EECS/BioE C106A/206A Introduction to Robotics

Lost Section 7

Nov 13 Fri 7 – 9 PM

Summary

- Vision
- Velocities (twist X magnitude), twists, and Jacobians
- Singularity
- Dynamics using Lagrangian (Kinetic energy Potential energy)
- Control: computed torque method

Linear Algebra and Adjoint Matrix

•
$$\xi = (v, \omega)^{\mathrm{T}} \in \mathbb{R}^6$$

•
$$\hat{\xi} = \begin{bmatrix} \widehat{\omega} & v \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{4 \times 4}$$

•
$$\operatorname{Ad}_g = \begin{bmatrix} R & \hat{p}R \\ 0 & R \end{bmatrix}$$

•
$$g\hat{\xi}g^{-1} = \left(\mathrm{Ad}_g\xi\right)^{\hat{}}$$

•
$$(g\hat{\xi}g^{-1})^{\vee} = \mathrm{Ad}_g \xi$$

•
$$Ad_{g^{-1}} = \left(Ad_g\right)^{-1}$$

$$\bullet \quad \operatorname{Ad}_{g_1g_2} = \operatorname{Ad}_{g_1} \operatorname{Ad}_{g_2}$$

•
$$V^s = \mathrm{Ad}_g V^b$$

•
$$J^s = \mathrm{Ad}_g J^b$$

1. Vision

Homogeneous coordinate: $x = [u, v, 1]^T \in \mathbb{R}^3$

Spatial coordinate of the point: $X \in \mathbb{R}^3$, $\lambda \in \mathbb{R}$,

$$\lambda x = KX$$

where K is the camera matrix. If the camera is calibrated and normalized,

$$K = I$$
, and $\lambda x = X$.

Least square solution: $A \in \mathbb{R}^{m \times n}$, $\bar{\lambda} \in \mathbb{R}^n$,

$$A\bar{\lambda} = b$$

Case 1. m = n and A is invertible: there is a unique solution.

Case 2. m < n: there are infinite solutions.

Case 3. m > n:

The problem is over-constrained: the number of solutions could be 0, 1, or ∞ .

For Case 3, we can use the least square method: find λ such that

$$\min_{\overline{\lambda}} \bigl(A \bar{\lambda} - b\bigr)^2 \,.$$
 The solution for $\bar{\lambda}$ is

$$\bar{\lambda} = \left(A^{\mathrm{T}}A\right)^{-1}A^{\mathrm{T}}b.$$

1. Vision

The essential matrix and epipolar constraint

Consider two cameras:

 $x_1, x_2 \in \mathbb{R}^3$: the homogeneous coordinates of the projection of the same point p onto the two cameras.

 $X_1, X_2 \in \mathbb{R}^3$: the coordinates of the same point p relative to the two camera frames.

g=(R,T): the rigid-body transformation from frame 1 to 2

Suppose the two cameras are calibrated and normalized.

$$\lambda_1 x_1 = X_1$$
 and $\lambda_2 x_2 = X_2$.
$$X_2 = RX_1 + T$$
.

Essential matrix: $E = \hat{T}R$

Epipolar constraint (0 = $x_2^{\rm T} E x_1$): to find a constraint without λ_1 , λ_2

Proof.

$$\lambda_1 x_1 = X_1 \text{ and } \lambda_2 x_2 = X_2.$$

 $X_2 = RX_1 + T.$

Then, we have $\lambda_1 x_1 = R \lambda_2 x_2 + T$. By multiplying \widehat{T} on the both side,

$$\lambda_1 \widehat{T} x_1 = \widehat{T} R \lambda_2 x_2.$$

Since $x_1 \perp \hat{T}x_1$, by multiplying x_1^T on the both side, $0 = x_2^T E x_1$.

Definition of the spatial velocity:

$$v_{q_a}(t) = \hat{V}_{ab}^s q_a(t)$$

In the book, we have $\hat{V}_{ab}^s = \dot{g}_{ab}g_{ab}^{-1}$.

q(t): moving point

 $q_a(t)$: coordinate of the point w.r.t. $\{a\}$ q_b : coordinate of the fixed point w.r.t. $\{b\}$

 $v_{q_a}(t)$: coordinate of the velocity of the point w.r.t. $\{a\}$ $v_{q_b}(t)$: coordinate of the velocity of the point w.r.t. $\{b\}$

Definition of the body velocity:

$$v_{q_b}(t) = \hat{V}_{ab}^b q_b$$

In the book, we have $\hat{V}_{ab}^b = g_{ab}^{-1} \dot{g}_{ab}$.

$$V_{ab}^s = \mathrm{Ad}_{g_{ab}} V_{ab}^b$$

HW 6. Problem 3

Problem 3. Velocities as Twists

Consider a smooth rotational trajectory $R(t) \in SO(3)$ where $t \in [0, \infty)$ denotes time. In this problem, we will derive the notion of angular and rigid body velocities directly from our knowledge of exponential coordinates.

