Homework 5

Alison Barbee

2022-11-30

```
library(readr)
homicide_data <-
read_csv("https://raw.githubusercontent.com/washingtonpost/data-
homicides/master/homicide-data.csv")

## Rows: 52179 Columns: 12
## — Column specification

## Delimiter: ","

## chr (9): uid, victim_last, victim_first, victim_race, victim_age,
victim_sex...

## dbl (3): reported_date, lat, lon

##
## i Use `spec()` to retrieve the full column specification for this data.

## i Specify the column types or set `show_col_types = FALSE` to quiet this
message.</pre>
```

#Picked Los Angeles as my primary city

```
library(tidyverse)
## — Attaching packages -
                                                               tidyverse
1.3.2 -
## √ ggplot2 3.3.6
                      √ dplyr
                                  1.0.10
## √ tibble 3.1.8 √ stringr 1.4.1
## √ tidyr 1.2.1
                       ✓ forcats 0.5.2
## √ purrr
            0.3.4
## — Conflicts -
tidyverse_conflicts() —
## X dplyr::filter() masks stats::filter()
## X dplyr::lag()
                  masks stats::lag()
library(forcats)
losAngeles <- homicide_data %>%
 mutate(city_name = str_c(homicide_data$city, homicide_data$state, sep = ",
")) %>%
 filter(city_name == "Los Angeles, CA") %>%
 mutate(Status = case_when(
   grepl("Closed by arrest", disposition) ~ "solved",
    grepl("Closed without arrest", disposition) ~ "unsolved",
```

```
grepl("Open/No arrest", disposition) ~ "unsolved",
    TRUE ~ "NA")) %>%
mutate(homicide_race = fct_lump_min(victim_race, min = 100))
```

Use different colors to show the three race groups with the highest number of homicides for that city (you may find the fct_lump function from forcats useful for this).

```
sum(losAngeles$victim_race == "Hispanic")
## [1] 1088
sum(losAngeles$victim_race == "Black")
## [1] 886
sum(losAngeles$victim race == "White")
## [1] 192
sum(losAngeles$victim_race == "Other")
## [1] 59
sum(losAngeles$victim race == "Asian")
## [1] 29
sum(losAngeles$victim_race == "Unknown")
## [1] 3
#Mapping it out
library(sf)
## Warning: package 'sf' was built under R version 4.2.2
## Linking to GEOS 3.9.3, GDAL 3.5.2, PROJ 8.2.1; sf_use_s2() is TRUE
library(tigris)
## Warning: package 'tigris' was built under R version 4.2.2
## To enable caching of data, set `options(tigris_use_cache = TRUE)`
## in your R script or .Rprofile.
library(ggplot2)
library(viridis)
## Warning: package 'viridis' was built under R version 4.2.2
## Loading required package: viridisLite
library(MAP)
```

```
## Warning: package 'MAP' was built under R version 4.2.2
## Loading required package: flexmix
## Warning: package 'flexmix' was built under R version 4.2.2
## Loading required package: lattice
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
##
       expand, pack, unpack
ca_counties <- counties(state = "CA", cb = TRUE, class = "sf")</pre>
## Retrieving data for the year 2020
##
                                                                              0%
                                                                              1%
                                                                              1%
                                                                              2%
|=
                                                                              2%
 ==
                                                                               3%
 ==
                                                                              4%
                                                                              5%
 ===
                                                                              5%
l ====
                                                                              6%
l ====
                                                                              7%
 =====
                                                                              8%
 =====
                                                                              8%
 ======
                                                                              9%
 ======
                                                                              9%
 ======
```

======	I	10%
	1	11%
	1	11%
 =======	1	12%
	1	12%
	1	13%
 ======= 	1	14%
 ======== 	1	14%
	I	15%
	I	15%
	I	16%
	I	16%
	I	17%
	1	18%
	I	18%
	I	19%
	I	19%
	1	20%
	1	21%
	I	21%
	1	22%
 ===================================	I	22%
 ===================================	1	23%
 ===================================	I	24%
 ===================================	I	25%

	I	25%
	1	26%
 ===================================	1	27%
	1	28%
	I	28%
	1	29%
	1	29%
	1	30%
 ===================================	1	31%
 ===================================	1	31%
 ===================================	1	32%
 ===================================	1	32%
	I	33%
	1	34%
	1	34%
 ===================================	1	35%
	1	35%
	1	36%
	I	37%
 ===================================	1	38%
	I	38%
	I	39%
	I	39%
 ===================================	I	40%
 ===================================	I	41%

	4	41%
	4	42%
	4	42%
	4	43%
	4	44%
	4	45%
	4	45%
	4	46%
	4	46%
	4	47%
	4	48%
	4	48%
	4	49%
	4	49%
	!	50%
	!	51%
	!	51%
	!	52%
	!	52%
	!	53%
	!	54%
	!	54%
	!	55%
	!	55%
	!	56%

	===		57%
	===		58%
	====		58%
	====		59%
	====		59%
	====		60%
	====		61%
	=====		61%
	=====		62%
	======		62%
	======		63%
	======		64%
	======		65%
	=======		65%
	=======		66%
	=======		67%
	=======		68%
	=======		68%
	========		69%
	========		69%
	========		70%
	========		71%
	========		72%
	==========		72%
	==========		73%

		74%
 ===================================	I	75%
 ===================================	1	75%
 ===================================	I	76%
 ===================================		77%
 ===================================		78%
 ===================================		78%
 		79%
 	1	79%
 	I	80%
 	I	81%
 	1	81%
 		82%
 	1	82%
 		83%
 		84%
 	I	84%
 	I	85%
 		85%
 		86%
 		86%
 		87%
 		88%
 		88%
 		89%

```
89%
______
                90%
______
                91%
______
                91%
______
                92%
                92%
______
                93%
______
                94%
______
______
                95%
                95%
                96%
______
                97%
______
                98%
                98%
______
______
                99%
|-----| 100%
ggplot() +
geom_sf(data = ca_counties, color = "lightgray")
```


Location of homicides in Los Angeles, CA

