Saving for a Rainy Day: Experimental Evidence on Prize Linked Saving and Financial Shocks

Kaden Grace

October 11, 2024

Motivation

We asked: Which of the following best describes how you would deal with a major unexpected expense, such as \$1,000 for an emergency room visit or car repair?

Source: Bankrate survey, December 15-17, 2023

Background: Prize Linked Savings (PLS)

- Dollars saved in PLS become entries in a drawing
 - Probability(Win) is (almost) a linear function of your deposit
- PLS is a "no-lose lottery;" principal is never at risk

Background: Prize Linked Savings (PLS)

- Dollars saved in PLS become entries in a drawing
 - Probability(Win) is (almost) a linear function of your deposit
- PLS is a "no-lose lottery;" principal is never at risk
- Popular in the UK
 - Premium Bonds, £25 "tickets" for a £1m prize

Background: Prize Linked Savings (PLS)

- Dollars saved in PLS become entries in a drawing
 - Probability(Win) is (almost) a linear function of your deposit
- PLS is a "no-lose lottery;" principal is never at risk
- Popular in the UK
 - Premium Bonds, £25 "tickets" for a £1m prize
- Still illegal in some US states
 - Fear of state lottery revenue cannibalization

PLS Legality

If PLS is "dominated," why is it popular?

Agents have short planning horizons

If PLS is "dominated," why is it popular?

- Agents have short planning horizons
- Agents over-estimate the probability of winning

If PLS is "dominated," why is it popular?

- Agents have short planning horizons
- Agents over-estimate the probability of winning
- Agents directly gain utility from the gamble

What do we already know about PLS?

- People prefer PLS to standard saving even if the return is lower
- Effect is strongest among poor households
- Access to PLS increases total savings
 - Atalay et al. (2014), Filiz-Ozbay et al. (2015), Dizon & Lybbert (2021), Jindapon et al. (2022), Gertler et al. (2023)

What do we already know about PLS?

- People prefer PLS to standard saving even if the return is lower
- Effect is strongest among poor households
- Access to PLS increases total savings
 - Atalay et al. (2014), Filiz-Ozbay et al. (2015), Dizon & Lybbert (2021), Jindapon et al. (2022), Gertler et al. (2023)
- Saving increases stability but decreases consumption
- PLS can increase savings, but does this increase welfare?
- ... under what conditions?

Research Question

What is the dynamic welfare impact of PLSAs on consumers who face unexpected financial shocks?

Preview of Results

- Subjects have sufficiently short horizons such that PLSAs increase welfare by preventing under-saving
- PLS access causes 17.9% improvement in optimal behavior

Policy Implications

- PLS could move consumers closer to optimal consumption paths
- Vulnerable households better prepared for unexpected expenses
- Relatively cheap method of incentivizing saving

Why an Experiment?

- Jappelli and Pistaferri (2010) on observational data: "The lesson of the literature is that identifying episodes of genuine exogenous and unanticipated income changes is difficult."
- Observational data uses weather, layoffs, disabling injuries, etc.
 to measure financial shocks

Why an Experiment?

- Jappelli and Pistaferri (2010) on observational data: "The lesson of the literature is that identifying episodes of genuine exogenous and unanticipated income changes is difficult."
- Observational data uses weather, layoffs, disabling injuries, etc.
 to measure financial shocks
- Complete portfolio allocation is difficult to observe
- Experiment allows for precise choice of parameters

Contribution

• I use a controlled laboratory setting to measure the dynamic welfare effects of access to a PLSA.

2 Empirical Analysis

Results

4 Conclusion

2 Empirical Analysis

Results

4 Conclusion

- Agent receives 20 tokens of income, and can choose to:
 - consume by converting tokens to cash at a decreasing rate (asymptotic at \$3), or
 - save tokens at 16% until the next period, or
 - save tokens in a PLS with a prize
- Saving 20 tokens in PLS gives a 5.3% chance of winning.
- 10% chance of incurring a 60-token expense
- 10 periods, played twice

Decreasing Returns to Consumption

Tokens	D	ollars	Tokens	D	ollars	Tokens	Do	ollars
10	\$	0.29	110	\$	2.00	210	\$	2.63
20	\$	0.54	120	\$	2.10	220	\$	2.67
30	\$	0.78	130	\$	2.18	230	\$	2.70
40	\$	0.99	140	\$	2.26	240	\$	2.73
50	\$	1.18	150	\$	2.33	250	\$	2.75
60	\$	1.35	160	\$	2.39	260	\$	2.78
70	\$	1.51	170	\$	2.45	270	\$	2.80
80	\$	1.65	180	\$	2.50	280	\$	2.82
90	\$	1.78	190	\$	2.55	290	\$	2.83
100	\$	1.90	200	\$	2.59	300	\$	2.85

Treatments

Treatment	PLSA Prize
1	No PLSA Offered, "No Prize"
2	6x(Income), "High Prize"
3	3x(Income), "Low Prize"

Session Type	Treatments	# Participants
No Prize/High Prize	1 & 2	56
No Prize/Low Prize	1 & 3	52
High Prize/Low Prize	2 & 3	49
Total		157

What does it mean to over-consume?