(a) Let $t \in [0, \infty)$ and a small $\Delta t > 0$ be given. Argue that there exists $\hat{\omega} \in \mathfrak{so}(3)$ such that

$$R(t + \Delta t) = e^{\hat{\omega}\Delta t} \cdot R(t) \tag{10}$$

Note that ξ is a function of both t and Δt .

- (b) Now take the limit as $\Delta t \to 0$. Show that in this limit, $\hat{\omega}$ approaches $\dot{R}R^T = \hat{\omega}^s(t)$. That is, in the limit, this infinitessimal rotation approaches the spatial angular velocity of R. Hint: It may help to recall that for small Δt we have $e^{A\Delta t} \approx I + A\Delta t$. It may also help to recall the limit definition of the derivative.
- (c) Conclude that the spatial angular velocity of R is simply the *instantaneous rotation axis* of the body, with magnitude equal to the instantaneous angular speed.
- (d) Repeat the exercise in parts (a)-(c) except with a smooth rigid-body motion trajectory $g(t) \in SE(3)$. Interpret the spatial velocity $V^s(t)$ in terms of the twist associated with the $instantaneous\ screw\ motion$ that the body is undergoing at time t.

This ω is not normalized one, and it already has its magnitude.

$$\hat{\omega} \to \dot{R}R^T$$

$$\hat{\xi} \rightarrow \dot{g}g^{-1}$$

The twist can be easily found from the screw motion.

$$\xi = (v, \omega), \qquad v = -\omega \times q$$

The spatial velocity and Jacobian: $V^{s}(=\dot{g}g^{-1})=J^{s}\dot{\theta}$

The body velocity and Jacobian: $V^b (= g^{-1}\dot{g}) = J^b\dot{\theta}$

$$V_{ab}^s = \mathrm{Ad}_{g_{ab}} V_{ab}^b$$

$$J^s = \mathrm{Ad}_{g_{ab}} J^b$$

The spatial velocity and Jacobian: $V^s (= \dot{g}g^{-1}) = J^s\dot{\theta}$

The body velocity and Jacobian: $V^b (= g^{-1}\dot{g}) = J^b\dot{\theta}$

Open chain manipulator
$$g = e^{\hat{\xi}_1 \theta_1} \dots e^{\hat{\xi}_n \theta_n} g(0)$$

General theory:

$$J^s = [\xi_1', \dots, \xi_n']$$

$$\hat{V}^{s} = \dot{g}g^{-1} = \sum_{i=1}^{n} \left(\frac{\partial g}{\partial \theta_{i}} \dot{\theta}_{i}\right) g^{-1}$$

$$= \left[\frac{\partial g}{\partial \theta_{1}} g^{-1} \quad \frac{\partial g}{\partial \theta_{2}} g^{-1} \quad \cdots \quad \frac{\partial g}{\partial \theta_{n}} g^{-1}\right] \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \vdots \\ \dot{\theta}_{n} \end{bmatrix}$$

$$V^{s} = \left[\left(\frac{\partial g}{\partial \theta_{1}} g^{-1} \right)^{\vee} \quad \left(\frac{\partial g}{\partial \theta_{2}} g^{-1} \right)^{\vee} \quad \cdots \quad \left(\frac{\partial g}{\partial \theta_{n}} g^{-1} \right)^{\vee} \right] \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \vdots \\ \dot{\theta}_{n} \end{bmatrix}$$

$$J^{s} = \left[\xi_{1}^{\prime} \quad \xi_{2}^{\prime} \quad \cdots \quad \xi_{n}^{\prime} \right]$$

$$\xi_1' = \xi_1, \qquad \xi_2' = \operatorname{Ad}_{e^{\widehat{\xi}_1 \theta_1}} \xi_2, \qquad \dots, \qquad \xi_n' = \operatorname{Ad}_{e^{\widehat{\xi}_1 \theta_1} \dots e^{\widehat{\xi}_{n-1} \theta_{n-1}}} \xi_n$$

i-th column of Jacobian is the contribution of i-th joint (the twist of i-th joint).

Find a twist using a screw motion:

for a revolute joint i, find the rotation direction $\omega_i' = \omega_i'(\theta_1, \dots, \theta_{i-1})$ and the center of the rotation $q_i' = q_i'(\theta_1, \dots, \theta_{i-1})$. for a prismatic joint i, find the translational direction $v_i' = v_i'(\theta_1, \dots, \theta_{i-1})$.

