

Differential Algebraic Equation-constrained Frequency-secured Stochastic Unit Commitment

Bo Zhou, Ruiwei Jiang, Siqian Shen

Department of Industrial and Operations Engineering University of Michigan at Ann Arbor

Seattle, June 3rd, 2023

Outline

- ☐ Introduction and Problem Formulation
- **□**Solution Method
- **□**Case Study
- **\begin{align} Conclusions**

Outline

- ☐ Introduction and Problem Formulation
- **□**Solution Method
- ☐ Case Study
- **Conclusions**

Power System Frequency

The frequency of power systems should be maintained closely around the nominal value

General Frequency Dynamics

Frequency dynamics during an under-frequency event (a sudden loss of generation at t_0)

- $\succ t_0 t_1$: Inertia plays a major role in mitigating frequency drop (PFR does not respond effectively)
- $\succ t_1 t_2$: PFR becomes significant, and the frequency eventually reaches a steady state
- \triangleright t_{nadir} : Time to reach the nadir during the whole dynamics

Frequency Security Metrics

Frequency dynamics during an under-frequency event (a sudden loss of generation at t_0)

Governing Equations

Governing equations of system frequency dynamics

inertia load damping imbalance PFR
$$2H_{sys} \frac{\mathrm{d}\Delta f(t)}{\mathrm{d}t} + k_D P_d \Delta f(t) = \Delta P_d - P_{sys}^{PR}(t)$$

$$\Delta f(t)|_{t=0} = 0 \text{ (Initial condition)}$$

Total PFR power

$$P_{sys}^{PR}(t) = \sum_{i} \left[P_{g,i}^{PR}(t) + P_{w,i}^{PR}(t) \right]$$

$$T_{g,i} \frac{\mathrm{d}P_{g,i}^{PR}(t)}{\mathrm{d}t} + P_{g,i}^{PR}(t) = G_{g,i}I_{g,i}\Delta f(t)$$

$$P_{w,i}^{PR}(t)|_{t=0} = 0 \text{ (Initial condition)}$$

$$P_{g,i}^{PR}(t)|_{t=0} = 0 \text{ (Initial condition)}$$

PFR power from thermal units

PFR power from wind farms

Notation:

i: bus index

 k_D : load damping rate

 P_d : total power load

 ΔP_d : power imbalance

 T_q/T_w : response constant

 G_g/G_w : droop factor

 H_{SVS} : total inertia

 Δf : frequency deviation

 P_{sys}^{PR} : total PFR power

 P_g^{PR}/P_w^{PR} : PFR power

 I_g : online/offline status

Frequency-Secured Unit Commitment

Objective: Minimize operation cost

$$\min \sum_{\tau} \sum_{i} \left(\frac{c_{su,i} U_{g,i,\tau} + c_{sd,i} D_{g,i,\tau}}{\text{startup \& shutdown cost}} + \frac{c_{g}^{PR} R_{g,i,\tau}^{PR} + c_{w}^{PR} R_{w,i,\tau}^{PR}}{\text{PFR reserve cost}} \right) + \sum_{\tau} \sum_{i} \sum_{s} \underbrace{\boldsymbol{\omega}_{s} F_{g,i,\tau}^{s}}_{\text{expected fuel cost}}$$

Subject to:

- Piecewise linearization of fuel cost calculation
- Logic constraint of unit status
- Minimum online & offline time constraint
- Frequency security constraint
- Generation and ramping constraint
- Power balance constraint
- DC power flow constraint

Ref: B. Zhou, J. Fang, X. Ai, et al, "Partial-dimensional correlation-aided convex-hull uncertainty set for robust unit commitment," IEEE Transactions on Power Systems, 38(03), 2434-2446, 2023.

