Application of Graphical Lasso to Change Detection for Diabetes

Y.K. Kim*, Y. Yun, M. Yoon & H. Nakayama Graduate School of Science and Engineering Kansai University, Japan

Contents

- Background and Purpose
- Basic Analysis
- Graphical Lasso and Structure Analysis
- Importance for Factors by SVM
- Conclusion

Background

- Recently, approximately 60%
 of total deaths are caused by
 lifestyle diseases.
- Especially, diabetes may affect serious illnesses, for example, cerebral infarction and myocardial infarction.

Fig.1: The demographic statistics of Japan, 2015 (source: Demographic Statistics, Ministry of Health, 2015

Purpose

For Pima Indians diabetes data,

- to investigate whether a structure change exists between data for diabetics and for non-diabetics by using graphical lasso
 - to compare a direct correlation between factors
 - to evaluate a change score between non-diabetics and diabetics
- to investigate importance for each factor for detecting diabetes by using SVM

It will be expected for increasing the effectiveness in disease prevention and health promotion

Graphical Lasso

- Data set $D = \{x^{(i)} \mid i = 1, ..., l\}, x \in \mathbb{R}^m$
- \bullet m dimensional multivariate normal distribution

$$N(\boldsymbol{x} \mid 0, \Lambda^{-1}) = \frac{(\det \Lambda)^{1/2}}{(2\pi)^{m/2}} \exp\left(-\frac{1}{2}\boldsymbol{x}^{T}\Lambda\boldsymbol{x}\right)$$

In the graphical lasso, the precision matrix $\Lambda:=\Sigma^{-1}$ is estimated by the following the maximum likelihood method with an L_1 regularization.

$$\Rightarrow \Lambda^* = \arg\max_{\Lambda} \left(\ln \det \Lambda - \operatorname{tr}(S\Lambda) - \rho ||\Lambda||_1 \right)$$

S: covariance matrix for given data

 $\rho > 0$: given regularization parameter

to make a sparse learning by varying ρ

Structure analysis by graphical lasso

• Precision matrix $\Lambda = (\lambda_{ij}) \implies \text{adjacency matrix}$ which yields a direct correlation between x_i and x_j

Fig. 3: Correlation for a dataset 1 Fig. 4: Correlation for a dataset 2 Fig. 2: Correlation graph between x_i and x_i based on an adjacency matrix

Overview of data

- Pima Indians diabetes (1990) downloaded https://www.kaggle.com/
 - 768 women with 8 factors
 - # non-diabetics = 500, # diabetics = 268
- Factors
- 1 Pregnancies 2 Glucose 3 Blood Pressure 4 Skin Thickness

- (5) Insulin (6) BMI (7) Diabetes Pedigree Function (8) Age

Comparison (1) for correlation matrices

	Pregnancies	Glucose	Blood Pressure	Skin Thickness	Insulin	ВМІ	Diabetes Pedigree Function	Age	
Pregnancies	-	0.06	0.22	-0.09	-0.16	0.04	-0.06	0.62	For non-
Glucose	-0.16	-	0.23	0.03	0.35	0.18	0.13	0.20	diabetics
Blood Pressure	-0.02	0.14)	0.19	0.07	0.32	0.02	0.28	
Skin Thickness	-0.12	0.14	0.14		0.39	0.48	0.06	-0.08	
Insulin	-0.16	0.30	0.02	0.49		0.29	0.28	-0.12	
ВМІ	-0.13	0.12	0.15	0.30	0.06		0.11	0.10	
Diabetes Pedigree Function	-0.10	0.04	0.08	0.34	0.09	0.24		0.06	
Age	0.37	0.07	0.21	-0.02	0.03	-0.20	-0.15	-	

For diabetics

Comparison (2) for structures by graphical lasso

Fig. 5 : Structures based on adjacency matrices

••••: the relation not appearing in diabetics

the new relation not appearing in non-diabetics

第60回土木計画研究発表会

10

2019/12/02

Conclusion

- The results suggest that Glucose is one of the most influential factors for Pima Indians.
- In the future, we will consider not only the graphical lasso but also other methods to compare the important factors of diabetes diagnosis.
- In addition, we are going to apply graphical lasso to feature selection in SVM.

Reference

- Demographic statics, Ministry of Health, 2015.
- Data Health, Ministry of Health, 2017
- Anomaly Detection and Change Detection, Tshuyoshi Ide, 2009
- Sparse gaussian markov random field mixtures for anomaly detection, Tshuyoshi ide, 2016
- Pima Indians Diabetes Database, Kaggle, 2007 https://www.kaggle.com/