Cálculo en Variedades

En este capítulo describiremos algunos conceptos básicos que eventualmente nos ayudarán a entender qué son las métricas, qué es una métrica Riemanniana y lo que son las variedades Riemannianas.

1.1 Espacios Tangentes

1.1.1 Espacios Tangente en \mathbb{R}^n

Los primeros conceptos que estudiaremos serán los espacios y fibrados tangentes. Existen varias definiciones equivalentes para lo que es un espacio tangente; nosotros procederemos a definirlo a partir de lo que llamaremos derivaciones, este enfoque tiene algunas ventajas algebraicas y se puede justificar con conceptos conocidos de cálculo multivariable. Comenzaremos contextualizando lo que queremos decir por espacio tangente en \mathbb{R}^n y después generalizaremos la idea a variedades suaves.

Antes de comenzar necesitamos hacer la siguiente aclaración sobre la notación que utilizaremos, si consideramos un punto p en \mathbb{R}^n y queremos describir explícitamente sus coordenadas, esto lo haremos escribiendo entre paréntesis, $p=(p_1,\ldots,p_n)$; si en cambio consideramos un vector v en \mathbb{R}^n , este puede ser representado por una matriz $n\times 1$, sin embargo, por conveniencia escribiremos $v=\begin{bmatrix}v_1&\cdots&v_n\end{bmatrix}$, sin perder de vista que en realidad estamos hablando de la transpuesta de esta matriz.

Definición 1.1.1 (Vectores y Espacios Tangentes en \mathbb{R}^n). Sea a un punto en \mathbb{R}^n , definiremos el espacio tangente a \mathbb{R}^n en el punto a, denotado por $T_a(\mathbb{R}^n)$, como el conjunto:

$${a} \times \mathbb{R}^n = {(a, v) : v \in \mathbb{R}^n}.$$

Un vector tangente a \mathbb{R}^n es un elemento de $T_a(\mathbb{R}^n)$ para algún $a \in \mathbb{R}^n$. Denotaremos a un vector tangente (a,v) particular como v_a o $v|_a$ o simplemente v para abreviar.

En palabras más simples, lo que esta definición nos está diciendo es que el espacio tangente a \mathbb{R}^n en algún punto a es la colección de todos los vectores en \mathbb{R}^n con origen en a.

Una de las propiedades más importantes del conjunto $T_a(\mathbb{R}^n)$ es que es un espacio vectorial bajo las operaciones

$$v_a + w_a = (v + w)_a, \quad c(v)_a = (cv)_a.$$

Por ser un espacio vectorial tendrá una base, no es difícil ver que si $\{e_i\}_{i=1}^n$ son los vectores de la base canónica para \mathbb{R}^n , entonces $\{e_i|_a\}_{i=1}^n=\{(a,e_i)\}_{i=1}^n$ será una base para $T_a(\mathbb{R}^n)$, al tener n vectores básicos; llamamos a esta base la base estándar. $T_a(\mathbb{R}^n)$ será un espacio vectorial n-dimensional y por lo tanto será isomorfo a \mathbb{R}^n , de hecho $T_a(\mathbb{R}^n)$ es una copia de \mathbb{R}^n .

Figura 1.1: Visualización de espacios tangentes a diferentes variedades.

Si en \mathbb{R}^n consideramos un punto $a=(a_1,\ldots,a_n)$ y un vector $v=[v_1\ldots v_n]$, podemos dar la siguiente parametrización para la recta que pasa por a con en la dirección de v:

$$\gamma(t) = (a_1 + tv_1, \dots, a_n + tv_n).$$

Definición 1.1.2 (Derivada Direccional). Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función suave definida en una vecindad de un punto a y $v \in T_a(\mathbb{R}^n)$, la *derivada direccional* de f en a en la dirección de v se define como:

$$D_v f = \frac{d}{dt}\Big|_{t=0} f(\gamma(t)).$$

Por la regla de la cadena podemos escribir la derivada direccional como:

$$D_v f = \sum_{i=1}^n \frac{d\gamma_i(0)}{dt} \frac{\partial f}{\partial x_i}(a) = \sum_{i=1}^n v_i \frac{\partial f}{\partial x_i}(a).$$

En este sentido, cada vector tangente $v_a \in T_a(\mathbb{R}^n)$ nos define un mapeo $D_v : C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ que nos da la derivada direccional de funciones suaves en un punto a en la dirección de v. Dado que evaluamos la derivada direccional en el punto a, $D_v(f)$ será un número real.

Sabemos de cálculo que la derivada direccional es un operador lineal y además cumple la regla de Leibniz, esto es, si f y g son funciones suaves definidas en una vecindad de a, c es una constante y v es un vector tangente, entonces:

- $D_v(cf) = cD_v(f).$
- $D_v(f+g) = D_v(f) + D_v(g)$.
- $D_v(fg) = f(a)D_v(g) + g(a)D_v(f)$.

Basados en esta propiedad daremos la siguiente definición

Definición 1.1.3 (Derivación en un punto). Sea a un punto en \mathbb{R}^n y $\omega: C^\infty(\mathbb{R}^n) \to \mathbb{R}$, diremos que ω es una *derivación en a* si es lineal y cumple la regla de Leibniz, i.e., si f y g son funciones suaves definidas en una vecindad de a, c una constante

- $\bullet \ \omega(cf) = c\omega(f).$
- $\bullet \ \omega(f+g) = \omega(f) + \omega(g).$
- $\omega(fg) = f(a)\omega(g) + g(a)\omega(f)$.

Denotaremos al conjunto de todas las derivaciones de $C^{\infty}(\mathbb{R}^n)$ en el punto a como $\mathcal{D}_a(\mathbb{R}^n)$.

De modo similar a $T_a(\mathbb{R}^n)$, $\mathcal{D}_a(\mathbb{R}^n)$ es un espacio vectorial bajo las operaciones

$$(\omega_1 + \omega_2)(f) = \omega_1(f) + \omega_2(f), \quad (c\omega)(f) = c(\omega(f))$$

y más aún, con ayuda del siguiente lema probaremos que $\mathcal{D}_a(\mathbb{R}^n)$ es isomorfo a $T_a(\mathbb{R}^n)$.

Lema 1.1.1. Sea $a\in\mathbb{R}^n$ un punto, $\omega\in\mathcal{D}_a(\mathbb{R}^n)$ y $f,g\in C^\infty(\mathbb{R}^n)$. Entonces:

- Si f es una función constante, $\omega(f) = 0$.
- Si f(a) = g(a) = 0, entonces $\omega(fg) = 0$.

Demostración. • Basta probar el caso en que $f \equiv 1$, el caso general se tiene por la linealidad de ω . Si $f \equiv 1$, entonces:

$$\omega(f) = \omega(f \cdot f)$$

$$= f(a)\omega(f) + f(a)\omega(f)$$

$$= 2\omega(f)$$

Esto implica que $\omega(f) = 0$.

• Si f(a) = g(a) = 0, entonces por definición de derivación se tiene que:

$$\omega(fg) = f(a)\omega(g) + g(a)\omega(f) = 0$$

Dado que las derivadas direccionales en un punto a son lineales y cumplen la regla de Leibniz, estas serán derivaciones en a por definición. Esto implica que existe un operador lineal φ entre $T_a(\mathbb{R}^n)$ y $\mathcal{D}_a(\mathbb{R}^n)$ tal que:

$$\varphi: T_a(\mathbb{R}^n) \to \mathcal{D}_a(\mathbb{R}^n)$$
$$v \mapsto D_v = \sum_{i=1}^n v_i \frac{\partial}{\partial x_i} \bigg|_a$$

Teorema 1.1.2. El mapa $\varphi:T_a(\mathbb{R}^n)\to\mathcal{D}_a(\mathbb{R}^n)$ es un isomorfismo de espacios vectoriales.

