

Amendment to 10/665073 dated 28 June 2005

Page 2 of 8

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A flexible heat exchanger for warming or cooling a living subject, the heat exchanger comprising:
a volume having at least one inlet for receiving a heat exchange fluid and at least one outlet; and,
a flexible heat exchange plate essentially impermeable to the heat exchange fluid, the plate comprising a plurality of substantially rigid thermally conductive members extending through a flexible material of the plate from an outside surface of the plate flexible material into the volume;
wherein the thermally conductive members project into the volume and have bases that project past the outer surface of the flexible material.
2. (Original) A flexible heat exchanger according to claim 1 wherein the volume is defined between the plate and a flexible back wall spaced apart from the plate.
3. (Original) A flexible heat exchanger according to claim 1 wherein the thermally conductive members are arranged in a rectangular array.
4. (Currently Amended) A flexible heat exchanger according to claim 3 wherein the thermally conductive members each comprise a generally rectangular base on the outside surface of the plate bases are generally rectangular.

Amendment to 10/665073 dated 28 June 2005

Page 3 of 8

5. (Original) A flexible heat exchanger according to claim 1 wherein the thermally conductive members are arranged in a triangular array.
6. (Original) A flexible heat exchanger according to claim 1 wherein the thermally conductive members are arranged to provide a plurality of substantially unbroken lines of the flexible material extending between the thermally conductive members.
7. (Original) A flexible heat exchanger according to claim 1 wherein the thermally conductive members each have a thermal conductivity of at least $50 \text{ Wm}^{-1}\text{K}^{-1}$.
8. (Original) A flexible heat exchanger according to claim 1 wherein the thermally conductive members each have a thermal conductivity of at least $100 \text{ Wm}^{-1}\text{K}^{-1}$.
9. (Original) A flexible heat exchanger according to claim 8 wherein the thermally conductive members are made of a material selected from the group consisting of: aluminum, copper, gold, silver, alloys of two or more of aluminum, copper, gold, or silver with one another and alloys of one or more of aluminum, copper, gold, or silver with one or more other metals.
10. (Original) A flexible heat exchanger according to claim 8 wherein the thermally conductive members are made of materials selected from the group consisting of: carbon, graphite, diamond, and sapphire.
11. (Currently Amended) A flexible heat exchanger according to claim 1 wherein ~~a plurality~~ the bases of the thermally conductive members ~~covers~~ cover at least 70% of an area of the outer side of the flexible heat exchange plate.

Amendment to 10/665073 dated 28 June 2005

Page 4 of 8

12. (Original) A flexible heat exchanger according to claim 1 wherein the flexible material of the plate comprises an elastomer material and the thermally conductive members are embedded in the elastomer material.
13. (Original) A flexible heat exchanger according to claim 12 wherein the elastomer material comprises a material selected from the group consisting of: polyurethane, polypropylene, polyethylene, ethylene-vinyl acetate, polyvinyl chloride, silicone, natural rubber, and a combination of two or more of polyurethane, polypropylene, polyethylene, ethylene-vinyl acetate, polyvinyl chloride, and silicone.
14. (Cancelled)
15. (Currently Amended) A flexible heat exchanger according to claim 1 wherein the thermally conductive members project into the volume from the an inner surface of the plate by distances of at least 3 mm.
16. (Original) A flexible heat exchanger according to claim 1 wherein the flexible material of the plate has a thermal conductivity not exceeding $5 \text{ Wm}^{-1}\text{K}^{-1}$.
17. (Cancelled)
18. (Currently Amended) A flexible heat exchanger according to claim 1 wherein the inner end of each of the plurality of thermally conductive members comprises a plurality of spaced apart projections.
19. (Currently Amended) A flexible heat exchanger according to claim 1 wherein a plurality of the thermally conductive members each comprise a first part connected

Amendment to 10/665073 dated 28 June 2005

Page 5 of 8

to the second part wherein the first and second parts define a circumferentially extending groove and the flexible material of the plate is received in the groove.

20. (Currently Amended) A flexible heat exchanger according to claim # 1 wherein the an inner end of each of the thermally conductive members is tubular, square, rectangular, circular or spherical.
21. (Original) A flexible heat exchanger according to claim 1 wherein the outer surface has a concave curved configuration in the absence of bending forces acting on the heat exchanger.
22. (Original) A flexible heat exchanger according to claim 1 wherein the outer surface has a convex curved configuration in the absence of bending forces acting on the heat exchanger.
23. (Original) A flexible heat exchanger according to claim 1 wherein a portion of the outer surface of the heat exchanger on which the thermally conductive members are disposed is dimensioned to be applied exclusively to an area of a subject's anatomy overlying a carotid artery of the subject.
24. (Original) A flexible heat exchanger according to claim 1 wherein a total area of the thermally conductive members exposed on the outside surface of the plate exceeds a total cross sectional area of the thermally conductive members at a point where the cross sectional members enter the volume.
25. (Original) A flexible heat exchanger according to claim 1 wherein the volume is defined between a flexible rear

Amendment to 10/665073 dated 28 June 2005

Page 6 of 8

wall and the flexible plate and the heat exchanger comprises spacing means for preventing the rear wall from collapsing against the flexible plate.

26. (Original) A flexible heat exchanger according to claim 1 wherein the volume is defined between the flexible plate, a flexible rear wall made of the flexible material and flexible side walls made of the flexible material.
27. (Original) A system for controlling a temperature of a subject, the system comprising:
 - a heat exchanger according to claim 1;
 - a reservoir containing a heat exchange fluid;
 - a first feed pump connected to feed heat exchange fluid from the reservoir into the input of the heat exchanger;
 - a second feed pump connected to withdraw the heat exchange fluid from the output of the heat exchanger.
28. (Original) A system according to claim 27 comprising a controller connected to control operation of the first and second feed pumps to maintain a pressure of the heat exchange fluid within the volume within a desired range of an ambient air pressure outside the volume.
29. (Original) A system according to claim 28 comprising an adjustable bypass valve connected in parallel with one of the first and second feed pumps wherein the controller is configured to operate an actuator to adjust the bypass valve.
30. (Original) A system according to claim 27 comprising an adjustable bypass valve connected in parallel with one of the first and second feed pumps.

Amendment to 10/665073 dated 28 June 2005

Page 7 of 8

31. (Original) A system according to claim 30 wherein the adjustable bypass valve is configured to be opened by a pressure differential across the bypass valve.
32. (Original) A system according to claim 27 comprising a variable restriction connected between the heat exchanger and one of the feed pumps.