EXAMEN MA201 - ANNÉE 2022/2023

Exercice 1

Soit (X_1, \ldots, X_n) un n-échantillon suivant une loi de Poisson $\mathcal{P}(\theta)$, avec $\theta > 0$, paramètre inconnu. Soient $x_1, \ldots, x_n \in \mathbb{N}$, n observations issues du n-échantillon.

- $\sqrt{1}$. Déterminer la fonction de vraisemblance et la log-vraisemblance de x_1, \ldots, x_n .
- $\sqrt{2}$. Déterminer l'estimateur du maximum de vraisemblance $\hat{\theta}_n^{MV}$ de θ .
- $\sqrt{3}$. Calculer le biais, la variance et le risque quadratique moyen de $\hat{\theta}_n^{MV}$.
- $\sqrt{4}$. En déduire que $\hat{\theta}_n^{MV}$ est consistant pour θ .
- $\sqrt{5}$. Déterminer la matrice d'information de Fisher du n-échantillon sur θ .
- $\sqrt{6}$. En déduire que $\hat{\theta}^{MV}$ est efficace.

Rappel. Si X suit une loi de Poisson $\mathcal{P}(\theta)$, alors X ne peut prendre que des valeurs entières positives, et pour tout $x \in \mathbb{N}$, on a :

$$f_{\theta}(x) = \mathbb{P}_{\theta}(X = x) = e^{-\theta} \frac{\theta^x}{x!}.$$
 (1)

De plus, $E[X] = \theta$, et $Var(X) = \theta$.

Exercice 2

Dans cet exercice, nous allons montrer que l'estimateur du maximum de vraisemblance n'est pas unique en général.

Soit un n-échantillon (X_1, \ldots, X_n) suivant une loi uniforme $\mathcal{U}([\theta, \theta + 1])$, avec $\theta > 0$, paramètre inconnu à estimer. Soient x_1, \ldots, x_n , n observations issues du n-échantillon.

- 1. Déterminer la fonction de vraisemblance de x_1, \ldots, x_n .
- 2. Pour chaque $i \in \{1, ..., n\}$, donner un encadrement de x_i en fonction de θ . Indication. On pourra noter que pour tout $i \in \{1, ..., n\}$, on a $f_{X_i}(x_i) > 0$.
- 3. En déduire que tout élément de l'intervalle $[\max(x_1,\ldots,x_n)-1,\min(x_1,\ldots,x_n)]$ maximise la vraisemblance (on donnera la valeur du maximum), et donc que l'estimateur du maximum de vraisemblance n'est pas unique dans ce cas-là.

Rappel. Si X suit une loi uniforme $\mathcal{U}([a,b])$, alors :

$$\sqrt{f_X(x)} = \begin{cases} \frac{1}{b-a} & si \quad x \in [a,b] \\ 0 & sinon \end{cases}$$
 (2)

 $\sqrt{\text{De plus}}, E[X] = \frac{a+b}{2}, \text{ et } Var(X) = \frac{(b-a)^2}{12}.$

Exercice 3

Soit X une v.a. suivant une loi Bernouilli de paramètre θ , $P(X=1|\theta)=\theta$ et $P(X=0|\theta)=1-\theta$, où θ est une v.a dont la loi a priori est définie par $P(\theta=\theta_1)=p$ et $P(\theta=\theta_2)=1-p$.

- 1. Exprimer la loi a posteriori de θ , $\pi(\theta|X=x)$.
- \checkmark 2. Considérons la fonction de coût $C(x, y) = |x y|^2$, et l'estimateur défini par $\Delta(\theta|X = 0) = \mu_1$ et $\Delta(\theta|X = 1) = \mu_2$.

Pour l'estimateur Δ , donner l'expression de la fonction de risque moyen a posteriori $\rho_C(\pi, \Delta | X = x)$, c'est à dire les deux expressions $\rho_C(\pi, \Delta | X = 0)$ et $\rho_C(\pi, \Delta | X = 1)$. Ce risque moyen quadratique s'exprime par $\sum_{\theta \in \Theta} C(\theta, \Delta(\theta) \pi(\theta | X = x))$. On pourra poser $\lambda = \pi(\theta = \theta_1 | X = 1)$

3. En déduire l'estimateur bayésien Δ_{π} qui correspond au minimum de cette fonction.

- 4. On considère la fonction de coût définie par $C_1(x,y)=0$ si x=y et C(x,y)=1 sinon, et l'estimateur défini par $\Delta(\theta|X=0)=\mu_1$ et $\Delta(\theta|X=1)=\mu_2$. Que vaut la fonction ρ_{C_1} si $\pi(\theta=\theta_1|X=1)>\frac{1}{2}$?
- 5. Que vaut Δ_{π} associé à ce nouveau coût?
- 6. Que deviennent ces valeurs si $\pi(\theta = \theta_1 | X = 1) < \frac{1}{2}$ et si $\pi(\theta = \theta_1 | X = 1) = \frac{1}{2}$?

