

A. AMENDMENTS TO CLAIMS

Claim 1 (Withdrawn)

Claim 2 (Original) A power controller capable of determining when a system reaches a maximum allowable energy, comprising means for:

digitally monitoring a current, I , at fixed, average intervals, Δt ;

obtaining the square of the current, I^2 ;

subtracting the square of the rated, current-carrying capacity of the system, I_0^2 ;

summing the values of $(I^2 - I_0^2)$ in a first register, the values in the first register always being greater than or equal to zero;

comparing the sum in the first register to a first control value, K_t , where K_t is equal to the rectilinear hyperbola constant, K , of a constant energy plot of percent rated current as a function of time, (Fig. 1), divided by the fixed average interval, $K_t = K/\Delta t$, and

a means for sending a control signal when the value in the first register equals or exceeds the first control value, K_t .

Claim 3 (Original) A power controller according to claim 2, wherein the controller is implemented in a device selected from a group consisting of Programmable Array Logic (PAL), Programmable Logic Devices (PLD), Field Programmable Gate Arrays (FPGA) and Application Specific Integrated Circuits (ASIC).

Claim 4 (Original) A power controller according to claim 2, wherein the controller is implemented in a device selected from a group consisting of Digital Signal Processors (DSP),

microcontrollers and microprocessors.

Claim 5 (Original) A power controller according to claim 2, further comprising means for instantaneous shutdown.

Claim 6 (Original) A power controller according to claim 2, further comprising means for current limiting.

Claim 7 (Original) A power controller according to claim 2, further comprising a means for foldback current limiting.

Claim 8 (Original) A solid state power controller according to claim 2, further comprising a means for monitoring energy in a solid state switch, and comparing it to a safe operating area, SOA, of the solid state switch, the solid state power controller comprising means for:

measuring voltage across the solid switch, E, for each fixed average time interval, Δt ;
subtracting from the measured voltage, E, a predetermined, safe threshold voltage, E_t ,
 $\Delta E = E - E_t$;

determining the product of the current times the difference between the voltage and the safe threshold voltage, $I \cdot \Delta E$, for each fixed average time interval;

summing the values of $I \cdot \Delta E$ in a second register; the values in the second register always being greater than or equal to zero;

comparing the sum in the second register to a second control value, C_t , said second value representing the safe operating limit of the solid state switch, $\int((E-E_t)I)dt$, divided by the fixed average interval, Δt , $C_t = (\int((E-E_t)I)dt)/\Delta t$, and sending a control signal when the sum in the second register equals or exceeds the second value, C_t .

Claim 9 (Original) A solid state power controller according to claim 8, further comprising means for instantaneous shutdown

Claim 10 (Original) A solid state power controller according to claim 8, further comprising means for current limiting.

Claim 11 (Original) A solid state power controller according to claim 8, further comprising a means for foldback current limiting.

Claim 12 (Original) A solid state power controller according to claim 8, wherein the controller is implemented in a device selected from a group consisting of Programmable Array Logic (PAL), Programmable Logic Devices (PLD), Field Programmable Gate Arrays (FPGA) and Application Specific Integrated Circuits (ASIC).

Claim 13 (Original) A solid state power controller according to claim 8, wherein the controller is implemented in a device selected from a group consisting of Digital Signal Processors (DSP), microcontrollers and microprocessors.

Claim 14 (Original) A controller for monitoring the energy in a solid state switch, and comparing it to a safe operating area, SOA, of the solid state switch, comprising means for:

measuring the voltage across the solid state switch, E, and the current flowing through the solid state switch, I, at fixed average time intervals, Δt ;

subtracting from the measured voltage, E, a predetermined, safe threshold voltage, E_t , obtaining the difference, $\Delta E = E - E_t$;

determining the product of the current times the difference, $I \cdot \Delta E$, for each fixed average time interval;

summing the values of $I \cdot \Delta E$ in a register; the values in the register always being greater than or equal to zero;

comparing the sum in the second register to a value, C_t , said value representing the safe operating limit of the solid state switch, $\int ((E - E_t)I)dt$, divided by the fixed average time interval, Δt , $C_t = (\int ((E - E_t)I)dt) / \Delta t$, and

sending a control signal when the sum in the second register exceeds the control value, C_t .

Claim 15 (Original) A solid state power controller according to claim 14, further comprising means for instantaneous shutdown

Claim 16 (Original) A solid state power controller according to claim 14, further comprising means for current limiting.

Claim 17 (Original) A solid state power controller according to claim 14, further comprising a means for foldback current limiting.

Claim 18 (Original) A solid state power controller according to claim 14, wherein the controller is implemented in a device selected from a group consisting of Programmable Array Logic (PAL), Programmable Logic Devices (PLD), Field Programmable Gate Arrays (FPGA) and Application Specific Integrated Circuits (ASIC).

Claim 19 (Original) A solid state power controller according to claim 14, wherein the controller is implemented in a device selected from a group consisting of Digital Signal Processors (DSP), microcontrollers and microprocessors.

Claim 20 (Original) In a controller having an algorithm for an I^2t overload trip function wherein the algorithm creates a signal when the integral with respect to time of the square of the current (I^2) minus the square of the rated current (I_o^2) reaches an I^2t overload value, $\int(I^2 - I_o^2)dt = K$, the simplified algorithm characterized by:

digitally sampling the current at fixed intervals, Δt ; summing the square of the sampled current minus the square of the rated current in a first register, the register never being allowed to go below zero, and creating a signal when the sum in the first register is equal or greater than the overload value divided by the current sampling interval, $K/\Delta t$.

Claim 21 (Original) A controller according to claim 20, further comprising a simplified algorithm for monitoring the energy in a solid state switch and comparing the energy to a safe

operating area of a solid state switch characterized by:

digitally sampling the voltage across the solid state switch at the fixed time interval;
subtracting a digital value of a predetermined safe, threshold voltage from the sampled voltage;
multiplying the voltage difference and sampled current together; summing the products of the
multiplications in a second register, the second register never being allowed to go below zero,
and when the sum in the second register reaches a predetermined safe operating area limit,
generating a control signal.

Claim 22 (Original) A controller comprising a simplified algorithm for monitoring the energy
in a solid state switch and comparing it to a safe operating area of a solid state switch
characterized by:

digitally sampling the voltage across the solid state switch at a fixed time interval;
subtracting a digital value for a predetermined safe, threshold voltage from the sampled voltage;
multiplying the sampled current and voltage difference together; summing the products of the
multiplications in a register, the register never being allowed to go below zero, and when the

sum in the register reaches the predetermined safe operating area limit, generating a control signal.