Algorithmische Geometrie

November 3, 2016

1 Konvexe Hüllen

1.1 Konvexe Hülle von Punktmengen

<u>Definition</u> Sei $S \subseteq \mathbb{R}^2$ eine Punktmenge in der Ebene. S heißt konvexe Hülle, genau dann, wenn $\forall p,q \in S$: $\overline{pq} \subseteq S$ wobei \overline{pq} eine Gerade von p nach q ist.

Die Konvexe Hülle CH(s) einer Menge $S \subseteq \mathbb{R}^2$ ist die kleinste (in Benzug auf Inklusion) konvexe Menge die S enthält.

Eingabe: n Punkte, $S = \{q_1, .., q_n\}$

Ausgabe: Ecken $p_1,...,p_k$ der Konvexen Hülle CH(s). Wir wissen, dass $p_i \in S$ für i=1,...,k. Ausgabe als Folge gegen den Uhrzeigersinn entlang des Randes von $CH(S) \Rightarrow \overline{p_i p_{i+1}}$ Randsegmente.

Komplexität des Problems: Satz: Die Berechnung der Konvexen Hülle von n
 Punkten im \mathbb{R}^2 ist mindestens so schwer wie das Sortieren von
n reelen Zahlen.

Beweis: Reduktion des Sortierens auf CH. Sei CONVEX_HULL(S) ein ALgorithmus für CH. Zeige, wie man diesen Algorithmus verwenden kann, um n reele Zahlen $x_1, ..., x_n$ aufsteigend zu sortieren.

Betrachte die Punktmenge $S = \{(x_i, x_i^2) | i = 1, ..., n\}$. CH(S) liefer alle Punkte in S gegen den Uhrzeigersinn zyklisch sortiert. Wandle die zyklisch sortierte Folge in Linearzeit in eine von "rechts" sortierte Folge um (X-Koordinate aufsteigend sortiert).

Folgerung: Die Komplexität des konvexe Hülle Problems ist $\Omega(n \log n)$ (untere Schranke).

1.1.1 Gift-Wrapping

In \mathbb{R}^3 oder \mathbb{R}^2

Idee: Extrempunkt suchen, Strahl anlegen und drehen bis er einen weiteren extremen Punkt erreicht.

Lexikographische Ordnung von Punkten p und q $p = (p_x, p_y), p <_{xy} q \Leftrightarrow p_x < q_x \lor (p_x = q_x \land p_y < q_y).$

Beobachtung: Der min/max Punkt in der (xy) oder (yx)-Ordnung ist eine Ecke der konvexen Hülle.

Idee für Algorithmus: $S = \{q_1, .., q_n\}$ mit Ecken $p_1, .., p_n$.

Startpunkt $p_1 \leftarrow min_{xy}(S)$ (unten links).

Wie finet man p_2 : 1. Betrachte horizontalen Strahl nach rechts, der in p_1 startet. 2. Drehe diesen gegen den Uhrzeigersinn bis er auf einen Punkt von S trifft. Wiederhole vom so gefundenen p_2 aus.

Schritt 2 benötigt $\mathcal{O}(n)$.

Worst-case: h=n (Anzahl Ecken): $\mathcal{O}(n^2)$, best-case: h konstant.

Details der Implementierung:

1. Vergleiche in der linearen Suche: Winkelvergleich, bei Gleichheit Entfernung. Besser: Statt Winkel verwenden wir Orientierung.

Definition: Orientation-Prädikat:

Gegeben sind drei Punkte $a, b, c \in \mathbb{R}^2$.

orientation(a,b,c)= $-1 \Rightarrow$ c liegt rechts der Gerade a,b

orientation(a,b,c)= $0 \Rightarrow$ a,b,c liegen auf einer Gerade.

orientation(a,b,c)= $1 \Rightarrow c$ liegt links der Gerade a,b

1.1.2 Graham-Scan

Trick: Lege am Anfang p_n und p_1 auf den Stack. Dann haben wir immer ≥ 2 Punkte auf dem Stack. Der komplette Algorithmus:

