		Original circui	t		Peephole + Patel et al.			Peephole + LP			\mathbf{Qiskit}	
Circuit	SQG	Entangling	${ m T}$	SQG	Entangling	Т	SQG	Entangling	${ m T}$	SQG	Entangling	T
adder_n4	77	10	11.9	52	6	6.3	52	6	6.3	51	10	9.8
adder n10	491	65	73.4	264	40	39.1	235	31	31.4	239	65	58.6
adder n28	1471	195	220.9	863	91	90.9	835	77	78	710	195	176.6
adder n64	3431	455	507.5	1963	198	195.4	1977	152	154.5	1654	455	411.6
basis change n3	135	10	16	109	24	23.8	153	29	29.6	63	10	10.1
basis test n4	343	46	53.6	68	7	7.8	103	11	11.8	120	20	19.9
basis trotter n4	5263	582	738.7	505	103	104.6	886	130	133.2	1370	233	233
bell n4	88	7	10.1	28	5	5.2	28	5	5.2	30	5	5.2
bigadder n18	980	130	146.7	576	77	75.6	576	69	70	477	130	117.6
bv n14	159	13	13.9	26	3	3.1	26	3	3.1	29	13	10.5
bv n19	219	18	18.9	31	3	3.1	31	3	3.1	39	18	14.4
bv_n30	285	18	18.9	31	3	3.1	31	3	3.1	39	18	14.4
bv_n70	633	36	37	49	3	3.1	49	3	3.1	75	36	28.5
bv n140	1269	72	73	85	3	3.1	85	3	3.1	147	72	56.6
bv n280	2589	152	153.2	165	3	3.1	165	3	3.1	307	152	119.2
cat n35	207	34	34.6	202	34	34.1	202	34	34.1	136	34	30.4
cat n65	387	64	64.7	382	64	64.1	382	64	64.1	256	64	57.2
cat_n130	777	129	129.8	772	129	129.3	772	129	129.3	516	129	115.2
cat_n260	1557	259	260.1	1552	259	259.5	1552	259	259.5	1036	259	231.1
cat state n4	21	3	3.6	16	3	3	16	3	3	12	3	2.8
cat_state_n22	129	21	21.6	124	21	21	124	21	21	84	21	18.8
deutsch_n2	15	1	1.9	14	2	2.2	14	2	2.2	5	1	1.1
dnn_n2	516	42	62.9	158	30	30.8	152	36	35.5	24	3	3.3
dnn_n8	2376	192	284.7	642	81	82.5	641	82	83.6	392	64	64.3
dnn_n16	4752	384	568.6	1306	133	135.7	1305	134	136.8	784	128	128.5
dnn_n33	2114	248	305.5	1374	135	134.3	1657	101	104.7	800	172	162
dnn_n51	3338	392	484.7	2619	258	255.5	2363	136	140.6	1264	271	255.3
error_correctiond3_n5	482	49	65	30	4	4	30	4	4	189	35	34.9
fredkin_n3	62	8	9.4	45	8	8.1	45	8	8.1	34	8	7.2
ghz_n40	237	39	39.6	232	39	39.1	232	39	39.1	156	39	34.9
ghz_n78	465	77	77.7	460	77	77.2	460	77	77.2	308	77	68.8
ghz_n127	759	126	126.8	754	126	126.3	754	126	126.3	504	126	112.5
ghz_state_n23	135	22	22.6	130	22	22	130	22	22	88	22	19.7
ghz_state_n255	1527	254	255.1	1522	254	254.5	1522	254	254.5	1016	254	226.7
grover_n2	25	2	3.4	14	1	1.4	14	1	1.4	14	2	2.1
hhl_n7	1970	196	246.8	1099	234	248.2	1442	274	289	382	92	85.6
hs4_n4	48	4	6.3	22	1	1.3	22	1	1.3	28	4	4
ising n10	865	90	114.5	375	33	32.1	375	33	32.1	459	90	87.9

ising_n26	427	50	60.1	249	50	47.5	249	50	47.5	273	50	49
ising_n34	563	66	79.2	329	66	62.6	329	66	62.6	359	66	64.6
ising n66	1107	130	155.7	649	130	$\boldsymbol{123.2}$	649	130	123.2	699	130	127
ising n98	1651	194	232.1	969	194	183.8	969	194	183.8	1041	194	189.3
iswap_n2	24	2	3.3	12	1	1.4	12	1	1.4	14	2	2.1
knn n25	822	96	112.5	503	41	40.3	530	27	27.4	336	84	76.5
knn_n31	1026	120	141.1	596	32	31.5	613	23	23.6	420	105	95.5
knn_n67	2250	264	313.8	1384	48	46.8	1559	23	23.6	924	231	209.9
linearsolver n3	46	4	5.9	18	2	2.2	18	2	2.2	19	4	4.1
lpn n5	27	2	2.9	15	3	3	15	3	3	5	2	1.8
multiplier n15	1670	222	248.4	741	91	90.5	613	50	51.3	811	222	201
multiply n13	316	40	44.6	202	16	15.7	202	16	15.7	173	40	37
pea n5	318	42	50.9	72	13	12.9	72	12	12	84	17	16.6
qaoa_n3	62	6	7.8	23	4	4.2	23	4	4.2	37	6	6.1
qaoa_n6	648	54	78.4	220	23	23.9	222	25	25.8	200	36	36.2
$\frac{-}{\text{qec}9\text{xz}}$ _n17	255	32	41.3	64	5	5.2	64	5	$\bf 5.2$	75	32	26.9
qec_en_n5	96	10	12.2	30	4	4.1	30	4	4.1	53	10	9.9
qf21 n15	934	115	142.4	415	46	45.7	400	37	37.8	480	115	106.8
$qft \frac{-}{n4}$	104	12	15.8	51	10	9.9	56	9	9.3	52	12	11.6
qft_n18	2349	306	391.1	982	123	123.7	1186	97	100.8	977	300	271.3
qft_n29	6177	812	1037.3	2219	235	238.1	3286	202	210.4	2055	652	586.5
qpe_n9	368	43	53.1	150	21	20.4	150	21	20.5	201	43	40.7
