

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN ANAK USIA DINI, PENDIDIKAN DASAR DAN PENDIDIKAN MENENGAH DIREKTORAT SEKOLAH MENENGAH ATAS

Modul Pembelajaran SMA

FISIKA

PENJUMLAHAN VEKTOR FISIKA KELAS X

PENYUSUN

Saroji SMAN 3 Semarang

DAFTAR ISI

PE	NYUSUN	2
DA	FTAR ISI	3
GL	OSARIUM	4
PE	TA KONSEP	5
PE	NDAHULUAN	6
A.	Identitas Modul	6
B.	Kompetensi Dasar	6
C.	Deskripsi Singkat Materi	6
D.	Petunjuk Penggunaan Modul	6
E.	Materi Pembelajaran	7
KE	GIATAN PEMBELAJARAN 1	8
PE	NJUMLAHAN VEKTOR	8
A.	Tujuan Pembelajaran	8
B.	Uraian Materi	8
C.	Rangkuman	13
D.	Latihan Soal	14
E.	Penilaian Diri	18
KE	GIATAN PEMBELAJARAN 2	20
UR	AI VEKTOR	20
A.	Tujuan Pembelajaran	20
B.	Uraian Materi	20
C.	Rangkuman	25
D.	Latihan Soal	26
E.	Penilaian Diri	28
EV	ALUASI	29
KU	NCI JAWABAN EVALUASI	36
DA	FTAR PUSTAKA	37

GLOSARIUM

Vektor : Besaran yang menjadi dasar untuk menetapkan besaran

yang lain.

Resultan vektor : Vektor hasil penjumlahan dua vektor atau lebih

Metode grafis : Metode menentukan resultan vektor dengan menggambar

dan mengukur

Metode analisis : Metode menentukan resultan vektor dengan

menggunakan rumus

Rumus cosinus : Rumus yang digunakan untuk menentukan resultan dua

vektor

Urai vektor : Memecah sebuah vektor menjadi dua vektor yang saling

tegak lurus

Vektor komponen : Vektor hasil penguraian dari sebuah vektor

PETA KONSEP

PENDAHULUAN

A. Identitas Modul

Mata Pelajaran : Fisika Kelas : X

Alokasi Waktu : 6 x 45 menit

Judul Modul : Penjumlahan Vektor

B. Kompetensi Dasar

- 3.3 Menerapkan prinsip penjumlahan vektor sebidang (misalnya perpindahan)
- 4.3 Merancang percobaan untuk menentukan resultan vektor sebidang (misalnya perpindahan) beserta presentasi hasil dan makna fisisnya

C. Deskripsi Singkat Materi

Pada modul ini akan diuraikan tentang besaran vektor. Di bagian awal akan dijelaskan tentang definisi vektor, simbol penulisan vektor, melukiskan vektor dan penjumlahan vektor menggunakan metode grafis yang terdiri dari metode polygon dan jajaran genjang. Kemudian dilanjutkan dengan menentukan hasil penjumlahan vektor dengan metode analitis menggunakan rumus cosinus

Pada bagian kedua dijelaskan bahwa sebuah vektor dapat diuraikan menjadi dua vektor, cara menentukan komponen vektor hasil penguraian dan diakhiri dengan langkahlangkah menentukan hasil penjumlahan vektor dengan menggunakan metode urai vektor.

D. Petunjuk Penggunaan Modul

Agar modul dapat digunakan secara maksimal maka kalian diharapkan melakukan langkah-langkah sebagai berikut:

- 1. Pelajari dan pahami peta materi yang disajikan dalam setiap modul
- 2. Pelajari dan pahami tujuan yang tercantum dalam setiap kegiatan pembelajaran
- 3. Pelajari uraian materi secara sistematis dan mendalam dalam setiap kegiatan pembelajaran.
- 4. Perhatikalah langakah langkah dalam setiap penyelesaian contoh soal yang ada.
- 5. Kerjakanlah latihan soal yang ada disetiap akhir kegiatan pembelajaran, cocokkan jawaban kalian dengan kunci jawaban yang tersedia pada modul dan lakukan penghitungan skor hasil belajar kalian.
- 6. Lakukan penilaian diri disetiap akhir kegiatan pembelajaran untuk mengetahui batas kemampuan menurut diri kalian.
- 7. Lakukan uji kompetensi dengan mengerjakan soal evaluasi di bagian akhir modul untuk mengetahui tingkat penguasaan materi.
- 8. Diskusikan dengan guru atau teman jika mengalami kesulitan dalam pemahaman materi. Lanjutkan pada modul berikutnya jika sudah mencapai ketuntasan yang diharapkan.

E. Materi Pembelajaran

Modul ini terbagi menjadi **2** kegiatan pembelajaran dan di dalamnya terdapat uraian materi, contoh soal, soal latihan dan soal evaluasi.

Pertama : Besaran Vektor, penjumlahan vektor dengan metode grafis (polygon dan

jajaran genjang) dan analitis (rumus cosinus)

Kedua : Penjumlahan vektor menggunakan metode urai vektor

KEGIATAN PEMBELAJARAN 1 PENJUMLAHAN VEKTOR

A. Tujuan Pembelajaran

Setelah kegiatan pembelajaran 1 ini diharapkan kalian dapat menerapkan berbagai metode penjumlahan vektor baik dengan cara grafis (polygon dan jajaran genjang) maupun metode analitis yaitu dengan rumus cosinus.

B. Uraian Materi

Pengkategorian besaran fisika berdasarkan satuannya sudah dibahas dimodul sebelumnya yaitu terdiri dari besaran pokok dan turunan. Namun ada juga pengkategorian berdasarkan nilai dan arah besaran, terbagi dua juga yaitu besaran skalar dan besaran vektor. **Besaran skalar** diartikan sebagai besaran yang hanya memiliki nilai saja, sedangkan **besaran vektor** adalah besaran yang memiliki nilai dan arah. Contoh besaran vektor adalah gaya dan tekanan. Perhatikan gambar berikut!

Gambar 1. Penerapan Vektor sehari-hari

Pada saat seseorang duduk dikursi maka ia memberi tekanan yang arahnya ke bawah pada kursi. Ketika seorang anak menarik mobil mainan dengan tali berarti ia memberi gaya pada mobil yang berarah ke tangannya. Sedangkan contoh besaran skalar adalah waktu dan massa benda.

Dua benda yang masing-masing bermassa 4 kg dan 6 kg jika digabungkan (dijumlahkan) hasilnya pasti 10 kg, tapi gaya 4 N dan 6 N jika digabungkan maka jumlahnya belum tentu 10 N. Untuk perkalian pun begitu, perkalian besaran-besaran skalar juga memiliki aturan yang berbeda dengan bearan-besaran vektor, hanya saja untuk perkalian besaran-besaran vektor tidak di pelajari di Fisika SMA. Kalian penasaran? Yuk ikuti pembahasannya dimodul ini.