Vorbedingung: 1. $p_2, ..., p_n$ sind aufsteigend nach xy-Ordnung sortiert. 2. p_i liegt oberhalb bzw. auf der Geraden durch p_2 und p_n

```
UPPER_HULL(p_1, ..., p_n)
Stack S
s. push (p_n)
s. push (p_1)
s. push (p_2)
for i=3 to n-1 do
          a \leftarrow S.top()
          b <- S.top_pred()
          while (orientation (b, a, p_i) \ge 0 do
                    S. pop()
                    a <- b
                    b <- S.top_pred()
          od
          S. push (p_i)
od
return S
```

Laufzeitanalyse:

Beobachtung: Jeder Punkt wird genau einmal auf den Stack gepusht. Jeder Punkt wird höchstens einmal vom Stack entfernt.

 \Rightarrow DIe innere Schleife wird insgesamt höchstens n mal ausgeführt.

Laufzeit: $\mathcal{O}(n)$

Analog dazu LOWER_HULL mit orientation ≤ 0 .

Vorbereitung:

- 1. Sortiere die Gesamtmenge S
- 2. Filtere S in S' und S" (Upper/Lower)
- 3. Berechne UPPER_HULL(S'), LOWER_HULL(S")
- 4. Konstruiere CH(S) aus den beiden Resultaten.

Gesamtlaufzeit inklusive Sortieren: $\mathcal{O}(nlog(n))$ plus der Rest $\mathcal{O}(n)$

Satz (Graham):

- 1. Die konvexe Hülle von n Punkten in \mathbb{R}^2 kann in Zeit $\mathcal{O}(nlog(n))$ berechnet werden.
- 2. Die Laufzeit reduziert sich auf $\mathcal{O}(n)$, falls die Punkte sortiert sind.

Bemerkungen:

- 1. Varianten: Gleichzeitig obere und untere Hälfte berechnen (2 Stacks). Oder gesamte Hülle in einem zirkulären S_{can}
- 2. UPPER_HULL und LOWER_HULL sind auch für sich alleine interessant.
- 3. Graham's Scan ist optimal, da die untere Schranke nlog(n) erreicht wird.

1.1.3 Inkrementeller Algorithmus

Idee:

- 1. Sortiere nach xy-Ordnung
- 2. Betrachte die Punkte nacheinander. Finde obere und untere Tangente von neuem Punkt zu bisheriger Konvexer Hülle, ersetze die damit übersprungenen Kanten mit der jeweiligen Tangente.

Finde Berührungspunkte o und u
 der oberen und unteren Tangente von p_i an das Polygon CH
 $(p_1,...,p_{i-1})$. Entferne alle Ecken zwischen o und u
. Füge p_i nach u (vor o) ein.

Details: Darstellung der CH: Zirkuläre doppelt verkettete Liste gegen den Uhrzeigersinn, pred-Verweise im Uhrzeigersinn.

Initialisierung: CH ;- Dreieck (p_1, p_2, p_3) unter Beobachtung der Orientierung entweder (p_1, p_2, p_3) oder (p_1, p_3, p_2) . Ein Orientation-Test notwendig.

Tangenten und Berührpunkte für p_i mit i>3: Verwende Orientation um zu prüfen, ob es Knoten "oberhalb" der Geraden p_i,p_{i-1} Pseudocode für oberen Teil:

```
\begin{array}{ccc} \mathbf{p} < & p_{i-1} \\ \mathbf{while} & ! \operatorname{let\_turn}\left(p_i, p, \! \mathbf{CH}.\operatorname{succ}\left(\mathbf{p}\right)\right) & \mathbf{do} \\ & & \mathbf{p} < & \! \mathbf{CH}.\operatorname{succ}\left(\mathbf{p}\right) \\ \mathrm{od} & & \end{array}
```

Laufzeit: Beobachtung: Berechnung der Tangenten für einen Punkt p_i hat Laufzeit $\mathcal{O}(1 + \#entfernterEcken)$. Gesamtaufwand der Tangentenberechnung linear. $\mathcal{O}(n)$