Exercice 1. 1. $(0) \subset \mathbb{Z}$ est premier car \mathbb{Z} est intègre (Proposition 1.5.2), non maximal car $(0) \subsetneq (2)$.

- 2. $(t) \subset \mathbb{Z}[t]$ est premier car le quotient \mathbb{Z} est intègre, non maximal car $(t) \subsetneq (t,2) \neq \mathbb{Z}[t]$.
- 3. $(t) \subset \mathbb{R}[t]$ est premier et maximal car le quotient est un corps.
- 4. $(101) \subset \mathbb{Z}[t]$ est premier. En effet, considérons l'homomorphisme

$$\xi \colon \mathbb{Z}[t] \longrightarrow (\mathbb{Z}/101\mathbb{Z})[t], \quad \sum_i a_i t^i \mapsto \sum_i [a_i]_{101} t^i.$$

Il est clair que $f(t) = \sum_i a_i t^i \in \ker \xi$ si et seulement si $[a_i]_{101} = 0$ pour chaque i, donc si et seulement si 101 divise chaque coefficient, donc si et seulement 101 divise f(t). Cela prouve que $\ker \xi = (101)$. Pour conclure, il suffit de montrer que $(\mathbb{Z}/101\mathbb{Z})[t]$ est un anneau intègre. Puisque 101 est un nombre premier, $\mathbb{Z}/101\mathbb{Z}$ est un anneau intègre. De manière générale, si A est un anneau intègre alors A[t] est aussi intègre (la preuve est un bon exercice), ce qui conclut.

- 5. $(42) \subset \mathbb{Z}[t]$ n'est pas premier car $6 \cdot 7 = 42$, donc non maximal.
- 6. $(t^2-2)\subset \mathbb{Z}[t]$ est premier. En effet, considérons l'homomorphisme d'évaluation

$$\operatorname{ev}_{\sqrt{2}} \colon \mathbb{Z}[t] \longrightarrow \mathbb{R}, \quad t \mapsto \sqrt{2}.$$

On montre comme dans l'Exemple 1.4.18 que ker ev $_{\sqrt{2}} = (t^2 - 2)$. Comme $\mathbb{Z}[t]/(t^2 - 2)$ est isomorphe à un sous-anneau de \mathbb{R} , c'est un anneau intègre, et donc $(t^2 - 2)$ est premier. Ce n'est pas un ideal maximal, puisque $(t^2 - 2) \subseteq (t^2 - 2, 3) \neq \mathbb{Z}[t]$. Alternativement, on peut

- 7. $(t^2-2) \subset \mathbb{R}[t]$ n'est pas premier car $t^2-2=(t-\sqrt{2})(t+\sqrt{2})$ dans $\mathbb{R}[t]$.
- 8. $(t+5,10) \subset \mathbb{Z}[t]$ n'est pas premier car $10=2\cdot 5$.
- 9. $(t+5,11) \subset \mathbb{Z}[t]$ est maximal (donc premier) car le quotient est le corps $\mathbb{Z}/11\mathbb{Z}$.

vérifier que im $\operatorname{ev}_{\sqrt{2}} = \mathbb{Z}[\sqrt{2}]$ n'est pas un corps (par exemple 3 n'a pas d'inverse).

10. $(t^2+1,2) \subset \mathbb{Z}[t]$ n'est pas premier car $(t+1)^2 = t^2+1+2t \in (t^2+1,2)$.

Exercice 2. 1. Le premier système n'a pas de solutions. En effet, si x = 7 + 12k, alors $x = 1 + 3 \cdot (2 + 4k)$, ce qui contredit $x \equiv 2 \pmod{3}$.

Le second système admet une infinité de solutions. En effet, si x=8+12k, alors $x=2+3\cdot(2+4k)$. Donc le système est équivalent à $x\equiv 8\pmod{12}$, qui admet une infinité de solutions.

2. Pour voir que $\mathbb{Z}/36\mathbb{Z} \not\cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z}$ on peut par exemple utiliser le fait que le deuxième anneau n'est pas cyclique en tant que groupe abélien : tout élément est d'ordre un diviseur de 12.

Exercice 3. 1. Prenons $x \in f^{-1}(I)$. Alors $f(x) \in I$ et, par définition de I, on peut écrire

$$f(x) = \sum_{i=1}^{n} \beta_i b_i$$
, pour certains $\beta_i \in B$.

