GEMP - UFC Quixadá - ICPC Library

Contents

1	Data	a Structures	
	1.1	BIT	
	1.2	BIT 2D	
	1.3	BIT In Range	
	1.4	Dynamic Median	•
	1.5	Dynamic Wavelet Tree	
	1.6	Implicit Treap	
	1.7	LiChao Tree	
	1.8	Policy Based Tree	
	1.9	Queue Query	
	1.10	Range Color	
	1.11	Segment Tree	
	1.12	Segment Tree 2D	
	1.13	Segment Tree Iterative	
	1.14	Segment Tree Lazy	
	1.15	Sparse Table	
	1.16	SQRT Decomposition	1
	1.17	SQRT Tree	
	1.18	Stack Query	1
	1.19	Treap	
	1.20	Union Find	
	1.21	Wavelet Tree	1
2	Gra	ph Algorithms	1
	2.1	2-SAT	1
	2.2	Dinic	
	2.3	Flow With Demand	1
	$\frac{2.3}{2.4}$	THE D	1
	$\frac{2.4}{2.5}$	HLD	
		Minimum Cost Maximum Flow	
	2.6	Strongly Connected Component	
	2.7	Topological Sort	1
			-
•	_	. D	
3		amic Programming	1
3	Dyn 3.1	Divide and Conquer Optimization	1
3			1
3	3.1°	Divide and Conquer Optimization	1 1
3	3.1 3.2	Divide and Conquer Optimization	1 1 1
3	3.1 3.2 3.3	Divide and Conquer Optimization	1 1 1
	3.1 3.2 3.3 3.4	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation Knuth Optimization Implementation	1 1 1
3	3.1 3.2 3.3 3.4 Mat	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h	1 1 1
	3.1 3.2 3.3 3.4 Mat	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math	1 1 1 1 1
	3.1 3.2 3.3 3.4 Mat 4.1 4.2	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt	1 1 1 1 1
	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt Binomial Coefficients	1 1 1 1 1
	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt Binomial Coefficients Chinese Remainder Theorem	$egin{array}{cccccccccccccccccccccccccccccccccccc$
	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4 4.5	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt Binomial Coefficients Chinese Remainder Theorem Euler's totient	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4 4.5 4.6	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt Binomial Coefficients Chinese Remainder Theorem Extended Euclidean	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4 4.5	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt Binomial Coefficients Chinese Remainder Theorem Euler's totient	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4 4.5 4.6	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt Binomial Coefficients Chinese Remainder Theorem Extended Euclidean	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4 4.5 4.6 4.7	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code Matrix	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code Matrix Modular Arithmetic	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code Matrix Modular Arithmetic Montgomery Multiplication	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code Matrix Modular Arithmetic	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code Matrix Modular Arithmetic Montgomery Multiplication Prime Number	
	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code Matrix Modular Arithmetic Montgomery Multiplication	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 Geo	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code Matrix Modular Arithmetic Montgomery Multiplication Prime Number	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 Geo	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code Matrix Modular Arithmetic Montgomery Multiplication Prime Number metry mg Algorithms	1
4	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 Geo	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt BigInt Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code Matrix Modular Arithmetic Mondgomery Multiplication Prime Number metry mg Algorithms Min Cyclic String	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 Geo	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code Matrix Modular Arithmetic Montgomery Multiplication Prime Number metry mg Algorithms	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 Geo	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt BigInt Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code Matrix Modular Arithmetic Mondgomery Multiplication Prime Number metry mg Algorithms Min Cyclic String	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 6	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 Geo	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code Matrix Modular Arithmetic Montgomery Multiplication Prime Number metry mg Algorithms Min Cyclic String Suffix Automaton	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 Geo Stri: 6.1 6.2 Mise	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code Matrix Modular Arithmetic Montgomery Multiplication Prime Number metry mg Algorithms Min Cyclic String Suffix Automaton cellaneous	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 6	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 Geo	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code Matrix Modular Arithmetic Montgomery Multiplication Prime Number metry mg Algorithms Min Cyclic String Suffix Automaton	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 6	3.1 3.2 3.3 3.4 Mat 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 Geo Stri 6.1 6.2 Misc 7.1	Divide and Conquer Optimization Divide and Conquer Optimization Implementation Knuth Optimization Knuth Optimization Implementation h Basic Math BigInt Binomial Coefficients Chinese Remainder Theorem Euler's totient Extended Euclidean Gray Code Matrix Modular Arithmetic Montgomery Multiplication Prime Number metry mg Algorithms Min Cyclic String Suffix Automaton cellaneous	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 Data Structures

1.1 BIT

```
#include <bits/stdc++.h>
using namespace std;
class Bit{
private:
 typedef long long t_bit;
  int nBit;
  int nLog;
  vector<t_bit> bit;
public:
  Bit(int n) {
   nBit = n;
    nLog = 20;
    bit.resize(nBit + 1, 0);
  //1-indexed
  t_bit get(int i){
    t_bit s = 0;
    for (; i > 0; i -= (i & -i))
      s += bit[i];
    return s;
  //1-indexed [1, r]
  t_bit get(int 1, int r){
    return get(r) - get(l - 1);
  //1-indexed
  void add(int i, t_bit value) {
    assert(i > 0);
    for (; i <= nBit; i += (i & -i))</pre>
     bit[i] += value;
  t_bit lower_bound(t_bit value) {
    t bit sum = 0;
    int pos = 0;
    for (int i = nLog; i >= 0; i--) {
      if ((pos + (1 << i) <= nBit) and (sum + bit[pos + (1 << i)] <</pre>
        sum += bit[pos + (1 << i)];
        pos += (1 << i);
    return pos + 1;
};
```

1.2 BIT 2D

#include <bits/stdc++.h>

```
using namespace std;
class Bit2d{
private:
  typedef long long t_bit;
  vector<vector<t_bit>> bit;
  int nBit, mBit;
public:
  Bit2d(int n, int m) {
    nBit = n;
    mBit = m;
    bit.resize(nBit + 1, vector<t_bit>(mBit + 1, 0));
  //1-indexed
  t_bit get(int i, int j){
    t_bit sum = 0;
    for (int a = i; a > 0; a -= (a & -a))
      for (int b = j; b > 0; b -= (b & -b))
        sum += bit[a][b];
    return sum;
  //1-indexed
  t bit get(int al, int bl, int a2, int b2){
    return get(a2, b2) - get(a2, b1 - 1) - get(a1 - 1, b2) + get(a1 -
        1, b1 - 1);
  //1-indexed [i, j]
  void add(int i, int j, t_bit value) {
    for (int a = i; a <= nBit; a += (a & -a))</pre>
      for (int b = j; b <= mBit; b += (b & -b))</pre>
        bit[a][b] += value;
};
```

1.3 BIT In Range

```
#include <bits/stdc++.h>
using namespace std;
class BitRange{
private:
  typedef long long t bit;
  vector<t_bit> bit1, bit2;
  t_bit get(vector<t_bit> &bit, int i){
    t bit sum = 0;
    for (; i > 0; i -= (i & -i))
      sum += bit[i];
    return sum:
  void add(vector<t_bit> &bit, int i, t_bit value) {
    for (; i < (int)bit.size(); i += (i & -i))</pre>
      bit[i] += value:
public:
  BitRange(int n) {
    bit1.assign(n + 1, 0);
    bit2.assign(n + 1, 0);
  //1-indexed [i, j]
  void add(int i, int j, t_bit v) {
    add(bit1, i, v);
    add(bit1, j + 1, -v);
```

```
add(bit2, i, v * (i - 1));
  add(bit2, j + 1, -v * j);
}
//1-indexed
t_bit get(int i){
  return get(bit1, i) * i - get(bit2, i);
}
//1-indexed [i,j]
t_bit get(int i, int j){
  return get(j) - get(i - 1);
}
};
```

1.4 Dynamic Median

```
#include <bits/stdc++.h>
using namespace std:
class DinamicMedian{
  typedef int t_median;
  priority_queue<t_median> mn;
  priority_queue<t_median, vector<t_median>, greater<t_median>> mx;
public:
  double median() {
    if (mn.size() > mx.size())
      return mn.top();
      return (mn.top() + mx.top()) / 2.0;
  void push(t_median x){
    if (mn.size() <= mx.size())</pre>
      mn.push(x);
    else
      mx.push(x);
    if ((!mx.empty()) and (!mn.empty())) {
      while (mn.top() > mx.top()){
        t_median a = mx.top();
        mx.pop();
        t_median b = mn.top();
        mn.pop();
        mx.push(b);
        mn.push(a);
};
```

1.5 Dynamic Wavelet Tree

```
#include <bits/stdc++.h>
using namespace std;
struct SplayTree{
    struct Node{
        int x, y, s;
        Node *p = 0;
        Node *l = 0;
        Node *r = 0;
        Node(int v){
```

```
x = v;
    y = v;
    s = 1;
  void upd() {
    s = 1;
    y = x;
    if (1) {
      y += 1->y;
      s += 1->s;
    if (r) {
      y += r->y;
      s += r->s;
  int left_size(){
    return 1 ? 1->s : 0;
};
Node *root = 0;
void rot (Node *c) {
  auto p = c -> p;
  auto g = p->p;
  if (g)
    (q->1 == p ? q->1 : q->r) = c;
  if (p->1 == c) {
    p->1 = c->r;
    c->r = p;
    if (p->1)
      p -> 1 -> p = p;
  else{
    p->r = c->1;
    c->1 = p;
    if (p->r)
      p->r->p = p;
  p->p = c;
  c->p = g;
  p->upd();
  c->upd();
void splay (Node *c) {
  while (c->p) {
    auto p = c->p;
    auto g = p -> p;
    if (g)
      rot((g->l == p) == (p->l == c) ? p : c);
    rot(c);
  c->upd();
  root = c;
Node *join(Node *1, Node *r){
  if (not 1)
    return r;
  if (not r)
    return 1;
  while (1->r)
    1 = 1 - > r;
```

```
splay(1);
  r->p = 1;
  1->r = r;
  1->upd();
  return 1;
pair<Node *, Node *> split (Node *p, int idx) {
  if (not p)
    return make_pair(nullptr, nullptr);
  if (idx < 0)
    return make_pair(nullptr, p);
  if (idx >= p->s)
    return make_pair(p, nullptr);
  for (int lf = p->left_size(); idx != lf; lf = p->left_size()) {
    if (idx < lf)
     p = p -> 1;
    else
      p = p - r, idx - lf + 1;
  splay(p);
 Node *l = p;
 Node *r = p->r;
 if (r) {
   1->r = r->p = 0;
   1->upd();
  return make_pair(l, r);
Node *get(int idx) {
  auto p = root;
  for (int lf = p->left_size(); idx != lf; lf = p->left_size()) {
    if (idx < lf)
     p = p -> 1;
    else
      p = p - r, idx - lf + 1;
  splay(p);
  return p;
int insert(int idx, int x){
 Node *1, *r;
 tie(1, r) = split(root, idx - 1);
 int v = 1 ? 1->y : 0;
  root = join(l, join(new Node(x), r));
  return v;
void erase(int idx) {
 Node *1, *r;
  tie(l, r) = split(root, idx);
 root = join(1->1, r);
  delete 1;
int rank(int idx){
 Node *1, *r;
 tie(l, r) = split(root, idx);
 int x = (1 && 1->1 ? 1->1->y : 0);
  root = join(l, r);
  return x;
int operator[](int idx){
 return rank(idx);
```

```
SplavTree(){
    if (!root)
      return;
    vector<Node *> nodes{root};
    while (nodes.size()) {
      auto u = nodes.back();
      nodes.pop_back();
      if (u->1)
        nodes.emplace_back(u->1);
      if (u->r)
        nodes.emplace_back(u->r);
      delete u:
class WaveletTree{
private:
  int lo, hi;
 WaveletTree *1 = 0;
 WaveletTree *r = 0;
  SplayTree b;
public:
  WaveletTree(int min value, int max value) {
    lo = min value;
    hi = max value;
   b.insert(0, 0);
  ~WaveletTree(){
    delete 1;
    delete r;
  //0-indexed
  void insert(int idx, int x) {
    if (lo >= hi)
      return;
    int mid = (lo + hi - 1) / 2;
    if (x <= mid) {
     1 = 1 ?: new WaveletTree(lo, mid);
      l->insert(b.insert(idx, 1), x);
    }else{
      r = r ?: new WaveletTree(mid + 1, hi);
      r->insert(idx - b.insert(idx, 0), x);
  //0-indexed
  void erase(int idx){
    if (lo == hi)
      return;
    auto p = b.get(idx);
    int lf = p->1 ? p->1->y : 0;
    int x = p -> x;
    b.erase(idx);
    if (x == 1)
      1->erase(lf);
    else
      r->erase(idx - lf);
  //kth smallest element in range [i, j[
  //0-indexed
  int kth(int i, int j, int k){
```

```
if (i >= j)
      return 0:
    if (lo == hi)
      return lo;
    int x = b.rank(i);
    int v = b.rank(j);
    if (k \le y - x)
      return 1->kth(x, y, k);
      return r\rightarrow kth(i - x, j - y, k - (y - x));
  //Amount of numbers in the range [i, j[ Less than or equal to k
  //0-indexed
  int lte(int i, int j, int k){
    if (i >= j or k < lo)
      return 0;
    if (hi <= k)
      return j - i;
    int x = b.rank(i):
    int y = b.rank(j);
    return 1->lte(x, y, k) + r->lte(i - x, j - y, k);
  //Amount of numbers in the range [i, j[ equal to k
  //0-indexed
  int count(int i, int j, int k){
    if (i \ge j \text{ or } k < lo \text{ or } k \ge hi)
      return 0;
    if (lo == hi)
      return j - i;
    int mid = (10 + hi - 1) / 2;
    int x = b.rank(i);
    int y = b.rank(j);
    if (k <= mid)
      return 1->count(x, y, k);
    return r->count(i - x, j - y, k);
  //0-indexed
  int get(int idx){
    return kth(idx, idx + 1, 1);
};
```

