

# Exercices Python

# **Consignes**

- Pour chaque exercice, créer un fichier .py unique
- Mettre des commentaires appropriés à chaque étape
- Tu ne dois modifier que la branche ariel .
- Les remarques et exercices supplémentaires seront ajoutés dans la branche main .

# **Exercices**

#### **Exercice 1**

Transformer 42569 secondes en heures, minutes, secondes.

#### Exercice 2

Un magasin de reprographie propose un tarif dégressif. Les 20 premières photographies sont facturées à 10 centimes et les suivantes à 8 centimes.

- 1. Calculer à la main le coût de 15 puis de 30 photocopies.
- 2. Écrire une fonction prix(n) qui renvoie le prix en euros pour n photocopies. La tester.

#### **Exercice 3**

Voici deux fonctions nommées truc et bidule.

```
def truc(x):
    print(x)
    return(2*x)
    print(3*x)
    return(4*x)

def bidule(x):
    print(x)
    print(2*x)
    return(3*x)
    print(4*x)
```

On exécute truc(10).

- 1. Quelle(s) valeur(s) (est) sont affichée(s)? Quelle valeur est renvoyée?
- 2. Même question avec bidule(10).

# Exercice 4 (Diviseurs d'un nombre triangulaire)

Un nombre est dit triangulaire d'indice n s'il égal à  $1+2+3+\cdots+n$ . Par exemple, le nombre triangulaire d'indice 5 vaut 15 car 1+2+3+4+5=15.

- 1. Écrire une fonction triangle qui renvoie la valeur du nombre triangulaire d'indice n. Par exemple triangle(5) renverra 15.
- 2. Écrire une fonction nbre\_diviseurs qui renvoie le nombre de diviseurs d'un entier n ∈ N\*. Par exemple, les diviseurs de 6 sont 1, 2, 3, 6. Il y a donc 4 diviseurs, ainsi nbre\_diviseurs(6) renverra 4
- 3. Écrire un script qui détermine le plus petit nombre triangulaire qui admette au moins 50 diviseurs. Exercice 5 (Découverte des factorielles) Soit n ∈N\*, on appelle «factorielle n» noté n!, l'entier n!=1×2×···×n avec la convention 0!=1. Par exemple, 4!=1×2×3×4=24=4×3!.
- 4. Écrire le nombre  $15 \times 14 \times 13 \times 12 \times 11$  comme un quotient de deux factorielles.

- 5. Exprimer à l'aide de factorielles les deux produits suivants :  $2 \times 4 \times 6 \times \cdots \times 100$  et  $1 \times 3 \times 5 \times \cdots \times 99$ .
- 6. Combien y-a-t-il d'anagrammes du mot fleur? Et du mot tennis?
- 7. Écrire un script qui calcule 64!
- 8. Écrire une fonction factorielle qui prend en argument un entier naturel n et renvoie n!

#### Exercice 6 (Combien de truc et bidule?)

Pour les trois scripts suivants, dire ce qui est affiché et combien de fois. for i in range(3): print('bidule') print('truc') for i in range(3): print('bidule') for j in range(4): print('truc') for i in range(4): print('truc')

### Exercice 7 (Nombres d'Amstrong)

On souhaite déterminer les entiers naturels qui sont égaux à la somme des cubes de leurs chiffres. De tels entiers seront appelés des nombres d'Armstrong. Par exemple, l'entier 0 est un nombre d'Armstrong car  $0^3 = 0$  mais l'entier 59 n'en est pas un car  $5^3 + 9^3 = 854$  donc  $5^3 + 9^3 \neq 59$ .

- 1. Écrire une fonction somme\_cubes\_chiffres qui prend en argument un entier naturel et renvoie la somme des cubes de ses chiffres. Par exemple, somme\_cubes\_chiffres(256) devra renvoyer  $2^3 + 5^3 + 6^3 = 349$ .
- 2. Écrire un script qui détermine les nombres d'Amstrong inférieurs à 10 000.

#### **Exercice 8**

Ecrire un programme en langage Python qui demande à l'utilisateur de saisir un nombre entier n et de lui afficher si ce nombre est carré parfait ou non.

#### Exercice 9

Ecrire un programme en Python qui demande à l'utilisateur de saisir une chaine de caractère s et de lui renvoyer un message indiquant si la chaine contient la lettre 'a' tout en indiquant sa position sur la chaine. Exemple si l'utilisateur tape la chaine s = 'langage' le programme lui renvoie :

La lettre 'a' se trouve à la position : 1 La lettre 'a' se trouve à la position 4

#### **Exercice 10**

Ecrire un programme en langage Python, qui permet de compter le nombre de voyelles et de consonnes dans une chaine donnée. Exemple pour la chaine s=

'anticonstitutionellement' le programme doit renvoyer le message suivant :

La chaine anticonstitutionellement possède 10 voyelles.



#### **Exercice 11**

Ecrire un programme Python qui permet d'échanger le premier et le dernier mot. Exemple si la chaîne est:

"Python est un langage de programmation".



, le programme renvoie la chaine :

"programmation est un langage de Python".



On suppose que le texte est bien formé (un espace après chaque ponctuation et aucun espace avant la ponctuation)

#### **Exercice 12**

Soit la classe Date définie par le diagramme de classe UML suivant :

# Date |

jour : int | mois : int | année : int |

- Implémenter cette classe en Python. Dans la méthode de construction de la classe, prévoir un dispositif pour éviter les dates impossibles (du genre 32/14/2020). Dans ce cas, la création doit provoquer une erreur, chose possible grâce à l'instruction raise (documentation à rechercher!)
- Ajouter une méthode \_\_repr\_\_ permettant d'afficher la date sous la forme "25 janvier 1989". Les noms des mois seront définis en tant qu'attribut de classe à l'aide d'une liste.
- Ajouter une méthode \_\_1t\_\_ qui permet de comparer deux dates. L'expression d1 < d2 (d1 et d2 étant deux objets de type Date) doit grâce à cette méthode renvoyer</li>
   True OU False

#### **Exercice 13**

Écrire la définition de la classe Personne ayant trois attributs définissant certaines caractéristiques d'une personne réelle : taille , poids et age . Cette classe aura :

- une méthode imc() qui détermine l'IMC de la personne,
- une méthode interpretation() qui affiche "Insuffisance pondérale" si l'IMC est inférieur ou égale à 18,5 et qui affiche "obésité" si l'IMC est supérieur ou égale à 30. Rappel : l'IMC(Indice de masse corporelle) est donné par la formule *poids/taille²* avec le poids en kg et la taille en m

**Exercice 14** 

**Exercice 15** 

**Exercice 16** 

**Exercice 17** 

#### Releases

No releases published Create a new release

#### **Packages**

No packages published Publish your first package