Puisque f est surjective, on peut choisir des $\alpha_i \in A$ tels que $f(\alpha_i) = \beta_i$. Posons

$$x' := \sum_{i=1}^{n} \alpha_i c_i.$$

Par construction f(x) = f(x'), et donc $x - x' \in \ker f$. Ainsi il existe des $\gamma_i \in A$ tels que

$$x - x' = \sum_{i=1}^{m} \gamma_i a_i$$

et cette égalité se réarrange en

$$x = \sum_{i=1}^{m} \gamma_i a_i + \sum_{i=1}^{n} \alpha_i c_i \in (a_1, \dots, a_m, c_1, \dots, c_n).$$

Comme x est arbitraire, cela montre que $f^{-1}(I) \subseteq (a_1, \ldots, a_m, c_1, \ldots, c_n)$. L'inclusion inverse est immédiate, puisque

$$f(a_i), f(c_i) \in I \quad \forall i, j.$$

On a donc démontré l'égalité désirée.

2. L'Exemple 1.4.10.a montre que $\ker \operatorname{ev}_b = (y-b)$ et $\ker \operatorname{ev}_a = (x-a)$. Puisque $\ker \xi = \operatorname{ev}_b^{-1}(\ker \operatorname{ev}_a)$ (l'égalité est facile à vérifier), par le point précédent on obtient que $\ker \xi = (x-a,y-b)$.

Puisque $\xi(\lambda) = \lambda$ pour tout $\lambda \in k$, on voit que ξ est surjective. Par le premier théorème d'isomorphisme, on obtient $k \cong k[x,y]/\ker \xi$. Par la Proposition 1.5.5, on obtient que $\ker \xi$ est un idéal maximal.

Exercice 4.

Nota bene : la discussion des deux derniers points de cet exercice pourra être grandement simplifiée une fois à disposition les propriétés des polynômes irréductibles.

1. Par l'Exemple 1.4.18 on a $\mathbb{Z}[i] \cong \mathbb{Z}[t]/(t^2+1)$. Par la Proposition 1.4.41 on a

$$\mathbb{Z}[i]/(p) \cong \frac{\mathbb{Z}[t]/(t^2+1)}{p \cdot (\mathbb{Z}[t]/(t^2+1))} \cong \mathbb{Z}[t]/(p,t^2+1) \cong \frac{\mathbb{Z}[t]/(p)}{(t^2+[1]_p) \cdot (\mathbb{Z}[t]/(p))} \cong \mathbb{F}_p[t]/(t^2+[1]_p).$$

2. Dans le cas où p=5, on remarque que $[2]_5$ et $[3]_5$ sont des racines de $t^2+[1]_5\in \mathbb{F}_5[t]$. En particulier on a la factorisation

$$t^{2} + [1]_{5} = (t - [2]_{5}) \cdot (t - [3]_{5}). \tag{1}$$

Remarquez que $(t-[2]_5)-(t-[3]_5)=[1]_p$. Donc les idéaux générés respectivement par $t-[2]_5$ et par $t-[3]_5$ sont premiers entre eux. Le théorème des restes chinois (Théorème 1.4.50) donne alors

$$\frac{\mathbb{F}_{5}[t]}{(t-[2]_{5})\cap(t-[3]_{5})} \cong \frac{\mathbb{F}_{5}[t]}{(t-[2]_{5})} \times \frac{\mathbb{F}_{5}[t]}{(t-[3]_{5})}.$$
 (2)

L'évaluation en $t = [2]_5$ induit un ismorphisme

$$\mathbb{F}_5 \cong \frac{\mathbb{F}_5[t]}{(t-[2]_5)}$$

et d'une manière similaire on a

$$\mathbb{F}_5 \cong \frac{\mathbb{F}_5[t]}{(t-[3]_5)}.$$

On prétend pour finir que $(t-[2]_5) \cap (t-[3]_5) = (t^2+[1]_5)$. L'inclusion \supseteq est claire, en vue de la factorisation (1). Inversément, prenons un élément f(t) appartenant à l'intersection des deux idéaux. On peut écrire

$$(t - [2])g(t) = f(t) = (t - [3])h(t)$$

pour certains $g(t), h(t) \in \mathbb{F}_5[t]$. Considérons l'image de f(t) par l'évaluation ev_[2] en t = [2]. On a

$$\operatorname{ev}_{[2]}(f(t)) = \operatorname{ev}_{[2]}((t-[2])g(t)) = 0$$

d'une part, et

$$\operatorname{ev}_{[2]}(f(t)) = \operatorname{ev}_{[2]}((t-[3])h(t)) = -\operatorname{ev}_{[2]}(h(t))$$

d'autre part. Ainsi $\operatorname{ev}_{[2]}(h(t)) = 0$, et puisque $\operatorname{ker} \operatorname{ev}_{[2]} = (t - [2])$ on en déduit que h(t) = (t - [2])j(t) pour un certain $j(t) \in \mathbb{F}_5[t]$. On peut ainsi écrire

$$f(t) = (t - [3])(t - [2])j(t) = (t^2 + [1])j(t)$$

ce qui montre que $f(t) \in (t^2 + [1])$.