1. Simbol Vektor

Simbol besaran vektor dapat dinyatakan dengan huruf cetak tebal atau huruf cetak tipis yang diberi tanda panah di atasnya. Misalnya vektor gaya dapat dituliskan dengan simbol \mathbf{F} atau \vec{F} , tetapi jika menyatakan besar atau nilainya saja (tidak menyertakan arahnya) disimbolkan dengan huruf cetak tebal atau huruf cetak tipis bertanda panah di atasnya yang diberi tanda garis mutlak atau cukup huruf cetak tipis.

- Misalnya ada pernyataan "benda diberi gaya 5 N ke timur" dituliskan dengan F = 5 N ke timur atau $\vec{F} = 5$ N ke timur
- Misalnya ada pernyataan "benda diberi gaya 5 N" (tanpa menyebut arah) dituliskan dengan

 $F = 5 \text{ N atau } |\vec{F}| = 5 \text{ N atau } |F| = 5 \text{ N}$

Sebuah vektor digambarkan sebagai sebuah ruas garis berarah (panah) yang mempunyai titik tangkap (titik pangkal) sebagai tempat permulaan vektor. Panjang garis menunjukkan nilai vektor dan arah panah menunjukkan arah vektor.

Gambar 2. Penggambaran vektor

Gambar di atas menyatakan ada gaya F₁ yang besarnya 10 N dengan arah 60° dari barat ke utara dan gaya 20 N dengan arah ke timur. Coba kalian perhatikan, gaya yang lebih besar harus digambar dengan garis panah yang lebih panjang.

2. Penjumlahan Vektor

Aturan penjumlahan besaran vektor berbeda dengan penjumlahan besaran skalar. Massa merupakan besaran skalar, massa 3 kg dengan 4 kg jika dijumlahkan pasti hasilnya 7 kg. Sedangkan gaya merupakan besaran vektor, gaya 3 N dengan 4 N jika dijumlahkan hasilnya 1 N sampai 7 N. Hasil 1 N didapatkan ketika kedua vektor gaya tersebut berlawanan arah (sudut apitnya 180°), hasil 7 N didapatkan ketika kedua vektor gaya tersebut searah (sudut apitnya 0°), dan hasilnya bernilai 5 N ketika kedua vektor saling tegak lurus (sudut apitnya 90°). Dari ilustrasi ini dapat disimpulkan, semakin besar sudut apit kedua vektor, jika dijumlahkan hasilnya semakin kecil.

Penjumlahan besaran vektor dapat ditentukan dengan metode grafis dan analiltis. Cara grafis dibagi menjadi dua metode yaitu metode polygon dan metode jajaran genjang. Sedangkan metode analitis juga terbagi 2 yaitu metode rumus cosinus dan metode urai vektor. Vektor hasil penjumlahan disebut dengan **vektor resultan**.

a. Metode Grafis

Untuk menentukan hasil penjumahan vektor menggunakan metode grafis dibutuhkan alat ukur yaitu mistar dan busur derajat. Mistar digunakan untuk mengukur panjang garis panah yang menggambarkan nilai/besarnya vektor dan busur digunakan untuk menentukan arah vektor.

Contoh:

Misalkan sebuah balok diberi gaya seperti pada gambar berikut:

Tentukan berapakah resultan vektor atau gaya total yang dialami balok?

Metode Polygon/segi banyak/ujung-pangkal

Perhatikan langkah-langkah nenentukan resultan verktor dengan metode polygon berikut.

- 1. Tetapkan skala, misalkan dengan skala 1 : 1 berarti gaya 3 N digambarkan dengan anak panah sepanjang 3 cm atau misalkan dengan skala 1 : 2 berarti gaya 3 N digambar dengan anak panah sepanjang 1,5 cm.
- 2. Gambar vektor F_1 terlebih dahulu kemudian gambar pangkal (titik tangkap) vektor F_2 berhimpit dengan dengan ujung vektor F_1 . Jika banyaknya vektor yang dijumlahkan lebih dari dua, maka pangkal vektor berikutnya dihimpitkan dengan vektor sebelumnya sampai selesai.
- 3. Gambarkan vektor resultan dengan membuat garis panah dari pangkal vektor pertama ke ujung vektor terakhir.

Langkah-langkah di atas jika kalian lakukan akan dihasilkan gambar seperti berikut:

Gambar 3. Menggambar vector metode polygon

Dengan mengukur panjang F_R , maka didapatkan besarnya besarnya vektor resultan dan untuk mengetahui arah vektor resultan terhadap garis mendatar dilakukan dengan mengukur sudut θ . Praktikkan langkah di atas, maka akan kalian dapatkan F_R = 6,08 cm \approx 6,1 cm dan $\theta \approx 35^\circ$.

Dari penyelesaian di atas dapat disimpulkan, jika dua vektor dijumlahkan dengan metode polygon menghasilkan segitiga. Jika 3 vektor dijumlahkan akan menghasilkan segi empat, jika 7 vektor dijumlahkan pasti hasilnya segi 8. Maka metode ini dikenal pula dengan metode segibanyak.

Metode Jajaran genjang/satu-pangkal

Perhatikan langkah-langkah nenentukan resultan verktor dengan metode jajaran berikut:

- 1. Langkah pertama metode ini sama dengan metode polygon
- 2. Gambar vektor F_1 terlebih dahulu kemudian gambar vektor F_2 dengan pangkal vektor menyatu dengan pangkal vektor F_1
- 3. Buatlah pola jajaran genjang.
- 4. Buat garis panah membentuk diagonal jajaran genjang dengan pangkal menyatu dengan pangkal vektor yang diresultankan.

Langkah-langkah di atas jika kalian lakukan akan dihasilkan gambar seperti berikut:

Gambar 4. Menggambar vector metode jajaran genjang

Dengan mengukur panjang F_R, maka didapatkan besarnya besarnya vektor resultan dan untuk mengetahui arah vektor resultan terhadap garis mendatar dilakukan dengan mengukur sudut θ. Praktikkan langkah di atas, maka akan kalian dapatkan F_R = 6,08 cm ≈ 6.1 cm dan θ ≈ 35°.

b. Metode Analisis

Menentukan resultan beberapa vektor dapat lakukan dengan metode analisis, yaitu dengan cara perhitungan bukan pengukuran. Ada dua metode analitis yaitu menggunakan rumus cosinus dan urai vektor. Untuk menggunakan metode analitis, kalian harus memiliki pengetahuan dasar tentang trigonometri. Trigonometri adalah cabang ilmu matematika yang mempelajari hubungan panjang sisi segitiga siku-siku dengan sudut lancipnya.

