Dynamic programming Longest Common Subsequence

Dynamic programming

- It is used, when the solution can be recursively described in terms of solutions to subproblems (*optimal substructure*)
- Algorithm finds solutions to subproblems and stores them in memory for later use
- More efficient than "brute-force methods", which solve the same subproblems over and over again

Longest Common Subsequence (LCS)

Application: comparison of two DNA strings Ex: X= {A B C B D A B }, Y= {B D C A B A}

Longest Common Subsequence:

$$X = AB \qquad C \qquad BDAB$$

$$Y = BDCABA$$

Brute force algorithm would compare each subsequence of X with the symbols in Y

11/05/21

LCS Algorithm

- if |X| = m, |Y| = n, then there are 2^m subsequences of x; we must compare each with Y (n comparisons)
- So the running time of the brute-force algorithm is O(n 2^m)
- Notice that the LCS problem has *optimal substructure*: solutions of subproblems are parts of the final solution.
- Subproblems: "find LCS of pairs of *prefixes* of X and Y"

11/05/21

LCS Algorithm

- First we'll find the length of LCS. Later we'll modify the algorithm to find LCS itself.
- Define X_i , Y_j to be the prefixes of X and Y of length i and j respectively
- Define c[i,j] to be the length of LCS of X_i and Y_j
- Then the length of LCS of X and Y will be c[m,n]

$$c[i, j] = \begin{cases} c[i-1, j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

11/05/21 11/05/21

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- We start with i = j = 0 (empty substrings of x and y)
- Since X_0 and Y_0 are empty strings, their LCS is always empty (i.e. c[0,0] = 0)
- LCS of empty string and any other string is empty, so for every i and j: c[0, j] = c[i, 0] = 0

11/05/21

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- When we calculate c[i,j], we consider two cases:
- First case: x[i]=y[j]: one more symbol in strings X and Y matches, so the length of LCS X_i and Y_j equals to the length of LCS of smaller strings X_{i-1} and Y_{i-1} , plus 1

7

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- Second case: x[i] != y[j]
- As symbols don't match, our solution is not improved, and the length of LCS(X_i, Y_j) is the same as before (i.e. maximum of LCS(X_i, Y_{j-1}) and LCS(X_{i-1}, Y_j)

Why not just take the length of LCS(X_{i-1} , Y_{j-1}) 8

LCS Length Algorithm

```
LCS-Length(X, Y)
1. m = length(X) // get the # of symbols in X
2. n = length(Y) // get the # of symbols in Y
3. for i = 1 to m c[i,0] = 0 // special case: Y_0
4. for j = 1 to n c[0,j] = 0 // special case: X_0
5. for i = 1 to m // for all X_i
                // for all Y.
6. for j = 1 to n
7. if (X_i == Y_i)
8. c[i,j] = c[i-1,j-1] + 1
      else c[i,j] = max(c[i-1,j], c[i,j-1])
 0. return c
```

LCS Example

We'll see how LCS algorithm works on the following example:

- \bullet X = ABCB
- \bullet Y = BDCAB

What is the Longest Common Subsequence of X and Y?

$$LCS(X, Y) = BCB$$

 $X = A B C B$
 $Y = B D C A B$

LCS Example (0) Yj B \mathbf{D} B Xi B B

$$X = ABCB$$
; $m = |X| = 4$
 $Y = BDCAB$; $n = |Y| = 5$
Allocate array c[5,4]

ABCB

LCS Example (1) i Yj B \mathbf{D} B Xi 0 0 0 0 0 0 0 B 0

for
$$i = 1$$
 to m $c[i,0] = 0$
for $j = 1$ to n $c[0,j] = 0$

0

0

B

LCS Example (2)

RDCAR

					_			Ľ
	j	0	1	2	3	4	5 E	•
i		Yj	(B)	D	C	A	В	
0	Xi	0	0	0	0	0	0	
1	A	0	0					
2	В	0						
3	C	0						
4	В	0						

