

NB-IoT物理层原理

华诺 王磊

三种操作模式

Stand-alone 模式:

利用单独的频带,比如GERAN空闲出来的带宽 不存在与现有LTE系统共存问题

In-band 模式:

利用LTE系统中载波频带 需考虑与现有LTE系统共存问题

Guard-band 模式:

利用LTE系统中边缘无用频带 需考虑与现有LTE系统共存问题

· 为了与传统LTE共存, NB-IoT引入全新的信道结构设计

下行物理信道

- ・采用OFDMA, 单载波带宽为180kHz, 仅支持15kHz的子载波间隔
- ・包含NPBCH、NPSS、NSSS、NPDCCH、NPDSCH、NRS
- ・引入新的同步信号NPSS和NSSS
- ·引入新的参考信号NRS
- ・引入DL GAP的概念
- ・不支持PCFICH,子帧中起始OFDM符号根据操作模式和SIB1中信令指示
- · 不支持PHICH , 采用上行授权进行PUSCH的重传

NPSS/NSSS

NSSS:

- 1、用于携带504个小区ID信息和80ms帧定时信息,占用偶数帧的#9子帧,周期为20ms
- 2、采用长度131的ZC序列循环移位扩展至132,不同根索引u与扰码序列q的组合指示小区ID,循环移位指示帧定时

$$d(n) = b_q(m)e^{-j2\pi\theta_f n}e^{-j\frac{\pi u n'(n'+1)}{131}}$$

$$u = N_{\text{ID}}^{\text{Ncell}} \mod 126 + 3$$

$$q = \frac{N_{\text{ID}}^{\text{Ncell}}}{126}$$

$$\theta_f = \frac{33}{132} \left(n_f / 2 \right) \mod 4$$

NPSS:

- 1、用于完成时间和频域同步,占用每个无线帧的#5子帧,周期为10ms
- 2、采用长度11的ZC序列并进行时域扩展(×11),映射至一个PRB的前

$$d_{l}(n) = S(l) \cdot e^{-j\frac{\pi u n(n+1)}{11}}, \quad n = 0,1,...10$$

$$u = 5$$
 $S(l) = \{1,1,1,1,-1,-1,1,1,1,-1,1\}$

与LTE的干扰协调:

不同操作模式采用统一的信道结构设计,避让LTE-PDCCH资源,被LTE-CRS/NRS打孔

- · MIB-NB传输周期为640ms,被分成8个编码子块(皆可自解码),每个编码子被重复传输8次,扩展到80ms的时间间隔上(即在80ms内的每个子帧#0对应一次传输)
- ・ 不同操作模式采用统一的信道结构设计,避让LTE-PDCCH资源,被LTE-CRS/NRS打孔

NPDCCH

- ・支持两种聚合等级,即AL=1NCCE和AL=2NCCE,每个NCCE频域占用6个子载波
- · In-band模式:根据SIB1-NB配置的控制域起始OFDM符号开始使用资源,至少11个OFDM符号
- · Stand-alone/Guard-band模式:从子帧中第一个OFDM符号开始使用资源
- ・支持3种DCI格式, N0/N1/N2
 - N0:上行NPUSCH调度
 - N1:下行NPDSCH调度;PDCCH order触发的随机接入
 - N2:承载Paging的NPDSCH调度;系统消息更新直接指示

NPDSCH

- · SIB1-NB子帧中,In-band模式从第4个符号开始, Standalone/Guard-band模式从第1个符号开始
- ・ 其他NPDSCH子帧中 , In-band模式由SIB1-NB配置的 eutraControlRegionSize指示 , Stand-alone/Guard-band 模式从第1个符号开始
- ・ 由连续的[1,2,3,4,5,6,8,10]个子帧构成,最大TBS 为680bit
- ・ 使用单HARQ进程,使用异步自适应重传

 $I_{\rm SF}$ I_{TBS} $I_{\rm TBS} = I_{\rm MCS}$ I_{TBS} 11 and 12 只应用于 Stand-alone, Guard-band模式

Table 16.4.1.5.1-1: Transport block size (TBS) table.

Table 16.4.1.5.2-1: Transport block size (TBS) table for NPDSCH carrying $I_{TBS} = schedulingInfoSIB1 \ in \ MIB-NB$

														_		
I_{TBS}	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
TBS	208	208	208	328	328	328	440	440	440	680	680	680		Rese	erved	

NPDSCH重复传输

Table 16.4.1.3-2: Number of repetitions ($N_{\rm Rep}$) for NPDSCH.

Table 16.4.1.3-3: Number of repetitions for NPDSCH carrying SystemInformationBlockType1-NB.

