Билеты по алгебре $^{\beta}$

3 семестр @keba4ok

9 января 2022г.

Жёстко записываем все билеты.

Содержание

Это билеты.	2
Билет 1.1.	3
Билет 1.2	4
Билет 1.3	5
Билет 1.4	6
Билет 1.5	8
Билет 1.6	9
Билет 1.7	1
Билет 1.8	12
Билет 1.9	13
Билет 1.10	4

Это билеты.

Часть I: Теория категорий

1. Определение категории. Примеры. 2. Инициальные и терминальные объекты. 3. Мономорфизмы и эпиморфизмы. 4. Функторы. Примеры. 5. Естественные преобразования. Примеры. 6. Лемма Йонеды. 7. Пределы. Примеры. 8. Копределы. Примеры. 9. Конструкция пределов через произведения и уравнители. 10. Сопряженные функторы. Примеры. 11. Сопряженные функторы сохраняют пределы (или копределы). 12. Лемма о существовании инициального объекта. 13. Теорема Фрейда о сопряженном функторе. 14. Определение монады. Примеры. 15. Категория алгебр над монадой. 16. Категория Клейсли. 17. Декартово замкнутые категории. Карринг. 18. Типизированное лямбда-исчисление и его интерпретация в декартово замкнутых категориях. Корректность. 19. Типизированное лямбда-исчисление и его интерпретация в декартово замкнутых категориях. Полнота. 20. Декартова замкнутость категории предпучков.

Часть II: Теория представлений

1. Представления групп: различные определения и их эквивалентность. Групповая алгебра. 2. Неприводимые представления. Теорема Машке. 3. Лемма Шура. 4. Теорема Крулля-Шмидта. 5. Представления абелевых групп. 6. Матричные коэффициенты. Соотношения ортогональности. 7. Некоммутативное преобразование Фурье. 8. Теорема Бернсайда. 9. Характеры. Соотношения ортогональности. Таблица характеров. 10. Представления произведения групп. 11. Целые элементы в коммутативном кольце. 12. Свойства целочисленности характеров. 13. Размерность неприводимого представления делит индекс центра. 14. Индуцированные представления и их характер. Закон взаимности Фробениуса. 15. Вещественные представления: индикатор Шура и инвариантные формы. 16. Вещественные представления: теорема об индикаторе Шура. 17. Теорема о двойном централизаторе. 18. Двойственность Шура-Вейля. 19. Диаграмма Браттели и представления симметрических групп (обзор без доказательства).

Билет 1.1.

Определение категории. Примеры.

Лекция 1.

Запись

Определение 1. Kameropus C - это

- класс $Ob \mathcal{C}$, элементы которого называются объектами;
- попарно непересекающиеся множества морфизмов $\operatorname{Hom}(X,Y)$ для любых двух X и Y из $\operatorname{Ob} \mathcal{C}$;
- операция композиции \circ : $\operatorname{Hom}(Y,Z) \times \operatorname{Hom}(X,Y) \to \operatorname{Hom}(X,Z)$, удовлетворяющая двум аксиомам.

Аксиомы композиции:

- ассоциативность $(f \circ g) \circ h = f \circ (g \circ h)$;
- для любого A из C существует $\mathrm{id}_A \in \mathrm{Hom}(A,A)$ такое, что $f \circ \mathrm{id}_A = f$, $\mathrm{id}_A \circ f = f$ для любого осмысленного f.

Определение 2. Два объекта X и Y в категории $\mathcal C$ называются изоморфными, если $\exists f \in \mathrm{Hom}(X,Y)$ и $g \in \mathrm{Hom}(Y,X)$ такие, что $f \circ g = \mathrm{id}_Y, \ g \circ f = \mathrm{id}_X.$ f и g в этом случае называются изоморфизмами.

Пример(ы) 1.

