

OKAN ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ

2015-16

MAT234 Matematik IV – Ödev 7

N. Course

SON TESLİM TARİHİ: Salı 26 Nisan 2016 saat 16:00'e kadar.

Egzersiz 13 (Absolute and Conditional Convergence). $[2 \times 20p]$

$$(a)\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\cosh n}$$

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\cosh n}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^n \log n}{n - \log n}$.

For each series above, does the series converge absolutely, converge conditionally or diverge?

[HINT: If $f(x) = \frac{\log x}{x - \log x}$, calculate f'(x). Is f'(x) > 0 or < 0 for large x?]

Egzersiz 14 (Power Series). $[3 \times 20p]$ Find the radius of convergence R, and the open interval of convergence (-R, R), of each of the following power series:

(a)
$$\sum_{n=0}^{\infty} \frac{(2x)^n}{\sqrt{n^2+3}}$$
,

(b)
$$\sum_{n=0}^{\infty} \frac{(n)! x^n}{(2n)!}$$
,

(a)
$$\sum_{n=0}^{\infty} \frac{(2x)^n}{\sqrt{n^2 + 3}}$$
, (b) $\sum_{n=0}^{\infty} \frac{(n)!x^n}{(2n)!}$, (c) $\sum_{n=0}^{\infty} \frac{x^n}{\cosh(2n)}$.

[HINT: $\cosh z = \frac{1}{2}(e^z + e^{-z}).$]

Ödev 6'nın çözümleri

^{12. (}a) Diverges by the Ratio Test. A proof is left for you to do. (b) Diverges by the Comparison Test with $\sum \frac{1}{\sqrt{n}}$.

⁽c) Diverges by the Divergence Test.(d) Converges by the Integral Test.(e) Converges by the Ratio Test.