Chapter 0

Matrix Algebra Review

0.1 Matrix Axioms

0.1.1 Matrix Algebra

Matrices are rectangular arrays of numbers. If A is a matrix with dimensions $m \times n$, it is an array with m rows and n columns. We use the element-wise shorthand

$$A = (a_{ij})$$

to indicate that the elements of A are values $a_{i\,j}$, with $1\leq i\leq m$, $1\leq j\leq n$. (In mathematical linear algebra, subscripts usually start at 1.) Square matrices have m=n. Matrices form an algebra: a set of values on which addition and multiplication are defined:

$$C = A + B \Leftrightarrow (c_{ij}) = (a_{ij}) + (b_{ij})$$
 addition $C = AB \Leftrightarrow (c_{ij}) = (\sum_k a_{ik} b_{kj})$ multiplication

These definitions only make sense when the dimensions of A and B are **conformable**; for addition the dimensions must match, and for multiplication the second dimension of A must match the first dimension of B.

0.1.2 Matrix Axioms

Basic axioms of any algebra:

$$\begin{array}{lll} A+B&=B+A& \text{Commutativity of addition}\\ (A+B)+C&=A+(B+C)& \text{Associativity of addition}\\ (AB)C&=A(BC)& \text{Associativity of multiplication}\\ A(B+C)&=AB+AC& \text{Distribution of multiplication over addition}\\ (B+C)A&=BA+CA \end{array}$$

For matrices we can demonstrate these axioms using element-wise notation. For example, with matrices the final property (associativity of matrix multiplication) can be derived by expanding the sums in the products:

$$(A B) C = \left(\sum_{k} a_{ik} b_{kj}\right) (c_{ij}) = \left(\sum_{\ell} \left(\sum_{k} a_{ik} b_{k\ell}\right) c_{\ell j}\right)$$
$$= \left(\sum_{k} a_{ik} \left(\sum_{\ell} b_{k\ell} c_{\ell j}\right)\right) = (a_{ij}) \left(\sum_{\ell} b_{i\ell} c_{\ell j}\right) = A (B C).$$

These properties permit decomposition into blocks and exploitation of the many other aspects of matrices discussed below.

There is a square zero matrix 0 = (0), and an identity matrix $I = (\delta_{ij})$, where $\delta_{ij} = 1$ iff i = j, and 0 otherwise. All matrices A have a additive inverse -A, and some have a multiplicative inverse A^{-1} . Matrices also permit scalar multiplication:

These properties define a **noncommutative ring** (matrix multiplication is not commutative).

0.2 Matrix Functions

0.2.1 Complex Conjugate

Matrix entries can be complex values z=x+iy, with complex conjugate $\overline{z}=x-iy$. The matrix complex conjugate of $A=(a_{ij})$ is $\overline{A}=(\overline{a_{ij}})$.

$$\overline{0} = 0
\overline{I} = I$$

$$\overline{(A+B)} = \overline{A} + \overline{B}$$

$$\overline{(A+A)} = \overline{A} + A$$

$$\overline{(AB)} = \overline{A} \overline{B}$$

$$\overline{(ABC)} = \overline{A} \overline{B} \overline{C}$$

$$\overline{(A-1)} = (\overline{A})^{-1}$$

0.2.2 Transpose

The ordinary transpose of $A = (a_{ij})$ is $A^{\top} = (a_{ji})$; the Hermitian transpose is $A' = (\overline{a_{ji}})$. We will always use the Hermitian transpose.

$$0' = 0$$
 $(A+B)' = A' + B'$ $(AB)' = B' A'$
 $I' = I$ $(A+A')' = A' + A$ $(ABC)' = C' B' A'$
 $(A')' = A$ $(A')^{-1} = (A^{-1})'$

Notice however that all of these properties hold if $^\prime$ is replaced by $^\top$.