- Sets: Ob Sets = все множества, Hom(X,Y) = все отображения из X в Y, \circ обычная композиция отображений. Инициальный объект \varnothing , терминальный любой, состоящий из одного элемента (нетрудно проверить, что они действительно попарно изоморфны);
- Groups, Rings и т.д. морфизмы были определены на первом курсе. В $Vect_F$ и инициальный, и терминальный объект 0;
- *Тор*: объекты топологические пространства, морфизмы непрерывные отображения. Инициальный и терминальный объект такие же, как и для *Sets*;
- *HTop*: Ob *HTop* компактно-порождённые топологические пространства, морфизмы непрерывные отображения, профакторизованные по гомотопиям;
- Категория с одним элементом, $\mathrm{Ob}\,\mathcal{C} = X$, морфизмы в этом случае образуют моноид.
- Частичный (пред)порядок на M (ЧУМ), $\mathrm{Ob}\,\mathcal{C}=M,\,\mathrm{Hom}(x,y)=\varnothing,\,$ если $x\leq y,=\varnothing,\,$ иначе.
- Rels, Ob Rels = все множества, Hom(X,Y) = все подмножества в $X \times Y$, $R \circ S = \{(x,z) | \exists y \in Y, (x,y) \in S, (y,z) \in T\}$

Билет 1.2.

Инициальные и терминальные объекты.

Лекция 1.

Запись

Определение 3. Объект A в категории \mathcal{C} называется *терминальным* (*инициальным*), если для любого X из \mathcal{C} $|\operatorname{Hom}(X,A)| = 1$ ($|\operatorname{Hom}(A,X)| = 1$)

Утверждение 1. Если терминальный (инициальный) объект существует, то он единственен с точностью до единственного изоморфизма.

Доказательство. Пусть A и A' – терминальные объекты, тогда из определения существует единственный f из A в A' и единственный g из A' в A, композиция $f \circ g$ в этом случае будет элементом Hom(A',A'), но $\text{id}_{A'}$ также элемент этого одноэлементного множества, поэтому $f \circ g = \text{id}_{A'}$, аналогично $g \circ f = \text{id}_A$, то есть A и A' изоморфны по определению.

Пример(ы) 2.

- Sets: Ob Sets = все множества, Hom(X,Y) = все отображения из X в Y, \circ обычная композиция отображений. Инициальный объект \varnothing , терминальный любой, состоящий из одного элемента (нетрудно проверить, что они действительно попарно изоморфны);
- Groups, Rings и т.д. морфизмы были определены на первом курсе. В $Vect_F$ и инициальный, и терминальный объект 0;
- Top: объекты топологические пространства, морфизмы непрерывные отображения. Инициальный и терминальный объект такие же, как и для Sets;
- HTop: Ob HTop компактно-порождённые топологические пространства, морфизмы непрерывные отображения, профакторизованные по гомотопиям;
- Категория с одним элементом, $\mathrm{Ob}\,\mathcal{C} = X$, морфизмы в этом случае образуют моноид.
- Частичный (пред)порядок на M (ЧУМ), $\mathrm{Ob}\,\mathcal{C}=M,\,\mathrm{Hom}(x,y)=\varnothing,\,$ если $x\leq y,=\varnothing,\,$ иначе.
- Rels, Ob Rels = все множества, Hom(X,Y) = все подмножества в $X \times Y$, $R \circ S = \{(x,z) | \exists y \in Y, (x,y) \in S, (y,z) \in T\}$

Билет 1.3.

Мономорфизмы и эпиморфизмы.

Лекция 1.

Запись

Определение 4. Гомоморфизм f называется *мономорфизмом*, если «на него можно сокращать слева», т.е. $f \circ g = f \circ h \Rightarrow g = h$.

Определение 5. Гомоморфизм $f:X\to Y$ называется расщепимым мономорфизмом, если $\exists r:Y\to X$ такой, что $r\circ f=\mathrm{id}_X$

Пример(ы) 3.

- Sets инъективные отображения
- Groups инъективне гомоморфизмы групп
- Rings инъективные гомоморфизмы колец

Определение 6. Гомоморфизм f называется эпиморфизмом, если «на него можно сокращать справа», т.е. $g \circ f = h \circ f \Rightarrow g = h$.

