

Europäisches Patentamt **European Patent Office** Office européen des brevets

① Veröffentlichungsnummer: 0 452 806 A1

②

EUROPÄISCHE PATENTANMELDUNG

(1) Anmeldenummer: 91105743.8

(5) Int. Cl.5: C07C 51/60, C07C 53/42

2 Anmeldetag: 11.04.91

Priorität: 21.04.90 DE 4012781

Veröffentlichungstag der Anmeldung: 23.10.91 Patentblatt 91/43

Benannte Vertragsstaaten: BE CH DE ES FR GB IT LI NL

71) Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 W-6700 Ludwigshafen(DE)

2 Erfinder: Kahl, Thomas-Michael, Dr. Germersheimer Strasse 146

W-6725 Roemerberg(DE)

Erfinder: Henkelmann, Jochem, Dr.

Merianstrasse 5

W-6700 Ludwigshafen(DE)

Erfinder: Hupfer, Leopold, Dr.

Waltershoehe 3

W-6701 Friedelsheim(DE)

Erfinder: Franzischka, Wolfgang, Dr.

Flomersheimer Strasse 36

W-6710 Frankenthal(DE)

Erfinder: Schwarz, Wolfgang, Dr.

Frankenstrasse 24 W-6701 Otterstadt(DE)

Verfahren zur Herstellung von Carbonsäurechloriden.

Verfahren zur Herstellung von Carbonsäurechloriden der allgemeinen Formel I

(I),

in der R für C₁- bis C₃₀-Alkyl, C₂- bis C₃₀-Alkenyl und C₂- bis C₃₀-Alkinyl steht, aus Carbonsäuren der allgemeinen Formel II

(II),

in der R die oben genannten Bedeutungen hat, und Phosgen, COCI2 (III), in Gegenwart eines Katalysator-Addukts aus Phosgen und N,N-disubstituiertem Formamid der der allgemeinen Formel IV

(IV),

4

in d r R 1 und R 2 unabhängig voneinander C $_1$ - bis C $_3$ -Alkyl od r R 1 und R 2 gemeinsam eine C $_4$ - od r C $_5$ -Alkylenkette b d uten, die gegeb n nfalls durch in Sau rstoffatom oder ein Stickstoffatom, das ine C1- bis C3-Alkylgruppe oder CHO trägt, unterbrochenen s in kann, wobei das Reaktionsprodukt i durch Phasentr nnung erhalten wird, indem man das Formamid (IV) zu 20 bis 70 mol-% mit Phosgen belädt.

Carbonsäurechloride lassen sich gut durch Umsetzung der entsprechenden Carbonsäuren mit Phosgen herstellen. Die Reaktion bedarf der Katalyse. Als Katalysatoren kommen z.B. Carboxamide, vorzugsweise N-Alkylformamide zum Einsatz (DE-A-34 39 937).

Die Spanne der Alkylgröße reicht bei den N,N-Dialkylformamiden von Dimethylformamid bis zu Formamiden mit 30 C-Atomen (EP-A-0 050 779, DE-A-29 50 155, DE-A-19 31 074).

Durch die Wahl des Katalysatorsystems wird der Ablauf der Phosgenierung einer Carbonsäure zum Carbonsäurechlorid sowie die Aufarbeitung des Ansatzes entscheidend beeinflußt.

Alternativ zur Filtration von teerhaltigen Rohprodukten wäre in einigen Fällen auch eine destillative Aufarbeitung des katalysatorhaltigen Produktes denkbar. Die Destillation der entstandenen Säurechloride ist aber nicht nur ein energie- und zeitaufwendiger Vorgang, sondern birgt auch noch eine Reihe weiterer Nachteile.

Viele längerkettige Säurechloride lassen sich nicht ohne teilweise Zersetzung destillieren. Weiter ist bekannt, daß durch Zersetzung des im Destillationssumpf befindlichen Katalysators die destillierten Produkte verunreinigt werden können. Größere Mengen an Katalysatorrückstand stellen bei der Destillation ein Sicherheitsrisiko dar, weil in der Hitze die Gefahr einer spontanen Zersetzung besteht.

Bei der Produktaufarbeitung verunreinigter Ansätze vermindert sich sowohl durch Filtration als auch durch Destillation die Aktivität des Katalysators stark. In den meisten Fällen wird der eingesetzte Katalysator unbrauchbar, er kann also nicht wiederverwendet werden.