Konsep dasar trigonometri

$$\sin \angle = \frac{sisi\ depan}{sisi\ miring}$$

→ sehingga sisi depan = sisi miring x sin ∠

$$\cos \angle = \frac{sisi\ samping}{sisi\ miring}$$

→ sehingga sisi samping = sisi miring x cos ∠

$$\tan \angle = \frac{sisi\ depan}{sisi\ samping}$$

Perhatikan gambar segitiga siku-siku berikut!

$$\sin\theta = \frac{sisi\ depan}{sisi\ miring} = \frac{B}{C}$$

$$\cos\theta = \frac{sisi\ samping}{sisi\ miring} = \frac{A}{C}$$

$$\tan \theta = \frac{sisi\ depan}{sisi\ samping} = \frac{B}{A}$$

Pada segitiga siku-siku ada ukuran sisi dengan perbandingan 3 : 4 : 5. Sudutnya sesuai dengan gambar di bawah.

Dari ganbar ini, menunjukkan bahwa:

- $\sin 37^\circ = 3/5$
- $\sin 53^{\circ} = 4/5$
- cos 37° = 4/5
 tan 37° = 3/4
- $\cos 53^{\circ} = 3/5$
- $\tan 53^{\circ} = 4/3$

Ada juga dua segitiga dengan hubungan sudut dan sisinya sebagai berikut:

Nilai sin, cos dan tan sudut-sudut istimewa

	$0_{\rm o}$	30°	45°	60°	90°
sin	0	1/2	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1
cos	1	1/2√3	$\frac{1}{2}\sqrt{2}$	1/2	0
tan	0	$1/\sqrt{3}$	1	$\sqrt{2}$	~

Rumus Cosinus dan Sinus

Rumus cosinus digunakan untuk menentukan besar vektor resultan sedangkan rumus sinus untuk menghitung arah vektor resultannya. Perhatikan dua vektor (v_1 dan v_2) dan resultannya (F_R) yang digambar dengan menggunakan metode jajaran genjang berikut:

Keterangan:

 α_1 = sudut apit antara vektor \mathbf{v}_1 dengan \mathbf{v}_2

 θ_1 = arah vektor resultan \mathbf{v}_R terhadap vektor \mathbf{v}_1

 θ_2 = arah vektor resultan \mathbf{v}_R terhadap vektor \mathbf{v}_2

Jika diketahui besarnya vektor v_1 dan v_2 dan sudut apit keduanya α , maka besarnya vektor resultan v_R dapat ditentukan dengan **rumus cosinus**

$$v_R = \sqrt{v_1^2 + v_2^2 + 2 \, v_1 \cdot v_2 \cos \alpha}$$

dan arah vektor resultan θ_1 atau θ_2 dapat ditentukan dengan **rumus sinus**

$$\frac{\sin\theta_1}{v_2} = \frac{\sin\theta_2}{v_1} = \frac{\sin\alpha}{v_R}$$

Contoh Soal:

Misalkan sebuah balok diberi gaya seperti pada gambar berikut (sama dengan soal di atas):

Tentukan besar dan arah resultan gaya yang bekerja pada balok!

Pembahasan:

Untuk menentukan besar resultan vektor dari dua buah vektor berikut arahnya akan lebih mudah dipahami dengan menseketsa (panjang vektor tidak perlu diukur) terlebih dahulu membentuk jajaran genjang

Berdasarkan gambar pada soal, sudut apit kedua vektor (α) = 60°

$$F_R = \sqrt{F_1^2 + F_2^2 + 2 F_1 \cdot F_2 \cos \alpha}$$

$$F_R = \sqrt{3^2 + 4^2 + 2 \cdot 3 \cdot 4 \cdot \cos 60^\circ}$$

$$F_R = \sqrt{9 + 16 + 2 \cdot 3 \cdot 4 \cdot (1/2)}$$

$$F_R = \sqrt{9 + 16 + 12}$$

$$F_R = \sqrt{37}$$

$$F_R = 6,08 N$$

Arah vektor resultan (θ) dapat ditentukan dengan rumus

$$\frac{\sin\theta}{F_2} = \frac{\sin\alpha}{F_R}$$

$$\frac{\sin\theta}{4} = \frac{\sin 60^{\circ}}{6,08}$$

$$\frac{\sin\theta}{4} = \frac{\frac{1}{2}\sqrt{3}}{6,08}$$

$$\sin\theta = \frac{\frac{1}{2}\sqrt{3} \times 4}{6,08}$$

$$\sin\theta = \frac{2\sqrt{3}}{6,08}$$

$$\sin\theta = 0,57$$

$$\theta = \sin^{-1}(0,57)$$

$$\theta = 34,75$$

Catatan:

Sudut apit dua vector dapat ditentukan dengan Langkah menytukan pangkal kediua vektor. Misal ada 2 vektor seperti pada gambar berikut:

Maka sudut apit keduanya adalah 150°

Jadi total gaya (resultan gaya) pada balok adalah 6,08 N yang memiliki arah 34,75° terhadap \mathbf{F}_1

C. Rangkuman

1. Simbol besaran vektor dapat dinyatakan dengan huruf cetak tebal atau huruf cetak tipis yang diberi tanda panah di atasnya. Misalnya vektor gaya dapat dituliskan dengan simbol \mathbf{F} atau \vec{F} , tetapi jika menyatakan besar atau nilainya saja (tidak menyertakan arahnya) disimolkan dengan huruf cetak tebal atau huruf cetak tipis bertanda panah di atasnya yang diberi tanda garis mutlak atau cukup huruf cetak tipis. \mathbf{F} atau $|\vec{F}|$ atau $|\mathbf{F}|$ vektor digambarkan sebagai sebuah ruas garis berarah (panah) yang mempunyai titik tangkap (titik pangkal) sebagai tempat permulaan vektor. Panjang garis menunjukkan nilai vektor dan arah panah menunjukkan arah vektor.

2. Metode menentukan hasil penjumlahan vektor (menentukan resultan vektor)

3. Rumus Cosinus untuk menentukan resultan vektor

$$F_R = \sqrt{F_1^2 + F_2^2 + 2 F_1 \cdot F_2 \cos \alpha}$$

4. Aturan sinus untuk menentukan arah vektor resultan

$$\frac{\sin\theta}{F_2} = \frac{\sin\alpha}{F_R}$$

 $\frac{sin\theta}{F_2} = \frac{sin\alpha}{F_R}$ Dengan θ adalah arah \mathbf{F}_R terhadap \mathbf{F}_1 .

