# 中山大学数据科学与计算机学院本科生实验报告

## (2020 学年秋季学期)

课程名称: 数据库系统 任课教师: 刘玉葆 助教:

| 年级&班级 | 18 级 计科一班   | 专业(方向) | 计科 (人工智能与大数据方向)  |
|-------|-------------|--------|------------------|
| 学号    | 18340014    | 姓名     | 陈嘉宁              |
| 电话    | 18475934419 | Email  | 734311072@qq.com |
| 开始日期  | 2020/9/18   | 完成日期   | 2019/9/21        |

## 一、 实验题目

SQL 语句应用 (单表查询和连接查询)

## 二、 实验目的

- 1. 熟悉 SQL 的数据查询语言;
- 2. 能够使用 SQL 语句对数据库进行单表查询、连接查询。

## 三、 实验内容

## 1. 单表查询:

- 1) 查询的目标表达式为所有列、指定列或指定列的运算;
- 2) 用 DISTINCT 保留字消除重复行;
- 3) 对查询结果排序和分组;
- 4) 集合分组使用集函数进行各项统计。

#### 2. 连接查询:

- 1) 笛卡儿连接和等值连接;
- 2) 自连接;
- 3) 外连接;
- 4) 复合条件连接;
- 5) 多表连接。

## 四、 实验过程及结果

1. 查询全部课程的详细记录:

查询语句:

select cid, cname, hour from COURSES

查询结果 (项数过多, 仅截取部分):



## 2. 查询所有有选修课的学生的编号:

查询语句:

∃select sid Lfrom choices

查询结果 (项数过多, 仅截取部分):



## 3. 查询课时<88(小时)的课程的编号:

查询语句:

select cid from COURSES where hour<88

查询结果 (共有48项,此处仅截取部分):



4. 请找出总分超过 400 分的学生:

```
查询语句:
```

```
∃ select sid, SUM(score) as s
from CHOICES
group by sid
having SUM(score)>400
```

#### 查询结果 (仅截取部分):

```
        sid
        s

        1
        854460136
        447

        2
        822101172
        407

        3
        806671300
        415

        4
        828217115
        428

        5
        826220006
        409

        6
        856862351
        434

        7
        875312479
        430

        8
        874259807
        409

        9
        811119994
        429

        10
        894478231
        449

        11
        895997349
        458

        12
        870772470
        432

        13
        845388732
        404

        14
        891230984
        407
```

5. 查询课程的总数

查询语句:

```
select count(*) as number
L from COURSES
查询结果:
```

```
number
1 50
```

6. 查询所有课程和选修该课程的学生总数:

查询语句:

```
select cid, COUNT(*) as summary from CHOICES group by cid order by cid
```

查询结果 (共50项, 仅截取部分):

|    | cid   | summary |
|----|-------|---------|
| 1  | 10001 | 5898    |
| 2  | 10002 | 6013    |
| 3  | 10003 | 5975    |
| 4  | 10004 | 6110    |
| 5  | 10005 | 6031    |
| 6  | 10006 | 6090    |
| 7  | 10007 | 5965    |
| 8  | 10008 | 5985    |
| 9  | 10009 | 5965    |
| 10 | 10010 | 6027    |
| 11 | 10011 | 6086    |
| 12 | 10012 | 5819    |
| 13 | 10013 | 5982    |
| 14 | 10014 | 5866    |

7. 查询选修成绩超过60的课程超过两门的学生编号:

查询语句:

```
= select sid, COUNT(sid) courses

from CHOICES
where score > 60
group by sid
having COUNT(sid) > 2
```

#### 查询结果 (仅截取部分):

|    | sid       | courses |
|----|-----------|---------|
| 1  | 828667933 | 3       |
| 2  | 886690009 | 5       |
| 3  | 801855166 | 4       |
| 4  | 812917218 | 4       |
| 5  | 888277410 | 5       |
| 6  | 807064377 | 4       |
| 7  | 891770368 | 3       |
| 8  | 873055545 | 4       |
| 9  | 863857955 | 3       |
| 10 | 846080968 | 3       |
| 11 | 808999533 | 3       |
| 12 | 830850869 | 4       |
| 13 | 832380316 | 3       |
| 14 | 818423896 | 4       |

## 8. 统计各个学生的选修课程数目和平均成绩:

## 查询语句:

```
∃ select sid, AVG(score) as avarage, COUNT(cid) as courses from CHOICES group by sid
```

#### 查询结果:

|    | sid       | avarage | courses |
|----|-----------|---------|---------|
| 1  | 834984317 | 73      | 4       |
| 2  | 871395583 | 81      | 3       |
| 3  | 865375956 | 73      | 2       |
| 4  | 856542501 | 69      | 2       |
| 5  | 816362472 | 64      | 2       |
| 6  | 861315623 | NULL    | 2       |
| 7  | 805265397 | 73      | 5       |
| 8  | 835921922 | 71      | 4       |
| 9  | 856698430 | 93      | 3       |
| 10 | 869826277 | 81      | 3       |
| 11 | 885936900 | 80      | 1       |
| 12 | 842972332 | 72      | 4       |
| 13 | 836949491 | 90      | 3       |
| 14 | 819154113 | 61      | 5       |

## 9. 查询选修 Java 的所有学生的编号及姓名:

在进行此项操作时, 我发现 SQL server 并不支持自然连接 (natural join) 的操作, 只好使用内连接 (inner join) 并通过指定 id 相同来完成自然连接的功能。 查询语句:

```
select s.sid, sname from (STUDENTS as s inner join CHOICES as c on s.sid=c.sid) inner join COURSES as co on c.cid=co.cid where cname='Java'
```

#### 查询结果 (仅截取部分):



## 10. 查询姓名为 sssht 的学生所选的课程的编号和成绩:

同上题,使用 inner join 来实现 natural join 的功能。 查询语句:

```
select cid, score
from STUDENTS as s inner join CHOICES as c on s.sid=c.sid
where sname='sssht'
```

#### 查询结果:

|   | cid   | score |
|---|-------|-------|
| 1 | 10037 | 54    |
| 2 | 10019 | 79    |
| 3 | 10004 | 76    |
| 4 | 10037 | 84    |
| 5 | 10030 | 53    |

## 11. 查询其他课时比课程 C++多的课程的名称:

通过所有课时比课程 C++多的课程减去 C++课程来得到题目要求的元组。查询语句:

```
= select x.cname
    from COURSES as x, COURSES as y
    where x.hour>y.hour and y.cname = 'c++'
    except
    select x.cname
    from COURSES as x, COURSES as y
-where x.hour>y.hour and y.cname = 'c++' and x.cname = 'c++'
```

#### 查询结果:

|   | cname               |
|---|---------------------|
| 1 | algorithm           |
| 2 | compiling principle |
| 3 | database            |
| 4 | operating system    |
| 5 | tcp/ip protocol     |

## 五、 实验感想

本次实验相较于上次有了一些难度上的增长,逻辑更加复杂且更加考究细节。另外,在实验过程中遇到一个较大的问题——SQL server 并不支持 natural join 的操作,因此只能通过 inner join 来实现 natural join 的功能。