Named Entity Recognition as Dependency Parsing

WHY?

- Flat NER
- 传统的命名实体识别方法(Flat NER): 抽取出 句子中可能为实体的所有元素,这些实体间不存在交集问题。

```
query: 感冒吃什么药物?
NER 结果: {
感冒: 症状
}
```

• 问题: 但是现实中, 所有句子所抽取出的实体都是没有交集的么?

WHY?

- Nested NER
- •比如下例 "腰间盘突出吃什么药物?", NER 所 抽取出的 "腰间盘"和 "腰间盘突出" 存在交集,或者说 "腰间盘" 包含于 "腰间盘突出"。此时,如果采用 Flat NER 进行处理,那么只能选取其中的一个。

```
query: 腰间盘突出吃什么药物?
NER 结果: {
腰间盘: 部位,
腰间盘突出: 症状
}
```

WHY?

• 识别出 嵌套实体 有什么用呢?

• 介绍:如果一个模型能够识别出 "腰间盘突出" 是一个症状,它倾向于将所有出现的 "腰间盘突出" 都标记成症状。但如果它能够在识别前者的同时将 "腰间盘" 标记成部位,我们就认为它有能力将所有 "[部位]突出"的模式都识别出来,因为后者的角度,模型学到的是一种pattern,而非记住了一种具体情况。此外,提取出来的额外信息也能作为辅助特征,增强其他任务的效果。

Figure 1: The network architectures of our system.

- 1. embedding layer
- 2. BiLSTM: 获得单词表示形式;
- 3. FFNN:应用两个单独的FFNN为 span 的开始/结束创建不同的表示形式(hs/he)。对 span 的开始/结束使用不同的表示,可使系统学会单独识别 span 的开始/结束;
- 4. biaffine model:在句子上使用biaffine模型来创建 1×1×c 评分张量(rm),其中1是句子的长度,c 是 NER 类别的数量 +1(对于非实体)。

Figure 1: The network architectures of our system.

5. loss 函数

因为该任务属于 多类别分类问题:

$$p_{m}(i_{c}) = \frac{exp(r_{m}(i_{c}))}{\sum_{\hat{c}=1}^{C} exp(r_{m}(i_{\hat{c}}))}$$

$$loss = -\sum_{i=1}^{N} \sum_{c=1}^{C} y_{i_{c}} \log p_{m}(i_{c})$$

6. focal_loss 损失函数

目标:解决分类问题中类别不平衡、分类难度差异的一个 loss;

思路:降低了大量简单负样本在训练中所占的权重,也可理解为一

种困难样本挖掘。

损失函数形式:

$$L_{fl} = \begin{cases} -\alpha (1 - y')^{\gamma} log y' &, & y = 1 \\ -(1 - \alpha) y'^{\gamma} log (1 - y'), & y = 0 \end{cases}$$

Nested NER

WHAT?

Model	P	R	F1
ACE 2004	95		
Katiyar and Cardie (2018)	73.6	71.8	72.7
Wang et al. (2018)	-	-0	73.3
Wang and Lu (2018)	78.0	72.4	75.1
Straková et al. (2019)	-	_	84.4
Luan et al. (2019)	-	-	84.7
Our model	87.3	86.0	86.7
ACE 2005			
Katiyar and Cardie (2018)	70.6	70.4	70.5
Wang et al. (2018)		-	73.0
Wang and Lu (2018)	76.8	72.3	74.5
Lin et al. (2019)	76.2	73.6	74.9
Fisher and Vlachos (2019)	82.7	82.1	82.4
Luan et al. (2019)	-	70	82.9
Straková et al. (2019)	-		84.3
Our model	85.2	85.6	85.4
GENIA			
Katiyar and Cardie (2018)	79.8	68.2	73.6
Wang et al. (2018)	-	70	73.9
Ju et al. (2018)	78.5	71.3	74.7
Wang and Lu (2018)	77.0	73.3	75.1
Sohrab and Miwa (2018) ⁵	93.2	64.0	77.1
Lin et al. (2019)	75.8	73.9	74.8
Luan et al. (2019)	-	-	76.2
Straková et al. (2019)	-	23	78.3
Our model	81.8	79.3	80.5

Table 2: State of the art comparison on ACE 2004, ACE 2005 and GENIA corpora for nested NER.

Flat NER

Model	P	R	F1
ONTONOTE	S		
Chiu and Nichols (2016)	86.0	86.5	86.3
Strubell et al. (2017)	_	-	86.8
Clark et al. (2018)	_	_	88.8
Fisher and Vlachos (2019)	2	2	89.2
Our model	91.1	91.5	91.3
CONLL 2003 Er	nglish		
Chiu and Nichols (2016)	91.4	91.9	91.6
Lample et al. (2016)	_	-	90.9
Strubell et al. (2017)	2	-	90.7
Devlin et al. (2019)	_	-	92.8
Straková et al. (2019)	2	-	93.4
Our model	93.7	93.3	93.5
CONLL 2003 Ge	erman		
Lample et al. (2016)	2	2	78.8
Straková et al. (2019)	-	-	85.1
Our model	88.3	84.6	86.4
CONLL 2003 Germa	n revi	sed ⁶	
Akbik et al. (2018)	<u></u>	2	88.3
Our model	92.4	88.2	90.3
CONLL 2002 Sp	anish		
Lample et al. (2016)	2	2	85.8
Straková et al. (2019)	-	-	88.8
Our model	90.6	90.0	90.3
CONLL 2002 D	utch		
Lample et al. (2016)	2	<u>_</u>	81.7
Akbik et al. (2019)	_	-	90.4
Straková et al. (2019)	-	2	92.7
Our model	94.5	92.8	93.7

Table 3: State of the art comparison on CONLL 2002, CONLL 2003, ONTONOTES corpora for flat NER.

• Biaffine Classifier

- •操作:将 Biaffine Classifier 替换成 CRF,性能下降 0.8%;
- •解释:巨大的性能差异显示了添加biaffine模型的好处,并证实了我们的假设,即依赖项解析框架是我们系统高精度的重要因素。

Figure 1: The network architectures of our system.

• Contextual Embedding

• 操作: 去掉 Bert emb, 性能 下降 2.4%;

• 解释: BERT嵌入是以下之一 精度的最重要因素

Figure 1: The network architectures of our system.

- Context Independent Embeddings
- •操作: 去掉 上下文依赖的 fastText, 性能下降 0.4%
- •解释:即使启用了BERT嵌入,与上下文无关的嵌入仍然可以对系统做出相当明显的改进。

Figure 1: The network architectures of our system.

- Character Embeddings
- •操作: 删除 character embeddings, 性能下降 0.1%
- 解释: 一种解释是英语不是一种形态丰富的语言, 因此无益于主要来自角色级别的信息和BERT嵌入 本身基于单词已经捕获了一些字符级信息。

Figure 1: The network architectures of our system.