

UNIVERSIDAD TECNOLÓGICA DE PANAMÁ FACULTAD DE CIENCIAS Y TECNOLOGÍA DEPARTAMENTO DE CIENCIAS EXACTAS CÁLCULO III

I. INFORMACIÓN GENERAL

1) Denominación: Cálculo III
2) Código: 8322
3) Créditos: 4
4) Número de Horas Teóricas 4 hrs.
5) Horas de Laboratorios 0
6) Total de Horas 4

7) Pre.requisitos: Cálculo I

8) Fundamental

II. DESCRIPCIÓN DE LA ASIGNATURA

El curso de Cálculo III se inicia con el estudio de los vectores, matrices, sistemas de ecuaciones lineales y determinantes. Seguido de las Funciones vectoriales y sus aplicaciones, así como también el estudio de Campos Vectoriales y la integración Múltiple

III. OBJETIVOS:

✓ Objetivos Generales:

- 1. Aplicar los conceptos del Cálculo Vectorial y Álgebra Lineal en la solución de problemas propios del campo de la ingeniería.
- 2. Desarrollar la capacidad analítica que le permita relacionar los conceptos de Análisis Vectorial y Álgebra Lineal con otras disciplinas de su especialidad.

✓ Objetivos Específicos:

- 1. Definir el concepto de vector.
- 2. Reconocer las propiedades vectoriales en las operaciones.
- 3. Resolver problemas de aplicación de suma y resta de vectores.
- 4. Calcular el producto escalar o producto punto.
- 5. Determinar el ángulo entre dos vectores.
- 6. Determinar la distancia de un punto a una recta.
- 7. Determinar las ecuaciones paramétricas y simétricas de una recta en el espacio.
- 8. Determinar la ecuación de un plano en el espacio.
- 9. Calcular el producto cruz o producto vectorial.
- 10. Calcular el área de un paralelogramo aplicando producto vectorial
- 11. Calcular el volumen de un paralelepípedo.
- 12. Resolver problemas de aplicación que involucren el producto escalar, vectorial y mixto.
- 13. Definir el concepto de matriz.

- 14. Clasificar los tipos de matrices.
- 15. Resolver operaciones con matrices.
- 16. Resolver un sistema de ecuaciones lineales por el método de Gauss.
- 17. Resolver un sistema de ecuaciones lineales por el método de Gauss-Jordan.
- 18. Aplicar la solución de sistemas de ecuaciones a problemas de ingeniería, economía, etc.
- 19. Definir el concepto de determinante.
- 20. Identificar las propiedades de los determinantes.
- 21. Calcular el determinante de una matriz.
- 22. Calcular la matriz inversa utilizando la matriz adjunta.
- 23. Calcular la inversa de una matriz por el método de Gauss.
- 24. Definir el concepto de valores y vectores propios.
- 25. Calcular la matriz inversa por operaciones elementales.*
- 26. Calcular valores y vectores propios.
- 27. Definir una función vectorial.
- 28. Identificar el campo escalar y el campo vectorial.
- 29. Determinar el límite y la derivada de una función vectorial.
- 30. Calcular la tangente y normal de un vector unitario.
- 31. Calcular la derivada parcial de una función.
- 32. Calcular derivadas direccionales, funciones de tres variables.
- 33. Determinar el gradiente de un campo escalar.
- 34. Determinar la divergencia y rotacional de un campo vectorial.
- 35. Transformar coordenadas cartesianas a coordenadas polares, a cilíndricas y esféricas y viceversa.
- 36. Resolver integrales dobles y triples.
- 37. Aplicar las integrales dobles y triples en problemas de ingeniería.
- 38. Resolver integrales dobles en coordenadas polares.
- 39. Resolver integrales triples en coordenadas cilíndricas y esféricas.
- 40. Evaluar las integrales de línea sobre una curva dada.
- 41. Evaluar las integrales de superficie.
- 42. Aplicar los teoremas Green, Gauss y Stokes a la solución de problemas.

IV. CONTENIDO DE LA ASIGNATURA

MÓDULO I: VECTORES EN R^N (16 HORAS)

- 1.1 Introducción al concepto de vectores en \Re^2 y \Re^3 .
 - 1.1.1 Definición de escalares
 - 1.1.2 Definición de vector en el plano y en el espacio.
- 1.2 Representación de un vector en $\Re^2 y \Re^3$.
 - 1.2.1 Representación de un vector por medio de segmento de recta dirigido.
 - 1.2.2 Módulo y dirección de un vector.
 - 1.2.3 Vectores unitarios.
 - 1.2.4 Vectores unitarios canónicos o estándar i, j, k.
- 1.3 Generalización del concepto de vector a \Re^n .

- 1.4 Operaciones básicas sobre vectores en \Re^2 y \Re^3
 - 1.4.1 Suma y diferencia de vectores.
 - 1.4.2 Producto de un vector por un escalar.
 - 1.4.3 Propiedades de las operaciones básicas sobre vectores.
- 1.5 Producto escalar o producto punto. Proyecciones.
 - 1.5.1 Definición y propiedades.
 - 1.5.2 Ángulo entre dos vectores.
 - 1.5.3 Proyección escalar y vectorial de un vector sobre otro.
 - 1.5.3.1 Distancia de un punto a una recta.
- 1.6 Geometría del espacio \Re^3
 - 1.6.1 Ecuaciones paramétricas y simétricas de una recta.
 - 1.6.2 Ecuación del plano.
- 1.7 Producto vectorial o producto cruz. Regla de la mano derecha.
 - 1.7.1 Definición y propiedades.
 - 1.7.2 Área de un paralelogramo.
 - 1.7.3 Producto vectorial mixto. Volumen de un paralelepípedo

MÓDULO II: MATRICES Y SISTEMAS DE ECUACIONES LINEALES (16 HORAS)

