

Sumário

P	refác	do .	\mathbf{v}								
	Con	venções	v								
	Con	hecimentos necessários e desejáveis	vi								
1	Intr	Introdução									
	1.1	Matemática Discreta	1								
	1.2	Teoria dos Conjuntos	3								
		1.2.1 Pertinência	4								
		1.2.2 Conjuntos importantes	4								
		1.2.3 Alfabetos, palavras e linguagens	5								
		1.2.4 Continência, subconjunto e igualdade de conjuntos	5								
	1.3	Conjuntos, Tuplas e Listas	6								
	1.4	Exercícios	7								
2	Nog	ões de lógica e técnicas de demonstração	9								
	2.1	Tautologia e contradição	9								
	2.2	Implicação e equivalência	9								
	2.3	Quantificadores	12								
	2.4	Técnicas de demonstração	14								
		2.4.1 Prova direta	15								
3	Álg	ebra de Conjuntos	17								
	3.1	Operações não reversíveis	17								
		3.1.1 União	17								
		3.1.2 Intersecção	18								
	3.2	Propriedades envolvendo união e intersecção	19								
	3.3	Operações reversíveis	19								
		3.3.1 Complemento	19								
		3.3.2 Diferença	20								
		3.3.3 Conjunto das partes	21								
		3.3.4 Produto Cartesiano	22								
		3.3.5 União disjunta	22								
	3.4	Relações entre a Lógica e as operações sobre conjuntos	23								
	3.5	Provando propriedades	24								
		3 5 1 Prova da propriedade elemento neutro da união	24								

UMÁRIO	ii
--------	----

	3.6	6 Exercícios		 				25
	3.7							27
4	Rela	elações						29
	4.1	1 Endorrelação		 				30
	4.2	2 Representações gráficas de relações		 				30
		4.2.1 Relações como diagramas de Venn		 				30
		4.2.2 Relações como planos cartesianos		 				31
		4.2.3 Relações como grafos		 				31
	4.3	3 Exercícios		 				32
	4.4							32
		4.4.1 Reflexiva, irreflexiva		 				32
		4.4.2 Reflexividade de relações em matrizes e grafos .		 				34
		4.4.3 Simétrica, antissimétrica						34
		4.4.4 Simétrica e antissimétrica em matrizes e grafos .		 				35
		4.4.5 Transitiva, não transitiva						35
	4.5	,						35
$\mathbf{R}_{\mathbf{c}}$	eferê	rências						36

Lista de Tabelas

2.1	Tabela-verdade demonstrando tautologia e contradição	9
2.4	Tabela-verdade: bicondição x condição	11
2.5	Tabela-verdade: contraposição	11
2.6	Tabela-verdade: redução ao absurdo	11
3.4	DeMorgan na álgebra de conjuntos e na Lógica	20
3.9	Conectivos lógicos x operações sobre conjuntos	23

Lista de Figuras

1.1	Gráfico da $y = x^2$, com $0 \le x \le 5$	2
1.2	Gráfico da $y=x^2$ com mais amostras	2
3.1	Diagrama de Venn demonstrando a intersecção entre conjuntos A e B $\ \ldots \ \ldots$	19
4.1	Diagrama de Venn demonstrando relações entre conjuntos	31
4.2	Gráfico demonstrando relações entre conjuntos	31
4.3	Grafo 1 - demonstrando relações entre conjuntos	32
4.4	Grafo 2 - demonstrando relações entre conjuntos	32

Lista de Códigos-fontes

Prefácio

Este é um texto de apoio à disciplina Matemática Discreta para os cursos de computação do Centro Universitário Luterano de Palmas. Sempre que possível serão apresentadas referências a conceitos da computação e como eles se relacionam com os conceitos matemáticos apresentados. A principal referência do conteúdo utilizado aqui é (MENEZES, 2010).

Convenções

Os trechos de código apresentados no livro seguem o seguinte padrão:

- comandos: devem ser executados no prompt; começam com o símbolo \$
- códigos-fontes: trechos de códigos-fontes de arquivos

A seguir, um exemplo de comando:

```
$ mkdir hello-world
```

O exemplo indica que o comando mkdir, com a opção hello-world, deve ser executado no prompt para criar uma pasta com o nome hello-world.

A seguir, um exemplo de código-fonte:

```
1 class Pessoa:
2 pass
```

O exemplo apresenta o código-fonte da classe Pessoa. Em algumas situações, trechos de código podem ser omitidos ou serem apresentados de forma incompleta, usando os símbolos . . . e #, como no exemplo a seguir:

```
1 class Pessoa:
2   def __init__(self, nome):
3        self.nome = nome
4
5   def salvar(self):
6   # executa validação dos dados
```

```
7 ...
8 # salva
9 return ModelManager.save(self)
```

Conhecimentos necessários e desejáveis

Este texto aborda conceitos matemáticos com aplicações em computação. Portanto, conhecimentos básicos dos cursos de computação são necessários, como noções de lógica, algoritmos e programação e estruturas de dados. Além disso, são desejáveis conhecimentos de bancos de dados e orientação a objetos e também podem ser recursos úteis:

- Git (GIT COMMUNITY, [s.d.])
- Visual Studio Code (MICROSOFT, [s.d.])
- TypeScript (MICROSOFT, [s.d.])
- Node.js (NODE.JS FOUNDATION, [s.d.])
- npm (NPM, INC., [s.d.])

Capítulo 1

Introdução

1.1 Matemática Discreta

Conforme (MENEZES, 2010) as Diretrizes Curriculares do MEC para os cursos de computação e informática definem que:

A matemática, para a área de computação, deve ser vista como uma ferramenta a ser usada na definição formal de conceitos computacionais (linguagens, autômatos, métodos etc.). Os modelos formais permitem definir suas propriedades e dimensionar suas instâncias, dadas suas condições de contorno.

Além disso, afirmam:

Considerando que a maioria dos conceitos computacionais pertencem ao domínio discreto, a **matemática discreta** (ou também chamada álgebra abstrata) é fortemente empregada.

Desta forma, a Matemática Discreta preocupa-se com o emprego de técnicas e abordagens da matemática para o entendimento de problemas a serem resolvidos com computação. Mas o que significa ser discreto? A matemática, por si, trata também do domínio contínuo. Assim, estes domínios são opostos: contínuo e discreto. Para entender isso melhor, observe a Figura 1.1:

Figura 1.1 representa a função $y=x^2$, com $0 \le x \le 5$ em dois gráficos, sendo que o da direita destaca pontos selecionados, que representam 6 amostras (0, 1, 2, 3, 4 e 5).

Aumentando-se o número de amostras em dois instantes, para 10, 100 e 1000 teríamos, como mostra a Figura 1.2:

O que se pode perceber pela Figura 1.2 é que quanto mais se aumenta o número de amostras, mais se aproxima de uma curva perfeita. Entretanto, há um certo limite de percepção da perfeição dessa curva, por assim dizer. Por exemplo, embora a quantidade de amostras do gráfico da esquerda seja menor, a diferença para o gráfico da direita, visualmente falando, é pouco perceptível.

Considere outro exemplo: um computador possui uma capacidade de armazenamento virtualmente infinita. "Virtualmente" porque embora se aceite um limite, ele não é conhecido, já que a quan-

Figura 1.1: Gráfico da $y=x^2,$ com $0 \le x \le 5$

Figura 1.2: Gráfico da $y=x^2$ com mais amostras

tidade de unidades de armazemamento pode ser bastante grande, mas é **contável**. Assim, no contexto da computação, embora algo possa ser considerado finito ou infinito, ele é *contável* ou *discreto* no sentido de que pode ser enumerado ou sequenciado, de forma que não existe um elemento entre quaisquer dois elementos consecutivos da enumeração.

No exemplo do computador, embora a quantidade de unidades de armazenamento não seja conhecida, ela é contável e enumerável e não se pode afirmar que exista, por um exemplo, um disco rídigo desconhecido entre os array de discos composto por D1 e D2. Outro exemplo: na matemática, o conjunto dos números naturais é contável (ou enumerável), equanto o conjunto dos números reais não é contável.

Assim, a matemática discreta possui como ênfase os estudos matemáticos baseados em conjuntos contáveis, sejam eles finitos ou infinitos. De forma oposta, a *matemática do continuum* possui ênfase nos conjuntos não contáveis. Um exemplo disso são o cálculo diferencial e integral.

1.2 Teoria dos Conjuntos

Os **conjuntos** são a base da forma de representação de enumerações de elementos em matemática discreta. Por definição um conjunto é:

uma estrutura que agrupa objetos e constitui uma base para construir estruturas mais complexas.

