Iteration

Goal

Fit model, compute r.squared, collect coefficient for every country.

One possible solution

```
canada <- gapminder %>%
  filter(country == "Canada")
canada_lm <- lm(lifeExp ~ year, data = canada)
canada_lm %>% glance() %>% pull(r.squared)
canada_lm %>% tidy() %>%
  filter(term == "year") %>%
  pull(estimate)
```

One possible solution

```
canada <- gapminder %>%
  filter(country == "Canada")
canada_lm <- lm(lifeExp ~ year, data = canada)
canada_lm %>% glance() %>% pull(r.squared)
canada_lm %>% tidy() %>%
  filter(term == "year") %>%
  pull(estimate)
```

Copy and paste

One possible solution

```
nz <- gapminder %>%
  filter(country == "New Zealand")
nz_lm <- lm(lifeExp ~ year, data = nz)
nz_lm %>% glance() %>% pull(r.squared)
nz_lm %>% tidy() %>%
  filter(term == "year") %>%
  pull(estimate)
```

Edit for another country

Repeat
140 more
times!

Ostrol W

DUITI

purr

Functions for solving iteration problems

```
# install.packages("tidyverse")
library(tidyverse)
```

Iteration problems look like:

For each ____ do ____

Your Turn 1

First, we need to learn about another data structure.

Run the setup chunk.

Look for three_models in your environment. Click on it to open a Viewer.

What kind of object is this? Does its contents look familiar?

View(three_models)

list [12] (S3: lm)

○ three_models
 ○ [[1]]
 ○ [[2]]
 ○ [[2]]
 ○ [[2]]
 List of length 12
 ○ [[2]]
 A list
 ○ [[2]]
 ○ [[2]]
 ○ [[2]]

List of length 12

[[3]]

View(three_models)

three_models	list [3]	List of length 3
(1)	list [12] (S3: lm)	List of length 12 A list inside
coefficients	double [2]	-307.700 0.193 the list: a
residuals	double [12]	0.7031 0.6090 0.6249 -0.059 model object.
effects	double [12]	-256.307 11.529 0.400 -0.254 -0.019 -1.723
rank	integer [1]	2
fitted.values	double [12]	68.7 69.7 70.6 71.6 72.5 73.5
assign	integer [2]	0 1
() qr	list [5] (S3: qr)	List of length 5
df.residual	integer [1]	10
xlevels	list [0]	List of length 0
call	language	lm(formula = lifeExp ~ year, data = nz)
terms	formula	lifeExp ~ year
model	list [12 x 2] (S3: data.frame)	A data.frame with 12 rows and 2 columns

View(three_models)

model

three_models	list [3]	List of length 3		
<pre>[[1]]</pre>	list [12] (S3: lm)	List of length 12		
coefficients	double [2]	-307.700 0.193		
residuals	double [12]	0.7031 0.6090 0.6249 -0.0592 -0.6533 -1.2874		
effects	double [12]	-256.307 11.529 0.400 -0.254 -0	0.819 -1.423	
rank	integer [1]	2		
fitted.values	double [12]	68.7 69.7 70.6 71.6 72.5 73.5	click on this	
assign	integer [2]	0 1	to get code to	
qr	list [5] (S3: qr)	List of length 5	access this element	
df.residual	integer [1]	10		
xlevels	list [0]	List of length 0		
call	language	lm(formula = lifeExp ~ year, data = nz)		
terms	formula	lifeExp ~ year		

A data.frame with 12 rows and 2 columns

list [12 x 2] (S3: data.frame)

three_models[[1]][["coefficients"]]

Pull out the first element from three_models

Pull out the element called coefficients

(Intercept)

year

-307.699628

0.192821

Lists

A way to store complicated and possibly heterogeneous objects

Lists

A way to store complicated and possibly heterogeneous objects

Lists

A way to store complicated and possibly heterogeneous objects

Introducing purrr::map

map(.x,.f,..)

for each element of .x do .f

. X

f.

a vector

We'll get to that...

- a list
- a data frame (for each column)

WHAT ARE THE COEFFICIENTS FOR EACH MODEL?

for each model in three_models, tidy the model

STRATEGY

- 1. Do it for one element
- 2. Turn it into a recipe
- 3. Use map() to do it for all elements

Your Turn 2

nz_model <- three_models[[1]]</pre>

Do it for one element:

Tidy nz_model.

