COL 351: Analysis and Design of Algorithms

Lecture 27

Polynomial Multiplication

Given: Two polynomials $A(x) = a_0 + a_1x + \cdots + a_nx^n$ and $B(x) = b_0 + b_1x + \cdots + b_nx^n$, with degree less than equal to 'n' and integer coefficients.

Find: Product
$$A(x) \cdot B(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{2n} x^{2n}$$
 (Say, $C(x)$)

Definition: Convolution

Vector $[c_0, c_1, c_2, ..., c_{2n}]$ is referred as "Convolution" of vectors $[a_0, a_1, ..., a_n]$ and $[b_0, b_1, ..., b_n]$.

$$c_i = (a_0 \ b_i) + (a_1 \ b_{i-1}) + (a_2 \ b_{i-2}) + \dots + (a_i \ b_0) = \sum_{j=0}^i a_j b_{i-j}$$

Trivial: $O(n^2)$

Representation of a polynomial

• An alternate way to represent polynomial $A(x) = a_0 + a_1 x + \dots + a_n x^n$.

Evaluation at

$$N = n + 1 = 4$$

point suffices

Why are we looking at alternate representation?

• Answer: Efficient way to compute product.

Take a set
$$S = \{x_0, x_1, x_2, ..., x_{2n}\}$$

Point-wise evaluation

$|S| \leq N$ and deg < N

Aim: Given a polynomial 'A' of degree $\leq n$, find its evaluation on $S = \{1, \omega, \omega^2, ..., \omega^{N-1}\}$.

$$A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \dots + a_n x^n$$

$$= (a_0 + a_2 x^2 + a_4 x^4 + \dots) + x(a_1 + a_3 x^2 + a_5 x^4 + \dots)$$

$$= A_{even}(x^2) + x \cdot A_{odd}(x^2)$$

Assume N = (n + 1) is a power of 2

Remark 1: Degree of polynomials A_{even} , $A_{odd} \leq (n-1)/2 < N/2$.

Remark 2: As $|S^2| = N/2$, we get two subproblems of size N/2.

Example

Discrete Fourier Transform (DFT)

Definition: Let $A(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ be a polynomial of degree n.

Then
$$DFT([a_0, a_1, ..., a_n]) = [A(1), A(\omega), A(\omega^2), ..., A(\omega^n)]$$

Fast Fourier Transform (FFT):

Divide and conquer algorithm to compute DFT

Inverse DFT

Definition: Given the evaluations $y_0, y_1, ..., y_n$ on $(n + 1)^{th}$ roots of unity $\{1, \omega, ..., \omega^n\}$, find the corresponding polynomial of degree n.

Then
$$Inverse - DFT([y_0, y_1, ..., y_n]) = [a_0, a_1, ..., a_n].$$

How to compute inverse DFT?

Definition: Primitive Root

Primitive Root:

An N^{th} root of unity that can generate all other N^{th} roots.

N^{th} primitive root of unity:

 ω such that

- $\omega^N = 1$, and
- $\omega^i \neq 1$, for 0 < i < N

Properties of a primitive root

Claim 1:

If ω is N^{th} root of unity other than 1, then show that $1 + \omega + \cdots + \omega^{N-1} = 0$.

$$=\frac{\omega^{N}-1}{\omega-1}=\frac{0}{\omega-1}=0.$$

Claim 2:

If ω is N^{th} primitive root of unity, then for $i \in [1, N-1]$ we have

$$1 + \omega^i + \dots + \omega^{i(N-1)} = 0.$$

Let $x = \omega^i$. Then x is Non root other than 1.

By Claim 1,
$$1 + w^{i} + ... + w^{i(N-1)} = 1 + 2e + ... + 2e^{N-1} = 0$$

Discrete Fourier transform

 ω is $N = (n+1)^{th}$ primitive root of unity

Inverse Discrete Fourier transform

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_j \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^j & \cdots & \omega^n \\ 1 & \vdots & & & & & \\ 1 & \omega^i & (\omega^i)^2 & \cdots & (\omega^i)^j & \cdots & (\omega^i)^n \\ \vdots & & & & & & \\ 1 & & & & & & \\ \end{bmatrix}^{-1} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_i \\ \vdots \\ y_n \end{bmatrix}$$

 ω is $N = (n+1)^{th}$ primitive root of unity

compute inverse matrix?

How to

Inverse of DFT Matrix

$$\begin{bmatrix}
1 & 1 & 1 & \cdots & 1 & \cdots & 1 \\
1 & \omega & \omega^2 & \cdots & \omega^k & \cdots & \omega^n \\
1 & \vdots & & & & & \\
1 & \omega^i & (\omega^i)^2 & \cdots & (\omega^i)^k & \cdots & (\omega^i)^n \\
\vdots & & & & & \\
1 & & & & & \\
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega^{-1} & (\omega^{-1})^2 & \cdots & (\omega^{-1}) \\
1 & \vdots & & & & \\
1 & \omega^{-k} & (\omega^{-k})^2 & \cdots & (\omega^{-k}) \\
\vdots & & & & \\
1 & & & & \\
\end{bmatrix}$$

$$(i,j)^{th} \operatorname{Term} = \sum_{k=0}^{n} (\omega^{i})^{k} (\omega^{-j})^{k} = \sum_{k=0}^{n} (\omega^{i-j})^{k} = 0$$

Inverse Discrete Fourier transform

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_j \\ \vdots \\ a_n \end{bmatrix} = \frac{1}{N} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & \cdots & 1 \\ 1 & \omega^{-1} & (\omega^{-1})^2 & \cdots & (\omega^{-1})^j & \cdots & (\omega^{-1})^n \\ 1 & \vdots & & & & & \\ 1 & \omega^{-i} & (\omega^{-i})^2 & \cdots & (\omega^{-i})^j & \cdots & (\omega^{-i})^n \\ \vdots & & & & & & \\ 1 & \omega^{-i} & (\omega^{-i})^2 & \cdots & (\omega^{-i})^j & \cdots & (\omega^{-i})^n \\ \vdots & & & & & & \\ 1 & & & & & & \\ \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_i \\ \vdots \\ y_n \end{bmatrix}$$

$$\omega$$
 is $N = (n+1)^{th}$ primitive root of unity

This can be multiplied in O(N log N) time lesing FFT algorithm S will be of I, w, ..., w]

Inverse Discrete Fourier transform

Steps to compute Inverse-DFT of vector $[y_0, y_1, ..., y_n]$:

1. Consider the polynomial
$$Y(x) = \frac{y_0 + y_1 x + y_2 x^2 + \dots + y_n x^n}{N}$$

2. Let
$$S_{inv} = \{1, \omega^{-1}, \omega^{-2}, ..., \omega^{-n}\}$$
 Pools of $\omega^{N} = 1$.

3. Evaluate Y(x) over S_{inv} .

$$\omega$$
 is $N = (n+1)^{th}$ primitive root of unity

Main Result

operations .

Theorem:

Two polynomials of degree n with integer coefficients can be multiplied in $O(n \log n)$ time.

Assumption: We can do operations on N = (n + 1)-th roots of unity in O(1) time.

In practice there are rounding errors if coefficients are large.

Homework - Write pseudocode to compute DFT and Inverse-DFT.

Applications

Question:

Let $A = \{a_1, a_2, ..., a_n\}$ and $B = \{b_1, b_2, ..., b_n\}$ be sets of positive integers in range [1, M]. Compute the set $S = \{x + y \mid x \in A, y \in B\}$ in $O(M \log M)$ time.