

#### **NATIONAL UNIVERSITY OF SCIENCES & TECHNOLOGY**

SCHOOL OF MECHANICAL AND MANUFACTURING ENGINEERING

# **KASHIF NADEEM KAYANI**

# 456466

# SEMESTER # 03

<u>CLASS: - ME 15</u> [<u>SEC A]</u>

# **ELECTRICAL ENGINEERING**

**LAB No. 06** 

**Battery Level Indicator Circuit and Use of Cathode Ray Oscilloscope (CRO)** 

# Date of Submission 30 OCT 2024

# **Submitted to SANIA SHAHEEN**

#### Assessment Rubrics for EE-103 Electrical Engineering Lab

|                                          | Excellent (9-10)            | Good (7-8)                                         | Fair (4-6)                     | Poor (1-3)                   |
|------------------------------------------|-----------------------------|----------------------------------------------------|--------------------------------|------------------------------|
| Introduction and Theory                  | Complete and well written;  | Nearly complete, missing                           | Some introductory              | Very little background       |
|                                          | provides all necessary      | some minor points                                  | information, but still missing | information provided, or     |
|                                          | background principles for   |                                                    | some major points              | information is incorrect     |
|                                          | the experiment              |                                                    |                                |                              |
| Experimental Procedure                   | Well-written in paragraph   | Written in paragraph format,                       | Written in paragraph format,   | Missing several important    |
|                                          | format, all experimental    | important experimental                             | still missing some important   | experimental details or not  |
|                                          | details are covered         | details are covered, some<br>minor details missing | experimental details           | written in paragraph format  |
| Results: data, figures,                  | All figures, graphs, tables | All figures, graphs, tables                        | Most figures, graphs, tables   | Figures, graphs, tables      |
| graphs, tables, etc.                     | are correctly drawn, are    | are correctly drawn, but                           | OK, some still missing some    | contain errors or are poorly |
|                                          | numbered and contain        | some have minor problems                           | important or required          | constructed, have missing    |
|                                          | titles/captions.            | or could still be improved                         | features                       | titles, captions or numbers, |
|                                          |                             |                                                    |                                | units missing or incorrect,  |
|                                          |                             |                                                    |                                | etc.                         |
| Discussion                               | All-important trends and    | Almost all the results have                        | Some of the results have       | Very incomplete or incorrect |
|                                          | data comparisons have been  | been correctly interpreted                         | been correctly interpreted     | interpretation of trends and |
|                                          | interpreted correctly and   | and discussed, only minor                          | and discussed; partial but     | comparison of data           |
|                                          | discussed, good             | improvements are needed.                           | incomplete understanding of    | indicating a lack of         |
|                                          | understanding of results is |                                                    | results is still evident.      | understanding of results.    |
|                                          | conveyed.                   |                                                    |                                |                              |
| Conclusion                               | All-important conclusions   | All-important conclusions                          | Conclusions regarding major    | Conclusions missing or       |
|                                          | have been clearly made,     | have been drawn, could be                          | points are drawn, but many     | missing the important points |
|                                          | student shows good          | better stated                                      | are misstated, indicating a    |                              |
|                                          | understanding               |                                                    | lack of understanding          | ~                            |
| Report Formatting,                       | All sections in order, well | All sections in order,                             | Sections in order, contains    | Sections out of order, too   |
| structure and referencing                | formatted, very readable.   | formatting generally well,                         | the minimum allowable          | much handwritten copy,       |
|                                          | References provided         | but could still be improved.                       | amount of handwritten copy,    | sloppy formatting. No        |
|                                          | appropriately               | References provided, but not                       | formatting is rough but        | referencing at all.          |
|                                          |                             | entirely                                           | readable. Improper             |                              |
| Di-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t | 1.1                         |                                                    | References                     | I.E. C ! Cl !                |

Plagiarism in any case will result in zero mark in that session.

LE Sania Shaheen

# Contents

| >        | Objectives  | ,3 |
|----------|-------------|----|
| >        | Tools Used  | 3  |
| >        | Procedure   | 4  |
| >        | Lab task    | 5  |
| >        | Discussion: | е  |
| >        | Results     | е  |
| >        | Conclusions | 7  |
| <b>A</b> | References  | -  |

# LAB No. 06: Battery Level Indicator Circuit and Use of Cathode Ray Oscilloscope (CRO)

# Objectives

- 1. To construct an LED-Resistive circuit and understand its significance in battery level indication.
- 2. To familiarize with the use of Cathode Ray Oscilloscope (CRO) and Function Generator (F.G.).
- 3. To analyze signals using CRO for the constructed circuit.