En combinant tout cela dans (2), on obtient

$$\frac{\mathbb{F}_5[t]}{(t^2+[1])} \cong \mathbb{F}_5 \times \mathbb{F}_5,$$

ce qui implique que $\mathbb{Z}[i]/(5) \cong \mathbb{F}_5 \times \mathbb{F}_5$ en vue du point précédent.

3. On prétend qu'il existe un isomorphisme $\mathbb{Z}[i]/(p) \cong \mathbb{F}_p \times \mathbb{F}_p$ si et seulement si -1 possède deux racines carrées distinctes modulo p.

Supposons d'abord que l'on puisse écrire $a^2 = [-1]_p = b^2$ dans \mathbb{F}_p avec $a \neq b$. Puisque $\ker \operatorname{ev}_a = (t-a)$, on peut écrire

$$t^2 + [1]_p = (t - a)(t - b')$$

et on prétend que b' = b. En effet,

$$\mathbb{F}_p \ni 0 = b^2 + [1] = \text{ev}_b(t^2 + [1]) = \underbrace{(b-a)}_{\neq 0}(b-b')$$

et comme \mathbb{F}_p est intègre, on obtient que b-b'=0. De plus, $(t-a)-(t-b)=b-a\neq 0$ est un élément inversible de \mathbb{F}_p , donc les idéaux (t-a) et (t-b) sont premiers entre eux. En appliquant le théorème des restes chinois comme dans la partie précédente, on trouve que

$$\frac{\mathbb{F}_p[t]}{(t-a)\cap(t-b)}\cong\mathbb{F}_p\times\mathbb{F}_p.$$

Puisque $b-a \neq 0$ est inversible dans \mathbb{F}_p , on obtient comme dans le point précédent que $(t-a) \cap (t-b) = (t^2 + [1])$ (où l'on avait utilisé que $[2]_5 - [3]_5 = -[1]_5$ est inversible dans \mathbb{F}_5), et donc que

$$\mathbb{Z}[i]/(p) \cong \frac{\mathbb{F}_p[t]}{(t^2 + [1])} \cong \mathbb{F}_p \times \mathbb{F}_p.$$

Remarquons si $a \in \mathbb{F}_p$ est une racine carrée de $[-1]_p$, alors -a en est aussi une. Or si $p \neq 2$ on a $a \neq -a$. Il nous reste ainsi à traiter deux cas : celui de p = 2, et celui où $[-1]_p$ n'a pas de racine carrée dans \mathbb{F}_p .

Commençons avec le cas p=2. Alors $t^2+[1]_2=(t+[1]_2)^2$, et ainsi il existe un élément $0 \neq x$ de $\mathbb{F}_2[t]/(t^2+[1])$ tel que $x^2=0$ (on dit que cet anneau quotient est non-réduit) : on peut prendre x comme étant l'image de $t+[1]_2$ dans le quotient. Or il n'existe pas d'élément non-nul dans $\mathbb{F}_2 \times \mathbb{F}_2$ satisfaisant une telle propriété, donc il ne peut y avoir d'isomorphisme entre ces deux anneaux.

Pour finir, supposons qu'il n'existe pas de racine carrée de -1 dans \mathbb{F}_p . On prétend que $\mathbb{F}_p[t]/(t^2+[1])$ est un anneau intègre. Fixons une clotûre algébrique $\overline{\mathbb{F}_p}$ de \mathbb{F}_p , et choisissons une racine carrée $i \in \overline{\mathbb{F}_p}$ de -1. On considère l'homomorphisme d'évaluation

$$\operatorname{ev}_i \colon \mathbb{F}_p[t] \longrightarrow \overline{\mathbb{F}_p}, \quad t \mapsto i.$$

Puisque $\mathbb{F}_p[t]/\ker \operatorname{ev}_i\cong \operatorname{im}\operatorname{ev}_i\subset\overline{\mathbb{F}_p}$ et que $\overline{\mathbb{F}_p}$ est intègre, on voit que $\mathbb{F}_p[t]/\ker\operatorname{ev}_i$ est un anneau intègre. On prétend que $\ker\operatorname{ev}_i=(t^2+[1]_p)$. L'argument est le similaire à celui de l'Exemple 1.4.18. Pour finir, on prétend que $\mathbb{F}_p[t]/(t^2+[1])$ n'est pas isomorphe à $\mathbb{F}_p\times\mathbb{F}_p$: en effet, cet anneau produit n'est pas intègre.

