

一一实现"智慧光伏"的最后一环

"智慧光伏"的时代背景

中国光伏产业在经历了高速发展之后,逐步过度到理性发展阶段,来自于开发商、投资金融及保险等机构的压力,迫使产业进入整合升级的关键时期。

www.nxsensor.com 第 2 页

各个环节都在奔向智能化…

自动跟踪支架

功能强大的逆变器

特斯拉储能系统

NOTE OF THE PARTY OF THE PARTY

光伏大数据平台

• • • • • •

作为能量转换源头的组件, 智能化程度却不高,它是 实现智慧光伏的最后一环!

您需要 —— NxSensor™传感装置

NxSensor™让每一片组件更加智能,帮助电站实现100%智慧光伏!

组件监测

监测每个组件的电压、温度数据, AI算法智能分析组件的性能表现。

火灾预防

关注直流电弧所引发的数据特征,提供组件级火灾预防和预警措施。

快速关断

执行NEC 2017快速关断安全标准, 组件可以完全断开,输出无电压。

无线组网

采用独特的H0HWave™技术传输数据, 这是经济且高效的组件通信方案。

www.nxsensor.com 第4页

为什么需要监测每个单独组件?

许多故障都与组件有关,而主要监测手段位于逆变器,监测效果非常粗放******

组件在使用过程中面临多种问题,如:阴影遮挡、 热斑、隐裂、二极管损坏、自然衰减等。

组件经过串联形成组串,一个有问题的组件将会 拉底整个组串的输出功率。

组件是能量源头,它的故障直接影响产能,及时更换能弥补损失,不过如何识别有问题的组件?

如果无法找到系统 缺陷,您如何知道 电站是否处于最佳 产能?

www.nxsensor.com 第 5 页

NxSensor™的组件异常识别算法

所有组件在同一时刻 应有相同的电压数值

→ 电压数值分布图

所有组件在同一时段 应有相同的电压波形

→ 电压-时间曲线

如果一个组件存在着问题, 其数值或波形会有所差异。 NxSensor™的人工智能算法 能自动分辨这种差异,并 区分异常等级,将有严重 问题的组件,告知用户。

注: NxSensor™也会分析温度数据。

找到异常,采取行动,这是 电站维持高产能收益的秘诀。

www.nxsensor.com 第 6 页

如何帮助预防火灾?

- ▶ 光伏电站 40%的火灾是由于直流电弧引起的,这表明 源头主要位于直流侧,包括汇流箱、逆变器和组件。
- 电站具有成千上万个接头,只要任何一个接头松动, 就可能会造成直流电弧,由此引起火灾。

- 从火灾早期现象来看,接头松动会导致电压频繁波动。此外,火源及附近的组件也会最先升温。
- ➤ NxSensor™会重点关注这些数据特征,一旦发现便发出 警告,从而在早期阶段抑制火源,起到预防作用。

www.nxsensor.com 第7页

什么是"快速关断"以及如何实现?

NxSensor

- 对于光伏组件,只要有太阳照射,电压就一直存在着。 虽然单个组件电压不高,但是串联起来可以高达600V。 这对消防、安装及维护人员是一种安全隐患。
- NEC 2017-690.12规定,在快速关断装置启动后30秒内, 界线内电压必须降至80V以下,这就要求组件级关断。

快速关断启动后的30秒内, 红色界线内电压降至80V以下 Uncontrolled Zone 界线: 0.31m (1 ft)

注:采用PLC通信的快速关断,需要组件输出低电压以防止死锁。NxSensorTM采用无线通信,能做到组件完全独立断开。

NxSensor™的系统拓扑结构

无论是组件监测, 还是快速关断, 都需要数据通信作为支撑技术。

www.nxsensor.com 第 9 页

为什么需要无线自组网?

