Cavallaro, Jeffery Math 221a Homework #5

1.6.2

a) Prove: S_n is generated by the (n-1) transpositions $(12), (13), (14), \dots, (1n)$.

$$((1i)(1j)(1i))(m) = \begin{cases} j, & m = i \\ i, & m = j \\ 1, & m = 1 \\ m, & m \neq 1 \text{ and } m \neq i \text{ and } m \neq j \end{cases}$$

$$(ij)(m) = \begin{cases} j, & m=i\\ i, & m=j\\ 1, & m=1\\ m, & m \neq 1 \text{ and } m \neq i \text{ and } m \neq j \end{cases}$$

Thus (1i)(1j)(1i) = (ij)

So any transposition (ij) can be generated from the (n-1) transpositions (1x) Assume $\sigma \in S_n$

 σ can be written as a sequence of disjoint cycles

Each cycle can be written as a sequence of transpositions $(ij), 1 \le i < j \le n$ Therefore, σ can be generated.

b) Prove: S_n is generated by the (n-1) transpositions $(12), (23), (34), \ldots, (n-1)$.

Assume $1 \le i < n$ Assume $1 \le m \le n$

$$((1\ i-1)(i-1\ i)(1\ i-1))(m) = \begin{cases} i, & m=1\\ 1, & m=i\\ i-1, & m=i-1\\ m, & m \neq 1 \text{ and } m \neq i-1 \text{ and } m \neq i \end{cases}$$

$$(1i)(m) = \begin{cases} i, & m=1\\ 1, & m=i\\ i-1, & m=i-1\\ m, & m\neq 1 \text{ and } m\neq i-1 \text{ and } m\neq i \end{cases}$$

Thus, $(1\ j-1)(j-1\ j)(1\ j-1)=(1j)$ So any transposition (1i) can be generated from the (n-1) transpositions $(i-1\ i)$ Therefore, by part (a), any $\sigma\in S_n$ can be generated.

1.6.3

Let
$$\sigma=(i_1i_2\cdots i_r)\in S_n$$
 and $\tau\in S_n$.
Prove: $\tau\sigma\tau^{-1}$ is the r-cycle $(\tau(i_1)\tau(i_2)\cdots\tau(i_r))$
Claim: $\tau(i_ji_k)\tau^{-1}=(\tau(i_j)\tau(i_k))$ where $0\leq j< k\leq r$
Case 1: $\tau(i_j)=i_j$ and $\tau(i_k)=i_k$
Assume $i_s\neq i_j,i_k$
 $(\tau(i_ji_k)\tau^{-1})(i_s)=i_s$
 $(\tau(i_ji_k)\tau^{-1})(i_j)=i_k=\tau(i_k)$
 $(\tau(i_ji_k)\tau^{-1})(i_k)=i_j=\tau(i_j)$
 $\therefore \tau(i_ji_k)\tau^{-1}=(\tau(i_j)\tau(i_k))$
Case 2: $\tau^{-1}(i_s)=i_j$ and $\tau(i_k)=i_k$
 $i_s=\tau(i_j)$
 $(\tau(i_ji_k)\tau^{-1})(\tau(i_k))=\tau(i_j)$
 $\therefore \tau(i_ji_k)\tau^{-1}=(\tau(i_j)\tau(i_k))$
Case 3: $\tau^{-1}(i_s)=i_j$ and $\tau^{-1}(i_t)=i_k$
 $i_s=\tau(i_j)$
 $(\tau(i_ji_k)\tau^{-1})(i_s)=\tau(i_k)$
 $(\tau(i_ji_k)\tau^{-1})(i_s)=\tau(i_k)$
 $(\tau(i_ji_k)\tau^{-1})(\tau(i_k))=\tau(i_j)$
 $i_t=\tau(i_k)$
 $(\tau(i_ji_k)\tau^{-1})(\tau(i_k))=\tau(i_j)$
 $(\tau(i_ji_k)\tau^{-1})(\tau(i_j))=\tau(i_k)$
 $\therefore \tau(i_ji_k)\tau^{-1}=(\tau(i_j)\tau(i_k))$
Now:

$$\tau\sigma\tau^{-1}=\tau(i_1i_2\cdots i_r)\tau^{-1}$$

$$=\tau(i_1i_2)(i_2i_3)\cdots(i_{r-1}i_r)\tau^{-1}$$

$$=\tau(i_1i_2)\tau^{-1}\tau(i_2i_3)\tau^{-1}\tau\cdots\tau^{-1}\tau(i_{r-1}i_r)\tau^{-1}$$

$$=(\tau(i_1)\tau(i_2))(\tau(i_2)\tau(i_3))\cdots(\tau(i_{r-1})\tau(i_r))$$

$$=(\tau(i_1)\tau(i_2)\cdots\tau(i_r))$$

1.6.3

a) Prove: $S_n = \langle (12), (12 \cdots n) \rangle$ Using problem (3): $\tau(12)\tau^{-1} = (\tau(1), \tau(2)) = (23)$ $\tau(23)\tau^{-1} = (\tau(2), \tau(3)) = (34)$ \vdots $\tau(i-1\ i)\tau^{-1} = (\tau(i-1), \tau(i)) = (i\ i+1)$ \vdots $\tau(n-2\ n-1)\tau^{-1} = (\tau(n-2), \tau(n-1)) = (n-1\ n)$

Thus, all possible transpositions of the form $(i-1\ i)$ can be generated, and therefore, by problem (2b), all of S_n can be generated.

b) Prove: $S_n = \langle (12), (23 \cdots n) \rangle$

Using problem (3):

$$\begin{split} &\tau(12)\tau^{-1}=(\tau(1),\tau(2))=(13)\\ &\tau(13)\tau^{-1}=(\tau(1),\tau(3))=(14)\\ &\vdots\\ &\tau(1\;i)\tau^{-1}=(\tau(1),\tau(i))=(1\;i+1)\\ &\vdots\\ &\tau(1\;n-1)\tau^{-1}=(\tau(1),\tau(n-1))=(1\;n) \end{split}$$

Thus, all possible transpositions of the form $(1 \ i)$ can be generated, and therefore, by problem (2a), all of S_n can be generated.

1.8.1

Prove that the following are not direct products of their proper subgroups.

In order for a group to be a direct product of its proper subgroups, the following must hold:

- 1). The group must be generated by a collection of its proper, normal, almost disjoint subgroups.
- 2). The group must be isomorphic to the external cross product of those subgroups.
- a) S_3

Although S_3 is generated by its 3-element subgroup $\{(), (123), (132)\}$ and any of its 2-element subgroups, e.g., $\{(), (13)\}$, and although those subgroups are almost disjoint, Only the 3-element subgroup is normal; none of the 2-element subgroups are normal.

Moreover, since the 2 and 3 element subgroups are necessarily abelian, their external direct product must also be abelian; however, S_3 is not abelian and thus not isomorphic to the external direct product.

Therefore S_3 is not a direct product of any of its proper subgroups.

b) \mathbb{Z}_{p^n}

By Lagrange, all of the proper subgroups of \mathbb{Z}_{p^n} must be of order p^k where $1 \leq k < n$. Since \mathbb{Z}_{p^n} is abelian, all of its subgroups must also be abelian, so all of the proper subgroups are normal. However, we know that these subgroups form a chain:

$$G_p \le G_{p^2} \le \dots \le G_{p^{n-1}}$$

Thus, these subgroups are not almost disjoint.

Moreover, all of the elements in all of these subgroups are multiples of p, in other words $\equiv 0 \pmod p$. Any other elements are relatively prime with p^n and thus are generators of \mathbb{Z}_{p^n} and are not members of any proper subgroup. Thus, elements congruent to 1 thru $p-1 \pmod p$ can never be generated by the proper subgroups.

Therefore \mathbb{Z}_{p^n} is not the direct product of any of its proper subgroups.

c) \mathbb{Z}

All of the proper subgroups of \mathbb{Z} are the $n\mathbb{Z}$ groups. Since \mathbb{Z} is abelian, all of its subgroups must also be abelian, so all of the proper subgroups are normal.

Assume $h\mathbb{Z}$ and $k\mathbb{Z}$ are two such subgroups, $h \neq k$. Then:

$$hk \in k\mathbb{Z}$$

$$kh \in h\mathbb{Z}$$

But since the subgroups are normal:

$$hk = kh$$

Thus, $hk \in h\mathbb{Z} \cup k\mathbb{Z}$, so the two subgroups are not almost disjoint.

