MARK SCHEME

EDWEST CHEMISTRY STAGE 3 PAPER 2011

Section One

1. C

2. D

3. A

4. B

5. D

6. A

7. B

8. C

o. c

9. D

10. D

11. D

12. A

13. B

14. C

15. B

16.

17. B

Α

18. B

19. C

20. C

21. D

22. C

23. B

24. D25. A

Section Two

26. (a)

(3)

Change	Effect
Adding dilute nitric acid	DECREASE
Adding sodium hydroxide solution	INCREASE
Adding silver nitrate solution	INCREASE

(b)

Equilibrium constant expression	[H ₃ AsO ₄][H ⁺][I ⁻] ² [H ₃ AsO ₃][I ₂]

27 (a) Endothermic (1)

(b) (3)

Change	Effect
Increasing the temperature	INCREASE
Increasing the volume of the system	DECREASE
Adding a catalyst	INCREASE

28. (a) Basic (1)

(b) Phosphate ions hydrolyse in water (1)

$$PO_4^{3-} + H_2O \rightleftharpoons HPO_4^{2-} + OH^{-}$$
 (1)

OH ions produced hence basic (1)

29. (a)

$$H_2CO_3 + H_2O \rightleftharpoons H_3O^{\dagger} + HCO_3^{\bullet}$$
 (2)

(c) As $[H^+]$ increases reverse reaction is favoured (1) which would decrease concentration of $H_3O^+(1)$

(d)
$$3.98 \times 10^{-8} \text{ mol L}^{-1}$$
 (1)

30. Ethanol and water have H-bonding between molecules (1) and so can disrupt the inter molecular bonds (1). Paraffin has only dispersion forces between molecules (1). Therefore ethanol cannot disrupt bonding and form bonds itself with the paraffin.(1)

31.	(a)	An excess of 2-propanol is oxidised by acidified KMnO.

Observations	Colour change from purple to colourless (or pale pink)
Structural formula of organic product Show all atoms	CH₃COCH₃
Name of organic product	propanone

(3 marks)

(b) Methanoic acid reacts with 1-butanol in the presence of H₂SO₄ (3 marks)

Observations	Fruity smell produced (accept no visible reaction)
Structural formula of organic product Show all atoms	C_4H_9OOCH
Name of organic product	Butyl methanoate

Species	Structure (showing all valence shell electrons)	Shape (sketch or name)	Polarity of molecule (polar or non-polar)
Silicon hydride SiH4	H — Si — H — H	Tetrahedral	Non-polar
Hydrogen cyanide HCN	H; C; N:	Linear	Non-polar
Sulfite ion SO ₃ ²⁻	× 0 × × × × × × × × × × × × × × × × × ×	Pyramidal	Polar
	No brackets or charge no mark		
Boron trifuoride BF ₃	E R R R R R R R R R R R R R R R R R R R	Trigonal Planar	Non-polar

33. (a) Repeating unit is

CH₃

C C CH₂

COOCH₃

(1)

CH₃

C —— CH₂

COOCH₃

$$(CH_3)_2CHCH_2CH_2OH$$
 + H_2O \rightarrow $(CH_3)_2CHCH_2COOH$ + $4H^+$ + $4e^-$

$$((CH3)2CHCH2CH2OH + H2O \rightarrow (CH3)2CHCH2COOH + 4H+ + 4e-) x 5$$

$$(8H^{+} + MnO_{4}^{-} + 5e^{-} \rightarrow Mn^{2+} + 4H_{2}O) \times 4$$

$$5(CH_{3})_{2}CHCH_{2}CH_{2}OH + 12H^{+} + 4MnO_{4}^{-} \rightarrow 5(CH_{3})_{2}CHCH_{2}COOH + 4Mn^{2+} + 11H_{2}O$$

1 mark for each equation (pay follow through for 3rd equation)

35. (a)

	(iii)	Direction of electron flow labelled – from Ag to Cu						(1)		
	(iv)	Anode	labelled	- Cu/Cu	2+					(1)
	(b)									
	(i) Anod	de	Cu	\rightarrow	Cu ²⁺	+	2e ⁻			(1)
	(ii) Cath	node	Ag^{+}	+	e ⁻	\rightarrow	Ag			(1)
(c)	0.46 V									(1)
36.	(a) reactar			and oxy ust to for		n the su	rface of	the iron (2) which are tw	vo of the	
	(b)	Fe	\rightarrow	Fe ²⁺	+	2e ⁻		-0.44 V		
		Sn	\rightarrow	Sn ²⁺	+	2e ⁻		-0.14V	(1)	
		Fe stro	nger red	luctant t	han Sn	(1)				
		Therefo	ore Fe co	orrodes a	as electr	ochemic	al cell is	formed (1)		
	(c)	Zn	\rightarrow	Zn ²⁺	+	2e ⁻		-0.76 V		
		Fe	\rightarrow	Fe ²⁺	+	2e ⁻		-0.44 V	(1)	
		Zn stro	nger red	luctant t	han Fe	(1)				
		Therefo	ore Zn co	orrodes	as electr	ochemic	al cell is	formed (1)		
	(d)	Electro	chemica	l cell for	med (1)	where A	al and Fe	are joined (1)		
		Al stror	nger red	uctant tl	nan Fe (1	1)				
		Therefo	ore Al co	rrodes (1)					