Segue uma definição mais formal:

Um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada.

O fato de não haver uma *ordem associada* não significa que os elementos não possam estar ordenados, num dado contexto, conforme algum critério. Apenas indica que, no geral, isso não é obrigatório.

Há duas formas (notações) de representar conjuntos: notação por extensão e notação por compreensão.

Notação por extensão é quando todos os elementos do conjunto estão enumerados, representados entre chaves e separados por vírgula. Exemplo:

```
Vogais = \{a, e, i, o, u\}.
```

Entende-se que se um conjunto pode ser representado por extensão, então ele é *finito*. Caso contrário, é *infinito*.

Notação por compreensão representa conjuntos usando propriedades. Os exemplos a seguir usam uma pequena diferença de notação, mas representam a mesma coisa:

- Pares = $\{n \mid n \text{ \'e um n\'umero par}\}$
- Pares = $\{n : n \text{ \'e um n\'umero par}\}$

Este conjunto é interpretado como: o conjunto de todos os elementos n tal que n é um número par. A forma geral de representar um conjunto por propriedades é:

$$X = \{x : p(x)\}$$

Isso quer dizer que x é um elemento de X se a propriedade p(x) for verdadeira.

A notação por propriedades é uma boa forma de representar conjuntos infinitos.

Há ainda uma outra forma aceitável de representar conjuntos usando uma representação semelhante à de por extensão. Exemplos:

- Digitos = $\{0, 1, 2, ..., 9\}$
- Pares = $\{0, 2, 4, 6, ...\}$

Embora haja elementos ausentes, substituídos por reticências (...) é completamente aceitável e entendível o que se quer informar com a descrição do conjunto.

O número de elementos de um conjunto A é representado por |A| (isso também é chamado "cardinalidade"). Portanto, se $A = \{1, 2, 3\}, |A| = 3$ e $|\emptyset| = 0$.

A seguir, revemos conceitos de algumas relações entre e com conjuntos ou elementos.

1.2.1 Pertinência

Se um elemento a pertence ao conjunto A isso é representado como: $a \in A$. Caso contrário, se a não pertence a A, então representa-se como: $a \notin A$.

Exemplos: Pertence, não pertence

Quanto ao conjunto Vogais = $\{a, e, i, o, u\}$:

- a) $a \in Vogais$
- b) $h \notin Vogais$

Quanto ao conjunto $B = \{x : x \text{ \'e brasileiro}\}:$

- a) Pele $\in B$
- b) Bill Gates $\notin B$

1.2.2 Conjuntos importantes

O conjunto vazio é um conjunto sem elementos, representado como $\{\}$ ou \emptyset . Exemplos:

- o conjunto de todos os brasileiros com mais de 300 anos;
- o conjunto dos números que são, simultaneamente, ímpares e pares.

O conjunto unitário é um conjunto constituído por um único elemento. Exemplos:

- o conjunto constituído pelo jogador de futebol Pelé;
- o conjunto de todos os números que são, simultaneamente, pares e primos, ou seja: $P = \{2\}$;
- um conjunto unitário cujo elemento é irrelevante: $1 = \{*\}$.

O **conjunto universo**, normalmente denotado por U, contém todos os conjuntos considerados em um dado contexto.

Outros conjuntos importantes:

- N: o conjunto dos números naturais (inteiros positivos e o zero)
- Z: o conjunto dos números inteiros (inteiros negativos, positivos e o zero)
- Q: o conjunto dos números racionais (os que podem ser representados na forma de fração)
- I: o conjunto dos números irracionais
- R: o conjunto dos números reais

1.2.3 Alfabetos, palavras e linguagens

Em computação, e mais especificamente em linguagens de programação, um conceito importante é o que define o conjunto de elementos ou termos-chave da linguagem.

Um alfabeto um conjunto finito cujos elementos são denominados símbolos ou caracteres.

Uma **palavra** (cadeia de caracteres ou sentença) sobre um alfabeto é uma sequência finita de símbolos justapostos.

Uma linguagem [formal] é um conjunto de palavras sobre um alfabeto.

Exemplos: alfabeto, palavra

- a) Os conjuntos \emptyset e $\{a, b, c\}$ são alfabetos
- b) O conjunto N não é um alfabeto
- c) ϵ é uma palavra vazia
- d) Σ é geralmente usada para representar um alfabeto
- e) Σ^* é o conjunto de todas as palavras possíveis sobre o alfabeto Σ
- f) ϵ é uma palavra do alfabeto \emptyset
- g) $\{a,b\}^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, ...\}$

1.2.4 Continência, subconjunto e igualdade de conjuntos

A continência permite introduzir os conceitos de subconjunto e iqualdade de conjunto.

Se todos os elementos de um conjunto A também são elementos de um conjunto B, então A está contido em B, o que é representado por: $A \subseteq B$. Isso também é lido como A é subconjunto de B.

Se $A \subseteq B$, mas há $b \in B$ tal que $b \notin A$, então pode-se dizer que A está contido propriamente em B, ou que A é subconjunto próprio de B. Isso é denotado por: $A \subset B$.

A negação de subconjunto e subconjunto próprio é, respectivamente:

- $A \nsubseteq B$ e
- A ⊄ B

Exemplos: continência, subconjunto

- a) $\{a,b\} \subseteq \{b,a\}$
- b) $\{a, b\} \subset \{a, b, c\}$, e $\{a, b\} \subseteq \{a, b, c\}$

A igualdade de conjuntos é um conceito baseado em pertinência: se os elementos de A também são elementos de B e vice-versa, então A=B. Formalmente, uma condição para A=B é que $A\subseteq B$ e $B\subseteq A$.

Exemplo

$$\{1,2,3\} = \{3,3,3,2,2,1\}$$

É importante notar que pertinência (\in) é usada entre elementos e conjuntos, enquanto continência (\subset e \subseteq) é usada entre conjuntos.

Por definição, um conjunto qualquer é subconjunto de si mesmo, e \emptyset é subconjunto de qualquer conjunto.

Exemplo

Seja $A = \{1, 2\}$ então os subconjuntos de A são: \emptyset , $\{1\}$, $\{2\}$ e $\{1, 2\}$.

1.3 Conjuntos, Tuplas e Listas

Uma **Tupla** (ou ênupla) é uma sequência ordenada de n elementos (ou componentes). As principais diferenças para **conjunto** são:

- uma ênupla pode conter um elemento mais de uma vez; e
- os elementos são, obrigatoriamente, ordenados, ou seja, cada elemento está em uma posição diferente.

A notação utilizada é $\boldsymbol{X}=(c_1,c_2,...,c_n)$ onde:

- X é uma ênupla com n componentes
- c_1 é o primeiro componente da ênupla
- c_n é o último componente da ênupla
- c_i é o i-ésimo componente da ênupla

Exemplos:

- X = (1, 1, 2, 3)
- $X = (1_1, 1_2, 2_3, 3_4)$
- $Y = (3_1, 2_2, 1_3)$

As mesmas relações de pertinência entre conjuntos e elementos podem ser aplicadas entre ênuplas e seus componentes.

Uma **Lista** é uma estrutura de dados que implementa o conceito matemático de **Tupla**, então podemos afirmar para Vogais = (a, e, i, o, u):

- Vogais é uma lista com 5 elementos
- a é a primeira vogal
- u é a última vogal

1.4 Exercícios

Questão 1. Para cada conjunto abaixo: a) descreva de forma alternativa (usando outra forma de notação); e b) diga se é finito ou infinito.

- a) todos os números inteiros maiores que 10
- b) $\{1, 3, 5, 7, 9, 11, ...\}$
- c) todos os países do mundo (Terra)
- d) a linguagem de programação Python

Questão 2. Para $A = \{1\}$, $B = \{1,2\}$ e $C = \{\{1\},1\}$, marque as afirmações corretas:

- a) $A \subset B$
- b) $A \subseteq B$
- c) $A \in B$
- d) A = B
- e) $A \subset C$
- f) $A \subseteq C$
- g) $A \in C$
- h) A = C
- i) $1 \in A$
- j) $1 \in C$
- k) $\{1\} \in A$
- 1) $\{1\} \in C$
- m) $\emptyset \notin C$
- n) $\emptyset \subset C$

Questão 3. Sejam $a = \{x \mid 2x = 6\}$ e b = 3. É correto afirmar que a = b? Por que?

Questão 4. Quais todos os subconjuntos dos seguintes conjuntos?

