Lean 4 Cheatsheet

If a tactic is not recognized, write import Mathlib.Tactic at the top of your file.

Logical symbol	Appears in goal	Appears in hypothesis
\forall (for all)	intro x	apply h or specialize h x
\rightarrow (implies)	intro h	apply h or specialize h1 h2
\neg (not)	intro h	apply h or contradiction
$\leftrightarrow (\mathrm{if} \ \mathrm{and} \ \mathrm{only} \ \mathrm{if})$	constructor	rw [h] or rw [← h] or apply h.mp or apply h.mpr
\wedge (and)	constructor	rcases h with $\langle h1, h2 \rangle$
\exists (there exists)	use x	rcases h with $\langle x, hx \rangle$
∨ (or)	left or right	rcases h with h h

Tactic	Effect
exact expr	prove the current goal exactly by expr.
apply expr	prove the current goal by applying $expr$ to some arguments.
refine expr	like exact, but $expr$ can contain sub-expressions ?_ that will be turned into new goals.
convert expr	prove the goal by showing that it is equal to the type of $expr$.
$\mathtt{have}\ \mathtt{h}\ :\ proposition\ \text{:=}\ expr$	add a new hypothesis h of type proposition.
have h : proposition	also creates <i>proposition</i> as a new goal.
by_cases h : proposition	create two goals, one where h is the hypothesis that <i>proposition</i> is true and one where h is the hypothesis where it is false.
exfalso	replace the current goal by False.
by_contra h	start a proof by contradiction, where h is the hypothesis that the current goal is false.
<pre>push_neg push_neg at h</pre>	push negations into quantifiers and connectives in the goal (or in h); e.g. change $\neg \forall x$, $P x$ to $\exists x$, $\neg P x$.
congr	prove an equality using congruence rules
gcongr	prove an inequality using congruence rules
rw [expr]	in the goal, replace (all occurrences of) the left-hand side of $expr$ by its right-hand side. $expr$ must be an equality or if and only if statement.
$\texttt{rw} \ [\leftarrow expr]$	\dots rewrites from right-to-left
${\tt rw}$ [${\it expr}$] at h	\dots rewrite in hypothesis h
simp	simplify the goal using all lemmas tagged ${\tt @[simp]}$ and basic reductions.
simp at h	simplify in hypothesis h.
simp [*, expr]	\dots also simplify with all hypotheses and $expr$.
simp only [expr]	\dots do not simplify with all standard lemmas, only with $expr$.
simp?	\dots generate a simp only [\dots] tactic that applies the same simplifications.
$simp_rw [expr1, expr2]$	Like rw, but uses simp only at each step
exact?	search for a single lemma that closes the goal using the current hypotheses.
apply?	gives a list of lemmas that can apply to the current goal.
rw?	gives a list of lemmas that can be used to rewrite the current goal.
linarith	prove linear (in)equalities from the hypotheses
<pre>ring / noncomm_ring abel / group</pre>	prove the goal by using the axioms of a commutative ring $/$ ring $/$ abelian group $/$ group.
aesop	simplify the goal, and use various techniques to prove the goal.
tauto	prove certain goals using first-order logic.