Homework #1, Math 424, Spring 2024 typeset January 17, 2024

Prof. Eugene Lerman

Read Chapter 2 of Rosenlicht. Problems:

1 Consider the empty set \varnothing as the subset of the reals \mathbb{R} . Give a convincing argument that every $x \in \mathbb{R}$ is an upper bound of \varnothing and a lower bound of \varnothing . Does \varnothing have the least upper bound? Explain.

2 Consider \mathbb{Z}_3 , the integers modulo 3. It is a field and you don't need to prove this. Prove that \mathbb{Z}_3 cannot be an ordered field.

Hint: p. 23 of the textbook.

3 Let $a, b \in \mathbb{R}$ be two numbers with a < b < 0. Prove that

$$\frac{1}{b} < \frac{1}{a}.$$

Hint: O8, p. 20.

4 Prove that for any $a, b \in \mathbb{R}$

$$\max\{a, b\} = \frac{1}{2}(a + b + |b - a|).$$

- 5 Give a careful proof that $1 = \sup([0, 1))$.
- **6** Consider a function $d: \mathbb{R}^2 \times \mathbb{R}^2 \to [0, \infty)$ defined by

$$d((x_1, x_2), (y_1, y_2)) := \max\{|x_1 - y_1|, |x_2 - y_2|\}$$

Prove that the triangle inequality holds for d: for all $x=(x_1,x_2), y=(y_1,y_2), z=(z_1,z_2)$ in \mathbb{R}^2 ,

$$d(x,y) \le d(x,z) + d(z,y).$$