Demostración. La linealidad se tiene trivialmente, dado que como acabamos de mencionar, las derivadas direccionales en un punto lo son. Debemos mostrar que φ es inyectiva y sobreyectiva. Para mostrar que φ es una función inyectiva, mostraremos que su kernel es cero.

Tomemos un vector $v \in T_a(\mathbb{R}^n)$ tal que $D_v \equiv 0$. Si tomamos la función $f : \mathbb{R}^n \to \mathbb{R}$ como la j-ésima función coordenada $x_j : \mathbb{R}^n \to \mathbb{R}$ tendremos que

$$0 = D_v(x_j) = \sum_{i=1}^n v_i \frac{\partial}{\partial x_i} \Big|_a x_i$$
$$= \sum_{i=1}^n v_i \delta_i^j = v_j$$

Dado que esto se cumple para cada j, se sigue que $v \equiv 0$, y, por lo tanto φ es una función inyectiva.

Para mostrar que φ es una función sobreyectiva supongamos que $\omega \in \mathcal{D}_a(\mathbb{R}^n)$, esto es, ω es una derivación en el punto $a=(a_1,\ldots,a_n)$, y sea $v=\begin{bmatrix}v_1&\cdots&v_n\end{bmatrix}$ un vector en $T_a(\mathbb{R}^n)$. Podemos representar a v en la base estándar de \mathbb{R}^n como $v=\sum_{i=1}^n v_i e_i$, si definimos a v de modo que cada v_i sea el número real dado por la relación $v_i=\omega(x_i)$ tendremos que $\omega=D_v$.

En efecto, si $f: \mathbb{R}^n \to \mathbb{R}$ es una función suave definida en una vecindad de a, entonces, por el Teorema de Taylor tenemos que existen funciones suaves definidas en una vecindad de a tal que:

$$f(x) = f(a) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)(x_i - a_i)$$
$$+ \sum_{i=1}^{n} \sum_{j=1}^{n} (x_i - a_i)(x_j - a_j) \int_0^1 (1 - t) \frac{\partial^2 f}{\partial x_i \partial x_j}(a + t(x - a))$$

Notemos lo siguiente, f(a) es una constante y el último término es la suma del producto de dos funciones suaves, (x_i-a_i) y (x_j-a_j) por la integral; ambos términos se anulan en x=a, por lo que, por el lema anterior, al aplicar ω a la serie de Taylor el primer y el último término se anularán, obteniendo:

$$\omega(f) = \omega(\sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)(x_i - a_i))$$

$$= \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)(\omega(x_i) - \omega(a_i))$$

$$= \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)v_i = D_v f$$

Por lo tanto φ es una función lineal, inyectiva y sobreyectiva entre espacios vectoriales, esto es, φ es un isomorfismo entre $T_a(\mathbb{R}^n)$ y $\mathcal{D}_a(\mathbb{R}^n)$.

Este teorema nos permite identificar el espacio tangente en un punto con el espacio de derivaciones en el mismo punto, lo cual denotamos por $T_a(\mathbb{R}^n) \simeq \mathcal{D}_a(\mathbb{R}^n)$, además, la existencia de este isomorfismo tiene como consecuencia el siguiente corolario.

Corolario 1.1.3. Para cada $a \in \mathbb{R}^n$, las n derivadas parciales

$$\frac{\partial}{\partial x_1}\Big|_a, \ldots, \frac{\partial}{\partial x_n}\Big|_a,$$

forman una base para el espacio tangente $T_a(\mathbb{R}^n)$.

Esta identificación nos permite escribir a los vectores de \mathbb{R}^n , $v = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}$ como una combinación lineal de la forma:

$$v = \sum_{i=1}^{n} v_i \frac{\partial}{\partial x_i} \bigg|_a.$$

1.1.2 Vectores Tangentes en Variedades

El último teorema nos da una motivación sobre cómo podríamos definir lo que es el espacio tangente en una variedad. Si bien en general no podemos visualizar a los vectores tangentes a un punto en una variedad como flechas, lo que sí podemos hacer es definir lo que es una derivación en un punto de una variedad.

Definición 1.1.4 (Derivación En Un Punto De Una Variedad). Sea M una variedad suave y sea $p \in M$ un punto. Diremos que un mapa $\omega : C^{\infty}(M) \to \mathbb{R}$ es una *derivación* en p si es lineal y además cumple que:

$$\omega(fg) = f(p)\omega(g) + g(p)\omega(f), \quad \forall f, g \in C^{\infty}(M).$$

Llamaremos al conjunto de todas las derivaciones en un punto de una variedad al espacio tangente a la variedad en ese punto y lo denotamos por $T_p(M)$, de modo similar a los espacios de derivaciones en \mathbb{R}^n , el espacio tangente a una variedad es un espacio vectorial bajo las operaciones usuales. Llamaremos a los elementos de $T_p(M)$ vectores tangentes a M en p.

Lema 1.1.4. Supongamos que M es una variedad suave, p un punto de M, ω una derivación en p y f,g funcione suaves de M a \mathbb{R} .

- Si f es una función constante, entonces $\omega(f)=0$.
- Si f(p) = g(p) = 0, entonces $\omega(fg) = 0$.

Demostración. La demostración de este lema es idéntica a la demostración del lema 1.1.1.

Ahora estudiaremos como es que los mapas suaves afectan a los vectores tangentes. En el caso de los espacios Euclidianos cuando consideramos una función suave de \mathbb{R}^m a \mathbb{R}^n la matriz Jacobiana que representa a la derivada total de la función nos permite aproximar linealmente a la función en una vecindad mediante vectores tangentes. En las variedades en general no podemos hablar de mapas lineales, pero podemos extender la idea de la derivada total con un mapa lineal entre los espacios tangentes de las variedades, mapa al cual llamaremos diferencial o pushforward.

Definición 1.1.5 (Diferencial de un Mapa Suave en un Punto). Si M y N son variedades suaves y $F: M \to N$ es un mapa suave, entonces, para cada punto $p \in M$ el mapa F induce un mapa lineal entre los espacios tangentes $T_p(M)$ y $T_{F(p)}(N)$, denotado por $d_pF: T_p(M) \to T_{F(p)}(N)$, al cual llamaremos el diferencial de F en p.

El mapa d_pF está dado del siguiente modo: Dada una derivación $\omega \in T_p(M)$, dF_p será la derivación en el punto $F(p) \in N$ que actúa sobre funciones suaves de N a \mathbb{R} como:

$$d_p F(\omega)(f) = \omega(f \circ F).$$

Figura 1.2: Representación del diferencial de un mapa suave en un punto.

El diferencial d_pF está bien definido dado que $F:M\to N$ y $f:N\to\mathbb{R}$ son funciones suaves, esto implica que $f\circ F:M\to\mathbb{R}$ será una función suave, por lo que $\omega(f\circ F)$ tiene sentido, la linealidad se tiene como consecuencia de que ω sea lineal y, por último, $d_pF(\omega):C^\infty(N)\to\mathbb{R}$ es una derivación en F(p) dado que si $f,g\in C^\infty(N)$ entonces:

$$\begin{aligned} d_p F(\omega)(fg) &= \omega((fg) \circ F) \\ &= \omega((f \circ F)(g \circ F)) \\ &= (f \circ F)(p)\omega(g \circ F) + (g \circ F)(p)\omega(f \circ F) \\ &= (f \circ F)(p)d_p F(\omega)(g) + (g \circ F)(p)d_p F(\omega)(f). \end{aligned}$$

A continuación, mostraremos algunas propiedades de los diferenciales de mapas suaves entre variedades, propiedades que son extensiones naturales de las propiedades conocidas de las derivadas totales del cálculo ordinario, como la linealidad del diferencial o la regla de la cadena.

