Econometrics

February 17, 2023

Topic 11: Lasso And Beyond: Convex Learning

by Sai Zhang

Key points:

Disclaimer:

11.1 Lasso

Lasso (Least absolute Shrinkage and Selection Operator), proposed by Tibshirani (1996), aims to minimize the SSR (sum of residual squares) subject to the L1-norm (sum of the absolute value) of the coefficients being less than a constant.

11.1.1 Set up

For data $(\mathbf{x}_i, y_i)_{i=1}^n$, where

- y_i is the outcome for individual i

- $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})'$ is the $p \times 1$ vector of predictors

Then the Lasso estimator $(\hat{\alpha},\hat{\beta})$ is defined as

$$\left(\hat{\alpha}, \hat{\boldsymbol{\beta}}\right) = \arg\min_{\alpha, \boldsymbol{\beta}} \left\{ \sum_{i=1}^{n} \left(y_i - \alpha - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\}$$
 s.t.
$$\sum_{j=1}^{p} |\beta_j| \le \lambda$$

for the $n \times 1$ response vector $\mathbf{y} = (y_1, \dots, y_n)'$, the $n \times p$ design matrix $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)'$ where $\mathbf{x}_i = (x_{i1}, \dots, x_{ip})'$ is a $p \times 1$ vector. Here $\hat{\alpha} = \overline{y}$, w.l.o.g., let $\overline{y} = 0$ and omit α for simplicity.

In matrix form, we have

• constrained form:

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \frac{1}{2n} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 \right\}$$
 s.t. $\|\boldsymbol{\beta}\|_1 \le \lambda$

• unconstrained form:

$$\hat{\boldsymbol{\beta}}(\lambda) = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \frac{1}{2n} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1 \right\}$$

where the regularization parameter $\lambda \geq 0$:

-
$$\lambda \to \infty$$
: $\hat{\boldsymbol{\beta}}_{lasso} \to \hat{\boldsymbol{\beta}}_{OLS}$

-
$$\lambda = 0$$
: $\hat{\boldsymbol{\beta}}_{lasso} = \mathbf{0}$

11.1.2 Solving Lasso

Lasso is essentially a quadratic optimization problem. Hence, the solution is given by taking the derivative (of the unconstrainted question) and set it equal to 0

$$\frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\beta}} \left(\frac{1}{2n} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda \|\boldsymbol{\beta}\|_{1} \right) = 0$$

$$\Rightarrow \frac{1}{n} \underbrace{\mathbf{X'}}_{p \times n} \underbrace{\left(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\right)}_{=\epsilon, n \times 1} = \lambda \begin{cases} \mathrm{sign}\left(\beta_{j}\right), & \beta_{j} \neq 0 \\ [-1, 1], & \beta_{j} = 0 \end{cases}$$

this result follows the fact the L-1 norm $\|\beta\|$ is piecewise linear:

11.2 Penalized Least Square Estimation

Lasso is one special class of Penalized Least Square (PLS) Estimation. For the linear regression model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, if $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_n)$, we have PLS as

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \frac{1}{2n} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_2^2 + \sum_{j=1}^p p_{\lambda} \left(|\beta_j| \right) \right\}$$

where $p_{\lambda}(\cdot)$ is a penalty function indexed by the regularization parameter $\lambda \geq 0$

References

Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society: Series B (Methodological)*, 58(1):267–288, 1996.