A Quick Review

Dense Graph Sequences

Properties of $(\widetilde{\mathcal{W}}, d_{\square})$ and $(\widetilde{\widetilde{\mathcal{W}}}, \delta_{\square})$

Further Progress

Questions & Answers

Large Deviations for Random Graphs Honours Year Project Mid-term Progress Talk

NG Say-Yao Mark¹ A/P SUN Rongfeng²

¹Student, ²Supervisor Department of Mathematics National University of Singapore (NUS)

January 19, 2017

- Limits of Dense Grapl
- Properties of $(\mathcal{W}, d_{\square})$ and

Further Progress

Questions &

- 1 A Quick Review
- 2 Limits of Dense Graph Sequences
- $\textbf{3} \ \, \mathsf{Properties} \ \, \mathsf{of} \ \, (\mathcal{W}, \textit{d}_{\square}) \ \, \mathsf{and} \ \, (\widetilde{\mathcal{W}}, \delta_{\square})$
- 4 Further Progress
- **6** Questions & Answers

A Quick Review

A Quick Review

Limits of Dense Graph Sequences

Properties of $(\overset{\mathcal{W}}{\mathcal{W}}, d_{\square})$ and $(\overset{\mathcal{W}}{\mathcal{W}}, \delta_{\square})$

Progress

Questions &

Project Goals

- Understand important concepts in large deviation theory, as well as the theory of dense graph sequences.
- Understand how it is applied to study large deviations in random graph models.
- Study results related to the Erdős-Rényi Random Graph model.
- Some interesting questions:
 - How to establish LDP for $G_{n,p}$.
 - Applications of this LDP, e.g. to triangle counts.
 - Conditional distributions given some rare event.

A Quick Review

A Quick Review

Limits of Dense Grap Sequences

Properties of $(\mathcal{W}, d_{\square})$ an $(\widetilde{\mathcal{W}}, \delta_{\square})$

Progress

Questions &

The Erdős-Rényi Random Graph

Definition

The Erdős-Rényi graph $G_{n,p}$ is a random graph defined on vertex set $[n] = \{1, 2, ..., n\}$, with

$$\mathbf{P}((i,j)\in E(G_{n,p}))=p$$

independently for all $1 \le i < j \le n$.

- We can do some elementary analysis on $G_{n,p}$.
- For example, let $T_{n,p}$ denote the number of triangles in $G_{n,p}$. What is $\mathbf{E}T_{n,p}$?
- What about a Large Deviation Principle (LDP) for $G_{n,p}$?
- For the last question, we first need to figure out how to (meaningfully) take a limit on a sequence of graphs...

A Quick

Limits of Dense Graph Sequences

Properties of $(\underbrace{\mathcal{W}}_{}, d_{\square})$ and $(\widecheck{\mathcal{W}}, \delta_{\square})$

Further Progress

Questions

Main Discussion

- Let $\{G_n\}$ be a sequence of finite simple graphs such that the number of vertices tend to infinity, i.e. $|V(G)| \to \infty$.
- Define the *homomorphism density* between any finite simple graph H and G_n to be

$$t(H, G_n) = \frac{\mathsf{hom}(H, G_n)}{|V(G_n)|^{|V(H)|}}.$$

- This gives us the probability that a random vertex mapping $\varphi: V(H) \to V(G_n)$ is a homomorphism.
- Think of $t(H, G_n)$ as a 'statistic' of the graph G_n .

Dense Graph Sequences Properties of

 $(\stackrel{\mathcal{W}}{\mathcal{W}}, d_{\square})$ an $(\stackrel{\mathcal{W}}{\mathcal{W}}, \delta_{\square})$

Progress

Questions &

Main Discussion

Definition

 $\{G_n\}$ is said to be *convergent*, if the following limit exists for every finite simple graph H

$$\lim_{n\to\infty}t(H,G_n)=t(H).$$

Definition

A graphon is a symmetric, measurable function of the form $f:[0,1]^2 \to [0,1]$. Denote the space of all graphons by \mathcal{W} .