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (3)

DDCAD

							R
	j	0	1	2	3	4	5 B
i		Yj	В	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0		
2	В	0					
3	C	0					
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (4)

RDCAR

							\vdash
	j	0	1	2	3	4	5
i		Yj	В	D	C	A	В
0	Xi	0	0	0	0	0	0
1	(A)	0	0	0	0	1	
2	В	0					
3	C	0					
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (5)

ABCB

j 0 1 2 3 4

i

O	1	_	J	•
Yj	B	D	\mathbf{C}	A

y Xi

Λ 1	0	0	0	0	0	0

1

2

$$\mathbf{B} \quad | \quad \mathbf{0}$$

3

В

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (6)

BDCAB

	j	0	1	2	3	4	5 B
i	J	Yj	(B)	D	C	\mathbf{A}	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	$oxed{B}$	0	1				
3	C	0					
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (7)

RDCAR

	j	0	1	2	3	4	5 1	3 .
i		Yj	В	D	C	A	B	-
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	<u>_</u> 1	1	
2	\bigcirc B	0	1	1	1	1		
3	C	0						
4	В	0						

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (8)

ADCD DDCAD

	•	— • • — — · · · · · · · · · · · · · · ·								
	j	0	1	2	3	4	5)		
i		Yj	В	D	C	A	(B)			
0	Xi	0	0	0	0	0	0			
1	A	0	0	0	0	1,	1			
2	$ig(\mathbf{B} ig)$	0	1	1	1	1	2			
3	C	0								
4	В	0								

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (10)

PDC A P

	j	0	1_	2	3	4	5 B
i		Yj	B	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	_1	1	1	2
3	\bigcirc	0	1	1			
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (11)

BDCAB

					_		R
	j	0	1	2	3	4	5 B
i	_	Yj	В	D	(C)	A	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	\bigcirc	0	1	1	2		
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (12) Yj B D B Xi B B

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (13)

RDC A R

	j	0	1	2	3	4	5
i		Yj	B	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0	1	1	2	2	2
4	$\left(\mathbf{B}\right)$	0	1				

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (14)

RDCAR

	j	0	1	2	3	4	5 B
i		Yj	В	D	C	A) B
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0	1	1	2	2	2
4	$\left(\mathbf{B}\right)$	0	1 →	1	2 →	2	

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Example (15)

RDCA P

	j	0	1	2	3	4	5 D
i		Yj	В	D	C	A	B
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0	1	1	2	2 \	2
4	B	0	1	1	2	2	3

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

LCS Algorithm Running Time

- LCS algorithm calculates the values of each entry of the array c[m,n]
- So what is the running time?

O(m*n)

since each c[i,j] is calculated in constant time, and there are m*n elements in the array

11/05/21 26

How to find actual LCS

- So far, we have just found the *length* of LCS, but not LCS itself.
- We want to modify this algorithm to make it output Longest Common Subsequence of X and Y

Each c[i,j] depends on c[i-1,j] and c[i,j-1] or c[i-1,j-1]

For each c[i,j] we can say how it was acquired:

For example, here c[i,j] = c[i-1,j-1] + 1 = 2+1=3

How to find actual LCS - continued

Remember that

$$c[i, j] = \begin{cases} c[i-1, j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- So we can start from c[m,n] and go backwards
- Whenever c[i,j] = c[i-1, j-1]+1, remember x[i] (because x[i] is a part of LCS)
- When i=0 or j=0 (i.e. we reached the beginning), output remembered letters in reverse order

11/05/21 28

Finding LCS

	j	0	1	2	3	4	5
i		Yj	В	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1 <	⊢ 1 🔭	1	1	2
3	C	0	1	1	2 <	- 2	2
4	В	0	1	1	2	2	3

11/05/21 29

Finding LCS (2)

LCS (reversed order): B C B

LCS (straight order):

B C B

(this string turned out to be a palindrome)