Exercice 4

On considère $\theta \in \Theta = \mathbb{R}$ le paramètre d'un modèle, sur lequel on dispose d'une loi a priori $\pi(\theta)$ et un ensemble de mesures z_1, \ldots, z_n . On suppose que la loi a posteriori est $\pi(\theta|z_1, \ldots, z_n)$, que son intégrale converge sur \mathbb{R} (propre) et que $E_{\pi}[\exp(k\theta)|z_1,\ldots,z_n] < \infty$ pour tout $k \in \mathbb{R}$; On définit un estimateur $\hat{\theta}$ à l'aide d'une fonction coût définie par $C(\hat{\theta}, \theta) = 1 - a(\theta - \hat{\theta}) + \exp(a(\theta - \hat{\theta}))$ où a est un réel.

- √. Montrer que le coût C est toujours positif pour tout θ ∈ Θ et pour tout a. (déterminer le minimum de la fonction).
- 2. Représenter l'allure de C en fonction de $\theta \hat{\theta}$ pour $a \in \{0.1, 0.5, 2\}$
- 3. On suppose $a \neq 0$. Donner l'expression de l'estimateur de Bayes $\hat{\theta}_B$ pour cette fonction coût.
- 4. On suppose à présent que la densité $f(Z|\theta)$ est la densité d'une loi normale de moyenne θ et de variance 1. La loi a priori de θ , $\pi(\theta) \propto 1$. En déduire que $\pi(\theta|z_1,\ldots,z_n)$ est la densité d'une loi normale de moyenne $\sum_{i=1}^n z_i$ et de variance 1/n.
- 5. En utilisant l'expression de l'estimateur de Bayes obtenue précédemment, montrer que ce dernier est égal à $\sum_{i=0}^{n} z_i + \frac{a}{2n}$. Indication. On rappelle que $\int_{-\infty}^{+\infty} (\frac{n}{2\pi} \exp(-\frac{n}{2}(\theta (\sum_i z_i + \frac{a}{n}))^2)) = 1$ en tant qu'intégrale de la densité d'une loi normale de moyenne $\sum_i z_i + a/n$ et de variance 1/n.

Rappel. L'estimateur de Bayes de θ associé à la loi a priori π est défini par :

$$\widehat{\theta} = T^{\pi}(z) = \arg\min_{T} E^{\pi}[C(\theta, T)|z], \tag{3}$$

où C est une fonction de coût.

ESTIMATION ET IDENTIFICATION STATISTIQUES CONTRÔLE ANNÉE 2020-2021

Les exercices sont indépendants.

Exercice 1 Soit $(z_1, ..., z_n)$ un n-échantillon d'une v.a.r. de densité $f(Z; \theta)$, où θ est un paramètre inconnu, avec $f(Z; \theta) = \exp{-(z - \theta)} 1[\theta, +\infty](z)$.

- 1. Quelle est la loi de $Z \theta$? Sa moyenne? Sa variance?
- 2. Quel est l'estimateur du maximum de vraisemblance de θ ? Son biais? Sa variance?
- 3. Construire deux estimateurs sans biais de θ , respectivement à partir de la moyenne empirique des z_j et à partir de min (z_j) .

Exercice 2 Loi de Poisson On considère Z un ensemble de n variables aléatoires discrètes indépendantes z_1, \ldots, z_n obéissant à une loi de Poisson de paramètres λ . L'objectif est de déterminer un estimateur de λ . Pour cela on introduit les variables Y_i , $i = 1, \ldots, n$, avec $Y_i = 1$, si $z_i = 0$ et $Y_i = 0$, sinon.

Rappel : Une variable aléatoire discrète suit une loi de Poisson si : $p(k) = \mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ où λ est le paramètre de la loi.

