Лекция 3. Дефаззификация. Алгоритм Мамдани

На прошлой лекции мы перечислили три этапа работы нечеткой системы. Как устроены первые два из них, мы теперь знаем: первый – это вычисление функций принадлежности по известным входным переменным, второй – это вычисление степеней истинности логических операций. Теперь нужно узнать, как вычислить значения выходных переменных.

Выходные переменные можно вычислять различными методами, самые распространенные – алгоритмы Мамдани и Сугено. Для их изложения нам понадобится еще одна операция с нечеткими множествами – дефаззификация.

3.1. Дефаззификация

Дефаззификация (приведение к четкости) – это вычисление одного ("самого главного") числового значения для нечеткого множества. Решить, что является "самым главным", можно разными способами. В теории вероятностей для этой задачи придумано несколько методов:

- математическое ожидание (среднее) сумма значений случайной величины (с.в.), умноженных на их вероятности;
- медиана такое число, что вероятность того, что с.в. меньше него, равна 0.5 (и больше тоже);
- мода самое вероятное значение.

По аналогии с теорией вероятностей в нечеткой логике применяются такие методы:

- метод центра тяжести (centroid),
- метод центра площади (bisector);
- методы максимума:
 - метод наименьшего максимума (smallest of maximum som);
 - метод среднего максимума (middle of maximum mom);
 - метод наибольшего максимума (largest of maximum lom).

Пусть $\mu(y)$ – ф.п. некоторого нечеткого множества, заданная на отрезке [a, b]. Обозначим "самое главное" значение этого множества через \overline{y} .

Метод центра тяжести задается следующей формулой:

$$\overline{y} = \frac{\int_{a}^{b} y \,\mu(y) \,dy}{\int_{a}^{b} \mu(y) \,dy}.$$

Функция принадлежности отличается от плотности вероятностей: площадь под линией не обязана быть равной 1. Поэтому при составлении формул для дефаззификации приходится записывать эту площадь в знаменателе.

Для метода центра площади нужно решить относительно \overline{y} уравнение

$$\int_{a}^{\overline{y}} \mu(y) \, dy = \int_{\overline{y}}^{b} \mu(y) \, dy.$$

Для методов *максимума* выбирается либо наименьший из максимумов ф.п. (som), либо наибольший (lom), либо – среднее значение множества всех максимумов (mom),

$$\overline{y} = \frac{\int\limits_{M} y \, dy}{|M|},$$

где M – множество всех максимумов, |M| – его мощность, т.е. количество элементов (для дискретного множества M) или суммарная длина интервалов, на которых достигается максимум (для непрерывного множества M).

3.2. Нечеткие системы Мамдани

3.2.1. Пример

Пример 3.1. Рассмотрим *четкую* логическую систему, определяющую долю затрат домохозяйства на продукты. Вход x – ежемесячный доход на одного человека, тыс. руб., выход y – затраты на питание, тыс. руб. Роль нечетких термов будут играть диапазоны значений переменных $[a_i, b_i]$, т.е. четкие множества, которые мы также будем называть термами. Для каждого из них можно записать характеристическую функцию $\chi_i(y)$, равную 1, если $y \in [a_i, b_i]$, и 0 в противном случае (мы вводим обозначения только для выходной переменной y, т.к. для входной они нам не понадобятся).

Система состоит из следующих правил.

- 1. ЕСЛИ $x \in [5, 20]$, ТО $y \in [5, 20]$.
- 2. ЕСЛИ $x \in [15, 30]$, ТО $y \in [15, 25]$.
- 3. ECЛИ $x \in [25, 40]$, TO $y \in [17, 30]$.
- 4. ЕСЛИ $x \in [35, 50]$, ТО $y \in [20, 40]$.
- 5. ECЛИ $x \in [40, 100]$, TO $y \in [25, 45]$.

Условия намеренно заданы пересекающимися, чтобы можно было активизировать более одного правила одновременно.

Пусть доход равен x=27 тыс. руб., тогда будут верны условия во втором и третьем правилах, т.е. второе и третье правила будут активны. Обозначив логическую переменную для i-го правила через L_i , получим $L_1=0$, $L_2=1$, $L_3=1$, $L_4=0$, $L_5=0$. Этот этап называется $a\kappa mususauue\check{u}$.

