Edercicios 2,3,6. Pto.5. (A+)2 - (A*)2 = A2 a) Muestre como las matrices de pauli forman una base para espacio vectorial. A=[a,+azi b++bzi] Matriz Compleja [CitCi ditdzc] la transposta es 91-92C C1-C2C | b1-b2i d1-d20 Como es hermitiana entonces $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ I Matrices de Pauli b & Base ortogonal? (alb)=Tr(A+B) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

la base es ortogonal si lo perpendiculares entre si.	s vectores son
A.B=O Tr(A+B)=	
Tr(A+B)= 0+0+0+0=0	Las matrices son
Tr (Ate) = 0+0+1-1=0 Tr (BC) = 0+0+1-1=0	ortogonales
€) Subespaciós de matrices reale	2):
Si existe ya que cualquier componentes se an R características de un subespo	Matriz donde sus complen con las
Subespacio matrices compleyes.	y de R
1) 0 esta en las matrices con 2) ABEC	
A = (0 91 1 bi) B=	(eet fi)
$A \oplus B = \{(a+e)^2 (f+b)^4 \}$	
E IM C	
3) dA ∈ C.	
$dA = \left(\begin{array}{ccc} ac & bc \\ cc & da \end{array}\right) = \left(\begin{array}{ccc} aac \\ ac \end{array}\right)$	abî e C
> es un subespacio de los (omplejo puros.