EMI接收机

EMI接收机用于测量EUT的辐射

检波器: QP、PK、RMS、AV

Frequency range	3dB Bandwidth
9kHz to 150kHz (Band A)	200Hz
150kHz to 30MHz (Band B)	9kHz
30MHz to 300MHz (Band C)	120kHz
300MHz to 1GHz (Band D)	120kHz
1GHz to 18GHz (Band E)	1MHz

CISPR 16-1-1提供了关于EMI接收机的数据

EMI接收机的框图

根据EMI接收机的框图可以看出,这是一台二次变频类型的接收机

窄带信号

3dB带宽小于接收机3dB带宽的信号(要求信号的载波与接收机的接收频率相同)

一般是CW连续波、调制后且带宽小于接收机带宽的CW连续波信号

宽带信号

带宽大于接收机3dB带宽的信号

窄脉冲(冲激函数)、时钟信号(谐波分量大,频谱图为sinc函数的包络)、UWB脉冲(超宽带脉冲)

(这后面的图我没看懂,也不知道他在讲什么。好像也不是卷积效应)

检波器

接收机的检波器一般用来测量目标信号的功率或者电压

对于没有调制的信号(CW连续波),所有检波器必须输出相同的RMS值。RMS值得定义如下,其与峰值得关系是:

$$V_{RMS} = \sqrt{rac{1}{T}\int_{0}^{T}A^{2}cos^{2}\left(\omega t
ight)\mathrm{d}t} = rac{A}{\sqrt{2}}$$

类型

Peak Detector(PK)

Quasi Peak Detector(QP)

Root Mean Square Detector(RMS)

Average Detector(AV)

Peak Detector/峰值检波器

充电的时间常数极小

放电的时间常数非常长

显示的是与脉冲重复无关的峰值

显示出的最大幅度: PK>QP,RMS

峰值检波器电路

 R_d 用来提供极大的放电时间常数

充电特性

输出电压曲线

对于理想二极管,它没有内阻,所以电容两端的电压会瞬间充电到 V_{in}

对于真实的二极管,它有内阻 r ,充电时会有一段上升时间(忽略二极管压降)

真实的电路图

电容两端的电压 ($0 \le t \le \tau_{\text{Pulse Width}}$):

$$v_C = V'rac{R}{R+r}\left(1-e^{-rac{t}{ au_C}}
ight)$$

V' 在第一个脉冲时等于 V_{in} ,在随后的脉冲中等于 $V_{in} - v_D \left(t = au_{PRI} - au_{PW}
ight)$

其中
$$au_C = rac{rRC}{R+r} pprox rC$$

当 $R\gg r$ 时约等于成立

放电特性

在充电结束后,二极管反偏截止,电容C开始放电。放电特性为:

$$\left\{egin{aligned} &v_D = V'' e^{-rac{t}{ au_D}} \ & au_D = RC \ &V'' = v_C \left(t = au_{PW}
ight) \end{aligned}
ight.$$

上述等式对于 $0 \le t \le \tau_{PRI} - \tau_{PW}$ 成立

总结

一般用充放电的常数之比来对Peak Detector的规格进行规定:

$$rac{ au_D}{ au_C}pprox rac{RC}{rC}=rac{R}{r}$$

Peak Detector (CISPR 16-1-1)	$\frac{ au_D}{ au_C}$
Band A	9kHz to 150kHz	1.89×10^{4}
Band B	150kHz to 30MHz	1.25×10^{6}
Band C&D	30MHz to 1GHz	1.67×10^{7}
Band E	1GHz to $18GHz$	1.34×10^{8}

比值

Quasi Peak Detector/准峰值检波器

准峰值检波器一般用于 1GHz 以上的频率

充电速度快和相对长的放电时间常数

读数受到脉冲重复频率的影响

峰值检波器电路

输出电压的时域特征

Pulse Repetition Frequency
$$= \frac{1}{ au_{PRI}}$$

(I大概是Interval的意思?)

