Quest'un 1

(a)
$$T(n) = 3T(n/4) + \Theta(n\log n)$$

 $\alpha = 3$, $\beta = 4$, $f(n) = \Theta(n\log n)$
 $n^{(n)} = n^{(n)} \approx n^{(n)$

(b)
$$T(n) = 5T(n/2) + n^2(\log n)$$

 $n:5$, $b=2$, $f(n) = \Theta(n^2(\log n))$
 $n\log_b n = n^{(\log_2 5)} \propto n^{2/32}$ vs $n^2(\log n)$
 $Since f(n) = \Theta(n^2(\log n))$ has an extra $(\log n)$ fator compared $(\log_2 5)$, use $(\log_2 2)$
 $T(n) = \Theta(n^{2/32})$

(c)
$$T(n) = 4T(n/2) + n^2(oyn)$$

 $a = 4$, $b = 2$, $f(n) = O(n^2(oyn))$
 $(y_2 = 2)$, so $n^{(oy)} = n^2$

$$+ (n) = O(n^2 (oyn), n^{log_2 4} = O(n^2)$$

Since $+ (m)$ has an extra $logn$ term compared $+ o(n^2)$,

USE case $= 2$ with $k = 1$
 $+ (n) = O(n^2 (oy^2 n))$

Question 2

- (a) Each recursive call reduce u by 2,

 level; the fire should be $\frac{n}{z^i}$, 8000 when 512e = 1

 which is $\frac{n}{z^t} = 1$ so $L = loy_2 n$
- (b) At Level: , 2' subpabloms,

 So the number of leaf nodes is $2^{L} = 2^{(oyz^n)} = n$
- Since 1 leaf nodes, total cist is n. B(1) = D(1)
- (d) Level i, there one 2^i sub, size is $\frac{n}{2^i}$, so cose for each Level is $2^i \times \frac{n}{2^i} = n$ And there one $\log n$ levels, so the rotal (ost is $D(n \log n)$)