qram_n20	1026	136	150.5	746	88	86.6	653	47	48.2	498	130	117.3
qrng_n4	12	0	0.3	8	0	0.2	8	0	0.2	12	0	0.3
quantumwalks_n2	53	3	5.6	35	5	5.7	35	5	5.7	24	3	3.3
qugan_n39	2516	296	359.4	1858	169	166.5	1761	108	110.1	947	205	193.1
sat_n11	1991	252	284.3	834	135	134.9	896	135	137.5	1007	252	233.8
seca_n11	702	84	98.5	293	36	35.9	252	28	28.6	278	80	71.6
simon_n6	126	14	16.8	5	1	0.8	5	1	0.8	54	14	12.8
swap_test_n25	846	96	113.8	455	29	28.9	586	27	27.6	348	84	76.5
swap_test_n41	1406	160	191.4	729	32	31.6	916	23	23.6	580	140	127.3
swap_test_n83	2876	328	395.1	1441	38	37.5	2065	23	23.5	1189	287	260.7
teleportation_n3	22	2	2.9	12	2	2.2	12	2	2.2	8	2	1.9
toffoli_n3	51	6	7	41	6	6.2	37	5	5.3	31	6	5.8
variational_n4	138	16	20.4	86	14	14.5	75	12	12.2	51	8	8.1
vqe_n4	118	9	13.6	68	12	11.7	68	12	11.7	60	9	9.3
vqe_uccsd_n4	678	88	103.8	121	23	22.7	118	19	19.7	289	71	66.7
vqe_uccsd_n6	7294	1034	1152.3	604	108	106.5	710	98	99.8	3356	923	850.8
vqe_uccsd_n8	36096	5284	5772.7	2542	389	389.8	2521	329	334.6	16623	4807	4394.3
wstate_n3	80	9	11.1	52	9	9.2	52	9	9.2	33	6	6
wstate_n27	469	52	60.7	267	53	50.7	267	53	50.7	238	52	46.7

wstate n36	631	70	81.7	357	71	67.7	357	71	67.7	319	70	62.8
wstate n76	1351	150	175.1	757	151	143.5	757	151	143.5	679	150	134.1
wstate n118	2107	234	273.1	1177	235	223	1177	235	223	1057	234	209.1
wstate n380	6823	758	884.6	3797	759	719.4	3797	759	719.4	3415	758	676.5
H2 UCCSD BK sto3g	283	38	44.7	93	15	15.4	92	13	13.7	108	26	24.6
H2 UCCSD JW 631g	5318	768	824.5	832	113	113.6	767	81	83.8	277	62	59.7
H2_UCCSD_JW_sto3g	430	56	63.6	93	14	14.5	93	14	14.5	46	9	8.8
H2 UCCSD P sto3g	282	38	44.8	93	15	15.5	86	14	14.6	113	25	23.8
LiH UCCSD BK sto3g	60162	8680	9068.8	5998	848	842.2	5231	484	502	1505	414	380.9
LiH UCCSD JW sto3g		8064	8500.4	6290	818	811.2	5449	502	519.2	1533	388	364
LiH UCCSD P sto3g	53330	7640	8029.7	6621	912	904.5	5522	481	498.7	12217	3681	3328
ae_n2	35	2	3.3	12	2	2.2	12	2	2.2	14	2	2.3
ae_n3	80	6	8.7	35	5	5.3	35	5	5.3	30	6	6
ae_n4	140	12	16.5	56	9	9.2	56	9	9.2	52	12	11.6
ae_n5	215	20	27	81	15	14.8	87	14	14	79	20	18.7
ae_n6	305	30	40	147	25	24.7	123	17	17	114	30	27.4
ae_n7	410	42	55.5	192	27	26.7	181	23	22.8	154	42	37.9
ae_n8	530	56	73.6	243	30	30.1	238	25	25.4	200	56	50.2
ae_n9	665	72	94.3	275	35	35.3	320	30	30.9	252	72	64
ae_n10	815	90	117.5	340	40	40.6	343	37	38.1	310	90	79.5
ae_n11	980	110	143.2	451	59	59	535	49	50.2	374	110	96.7
ae_n12	1160	132	171.5	511	65	65.6	571	54	55.6	444	132	115.4
ae_n13	1355	156	202.4	596	81	81.1	639	63	64.7	519	156	136
ae_n14	1565	182	235.8	628	87	85.6	765	74	75.8	602	182	158.2
ae_n15	1790	210	271.8	789	95	95.4	926	76	78.7	690	210	182.2
ae_n16	2030	240	310.3	905	108	107.4	994	83	84.7	784	240	207.6
ae_n17	2285	272	351.4	1023	119	120	1136	89	$\bf 92$	884	272	234.9
ae_n18	2555	306	395.1	1010	115	115	1264	95	98.3	990	306	263.7
ae_n19	2840	342	441.2	1188	137	136.9	1393	106	110.4	1102	342	294.3
ae_n20	3140	380	490	1250	144	144.3	1495	113	116.9	1214	378	325
ae_n21	3455	420	541.3	1534	161	161.7	1764	125	129.2	1326	414	355.4
ae_n22	3785	462	595.1	1579	168	167.5	1852	132	136.1	1438	450	386.1
ae_n23	4130	506	651.6	1694	180	181.7	2109	139	143.6	1550	486	416.7
ae_n24	4490	552	710.5	1664	187	188.9	2301	154	159.6	1662	522	447.1
ae_n25	4865	600	772	1790	197	199.7	2413	155	160.8	1774	558	477.7
dj_n2	18	1	2.1	15	2	2.3	15	2	2.3	8	1	1.2
dj_n3	32	2	3.5	15	3	3.1	15	3	3.1	13	2	2.1
dj_n4	44	3	4.9	16	3	3.1	16	3	3.1	15	3	2.9
dj_n5	58	4	6.3	18	3	3.1	18	3	3.1	20	4	3.8
dj_n6	70	5	7.7	19	3	3.1	19	3	3.1	22	5	4.6
dj_n7	84	6	9.1	19	3	3.1	19	3	3.1	27	6	5.5

lj_n8	98	7	10.5	21	3	3.1	21	3	3.1	32	7	6.4
j_n9	110	8	11.9	22	3	3.1	22	3	3.1	34	8	7.1
j_n10	124	9	13.3	22	3	3.1	22	3	3.1	39	9	8
