POPL Assignment 3 (Large)

1. Consider inferencing the type of the term shown below using the Hindley-Milner algorithm.

let
$$k = \xy \rightarrow x$$
 in s k k

Show the type inferencing of the body of the let expression by specifying the type environments Γ_i and Γ'_i , substitutions θ_i , and the types t_i in the figure below. Assume s is a builtin function with type $s :: \forall \alpha \beta \gamma. (\alpha \to \beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma$ (15 Marks)

2. A recursive definition for **concat** is:

$$concat [] = []$$

 $concat (x:xs) = x ++ concat xs$

Haskell uses Hindley-Milner style type inferencing to infer the type of **concat**. Assume the following is present in the initial type environment:

$$(++) :: \forall \alpha \cdot [\alpha] \to [\alpha] \to [\alpha]$$

Explain through box-diagrams the process of finding type of concat. Your solution must indicate the input type assumptions (Γ) , unification required (θ) and the discovered type (t). All other steps that are important to infer the type of **concat** must be added. (What is the type of empty list []?) (25 Marks)

POPL Assignment

3. Suppose we had a type system similar to the one studied in the class except that M-ABS and M-APP are substituted by the rules P-APP and P-ABS. Show that the term $M = \lambda x.xx$ is typable in this type system by finding a type σ for it and then proving $M :: \sigma$. (15 Marks)

Use the definitions of P-APP and P-ABS shown below:

$$\frac{\Gamma \vdash M :: \sigma \to \tau \qquad \Gamma \vdash N :: \sigma}{\Gamma \vdash M \; N :: \tau} \tag{P-App)}$$

$$\frac{\Gamma, x :: \sigma \vdash M :: \tau}{\Gamma \vdash \lambda x.M :: \sigma \to \tau}$$
 (P-Abs)

4. For every C_1 , C_2 and α , state whether (i) α is a unifier of C_1 and C_2 , and (ii) α is the MGU of C_1 and C_2 . If α is not the MGU, give one. (15 Marks)

#	C1	C2	α
(a)	p(a, f(y), z)	q(x, f(f(v)), b)	$\{x:=a,y:=f(b),z:=b\}$
(b)	q(x, h(a, z), f(x))	q(g(g(v)), y, f(w))	$\{x:=g(g(v)),y:=h(a,z),w:=x\}$
(c)	q(x, h(a, z), f(x))	q(g(g(v)), y, f(w))	$\{x := g(g(v)), y := h(a, z), w := g(g(v))\}$
(d)	r(f(x), g(y))	r(z,g(v))	$\{x:=a,z:=f(a),y:=v\}$