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

Progress

Questions &

Main Discussion

Theorem (Lovász and Szegedy)

If $\{G_n\}$ is convergent, then there exists $f \in \mathcal{W}$ such that for every finite simple graph H with V(H) = [k],

$$t(H) = t(H, f) := \int_{[0,1]^k} \prod_{(i,j) \in E(H)} f(x_i, x_j) dx_1 \cdots dx_k.$$

- An obvious implication of this result is that we have a 'limit object' for our sequence $\{G_n\}$.
- In other words, we can say $\{G_n\}$ converges to $f \in \mathcal{W}$, or $G_n \to f$, instead of just ' $\{G_n\}$ is convergent'.
- Remark. The 'limit object' f is not necessarily unique.

Properties of $(\mathcal{W}, d_{\square})$ and $(\mathcal{W}, \delta_{\square})$

Further Progress

Questions &

Limits of Dense Graph Sequences

Distance Between Finite Simple Graphs.

- Let A, B be a $n \times n$ real-valued matrices.
- The *cut-norm*:

$$||A||_{\square} = \sup_{S,T\subseteq[n]} \left| \sum_{(i,j)\in S\times T} A_{ij} \right|.$$

• The cut-metric:

$$d_{\square}(A,B) = ||A - B||_{\square}.$$

Properties of $(\widetilde{\mathcal{W}}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

Further Progress

Questions &

Limits of Dense Graph Sequences

Distance Between Finite Simple Graphs.

- Let G, H be simple graphs on the same vertex set [n].
 Denote their adjacency matrices by A_G, A_H respectively.
- The *cut-metric*, distance between *G* and *H*:

$$d_{\square}(G,H)=\|A_G-A_H\|_{\square}.$$

Not good enough.

Limits of Dense Graph Sequences

Distance Between Finite Simple Graphs.

- Let *G*, *H* be simple graphs of the *same order n*.
- The distance between *G* and *H*:

$$\widehat{\delta}_{\square}(G, H) = \min_{\widehat{G}, \widehat{H}} d_{\square}(\widehat{G}, \widehat{H}).$$

where \widehat{G} , \widehat{H} range over all possible relabellings of G, H on a common vertex set [n].

Still not good enough, what about graphs of different order? $(\stackrel{\mathcal{W}}{\mathcal{W}}, d_{\square})$ and $(\stackrel{\sim}{\mathcal{W}}, \delta_{\square})$

Further Progress

Questions &

Limits of Dense Graph Sequences

Distance Between Finite Simple Graphs.

- Let G, H be simple graphs of the *finite order* $n_G, h_K \in \mathbb{N}$.
- For a simple graph say G, define $G^{(m)}$ to be the graph constructed by replacing each vertex in G with m distinct vertices, and connecting edges between vertices iff their parents were connected.
- The distance between G and H:

$$\delta_{\square}(G,H) = \lim_{k \to \infty} \widehat{\delta}_{\square}(G^{(kn_H)},H^{(kn_G)}).$$

Good.

Limits of Dense Graph Sequences

Distance Between Graphons.

- Let $f, g : [0, 1]^2 \to \mathbb{R}$ be bounded, symmetric, measurable functions.
- The *cut-norm*:

$$||f||_{\square} = \sup_{S,T} \left| \int_{[0,1]^2} f(x,y) \, dx dy \right|.$$

The cut-metric:

$$d_{\square}(f,g) = \|f - g\|_{\square}.$$

Properties of $(\overset{\sim}{\mathcal{W}}, d_{\square})$ and $(\overset{\sim}{\mathcal{W}}, \delta_{\square})$

Progress

Questions &

Limits of Dense Graph Sequences

Distance Between Graphons.

- Recall that W denotes the set of all graphons; symmetric, measurable functions f: [0,1]² → [0,1]
- Let G be a simple graph of finite order n. Define

$$f^G(x,y) = \begin{cases} 1 & (\lceil nx \rceil, \lceil ny \rceil) \in E(G) \\ 0 & \text{otherwise.} \end{cases}$$

• For two simple graphs *G*, *H* of finite order *n*, consider

$$d_{\square}(f^{G}, f^{H}) = ||f^{G} - f^{H}||_{\square}$$
$$= \sup_{S, T \in [0,1]} \left| \int_{S \times T} f^{G} - f^{H} \, dx dy \right|.$$

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

Progress

Questions &

Limits of Dense Graph Sequences

Distance Between Graphons.

- For 'relabelling' of vertices, let S[0,1] denote the set of all measure preserving bijections $\sigma:[0,1]\to[0,1]$.
- For $f \in \mathcal{W}$ define

$$f_{\sigma}(x,y) = f(\sigma(x),\sigma(y)).$$

It makes sense to define

$$\delta_{\square}(f,g) = \inf_{\sigma \in S[0,1]} d_{\square}(f,g_{\sigma}) = \inf_{\sigma \in S[0,1]} d_{\square}(f_{\sigma},g).$$

Remark. We can further show that

$$\delta_{\square}(f,g) = \inf_{\sigma_1,\sigma_2 \in S[0,1]} d_{\square}(f_{\sigma_1},g_{\sigma_2}).$$

Properties of $(\overset{\sim}{\mathcal{W}},d_{\square})$ and $(\overset{\sim}{\mathcal{W}},\delta_{\square})$

Further Progress

Questions &

Limits of Dense Graph Sequences

Distance Between Graphons.

• For two simple graphs G, H of finite order we can consider

$$\begin{split} \delta_{\square}(f^G, f^H) &= \inf_{\sigma \in S[0,1]} d_{\square}(f^G, f^H_{\sigma}) \\ &= \inf_{\sigma \in S[0,1]} \|f^G - f^H_{\sigma}\|_{\square} \\ &= \inf_{\sigma \in S[0,1]} \sup_{S, T \in [0,1]} \left| \int_{S \times T} f^G - f^H_{\sigma} \, \mathrm{d}x \mathrm{d}y \right|. \end{split}$$

• This is a good analogue to $\delta_{\square}(G, H)$, the 'distance' between two finite simple graphs.

Limits of Dense Graph Sequences

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

Further Progress

Questions & Answers

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

Some Notes.

- It is easy to see that (W, d_{\square}) defines a metric space.
- Remark. We consider $f,g\in\mathcal{W}$ to be equal if they are equal almost everywhere.
- Not true for (W, δ_{\square}) , as δ_{\square} is a pseudo-metric.
- Two ways of resolving this:
 - (a) The pair $(S[0,1],\circ)$ defines a group. Denote \widetilde{f} to be the closure of orbit $\{f_{\sigma}: \sigma \in S[0,1]\}$ under d_{\square} . Let $\widetilde{\mathcal{W}}$ denote the collection of all such \widetilde{f} .
 - (b) Let $f \sim g$ if $\delta_{\square}(f,g) = 0$. Let $\widetilde{\mathcal{W}}$ denote the quotient space under the relation \sim .
- It should be clear that $\delta_{\square}(\widetilde{f}, \widetilde{g})$ is well-defined, and $(\widetilde{\mathcal{W}}, \delta_{\square})$ is a metric space.

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

A Quick Review

Limits of Dense Graph Sequences

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

Further Progress

Progress

Questions Answers

What Should We Look For?

