Student Information

Full Name: Onur Can TIRTIR

Id Number: 2099380

Answer 1

(a) x is to be an n-tuple such that $x = (x_1, x_2, \dots x_n)$

$$\prod_{k=1}^{n} A_{k} = A_{1} \times A_{2} \times \dots \times A_{n}$$

$$= \{x \in E \mid x_{1} \in A_{1} \land x_{2} \in A_{2} \land \dots \land x_{n} \in A_{n}\}$$

$$= \{x \in E \mid f_{1}(x) \in A_{1} \land f_{2}(x) \in A_{2} \land \dots \land f_{n}(x) \in A_{n}\}$$

$$= \{x \in E \mid f_{1}(x) \in A_{1}\} \cap \{x \in E \mid f_{2}(x) \in A_{2}\} \cap \dots \cap \{x \in E \mid f_{n}(x) \in A_{n}\}$$

$$= f_{1}^{-1}(A_{1}) \cap f_{2}^{-1}(A_{2}) \cap \dots \cap f_{n}^{-1}(A_{n})$$

$$= \bigcap_{k=1}^{n} f_{k}^{-1}(A_{k})$$

- (b) Take n = 2, $A_1 = \{a_1, a_2\}$ and $A_2 = \{b_1, b_2\}$ x_{α} and x_{β} are to be an *n*-tuples, take $x_{\alpha} = (a_1, b_2) \in E$ and $x_{\beta} = (a_2, b_2) \in E$. Then $f_2(x_{\alpha}) = f_2(x_{\beta}) = b_2$, hence there exists some $x_{\alpha} \neq x_{\beta}$ such that $f(x_{\alpha}) = f(x_{\beta})$. Then by definition of 1-1 function, f_2 is not 1-1.
- (c) For example, every element in E_1 exists in at least one of the *n*-tuples of E because of the definition of cartesian product. Let $x \in E$ be an *n*-tuple. Then we can conclude; For all x_k 's where $k = 1, 2, \ldots, cardinality(E_1)$; $\exists x(x_k = f_1(x) \text{ where } x_k \in E_1 = codomain(f_1))$. Then f_i is an onto function.

(d)

$$\overline{f_k^{-1}(A_k)} = \{x \in E \mid f_k(x) \notin A_k\}$$
 by the definition of complement
$$= \{x \in E \mid f_k(x) \in \overline{A_k}\}$$
 by the definition of complement
$$= f_k^{-1}(\overline{A_k})$$

- (e) Depending on n, there are 2 different cases in question for $cartesian \ product$.
 - (i) when n = 1: $\overline{A_1} \times \prod_{k=2}^n E_k = \overline{A_1} = \overline{A_1} \times \prod_{k=2}^n E_k$

(ii) Say $P = \prod_{k=2}^{n} E_k$.

$$\overline{A_1} \times \prod_{k=2}^n E_k = (E_1 \setminus A_1) \times (\prod_{k=2}^n E_k)$$
 by the definition of complement
$$= (E_1 \setminus A_1) \times P$$

Take an arbitrary $x \in E_1 \setminus A_1$ and an arbitrary y such that $y \in P = \prod_{k=2}^n$.

(Note: When n = 2, y is an element of E_2 and in that case (x, y) is a pair. When n > 2, y is an n - 1 tuple such that $y = (y_2, y_3, \ldots, y_n)$ and $y_k \in E_k$ for every $k = 2, 3, \ldots, n$. In that case $(x, y) = (x_1, y_2, y_3, \ldots, y_n)$ is an n - tuple.)

We know $y \in P$ and since $x \in E_1 \setminus A_1$ we also know $x \in E_1$ and $x \notin A_1$. Hence $(x,y) \in E_1 \times P$ and $(x,y) \notin A_1 \times P$, i.e $(x,y) \in (E_1 \times P) \setminus (A_1 \times P)$. Then $(x,y) \in (E_1 \times E_2 \times E_3 \times \cdots \times E_n) \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus (A_1 \times E_2 \times E_3 \times \cdots \times E_n) = E \setminus ($

$$\overline{A_1 \times \prod_{k=2}^n E_k} = E \setminus (A_1 \times \prod_{k=2}^n E_k)$$
by the definition of compl.
$$= (E_1 \times E_2 \times \dots \times E_n) \setminus (A_1 \times E_2 \times E_3 \times \dots \times E_n)$$

$$= (E_1 \times P) \setminus (A_1 \times P)$$

Take an arbitrary $(x, y) \in (E_1 \times P) \setminus (A_1 \times P)$. Then $(x, y) \in (E_1 \times P)$ and $(x, y) \notin (A_1 \times P)$ hence $x \in E_1$ and $y \in P$.

