Задание 2. Бенгальский огонь

Однородное тонкое кольцо радиуса R = 1,0 м из горючего материала аккуратно разрезают и поджигают с одного конца (рис. 1). Будем считать, что точка горения кольца движется с небольшой постоянной скоростью v = 10 мм/с по часовой стрелке от точки A, а все продукты сгорания улетучиваются.

Часть 0. Подготовительная.

0.1 Покажите, что центр масс C тонкой однородной дуги радиуса R с углом полураствора α (радиан) лежит на оси её симметрии на расстоянии $r = OC = R \frac{\sin \alpha}{\alpha}$ от её геометрического центра O (рис. 2).

Этот результат (даже если Вы не смогли это показать!) можно смело использовать в следующих пунктах задачи.

0.2 За какое время все кольцо сгорит?

Рис. 2.

Часть 1. «Механический огонь»

Далее рассматриваем горящее кольцо (см. рис. 1).

1.1 Постройте траекторию движения центра масс неподвижного кольца в процессе его горения.

Не забудьте получить уравнение этой траектории. Ее можно задать различными способами: в явном виде, в параметрической форме в виде зависимости координат от времени, в декартовой, в полярной системе координат и т.д.

Горящее кольцо аккуратно подвесили на нити, прикрепленной к нему в точке A (рис. 3). С течением времени диаметр AD кольца будет медленно отклоняться от вертикали вправо, положение этого диаметра

- определяется углом β . Сопротивление воздуха присутствует! **1.2** Постройте график зависимости угловой скорости поворота центра кольца от времени $\omega(t)$.
- **1.3** Постройте график зависимости угла поворота центра кольца от времени $\beta(t)$.
- 1.4 Постройте траекторию горящего огня.

He забудьте привести явные выражения для искомых зависимостей $\omega(t)$ и $\beta(t)$.

Если по кольцу до поджигания был равномерно распределен заряд q, то в процессе горения напряженность \vec{E} электростатического поля в его центре будет изменяться как по модулю, так и по направлению.

- **2.1** Найдите модуль напряженности $E(\alpha)$ электростатического поля горящего кольца в зависимости от углового размера α выгоревшей дуги.
- **2.2** Найдите модуль максимальной напряжённости \vec{E}_{\max} электрического поля в центре кольца при таком процессе. При каком угле α_{\max} это достигается?