Narrative Augmented Bubble Detection and Prediction

Yuting Chen^{1,2} Valerio Potì¹ Don Bredin¹

¹Universities College Dublin

²Rennes School of Business

September 18, 2022

Outline

- Overview
 - Research Questions
 - Findings
- Methodology & data
 - Phillips Shi & Yu (2015) method
 - Narrative information
 - Narratives in forecasting bubbles
 - Narratives in classifying bubbles
- Results
 - Narrative explosiveness
 - Narratives in forecasting
 - Narratives in classifying

Outline

- Overview
 - Research Questions
 - Findings
- 2 Methodology & data
 - Phillips Shi & Yu (2015) method
 - Narrative information
 - Narratives in forecasting bubbles
 - Narratives in classifying bubbles
- Results
 - Narrative explosiveness
 - Narratives in forecasting
 - Narratives in classifying

Research Questions

- Can market narratives help predict financial market bubbles and their bust?
- Can market narratives help classify financial market bubbles?

Findings

- Narrative information can help explain the explosiveness of price-to-dividend ratio.
- Narrative features explosiveness can help predict the explosiveness of price-to-dividend ratio.
 - Because the former causes the latter?
 - Or because narrative features explosiveness can be detected earlier than the explosiveness of the price-to-dividend ratio due to the statistical properties of each?
- Narrative information can help predict market drops.
 - Narrative features become explosive during extreme-market event periods.
 - Since they do so in a predictable way (persistence of narrative features), it can be used to augment predictions of bubble bursts.
- Clustering the explosive episodes with narrative features provides some insights and evidence of rational and irrational bubbles.

Outline

- Overview
 - Research Questions
 - Findings
- 2 Methodology & data
 - Phillips Shi & Yu (2015) method
 - Narrative information
 - Narratives in forecasting bubbles
 - Narratives in classifying bubbles
- Results
 - Narrative explosiveness
 - Narratives in forecasting
 - Narratives in classifying

Phillips Shi & Yu (2015) method

PSY on the price-to-dividend ratio of S&P 500

Figure: PSY test results for the S&P 500 price to dividend ratio

Notes: The dark line represents the S&P 500 price to dividend ratio, and the grey shaded regions indicate the detected explosive periods, in which the BSADF statistics (blue dashed line) exceed the bootstrapped critical values (dark dashed line).

Narrative information

- Textual data selection: searching query design
 - Contain the keyword "market"
 - Major media news (from LexisNexis)
 - "Economy Economic indicators" and "Financial Market Updates" subject tags
 - January 1st 1975 December 31st 2021
 - 765,645 articles
- Language processing
 - Use n grams to add country tags to each article
 - 2 10 countries considered: the United States, the United Kingdom, Canada, Japan, Spain, Italy, France, Germany, Ireland and China
 - Break down the articles into sentences

Narrative information

- Narrative features
 - Market narrative intensity (count of sentences)
 - Textual sentiment (both L&M and BERT)
 - Textual sentiment dispersion (sentiment standard deviation)
 - Topic consensus (Shannon entropy on LDA topic probabilities)
 - Intensity of "risk narratives", "opportunity narratives" and "bubble narratives"

Narratives in forecasting bubbles

Narrative features help predicting the change of price explosiveness

$$PD_{BSADF,c,t+1} = \alpha + \alpha_c + \beta_1 \cdot PD_{c,t} + \beta_2 \cdot PD_{BSADF,c,t} + \gamma \cdot Narrative_{c,t} + \theta \cdot X_{c,t} + \epsilon_{c,t}$$
(1)

Narrative features help predicting the scale of future market drops

$$Y_{c,t+12|t} = \alpha + \alpha_c + \beta_1 \cdot PD_{c,t} + \beta_2 \cdot PD_{BSADF,c,t} + \gamma \cdot Narrative_{c,t} + \theta \cdot X_{c,t} + \epsilon_{c,t}$$
(2)

- Narrative features for predicting the PD ratio being explosive
 - ▶ Up-sampling (SMOTE) to deal with imbalanced data
 - Logistic regression, decision trees and kNN models
 - Feature selection with Information-Gains and the Sequential Feature Selection method

Narratives bubble classification

- Unsupervised learning with k-Means with k = 2
- Use narrative features only
- 166 observations with explosive price-to-dividend ratio

