

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/29, 15/82, 5/10, A01H 5/00	A2	(11) International Publication Number: WO 96/40924		
		(43) International Publication Date: 19 December 1996 (19.12.96)		
(21) International Application Number: PCT/US (22) International Filing Date: 7 June 1996 ((81) Designated States: AU, CA, CN, JP, KG, KZ, MX, TJ, TM, TR, US, UZ, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).			
(12) Aller Mills Date:	07.00.7	7, 14, 15, 55, 56, 12, 11, 10, MC, NL, F1, 3EJ.		
(30) Priority Data: 08/480,178 7 June 1995 (07.06.95)	τ	Published Without international search report and to be republished upon receipt of that report.		
(60) Parent Application or Grant (63) Related by Continuation US Not furnish Filed on	hed (CI furnish			
(71) Applicant (for all designated States except US): CA INC. [US/US]; 1920 Fifth Street, Davis, CA 95610				
(72) Inventors; and (75) Inventors/Applicants (for US only): McBRIDE [US/US]; 1309 Marina Circle, Davis, CA 956 STALKER, David, M. [US/US]; 2736 Cumberla Davis, CA 95616 (US). PEAR, Julie, R. [US/U Douglass Avenue, Davis, CA 95616 (US). PEREZ Luis [ES/US]; 1230 Elk Place, Davis, CA 95616 (nd Plac US]; 8 Z-GRA	s). e, 18		
(74) Agents: SCHWEDLER, Carl, J. et al.; Calgene, Inc., 1 Street, Davis, CA 95616 (US).	th			

(54) Title: COTTON FIBER TRANSCRIPTIONAL FACTORS

(57) Abstract

Novel DNA constructs are provided which may be used as molecular probes or inserted into a plant host to provide for modification of transcription of a DNA sequence of interest during various stages of cotton fiber development. The DNA constructs comprise a cotton fiber transcriptional initiation regulatory region associated with a gene which is expressed in cotton fiber. Also provided is novel cotton having a cotton fiber which has a natural color introduced by the expression in the cotton fiber cell, using such a construct, of pigment synthesis genes. Cotton fiber cells having color produced by genetic engineering and cotton cells comprising melanin and indigo pigments are included.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
ΑT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	КР	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Моласо	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	ŪA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

COTTON FIBER TRANSCRIPTIONAL FACTORS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation in part of United States application Serial No. 08/487,087 filed June 7, 1995, and a continuation in part of United States application Serial No. 08/480,178, filed June 7, 1995.

10

15

5

INTRODUCTION

Technical Field

This invention relates to methods of using in vitro constructed DNA transcription or expression cassettes capable of directing fiber-tissue transcription of a DNA sequence of interest in plants to produce fiber cells having an altered phenotype, and to methods of providing for or modifying various characteristics of cotton fiber. The invention is exemplified by methods of using cotton fiber promoters for altering the phenotype of cotton fiber, and cotton fibers produced by the method.

20

25

Background

In general, genetic engineering techniques have been directed to modifying the phenotype of individual prokaryotic and eukaryotic cells, especially in culture. Plant cells have proven more intransigent than other eukaryotic cells, due not only to a lack of suitable vector systems but also as a result of the different goals involved. For many applications, it is desirable

to be able to control gene expression at a particular stage in the growth of a plant or in a particular plant part. For this purpose, regulatory sequences are required which afford the desired initiation of transcription in the appropriate cell types and/or at the appropriate time in the plant's development without having serious detrimental effects on plant development and productivity. It is therefore of interest to be able to isolate sequences which can be used to provide the desired regulation of transcription in a plant cell during the growing cycle of the host plant.

One aspect of this interest is the ability to change the phenotype of particular cell types, such as differentiated epidermal cells that originate in fiber tissue, i.e. cotton fiber cells, so as to provide for altered or improved aspects of the mature cell type. Cotton is a plant of great commercial significance. In addition to the use of cotton fiber in the production of textiles, other uses of cotton include food preparation with cotton seed oil and animal feed derived from cotton seed husks.

Despite the importance of cotton as a crop, the breeding and genetic engineering of cotton fiber phenotypes has taken place at a relatively slow rate because of the absence of reliable promoters for use in selectively effecting changes in the phenotype of the fiber. In order to effect the desired phenotypic changes, transcription initiation regions capable of initiating transcription in fiber cells during development are desired.

Thus, an important goal of cotton bioengineering research is the

5

10

acquisition of a reliable promoter which would permit expression of a protein selectively in cotton fiber to affect such qualities as fiber strength, length, color and dyability.

5 Relevant Literature

10

Cotton fiber-specific promoters are discussed in PCT publications WO 94/12014 and WO 95/08914, and John and Crow, Proc. Natl. Acad. Sci. USA, 89:5769-5773, 1992. cDNA clones that are preferentially expressed in cotton fiber have been isolated. One of the clones isolated corresponds to mRNA and protein that are highest during the late primary cell wall and early secondary cell wall synthesis stages. John and Crow, supra.

In animals, the ras superfamily is subdivided into the subfamilies ras which is involved in controlling cell growth and division, rab/YPT members which control secretory processes, and rho which is involved in control of cytoskeletal organization (Bourne et al., (1991) Nature 349: 117-127), and number of homologous genes have now been identified in plants (for a review, see Terryn et al., (1993) Plant Mol. Biol. 22: 143-152). None have been found for the important ras subfamily, all but one of the genes identified have been members of the rab/YPT1 subfamily, and there is only one recent report of the cloning of a rho gene in pea (Yang and Watson(1993) Proc. Natl. Acad. Sci. USA 90: 8732-8736).

Little work has been done to characterize the functions of these genes in plants, although one recent report has shown that a small G protein from Arabidopsis can functionally complement a

mutant form in yeast involved in vesicle trafficking, suggesting a similar function for the plant gene (Bednarek et al., (1994) Plant Physiol 104: 591-596).

In animals, two members of the *rho* subfamily, called Rac and Rho, have been shown to be involved in the regulation of actin organization (for a review, see Downward, (1992) Nature 359: 273-274).

Rac1 has been shown to mediate growth factor-induced membrane ruffling by influencing microfilament alignment on the plasma membrane (Ridley et al, (1992) Cell 70: 401-410), whereas RhoA regulates the formation of actin stress fibers associated with focal adhesions (Ridley and Hall, (1992) Cell 70: 389-399).

In yeast, the CDC42 gene codes for a *rho*-type protein which also regulates actin organization involved in the establishment of cell polarity required for the localized deposition of chitin in the bud scar (Adams et al., (1990) J Cell Biol 111: 131-143.

Disruption of gene function, either by temperature shifts with a CDC42-temperature-sensitive mutant in yeast (Adams et al., 1990), or by micro-injection into fibroblasts of mutant Rac or Rho proteins exibiting a dominant negative phenotype (Ridley et al., 1992; Ridley and Hall, 1992), leads to disorganization of the actin network.

In plants, control of cytoskeletal organization is poorly understood in spite of its importance for the regulation of patterns of cell division, expansion, and subsequent deposition of secondary cell wall polymers. The cotton fiber represents an excellent system for studying cytoskeletal organization. Cotton

5

10

15

20

fibers are single cells in which cell elongation and secondary wall deposition can be studied as distinct events. These fibers develop synchronously within the boll following anthesis, and each fiber cell elongates for about 3 weeks, depositing a thin primary wall (Meinert and Delmer, (1984) Plant Physiol. 59: 1088-1097; Basra and Malik, (1984) Int Rev of Cytol 89: 65-113). At the time of transition to secondary wall cellulose synthesis, the fiber cells undergo a synchronous shift in the pattern of cortical microtubule and cell wall microfibril alignments, events which may be regulated upstream by the organization of actin (Seagull, (1990) Protoplasma 159: 44-59; and (1992) In: Proceedings of the Cotton Fiber Cellulose Conference, National Cotton Council of America, Memphis RN, pp 171-192.

Agrobacterium-mediated cotton transformation is described in Umbeck, United States Patents Nos. 5,004,863 and 5,159,135 and cotton transformation by particle bombardment is reported in WO 92/15675, published September 17, 1992. Transformation of Brassica has been described by Radke et al. (Theor. Appl. Genet. (1988) 75;685-694; Plant Cell Reports (1992) 11:499-505.

20

25

10

15

SUMMARY OF THE INVENTION

Novel DNA constructs and methods for their use are described which are capable of directing transcription of a gene of interest in cotton fiber, particularly early in fiber development and during secondary cell wall development. The novel constructs include a vector comprising a transcriptional and translational initiation region obtainable from a gene expressed in cotton fiber

and methods of using constructs including the vector for altering fiber phenotype. Both the endogenous 3' regions and 5' regions may be important in directing efficient transcription and translation.

Three promoters are provided from genes involved in the regulation of cotton fiber development. One, Rac13, is from a protein in cotton which codes for an animal Rac protein homolog. Rac13, shows highly-enhanced expression during fiber development. This pattern of expression correlates well with the timing of reorganization of the cytoskeleton, suggesting that the Rac13 cotton gene may, like its animal counterpart, be involved in the signal transduction pathway for cytoskeletal organization. Rac13 is a gene that is moderately expressed during fiber development turning on at 9 dpa and shutting down approximately 24 dpa. It is maximally expressed between 17-21 dpa developing fiber.

Another promoter from a cotton protein is designated 4-4. The 4-4 mRNA accumulates in fiber cells at day 17 post anthesis and continues towards fiber maturity, which occurs at 60 days or so post anthesis. Data demonstrates that the 4-4 promoter remains very active at day 35 post anthesis.

Also provided is a promoter from a lipid transfer protein (hereinafter sometimes referred to as "Ltp") which is preferentially expressed in cotton fiber.

The methods of the present invention include transfecting a host plant cell of interest with a transcription or expression cassette comprising a cotton fiber promoter and generating a plant which is grown to produce fiber having the desired phenotype.

5

10

15

20

Constructs and methods of the subject invention thus find use in modulation of endogenous fiber products, as well as production of exogenous products and in modifying the phenotype of fiber and fiber products. The constructs also find use as molecular probes. In particular, constructs and methods for use in gene expression in cotton embryo tissues are considered herein. By these methods, novel cotton plants and cotton plant parts, such as modified cotton fibers, may be obtained.

Also provided are constructs and methods of use relating to modification of color phenotype in cotton fiber. Such constructs contain sequences for expression of genes involved in the production of colored compounds, such as anthocyanins, melanin or indigo, and also may contain sequences which provide for targeting of the gene products to particular locations in the plant cell, such as plastid organelles, or vacuoles. Plastid targeting is of particular interest for expression of genes involved in aromatic amino acid biosynthesis pathways, while vacuolar targeting is of particular interest where the precursors required in synthesis of the pigment are present in vacuoles.

Of particular interest are plants producing fibers which are color, that is, with pigment produced in the fiber by the plant during fiber development, as opposed to fibers which are harvested and dyed or otherwise pigmented by separate processing. Fibers from a plant producing such colored fiber may be used to produce colored yarns and/or fabric which have not been subjected to any dyeing process. While naturally colored cotton has been available from various domesticated and wild type cotton varieties, the

10

15

20

instant application provides cotton fiber has a color produced by the expression of a genetically engineered protein.

Thus, the application provides constructs and methods of use relating to modification of color phenotype in cotton fiber. Such constructs contain sequences for expression of genes involved in the production of colored compounds, such as melanin or indigo, and also contain sequences which provide for targeting of the gene products to particular locations in the plant cell, such as plastid organelles, or vacuoles. Plastid targeting is of particular interest for expression of genes involved in the aromatic amino acid biosynthesis pathways, while vacuolar targeting is of particular interest where the precursors required in synthesis of the pigment are present in vacuoles.

15 <u>DESCRIPTION OF THE DRAWINGS</u>

Figure 1 shows the DNA sequence encoding the structural protein from cDNA 4-4.

Figure 2 shows the sequence to the promoter construct pCGN5606 made using genomic DNA from 4-4-6 genomic clone.

Figure 3 shows the sequence to the 4-4 promoter construct pCGN5610.

Figure 4 shows the cDNA sequence encoding the Rac13 gene expressed in cotton fiber.

Figure 5 shows the sequence the promoter region from the 25 rac13 gene.

Figure 6 shows a restriction map for pCGN4735.

5

Figure 7 shows the sequence of the Ltp promoter region from a cotton fiber specific lipid transfer protein gene.

Figure 8 shows the arrangement of a binary vectors pCGN5148 and pCGN5616 for plant transformation to express genes for melanin synthesis and indigo synthesis, respectively.

Figure 9 provides the results of color measurements taken from fibers of the control Coker 130 cotton used in transformation using color constructs.

Figure 10 shows the results of measurements made of color of plants transformed by the pCGN5148 construct to express genes for melanin synthesis.

Figure 11 shows the results of measurements taken of the color of plants transformed by the pCGN5149 construct to express genes for melanin synthesis.

Figure 12 shows the results of measurements made of color of plants transformed to express genes for indigo synthesis, using construct pCGN5616.

Figure 13 shows control measurements made of naturally colored cotton plants which are produced by non-transgenic colored cotton plants.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the subject invention, novel constructs and methods are described, which may be used provide for transcription of a nucleotide sequence of interest in cells of a plant host, preferentially in cotton fiber cells to produce cotton fiber having an altered color phenotype.

15

20

Cotton fiber is a differentiated single epidermal cell of the outer integument of the ovule. It has four distinct growth phases; initiation, elongation (primary cell wall synthesis), secondary cell wall synthesis, and maturation. Initiation of fiber development appears to be triggered by hormones. The primary cell wall is laid down during the elongation phase, lasting up to 25 days postanthesis (DPA). Synthesis of the secondary wall commences prior to the cessation of the elongation phase and continues to approximately 40 DPA, forming a wall of almost pure cellulose.

The constructs for use in such cells may include several forms, depending upon the intended use of the construct. Thus, the constructs include vectors, transcriptional cassettes, expression cassettes and plasmids. The transcriptional and translational initiation region (also sometimes referred to as a "promoter,"), preferably comprises a transcriptional initiation regulatory region and a translational initiation regulatory region of untranslated 5' sequences, "ribosome binding sites," responsible for binding mRNA to ribosomes and translational initiation. It is preferred that all of the transcriptional and translational functional elements of the initiation control region are derived from or obtainable from the same gene. embodiments, the promoter will be modified by the addition of sequences, such as enhancers, or deletions of nonessential and/or undesired sequences. By "obtainable" is intended a promoter having a DNA sequence sufficiently similar to that of a native promoter to provide for the desired specificity of transcription

5

10

15

20

of a DNA sequence of interest. It includes natural and synthetic sequences as well as sequences which may be a combination of synthetic and natural sequences.

Cotton fiber transcriptional initiation regions chosen for cotton fiber modification may include the 4-4, rac13 and Ltp cotton fiber promoter regions provided herein.

A transcriptional cassette for transcription of a nucleotide sequence of interest in cotton fiber will include in the direction of transcription, the cotton fiber transcriptional initiation region, a DNA sequence of interest, and a transcriptional termination region functional in the plant cell. When the cassette provides for the transcription and translation of a DNA sequence of interest it is considered an expression cassette. One or more introns may be also be present.

Other sequences may also be present, including those encoding transit peptides and secretory leader sequences as desired.

Fiber-tissue transcription initiation regions of this invention are, preferably, not readily detectable in other plant tissues. Transcription initiation regions capable of initiating transcription in other plant tissues and/or at other stages of fiber development, in addition to the foregoing, are acceptable insofar as such regions provide a significant expression level in cotton fiber at the defined periods of interest and do not negatively interfere with the plant as a whole, and, in particular, do not interfere with the development of fiber and/or fiber-related parts.

10

20

Downstream from, and under the regulatory control of, the cotton fiber transcriptional/translational initiation control region is a nucleotide sequence of interest which provides for modification of the phenotype of fiber. The nucleotide sequence may be any open reading frame encoding a polypeptide of interest, for example, an enzyme, or a sequence complementary to a genomic sequence, where the genomic sequence may be an open reading frame, an intron, a noncoding leader sequence, or any other sequence where the complementary sequence inhibits transcription, messenger 10 RNA processing, for example, splicing, or translation. The nucleotide sequences of this invention may be synthetic, naturally derived, or combinations thereof. Depending upon the nature of the DNA sequence of interest, it may be desirable to synthesize the sequence with plant preferred codons. The plant preferred codons may be determined from the codons of highest frequency in 15 the proteins expressed in the largest amount in the particular plant species of interest. Phenotypic modification can be achieved by modulating production either of an endogenous transcription or translation product, for example as to the 20 amount, relative distribution, or the like, or an exogenous transcription or translation product, for example to provide for a novel function or products in a transgenic host cell or tissue. Of particular interest are DNA sequences encoding expression products associated with the development of plant fiber, including 25 genes involved in metabolism of cytokinins, auxins, ethylene, abscissic acid, and the like. Methods and compositions for modulating cytokinin expression are described in United States

Patent No. 5,177,307, which disclosure is hereby incorporated by reference. Alternatively, various genes, from sources including other eukaryotic or prokaryotic cells, including bacteria, such as those from Agrobacterium tumefaciens T-DNA auxin and cytokinin biosynthetic gene products, for example, and mammals, for example interferons, may be used.

Other phenotypic modifications include modification of the color of cotton fibers. Of interest are genes involved in production of melanin and genes involved in the production of indigo. Melanins are dark brown pigments found in animals, plants and microorganisms, any of which may serve as a source for sequences for insertion into the constructs of the present invention. Specific examples include the tyrosinase gene which can be cloned from Streptomyces antibioticus. The ORF438 encoded protein in S. antibioticus also is necessary for melanin production, and may provide a copper donor function. In addition, a tyrosinase gene can be isolated from any organism which makes melanin. The gene can be isolated from human hair, melanocytes or melanomas, cuttle fish and red roosters, among others. See, for example, EP Application No. 89118346.9 which discloses a process for producing melanins, their precursors and derivatives in microorganisms. Also, See, Bernan et al. Gene (1985) 37:101-110; and della-Cioppa et al. Bio/Technology (1990) 8:634-638.

Indigo may be obtained by use of genes encoding a monooxygenase such as xylene oxygenase which oxidizes toluene and
xylene to (methyl) benzyl alcohol and also transforms indole to
indigo. Cloning of the xylene oxygenase gene and the nucleotide

10

15

20

and amino acid sequences are described in unexamined Japanese Patent Application Kokai:2-119777, published May 7, 1990. A dioxygenase such as naphthalene dioxygenase which also converts indole to indigo finds use; the naphthalene dioxygenase gene naha is described in Science (1983) 222: 167. For cloning, nucleotide sequence in characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida. See, Kurkela et al. Gene (1988) 73:355-362. A tryptophanase gene sequence can be used in conjunction with an oxygenase to increase the amount of indole available for conversion to indigo. Sources of tryptophanase gene sequences include E. coli (see, for example, Deeley et al. (1982) J. Bacteriol. 151 :942-951).

Plastid targeting sequences (transit peptides) are available from a number of plant nuclear-encoded plastid proteins, such as the small subunit (SSU) of ribulose bisphosphate carboxylase, plant fatty acid biosynthesis related genes including acyl carrier protein (ACP), stearoyl-ACP desaturase, ß-ketoacyl-ACP synthase and acyl-ACP thioesterase, or LHCPII genes. The encoding sequence for a transit peptide which provides for transport to plastids may include all or a portion of the encoding sequence for a particular transit peptide, and may also contain portions of the mature protein encoding sequence associated with a particular transit peptide. There are numerous examples in the art of transit peptides which may be used to deliver a target protein into a plastid organelle. The particular transit peptide encoding sequence used in the instant invention is not critical, as long as delivery to the plastid is obtained.

10

15

20

As an alternative to using transit peptides to target pigment synthesis proteins to plastid organelles, the desired constructs may be used to transform the plastid genome directly. In this instance, promoters capable of providing for transcription of genes in plant plastids are desired. Of particular interest is the use of a T7 promoter to provide for high levels of transcription. Since plastids do not contain an appropriate polymerase for transcription from the T7 promoter, T7 polymerase may be expressed from a nuclear construct and targeted to plastids using transit peptides as described above. (See McBride et al. (1994) Proc. Nat. Acad. Sci. 91:7301-7305; see also copending US patent application entitled "Controlled Expression of Transgenic Constructs in Plant Plastids", serial no. 08/472,719, filed June 6, 1995, and copending US patent application SN 08/167,638, filed December 14, 1993 and PCT/US94/14574 filed December 12, 1994.) Tissue specific or developmentally regulated promoters may be useful for expression of the T7 polymerase in order to limit expression to the appropriate tissue or stage of development.

Targeting of melanin synthesis genes to vacuoles is also of
interest in plant tissues which accumulate the tyrosine substrate
involved in melanin synthesis in vacuoles. The protein signal for
targeting to vacuoles may be provided from a plant gene which is
normally transported across the rough endoplasmic reticulum, such
as the 32 amino acid N-terminal region of the

25 metallocarboxypeptidase inhibitor gene from tomato (Martineau et al. (1991) Mol. Gen. Genet. 228:281-286). In addition to the signal sequence, vacuolar targeting constructs also encode a

10

vacuolar localization signal (VLS) positioned at the carboxy terminus of the encoded protein. Appropriate signal sequences and VLS regions may be obtained from various other plant genes and may be similarly used in the constructs of this invention. Numerous vacuolar targetting peptides are known to the art, as are reviewed in Chrispeels et al., Cell (1992) 68:613-616.

The Maize Al gene which encodes a dihydroflavonol reductase, an enzyme of the anthocyanin pigmentation pathway is one such In cells that express the Al gene, dihydrokempferol is converted to 2-8 alkylleucopelargonidin, which may be further metabolized to pelargonidin pigment by endogenous plant enzymes. Other anthocyanin or flavonoid type pigments may also be of interest for modification of cotton cell fibers, and have been suggested for use in plant flowers (for a review of plant flower color, see van Tunen et al., Plant Biotechnology Series, Volume 2 (1990) Developmental Regulation of Plant Gene Expression, D. Grierson ed.). Anthocyanin is produced by a progression of steps from cellular phenylalanine pools. The R and C1 genes are maize regulatory proteins which are active by positively affecting upstream steps in the anthocyanin biosynthesis from these pools. The R gene is described in Perot and Cone (1989) Nucl. Acids Res., 17:8003, and the C1 gene is described in Paz-Ares et al (1987) EMBO, 6:3553-3558. Lloyd et al. (1992) Science, 258:1773-1775 discussed both genes.

Although cotton fibers in commercially grown varieties are primarily white in color, other naturally occurring cotton varieties have brown or reddish-brown fibers. Additionally, a

5

10

15

20

cotton line containing green colored fibers has been identified. Cotton lines providing such fibers are available from various sources, including the BC variety cottons (BC Cotton Inc., Box 8656, Bakersfield, CA 93389) and Fox Fibre cottons (Natural Cotton Colors, Inc., P.O. Box 791, Wasco, CA 93280).

The existence of such colored cotton lines suggests that the precursors required for the anthocyanin pigment pathways are present in cotton fibers cells, thus allowing further color phenotype modifications. Thus, the maize R and C1 genes could be used in enhancing the levels of of anthocyanin produced in fiber cells. As the R and C1 proteins are proteins with a positive control at the regulatory level on anthocyanin pigment precursor biosynthesis, these proteins are expressed in the nucleus, and not targetted to plastids or vacuoles.

15 For some applications, it is of interest to modify other aspects of the fiber. For example, it is of interest to modify various aspects of cotton fibers, such as strength or texture of a fiber. Thus, the appropriate gene may be inserted in the constructs of the invention, including genes for PHB biosynthesis 20 (see, Peoples et al. J. Biol. Chem. (1989) 264: 15298-15303 and Ibid. 15293-15397; Saxena, Plant Molecular Biology (1990) 15:673-683, which discloses cloning and sequencing of the cellulose synthase catalytic subunit gene; and Bowen et al. PNAS (1992) 89:519-523 which discloses chitin synthase genes of Saccharomyces cerevisiae and Candida albicans. Various constructs and methods 25 are disclosed for the use of hormones to effect changes to fiber quality in copending US patent application entitled "Cotton

Modification Using Ovary-Tissue Transcriptional factors, serial no. 08/397,652 filed February 2, 1995, the teachings of which are incorporated herein by reference.

Transcriptional cassettes may be used when the transcription 5 of an anti-sense sequence is desired. When the expression of a polypeptide is desired, expression cassettes providing for transcription and translation of the DNA sequence of interest will be used. Various changes are of interest; these changes may include modulation (increase or decrease) of formation of particular saccharides, hormones, enzymes, or other biological 10 parameters. These also include modifying the composition of the final fiber that is changing the ratio and/or amounts of water, solids, fiber or sugars. Other phenotypic properties of interest for modification include response to stress, organisms, herbicides, brushing, growth regulators, and the like. These 15 results can be achieved by providing for reduction of expression

results can be achieved by providing for reduction of expression of one or more endogenous products, particularly an enzyme or cofactor, either by producing a transcription product which is complementary (anti-sense) to the transcription product of a native gene, so as to inhibit the maturation and/or expression of the transcription product, or by providing for expression of a gene, either endogenous or exogenous, to be associated with the development of a plant fiber.

The termination region which is employed in the expression cassette will be primarily one of convenience, since the termination regions appear to be relatively interchangeable. The termination region may be native with the transcriptional

20

initiation region, may be native with the DNA sequence of interest, may be derived from another source. The termination region may be naturally occurring, or wholly or partially synthetic. Convenient termination regions are available from the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. In some embodiments, it may be desired to use the 3' termination region native to the cotton fiber transcription initiation region used in a particular construct.

As described herein, in some instances additional nucleotide sequences will be present in the constructs to provide for targeting of a particular gene product to specific cellular locations. For example, where coding sequences for synthesis of aromatic colored pigments are used in a construct, particularly coding sequences for enzymes which have as their substrates aromatic compounds such tyrosine and indole, it is preferable to include sequences which provide for delivery of the enzyme into plastids, such as an SSU transit peptide sequence. Also, for synthesis of pigments derived from tyrosine, such as melanin, targeting to the vacuole may provide for enhanced color modifications.

For melanin production, the tyrosinase and ORF438 genes from Streptomyces antibioticus (Berman et al. (1985) 37:101-110) are provided in cotton fiber cells for expression from a 4-4 and Rac13 promoter. In Streptomyces, the ORF438 and tyrosinase proteins are expressed from the same promoter region. For expression from constructs in a transgenic plant genome, the coding regions may be

5

10

15

20

provided under the regulatory control of separate promoter regions. The promoter regions may be the same or different for the two genes. Alternatively, coordinate expression of the two genes from a single plant promoter may be desired. Constructs for expression of the tyrosinase and ORF438 gene products from 4-4 and rac promoter regions are described in detail in the following examples. Additional promoters may also be desired, for example plant viral promoters, such as CaMV 35S, can be used for constitutive expression of one of the desired gene products, with the other gene product being expressed in cotton fiber tissues from the 4-4 and rac promoter.

Similarly, other constitutive promoters may also be useful in certain applications, for example the mas, Mac or DoubleMac, promoters described in United States Patent No. 5,106,739 and by Comai et al., Plant Mol. Biol. (1990) 15:373-381). When plants comprising multiple gene constructs are desired, for example plants expressing the melanin genes, ORF438 and tyrosinase, the plants may be obtained by co-transformation with both constructs, or by transformation with individual constructs followed by plant breeding methods to obtain plants expressing both of the desired genes.

A variety of techniques are available and known to those skilled in the art for introduction of constructs into a plant cell host. These techniques include transfection with DNA employing A. tumefaciens or A. rhizogenes as the transfecting agent, protoplast fusion, injection, electroporation, particle acceleration, etc. For transformation with Agrobacterium,

10

15

20

plasmids can be prepared in E. coli which contain DNA homologous with the Ti-plasmid, particularly T-DNA. The plasmid may or may not be capable of replication in Agrobacterium, that is, it may or may not have a broad spectrum prokaryotic replication system such as does, for example, pRK290, depending in part upon whether the transcription cassette is to be integrated into the Ti-plasmid or to be retained on an independent plasmid. The Agrobacterium host will contain a plasmid having the vir genes necessary for transfer of the T-DNA to the plant cell and may or may not have the 10 complete T-DNA. At least the right border and frequently both the right and left borders of the T-DNA of the Ti- or Ri-plasmids will be joined as flanking regions to the transcription construct. The use of T-DNA for transformation of plant cells has received extensive study and is amply described in EPA Serial No. 120,516, Hoekema, In: The Binary Plant Vector System Offset-drukkerij 15 Kanters B.V., Alblasserdam, 1985, Chapter V, Knauf, et al., Genetic Analysis of Host Range Expression by Agrobacterium, In: Molecular Genetics of the Bacteria-Plant Interaction, Puhler, A. ed., Springer-Verlag, NY, 1983, p. 245, and An, et al., EMBO J. 20 (1985) 4:277-284.

For infection, particle acceleration and electroporation, a disarmed Ti-plasmid lacking particularly the tumor genes found in the T-DNA region) may be introduced into the plant cell. By means of a helper plasmid, the construct may be transferred to the A. tumefaciens and the resulting transfected organism used for transfecting a plant cell; explants may be cultivated with transformed A. tumefaciens or A. rhizogenes to allow for transfer

of the transcription cassette to the plant cells. Alternatively, to enhance integration into the plant genome, terminal repeats of transposons may be used as borders in conjunction with a transposase. In this situation, expression of the transposase should be inducible, so that once the transcription construct is integrated into the genome, it should be relatively stably integrated. Transgenic plant cells are then placed in an appropriate selective medium for selection of transgenic cells which are then grown to callus, shoots grown and plantlets generated from the shoot by growing in rooting medium.

To confirm the presence of the transgenes in transgenic cells and plants, a Southern blot analysis can be performed using methods known to those skilled in the art. Expression products of the transgenes can be detected in any of a variety of ways, depending upon the nature of the product, and include immune assay, enzyme assay or visual inspection, for example to detect pigment formation in the appropriate plant part or cells. Once transgenic plants have been obtained, they may be grown to produce fiber having the desired phenotype. The fibers may be harvested, and/or the seed collected. The seed may serve as a source for growing additional plants having the desired characteristics. The terms transgenic plants and transgenic cells include plants and cells derived from either transgenic plants or transgenic cells.

The various sequences provided herein may be used as molecular probes for the isolation of other sequences which may be useful in the present invention, for example, to obtain related transcriptional initiation regions from the same or different

10

15

20

. 25

plant sources. Related transcriptional initiation regions obtainable from the sequences provided in this invention will show at least about 60% homology, and more preferred regions will demonstrate an even greater percentage of homology with the probes. Of particular importance is the ability to obtain related transcription initiation control regions having the timing and tissue parameters described herein. For example, using the probe 4-4 and rac, at least 7 additional clones, have been identified, but not further characterized. Thus, by employing the techniques 10 described in this application, and other techniques known in the art (such as Maniatis, et al., Molecular Cloning, - A Laboratory Manual (Cold Spring Harbor, New York) 1982), other transcription initiation regions capable of directing cotton fiber transcription as described in this invention may be determined. The constructs 15 can also be used in conjunction with plant regeneration systems to obtain plant cells and plants; thus, the constructs may be used to modify the phenotype of fiber cells, to provide cotton fibers which are colored as the result of genetic engineering to heretofor unavailable hues and/or intensities.

Various varieties and lines of cotton may find use in the described methods. Cultivated cotton species include Gossypium hirsutum and G. babadense (extra-long stable, or Pima cotton), which evolved in the New World, and the Old World crops G. herbaceum and G. arboreum.

Color phenotypes can be assessed by the use of a colorimeter, an instrument which is already used to provide objective measurements of the color of cotton samples. A colorimeter uses a

combination of light sources and filters to make various estimates of a samples colors, sometimes referred to as tristimulus values.

In the past such estimtes have been used to calculate a value (Hunter's + b, described below) indicating the degree of yellowness of a cotton sample. The yellowness and reflectance (from Rd, the degree of lightness or darkness of the samples) has been used to provide cotton color measurements for grading. Tests are typically conducted by exposing the face of a sample to a controlled light source. A typical color chart showing how the official grade standards relate to Rd and+ b measurements is shown in Cotton, RJ Kohel and CF Lewis, Editors #24 in AGRONOMY Series-American Soc. Agromony (see Fig. 12-6).

Various colorimeter methods can be so used to quantify color and express it numerically. The Munsell method, devised by the American artist A.. Munsell, uses a classification system of paper color chips assorted according to their hue (Munsell Hue), lightness (Munsell Value), and saturation (Munsell Chroma) for visual comparison with a specimen color.

Other methods for expressing color numerically have been developed by an international organization concerned with light and color, the Commission Internationale de l'Eclairage (CIE), having a Central Bureau located at Kegelgasse 27, A-1030 Vienna, AUSTRIA. The two most widely known of these methods are the Yxy color space, devised in 1931 based on the tristimulus value XYZ, as defined by CIE, and the L*a*b* color space, devised in 1976 to provide more uniform color differences in relation to visual differences. Color spaces* such as these ar now used throughout

10

15

20

the world for color communication. The Hunter Lab color space was developed in 1948 by R.S. Hunter as a uniform color space which could be read directly from a photoelectric colorimeter (tristimulus method).

The L*C*h color space uses the same diagram as the L*a*b* color space, but uses cylindrical coordinates instead of rectangular coordinates. In this color space, L* indicates lightness and is the same as the L* of the L*a*b* color space, C* is chroma, and h is the hue angle. The value of chroma C is 0 at the center and increases according to the distance from the center. Hue angle is defined as starting at the +a axis of the L*a*b* space, and is expressed in degrees in a counterclockwise rotation. Thus, relative to the L*a*b* space, 0° and 360° would be at the +a* line, 90° would be +b*, 180° would be -a* and 270° would be -b*.

All of the above methods can be used to obtain precise measurements of a cotton fiber color phenotype.

EXPERIMENTAL

The following examples are offered by way of illustration and not by limitation.

Example 1

cDNA libraries

Tissue preparation for cDNA synthesis

Leaf and root tissue were isolated from 8 inch tall greenhouse grown seedlings and immediately frozen in liquid nitrogen. Flowers were collected at the rapidly expanding 3 day

preanthesis stage and also frozen. Seed was collected from 21 day postanthesis locules which had been removed from the boll and frozen entire in liquid nitrogen. Once frozen, the fiber was removed from the seed and the denuded seed used for RNA isolation. All fibers were removed from the seed under liquid nitrogen and the fiber was ground to a powder prior to RNA isolation. Fibers were from bolls which had been tagged at anthesis.

DNA and RNA Manipulations

- The lambda ZapIITM cDNA library system of Stratagene was used for screening, and was prepared from cDNA derived from poly-A⁺ mRNA isolated from fibers of *Gossypium hirsutum* cultivar Acala SJ-2. The fibers were isolated from bolls harvested at approximately 21 dpa using field-grown plants in Israel.
- 15 Total RNA was isolated from 21 dpa seeds (G. hirsutum cv Coker 130 from which the fiber had been removed) using the method of Hughes and Galau ((1988) Plant Mol Biol Reporter, 6:253-257.) All other RNAs were prepared according to Hall et al. ((1978), Proc Natl Acad Sci USA 75: 3196-3200), with the following 20 modifications. After the second 2M LiCl wash, the pellet was dissolved in 1/10 original volume of 10 mM Tris pH7.5 and brought to 35mM potassium acetate pH6.5 and 1/2 volume EtOH was added slowly. The mixture was placed on ice for 15 minutes and then centrifuged at 20,000 x g for 15 minutes at 4° C. The potassium acetate concentration was brought to 0.2M, 2 1/2 volumes EtOH 25 added and the RNA placed at -20°C for several hours. precipitate was centrifuged at 12,000 x g for 30 minutes at 4° C

and the pellet was resuspended in diethylpyrocarbonate-treated water. Poly-A+ RNA was prepared from total mRNA utilizing an oligo(dT)-cellulose kit (Becton Dickenson) and following the manufacturer's protocol.

Cotton genomic DNA was prepared as follows. Four grams of young cotton leaf tissue (cv Coker 130) was ground to a powder in N2 and placed in an Oak Ridge tube with 0.4g polyvinylpyrolidone and 20mls extraction buffer (200mM Ches/NaOH ph9.1, 200mM NaCl, 100mMEDTA/NaOH pH9.0, 2% SDS, 0.5% Na deoxycholate, 2% Nonidet NP-40, 20mM B-mercaptoethanol) was added to sample, gently mixed and 10 incubated at 65^OC in a shaking water bath for 10 minutes. 7.0 mls of 5M potassium acetate pH6.5 was added and carefully mixed. Incubation was carried out on ice for 30 minutes with gentle mixing every 5 minutes. The sample was centrifuged for 20 minutes 15 at 21,000 x g and the supernatant was filtered through Miracloth into another tube and centrifuged as before. The supernatant was again filtered through Miracloth into 15 mls of room temperature isopropanol in an Oak Ridge tube. After gentle mixing, the sample was incubated at room temperature for 10-60 minutes until the DNA 20 precipitated. The DNA was spooled and allowed to air dry before being resuspended in 4 mls of TE on ice for 1 hour. CsCl was added to 0.97g/ml final concentration and 300 ul 10mg/ml ethidium bromide was also added before filling VTi80 quick seal tubes. sample was centrifuged overnight at 225,000 x g overnight. DNA was extracted with water saturated butanol and enough water 25 was added to bring the volume to 4 mls before adding 2 volumes

EtOH. The DNA was spooled, air dried and resuspended in 200 ul sterile water.

Northern and Southern Analysis

For Northerns, 10ug of total RNA was isolated from various tissues, separated by electrophoresis in 1.2% agarose-formaldehyde gels and transfered onto Nytran Plus membranes (Schleicher and Schuell). Hybridization conditions consisted of a solution containing 50% formamide(v/v), 5xSSC, 0.1% SDS, 5mM EDTA, 10x

Denhardts solution, 25mM sodium phosphate pH6.5 and 250 ug/ml carrier DNA. Washes were performed in 2xSSC, 0.1% SDS at 42^OC 3 times for 30 minutes each time.

Cotton genomic DNA (12ug) was digested with various restriction endonucleases, electrophoresed in 0.9% agarose gels and blotted onto Nytran Plus membranes. Hybridization and filter washing conditions for both the 3' specific and full-length cDNA insert probes were as described for Northern analysis.

Probes derived from 3'-untranslated regions were synthesized via oligonucleotide primers from the Rac13 cDNA, corresponding to bases 600-619 and 843-864 (Figure 4). Each set of primers was used in a polymerase chain reaction to synthesize copies of 3'-specific DNA sequences. These sequences were used as templates in the generation of single-stranded, ³²P-labeled probes off the antisense strand in a polymerase chain reaction. The full-length cDNA inserts for Rac13 were used as templates for double stranded, random primed probes using the Prime-It kit (Stratagene).

15

20

Example 2

Isolation of cDNA Clones from Cotton

cDNA to the 4-4 clone was isolated from the cotton fiber library described above, and shown to express in fiber but not other tissues. This sequence was not related to any known protein. Only 400 kb of encoding sequence was present in this clone, so the library was rescreened using the cDNA to obtain full-length clones. The full-length encoding sequence is provided in Figure 1.

By comparing sequences of random cDNA clones against various sequence data banks via BLAST, a National Center for Biotechnology Information service, a clone, designated #105, was found to have an encoding sequence related to that of a reported lipid transfer protein.

Another clone was sequenced which showed high homology to animal Rac proteins. This clone, designated Rac, was not quite full-length, and the library was re-screened using this initial Rac DNA segment as probe. Of approximately 130,000 primary plaques screened, 56 screened positive; of these, 14 clones were isolated and sequenced. Of these 14 clones, 12 showed identical sequence homology to the original Rac clone and one of these cDNA clones encoded a full length cDNA and received the name Rac13. Figure 4 shows the cDNA sequence encoding the Rac13 gene expressed in cotton fiber.

One other partial-length cDNA clone, designated Rac9, was clearly related, but distinct in DNA and amino acid sequence from Rac13. Re-screening of 150,000 plaques resulted in the isolation

of 36 positive clones of which only two clones corresponded to the Rac9 sequence (both full-length clones), the remainder being Rac13. These results suggest that cotton contains genes for at least two distinct Rac proteins. Based upon the frequency of clone isolation, Rac13 is relatively highly-expressed and Rac9 less so in cotton fibers at 21 days post-anthesis (dpa), the age at which polyA+ mRNA was isolated for library construction.

Comparisons of the deduced amino acid sequence of Rac13 with other small G-proteins showed that the cotton Rac proteins are very closely related to the Rhol protein sequence deduced from a cDNA clone isolated recently from pea (Yang and Watson, supra). After the pea Rhol, mammalian Rac proteins show the highest homology with the cotton Rac proteins. Other proteins of the rho subfamily, such as the yeast CDC42 and human RhoA, are also clearly related to the cotton Rac genes. By contrast, the other small G-proteins of the Rab/YPT subfamily isolated from plants such as the example shown of the tobacco RAB5 protein, as well as the human Ras proteins, are least homologous to the cotton Rac proteins of all the small G-proteins compared. The cotton and pea proteins, as well as the mammalian Racs, all have pI's above 9, whereas those of other rho and ras proteins are in the range of 5.0-6.5.

Example 3

Expression of Cotton Fiber Genes in Developing Fibers

Expression of the Rac13 and 4-4 genes was assessed using

mRNA prepared from various cotton tissues and from fibers at

10

15

20

different stages of development. Blots were hybridized with probes derived from untranslated regions of Ltp, Rac13 and 4-4 genes. The gene for Rac13 exhibits highly-enhanced expression in fibers; virtually no detectable mRNA is present in leaves, roots, or flower parts, even under conditions of extended development time. Rac13 expression is detected in seeds at an age that corresponds to the highest expression levels observed in fiber tissue derived from seeds of this same age. The pattern of Rac13 expression in fibers is very dependent upon the developmental stage. Expression is very low during the stage of primary wall synthesis (0-14 dpa, see Meinert and Delmer, 1977), reaches a maximum during the transition to secondary wall synthesis (about 15-18 dpa), and declining during the stage of maximal secondary wall cellulose synthesis (about 24-28 dpa).

15 4-4 mRNA is begins to accumulate in fiber cells only at day
17 post anthesis and continues through at least day 35 post
anthesis. Levels peak at day 21 and remain high. 4-4 mRNA is not
detected in other cotton tissues, and is not detected in fiber
tissue before onset at 17 days post anthesis.

20 The #105 lipid transfer protein cDNA clone was used as a probe against cotton tissue and in a cotton fiber northern. The northern showed that the cotton fiber Ltp is highly expressed in cotton fiber. The mRNA that codes for this protein is expressed throughout fiber development at extremely high level. Northern 25 blots indicate that this mRNA is expressed at 5 dpa and is continually expressed at a high level at 40 dpa.

Example 4

Genomic DNA

cDNA for both the 4-4 and Rac13 was used to probe for genomic clones. For both, full length genomic DNA was obtained from a library made using the lambda dash 2 vector from StratageneTM, which was used to construct a genomic DNA library from cotton variety Coker 130 (Gossypium hirsutum cv. coker 130), using DNA obtained from germinating seedlings.

The cotton genomic library was probed with a 3'-specific Ltp probe and 6 genomic phage candidates were identified and purified. Figure 7 provides an approximately 2 kb sequence of the Ltp promoter region which is immediately 5' to the Ltp encoding region.

Six genomic phage clones from the cotton genomic library were identified using a 3'-specific probe for the Ltp mRNA. This was done to select the promoter from the Ltp gene that is maximally expressed in cotton fiber from the family of Ltp genes in cotton. The Ltp promoter is active throughout the fiber development period.

20

10

15

Example 5

Preparation of 4-4 Promoter Constructs

pCGN5606

The pCGN5606 promoter construct comprises the 4-4 cotton

25 fiber expression cassette in a first version, version I (Figure

2). The sequences from ntl to 65 and nt 5,494 to 5,547 correspond
to fragments of the pBluescriptII polylinker where this cassette

is cloned. Unique restriction enzyme sites present in these regions flanking the cassette allow the cloning of the fiber expression cassette into binary vectors including the pCGN 5138 and 1547 series.

The sequences from nt57 to 5,494 are contained in a lambda phage clone of a cotton Coker 130 genomic library. This lambda genomic clone was given the designation 4-4(6).

The region from nt 65 to nt 4,163 corresponds to the 5' flanking region of the 4-4(6) gene. At nt 4,163 there is a NcoI restriction site sequence that corresponds to the first codon of the 4-4 (6)ORF.

The region from nucleotide 4,163 to 4,502 corresponds to part of the 4-4 (6)ORF. The sequence from nt 4,502 to 4,555 is a synthetic polylinker oligonucleotide that contains unique target sites for the restriction enzymes EcoRI, SmaI, SalI, NheI and BglII. This fragment from nt4,163 to 4,555 is a stuffer fragment and is left in place to facilitate the monitoring of cloning manipulations.

The genes to be expressed in cotton fiber cells using this
cassette can be cloned between the NcoI restriction site and any
of the polylinker sites. This operation will replace the stuffer
fragment with the gene of interest. The region from nt 4,555to
5,494 corresponds to the 940 nucleotides downstream of the stop
codon and constitute the 3' flanking region of the 4-4 (6) gene.
There is a unique AscI restriction enzyme site at nt 5483.

pCGN5610

10

The pCGN5610 construct is a second version of a 4-4 cotton fiber expression cassette, version II, which is a modified version of pCGN5606. The two versions of the 4-4 cotton fiber expression cassette are designed to allow the cloning of tandem arrays of two fiber cassettes in one binary plasmid. The differences with respect to pCGN5606 are very minor and described below.

The XbaI restriction site in the region of nt 1 to 65 has been deleted by standard cloning manipulations.

The polylinker region is in the reverse orientation of pCGN5606.

There is a unique XbaI restriction enzyme site at nt5484. The sequences from nt1 to 57 and nt 5,494 to 5,518 of pCGN5610 correspond to fragments of the pBluescriptII polylinker where this cassette is cloned. Unique restriction enzyme sites present in these regions allow the cloning of the fiber expression cassette into binary vectors of the pCGN 5138 and 1547 series.

The sequences from nt57 to 5,494 are contained a lambda phage clone of a Coker 130 genomic library. This clone is described in my notebook as lambda genomic clone 4-4(6). The region from nt 57 to nt 4,155 corresponds to the 5' flanking region. At nt 4,155 there is a NcoI restriction site sequence that corresponds to the first codon of the 4-4 ORF.

The region from nucleotide 4,156 to 4,500 corresponds to part of the 4-4 ORF. This fragment from nt4,156 to 4,550 is a stuffer fragment and is left in place to facilitate the monitoring of cloning manipulations. The sequence from nt 4,500 to 4,550 is a synthetic polylinker oligonucleotide containing unique target

5

10

sites for the restriction enzymes BglII, NheI, SalI, SmaI and EcoRI.

The genes to be expressed in cotton fiber cells using this cassette can be cloned between the NcoI restriction site and any of the polylinker sites. This operation replaces the stuffer fragment with the gene of interest. The region from nt 4,550 to 5,494 corresponds to the 940 nucleotides downstream of the stop codon and constitute the 3' flanking region of the 4-4 (6) gene.

10

15

20

25

Example 6

Preparation of Rac13 Promoter Constructs

Genomic clone

From a genomic clone designated 15-1, mapping was done with restriction endonucleases. The largest fragment with the Rac13 coding region was identified. Theis was a Pst fragment, and when subcloned in the Bluescript^M KS+ vector (BSKS+; Stratagene) was named pCGN4722. The insert had a length of 9.2 kb.

The region of the Pst fragment with the Rac13 coding sequence was identified. DNA sequence was determined for approximately 1.7 kb 5' of the start codon and approximately 1.2 kb 3' of the stop codon. The entire Rac coding region (exons and introns) was conveniently flanked by Ndel sites.

pCGN4722 was digested with Xba1, and a 2.7 kb fragment was removed. Religation gave pCGN4730, which was then digested with Nde1, dropping out a 1.7 kb fragment containing the entire Rac coding region. Religation yielded pCGN4731.

A polylinker region was created using overlapping synthetic oligonucleotides which were PCR'ed using primers homologous to the 5' and 3' ends of the resynthesized section. The resulting product was digested with EcooR1 and Hind III and ligated into BSKS+ at the EcoR1 and Hind III sites. The resulting plasmid was designated pCGN4733.

pCGN4731 and pCGN4633 were digested with Ndel and the Ndel fragment containing the synthesized polylinker region from pCGN4733 was dropped in the Ndel site of 4731, giving pCGN4734. This last plasmid was digested with Sal and Xba, and so was pCGN5133. pCGN5133 was the 9.2 kb pst fragment in BSKS+ where the polylinker sites flanking the insert were altered to different sites for ease of manipulation. The fragment from pCGN4734 was then placed into the equivalent site of pCGN5143, giving pCGN4735.

A sequence for approximately 3 kb of the promoter construct pCGN4735 is provided in Figure 5. The resynthesized sequence falls between the Ndel sites located at bases 1706 and 1898 of the sequences. Thus, the sequence in Figure 5 includes approximately 1.7 kb 5' to the Ndel site 5' to the resynthesized polylinker region. There is a roughly 2.5 kb sequence 5' from this sequence which is not provided in Figure 5, relative to the total 9.2 kb insert. The sequence of Figure 5 also includes approximately 1.1 kb 3' to the 3' Ndel site. Approximately 3 kb which is most 3' in the Rac13 insert is not provided in Figure 5. A map for pCGN4735 is provided in Figure 6.

Example 7

10

15

20

Pigment Synthesis Genes

Melanin

10

15

20

25

A binary construct for plant transformation to express genes for melanin synthesis is prepared as follows. The melanin genes were originally isolated from the common soil bacterium Streptomyces antibioticus (Bernan et al. (1985) 34:101-110). Melanin production is composed of a two gene system. The first gene, tyrA, encodes the catalytic unit responsible for the polymerization of the amino acid tyrosine, the primary substrate, and is termed tyrosinase. The second gene, ORF438, is responsible for binding copper and delivering copper to the tyrosinase and activating the enzyme. Expression of both the ORF438 and tyrA genes ensures maximal tyrosinase activity.

The genes for both ORF438 and tyrA were fully re-synthesized with respect to their DNA sequence. This was performed as the initial DNA sequence isolated from Streptomyces has a very high guanine and cytosine (G+C) DNA content. Thus, the ORF438 and tryA genes were re-synthesized to appear more "plant-like" (reduced G+C content) with respect to plant preferred codons encoding their corresponding amino acids.

<u>Indigo</u>

Indigo production involves conversion of the amino acid tryptophan, the primary substrate, into indole which is then converted into indoxyl. Molecules of indoxyl spontaneously convert to indigo in the presence of oxygen. A two gene system was used to affect indigo production in fiber cells. The first

gene (tna) was obtained from the bacterium E. coli and encodes the enzyme tryptophanase. The designation tna stands for the gene encoding tryptophanase from E. coli, an enzyme which converts tryptophan to indole (Stewart et al., (1986) J Bacteriol 166:217-223).

The pig designation is used for the encoding sequence to the protein for indigo production from Rhodococcus, which produces indigo from indole (Hart et al., (1990) J Gen Microbiol 136:1357-1363). Both that and pig were obtained by PCR. Tryptophanase is responsible for the conversion of tryptophan to indole, while the second gene (pig) encodes an indole oxygenase enzyme responsible for the conversion of indole to indoxyl. Both these bacterial genes were utilized in their native form.

15 Example 8

Constructs for Targeting Pigment Synthesis Genes

For plastid targeting, the constructs contain a fragment of the tobacco ribulose bisphosphate carboxylase small subunit gene encoding the transit peptide and 12 amino acids of the mature protein (Tssu) positioned in reading frame with the appropriate encoding sequence.

For vacuolar targeting of the melanin synthesis genes, constructs include a fragment of the metallocarboxypeptidase inhibitor gene, encoding the entire 32 amino acid N-terminus signal peptide of that protein plus 6 amino acids of the mature protein (CPI+6) (Martineau et al., supra), positioned in reading frame with the appropriate encoding sequences. In addition to the

5

10

20

signal peptide, a sequence encoding a vacuolar localization signal (VLS) is inserted 3' of the protein encoding sequence.

Constructs which contain encoding sequences for bacterial genes involved in biosynthesis of pigmented compounds and sequences for directing transport of the encoded proteins into plastids or vacuoles are prepared as follows.

Melanin

10

15

20

25

The re-synthesized ORF438 and tyrA genes were treated in two distinct ways depending on which compartment in the fiber cell the final protein products would be localized. One chimeric gene/plant binary construct (designated pCGN5148) contained the genes targeted to the fiber cell plastids. To do this, 12 amino acids of a gene for the small subunit of carboxylase (SSU) plus the original 54 amino acid SSU transit peptide were fused to the amino termini of both the ORF438 and tyrA gene products respectively. These peptide sequences allow the ORF438 and tyrA gene products (proteins) to be efficiently targeted to the plastid. This targeting was initiated as the plastid is the site of tyrosine production within the fiber cell.

The second chimeric gene/plant binary construct (designated pCGN5149) contained the ORF438 and tyrA genes targeted to the vacuole within the fiber cell. Based on information from other biological systems, it was postulated that the fiber cell vacuole may contain a high concentration of tyrosine for melanin polymerization. Both the ORF438 and tryA genes contain the 29 amino acid signal peptide from a tomato carboxypeptidase inhibitor

(CPI) protein as amino terminal gene fusions to direct these proteins to the endoplasmic reticulum (ER) secretory system of the fiber cell.

In addition, the tyrA gene has an 8 amino acid vacuolar

targeting peptide (VTP) from CPI fused at the carboxy terminus so that the mature copper-activated tyrosinase will eventually be targeted to the vacuole of the fiber cell. Both the ORF438 and tyrA proteins also had potential glycosylation sites removed via site-directed mutagenesis of the ORF438 and tyrA genes

respectively. Potential plant cell glycosylation of these proteins upon their expression in fiber cells could result in tyrosinase inactivation, hence removal of potential glycosylation sites was deemed necessary.

15 <u>Indigo</u>

The only modification to the indigo genes was the fusion of the tobacco SSU transit peptide encoding DNA sequences onto the amino terminal region of both the tna and pig genes to affect the localization of both the tryptophanase and indole oxygenase proteins to the fiber cell plastid. These are the same exact gene fusions that were made for the plastid-directed proteins for melanin production in construct 5148. The tna and pig gene products were targeted to the fiber cell plastid as that is the primary site of tryptophan synthesis.

25

20

Example 9

Expression Constructs

Melanin

The modified genes for both the plastid and vacuolar targeted ORF438 and tyrosinase proteins were placed into a fiber expression cassette to be "switched" on during development of the cotton fiber cell. The "switch" (promoter) utilized for the melanin constructs was 4-4. The modified ORF438 and tyrA genes were cloned into the 4-4 promoter cassette and these chimeric genes then inserted into a binary plasmid to create plasmids pCGN5148 and pCGN5149, containing the modified genes for plastid and vacuolar targeted ORF438 and tyrosinase proteins, respectively. 10 These binary plasmids also contain genetic determinants for their stable maintenance in E. coli and Agrobacterium and also contain a chimeric gene for plant cell expression of the bacterial kanamycin resistance gene. This kanamycin resistance marker allows for the 15 selection of transformed versus non-transformed cotton cells when plant hypocotyl or leaf segments are infected with Agrobacterium containing the binary plasmids.

A block diagram of the plasmid pCGN5149, having vacuolor targetting sequences, is shown in Figure 8. Plasmid pCGN5148 (not shown) is constructed the same as 5149, only pCGN5148 has plastid-targetting sequences.

Indigo

As with the melanin genes, the plastid-directed tna and pig
genes were placed in the fiber-specific 4-4 promoter cassette and
these chimeric genes subsequently inserted into a binary plasmid

to create plasmid pCGN5616. A block diagram of plasmid pCGN5616 is shown in Figure 8.

Anthocyanin

A construct has been prepared for the expression of the maize R and CI genes in developing cotton fiber. These genes are known to be responsible for the production of Anthocyanin pigments by acting in a regulatory manner to turn on the chalcone pathway for production of anthocyanins (red spectrum colors). The R and CI genes were placed under the control of the Rac13 promoter cassette. A binary plasmid designated pCGN4745 (not shown), contains both the R and CI genes each under control of the Rac13 promoter.

15

20

25

10

5

Example 10

Cotton Transformation

Explant Preparation

Coker 315 seeds are surface disinfected by placing in 50% Clorox (2.5% sodium hypochlorite solution) for 20 minutes and rinsing 3 times in sterile distilled water. Following surface sterilization, seeds are germinated in 25 x 150 sterile tubes containing 25 mls 1/2 x MS salts: 1/2 x B5 vitamins: 1.5% glucose: 0.3% gelrite. Seedlings are germinated in the dark at 28°C for 7 days. On the seventh day seedlings are placed in the light at 28±2°C.

Cocultivation and Plant Regeneration

Single colonies of A. tumefaciens strain 2760 containing binary plasmids pCGN2917 and pCGN2926 are transferred to 5 ml of MG/L broth and grown overnight at 30°C. Bacteria cultures are diluted to 1 x 10⁸ cells/ml with MG/L just prior to cocultivation. Hypocotyls are excised from eight day old seedlings, cut into 0.5-0.7 cm sections and placed onto tobacco feeder plates (Horsch et al. 1985). Feeder plates are prepared one day before use by plating 1.0 ml tobacco suspension culture onto a petri plate containing Callus Initiation Medium CIM without antibiotics (MS salts: B5 vitamins: 3 % glucose: 0.1 mg/L 2,4-D: 0.1 mg/L kinetin: 0.3% gelrite, pH adjusted to 5.8 prior to autoclaving). A sterile filter paper disc (Whatman #1) was placed on top of the feeder cells prior to use. After all sections are prepared, each section was dipped into an A. tumefaciens culture, blotted on sterile paper towels and returned to the tobacco feeder plates.

Following two days of cocultivation on the feeder plates, hypocotyl sections are placed on fresh Callus Initiation Medium containing 75 mg/L kanamycin and 500 mg/L carbenicillin. Tissue was incubated at 28±2°C, 30uE 16:8 light:dark period for 4 weeks.

20 At four weeks the entire explant was transferred to fresh callus initiation medium containing antibiotics. After two weeks on the second pass, the callus was removed from the explants and split between Callus Initiation Medium and Regeneration Medium (MS salts: 40mM KNO3: 10 mM NH4Cl:B5 vitamins:3% glucose:0.3% gelrite:400 mg/L carb:75 mg/L kanamycin).

Embryogenic callus was identified 2-6 months following initiation and was subcultured onto fresh regeneration medium.