输出电压的方程(与峰值检波器类似,只是充电电阻相比非常大):

电路图

以脉冲开始为原点算充电特性: $0 \le t \le \tau_{PW}$

$$egin{cases} v_C = V' rac{R_2}{R_1 + R_2} \left(1 - e^{-rac{t}{ au_C}}
ight) \ au_C = rac{R_1 R_2 C}{R_1 + R_2} \ V' = v_{in} - v_D \left(t = au_{PRI} - au_{PW}
ight) \end{cases}$$

以脉冲结束为原点算放电特性: $0 \le t \le \tau_{PRI} - \tau_{PW}$

$$egin{cases} v_D = V'' rac{R_2}{R_1 + R_2} \left(1 - e^{-rac{t}{ au_D}}
ight) \ au_D = R_2 C \ V'' = v_C \left(au_{PW}
ight) \end{cases}$$

QP检波器的输出受到脉冲宽度和脉冲间隔的影响 (PPT上的图还挺详细的,不写了)

其它类型的检波器

Envelope detector/包络检波器

包络检波器输出信号的包络

RMS Detector/均方根检波器

测量信号包络的均方根值。

适用于会被热效应影响的设备。

输出为:

$$V_{RMS} = \sqrt{rac{1}{2T_{dwell}}\int_{0}^{T_{dwell}}v_{env}^{2}\left(t
ight)\mathrm{d}t} pprox \sqrt{rac{1}{2T}\int_{0}^{ au}v_{env}^{2}\left(t
ight)\mathrm{d}t}$$

如何理解这一个式子: 常见的RMS值并不会出现分子中的2, 这边绕了两个弯, 还需要区分瞬时RMS值和等效直流RMS值(我的理解, 感觉很邪乎)。

- 1、RMS检波器输入的信号上是**信号的包络**,它并不能直接测量到信号的RMS值。
- 2、而**信号包络**的来源是**包络检波器**,包络检波器输出的是信号的**局部峰值(这个词是我造的,不知道好不好理解)**,为了将这个局部峰值转换为瞬时RMS值,需要乘 $\sqrt{\frac{1}{2}}$,这样造就了检波器输出值中分子里的2. 数学表达如下:

$$rac{V_{env}\left(t
ight)}{\sqrt{2}}=V_{rms}\left(t
ight)$$

3、随后RMS检波器对**瞬时RMS值**,继续取RMS值,获得**等效的直流RMS值**。这意味着这个直流RMS值产生的热效应与瞬时RMS值产生的热效应相同。

推导涉及到初中物理知识(雾):

$$\int_{0}^{T} \frac{v_{RMS}^{2}\left(t\right)}{R} dt = W_{Heat} = \frac{V_{DCRMS}^{2}}{R} \times T$$

$$\implies \frac{1}{T} \int_{0}^{T} v_{RMS}^{2}\left(t\right) dt = V_{DCRMS}^{2}$$

$$\implies \sqrt{\frac{1}{T} \int_{0}^{T} v_{RMS}^{2}\left(t\right) dt} = V_{DCRMS}$$

代入
$$rac{v_{env}(t)}{\sqrt{2}}=v_{RMS}\left(t
ight)$$

得到:

$$V_{DCrms} = \sqrt{rac{1}{2T}\int_{0}^{T}v_{env}^{2}\left(t
ight)\mathrm{d}t}$$

对于矩形脉冲串:

$$V_{RMS} pprox rac{A}{\sqrt{2}} rac{ au}{T}$$

Average Detector/平均值检波器

测量信号包络的平均值。

对于有着长积分时间的设备适用。

输出电压的关系为:

$$V_{Ave} = rac{1}{\sqrt{2}T_{dwell}}\int_{0}^{T_{dwell}}v_{env}\left(t
ight)\mathrm{d}t$$

$$V_{Ave}pprox rac{A}{\sqrt{2}}rac{ au}{T}$$

但是从这里看,应该是信号瞬时RMS值的平均值,不是很懂老印的绕法。绕来绕去已经糊涂了。

对于上述两个检波器,有:

$$V_{rms} \geq V_{Ave}$$

接收机到底测试的是什么? (先只考虑PK和QP吧, 其他的检波器已经内置积分了)

接收机会对检波器输出的信号进行积分,积分时长为 T_{dwell} 输出为:

$$V_{Det} = rac{1}{\sqrt{2}T_{dwell}}\int_{0}^{T_{dwell}}v_{D}\left(t
ight)\mathrm{d}t$$

由于峰值或者准峰值检波输出的是信号的峰值或准峰值,所以如果要获得信号的RMS值,需要除 $\sqrt{2}$.

