Binomial Representation Theorem

• Recall the discrete stochastic integral: if $\{X_n\}_{n\geq 0}$ is a $(\mathbb{P}, \{\mathcal{F}_n\}_{n\geq 0})$ -martingale and $\{\phi_n\}_{n\geq 1}$ is $\{\mathcal{F}_n\}_{n\geq 0}$ -previsible, then

$$Z_n = Z_0 + \sum_{j=0}^{n-1} \phi_{j+1} (X_{j+1} - X_j),$$

where Z_0 is a constant, is also a $(\mathbb{P}, \{\mathcal{F}_n\}_{n>0})$ -martingale.

• In a binary tree model, the converse is also true.

• Suppose that the measure $\mathbb Q$ is such that the discounted price process $\{\tilde{S}_n\}$ is a $(\mathbb Q, \{\mathcal{F}_n\}_{n\geq 0})$ -martingale. If $\{\tilde{V}_n\}$ is any other $(\mathbb Q, \{\mathcal{F}_n\}_{n\geq 0})$ -martingale, then there exists a $(\mathbb Q, \{\mathcal{F}_n\}_{n\geq 0})$ -predictable process $\{\phi_n\}_{n\geq 1}$ such that

$$\tilde{V}_n = \tilde{V}_0 + \sum_{j=0}^{n-1} \phi_{j+1} \left(\tilde{S}_{j+1} - \tilde{S}_j \right).$$

• To prove this, we must show that

$$\tilde{V}_{i+1} - \tilde{V}_i = \phi_{i+1} \left(\tilde{S}_{i+1} - \tilde{S}_i \right)$$

where ϕ_{i+1} is \mathcal{F}_i -measurable.

• For a given node at $t=i\delta t$, write $\left\{ \tilde{S}_{i+1}(u), \tilde{S}_{i+1}(d) \right\}$ for the two possible values of \tilde{S}_{i+1} , and $\left\{ \tilde{V}_{i+1}(u), \tilde{V}_{i+1}(d) \right\}$ for the corresponding values of \tilde{V}_{i+1} .

• We can solve

$$\tilde{V}_{i+1}(u) - \tilde{V}_i = \phi_{i+1} \left(\tilde{S}_{i+1}(u) - \tilde{S}_i \right) + k_{i+1}$$

and

$$\tilde{V}_{i+1}(d) - \tilde{V}_i = \phi_{i+1} \left(\tilde{S}_{i+1}(d) - \tilde{S}_i \right) + k_{i+1}$$

to get

$$\phi_{i+1} = \frac{\tilde{V}_{i+1}(u) - \tilde{V}_{i+1}(d)}{\tilde{S}_{i+1}(u) - \tilde{S}_{i+1}(d)}.$$

• Because $\left\{ \tilde{S}_{i+1}(u), \tilde{S}_{i+1}(d) \right\}$ and $\left\{ \tilde{V}_{i+1}(u), \tilde{V}_{i+1}(d) \right\}$ are known at time $t = i\delta t$, this ϕ_{i+1} is \mathcal{F}_i -measurable.

Also

$$k_{i+1} = \tilde{V}_{i+1} - \tilde{V}_i - \phi_{i+1} \left(\tilde{S}_{i+1} - \tilde{S}_i \right)$$

and because k_{i+1} is also \mathcal{F}_i -measurable,

$$k_{i+1} = \mathbb{E}\left[\tilde{V}_{i+1} - \tilde{V}_i - \phi_{i+1}\left(\tilde{S}_{i+1} - \tilde{S}_i\right)\middle|\mathcal{F}_i\right]$$

$$= \mathbb{E}\left[\tilde{V}_{i+1} - \tilde{V}_i\middle|\mathcal{F}_i\right] - \phi_{i+1}\mathbb{E}\left[\tilde{S}_{i+1} - \tilde{S}_i\middle|\mathcal{F}_i\right]$$

$$= 0$$

because both $\{\tilde{S}_n\}$ and $\{\tilde{V}_n\}$ are $(\mathbb{Q}, \{\mathcal{F}_n\}_{n\geq 0})$ -martingales.

That completes the proof.

 Note that the tree did not need to be recombining, only binary.

- We did, however, tacitly assume that $\tilde{S}_{i+1}(u) \neq \tilde{S}_{i+1}(d)$ at this node, and hence at all nodes.
- Self-financing: we can build a dynamic portfolio of stock and cash with discounted value $\{\tilde{V}_n\}$, by holding ϕ_{i+1} shares in $[i\delta t, (i+1)\delta t)$ and keeping the balance $V_i \phi_{i+1}S_i$ in cash.

