Grundbegriffe der Informatik Aufgabenblatt 13 (Dies ist das letzte Aufgabenblatt)

Matr.nr.:							
Nachname:							
Vorname:							
Tutorium:	Nr.			Name des Tutors:			
Ausgabe:	27. Ja	nuar !	2 010)			
Abgabe: 5. Februar 2010, 13:00 Uhr im Briefkasten im Untergeschoss von Gebäude 50.34 Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengeheftet							
abgegeben v							O
Vom Tutor au	ıszufül	len:					
erreichte Pu	nkte						
Blatt 13:			/ 19	9			
Blätter 1 – 13	3:	,	/ 252	2			

Aufgabe 13.1 (1 Punkt)

Wieviele Jahre alt war Kurt Gödel, als er starb?

Aufgabe 13.2 (2+2+2 Punkte)

- a) Gegeben seien eine Turingmaschine $T=(Z,z_0,X,f,g,m)$ sowie ein Wort $w\in (X\setminus \{\Box\})^*$. Geben Sie eine Turingmaschine T' an, so dass gilt: T' hält bei Eingabe des leeren Wortes genau dann an, falls T bei Eingabe von w anhält.
- b) Skizzieren Sie einen Algorithmus (unter Zuhilfenahme von Teilaufgabe a)), wie man die formale Sprache H des Halteproblems entscheiden könnte, falls es eine Turingmaschine E gäbe, die bei Eingabe der Codierung einer Turingmaschine T entscheidet, ob T bei Eingabe des leeren Wortes hält oder nicht.
- c) Skizzieren Sie einen Algorithmus, wie man die Funktion bb in endlicher Zeit berechnen könnte, falls es eine Turingmaschine *E* gäbe, die bei Eingabe der Codierung einer Turingmaschine *T* entscheidet, ob *T* bei Eingabe des leeren Wortes hält oder nicht.

Aufgabe 13.3 (2+3+2 Punkte)

Die Funktion $A: \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$ sei wie folgt definiert:

$$\forall y \in \mathbb{N}_0 : A(0, y) = y + 1$$

$$\forall x \in \mathbb{N}_0 : A(x + 1, 0) = A(x, 1)$$

$$\forall x, y \in \mathbb{N}_0 : A(x + 1, y + 1) = A(x, A(x + 1, y))$$

- a) Begründen Sie, warum A(x, y) für alle natürlichen Zahlen x und y definiert ist.
- b) Geben Sie geschlossene Formeln an für A(1, y), A(2, y) und A(3, y).
- c) Beweisen Sie Ihre Formel für A(1,y) durch vollständige Induktion.

Aufgabe 13.4 (2+3 Punkte)

- a) Geben Sie eine Relation $R \subseteq \mathbb{N}_0 \times \mathbb{N}_0$ an, die symmetrisch und transitiv ist, aber keine Äquivalenzrelation.
- b) Die Relation $R \subseteq \mathbb{N}_0 \times \mathbb{N}_0$ sei gegeben durch: $\forall n, m \in \mathbb{N}_0 : (n, m) \in R \iff \text{der größte gemeinsame Teiler von } n \text{ und } m \text{ ist eine Primzahl.}$

Zeigen Sie, dass *R* symmetrisch ist, aber weder transitiv noch reflexiv.