Advanced Mathematical Logic - Exercises

Janos Tapolczai

May 20, 2014

Show that if t is a ground term, then there is a $k \in \mathbb{N}$ such that $\mathbf{Q} \vdash t = k$.

Solution. The theory \mathbf{Q} and the here used language $L = (\mathbb{N}, \{0 \setminus 0, s \setminus 1, + \setminus 2, \cdot \setminus 2, = \setminus 2, < \setminus 2\})$ are defined in section 7 "Formal arithmetic". We prove the proposition via structural induction. To avoid confusion, we'll denote \mathbf{Q} 's language-level equality as = and our syntactic equality as =. Note that, in addition to \mathbf{Q} 's axioms, we also need the equality axioms Refl, Symm, Trans and Ext. Ext is the axiom schema of extensionality and allows us to replace a subterm x_i of $f(x_1, \ldots, x_n)$ with a subterm y_i if $x_i = y_i$ (for all $f \in L$ and all $1 \leq i \leq n$).

$$\begin{aligned} & \operatorname{Refl} \equiv \left[\forall x \right] x = x, \\ & \operatorname{Symm} \equiv \left[\forall x, y \right] x = y \Rightarrow y = x, \\ & \operatorname{Trans} \equiv \left[\forall x, y, z \right] x = y \land y = z \Rightarrow x = z, \\ & \operatorname{Ext}_{f,i} \equiv \left[\forall x_1, \dots, x_n, y_i \right] x_i = y_i \Rightarrow f(x_1, \dots, x_i, \dots, x_n) = f(x_1, \dots, y_i, \dots, x_n). \end{aligned}$$

Base case. $t \equiv s(\cdots s(0) \cdots) \equiv s^n(0)$. This follows from Refl: $s^n(0) = s^n(0)$.

Step case "+1".
$$t \equiv t' + 0$$
. IH: $t' = s^n(0)$.
Per (3), $t' + 0 = t'$.
Per Trans, $(t' + 0 = t') \wedge (t' = s^n(0)) \Rightarrow (t' + 0 = s^n(0))$.
Therefore, $t' + 0 = s^n(0)$.

Step case "+2". $t \equiv t' + s(r)$. IH: $t' = s^n(0)$ and $r = s^m(0)$ and $s^n(0) + s^m(0) = s^{n+m}(0)$. Per (4), t' + s(r) = s(t' + r).

Now we apply Symm two times, followed by $\operatorname{Ext}_{+,1}$ and $\operatorname{Ext}_{+,2}$, instantiating x_i, y_i with the parts of the IH:

$$\begin{array}{lll} t' = s^n(0) & \Rightarrow & s^n(0) = t' \\ r = s^m(0) & \Rightarrow & s^m(0) = r \\ s^n(0) = t' & \Rightarrow & s^n(0) + s^m(0) = t' + s^m(0) \\ s^m(0) = r & \Rightarrow & s^n(0) + s^m(0) = t' + r \end{array}$$

We now know that $s^n(0) + s^m(0) = t' + r$. Applying Symm, we get $t' + r = s^n(0) + s^m(0)$. We again apply Ext_s , 1 to the term s(t' + r):

$$t' + r = s^{n}(0) + s^{m}(0) \implies s(t' + r) = s(s^{n}(0) + s^{m}(0))$$

We apply Ext_s, 1 again to this, using the third part of the IH:

$$s^{n}(0) + s^{m}(0) = s^{n+m}(0) \implies s(s^{n}(0) + s^{m}(0)) = s(s^{n+m}(0))$$

Through repeated application of Trans, we get

$$t \equiv t' + s(r) = s(t' + r) = s(s^{n}(0) + s^{m}(0)) = s(s^{n+m}(0)) \equiv s^{n+m+1}(0)$$

Step case "·1". $t \equiv t' \cdot 0$. IH: $t' = s^n(0)$. Per (5), t' + 0 = 0. Per Trans, $(t' \cdot 0 = 0) \wedge (t' = s^n(0)) \Rightarrow (t' \cdot 0 = 0)$. Therefore, $t' \cdot 0 = 0$.

Step case " \cdot_2 ". $t \equiv t' \cdot s(r)$. IH: $t' = s^n(0)$ and $r = s^m(0)$ and $s^n(0) \cdot s^m(0) = s^{n \cdot m}(0)$ and $s^{n \cdot m}(0) + s^n(0) = s^{n \cdot (m+1)}(0)$. Per (6), $t' \cdot s(r) = (t' \cdot r) + t$.