j_n11	138	10	14.8	24	3	3.1	24	3	3.1	44	10	8.9
j n12	150	11	16.1	25	3	3.1	25	3	3.1	46	11	9.7
j_n13	164	12	17.5	25	3	3.1	25	3	3.1	51	12	10.6
j n14	178	13	19	27	3	3.1	27	3	3.1	56	13	11.5
j_n15	190	14	20.3	28	3	3.1	28	3	3.1	58	14	12.3
j_n16	202	15	21.6	29	3	3.1	29	3	3.1	60	15	13.1
j n17	216	16	23.1	29	3	3.1	29	3	3.1	65	16	13.9
j_n18	228	17	24.4	30	3	3.1	30	3	3.1	67	17	14.7
j_n19	240	18	25.7	31	3	3.1	31	3	3.1	69	18	15.5
j_n20	252	19	27.1	32	3	3.1	32	3	3.1	71	19	16.3
j_n21	264	20	28.4	33	3	3.1	33	3	3.1	73	20	17.1
j_n22	276	21	29.7	34	3	3.1	34	3	3.1	75	21	17.9
j n23	290	22	31.2	36	3	3.1	36	3	3.1	80	22	18.7
j_n24	302	23	32.5	37	3	3.1	37	3	3.1	82	23	19.5
j_n25	314	24	33.8	38	3	3.1	38	3	3.1	84	24	20.3
hz_n2	9	1	1.6	4	1	1	4	1	1	4	1	1
hz_n3	15	$\overline{2}$	2.6	10	$\stackrel{ ext{-}}{2}$	$\frac{-}{2}$	10	$\stackrel{-}{2}$	$\overline{2}$	8	$\overline{2}$	1.9
hz_n4	21	3	3.6	16	3	3	16	3	3	12	3	2.8
hz_n5	27	4	4.6	22	4	4	22	4	4	16	4	3.7
hz_n6	33	5	5.6	28	5	5	28	5	5	20	5	4.6
hz_n7	39	6	6.6	34	6	6	34	6	6	24	6	5.5
hz_n8	45	7	7.6	40	7	7	40	7	7	28	7	6.4
hz_n9	51	8	8.6	46	8	8	46	8	8	32	8	7.2
hz_n3 hz_n10	57	9	9.6	52	$\overset{\circ}{9}$	9	52	9	9	36	9	8.1
hz_n11	63	10	10.6	58	10	10	58	10	10	40	10	9
hz_n12	69	11	11.6	64	11	11	64	11	11	44	11	9.9
hz_n13	75	12	12.6	70	12	12	70	12	12	48	12	10.8
hz_n16 hz_n14	81	13	13.6	76	13	13	76	13	13	52	13	11.7
hz_n14 hz_n15	87	14	13.6	82	14	14	82	14	14	56	14	12.6
hz_n16	93	15	15.6	88	15	15	88	15	15	60	15	13.5
hz_n10 hz_n17	99	16	16.6	94	16	16	94	16	16	64	16	14.4
hz_n17 hz_n18	105	17	17.6	100	17	17	100	17	17	68	17	15.3
	111	18	18.6	106	18	18	106	18	18	72	18	16.2
hz_n19	117	19	19.6	112	19	19	112	19	19	76	19	17.1
hz_n20	123	20	$\frac{19.6}{20.6}$	112	20	20	112	20	20	80	20	17.1
hz_n21												
hz_n22	129	21	21.6	124	21	21	124	21	21	84	21	18.8
hz_n23	135	22	22.6	130	22	22	130	22	22	88	22	19.7
hz_n24	141	23	23.6	136	23	23	136	23	23	92	23	20.6

ghz n25	147	24	24.6	142	24	24	142	24	24	96	24	21.5
graphstate n3	45	3	4.5	9	1	1	9	1	1	15	3	2.9
graphstate n4	60	4	5.9	12	1	1	12	1	1	18	4	3.8
graphstate n5	75	5	7.3	15	1	1	15	1	1	22	5	4.7
graphstate n6	90	6	8.7	18	1	1	18	1	1	30	6	5.6
graphstate n7	105	7	10	21	1	1	21	1	1	33	7	6.5
graphstate n8	120	8	11.4	24	1	1	24	1	1	37	8	7.4
graphstate n9	135	9	12.6	27	1	1	27	1	1	39	9	8.2
graphstate n10	150	10	14.1	30	1	1	30	1	1	43	10	9.1
graphstate n11	165	11	15.3	33	1	1	33	1	1	40	11	10
graphstate n12	180	12	16.9	36	1	1	36	1	1	55	12	10.9
graphstate n13	195	13	18.2	39	1	1	39	1	1	63	13	11.8
graphstate n14	210	14	19.5	42	1	1	42	1	1	66	14	12.7
graphstate n15	225	15	20.9	45	1	1	45	1	1	64	15	13.6
graphstate n16	240	16	22.2	48	1	1	48	1	1	72	16	14.5
graphstate n17	255	17	23.6	51	1	1	51	1	1	71	17	15.4
graphstate n18	270	18	25	54	1	1	54	1	1	74	18	16.3
graphstate n19	285	19	26.2	57	1	1	57	1	1	81	19	17.2
graphstate n20	300	20	27.6	60	1	1	60	1	1	85	20	18.1
graphstate n21	315	21	28.9	63	1	1	63	1	1	82	21	19
graphstate n22	330	22	30.3	66	1	1	66	1	1	96	22	19.8
graphstate n23	345	23	31.7	69	1	1	69	1	1	95	23	20.7
graphstate n24	360	24	33.1	72	1	1	72	1	1	103	24	21.6
graphstate n25	375	25	34.7	75	1	1	75	1	1	104	25	22.5
grover-noancilla n2	4	0	0.3	3	0	0.2	3	0	0.2	4	0	0.3
grover-noancilla n3	92	9	12.6	41	7	7	41	7	7	45	9	8.8
grover-noancilla n4	450	52	65.4	259	40	40.5	237	33	33.6	204	52	47.8
grover-noancilla n5	1369	174	206.4	746	108	108	802	101	101.9	612	174	156.2
grover-noancilla n6	4128	512	607.5	2197	338	339.2	2503	288	296.9	1895	512	469.1
grover-noancilla n7	12151	1680	1912	8646	1152	1155	6938	674	687.8	5625	1680	1495.7
grover-noancilla n8	32390	4544	5120.1		2938	2941.3	18572	1646	1683.1	15160	4544	4047.6
grover-v-chain n2	4	0	0.3	3	0	0.2	3	0	0.2	4	0	0.3
grover-v-chain n3	92	9	12.6	41	7	7	41	7	7	45	9	8.8
