USING LARGE LANGUAGE MODELS TO IDENTIFY BREAST CANCER

Duarte Silva

OVERVIEW

- Problems
- Context and Motivation

Literature Review

Implementation

PROBLEMS

Analysis

- Complex
- Time-Consuming
- Rigid protocols

LLMS

- Textual format
- Ethics
- Accuracy

CONTEXT AND MOTIVATION

- Popularity
- User friendliness
- Integrability
- Trained on diverse data

LITERARY REVIEW

Conventional exam methods

- Mammography, Ultrasound and Thermogram
- Tomosynthesis
- Histopathology

LITERARY REVIEW

- 2 Application of Deep Learning in conventional exam methods
 - Improved accuracy and efficiency
 - Less dependency on human error
 - → Detection accuracy ranging between 82.5% and 99.72%
 - Computationally intensive
 - Good quality dataset scarcity
 - Poor dataset and method diversity

LITERARY REVIEW

- 3 Application of LLMs in conventional exam methods
 - More user-friendly approach / Ability to use text
 - Models trained on vast datasets
 - **▶** Detection accuracy ranging between 0% and 100%*
 - Potential hallucinations
 - "Black box" problem
 - Struggle with visual data
 - Privacy and ethical concerns
 - Trained on static data

PROPOSED IMPLEMENTATION

Model Retrieval and Analysis

Fine-tuning and Model Customisation

Environment Setup and Result Analysis

10

PROPOSED WORKFLOW