- a) $A = \{a, b, c\}$
- b) $B = \{a, \{b, c\}, D\}$, dado que $D = \{1, 2\}$

Questão 5. O conjunto vazio está contido em qualquer conjunto, inclusive nele próprio? Justifique.

Questão 6. Todo conjunto possui um subconjunto próprio? Justifique.

Questão 7. Sejam $A = \{0, 1, 2, 3, 4, 5\}$, $B = \{3, 4, 5, 6, 7, 8\}$, $C = \{1, 3, 7, 8\}$, $D = \{3, 4\}$, $E = \{1, 3\}$, $F = \{1\}$ e X um conjunto desconhecido. Para cada item abaixo, determine quais dos conjuntos A, B, C, D, E ou F podem ser iguais a X:

- a) $X \subseteq A \in X \subseteq B$
- b) $X \not\subset B \in X \subseteq C$
- c) $X \not\subset A \in X \not\subset C$
- d) $X \subseteq B \in X \not\subset C$

Questão 8. Sejam A um subconjunto de B e B um subconjunto de C. Suponha que $a \in A$, $b \in B$, $c \in C$, $d \notin A$, $e \notin B$, $f \notin C$. Quais das seguintes afirmações são verdadeiras?

- a) $a \in C$
- b) $b \in A$
- c) $c \notin A$
- d) $d \in B$
- e) $e \notin A$
- f) $f \notin A$

Questão 9. Bancos de dados relacionais costumam representar conjuntos de dados organizados em tabelas, colunas e registros. É possível considerar alguma semelhança entre o conceito de tabela e o conceito de conjunto? Há recursos de consulta (em linguagem SQL, por exemplo) que permitam identificar, ainda que parcialmente, relações entre tabelas e registros (ou valores) como as expressadas nesse capítulo entre elementos e conjuntos? Explique.

Questão 10. Escolha uma linguagem de programação e demonstre seus recursos para lidar com conjuntos e listas. Utilizando código-fonte (e a sintaxe da linguagem de programação) demonstre e explique as diferenças conceituais e demonstre recursos da linguagem que permitam identificar as relações de pertinência, continência, subconjunto e igualdade.

Capítulo 2

Noções de lógica e técnicas de demonstração

Depois de ver sobre a **Teoria dos conjuntos** fica mais evidente a necessidade de estabelecer uma linguagem lógico-matemática para demonstrações e provas. Este capítulo apresenta uma revisão dos conceitos de lógica e traz técnicas de demonstração úteis nos capítulos seguintes sobre provas.

2.1 Tautologia e contradição

Seja w uma fórmula. Então:

- a) w é chamada de **tautologia** se w for **verdadeira** (considerando todas as combinações possíveis de valores de sentenças variáveis entradas). Por exemplo: a fórmula $p \vee \neg p$ é uma tautologia;
- b) w é chamada **contradição** se w for **falsa**. Por exemplo: a fórmula $p \land \neg p$ é uma contradição.

A tabela-verdade da Tabela 2.1 resume os valores de entrada possíveis para p e $\neg p$ demonstrando tautologia e contradição das fórmulas de exemplo.

Tabela 2.1: Tabela-verdade demonstrando tautologia e contradição

\overline{p}	$\neg p$	$p \vee \neg p$	$p \land \neg p$
V	F	V	F
F	V	V	\mathbf{F}

2.2 Implicação e equivalência

A relação de implicação é definida como: sejam p e q duas fórmulas. Então p implica q se e somente se $p \to q$ é uma tautologia. Isso é denotado por:

$$p \Rightarrow q \tag{2.1}$$

Para exemplificar, considere a tabela-verdade a seguir.

\overline{p}	q	$p \vee q$	$p \to (p \vee q)$	$p \wedge q$	$(p \land q) \to p$
V	V	V	V	V	V
V	\mathbf{F}	V	V	\mathbf{F}	V
F	V	V	V	F	V
F	\mathbf{F}	\mathbf{F}	V	\mathbf{F}	V

Vale a implicação chamada **adição**, definida por $p \Rightarrow p \lor q$. Para validar essa afirmação, verificamos que $p \to (p \lor q)$ é uma tautologia aplicando o condicional (quarta coluna da tabela-verdade).

Vale a implicação chamada **simplificação**, definida por $p \land q \Rightarrow q$. Para validar essa afirmação, verificamos que $(p \land q) \rightarrow p$ é uma tautologia (sexta coluna da tabela-verdade).

A relação de equivalência é definida como: sejam p e q duas fórmulas. Então p é equivalente a q se e somente se $p \leftrightarrow q$ é uma tautologia. Isso é denotado por:

$$p \Leftrightarrow q$$
 (2.2)

Considere a relação de equivalência da fórmula:

$$p \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)$$

Para verificar a validade da equivalência, basta construir a tabela-verdade para demonstrar que $p \lor (q \land r) \leftrightarrow (p \lor q) \land (p \lor q)$ (chamada de S) é uma tautologia, ou seja:

\overline{p}	q	r	$q \wedge r$	$p \vee (q \wedge r)$	$p \lor q$	$p \vee r$	$(p \vee q) \wedge (p \vee r)$	S
V	V	V	V	V	V	V	V	V
V	V	\mathbf{F}	\mathbf{F}	V	V	V	V	V
V	\mathbf{F}	V	\mathbf{F}	V	V	V	V	V
V	\mathbf{F}	\mathbf{F}	\mathbf{F}	V	V	V	V	V
F	V	V	V	V	V	V	V	V
F	V	\mathbf{F}	\mathbf{F}	F	V	F	F	V
F	\mathbf{F}	V	F	F	\mathbf{F}	V	F	V
F	F	\mathbf{F}	F	\mathbf{F}	\mathbf{F}	F	F	V

Também é interessante observar que a fórmula ilustra que a distributividade do conectivo **ou** sobre o conectivo **e** é verdadeira sempre, ou seja, é uma tautologia. O mesmo valeria para a distributividade do conectivo **e** sobre o conectivo **ou**? Verifique.

Para verificar a equivalência da fórmula:

$$(p \leftrightarrow q) \Leftrightarrow (p \to q) \land (q \to p)$$

basta demonstrar que $(p \leftrightarrow q) \leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$ (chamada de S) é uma tautologia. Isso é conseguido utilizando a tabela-verdade:

Tabela 2.4: Tabela-verdade: bicondição x condição

\overline{p}	q	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \to q) \land (q \to p)$	\overline{S}
V	V	V	V	V	V	V
V	\mathbf{F}	\mathbf{F}	\mathbf{F}	V	\mathbf{F}	V
F	V	F	V	\mathbf{F}	\mathbf{F}	V
F	\mathbf{F}	V	V	V	V	V

Essa forma em particular demonstra formalmente por que a bicondição pode ser expressa por duas condições: "ida" e "volta".

Para verificar a equivalência da fórmula:

$$p \to q \Leftrightarrow \neg q \to \neg p$$

basta demonstrar que $p \to q \leftrightarrow \neg q \to \neg p$ (chamada de S) é uma tautologia. Isso é conseguido utilizando a tabela-verdade:

Tabela 2.5: Tabela-verdade: contraposição

p	q	$\neg p$	$\neg q$	$p \to q$	$\neg q \to \neg p$	S
V	V	F	F	V	V	V
V	F	\mathbf{F}	V	\mathbf{F}	\mathbf{F}	V
\mathbf{F}	V	V	\mathbf{F}	V	V	V
F	F	V	V	V	V	V

Essa relação de equivalência é conhecida como contraposição.

Para verificar a equivalência da fórmula:

$$p \to q \Leftrightarrow p \land \neg q \to F$$

basta demonstrar que $p \to q \leftrightarrow p \land \neg q \to F$ (chamada de S) é uma tautologia. Isso é conseguido utilizando a tabela-verdade:

Tabela 2.6: Tabela-verdade: redução ao absurdo

\overline{p}	q	$\neg q$	$p \rightarrow q$	$p \wedge \neg q$	$p \land \neg q \to F$	\overline{S}
V	F	V	F	V	F	V
F	V	\mathbf{F}	V	\mathbf{F}	V	V
F	\mathbf{F}	V	V	\mathbf{F}	V	V

Essa relação de equivalência é conhecida como redução ao absurdo.

2.3 Quantificadores

Seja A um conjunto. Uma proposição p(x) sobre A:

- a) descreve alguma propriedade de um elemento $x \in A$; e
- b) tem valor lógico dependendo do elemento $x \in A$.