10

Embryos are selected for germination, placed in static liquid Embryo Pulsing Medium (Stewart and Hsu medium: 0.01 mg/l NAA: 0.01 mg/L kinetin: 0.2 mg/L GA3) and incubated overnight at 30°C. The embryos are blotted on paper towels and placed into Magenta boxes containing 40 mls of Stewart and Hsu medium solidified with Gelrite. Germinating embryos are maintained at $28\pm2^{\circ}$ C 50 uE m $^{-2}$ s $^{-1}$ 16:8 photoperiod. Rooted plantlets are transferred to soil and established in the greenhouse.

Cotton growth conditions in growth chambers are as follows: 16 hour photoperiod, temperature of approximately 80-85°, light intensity of approximately 500µEinsteins. Cotton growth conditions in greenhouses are as follows: 14-16 hour photoperiod with light intensity of at least 400µEinsteins, day temperature 90-95°F, night temperature 70-75°F, relative humidity to approximately 80%. 15

Plant Analysis

5

10

20

25

Flowers from greenhouse grown Tl plants are tagged at anthesis in the greenhouse. Squares (cotton flower buds), flowers, bolls etc. are harvested from these plants at various stages of development and assayed for enzyme activity. GUS fluorometric and histochemical assays are performed on hand cut sections as described in co-pending application filed for Martineau et al., supra. For fiber color characteristics, plants are visually inspected, or northern or western analysis can be performed, if necessary.

Example 11

Expression of Transgenic Pigment Synthesis Genes

Melanin

Plants that exhibited resistance to the kanamycin selectable marker via a leaf assay and corresponding Western analysis were considered transformed. Transgenic fiber was collected from individual plant transformants at different stages of fiber development and analyze in two ways. One was to analyze fiber at a single developmental time point for each transgenic cotton plant to compare tyrosinase expression between transgenic events. The other was to screen developing fiber from selected plants to analyze the timing of tyrosinase expression under the control of the fiber-specific 4-4 promoter, by Western blots using antisera prepared against purified tyrosinase protein.

For the plastid-targeted construct pCGN5148 9 of 13 events screened for tyrosinase expression were positive, while 13 of the 16 transformed vacuolar-targeted construct pCGN5149 events which were screened were positive. Expression level in the fiber in tyrosinase positive plants is approximately 0.1-0.5% fiber cell protein. Clearly, the cotton fiber cells comprising the DNA color constructs DNA produce the necessary proteins required for synthesis of a pigment.

Visually, the lint from the tyrosinase positive events exhibits color to varying degrees, while plants that do not express the enzyme do not exhibit any color. Colorimeter measurements of cotton fiber taken from control Coker 130 plants

20

and plants from various events transformed with pCGN5148 are provided in Figures 9 and 10, respectively.

Fiber from pCGN5148 (plastid-directed) plants demonstrates a bluish-green color phenotype. One event, 5148-50-2-1 included cotton fiber cells (linters) which were colored and which had an negative a* value less than - 8.0, as measured on the L*a*b* color space. Coker 130 cotton fiber cells do not typically demonstrate a negative a* value.

These colored cotton cells also had a color located on the L*C*h color space with a relatively high hue angle value h, greater than 135°. Normal Coker 130 fibers have a similar value which is not greater than about 90° as measured by this method.

Results of colorimeter measurements of cotton fiber taken from plants transformed with pCGN5149 are provided in Figure 11. Fiber from plants expressing tyrosinase from construct pCGN5149 (vacuolar-targetted) tends to have a light brown phenotype.

Indigo

10

15

20

25

Resistance to the kanamycin selectable marker via leaf assay and Western analysis was again the criterion for designating a plant as transformed by pCGN5616. Transgenic fiber was collected from individual plant transformants at different stages of fiber development. The transgenic developing fiber is screened from selected plants to analyze the timing of that and pig gene expression under the control of the fiber-specific 4-4 promoter and fiber is also analyzed at a single developmental time point for each transgenic cotton plant for comparison of both

tryptophanase and indole oxygenase expression between transgenic events, by using Western blots with antisera prepared against the tryptophanase and indole oxygenase proteins.

For the indigo events, 15 of 24 screened plants were positive for expression of both the tryptophanase and indole oxygenase enzymes. Expression levels in the fiber of these proteins is between 0.05-0.5% fiber cell protein. Approximately half of these transformants are expressing both genes in the fiber resulting in a very faint light blue color phenotype. Visually, there is a 10 faint blue color in the majority of these positive events, particularly in 20-30 dpa fiber in the unopened boll. Results of colorimeter measurements of cotton fiber taken from various events of plants transformed with pCGN5616 are provided in Figure 12. Many of these events had relatively low a* values (less than 2) 15 with elevated b* values (greater than 10), as measured on the L*a*b* color space. Similarly, several 5149 events also measured with an a* value less than 2 while maintaining a b* value greater than 10.

20 BC Cotton

Colorimeter measurements taken on naturally colored fiber from four separate BC cotton lines is provided in Figure 13.

The above results demonstrate that the color phenotype of a transgenic cotton fiber cell can be altered by expressing pigment synthesis genes. The transgenic cotton fiber cells include both a pigment synthesizing protein, and pigment produced by the pigment

synthesizing protein. As shown from the results of Figures 9 through 13, expression of a pigment gene of interest can result in cotton fiber cells in which the synthesis of pigments combined with appropriate targeting sequences results in modification of color phenotype in the selected plant tissue, yielding colored cotton fiber by expression from a genetically engineered construct.

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application are specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail, by way of illustration and example for purposes of clarity and understanding, it will be readily apparent to those of ordinary skill in the art that certain changes and modifications may be made thereto, without departing from the spirit or scope of the appended claims.

10

<u>CLAIMS</u>

What is claimed is:

- 1. A DNA construct comprising as operably joined components in the direction of transcription, a cotton fiber transcriptional factor and an open reading frame encoding a protein of interest, wherein said transcriptional factor is selected from the group consisting of the Ltp, the 4-4 and the rac promoter sequences.
- 2. The DNA construct according to Claim 1, further comprising a transport signal encoding sequence from a plant nuclear-encoded gene.
 - 3. The DNA construct according to Claim 2, wherein said transport signal encoding sequence comprises a plastid transit peptid.
 - 4. The DNA construct according to Claim 1, wherein said transport signal encoding sequence encodes a signal peptide which provides for transport across the rough endoplasmic reticulum.
- 5. The DNA construct according to Claim 4, wherein said sequence further comprises, 3' to said open reading frame, a vacuolar localization signal.
 - 6. The DNA construct of Claim 1 wherein said pigment is melanin or indigo.
- 7. The DNA construct of Claim 6 wherein said open reading frame is from a bacterial gene.

8. The DNA construct of Claim 7 wherein said bacterial gene is selected from the group consisting of ORF438, tyrA, anthocyanin R gene, anthocyanin Cl gene, pig, and tna.

- 9. A plant cell comprising a DNA construct of Claim 1.
- 10. A cotton plant cell according to Claim 9.
 - 11. A cotton fiber cell according to Claim 10.
- 12. A plant comprising a cell of any one of Claims 9 11.
- 13. A method of modifying fiber phenotype in a cotton10 plant, said method comprising:

transforming a plant cell with DNA comprising a construct for expression of a protein in a pigment biosynthesis pathway, wherein said construct comprises as operably joined components:

a transcriptional initiation region functional in cells of said cotton plant,

an open reading frame encoding a protein of interest, and

a transcriptional termination region functional in cells of said cotton plant,

wherein said plant cell comprises a substrate of said protein; and

growing said plant cell to produce a cotton plant, wherein said protein reacts with said substrate to produce said pigment.

25

14. The method of Claim 13 wherein said construct further comprises a transport signal encoding sequence from a plant nuclear-encoded gene.

- 15. The method of Claim 13 wherein said transport signal encoding sequence encodes a signal peptide which provides for transport across the rough endoplasmic reticulum.
- 16. The method of Claim 13 wherein said DNA comprises constructs for expression of two proteins in a pigment biosynthesis pathway, wherein each of said constructs comprises components i) through iv), and wherein said two proteins are not encoded by the same gene.
 - 17. The method of Claim 16 wherein said pigment is melanin and said proteins are encoded by tyrA and ORF438.
- 15 18. The method of Claim 16 wherein said pigment is indigo and said proteins are tna and pig.
 - 19. The method of Claim 16 wherein said pigment is anythocyanin and said constructs comprise the anthocyanin R and C1 regulatory genes.
- 20. The method of Claim 13 wherein plant cell is a cotton fiber cell, and wherein said transcriptional region is a fiber tissue transcription iniation region.
 - 21. The method of Claim 20 wherein said transcriptional region is selected from the group consisting of the Ltp, the 4-4 and the rac promoter sequences
 - 22. A recombinant DNA construct comprising the cotton tissue transcriptional sequence shown in Figure 2.

25

5

23. A recombinant DNA construct comprising the cotton tissue transcriptional sequence shown in Figure 5.

- 24. An isolated DNA encoding sequence of Figure 1.
- 25. An isolated DNA encoding sequence of Figure 4.
- 26. The method of Claim 13 wherein said protein of interest is involved in the synthesis of a plant hormone.
 - 27. An isolated DNA sequence comprising the cotton lipid transfer protein encoding sequence of Figure 7.
- 28. A cotton fiber cell comprising a DNA sequence, wherein said DNA sequence comprises as operably joined components in the direction of transcription, a cotton fiber transcriptional factor and an open reading frame encoding a protein required for synthesis of a pigment.
 - 29. A cotton fiber cell according to Claim 27 comprising pigment produced by said pigment synthesizing protein.
 - 30. A cotton fiber cell according to Claim 27 wherein said DNA sequence further comprises a transport signal encoding a sequence from a plant nuclear-encoded gene.
- 31. A cotton fiber cell according to Claim 29, wherein said transport signal encoding sequence comprises a plastid transit peptid.
 - 32. A cotton fiber cell according to Claim 29, wherein said transport signal encoding sequence encodes a signal peptide which provides for transport across the rough endoplasmic reticulum.
- 25 33. A cotton fiber cell according to Claim 31, wherein said sequence further comprises, 3' to said open reading frame, a vacuolar localization signal.

5

34. A cotton fiber cell according to Claim 27 wherein said transcriptional factor is selected from the group consisting of the cotton fiber lipid transfer promoter sequence, the 4-4 promoter sequence and the *rac* promoter sequence.

- 5 35. A cotton fiber cell according to Claim 27 wherein said pigment is melanin or indigo.
 - 36. A cotton fiber cell according to Claim 27 wherein said open reading frame is from a bacterial gene.
- 37. A cotton fiber cell according to Claim 35 wherein said bacterial gene is selected from the group consisting of ORF438, tyrA, anthocyanin R gene, anthocyanin C1 gene, pig, and tna.
 - 38. A cotton fiber cell comprising melanin.
 - 39. A cotton fiber cell comprising indigo.
- 40. A cotton fiber cell which is colored by genetic

 15 engineering and which has a negative a* value less than 1.0 as

 measured on the L*a*b* color space.
 - 41. The cotton fiber cell of Claim 39 wherein said negative a* value is less than a -5.0.
- 42. The cotton fiber cell of Claim 40 wherein said negative 20 a* value is less than a -8.0.
 - 43. A cotton fiber cell which is colored by genetic engineering and which has an a* value less than 2 and the b* value greater than 10 as measured on the L*a*b* color space.
- 44. A cotton fiber cell which is colored by genetic

 25 engineering and which has a hue angle value h of greater than 100° as measured on the L*C*h color space.

45. The cotton fiber cell of Claim 43 wherein said h value is greater than a 135°.

	٨		٨	^		A			•		
TTC Phe>	CAC His>		TCA Ser>	TCT Ser>	240	AAG Lys>	GAA Glu>		AAA Lys>	AAA Lys>	
TTC	AGC Ser	140	ACC	GAG Glu		GAG Glu	CAT		GAT Asp	380 GAG Glu	
40 CCT Pro	GGT Gly	•••	ACA Thr	GAA Glu		CAT His	280 A CAT S His		TAC Tyr	3 CAC His	
CAT	ATC Ile		CAA	CAC His		AAA Lys	28 AAA Lys		GAG Glu	GAG Glu	
CGT Arg	ATG Met		ACA Thr	180 AAG Lys		CCA	TGC		GAA Glu	AAA Lys	420
TTT Phe	80 CTA Leu		CAC	GAA Glu		TAC	CCC	320	CAC His	CCT	
AAC Asn	TCA		${ m TTC}$	TAC Tyr	220	GAG Glu	AAA Lys	(*)	GAG Glu	AAG Lys	
CAT His	GTC Val		TTA	AAA Lys	23	GAA Glu	CAA		AAG Lys	GAA Glu	
GCT	ACT Thr	120	CAT His	TCA		CAT	AAA Lys		TCG	360 TGG Trp	
20 ATG Met	ATT Ile		CGA Arg	GCT		AAA TAT Lys Tyr	260 GAA G1u		GAA Glu	AAA Lys	
ACC	CTC		GCT	160 CAA TTG Gln Leu			GAG Glu		CGC Arg	CCC	0
TTA Leu	TTA Leu		GCG			CCA	AAG Lys		TCA	TTC	400
TGG	60 CTT Leu		TCA	CCA		CAG Gln	TAC	300	GAG Glu	GAT Asp	
ATT Ile	CAA Gln		TCG	CTG	200	AAA Lys	ATG		CAC His	CCC	
TCT	TTC	100	GTC	GAG Glu	•	TAC	GAA Glu		TAC Tyr	AAA Lys	
CTT	CTT Leu	1(ACC	TCA		GAA Glu	CCT		GAG Glu	340 GAA AAA Glu Lys	

FIGURE 1A

FIGURE 1B

					•							
	GAT ASP>	480 TCG Ser>		TGG Trp>	ATA Ile>		GAG Glu>	ATA Ile>	720	TAC Tyr>	CAT His>	
	CAA	GAA Glu		AAA Lys	CCG AAA ATA Pro Lys Ile	620	CAT His	GGC		GTT Val	GTG Val	
	AAA Lys	CAC His	520	CCC	CCG	v	AAA Lys	AAA Lys		CAT His	760 A CTG r Leu	
	GAC Asp	TCA	52	TTC Phe	TAT Tyr		CAT His	GAG Glu		GTC Val	760 ACA CTG Thr Leu	
	AAG Lys	GAG Glu		GAT ASP	GAA Glu		GAA Glu	660 CCT Pro		GAA Glu	ATG Met	
	TAC	CAG Gln		CCC	560 GCC Ala		AAG Lys	AAA Lys		GCC	CAT	*
	ATA CCC GAG Ile Pro Glu	460 GAG TGC Glu Cys		AAA Lys	aaa Lys		GAT ASP	AAG Lys	700	ATG	AGC	ω
	CCC Pro			GAA Glu	CAT		GAG Glu	GAG Glu	70	TGA ***	TTA	
	ATA Ile	GAA Glu		AAA Lys	AAA Lys	009	GAT Asp	GAG Glu		GCC	GCC Ala	
	AAA Lys	AAA GAT Lys Asp	500	GAG	GAG Glu		CTA	GAA Glu		AAT Asn	740 CAC TAA His ***	
K	CCG	AAA Lys		TAC	CAC		GAA AAA Glu Lys	640 GAA AAA Glu Lys		TAA	CAC His	
	TAT	CAT His		GAG Glu	GGG		GAA Glu	64 GAA G1u		GGT	GAG Glu	
	GAA Glu	AAA Lys		GAA Glu	540 AAA Lys		AAG Lys	CAT His		GTG Val	CTC	780
	GTC Val	440 AAG Lys		CAC	CCT		TGC	AAG Lys	089	TGA	TGG	
	GAA Glu	AAT Asn		GAG Glu	AAG Lys	280	GAG Glu	CCA		CCC	GTC Val	
	CAC	GAG		AAA Lys	GAA Glu	ũ	CCT	TTC		GTA Val	TCA	

	•
\equiv	ì
	•
F.	1
-	ı
щ	í
_	
C	,
ũ	1
	•

Arr Gir Ile Val>	TGA ***>		AGT Ser>	960 ATG Met>	
ALI Ile	60 CCA Pro		TAT	TGT Cys	
Tyr	860 CAT CCA His Pro		$_{\rm GLy}^{\rm GCT}$	TGT Cys	
Asn	ATT Ile		AAT Asn	GAA Glu	
Cys	TGC	* 006		TTT Phe	
AlG GGA TAT TGT AAT Met Gly Tyr Cys Asn	GTG Val		ATT Ile	AAT Asn	
G1y	TGT Cys		ATA GAG Ile Glu	940 AGT GAA ATT AAT Ser Glu Ile Asn	
ATG Met	ATG Met		ATA Ile	940 GAA AT	
Phe	840 GAA G1u		TGC	AGT Ser	
AAT Asn	TGG		GCA Ala	TCT Ser	
Ser	GAG Glu	000	TTT Phe	TGT Cys	
Cys	GGT Gly	880	CTC	GTT Val	
Ser	GAT Asp		AAT Asn	ATC Ile	
Ser	AAA Lys		CTG	20 TAT TYF	E
GIG CCA ICA ICA IGC AGI AAI Val Pro Ser Ser Cys Ser Asn	820 AAT AAA Asn Lys		ATG Met	920 TGT TAT Cys Tyr	ተልል ጥርሞ ጥ
GIG Val	82 AAT Asn		GCA	TTA	TAA

20 ACTAAAGGGA ACAAAAGCTG GAGCTCCACC GCGGTGGCGG CCGCTCTAGA ACTAGTGGAT	120	CCCCCGTGGA CTAAACAAAA CATGGGAAGA TTTGCTGTAA AAAAATAAAA GAAGCTTACT	160 TATACAAAAG ACTCAATGAA AAACAATAAC TCAATACACT	240	TITITICACT GATITACATC CTITATATAG GCTGAAACTA CAACAACTT AGCTAAAAA	300	ATAGGATAAC CTAATAGCAA AATCACAATC AGATATTAAA CCATGATTTT AGCTAACCAT	360 TTAACAACTT TATTGAAACT AATTTGAATA TTTCATCTGC TGATATGCCC AAGATTTTAG	420	GCCACTAACC GATTTGGTGG TGAACTTTAA CATGTCATGC ATTTGTAACT GTTTGAAACA	480 GTTGAGTTAC ACACTGAGCT	540	TGTAAGCTCA CTCAAATTTT TCTAATTTCT AAGGTGATCA GCAAACTTAG GACCGGGCGG	009	CGTACGAGAG CTCGGATTGA TTTTCTAGTT AATAAATAAG ACGATTTATG TTTTTAAACT
CCGCTCTAGA		AAAAATAAA	AAACAATAAC		CAACAACTTT		CCATGATTTT	TGATATGCCC		ATTTGTAACT	GTTGAGTTAC		GCAAACTTAG		ACGATTTATG
40 GCGGTGGCGG	100	TTTGCTGTAA	160 ACTCAATGAA	220	GCTGAAACTA	280	AGATATTAAA	340 TTTCATCTGC	400	CATGTCATGC	460 GTTTGATTAG	520	AAGGTGATCA	580	AATAAATAAG
GAGCTCCACC		CATGGGAAGA			CTTTATATAG		AATCACAATC	AATTTGAATA		TGAACTTTAA	TATATGAACT		TCTAATTTCT		TTTTCTAGTT
20 ACAAAAGCTG	80	CTAAACAAAA	140 CAATAACACT TTGTGAATTG	200	GATTTACATC	260	CTAATAGCAA	320 TATTGAAACT	380	GATTTGGTGG	460 AGTITITIGC ATTATTTAC TATATGAACT GITTGATTAG	500	CTCAAATTTT	260	CTCGGATTGA
ACTAAAGGGA		CCCCCGTGGA	CAATAACACT		TTTTTTCACT		ATAGGATAAC	TTAACAACTT		GCCACTAACC	AGTTTTTGC		TGTAAGCTCA		CGTACGAGAG

