Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Основы теории надежности»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

«Вычисление показателей надежности для невосстанавливаемых объектов»

Выполнили:
Чу Ван Доан, студент группы N3347
Falle
(подпись)
Проверил:
Мухамеджанов Санжар
(отметка о выполнении)
(подпись)

Содержание

1. Ход работы	3
1.1. Определение показателей надежности партии электронных блоков	
1.2. Определение показателей надежности микропроцессора	
1.3. Определение среднего времени наработки до отказа	
1.4. Определение вероятности безотказной работы и интенсивности отказов	- آ
1.5. Определение показателей надежности реле	
Заключение	11

Введение

Цель работы — изучение показателей надежности, вычисляемых на основе статистических данных об отказах, и освоение методов определения параметров надежности для невосстанавливаемых объектов.

1. Ход работы

Вариант - 1

1.1. Определение показателей надежности партии электронных блоков

Исходные данные:

- Количество испытанных блоков: N = 1000
- Количество отказавших блоков за время t: n(t) = 200
- Время испытаний: t = 5000 часов

Требуемые показатели:

1. Вероятность безотказной работы: p * (t)

$$p * (t) = 1 - q * (t) = 1 - \frac{n(t)}{N}$$

 $p * (5000) = 1 - \frac{200}{1000} = 0.8$

2. Вероятность отказа: $q^*(t)$

$$q * (t) = \frac{n(t)}{N} = \frac{200}{1000} = 0.2$$

3. Плотность распределения времени наработки: $f^*(t)$

$$f * (t) = \frac{n(t)}{N.t}$$
$$f * (5000) = \frac{200}{1000*5000} = 0.00004$$

4. Интенсивность отказов: $\lambda^*(t)$

$$\lambda * (t) = \frac{f^*(t)}{p^*(t)}$$
$$\lambda * (5000) = \frac{0.00004}{0.8} = 0.00005$$

5. Средняя наработка до отказа: $T *_0$

$$T^*_0 = \frac{t}{-lnp^*(t)}$$

$$T^*_0 = \frac{5000}{-ln0.8} \approx 22407.1$$
 часов

Таблица 1 – результаты

Показатель	Значение
p * (5000)	0.8
q * (5000)	0.2

f * (5000)	0.00004
λ * (5000)	0.00005
T * ₀	22407.1 часов

На основании проведенных расчетов можно сделать следующие выводы:

- 1. Вероятность безотказной работы после 5000 часов составляет 0.8, то есть 80% электронных блоков продолжают функционировать нормально, в то время как 20% вышли из строя. Это свидетельствует о достаточно высокой надежности системы в данный период времени.
- 2. Интенсивность отказов $\lambda*(t)=0.00005$, что означает, что в среднем за один час выходит из строя 0.005% элементов. Это очень низкое значение, указывающее на малую вероятность возникновения отказов с течением времени.
- 3. Плотность вероятности отказов f*(t)=0.00004 показывает, что вероятность отказа элемента точно в момент времени 5000 часов крайне мала, что отражает стабильность системы.
- 4. Средняя наработка до отказа $T *_0 = 22407.1$ часов, то есть в среднем один элемент может работать более 22 000 часов до выхода из строя. Это важный показатель, позволяющий оценить срок службы устройства.

Общий вывод:

Система обладает высокой надежностью, низкой вероятностью отказов и длительным средним временем наработки до отказа. Это доказывает, что электронные блоки могут стабильно функционировать в течение длительного времени до необходимости проведения технического обслуживания или замены.

Рассчитанные показатели могут помочь инженерам по обслуживанию составить оптимальный график периодических проверок для обеспечения бесперебойной работы системы.

1.2. Определение показателей надежности микропроцессора

Исходные данные:

- Количество испытанных микропроцессоров: N = 1000

- Количество отказов за время t_1 : n(t) = 200
- Начальное время испытаний: $t_1 = 7000$ часов
- Количество отказов в интервале: $[t_1, t_1 + \Delta t]$: $n(t_1, t_1 + \Delta t) = 100$
- Дополнительный временной интервал: $\Delta t = 3000$ часов

Требуемые показатели:

1. Вероятность безотказной работы в момент времени $t_{_{1}}$: $p\ ^{*}\ (t_{_{1}})$

$$p * (t_1) = 1 - q * (t_1) = 1 - \frac{n(t)}{N}$$

 $p * (7000) = 1 - \frac{200}{1000} = 0.8$

2. Вероятность отказа в момент времени t_1 : $q * (t_1)$

$$q * (t_1) = \frac{n(t)}{N} = \frac{200}{1000} = 0.2$$

3. Вероятность безотказной работы в момент времени $t_1 + \Delta t$: $p * (t_1 + \Delta t)$ В момент времени $t_1 + \Delta t$ количество отказов увеличилось на $n(t_1, t_1 + \Delta t)$, поэтому общее количество вышедших из строя элементов составляет:

$$n(t_1 + \Delta t) = n(t_1) + n(t_1, t_1 + \Delta t) = 200 + 100 = 300$$

$$p * (t_1 + \Delta t) = 1 - \frac{n(t_1 + \Delta t)}{N} = 1 - \frac{300}{1000} = 0.7$$

4. Вероятность отказа в момент времени $t_1^{} + \Delta t$: $q^* (t_1^{} + \Delta t)$

$$q * (t_1 + \Delta t) = \frac{n(t_1 + \Delta t)}{N} = \frac{300}{1000} = 0.3$$

5. Плотность распределения времени наработки в интервале

$$[t_1, t_1 + \Delta t]: f * (t_1, t_1 + \Delta t)$$

$$f * (t_1, t_1 + \Delta t) = \frac{n(t_1, t_1 + \Delta t)}{N*\Delta t}$$
$$f * (7000, 10000) = \frac{100}{1000*3000} = 0.0000333$$

6. Интенсивность отказов в интервале $[t_1, t_1 + \Delta t]: \lambda * (t_1, t_1 + \Delta t)$

$$\lambda * (t_1, t_1 + \Delta t) = \frac{f^*(t_1, t_1 + \Delta t)}{p^*(t_1)}$$

$$\lambda * (7000, 10000) = \frac{0.0000333}{0.8} = 0.00004167$$

Таблица 2 – результаты

Показатель	Значение
p * (7000)	0.8
q * (7000)	0.2
p * (10000)	0.7
q * (10000)	0.3
f * (7000, 10000)	0.0000333
λ * (7000, 10000)	0.00004167

Выводы

- 1. Вероятность безотказной работы снижается с 0.8 до 0.7 в интервале от 7000 до 10000 часов, что свидетельствует о постепенном ухудшении надежности системы.
- 2. Доля отказов увеличивается с 0.2 до 0.3, то есть в течение 3000 часов число отказавших элементов выросло на 10%.
- 3. Интенсивность отказов $\lambda*(t)=0.00004167$ означает, что в среднем в течение одного часа выходит из строя 0.004% элементов.
- 4. Плотность распределения отказов f*(t)=0.0000333 отражает вероятность отказа элемента в определенный момент времени в заданном интервале испытаний.

В целом, система демонстрирует достаточно высокую надежность, но с течением времени вероятность отказов увеличивается.

1.3. Определение среднего времени наработки до отказа

Исходные данные:

- Минимальная вероятность безотказной работы: $p(t)_{min} = 0.9$
- Требуемое время работы: t = 10000 часов

Цель:

Определить среднее время наработки до отказа T_0 , чтобы вероятность безотказной работы в течение ttt оставалась не менее $p(t)_{\min}$.

- Предположим, что время работы до отказа подчиняется экспоненциальному распределению:

$$p(t) = e^{-\frac{t}{T_0}}$$

- По условию задачи:

$$p(10000) = 0.9$$

$$\Rightarrow e^{-\frac{10000}{T_0}} = 0.9$$

$$\Leftrightarrow -\frac{10000}{T_0} = ln(0.9)$$

$$\Leftrightarrow T_0 = \frac{10000}{-ln(0.9)} = 94912.21581 часов$$

Выводы

- Чтобы вероятность безотказной работы в течение 10 000 часов оставалась не менее 90%, среднее время наработки до отказа системы должно быть не менее 94912.21581 часов.
- Это указывает на необходимость высокой надежности системы для обеспечения ее долговременной работы.
- Для повышения надежности можно применять методы периодического технического обслуживания, использование компонентов высокого качества или внедрение резервных систем.

1.4. Определение вероятности безотказной работы и интенсивности отказов

Исходные данные:

- Среднее время наработки до отказа: $T_0 = 10000$ часов
- Время контроля: t = 8000 часов
- Момент времени для расчета интенсивности отказов: $t_1^{} = 3000$ часов
- 1. Вероятность безотказной работы p(t) при t = 8000 часов

Предположим, что время работы до отказа подчиняется экспоненциальному распределению. Тогда вероятность безотказной работы определяется по формуле:

$$p * (t) = e^{-\frac{t}{T_0}}$$

 $\Leftrightarrow p * (8000) = e^{-\frac{8000}{10000}} \approx 0.45$

2. Интенсивность отказов $\lambda * (t)$ при $t_1 = 3000$ часов

Формула для интенсивности отказов:

$$\lambda * (t) = \frac{1}{T_0}$$
 $\Leftrightarrow \lambda * (3000) = \frac{1}{10000} = 0.0001$

