Chest X-ray Thoracic Disease Diagnosis with Convolutional Neural Networks

Team 19 @ 2020 Fall BD4H: Xiaojie Du, Wenqin You, Jing Zhao, Jingyao Zhu

Motivation

- Clinical diagnosis of thoracic diseases using X-ray images is expensive and requires expertise.
- Build end-to-end deep learning models to facilitate physicians for the clinical diagnosis.

Data Pipeline

Raw Data

kaggle

Preprocess Framework

K Keras

Models

Raw Data

- NIH Chest X-ray Dataset
 - 112,120 Chest X-ray images

- Bounding box coordinates: BBoxlist2017.csv
- Class labels and patient data: Dataentry2017.csv

Data Preprocessing

(a) simple or multiple labels per image

(b) Disease Distribution by Gender

Data Preprocessing

(a) Labels Distribution

(b) Age Distribution by Gender

Project Pipeline

VGGNet Model

ResNet and Inception Model

Customized Model Architecture

Pretrained Models

Average AUC = 0.558

Average AUC = 0.564

Average AUC = 0.609

Simple vs Attention

Average AUC = 0.672

Average AUC = 0.705

Optimizer: Adam vs Accumulated Adam

Average AUC = 0.669

Average AUC = 0.705

Conclusion

Model Performance:

- VGGNet has the best performance over all of the other pre-trained CNN models.
- VGGNet16 plus Attention architecture achieves the best performance in terms of the AUC.

Achievement:

 Our end-to-end CNN models achieve satisfactory performance for classifying thoracic diseases using chest X-ray dataset. The AUC is comparable to the literature result.

Thanks for your attention!