ECE 445 - Senior Design Project

Auto-Adjusted Smart Desk Lamp for Healthy Lighting

Team Members: Howard Li · Jihyun Seo · Kevin Chen

ECE 445 – Senior Design Project

Slide 2: Project Objective & Goals

Objective:

 Design a desk lamp that automatically adjusts brightness and color temperature for healthy, comfortable indoor lighting.

Goals:

- Automatic adjustment to the lighting condition of surrounding place
- Smooth automatic dimming (no sudden jumps).
- Adapt to ambient daylight + monitor brightness.

Slide 3: Conceptual Design

- **2 Sensors:** 1 measure room light + 1 color temperature.
- MCU (ESP32): processes data, decides lamp output.
- **LED Driver:** powering the LED
- LED Sources: warm-white + cool-white LEDs for adjustable CCT.

Slide 4: Light Sensors (Options Under Review)

Ambient Light / Intensity Sensors:

TSL2591

- Very wide dynamic range (0.000118–88,000 lux) → works in dim + bright light.
- High resolution, good for eye-strain-related adjustments.
- Slightly more complex to configure.

https://www.digikey.com/en/products/detail/ams-osram-usa-inc/TSL25911FN/4162547

BH1750 ← Preferred due to simplicity

- Super easy to use (I²C, plug-and-play).
- Cheap, widely available.
- Lower precision, narrower lux range than TSL2591.
- **best for simplicity/low cost**, fine for desk lamp control indoors.
 - https://www.digikey.com/en/products/detail/rohm-semiconductor/BH1750FVI-TR/2041441?s=N4IgTCBcDalEIAkCMB2ArABhAXQL5A
 - https://www.amazon.com/s?k=bh1750&hvadid=693870254154&hvdev=c&hvexpln=67&hvlocphy=9022196&hvnetw=g&hvocijid=13948894794215514942
 --&hvqmt=e&hvrand=13948894794215514942&hvtargid=kwd-301548640303&hydadcr=15786_13524375&mcid=33860f70e0703e629d47168e07bc85b3
 &tag=googhydr-20&ref=pd_sl_60k1x8pm28_e_p67

Slide 5: Color Sensors (Options Under Review)

VEML6040 ← preferred

- Small, low-cost RGBW color + lux sensor.
- Can directly estimate CCT (color temperature).
- Not as advanced as AS72651

https://www.digikey.com/en/products/detail/vishay-semiconductor-opto-division/VEML6040A3OG/5168308?s=N4IqICBcDaIGoFECyAZAbABqCwZAXQF8q

AS72651-BLGT

- UART and I2C output, can save measurements to registers
- More complex to work with- has more pins and more complicated output
- More expensive

https://www.digikey.com/en/products/detail/ams-osram-usa-inc/AS72651-BLGT/7428279

Slide 5: LED White Lighting Sources

Warm White (2700–3000K) – natural indoor / evening light.

https://www.digikey.com/en/products/detail/cree-led/JK2835AWT-P-U27EB0000-N0000001/8020322

Cool White (6000–6500K) – daylight / productivity light.

https://www.digikey.com/en/products/detail/cree-led/JB3030AWT-P-H65EA0000-N0000001/8020345

Approach: Mix both channels (PWM control) to reach ~2700K–6500K range.
 (Insert diagram showing LED mixing → perceived color temperature)

Slide 6: 2-LED Drivers that powers 2-LEDs

LDD-350L

https://www.digikey.com/en/products/detail/mean-well-usa-inc/LDD-350L/7704754

LDD-350L			In-Stock: 2,732		
	DigiKey Part Number	1866-3109-ND	Check for Additional Incoming Stock		
AND PREAMAKETY THE	Manufacturer	MEAN WELL USA Inc.	QUANTITY		
	Manufacturer Product Number	LDD-350L			
	Description	LED DRIVER CC BUCK 2-32V 350MA			
1	Manufacturer Standard Lead Time	12 Weeks	Add to	o List	Add to Cart
Image shown is a representation only. Exact					
nage shown is a representation only. Exact	Customer Reference				
pecifications should be obtained from the product		350mA 2 ~ 32V Constant Current LED Driver Buck Topology 1 Output	All prices are in USD Tube		
pecifications should be obtained from the product				UNIT PRICE	EXT PRICE
pecifications should be obtained from the product	Detailed Description	Output	Tube	UNIT PRICE \$3.12000	EXT PRICE \$3.12
mage shown is a representation only. Exact pecifications should be obtained from the product data sheet:	Detailed Description	Output	Tube QUANTITY 1 Note: Due to DigiKey	\$3.12000	\$3.12 ackaging type may change
pecifications should be obtained from the product at a sheet.	Detailed Description	Output	Tube QUANTITY 1 Note: Due to DigiKey	\$3.12000 v value-add services the pa	\$3.12 ackaging type may change

Slide 7: Microcontroller Choice

Slide 6: Microcontroller Choice

- ESP32 (primary candidate):
 - Multiple ADC/I²C channels for sensors.
 - PWM outputs for LED dimming.

Reference link for alternative RGB Led project from youtube

esp32 datasheet en.pdf

https://www.youtube.com/watch?v=IMaDJIYp29s

Slide 8: Block diagram with checklists

- Are power lines labeled with voltage?
- Will microcontrollers have enough pins?
- Will chips tolerate the signals they are being fed (e.g. is the voltage too high?)
- O Do students know and understand the interfaces they are using with the chips? (e.g. "data" on their block diagram should be explained)

ESP32 DEV. BOARD PINOUT

Block Diagram

Block Diagram