为了达到稳定的输出,需要 $T_{dwell} > PRI$,所以积分时长包含数个充放电过程。

$$V_{Det} = rac{1}{\sqrt{2}T_{dwell}}\left(\int_0^{ au_{PW}} v_{C1}\mathrm{d}t + \int_0^{ au_{PRI}- au_{PW}} v_{D1}\mathrm{d}t + \int_0^{ au_{PW}} v_{C2}\mathrm{d}t + \int_0^{ au_{PRI}- au_{PW}} v_{D2}\mathrm{d}t + \cdots
ight)$$

对于PK,得到的将是脉冲的RMS电压值。

Detector Example 1

这么这么这么长一串,只是为了告诉你,PK的输出约等于信号的峰值

根据CISPR标准计算 τ_C 和 τ_D

$$au_Cpprox rC, au_Dpprox RC, rac{ au_D}{ au_C}=1.67 imes 10^7
onumber \ au_Dpprox 17.8s, au_Cpprox 1.07 \mu s$$

首先考虑PK的输出电压特性:

$$v_{C}\left(t
ight)=V'\left(1-e^{-rac{t}{ au_{C}}}
ight)=\left(V_{in}-V_{D_{end}}
ight)\left(1-e^{-rac{t}{ au_{C}}}
ight)$$

在第一个脉冲来临时 $V' pprox V_{in}$,代入 au_C 和 $t = au_{PW}$ 可得充电结束电压 V''为:

$$V''=V_{in}\left(1-e^{-rac{50\mu s}{1.07\mu s}}
ight)pprox V_{in}$$

继续计算放电结束电压 $V_{D_{end}}$ 代入 $t= au_{PRI}- au_{PW}$:

$$V_{D_{end}} = V'' e^{-rac{t}{ au_D}} pprox V_{in} e^{-rac{2450 \mu s}{17.5 s}} pprox V_{in}$$

归纳可以得到:

$$v_{C2} = v_{C3} = v_{Cn} = V_{in}$$

$$v_{D2} = v_{D3} = v_{Dn} = V_{in}$$

所以可以得到,对于Peak Detector,其输出电压为:

$$v_D = V_{in}$$

继续这么长一串,告诉你接收机接收到的电压是 $\frac{V_{in}}{\sqrt{2}}$

考虑接收机的积分过程(PPT上写的很乱,我重新整理一下):

$$V_{Det} = rac{1}{\sqrt{2}T} \left(\int_{0}^{ au_{PW}} v_{C1}\left(t
ight) \mathrm{d}t + \int_{0}^{ au_{PRI} - au_{PW}} v_{D1}\left(t
ight) \mathrm{d}t + \int_{0}^{ au_{PW}} v_{C2}\left(t
ight) \mathrm{d}t + \int_{0}^{ au_{PRI} - au_{PW}} v_{D2}\left(t
ight) \mathrm{d}t + \cdots
ight)$$

由于 $v_{C2}=v_{C3}=v_{Cn}=V_{in}$ 、 $v_{D2}=v_{D3}=v_{Dn}=V_{in}$ 所以有

$$egin{aligned} V_{Det} &= rac{1}{\sqrt{2}T} \left(\int_0^{ au_{PW}} V_{in} \mathrm{d}t + \int_0^{ au_{PRI} - au_{PW}} V_{in} \mathrm{d}t + \int_0^{ au_{PW}} V_{in} \mathrm{d}t + \int_0^{ au_{PRI} - au_{PW}} V_{in} \mathrm{d}t + \cdots
ight) \ &= rac{1}{\sqrt{2}T} V_{in} \left(au_{PW} + au_{PRI} - au_{PW} + au_{PW} + au_{PRI} - au_{PW} + \cdots
ight) \end{aligned}$$

在积分时间 T_{dwell} 相比脉冲周期 τ_{PRI} 很大的情况下,可以做如下近似:

$$V_{Det} pprox rac{1}{\sqrt{2}T} \cdot v_{in} \cdot T \ \implies V_{Det} = rac{V_{in}}{\sqrt{2}}$$

