Razonamiento y planificación automática Nerea Luis

Tema 3: Lógica y pensamiento humano

Índice de la clase

Tema 2

Ejemplos de representación

Tema 3

Lógica de proposiciones

Proceso de decisión: tablas de verdad

Lógica de predicados

Otras lógicas

Ejemplo de representación para IA

Fuente: An example grid that shows multiple solutions to a path planning problem. Source: C.J. Taylor, University of Pennsylvania

Y también la solución: lista (conjunto ordenado) de acciones (corresponde a un camino)

¿Cómo representar este problema y su solución?

- 1. La posición del agente (estado)
- 2. La posición objetivo (o conjunto de objetivos)
- 3. Los movimientos posibles (operadores o acciones)
- 4. La posición de las paredes (restricciones al movimiento)
- 5. Tal vez: el coste de realizar cada acción, en cada situación

http://linoit.com/users/acervant/canvases/Ejemplos%20de%20representaci%C3%B3n

Ejemplo de representación para IA

Fuente: An example grid that shows multiple solutions to a path planning problem. Source: C.J. Taylor, University of Pennsylvania

Solución: lista (conjunto ordenado) de acciones (corresponde a un camino)

MoverDerecha, MoverDerecha, MoverAbajo, MoverAbajo,

MoverDerecha, MoverDerecha, MoverAbajo, MoverAbajo, MoverAbajo, MoverIzquierda

PROPOSICIONES

Estado (conocimiento del problema, situación):

Pos00=False

Pos10=True

Pos20=False, .. etc. (X * Y proposiciones)

Mapa (restricciones):

Pared00=False

Pared10=False ... (X*Y proposiciones)

Operadores (Conocimiento de inferencia, procedimientos, acciones): Ojo, generales para todo laberinto

MoverDerecha (¡muchas reglas!):
SI Pos00=True Y Pared10 =False HACER:
Pos00=False Y Pos10=True
(... muchas por cada movimiento...)

Moverlzquierda (¡muchas reglas!): ... MoverAbajo: ... MoverArriba: ...

Ejemplo de representación para IA

Fuente: An example grid that shows multiple solutions to a path planning problem. Source: C.J. Taylor, University of Pennsylvania

Solución: lista (conjunto ordenado) de operadores (corresponde a un camino)

MoverDerecha, MoverDerecha, MoverAbajo, MoverAbajo,

MoverDerecha, MoverDerecha, MoverAbajo, MoverAbajo, MoverAbajo, MoverIzquierda

PREDICADOS (más expresivos)

Estado (Conocimiento del problema, situación):

pos(X,Y,Z) con X={pared,libre,agente} es
True o False según el valor de X e Y

(X*Y predicados) (incluye mapa)

Operadores (Conocimiento de inferencia, procedimientos, acciones):

```
MoverDerecha (¡una regla!):

SI pos(X,Y,agente)=True Y (X < maxX)

pos(X+1,Y,libre)=True

HACER:

pos(X+1,Y,agente)=True Y

pos(X,Y,libre)=True Y pos(X,Y,agente)=False

Y pos(X+1,Y,libre)=False

MoverIzquierda (una regla): ...

MoverAbajo (una regla): ...

MoverArriba (una regla): ...
```

Razonamiento y tipos de razonamiento

Razonamiento

Representación

Representación

+ Nuevos elementos

- Razonamiento deductivo: realizar inferencias a partir de elementos que ya existen. Por ejemplo: si los humanos tienen orejas y Manuel es un humano, entonces Manuel tiene orejas.
- Razonamiento inductivo: consiste en crear conceptos generales a partir de argumentos específicos. Por ejemplo: si un humano tiene orejas, existe otro humano con orejas y otro más que también tiene orejas, entonces todos los humanos tienen orejas.