- 1. Montrer que les variables Y_i suivent une loi de Bernouilli de paramètre $p(Y_i = 1) = e^{-\lambda}$
- 2. Soit l'estimateur T(Z) défini par $T(Z) = \frac{1}{n} \sum_{i=1}^{n} Y_i$. Montrer que T est un estimateur de $e^{-\lambda}$, non biaisé et convergent.
- 3. Montrer que $p(z_i = 0|z_1 + z_2 + \dots + z_n = j) = \left(\frac{n-1}{n}\right)^j$. (Utiliser le fait que la somme de n variables aléatoires suivant une loi de Poisson de paramètre λ suit une loi de Poisson de paramètre $n\lambda$ et que $p(X|Y) = \frac{p(X \cap Y)}{p(Y)}$
- 4. Soit la variable aléatoire S_n définie par $S_n = \sum_{i=1}^n z_i$. Soit l'estimateur T_S défini par $T_S(Z) = \left(\frac{n-1}{n}\right)^{S_n}$. Montrer que T_S est un estimateur non biaisé et convergent de $e^{-\lambda}$
- 5. Montrer que pour tout paramètre λ , l'estimateur T_S est préférable à l'estimateur T.

ESTIMATION ET IDENTIFICATION STATISTIQUES CONTRÔLE ANNÉE 2020-2021

Les exercices sont indépendants.

Exercice 1 Estimation fréquentiste

On considère une suite de variables aléatoires z_1,\ldots,z_n , indépendantes suivant toutes une loi de Pareto. La loi de Pareto de paramètres (θ,a) est une loi de densité $f(z)=\frac{a\theta^a}{z^{a+1}}$ définie sur $[1,\infty[$. On suppose ici a>2 et $\theta>0$ et on admettra que $E(Z)=\frac{a\theta}{a-1}$ et $V(Z)=E(Z^2)-(E(Z))^2)=\frac{a\theta^2}{(a-1)^2(a-2)}$. La fonction de répartition est F(x)=p(Z<x) est $F(x)=1-(\frac{\theta}{x})^a$ pour $x\geq \theta$

- 1. On cherche à estimer θ en supposant a connu, tout d'abord à l'aide de l'estimateur de la moyenne empirique $Z_m = \frac{1}{n} \sum_{i=1}^n z_i$. Montrer qu'on peut déterminer une variable K tel que l'estimateur KZ_m soit un estimateur sans biais de θ . Calculer sa variance. L'estimateur est il convergent?
- 2. On considère à présent l'estimateur $\tilde{Z} = min(z_1, \ldots, z_n)$. Déterminer la fonction de répartition $G(x) = p(\tilde{Z} < x)$ à partir de la fonction de répartition de Z. En déduire l'espérance et la variance de la variable aléatoire \tilde{Z} . Déterminer la valeur du coefficient K' pour que $K'\tilde{Z}$ soit un estimateur sans biais de θ . Est il convergent?
- 3. Comparer les variances des deux estimateurs non biaisés. Quel est le plus efficace?
- 4. Il s'agit à présent d'estimer au sens du maximum de vraisemblance le paramètre a de la loi de Pareto. On suppose le paramètre θ de al loi connu dans la suite. Pour estimer a, une première étape consiste à calculer la vraisemblance $L(a,z_1,\ldots,z_n)$. A partir de l'expression de la vraisemblance, calculer la Log-vraisemblance et montrer que $T(Z) = \frac{n}{\sum_{i=1}^n \ln \frac{z_i}{\theta}}$ est l'estimé de a au sens du maximum de vraisemblance.
- 5. Déterminer l'espérance E(T(Z)) pour $n \geq 2$ et en déduire un estimateur T'(Z) = KT(Z) qui soit un estimateur sans biais de a. REMARQUE : On utilisera les deux résultats suivants : Lorsque X est une variable aléatoire suivant une loi de Pareto de paramètre θ et a, la variable aléatoire $Y = \ln \frac{X}{\theta}$ suit une loi exponentielle de paramètre a (ce qui signifie que la densité de Y est $f_Y(t) = ae^{-at}$) De plus, une somme de n variables aléatoires suivant une loi exponentielle de paramètre λ suit une loi gamma de paramètres n et λ (ce qui signifie que la densité est $f_X(x) = \frac{\lambda^n}{(n-1)!}x^{n-1} \exp(-\lambda x) \mathbb{M}_{\mathbb{R}^{+\bullet}}(x)$, son espérance est $\frac{n}{\lambda}$ et sa variance $\frac{n}{\lambda^2}$.

