The Nuclear Physics Weekly III

Anish

September 1, 2021

Contents

1	neory	1
	Recap	1
	2 Scattering theory	
	3 Unitarity	1
2	ssignment Questions	2

1 Theory

1.1 Recap

We started with revisiting scattering amplitude from previous lecture. Scattering amplitude characterizes the probability of an interaction to occur.

$$iM \propto \langle final | S - 1 | initial \rangle$$

1.2 Scattering theory

Model independent features i.e. features present independent of what interaction is occurring.

- Symmetry
 - Spacetime \implies Lorentz Invarience (can be ignored in low energy systems)
 - Internal ⇒ Flavor, Baryon Numbers
- Unitarity
 - Probability Conservation \implies The S matrix is a unitary operator

Let Ψ be such that $|\Psi\rangle|^2 = 1$, Then U is a unitary operator iff $|U|\Psi\rangle|^2 = 1 \implies U^{\dagger}U = 1$

- Analyticity
 - Causality \Rightarrow Amplitudes are boundary values of analytic functions in complex energy plane
- Crossing
 - CPT symmetry ⇒ Relates particle-anti-particle in scattering process.

1.3 Unitarity

Unitarity implies a relationship between imaginary part of M and modulus of M.

$$Im(M) = \rho |M|^2 \text{ for } E^* \ge 2m$$

Here, ρ is the kinematic function which characterizes on shell scattering of two-particles

$$\rho = \frac{\xi q^*}{8\pi E^*}$$

where q^* is relative momentum between particles in center-of-mass frame and equals to $q^* = \frac{1}{2}\sqrt{E^{*2} - 4m^2}$

2 Assignment Questions

1. Phase space for identical particles in the range $1.8 \le E^*/m \le 3.2$

2. We have

$$\mathcal{M} = |\mathcal{M}|e^{i\delta}$$

and,

$$Im(\mathcal{M}) = \rho |\mathcal{M}|^2$$

Now,

$$\mathcal{M}=|\mathcal{M}|e^{i\delta}$$

$$\implies \mathcal{M} = |\mathcal{M}|(\cos \delta + i \cdot \sin \delta)$$

Equating the known relation to imaginary part of the above equation, we get,

$$\rho |\mathcal{M}|^2 = |\mathcal{M}| \cdot \sin \delta$$

$$\implies |\mathcal{M}| = \frac{1}{\rho} \sin \delta$$

Plugging this in the polar form of complex number, we get,

$$\mathcal{M} = \frac{1}{\rho} \sin \delta e^{i\delta}$$

3. From previous result,

$$\mathcal{M} = \frac{1}{\rho} \sin \delta e^{i\delta}$$

$$\implies \mathcal{M}^{-1} = \rho \frac{e^{-i\delta}}{\sin \delta}$$

$$\implies \mathcal{M}^{-1} = \rho \frac{\cos \delta - i \sin \delta}{\sin \delta} = \rho \left(\cot \delta - i\right)$$

$$\implies Im(\mathcal{M}^{-1}) = -\rho$$

4.

$$\mathcal{M} = \mathcal{K} \frac{1}{1 - i\rho \mathcal{K}}$$

$$\implies \mathcal{M}^{-1} = \frac{1}{\mathcal{K}} - i\rho$$

Equating this to $\mathcal{M}^{-1} = \rho(\cot \delta - i)$, we get,

$$\mathcal{K}^{-1} = \rho \cot(\delta)$$