1.6 Implicit Treap

```
#include <bits/stdc++.h>
using namespace std;
class ImplicitTreap{
private:
   typedef int t_treap;
   const t_treap neutral = 0;
   inline t_treap join(t_treap a, t_treap b, t_treap c){
     return a + b + c;
}
struct Node{
   int y, size;
   t_treap v, op_value;
   bool rev;
   Node *l, *r;
   Node(t_treap _v){
     v = op_value = _v;
}
```

```
y = rand();
                                                                                    return at (t->r, n - size(t->1) - 1);
    size = 1:
    l = r = NULL;
                                                                                void del(Node *&t) {
    rev = false;
                                                                                  if (!t)
                                                                                    return;
};
                                                                                  if (t->1)
Node *root;
                                                                                    del(t->1);
int size(Node *t) { return t ? t->size : 0; }
                                                                                  if (t->r)
t treap op value (Node *t) { return t ? t->op value : neutral; }
                                                                                    del(t->r);
Node *refresh(Node *t){
                                                                                  delete t;
 if (t == NULL)
                                                                                  t = NULL;
    return t:
 t->size = 1 + size(t->1) + size(t->r);
                                                                             public:
 t \rightarrow p_value = join(t \rightarrow v, op_value(t \rightarrow l), op_value(t \rightarrow r));
                                                                                ImplicitTreap() : root(NULL) {
 if (t->1 != NULL)
                                                                                  srand(time(NULL));
   t->1->rev ^= t->rev;
 if (t->r != NULL)
                                                                                ~ImplicitTreap() { clear(); }
    t->r->rev ^= t->rev;
                                                                                void clear() { del(root); }
 if (t->rev) {
                                                                                int size() { return size(root); }
    swap(t->1, t->r);
                                                                                //0-indexed
                                                                               bool insert(int n, int v) {
    t->rev = false;
                                                                                  Node *a, *b;
 return t;
                                                                                  split(root, n, a, b);
                                                                                  root = merge(merge(a, new Node(v)), b);
void split(Node *&t, int k, Node *&a, Node *&b) {
                                                                                  return true;
 refresh(t);
 Node *aux;
                                                                                //0-indexed
 if (!t) {
                                                                                bool erase(int n) {
    a = b = NULL;
                                                                                  Node *a, *b, *c, *d;
  }else if (size(t->1) < k){
                                                                                  split(root, n, a, b);
    split(t->r, k - size(t->l) - 1, aux, b);
                                                                                  split(b, 1, c, d);
                                                                                  root = merge(a, d);
    t->r = aux;
                                                                                  if (c == NULL)
    a = refresh(t);
  }else{
                                                                                    return false:
    split(t->1, k, a, aux);
                                                                                  delete c;
    t -> 1 = aux;
                                                                                  return true;
    b = refresh(t):
                                                                                //0-indexed
                                                                                t_treap at (int n) {
Node *merge(Node *a, Node *b) {
                                                                                 Node *ans = at(root, n);
 refresh(a);
                                                                                  return ans ? ans->v : -1;
  refresh(b):
 if (!a || !b)
                                                                                //0-indexed [1, r]
   return a ? a : b;
                                                                                t_treap query(int 1, int r){
                                                                                  if (1 > r)
 if (a->y < b->y) {
    a->r = merge(a->r, b);
                                                                                    swap(l, r);
    return refresh(a);
                                                                                  Node *a, *b, *c, *d;
                                                                                  split(root, l, a, d);
  }else{
    b->1 = merge(a, b->1);
                                                                                  split(d, r - 1 + 1, b, c);
    return refresh(b);
                                                                                  t_treap ans = op_value(b);
                                                                                  root = merge(a, merge(b, c));
                                                                                  return ans;
Node *at(Node *t, int n) {
 if (!t)
                                                                                //0-indexed [1, r]
    return t;
                                                                                void reverse(int 1, int r) {
                                                                                  if (1 > r)
  refresh(t):
 if (n < size(t->1))
                                                                                    swap(l, r);
    return at (t->1, n);
                                                                                  Node *a, *b, *c, *d;
  else if (n == size(t->1))
                                                                                  split(root, l, a, d);
    return t:
                                                                                  split(d, r - l + 1, b, c);
                                                                                  if (b != NULL)
  else
```

```
b->rev ^= 1;
root = merge(a, merge(b, c));
};
```

1.7 LiChao Tree

```
#include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
class LiChaoTree{
private:
  typedef int t_line;
  struct Line{
    t_line k, b;
   Line() {}
   Line (t_line k, t_line b) : k(k), b(b) {}
  int n tree, min x, max x;
  vector<Line> li tree;
  t_line f(Line l, int x) {
    return 1.k * x + 1.b;
  void add(Line nw, int v, int l, int r) {
    int m = (1 + r) / 2;
    bool lef = f(nw, 1) > f(li tree[v], 1);
    bool mid = f(nw, m) > f(li_tree[v], m);
    if (mid)
      swap(li_tree[v], nw);
    if (r - 1 == 1)
      return;
    else if (lef != mid)
      add(nw, 2 * v, l, m);
    else
      add(nw, 2 * v + 1, m, r);
  int get(int x, int v, int 1, int r) {
    int m = (1 + r) / 2;
    if (r - 1 == 1)
      return f(li_tree[v], x);
    else if (x < m)
      return max(f(li\_tree[v], x), get(x, 2 * v, 1, m));
    else
      return max(f(li\_tree[v], x), get(x, 2 * v + 1, m, r));
public:
 LiChaoTree(int mn_x, int mx_x) {
    min_x = mn_x;
    max_x = mx_x;
    n_{tree} = max_x - min_x + 5;
    li_tree.resize(4 * n_tree, Line(0, -INF));
  void add(t_line k, t_line b){
    add(Line(k, b), 1, min_x, max_x);
  t_line get(int x) {
    return get(x, 1, min_x, max_x);
};
```

1.8 Policy Based Tree

1.9 Queue Query

```
#include <bits/stdc++.h>
using namespace std;
class QueueQuery{
private:
  typedef long long t_queue;
  stack<pair<t_queue, t_queue>> s1, s2;
  t_queue cmp(t_queue a, t_queue b) {
    return min(a, b);
  void move(){
    if (s2.empty()) {
      while (!sl.empty()) {
        t_queue element = s1.top().first;
        s1.pop();
        t_queue result = s2.empty() ? element : cmp(element, s2.top().
            second);
        s2.push({element, result});
public:
  void push (t queue x) {
    t_queue result = s1.empty() ? x : cmp(x, s1.top().second);
    s1.push({x, result});
  void pop() {
    move();
    s2.pop();
  t_queue front(){
    move();
    return s2.top().first;
  t_queue query(){
    if (s1.emptv() || s2.emptv())
      return s1.empty() ? s2.top().second : s1.top().second;
      return cmp(s1.top().second, s2.top().second);
  t queue size(){
    return s1.size() + s2.size();
```

1.10 Range Color

```
#include <bits/stdc++.h>
using namespace std;
class RangeColor{
private:
  typedef long long 11;
  struct Node {
   11 1, r;
    int color:
    Node() {}
    Node(11 1, 11 r, int color) : 1(1), r(r), color(color) {}
  };
  struct cmp{
    bool operator() (Node a, Node b) {
      return a.r < b.r;</pre>
  };
  std::set<Node, cmp> st;
  vector<ll> ans;
public:
  RangeColor(ll first, ll last, int maxColor) {
    ans.resize(maxColor + 1);
    ans[0] = last - first + 1LL;
    st.insert(Node(first, last, 0));
  //set newColor in [a, b]
  void set(ll a, ll b, int newColor) {
    auto p = st.upper_bound(Node(0, a - 1LL, -1));
    assert(p != st.end());
    11 1 = p -> 1;
    11 r = p \rightarrow r;
    int oldColor = p->color;
    ans[oldColor] -= (r - l + 1LL);
    p = st.erase(p);
    if (1 < a) {
      ans[oldColor] += (a - 1);
      st.insert(Node(1, a - 1LL, oldColor));
    if (b < r) {
      ans[oldColor] += (r - b);
      st.insert(Node(b + 1LL, r, oldColor));
    while ((p != st.end()) and (p->1 <= b)) {</pre>
      1 = p -> 1;
      r = p->r;
      oldColor = p->color;
      ans[oldColor] -= (r - l + 1LL);
      if (b < r) {
        ans[oldColor] += (r - b);
        st.insert(Node(b + 1LL, r, oldColor));
        st.erase(p);
        break;
      }else{
        p = st.erase(p);
    ans [newColor] += (b - a + 1LL);
```

```
st.insert(Node(a, b, newColor));
}
ll countColor(int x) {
   return ans[x];
}
};
```