Então:

- a) o **conjunto verdade** $p(x) = \{x \in A \mid p(x) \text{ \'e verdadeira}\}$
- b) o **conjunto falsidade** $p(x) = \{x \in A \mid p(x) \text{ \'e falsa}\}$

Ainda:

- a) se p(x) é verdadeira para qualquer $x \in A$ então é uma tautologia, ou seja, o conjunto verdade é A:
- b) se p(x) é falsa para qualquer $x \in A$ então é uma contradição, ou seja, o conjunto falsidade é A.

Exemplos: conjuntos verdade e falsidade, tautologia e contradição

Suponha o conjunto universo N, então:

- a) para p(n) = n > 1:
- conjunto verdade: $\{2, 3, 4, \ldots\}$
- conjunto falsidade: $\{0,1\}$
- náo é tautologia e nem contradição. Por exemplo, é verdadeira para n=2, mas falsa para n=0
- b) para p(n) = n! < 10:
- conjunto verdade: $\{0, 1, 2, 3\}$
- conjunto falsidade: $\{n \in N \mid n > 3\}$
- não é tautologia e nem contradição. Por exemplo, é verdadeira para n=0, mas falsa para n=4
- c) para p(n) = n + 1 > n:
- conjunto verdade: N
- conjunto falsidade: \emptyset
- é uma tautologia

Exemplos: conjuntos verdade e falsidade, tautologia e contradição

d) para p(n) = 2n é ímpar

- conjunto verdade: \emptyset

- conjunto falsidade: N

- é uma contradição

Os **quantificadores** são utilizados na lógica para, com relação a uma determinada proposição p(x), quantificar os valores de x que devem ser considerados.

O quantificador universal, simbolizado por \forall , quando associado a uma proposição p(x), é denotado como qualquer uma das três opções a seguir:

$$(\forall x \in A)(p(x)) \qquad (\forall x \in A)p(x) \qquad \forall x \in A, p(x)$$
 (2.3)

ou, quando é claro sobre qual conjunto de valores a proposição está definida, pode-se usar:

$$(\forall x)(p(x)) \qquad (\forall x)p(x) \qquad \forall x, p(x) \tag{2.4}$$

A leitura da fórmula $(\forall x \in A)p(x)$ é: "qualquer x, p(x)" ou "para todo x, p(x)"

O quantificador existencial, simbolizado por \exists , quando associado a uma proposição p(x), é denotado como qualquer uma das opções a seguir:

$$(\exists x \in A)(p(x)) \qquad (\exists x \in A)p(x) \qquad \exists x \in A, p(x)$$
 (2.5)

ou, quando é claro sobre qual conjunto de valores a proposição está definida, pode-se usar:

$$(\exists x)(p(x)) \qquad (\exists x)p(x) \qquad \exists x, p(x) \tag{2.6}$$

A leitura da fórmula $(\exists x \in A)p(x)$ é: "existe pelo menos um x tal que p(x)" ou "existe x tal que p(x)".

O valor-verdade de cada proposição quantificada é:

- a) $(\forall x \in A)p(x)$ é verdadeira, se p(x) for verdadeira para todos os elementos de A; e
- b) $(\exists x \in A)p(x)$ é verdadeira, se p(x) for verdadeira para pelo menos um elemento de A.

Portanto:

- a) quantificador universal: a proposição $(\forall x \in A)p(x)$ é:
 - verdade
ira se o conjunto verdade for igual ao conjunto ${\cal A}$
 - falsa, caso contrário
- b) quantificador existencial: a proposição $(\exists x \in A)p(x)$ é:
 - verdadeira, se o conjunto verdade for não vazio (ou diferente de \emptyset)

• falsa, caso contrário (ou igual a ∅)

A noção de uma proposição p(x) sobre um conjunto pode ser generalizada para descrever alguma propriedade de elementos $x_1 \in A_1, x_2 \in A_2, ..., x_n \in A_n$, sendo denotada da seguinte forma:

$$p(x_1, x_2, ..., x_n) (2.7)$$

Por exemplo, para o conjunto universo N valem:

- $(\forall n)(\exists m)(n < m)$ é verdadeira: dado qualquer valor n, existe pelo menos um m que satisfaz a desigualdade. Por exemplo: tomando m = n + 1 é verdadeiro que n < n + 1
- $(\exists m)(\forall n)(n < m)$ é **falsa**: **existe** um número natural maior que **qualquer** outro, o que não é verdade.

A negação da proposição quantificada:

$$(\forall x \in A)p(x)$$

é definida como:

$$(\exists x \in A) \neg p(x) \tag{2.8}$$

o que significa que existe pelo menos um x tal que não é fato que ou não é verdade que p(x). Logo:

$$\neg ((\forall x \in A)p(x)) \Leftrightarrow (\exists x \in A)\neg p(x)$$

e, também:

$$\neg((\exists x \in A)p(x)) \Leftrightarrow (\forall x \in A)\neg p(x)$$

2.4 Técnicas de demonstração

Um teorema é uma proposição que prova-se uma tautologia, do tipo:

$$p \to q$$
 (2.9)

ou seja, uma implicação:

$$p \Rightarrow q$$

onde:

- p é chamada de hipótese (ou premissa) e é, por suposição, verdadeira
- q é chamada de tese (ou conclusão)

Para exemplificar considere o teorema:

0é o único elemento neutro da adição em ${\cal N}$

Ele poderia ser reescrito como a seguir, para evidenciar hipótese e tese:

se 0 é elemento neutro da adição em N,então 0 é o único elemento neutro da adição em N

Desta forma, por causa de $p \Rightarrow q$, a hipótese p é suposta verdadeira e, consequentemente, ela não deve ser demonstrada.

Para um determinado teorema $p \to q$ destacam-se as seguintes técnicas de prova (demonstração) de que, de fato, $p \Rightarrow q$:

- prova direta
- prova por contraposição
- prova por redução ao absurdo
- prova por indução

Para qualquer técnica de demonstração deve-se dar atenção especial aos quantificadores. Para provar a proposição:

$$(\forall x \in A)p(x)$$

é necessário provar p(x) para todo $x \in A$. Assim, mostrar um determinado elemento $a \in A$ não é uma prova, mas um exemplo, o que não constitui uma prova válida para todos os elementos de A. Já no caso de:

$$(\exists x \in A) p(x)$$

para provar que existe pelo menos um $a \in A$ tal que p(x) é **verdadeira** basta mostrar um exemplo.

2.4.1 Prova direta

Uma prova é direta quando pressupõe verdadeira a hipótese e, a partir dela, prova ser verdadeira a conclusão.

Considere o teorema:

a soma de dois números pares é um número par

que, reescrito na forma de $p \rightarrow q$, torna-se:

se n e m são dois números pares quaisquer, então n+m é um número par

Suponha que n e m são números pares. Deve-se mostrar que n+m é par.

Pela definição de **par**:

qualquer número par n pode ser definido como n=2r, para algum natural r.

podemos afirmar que existem $r,s\in N$ tais que:

$$n=2r$$
 e $m=2s$

Então, aplicando essas definições em n+m:

$$n+m = 2r + 2s = 2(r+s)$$

A expressão r+s é um número que, multiplicado por 2 é um número par. Logo, n+m é um número par e prova-se verdadeira a conclusão.

A estrutura da prova direta \acute{e}^1 :

- 1. expresse a afirmação a ser provada na forma $(\forall x \in A)p(x) \to q(x)$ (pode ser feito mentalmente)
- 2. comece a prova supondo que x é um elemento específico de A, mas escolhido arbitrariamente para o qual a hipótese p(x) é verdadeira (normalmente abreviado para o formato: suponha $x \in Aep(x)$)
- 3. mostre que a consluão é verdadeira usando definições, resultados anteriores e as regras de inferência lógica

¹Notas de aula da disciplina Matemática Discreta, do Departamento de Ciência da Computação da UFMG, ministrada pelo prof. Antonio Alfredo Ferreira Loureiro. On-line: http://homepages.dcc.ufmg.br/~loureiro/md/md_3MetodosDeProva.pdf

Capítulo 3

Álgebra de Conjuntos

Uma **Álgebra** é constituída de operações definidas sobre uma soleção de objetos. Neste contexto, álgebra de conjuntos corresponderia às operações definidas sobre todos os conjuntos.

