

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi

Approved by AICTE, New Delhi

Academic year 2022-2023 (Odd Semester)

Academic year 2022-2023 (Odd Semester)						
PART B						
QNo.	Questions	M	BT	CO		
1. a	 Define DFA, the extended transition function δ* and the language accepted by DFA. Construct DFAs which generates the following languages over the alphabet ∑={0, 1}. i. Set of all strings that do not end with 01. ii. Set of all strings that do not contain the substring 00. 	07	L3	CO2		
	Find the language of the DFA shown below and compute $\delta^*(A, ababb)$ and $\delta^*(A, bbaaba)$.					
1. b	- Aaib Bacco	03	L2	COI		
2. a	Define NFA, the extended transition function δ^* and the language accepted by NFA. Construct the NFA to accept the language L={w w ϵ {a, b}* and w ends with ab or ba}. Compute δ^* (q ₀ , bbaabba) where q ₀ is the start state of the NFA constructed.	06	L2	COI		
2. b	Prove that for every NFA there exists a DFA accepting the same language. For the NFA shown below, using the subset construction draw the equivalent DFA.	04	L3	CO2		
3. a	Define NFA- ϵ , the extended transition function δ^* and the language accepted by NiFA- ϵ . Compute $\delta^*(A, abaab)$ in the NFA- ϵ shown below.	04	L2	CO2		
3. b	Explain the algorithm to find an equivalent NFA from the given NFA- ϵ . Use this algorithm to draw an NFA for the NFA- ϵ given below.	06	L1	CO		
4.a	Find all the subgroups of $(Z_{18}, +)$.	06	L4	CO:		
4. b	Show that (U ₁₄ , x) is a cyclic group and find all its generators.	04	L2	CO		
5. a	 Let E:Z₂³→Z₂⁹ be the encoding function for the (9, 3) triple repetition code. i. If D: Z₂⁹→Z₂³ is the corresponding decoding function, apply D to decode received words 111101100, 000100011, 010011111. ii. Find three different words r for which D(r)=000. 	04	L2	CO		
5. b	The encoding function E: $Z_2^2 \rightarrow Z_2^{-5}$ is given by the generator matrix $G = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$ i. Determine all code words. What is the error detection and correction capability. ii. Find the associated parity check matrix H. iii. Use H to decode the received words 00111, 00110.	06	L4	СО		

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Academic year 2022-2023 (Odd Semester)

DEPARTMENT OF CSE/ISE/AIML

60 Maximum Marks 25th Feb 2023 Date 110 Mins Duration 21CS36 Course Code CIE - II Ш Sem DISCRETE MATHEMATICLA STRUCTURES

	Part - A		1 82/1	CO
Sl. No.	Questions	M		and the second proper proper
- 1	For the language L={ab, bc, a} over the alphabet Σ ={a, b, c}, find L ³ .	*** *** *** *** ***	- 1	COL
2	Let L_1 and L_2 are two languages over the alphabet $\Sigma = \{a, b, c\}$ as below. Find $L_1 \cap L_2$. $L_1 = \{a^nb^nc^m \mid n, m \ge 1\}$, $L_2 = \{a^nb^mc^m \mid n, m \ge 1\}$.	1	111	COI
	Compute $\delta^*(A, ababa)$ in the NFA shown below.			
3	- Q 0, b Q 0, b	1	L2	CO2
	Find ε -closure ({1, 2, 3}) in the NFA- ε shown below.			
4	-10 e 3 a 5	1	L2	CO2
	Find the language accepted by the automat shown below.			
5	b a b b	1	Li	CO2
	If the binary operation * is associative, then complete the following table			
6	* a b c d a a b c d b c d c d c d c d	2	L3	CO2
	d d c c d	1		
7	If G is a group under the binary operation * then $(a*b)^{-1}$ maps to for all a, b ε G.	1	L2	COI
	For the following encoding function, find the minimum distance between the code words. What are the error detection and correction capabilities of these? E: $Z_2^2 \rightarrow Z_2^{10}$ E(00)=000000000, E(01)=0000011111, E(10)=1111100000, E(11)=11111111111.	2	L2	CO3

Scheme and Solutions

Part-A

1. [3-] aaa, aaba, abaa, abca, aaab, bcaa, ababa, abbca, bcaba, bcbca, aabab, aabbc, abcab, abcbc, abaab, ababe, ababab, ababbe, abbeab, abbebe, beabb, beabbe, beabbe,

2. Laura = { an m cm / m > 1)

3. S+(A, ababa)= S+(S(A,a), baba)

= 5+ (7 A, B), baba)