Определение 7. Гомоморфизм $f: X \to Y$ называется расщепимым эпиморфизмом, если $\exists s: Y \to X$ такой, что $f \circ s = \mathrm{id}_Y$.

Пример(ы) 4.

- Sets сюръективные отображения
- Groups сюръективные гомоморфизмы групп
- HausTop непрерывные отображения с f(X) = Y

Билет 1.4.

Функторы. Примеры.

Лекция 1.

Запись

Определение 8. Φ унктором \mathcal{F} называется отображение между двумя категориями \mathcal{C} и \mathcal{D} (определённое и на объектах, и на морфизмах) со свойствами:

- Если $f \in \text{Hom}(X,Y)$, то $\mathcal{F}(f) \in \text{Hom}(\mathcal{F}(X),\mathcal{F}(Y))$;
- $\mathcal{F}(f \circ g) = \mathcal{F}(f) \circ \mathcal{F}(g)$;
- $\mathcal{F}(\mathrm{id}_A) = \mathrm{id}_{\mathcal{F}(A)}$.

Утверждение 2. $A \simeq B \Rightarrow F(A) \simeq F(B)$.

Примечание 2. \simeq в этом случае означает, что существуют $f:A\to B$ и $g:B\to A$ такие, что $f\circ g=\mathrm{id}_B$ и $g\circ f=\mathrm{id}_A$.

Определение 9. Контрвариантный функтор из C в D - это функтор из C^{op} в D: $A \in Ob\ C \Rightarrow F(A) \in Ob\ D,\ f: A \to B \Rightarrow F(f): F(B) \to F(a)$ и $F(f \circ g) = F(g) \circ F(f),\ F(\mathrm{id}_A) = \mathrm{id}_{F(A)}.$

Определение 10. Представимый функтор - это такой функтор $h_A: C^{Op} \to Sets, A \in Ob C$, действующий по правилу: $h_A(X) = Hom(X, A), h_A(f): \varphi \mapsto \varphi \circ f$.

Пример(ы) 5.

1. Забывающий функтор

Такой функтор стандартно обозначается как U, он "забывает" алгебраические структуры. Рассмотрим на примере групп:

 $U: Groups \to Sets$

U(G) = G как множество

U(f) = f как отображение множеств

2. Свободный функтор

Это функтор, который "вспоминает" алгебраическую структуру. Рассмотрим также на примере групп:

 $F: Sets \rightarrow Groups$

F(X) =свободная группа, порожденная X

 $F(f): F(X) \to F(Y)$, который переводит образующие в образующие: $x \mapsto f(x)$

3. Конкретный пример свободного функтора между ассоциативными алгебрами с единицей и векторными пространствами:

$$K$$
 - поле, $U: K-Alg \to Vect_K$ и $F: Vect_K \to K-Alg$ $F(V)=T(V)=K \bigoplus V \bigoplus V \bigoplus^2 \bigoplus V^{\bigotimes 3} \bigoplus ...$

Со следующей структурой:

$$V \otimes n \times V \otimes m \to V \otimes (n+m)$$

$$(v_1 \otimes ... \otimes v_n; u_1 \otimes ... \otimes u_m) \mapsto v_1 \otimes ... \otimes v_n \otimes u_1 \otimes ... \otimes u_m$$

А с гомоморфизмами дела обстоят следующим образом:

 $f:V\to W,$ тогда $F(f):T(V)\to T(W),$ который работает так: $V^{\bigotimes n}\to W^{\bigotimes n}$

$$v_1 \otimes ... \otimes v_n \to f(v_1) \otimes ... \otimes f(v_n)$$

4. Аналогично между коммутативными алгебрами и векторными пространствами:

$$S:K-CommAlg o Vect_K$$
 $S(V)=T(V)_{< u \otimes v-v \otimes u>},$ что называется симметрической алгеброй

5. Еще пример - между абелевыми и обычными группами:

$$F: AbGroups \rightarrow Groups$$

 $F(G) = G_{/[G,G]}$
 $F(f)[g] = [f(g)]$

6. *Множества с выделенной точкой* и свободный функтор между ними и категорией множеств:

 $Sets_*$ - это категория, определенная следующим образом: $Ob\ Sets_*$ состоит из элементов следующего вида: $(A, a \in A)$. Гомоморфизмы устроены так: $f_*: (A, a) \to (B, b)$, причем переводит выделенную точку в выделенную точку.

