NWEN 242

4. Combinational and sequential logic

Agenda

- Combinational logic
 - AND gate, OR gate, NOT (inverter) gate
 - Multiplexors
 - Decoders
- Sequential logic
 - S-R latch
 - D latch (S-R latch with a clock)
 - D flip-flop
- Pegister file

Types of logic circuit

- In digital circuit theory, combinational logic is a type of digital logic where the output is a pure function of the present input only.
- Sequential logic, in which the output depends not only on the present input but also on the history of the input.
 - In other words, sequential logic has memory while combinational logic does not.

Definition of TRUE of ASSERTED

- Modern digital computers use two-level logic
- On Not all digital computers use a high voltage for binary 1 and a low voltage for binary 0
 - People talk about "true" or "asserted" and "false" or "deasserted"
 - To make things simple, we map asserted to 1 and deasserted to 0

AND and OR gates

а	b	С
0	0	0
0	1	1
1	0	1
1	1	1

Truth table

Inverter gate

The inverter gate performs the logic operation NOT

"Bubbles"

The NOT gate is sometimes denoted by a circle on an output or input

Quick exercise

- A toggle operation cannot be performed by using a single
 - A. NOT gate
 - B. AND gate
 - C. XOR gate
 - D. None of the above

A	В	out
0	0	0
0	1	1
1	0	1
1	1	0

How to design a logic block using gates?

- Goal: identify a logic function
- Design steps:
 - Represent the logic function using a truth table
 - Each row associated with an asserted output
 - Use an AND gate to represent each conjunction term
 - Connect all inputs with an AND gate
 - Connect all conjunction terms through disjunction
 - Use an OR gate to represent each disjunction

Example

- Design a logic block using gates
- Consider a three input and one output logic function:

The output D is true when two and only two of the inputs A, B, and C are true

Truth Table					
Α	В	С	D		
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	b	0	0		
1	0	1	- 1		
1	1	0	_1		
1	1	1	0		

		—
$D = \overline{A} \bullet B \bullet C$	$\perp A \circ \overline{R} \circ C \perp$	$A \circ B \circ \overline{C}$
	$\top A \bullet D \bullet C + A$	$A \bullet D \bullet C$

Answer: The logic block using gates

Multiplexors

Inputs might be 1 or 2 bits or words of 32 bits The output will be ONE of the inputs

Multiplexors

- A multiplexor is a combinational logic block containing n data inputs and 1 output
- The s selector inputs determine which of the n inputs will be the output.

$$s = \lceil log_2 n \rceil$$

If each input is a bunch of b bits, then the output is also a bunch of b bits.

Design a multiplexor

- Let n = 4 inputs
 - then $s = Log_2 n = Log_2 4 = 2 bits (S_0, S_1)$
- ① Let b = 2 bits, input pairs $(a_0, a_1), (b_0, b_1), (c_0, c_1), \text{ and } (d_0, d_1)$
- Then the multiplexor's truth table is:

	Selecto	r Inputs	Outputs		
	s_{o}	s ₁	00	01	
	0	0	\boldsymbol{a}_0	a ₁	
,	0	1	b_o	<i>b</i> ₁	
	1	0	c_o	C ₁	
	1	1	d_0	d_1	

$$S_0 = 0$$
, $S_1 = 0$

$$O_0 = \overline{S}_0 \bullet \overline{S}_1 \bullet A_0$$

$$O_1 = \overline{S}_0 \bullet \overline{S}_1 \bullet A_1$$

Decoders

- ** A 3-to-8 decoder example
- If we interpret the 3 inputs as a 3-bit binary number n
 - Then the active output is output n

Generally, we talk about n-to-2ⁿ decoders

$$In_0 = 0$$

 $In_1 = 1$
 $In_2 = 0$

$$Out_0 = 0$$

 $Out_1 = 0$
 $Out_2 = 1$
 $Out_3 = 0$

. . .

Decoder truth table

 $\overline{In}_0 \cdot \overline{In}_1 \cdot \overline{In}_2$

	Inputs					Out	puts			
In2	In1	In0	Out7	Out6	Out5	Out4	Out3	Out2	Out1	Out0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Quick exercise

A decoder is set up as shown, what should the input sequence be to for the Digital Transmitter?

- $A: In_1 = 0, In_0 = 1$
- B: $In_1 = 1$, $In_0 = 0$
- $C: In_1 = 0, In_0 = 0$
- D: $In_1 = 1$, $In_0 = 1$

The register

- In MIPS, you have 32 registers
- You can store data in registers and later read from them
- The set of registers is called the register file
- It is built of multiplexors, decoders, and flip-flops
- We have discussed multiplexors and decoders
- Next flip-flops.

Sequential logic

A clock signal

Sequential logic blocks usually update their output on the clock edge

- This is edge-triggered clocking
- Change in inputs at any other time have no effect on the outputs

Set-reset (SR) latch

- U Inputs
 - Reset
 - Set
- On the state of the state of
- Output undefined when S and R asserted simultaneously

		NOR
0	0	1
0	1	0
1	0	0
1	1	0

Q	S	R	$\mathbf{Q}_{\mathbf{n}}$
0	0	0	0
0 0	0	1	0
0	1	0	1 ?
0	1	1	?
1	0	0	1
1	0	0 1	0
1	1	0	7
1	1,	1	?
	1		

State transition table

