2D-Vision Blatt 7

Aufgabe 2

$$p_1 = (1,1)$$
 $K(p_1) = 0$ $p_2 = (1,3)$ $K(p_2) = 0$ $p_3 = (1,5)$ $K(p_3) = 1$ $p_4 = (3,1)$ $K(p_4) = 0$

$$p_5 = (5,1)$$
 $K(p_5) = 1$ $p_6 = (5,5)$ $K(p_6) = 1$

Wobei K(x) die Klasse von x ist.

a)
$$p_7=(3,3)$$

Sei $A(p)=\left||p-p_7||_2=\sqrt{(p*x-p_7*x)^2+(p*y-p_7*y)^2}\right|$
 $A(p_1)=\sqrt{4+4}=\sqrt{8}\approx 2,83$ $A(p_2)=\sqrt{4+0}=\sqrt{4}\approx 2$
 $A(p_3)=\sqrt{4+4}=\sqrt{8}\approx 2,83$ $A(p_4)=\sqrt{0+4}=\sqrt{4}\approx 2$
 $A(p_5)=\sqrt{4+4}=\sqrt{8}\approx 2,83$ $A(p_6)=\sqrt{4+4}=\sqrt{8}\approx 2,83$

 \Rightarrow Nächste Nachbarn sind p_1 und p_4

$$K(p_2) = K(p_4) = 0 \Rightarrow K(p_7) = 0$$

(2) mit p_7 : NICHT linear separierbar

 p_2,p_7 und p_5 liegen auf eines Geraden. Würde man z.B. zwischen p_2 und p_7 separieren, so wäre p_5 auf der Seite von p_7 . Widerspruch

Aufgabe 3

1.
$$y = (w_0 \quad w_1) * x + b = (-1 \quad -2) {0 \choose 0} + 1 = 1$$

2.
$$n = {1 \choose 1} = {w_0 \choose w_1}$$
 $p = {1 \choose 0,5}$ $w_2 = n^T p = -1,5$ $w_0 = 1$, $w_1 = 1$, $w_2 = -1,5$, $b = 1$

Aufgabe 4

$$f(n) = \frac{1}{1 + e^{\lambda n}} \quad , \lambda \in (0, \infty)$$

$$g(n) = \frac{e^{\lambda n} - e^{-\lambda n}}{e^{\lambda n} + e^{-\lambda n}} \quad , \lambda \in (0, \infty)$$

Zu zeigen:
$$g(n) = 2f(2n) - 1$$

Beweis:

$$2f(2n) - 1 = \frac{2}{1 + e^{-2\lambda n}} - 1 = \frac{2 - (1 + e^{-\lambda n})}{1 + e^{-2\lambda n}} = \frac{1 - e^{-2\lambda n}}{1 + e^{-2\lambda n}} = \frac{e^{\lambda n} - e^{-\lambda n}}{e^{\lambda n} + e^{-\lambda n}} = g(n)$$

Multipliziert man jedes Gewicht des MLP mit Aktivierungsfunktion f mit 2 und fügt nach dem 1. Layer ein Bias b=-1 für alle folgenden Layer ein, so erhält man ein MLP, das Äquivalent zu einem MLP mit den ursprünglichen Gewichten und Aktivierungsfunktion g ist.