Lecture 39: Stein's paradox

Ciaran Evans

Some key parts of the course

- Maximum likelihood estimation
 - univariate and multivariate problems
 - maximum likelihood estimation for regression models
- Properties of MLEs (under regularity conditions)
 - consistency
 - asymptotic normality
 - asymptotic efficiency (asymptotic variance is CRLB)
- Hypothesis testing
 - Neyman-Pearson test (involves likelihoods)
 - Wald test (can be used for asymptotically normal estimators, like MLEs)
 - Likelihood ratio test

Today: Maximum likelihood estimation isn't always best

The problem

Suppose we observe a single observation $X \sim N(\mu, \mathbf{I})$ from a d-dimensional multivariate normal distribution. We wish to estimate

$$\mu = (\mu_1, \mu_2, ..., \mu_d)^T$$

Question: What do you think is the MLE $\widehat{\mu}_{MLE}$?

MSE

Suppose we observe a single observation $X \sim N(\mu, \mathbf{I})$ from a d-dimensional multivariate normal distribution. We wish to estimate

$$\mu = (\mu_1, \mu_2, ..., \mu_d)^T$$

MLE: $\widehat{\mu}_{MLE} = X$

$$MSE(\widehat{\mu}_{MLE}) = \mathbb{E}[||\widehat{\mu}_{MLE} - \mu||^2] =$$

Another estimator

Suppose we observe a single observation $X \sim N(\mu, \mathbf{I})$ from a d-dimensional multivariate normal distribution. The **James-Stein estimator** of μ is

$$\widehat{\mu}_{JS} = \left(1 - \frac{d-2}{||X||^2}\right) X$$

Activity

$$\widehat{\mu}_{MLE} = X$$
 $\widehat{\mu}_{JS} = \left(1 - \frac{d-2}{||X||^2}\right)X$

Compare $MSE(\widehat{\mu}_{MLE})$ to $MSE(\widehat{\mu}_{JS})$

Activity

$$\widehat{\mu}_{MLE} = X$$
 $\widehat{\mu}_{JS} = \left(1 - \frac{d-2}{||X||^2}\right)X$

Question: How does $MSE(\widehat{\mu}_{MLE})$ compare to $MSE(\widehat{\mu}_{JS})$?

Comparing MSE

- ▶ We know that $MSE(\widehat{\mu}_{MLE}) = d$
- ▶ It turns out that $MSE(\widehat{\mu}_{JS}) = d (d-2)^2 \mathbb{E}\left[\frac{1}{||X||^2}\right] < d$

Stein's paradox

Suppose we observe a single observation $X \sim N(\mu, \mathbf{I})$ from a d-dimensional multivariate normal distribution.

Regardless of the true value of μ , if $d \geq 3$ then

$$MSE(\widehat{\mu}_{JS}) < MSE(\widehat{\mu}_{MLE})$$

So: in this situation, if our goal is to minimize MSE we should *never* use the MLE. That is, the MLE is **inadmissible**

Shrinkage estimators

The James-Stein estimator beats the MLE by shrinking towards 0. Other examples of shrinkage estimators are important in regression.

Linear regression:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

- lackbox Least squares estimates: $\widehat{eta} = \operatorname{argmin}_{eta} ||\mathbf{y} \mathbf{X} \boldsymbol{\beta}||^2$
- ▶ Ridge regression: $\hat{\beta} = \operatorname{argmin}_{\beta} ||\mathbf{y} \mathbf{X}\beta||^2 + \lambda ||\beta||^2$
- ► Lasso: $\hat{\beta} = \operatorname{argmin}_{\beta} ||\mathbf{y} \mathbf{X}\beta||^2 + \lambda ||\beta||_1$