today we will present a different perspective on exploration. And it's a bit unusual, but will get us thinking about what exploration really is. This lecture is more about the state-of-the-art research on exploration

Exploration (Part 2)

CS 285

Instructor: Sergey Levine UC Berkeley

Recap: what's the problem?

this is easy (mostly)

Why?

this is impossible

Unsupervised learning of diverse behaviors

What if we want to recover diverse behavior without any reward function at all?

Why?

- ➤ Learn skills without supervision, then use them to accomplish goals
- ➤ Learn sub-skills to use with hierarchical reinforcement learning
- Explore the space of possible behaviors

An Example Scenario

training time: unsupervised

- Definitions & concepts from information theory
- > Learning without a reward function by reaching goals
- > A state distribution-matching formulation of reinforcement learning
- > Is coverage of valid states a *good* exploration objective?
- > Beyond state covering: covering the *space of skills*

- > Definitions & concepts from information theory
- > Learning without a reward function by reaching goals
- > A state distribution-matching formulation of reinforcement learning
- > Is coverage of valid states a *good* exploration objective?
- > Beyond state covering: covering the *space of skills*

Some useful identities

$$p(\mathbf{x})$$
 distribution (e.g., over observations \mathbf{x})

$$\mathcal{H}(p(\mathbf{x})) = -E_{\mathbf{x} \sim p(\mathbf{x})}[\log p(\mathbf{x})]$$

entropy – how "broad" $p(\mathbf{x})$ is

Some useful identities

entropy – how "broad" $p(\mathbf{x})$ is

$$\mathcal{H}(p(\mathbf{x})) = -E_{\mathbf{x} \sim p(\mathbf{x})}[\log p(\mathbf{x})]$$

$$\mathcal{I}(\mathbf{x}; \mathbf{y}) = D_{\mathrm{KL}}(p(\mathbf{x}, \mathbf{y}) || p(\mathbf{x}) p(\mathbf{y}))$$

mutual information between x and y

$$= E_{(\mathbf{x},\mathbf{y})\sim p(\mathbf{x},\mathbf{y})} \left[\log \frac{p(\mathbf{x},\mathbf{y})}{p(\mathbf{x})p(\mathbf{y})} \right]$$

high MI: \mathbf{x} and \mathbf{y} are dependent

low MI: \mathbf{x} and \mathbf{y} are independent

$$= \mathcal{H}(p(\mathbf{y})) - \mathcal{H}(p(\mathbf{y}|\mathbf{x}))$$

mutual information is the reduction in entropy of y, given x. So it tells you how informative x is about y, and because it's symmetric it tells you how informative y is about x

Information theoretic quantities in RL

$$\pi(\mathbf{S})$$
 state $marginal$ distribution of policy π equivalent to p_theta(s) in other lectures

$$\mathcal{H}(\pi(\mathbf{s}))$$
 state $\mathit{marginal}$ entropy of policy π

example of mutual information: "empowerment" (Polani et al.)

$$\mathcal{I}(\mathbf{s}_{t+1}; \mathbf{a}_t) = \mathcal{H}(\mathbf{s}_{t+1}) - \mathcal{H}(\mathbf{s}_{t+1}|\mathbf{a}_t)$$
 can be viewed as quantifying "control authority" in an information-theoretic way

mutual information about the next state and current action

there's high entropy in the next state

theres low uncertainty of which state you'll end up in given a particular action

- > Definitions & concepts from information theory
- > Learning without a reward function by reaching goals

how do we learn without a reward function by proposing and reaching goals

- > A state distribution-matching formulation of reinforcement learning
- > Is coverage of valid states a *good* exploration objective?
- > Beyond state covering: covering the *space of skills*

An Example Scenario

training time: unsupervised

Learn without any rewards at all

Learn without any rewards at all

Learn without any rewards at all

- 2. Attempt to reach goal using $\pi(a|x,x_g)$, reach \bar{x}
- 3. Use data to update π
- 4. Use data to update $p_{\theta}(x_g|z_g)$, $q_{\phi}(z_g|x_g)$

- 2. Attempt to reach goal using $\pi(a|x,x_g)$, reach \bar{x}
- 3. Use data to update π
- 4. Use data to update $p_{\theta}(x_g|z_g)$, $q_{\phi}(z_g|x_g)$

standard MLE: $\theta, \phi \leftarrow \arg \max_{\theta, \phi} E[\log p(\bar{x})]$

weighted MLE: $\theta, \phi \leftarrow \arg \max_{\theta, \phi} E[w(\bar{x}) \log p(\bar{x})]$

$$w(\bar{x}) = p_{\theta}(\bar{x})^{\alpha}$$

key result: for any $\alpha \in [-1,0)$, entropy $\mathcal{H}(p_{\theta}(x))$ increases!

what is the objective?

$$\max \mathcal{H}(p(G)) - \mathcal{H}(p(G|S))$$

goals get higher entropy due to Skew-Fit

what does RL do?

 $\pi(a|S,G)$ trained to reach goal G

as π gets better, final state S gets close to G

that means p(G|S) becomes more deterministic!

