CSC352 HW5

Alex Zhang

Feb 2023

Question 1

(a)

Since $\mathbf{x} \in \mathbb{R}^m$, let $\mathbf{q_1} = \frac{\mathbf{x_1}}{\|\mathbf{x_1}\|_2}$. Because \mathbf{x} is a vector, it only has one column, the matrix \mathbf{Q} is just $\mathbf{q_1}$. For \mathbf{R} , since there is only one columne, $\mathbf{R} = \mathbf{r_{11}} = \|\mathbf{x_1}\|_2$. The QR decomposition will be

$$\mathbf{x} = \mathbf{Q}\mathbf{R} = \frac{\mathbf{x_1}}{\|\mathbf{x_1}\|_2} \cdot \|\mathbf{x_1}\|_2$$

(b)

Given and orthogonal matrix $\mathbf{J} \in \mathbb{R}^{m \times n}$. Let $\mathbf{q}_1 = \frac{\mathbf{j}_1}{\|\mathbf{j}_1\|_2}$, and \mathbf{q}_2 is,

$$\mathbf{q}_2 = \frac{\mathbf{j}_2 - (\mathbf{q}_1^{\top} \mathbf{j}_2) \mathbf{q}_1}{\|\mathbf{j}_2 - (\mathbf{q}_1^{\top} \mathbf{j}_2) \mathbf{q}_1\|_2}$$

Since **J** is an orthogonal matrix, $\mathbf{q}_1 \cdot \mathbf{j}_2 = 0$, indicating

$$\mathbf{q}_2 = \frac{\mathbf{j}_2}{\|\mathbf{j}_2\|_2}$$

This case can be generalized into any column \mathbf{q}_i for matrix \mathbf{Q} . For matrix \mathbf{R} , $\mathbf{r}_{ij} = \mathbf{q}_i^{\top} \mathbf{j}_j$. In this case, since \mathbf{Q} is orthonormal matrix to \mathbf{J} , $\mathbf{r}_{ij} = 0 \ \forall i, j \leq m, n$. And for diagonal entries

$$\mathbf{r}_{jj} = \|\mathbf{j}_j - \sum_{i=1}^{i-1} \mathbf{r}_{ij} \mathbf{q}_i\|_2$$

Where $\sum_{i=1}^{i-1} \mathbf{r}_{ij} \mathbf{q}_i \|_2 = 0$ because $\mathbf{r}_{ij} = 0$. Therefore, $\mathbf{r}_{jj} = \|\mathbf{j}_j\|_2$.

Overall, after doing QR decomposition on an orthogonal matrix, we get \mathbf{Q} is an orthonormal matrix and each column is the normal vector from \mathbf{J} . \mathbf{R} is a diagonal matrix with each entry represents the 2-norm of the corresponding column vector in \mathbf{J} .

(c)

Given an upper triangular matrix $\mathbf{T} \in \mathbb{R}^{m \times n}$ Let $\mathbf{q_1} = \frac{\mathbf{t_1}}{\|\mathbf{t_1}\|_2}$, which is just $\mathbf{e_1}$ in this case. For $\mathbf{q_2}$, it should be

$$\mathbf{q}_2 = rac{\mathbf{t}_2 - (\mathbf{q}_1^{\mathsf{T}} \mathbf{t}_2) \mathbf{q}_1}{\|\mathbf{t}_2 - (\mathbf{q}_1^{\mathsf{T}} \mathbf{t}_2) \mathbf{q}_1\|_2}$$
 $\mathbf{q}_2 = rac{egin{bmatrix} 0 \ \mathbf{t}_2 \mathbf{2} \ \vdots \ 0 \end{bmatrix}}{\|\mathbf{t}_2 \mathbf{2} \|}$
 $\|\mathbf{t}_2 \mathbf{2} \|$
 $\|\mathbf{t}_2 \mathbf{2} \|$

which is just $\mathbf{e_2}$. We can then general all column $\mathbf{q_i}$ in matrix \mathbf{Q} as $\mathbf{e_i}$. Therefore, \mathbf{Q} is just an identity matrix with dimension $m \times m$.

