Course introduction and overview

CUSTOMER ANALYTICS AND A/B TESTING IN PYTHON

Ryan GrossmanData Scientist, EDO

What is A/B testing?

- A/B Testing: Test different ideas against each other in the real world
- Choose the one that statistically performs better

Why is A/B testing important?

- No guessing
- Provides accurate answers quickly
- Allows to rapidly iterate on ideas
- ...and establish causal relationships

A/B TESTING

A/B test process

- 1. Develop a hypothesis about your product or business
- 2. **Randomly** assign users to two different groups
- 3. Expose:
 - Group 1 to the the current product rules
 - Group 2 to a product that tests the hypothesis
- 4. Pick whichever performs better according to a set of KPIs

Where can A/B testing be used?

Users + ideas → A/B test

- testing impact of drugs
- incentivizing spending
- driving user growth
- ...and many more!

Course progression

- 1. Understanding users *Key Performance Indicators*
- 2. Identifying trends Exploratory Data Analysis
- 3. Optimizing performance Design of A/B Tests
- 4. Data driven decisions Analyzing A/B Test Results

Key performance indicators (KPIs)

- A/B Tests: Measure impact of changes on KPIs
- KPIs metrics important to an organization
 - likelihood of a side-effect
 - o revenue
 - conversion rate
 - 0 ...

How to identify KPIs

Experience + Domain knowledge + Exploratory data analysis

- Experience & Knowledge What is important to a business
- Exploratory Analysis What metrics and relationships impact these KPIs

Next Up...

- Exploratory Data Analysis (EDA)
- Identify KPIs and areas for further analysis

Let's practice!

CUSTOMER ANALYTICS AND A/B TESTING IN PYTHON

Identifying and understanding KPIs

CUSTOMER ANALYTICS AND A/B TESTING IN PYTHON

Ryan GrossmanData Scientist, EDO

Example: meditation app

Services

- Paid subscription
- In-app purchases

Goals/KPIs

Maintain high free → paid conversion rate

Dataset 1: User demographics

```
import pandas as pd
# load customer_demographics
customer_demographics = pd.read_csv('customer_demographics.csv')
# print the head of customer_demographics
print(customer_demographics.head())
```

uid	reg_date	device	gender	country	age
54030035	2017-06-29	and	M	USA	19
72574201	2018-03-05	iOS	F	TUR	22
64187558	2016-02-07	iOS	М	USA	16
92513925	2017-05-25	and	М	BRA	41
99231338	2017-03-26	iOS	М	FRA	59

Dataset 2: User actions

```
# load customer_subscriptions
customer_subscriptions = pd.read_csv('customer_subscriptions.csv')
# print the head of customer_subscriptions
print(customer_subscriptions.head())
```

uid	lapse_date	subscription_date	price
59435065	2017-07-06	2017-07-08	499
26485969	2018-03-12	None	0
64187658	2016-02-14	2016-02-14	499
99231339	2017-04-02	None	0
64229717	2017-05-24	2017-05-25	499

KPI: Conversion Rate

- Conversion Rate: Percentage of users who subscribe after the free trial
 - Of users who convert within one week?
 One month?...
 - Across all users or just a subset?
 - 0 ...

Choosing a KPI

- Stability over time
- Importance across different user groups
- Correlation with other business factors

Joining the demographic and subscription data

- Merging equivalent of SQL J0IN
- In pandas:
 - o pd.merge(df1, df2)
 - o df1.merge(df2)

Merging mechanics

```
uid reg_date device ...price
54030729 2017-06-29 and ...499
```

Next steps

- Aggregate combined dataset
- Calculate the potential KPIs

Let's practice!

