Inferring incidence rate ratios (IRR) from cross-sectional odds ratios (OR)

using individual-based modelling applied to major depression & harmful drinking

[B4.1] CSEB Conference 13:30 Tues 12 Aug 2025

¹ Imperial College London

² McGill University

³ University of Bristol

Jesse Knight¹

James Stannah²

Michael Pickles¹

Jack Stone 3

Peter Vickerman³

Marie-Claude Boily 1

Background & Motivation

Major depression

• prevalence: $\sim 1-10\%$ overall typically [1-3]

Harmful drinking

• prevalence ~ 2-20% overall typically [3-5]

ORs for depression & drinking: 1.0 – 4.2 [6]

- if depression "causes" drinking, could have:
 - ↑ drinking onset while depressed IRR_O >
 - **↓ drinking recovery** while depressed IRR_R < 1
- How do prevalence OR relate to these IRR?

Research Question & Objectives

What can ORs tell us about onset & recovery IRRs (in this context)?

Objectives:

- **Reference case:** Characterize the relationship between **ORs** and:
 - {a} IRR₀ > 1 of drinking onset while depressed
 - **{b} IRR**_R < 1 of drinking **recovery** while depressed
- **Sensitivity analysis:** Determine **if/how {1.a} depends on:**
 - **{a}** base rates of depression (exposure) onset / recovery
 - **{b}** base rates of drinking (outcome) onset / recovery

Methods: Individual-Based Simulation Model

Open population:

- ages [10, 60)
- enter depression / drinking-naive

Base rates per 100 person-years:

- depression: **onset:** 4 [2,3,7,8] **recovery:** 100 [9,10]
- drinking: **onset:** 2 [3-5] **recovery:** 33 [5,11,12]

Effects while depressed:

- faster drinking onset: IRR₀ > 1
- slower drinking recovery: IRR_R < 1

Methods: Scenarios & Odds Ratios

Reference case: Objective {1}

- default base rates as above
- vary **onset IRR**₀ ~ [1, 8], **recovery IRR**_R ~ [1, $\frac{1}{8}$]

Sensitivity analysis: Objective {2}

vary base rates of onset/recovery x [0.5, 1.0, 1.5]
 for depression & drinking

 \rightarrow prevalence (IRRs = 1):

- 3.8% depressed
- 5.4% drinking
- o o.2% both

Calculating ORs:

- analytic sample: entire population aged [10,60) at equilibrium (N ≈ 10,000)
- report mean (95% CI) outputs across 41 stochastic model runs (seeds)

Results {1}: Reference Case

Result {1.a} OR underestimates onset IRR by factor of 4+

Summary:

•
$$OR \approx 1 + \frac{1}{4} (IRR_0 - 1)$$

$$\circ$$
 e.g. $OR = 2 \rightarrow IRR_O \approx 5$

Implication:

 onset effect can be ~4x what OR implies (in this context)

base rates	depression	onset: 4	recovery: 100	
(per 100 PY)	drinking	onset: 2	recovery: 33	recovery IRR _R = 1

Result {1.b} OR hardly influenced by recovery IRR

Summary:

• **OR < 1.5** with recovery **IRR**_R alone

Implication:

- recovery IRR_R hard to identify from OR (in this context)
- if OR > 1.5 \rightarrow onset IRR₀ > 1

base rates	depression	onset: 4	recovery: 100	
(per 100 PY)	drinking	onset: 2	recovery: 33	onet IRR _O = 1

Results {2}: Sensitivity Analyses

Result {2.a} Bias ~ with faster depression (exposure) onset

base rates	depression	onset:	recovery: 100	
(per 100 PY)	drinking	onset: 2	recovery: 33	recovery IRR _R = 1

Result {2.a} Bias ↑ with faster depression (exposure) recovery

Mean

depression

recov rate (per 100 PY)

50

Summary:

- ↑ depression onset rate: ~ bias
- ↑ depression recovery rate: ↑ bias

Implication:

 OR better approximates IRR_O when depression (exposure) episodes are long

base rates	depression	onset: 4	recovery:	
(per 100 PY)	drinking	onset: 2	recovery: 33	recovery IRR _R = 1

Result {2.b} Bias ~ with faster drinking (outcome) onset

base rates	depression	onset: 4	recovery: 100	
(per 100 PY)	drinking	onset:	recovery: 33	recovery IRR _R = 1

Result {2.b} Bias → with faster drinking (outcome) recovery

16.7

Summary:

- ↑ drinking onset rate: ~ bias
- ↑ drinking recovery rate: ↓ bias

Implication:

OR better approximates IRR when drinking (outcome) episodes are short

base rates	depression	onset: 4	recovery: 100	
(per 100 PY)	drinking	onset: 2	recovery:	recovery $IRR_R = 1$

Why do recovery rates influence OR more than onset rates?

