M2.2.2 Modelos Supervisados y No Supervisados

Programa Big Data y Business Intelligence

Enrique Onieva

enrique.onieva@deusto.es
https://twitter.com/EnriqueOnieva
https://www.linkedin.com/in/enriqueonieva/

Naive Bayes

- Motivación
- Probabilidad: ideas intuitivas
- La regla de bayes
- El clasificador Naive Bayes
 - **■** Construcción del modelo
 - Consulta al modelo
 - Extensiones
- Limitaciones y soluciones

Motivación

- Supongamos que vamos al médico y le decimos:
 - "¿Cuál es su diagnóstico?"
 - Posiblemente te responderá "resfriado", o "gastroenteritis"
 - (Aquella enfermedad que sea más común)
 - "Tengo fiebre, ¿Cuál es su diagnóstico?"
 - Responderá aquella la enfermedad más común de aquellas que se manifiestan con fiebre
 - "Tengo fiebre y me duele la cabeza, ¿Cuál es su diagnóstico?"
 - Nuevamente responderá la enfermedad más común de aquellas que se manifiestan con fiebre y dolor de cabeza

3

Motivación

- En problemas reales (como el caso anterior), sufrimos de incertidumbre
 - Tenemos un conocimiento parcial del estado del problema
 - Sólo conocemos algunos "síntomas"
 - Las observaciones vienen con ruido o errores
 - Puede ocurrir un evento no contemplado por nuestro modelo
 - Es un proceso inherentemente estocástico

- Naive Bayes es un método probabilístico
 - o Representa conocimiento con incertidumbre.
 - Se puede manipular para razonamiento y toma de decisiones.
 - Se pueden tratar muchas variables.
 - Las probabilidades se pueden estimar a partir de datos.

- Los modelos tienen una interpretación clara y bien definida.
- SI un paciente tiene fiebre y dolor de cabeza, entonces tiene gripe (certeza 0.7)

- La validez de una regla depende del contexto.
 - Si conozco el nivel de estudios de una persona, tengo información sobre su nivel de ingresos.
 - Esta información puede ser equivocada y ponerse de manifiesto si conozco el puesto de trabajo concreto que esta persona desarrolla
 - Si al salir de casa vemos el césped mojado podemos sospechar que ha llovido.
 - Si descubrimos que nos hemos dejado la manguera abierta, dejamos de sospechar que ha llovido.

6

- Las reglas con incertidumbre deberían de poder usarse en ambas direcciones
 - Si hay fuego debe de haber humo
 - Si vemos humo sospechamos la existencia de fuego
- Correlación entre las informaciones.
 - Si una misma información se repite muchas veces no debe de aumentar nuestra certidumbre

- Otra forma de expresar el conocimiento: grado de creencia
 - Creemos (por experiencia) que un paciente con congestión nasal, tiene gripe con probabilidad del 70%
 - En teoría de la probabilidad, se expresa como
 - P(Gripe = true | Congestión = true) = 0,7
 - Por tanto, la probabilidad puede cambiar a medida que se conocen nuevas evidencias

8

 La teoría de la probabilidad servirá como medio de representación del conocimiento incierto

- Naive Bayes es un método de clasificación tanto para problemas binarios como multi-clase
- Es Naive (ingenuo) porque asume que todas las entradas son independientes entre sí
 - Que unos atributos no dependen de otros (ni un poco)
- Esto no suele ser así, cuando tratamos con datos reales
- No obstante, funciona "sorprendentemente" bien

9

- Dada una proposición "a"
- Su probabilidad incondicional P(a) cuantifica su grado de creencia
- En ausencia de cualquier otra evidencia
 - Ejemplo: P(caries) = 0.1 $P(caries, \neg dolor) = 0.05$
 - Notación: P(caries, ¬dolor) = P(caries \land ¬dolor)
- Aproximación frecuentista: número de casos favorables entre el número de casos totales

- Distribución de probabilidad
 - Indica las probabilidades de que la variable pueda tomar cada uno de sus valores
 - Ejemplo: Tiempo ={lluvia, sol, nubes, nieve}, su distribución de probabilidad podría ser:
 - P(Tiempo = sol) = 0,7
 - P(Tiempo = lluvia) = 0.2
 - P(Tiempo = nubes) = 0.08
 - P(Tiempo = nieve) = 0.02