As operações da álgebra de conjuntos podem ser:

- Não reversíveis
 - União
 - Intersecção
 - Diferença
- Reversíveis
 - Complemento
 - Conjunto das partes
 - Produto cartesiano
 - União disjunta

3.1 Operações não reversíveis

3.1.1 União

Sejam A e B dois conjuntos. A união entre eles, $A \cup B$, é definida como:

$$A \cup B = \{x \mid x \in A \lor x \in B\} \tag{3.1}$$

Considerando a lógica, o conjunto A pode ser definido como $x \in A$ e o conjunto B pode ser definido como $x \in B$. Ou seja, a propriedade de pertiência é utilizada para indicar uma proposição lógica.

A união corresponde à operação lógica disjunção (símbolo \lor).

Exemplo: união entre conjuntos

Considere os conjuntos:

Exemplo: união entre conjuntos

- a) Digitos = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- b) Vogais = $\{a, e, i, o, u\}$
- c) Pares = $\{0, 2, 4, 6, ...\}$

Então:

- a) Digitos \cup Vogais = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, e, i, o, u\}$
- b) Digitos \cup Pares = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, ...\}$

Suponha os conjuntos:

a)
$$A = \{x \in N \mid x > 2\}$$

b)
$$B = \{x \in N \mid x^2 = x\}$$

Então:

$$A \cup B = \{0, 1, 3, 4, 5, 6, \dots\}$$

É importante observar que o resultado da união é um conjunto sem repetições de elementos.

Vejamos as propriedades da união:

- Elemento neutro: $A \cup \emptyset = \emptyset \cup A = A$
- Idempotência: $A \cup A = A$
- Comutativa: $A \cup B = B \cup A$
- Associativa: $A \cup (B \cup C) = (A \cup B) \cup C$

3.1.2 Intersecção

Sejam dois conjuntos A e B. A intersercção entre eles, $A \cap B$ é definida como:

$$A \cap B = \{ x \mid x \in A \land x \in B \} \tag{3.2}$$

A união corresponde à operação lógica conjunção (símbolo $\wedge).$

Exemplo: intersecção

Considere os conjuntos:

- a) Digitos = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- b) Vogais = $\{a, e, i, o, u\}$
- c) Pares = $\{0, 2, 4, 6, ...\}$

Então:

- a) Digitos \cap Vogais = \emptyset
- b) Digitos \cap Pares = $\{0, 2, 4, 6, 8\}$

Também podemos utilizar **Diagrama de Venn** para demonstrar a Intersecção, como ilustra a Figura 3.1.

Figura 3.1: Diagrama de Venn demonstrando a intersecção entre conjuntos A e B

A Figura 3.1 considera os conjuntos $A = \{1, 2, 3\}$ e $B = \{3, 4, 5\}$ e mostra o resultado de $A \cap B$. A área mais ao centro, colorida como uma mistura das cores dos conjuntos, corresponde à intersecção (não é necesssário utilizar cores, entretanto).

Sejam A e B dois conjuntos não vazios. Se $A \cap B = \emptyset$, então A e B são chamados conjuntos disjuntos, conjuntos independentes, ou conjuntos mutuamente exclusivos.

Propriedades da intersecção:

• Elemento neutro: $A \cap U = U \cap A = A$

Idempotência: A ∩ A = A
 Comutativa: A ∩ B = B ∩ A

• Associativa: $A \cap (B \cap C) = (A \cap B) \cap C$

3.2 Propriedades envolvendo união e intersecção

As propriedades a seguir envolvem as operações de união e intersecção:

- Distributividade da intersecção sobre a união: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- Distributividade da união sobre a intersecção: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- Absorção: $A \cap (A \cup B) = A \in A \cup (A \cap B) = A$.

3.3 Operações reversíveis

Entende-se por **operação reversível** uma operação a partir de cujo resultado pode-se recuperar os operandos originais.

3.3.1 Complemento

Considere o conjunto universo U. O complemento de um conjunto $A\subseteq U$, denotado por $\sim A$ é definido como:

$$\sim A = \{ x \in U \mid x \notin A \} \tag{3.3}$$

Exemplos: complemento

- 1. Considere o conjunto universo definido por Digitos = $\{0,1,2,...,9\}$. Seja $A=\{0,1,2\}$. Então, $\sim A=\{3,4,5,6,7,8,9\}$.
- 2. Suponha conjunto universo \mathbb{N} . Seja $A = \{0, 1, 2\}$. Então $\sim A = \{x \in \mathbb{N} \mid x > 2\}$.
- 3. Para qualquer conjunto universo U, valem:
- a) $\sim \emptyset = U$
- b) $\sim U = \emptyset$
- 4. Suponha que U é o conjunto universo. Então, para qualquer conjunto $A\subseteq U$, valem:
- a) $A \cup \sim A = U$
- b) $A \cap \sim A = \emptyset$

No último exemplo, observe que:

- a união de um conjunto com seu complemento sempre resulta no conjunto universo $(p \lor \sim p = \text{Verdadeiro})$; e
- a intersecção de um conjunto com seu complemento sempre resulta no conjunto vazio ($p \land \sim p = \text{Falso}$).

Também vale a noção de duplo complemento (ou dupla negação):

$$\sim \sim A = A$$
 (3.4)

A propriedade denominada **DeMorgan** vale-se do complemento, envolvendo as operações de unição e interseção (Tabela 3.4).

Tabela 3.4: DeMorgan na álgebra de conjuntos e na Lógica

DeMorgan na Álgebra de conjuntos	Propriedade DeMorgan na Lógica
$\sim (A \cup B) = \sim A \cap \sim B$	$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$
$\sim (A \cap B) = \sim A \cup \sim B$	$\neg(p \land q) \Leftrightarrow \neg p \lor \neg q$

3.3.2 Diferença

Sejam os conjuntos A e B. A diferença dos conjuntos A e B, denotada por A-B é definida como:

$$A - B = A \cap \sim B \tag{3.5}$$

ou

$$A - B = \{x \mid x \in A \land x \notin B\} \tag{3.6}$$

Exemplos: diferença

- 1. Suponha os conjuntos: Digitos = $\{0, 1, 2, ..., 9\}$, Vogais = $\{a, e, i, o, u\}$ e Pares = $\{0, 2, 4, 6, ...\}$. Utilizando a diferença, temos:
- a) Digitos Vogais = Digitos
- b) Digitos Pares = $\{1, 3, 5, 7, 9\}$
- 2. Para qualquer conjunto universo U e qualquer $A \subseteq U$, valem:
- a) $\emptyset \emptyset = \emptyset$
- b) $U \emptyset = U$
- c) $U A = \sim A$
- d) $U U = \emptyset$

3.3.3 Conjunto das partes

Para qualquer conjunto A sabe-se que:

- A ⊆ A
- $\emptyset \subseteq A$
- Para qualquer elemento $a \in A$, é visível que $\{a\} \subseteq A$

A operação unária chamada *conjunto das partes*, ao ser aplicada ao conjunto A, resulta no conjunto de todos os subconjuntos de A. Suponha um conjunto A. O conjunto das partes de A (ou conjunto potência), denotado por P(A) ou 2^A , é definido por:

$$P(A) = \{X \mid X \subseteq A\} \tag{3.7}$$

Exemplos: conjunto das partes

Sejam os conjuntos $A = \{a\}, B = \{a, b\}, C = \{a, b, c\} \in D = \{a, \emptyset, \{a, b\}\},$ então:

- 1. $P(\emptyset) = \{\emptyset\}$
- 2. $P(A) = \{\emptyset, \{a\}\}\$
- 3. $P(B) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$
- 4. $P(C) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$
- 5. $P(D) = \{\emptyset, \{a\}, \{\emptyset\}, \{\{a,b\}\}, \{a,\emptyset\}, \{a,\{a,b\}\}, \{\emptyset, \{a,b\}\}, \{a,\emptyset, \{a,b\}\}\}\}$

3.3.4 Produto Cartesiano

A operação **produto cartesiano** é uma operação binária que, quando aplicada a dois conjuntos A e B, resulta em um conjunto constituído de sequências de duas componentes (tuplas), sendo que a primeira componente de cada sequência é um elemento de A, e a segunda componente, um elemento de B.

Uma sequência de n componentes, denominada n-upla ordenada (lê-se: ênupla ordenada), consiste de n objetos (não necessariamente distintos) em uma ordem fixa. Por exemplo, uma 2-upla (tupla) ordenada é denominada par ordenado. Um par ordenado no qual a primeira componente é x e a segunda é y é definido como $\langle x, y \rangle$ ou (x, y).

