Quantum Computing

Contents

- Basic idea of a quantum computer
- Qubits and qubit operations
- Quantum logic gates and Quantum circuits

Feynman's Proposal of a Quantum Computer

1981 -Richard Feynman determines that it is impossible to efficiently simulate an evolution of a quantum system on a classical computer.

How a Quantum Computer is different?

It is based upon using

- Qubits
- Superposition/interference
- Entanglement

Superposed state is expressed as: $|\psi\rangle = a|0\rangle + b|1\rangle$

Ideal CMOS inverter

Classical v/s. Quantum Computers

Classical Computer	Quantum Computer
Uses semiconductor-based CMOS logic gates	May use atomic, electronic, nuclear or photonic properties
ON/OFF state of CMOS transistor determines logic 1/0	Logic 1/0 represented by spin up/down, ground state/excited state, right/left circularly polarized light, parallel/antiparallel magnetization etc.
Bit can be in state 1 or 0 at a given time	Bit (qubit) can be in both 1 and 0 states at a given time
Machine executes operations bit by bit	Machine executes operation on all qubits simultaneously*
	* This concept is different than parallel computing or super computing

Advantage of a Quantum Computer

A classical computer

Each register has unique input
Executes one operation at a time

A quantum computer

Each register has both inputs
Executes all operations in one go

Quantum Algorithms

- Programs that would run on a quantum machine
- Currently, there are no genuine quantum algorithms
- We have Algorithms running on virtual machines that mimic quantum effects
- All use cloud based computing e.g. IBM's <u>Qiskit</u>

Advantage of Quantum Algorithm

Graph credit: IBM Quantum Computing

Quantum Hardware

- Ion trap uses atomic energy levels
- SQUIDs uses magnetisation
- NMR uses nuclear spin
- QD/SET uses electron energy states

- Honeywell using Ion trap
- D-wave Technologies using SQUID
- IBM using NMR
- Google using superconductors

Quantum Computing

- Using Quantum Mechanical effects for solving computing problems
- Particularly useful for problems involving operations on massive data:
- 1. Cryptography/Cybersecurity
- 2. Accurate weather forecasting
- 3. Traffic optimisation
- 4. Financial models
- 5. Drug development
- 6. Astronomical data analysis