Electronics 101

Ohm's Law

Current (I) =
$$\frac{\text{Voltage (V)}}{\text{Resistance (R)}}$$

"The current (I) passing through a conductor between two points is directly proportional to the potential difference (V) across the two points, and inversely proportional to the resistance (R) between them"

Power

Power(P) = Current(I) x Voltage(V)
P= IV = I(IR) =
$$I^2R$$

$$=\frac{V}{R}V=\frac{V^2}{R}$$

LEDS: NEED FOR CURRENT LIMITING

Current Limiting = Supply Voltage – Voltage drop across LED
Resistance (R) Desired Current

Example:

- LED = RED (Voltage drop = 2Volts)
- Supply Voltage = 5 Volts
- Current = 3mA
- Resistance (R) = ??

Approximate Voltage Drop						
RED	GREEN	YELLOW	BLUE			
2 Volts	2 Volts	1.9 Volts	3.5 Volts			

BREADBOARD (SKETCHBOOK)

- Prototyping
- Testing

Breadbording

Internal Electrical Connections of a Breadboard

- 22-24 AWG (American Wire Gauge) wires (single strand)
- Use multicolor wires
- Cut-Strip into different lengths
- Use a Stripper and not your teeth!!

Making Connections

Power lines: Case 1 (simple circuits)

Making Connections

- Points to remember:
 - Segregate the circuit into functional blocks
 - Build one block at a time
 - Test Debug
 - Build the next block

Debugging BB connections

8 Golden Steps to debugging

- 1. Check the power supply
- 2. Check the connections
- 3. Check the connections
- 4. Re-check the connections
- 5. Check polarities
- 6. Check component values
- 7. Take a break
- 8. Worst case: Rebuild the circuit

TRANSISTORS

- Transconductance + Varistor
- Fundamental building block of modern day electronics
- Used mostly as an amplifier or switch

- BJTs
- FETs

Transistors: BJTs

■ Bipolar Junction Transistors (BJTs) available in two flavors

NPN

PNP

Transistor Biasing

Transistors

- How do we select the right transistor?
 - Define and Calculate requirements
 - Voltage
 - Current
 - Gain
 - Refer datasheets
 - Check availability
 - Test
 - Use

Transistors

Commonly available packages

Transistors

Commonly available transistors

Transistors		Max Voltage	Peak Collector	DC current gain	Transition Frequency	
NPN	PNP	(Vce)	Current (Ic)	h _{FE} (min)	(Ft)	
2N2222	2N2907	30	800mA	100	300 MHz	
2N3904	2N3906	40	200mA	100	300 MHz	
BC546	BC556	65				
BC547	BC557	45	100mA	300	100 MHz	
BC548	BC558	30				
TIP140	TIP145	60	10A	1000		

Experiments

PN2222

Rb = 1KRc = 500 to 1K

Calculations:

Ib = (Vin - 0.7)/RbIc (max)= $Ib \times Hfe$

How to get started

- Don't be intimidated!
- Jump in
 - "The best way to learn how to swim, is to jump right in"
- Start building! You will learn on-the-go
- Break down learning into several small steps.

Binary Number System

- From left to right, the position of the digit indicates its magnitude (in decreasing order)
 - E.g. in decimal, 123 is less than 321
 - In binary, 011 is less than 100
- A subscript indicates the number's base
 - E.g. is 100 decimal or binary? We don't know!
 - But $14_{10} = 1110_2$ is clear

Bytes

- A group of 8 bits is a byte
- A byte can represent 2⁸ = 256 possible states
- Registers are usually a multiple of bytes
- SPARC registers have 32 bits (4 bytes)
- 2³² = 4,294,967,296

Memory Addresses

- Memory addresses are in binary
 - often 32 bits, these days
 - if each memory address maps to 1 byte:
 - 2³² bytes = 4 GB
- K = kilo = thousand,
- but 1KB actually means 1024 bytes
- 1MB = 1024 x 1024 bytes
- 1GB = 1024 x 1024 x 1024 bytes

Octal and Hexadecimal

- It is difficult for a human to work with long strings of 0's and 1's
- Octal and Hexadecimal are ways to group bits together
- Octal: base 8
- Hexadecimal: base 16

Hexadecimal

- With 4 bits, there are 16 possibilities
- Use 0, 1, 2, 3, ...9 for the first 10 symbols
- Use a, b, c, d, e, and f for the last 6

Bit ₃	Bit_2	Bit_1	Bit_0	Symbol
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	a
1	0	1	1	b
1	1	0	0	c
1	1	0	1	d

Binary to Hexadecimal

- 0101011010110011₂ = ? in hex
- Group into 4 bits, from the right:
- 0101, 0110, 1011, 0011₂
- Now translate each (see previous table):

$$0101_2 => 5$$
, $0110_2 => 6$, $1011_2 => b$, $0011_2 => 3$

So this is 56b3₁₆

- What if there are not enough bits?
 - Pad with 0's on the left

Hexadecimal to Binary

- $f0e5_{16} = ?$ in binary
- Translate each into a group of 4 bits:

$$f_{16} => 1111_2$$
, $O_{16} => 0000_2$, $e_{16} => 1110_2$, $5_{16} => 0101_2$

So this is 1111000011100101₂