CUSTOMER ANALYTICS AND A/B TESTING IN PYTHON

Exploratory analysis of KPIs

CUSTOMER ANALYTICS AND A/B TESTING IN PYTHON

Ryan GrossmanData Scientist, EDO

KPIs

- Reminder: conversion rate is just one KPI
- Most companies will have many KPIs
- Each serves a different purpose

Methods for calculating KPIs

Group: pandas.DataFrame.groupby()

Aggregate: pandas.DataFrame.agg()

```
DataFrame.agg(func, axis=0, *args, **kwargs)
```

Grouping Data: .groupby()

- by: fields to group by
- axis: axis=0 will group by columns, axis=1 will group by rows
- as_index: as_index=True will use group labels as index

<pandas.core.groupby.DataFrameGroupBy object at 0x10ec29080>

Aggregating data - mean price paid per group

```
# Mean price paid for each country/device
sub_data_grp.price.mean()
```

	country	device	price
0	BRA	and	312.163551
1	BRA	iOS	247.884615
2	CAN	and	431.448718
3	CAN	iOS	505.659574
4	DEU	and	398.848837

Aggregate data: .agg()

Pass the name of an aggregation function to agg():

```
# Find the mean price paid with agg
sub_data_grp.price.agg('mean')
```

	country	device	price
0	BRA	and	312.163551
1	BRA	iOS	247.884615
2	CAN	and	431.448718
3	CAN	iOS	505.659574
4	DEU	and	398.848837

.agg(): multiple functions

Pass a list of names of aggregation functions:

```
# Mean and median price paid for each country/device
sub_data_grp.price.agg(['mean', 'median'])
```

		mean me	edian
country	y device		
BRA	and	312.163551	0
	iOS	247.884615	0
CAN	and	431.448718	699
	iOS	505.659574	699
DEU	and	398.848837	499
	iOS	313.128000	0

.agg(): multiple functions, multiple columns

Pass a dictionary of column names and aggregation functions

mean min max mean min max 0 BRA and 312.163551 0 999 24.303738 15 67 1 BRA iOS 247.884615 0 999 24.024476 15 79 2 CAN and 431.448718 0 999 23.269231 15 58 3 CAN iOS 505.659574 0 999 22.234043 15 38 4 DEU and 398.848837 0 999 23.848837 15 67 5 DEU iOS 313.128000 0 999 24.208000 15 54		countr	y device	price			age		
1 BRA iOS 247.884615 0 999 24.024476 15 79 2 CAN and 431.448718 0 999 23.269231 15 58 3 CAN iOS 505.659574 0 999 22.234043 15 38 4 DEU and 398.848837 0 999 23.848837 15 67				mean	min	max	mean	min	max
2 CAN and 431.448718 0 999 23.269231 15 58 3 CAN iOS 505.659574 0 999 22.234043 15 38 4 DEU and 398.848837 0 999 23.848837 15 67	0	BRA	and	312.163551	0	999	24.303738	15	67
3 CAN iOS 505.659574 0 999 22.234043 15 38 4 DEU and 398.848837 0 999 23.848837 15 67	1	BRA	iOS	247.884615	0	999	24.024476	15	79
4 DEU and 398.848837 0 999 23.848837 15 67	2	CAN	and	431.448718	0	999	23.269231	15	58
	3	CAN	iOS	505.659574	0	999	22.234043	15	38
5 DEU iOS 313.128000 0 999 24.208000 15 54	4	DEU	and	398.848837	0	999	23.848837	15	67
	5	DEU	iOS	313.128000	0	999	24.208000	15	54

.agg(): custom functions

```
def truncated_mean(data):
    """Compute the mean excluding outliers"""
    top_val = data.quantile(.9)
    bot_val = data.quantile(.1)
    trunc_data = data[(data <= top_val) & (data >= bot_val)]
    mean = trunc_data.mean()
    return(mean)

# Find the truncated mean age by group
sub_data_grp.agg({'age': [truncated_mean]})
```

```
country device age
truncated_mean

0 BRA and 22.636364
...
```


Let's practice!

