EP1 - Relatório

Lucas Seiki Oshiro - 9298228 Marcos Vinicius do Carmo Sousa - 9298274

18 de setembro de 2016

1 Parte 1: Aritmética de Ponto Flutuante

1.

- a) O maior número que pode ser representado é aquele com todos os bits b2 ... b24 = 1 e o maior expoente E possível (ou seja, 126). Ou seja, é o número $(1*2^{-1} + \sum_{i=2}^{24} (1*2^{-i}))*2^{126} = (1-2^{24})*2^{126}$.
- b) O menor número positivo é o que tem os bits b2, b3 ...,b24 = 0, e o menor expoente E possível (ou seja, -127). Dessa forma, esse número é $(1*2^{-1} + \sum_{i=2}^{24} (0*2^{-i}))*2^{-127} = 2^{-1}*2^{-127} = 2^{-128}$.
- c) O menor inteiro positivo não represetável nesse sistema é o numero caso a mantissa tivesse a precisao do expoente E com b2 ... b126 = 0 e b127 = 1 e com o expoente E = 127.

2.

I - 1/10 O número 1/10 é escrito na base binária como a dízima periódica $(0.0001100110011...)_2$, ou seja, $(1.1001100110011001100110011...) * 2^{-4}$.

Como o número é positivo, o bit de sinal vale 0.

Como o expoente é -4, o bitstring do expoente é a representação binária de -4+127=123 com 8 dígitos, ou seja, 01111011.

Arredondamento para baixo: a mantissa será 1.1001100110011001100, logo o número é armazenado como 001111011100110011001100110011001.

Arredondamento em direção ao zero: a mantissa será 1.10011001100110011001100, logo o número é armazenado como 00111101110011001100110011001100.

Arredondamento para o mais próximo: a mantissa será 1.100110011001100110011001100, logo o número é armazenado como 00111101110011001100110011001100.

II - $1+2^{25}$ O número $1+2^{25}$ é escrito na base binária como $(1.00000000000000000000000001)_2$, ou seja, $(1.0000000000000000000000001)_2 * 2^0$.

Como o número é positivo, o bit de sinal vale 0.

Como o expoente é 0, o bitstring do expoente é a representação binária de 0+127=127 com 8 dígitos, ou seja, 011111111.

III - 2^{130} O número 2^{130} é maior do que o maior número que pode ser representado no formato IEEE single.

3. (AINDA PRECISA FAZER)

4.

Comutatividade: A soma em ponto flutuante ser comutativa significa que a igualdade $x \oplus y = y \oplus x^1$ é verdadeira e ela equivale à igualdade² round(round(x) + round(y) = round(round(y) + round(x)), sendo $x \in y$ números que podem ser representados num sistema de ponto flutuante.

Pela propriedade comutativa da soma aritmética, temos então que round(x) + round(y) = round(y) + round(x).

Como o arredondamento para um mesmo número é sempre igual, o valor de round(round(x) + round(y) sempre será igual ao de round(round(y) + round(x)). Sendo assim, a soma em ponto flutuante é comutativa.

Associatividade: Para que soma em ponto flutuante seja associativa é necessária ser verdadeia a hipótese que $x \oplus (y \oplus z) = (x \oplus y) \oplus z$, em outras palavras, round(round(x) + round(round(y) + round(z))) = round(round(round(x) + round(y)) + round(z))).

Pode-se reescrever essa igualdade como round(x) + round(x) + round(y) + round(z) + roun

Pode-se, ainda, reescrever a mesma igualdade como round(x) + round(y) + round(z) + e_{y+z} + e_1 = round(x) + round(y) + round(z) + e_{x+y} + e_2 , com e_{y+z} sendo o erro do arredondamento de round(y) + round(z) e e_{x+y} o erro do arredondamento de round(x) + round(y).