这也就是Peak Detector在接收机的输出了,为

$$V_{Det} = rac{V_{in}}{\sqrt{2}}$$

Detector Example 2

根据题目所给条件计算 τ_C 和 τ_D

$$au_C = rac{R_1R_2}{R_1+R_2}Cpprox R_1C = 1ms$$
 $au_D = R_2C = 160ms$

计算第一次充电过程的电压, $V_{\prime}=V_{in}$,由于 $R_{2}\gg R_{1}$ 有

$$v_{C1}\left(t
ight) = V'rac{R_2}{R_1+R_2}\left(1-e^{-rac{t}{ au_C}}
ight) pprox V'\left(1-e^{-rac{t}{ au_C}}
ight)$$

计算第一次放电过程的电压,其中 $V''=v_{C1}\left(au_{PW}
ight)pprox V'\left(1-e^{-rac{5ms}{1ms}}
ight)pprox V_{in}$

$$v_{D1}\left(t
ight) = V'' e^{-rac{ au_{PRI} - au_{PW}}{ au_{D}}} = V'' e^{-rac{995ms}{150ms}} pprox 0V$$

所以每次充放电都可以视为独立的,从0开始的过程。

对充放电流程进行积分:

$$\int_{0}^{ au_{PW}}v_{C1}\left(t
ight)\mathrm{d}t+\int_{0}^{ au_{PRI}- au_{PW}}v_{D1}\left(t
ight)\mathrm{d}tpprox V_{in}\left(au_{PW}- au_{C}
ight)+V_{in} au_{D}=V_{in}\left(0.004+0.16
ight)=0.164V_{in}$$

计算输出电压:

$$rac{0.164V_{in}}{\sqrt{2} imes1s}=0.116V$$

Detector Example 2 Homework

计算 τ_C 和 τ_D

$$au_C = rac{R_1R_2}{R_1+R_2}Cpprox R_1C = 1ms$$
 $au_D = R_2C = 560ms$

计算第1次充电过程, $V'=V_{in}$:

$$v_{C1}\left(t
ight) = V'rac{R_{2}}{R_{1}+R_{2}}\left(1-e^{-rac{t}{ au_{C}}}
ight) pprox V_{in}\left(1-e^{-rac{t}{1 imes10^{-3}}}
ight)$$

充电完成电压为: $v_{C1}(\tau_{PW}) = 0.3935V_{in}$

计算第1次放电过程, $V''=v_{C1}\left(au_{PW}
ight)=0.3935V_{in}$:

$$v_{D1}(t) = V'' e^{-\frac{t}{\tau_D}} = 0.3935 V_{in} e^{-\frac{t}{0.56}}$$

放电完成电压为: $v_{D1}\left(\tau_{PRI}-\tau_{PW}\right)=0.3766V_{in}$

计算第2次充电过程, $V'=V_{in}-0.3766V_{in}=0.6233V_{in}$:

$$v_{C1}\left(t
ight)pprox0.3766V_{in}+0.6233V_{in}\left(1-e^{-rac{t}{1 imes10^{-3}}}
ight)$$

充电完成电压为: $v_{C2}\left(\tau_{PW}\right)=0.6218V_{in}$

计算第2次放电过程, $V''=v_{C1}\left(au_{PW}
ight)=0.6218V_{in}$:

$$v_{D1}(t) = V'' e^{-\frac{t}{\tau_D}} = 0.6218 V_{in} e^{-\frac{t}{0.56}}$$

放电完成电压为: $v_{D2} \left(\tau_{PRI} - \tau_{PW} \right) = 0.5952 V_{in}$

由于 $T_{dwell}=2 au_{PRI}$ 所以算到这里为止。计算整个充放电过程(包含两个PRI)的积分:

$$\int_{0}^{\tau_{PW}} \left(V_{in} \left(1 - e^{-\frac{t}{1 \times 10^{-3}}} \right) + 0.3766 V_{in} + 0.6233 V_{in} \left(1 - e^{-\frac{t}{1 \times 10^{-3}}} \right) \right) dt + \int_{0}^{\tau_{PRI} - \tau_{PW}} \left(0.3935 V_{in} e^{-\frac{t}{\tau_D}} + 0.6218 V_{in} e^{-\frac{t}{\tau_D}} \right) dt \\ = 0.02470 V_{in}$$

计算EMI接收机的输出电压:

$$\frac{0.02470 V_{in}}{\sqrt{2} T_{dwell}} = 0.7 V$$

测试装备

天线

天线的增益一般描述的是远场特性

但是EMI的测量一般在近场进行:

空间限制

设备发出的辐射信号较弱

辐射抗扰度测试需要强电磁场

对于EMI测试,我们一般在电场或者磁场测量接收到的电压,而不是发射和接收功率:

所以有一套全新的描述天线特性的参数:

Antenna Factor (AF)

Transmit Antenna Factor (TAF)

Antenna Factor

$$AF=rac{E}{V_L}m^{-1}=20log_{10}rac{E}{V_L}\mathrm{dB}/m$$

这个描述的是电场在**接收**天线的**负载**上产生单位电压的情况。很明显这边假设的是极化与天线是匹配的,并没有考虑极化损耗。天线系数越小,相同电场强度的情况下接收到的电压越高。

Rod Antenna

$$AF$$
@20kHz = 75 dB/ m

$$AF@20 \mathrm{MHz} = 25 \mathrm{dB}/m$$

如果电场强度为 1V/m 的话,天线接收到的电压为:

20kHz:

$$V = \frac{E}{AF} = E \, (dB) - AF \, (dB/m) = \frac{1}{10^{75/20}} = 0 - 75 = -75 \, (dBV) = 0.17 mV$$

20MHz:

$$V = \frac{E}{AF} = E \, (dB) - AF \, (dB/m) = \frac{1}{10^{75/20}} = 0 - 25 = -25 \, (dBV) = 56.23 mV$$

Transmit Antenna Factor

$$TAF = rac{E_{1m}}{V_{\star}}m^{-1} = 20log_{10}E_{1m} - 20log_{10}V_{t}\left(\mathrm{dB}/m
ight)$$

其中 E_{1m} 是发射天线在1m处测量到的场强, V_t 是发射电压。TAF越大,产生的电场强度越大。

对数周期天线

对数周期天线可以在很宽的频率上产生强电场。

ATR 26M6G from ATR worldwide covers from 26MHz to 6GHz. (某种广告)

如果输入功率为10W, 频率22MHz, 1m处产生的场强为10V/m, 可以计算得到:

假设是50欧负载,输入天线的电压为:

$$V = \sqrt{P \times Z_0} = 22.360V$$

所以

$$TAF = \frac{10}{22.360} = 0.45m^{-1}$$

用dB做法也可以:

$$22.360V = 26.989 \text{dB}V = 146.989 \text{dB}\mu V$$

 $10V/m = 20 \text{dB}V \cdot m^{-1} = 140 \text{dB}\mu V \cdot m^{-1}$
 $TAF = -6.989 \text{dB}/m$

环形天线 (磁场天线)

感应电压(Induced Voltage):

$$V_i = -nrac{\mathrm{d}\Phi}{\mathrm{d}t} = 2\pi f nAB$$

n 为线圈匝数, f为频率, A 为线圈的截面积, B 为磁感应强度。

AF_H 和 AF_B

$$egin{align} AF_H &= rac{H}{V_L}S/m = rac{1}{2\pi f n A \mu_0} \ AF_B &= rac{B}{V_L} = rac{\mu H}{V_L} Tesla/V \ AF &= AF_H imes \eta_0 = rac{H}{V_L} imes rac{E}{H} = rac{E}{V_L} \ AF\left(\mathrm{dB}/m
ight) = AF_H\left(\mathrm{dB}S/m
ight) + 20log_{10}\left(\eta_0
ight) \ \end{array}$$

Antenna Example 1 作业形式

$$egin{aligned} V_{in} &= \sqrt{P imes Z_0} = 50V = 33.9794 \, (\mathrm{dB}V) \ &= E_{1m} = TAF \, (\mathrm{dB}/m) + V_{in} \, (\mathrm{dB}V) \ &= 33.9794 - 4 = 29.9794 \, (\mathrm{dB}V/m) \ &= E_{3m} \, (\mathrm{dB}V/m) - 20log_{10}(3m) + 20log_{10}(1m) = 20.436975 \, (\mathrm{dB}V/m) \ &= E_{3m} \, (\mathrm{dB}V/m) - AF \, (\mathrm{dB}/m) = 20.436975 - 23 = -2.5630 \, (\mathrm{dB}V) = 0.74V \ &= 0.74V$$