- Question: Can we establish useful properties of the metric spaces $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$? What are some 'useful properties' we should be looking for?
- Regularity.
 - In a sense that we can approximate $\widetilde{f} \in \widetilde{\mathcal{W}}$ using stepfunctions.
 - Let $\mathcal{P} = (S_1, \dots, S_k)$ be a partition of [0, 1].
 - A stepfunction $g:[0,1]^2 \to \mathbb{R}$ with steps in \mathcal{P} refers to a linear combination of indicator functions:

$$g(x,y) = \sum_{1 < i,j < k} \alpha_{ij} \mathbf{1}_{S_i \times S_j}(x,y).$$

- Compactness.
 - Good properties: completeness, every sequence has a convergent subsequence, etc.

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

A Quick Review

Limits of Dense Graph Sequences

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

Further Progress

Questions &

Remarks.

- Most of the preliminary analysis is focused on the space $(\mathcal{W}, d_{\square})$, despite the main underlying interest in $(\widetilde{\mathcal{W}}, \delta_{\square})$.
- Let $\varepsilon > 0$, $f, g \in \mathcal{W}$ and consider the mapping $f \mapsto \widetilde{f}$.
- If $d_{\square}(f,g) < \varepsilon$ then $\delta_{\square}(\widetilde{f},\widetilde{g}) < \varepsilon$ as well.
- If $f \in \mathcal{W}$ can be approximated by a stepfunction g with error ε , then the same can be done for its counterpart (equivalence class) in $\widetilde{\mathcal{W}}$.
- Convergence in $(\mathcal{W}, d_{\square})$ implies convergence in $(\widetilde{\mathcal{W}}, \delta_{\square})$.

Mark NG

A Quick Review

Limits of Dense Grap Sequences

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

Progress

Questions & Answers

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

An interesting result.

Lemma

We have the equality

$$\sup_{S,T} \left| \int_{S \times T} f(x,y) \, dx \, dy \right| = \sup_{\phi,\psi} \left| \int_{[0,1]^2} f(x,y) \phi(x) \psi(y) \, dx \, dy \right|,$$

where the supremum on the left-hand side ranges over all measurable subsets $S, T \subseteq [0,1]$ and the right-hand side ranges over all measurable functions $\phi, \psi : [0,1] \to [0,1]$.

More importantly, the optima is attained for both sides.

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

Progress

Questions &

Useful Concepts & Tools For Proving Compactness.

Definition

Let $\mathcal{P}=(S_1,\ldots,S_k)$ be a partition of [0,1]. The *stepping* of a function $f:[0,1]^2\to\mathbb{R}$, with steps in \mathcal{P} is defined to be

$$f_{\mathcal{P}}(x,y) = \frac{1}{\mu(S_i)\mu(S_j)} \int_{S_i \times S_j} f(x_0, y_0) dx_0 dy_0,$$

for $x \in S_i, y \in S_j, 1 \le i, j \le k$.

Lemma

Let $f:[0,1]^2 \to [0,1]$ and $1 \le m < k$. For any m-partition $\mathcal Q$ of [0,1] there is a k-partition $\mathcal P$ refining $\mathcal Q$ such that

$$||f-f_P||_{\square}<\frac{2}{\log(k/m)}.$$

Mark NG

A Quick

Limits of Dense Graph

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

Progress

Questions &

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

Compactness.

Theorem

The space $(\widetilde{\mathcal{W}}, \delta_{\square})$ is compact.

Sketch of proof (1)

- We establish that every sequence $(\widetilde{f}_n)_{n=1}^{\infty}$ in $\widetilde{\mathcal{W}}$ has a convergent subsequence.
- Let $(f_n)_{n=1}^{\infty}$ denote a representative in \mathcal{W} .
- We can find paritions $\mathcal{P}_{n,k}$ of [0,1] such that
 - $d_{\square}(f_n, f_{n \mathcal{P}_{n,k}}) \leq \frac{1}{k}$.
 - $\mathcal{P}_{n,k+1}$ refines $\mathcal{P}_{n,k}$.
 - $|\mathcal{P}_{n,k}| = m_k$, only depends on k.
- Show that for each k, we can find a subsequence of a representative, $f_{n_s \mathcal{P}_{n,k}}$ converging to a step function g_k with m_k steps. In other words, $d_{\square}(f_{n_s \mathcal{P}_{n,k}}, g_k) \to 0$.

