西安交通大學 毕业设计(论文)

胍

 \Box

KS 1	四			
	IAT _E X 毕业设计模板			
电气学院	学院 电气工程 系 (专业) 电气 613 班			
兴生业力	3H 亚 分			
学生姓名				
学 号	000000000			
指导教师	LAT _E X GitHub			
计所在单位	西安交诵大学			
, , , , , , , , , , , , , , , , , , ,				

而安态通大学

目 录

1	前言		3
2	IAT _E X		4
	2.1	微分算子及矢量运算 · · · · · · · · · · · · · · · · · · ·	4
		2.1.1 微分算子 · · · · · · · · · · · · · · · · · · ·	4
	2.2	麦克斯韦方程组	4
3	排版	实例 · · · · · · · · · · · · · · · · · · ·	5
	3.1	LATEX 插入图片	5
	3.2	LaTeX 插入表格 ······	5
	3.3	字体	7
	3.4	插入代码	7
	3.5	参考文献	8
		3.5.1 bib 文件介绍 · · · · · · · · · · · · · · · · · · ·	8
		3.5.2 bib 文件生成 · · · · · · · · · · · · · · · · · · ·	9
	3.6	列表	9
		3.6.1 无序列表	9
		3.6.2 有序列表	9
4	一些	环境	10
附	录 2 ·		12
附	录 3 .		13
致	谢 …		14

摘 要

这是一个模板。这是一个模板。这是一个模板。这是一个模板。这是一个模板。这是一个模板。这是一个模板。这是一个模板。这是一个模板。这是一个模板。^[1]

关键词: LATEX; XJTU

ABSTRACT

This is a template. This is a template.

KEY WORDS: LATEX;XJTU

1 前言

本模板针对西安交通大学毕业论文设计要求编写。可供需要完成毕业设计的同学使用。 已经设置好纸张、页边距、页眉和页脚、三级标题的样式、正文字体行距、图题和表题、页码、 封面、中英文摘要、目录、参考文献、附录、致谢的问题,无需再手动设置。yes

2 LATEX 强大的排版功能

2.1 微分算子及矢量运算

2.1.1 微分算子

在直角坐标系中,哈密顿算子定义为[2]

$$\nabla = \mathbf{e}_x \frac{\partial}{\partial x} + \mathbf{e}_y \frac{\partial}{\partial y} + \mathbf{e}_z \frac{\partial}{\partial z}$$
 (2-1)

为此, 标量场 u(x,y,z) 的梯度可以写成

$$gradu = \nabla u = \mathbf{e}_x \frac{\partial u}{\partial x} + \mathbf{e}_y \frac{\partial u}{\partial y} + \mathbf{e}_z \frac{\partial u}{\partial z}$$
 (2-2)

矢量 A 的散度表示成

$$div \mathbf{A} = \nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$
 (2-3)

矢量 A 的旋度表示成

$$rot \mathbf{A} = \nabla \times \mathbf{A} = \begin{vmatrix} \mathbf{e}_{x} & \mathbf{e}_{y} & \mathbf{e}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_{x} & A_{y} & A_{z} \end{vmatrix}$$

$$= \mathbf{e}_{x} \left(\frac{\partial A_{z}}{\partial y} - \frac{\partial A_{y}}{\partial z} \right) + \mathbf{e}_{y} \left(\frac{\partial A_{x}}{\partial z} - \frac{\partial A_{z}}{\partial x} \right) + \mathbf{e}_{z} \left(\frac{\partial A_{y}}{\partial x} - \frac{\partial A_{x}}{\partial y} \right)$$
(2-4)

2.2 麦克斯韦方程组

$$\nabla \times \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t} \tag{2-5}$$

$$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} \tag{2-6}$$

$$\nabla \cdot \boldsymbol{B} = 0 \tag{2-7}$$

$$\nabla \cdot \boldsymbol{D} = \rho \tag{2-8}$$

3 排版实例

3.1 IAT_EX 插入图片

插入图片实例

图 3-1: 校标

插入并排图片实例

(0) 血口(以)

