

List Update Problem With Untrusted Advice

Marzieh Aliakbarpour

The list update problem

- 1 Access
- 2 Deletion
- 3 Insertion

$$\sigma=\sigma_1,\sigma_2,\ldots,\sigma_m$$

MTF2

TIMESTAMP

DETERMINISTIC ALGORITHMS

At every step, the algorithm moves the requested item x to the front of the list.

The algorithm is **2-competitive**.

TIMESTAMP

The algorithm inserts the requested item x in front of the first item from the head of the list that precedes x and has been requested at most one time since the last request to x.

The Timestamp algorithm is **2-competitive**.

MTFE & MTFO

MTFO (resp. MTFE) moves a requested item x to the front on every odd (resp. even) request to x.

The algorithm is **2.5-competitive**.

The competitive ratio of MTFO is at least 2.5.

$$\sigma_{l} = \langle (a_1, a_2, ..., a_l, a_1^3, a_2^3, ..., a_l^3, a_l, a_{l-1}, ..., a_1, a_l^3, a_{l-1}^3, ..., a_1^3)^m \rangle$$

MTFO:

$$[\overset{1}{a_1} \dots \overset{1}{a_l}] \xrightarrow[l^2/2 + o(l^2)]{\overset{a_1 \dots a_l}{a_l \dots a_1}} [\overset{0}{a_l \dots a_1}] \xrightarrow[2l^2 + o(l^2)]{\overset{1}{a_l \dots a_1}} [\overset{1}{a_l \dots a_1}] \xrightarrow[l^2/2 + o(l^2)]{\overset{a_1 \dots a_1}{a_l \dots a_1}} [\overset{0}{a_1 \dots a_1}] \xrightarrow[2l^2 + o(l^2)]{\overset{1}{a_1 \dots a_1}} [\overset{1}{a_1 \dots a_1}] \xrightarrow[l^2/2 + o(l^2)]{\overset{1}{a_1 \dots a_1}} [\overset{1}{a_1 \dots a_1}] \overset{1}{a_1 \dots a_1} [\overset{1}{a_1 \dots a_1}] \overset{1}{a_1 \dots$$

OPT:

$$[a_1 \dots a_l] \xrightarrow[l^2/2 + o(l^2)]{a_1 \dots a_l} \xrightarrow[l^2/2 + o(l^2)]{a_1^3 \dots a_l^3} [a_l \dots a_1] \xrightarrow[l^2/2 + o(l^2)]{a_l \dots a_1} [a_l \dots a_1] \xrightarrow[l^2/2 + o(l^2)]{a_1 \dots a_l} [a_1 \dots a_l]$$

ADVICE MODEL

Under this model, the online algorithm receives partial information about the unknown parts of the input in the form of some bits of advice, generated by a benevolent offline oracle with infinite computational power.

ADVICE MODEL

$orall \sigma, orall x, y \in \sigma: MTFO(\sigma_{xy}) + MTFE(\sigma_{xy}) + Timestamp(\sigma_{xy}) \leq 5 \cdot Opt(\sigma_{xy})$

Phase	ALGMIN	ALGMAX	TIMESTAMP	$\begin{array}{c} \text{Sum (AlgMin} + \\ \text{AlgMax} + \text{Timestamp)} \end{array}$	Орт'	$\frac{\mathrm{Sum}}{\mathrm{Opt'}}$
x^jyy	1	2	2	5	1	5
$x^j(yx)^{2i}yy$	$\leq 3i + 1$	$\leq 3i + 2$	$2 \cdot 2i = 4i$	$\leq 10i + 3$	2i+1	< 5
$x^{j}(yx)^{2i-2}yxyy$	$\leq 3(i-1)+1$	$\leq 3(i-1)+1$	2(2i-1)	$\leq 6(i-1)+2+4$	2i	< 5
	$+\operatorname{ALgMin}(\langle xyy \rangle)$	$+ \operatorname{ALGMax}(\langle xyy \rangle)$	= 4i - 2	+(4i-2) = 10i-2		
$x^j(yx)^{2i}x$	$\leq 3i$	$\leq 3i + 1$	$2 \cdot 2i - 1$	$\leq (6i+1) + (4i-1)$	2i	≤ 5
			= 4i - 1	=10i		
$x^{j}(yx)^{2i-2}yxx$	$\leq 3(i-1)$	$\leq 3(i-1)$	$2 \cdot (2i-1) - 1$	$\leq 6(i-1)+4$	2i-1	≤ 5
	$+ AlgMin(\langle yxx \rangle)$	$+ ALGMAX(\langle yxx \rangle)$	=4i-3	+(4i-3) = 10i - 5		

14/22 • •

1.6-COMPETITIVE

THE TOGGLE ALGORITHM

The cost of phases

TRUSTING

IGNORING

$$m^3(1+1/m), m^3\left(1+1/m+1/m^2
ight) \qquad (eta m^3, eta m^3(1+1/m^2)) \ k. \, m^3. \, (1+eta+3/m)$$

COMPETITIVE RATIO OF TOG

ADVICE

TRUSTED

$$5/3 + \frac{5\beta}{6+3\beta}$$

UNTRUSTED

$$2.5-\frac{5\beta}{8+10\beta}$$

Undiscussed Questions

Parameter Optimization (Beta)

Expected Error

The cost thresholds of TOG's phases

Online Computation with Untrusted Advice, Spyros Angelopoulos1, Christoph Du¨rr1, Shendan Jin1, Shahin Kamali2, and Marc Renault3 (2019)

References

On the List Update Problem with Advice, Joan Boyara, Shahin Kamalib, Kim S. Larsena, Alejandro L'opez-Ortiz (2016)

Online Computation and Competitive Analysis, Allan Borodin, Ran El-Yaniv

Competitive Online Algorithms, Susanne Albers (BRICS)

THANK YOU

Contact: Marzieh.Aliakbarpour@gmail.com