考虑到光伏电站的特点:

- 电站覆盖面积广 → 通信距离远
- 组件排列密度高 → 网络容量大

无线自组网支持中间节点消息转发, 只有这样能在不增加成本的情况下, 提升通信距离、扩大网络容量。

HOHWave™无线自组网:

- 消息如水波一环接一环传递,提升距离。
- 一个网关能容纳 500个以上的组件节点。
- 数据同步率高,节点采集时间误差〈2秒。

www.nxsensor.com 第 10 页

通过无线自组网降低配置工作

许多组件级产品需要进行映射配置, 这样当一个传感器报警时,用户能 知道它对应的组件及其位置。由于 组件数量众多,配置的工作量巨大:

传感器ID和组件ID的映射表 (一般通过纸质或APP进行录入)

HOHWave™具有创新的拓扑发现功能, 能够判断每个组件在网络中的位置 和坐标,减少繁琐的配置过程。

HOHWave™ 利用组件排列规则的先验条件,实现拓扑发现:

- 先由人工配置锚点节点,一般位于阵列顶角,数量较少。
- 其余节点监听无线信号,根据信号强度,获知相邻节点。
- 以此类推,发现网络每个节点的位置,得出物理拓扑图。

www.nxsensor.com 第 11 页

通信技术方案对比

技术方案			特点描述		
有线	RS-485		需要额外增加通信线缆,电站布线困难,需要挖槽、埋管等, 不适合组件级的数据通信,一般用于汇流箱、逆变器的通信。		
	PLC电力线 (Power Line Communication)		不需要额外增加线缆,使用组件本身的电力线传输数据。 微逆产品使用交流电PLC进行通信,组件优化器产品使用直流电PLC进行通信。 通信系统和电力系统没有解耦,在一定程度上数据通信易受到电力传输干扰。 PLC的网络带宽有限,系统灵活性不足,不利于容量扩展。 PLC的调制解调芯片价格较为昂贵,增加了系统实现成本。		
无线	非MESH 自组网	WiFi	芯片价格较低,信号覆盖范围有限,不适合组网,无法实现大规模节点接入。		
		LoRa	典型物联网协议,不能组网。为实现大规模节点接入,需增强无线信号收发能力,使用高品质通信模块及天线,或者加大网关部署数量,这都会增加系统实现成本。		
		NB-IoT	典型物联网协议,芯片成本太高,属于运营商网络,需要耗费流量资费。		
	MESH 自组网	Zigbee	实际的组网能力有限,现有应用中,网络容纳的节点数一般不超过500个。 为了优化性能,需要专业人士参与规划、人工配置网络结构。		
		HOHWave TM	针对组件级监测推出的无线传感器网络,扩展灵活、更少配置、低成本。		

www.nxsensor.com 第 12 页

接线盒系列 —— Smart J-BOX #1

类别	参数		
电压监测	7 [~] 60V, 精度±0.2V		
温度监测	-30 [~] 75°C,精度±0.5°C		
无线频段	2.4GHz ISM频段		
无线组网	HOHWave™, 500+节点/网关		
多跳层级	典型10级,每级30米		
电气安全	600V抗浪涌		
平均功耗	リ\于50mW		
防护等级	IP68		
快速关断	支持, NEC 2017		
PCB尺寸	40mm x 28mm x 4mm		
安装位置	光伏组件接线盒内		

- 小体积设计,便于集成至各类接线盒。
- 顶针与焊盘接触,取电电流小于20mA。
- 顶针可以穿透接线盒中已灌软胶。
- 两对弹簧片之间的距离可以调节。

www.nxsensor.com 第 13 页

接线盒系列 —— Smart J-BOX #2

 类别	参数		
电压监测	7 [~] 60V, 精度±0.2V		
温度监测	-30 [~] 75°C,精度±0.5°C		
无线频段	2.4GHz ISM频段 HOHWave™		
额定电压	1000V / 1500V		
额定电流	15A		
输入电压	90V		
平均功耗	八 \于50mW		
防护等级	IP68		
快速关断	支持, NEC 2017 690.12		
产品尺寸	98.8mm x 17.4mm x 78.5mm		
连接方式	随同组件安装		
接线端子	MC4 / MC4兼容		