Frequency-Secured Unit Commitm Notation:

Objective: Minimize operation cost

min
$$\sum_{\tau} \sum_{i} \left(\frac{c_{su,i} U_{g,i,\tau} + c_{sd,i} D_{g,i,\tau}}{\text{startup \& shutdown cost}} + \frac{c_g^{PR} R_{g,i,\tau}^{PR} + c_w^{PR} R_{w,i,\tau}^{PR}}{\text{PFR reserve cost}} \right) + \sum_{\tau} \sum_{i} \sum_{s} \sum_{m=1}^{\omega_s: \text{probability of scenarios}} \frac{\omega_s: \text{probability of scenarios}}{P_w^A: \text{available wind power}}$$

Subject to:

- Piecewise linearization of fuel cost calculation
- Logic constraint of unit status
- Minimum online & offline time constraint
- Frequency security constraint
- Generation and ramping constraint
- Power balance constraint
- DC power flow constraint

Ref: B. Zhou, J. Fang, X. Ai, et al, "Partial-dimensional correlationaided convex-hull uncertainty set for robust unit commitment," IEEE Transactions on Power Systems, 38(03), 2434-2446, 2023.

S: scenario index

 τ : period index

 $c_{(\cdot)}$: cost coefficient

 ω_s : probability of scenario s

 τ i $s \mid H_q/H_w$: inertia constant

 P_w : integrated wind power R_q^{PR}/R_w^{PR} : PFR reserve

Governing equations

Frequency security metrics

$$H_{\text{sys},\tau} = \sum_{i} \left(H_{g,i} I_{g,i,\tau} + H_{w,i} \right)$$

$$P_{g,i,\tau}^{PR}(t) \leq R_{g,i,\tau}^{PR} \quad P_{w,i,\tau}^{PR}(t) \leq R_{w,i,\tau}^{PR}$$

$$0 \le P_{w,i,\tau}^s \le P_{w,i,\tau}^{A,s} - R_{w,i,\tau}^{PR}$$

DAE-Constrained Optimization

Objective: Minimize operation cost

$$\min \sum_{\tau} \sum_{i} \left(\frac{c_{su,i} U_{g,i,\tau} + c_{sd,i} D_{g,i,\tau} + c_{g}^{PR} R_{g,i,\tau}^{PR} + c_{w}^{PR} R_{w,i,\tau}^{PR}}{\text{PFR reserve cost}} \right) + \sum_{\tau} \sum_{i} \sum_{s} \underbrace{\omega_{s} F_{g,i,\tau}^{s}}_{\text{expected fuel cost}}$$

Subject to: Two types of constraints

- **Discrete-time constraints** mixed-integer linear equations, tractably handled by solvers
- Continuous-time constraints differential algebraic equations (DAE)

$$2H_{sys}\frac{\mathrm{d}\Delta f(t)}{\mathrm{d}t} + k_D P_d \Delta f(t) = \Delta P_d - P_{sys}^{PR}(t)$$

$$\Delta f(t)|_{t=0} = 0$$

$$P_{w,i}^{PR}(t) = G_{w,i} \Delta f(t)$$

$$P_{g,i}^{PR}(t) + P_{g,i}^{PR}(t) = G_{g,i} I_{g,i} \Delta f(t)$$

$$P_{g,i}^{PR}(t)|_{t=0} = 0$$

$$\Delta f(t)|_{\text{nadir}} \leq \overline{\Delta f}$$

$$\Delta f(t)|_{\text{steady}} \leq \overline{\Delta f}$$

Outline

- □ Introduction and Problem Formulation
- **□**Solution Method
- ☐ Case Study
- **Conclusions**

Bernstein Polynomial Approximation

Core idea: Use Bernstein polynomial (BP) spline to approximate dynamics

BP spline
$$F(t) = \sum_{k=0}^{3} F^{B,k} B_{3,k}(t) = (F^B)^T B_3(t), t \in [0,1]$$

Cubic BP
$$B_{3,k}(t) := {3 \choose k} t^k (1-t)^{3-k}, t \in [0,1]$$

Transformation — Part 1

According to $F(t) = (F^B)^T B_3(t)$, we have

> Integral term from 0 to 1

$$\int_0^1 F(t) dt = (F^B)^{\mathrm{T}} \int_0^1 B_3(t) dt = 1^{\mathrm{T}} F^B / 4$$