Exercice 5.

Soit \mathfrak{p} un idéal premier de $A \times B$. Puisque

$$(1,0)\cdot(0,1)=(0,0)\in\mathfrak{p}$$

on a $(0,1) \in \mathfrak{p}$ ou $(1,0) \in \mathfrak{p}$. Supposons que $(0,1) \in \mathfrak{p}$ et considérons l'ensemble

$$\mathfrak{q} := \{ a \in A \mid \exists b \in B : (a, b) \in \mathfrak{p} \} \subset A.$$

On prétend que \mathfrak{q} est un idéal premier et que $\mathfrak{p} = \mathfrak{q} \times B$.

- 1. Montrons que $\mathfrak{p} = \mathfrak{q} \times B$. L'inclusion \subseteq est claire. Inversément, prenons $a \in \mathfrak{q}$ et $b \in B$. Par construction de \mathfrak{q} , il existe $b' \in B$ tel que $(a,b') \in \mathfrak{p}$. Alors $(a,0) = (1,0)(a,b') \in \mathfrak{p}$. Puisque $(0,1) \in \mathfrak{p}$, on a aussi $(0,b) = (0,b) \cdot (0,1) \in \mathfrak{p}$. Ainsi $(a,b) = (a,0) + (0,b) \in \mathfrak{p}$. Ceci établit l'inclusion \supseteq .
- 2. Si $a, a' \in \mathfrak{q}$, il existe $b, b' \in B$ tels que (a, b) et (a', b') sont des éléments de \mathfrak{p} . Donc $(a, b) + (a', b') = (a + a', b + b') \in \mathfrak{p}$, et ainsi $a + a' \in \mathfrak{q}$. Donc \mathfrak{q} est stable par addition.

Gardons $a \in \mathfrak{q}$ avec $(a,b) \in \mathfrak{p}$, et prenons $x \in A$. Alors $(a,b) \cdot (x,0) = (ax,0) \in \mathfrak{p}$. Donc $ax \in \mathfrak{q}$. Donc \mathfrak{q} est stable par multiplication avec des éléments de A.

On a obtenu que \mathfrak{q} est un idéal de A. Montrons que c'est un idéal premier. Prenons $x, x' \in A$ tels que $xx' \in \mathfrak{q}$. Par le point précédent, cela implique que $(x,0)(x',0) = (xx',0) \in \mathfrak{p}$. Puisque \mathfrak{p} est premier, on en déduit que (x,0) ou (x',0) appartient à \mathfrak{p} , et donc que x ou x' appartient à \mathfrak{q} . Ainsi \mathfrak{q} est premier.

Dans le cas où $(1,0) \in \mathfrak{p}$, un argument similaire montre que $\mathfrak{p} = A \times \mathfrak{q}'$, où $\mathfrak{q}' \subset B$ est un idéal premier.

1 Exercice supplémentaire

Cet exercice était l'exercice bonus de l'année 2021 (l'exercice ne sera pas dans l'examen).

Exercice 6.

Pour simplifier les notations, nous écrivons $\partial := \frac{\partial}{\partial x}$.

1. On prétend que

$$\theta(x^j) = \sum_{i=0}^{j-1} m_{x^i} [\theta, m_x] (x^{j-1-i}) + m_{x^j} \theta(1) \quad \forall j \ge 0.$$

