

#### Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ КАФЕДРА

Информатика и системы управления (ИУ)

Информационная безопасность (ИУ8)

## Отчёт по лабораторной работе № 4

# «Исследование нейросетевой модели биометрической аутентификации»

Вариант: 1

| Студент:                                      |                 |
|-----------------------------------------------|-----------------|
| Александров Алексей Николаевич, группа ИУ8-94 |                 |
| (5 курс)                                      | (подпись, дата) |
| Преподаватель:                                |                 |
| профессор кафедры ИУ8                         |                 |
| Басараб Михаил Алексеевич                     | (подпись, дата) |

Москва, 2023 г.

#### Цель работы

Исследовать модель системы бинарной классификации «Свой-Чужой» с использованием однослойной нейронной сети типа «персептрон».

#### Вариант функций распределений образов классов «Свой», «Чужой»:

Треугольное  $T_1(-4, 2, -1; -4, 2, -1)$ ; треугольное  $T_2(-1, 8, 3; -1, 8, 3)$ .

## Ход работы

В работе были сгенерированы искусственные выборки экземпляров классов «Свой» и «Чужой». <u>Для обоих классов</u> выбрана <u>треугольная функция распределения образов</u>, которая задаётся тремя основными параметрами a, b и с (см. рисунок 1).



Рисунок 1 — Общий вид треугольной функция плотности распределения

На рисунке 2 представлены гистограммы двух классов с треугольными функциями плотности распределения  $T_1(-4,2,-1;-4,2,-1)$  и

 $T_2(-1,8,3;-1,8,3)$ ,. Количество экземпляров каждого класса: 300 и 700 соответственно.



Рисунок 2 — Гистограммы классов «Свой» и «Чужой»

На рисунке 3 можно увидеть график обучение с уменьшением значения ошибки на 30 эпохах обучения.



Рисунок 3 — График суммарной ошибки классификатора на 30 эпохах



Рисунок 4 — Полученная гиперплоскость для разделения выборок



Рисунок 5 — Матрица ошибок полученного классификатора

По полученным значениям FPR и TPR была построена ROC-кривая, посчитана площадь под графиком (AUC). Она оказалось равной 0.99, что отлично характеризует модель бинарной классификации (см. рисунок 6).



Рисунок 6 — ROC-кривая для полученной модели классификатора

На рисунке 7 приведены гистограммы тех же классов, с коррелированными параметрами. Углы поворота выборок:  $32^{\circ}$  и  $64^{\circ}$  соответственно.



Рисунок 5 — Гистограммы классов «Свой», «Чужой» с коррелированными параметрами

В этот раз обучение проходило на 50 эпохах, график суммарной ошибки представлен на рисунке 6. Аналогичные гиперплоскость, матрица ошибок и ROC-кривая представлены на рисунках 7, 8, 9 соответственно. Полученное значение AUC = 0,91, что хорошо характеризует полученный классификатор.



Рисунок 6 — График суммарной ошибки классификатора на 50 эпохах



Рисунок 7 — Полученная гиперплоскость для разделения выборок



Рисунок 8 — Матрица ошибок полученного классификатора



Рисунок 9 — ROC-кривая для полученной модели классификатора

#### Вывод

В ходе работы была исследована модель системы бинарной классификации «Свой-Чужой» с использованием однослойной нейронной сети типа «персептрон». Выполнен поворот выборок для получения выборок с коррелированными параметрами. В обоих случаях были построены ROC-кривые, посчитаны значения AUC для анализа эффективности полученных моделей.