Value of schedulingInfoSIB1	Number of NPDSCH repetitions
0	4
1	8
2	16
3	4
4	8
5	16
6	4
7	8
8	16
9	4
10	8
11	16
12-15	Reserved

$I_{ m Rep}$	N_{Rep}
0	1
1 2 3 4 5	2
2	4
3	8
4	16
5	32
6	64
7	128
8	192
9	256
10	384
11	512
12	768
13	1024
14	1536
15	2048

$$M = \min \left(M_{\text{rep}}^{\text{NPDSCH}}, 4 \right)$$

NRS

① 天线端口号:2000、2001

② 发射方式:单天线或2天线发射分集SFBC

③ 作用:信道质量测量或信道估计等

④ 位置:下行有效子帧、NPBCH子帧、SIB1-

NB子帧(#4),映射至slot的最后两个

OFDM符号

⑤ 序列:重用LTE CRS方式进行序列生成

DL GAP

20dB覆盖提升需求->下行连续

重复传输->阻塞其他终端

解决方案: DL GAP

当 $R_{\rm max} > N_{\rm gap,threshold}$ 时,则终端处于极端覆盖区域,启动DL GAP 延迟传输,否则不执行

$$(10n_f + \lfloor n_s/2 \rfloor) \mod N_{\text{gap,period}} = 0$$

$$N_{\text{gap,duration}} = N_{\text{gap,coeff}} N_{\text{gap,period}}$$

ASN1START	
NPDCCH-ConfigDedicated-NB-r13 ::=	SEQUENCE {
npdcch-NumRepetitions-r13	ENUMERATED {r1, r2, r4, r8, r16, r32, r64, r128, r256, r512, r1024, r2048, spare4, spare3, spare2, spare1},
npdcch-StartSF-USS-r13	ENUMERATED {v1dot5, v2, v4, v8, v16, v32, v48, v64},
npdcch-Offset-USS-r13	<pre>ENUMERATED {zero, oneEighth, oneFourth, threeEighth}</pre>
}	
ASN1STOP	

NPDCCH-ConfigDedicated-NB field descriptions

npdcch-NumRepetitions

Maximum number of repetitions for NPDCCH UE specific search space (USS), see TS 36.213 [23, 16.6]. UE monitors one set of values (consisting of aggregation level, number of repetitions and number of blind decodes) according to the configured maximum number of repetitions.

DL-GapConfig-NB information element

DL-GapConfig-NB field descriptions

dl-GapDurationCoeff

Coefficient to calculate the gap duration of a DL transmission: dl-GapDurationCoeff * dl-GapPeriodicity, Duration in number of subframes. See TS 36.211 [21, 10.2.3.4].

dl-GapPeriodicity

Periodicity of a DL transmission gap in number of subframes. See TS 36.211 [21, 10.2.3.4].

dl-GapThreshold

Threshold on the maximum number of repetitions configured for NPDCCH before application of DL transmission gap configuration. See TS 36.211 [21, 10.2.3.4].

dl-GapPeriodicity-r13=256 dl-GapDurationCoeff-r13=1/4

上行物理信道

- ・采用SC-FDMA,单载波带宽为180kHz,支持3.75kHz、15kHz的子载波间隔
- ・包含NPRACH、NPUSCH(内含格式1和格式2)、DMRS
- ·针对3.75kHz子载波间隔,新定义一个2ms长度的窄带时隙结构
- ・引入资源单元(Resource Unit)的概念
- ・引入UL GAP的概念
- ・不支持PUCCH, ACK/NACK由NPUSCH格式2承载, 不再支持CQI、SR上报

上行帧结构

RU (Resource Unit)

- 上行数据的调度和上行控制信息的发送是以资源单元(Resource Unit)为单位的
- ・一个RU,在时域上为 $N_{
 m symb}^{
 m UL}N_{
 m slots}^{
 m UL}$ 个连续符号,在频域上为 $N_{
 m sc}^{
 m RU}$ 个连续子载波

Table 10.1.2.3-1: Supported combinations of $N_{\rm sc}^{\rm RU}$, $N_{\rm slots}^{\rm UL}$, and $N_{\rm symb}^{\rm UL}$.

NPUSCH format	Δf	$N_{ m sc}^{ m RU}$	$N_{ m slots}^{ m UL}$	$N_{ m symb}^{ m UL}$
	3.75 kHz	1	16	
		1	16	
1	15 kHz	3	8	
	13 KHZ	6	4	7
		12	2	
2	3.75 kHz	1	4	
	15 kHz	1	4	

NPUSCH

Format 1:

- ・用于携帯UL-SCH
- ・ 支持2种子载波间隔 , 3.75kHz和15kHz
- ・ 支持Single-tone和multi-tone发送
- ・ 一个TB可映射至[1,2,3,4,5,6,8,
- 10]个RU上,最大TBS为1000bit
- ・ 使用单HARQ进程 , 使用异步自适应重传

Format 2:

- ・用于携带上行HARQ-ACK信息
- ・ 支持2种子载波间隔 , 3.75kHz和15kHz
- ・ 仅支持Single-tone发送
- ・ 与Format 1处理过程有两点不同
 - 信道编码采用1/16重复编码
 - 调制方式采用BPSK

处理过程(Format 1):

1、附加CRC: *负载+24bit校验

2、信道编码:Turbo,支持两种RV版本(RV0、RV1)

3、速率匹配:输出N_{RU}*N_{slots}个时隙承载比特

4、加扰:与LTE类似,但码字的每M_{identical}次传输,重置扰码序列

5、调制:当子载波个数为1时,BPSK或QPSK;当子载波个数大于

1时,QPSK

6、资源映射:子载波间隔为3.75kHz,重复传输基于时隙;当子载

波间隔为15kHz,重复传输基于子帧

Table 16.5.1.2-2: Transport block size (TBS) table for NPUSCH.