Figure 2A

1260	1240		1220	
ATCTGATGCA TCTGTTCTAC	TATTATTGAA A	ATTGATTTGT	ATTGTGGCTA TTCTAATTAA ATTGATTTGT TATTATTGAA	ATTGTGGCTA
1200	1180		1160	
CAATTCTTAT GGCATGTGAC	TGTTTTATTC CA	GTATATAGTA	CGTGTGATAA	TGTTTTATCT
1140	1120		1100	
1080 ATGTTTTTT CTTTTGTGTG	1060 TTAACGAAAT A	GATTGTCCGA	1040 TGATATGTAT	CTTCGATGAA
AAGGTCAAAG A'ITTTGTAAA	TTGCATATTC A	GAGTTTTAGA	AGTTAGGGCC	GAGTAAGTAT
1020	1000		086	
960 AGGGCGAGTG GGCTCATTTT	940 GGAGTGTTAC A	GGCGGGGTTT	920 GTCTAGGCAA ATAACATCTA	GTCTAGGCAA
ATATGTTACA GGGCGATATC		ACCAAAATTA GTATGTCAAA ACACATGTTT	ACCAAAATTA	AAATTGATTT
**	880		860	
AGTATTTTCC TAAAAATTGG	AATTTTAACG A	ataaataaat	CTGTAATAAA	AGTGTTTTTT
840	820		008	
780 CAAAATAAAG TAATCATTTA	760 TTTTTCGCTG C	TAACTTAGAA	740 CAAAATTCCA	TCACAGTTTT
ATATGTTTTT ACAAACTAAG		700 * TAGTAATTAT TATTTTAAA CTGCAAAATT	68U TAGTAATTAT	TTTTTGGATT
660 TTTTTGTTTT TTATTTGCTT		640 TGTAACTGTT TGGGACTTTA	620 TTTTGGACTA	ATTATGGACT

igure 2B

1320	GGGATGATAT	1380 CACATAT	1440	TTCTGGAAAT	1500	GGATGGACGA	1560 Gaaaaaaatt	1620	AATTTTGGTC	1680 ATATGTGTTT	1740	ATCATTTCAG	1800	TCTCACATCA	1860 GACTAATTTT
		r AAC								r atai					r GACT
	ACATGGGGT	1380 CTGGTGGTTT AACCACATAT		CCCATATCT		GGTGTGTTTT	GGAAATTTTC		ATGCATTCTC	TTATTACATT		CAATTATTTA		GGATTGGTTT	TGGACTGTCT
1300	CTTGCATGCT ATGTCACATT ACATGGGGTT	1360 TTTGCACTAT	1420	CGGTTATGGT GGCTCGACCG CCCATATCTG	1480	ATTATTTGTF	1540 GTGTGTTGCG GAGTTGGGTA	1600	TAACATAATC	1660 CCTGATCTGT	1720	ATAGCTCACC	1780	TGGATGGCGT TCAGGAGCTT GGATTGGTTT	1840 AATTAAAATT TATGGACTTT
		AGTTTAATGA				ATTGTCTACA			TTTTCTGAAA AATATTGCAT	TCTATGATAT		ATTGAGATTC			AATTAAAATT
1280	TGATTTTGTC	1340 GGTAAGGAGG AAGTTTTGAC AGTTTAATGA TTTGCACTAT	1400	ATCTTGACTG	1460	TTATCTGTGA CTCTGGTGGC ATTGTCTACA ATTATTTGTT GGTGTGTTTT	1520 Grcgregga Actcrattre	1580		1640 TATAAAATTC	1700	TAAGTCAAAC	1760	GACTTAGGAT	1820 TATTTATTA AATAATTATT
	CTTACTATTT	GTAAGGAGG		TTGTTATGGC		TATCTGTGA	FTCGTGGGGA		TGCATTGTGT	AATTGAACGT		ATGCTTGAGT		GCAATCTGCA	ATTTATTA

Figure 2C

* ATTTATTACG 2460 TTCAATTCAG	ATCTATAATA TATAAGTCAG	* TCAAGTTCCG ATCTATAATA ATTTATTACG 2440 CTATTATAAA TATAAGTCAG TTCAATTCAG	TATGGTTGAT TTATATCATC	* TCCTTTTTCT TCAATTAACA TATGGTTGAT TCAAGTTCCG ATCTATAATA ATTTATTACG 2460 2460 ATTTATCAAT TTCAATTACC TTATATCATC CTATTATAAA TATAAGTCAG TTCAATTCAG	TCCTTTTTCT
2400		2380		2360	
CTACAACTTT	AGGGTCGAAT	TGACAAAACG ACATGACGTC AGGGTCGAAT		TAAGTCTATA GAAACTTACC	FAAGTCTATA
2340		2320		2300	·
2280 GCTACAGTAG	AGTTTGCTGT	2260 TTCTAGGCTG	TGGTCATAAC	2280 TCAGTGTAAC TCTCAAAATC TGGTCATAAC TTCTAGGCTG AGTTTGCTGT GCTACAGTAG	rcagtgtaac
CTTTAAGTAG	AATAATCTAG	TTGGGGAGCA	AAACAACGTT	AAAATTACTA ATGCAAGAAC AAACAACGTT TTGGGGAGCA AATAATCTAG	AAAATTACTA
2220		2200		2180	
2160 TCTTTTTGT	AATATCTTCT	2140 TTTTCTAGGG AATAACGGA AATATCTTCT TCTTTTTGT		2120 ATTATTTGAC AATAATTAAG	ATTATTTGAC
TTTGAACATA	AATGTATGTT	GGTGGAAAGT	AGTTTGATTT	AAGTTAGTAT TACGATTTTT AGTTTGATTT GGTGGAAAGT AATGTATGTT	AAGTTAGTAT
2100		2080		2060	
AAGATTAAAT	GTTTTTAGA	AAGTGAATTT	AATTCAGAAT	TAAGAATTTT TACTACTGCA AATTCAGAAT AAGTGAATTT GTTTTTTAGA AAGATTAAAT	raagaattt
2040		2020		2000	
1980 TTTTTCAAAA TTGAAACGTT	TTTTTCAAAA	1960 TGAAAAGGAT GTTCGAATTT		1940 TTCTGTTATT	TGCATAATTT
TTAAATATTC	GATAATTATT	GAATTTTTTA	GGGTTTTGTT	CAGAATITITA TITIGGITITI GGGITITIGIT GAAITITITIA GATAATIATI TITAAATATIC	CAGAATTTTA
1920		1900		1880	

PCT/US96/09897

WO 96/40924 PCT/U

8/39

2580 CCTTTTATAA	2640	ACACTTTAGT	2700	CATCTAAGCA	2760 TGAGTCTTCA	2820	GAACAACAAA	2880 TTGCAAACGG	2940	ACATATAATA	3000	ACGTAAAGTA	3060 TCAAAGTTTG	3120
		TGAAATATTT		TCATTTTTCA	ATCAAGCTTT		TTATCAATTT	TTTCTTTTG		TTATGTTTTA		GTGGGGAGAT	CCAAGAGTGA	
2560 CAATCCGATT	2620		2680	TAGAAATTAA	2740 GATTAGTTAG	2800	TTAAAATCAT	2860 GCTTCTTTG	2920	TATTTTTTA	2980	GAATGTGACA	3040 GCTGGTCTAC	3100
		CATAAATTTC		ATTTTCACTT	CAAATTTCAT		AAAAACAAAC	CTTAAAAATG		AGATTGACCA		ATACTTTGGT	CAAGCAGTTG	
2540 CAAATTTAAG	2600	TCTATAATTA	2660	AAAACTATAA	2720 CCAAATGACA	2780	ATTACAAAAA	2840 ATGCTAAGAG	2900	AGGGAAATGA	2960	AATCATAATT	3020 ATACTTTTTG	3080
TTATATCTTT		CTCTCTATTA		CCCTAAGTTC	CAAATTTAA		AACATAAAA	CTTGGCCGA		GGAGAGAAG		TAATAATT	TTTAACATT	
	2540 CAAATTTAAG TITCATTTT CAATCCGAIT TCAATTTCAT CCTTTT	2540 CAAATTTAAG TITCATTTT CAATCCGAIT TCAATTTCAT CCTTTT 2600 2620	2540 CAAATTTAAG TITCATTTTT CAATCCGATT TCAATTTCAT CCTTTTT 2600 * TCTATAATTA CATAAATTTC AAATTAATTT TGAAATATTT ACACTT	2540 CAAATTTAAG TTTCATTTT CAATCCGATT TCAATTTCAT CCTTTT 2600 TCTATAATTA CATAAATTTC AAATTAATTT TGAAATATTT ACACTTT 2660 2560 2560	2540 CAAATTTAAG TITCATTTT CAATCCGAIT TCAATTTCAT CCTITTT 2600 TCTATAATTA CATAAATTTC AAATTAATTT TGAAATATT ACACTT 2660 AAÄACTATAA ATTTTCACTT TAGAAATTAA TCATTTTTCA CATCTA	2540 CAAATTTAAG TITCAITITT CAATCGATT TCAATTTCAT CCTTTT 2600 * TCTATAATTA CATAAATTT TGAAATATT ACACTT 2660 AAAACTATAA ATTTTCACTT TAGAAATTAA TCATTTTTCA CATCTA 2720 CCAAATGACA CAAATTTCAT GATTAGTTAG ATCAAGCTTT TGAGTC	2560 TITCATITIT CAATCCGAIT TCAATITCAT CCTITT 2620 CATAAATITC AAATTAATIT TGAAATATIT ACACTT 2680 ATTITCACTT TAGAAATTAA TCATTITTCA CATCTA 2740 CAAATTTCAT GATTAGTTAG ATCAAGCTTT TGAGTC	2560 TTTCATTTT CAATCCGATT TCAATTTCAT CCTTTT 2620 CATAAATTTC AAATTAATTT TGAAATATTT ACACTT 2680 ATTTTCACTT TAGAAATTAA TCATTTTTCA CATCTA 2740 CAAATTTCAT GATTAGTTAG ATCAAGCTTT TGAGTC 2800 * AAAAAACAAAC TTAAAATCAT TTATCAATTT GAACAA	TTATATCTTT 2540 TTCATTTTT 2560 2580 CTCTCTATTA 2600 262 2640 CTCTCTATTA 2660 2680 2700 CCCTAAGTT AAATTATT AAATTATT ACACTTTAGT CCCTAAGTT AAAACTTAA ATTTTCACTT TAGAAATTTC AAACTTAA TCAAATTTAA ATTTTCACTT TAGAAATTTC AAACTTAAA AAAACTTAAAA AAAACTTAAAA AAACATAAAA ATTACAAAAA AAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	TATATCTTT 2540 2560 2580 TCTCTATTA 2600 2620 2640 TCTCTATTA CATAAATTT TGAAATTTT ACTTTATATA TCTCTATTA CATAAATTT TGAAATTT ACACTTTAGT TCTCTATTA CATAAATTT TGAAATTTCA ACACTTTAGT CCTAAGTTC AAAATTTCACTT TAGAAATTTCA CATCTTAAGCA CAAATTTAA ATTACAAATTAA TCATTTTTTCA CATCTTAAGCA CAAATTTAA ATTACAAATTAA TCATTTTTTCA AACATTACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	2540 2560 2560 2660 2660 2660 2660 2660 2660 2660 2660 2660 2660 2660 2660 2660 2660 2660 2660 2660 2660 2700	2540 2560 2580 2580 2680 2680 2680 2680 2680 2680 2680 2680 2680 2720 2840	2540 2580 2600 2620 2620 2640 2660 2660 2660 2660 2660 2660 2660 2660 2660 2660 2660 2660 2660 2660 2700 2700 2700 2700 2700 2700 2700 2700 2700 2700 2700 2700 2800	2540 2580 2580 2580 2580 2580 2580 2580 2580 2580 2580 2580 2580 2580 2580 2580 2580 2580 2580 2700

igur 2E

TTTAGTTCAA	3180 CACACACAAA	3240	TATTTTAAAA	3300	CCATACTATA ATTTCGTAAC	3360 AAATTACAAG CATAATATTA	3420	ATTTTTCAA	3480 GTTGAAACAA CTCATGTTAT	3540	TATTAATTCT	3600	TGATTTATAA	3660 TTTATGGAAA	3720
AGGCAATTTG	GGCCTGGTCA		TGTAATATTA		CCATACTATA	AAATTACAAG		AATTTAGTCT			TTTATTAGTA		ATTTTAACTA	TTATCATAAT	
* AGCTGCCTTC AATGAGCCAA TTTTTGCCCA TAATGGATAA AGGCAATTTG TTTAGTTCAA	3180 CTGCTCACAG AATAATGTTA AAATGAAATT AAAATAAGGT GGCCTGGTCA CACACAAA	3220	AAAAAACTAA TGTTGGTTGG TTGAATTTTA TATTACGGAA TGTAATATTA TATTTTAAAA	3280	TTGGAGCATT	3340 AATTAACTTT	3400	TTATTTCTAT TATTTAATT AATTTAGTCT ATTTTTCAA	3460 AAAAATAATT TTTCCTTAAT	3520	ATATTTACCT TGATGATTTA TTTATTAGTA TATTAATTCT	3580	TCCACTAAAT	3640 AATACATAAT	3700
TTTTTGCCCA	AAATGAAATT		TTGAATTTTA		TTATTTAGAT TCTTAATATT	3320 ATAATATTAA AATATAGTAA TATAAAGTGT		TTATTTCTAT	AAAAATAATT		ATATTTACCT		ACAATCGCTT	3640 TTTACTTATT AATACATAAT	
AATGAGCCAA	3140 AATAATGTTA	3200	TGTTGGTTGG	3260	TTATTTAGAT	3320 AATATAGTAA	3380	CAATTAATTT	3440 AATAAAATTT AAATCTAAAT	3500	TATAAGTATT	3560	ATGGTGGGAT		3680
AGCTGCCTTC	CTGCTCACAG		AAAAAACTAA		TAAAATTATG	ATAATATTAA		AATTTTGAAT	AATAAAATTT		ACTTCAAAAT TATAAGTATT		GATTATAATT ATGGTGGGAT ACAATCGCTT TCCACTAAAT ATTTTAACTA	3620 ATTTATTTCA ACATCGTATA	

Figure 2F

TG	3780 ACTA	3840	ΆŢ	3900	'A'A	3960 TATA	4020	ည	4080 TCTC
GAAAAAA	37 AAATGAAC	38	ATAATTT	35	ATCTAAA	35 ATTTTGTA	40	ACCATAAG	40 AAACCATC
AGACAATTTA	AATTCAAATC		TTACATTCCC		ACAAATTATT	3960 GAAAGATTAT ATTTTGTATA		ACATAATCCC	AAATCCCACC
TTGAGACCAA GAAACATTAA GAGAACAAAT TCTATAACAA AGACAATTTA GAAAAAATG	3780 TACTTTTAGG TAATTTTAAG TACTCTTAAC CAAACAAAA AATTCAAATC AAATGAACTA	3820	AATAAGATAA TATAACATAC GGAACATCTT ACTTGTAATC TTACATTCCC ATAATTTTAT	3880	TATGAAAAT AATCTTATAT TACTCGAACT AAATGTTGTC ACAAATTATT ATCTAAATAA	3940 AGAAAAACAC TTAATTTTTA TAACATTTTT TCATATATTT	4000	TTIACGIAAA AATATTTGAC ATAGATTGAG CACCTTCTTA ACATAATCCC ACCATAAGTC	4080 4040 4040 AAGTATGAAATT GGTACAAACA ACGTGGGGCC AAATCCCACC AAACCATCTC
GAGAACAAAT	TACTCTTAAC		GGAACATCTT		TACTCGAACT	TAACATTTTT		ATAGATTGAG	GGTACAAACA
GAAACATTAA	3740 TAATTTTAAG	3800	TATAACATAC	3860	AATCTTATAT	3920 TTAATTTTTA	3980	AATATTTGAC	4040 ATGAGAAATT
TTGAGACCAA	TACTTTTAGG		AATAAGATAA		TATGAAAAT	AGAAAAACAC		TTTACGTAAA	AAGTATGTAG

TCATTCTCTC CTATAAAAGG CTTGCTACAC ATAGACAACA ATCCACACA C AAA TAC <Phe Val 4140
ACG TTC TTT TCT TTC TAT TTG ATT AAC CAT GGC TCA TAG CAT TCG TCA CARG Glu Lys Arg Glu Ile Gln Asn Val Met Ala *** Leu Met Arg ***

4100

4200 4220

CCC TTT CTT CCT TTT CCA ACT TTT ACT CAT AAG TGT CTC ACT AGT GAC <Gly Lys Lys Lys Arg Lys Trp Ser Lys Ser Met Leu Thr Glu Ser Thr Val

Figure 2G

GAC ACA Val Cys GCT CCC ACA ATT GGC TTC AAA ATA CGA AAG CAC Ser Gly Cys Asn Ala Glu Phe Tyr Ser Leu Val 4440
AAA AAC CCT GCA AAC AGC ATG AAG AGT ACC ACG AGT CAA CAA CAA

Phe Val Arg Cys Val Ala His Leu Thr Gly Arg Thr Val Arg Ile Leu CTG AAT ACG AAA AGC CAG AAT ACA AAC AGC CAA AGT ATC ACG Gln Ile Arg Phe Ala Leu Ile Cys Val Ala Leu Thr Asp Arg ACT CAA AAC TTG AGA AGC CTG AAA TGC AAA AGG AGG AAA AAC Ser Leu Val Gln Ser Ala Gln Phe Ala Phe Pro Pro Phe Val 4520 AGG AGC AAA AAG AGT ACG AGA AAG AAA ATC TCGACGAA TTCCCCCGGG <Pro Ala Phe Leu Thr Arg Ser Leu Phe Asp 4420 TGT TTC GGC AGC GGC TCG ACG TTT ATT CGA Thr Glu Ala Ala Arg Arg Lys Asn Ser 4360 4500 4400 4300 Ser CTC ATC AGA CAC Val Glu Asp CGG TAG CCA <Pre><Pre><Pre> AAG AGT ACT 4480 AGC AAC GAG AGT <Leu Thr <re><Leu Thr</re> 4380

4580 4580 CGTCGACGGC TAGCGAAGAT CTTCGGGCCC GTCGAGCCTT GAATCATATG ACACTGGTGC ATGIGCCATC ATCATGCAGT AATTITCATGG TATATCGTAA TATATAGTTA ATAAAAAAA 4700 TGGTGATTGG GAAATGTGTG TGTGCATTCC TCCATGCACT AATGGTGAAT CTCTTTGCAT 4620 4680 4600 4660