Uma n-upla ordenada é definida como:

$$\langle x_1, x_2, x_3, ..., x_n \rangle \tag{3.8}$$

Uma n-upla ordenada não deve ser confundida com um conjunto, pois a ordem das componentes é importante. Assim:

$$\langle x, y \rangle \neq \langle y, x \rangle \tag{3.9}$$

O produto cartesiano dos conjuntos A e B, denotado por $A \times B$ é definido por:

$$A \times B = \{ \langle a, b \rangle \mid a \in A \land b \in B \}$$
 (3.10)

O produto cartesiano de um conjunto com ele mesmo é definido por $A \times A = A^2$

Exemplos: produto cartesiano

Sejam os conjuntos $A = \{a\}, B = \{a, b\}$ e $C = \{0, 1, 2\}$. Então:

- 1. $A \times B = \{\langle a, a \rangle, \langle a, b \rangle\}$
- 2. $B \times C = \{\langle a, 0 \rangle, \langle a, 1 \rangle, \langle a, 2 \rangle, \langle b, 0 \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle\}$
- 3. $A^2 = \{ \langle a, a \rangle \}$

3.3.5 União disjunta

Diferentemente da $uni\tilde{a}o$, que desconsidera repetições de elementos no conjunto resultante, a $uni\tilde{a}o$ disjunta permite que os elementos do conjunto resultante sejam duplicados, uma vez que seja identificada a sua fonte. A $uni\tilde{a}o$ disjunta dos conjuntos A e B, denotada por A+B ou $A\dot{\cup}$ B é definida como:

$$A + B = \{ \langle a, A \rangle \mid a \in A \} \cup \{ \langle b, B \rangle \mid b \in B \}$$

$$(3.11)$$

$$A + B = \{a_A \mid a \in A\} \cup \{b_B \mid b \in B\}$$
 (3.12)

Exemplo: união disjunta

Suponha os conjuntos Silva = $\{João, Maria, José\}$ e Souza = $\{Pedro, Ana, José\}$. Então:

1. Silva + Souza =

 $\{\langle João, Silva \rangle, \langle Maria, Silva \rangle, \langle José, Silva \rangle, \langle Pedro, Souza \rangle, \langle Ana, Souza \rangle, \langle José, Souza \rangle\}$

ou

 $2. \ \operatorname{Silva} + \operatorname{Souza} = \{\operatorname{Jo\~{a}o}_{\operatorname{Silva}}, \operatorname{Maria}_{\operatorname{Silva}}, \operatorname{Jos\acute{e}}_{\operatorname{Silva}}, \operatorname{Pedro}_{\operatorname{Souza}}, \operatorname{Ana}_{\operatorname{Souza}}, \operatorname{Jos\acute{e}}_{\operatorname{Souza}}\}$

3.4 Relações entre a Lógica e as operações sobre conjuntos

É possível estabelecer uma relação entre a lógica e as operações da álgebra de conjuntos, como mostra a Tabela 3.9.

Tabela 3.9: Conectivos lógicos ${\bf x}$ operações sobre conjuntos

Propriedade	Lógica	Teoria dos conjuntos	
idempotência	$p \wedge p \Leftrightarrow p$	$A \cap A = A$	
	$p \vee p \Leftrightarrow p$	$A \cup A = A$	
comutativa	$p \wedge q \Leftrightarrow q \wedge p$	$A \cap B = B \cap A$	
	$p \vee q \Leftrightarrow q \vee p$	$A \cup B = B \cup A$	
associativa	$p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r$	$A\cap (B\cap C)=(A\cap B)\cap C$	
	$p \vee (q \vee r) \Leftrightarrow (p \vee q) \vee r$	$A \cup (B \cup C) = (A \cup B) \cup C$	
distributiva	$p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
	$p \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
negação ou	$\neg \neg p \Leftrightarrow p$	$\sim \sim A = A$	
complemento	$p \land \neg p \Leftrightarrow F$	$A\cap \sim A=\emptyset$	
	$p \vee \neg p \Leftrightarrow V$	$A \cup \sim A = U$	
DeMorgan	$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$	$\sim (A \cup B) = \sim A \cap \sim B$	
-	$\neg(p \land q) \Leftrightarrow \neg p \lor \neg q$	$\sim (A \cap B) = \sim A \cup \sim B$	
elemento	$p \wedge V \Leftrightarrow p$	$A \cap U = A$	
neutro	$p \lor F \Leftrightarrow p$	$A \cup \emptyset = A$	

Propriedade	Lógica	Teoria dos conjuntos	
elemento absorvente	$\begin{array}{l} p \wedge F \Leftrightarrow F \\ p \vee V \Leftrightarrow V \end{array}$	$A \cap \emptyset = \emptyset$ $A \cup U = U$	
absorção	$p \wedge (p \vee q) \Leftrightarrow p$ $p \vee (p \wedge q) \Leftrightarrow p$	$A \cap (A \cup B) = A$ $A \cup (A \cap B) = A$	

Ainda, as relações lógicas e as relações sobre conjuntos são análogas:

- implicação/contigência: na lógica: $p \Rightarrow q$, na teoria dos conjuntos: $A \subseteq B$
- equivalência/igualdade: na lógica: $p \Leftrightarrow q$, na teoria dos conjuntos: A=B

Como já visto, p(x) é uma proposição que descreve uma propriedade de um elemento $x \in A$. Assim, a continência e a igualdade de dois conjuntos $A = \{x \mid p(x)\}$ e $B = \{x \mid q(x)\}$ pode ser vista assim:

- contingência: $A \subseteq B$ se e somente se $(\forall x \in U)(p(x) \Rightarrow q(x))$
- igualdade: A = B se e somente se $(\forall x \in U)(p(x) \Leftrightarrow q(x))$

Exemplos:

- A = U se e somente se $(\forall x \in U)(p(x) \Leftrightarrow V)$
- $A = \emptyset$ se e somente se $(\forall x \in U)(p(x) \Leftarrow F)$

3.5 Provando propriedades

3.5.1 Prova da propriedade elemento neutro da união

Elemento neutro é definido como:

$$A \cup \emptyset = \emptyset \cup A = A \tag{3.13}$$

Assim, há duas igualdades, que podem ser analisadas considerando a validade da transitividade [da igualdade]. Assim, temos que observar alguns casos:

(A) Para provar $A \cup \emptyset = \emptyset \cup A$:

O primeiro caso (1): Seja $x \in A \cup \emptyset$. Então devemos provar que $A \cup \emptyset \subseteq \emptyset \cup A$:

- $x \in A \cup \emptyset \Rightarrow$ (definição de união)
- $x \in A \lor x \in \emptyset \Rightarrow$ (comutatividade da disjunção)
- $x \in \emptyset \lor x \in A \Rightarrow (\text{definição de união})$
- $x \in \emptyset \cup A$

Portanto, $A \cup \emptyset \subseteq \emptyset \cup A$.

O segundo caso (2): Seja $x \in \emptyset \cup A$. Então devemos provar que $\emptyset \cup A \subseteq A \cup \emptyset$:

- $x \in \emptyset \cup A \Rightarrow$ (definição de união)
- $x \in \emptyset \lor x \in A \Rightarrow (\text{comutatividade da disjunção})$
- $x \in A \lor x \in \emptyset \Rightarrow$ (definição de união)
- $\bullet \quad x \in A \cup \emptyset$

Portanto, $\emptyset \cup A = A \cup \emptyset$.

Terceiro caso (3): De (1) e (2) concluímos que $A \cup \emptyset = \emptyset \cup A$.

(B) Para provar $A \cup \emptyset = A$:

Quarto caso (4): Seja $x \in A \cup \emptyset$. Então devemos provar que $A \cup \emptyset \subseteq A$:

- $x \in A \cup \emptyset \Rightarrow$ (definição de união)
- $x \in A \lor x \in \emptyset \Rightarrow (x \in \emptyset \text{ é sempre } false)$
- $x \in A$

Portanto, $A \cup \emptyset \subseteq A$.

Quinto caso (5): Seja $x \in A$. Então devemos provar que $A \subseteq A \cup \emptyset$:

- $x \in A \Rightarrow (x \in A \text{ \'e sempre } true, \text{ portanto podemos considerar } p \Rightarrow p \lor q)$
- $x \in A \lor x \in \emptyset$ (definição de união)
- $x \in A \cup \emptyset$

Portanto, $A \subseteq A \cup \emptyset$.

Sexto caso (6): De (4) e (5) concluímos que $A \cup \emptyset = A$.

Sétimo caso (7): Por fim, de (3) e (6) e pela transitividade da igualdade, concluímos que $A \cup \emptyset = \emptyset \cup A = A$ e provamos a propriedade do elemento neutro da união.