Solve the problem for one element

nz_model <- three_models[[1]]</pre>

Solve the problem for one element

nz_model <- three_models[[1]]</pre>

Solve the problem for one element

canada_model <- three_models[[2]]</pre>

canada_model %>% tidy()

Solve the problem for one element

<- three_models[[?]]</pre>

TURN IT INTO A RECIPE

Make it a formula

~ <u>X</u> %>% tidy()

purrr's "pronoun" for one element of our vector

DOTFORALL Your recipe is the second argument to map

~ X %>% tidy()
Aformula

purrr's "pronoun" for one element of our vector

Your Turn 3

Run the code, what kind of object is tidy_models?

View(tidy_models)

Another list!

The output of map is **always** another list, the same length as the input.

map functions

function	returns results as
map()	list
map_chr()	character vector
map_dbl()	double vector (numeric)
map_int()	integer vector
map_lgl()	logical vector
map_df()	data frame
walk()	nothing

map_dbl()

If we are asking for output that could be a vector:

[1] 0.1928210 0.2188692 0.1841692

Your Turn 4

Edit the code to instead get the r.squared for each model.

map_dbl(three_models, ~ glance(.x) %>%
 pull(r.squared))

[1] 0.9535846 0.9963855 0.9859202

map functions

single list	two lists	returns results as
map()	map2()	list
map_chr()	map2_chr()	character vector
map_dbl()	map2_dbl()	double vector
map_int()	map2_int()	integer vector
map_lgl()	map2_lgl()	logical vector
map_df()	map2_df()	data frame
walk()	walk2()	nothing

map functions

single list	two lists	many lists	returns results as
map()	map2()	pmap()	list
map_chr()	map2_chr()	pmap_chr()	character vector
map_dbl()	map2_dbl()	pmap_dbl()	double vector
map_int()	map2_int()	pmap_int()	integer vector
map_lgl()	map2_lgl()	pmap_lgl()	logical vector
map_df()	map2_df()	pmap_df()	data frame
walk()	walk2()	pwalk()	nothing

List columns

You can put more than just:

- numbers
- logicals, and
- character strings

in tibbles!

pop

gdpPercap

lifeExp

continent year

Why?

country		data			model	r.square
Afghanistan	continent year Asia 1952 Asia 1957 Asia 1962 Asia 1967 Asia 1972 Asia 1982 Asia 1987 Asia 1992 Asia 1997 Asia 2002 Asia 2007	30.332 31.997 34.020 36.088 38.438 39.854 40.822 41.674 41.763 42.129	pop 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 16317921 22227415 25268405 31889923	gdpPercap 779.4453 820.8530 853.1007 836.1971 739.9811 786.1134 978.0114 852.3959 649.3414 635.3414 726.7341 974.5803	Call: lm(formula = lifeExp ~ year, data = .x) Coefficients: (Intercept) year -507.5343 0.2753	0.034
We kee		70.420 72.000 71.581 72.950		are rel 3630.881 3738.933 2497.438 3193.055 4604.212	ated together. (Intercept) year -594.0725 0.3347	0.493

gdpPercap

9279525 2449.008

pop

continent year

Africa 1952

CC by RStudio

lifeExp

43.077

nest()

Places grouped cases into a list column.

gapminder %>%
 group_by(country) %>%
 nest()

country	data	
	continent year lifeExp pop	gdpPercap
	Asia 1952 28.801 8425333	779.4453
	Asia 1957 30.332 9240934	820.8530
	Asia 1962 31.997 1026708	853.1007
	Asia 1967 34.020 1153796	836.1971
	Asia 1972 36.088 1307946	739.9811
Afghanistan	Asia 1977 38.438 1488037	786.1134
7 (15) (13)	Asia 1982 39.854 1288181	978.0114
	Asia 1987 40.822 1386795	7 852.3959
	Asia 1992 41.674 1631792	1 649.3414
	Asia 1997 41.763 2222741	635.3414
	Asia 2002 42.129 2526840	726.7341
	Asia 2007 43.828 3188992	974.5803
	continent year lifeExp pop	gdpPercap
	Europe 1952 55.230 1282697	
	Europe 1957 59.280 1476505	1942.284
	Europe 1962 64.820 1728137	2312.889
	Europe 1967 66.220 1984060	2760.197
	Europe 1972 67.690 2263554	3313.422
Albania	Europe 1977 68.930 2509048	3533.004
Modific	Europe 1982 70.420 2780097	3630.881
	Europe 1987 72.000 3075321	3738.933
	Europe 1992 71.581 3326498	2497.438
	Europe 1997 72.950 3428038	3193.055
	Europe 2002 75.651 3508512	4604.212
	Europe 2007 76.423 3600523	5937.030