Свободный функтор выглядит так:

$$F: Sets \to Sets_*$$

$$A \mapsto A \sqcup \{\varnothing\}$$

$$f \mapsto f \times (\varnothing; \varnothing)$$

7. *Копредставимый функтор* - это функтор, действующий их категории в категорию множеств $F: C \to Sets$, построенный следующим образом:

```
A \in \text{Ob } C \ F(X) = Hom(A, X)

f: X \to Y - F(f): Hom(A, X) \to Hom(A, Y)

\phi \mapsto f \circ \phi
```

Билет 1.5.

Естественные преобразования. Примеры.

Лекция 1.

Запись

Определение 11. Пусть F и G — ковариантные функторы из категории C в D. Тогда естественное преобразование сопоставляет каждому объекту X категории C морфизм $\eta_X \colon F(X) \to G(X)$ в категории D, называемый компонентой η в X, так, что для любого морфизма $f \colon X \to Y$ диаграмма, изображённая на рисунке ниже, коммутативна. В случае контравариантных функторов C и D определение совершенно аналогично (необходимо только обратить горизонтальные стрелки, учитывая, что их обращает контравариантный морфизм).

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\eta_X \downarrow \qquad \qquad \eta_Y \downarrow$$

$$G(X) \xrightarrow{G(f)} G(Y)$$

Определение 12. Есть три функтора $F, G, H : C \to D$ и два естественных преобразования: $\alpha : F \to G$ и $\beta : G \to H$. Композиция (вертикальная) естественных преобразований это естественное преобразование $\beta \circ \alpha : F \to H \mid (\beta \circ \alpha)_A = \beta_A \circ \alpha_A$.

Определение 13. Есть четыре функтора $F,G:C\to D,\ H,K:D\to E$ и два естественных преобразования: $\alpha:F\to G$ и $\beta:H\to E$. Композиция(горизнтальная) естественных преобразований - это естественное преобразование $\beta\bullet\alpha:H\circ F\to K\circ G\mid (\beta\bullet\alpha)_A:H(F(A))\to K(G(A)),$ последнее работает следующим образом: $H(\alpha_A):H(F(A))\to H(G(A)),$ $(\beta\bullet\alpha)_A=\beta_{G(A)}(H(\alpha_A)).$

Пример(ы) 6.

- $V \in Vect_K$. Для функторов $Vect_K \to Vect_K F: V \mapsto V, f \mapsto f$ и $G: V \mapsto V^{**}, \phi \mapsto \phi^{**}$ есть естественное преобразование $\alpha \mid \alpha_V: F \to G: V = F(V) \mapsto G(V) = V^{**}$ такое, что $\alpha_V(f)(v) = f(v)$
- Топологическая группа это группа с топологической структурой, на которой заданы две непрерывные операции: $G \times G \to G : (a,b) \mapsto ab$ и $G \to G : a \mapsto a^{-1}$ (к примеру, $(\mathbb{R},+)$ и (S^1,\cdot) это топологические группы). В данном примере нас будет интересовать локально компактные топологические абелевы группы. Для каждой группы A определим двойственную: $A^* = Hom(A,S^1)$ непрерывные гомоморфизмы групп (вместе с какой-то топологией). Итак, для функторов $LocCompAb \to LocCompAb$ F = Id и $G : A \mapsto A^{**}$ есть естественное преобразование $\alpha : F \to G$, которое определяется так же, как и в предыдущем примере.

Билет 1.6.

Лемма Йонеды.

Лекция 1.

