Канален слой(Data Link Layer)

Каналното ниво има три основни функции: -

- да осигури подходящ интерфейс на по-горното мрежово ниво;
- да открива грешки по време на предаването;
- да управлява информационния обмен.

Данните за каналното ниво представляват последователност от кадри (frame). Каналите са три вида - симплексни, полудуплексни и дуплексни.

Дуплексните канали позволяват едновременно предаване в двете посоки.

Полудуплексните канали позволяват предаване и в двете посоки, но в даден момент може да се предава само в една посока.

Симплексните канали позволяват предаване само в една посока.

Непотвърденото неустановено обслужване: източникът изпраща независими кадри към получателя, без получателят да ги потвърждава. Няма установяване на връзка между двете машини. Ако един кадър се загуби поради шум в линията, каналното ниво не прави опит да възстанови този кадър. Това обслужване е подходящо при канали с много малка честота на грешките, което позволява функциите по възстановяване на загубената информация да се поемат от по-горни нива в йерархията. Такова обслужване се реализира в повечето LAN.

При потвърденото и неустановено обслужване отново не се установява връзка между източника и получателя, но получаването на всеки кадър се потвърждава самостоятелно от получателя. Това дава възможност за повторно изпращане на непотвърдените кадри.

Формиране на кадри

Каналното ниво взима пакетите, които му се подават от мрежовото ниво и ги опакова в кадри. Всеки кадър се състои от заглавна част (header), поле за данни (data или payload), което съдържа мрежовия пакет и опашка (trailer). Дължината на кадъра обикновено е ограничена отгоре. Физическото ниво възприема информацията от каналното ниво като поток от битове, без да се интересува от нейната структура.

С развитието на мрежите става възможно кадрите да съдържат произволно цяло число битове. За такива кадри се използва третия метод, при който началото и краят на всеки кадър се маркират с битовата последователност 01111110, наречена флагов байт. За да се предотврати погрешното определяне на граница на кадър, ако тази последователност от битове се срещне в данните на кадъра, след всеки 5 единици в данните източникът добавя по една нула. Техниката се нарича вмъкване на битове (bit stuffing). Каналното ниво на получателя премахва нулата след всеки 5 единици в данните, преди да ги подаде на мрежовото ниво.

Функциите на каналния слой се реализират в адаптер. В адаптера е реализиран буфер, в който се записват кадрите, докато изчакват да бъдат предадени нататък. Кадърът престоява в буфера, докато не се увери, че отсрещната страна го е получила. Да приемем, че източник А изпраща кадър към В. Възможни варианти:

1) Адаптер А дефектен, не излъчва правилен сигнал;

- 2) "Счупен" канал повредена система за предаване;
- 3) В не съществува;
- 4) В няма свободен буфер;
- 5) Кадърът постъпва в буфера на В.

А може да получи отговор единствено при 5). При изпращане на кадъра А включва брояч на време - таймер. Чака отговор до определено време – timeout. timeout трябва да е по-голямо от времето за предаване на кадъра, обработката му в приемника и получаване на потвърждение. Ако кадърът не се потвърди в рамките на това време, то А предава кадъра отново. Възможно е А да изпрати кадър към В, този кадър да се получи в В, но потвърждението да се изгуби. Естествено, ако даден кадър бъде изпратен отново, неговият идентификационен номер не се променя. При всички положения А изпраща повторно кадъра, В ще получи същия кадър и ще го изпрати към мрежовото ниво, което ще доведе до недопустимо дублиране на данните. За целта с всеки кадър се свързва пореден номер. В случая е достатъчно номерът да е един бит (0 или 1). Във всеки един момент В очаква кадър с определен номер. Ако В получи кадър с друг номер, този кадър е дубликат и се отхвърля. Ако В получи кадър с очаквания номер, кадърът се приема и очакваният номер на кадър се инвертира (ако е бил 0 става 1, ако е бил 1 става 0). От своя страна А номерира алтернативно кадрите, които изпраща към В.

CRC (cyclic redundancy check — проверка на цикличния остатък) Алгоритъм за проверка за грешки при предаване и съхранение на данни чрез използване на контролна сума (контролно число, CRC сума).

Устройството-източник изчислява CRC-сумата на данните, които следва да бъдат проверявани и я изпраща или записва със самите данни.

Устройството-получател извършва същото изчисление след прочитане на данните и контролната сума, и установява тяхната автентичност чрез сравнение на записаната CRC сума и новоизчислената CRC сума. CRC се изчислява в движение и се слага в края на кадъра като FCS (Frame Control Sum)

Протоколът PPP (Point-to-Point Protocol) е протокол за двуточкова връзка. Този протокол се използва за свързване на домашни компютри до доставчици на Интернет услуги по телефонна линия. Протоколът PPP е байтово-ориентиран и за идентиф

Line Control Protocol (LCP): автоматично конфигуриране на срещуположните интерфейси:

Password Authentication Protocol (PAP)- предава пароли в явен ASCII текст по мрежата, затова е несигурен.

- * Клиентът изпраща username и password
- * Сървърът връща: authentication-ack (ако е ОК) или authentication-nak (в противен случай).

Network Control Protocol (NCP)= Уговаря опции за протокола от мрежовия слой

Multiprotocol Label Switching (MPLS) е механизъм за реализация на високопризводителни телекомуникационни мрежи.