Values	Theory	Simulation
V _{R1}	2,27V	2,78V
V _{R2}	1,357	1,33V
V _{R3}	1,357	1,33V
V _{R4}	2,117	2,14 V
V _{R5}	0181 V	V1810
V _{R6}	71067	7,08V
I _{R1}	1,26mA	1/26MA
I _{R2}	AMINIO	Olyona
I _{R3}	Amb, o	4 your
I _{R4}	OHSMA	AMONIO
I _{R5}	0181mA	AMIP; O
I _{R6}	1,26mA	1,26mA
P _{R1}	3,48W	3,5026
P _{R2}	015SW	© 153W
P _{R3}	0,550	0,536
P _{R4}	0,35W	0,386
P _{R5}	0,66 W	0,660
P _{R6}	8,89W	8192W

$$P = 1V$$
 $P_1 = (1,26 \text{ mA})(2,78V)$
 $= 3,502 \omega$
 $P_2 = (0,40 \text{ mA})(1,23V)$
 $= 0,53 \omega$
 $P_4 = (0,46 \text{ mA})(2,14V)$
 $= 0,88 \omega$
 $P_5 = (0,81 \text{ mA})(0,81V)$
 $= 0,66 \omega$
 $P_6 = (1,26 \text{ mA})(4,08V)$
 $= 8,92 \omega$

PART III: Conclusion

Because of the resistor's tolerance we see deviations. Tolerance cause different values and because of this values our calculations and simulation results are different.