#### > Tools Used

- Resistors
- Light Emitting Diodes (LEDs)
- DC Power Supply (variable supply)
- Cathode Ray Oscilloscope (CRO)
- Function Generator (F.G.)
- Connecting wires

In this experiment, we designed a battery level indicator circuit using four LEDs and four resistors connected in series for each pair but arranged in parallel across the whole circuit. As the input voltage is increased, each LED lights up at a specific voltage threshold, indicating different levels of the battery's charge.

The voltage at which each LED turns on individually is measured, and the total voltage at which all LEDs are fully illuminated ( $V_{total}$ ) is recorded. By calculating the percentage of each LED's turn-on voltage relative to  $V_{total}$ , we can assess the voltage distribution across the LEDs.

Additionally, the use of a function generator and a CRO allows for the generation and visualization of different waveforms, aiding in the understanding of electronic signals.

## Series Circuit:

In a series configuration, branches are connected end-to-end. The same current flows through all the branches, but the voltage drop across each resistor is different.

# Parallel Circuits:

In a parallel circuit, a branch is connected across the same two points, creating multiple paths for the current to flow. The voltage across each branch in a parallel circuit is the same, but the current is different based on the power consumption.

#### o <u>LEDs:</u>

Light Emitting Diodes that light up when a certain threshold voltage is applied.

#### Multimeter

A digital multimeter (DMM) is a versatile electronic device used to measure various electrical properties, including voltage, current, and resistance. The device displays the measurements on a digital screen, making it easy to read and understand the results accurately. [1]

## Power supply

A power supply is an electrical device that offers electric power to an electrical load such as laptop computer, server, or other electronic devices. The main function of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. It could be AC to DC or DC to DC. [2]

#### Breadboard

A breadboard (sometimes called protoboard) is essentially the foundation to construct and prototype electronics. A breadboard allows for easy and quick creation of temporary electronic circuits or to carry out experiments with circuit design. [3]

# Cathode Ray Oscilloscope (CRO)

A cathode ray oscilloscope is an electrical test device used to produce waveforms in response to several input signals. It was originally known as an oscillograph. The standard four components of a Cathode ray oscilloscope. Display, vertical controllers, horizontal controllers, and triggers. [4]

# Function Generator

A function generator is an electronic test equipment that generates standard waveforms, such as sine, square, ramp, or sawtooth waves, to a device under test (DUT). [5]

# > Procedure

Firstly, we found the values of each led voltage at which they turned on.

# **Setting Up the Circuit:**

- We connected four LEDs and four resistors in series for each LED-resistor pair, then connected all four pairs in parallel across the circuit.
- The circuit was powered by a DC power supply, starting at around 1.5 to 2 volts.

#### **Measuring Turn-On Voltages:**

- Using the multimeter, we measured the voltage at which each LED turned on  $(V_1, V_2, V_3, and V_4)$ .
- The voltage was gradually increased until all LEDs were fully glowing, and this voltage was recorded as  $V_{total}$ .

#### **Calculating Voltage Percentages:**

• We calculated the percentage of voltage for each LED using the formula:

#### Percentage of Voltage=(V<sub>n</sub>/V<sub>total</sub>)×100

where  $V_n$  is the voltage at which each LED turns on, and  $V_{total}$  is the final voltage when all LEDs are glowing.

#### **Using the Function Generator and CRO:**

- We connected the function generator to generate different types of waveforms (sine, square, and triangular waves).
- The CRO was used to visualize the waveform signals. For this experiment, we primarily focused on sine waves.