continent year lifeExp

gdpPercap

gapminder

country <fctr></fctr>	continent <fctr></fctr>	year <int></int>	lifeExp <dbl></dbl>	pop <int></int>	gdpPercap <dbl></dbl>
Afghanistan	Asia	1952	28.80100	8425333	779.4453
Afghanistan	Asia	1957	30.33200	9240934	820.8530
Afghanistan	Asia	1962	31.99700	10267083	853.1007
Afghanistan	Asia	1967	34.02000	11537966	836.1971
Afghanistan	Asia	1972	36.08800	13079460	739.9811
Afghanistan	Asia	1977	38.43800	14880372	786.1134
Afghanistan	Asia	1982	39.85400	12881816	978.0114
Afghanistan	Asia	1987	40.82200	13867957	852.3959
Afghanistan	Asia	1992	41.67400	16317921	649.3414
Afghanistan	Asia	1997	41.76300	22227415	635.3414
1–10 of 1,704 rows	S		Previous 1 2	3 4 5	6 100 Next

CC by RStudio

```
gapminder_nested <- gapminder %>%
  group_by(country) %>%
  nest()
gapminder_nested
```

<pre><fctr></fctr></pre>	data <list></list>	
Afghanistan	<tibble></tibble>	
Albania	<tibble></tibble>	
Algeria	<tibble></tibble>	
Angola	<tibble></tibble>	
Argentina	<tibble></tibble>	
Australia	<tibble></tibble>	
Austria	<tibble></tibble>	
Bahrain	<tibble></tibble>	
Bangladesh	<tibble></tibble>	
Belgium	<tibble></tibble>	

1–10 of 142 rows

Previous 1 2 3 4 5 6 ... 15 Next

Your Turn 5

Run the chunk: it pulls out the data column into data_column.

Use the object explorer to take a look at data_column. What kind of object is it?


```
gapminder_nested <- gapminder_nested %>%
 mutate(model = map(data, \sim lm(lifeExp \sim year, data = .x)))
```


1-10 of 142 rows

Previous 1 2 3 4 5 6 ... 15 Next

gapminder_nested %>% pull(model) %>% pluck(1)

country <fctr></fctr>	data <list></list>	model <list></list>	Call: lm(formula = lifeExp ~ year, data =
Afghanistan	<tibble></tibble>	<s3: lm=""></s3:>	
Albania	<tibble></tibble>	<\$3: lm>	Coefficients:
Algeria	<tibble></tibble>	<s3: lm=""></s3:>	(Intercept) year -507.5343 0.2753
Angola	<tibble></tibble>	<s3: lm=""></s3:>	-307.3343 0.2733
Argentina	<tibble></tibble>	<\$3: lm>	
Australia	<tibble></tibble>	<\$3: lm>	
Austria	<tibble></tibble>	<\$3: lm>	
Bahrain	<tibble></tibble>	<\$3: lm>	
Bangladesh	<tibble></tibble>	<\$3: lm>	
Belgium	<tibble></tibble>	<\$3: lm>	