Lema 1.1.5. El diferencial del mapa identidad en una variedad es la identidad del espacio tangente a la variedad.

Demostración. Si M es una variedad suave, Id_M el mapa identidad en M, $p \in M$ un punto arbitrario y $\omega \in T_p(M)$ un vector tangente de M en p, para cada $f \in C^{\infty}(M)$ se tiene:

$$d\mathrm{Id}_M(\omega)(f) = \omega(f \circ \mathrm{Id}_M) = \omega(f).$$

Dado que esto se cumple para cualquier $\omega \in T_p(M)$ y $f \in C^{\infty}(M)$, el diferencial será el mapa identidad en el espacio tangente.

Lema 1.1.6. Si M y N son variedades suaves, $F: M \to N$ un mapa suave y $p \in M$ un punto arbitrario. El diferencial $d_pF: T_p(M) \to T_{F(p)}(M)$ es un operador lineal.

Demostración. Si $f, g \in C^{\infty}(N)$, $a \in \mathbb{R}$ y $\omega \in T_p(M)$, tenemos que:

$$d_p F(\omega)(af+g) = \omega((af+g) \circ F)$$

$$= \omega(af \circ F + g \circ F)$$

$$= a\omega(f \circ F) + \omega(g \circ F)$$

$$= ad_p F(\omega)(f) + d_p F(\omega)(g).$$

Por lo tanto, el diferencial de un mapa es un operador lineal.

Lema 1.1.7. Si M, N y P son variedades suaves, $F: M \to N$ y $G: N \to P$ mapas suaves y $p \in M$ un punto cualquiera, entonces el diferencial del mapa composición $G \circ F$ cumple la regla de la cadena, esto es,

$$d_p(G \circ F) = d_{F(p)}G \circ d_p F$$

Demostración. Sea $\omega \in T_p(M)$ y $f \in C^\infty(P)$, tenemos que:

$$\begin{aligned} d_p(G \circ F)(\omega)(f) &= \omega(f \circ (G \circ F)) \\ &= \omega((f \circ G) \circ F) \\ &= d_p F(\omega)(f \circ G) \\ &= (d_{F(p)} G \circ d_p F)(\omega)(f) \end{aligned}$$

Por lo tanto, el diferencial de la composición cumple la regla de la cadena, más aún, es un mapa que lleva va del espacio tangente de M en p, $T_p(M)$, al espacio tangente de P en $(G \circ F)(p)$, $T_{(G \circ F)(p)}(P)$.

Lema 1.1.8. Si M y N son variedades suaves, $F: M \to N$ es un difeomorfismo y $p \in M$, entonces el diferencial $d_pF: T_p(M) \to T_{F(p)}(N)$ es un isomorfismo de espacios vectoriales y $(d_pF)^{-1} = d_{F(p)}(F^{-1})$.

Demostración. Dado que F es un difeomorfismo, por definición F es invertible por lo que existe una función $F^{-1}: N \to M$ tal que $F^{-1} \circ F = \operatorname{Id}_M$ y $F \circ F^{-1} = \operatorname{Id}_N$. Por los lemas probados anteriormente se tiene:

$$d_p(F^{-1} \circ F) = d_{F(p)}F^{-1} \circ d_pF = \mathrm{Id}_{T_p(M)}$$

$$d_{F(p)}(F \circ F^{-1}) = d_pF \circ d_{F(p)}F^{-1} = \mathrm{Id}_{T_{F(p)}(N)}.$$

Esto demuestra que tanto d_pF como $d_{F(p)}F^{-1}$ son isomorfismos de espacios vectoriales dado que ambos son operadores lineales e invertibles, y además se comprueba que $(d_pF)^{-1} = d_{F(p)}F^{-1}$.

De modo similar a la derivada total, el diferencial nos permitirá realizar cálculos en coordenadas locales, sin embargo, por cómo hemos definido al diferencial, estos operan sobre funciones definidas de manera global sobre la variedad. Al ser una generalización de la derivada total es de esperarse que puedan operar sin ambigüedad sobre subconjuntos abiertos, veremos esto a continuación.

Lema 1.1.9. Sea M una variedad suave, $p \in M$ un punto arbitrario y $\omega \in T_p(M)$. Si $f, g \in C^{\infty}(M)$ coinciden en una vecindad de p, entonces $\omega(f) = \omega(g)$

Demostración. Definamos la función h=f-g, h es una función suave que sea anula en una vecindad de p. Sea $\psi \in C^\infty(M)$ una función indicadora suave tal que $\psi(p) \equiv 1$ si $p \in \operatorname{sup} h$ y tal que $\operatorname{sup} \psi \subseteq M - \{p\}$. Dado que $\psi \equiv 1$ donde h es diferente de cero, el producto ψh es idénticamente h. Y, como $h(p) = \psi(p) = 0$, por el lema 1.1.4 se tendrá que $\omega(h) = \omega(\psi h) = 0$.

Por la linealidad de ω se sigue que $\omega(h)=\omega(f-g)=\omega(f)-\omega(g)=0$, por lo tanto, $\omega(f)=\omega(g)$.

Lema 1.1.10. Sea M una variedad suave, $U \subseteq M$ un subconjunto abierto, y sea $\iota: U \to M$ el mapa de inclusión. Para cada $p \in U$, el diferencial $d_p \iota: T_p M \to T_p M$ es un isomorfismo de espacios vectoriales.

Demostración. Por el ejemplo $\ref{eq:posterior}$ sabemos que U es en sí misma una variedad suave por lo que no hay ambigüedad al considerar el espacio tangente en algún punto. La linealidad de la diferencial se tiene por definición de derivación.

Para mostrar que el diferencial es inyectivo mostraremos que el kernel es nulo. Supongamos que $\omega \in T_p(U)$ y $d_p\iota(\omega) = 0 \in T_p(M)$. Sea V una vecindad de p tal que $\overline{V} \subset U$. Si $f: U \to \mathbb{R}$ es una función suave, por el lema ?? podemos garantizar que existe una función $\hat{f}: M \to \mathbb{R}$ que

coincide con f en \overline{V} . Luego, por el lema anterior se tiene que, como f y $\hat{f}|_U$ son funciones suaves que coinciden en una vecindad de p, entonces:

$$\omega(f) = \omega \left(\hat{f} \big|_{U} \right)$$
$$= \omega(\hat{f} \circ \iota)$$
$$= d_{p}\iota(\omega)(\hat{f}) = 0$$

Esto se cumplirá para cada función suave $f \in C^{\infty}(U)$, por lo que $\omega \equiv 0$, lo cual implica que $d\iota_p$ es inyectiva.