Таблица 3 – результаты

Показатель	Значение
p * (8000)	0.45
λ * (3000)	0.0001

Выводы

- 1. Вероятность безотказной работы после 8000 часов составляет примерно 45%, что означает, что к этому моменту около 55% элементов вышли из строя. Это свидетельствует о снижении надежности с течением времени.
- 2. Интенсивность отказов остается постоянной и составляет 0.0001, то есть в среднем 0.01% элементов выходит из строя за каждый час работы. Это соответствует экспоненциальному распределению, при котором интенсивность отказов не изменяется со временем.
- 3. Для продления срока службы системы можно рассмотреть такие меры, как улучшение качества компонентов, оптимизация условий эксплуатации или использование резервирования.

1.5. Определение показателей надежности реле

Исходные данные:

- Количество испытанных реле: N = 500

- Количество отказов за время t_1 : $n(t_1) = 100$

- Начальное время контроля: $t_1 = 8000$ часов

- Количество отказов в интервале: Δt : $n(\Delta t) = 40$

- Дополнительный временной интервал: $\Delta t = 50$ часов

- Момент времени $t_2^{} = 8020$ часов

1. Вероятность безотказной работы в момент времени $t_{_{1}}$: $p^{\;*}\;(t_{_{1}})$

$$p * (t_1) = 1 - q * (t_1) = 1 - \frac{n(t)}{N}$$

 $\Leftrightarrow p * (8000) = 1 - \frac{100}{500} = 0.8$

2. Вероятность безотказной работы в момент времени $t_1 + \Delta t$: $p * (t_1 + \Delta t)$ В момент времени $t_1 + \Delta t = 8000 + 50 = 8050$, общее количество отказов:

$$n(t_1 + \Delta t) = n(t_1) + n(\Delta t) = 100 + 40 = 140$$

 $\Leftrightarrow p * (t_1 + \Delta t) = 1 - \frac{n(t_1 + \Delta t)}{N} = 1 - \frac{140}{500} = 0.72$

3. Вероятность безотказной работы в момент времени: t_2 : $p * (t_2)$ ак как на момент времени $t_2 = 8020$ количество отказов остается 140, вероятность остается неизменной:

$$p * (t_2) = p * (t_1 + \Delta t) = 0.72$$

4. Плотность распределения отказов в момент времени t_2 : $f^*(t_2)$

$$f * (t_2) = \frac{n(\Delta t)}{N^* \Delta t}$$

$$\Leftrightarrow f * (8020) = \frac{40}{500^* 50} = 0.0016$$

5. Интенсивность отказов в момент времени t_2 : $\lambda * (t_2)$

$$\lambda * (t_2) = \frac{f^*(t_2)}{p^*(t_2)}$$

$$\Leftrightarrow \lambda * (8020) = \frac{0.0016}{0.72} = 0.00222$$

Таблица 4 – результаты

Показатель	Значение
p * (8000)	0.8
p * (8050)	0.72
p * (8020)	0.72
f * (8020)	0.0016
λ * (8020)	0.00222

Выводы

1. Вероятность безотказной работы снижается с 0.8 до 0.72 всего за 50 часов, что свидетельствует об увеличении числа отказов системы с течением времени.

- 2. Интенсивность отказов $\lambda*(8020)=0.00222$ отражает вероятность выхода из строя реле за единицу времени.
- 3. Плотность распределения отказов f*(8020)=0.0016 показывает вероятность отказа системы в конкретный момент времени.

Заключение

В данной лабораторной работе были рассмотрены методы расчёта показателей надёжности невосстанавливаемых объектов. Мы изучили ключевые параметры, включая:

- Вероятность безотказной работы p*(t) вероятность того, что объект не выйдет из строя в заданный момент времени.
- Вероятность отказа q*(t)— доля объектов, потерявших работоспособность к моменту времени tt.
- Интенсивность отказов $\lambda*(t)$ характеризует скорость выхода объектов из строя.
- Функция плотности отказов f*(t)— отражает вероятность отказа в конкретный момент времени.
- Средняя наработка до отказа T_0 среднее время, которое объект может функционировать до первого отказа.

Рассчитанные показатели позволили оценить надёжность объектов в различных условиях эксплуатации. Полученные результаты демонстрируют закономерности деградации систем и необходимость прогнозирования отказов для своевременного технического обслуживания.

Лабораторная работа показала, что математические методы анализа надёжности являются важным инструментом при проектировании и эксплуатации технических систем.