Prouvons cette égalité par récurrence sur j. Pour j=0 elle est trivialement vraie. Si j>0, on a

$$\begin{array}{lll} \theta(x^{j}) & = & \theta m_{x}(x^{j-1}) \\ & = & [\theta, m_{x}](x^{j-1}) + m_{x}\theta(x^{j-1}) \\ & = & [\theta, m_{x}](x^{j-1}) + m_{x}\sum_{i=0}^{j-2} m_{x^{i}}[\theta, m_{x}](x^{j-2-i}) + m_{x}m_{x^{j-1}}\theta(1) \\ & = & [\theta, m_{x}](x^{j-1}) + \sum_{i=0}^{j-2} m_{x^{i+1}}[\theta, m_{x}](x^{j-2-i}) + m_{x^{j}}\theta(1) \\ & \stackrel{r=i+1}{=} & [\theta, m_{x}](x^{j-1}) + \sum_{r=1}^{j-1} m_{x^{r}}[\theta, m_{x}](x^{j-1-r}) + m_{x^{j}}\theta(1) \\ & = & \sum_{r=0}^{j-1} m_{x^{r}}[\theta, m_{x}](x^{j-1-r}) + m_{x^{j}}\theta(1). \end{array}$$

La même formule s'obtient avec θ' à la place de θ . Puisque $[\theta, m_x] = [\theta', m_x]$, on obtient que

$$\theta(x^{j}) - m_{x^{j}}\theta(1) = \theta'(x^{j}) - m_{x^{j}}\theta'(1)$$

et donc que $(\theta - \theta')(x^j) = x^j(\theta(1) - \theta'(1))$. Ecrivons $\lambda := \theta(1) - \theta'(1) \in K[x]$. Par K-linéarité, on a

$$(\theta - \theta')(p(x)) = \lambda p(x) \quad \forall p(x) \in K[x]$$

ce qui prouve que $\theta = \theta' + m_{\lambda}$.

- 2. Si θ est tel que dans la donnée, alors par l'Exercice 6 on a $[\partial^i, m_x] = [\theta, m_x]$ et donc $\theta = \partial + m_\lambda$ par le point précédent.
- 3. Nous allons prouver que

$$D_{\leq n}(K[x]) = \left\{ \sum_{r=0}^{n} m_{p_r(x)} \partial^r \mid p_r(x) \in K[x] \right\},\,$$

où la somme est comprise comme l'élément nul si elle est vide. Procédons par double-inclusion, et commençons avec l'inclusion \supseteq . Si $p(x) \in K[x]$ et $\theta \in D_{\leq n}(K[x])$, on prétend que $m_{p(x)}\theta \in D_{\leq n}(K[x])$. Puisque

$$[m_{p(x)}\theta, m_{q(x)}] = m_{p(x)} \cdot [\theta, m_{q(x)}],$$

on voit que par réccurence il suffit de prouver le cas n=0, et dans ce cas le crochet est nul. Par l'Exercice 6.3 on en déduit que $m_{p(x)}\partial^i\in D_{\leq n}(K[x])$ pour $i\leq n$. La première inclusion s'ensuit.

Prouvons l'inclusion inverse. Nous procédons par récurrence sur n. Cette inclusion est vraie par définition pour $n \leq 0$. Supposons n > 0 et prenons $\theta \in D_{\leq n}(K[x])$. Alors $[\theta, m_x] \in D_{\leq n-1}(K[x])$, donc par récurrence on peut écrire

$$[\theta, m_x] = \sum_{r=0}^{n-1} m_{p_r(x)} \partial^r$$
 pour certains $p_r(x) \in K[x]$.

Nous allons construire un opérateur différentiel de la forme souhaitée, dont le crochet de Lie avec m_x est égal à $[\theta, m_x]$. Pour cela, il nous faut comprendre comment $[\cdot, m_x]$ agit sur les opérateurs de la forme voulue. Le calcul suivant, qui utilise l'Exercice 6.1, répond à cette question :

$$\left[\sum_{r} m_{q_r} \partial^r, m_x\right] = \sum_{r} [m_{q_r} \partial^r, m_x]
= \sum_{r} m_{q_r} \partial^r m_x - m_x m_{q_r} \partial^r
= \sum_{r} m_{q_r} (r \partial^{r-1} + m_x \partial^r) - m_x m_{q_r} \partial^r
= \sum_{r} r m_{q_r} \partial^{r-1}$$

Posons

$$\theta' := \sum_{r=0}^{n-1} \frac{m_{p_r(x)}}{r+1} \ \partial^{r+1},$$

le calcul précédent montre que $[\theta, m_x] = [\theta', m_x]$ et donc $\theta = \theta' + m_\lambda$ pour un certain $\lambda \in K$ par le premier point. Cela prouve que θ est de la forme recherchée.

4. Commençons par remarquer que si $I \subset D(K[x])$ est un idéal bilatère, si $f \in I$ et $g \in D(K[x])$, alors [f, g] et [g, f] appartiennent à I.

