Задание 1 - Умножения матрицы на вектор с параллельной инициализацией массивов

M = N	Количество потоков															
	1		2		4		7		8		16		20		40	
	T1	S1	T2	S2	T4	S4	T7	S7	T8	S8	T16	S16	T20	S20	T40	S40
20000 (3052 MiB)	0,59	1,05	0,31	1,94	0,17	3,58	0,10	6,10	0,09	6,94	0,05	12,61	0,04	15,63	0,03	22,54
40000 (12207 MiB)	2,58	0,90	1,30	1,79	0,67	3,44	0,38	6,15	0,32	7,32	0,17	13,90	0,13	17,36	0,07	32,48

Анализируя коэффициент ускорения Sp(n) для различных размеров матриц и числа потоков, можно сделать следующие выводы о масштабируемости программы:

- 1. Рост ускорения при увеличении числа потоков Ускорение растет с увеличением количества потоков, но не линейно. Это типично для параллельных программ, так как накладные расходы на управление потоками и доступ к памяти могут снижать эффективность.
- 2. Уменьшение эффективности при большом числе потоков При 40 потоках ускорение (например, Sp(40)=22.54 для 20000×20000 и Sp(40)=32.48 для 40000×40000) значительно меньше, чем теоретически ожидаемые 40 раз. Это указывает на накладные расходы и возможные узкие места в системе (например, ограничение пропускной способности памяти).
- 3. Нелинейность ускорения Для малых чисел потоков (1, 2, 4) ускорение близко к линейному, но при дальнейшем росте начинает снижаться. Например, при 8 потоках Sp(8)=6.94 для 20000×20000 , что довольно близко к идеальному Sp(8)=8. Однако при 16 потоках ускорение уже составляет Sp(16)=12.61, что указывает на возрастающие накладные расходы.

Вывод о масштабируемости (В сравнении с ОрепМР версией): ОрепМР показывает лучшее ускорение, особенно в диапазоне 8—20 потоков. Версия на ОрепМР более эффективно использует многопоточность и ресурсы системы, особенно при умеренном количестве потоков, а для версии на основе jthread возможно требуется дополнительная доработка кода чтобы добиться более высокой эффективности.