Exercice 2 Estimation bayésienne

On collecte une mesure z relié à un paramètre θ par $z = \theta + b$. Le bruit b a une densité de probabilité $f(b) = \frac{b}{2}$ sur [0, 2] et est indépendant de θ . La densité de probabilité a priori de θ est $f(\theta) = 2\theta$ sur [0, 1].

- 1. Calculer la densité a posteriori $f_{\theta|z}$ du paramètre θ étant donnée l'observation z. On ne calculera pas l'expression de p(z) de la loi de Bayes.
- 2. Après mesure, on obtient z=2.5. Donner les estimés de θ au sens du risque quadratique minimal, du maximum de vraisemblance a posteriori, du risque en valeur absolue a posteriori et de la moyenne a posteriori.
- 3. Comparer ces résultats. Quel est selon vous le meilleur estimateur?

Exercice 3 Un système est modélisé sous la forme $z_n = \theta u_n + b_n$, pour $1 \le n \le N$. θ doit être estimé à partir de N mesures, réalisations de v.a. rélles indépendantes z_1, \ldots, z_N . Les $b_n, 1 \le n \le N$ forment une séquence de v.a. i.i.d. suivant une loi gaussienne de moyenne nulle et de variance σ^2 . La séquence $u_n, 1 \le n \le N$ est supposée connue (de façon exacte).

1. Calculer $f(Z|\theta)$ avec $Z = [z_1, \ldots, z_N]^t$.

ESTIMATION ET IDENTIFICATION STATISTIQUES PC RÉVISION

Les exercices sont indépendants.

Exercice 1 Loi de Poisson

On considère Z un ensemble de n variables aléatoires discrètes indépendantes z_1, \ldots, z_n obéissant à une loi de Poisson de paramètres λ . L'objectif est de déterminer un estimateur de λ . Pour cela on introduit les variables Y_i , $i=1,\ldots,n$, avec $Y_i=1$, si $z_i=0$ et $Y_i=0$, sinon.

Rappel : Une variable aléatoire discrète suit une loi de Poisson si : $p(k) = \mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ où λ est le paramètre de la loi.

- Montrer que les variables Y_i suivent une loi de Bernouilli de paramètre p(Y_i = 1) = e^{-λ}
 La probabilité p(z_i = 0) est égale à exp -λ. Les variables Y_i prennent soit la valeur 1 soit la valeur
 0. La probabilité p(Y_i = 1) est égale à p(z_i = 0) = exp -λ. Les variables Y suivent une loi de
 Bernouilli de paramètre p = exp -λ.
- 2. Soit l'estimateur T(Z) défini par $T(Z) = \frac{1}{n} \sum_{i=1}^{n} Y_i$. Montrer que T est un estimateur de $e^{-\lambda}$, non biaisé et convergent. L'espérance de T(Z) est égale à $\frac{1}{n} \sum_{i=1}^{n} E(Y_i) = \frac{1}{n} n E(Y) = \exp{-\lambda}$. Donc T(Z) est non biaisé. La variance de Y étant $V(Y_i) = (\exp{-\lambda})(1 - \exp{-\lambda})$, la variance de T(Z) est $\frac{1}{n^2} n V(Y_i)$ soit $\frac{1}{n} (\exp{-\lambda})(1 - \exp{-\lambda})$. La variance tend vers 0 qd n tend vers ∞ . L'estimateur est convergent.
- 3. Montrer que $p(z_i=0|z_1+z_2+\cdots+z_n=j)=\left(\frac{n-1}{n}\right)^j$. (Utiliser le fait que la somme de n variables aléatoires suivant une loi de Poisson de paramètre λ suit une loi de Poisson de paramètre $n\lambda$ et que $p(X|Y)=\frac{p(X\cap Y)}{p(Y)}$ La probabilité $p(z_i=0|z_1+\cdots+z_n=j)=\frac{p(z_i=0et(z_1+\cdots+z_n=j))}{p(z_1+\cdots+z_n=j)}=\frac{p(z_i=0)p(z_1+\cdots+z_n=j),j\neq i}{p(z_1+\cdots+z_n=j)}=\frac{(\exp{-\lambda})\exp(-(n-1)\lambda\frac{(n-1)^j\lambda^j}{j!})}{\exp(-n\lambda\frac{(n)^j\lambda^j}{j!})}=(\frac{n-1}{n})^j$
- 4. Soit la variable aléatoire S_n définie par $S_n = \sum_{i=1}^n z_i$. Soit l'estimateur T_S défini par $T_S(Z) = \left(\frac{n-1}{n}\right)^{S_n}$. Montrer que T_S est un estimateur non biaisé et convergent de $e^{-\lambda}$ $E\left(\frac{n-1}{n}\right)^{S_n} = \sum_{j=0}^{+\infty} (\frac{n-1}{n})^j p(S_n = j) = \sum_{j=0}^{+\infty} (\frac{n-1}{n})^j \exp(-n\lambda) \frac{(n)^j \lambda^j}{j!} = \exp(-n\lambda) \sum_{j=0}^{+\infty} \frac{(n-1)^j \lambda^j}{j!} = \exp(-n\lambda) \exp((n-1)\lambda) = \exp(-\lambda)$ $E\left(\left(\frac{n-1}{n}\right)^{S_n}\right)^2 = \exp(-2\lambda + \lambda/n).$ $V(TS) = \exp(-2\lambda + \lambda/n) \exp(-2\lambda) = \exp(-2\lambda)(\exp(\lambda/n) 1)$ qui tend vers 0 qd n tend vers ∞ . L'estimateur est convergent
- 5. Montrer que pour tout paramètre λ , l'estimateur T_S est préférable à l'estimateur T. La différence des variances V(TS) - V(TZ) donne $\frac{\exp(-2\lambda)}{n}(n\exp(\lambda/n) - \exp(\lambda) - n + 1)$. La dérivée de $(n\exp(\lambda/n) - \exp(\lambda) - n + 1)$ est négative, donc l'expression décroît et est négative en 0. La variance de TS est plus petite que celle de TZ.

