Bais & Activation

MUKESH KUMAR

What Bais does

1. Shifts the Activation Function

• Bias allows the activation function to **shift left or right**, enabling the neuron to activate even when inputs are zero or unfavorable.

2. Essential for Non-zero Output

• If all inputs are zero, only the bias determines if the neuron activates.

Why do we need bias in Neural Network

Demo how bais can help model plots that are not origin centered

https://www.transum.org/Maths/Activity/Graph/Desmos.asp

Examples

1. House Price Prediction

- Input features: Square footage, number of rooms, age of house.
- Problem: Even if a house has o square footage or o rooms (hypothetically), the base land cost or location premium should still result in a non-zero price.
- Bias lets the model learn this minimum price floor.

2. Employee Salary Prediction

- Input features: Experience, education level, certifications.
- Reality: Even a fresher (o experience) may have a base starting salary.
- Bias captures this starting wage, independent of other features.

Why we need Activation Function

What Activation Funcitons do:

- Introduce Non-linearity
 - Without activation, no matter how many layers you stack, the network remains a linear model.
 - Functions like ReLU, tanh, sigmoid introduce the ability to model complex, nonlinear relationships.
- Squash Output to a Range (in some cases)
 - Sigmoid: compresses to [0, 1]
 - Tanh: compresses to [-1, 1]
 - This helps in controlling gradient values and can be useful in probability or binary classification contexts.
- Enable Gradient-Based Learning
 - Activation functions are **differentiable**, which is necessary for **backpropagation** (computing gradients and updating weights).

Activation Functions

• If you remove activation functions from a neural network (especially non-linear ones like ReLU, sigmoid, or tanh), then no matter how many layers you stack, the entire network collapses to a linear model.

 These are what allow a neural network to introduce non-linearity and learn complex, nonlinear mappings.

Explain with Example

Refer Jupyter Notebook: Why_Bias.ipynb

