PART 1: DIGITAL DESIGN THEORY

Provide your answers here:

1.	AP	00	01	. 11	. 10	
	M.	Mo	m.	m,	m	
	00	1	1			
	01	m ₄	ms 1	רות	Me	
	11	Ma	ma	m is	min	
	10	ms,	mg	mi	mo	

According to K-map

mo+m1+m2+m9 = B'C'

m1+m5+m13+m9 = C'D

m15+m15+m9+m11 = AD

m2+m9+m11+m10 = AB'

- ia) FIA-B-C-D) = AB+C'D+AD+BC' $\triangle \overline{A} \overline{A} \overline{B} = \overline{(AUB)}$
- (b) FIA.B.C.D) = (A'+B)'+(C+D')'+(A'+D')'+(B+C)'
- (c) F(bB,C.D) = [(AB')'(C'D)'(AD)'(BC')']'
- (d) F(A,B,C,D) = A(B+D) + C'(B+D)= (A+C')(B+D)
- (e) F(A,B,C,D) = [(A+C')'+ (B'+D)']'
- (f) F(A.B.C.D)= (A'C)'(BD')'

2. four-bit parity generator:

According to the truth-table, we can gain its K-map:

ADK	00	01	. 11	. 10
00	m _o	mı	m3	m ₂
01	mu	my 1	ma	m ₆
ı١	m ₁₂	Mg	m _I y	m14
10	mg	mq 1	m,	m _I o

i. the circuit diagram:

three-bit parity checker.

4	В	С	Р	CP
0	0	0	0	ì
D	0	\mathcal{O}	1	0
0	O	1	0	D
D	0	1	1	1
D	ı	0	0	0
0	ı	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	D	0	0
1	0	O	1	1
1	0	1	0	1
1	0	1	1	0
				i

-	0	B	C	P	CP
	ı	1	0	O	1
	1	1	0	1	0
	l	J	1	D	0
**	l	- 1	A:	1	1

like four-bit parity generator:

CP = (A⊕B⊕C⊕P)'

the circuit diagram:

3. the truth table:

×	y	7	A	B	C
\mathcal{O}	0	O	0	1	0
0	0	1	0	1	1
O	1	0	1	O	O
O	1	1	ı	0	1
1	U	o	0	I	1
I	0	1	l	0	0
1	1	0	1	O	1
l	1	1	1	1	0

the k-map:

A:	XYZ	00	. 01	. 11	10		
	0	mo	m.	m,	m,	A = y + x =	
	,	mu	ms I	ולייו	10 m, 1		

CXX	90	01	(1	10
0	Mo	m,	m ₃	mı
ı	m4 1	My	m ₇	M.

3-bit x 3-bit . logic formulas z

the circuit diagram.

description:

from the logic formula:

we know.

Co just needs AND, obesit need an adder and to get Cs Co Co Co Co . we need two adders

one is for AoBs AoBs and AoBs AoBs, AoBs another is for AzBz AzBj AzBo and the carryout from the first adder.

then . We can get the circuit diagram

- 5. (a) F(A-B-C.D) = \(\bar{2}\)(1.3.5.8.10.14)
 - i should be connected to input ports D. Dz. Dz. Dz. Dr. D. D.
 - o should be connected to input ports Do. P2. D4. D5. P7. D9. D11. P12 P13 D15
 - b) F(A.B.C.D)=11(4,7.11)

- O should be connected to input ports D& DI DI

.. the circuit diagram

PART 2: DIGITAL DESIGN LAB (TASK1)

DESIGN

Describe the design of your system by providing the following information:

• Verilog design (provide the Verilog code)

```
module decoder_74138(A,B,C,G1,G2A_n,G2B_n,Y_n);
input A,B,C,G1,G2A_n,G2B_n;
output reg[7:0] Y_n;
always@(*) begin
if(G1==1 && G2A_n==0 && G2B_n==0)
begin
case({C,B,A})
3'b000: Y_n= 8'b1111_1110;
3'b001: Y_n= 8'b1111_1101;
```