Exercice 2 Soit (z_1, \ldots, z_n) un n-échantillon représentant la réalisation d'une loi uniforme sur $[0 \ \theta]$. La densité d'une loi uniforme est $\frac{1}{\theta}$ et sa fonction de répartition est $F(x) = p(Z < x) = \frac{x}{\theta}$ sur $[0 \ \theta]$, $[0 \ \theta]$ pour $[0 \ \theta]$ pou

- 1. On considère tout d'abord l'estimateur $T(z) = max(z_i)$ Calculer son espérance et sa variance La fonction de répartition est $F_1(x) = p(z_1 < x), \dots etp(z_n < x)$ soit $F(x) = p(z_1 < x) \dots p(z_n < x) = (F(x)^n)$. Sa densité est $f(z) = F_1' = \frac{1}{\theta^n} n t^{n-1}$. Son espérance est donc $E(T(z)) = \int_0^\theta \frac{1}{\theta^n} n t^n dt = \frac{n}{n+1}\theta$ L'estimateur est biaisé. Sa variance est $V(T(z)) = \int_0^\theta \frac{1}{\theta^n} n t^{n+1} dt (\frac{n}{n+1}\theta)^2 = \frac{n\theta^2}{(n+1)^2(n+2)}$. La variance tend vers 0.
- 2. Corriger l'estimateur précédent pour qu'il soit sans biais. $T'(z) = \frac{n+1}{n}T(z) \text{ est un estimateur sans biais. Sa variance } V(T'(z)) = \frac{(n+1)^2}{n^2}V(T(z)) = \frac{(n+1)^2}{n^2}\frac{n\theta^2}{(n+1)^2(n+2)}$ tend vers 0 qd n tend vers ∞ . L'estimateur est convergent.

- 3. On considère l'estimateur $T(z) = min(z_i)$ Calculer son espérance et sa variance La fonction de répartition est $F_2(x) = 1 (p(z_1 > x), \dots elp(z_n > x))$ soit $F(x) = 1 (p(z_1 > x), \dots p(z_n > x)) = (1 (p(Z > x)^n = 1 (1 F(x))^n)$. Sa densité est $f(z) = \frac{n}{\theta}(1 \frac{t}{\theta}^{n-1} \text{ sur } [\mathcal{O}]$. Par intégration par partie , on trouve $E(T'(z)) = \frac{\theta}{n+1}$. L'estimateur est biaisé. Sa variance est identique à celle de T(z) et vaut $V(T(z)) = \frac{n\theta^2}{(n+1)^2(n+2)}$.
- 4. On considère à présent l'estimateur $\tilde{T}(z) = max(z_i) + min(z_i)$. Calculer son espérance. L'espérance est la somme des espérances des deux estimateurs précédents. $E\tilde{T}(z) = \frac{\theta}{n+1} + \frac{n}{n+1}\theta = \theta$. L'estimateur est non biaisé.