图 3-2: 校徽

3.2 LAT_EX 插入表格

表3-1是常用的三线表

表 3-1: 三线表实例

	 层流		 紊流	
项目	0° 截面	90° 截面	0° 截面	90° 截面
理论值 $V_{max}/$ m s^{-1}	0.04	0.03	1.30	1.25
计算值 $V_{max}/$ m s ⁻¹	0.04	0.03	1.26	1.21
误差 / %	0.00	3.12	3.07	3.20
理论值 $V_{max}/\mathrm{ms^{-1}}$	0.04	0.03	1.30	1.25
计算值 $V_{max}/$ m s ⁻¹	0.04	0.03	1.26	1.21
误差 / %	0.00	3.12	3.07	3.20
理论值 $V_{max}/\mathrm{ms^{-1}}$	0.04	0.03	1.30	1.25
计算值 $V_{max}/$ m s ⁻¹	0.04	0.03	1.26	1.21
误差/%	0.00	3.12	3.07	3.20
理论值 $V_{max}/\mathrm{ms^{-1}}$	0.04	0.03	1.30	1.25
计算值 $V_{max}/$ m s ⁻¹	0.04	0.03	1.26	1.21
误差 / %	0.00	3.12	3.07	3.20
理论值 $V_{max}/\mathrm{ms^{-1}}$	0.04	0.03	1.30	1.25
计算值 $V_{max}/\mathrm{ms^{-1}}$	0.04	0.03	1.26	1.21
误差 / %	0.00	3.12	3.07	3.20
理论值 $V_{max}/\mathrm{ms^{-1}}$	0.04	0.03	1.30	1.25
计算值 $V_{max}/$ m s ⁻¹	0.04	0.03	1.26	1.21
误差 / %	0.00	3.12	3.07	3.20
理论值 $V_{max}/$ m s ⁻¹	0.04	0.03	1.30	1.25
计算值 $V_{max}/$ m s ⁻¹	0.04	0.03	1.26	1.21
误差 / %	0.00	3.12	3.07	3.20
理论值 $V_{max}/\mathrm{ms^{-1}}$	0.04	0.03	1.30	1.25
计算值 $V_{max}/$ m s ⁻¹	0.04	0.03	1.26	1.21
误差 / %	0.00	3.12	3.07	3.20
理论值 $V_{max}/$ m s ⁻¹	0.04	0.03	1.30	1.25
计算值 $V_{max}/ \text{m s}^{-1}$	0.04	0.03	1.26	1.21
误差 / %	0.00	3.12	3.07	3.20
理论值 $V_{max}/$ m s ⁻¹	0.04	0.03	1.30	1.25
计算值 $V_{max}/\text{m s}^{-1}$	0.04	0.03	1.26	1.21
误差/%	0.00	3.12	3.07	3.20
理论值 $V_{max}/$ m s ⁻¹	0.04	0.03	1.30	1.25
计算值 $V_{max}/\text{m s}^{-1}$	0.04	0.03	1.26	1.21
误差/%	0.00	3.12	3.07	3.20
理论值 $V_{max}/$ m s ⁻¹	0.04	0.03	1.30	1.25
计算值 $V_{max}/\text{m s}^{-1}$	0.04	0.03	1.26	1.21
误差 / %	0.00	3.12	3.07	3.20
理论值 $V_{max}/$ m s ⁻¹	0.04	0.03	1.30	1.25
计算值 $V_{max}/\text{m s}^{-1}$	0.04	0.03	1.26	1.21
误差 / %	0.00	3.12	3.07	3.20
理论值 $V_{max}/$ m s ⁻¹	0.04	0.03	1.30	1.25

表 3-1 (续)

项目	层流		紊流	
	0° 截面	90° 截面	0° 截面	90° 截面
计算值 $V_{max}/$ m s ⁻¹	0.04	0.03	1.26	1.21
误差 / %	0.00	3.12	3.07	3.20
理论值 $V_{max}/\mathrm{ms^{-1}}$	0.04	0.03	1.30	1.25
计算值 $V_{max}/$ m s ⁻¹	0.04	0.03	1.26	1.21
误差 / %	0.00	3.12	3.07	3.20
理论值 $V_{max}/\mathrm{ms^{-1}}$	0.04	0.03	1.30	1.25
计算值 $V_{max}/$ m s ⁻¹	0.04	0.03	1.26	1.21
误差/%	0.00	3.12	3.07	3.20

3.3 字体

字体设置实例1(默认为小四号字体)

表 3-2: 字体设置实例

字体设置	命令	效果
楷书、七号	{\kaishu \zihao{7} 测试}	测试
仿宋、五号字体	{\fangsong \zihao{5} 测试}	测试
黑体、加粗	{\heiti \bfseries 测试}	测试
宋体、加粗、小初号 西文	{\songti \bfseries \zihao{-0} 测试} {Time News Roman}	Time News Roman

3.4 插入代码

```
//冒泡排序
int* BubbleSort(int* ary, int length)
{
    int i, j, tmp;
    for(i=0; i<length-1; i++)
    {
        tmp = ary[i];
    }
    for(j=length-1; j>i; j--)
    {
        //找到数组中最小的数,并交换
        if(tmp > ary[j])
        {
```

