ТЕХНИЧЕСКОЕ ПРЕДЛОЖЕНИЕ

на разработку и внедрение универсальной системы диспетчеризации

Оглавление

ВВЕДЕНИЕ	3
ОСНОВНАЯ ЧАСТЬ	
1 Объект	5
2 Регистратор	6
2.1 Сервер-регистратор	
2.2 СУБД	8
2.3 Web-сервер	9
2.4 Связь c GSM-модемом	
2.5 Связь с АСКУЭ	10
2.6 Связь с клиентами	
3 Облачный сервер	12
ПРИЛОЖЕНИЯ	
ПРИЛОЖЕНИЕ А	15
Базовая модель	15
ПРИЛОЖЕНИЕ В	
Базовая модель + Облачный сервер	17
ПРИЛОЖЕНИЕ Г	
Примеры экранов проекта WebHMI	19

ВВЕДЕНИЕ

Данный документ содержит описание универсальной системы диспетчеризации.

Для построения системы используются:

- недорогие, доступные, взаимозаменяемые комплектующие,
- программное обеспечение с открытым исходным кодом.

В основной части документа рассматривается полная функциональная схема универсальной системы диспетчеризации.

- В Приложении А приводится вариант исполполнения системы «Базовая модель».
- В Приложении Б приводится вариант исполнения системы «Базовая модель + Облачный сервер».
 - В Приложении В приводятся примеры экранов проекта WebHMI.

ОСНОВНАЯ ЧАСТЬ

функциональная схема универсальной системы диспетчеризации

Основные функции системы диспетчеризации:

- 1) сбор данных с целевого Объекта,
- 2) обработка полученных данных,
- 3) предоставление средств взаимодействия Клиента с целевым Объектом (визуализация, человеко-машинный интерфейс)

1 Объект

Под Объектом понимается аппаратная, программная или аппаратно-програмная система, которая может предоставить доступ к своим компонентам по различным каналам передачи данных.

Аппаратные и аппаратно-программные системы — это системы, реализующие какой-либо технологический процесс (например, котельная, система вентиляции, компрессорная, термообработка и так далее). Подобные системы могут быть автоматизированными как частично, так и полностью. Автоматизация здесь, как правило, строится на базе аппаратно-программных регуляторов или программируемых логических контроллерах (ПЛК).

Программные системы — это готовые системы диспетчеризации, базы данных, системы учета технико-коммерческих показателей.

Объект может включать в себя:

- цифровые (дискретные), аналоговые и интеллектуальные датчики
- станции ввода/вывода
- систему управления (например, на базе ПЛК)
- испонительные устройства
- сетевые каналы передачи данных
- хранилища, базы данных

Поддерживаемые каналы связи

N п.п.	Интерфейс
1	RS-232 / USB
2	RS-485
3	ETHERNET

Поддерживаемые протоколы передачи данных

N п.п.	Протокол
1	ModBus RTU / TCP

Поддержка иных интерфейсов и/или протоколов связи может быть добавлена (реализована) по возможности.

2 Регистратор

Регистратор — это программная система (программа), осуществляющая с одной стороны связь с объектами, с другой — связь с клиентами.

Компоненты регистратора

N п.п.	Компонент	Особенности
1	Сервер-регистратор	
1.1	наличие:	обязательное
1.2	сетевой доступ:	есть
1.3	поставка:	исполняемое ПО + настройки
2	Сервер баз данных (СУБД)	
2.1	наличие:	необязательное
2.2	сетевой доступ:	есть
2.3	поставка:	исполняемое ПО + настройки
3	Web-сервер	
3.1	наличие:	необязательное
3.2	сетевой доступ:	есть
3.3	поставка:	исполняемое ПО + настройки
4	Связь регистратора с GSM-модемом	
4.1	наличие:	необязательное
5	Связь регистратора с клиентами	
5.1	наличие:	необязательное
6	Связь регистратора с АСКУЭ	
6.1	(автоматизированная система контроля и	
	учета энергоресурсов)	
	наличие:	необязательное

Все компоненты регистратора являются кроссплатформенными - имеются сборки под различные процессорные архитектуры и операционные системы.