1.11 Segment Tree

```
#include <bits/stdc++.h>
using namespace std;
class SegTree{
private:
  typedef long long Node;
  Node neutral = 0;
  vector<Node> st;
  vector<int> v;
  int n;
  Node join (Node a, Node b) {
    return (a + b);
  void build(int node, int i, int j){
    if (i == j) {
      st[node] = v[i];
      return;
    int m = (i + j) / 2;
    int 1 = (node << 1);</pre>
    int r = 1 + 1;
    build(l, i, m);
    build(r, m + 1, j);
    st[node] = join(st[l], st[r]);
  Node query (int node, int i, int j, int a, int b) {
    if ((i > b) \text{ or } (j < a))
      return neutral;
    if ((a <= i) and (j <= b))
      return st[node];
    int m = (i + j) / 2;
    int 1 = (node << 1);</pre>
    int r = 1 + 1;
    return join(query(1, i, m, a, b), query(r, m + 1, j, a, b));
  void update(int node, int i, int j, int idx, Node value){
    if (i == j) {
      st[node] = value;
      return;
    int m = (i + j) / 2;
    int 1 = (node << 1);</pre>
    int r = 1 + 1:
    if (idx <= m)
      update(l, i, m, idx, value);
      update(r, m + 1, j, idx, value);
    st[node] = join(st[1], st[r]);
public:
  template <class MyIterator>
  SegTree(MyIterator begin, MyIterator end) {
```

```
n = end - begin;
v = vector<int>(begin, end);
st.resize(4 * n + 5);
build(1, 0, n - 1);
}
//O-indexed [a, b]
Node query(int a, int b){
return query(1, 0, n - 1, a, b);
}
//O-indexed
void update(int idx, int value){
update(1, 0, n - 1, idx, value);
};
```

1.12 Segment Tree 2D

```
#include <bits/stdc++.h>
using namespace std;
struct SegTree2D{
private:
  int n, m;
  typedef int Node;
 Node neutral = -0x3f3f3f3f;
  vector<vector<Node>> seq;
 Node join (Node a, Node b) {
    return max(a, b);
public:
  SegTree2D(int n1, int m1) {
    n = n1, m = m1;
    seq.assign(2 * n, vector<Node>(2 * m, 0));
  void update(int x, int y, int val){
    assert (0 <= x \& \& x < n \& \& 0 <= y \& \& y < m);
    x += n, y += m;
    seg[x][y] = val;
    for (int j = y / 2; j > 0; j /= 2)
      seg[x][j] = join(seg[x][2 * j], seg[x][2 * j + 1]);
    for (x /= 2; x > 0; x /= 2) {
      seg[x][y] = join(seg[2 * x][y], seg[2 * x + 1][y]);
      for (int j = y / 2; j > 0; j /= 2) {
        seg[x][j] = join(seg[x][2 * j], seg[x][2 * j + 1]);
  vector<int> getCover(int 1, int r, int N) {
    l = std::max(0, 1);
    r = std::min(N, r);
    vector<int> ans:
    for (1 += N, r += N; 1 < r; 1 /= 2, r /= 2) {
      if (1 & 1)
        ans.push_back(l++);
      if (r & 1)
        ans.push_back(--r);
    return ans;
  Node query (int x1, int y1, int x2, int y2) {
    auto c1 = getCover(x1, x2 + 1, n);
```

```
auto c2 = getCover(y1, y2 + 1, m);
Node ans = neutral;
for (auto i : c1) {
   for (auto j : c2) {
      ans = join(ans, seg[i][j]);
    }
}
return ans;
}
```

1.13 Segment Tree Iterative

```
#include <bits/stdc++.h>
using namespace std;
class SegTreeIterative{
private:
  typedef long long Node;
  Node neutral = 0;
  vector<Node> st;
  int n;
  inline Node join(Node a, Node b) {
    return a + b:
public:
  template <class MyIterator>
  SegTreeIterative(MyIterator begin, MyIterator end) {
    int sz = end - begin;
    for (n = 1; n < sz; n <<= 1);
    st.assign(n << 1, neutral);
    for (int i = 0; i < sz; i++, begin++)</pre>
      st[i + n] = (*begin);
    for (int i = n + sz - 1; i > 1; i--)
      st[i >> 1] = join(st[i >> 1], st[i]);
  //0-indexed
  void update(int i, Node x) {
    st[i += n] = x;
    for (i >>= 1; i; i >>= 1)
      st[i] = join(st[i << 1], st[1 + (i << 1)]);
  //0-indexed [1, r]
  Node query (int 1, int r) {
    Node ans = neutral:
    for (1 += n, r += n + 1; 1 < r; 1 >>= 1, r >>= 1) {
      if (1 & 1)
        ans = join(ans, st[l++]);
      if (r & 1)
        ans = join(ans, st[--r]);
    return ans;
};
```

1.14 Segment Tree Lazy

```
#include <bits/stdc++.h>
using namespace std;
```

```
class SegTreeLazy{
private:
  typedef long long Node;
  vector<Node> st;
  vector<long long> lazy;
  vector<int> v;
  int n;
  Node neutral = 0;
  inline Node join(Node a, Node b) {
    return a + b;
  inline void upLazy(int &node, int &i, int &j) {
    if (lazy[node] != 0) {
      st[node] += lazy[node] * (j - i + 1);
      //tree[node] += lazy[node];
      if (i != j) {
        lazy[(node << 1)] += lazy[node];</pre>
        lazy[(node << 1) + 1] += lazy[node];</pre>
      lazy[node] = 0;
  void build(int node, int i, int j) {
    if (i == j) {
      st[node] = v[i];
      return;
    int m = (i + j) / 2;
    int 1 = (node << 1);</pre>
    int r = 1 + 1;
    build(l, i, m);
    build(r, m + 1, j);
    st[node] = join(st[l], st[r]);
  Node query (int node, int i, int j, int a, int b) {
    upLazy(node, i, j);
    if ((i > b) or (j < a))
      return neutral;
    if ((a <= i) and (j <= b)){
      return st[node];
    int m = (i + j) / 2;
    int 1 = (node << 1);</pre>
    int r = 1 + 1;
    return join(query(1, i, m, a, b), query(r, m + 1, j, a, b));
  void update(int node, int i, int j, int a, int b, int value) {
    upLazy(node, i, j);
    if ((i > j) \text{ or } (i > b) \text{ or } (j < a))
      return:
    if ((a <= i) and (j <= b)){</pre>
      lazy[node] = value;
      upLazy(node, i, j);
    }else{
      int m = (i + j) / 2;
      int 1 = (node << 1);</pre>
      int r = 1 + 1;
      update(l, i, m, a, b, value);
      update(r, m + 1, j, a, b, value);
      st[node] = join(st[l], st[r]);
```

```
public:
    template <class MyIterator>
    SegTreeLazy(MyIterator begin, MyIterator end){
        n = end - begin;
        v = vector<int>(begin, end);
        st.resize(4 * n + 5);
        lazy.assign(4 * n + 5, 0);
        build(1, 0, n - 1);
}
//O-indexed [a, b]
Node query(int a, int b){
    return query(1, 0, n - 1, a, b);
}
//O-indexed [a, b]
void update(int a, int b, int value){
        update(1, 0, n - 1, a, b, value);
    }
};
```

1.15 Sparse Table

```
#include <bits/stdc++.h>
using namespace std;
class SparseTable{
private:
  typedef int t_st;
 vector<vector<t st>> st:
 vector<int> log2;
  t_st neutral = 0x3f3f3f3f3f;
  int nLog;
  t_st join(t_st a, t_st b){
    return min(a, b);
public:
  template <class MyIterator>
  SparseTable(MyIterator begin, MyIterator end) {
    int n = end - begin;
    nLog = 20;
    log2.resize(n + 1);
    log2[1] = 0;
    for (int i = 2; i <= n; i++)</pre>
     log2[i] = log2[i / 2] + 1;
    st.resize(n, vector<t_st>(nLog, neutral));
    for (int i = 0; i < n; i++, begin++)</pre>
      st[i][0] = (*begin);
    for (int j = 1; j < nLog; j++)
      for (int i = 0; (i + (1 << (j - 1))) < n; i++)
        st[i][j] = join(st[i][j-1], st[i+(1 << (j-1))][j-1]);
  //0-indexed [a, b]
  t_st query(int a, int b) {
    int d = b - a + 1:
    t_st ans = neutral;
    for (int j = nLog - 1; j >= 0; j--) {
     if (d & (1 << i)) {
        ans = join(ans, st[a][j]);
        a = a + (1 << (i));
```

```
return ans;
}
//O-indexed [a, b]
t_st queryRMQ(int a, int b) {
   int j = log2[b - a + 1];
   return join(st[a][j], st[b - (1 << j) + 1][j]);
}
};</pre>
```

1.16 SQRT Decomposition

```
#include <bits/stdc++.h>
using namespace std;
struct SqrtDecomposition{
  typedef long long t_sqrt;
  int sqrtLen;
  vector<t_sqrt> block;
  vector<t_sqrt> v;
  template <class MyIterator>
  SgrtDecomposition (MyIterator begin, MyIterator end) {
    int n = end - begin;
    sqrtLen = (int) sqrt(n + .0) + 1;
    v.resize(n):
    block.resize(sqrtLen + 5);
    for (int i = 0; i < n; i++, begin++) {</pre>
      v[i] = (*begin);
      block[i / sqrtLen] += v[i];
  //0-indexed
  void update(int idx, t_sqrt new_value) {
    t_sqrt d = new_value - v[idx];
    v[idx] += d;
    block[idx / sqrtLen] += d;
  //0-indexed [1, r]
  t_sqrt query(int 1, int r){
    t_sqrt sum = 0;
    int c_l = l / sqrtLen, c_r = r / sqrtLen;
    if (c_l == c_r) {
      for (int i = 1; i <= r; i++)</pre>
        sum += v[i];
    }else{
      for (int i = 1, end = (c_1 + 1) * sqrtLen - 1; i <= end; i++)</pre>
        sum += v[i];
      for (int i = c_l + 1; i <= c_r - 1; i++)</pre>
        sum += block[i];
      for (int i = c_r * sqrtLen; i <= r; i++)</pre>
        sum += v[i]:
    return sum;
};
```

