),82	0,71	2,00	5,57	7 (0,00	5,57	/	1,29 1	,47
Biomass	s 0,31	-	0,06	3	-	-	1,58	-	-	-				-	-	-	-	-		-	- 1	3,47	0,59	16,0	1 (0,00	16,01	(0,00 0	,00
Renewa	able -	-	-		-	-	-	-	4,28	-			•	-	0,16	0,08	-	4,7	'1	-	-	-	-	4,9	5 (0,00	4,95	(0,00 0	,00
H2 etc.	-	-	-		-	-	-	-	-	-			-	-	-	-	-	-		-	-	-	-	0,00	ა (0,00	0,00	(0,00	,00
Biofuel	-	-	0,00)	-	-	-	-	-	-			•	-	-	-	-	-	•	-	-	-	-	0,00	ა ი	0,00	0,00	(0,00 0	,00
Nuclear	CCS -	-	-		-	-	-	-	-	-				-	-	-	-	-		-	-	-	-	0,00) (0,00	0,00	(0,00	,00
Total	1,25	-	1,05	5	-	- 4	1,65	-	4,28					-	0,16	0,08	-	4,7	'1	- 14	,25 1	15,74	14,07	92,97	7 -14	4,44	78,53	2!	5,93 20	,13
																									1					

Output specifications B_H_REFv1.10_Market_economic_simulation.txThe EnergyPLAN model 16.1

_											Dist	rict He	ating P	roducti	on													1 all	>
	Gr.1 Gr.2										Gr.3									RES specification									
	District				District								Stor-	Ва-	District								Stor-	Ва-	RES1	RES2	RES3	RES T	otal
	heating	Solar	CSHP	DHP	heating	Solar	CSHP	CHP	HP	ELT	Boiler	EH	age	lance	heating	Solar	CSHF	CHP	HP	ELT	Boiler	EΗ	age	lance	Wind	Photo F	River I 4	4-7 ɔ	
	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW
January	271	0	0	271	0	0	0	0	0	0	0	0	0	0	119	0	0	119	0	0	0	0	0	0	18	7	75	0	100
February	213	0	0	213	0	0	0	0	0	0	0	0	0	0	94	0	0	94	0	0	0	0	0	0	23	8	54	0	84
March	197	0	0	197	0	0	0	0	0	0	0	0	0	0	86	0	0	86	0	0	0	0	0	0	29	8	71	0	108
April	132	0	0	132	0	0	0	0	0	0	0	0	0	0	58	0	0	58	0	0	0	0	0	0	19	11	31	0	61
May	79	0	0	79	0	0	0	0	0	0	0	0	0	0	35	0	0	35	0	0	0	0	0	0	21	10	20	0	50
June	49	0	0	49	0	0	0	0	0	0	0	0	0	0	21	0	0	21	0	0	0	0	0	0	12	12	35	0	59
July	33	0	0	33	0	0	0	0	0	0	0	0	0	0	15	0	0	15	0	0	0	0	0	0	10	13	38	0	62
August	28	0	0	28	0	0	0	0	0	0	0	0	0	0	12	0	0	12	0	0	0	0	0	0	12	12	34	0	58
Septembe	er 43	0	0	43	0	0	0	0	0	0	0	0	0	0	19	0	0	19	0	0	0	0	0	0	15	10	42	0	67
October	102	0	0	102	0	0	0	0	0	0	0	0	0	0	45	0	0	45	0	0	0	0	0	0	16	8	57	0	81
Novembe	er 178	0	0	178	0	0	0	0	0	0	0	0	0	0	78	0	0	78	0	0	0	0	0	0	17	7	61	0	85
Decembe	er 219	0	0	219	0	0	0	0	0	0	0	0	0	0	96	0	0	96	0	0	0	0	0	0	27	3	79	0	109
Average	129	0	0	129	0	0	0	0	0	0	0	0	0	0	56	0	0	56	0	0	0	0	0	0	18	9	50	0	77
Maximum	n 424	0	0	424	0	0	0	0	0	0	0	0	0	0	186	0	0	186	0	0	0	0	0	0	87	35	172	0	233
Minimum	6	0	0	6	0	0	0	0	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	0
Total for the whole year																													
TWh/year	r 1,13	0,00	0,00	1,13	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,50	0,00	0,00	0,50	0,00	0,00	0,00	0,00		0,00	0,16	0,08	0,44	0,00	0,68

Own use of heat from industrial CH0,00 TWh/year

	NATURAL GAS EXCHANGE															
ANNUAL COSTS (Million EUR)	DHP &	CHP2	PP	Indi-	Trans	Indu.	Deman	d Bio-	Syn-	CO2Hy	SynHy	SynHy	Stor-	Sum	lm-	Ex-
Total Fuel ex Ngas exchange = 2270	Boilers	CHP3	CAES	vidual	port	Var.	Sum	gas	gas	gas	gas	gas	age		port	port
Uranium = 0	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW
Coal = 457	95	3	186	171	4	240	698	0	0	0	0	0	0	698	698	0
FuelOil = 187		-			1				0			0	-			
Gasoil/Diesel= 891	75 60	3	187	134	1	261	662	0	0	0	0	0	0	662	662	0
Petrol/JP = 157	69	2	193	124	1	243	634	0	0	0	0	0	0	634	634	0
Gas handling = 57	46	2	197	83	1	194	524	0	0	0	0	0	0	524	524	0
Biomass = 520	28	1	198	50	1	173	451	0	0	0	0	0	0	451	451	0
Food income = 0	17	1	196	31	1	140	387	0	0	0	0	0	0	387	387	0
Waste = 0	12	0	188	21	1	160	383	0	0	0	0	0	0	383	383	0
August	10	0	181	18	1	113	323	0	0	0	0	0	0	323	323	0
Total Ngas Exchange costs = 96 September		1	157	27	1	157	359	0	0	0	0	0	0	359	359	0
Marginal operation costs = 412	36	1	177	64	1	386	666	0	0	0	0	0	0	666	666	0
Novembe		2	181	112	1	268	628	0	0	0	0	0	0	628	628	0
Total Electricity exchange = -282 Decembe	r 77	3	184	138	1	394	797	0	0	0	0	0	0	797	797	0
Import = 49 Average	45	2	186	81	1	228	543	0	0	0	0	0	0	543	543	0
Export = -331 Maximum		5	200	268	1	743	1078	0	0	0	0	0	0	1078	1078	0
Bottleneck = 0 Minimum	2	0	0	4	1	0	58	0	0	0	0	0	0	58	58	0
Fixed imp/ex= 0	2	U	U	4	1	U	30	U	U	U	U	U	U	30	30	۰I
Total CO2 emission costs = 0	he whole	year														
TWh/year	0,40	0,01	1,63	0,71	0,01	2,00	4,77	0,00	0,00	0,00	0,00	0,00	0,00	4,77	4,77	0,00
Total variable costs = 2496																

TOTAL ANNUAL COSTS = 94307

RES Share: 22,6 Percent of Primary Energy 46,7 Percent of Electricity

33910 57902

Fixed operation costs =

Annual Investment costs = TOTAL ANNUAL COSTS =

5,1 TWh electricity from RES

02-april-2022 [18:37]