CMOS 模拟集成电路原理 第一周作业

范云潜 18373486

微电子学院 184111 班

日期: 2020年10月28日

作业内容: 已知要求 GBW DM =50MHz, GBW CM =100MHz, C L =5pF。设计一共模 & 差模相位裕度均大于 70 的运放。通过仿真给出: 差模增益 功耗 共模抑制比 CMRR

将上述设计的差分运放,通过电阻设置成 10 倍放大,观察输入差模和共模信号分别有 100mVpp, 10kHz 的正弦信号时,差模输出信号的大小,并分析是否符合预期。

图 1: 题目图

List of Figures

1	题目图	1
2	差分电路结构	2
3	差分电路参数	3
4	差分增益	3
5	差分电路端口图	4
6	共模反馈电路	4
	回路切断	
	共模电路参数	
	共模增益	
10	差分增益	6
11	共模反馈电流	6

12	整体封装	7
13	CMRR 连线	7
14	CMRR 结果	7
15	共模正弦输入电路	8
16	共模正弦输入输出电压对比	8
17	差模正弦输入电路	8
18	差模正弦输入输出电压对比	8

1 分析电路

M1 与 M2 构成一个 Cascode ,输出到一个共栅极,通过一个源随器和电阻对消除差模,之后通过对电流源的电流吸取,途径 M7 反馈到输出端。那么 $GBW_{DM}=g_{m1}/2\pi C_L$, $GBW_{CM}=g_{m7}/2\pi 2C_L$ 。

首先是差模放大部分,其跨导来自于 M1,因此为了使得 GBW_{DM} 大,应该调大其 g_M ;同时注意到,共栅极的 M4 是一个复制管,和误差放大器的电流应该保持一致;最后是共模反馈部分,其跨导来自 M7。综上所述,为了增益带宽积大,需要调大 M1 和 M7 的电流,为了使得裕度更高,次级点的电流也应更大。

2 差模电路

首先搭建差模电路,如图2。

根据估算, $g_{M1}=1.5m$,设置偏置电流。为了使得共栅极放大器工作正常,设置节点 1 的静态电压为 0.5V 。为了承载大电流,过驱动电压需要调高,仿真得到 M2 的阈值为 0.45V ,设其栅电压为 0.65V ; M1 阈值为 0.65V ,设其栅电压为 0.3V 。求解两个管子的宽长比。

图 2: 差分电路结构

第二级的电流设置为和第一级几乎吻合,设置 M3 M4 栅电压为 1.2V1.15V ,求解宽长比。最终结果如 **图 3**

进行交流仿真,观察其增益波形,如图4。其增益带宽积和裕度满足要求。

	Name	Nominal
1	W1	65u
2	W2	39u
3	vcm	0
4	L	0.5u
5	vdd	1.8
6	Ibias	400u
7	vdiff	0
8	W3	78.5u
9	W4	42u
10	vr1	1
11	vfb	1.1
12	vbias	0.6

图 3: 差分电路参数

图 4: 差分增益

3 共模电路

将差模电路测试参数写入各个管子,封装为元件,端口如图5,连接共模反馈电路,如图6。共模电路的输入在误差放大器上,是来自于经过电阻消除差模信号后的差分电路输出,通过误差放大器漏极,最终反馈到我们的输出端,关闭其他交流信号,切断回路,在误差放大器加

上激励,如图7。参数如图8

图 5: 差分电路端口图

图 6: 共模反馈电路

图 7: 回路切断

基于以上的理解,进行对应的 AC 仿真,仿真结果如 图 9,满足要求。

4 性能分析

差模增益,在 AC 仿真中设置差分信号 vdif 的交流振幅为 1 ,增益表达式为 vout/vin ,仿真结果如 $\{ 10 \}$ 。

功耗,在 OP 仿真可以得到非电流偏置的两条支路的电流为 $100\mu A$ 如 图 11,两个电流源分别是 $400\mu A$, $600\mu A$, 总功耗为 $(400+600+100\cdot 2)1.8\mu W=2.16mW$ 。

Par	ameters	111111111111111111111111111111111111111	
	Name	Nominal	
1	vcm	0	
2	vr1	1	
3	vr2	0.8	
4	vdif	0	
5	vdd	1.8	
6	vbiasf	0.6	
7	ibias1	400u	
8	ibias2	600u	
9	W4	25u	
10	W5	21u	
11	W6	10u	
12	W7	89u	
13	L	0.5u	

图 8: 共模电路参数

为了更方便的进行 CMRR 仿真,进一步封装模块,如 图 12。为了进一步的分析,此处的连线是为了使用电阻匹配法,电压仅有共模模式,如图 13。结果如 图 14。

5 TRANS 仿真

正弦源作为共模输入,电路如图15,效果如图16,不失真。正弦源作为差模输入,电路如图17,效果如图18,不失真。

图 9: 共模增益

图 10: 差分增益

图 11: 共模反馈电流

图 12: 整体封装

图 13: CMRR 连线

图 14: CMRR 结果

图 15: 共模正弦输入电路

图 16: 共模正弦输入输出电压对比

图 17: 差模正弦输入电路

图 18: 差模正弦输入输出电压对比