Autor: Andrés García Medina

email: andres.garcia.medina@uabc.edu.mx

```
data(cars)
In [1]:
In [2]: print(dim(cars))
       [1] 50 2
In [3]: print(cars[1:10,])
           speed dist
       1
                    2
       2
                   10
               4
       3
               7
                    4
       4
                   22
       5
               8
                   16
       6
                   10
       7
              10
                   18
       8
              10
                   26
       9
              10
                   34
       10
              11
                   17
In [4]: pairs(cars)
```



```
In [5]: cm1 <- lm(dist ~ speed + I(speed^2), cars)</pre>
```

In [6]: summary(cm1)

Call.

lm(formula = dist ~ speed + I(speed^2), data = cars)

Residuals:

Min 10 Median 30 Max -28.720 -9.184 -3.188 4.628 45.152

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 2.47014 14.81716 0.167 0.868 speed 0.91329 2.03422 0.449 0.656 I(speed^2) 0.09996 0.06597 1.515 0.136

Residual standard error: 15.18 on 47 degrees of freedom Multiple R-squared: 0.6673, Adjusted R-squared: 0.6532 F-statistic: 47.14 on 2 and 47 DF, p-value: 5.852e-12

La tercera columna nos da el parámetro estimado dividido por su error estándar estimado:

bajo
$$H_0: \beta_i = 0$$
,

$$T_i \sim t_{n-p}$$

Residual estandar error.

$$\hat{\sigma}^2 = \sum \hat{\epsilon}_i^2 / (n - p)$$

donde n – p son los grados de libertad

Multiple R-squared:

$$r^2 = 1 - \frac{\sum e_i^2/n}{\sum (y_i - \overline{y})^2/n}$$

Adjusted R-squared:

$$r_{adj}^2 = 1 - \frac{\sum e_i^2/(n-p)}{\sum (y_i - \bar{y})^2/(n-1)}$$

F-statistics:

Mide a hipótesis nula de que los datos fueron generados solamente por el intercepto contra la alternativa de que fueron generados por el modelo completo

Es posible extraer los componentes del modelo

In [7]: cml\$coefficients

(Intercept): 2.47013778506624 speed: 0.91328761424259 I(speed^2): 0.0999593020698438

```
In [8]:
          cm1$df.residual
        47
 In [9]: cml$residuals
        1: -5.72263707515412 2: 2.27736292484591 3: -9.76115688618673 4: 8.23884311381328 5:
        -0.173834031476965 6: -8.7864297809069 7: -3.59894413447652 8: 4.40105586552348 9:
        12.4010558655235 10: -7.61137709218583 11: 3.38862290781417 12: -13.8237286540348
        13: -7.82372865403483 14: -3.82372865403483 15: 0.176271345965173 16:
       -5.23599882002351 17: 2.76400117997649 18: 2.76400117997649 19: 14.7640011799765
        20: -8.84818759015188 21: 1.15181240984812 22: 25.1518124098481 23:
        45.1518124098481 24: -18.6602949644199 25: -12.6602949644199 26: 15.3397050355801
        27: -10.6723209428277 28: -2.67232094282769 29: -14.8842655253751 30:
        -6.88426552537512 31: 3.11573447462488 32: -9.29612871206225 33: 4.70387128793775
        34: 24.7038712879377 35: 32.7038712879378 36: -19.9079105028891 37:
        -9.90791050288906 38: 12.0920894971109 39: -28.7196108978556 40: -12.7196108978556
        41: -8.71961089785556 42: -4.71961089785556 43: 3.28038910214444 44:
        -4.94276750020761 45: -22.3542237075932 46: -11.9655985191184 47: 10.0344014808816
        48: 11.0344014808816 49: 38.0344014808816 50: -2.77689193478336
In [10]: summary(cm1)$fstatistic
        value: 47.1407481288433 numdf: 2 dendf: 47
In [11]: summary(cm1)$adj.r.squared
        0.65317468105924
In [12]: summary(cm1)$r.squared
        0.66733081652621
In [13]: cm1$model[1:10,]
```

A data.frame: 10 × 3

	dist	speed	I(speed^2)
	<dbl></dbl>	<dbl></dbl>	<i<dbl>></i<dbl>
1	2	4	16
2	10	4	16
3	4	7	49
4	22	7	49
5	16	8	64
6	10	9	81
7	18	10	100
8	26	10	100
9	34	10	100
10	17	11	121

