

Machine Learning

Chapter 2 Concept Learning and The General-to-specific Ordering

Outline

- Learning from examples
- General-to-specific ordering of hypotheses
- Version spaces and candidate elimination algorithm
- Inductive bias

2.1 Introduction

Concept

- Concept can be viewed as describing some subset of objects or events defined over a large set. Or a booleanvalued function defined over this larger set
- IsBird(animal)

Concept Learning

 Inferring a boolean-valued function from training examples of its input and output

2.2 A Concept Learning Task

- An example
 - Target Concept: "days on which my friend Aldo enjoys his favourite water sports"
 - Task: predict the value of "Enjoy Sport" for an arbitrary day based on the values of the other attributes
 - EnjoySport(day)

Table2-1Positive and negative training examples for the target concept EnjoySport

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Hypothesis

- Understand Hypothesis
 - Concept, boolean-valued function
- Hypothesis Representation
 - A conjunction of constraints on attributes (bias)
 - Each constraint can be:
 - A specific value : e.g. Water=Warm
 - A don't care value : e.g. Water=?
 - No value allowed (null hypothesis): e.g.*Water*=∅

Hypothesis Example: h

Sky Temp Humid Wind Water Forecast < Sunny ? ? Strong ? Same >

```
<?, ?, ?, ?, ?, ?>
```

// every day is a positive example

$$< \phi, \phi, \phi, \phi, \phi, \phi>$$

// no day is a positive example

Description of The EnjoySport Concept Learning Task

Given:

- Instances X: Possible days decribed by the attributes *Sky*, *Temp, Humidity, Wind, Water, Forecast*
- Hypotheses H: each h is a conjunction of literals e.g.
 - < Sunny ? ? Strong ? Same >
- Training examples D : positive and negative examples of the target function: $\langle x_1, c(x_1) \rangle, ..., \langle x_n, c(x_n) \rangle$
- Target concept c: EnjoySport $X \rightarrow \{0,1\}$

Determine:

- A hypothesis h in H such that h(x)=c(x) for all x in D.

2.2.1 Notation

- Instance:x
- The set of instances:X
- Target concept:c
- Training examples:x
- The set of training examples:D
- Positive examples: c(x)=1
- Negative examples:c(x)=0
- Hypothesis:h
- The set of all possible hypotheses: H

The goal: find a hypothesis h such that h(x)=c(x) for all x in X

2.2.2 The Inductive Learning Hypothesis

- Inductive Learning
 - Get common rules from examples
 - Only guarantee that the output hypothesis fits the target concept over the training data
- Fundamental Assumption of Inductive Learning
 - Any hypothesis found to approximate the target function well over the training examples, will also approximate the target function well over the unobserved examples.

2.3 Concept Learning as Search

- Concept Learning can be viewed as a searching problem
 - Searching Space: hypotheses space defined by hypothesis representation
 - Goal: find the hypothesis that best fits the training examples

- Understanding the Relations among Hypothesis representation, Hypothesis Space, and Program
 - Hypothesis Space for EnjoySport
 - Sky: Sunny, Cloudy, Rainy
 - AirTemp: Warm, Cold
 - Humidity: Normal, High
 - Wind: Strong, Weak
 - Water: Warm, Cold
 - Forecast: Same, Change

```
#distinct instances: 3*2*2*2*2*2 = 96

#distinct concepts defined on instance space: 2<sup>96</sup>

#syntactically distinct hypotheses:
5*4*4*4*4=5120

#semantically distinct hypotheses:
1+4*3*3*3*3*3=973
```


2.3.1 General-to-Specific Ordering of Hypotheses

- Consider two hypotheses:
 - $-h_1 = < Sunny,?,?,Strong,?,?>$
 - h₂=< Sunny,?,?,?,?,>
 - Set of instances classified positive by h₁ and h₂
 - h_2 imposes fewer constraints than h_1 and therefore classifies more instances x as positive h(x)=1

- Definition of more_general_than_or_equal_to
 - Satisfy:
 - For any x and h, we say x satisfies h if and only if h(x)=1
 - x=(sunny, cold, high, weak, cold, change) satisfies h₂=< Sunny,?,?,?,?>