Outline

- Overview
 - Research Questions
 - Findings
- 2 Methodology & data
 - Phillips Shi & Yu (2015) method
 - Narrative information
 - Narratives in forecasting bubbles
 - Narratives in classifying bubbles
- Results
 - Narrative explosiveness
 - Narratives in forecasting
 - Narratives in classifying

Narrative explosiveness

BSADF statistics

Narrative features help predicting the change of price explosiveness

$$PD_{BSADF,c,t+1} = \alpha + \alpha_c + \beta_1 \cdot PD_{c,t} + \beta_2 \cdot PD_{BSADF,c,t} + \gamma \cdot Narrative_{c,t} + \theta \cdot X_{c,t} + \epsilon_{c,t}$$

Narratives help predicting the change of price explosiveness

	Change of PD_B												
	model_1		mo	del_2	mod	odel_3 mo		del_4 mod		lel_5	mod	model_6	
	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	
Const	0.000	0.000***	0.000	0.000***	0.000	0.000***	0.000	0.000***	0.000	0.000***	0.000	0.000***	
PD_B	0.026	0.080**			0.033	0.075**			0.025	0.074**	0.025	0.066*	
PD	-0.073***	-0.037			-0.090***	-0.025			-0.076***	-0.034	-0.096***	-0.026	
Bubble			-0.020	0.064***	-0.007	0.064***					0.025	0.056**	
Opportunity			-0.027	-0.018	-0.028	-0.019					-0.041*	-0.008	
Risk			0.003	0.011	-0.006	0.013					-0.003	0.041	
Consensus			-0.054**	-0.014	-0.055**	-0.014					-0.058**	-0.021	
# of sentence			0.057***	0.037	0.061***	0.036					0.072***	0.059	
Dispersion (BERT)			0.023	-0.003	0.018	-0.002					0.009	-0.013	
Dispersion (LM)			-0.016	-0.064**	-0.010	-0.067***					-0.029	-0.077***	
Sentiment (BERT)			0.090***	-0.034	0.093***	-0.033					0.099***	-0.043	
Sentiment (LM)			0.169***	-0.147***	0.172***	-0.142***					0.183***	-0.151***	
Bubble_B							0.044**	-0.045**	0.041*	-0.044**	0.048**	-0.031	
Opportunity_B							-0.018	0.015	-0.019	0.016	-0.034	0.016	
Risk_B							0.015	0.040*	0.016	0.036*	0.014	0.048**	
Consensus_B							0.004	-0.015	0.006	-0.012	0.002	-0.017	
# of sentence_B							-0.036*	-0.016	-0.034*	-0.017	-0.047**	-0.038	
Dispersion (BERT)_B							-0.014	-0.027	-0.015	-0.030	-0.012	-0.035	
Dispersion (LM)_B							-0.068***	-0.029	-0.071***	-0.026	-0.085***	-0.026	
Sentiment (BERT)_B							-0.035	0.036	-0.033	0.033	0.006	-0.009	
Sentiment (LM)_B							-0.096***	-0.070***	-0.100***	-0.064**	-0.008	-0.096***	
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Fixed Effects	Country	Country	Country	Country	Country	Country	Country	Country	Country	Country	Country	Country	
No. observations	2354	1946	2361	1947	2354	1946	2361	1947	2354	1946	2354	1946	
R-squared	0.84%	0.70%	5.17%	2.66%	5.84%	3.21%	1.88%	1.05%	2.39%	1.63%	7.03%	4.44%	

Narrative features help predicting the maximum future drops

$$\begin{aligned} Y_{c,t+12|t} &= \alpha + \alpha_c + \beta_1 \cdot PD_{c,t} + \beta_2 \cdot PD_{BSADF,c,t} \\ &+ \gamma \cdot \textit{Narrative}_{c,t} + \theta \cdot \textit{X}_{c,t} + \epsilon_{c,t} \end{aligned}$$