> Derivative term

$$\frac{\mathrm{d}F(t)}{\mathrm{d}t} = 3[F^{B,1} - F^{B,0}, F^{B,2} - F^{B,1}, F^{B,3} - F^{B,2}] \mathbf{B}_{2}(t) = (\mathbf{W}_{3}\mathbf{F}^{B})^{\mathrm{T}} \mathbf{B}_{2}(t)$$
quadratic BP

Fequality equation
$$F(t) = 0 \Leftrightarrow (\mathbf{F}^B)^T \mathbf{B}_3(t) = 0 \Leftrightarrow F^{B,k} = 0$$

undetermined coefficient method

How about inequality equations and ODEs?

Convex-hull Property of BP

BP splines must be inside their corresponding control polygons

ightharpoonup Inequality equation $F(t) \le c \Leftarrow \max\{F^{B,k}\} \le c \Leftrightarrow F^{B,k} \le c$

Convex-hull Property of BP

There exists **gap** between $\max\{F(t)\}$ and $\max\{F^{B,k}\}$

ightharpoonup Inequality equation $F(t) \le c \Leftarrow \max\{F^{B,k}\} \le c \Leftrightarrow F^{B,k} \le c$

Subdivision of BP

Break BP splines into several segments, then each segment is still a BP spline

Notation:

 \mathbb{P}_i : set of control points after *i* subdivision

 y_P : value of control point P

 $Y^{(i)}$: vector of ordinate of control points after i subdivision

Ref: W. Boehm and A. Mller, "On de Casteljau's algorithm," Computer Aided Geometric Design, vol. 16, no. 7, pp. 587–605, 1999.

de Casteljau's algorithm

$$\begin{cases} \overrightarrow{P_1Q_1} = t_0\overrightarrow{P_1P_2}, \overrightarrow{P_2Q_2} = t_0\overrightarrow{P_2P_3}, \overrightarrow{P_3Q_3} = t_0\overrightarrow{P_3P_4} \\ \overrightarrow{Q_1M_1} = t_0\overrightarrow{Q_1Q_2}, \overrightarrow{Q_2M_2} = t_0\overrightarrow{Q_2Q_3} \\ \overrightarrow{M_1S} = t_0\overrightarrow{M_1M_2} \end{cases}$$

Assume $Y^{(0)} = F^B$, we have $Y^{(1)} = AY^{(0)}$

$$A_{l} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 - t_{0} & t_{0} & 0 & 0 \\ (1 - t_{0})^{2} & 2\tau_{0}(1 - t_{0}) & t_{0}^{2} & 0 \\ (1 - t_{0})^{3} & 3\tau_{0}(1 - t_{0})^{2} & 3t_{0}^{2}(1 - t_{0}) & t_{0}^{3} \end{bmatrix}$$

$$A_{r} = \begin{bmatrix} (1 - t_{0})^{3} & 3\tau_{0}(1 - t_{0})^{2} & 3t_{0}^{2}(1 - t_{0}) & t_{0}^{3} \\ 0 & (1 - t_{0})^{2} & 2t_{0}(1 - t_{0}) & t_{0}^{2} \\ 0 & 0 & 1 - t_{0} & t_{0} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} A^{T} & A^{T} \end{bmatrix}^{T}$$

$$A = \left[A_l^{\mathrm{T}}, A_r^{\mathrm{T}}\right]^{\mathrm{T}}$$

Transformation – Part 2

By **repeatedly** implementing the subdivision property, we can narrow the gap between BP splines and control curves