1.17 SQRT Tree

```
#include <bits/stdc++.h>
using namespace std;
```

```
class SqrtTree{
private:
  typedef long long t_sqrt;
  t_sqrt op(const t_sqrt &a, const t_sqrt &b) {
    return a | b;
  inline int log2Up(int n) {
    int res = 0;
    while ((1 << res) < n)
      res++;
    return res;
  int n, lq, indexSz;
  vector<t_sqrt> v;
  vector<int> clz, layers, onLayer;
  vector<vector<t_sqrt>> pref, suf, between;
  inline void buildBlock(int layer, int l, int r) {
    pref[layer][l] = v[l];
    for (int i = 1 + 1; i < r; i++)
      pref[layer][i] = op(pref[layer][i - 1], v[i]);
    suf[layer][r-1] = v[r-1];
    for (int i = r - 2; i >= 1; i--)
      suf[layer][i] = op(v[i], suf[layer][i + 1]);
  inline void buildBetween (int layer, int lBound, int rBound, int
      betweenOffs) {
    int bSzLog = (layers[layer] + 1) >> 1;
    int bCntLog = layers[layer] >> 1;
    int bSz = 1 << bSzLog;</pre>
    int bCnt = (rBound - lBound + bSz - 1) >> bSzLog;
    for (int i = 0; i < bCnt; i++) {</pre>
      t_sqrt ans;
      for (int j = i; j < bCnt; j++) {</pre>
        t_sqrt add = suf[layer][lBound + (j << bSzLog)];
        ans = (i == j) ? add : op(ans, add);
        between[layer - 1][betweenOffs + lBound + (i << bCntLog) + j]</pre>
  inline void buildBetweenZero() {
    int bSzLog = (lg + 1) >> 1;
    for (int i = 0; i < indexSz; i++) {</pre>
      v[n + i] = suf[0][i << bSzLoq];
    build(1, n, n + indexSz, (1 \ll lg) - n);
  inline void updateBetweenZero(int bid) {
    int bSzLog = (lg + 1) >> 1;
    v[n + bid] = suf[0][bid << bSzLog];
    update(1, n, n + indexSz, (1 \ll lg) - n, n + bid);
  void build(int layer, int lBound, int rBound, int betweenOffs) {
    if (layer >= (int)layers.size())
      return:
    int bSz = 1 << ((layers[layer] + 1) >> 1);
    for (int l = lBound; l < rBound; l += bSz) {</pre>
      int r = min(l + bSz, rBound);
      buildBlock(layer, l, r);
      build(layer + 1, 1, r, betweenOffs);
```

```
if (layer == 0)
      buildBetweenZero();
    else
      buildBetween(layer, lBound, rBound, betweenOffs);
  void update (int layer, int lBound, int rBound, int between Offs, int
    if (layer >= (int)layers.size())
      return;
    int bSzLog = (layers[layer] + 1) >> 1;
    int bSz = 1 << bSzLog;</pre>
    int blockIdx = (x - lBound) >> bSzLog;
    int 1 = lBound + (blockIdx << bSzLog);</pre>
    int r = min(l + bSz, rBound);
    buildBlock(layer, l, r);
    if (layer == 0)
      updateBetweenZero(blockIdx);
      buildBetween(layer, lBound, rBound, betweenOffs);
    update(layer + 1, 1, r, betweenOffs, x);
  inline t_sqrt query(int 1, int r, int betweenOffs, int base) {
    if (1 == r)
      return v[1];
    if (1 + 1 == r)
      return op(v[1], v[r]);
    int layer = onLayer[clz[(l - base) ^ (r - base)]];
    int bSzLog = (layers[layer] + 1) >> 1;
    int bCntLog = layers[layer] >> 1;
    int lBound = (((1 - base) >> layers[layer]) << layers[layer]) +</pre>
    int lBlock = ((1 - lBound) >> bSzLog) + 1;
    int rBlock = ((r - lBound) >> bSzLog) - 1;
    t_sqrt ans = suf[layer][1];
    if (lBlock <= rBlock) {</pre>
      t_sqrt add;
      if (layer == 0)
        add = query(n + lBlock, n + rBlock, (1 << lq) - n, n);
        add = between[layer - 1][betweenOffs + lBound + (lBlock <<</pre>
            bCntLog) + rBlock];
      ans = op(ans, add);
    ans = op(ans, pref[layer][r]);
    return ans;
public:
  template <class MyIterator>
  SqrtTree (MyIterator begin, MyIterator end) {
    n = end - begin;
    v.resize(n);
    for (int i = 0; i < n; i++, begin++)</pre>
     v[i] = (*begin);
    lq = log2Up(n);
    clz.resize(1 << lg);</pre>
    onLayer.resize(lg + 1);
    clz[0] = 0;
    for (int i = 1; i < (int)clz.size(); i++)</pre>
      clz[i] = clz[i >> 1] + 1;
    int tlq = lq;
    while (tlq > 1) {
```

```
onLayer[tlg] = (int)layers.size();
      layers.push_back(tlg);
      tlg = (tlg + 1) >> 1;
    for (int i = lg - 1; i >= 0; i--)
      onLaver[i] = max(onLaver[i], onLaver[i + 1]);
    int betweenLayers = max(0, (int)layers.size() - 1);
    int bSzLog = (lg + 1) >> 1;
    int bSz = 1 << bSzLog;</pre>
    indexSz = (n + bSz - 1) >> bSzLog;
    v.resize(n + indexSz);
    pref.assign(layers.size(), vector<t_sqrt>(n + indexSz));
    suf.assign(layers.size(), vector<t_sqrt>(n + indexSz));
    between.assign(betweenLayers, vector<t_sqrt>((1 << lq) + bSz));</pre>
    build(0, 0, n, 0);
  //0-indexed
  inline void update(int x, const t_sqrt &item) {
   v[x] = item;
    update(0, 0, n, 0, x);
  //0-indexed [1, r]
  inline t_sqrt query(int 1, int r) {
    return query(1, r, 0, 0);
};
```

1.18 Stack Query

```
#include <bits/stdc++.h>
using namespace std;
struct StackQuery{
  typedef int t_stack;
  stack<pair<t_stack, t_stack>> st;
  t_stack cmp(t_stack a, t_stack b) {
    return min(a, b);
  void push(t_stack x) {
    t_stack new_value = st.empty() ? x : cmp(x, st.top().second);
    st.push({x, new_value});
  void pop() {
    st.pop();
  t_stack top() {
    return st.top().first;
  t_stack query(){
    return st.top().second;
  t_stack size() {
    return st.size();
};
```

1.19 Treap

#include <bits/stdc++.h>

```
using namespace std;
class Treap{
private:
  typedef int t_treap;
  struct Node{
    t_treap x, y, size;
   Node *1, *r;
    Node(t_treap \underline{x}) : x(\underline{x}), y(rand()), size(1), 1(NULL), r(NULL) {}
  Node *root;
  int size(Node *t) { return t ? t->size : 0; }
  Node *refresh(Node *t) {
    if (!t)
      return t;
    t->size = 1 + size(t->1) + size(t->r);
    return t;
  void split(Node *&t, t_treap k, Node *&a, Node *&b){
    Node *aux;
    if (!t){
      a = b = NULL:
    else if (t->x < k)
      split(t->r, k, aux, b);
      t->r = aux;
      a = refresh(t);
    }else{
      split(t->1, k, a, aux);
      t->1 = aux;
      b = refresh(t);
  Node *merge(Node *a, Node *b) {
    if (!a || !b)
      return a ? a : b;
    if (a->y < b->y) {
      a->r = merge(a->r, b);
      return refresh(a);
    }else{
      b->1 = merge(a, b->1);
      return refresh(b);
  Node *count(Node *t, t_treap k) {
    if (!t)
      return NULL;
    else if (k < t->x)
      return count (t->1, k);
    else if (k == t->x)
      return t;
    else
      return count (t->r, k);
  Node *nth(Node *t, int n) {
    if (!t)
      return NULL;
    if (n <= size(t->1))
      return nth(t->1, n);
    else if (n == size(t->1) + 1)
      return t:
      return nth(t->r, n - size(t->1) - 1);
```

```
void del(Node *&t) {
    if (!t)
      return;
    if (t->1)
      del(t->1);
    if (t->r)
      del(t->r);
    delete t;
    t = NULL;
public:
  Treap() : root(NULL) {}
  ~Treap() { clear(); }
  void clear() { del(root); }
  int size() { return size(root); }
  bool count(t_treap k) { return count(root, k) != NULL; }
  bool insert(t_treap k){
    if (count(k))
      return false;
    Node *a, *b;
    split(root, k, a, b);
    root = merge(merge(a, new Node(k)), b);
    return true;
  bool erase(t_treap k){
    Node *f = count(root, k);
    if (!f)
      return false;
    Node *a, *b, *c, *d;
    split(root, k, a, b);
    split(b, k + 1, c, d);
    root = merge(a, d);
    delete f;
    return true;
  //1-indexed
  t_treap nth(int n) {
   Node *ans = nth(root, n);
    return ans ? ans->x : -1;
};
```

1.20 Union Find

```
#include <bits/stdc++.h>
using namespace std;
class UnionFind{
private:
   vector<int> p, w, sz;
public:
   UnionFind(int n) {
      w.resize(n + 1, 1);
      sz.resize(n + 1, 1);
      p.resize(n + 1);
      for (int i = 0; i <= n; i++)
            p[i] = i;
   }
   int find(int x) {
      if (p[x] == x)</pre>
```

```
return x;
    return p[x] = find(p[x]);
  void join(int x, int y) {
    x = find(x);
    v = find(v);
    if (x == y)
      return;
    if (w[x] > w[y])
      swap(x, y);
    p[x] = y;
    sz[y] += sz[x];
    if (w[x] == w[y])
      w[y]++;
  bool isSame(int x, int y) {
    return find(x) == find(y);
  int size(int x){
    return sz[find(x)];
};
```

1.21 Wavelet Tree

```
#include <bits/stdc++.h>
using namespace std;
struct WaveletTree{
private:
  typedef int t_wavelet;
  t_wavelet lo, hi;
  WaveletTree *l = nullptr, *r = nullptr;
  vector<t_wavelet> a;
public:
  template <class MyIterator>
  WaveletTree (MyIterator begin, MyIterator end, t_wavelet minX,
      t wavelet maxX) {
    lo = minX, hi = maxX;
    if (lo == hi or begin >= end)
    t_{wavelet} mid = (lo + hi - 1) / 2;
    auto f = [mid] (int x) {
      return x <= mid;
    a.reserve(end - begin + 2);
    a.push_back(0);
    for (auto it = begin; it != end; it++)
      a.push_back(a.back() + f(*it));
    auto pivot = stable_partition(begin, end, f);
    l = new WaveletTree(begin, pivot, lo, mid);
    r = new WaveletTree(pivot, end, mid + 1, hi);
  inline int b(int i){
    return i - a[i];
  //kth smallest element in range [i, j]
  //1-indexed
  int kth(int i, int j, int k){
    if (i > j)
      return 0;
```

```
if (lo == hi)
      return lo;
    int inLeft = a[j] - a[i - 1];
    int i1 = a[i - 1] + 1, j1 = a[j];
    int i2 = b(i - 1) + 1, j2 = b(j);
    if (k <= inLeft)</pre>
      return 1->kth(i1, j1, k);
    return r->kth(i2, j2, k - inLeft);
  //Amount of numbers in the range [i, j] Less than or equal to k
  //1-indexed
  int lte(int i, int j, int k){
    if (i > j or k < lo)
      return 0;
    if (hi <= k)
      return j - i + 1;
    int i1 = a[i - 1] + 1, j1 = a[j];
    int i2 = b(i - 1) + 1, j2 = b(j);
    return 1->lte(i1, j1, k) + r->lte(i2, j2, k);
  //Amount of numbers in the range [i, j] equal to k
  //1-indexed
  int count(int i, int j, int k) {
    if (i > j \text{ or } k < lo \text{ or } k > hi)
      return 0;
    if (lo == hi)
      return j - i + 1;
    t_{wavelet} mid = (lo + hi - 1) / 2;
    int i1 = a[i - 1] + 1, j1 = a[j];
    int i2 = b(i - 1) + 1, j2 = b(j);
    if (k <= mid)
      return 1->count(i1, j1, k);
    return r->count(i2, j2, k);
  //swap v[i] with v[i+1]
  //1-indexed
  void swap(int i) {
    if (lo == hi or a.size() <= 2)
    if (a[i-1] + 1 == a[i] and a[i] + 1 == a[i+1])
      1->swap(a[i]);
    else if (b(i-1) + 1 == b(i) and b(i) + 1 == b(i+1))
      r->swap(b(i));
    else if (a[i - 1] + 1 == a[i])
      a[i]--;
    else
      a[i]++;
  ~WaveletTree() {
    if (1) delete 1;
    if (r) delete r;
};
```

2 Graph Algorithms

2.1 2-SAT

#include "strongly_connected_component.h"

```
using namespace std;
struct SAT{
  typedef pair<int, int> pii;
  vector<pii> edges;
  int n;
  SAT(int size) {
    n = 2 * size;
  vector<bool> solve2SAT() {
    vector<bool> vAns(n / 2, false);
    vector<int> comp = SCC::scc(n, edges);
    for (int i = 0; i < n; i += 2) {
      if (comp[i] == comp[i + 1])
        return vector<bool>();
      vAns[i / 2] = (comp[i] > comp[i + 1]);
    return vAns;
  int v(int x) {
    if (x >= 0)
      return (x << 1);
    x = x;
    return (x << 1) ^ 1;
  void add(int a, int b) {
    edges.push_back(pii(a, b));
  void addOr(int a, int b) {
    add(v(^a), v(b));
    add(v(^b), v(a));
  void addImp(int a, int b) {
    addOr(~a, b);
  void addEqual(int a, int b) {
    addOr(a, ~b);
    addOr(~a, b):
  void addDiff(int a, int b) {
    addEqual(a, ~b);
} ;
```

