Quiz: Sequence Models & Attention Mechanism

Congratulations! You passed!

Grade received 90%

Latest Submission Grade 90%

To pass 80% or

higher

1. Consider using this encoder-decoder model for machine translation.

1/1 point

Go to next item

True/False: This model is a "conditional language model" in the sense that the decoder portion (shown in purple) is modeling the probability of the output sentence y given the input sentence x.

○ False

True

	Correct The encoder-decoder model for machine translation models the probability of the output sentence y conditioned on the input sentence x.		
2.	• In beam search, if you increase the beam width B, which of the following would you expect to be true?	1 / 1 point	
	Beam search will converge after fewer steps.		
	Beam search will use up less memory.		
	Beam search will generally find better solutions (i.e. do a better job maximizing P (y x)).		
	Beam search will run more quickly.		
	∠ [™] Expand		
	 Correct As the beam width increases, beam search runs more slowly, uses up more memory, and converges after more steps, but generally finds better solutions. 		
	In machine translation, if we carry out beam search without using sentence normalization, the algorithm we to output overly short translations.	ill tend	1 / 1 point
	True		
	○ False		
	∠ ⁷ Expand		
	⊘ Correct		

4. Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes $P(y\mid x)$.

1/1 point

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.95*10^{-7}$$

$$P(y^* \mid x) = 3.42*10^{-9}$$

True/False: Trying a different network architecture could help correct this example.

- True
- () False

⊘ Correct

 $P(y^* \mid x) < P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm. If the RNN model is at fault, then a deeper layer of analysis could help to figure out if you should add regularization, get more training data, or try a different network architecture.

5. Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggests you should not focus your attention on improving the search algorithm.

1/1 point

- True
- False

Expand

✓ Correct

 $P(y^* \mid x) > P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

6. Consider the attention model for machine translation.

0/1 point

Further, here is the formula for $\alpha^{< t,t'>}$.

$$\alpha^{< t,t'>} = \frac{\exp(e^{< t,t'>})}{\sum_{t'=1}^{T_x} \exp(e^{< t,t'>})}$$

Which of the following statements about $\alpha^{< t,t'>}$ are true? Check all that apply.

- We expect $\alpha^{< t, t'>}$ to be generally larger for values of $a^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)
- We expect $\alpha^{< t, t'>}$ to be generally larger for values of $\alpha^{< t>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)
 - This should not be selected
- $\boxed{\hspace{-0.2cm} \swarrow \hspace{-0.2cm} \sum_{t'} \alpha^{< t, t'>}} = 1 \qquad \qquad \text{(Note the summation is over t'.)}$

✓ Correct

9.		1/1 point
	Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?	
	aaa_aaaaaarr_dddddddddv_aaaaaaa_rrrrkk	
	oaa rd var k	
	ardvark	
	aardvark	
	aaaaaaaaarrdddddddddvaaaaaarrrrkk	
	∠ ⁷ Expand	
	Correct The basic rule for the CTC cost function is to collapse repeated characters not separated by "blank". If a character is repeated, but separated by a "blank", it is included in the string.	
10.	In trigger word detection, $x^{< t>}$ is:	1/1 point
	\bigcirc Whether someone has just finished saying the trigger word at time t .	
	\bigcirc Whether the trigger word is being said at time t .	
	lacksquare Features of the audio (such as spectrogram features) at time t .	
	igcap The t -th input word, represented as either a one-hot vector or a word embedding.	
	∠ ⁷ Expand	
	⊘ Correct	