En IA

Sistemas basados en conocimiento

Aprendizaje automático

Lógica proposicional

Lógica matemática: Lenguaje formal con una gramática y sintaxis

▶ Proposición simple: p, q, llueve ... (afirmaciones, enunciados declarativos)

Proposición compuesta (fórmula): A, B, (mayúsculas). Combinación de

simples mediante conectivas

Condicional (Implicación):

. Si A entonces B = $A \rightarrow B$

Solo A si B = $A \rightarrow B$

Equivalencia: A si y solo si B A ↔ B

Nota: El condicional está en la base del concepto de REGLA

	Prio-ri dad	Nombre	Ejemplo
7	1	NO, NOT	No tengo ganas de ir: ¬ p
٨	2	Y, AND	Llueve y hace frío: I ∧ f
٧	2	O, OR	Como carne o como pescado: c V p
\rightarrow	3	IMPLICA	Si voy, tendré problemas: v → p
\leftrightarrow	4	EQUIVA LE A	Iré si y solo sí tú vienes: y ↔ t

Tablas de verdad en lógica de proposiciones

Construcción de la tabla de verdad de una fórmula F:

- 1. Las proposiciones simples tienen valor de verdad 0 o 1
- Las conectivas operan con los valores de las proposiciones que conectan de cierta forma (tablas de las conectivas)
- 3. Las fórmulas por lo tanto tienen un valor de verdad 0 o 1 para cada combinación de valores de sus proposiciones simples (interpretación de la fórmula)
- 4. La tabla de verdad de una fórmula contiene una fila por posible interpretación (combinación de valores para las proposiciones simples que intervienen)

Valores de TablaVerdad (F)	F es una
Todos 1	Tautología
Todos 0	Contradicción
Algunos 0 y otros 1	Contingencia, falacia, inconsistencia

Teorema de la deducción

Dadas las fórmulas A,B,C,Q, ... (pueden ser compuestas o simples)

Si y solo si
 F: A ∧ B ∧ C ... → Q
 es tautología

 La deducción A,B,C, ... ⇒ Q es correcta, es un razonamiento válido (de las premisas A,B,C se deduce Q)

Tabla de: A \wedge B \wedge C ... \rightarrow Q es 1 para **toda** interpretación

1. A 2. B 3. C ... Q

S
ä
☱
4
Φ
Ō
O
.≃
ijΞ
0
Φ
⊱
,≒
=
_

р	q	r		A	В	С	 Q	A ∧ B ∧ C ∧	F: $A \wedge B \wedge C \wedge \rightarrow Q$
0	0	0		?	?	?	?	?	1
1	0	0		?	?	?	?	?	1
(0	(cada fila es una interpretación de F que parte de una combinación de valores para p,q,r)								
1	1	1		?	?	?	?	?	1

Nota: En lógica de predicados existen también tablas de verdad, pero no siempre se pueden enumerar todos los casos

Tablas de verdad de las conectivas

Negación

$egin{array}{c|c} \phi & \lnot \phi \ \hline F & V \ V & F \ \hline \end{array}$

Conjunción

$$egin{array}{c|c|c|c} \phi & \psi & \phi \wedge \psi \\ \hline V & V & V \\ F & V & F \\ V & F & F \\ F & F & F \\ \hline \end{array}$$

Disyunción

$$egin{array}{|c|c|c|c|c|} \phi & \psi & \phi ee \psi \\ \hline V & V & V \\ F & V & V \\ V & F & V \\ F & F & F \\ \hline \end{array}$$

Condicional

$$egin{array}{|c|c|c|c|c|} \phi & \psi & \phi
ightarrow \psi \ V & V & V \ F & V & F \ F & F & V \ \end{array}$$

Bicondicional

$$egin{array}{c|cccc} \phi & \psi & \phi \leftrightarrow \psi \ \hline V & V & V \ F & V & F \ V & F & F \ F & F & V \ \end{array}$$

Disyunción exclusiva

	ϕ	ψ	$\phi \leftrightarrow \psi_0$ s
100	V	$n_{V}^{V_{1}}$	a use
E	ato	\overline{V}	V
	V	F	V
	F	F	F

$$(p \rightarrow q) \leftrightarrow (\neg p \land q)$$

р	q	¬р	$p \rightarrow q$	¬p ^ q	$(p \rightarrow q) \leftrightarrow (\neg p \land q)$

$$(p \rightarrow q) \leftrightarrow (\neg p \land q)$$

р	q	¬р	$p \rightarrow q$	¬p ^ q	$(p \rightarrow q) \leftrightarrow (\neg p \land q)$
V	V				
V	F				
F	V				
F	F				