– Definition:

• Let h_j and h_k be boolean-valued functions defined over X. Then h_j is more general than or equal to h_k if and only if

$$\forall x \in X : [(h_k(x) = 1) \rightarrow (h_j(x) = 1)]$$

• Written h_j more_general_than_or_equal_to h_k , or $h_j \ge g h_k$

• The relation ≥ imposes a partial order (偏序: 自反, 反对称, 传递) over the hypothesis space H

• Strictly more_general_than

$$-h_j \ge g h_k$$
, if and only if, $(h_j \ge g h_k) \land \neg (h_k \ge g h_j)$

- More specific than
 - $-h_i \le g h_k$, if and only if, $h_k \ge g h_i$

more_general_than example

Instances

Hypotheses

$$h_2 \ge h_1$$

$$h_2 \ge h_3$$

2.4 Find-S: Finding a Maximally Specific Hypothesis

- Introduction
 - Use the more_general_than partial ordering to organize the search for a hypothesis

 Begin with the most specific possible hypothesis in H, and then generalize this hypothesis each time it fails to cover an observed positive training example

Find-S Algorithm

- 1. Initialize h to the most specific hypothesis in H
- 2. For each positive training instance x
 - For each attribute constraint a_i in h
 If the constraint a_i in h is satisfied by x
 then do nothing
 else replace a_i in h by the next more general constraint that is satisfied by x
- 3. Output hypothesis h
- For negative example, makes no change to h Why?

Hypothesis Space Search by Find-S

Properties of Find-S

• Hypothesis space described by conjunctions of attributes

• Find-S will output the most specific hypothesis that is consistent with the positve training examples

• The output hypothesis will also be consistent with the negative examples, provided the target concept is contained in H and trainning samples are correct.

Complaints about Find-S

- Can't tell if the learner has converged to the target concept
 - in the sense that it is unable to determine whether it has found the *only* hypothesis consistent with the training examples, or there are still other hypothesis
- Can't tell if training examples are consistent, as it ignores negative training examples.
- Why prefer the most specific hypothesis?
- What if there are multiple maximally specific hypothesis?

2.5 Version Spaces and the Candidate-Elimination Algorithm

- Candidate-Elimination VS Find-S
 - Find-S only output one of many hypotheses from H that might fit the training data
 - candidate-elimination output a description of the set of all hypotheses consistent with the training examples
 - candidate-elimination computes the description of this set without explicitly enumerating all of its members
 - This is accomplished by using the more_general_than partial ordering
 - Find-S and candidate-elimination are limited by noisy training data

2.5.1 Representation

- Definition of Consistent
 - A hypothesis h is **consistent** with a set of training examples D if and only if h(x)=c(x) for each example $\langle x,c(x)\rangle$ in D.

Consistent(h,D)
$$\Leftrightarrow$$
(\forall \in D) h(x)=c(x)

Difference between consistent and satisfies

Version Space

- Represent the set of all hypotheses consistent with the training data
- Contains all plausible(貌似正确) versions of the target concept
- Definition:
 - The version space, VS_{H,D}, with respect to hypothesis space H, and training set D, is the subset of hypotheses from H consistent with all training examples:

$$VS_{H,D} = \{h \in H \mid Consistent(h,D) \}$$

2.5.2 The List-Then-Eliminate Algorithm

• List-Then Eliminate Algorithm

List all of its members to represent the VS

- 1. $VersionSpace \leftarrow$ a list containing every hypothesis in H
- 2. For each training example $\langle x, c(x) \rangle$ remove from *VersionSpace* any hypothesis that is inconsistent with the training example $h(x) \neq c(x)$
- 3. Output the list of hypotheses in *VersionSpace*
- advantages
 - Guarantee to output all hypotheses consistent with training data
- disadvantages
 - Requires exhaustively enumerating all hypotheses in H---an unrealistic requirement

2.5.3 A More Compact Representation for Version Spaces

- A More Compact Representation
 - VS is represented by its most general and least general members
 - These members form general and specific boundary sets that delimit the VS
 - EnjoySport Sample