D. Latihan Soal

1. Tiga buah vektor gaya seperti pada gambar berikut:

Lukiskan vektor resultan dari $\mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3$ dengan metode:

- a. poligon
- b. jajarangenjang
- 2. Seseorang berjalan ke arah 37° dari barat ke utara sejauh 10 meter kemudian berbelok ke timur dan berjalan sejauh 8 m.
 - a. lukiskan pergerakan orang tersebut menjadi dua vektor perpindahan (sebelum dan setelah belok)!
 - b. lukis resultan dua vektor tersebut dengan metode poligon!. Tanpa melakukan pengukuran, perkirakan apakah nilai resultannya lebih besar dari dua vektor yang diresultankan?
 - c. berapakah sudut apit dua vektor perpidahan tersebut?
 - d. dengan menggunakan rumus cosinus tentukan resultan perpindahan orang tersebut!
 - e. dengan rumus sinus tentukan pula arah perpindahannya!
- 3. Perahu motor bemaksud menyebragi sungai yang aliran airnya memiliki kecepatan 3 m/s. Perahu yang memiliki kecepatan 4 m/s diarahkan tegak lurus dengan aliran air. Tentukan resultan kecepatan perahu dan arah gerak perahu terhadap arah aliran air!

- 4. Sebuah balok ditarik dengan gaya F_1 = 8 N dan F_2 = 10 N yang membentuk sudut apit 60°. Tentukan :
 - a. resultan dua vektor tersebut dengan rumus cosinus!
 - b. $arah resultan gaya terhadap F_1$.

Kunci Jawaban

1.

a.

b.

2. Misalkan arah mata angin ditetapkan seperti pada gambar berikut

maka:

dan

b.

Berdasarkan hasil lukisan di atas, nilai resultannya dapat diperkirakan kurang dari 8 m (lebih kecil dari dua vektor yang diresultankan)

c. Untuk menentukan sudut apit, dapat dilakukan dengan menggambar dua vektor tersebut dalam satu titik tangkap (titik pangkal).

d.
$$S_R = \sqrt{S_1^2 + S_2^2 + 2 S_1 \cdot S_2 \cos \alpha}$$

 $S_R = \sqrt{10^2 + 8^2 + 2 \cdot 10 \cdot 8 \cdot \cos 143^\circ}$
 $S_R = \sqrt{100 + 64 + 160 \cdot (-0.8)}$
 $S_R = \sqrt{164 - 128}$
 $S_R = \sqrt{36}$
 $S_R = 6 m$

Arah vektor resultan (θ) dapat ditentukan dengan rumus

Jadi arah perpindahan orang tersebut 53° dari barat ke utara atau 90° dari timur ke utara

3. Vektor kecepatan air $v_1 = 3$ m/s, dan kecepatan perahu $v_2 = 4$ m/s, dan sudut apit antara kedua vektor (θ) = 90°, maka resultan vektornya,

$$v_R = \sqrt{v_1^2 + v_2^2 + 2.v_1 \cdot v_2 \cdot \cos \theta}$$

$$v_R = \sqrt{3^2 + 4^2 + 2.3.4 \cdot \cos 90^o}$$

$$v_R = \sqrt{9 + 16 + 2.3.4 \cdot (0)}$$

$$v_R = \sqrt{9 + 16 + 0}$$

$$v_R = \sqrt{25} = 5 \text{ m/s}$$

Untuk menentukan arah gerak perahu terhadap arah aliran air, perhatikan gambar vektor berikut:

Arah gerak perahu terhadap aliran air (θ) ditentukan dengan

$$\frac{\sin\theta}{v_2} = \frac{\sin\alpha}{S_R}$$

$$\frac{\sin\theta}{3} = \frac{\sin 90^{\circ}}{5}$$

$$\frac{\sin\theta}{3} = \frac{1}{5}$$

$$\sin\theta = \frac{1 \times 3}{5}$$

$$\sin\theta = 0.6$$

$$\theta = \sin^{-1}(0.6)$$

$$\theta = 37^{\circ}$$

Jadi kecepatan perahu karena pengaruh air adalah 5 m/s yang berarah 37° terhadap aliran air miskipun perahu diarahkan tegak lurus aliran air.

4.
$$F_1$$
= 8 N, F_2 = 10 N, dan α = 60°
a. $F_R = \sqrt{F_1^2 + F_2^2 + 2.F_1.F_2.\cos\alpha} = \sqrt{8^2 + 10^2 + 2.8..10.\cos 60^\circ}$

$$= \sqrt{8^2 + 10^2 + 2.8.10.\frac{1}{2}} = \sqrt{244} = 15.6 N$$

b.
$$\frac{F_R}{\sin 60^{\circ}} = \frac{F_2}{\sin \theta_1}$$
$$\frac{15,6}{\sin 60^{\circ}} = \frac{10}{\sin \theta_1}$$
$$\frac{15,6}{\frac{1}{2}\sqrt{3}} = \frac{10}{\sin \theta_1}$$
$$\sin \theta_1 = \frac{10 \times \frac{1}{2}\sqrt{3}}{15.6} \implies \theta_1 = 33,7^{\circ}$$

E. Penilaian Diri

Jawablah pertanyaan di bawah ini dengan jujur, sesuai dengan kemampuan kalian. Cara menjawabnya adalah dengan memberikan centang $(\sqrt{})$ di kolom yang disediakan.

No	Pernyataan	Ya	Tidak	Keterangan
1	Saya mampu menjelaskan perbedaan besaran vektor dan skalar			
2	Saya mampu menjelaskan ada berbagai metode untuk menentukan hasil penjumlahan vektor			

No	Pernyataan	Ya	Tidak	Keterangan
3	Saya mampu menerapkan metode grafis untuk menentukan besar dan arah resultan vektor			
3	Saya mampu menerapkan rumus cosinus untuk menentukan resultan vektor			
4	Saya mampu menerapkan aturan sinus untuk menentukan arah vektor resultan			

Keterangan:

Apabila kalian menjawab pernyataan jawaban Ya, berarti telah memahami dan menerapkan semua materi. Bagi yang menjawab tidak silahkan mengulang materi yang terkait.

KEGIATAN PEMBELAJARAN 2 URAI VEKTOR

A. Tujuan Pembelajaran

Setelah kegiatan pembelajaran 1 ini diharapkan kalian mampu:

- 1. Menguraikan vektor
- 2. Menerapkan metode urai vektor untuk menentukan resultan vektor.