#															
	$I_{\mathtt{TBS}}$	$I_{ m RU}$													
	- 103	0	1	2	3	4	5	6	7						
	0	16	32	56	88	120	152	208	256						
	1	24	56	88	144	176	208	256	344						
	2	32	72	144	176	208	256	328	424						
	3	40	104	176	208	256	328	440	568						
	4	56	120	208	256	328	408	552	680						
	5	72	144	224	328	424	504	680	872						
	6	88	176	256	392	504	600	808	1000						
	7	104	224	328	472	584	712	1000							
	8	120	256	392	536	680	808								
	9	136	296	456	616	776	936								
	10	144	328	504	680	872	1000								
	11	176	376	584	776	1000									
	12	208	440	680	1000										

NPUSCH重复传输

Table 16.5.1.1-3: Number of repetitions ($N_{\rm Rep}$) for NPUS

- 采用3.75kHz子载波间隔 , Single-tone发送
- ・支持两种Preamble Format
 - Format 0: CP长度为66.7us,对应10km的小区覆盖
 - Format 1: CP长度为266.7us,对应35km的小区覆盖

Figure 10.1.6.1-1: Random access symbol group

Format	$T_CP + T_SEQ$	Symbol Group		
0	43008T _s	1.4ms		
1	49152T _s	1.6ms		

Table 10.6.1.1-1: Random access preamble parameters

#			
	Preamble format	$T_{ m CP}$	$T_{ m SEQ}$
	0	2048 <i>T</i> _s	5·8192 <i>T</i> _s
	1	8192 <i>T</i> _s	5·8192 <i>T</i> _s

NPRACH-ConfigSIB-NB information elements

NB-IoT小区中可以定义1~3组NPRACH 资源,分别用于不同的UE覆盖级别: (Normal Coverage、Robust Coverage、Extreme Coverage)

- 不同覆盖级别的覆盖门限在SIB2-NB中定义
- 不同覆盖级别对应的NPRACH资源也在

SIB2-NB中定义

- 最多可以定义3个NPRACH资源组
- 每个NPRACH资源组中将通过参数定义时域

和频域资源

-- ASN1STOP

```
-- ASN1START
NPRACH-ConfigSIB-NB-r13 ::=
                                    SEQUENCE {
    nprach-CP-Length-r13
                                        ENUMERATED {us66dot7, us266dot7}.
   rsrp-ThresholdsPrachInfoList-r13
                                        RSRP-ThresholdsNPRACH-InfoList-NB-r13
                                                                                 OPTIONAL.
    nprach-ParametersList-r13
                                    NPRACH-ParametersList-NB-r13
 PRACH-ConfigSIB-NB-v1330 ::=
                                    SEQUENCE {
    nprach-ParametersList-v1330
                                        NPRACH-ParametersList-NB-v1330
NPRACH-ParametersList-NB-r13 ::=
                                    SEQUENCE (SIZE (1.. maxNPRACH-Resources-NB-r13))
                                                                                      OF NPRACH-
Parameters-NB-r13
NPRACH-ParametersList Np-v1330 ::= SEQUENCE (SIZE (1.. maxNPRACH-Resources-NE-r13)) OF NPRACH-
Parameters-NB-v1330
NPRACH-Parameters-NB-r13::=
                                SEQUENCE {
    nprach-Periodicity-r13
                                             ENUMERATED {ms40, ms80, ms160, ms240,
                                                         ms320, ms640, ms1280, ms2560},
    nprach-StartTime-r13
                                             ENUMERATED {ms8, ms16, ms32, ms64,
                                                         ms128, ms256, ms512, ms1024},
                                            ENUMERATED {n0, n12, n24, n36, n2, n18, n34, spare1},
    nprach-SubcarrierOffset-r13
    nprach-NumSubcarriers-r13
                                            ENUMERATED {n12, n24, n36, n48},
                                            ENUMERATED {zero, oneThird, twoThird, one},
    nprach-SubcarrierMSG3-RangeStart-r13
    maxNumPreambleAttemptCE-r13
                                            ENUMERATED {n3, n4, n5, n6, n7, n8, n10, spare1},
                                            ENUMERATED {n1, n2, n4, n8, n16, n32, n64, n128},
    numRepetitionsPerPreambleAttempt-r13
    npdcch-NumRepetitions-RA-r13
                                            ENUMERATED {r1, r2, r4, r8, r16, r32, r64, r128,
                                                         r256, r512, r1024, r2048,
                                                         spare4, spare3, spare2, spare1},
    npdcch-StartSF-CSS-RA-r13
                                             ENUMERATED {v1dot5, v2, v4, v8, v16, v32, v48, v64},
    npdcch-Offset-RA-r13
                                            ENUMERATED {zero, one Eighth, one Fourth, three Eighth}
NPRACH-Parameters-NB-v1330 ::=
                                    SEQUENCE
                                            ENUMERATED {n8, n10, n11, n12, n20, n22, n23, n24,
    nprach-NumCBRA-StartSubcarriers-r13
                                                         n32, n34, n35, n36, n40, n44, n46, n48}
RSRP-ThresholdsNPRACH-InfoList-NB-r13 ::= SEQUENCE (SIZE(1..2)) OF RSRP-Range
```