NxSensor Cloud
The data analysis platform

Mobiles & PCs
The user terminals

www.nxsensor.com 第 14 页

接线盒系列 —— 外挂式/后装式 J-BOX #3

Ethernet WiFi 2G/3G/4G

<···>

Mobiles & PCs

The user terminals

 类别	参数		
电压监测	7 [~] 60V,精度±0.2V		
温度监测	-30 [~] 75° C,精度±0.5° C		
无线频段	2.4GHz ISM频段 HOHWave™		
额定电压	1000V / 1500V		
额定电流	15A		
输入电压	90V		
平均功耗	リv于50mW		
防护等级	IP68		
快速关断	支持, NEC 2017 690.12		
产品尺寸	98.8mm x 17.4mm x 78.5mm		
连接方式	并联,替换原有±正负输出		
接线端子	MC4 / MC4兼容		

www.nxsensor.com 第 15 页

接线盒系列 —— 外挂式/后装式 J-BOX #4

类别	参数	
电压监测	7 [~] 60V, 精度±0.2V	
温度监测	-30 [~] 75°C,精度±0.5°C	
无线频段	2.4GHz ISM频段 HOHWave™	
额定电压	1000V / 1500V	
额定电流	15A	
输入电压	90V	
平均功耗	小于50mW	
防护等级	IP68	
快速关断	不支持	
产品尺寸	105.1mm x 18.5mm x 18.5mm	
连接方式	并联,线缆夹子	
接线端子	MC4 / MC4兼容	

www.nxsensor.com 第 16 页

NxSensor™软件 —— 用 "数据" 说话

www.nxsensor.com 第 17 页

组件级电子产品对比

	微逆	组件优化器#1	组件优化器#2	NxSensor™传感装置
功能	逆变器 + 关断	功率优化 + 关断	功率优化 + 关断	组件监测 + 关断
通信	PLC电力线通信	PLC电力线通信	ZigBee无线通信	HOHWave™无线通信
价格	约¥2.1/W	约¥1.6/W	约¥1.25/W	约¥0.20/W
安装	后装	后装	可随接线盒安装	可随接线盒安装

www.nxsensor.com 第 18 页

投资与回报 —— 思考长远所带来的价值

如今,行业使用"每瓦费"用来标识光伏系统成本,但这个只反映了建设初期投入,忽视了产品质量和使用过程失效所造成的损失,让我们计算一下长远的投资与回报:

电站概况:

• 电站规模: 1000kW

• 每瓦每年产生电量: 1kWh

• 每度电收益:1元/度电

每年不良组件更换率:5%。

发电收益:

• 每年电站收益,大约:1000,000元

• 每年NxSensor™带来的收益: 50,000元

• 每年NxSensor™的收益率: 5%(保守估计)

运维费用:

• 每年每瓦运维费用: 0.06元

• 每年NxSensor™节省的比例: 20%

• 每年NxSensor™节省的费用: 12,000元

NxSensor™投入成本:

• 建设期每瓦费用: 0.20元

• 建设期一次性支出: 200,000元

• 每年数据服务费用: 5,500元

NxSensor™收益分析:

• NxSensor™带来的每年收益: 56,500元

NxSensor™20年的总收益: 1,130,000元

• 成本收益的回报时间: 3.5年

NxSensor™的投资回报率: 28%

[分析]NxSensor™能准确告知问题组件,提高运维效率,节省的开支比例为20%。

[分析]即使保守假设,NxSensor™仍然使电站获得高收益。实际应用NxSensor™的投资回报率更高,而且还降低了火灾风险和提供快速关断的功能。

[分析]每年不良组件导致的损失: 1000,000*5‰= 5,000元不良组件会拉底整个组串输出功率,一个组串有20多个组件,但保守假设拉底的损失是 5,000*9 = 45,000元 NxSensor™及时发现弥补这些损失,两者相加,收益率为5%

www.nxsensor.com 第 19 页

光伏 • 物联网 • 数据

公司:上海南升能源科技有限公司 (NxSensor)

网址: <u>www.nxsensor.com</u> 电话: 021-6198 4167

邮箱: <u>jiayan@wiihey.com</u> 手机: 186 2179 7323

地址:上海浦东芳甸路1188号证大喜玛拉雅B1优客工场