B. Uraian Materi

3. Menguarai Vektor

Jika dua buah vektor atau lebih dapat diresultan menjadi satu buah vektor resultan maka berlaku juga sebaliknya. Sebuah vektor dapat diuraikan menjadi dua buah vektor saling tegak lurus yang disebut vektor komponen. Mengurai vektor dapat dilakukan dengan memproyeksikan vektor tersebut pada sumbu koordinat X dan Y. Hasil proyeksi (uraian) vektor pada sumbu Y di sebut komponen vektor sumbu Y demikian halnya pada sumbu X, disebut komponen vektor sumbu X.

Misalkan terdapat sebuah vektor **S** berikut:

Jika vektor tersebut di uraikan, maka dihasilkan gambar berikut ini:

Berdasarkan gambar di atas didapatkan bahwa:

- Komponen vektor **S** pada sumbu x (S_x) besarnya = 2 m
- Komponen vektor **S** pada sumbu y (S_v) besarnya = 5 m

Untuk menentukan besarnya vektor komponen, kalian juga harus ingat konsep dasar trigonometri, yaitu:

$$\sin \angle = \frac{sisi\ depan}{sisi\ miring}$$
 \Rightarrow sehingga, sisi depan = sisi miring x sin \angle

$$\cos \angle = \frac{sisi\ samping}{sisi\ miring}$$
 \Rightarrow sehingga, sisi samping = sisi miring x cos \angle

Misalkan terdapat sebuah vektor gaya berikut ini:

Jika vektor tersebut diuraikan maka akan dihasilkan gambar berikut ini:

Untuk menentukan besarnya vektor komponennya, kita harus mengetahui nilai sudut θ atau α yang tertera pada gambar. Berdasarkan data pada gambar kita dapatkan nilai θ = $180^{\circ} - 120^{\circ} = 60^{\circ}$ dan nilai α = $120^{\circ} - 90^{\circ} = 30^{\circ}$. Jika kita memilih menggunakan sudut α = 30° , komponen vektor yang terletak di samping sudut α adalah \mathbf{F}_y . Berdasarkan konsep trigonometri bahwa *sisi samping* = *sisi miring* . $\cos \angle$, maka:

•
$$\mathbf{F}_{v}$$
= F cos 30° = 10 . 1/2 $\sqrt{3}$ = 5 $\sqrt{3}$ N

Sedangkan $\mathbf{F_x}$ terletak di depan sudut α , sehingga berdasarkan konsep trigonometri bahwa $sisi\ depan = sisi\ miring\ .sin\ \angle$, maka:

•
$$\mathbf{F}_x = F \sin 30^\circ = 10 \cdot 1/2 = 5 \text{ N}$$

4. Menjumlahkan Vektor dengan Metode Urai Vektor

Pada kegiatan pembelajaran 1 telah diuraiakan bagaimana menentukan hasil penjumlahan vektor, diantaranya yaitu dengan rumus cosinus. Rumus cosinus terbatas unruk menentukan hasil penjumlahan 2 vektor. Untuk menjumlahkan vektor yang lebih dari dua lebih efektif menggunakan metode urai vektor. Prosedur menentukan hasil jumlah vektor menggunakan metode urai vektor adalah:

- 1) Gambarkan semua vektor yang akan dijumlahkan pada kooordinat sumbu X dan Y dan letakkan semua titik tangkap vektor (pangkal vektor) di pusat koordinat.
- 2) Uraikan vektor yang tidak berhimpit dengan sumbu X atau Y, selanjutnya tentukan nilai tiap komponennya.
- 3) Tentukan resultan vektor pada sumbu X dan resultan vektor pada sumbu Y
- 4) Tentukan besar dan arah resultan akhirnya. Untuk memudahkan, gambar terlebih dahulu resultan vektor pada sumbu X dan resultan vektor pada sumbu Y yang didapatkan pada langkah ke-3.

Contoh Soal:

1. Seekor semut berjalan di atas lantai keramik berukuran (40 cm x 40 cm) dengan lintasan seperti pada gambar.

Dengan menggunakan metode urai vektor, tentukan besar dan arah perpindahan semut! *Pembahasan:*

• Langkah (1) dan (2) didapatkan:

Berdasarkan gambar:

$$S_{1x}$$
= 2 x 40 cm = 80 cm

$$S_{1Y}$$
= 3 x 40 cm = 120 cm

$$S_{2x}$$
= 1 x 40 cm = 40 cm

$$S_{2Y}$$
= 3 x 40 cm = 120 cm

$$S_{3x}$$
= 2 x 40 cm = 80 cm

$$S_{3x}$$
= 7 x 40 cm = 280 cm

$$S_{3Y} = 3 \times 40 \text{ cm} = 120 \text{ cm}$$

• Langkah (3):

Resultan vektor pada sumbu X $(\sum S_x) = S_{3X} - (S_{1X} + S_{2X}) = 280 - (80 + 40) = 160$ m Resultan vektor pada sumbu Y $(\sum S_y) = (S_{1Y} + S_{3Y}) - S_{2Y} = (120 + 120) - 120 = 120$ m

• Langkah (4):

Besarnya resultan akhir (S_R) dapat dihitung dengan:

$$S_R = \sqrt{\Sigma S_X^2 + \Sigma S_Y^2}$$

$$S_R = \sqrt{160^2 + 120^2}$$

$$S_R = \sqrt{25600 + 14400}$$

$$S_R = \sqrt{40000}$$

$$S_R = 200 cm$$

Sedangkan arah S_R dapat ditentukan dengan:

$$tan\theta = \frac{\Sigma S_Y}{\Sigma S_X}$$
$$tan\theta = \frac{120}{160}$$
$$\theta = tan^{-1} \left(\frac{3}{4}\right)$$
$$\theta = 37^{\circ}$$

Jadi perpindahan semut 200 cm dengan arah 37° dari timur ke utara.

Catatan:

Untuk menentukan resultan perpindahan semut tidak harus menggunakan urai vektor, tetapi ada alternatif lain. Pada soal, vektor perpindahan semut digambar dengan metode polygon. Maka untuk menentukan perpindahan totalnya (resultan perpindahan) dapat dilakukan dengan membuat vektor resultan yang titik tangkapnya berada dititik tangkap vektor \mathbf{s}_1 dan ujungnya berhimpit dengan ujung vektor terakhir yaitu \mathbf{s}_2 , seperti pada gambar berikut.