2.2 Dinic

```
#include <bits/stdc++.h>
using namespace std;
template <typename flow_t>
struct Dinic{
    struct FlowEdge{
        int v, u;
        flow_t cap, flow = 0;
        FlowEdge(int v, int u, flow_t cap) : v(v), u(u), cap(cap) {}
};
    const flow_t flow_inf = numeric_limits<flow_t>::max();
    vector<FlowEdge> edges;
    vector<vector<int>> adj;
    int n, m = 0;
    int s, t;
    vector<int> level, ptr;
```

```
queue<int> q;
bool bfs() {
  while (!q.empty()){
    int v = q.front();
    q.pop();
    for (int id : adj[v]) {
      if (edges[id].cap - edges[id].flow < 1)</pre>
        continue;
      if (level[edges[id].u] != -1)
        continue;
      level[edges[id].u] = level[v] + 1;
      q.push(edges[id].u);
  return level[t] != -1;
flow_t dfs(int v, flow_t pushed) {
 if (pushed == 0)
    return 0:
  if (v == t)
    return pushed:
  for (int &cid = ptr[v]; cid < (int)adj[v].size(); cid++){</pre>
    int id = adj[v][cid];
    int u = edges[id].u;
    if (level[v] + 1 != level[u] || edges[id].cap - edges[id].flow <</pre>
         1)
      continue;
    flow_t tr = dfs(u, min(pushed, edges[id].cap - edges[id].flow));
    if (tr == 0)
      continue;
    edges[id].flow += tr;
    edges[id ^ 1].flow -= tr;
    return tr;
  return 0;
Dinic(){}
void init(int _n){
 n = _n;
  adj.resize(n);
 level.resize(n);
  ptr.resize(n);
void addEdge(int v, int u, flow_t cap) {
  assert (n>0);
  edges.push_back(FlowEdge(v, u, cap));
  edges.push_back(FlowEdge(u, v, 0));
  adj[v].push_back(m);
  adi[u].push back(m + 1);
 m += 2;
flow_t maxFlow(int s1, int t1) {
  s = s1, t = t1;
  flow t f = 0;
  for(int i=0; i<m; i++)</pre>
    edges[i].flow = 0;
  while (true) {
    level.assign(n, -1);
    level[s] = 0;
    q.push(s);
    if (!bfs())
```

```
break;
      ptr.assign(n, 0);
      while (flow_t pushed = dfs(s, flow_inf))
        f += pushed;
    return f;
typedef pair<int, int> pii;
vector<pii> recoverCut(Dinic<int> &d) {
  vector<int> level(d.n, 0);
  vector<pii> rc;
  queue<int> q;
  q.push(d.s);
  level[d.s] = 1;
  while (!q.empty()) {
    int v = q.front();
    q.pop();
    for (int id : d.adi[v]) {
      if ((id & 1) == 1)
        continue;
      if (d.edges[id].cap == d.edges[id].flow){
        rc.push_back(pii(d.edges[id].v, d.edges[id].u));
        if (level[d.edges[id].u] == 0){
          q.push(d.edges[id].u);
          level[d.edges[id].u] = 1;
  vector<pii> ans;
  for (pii p : rc)
    if ((level[p.first] == 0) or (level[p.second] == 0))
      ans.push_back(p);
  return ans;
```

2.3 Flow With Demand

```
#include "dinic.h"
using namespace std;
template <typename flow t>
struct MaxFlowEdgeDemands{
 Dinic<flow t> mf;
 vector<flow_t> ind, outd;
 flow_t D;
  int n;
 MaxFlowEdgeDemands(int n) : n(n) {
   D = 0;
   mf.init(n + 2);
   ind.assign(n, 0);
   outd.assign(n, 0);
  void addEdge(int a, int b, flow_t cap, flow_t demands) {
   mf.addEdge(a, b, cap - demands);
   D += demands;
   ind[b] += demands;
   outd[a] += demands;
```

```
bool solve(int s, int t) {
    mf.addEdge(t, s, numeric_limits<flow_t>::max());
    for (int i = 0; i < n; i++) {
        if (ind[i]) mf.addEdge(n, i, ind[i]);
        if (outd[i]) mf.addEdge(i, n + 1, outd[i]);
    }
    return mf.maxFlow(n, n + 1) == D;
};</pre>
```

2.4 HLD

```
#include <bits/stdc++.h>
#include "../data_structures/bit_range.h"
using namespace std;
#define F first
#define S second
using pii = pair<int, int>;
struct HLD{
  vector<vector<pii>> adj;
  vector<int> sz, h, dad, pos, val, v;
  int t;
  bool edge:
  //Begin Internal Data Structure
  BitRange *bit;
  int neutral = 0;
  inline int join(int a, int b) {
    return a+b;
  inline void update(int a, int b, int x) {
    bit->add(a+1, b+1, x);
  inline int query(int a, int b) {
    return bit->get(a+1, b+1);
  //End Internal Data Structure
  HLD(int n) {
    dad.resize(n); pos.resize(n); val.resize(n); v.resize(n);
    adj.resize(n); sz.resize(n); h.resize(n);
    bit = new BitRange(n);
  void dfs(int u, int p = -1) {
    sz[u] = 1;
    for(pii &to: adj[u]) if(to.F != p){
      if(edge) val[to.F] = to.S;
      dfs(to.F, u);
      sz[u] += sz[to.F];
      if(sz[to.F] > sz[adj[u][0].F] or adj[u][0].F == p)
        swap(to, adj[u][0]);
  void build_hld(int u, int p=-1) {
    dad[u] = p;
    pos[u] = t++;
    v[pos[u]] = val[u];
    for(pii to: adj[u]) if(to.F != p){
     h[to.F] = (to == adj[u][0]) ? h[u] : to.F;
      build hld(to.F, u);
```

```
void addEdge(int a, int b, int w = 0) {
    adj[a].emplace_back(b, w);
    adj[b].emplace_back(a, w);
  void build(int root, bool _edge) {
    edge = edge;
    t = 0;
    h[root] = 0;
    dfs(root);
    build_hld(root);
    //Init Internal Data Structure
    for(int i=0; i<t; i++)</pre>
      update(i, i, v[i]);
  int query_path(int a, int b) {
    if (edge and a == b) return neutral;
    if (pos[a] < pos[b]) swap(a, b);
    if (h[a] == h[b]) return query(pos[b]+edge, pos[a]);
    return join(query(pos[h[a]], pos[a]), query_path(dad[h[a]], b));
  void update_path(int a, int b, int x) {
    if (edge and a == b) return;
    if (pos[a] < pos[b]) swap(a, b);</pre>
    if (h[a] == h[b]) return (void) update (pos[b] + edge, pos[a], x);
    update(pos[h[a]], pos[a], x); update_path(dad[h[a]], b, x);
  int query subtree(int a) {
    if (edge and sz[a] == 1) return neutral;
    return query(pos[a]+edge, pos[a]+sz[a]-1);
  void update_subtree(int a, int x) {
    if (edge and sz[a] == 1) return;
    update(pos[a] + edge, pos[a]+sz[a]-1, x);
  int lca(int a, int b) {
   if (pos[a] < pos[b]) swap(a, b);</pre>
    return h[a] == h[b] ? b : lca(dad[h[a]], b);
};
```

2.5 Minimum Cost Maximum Flow

```
#include <bits/stdc++.h>
using namespace std;
template <class T = int>
class MCMF {
private:
  struct Edge {
    int to;
    T cap, cost;
    Edge (int a, T b, T c) : to(a), cap(b), cost(c) {}
  };
  vector<vector<int>> edges;
  vector<Edge> list;
  vector<int> from;
  vector<T> dist, pot;
  vector<bool> visit;
  pair<T, T> augment(int src, int sink){
    pair<T, T> flow = {list[from[sink]].cap, 0};
```

```
flow.first = std::min(flow.first, list[from[v]].cap);
      flow.second += list[from[v]].cost;
    for (int v = sink; v != src; v = list[from[v] ^ 1].to){
      list[from[v]].cap -= flow.first;
      list[from[v] ^ 1].cap += flow.first;
    return flow;
  queue<int> q;
  bool SPFA(int src, int sink) {
    T INF = numeric_limits<T>::max();
    dist.assign(n, INF);
    from.assign(n, -1);
    q.push(src);
    dist[src] = 0;
    while (!q.empty()) {
      int on = q.front();
      q.pop();
      visit[on] = false;
      for (auto e : edges[on]) {
        auto ed = list[e];
        if (ed.cap == 0)
          continue;
        T toDist = dist[on] + ed.cost + pot[on] - pot[ed.to];
        if (toDist < dist[ed.to]){</pre>
          dist[ed.to] = toDist;
          from[ed.to] = e;
          if (!visit[ed.to]){
            visit[ed.to] = true;
            q.push(ed.to);
    return dist[sink] < INF;</pre>
  void fixPot(){
    T INF = numeric_limits<T>::max();
    for (int i = 0; i < n; i++) {</pre>
      if (dist[i] < INF)</pre>
        pot[i] += dist[i];
public:
  MCMF(int size) {
   n = size;
    edges.resize(n);
    pot.assign(n, 0);
    dist.resize(n);
    visit.assign(n, false);
  pair<T, T> solve(int src, int sink){
    pair<T, T > ans(0, 0);
    // Can use dijkstra to speed up depending on the graph
    if (!SPFA(src, sink))
      return ans:
    fixPot():
    // Can use dijkstra to speed up depending on the graph
    while (SPFA(src, sink)) {
```

for (int v = sink; v != src; v = list[from[v] ^ 1].to) {

```
auto flow = augment(src, sink);
      ans.first += flow.first;
      ans.second += flow.first * flow.second;
      fixPot();
   return ans;
 void addEdge(int from, int to, T cap, T cost) {
   edges[from].push_back(list.size());
   list.push_back(Edge(to, cap, cost));
   edges[to].push_back(list.size());
   list.push_back(Edge(from, 0, -cost));
};
/*bool dij(int src, int sink){
 T INF = numeric_limits<T>::max();
 dist.assign(n, INF);
 from.assign(n, -1);
 visit.assign(n, false);
 dist[src] = 0;
 for(int i = 0; i < n; i++) {
   int best = -1;
   for (int j = 0; j < n; j++) {
      if(visit[j]) continue;
      if (best == -1 || dist[best] > dist[j]) best = j;
    if(dist[best] >= INF) break;
    visit[best] = true;
    for(auto e : edges[best]){
      auto ed = list[e];
      if (ed.cap == 0) continue;
      T toDist = dist[best] + ed.cost + pot[best] - pot[ed.to];
      assert(toDist >= dist[best]);
      if(toDist < dist[ed.to]){</pre>
        dist[ed.to] = toDist;
        from[ed.to] = e;
 return dist[sink] < INF;
} */
```

2.6 Strongly Connected Component

```
#include "topological_sort.h"
using namespace std;
namespace SCC{
  typedef pair<int, int> pii;
  vector<vector<int>> revAdj;
  vector<int>> component;
  void dfs(int u, int c){
    component[u] = c;
    for (int to : revAdj[u]) {
        if (component[to] == -1)
            dfs(to, c);
    }
}
vector<int>> scc(int n, vector<pii> &edges) {
    revAdj.assign(n, vector<int>());
    for (pii p : edges)
```

```
revAdj[p.second].push_back(p.first);
vector<int> tp = TopologicalSort::order(n, edges);
component.assign(n, -1);
int comp = 0;
for (int u : tp){
   if (component[u] == -1)
      dfs(u, comp++);
}
return component;
}
// namespace SCC
```

2.7 Topological Sort

```
#include <bits/stdc++.h>
using namespace std;
namespace TopologicalSort {
  typedef pair<int, int> pii;
  vector<vector<int>> adj;
  vector<bool> visited;
  vector<int> vAns;
  void dfs(int u) {
    visited[u] = true;
    for (int to : adj[u]) {
      if (!visited[to])
        dfs(to);
    vAns.push_back(u);
  vector<int> order(int n, vector<pii> &edges) {
    adj.assign(n, vector<int>());
    for (pii p : edges)
      adj[p.first].push_back(p.second);
    visited.assign(n, false);
    vAns.clear();
    for (int i = 0; i < n; i++) {
      if (!visited[i])
        dfs(i);
    reverse (vAns.begin(), vAns.end());
    return vAns;
}; // namespace TopologicalSort
```

3 Dynamic Programming

3.1 Divide and Conquer Optimization

Reduces the complexity from $O(n^2k)$ to $O(nk \log n)$ of PD's in the following ways (and other variants):

```
dp[n][k] = \max_{0 \le i \le n} (dp[i][k-1] + C[i+1][n]), \ base \ case: \ dp[0][j], dp[i][0]  (1)
```

- C[i][j] = the cost only depends on i and j.
- opt[n][k] = i is the optimal value that maximizes dp[n][k].