Probabilidad Condicional

- Probabilidad condicional asociada a "a" dado "b":
 - Grado de creencia sobre a, dado que todo lo que sabemos es que b ocurre $\rightarrow P(a|b)$
- \circ Ejemplo: P(caries|dolor) = 0,8
 - Sabiendo que un paciente tiene dolor de muelas (y sólo sabemos eso), nuestra creencia es que el paciente tendrá caries con probabilidad 0,8
- Los grados de creencia se actualizan a medida que se van conociendo nuevas evidencias en el mundo incierto
 - P(a|b) = 0.8 no es lo mismo que decir que "siempre que b sea verdad, entonces P(a) = 0.8"
 - Ya que P(a|b) refleja que b es la única evidencia conocida

- Independencia probabilística
 - Intuitivamente, dos variables son independientes si conocer el valor que toma una de ellas no nos actualiza nuestra creencia sobre el valor que tome la otra.
 - El asumir que dos variables son independientes está basado normalmente en el conocimiento previo del dominio que se modela
 - Dos variables aleatorias X e Y son independientes si

 - P(Y|X) = P(Y)
- P(TengoCaries|HaceSol) = P(TengoCaries)

- A partir de
 - $\circ P(a \cap b) = P(a|b)P(b) = P(b|a)P(a)$
- Podemos deducir la siguiente fórmula, conocida como la regla de Bayes
 - $\circ P(b|a) = (P(a|b)P(b))/(P(a))$
- Regla de Bayes para variables aleatorias:
 - $\circ P(Y|X) = (P(X \cap Y))/(P(X)) = (P(X|Y)P(Y))/(P(X))$
- Generalización, en presencia de un conjunto e de observaciones
 - P(Y|X,e) = (P(X|Y,e)P(Y|e))/(P(X|e))

- Lanzamos una moneda 3 veces. Los posibles casos Cara (Heads, H) y Cruz (Tails, T) son
 - S={HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
- Definimos los eventos:
 - A = "La primera moneda es Cara" = {HHH, HHT, HTH, HTT}
 - B = "Dos de las monedas son Cara"={HHT, HTH, THH}

Tenemos

- A = "La primera moneda es Cara" = {HHH, HHT, HTH, HTT} P(A) = 4/8
 B = "Dos de las monedas son Cara" = {HHT, HTH, THH} P(B) = 3/8
- Probabilidad Condicional
 - Tiramos una moneda 3 veces. Si sabemos que hay 2 caras, cuál es la probabilidad de que la primera sea cara?

- Probabilidad Condicional
 - Tiramos una moneda 3 veces. Si sabemos que hay 2 caras, cuál es la probabilidad de que la primera sea cara?
 - Otra forma: Sabiendo que B es cierto, cuál es la probabilidad de A?
 - B es cierto: hemos obtenido un resultado entre HHT, HTH y THH
 - De esos, aquellos en los que A es cierto son HHT y HTH $(A \cap B)$

- Un fabricante de caramelos fabrica bolsas de cinco tipos
 - h1: 100% de naranja
 - h2: 75% de naranja y 25% de limón
 - h3: 50% de naranja y 50% de limón
 - h4: 25% de naranja y 75% de limón
 - h5: 100% de limón
 - Cada tipo de bolsa h1, h2, h3, h4 y h5 las hace el fabricante con probabilidad 0,1, 0,2, 0,4, 0,2 y 0,1.

 Tomamos una bolsa y vamos abriendo algunos caramelos y anotando su sabor ¿Podemos predecir el sabor del siguiente caramelo que saquemos de la bolsa?

- Supongamos que tomamos 2 caramelos de una bolsa elegida al azar, ambos de limón
- ¿Qué tipo de bolsa hemos tomado?