grover-v-chain n4	450	52	65.4	259	40	40.5	237	33	33.6	204	52	47.8
grover-v-chain n5	1369	168	201.2	904	124	124.2	829	108	109	607	168	152.2
grover-v-chain n7	3424	440	513.5	2374	323	322.4	2031	233	234	1532	440	395.6
grover-v-chain n9	9547	1272	1458.4		939	935.5	5640	599	603.8	4335	1272	1138.9
grover-v-chain n11	23990	3280	3716.2		2396	2389.7	13781	1337	1347.5	11072	3280	2931.5
portfolioqaoa n3	180	18	25.3	88	17	16.9	88	17	16.9	97	18	18.3
portfolioqaoa_n4	318	36	47.3	155	23	23.5	149	22	22.4	183	36	36.1
portfolioqaoa_n5	495	60	76	232	33	32.5	232	33	32.5	285	60	59.1

portfolioqaoa_n6	711	90	111.3	319	39	39	319	39	39	394	90	87.2
portfolioqaoa_n7	966	126	153.3	459	51	50.9	455	48	$\boldsymbol{47.9}$	518	126	120.2
portfolioqaoa_n8	1260	168	202	567	58	57.8	567	58	57.8	673	168	158.7
portfolioqaoa_n9	1593	216	257.4	680	71	70.6	680	71	70.6	841	216	201.9
portfolioqaoa_n10	1965	270	319.4	852	78	78.4	870	77	77.7	1014	270	250
portfolioqaoa_n11	2376	330	388.1	956	85	85	956	85	85	1208	330	303.5
portfolioqaoa_n12	2826	396	463.5	1272	103	102.9	1214	87	87.6	1400	396	361.3
portfolioqaoa_n13	3315	468	545.5	1368	111	110.1	1368	111	110.1	1631	468	424.9
portfolioqaoa_n14	3843	546	634.2	1631	107	106.2	1631	107	106.2	1868	546	493
portfolioqaoa_n15	4410	630	729.6	2499	246	242.8	1928	119	118.9	2107	630	566
portfolioqaoa_n16	5016	720	831.7	2069	143	$\boldsymbol{142.2}$	2069	143	$\boldsymbol{142.2}$	2361	720	645
portfolioqaoa_n17	5661	816	940.4	2502	171	169.8	2317	134	133.6	2637	816	728
portfoliovqe_n3	168	9	16.3	52	11	11	51	11	10.9	41	9	9
portfoliovqe_n4	296	18	30.1	102	12	12.6	82	8	8.3	67	18	16.6
portfoliovqe_n5	460	30	48.3	142	20	20.4	155	18	18.6	101	30	26.9
portfoliovqe_n6	660	45	70.8	197	27	26.9	188	14	14.9	133	45	38.9
portfoliovqe_n7	896	63	97.7	202	22	22.3	215	22	22.6	181	63	53.8
portfoliovqe_n8	1168	84	128.8	262	35	34.1	346	21	22.3	225	84	70.5
portfoliovqe_n9	1476	108	164.3	353	36	36	311	22	23	279	108	90
portfoliovqe_n10	1820	135	204.1	366	47	46.2	528	27	28.6	341	135	111.6
portfoliovqe_n11	2200	165	248.3	451	43	43	430	24	24.7	403	165	135.5
portfoliovqe n12	2616	198	296.7	420	56	54.4	746	34	35.9	477	198	161.9
portfoliovqe n13	3068	234	349.5	453	48	47.2	566	35	36.5	555	234	190.6
qaoa n3	117	12	16.5	40	9	8.7	40	9	8.7	69	12	12.2
qaoa_n4	156	16	21.9	67	15	14.3	67	15	14.3	94	16	16.4
qaoa_n5	195	20	27.4	70	16	15.3	70	16	15.3	118	20	20.4
qaoa n6	234	24	31.9	113	19	18.4	111	18	17.4	137	24	24.2
qaoa n7	273	28	37.4	103	14	13.4	103	14	13.4	161	28	28.3
qaoa n8	312	32	42.2	127	23	22.3	127	23	22.3	180	32	31.8
qaoa n9	351	36	46.4	142	26	$\bf 25.4$	142	26	25.4	196	36	35.9
qaoa n10	390	40	53.2	152	19	18.6	152	19	18.6	232	40	40.1
qaoa n11	429	44	59.4	164	34	$\bf 32.4$	164	34	$\bf 32.4$	256	44	44.3
qaoa n12	468	48	64.9	211	28	27.3	210	27	26.3	283	48	48
qaoa n13	507	52	68.5	246	36	35.1	217	30	29.5	301	52	52.1
qaoa n14	546	56	74.5	207	22	21.1	207	22	21.1	319	56	55.9
qaoa n15	585	60	79.6	232	33	$\bf 32.2$	232	33	$\bf 32.2$	343	60	60
qaoa n16	624	64	85.4	242	31	30.5	242	31	30.5	378	64	64
qft_n2	39	5	6.3	9	2	2	9	2	2	20	3	3.1
qft n3	72	9	11.1	26	6	5.9	26	6	5.9	49	9	8.9
qft n4	138	18	21.1	50	10	9.6	55	9	9.2	88	18	17.5
qft_n5	201	26	30.3	95	13	13	85	11	11.2	117	26	24.8

qft_n6	297	39	44.8	152	25	24.7	151	19	19.8	167	39	37
$_{ m lft}$ _n7	390	51	58.5	150	24	23.4	225	27	27.9	208	51	47.9
qft_n8	516	68	77.4	215	34	33.8	242	29	29.6	269	68	63.6
qft_n9	639	84	95.5	253	37	36.7	330	35	36.3	324	84	78.1
qft_n10	795	105	118.8	342	52	51.9	406	43	43.3	397	105	97.4
qft_n11	948	125	141.4	405	55	55.8	520	49	51.1	463	125	115.5
qft_n12	1134	150	169.2	502	69	68.9	606	59	$\boldsymbol{60.9}$	548	150	138.3