Operation Matrix of BP & Transformation – Part 3

Basic idea: Use (n-1)th-order polynomial to approximate nth-order terms

$$t^4 \approx at^3 + bt^2 + ct + d$$

$$\int_{0}^{t} B_{3}(t) dt \approx LB_{3}(t)$$
operational matrix

➤ Integral term from 0 to t

$$\int_0^t F(t) dt = (F^B)^T \int_0^t B_3(t) dt \approx (F^B)^T L B_3(t)$$

Maximum error: 0.006122

Average error: 0.004104

Transformation Rules

According to $F(t) = (F^B)^T B_3(t)$, we have

$$\int_0^1 F(t) \mathrm{d}t = 1^\mathrm{T} F^B / 4$$

$$ightharpoonup$$
 Integral term from 0 to t

$$\int_0^t F(t) dt \approx (F^B)^{\mathrm{T}} L B_3(t)$$

$$\frac{\mathrm{d}F(t)}{\mathrm{d}t} = (W_3 F^B)^T B_2(t)$$

$$F(\tau)=0 \Leftrightarrow F^{B,k}=0$$

Finequality equation
$$F(t) \le c \in J^{(m)}F^B \le c$$

$$F(t) \le c \Leftarrow J^{(m)} F^B \le c$$

Segment-wise Approximation

1-segment BP approximation is not able to fit frequency dynamics for infinitely long

- A multi-segment BP approximation produces better performance
- The number of constraints increases linearly with the number of segments.

We suggest an uneven division of H

- the early segments should be shorter for a more accurate estimate of nadir
- the latter segments should be longer to relieve computational burden

Implementation in Frequency Dynamics

Transformation of governing equations

$$2H_{sys}\frac{\mathrm{d}\Delta f(t)}{\mathrm{d}t} + k_D P_d \Delta f(t) = \Delta P_d - P_{sys}^{PR}(t)$$

$$\Delta f(t)|_{t=0} = 0$$

$$\Delta f_{\tau,imi}^B|_{\tau'=1} = \Delta f_{DB}, \ \Delta f_{\tau,imi}^B|_{\tau'=1} = \Delta f_{DB}, \ \Delta f_{\tau,imi}^{B,k}|_{\tau'=1} = \Delta f_{DB}, \ \Delta f_{\tau,imi}^{B,s}|_{\tau'=1} = \Delta f_{DB}$$

$$\int_0^t \left[\frac{2H_{sys}}{h_{\tau'}} \frac{\mathrm{d}\Delta f(t)}{\mathrm{d}t} + k_D P_d \Delta f(t) \right] \mathrm{d}t = \int_0^t \left[\Delta P_d - \Delta P_{sys}^{PR}(t) \right] \mathrm{d}t$$

$$T_{g,i} \frac{\mathrm{d}P_{g,i}^{PR}(t)}{\mathrm{d}t} + P_{g,i}^{PR}(t) = G_{g,i}I_{g,i}\Delta f(t)$$

$$P_{g,i}^{PR}(t)|_{t=0} = 0$$

$$T_{g,i} \left(P_{g,i,\tau',imi}^{PR,B} - P_{g,i,\tau',imi}^{PR,B} \right) + L^T P_{g,i,\tau'}^{PR,B} = G_{g,i}I_{g,i}L^T \left(\Delta f_{\tau'}^B - \Delta f_{DB}^B \right)$$

$$P_{g,i,\tau',imi}^{PR,B,k}|_{\tau'=1} = 0, \ P_{g,i,\tau',imi}^{PR,B,k}|_{\tau'=1} = 0, \ P_{g,i,\tau',imi}^{PR,B,B,k}|_{\tau'=1} = P_{g,i,\tau'-1}^{PR,B,3}$$

$$P_{w,i,\tau'}^{PR,B} = G_{w,i} \left(\Delta f_{\tau'}^B - \Delta f_{DB}^B \right)$$

Implementation in Frequency Dynamics

Frequency security metrics

$$\frac{\mathrm{d}\Delta f(t)}{\mathrm{d}t} \leq \overline{f}$$

$$\Delta f(t)|_{\mathrm{nadir}} \leq \overline{\Delta f}$$

$$\Delta f(t)|_{\mathrm{steady}} \leq \overline{\Delta f}$$

$$k_D P_d \overline{\Delta f_{err}} + G_{sys,\tau} \left(\overline{\Delta f_{err}} - \Delta f_{DB} \right) \geq \Delta P_{d,\tau}$$

