Short Term Power Burn Model

GAS Analytics

Rationale:

Dependent:

• gas demand

Covariates:

- clean spreads
- dark spreads
- temperature
- wind
- precipitation
- monday_thursday flag
- Fourier series

Data:

• 3 years daily sampling

Calibrator (exog): Linear Regression

CV= 9.43 (2.08)

CV= 10.57 (1.79)

Calibrator (exog): Support Vector (kernel) Regression

Calibrator (exog): SARIMAX

CV= 8.44 (1.71)

CV= 10.37 (2.41)

Calibrator (endog): Neural Network Autoregression

Calibrator (endog): Neural Network Long Short Term Memory

Appendix A:

Model	Parameters	Description
EXOGENEOUS RELATIONSHIP:		
Linear Regression	const, trend, clean_spreads, precipitation, temperature, wind, S1-7, C1-7, S2-7, C2-7, S3-7, C3-7, mo_th_yes	Modelling in levels Exog variables: grid search with BIC criterion 3 terms of Fourier series at weekly frequency
SARIMAX	SARIMAX(1, 0, 1)x(1, 0, 1, 7)	Modelling in levels
	const, dark_spreads, precipitation, temperature, wind,	Specification: grid search with BIC criterion
		Exog variables: grid search with BIC criterion
Support Vector Regression	type="eps-regression" kernel='radial'	Dependent variable and features scaling: standardization
	cost= 8gamma= 0.0625epsilon= 0.3	Specification: grid search with 10-fold CV
ENDOGENEOUS RELATIONSHIP:		
Neural Network Autoregression	 Model: NNAR(29,1,15)[7] Average of 20 networks, each of which is a 29-15-1 network with 466 weights options were - linear output units 	Dependent variable scaling: standardization
Long Short Term Memory Neural Network		

Appendix B:

ALL DATA: IN TIME: ACTUALS 4y									OUT OF TIME: FUTURE
IN SAMPLE 3y OUT SAMPLE 28days									
CROSS VALIDATION 3y:									
FOLD1 1y FO		FOLD	2 1.5y	FOLD3 2.5y		FOLD4 3y			
train sample 0.8y	test sample 28days	train sample 1.3y	test sample 28days	train sample 2.3y	test sample 28days	train sample 2.8y	test sample28 days		
	error 1		error 2		error 3		error 4		
CV error = 1/4	CV error = 1/4 * (error1 + error2 + error 3 + error4)								
CV std = Stand	CV std = Standard Deviation (error1, error2, error3, error4)								
IN SAMPLE ERROR								OUT SAMPLE ERROR	OUT OF TIME ERROR

error = Root Mean Square Error

Appendix C:

Modelling Framework

Design Matrix:

- Imputations
- Design Matrix:

$$t \mid y_t \xrightarrow{f} v_t, \mid x_t^1, x_t^2, \dots x_t^k \xrightarrow{g} g_1 x_t^1, g_2 x_t^2, \dots, g_k x_t^k$$

$$DM_t = DM_t(y_t, f, f^{-1}, \{x_t^i\}_{i=1,k}, \{g_t^i\}_{i=1,k})$$

Exploratory analysis

- Autocorrelation:
 - ACF(x_t)
 - PACF(x_t)
- Scatter Plots:
 - y_t next to v_t and x_t^k next to g_kx_t^k
 - y_i vs. x_i^j for j = 1, k with LOWESS for dependency shape analysis
 - x_t vs. x_{t-h} with LOWESS for autocorrelation analysis
 - y_t vs. x_{t-h}^k for given k with LOWESS for lagged-leading relationship

Calibrator:

 $\mathbb{C}(HyperParams) \rightarrow \mathbb{C}$

Model:

$$M = M(C, DM) \rightarrow \{\hat{\theta}_l\}_{l=1,m}$$

Model Specification

$$\{\hat{\theta}_{l}\} \xrightarrow{I(\theta): AIC, AICc, BIC} \{\hat{\theta}_{l}^{*}\}$$
GridSearch

Model Selection:

Cross Validation

CV = CV(M, Partitioning, Performance Metric)

$$C \xrightarrow{\iota cv} C^*$$

Residuals Diagnostics:

$$\hat{\epsilon}_t = v_t - \hat{v}_t; \ \hat{\epsilon}_t^{std}; \ \hat{\epsilon}_t^{stu}$$

$$RD = \mathcal{R}\mathcal{D}(\hat{\epsilon}_t, \hat{\epsilon}_t^{std}, \hat{\epsilon}_t^{stu})$$

Forecast:

$$C^*(DM_{t+1} = g_i(x_{t+1}^i)_{i=1,k} \mid \{\hat{\theta^*}_t\}_{t=1,m}) = \hat{v}_{t+1} \xrightarrow{f^{-1}, y_t} \hat{y}_{t+1}$$