Para mostrar que el diferencial del mapa de inclusión es sobreyectivo supongamos que $\omega \in T_p(M)$ es algún vector tangente arbitrario en M. Definamos al operador $v:C^\infty(U)\to\mathbb{R}$ de tal modo que $v(f)=\omega(\hat{f})$, donde \hat{f} es cualquier función suave en M que coincida con f en \overline{V} , por el lema anterior v(f) no depende de la elección de la función \hat{f} , por lo que v está bien definida y es una derivación. Para cada función $g\in C^\infty(M)$ se cumple:

$$d_p \iota(\upsilon)(g) = \upsilon(g \circ \iota)$$

$$= \omega \left((g \circ \iota) \big|_V \right)$$

$$= \omega(g).$$

Por lo tanto, $d\iota_p$ es un sobreyectivo, y por lo tanto será un isomorfismo entre los espacios vectoriales $T_p(U)$ y $T_p(M)$.

Teorema 1.1.11 (Invariancia de la Dimensión). Si M es una variedad suave, n-dimensional. Para cada $p \in M$, el espacio tangente $T_p(M)$ es un espacio vectorial n-dimensional.

Demostración. Para cada $p \in M$ podemos elegir una carta suave (U, φ) que contenga a p. Por definición φ es un difeomorfismo de U a \mathbb{R}^n . El lema 1.1.8 nos dice que $T_p(U)$ y $T_{\varphi(p)}(\mathbb{R}^n)$ son isomorfos, y el lema anterior garantiza que $T_p(U)$ y $T_p(M)$ también son isomorfos, por lo tanto, $T_p(M) \simeq T_{\varphi(p)}(\mathbb{R}^n)$. De aquí que $\dim T_p(M) = \dim T_{\varphi(p)}(\mathbb{R}^n) = n$.

Una consecuencia inmediata del teorema 1.1.2 y el teorema anterior, es el siguiente corolario que nos da una identificación canónica de los elementos de cualquier espacio vectorial finito dimensional con los elementos de su espacio tangente, y, a su vez, dar una identificación canónica entre cada espacio tangente a un punto de una variedad y un espacio vectorial.

Corolario 1.1.12. Sea V un espacio vectorial finito dimensional con su estructura de variedad suave estándar. Para cada punto $a \in V$, el mapa $D_v : C^{\infty}(V) \to \mathbb{R}$ definido por:

$$D_v f = \left. \frac{d}{dt} \right|_{t=0} f(a+tv),$$

es un isomorfismo de Va $T_a(V)$.

1.1.3 Vectores Tangentes en Coordenadas

Las ideas presentadas anteriormente nos son de mucha utilidad, dado que como veremos en esta sección los espacios tangentes y los diferenciales nos permiten realizar cálculos concretos en las variedades suaves.

Sean M una variedad suave n-dimensional, $p \in M$ algún punto y (U, φ) una carta suave que contiene a p. Definiremos los mapas $\varphi_i : U \to \mathbb{R}$ como $\varphi_i = x_i \circ \varphi$, donde x_i son los elementos de la base estándar de \mathbb{R}^n .

Si f es un mapa suave definido en una vecindad de p, tomaremos:

$$\frac{\partial}{\partial \varphi_i}\Big|_p f = \frac{\partial}{\partial x_i}\Big|_{\varphi(p)} (f \circ \varphi^{-1}).$$

Evidentemente cada $\frac{\partial}{\partial \varphi_i}$ es una derivación, por lo que serán vectores tangentes en $T_p(M)$, y por definición $\varphi: U \to \mathbb{R}^n$ es un difeomorfismo. Sabiendo esto y por el lema 1.1.8 podemos garantizar que el diferencial $d_p\varphi: T_p(M) \to T_{\varphi(p)}(\mathbb{R}^n)$ es un isomorfismo de espacios vectoriales.

Lema 1.1.13. Sean M una variedad suave, $p \in M$ un punto arbitrario y $(U, \varphi) = (U, \varphi_1, \dots, \varphi_n)$ una carta suave que contiene a p, entonces:

$$d_p \varphi \left(\frac{\partial}{\partial \varphi_i} \Big|_p \right) = \left. \frac{\partial}{\partial x_i} \right|_{\varphi(p)}.$$

Demostración. Sea $f: \mathbb{R}^n \to \mathbb{R}$ cualquier función suave definida en una vecindad de $\varphi(p)$, se tendrá que:

$$d_{p}\varphi\left(\frac{\partial}{\partial\varphi_{i}}\Big|_{p}\right)f = \frac{\partial}{\partial\varphi_{i}}\Big|_{p}f \circ \varphi$$

$$= \frac{\partial}{\partial x_{i}}\Big|_{\varphi(p)}f \circ \varphi \circ \varphi^{-1}$$

$$= \frac{\partial}{\partial x_{i}}\Big|_{\varphi(p)}f.$$

Teorema 1.1.14. Sean M una variedad suave, $p \in M$ y $(U, \varphi) = (U, \varphi_1, \dots, \varphi_n)$ una carta suave que contiene a p. El espacio tangente $T_p(M)$ tiene como base a la colección:

$$\left. \frac{\partial}{\partial \varphi_1} \right|_p, \dots, \left. \frac{\partial}{\partial \varphi_n} \right|_p.$$

Demostración. El corolario 1.1.3 nos dice que las derivadas parciales forman una base para $T_p(\mathbb{R}^n)$, además el lema anterior nos dice que el mapa:

$$d_p \varphi : T_p(M) \to \mathbb{T}_{\varphi(p)}(\mathbb{R}^n)$$
$$\frac{\partial}{\partial \varphi_i} \bigg|_p \mapsto \frac{\partial}{\partial x_i} \bigg|_{\varphi(p)},$$

es un isomorfismo, y como los isomorfismos llevan bases de un espacio vectorial a bases de otros espacios vectoriales tendremos que el conjunto $\left\{\frac{\partial}{\partial \varphi_i}|_p\right\}_{i=1}^n$ es una base para $T_p(M)$.

Como hemos mencionado, el diferencial de un mapa suave entre variedades ha sido de tal modo que este sea una generalización de la derivada total conocida del cálculo en \mathbb{R}^n , la cual puede ser representada por la matriz Jacobiana, sin embargo, una ventaja que tenemos con el diferencial es que es independiente de las coordenadas que se elijan, esto es, no depende de las bases que se pudiesen elegir para los espacios tangentes a las variedades. Aun así, es posible dar una representación matricial para el diferencial, evidentemente esta representación sí dependerá de las coordenadas elegidas.

Comenzaremos viendo que, en efecto, la representación matricial coincidirá con lo que se podría esperar en espacios euclidianos, esto es, que la matriz sea la matriz Jacobiana.

Consideremos dos espacios euclidianos \mathbb{R}^n y \mathbb{R}^m , donde $\{x_1,\ldots,x_n\}$ y $\{y_1,\ldots,y_m\}$ son las bases estándar respectivas de cada espacio. Sean $U\subseteq\mathbb{R}^n$ y $V\subseteq\mathbb{R}^m$ subconjuntos abiertos, $p\in U$ un punto arbitrario y $F:U\to V$ una función suave. Utilizando la regla de la cadena para calcular el diferencial de F en p tenemos:

$$d_{p}F\left(\frac{\partial}{\partial x_{i}}\Big|_{p}\right) = \frac{\partial}{\partial x_{i}}\Big|_{p}(f \circ F)$$

$$= \sum_{j=1}^{n} \frac{\partial f}{\partial y_{j}}F(p)\frac{\partial F_{j}}{\partial x_{i}}(p)$$

$$= \sum_{j=1}^{n} \left(\frac{\partial F_{j}}{\partial x_{i}}(p)\frac{\partial}{\partial y_{j}}\Big|_{F(p)}\right)f.$$

$$\implies d_{p}F\left(\frac{\partial}{\partial x_{i}}\Big|_{p}\right) = \sum_{j=1}^{n} \frac{\partial F_{j}}{\partial x_{i}}(p)\frac{\partial}{\partial y_{j}}\Big|_{F(p)}.$$

Por lo tanto, la representación matricial de d_pF en términos de las bases elegidas para \mathbb{R}^n y \mathbb{R}^m es:

$$\begin{bmatrix} \frac{\partial F_1}{\partial x_1}(p) & \dots & \frac{\partial F_1}{\partial x_n}(p) \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1}(p) & \dots & \frac{\partial F_m}{\partial x_n}(p) \end{bmatrix}.$$

Esto es precisamente lo que cabría esperarse, que la representación en coordenadas del diferencial de una función suave sea precisamente la matriz Jacobiana, por lo que coincide con la derivada total.