0.2.3 Trace

The trace of a $n \times n$ square matrix $A = (a_{ij})$ is $tr(A) = \sum_{i} a_{ii}$.

$$\begin{array}{rcl} \operatorname{tr}(0) & = & 0 \\ \operatorname{tr}(I) & = & n \end{array} & \begin{array}{rcl} \operatorname{tr}(A+B) & = & \operatorname{tr}(A) + \operatorname{tr}(B) \\ \operatorname{tr}(-A) & = & -\operatorname{tr}(A) \end{array}$$

Copyright © 2000-2014 D.S. Parker

PLEASE DO NOT REPRODUCE

0.2.4 Determinant

The determinant of a $n \times n$ square matrix $A = (a_{ij})$ is $\det(A) = \sum_{\sigma \in S_n} (-1)^{\sigma} \prod_i a_{i \sigma(i)}$ where S_n is the set of permutations σ on n items, $\sigma(i)$ is the value that σ permutes i to, and $(-1)^{\sigma}$ is the sign of σ , i.e., +1 or -1 depending on whether σ is an even permutation or odd permutation.

$$\begin{array}{llll} \det(0) &=& 0 & \det(\overline{A}) &=& \overline{\det(A)} & \det(AB) &=& \det(A) \, \det(B) \\ \det(I) &=& 1 & \det(A^\top) &=& \det(A) & \det(ABC) &=& \det(A) \, \det(B) \, \det(C) \\ \det(-A) &=& (-1)^n \, \det(A) & \det(A') &=& \overline{\det(A)} & \det(A^{-1}) &=& (\det(A))^{-1} \end{array}$$

0.2.5 Matrix Power, Power Series, and Matrix Functions like exp

The p-th power of a square matrix A is the product of p copies of A: $A^p = A \cdots A$ By convention, $A^0 = I$ and $A^{-p} = (A^{-1})^p$.

Matrix powers permit us to take functions defined by power series like $\exp(z) = \sum_{p>0} z^p/p!$ and $1/(1-z) = 1 + z + z^2 + z^3 + \cdots$ and apply them to matrices:

$$\exp(A) = \sum_{p\geq 0} \frac{1}{p!} A^p, \qquad (I-A)^{-1} = \sum_{p\geq 0} A^p.$$

So, ignoring convergence issues, every complex-valued function $f(z) = \sum_p c_p z^p$ defined by a power series is also a square-matrix-valued function of square matrices $f(A) = \sum_{p} c_{p} A^{p}$.

Block Matrices and Submatrices 0.3

0.3.1 **Block Matrix Product**

If A and B are decomposed into block submatrices, we can define their product recursively:

$$A\,B \;=\; \left(\begin{array}{ccc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right) \; \left(\begin{array}{ccc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array} \right) \; = \; \left(\begin{array}{ccc} A_{11}\,B_{11} + A_{12}\,B_{21} & A_{11}\,B_{12} + A_{12}\,B_{22} \\ A_{21}\,B_{11} + A_{22}\,B_{21} & A_{21}\,B_{12} + A_{22}\,B_{22} \end{array} \right).$$

For $n \times n$ square matrices A and B, this recursive property implies that the complexity of matrix multiplication follows the recurrence T(n) = 8T(n/2), since there are 8 matrix products in the right-hand side. This has the solution $T(n) = O(n^3)$: multiplying large square matrices takes lots of time.

Kronecker Product / Tensor Product 0.3.2

If A and B have dimensions $m \times n$ and $p \times q$, their tensor product is the $mp \times nq$ matrix

$$A \otimes B = (a_{ij} B)$$

that has $i \times j$ blocks, each of size $p \times q$, where the ij-th block is the scalar product $a_{ij} B$. Alternatively we can define $A\otimes B=C=(c_{ij})$ where $c_{ij}=a_{i_1\,j_1}\,b_{i_2,j_2}$ and indices are defined by blocks: $i = (i_1 - 1) p + i_2$, $j = (j_1 - 1) q + j_2$, and $1 \le i_2 \le p$, $1 \le j_2 \le q$.

There is no identity or zero for this operation, but:

$$A\otimes (B+C)=A\otimes B+A\otimes C$$
 Distribution of tensor product over addition $A\otimes (B\otimes C)=(A\otimes B)\otimes C$ Associativity of tensor product.

The tensor product is useful for building large matrices having regular structure.

0.3.3 Hadamard Product

If A and B have the same dimensions, their **Hadamard product** is an element-wise product

$$A \cdot B = (a_{ij} b_{ij}).$$

The identity matrix 1=(1) for this operation is a matrix whose entries are all 1. The Hadamard inverse matrix A^- for $A=(a_{ij})$ is clearly the matrix $A^-=(1/a_{ij})$ (which is defined if and only if all entries are nonzero). The Hadamard product also can be used to build matrices as a kind of multiplicative 'filter'.

