

Wachstum von Holzbeständen*

Aufgabennummer: A_192		
Technologieeinsatz:	möglich ⊠	erforderlich
		nes Waldes um ca. 2,7 % pro Jahr tpunkt <i>t</i> = 0 beträgt der Holzbestand
Stellen Sie eine FunktionAbhängigkeit von der ZeZeichnen Sie den Graph	eit in Jahren angibt.	funktion <i>f</i> auf, die den Holzbestand in ntervall [0; 50].
b) Der Holzbestand eines and schrieben werden:	deren Waldes kann näheri	ungsweise mithilfe der Funktion g be-
$g(t) = 31800\cdot 1,025^t$		
t Zeit in Jahren $g(t)$ Holzbestand zum Z	'eitpunkt t in Kubikmetern	(m^3)
Wenn der Holzbestand au wieder der Holzbestand zu	· ·	n ist, wird so viel geschlägert, dass t.
Für den Verkauf dieses ge	schlägerten Holzes betrag	gen die Einnahmen € 96.000.
Berechnen Sie den durcBerechnen Sie, nach we	·	eis für 1 m³ Holz. d auf 33 000 m³ angewachsen ist.
punkt t_1 bis zu einem spät	eren Zeitpunkt $t_{\scriptscriptstyle 2}$ zu berec n Holzbestand zum Zeitpu	des Holzbestandes von einem Zeitchnen, subtrahiere ich vom Holzbeunkt $t_{\scriptscriptstyle 1}$ und dividiere die Differenz durch
– Übersetzen Sie die Rech	nenanleitung des Studente	en in eine Formel.
	,	d klar erkennbar sein. Ergebnisse sind nd zu beschriften und zu skalieren.

^{*} ehemalige Klausuraufgabe

Möglicher Lösungsweg

- a) $f(t) = 36000 \cdot 1,027^t$
 - t ... Zeit in Jahren
 - f(t) ... Holzbestand zum Zeitpunkt t in m³

b) Verkauft wurden 1 200 m³, daher betrug der durchschnittliche Preis pro Kubikmeter € 80.

$$33000 = 31800 \cdot 1,025^t$$

$$t = \frac{\ln(33\,000) - \ln(31\,800)}{\ln(1,025)} = 1,50...$$

Nach etwa 1,5 Jahren beträgt der Holzbestand 33 000 m³.

c)
$$r = \frac{h(t_2) - h(t_1)}{h(t_1)}$$

r ... relative Änderung

 $t_1, t_2 \dots$ Zeitpunkte

 $h(t_1)$, $h(t_2)$... Holzbestand zum Zeitpunkt t_1 bzw. t_2

Lösungsschlüssel

- a) 1 × A: für das richtige Aufstellen der Funktionsgleichung
 - 1 × B: für das richtige Zeichnen des Funktionsgraphen
- b) 1 × B1: für die richtige Berechnung des durchschnittlichen Preises pro Kubikmeter
 - 1 × B2: für die richtige Berechnung der Zeit, nach der der Holzbestand auf 33 000 m³ angewachsen ist
- c) 1 × A: für die richtige Übersetzung der Rechenanleitung in eine Formel