Neural Networks II: Backpropagation

Robin Jia

USC CSCI 467, Spring 2024 February 13, 2024

Review: Neural Networks (2-layer MLP)

- Hidden layer = A bunch of logistic regression classifiers
 - Parameters: w_j and b_j for each classifier, for each j=1, ..., h
 - h = number of neurons in hidden layer ("hidden nodes")
 - Produces "activations" = learned feature vector
- Final layer = linear model
 - For regression: linear model with weight vector v and bias c

Review: Neural Networks (2-layer MLP)

- Hidden layer = A bunch of logistic regression classifiers
 - Parameters: \mathbf{w}_{j} and \mathbf{b}_{j} for each classifier, for each j=1, ..., h
 - Equivalently: matrix W (h x d) and vector b (length h)
 - *h* = number of neurons in hidden layer ("hidden nodes")
 - Produces "activations" = learned feature vector
- Final layer = linear model
 - For regression: linear model with weight vector v and bias c
- Parameters of model are
 θ = (W, b, v, c)

Review: Neural Network Building Blocks

(1) Linear Layer

- Input x: Vector of dimension d_{in}
- Output y: Vector of dimension d_{out}
- Formula: y = Wx + b
- Parameters
 - W: d_{out} x d_{in} matrix
 - b: d_{out} vector
- In pytorch: nn.Linear()

Review: Neural Network Building Blocks

(2) Non-linearity Layer

- Input x: Any number/vector/matrix
- Output y: Number/vector/matrix of same shape
- Possible formulas:
 - Sigmoid: $y = \sigma(x)$, elementwise
 - Tanh: y = tanh(x), elementwise
 - Relu: y = max(x, 0), elementwise
- Parameters: None
- In pytorch: torch.sigmoid(), nn.functional.relu(), etc.

Review: Neural Network Building Blocks

(3) Loss Layer

- Inputs:
 - y_{pred}: shape depends on task
 - y_{true}: scalar (e.g., correct regression value or class index)
- Output z: scalar
- Possible formulas:

• Squared loss:
$$y_{pred}$$
 is scalar, $z = (y_{pred} - y_{true})^2$
• Softmax regression loss: y_{pred} is vector of length C,
$$z = -\left(y_{pred}[y_{true}] - \log \sum_{i=1}^{C} \exp(y_{pred}[i])\right)$$

- Parameters: None
- In pytorch: nn.MSELoss(), nn.CrossEntropyLoss(), etc.

Review: Training Neural Networks

Linear Regression

Model's output is

$$g(x) = w^{\top} x + b$$

(Unregularized) loss function is

$$\frac{1}{n} \sum_{i=1}^{n} (g(x^{(i)}) - y^{(i)})^2$$

Regression w/ Neural Networks

Model's output is

$$g(x) = v^{\top} \sigma(Wx + b) + c$$

• Use same loss function, in terms of g!

$$\frac{1}{n} \sum_{i=1}^{n} (g(x^{(i)}) - y^{(i)})^2$$

Training objective for both types of models:

$$\frac{1}{n} \sum_{i=1}^{n} \ell\left(y^{(i)}, g(x^{(i)})\right), \text{ where } \ell(y, u) = (y - u)^2$$

Also applies for logistic regression, softmax regression, etc.

Review: Training Neural Networks

General loss function:
$$\frac{1}{n} \sum_{i=1}^{n} \ell\left(y^{(i)}, g(x^{(i)})\right)$$

How to minimize? Gradient Descent!

$$\theta \leftarrow \theta - \eta \cdot \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} \ell\left(y^{(i)}, g(x^{(i)})\right)$$

Average of per-example gradients

• Today: How to compute gradient of loss w.r.t. parameters for any neural network

- So many different ways to assemble building blocks
- Don't want to re-do gradient calculations by hand each time
- Can we write an algorithm to do it?

Model's output, depends on all model parameters θ (includes all layers)

Today's Plan

- The computation graph
- Backpropagation on trees
- Backpropagation on DAGs

Computation graph for (a + b) * c when a=7, b=3, c=2

Different way of drawing the "building blocks" of neural networks

Computation graph for (a + b) * c when a=7, b=3, c=2

Computation graph for (a + b) * c when a=7, b=3, c=2

Gradient checking

- Numerical gradients: A simpler but less efficient way to compute gradients
- What does $\partial y/\partial x$ mean?
 - If I change *x* by epsilon, by what proportion of epsilon does *y* change?
- We can just compute this for every input node!
- Pro: Easy to implement, useful to check correctness
- Con: Slow—requires O(#inputs) function evaluations

Let's implement!

