Лабораторная работа № 8

Использование библиотек SymPy и SciPy

Указания к выполнению лабораторной работы

- **1. SymPy** это пакет для символьных вычислений на питоне, подобный математической системе Mathematica.
- В SymPy есть разные функции, которые применяются в сфере символьных вычислений, математического анализа, алгебры, дискретной математики, квантовой физики и пр. Результат может представляться в разных форматах: LaTeX, MathML и так далее.
- **2. SciPy** это библиотека Python с открытым исходным кодом, предназначенная для решения научных и математических задач.

Она построена на базе NumPy и позволяет управлять данными, а также визуализировать их с помощью разных высокоуровневых команд.

Если вы уже импортировали SciPy, то NumPy отдельно импортировать не нужно, но не наоборот!

Таблица 1

Пакеты в SciPy

Название	Описание		
constants	Физические и математические константы		
integrate	Решение интегральных и обычных		
	дифференциальных уравнений		
interpolate	Интерполяция и сглаживание		
linalg	Линейная алгебра		
optimize	Оптимизация и численное решение		
	уравнений		
sparse	Разреженные матрицы		
stats	Статистические распределения и функции		

И другие

В лабораторной работе требуется написать собственную программу на языке программирования Python с использованием стандартных функций из библиотеки SciPy.

В качестве отчета по работе преподавателю предъявляются решения в электронном виде (файлы .py или .ipynb). При необходимости нужно ответить на дополнительные вопросы.

Задание на лабораторную работу

Задание 1. Символьное дифференцирование функции одной переменной

1. Подключить символьную библиотеку и инициализировать отображение формул:

- 2. Создать и присвоить переменным объекты класса Symbol: x=Symbol('x')
- 3. Описать функцию своего варианта в виде отдельной функции на Python. Её заголовок может иметь следующий вид: def f(x):
- 4. Вывести свою функцию и оценить её представление. Сравнить с записью на языке программирования.
- 5. Вызвать функцию дифференцирования, оценить результаты diff(f(x),x)

Вариан	Функция
T	
1	$y = x tg x + lncos x + e^{5x}$.
2	$y = \cos x \ln tg x - \ln tg (x/2).$
3	$y=x \arccos(x/2)-\sqrt{4-x^2}$.
4	$y = x (\sin \ln x - \cos \ln x).$
5	$y=x^2+x \arcsin x+\sqrt{1-x^2}$.
6	$y = x\sqrt{4-x^2} + 4\arcsin(x/2).$
7	$y = \sqrt{x} - (1+x) \arctan \sqrt{x}$.
8	$y = \ln tg(x/2) - \frac{x}{\sin x}.$
9	$y = e^x(\cos 2x + 2\sin 2x).$
10	$y = x \arctan x - \ln \sqrt{1 + x^2}.$

Задание 2. Для функции двух переменных своего варианта найти частные производные первого и второго порядков. Экспериментально убедиться в справедливости теоремы о равенстве смешанных производных.

Вариант	Функция
1	$z=e^{x^2+y^2}$
2	$z=2e^{\sin xy}$
3	$z = \ln\left(x + \frac{y}{2x}\right)$
4	$z = \ln\left(\frac{x}{y} + \frac{y}{x}\right)$
5	$z = arctg \sqrt{x^y}$

6	$z = \sqrt{1 + \frac{y}{2x}}$
7	$z = \arcsin \frac{x+y}{xy}$
8	$z = e^{xy} (\sin x + \cos y)$
9	$z = (2x + y)^{2x + y}$
10	$z = \frac{xy}{x^2 + y^2}$

Задание 3. Поиск минимума функции одной переменной

Для функции своего варианта найти экстремум с помощью стандартной функции minimize и градиентным методом BFGS.

- 1. Импортировать минимизацию из библиотеки SciPy: from scipy.optimize import minimize
- 2. Описать функцию своего варианта в виде отдельной функции на Python.
- 3. Построить график и убедиться в унимодальности функции. xArr = np.arange(-5., 5.) #диапазон изменения x yArr = np.array([f(x) for x in xArr]) import matplotlib.pyplot as plt plt.plot(xArr, yArr) plt.grid(True) plt.axis([-5, 5, -15, 5]) plt.show()

Примечание: если у функции Вашего варианта на графике определяется максимум, а не минимум, в описании нужно поменять знак (умножить всё на -1).

4. Вызвать функцию минимизации и вывести результаты решения и число итераций:

minFunc1Value1 = minimize(f,22) #в качестве второго параметра указывается начальная точка

print("Minimized f(x) (standard method): ",
minFunc1Value1.fun, " for x = ", minFunc1Value1.x)
print("Number of iterations: ", minFunc1Value1.nit)

Вариант	Функция
1	$y = 2x^2 + \frac{1}{x}$

2	$y = \frac{\ln x}{\sqrt{x}}$
3	$y=x+e^{-x}+1$
4	y = x - arctg x
5	$y = e^{x^2 - 4x + 5}$ $y = \sqrt{5 - 2x} + x$
6	$y = \sqrt{5-2x} + x$
7	$y=e^{\frac{1}{x+2}}$
8	$y = \ln \left(1 - x^2 \right)$
9	$y = \frac{x^3}{3 - x^2}$
10	$y=x-\ln x$

5. Укажите в scipy.optimize.minimize в качестве метода BFGS (один из самых точных в большинстве случаев градиентных методов оптимизации), запустите из начального приближения. Градиент функции при этом указывать не нужно – он будет оценен численно.

