Streaming Algorithms

Meng-Tsung Tsai
03/16/2018

Count Sketch

References

- "Pairwise Independence and Derandomization," Luby and Wigderson (2005)
- "Sketch Techniques for Approximate Query Processing," Cormode

Problem Defintion

Input: a sequence of n tuples (e_1, c_1) , (e_2, c_2) , ..., (e_n, c_n) where each e_i in $[U] = \{1, ..., U\}$ and each c_i in \mathbb{Z} . Let |U| be a prime w.l.o.g.

Output: for each $k \in [U]$, output the frequency

$$f(k) = \sum_{i \in [n]} \mathbf{1}[e_i = k] \mathbf{c}_i$$
.

In words, f(k) is the sum of $c_i\mbox{'s}$ in the sequence whose e_i equals k.

Goal: using o(U log C) bits to get an approximate $\hat{f}(k)$ for each f(k) where $C = \sum_{i \in [n]} c_i$.

In the setting of Count-Min Sketch, we require all $c_i = 1$. Indeed, if all c_i is non-negative, one can apply the same analysis to prove the error bound. What happens if some c_i 's are negative?

Negative c_i's

If some c_i's are negative, then the approximate $\hat{f}(k)$ obtained from the Count-Min sketch may be not an overestimate. (Why?)

Furthermore, if all c_i 's are negative, then $min_j T[j][h_j(k)]$ is the worst estimate of f(k). (Why?)

We thus need an alternative.

Consequence

Given k estimates for a value. Some are overestimates, and some are underestimates.

If more than k/2 estimates are good esitmates, then the median of the k estimates cannot deviate from the value too much. In other words, the median is guaranteed to be a good estimate.

Count Sketch is similar to Count-Min Sketch, one of the differences is to replace

 $min_i T[j][h_i[k]]$

with

 $median_j T[j][h_j[k]].$

Questions to Ponder

Each of k persons bids a price for a ruby ring, so you have prices $p_1, p_2, ..., p_k$.

- (1) You don't know the exact price p* of the ruby ring.
- (2) You know that more than k/2 prices are within the range

$$[(1-\varepsilon)p^*, (1+\varepsilon)p^*]$$
 for some constant $\varepsilon > 0$.

Can you also bid a price to within the above range with full confidence?

The median of $p_1, p_2, ..., p_k$.

Another difference

Recall that the expected noise

$$E[\mathcal{E}_j] = \sum_{\ell \neq k} f(\ell) \Pr[h_j(\ell) = h_j(k)] = (n-f(k))/w.$$

Observe that

$$E[\mathcal{E}_{i}^{+1}] = \sum_{\ell \neq k} f(\ell) \Pr[h_{i}(\ell) = h_{i}(k) + 1] = \frac{(n-f(k))}{w}.$$
 (Why?)

Observe further that

$$\text{E}[\mathcal{E}_{j}^{-1}] = \sum_{\ell \neq k} f(\ell) \text{Pr}[h_{j}(\ell) = h_{j}(k) - 1] = \frac{(n - f(k))}{w}.$$

$$E[T[j][h_j(k)]-T[j][h_j(k)+1]] = f(k) + E[\mathscr{E}_j^{+1}] - E[\mathscr{E}_j^{-1}] = f(k).$$

Algorithm

Sample functions $h_1, h_2, ..., h_d$ independently, uniformly at random from $H_w = \{h_{a,b,c}(x) = ax^2 + bx + c\%w : a, b, c \in \mathbb{Z}_p\}$ where $w \ll p = |U|$.

$$T[d][w] \leftarrow \{0, 0, ..., 0\}.$$

let
$$\hat{f}(k)$$
 = median_{j∈[d]} {T[j][h_j(k)] - T[j][(h_j(k)+1)%w]};

$$E[\hat{f}(k)] = f(k).$$

For all hash functions h₁, h₂, ..., h_d

 $Pr[median_{j \in [d]} | \mathcal{E}_i| \ge 2((2/w)F_2)^{1/2}]$

=
$$\Pr[\sum_{j} \mathbf{1}[|\mathscr{E}_{j}| \ge 2((2/w)F_{2})^{1/2}] \ge d/2]$$
 (Why?)

=
$$Pr[\sum_{j} \mathbf{1}[|\mathscr{E}_{j}| \ge 2((2/w)F_{2})^{1/2}] \ge (1+1)d/4] \le exp(-(1/6)(d/2))$$

If we pick $d = 12 \log nU$, then this happens with probability 1/(nU).

By the union bound, we get

$$\Pr[|\hat{f}(k) - f(k)| = O((F_2/w)^{1/2}) \text{ for all } k \in U] \ge 1-1/n.$$

For each hash function h_j

Let each X_i be a random variable $\{-f(i), 0, +f(i)\}$. If $h_j(i) = h_j(k)+1$, $X_i = -f(i)$. If $h_i(i) = h_i(k)$, $X_i = f(i)$. Otherwise, $X_i = 0$.

In words, X_i is the contribution of e_i to $\hat{f}(k)$.

Let $X = \sum_{i \neq k} X_i$. Then, $\hat{f}(k) = f(k) + X$. Note that E[X] = 0.

 $\begin{aligned} & \text{Var}[X] = \text{E}[(X \text{-E}[X])^2] = \text{E}[\sum_{i \neq k} (X_i \text{-E}[X_i])^2 + \sum_{i \neq k} \sum_{\ell \neq k, \ell \neq i} (X_i \text{-E}[X_i]) \\ & (X_\ell \text{-E}[X_\ell])] = \sum_{i \neq k} \text{Var}[X_i] + 0 \text{ (due to 3-wise independence)} \\ & = (2/w) \text{ (}f(i))^2 \end{aligned}$

Let $F_2 = \sum_{i \in U} f(i)$. By Chebyshev inequality, we get

$$Pr[|X\text{-}E[X]| \geq 2((2/w)F_2)^{1/2}] \leq 1/4.$$

Result

By the Count Sketch, one can estimate each f(k) to within the additive error $(\varepsilon F_2)^{1/2}$ with probability at least $1-1/n^{\Omega(1)}$ using $O((1/\varepsilon) \log nU)$ space and $O(n \log nU)$ time.

By Count sketch, can we output a set S so that all $k \in S$ have $f(k) \ge (n)^{1/2}$ with high probability?

Result

By the Count Sketch, one can estimate each f(k) to within the additive error $(\epsilon F_2)^{1/2}$ with probability at least $1-1/n^{\Omega(1)}$ using $O((1/\epsilon) \log nU)$ space and $O(n \log nU)$ time.

By Count Sketch, can we output a set S so that w.h.p.

(1) S contains every $k \in U$ that has $f(k) \ge n^{1/2}$, and (2) every $k \in S$ has $f(k) \ge n^{1/2} - n^{1/3}$?

Current: T[j][0] T[j][1] T[j][2] T[j][3] T[j][4] T[j][5] Alternative: T[j][0] T[j][1] T[j][2] T[j][3] T[j][4] T[j][5]

Count Sketch v.s. Count-Min Sketch

	Count Sketch	Count-Min Sketch
error	under- or over-estimate	over-estimate
error bound	$(\epsilon \mathrm{F}_2)^{1/2}$	ϵF_1

Let D be the distribution of the frequencies of input elements. If D is close to uniform, then Count-Min Sketch is better. If D is skew, then Count Sketch is better. However, the theoretical analysis is not tight, so their relative order is not predictable.

Compact Representation (1/2 space)

T[j][0]-T[j][1]

T[j][2]-T[j][3]

T[j][4]-T[j][5]

We can use a half number of entriess to maintain the difference of two consecutive entries.