Согласно правилу 2, затраты на питание должны быть от 15 до 25, а согласно правилу 3 – от 17 до 30. Остальные правила не учитываются. Переходя от логических операций к арифметическим, получим, что результат работы каждого правила – это новая характеристическая функция диапазона выходной переменной, $\hat{\chi}_i(y) = \min(L_i, \chi_i(y)) = L_i \chi_i(y)$, т.е. она равна $\chi_i(y)$ для активных правил и тождественному нулю для неактивных. Функции $\chi_i(y)$ соответствует диапазон $[a_i, b_i]$, а тождественному нулю – пустое множество. Этот этап называется umnukauuei.

В каком же диапазоне могут быть затраты на питание? Согласно правилу 2 – от 15 до 25, а согласно правилу 3 – от 17 до 30. И то, и другое верно, следовательно, затраты на питание должны быть от 15 до 30 тыс. рублей, т.е. результат работы активных правил – объединение этих диапазонов. Формально можно добавить к этому объединению пустые множества – результаты работы неактивных правил. Это этап называется агрегированием.

U, наконец, нужно отложить конкретную сумму на продукты. Естественно взять для этого середину диапазона, $\bar{y} = (30+15)/2 = 22.5$. Этот этап расчета – четкий аналог дефаззификации.

3.2.2. Правила в системах Мамдани

И.Мамдани (Ebrahim Mamdani – английский инженер и математик) обобщил такой подход к вычислению выходных переменных на нечетко заданные входные и выходные переменные.

Правила в системах Мамдани устроены следующим образом. Пусть $\vec{x}=[x_1,x_2,\dots]$ и $\vec{y}=[y_1,y_2,\dots]$ – числовые (четкие) входные и выходные переменные, $\vec{X}=[X_1,X_2,\dots],$ $\vec{Y}=[Y_1,Y_2,\dots]$ – соответствующие им лингвистические (нечеткие) переменные.

Каждой нечеткой входной переменной X_r соответствуют термы T_r^1, T_r^2, \ldots , а каждой нечеткой выходной переменной Y_j – термы S_j^1, S_j^2, \ldots Функции принадлежности для входных переменных обозначим через $\mu_r^k(x_i)$, а функции принадлежности выходных переменных – $\nu_i^k(y_j)$.

Тогда условие в правиле – это нечеткое утверждение, состоящее из утверждений вида $X_r = T_r^k$, связанных между собой логическими операциями И, ИЛИ и НЕ, например, НЕ $X_1 = T_1^1$ И $X_2 = T_2^3$.

Следствия – это нечеткие значения выходных переменных, $Y_j = Q_{ij}$, где нечеткое множество Q_{ij} может быть одним из термов j-й выходной переменной, $Q_{ij} = S_j^k$ или его дополнением, $Q_{ij} = \bar{S}_j^k$, где k = k(i,j) – номер терма переменной Y_j , соответствующего правилу i. Функцию принадлежности множества Q_{ij} обозначим через $\nu_{ij}(y_j)$.

Таким образом, правило может иметь, например, такой вид

ЕСЛИ
$$X_1 = T_1^1$$
 ИЛИ НЕ $X_2 = T_2^3$, ТО $Y_1 = S_1^2$, $Y_2 = \bar{S}_2^1$.

Когда вместо буквенных обозначений переменных используются слова естественного языка, то вместо знака равенства следует использовать связку is для англоязычных названий или знак "_" (тире) для русскоязычных.

3.2.3. Алгоритм Мамдани

Обобщив такой подход к расчету на нечетко заданные входные и выходные переменные, Мамдани разделил вычисления на четыре этапа:

- активизацию (activation) определение степени истинности условий в правилах;
- импликацию (implication логический вывод) определение логического результата в каждом правиле;
- агрегирование (aggregation) объединение логических результатов всех правил;
- дефаззификацию (defuzzification) приведение к четкости результата объединения.

Рассмотрим их подробнее.

 $A \kappa m u b u s a u u s -$ определяются степени истинности его условий всех правил L_1, L_2, \ldots : четкие значения входных переменных x_1, x_2, \ldots подставляются в условия всех правил, т.е. вычисляются значения функций принадлежности $\mu_r^k(x_r)$ для термов T_r^1, T_r^2, \ldots и, в соответствии с выбранным методом (минимаксным или алгебраическим), определяются степени истинности результатов операций И, ИЛИ и НЕ в каждом из условий.

