Python超入門 講座付録

プログラミ ングで学ぶ 大学数学

1. 線形代数編

2. 解析学編

3. 統計学編

インポート方法

Numpy

import numpy as np

数値計算を効率的に行うための拡張モジュール

- 内部はC言語(及びFortran) で実装されており、高速
- BLAS APIを実装した行列演算ライブラリ

機能はこの辺で調べると良い。

https://note.nkmk.me/numpy/

https://deepage.net/features/numpy/

https://docs.scipy.org/doc/numpy/index.html (マニュアル)

Scipy

プログラミング数学、科学、工学のための数値解析ソフトウェア

- Numpyと組み合わせて使う
- 統計、最適化、積分、線形代数、フーリエ変換、信号・イメージ処理、遺伝的アルゴリズム、ODE ソルバ、特殊関数、その他のモジュールを提供

SciPy

Matplotlib

科学計算用ライブラリNumpyのためのグラフ描画ライブラリ(matplotlib)

- グラフを描画する時に使う
- 折れ線グラフ, ヒストグラム, 散布図, 3Dグラフ等が描ける

※ 機能がめっちゃたくさんあるので、使う時は頑張ってググりましょう。

Matplotlib Plot Examples

line chart

import numpy as np import matplotlib import matplotlib.pyplot as plt

x = np.linspace(0.0,2*np.pi,100) y = np.sin(x)plt.plot(x,y)

#ファイルに図を保存 plt.savefig("sin.png")

画面表示なら # plt.show()

Matplotlib Plot Examples

scatter plot

import matplotlib.pyplot as plt import numpy as np

[0.0, 1.0]の一様乱数を100個生成 a = np.random.rand(100)

b = np.random.rand(100)

plt.scatter(a,b)
plt.savefig("scatter.png")

liner algebara

線形代数編

行列の作り方

- 基本: numpy.array(<List>)

 Listが1次元ならベクトル, 2次元なら行列となる.
 - (3次元以上を指定してもテンソルが作れる.)
- 単位行列 : numpy.eye(<N>) 単位正方行列. 整数値Nでサイズを指定.
- 零行列 : numpy.zeros((<N>,<M>, ...)) 零行列を作成. タプルでサイズを指定.
- ※ リストの内包記法を使って作ると便利.
- ※ numpy.matrix もあるけど使ったことがない.

$$\begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix}$$

np.array([[1, 2], [4, 5]])

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

np.eye(2)

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

np.zeros((2,3))

行列のサイズ,基本演算

■ 行列サイズ: <Array>.shape 行列のサイズがタプルで取得できる.

■ 基本計算

算術演算子	結果
+	足し算
-	引き算
*	要素ごとの掛け算(アダマール積)
@	行列積 (numpy.dotでもok)
/	要素ごとの割り算
**	行列の累乗(負の指数は無理)
//	要素ごとの切り捨て割り算

行列式, 転置行列, 逆行列, 行列ランク

import numpy as np import scipy.linalg as LA

とインポートする。

■ 行列式, 転置行列, 逆行列, 行列ランク

	記述方法
行列式 A 	LA.det (A)
転置行列 A ^T	np.transpose(A)
逆行列 A -1	LA.inv(A)
行列ランク rank A	LA.matrix_rank(A)

固有值

■ 固有値, 固有ベクトル: scipy.linalg.eig(<Array>) 固有値と対応する固有ベクトルを求める.

```
A = np.array( [ [ 8,1], [4,5] ] )
value, vector = LA.eig( A )

print("Eigenvalue")
print(value)

print("Eigenvector")
print("Eigenvector")
print(vector)

Eigenvalue
[ 9.+0.j 4.+0.j]
Eigenvector
[ [ 0.70710678 -0.24253563]
[ 0.70710678 0.9701425 ]]
```

正規直交基底(Gram-schmidt 直交化)

■ 正規直交基底 (Gram-schmidt 直交化): scipy.linalg.qr(<Array>) Gram-schmidt 直交化法を用いて, QR分解を行なっている.

```
A = np.array( [ [ 8,1], [ 4,5] ] )
# QR分解のQが求まった正規直交行列
Q, R = LA.qr( A )
print(Q)
```