This case is basically analogous to $+_2$. We again apply Sym and Ext., Ext., 2:

$$\begin{array}{lll} t' = s^n(0) & \Rightarrow & s^n(0) = t' \\ r = s^m(0) & \Rightarrow & s^m(0) = r \\ s^n(0) = t'(0) & \Rightarrow & s^n(0) \cdot s^m(0) = t' \cdot s^m(0) \\ s^m(0) = r & \Rightarrow & s^n(0) \cdot s^m(0) = t' \cdot r \end{array}$$

Through Sym, we get $t' \cdot r = s^n(0) \cdot s^m(0)$ and, through the IH and Trans, $t' \cdot r = s^{n \cdot m}(0)$. We now apply $\text{Ext}_{+,1}$, $\text{Ext}_{+,2}$ to $(t' \cdot r) + t'$:

$$\begin{array}{ll} t' \cdot r = s^{n \cdot m}(0) & \Rightarrow & (t' \cdot r) + t' = s^{n \cdot m}(0) + t' \\ t' = s^n(0) & \Rightarrow & (t' \cdot r) + t' = s^{n \cdot m}(0) + s^n(0) \end{array}$$

We apply the last part of the IH and Trans to get

$$(t' \cdot r) + t' = s^{n \cdot m}(0) + s^n(0) = s^{n \cdot (m+1)}(0)$$

The induction hypotheses (especially $s^n(0) + s^m(0) = s^{n+m}(0)$ and $s^n(0) \cdot s^m(0) = s^{n \cdot m}(0)$) might seem problematic, but these are always indeed always proven in the last lines of "+2" and "·2". The hypothesis $s^{n \cdot m}(0) + s^n(0) = s^{n \cdot (m+1)}(0)$ can be derived from these two if we substitute suitable values for n and m.

The induction in this proof is not part of \mathbf{Q} , but works on a metalinguistical level. Since t is a concrete (but arbitrary) term, this is not a problem, however: for any given t, we can unfold the definitions of \mathbf{Q} 's formulas and obtain a finitely long proof which, is constructed by induction, but isn't inductive itself.

Show that if

1. If s, t are ground terms, then either $\mathbf{Q} \vdash s = t$ or $\mathbf{Q} \vdash s \neq t$.

Solution. In the previous example, we showed that all ground terms s,t are equal (=) to terms of the form $s^n(0), s^m(0)$. If n=m, then, through Refl, $\mathbf{Q} \vdash s=t$. Suppose, on the other hand, that $n \neq m$ and, w.l.o.g., n < m. We can give an indirect inductive proof:

Step case. If $s(s^{n-1}(0)) = s(s^{m-1}(0))$, then, per (2), $s^{n-1}(0) = s^{m-1}(0)$.

Base case. Since we assumed n < m, we must at some point come to the assertion that $0 = s^{m-k}(0)$ (for some k). However, this contradicts (1). Consequently, $s^n(0) = s^m(0)$ cannot hold if $n \neq m$ and thus, $s^n(0) \neq s^m(0)$.

We can encode this proof in \mathbf{Q} through the following formula:

$$s^{n}(0) = s^{m}(0) \Rightarrow s^{n-1}(0) = s^{m-1}(0) \Rightarrow \cdots \Rightarrow 0 = s^{m-k}(0)$$

By using $0 \neq s(x)$, we show $\neg (0 = s^{m-1}(0))$ and therefrom "roll up" the chain of implications until we get $\neg (s^n(0) = s^m(0))$.

2. If s, t are ground terms, then either $\mathbf{Q} \vdash s > t$ or $\mathbf{Q} \vdash s = t$ or $\mathbf{Q} \vdash s < t$.

Solution. This follows immediately from (9). The semantics of $Q \vdash s < t \lor s = t \lor s > t$ are precisely " $\mathbf{Q} \vdash s > t$ or $\mathbf{Q} \vdash s = t$ or $\mathbf{Q} \vdash s < t$ ".

Prove Proposition 10: for all $k \in \mathbb{N}$ we have $\mathbf{Q} \vdash [\forall x] \ x < k \Leftrightarrow (x = 0 \lor x = 1 \lor \cdots \lor x = (k-1)).$

Solution. We can unroll (8) by repeatedly instantiating y to attain this formula. We can construct the proof inductively, in a sense: we construct a proof for k = 1 and, having a proof of k = n, we can construct a proof for k = n + 1. Merely the *construction* of the proof is inductive, the proof itself won't be.

Optional base case. It's not clear whether the formula is defined for k = 0, but we can do so if we assume the empty disjunction to be \perp (the neural element of \vee).

As we can see, even this case is quite cumbersome; I will therefore sketch the other two somewhat more informally.