NPRACH时域位置由下面参数决定:

- 周期 $N_{
 m period}^{
 m NPRACH}$ (nprach-Periodicity) (3Bits) , 取值{ms40, ms80, ms160, ms240, ms320, ms640, ms1280, ms2560}
- 周期中的开始时间 $N_{
 m start}^{
 m NPRACH}$ (nprach-StartTime)(3Bits),取值{ms8, ms16, ms32, ms64, ms128, ms256, ms512, ms1024}
- 重复次数 $N_{
 m rep}^{
 m NPRACH}$ (numRepetitionsPerPreambleAttempt)(3Bits),取值{n1, n2, n4, n8, n16, n32, n64, n128}
- NPRACH传输在满足的 $n_{\rm f} \mod \left(N_{\rm period}^{\rm NPRACH}/10\right) = 0$ 无线帧开始后 $N_{\rm start}^{\rm NPRACH}$ ms开始
- 连续发送 $4\cdot 64(T_{\rm CP}+T_{\rm SEO})$ (即64个重复)以后,必须插入40ms的Gap
- 当重复次数配置为{n32, n64, n128}时,默认不支持Multi-tone Msg3(!规范中没找到)

NPRACH频域位置由下面参数决定:

- 首个子载波的偏置 $N_{
 m scoffset}^{
 m NPRACH}$ (*nprach-SubcarrierOffset*) (3Bits), 取值{n0, n12, n24, n36, n2, n18, n34, spare1}
- 子载波数 $N_{\rm sc}^{\rm NPRACH}$ (nprach-NumSubcarriers) (2Bits), 取值{n12, n24, n36, n48}, $N_{\rm scoffset}^{\rm NPRACH}+N_{\rm sc}^{\rm NPRACH} \le 48$
- 这些子载波中,前面的 $N_{
 m sc_cont}^{
 m NPRACH}$ (nprach-NumCBRA-StartSubcarriers)(4bit)个子载波用于基于竞争的随机接入,取值 {n8, n10, n11, n12, n20, n22, n23, n24, n32, n34, n35, n36, n40, n44, n46, n48}
- 在 $N_{\rm sc_cont}^{\rm NPRACH}$ 个用于基于竞争的随机接入的子载波中,前面的 $N_{\rm sc_cont}^{\rm NPRACH}$ $N_{\rm MSG3}^{\rm NPRACH}$ (nprach-SubcarrierMSG3-RangeStart) (2Bits) 个子载波用于触发Single-tone Msg3,后面的子载波(如果存在的话)用于触发Multi-tone Msg3。其中 $N_{\rm MSG3}^{\rm NPRACH}$ 取值{zero, oneThird, twoThird, one}

Preamble的基本单位为4个Symbol Groups,支持最大128次重复发送

- 第一个1stSymbol Group子载波索引在可用子载波合集中随机选择
- 其余1stSymbol Group子载波索引由第一个1stSymbol Group子载波索引增加随机跳变量得出
- 2nd, 3rd, 4thSymbol Group的子载波索引由1stSymbol Group的子载波索引推导得出

$$n_{\text{SC}}^{\text{RA}}(i) = n_{\text{start}} + \widetilde{n}_{\text{SC}}^{\text{RA}}(i)$$

$$n_{\text{start}} = N_{\text{scoffset}}^{\text{NPRACH}} + \left\lfloor n_{\text{init}} / N_{\text{sc}}^{\text{RA}} \right\rfloor \cdot N_{\text{sc}}^{\text{RA}}$$

$$n_{\text{start}} = N_{\text{scoffset}}^{\text{NPRACH}} + \left\lfloor n_{\text{init}} / N_{\text{sc}}^{\text{RA}} \right\rfloor \cdot N_{\text{sc}}^{\text{RA}}$$

