Integer Factoring

Factoring Algorithms

- The two best factoring algorithms known are
 - Number Field Sieve (NFS): A general factoring method
 - Elliptic Curve Method (ECM) : Factoring for special purpose
- Factoring methods are usually divided into
 - 100DarkoAgeoMethods 10101111 00101111 11011010 01010101 01100000 01011100 01100000
 - Trial Division, இயி method, இயி 1 method, Pollard ு method
 - •Modern:Methods:: ::::::::: 00010100
 - ooo. 1 CFRAC, Quadratic Sieve (QS), NFS, ECM 100
- We shall look at the P-1 method and explain the idea behind the Modern Methods

Integer Factoring

- Pollard's P-1 Method
- Difference of Two Squares
 - Quadratic Sieve
 - 2,1111Number Field Sieve 110

- Suppose N is the number to be factored on time at worst $O(\sqrt{N})$
 - Trial Division:

- The trial division takes
- for (p = 1; p < sqrt(N); p++) algorithm is of size $log_2 N$, while ((N%p) == 0) 1110 1000 hence the complexity is exponential
 - Although slow, this is the method of choice for ¹00numbers *N* < 10¹²

Integer Factoring 11010000 11011101

- 1. Pollard's P-1 Method
- 2 Difference of Two Squares
 - Quadratic Sieve
 - 2....Number Field Sieve

Pollard's P - 1 Method

- John Pollard has invented almost all the modern
 factoring algorithms
 - P 1 Method
 - Rho-Method
- Number Field Sieve
- Suppose the number we wish to factor is N = p q
- Suppose we know that p 1 is B-power smooth (by some pure guess) but that q 1 is not B-power smooth
 - Now p −1 divides B!, but probably q −1 does not divide B!

Smooth Numbers

- Let B be a number
 - N is B-smooth if every prime factor p of N is less than B
 - Example: N = 2⁷⁸ 3⁸⁹ 11³ is 12-smooth
 - Sometimes we say that the number is just *smooth* if the bound *B* is small compared to *N*
 - Smooth numbers are basically easy to factor using Trial Division, hence almost all good factoring algorithms make use of smooth numbers
 - A number is **B-power smooth** if every prime power dividing N is less than B
 - Example: $N = 2^5 \cdot 3^3$ is 33-power smooth

Pollard's P - 1 Method

- Pollard's P 1 Method
 - Compute $a = 2^{B!} \pmod{N}$
 - Imagine taking this modulo p and modulo q
 - 1011 T11000 11101111 10001110 01111001 11011100 10110000 01100000 00111010 00011000
 - Since $(p-1) \mid B!$ and $2^{p-1} \equiv 1 \pmod{p}$ by Fermat's Little Theorem
 - But it is *unlikely* that $a \equiv 1 \pmod{q}$
 - Hence p will divide a 1, but q will not divide a 1
 - ooloWerecover promototol 10000110 01110111 00111011 10001111

$$p = \gcd(a - 1, N)$$

Pollard's P 1 Method

- Pseudo code
 - a.=.2
 - for (j=2; j<=B; j++
 - { a=a j mod N; }
 - d = gcd(a-1,N);
 - if (d!=1 and d!=N) then of the output d is a factor of N
 - else
 - Output No Result

- Example
 - N = 15770708441
 - Put B = 180
 - Obtain $a = 2^{B!}$ (mod N)
 - = 1162022425
 - Then d = gcd(a−1, N)
 - = 135979 | N
 - - *N* = 135979 × 115979
 - 135979 -- 1
 - $= 2 \times 3 \times 131 \times 173$

Complexity

- Complexity
 - We can show that the complexity of Pollard's

 $O(B(\log B)(\log N)^2 + (\log N)^3)$

- So if $B = O((\log N)^k)$, then this is a polynomial time factoring algorithm
 - Only works for special numbers though

Safe Primes

● Due to the *P* –1 method, RSA primes are recommended to be chosen of the form

$$p_{\text{col}} = 2p_1$$
 $and_{\text{col}} = 2p_1$

where p_1 and q_1 are both primes

- p and q are then called safe primes
- This is not really needed these days
 - The probability that a 512 bit prime p is such that p-1 is B-power smooth for a small value of B is very small
 - Hence choosing random 512 bit primes would nullify the P -1 method 1 10000100 01011101 01011101 11101001 10000101 011101

