WHAT IS CLAIMED IS:

- 1. A semiconductor laser comprising:
 - a substrate;
- a QW active layer structure formed over said substrate, wherein said QW active layer structure includes at least one QW layer comprising $Ga_xIn_{1-x}As_ySb_{1-y}$, and wherein $0.3 \le 1-x$ and wherein $0.003 \le 1-y \le 0.008$.
- 2. The semiconductor laser of Claim 1, wherein said substrate comprises GaAs.
- 3. The semiconductor laser of Claim 1, wherein said laser emits laser light having a wavelength of at least about 1.18 μm .
- 4. The semiconductor laser of Claim 1, wherein said semiconductor laser comprises a VCSEL.
- 5. The semiconductor laser of Claim 4 comprising at least two QW layers of Ga_xIn₁.
 _xAs_ySb_{1-y}.
- 6. The semiconductor laser of Claim 1, wherein said semiconductor laser comprises an edge emitting laser.
- 7. A method of making a QW layer for a semiconductor laser comprising depositing a layer of Ga, In, As, and Sb onto a GaAs substrate, wherein said In is included at an atomic ratio of 30% or more relative to Group-III elements, and wherein said depositing is performed with a partial pressure of Sb that is sufficient to form an active layer of about 0.3% to about 0.8% in atomic ratio of Sb relative to Group-V elements.
- 8. A method of making a QW layer for a semiconductor laser comprising depositing a layer of Ga, In, N, As, and Sb onto a GaAs substrate, wherein said In is included at an atomic ratio of 30% or more relative to Group-III elements, and wherein said depositing is performed with a partial pressure of Sb that is sufficient to form an active layer of about 0.2% to about 6% in atomic ratio of Sb relative to Group-V elements.
- 9. The method of Claim 8, wherein said active layer is deposited between barrier layers of GaN_zAs_{1-z}.
- 10. The method of Claim 9, additionally comprising heat treating said active layer after deposition at a temperature of about 675 to 725 degrees C.
 - 11. A semiconductor laser comprising:

ļ

a substrate;

- a QW active layer structure formed over said substrate, wherein said QW active layer structure includes at least oneQW layers comprises $Ga_xIn_{1.x}As_{1-y_1-y_2}N_{y_1}Sb_{y_2}$, wherein $0.3 \le 1-x$, wherein $0 \le y1 \le 0.03$, and wherein $0.002 \le y2 \le 0.06$.
- 12. The semiconductor laser of Claim 11, wherein said substrate comprises GaAs.
- 13. The semiconductor laser of Claim 11, wherein said laser emits laser light having a wavelength of at least about 1.24 μm .
- 14. The semiconductor laser of Claim 11, wherein said semiconductor laser comprises a VCSEL.
- 15. The semiconductor laser of Claim 14 comprising at least two QW layers of $Ga_xIn_{1-x}As_{1-y_1-y_2}N_{y_1}Sb_{y_2}$.
- 16. The semiconductor laser of Claim 11, wherein said semiconductor laser comprises an edge emitting laser.
- 17. The semiconductor laser of Claim 11, wherein at least one of said active layers is placed between barrier layers of GaN_zAs_{1-z}.
 - 18. The semiconductor laser of Claim 17, wherein $0 \le z \le 0.05$.
 - 19. A semiconductor laser comprising:

 an active layer comprising co-deposited Ga, As, In, N, and Sb; and
 a pair of barrier layers, one on each side of said active layer, said barrier layers
 comprising Ga, As, and N.
 - 20. The semiconductor laser of Claim 19, wherein said substrate comprises GaAs.
- 21. The semiconductor laser of Claim 19, wherein said semiconductor laser has a lasing wavelength of at least about 1.24 μm .
- 22. The semiconductor laser of Claim 19, wherein said semiconductor laser comprises a VCSEL
- 23. The semiconductor laser of Claim 19, wherein said semiconductor laser comprises an edge emitting laser.
 - 24. A method of making a semiconductor laser comprising: depositing a first barrier layer of GaN_zAs_{1.z} onto a substrate;

depositing an active layer of Ga_xIn_{1-x}As_{1-y1-y2}N_{y1}Sb_{y2} over said first barrier layer; and

depositing a second barrier layer of GaN, As_{1-z} over said active layer.

- 25. The method of Claim 24, wherein said substrate comprises GaAs.
- 26. The semiconductor laser of Claim 24, wherein said semiconductor laser comprises a VCSEL.
- 27. The semiconductor laser of Claim 24, wherein said semiconductor laser comprises an edge emitting laser.
- 28. The method of Claim 24, wherein $0.3 \le 1$ -x, wherein $0 \le y1 \le 0.03$, and wherein $0.002 \le y2 \le 0.06$.
 - 29. The method of Claim 24 wherein $0 < z \le 0.05$.
- 30. The method of Claim 24, additionally comprising heat treating said layers at a temperature of about 675 to about 725 degrees C.
 - 31. A method for manufacturing a semiconductor laser device comprising:

forming a laser structure by depositing a QW active layer structure over a substrate, wherein said QW active layer structure includes at least one QW layer comprising $Ga_xIn_{1-x}As_{1-y1-y2}N_{y1}Sb_{y2}$, wherein $0.3 \le 1-x$, wherein $0 \le y1 \le 0.007$, and wherein $0.002 \le y2 \le 0.06$, and

heat treating said laser structure after growth of said QW active layer structure at a temperature of about 570 to 630 degrees C.

32. A method for manufacturing a semiconductor laser device comprising:

forming a laser structure by depositing a QW active layer structure over a substrate, wherein said QW active layer structure includes at least one QW layer comprising $Ga_xIn_{1-x}As_{1-y_1-y_2}N_{y_1}Sb_{y_2}$, wherein $0.3 \le 1-x$, wherein $0.007 \le y1 \le 0.03$, and wherein $0.002 \le \dot{y}2 \le 0.06$, and

heat treating said laser structure, after growth of said QW active layer structure at a temperature of about 670 to 730 degrees C.