SEPTEMBER TENTATIVE PLAN

Sunday	Monday	TUESDAY	Wednesday	Thursday	FRIDAY	Saturday
1	2	3	Section 0.1 Sets, containment, intersection, union	5	Section 0.1 and 0.2 Complements, indexed families of sets De Morgan's Laws, ordered pairs, Cartesian product, relations and functions	7
8	Section 0.2 Converse relations, composition of relations and functions	10	Section 0.3 Well-ordering principle and mathematical induction	12	Section 0.3 Well-ordering and induction continued Assignment 1 due	14
15	Section 0.4 Equivalent and countable sets	17	Section 0.4 Equivalent and countable sets	Quiz 1 in tutorial	Section 0.5 Begin Axioms of real numbers	21
22	Section 0.5 Axioms of real numbers, lower and upper bounds, Archimedean property	24	Section 0.5 Density of rationals and irrationals, existence of square roots, triangle inequality	26	Section 1.1 Definition of sequences and convergence, open neighbourhoods Assignment 2 due	28
29	30 Section 1.1 Uniqueness of limits of sequences, boundedness and divergent sequences					

OCTOBER TENTATIVE PLAN

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	SATURDAY
		1	Section 1.2 Definition of Cauchy sequences, convergent sequences are Cauchy, accumulation points	3	Test 1	5
6	7 Section 1.2 Bolzano-Weierstrass, Cauchy sequences are convergent	8	Section 1.3 Arithmetic operations on sequences	Quiz 2 in tutorial	Section 1.3 Examples of sequences, inequalities of sequences (e.g. $a_n \leq b_n$ for all n)	12
13	14 Thanksgiving	15	Section 1.4 Subsequences Assignment 3 due	17	Section 1.4 Monotone sequences	19
20	Projects 0.1 and 1.4 Uncountability of real numbers via sequences	22	23 Section 2.1 Definition of the limit of a function	Quiz 3 in tutorial	25 Section 2.1 Examples of limits of functions	26
27	Section 2.2 Limits of functions and sequences	29	30 Section 2.2 Limits of functions and sequences	31		

November Tentative plan

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					Section 2.3 Algebra of limits, products where one function is bounded, examples	2
3	4 Test 2	5	Section 2.4 Definition of monotone functions, prepartory lemmas Assignment 4 due	7	Section 2.4 Limits of monotone functions exist everywhere except on a countable set	9
10	11 Remembrance day	12	13 Fall break (no class)	14	15 Fall break (no class)	16
17	Section 3.1 Continuity at a point	19	Section 3.2 Examples $R^2 \to R$, algebra of continuous functions	21 Quiz 4 in tutorial	Section 3.2 Algebra of continuous functions, compositions of continuous functions	23
24	Sections 3.3 Definition of uniform continuity, definition of closed, open and compact sets	26	Section 3.3 Continuous functions on compact sets are uniformly continuous	28	Section 3.4 Behaviour of continuous functions with respect to open, closed and compact sets Assignment 5 due	30

DECEMBER TENTATIVE PLAN

SUNDAY	Monday	Tuesday	Wednesday	Thursday	FRIDAY	Saturday
1	Section 3.4 Bolzano's Theorem	3	Section 3.5 Intermediate Value Theorem	Quiz 5 in tutorial	Sections 4.1 and 4.2 Definition of the derivative at a point, derivatives and algebra of derivatives, or possibly review.	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30					