Hipótesis	P(h)	P(d h)	P(d h)·P(h)	α·P(d h)·P(h)
H1	0,1	0	0	0
H2	0,2	$0,25^2$	0,0125	0,04
H3	0,4	$0,5^{2}$	0,1	0,31
H4	0,2	$0,75^{2}$	0,1125	0,35
H5	0,1	1 ²	0,1	0,3

- Supongamos que tomamos 3 caramelos de una bolsa elegida al azar, ambos de limón
- ¿Qué tipo de bolsa hemos tomado?

Hipótesis	P(h)	P(d h)	P(d h)·P(h)	α·P(d h)·P(h)
H1	0,1	0	0	0
H2	0,2	$0,25^{3}$	0,003125	0,01
Н3	0,4	$0,5^{3}$	0,05	0,21
H4	0,2	$0,75^3$	0,084375	0,36
H5	0,1	1 ³	0,1	0,42

El Clasificador Naive Bayes

- Supongamos un conjunto de atributos $A_1, ... A_n$
- Tenemos un conjunto de entrenamiento D con una serie de ejemplos de valores concretos para los atributos, junto con su clasificación
- Queremos aprender un clasificador tal que clasifique nuevas instancias $\langle a_1, \dots a_n \rangle$

El Clasificador Naive Bayes

- Podemos simplificar el aprendizaje suponiendo que los atributos son (mutuamente) condicionalmente independientes dado el valor de clasificación (de ahí lo de "naive")
- En ese caso, tomamos como valor de clasificación:
- Algo como:
 - "Aquella hipótesis para la que la probabilidad de los atributos, conociendo la hipótesis, es mayor"

$$v_{NB} = argmax_{v_j \in V} P(v_j) \prod_i P(a_i | v_j)$$

El Clasificador Naive Bayes

- Para el proceso de aprendizaje, solo tenemos que estimar las probabilidades:

 - $P(v_j)$ → probabilidades a priori

 Probabilidad de que una muestra sea de una determinada clase, independientemente del valor de sus atributos
 - \circ $P(a_i|v_i) \rightarrow \text{probabilidades condicionadas}$
 - Probabilidad de que una muestra tenga un determinado valor de un atributo, conociendo el valor de la clase
- Simplemente contamos frecuencias
- Esa tabla con las probabilidades, calculadas para los datos de entrenamiento, serán el modelo

Construcción del Modelo

- Probabilidades a priori $P(v_i)$
 - P(SI) = 9/14 y P(NO) = 5/14
- Probabilidades a posteriori P(ai|vj)
 - P(Cielo=soleado|SI) = 2/9
 - P(Cielo=soleado|NO) = 3/5
 - P(Cielo=nublado|SI) = ...
 - P(Temp=alta|SI) = ...
 - P(Temp=alta|NO) = ...
 - P(Temp=suave|SI) = 5/9
 - P(Temp=suave|NO) = 1/5

EJ	Cielo	Temp.	Humedad	Viento	Jugar Tenis
D ₁	Soleado	Alta	Alta	Débil	NO
D ₂	Soleado	Alta	Alta	Fuerte	NO
D ₃	Nublado	Alta	Alta	Débil	SI
D ₄	Lluvia	Suave	Alta	Débil	SI
D ₅	Lluvia	Baja	Normal	Débil	SI
D ₆	Lluvia	Baja	Normal	Fuerte	NO
D ₇	Nublado	Baja	Normal	Fuerte	SI
D ₈	Soleado	Suave	Alta	Débil	SI
D ₉	Soleado	Baja	Normal	Débil	NO
D ₁₀	Lluvia	Suave	Normal	Débil	SI
D ₁₁	Soleado	Suave	Normal	Fuerte	SI
D ₁₂	Nublado	Suave	Alta	Fuerte	SI
D ₁₃	Nublado	Alta	Normal	Débil	SI
D ₁₄	Lluvia	Suave	Alta	Fuerte	NO