3.6 Exercícios

Exercício 1: Suponha o conjunto universo $S = \{p, q, r, s, t, u, v, w\}$ bem como os seguintes conjuntos:

- $A = \{p, q, r, s\}$
- $B = \{r, t, v\}$
- $C = \{p, s, t, u\}$

Determine:

- a) $B \cap C$
- b) $A \cup C$
- c) $\sim C$
- d) $A \cap B \cap C$
- e) $\sim (A \cup B)$

f)
$$(A \cup B) \cap \sim C$$

Exercício 2: Considere os conjuntos $A = \{a\}$, $B = \{a,b\}$ e $C = \{0,1,2\}$. Calcule os seguintes produtos cartesianos:

- 1. $(A \times B) \times C$
- 2. $A \times (B \times C)$
- 3. B^2
- 4. C^2

Exercício 3: Considere os conjuntos $D = \{0, 1, 2, ..., 9\}$, $V = \{a, e, i, o, u\}$, e $P = \{0, 2, 4, 6, ...\}$. Então, encontre:

- 1. D + V
- 2. D + P
- 3. V + V
- 4. $V + \emptyset$

Exercício 4: Utilizando um banco de dados relacional, crie duas tabelas: *Palavras1* e *Palavras2*, respectivamente. Utilizando linguagem SQL, crie e apresente o resultado de uma consulta que realiza o produto cartesiano entre as duas tabelas.

Exercício 5: Crie um programa que lê n arquivos de entrada. Cada arquivo contém uma palavra em cada linha. O programa deve ler os arquivos e gerar um arquivo de saída chamado pc.txt contendo o produto cartesiano entre as palavras dos arquivos de entrada. Cada linha do arquivo de saída deve representar um elemento do produto cartesiano (uma n-upla) cujos componentes devem estar separados por um espaço [em branco]. Exemplo: Para os arquivos de entrada:

palavras1.txt
jose
maria

palavras2.txt
silva
santos

palavras3.txt
moreira
aires

o arquivo resultante seria:

pc.txt jose silva moreira pc.txt

jose silva aires jose santos moreira jose santos aires maria silva moreira maria silva aires maria santos moreira maria santos aires

Exercício 6: Faça uma pesquisa sobre as provas das propriedades das operações da álgebra de conjuntos e, em formato técnico-científico, apresente cada uma. Não se esqueça de apresentar as referências.

3.7 Projeto do capítulo

Este capítulo deu continuidade à Seção 1.2 e apresentou operações e propriedades sobre conjuntos que constituem a **Álgebra de conjuntos**.

Como forma de fundamentar os conceitos apresentados este capítulo traz o **projeto do capítulo**, uma atividade prática que envolve computação e escrita de textos.

O projeto deste capítulo deve alcançar os objetivos:

- utilizar uma linguagem de programação para criar uma estrutura de dados Conjunto, com as funcionalidades:
 - adicionar elemento
 - remover elemento
 - verificar pertinência
 - verificar continência
 - realizar união (com outro conjunto)
 - realizar intersecção (com outro conjunto)
 - realizar diferença (com outro conjunto)
 - realizar complemento (em relação a outro conjunto)
 - gerar o conjunto das partes
 - realizar o produto cartesiano (com outro conjunto)
 - realizar a união disjunta (com outro conjunto)
- escrever um texto didático explicando e demonstrando a implementação e os cocneitos utilizados. Para cada funcionalidade, apresentar: o conceito (definição), a operação (como funciona), a demonstração (com exemplos). Esse texto deve usar notação matemática (o resultado é um arquivo PDF).

Importante: No *Objetivo 1* não pode ser utilizado recurso da linguagem que já implemente recursos de conjuntos e opreações sobre conjuntos. Utilize lista, vetor ou outra estrutura de dados semelhante.

Por fim, o conteúdo deve ser disponibilizado em um repositório do Github. Deve haver um arquivo README.md identificando e apresentando o trabalho, bem como descrevendo os procedimentos adotados.

Capítulo 4

Relações

Considere as relações a seguir:

- parentesco
- maior ou igual
- igualdade
- lista telefônica, que associa assinante e seu número de telefone
- fronteira (entre países)

Suponha os conjuntos A e B. Uma relação R de A em B é um subconjunto de um produto cartesiano $A \times B$, ou seja:

$$R \subseteq A \times B \tag{4.1}$$

ou

$$R: A \to B \tag{4.2}$$

onde:

- A é o **domínio** (origem ou conjunto de partida de R)
- B é o contradomínio (destino ou conjunto de chegada de R)

Os elementos de R são pares (ou tuplas) dos elementos de A e B, ou seja:

$$(a,b) \in R$$

ou

aRb

Uma relação pode ser caracterizada por uma propriedade. Neste caso, na notação $R:A\to B,\,R$ assume uma propriedade. Por exemplo:

$$=: A \rightarrow B$$

define a relação de igualdade entre os conjuntos A e B tal que os elementos de A sejam iguais aos elementos de B. Em outras palavras, os componentes das tuplas da relação R terão que respeitar a propriedade de igualdade.

Exemplo: Considere os seguintes conjuntos: $A = \{a\}, B = \{a,b\}$ e $C = \{0,1,2\}$. É válido afirmar que:

- \bullet $\{\}$ é uma relação de A em B pois o conjunto vazio é subconjunto de qualquer conjunto
- $A \times B = \{(a,a),(a,b)\}$ é uma relação (qualquer) de A em B
- =: $A \rightarrow A = \{(a, a)\}$ (relação de igualdade de A em A)
- =: $A \to B = \{(a, a)\}$ (relação de igualdade de A em B)
- $\langle C \rangle = \{(0,1), (1,2)\}$ (relação "menor que" de C em C)

4.1 Endorrelação

Endorrelação é um tipo de relação que considera o mesmo conjunto, ou seja, $R:A\to A$ (domínio e contradomínio são o mesmo conjunto). Uma endorrelação $R:A\to A$ pode ser denotada por (A,R), por exemplo:

- a) (N, <=)
- b) $(P(A),\subseteq)$

4.2 Representações gráficas de relações

As relações podem ser representadas graficamente como diagramas de Venn, gráficos em um plano cartesiano ou em grafos.

4.2.1 Relações como diagramas de Venn

Diagramas de Venn podem ser utilizados para representar relações visualmente. Na Figura 4.1 o diagrama da esquerda representa a relação $=: A \to A$ e o da direita a relação $<=: C \to C$.

Em Diagramas de Venn o conjunto da esquerda é comumente chamado de domínio e o da direita de imagem.

Figura 4.1: Diagrama de Venn demonstrando relações entre conjuntos

4.2.2 Relações como planos cartesianos

Gráficos em planos cartesianos podem representar relações. Em um plano cartesiano de duas dimensões, os eixos (coordenadas) representam os conjuntos. Por exemplo a relação $R = \{(x, y) \mid y = x^2\}$ pode ser representada pelo gráfico da Figura 4.2.

Figura 4.2: Gráfico demonstrando relações entre conjuntos

4.2.3 Relações como grafos

A representação de grafos aplica-se apenas a endorrelações. Grafos podem ser representados como matrizes e como diagramas e vértices e arestas.

Considere os conjuntos $A = \{a\}, B = \{a, b\}$ e $C = \{0, 1, 2\}.$

A relação =: $B \to B$, definida por $\{(a,a),(b,b)\}$ seria representada pela matriz e pelo grafo da Figura 4.3.

A relação <=: $C \to C$ seria representada pela matriz e pelo grafo da Figura 4.4:

Figura 4.3: Grafo 1 - demonstrando relações entre conjuntos

<=	0	1	2
0	1	1	1
1	0	1	1
2	0	0	1

Figura 4.4: Grafo 2 - demonstrando relações entre conjuntos

4.3 Exercícios

- 1. Considere os seguintes conjuntos: $A = \{a\}, B = \{a,b\}$ e $C = \{0,1,2\}$. Defina as relações a seguir:
- a) $\neq : B \to C$
- b) $\neq : A \rightarrow B$
- 2. Considere o conjunto $A = \{1, 2, 3, 4, 5\}$. Represente as relações a seguir na forma de Diagrama de Venn, Plano cartesiano e Grafo:
- a) $=: A \to A$
- b) (A, =)
- c) (A, <=)
- d) (A, >=)
- e) $R = \{(x, y) \mid y = x + y\}$

4.4 Propriedades de endorrelações

4.4.1 Reflexiva, irreflexiva

Seja $R:A\to A$, então R é uma:

a) relação reflexiva, se $(\forall a \in A)(a R a)$: para todo elemento a de A existe uma tupla (a, a)

b) relação irreflexiva (ou antirreflexiva), se $(\forall a \in A)(\neg(a R a))$: para todo elemento a de A não existe uma tupla (a, a).

