Summary for Modern Algebra II

SEUNGWOO HAN

CONTENTS

CHAPTER 1	Integral Domains	Page 2
1.1	Basics of Integral Domains	2
1.2	Euclidean Domains	5

Chapter 1

Integral Domains

1.1 Basics of Integral Domains

Definition 1.1.1 – Integral Domain

A ring *R* is an *integral domain* if *R* is a commutative ring with identity which has no zero divisor.

🛉 Note:- 🛉

Here are some basic facts regarding an integral domain *R*.

- (1) If ac = bc and $c \neq 0$, then a = b.
- (2) Let $c_1, \dots, c_n \in R$.

$$(c_1, \dots, c_n) \triangleq \{ r_1 c_1 + \dots + r_n c_n \mid r_i \in R \} \subseteq R$$

is called the *ideal generated by* c_1, \dots, c_n . If n = 1, then it is called a *principal ideal*.

- (3) For $a, b \in R$ with $a \neq 0$, we write $a \mid b$ if b = ad for some $d \in R$.
- (4) For $a, b \in R \setminus \{0\}$, $d \in R$ is a greatest common divisor if
 - (i) $d \mid a$ and $d \mid b$; and
 - (ii) if $d' \mid a$ and $d' \mid b$, then $d' \mid d$.
- (5) $u \in R$ is a *unit* in R if uv = 1 for some $v \in R$. v is called the *inverse* of u and is denoted u^{-1} .
- (6) For $a, b \in R$, a is an associate of b if a = bu for some $u \in R$, or equivalently, if (a) = (b).
- (7) For a non-unit $p \in R \setminus \{0\}$, p is irreducible if p = ab implies a or b is a unit.
- (8) For a non-unit $p \in R \setminus \{0\}$, p is prime in R if $p \mid ab$ implies $p \mid a$ or $p \mid b$. Equivalently, p is prime if (p) is a prime ideal of R.
- (9) $R^* \triangleq \{u \in R \mid u \text{ is a unit in } R\}$ is a group under ":".

Theorem 1.1.2

Let *R* be an integral domain. If $p \in R$ is prime, then it is irreducible.

Proof. Suppose p = ab. WLOG, $p \mid a$. Then, a = pr for some $r \in R$. Hence, p = prb, which implies rb = 1; b is a unit.

Example 1.1.3

- (i) \mathbb{Z} is an integral domain. $\mathbb{Z}^* = \{\pm 1\}$. For nonzero $n \in \mathbb{Z}$, n and -n are associate. $p \in \mathbb{Z}$ is a prime number if and only if $\pm p$ is prime in \mathbb{Z} .
- (ii) $\mathbb{Z}[\sqrt{2}] := \{a+b\sqrt{2} \mid a,b \in \mathbb{Z}\}$. Then, $\pm 1 + \sqrt{2}$ are units in $\mathbb{Z}[\sqrt{2}]$. $\sqrt{2}$ and $2-\sqrt{2}$ are associate. There is no $a,b \in \mathbb{Z}$ such that $(a+b\sqrt{2})\sqrt{2} = 2b+a\sqrt{2} = 1$. Hence, $\sqrt{2}$ is not a unit in $\mathbb{Z}[\sqrt{2}]$.

Now, we prove that $\sqrt{2}$ is irreducible in $\mathbb{Z}[\sqrt{2}]$. Suppose $(a+b\sqrt{2})(c+d\sqrt{2}) = \sqrt{2}$ for some $a,b,c,d \in \mathbb{Z}$. Then, we get ac+2bd=0 and ad+bd=1. Hence,

$$-2 = (ac + 2bd)^{2} - 2(ad + bc)^{2}$$
$$= (a^{2} - 2b^{2})(c^{2} - 2d^{2}).$$

WLOG, $(a + b\sqrt{2})(a - b\sqrt{2}) = a^2 - 2b^2 = \pm 1$; thus $a + b\sqrt{2}$ is a unit in $\mathbb{Z}[\sqrt{2}]$.

Definition 1.1.4

 $d \in \mathbb{Z} \setminus \{0,1\}$ is square-free if $c^2 \nmid d$ for all $c \in \mathbb{Z}_{\geq 2}$.

$$\mathbb{Q}(\sqrt{d}) \triangleq \{ a + b\sqrt{d} \mid a + b \in \mathbb{Q} \}$$

is a field. Now, we introduce a function called *norm*:

$$N: \mathbb{Q}(\sqrt{d}) \longrightarrow \mathbb{Q}$$

$$a + b\sqrt{d} \longmapsto (a + b\sqrt{d})(a - b\sqrt{d}) = a^2 - b^2d.$$

Note that for d < 0, $N(\alpha) \ge 0$ for all $\alpha \in \mathbb{Q}(\sqrt{d})$.

Theorem 1.1.5

Let $\alpha, \beta \in \mathbb{Q}(\sqrt{d})$.

- (i) $N(\alpha) = 0 \iff \alpha = 0$
- (ii) $N(\alpha\beta) = N(\alpha)N(\beta)$

Definition 1.1.6 - Ring of Quadratic Integer

Let *d* be a square-free integer. Then,

$$\mathcal{O}_{\mathbb{Q}(\sqrt{d})} \triangleq \begin{cases} \mathbb{Z}[\sqrt{d}] & \text{if } d \equiv 2,3 \pmod{4} \\ \mathbb{Z}\left\lceil \frac{1+\sqrt{d}}{2} \right\rceil & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

is an integral domain. As $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ is a subring of $\mathbb{Q}(\sqrt{d})$, we may apply the norm function N for $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$.

