Algebra I Blatt 8

Thorben Kastenholz Jendrik Stelzner

19. Juni 2014

Aufgabe 1

Lemma 1. Es sei R ein Ring und M ein R-Modul. Dann sind äquivalent:

i) M ist noethersch, d.h. jede aufsteigende Kette von Untermoduln von M

$$M_0 \subseteq M_1 \subseteq M_2 \subseteq \dots$$

stabilisiert.

ii) Jeder Untermodul von M ist endlich erzeugt über R.

Insbesondere ist ein kommutiver Ring R genau dann noethersch, wenn jede aufsteigende Kette von Idealen

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq I_3 \subseteq \dots$$

in R stabilisiert.

Beweis. Angenommen, M ist noethersch. Es sei $M'\subseteq M$ ein Untermodul. Dann definieren wir eine eine aufsteigende Folge von Untermoduln von M' wie folgt: Wir beginnen mit $M_0:=0$. Ist M_i definiert und $M_i\neq M'$, so gibt es $m_{i+1}\in M'\setminus M_i$, und wir setzen $M_{i+1}:=M_i+Rm_{i+1}$; ansonsten setzen wir $M_{i+1}:=M_i=M'$. Da M noethersch ist, stabilisert die aufsteigende Kette

$$0 = M_0 \subsetneq M_1 \subsetneq M_2 \subsetneq M_3 \subsetneq \dots$$

von Untermodul
n von M. Nach Konstruktion der M_i gibt es dahe
r $n\in\mathbb{N}$ mit

$$M' = M_n = Rm_1 + \ldots + Rm_n = (m_1, \ldots, m_n).$$

Das zeigt, dass M^\prime ein endlich erzeugter R-Modul ist.

Sei andererseits jeder Untermodul von Mendlich erzeugt über R. Für eine aufsteigende Kette

$$M_0 \subseteq M_1 \subseteq M_2 \subseteq \dots$$

von Untermodul
n von M setzen wir

$$M' := \bigcup_{k \in \mathbb{N}} M_k.$$

M'ist ein Untermodul von Mund somit endlich erzeugt. Nach Annahme gibt es daher $m_1,\dots,m_n\in M'$ mit

$$M'=(m_1,\ldots,m_n).$$

Nach Definition von M' gibt es ein $N \in \mathbb{N}$ mit $m_1, \ldots, m_n \in M_N$. Es ist daher $M_N = M$ und somit auch $M_k = M$ für alle $k \geq N$. Also stabilisert die Kette. \square

(a)

Da k kommutativ ist und nur zwei Ideale enthält, ist k offenbar noethersch. Induktiv ergibt sich damit aus dem Hilbertschen Basissatz direkt, dass auch $k[x_1,\ldots,x_n]$ für alle $n\in\mathbb{N}$ noethersch ist.

(b)

Es sei R ein kommutativer noetherscher Ring. Angenommen, R[X] ist nicht noethersch. Nach Lemma 1 gibt es dann ein Ideal $I \subseteq R[X]$ das nicht endlich erzeugt über R[X] ist. (Inbesondere ist $I \neq 0$.)

Wir definieren eine Folge $(f_i)_{i\geq 1}$ von Polynomen $f_i\in I$ wie folgt: Wir wählen $f_1\in I\smallsetminus\{0\}$ mit minimalen Grad. Ist f_i definiert, so ist, da I nicht endlich erzeugt ist.

$$(f_1,\ldots,f_i)\neq I.$$

Es sei dann $f_{i+1}\in I\smallsetminus (f_1,\dots,f_i)$ vom minimalen Grad. Man bemerke, dass stets $\deg f_i\leq \deg f_{i+1}.$

Für alle $i \geq 1$ definieren wir $a_i \in R$ als den Leitkoeffizienten von f_i und setzen

$$J_i := (a_1, \ldots, a_i) \subseteq R$$
.

Da R noethersch ist, stabilisert die aufsteigende Kette von Idealen

$$J_1 \subseteq J_2 \subseteq J_3 \subseteq \dots$$

Es gibt also ein $n \geq 1$ mit

$$(a_1,\ldots,a_{n+1})=J_{n+1}=J_n=(a_1,\ldots,a_n),$$

was äquivalent dazu ist, dass $a_{n+1} \in (a_1, \ldots, a_n)$. Es gibt also $r_1, \ldots, r_n \in R$ mit

$$a_{n+1} = \sum_{i=1}^{n} r_i a_i.$$

Deshalb ist

$$g := \sum_{i=1}^{n} r_i f_i \cdot X^{\deg f_{n+1} - \deg f_i} \in (f_1, \dots, f_n)$$

ein Polynom mit gleichem Grad und gleichen Leitkoeffizienten wie f_{n+1} . Da $f_{n+1} \not\in (f_0,\ldots,f_n)$ ist auch $f_{n+1}-g\not\in (f_1,\ldots,f_n)$. Da $\deg(f_{n+1}-g)<\deg f_{n+1}$ steht dies im Widerspruch zur Gradminimimalität von f_{n+1} .

Es ist also jedes Ideal in R[X] endlich erzeugt, und somit R[X] somit noethersch.