

Approaches for Parallel Applications Fault Tolerance

Richard L. Graham
Advanced Computing Laboratory
Los Alamos National Laboratory
LA-UR-06-6526

LA-UR-???

UNCLASSIFIED

UNCLASSIFIED

- Problem definition
- Introduction to the Open MPI collaboration
- Fault Recovery
 - Data transmission errors
 - Network failures
 - Process failure
- Future work

Guiding Principles

- End goal: Increase application MTBF
- Automation is desirable more likely to be used
- No One-Solution-Fits-All
 - Hardware characteristics
 - Software characteristics
 - System complexity
 - System resources available for fault recovery
 - Performance impact on application
 - Fault characteristics of application

Contributors to this talk

- Tim Woodall
- Galen Shipman
- Brian Barrett
- Ralph Castain
- Jeff Squyres
- Josh Hursey
- Mitch Sukalski
- Graham Fagg

UNCLASSIFIED

UNCLASSIFIED

Design Features Assisting in Fault Tolerance

LA-UR-???

Implementation features

- Refinement of the LA-MPI implementation
- Main-memory to Main memory Checksum/CRC
 - Ack/Nack
 - Retransmit Corrupt packets
- Small packets
- Watch-dog timers
 - Retransmit timed-out packets (duplicate packet detection)
- User level protocol
 - Unpredictable time slice w/o progress thread

Network Failover

UNCLASSIFIED

LA-UR-???

Implementation Features

- Requires error detection more expensive
- Error detection
 - ORTE
 - Watchdog timers
- Reconnect
- Remove NIC from list of available resources

- Support a variety of checkpoint/restart protocols
 - Coordinated [First implementation]
 - Uncoordinated
- Support a variety of checkpoint/restart systems
 - Berkeley Labs Checkpoint/Restart (BLCR) [First implementation]
 - User level checkpoint/restart (self) [First implementation]
 - Others (Condor, libckpt, ...)
- Internal and external checkpoint/restart request mechanisms
 - Command line tools
 - API
- Support process migration

UNCLASSIFIED

- Designed to support fault tolerance research
 - Extensible set of MCA frameworks with clearly defined interfaces
- Improved interconnect support
 - tcp, self, Infiniband, Myrinet, ...
- Checkpoint/restart system heterogeneity
 - The use of more than one checkpoint/restart system to form a consistent global checkpoint of an application.
- Improved user interface to support transparency and reduce complexity
 - User does not need to know which checkpoint/restart systems or protocols are being used to checkpoint or restart an application
- Attention paid to performance and scalability

- OPAL Checkpoint/Restart Service (CRS)
 - Single process checkpoint/restart system interface
- ORTE Snapshot Coordinator (SnapC)
 - Launch and monitor a distributed checkpoint/restart
 - Support checkpoint server architecture
- ORTE File Manager (FileM)
 - Distributed file management
- OMPI Checkpoint/Restart Coordination Protocol (CRCP)
 - Distributed checkpoint/restart coordination protocol interface
 - Support at least Coordinated and Uncoordinated protocols

UNCLASSIFIED

UNCLASSIFIED Architecture

- Multilevel notification mechanism
 - Allows all layers in Open MPI to take action around a checkpoint/restart request
- MCA framework design allows for minimal changes to the Open MPI core
- Many mechanisms available for an application to choose (not) to use checkpoint/restart fault tolerance
 - Compiler option
 - Runtime option(s)

- OMPI CRCP framework still in development
- Checkpoint/restart protocol support:
 - Coordinated
- Checkpoint/restart system support:
 - BLCR, self
- Interconnects:
 - self
 - tcp
 - Others as time permits
- · Command line tools:
 - ompi-checkpoint, ompi-restart, ompi-ps
- Current development on a branch, with plans to merge to trunk soon

Future Directions

- Refine implementations
 - Optimization
 - Vendor specific optimizations
- Process Fault Tolerance
 - Not a solved problem
 - No One-Solution-Fits-All in the small cluster to Peta-Scale systems

