I Questions de cours

- 1 Énoncer et démontrer la caractérisation de l'injectivité puis de la surjectivité pour un morphisme de groupes puis montrer que $(\operatorname{Aut}(G), \circ)$ est un groupe.
 - 2 Énoncer et démontrer les règles de calcul dans un anneau.
 - 3 Énoncer et démontrer les opérations sur les équivalents.

II Exercices sur l'analyse asymptotique

Exercice 1:

- 1 Donner un équivalent de $\frac{3x+4}{5x^2-2x+1}$ au voisinage de $+\infty$.
- 2 Calculer $\lim_{x\to 0} \frac{(1-\cos(x))(1+2x)}{x^2-x^4}$.

Exercice 2:

- 1 Donner un équivalent de $1+x+\ln(x)$ au voisinage de 0.
- 2 Calculer $\lim_{x\to 0} \frac{\ln(1+\sin(x))}{6\tan(x)}$.

Exercice 3:

- 1 Donner un équivalent de $\cosh(\sqrt{x})$ au voisinage de $+\infty$.
- 2 Calculer $\lim_{x\to 0} x(3+x) \frac{\sqrt{x+3}}{\sqrt{x}\sin(\sqrt{x})}$.

III Exercices sur les structures algébriques

Exercice 4

On note $i\mathbb{Q} = \{ir, r \in \mathbb{Q}\}\ \text{et}\ \mathbb{Q}[i] = \{a + ib, (a, b) \in \mathbb{Q}^2\}.$

- 1 Montrer que $i\mathbb{Q}$ et $\mathbb{Q}[i]$ sont des sous-groupes de $(\mathbb{C},+)$.
- 2 $\mathbb{Q} \cup i\mathbb{Q}$ est-il un sous-groupe de $(\mathbb{C}, +)$?
- 3 Montrer que $\mathbb{Q}[i]$ est un sous-anneau de $(\mathbb{C}, +, \times)$.
- 4 Muni des lois induites, $(\mathbb{Q}[i], +, \times)$ est-il un corps?

Exercice 5.

Soient G un groupe noté multiplicativement et A un sous-groupe de G. Pour $x \in G$, on note :

$$Ax = \{ax, a \in A\}$$
 et $xA = \{xa, a \in A\}$

On considère l'ensemble B des éléments $x \in G$ tels que Ax = xA.

- 1 Montrer que $A \subseteq B$.
- 2 Montrer que pour tout $x \in B$ et tout $a \in A$, on a $xax^{-1} \in A$.

- 3 Montrer que pour tout $x \in B$, on a $x^{-1} \in B$.
- 4 L'ensemble B est-il un sous-groupe de G?

Exercice 6:

Soit $(A, +, \times)$ un anneau.

On envisage la propriété suivante :

$$\forall x, y \in A, \ (xy)^2 = x^2 y^2 \quad (\bowtie)$$

- 1 Montrer que si \times est commutative, alors (\bowtie) est vraie.
- 2 On se propose de montrer la réciproque.

On suppose que (\bowtie) est vraie.

Montrer que :

$$\forall x, y \in A, \ y^2x = yxy = xy^2$$

Indication : Calculer $(y + xy)^2$ de deux manières différentes.

En déduire que × est commutative.

Exercice 7:

Soit G un groupe noté multiplicativement.

On définit un relation binaire \mathcal{R} sur G par :

$$\forall x, y \in G, (x\mathcal{R}y) \iff \exists a \in G \mid y = axa^{-1}$$

Montrer que \mathcal{R} est une relation d'équivalence sur G.

Exercice 8:

Soient (G,*) un groupe de cardinal fini et H un sous-groupe de (G,*).

- 1 Montrer que pour tout $a\in G,\, H$ et $aH=\{ah,\ h\in H\}$ ont le même nombre d'éléments.
- 2 Soient $a, b \in G$.

Démontrer que aH = bH ou $aH \cap bH = \emptyset$.

3 - En déduire que le cardinal de ${\cal H}$ divise le cardinal de ${\cal G}.$

Exercice 9:

Soit f un morphisme non constant d'un groupe fini (G,*) dans (\mathbb{C}^*,\times) .

Calculer
$$\sum_{g \in G} f(g)$$
.