Mark NG

A Quick Review

Limits of Dense Graph Sequences

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

Further Progress

Questions &

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

Compactness.

Sketch of proof (2)

- We get a sequence $(g_k)_{k=1}^{\infty}$.
- Show that there is a $g \in \mathcal{W}$ such that $g_k \to g$ almost everywhere in with respect to the L_1 -norm.
- In other words $\|g_k g\|_1 \to 0$, and so $d_{\square}(\widetilde{g}_k, \widetilde{g}) \to 0$.
- To complete the proof, show that we can find a subsequence f
 n
 s of f
 n converging to g in (W
 , δ□).

Properties of $(\mathcal{W}, d_{\square})$ and $(\mathcal{W}, \delta_{\square})$

Properties of $(\mathcal{W}, d_{\square})$ and $(\mathcal{W}, \delta_{\square})$

Sketch of proof (3)

Compactness.

- Fix any $\varepsilon > 0$.
- There exists $k > \frac{3}{\varepsilon}$ such that $\delta_{\square}(\widetilde{g}_k, \widetilde{g}) \leq \|g_k g\|_1 < \frac{\varepsilon}{3}$.
- Given k, there exists N such that $\delta_{\square}(\tilde{f}_{n_s,\mathcal{P}_{n_k}},\tilde{g}_k)<\frac{\varepsilon}{3}$ for all $n_s > N$.
- Note that $\delta_{\square}(\widetilde{f}_{n_s},\widetilde{f}_{n_s,\mathcal{P}_{n_s,k}}) \leq d_{\square}(f_{n_s},f_{n_s,\mathcal{P}_{n_s,k}}) \leq \frac{1}{k} < \frac{\varepsilon}{3}$ for all n_s .
- Therefore

$$\begin{split} \delta_{\square}(\widetilde{f}_{n_{s}},\widetilde{g}) &\leq \delta_{\square}(\widetilde{f}_{n_{s}},\widetilde{f}_{n_{s}\mathcal{P}_{n_{s},k}}) + \delta_{\square}(\widetilde{f}_{n_{s}\mathcal{P}_{n_{s},k}},\widetilde{g}_{k}) + \delta_{\square}(\widetilde{g}_{k},\widetilde{g}) \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \\ &= \varepsilon. \end{split}$$

Properties of $(\mathcal{W}, d_{\square})$ and $(\mathcal{W}, \delta_{\square})$

So what if $(\mathcal{W}, \delta_{\square})$ is compact?

Recall the following theorem:

Theorem (Lovász and Szegedy)

If $\{G_n\}$ is convergent, then there exists $f \in \mathcal{W}$ such that for every finite simple graph H with V(H) = [k],

$$t(H) = t(H, f) := \int_{[0,1]^k} \prod_{(i,j) \in E(H)} f(x_i, x_j) dx_1 \cdots dx_k.$$

Mark NG

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

A Quick Review

Limits of Dense Graph Sequences

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

Progress

Questions &

Proof.

We use compactness of $(\widetilde{\mathcal{W}}, \delta_{\square})$ and the following lemma.

Lemma (Counting Lemma)

Let f, g be graphons and H be a finite simple graph. Then

$$|t(H,f)-t(H,g)| \leq E(H)\delta_{\square}(\widetilde{f},\widetilde{g}).$$

- Suppose $\{G_n\}$ is a convergent.
- Consider the sequence $(\widetilde{f}^{G_n})_{n=1}^{\infty}$ in $\widetilde{\mathcal{W}}$.
- By compactness there a subsequence $(\widetilde{f}^{G_{n_s}})_{s=1}^{\infty}$ converging to some $\widetilde{f} \in \widetilde{\mathcal{W}}$.
- Apply the Counting Lemma; $t(H, f^{G_n}) \rightarrow t(H, f)$ as required.