= f*(f(2A,B),b), aba)

= st(2B3, aba)

= S+(S(B,a),ba)

= 5+(2 c3, ba)

= 2 + (2(c,p), a)

= 50 ((c,D), a)

= & (¿c,D), a)

= 7 64

4. E-dosure({1,2,3}).

= Elorure (i) v E-dolure (3)

= {1,2,3,5} U {2,5} U {3}

= 212,3,53

5. L= {w/w {{a,b}} tand w has odd number of a's & even bis}.

5 + 2 8) Winimum distance postsoen the Cade words = 5 It can detect all errors upto £4 It can correct all errors rights < 2 Part - B; 1.a) Definition of DFA: Let M=(Q, Z, S, 90, F) be the DFA whose a: Finite let of states. Zi: Finite let of ilp symbols. S: QXI -> Q

State

State

State

The State Definition of extended transition function of DFA. S*; QXZ+ > Q of follows 1. For any 2 EQ St(2, E) = 9 2. For any 2 EQ, Y E Et, and a E E S+(9, ya) = S(S+(9, y), a) Definition of longuage accepted by DFA. L(M) = {x|x = Z, * and S*(9,x) E Fil

Definition of language accepted by NFA L(M)={x|x \in \in \tau and S+(20, x) n F + \phi \forall NFA to accept the given language is Da Do Do Any equivalent NFA S+(A, bbaabba) = 5+(5(A,b),baabba) = S+(ZA,D), (aabba) = s+(s(A,b) U s(D,b), aabba) = 5t (2 A,D) Up, aabba) = 8*(24,D3, aabba) = 5+ (f(1,4,03,a), abba) = 84 (\$(A,a)U&(D,a), abba) = 5 (ABC), abba) = 5+(f((AB,C,C),a),bba) = S+(S(Aa)Uf(B,a)Uf(C,a), bba) = \$P({{\bar{1}},13}\upu\o, bba) = St(}((24,18],b),ba) = fr(f(x,p)) (f(B,b), ba) = 8+(2A,0)U2 C3, ba) -8t(\$(2 A, C,D), b), a) = f+(f(A,a))f(c,a)Uf(D,a),a)= 81 ((AB) U & U(C), a) = s+(s(1A,BcJ,a) $= S(A,\alpha) \cup f(B,\alpha) \cup f(C,\alpha)$ Since the final state (EZA,B) the string not occupied. = (A,B)U 6U 0 = [A,B]

from the given NFA To draw the equivalent DFA for the NFA given 3.9) Definition of NFA-E: Let M= (Q, Ze, S, 20, F) where Q: Finite let of statel symbole
Ti. Finite let of input symbole 8: 0x Z v] e] -> 2ª 90 E Q the start state FCQ the set of final states. Definition of extended transition function St St: QXZ+ >2Q i at follows. 1. For any 9 EQ, St(9, E) = E-closure (193). 2. For anyl g, EQ, Y E It, & a E Z, Sto(9, ya) = Eclosure (V) f(r,a))

Language accepted by ENFA LCM)= {x/x(==+ & f+(20, x)) = + 0}

St(A, aboab) = ZB,D) since Bi final aboab is ony : Eclosure(A) = [A] .. f(A,a)= ? B, C} E-dome 213, 3 = 213, c) S((B,c),b) = &(B'P)(t(c'P) = 602D] = (D) E-done D) = 2D, B) S((D'B)' a) = 8(D'a) (B'a) = 203 ú 2A3 = 2A, D} E-dough A, D) = { A, B, D] f(14,B,D), a)=f(4,a)Uf(B,a)Uf(D,a) = 2 B, JUZAJÚZD] = 2AB, C, D] E-done(1A,13(5))=7A,73, (D) S(2A,B,C,D),b) = 600020300 = 203: (- dored[D]) = 2B, D] 3.5) List all the steps to find equivalent NFA from the given NFA-E. To draw the equivalent NFA for the given NFA-E.

B 12 13 14 16-The above table is optional styldest may write or not.
The subgrouph of (Z18,+) are als below. 1) & [2], [4], [6], [8], [10], [12], [14], [16], [0]] a) ([3], [6], [9], [12], [5], [6]) 3) {[6],[12],[0]} 4) [[9],[0]] 5) 2[0] (4.5) The x is a multiplifation modulo 14 in U14. : U14= 91,3,5,9,11,133

iii) H[0011]]=[i] decoding not possible.

H[00110]=[1] some as 1st Column
10110 is code word.

page-8