PFR reserve

$$P_{w,i,\tau}^{PR}(t) \leq R_{w,i,\tau}^{PR}$$

$$JP_{g,i,\tau,\tau'}^{PR,B} \leq R_{g,i,\tau}^{PR}$$

$$JP_{g,i,\tau,\tau'}^{PR,B} \leq R_{g,i,\tau}^{PR}$$

$$JP_{w,i,\tau,\tau'}^{PR,B} \leq R_{w,i,\tau}^{PR}$$

Mixed-integer linear reformulation

Objective: Minimize operation cost

$$\min \sum_{\tau} \sum_{i} \left(\frac{c_{su,i} U_{g,i,\tau} + c_{sd,i} D_{g,i,\tau} + c_{g}^{PR} R_{g,i,\tau}^{PR} + c_{w}^{PR} R_{w,i,\tau}^{PR}}{\text{PFR reserve cost}} \right) + \sum_{\tau} \sum_{i} \sum_{s} \underbrace{\omega_{s} F_{g,i,\tau}^{s}}_{\text{expected fuel cost}}$$

Subject to:

- **Discrete-time constraints** mixed-integer linear equations, tractably handled by solvers
- Continuous-time constraints → mixed-integer linear equations

$$\frac{2H_{sys}}{h_{\tau'}}\left(\Delta f_{\tau'}^{B} - \Delta f_{\tau',ini}^{B}\right) + k_{D}P_{d}L^{\mathsf{T}}\Delta f_{\tau'}^{B} = L^{\mathsf{T}}\left(\Delta P_{d}^{B} - P_{sys,\tau'}^{PR,B}\right)$$

$$\Delta f_{\tau',ini}^{B,k}|_{\tau'=1} = \Delta f_{DB}, \ \Delta f_{\tau',ini}^{B,k}|_{\tau'>1} = \Delta f_{\tau'-1}^{B,3}$$

$$\frac{T_{g,i}}{h_{\tau'}}\left(P_{g,i,\tau'}^{PR,B} - P_{g,i,\tau',ini}^{PR,B}\right) + L^{\mathsf{T}}P_{g,i,\tau'}^{PR,B} = G_{g,i}I_{g,i}L^{\mathsf{T}}\left(\Delta f_{\tau'}^{B} - \Delta f_{DB}^{B}\right)$$

$$k_{D}P_{d}\overline{\Delta f_{err}} + G_{sys,\tau}\left(\overline{\Delta f_{err}} - \Delta f_{DB}\right) \geq \Delta P_{d,\tau}$$

$$k_{D}P_{d}\overline{\Delta f_{err}} + G_{sys,\tau}\left(\overline{\Delta f_{err}} - \Delta f_{DB}\right) \geq \Delta P_{d,\tau}$$

$$P_{g,i,\tau',ini}^{PR,B,k}|_{\tau'=1} = 0, \ P_{g,i,\tau',ini}^{PR,B,k}|_{\tau'>1} = P_{g,i,\tau'-1}^{PR,B,3}$$

$$P_{g,i,\tau',ini}^{PR,B} = G_{w,i}\left(\Delta f_{\tau'}^{B} - \Delta f_{DB}^{B}\right)$$

$$JP_{g,i,\tau,\tau'}^{PR,B} \leq R_{g,i,\tau}^{PR} \quad JP_{w,i,\tau,\tau'}^{PR,B} \leq R_{w,i,\tau}^{PR}$$

$$P_{g,i,\tau,\tau'}^{PR,B} = G_{w,i}\left(\Delta f_{\tau'}^{B} - \Delta f_{DB}^{B}\right)$$

Outline

- ☐ Introduction and Problem Formulation
- **□**Solution Method
- **□**Case Study
- **Conclusions**

Set up

IEEE 6-bus system

Stochastic UC (power imbalance of 5% load in each period)