qft_n13	1317	174	196.2	545	73	72.8	692	62	$\boldsymbol{64.5}$	626	174	159.9
qft_n14	1533	203	228.5	642	93	93.2	891	72	74.5	724	203	186.4
qft_n15	1746	231	260	686	88	88.5	1010	83	85.1	814	231	211.6
qft_n16	1992	264	296.6	818	111	111.4	1037	92	95	924	264	241.5
qft_n17	2235	296	332.6	883	118	118.3	1144	93	96.6	1025	296	270.3
qft_n18	2511	333	373.7	1094	137	138	1382	107	110.7	1146	333	303.9
qft_n19	2784	369	414.1	1199	159	159.1	1500	113	117.3	1254	367	334.4
qft_n20	3090	410	459.7	1184	140	141.8	1491	124	128.5	1375	404	368
qft_n21	3393	450	504.5	1330	179	180.1	1821	139	144.2	1483	438	398.5
qft_n22	3729	495	554.5	1403	169	172.1	2023	136	$\boldsymbol{142.2}$	1603	475	432.1
qft_n23	4062	539	603.8	1634	208	208.9	2183	157	163.4	1711	509	462.6
qft_n24	4428	588	658.3	1604	190	191.5	2329	159	165.6	1834	546	496.2
qft_n25	4791	636	712	1789	208	212.5	2479	180	187.7	1941	580	526.7
$qftentangled_n2$	48	6	7.9	17	4	4.1	17	4	4.1	14	2	2.2
qftentangled_n3	87	11	13.3	35	6	6.3	30	5	5.2	51	11	10.5
qftentangled n4	159	21	24.3	60	13	12.1	68	11	11.1	93	21	19.9
qftentangled_n5	228	30	34.6	99	18	17.9	101	16	16.8	128	30	28.2
qftentangled n6	330	44	50	165	28	27.7	164	21	21.6	180	44	41.2
qftentangled n7	429	57	64.7	217	36	35.7	231	28	29	225	57	53
qftentangled n8	561	75	84.6	221	40	39.3	250	30	31.1	292	75	69.7
qftentangled_n9	690	92	103.7	286	44	43.8	329	39	39.8	348	92	85
qftentangled_n10	852	114	128.1	372	59	58.9	433	48	49.9	427	114	105.2
qftentangled_n11	1011	135	151.7	440	66	66.1	538	48	49.7	495	135	124.2
qftentangled n12	1203	161	180.5	468	64	64.3	605	62	64	586	161	147.9
qftentangled_n13	1392	186	208.5	582	78	78.5	735	63	$\boldsymbol{65.4}$	668	186	170.4
qftentangled_n14	1614	216	241.7	724	108	107.9	791	78	80.7	770	216	197.7
qftentangled_n15	1833	245	274.2	741	99	100.3	1004	82	84.7	864	245	223.8
qftentangled n16	2085	279	311.9	921	124	125.1	1035	88	91.4	978	279	254.7
qftentangled n17	2334	312	348.8	876	119	120.1	1023	93	$\bf 96.2$	1082	312	284.4
qftentangled_n18	2616	350	391	1102	147	148.6	1324	108	112.4	1207	350	318.8
qftentangled_n19	2895	387	432.3	1088	140	140.8	1642	122	127.3	1318	385	350.2
qftentangled n20	3207	429	478.9	1289	167	167.4	1654	130	134.6	1445	423	384.7
qftentangled n21	3516	470	524.7	1394	169	170.5	1801	138	143.1	1555	458	416.1
qftentangled n22	3858	516	575.8	1495	188	191.2	2130	146	152.7	1682	496	450.6

$qftentangled_n23$	4197	561	626	1573	203	204.1	2222	154	160.6	1794	531	482
qftentangled_n24	4569	611	681.5	1781	218	220.4	2337	160	165.9	1918	569	516.5
q ftentangled_n25	4938	660	736.2	1832	237	239	2522	175	182.3	2029	604	547.9
$qpeexact_n2$	22	2	2.9	12	2	2.2	12	2	2.2	8	1	1.3
qpeexact_n3	61	7	8.7	19	3	3.1	19	3	3.1	29	4	4.3
$qpeexact_n4$	97	11	13.8	30	6	5.9	30	6	5.9	55	10	9.9
$qpeexact_n5$	211	26	31.8	92	14	13.7	106	13	13.4	113	25	24.1
qpeexact_n6	277	34	42.3	133	20	19.9	149	19	19.5	135	33	31.1
qpeexact_n7	376	47	58.2	188	23	23	163	18	18.1	182	46	42.7
qpeexact_n8	517	65	80.5	294	40	39.5	245	29	$\boldsymbol{29.2}$	252	64	59.8
qpeexact_n9	646	82	101.5	300	37	37.4	309	34	34.9	312	81	75.2
qpeexact_n10	772	98	122.3	340	47	46.4	386	41	41.5	358	97	89.3
qpeexact_n11	976	125	155.1	501	62	61.8	509	49	49.6	465	124	114.7
qpeexact_n12	1132	145	180.9	528	63	62.8	561	54	$\bf 55.4$	524	144	132.5
qpeexact_n13	1321	170	212.1	636	76	75.7	757	66	68.6	607	169	154.9
qpeexact_n14	1507	194	243.1	683	92	90.8	783	67	$\boldsymbol{69.2}$	676	193	176
qpeexact_n15	1786	231	288.3	862	99	99.2	987	71	73	820	230	210.8
qpeexact_n16	2017	261	326.6	965	122	119.9	1129	92	94.8	913	260	237.8
qpeexact_n17	2281	296	370.3	1129	125	125	1258	97	99.9	1031	295	269.5
qpeexact_n18	2527	328	411.5	1156	130	131.8	1332	101	104.2	1126	327	298
qpeexact_n19	2836	369	462.5	1449	152	153	1517	106	109.6	1268	368	335.4
