

Aprendizagem de Máquina

Alceu S. Britto Jr.

Programa de Pós-Graduação em Informática Pontifícia Universidade Católica do Paraná (PUCPR)

Aprendizagem Baseada em Instâncias

KNN (K-Nearest Neighbors

D (exemplos de treinamento)

Comparação (distância)

x, (exemplo de teste)

Decisão baseada nos K vizinhos mais próximos (neste exemplo K=5)

 Paradigma baseado em instâncias...

Valor do Conceito Alvo (exemplo de treinamento mais próximo)

Introdução

 Métodos de aprendizagem baseados em instâncias assumem que as instâncias podem ser representadas como pontos em um espaço Euclidiano.

Introdução

- Os métodos de aprendizagem baseados em instâncias são métodos não paramétricos.
- Métodos não paramétricos: podem ser usados com distribuições arbitrárias e sem a suposição de que a forma das densidades são conhecidas.

Aprendizagem Baseada em Instâncias

• A aprendizagem consiste somente em armazenar os exemplos de treinamento $< x_1, c_1 >$,

 Após a aprendizagem, para encontrar o valor do conceito alvo (classe) associado a uma instância de testes <x_t, ? >, um conjunto de instâncias similares são buscadas na memória e utilizadas para classificar a nova instância.

Aprendizagem Baseada em Instâncias

Aprendizagem Baseada em Instâncias

- No final teremos um conjunto de distâncias (medida de similaridade) entre a instância de teste x_t e todos as instâncias de treinamento x₁, x₂,...,x_n
- Qual valor de conceito alvo (classe) atribuímos a instância x_t?

O conceito alvo associado ao exemplo de treinamento mais similar !!

Aprendizagem k-NN

- k-NN = k Nearest Neighbor = k Vizinhos mais Próximos
- O algoritmo k–NN é o método de aprendizagem baseado em instâncias mais elementar.
- O algoritmo k–NN assume que todas as instâncias correspondem a pontos em um espaço n–dimensional.

 \Re^n

 Os "vizinhos mais próximos" de uma instância são definidos em termos da distância Euclidiana.

Regra k-NN

A regra dos vizinhos mais próximos:

Meta: Classificar x_t atribuindo a ele o rótulo representado mais freqüentemente dentre as k amostras mais próximas e utilizando um esquema de votação.

Aprendizagem k-NN

 Vamos considerar uma instância arbitrária x que é descrita pelo vetor de características:

$$x = \langle a_1(x), a_2(x), ..., a_n(x) \rangle$$

onde $a_r(x)$ representa o valor do r—ésimo atributo da instância x.

Aprendizagem k-NN

 Então a distância Euclidiana entre duas instâncias x_i e x_j é definida como d(x_i, x_j), onde:

$$d(x_i, x_j) \equiv \sqrt{\sum_{r=1}^n \left(a_r(x_i) - a_r(x_j)\right)^2}$$

Algoritmo k-NN

Algoritmo de treinamento

 Para cada exemplo de treinamento <x,c>, adicione o exemplo à lista training_examples

Algoritmo de classificação

- Dada uma instância x, a ser classificada,
 - Faça $x_1, ..., x_k$ representar as k instâncias de training_examples que estão mais próximas de x_i
 - Retorne

$$f(x_t) \leftarrow \underset{c \in C}{\operatorname{arg\,max}} \sum_{i=1}^k \delta(c, f(x_i))$$

onde $\delta(a,b)=1$ se a=b e $\delta(a,b)=0$ caso contrário.

Aprendizagem k-NN

FIGURE 4.15. The k-nearest-neighbor query starts at the test point \mathbf{x} and grows a spherical region until it encloses k training samples, and it labels the test point by a majority vote of these samples. In this k=5 case, the test point \mathbf{x} would be labeled the category of the black points. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

Algoritmo k-NN

Algoritmo k-NN

Algoritmo k-NN

Algoritmo k-NN

Algoritmo *k*–NN

k-NN com Distância Ponderada

- Refinamento do k–NN:
 - Ponderar a contribuição de cada um dos k vizinhos de acordo com suas distâncias até o ponto x_t que queremos classificar, dando maior peso aos vizinhos mais próximos.
- Podemos ponderar o voto de cada vizinho, de acordo com o quadrado do inverso de sua distância de x_r.

$$\hat{f}(x_t) \leftarrow \underset{c \in C}{\operatorname{arg\,max}} \sum_{i=1}^k w_i \delta(c, f(x_i)) \qquad w_i \equiv \frac{1}{d(x_t, x_i)^2}$$

• Porém, se $x_t = x_i$, o denominador $d(x_t, x_i)^2$ torna—se zero. Neste caso fazemos $f(x_t) = f(x_i)$.

Resumo

- Métodos de aprendizagem baseados em instâncias não necessitam formar uma hipótese explícita da função alvo sobre o espaço das instâncias.
- Eles formam uma aproximação local da função alvo para cada nova instância a "classificar".

Resumo

- O k–NN é um algoritmo baseado em instâncias para aproximar funções alvo de valor real ou de valor discreto, assumindo que as instâncias correspondem a pontos em um espaço d–dimensional.
- O valor da função alvo para um novo ponto é estimada a partir dos valores conhecidos dos k exemplos de treinamento mais próximos.

Resumo

- Vantagens:
 - habilidade para modelar funções alvo complexas por uma coleção de aproximações locais menos complexas.
 - A informação presente nos exemplos de treinamento nunca é perdida.
- Dificuldades:
 - Tempo?
 - Determinação de uma métrica.