

LOG2810 STRUCTURES DISCRÈTES

TD 5 : **RELATIONS**

H2022

SOLUTIONNAIRE

PARTIE 1

Exercice 1. Soit $E = \{a, b, c, d\}$ et la relation d'équivalence R définies sur E par :

$$R = \{(a, a), (a, b), (b, a), (b, b), (c, c), (c, d), (d, c), (d, d)\}$$

Quelles sont les classes d'équivalence de R?

Réponse :

y appartient à la classe de x lorsque x **R** y. De plus, lorsque y appartient à la classe de x, alors x appartient aussi à la classe de y.

- Classe de a : {a, b}
- Classe de c : {c, d}

Exercice 2. Soit $E = \{1, 2, 3, 4, 5\}$ et la relation d'équivalence R définies sur E par :

$$R = \{(1, 3), (3, 1), (3, 2), (3, 4), (4, 5)\}$$

Quelle la fermeture transitive S de la relation R?

Réponse :

$$S = \{(1, 3), (3, 1), (3, 2), (3, 4), (4, 5), (1, 1), (1, 2), (1, 4), (1, 5), (3, 3), (3, 5)\}$$

Exercice 3. On définit une relation R sur \mathbb{R} par :

$$x R y \leftrightarrow |x| \le |y|$$
.

R est-elle une relation d'ordre?

Réponse:

• Soit $x \in \mathbb{R}$.

On a $|x| \le |x|$. La relation est donc réflexive.

• Soit x, y, $z \in \mathbb{R}$ tel que x R y et y R z.

On a $|x| \le |y|$ et $|y| \le |z|$. Donc $|x| \le |y| \le |z|$. Par suite, $|x| \le |z|$ et x R z. La relation est donc transitive.

• Soit $x, y \in \mathbb{R}$ tel que x R y et y R x.

On a $|x| \le |y|$ et $|y| \le |x|$. Donc |x| = |y|. Par suite, x = y ou x = -y. On a donc pas toujours x = y. La relation n'est donc pas antisymétrique.

• On conclure que **R** n'est pas une relation d'ordre.

Exercice 4. Soit E un ensemble et A une partie de E. On définit sur $\mathscr{G}(E)$ la relation E par :

$$XRY \longleftrightarrow XUA = YUA$$

Montrez que **R** est une relation d'équivalence.

Réponse :

- Soit $X \in \mathcal{G}(E)$.
 - $X \cup A = X \cup A$
 - XRX

R est réflexive.

• Soit X, $Y \in \mathcal{G}(E)$ tel que X R Y.

 $XRY \leftrightarrow XUA = YUA$ $XRY \leftrightarrow YUA = XUA$ $XRY \rightarrow YUA = XUA$ $XRY \rightarrow YRX$ R est symétrique.

• Soit X, Y, $Z \in \mathcal{G}(E)$ tel que X R Y et Y R Z.

 $XRY \leftrightarrow XUA = YUA$ $YRZ \leftrightarrow YUA = ZUA$ $(XRYetYRZ) \rightarrow XUA = YUA = ZUA$ $(XRYetYRZ) \rightarrow XUA = ZUA$ $(XRYetYRZ) \rightarrow XRZ$ R est transitive.

• R est réflexive, symétrique et transitive. Elle est donc une relation d'équivalence.

PARTIE 2 : EXERCICES SUPPLÉMENTAIRES

Exercice 5. Soit E un ensemble et A une partie de E. On définit une relation R sur P(E) par : $XRY \leftrightarrow X \cap A = Y \cap A$.

Montrez que **R** est une relation d'équivalence.

Réponse :

- Soit $X \in \mathcal{G}(E)$. $X \cap A = X \cap A$
 - XRX

R est réflexive.

- Soit X, $Y \in \mathcal{G}(E)$ tel que X R Y.
 - $X R Y \longleftrightarrow X \cap A = Y \cap A$
 - $X R Y \longleftrightarrow Y \cap A = X \cap A$
 - $X R Y \rightarrow Y \cap A = X \cap A$
 - $XRY \rightarrow YRX$

R est symétrique.

- Soit X, Y, $Z \in \mathcal{A}(E)$ tel que X R Y et Y R Z.
 - $X R Y \longleftrightarrow X \cap A = Y \cap A$
 - $YRZ \longleftrightarrow Y \cap A = Z \cap A$
 - $(X R Y et Y R Z) \rightarrow X \cap A = Y \cap A = Z \cap A$
 - $(X R Y et Y R Z) \rightarrow X \cap A = Z \cap A$
 - $(X R Y et Y R Z) \rightarrow X R Z$
 - **R** est transitive.
- R est réflexive, symétrique et transitive. Elle est donc une relation d'équivalence.