Требования к платформе регистратора:

N п.п.	Требование
1	Аппаратная платформа
1.1	• Сервер
1.2	• Персональный компьютер
1.3	• Одноплатный компьютер (контроллер)
2	Процессорная платформа
2.1	• x86 (32-битный процессор)
2.2	• х64 (64-битный процессор)
2.3	• ARMv6,
3	Операционная система
3.1	• Linux
3.2	Windows
4	Оперативная память (ОЗУ)
4.1	• от 512 Мб
5	Жесткий диск или FLASH-память
5.1	• от 8 Гб
6	Для доступа к компонентам регистратора из сети Интернет
6.1	• «белый» IP-адрес или прозрачный доступ в Интернет для
6.2	регистратора
6.3	• проброс портов регистратора на маршрутизаторе
	• использование Облачного сервера

2.1 Сервер-регистратор

Является обязательным программным компонетом Регистратора. Программа реализована на языке C++ с использованием фрэймворка Qt. Реализация открытая и кроссплатформенная: есть сборки под различные процессорные архитектуры и операционные системы, есть возможность передачи исходных кодов. Имеется гибкая система настроек (в виде файлов формата JSON).

Сервер-регистратор может быть запущен на любом персональном компьютере, сервере или одноплатном компьютере (контроллере), которые базируются на процессорных архитектурах x86, x64 или ARMv6 и выше, с операциоными системами Windows, Linux.

Функции сервера-регистратора

N п.п.	Функция
1	Периодический опрос объектов (получение данных) по поддерживаемым
	каналам связи

2	Обработка полученных данных
3	Передача данных в локальное или удаленное хранилище (СУБД)
4 4.1	Предоставление данных по сети: • TCP/IP (Ethernet),
4.1	• сетевой порт (по-умолчанию, 9081),
4.3	• многопользовательский режим сервера,
4.4	• протокол WebSocket,
4.5	• формат JSON.
5	Связь с GSM-модемом:
5.1	• событийное оповещение (SMS),
5.2	• периодическое оповещение (SMS).
6	Связь с АСКУЭ:
6.1	• передача данных.

Поддержка иных архитектур, ОС и функционала может быть добавлена (реализована) по возможности.

Сервер-регистратор поставляется заказчику в виде исполняемой программы со всеми необходимыми настройками, инструкцией и описанием формата JSON для передачи данных. Возможна передача исходных кодов.

2.2 СУБД

СУБД (сервер баз данных) - готовая программная система, предназначенная для хранения данных и обработки запросов от множества клиентов. Работа с СУБД осуществляется стандартными запросами SQL.

Регистратор может как содержать в своем составе локальную СУБД, так и работать с внешними СУБД.

Локальная СУБД может использоваться для временного или постоянного хранения данных (как правило, данные целевого объекта). Объем локальной СУБД зависит от доступного объема памяти.

Связь с внешними СУБД осуществляется по протоколу TCP/IP (Ethernet).

Поддерживаемые СУБД

N п.п.	СУБД
1	MySQL
2	MariaDB

Поддержка иных СУБД может быть добавлена (реализована) по возможности.

СУБД поставляется заказчику в виде настроенной исполняемой программы. Исходные коды СУБД, в случае их открытости, доступны на сайте разработчика СУБД.

2.3 Web-сервер

проект WebHMI	
web-сервер	

Web-сервер — это готовая программная система, предоставляющая клиентам данные (web-контент, в том числе человеко-машинный интерфейс) по протоколу HTTP.

Клиенты — это web-браузеры.

Web-контент — информация, отображаемая в web-браузере.

Регистратор содержит в своем составе локальный web-сервер, который предоставляет клиентам web-контент (проект WebHMI) касательно контролируемого объекта.

Поддерживаемые web-серверы

N п.п.	web-сервер
1	Apache

Функции web-сервера

Nı	п.п.	Функция
	1	Предоставление данных по сети:
1	.1	TCP/IP (Ethernet),
1	.2	• сетевой порт (по-умолчанию, 80),
1	.3	• многопользовательский режим сервера,
1	.4	• протокол HTTP (HTTPS), WebSocket.

Проект WebHMI (web human-machine interface) — web-интерфейс контролируемого объекта. Реализуется средствами web-разработки: JavaScript, AJAX, WebSocket, jQuery, jQuery UI, CSS5, HTML5.

Функции проекта WebHMI

N п.п.	Функция
1	Ограничение доступа
1.1	• без ограничений
1.2	• логин и пароль
2	Таблицы
2.1	• текущие данные,
2.2	• архивные данные
3	Мнемосхемы
3.1	• текущие данные,
3.2	• архивные данные
4	Графики
4.1	• текущие данные,
4.2	• архивные данные
5	Доступ к данным
5.1	• просмотр,
5.2	• изменение (дистанционное управление объектом)

2.4 Связь с GSM-модемом

Программная система, поддерживающая возможность рассылки SMS посредством GSM-модем.

