Math 444 - Homework 7

Cameron Dart

July 10, 2017

Claim 4.1.7

$$\lim_{x \to c} x^3 = c^3$$

Proof. Given $\epsilon > 0$ we aim to find a $\delta > 0$ so that if |x - c| < 1 then

$$-1 < x - c < 1 \implies c - 1 < x < c + 1$$

It follows that, $x^2 < (c+1)^2 = (c^2 + 2c + 1)$ and $xc < (c+1)c = c^2 + c$

$$|x^3 - c^3| = |x - c||x^2 + xc + c^2| < |x - c|((c^2 + 2c + 1) + (c^2 + c) + c^2) = |x - c|(3c^2 + 3c^2 + 1) + (c^2 + c) + c^2$$

Let $\delta = \inf(1, \frac{\epsilon}{(3c^2 + 3c^2 + 1)})$

$$|x^{3} - c^{3}| = |x - c||x^{2} + xc + c^{2}| < \frac{\epsilon}{(3c^{2} + 3c^{2} + 1)}(3c^{2} + 3c^{2} + 1) = \epsilon$$

Thus, we have shown that there exists a way of choosing a $\delta(\epsilon) = \inf(1, \frac{\epsilon}{(3c^2+3c^2+1)}) > 0$ for any $\epsilon > 0$, we can infer

$$\lim_{x \to c} x^3 = c^3$$

Proof. Let $f: A \to \mathbb{R}$ so that $f(x) := x^3$. Let x_n be any sequence in A that converges to c. So by the sequence theorems we know that x_n^3 converges to c^3 . Hence, $\lim_{x\to c} x^3 = c^3$.

Claim 4.1.11b

$$\lim_{x \to 6} \frac{x^2 - 3x}{x + 3} = 2$$

Proof. Let $f(x) := \frac{x^2 - 3x}{x + 3}$

$$|f(x) - 2| = \left| \frac{x^2 - 3x}{x+3} - 2 \right| = \left| \frac{(x-6)(x+1)}{(x+3)} \right|$$

We bound the coefficient of |x-6| by the condition 5 < x < 7. So we have,

$$\left| \frac{x^2 - 3x}{x + 3} - 2 \right| < \frac{4}{5} |x - 6|$$

Given $\epsilon > 0$, we choose $\delta(\epsilon) = \inf(1, \frac{5\epsilon}{4})$. Then if $0 < |x - 2| < \delta(\epsilon)$, we have $|f(x) - 2| \le \frac{4}{5}|x - 6| < \epsilon$. Since $\epsilon > 0$ is arbitrary, the assertion is proved.

Claim 4.1.15 If $f = \mathbb{R} \to \mathbb{R}$ be defined by setting f(x) := x if x is rational and f(x) = 0 if x is irrational. f has a limit at x = 0 and if $c \neq 0$ then f does not have a limit at c.

Proof. Given $\epsilon > 0$ choose $\delta(\epsilon) = \epsilon$ so that if $x \in A$ and $0 < |x| < \delta$ then

$$|f(x) - 0| = |f(x)| = |x| < \epsilon$$
 if x is rational, otherwise $0 < \epsilon$

Hence, $|f(x)| < \epsilon$ and the limit of $\lim_{x\to 0} f(x) = 0$

Suppose $c \in \mathbb{R}$ so that $c \neq 0$. Let x_n, y_n be two subsequences converging to c so that $x_n \in \mathbb{R} - \mathbb{Q}$ and $y_n \in \mathbb{Q}$ for all $n \in \mathbb{N}$. So $f(x_n)$ converges to 0 and $f(y_n)$ converges to $f(y_n)$. Hence, $\lim_{x\to c} x_n \neq \lim_{x\to c} y_n$. Thus, f does not have a limit at c.

Claim 4.2.5 Let f, g be defined on $A \subseteq \mathbb{R}$ to \mathbb{R} and let c be a cluster point of A. If f is bounded on a neighborhood of c and that $\lim_{x\to c} g = 0$, then $\lim_{x\to c} fg = 0$

Proof. Let x_n be any sequence in A that converges to c so that if $x_n \neq c$ for all $n \in \mathbb{N}$, $f(x_n)$ converges to some $L \in \mathbb{R}$ by the Sequential Criterion. Since f is bounded on a neighborhood of c, there exists $M \in \mathbb{R}$ so that $|f(x)| \leq M$ for all $x \in A \cap V_{\delta}(c)$. Hence, f is bounded by M. So using that the limit of products is the product of limits we have,

$$\lim_{x \to c} fg = \lim_{x \to c} f \lim_{x \to c} g = L * 0 = 0$$

Claim 4.2.10 There exists f, g such that f and g do not have limits at a point c but so that fg and f + g has a limit at c.

Proof. Let f(x) = 0 for all $x \in \mathbb{Q}$ and f(x) = 1 for all $x \in \mathbb{R} - \mathbb{Q}$. Let g(x) = 1 for all $x \in \mathbb{Q}$ and g(x) = 0 for all $x \in \mathbb{R} - \mathbb{Q}$. Neither $\lim_{x\to 0} f(x)$ nor $\lim_{x\to 0} g(x)$ exists. However, fg and f+g are both constant functions. Thus, their limits as they approach 0 exists. \square

Claim 4.2.14 Let $A \subseteq \mathbb{R}$, $f : A \to \mathbb{R}$, and $c \in \mathbb{R}$ be a cluster point of A. If $\lim_{x\to c} f$ exists, then $\lim_{x\to c} |f| = |\lim_{x\to c} f|$

Proof. Since $\lim_{x\to c} f(x)$ exists, it must be true that $\lim_{x\to c} f(x) = L$ for some $L \in \mathbb{R}$. Given $\epsilon > 0$ let $\delta > 0$ so that $|f(x) - L| < \epsilon$ whenever $|x - c| < \delta$. Note, for all $a, b \in \mathbb{R}$ it holds that $|a| \le |a - b| + |b| \implies |a| - |b| \le |a - b|$. Hence, $||f(x)| - |L|| \le |f(x) - L| < \epsilon \implies \lim_{x\to c} |f(x)| = |L| \implies \lim_{x\to c} |f| = |\lim_{x\to c} f|$