一、填空题: (每空 1 分, 1x20=20 分)
1. 线性电路线性性质的最重要体现就是性和
性,它们反
映了电路中激励与响应的内在关系。
2. 理想电流源的
由与其相连的
外电路决定的。
3. KVL 是关于电路中
关于电路中
受到的约束。
4. 某一正弦交流电压的解析式为 $u=10^{\sqrt{2}}\cos{(200 \pi t+45^{\circ})}$ V,
则该正弦电流的
有效值 U=V, 频率为 f=Hz, 初相 φ
=
时,该电压的瞬时值为V。
5. 一个含有 6 条支路、4 个节点的电路, 其独立的 KCL 方程有
个,独立的 KVL 方程有个; 若用 2b 方程法
分析,则应有个独立方程。
6. 有一 L=0.1H 的电感元件,已知其两端电压 u= $100\sqrt{2}$ cos(100t

图2

5. 如图 5 所示为一有源二端网络 N, 在其端口 a、b 接入电压表时, 读数为 10V,接入电流表时读数为 5A,则其戴维南等效电路参数

 $U_{OC}=$ _____V,

 $R_O =$ Ω .

6. 如图 6 所示为一无源二端网络 P, 其端口电压 u 与电流 i 取关联参考方向,已知 u=10cos(5t+30°)V, i=2sin(5t+60°)A,则该二端网络的等效阻抗 Zab=

无功功率 Q=

- 7. 如图 7 所示电路中, a 点的电位 V_a=_____V
- 8. 如图 8 所示电路中,T 为理想变压器,原边与副边的线圈匝数比为 1: 4,副边线圈接一 $48\,\Omega$ 的阻抗,则其原边的输入阻抗 $Z_{O}=\Omega$ 。

- 9. 如图 9 所示电路的时间常数τ=____s。
- 11. 如图 11 所示电路中,已知各电压有效值分别为 U=10V, UL=7V,

三、分析计算题:

(必须有较规范的步骤,否则扣分,只有答案者,该题得零分)

(1、2每题10分,3-6每题8分,共52分)

1. 如图所示电路,求 R 为何值时它能得到最大功率 P_m ,且 P_m 为多大? (10 分)

2. 如图所示电路,试用节点法求受控源吸收的功率 \mathbf{P}_{w} 。(10分)

3. 如图所示电路,试用网孔法求受控源两端的电压 U。(8分)

- 4. 如图所示电路中,R=4Ω,L=40mH,C=0.25uF, \dot{U}_s =4∠25°V。
 - 求:1)谐振频率 fo, 品质因数 Q;
 - 2) 谐振时电路中的电流 I 及电感两端的电压 u_C。(8分)

5. 如图所示电路中,已知 $\dot{U}=-\mathrm{j}10\mathrm{V},\,\, \mathrm{x}^{\dot{I}}\,\, \mathrm{v}^{\dot{U}_{s}}\,$ 。(8分)

6. 如图所示电路原先稳定,t=0时开关 S 闭合,试求换路后的 u(t)、

i(t)的全响应

及 u(t)的零输入响应和零状态响应。(8分)

电路基础参考答案及评分标准

- 一 填空题: (每空1分, 共20分)
- 1. 叠加、齐次 2. 电流、电压
- 3. 支路(回路)电压、支路电流
- 4. 10, 100, 45°, 10

- 5. 3. 3. 12 6. j10. $-j0.1\ 10^{\sqrt{2}}\cos(100t-130^\circ)$ 7. 160°
- 8. 利用、电容器并联 9. 谐振
- 二 计算填空题: (每空2分,共28分)
- 2.21 3.11 4.-0.5 5.10, 2
- 6. $5 \angle 60^{\circ}$, 5, $5\sqrt{3}$ 7. -2 8.2
- 10. $2.25\cos(500t+90^{\circ})$ 11. 8
- 三 分析计算题: (共 52 分)
- 1. (10分)

断开 R, 得一有源二端网络如下图: (1分)