Sowohl die Destillation als auch die Filtration von katalysatorhaltigen Carbonsäurechloriden stellen also unvorteilhafte Aufarbeitungsmethoden dar. Wegen des durch die Aufarbeitung bedingten Katalysatorverlustes muß dessen Aufwandmenge so gering wie möglich ausfallen.

In der DE-A-29 50 155 wird als Katalysator Diisobutylformamid verwendet, das in jeder Phase der Umsetzung im Reaktionsansatz löslich ist. Soll auf eine abschließende Destillation des Säurechlorids verzichtet werden, muß aus Gründen der Produktreinheit der Anteil des löslichen Katalysators auf ein Minimum beschränkt werden. Auch bei diesem Katalysatorsystem ist eine Wiederverwendung des Katalysators ausgeschlossen, da er mit dem Produkt ausgetragen wird.

Es ist auch bekannt, daß die Umsetzungen mit Phosgen um so effektiver ablaufen, je größer der Katalysatoranteil ist. Umgekehrt bedingen geringe Katalysatormengen entweder eine schlechte Ausnutzung des eingegasten Phosgens oder lange Eingaszeiten.

In der DE-A-22 40 883 wird die Herstellung von Carbonsäurechloriden mit äquimolaren Mengen Carbonsäure und Katalysator beschrieben. Zur Abtrennung und Wiedergewinnung der großen Katalysatormenge ist allerdings die abschließende Zugabe des 3- bis 4-fachen Reaktionsvolumens an Benzol mit anschließender Destillation der benzolischen Produktlösung notwendig.

Den Einsatz großer Mengen Katalysator beschreibt auch JP-10 613/68 bei der Herstellung von Linolsäurechlorid mit 10 bis 50 mol-% Dimethylformamid, aber auch 1 bis 10 Äquivalenten Dimethylformamid, bezogen auf eingesetzte Linolsäure. Das entstandene Säurechlorid muß destilliert und zum Teil durch eine Behandlung mit Aktivkohle zusätzlich gereinigt werden. Die erneute Verwendung der großen Katalysatormengen ist nicht vorgesehen.

Bei der Synthese von Carbonsäuren mit Phosgen zu den entsprechenden Säurechloriden stellt sich bekanntermaßen das Problem, überschüssiges Phosgen aus dem rohen Säurechlorid zu entfernen.

Nach dem Stand der Technik kann phosgenhaltiges Carbonsäurechlorid durch mehrstündiges Strippen mit Stickstoff und/oder durch Anlegen eines leichten Vakuums von Phosgen befreit werden. Dieser Vorgang ist zeitraubend und verschlechtert die Raum-Zeit-Ausbeute des Verfahrens erheblich.

In der DE-A-29 50 155 wird das überschüssige Phosgen mit dem ersten Teil des destillierten Säurechlorids überdestilliert. Neben einer auch hier zu beobachtenden Verschlechterung der Raum-Zeit-Ausbeute erfordert diese Vorgehensweise zusätzlichen apparativen und analytischen Aufwand.

Aus der DE-A-22 40 883 ist eine Aufarbeitung bekannt, bei der vor der Destillation die verdünnte Reaktionslösung kurz mit Eiswasser gewaschen wird. Angesichts der Hydrolyseempfindlichkeit von Carbonsäurechloriden ist dieses Verfahren für den technischen Maßstab problematisch.

Auch bei dem aus JP 10613/68 bekannten Verfahren muß überschüssiges Phosgen durch eine destillative Aufarbeitung des rohen Säurechlorids entfernt werden.

Aus der DE-A-38 36 967 ist ein Verfahren zur Herstellung von höheren Carbonsäurechloriden bekannt, indem das N,N-Dialkylformamid zu 100 % mit Phosgen beladen wurde. Bei dieser Verfahrensweise entsteht ein nicht unerheblicher Phosgenverlust.

Der Erfindung lag nun die Aufgabe zugrunde, ein Verfahren zur Herstellung von Carbonsäurechloriden zu finden, das den vorgenannten Nachteilen abhilft.