Para ver qué sucede con el caso general consideremos dos variedades suaves M y N, un punto $p \in M$ y un mapa suave $F: M \to N$. Tomemos dos cartas (U, φ) y (V, ψ) que contengan a p y F(p) respectivamente. Como se vio en la sección ?? el mapa F tiene una representación en

$$M \xrightarrow{F} N$$

$$\downarrow^{\psi}$$

$$\mathbb{R}^{m} \xrightarrow{\hat{E}} \mathbb{R}^{n}$$

Diagrama de la representación coordenada de un mapa.

coordenadas dada por $\hat{F} = \psi \circ F \circ \varphi^{-1} : \varphi(U \cap F^{-1}(V)) \to \psi(V)$. Por los cálculos anterior podemos representar el diferencial de \hat{F} en $\varphi(p)$ con respecto a la base estándar por la matriz Jacobiana de \hat{F} en $\varphi(p)$. Utilizando el hecho de que $F \circ \varphi^{-1} = \psi^{-1} \circ \hat{F}$, calculando obtenemos:

$$\begin{aligned} d_{p}F\left(\frac{\partial}{\partial\varphi_{i}}\Big|_{p}\right) &= d_{p}(\psi^{-1}\circ\hat{F}\circ\varphi)\left(\frac{\partial}{\partial\varphi_{i}}\Big|_{p}\right) \\ &= d_{p}\psi^{-1}\Big|_{\hat{F}(\varphi(p))}\left(d_{\varphi(p)}\hat{F}\left(d_{p}\varphi\left(\frac{\partial}{\partial\varphi_{i}}\Big|_{p}\right)\right)\right) \\ &= d_{p}\psi^{-1}\Big|_{\hat{F}(\varphi(p))}\left(\sum_{j=1}^{n}\frac{\partial\hat{F}_{j}}{\partial x_{i}}\left(\varphi(p)\right)\frac{\partial}{\partial y_{j}}\Big|_{F(\varphi(p))}\right) \\ &= \sum_{j=1}^{n}\frac{\partial\hat{F}_{j}}{\partial x_{i}}(\varphi(p))d_{p}\psi^{-1}\Big|_{\hat{F}(\varphi(p))}\left(\frac{\partial}{\partial y_{j}}\Big|_{F(\varphi(p))}\right) \\ &= \sum_{j=1}^{n}\frac{\partial\hat{F}_{j}}{\partial x_{i}}(\varphi(p))\frac{\partial}{\partial\psi_{j}}\Big|_{\hat{F}(\varphi(p))}. \end{aligned}$$

Por lo tanto, podemos representar el diferencial dF_p con la matriz Jacobiana de la representación coordenada del mapa F.

Como estas representaciones dependen de la base elegida será necesario tener una manera en la que podamos transformar de unas coordenadas a otras. Consideremos una variedad suave M, dos cartas suaves $(U,\varphi)=(U,\varphi_1,\ldots,\varphi_n)$ y $(V,\psi)=(V,\psi_1,\ldots,\psi_n)$, y un punto $p\in M$ que también pertenezca a la intersección $p\in U\cap V$. Los vectores tangentes en p pueden ser representados respecto a las bases $\left\{\left.\frac{\partial}{\partial\varphi_i}\right|_p\right\}_{i=1}^n$ y $\left\{\left.\frac{\partial}{\partial\psi_i}\right|_p\right\}_{i=1}^n$.

Naturalmente la representación de cualquier vector tangente está relacionada con cualquier otra representación, a continuación, veremos cómo es que las representaciones están relacionadas. Tomemos el diferencial del mapa de transición $\psi \circ \varphi^{-1} : \varphi(U \cap V) \to \mathbb{R}^n$.

$$d_{\varphi(p)}(\psi \circ \varphi^{-1}) \left(\left. \frac{\partial}{\partial \varphi_i} \right|_{\varphi(p)} \right) = \sum_{j=1}^n \frac{\partial \psi_j}{\partial \varphi_i} (\varphi(p)) \left. \frac{\partial}{\partial \psi_j} \right|_{\psi(p)}.$$

Una consecuencia inmediata del lema 1.1.13 es la siguiente representación de los vectores tangentes, de la cual, junto con la identidad anterior se seguirá la cadena de igualdades:

$$\begin{split} \frac{\partial}{\partial \varphi_i} \bigg|_p &= d_{\varphi(p)} \left(\varphi^{-1} \right) \left(\frac{\partial}{\partial \varphi_i} \bigg|_{\varphi(p)} \right) \\ &= d_{\psi(p)} (\psi^{-1}) \circ d_{\varphi(p)} \left(\psi \circ \varphi^{-1} \right) \left(\frac{\partial}{\partial \varphi_i} \bigg|_{\varphi(p)} \right) \\ &= d_{\psi(p)} (\psi^{-1}) \left(\sum_{j=1}^n \frac{\partial \psi_j}{\partial \varphi_i} (\varphi(p)) \left. \frac{\partial}{\partial \psi_j} \bigg|_{\psi(p)} \right) \\ &= \sum_{j=1}^n \frac{\partial \psi_j}{\partial \varphi_i} (\varphi(p)) \left. \frac{\partial}{\partial \psi_j} \bigg|_p \right. \end{split}$$

Por lo tanto, si tenemos un vector tangente $\omega \in T_p(M)$ con dos representaciones diferentes, digamos:

$$\omega = \sum_{i=1}^{n} v_i \frac{\partial}{\partial \varphi_i} \quad \mathbf{y} \quad \omega = \sum_{j=1}^{n} w_j \frac{\partial}{\partial \psi_j}.$$

Donde v_i y w_i son constantes que dependen de ω , y podemos transformar las constantes del siguiente modo:

$$w_j = \sum_{i=1}^n \frac{\partial \psi_j}{\partial \varphi_i} (\varphi(p)) v_i.$$

Ejemplo 1.1.1. Consideremos el mapa de transición entre las coordenadas esféricas y las coordenadas estándar en subconjuntos abiertos adecuados de \mathbb{R}^3 , el cual está por la igualdad $(x,y,z)=(r\cos\varphi\sin\vartheta,r\sin\varphi\sin\vartheta,r\cos\vartheta)$. Tomemos el punto $p\in\mathbb{R}^3$ con representación en coordenadas esféricas $p=(r,\vartheta,\varphi)=(2,\frac{\pi}{4},\frac{\pi}{4})$ y tomemos un vector tangente $\omega\in T_p(\mathbb{R}^3)$ cuya representación en coordenadas polares esté dada por:

$$\omega = \frac{\partial}{\partial r} \bigg|_{p} - 2 \frac{\partial}{\partial \vartheta} \bigg|_{p} + 3 \frac{\partial}{\partial \varphi} \bigg|_{p}.$$