Dengan menggunakan rumus pytagoras maka didapatkan nilai s_R

$$S_R = \sqrt{160^2 + 120^2}$$

$$S_R = \sqrt{25600 + 14400}$$

$$S_R = \sqrt{40000}$$

$$S_R = 200 cm$$

2. Sebuah balok terletak pada bidang XY. Balok diberi lima gaya masing-masing 40 N ke sumbu X(+), 120 N membentuk sudut -30° terhadap sumbu Y(-), $100\sqrt{3}$ N ke sumbu Y(+), $40\sqrt{3}$ N ke sumbu Y(-), dan 20 N membentuk sudut 60° terhadap sumbu X(+). Tentukan besar dan arah resultan gaya yang bekerja pada balok!

• Langkah (2):

Karena \mathbf{F}_2 dan \mathbf{F}_5 arahnya berlawanan, untuk meyederhanakan bisa diresultankan dulu menjadi $\mathbf{F}_{2,5}$, $\mathbf{F}_{2,5}$ = \mathbf{F}_2 – \mathbf{F}_5 = 120 – 20 = 100 N

• Langkah (3):

Resultan vektor pada sumbu X ($\sum F_x$) = $F_1 - F_{5,2X} = 40 - 50 = -10$ N Resultan vektor pada sumbu Y ($\sum F_y$) = $F_3 - (F_4 + F_{5,2Y}) = 100\sqrt{3} - (40\sqrt{3} + 50\sqrt{3}) = 10\sqrt{3}$ N • Langkah (4):

Besarnya resultan akhir (F_R) dapat dihitung dengan:

$$F_{R} = \sqrt{\Sigma F_{X}^{2} + \Sigma F_{Y}^{2}}$$

$$F_{R} = \sqrt{(-10)^{2} + (10\sqrt{3})^{2}}$$

$$F_{R} = \sqrt{100 + 300}$$

$$F_{R} = \sqrt{400}$$

$$F_{R} = 20 N$$

Sedangkan arah F_R dapat ditentukan dengan:

$$tan\theta = \frac{\sum F_Y}{\sum F_X}$$

$$tan\theta = \frac{10\sqrt{3}}{-10}$$

$$\theta = tan^{-1}(-\sqrt{3})$$

$$\theta = -30^o$$

Jadi resultan gaya pada balok 20 N dengan arah −30° dari sumbu X (-).

C. Rangkuman

- 1. Sebuah vektor dapat diuraikan menjadi dua buah vektor saling tegak lurus yang disebut vektor komponen.
- 2. Prosedur menentukan hasil penjumlahan vektor menggunakan metode urai vektor adalah:
 - 1) Gambarkan semua vektor yang akan dijumlahkan pada kooordinat sumbu X dan Y dan letakkan semua titik tangkap vektor (pangkal vektor) di pusat koordinat.
 - 2) Uraikan vektor yang tidak berhimpit dengan sumbu X atau Y, selanjutnya tentukan nilai tiap komponennya.
 - 3) Tentukan resultan vektor pada sumbu X dan resultan vektor pada sumbu Y
 - 4) Tentukan besar dan arah resultan akhirnya. Untuk memudahkan, gambar terlebih dahulu resultan vektor pada sumbu X dan resultan vektor pada sumbu Y yang didapatkan pada langkah ke-3.

D. Latihan Soal

- 1. Sebuah vektor gaya besarnya 100 N dengan arah membentuk sudut 60° terhadap sumbu X. Tentukan besar komponen-komponennya pada sumbu X dan sumbu Y.
- 2. Perhatikan gambar dua vektor gaya berikut!

Jika tiap garis skala bernilai 1 N, tentukan resultan dua gaya tersebut!

3. Perhatikan gambar gaya gaya berikut ini!

Tentukan resultan ketiga gaya tersebut!

4. Arnov berlari ke timur sejauh $40\sqrt{3}$ m kemudian berbelok 30° dari timur ke selatan sejauh 180 m. Selanjutnya ia berlari $100\sqrt{3}$ m ke barat. Karena capek ia istirahat sejenak dan beberapa menit kemudian berjalan 80 m ke arah 60° dari utara ke barat. Tentukan besar dan arah perpindahan Arnov!

Setelah kalian mengerjakan soal di atas, cocokkanlah jawaban kalian dengan kunci jawaban yang tersedia di bawah ini. Kemudian silakan hitung skor yang kalian peroleh dengan pedoman:

1. Skor maksimal tiap soal = 10
2. Skor Akhir =
$$\frac{jumlah \, skor \, yang \, kalian \, peroleh \, dari \, tiap \, soal}{Jumlah \, skor \, maksimal \, seluruh \, soal} x \, 100$$

Dengan kategori tingkat penguasaan:

Skor 90 – 100 = baik sekali Skor 80 – 89 = baik Skor 70 – 79 = cukup Skor <70 = kurang

Apabila kalian telah mencapai tingkat penguasaan kategori baik (dengan skor minimal 80), silakan lanjut ke kegiatan pembelajaran berikutnya. Tetapi jika skor kalian dibawah 80, silakan mengulang kegiatan pembelajaran terutama bagian yang belum kalian kuasai.

Kunci Jawaban

1. Diketahui F = 100 N
$$\alpha$$
 = 60°

Komponen gaya pada sumbu X adalah Fx = F $\cos \alpha$ = 100. ½ N = 50 N Komponen gaya pada sumbu Yadalah Fy = F sin α

$$= 100. \frac{1}{2} \sqrt{3} \text{ N} = 50 \sqrt{3} \text{ N}$$

2. Gunakan metode urai vektor

$$\sum F_X = F_{1x} + F_{2x} = 3 + 5 = 8 \text{ N}$$

$$\sum F_Y = F_{1Y} + F_{2Y} = 1 + 5 = 6 \text{ N}$$

$$R = \sqrt{\sum F_X^2 + \sum F_Y^2} = \sqrt{8^2 + 6^2} = 10 \text{ N}.$$

3. Gunakan metode urai vektor

$$\sum F_X = 3 \cos 60^\circ + 6 \cos 60^\circ - 3 = 1,5 + 3 - 3 = 1,5 \text{ N}$$

$$\sum F_Y = 3 \sin 60^\circ - 6 \sin 30^\circ = 1,5 \sqrt{3} - 3\sqrt{3} = -1,5 \sqrt{3} \text{ N}$$

$$R = \sqrt{(1,5^2) + (-1,5\sqrt{3})^2} = 3 \text{ N}$$

4.

