MAT 1320 DGD

Calculus I

Jules Mazur 2013 Given

$$f(x) = \frac{1 - e^{x^2}}{1 - e^{1 - x^2}}$$

Find the domain of f(x).

• The function is undefined where the denominator $\neq 0$.

$$-1-e^{1-x^2}=0 \text{ when } e^{1-x^2}=1, \text{ i.e. when } -x^2+1=0$$

$$-\Delta=-4ac=-4\times(-1)\times1=4$$

$$-\sqrt{\Delta}=2$$

$$-x_1=\frac{-2}{-2}=1$$

$$-x_2=\frac{-2}{2}=-1$$

•
$$D_{f(x)} =]-\infty, -1[\cup]-1, 1[\cup]1, +\infty[$$

The formula $C = \frac{5}{9}(F - 32)$, $F \ge -459.67$ expresses the Celsius temperature as a function of the Fahrenheit temperature. Find a formula for the inverse function an interpret it.

$$F = \left(\frac{9}{5}C\right) + 32$$

Find the formual for the inverse of the function

$$f(x) = \sqrt{2 + 3x}$$

$$f^{-1}(x) = x = \sqrt{2+3y}$$

$$f^{-1}(x) = x^2 = 2+3y$$

$$f^{-1}(x) = x^2 - 2 = 3y$$

$$f^{-1}(x) = \frac{x^2 - 2}{3} = y$$

This table shows the position of a cyclist. If f and g are continuous functions with f(3) = 5 and $\lim_{x \to 3} [2f(x) - g(x)] = 4$; g(3) = ?

Properties of the derivative

1.