根据戴维南定理可等效变换成一实际 电压源, 求此有源二端网络的开路电压

求等效电阻 Ro,对应等效电路如右图:(1分)

$$u=6i-3u$$
 (1分)

$$\therefore R_0 = \frac{u}{i} = 1.5\Omega \ (1 \ \%)$$

则可得一实际电压源电路如图: (1 %) 根据最大功率传输定理,当 $R=R_0=1.5\Omega$ (1 %) 时可获得最大功率 P_m ,且

$$P_{\rm m} = \frac{U^2 oc}{4R_o}$$
 (1 分) =3.375W (1 分)

2. (10分)

设独立节点 n 及参考节点如图: (2 分)

列节点方程: $(\frac{1}{2} + \frac{1}{4} + \frac{1}{12})$ $U_n=3-\frac{5i}{2}$ (2 分)

列控制量方程: $i=-\frac{U_n}{4}$ (2分)

联立以上方程解得:

$$U_n=14.4V (1 \%)$$
 $i=-3.6A (1 \%)$

则受控源吸收的功率为

$$P=5i(-\frac{U_n+5i}{2})(1分)=-32.4W(实际发出)(1分)$$

3. (8分)

设各网孔电流及方向如图: (1.5分)

列网孔方程:
$$3I_1-I_2-2I_3=40$$
(1分) $I_2=-0.5U_1$ (1分) $-2I_2-I_3+5I_2=0$ (1分)

$$-2I_1-I_2+5I_3=0$$
 (1分)

列控制量方程: $U_1=I_3-I_2$ (1分)

联立以上方程解得:

$$I_1$$
=15A(0.5 分) I_2 =-5A(0.5 分) I_3 =5A(0.5 分) 则 U = I_2 - I_3 + I_2 - I_1 =-30V(1 分)

4. (8分)

1)
$$f_0 = \frac{1}{2\pi\sqrt{LC}} = 1592 \text{ Hz} \quad (2 \%)$$

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} = 100 \quad (2 \%)$$

2) 由谐振的特点可知:

$$I = \frac{U_s}{Z} = \frac{U_s}{R} = 1 \text{ A}$$
 (1分)
又: $X_C = RQ = 400\Omega$ (1分)
则 $U_c = -jX_C I = 400 \angle -65^{\circ} V$ (1分)
: $u_c = 400\sqrt{2}\cos(10000t -65^{\circ}) V$ (1分)

5. (8分)

求L、C的等效阻抗 ZLC

$$Z_{LC}$$
=-j25+j20=-j5 Ω (2 $\%$)

则
$$\dot{I} = \frac{\dot{U}}{Z_{LC}} = 2A$$
 (2分)

求电路总阻抗 Z

Z=4-j25+j20=4-j5 Ω (2 分) 则
$$U_s$$
=Z I =8-j10 V (2 分)

6. (8分)

1) 求 u(t)、i(t)的初始值,等效电路如图:(0.5分)

则 u(0-)=10-20=-10V (0.5 分) 由换路定律得: u(0+)=u(0-)=-10V (0.5 分) 求 i(t) 初始值的 t=0+等效电路如图: (0.5 分)

则 i(0+)=0.5+1=1.5 mA(用叠加定理计算) (0.5 分)2) 求 u(t)、i(t) 的稳态值,等效电路如图: (0.5 分)

则
$$\mathbf{u}$$
 (∞) =10-20x1/4=5 V (0.5 分)
i (∞) = (10+20) / (10+20+10) =0. 75 mA (0.5 分)

3) 求电路的时间常数τ, 其等效电路如图: (0.5 分)

故 $\tau = R_{eq}C = 0$. 1 s (0.5 分)

根据直流三要素公式可得 u(t)的全响应为:

 \mathbf{u} (t) = \mathbf{u} (∞) +[\mathbf{u} (0+) - \mathbf{u} (∞)] $\mathbf{e}^{-t/\tau} = 5 - 15\mathbf{e}^{-10t}\mathbf{V}$ (t≥0) (1分)

i(t)的全响应为:

 $i (t) = i (∞) + [i (0^+) - i (∞)]e^{-t/τ} = i (t) = 0.75 + 0.75e^{-10t} mA$ (t ≥ 0) (0.5 分)

由u(t)的全响应可得:

u(t)的零输入响应为:

u (t) =-10 e^{-10t} V (t≥0) (0.5 分)

u(t)的零状态响应为:

u (t) =5-5e^{-10t} V (t≥0) (0.5 %)