Si queremos transformar este vector tangente a coordenadas estándar necesitaremos utilizar la fórmula que acabamos de deducir de cambio de coordenadas. Calculando las constantes v_i :

$$\begin{split} v_1 &= \frac{\partial}{\partial r} r \cos(\varphi) \sin(\vartheta) \bigg|_p \frac{\partial}{\partial x} + \frac{\partial}{\partial r} r \sin(\varphi) \sin(\vartheta) \bigg|_p \frac{\partial}{\partial y} + \frac{\partial}{\partial r} r \cos(\vartheta) \bigg|_p \frac{\partial}{\partial z} \\ &= \cos(\varphi) \sin(\vartheta) |_p \frac{\partial}{\partial x} + \sin(\varphi) \sin(\vartheta) |_p \frac{\partial}{\partial y} + \cos(\vartheta) |_p \frac{\partial}{\partial z} \\ &= \frac{1}{2} \frac{\partial}{\partial x} + \frac{1}{2} \frac{\partial}{\partial y} + \frac{\sqrt{2}}{2} \frac{\partial}{\partial z} . \\ v_2 &= \frac{\partial}{\partial \vartheta} r \cos(\varphi) \sin(\vartheta) \bigg|_p \frac{\partial}{\partial x} + \frac{\partial}{\partial \vartheta} r \sin(\varphi) \sin(\vartheta) \bigg|_p \frac{\partial}{\partial y} + \frac{\partial}{\partial \vartheta} r \cos(\vartheta) \bigg|_p \frac{\partial}{\partial z} \\ &= r \cos(\varphi) \cos(\vartheta) |_p \frac{\partial}{\partial x} + r \sin(\varphi) \cos(\vartheta) |_p \frac{\partial}{\partial y} - r \sin(\vartheta) |_p \frac{\partial}{\partial z} \\ &= \frac{\partial}{\partial x} + \frac{\partial}{\partial y} - \frac{\partial}{\partial z} . \\ v_3 &= \frac{\partial}{\partial \varphi} r \cos(\varphi) \sin(\vartheta) \bigg|_p \frac{\partial}{\partial x} + \frac{\partial}{\partial \varphi} r \sin(\varphi) \sin(\vartheta) \bigg|_p \frac{\partial}{\partial y} + \frac{\partial}{\partial \varphi} r \cos(\vartheta) \bigg|_p \frac{\partial}{\partial z} \\ &= -r \sin(\varphi) \sin(\vartheta) |_p \frac{\partial}{\partial x} + r \cos(\varphi) \sin(\vartheta) |_p \frac{\partial}{\partial y} \\ &= -\frac{\partial}{\partial x} + \frac{\partial}{\partial y} . \end{split}$$

Por lo tanto, podemos sustituir en la ecuación que nos da el vector tangente para obtener su representación en coordenadas estándar, obteniendo:

$$\omega = -\frac{9}{2} \frac{\partial}{\partial x} \bigg|_{p} + \frac{3}{2} \frac{\partial}{\partial y} \bigg|_{p} + \frac{\sqrt{2} - 4}{2} \frac{\partial}{\partial z} \bigg|_{p}.$$

1.1.4 El Fibrado Tangente

Por la definición que hemos dado de espacio tangente, este está definido en cada punto de una variedad suave, sin embargo, para algunos fines es más conveniente considerar todos los espacios

tangentes a una variedad de forma simultánea. Es con este propósito que definiremos al *fibrado tangente* de una variedad suave. El fibrado tangente nos da una manera de organizar a los espacios tangentes de una variedad suave de tal modo que el objeto resultante sea en sí mismo una variedad suave.

Figura 1.3: Representación del fibrado tangente de dos variedades, $\sin(x)$ y \mathbb{S}^1 .

Definición 1.1.6 (Fibrado Tangente). Dada una variedad suave M, definimos el *fibrado tangente de* M o *haz tangente de* M, el cual denotaremos por TM, como la unión disjunta de todos los espacios tangentes a M:

$$TM = \bigsqcup_{p \in M} T_p(M) = \bigcup_{p \in M} \{p\} \times T_p(M).$$

Denotaremos a los elementos del conjunto como un par ordenado (p,ω) , donde $p\in M$ y $\omega\in T_p(M)$. El fibrado tangente TM tiene un mapa proyección natural sobre la variedad $M,\pi:TM\to M$ dado por $\pi(p,\omega)=p$.

Teorema 1.1.15. Sea M^n una variedad suave, el fibrado tangente TM tiene una topología natural y una estructura suave que vuelven a TM una variedad suave 2n—dimensional de tal modo que la proyección $\pi:TM\to M$ es suave con respecto a dicha estructura suave.

Demostración. Para realizar esta demostración haremos uso del lema $\ref{eq:mostracion}$, mostraremos que TM cumple las cinco propiedades ahí mencionadas cuando se da una colección adecuada de subconjuntos.

Consideremos una carta suave $(U,\varphi)=(U,\varphi_1,\ldots,\varphi_n)$ de $M,\pi^{-1}(U)\subseteq TM$ será la colección formada por todos los vectores tangentes a M en cada punto de U. Dado que cada $T_p(M)$ es un espacio vectorial y que, como hemos visto, $\{\frac{\partial}{\partial \varphi_i}\Big|_p\}_{i=1}^n$ nos da una base para $T_p(M)$, cada vector tangente $\omega_p\in T_p(M)$ podrá ser escrito de forma única como una combinación lineal:

$$\omega_p = \sum_{i=1}^n v_i \left. \frac{\partial}{\partial \varphi_i} \right|_p,$$

donde cada v_i es una constante que dependerá del vector tangente, $v_i = v_i(\omega_p) \in \mathbb{R}$. Definamos el mapa $\hat{\varphi}: TM \to \mathbb{R}^{2n}$ como:

$$\hat{\varphi}\left(\sum_{i=1}^n v_i \left.\frac{\partial}{\partial \varphi_i}\right|_p\right) = (\varphi_1(p), \dots, \varphi_n(p), v_1, \dots, v_n).$$

a Por como estamos definiendo este mapa, la imagen de $\pi^{-1}(U)$ bajo $\hat{\varphi}$, $\hat{\varphi}(\pi^{-1})(U)$ será el conjunto $\varphi(U) \times \mathbb{R}^n$, que es un subconjunto abierto de \mathbb{R}^{2n} , y trivialmente será una biyección dado que el mapa inverso existe, de hecho, este puede ser escrito explícitamente como:

$$\hat{\varphi}^{-1}(\varphi_1,\ldots,\varphi_n,v_1,\ldots,v_n) = \sum_{i=1}^n v_i \frac{\partial}{\partial \varphi_i}\Big|_{\varphi^{-1}(p)}.$$

Por lo tanto, la condición 1 del lema se cumple.

Para mostrar la segunda propiedad tomemos dos cartas suaves en M, (U,φ) y (V,ψ) , existirán cartas $(\pi^{-1}(U),\hat{\varphi})$ y $(\pi^{-1}(V),\hat{\psi})$ en TM correspondientes a las respectivas cartas en M. Notemos que, sin importar si la intersección es vacía se tiene que $\varphi(U\cap V)$ y $\psi(U\cap V)$ son subconjuntos abiertos de \mathbb{R}^n , por lo que:

$$\hat{\varphi}(\pi^{-1}(U) \cap \pi^{-1}(V)) = \varphi(U \cap V) \times \mathbb{R}^n,$$

$$\hat{\psi}(\pi^{-1}(U) \cap \pi^{-1}(V)) = \psi(U \cap V) \times \mathbb{R}^n.$$

Son subconjuntos abiertos de \mathbb{R}^{2n} , esto implica que la propiedad 2 se cumple para estas cartas en TM.