$$\widetilde{n}_{\text{sc}}^{\text{RA}}(i) = \begin{cases} \left(\widetilde{n}_{\text{SC}}^{\text{RA}}(0) + f(i/4) \right) \mod N_{\text{SC}}^{\text{RA}} & i \mod 4 = 0 \text{ and } i > 0 \\ i \mod 4 = 1,3 \text{ and } \widetilde{n}_{\text{sc}}^{\text{RA}}(i-1) \mod 2 = 0 \end{cases}$$

$$\widetilde{n}_{\text{sc}}^{\text{RA}}(i) = \begin{cases} \widetilde{n}_{\text{sc}}^{\text{RA}}(i-1) + 1 & i \mod 4 = 1,3 \text{ and } \widetilde{n}_{\text{sc}}^{\text{RA}}(i-1) \mod 2 = 1 \\ \widetilde{n}_{\text{sc}}^{\text{RA}}(i-1) + 6 & i \mod 4 = 2 \text{ and } \widetilde{n}_{\text{sc}}^{\text{RA}}(i-1) < 6 \end{cases}$$

$$\widetilde{n}_{\text{sc}}^{\text{RA}}(i) = \begin{cases} \widetilde{n}_{\text{sc}}^{\text{RA}}(i) + f(i/4) \end{pmatrix} \mod N_{\text{sc}}^{\text{RA}}(i) = \begin{cases} \widetilde{n}_{\text{sc}}^{\text{RA}}(i-1) + 1 & i \mod 4 = 1,3 \text{ and } \widetilde{n}_{\text{sc}}^{\text{RA}}(i-1) \mod 2 = 1 \end{cases}$$

$$\widetilde{n}_{\text{sc}}^{\text{RA}}(i) = n_{\text{init}} \mod N_{\text{sc}}^{\text{RA}}(i) = n_$$

DMRS

DMRS插入NPUSCH中,用于NPUSCH的相关解调

・ 时域位置: Format1中有1个符号用于DMRS, Format2中3个符 号用于DMRS,具体符号位置如右表所示

· 序列填充: 遵循先频域再时域原则

Table 10.1.4.2-1: Demodulation reference signal location for NPUSCH.

+			
	NPUSCH format	Values	s for l
	NEUSCHIOIMAL	$\Delta f = 3.75 \mathrm{kHz}$	$\Delta f = 15 \text{kHz}$
	1	4	3
	2	0,1,2	2,3,4

对于single-tone发送:

DMRS序列生成:

$$\overline{r}_{u}(n) = \frac{1}{\sqrt{2}} (1+j) (1-2c(n)) w(n \mod 16), \quad 0 \le n < M_{\text{rep}}^{\text{NPUSCH}} N_{\text{slots}}^{\text{UL}} N_{\text{RU}}$$

对于NPUSCH Format1(组跳频关闭时)、或NPUSCH Format2

$$u = N_{ID}^{\text{Ncell}} \mod 16$$

对于NPUSCH Format1(组跳频开启时),u 计算方式见后文

其中:

NPUSCH Format1 :
$$r_u(n) = \bar{r}_u(n)$$

NPUSCH Format2 : $r_{\mu}(3n+m) = \overline{w}(m)\overline{r}_{\mu}(n)$, m = 0,1,2

Table 5.5.2.2.1-2: Orthogonal sequences $\left[\overline{w}^{(\tilde{p})}(0) \ \Lambda \ \overline{w}^{(\tilde{p})}(N_{RS}^{PUCCH}-1)\right]$ for PUCCH formats 1, 1a

10

12 13

14

其中 $\overline{w}(m)$ 由Table 5.5.2.2.1-2定义,其序列索引由伪随机序列生成

$$\left(\sum_{i=0}^{7} c(8n_s + i)2^i\right) \mod 3 \qquad c_{\text{init}} = N_{\text{ID}}^{\text{Ncell}}$$

Sequence index $\overline{n}_{\mathrm{oc}}^{(\widetilde{p})}(n_{\mathrm{s}})$	Normal cyclic prefix	Extended cyclic prefix
0	[1 1 1]	[1 1]
1	$\begin{bmatrix} 1 & e^{j2\pi/3} & e^{j4\pi/3} \end{bmatrix}$	[1 -1]
2	$\begin{bmatrix} 1 & e^{j4\pi/3} & e^{j2\pi/3} \end{bmatrix}$	N/A

Table 10.1.4.1.1-1: Definition of $w(n)$															
и							w	(0),	, w(1	5)					_
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Γ
1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	Γ
2	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	Γ
3	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	ſ
4	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	Γ
5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Γ

DMRS

对于multi-tone发送:

DMRS序列牛成:

$$r_{u}(n) = e^{j\alpha n} e^{j\phi(n)\pi/4}, \quad 0 \le n < N_{sc}^{RU}$$

当组跳频关闭:

u 可由高层配置

 $N_{\rm sc}^{\rm RU} = 3$ 时: threeTone-BaseSequence

 $N_{\rm so}^{\rm RU} = 6$ Int: sixTone-BaseSequence

 $N_{\rm sc}^{\rm RU} = 12$ 时: twelveTone-BaseSequence

如未配置,则由PCI计算得出

$$u = \begin{cases} N_{\text{ID}}^{\text{Ncell}} \mod 12 & \text{for } N_{\text{sc}}^{\text{RU}} = 3\\ N_{\text{ID}}^{\text{Ncell}} \mod 14 & \text{for } N_{\text{sc}}^{\text{RU}} = 6\\ N_{\text{ID}}^{\text{Ncell}} \mod 30 & \text{for } N_{\text{sc}}^{\text{RU}} = 12 \end{cases}$$

当组跳频开启, u 计算方式见后文

其中:

当 $N_{sc}^{RU} = 3$ 时, $\varphi(n)$ 由Table 10.1.4.1.2-1给出

当 $N_{sc}^{\mathrm{RU}} = 6$ 时, $\varphi(n)$ 由Table 10.1.4.1.2-2给出

当 $N_{\rm so}^{\rm RU} = 12$ 时 , $\varphi(n)$ 由 Table 5.5.1.2-1 给出

当 $N_{
m sc}^{
m RU}$ = 3 时, lpha 由Table 10.1.4.1.2-3给出,threeTone-CyclicShift由高原

当 $N_{
m sc}^{
m RU}$ = 6 时, lpha 由Table 10.1.4.1.2-3给出,sixTone-CyclicShift由高层面

当 $N_{\rm so}^{\rm RU} = 12$ 时, α 固定为0

Table 10.1.4.1.2-1: Definition of $\varphi(n)$ for $N_{\rm sc}^{\rm RU}=3$ Table 5.5.1.2-1: Definition of $\varphi(n)$ for $M_{\rm sc}^{\rm RS}=N_{\rm sc}^{\rm RB}$

4							
	и	$\varphi(0), \varphi(1), \varphi(2)$					
	0	1	-3	-3			
	1	1	-3	-1			
	2	1	-3	3			
	3	1	-1	-1			
	4	1	-1	1			
	5	1	-1	3			
	6	1	1	ე			
	7	1	1	-1			
	8	1	1	3			
	9	1	3	-1			
	10	1	3	1			
	11	1	3	3			

Table 10.1.4.1.2-2: Definition of $\varphi(n)$ for $N_{\mathrm{sc}}^{\mathrm{RU}}=6$

₽·						
и	φ(0),, φ(5)					
0	1	1	1	1	3	-3
1	1	1	3	1	-3	3
2	1	-1	-1	-1	1	-3
3	1	-1	3	-3	-1	-1
4	1	3	1	-1	-1	3
5	1	-3	-3	1	3	1
6	-1	-1	1	-3	-3	-1
7	-1	-1	-1	3	-3	-1
8	3	-1	1	-3	-3	3
9	3	-1	3	-3	-1	1
10	3	-3	3	-1	3	3
11	-3	1	3	1	-3	-1
12	-3	1	-3	3	-3	-1
13	-3	3	-3	1	1	-3

1 2 3 - 4 - 5 6 - 7 - 8 9 10 - 11 12 13	-1 1 1 -1 -1 -1 -3 1 1 -1	1 1 1 3 3 3 1 7	3 3 1 1 3 3 -1	-3 -3 1 -1 -1	3 -3 1 1	3 -1 -1 -1	1 1 3 3	1 -ვ -ვ	3 -3 1	1	-3 -3	3
2 3 -4 -5 6 -7 -8 9 -10 -11 12 -13 -14	1 -1 -1 1 -1 -3 1	1 3 3 3 1 3	-3 1 1 3 -3	-3 1 -1 -1	-3 1 1	- <u>1</u> -1	-ვ -ვ	-3	1			3
3 - 4 - 5 6 - 7 - 8 9 10 - 11 12 13 14 -	-1 -1 1 -1 -3 1	1 3 3 1 3	1 1 3 -3	1 -1 -1	1	-1	-3		-	_3		
4 - 5 6 - 7 - 8 9 10 - 11 12 13 14 -	-1 1 -1 -3 1	3 3 1 7	1 3 -3	-1 -1	1	_		2			1	-1
5 6 - 7 - 8 9 10 - 11 12 13 14 -	1 -1 -3 1	-3 -1 -ე	3	-1		1		-0	1	-3	3	-1
6 - 7 - 8 9 10 - 11 12 13 14 -	-1 -3 1	3 -1 -3	-3		1	-	-3	1	1	1	1	3
7 - 8 9 10 - 11 12 13 14 -	-3 1 1	-1 -3		2	-1	1	1	-1	-1	3	-3	1
8 9 10 - 11 12 13 14 -	1	-3	-1	-3	-3	3	1	-1	ვ	3	-3	1
9 10 - 11 12 13 14 -	1			-1	1	ဂု	3	-1	1	-3	3	1
10 - 11 12 13 14 -	-		3	1	-1	٦,	-1	1	1	3	-1	1
11 12 13 14	-1	-3	-1	3	3	1	-3	1	1	1	1	1
12 13 14	•	3	-1	1	1	ကု	-3	-1	-3	-3	ვ	-1
13 14 -	3	1	-1	-1	3	3	ပု	1	3	1	3	3
14 -	1	ე	1	1	-3	1	1	1	-3	-3	-3	1
	3	3	-3	3	-3	1	1	3	1	-3	3	3
15	-3	1	-1	-3	-1	3	1	3	3	3	-1	1
	3	-1	1	-3	-1	1	1	1	3	1	-1	-3
16	1	3	1	-1	1	3	3	3	-1	-1	3	-1
17	-3	1	1	3	ၣ	ფ	-3	-3	3	1	3	-1
18 -	-3	3	1	1	-3	1	-3	-3	-1	-1	1	-3
	-1	3	1	3	1	1	-1	3	კ	-1	-3	-1
20 -	-1	-3	1	1	1	1	3	1	-1	1	-3	-1
	-1	3	-1	1	ှ	ကု	-3	-3	-3	1	1	-3
22	1	1	-3	-3	-3		-1	3	-3	1	-3	3
23	1	1	-1	-3	-1	ကု	1	-1	1	3	-1	1
24	1	1	3	1	3	3	-1	1	-1	-3	-3	1
25	1	-3	3	3	1	3	3	1	-3	-1	-1	3
26	1	3	-3	-3	3	-3	1	-1	-1	3	-1	-3
27 -	-3	-1	-3	-1	-3	3	1	-1	1	3	-3	-3
		3	-3	3	-1	თ	3	-3	3	3	1	-1
29	-1 3	ပ	-3	-1	-1	-3	-1	3	ე	3	1	-1