qpeexact n20	3127	407	511	1600	173	173.7	1726	128	130.9	1383	404	367.7
qpeexact n21	3451	450	564.9	1723	175	175	1892	127	130.6	1512	443	403.1
qpeexact n22	3757	490	616.3	1793	194	195.4	2112	140	145.1	1613	477	433.4
qpeexact n23	4096	535	673	1925	194	195	2117	140	145.4	1732	514	466.5
qpeexact n24	4432	579	729.5	1984	221	221.2	2390	151	157	1831	548	496.6
qpeexact n25	4801	628	791.4	2098	213	213.8	2661	157	163	1950	585	529.6
qpeinexact n2	22	2	2.9	5	2	1.8	5	2	1.8	12	2	2.1
qpeinexact n3	76	9	11.1	24	5	4.6	24	5	4.6	41	7	7.1
qpeinexact n4	127	15	18.8	54	10	10.1	54	10	10.1	68	15	14.6
qpeinexact n5	211	26	31.8	108	15	15	95	16	16.1	115	26	25
qpeinexact n6	292	36	44.5	147	23	22.6	156	19	19.3	150	36	34.1
peinexact n7	406	51	62.7	211	29	28.6	211	24	23.8	209	51	48
qpeinexact n8	517	65	80.5	342	43	43.2	299	29	29.7	254	65	60.7
qpeinexact n9	661	84	103.7	349	48	47.5	288	36	36	327	84	78.2
qpeinexact n10	802	102	126.7	365	51	50.2	396	41	42	384	102	94.5
qpeinexact n11	976	125	155.1	513	63	62.4	528	49	50.3	468	125	115.6
peinexact n12	1147	147	183.2	617	73	73.4	642	53	54.5	536	147	135.4
peinexact n13	1351	174	216.6	643	84	83.2	651	60	61.7	633	174	160
peinexact n14	1552	200	249.8	742	87	86.2	815	67	68.9	715	200	183.5
qpeinexact n15	1786	231	288.3	833	104	103.8	915	76	77	823	231	211.7

qpeinexact n16	2017	261	326.6	1043	130	129.7	1217	92	94.8	915	261	238.6
qpeinexact n17	2281	296	370.3	1117	121	121.4	1168	92	94.6	1036	296	270.4
qpeinexact n18	2542	330	413.7	1251	134	135.1	1552	109	112.4	1139	330	301
qpeinexact n19	2836	369	462.5	1538	164	164.8	1514	109	113	1274	369	336.3
qpeinexact n20	3127	407	511	1487	161	162.9	1856	127	131.3	1384	405	368.6
qpeinexact n21	3451	450	564.9	1765	180	179.4	1938	122	126.5	1519	444	404
qpeinexact n22	3772	492	618.5	1813	189	188.6	2106	133	136.7	1630	480	436.3
qpeinexact n23	4126	539	677.5	2092	211	211.9	2389	150	154.7	1762	519	471.6
qpeinexact_n24	4477	585	736.2	2078	215	215.4	2398	157	161.8	1871	555	504
qpeinexact n25	4861	636	800.3	2215	225	225.1	2644	168	174.6	2005	594	539.3
qwalk-noancilla n3	351	42	50.9	10	1	1.3	10	1	1.3	118	30	28.1
qwalk-noancilla n4	987	126	144	374	84	82.5	535	87	88.3	403	114	105
qwalk-noancilla n5	3015	342	415.4	1384	278	277	1919	280	285.8	1315	330	313.6
qwalk-noancilla n6	6927	894	1038.9	3276	547	$\bf 548.2$	4289	558	574.2	3173	882	808.4
qwalk-noancilla n7	14871	2022	2303.1	6752	1066	1061.2	8314	1009	1036.2	6925	2010	1815.6
qwalk-noancilla n8	30879	4302	4849.7	14310	2195	2161.4	16233	1909	1948.1	14509	4290	3848.7
qwalk-v-chain n3	351	42	50.9	10	1	1.3	10	1	1.3	118	30	28.1
qwalk-v-chain n5	987	114	134.4	482	97	96.1	693	118	119.3	365	102	93
qwalk-v-chain n7	1959	222	260.3	1188	213	210.8	1340	224	225.9	726	210	190.6
qwalk-v-chain n9	3267	366	428.2	2421	408	403.5	2722	397	406.5	1195	354	320.4
qwalk-v-chain n11	4911	546	638.2	3616	610	606.5	3824	578	585	1772	534	482.3
qwalk-v-chain n13	6891	762	890.1	5458	914	904.7	5767	850	863.2	2457	750	676.3
qwalk-v-chain n15	9207	1014	1184.1	7380	1206	1198.5	7501	1116	1135.4	3250	1002	902.4
qwalk-v-chain n17	11859	1302	1520.1	9360	1604	1593.6	9588	1489	1506.6	4151	1290	1160.6
qwalk-v-chain n19	14847	1626	1898.1	12503	2043	2027.2	12216	1896	1920	5160	1614	1450.9
random n2	78	6	9.6	31	7	7.1	36	8	8.2	15	2	2.2
random n3	167	18	22.8	99	21	20.9	103	20	20.3	71	13	12.9
random n4	294	26	35.7	143	27	27.1	179	28	28.9	138	25	24.8
random n5	423	40	53.4	228	39	39.8	218	31	32.1	147	26	25.8
random_n6	500	49	63.5	331	44	44.9	323	43	44.3	240	46	44.8
random n7	736	69	92.2	390	65	64	384	57	57	326	63	61.8
random n8	950	93	122.1	599	92	91	523	66	$\boldsymbol{66.4}$	409	83	79.6
random n9	1148	110	145.2	622	95	94.5	606	82	82.9	507	100	97.1