El mapa de transición $\hat{\psi} \circ \hat{\varphi}^{-1} : \varphi(U \cap V) \times \mathbb{R}^n \to \psi(U \cap V) \times \mathbb{R}^n$ puede ser expresado de manera explícita utilizando la identidad para el cambio de coordenadas mostrada en la sección anterior.

$$\hat{\psi} \circ \hat{\varphi}^{-1}(\varphi_1, \dots, \varphi_n, v_1, \dots, v_n) = \hat{\psi} \left(\sum_{i=1}^n v_i \frac{\partial}{\partial \varphi_i} \bigg|_{\varphi^{-1}(p)} \right)$$

$$= \hat{\psi} \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \frac{\partial \psi_{i}}{\partial \varphi_{j}} (\varphi(p)) w_{j} \right) \frac{\partial}{\partial \varphi_{i}} \Big|_{\varphi^{-1}(p)} \right)$$

$$= \left(\psi_{1}(\varphi^{-1}(p)), \dots, \psi_{n}(\varphi^{-1}(p)), \dots, \sum_{j=1}^{n} \frac{\partial \psi_{n}}{\partial \varphi_{j}} (\varphi(p)) w_{j}, \dots, \sum_{j=1}^{n} \frac{\partial \psi_{n}}{\partial \varphi_{j}} (\varphi(p)) w_{j} \right).$$

Por lo tanto, cada una de las componentes es la composición de mapas suaves o la suma de mapas suaves, por lo que el mapa $\hat{\psi} \circ \varphi^{-1}$ es suave, cumpliendo así la propiedad 3.

Por la segundo numerabilidad de M podemos elegir una colección numerable $\mathcal{U}=\{U_\alpha\}$ de cartas coordenadas, de la cual obtendremos la colección numerable $\{\pi^{-1}(U_\alpha)\}$ de cartas coordenadas que cubren a TM y que como hemos visto cumplen las propiedades 1, 2 y 3, y la existencia de tal colección nos da la cuarta propiedad.

Para la quinta y última propiedad notemos que si se damos dos elementos (p,ω) y (q,ν) de TM entonces hay dos posibilidades, p=q, en cuyo caso habrá una vecindad $\pi^{-1}(U)$ que contiene a ambos o $p\neq q$, en cuyo caso existan vecindades disjuntas U,V en M tales que $p\in U$ y $q\in V$, de modo que $\pi^{-1}(U)$ y $\pi^{-1}(V)$ serán vecindades disjuntas de (p,ω) y (q,ν) .

Por lo tanto, podemos concluir que TM es una variedad suave con la estructura suave dada por los conjuntos de la forma $\pi^{-1}(U)$. La suavidad de la proyección se garantiza por el teorema ??.

A las componentes del mapa $\hat{\varphi}:TM\to\mathbb{R}^{2n}$ que hemos definido le llamaremos las *coordenadas* naturales en TM, este mapa es un difeomorfismo y da lugar al siguiente corolario.

Corolario 1.1.16. Si M^n es una variedad suave y M puede ser cubierto por una única carta suave, entonces existe un difeomorfismo entre TM y $M \times \mathbb{R}^n$.

Es importante tener claro que, si bien para algunas variedades es posible visualizar su fibrado tangente como el producto cartesiano de la variedad con \mathbb{R}^n y esto nos da una cierta intuición de su estructura suave, como es el caso del fibrado tangente de \mathbb{R}^n , el cual será difeomorfas a \mathbb{R}^{2n} o el fibrado tangente de \mathbb{S}^1 , el cual es posible visualizar como un cilindro, no siempre es posible visualizar a los fibrados tangentes como el producto de variedades ya que los difeomorfismo no siempre están definidos de manera global.

Ahora podemos considerar qué es lo que sucede cuando tomamos el diferencial en cada uno de los puntos de un mapa suave $F: M \to N$, donde M y N, evidentemente este tendría que ser un mapa que vaya del fibrado tangente de M al fibrado tangente de N, esto es, el diferencial de F en cada punto de M, al cual llamaremos diferencial global es un mapa $dF:TM \to TN$, y como extensión

que es del diferencial en un punto se tendría que al restringirnos a un espacio tangente particular $T_p(M)$, el diferencial global dF coincidirá con el diferencial de F en p, d_pF .

$$\begin{array}{ccc}
M & \xrightarrow{F} & N \\
 & \uparrow & \uparrow \\
 & \uparrow & \uparrow \\
TM & \xrightarrow{dF} & TN
\end{array}$$

Diagrama del diferencial global de un mapa entre dos variedades.

Teorema 1.1.17. Si M^n y N^k son variedades suaves y $F:M\to N$ es un mapa suave, el diferencial global $dF:TM\to TN$ es un mapa suave.

Demostración. Como se vio hace unos párrafos, el diferencial de F en un punto p, dF_p tiene una representación coordenada como:

$$d_p F\left(\frac{\partial}{\partial x_i}\Big|_p\right) = \sum_{i=1}^n \frac{\partial \hat{F}_j}{\partial x_i}(\varphi(p)) \left.\frac{\partial}{\partial y_j}\right|_{F(p)}.$$

Donde φ es un difeomorfismo entre una vecindad del punto $p \in M$ y \mathbb{R}^n , por tanto, utilizando las coordenadas naturales en TM podemos representar al diferencial como:

$$dF(x_1, \dots, x_n, \omega_1, \dots, \omega_n) = \left(F_1(p), \dots, F_k(p), \sum_{i=1}^n \frac{\partial F_1}{\partial x_i}(p) \frac{\partial}{\partial y_1}, \dots, \sum_{i=1}^n \frac{\partial F_k}{\partial x_i}(p) \frac{\partial}{\partial y_k}\right).$$

Cada una de las componentes serán suaves dado que F es suave por hipótesis, por lo tanto dF es un mapa suave.

Un sencillo corolario que extiende las propiedades ya vistas del diferencial en un punto al diferencial global y que es consecuencia de los lemas 1.1.5, 1.1.7 y 1.1.8 es el siguiente.

Corolario 1.1.18. Sean M, N y P variedades suaves y sean $F: M \to N$ y $G: N \to P$ mapas suaves, entonces:

- $\bullet \ d(G \circ F) = dG \circ dF.$
- $\bullet \ d(\mathrm{Id}_M)=\mathrm{Id}_{TM}.$
- Si F es un difeomorfismo, entonces $dF:TM\to TN$ es un difeomorfismo, y $(dF)^{-1}=d(F^{-1})$.

1.1.5 Curvas En Variedades

Una de las ideas que podemos trasladar del cálculo ordinario al cálculo que estamos realizando en variedades suaves es la idea de curva definida en una superficie y la velocidad de la misma, nombre que viene inspirado de la utilidad en la física que estos conceptos tiene, ya que podemos pensar en la curva como una trayectoria y su derivada como su velocidad. En nuestro caso al estar trabajando con variedades estas serán nuestras «superficies» y, si bien no podemos simplemente derivar, sí podemos asociar a cada punto de la curva un vector en el espacio tangente.

Definición 1.1.7 (Curva en una Variedad). Sea M una variedad y sea $\gamma:I\subset\mathbb{R}\to M$ un mapa continuo, donde I es un intervalo abierto, diremos que γ es una $\mathit{curva sobre } M$. Además, si el mapa $\gamma:I\subset\mathbb{R}\to M$ es suave diremos que γ es una curva suave.