Analysis

解析学編

数列, 級数, ε-N論法

■ 交代級数(メルカトル級数)

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}$$

ちゃんとlog2に収束していく

実験で用いたプログラム

```
import matplotlib.pyplot as plt
import numpy as np
numerator = 1
sumValue = 0
x = list(range(1,100))
V = []
for n in x:
    sumValue += (numerator / n)
    numerator += (-1)
    y.append(sumValue)
y_{true} = np.array([np.log(2.0)] + len(x))
plt.plot(x,y,label="series")
plt.plot(x,y_true, label="log2")
plt.savefig("series.png", dpi=300)
```

カントールの区間縮小法

~ 二分法の数学的定式化~

閉区間 $I_n = [a_n, b_n] (n = 1, 2, \dots)$ において,

- 1. $I_1 \supset I_2 \supset \cdots$
- $2. \lim_{n\to\infty} (b_n a_n) = 0$

を満たす時, ある実数 c が存在して, $\bigcap_{n=1}^{\infty}[a_n, b_n] = \{c\}$ が成立.

言い換えると、 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = c$ が成立.

実数の完備性と同値な命題.

二分法: 与えられた関数 f に対して, f(x) = 0 を満たす x を求めるアルゴリズムの 1 つ.

[条件] f は連続, $f(a_0)f(b_0) < 0$ を満たす a_0 , b_0 が与えられる.

[アルゴリズム]

1. $m=\frac{a_i+b_i}{2}$ を求める.

2.
$$\begin{cases} f(m)f(b_i) > 0 \text{ のとき} : a_{i+1} = a_i, b_{i+1} = m \\ f(m)f(b_i) \le 0 \text{ のとき} : a_{i+1} = m, b_{i+1} = b_i \end{cases}$$

3.1へ戻る

f(c)

y = f(x)

[証明]

この更新では, $f(a_n)f(b_n) \leq 0 \quad (\forall n \in \mathbb{N})$ が成り立っている.

$$I_n = [a_n, b_n]$$
 とすれば, $I_i \supset I_{i+1}, b_n - a_n = \frac{(b_0 - a_0)}{2^n} \to 0 \quad (n \to \infty)$ を満たす.

カントールの区間縮小法により, $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=c$ となる c が存在して,

$$f(c)f(c) \le 0 \Rightarrow f(c) = 0$$

補足

初期区間 [a_0, b_0] 内にfの値を0にする値が複数存在する場合

解は一意に定まらないが、使える

二分法の拡張

■ 二分法の問題を以下のように言い換えることができる.

$$\forall \epsilon > 0, \ f(c - \epsilon) \in Y \land f(c + \epsilon) \in Y^c$$
 を満たす c を 1 つ求める. ただし, $Y = \{y \in \mathbb{R} \mid y < 0\}$ または $\{y \in \mathbb{R} \mid y > 0\}$.

集合Yを一般化して

$$Y = \{\omega \mid P(w)$$
が真 $\}$ $(P は命題関数)\}$

とすれば, 実数値連続関数に限らず適用することが可能.

(※)二分探索は関数の定義域を自然数とした場合と考えられるが, 最初のカントールの区間縮小定理を用いた議論は行えない. この拡張は同様に行うことができる.(競技プログラミングでも頻出)

Statistics

統計学編

確率分布

import numpy as np import scipy.stats as ST

■ 扱える分布

https://docs.scipy.org/doc/scipy/reference/stats.html#continuous-distributions

正規分布を例に進めていく

■ 確率密度関数: dist.pdf (<x>, <paramater> ...)

$$pdf(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}$$

標準正規分布の山の値 # x = 0, µ=0, σ=1 dist.pdf (x=0, loc=0, scale=1) ■ 累積分布関数 : dist.cdf(<x> , <paramater> ...)

$$cdf(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

x = 0, μ =0, σ =1 dist.cdf (x=0, loc=0, scale=1)