Integer Factoring

- 4. ···Pollard's P--- 1 Method
- 2. Difference of Two Squares
 - 1....Quadratic Sieve
 - 2. Number Field Sieve

Difference of Two Squares

- A basic trick in factoring algorithms is to produce two numbers x and y such that x² = y² (mod N)
- Therefore $x^2 y^2 = (x y)(x + y) = 0 \pmod{N}$
- We compute $d = \gcd(x y, N)$
- If N = pq then we can have four possible cases
 - \bullet p divides x y and q divides $x + y^{11} = 001010 \Rightarrow q = p^{1001000}$
 - .iioi<mark>too toololoo oloootoo oloootoo hiooloo</mark> divides xi÷yoo iiooiii⇔i **d≔ q**ioio
 - p and q both divide x y but not $x + y \Rightarrow d = N$
 - p¹and g¹both divide x + y but not x + y 11001 ⇒ 1 d = 10100
- These all happen with equal probability, so with
 probability 1/2 we obtain a factor of N 10001 1000101

Modern Factoring Methods

- 01 00001.00 00 110101.01 01 11111.00
- Q: How to find x and y such that $x^2 = y^2$ (mod N)?
- This Fermat's idea inspired modern factoring methods
 - Continued Fraction
 - Quadratic Sieve
 - Number Field Sieve
 - Special Number Field Sieve (SNFS)
 - ■ Number of nice algebraic form: "rettle for small rand s
 - Record: 2¹⁰³⁹ 1 (1039th Mersenne number)
 - General Number Field Sieve (GNFS)
 - •000 No known nice algebraic form
 - Record: RSA-768

Complexity of Algorithms

$$L(s) = O(e^{c(\log N)^s (\log \log N)^{1-s}})$$

- s = 1: exponential time
- ⊌¹00 < s < 1:0 sub-exponential time
- ours = 0: polynomial time
- Complexity of integer factoring algorithms
 - ullet Trial Division: L(1) $^{\circ}$ $^{\circ}$ $O(e^{(1/2)\log N})$
 - Quadratic Sieve $L(1/2)^{1/2} O(e^{(1+o(1))(\log N)^{1/2}(\log\log N)^{1/2}})$
 - GNFS: L(1/3) $O(e^{((64/9)^{1/3}+o(1))(\log N)^{1/3}(\log \log N)^{2/3}})$
 - ••• SNFS 0 L(1/3) $O(e^{((32/9)^{1/3}+o(1))(\log N)^{1/3}(\log\log N)^{2/3}})$

RSA Challenge (inactive since 2007)

Factorization of RSA-768

- http://eprint.iacr.org/2010/006
- RSA-768: (232 digits)

123018668453011775513049495838496272077285356959533479219732 245215172640050726365751874520219978646938995647494277406384 592519255732630345373154826850791702612214291346167042921431

Factorization: (Both factors have 384 bits and 116 digits)
334780716989568987860441698482126908177047949837137685689124
31388982883793878002287614711652531743087737814467999489

367460436667995904282446337996279526322791581643430876426760 32283815739666511279233373417143396810270092798736308917

Smooth Numbers

- A factor base F = { p₁, p₂, ..., p_m} consists of primes
- A number is **smooth** over *F* if all of its prime factors belong to *F*
- Try to find smooth numbers $r_i = p_1^{e_1} p_2^{e_2} p_3^{e_3} \dots p_m^{e_m}$ and record e_i in the vectors $v_i = (e_1, e_2, e_3, \dots, e_m)$
- With enough smooth numbers, we can find a_i (= 0 or 1)
 by linear algebra such that

$$\sum a_i v_i \equiv (0,0,0,0) \pmod{2} \Rightarrow \prod r^{a_i}$$
 becomes a square

Smooth Numbers

- Example
 - F = {2, 3, 5, 7} is a factor base
 - Some smooth numbers over F: $r_1 = 105 = 3 \times 5 \times 7$, $r_2 = 140 = 2^2 \times 5 \times 7$, $r_3 = 392 = 2^3 \times 7^2$, $r_4 = 588 = 2^2 \times 3 \times 7^2$
 - Corresponding exponent vectors: $v_1 = (0, 1, 1, 1)$, $v_2 = (2, 0, 1, 1)$, $v_3 = (3, 0, 0, 2)$, $v_4 = (2, 1, 0, 2)$
 - 1 v_1 + 1 v_2 + 0 v_3 + 1 v_4 = (4, 2, 2, 4) \equiv (0, 0, 0, 0) (mod 2)
 - We get a square: $r_1 r_2 r_4 = 2^4 \times 3^2 \times 5^2 \times 7^4$
- Recall: The goal is to find $x^2 = y^2 \pmod{N}$
- The question then becomes finding many smooth numbers over a factor base F