0.3.4 Direct Sum

If A has dimensions $m \times n$ and B has dimensions $p \times q$, their **direct sum** is the $(m+p) \times (n+q)$ matrix that has A along the upper left diagonal matrix, and B along the lower right diagonal:

$$A \oplus B = \left(\begin{array}{c|c} A & 0 \\ \hline 0 & B \end{array}\right).$$

The upper right $m \times q$ submatrix and lower left $p \times n$ submatrix have only zero entries.

0.3.5 Diagonals of Matrices

If A has dimensions $m \times n$, its matrix diagonal diag $(A) = (a_{ii})$ --- a vector (single column matrix) of length min(m, n).

0.4 Matrix Type Hierarchies

Figure 2 shows hierarchies for banded and nonnegative matrices, and Figure 3 shows a hierarchy of normal matrices.

0.4.1 Banded Matrices

Kind of matrix A	condition on elements a_{ij} of A
Diagonal	$a_{ij} = 0 \text{ if } i - j > 0$
Tridiagonal	$a_{ij} = 0 \text{ if } i - j > 1$
Upper Triangular	$a_{ij} = 0 \text{ if } i - j > 0$
Lower Triangular	$a_{ij} = 0 \text{ if } i - j < 0$
Upper Hessenberg	$a_{ij} = 0 \text{ if } i - j > +1$
Lower Hessenberg	$a_{ij} = 0 \text{ if } i - j < -1$
Toeplitz	$a_{ij} = f(i-j)$ for some real-valued function f

0.4.2 Nonnegative Matrices

Kind of matrix A	condition on elements a_{ij} of A
Nonnegative	$0 \le a_{ij}$
(Row) Stochastic	$0 \le a_{ij} \le 1$, rows total to 1 $(\sum_i a_{ij} = 1 \text{ for } 1 \le i \le n)$
Column Stochastic	$0 \le a_{ij} \le 1$, columns total to 1 $(\sum_i a_{ij} = 1 \text{ for } 1 \le j \le n)$
Doubly Stochastic	both Row Stochastic and Column Stochastic
Permutation	$a_{ij} \in \{0, 1\}$, Doubly Stochastic

Figure 1: Banded Matrices

Figure 2: Hierarchies of Banded and Nonnegative matrices.

0.5 Vectors: Specialized Matrices

By convention, a **vector** is usually a $n \times 1$ (vertical) matrix, referred to as a **column vector**. The $1 \times n$ (horizontal) variant is a **row vector**.

column vector:
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
, row vector: $\mathbf{x}' = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix}$.

Thus matrix transpose converts between row and column vectors.

0.6 Scalar Products

The scalar product of two real n-vectors \mathbf{x} and \mathbf{y} is

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}' \mathbf{y} = \sum_{i=1}^{n} \overline{x_i} y_i.$$

The scalar product has many properties:

$$\begin{array}{rcl} \langle \, \mathbf{x}, \, \mathbf{x} \, \rangle & \geq & 0 \quad \text{(with equality iff } \mathbf{x} \, = \, \mathbf{0} \text{)} \\ \langle \, \mathbf{x}, \, \mathbf{y} \, \rangle & = & \overline{\langle \, \mathbf{y}, \, \mathbf{x} \, \rangle} \\ \langle \, \lambda \, \mathbf{x}, \, \mathbf{y} \, \rangle & = & \lambda \, \langle \, \mathbf{x}, \, \mathbf{y} \, \rangle \quad \text{if } \lambda \text{ is a nonnegative real value} \\ \langle \, \mathbf{x} + \mathbf{y}, \, \mathbf{z} \, \rangle & = & \langle \, \mathbf{x}, \, \mathbf{z} \, \rangle \, + \, \langle \, \mathbf{y}, \, \mathbf{z} \, \rangle. \end{array}$$

Related terminology:

- If $\langle \mathbf{x}, \mathbf{x} \rangle = 1$, \mathbf{x} is a unit vector.
- If $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, we say \mathbf{x} and \mathbf{y} are orthogonal.

