

Sahi Prep Hai Toh Life Set Hai

CIRCLE Part 2

Agenda

Alternate segmen Theorem Practice Overtin 丰

Area of sector = Tiro 360 Congres of Arc = 27120 360

Area of segment

- 1 x 8 x 17 - 1 x 8in 6

- 360 - 2

If out of their 3 ary one is egnel then lem 2 are also egnel

Proof

DPAT D DPBT

7. Alternate segment theorem

Angle made by a chord with the tangent of a circle is always equal the angle made by the same chord in alternate segment.

Guren (APD = 0 To prover + (PBA = O Proof LOPA = 9-0 LOPA 1 PBA = 0

Practice Questions

vat

Q1. Find the distance between 2 parallel chords of length 24 cm and 32 cm. If both the chords lie on opposite side of centre and radius of circle is 20 cm.

MU: 58 cm

Ans. 28 cm

Q2. In the given figure, \angle ONY = 50° and \angle OMY = 15°, then the value of the \angle MON is:

 $(a) 30^{\circ}$

(b) 40°

(c) 20°

(d) 70°

YOMY

LOYM = 15°

Ans. (d)

Q3. P and Q are the mid-points of two chords (not diameters) AB and AC, respectively of the circle with centre at a point O. The line OP and OQ are produced to meet the circle, respectively, at the points R and S. T is any point on the major arc between the points R and S of the circle. If ∠BAC = 32°, ∠RTS = ?

(a) 32°

(b) 64°

(C) 74°

(d) 106°

Ans. (c)

- Q4. P and Q are two points on a circle with centre at O. R is a point on the minor arc at the circle between the points P and Q. The tangents to the circle at the points P and Q meet each other at the point S. If ∠PSQ = 20°, then ∠PRQ = ?
 - (a) 80°

(b) 200°

(c) 160°

(d) 100°

Ans. (d)

Q5. In the given figure, two chords AB and CD intersects at point P and O is the centre of the circle. If AP = 3 PB, AB = 24 cm and CP = 9 cm, then CD is

(a) 10 cm

(b) 12 cm

(c) 15 cm

(d) 21 cm

Ans. (d)

Q6. The tangents at two points A and B on the circle with the centre O intersects at P. If in quadrilateral PAOB, ∠AOB: ∠APB = 5:1, the measure of ∠APB is:

180 +6x = 360

Ans. (a)

gradeup

Q7. ABCD is a rectangle.

V.44

BC = 15 cm, AB = 20 cm Find PQ.

2mn

DABC - Pight angles D

$$9C = \frac{6+p-h}{2} \Rightarrow \frac{5cm}{2}$$

(0+10+00=25

Ans. 5 cm

Shortcut: PQ = I - b

where, I = length of rectangle b = breadth of rectangle gradeup

Q8.

ABCD is an isosceles trapezium with parallel sides AB = 25 cm and CD = 9 cm. A circle is inscribed in ABCD. Find diameter of inscribed circle.

水

17

V. and

Isoscelles Tropeziun

AD+BC = AB+CN

2AD = 37

AD = 17

mn = 9cm

AM+BM = tts

DAMD

A 8M 25cm NSE Diareter - Som

Ans. 15 cm

Shortcut:

Diameter = \sqrt{ab}

where, a and b are parallel sides of isosceles trapezium.

Q9. Find $\angle A$, $\angle B$ and $\angle C$.

teint

Alternat c segment

D CQP

Ans.
$$\angle A = 60^{\circ}$$

Q10. P and Q are two points on a circle with centre at O. R is a point on the minor arc of the circle, between the points P and Q. The tangents to the circle at the points. P and Q meet each other at the point S. If ∠PSQ = 20°, then ∠PRQ = ?

(a) 80°

(c) 160°

(b) 200°

(d) 100°

Honework

Ans. (d)

Q11. The tangents are drawn at the extremities of diameter AB of a circle with centre P. If a tangent to the circle at the point C intersects the other two tangents at Q and R then the measure of the \angle QPR is:

(b) 60°

$$(c) 90^{\circ}$$

(d) 180°

DAQPD DCQP

DAQP= DCQP (222)

Ans. (c)

Q12. In the given figure, O is the centre of the circle and AB is tangent \angle ODB = 20° and \angle BDC and \angle ABD are supplementary to each other then find \angle OBC = ?

A. 20°

B. 30°

C. 60°

D. 70°

Ans. (a)

Q13. A, B and C are three points on a circle with centre O. The tangent at C meets BA produced to T. If \angle ATC = 30° and \angle ACT = 48°, then what is the value of \angle AOB?

(a) 78°

(b) 96°

(c) 102°

(d) 108°

Ans. (d)

Q14. ABCD is a cyclic quadrilateral AB and DC are produced to meet at P. If \angle ADC = 70° and \angle DAB = 60°, then the \angle PBC + \angle PC[2]s:

(b) 150°

(c) 155°

.

(d) 180°

Ans. (a)

Q15. In the figure given above, if $\angle BAD = 60^{\circ}$, $\angle ADC = 105^{\circ}$, then what is $\angle DPC$ equal to?

(b) 45°

 $(c) 50^{\circ}$

Ans. (b)

Q16. In the given figure, what is ∠CBA?

 $(a) 30^{\circ}$

(b) 45°

(d) 50°

(c) 60°

Ans. (d)

Q17. ABCD is a cyclic quadrilateral. The tangents at A and C intersect each other at P. If \angle ABC = 100°, then what is \angle APC equal to?

(a) 10°

(b) 20°

(d) 30°

 $(c) 40^{\circ}$

Ans. (b)

Q18. Two circles C_1 and C_2 touch each other internally at P. Two lines PCA and PDB meet the circles C_1 , in C, D and C_2 in A, B respectively. If \angle BDC = 120°, the value of \angle ABD is equal to:

Ans. (a)

Q19. In the given figure, if $\angle PAQ = 59^{\circ}$, $\angle APD = 40^{\circ}$, then what is $\angle AQB$?

(b) 20°

(c) 22°

(d) 27°

997597 (Q = 180

CQ = 22

Ans. (c)

gradeup

Q20. If AD | BC, AB = CD = 1 cm and AD = 4 cm Find BC. (O is centre of semicircle)

Ans. 3.5 cm

Q21. If AC = 3 cm, CD = 9 cm (O is centre of semicircle) Find area of semi-circle. यदि AC = 3 cm, CD = 9 cm

$$D^{2} = CAX(B)$$
 $81 = 3XCB$
 $CB = 27$
 $AB = 30$

gradeup

Ans. $\frac{225\pi}{2}$

Q22. If AB | | CD

mb.

 $\angle CPB = 80^{\circ}$

(O is centre of circle)

Find ∠BCD.

Ans. 10°

Q23. AB is diameter

 $\angle DOC = 80^{\circ}$ (O is centre of circle)

Find ∠DEC.

Ans. 130°

Q24. If $\widehat{AB} = \widehat{BC} = \widehat{CD} = \widehat{DE} = \widehat{EF} = \widehat{FG} = \widehat{GH} = \widehat{HA}$ Find $\angle AMB$.

Ans. 112.5°

gradeup

Q25. If $\widehat{AB} = \widehat{BC} = \widehat{CD} = \widehat{DE} = \widehat{EF} = \widehat{FG} = \widehat{GH} = \widehat{HI} = \widehat{IJ} = \widehat{JA}$

Find ∠EPG.

Ans. 18°

Sahi Prep Hai Toh Life Set Hai

Practise topic-wise quizzes

Keep attending live classes