Today's Plan

- The computation graph
- Backpropagation on trees
- Backpropagation on DAGs

Computation graph for (a + b) * c when a=7, b=3, c=2

- For now: assume that the computation graph is a tree
 - Each node is only used in a single computation
 - Root of tree is output
 - Leaves of tree are inputs
- Idea: Recursively compute $\partial(output)/\partial(node)$ for each node, starting at output

Goal: Compute gradient [∂e/∂a, ∂e/∂b, ∂e/∂c]

- Goal: Compute gradient [∂e/∂a, ∂e/∂b, ∂e/∂c]
- Step 1: Base case: $\partial e/\partial e = 1$

- Goal: Compute gradient [∂e/∂a, ∂e/∂b, ∂e/∂c]
- Step 2: How does Mul (node e) "distribute" gradient to its children?
 - $\partial(x^*y)/\partial x = y$
 - Chain Rule: $\frac{\partial(out)}{\partial x} = \frac{\partial(out)}{\partial(x^*y)} * \frac{\partial(x^*y)}{\partial x} = \frac{\partial(out)}{\partial(x^*y)} * y$
 - General rule: Child gets parent's gradient * value of other child

- Goal: Compute gradient [∂e/∂a, ∂e/∂b, ∂e/∂c]
- Step 3: How does Add (node d) "distribute" gradient to its children?
 - $\partial(x+y)/\partial x = 1$
 - Chain Rule: $\frac{\partial(out)}{\partial x} = \frac{\partial(out)}{\partial(x+y)} * \frac{\partial(x+y)}{\partial x} = \frac{\partial(out)}{\partial(x+y)} * \frac{1}{\partial x}$
 - General rule: Child gets parent's gradient * 1

- Goal: Compute gradient [∂e/∂a, ∂e/∂b, ∂e/∂c]
- Step 4: Leaf nodes
 - Don't need to do anything

- Goal: Compute gradient [∂e/∂a, ∂e/∂b, ∂e/∂c]
- Overall Recipe
 - Do forward pass
 - Start at root and recurse over children
 - Each node knows how to take gradient of itself with respect to each child
 - By Chain Rule, child.grad = parent.grad * ∂(parent)/∂(child)

Let's implement!

- Goal: Compute gradient $[\partial f/\partial a, \partial f/\partial b, \partial f/\partial c]$
- Step 1: Base case: $\partial f/\partial f = 1$

- Goal: Compute gradient $[\partial f/\partial a, \partial f/\partial b, \partial f/\partial c]$
- Step 2: Distribute Mul (node f) gradient to children

- Goal: Compute gradient $[\partial f/\partial a, \partial f/\partial b, \partial f/\partial c]$
- Step 3: Distribute Add (node e) gradient to children

- Goal: Compute gradient [∂f/∂a, ∂f/∂b, ∂f/∂c]
- Step 4: Distribute **Pow3** (node d) gradient to children
 - $\partial(x^p)/\partial x = p * x^{p-1}$
 - By Chain Rule: Child gets parent's gradient * p * childp-1

Let's implement!

ReluNode

- Steps 1-3 are the same
- Step 4: Relu
 - $\partial (Relu(x))/\partial x = 1$ if x > 0, 0 if $x \le 0$
 - If child > 0, child.grad = parent.grad * 1
 - If child ≤ 0, child.grad = 0

ReluNode

- Steps 1-3 are the same
- Step 4: Relu
 - $\partial (Relu(x))/\partial x = 1$ if x > 0, 0 if $x \le 0$
 - If child > 0, child.grad = parent.grad * 1
 - If child ≤ 0, child.grad = 0

Generic Unary Function

- Steps 1-3 are the same
- Step 4: Func (generic function)
 - child.grad = parent.grad * ∂(Func(child))/∂child

Announcements

- Project proposals due today @ 11:59pm
 - Submit as a group on Gradescope, list all teammates
 - One submission per group
- HW2 released, due Thursday, February 29
- Midterm exam Tuesday, March 7
 - In-class, 80 minutes in SLH 100
 - Allowed one double-sided 8.5x11 sheet of notes
 - I highly recommend writing this yourself (good for memory)
- Section Friday: Pytorch (library that does backpropagation)

Today's Plan

- The computation graph
- Backpropagation on trees
- Backpropagation on DAGs

DAG Computation Graphs

New function: $(a + b) * b^3$ where a=7, b=3

- This is no longer a tree!
- Still a directed acyclic graph
- Let's see why our previous algorithm fails