#### ➤ Lab task

In this experiment, we built a battery level indicator circuit using four LEDs and resistors connected in series for each LED but arranged in parallel for the entire circuit. As the input voltage increased, each LED lit up at a specific threshold, representing different levels of the battery charge. We measured the turn-on voltage for each LED and calculated the total voltage (V<sub>total</sub>) when all LEDs were fully illuminated. The percentage of each LED's voltage relative to V<sub>total</sub> was calculated to show how the voltage is distributed. A function generator and a CRO were used to produce and visualize waveforms, enhancing our understanding of signal behavior.

|  | l without anv resistance |
|--|--------------------------|
|  |                          |
|  |                          |

| Serial no | LED no | LED colour | Voltage |
|-----------|--------|------------|---------|
| 1         | LED1   | Green      | 2.2     |
| 2         | LED2   | Purple     | 2.8     |
| 3         | LED3   | Green      | 2.2     |
| 4         | LED4   | Blue       | 2.4     |

Table 6.2: Table for values of voltages of LED when connected in circuit

| Serial no | LED no | LED colour | Voltage | %Voltage |
|-----------|--------|------------|---------|----------|
| 1         | LED1   | Green      | 4       | 27.4     |
| 2         | LED2   | Purple     | 7.2     | 49.31    |
| 3         | LED3   | Green      | 10.3    | 70.54    |
| 4         | LED4   | Blue       | 14 .6   | 100      |

Minimum voltage at which all LED light up is 14.6V.

#### > Discussion:

In this experiment, we observed that as the input voltage was gradually increased from the DC power supply, the LEDs turned on one by one at different voltages. LED 1 turned on at a lower voltage compared to LED 4, which turned on last. The voltage at which all LEDs were fully glowing was defined as Vtotal or the final voltage.

We calculated the percentage voltage for each LED based on the total voltage, which helped in understanding how the LEDs are distributed in terms of their turn-on voltages relative to the overall circuit voltage.

The use of the Cathode Ray Oscilloscope (CRO) and Function Generator allowed us to visualize the frequency signals generated in the circuit. We worked with sine waves, which provided a clear representation of voltage changes over time. There were also options to switch to square or triangular waveforms, but for the purposes of this experiment, sine waves were observed.

#### > Results

The results indicate that each LED turned on at specific voltage values when directly connected to the power supply without any resistors. The blue LED required 2.4V, the green LEDs turned on at 2.2V, and the purple LED lit up at 2.8V. In the complete circuit, which included resistors, the blue LED turned on at 14.6V, the green LEDs at 10.3V and 4V respectively, and the purple LED at 7.2V. Additionally, the voltage percentages relative to the total circuit voltage were calculated, with the blue LED operating at 100%, the first green LED at 70.54%, the purple LED at 49.31%, and the second green LED at 27.4%. The minimum voltage required to light up all LEDs in the circuit was 14.6V.

#### > Conclusions

The experiment successfully demonstrated the construction and analysis of a battery level indicator circuit using LEDs and resistors. We were able to measure the individual turn-on voltages of each LED and calculate their percentages relative to the total voltage. The experiment also provided practical experience with using a Cathode Ray Oscilloscope and Function Generator to generate and visualize different types of waveforms.

#### > References

[1] Fluke Corporation, "What is a digital multimeter?," *Fluke*, <a href="https://www.fluke.com/en/learn/blog/electrical/what-is-a-digital-multimeter#:~:text=Electrical%2C%20Multimeters,and%20understand%20the%20results%20accurately.">https://www.fluke.com/en/learn/blog/electrical/what-is-a-digital-multimeter#:~:text=Electrical%2C%20Multimeters,and%20understand%20the%20results%20accurately.</a> [Accessed: 24-Oct-2024].

- [2] Cincon Electronics Co., Ltd, "What is a DC-DC power supply and how does it work?," *Cincon*, <a href="https://www.cincon.com/newsdetail\_en.php?id=7659">https://www.cincon.com/newsdetail\_en.php?id=7659</a>. [Accessed 24-Oct -2024].
- [3] "Breadboard," *ScienceDirect*, https://www.sciencedirect.com/topics/engineering/breadboard#:~:text=A%20breadboard%20(sometimes%20called%20protoboard,out%20experiments%20with%20circuit%20design. [Accessed: 24-Oct-2024].
- [4] Cathode Ray Oscilloscope (CRO): Learn Definition, Working, Uses." *Testbook*, [Online]. Available: <a href="https://testbook.com/electrical-engineering/cro-cathode-ray-oscilloscope">https://testbook.com/electrical-engineering/cro-cathode-ray-oscilloscope</a>. [Accessed: 24-Oct-2024].
- [5] Waveform and Function Generators." *Keysight*, [Online]. Available: <a href="https://www.keysight.com/us/en/products/waveform-and-function-generators.html">https://www.keysight.com/us/en/products/waveform-and-function-generators.html</a>. [Accessed: 24-Oct-2024].