Note:-

The weird definition follows from the fact that $\mathbb{Z}[\sqrt{d}]$ when $d \equiv 1 \pmod{4}$ is not integrally closed.

Theorem 1.1.7

- (i) $\forall \alpha \in \mathcal{O}_{\mathbb{Q}(\sqrt{d})}, N(\alpha) \in \mathbb{Z}$
- (ii) $\forall u \in \mathcal{O}_{\mathbb{Q}(\sqrt{d})}$, (*u* is a unit $\iff N(u) = \pm 1$)
- (iii) $\forall \alpha \in \mathcal{O}_{\mathbb{Q}(\sqrt{d})}$, $(N(\alpha) \text{ is prime in } \mathbb{Z} \implies \alpha \text{ is irreducible in } \mathcal{O}_{\mathbb{Q}(\sqrt{d})})$
- (iv) If $\pi \in \mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ is prime, then $N(\pi) \in \{\pm p^2, \pm p\}$ for some prime $p \in \mathbb{Z}$. Either p is irreducible in $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ (in which $N(\pi) = \pm p^2$) or $p = \pi \pi'$ for some irreducible π' (in which $N(\pi) = \pm p$).

Proof. For simplicity, let

$$\omega \triangleq \begin{cases} \sqrt{d} & \text{if } d \equiv 2,3 \pmod{4} \\ \frac{1+\sqrt{d}}{2} & \text{if } d \equiv 1 \pmod{4} \end{cases} \quad \text{and} \quad \overline{\omega} \triangleq \begin{cases} -\sqrt{d} & \text{if } d \equiv 2,3 \pmod{4} \\ \frac{1-\sqrt{d}}{2} & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

so that $\mathcal{O}_{\mathbb{Q}(\sqrt{d})} = \mathbb{Z}[\omega]$.

(i)

$$N(\alpha) = \begin{cases} a^2 - db^2 & \text{if } d \equiv 2, 3 \pmod{4} \\ a^2 + ab + \frac{1 - d}{4}b^2d & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

is an integer.

- (ii) If $u \in \mathbb{Z}[\omega]$ is a unit, then $1 = N(1) = N(uu^{-1}) = N(u)N(u^{-1})$. Hence, by (i), $N(u) = \pm 1$. If $N(a + b\omega) = \pm 1$, then $(a + b\omega)(a b\omega) = \pm 1$. Hence, $a + b\omega$ is a unit.
- (iii) Suppose $\alpha = \beta \gamma$ where $\alpha, \beta, \gamma \in \mathbb{Z}[\omega]$ and let $N(\alpha) = p$ is prime in \mathbb{Z} . Then, $p = N(\alpha) = N(\beta)N(\gamma)$ and $N(\beta), N(\gamma) \in \mathbb{Z}$ by (i). Hence, $N(\beta) = \pm 1$ or $N(\gamma) = \pm 1$, which implies β or γ is a unit in $\mathbb{Z}[\omega]$ by (ii).
- (iv) Let $(\pi) \subseteq \mathbb{Z}[\omega]$ be a prime ideal. Let

$$\iota: \mathbb{Z} \longrightarrow \mathbb{Z}[\omega]$$
$$a \longmapsto a + 0\omega$$

be an injective ring homomorphism. Then, $\iota^{-1}\big((\pi)\big)=(\pi)\cap\mathbb{Z}\subseteq\mathbb{Z}$ is a prime ideal in \mathbb{Z} .¹ Hence, $(\pi)\cap\mathbb{Z}=(p)$ for some prime $p\in\mathbb{Z}$, and thus $p=\pi\pi'$ for some $\pi'\in\mathbb{Z}[\omega]$. Therefore, we get $N(\pi)N(\pi')=N(p)=p^2$ in \mathbb{Z} . Thus, the result follows from previous conclusions.

Example 1.1.8

- (i) $\mathcal{O}_{\mathbb{Q}(i)} = \mathbb{Z}[i]$ is the *ring of Gaussian integers*. $\mathbb{Z}[i]^* = \{\pm 1, \pm i\}$. $N(1 \pm i) = 2$; $1 \pm i$ is irreducible in $\mathbb{Z}[i]$.
- (ii) Consider $\mathcal{O}_{\mathbb{Q}(\sqrt{-5})} = \mathbb{Z}[\sqrt{-5}]$. $N(1+\sqrt{-5})=6$; hence $1+\sqrt{-5}$ is not prime in $\mathbb{Z}[\sqrt{-5}]$ by Theorem 1.1.7 (iv).

Suppose $1 + \sqrt{-5} = \alpha \beta$ for some $\alpha, \beta \in \mathbb{Z}[\sqrt{-5}]$. Let $\alpha = a + b\sqrt{-5}$. Then, we may conclude that α or β is a unit in $\mathbb{Z}[\sqrt{-5}]$.

Moreover there is no gcd of 6 and $2 + 2\sqrt{-5}$. Note that $6 = (1 + \sqrt{-5})(1 - \sqrt{-5}) = 2 \cdot 3$. Hence, $1 + \sqrt{-5}$ and 2 are common divisors of 6 and $2 + 2\sqrt{-5}$. Suppose $d = a + b\sqrt{-5}$ is a gcd of them.

¹The inverse image of prime ideal in .

1.2 Euclidean Domains

Definition 1.2.1 – Euclidean Domain

An integral domain R is a Euclidean domain if R has a Euclidean function $\delta: R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ satisfying

- (EF1) If $a, b \in R \setminus \{0\}$, then $\delta(a) \leq \delta(ab)$.
- (EF2) If $a, b \in R \setminus \{0\}$, then there exist $q, r \in R$ such that a = bq + r with r = 0 or $\delta(r) < \delta(b)$.