CUSTOMER ANALYTICS AND A/B TESTING IN PYTHON

Calculating KPIs - a practical example

CUSTOMER ANALYTICS AND A/B TESTING IN PYTHON

Ryan GrossmanData Scientist, EDO

Goal - comparing our KPIs

- Goal: Examine the KPI "user conversion rate" after the free trial
- Week One Conversion Rate: Limit to users who convert in their first week after the trial ends

Conversion rate: maximum lapse date

```
import pandas as pd
from datetime import datetime, timedelta

current_date = pd.to_datetime('2018-03-17')
```

• Lapse Date: Date the trial ends for a given user

```
# What is the maximum lapse date in our data
print(sub_data_demo.lapse_date.max())
```

```
'2018-03-17'
```

KPI calculation: restrict users by lapse date

```
# latest lapse date: a week before today
max_lapse_date = current_date - timedelta(days=7)
# restrict to users lapsed before max_lapse_date
conv_sub_data = sub_data_demo[(sub_data_demo.lapse_date < max_lapse_date)]
# count the users remaining in our data
total_users_count = conv_sub_data.price.count()
print(total_users_count)</pre>
```

2787

KPI calculation: restrict subscription date

```
# latest subscription date: within 7 days of lapsing
max_sub_date = conv_sub_data.lapse_date + timedelta(days=7)
# filter the users with non-zero subscription price
# who subscribed before max_sub_date
total_subs = conv_sub_data[
    (conv_sub_data.price > 0) &
    (conv_sub_data.subscription_date <= max_sub_date)</pre>
# count the users remaining in our data
total_subs_count = total_subs.price.count()
print(total_subs_count)
```

648

KPI calculation: find the conversion rate

Conversion Rate: Total Subscribers / Potential Subscribers

```
# calculate the conversion rate with our previous values
conversion_rate = total_subs_count / total_users_count
print(conversion_rate)
```

0.23250807319698599

Cohort conversion rate

```
# Create a copy of our dataframe
conv_sub_data = conv_sub_data.copy()

# keep users who lapsed prior to the last 14 days (2 weeks)
max_lapse_date = current_date - timedelta(days=14)
conv_sub_data = sub_data_demo[
    (sub_data_demo.lapse_date <= max_lapse_date)
]</pre>
```

Cohort conversion rate

• Sub Time: How long it took a user to subscribe

```
# Find the days between lapse and subscription if they
# subscribed ... and pd.NaT otherwise
sub_time = np.where(
        # if: a subscription date exists
            conv_sub_data.subscription_date.notnull(),
        # then: find how many days since their lapse
            (conv_sub_data.subscription_date - conv_sub_data.lapse_date).dt.days,
        # else: set the value to pd.NaT
            pd.NaT)
# create a new column 'sub_time'
conv_sub_data['sub_time'] = sub_time
```

Cohort conversion rate

• gcr7(), gcr14(): calculate the 7 and 14 day conversion rates

```
# group by the relevant cohorts
purchase_cohorts = conv_sub_data.groupby(by=['gender', 'device'], as_index=False)
# find the conversion rate for each cohort using gcr7,gcr14
purchase_cohorts.agg({sub_time: [gcr7,gcr14]})
```

```
gender
         device
                   sub_time
       gcr7
               gcr14
            0.221963
                       0.230140
     and
     iOS
            0.229310
                       0.237931
            0.252349
                     0.257718
     and
     iOS
            0.218045
                        0.225564
```

How to choose KPI metrics?

- Infinitely many potential KPIs
- How long does it take to determine
 - Monthly Conversion Rate = 1 Month Wait time
- Leverage Exploratory Data Analysis
 - Reveals relationships between metrics and key results
- Keep In Mind How do these KPIs and my Business goals relate

Why is conversion rate important?

- Strong measure of growth
- Potential early warning sign of problems
 - Sensitive to changes in the overall ecosystem

Next chapter: continue exploring conversion rates

- How does this KPI evolve over time?
- See how changes can impact different groups differently

Let's practice!

CUSTOMER ANALYTICS AND A/B TESTING IN PYTHON

