

For example:
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}_{202} = I_{202}$$
 $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{303} = I_{303}$

(3) Upper Totangular Matrix: A equare matrix in which all the elements below the principal diagonal are too is called an upper triangular matrix:

 $\Rightarrow A = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ is an upper triangular if $a_{11} = 0$ for $1 > 1$.

For example: $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{303}$

(3) Lower Totangular Matrix: A equare matrix in which all the advanta above the principal diagonal are too is called a lover triangular matrix.

 $\Rightarrow A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}_{303}$

For example: $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}_{303}$

(6) Symmetric Matrix: A equare matrix $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}_{303}$

(7) Symmetric Matrix: A equare matrix $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}_{303}$

(8) Symmetric Matrix: A equare matrix $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}_{303}$

(9) Symmetric Matrix: A equare matrix $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}_{303}$

(9) Symmetric Matrix: A equare matrix $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}_{303}$

(9) Symmetric Matrix: A equare matrix $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}_{303}$

(9) Symmetric Matrix: A equare matrix $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}_{303}$

(9) Symmetric Matrix: A equare matrix $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}_{303}$

(9) Symmetric Matrix: A equare matrix $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}_{303}$

(9) Symmetric Matrix: A equare matrix A equare A equar

(1) Skew-Symmetrix Matrix: A square metrix $A = [aij]$ is said to be skew-symmetrix if $A = -A^{\dagger}$ or if the transpose of the metrix is
A = -At or if the transpore of the metric is
equal to the negative of the metrico.

For example:
$$\begin{bmatrix} 0 & 2 & -3 \\ -2 & 0 & 1 \end{bmatrix}$$
 $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ $a_{ij} = -a_{ji}$ $a_{ij} = -a_{ji}$ $a_{ij} = -a_{ji}$ $a_{ij} = 0$

Orthogonal Matrix: A square matrix A is called an orthogonal matrix if
$$AA^{t} = I$$

For example: $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
 $A^{t} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$.

(3) Nilpotent Mahix: A square metrix A is said to be nilpotent if
$$A^k = 0$$
 where k is the least positive integer.

$$\begin{bmatrix} E_{X} \cdot & A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, & A^2 = A \cdot A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

(4) Idenpotent Matrix: A square matrix
$$A$$
 is said to be idenpotent if $A^2 = A$.

$$E_{\underline{x}}$$
. $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = A$

	U		be	enterni (Distributari	t if	$A^2 = I$	-	
					J			
Ex.	A =	T -5	– Q	0 0				
_		3	5	0				
		_ 1	2	-1]				