Bisa disederhanakan dengan meresultankan S_2 dengan S_4 dan S_1 dengan S_3 :

$$S_{1,3} = S_1 - S_3 = 40\sqrt{3} - 100\sqrt{3} = -60\sqrt{3} \text{ m}$$

$$S_{2,4} = S_2 - S_2 = 180 - 80 = 100 \text{ m}$$

$$\Sigma S_x = S_{2,4x} - S_{1,3} = S_{2,4} \cos 30^{\circ} - 60\sqrt{3} = 100 (1/2\sqrt{3}) - 60\sqrt{3} = 40\sqrt{3} \text{ m}$$

$$\Sigma S_Y = S_{2,4Y} = S_{2,4} \sin 30^\circ = 100 \cdot \frac{1}{2} = 50 \text{ m}$$

Besarnya resultan akhir (S_R) dapat dihitung dengan:

$$S_R = \sqrt{\Sigma S_X^2 + \Sigma S_Y^2}$$

$$S_R = \sqrt{(40\sqrt{3})^2 + (50)^2}$$

$$S_R = \sqrt{4800 + 2500}$$

$$S_R = \sqrt{7300}$$

$$S_R = 85,44 m$$

Sedangkan arah S_R dapat ditentukan dengan:

$$tan\theta = \frac{\sum S_Y}{\sum S_X}$$

$$tan\theta = \frac{50}{40\sqrt{3}}$$

$$\theta = tan^{-1} \left(\frac{5}{4\sqrt{3}}\right)$$

$$\theta = 35.8^{\circ}$$

Jadi perpindahan Arnov 85,44 m dengan arah 35,8° dari timur ke utara.

E. Penilaian Diri

Jawablah pertanyaan di bawah ini dengan jujur, sesuai dengan kemampuan kalian. Cara menjawabnya adalah dengan memberikan centang $(\sqrt{})$ di kolom yang disediakan.

No	Pernyataan	Ya	Tidak	Keterangan
1	Saya mampu menjelaskan pengertian urai vektor			
2	Saya mampu menentukan besarnya komponen vektor			
3	Saya mampu menerapkan metode urai vektor untuk menentukan besar dan arah resultan vektor			

Keterangan:

Apabila kalian menjawab pernyataan jawaban Ya, berarti telah memahami dan menerapkan semua materi. Bagi yang menjawab tidak silahkan mengulang materi yang terkait.

EVALUASI

Pilihlah jawaban yang benar!

- 1. Dua vektor gaya masing-masing besarnya 10 N dan 4 N. Besar resultan kedua vektor tersebut yang tidak mungkin adalah
 - A. 5 N
 - B. 6 N
 - C. 10 N
 - D. 12 N
 - E. 14 N
- 2. Balok digantung dengan tali sebagai berikut.

Gaya tarik tali masing-masing besarnya F_1 = 30 N dan F_2 = 40 N saling tegak lurus. Resultan gaya tarik yang dialami balok adalah...

- A. 10 m
- B. 20 m
- C. 50 m
- D. 70 m
- E. 120 m
- 3. Seseorang berjalan ke timur sejauh 80 m kemudian berbelok ke selatan dan berjalan sejauh 60 m. Arah perpindahan orang tersebut adalah....
 - A. 60° dari timur ke selatan
 - B. 60° dari selatan ke timur
 - C. 53° dari timur ke selatan
 - D. 37° dari timur ke selatan
 - E. 37º dari selatan ke timur
- 4. Balok ditarik dengan dua gaya besarnya sama yaitu 10 N seperti pada gambar.

Besar dan arah resultan gaya tersebut adalah....

- A. 10 N, 30° terhadap lantai
- B. $10\sqrt{3}$ N, 30° terhadap lantai
- C. 20 N, 30° terhadap lantai
- D. 10 N, 60° terhadap lantai
- E. $10\sqrt{3}$ N, 60° terhadap lantai

- 5. Dua vektor perpindahan sama besar yaitu S meter. Jika resultan kedua vektor perpindahan tersebut besarnya juga S meter, sudut antara kedua vektor tersebut adalah
 - A. 30⁰
 - B. 45⁰
 - C. 60°
 - D. 90⁰
 - E. 120⁰
- 6. Bola dilempar ke lantai dan terpantul dengan kecepatan seperti pada gambar.

Selisih vektor kecepatan bola sebelum dan sesudah terpantul adalah....

- A. 10 m/s
- B. $10\sqrt{2} \text{ m/s}$
- C. $10\sqrt{3} \text{ m/s}$
- D. $10\sqrt{5} \text{ m/s}$
- E. $10\sqrt{7} \text{ m/s}$
- 7. Perhatikan 2 buah vektor kecepatan berikut!

Resultan kedua vektor tersebut adalah....

- A. 2 m/s
- B. $2\sqrt{3}$ m/s
- C. $2\sqrt{7}$ m/s
- D. 5 m/s
- E. 6 m/s
- 8. Dua gaya masing-masing besarnya 20 N dan 10 N. Jika resultan kedua gaya tersebut $10\sqrt{7}$ N, sudut apit kedua gaya adalah
 - A. 30°
 - B. 450
 - C. 60°
 - D. 90°
 - E. 120⁰
- 9. Perhatikan gambar gaya-gaya berikut ini!

Resultan ketiga gaya tersebut adalah

- A. 200 N
- B. 100 N
- C. $50\sqrt{3} \text{ N}$
- D. $50\sqrt{2}$ N
- E. 0 N
- 10. Dua vektor gaya besarnya sama yaitu 16 N ditunjukkan seperti pada gambar.

Resultan kedua vektor tersebut adalah

- A. 8 N
- B. 10 N
- C. 12 N
- D. 16 N
- E. 18 N
- 11. Sebuah vektor F membentuk sudut α terhadap sumbu y positif seperti pada gambar.

Komponen vektor itu dapat ditentukan dengan persamaan....

- A. $F_x = F \cos \alpha \operatorname{dan} F_y = F \sin \alpha$
- B. $F_x = F \sin \alpha \text{ dan } F_v = F \cos \alpha$
- C. $F_x = F \cos \alpha \operatorname{dan} F_v = F \tan \alpha$
- D. F_x = F tan α dan F_y = F sin α
- E. F_x = $F ssin \alpha dan F_y$ = $F sin \alpha$
- 12. Vektor kecepatan yang besarnya 20 m/s membentuk sudut 30° terhadap sumbu x positif.

Komponen vektor kecepatan itu memiliki nilai....

- A. $v_x = 10 \text{ m/s dan } v_y = 20 \text{ m/s}$
- B. $v_x = 10\sqrt{3} \text{ m/s dan } v_y = 20 \text{ m/s}$
- C. $v_x = 10 \text{ m/s dan } v_y = 10 \text{ m/s}$
- D. $v_x = 10 \text{ m/s dan } v_y = 10\sqrt{3} \text{ m/s}$
- E. $v_x = 10\sqrt{3} \text{ m/s dan } v_y = 10 \text{ m/s}$

13. Perhatikan gambar berikut!

Jika sin $53^{\circ} = 4/5$, komponen-komponen vektor F adalah

- A. $F_x = 6 \text{ N dan } F_y = 8 \text{ N}$
- B. $F_x = 8 \text{ N dan } F_y = 6 \text{ N}$
- C. $F_x = -6 \text{ N dan } F_y = 8 \text{ N}$
- D. $F_x = -8 \text{ N} \text{ dan } F_y = 6 \text{ N}$
- E. $F_x = -8 \text{ N dan } F_y = -6 \text{ N}$

14. Perhatikan gambar berikut!

Jika sin 53° =4/5, komponen-komponen vektor **S** adalah....