Continuous Time Limit

- Fix a time t>0, and let $\delta t=t/N$; if N is large, and hence δt is small, the binary tree should approximate a continuous time model.
- At a node with stock price s, assume that the successor nodes are $s \exp\left(\nu \delta t \pm \sigma \sqrt{\delta t}\right)$ for a drift ν and volatility σ .
- Suppose that under the *market* measure \mathbb{P} , these are equally likely.

 Then the expected value at the next step, conditionally on being at this node, is

$$se^{\nu\delta t} \times \frac{1}{2} \left(e^{\sigma\sqrt{\delta t}} + e^{-\sigma\sqrt{\delta t}} \right) \approx s \left[1 + \left(\nu + \frac{1}{2}\sigma^2 \right) \delta t \right],$$

and the conditional variance is

$$\frac{1}{4} \left(s e^{\nu \delta t} \right)^2 \left(e^{\sigma \sqrt{\delta t}} - e^{-\sigma \sqrt{\delta t}} \right)^2 \approx s^2 \sigma^2 \delta t.$$

whence the conditional standard deviation is $s\sigma\sqrt{\delta t}$.

• Suppose that by time $t=N\delta t$, the price has moved up X_N times, and therefore down $N-X_N$ times.

Then

$$S_t = S_0 \exp \left[N\nu \delta t + X_N \sigma \sqrt{\delta t} - (N - X_N) \sigma \sqrt{\delta t} \right]$$
$$= S_0 \exp \left[\nu t + \sigma \sqrt{t} \left(\frac{2X_N - N}{\sqrt{N}} \right) \right].$$

• X_N is binomial, so, by the Central Limit Theorem, $Z_N \stackrel{\triangle}{=} (2X_N - N)/\sqrt{N}$ is approximately standard normal for large N, so we can write this as

$$S_t = S_0 \exp\left(\nu t + \sigma \sqrt{t} Z_N\right),\,$$

where Z_N is approximately N(0,1).

- ullet So, under the market measure \mathbb{P} , S_t is approximately lognormally distributed.
- ullet Under the *martingale* measure $\mathbb Q$, the probability of an upjump is

$$p = \frac{e^{r\delta t} - e^{\nu\delta t - \sigma\sqrt{\delta t}}}{e^{\nu\delta t + \sigma\sqrt{\delta t}} - e^{\nu\delta t - \sigma\sqrt{\delta t}}}$$
$$\approx \frac{1}{2} \left[1 - \sqrt{\delta t} \left(\frac{\nu + \frac{1}{2}\sigma^2 - r}{\sigma} \right) \right].$$

• So X_N is also binomial under \mathbb{Q} , but with parameter $p \neq \frac{1}{2}$.

- Again using the CLT, under \mathbb{Q} , $(2X_N-N)/\sqrt{N}$ is approximately $N\Big[-\sqrt{t}\left(\nu+\frac{1}{2}\sigma^2-r\right)/\sigma,1\Big].$
- So now we can write

$$S_t = S_0 \exp\left[\left(r - \frac{1}{2}\sigma^2\right)t + \sigma\sqrt{t}Z_N^*\right],$$

where $Z_N^* \stackrel{\triangle}{=} Z_N + \sqrt{t} \left(\nu + \frac{1}{2} \sigma^2 - r \right) / \sigma$ is, now under \mathbb{Q} , approximately N(0,1).

- Note that $Z_N^* \neq Z_N$:
 - $-Z_N$ is approximately N(0,1) under \mathbb{P} ;
 - $-Z_N^*$ is approximately N(0,1) under \mathbb{Q} .

- Option pricing: if a European option with maturity T has payoff $C(S_T)$, then its arbitrage-free price is $\mathbb{E}^{\mathbb{Q}}\left[e^{-rT}C(S_T)\right]$.
- We would expect this to be approximately

$$\mathbb{E}^{\mathbb{Q}}\left[e^{-rT}C\left(S_0\exp\left[\left(r-\frac{1}{2}\sigma^2\right)T+\sigma\sqrt{T}Z^*\right]\right)\right]$$

(although this follows from the convergence argument only for bounded, continuous $C(\cdot)$).

• Here, under \mathbb{Q} , Z^* is approximately N(0,1).

• For the special case of a European call with strike K and $C(S) = (S - K)_+$, we find the classic *Black-Scholes* price

$$S_0 \Phi \left[\frac{\log \frac{S_0}{K} + \left(r + \frac{1}{2}\sigma^2\right)T}{\sigma\sqrt{T}} \right] - Ke^{-rT} \Phi \left[\frac{\log \frac{S_0}{K} + \left(r - \frac{1}{2}\sigma^2\right)T}{\sigma\sqrt{T}} \right]$$

• Here $\Phi(\cdot)$ is the cumulative distribution function of the standard normal distribution

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx.$$