Teoria dei Sistemi 03/09/19

Nome e Cognome:	
Matricola:	
Crediti e Docente:	

- 1. Calcolare la rappresentazione con lo stato del sistema a tempo continuo il cui discretizzato ha funzione di trasferimento $W_d(z) = \frac{1}{z-1}$.
- 2. Assegnato il sistema con $P(s) = \frac{k}{s+10}$ e $k \in \mathbb{R}$, si calcoli il guadagno del sistema in <u>catena diretta</u> (ovvero di P(s)) sapendo che la risposta indiciale del sistema <u>in retroazione</u> in Figura 1 è

Figura 1:

$$y(t) = W_{-1}(t) = \delta_{-1}(t) - e^{-\frac{10}{9}t} \delta_{-1}(t).$$

- 3. Dato un sistema a tempo discreto di dimensione n > 0, caratterizzare l'insieme degli stati raggiungibili in due passi a partire da un generico stato iniziale $x_0 \in \mathbb{R}^n$.
- 4. Si vuole studiare l'evoluzione di una popolazione composta da n=2 specie di batteri. Si indichi con $x_i(t)$ il numero di batteri della specie *i*-esima (i=1,2) all'istante $t\geq 0$. Le variazioni di $x_1(t)$ e $x_2(t)$ nel tempo dipendono da quattro costanti reali $\alpha_{ij}\in\mathbb{R}$ (i=1,2) e j=1,2) nel modo seguente:
 - la variazione di $x_1(t)$ cresce linearmente con $x_1(t)$ secondo $\alpha_{11} > 0$ e cresce linearmente con $x_2(t)$ secondo $\alpha_{12} < 0$;
 - la variazione di $x_2(t)$ cresce linearmente con $x_1(t)$ secondo $\alpha_{21} > 0$ e cresce linearmente con $x_2(t)$ secondo $\alpha_{22} < 0$.
 - (a) Si calcoli un modello a tempo continuo lineare e stazionario che descriva le evoluzioni delle densità delle popolazioni.

- (b) Si spieghi cosa accade nelle due popolazioni al variare dei coefficienti $\alpha_{ij} \in \mathbb{R}$ (Si pensi alla carratterizzazione dell'evoluzione libera in termini di modi naturali).
- (c) Sotto quali condizioni, ad esempio, l'evoluzione di ciascuna delle due specie tende a non estinguersi qualunque sia la numerosità iniziale?
- (d) Fissati $\alpha_{11} = 1$, $\alpha_{12} = -1$, $\alpha_{21} = 3$ e $\alpha_{22} = -2$, si assuma un innesto esterno di 10 batteri al secondo ($u_1(t) = 10$) della prima specie a partire da t = 1 secondo. Calcolare il numero di batteri della seconda specie (ovvero $x_2(t)$) per $t \ge 0$ sapendo che $x_1(0) = x_2(0) = 0$.