Table 10.1.4.1.2-3: Definition of α

Ŧ						
	$N_{\rm sc}^{ m RU}=3$		$N_{\rm sc}^{\rm RU}=6$			
	threeTone- CyclicShift	α	sixTone- CyclicShift	α		
_	0	0	0	0		
Ę	配置 1	$2\pi/3$	1	$2\pi/6$		
90	置 2	$4\pi/3$	2	$4\pi/6$		
			3	$8\pi/6$		

DMRS

序列组跳频:

组跳频是否开启由高层参数groupHoppingEnabled (小区级)和groupHoppingDisabled (用户级)确定对于NPUSCH Format1,当组跳频开启时, *u* 计算方式为

$$u = (f_{gh}(n_s) + f_{ss}) \mod N_{seq}^{RU}$$

$$f_{gh}(n_s) = \left(\sum_{i=0}^{7} c(8n'_s + i) \cdot 2^i\right) \mod N_{seq}^{RU}$$

$$f_{ss} = \left(N_{ID}^{Ncell} + \Delta_{ss}\right) \mod N_{seq}^{RU}$$

其中

 $N_{\rm seq}^{\rm RU}$ 由Table 10.1.4.1.3-1给出

 $\Delta_{\rm ss} \in \{0,1,\ldots 29\}$ 由高层参数groupAssignmentNPUSCH确定 OPTIONAL, -- Need Optional Supposed Figure 13

Table 10.1.4.1.3-1: Definition of $N_{\text{seq}}^{\text{RU}}$

#		
	$N_{ m sc}^{ m RU}$	N_{seq}^{RU}
	1	16
	3	12
	6	14
	12	30

NPUSCH-Config-NB information element

```
-- ASN1START
NPUSCH-ConfigCommon-NB-r13 ::=
                                     SEQUENCE
    ack-NACK-NumRepetitions-Msg4-r13
                                         SEQUENCE (SIZE(1.. maxNPRACH-Resources-NB-r13)) OF
                                                         ACK-NACK-NumRepetitions-NB-r13,
    srs-SubframeConfig-r13
                                         ENUMERATED {
                                             sc0, sc1, sc2, sc3, sc4, sc5, sc6, sc7,
                                             sc8, sc9, sc10, sc11, sc12, sc13, sc14, sc15
                                                                                      -- Need OR
                                         SEQUENCE {
    dmrs-Config-r13
                                             INTEGER (0..12)
        threeTone-BaseSeguence-r13
                                                                         OPTIONAL
                                                                                      -- Need OP
        threeTone-CyclicShift-r13
                                             INTEGER (0..2),
                                             INTEGER (0..14)
        sixTone-BaseSequence-r13
                                                                         OPTIONAL,
                                                                                      -- Need OP
        sixTone-CyclicShift-r13
                                             INTEGER (0..3),
        twelveTone-BaseSequence-r13
                                             INTEGER (0..30)
                                                                         OPTIONAL
                                                                                      -- Need OP
            OPTIONAL, -- Need OR
                                         UL-ReferenceSignalsNPUSCH-NB-r13
UL-ReferenceSignalsNPUSCH-NB-r13 ::=
                                          SEQUENCE {
    groupHoppingEnabled-r13
                                             BOOLEAN,
    groupAssignmentNPUSCH-r13
                                             INTEGER (0..29)
NPUSCH-ConfigDedicated-NB-r13 ::=
                                     SEQUENCE {
    ack-NACK-NumRepetitions-r13
                                         ACK-NACK-NumRepetitions-NB-r13 OPTIONAL,
    npusch-AllSymbols-r13
                                         BOOLEAN
                                                                          OPTIONAL
                                                                                      -- Cond SRS
    groupHoppingDisabled-r13
                                         ENUMERATED {true}
                                                                         OPTIONAL
                                                                                      -- Need OR
ACK-NACK-NumRepetitions-NB-r13 ::= ENUMERATED {r1, r2, r4, r8, r16, r32, r64, r128}
-- ASN1STOP
```