D mgemäß wurde ein neues und verbessert s Verfahren zur Herstellung von Carbonsäurechloriden der allgemeinen Formel I

in der R für C₁- bis C₃₀-Alkyl, C₂- bis C₃₀-Alkenyl und C₂- bis C₃₀-Alkinyl steht, aus Carbonsäuren der allgemeinen Formel II

in der R die oben genannten Bedeutungen hat, und Phosgen, COCI₂ (III), in Gegenwart eines Katalysator55 Addukts aus Phosgen und N,N-disubstituiertem Formamid der der allgemeinen Formel IV

in der R¹ und R² unabhängig voneinander C₁- bis C₃-Alkyl oder R¹ und R² gemeinsam eine C₄- oder C₅- Alkylenkette bedeuten, die gegebenenfalls durch ein Sauerstoffatom oder ein Stickstoffatom, das eine C₁- bis C₃-Alkylgruppe oder CHO trägt, unterbrochenen sein kann, wobei das Reaktionsprodukt I durch Phasentrennung erhalten wird, dadurch gekennzeichnet, daß man das Formamid (IV) zu 20 bis 70 mol-% mit Phosgen belädt.

Die Carbonsäurechloride (I) sind nach folgender Methode erhältlich:

a) diskontinuierlich:

5

10

20

30

35

40

45

Zum vorgelegten Reaktionsgemisch, bestehend aus einer Carbonsäure (II) und dem Addukt aus Phosgen und N,N-Dialkylformamid der Formel (IV), wird eine der Carbonsäure (II) äquivalente Meng flüssiges oder gasförmiges Phosgen gegeben. Der Zeitbedarf für die Zufuhr des Phosgens kann dabel auf wenige Stunden begrenzt werden, wobei das Phosgen praktisch quantitativ ausgenutzt wird. Anschließend läßt man 1 bis 2 Stunden absitzen und trennt die Phasen.

b) bevorzugt kontinuierlich:

Als Reaktoren sind z.B. Rührkessel, Rührkesselkaskade oder eine im Gegenstrom betriebene Reaktionskolonne geeignet.

Bei Verwendung eines Rührkessels legt man die Carbonsäure (II) und das Addukt aus Phosgen und N,N-disubstituiertem Formamid der Formel (IV) vor und gibt flüssiges oder gasförmiges Phosgen zu. Nach Einleiten einer der Carbonsäure (II) äquivalenten Menge Phosgen beginnt man gleichzeitig Carbonsäure (II) und das Addukt aus Phosgen und N,N-disubstituiertem Formamid sowie eine im wesentlichen der zugefahrenen Carbonsäure (II) äquimolare Menge Phosgen zuzufahren.

Eine der den zugefahrenen Reaktanden entsprechende Menge des Reaktionsvolumens wird dem Kessel über eine Standhaltung entnommen und in ein Trenngefäß geleitet. Aus dem Trenngefäß kann das Wertprodukt (I) als Oberphase kontinuierlich entnommen und das Addukt aus Phosgen und N,N-disubstituiertem Formamid als Unterphase kontinuierlich in den Reaktor zurückgeführt werden. Um den Beladungsgrad des Katalysators während des kontinuierlichen Prozesses möglichst konstant zu halten, ist es aber sinnvoll, das durch die Reaktionsabgase mit-gerissene Phosgen durch zusätzlich zugeführtes Phosgen auszugleichen.

Die Temperaturen für die diskontinuierliche und die bevorzugte kontinuierliche Umsetzung der Carbonsäuren (II) mit dem Addukt aus Phosgen (III) und N,N-disubstituiertem Formamid (IV) liegen zwischen 20 und 100°C, vorzugsweise zwischen 30 bis 80°C, besonders bevorzugt zwischen 40 bis 70°C.

Bei dieser Umsetzung verwendet man 5 bis 200 mol-%, vorzugsweise 10 bis 100 mol-%, besonders 10 bis 30 mol-% des Addukts aus Phosgen und N,N-disubstituiertem Formamid, bezogen auf die eingesetzte Carbonsäure.

Der Beladungsgrad des Katalysators liegt zwischen 20 und 70 mol-%, vorzugsweise 30 bis 60 mol-%, besonders 40 bis 50 mol-%.

Der Beladungsgrad des Katalysators kann kontinuierlich durch Messung der Dichte, der Viskosität, der

Leitfähigkeit oder des Chlorid-Gehalts d r im Trenngefäß anfallenden schwereren Phase bestimmt werden.

Die Phasentrennung erfolgt bei T mp ratur n von -15 bis 40°C, vorzugsweise -10 bis 30°C, b sonders
-5 bis 20°C.