In [14]: model.matrix(cm1)[1:10,]

A matrix: 10 × 3 of type dbl

	(Intercept)	speed	I(speed^2)
1	1	4	16
2	1	4	16
3	1	7	49
4	1	7	49
5	1	8	64
6	1	9	81
7	1	10	100
8	1	10	100
9	1	10	100
10	1	11	121

Una vez ajustado el modelo es importante revisar la plausibilidad de las supocisiones de manera gráfica

```
In [15]: par(mfrow=c(2,2))
    plot(cm1)
```


Explicación:

- Residuals vs. Fitted:
 - $\epsilon_i = y \hat{\mu} \text{ vs. } \hat{\mu} = X \hat{\beta}^i$
 - No se observa ningún problema evidente.
- Scale-Location:
 - Los residuales se estandarizan dividiendo por $\hat{\sigma}\sqrt{1-A_{ii}}$, donde A es la matriz de influencia.
 - La raiz cuadrada reduce la asimetría de la distribución
 - No se observa ningún problema evidente
- Normal Q-Q:
 - los residuales estandarizados se ordenan y grafican respecto los cuantiles de la distribución normal estándar
 - la supocisión de normalidad parece plausible.
- Residuales vs. leverage:

- Los leverage A_{ii} miden el efecto potencial de que una observación particular influya en el ajuste del modelo globalmente.
- La combinación de valores altos de residuales y leverage implican que la observación tiene un efecto substancial en el ajuste del modelo.
- La distancia de Cook mide la influencia de cada observación o dato en el ajuste del modelo:

$$d_k = \frac{1}{(p+1)\hat{\sigma}^2} \sum_{i=1}^n (\hat{\mu}_i^k - \hat{\mu}_i)^2$$

donde el superindice k se refiere a que se ha omitido el dato k en el ajuste, por lo que un valor alto de d_k implica que el punto k influye significativvamente en el modelo.

En esta figura ningún dato se aleja demasiado

Nota:

- Los residuales han sido estandarizados de tal manera que si las suposiciones se satisfacen entonces se deben comportar como desviaciones del tipo N(0,1)
- Por default los 3 valores más extremos se resaltan
- Ajustemos un modelo sin los registros 23,35, 49

Consideremos otras propuestas

```
In [16]: cmlb <- lm(dist ~ speed + I(speed^2), cars[-c(23,35,49),])
    cm2 <- lm(dist ~ speed + I(speed^2)-1, cars)
    cm2b <- lm(dist ~ speed + I(speed^2)-1, cars[-c(23,35,49),])
    cm3 <- lm(dist ~ I(speed^2), cars)
    cm3b <- lm(dist ~ I(speed^2), cars[-c(23,35,49),])</pre>
In [17]: summary(cmlb)
```

Call: $lm(formula = dist \sim speed + I(speed^2), data = cars[-c(23, 35,$ 49),]) Residuals: Min 10 Median 30 Max -24.8686 -6.7502 -0.8686 5.6539 27.8759 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.23123 11.44257 0.282 0.7790 speed 0.80363 1.59112 0.505 0.6160 I(speed^2) 0.09391 0.05217 1.800 0.0787 . - - -0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Signif. codes: Residual standard error: 11.55 on 44 degrees of freedom Multiple R-squared: 0.7451, Adjusted R-squared: 0.7335

F-statistic: 64.3 on 2 and 44 DF, p-value: 8.731e-14

In [18]: par(mfrow=c(2,2))plot(cm1b)

In [19]: summary(cm2)

Call:

 $lm(formula = dist \sim speed + I(speed^2) - 1, data = cars)$

Residuals:

Min 10 Median 30 Max -28.836 -9.071 -3.152 4.570 44.986

Coefficients:

- - -

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.02 on 48 degrees of freedom Multiple R-squared: 0.9133, Adjusted R-squared: 0.9097 F-statistic: 252.8 on 2 and 48 DF, p-value: < 2.2e-16

In [20]: par(mfrow=c(2,2)) plot(cm2)

In [21]: summary(cm2b)