How to find Jacobian for the following examples?

Find a twist using a screw motion:

for a revolute joint i, find the rotation direction $\omega_i' = \omega_i'(\theta_1, \dots, \theta_{i-1})$ and the center of the rotation $q_i' = q_i'(\theta_1, \dots, \theta_{i-1})$. for a prismatic joint i, find the translational direction $v_i' = v_i'(\theta_1, \dots, \theta_{i-1})$.

$$J^{s} = \begin{bmatrix} -\omega_{1}' \times q_{1}' \\ \omega_{1}' \end{bmatrix} \begin{bmatrix} v_{2}' \\ 0 \end{bmatrix} \cdots \begin{bmatrix} -\omega_{n}' \times q_{n}' \\ \omega_{n}' \end{bmatrix}$$

revolute joint prismatic joint

3. Singularity

The Jacobian J^s (or J^b) is singular if J^s is not full rank.

$$Rank(J^s) = Rank(J^b)$$

This is because $J^s = \mathrm{Ad}_{g_{ab}}J^b$ and $\mathrm{Ad}_{g_{ab}} \in \mathbb{R}^{6 \times 6}$ is always invertible.

$$Rank(J^s) = Rank(\overline{J})$$

 ξ_1 ξ_2 ξ_3 ξ_4 ξ_5 ξ_5 ξ_6 ξ_6

 \bar{J} : Jacobian for the velocity of the end effector

$$\begin{bmatrix} v^s(\theta) \\ \omega^s(\theta) \end{bmatrix} = \bar{J}(\theta)\dot{\theta}$$

Find a set of θ such that two axes are on the same line

At the end, I suggest you to prove the columns of the Jacobian is linearly dependent.

4. Dynamics using Lagrangian

$$L = T - V$$

$$T = \frac{1}{2}m\|\dot{x}\|^2 + \frac{1}{2}I\dot{\theta}^2$$

Note that I = 0 for point mass

Potential energy

$$V = mgx + \frac{1}{2}k(x - x_0)^2$$

$$\Upsilon = \frac{d}{dt} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x}$$

For angle x_i , Y_i is a joint torque acting on the i-th axis or body.

For position x_i , Y_i is a joint force acting on the i-th axis.

5. Control: computed torque method

Dynamics: $M(q)\ddot{q} + C(\dot{q}, q)\dot{q} + N(q) = u$

Control goal: make system to track the desired motion. $q(t) \rightarrow q_d(t)$

Computed torque method:

$$u = M(\theta)(\ddot{q}_d - K_v \dot{e} - K_p e) + C(\dot{q}, q)\dot{q} + N(q),$$

where $e \coloneqq q - q_d$.

Dynamics for the error (e): $\ddot{e} + K_v \dot{e} + K_p e = 0$.

5. Control: computed torque method

Dynamics for the error $(e \in \mathbb{R}^n)$: $\ddot{e} + K_v \dot{e} + K_p e = 0$.

Stability analysis for diagonal K_v and K_p .

Consider the Characteristic equation $(\lambda \in \mathbb{R})$

$$\lambda^2 + K_v \lambda + K_p = 0 \ (K_v, K_p \ge 0)$$

If $Re(\lambda_{1,2}) < 0$, the system is stable.

$$e(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$$

Case 1.
$$K_v = 0$$

$$\lambda_{1,2} = \pm \sqrt{K_p} j$$
: unstable

Note that $\sqrt{K_p} = 2\pi f$ where f is the frequency and $f = \frac{1}{T}$, T: period.

Case 2.
$$K_p=0$$
 $\lambda_1=0, \lambda_2=-K_{\nu}<0$: unstable

Case 3.
$$K_v$$
, $K_p > 0$
 $\text{Re}(\lambda_{1,2}) < 0$: always true (proved in the textbook)

5. Control: computed torque method

Dynamics for the error $(e \in \mathbb{R}^n)$: $\ddot{e} + K_v \dot{e} + K_p e = 0$.

Stability analysis for diagonal K_v and K_p .

Consider the Characteristic equation $(\lambda \in \mathbb{R})$

$$\lambda^2 + K_v \lambda + K_p = 0 (K_v, K_p \ge 0)$$

If $Re(\lambda_{1,2}) < 0$, the system is stable.

$$e(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$$

If
$$\lambda_1$$
 contains an imaginary number: $\lambda_1=a+bj\ (a,b\in\mathbb{R})$,
$$\lambda_2=\bar{\lambda}_1=a-bj$$

If
$$b = 0$$
 (iff $K_v^2 - 4K_p \ge 0$), there is no oscillation.

If
$$b \neq 0$$
 (iff $K_v^2 - 4K_p < 0$), there is oscillation.