Calcolo Numerico ed Elementi di	Prof. P.F. Antonietti	Firma leggibile dello studente	
Analisi	Prof. L. Dedè		
CdL Ingegneria Aerospaziale	Prof. M. Verani		
Appello			
31 agosto 2017			
Cognome:	Nome:	Matricola:	

ISTRUZIONI

- Riportare le risposte nello spazio indicato.
- Alcuni esercizi richiedono di utilizzare MATLAB; per tali esercizi riportare sul foglio esclusivamente gli output richiesti.
- Utilizzare esclusivamente una penna nera o blu.
- Tempo a disposizione: 3h.

SPAZIO RISERVATO AL DOCENTE

	PART	ΈΙ	
Pre Test			
Esercizio 1			
Esercizio 2			
Totale			
	PART	E II	
Pre Test			
Esercizio 1			
Esercizio 2			
Totale			
	FINA	LE	1
			ĺ

Parte I - Pre Test

1. (1 punto) Determinare il valore dell'epsilon macchina ε_M (riferito al numero reale 1) associato all'insieme di numeri floating-point $\mathbb{F}(2,6,-2,3)$.

2. (1 punto) Determinare il costo computazionale dell'algoritmo di eliminazione in avanti per la soluzione del sistema lineare $L\mathbf{x} = \mathbf{b}$ dove $\mathbf{b} \in \mathbb{R}^{30}$ e $L = (\ell_{i,j}) \in \mathbb{R}^{30 \times 30}$ è una matrice triangolare superiore tale che $\ell_{i,j} = 0$ se j > i.

3. $(2 \ punti)$ Sia $A_{\alpha} = \begin{bmatrix} \alpha - 2 & 0 \\ 7\alpha & \alpha + 2 \end{bmatrix}$ una matrice dipendente da un parametro α reale. Per quali valori $\alpha \in \mathbb{R}$ la matrice A_{α} risulta simmetrica e definita positiva?

4. (2 punti) Si consideri il sistema lineare $A\mathbf{x} = \mathbf{b}$ dove $\mathbf{b} = (1 \ 1)^T$ e $A = \begin{bmatrix} 4 & 4 \\ 5 & 1 \end{bmatrix}$. Assegnato $\mathbf{x}^{(0)} = (1 \ 1)^T$ si riporti la prima iterata $\mathbf{x}^{(1)}$ del metodo di Jacobi.

5. (2 punti) Si consideri la funzione $f(x) = \log(x + 6/7)$ dotata dello zero $\alpha = 1/7$ e il metodo di bisezione per la sua approssimazione. Senza applicare esplicitamente il metodo, si stimi l'errore commesso dopo k = 5 iterazioni partendo dall'intervallo iniziale [0,3].

6. (1 punto) Si consideri una funzione $f(x) \in C^2(\mathbb{R})$ dotata dello zero α . Sapendo che, per l'iterata iniziale $x^{(0)}$ "sufficientemente" vicino ad α , il metodo di Newton converge ad α e che si hanno $f'(\alpha) = 0$ e $f''(\alpha) = \frac{1}{2}$, si determini l'ordine di convergenza p atteso dal metodo.

		Part	e I - Eserci	zi	
ERCI	zio 1. Si conside	eri il sistema linear	$e A \mathbf{x} = \mathbf{b} $ con	$A \in \mathbb{R}^{n \times n}$ invertib	sile e $\mathbf{b}, \mathbf{x} \in \mathbb{R}^n$, essendo
(non	in stretto linguag		metodo del <i>gra</i>		a, si riporti l'algoritmo zione del <i>sistema lineare</i>
		risultato (teorema) zzata), discutendo			l $gradiente$ (si definisca vergenza a \mathbf{x} .

Il metodo del gradiente coniugato risulta convergente alla soluzione ${\bf x}$ per ogni scelta dell'iterata iniziale $\mathbf{x}^{(0)} \in \mathbb{R}^{250}$? Si motivi dettagliatamente e con completezza la risposta data.

(d) (2 punti) Si utilizzi opportunamente la funzione Matlab® pcg per approssimare la soluzione del sistema lineare di cui al punto (c) mediante il metodo del gradiente coniugato; si considerino la tolleranza tol= 10^{-6} e nmax= 1000 (pcg considera di default la guess iniziale $\mathbf{x}^{(0)} = (0,0,\ldots,0)^T$). Si riportino: il numero di iterazioni N effettuato, la terza componente della soluzione approssimata $\mathbf{x}^{(N)}$, ossia $x_3^{(N)}$, e il valore del corrispondente residuo relativo $r_{rel}^{(N)}$ in formato esponenziale.

applicato al sistema lineare di cui al punto (c) .	
ERCIZIO 2. Si consideri il metodo delle <i>potenze</i> (dirette) per l'approssimazione dell'autovalore nodulo massimo $\lambda_1(A)$ di una matrice $A \in \mathbb{R}^{n \times n}$.	
	11 p
(3 punti) Si enunci e si dimostri il teorema di convergenza del metodo delle potenze (specificare in modo dettagliato tutte le ipotesi e la tesi del teorema).	

