

Um Modelo Multiagente em *Bitstring* em *CUDA* para Simular a Propagação de Hipotéticas Doenças Baseadas em Modelagem Compartimental Tipo *SEIRS*

Wesley Luciano Kaizer

WESLEY LUCIANO KAIZER

UM MODELO MULTIAGENTE EM *BITSTRING* EM *CUDA* PARA SIMULAR A PROPAGAÇÃO DE HIPOTÉTICAS DOENÇAS BASEADAS EM MODELAGEM COMPARTIMENTAL TIPO *SEIRS*

Monografia apresentada como requisito parcial para obtenção do grau de Bacharel em Ciência da Computação, do Centro de Ciências Exatas e Tecnológicas da Universidade Estadual do Oeste do Paraná - Campus de Cascavel

Orientador: Prof. Dr. Rogério Luís Rizzi

WESLEY LUCIANO KAIZER

UM MODELO MULTIAGENTE EM *BITSTRING* EM *CUDA* PARA SIMULAR A PROPAGAÇÃO DE HIPOTÉTICAS DOENÇAS BASEADAS EM MODELAGEM COMPARTIMENTAL TIPO *SEIRS*

Monografia apresentada como requisito parcial para obtenção do Título de Bacharel em

I 3 . I	Estadual do Oeste do Paraná, Campus de Cascavel, o formada pelos professores:
	Prof. Dr. Rogério Luís Rizzi (Orientador) Colegiado de Matemática, UNIOESTE
	Profa. Dra. Claudia Brandelero Rizzi Colegiado de Ciência da Computação, UNIOESTE

Prof. Dr. Guilherme Galante Colegiado de Ciência da Computação, UNIOESTE

DEDICATÓRIA

AGRADECIMENTOS

Lista de Figuras

Lista de Tabelas

Lista de Abreviaturas e Siglas

CUDA Compute Unified Device Architecture

SEIRS Modelo Compartimental Suscetível, Exposto, Infectado, Recuperado e Suscetível

API Application Programming Interface

Lista de Símbolos

- α Alfa
- β Beta
- δ Delta
- γ Gama

Sumário

Li	sta de	e Figuras	vi
Li	sta de	e Tabelas	vii
Li	Lista de Abreviaturas e Siglas		viii
Li	sta de	e Símbolos	ix
Su	ımári	0	X
Re	esumo		xii
1	Intr	odução	1
	1.1	Objetivos	1
	1.2	Motivação e Justificativas	2
	1.3	Organização do Trabalho	2
2	Fun	damentos	3
	2.1	Introdução a Epidemiologia Computacional e Textos Correlatos	3
	2.2	Tipos de Modelos, Classificação, entre outros	3
	2.3	Agentes e Multiagentes	3
	2.4	Modelagem em Operadores e Bitstring (Compartimental, Operadores, Bitstring)	3
	2.5	Refinamento do Modelo	3
3	Met	odologias Computacionais	4
	3.1	Introdução	4
	3.2	SIMULA	4
	3.3	Estruturas de Dados, Linguagens, etc	4
	3.4	CUDA e OpenMP	4
4	Solu	ıções	5
	4 1	Introdução	5

	3.2	Cases. Discuti Simulacoes na 443, 443 + Vizinnas e etc	U
	5.2	Cases: Discutir Simulações na 445, 445 + Vizinhas e etc	6
	5.1	Introdução	6
5	5 Resultados e Discussões		6
	4.4	Discussões Qualitativas, Quantitativas, Eficiência, Acurácia	5
	4.3	Bitstring com CUDA e OpenMP	5
	4.2	Normal com CUDA e OpenMP	5

Resumo

Palavras-chave: Epidemiologia, Sistemas multiagentes, Modelos compartimentais, modelagem *bitstring*, plataforma computacional paralela *CUDA*

Introdução

1.1 Objetivos

O objetivo principal deste trabalho é desenvolver e implementar um modelo multiagente, com formulação em *bitstring*, para simular computacionalmente a propagação de hipotéticas doenças que possam ser modeladas por modelos compartimentais tipo *SEIRS*. A solução computacional do modelo contemplará uma implementação em *Compute Unified Device Architecture* (*CUDA*) para extrair máxima eficiência computacional. Para alcançar este objetivo é necessária a conclusão de objetivos mais específicos que contemplam:

- Revisão bibliográfica nas temáticas pertinentes ao trabalho, incluindo temas como epidemiologia computacional, modelagem compartimental, sistemas multiagentes, formulação bitstring, estruturas de dados e plataforma computacional paralela CUDA.
- Desenvolvimento e implementação de um modelo multiagente em bitstring, baseado em formulação compartimental.
- 3. Paralelização do sistema multiagente de simulação em *bitstring* utilizando a plataforma computacional paralela *CUDA*.
- 4. O emprego e o aperfeiçoamento de uma ferramenta computacional para viabilizar e otimizar as fases de pré-processamento, processamento e pós-processamento da simulação, como as etapas de configuração e visualização dos resultados obtidos.
- Realização de experimentos numérico-computacionais visando verificar a acurácia da solução bem como sua eficiência computacional.

1.2 Motivação e Justificativas

Este trabalho tem as seguintes motivações e justificativas:

- O estudo e aplicação de modelos compartimentais em epidemiologia computacional é interessante pois mostram-se poderosos e flexíveis à modelagem de hipotéticas doenças.
- O uso de agentes computacionais em simulações permite sua modelagem mais realística e facilita sua posterior paralelização.
- A técnica de modelos de agentes em *bitstring* é relativamente nova e relevante, pois possibilita a modelagem de agentes computacionais de forma sucinta e eficiente, evitando desperdícios de memória e facilitando a implementação na plataforma *CUDA*.
- O uso da plataforma CUDA é atrativo por possibilitar a paralelização massiva do sistema implementado, proporcionando ganhos de desempenho desejáveis em experimentos computacionais que serão realizados.

1.3 Organização do Trabalho

Este trabalho está organizado da seguinte maneira: no Capítulo 2 é apresentada e discutida a fundamentação teórica utilizada para a realização deste trabalho, envolvendo temáticas como a epidemiologia computacional, modelagem compartimental, sistemas multiagentes e modelagem *bitstring*. No Capítulo 3 são apresentados os métodos utilizados para a modelagem, implementação e teste do sistema multiagente, como estruturas de dados, linguagens, APIs e demais softwares de apoio. No Capítulo 4 são discutidas as implementações realizadas e demais discussões sobre. Por fim o Capítulo 5 discute resultados obtidos por testes executados utilizando a implementação realizada.

Fundamentos

- 2.1 Introdução a Epidemiologia Computacional e Textos Correlatos
- 2.2 Tipos de Modelos, Classificação, entre outros
- 2.3 Agentes e Multiagentes
- 2.4 Modelagem em Operadores e Bitstring (Compartimental, Operadores, Bitstring)
- 2.5 Refinamento do Modelo

Metodologias Computacionais

- 3.1 Introdução
- 3.2 SIMULA
- 3.3 Estruturas de Dados, Linguagens, etc.
- 3.4 CUDA e OpenMP

Soluções

- 4.1 Introdução
- 4.2 Normal com CUDA e OpenMP
- 4.3 Bitstring com CUDA e OpenMP
- 4.4 Discussões Qualitativas, Quantitativas, Eficiência, Acurácia

Resultados e Discussões

- 5.1 Introdução
- 5.2 Cases: Discutir Simulações na 445, 445 + Vizinhas e etc.

Glossário