• Solve the model with backward induction for $c^*(a_{it})$, the optimal consumption choice given the subject i's assets in period t

What does it mean to over-consume?

- Solve the model with backward induction for $c^*(a_{it})$, the optimal consumption choice given the subject i's assets in period t
- Calculate the gap between optimal and observed consumption:

$$Error_{it} = c_{it}^{observed} - c^*(a_{it})$$

What does it mean to over-consume?

Calculate Marginal Propensity to Consume (MPC)

$$\frac{\mathsf{Error}_{it}}{a_{it}} = \frac{c_{it}^{\mathsf{observed}} - c^*(a_{it})}{a_{it}} = \mathsf{MPC}_{it}^{\mathsf{observed}} - \mathsf{MPC}_{it}^* = \mathsf{MPC}_{it}^{\mathsf{error}}$$

ullet MPC $_{it}^{\mathit{error}} \in [-1,1]$ is the fraction of assets the subject either over (+) or under (-) consumed in period t

Data

	Mean	St. Dev.	Min.	Max
Assets	88.34	95.59	-294	680
Standard Savings	57.62	85.19	-294	624
PLSA Savings	20.82	58.43	0	680
Tokens Consumed	9.92	26.81	0	455
Dev. from Optimal Cons.	-9.06	42.68	-311	232
Abs. MPC Error	0.21	0.25	0	1
Expense Incurred	0.09	0.29	0	1
Female	0.52	0.50	0	1

3140

TENNESSEE KNOXVILLE

Ν

2 Empirical Analysis

Results

4 Conclusion

Empirical Analysis

$$\underbrace{|\mathsf{MPC}_{ist}^{\mathit{error}}|}_{\substack{\mathsf{abs. value}\\ \mathsf{deviation}\\ \mathsf{from}\\ \mathsf{optimality}}} = \alpha + \beta * \underbrace{\mathsf{Treat}_{it}}_{\substack{\mathsf{ET}\\ \mathsf{ET}\\ \mathsf{offered}\\ \mathsf{offered}}} + \underbrace{\mathsf{Second}_{s}}_{\substack{\mathsf{ET}\\ \mathsf{ET}\\ \mathsf{second}\\ \mathsf{in}\\ \mathsf{second}\\ \mathsf{in}\\ \mathsf{session}}} + \underbrace{\tau_{t}}_{\substack{\mathsf{error}\\ \mathsf{corr. w/in}\\ \mathsf{subjects}}} + \underbrace{\tau_{t}}_{\substack{\mathsf{error}\\ \mathsf{error}\\ \mathsf{corr. w/in}\\ \mathsf{subjects}}} + \underbrace{\tau_{t}}_{\substack{\mathsf{error}\\ \mathsf{error}\\ \mathsf{corr. w/in}\\ \mathsf{subjects}}} + \underbrace{\tau_{t}}_{\substack{\mathsf{error}\\ \mathsf{error}\\ \mathsf{err$$

- \bullet β is coefficient of interest
 - $\beta < 0 \Longrightarrow \mathsf{PLS}$ causes shift towards more optimal behavior

2 Empirical Analysis

Results

4 Conclusion

What is the treatment effect on optimality? (Unit: |MPC|)

PLSA	-0.0443***	-0.0451***		
	(0.0160)	(0.0159)		
Second		-0.0264**		-0.0265**
		(0.0125)		(0.0126)
High			-0.0347*	-0.0354*
			(0.0182)	(0.0180)
Low			-0.0543***	-0.0552***
			(0.0177)	(0.0176)
Constant	0.2383***	0.2520***	0.2383***	0.2521***
	(0.0157)	(0.0167)	(0.0157)	(0.0167)
N	3140	3140	3140	3140

What is the treatment effect on earnings? (Unit: \$)

PLSA	-0.5718***	-0.5817***		
	(0.1887)	(0.1870)		
Second		-0.3504*		-0.3529*
		(0.1846)		(0.1840)
High			-0.3889*	-0.3971*
			(0.2168)	(0.2147)
Low			-0.7620***	-0.7738***
			(0.2345)	(0.2333)
Constant	4.1667***	4.3483***	4.1667***	4.3496***
	(0.1518)	(0.1778)	(0.1519)	(0.1777)

What is the treatment effect on assets when shocked?

(Unit: Tokens)

PLSA	-22.9917	
	(14.4109)	
High		-17.0181
		(17.7770)
Low		-28.3136*
		(15.7658)
Constant	52.4773***	52.4773***
	(11.2578)	(11.2770)
N	296	296

What is the treatment effect on assets when shocked?

(Unit: Tokens)

What is the treatment effect on Prob(Borrow) when

shocked? (Unit: Prob(Borrow))

PLSA	0.1014	
	(0.0750)	
High		0.0264
		(0.0918)
Low		0.1682**
		(0.0814)
Constant	0.3409***	0.3409***
	(0.0577)	(0.0578)
N	296	296

2 Empirical Analysis

Results

4 Conclusion

Conclusion

PLS causes:

- 17.9% shift towards the optimal consumption path
- 9.1% 17.8% decrease in earnings depending on prize size
- significant decrease in available assets following a shock
- increase in the probability of borrowing following a shock

Next Steps

- Individual horizon estimation
- Subjective probability weighting
- Welfare comparisons