ISTN212

Chapter 6: Procedural Language SQL and Advanced SQL

SQL Join Operators

- Ability to combine (join) tables on common attributes is most important distinction between relational database and other databases
- Join is performed when data are retrieved from more than one table at a time
- Join is generally composed of an equality comparison between foreign key and primary key of related tables

JOIN

 Allows us to combine information from two or more tables. Join is the real power behind relational database, allowing the use of independent tables linked by common attributes.

FIGURE 2.11 Two Tables That WILL BE USED IN JOIN ILLUSTRATIONS

JOIN

Many types of JOINs

JOIN

- Links tables by selecting rows with common values in common attribute(s)
- Three-stage process
- Creates ONE table
- Stage 1: Apply Product relational operator
- Stage 2: Select yields appropriate rows
- Stage 3: Project removes any duplicate columns

JOINing more than two tables

- · You need to specify a join condition for each pair of tables
- Number of join will always be N-1, where N represents the number of tables in the from clause
- Eg. Have three tables, you have 2 join clause

SELECT CUS_LNAME, INV_NUMBER, INV_DATE, P_DESCRIPT

FROM CUSTOMER, INVOICE, LINE, PRODUCT WHERE CUSTOMER.CUS CODE = INVOICE.CUS CODE

AND INVOICE.INV_NUMBER = LINE.INV_NUMBER

AND LINE.P_CODE = PRODUCT.P_CODE AND CUSTOMER.CUS_CODE = 10014

JOINing tables with an ALIAS

- · Alias can be used to identify source table
- Any legal table name can be used as alias Reduces typing
- Add alias after table name in FROM clause

FROM tablename alias

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE FROM PRODUCT P, VENDOR V

WHERE P.V_CODE = V.V_CODE ORDER BY P PRICE;

Natural JOIN

- Returns all rows with matching values in the matching columns
- Eliminates duplicate columns
- Used when tables share one or more common attributes with common names
- Natural joins may cause problems if columns are added or renamed.
- Syntax:
 SELECT column-list FROM table1 NATURAL JOIN table2

SELECT dname, ename FROM dept NATURAL JOIN emp

 This is the same as an equi join on (emp.deptno = dept.deptno) SELECT INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE FROM INVOICE NATURAL JOIN LINE NATURAL JOIN PRODUCT;

JOIN USING Clause

- Returns only rows with matching values in the column indicated in the USING clause.
- Syntax:

SELECT column-list FROM table1 JOIN table2 USING (common-column)
SELECT INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE
FROM INVOICE JOIN LINE
USING (INV_NUMBER) JOIN PRODUCT USING (P_CODE);

JOIN ON Clause

- · Used when tables have no common attributes name
- Returns only rows that meet the join condition
- Typically includes equality comparison expression of two columns
- Syntax:

SELECT column-list FROM table1 JOIN table2 ON join-condition

SELECT INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE FROM INVOICE JOIN LINE

ON INVOICE.INV_NUMBER = LINE.INV_NUMBER JOIN PRODUCT ON LINE.P_CODE = PRODUCT.P_CODE;

OUTER JOINs

- outer joins returns not only the rows matching the join condition (that is, rows with matching values in the common columns), but also the rows with unmatched values
- 3 types, left, right and full outer
- left outer join will yield not only the rows matching the join condition in the left table, including those that have no matching values in the right table
- in a pair of tables to be joined, a right outer join yields not only the rows matching the join condition in the right table, including the ones with no matching values in the left table.

Relational Set Operators

- UNION
- INTERSECT
- MINUS
- Work properly if relations are union-compatible
 - Names of relation attributes must be the same and their data types must be identical

UNION

- Combines rows from two or more queries without including duplicate rows
- Example

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE FROMCUSTOMER

UNION

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE FROM CUSTOMER_2 $\,$

UNION ALL

- Produces a relation that retains duplicate rows
- Example query:

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE FROM CUSTOMER

UNION ALL
SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE
FROM CUSTOMER_2;

INTERSECT

- \bullet Combines rows from two queries, returning only the rows that appear in both sets
- Syntax: query INTERSECT query
- Example query:

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE FROMCUSTOMER

INTERSECT

SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE FROM CUSTOMER 2

Combines rows from two queries Returns only the rows that appear in the first set but not in the second Syntax: query MINUS query Example: SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE FROM CUSTOMER MINUS SELECT CUS_LNAME, CUS_FNAME, CUS_INITIAL, CUS_AREACODE FROM CUSTOMER_2

Subqueries Often need to process data based on other processed data • Eg. Need to generate a list of all products with a price greater than or equal to the average product price • Is a query inside a query • A subquery is normally inside parentheses • The first query in the SQL statement is known as the outer query • The query inside the SQL statement is known as the inner query • The inner query is executed first • The output of an inner query is used as the input for the outer query • The entire SQL statement is sometimes referred to as a nested query