(Note: When n = 2, y is an element of $P = E_2$ and in that case (x, y) is a pair. When n > 2, y is an n - 1 tuple such that $y = (y_2, y_3, \ldots, y_n)$ and $y_k \in E_k$ for every $k = 2, 3, \ldots, n$. In that case $(x, y) = (x_1, y_2, y_3, \ldots, y_n)$ is an n - tuple.)

Since $(x,y) \notin (A_1 \times P)$, either $x \notin A_1$ or $y \notin P$. But we know $y \in P$, which implies $x \notin A_1$. Hence $x \in (E_1 \setminus A_1)$ and $y \in P$ then $(x,y) \in (E_1 \setminus A_1) \times P$. Then $(x,y) \in \overline{A_1} \times P = \overline{A_1} \times \underline{\prod_{k=2}^n E_k}$.

Then we conclude that $\overline{A_1 \times \prod_{k=2}^n E_k} \subset \overline{A_1} \times \prod_{k=2}^n E_k$.

Since both $\overline{A_1 \times \prod_{k=2}^n E_k}$ and $\overline{A_1} \times \prod_{k=2}^n E_k$ are subsets of each other, then by definition;

$$\overline{A_1 \times \prod_{k=2}^n E_k} = \overline{A_1} \times \prod_{k=2}^n E_k$$

Answer 2

(a)

$$\forall x < 0, |x| = -x, then \quad f(x) = -2x.$$

$$\forall x \ge 0, \qquad f(x) = 2x + 1.$$

(i) Proving f(x) is 1-1

Taking an arbitrary pair (x_1, x_2) such that $x_1 \in dom(f(x))$ and $x_2 \in dom(f(x))$, I will consider three cases to prove f(x) is 1-1.

- (i) Choose an (x_1, x_2) pair such that $f(x_1) = f(x_2)$ and $x_1 < 0, x_2 < 0$. Assuming that $x_1 \neq x_2$, if $f(x_1) = f(x_2)$ then $-2x_1 = -2x_2$ then $x_1 = x_2$, which contradicts with assumption.
- (ii) Choose an (x_1, x_2) pair such that $f(x_1) = f(x_2)$ and $x_1 \ge 0, x_2 \ge 0$. Assuming that $x_1 \ne x_2$, if $f(x_1) = f(x_2)$ then $2x_1 + 1 = 2x_2 + 1$ then $x_1 = x_2$, which contradicts with assumption.
- (iii) Choose an (x_1, x_2) pair such that $x_1 \ge 0$ and $x_2 < 0$. We know $x_1 \ne x_2$ as $x_1 \ge 0$ and $x_2 < 0$. Assuming that $f(x_1) = f(x_2)$ then $2x_1 + 1 = -2x_2$ where $x_1 \in \mathbb{Z}$ and $x_2 \in \mathbb{Z}$. When we divide both sides of equation, we get $x_1 = -x_2 - \frac{1}{2}$ then $x_1 \notin \mathbb{Z}$, which contradicts with the definition of f(x).

So we can say that $\forall (x_1, x_2) \in dom(f(x)), f(x_1) = f(x_2) \to x_1 = x_2$. Then by definition, f(x) is a 1-1 function.

(ii) Proving f(x) is onto

Pick up an arbitrary $x_1 \in dom(f(x))$ and an arbitrary $y_1 \in codomain(f(x))$. Since $y_1 \in \mathbb{N}^+$, we have two possibilities;

- (i) y_1 is an odd number. Then $y_1 = 2k + 1$ where $k \in \mathbb{Z}^+ \cup \{0\}$ hence $k \in dom(f(x))$. Then we can easily take $x_1 = k$ and it turns out that $y_1 = 2x_1 + 1 = f(x_1)$ when $x_1 \geq 0$.
- (ii) y_1 is an even number. Then $y_1 = -2k$ where $k \in \mathbb{Z}^-$ hence $k \in dom(f(x))$. Then we can easily take $x_1 = k$ and it turns out that $y_1 = -2x_1 = f(x_1)$ when $x_1 < 0$.

So we can say that $\forall y_1 \in codomain(f(x)), \exists x_1 \text{ such that } y_1 = f(x_1).$ Then by definition, f(x) is an onto function.

Since f(x) is 1-1 and onto, then it has an inverse.

(b) Since f(x) has an inverse, then $\exists !x_1$ such that $f(x_1) = 26$, so $f^{-1}(26) = x_1$. Assuming that $x_1 < 0$, $f(x_1) = -2x_1 = 26$. Then $x_1 = -13 < 0$ (satisfies our assumption). Since x_1 is unique, answer is found. Then $f^{-1}(26) = x_1 = -13$.

