Chapter 11: Digital Electronics

WMC CS CLUB

April 7, 2022

§1 Digital Electronics

A digital circuit is constructed from logic gates. Each logic gate performs a function of boolean logic based on its inputs, such as AND or OR. Each circuit can be represented as a Boolean Algebra expression; this topic is an extension of the topic of Boolean Algebra, which includes a thorough description of truth tables and simplifying expressions.

NAME	GRAPHICAL SYMBOL	ALGEBRAIC EXPRESSION	TRUTH TABLE		
BUFFER	A—out	X = A	0 1)	0 1
NOT	A—out	$X = \overline{A}$ or $\neg A$	0		X 1 0
AND	A——out	$X = AB$ or $A \cdot B$	0	0	0 0
NAND	A — out	$X = \overline{AB}$ or $\overline{A \cdot B}$	0 0 1	В	1 1 1

OR	Aout	X = A + B	INPUT		OUTPUT
			Α	В	X
			0	0	0
			0	1	1
			1	0	1
			1	1	1
NOR	Aout	$X = \overline{A + B}$	INPUT		OUTPUT
			Α	В	X
			0	0	1
			0	1	0
			1	0	0
			1	1	0
	A — out	$X = A \oplus B$	INPUT OUTPU		OUTPUT
XOR			Α	В	X
			0	0	0
			0	1	1
			1	0	1
			1	1	0
XNOR	A Do—out	$X = \overline{A \oplus B} \text{ or } A \odot B$	INPUT		OUTPUT
			Α	В	X
			0	0	1
			0	1	0
			1	0	0
			1	1	1

§2 Online Tools

The ACSL proposes the Logisim (http://www.cburch.com/logisim/index.html) application for digital electronics experimentation. Logisim is a wonderful tool for exploring this topic. Logisim is free to download and use; among its many features is support to automatically draw a circuit from a Boolean Algebra expression; to simulate the circuit with arbitrary inputs; and to complete a truth table for the circuit.

WMC CS Club ★

Created by Richard Shuai

*

Source: ACSL

§3 Practice Problems

§3.1 Problems

1. Find all ordered triplets (A, B, C) which make the following circuit FALSE:

2. How many ordered 4-tuples (A, B, C, D) make the following circuit TRUE?

3. Simplify the Boolean expression that this circuit represents.

§3.2 Answer Key

- 1. For the circuit to be FALSE, both inputs to the file OR gate must be false. Thus, input C must be FALSE, and the output of the NAND gate must also be false. The NAND gate is false only when both of its inputs are TRUE; thus, inputs A and B must both be TRUE. The final answer is (TRUE, TRUE, FALSE), or (1, 1, 0).
- 2. We'll use a truth table to solve this problem. The rows in the truth table will correspond to all possible inputs 16 in this case, since there are 4 inputs. From the truth table, there are 10 rows where the final output is TRUE.
- 3. The circuit can be simplified to **0**, or always false.