random n10	1346	140	175.7	898	127	126	753	79	79.5	626	125	121.4
random n11	2071	225	280.4	1311	185	184.4	1329	134	136.4	925	196	187.2
random n12	2632	285	356.2	1654	214	214	1663	151	154.4	1259	273	259.4
random n13	3008	311	397.8	1968	271	266.7	2066	186	190.3	1379	296	283.3
random_n14	3484	366	464.6	2166	269	267	2166	182	185.6	1555	342	324.9
random n15	4322	466	580.3	2904	354	351.2	2809	228	233.4	1952	445	419.5
random n16	5128	568	702.2	3597	434	429.7	3535	257	262.2	2357	544	511.3
random n17	4791	496	632.4		420	415.2	3197	240	244.8	2219	480	459.1

random n18	5710	611	764.9	4012	467	460.9	3692	279	284.1	2659	592	561.9	
random n19	6233	682	848.4	4148	522	514	4050	310	314.5	2870	638	605.5	
random n20	7225	783	974.3	4832	566	559.8	4986	329	335.2	3334	750	711	
random n21	8054	879	1093.1	5818	644	635.4	6024	367	373.5	3779	838	796	
random n22	8641	937	1168.1	6068	695	682.5	5740	362	367.9	3968	888	843.8	
random n23	9934	1078	1345.1	7275	807	796.4	6982	429	437.8	4533	1032	976.4	
realamprandom n2	58	3	5.9	20	2	2.4	20	2	2.4	24	3	3.3	
realamprandom_n3	114	9	13.7	42	10	9.6	42	10	9.6	41	9	8.5	
realamprandom n4	188	18	24.6	102	16	16.4	77	14	14.5	68	18	16.3	
realamprandom_n5	280	30	38.5	135	19	18.8	94	13	12.7	101	30	26.4	
realamprandom_n6	390	45	55.4	164	20	20.4	108	17	17.7	140	45	38.9	
realamprandom_n7	518	63	75.3	238	28	28.4	173	16	16.9	185	63	53.8	
realamprandom_n8	664	84	98.2	244	31	30.6	167	19	19	236	84	71	
realamprandom_n9	828	108	124.2	305	39	38.5	175	23	${\bf 24}$	293	108	90.5	
realamprandom_n10	1010	135	153.1	332	46	44.9	232	22	22.4	356	135	112.4	
realamprandom_n11	1210	165	185	444	53	52	235	23	23.2	425	165	136.6	
realamprandom_n12	1428	198	220	399	47	45.9	251	26	27.2	500	198	163.2	
realamprandom_n13	1664	234	257.9	543	63	62	345	30	31.1	581	234	192.1	
realamprandom_n14	1918	273	298.8	589	65	63.7	332	28	28.6	668	273	223.4	
realamprandom_n15	2190	315	342.8	638	76	74.4	345	30	31.2	761	315	257	
realamprandom_n16	2480	360	389.8	698	56	55.3	436	29	30.4	860	360	293	
realamprandom_n17	2788	408	439.7	686	75	73.7	416	31	31.6	965	408	331.3	
realamprandom_n18	3114	459	492.7	819	86	84.2	404	35	36.7	1076	459	371.9	
realamprandom_n19	3458	513	548.7	742	76	74.2	421	30	30.5	1193	513	414.9	
realamprandom_n20	3820	570	607.7	864	88	86.2	481	35	35.6	1316	570	460.3	
realamprandom_n21	4200	630	669.6	847	90	87	502	41	42.7	1445	630	507.9	
$su2random_n2$	66	3	6.3	30	6	6.3	30	6	6.3	24	3	3.3	
su2random_n3	126	9	14.8	49	9	9	49	9	9	48	9	9.1	
su2random_n4	204	18	26.2	68	10	9.9	68	10	9.9	77	18	17.3	
su2random_n5	300	30	40.5	87	11	11	87	11	11	113	30	27.8	
su2random_n6	414	45	57.9	106	12	12	106	12	12	155	45	40.6	
su2random_n7	546	63	78.2	125	13	13	125	13	13	203	63	55.8	
su2random_n8	696	84	101.5	144	14	14	144	14	14	258	84	73.3	
su2random_n9	864	108	127.9	163	15	15	163	15	15	317	108	93.1	
su2random_n10	1050	135	157.3	182	16	16	182	16	16	384	135	115.4	
su2random_n11	1254	165	189.6	201	17	17	201	17	17	456	165	139.9	
su2random_n12	1476	198	225	220	18	18	220	18	18	533	198	166.8	
su2random_n13	1716	234	263.4	239	19	19	239	19	19	618	234	196.1	
su2random_n14	1974	273	304.8	258	20	20	258	20	20	708	273	227.7	
su2random_n15	2250	315	349.2	277	21	21	277	21	21	803	315	261.6	
$su2random_n16$	2544	360	396.6	296	22	22	296	22	22	905	360	297.9	

su2random n17	2856	408	447	315	23	23	315	23	23	1014	408	336.5
su2random n18	3186	459	500.4	334	24	24	334	24	${\bf 24}$	1127	459	377.5
su2random n19	3534	513	556.8	353	25	25.1	353	25	25.1	1247	513	420.9
su2random n20	3900	570	616.2	372	26	26.1	372	26	26.1	1374	570	466.5
su2random n21	4284	630	678.7	391	27	27.1	391	27	27.1	1506	630	514.5
su2random n22	4686	693	744.1	410	28	28.1	410	28	28.1	1644	693	564.9