¹字体改变推荐采用字体集的方式,需要同时加粗、斜体可采用 textbf,emph 命令,宋体和黑体提供了 Bold 字体

```
ary[i] = ary[j];
ary[j] = tmp;
tmp = ary[i];

tmp = ary[i];

return ary;
}
```

3.5 参考文献

- 引用中文参考文献[2]
- 引用英文参考文献[3]
- 引用多个参考文献[1,4,5]
- 引用在线资源[6]

引用参考文献只需在正文中相应位置插入\cite{}。

打印参考文献表可用\printbibliography[heading=bibliography,title=参考文献]。

3.5.1 bib 文件介绍

LATEX 中的参考文献是通过参考文献数据源文件即 bib 文件实现的, bib 文件中的一个参考文献格式如下:

```
@book{冯慈璋2000工程电磁场导论,%参考文献索引号,正文中用\cite{冯慈璋2000工程电磁场导论}来索引该文献
title={工程电磁场导论},
author={冯慈璋 and 马西奎},
publisher={高等教育出版社},
year={2000},
keywords={电磁场},
abstract={本书较好地处理了与物理学中电磁学相衔接的内容。删去了狭义相对论和各向异性媒质中电磁场的内容,增加了准静态电磁场和波导与谐振腔的相应内容,适当拓展了强电专业的电磁场知识范围。书中突出了电磁场理论在工程实际中的应用。},
}
```

有部分参考文献中可能会出现 $%, \$ 等 $\underline{\mathsf{ETEX}}$ 中的特殊字符,导致编译失败,这需要我们手动去调整 bib 文件中的内容。

biblatex 宏包还给出了添加电子资源的样式:

```
Conline{github, %online 类型资源

title={Thesis-Template-for-XJTU},

author={DXie123},
```

```
year={2018},

url={https://github.com/DXie123/Thesis-Template-for-XJTU},

}
```

3.5.2 bib 文件生成

生成 bib 文件的方式有很多种,专业的软件包括 Jabref 等,对于本科生毕业设计,比较推荐的是采用百度学术、谷歌学术、必应学术等网站生成 bib 文件,用百度学术生成 bib 文件的过程如图3-3所示 需要注意的是,有部分文档可能会出现信息不全,如[1] 缺少出版地,这时,我们需要手

图 3-3: 百度学术生成 bib 文件

动添加所缺信息(添加location={陕西})。各类参考文献需要的信息可在 biblatex 文档中查看,也可直接查看编译后的参考文献是否缺失信息。

3.6 列表

3.6.1 无序列表

- item 1
- item 2
- item 3

3.6.2 有序列表

- 1. item 1
- 2. item 2
- 3. item 3

4 一些环境

Algorithm 环境

```
Algorithm 1 Calculate y = x^n
Require: n \ge 0 \lor x \ne 0
Ensure: y = x^n
   y \leftarrow 1
   if n < 0 then
      X \leftarrow 1/x
      N \leftarrow -n
   else
      X \leftarrow x
      N \leftarrow n
   end if
   while N \neq 0 do
      if N is even then
         X \leftarrow X \times X
         N \leftarrow N/2
      else \{N \text{ is odd}\}
         y \leftarrow y \times X
         N \leftarrow N - 1
      end if
   end while
```

lstlisting 环境用于插入代码

```
//hello.c
#include<stdio.h>
int main(void)

int *p;
printf("hello");
return 0;
}
```

```
for i=1:100
display('hello');
end
```

TIKZ 环境用于生成各种图形

附录 1

测试

附录 2

测试

致 谢

Chapter

参考文献

- [1] 成永红. 电力设备绝缘检测与诊断[M]. [出版地不详]: 中国电力出版社, 2001.
- [2] 冯慈璋, 马西奎. 工程电磁场导论[M]. 陕西: 高等教育出版社, 2000.
- [3] XING E P, NG A Y, JORDAN M I, et al. Distance metric learning, with application to clustering with side-information[C]//International Conference on Neural Information Processing Systems. [S.l.: s.n.], 2002: 521-528.
- [4] 成永红,谢小军,陈玉,等. 气体绝缘系统中典型缺陷的超宽频带放电信号的分形分析[J]. 中国电机工程学报, 2004, 24(8): 99-102.
- [5] 吴锴, 陈曦, 王霞, 等. 纳米粒子改性聚乙烯直流电缆绝缘材料研究 (II)[J]. 高电压技术, 2013, 39(1): 8-16.
- [6] DXie123. Thesis-Template-for-XJTU[EB/OL]. 2018. https://github.com/DXie123/Thesis-Template-for-XJTU.