DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

IBM NALAIYA THIRAN PROJECT

Project Planning Phase

Date	22 October 2022
Team ID	PNT2022TMID17295
Project Name	IoT Based Smart Crop Protection System for Agriculture
Maximum Marks	8 Marks

Project Planning (Product Backlog, Sprint Planning, Stories, story points)

Product Backlog, Sprint Schedule, and Estimation:

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points (40)	Priority (Low to High)	Team Members	
Sprint-1	Registration	USN-1	As a user, I can register for the required dataset by entering my email, password, and confirming my password.	3	High	Nandha sriram.p	
Sprint-1		USN-2	As a user, I will receive confirmation email and the SMS once I have registered for the application	once I have registered for the		Nandhakumar.s	
Sprint-2	Cloud services	USN-3	As a user, I can register for the application through Facebook or any social media	1 Low		nishanth	
Sprint-4		USN-4	As a user, I can register for the application through Gmail/web service	2 Medium		Muhammednaval	
Sprint-3	Login	USN-5	As a user, I can log into the application network by entering email & password	4	High	nandha Sriram.p	
Sprint-2	Pre processing	USN-6	As a farmer, the user must be able to find the system easy to access so pre-processes and other task must be perfect.	3 High		Nandha kumar	
Sprint-1	Collecting Dataset	USN-7	To collect various sources of animal threats and keep developing a dataset.	reats and 3 Medium		nishanth	
Sprint-4	Integrating	USN-8	To integrate the available dataset and keep improving the accuracy of finding animals	keep 2 High		Muhammed naval	
Sprint-3		USN-9	To find and use appropriate compiler to run and test the data so that we can implement our program	1 Low		Nandha Sriram.p	
Sprint-2		USN-10	Request Mahendra institute of technology to deploy the project in our campus and test	1 Low		Nandha kumar	
Sprint-1	Training	USN-11	As programmer, we need to train our data perfectly so that the program runs smoothly	3 High		nishanth	
Sprint-3		USN-12	Train the data using out available services and IBM dataset from server and improve that	d 2 Medium		Muhammed naval	
Sprint-4	Coding	USN-13	To modify the code according to our program and improve the efficiency of that code	n 4 High		Nandha kumar	
Sprint-2		USN-13	To improve performance	1 Low		Nandha Sriram.p	
Sprint-2	Record	USN-5	To record the data and plot the graph to show the characteristics officially	4 High		Nandha Sriram.p	
Sprint-1	Planning	USN-4	Plan the programming language and feasibility	3	Medium	Nishanth Muhammed naval	

Sprint-4	USN-14	Demonstrate the working and improve accuracy	2	Low	Nandha kumar
		overall			

Project Tracker, Velocity & Burndown Chart:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed	Sprint Release Date (Actual)
					(as on Planned End	
					Date)	
Sprint-1	20	5 Days	20 Oct 2022	24 Oct 2022	20	21 Oct 2022
Sprint-2	20	5 Days	25 Oct 2022	29 Oct 2022	20	27 Oct 2022
Sprint-3	20	5 Days	31 Oct 2022	4 Nov 2022	20	2 Nov 2022
Sprint-4	20	7 Days	5 Nov 2022	11 Nov 2022	20	8 Nov 2022

Velocity:

We have a 23-day sprint duration, and the velocity of the team is 20 (points per sprint).

<u>To Find</u>: Calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{23}{20} = 1.15$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

