STAT 5010 Tutorial 2*

Oct. 2022

Definitions

1. A parametric family $\{P_{\theta}: \theta \in \Theta\}$ dominated by a σ -finite measure ν on (Ω, \mathcal{F}) is called an *exponential family* if and only if

 $\frac{dP_{\theta}}{d\nu}(\omega) = \exp\left\{ \left[\eta(\theta) \right]^{\tau} T(\omega) - \xi(\theta) \right\} h(\omega), \quad \omega \in \Omega,$

where $\exp\{x\} = e^x$, T is a random p-vector with a fixed positive integer p, η is a function from Θ to \mathcal{R}^p , h is a nonnegative Borel function on (Ω, \mathcal{F}) , and $\xi(\theta) = \log\{\int_{\Omega} \exp\{[\eta(\theta)]^{\tau} T(\omega)\} h(\omega) d\nu(\omega)\}$

2. In an exponential family, consider the reparameterization $\eta = \eta(\theta)$ and

$$f_{\eta}(\omega) = \exp \{ \eta^{\tau} T(\omega) - \zeta(\eta) \} h(\omega), \quad \omega \in \Omega,$$

where $\zeta(\eta) = \log \left\{ \int_{\Omega} \exp \left\{ \eta^{\tau} T(\omega) \right\} h(\omega) d\nu(\omega) \right\}$. This is the *canonical form* for the family, which is not unique. The new parameter η is called the *natural parameter*. The new parameter space $\Xi = \{ \eta(\theta) : \theta \in \Theta \}$, a subset of \mathcal{R}^p , is called the *natural parameter space*. An exponential family in canonical form is called a *natural exponential family*. If there is an open set contained in the natural parameter space of an exponential family, then the family is said to be of *full rank*.

- 3. A measurable function of X, T(X), is called a *statistic* if T(X) is a known value whenever X is known, i.e., the function T is a known function.
- 4. Let X be a sample from an unknown population $P \in \mathcal{P}$, where \mathcal{P} is a family of populations. A statistic T(X) is said to be *sufficient* for $P \in \mathcal{P}$ (or for $\theta \in \Theta$ when $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is a parametric family) if and only if the conditional distribution of X given T is known (does not depend on P or θ).
- 5. Let T be a sufficient statistic for $P \in \mathcal{P}$. T is called a *minimal sufficient* statistic if and only if, for any other statistic S sufficient for $P \in \mathcal{P}$, there is a measurable function ψ such that $T = \psi(S)$ a.s. \mathcal{P}
- 6. A statistic V(X) is said to be *ancillary* if its distribution does not depend on the population P and *first-order ancillary* if E[V(X)] is independent of P.
- 7. A statistic T(X) is said to be *complete* for $P \in \mathcal{P}$ if and only if, for any Borel f, E[f(T)] = 0 for all $P \in \mathcal{P}$ implies f(T) = 0 a.s. \mathcal{P} . T is said to be *boundedly complete* if and only if the previous statement holds for any bounded Borel f.

Propositions and Theorems

1. If η_0 is an interior point of the natural parameter space, then the m.g.f. ψ_{η_0} of $P_{\eta_0} \circ T^{-1}$ is finite in a neighborhood of 0 and is given by

$$\psi_{\eta_0}(t) = \exp\left\{\zeta\left(\eta_0 + t\right) - \zeta\left(\eta_0\right)\right\}$$

2. (The factorization theorem) Suppose that X is a sample from $P \in \mathcal{P}$ and \mathcal{P} is a family of probability measures on $(\mathcal{R}^n, \mathcal{B}^n)$ dominated by a σ -finite measure ν . Then T(X) is sufficient for $P \in \mathcal{P}$ if and only if there are nonnegative Borel functions h (which does not depend on P) on $(\mathcal{R}^n, \mathcal{B}^n)$ and g_P (which depends on P) on the range of T such that

$$\frac{dP}{du}(x) = g_P(T(x))h(x).$$

- 3. Suppose that \mathcal{P} contains p.d.f.'s f_P w.r.t. a σ -finite measure and that there exists a sufficient statistic T(X) such that, for any possible values x and y of X, $f_P(x) = f_P(y)\phi(x,y)$ for all P implies T(x) = T(y), where ϕ is a measurable function. Then T(X) is minimal sufficient for $P \in \mathcal{P}$.
- 4. If P is in an exponential family of full rank with p.d.f.'s given as in Definition. 2, then T(X) is complete and sufficient for $\eta \in \Xi$.

^{*}Dept. of Stat., CUHK. TA: YX

- 5. (Basu's theorem) Let V and T be two statistics of X from a population $P \in \mathcal{P}$. If V is ancillary and T is boundedly complete and sufficient for $P \in \mathcal{P}$, then V and T are independent w.r.t. any $P \in \mathcal{P}$.
- 6. A complete and sufficient statistic is also minimal sufficient. However, a minimal sufficient statistic is not necessarily complete.

Question 1

1. Let X and Y be two random variables such that Y has the binomial distribution with size N and probability π and, given Y = y, X has the binomial distribution with size y and probability p. Suppose that $p \in (0,1)$ and $\pi \in (0,1)$ are unknown and N is known. Show that (X,Y) is minimal sufficient for (p,π) .