It is necessary that opt is increasing along each column: $opt[j][k] \leq opt[j+1][k]$.

3.2 Divide and Conquer Optimization Implementation

```
#include <bits/stdc++.h>
using namespace std:
int C(int i, int j);
const int MAXN = 100010;
const int MAXK = 110;
const int INF = 0x3f3f3f3f3f;
int dp[MAXN][MAXK];
void calculateDP(int 1, int r, int k, int opt_1, int opt_r) {
  if (1 > r)
    return;
  int mid = (1 + r) >> 1;
  int ans = -INF, opt = mid;
// int ans = dp[mid][k-1], opt=mid; //If you accept empty subsegment
  for (int i = opt_l; i <= min(opt_r, mid - 1); i++) {</pre>
    if (ans < dp[i][k-1] + C(i+1, mid)){
      opt = i;
      ans = dp[i][k-1] + C(i+1, mid);
  dp[mid][k] = ans;
  calculateDP(l, mid - 1, k, opt_l, opt);
  calculateDP(mid + 1, r, k, opt, opt_r);
int solve(int n, int k) {
  for (int i = 0; i <= n; i++)</pre>
    dp[i][0] = -INF;
  for (int j = 0; j \le k; j++)
    dp[0][j] = -INF;
  dp[0][0] = 0;
  for (int j = 1; j \le k; j++)
    calculateDP(1, n, j, 0, n - 1);
  return dp[n][k];
```

3.3 Knuth Optimization

Reduces the complexity from $O(n^3)$ to $O(n^2)$ of PD's in the following ways (and other variants):

$$dp[i][j] = C[i][j] + \min_{i < k < j} (dp[i][k] + dp[k][j]), \ caso \ base: \ dp[i][i]$$
 (2)

$$dp[i][j] = \min_{i < k < j} (dp[i][k] + C[i][k]), \ caso \ base : \ dp[i][i]$$
 (3)

- C[i][j] = the cost only depends on i and j.
- opt[i][j] = k is the optimal value that maximizes dp[i][j].

The following conditions must be met:

• Four square inequality on C: $C[a][c] + C[b][d] \le C[a][d] + C[b][c], \ a \le b \le c \le d.$ • Monotonicity on C: $C[b][c] \leq C[a][d]$, $a \leq b \leq c \leq d$.

Or the following condition:

• opt increasing in rows and columns: $opt[i][j-1] \le opt[i][j] \le opt[i+1][j]$.

3.4 Knuth Optimization Implementation

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
const int MAXN = 1009;
const 11 INFLL = 0x3f3f3f3f3f3f3f3f3f;
11 C(int a, int b);
11 dp[MAXN][MAXN];
int opt[MAXN][MAXN];
11 knuth(int n) {
  for (int i = 0; i < n; i++) {</pre>
    dp[i][i] = 0;
    opt[i][i] = i;
  for (int s = 1; s < n; s++) {
    for (int i = 0, j; (i + s) < n; i++) {
      j = i + s;
      dp[i][j] = INFLL;
      for (int k = opt[i][j-1]; k < min(j, opt[i+1][j]+1); k++){
        11 \text{ cur} = dp[i][k] + dp[k + 1][j] + C(i, j);
        if (dp[i][j] > cur) {
          dp[i][j] = cur;
          opt[i][j] = k;
  return dp[0][n - 1];
```

4 Math

4.1 Basic Math

```
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;

ull fastPow(ull base, ull exp, ull mod) {
  base %= mod;
  //exp %= phi (mod) if base and mod are relatively prime
  ull ans = 1LL;
  while (exp > 0) {
    if (exp & 1LL)
        ans = (ans * (__int128_t)base) % mod;
    base = (base * (__int128_t)base) % mod;
    exp >>= 1;
```

```
}
  return ans;
}
ll gcd(ll a, ll b) { return __gcd(a, b); }
ll lcm(ll a, ll b) { return (a / gcd(a, b)) * b; }
void enumeratingAllSubmasks(int mask) {
  for (int s = mask; s; s = (s - 1) & mask)
     cout << s << endl;
}</pre>
```

4.2 BigInt

```
#include <bits/stdc++.h>
using namespace std;
typedef int32 t intB;
typedef int64_t longB;
typedef vector<intB> vib;
class BigInt{
private:
  vib vb;
  bool neg;
  const int BASE_DIGIT = 9;
  const intB base = 1000000LL*1000;//000LL*1000000LL;
  void fromString(string &s) {
    if(s[0] == '-'){
      neg = true;
      s = s.substr(1);
    }else{
      neg = false;
    vb.clear();
    vb.reserve((s.size()+BASE_DIGIT-1)/BASE_DIGIT);
    for(int i=(int)s.length(); i>0; i-=BASE_DIGIT){
      if(i < BASE_DIGIT)</pre>
        vb.push_back(stol(s.substr(0, i)));
      else
        vb.push_back(stol(s.substr(i-BASE_DIGIT, BASE_DIGIT)));
    fix(vb);
  void fix(vib &v){
    while (v.size()>1 && v.back()==0)
      v.pop_back();
    if(v.size() == 0)
      neg = false;
 bool comp (vib &a, vib &b) {
    fix(a); fix(b);
    if(a.size() != b.size()) return a.size() < b.size();</pre>
    for(int i=(int)a.size()-1; i>=0; i--) {
      if(a[i] != b[i]) return a[i] < b[i];</pre>
    return false:
  vib sum(vib a, vib b) {
    int carry = 0;
    for(size_t i=0; i<max(a.size(), b.size()) or carry; i++) {</pre>
      if(i == a.size())
        a.push_back(0);
      a[i] += carry + (i < b.size() ? b[i] : 0);
```

```
carry = (a[i] >= base);
      if(carry) a[i] -= base;
    fix(a);
    return a;
  vib sub(vib a, vib b) {
    int carry = 0;
    for(size_t i=0; i<b.size() or carry; i++) {</pre>
      a[i] = carry + (i < b.size() ? b[i] : 0);
      carry = a[i] < 0;
      if(carry) a[i] += base;
    fix(a);
    return a;
public:
  BigInt(){}
  BigInt(intB n) {
    neq = (n<0);
    vb.push back(abs(n));
    fix(vb);
  BigInt(string s) {
    fromString(s);
  BigInt operator = (BigInt oth) {
    this->neg = oth.neg;
    this->vb = oth.vb;
    return *this;
  BigInt operator + (BigInt &oth) {
   vib &a = vb, &b = oth.vb;
    BigInt ans;
    if(neg == oth.neg) {
      ans.vb = sum(vb, oth.vb);
      ans.neg = neg;
    }else{
      if(comp(a, b)){
        ans.vb = sub(b, a);
        ans.neg = oth.neg;
      }else{
        ans.vb = sub(a, b);
        ans.neg = neg;
    return ans;
  BigInt operator - (BigInt oth) {
    oth.neg ^= true;
    return (*this) + oth;
  BigInt operator * (intB b) {
    bool negB = false;
    if(b < 0){
      negB = true;
      b = -b;
    BigInt ans = *this;
    auto &a = ans.vb;
```

```
intB carry = 0;
  for(size_t i=0; i<a.size() or carry; i++){</pre>
    if(i == a.size()) a.push_back(0);
    longB cur = carry + a[i] * (longB) b;
    a[i] = intB(cur%base);
    carry = intB(cur/base);
  ans.neg ^= negB;
  fix(ans.vb);
 return ans;
BigInt operator * (BigInt &oth) {
 BigInt ans:
 auto a = vb, &b = oth.vb, &c = ans.vb;
 c.assign(a.size() + b.size(), 0);
  for(size_t i=0; i<a.size(); i++){</pre>
    intB carry=0;
    for(size_t j=0; j<b.size() or carry; j++) {</pre>
      longB cur = c[i+j] + a[i] * (longB) (j < b.size() ? b[j] : 0);
      cur += carry;
      c[i+j] = intB(cur%base);
      carrv = intB(cur/base);
  ans.neg = neg^oth.neg;
  fix(ans.vb);
 return ans;
BigInt operator / (intB b) {
 bool negB = false;
 if(b < 0){
    negB = true;
    b = -b;
 BigInt ans = *this;
 auto &a = ans.vb;
  intB carry = 0:
  for (int i=(int)a.size()-1; i>=0; i--) {
    longB cur = a[i] + (longB) carry * base;
    a[i] = intB(cur/b);
    carry = intB(cur%b);
 ans.neg ^= negB;
  fix(ans.vb);
 return ans;
void shiftL(int b) {
 vb.resize(vb.size() + b);
  for(int i=(int) vb.size()-1; i>=0; i--) {
    if(i>=b) vb[i] = vb[i-b];
    else vb[i] = 0;
  fix(vb);
void shiftR(int b) {
 if((int) vb.size() <= b) {
    vb.clear();
    vb.push_back(0);
    return;
  for(int i=0; i<((int)vb.size() - b); i++)</pre>
```

```
vb[i] = vb[i+b];
    vb.resize((int)vb.size() - b);
    fix(vb);
  void divide (BigInt a, BigInt b, BigInt &q, BigInt &r) {
    BigInt z(0), p(1);
    while(b < a) {</pre>
      p.shiftL(max(1, int(a.vb.size()-b.vb.size())));
      b.shiftL(max(1, int(a.vb.size()-b.vb.size())));
    while(true) {
      while ((a < b) && (z < p)) {
        p = p/10;
        b = b/10;
      if(!(z < p)) break;
      a = a - b;
      q = q + p;
    r = a;
  BigInt operator / (BigInt &oth) {
    BigInt q, r;
    divide(*this, oth, q, r);
    return q;
  BigInt operator % (BigInt &oth) {
    BigInt q, r;
    divide(*this, oth, q, r);
    return r;
  bool operator <(BigInt &oth) {</pre>
    BigInt ans = (*this) - oth;
    return ans.neg;
  bool operator == (BigInt &oth) {
    BigInt ans = (*this) - oth;
    return (ans.vb.size()==1) and (ans.vb.back()==0);
  friend ostream &operator<<(ostream &out, const BigInt &D) {</pre>
    if(D.neg)
      out << '-';
    out << (D.vb.empty() ? 0 : D.vb.back());</pre>
    for(int i=(int)D.vb.size()-2; i>=0; i--)
      out << setfill('0') << setw(D.BASE DIGIT) << D.vb[i];
    return out;
  string to_string() {
    std::stringstream ss;
    ss << (*this);
    return ss.str();
  friend istream &operator>>(istream &input, BigInt &D) {
    input >> s;
    D.fromString(s);
    return input;
};
```

4.3 Binomial Coefficients