Exercice 6. Soit $\mathbf{A} = \{a, b, c, d\}$. Déterminez si les relations \mathbf{R} définies sur \mathbf{A} et représentées par les graphes cidessous sont réflexives, symétriques, antisymétriques, transitives.

a)

Réponse:

- Réflexivité: La relation illustrée est réflexive puisqu'il y a une boucle à chaque sommet. Formellement, $\forall x \in A$, $(x, x) \in R$ ou encore $\forall x \in A$, $x \in R$.
- Symétrie: La relation n'est pas symétrique, puisque, par exemple, l'arête (c, a) est présente mais pas l'arête (a, c). C'est à dire, (c, a) ∈ R ∧ (c, a) ∉ R. Formellement ∃ x, y ∈ A, ((x, y) ∈ R) ∧ ((y, x) ∉ R).
- Antisymétrie : Elle n'est pas antisymétrique, puisque les deux arêtes (a, b) et (b, a) sont présentes et $a \neq b$. Formellement $\exists x, y \in A$, $((x, y) \in R) \land ((y, x) \in R) \land (x \neq y)$.
- Transitivité: Elle n'est pas transitive, puisque les deux arêtes (c, a), (a, b) sont présentes, mais l'arête (c, b) n'est pas présente. Formellement ∃ x, y, z ∈ A, ((x, y) ∈ R) ∧ ((y, z) ∈ R) ∧ (x, z) ∉ R.

b)

Réponse:

- Réflexivité: La relation illustrée n'est pas réflexive puisqu'il existe un sommet c qui n'a pas de boucle. Formellement, ∃ x ∈ A, (x, x) ∉ R.
- Symétrie: La relation est symétrique, puisque, \forall (x, y) \in R, (y, x) \in R.
- Antisymétrie : Elle n'est pas antisymétrique, puisque les deux arêtes (a, b) et (b, a) sont présentes et $a \ne b$. Formellement $\exists x, y \in A$, $((x, y) \in R) \land ((y, x) \in R) \land (x \ne y)$.
- Transitivité: Elle n'est pas transitive, puisque les deux arêtes (c, a), (a, c) sont présentes, mais l'arête (c, c) n'est pas présente. Formellement ∃ x, y, z ∈ A, ((x, y) ∈ R) ∧ (y, z) ∈ R) ∧ (x, z) ∉ R.

c)

Réponse :

- Réflexivité: La relation illustrée est réflexive puisqu'il y a une boucle à chaque sommet. Formellement, $\forall x \in A$, $(x, x) \in R$ ou encore $\forall x \in A$, $x \in R$ x.
- Symétrie : La relation est symétrique, puisque \forall $(x, y) \in R$, $(y, x) \in R$.
- Antisymétrie: Elle n'est pas antisymétrique, puisque les deux arêtes (a, b) et (b, a) sont présentes et a ≠ b. Formellement ∃ x, y ∈ A, ((x, y) ∈ R) ∧ ((y, x) ∈ R) ∧ (x ≠ y).
- Transitivité: Elle est transitive, puisque \forall $((x, y) \in R) \land ((y, z) \in R), (x, z) \in R$.

Exercice 7. Soit $A = \{a, b, c, d\}$, la relation R définie sur A et représentée par les graphes ci-dessous.

a) Donnez la fermeture transitive de cette relation.

Réponse:

R = {(a, a), (a, b), (a, c), (b, b), (b, a), (b, c), (c, a), (c, b), (d, d)} Soit **S** la fermeture transitive de **R**. $S = \{(a, a), (a, b), (a, c), (b, b), (b, a), (b, c), (c, a), (c, b), (d, d), (c, c)\}$

b) Retrouvez le résultat précédent en calculant la fermeture transitive à l'aide des matrices puissance de la relation. Vous pouvez utiliser les notions vues en cours et les notes de cours (pages 12 à 17), ainsi que la documentation complémentaire sur le produit booléen, disponible sur Moodle.

Réponse :

Soit **M** la matrice de R. On a :

$$\mathbf{M} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{M}^{[2]} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{M}^{[3]} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

La matrice de la fermeture transitive est N = M V M^[2] V M^[3]

$$\mathbf{N} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

5