TO: Lyncean Technologies, Inc.

INSPECTION SHEET

TR000037 Canon Klystron E3730A Inspection Sheet SN 20M107

HIGH POWER PULSE KLYSTRON E3730A S/N 20M107

CANON ELECTRON TUBES & DEVICES CO., LTD.

TEST CLASSIFICATI	ON AQL	n1	d1 n1+n2	d1+d2	JUDGE					APPLIED S	SPECIFICATION	PRODUCT	SPECIFICATI	ON
APPEARANCE						TYPE HIGH POWER PULSE KLYSTRON				SUPPLY G	SUPPLY QUANTITY CHIEF OF INSPECTION SECTION		1 DATE OF INSP. J. Tanaka	
PRODUCTION DESIGN														
TEST CONDITION	ELECT	RON	AGNET	VT-689	22									
ITEM	STATIC VACUUM CHECK		HEATER CURRENT		BEAM CURRENT	DYNAMIC OUTPUT BEAM POWER VOLTAGE		BEAM CURRENT	DRIVE POWER	GAIN	EFFICIENCY	PERVEANCE	X-ray Leakage	JUDGE
SYMBOL UNIT	lion [μA]		If [A]		ik [A]	po [MW]	epy [kV]	ik [A]	pd [W]	Gp [dB]	η [%]	G [μΑ/V ^{1.5}]	[<i>μ</i> Sv/h]	
	No operating Ef=15.2[V] Ef=15.2[V] Ef=15.2[V]								<u>[m 01/11]</u>					
No.	voltage (Ef $\leq 20[V]$) epy=310[kV] fo = 2856 [MHz], tp(rf) = 4.0 [μ s], tp(epy) = 6.2 [μ s], fp = 50 [pps] tp(epy)=6.2[μ s] fp=50[pps]													
<u> </u>														
20M107	0.01		17.0		370	50.6	316	380	259	52.9	42.2	2.14	9.3	ок
:														
MIN.	-				345.2	50	_	_	-	50	42	1.95		INSPECTOR
SPEC PAR	·		_			-	_	-			<u>-</u>	2.1		MShibazalci
MAX.	4.0		20		379.8 ANON ELE	-	320	-	500		<u> </u>	2.2	20	3.3340

1/8

2/8

TYPE

E3730A series

E3730A S/N 20M107 HEATER CHARACTERISTICS

E3730A S/N 20M107 epy-ik CHARACTERISTICS $tp(epy) = 6.2 [\mu s], prr = 50 [pps]$

E3730A S/N 20M107 SATURATED OUTPUT CHARACTERISTICS (1)

 $tp(rf) = 4.0 \ [\mu s], prr = 50 \ [pps],$ Isol = (18.3 , 29.3 , 14.2 , 16.7 , 12.2 , 4.7) [A]

E3730A S/N 20M107 SATURATED OUTPUT CHARACTERISTICS (2)

 $tp(rf) = 4.0 [\mu s], prr = 50 [pps],$ Isol = (18.3, 29.3, 14.2, 16.7, 12.2, 4.7) [A]

E3730A S/N 20M107 POWER TRANSFER CHARACTERISTICS tp(rf) = 4.0 [μ s], prr = 50 [pps],epy= 3/6 [kV], ik= 380 [A], Isol = (18.3, 29.3, 14.2, 16.7, 12.2, 4.7)[A]

Drive Power pd [W]

Beam Voltage Vk and Output Power Po (X-axis:1[μ s/div.], epy= 316 [kV], po= 50.6 [MW])

Orive Power Pd and Output Power Po $(X-axis:1[\mu s/div.], pd = 259 [W], po= 50.6 [MW])$