Università di Parma - Facoltà di Ingegneria

Prova intermedia di sistemi multivariabili del 27 Novembre 2019

Es. 1) (9 punti)

a) Trova una rappresentazione con un modello di stato per il seguente circuito elettrico, in cui il generatore di tensione u rappresenta l'ingresso e la tensione y l'uscita. I parametri R, L, C sono strettamente positivi.

- b) Trova l'insieme di raggiungibilità X_R .
- c) Metti il sistema nella forma standard di raggiungibilità.
- d) Trova la funzione di trasferimento.

Es. 2) (6 punti) Considera il sistema a tempo discreto

$$\begin{cases} x(k+1) = Ax(k) \\ x(0) = x_0, \end{cases}$$

con

$$A = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{array} \right]$$

- a) Calcola il polinomio caratteristico e il polinomio minimo di A.
- b) Calcola la potenza di matrice A^k .
- c) Il sistema è asintoticamente stabile? E' semplicemente stabile?

Es. 3) (7 punti) Considera il sistema a tempo discreto

$$x(k+1) = Ax(k) + Bu(k)$$

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & -1 \\ 0 & 1 \end{bmatrix}.$$

- a) Trova gli insiemi di raggiungibilità $X_R(k)$ per ogni $k \in \mathbb{N}$.
- a) Trova gli insiemi di raggiungere lo stato $x_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ a partire dall'origine, nel numero minimo di passi.

Continua dietro.

Es. 4) (8 punti) Considera il sistema a tempo continuo

$$\dot{x}(t) = Ax(t) + bu(t) \,,$$

con

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & -1 & 1 & 1 \\ 1 & 0 & 1 & 2 \\ -1 & 0 & -1 & -1 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$

- a) Metti il sistema nella forma canonica di controllo.
- b) Trova un vettore riga f tale che A+bf abbia tutti gli autovalori in -1.

Es. 5) (3 punti bonus) Considera il sistema

$$\begin{cases} \dot{x}(t) = Ax(t) + Bz(t) \\ \dot{z}(t) = Qz(t) \end{cases}$$
 (1)

dove $x(t) \in \mathbb{R}^n$, $z(t) \in \mathbb{R}^m$ e A, B, Q hanno dimensioni appropriate. Dimostra che il sistema (1) è asintoticamente stabile se e solo se le matrici A e Q sono di Hurwitz. Mostra inoltre, con un controesempio, che se i sistemi $\dot{x}(t) = Ax(t)$, $\dot{z}(t) = Qz(t)$ sono semplicemente stabili, il sistema (1) non è necessariamente semplicemente stabile.