Huffman Coding

- Proposed by Dr. David A. Huffman
- "A Method for the Construction of Minimum Redundancy Codes"
- Applicable to many forms of data transmission
 - example: text files
- Usage:
 - Fax Machines
 - ASCII
- Variations on ASCII
 - min number of bits needed
 - cost of savings

- Huffman coding is a form of statistical coding
- Not all characters occur with the same frequency!
- Yet, why all characters allocated the same amount of space -ASCII
 - 1 char = 1 byte, be it $\frac{1}{2}$ or $\frac{1}{2}$

- Therefore, any savings in tailoring codes to frequency of character?
- Code word lengths are no longer fixed like ASCII.
- Code word lengths vary and will be shorter for the more frequently used characters !!.

Intuition

• Consider the following short text: Oh Man What A Scene.

Count up the occurrences of all characters in the text

• O \rightarrow 1, h \rightarrow 2, M \rightarrow 1, a \rightarrow 2, n \rightarrow 2, W \rightarrow 1, t \rightarrow 1, A \rightarrow 1, S \rightarrow 1, c \rightarrow 1, SPACE \rightarrow 4

• Create binary tree nodes with character and frequency of each character

- Place nodes in a priority queue
 - The <u>lower</u> the occurrence, the higher the priority in the queue.

Huffman Encoding Algorithm

- 1. The source symbols are listed in order of decreasing probability (i.e. high to low).
- 2. The two source symbols of *lowest probability* are assigned a 0 and a 1.
- 3. Combine (add) these two symbols of low probability and generate a new probability. [as a new symbol!]
- 4. The probability of the new symbol is placed in the list in accordance with its value [decreasing order as in step 1]
- 5. Repeat until you are left with a final list of source statistics (symbols) of *only two* for which a 0 and a l are assigned. [step 2~ step 4]
- 6. Trace the sequence of 0s and 1s assigned to that symbol as well as its successors backwards. \rightarrow It's the codeword

Example:

We have 5 Symbols with probabilities 0.4, 0.2, 0.2, 0.1, and 0.1. Encode using Huffman coding scheme.

Symbol	Stage 1	Stage2	Stage 3	Stage 4
S1	0.4	0.4	0.4 (top)	0.6
S2	0.2	0.2 (top)	→ 0.4 0	0.4
S3	0.2	0.2	0.2	_
S4	0.1	0.2	1	
S5	0.1			
	1			

Symbol	Probability	codes
S1	0.4	00
S2	0.2	10
S 3	0.2	11
S4	0.1	010
S 5	0.1	011

• a) Find the avg. code word length, b) Entropy, c) variance of avg. code word length

• Solution: a) avg. code word length:

•
$$L' = 0.4(2) + 0.2(2) + 0.2(2) + 0.1(3) + 0.1(3) = 2.2$$

• Entropy= H(S)=

• $0.4 \log (1/0.4) + 0.2 \log (1/0.2) + 0.2 \log (1/0.2) + 0.1 \log$

 $(1/0.1) + 0.1 \log (1/0.1) = 2.121$

Symbol	Probability	codes
S1	0.4	00
S2	0.2	10
S3	0.2	11
S4	0.1	010
S5	0.1	011

- Note:
- i) The entropy is lower than Avg. code word length. [as per theory]
- $H(S) \le L' < H(S) + 1$
- ii) The 0 and 1 can be assigned the other way too. Even, the combined symbol can be placed below the same probability symbol.
- Now, code words may differ, their length too may differ!. But, the avg. codeword length remains the same!!

• Thus, we measure the variance of code-word length.

•
$$\sigma^2 = \sum_{k=0}^{K-1} p_k (l_k - L')^2$$

$$= 0.4(2-2.2)^{2} + 0.2(2-2.2)^{2} + 0.2(2-2.2)^{2} + 0.1(3-2.2)^{2} + 0.1(3-2.2)^{2} + 0.1(3-2.2)^{2}$$

$$= 0.16$$

Ex: [method 2: different choices]

We have 5 Symbols with probabilities 0.4, 0.2, 0.2, 0.1, and 0.1. Encode using Huffman coding scheme.

Symbol	Stage 1	Stage2	Stage 3	Stage 4
S1	0.4	0.4	- - 0.4	0.6 0
S2	0.2	0.2	→ 0.4 0	0.4
S3	0.2	0.2	0.2	_
S4	0.1 _0	0.2	1	
S 5	0.1			
	1			

Symbol	Probability	codes
S1	0.4	1
S2	0.2	01
S3	0.2	000
S4	0.1	0010
S5	0.1	0011

• Solution: a) avg. code word length:

•
$$L' = 0.4(1) + 0.2(2) + 0.2(3) + 0.1(4) + 0.1(4) = 2.2$$

•
$$\sigma^2 = \sum_{k=0}^{K-1} p_k (l_k - L')^2$$

$$= 0.4(1-2.2)^{2} + 0.2(2-2.2)^{2} + 0.2(3-2.2)^{2} + 0.1(4-2.2)^{2} + 0.1(4-2.2)^{2}$$

$$= 1.36$$

• Takeaway: [Should move the combined symbol up to get min. variance]

- Are we better ?
 - 5 Symbols: S1S2S3S4S5
 - Huffman method: $10100000100011 \rightarrow 14$ bit [from method 2]
 - ASCII: 8*5=40 bit.

- A **boiling question**: Which is better:
 - → Shannon-Fano, Huffman..? Try at Home