Call: lm(formula = dist ~ speed + I(speed^2) - 1, data = cars[-c(23, 35, 49),]) Residuals: Min 10 Median 30 Max -25.009 -6.872 -1.009 5.618 27.600

Coefficients:

Estimate Std. Error t value Pr(>|t|) speed 1.23494 0.44127 2.799 0.00753 ** I(speed^2) 0.08077 0.02337 3.457 0.00120 **

- - -

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 11.44 on 45 degrees of freedom Multiple R-squared: 0.9394, Adjusted R-squared: 0.9367 F-statistic: 348.6 on 2 and 45 DF, p-value: < 2.2e-16

In [22]: par(mfrow=c(2,2))
plot(cm2b)

In [23]: summary(cm3)

```
Call:
```

lm(formula = dist ~ I(speed^2), data = cars)

Residuals:

Min 10 Median 30 Max -28.448 -9.211 -3.594 5.076 45.862

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 8.86005 4.08633 2.168 0.0351 * I(speed^2) 0.12897 0.01319 9.781 5.2e-13 ***

- - -

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.05 on 48 degrees of freedom Multiple R-squared: 0.6659, Adjusted R-squared: 0.6589

F-statistic: 95.67 on 1 and 48 DF, p-value: 5.2e-13

In [24]: par(mfrow=c(2,2)) plot(cm3)

In [25]: summary(cm3b)

```
Call:
        lm(formula = dist \sim I(speed^2), data = cars[-c(23, 35, 49), ])
        Residuals:
                             Median
             Min
                        10
                                          30
                                                   Max
        -24.6651 -7.5806 -0.7212
                                      5.9364 28.4332
        Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
        (Intercept) 8.77901
                                 3.17971
                                           2.761 0.00831 **
        I(speed^2)
                      0.11972
                                 0.01048 11.424 6.84e-15 ***
        - - -
        Signif. codes:
                        0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
        Residual standard error: 11.46 on 45 degrees of freedom
        Multiple R-squared: 0.7436, Adjusted R-squared: 0.7379
        F-statistic: 130.5 on 1 and 45 DF, p-value: 6.837e-15
In [26]: par(mfrow=c(2,2))
         plot(cm3b)
                 Residuals vs Fitted
                                              Q-Q Residuals
          30
                                                         220 340
                  022 340
```


Seleccion de Modelo

```
In [27]: AIC(cm1,cm1b,cm2,cm2b,cm3,cm3b)
```

Warning message in AIC.default(cm1, cm1b, cm2, cm2b, cm3, cm3b): "models are not all fitted to the same number of observations"

A data.frame: 6 × 2 df **AIC** <dbl> <dbl> cm1 4 418.7721 cm1b 4 368.3032 3 416.8016 cm2 cm2b 3 366.3883 3 416.9860 cm3 cm3b 3 366.5749

Nos quedamos con el modelo cm2b, es decir, sin intercepto y datos atipicos.

Estimamos tiempo de frenado con el mejor modelo

```
In [28]: b <- coef(cm2b)
b
```

speed: 1.23494223751678 **I(speed^2):** 0.0807745330928482

Distancia proporcional a la velocidad

 $d \sim v$

 $d = \beta v$

antes de comenzar a parar

tiempo = distancia/velocidad = $\frac{\beta v}{v}$ = β

finalmente se realiza la conversion de unidades

```
In [29]: t <- (b[1]*60^2)/5280 t
```

speed: 0.842006071034171

Graficamos los resultados y guardamos

```
In [30]: #png(filename = 'cars.png', width = 800, height = 600)
plot(cars)
points(cars$speed,cm1$fitted.values, bg = "red", pch = 21)
points(cars$speed,cm2$fitted.values, bg = "blue", pch = 21)
points(cars$speed[-c(23,35,49)],cm2b$fitted.values, bg = "brown", pch = 21)
points(cars$speed,cm3$fitted.values, bg = "green", pch = 21)
legend("bottomright", legend = c("cm1", "cm2", "cm2b", "cm3"),
```

```
lwd = 3, col = c("red", "blue", "brown", "green"))
#dev.off()
```


Si tenemos nuevas observaciones

newdata = data.frame()

podemos predecir la respuesta

predict(fit, newdata)

es decir, no necesitamos ajustar de nuevo el modelo!