

MODULATIA BPSK

•
$$s_i(t) = \sqrt{\frac{2 \times E(t)}{T}} \times \cos(\omega_0 \times t + \varphi_i(t))$$
 $0 \le t \le T$ $i = 1, ..., M$ $M = 2^k$

$$\varphi_i(t) = \frac{2 \times \pi}{M} \times i$$

La BPSK, k = 1.

MODULATOARE BPSK

-Cu operator de produs:

Out1 Date Unipolar to Bipolar Data Converter Semnal purtator Generator de date Generator de semnal purtator

-Echilibrat:

DEMODULATOARE BPSK

CU MODULATOR DE PRODUS

Cu purtatoarea refacuta sinusoidal

DEMODULATOARE BPSK

Cu purtatoarea refacuta dreptunghiular

CU MODULATOR DE PRODUS

DEMODULATOARE BPSK

CU MODULATOR DE PRODUS

Cu bucla Costas

MODULATIA QPSK

•
$$s_i(t) = \sqrt{\frac{2 \times E(t)}{T}} \times \cos(\omega_0 \times t + \varphi_i(t)) \quad 0 \le t \le T \quad i = 1, ..., M \quad M = 2^k$$

$$\varphi_i(t) = \frac{2 \times \pi}{M} \times i$$

$$\omega_0 = 2 \times \pi \times f_0$$

La QPSK, k = 2.

• 01 -
$$\pi/_2$$

• 11 -
$$\pi$$

MODULATORUL QPSK

BPSK1

Constelatia QPSK

DEMODULATORUL QPSK

Este alcatuit din 2 demodulatoare BPSK

CONCLUZIE

- QPSK este alcatuit din 2 BPSK-uri
- QPSK fie injumatateste latimea de banda fie dubleaza numarul de date transmis, deci este mai eficient
- Are o rata de erori mai mare ca la BPSK si necesita circuite mai complexe

SFARSIT