Figure 2H

* TATTAATTAT CTTAACTAAA	* TAAATATATT AAAATTTTAA TTATACCAAT TTAATTAA	TAAATATATT AAAATTTTAA
5300	5280	5260
CATATTATTA GAACTCTTTT	TTAAATATTT TTATACCTAC CATATTATTA GAACTCTTTT	ATAATCCCTA AAATTTCAGT
5240	5220	5200
5180 ACTGAAATAG GGTCTAACCT	5160 TAATATGTAC CATATTCTTA ACTGAAATAG GGTCTAACCT	5140 ATTGTTATAA TATTGTAATA
ATAAAATAAA ATAGCAAATA	TTGTAATATA ATACATTAAA TGCAACAAAA AATGAAATAA ATAAAATAAA	TTGTAATATA ATACATTAAA
5120	5100	5080
5060 ТАААТААТАА САААТААТТА	5040 ATCTTAATTA CATTTAAACA AATTCCACTT AAAATTTTAA TAAATAATAA CAAATAATTA	5020 ATCTTAATTA CATTTAAACA
ATCTTAGTAT GTTATTGATG	ATATGACAAT ATAATTACAG GTTTTAGTTC AATGTTAGCT ATCTTAGTAT GTTATTGATG	ATATGACAAT ATAATTACAG
2000	4980	4960
AAGTTAAGAC ATGTATAAAT	AAATGGCACT GTTTTTA AACTTTTAC AAGTTAAGAC ATGTATAAAT	TATTAATTAT AAATGGCACT
4940	4920	4900
4880 TGATCATTAT ACTCTTCTAC	4860 ATTGTTAATT TAACATTGCT	4840 ACTTTAATGA TATTGCATGT
TATGTTATGT TATGTATTTT	* TTAAATGTTG TATCTAATGT TAACATCACT TGGCTTGATT TATGTTATGT	TTAAATGTTG TATCTAATGT
4820	4800	4780
4760 ATGTTGTAGT GAAATTAATT	4740 TATAGTTTAT GTTATAGTGT	4720 ACATAGAAAT TCTAAATGGT

Figure 21

C	1	
7		
•		۰

5360 TTTAAAACTC	5420	CTCCACCCAG	5480 TGATCAGGGT	5540	CTCACTGCGT
5320 5340 5340 ATCTAAAATT TTATTAACC TATTAATAAA TTCCTAATTA TCTTATCTAA TTTAAAACTC		DAATTATCCT AATTTAATTT AAATTCTTAA TTATCTTAAT TTGTAACCTC CTCCACCCAG	5480 5480 5460 STAGATGC GAGGAGATTA CATCGGCCAT TGAGATGGCG TGATCAGGGT		ITGGCGCGCC GGTACCCAAT TCGCCCTATA GTGAGTTCGT ATTACGCGCG CTCACTGCGT
5340 TTCCTAATTA	5400	TTATCTTAAT	5460 CATCGGCCAT	5520	GTGAGTTCGT
TATTAATAAA		AAATTCTTAA	CGGGAGATTA		TCGCCCTATA
5320 TTATTTAACC	5380	AATTTAATTT	5440 GACCCGAATC	2500	GGTACCCAAT
ATCTAAAATT		PAATTATCCT	CTAGATGCTG		rreecececc

600 * CTATTÄTGGA	TGTTTTAAA	580 500 * AGCTCGGATT GATTTTCTAG TTAATAATA AGACGATTTA TGTTTTAAA CTATTÄTGGA	TTAATAAATA	560 GATTTTCTAG	AGCTCGGATT
GGCGTACGAG	AGGACCGGGC	CAGCAAACTT AGGACCGGGC	CTAAGGTGAT	CACTCAAATT TTTCTAATTT	CACTCAAATT
540		520		500	
480 480 GCATTATITI ACTATATGAA CTGTTTGATT AGGTTGAGTT ACACACTGAG CTTGTAAGCT	ACACACTGAG	460 aggitgagit	CTGTTTGATT	440 ACTATATGAA	GCATTATTTT
CCGATTIGGT GGTGAACTTT AACATGTCAT GCATTIGTAA CTGTTTGAAA CAAGTTTTT	CTGTTTGAAA	GCATTTGTAA	AACATGTCAT	GGTGAACTTT	CCGATTTGGT
420		400		380	
360 CCAAGATTTT AGGCCACTAA		320 TTTATTGAAA CTAATTTGAA TATTTCATCT GCTGATATGC	TATTTCATCT	320 CTAATTTGAA	TTTATTGAAA
ACCTAATAGC AAAATCACAA TCAGATATTA AACCATGATT TTAGCTAACC ATTTAACAAC	TTAGCTAACC	AACCATGATT	TCAGATATTA	AAAATCACAA	ACCTAATAGC
300		280		260	
CTGATTTACA TCCTTTATAT AGGCTGAAAC TACAACAACT TTAGCTAAAA AAATAGGATA	TTAGCTAAAA	TACAACAACT	AGGCTGAAAC	TCCTTTATAT	CTGATTTACA
240		220		200	
180 CTTTGTGAAT TGTATACAAA AGACTCAATG AAAAACAATA ACTCAATACA CTTTTTTTCA	ACTCAATACA	160 AAAAACAATA	AGACTCAATG	140 TGTATACAAA	CTTTGTGAAT
GACTAAACAA AACATGGGAA GATTTGCTGT AAAAAAATAA AAGAAGCTTA CTCAATAACA	AAGAAGCTTA	AAAAAAATAA	GATTTGCTGT	AACATGGGAA	GACTAAACAA
120		100		80	
20 40 50 ACTAAAGGGA ACAAAAGCTG GAGCTCCACC GCGGTGGCGG CCGCTCTAGG ATCCCCCGTG	CCGCTCTAGG	40 GCGGTGGCGG	GAGCTCCACC	20 ACAAAAGCTG	ACTAAAGGGA

Figure 3A

		.	- F:	_	٠.		•	~ E		r h	- F:	_			••	_
660 TTTTTTGGA	720	AGTCACAGTT	780 TAAGTGTTTT	840	GGAAATTGAT	006	TCGTCTAGGC	960 TTGAGTAAGT	1020	AACTTCGATG	1080 TGTGTTTTAT	1140	ACATTGTGGC	1200	ACAAAGCATG	1260
TTTTATTTGC		TTACAAACTA AGTCACAGTT	780 AGTAATCATT TAAGTGTTTT		CCTAAAAATT		CAGGGCGATA	TGGGCTCATT		TCAAGGTCAA AGATTTTGTA	TTCTTTTGTG		ATGGCATGTG		CATCTGTTCT	
640 TTTGGGACTT TATTTTTGTT	700	TTATATGTTT	760 TGCAAAATAA	820	ATAATTTTAA CGAGTATTTT	880	TTATATGTTA	940 TTGGAGTGTT ACAGGGCGAG	1000	TCAAGGTCAA	1060 GATTAACGAA ATATGITITI	1120	TCCAATTCTT	1180	GTTATTATTG AAATCTGATG	1240
TTTGGGACTT		ATTATTTTA AACTGCAAAA	AATTTTTCGC		ATAATTTTAA		AAACACATGT			GATTGCATAT	GATTAACGAA		TATGTTTTAT		GTTATTATTG	
620 CTTTTTGGAC TATGTAACTG	089		740 CATAACTTAG	800	TTCTGTAATA AAATAAATAA	860	TAGTATGTCA	920 TAGGCGGGGT	980	CCGAGTTTTA	1040 ATGATTGTCC	1100	AAGTATATAG	1160	TATTCTAATT AAATTGATTT	1220
CTTTTTGGAC		TTTAGTAATT	TTCAAAATTC		TTCTGTAATA		TTACCAAAAT	AAATAACATC		ATAGTTAGGG	AATGATATGT		CTCGTGTGAT		TATTCTAATT	

Figure 3B

GAATCTCATG CCTACTGCTT TCTGTTAAAG ATACGATTGC AAGTTTAACA TGCTTACTAT	1300 1320	TTYGATTTTG TCCTTGCATG CTATGTCACA TTACATGGGG TTGGGATGAT ATGGTAAGGA	1380 GGAAGTTTTG ACAGTTTAAT GATTTGCACT ATCTGGTGGT TTAACCACAT ATTTGTTATG	1420 1440	GCATCTTGAC TGCGGTTATG GTGGCTCGAC CGCCCATATC TGTTCTGGAA ATTTATCTGT	1480 1500	GACTCTGGTG GCATTGTCTA CAATTATTTG TTGGTGTGTT TTGGATGGAC GAGTCGTGGG	1540 3G TAGGAAATTT TCGAAAAAA TTTGCATTGT	1600 1620	GTTTTTCTGA AAAATATTGC ATTAACATAA TCATGCATTC TCAATTTGG TCAATTGAAC	1640 GTTATAAAAT TCTCTATGAT ATCCTGATCT GTTTATTACA TTATATGTGT TTATGCTTGA	1720 1740	GTTAAGTCAA ACATTGAGAT TCATAGCTCA CCCAATTATT TAATCATTTC AGGCAATCTG	1780 1800	CAGACTTAGG ATTGGATGGC GTTCAGGAGC TTGGATTGGT TTTCTCACAT CATATTTTAT	
reteats cetacteett tets	1280	GATTTTG TCCTTGCATG CTAT	1340 AGTTTTG ACAGTTTAAT GATT	1400	rctigac igcegitate gige	1460	TCTGGTG GCATTGTCTA CAAT	1520 GAACTCTATT TGGTGTTTG CGGAGTTGGG TAGGAAATTT	1580	TTTCTGA AAAATATTGC AFTA	1640 ATAAAAT TCTCTATGAT ATCC	1700	aagtcaa acattgagat tcatu	1760	ACTTAGG ATTGGATGGC GTTCA	

Figure 3C

1920 *	TAITTIGGIT TIGGGITITIG ITGAATTITI TAGATAAITA TITTAAATAT TCIGCATAAT	1980 ATGTTCGAAT TTTTTTTCAA AATTGAAACG TTTAAGAATT	2020 2040	TTTACTACTG CAAATTCAGA ATAAGTGAAT TTGTTTTTTA GAAAGATTAA ATAAGTTAGT	2080 2100	TTAGTTTGAT TTGGTGGAAA GTAATGTATG TTTTTGAACA TAATTATTTG	2160 BAATATCTT CTTCTTTTT GTAAATTAC	2200 2220	TAATGCAAGA ACAAACAACG TTTTGGGGAG CAAATAATCT AGCTTTAAGT AGTCAGTGTA	2280 ACTCTCAAAA TCTGGTCATA ACTTCTAGGC TGAGTTTGCT GTGCTACAGT AGTAAGTCTA	2320 2340	TAGAAACTTA CCTGACAAAA GGACATGACG TCAGGGTCGA ATCTACAACT TTTCCTTTTT	2380 2400	CGATCTATAA TAATTTATTA CGATTTATCA	2440 2440 AGTTCAATTC AGTTTTCGAA
	TTGAATTTTT 1	ATGTTCGAAT 1		ATAAGTGAAT 1		TTGGTGGAAA (2140 GGAATAAACG GAAATATCTT		TTTTGGGGAG (ACTTCTAGGC 1		CGACATGACG 1			TCCTATTATA A
1880	TTGGGTTTTG	1940 TTTGAAAAGG	2000	CAAATTCAGA	2060	TTAGTTTGAT	2120 ACAATAATTA AGTTTTCTAG	2180	ACAAACAACG	2240 TCTGGTCATA	2300	CCTGACAAAA	2360	CTTCAATTAA CATATGGTTG ATTCAAGTTC	2420 CCTTATATCA
	TATTTGGTT	TTTCTGTTA		TTTACTACTG	-	ATTACGATTT	ACAATAATTA		TAATGCAAGA	ACTCTCAAAA		TAGAAACTTA		CTTCAATTAA	2440 ATTTCAATTA CCTTATATCA TCCTATTATA AATATAAGTC

Figure 3D

AAACCGAAAT AGTTATATCT	TOTALINITIES TRANSCOL	2580 ATCCTTTTAT AACTCTCTAT	2640	TTACACTTTA GTCCCTAAGT	2700	CACATCTAAG CATCAAATTT	2760 TTTGAGTCTT CAAAACATAA	2820	BAACAACA AAGCTTGGCC	2880 TGTTGCAAAC GGTGGAGAAA	2940	TAACATATAA TATTAATAAT	3000	ATACGTAAAG TATTTTAACA	3060 GATCAAAGTT TGAGCTGCCT	3120
									TTG						GAT	
TTATTCCCTA	ושווכככוש	2560 TTTCAATTTC	2620	TTTGAAATAT	2680	AATCATTTTT	2740 AGATCAAGCT	2800	ATTTATCAAT TTGAACAACA	2860 TGTTTCTTTT	2920	TATTATGTTT	2980	CAGTGGGGAG	3040 ACCCAAGAGT	3100
T"I"I'A'I"I'AAA'I'	I I I I I I I I I I I I I I I I I I I	TTCAATCCGA		TCAAATTAAT		TTTAGAAATT	ATGATTAGTT		ACTTAAAATC	TGGCTTCTTT		САТАТТТТТ		GTGAATGTGA	TGGCTGGTCT	
- 122	WALLIGAN	2540 AGTTTCATTT	2600	TACATAAATT	2660	AAATTTTCAC	2720 CACAAATTTC	2780	AAAAAAACAA	2840 AGCTTAAAAA	2900	GAAGATTGAC	2960	TTATACTTTG	3020 TGCAAGCAGT	3080
TARCHILLA A A A COUNTRY	AGIICCCARA	TTCAAATTTA		TATCTATAAT		TCAAAACTAT	AACCAAATGA		AAATTACAAA	GAATGCTAAG		AGAGGGAAAT		TTAATCATAA	TTATACTTTT	

Figure 3E

3720		3700		3680	
3660 AATTGAGACC	3640 TTAATACATA ATTTTATGGA AATTGAGACC	3640 ATTTATCATA	TTAATACATA	3620 CAACATCGTA TATTTACTTA	CAACATCGTA
AAATTTATTT	TATGATTTAT	ATATTTTAAC	TTTCCACTAA	TTATGGTGGG ATACAATCGC TTTCCACTAA ATATTTTAAC TATGATTTAT AAATTTATTT	TTATGGTGGG
3600		3580		3560	
CTGATTATAA	TATATTAATT	CTTGATGATT TATTTAG		TTATATTTAC	ATTATAAGTA
3540		3520		3500	
3480 AACTCATGTT ATACTTCAAA		3460 TTTTTCCTTA ATGTTGAAAC		3440 TTAAATCTAA ATAAAAATAA	TTAAATCTAA
AAAATAAAAT	CTATTTTTC	ATTATTTAA TTAATTTAGT	ATTATTTAA	TTTTATTTCT	ATCAATTAAT
3420		3400		3380	
3360 TAAATTTTGA	AGCATAATAT	3340 GTAATTAACT TTAAATTACA		3320 AAAATATAGT AATATAAAGT	AAAATATAGT
ACATAATAT	TAATTTCGTA	TTCCATACTA	TTTGGAGCA	TGTTATTTAG ATTCTTAATA TTTTGGAGCA TTCCATACTA TAATTTCGTA ACATAATATT	TGTTATTTAG
3300		3280		3260	
GGTTGAATTT TATATTACGG AAT GTAATAT TATATTTAA AATAAAATTA	TATATTTAA	AATGTAATAT	TATATTACGG		AATGTTGGTT
3240		3220		3200	
3180 CACACACA AAAAAACT		3160 TTAAAATAAG GTGGCCTGGT		3140 TAAAATGAAA	AGAATAATGT
AACTGCTCAC	TGTTTAGTTC	AAAGGCAATT	CATAATGGAT	TCAATGAGCC AATTTTTGCC CATAATGGAT AAAGGCAATT TGTTTAGTTC	TCAATGAGCC

Figure 3F

GGTAATTTTA AGTACTCTTA ACCAAACACA AAAATTCAAA TCAAATGAAC TAAATAAGAT 3840	•	AATATAACAT ACGGAACATC TTACTTGTAA TCTTACATTC CCATAATTTT ATTATGAAAA 3800	* ATAATCTTAT ATTACTCGAA CTAAATGTTG TCACAAATTA TTATCTAAAT AAAGAAAAAC 3920 3940 ACTTAATTT TATAACATTT TTTCATATAT TTGAAAGATT ATATTTTGTA TATTTACGTA	3980 4020 * AAAATATTTG ACATAGATTG AGCACCTTCT TAACATAATC CCACCATAAG TCAAGTATGT	4080 AGATGAGAAA TTGGTACAAA CAACGTGGGG CCAAATCCCA CCAAACCATC TCTCATTCTC 4100	* TCCTATAAAA GGCTTGCTAC ACATAGACAA CAATCCACAC A CA AAT ACA CGT TCT <ile arg<="" cys="" th="" thr=""><th>4140 TTT CTT TCT ATT TGA TTA ACC ATG G CTCATAGCAT TCGTCACCCT TTCTTCCTTT <lys ***="" arg="" asn="" gly="" his<="" lys="" ser="" th=""></lys></th></ile>	4140 TTT CTT TCT ATT TGA TTA ACC ATG G CTCATAGCAT TCGTCACCCT TTCTTCCTTT <lys ***="" arg="" asn="" gly="" his<="" lys="" ser="" th=""></lys>
---	---	--	--	---	---	--	---

TCCAACTTTT ACTCATAAGT GTCTCACTAG TGACCGGTAG CCACACTGTT TCGGCAGCGG 4300 4260

igure 3G

GCTTCAAAAT	AAGTATCACG		AAACCCTGCA	TACGAGAAAG		ATTCGTCGAG		ATGGTATATC	TTCCTCCATG		TTATGTTATA	CACTTGGCTT		AATTTAACAT	
CTCGACGTTT ATTCGAGACA CAAGCAACCT CATCAGAGCT CCCACAATTG GCTTCAAAAT	4340 CGAAGAGTCT GAATACGAAA AGCCAGAATA CAAACAGCCA AAGTATCACG	4420	AAGAGTACTC AAAACTTGAG AAGCCTGAAA TGCAAAAGGA GGAAAAACAA AAACCCTGCA	4440 AACAGCATGA AGAGTACCAC GAGTCACACG AATCAAAGGA GCAAAAAGAG TACGAGAAAG	4540	AAAATCTCGA CGGCCCCGAA GATCTTCGCT AGCCGTCGAC GCCCGGGGGA ATTCGTCGAG	4600	CCTTGAATCA TATGACGCTG GTGCATGTGC CATCATCATG CAGTAATTTC	4620 GTAATATATA GTTAATAAAA AAGATGGTGA TTGGGAAATG TGTGTGTG	4720	CACTAATGGT GAATCTCTTT GCATACATAG AAATTCTAAA TGGTTATAGT TTATGTTATA	4780 TAGTGAAAKT AATTTTAAAT GTTGTATCTA ATGTTAACAT	4840	GATTTANGTT ATGTNATGTA TTTNACTTTA ATGATATTGC ATGTATTGTT AATTTAACAT	4900
CATCAGAGCT	AGCCAGAATA		TGCAAAAGGA	aatcaaagga		AGCCGTCGAC		CATCATCATG	TTGGGAAATG		AAATTCTAAA	GTTGTATCTA		ATGATATTGC	
CAAGCAACCT	4340 GAATACGAAA	4400	AAGCCTGAAA	4460 GAGTCACACG	4520	GATCTTCGCT	4580	GTGCATGTGC	4640 AAGATGGTGA	4700	GCATACATAG	4760 AATTTTAAAT	4820	TTTTACTTTA	4880
ATTCGAGACA			AAAACTTGAG	AGAGTACCAC		CGGGCCCGAA		TATGACGCTG	GTTAATAAAA		GAATCTCTTT	TAGTGAAAKT		ATGTTATGTA	
CTCGACGTTT	4320 ACGAAAAGCA	4380	AAGAGTACTC	4440 AACAGCATGA	4500	AAATCTCGA	4560	CCTTGAATCA	4620 G TAATA TATA	4680	CACTAATGGT	4740 GTGTATGTTG	4800	GATTTATGTT	4860

