IMPLEMENTER UN MODELE DE SCORING

KOFFI KONAN

PLAN DE PRÉSENTATION

I Problématique et présentation du jeu de données

- Problématique
- Jeu de données

Il Approche de modélisation et interprétation

- Preprocessing et Features engineering
- Techniques de gestions de classes déséquilibrées
- Métrique d'évaluation adéquate
- Choix de techniques de gestion d'équilibre et de modèles
- Fonction coût et optimisation métier du modèle
- Interprétabilité du modèle choisi

III Présentation du Dashboard

- Mise en place d'une api via FastAPI et déploiement sur le cloud Heroku
- Mise en place d'un Dashboard via Streamlit et déploiement sur le cloud Heroku

I PROBLÉMATIQUE ET PRÉSENTATION DES JEUX DE DONNÉES

Contexte

"Prêt à dépenser"

crédits à la consommation pour des personnes ayant peu ou pas du tout d'historique de prêt.

Mission

- Mise en œuvre d'un outil de "scoring crédit" pour calculer la probabilité de défaut de paiement
- ☐ Développement d'un modèle de classification
- Modèle de ML doté d'une interprétabilité afin de garder la transparence sur les prises de décision d'octroi de crédit
- Développement d'un **Dashboard interactif** pour le service de la **relation client** et pour les **clients** eux-mêmes

Constat sur les données à notre disposition

- Variables explicatives X (features)
- · Variable cible y (possibilité de prédiction)

Problème d'apprentissage supervisé

Proportion des classes de la variable cible

Problème de classes déséquilibrées

I PROBLÉMATIQUE ET PRÉSENTATION DES JEUX DE DONNÉES

Problématique

- ☐ Comment gérer les classes déséquilibrées pour espérer généraliser au mieux notre modèle de classification ?
- Quelles métriques pour les problèmes de classification et quelle est la plus adaptée pour répondre à des impératifs métiers ?
- ☐ Par quels moyens pourrait-on réaliser un Dashboard interactif avec surtout le fait que nous travaillons dans un environnement Python ?

Preprocessing et feature engineering

Création de nouvelles features (*)

- PAYMENT_RATE
- PAYMENT_PERC
- INCOME PER PERSON
- ...

Traitement des valeurs manquantes

 Médiane pour les variables numériques

Techniques de gestion de classes déséquilibrées

Rééchantillonnage adapté aux données: la méthode SMOTE (*)

Techniques de gestion de classes déséquilibrées

Ajustement des poids de classes: la méthode des class weights

Class_weight = 'balanced'

$w_j = n_{samples}/(n_{classes} \times n_{samplesj})$

où:

- w_i est le poids de la classe j
- $n_{samples}$ est le nombre total d'observations dans le dataset
- $n_{classes}$ est le nombre de classes présentes dans le dataset
- ullet $n_{samplesj}$ est le nombre total d'instances de la classe j

Objectif

Une mauvaise classification d'une observation de la classe minoritaire est plus lourdement pénalisée que la mauvaise classification d'une observation de la classe majoritaire

Métrique d'évaluation adéquat : l'aire sous la courbe ROC (*)

Matrice de confusion

Après SMOTE

Après ajustement des poids

RandomForest, Lightgbm Logisticregression, et Xgboost

Après SMOTE

Comparaison des performances des modèles mean fit time mean score time 10² Emps de calcul (s) 10-1 rs_models_s

Après ajustement des poids

RandomForest , Lightgbm, Logisticregression, et Xgboost

Choix de techniques de gestion d'équilibre et de modèles

Aire sous la courbe ROC		MODELES DE CLASSIFICATION						
		knn	mlp	gboost	rf	logreg	xgboost	lgbm
Techniques	SMOTE	0.60	0.69	0.74	0.68	0.72	0.75	0.74
Techr	Ajustement de poids	X	X	X	0.70	0.75	0.68	0.75

Modèles	A bréviation		
KNeighbors	knn		
MLP	mlp		
GradientBoosting	gboost		
RandomForest	rf		
LogisticRegression	logreg		
XGBoost	xgboost		
LightGBM	lgbm		