Therefore \mathbb{Z} is not the direct product of any of its proper subgroups.

1.8.2

Given an example of groups H_i and K_i such that $H_1 \times K_1 \simeq H_2 \times K_2$, and no H_i is isomorphic to any K_i .

Consider:

$$H_1 = \mathbb{Z}_3$$

$$H_2 = \mathbb{Z}_4$$

$$K_1 = \mathbb{Z}_{20}$$

$$H_2 = \mathbb{Z}_{15}$$

Note that (3, 20) = 1 and (4, 15) = 1, so:

$$H_1 \times K_1 = \mathbb{Z}_3 \times \mathbb{Z}_{20} \simeq \mathbb{Z}_{60}$$

$$H_2 \times K_2 = \mathbb{Z}_4 \times \mathbb{Z}_{15} \simeq \mathbb{Z}_{60}$$

Therefore, $H_1 \times K_1 \simeq H_2 \times K_2$; however, by cardinality, no H_i is isomorphic to any K_i .

1.8.3

Let G be additive abelian with subgroups H and K.

Prove: $G\simeq H\oplus K$ iff there exists homomorphisms $H\overset{\pi_1}{\underset{\iota_1}{\longleftarrow}}G\overset{\pi_2}{\underset{\iota_2}{\rightleftarrows}}K$ such that:

$$\pi_1 i_1 = 1_H$$

$$\pi_2 i_2 = 1_K$$

$$\pi_1 i_2 = 0$$

$$\pi_2 i_1 = 0$$

and:

$$\forall x \in G, (i_1 \pi_1)(x) + (i_2 \pi_2)(x) = x$$

$$\implies$$
 Assume $G \simeq H \oplus K$

Since the direct product holds as defined in the category of groups, we have the commutative diagram for the product:

where the homomorphisms are the canonical projections. Likewise, we have the commutative diagram for the co-product:

where the homomorphisms are the canonical injections.

Thus, the homomorphisms $H \overset{\pi_1}{\underset{\iota_1}{\hookleftarrow}} G \overset{\pi_2}{\underset{\iota_2}{\hookleftarrow}} K$ exist.

Assume $h \in H$:

$$(\pi_1 \iota_1)(h) = \pi_1(\iota_1(h)) = \pi_1(h+0) = h$$

$$\therefore \pi_1 \iota_1 = 1_H$$

$$(\pi_2 \iota_1)(h) = \pi_2(\iota_1(h)) = \pi_2(h+0) = 0$$

$$\therefore \pi_2 \iota_1 = 0$$

Assume $k \in K$:

$$(\pi_2 \iota_2)(k) = \pi_2(\iota_2(k)) = \pi_2(0+k) = k$$

$$\therefore \pi_2 \iota_2 = 1_K$$

$$(\pi_1 \iota_2)(k) = \pi_1(\iota_2(k)) = \pi_1(0+k) = 0 \therefore \pi_1 \iota_2 = 0$$

Assume $x \in G$

x = h + k for some $h \in H$ and $k \in K$

$$(i_1\pi_1)(x) + (i_2\pi_2)(x) = i_1(\pi_1(x)) + i_2(\pi_2(x))$$

$$= i_1(h) + i_2(k)$$

$$= (h+0) + (0+k)$$

$$= h+k$$

$$= x$$

Assume all of that other stuff

Since $H,K\leq G$ and G is abelian, H and K are abelian So, $H \lhd G$ and $K \lhd G$ Thus $H+K\leq G$

Assume
$$x \in G$$

$$x = (i_1\pi_1)(x) + (i_2\pi_2)(x) = i_1(\pi_1(x)) + i_2(\pi_2(x))$$

Let
$$\pi_1(x) = h \in H$$
 and $\pi_2(x) = k \in K$ $x = \iota_1(h) + i_2(k) = (h+0) + (k+0) = h+k \in H+K$

Therefore, H + K = G

But, since $\pi_1\iota_2=0$ and $\pi_2\iota_1=$, H and K have no projection into each other and thus $H\cap K=\{e\}.$

Therefore, the requirements for corollary 8.7 are met and $G \simeq H \oplus K$.