Short Answer: recovery rates (b,d) >> onset rates (a,c) (in this context)

Mathematically: (ignoring age effects)

$$OR = \frac{(aR+b+cO+dR)(aO+b+cO+dO)}{(aR+b+cR+dR)(aO+b+cO+dR)} \approx \frac{(b+dO)}{(b+dR)}$$

Notation: a: depronset rate **c:** drink onset rate O: onset IRR **d:** drink recovery rate **R:** recovery IRR_p **b:** depr recovery rate

- if recovery rate depression (b) >> drinking (d): OR $\rightarrow 1$
- if recovery rate depression (b) << drinking (d): OR \rightarrow O/R

"hiased towards null"

"unbiased"

Summary & Conclusions

- OR >1 may derive mechanistically from: onset IRR₀ >1 and/or recovery IRR_R <1
- OR substantially underestimates IRRs

$$OR \approx \frac{(b+dO)}{(b+dR)}$$

OR is biased towards 1 by:

- ↑ b faster recovery from depression
- ↓ d slower recovery from drinking
- + similar results with heterogeneous rates (not shown)
- implication: assuming IRR ≈ OR would underestimate projected impact of depression intervention on drinking
- limitations: no age effects, no weighted sampling

References

- Marx et al., Major depressive disorder, Nature Reviews Disease Primers (2023)
- Waraich et al., **Prevalence and incidence studies of mood disorders: [...]**, Canadian Journal of Psychiatry (2004)
- McGrath et al., **Age of onset and cumulative risk of mental disorder: [...]**, Lancet Psychiatry (2023)
- MacKillop et al., **Hazardous drinking and alcohol use disorders**, *Nature Reviews Disease Primers* (2022)
- Seeley et al., **Prevalence, incidence, recovery, & recurrence of alcohol use disorders [...]**, Drug and Alcohol Dependence (2019)
- Boden & Fergusson, **Alcohol and depression**, *Addiction* (2011)
- Solomon et al., **Multiple recurrences of major depressive disorder**, American Journal of Psychiatry (2000)
- Burcusa & Iacono, **Risk for recurrence in depression**, *Clinical Psychology Review* (2007)
- Solomon et al., **Recovery From Major Depression:** [...], *Archives of General Psychiatry* (1997)
- Furukawa et al., **Time to recovery of [...] untreated unipolar major depressive episodes**, *British Journal of Psychiatry* (2000)
- Cranford et al., **Trajectories of alcohol use over time among adults w/ alcohol dependence**, *Addictive Behaviors* (2014)
- Witkiewitz & Tucker, **Abstinence Not Required:** [...], Alcoholism: Clinical and Experimental Research (2020)

Thanks

Institutions

IMPERIAL

Funding

Result {x.1}: Current prevalence of depression & drinking

base ratesdepressiononset: 4recovery: 100(per 100 PY)drinkingonset: 2recovery: 33

Result {x.2}: OR jointly determined by onset & recovery IRRs

Summary:

- Both IRRs jointly determine OR
 - OR more sensitive to onset IRR_O vs recovery IRR_R

Implication:

Impossible to infer from OR
 both IRR onset & recovery

base rates	depression	onset: 4	recovery: 100
(per 100 PY)	drinking	onset: 2	recovery: 33

Result {x.3}: No change with other measures of association

Measure

OR

Age adjust

No

Summary:

OR ≈ PR (prevalence ratio)
 with/out age adjustment

Implication:

- main results apply to PR too
- age adjustment won't help

base rates	depression	onset: 4	recovery: 100	
(per 100 PY)	drinking	onset: 2	recovery: 33	recovery $IRR_R = 1$

Result {x.4}: heterogeneous rates {1.a}

Methods:

- individual-specific base rates sampled from log-normal distribution
 - o fixed CV (std. dev / mean) = 1

- qualitatively same as homogeneous rates
- reduced influence of recovery rates

base rates	depression	onset: 4	recovery: 100	
(per 100 PY)	drinking	onset: 2	recovery: 33	recovery IRR _R = 1

Result {x.4}: heterogeneous rates {1.b}

Methods:

- individual-specific base rates sampled from log-normal distribution
 - o fixed CV (std. dev / mean) = 1

- qualitatively same as homogeneous rates
- reduced influence of recovery rates

base rates	depression	onset: 4	recovery: 100	
(per 100 PY)	drinking	onset: 2	recovery: 33	onset $IRR_O = 1$

Result {x.4}: heterogeneous rates {2.a}

Methods:

- individual-specific base rates sampled from log-normal distribution
 - o fixed CV (std. dev / mean) = 1

- qualitatively same as homogeneous rates
- reduced influence of recovery rates

base rates	depression	onset:	recovery: 100	
(per 100 PY)	drinking	onset: 2	recovery: 33	recovery IRR _R = 1

Result {x.4}: heterogeneous rates {2.a}

Methods:

- individual-specific base rates sampled from log-normal distribution
 - fixed CV (std. dev / mean) = 1

Summary:

50

100

- qualitatively same as homogeneous rates
- reduced influence of recovery rates

base rates	depression	onset: 4	recovery:	
(per 100 PY)	drinking	onset: 2	recovery: 33	recovery IRR _R = 1

Result {x.4}: heterogeneous rates {2.b}

Methods:

- individual-specific base rates
 sampled from log-normal distribution
 - o fixed CV (std. dev / mean) = 1

- qualitatively same as homogeneous rates
- reduced influence of recovery rates

base rates	depression	onset: 4	recovery: 100	
(per 100 PY)	drinking	onset:	recovery: 33	recovery IRR _R = 1

Result {x.4}: heterogeneous rates {2.b}

Mean drinking

recov rate (per 100 PY)

16.7

33.3

Methods:

- individual-specific base rates
 sampled from log-normal distribution
 - \circ fixed CV (std. dev / mean) = 1

- qualitatively same as homogeneous rates
- reduced influence of recovery rates

base rates	depression	onset: 4	recovery: 100	
(per 100 PY)	drinking	onset: 2	recovery:	recovery IRR _R = 1