Die eingesetzte Phosgenmenge (III) ist im wesentlichen äquimolar zur Carbonsäure (II).

Da das Reaktionsabgas neben Kohlendioxid und Chlorwasserstoff nur unwesentliche Mengen Phosgen enthält (1,0 bis 1,5 %) ist eine Kondensation des Phosgens nicht erforderlich. Die Abgase können direkt der Abgaswäsche zugeführt werden. Zur Kühlung des Abgases sind deshalb nur solche Temperaturen notwendig, die das gebildete Wertprodukt möglichst vollständig kondensieren.

Dem Reaktionsgemisch kann, zur besseren Phasentrennung oder zur Umsetzung fester Säuren, ein unter diesen Reaktionsbedingungen inertes Lösungsmittel zugesetzt werden, wie z.B. gesättigte aliphatische Kohlenwasserstoffe, Ether, Acetonitril, Benzol, Toluol oder Cyclohexan.

Das Carbonsäurechlorid fällt in hoher Ausbeute und in hoher Reinheit an. Es kann häufig ohne weitere Reinigung weiterverwendet werden. In einigen Fällen ist zur Erlangung hochreiner Produkte eine einfache Destillation erforderlich. Die Carbonsäurechloride fallen nach der Umsetzung phosgenfrei an und alle Maßnahmen zur Entphosgenierung des rohen Säurechlorids entfallen.

Das erfindungsgemäße Verfahren zur Herstellung von Säurechloriden aus aliphatischen Carbonsäuren eignet sich vor allem für Monocarbonsäuren, d.h. zur Herstellung von Verbindungen mit der allgemeinen Formel RCOX, wobei R eine aliphatische Kohlenwasserstoffgruppe darstellt und X für Chlor steht. Die aliphatische Gruppe kann geradkettig oder verzweigt, gesättigt, olefinisch oder acetylenisch ungesättigt sein. Besonders bevorzugt sind aliphatische Carbonsäuren mit 1 bis 30, insbesondere 1 bis 20 Kohlenstoffatomen.

Als N,N-disubstituierte Formamide eignen sich Dimethyl-, Ethyl-methyl-, Methyl-n-propyl-, Methyl-iso-propyl-, Diethyl-, Ethyl-n-propyl, Ethyl-isopropyl-, Di-n-propyl-, n-Propyl-iso-propyl- und Di-iso-propylformamid, bevorzugt sind Dimethyl- und Diethylformamid, besonders bevorzugt ist Dimethylformamid.

Beispiele

25

5

Beispiele 1 bis 8 (kontinuierliche Phosgenierung)

In einem 350 ml Reaktor (HR) wird bei 40 bis 70°C 1,0 mol/h einer Carbonsäure, 0,2 Mol/h des Addukts aus Phosgen und N,N-disubstituiertem Formamid mit einem Beladungsgrad von 50 bis 60 % sowie 1,0 Mol/h Phosgen zugefahren. Das auf 20°C abgekühlte Abgas (Flußwasser) wird direkt über einen Wäscher geleitet, um nicht umgesetztes Phosgen zu hydrolysieren.

Nach der Nachreaktion in einem zweiten Reaktor (NR) bei 40 bis 65 °C werden Säurechlorid- und Katalysatorphase bei Raumtemperatur in einem Phasentrenngefäß getrennt und anschließend die Zusammensetzung des Säurechlorids sowie der Beladungsgrad des Katalysators bestimmt. Alle Austräge waren phosgenfrei.

Die Ergebnisse sind in Tabelle 1 zusammengestellt.

40

50

45

55

50	45	40		30	25	20	15	10	5
Tabelle 1	le 1								
Bsp. Nr.	Säure	Katalysator	Temp. HR	[°C]	Säurechlorid ber. rein Ge [%]	rid Gehalt [%]	Belad Kat. vorher	Beladungsgrad Kat. [mol-%] rher nachher	Phosgenverlust [%]
-	Propion- säure	N,N-Dimethyl- formamid	0,4	04	73	7'96	09	£†	3,4
7	Pivalin- Säure	N,N-Dimethyl- formamid	20	S	7 6	98,0	09	20	2,0
m	2-Ethyl- hexansäure	N, N-Dimethyl- formamid	20	20	66	99,5	20	† †	1,2
4	Stearin- säure	N, N-Dimethyl- formamid	20	65	66	5 '66	20	38	2,4
S	Pivalin- säure	N,N-Diethyl- formamid	09	99	06	95, 1	09	64	2,2
9	2-Ethyl- hexansäure	N, N-Diethyl- formamid	09	09	86	99,5	50	. 42	1,6
7	2-Ethyl- hexansäure	N-Formyl- piperidin	20	20	86	0'66	20	41	1,8
œ	Isobutter- säurea)	N, N-Dimethyl- formamid	45	20	97	98,5	20	54	1,0
(a)	Kühlung des Abga	Abgas mit -15°C-Sole							