SUBCUTSUBQUERY EXAMPLES SELECT Subquery Examples SUBCUTSUBQUERY EXAMPLES SINGER INTO PRODUCT SELECT * FROM P. UPDATE PRODUCT SET P_PRICE = SELECT ACUP_PRICE | FROM PRODUCT WHERE V_CODE IN SELECT V_CODE FROM VENDOR WHERE V_AREACODE = '615' DELETE FROM PRODUCT WHERE V_AREACODE = '615' DELETE ROM PRODUCT WHERE V_AREACODE = '615' DELETE ROM PRODUCT CODE WHERE V_AREACODE = '615' DELETE ROM PRODUCT CODE WHERE V_AREACODE = '615' DELETE ROM PRODUCT CODE WHERE V_AREACODE = '615' DELETE ROM PRODUCT SUBJECT V CODE WHERE V_AREACODE = '615' DELETE ROM PRODUCT CODE WHERE V_AREACODE = '615' DELETE ROM PRODUCT CODE WHERE V_AREACODE = '615' DELETE ROM PRODUCT SUBJECT V CODE WHERE V_AREACODE = '615' DELETE ROM PRODUCT S

Subquery Example

 A common customer complaint at the MyFlix Video Library is the low number of movie titles. The management wants to buy movies for a category which has least number of titles.

SELECT category_name FROM categories WHERE category_id = (SELECT MIN(category_id) from movies);

• Result:

WHERE Subquery

- Uses an inner SELECT subquery on the right side of the WHERE comparison expression
- When used in a >, <, =,>=, or <= conditional expression, requires a subquery that returns only one single value (one column, one row)

IN Subquery

- When you want to compare a single attribute to a list of values, use the IN operator
- When the values are not known beforehand but they can be derived using a query, you must use an IN subquery

SELECT V_CODE, V_NAME

FROM VENDOR

WHERE V_CODE IN (SELECT V_CODE FROM PRODUCT);

HAVING Subquery

- Just as you can use subqueries with the WHERE clause, you can use a subquery with a HAVING clause
- HAVING clause used to restrict the output of a GROUP BY query

Multirow subquery operators – ANY and ALL

- IN subquery used when you need to compare a value to a list of values
- However, IN subquery uses an equality operator (ie. it selects only those rows that match at least one of the values in the list
- For inequality comparison (> or <) of one value to a list of values (use ALL)
- EG. Suppose you want to know what products have a cost that is greater than all individual product costs for products provided by vendors from Florida

Attribute List Subqueries (not examinable)

PROCE PROCE PROCE PROCE PROCE PROCES PROCE

Triggers (Theory only) • Automating business procedures and automatically maintaining data integrity and consistency are critical in modern business • Most critical business procedures is proper inventory management • Eg. Make sure that current product sales can be supported with sufficient product availability • Therefore, necessary that a product order be sent to a vendor when the product's inventory drops below its minimum allowable quantity on hand

Triggers • Can be accomplish these task by writing multiple SQL statements: one to update the product quantity on hand and another to update the product reorder flag. • Such multistage process is inefficient because a series of SQL statements must be written and executed each time a product is sold. • Also, SQL environment requires that somebody must remember to perform the SQL tasks

Triggers

- A trigger is procedural SQL code that is automatically invoked by the RDBMS upon the occurrence of a given data manipulation event
- · Useful to remember:
- A trigger is invoked before or after a data row is inserted, updated, or deleted
- A trigger is associated with a database table
- Each database table may have one or more triggers
- A trigger is executed as part of the transaction that triggered it

Triggers

- Triggers are critical to proper database operation and
- Triggers can be used to enforce constraints that cannot be enforced at the DBMS design and implementation
- e.g. require that every invoice have at least one line item
- Triggers add functionality by automating critical actions and providing appropriate warnings and suggestions for remedial actions
- Triggers can be used to update table values, insert records in tables, and call other stored procedures

Triggers

- · Triggers play a critical role in making the database truly useful. Create triggers for:
- Auditing purposes (creating audit logs)
- Automatic generation of derived column value
- Enforcement of business or security constraints
- notify a manager every time an employee's bank account number changes
- Creation of replica tables for backup purposes

SQL SERVER 2005

```
CREATE TRIGGER TRG_PRODUCT_REORDER
ON PRODUCT
FOR INSERT, UPDATE
BEGIN
 IF UPDATE(P_QOH)
 BEGIN
UPDATE PRODUCT
        SET P_REORDER = 1
WHERE P_QOH <= P_MIN;
END;
```

```
CREATE TRIGGER TRG_PRODUCT_REORDER
  IF UPDATE(P_QOH)
BEGIN
UPDATE PRODUCT
             SET P_REORDER = 1
  IF UPDATE(P_MIN)
```

SQL SERVER 2005

Stored Procedures (Theory only)

• A stored procedure is a named collection of procedural and SQL statements

Stored Procedures

- Advantages
 Substantially reduce network traffic and increase performance
 No transmission of individual SQL statements over network
 Help reduce code duplication by means of code isolation and code sharing
 Minimize chance of errors and cost of application development and maintenance