Solution:

Let $A = \{(x, y) : x = 0, 1, \dots, y, y = 0, 1, \dots, N\}$. The joint probability density of (X, Y) with respect to the counting measure is

$$\begin{pmatrix} N \\ y \end{pmatrix} \pi^y (1-\pi)^{N-y} \begin{pmatrix} y \\ x \end{pmatrix} p^x (1-p)^{y-x} I_A$$

$$= \exp\left\{ x \log \frac{p}{1-p} + y \log \frac{\pi(1-p)}{1-\pi} + N \log(1-\pi) \right\} \begin{pmatrix} N \\ y \end{pmatrix} \begin{pmatrix} y \\ x \end{pmatrix} I_A.$$

Hence, (X,Y) has a distribution from an exponential family of full rank (0 .This implies that <math>(X,Y) is minimal sufficient for (p,π)

Question 2

1. Let X_1, \ldots, X_n be i.i.d. random variables from P_{θ} , the uniform distribution $U(\theta, \theta + 1), \theta \in \mathcal{R}$. Prove that $T = (X_{(1)}, X_{(n)})$ is minimal sufficient.

Solution: Suppose that n > 1. The joint Lebesgue p.d.f. of (X_1, \ldots, X_n) is

$$f_{\theta}(x) = \prod_{i=1}^{n} I_{(\theta,\theta+1)}(x_i) = I_{(x_{(n)}-1,x_{(1)})}(\theta), \quad x = (x_1,\dots,x_n) \in \mathbb{R}^n,$$

where $x_{(i)}$ denotes the *i* th smallest value of x_1, \ldots, x_n . By the factorization theorem, $T = (X_{(1)}, X_{(n)})$ is sufficient for θ . Note that

$$x_{(1)} = \sup \{\theta : f_{\theta}(x) > 0\}$$
 and $x_{(n)} = 1 + \inf \{\theta : f_{\theta}(x) > 0\}$.

If S(X) is a statistic sufficient for θ , then by the factorization theorem, there are Borel functions h and g_{θ} such that $f_{\theta}(x) = g_{\theta}(S(x))h(x)$. For x with h(x) > 0, $x_{(1)} = \sup\{\theta : g_{\theta}(S(x)) > 0\}$ and $x_{(n)} = 1 + \inf\{\theta : g_{\theta}(S(x)) > 0\}$. Hence, there is a measurable function ψ such that $T(x) = \psi(S(x))$ when h(x) > 0. Since h > 0 a.s. \mathcal{P} , we conclude that T is minimal sufficient.

Proofs for Some propositions

• Prop. 3.

Proof. From Bahadur (1957), there exists a minimal sufficient statistic S(X). The result follows if we can show that $T(X) = \psi(S(X))$ a.s. \mathcal{P} for a measurable function ψ . By the factorization theorem, there are Borel functions g_P and h such that $f_P(x) = g_P(S(x))h(x)$ for all P. Let $A = \{x : h(x) = 0\}$. Then P(A) = 0 for all P. For x and y such that $S(x) = S(y), x \notin A$ and $y \notin A$,

$$f_P(x) = g_P(S(x))h(x)$$

= $g_P(S(y))h(x)h(y)/h(y)$
= $f_P(y)h(x)/h(y)$

for all P. Hence T(x) = T(y). This shows that there is a function ψ such that $T(x) = \psi(S(x))$ except for $x \in A$. It remains to show that ψ is measurable. Since S is minimal sufficient, g(T(X)) = S(X) a.s. \mathcal{P} for a measurable function g. Hence g is one-to-one and $\psi = g^{-1}$. The measurability of ψ follows from Theorem 3.9 in Parthasarathy (1967).

• Prop. 4.

Proof. Obviously, T is sufficient. Suppose that there is a function f such that E[f(T)] = 0 for all $\eta \in \Xi$. Then,

$$\int f(t) \exp \left\{ \eta^{\tau} t - \zeta(\eta) \right\} d\lambda = 0 \quad \text{ for all } \eta \in \Xi,$$

where λ is a measure on $(\mathcal{R}^p, \mathcal{B}^p)$. Let η_0 be an interior point of Ξ . Then

$$\int f_{+}(t)e^{\eta^{\tau}t}d\lambda = \int f_{-}(t)e^{\eta^{\tau}t}d\lambda \quad \text{ for all } \eta \in N(\eta_{0}),$$

where $N(\eta_0) = \{ \eta \in \mathbb{R}^p : ||\eta - \eta_0|| < \epsilon \}$ for some $\epsilon > 0$. In particular,

$$\int f_{+}(t)e^{\eta_{0}^{\tau}t}d\lambda = \int f_{-}(t)e^{\eta_{0}^{\tau}t}d\lambda = c.$$

If c=0, then f=0 a.e. λ . If c>0, then $c^{-1}f_+(t)e^{\eta_0^{\tau}t}$ and $c^{-1}f_-(t)e^{\eta_0^{\tau}t}$ are p.d.f.'s w.r.t. λ and this implies that their m.g.f.'s are the same in a neighborhood of 0. Thus, $c^{-1}f_+(t)e^{\eta_0^{\tau}t}=c^{-1}f_-(t)e^{\eta_0^{\tau}t}$, i.e., $f=f_+-f_-=0$ a.e. λ . Hence T is complete.