Quadratic Sieve

- To factor N, define $g(x) = x^2 N$
 - ••• x is an integer between \sqrt{N} and $\sqrt{2N}$
 - note that $g: \mathbb{Z} \to \mathbb{Z}_N$ preserves multiplications
- We want to find enough smooth g(x_i)
- $p \mid g(x_i)$ implies $p \mid g(x_i + p)$
 - If $p \mid (x_i^2 N)$, then $0 \equiv x_i^2 N$
 - $\equiv x_i^2 N + 2px_i + p^2 \equiv (x_i + p)^2 N \pmod{p}$
 - "Sieve" g(x_i) with every prime p in factor base

Quadratic Sieve

- Record $g(x_i)$ in an array G
- 016 0||f| 100 ||g|(x_i)|0110101 10011100 00110000 000 11011011 00111000 11101111 10001110 01111001 100 1 $G[x_i]$ 01=1 $G[x_i]$ 1+1[0gp]11110 101 00110001 01001011 00100111 01111000 10101111
- After sieving, check the sign smoothness of $g(x_i)$ whose sign of $G[x_i] \ge chosen$ threshold

11 10011001	2	3	5	701	4	9
g(m+71)	1810	0100	0101	1000	1111	1110
00 g(m+72)11	0111	.00/10	1400	1110	1011	01/10
g(m+73)	0111	.1011	0101	.0100	1010	0100
g(m+74)	1100	1010	0100	10010	0110	10000
g(m+75)	0110	100/00	0011	1010	0001	1000
L g(m+76)1	1101	.0111	0001	.0101	0111	0111
g(m+77)	01/01	0101	0110	10000	0701	1100
g(m+78)	0010	10/10	1010	1000	0001	.0000
00 g(m+79)10	11/10	0001	0101	0100	1000	0110
g(m+80)	0110	0011	0110	1111	1011	.1100
g(m+81)	0110		0101	1100	0911	
g(m+82)	0011	1011	1800	1111	0100	1000
g(m+83)11	01/10	0110	0010	1000	0010	0001
g(m+84)	0100	11000	0111	1100	1010	1100
g(m+85)	0110	1001 10011	1000	10101 11001	0111	1110

001

Number Field

- Choose irreducible $f(x) = c_d x^d + c_{d-1} x^{d-1} + \dots + c_1 x + c_0$ and $g(x) = e_1 x + e_0$ such that $f(m) \equiv g(m) \equiv 0 \pmod{N}$ for some integer m
- Let α be a complex root of f(x)
 - ullet 100 $oldsymbol{Q}(lpha)$ is a finite field extension of $oldsymbol{Q}$ 11010 01010101
 - $\mathbf{Q}(\alpha)$ is the **number field** associated to α
- Define a ring homomorphism $\varphi: \mathbf{Z}[\alpha] \to \mathbf{Z}_N$ by $\varphi(\alpha) \equiv m \pmod{N}$
 - φ is a homomorphism since $f(\alpha) = 0$ and $f(m) \equiv 0 \pmod{N}$
 - $\varphi(a b\alpha) \equiv a bm \pmod{N}$

Squares in Both Sides

$$(a,b) \in S$$
 (called the **algebraic side**)

- Let $x = \varphi(\beta)$, then we have $x^2 = \varphi(\beta)^2 = \varphi(\beta^2)$ = $\varphi(\Pi(a-b\alpha)) \equiv \Pi(a-bm) = y^2 \pmod{N}$
 - Hence N is factored with probability ≥ ½

Major Steps of GNFS

- 1. Polynomial Selection
 - 1 Find 'good' polynomials to speed up sieving
- 2. Sieving
 - Find sufficiently many relations to produce a matrix
- Matrix Reduction
 - 1001 Find linear dependencies mod 2 among the rows of the matrix 1010
- 4. Square Root
 - ... Calculate a square root in the number field for each dependency, until the factorization is found