

What is claimed is:

1. A method for supporting a determination of a correlation between at least one received code modulated signal and at least one available replica code, said method comprising:
 - 5 storing signal samples of said at least one received code modulated signal with a first rate in a memory; and
 - 10 reading stored signal samples with a second rate from said memory for determining a correlation between said read signal samples and samples of said at least one available replica code, wherein said second rate is higher than said first rate.
2. The method according to claim 1, further comprising determining a correlation between said read signal samples and samples of said at least one available replica code.
 - 20
3. The method according to claim 2, wherein determining a correlation comprises a coherent integration, and wherein said memory stores samples for up to at least one integration period of said coherent integration.
 - 25
4. The method according to claim 3, wherein signal samples are only read from said memory when signal samples for at least one integration period of said coherent integration have been stored in said memory.
 - 30

5. The method according to claim 2, wherein
determining said correlation comprises compensating
in said extracted samples sequentially various
possible Doppler frequencies and applying
5 sequentially for each of said possible Doppler
frequencies a matched filter operation to said
compensated samples.

10 6. The method according to claim 5, wherein results of
said matched filter operation are further subjected
to at least one of a coherent integration and a
non-coherent integration.

15 7. An electronic device comprising:

a memory adapted to store signal samples of at
least one received code modulated signal with a
first rate; and
20 a correlation component adapted to read signal
samples stored in said memory with a second rate,
which second rate is higher than said first rate,
and adapted to determine a correlation between said
read signal samples and samples of a replica code.

25 8. The electronic device according to claim 7, wherein
a determination of a correlation by said
correlation component includes a coherent
integration, and wherein said memory is adapted to
store signal samples for up to at least one
integration period of said coherent integration.

30 9. The electronic device according to claim 8, wherein
said correlation component is adapted to read
signal samples from said memory only when signal
samples for at least one integration period of said

coherent integration have been stored in said memory.

10. The electronic device according to claim 7, wherein
5 said memory is a sample memory.
11. The electronic device according to claim 7, wherein
 said electronic device is a mobile terminal.
- 10 12. A chip for use in an electronic device, said chip
 comprising:
 a memory adapted to store with a first rate
 signal samples of at least one code modulated
 signal received by said electronic device; and
15 a correlation component adapted to read signal
 samples stored in said memory with a second rate,
 which second rate is higher than said first rate,
 and adapted to determine a correlation between said
 read signal samples and samples of a replica code.
20
13. The chip according to claim 12, wherein a
 determination of a correlation by said correlation
 component includes a coherent integration, and
 wherein said memory is adapted to store signal
25 samples for up to at least one integration period
 of said coherent integration.
14. The chip according to claim 13, wherein said
 correlation component is adapted to read signal
30 samples from said memory only when signal samples
 for at least one integration period of said
 coherent integration have been stored in said
 memory.

15. The chip according to claim 12, wherein said memory
is a sample memory.

16. A system including an electronic device and at
5 least one network element of a communication
network, said electronic device comprising:

a memory adapted to store signal samples of at
least one received code modulated signal at a first
rate; and

10 a correlation component adapted to read signal
samples stored in said memory with a second rate,
which second rate is higher than said first rate,
and adapted to determine a correlation between said
read signal samples and samples of a replica code.

15
17. The system according to claim 16, wherein a
determination of a correlation by said correlation
component includes a coherent integration, and
wherein said memory is adapted to store signal
20 samples for up to at least one integration period
of said coherent integration.

18. The system according to claim 16, further
comprising at least one beacon transmitting said at
25 least one code modulated signal.

19. The system according to claim 16, wherein said
beacon is a satellite of a satellite based
positioning system.

30
20. A software program product in which a software code
for supporting a determination of a correlation
between at least one received code modulated signal
and at least one available replica code is stored,

said software code realizing the following steps
when running in a processing unit:

causing signal samples of at least one received
code modulated signal to be stored with a first
5 rate in a memory; and

causing signal samples stored in said memory to
be read from said memory with a second rate for
determining a correlation between said read signal
samples and samples of said at least one available
replica code, wherein said second rate is higher
10 than said first rate.