LAN Switching

Teoría de las Comunicaciones

05 de Abril de 2017

Agenda Hoy

- Brevísimo repaso de ayer.
- Resolver dos ejercicios de la práctica:
 - CSMA/CD.
 - Learning Bridge.
- Resolver ejercicio de parcial:
 - Spanning Tree Protocol.

Arquitectura en capas

Las comunicaciones se dan en capas que se brindan servicios entre sí

Acceso Compartido

- Un medio físico para varios hosts.
- Surge la necesidad de:
 - Esquema de Direccionamiento.
 - Control de Acceso.
 - Podría usarse FDM o TDM?
- Ejemplos:
 - Aloha.
 - Ethernet (802.3).
 - WIFI (802.11).
 - Token Ring (802.5).

802.2: Logical Link Control

- Ofrece tres tipos de servicios
 - Sin conexión y sin ACK
 - Sin conexión y con ACK
 - Orientado a conexión
- Encapsula distintos tipos de medios físicos (WIFI, Ethernet, ...)

Acceso Compartido: Ethernet

- IEEE 802.3
- Max. 500m por tramo (evitar atenuación).
- Max. 4 repetidores ⇒ Enlace max=2500m
- Min. 2.5m entre hosts.

Ethernet Frame Format

Un host recibe frames que estén destinados a ...

- ... su dirección.
- ... la dirección broadcast (FF:FF:FF:FF:FF).
- ... una dirección multicast (de estar suscripto).
 - o cualquier frame (de haber sido activado el modo promiscuo).

Transmiciones: CSMA/CD

Cuando un host tiene datos para enviar, sensa el medio:

- Si está *libre*, transmite.
- Si está ocupado:
 - 1-persistente: espera a que se libere y transmite.
 - p-persistente: espera a que se libere y transmite con probabilidad p.
- Half-duplex: La lógica de recepción está establecida en el sensado para detectar colisiones.

Colisiones

- Si los hosts envían frames, producen colisiones.
- Es necesario tener un control sobre los envíos, para saber si llegaron sin colisionar.
- ★ Largo mínimo de trama: Se envía hasta saber que no hubo colisión. El tiempo de propagación entre los extremos es clave.

Ejercicio

- a. ¿Cuál es el período de tiempo mínimo para que las estaciones que enviaron un paquete se aseguren de que no ocurrió una colisión?
- b. Calcule el tamaño mínimo del frame.
- c. ¿Qué pasa si un emisor desea transmitir una cantidad de datos menor al mínimo especificado por la norma?
 - En el momento t_0 , H1 recibe en su buffer un dato para ser enviado por el enlace. Luego de sensar el medio, lo encuentra vacío y envía un paquete, ocupándolo por 10 ms.
- d. Indique qué sucedería si en los momentos t_0+5 ms y t_0+7 ms los hosts H2 y H3 reciben en sus respectivos buffers, proveniente de la capa superior, datos para ser enviados por el enlace.
- e. Indique qué sucedería si en el momento $t_0+2\mu$ s el host H4 recibe en su buffer datos para ser enviados por el enlace.

Colisiones

¿Qué hacer ante una colisión?

¡Retransmitir!

- ¿Inmediatamente?
- ¿Luego de un tiempo fijo?
- ¿Luego de un tiempo aleatorio?

Exponential BackOff

Contention Window Time slots time

- Elegir un *slot* entre 0 y $2^k 1$, con k la cantidad de intentos.
- Esperar *slot* veces el *delay* antes de sensar para retransmitir.

Estados de un transmisor

LAN

- ★ Conectar enlaces.
- ★ Por razones de: heterogeneidad, distancia, aislamiento, redundancia, seguridad, eficiencia, escalabilidad.
- ★ Distintos tipos de multiplexores. Se pueden caracterizar por la capa o nivel en que trabajan.
 - Físico: Repetidores y hubs.
 - Enlace: Bridges y switches.
 - Red: Routers. Gateways?

Red de Area Local (LAN)

★ Conjunto de estaciones que comparten dominio de broadcast.

- ★ Las LANs pueden ser de varios tipos de tecnologías.
- ★ Las estaciones deben compartir esquema de direccionamiento.

Dominio de Colisión vs Dominio de Broadcast

Learning Bridge

Port
1
1
1
2
2
2

Los switchs aprenden

★ Relacionan direcciones (i.e.: MAC) con interfaz en función del tráfico en la LAN.

Ejercicio

Dada la siguiente LAN se pide:

- Si X transmite una trama con destino W. Qué bridges aprenden dónde está X? La interfaz de Y ve la trama?
- Si luego Z transmite una trama con destino X. Qué bridges aprenden dónde está Z? La interfaz de Y ve la trama?
- Si luego Y transmite una trama con destino X. Qué bridges aprenden dónde está Y? La interfaz de Z ve la trama?
- Si finalmente W transmite una trama con destino Y. Qué bridges aprenden dónde está W? La interfaz de Z ve la trama?

Topologías con ciclos

Idea

• Cada switch envía paquetes (BPDUs) a sus vecinos propagando informacion acerca de la topología de la LAN de manera periódica.

Mecanismo

- ★ Se elige un switch root.
- ★ Cada switch aprende las distancias al **root** de todos sus vecinos.
- Cada switch determina cuál es su interfaz con distancia mínima al root.
- ★ Por cada LAN, se elige solo una interfaz de un switch como designada que tenga la distancia mínina al root entre las posibles.

Bridge Protocol Data Units (BPDUs)

Los BPDUs están conformados por ...

- 1. El *id* del que está enviando el mensaje.
- 2. El *id* del **root** según el que está enviando el mensaje.
- 3. La distancia, en saltos, desde el que envía el mensaje hasta el **root**.

Se actualiza esta información en cada switch si ...

- se identifica un BPDU con menor **root** id.
- **ó** se identifica un BPDU con igual **root** *id* pero a menor distancia.
- 6 el root id y la distancia son las mismas pero el id del switch es menor.

Las interfaces (ports) pueden ser

Root port

El puerto con menor distancia al **root**, elegido de entre los puertos de **un switch**.

Designated port

Todo aquel puerto con mejor distancia al **root**, elegido de entre todos los puertos de varios switches conectados **una LAN**.

Blocked port

El resto.

Ejercicio La siguiente figura representa una topología de red en la que los *switches* corren el protocolo STP:

Se pide:

- a. Elija los IDs para los bridges (SN) de modo tal que una trama siga el camino marcado en la figura. Justifique.
- b. Indique y justifique el estado final de cada puerto de cada bridge.
- c. Asumiendo que:
 - 1. Los bridges usan Learning Bridge.
 - 2. El protocolo STP ya convergió.
 - 3. Al momento de iniciar la transmisión la tabla de *forwarding* de cada switch está vacía.
 - ¿Aprenden todos los switches la dirección de enlace de A la primera vez que se envía una trama desde A hacia B? Justifique.

Broadcast, dominio de colisión

- ¿Cómo repercute lo que vimos durante la clase en:
 - la visibilidad en la red de paquetes ARP?
 - el TP1?
 - detrás de un switch, puedo ver un ARP is at sin haber enviado el who has?