0.7 Vector Norms

Given a vector $\mathbf{x} = (x_1, x_2, \dots, x_n)$, the **norm** of \mathbf{x} is

$$||\mathbf{x}|| = \sqrt{\mathbf{x}' \mathbf{x}} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sqrt{\sum_{i} \overline{x_{i}} x_{i}} = \sqrt{\sum_{i} |x_{i}|^{2}}.$$

Some popular norms:

sum norm (Euclidean distance)
$$||\mathbf{x}||_1 = \sum_i |x_i|$$
 Euclidean norm (Manhattan distance)
$$||\mathbf{x}||_2 = \left(\sum_i |x_i|^2\right)^{1/2}$$
 max norm (Worst-case distance)
$$||\mathbf{x}||_\infty = \max_i |x_i|$$
 general L^p norm (L^p distance)
$$||\mathbf{x}||_p = \left(\sum_i |x_i|^p\right)^{1/p}$$
 A-norm (for positive definite matrices A)
$$||\mathbf{x}||_A = \left(\langle \mathbf{x}, A \mathbf{x} \rangle\right)^{1/2} = (\mathbf{x}' A \mathbf{x})^{1/2}.$$

Notice that $\mathbf{x}/||\mathbf{x}||_2$ is a unit vector (when $\mathbf{x} \neq \mathbf{0}$).

Given a norm we can define a corresponding distance measure:

$$d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}|| = \sqrt{\langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle}.$$

This distance measure is a metric:

- nonnegative: $d(\mathbf{x}, \mathbf{y}) \ge 0$ (and is zero iff $\mathbf{x} = \mathbf{y}$)
- symmetric: $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$.
- triangle inequality: $d(\mathbf{x}, \mathbf{z}) < d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$.

Projection of Vectors on Vectors 0.8

Given two vectors **u** and **v**, the projection of **v** on $\mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{||\mathbf{u}||_2^2} \mathbf{u} = \langle \mathbf{e}, \mathbf{v} \rangle \mathbf{e}$

where $\mathbf{e} = \mathbf{u}/||\mathbf{u}||_2$ is a unit vector. If \mathbf{u} and \mathbf{v} are orthogonal, the result is a zero vector.

0.9 Bases, Coordinate Systems, Vector Spaces

A basis is a set of vectors

$$B = \{ \mathbf{e}_1, \ldots, \mathbf{e}_n \}$$

that can be used to build other vectors v as linear combinations

$$\mathbf{v} = v_1 \, \mathbf{e}_1 + \cdots + v_n \, \mathbf{e}_n$$

with numeric coefficients v_i . Any orthonormal basis $B = \{e_1, \dots, e_n\}$ defines a n-dimensional coordinate system: each such vector v can then be represented by the coordinates

$$\mathbf{v} \Leftrightarrow (v_1, \ldots v_n).$$

The vector space defined by a basis B over a set of values R (usually the real numbers) is the set of all possible linear combinations of *B*'s basis vectors:

vector space defined by
$$B = \left\{ \mathbf{x} \mid \mathbf{x} = \sum_{i=1}^{n} v_i \, \mathbf{e}_i, \text{ each } v_i \text{ is a value in } R \right\}.$$

0.10 Cross Product

For real 3D vectors u and v, the vector cross product is

$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \times \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} (u_2v_3 - u_3v_2) \\ (-u_1v_3 + u_3v_1) \\ (u_1v_2 - u_2v_1) \end{pmatrix}.$$

This definition satisfies $(\mathbf{v} \times \mathbf{u}) = -(\mathbf{u} \times \mathbf{v})$. Also the result is orthogonal to \mathbf{u} :

$$\langle \mathbf{u}, \mathbf{u} \times \mathbf{v} \rangle = \left\langle \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}, \begin{pmatrix} (u_2v_3 - u_3v_2) \\ (-u_1v_3 + u_3v_1) \\ (u_1v_2 - u_2v_1) \end{pmatrix} \right\rangle$$

$$= u_1 \left(u_2v_3 - u_3v_2 \right) + u_2 \left(-u_1v_3 + u_3v_1 \right) + u_3 \left(u_1v_2 - u_2v_1 \right)$$

$$= u_1u_2v_3 - u_1u_3v_2 - u_2u_1v_3 + u_2u_3v_1 + u_3u_1v_2 - u_3u_2v_1$$

$$= \left(u_1u_2v_3 - u_2u_1v_3 \right) + \left(u_3u_1v_2 - u_1u_3v_2 \right) + \left(u_2u_3v_1 - u_3u_2v_1 \right)$$

$$= 0.$$

Because $(\mathbf{v} \times \mathbf{u}) = -(\mathbf{u} \times \mathbf{v})$, the result is also orthogonal to \mathbf{v} .