- 2.1 Conceptos básicos de matrices.
- 2.2 Tipos de matrices: fila, columna, cuadrada, diagonal, escalar, identidad, triangular, transpuesta, simétrica y antisimétrica.
- 2.3 Operaciones con matrices.
 - 2.3.1 Igualdad de matrices.
 - 2.3.2 Adición y sustracción de matrices.
 - 2.3.3 Producto de un escalar por una matriz.
 - 2.3.4 Multiplicación de matrices.
- 2.4 Sistemas de ecuaciones lineales:
 - 2.4.1 Definición y notación de sistemas de ecuaciones lineales.
 - 2.4.2 Representación matricial
 - 2.4.2.1 Matriz de coeficientes
 - 2.4.2.2 Matriz aumentada
 - 2.4.3 Sistemas de ecuaciones lineales: consistente, inconsistente, homogéneos y no homogéneos.
 - 2.4.4 Solución de sistemas de ecuaciones lineales
 - 2.4.4.1 Métodos de Gauss
 - 2.4.4.2 Método de Gauss-Jordan
 - 2.4.5 Cálculo de la matriz inversa por el método de Gauss.
 - 2.4.6 Solución de un sistema de ecuaciones lineales usando la inversa.
- 2.5 Aplicaciones de ingeniería, economía, etc.
- 2.6 Rango de una matriz.

MÓDULO III: DETERMINANTES, VALORES PROPIOS Y VECTORES PROPIOS (12 HORAS)

- 3.1. Determinantes de segundo y tercer orden.
 - 3.1.1. Regla de Cramer.
- 3.2. Determinantes de n-ésimo orden.
- 3.3. Propiedades de los determinantes.
- 3.4. Matriz inversa.
 - 3.4.1. Menor de una matriz.
 - 3.4.2. Matriz de cofactores.
 - 3.4.3. Matriz adjunta.
 - 3.4.4. Cálculo de la inversa de una matriz por la adjunta.
 - 3.4.5. Solución de un sistema de ecuaciones lineales usando la adjunta.
- 3.5. Valores propios y vectores propios.
 - 3.5.1. Conceptos y propiedades.
 - 3.5.2 Cálculo de valores y vectores propios

MÓDULO IV: CÁLCULO DIFERENCIAL DE FUNCIONES DE MÁS DE UNA VARIABLE (8 HORAS)

- 4.1. Funciones de más de una variable.
- 4.2. Derivadas parciales.
 - 4.2.1. Derivada de orden superior.
- 4.3. Regla de la cadena para funciones de más de una variable.
- 4.4. Derivadas direccionales y gradiente.

MÓDULO V: INTEGRACIÓN MÚLTIPLE (4 HORAS)

- 5.1. Coordenadas cilíndricas.
- 5.2. Coordenadas esféricas.
- 5.3. Integrales dobles.
- 5.4. Aplicaciones de las integrales dobles.
- 5.5. Integrales dobles en coordenadas polares.
- 5.6. Integrales triples.
- 5.7. Integrales triples en coordenadas cilíndricas y esféricas.
- 5.8. Matriz de transformación de cambio de bases ortogonales.

MÓDULO VI: FUNCIONES VECTORIALES (4 HORAS)

- 6.1. Definición de función vectorial. Ejemplos.
- 6.2. Límite de una función vectorial.
- 6.3. La derivada de una función vectorial. Propiedades.
- 6.4. El vector velocidad y aceleración.
- 6.5. Vectores unitarios, tangentes y normales.

MÓDULO VII: INTRODUCCIÓN AL CÁLCULO DE CAMPOS VECTORIALES (4 HORAS)

- 7.1. Definición de campos vectoriales.
 - 7.1.1. Divergencia de un campo vectorial
 - 7.1.2. Rotacional de un campo vectorial

- 7.2. Integrales de línea.
- 7.3. Integrales de superficie.7.4. Integrales de volumen.7.5. Teorema de Green.

- 7.6. Teorema de la divergencia.
- 7.7. Teorema de Stokes.

V. EVALUACIÓN SUGERIDA

CRITERIOS DE EVALUACIÓN	PORCENTAJE	
Exámenes parciales	40%	
Quices Proyectos y tareas	20%	
Semestral	40%	
Total	100%	

VI. REFERENCIAS BIBLIOGRÁFICAS

1)	Grossman, L. Stanley	Álgebra Lineal. Editorial Mc Graw Hill. Séptima Edición 2012.
2)	Louis, Leithold	El Cálculo. Editorial Oxford. Séptima Edición 2004.
3)	Larson, Ron y Otros	Cálculo. Editorial Mc Graw Hill. Novena Edición 2011.
4)	William, Gareth	Álgebra Lineal con Aplicaciones. Editorial Mc Graw Hill. Cuarta Edición 2001.
5)	Nicholson, Keith	Álgebra Lineal. Editorial Mc Graw Hill. Cuarta Edición 2003
6)	Anton, Howard	Introducción al Álgebra Lineal. Editorial Limusa Wiley. Cuarta Edición 2009
7)	Pool, David	Álgebra Lineal Una introducción Moderna. Editorial Thomson. Segunda Edición 2007
8)	James, Stewart	Cálculo Conceptos y Contextos. Editorial Thomson. Tercera Edición 2006.
9)	Purcell, Edwin	Cálculo. Editorial Pearson Novena Edición 2007.
10)	Bernard, Kolman	Álgebra Lineal. Editorial Pearson. Octava Edición 2006.
11)	Bernard, Kolman y David Hill	Álgebra Lineal Fundamentos y Aplicaciones, Pearson, Primera Edición, 2013.
12)	Stewart, James.	Cálculo de Varias Variable, Editorial Cengage, Sexta Edición, 2009