Импликация – в каждом правиле определяются функции принадлежности выходных переменных $\hat{\nu}_{ij}(y_j)$ в соответствии со степенью истинности условия L_i ,

$$\hat{
u}_{ij}(y_j) = \min \left(L_i,
u_{ij}(y_j)\right),$$
 или $\hat{
u}_{ij}(y_j) = L_i \cdot
u_{ij}(y_j),$

где i — номер правила, j — номер выходной переменной.

Asperuposanue — объединение результатов всех правил нечеткой системы для каждой выходной переменной.

Обозначим через \hat{Q}_{ij} нечеткое множество, соответствующее ф.п. $\hat{\nu}_{ij}(y_j)$ – результату работы i-го правила по отношению к j-й выходной переменной. Тогда все правила вместе дадут нам множество

$$\hat{Q}_j = \hat{Q}_{1,j} \cup \hat{Q}_{2,j} \cup \dots \hat{Q}_{n,j},$$

где n – количество правил. Операция объединения может быть реализована как минимаксным, так и алгебраическим методами.

Замечание 1. Рекомендуется использовать однотипные методы для всех нечетких операций. Т.е. если для операции И используется метод минимума, то для операции ИЛИ должен применяться метод максимума, для импликации – метод минимума, для агрегирования – метод максимума. Все вместе эти методы называются минимаксными. Соответственно, методы произведения и вероятности называются алгебраическими, их тоже следует применять согласованно друг с другом.

Замечание 2. Иногда в литературе агрегирование называется аккумуляцией, а агрегированием называется вычисление степеней истинности условий в правилах. Но мы будем следовать терминологии, принятой в пакете Fuzzy Logic Toolbox, чтобы не запутаться окончательно.

В результате объединения для каждой выходной переменной будет получено некоторое нечет-кое множество со своей функцией принадлежности. Эта ф.п. скорее всего не будет относиться ни к одному из стандартных типов и не будет достигать 1. Ей не будет соответствовать какое-то осмысленное название, т.е. это нечеткое множество не будет термом. Это множество нужно только для того, чтобы получить числовое значение выходной переменной одним из методов дефаззификации.

Пример 3.2. Проиллюстрируем этапы алгоритма Мамдани на примере управления смесителем в душе. Напомним, что мы использовали две входные переменные (температура – "вода" и расход – "струя") и две выходные переменные (степени открытости горячего и холодного кранов).

Строки соответствуют правилам, колонки – переменным. Ячейки, находящиеся на их пересечении, – это графики функций принадлежности соответствующих термов. В первых двух колонках – термы входных переменных, во вторых – термы выходных. Сверху указаны их числовые значения.

Разберем, например, правило № 1,

ЕСЛИ вода – холодная И струя – слабая, TO холодный кран – не трогать, горячий кран – сильно открыть.

Температура воды равна 26°, т.е. степень истинности утверждения "вода – холодная" (с z-образной ф.п.) около 0.7. Расход воды равен 34% от максимального, степень истинности утверждения "струя – слабая" около 0.8. Функции принадлежности термов "холодная" и "слабая" закрашены желтым цветом до уровня степеней истинности 0.7 и 0.8 соответственно.

Результат операции И – число $L_1 = \min(0.7, 0.8) = 0.7$, следовательно, правило № 1 активно, т.е. ф.п. термов выходных переменных "не трогать" (для холодного крана) и "сильно открыть" (для горячего крана) "обрезаются" до уровня $L_1 = 0.7$, результаты импликации – ф.п. выходных переменных – закрашиваются синим цветом.

Рис. 3.1. Алгоритм Мамдани

Правила № 2, 4 и 5 также активны, хотя и в разной степени. Поэтому каждое из них вносит свой вклад в итоговые функции принадлежности выходных переменных – результаты агрегирования. Получаются ф.п. сложной структуры (внизу справа).

И, наконец, результаты дефаззификации – числовые значения выходных переменных – обозначены красной вертикальной полоской. В данном случае холодный кран нужно открыть на 1.83%, а горячий – на 22%.

Разнообразие методов дефаззификации связано с разными типами задач, которые может решать нечеткая система. Для задач управления непрерывно изменяющимися параметрами, такими, как степень открытия крана, естественно применять методы центра тяжести и центра площади, причем метод центра площади наименее чувствителен к наличию пиков ф.п. вдали от середины интервала, метод центра тяжести более чувствителен к ним.

Методы максимумов, собственно, "ловят" именно эти пики, поэтому их целесообразно использовать для выбора между отдельными вариантами, т.е. для дискретных выходных переменных.