GSM-модем может подключаться к аппаратной платформе Регистратора по одному из последовательных интерфейсов (зависит от модема и платформы регистратора): RS-232, USB, RS-485.

Отправка SMS:

- по настраиваемым событиям (например, получен сигнал закрытия газового клапана)
- по настраиваемому периоду (например, отправлять показание температуры котла раз в час)

2.5 Связь с АСКУЭ

АСКУЭ — автоматизированная система контроля и учета энергоресурсов (например, ЛЭРС Учет, Энергомера и т. п.).

Регистратор может периодически отправлять данные в АСКУЭ. Связь с АСКУЭ осуществляется по протоколу TCP/IP (Ethernet).

Поддерживаемые АСКУЭ

N п.п.	АСКУЭ
1	ЛЭРС Учет
2	Энергомера

Оплата лицензии АСКУЭ осуществляется заказчиком отдельно по соответствующим тарифам.

2.6 Связь с клиентами

• собственное ПО

Клиент — персональный компьютер, ноутбук, нетбук, планшет, смартфон. Для контроля за объектом клиенту достаточно web-браузера, который связывается с web-сервером регистратора объекта. В браузере нужно ввести web-адрес регистратора.

Если заказчику недостаточно функционала web-браузера, то можно разработать собственное ПО — например, специализированную программу для смартфона или планшета (ОС Android), работающую с Регистратором по одному из поддерживаемых протоколов.

3 Облачный сервер

Характеристики предлагаемого облачного сервера

N п.п.	Характеристика
1 1.1	Аппаратная платформа • Одноплатный компьютер Orange Pi PC2
2 2.1	Процессорная платформа • ARMv8 (64-битный процессор H5 Cortex-A53, 4-ядра)
3 3.1	Операционная система • Armbian Linux (64-битная, ядро 4.19)
4 4.1	Оперативная память (ОЗУ) • 1 Гб
5 5.1 5.2	FLASH-память • 32 Гб Жесткий диск для СУБД • 1 Тб
6 6.1 6.2	Интернет-провайдер • прозрачный доступ в Интернет, • безлимитный тариф

В качестве облачного сервера может быступать любое устройство с характеристиками, поддерживаемыми компонентами платформы Регистратора.

Функции облачного сервера

J 1	тупиции осни пого сервери	
N п.п.	Функция	
1	Регистратор-повторитель	
	• связь с внешними регистраторами	
	• связь с внешними АСКУЭ	
	• доступ из Интернет по выделенному доменному имени и порту	
2	GSM-модем	
2.1	• 2 СИМ-карты	
2.2	• отправка SMS по данным от регистратора-повторителя:	
2.2.1	∘ по настроенным событиям,	
2.2.2	∘ периодически	
3	СУБД MariaDB 10.3	
3.1	• доступ из Интернет по выделенному доменному имени и порту	
4	Web-сервер Apache 2.4	
4.1	• дистанционный web-доступ к СУБД через клиент phpMyAdmin,	
4.2	 предоставление контента web-проектов, 	
4.3	• доступ из Интернет по выделенному доменному имени и порту	

5 5.1	Проекты WebHMI удаленных регистраторов • объединены в один «Информационный портал предприятия»
6 6.1 6.2	 Сервер бизнес-отчетности, аналитики и интеграции данных Pentaho BI web-отчеты с экспортом в печатные форматы, web-аналитика, интеграция, обработка данных доступ из Интернет по выделенному доменному имени и порту
7 7.1 7.2	Сервер бизнес-процессов ProcessMaker 3
8	АСКУЭ

Функционал облачного сервера может быть расширен.

Когда нужен облачный сервер?

