Chapter 1

The Setup

In any physical theory, we must characterize mathematically the *state* of a system (all information describing the situation of a physical system at a particular time), and the observables, the functions of a state, which give ways in which the state of a system can be reduced to quantities that can be observed experimentally. For instance, in Hamiltonian classical mechanics, the state of a system is given by a point in a sympletic manifold M, and observables given by functions $f: M \to \mathbb{R}$, which should be continuous if we are to correctly measure these observables up to a small degree of error. The observables are then 'second order' as they are defined in terms of states, but we can also reverse the situation, describing the observables as the C^* algebra A = C(M). The states then become precisely a *positive* linear functional $\phi: A \to \mathbf{R}$ with $\phi(1) = 1$. It is natural in the later quantum mechanics to complexify the C^* algebra A. Then the observables become the *self-adjoint* elements of A, and the states the linear functionals $\phi: A \to \mathbb{C}$ with $\phi(1) = 1$ and with $\phi(X) \ge 0$ if $X \ge 0$. The Riesz representation theorem allows us to identify an arbitrary positive linear functionals $\phi: A \to \mathbf{R}$ such that $\phi(1) = 1$ with a Borel probability measure μ on M. We then think of an element $X \in A$ as a random variable over the probability space (M, μ) , because we then have

$$\mathbf{E}_{\phi}[X] = \int X \, d\mu = \phi(X).$$

Similarily,

$$\sigma_{\phi}(X)^{2} = \mathbf{V}_{\phi}(X) = \phi(X^{2}) - \phi(X)^{2}.$$

The *pure*, deterministic states ϕ can then be identified from general *mixed* states as those states such that $\mathbf{V}_{\phi}(X) = 0$ for all observables X.

What caused this formulation to fail to explain quantum mechanical phenomena. The most fundamental experimental observation in the theory is the *uncertainty principle*. It is an experimental observation that in any physical system, if $p: A \to \mathbb{C}$ and $q: A \to \mathbb{C}$ are the position and momentum observables, then for any state ϕ ,

$$2\sigma_{\phi}(p)\sigma_{\phi}(q) \geqslant \hbar$$
,

where \hbar is *Planck's constant*. But there are no two observables $\phi: A \to \mathbf{R}$ with this property for all classical states, because $\sigma_{\phi}(p) = \sigma_{\phi}(q) = 0$ for any deterministic state. Thus it appears that the only physically possible states ϕ *must be uncertain* in a suitable sense; this is the *uncertainty principle*.

In the standard theory, this is remedied by replacing the observables of a system with elements of an abstract C^* algebra A, and the states with normalized, positive linear functions $\phi:A\to \mathbf{C}$. Each fixed state ϕ then induces an algebra homomorphism Φ from A to the family of random variables in an appropriate probability space, such that $\mathbf{E}(\Phi(X)) = \phi(X)$. Thus one can use the spectral calculus to obtain detailed information about the probability distribution of $\Phi(X)$, since for any continuous $f:\sigma(X)\to \mathbf{C}$, we have $\mathbf{E}(f(X)) = \phi(f(X))$. Note, in particular, that this means that the support of the random variable X is on $\sigma(X)$.

The reason this formulation is useful is that we can theoretically derive the uncertainty principle, provided we are working in a *non-commutative* C^* algebra A. Indeed, if X and Y are any observables with $\phi(X) = \phi(Y) = 0$, we calculate that the matrix

$$M = \begin{pmatrix} \phi(X^2) & (1/2)\phi(i[X,Y]) \\ (1/2)\phi(i[X,Y]) & \phi(Y^2) \end{pmatrix}$$

is positive-semidefinite, since for any $v = (\alpha, \beta)^T \in \mathbf{R}$,

$$v^{T}Mv = \phi(X^{2})\alpha^{2} + \phi(i[X,Y])\alpha\beta + \phi(Y^{2})\beta^{2} = \phi((\alpha X - i\beta Y)(\alpha X + i\beta Y)) \geqslant 0.$$

Thus $\det(M) = \phi(X^2)\phi(Y^2) - \phi(i[X,Y])^2/4$ is non-negative, which means that

$$2\sigma_{\phi}(X)\sigma_{\phi}(Y) = 2\phi(X^2)^{1/2}\phi(Y^2)^{1/2} \geqslant \phi(i[X,Y]).$$

Thus the uncertainty principle for position and momenta follows immediately if we model these quantities by observables p and q with $[p,q] = -i\hbar$.

Chapter 2

Quantum Information Theory

The simplest unit of information in classical physics is a *bit*, represented by an element of $\{0,1\}$. We can generalize

and the state of a collection of n bits are represented by an element of $\{0,1\}^n$. From the quantum perspective, a *quantum bit*, or *qubit*, is represented by an element $\psi = \psi_0 \langle 0| + \psi_1 \langle 1|$ of a two dimension Hermitian product space with orthonormal basis $\{\langle 0|, \langle 1|\}\}$.

(Gleason)

2.1 How can the Hamiltonian operator be Formed From the Classical Hamiltonian?

The Hamiltonian of a system is given by

$$H = p^2/2m + V(q),$$

where p is the momentum, and q the position. If we set

$$\psi = e^{(i/\hbar)(p \cdot q - Ht)},$$

then we notice that we can rewrite the Hamiltonian system above as

$$0 = (H - p^2/2m - V(q))\psi = H\psi - \frac{p^2}{2m}\psi - V(q)\psi.$$

Note that

$$H\psi=i\hbarrac{\partial\psi}{\partial t}$$
 and $p\psi=-i\hbar
abla_q\psi$,

and so

$$i\hbarrac{\partial\psi}{\partial t}+rac{\hbar^{2}}{2m}\Delta_{q}\psi-V(q)\psi=0$$
 ,

or equivalently,

$$i\hbar\frac{\partial\psi}{\partial t}=-rac{\hbar^2}{2m}\Delta_q\psi+V(q)\psi$$
,

which begins to look like the Schrödinger equation. In classical physics, we restrict ourselves to solutions of this equation of the form $e^{(i/\hbar)(p\cdot q-Ht)}$,