Запись

Лемма 1 (Лемма Йонеды). В произвольной категории C бозначим за h_A ковариантный функтор Hom(A, -), а за Nat(F, G) все естественные преобразования функторов F и G. Тогда теорема утверждает, что $Nat(h_a, F) \simeq F(A)$, где F действует из некоторой категории C в Sets.

Доказательство. Сначала подберем отображение "слева-направо":

Есть естественное преобразование $\eta: h_A \to F$, задача состоит в том, чтобы поставить ему в соответствие элемент из F(A). Посмотрим, как оно действует на $A: Hom(A,A) \stackrel{\eta_A}{\to} F(A)$. Т.к. С - категория, то в Hom(A,A) есть id_A , тогда в соответствии этому естественному преобразованию поставим то, во что отобразится id_A , т.е. $G(\eta) = \eta_A(id_A) \in F(A)$. Теперь "справа-налево":

Задан элемент $a \in F(A)$, ему в соответствие поставим естественное преобразование τ : $h_A \to F$ так, что для каждого $X \in Ob$ C задано отображение $Hom(A,X) \xrightarrow{\tau_X} F(X)$, действующее следующим образом: $A \xrightarrow{f} X \mapsto F(f)(a)$. Проверим его естественность:

По верху:

$$f \mapsto F(f)(a) \mapsto (F(g) \circ F(f))(a)$$

По низу:

$$f \mapsto f \circ q \mapsto F(f \circ q)(a)$$

Вспомним, что наш функтор ковариантный, а он разворачивает композицию, поэтому наше преобразование действительно естественно.

Теперь остается только проверить, что сопоставления взаимно обратные:

В одну сторону:

$$a \in F(a) \longrightarrow A \stackrel{f}{X} \mapsto F(f)(a) \longrightarrow F(id_A)(a) = id_{F(A)}(a) = a$$
. Сошлось. В другую:

$$\eta_X: A \xrightarrow{f} \eta_A(f) \longrightarrow \eta_A(id_A) \longrightarrow \tau_X: A \xrightarrow{f} X \mapsto F(f)(\eta_A(id_A))$$

$$\tau_X(f) = F(f)(\eta_A(id_A)) = \eta_X(Hom(A, f)(id_A)) = \eta_X(f). \text{ Toke } =).$$

Следствие 1. $Nat(h_A, h_B) = Hom(A, B) = h_B(A)$.

Следствие 2 (Вложение Йонеды). $h_-: C \to Set^{C^{Op}}$ - полный унивалентный ковариантный функтор, который действует следующим образом: $A \mapsto h_A, \ f: B \to A \mapsto Hom(f, -)$

Билет 1.7.

Пределы. Примеры.

Лекция 1.

Запись

Определение 14. Категория D называется *малой категорией (диаграммой)*, если ее объекты составляют множество.

Определение 15. D - малая категория, $F: D \to C$ - функтор. Ipeden - это объект $\lim F$, представляющий функтор, который действует следующим образом: $Z \mapsto Nat(\operatorname{const}_Z, F)$.

Пример(ы) 7. • Расслоеное произведение: D - категория с тремя объектами 1,2,3 и стрелками $1 \to 3, 2 \to 3$ - и есть то, во что функтор F переводит это все: $X,Y,W \in Ob\ C$, стрелки $X \to W,\ Y \to W$. Пределом такого функтора будет объект $X \times_W Y$ со следующим свойством: $\forall Z \in Ob\ C$ и $Z \to X,\ Z \to Y\ \exists !h: Z \to X \times_W Y$, сохраняющая коммутативность диаграммы.

• Уравнитель морфизмов: D - категория с двумя объектами 1,2 и двумя стрелками $1 \to 2$ - и есть то, во что функтор F переводит это все: $X,Y \in Ob\ C$, две стрелки $f,g:X \to Y$. Пределом такого функтора будет объект Eq(f,g) со следующим свойством: $\forall Z \in Ob\ C$ и $h:Z \to X$, причем $f \circ h = g \circ h$, $\exists ! \alpha:Z \to Eq(f,g)$, сохраняющая коммутативность диаграммы.