Consultando al Modelo

- Una vez recibimos datos de entrada
 - Si el día es soleado, con temperatura suave, humedad alta y viento fuerte, ¿es un buen día para jugar al tenis?
 - Tomamos de las tablas, aquellas probabilidades relacionadas
 - P(SI)·P(soleado|SI)·P(suave|SI)·P(alta|SI)P(fuerte|SI)=0,011
 - $P(NO) \cdot P(soleado|NO) \cdot P(suave|NO) \cdot P(alta|NO) P(fuerte|NO) = 0.015$
 - Y el clasificador devolverá la clase con mayor valor
 - En este caso la respuesta es NO (no es un día bueno)
 - Si queremos una respuesta con probabilidad, basta con normalizar los resultados
 - SI \rightarrow 0.011/(0.011+0.015) NO \rightarrow 0.015/(0.011+0.015)

P(SI)	9/14
P(NO)	5/14
P(soleado SI)	2/9
P(soleado NO)	3/5
P(suave SI)	5/9
P(suave NO)	1/5
P(alta SI)	4/9
P(alta NO)	3/5
P(fuerte SI)	3/9
P(fuerte NO)	3/5

Extensiones

- Para trabajar con datos numéricos
- La probabilidad condicional se calcula como la distribución de probabilidad
 - Media y desviación típica de los valores del atributo para una determinada clase

Aplicación a Text Mining

- Demuestra gran potencial en text mining:
 - Clasificar documentos por tema (economía y tecnología)
 - Bag of words
 - Disponemos de la lista de palabras que aparecen en cada documento
 - Contamos cuántas veces aparece cada palabra en cada documento

	market	stock	price	application	mobile	google
document 1('economics')	1	2	3	0	0	0
document 2('economics')	0	1	2	0	0	1
document 3('technology')	0	0	0	2	3	1
document 4('technology')	1	0	1	2	3	0

Limitaciones y soluciones

- Documento con la palabra "mobile" →
 - $P(Eco) \cdot P(market|Eco) \cdot P(stock|Eco) \cdot ... \cdot P(mobile|Eco) \cdot P(google|Eco)$
 - Pero P(mobile|Eco)=0
 - ¿Un documento con "mobile", nuca será de economía?
 - ¿Incluso aunque tenga las palabras "market" "stock" "price" repetidas 1000 veces y "application" y "google" no aparezcan?
 - ¿Cómo se podría "solucionar"?

	market	stock	price	application	mobile	google
document 1('economics')	1	2	3	0	0	0
document 2('economics')	0	1	2	0	0	1
document 3('technology')	0	0	0	2	3	1
document 4('technology')	1	0	1	2	3	0

Limitaciones y soluciones

- ¿Ante documento con ninguna de esas palabras?
 - \circ P(Eco)=P(Tec)=0
- ¿Y clasificando entre "economía" y "geología"?
 - Hay muchos más documentos de economía que de geología
 - \blacksquare P(Eco)>>P(Geo)
 - Pero ninguno coindice en palabras
 - P(palabra1|Eco) = P(palabra1|Geo) = P(palabra2|Eco) = P(palabra2|Geo) = ... = 0

	market	stock	price	application	mobile	google
document 1('economics')	1	2	3	0	0	0
document 2('economics')	0	1	2	0	0	1
document 3('technology')	0	0	0	2	3	1
document 4('technology')	1	0	1	2	3	0

30

Limitaciones y soluciones

- La corrección de Laplace:
 - Busca evitar esos problemas, haciendo que la probabilidad nunca sea exactamente 0
 - Suma 1 al dividendo y el número de palabras (M) al divisor

$$p(x_i = 1 | y = c_k) = rac{\# ext{ of documents of class } c_k ext{ where word } x_i ext{ appears} + 1}{\# ext{ of documents of class } c_k + M}$$

- Uso de logaritmos:
 - Evitar que los números sean tan infinitamente pequeños que al multiplicarlos el resultado tienda a cero
 - Debido a redondeos del ordenador
 - Calculamos las probabilidades como suma de logaritmos, en lugar de producto de probabilidades $\log p(x|y) = \sum_{i=1}^N \log p(x_i|y)$

Copyright (c) University of Deusto

This work (but the quoted images, whose rights are reserved to their owners*) is licensed under the Creative Commons "Attribution-ShareAlike" License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/

Enrique Onieva

enrique.onieva@deusto.es
https://twitter.com/EnriqueOnieva
https://www.linkedin.com/in/enriqueonieva/