Dessa forma, temos que $e_{y+z} + e_1 = e_{x+y} + e_2$. Essa afirmação não é verdadeira, uma vez que iguala somas de erros que ocorreram em processos independentes, ou seja, nada se pode concluir dessas somas. Isso contradiz a hipótese inicial, portanto, a associatividade não é aplicável à soma em ponto flutuante. \Box

2 Parte II - Método de Newton

2.1 Implementação

A função newton () calcula uma raiz de uma função, usando o método de Newton, a partir de um dado x_0 . Caso a derivada da função em x_0 seja igual a zero, ou caso o método de newton seja iterado mais que 100 vezes, a função devolve NaN. O valor é arredondado para ter no máximo 15 casas decimais, a fim de que possa ser comparado com o valor de outras raízes.

Para cada ponto do quadrado de largura n pixels, é associado um valor entre -2 e 2, e entre -2i e 2i, sendo esses valores usados como x_0 para calcular o método de Newton.

A função newton_basins () itera sobre o valores de cada pixel, e calcula a convergência do método de Newton a partir de cada um, sendo que os valores (e NaN, indicando que não há convergência) achados são adicionados num vetor, e os índices do vetor são a representação da raiz, que será impressa no arquivo de saída.

Para utilizar a função newton_basins (), deve-se abrir o octave no mesmo diretório do arquivo newton_basins e usar como argumentos o vetor de coeficientes da função polinomial a ser analisada, e o valor n, tal que o quadrado gerado tenha lado n^2 .

 $^{^{1}\}text{Considerando como} \oplus \mathbf{a}$ soma de ponto flutuante

²Considerando round(x) o valor arredondado de x num sistema de ponto flutuante

2.2 Experimentos

As figuras a seguir são o resultado dos experimentos com cada umas das funções indicadas na legenda.

Figura 1: $f(x) = x^5 - x^4 + x^2 - 1$

Figura 2: $f(x) = x^7 + 1$

Figura 3: $f(x) = 2x^3 + 2x^2 - x$

Figura 4: $f(x) = x^7 - x^5 + x^4 + x^3 + x^2 + 2x$

3 Parte III - Encontrando todas as raízes das funções

3.1 Implementação

A função achaRaizes () recebe como parâmetro uma função, sua derivada, o limite inferior do intervalo, o limite superior do intervalo, o número de subintervalos e a tolerância, e imprime as raízes da função dentro das condições dadas. Para usá-la, deve-se chamá-la usando o octave aberto no mesmo diretório do arquivo achaRaizes.m.

Foram criadas duas funções auxiliares no arquivo achaRaizes.m: a função bissec, que calcula uma apro-

ximação de uma raiz de f, usando o método da bissecção com apenas 3 iterações e a função newton (), que calcula raízes usando o método de Newton.

A função newton (), quando calcula a derivada de f num ponto x_0 e o resultado é zero, incrementa o valor de x_0 em 0.1, para que não ocorra divisão por zero, e assim aplica o método de newton a partir de outro ponto.

3.2 Experimentos

•
$$f(x)$$
 $\begin{cases} sen(x)/x, x \neq 0 \\ 1, x = 0 \end{cases}$

Foram encontradas as seguintes raízes, no intervalo [0,60], com 100 subintervalos e tolerância 1.e-8: $3.1416\ 6.2832\ 9.4248\ 12.566\ 15.708\ 18.850\ 21.991\ 25.133\ 28.274\ 31.416\ 34.558\ 37.699\ 40.841\ 43.982\ 47.124\ 50.265\ 53.407\ 56.549\ 59.690$

• f(x) = 2 * cosh(x/4) - x

Foram encontradas as seguintes raízes, no intervalo [0,60], com 100 subintervalos e tolerância 10^{-8} : 2.3576~8.5072

• $f(x) = x^3/3 + x^2 + sen(x) - e^x$

Foram encontradas as seguintes raízes, no intervalo [10,10], com 100 subintervalos e tolerância 10^{-8} : -2.8911 -1.6078 1.6369 2.4163

• $f(x) = x^5 + x^2 - 0.2$

Foram encontradas as seguintes raízes, no intervalo [10,10], com 100 subintervalos e tolerância 10^{-8} : -0.91250 -0.47292 0.43039