Mark NG

A Quick Review

Limits of Dense Graph Sequences

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

Further Progres

Questions & Answers

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

A Further Result.

Theorem

 $G_n \to f$ if and only if $\delta_{\square}(\widetilde{f}^{G_n}, \widetilde{f}) \to 0$.

Proof.

(\iff) If $\delta_{\square}(\widetilde{f}^{G_n}, f) \to 0$, we can apply the Counting Lemma to show that $G_n \to f$.

(\Longrightarrow) Let ${\mathcal H}$ denote the set of all finite simple graphs.

- Consider the mapping $\widetilde{f} \mapsto (t(H, f))_{H \in \mathcal{H}}$.
- It is a continuous and injective mapping from a compact space $(\widetilde{\mathcal{W}}, \delta_{\square})$ to a Hausdorff space $\mathbb{R}^{\mathcal{H}}$; so must be an embedding (there's a continuous inverse).
- i.e. $\delta_{\square}(\widetilde{f}^{G_n},\widetilde{f}) \to 0$ as $(t(H,f^{G_n}))_{H \in \mathcal{H}} \to (t(H,f))_{H \in \mathcal{H}}$.

Further Progress

A Quick Review

Limits of Dense Graph Sequences

Properties of $(\widetilde{\mathcal{W}}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

Further Progress

Questions

Check List.

- Principles and techniques in large deviation theory.
- Idea behind taking limits of dense graph sequences.
- Studied properties (W, d_{\square}) and (W, δ_{\square}) .
- Relationship with convergent sequences $\{G_n\}$.
- ? What about Erdős-Rényi random graph $G_{n,p}$?
- ? How to go about establishing a Large Deviation Principle?

Further Progress

A Quick Review

Limits of Dense Graph Sequences

Properties of $(\widetilde{\mathcal{W}}, d_{\square})$ and $(\widetilde{\widetilde{\mathcal{W}}}, \delta_{\square})$

Further Progress

Questions & Answers

The Next Step.

- The Erdős-Rényi random graph $G_{n,p}$ induces two probability measures.
- $\mathbf{P}_{n,p}$ on the space \mathcal{W} , via the mapping $G_{n,p} \longmapsto f^{G_{n,p}}$.
- $\widetilde{\mathbf{P}}_{n,p}$ on the space $\widetilde{\mathcal{W}}$, via the mapping $G_{n,p} \longmapsto \widetilde{f}^{G_{n,p}}$.
- The idea is to establish LDP based on the topology of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$.
- Still need some more tools (Szemerédi's Regularity Lemma).

A Quick Review

Dense Grap Sequences

Properties of $(\mathcal{W}, d_{\square})$ and $(\widetilde{\mathcal{W}}, \delta_{\square})$

Further Progress

Questions &

In my final talk.

- Establish LDP for the Erdős-Rényi random graph.
- Present some applications, study conditional distribution, and more (hopefully!).

Limits of Dense Grapl Sequences

Properties of $(\widetilde{\mathcal{W}}, d_{\square})$ an $(\widetilde{\mathcal{W}}, \delta_{\square})$

Further Progres

Questions & Answers

Thank you very much for your attention.

Selected References

- 1 Frank den Hollander. *Large deviations*. Fields Institute monographs, ISSN 1069-5273; 14.
- 2 László Lovász and Balázs Szegedy. *Limits of dense graph sequences*. J. Combin. Theory Ser. B, 96 no. 6, 933-957.
- 3 László Lovász. *Large Networks and Graph Limits*. American Mathematical Soc., 2012.
- 4 Sourav Chatterjee. *An introduction to large deviations for random graphs.* To appear in Bull. Amer. Math. Soc.
- 5 Sourav Chatterjee and S.R.S Varadhan. *The Large Deviation Principle for the Erdős-Rényi Random Graph.* To appear in European J. Comb. (special issue on graph limits), 2011.