PLEASE DO NOT REPRODUCE

0.11 Linear Transforms

A function f is called **linear** if

$$f(x + y) = f(x) + f(y)$$

$$f(ax) = a f(x)$$

where a is a scalar. In particular, any matrix transformation of vectors is linear:

$$f(\mathbf{x}) = A\mathbf{x}$$

For all discussions of eigenvalues below A is always assumed to be a real symmetric matrix. A diagonal matrix is a matrix whose only nonzero entries are on the diagonal:

$$D = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}.$$

When the values λ_i are real values, the matrix D is called a **dilation**. An **orthogonal matrix** is a matrix whose columns define an **orthonormal basis**:

$$Q = \left(egin{array}{c|c} \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_n \end{array}
ight).$$

Every orthogonal matrix satisfies:

$$Q' Q = Q Q' = I.$$

Theorem 1 If A is a real symmetric matrix, then we can find a real diagonal matrix L and an orthogonal matrix Q such that A can be decomposed into the product

$$A = Q L Q'.$$

Furthermore, if Q and L have the form

$$Q = \left(\mathbf{e}_1 \mid \mathbf{e}_2 \mid \cdots \mid \mathbf{e}_n \right) \qquad L = \left(\begin{array}{cc} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{array} \right)$$

then the orthonormal columns \mathbf{e}_j of Q are eigenvectors of A, and the diagonal elements λ_i of L are eigenvalues of A.

In the 1820s Cauchy studied the eigenvalues of real symmetric matrices, i.e., symmetric linear systems of the form

If $b \neq 0$, this system can be reduced to a quadratic equation, and therefore there are two eigenvalue solutions $\lambda = ((a+d) \pm \sqrt{(a-d)^2 + 4b^2})/2$.

0.12 Determinants, Rank, and Matrix Norms

The determinant of a $n \times n$ matrix A is the product of its eigenvalues:

$$det(A) = \lambda_1(A) \cdots \lambda_n(A).$$

The rank of a matrix A is its number of nonzero eigenvalues.

A matrix norm is a measure of the maximum dilation of a matrix:

$$||A|| = \max_{||\mathbf{v}||=1} ||A\mathbf{v}||.$$

Since the maximum dilation is the maximum eigenvalue of A, ||A|| is the maximum eigenvalue of A: $||A|| = |\lambda_{\text{max}}|$. Matrix norms have following properties:

- 1. $||A|| \ge 0$.
- 2. ||A|| = 0 if and only if A = 0.
- 3. ||cA|| = |c|||A|| for all complex scalars c.
- 4. $||A + B|| \le ||A|| + ||B||$.
- 5. $||AB|| \le ||A|| ||B||$.

By verifying these properties, we can establish that the following commonly-encountered measures are, in fact, matrix norms:

The spectral radius of A is $|\lambda_{\max}| = ||A||_2$, its largest eigenvalue:

$$||A||_2 = \max_{||\mathbf{x}||} ||A\mathbf{x}||_2 / ||\mathbf{x}||_2 = \max_{||\mathbf{e}||=1} ||A\mathbf{e}||_2 = |\lambda_{max}(A)|.$$

0.13 Using Eigenstructure to Invert a Matrix

Given the eigendecomposition A = Q L Q',

$$A^{-1} = (Q L Q')^{-1} = (Q')^{-1} L^{-1} (Q)^{-1} = Q L^{-1} Q'.$$

Thus *A* is **invertible** (**nonsingular**) if and only if it has no zero eigenvalues.

0.14 Characteristic Polynomials

The characteristic polynomial of A is defined as

$$P_A(\lambda) = \det(A - \lambda I)$$

where λ is a variable and I is the identity matrix.

An eigenvalue of A is then any root of this polynomial. A corresponding eigenvector \mathbf{v} is any vector satisfying $A\mathbf{v} = \lambda \mathbf{v}$, or equivalently: $(A - \lambda I)\mathbf{v} = \mathbf{0}$. Thus $(A - \lambda I)$ cannot have a matrix inverse, and its determinant must be zero.

0.14.1 Normal Matrices

Kind of matrix A	condition on elements a_{ij} of A
Normal	A A' = A' A
Unitary	$A' = A^{-1}$
Orthogonal	$A' = A^{-1}$, A is real
Rotation	$A' = A^{-1}$, A is real, $\det(A) = +1$
Reflection	$A' = A^{-1}$, A is real, $\det(A) = -1$
Hermitian	A' = A
Symmetric	A' = A, A is real
Positive Definite	A' = A, A is real, A has only positive eigenvalues
Negative Definite	A' = A, A is real, A has only negative eigenvalues
Skew-Hermitian	A' = -A
Skew-Symmetric	A' = -A, A is real

Figure 3: Hierarchy of Normal matrices.