:)	$(1 \ punto)$ Si verifichi (motivandola) l'applicabilità del metodo delle potenze alla matrice A assignata in Matlab® col comando $A = full(delsq(numgrid('L',7)))$.
)	
l)	diante il metodo delle potenze. Si utilizzi il criterio d'arresto basato sulla differenza tra di
l)	diante il metodo delle potenze. Si utilizzi il criterio d'arresto basato sulla differenza tra di approssimazioni successive dell'autovalore. La struttura della funzione è la seguente. function [x,lambdavect,Nit] = potenze(A,x0,nmax,tol) Si considerino come input: A, la matrice assegnata; x0, il vettore iniziale; nmax, il nume massimo di iterazioni consentite; tol, la tolleranza sul criterio d'arresto. Si considerino com
.)	diante il metodo delle potenze. Si utilizzi il criterio d'arresto basato sulla differenza tra di approssimazioni successive dell'autovalore. La struttura della funzione è la seguente.
.)	diante il metodo delle potenze. Si utilizzi il criterio d'arresto basato sulla differenza tra di approssimazioni successive dell'autovalore. La struttura della funzione è la seguente. function [x,lambdavect,Nit] = potenze(A,x0,nmax,tol) Si considerino come input: A, la matrice assegnata; x0, il vettore iniziale; nmax, il nume massimo di iterazioni consentite; tol, la tolleranza sul criterio d'arresto. Si considerino com output: x, l'autovettore approssimato; lambdavect, il vettore contenente tutte le iterate $\{\lambda_1^{(k)}\}$ dell'autovalore approssimato; Nit, il numero di iterazioni effettuate. Si utilizzi la funzione potenze.m per approssimare $\lambda_1(A)$ per la matrice A definita al punto (ci si utilizzino $\mathbf{x}^{(0)} = (1,1,\ldots,1)^T$ come vettore iniziale, una tolleranza tol= 10^{-6} e nmax= 100
.)	function [x,lambdavect,Nit] = potenze(A,x0,nmax,tol) Si considerino come $input$: A, la matrice assegnata; x0, il vettore iniziale; nmax, il nume massimo di iterazioni consentite; tol, la tolleranza sul criterio d'arresto. Si considerino con $output$: x, l'autovettore approssimato; lambdavect, il vettore contenente tutte le iterate $\{\lambda_1^{(k)}\}$
.)	diante il metodo delle potenze. Si utilizzi il criterio d'arresto basato sulla differenza tra di approssimazioni successive dell'autovalore. La struttura della funzione è la seguente.

Versione n. 1 – Pag. 6

 $\lambda_i(A) = \underline{\hspace{1cm}}$

Parte II - Pre Test

10 punti

1.	(1 punto) Assegnati i nodi $x_0=-3,\ x_1=-2,\ x_2=0$ e $x_3=2,$ si consideri il polinomio caratteristico di Lagrange $\varphi_3(x)$. Si riporti il valore di $\varphi_3(x_2)$.
2.	(2 punti) Siano assegnati i nodi equispaziati x_0, x_1, \ldots, x_4 nell'intervallo [0,4] e i corrispondenti valori $y_0 = 2, y_1 = 1, y_2 = 1, y_3 = 0$ e $y_4 = 1$. Si consideri il polinomio di Lagrange $\Pi_4(x)$ interpolante tali dati ai precedenti nodi e si riporti il valore di $\Pi_4(2.5)$.
3.	(1 punto) Sia $f(x) = 3x^3 + 2x^2 + 1$. Si approssimi $\int_1^6 f(x) dx$ con la formula semplice di Simpson. Si riporti l'approssimazione I_S ottenuta.
4.	$(2 \ punti)$ Si consideri la formula del punto medio composita per l'approssimazione dell'integrale $\int_0^1 (1-\cos(\pi x)) dx$. Senza applicare esplicitamente la formula, si stimi il numero minimo M di sottointervalli equispaziati di $[0,1]$ tali per cui l'errore di quadratura è inferiore alla tolleranza $tol=10^{-5}$.
5.	(1 punto) Si consideri la funzione $f(x)=3(2^{5x}-1)$. Si riporti il valore approssimato di $f'(\overline{x})$ in $\overline{x}=0$ ottenuto mediate le differenze finite in avanti, ovvero $\delta_+ f(\overline{x})$, usando il passo $h=\frac{1}{5}$.
6.	(1 punto) Si consideri la funzione $f(x) = 3x^3 - 9x^2 - 4x + 1$. Si riporti l'errore associato all'approssimazione di $f'(\overline{x})$ in un generico valore $\overline{x} \in \mathbb{R}$ ottenuta mediate le differenze finite centrate, ovvero $E_c f(\overline{x}) = f'(\overline{x}) - \delta_c f(\overline{x})$, usando il passo $h = \frac{1}{4}$.