Когда регистратор объекта находится в сети провайдера с «непрозрачным» доступом в Интернет:

- а) есть свободный доступ в Интернет со стороны локальной сети регистратора пример: регистратор может свободно подключиться к удаленному облачному-серверу в сети Интернет
- б) нет доступа из сети Интернет к сетевым компонентам регистратора пример: web-браузер клиента не может подключиться из сети Интернет к web-серверу удаленного регистратора

Как это работает:

- 1. В настройках регистратора прописывается доменное имя (или IP-адрес) и номер сетевого порта регистратора-повторителя облачного сервера;
- 2. Регистратор, при работе, автоматически подключается к повторителю облачного сервера;
- 3. Регистратор, при появлении данных от объекта, автоматически пересылает их копию повторителю облачного сервера ИЛИ

После того, как регистратор подключился к повторителю облачного сервера, повторитель сам опрашивает регистратор по установленному каналу связи;

- 4. Повторитель облачного сервера принимает данные от регистратора и дальше может делать с ними тоже самое, что и обычный регистратор:
 - а) обрабатывать по заданным алгоритмам,

- б) передавать в хранилище данных,
- в) предоставлять интернет-клиентам данные по протоколу WebSocket или через web-сервер,
- г) отправлять SMS,
- д) и так далее.
- 5. Один повторитель облачного сервера может работать с несколькими удаленными регистраторами;
- 6. Повторителей на облачном сервере может быть несколько (для каждого может быть выделен свой сетевой порт).

Когда у заказчика нет возможности своими силами сопровождать сетевые компоненты регистратора объекта (например, СУБД, АСКУЭ, GSM-модем).

ПРИЛОЖЕНИЯ

ПРИЛОЖЕНИЕ А

Базовая модель

Базовая модель системы диспетчеризации

Функции базовой модели системы для одного объекта:

	y inclini ousobon moderni cherembi din odiloro oobektu.
N п.п.	Функция
1	Объект
	• может содержать:
1.1	○ датчики
1.2	° модули ввода/вывода
1.3	· систему управления (ПЛК)
	• дополнительно могут потребоваться:
1.5	○ датчики
1.6	° модули ввода/вывода
	• поддерживаемые сети:
1.7	o RS-485
1.8	TCP/IP (Ethernet)
	• поддерживаемые протоколы:
1.9	ModBus RTU / TCP

N п.п.	Функция
2	Регистратор
2.1	• сервер-регистратор
2.1.1	o сбор данных с объекта
2.1.2	1 ''
	TCP/IP (Ethernet)
	■ протокол WebSocket
	■ сетевой порт 9081
2.2	• web-сервер
2.2.1	o предоставление web-доступа к проекту WebHMI
	■ TCP/IP (Ethernet)
	протокол HTTP
2.0	■ сетевой порт 80
2.3	• проект WebHMI
2.3.1	о web-интерфейс
	без ограничения доступа
	 страница 1: таблица основных значений
	• страница 2: мнемосхема
	■ только текущие значения
	■ только просмотр
3	Клиенты
3.1	• контроль объекта через web-браузер (только просмотр)

ПРИЛОЖЕНИЕ В

Базовая модель + Облачный сервер

Базовая модель системы диспетчеризации и аренда облачного сервера

Функции базовой модели системы для одного объекта:

N п.п.	Функция
1	Объект
	• может содержать:
1.1	о датчики
1.2	○ модули ввода/вывода
1.3	о систему управления (ПЛК)
	• дополнительно могут потребоваться:
1.5	о датчики
1.6	° модули ввода/вывода
	• поддерживаемые сети:
1.7	○ RS-485
1.8	o TCP/IP (Ethernet)

N п.п.	Функция
1.9	• поддерживаемые протоколы: o ModBus RTU / TCP
2 2.1 2.1.1 2.1.2	Регистратор
2.2 2.2.1	 протокол WebSocket сетевой порт 9081 web-сервер предоставление web-доступа к проекту WebHMI TCP/IP (Ethernet) протокол HTTP
2.3 2.3.1	 сетевой порт 80 проект WebHMI web-интерфейс без ограничения доступа страница 1: таблица основных значений страница 2: мнемосхема только текущие значения
3	■ только просмотрКлиенты
3.1	• контроль объекта через web-браузер (только просмотр)
4 4.1	Облачный сервер • регистратор-повторитель • поддержка до 10 регистраторов объектов
4.2	 web-сервер предоставление web-доступа к проекту WebHMI из сети Интернет TCP/IP (Ethernet) протокол HTTP сетевой порт 80 собственное доменное имя например: www.my-cloud.no-ip.org
4.3	• проекты WebHMI всех поддерживаемых регистраторов объектов, объединенные в один «Информационный портал»

ПРИЛОЖЕНИЕ Г

Примеры экранов проекта WebHMI

Таблицы основных значений трех объектов

Мнемосхема объекта