Integral y Medida

Ejercicio 20, solución

UAM

2014

Sea μ^* una medida exterior inducida por una premedida de un conjunto X. Demuestra que todo $E \subset X$ con intersección μ^* -medible con todo A μ^* -medible con $\mu^*(A) < \infty$, es medible.

1. Demotración

Obviamente si $\mu^*(X) < \infty$ nada hay que demostrar.

Observa que si E es tal que para todo A μ^* -medible con $\mu^*(A) < \infty$ se tiene que $E \cap A$ es μ^* -medible entonces también se tiene que $E^c \cap A$ es μ^* -medible y por tanto $\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$.

Tenemos que demostrar que $\forall C \subset X$ se tiene que $\mu^*(C) = \mu^*(C \cap E) + \mu^*(C \cap E^c)$. Si $\mu^*(C) = \infty$ nada hay que demostrar. Suponemos $\mu^*(C) < \infty$. Según el ejercicio **18.a.** , dado $\varepsilon > 0$ existe A μ^* -medible tal que $C \subset A$ y $\mu^*(C) + \varepsilon \ge \mu^*(A)$.

Entonces

$$\mu^*(C) + \varepsilon \geq \mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c) \geq \mu^*(C \cap E) + \mu^*(C \cap E^c) \geq \mu^*(C).$$

1