Задача 3-1.

Вам даны два детерминированных конечных автомата A и B. Необходимо определить, эквивалентны ли они.

Во входном файле сначала идет описание автомата A, а потом в том же формате описание автомата B.

Каждое описание начинается с трех целых чисел n,k и l. n — количество состояний автомата. k — количество терминальных состояний. l — количество букв в используемом алфавите. Всегда будут использоваться первые l маленьких латинских букв.

Справедливы ограничения $1 \le n \le 1\,000, \, 0 \le k \le n, \, 1 \le l \le 26.$

В следующей строке k различных целых чисел от 0 до n-1 — номера терминальных состояний автомата. Все состояния занумерованы от 0 до n-1.

Начальным состоянием автомата считается нулевое состояние. При этом, оно может быть терминальным.

В следующих nl строках перечислены все переходы автомата. Переход записывается в виде $a\ b\ c$, где a — начальное состояние перехода, b — символ для перехода, c — конечное состояние перехода. Переходы могут быть перечислены в произвольном порядке.

В выходной файл необходимо вывести строку EQUIVALENT, если автоматы эквивалентны и строку NOT EQUIVALENT, если они не эквивалентны.

Автоматы используют общий алфавит — то есть число l будет одно и то же у обоих автоматов.

Пример входа	Пример выхода
4 1 2	NOT EQUIVALENT
2	
0 a 1	
0 b 0	
1 a 1	
1 b 2	
2 a 3	
2 b 3	
3 a 3	
3 b 3	
2 1 2	
1	
0 a 1	
0 b 1	
1 a 1	
1 b 1	
4 3 1	EQUIVALENT
1 2 3	
0 a 1	
1 a 2	
2 a 3	
3 a 3	
2 1 1	
1	
0 a 1	
1 a 1	
4 1 2	NOT EQUIVALENT
2	
0 a 1	
0 b 0	
1 a 1	
1 b 2	
2 a 3	
2 b 3	
3 a 3	
3 b 3	
3 1 2	
2	
0 a 1	
0 b 0	
1 a 1	
1 b 2	
2 a 1	
2 b 0	

Задача 3-2.

Дан детерминированный конечный автомат A. Необходимо найти минимальный ДКА, который ему эквивалентен.

Во входном файле — описание автомата A. См. описание формата описания автомата в первой задаче. Ограничения на параметры автомата — те же, что и в первой задаче.

В выходной файл необходимо вывести количество состояний в минимальном ДКА, эквивалентном А.

Пример входа	Пример выхода
4 1 2	4
2	
0 a 1	
0 b 0	
1 a 1	
1 b 2	
2 a 3	
2 b 3	
3 a 3	
3 b 3	
4 1 2	3
3	
0 a 1	
0 b 2	
1 a 1	
1 b 3	
2 a 2	
2 b 3	
3 a 3	
3 b 3	
2 1 1	1
1	
0 a 0	
1 a 1	

Задача 3-3.

Вам предлагается реализовать операцию преобразования BWT (Burrows-Wheeler Transform, см. en.wikipedia.org/wiki/Burrows-Wheeler_transform)

Дана непустая строка α , состоящая из строчных латинских букв. Длина n строки не превосходит 100 000. Преобразование осуществляется следующим образом:

- рассматриваются все циклические сдвиги α (всего n строк),
- сдвиги сортируются в лексикографическом порядке и записываются в виде символьной матрицы M размера $n \times n$,
- \bullet результатом объявляется строка, получающаяся чтением (сверху вниз) последнего столбца матрицы M.

Например, если $\alpha = ababc$, то получится следующая матрица:

$$M = \left(egin{array}{ll} {
m a} \ {
m b} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m c} \ {
m a} \ {
m b} \ {
m c} \ {
m$$

Итак, ответом будет строка сваав.

В выходной файл нужно вывести единственную строку — результат преобразования строки α .

Пример входа	Пример выхода
ababc	cbaab
a	a
aaaaa	aaaaa
abcde	eabcd

Задача 3-4.

Вам предлагается реализовать алгоритм, схожий с тем, что применяется в методах сжатия LZ (http://en.wikipedia.org/wiki/LZ77_(algorithm)).

Вам дана строка α , состоящая из строчных латинских букв. Необходимо для каждой позиции i в строке α найти наибольшую по длине подстроку β , начинающуюся в позиции i в α , которая также ранее встречается в строке α . Иными словами нужно найти наибольшую длину $l_i \geq 0$, для которой найдется позиция i' < i, такая что $\alpha[i'..i'+l_i-1] = \alpha[i..i+l_i-1]$.

Во входном файле задана единственная строка α . В выходной файл нужно вывести n чисел l_i (где n — длина α), по одному в строке. $1 \le n \le 100~000$.

Пример входа	Пример выхода
ababaab	0
	0
	3
	2
	1
	2
	1
aaaaa	0
	4
	3
	2
	1