Figure 3H

CGCCCTATAG	GTACCCAATT	TTTTCTAGAG	GTGATCAGGG	TGGCCTAGTA	GGCATTGAGA
	5500		5480		5460
AGATTACATC	CGAATCCGGG	ACCCAGCTAG ATGCTGGACC		AACCTCCTCC	CTTAATTTGT
	5440		5420		5400
TCTTGATTAT	5380 TATCC TAATT TGATTTAAAT		5360 AAACTCTAAT	ATCTAATTTA	5340 TAATTATCTT
ATTAAATTCC	TAACCTATTA	CTAAAATCTA AAATTTTATT		TAAACTATTA ATTATCTTAA	TAAACTATTA
	5320		5300		5280
CAATTTAATT	5260 TTAATTATAC	TATTAAAATT	5240 TTTTTAAATA	ATTAGAACTC	5220 CTGCCATATT
ATTTTTATAC	CAGTTTAAAT	CCTAAAATTT	ACCTATAATC	CTTAACTGAA ATAGGGTCTA ACCTATAATC	CTTAACTGAA
	5200		5180		5160
GTACCATATT	AATATAATAT	ATAATATTGT	AATAATTGTT	a taaa taaaa taaaatagca aataattgtt ata atattg t	ATAAATAAA
	5140		5120		5100
AAAAAATGAA	5080 TAAATGCAAC	TATAATACAT	5060 ATTATTGTAA	5040 TTAATAAATA ATAACAAATA ATTATTGTAA	5040 TTAATAAATA
ACTTAAAATT	GATGATCTTA ATTACATTTA AACAAATTCC ACTTAAAATT	ATTACATTTA		GTATGTTATT	AGCTATCTTA
	5020		5000		4980
GTTCAATGTT	4960 CAATATAATT ACAAGTTTTA		4940 AAATATATGA	4920 TTACAAGTTA AGACATGTAT	4920 TTACAAGTTA
TGCTTGATCA TTATACTCTT CTACTATTAA TTATAAATGG CACTGTTTTG TTTAAACTTT	CACTGTTTTG	TTATAAATGG	CTACTATTAA	TTATACTCTT	TGCTTGATCA

igure 31

Figure 3J

TGAGTCGT

20	86	146	194	242	290	338	386	434	482
GAT ASP	ACT Thr 30	AAT Asn	GCC Ala	GCT Ala	GAA Glu	AAT Asn 110	AAG Lys	CAG Gln	TGC
GGT Gly	AAT Asn	GCC Ala 45	ACT	GGA Gly	TAT Ty <i>r</i>	CAT His	GAC Asp 125	TCT	
GTC : Val	AGC	AGT Ser	GAC Asp 60	AGA	AGT	GCT Ala	gat Asp	ACA Thr 140	ATA GAA
ACG Thr	ACC	TTT	766 717	TAT Tyr 75	GCC Ala	TAT	CGA Arg	TCA	
r Grc s Val 10	TAT Tyr	AAC Asn	CTA	AGT Ser	AAG Lys 90	CAT His	TTG Leu	ATA Ile	ACT TAT
G TGT	TCA Ser 25	GAT Asp	GGC Gly	CTG	AGC	AGA Arg 105	gat Asp	CCA	
AAG Lys	ATT Ile	TTT Phe 40	CTT	CCA	ATA Ile	CTA	CTA Leu 120	ACA	GGA GCA GTT
r ATC e Ile	CTC	GTA Val	AAC Asn 55	AGG Arg	CTT	GAG	AAA Lys	GCA Ala 135	GGA
A TTT g Phe	ATG Met	ACA	GTG Val	CTA Leu 70	TCT Ser	CCA	ACC	GGA Gly	
GCA AGA 1 : Ala Arg E	TGT	CCA	ACA Thr	AGG Arg	TTT Phe 85	ATC Ile	GGA Gly	CCT	ATG ATA
r GCZ	ACT Thr 20	GTT Val	AGC	AAT Asn	GCC Ala	TGG Trp 100	GTT Val	CAC His	AAG
ACT Thr	AAA Lys	TAT Tyr 35	66C 61y	TAT Tyr	TTG	AAG Lys	CTT Leu 115	GAT Asp	AAG
AGG Ser	GGG	GAT Asp	GAT ASP 50	GAT Asp	TTG	AAA Lys	GTG Val	ATT Ile 130	CTA AAG
ATC Met	GTG Val	ACG Thr	GTG Val	GAA Glu 65	TTT Phe	TAC	GTT Val	CTC	GAA
AAAAAACA ATG AGC Met Ser 1	GCT Ala	CCA	GTG Val	CAA Gln	GTG Val 80	ATC Ile	CCA	TTC Phe	GAA
aaa.	GGA Gly 15	TTC	GTG Val	GGG G1y	GAT Asp	AAC Asn 95	GTA Val	CAG Gln	GGA

	530	578	626	989	746	908	998	910
Gly Glu Glu Leu Lys Lys Met Ile Gly Ala Val Thr Tyr Ile Glu Cys 145	AGC TCC AAA ACC CAA CAG AAT GTG AAG GCT GTT TTC GAT GCT GCA ATA Ser Ser Lys Thr Gln Gln Asn Val Lys Ala Val Phe Asp Ala Ala Ile 160	AAA GTA GCT TTG AGG CCA CCA AAA CCA AAG AGA AAG CCT TGC AAA AGG Lys Val Ala Leu Arg Pro Pro Lys Pro Lys Arg Lys Pro Cys Lys Arg 175	AGA ACA TGT GCT TTC CTT TGAATATTGG ATCATTATTA CAGTCAAAAA Arg Thr Cys Ala Phe Leu 195	CAGITAACAA AAGCIGIIGC AGATAAACAC IGAAICIGCI AIAGIITIGII ITIGGIITIAC	ATATGTTCCA CGTGAAACTA TGAAGCATCT CTAAGAAAAC CCAAACTATC ATATCAACCC	ATCGATCAAT GAATCGATTT CAATTTTCGC AGTATAAGTT CCTTTTAATC CTTTTTTTT	ACTICATITI ATAACGAATI CTATGGATAA TGTTCCCTAC AAACATGTCA TTACAATGTT	TAATTATAAA TICCATICIT CTATITIACT AAAAAAAA AAAA

FIGURE 4B

26/39

600 580 580 500 ACATAAAAAA AATTGTACAC ATTTACAAGC CCATATACAA ATAATTATAT AAATATTCAT	580 CCATATACAA	ATTTACAAGC	560 AATTGTACAC	ACATAAAAA	35
TTTGTCGCCA AATTTTTAGT TGATATTTTA	TTTGTCGCCA	TCTAATTTTA	TTTTTTATC	AGTTATATTA	
540	520		500		30
460 TATAATAAAA ATTGTGTTTA AATAATTTAC		CTTCAAATTT	440 GTGTACATAT ATATATAT	GTGTACATAT	
TAIGGIGIGA ICTICACTIT IGAACTITGA TAAGICACCA AACTITAACA AAGITIGATI	TAAGTCACCA	TGAACTTTGA	TCTTCACTTT	TATGGTGTGA	25
420	400		380		
340 GTCTTTTAAA TCACATATCA CATTTTGAGT TTGTATGATG ATAAGTCGAC ATAANCGAAA	340 TTGTATGATG	CATTTTGAGT	320 TCACATATCA	GTCTTTTAAA	20
GCTTTGGTGA TAGGTGTATT GATGTACGAT	GCTTTGGTGA	AATGTTTGTG	TTTTCATCTT AATGTTTGTG	TGGACATGTA	
300	280		260		0
TAATTTAAAT GAAAGATAAA TACATATTCT	TAATTTAAAT	TTTGTAGATG	AGICTIAACC ATCTTTAATA TTTGTAGATG	AGTCTTAACC	r.
240	220		200		
140 GAATTITICTT GTGTTACAAT ATAATAAATA CATCGTAGAA ATAAATTITA TTCAAATTGA	160 CATCGTAGAA	АТААТАААТА	140 GTGTTACAAT	GAATTTTCTT	10
* CCTAGTACAA GAGCTTTTAT TCATTCTTCT ATTITGCTTT CCTCTAGGCT TGGCAATCGA	* ATTTTGCTTT	TCATTCTTCT	GAGCTTTTAT	CCTAGTACAA	
120	100		C		ľ
20 40 FINGGATGAGA ACCAATTTTT AATAGTAAAN CCTAACCAAT TTTTAATAAT AAAGCTGACT	40 CCTAACCAAT	AATAGTAAAN	20 ACCAATTTTT	TTGGATGAGA	

WO 96/40924 PCT/US96/09897

27/39

1260		1240		1220		
CTTATTTTCC	GATTAATTTA	AACACGTAGG	GTCAAATTGT TATTTGATCT AACACGTAGG		AATAGAAAGG	
1200		1180		1160		
GTAATTTTTA	AGAAATGAAT	TTTTAACAGT	TCACGCTAAT	ATTCTATCAA	CTATCTGGTT	
1140		1120		1100		
1080 ; CCACĞTATAA	ATGTTACATG	1060 AATAAGGTAC	TTTACATTAA	1040 T ATTGTTAAA AGCTGGTCCG	TATTGTTAAA	
TGTCCCATTC	AACTAGATTT	TCAAAGAACA	GTACATTAGA	ATTAATTGTG	TAATAGATAA	
1020		1000		086		
960 TCTACTTAAA	TTTTGTCGCA	940 TCATATTGCA	TTACTAATAG	920 GAAAGTCGTT	AAAATATAAT	
GATTGAATGA	ATTTAAATAA AATAATTAAG		TATACAAAAT	TTAATATTT	TTTCTTCTTT	
006		880		860		
; AAGTTGATGT	ATACATAATG	TGTTTATATT	AGTAAGTTCA	GAAATTTGAG	AAATGGAAGG	
840		820		008		
780 TCCAAAAAGA	GTTTTGAAGT	760 TAACTTCTTG	CCATTTTAT	740 TAATCACTAA	GTCGTAAACA	
GAGTATATAT	TTGTAAAGAT	GGTTAGTTTA	TAATTAATAA	GTTAAATGTA	GATAACATAG	
720		001		089		
660 TCTACTTTAA	TTAGAATTAT	640 AGGATATAAA TATAACTAIT		620 ATTTAAATAT	TAAAAAATAT	

20

FIGURE 5/B

35

ß

ŗ	
2	
EEE	
5	
F	

TAT	1320	ACC	1380 CTTC	1440	ATC	1500	TAA	1560 TAAA	1620	I'TG	1680 :crcc	1740	CAG	1800	AGT	1860
ATACTTT.	H	TAGAAAC	1. TTTTTTC	Ä	CAAAATA	H	ACCCAAC	1. TGCACTT	ਜ	AAGTTGG	1(TTCATCC	H	ATAATCA(7	CTGGACTAGT	18
AACTTTCATG		TTAAAAAACA	1380 TTGAATAAAT TTTTTTCTTC		CCATAATTAT CAAAATAATC		CAATACTTAA	GCCATGTCCT		TCAACAGATA	1680 CCCTTTTCTT TTCATCCTCC		TAAGTTCTTT		CGAGCAAGAT	ממממסמתייים
TAAAGAAATA AGTAAAATAT AATTTGAATC TTAATACAAA AACTTTCATG ATACTTTTAT	1300	TTATAATTTA ATATTGTGAG AGTAACAAAR TTAAAAAACA TAGAAACACC	1360 CTCATATACA CAGTTAAAAT	1420	TTTTTTTTT TCTAGTTAAG	1480	CTATCAATAC CCCGCCCTGC CTCCCTCCT CAATACTTAA ACCCAACTAA	1560 CACCCAGCAC CAAACGCACT TTAATAGCCA CCTATTTCTA GCCATGTCCT TGCACTTAAA	1600	GAAAAGTAAA GCTAACCTGC AATCATTCCA TATCGAGGCC TCAACAGATA AAGTTGGTTG	1640 ATGGGTTTGC ACCAAGTTGT TAAAACCCGG CCCTCAACTT	1720	CCACTCCACA CCCTCCAATT TTCTTCATAT GGTTCTATTA TAAGTTCTTT ATAATCACAG	1780	AATCAAGATA AGTCCTCAGC AAACAAAAA CCATGGCTCT CGAGCAAGAT	1840
AATTTGAATC		ATATTGTGAG	CTCATATACA				CCCGCCCTGC	TTAATAGCCA		AATCATTCCA	TAAAACCCGG		TTCTTCATAT		AAACAAAAA	د کو برمایه برمایه دی
AGTAAAATAT	1280	TTATAATTTA	1340 TATGGTGTGA	1400	CCATCATGGG	1460	CTATCAATAC	1520 CAAACGCACT	1580	GCTAACCTGC	1640 ACCAAGTTGT	1700	CCCTCCAATT	1760	AGTCCTCAGC	1820
TAAAGAAATA		CATATTTTAC	AAAAGTTAGT		GTCATTAATT		ATCATTAATC	CACCCAGCAC		GAAAAGTAAA	ATGGGTTTGC		CCACTCCACA		AATCAAGATA	1860 Cagacomong asmarmedan campamada carcaaaaaca companyerae
		5		10		į	1 2		20		25		30		i.	c C

WO 96/40924 PCT/US96/09897

29/39

1920	TGAAACTATG	1980 CGATCAATGA ATCGATTTCA	2040	AACGAATTCT	2100	CCATTCTTCT	2160 TATTTATAAA	2220	TATTATTATT	2280 AAATGAATTA	2340	CTTAATTTGA	2400	GTTTGAGCTG	2460 CTCGAAATAT
	TGGTTTACAT ATGTTCCACG TGAAACTATG			TITIAAICCI ITCIIIIIAC ITCAITITAI AACGAAITCI		ATGGATAATG TTCCCTACAA ACATGTCATT ACAATGTTTA ATTATAAATT	2140 ACTTCAAACT GCTGATTTTT ACTAATTTAT TATTTATAAA		CAATAATTTA ACAACAATAT TTAATATTAT	2280 ATTICTCAAT TITIATIAAA CAAAACATA AATTITIGAC AAATIAAAAT AAATGAATIA		TITICGIGCA ACTATIACAA AAAICCIIICA IAGICCIAAI CIIAAIIIIGA		CAGAGGTAAT AATGGGCCGG	2440 GTACTTTATA TTTTTCCAAA TTCAACCCAG
1900		1940 AAGCATCTCT AAGAAACCC AAACTATCAT ATCAACCCAT	2020	TTCTTTTTAC	2080	ACAATGTTTA	2140 GCTGATTTT	2200	ACAACAATAT	2260 AATTTTTGAC	2320	AAATCCTTCA	2380	CAGAGGTAAT	2440 TTTTCCAAA
	ATAAACACTG AATCTGCTAT AGTTTGTTTT	AAACTATCAT				ACATGTCATT			CAATAATTTA	CAAAAACATA		ACTATTACAA		TGCAGAGGTG ATAATAATCT TAATTTGATG	GTACTTTATA
1880	AATCTGCTAT	1940 AAGAAAACCC	2000	ATTITICGCAG TATAAGTICC	2060	TTCCCTACAA	2120 ATTTTACTAA GATATTAGTA	2180	TTGTTAGAAT GATTATTTTT	2240 TTTTATTAAA	2300	TTTTCGTGCA	2360	ATAATAATCT	2420 TGATATTGAC
	ATAAACACTG	AAGCATCTCT		ATTTTCGCAG		ATGGATAATG	ATTTTACTAA		TTGTTAGAAT	ATTTCTCAAT		ATTTCTCAAT		TGCAGAGGTG	2420 GACTTAAGCA TGATATTGAC
	ı	ი	(0.7		15		20		25		ć	30		35

FIGURE 5/D

	TCTTG	3040 TGGCATTATT	3040 TTATTGAAAT TGGCATTATT TCTTG	3020 ATGTACCGNT ATTTATTAT	ATGTACCGNT	۲n
CCGCCAAACC TGCCCCAATG TCTCTTCAAC CATCCAAAAA CTTGAGTCAG TATCACATAC	CTTGAGTCA	CATCCAAAAA	TCTCTTCAAC	TGCCCCAATG	CCGCCAAACC	
3000		2980		2960		30
G AGTATGGGAT	AAGGTTAAA	GAGTTACATT AAGGTTAAAG	CTGAAAGGAC CAAGCAATTC		TICTICTITIG	
2940		2920		2900		25
2880 CAATGAAAAT GAAATCATAT TGAGCTTAAT TAATATTCCA	TGAGCTTAAA	2860 GAAATCATAT		2840 CACAGGTCTA ATTTGATGCT	CACAGGTCTA	ı
CGAGTCTAGA TTAATAACAC	CGAGTCTAG	GAAATATCTT	TITATITIACA CIGITICAAA ITITITCGGGI GAAATAICIT	CTGTTTCAAA	TTTATTTACA	0
2820		2800		2780		•
2760 TTTTAAACAG GCTTAATATT		2740 TTAATTCATA	2740 AAACTCAAAC TTAATTCATA	2720 GACTTGGACC TTAAATGCTC	GACTTGGACC	15
C TTGTGGGCTA	AAAATGGGT	AATAAACTTA	TTATTTTGTT AATAAACTTA AAAATGGGTC	TATATATT TAGTATAGGT	TATATATAT	ı
2700		2680		2660		
TCATCTTAAC ATTATGTTAA TGTTTATATT AGAGTAGTAT	TGTTTATAT	ATTATGTTAA	TCATCTTAAC	TATTGAAAAT TTTTATATAG	TATTGAAAAT	10
2640		2620		2600		
2580 ATTTTATTT AATATTTAAT TATTTTTATAT ATTTTTATT	TATTTATA	2560 AATATTTAAT	ATTTTATTTT	2540 TAATTTAAAA AATTTATATC	TAATYTAAAA	2
GAGTCTAAAA TTTTGTCCAA TTTAATCCAA GCCCATTTTA AGTTCGTCCA TATTATTTT	AGTTCGTCC	GCCCATTTTA	TTTAATCCAA	TTTTGTCCAA	GAGTCTAAAA	
2520		2500		2480		

FIGURE 5/E

FIGURE 6

ť

09

GGGCATTCCA CACGACCATG TGTCCCCTAT TTCCAGGCAT TTTGAGACTT CACCTAAACT

120 180 240 300 360 420 480 540 009 099 720 780 840 900 960 1020 CTCAACCCCT AACCACGCAA CAATCAGCAA TACTCCAAGC AACCATTTTC CTTACAAGTT 1080 ACCACCAAGC TGAAAAAA AAATAAAAC TCAACTTTTG GCAATAAAAA CCCTCCTACC GIGICCGITIG CCTGAITGCC AACCCCAATA ACACGIGITIG TAGGITTAAC CAIGITTAIG TCTAGAGTTG TTTCAAATTA GCCCCTATTT GTTCTTAAAT CATTTTAGGA TCTTGTAAAC ATTATTATT TTTAGATATT GTATAACTCT TGTTTTATTT TTAATTTTGT TACTATTTCA CTATATATIC GCCCCATIAT TGGGATTAAA TATTCACAAG GGTTTAGACC GTCATGAGAC AGATTAGITT TATCTTACTG ATGGTCACAT CACAATAGTA ATTCAACTTA ATACGAGAGG AACCATTGAT TCACGCAATT GGTCATCGCA CTTAGTTGAA AAGCTAGGGG TGCGAAGCTA AAAGATAAGG TTTTTTTTTT TATAAGCAAG CAACTATAGG GGTTTACTTC CGTGCGCAAA TAAAGGAATC ACCCAAAAAC AACAACCAAA AGTACAGAGG AAAACAAAAG AATCCCTGTT TCGTATTTAG GACTAAATGT GTAATTTATA CTTTAATTAT GATTGATTAA TTGATTGATT TNGTAGTAAT GCCCGTGACC CTAATCCGTT AGCGAAGAGG GGTTAGGGGT TAGGGGTTTT AAGGCATTTG TTTGTAGTGT TATTTCGAGT AGGTTTTATG GGTGAACAAC CCTTGACCGC CAAATCAATC ACAAGAGTTC AACATTTTAT TTATTTTGAA ATGTATTAAA AATCGTTAAT CCGTACGCTG GATTATGATT GAACACCTCT AAGTCAGAAT CCGAATTAGA AACAATGCAC TTTTTAGGTT ACCTATTTTG GGAGGGGGA TTATGATTCA AGTGAAAGAA AGTTGGCACA CACACAATCA GTACATCTGT TTTGACAGAG ACACAGCCTA AAAACAGCAG CAAACAAGCC