Version Space Example

```
{<Sunny,Warm,?,Strong,?,?>}
<Sunny,?,?,Strong,?,?>
                       <Sunny, Warm,?,?,?,> <?, Warm,?, Strong,?,?>
         G: {<Sunny,?,?,?,?>, <?,Warm,?,?,?>, }
         x_1 = \langle Sunny Warm Normal Strong Warm Same \rangle +
         x_2 = \langle Sunny Warm High Strong Warm Same \rangle +
         x_3 = \langle Rainy Cold High Strong Warm Change \rangle -
         x_4 = <Sunny Warm High Strong Cool Change> +
```


• The **general boundary**, G, With respect to H and D is the set of maximally general members of H consistent with D.

```
G = \{g \in H | Consist(g,D) \text{ and } (\neg \exists g' \in H) [(\exists g' > g) \text{ and } Consist(g',D)] \}
```

• The **specific boundary**, S, With respect to H and D is the set of maximally specific members of H consistent with D.

```
S = \{s \in H | Consist(s,D) \text{ and } (\neg \exists s' \in H) [(\exists s > s') \text{ and } Consist(s',D)] \}
```

- Version Space representation theorem
 - Every member of the version space lies between these boundaries $VS_{H,D} = \{h \in H | (\exists \ s \in S) \ (\exists \ g \in G) \ (g \ge h \ge s) \}$ where $x \ge y$ means x is more general or equal than y
 - (proof)
 - (1) every h satisfying the right side is in VS_{H,D}
 - (2) every member of VS_{H,D} satisfies the right side

2.5.4 Candidate-Elimination Learning Algorithm

 $G \leftarrow$ maximally general hypotheses in H

 $S \leftarrow$ maximally specific hypotheses in H

For each training example $d=\langle x,c(x)\rangle$

If d is a positive example

Remove from G any hypothesis that is inconsistent with d For each hypothesis s in S that is not consistent with d

- remove s from S.
- Add to S all minimal generalizations h of s such that
 - h consistent with d, and Some member of G is more general than h
- Remove from S any hypothesis that is more general than another hypothesis in S

If d is a negative example

Remove from S any hypothesis that is inconsistent with d For each hypothesis g in G that is not consistent with d

- remove g from G.
- Add to G all minimal specializations h of g such that
 - h consistent with d, and Some member of S is more specific than h
- Remove from G any hypothesis that is less general than another hypothesis in G

• minimal specializations for g

minimal generalizations for s

2.5.5 Example Candidate Elimination

S: $\{\langle \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing \rangle\}$

 $x_1 = \langle Sunny Warm Normal Strong Warm Same \rangle +$

S: {< Sunny Warm Yormal Strong Warm Same >}

 $x_2 = \langle Sunny Warm High Strong Warm Same \rangle +$

S: {< Sunny Warm ? Strong Warm Same >}

Example Candidate Elimination

```
S: {< Sunny Warm ? Strong Warm Same >}
       G: {<?,?,?,?,?>}
 x_3 = \langle Rainy Cold High Strong Warm Change \rangle -
    S: {< Sunny Warm? Strong Warm Same >}
G: {<Sunny,?,?,?,?,>, <?,Warm,?,?,>, <?,?,?,?,Same>}
   x_4 = <Sunny Warm High Strong Cool Change> +
     S: {< Sunny Warm ? Strong ? ? >}
    G: {<Sunny,?,?,?,?>, <?,Warm,?,?,?> }
```


2.6 Remarks On VS and C-E

- Will the C-E Converge to the Correct Hypothesis?
 - No error in the training examples
 - There is some h in H that correctly describes the target concept
- IF the training data contains errors
 - Given sufficient additional training data the learner will detect the inconsistency by noticing that the S and G boundary sets converge to an empty VS
- The target concept can't be described in the hypothesis representation
 - A similar symptom

- What Training Example Should the Learner Request Next?
 - The optimal query strategy is to generate instances that satisfy exactly half the hypotheses in the current VS. So the concept can be found with only log₂|VS|

