MAT232 - Lecture 11

 $[\operatorname{Lesson} \operatorname{Topic}(s)]$

AlexanderTheMango

Prepared for February 10, 2025

Contents

Review of Last Lecture
Section 4.4: Tangent Planes
Recall from 1st Year Calculus
Now, in MAT232
Let's Try an Example
Another Example
Section 4.5: Chain Rule
Recall from 1st Year Calculus
Now, in MAT232

Definitions and Theorems

Straight from the textbook — no fluff, just what we need.

Quick recap before diving into the lecture.

Review of Last Lecture

(stuff goes here)

Section 4.4: Tangent Planes

Recall from 1st Year Calculus

Definition

Tangent lines are denoted by:

$$y = f(x)$$
 at $x = x_0$ (given)

- Point $P = (x_0, f(x_0)) = (x_0, y_0)$
- Slope of tangent line: $m = f'(x_0)$
 - So at $x = x_0$, the slope of the tangent line is $f'(x_0) = m$

$$y - y_0 = m(x - x_0)$$

$$y = f'(x_0)(x - x_0) + f(x_0)$$

$$y = f(x_0) + f'(x_0)(x - x_0)$$

Remark

Note: The tangent line is a linear approximation of the function f(x) near $x = x_0$.

We will not be using this formula in this course, but it is good to know.

Now, in MAT232

Definition

Plane Equation:

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

is the equation of a plane in \mathbb{R}^3 in **point-normal or scalar form**. Rearrange and notice:

$$z - z_0 = -\frac{a}{c}(x - x_0) - \frac{b}{c}(y - y_0)$$

where z = f(x, y) and $z_0 = f(x_0, y_0)$.

So, $z_0 = f(x_0, y_0)$ is the point on the surface of the function z = f(x, y) at (x_0, y_0) , and $-\frac{a}{c} = f_x(x_0, y_0)$ and $-\frac{b}{c} = f_y(x_0, y_0)$ are the partial derivatives of f(x, y) at (x_0, y_0) . This form is called the **tangent plane** to the surface of the function z = f(x, y) at (x_0, y_0) .

Note

This equation will be included on the formula sheet.

Concept

Set $y = y_0$:

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + \underbrace{f_y(x_0, y_0)(y - y_0)}_{0}$$

Call this T_1 , the tangent plane to the surface of the function z = f(x, y) at (x_0, y_0) when $y = y_0$. Set

 $x = x_0$:

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Call this T_2 , the tangent plane to the surface of the function z = f(x, y) at (x_0, y_0) when $x = x_0$.

Let's Try an Example

Example

Find the equation of the tangent plane to the surface $z = f(x, y) = \ln(x - 2y)$ at the point $(x_0, y_0) = (3, 1)$.

Solution

Tangent plane equation:

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

• Point: $(x_0, y_0) = (3, 1)$

So...

$$z_0 = f(x_0, y_0) = \ln(3 - 2(1)) = \ln(3 - 2) = \ln(1) = 0$$
$$f_x(x, y) = \frac{1}{x - 2y}$$
$$f_y(x, y) = \frac{-2}{x - 2y}$$

• Partial derivatives at $(x_0, y_0) = (3, 1)$:

$$f_x(3,1) = \frac{1}{3-2(1)} = \frac{1}{3-2} = 1$$
$$f_y(3,1) = \frac{-2}{3-2(1)} = \frac{-2}{3-2} = -2$$

So, the equation of the tangent plane is:

$$z = 0 + 1(x - 3) - 2(y - 1)$$
$$z = x - 3 - 2y + 2$$
$$z = x - 2y - 1$$

Answer

The equation of the tangent plane to the surface $z = f(x, y) = \ln(x - 2y)$ at the point $(x_0, y_0) = (3, 1)$ is z = x - 2y - 1.

Another Example

Example

Find the equation of the tangent plane to the surface $z = f(x,y) = x^2 + y^2 + 1$ at the point $(x_0, y_0) = (2, 1)$.