6. Варьируя начальную точку в обоих методах, сравните получаемые результаты. Какая задача оптимизации решается: локальная или глобальная?

Задание 4. Поиск минимума функции многих переменных

Будем минимизировать функцию $z = x^2 + y^2 - 4(x - y)$.

1. Описать функцию на языке Python. Обратите внимание, что в качестве аргумента **должен быть пр.аrray!**

- 2. Задать начальную точку (0; 0) тоже в виде np.array: x0 = np.array([0, 0])
- 3. Вызвать функцию минимизации методом Нелдера-Мида и вывести результат:

```
res = minimize(target_func, x0, method='nelder-
mead')
print(res)
```

Обратите внимание, что выводится вся информация о процессе оптимизации. Исправьте вывод таким образом, чтобы выводилась точка минимума, соответствующее значение функции и количество итераций.

- 4. Найти минимум методами сопряженных градиентов ('CG') и BFGS. Сравнить скорость сходимости методов. Какой самый быстрый?
- 5. Найти экстремум функции аналитически и оценить абсолютные погрешности всех использованных алгоритмов. Какой метод точнее?

Задание 5. Метод наименьших квадратов

Дана таблица значений некоторой функции. Используя возможности библиотек NumPy и SciPy, определить вид функциональной зависимости.

1. Описать исходные данные в виде массивов пр. array:

```
x = np.array([])
y = np.array([])
```

- 2. Импортировать из NumPy полиномиальную аппроксимацию: from numpy.polynomial import Polynomial
- 3. Выполнить полиномиальную аппроксимацию функциями с степени 1 (линейная) и 2 (квадратичная): approximation1 = Polynomial.fit(x, y, 1) #Пример для линейной аппроксимации
- 4. Изобразить на одном графике исходные данные и две полученные функции. Пример:

5. Вычислить величину суммы квадратов отклонений для полученных приближений.

6. Выполнить нелинейную аппроксимацию с помощью метода optimize.curve_fit для функций вида:

3.
$$y = ax^{m}$$

4. $y = ae^{mx}$
5. $y = \frac{1}{ax+b}$
6. $y = a \ln x + b$
7. $y = a \frac{1}{x} + b$
8. $y = \frac{x}{ax+b}$

В качестве параметров в curve_fit передаётся приближающая функция, данные, под которые эту функцию необходимо «подогнать», и начальное приближение, используемое в качестве стартовой точки для подбора параметров, при которых достигается минимальное среднее квадратичное отклонение от заданного набора точек.

Пример для экспоненциальной зависимости:

from scipy import optimize

def exp approx(x, a, m):

Обратите внимание, что не все данные могут быть аппроксимированы любой функцией!

7. Вычислить величину суммы квадратов отклонений для полученных приближений. Какая аппроксимация оказалась наиболее точной?

вариант 1							
X	0.5	0.75	1.0	1.25	1.5	1.75	
у	2.5	3.5	4.2	4.5	5.0	5.2	

_	Вариант 2							
	X	0.50	0.75	1.00	1.25	1.50	1.75	
	у	5.10	3.50	3.10	2.50	2.30	2.00	

Бариант 3								
X	0.50	0.75	1.00	1.25	1.5	1.75		
y	0.26	0.82	2.1	4.0	6.6	10.8		

Вариант 4

Х	0.50	0.75	1.00	1.25	1.50	1.75
у	6.1	5.1	3.9	2.6	0.9	-0.8

Вариант 5

Χ	0.5	0.75	1.00	1.25	1.5	1.75
y	-2.5	-3.5	-4.2	-4.5	-5.0	-5.2

Вариант 6

X	0.50	0.75	1.00	1.25	1.50	1.75
y	-5.10	-3.50	-3.10	-2.50	-2.30	-2.00

Вариант 7

ν	0.50	0.75	1.00	1 75	1 50	1.75
Λ	0.50	0.75	1.00	1.25	1.50	1./5
y	-0.26	-0.82	-2.1	-4.0	-6.6	-10.8

Вариант 8

Χ	0.50	0.75	1.00	1.25	1.50	1.75
y	-6.1	-5.1	-3.9	-2.6	-0.9	0.8

Вариант 9

X	0.5	0.75	1.00	1.25	1.5	1.75	
у	2.5	3.5	4.2	4.5	5.0	5.2	

Вариант 10

X	0.50	0.75	1.00	1.25	1.50	1.75
y	-5.10	-3.50	-3.10	-2.50	-2.30	-2.00

Справочная информация

https://fadeevlecturer.github.io/python_lectures/notebooks/scipy/interpolation_approx.html

https://habr.com/ru/articles/827018/