- A. Sx = 6 N dan Sy = 8 N
- B. Sx = 8 N dan Sy = 6 N
- C. Sx = -6 N dan Sy = 8 N
- D. Sx = -8 N dan Sy = 6 N
- E. Sx = -8 N dan Sy = -6 N

15. Vektor kecepatan 10 m/s yang memiliki arah -210° terhadap sumbu x (+). Komponen vektor tersebut adalah....

- A. $v_x = -5\sqrt{3} \text{ m/s}, v_y = 5 \text{ m/s}$
- B. $v_x = -5\sqrt{3} \text{ m/s}, v_y = -5 \text{ m/s}$
- C. $v_x = -5\sqrt{2} \text{ m/s}, v_y = 5\sqrt{2} \text{ m/s}$
- D. $v_x = -5 \text{ m/s}, v_v = 5\sqrt{3} \text{ m/s}$
- E. $v_x = -5 \text{ m/s}, v_y = 5\sqrt{3} \text{ m/s}$

16. Tiga vektor perpindahan seperti pada gambar.

Jika luas tiap kotak 4 m², resultan tiga vektor tersebut adalah....

- A. $3\sqrt{2}$ m ke arah 37° dari timur ke utara
- B. 5 m ke arah 37° dari timur ke utara
- C. 5 m ke arah 53° dari timur ke utara
- D. 10 m ke arah 37° dari timur ke utara

- E. 10 m ke arah 53° dari timur ke utara
- 17. Di titik pusat diagonal persegi terdapat empat vektor gaya seperti pada gambar berikut:

Besar masing-masing vektor, $F_1 = 4 \text{ N}$,

$$F_2 = 1 N, F_3 = 1 N, F_2 = 4 N$$

Resultan empat vektor tersebut adalah....

- A. 3 N ke arah sumbu x (+)
- B. 3 N ke arah sumbu x (-)
- C. $3\sqrt{2}$ N ke arah sumbu x (+)
- D. $3\sqrt{2}$ N ke arah sumbu x (-)
- E. 5 N ke arah sumbu x (-)
- 18. Di titik P terdapat dua vektor medan magnet yang besarnya masing-masing B_1 = 8 tesla dan B_2 = 5 tesla

Resultan medan magnet tersebut adalah....

- A. 3 tesla
- B. 4 tesla
- C. 5 tesla
- D. 6 tesla
- E. 13 tesla
- 19. Tiga buah vektor gaya seperti pada gambar:

Resultan vektor tersebut adalah....

- A. $\sqrt{20}$ N ke sumbu x (-)
- B. 20 N ke sumbu x (+)
- C. 20 N ke sumbu x (-)
- D. 30 N ke sumbu x (-)
- E. 30 N ke sumbu x (+)

20. Perhatikan gambar gaya-gaya berikut ini!

Resultaan ketiga gaya tersebut adalah

- A. 0 N
- B. 2 N
- C. $2\sqrt{3}$ N
- D. 3 N
- E. $3\sqrt{3}$ N

21. Arnov berjalan ke timur sejauh 16 m kemudian berbelok 143° (sin 37° = 0,6) dari timur ke barat dan berjalan sejauh 10 m kemudian berhenti.

Berdasarkan data tersebut maka:

- 1) Komponen pergeseran Arnov ke arah utara sejauh 6 m
- 2) Komponen pergeseran Arnov ke arah timur sejauh 8 m
- 3) Pergeseran Arnov dari posisi awlnya sejauh 10 m
- 4) Pergeseran Arnov dari posisi awalnya sejauh 14 m
- 5) Arah pegeseran Arnov tdari posisi awalnya 37° dari timur ke utara Pernyataan yang benar adalah....
- A. 1) dan 2)
- B. 4) dan 5)
- C. 3) dan 5)
- D. 1), 2), dan 4)
- E. 1), 2), 3), dan 5)

22. Tiga vektor perpindahan seperti pada gambar.

Jika tiap persegi luasnya 4 m², resultan vektor tersebut adalah....

- A. 6 m
- B. 8 m
- C. 10 m
- D. 20 m
- E. 25 m
- 23. Tiga buah vektor besar dan arahnya ditunjukkan seperti gambar berikut.

Resultan ketiga vektor tersebut adalah

- A. 125 N
- B. 100 N
- C. 75 N
- D. 50 N
- E. 25 N
- 24. Seorang anak bermain mobil *remote*. Sambil duduk, mobil yang semula diam didekat kakinya digerakkan ke timur sejauh 5 m, kemudian dibelokkan ke selatan sejauh $5\sqrt{3}$ m dan akhirnya dibelokkan ke barat sejauh 10 m. Perpindahan mobil *remote* tersebut dari tempat duduk anak sejauh....
 - A. $5\sqrt{3}$ m
 - B. 8 m
 - C. 10 m
 - D. 20 m
 - E. 25 m
- 25. Sebuah benda dikenai gaya seperti seperti pada gambar.

Besar dan arah gaya yang dialami benda tersebut adalah

- A. 10 N dengan arah 60° dari barat ke utara
- B. $10\sqrt{3}$ N dengan arah 30° dari barat ke utara
- C. 20 N dengan arah 30° dari timur ke utara
- D. 20 N dengan arah 60° dari utara ke barat
- E. 20 N dengan arah 60° dari barat ke utara

KUNCI JAWABAN EVALUASI

No	Kunci	No	Kunci	No	Kunci
Soal	Jawaban	Soal	Jawaban	Soal	Jawaban
1	A	11	В	21	Е
2	C	12	В	22	D
3	D	13	C	23	D
4	В	14	В	24	C
5	Е	15	A	25	Е
6	C	16	D		
7	В	17	D		
8	C	18	C		
9	D	19	D		
10	D	20	A		

DAFTAR PUSTAKA

Foster, Bob .2014. Akselerasi Fisika 1. Bandung: Penerbit Duta

Halliday, D, Resnick, R. 1992. *Fisika jilid* 1. Jakarta: Erlangga.

Kanginan, Marthen. 2017 . Fisika untuk SMA Kelas X. Jakarta: Erlangga