UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen (utsatt prøve) i: KJM 1110 – Organisk kjemi I

Eksamensdag: 17. august 2012 Tid for eksamen: 9:00-13:00

Oppgavesettet er på 4 sider + 2 sider vedlegg

Vedlegg: 2 sider med spektroskopiske data og

periodesystemet (bakerst i oppgavesettet)

Tillatte hjelpemidler: Molekylbyggesett og enkel kalkulator

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Alle 8 oppgaver teller likt.

Oppgave 1

En aromatisk forbindelse med bruttoformel C₁₄H₁₈O har ¹H NMR-spekteret som er vist nedenfor. Forbindelsen inneholder en karbonylgruppe.

Foreslå en mulig struktur til forbindelsen. Grunngi svaret ved å vise hvordan den foreslåtte strukturen er i overensstemmelse med de spektroskopiske data.

Oppgave 2

- a) Pyrrol er en heterosyklisk, aromatisk forbindelse med molekylformel C₄H₅N. Tegn alle resonansformer av pyrrol. Bruk piler som viser bevegelsen av elektroner fra en resonansform til en annen.
- b) Hvilke(n) av disse forbindelsene er *ikke* aromatisk(e)?

Oppgave 3

a) Forklar kort hvorfor **A** er en sterkere base enn **B**.

b) Ranger forbindelsene (i)-(iii) fra den mest sure til den minst sure og begrunn svaret med strukturer og en kortfattet tekst.

$$O_2N$$
 OH O_3O OH O_3O OH O_3O OH O_3O OH

Oppgave 4

a) Alle fem forbindelser nedenfor har det felles at de kan hydrolyseres i basisk miljø. Angi med strukturformler hvilke produkter man får ved hydrolyse i hvert enkelt tilfelle (om nødvendig, surgjør tilslutt for å protonere eventuelt dannede anioner).

b) Vis og forklar mekanismen for hydrolysen av (v) ved bruk av elektronparforskyvnings-piler.

Oppgave 5

Foreslå en syntese av denne forbindelsen. Tillatte utgangsstoffer er organiske forbindelser med seks eller færre karbonatomer, samt valgfrie uorganiske reagenser.

Det trengs flere trinn. Angi reagenser og strukturer for mellomprodukter for hvert trinn. Reaksjonsmekanismer trengs ikke.

Oppgave 6

- a) Når brom reagerer med sykloheksen, dannes to produkter som hver for seg er optisk aktive, men blandingen er optisk inaktiv. Tegn stereoformler for produktene og angi hvilken type isomeri disse representerer. Hva kalles den optisk inaktive produktblandingen?
- b) Når 1-metylsykloheksanol oppvarmes i surt miljø, dannes to produkter. Tegn formler for disse og angi hvilket produkt det dannes mest av. Hvilken reaksjonsmekanisme følger denne reaksjonen (detaljer kreves ikke)?

Oppgave 7

Gi entydige IUPAC-navn på forbindelsene A-E.

Oppgave 8

Tegn formler for hovedproduktene **A-F** i følgende reaksjoner.

¹H NMR kjemiske skift av protoner i forskjellige omgivelser. Dersom protonet er omgitt av flere funksjonelle grupper, vil effektene være omtrent additive (forsterkende).

Type proton		<i>Kjemisk skift</i> (δ)
Referanse	Si(CH ₃) ₄	0,0
Alkyl (primær)	—СН ₃	0,7-1,3
Alkyl (sekundær)	—С H ₂ —	1,2-1,6
Alkyl (tertiær)	СН —	1,4-1,8
Allylisk	$C = C - C \frac{H}{}$	1,6-2,2
Metylketon	—C_CH ₃	2,0-2,5
Aromatisk metyl	Aryl—CH ₃	2,4-2,7
Alkynyl	—с≡с−н	2,5-3,0
Alkylhalid	CH—Halogen	2,5-4,0
Alkohol	ССОН	2,5-5,0
Alkohol, eter	>c <h< td=""><td>3,3-4,5</td></h<>	3,3-4,5
Vinylisk	C=C H	4,5-6,5
Aromatisk	Aryl—H	6,5-8,0
Aldehyd	—c(H	9,7-10,0
Karboksylsyre	—с ^О —н	11,0-12,0

Periodesystemet

1 H																	2 He
3	4	1										5	6	7	8	9	10
Li	Ве											В	С	N	0	F	Ne
11	12	1										13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	0s	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89	104	105	106		•	•		•							•
Fr	Ra	Ac	Rf	Ha	106												

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr