Basics of plant population modelling and its application

Pieter Zuidema, Pieter.zuidema@wur.nl

Programme

Monday: Matrix models

Tuesday: Integral Projection Models: construction
Plus first paper discussion

Wednesday: Integral Projection Models: output

Plus: second paper discussion

Thursday: Integral Projection Models: more applications

Plus: preparing presentations

Friday: **Presentations**

Programme

Thursday February 13th: Integral Projection Models: output & applications

9-9.30 Lecture: IPM output & applications

9.30-12 Exercises: IPM output & applications

Lunch

2-5 Work on your own data & prepare your presentation

Lecture: Running & applying IPMs

- My tips for IPMs
- Rpadrino package

- An interesting question
 - On population viability
 - On population expansion (invasive species)
 - On harvesting effects
 - On climate/environmental change

- The question determines:
 - What you measure and study in the field: where, how long, what classes, how many plots
 - What stages your IPM includes: seeds, seedlings
 - What structure your IPM has: time varying, habitat differences, treatments, landscape level?

Sound data

- Make sure you sample sufficient individuals (minimum ~ 200; ideally 500)
- Ensure sufficient coverage of all classes
- Use statistical logic to determine sampling and experimental design
- Pool data across habitats, treatments, etc.
- All vital rates: survival, growth, reproduction & recruitment
- From permanent sample plots, tree-ring analysis, mark-recapture
- From individuals outside plots that you remeasure

- Sound statistical analyses
 - Use multiple regressions to include effects of both habitat and size
 - Only include fixed effects that you would like to include in your IPM: habitats, years
 - Use mixed effect models if you're interested in variability across years (or plots). In ipmr you can add random year factors to produce stochastic models
 - Some vital rates will not respond to treatment/habitat/etc. In that case they need to be the same ascross your different treatment/habitat/year IPMs

- Vital rate regressions: survival
 - Use logistic regressions (glm binomial): survival ~
 size or

```
survival ~size + size^2
```

- Add habitat or year if applicable
- If not significant, then survival ~ 1

- Vital rate regressions: growth
 - For organisms with large size changes compared to maximum size, you can use size_next ~ size
 - For long-lived organisms with small size changes compared to maximum growth, better to use size_next ~ size + growth_function
 - Growth function can be linear (a* size) or more complex (a*size + b*size^2) or Hossefeld or something else
 - In exercises we used curve fitting for this (nls function)

- Vital rate regressions: sexual reproduction
 - Most complex
 - You need at least: (1) info on which individuals are reproduction, (2) the number of new recruits per reproductive individuals.
 - But can also be: (1) repro probability, (2) number of inflorescences or seeds produced per repro individual, (3) number of new recruits per inflorescence or per seed
 - Make sure that the recruits are expressed per unit at which you have information about the reproduction.

- Vital rate regressions: clonal reproduction
 - You need: (1) info on which individuals are producing new shoots, (2) the number of new shoots per clonally reproducing individual.
 - Add a new kernel in ipmr, see example code

IPM construction

- Build your kernel carefully, step by step and check the transition rates and lambda values carefully
- Start simple to test your model

Mesh size checks

- Mesh size influence lambda, ages & growth variability
- Make cross-cuts in IPM to ensure growth variability is described by at least 5 points
- Check effect of mesh size on lambda
- Check effect of mesh size on age estimates

- IPMs for multiple treatments/habitats
 - build one IPM for all of them together, based on your statistical models
 - Extract each habitat-specific IPM transition
 matrices and conduct further analyses with these
 - In this way, you have used the strength of all data to build your IPMs and you can use the separate IPMs

- Example code!
 - Please feel free to use or share the code we used in the course
 - This is yours and you can use it and adapt it

- Assistance?
 - Feel free to ask me for help, involve me in a study,
 visit us in Wageningen
 - I'm happy to help an collaborate