37. (a) $n(KHC_4H_4O_6) = 350/(39.1+1.008+4x12.01+1.008x4+16x6)$ = 350/188.18 = 1.8599 mol (1) n(NaHCO₃) = 150/(22.99+1.008+12.01+3x16) = 150/84.008 = 1.7855 mol (1) 1 mol KHC₄H₄O₆ \rightarrow 1 mol NaHCO₃ 1.8599 > 1.7855 Therefore NaHCO₃ is limiting reagent (2) If students have correct answer but no working - no marks (b) $n(KHC_4H_4O_6)excess = 1.8599 - 1.7855$ = 0.0744 (2) $m(KHC_4H_4O_6) = 0.0744 \times 188.18$ = 14.0 g(1) 1.7855 mol NaHCO₃ → 1.7855 mol CO₂ (c) (1) $V(CO_2) = (1.7855 \times 8.315 \times 453)/105$ = 64.1 L (2) (d) Let amount of $NaHCO_3 = x g$ Amount of $(KHC_4H_4O_6) =$ (500-x)g (1) n(NaHCO₃) $n(KHC_4H_4O_6) =$ (500-x)/188.18 = x/84.008(500-x)84.008 = 188.18x42004 - 84.008x = 188.18x

x = 42004/272.19

$$= 154 g$$
 (2)

 $m (KHC_4H_4O_6) = 500 - 154$

$$= 346 g$$
 (1)

Both answers quoted to 3 significant figures (1)

38.

Final reading (mL)	20.60	19.65	20.75	20.80	19.05
Initial reading (mL)	4.50	3.80	5.25	5.00	3.20
Titration volume (mL)	16.10	15.85	15.50	15.80	15.85

(a)
$$(15.85 + 15.85 + 15.80)/3 = 15.83 \text{ mL}$$
 (1)

(b)
$$2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$$
 (1)

Titration of strong acid with strong base ` (1)

End point of indicator somewhere between pH 3-10 due to titration curve (1)

(d)
$$[OH^{-}]$$
 = $[NaOH]$ = $10^{-14}/5.0119 \times 10^{-14}$ = $0.19953 \text{ mol} L^{-1}$ (1)

$$n(NaOH) = 0.02 \times 0.19953$$

$$= 3.9906 \times 10^{-3} \text{ mol}$$
 (1)

$$n(H_2SO_4) = 3.9906 \times 10^{-3}/2$$

$$= 1.9953 \times 10^{-3} \text{ mol} \tag{1}$$

$$n(H_2SO_4) = (1.9953 \times 10^3 \times 500)/15.83$$

$$= 0.063023 \, \text{mol} \qquad (1)$$

$$= n(H_2SO_4) \, \text{in } 10 \, \text{mL} \qquad (1)$$

$$C \, (H_2SO_4) \, \text{in } \text{battery} = 0.063023/0.01$$

$$= 6.30 \, \text{molL}^{-1} \qquad (1)$$

$$39. \quad (a)$$

$$m(C) = (5.51 \times 12.01)/44.01 = 1.5036 \, \text{g}$$

$$\%C = (1.5036 \times 100)/2.31 = 65.1\% \qquad (1)$$

$$m(H) = (2.81 \times 1.008 \times 2)/18.016 = 0.31444 \, \text{g}$$

$$\%H = (0.31444 \times 100)/2.31 = 13.6\% \qquad (1)$$

$$\%O = 100 - 65.1 - 13.6 = 21.3\% \qquad (1)$$

$$C \qquad H \qquad O$$
Ratio by mass 65.1 13.6 21.3
Ratio by mol 65.1/12.01 13.6/1.008 21.3/16
$$5.42 \qquad 13.49 \qquad 1.33$$
Divide by smallest 5.42/1.33 13.49/1.33 1.33/1.33
$$4.075 \qquad 10.143 \qquad 1$$

$$Empirical formula C_4H_{30}O \qquad (4)$$

$$(b) 4 \times 12.01 + 1.008 \times 10 + 16 = 74.12 \qquad (1)$$
Therefore molecular formula = empirical formula
$$Molecular formula = C_4H_{10}O \qquad (1)$$

(c)

Draw and name two possible structures of compound X

(4 marks)

Structure	Structure
CH₃CH₂CH2CHO	CH₃CHCH₃CHO
Name Butanal	Name methylpropanal

Draw and name two possible structures of compound Y.