Notemos que para la definición de curva solo estamos pidiendo continuidad, no suavidad. Una curva puede estar definida en una variedad topológica para la cual no es posible dar una estructura suave. Sin embargo, para poder definir la velocidad es necesario que el espacio tangente esté definido, por lo que pediremos que tanto las variedades como las curvas sean suaves.

Definición 1.1.8 (Velocidad de una Curva). Sea M una variedad suave, $\gamma: I \to M$ una curva suave y $t_0 \in I$. Definimos la *velocidad de* γ *en* t_0 , la cual denotaremos como $\gamma'(t_0)$, como el vector:

$$\gamma'(t_0) = d\gamma \left(\frac{d}{dt} \Big|_{t_0} \right) \in T_{\gamma(t_0)}(M).$$

Donde $\frac{d}{dt}$ es la base estándar en $T\mathbb{R}$.

Al estar definida como un vector en el espacio tangente actuará sobre funciones suaves de M del siguiente modo: Dada una función suave $f: M \to \mathbb{R}$, la regla de la cadena nos dice que:

$$\gamma'(t_0)f = d\gamma \left(\frac{d}{dt}\Big|_{t_0}\right) f$$
$$= \frac{d}{dt}\Big|_{t_0} (f \circ \gamma)$$
$$= (f \circ \gamma)'(t_0).$$

Esta última igualdad nos dice que esta es una derivada en el sentido usual, dado que $\gamma: \mathbb{R} \to M$ y $f: M \to \mathbb{R}$ por lo que $f \circ \gamma: \mathbb{R} \to \mathbb{R}$. Si consideramos a la variedad $M = \mathbb{R}^n$ o algún subconjunto abierto de \mathbb{R}^n esta definición coincide con la definición dada por do Carmo (2016).

Si tomamos una carta suave $(U,\varphi)=(U,\varphi_1,\ldots,\varphi_n)$ en una variedad suave M y dicha carta contiene a un punto $\gamma(t_0)$, donde γ es una curva en M, podemos dar la representación coordenada de γ , en una vecindad suficientemente pequeña de t_0 como $\gamma(t)=(\gamma_1(t),\ldots,\gamma_n(t))$, y por la fórmula que tenemos para representar al diferencial en coordenadas tendremos que gamma se puede escribir como:

$$\gamma'(t_0) = \sum_{i=1}^n \frac{d\gamma_i}{dt}(t_0) \left. \frac{\partial}{\partial \varphi_i} \right|_{\gamma(t_0)}.$$

Ejemplo 1.1.2. Consideremos la función $\gamma:(0,\pi)\to\mathbb{S}^1$ definida por

$$\gamma(t) = (\cos(t), \sin(t)).$$

Esta función es suave en ambas componentes, en particular es continua, por lo que será una curva en \mathbb{S}^1 y por ser suave podremos hablar de su velocidad en cada punto $t_0 \in (0, \pi)$.

La base en coordenadas polares para el espacio tangente de \mathbb{S}^1 esta puede ser dada como $\left(\frac{\partial}{\partial r}, \frac{\partial}{\partial \vartheta}\right)$. Si quisiéramos dar la velocidad de la curva en un punto, digamos $t_0 = \frac{\pi}{4}$, dicha curva tendrá su representación en coordenadas del siguiente modo:

$$\begin{split} \gamma'(t_0) &= \frac{d\gamma_1}{dt} \left(\frac{\pi}{4}\right) \frac{\partial}{\partial r} \bigg|_{\gamma(\frac{\pi}{4})} + \frac{d\gamma_2}{dt} \left(\frac{\pi}{4}\right) \frac{\partial}{\partial \vartheta} \bigg|_{\gamma(\frac{\pi}{4})} \\ &= -\sin\left(\frac{\pi}{4}\right) \frac{\partial}{\partial r} \bigg|_{\gamma(\frac{\pi}{4})} + \cos\left(\frac{\pi}{4}\right) \frac{\partial}{\partial \vartheta} \bigg|_{\gamma(\frac{\pi}{4})} \\ &= -\frac{\sqrt{2}}{2} \left. \frac{\partial}{\partial r} \right|_{\gamma(\frac{\pi}{4})} + \frac{\sqrt{2}}{2} \left. \frac{\partial}{\partial \vartheta} \right|_{\gamma(\frac{\pi}{4})}. \end{split}$$

Teorema 1.1.19. Supongamos que M es una variedad suave y que $p \in M$. Cada vector $\omega \in T_p(M)$ es la velocidad de alguna curva suave en M.

Demostración. Tomemos algún punto $p \in M$, y sea $(U, \varphi) = (U, \varphi_1, \dots, \varphi_n)$ una carta suave en M centrada en p. Tomemos cualquier vector $\omega \in T_p(M)$, este vector puede ser expresado en como una combinación lineal en términos de la base coordenada de $T_p(M)$ del siguiente modo:

$$\omega = \sum_{i=1}^{n} v_i \left. \frac{\partial}{\partial \varphi_i} \right|_p.$$

donde v_i son constantes que dependen de ω . Para un $\varepsilon > 0$ suficientemente pequeño podemos considerar la curva $\gamma : (-\varepsilon, \varepsilon) \to U$ cuya representación coordenada sea:

$$\gamma(t) = \varphi^{-1}(tv_1, \dots, tv_n), \quad t \in (-\varepsilon, \varepsilon).$$

Esta será una curva suave en M, y utilizando la representación en coordenadas dada anteriormente para la velocidad tendremos:

$$\gamma'(0) = \sum_{i=1}^{n} \frac{d\gamma_i}{dt}(0) \left. \frac{\partial}{\partial \varphi_i} \right|_{\gamma(0)}$$

$$= \sum_{i=1}^{n} \frac{d(tv_i)}{dt}(0) \left. \frac{\partial}{\partial \varphi_i} \right|_{\gamma(0)=p}$$

$$= \sum_{i=1}^{n} v_i \left. \frac{\partial}{\partial \varphi_i} \right|_{p}$$

$$= \omega.$$

Conocer la velocidad de una curva es muy útil no solamente por su posible interpretación física, también nos da una manera alternativa para poder calcular el diferencial de un mapa, que es especialmente útil cuando tenemos un mapa que no está representado en coordenadas estándar de forma explícita, como se verá con los siguientes dos resultados.

Lema 1.1.20. Sean M y N variedades suaves, $F: M \to N$ un mapa suave, y sea $\gamma: I \to M$ una curva suave. Para cada $t_0 \in I$ la velocidad de la curva compuesta en $t=t_0$ está dada por:

$$(F \circ \gamma)'(t_0) = dF(\gamma'(t_0)).$$

Demostración. Bastará aplicar la definición de velocidad de una curva y el corolario 1.1.18, de tal manera que se obtendrá la siguiente cadena de igualdades:

$$(F \circ \gamma)'(t_0) = d(F \circ \gamma)' \left(\frac{d}{dt} \Big|_{t_0} \right)$$
$$= dF \circ d\gamma \left(\frac{d}{dt} \Big|_{t_0} \right)$$
$$= dF(\gamma'(t_0)).$$

Corolario 1.1.21. Sean M y N variedades suaves, $F:M\to N$ un mapa suave, $p\in M$ y $\omega\in T_p(M)$. Entonces para cualquier curva suave $\gamma:I\to M$ tal que $0\in I$, $\gamma(0)=p$ y $\gamma'(0)=\omega$ se tendrá:

$$d_p F(\omega) = (F \circ \gamma)'(0).$$