```
#include <bits/stdc++.h>
#include "./basic_math.h"
#include "./modular.h"
using namespace std;
typedef long long 11;
//0(k)
11 C1(int n, int k) {
 ll res = 1LL;
  for (int i = 1; i <= k; ++i)</pre>
   res = (res * (n - k + i)) / i;
  return res;
//O(n^2)
vector<vector<ll>> C2(int maxn, int mod) {
 vector<vector<1l>> mat(maxn + 1, vector<1l>(maxn + 1, 0));
 mat[0][0] = 1;
  for (int n = 1; n <= maxn; n++) {</pre>
    mat[n][0] = mat[n][n] = 1;
    for (int k = 1; k < n; k++)
      mat[n][k] = (mat[n-1][k-1] + mat[n-1][k]) % mod;
  return mat;
//O(N)
vector<int> factorial, inv_factorial;
void prevC3(int maxn, int mod) {
  factorial.resize(maxn + 1);
  factorial[0] = 1;
  for (int i = 1; i <= maxn; i++)</pre>
    factorial[i] = (factorial[i - 1] * 1LL * i) % mod;
  inv factorial.resize(maxn + 1);
  inv_factorial[maxn] = fastPow(factorial[maxn], mod - 2, mod);
  for (int i = maxn - 1; i >= 0; i--)
    inv_factorial[i] = (inv_factorial[i + 1] * 1LL * (i + 1)) % mod;
int C3(int n, int k, int mod) {
 if (n < k)
    return 0;
  return (((factorial[n] * 1LL * inv_factorial[k]) % mod) * 1LL *
      inv factorial[n - k]) % mod;
//O(P*log(P))
//C4(n, k, p) = Comb(n, k)%p
vector<int> changeBase(int n, int p) {
 vector<int> v;
  while (n > 0) {
    v.push_back(n % p);
    n /= p;
  return v;
int C4(int n, int k, int p) {
 auto vn = changeBase(n, p);
  auto vk = changeBase(k, p);
  int mx = max(vn.size(), vk.size());
  vn.resize(mx, 0);
  vk.resize(mx, 0);
  prevC3(p - 1, p);
```

```
int ans = 1;
  for (int i = 0; i < mx; i++)</pre>
    ans = (ans * 1LL * C3(vn[i], vk[i], p)) % p;
  return ans;
//O(P^k)
//C5(n, k, p, pk) = Comb(n, k)%(p^k)
int fat_p(ll n, int p, int pk) {
  vector<int> fat1(pk, 1);
    int res = 1;
    for(int i=1; i<pk; i++) {</pre>
    if(i%p == 0)
      fat1[i] = fat1[i-1];
      fat1[i] = (fat1[i-1]*1LL*i)%pk;
  while (n > 1) {
    res = (res*1LL*fastPow(fat1[pk-1], n/pk, pk))%pk;
    res = (res*1LL*fat1[n%pk])%pk;
    n /= p;
  return res;
ll cnt(ll n, int p) {
  11 \text{ ans} = 0;
  while (n > 1) {
    ans += n/p;
    n/=p;
  return ans;
int C5(ll n, ll k, int p, int pk) {
  ll exp = cnt(n, p) - cnt(n-k, p) - cnt(k, p);
  int d = (fat_p(n-k, p, pk) *1LL*fat_p(k, p, pk)) pk;
  int ans = (fat_p(n, p, pk) *1LL*inv(d, pk)) %pk;
  return (ans*1LL*fastPow(p, exp, pk))%pk;
```

4.4 Chinese Remainder Theorem

```
#include <bits/stdc++.h>
#include "extended euclidean.h"
using namespace std;
typedef long long 11;
namespace CRT {
  inline ll normalize(ll x, ll mod) {
    x \% = mod;
    if (x < 0)
      x += mod;
    return x:
  11 solve(vector<11> a, vector<11> m) {
    int n = a.size();
    for (int i = 0; i < n; i++)</pre>
    normalize(a[i], m[i]);
    ll ans = a[0];
    11 \ 1cm1 = m[0];
    for (int i = 1; i < n; i++) {</pre>
      11 x, y;
      ll g = extGcd(lcm1, m[i], x, y);
```

4.5 Euler's totient

```
#include <bits/stdc++.h>
using namespace std;
int nthPhi(int n){
  int result = n;
  for (int i = 2; i <= n / i; i++) {</pre>
    if (n \% i == 0) {
      while (n % i == 0)
        n /= i:
      result -= result / i;
  if (n > 1)
    result -= result / n;
  return result:
vector<int> phiFrom1toN(int n) {
 vector<int> vPhi(n + 1);
 vPhi[0] = 0;
  vPhi[1] = 1;
  for (int i = 2; i <= n; i++)</pre>
   vPhi[i] = i;
  for (int i = 2; i <= n; i++) {
   if (vPhi[i] == i) {
      for (int j = i; j <= n; j += i)
        vPhi[j] -= vPhi[j] / i;
  return vPhi;
```

4.6 Extended Euclidean

```
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll extGcd(ll a, ll b, ll &x, ll &y){
   if (b == 0){
      x = 1, y = 0;
      return a;
   }else{
      ll g = extGcd(b, a % b, y, x);
      y -= (a / b) * x;
      return g;
   }
}
//a*x + b*y = g
```

```
//a*(x-(b/q)*k) + b*(y+(a/q)*k) = q
bool dioEq(11 a, 11 b, 11 c, 11 &x0, 11 &y0, 11 &g) {
  g = extGcd(abs(a), abs(b), x0, y0);
  if (c % g) return false;
  x0 \star = c / g;
  v0 \star = c / q;
  if (a < 0) x0 = -x0;
  if (b < 0) y0 = -y0;
  return true;
inline void shift_solution(ll &x, ll &y, ll a, ll b, ll cnt){
  x += cnt * b:
  y -= cnt * a;
ll findAllSolutions(ll a, ll b, ll c, ll minx, ll maxx, ll miny, ll
  11 x, y, q;
  if(a==0 or b==0) {
    if (a==0 \text{ and } b==0)
      return (c==0) * (maxx-minx+1) * (maxy-miny+1);
    if(a == 0)
      return (c%b == 0) * (maxx-minx+1) * (miny <= c/b and c/b <= maxy);
    return (c%a == 0) * (minx<=c/a and c/a<=maxx) * (maxy-miny+1);</pre>
  if (!dioEq(a, b, c, x, y, g))
    return 0;
  a /= q;
  b /= g;
  int sign_a = a > 0 ? +1 : -1;
  int sign_b = b > 0 ? +1 : -1;
  shift_solution(x, y, a, b, (minx - x) / b);
  if (x < minx)
    shift_solution(x, y, a, b, sign_b);
  if (x > maxx)
    return 0;
  11 \ 1x1 = x;
  shift_solution(x, y, a, b, (maxx - x) / b);
  if (x > maxx)
    shift_solution(x, y, a, b, -sign_b);
  11 \text{ rx1} = x:
  shift_solution(x, y, a, b, -(miny - y) / a);
  if (y < miny)</pre>
    shift_solution(x, y, a, b, -sign_a);
  if (y > maxy)
    return 0;
  11 1x2 = x;
  shift_solution(x, y, a, b, -(maxy - y) / a);
  if (y > maxy)
    shift_solution(x, y, a, b, sign_a);
  11 \text{ rx2} = x;
  if (1x2 > rx2)
    swap(1x2, rx2);
  11 lx = max(lx1, lx2);
  11 \text{ rx} = \min(\text{rx1, rx2});
  if (lx > rx)
    return 0:
  return (rx - lx) / abs(b) + 1;
```

4.7 Gray Code

```
int grayCode(int nth) {
  return nth ^ (nth >> 1);
}
int revGrayCode(int g) {
  int nth = 0;
  for (; g > 0; g >>= 1)
    nth ^= g;
  return nth;
}
```

4.8 Matrix

```
#include <bits/stdc++.h>
#include "modular.h"
using namespace std;
const int D = 3;
struct Matrix{
  int m[D][D];
  Matrix (bool identify = false) {
    memset(m, 0, sizeof(m));
    for (int i = 0; i < D; i++)</pre>
      m[i][i] = identify;
  Matrix(vector<vector<int>> mat) {
    for(int i=0; i<D; i++)
      for(int j=0; j<D; j++)</pre>
        m[i][j] = mat[i][j];
  int * operator[](int pos){
    return m[pos];
  Matrix operator* (Matrix oth) {
    Matrix ans:
    for (int i = 0; i < D; i++) {</pre>
      for (int j = 0; j < D; j++) {
        int &sum = ans[i][j];
        for (int k = 0; k < D; k++)
          sum = modSum(sum, modMul(m[i][k], oth[k][j]));
    return ans;
};
```

4.9 Modular Arithmetic

```
#include <bits/stdc++.h>
#include "extended_euclidean.h"
using namespace std;
const int MOD = 1000000007;
inline int modSum(int a, int b, int mod = MOD) {
  int ans = a+b;
  if(ans > mod) ans -= mod;
  return ans;
```

```
inline int modSub(int a, int b, int mod = MOD) {
  int ans = a-b;
  if(ans < 0) ans += mod;
  return ans;
}
inline int modMul(int a, int b, int mod = MOD) {
  return (a*1LL*b) %mod;
}
int inv(int a, int mod=MOD) {
  ll inv_x, y;
  extGcd(a, mod, inv_x, y);
  return (inv_x%mod + mod) %mod;
}
int modDiv(int a, int b, int mod = MOD) {
  return modMul(a, inv(b, mod));
}</pre>
```

4.10 Montgomery Multiplication

```
#include <bits/stdc++.h>
using namespace std;
using u64 = uint64 t;
using u128 = __uint128_t;
using i128 = __int128_t;
struct u256{
  u128 high, low;
  static u256 mult(u128 x, u128 y) {
    u64 \ a = x >> 64, \ b = x;
    u64 c = y >> 64, d = y;
    u128 \text{ ac} = (u128) \text{ a} * \text{ c};
    u128 \text{ ad} = (u128) \text{ a} * \text{ d};
    u128 bc = (u128)b * c;
    u128 bd = (u128)b * d;
    u128 carry = (u128)(u64)ad + (u128)(u64)bc + (bd >> 64u);
    u128 high = ac + (ad >> 64u) + (bc >> 64u) + (carry >> 64u);
    u128 low = (ad << 64u) + (bc << 64u) + bd;
    return {high, low};
};
//x_m := x*r \mod n
struct Montgomery {
  u128 mod, inv, r2;
  //the N will be an odd number
  Montgomery (u128 n) : mod(n), inv(1), r2(-n % n) {
    for (int i = 0; i < 7; i++)
      inv \star= 2 - n \star inv;
    for (int i = 0; i < 4; i++) {
      r2 <<= 1;
      if (r2 >= mod)
         r2 -= mod;
    for (int i = 0; i < 5; i++)
      r2 = mult(r2, r2);
  u128 init(u128 x){
    return mult(x, r2);
  u128 reduce(u256 x){
    u128 q = x.low * inv;
```

```
i128 a = x.high - u256::mult(q, mod).high;
if (a < 0)
    a += mod;
return a;
}
u128 mult(u128 a, u128 b){
  return reduce(u256::mult(a, b));
};</pre>
```

if (n == 1) return {}; if (millerRabin(n)) return {n}; ull x = pollard(n); auto l = factor(x), r = factor(n / x); l.insert(l.end(), r.begin(), r.end()); return l; }

4.11 Prime Number