(4 marks)

Structure		Structure
	CH₃CH₂CH₂COOH	CH₃CHCH₃COOH
Name	Butanoic acid	Name Methylpropanoic acid

40. (a)

$$n(Mg_2P_2O_7) = 0.0364/(24.31x2 + 2x30.97 + 16x7)$$

= 0.0364/222.56

$$= 1.63551 \times 10^{-4} \text{ mol} \tag{1}$$

$$2 \text{ mol MgNH}_4PO_4 \qquad \rightarrow \qquad 1 \text{ mol Mg}_2P_2O_7 \tag{1}$$

 $n(MgNH_4PO_4) = 2 \times 1.63551 \times 10^{-4} \text{ mol}$

$$= 3.27102 \times 10^{-4} \text{ mol}$$
 (1)

$$n(MgNH_4PO_4) = n(PO_4^{3-}) \text{ in 20 mL} = 3.27102 \times 10^{-4} \text{ mol}$$
 (1)
$$n(PO_4^{3-}) \text{ in 250 mL} = (3.27102 \times 10^{-4} \times 250)/20$$

$$= 4.0888 \times 10^{-3} \text{ mol}$$
 (1)
$$m(PO_4^{3-}) = 4.0888 \times 10^{-3} \times (30.97 + 16 \times 4)$$

$$= 0.38831 \text{ g}$$
 % = $(0.38831 \times 100)/6.15$
$$= 6.31\%$$
 (1)

Action	Calculated result would be too low	No effect on calculated result	Calculated result would be too high
A. All of the MgNH ₄ PO ₄ was not precipitated.	√		, and the second
B. All of the fertiliser did not dissolve.	V		
C. The conical flask had been previously washed with water but not dried.		V	
D. The MgNH ₄ PO ₄ precipitate was not washed with water.			V

Makes no difference to the number of mol of phosphate ions transferred to the conical flask. (1)

(c) 50.0 kg of fertiliser contains 5.00 kg of K (1)
$$n(K) = 5000/39.1 = 127.88 \text{ mol}$$

$$n(K) = n(KNO_3) = 127.88 \text{ mol}$$
 (1)
$$m(KNO_3) = 127.88(39.1 + 14.01 + 16x3)$$

$$= 12930 \text{ g}$$

$$= 12.9 \text{ kg}$$
 (1)

(d) Soluble (1) and also contains N which is a nutrient. (1)

41.

(a) $m(Cu) = 98\% \times 10^6 g$

= 980 000 g (1)

n(Cu) = 980 000/63.55

= 15421 mol (1)

1 mol Cu \rightarrow 1 mol CuFeS₂ (1)

15421 mol Cu \rightarrow 15421 mol CuFeS₂ (1)

 $m(CuFeS_2)$ = 15421 x (63.55 + 55.85 + 32.06 x 2)

= 15421 x 183.52

= 2.83 tonnes (1)

(b) n(Cu) = 15421 mol

 $1 \text{ mol Cu} = 3 \text{ mol SO}_2 \tag{1}$

 $15421 \text{ mol Cu} = 3 \times 15421 \text{ mol SO}_2$

= 46263 mol SO₂ (1)

 $150 \times V(SO_2) = 46263 \times 8.315 \times 1773$

 $V(SO_2) = (46263 \times 8.315 \times 1773)/150$

 $= 4.55 \times 10^6 L \tag{2}$

(c) Acid rain (1)

Some points to consider

- Solubility and boiling points will depend upon extent of H-bonding
- All are alcohols so have -OH group and will H-bond
- Strength of H-bond will depend on the extent to which the -OH group is exposed and available for bonding
- Compounds differ as they are all isomers of C₄H₉OH
- 1-butanol and 2 methyl -1-propanol are primary alcohols
- 2 butanol is a secondary alcohol
- 2 methyl -2 propanol is a tertiary alcohol
- Structural formulas would be good if drawn
- Expect primary alcohols to be more soluble and have a highest BPts as -OH is more exposed and available for H-bonding
- Tertiary alcohol will be least soluble and lowest Bpt as H-bonding is weakest of the compounds as -OH group is least exposed
- Need to discuss solubility as between molecules that can form intermolecular bonds with each other
- All exhibit dispersion forces