Base case. Let k = 1 = s(0). We have to construct a proof s.t.

$$\mathbf{Q} \vdash [\forall x] x < s(0) \Leftrightarrow x = 0$$

We can instantiate (8) with $y \to s(0)$. It becomes:

$$|\forall x| \, x < s(0) \Leftrightarrow x < 0 \lor x = 0$$

From (7), we know that x < 0 is false and thus, if we appropriately unpack and re-pack the formula above, we get $[\forall x] x < s(0) \Leftrightarrow x = 0$, which is what we wanted.

1. Let $k = n + 1 = s^{n+1}(0)$ and let us assume the existence of a proof P_n for k = n as the IH — that is:

$$\frac{P_n}{\mathbf{Q} \vdash [\forall x] \ x < s^n(0) \Leftrightarrow (x = 0 \lor \dots \lor x = s^{n-1}(0))}$$

From this, we construct a proof P_{n+1} by instantiating (8) with $y \to s^{n+1}(0)$, getting

$$\left[\forall x \right] x < s^{n+1}(0) \Leftrightarrow x < s^n(0) \lor x = s^n(0)$$

Now we use the IH and replace $s^n(0)$ with $(x = 0 \lor \cdots \lor x = s^{n-1}(0))$, again by unpacking and re-packing the formula according to the rules of \Leftarrow and $\forall r$. We get:

$$|\forall x| \, x < s^{n+1}(0) \Leftrightarrow x = 0 \lor \dots \lor x = s^{n-1}(0) \lor x = s^n(0)$$

If we write this procedure down as an LK proof, we get P_{n+1} s.t.

$$\frac{P_{n+1} \text{ (containing } P_n)}{\left[\forall x\right] x < s^{n+1}(0) \Leftrightarrow x = 0 \lor \dots \lor x = s^{n-1}(0) \lor x = s^n(0)}$$

Prove that if F is a ground formula, then either $\mathbf{Q} \vdash F$ or $\mathbf{Q} \vdash \neg F$.

Solution. We can proceed via structural induction. The base cases consists of atoms of the form s = t or s < t, since = and < are the only two predicates in L. The step cases are formed via logical connectives.

Base case "=". Let F be an atom of the form s=t. In Exercise 19, showed that, if s,t are ground terms, then $\mathbf{Q} \vdash s=t$ or $\mathbf{Q} \vdash s\neq t$.

Base case "<". Let F be an atom of the form s < t. Also in Exercise 19, we showed that $\mathbf{Q} \vdash s < t$ or $\mathbf{Q} \vdash s = t$ or $\mathbf{Q} \vdash t < s$. Two sub-cases:

- If $\mathbf{Q} \vdash s < t$, then $\mathbf{Q} \vdash F$.
- If $\mathbf{Q} \vdash s = t$ or $\mathbf{Q} \vdash t < s$, then, $s \neq 0 \land \cdots \land s \neq t 1^1$. Per Exercise 20, this is a direct negation of s < t. Thereby, we can prove $s \nleq t$.

Step case. Let F be $\neg F_1$, $F_1 \lor F_2$ or $F_1 \land F_2$. Without quantifiers, any complete, propositional calculus (like LK) suffices to show $\mathbf{Q} \vdash F$ or $\mathbf{Q} \vdash \neg F$.

Prove Proposition 11: If F(x) is a formula with x being the only free variable, then $\mathbb{N} \models [\exists x] F(x)$ iff $\mathbf{Q} \vdash [\exists x] F(x)$.

Solution.

 \Rightarrow -direction. Suppose that $\mathbb{N} \models [\exists x] F(x)$. Then there exists a witness n s.t. F(n) is true. Since F(n) is ground, there exists a proof P_F for F(n) with the theory \mathbf{Q} , as we showed above. That proof can be transformed into one of $[\exists x] F(x)$ thus:

$$\frac{P_F}{\mathbf{Q} \vdash F(n)} \exists r$$

 \Leftarrow -direction. Suppose that \mathbf{Q} is consistent. Since we know that LK is sound and complete, it follows that LK with theory \mathbf{Q} is also sound — that is, if $\mathbf{Q} \vdash [\exists x] F(x)$, then $\mathbb{N} \models [\exists x] F(x)$. \mathbf{Q} is consistent if it has a model; we assume \mathbb{N} to be such a model, although no proof of that exists in \mathbf{Q} itself.

¹This is so because otherwise, there would be two distinct numbers n_1, n_2 s.t. $n_1 \neq n_2$ and $s = n_1$ and $s = n_2$. Applying Trans would then lead to a contradiction.