Donc si $0 \neq \sum_{r=0}^{n} m_{p_r} \partial^r \in I$ avec $p_n \neq 0$, le calcul du point précédent implique qu'en appliquant n fois de suite $[\cdot, m_x]$ à $\sum_{r=0}^{n} m_{p_r} \partial^r$, on trouve $m_{n! \cdot p_n} \in I$. Il suffit donc de montrer qu'un idéal bilatère qui contient un élément de la forme $m_{p(x)}$, est en fait égal à D(K[x]).

Ecrivons $p(x) = \sum_{r=0}^{s} a_r x^r$, avec $a_s \neq 0$. Par l'Exercice 8.3 de la série 3, en appliquant s fois $[\partial, \cdot]$ à $m_{p(x)}$ on obtient $m_{s!a_s} \in I$. Puisque $0 \neq s!a_s \in K$, on voit que I contient un élément inversible, donc que I = D(K[x]).

L'hypothèse sur la caractéristique de K est utilisée dans les deux derniers points, pour pouvoir diviser par r+1 et dire que $s!a_s \neq 0$, donc que $m_{s!a_s}$ est inversible.

Exercice 7.

Pour simplifier la notation, nous écrirons $\partial := \frac{\partial}{\partial x}$.

1. Procédons par récurrence sur i. Le cas i=1 a été prouvé dans l'Exercice 8.2 de la série 3. Si i>1, on a

$$[\partial^{i}, m_{x}] = \partial^{i} m_{x} + (-m_{x} \partial^{i-1}) \partial$$

$$= \partial^{i} m_{x} + ([\partial^{i-1}, m_{x}] - \partial^{i-1} m_{x}) \partial$$

$$= \partial^{i} m_{x} + (i-1) \partial^{i-2} \partial + \partial^{i-1} (-m_{x} \partial)$$

$$= \partial^{i} m_{x} + (i-1) \partial^{i-1} + \partial^{i-1} ([\partial, m_{x}] - \partial m_{x})$$

$$= i \partial^{i-1}$$

où l'on a utilisé l'hypothèse de récurrence pour i-1 et i=1.

2. Ecrivons $B_{i,j} := [\partial^i, m_{x^j}]$. On a, en utilisant le point précédent :

$$B_{i,j} = \partial^{i} m_{x^{j}} + m_{x^{j-1}} (-m_{x} \partial^{i})$$

$$= \partial^{i} m_{x^{j}} + m_{x^{j-1}} ([\partial^{i}, m_{x}] - \partial^{i} m_{x})$$

$$= \partial^{i} m_{x^{j}} + i m_{x^{j-1}} \partial^{i-1} - m_{x^{j-1}} \partial^{i} m_{x}$$

$$= i m_{x^{j-1}} \partial^{i-1} + (\partial^{i} m_{x^{j-1}} - m_{x^{j-1}} \partial^{i}) m_{x}$$

$$= i m_{x^{j-1}} \partial^{i-1} + B_{i,j-1} m_{x}$$

et cela établit immédiatement la formule indiquée dans la donnée.

3. On raisonne une fois de plus par récurrence sur i. On a montré que $\partial \in D_{\leq 1}(K[x])$ dans l'Exercice 8 de la série 3. Supposons i > 1. Par linéarité du crochet de Lie dans sa seconde variable, pour montrer que ∂^i est de degré au plus i il suffit de montrer que $[\partial^i, m_{x^j}]$ est de degré au plus i-1 pour chaque $j \geq 0$. La formule démontrée au point précédent donne

$$[\partial^i, m_{x^j}] = i \sum_{r=0}^{j-1} m_{x^r} \partial^{i-1} m_{x^{j-1-r}}.$$

Par linéarité du crochet de Lie dans sa première variable, il suffit ainsi de montrer que chaque $m_{x^r}\partial^{i-1}m_{x^{j-1-r}}$ est de degré au plus i-1. Remarquez que

$$[m_{x^r}\partial^{i-1}m_{x^{j-1-r}},m_{x^s}] = m_{x^r}[\partial^{i-1},m_{x^s}]m_{x^{j-1-r}} \quad \forall s$$

et par hypothèse de récurrence, $[\partial^{i-1}, m_{x^s}]$ est de degré au plus i-2 pour tout s. Ceci implique que $m_{x^r}[\partial^{i-1}, m_{x^s}]m_{x^{j-1-r}}$ est de degré au plus i-2, ce qui entraı̂ne finalement que $m_{x^r}\partial^{i-1}m_{x^{j-1-r}}$ est de degré au plus i-1, comme souhaité.