Condicional

ϕ	ψ	$\phi ightarrow \psi$
V	V	V
F	V	V
V	F	F
F	F	V

$$(p \rightarrow q) \leftrightarrow (\neg p \land q)$$

р	q	¬р	$p \rightarrow q$	¬p ^ q	$(p \rightarrow q) \leftrightarrow (\neg p \land q)$
V	V	F			
V	F	F			
F	V	V			
F	F	V			

Condicional

ϕ	ψ	$\phi ightarrow \psi$
\overline{V}	V	V
F	V	V
V	F	F
F	F	V

$$(p \rightarrow q) \leftrightarrow (\neg p \land q)$$

р	q	¬р	$p \rightarrow q$	¬p ^ q	$(p \rightarrow q) \leftrightarrow (\neg p \land q)$
V	V	F	V		
V	F	F	F		
F	V	V	V		
F	F	V	V		

Condicional

ϕ	ψ	$\phi ightarrow \psi$
\overline{V}	V	\overline{V}
F	V	V
V	F	F
F	\boldsymbol{F}	V

$$(p \rightarrow q) \leftrightarrow (\neg p \land q)$$

р	q	¬р	$p \rightarrow q$	¬p ^ q	$(p \rightarrow q) \leftrightarrow (\neg p \land q)$
V	V	F	V	F	
V	F	F	F	F	
F	V	V	V	V	
F	F	V	V	F	

Conjunción

ψ	$\phi \wedge \psi$
V	V
V	${\pmb F}$
F	${\pmb F}$
F	F
	$egin{array}{c} V \ V \ F \end{array}$

$$(p \rightarrow q) \leftrightarrow (\neg p \land q)$$

р	q	¬р	$p \rightarrow q$	¬p ^ q	$(p \rightarrow q) \leftrightarrow (\neg p \land q)$	
V	V	F	V	F	F	
V	F	F	F	F	V	
F	V	V	V	V	V	
F	F	V	V	F	F	Bicondic

La fórmula es una contingencia (o falacia o inconsistencia)

$egin{array}{c|c|c} \phi & \psi & \phi \leftrightarrow \psi \ \hline V & V & V \ F & V & F \ V & F & F \ F & F & V \ \end{array}$

$$\neg(p \lor q) \rightarrow (p \rightarrow r)$$

n	a	r
$\frac{p}{r}$	q	
V	V	$V \mid$
V	V	$F \mid$
V	F	V
V	F	F
F	V	V
F	V	F
F	\boldsymbol{F}	V
F	F	F

La fórmula es una tautología

$$\neg (p \lor q) \rightarrow (p \rightarrow r)$$

p	q	r	(pee q)	$ig \lnot (p \lor q)$	(p o r)	eg olimits olimi
V	V	V	V	F	V	V
V	V	F	V	F	F	V
V	F	V	V	F	V	V
V	F	F	V	F	F	V
F	V	V	V	F	V	V
F	V	F	V	F	V	V
F	F	V	F	V	V	V
F	F	F	F	V	V	V

La fórmula es una tautología

Lógica proposicional: ejemplo contradicción

Se formaliza: $(p v q) ^ \neg (p v q)^1$

р	q
V	V
V	F
F	V
F	F

La fórmula es una contradicción

¹ Ver diferencia: "estudio en casa o en la biblioteca y o no estudio en casa y en la biblioteca", que sí es una frase con "sentido": $(p \ v \ q) \ ^\neg (p \ ^q)$

Lógica proposicional: ejemplo contradicción

Se formaliza: $(p v q)^{\land} \neg (p v q)^1$

р	q	(p v q)	¬(p v q)	(p v q) ^ ¬(p v q)
V	V	V	F	F
V	F	V	F	F
F	V	V	F	F
F	F	F	V	F

La fórmula es una contradicción

¹ Ver diferencia: "estudio en casa o en la biblioteca y no estudio en casa y en la biblioteca (o sea, no en ambas)", que sí es una frase con "sentido": (p v q) ^ ¬(p ^ q)

Lógica proposicional: otros ejemplos

https://www.ejemplosde.com/29-logica/1573-ejemplos_de_tautologia.html

http://ocw.uc3m.es/cursos-archivados/inteligencia-artificial-2/material-de-clase-1/representacion.pdf