Exercice 3 Estimation bayésienne

On collecte une mesure z relié à un paramètre θ par $z = \theta + b$. Le bruit b a une densité de probabilité $f(b) = \frac{b}{2}$ sur [0, 2] et est indépendant de θ . La densité de probabilité a priori de θ est $f(\theta) = 2\theta$ sur [0, 1].

1. Calculer la densité a posteriori $f_{\theta|z}$ du paramètre θ étant donnée l'observation z. On ne calculera pas l'expression de f(z) de la loi de Bayes.

À partir de $z=\theta+b$, on en déduit $z-\theta=b$ dont $z-\theta$ a la loi de b soit une densité de probabilité égale à $f(z-\theta)=\frac{z-\theta}{2}$ différente de 0 si $z-\theta\in[0,\ 2]$, Donc $f_{z|\theta}=\frac{z-\theta}{2}$ avec $\theta\in[z-2,\ z]$. $f_{\theta}=2\theta$ par hypothèse . Par la formule de Bayes, $f_{\theta|z}=\frac{f_{z|\theta}f_{\theta}}{f_{z}}$ soit $f_{\theta|z}=\frac{z-\theta}{f_{z}}2\theta=\frac{(z-\theta)\theta}{f_{z}}$ avec $\theta\in[\max(z-2,0),\,\min(z,1)]$

2. Après mesure, on obtient z=2.5. Donner les estimés de θ au sens du risque moyen quadratique minimal, du maximum de vraisemblance a posteriori, du risque moyen en valeur absolue et de la moyenne a posteriori. Le risque moyen en valeur absolue s'écrit : $r_{MVA} = \mathop{\rm E}_{\theta} |\theta - \hat{\theta}|$ ce qui s'écrit $r_{MVA} = \mathop{\rm E}_{\theta} |\theta - \hat{\theta}|$ soit $\int_{z}^{+\infty} |\theta - \hat{\theta}| f(\theta|Z) d\theta$.

Pour minimiser ce risque, on cherche $\hat{\theta}$ tel que $\frac{\partial}{\partial \hat{\theta}} \int_{\max(z-2,0)}^{\min(z,1)} |\theta - \hat{\theta}| (z - \theta) \theta d\theta = 0$, soit $\frac{\partial}{\partial \hat{\theta}} \int_{0.5}^{\hat{\theta}} |\theta - \hat{\theta}| (z - \theta) \theta d\theta = 0$ qui se réduit à $-\frac{\partial}{\partial \hat{\theta}} \int_{0.5}^{\hat{\theta}} (\theta - \hat{\theta}) (z - \theta) \theta d\theta + \frac{\partial}{\partial \hat{\theta}} \int_{\hat{\theta}}^{\hat{\theta}} (\theta - \hat{\theta}) (z - \theta) \theta d\theta + \frac{\partial}{\partial \hat{\theta}} \int_{\hat{\theta}}^{\hat{\theta}} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $\hat{\theta}$ doit satisfaire $(\frac{2.5\theta^2}{2} - \frac{\theta^3}{3})^2 - (\frac{2.5 \times 0.5^2}{2} - \frac{0.5^3}{3}) = (\frac{2.5^2}{2} - \frac{2.5^3}{3})$, soit $\hat{\theta} \approx 0.76$. Le risque quadratique s'écrit : $r_{MVA} = E(\theta - \hat{\theta})^2$. Par le même raisonnement que précédemment, $\hat{\theta}$ minimisant ce risque doit satisfaire $\frac{\partial}{\partial \hat{\theta}} \int_{0.5}^{1} (\theta - \hat{\theta})^2 (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit $2 \int_{0.5}^{1} (\theta - \hat{\theta}) (z - \theta) \theta d\theta = 0$ soit 2

On retrouve également le résultat classique de correspondance entre l'estimateur du risque moyen quadratique et l'estimateur de la moyenne a posteriori.

Pour le maximum de vraisemblance a posteriori, l'estimateur doit maximiser $f(\theta|z)$ donc maximiser $(2.5 - \theta)\theta$ avec $\theta \in [0.5 \ 1]$ donc $\hat{\theta} = 1$

3. Comparer ces résultats. Quel est selon vous le meilleur estimateur?

Les deux premiers estimateurs correspondent à une valeur intérieure à l'intervalle donc on peut considérer qu'on a acquis de l'information avec le risque. Le maximum de vraisemblance a posteriori est à une des bornes de l'intervalle, donc moins informatif