■ パーセント点: dist.ppf (<y>, <paramater> ...)

$$ppf(q) = cdf^{-1}(q)$$

左側確率が0.5のパーセント点 dist.ppf (q=0.5, loc=0, scale=1)

■ 確率変数: dist.rvs(<paramater> ... , size=<n>)

$$X \sim N(\mu, \sigma^2)$$

複数の確率変数を同時に作れる

$$X_1, X_2, \cdots, X_n \sim N(\mu, \sigma^2)$$

$$\mu$$
=0, σ =1 dist.rvs(loc=0, scale=1)

$$\mu$$
=0, σ =1, n = 10
dist.rvs(loc=0, scale=1, size=10)

中心極限定理(実験)

■ 中心極限定理

期待値 μ , 分散 σ^2 をもつ独立同分布に従う確率変数列 $X_1,~X_2,~\cdots,~X_n$ に対し, $S_n=\sum_{i=1}^n X_i$ とおくと,

$$P(\frac{S_n - n\mu}{\sqrt{n\sigma^2}} \le \alpha) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\alpha} \exp(-\frac{x^2}{2}) dx$$

■実験

ポアソン分布に従うn個の確率変数をつくる.

$$X_1, X_2, \cdots, X_n \sim Po(\lambda), (\mu = \lambda, \sigma^2 = \lambda)$$

平均 $\lambda = 10$ とする.nの値を少しずつ大きくして,分布の形の変化を見る.

仮説検定

■ t検定 (1群): ST.ttest_1samp ([<X_1>, <X_2, ..., <X_n>], <mu_0>)

 $X_1, X_2, \dots, X_n \sim N(\mu, \sigma^2)$ に従うと仮定. ただし μ, σ は未知.

帰無仮説: $\mu=\mu_0$,対立仮説: $\mu\neq\mu_0$,統計量 $t=\frac{X-\mu_0}{\sqrt{\frac{s^2}{n}}}$, s^2 は不偏分散

```
# N( 0,1 ) から n=100でsampling
# mu_0 = 10 で検定を行う.
dist = ST.norm
rvs = dist.rvs( loc=0, scale=1, size=50)
print( ST.ttest_1samp( rvs, 10) )
```

実行結果

Ttest_1sampResult(
 statistic=-67.000797324427779,
 pvalue=7.4690313161094049e-50
)

統計量 t の値とp値が返ってくる. 上の実験では有意水準1%のとき, pvalue < 0.01 より棄却

■ t検定(対応のない2群):

ST.ttest_ind ([X_1, ..., X_n], [Y_1, ..., Y_m], equal_var=(True/False))

$$X_1, X_2, \dots, X_n \sim N(\mu_X, \sigma_X^2), Y_1, Y_2, \dots, Y_m \sim N(\mu_Y, \sigma_Y^2)$$

帰無仮説: $\mu_X = \mu_Y$, 対立仮説: $\mu_X \neq \mu_Y$

● 等分散性が仮定される場合: equal_var = True

統計量
$$t = \frac{\bar{X_n} - \bar{X_m}}{s^2 \sqrt{\frac{1}{n} + \frac{1}{m}}}, \ s = \frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}, \ s_X, \ s_Y$$
は不偏分散

● 等分散性が仮定できない場合: equal_var = False

統計量
$$t=rac{ar{X_n}-ar{X_m}}{\sqrt{rac{s_X}{n}+rac{s_Y}{m}}},\ s_X,\ s_Y$$
は不偏分散

```
# n = 100, X_n ~ N(-2,10)

# m = 200, Y_m ~ N(5, 10).

dist = ST.norm

X = dist.rvs( loc=-2, scale=1, size=100)

Y = dist.rvs( loc=5, scale=10, size=200)

print( ST.ttest_ind( X,Y, equal_var=True))
```

実行結果

```
Ttest_indResult(
statistic=-7.4502221494680771,
pvalue=1.014329824048142e-12
)
```

pvalue < 0.01 より帰無仮説を棄却