Robust, Universal-Single-Qubit-Gate-Set Calibration via Robust Phase Estimation

Shelby Kimmel, Guang Hao Low, Ted Yoder

Arxiv: 1502.02677 / PRA 2015

[Monroe Lab]

[Monroe Lab]

- All gates have errors
- State preparation has errors
- Measurements has errors

[Monroe Lab]

- All gates have errors
- State preparation has errors
- Measurements has errors

Want to quickly
determine controllable
errors, and then tune
to fix.

[Monroe Lab]

- All gates have errors
- State preparation has errors
- Measurements has errors

Robust
Phase
Estimation

Want to quickly determine controllable errors, and then tune to fix.

Control Errors

• *X*-rotation, *Y*-rotation universal

- Rotation errors
 - X-rotation should be $\frac{\pi}{4}$, instead is $\frac{\pi}{4} + \alpha$
 - Y-rotation should be $\frac{\pi}{2}$, instead is $\frac{\pi}{2} + \epsilon$
- Error in angle between axes of rotation
 - should be $\frac{\pi}{2}$, instead is $\frac{\pi}{2} + \theta$

Compared to ad hoc Rabi – Ramsey sequences:

- ☐ Optimal efficiency (Heisenberg scaling)
- Robust to state prep and measurement noise
- ☐ Just as easy to implement
- Easy to analyze

Compared to Randomized Benchmarking:

☐ Gate specific debugging information

Compared to Gate Set Tomography:

☐ Stay Tuned!

Suppose have uncalibrated universal gate set: \widetilde{U}_X , \widetilde{U}_Y

We run experiments of the form:

$$\bullet \quad \rho_0 \to S_\theta \big(\widetilde{U}_X, \widetilde{U}_Y\big)^k \to M_0 \qquad \begin{array}{c} \text{Probability} \\ \text{of success} \end{array} \qquad \frac{1 + \cos k\theta}{2} + \delta_{k1},$$

•
$$\rho_0 \to S_\theta (\widetilde{U}_X, \widetilde{U}_Y)^k \to M_+$$

$$\frac{1 + \sin k\theta}{2} + \delta_{k2}$$

Suppose have uncalibrated universal gate set: \widetilde{U}_X , \widetilde{U}_Y

We run experiments of the form:

• $\rho_0 \to S_{\theta}(\widetilde{U}_X, \widetilde{U}_Y)^k \to M_0$ of success

 θ is directly related to rotation error or axis error

•
$$\rho_0 \to S_\theta \left(\widetilde{U}_X, \widetilde{U}_Y \right)^k \to M_+$$

$$\frac{1 + \sin k\theta}{2} + \delta_{k2}$$

Suppose have uncalibrated universal gate set: \widetilde{U}_X , \widetilde{U}_Y

We run experiments of the form:

 θ is directly related to rotation error or axis error

k is # of reps of S_{θ}

•
$$\rho_0 \to S_{\theta}(\widetilde{U}_X, \widetilde{U}_Y)^k \to M_0$$
 of success

Probability of success
$$\frac{1 + \cos k\theta}{2} + \delta_{\mu}$$

•
$$\rho_0 \to S_\theta \left(\widetilde{U}_X, \widetilde{U}_Y \right)^k \to M_+$$

$$\frac{1 + \sin k\theta}{2} + \delta_{k2}$$

Suppose have uncalibrated universal gate set: \widetilde{U}_X , \widetilde{U}_Y

We run experiments of the form:

 θ is directly related to rotation error or axis error

k is # of reps of S_{θ}

•
$$\rho_0 \to S_{\theta}(\widetilde{U}_X, \widetilde{U}_Y)^k \to M_0$$
 of success

Probability of success
$$\frac{1 + \cos k\theta}{2}$$

•
$$\rho_0 \to S_\theta (\widetilde{U}_X, \widetilde{U}_Y)^k \to M_+$$

$$\frac{1 + \sin k\theta}{2} + \delta_{k2}$$

 δ is related unknown state preparation, measurement, or non-unitary errors

Can sample from 2 binomial random variables with probability of "heads"

$$\frac{1+\sin k\theta}{2}+\delta_{k1}, \qquad \frac{1+\cos k\theta}{2}+\delta_{k2}$$

For k in \mathbb{Z} , each in time k

Can sample from 2 binomial random variables with probability of "heads"

$$\frac{1+\sin k\theta}{2}+\delta_{k1}, \qquad \frac{1+\cos k\theta}{2}$$

For k in \mathbb{Z} , each in time k

$$k = 1$$

Can sample from 2 binomial random variables with probability of "heads"

$$\frac{1+\sin k\theta}{2}+\delta_{k1}, \qquad \frac{1+\cos k\theta}{2}$$

For k in \mathbb{Z} , each in time k

$$k = 1$$
 $k = 2$

Can sample from 2 binomial random variables with probability of "heads"

$$\frac{1+\sin k\theta}{2}+\delta_{k1}, \qquad \frac{1+\cos k\theta}{2}+\delta_{k2}$$

For k in \mathbb{Z} , each in time k

$$k = 1 \qquad k = 2 \qquad k = 4$$

Can estimate θ with standard deviation $\sigma(\theta) \sim \frac{1}{T}$, as long as $|\delta_k| < \frac{1}{\sqrt{8}} \approx .35$ for all k.

Can sample from 2 binomial random variables with probability of "heads"

$$\frac{1+\sin k\theta}{2}+\delta_{k1}, \qquad \frac{1+\cos k\theta}{2}+\delta_{k2}$$

For k in \mathbb{Z} , each in time k

$$k = 1 \qquad k = 2 \qquad k = 4$$

Can estimate θ with standard deviation $\sigma(\theta) \sim \frac{1}{T}$, as long as $|\delta_k| < \frac{1}{\sqrt{8}} \approx .35$ for all k.

...need to take more samples to account for large δ

Additional Errors

All of the following errors simply contribute to δ errors

- Imperfect state preparation
- Imperfect measurement
- Additional errors like depolarizing errors

Can incorporate any error, as long as can bound how much that error will shift your outcome probability (and total shift is less than .35)

Try it Out!

- Numerical and Experimental Data in Next Talk
- RPE-Experimental branch on pyGSTi github repository – pygsti.info

Control Errors

Amplitude of Rotation:

"Amplitude Error" (error in amount of rotation)

Can sample from 2 binomial random variables with probability of "heads"

$$\frac{1+\sin\theta}{2}+\delta_{k1}, \qquad \frac{1+\cos\theta}{2}+\delta_{k2}$$

Using only k=1 can't get an accurate estimate!