Solution

Tangent plane equation:

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

• Point: $(x_0, y_0) = (2, 1)$

Partial derivatives:

$$f_x(x,y) = 2x$$

$$f_y(x,y) = 2y$$

Point:

$$z_0 = f(x_0, y_0) = 2^2 + 1^2 + 1 = 4 + 1 + 1 = 6$$

Partial derivatives at $(x_0, y_0) = (2, 1)$:

$$f_x(2,1) = 2(2) = 4$$

$$f_y(2,1) = 2(1) = 2$$

So, the equation of the tangent plane is:

$$z = 6 + 4(x - 2) + 2(y - 1)$$

$$z = 6 + 4x - 8 + 2y - 2$$

$$z = 4x + 2y - 4$$

Answer

The equation of the tangent plane to the surface $z = f(x, y) = x^2 + y^2 + 1$ at the point $(x_0, y_0) = (2, 1)$ is z = 4x + 2y - 4.

Section 4.5: Chain Rule

Recall from 1st Year Calculus

Let y = f(u) and u = g(x). Then, y = f(g(x)).

• Chain Rule: $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

Example

Let $f(x) = \cos(x)$ and $g(x) = e^x$. Find h(x) = f(g(x)) and h'(x).

Solution

Notice that $h(x) = f(g(x)) = \cos(e^x)$. So $h'(x) = -\sin(e^x) \cdot e^x$.

Answer

$$h(x) = \cos(e^x)$$
 and $h'(x) = -\sin(e^x) \cdot e^x$.

Now, in MAT232

Definition

Given w = f(x, y), x = h(t), y = g(t), and that they are all differentiable functions, then w = f(x, y) = f(h(t), g(t)).

Concept

Chain Rule:

$$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{\partial w}{\partial x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial w}{\partial y} \cdot \frac{\mathrm{d}y}{\mathrm{d}t}$$

Note

This is the chain rule in MAT232.

Let's illustrate how w = f(x, y) breaks down:

$$w = f(x, y) = f(h(t), g(t))$$

Note that if w = f(x, y) depends on x and y, and x and y depend on t, then w depends on t.

$$w = f(x, y) = f(h(t), g(t))$$
$$\frac{\partial w}{\partial x} = \frac{\partial f}{\partial x} = f_x(h(t), g(t)) \cdot h'(t)$$
$$\frac{\partial w}{\partial y} = \frac{\partial f}{\partial y} = f_y(h(t), g(t)) \cdot g'(t)$$

Example

Find the derivative of w = f(x, y) = xy with respect to t if $x = \cos(t)$ and $y = \sin(t)$ at $t = \frac{\pi}{2}$. Approach 1 (Direct Substitution):

Solution

$$w = f(x, y) = xy$$
$$= \cos(t) \cdot \sin(t)$$
$$= \frac{1}{2}\sin(2t)$$

Answer

The derivative of w = f(x, y) = xy with respect to t if $x = \cos(t)$ and $y = \sin(t)$ at $t = \frac{\pi}{2}$ is $\cos(2t)$.

Approach 1 (Substitute $t = \frac{\pi}{2}$):

Solution

$$\begin{aligned} w &= f(x,y) = xy \\ \frac{\mathrm{d}w}{\mathrm{d}t} &= \frac{\mathrm{d}w}{\mathrm{d}x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\mathrm{d}w}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}t} \\ &= y \cdot (-\sin(t)) + x \cdot \cos(t) \\ &= \sin(t) \cdot (-\sin(t)) + \cos(t) \cdot \cos(t) \\ &= \sin\left(\frac{\pi}{2}\right) \cdot (-\sin\left(\frac{\pi}{2}\right)) + \cos\left(\frac{\pi}{2}\right) \cdot \cos\left(\frac{\pi}{2}\right) \\ &= 1 \cdot (-1) + 0 \cdot 0 = -1 \end{aligned}$$

Answer

The derivative of w=f(x,y)=xy with respect to t if $x=\cos(t)$ and $y=\sin(t)$ at $t=\frac{\pi}{2}$ is -1.