⁵⁵ Vergleichsbeispiele 9 bis 14 (diskontinuierliche Phosgenierung nach DE-A-38 36 987)

In einem 1 I-Reaktor werden 2 Mol einer Carbonsäure und 0,4 Mol eines N,N-disubstituierten Formamids vorgelegt und bei 50 bis 70°C in einem Zeitraum von 2 h 238 g (2,4 Mol) Phosgen eingegast. Das auf

20°C abgekühlte Abgas (Flußwasser) wird direkt über einen Wäscher geleitet, in dem unumgesetztes Phosgen hydrolysiert wird.

Nach Ende der Phosgenzugabe wird 0,5 h nachgerührt, der Ansatz auf Raumtemperatur abgekühlt und zur Phasentrennung in einen Scheidetrichter überführt. Nach 0,5 h bei 25°C wird der Austrag in Säurechlorid und Katalysatorphase getrennt. Alle Austräge fallen phosgenfrei an.

Die Ergebnisse sind in Tabelle 2 zusammengestellt.

10		Phosgenverlust [%]	1,7	8,5	6'9	s'8	7,1	4,7
20		Beladungsgrad Katalysator [mol-%]	\$	67	09	64	28	72
25		orid Gehalt [%]	8 '66	95, 1	99, 1	97,0	98, 1	99, 2
30		Säurechlorid ber. rein Ge [%]	95	16	6	8	95	86
35		Temp. [°C]	50	09	09	70	09	02-09
40		·						
45		Katalysator	N,N-Dimethyl- formamid	N,N-Diethyl- formamid	N,N-Diethyl- formamid	N,N-Diethyl- formamid	N-Formyl- piperidin	N-Formyl- formamid
50	2	Säure	2-Ethylhexan- säure	Pivalin- säure	2-Ethyl- hexansäure	Stearin- säure	pivalin- säure	2-Ethyl- hexansäure
55	Tabelle 2	Bsp. Nr.	6	10	=	17	13	14

Beispiele 15 bis 21 (Katalysator-Rückführung)

In einem 350 ml Reaktor (HR) wird bei 40 bis 70°C 1 bis 2 mol/h einer Carbonsäure mit 20 mol-% des Addukts aus Phosgen und N,N-disubstituierten Formamids mit einem Beladungsgrad von 50 bis 60 % und sowie Phosgen zugeführt, daß neben der Umsetzung zum Säurechlorid auch der Phosgenverlust durch das Abgas ausgeglichen wird. Die Abgase werden durch Solekühlung auf -20°C abgekühlt.

Nach der Nachreaktion in einem zweiten Reaktor (NR) bei 40 bis 65 °C werden die Säurechlorid- und Katalysatorphase bei Raumtemperatur in einem Phasentrenngefäß getrennt. Der Katalysator wird nach Ergänzung des mit der Säurechloridlösung ausgetragenen N,N-disubstituierten Formamids zurückgeführt. Die Austräge sind jederzeit phosgenfrei.

Die Ergebnisse sind in Tabelle 3 zusammengestellt.

