INTEGRATORE

È un circuito molto semplice in cui un operazionale, in configurazione invertente, lavora con un condensatore nel ramo di retroazione e una resistenza di ingresso.

Poichè $V_Q = 0$, $V_P = 0$, perché il punto P è virtualmente a massa, e l'ingresso invertente assorbe una corrente trascurabile, risulta:

$$I_C = -I_R$$

In particolare, se I_R è costante, lo è anche I_C e, se I_R varia, I_C subisce identiche vaiazioni.

Partendo da un discorso di primo livello, sapendo che: $C = \frac{Q}{V}$ ovvero $C = \frac{i \cdot t}{V}$ possiamo scrivere

 $I_C = C \frac{V}{t}$. È una formula non rigorosamente esatta, ma, per una discorso di pri mo livello, ci accontentiamo.

Sostituendo alle correnti le loro espressioni, possiamo scrivere:

$$C\frac{V_{out}}{t} = -\frac{V_{in}}{R}$$

e quindi:

$$V_{out} = -\frac{V_{in}}{RC} \cdot t$$

Perciò, se V_{in} è costante e di segno negativo, V_{out} cresce linearmente nel tempo; se V_{in} è costante e positiva, V_{out} cresce negativamente al tempo con legge lineare. Il termine $\frac{V_{in}}{RC}$ rappresenta la velocità di crescita (in senso positivo o negativo) di V_{out} nel tempo. Questo va misurato a partire dall'istante in cui viene chiuso l'interruttore per collegare V_{in} .

Di seguito vengono proposti due diagrammi che illustrano questi concetti.

La resistenza R_p che, facoltativamente, possiamo collegare in parallelo al condensatore, è una resistenza di valore molto alto, dell'ordine dei $M\Omega$. Questa resistenza, non presente nel nostro modello matematico, tiene conto del fatto che, in assenza di segnale di ingresso, il condensatore si comporta come un circuito aperto e l'operazionale viene quindi a trovarsi senza retroazione. Il circuito quindi amplifica A_d volte qualsiasi disturbo e diventa quindi estremamente vulnerabile. In pratica, senza R_p si rischia di vedere l'uscita fluttuare in maniera incontrollata. Collegando R_p , siamo sicuri che all'istante 0 (chiusura dell'interruttore, V_{out} parte da zero.

Lo sviluppo del discorso ad un livello più approfondito, sempre dello stesso circuito, si avvale di un modello matematico accessibile a chi conosce il calcolo integrale.

La corrente nel condensatore nell'istante t va scritta nella forma: $i(t) = C \frac{dV_{out}(t)}{dt}$ là dove avevamo

scritto grossolanamente $I_C = C \frac{V_{out}}{t}$.

Di conseguenza

$$C\frac{dV_{out}(t)}{dt} = -\frac{Vin(t)}{R}$$

e in definitiva:

$$V_{out}(t) = -\frac{1}{RC} \int_0^t V_{in}(t) dt$$

Ecco perché questo circuito prende il nome di integratore.