Functions of bounded variation

September 17, 2023

Contents

1 BV functions	1
2 Total variation	2
3 Rectifiable curves	3
1 BV functions	
Theorem 1.1. Suppose $f, g \in BV[a, b]$, then $f + g, f - g, f \cdot g \in BV[a, b]$. If g is away from zero, that is $ f > m$ for some positive m , then $f/g \in BV[a, b]$.	s bounded
Proof.	
Monotonic functions is of bounded variation.	
Theorem 1.2. If $f:[a,b] \to \mathbb{R}$ is monotonic, then $f \in BV[a,b]$.	
Proof.	
Continuous functions with bounded derivatives in the interior are of bounded But derivative of a BV function is not necessary bounded. See examples below.	
Theorem 1.3. If $f \in C[a,b]$, and has bounded derivatives on (a,b) , that is, $ f' $ for some $M > 0$, then $f \in BV[a,b]$.	$(x) \leqslant M$
Proof.	
BV functions must be bounded.	
Theorem 1.4. If $f \in BV[a,b]$, then f is bounded on $[a,b]$.	
Proof.	
Example (BV functions).	
• $f(x) = x^{1/3}$, then $f \in BV[-a, a]$ for arbitrary finite a , since f is monoto (theorem 1.2). Note that $f'(0) = \infty$	$onic\ on\ \mathbb{R}$

Example (non-BV functions).

• $f(x) = x \cos(\pi/2x)$ and f(0) = 0. Then $f \notin BV[0,1]$. Consider partition $P = \{0, 1/2n, 1/(2n-1), \dots, 1/2, 1\}$, as $n \to \infty$, the sum $\sum_{k=1}^{2n} |\Delta f_k| \to \infty$

• $f(x) = x^2 \sin(1/x)$ and f(0) = 0. Then $f \in BV[0,1]$ because of theorem 1.3

• f(x) = 1/x and f(0) = 0. Then $f \notin BV[0,1]$ since f is not bouned (theorem 1.4)

2 Total variation

For a BV function f on [a, b], and an arbitrary partition $P = \{x_0 < x_1 < \cdots < x_n\}$, by definition the sum $\sum_{k=1}^{n} |\Delta f_k|$ is bounded from above (here $\Delta f_k = f(x_k) - f(x_{k-1})$). Therefore for all such sums there must be a least upper bound.

Definition 2.1 (Total variation). If $f \in BV[a,b]$, define total variation of f on [a,b] by:

$$V_a^b(f) = \sup_{P \in \mathcal{P}} \sum_P |\Delta f|,$$

where $\sum_{P} |\Delta f|$ for a partition $P = \{x_0, \dots, x_n\}$ is the sum $\sum_{k=1}^{n} |\Delta f_k|$.

Alternative notation: V(f, [a, b]).

From definition, we know immediately $V(f) \ge 0$, and that V(f) = 0 iff. f is constant.

As a functional on real-valued function space, there are inequalities for total variations and function operations.

Theorem 2.1. Assume $f, g \in BV[a, b]$, then:

- $V(f \pm g) \leqslant V(f) + V(g)$
- $V(f \cdot g) \leq V(f) \cdot \sup |g| + \sup |f| \cdot V(g)$
- suppose $|f| \ge M > 0$, then $V(1/f) \le V(f)/M^2$

This theorem shows that BV[a,b], with addition and scalar multiplication, is a vector space, because:

- 1. $0 \in BV[a, b]$
- 2. if $f, g \in BV[a, b]$, then $f + g \in BV[a, b]$
- 3. if $f \in BV[a, b]$, then $\lambda f \in BV[a, b]$ for every $\lambda \in \mathbb{R}$

The interval can be divided, and total variation satisfies additive property.

Theorem 2.2 (Additive property). If $f \in BV[a,b]$, and $c \in (a,b)$, then $f \in BV[a,c] \cap BV[c,b]$ and we have:

$$V_a^b(f) = V_a^c(f) + V_c^b(f)$$
.

If we keep f and left endpoint a fixed, consider right endpoint as a variable, we get a new function.

Theorem 2.3. Let $f \in BV[a,b]$ and define V(x) to be $V_a^x(f)$ for $x \in (a,b]$, and define V(a) = 0. Then:

- V is increasing on [a, b]
- V f is increasing on [a, b]

This immediately gives us:

Theorem 2.4. $f \in BV[a, b]$, iff. f can be expressed as g - h where g, h are increasing or strictly increasing.

For continuous functions f, it corresponding V function's continuity depends on f.

Theorem 2.5. Let $\sum_{P} |\Delta f|$ to denote the sum $\sum_{k=1}^{n}$

Theorem 2.6. Suppose $f \in BV[a, b]$, then f is continuous at $x \in [a, b]$ iff. V is continuous at x.

Proof.

3 Rectifiable curves

Let path $f: [a,b] \to \mathbb{R}^n$ and $P = \{x_0, \dots, x_n\} \in \mathcal{P}[a,b]$, and define $\Lambda(f,P)$ to be the sum $\sum_{k=1}^n ||f(x_k) - f(x_{k-1})||$.

Definition 3.1 (Rectifiable curves). If $\{\Lambda(f, P): P \in \mathcal{P}[a, b]\}$ is bounded, then path f is said to be rectifiable and define its arc length by:

$$\Lambda_a^b(f) = \sup_{P \in \mathcal{P}[a,b]} \Lambda(f,P).$$

For vector $x = (x_1, \ldots, x_n)$ we have

$$|x_i| \le ||x|| \le |x_1| + \dots + |x_n|$$
.

This fact is used to prove the following similar relation between arc length and toatl variation.

Theorem 3.1. Let $f = (f_1, \ldots, f_n)$ be a path on [a, b]. Then f is rectifiable iff. each component f_k is of bounded variation. And we have:

$$V_a^b(f_k) \leqslant \Lambda_a^b(f) \leqslant V_a^b(f_1) + \dots + V_a^b(f_n). \tag{1}$$

Like total variation, there are additive property for arc length.

Theorem 3.2 (Additive property). If f is rectifiable on [a,b], and $c \in (a,b)$, then we have

$$\Lambda_a^b(f) = \Lambda_a^c(f) + \Lambda_c^b(f) \,.$$

Like total variation, keep f fixed and consider right endpoint as the variable. Define $s(x) = \Lambda_a^x(f)$ and let s(a) = 0.

Theorem 3.3. The function s is increasing and continuous on [a,b]. If there is no subinterval of [a,b] on which f is constant, then s is strictly increasing.