 $x_1 = \langle Sunny Warm Normal Light Warm Same \rangle$

- How Can Partially Learned Concepts Be Used?
 - the target concept has not yet been fully learned,
 it is possible to classify certain examples with
 the some degree of confidence
 - Sample 2.6

```
A = <Sunny Warm Normal Strong Cool Change>+
```

B = <Rainy Cold Normal Light Warm Same>-

C = <Sunny Warm Normal Light Warm Same >+-

D = <Sunny Cold Normal Strong Warm Same >2+4-

2.7 Inductive Bias

- Problems about C-E
 - What if the target concept is not contained in H
 - Can we avoid this difficult by using a full H
 - How does the size of H influence the ability of the algorithm to generalize to unobserved instances
 - How does the size of the H influence the number of training examples

2.7.1 A Biased Hypothesis Space

• Our hypothesis space is unable to represent a simple disjunctive target concept :

```
(Sky=Sunny) v (Sky=Cloudy)
```

```
x<sub>1</sub> = <Sunny Warm Normal Strong Cool Change> +
x<sub>2</sub> = <Cloudy Warm Normal Strong Cool Change> +
S: { <?, Warm, Normal, Strong, Cool, Change> }
x<sub>3</sub> = <Rainy Warm Normal Strong Cool Change > -
S: {}
```


2.7.2 An Unbiased Learner

- Idea: Choose H that expresses every teachable concept, that means H is the set of all possible subsets of X called the power set P(X)
 - $-|X|=96, |P(X)|=2^{96} \sim 10^{28}$ distinct concepts
 - H = disjunctions, conjunctions, negations
 - e.g. <Sunny Warm Normal ? ? ?> or <Sunny or cloudy ? ? ? Change>
 - H surely contains the target concept.

• What are S and G in this case?

- Assume positive examples (x_1, x_2, x_3) and negative examples (x_4, x_5)
- $-S: \{ \langle x_1 \vee x_2 \vee x_3 \rangle \}, G: \{ \neg \langle x_4 \vee x_5 \rangle \}$
- The only examples that are classified are the training examples themselves. (why?)
 - Each unobserved instance will be classified positive by precisely half the hypothesis in VS and negative by the other half.
 - In order to learn the target concept, one would have to present every single instance in X as a training example.

Bias-free Learning

- EnjoySport in an unbiased way
 - Unable to generalize beyond the observed examples
 - In order to converge to a single ,final target concept, have to present every single instance in X as a training example

2.7.3 The Futility of Bias-Free Learning

• A fundamental property of inductive inference:

a learner that makes no a priori assumption regarding the identity of the target concept has no rational(合理) basis for classifying any unseen instances

 Prior assumption required by inductive learning is the inductive bias

• Definition of The inductive bias:

Consider:

- Concept learning algorithm L
- Instances X, target concept c
- Training examples $D_c = \{\langle x, c(x) \rangle\}$
- Let $L(x_i,D_c)$ denote the classification assigned to instance x_i .

Definition:

The inductive bias of L is any minimal set of assertions B such that for any target concept c and corresponding training data D_c

$$(\forall x_i \in X)[B \land D_c \land x_i] \mid -- L(x_i, D_c)$$

Where $y \mid --z$ means that z follows deductively from y.

Inductive Systems and Equivalent Deductive Systems

- Inductive bias of candidate-elimination algorithm
 - $\{c \in H\} (why?)$
- Three Learners with Different Biases
 - Rote learner: Store examples classify x if and only if it matches a previously observed example.
 - No inductive bias
 - Version space candidate elimination algorithm.
 - Bias: The hypothesis space contains the target concept.
 - Find-S
 - Bias: The hypothesis space contains the target concept and all instances are negative instances unless the opposite is entailed by its other knowledge.

• More strongly biased methods make more inductive leaps, classifying a greater proportion of unseen instance

- Different forms of inductive bias:
 - Categorical assumptions that completely rule out (排除... 的可能性) certain concepts
 - Rank order the hypothesis by stating preferences
 - Implicit in the learner and unchangeable by the learner