```
#include <bits/stdc++.h>
#include "basic_math.h"
using namespace std;
typedef unsigned long long ull;
ull modMul(ull a, ull b, ull mod) {
  return (a * (__uint128_t)b) % mod;
bool checkComposite(ull n, ull a, ull d, int s) {
 ull x = fastPow(a, d, n);
  if (x == 1 \text{ or } x == n - 1)
    return false:
  for (int r = 1; r < s; r++) {
    x = modMul(x, x, n);
   if (x == n - 1LL)
      return false;
 return true;
bool millerRabin(ull n) {
  if (n < 2)
   return false;
  int r = 0;
 ull d = n - 1LL;
  while ((d & 1LL) == 0) {
    d >>= 1;
   r++;
  for (ull a : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) {
    if (n == a)
      return true;
    if (checkComposite(n, a, d, r))
      return false;
  return true;
ull pollard(ull n) {
  auto f = [n](ull x) { return modMul(x, x, n) + 1; };
 ull x = 0, y = 0, t = 0, prd = 2, i = 1, q;
  while (t++ % 40 | | _gcd(prd, n) == 1) {
    if (x == y)
      x = ++i, y = f(x);
    if ((q = modMul(prd, max(x, y) - min(x, y), n)))
     prd = q;
    x = f(x), y = f(f(y));
  return __gcd(prd, n);
vector<ull> factor(ull n) {
```

5 Geometry

6 String Algorithms

6.1 Min Cyclic String

```
#include <bits/stdc++.h>
using namespace std;
string min_cyclic_string(string s) {
  s += s;
  int n = s.size();
  int i = 0, ans = 0;
 while (i < n / 2) {
   ans = i;
    int j = i + 1, k = i;
    while (j < n \&\& s[k] <= s[j]) {
      if (s[k] < s[j])
        k = i;
      else
        k++;
      j++;
    while (i <= k)
      i += j - k;
  return s.substr(ans, n / 2);
```

6.2 Suffix Automaton

```
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
struct SuffixAutomaton{
   struct state{
     int len, link, first_pos;
     bool is_clone = false;
     map<char, int> next;
};
vector<state> st;
int sz, last;
SuffixAutomaton(string s) {
   st.resize(2 * s.size() + 10);
   st[0].len = 0;
   st[0].link = -1;
```

```
st[0].is clone = false;
  sz = 1:
 last = 0;
  for (char c : s)
    insert(c):
 preCompute();
void insert(char c) {
 int cur = sz++;
 st[cur].len = st[last].len + 1;
 st[cur].first_pos = st[cur].len - 1;
  st[cur].is_clone = false;
 int p = last;
  while (p != -1 && !st[p].next.count(c)) {
    st[p].next[c] = cur;
    p = st[p].link;
 if (p == -1) {
    st[cur].link = 0:
  }else{
    int q = st[p].next[c];
    if (st[p].len + 1 == st[q].len) {
      st[cur].link = q;
      int clone = sz++;
      st[clone].len = st[p].len + 1;
      st[clone].next = st[q].next;
      st[clone].link = st[q].link;
      st[clone].first_pos = st[q].first_pos;
      st[clone].is_clone = true;
      while (p != -1 && st[p].next[c] == q) {
       st[p].next[c] = clone;
       p = st[p].link;
      st[q].link = st[cur].link = clone;
 last = cur;
string lcs(string s){
 int v = 0, l = 0, best = 0, bestpos = 0;
  for (int i = 0; i < (int)s.size(); i++) {</pre>
    while (v and !st[v].next.count(s[i])){
     v = st[v].link;
     l = st[v].len;
    if (st[v].next.count(s[i])){
     v = st[v].next[s[i]];
    if (1 > best) {
      best = 1;
      bestpos = i;
 return s.substr(bestpos - best + 1, best);
vector<ll> dp;
vector<int> cnt;
11 dfsPre(int s){
 if (dp[s] != -1)
```

```
return dp[s];
    dp[s] = cnt[s]; //Accepts repeated substrings
    //dp[s] = 1; //Does not accept repeated substrings
    for (auto p : st[s].next)
      dp[s] += dfsPre(p.second);
    return dp[s];
  void preCompute() {
    cnt.assign(sz, 0);
    vector<pair<int, int>> v(sz);
    for (int i = 0; i < sz; i++) {
      cnt[i] = !st[i].is_clone;
      v[i] = make_pair(st[i].len, i);
    sort(v.begin(), v.end(), greater<pair<int, int>>());
    for (int i = 0; i < sz - 1; i++)</pre>
      cnt[st[v[i].second].link] += cnt[v[i].second];
    dp.assign(sz, -1);
    dfsPre(0):
};
```

7 Miscellaneous

7.1 Mo Algorithm

```
#include <bits/stdc++.h>
using namespace std;
const int BLOCK_SIZE = 700;
void remove(int idx);
void add(int idx);
void clearAnswer();
int getAnswer();
struct Query{
  int 1, r, idx;
  bool operator<(Query other) const{</pre>
    if (1 / BLOCK_SIZE != other.1 / BLOCK_SIZE)
      return 1 < other.1;</pre>
    return (1 / BLOCK_SIZE & 1) ? (r < other.r) : (r > other.r);
};
vector<int> mo_s_algorithm(vector<Query> queries) {
  vector<int> answers(queries.size());
  sort(queries.begin(), queries.end());
  clearAnswer();
  int L = 0, R = 0;
  add(0);
  for(Ouerv q : queries) {
    while (q.l < L) add (--L);
    while (R < q.r) add (++R);
    while(L < q.1) remove(L++);</pre>
    while(q.r < R) remove(R--);</pre>
    answers[q.idx] = getAnswer();
  return answers;
```

8 Theorems and Formulas

8.1 Binomial Coefficients

 $(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{k}a^{n-k}b^k + \dots + \binom{n}{n}b^n$ Pascal's Triangle: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ Symmetry rule: $\binom{n}{k} = \binom{n}{n-k}$ Factoring in: $\binom{n}{k} = \frac{n}{k}\binom{n-1}{k-1}$ Sum over k: $\sum_{k=0}^{n} \binom{n}{k} = 2^n$ Sum over n: $\sum_{k=0}^{n} \binom{n}{k} = 2^n$ Sum over n: and n: $\sum_{k=0}^{m} \binom{n+k}{k} = \binom{n+1}{m}$ Sum of the squares: $\binom{n}{0}^2 + \binom{n}{1}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n}$ Weighted sum: $\binom{n}{1} + 2\binom{n}{2} + \dots + n\binom{n}{n} = n2^{n-1}$ Connection with the Fibonacci numbers: $\binom{n}{0} + \binom{n-1}{1} + \dots + \binom{n-k}{k} + \dots + \binom{n}{n} = F_{n+1}$ More formulas: $\sum_{k=0}^{m} (-1)^k \cdot \binom{n}{k} = (-1)^m \cdot \binom{n-1}{m}$

8.2 Catalan Number

Recursive formula: $C_0 = C_1 = 1$ $C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k}, n \ge 2$ Analytical formula: $C_n = {2n \choose n} - {2n \choose n-1} = \frac{1}{n+1} {2n \choose n}, n \ge 0$ The first few numbers Catalan numbers, C_n (starting from zero): $1, 1, 2, 5, 14, 42, 132, 429, 1430, \dots$

The Catalan number C_n is the solution for:

- Number of correct bracket sequence consisting of n opening and n closing brackets.
- The number of rooted full binary trees with n+1 leaves (vertices are not numbered). A rooted binary tree is full if every vertex has either two children or no children.
- The number of ways to completely parenthesize n+1 factors.
- The number of triangulations of a convex polygon with n+2 sides (i.e. the number of partitions of polygon into disjoint triangles by using the diagonals).
- The number of ways to connect the 2n points on a circle to form n disjoint chords.
- The number of non-isomorphic full binary trees with n internal nodes (i.e. nodes having at least one son).

- The number of monotonic lattice paths from point (0,0) to point (n,n) in a square lattice of size $n \times n$, which do not pass above the main diagonal (i.e. connecting (0,0) to (n,n)).
- Number of permutations of length n that can be stack sorted (i.e. it can be shown that the rearrangement is stack sorted if and only if there is no such index i < j < k, such that $a_k < a_i < a_j$).
- The number of non-crossing partitions of a set of n elements.
- The number of ways to cover the ladder 1...n using n rectangles (The ladder consists of n columns, where i^{th} column has a height i).

8.3 Euler's Totient

If p is a prime number: $\phi(p) = p - 1$ and $\phi(p^k) = p^k - p^{k-1}$ If a and b are relatively prime, then: $\phi(ab) = \phi(a) \cdot \phi(b)$

In general: $\phi(ab) = \phi(a) \cdot \phi(b) \cdot \frac{\gcd(a,b)}{\phi(\gcd(a,b))}$

This interesting property was established by Gauss: $\sum_{d|n} \phi(d) = n$, Here the sum is over all positive divisors d of n.

Euler's theorem: $a^{\phi(m)} \equiv 1 \pmod{m}$, if a and m are relatively prime.

Generalization: $a^n \equiv a^{\phi(m)+[n \mod \phi(m)]} \mod m$, for arbitrary a, m and n $\geq log_2(m)$.

8.4 Formulas

Count the number of ways to partition a set of n labelled objects into k nonempty labelled subsets.

$$f(n,k) = \sum_{i=0}^{k} (-1)^{i} {k \choose i} (k-i)^{n}$$

Stirling Number 2nd: Partitions of an n element set into k not-empty set. Or count the number of ways to partition a set of n labelled objects into k nonempty unlabelled subsets.

$$S_{2nd}(n,k) = {n \brace k} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^i {k \choose i} (k-i)^n$$

Euler's formula: f = e - v + 2

Number of regions in a planar graph: R = E - V + C + 1 where C is the number of connected components

Given a and b co-prime, $n = a \cdot x + b \cdot y$ where $x \ge 0$ and $y \ge 0$. You are required to find the least value of n, such that all currency values greater than or equal to n can be made using any number of coins of denomination a and b: n = (a-1)*(b-1)

generalization of the above problem, n is multiple of gcd(a, b): $n = lcm(a, b) - P_2$: a - b + gcd(a, b) _____

Manhattan Distance

Transformation of the manhattan distance to 2 dimensions between $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$:

$$|x_1 - x_2| + |y_1 - y_2| = max(|A_1 - B_1|, |A_2 - B_2|)$$
 where $A = (x_1 + y_1, x_1 - y_1)$ e $B = (x_2 + y_2, x_2 - y_2)$

Transformation of the manhattan distance to 3 dimensions between P_1 (x_1, y_1, z_1) and $P_2 = (x_2, y_2, z_2)$:

$$|x_1-x_2|+|y_1-y_2|+|z_1-z_2|=\max(|A_1-B_1|,|A_2-B_2|,|A_3-B_3|,|A_4-B_4|)$$
 where $A=(x_1+y_1+z_1,x_1+y_1-z_1,x_1-y_1+z_1,-x_1+y_1+z_1)$ e $B=(x_2+y_2+z_2,x_2+y_2-z_2,x_2-y_2+z_2,-x_2+y_2+z_2)$

Transformation of the manhattan distance to D dimensions between P_1 and

isSet(i, x) = 1 if the i-th bit is setted in x and 0 otherwise.

$$A[i] = \sum_{j=0}^{d-1} (-1)^{isSet(j,i)} P_1[j]$$

$$B[i] = \sum_{j=0}^{d-1} (-1)^{isSet(j,i)} P_2[j]$$

$$\sum_{i=0}^{d-1} |P_1[i] - P_2[i]| = \max_{i=0}^{2^{d-1}} |A_i - B_i|$$

8.6 Primes

If
$$n = p_1^{e_1} \cdot p_2^{e_2} \cdots p_k^{e_k}$$
, then:

Number of divisors is
$$d(n) = (e_1 + 1) \cdot (e_2 + 1) \cdot \cdots \cdot (e_k + 1)$$
.
Sum of divisors is $\sigma(n) = \frac{p_1^{e_1+1}-1}{p_1-1} \cdot \frac{p_2^{e_2+1}-1}{p_2-1} \cdot \cdots \cdot \frac{p_k^{e_k+1}-1}{p_k-1}$