Para practicar:

https://calculator-online.net/truth-table-calculator/

Lógica de predicados

Extiende la lógica de proposiciones. No es decidible en general.

```
Términos: constantes (Pepe, a, 2), variables (X,T) (mayúsculas)

Dominio: conjunto al que pertenecen los términos (personas, cosas..)

Predicado: nombre, seguido de 1 a N términos

Funciones: nombre, seguido de 1 a N términos, aplica sobre otro

término

nombrePredicado(términos)

verde(semáforo1)

padre(Juan,María)

nombreFunción(términos) = término

suma(1,2) = 3
```

	Prioridad	Nombre	Ejemplos
A	1	Cuantificador universal, "para todo"	Todos los estudiantes sacan buena nota: ▼X (estudiantes(X) → buenaNota(X))
3	1	Cuantificador existencial "existe"	Algunos estudiantes destacan: ∃T (estudiante(T) ∧ destaca(T)) Toda persona tiene algún progenitor: ∀X (persona(X) → ∃Y progenitor(X,Y))

Representación en lógica de predicados

Objetos:

términos constantes d1,d2,d3,d4,d5 (discos) ejeA, ejeB, ejeC (ejes) mesa

Predicados:

propiedades y relaciones
en (Eje,Disco),
tam (Disco,Número)
sobre (X,Disco)
 (X: Disco o mesa)

¿Completa?

¿Precisa?

¿Correcta?

¿Relevante?

¿Falta algo? Ojo, no para este problema, sino para esta familia de problemas

¿Hay ambigüedad?

¿Hay errores o permite inconsistencias?

¿Sobra algo?

Situación de la figura:

en(ejeA,d1), en(ejeA,d2), en(ejeA,d3),en(ejeA,d4), en(ejeA,d5), tam(d1,1),tam(d2,2), tam(d3,3),tam(d4,4), tam(d5,5), sobre(d2,d1),sobre(d3,d2), sobre(d4,d3),sobre(d5,d4), sobre(mesa,d5)

Decidibilidad

Un sistema lógico es decidible si existe un procedimiento algorítmico finito para determinar si unas fórmulas son verdaderas a partir de otras (es decir, si un razonamiento es correcto)

Para nosotros:1

- La lógica proposicional es decidible mediante el método de las tablas de verdad
- La lógica de predicados monádicos (un sólo término) también
- La lógica de predicados en general no lo es (ni la aritmética)

¹En un enfoque axiomático de la lógica: las fórmulas válidas se pueden derivan de los axiomas

Expresividad vs decidibilidad

Lógica multivaluada y difusa

La lógica multivaluada

- permite valores intermedios (grande, tibio, lejos, pocos, muchos, etc.)
- se emplean más de dos valores de verdad para describir conceptos que van más allá de lo verdadero y lo falso
- ofrecen herramientas conceptuales que hacen posible describir formalmente la información difusa, vaga o incierta.

La lógica difusa (también llamada lógica borrosa) es una lógica multivaluada que permite representar matemáticamente la incertidumbre y la vaguedad, proporcionando herramientas formales para su tratamiento. El término «lógica difusa» aparece por primera vez en 1974.

Lógica difusa

Sistema matemático de valores continuos Se reduce la cantidad de conocimiento previo

Lógica difusa

Prolog

Fuente: apuntes de clase

Autoevaluación

Reglas, hechos y motor de inferencia

- Los sistemas que utilizan inferencia lógica operan con una base de hechos (conocimiento del problema, afirmaciones que se consideran verdad) y una base de reglas (conocimiento del dominio, mecanismos para construir otras afirmaciones).
 - Los hechos representan el estado o situación del problema
 - Las reglas son implicaciones (A→B) y representan las formas por las que se puede resolver el problema
- Se opera entre hechos y reglas en ciclos, dirigidos por un motor de inferencia (que realiza el razonamiento según las reglas de la lógica)
- ▶ Hay dos formas de operar en estos sistemas:
 - encadenamiento hacia delante (se van generando conclusiones a partir de los hechos, hasta encontrar la buscada);
 - encadenamiento hacia atrás (se parte de la conclusión deseada y se ve si hay alguna regla que la pueda generar, y así hasta llegar a los hechos).

Procurar que los colores sean lo más similares a estos. Cuando se traten de gráficos, o imagenes sacadas de internet. Que predomine el azul, o gama de azules si es posible.

Formas de representación usadas en IA

PROLOG online: https://swish.swi-prolog.org/

Ejemplo PROLOG: https://www.cs.us.es/~fsancho/?e=73