1–10 of 142 rows

Previous 1 2 3 4 5 6 ... 15 Next

```
gapminder_nested <- gapminder_nested %>%
  mutate(r.squared = map_dbl(model,
                                    ~ glance(.x) %>% pull(r.squared)))
               map_dbl()
                                                 model
                                       data
                                                             r.squared
 country
                                                                                 ...and
 <fctr>
                                                  t>
                                                                <dbl>
                                      st>
               takes a list
 Afghanistan
                                               <S3: lm>
                                                           0.94771226
                                    <tionic
                                                                               returns a
 Albania
                                    <tibble>
                                               <$3: lm>
                                                           0.91057777
                                                                                number
                                                           0.98511721
                                    <tibble>
                                               <$3: lm>
 Algeria
                                    <tibble>
                                                           0.88781463
 Angola
                                               <$3: lm>
                                    <tibble>
                                               <$3: lm>
                                                           0.99556810
 Argentina
 Australia
                                    <tibble>
                                               <$3: lm>
                                                           0.97964774
                                               <$3: lm>
                                    <tibble>
                                                           0.99213401
 Austria
                                    <tibble>
 Bahrain
                                               <$3: lm>
                                                           0.96673981
                                    <tibble>
                                               <$3: lm>
 Bangladesh
                                                           0.98936087
 Belgium
                                    <tibble>
                                                           0.99454056
                                               <$3: lm>
```

CC by RStudio

Your Turn 6

(Make sure you run all the chunks before this one, then)

Filter gapminder_nested to find the countries with r.squared less than 0.5.

gapminder_nested %>%
filter(r.squared < 0.5)</pre>

country <fctr></fctr>	data <list></list>	model <list></list>	r.squared <dbl></dbl>	
Botswana	<tibble></tibble>	<\$3: lm>	0.03402340	
Central African Republic	<tibble></tibble>	<\$3: lm>	0.49324448	
Congo, Dem. Rep.	<tibble></tibble>	<\$3: lm>	0.34820278	
Cote d'Ivoire	<tibble></tibble>	<\$3: lm>	0.28337240	
Kenya	<tibble></tibble>	<\$3: lm>	0.44255729	
Lesotho	<tibble></tibble>	<\$3: lm>	0.08485635	
Namibia	<tibble></tibble>	<\$3: lm>	0.43702163	
Rwanda	<tibble></tibble>	<\$3: lm>	0.01715964	
South Africa	<tibble></tibble>	<\$3: lm>	0.31246865	
Swaziland	<tibble></tibble>	<\$3: lm>	0.06821087	

1-10 of 13 rows Previous 1 2 Next

unnest()

poor_fit <- gapminder_nested %>%
filter(r.squared < 0.5)</pre>

gapminder_nested %>% unnest(data)

Column to unnest

	country <fctr></fctr>		<pre>continent <fctr></fctr></pre>	year <int></int>	lifeExp <dbl></dbl>	pop <int></int>
	Botswana	0.03402340	Africa	1952	47.622	442308
	Botswana	0.03402340	Africa	1957	49.618	474639
	Botswana	0.03402340	Africa	1962	51.520	512764
	Botswana	0.03402340	Africa	1967	53.298	553541
CC BY C	Botswana Charlotte Wickham	0.03402340	Africa	1972	56.024	619351

Columns from inside data

```
unnest(poor_fit, data) %>%

ggplot(aes(x = year, y = lifeExp)) +
   geom_line(aes(color = country))
```

CC BY Charlotte Wickham

Your Turn 7

Write code to:

- Add a column to gapminder_nested with the slope coefficient from the model
- Filter to find countries with a slope above 0.6 years/year.
- Plot these countries over time.

```
gapminder_nested <- gapminder_nested %>%
  mutate(slope = map_dbl(model,
                        ~ tidy(.x) %>% filter(term == "year") %>%
pull(estimate)))
gapminder_nested %>%
  filter(slope > 0.60) %>%
  unnest(data) %>%
  ggplot(aes(x = year, y = lifeExp)) +
    geom_line(aes(color = country))
```


Take Away

A table is ...an organizational structure ...that you can manipulate.

country	r.squared	data	model
Botswana	0.03	year .resid 1952	Call: lm(formula = lifeExp ~ year, data = .) Coefficients: (Intercept) year -65.49586 0.06067
Lesotho	0.08	year .resid 1952 -5.2410256 1957 -2.8098543 1962 -0.5876830 1967 -0.3205117 1972 0.4766597 1977 2.4398310 1982 4.8320023 1987 6.4561737 1992 8.4833450 1997 3.8785163 2002 -7.5643124 2007 -10.0431410	Call: lm(formula = lifeExp ~ year, data = .) Coefficients: (Intercept) year -139.16529 0.09557