 $w(\bar{x}) = p_{\theta}(\bar{x})^{\alpha}$

what is the objective?

$$\max \mathcal{H}(p(G)) - \mathcal{H}(p(G|S)) = \max \mathcal{I}(S;G)$$

maximizing mutual information between S and G leads to good exploration (state coverage) – $\mathcal{H}(p(G))$ effective goal reaching – $\mathcal{H}(p(G|S))$

Reinforcement learning with imagined goals

- > Definitions & concepts from information theory
- > Learning without a reward function by reaching goals
- > A state distribution-matching formulation of reinforcement learning
- > Is coverage of valid states a *good* exploration objective?
- > Beyond state covering: covering the *space of skills*

Aside: exploration with intrinsic motivation

common method for exploration:

incentivize policy $\pi(\mathbf{a}|\mathbf{s})$ to explore diverse states

...before seeing any reward

reward visiting **novel** states

if a state is visited often, it is not novel

 \Rightarrow add an exploration bonus to reward: $\tilde{r}(\mathbf{s}) = r(\mathbf{s}) - \log p_{\pi}(\mathbf{s})$

state density under $\pi(\mathbf{a}|\mathbf{s})$

- 1. update $\pi(\mathbf{a}|\mathbf{s})$ to maximize $E_{\pi}[\tilde{r}(\mathbf{s})]$ 2. update $p_{\pi}(\mathbf{s})$ to fit state marginal

Can we use this for state marginal matching?

the state marginal matching problem: learn $\pi(\mathbf{a}|\mathbf{s})$ so as to minimze $D_{\mathrm{KL}}(p_{\pi}(\mathbf{s})||p^{\star}(\mathbf{s}))$

idea: can we use intrinsic motivation?

$$\tilde{r}(\mathbf{s}) = \log p^{\star}(\mathbf{s}) - \log p_{\pi}(\mathbf{s})$$

this does **not** perform marginal matching!

- 1. learn $\pi^k(\mathbf{a}|\mathbf{s})$ to maximize $E_{\pi}[\tilde{r}^k(\mathbf{s})]$
- 2. update $p_{\pi^k}(\mathbf{s})$ to fit state marginal
 - 2. update $p_{\pi^k}(\mathbf{s})$ to fit all states seen so far

3. return
$$\pi^*(\mathbf{a}|\mathbf{s}) = \sum_k \pi^k(\mathbf{a}|\mathbf{s})$$

this does perform marginal matching!

special case: $\log p^*(\mathbf{s}) = C \Rightarrow uniform \text{ target}$ $D_{\mathrm{KL}}(p_{\pi}(\mathbf{s}) || U(\mathbf{s})) = \mathcal{H}(p_{\pi}(\mathbf{s}))$

 $p_{\pi}(\mathbf{s}) = p^{\star}(\mathbf{s})$ is Nash equilibrium of two player game between π^k and p_{π^k}

Lee*, Eysenbach*, Parisotto*, Xing, Levine, Salakhutdinov. **Efficient Exploration via State Marginal Matching**See also: Hazan, Kakade, Singh, Van Soest. **Provably Efficient Maximum Entropy Exploration**

State marginal matching for exploration

the state marginal matching problem: learn $\pi(\mathbf{a}|\mathbf{s})$ so as to minimze $D_{\mathrm{KL}}(p_{\pi}(\mathbf{s})||p^{\star}(\mathbf{s}))$

Lee*, Eysenbach*, Parisotto*, Xing, Levine, Salakhutdinov. Efficient Exploration via State Marginal Matching See also: Hazan, Kakade, Singh, Van Soest. Provably Efficient Maximum Entropy Exploration

- > Definitions & concepts from information theory
- > Learning without a reward function by reaching goals
- > A state distribution-matching formulation of reinforcement learning
- > Is coverage of valid states a *good* exploration objective?
- > Beyond state covering: covering the *space of skills*

Is state entropy *really* a good objective?

Skew-Fit:
$$\max \mathcal{H}(p(G)) - \mathcal{H}(p(G|S)) = \max \mathcal{I}(S;G)$$
 more or less the same thing SMM (special case where $p^*(\mathbf{s}) = C$): $\max \mathcal{H}(p_\pi(S))$

When is this a good idea?

```
"Eysenbach's Theorem" (not really what it's called)

(follows trivially from classic maximum entropy modeling)
```

at test time, an adversary will choose the worst goal G

which goal distribution should you use for *training*?

answer: choose $p(G) = \arg \max_{p} \mathcal{H}(p(G))$

See also: Hazan, Kakade, Singh, Van Soest. Provably Efficient Maximum Entropy Exploration

- > Definitions & concepts from information theory
- > A distribution-matching formulation of reinforcement learning
- > Learning without a reward function by reaching goals
- > A state distribution-matching formulation of reinforcement learning
- > Is coverage of valid states a *good* exploration objective?
- > Beyond state covering: covering the *space of skills*

Learning diverse skills

$$\pi(\mathbf{a}|\mathbf{s},z)$$
 task index

Reaching diverse **goals** is not the same as performing diverse **tasks** not all behaviors can be captured by **goal-reaching**

Intuition: different skills should visit different state-space regions

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.

Diversity-promoting reward function

$$\pi(\mathbf{a}|\mathbf{s},z) = \arg\max_{\pi} \sum_{z} E_{\mathbf{s} \sim \pi(\mathbf{s}|z)}[r(\mathbf{s},z)]$$

$$reward \text{ states that are unlikely for other } z' \neq z$$

$$r(\mathbf{s},z) = \log p(z|\mathbf{s})$$

$$Environment$$

$$Action \qquad State \qquad Discriminator(D)$$

$$Skill (z) \leftarrow Predict Skill$$

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.

Examples of learned tasks

Mountain car

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.

A connection to mutual information

$$\pi(\mathbf{a}|\mathbf{s}, z) = \arg\max_{\pi} \sum_{z} E_{\mathbf{s} \sim \pi(\mathbf{s}|z)}[r(\mathbf{s}, z)]$$

$$r(\mathbf{s}, z) = \log p(z|\mathbf{s})$$

$$I(z, \mathbf{s}) = H(z) - H(z|s)$$

maximized by using uniform prior p(z)

minimized by maximizing $\log p(z|\mathbf{s})$

Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.

See also: Gregor et al. Variational Intrinsic Control. 2016