$\begin{cases} y'(t) = 8t + 7y(t) & t \in (0,8], \\ y(0) = 5. \end{cases}$	
Utilizzando il metodo di Eulero Implicito con passo $h=0.1$, si calcoli u_1 , ovverd)
l'approssimazione di $y(t_1)$ (si riporti il risultato con almeno 6 cifre decimali).	
Parte II - Esercizi	
Esercizio 1. Si consideri il problema di Cauchy:	_
$\begin{cases} y'(t) &= f(t,y) & t \in (0,t_f], \\ y(0) &= y_0, \end{cases} $	1)
·	12 pun
con $t_f > 0$ e il dato iniziale y_0 assegnati. (a) (2 punti) Si riporti l'algoritmo del metodo di Heun (non in stretto linguaggio Matlab [®]) per	: l'ap-
prossimazione del problema di Cauchy (1); si definisca con precisione tutta la notazione utiliz	
(b) (1 punto) Si discuta sinteticamente l'ordine di convergenza dell'errore del metodo di Heun.	

7. (2 punti) Si consideri il seguente problema di Cauchy:

(2 punti) Si consideri il problema modello, ovvero $f(t,y) = \lambda y$ in (1) con $\lambda \in \mathbb{R}$, e si riporti la definizione di assoluta stabilità. Sotto quali condizioni il metodo di Heun è assolutamente stabile?		
	/ 180	
	li Cauchy (1) con $f(t,y) = \left(\frac{180}{36t^2 + 1}e^{-6t} - 6y\right)$, $t_f = 1$ e	
metodo di Heun con diversi passi ten	nandi Matlab® per approssimare tale problema mediante il nporali $h_1 = 0.05$, $h_2 = 0.025$, $h_3 = 0.0125$ e $h_4 = 0.00625$. Si ossimata $u_{N_{h,i}}$ corrispondente all'istante finale t_f per ciascuno no almeno 4 cifre decimali).	
$u_{N_{h,1}} = \underline{\hspace{1cm}}$	$u_{N_{h,2}} = \underline{\hspace{1cm}}$	
$u_{N_{h,3}} = $	$u_{N_{h,4}} = \underline{\hspace{1cm}}$	
riportino gli errori E_{h_i} associati alle	esatta del problema è $y(t) = 30 \operatorname{atan}(6t) e^{-6t}$, si calcolino e si soluzioni $u_{N_{h,i}}$ al tempo t_f ottenuti per ciascun valore di h_i almeno 4 cifre decimali in formato esponenziale).	
$E_{h_1} = $		
$E_{h_3} = $	$E_{h_4} = \underline{\hspace{1cm}}$	
	nuti al punto (e) per stimare graficamente l'ordine di converi la risposta riportando con completezza la procedura seguita	

ESER	α	771	\sim	2
E/SER	(:	'./.I	()	

Si consideri il seguente problema a valori ai limiti (di diffusione-reazione):

10 punti

$$\begin{cases}
-u''(x) + \sigma u(x) = f(x) & \text{in } (a,b), \\
u(a) = \alpha, \\
u(b) = \beta.
\end{cases}$$
(2)

(a) (3 punti) Si approssimi il problema ai limiti (2) con uno schema alle differenze finite centrate (del second'ordine) su una griglia di N+2 nodi equispaziati $\{x_i\}_{i=0}^{N+1}$, con $x_0=a, x_i=x_0+i\,h$ per $i=0,\ldots,N+1$ e passo h=(b-a)/(N+1). Si riportino le equazioni del sistema risultante in forma esplicita definendo tutta la notazione utilizzata.

termine noto ${f b}$ e del vettore delle incognite ${f u}.$

(c)	(1 punto) Si considerino ora i seguenti de $f(x) = 4e^{-4x} \left[\sin(4x) + 8\cos(4x) \right]$. Si $u(x) = e^{-4x} \sin(4x)$; si riporti la procede	i verifichi che la soluzione esat	$a=0,b=\pi,\alpha=0,\beta=0$ ta del problema è data da
(d)	(4 punti) Si risolva il problema ai limi descritto al punto (a), ovvero risolvend		
	N=9,19,39e 79 (per risolvere il siste	ema lineare si utilizzi il comano	lo"back-slash" di Matlab®
	\). Usando la soluzione esatta $u(x)$ di cerrori $E_N = \max_{i=0,\dots,N+1} u_i - u(x_i) $ (si c		
	per N = 9		
		$E_N = $	
		$E_N = $	
		$E_N = \underline{\hspace{1cm}}$	
(e)	(1 punto) Dopo aver risposto al punto	(d), si stimi algebricamente l'o	rdine di convergenza p del
` /	metodo rispetto ad h (ovvero $(b-a)/(N)$		
		$p = \underline{\hspace{1cm}}$	