The Relational Model (Part III)

Annoucement

TA-student assignment

- Aughdon Breslin: Students' last name in [Anerine, Crabtree]
- Sebastian Churion: Students' last name in [Cruz, Hurtado]
- Alexander Rubino: Students' last name in [Jang, Parekh]
- Dennis Salmanowitz: Students' last name in [Park, So]
- Grace Mattern: Students' last name in [Taveras, Zickert]

Integrity Constraints

- Integrity constraints (ICs): conditions specified on a database schema
- Legal instances: instances that satisfy ICs
- Types of ICs
 - Keys
 - Foreign keys
 - Domain constraints: (e.g., the age of driver license holders must be at least 18)

Referential Integrity Constraint

- Constraint: any enrolled student must be a student first.
- Referential integrity: for each student in Enrolled table, it must have a corresponding record (with the same sid) in the Students table.

Enrolled

sidcidgrade10311CS115A10312CS284B10311CS284A

Students

<u>Sid</u>	Name	Year	GPA
10311	Alice	Junior	3.4
10312	Bob	Junior	3
10550	Cathy	Freshman	3

Enforcing Referential Integrity

- What should be done if an Enrolled tuple with a non-existent student id is inserted?
 - Reject it!

Enrolled Students

<u>sid</u>	<u>cid</u>	grade		Sid	Name	Year	GPA
10311	CS115	А		10311	Alice	Junior	3.4
10312	CS284	В		10312	Bob	Junior	3
10311	CS284	А		10550	Cathy	Freshman	3
10720	CS442	A					

Enforcing Referential Integrity (cont.)

- What should be done if deleting Alice's record (Sid=10311) from Students table?
 - Option 1: Also delete all Enrolled tuples that refer to it.
 - Option 2: Disallow deletion of a Students tuple that is referred to.
 - Option 3: Set sid in Enrolled tuples that refer to it to a default sid.
 - Option 4: Set sid in Enrolled tuples that refer to it to a special value null, denoting `unknown' or `inapplicable'.
- Similar if the primary key of Students tuple is updated.

<u>sid</u>	<u>cid</u>	grade		<u>Sid</u>	Name	Year	GPA
10311	CS115	Α		10311	Alice	Junior	3.4
10312	CS284	В	→	10312	Bob	Junior	3
10311	CS284	Α		10550	Cathy	Freshman	3

Enrolled Students

Foreign Keys

- A foreign key (FK) of relation R is a set of attributes that is a key of relation S (S is different from R)
- FK enforces the referential integrity that some attributes in R must refer to the key of S

Enrolled Students

<u>sid</u>	<u>cid</u>	grade		<u>Sid</u>	Name	Year	GPA
10311	CS115	Α		10311	Alice	Junior	3.4
10312	CS284	В	→	10312	Bob	Junior	3
10311	CS284	Α		10550	Cathy	Freshman	3

Key: (sid, cid) Key: (sid)

Enrolled.sid is a foreign key referenced Students.sid

Define Foreign Keys in SQL

```
CREATE TABLE table_name (
    <field1> <domain>,
    <field2> <domain>,
    ...
    PRIMARY KEY (PK_field1, PK_field2,...),
    UNIQUE (CK_field1,CK_field2,...),
    FOREIGN KEY (FK1_field1, FK1_field2,...) REFERENCES Table1 (field1, field2,...),
    FOREIGN KEY (FK2_field1, FK2_field2,...) REFERENCES Table2 (field1, field2,...),
    ...
)
```

Notes:

- Referenced attributes in REFERENCES statement must be declared as either PRIMARY KEY or UNIQUE in the referenced table.
- There can be multiple foreign keys, each refer to a different table.
- Reference attributes can be omitted if they have the same names as foreign keys.
- Unlike a primary key, a foreign key need not be unique (i.e., a foreign key is not necessarily a key).

Example: Define Foreign Keys in SQL

Enrolled

<u>sid</u>	<u>cid</u>	grade	Students	<u>S</u>
10311	CS115	Α		1
10312	CS284	В	→	1
10311	CS284	Α		1

<u>Sid</u>	Name	Year	GPA
10311	Alice	Junior	3.4
10312	Bob	Junior	3
10550	Cathy	Freshman	3

Define Enrolled.sid as a foreign key

Note:

Both FOREIGN KEY (sid) REFERENCES Students (sid) and FOREIGN KEY (sid) REFERENCES Students are correct.

Enforce Reference Integrity with Database Updates

 Let the system do it automatically for you, by setting up the reference options for DELETE/UPDATE!

- Four reference-options (ref_option)
 - -CASCADE
 - -NO ACTION
 - -SET NULL
 - -SET DEFAULT

Reference Option 1: CASCADE

- CASCADE: Whenever rows in the master (referenced) table are deleted/updated, the respective rows of the child (referencing) table with a matching foreign key column will be deleted/updated automatically.
- In SQL: ON DELETE CASCADE ON UPDATE CASCADE

Delete/update Cascade

 In a <u>delete cascade</u>, any record that has references to the deleted item is also deleted automatically.