Answer 3

$$f(n) = 12n\log_2 n + 36n\log_2^2 n + 12n^2 + 36n^2\log_2 n$$

Say
$$p(n) = 12n \log_2 n$$
, $r(n) = 36n \log_2^2 n$, $t(n) = 12n^2$, $q(n) = 36n^2 \log_2 n$.

- (i) $|p(n)| = |12n \log_2 n| \le |12n^2 \log_2 n| = 12|n^2 \log_n|$, then p(n) is $O(n^2 \log_2 n)$, choosing k = 2 and $c_1 = 12$.
- (ii) $|r(n)| = |36n \log_2^2 n| = |36n \log_2 n| . |\log_2 n| . |\log_2 n| . |n| = |36n^2 \log_2 n| = 36 |n^2 \log_2 n|,$ then r(n) is $O(n^2 \log_2 n)$, choosing k = 2 and $c_2 = 36$.
- (iii) $|t(n)| = |12n^2| \le |12n^2 \log_2 n| = 12 |n^2 \log_2 n|$, then t(n) is $O(n^2 \log_2 n)$, choosing k = 2 and $c_3 = 12$.
- (iv) $|q(n)| = |36n^2 \log_2 n| = 36|n^2 \log_2 n|$, then q(n) is $O(n^2 \log_2 n)$, choosing k = 2 and $c_4 = 36$.

Hence $|f(n)| = |p(n) + r(n) + t(n) + q(n)| \le \max(c_1, c_2, c_3, c_4) |g(n)| = C |g(n)|$, then f(n) is O(g(n)) by definition of $Big\ O$.

Answer 4

Assume that $E \setminus S$ is countable.

Also we know S is countable.

Then $S \cup E \setminus S = E$ is also countable by the theorem proven below, which contradicts with the premise "E is uncountable".

Then our assumption is false hence $E \setminus S$ is uncountable.

Theorem 1. If A and B are countable sets then $A \cup B$ is also countable.

Proof. We have three cases for the sets A and B.

- (a) Assume that A and B are finite, then $A \cup B$ is also finite hence $A \cup B$ is countable.
- (b) Assume that A is countably infinite and B is finite. Since A is countably infinite then its elements can be listed in an infinite sequence such that $a_1, a_2, a_3, \ldots, a_m, \ldots$

Since B is finite then its elements can be listed in a finite sequence such that $b_1, b_2, b_3, \ldots, b_n$. Then we can show the elements of $A \cup B$ as $b_1, b_2, b_3, \ldots, b_n, a_1, a_2, a_3, \ldots, a_m, \ldots$, which means $A \cup B$ is countable.

(c) Assume that A and B are countably infinite.

Since A is countably infinite then its elements can be listed in an infinite sequence such that $a_1, a_2, a_3, \ldots, a_m, \ldots$

Since B is countably infinite then its elements can be listed in an infinite sequence such that $b_1, b_2, b_3, \ldots, b_n, \ldots$

Then we can show the elements of the $A \cup B$, again, in an infinite sequence such that $a_1, b_1, a_2, b_2, a_3, b_3, \ldots, a_n, b_n, \ldots$, which means $A \cup B$ is countable.

As we see, if the sets A and B are countable then $A \cup B$ is also countable, regardless of whether one or two of the sets is infinite or not.

Answer 5

(a) If $n \equiv 1 \pmod{3}$, then $n^2 \equiv n.n \equiv 1.1 \equiv 1 \pmod{3}$ then $n(n+1) \equiv n^2 + n \equiv 1 + 1 \equiv 2 \pmod{3}$

Otherwise(i.e $n \equiv 2 \pmod{3}$) or $n \equiv 3 \pmod{3}$):

If $n \equiv 2 \pmod{3}$, then $n^2 \equiv n.n \equiv 2.2 \equiv 4 \equiv 1 \pmod{3}$ then $n(n+1) \equiv n^2 + n \equiv 1 + 2 \equiv 0 \pmod{3}$

If $n \equiv 0 \pmod{3}$, then $n^2 \equiv n.n \equiv 0.0 \equiv 0 \pmod{3}$ then $n(n+1) \equiv n^2 + n \equiv 0 + 0 \equiv 0 \pmod{3}$

- (b) gcd(123, 277) = gcd(277, 123) = gcd(123, 31) = gcd(31, 30) = gcd(30, 1) = gcd(1, 0) = 0
- (c) Implication can be converted to the compound logic statement $r \to q$, where r: p is an even prime greater than 2, q: p is greater than $2^{100} + 1$.

Since the only even prime number is 2 and $p \neq 2$ then r is false. Then the implication $r \to q$ is true, regardless of q is true or not.