Narratives help predicting the maximum market drop in 12 months

	Scale of Market Drop												
	model_1		mod	model_2 m		del_3	mo	model_4		model_5		model_6	
	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	Up	Down	
Const	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
PD_B	0.014	0.096***			0.003	0.088***			0.011	0.081***	0.004	0.071***	
PD	0.038	-0.189***			0.038	-0.168***			0.040	-0.186***	0.039	-0.162**	
Bubble			0.026*	0.020	0.038	0.023					0.035	0.022	
Opportunity			0.024	0.020	0.033	0.014					0.032	0.040*	
Risk			-0.035***	-0.042*	-0.069	-0.045**					-0.075***	-0.008	
Consensus			-0.021	-0.016***	-0.030	-0.018***					-0.031	-0.033**	
# of sentence			0.119***	-0.086***	0.122***	-0.091***					0.120***	-0.103**	
Dispersion (BERT)			-0.045**	-0.101***	-0.044*	-0.093***					-0.068**	-0.106**	
Dispersion (LM)			0.017	0.081	0.025	0.085					0.038	0.076	
Sentiment (BERT)			-0.031	0.018	-0.030	0.033					-0.039	0.016	
Sentiment (LM)			-0.091***	-0.164***	-0.105***	-0.150***					-0.088***	-0.185**	
Bubble_B							0.000	-0.037*	0.002	-0.030	-0.001	-0.009	
Opportunity_B							0.005	0.063***	0.005	0.067***	0.008	0.067***	
Risk_B							0.010	0.052**	0.010	0.030	-0.025	0.040	
Consensus_B							0.002	-0.023	0.003	-0.019	-0.002	-0.041**	
# of sentence_B							0.037**	-0.019	0.038**	-0.027	0.006	0.019	
Dispersion (BERT)_B							-0.039*	-0.012	-0.036	-0.025	-0.062**	-0.059**	
Dispersion (LM)_B							0.026	-0.013	0.027	-0.010	0.042	0.009	
Sentiment (BERT)_B							-0.014	0.045*	-0.016	0.044*	-0.040	0.024	
Sentiment (LM)_B							0.121***	-0.197***	0.124***	-0.198***	0.057*	-0.208**	
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Fixed Effects	Country	Country	Country	Country	Country	Country	Country	Country	Country	Country	Country	Country	
No. observations	2211	1924	2327	2022	2211	1924	2327	2022	2211	1924	2211	1924	
R-squared	0.50%	4.11%	4.01%	4.35%	4.73%	7.81%	1.92%	4.87%	1.96%	8.48%	5.36%	12.86%	

Narrative information helps predicting the PD ratio being explosive (kNN)

Figure: Information Gain and F1 Scores

Narrative information helps predicting the PD ratio being explosive

Table: Validation performance metrics of the sequential feature selection method

	TNR	TPR	Accuracy	F1
PER	0.91	0.13	0.88	0.07
PD	0.82	0.59	0.81	0.18
Consensus_B	0.84	0.59	0.83	0.20
# of sentence_B	0.87	0.62	0.86	0.24
Sentiment (BERT)_B	0.9	0.72	0.89	0.32
# of sentence	0.92	0.59	0.91	0.32
Opportunity_B	0.93	0.62	0.92	0.35
Sentiment (LM)_B	0.92	0.51	0.91	0.29
Consensus	0.93	0.54	0.91	0.31
Bubble_B	0.93	0.56	0.91	0.32
Sentiment (LM)	0.93	0.49	0.91	0.28
Dispersion (BERT)	0.93	0.56	0.92	0.34
Dispersion (LM)	0.93	0.59	0.92	0.35
Risk	0.93	0.54	0.92	0.32
Sentiment (BERT)	0.93	0.51	0.91	0.30

Narratives help classifying explosive episodes

Figure: Classification of the Explosive Episodes

Narratives help classifying explosive episodes

Table: Means of narrative features for the two classes of explosive episodes

	Le	vel	BSADF			
	Class 0	Class 1	Class 0	Class 1		
# of sentence	0.886	-0.375	1.387	-0.208		
Sentiment (LM)	-0.829	0.318	0.247	-0.018		
Sentiment (BERT)	-0.082	0.025	0.142	0.089		
Dispersion (LM)	0.539	-0.341	0.219	0.172		
Dispersion (BERT)	0.366	-0.167	-0.079	0.126		
Consensus	0.3	-0.149	-0.17	0.339		
Risk	0.121	-0.105	0.203	0.014		
Opportunity	0.097	0.039	-0.182	0.17		
Bubble	0.404	-0.078	0.267	0.293		