su2random n23	5106	759	812.5	429	29	29.1	429	29	29.1	1788	759	617.6
su2random n24	5544	828	884	448	30	30.1	448	30	30.1	1937	828	672.7
su2random n25	6000	900	958.5	467	31	31.1	467	31	31.1	2094	900	730.1
twolocalrandom n2	58	3	5.9	20	2	2.4	20	2	2.4	24	3	3.3
twolocalrandom n3	114	9	13.7	42	10	9.6	42	10	9.6	41	9	8.5
twolocalrandom n4	188	18	24.6	102	16	16.4	77	14	14.5	68	18	16.3
twolocalrandom_n5	280	30	38.5	135	19	18.8	94	13	12.7	101	30	26.4
twolocalrandom_n6	390	45	55.4	164	20	20.4	108	17	17.7	140	45	38.9
twolocalrandom_n7	518	63	75.3	238	28	28.4	173	16	16.9	185	63	53.8
twolocalrandom_n8	664	84	98.2	244	31	30.6	167	19	19	236	84	71
twolocalrandom_n9	828	108	124.2	305	39	38.5	175	23	${\bf 24}$	293	108	90.5
twolocalrandom_n10	1010	135	153.1	332	46	44.9	232	22	22.4	356	135	112.4
twolocalrandom_n11	1210	165	185	444	53	52	235	23	23.2	425	165	136.6
$twolocalrandom_n12$	1428	198	220	399	47	45.9	251	26	27.2	500	198	163.2
twolocalrandom_n13	1664	234	257.9	543	63	62	345	30	31.1	581	234	192.1
twolocalrandom_n14	1918	273	298.8	589	65	63.7	322	28	28.5	668	273	223.4
twolocalrandom_n15	2190	315	342.8	638	76	74.4	345	30	31.2	761	315	257
twolocalrandom_n16	2480	360	389.8	698	56	55.3	436	29	30.4	860	360	293
twolocalrandom_n17	2788	408	439.7	686	75	73.7	416	31	31.6	965	408	331.3
twolocalrandom_n18	3114	459	492.7	819	86	84.2	404	35	36.7	1076	459	371.9
twolocalrandom_n19	3458	513	548.7	742	76	74.2	421	30	30.5	1193	513	414.9
$twolocalrandom_n20$	3820	570	607.7	864	88	86.2	481	35	35.6	1316	570	460.3
twolocalrandom_n21	4200	630	669.6	847	90	87	502	41	42.7	1445	630	507.9
vqe_n3	69	4	5.9	30	4	4	30	4	4	29	4	4.1
vqe_n4	96	6	7.9	46	8	7.7	46	8	7.7	40	6	5.9
vqe_n5	123	8	9.9	95	12	11.8	71	9	8.9	51	8	7.7
vqe_n6	150	10	11.9	96	14	14.4	72	11	11.5	62	10	9.5
vqe_n7	177	12	13.9	99	15	14.7	87	14	14.1	71	12	11.1
vqe_n8	204	14	15.9	193	22	21.7	123	12	12.7	84	14	13
vqe_n9	231	16	17.9	178	22	21.8	130	12	12.5	94	16	14.8
vqe_n10	258	18	19.9	234	26	25.8	148	15	15.5	106	18	16.6
vqe_n11	285	20	21.9	287	38	37.7	170	17	17.4	117	20	18.4
vqe_n12	312	22	23.9	320	34	34.3	214	21	21.4	128	22	20.2
vqe_n13	339	24	25.9	370	44	43.4	278	18	19.1	137	24	21.8
vqe_n14	366	26	27.9	355	39	38.1	202	20	21	150	26	23.7

vqe_n15	393	28	29.9	370	36	35.5	240	22	22.4	161	28	25.5
vqe_n16	420	30	31.9	471	48	47.4	307	21	21.8	172	30	27.3
wstate n2	29	2	3.8	17	3	3.4	17	3	3.4	16	2	2.3
wstate_n3	57	4	6.4	27	5	5.2	27	5	5.2	26	4	4.1
wstate_n4	85	6	9.3	37	7	7.2	37	7	7.2	36	6	6
wstate_n5	113	8	12.2	47	9	9.1	47	9	9.1	46	8	7.9
wstate_n6	141	10	15.1	57	11	11	57	11	11	56	10	9.8
wstate_n7	169	12	18	67	13	12.9	67	13	12.9	66	12	11.7
wstate_n8	197	14	20.8	77	15	14.7	77	15	14.7	76	14	13.6
wstate_n9	225	16	23.7	87	17	16.7	87	17	16.7	86	16	15.5
wstate_n10	253	18	26.6	97	19	18.6	97	19	18.6	96	18	17.4
wstate_n11	281	20	29.5	107	21	20.4	107	21	20.4	106	20	19.3
wstate_n12	309	22	32.4	117	23	22.3	117	23	22.3	116	22	21.2
wstate_n13	337	24	35.3	127	25	24.2	127	25	24.2	126	24	23.1
wstate_n14	365	26	38.2	137	27	26.2	137	27	26.2	136	26	25
wstate_n15	393	28	41	147	29	28.1	147	29	28.1	147	28	26.8
wstate_n16	421	30	43.9	157	31	29.9	157	31	29.9	158	30	28.7
wstate_n17	449	32	46.8	167	33	31.9	167	33	31.9	168	32	30.6
wstate_n18	477	34	49.7	177	35	33.6	177	35	33.6	179	34	32.5
wstate_n19	505	36	52.6	187	37	35.6	187	37	35.6	190	36	34.4
wstate_n20	533	38	55.5	197	39	37.4	197	39	37.4	200	38	36.3
wstate_n21	561	40	58.3	207	41	39.4	207	41	39.4	210	40	38.2
wstate_n22	589	42	61.2	217	43	41.2	217	43	41.2	220	42	40.1
wstate_n23	617	44	64.1	227	45	43.2	227	45	43.2	230	44	42
wstate_n24	645	46	67	237	47	45	237	47	45	240	46	43.9
wstate_n25	673	48	69.9	247	49	46.9	247	49	46.9	251	48	45.8