- Goal: Compute gradient [∂e/∂a, ∂e/∂b]
- Step 1: Base case: $\partial e/\partial e = 1$

- Goal: Compute gradient [∂f/∂a, ∂f/∂b]
- Step 2: Distribute Mul (node e) gradient to children

- Goal: Compute gradient [∂e/∂a, ∂e/∂b]
- Step 3: Distribute Add (node c) gradient to children

- Goal: Compute gradient [∂e/∂a, ∂e/∂b]
- Step 4: Distribute Pow3 (node d) gradient to child
 - By Chain Rule: Child gets parent's gradient * p * child^{p-1}
- Problem: We have overwritten the gradient from b to Add (node c)!

Multivariate chain rule

- Minimal example
 - u_1 and u_2 depend on variable x (i.e., x has two parents)
 - y depends on both u₁ and u₂

- Dot product of $[\partial y/\partial u_1, \partial y/\partial u_2] \& [\partial u_1/\partial x, \partial u_2/\partial x]$
- By Multivariate Chain Rule: $\partial y/\partial x = \frac{\partial y}{\partial u_1} * \frac{\partial u_1}{\partial x} + \frac{\partial y}{\partial u_2} * \frac{\partial u_2}{\partial x}$
 - Changing x by epsilon changes each parent a bit; Effects add for small epsilon
 - Generalization of multiplying derivatives is matrix multiplication of Jacobians

Multivariate chain rule

- Minimal example
 - u₁ and u₂ depend on variable x (i.e., x has two parents)
 - y depends on both u₁ and u₂
- By Multivariate Chain Rule: $\partial y/\partial x = \partial y/\partial u_1 * \partial u_1/\partial x + \partial y/\partial u_2 * \partial u_2/\partial x$
- node.grad = sum over parents of parent.grad * ∂(parent)/∂(child)
- At each parent node, run child.grad += parent.grad * $\partial(parent)/\partial(child)$

What order of traversal?

Current code:

- y.backward()
 - u1.backward()
 - w.backward()
 - x.backward()
 - u2.backward()
 - w.backward()
 - x.backward()

- Going recursively double-counts
 - First call to w.backward() makes final x.grad too large
- Solution: Topological sort the nodes
 - Iterate in reverse order, starting from output
 - Ensures that we process each node after all of its parents

What order of traversal?

Better code:

- topo_order = [x, w, u₁, u₂, y]
- Iterate in reverse order:
 - y.backward()
 - u2.backward()
 - u1.backward()
 - w.backward()
 - x.backward()

- Going recursively double-counts
 - First call to w.backward() makes final x.grad too large
- Solution: Topological sort the nodes
 - Iterate in reverse order, starting from output
 - Ensures that we process each node after all of its parents

- Goal: Compute gradient [∂e/∂a, ∂e/∂b]
- Topological sort: [a, b, c, d, e]
- Step 0: Initialize all gradients to 0

- Goal: Compute gradient [∂e/∂a, ∂e/∂b]
- Topological sort: [a, b, c, d, e]
- Step 1: Base case: $\partial e/\partial e = 1$

- Goal: Compute gradient [∂e/∂a, ∂e/∂b]
- Topological sort, reversed: [e, d, c, b, a]
- Step 2: Propagate Mul node e to children

- Goal: Compute gradient [∂e/∂a, ∂e/∂b]
- Topological sort, reversed: [e, d, c, b, a]
- Step 3: Propagate Pow3 node d to child

- Goal: Compute gradient [∂e/∂a, ∂e/∂b]
- Topological sort, reversed: [e, d, c, b, a]
- Step 4: Propagate Add node c to children

- Goal: Compute gradient [∂e/∂a, ∂e/∂b]
- Topological sort, reversed: [e, d, c, b, a]
- Step 5, 6: a.backward(), b.backward() do nothing

Let's implement!

Backpropagation for vectors and matrices

Computation graph for mean($(Xw - y)^2$), i.e. Linear Regression

- Basically the same, but each node can be a vector or matrix!
 - Each node.grad stores ∇_{node} output
 - Parents know how to update ∇_{child} output based on ∇_{parent} output

Conclusion

- Backpropagation computes gradient of output with respect to all nodes in computation graph
 - Forward pass: Compute values of all nodes
 - Backward pass: Iterate through nodes in reverse order,
 At each parent node, run child.grad += parent.grad * ∂(parent)/∂(child)
- Big picture: Makes it easy to run gradient descent on arbitrary computation graphs
 - Easy to try new architectures for neural networks