

planetmath.org

Math for the people, by the people.

maximal ideal is prime

Canonical name MaximalIdealIsPrime
Date of creation 2013-03-22 17:37:59
Last modified on 2013-03-22 17:37:59

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 8

Author pahio (2872)
Entry type Theorem
Classification msc 16D25
Classification msc 13A15
Related topic SumOfIdeals

Related topic MaximumIdealIsPrimeGeneralCase

Related topic CriterionForMaximalIdeal

Theorem. In a commutative ring with non-zero unity, any maximal ideal is a prime ideal.

Proof. Let \mathfrak{m} be a maximal ideal of such a ring R and let the ring product rs belong to \mathfrak{m} but e.g. $r \notin \mathfrak{m}$. The maximality of \mathfrak{m} implies that $\mathfrak{m}+(r)=R=(1)$. Thus there exists an element $m\in \mathfrak{m}$ and an element $x\in R$ such that m+xr=1. Now m and rs belong to \mathfrak{m} , whence

$$s=1s=(m+xr)s=sm+x(rs)\in\mathfrak{m}.$$

So we can say that along with rs, at least one of its http://planetmath.org/Productfactors belongs to \mathfrak{m} , and therefore \mathfrak{m} is a prime ideal of R.