SMOTE

- ☐ Efficace contre le surapprentissage
- ☐ Plus coûteux en temps pour synthétiser les nouvelles instances
- ☐ Coûteux lors de la prédiction et l'apprentissage de données
- Déconseillé quand existence de variables catégorielles encodées dans notre dataset (*)

Ajustement des poids des classes

- ☐ Mise en place très facile de l'ajustement via class_weight ou scale_pos_weight
- ☐ Plus rapide que SMOTE dans l'apprentissage de données et de prédiction

VS

peu d'algorithme dispose de ce paramètre

^{(*) &}lt;a href="https://kobia.fr/imbalanced-data-smote/">https://kobia.fr/imbalanced-data-smote/

Fonction coût et optimisation métier du modèle

La problématique « métier » est de prendre en compte qu'un faux négatif coûte en réalité environ 10 fois plus qu'un faux positif.

$$F_{\beta}\text{-score} = \frac{Vrais\ positifs}{Vrais\ positifs + \frac{1}{1 + \beta^2}(\beta^2 Faux\ n\'egatifs + Faux\ positifs)}$$

Matrices de confusion: exemple pour $\beta = 2$

- (Train set , 16000)
- > (Test set, 4000)

Modèle évalué avec l' AUC de ROC

Modèle évalué avec **F2-score**

Minimisation des faux négatifs pour β > I

12

(*) https://kobia.fr/classification-metrics-f1-score/

Fonction coût et Optimisation métier du modèle

Matrices de confusion correspondantes à $\beta \cong \sqrt{10}$

()
$$F_3$$
 score =
$$\frac{Vrais\ positifs}{Vrais\ positifs + \frac{1}{10}(9 \times Faux\ n\'egatifs + 1 \times Faux\ positifs)}$$

()
$$F_{\sqrt{10}}$$
 score =
$$\frac{Vrais\ positifs}{Vrais\ positifs + \frac{1}{11}(10 \times Faux\ n\'egatifs + 1 \times Faux\ positifs)}$$

Train set: 80%, Test set: 20% du jeu initial de données

| logreg | Matrice de confusion de | gr_beta_sqrt10 | -40000 | -35000 | -30000 | -25000 | -20000 | -15000 | -10000 | -5000 | -

class_weight='balanced'
max_depth=3
n_estimator=400

LightGBMClassifier

reg_alpha=0.5

num_leaves=127

13

(*) https://kobia.fr/classification-metrics-f1-score/

Interprétabilité du modèle choisi

Interprétabilités globales

Interprétabilité par rapport au fonctionnement du modèle d'un point de vue général sur toutes les instances

Interprétabilités locales

Interprétabilité pour une instance donnée

 $\frac{https://medium.com/@ulalaparis/repousser-les-limites-dexplicabilit\%C3\%A9-un-guide-avanc\%C3\%A9-de-shap-a33813a4bbfc}{https://shap.readthedocs.io/en/latest/index.html}$

III PRÉSENTATION DU DASHBOARD

Mise en place d'une api FastAPI et de dashboard via Streamlit

- ☐ Framework Web moderne et rapide (haute performance)
- API avec Python **3.6+** basé sur des conseils de type Python standard
- ☐ Open-source

Utilité dans ce projet

- > Score de défaut de paiement
- Décision sur la demande de crédit

- ☐ Création d'app avec uniquement du code python
- ☐ Intégration facile de la visualisation de data dans l'app, grâce à de nombreux widgets prédéfinis
- ☐ Compatible avec la majorité des frameworks de dataviz (matplotlib, plotly, seaborn,..) et de Machine learning (pandas, pytorch,...)
- ☐ Prédiction et test de modèles de données avec des collaborateurs ou des clients
- ☐ Open-source

III PRÉSENTATION DU DASHBOARD

Réalisation du Dashboard et déploiement sur Heroku

* Rendre disponible ses applications en ligne pour un large public

FastAPI: https://pret-a-depenser-heroku.herokuapp.com/docs

Streamlit: https://pret-a-depenser-board.herokuapp.com/

Web Applications Monitoring

Merci pour votre attention