UL GAP

终端功放的热耗散->发射机温度变化->晶振频率偏移

解决方案:引入ULGAP,切换至下行链路,利用NPSS、NSSS、NRS进行频偏补偿

- ・ NPUSCH信道:256ms的数据传输后,插入UL GAP(40ms),剩余数据顺延
- ・NPRACH信道:64次Preamble重复发送后,插入UL GAP (40ms),剩余Preamble重复顺延

工作频段

Table 5.5-1 E-UTRA operating bands

E-UTRA Operating Band	Uplink (UL) operating band BS receive UE transmit	Downlink (DL) operating band BS transmit UE receive	Duplex Mode
	F _{UL low} - F _{UL high}	F _{DL_low} - F _{DL_high}	
1	1920 MHz - 1980 MHz	2110 MHz - 2170 MHz	FDD
2	1850 MHz - 1910 MHz	1930 MHz - 1990 MHz	FDD
3	1710 MHz - 1785 MHz	1805 MHz - 1880 MHz	FDD
5	824 MHz – 849 MHz	869 MHz – 894MHz	FDD
8	880 MHz - 915 MHz	925 MHz - 960 MHz	FDD
12	699 MHz – 716 MHz	729 MHz - 746 MHz	FDD
13	777 MHz – 787 MHz	746 MHz - 756 MHz	FDD
17	704 MHz — 716 MHz	734 MHz - 746 MHz	FDD
18	815 MHz – 830 MHz	860 MHz - 875 MHz	FDD
19	830 MHz – 845 MHz	875 MHz - 890 MHz	FDD
20	832 MHz – 862 MHz	791 MHz – 821 MHz	FDD
26	814 MHz – 849 MHz	859 MHz - 894 MHz	FDD
28	703 MHz – 748 MHz	758 MHz - 803 MHz	FDD
66	1710 MHz - 1780 MHz	2110 MHz - 2200 MHz	FDD ⁴

中心频点

NB-IoT载波的中心频点原则:

- ・中心频点在一个PRB的第6个子载波和第7个子载波的最中间
- ・ 载波应与LTE PRB对齐,不占用LTE最中心6个PRB,中心频率与 最近的100kHz整数倍偏移为小于等于7.5KHz(In-band)
- · 子载波应与LTE 子载波正交,中心频率与最近的100kHz整数倍偏 移为小于等于7.5KHz (Guard-band)
- ・中心频率满足100kHz的整数倍 , 无频率偏移 (Stand-alone)

In-band模式下可选择PRB位置

LTE system bandwidth	3MHz	5MHz	10MHz	15MHz	20MHz
PRB indices with 2.5kHz offset	/	/	4, 9, 14, 19, 30, 35, 40, 45	/	4, 9, 14, 19, 24, 29, 34, 39, 44, 55, 60, 65, 70, 75, 80, 85, 90, 95
PRB indices with 7.5 kHz offset	2, 12	2, 7, 17, 22	/	2, 7, 12, 17, 22, 27, 32, 42, 47, 52, 57, 62, 67, 72	/

Guard-band模式下可选择中心频率位置

LTE system bandwidth	5 MHz	10 MHz	15 MHz	20 MHz
Edge frequency of LTE transmission (kHz)	±2257.5	±4507.5	±6757.5	±9007.5
NB-IoT carrier centre frequency closest to 100kHz channel raster (kHz)	±2392.5	± 4597.5/4702.5 /4807.5/4897.5	± 6892.5/6997.5/7 102.5/7207.5/72 97.5/7402.5	± 9097.5/9202.5/9 307.5/9397.5/95 02.5/9607.5/969 7.5/9802.5/9907 .5
Frequency offset from the 100 kHz channel raster (kHz)	7.5	2.5/-2.5/-7.5/2.5	7.5/2.5/-2.5/-7.5 /2.5/7.5	2.5/-2.5/-7.5/2.5 /-2.5/-7.5/2.5/-2 .5/-7.5/2.5

课后作业(10分)

- 1、请画出15M带宽、In-band模式下可选择PRB示意图(5分)
- 2、请画出10M带宽、 Guard-band模式下可选择中心频率示意图(5分)