1181 **Gly>** Ala Pro Leu CCC GGT GCA GTG Val Val GTG Met ATG Cys $^{\mathrm{TGC}}$ TTG Len Leu Leu Val CTA

1229 CCT CTT TGC Cys CGC Arg CCA Pro CTT ACC Thr GTC Val GTA Val 66C 61y GAT Asp GCT Ala CGT ACC Thr GTA Val GAC

1277 CCA Pro> GAT Asp GTT GAT GCT Ala GAT Asp GCT Ala GGTAAT Asn GGT Gly AAT Asn 666 61y ATA Ile TTG Leu TTA

1325 GGT G1y> TGT Cys CTG CTC TCG AGC AGG GGT CTC TTG Arg Gly Leu Leu TGC TGC GAC ATC GTC Cys Cys Asp Ile Val

GCT

1380 GTT TAGGAACCG ATCTAGCTTG AAATCGGGTT CGGATACGGG TGGAGTTTCA

AATTIGGTGTG TTATGGAATC CCAACTTAAT CGTGTTTAGG GGTGGGATCC AATTGTGTGA 1440

CATTGGATGA TTCGATAAGG TGACCGGTTT ACCTGGGTAT CCAACCATCA TCCGATTACT 1560 TACATTACAG AGCATGGTTG TGGATTGTTT TCTCATATGT TTTGATTGAC TTGCTTGATA

TTTTAATAAT TATTTGTTTC TTCTTTATGT TGTCTGTCTT TTTGTTTCTT GATCTATAAC 1620

ATTATATITIG CCCAAAITIT CGCATTITICC ATATGTAGCT TATATATGTA TATATATATT 1680

CAATAAAGTA TATTGATTTA GCAGATGATT TGTGTATATA TTTAAATCAA ATCAAACATT 1740 AATGATCATT CACTAGCGTC TTAATCTTGA AAAATTCATC AACGGTTATC CTTTGCAGCA 1800 TATATAAAA AAATTGCCAA CCCTATGCTT TTACACCTAA TTCAAGGGAT AACATAAGTC 1860

GATTAAAACG A

1871

IGURE 7B

FIGURE 8

0.33 8.76 2.76 2.66	2
n 5 6 6 6 6	91.75 90.33 88.76 92.76 92.21 89.9 92.69
7.14 4.05 4.99	7.14 4.05 4.99 4.42 6.89 4.00
0.15	1.35 0.19 0.77 0.74 0.19
92.76	92.76 92.76 92.21 89.9 92.69
0.3255	0.3237 0.3255 0.3241 0.329 0.3236
3196	.3196 .3194 .3243 .3178
-	
	81.19 76.11 82.28

36/39

		_			_	_			· · · ·					 	 	
LCh, h	81.3	82.2	9.98		135.2											
LCh,C	15.28	14.44	11.31		11.29											
LCh, L	82.24	82.85	90.95		53.48											
Lab,b	15.11	14.31	11.29		7.97											
Lab,a	2.32	1.97	0.68		-8.01											
Lab, L	82.24	82.82	90.95		53.48			 								FIGURE 10
Yxy, y	0.35	0.34	0.3375		0.3489			Hunter B	13.35	12.75	10.71		90.9			
Yxy, x	0.34	0.34	0.3324		.3155			Hunter a	2.25	1.92	0.69		-6.35			
Yxy, Y	60.76	61.89	78.39		21.49			Hunter L	77.94	78.67			46.35			
5148	68-1	68-1	50-2-1	50-2-1	(lint fiber)			5148	68-1	68-1	50-2-1	50-2-1	(lint fiber)			

SUBSTITUTE SHEET (RULE 26)

	1 4 7, 1	~ · · · ·	. ~); /					2	
68-1	65.75	0.3351	0.34	84.86	0.72	11.9	84.86	11.92	86.6
-	62.54	.3458	0.3474	83.19	2.14	15.84	83.19	15.98	82.4
68-1	62.56	0.3458	0.3474	83.2	2.14	15.85	83.2	15.99	82.4
=	84.72	.3196	0.3278	93.76	0.89	28.5	93.76	5.93	98.6
-	64.97	.3316	0.3354	84.46	1.17	9.81	84.46	9.87	83.3
-2	64.42	.3423	0.3436	84.18	2.26	14.19	84.18	14.36	81
17-3	60.97	.3475	0.3475	82.36	2.74	16.03	82.36	16.26	80.4
7-15-1	64.02	3433	0.3444	83.97	2.34	14.57	83.97	14.75	80.9
-	59.32	0.3443	0.3445	81.46	2.64	14.41	81.46	14.64	79.7
21-3	63.64	0.34	0.3409	83.77	2.4	12.89	83.77	13.11	79.5
9-	67.12	0.3372	0.3394	85.56	1.88	12.15	85.56	12.29	81.3
3.1	61.26	0.3502	0.3511	82.51	2.4	17.63	82.51	17.79	82.3
7	64.34	0.3434	0.3442	84.13	2.48	14.58	84.13	14.78	80.4
	64.12	0.3442	0.3447	84.02	2.58	14.85	84.02	15.07	80.2
68-2	70.21	0.3428	0.3447	87.09	2.05	15.04	87.09	15.17	82.3
3-3	63.81	0.3457	0.3468	83.86	2.35	15.76	83.86	15.93	81.6
		:		:					
5149	Hunter L	Hunter a	Hunter B	:					
68-1	81.08	0.71	10.89						
68-1	79.08	2.08	14						
68-1	79.09	2.09	14.02						
8-1	92.04	0.91	5.81						
68-1	80.6	1.15	9.06						
17-2	80.25	2.21	12.75						
17-3	78.08	2.68	14.09						
17-15-1	80.01	2.29	13.05						
-1	77.01	2.56	12.73						
21-3	79.77	2.35	11.65						
21-6	81.92	1.86	11.14						
50-3-1	78.26	2.33	15.36						
67-1	80.2	2.43	13.07						
68-1	80.07	2.53	13.28						
68-2	83.79	2.04	13.68						
68-3	79.87	2.3	14						
									!
l I									

38/39

5616	Yxv. Y	Yxy, x	Yxy, y	Lab, L	Lab,a	Lab,b	LCh, L	CCH,C	LCh, h
11-1	72.26	0.3215	0.3254	88.09	1.1	5.06	88.09	5.17	77.8
11-2	58.69	0.3284	0.3335	81.12	9.0	8.36	81.12	8.38	85.9
11-2	52.78	0.3358	0.3335	77.74	3.55	9.22	77.74	9.87	69
1-1-	72.03	0.3312	0.3338	87.98	1.72	9.52	87.98	9.67	79.8
11-1	72.34	0.3295	0.332	88.13	1.79	8.64	88.13	8.82	78.4
11-1	71.98	0.3295	0.3313	87.95	2.09	8.39	87.95	8.64	76.1
11-1	73.01	0.3256	0.3305	88.45	0.68	7.51	88.45	7.54	84.9
17.1.2	75.85		0.3306	89.78	1.52	7.94	89.78	8.08	79.3
17-3-1	1		0.3303	88.25	1.48	7.66	88.25	7.8	79.1
17-4-1	69.02	0.3352	0.3377	86.51	1.78	11.37	86.51	11.5	81.2
25-11-1	69.5	0.3364	0.3401	86.75	1.26	12.41	86.75	12.47	84.2
25-28-1	72.21	0.3324	0.3343	98.06	2.09	9.6	88.06	10.11	78.2
25-36-2	70.46	0.3327	0.3353	87.22	1.73	10.22	87.22	10.36	80.5
35-35-1	75.59	0.3268	0.3299	99.68	1.56	7.58	89.66	7.73	78.4
50-12-1	73.13	0.3284	0.3316	88.5	1.46	8.36	88.5	8.48	80.1
KS-11-2	65.33	0.3371	0.3388	84.65	2.07	11.83	84.65	12	80.1
0700	1		O action 17						
2010	nunter L	nunter a	ייטווניו ס						
11.1	85	1.09	28.9						
11-2	76.61	0.58	7.64	:					
11-2	72.64	3.38	8.22	:					
11.1	84.87	1.72	8.97						
11-1	85.05	1.79	8.2						
11-1	84.84	2.08	7.96						
1:1	85.44	0.67	7.18						
17-1-2	87.08	1.52	7.62						
17-3-1	85.2	1.48	7.31						
17-4-1	83.07	1.76	10.52						
25-11-1	83.36	1.25	11.43						
25-28-1	84.97	2.08	9.32						
25-36-2	83.94	1.72	9.56						
35-35-1	86.94	1.57	7.29						
50-12-1	85.51	1.46	7.96						
KS-11-2	80.82	2.04	10.81						
				FIGURE 12				•	

Γ	-	Γ-	T	i	- i		i	i					,	 _	_	-	-		
	LCh, h	80.1	75.0	73.5	66.9	77.8													
	LCh,C	24.54	24.44	07.11	71.12	21.62													
. 10	בלח, ב	66.01	68 15	56.24	20.01	74.08													
440	Lau	24.18	23.31	25.52	10:00	21.13				_ <u>-</u> _		<u> </u>							
o da l		4.24	6.18	10.96	0,	p.													
Lab. L	1000	00.01	68.15	56.31	74.08	200.5												FIGURE 13	
Yxv. v	0 3717	2000	0.3662	0.3728	0 3500				Hunter B	17.92	17.69	17.14	17.02					<u> </u>	
Yxy, x	0.3770	0110	0.3778	0.4055	0.3657				Hunter a	3.79	5.62	9.42	4.31						
Yxy, Y	33.34	20 40	20.10	24.23	46.84				Hunter L	59.44	61.78	49.22	68.43						
8	12 Gr en	99 Brown	SE DIOMII	3 Red	4 Ivory				8	12 Gre n	22 Brown	3 Red	4 Ivory						

SUBSTITUTE SHEET (RULE 26)

				•
		;		•
				90
			i,	
		i.		
•				
		•		

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/29, 15/82, 5/10, A01H 5/00

A3

(11) International Publication Number: WO 96/40924

(43) International Publication Date: 19 December 1996 (19.12.96)

(21) International Application Number: PCT/US96/09897

(22) International Filing Date: 7 June 1996 (07.06.96)

(31) International Publication Number: WO 96/40924

(43) International Publication Date: 19 December 1996 (19.12.96)

(81) Designated States: AU, CA, CN, JP, KG, KZ, MX, TJ, TM, TR, US, UZ, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data: 08/480,178

Filed on

7 June 1995 (07.06.95)

US Published

(60) Parent Application or Grant

(63) Related by Continuation US

Not furnished (CIP) Not furnished With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(71) Applicant (for all designated States except US): CALGENE, INC. [US/US]; 1920 Fifth Street, Davis, CA 95616 (US).

(72) Inventors; and

- (75) Inventors Applicants (for US only): McBRIDE, Kevin [US/US]; 1309 Marina Circle, Davis, CA 95616 (US). STALKER, David, M. [US/US]; 2736 Cumberland Place, Davis, CA 95616 (US). PEAR, Julie, R. [US/US]; 818 Douglass Avenue, Davis, CA 95616 (US). PEREZ-GRAU, Luis [ES/US]; 1230 Elk Place, Davis, CA 95616 (US).
- (74) Agents: SCHWEDLER, Carl, J. et al.; Calgene, Inc., 1920 Fifth Street, Davis, CA 95616 (US).

(88) Date of publication of the international search report:
6 February 1997 (06.02.97)

(54) Title: COTTON FIBER TRANSCRIPTIONAL FACTORS

(57) Abstract

Novel DNA constructs are provided which may be used as molecular probes or inserted into a plant host to provide for modification of transcription of a DNA sequence of interest during various stages of cotton fiber development. The DNA constructs comprise a cotton fiber transcriptional initiation regulatory region associated with a gene which is expressed in cotton fiber. Also provided is novel cotton having a cotton fiber which has a natural color introduced by the expression in the cotton fiber cell, using such a construct, of pigment synthesis genes. Cotton fiber cells having color produced by genetic engineering and cotton cells comprising melanin and indigo pigments are included.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland.	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ.	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam
				A14	A ICT LASTIT

ional Application No

			PCT/US 96/09897	
A. CLASS IPC 6	C12N15/29 C12N15/82 C12N5/	10 A01H5/00		
	to International Patent Classification (IPC) or to both national classification	ssification and IPC		
	S SEARCHED documentation searched (classification system followed by classific	cation symbols)		
IPC 6	C12N A01H			
Documenta	tion searched other than minimum documentation to the extent the	at such documents are includ	ed in the fields searched	
Electronic o	data base consulted during the international search (name of data b	pase and, where practical, sea	urch terms used)	<u> </u>
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to cl.	aim No.
х	WO,A,95 08914 (AGRACETUS) 6 Aprisee page 8, line 12 - page 9, lisee page 18, line 6 - page 20, see page 36, line 1 - page 38, see sequence ID nos 4 and 5	ine 17 line 16	1	
X	W0,A,94 12014 (AGRACETUS) 9 June see page 9, line 29 - page 10, see page 19, line 5 - page 21, see page 40, line 8 - page 43,	line 32 line 24	1	
		-/		
	·			
	her documents are listed in the continuation of box C.	X Patent family mer	nbers are listed in annex.	
"A" docum	tegories of cited documents: ent defining the general state of the art which is not tered to be of particular relevance	or priority date and n	hed after the international filing date tot in conflict with the application but he principle or theory underlying the	
filing of the filter of the fi	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another	cannot be considered involve an inventive s	ir relevance; the claimed invention novel or cannot be considered to step when the document is taken alone ir relevance; the claimed invention	:
"O" docum	n or other special reason (as specified) lent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but	document is combine	to involve an invention the d with one or more other such docu- tion being obvious to a person skilled	
later ti	han the priority date claimed	'&' document member of		
	actual completion of the international search December 1996	Date of mailing of the	international search report	
Name and r	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer		
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tz. 31 651 epo nl, Fax: (+31-70) 340-3016	Maddox, A	4	

Form PCT/ISA/210 (second sheet) (July 1992)

2

Inta ional Application No PCT/US 96/09897

C (Corner	stion) DOCUMENTS CONSIDERED TO BE BELLEVIOUS	PC1/US 96/09897
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE WPI Section Ch, Week 9021 Derwent Publications Ltd., London, GB; Class A35, AN 90-161489 XP002020420 & JP,A,02 104 773 (NAGASE SANGYO KK) , 17 April 1990	38
A	see abstract	13-21, 27-36
x	TRENDS IN BIOTECHNOLOGY, vol. 10, no. 5, 1 May 1992, pages 165-170, XP000272383 JOHN M E ET AL: "GENES FOR JEANS: BIOTECHNOLOGICAL ADVANCES IN COTTON" see figure 2C	38
P,X	WO,A,95 16783 (CALGENE INC ;MCBRIDE KEVIN E (US); STALKER DAVID M (US)) 22 June 1995 see page 8, line 38 - page 10, line 14	13-18,20
P,X	US,A,5 495 070 (JOHN MALIYAKAL) 27 February 1996 see sequence ID no. 4. see column 27 - column 28; example 3 see column 45 - column 46	23,26
P,X	MOLECULAR AND GENERAL GENETICS, vol. 248, July 1995, pages 43-51, XP002018965 DELMER, D.P., ET AL.: "Genes encoding small GTP-binding proteins analagous to mammalian rac are preferentially expressed in developing cotton fibers" see the whole document	
A	EP,A,0 409 629 (CALGENE INC) 23 January 1991 see the whole document	1
A	CROP SCI 25 (5). 1985. 792-797., XP000612251 KOHEL R J: "GENETIC ANALYSIS OF FIBER COLOR VARIANTS IN COTTON GOSSYPIUM-HIRSUTUM." see the whole document	13-21, 27-36
4	TWELFTH ANNUAL CONFERENCE OF THE SOCIETY OF ETHNOBIOLOGY, RIVERSIDE, CALIFORNIA, USA, MARCH 30-APRIL 2, 1989. J ETHNOBIOL 9 (2). 1989. 239. , XP000612252 FOX S V: "NATURALLY OCCURRING COTTON LINT COLORS." see the whole document	13-21, 27-36
		,
j	-/	

2

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

ional Application No

		PCT/US 96/09897	
	nion) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
A	CHEMISTRY AND INDUSTRY, 5 September 1994, pages 676-679, XP000466067 JOHN, M.E.: "Re-engineering cotton fibre" see page 677, left-hand column, paragraph 2; table 2	13-21, 27-36	
A	WO,A,89 08145 (BIOSOURCE GENETICS CORP) 8 September 1989 see page 5, line 8 - line 18 see page 28, line 17 - line 20 see page 41, line 21 - page 42, line 2 see page 49, line 8 - line 17	16,17	
A	WO,A,95 13386 (BIOSOURCE TECH INC) 18 May 1995 see page 23, line 26 - page 24, line 35	16,17	
A	WO,A,93 02195 (COMMW SCIENT IND RES ORG) 4 February 1993 see page 1, line 23 - line 29 see page 1, line 36 - page 2, line 2 see page 7, line 1 - line 7	16,17	
A	EP,A,O 198 288 (ADVANCED GENETIC SCIENCES INC) 22 October 1986 see page 7, line 32 - line 55	18	
T	US,A,5 530 185 (MARTINEAU BELINDA M ET AL) 25 June 1996 see column 8, line 23 - column 9, line 14; claims 1-18; example 10	13,14, 16-20	
Т	WO,A,96 26639 (CALGENE INC) 6 September 1996 see page 20, line 8 - page 21, line 17 see page 47, line 11 - page 49, line 6	13,14, 16,17	
	·		

2

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

0

Int ional Application No PCT/US 96/09897

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO-A-9508914	06-04-95	AU-A- 79250 EP-A- 06700 JP-T- 85098	094 18-04-95 670 13-09-95
WO-A-9412014	09-06-94	AU-A- 56763 CA-A- 21278 EP-A- 06250	807 09-06-94
WO-A-9516783	22-06-95	US-A- 55761 CA-A- 21786 EP-A- 07344	645 22-06-95
US-A-5495070	27-02-96	US-A- 55210	978 28-05-96
EP-A-0409629	23-01-91	WO-A- 91013 US-A- 51750 US-A- 55301	995 29-12-92
WO-A-8908145	08-09-89	AU-B- 6384 AU-A- 40725 EP-A- 04062 JP-T- 35028 US-A- 55295 US-A- 53165	22-09-89 267 09-01-91 886 04-07-91 909 25-06-96
WO-A-9513386	18-05-95	US-A- 55299 AU-A- 11734 EP-A- 07318 ZA-A- 94089	495 29-05-95 843 18-09-96
WO-A-9302195	04-02-93	AU-B- 6554 CA-A- 21129 EP-A- 05998 JP-T- 75016 NZ-A- 2438	998 04-02-93 868 08-06-94 686 23-02-95
EP-A-0198288	22-10-86	US-A- 51808 AU-B- 6023 AU-A- 56155 US-A- 52788	306 11-10-90 586 23-10-86

Information on patent family members

Intu onal Application No PCT/US 96/09897

Patent document cited in search report	Publication date	Patent memi		Publication date
US-A-5530185	25-06-96	US-A- EP-A- WO-A-	5175095 0409629 9101324	29-12-92 23-01-91 07-02-91
W0-A-9626639	06-09-96	AU-A-	5363296	18-09-96

Form PCT/ISA/210 (patent family annex) (July 1992)

		·	,
			•ો '
	*		
	•		
*			
***			•