50	45		40		35	30		25	20	15	10	5
Tabelle 3	le 3	1 01/4	4. 4.	86	ad. Kat.	Temp.	[06]	Phosgen	Rück-	Wertprodukt	[Flächen-%]	Phosgen-
BSP.	Saure		5		[%-lom]	¥	N.	[Mo1/h]	führung	Säure- chlorid	Form- amid	verlust [%]
5	Probion-	1, 20	DMF	a a	09	0,4	04	1, 25	(1,1	4,0
:	säure	1, 10						1,13	7	4,00	1, 3	
16	iso-Butter-		PMF	a)	55	45	20	1,01	 (98,8	9,0	0,1
!	säure							1,52 2,04	7 E	98, 1 98, 1	, a,	6,1
		2,0				07	45	2,05	*	98,8	8,0	7,4
		2,00 2,00				45	20	2,05	S	98, 1	0,5	2, 4
;		30	2	a)	50	20	S	1, 32		7 '66	0,1	1,5
-	Z-Ethyl- bovans Sure	1, 30			3				7	99, 5	0,2	٠,5
									m.	7 '66	0, 1	c' 1
:		7	PAS .	a)	50	20	20	1,42	-	98,6	0,3	1,5
2	Säure	2,1	Š		3	,		1,43	7	99, 1	9,0	2, 1
,	1	8	7	a)	45	70	09	0,82	-	3,66	0,1	2,4
7	Säure	1,00	: i		!			1,03	7	7 '66	0, 1	2,9
5		0,7	ה ה	â	09	09	09	1,75		95, 1	2,5	2,8
3	Plvalin- säure	2,1	Š		3			1,75	7	94,5	3,2	2,8
7	2_C+bul.	1 30	ואַנּוּ	Q	20	09	09	1,32		97,8	1,1	1,5
17	2-E-Liny I- hexansäure				,			1,32	~ ~	97,4 97.5	 	2,2
								3	,			
a) (IMF @ N, N-Dia	ethylfor	mamid									
(a	b) DEF ≘ N,N-Diethylformamid	thylform:	p j me									

55 Patentansprüche

1. V rfahr n zur Herstellung von Carbonsäurechloriden der allgemeinen Formel I

in der R für C_1 - bis C_{30} -Alkyl, C_2 - bis C_{30} -Alkenyl und C_2 - bis C_{30} -Alkinyl steht, aus Carbonsäuren der allgemeinen Formel II

in der R die oben genannten Bedeutungen hat, und Phosgen, COCl₂ (III),in Gegenwart eines Katalysator-Addukts aus Phosgen und N,N-disubstituiertem Formamid der der allgemeinen Formel IV

in der R¹ und R² unabhängig voneinander C₁- bis C₃-Alkyl oder R¹ und R² gemeinsam eine C₄- oder C₅-Alkylenkette bedeuten, die gegebenenfalls durch ein Sauerstoffatom oder ein Stickstoffatom, das eine C₁- bis C₃-Alkylgruppe oder CHO trägt, unterbrochenen sein kann, wobei das Reaktionsprodukt I durch Phasentrennung erhalten wird, dadurch gekennzeichnet, daß man das Formamid (IV) zu 20 bis 70 mol-% mit Phosgen belädt.

2. Verfahren nach Anspruch 1; dadurch gekennzeichnet, daß man die Umsetzung kontinuierlich durchführt.

EUROPÄISCHER RECHERCHENBERICHT

	EINSCHLÄGI	GE DOKUMENTE			EP 91105743.8
Kategorie	Kennzeichnung des Dokuments der maßge	s mit Angabe, soweit erforderlich. blichen Teile		Hrifft pruch	KLASSIFIKATION DER ANMELDUNG (M. CI.)
P,X	<u>EP - A1 - 0 367</u> (BASF) * Ansprüche	•	1		C 07 C 51/60 C 07 C 53/42
D	& DE-A1-3			}	
A	EP - A1 - 0 031 (BASF) * Ansprüche		1		
D	& DE-A1-2 	950 155 ·		•	
					RECHERCHIERTE SACHGEBIETE (Int. C) 1)
	-				C 07 C 51/00 C 07 C 53/00
	•				
Der	vorliegende Recherchenbericht wur	de für alle Patentansprüche erste	itt.		
	Recherchenon WIEN	Abschlußdatum der Rech	erche	H	Pruler OFBAUER
X · vo Y · vo an A · ter	ATEGORIE DER GENANNTEN D n besonderer Bedeutung allein I n besonderer Bedeutung in Verl deren Veröffentlichung derselbe chnologischer Hintergrund chtschriftliche Offenbarung vischenliteratur er Erfindung zugrunde liegende 1	OKUMENTEN E : Detrachtet Dendung mit einer D : en Kategone L :	nach dem A in der Anm aus andem	entdokur Inmeldec eldung a Gründe	ment, das jedoch erst am ode datum veröffentlicht worden i ingeführtes Dokument n angeführtes Dokument en Patentfamilie, überein- nent