Uma forma rápida de identificar a relação R no conjunto A como reflexiva ou irreflexiva é realizar os seguintes passos:

- 1. Definir o produto cartesiano de A
- 2. Definir $C_i \subseteq R$ no qual todas as tuplas tenham componentes iguais (primeiro igual ao segundo)
- 3. Definir $R \subseteq C_d$ no qual todas as tuplas tenham componentes diferentes (primeiro é diferente do segundo)

Assim, podemos definir que:

- a relação Ré reflexiva se $C_i \subseteq R$
- a relação R é irreflexiva se $R \subseteq C_d$

Exemplo: Seja $A = \{a, b\}$. Conjuntos importantes:

- $A^2 = \{(a, a), (a, b), (b, a), (b, b)\}.$
- $C_i = \{(a, a), (b, b)\}$
- $C_d = \{(a, b), (b, a)\}$

As seguintes relações são:

- a) Reflexivas:
- $R_1 = \{(a, a), (b, b)\}$
- $R_3 = \{(a,a),(b,b),(b,a)\}$, pelo mesmo motivo de R_2
- $R_4 = \{(a, a), (a, b), (b, a), (b, b)\}, idem$
- b) Irreflexivas:
- $R_5 = \{(a,b), (b,a)\}$
- $R_6 = \{(a,b)\}$, pois $R_6 \subseteq C_d$
- $R_7 = \{(b,a)\}$, pelo mesmo motivo de R_6
- $R_8 = \{\}$, idem

Exemplo: Seja $S = \{0, 1, 2\}$. Conjuntos importantes:

- $S^2 = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)\}$
- $C_i = \{(0,0), (1,1), (2,2)\}$
- $\bullet \ \ C_d = \{(0,1), (0,2), (1,0), (1,2), (2,0), (2,1)\}$

A seguinte relação não é reflexiva e nem irreflexiva:

$$(S,R) = \{(0,2), (2,0), (2,2)\}$$

Não é reflexiva porque $C_i \not\subseteq (S,R)$ e não é irreflexiva porque $(S,R) \not\subseteq C_d$.

4.4.2 Reflexividade de relações em matrizes e grafos

Para um conjunto A é possível verificar se uma endorrelação $R:A\to A$ é reflexiva ou irreflexiva analisando a sua representação como matriz ou grafo:

- a) Matriz
- Reflexiva: a diagonal da matriz contém somente o valor verdadeiro
- Irreflexiva: a diagonal da matriz contém somente o valor falso
- b) Grafo
- Reflexiva: qualquer nó tem um arco com origem e destino nele mesmo
- Irreflexiva: qualquer nó não tem um arco com origem e destino nele mesmo

4.4.3 Simétrica, antissimétrica

Seja $R:A\to A$ uma endorrelação em A, então R é uma:

- a) relação simétrica, se $(\forall a, b \in A)(aRb \to bRa)$: para todo par de elementos a e b de A, sendo a = b ou não, se há uma tupla (a, b) então há uma tupla (b, a)
- b) relação antissimétrica, $(\forall a, b \in A), (aRb \land a \neq b) \implies (\neg bRa)$: para todo par de elementos $a \in b$ de A, se há uma tupla $(a, b) \in a \neq b$, então não há a tupla (b, a).

Exemplos: Seja $A = \{a, b\}$. Conjuntos importantes:

- $A^2 = \{(a, a), (a, b), (b, a), (b, b)\}$
- $C_s = A^2$
- $C_a = \{(a, a), (b, b)\}$

As seguintes relações são:

- a) Simétricas:
- $R_1 = \{(a, a), (b, b)\}$
- $\bullet \ \ R_4 = \{(a,a), (a,b), (b,a), (b,b)\}$
- $R_5 = \{(a,b),(b,a)\}$
- $R_8 = \{\}$
- $R_9 = \{(a,a)\}$
- $R_{10} = \{(b,b)\}$
- $\bullet \ \ R_{11} = \{(a,a), (a,b), (b,a)\}$
- $\bullet \ \ R_{12} = \{(a,b), (b,a), (b,b)\}$
- b) Antissimétricas:
- $R_1 = \{(a, a), (b, b)\}$
- $R_2 = \{(a, a), (a, b), (b, b)\}$
- $R_3 = \{(a,a), (b,b), (b,a)\}$
- $R_6 = \{(a,b)\}$
- $R_8 = \{\}$

4.4.4 Simétrica e antissimétrica em matrizes e grafos

Para um conjunto A uma forma de entender e verificar se uma endorrelação $R:A\to A$ é simétrica ou antissimétrica é analisar a sua representação como matriz ou grafo:

a) Matriz

- Simétrica: a metade acima ou abaixo da diagonal é espelhada na outra
- Antissimétrica: se uma célula em uma metade da diagonal for verdadeira, a correspondente na outra metade é falsa

b) **Grafo**

- Simétrica: entre dois nós: a) não existe seta; ou b) existem duas setas, uma em cada sentido
- Antissimétrica: há no máximo uma seta entre dois nós quaisquer

4.4.5 Transitiva, não transitiva

Seja A um conjunto e R uma endorrelação em A, então R é uma:

- a) **transitiva** se $(\forall a, b, c \in A), (a R b \land b R c \rightarrow a R c); e$
- b) não-transitiva é o contrário da relação transitiva

4.5 Atividade de pesquisa

- 1. Uma relação pode ser classificada nos seguintes tipos (que não são mutuamente exclusivos):
- a) funcional
- b) injetora
- c) total
- d) sobrejetora
- e) monomorfismo
- f) epimorfismo
- g) isomorfismo

Escolha três dos tipos e, para cada um, apresente:

- a) definição (incluindo representação formal)
- b) dois exemplos
- 2. As *Redes de Petri* são o modelo computacional do tipo concorrente mais utilizado em computação, informática e engenharia. Faça uma pesquisa sobre Redes de Petri e apresente:
- a) definição (conceito)
- b) significado dos símbolos da representação gráfica da rede
- c) dois exemplos
- d) como definir uma Rede de Petri utilizando Relação (utilizando exemplos)

Referências

GIT COMMUNITY. **Git**, [s.d.]. Disponível em: https://git-scm.com/>. Acesso em: 22 jul. 2018

MENEZES, P. B. Matemática discreta para computação e informática. Traducao. 3. ed. Porto Alegre: Bookman, 2010.

MICROSOFT. Visual Studio Code - Code Editing. Redefined, [s.d.]. Disponível em: https://code.visualstudio.com/. Acesso em: 22 jul. 2018a

MICROSOFT. **TypeScript - JavaScript that scales**, [s.d.]. Disponível em: https://www.typescriptlang.org/index.html>. Acesso em: 24 jul. 2018b

NODE.JS FOUNDATION. **Node.js**, [s.d.]. Disponível em: https://nodejs.org>. Acesso em: 23 jul. 2018

NPM, INC. npm, [s.d.]. Disponível em: https://www.npmjs.com/>. Acesso em: 23 jul. 2018

THE JQUERY FOUNDATION. **jQuery**, [s.d.]. Disponível em: http://jquery.com/>. Acesso em: 22 jul. 2018

W3SCHOOLS. **JavaScript Tutorial**, [s.d.]. Disponível em: https://www.w3schools.com/js/default.asp>. Acesso em: 22 jul. 2018a

W3SCHOOLS. JavaScript and HTML DOM Reference, [s.d.]. Disponível em: https://www.w3schools.com/jsref/default.asp>. Acesso em: 22 jul. 2018b

W3SCHOOLS. **HTML5 Tutorial**, [s.d.]. Disponível em: https://www.w3schools.com/html/default.asp>. Acesso em: 22 jul. 2018c

W3SCHOOLS. **CSS Tutorial**, [s.d.]. Disponível em: https://www.w3schools.com/css/default.asp>. Acesso em: 22 jul. 2018d

W3SCHOOLS. **CSS Reference**, [s.d.]. Disponível em: https://www.w3schools.com/cssref/default.asp. Acesso em: 22 jul. 2018e

W3SCHOOLS. **HTML Element Reference**, [s.d.]. Disponível em: https://www.w3schools.com/tags/default.asp>. Acesso em: 22 jul. 2018f