Уравнитель для C=Sets будет такой: $Eq(f,g)=\{x\in X|f(x)=g(x)\}$

ullet Пусть в D есть инициальный объект A. Тогда $\lim F = F(A)$

Билет 1.8.

содержание

Копределы. Примеры.

Лекция 1.

Запись

Определение 16. Копредел $F:D\to C$ - это объект, копредставляющий функтор $G:Z\mapsto Nat(F,\mathrm{const}_Z)$. Копредставляющий в том смысле, что $G\simeq Hom(\mathrm{colim}\, F,-)$.

- **Пример(ы) 8.** D дискретная, т.е. есть категория, в которой есть только тождественные морфизмы. $Ob\ D=I,$ есть то, во что функтор их переводит: $(X_i\in C)_{i\in I}$. Копределом для такой конструкции называется копроизведение $\coprod X_i$. В Sets это дизъюнктное объединение
 - D категория "два объекта две параллельные стрелки" (как во втором примере предела). Копределом такого функтора называется коуравнитель Coeq(f,g) со следующим свойством: $\forall Z \in C$ со стрелкой $h: Y \to Z$, сохраняющей коммутативность диаграммы, т.е. $h \circ f = h \circ g$, $\exists ! \phi : Coeq(f,g) \to Z$, сохраняющая коммутативность диаграммы

• D - натуральные числа как упорядоченное множество. Функтор переводит их в $(X_i)_{i \in \mathbb{N}}$. Если предположить, что C = Sets и $X_i \to X_{i+1}$ - вложения, то $Colim X_i = \cup X_i$

Билет 1.9.

Конструкция пределов через произведения и уравнители.

Лекция 1.

Запись

Билет 1.10.

Сопряженные функторы. Примеры.

Лекция 1.

Запись

Определение 17. Функторы $F: C \longrightarrow D$ и $G: D \longrightarrow C$ называются *сопряжёнными*, если задан естественный изоморфизм бифункторов: $Hom_D(F(X),Y) \simeq Hom_C(X,G(Y))$. F в этом случае сопряжённый *слева* к G.

Пример(ы) 9. • $G: Groups \longrightarrow Sets$ – забывающий функтор, $F: Sets \longrightarrow Groups$ – F(X) – свободная группа;

- $G:Ab\longrightarrow Groups$ в некотором смысле тоже забывающий, $F:Groups\longrightarrow Ab$: $F(H)=H^{ab}=H/[H,H];$
- $G: Vect_K \longrightarrow Sets$ забывающий, $F: Sets \to Vect_K$, $F(I) = K^{(I)}$;
- $G: CommRings \longrightarrow Sets$ забывающий, $F: Sets \longrightarrow CommRings: F(X) = \mathbb{Z}[X];$
- $G: Rings \longrightarrow Sets$ забывающий, $F: Sets \longrightarrow Rings, F(X) = \mathbb{Z}X = T^*(\mathbb{Z}^{(X)});$
- $G:K-Alg\longrightarrow Vect_K$ «забывающий», $F:Vect_K\longrightarrow K-Alg:F(V)=T^*(V);$

Предметный указатель

```
Вложение Йонеды, 10
Забывающий функтор, 6
Изоморфные объекты, 3
Категория, 3
Композиция (вертикальная) естественных пре-
      образований, 8
Композиция (горизнтальная) естественных
      преобразований, 8
Контрвариантый функтор, 6
Копредел, 12
Копредставимый функтор, 7
Лемма
   Йонеды, 9
Малая категория(диаграмма), 11
Множества с выделенной точкой, 7
Предел, 11
Представимый функтор, 6
Преобразование
   естественное, 8
Расщепимый мономорфизм, 5
Расщепимый эпиморфизм, 5
Свободный функтор, 6
Сопряжённые функторы, 14
Терминальный объект, 4
Топологическая группа, 8
\Phiунктор, 6
Эпиморфизм, 5
мономорфизм, 5
```