Based on the information that \mathbf{Q} is an identity matrix, we can then just get \mathbf{R} which \mathbf{R} is just the original matrix since a matrix times an identity matrix will still be itself.

$$T = QR = IT$$

Question 2

Let
$$\mathbf{u_1} = \mathbf{a_1} + \|\mathbf{a_1}\|_2 \mathbf{e_1} = \begin{bmatrix} 4 \\ 2 \\ -2 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 9 \\ 2 \\ -2 \\ 1 \end{bmatrix}.$$

new $\mathbf{a_1} = \begin{bmatrix} 4 \\ 2 \\ -2 \\ 1 \end{bmatrix} - 2\frac{45}{90} \begin{bmatrix} 9 \\ 2 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} -5 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

new $\mathbf{a_2} = \begin{bmatrix} -3 \\ -14 \\ 14 \\ -7 \end{bmatrix} - 2\frac{-90}{90} \begin{bmatrix} 9 \\ 2 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 15 \\ -10 \\ 10 \\ -5 \end{bmatrix}$, which is $\begin{bmatrix} -10 \\ 10 \\ -5 \end{bmatrix}$

new
$$\mathbf{a_3} = \begin{bmatrix} 4 \\ -3 \\ 0 \\ 15 \end{bmatrix} - 2\frac{45}{90} \begin{bmatrix} 9 \\ 2 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} -5 \\ -5 \\ 2 \\ 14 \end{bmatrix}$$
, which is $\begin{bmatrix} -5 \\ 2 \\ 14 \end{bmatrix}$.

Similar, $\mathbf{u_2} = \mathbf{a_2} - \|\mathbf{a_2}\|_2 \mathbf{e_1} = \begin{bmatrix} -10 \\ 10 \\ -5 \end{bmatrix} - 15 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -25 \\ 10 \\ -5 \end{bmatrix}$

new $\mathbf{a_2} = \begin{bmatrix} -10 \\ 10 \\ -5 \end{bmatrix} - 2\frac{375}{750} \cdot \begin{bmatrix} -25 \\ 10 \\ -5 \end{bmatrix} = \begin{bmatrix} 15 \\ 0 \\ 0 \end{bmatrix}$.

new $\mathbf{a_3} = \begin{bmatrix} -5 \\ 2 \\ 14 \end{bmatrix} - 2\frac{75}{750} \cdot \begin{bmatrix} -25 \\ 10 \\ -5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 15 \end{bmatrix}$, which is $\begin{bmatrix} 0 \\ 15 \end{bmatrix}$.

 $\mathbf{u_3} = \mathbf{a_3} + \|\mathbf{a_3}\|_2 \mathbf{e_1} = \begin{bmatrix} 0 \\ 15 \end{bmatrix} + 15 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 15 \\ 15 \end{bmatrix}$

new $\mathbf{a_3} = \begin{bmatrix} 0 \\ 15 \end{bmatrix} - 2\frac{225}{450} \cdot \begin{bmatrix} 15 \\ 15 \end{bmatrix} = \begin{bmatrix} -15 \\ 0 \end{bmatrix}$, therefore, we can get \mathbf{R}

Question 3

Given
$$\mathbf{A}^{\dagger} = (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{A}^{\top}$$
,

(a)

The left side can be transformed into:

$$\mathbf{A}\mathbf{A}^{\dagger}\mathbf{A} = \mathbf{A}(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{A}$$
$$= \mathbf{A}\mathbf{A}^{-1}(\mathbf{A}^{\top})^{-1}\mathbf{A}^{\top}\mathbf{A}$$

Since $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$ and $(\mathbf{A}^{\top})^{-1}\mathbf{A}^{\top} = \mathbf{I}$,

$$\mathbf{A}\mathbf{A}^{\dagger}\mathbf{A} = \mathbf{IIA} = \mathbf{A}$$