Case 1: without frequency constraints

Case 2: with the proposed DAE frequency constraints

(RoCoF: 0.5 Hz/s, nadir: 0.5 Hz, steady: 0.3 Hz)

MAIN TECHNICAL PARAMETERS

Units	G1	G2	G3	W
Capacity (MW)	200	150	180	80
Minimum generation (MW)	60	45	54	\
Inertia constant (s)	8	5	6	5
Response constant (s)	10	4	6	0
Droop factor (MW/Hz)	20	25	18	20

Effectiveness

Overall results – UC and costs

Optimal UC in the two cases

- Case 1 violates the frequency security limits
- ➤ In Case 2, G1 and G2 are always online and G3 is started up in hour 20

Overall comparison results

Comparison terms	Case 1	Case 2
Startup&shutdown cost (\$)	0	5400
PFR reserve cost of units (\$)	0	5102.38
Expected fuel cost (\$)	41328.08	46944.19
PFR reserve cost of WF (\$)	0	947.90
Total cost (\$)	41328.08	58394.47
Total PFR reserve of units (MWh)	0	340.16
Total PFR reserve of WF (MWh)	0	189.58
Maximum RoCoF (Hz/s)	0.3547	0.1784
Maximum Δf at the nadir (Hz)	0.6861	0.4474
Maximum Δf at the steady state (Hz)	0.5237	0.2930
	(hour 21)	(hour 19)
	0.211.)	26/33

(RoCoF: 0.5 Hz/s, nadir: 0.5 Hz, steady: 0.3 Hz)

Effectiveness

Detailed results – Frequency dynamics in hour 21

Comparison of Frequency Dynamics in Both Cases (RoCoF: 0.5 Hz/s, nadir: 0.5 Hz, steady: 0.3 Hz)

PFR Power Dynamics in Case 2

The proposed method can effectively guarantee frequency security

Accuracy

Comparison with numerical simulation (Simulink) – hour 19 of Case 2

Frequency Dynamics From the Proposed Approximation vs. From Simulink (RoCoF: 0.5 Hz/s, nadir: 0.5 Hz, steady: 0.3 Hz)

Highly accurate! The relative error in evaluating the nadir-point frequency is about 0.04%

Scalability

Scalability analysis in the IEEE 118-bus system

Overall Comparison in IEEE 118-bus system

Comparison terms	Case 1	Case 2
Operation cost of thermal units (k\$)	2184.18	2394.85
PFR reserve cost of thermal units (k\$)	0	155.65
PFR reserve cost of wind farm (k\$)	0	9.81
Total cost (k\$)	2184.18	2560.32
Maximum RoCoF (Hz/s)	0.2598	0.1696
Maximum Δf at the nadir (Hz)	0.7748	0.4318
Maximum Δf at the quasi-steady state (Hz)	0.4950	0.1935
Computation time (s)	49.98	2472
	1 0 0 77)	

(RoCoF: 0.5 Hz/s, nadir: 0.5 Hz, steady: 0.3 Hz)

The computation time of the proposed method is about 40 minutes, which is acceptable for day-ahead scheduling

Scalability

Comparison with numerical simulation (Simulink)

Frequency Dynamics From the Proposed Approximation vs. From Simulink

Still highly accurate! Relative error: 0.12% (30s), 0.03% (20s)

Outline

- ☐ Introduction and Problem Formulation
- **□**Solution Method
- ☐ Case Study
- **□**Conclusions

Conclusion

- We incorporated the frequency dynamics using DAEs into the stochastic UC model and validated the effectiveness in deciding UC and PFR reserves for frequency security
- We adopted BP splines to obtain a linear approximation of the DAEs and demonstrated the high accuracy in depicting frequency dynamics
- Future works: transformation of nonlinear constraints

Ref: Bo Zhou, Ruiwei Jiang, Siqian Shen, "Frequency-Secured Unit Commitment: Tight Approximation using Bernstein Polynomials," arXiv preprint, arXiv:2212.12088, 2022.

Thank You for Attention!