To show that $a^k \equiv b^k \pmod{n}$ for any positive integer k when $a \equiv b \pmod{n}$, we will use mathematical induction.

Base Case:

When k = 1, $a^1 = a \equiv b = b^1 \pmod{n}$. So the statement is true for k = 1.

Induction Hypothesis:

Assume that $a^k \equiv b^k \pmod{n}$ for some positive integer k.

Induction Step:

We need to show that $a^{(k+1)} \equiv b^{(k+1)} \pmod{n}$. We can use the fact that $a \equiv b \pmod{n}$ to write a = b + kn, where k is some integer. Then,

$$a^{(k+1)} = a^{k} * a$$

= $(b + kn)^{k} * (b + kn)$ [Substituting $a = b + kn$]
= $b^{k} * (b + kn) + kn * (b + kn)^{k}$

Similarly,

 $b^{k+1} = b^{k}$

$$= b^k * (b + kn) - kn * (b + kn)^k$$

Subtracting these two equations, we get:

$$a^{(k+1)} - b^{(k+1)} = kn(b + kn)^k - kn(b + kn)^k$$

= $kn[(b + kn)^k - (b + kn)^k]$

Since $(b + kn)^k - (b + kn)^k = 0$, we can conclude that $a^k + 1 - b^k + 1$ is divisible by n, which means that $a^k + 1 = b^k + 1 \pmod{n}$.

Therefore, by the principle of mathematical induction, we have shown that for any positive integer k, if $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$.