第1章向客回顾

学习要求:

- 微型计算机系统组成
- 计算机中的数制及其转换
- 补码的概念和运算
- 冯·诺依曼结构及基本原理
- 基本逻辑门及其逻辑关系

教学要求

- 希望理解并能够回答以下问题:
 - 微处理器、微型计算机、微型计算机系统三者间有什么不同?
 - 计算机为什么要采用二进制?除二进制外为什么还有其它计数制?
 - 什么是无符号数? 什么是有符号数?
 - 为什么要引入补码?
 - 冯·诺依曼计算机具有什么结构特点和基本工作原理?
 - 利用冯·诺依曼计算机执行一条指令需要的基本过程?
 - 什么是逻辑? 真值表的含义?

程序计数器PC的作用

教学要求

- 希望掌握并回答以下问题:
 - 不同计数制之间如何转换?
 - 原码、反码和补码之间的关系?
 - 二进制运算
 - 如何判断运算结果是否溢出?
 - 基本逻辑门电路的符号及输入与输出的关系(逻辑真值表)

注意点:

- 内存的组织模式
 - 单元,单元内容,单元地址
- 逻辑门及逻辑关系

难点及要点:

- 难点及要点:
 - 补码的概念及其运算
 - 基本逻辑门及其逻辑关系

逻辑关系例

■ 例1

■ 例2:

有符号数练习例

- 补码数A8H对应的十进制数是多少?
- 解:
 - 因为: A8H=10101000B
 - 所以,该数是负数
 - 要获得该数的真值,需要对该数再求补码:
 - [A8H]_补=[10101000]_补=11011000,真值为: -1011000
 - 该数对应的十进制数是: 88