• In an <u>update cascade</u>, when the updated record results in a violation of referential integrity, the system will update the records in the referenced tables automatically.

Example 1

Enrolled Students

<u>sid</u>	<u>cid</u>	grade		<u>Sid</u>	Name	Year	GPA
10311	CS115	Α		10311	Alice	Junior	3.4
10312	CS284	В	→	10312	Bob	Junior	3
10311	CS284	Α		10550	Cathy	Freshman	3

 Deleting a Students record will lead to automatic deleting all Enrolled tuples that refer to it.

```
CREATE TABLE Enrolled
  (sid CHAR(20),
    cid CHAR(20),
    grade FLOAT,
    PRIMARY KEY (sid,cid),
    FOREIGN KEY (sid) REFERENCES Students ON DELETE CASCADE);
```

If DBA doesn't specify ON DELETE CASCADE, he/she has to delete records in Enrolled table manually

A Chain of Cascading Actions

 If there is a chain of foreign-key dependencies across multiple relations, with on delete cascade specified for each dependency, a deletion or update at one end of the chain can propagate across the entire chain.

Order

<u>OrderID</u>	<u>EmployeeID</u>	CustID	OrderDate
1	100	C1	29/03/2009
2	101	C2	16/04/2009

Order-Products

<u>OrderID</u>	ProductID	Qty
1	A1	1
2	A2	15
3	A3	23
4	A1	12

Product

<u>ProductID</u>	ProductName
A1	Football
A2	Tennis Ball
A3	Golf Clubs

- Order table has a foreign key as OrderID (reference to Order-Products table)
- Order-Products table has a foreign key as ProductID with the reference to Product table
- Assume we configure ON DELETE CASCADE on all foreign keys of Order and Order-Products tables.

Question 1: which table(s) will be updated automatically if the product A1 is removed from Product Table?

- Note: the Order-Products table contains one single record for OrderID=1

Order

<u>OrderID</u>	<u>EmployeeID</u>	CustID	OrderDate
1	100	C1	29/03/2009
2	101	C2	16/04/2009

Order-Products

<u>OrderID</u>	ProductID	Qty
1	A1	1
2	A2	15
3	A3	23
4	A1	12

Product

<u>ProductID</u>	ProductName
A1	Football
A2	Tennis Ball
A3	Golf Clubs

Question 2: If ON DELETE CASCADE is configured on the foreign key of Order table but not on Order-Products table, which table(s) will be updated automatically if the product A1 is removed from Product Table?

Order

<u>OrderID</u>	<u>EmployeeID</u>	<u>CustID</u>	OrderDate
1	100	C1	29/03/2009
2	101	C2	16/04/2009

Order-Products

<u>OrderID</u>	ProductID	Qty
1	A1	1
2	A2	15
3	A3	23
4	A1	12

Product

<u>ProductID</u>	ProductName
A1	Football
A2	Tennis Ball
A3	Golf Clubs

Question 3: If ON DELETE CASCADE is only configured on the foreign key of Order-Products table, which table(s) will be updated automatically if the product A1 is removed from Product Table?

Order

<u>OrderID</u>	<u>EmployeeID</u>	CustID	OrderDate
1	100	C1	29/03/2009
2	101	C2	16/04/2009

Order-Products

OrderID	ProductID	Qty
1	A1	1
2	A2	15
3	A3	23
1	A2	12

Product

<u>ProductID</u>	ProductName	
A1	Football	
A2	Tennis Ball	
A3	Golf Clubs	

Question 4: Now if the Order-Products table can contain multiple records for the same order (e.g., for OrderID=1), which table(s) will be updated if the product A1 is removed from Product Table?

Tips:

- •What is the key of Order-Products table now?
- •What is the foreign key of Order table now?

Reference Option 2: NO ACTION

- NO ACTION (or RESTRICT):
 - An error is raised;
 - The SQL statement is rolled back
- In SQL: ON DELETE NO ACTION
 ON UPDATE NO ACTION

Reference Option 3: SET NULL

SET NULL

- The foreign key values in the referencing row are set to NULL when the referenced row is updated or deleted.
- Can be specified only if some column of the foreign key allows null values.
- In SQL: ON DELETE SET NULL ON UPDATE SET NULL

Reference Option 4: SET DEFAULT

SET DEFAULT

 The foreign key values in the referencing row are set to default value when the referenced row is updated or deleted.

• **In SQL:** ON DELETE SET DEFAULT ON UPDATE SET DEFAULT

Choosing a Policy

- Different policies can be chosen independently for deletions and updates.
 - Example:

```
ON DELETE CASCADE
ON UPDATE NO ACTION
```

• If there is no policy specified, the default (reject) is used.

DBMS Products and Their Supports for Referential Integrity

Product	CASCADE	NO ACTION	SET NULL	SET DEFAULT
SQL server	Υ	Υ	N	N
Oracle	Υ	Υ	Υ	N
MySQL	Υ	Υ	Υ	Υ
MS Access	Υ	Υ	N	N