数值积分

- 〉数值积分基本概念
- > 插值型求积公式
- 求积分的蒙特卡罗方法
- > 复合求积公式
- 一高斯型数值求积公式
- **一龙贝格外推计算公式**

数值积分基本概念

假设需要求解的定积分为如下形式

$$I(f) = \int_{a}^{b} f(x) \mathrm{d}x$$

定积分的定义给出了一种数值求定积分的方法,但是黎曼和通常收敛很慢,这意味着它需要一个很大的 n 值才能使总和准确值很接近.

定积分与积分和式

假设需要求解的定积分为如下形式:

$$I(f) = \int_{a}^{b} f(x) \mathrm{d}x$$

为了找到能够尽可能逼近I(f)准确值的数值方法. 通常,求定积分近似值的形式为

$$I_n(f) = \sum_{i=i_0}^n w_i f(x_i)$$

数值求积公式的一般形式

$$\int_{a}^{b} f(x)dx = \sum_{k=0}^{n} A_{k} f(x_{k}) + R[f]$$

R[f] — 数值求积公式余项

 x_0, x_1, \dots, x_n — 求积结点

 A_0, A_1, \dots, A_n — 求积系数

定积分与积分和式

$$\int_a^b f(x)dx = \lim_{h \to 0} \sum_{j=1}^n f(x_j)h$$

$$f(x) = \frac{x^3}{e^x - 1}$$

右矩形和
$$S_n = \sum_{j=1}^n f(x_j)h$$

h	1	0.5	0.2	•••
S_n	5.2908	5.1044	4.9835	4.8999

下图展示了函数 $y = f(x) = 1/2 + \sin \pi x$, 在区间[1/4,5/4]上积

分示意图.

下表是利用等距划分的左矩形公式、右矩形公式和中点公式进行计算的结果比较(这里参考的准确值为: 4.89999)

$$f(x) = \frac{x^3}{e^x - 1}$$

n	左矩形	右矩形	中点
1	4.4429	5.2908	4.8669
2	4.6804	5.1044	4.8924
3	4.8139	4.9835	4.8987
4	4.8572	4.9420	4.8996

插值型求积公式

对 [a, b]做分划: $a \le x_0 < x_1 < x_2 < \dots < x_n \le b$

Lagrange 插值

$$f(x) \approx \sum_{j=0}^{n} l_j(x) f(x_j) \qquad \qquad \int_a^b f(x) dx \approx \sum_{j=0}^{n} \left[\int_a^b l_j(x) dx \right] f(x_j)$$

插值型求积公式的余项

$$R[f] = \int_a^b [f(x) - L_n(x)] dx = \int_a^b \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x) dx$$

例1. 梯形公式

线型插值

$$L(x) = \frac{x - x_0}{x_1 - x_0} y_1 + \frac{x_1 - x}{x_1 - x_0} y_0$$

$$l_0(x) = \frac{x_1 - x}{x_1 - x_0}, l_1(x) = \frac{x - x_0}{x_1 - x_0}$$

$$A_0 = \int_a^b \frac{b-x}{b-a} dx = \frac{1}{2}(b-a) \qquad A_1 = \int_a^b \frac{x-a}{b-a} dx = \frac{1}{2}(b-a)$$

$$\int_a^b f(x)dx \approx \frac{b-a}{2}[f(a)+f(b)]$$

梯形公式的误差(余项)

$$R = \int_a^b \frac{f''(\xi)}{2} (x-a)(x-b) dx = \frac{f''(\xi)}{2} \int_a^b (x-a)(x-b) dx \ \text{Pl} \ R = -\frac{(b-a)^3}{12} f''(\eta)$$

$$f(x) = \frac{x^3}{e^x - 1} \qquad \int_0^5 f(x) dx \approx 4.8999$$

$$S_n = \sum_{j=1}^n \frac{1}{2} [f(x_{j-1}) + f(x_j)]h$$

左矩形	梯形	右矩形
4.4429	4.8669	5.2908
4.6804	4.8924	5.1044
4.8139	4.8987	4.9835
4.8572	4.8996	4.9420

例2. Simpson 公式

取
$$x_0 = a$$
, $x_1 = 0.5(a+b)$, $x_2 = b$,则 $h = 0.5(b-a)$

$$A_{0} = \int_{x_{0}}^{x_{2}} \frac{(x - x_{1})(x - x_{2})}{2h^{2}} dx$$

$$A_{1} = \int_{x_{0}}^{x_{2}} \frac{(x - x_{0})(x - x_{2})}{-h^{2}} dx$$

$$A_{2} = \int_{x_{0}}^{x_{2}} \frac{(x - x_{0})(x - x_{1})}{2h^{2}} dx$$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} [f(a) + 4f(\frac{a+b}{2}) + f(b)]$$

$$L(x)=l_0(x)y_0+l_1(x)y_1+l_2(x)y_2$$

Simpson 公式

 $l_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$

 $l_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$

 $l_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$

求积公式的代数精度

定义:对不高于m次的多项式P(x),求积公式余项

$$R[P] = \int_{a}^{b} P(x)dx - \sum_{k=0}^{n} A_{k}P(x_{k}) \equiv 0$$

且有m+1次多项式不具有这样的性质,则称 $\int_a^b f(x)dx \approx \sum_{k=0}^n A_k f(x_k)$

具有m阶的代数精确度。

例. 梯形公式
$$\int_a^b f(x)dx \approx \frac{b-a}{2} [f(a)+f(b)]$$
 代数精度为1.

类似有: Simpson公式具有3阶代数精度.

对于n次Lagrange插值基函数,有恒等式

$$\sum_{j=0}^{n} l_j(x) x_j^k = x^k \quad \Longrightarrow \quad \sum_{j=0}^{n} A_j x_j^k = \int_a^b x^k dx$$

所以, $R[x^k] = 0$, $(k = 0,1,2,\dots,n)$

(n+1)点插值型求积公式代数精度至少为n阶.

例3. 确定公式
$$\int_0^{3h} f(x)dx \approx A_0 f(0) + A_1 f(h) + A_2 f(2h)$$

使代数精度尽可能高.

解: 取 $f(x)=1, x, x^2$ 若求积公式准确成立,则有

$$\begin{cases} 3h = A_0 + A_1 + A_2 \\ \frac{9}{2}h^2 = 0 + A_1h + A_22h \\ 9h^3 = 0 + A_1h^2 + 4h^2A_2 \end{cases}$$
$$\begin{cases} A_0 = \frac{3}{4}h \\ A_1 = 0 \\ A_2 = \frac{9}{4}h \end{cases}$$

求积公式
$$\int_0^{3h} f(x)dx \approx \frac{3h}{4} f(0) + \frac{9h}{4} f(2h)$$
 具有至少2阶代数精度.

容易验证, 对 $f(x) = x^3$ 求积公式式不能准确成立. 因此这一公式只具有2阶代数精度.

取等距结点 $x_j = a + jh$ 时,插值型求积公式称为Newton-Cotes公式

$$f(x) \approx \sum_{j=0}^{n} l_j(x) f(x_j) \rightarrow \int_a^b f(x) dx \approx \sum_{j=0}^{n} A_j f(x_j)$$

Newton-Cotes公式代数精度至少为n.

定理: 当 n 为偶数时, n 阶Newton-Cotes公式至少有(n+1)阶代数精确度.

蒙特卡罗法求积分

$$F = \int_0^5 \frac{x^3}{e^x - 1} dx \approx 4.8999 \qquad D = \{(x, y) | 0 < x < 5, 0 < y < 1.5\}$$

$$D = \{(x, y) \mid 0 < x < 5, 0 < y < 1.5\}$$

$$S = 1.5 \times 5 = 7.5$$

在D中投入N个点,落入曲边梯形内的点数为n

N = 2000: q= 4.8975, 4.9256, 4.7550, 4.9800 ·····

复合求积公式

例: 在区间 [1/4, 5/4]中,将辛普森公式的原始形式应用于函数 $y = f(x) = 1/2 + \sin \pi x$,有

$$S_2(f) = \frac{1/2}{3} \left(\frac{1}{2} + \sin \frac{1}{4} \pi + 4 \left(\frac{1}{2} + \sin \frac{3}{4} \pi \right) + \frac{1}{2} + \sin \frac{5}{4} \pi \right)$$
$$= \frac{1}{6} \left(3 + \frac{1}{2} \sqrt{2} + 2\sqrt{2} - \frac{1}{2} \sqrt{2} \right) = 0.9714045208.$$

比较准确的值: 0.9501581581

对于前面的的例子,如果现在使用两个区间的抛物线来近似,

$$S_4(f) = \frac{1/4}{3}(f(1/4) + 4f(1/2) + 2f(3/4) + 4f(1) + f(5/4)) = 0.9511844634.$$

 S_4 比 S_2 的值更准确.

将辛普森公式应用于定义在区间[0, 1]上的 $f(x) = e^x$, 并使用

一系列递减的网格,得到下表:

n	S _n (f)	$I(f) - S_n(f)$	误差率
2	1.718861151877	-0.579323E-03	N/A
4	1.718318841922	-0.370135E-04	15.6517
8	1.718284154700	-0.232624E-05	15.9113
16	1.718281974052	-0.145593E-06	15.9777
32	1.718281837562	-0.910273E-08	15.9944
64	1.718281829028	-0.568969E-09	15.9986
128	1.718281828495	-0.35561 IE-10	15.9998
256	I.718281828461	-0.222178E-11	16.0057
512	1.718281828459	-0.137890E-12	16.1127
1024	1.718281828459	-0.910383E-14	15.1463
2048	1.718281828459	0.444089E-15	-20.5000

当 h 减半时,这里的误差减少了大约16倍.

复合梯形求积公式

$$R = -\frac{(b-a)^3}{12} f''(\eta)$$

将积分区间[a,b] n 等分.取 h=(b-a)/n . $x_i=a+jh$

$$\int_{a}^{b} f(x)dx = \sum_{j=0}^{n-1} \int_{x_{j}}^{x_{j+1}} f(x)dx \approx \frac{h}{2} \sum_{j=0}^{n-1} [f(x_{j}) + f(x_{j+1})]$$
$$= \frac{h}{2} [f(a) + f(b) + 2 \sum_{j=1}^{n-1} f(x_{j})]$$

$$T_n = \frac{h}{2} [f(a) + f(b) + 2 \sum_{j=1}^{n-1} f(a+jh)] \qquad h = \frac{b-a}{n}$$

$$T_{2n} = \frac{h_1}{2} [f(a) + f(b) + 2 \sum_{j=1}^{2n-1} f(a+jh_1)]$$

$$h_1=\frac{h}{2}$$

$$T_{2n} = \frac{1}{2} [T_n + h \sum_{j=1}^n f(a+jh-\frac{h}{2})]$$

$$R = -\frac{(b-a)^3}{12} f''(\eta)$$

取
$$T_1 = \frac{b-a}{2} [f(a) + f(b)]$$
 递推,得

$$T_1 \rightarrow T_2 \rightarrow T_4 \rightarrow \cdots \rightarrow T_n \rightarrow T_{2n}$$

给定允许误差界 $\epsilon > 0$,当 $\left| T_{2n} - T_n \right| \le \varepsilon$ 时,结束计算并以 T_{2n}

作为定积分的近似值.

$$R[f] = \int_a^b f(x)dx - T_n = -\frac{h^3}{12} \sum_{k=1}^n f''(\xi_k)$$

$$=-\frac{(b-a)h^2}{12}\left[\frac{1}{n}\sum_{k=1}^n f''(\xi_k)\right] = -\frac{(b-a)h^2}{12}f''(\xi_h)$$

$$\lim_{n\to\infty} |I(f)-T_n(f)| = \lim_{h\to 0} \frac{\left(b-a\right)h^2}{12} |f''(\xi_h)|$$

$$\leq \lim_{h\to 0} \frac{\left(b-a\right)h^2}{12} \left|\max_{\xi_h\in[a,b]} f''(\xi_h)\right| \to 0.$$

$$R[f] = \int_a^b f(x)dx - T_n = -\frac{(b-a)h^2}{12}f''(\xi_h).$$

例, $f(x) = e^x$, [a, b] = [0, 1] I(f) = e - 1 = 1.712828...

n	$T_n(f)$	$I(f)$ - $T_n(f)$	误差率
2	1.753931092	-0.356493E - 01	N/A
4	1.727221905	-0.894008E - 02	3.9876
8	1.720518592	-0.223676E - 02	3.9969
16	1.718841129	-0.559300E - 03	3.9992
32	1.718421660	-0.139832E - 03	3.9998
64	1.718316787	-0.349584E - 04	4.0000
128	1.718290568	-0.873962E - 05	4.0000
256	1.718284013	-0.218491E - 05	4.0000
512	1.718282375	-0.546227E - 06	4.0000
1024	1.718281965	-0.136557E- 06	4.0000
2048	1.718281863	-0.341392E - 07	4.0000

$$R[f] = \int_a^b f(x)dx - T_n = -\frac{(b-a)h^2}{12}f''(\xi_h).$$

例2: 对于右面的积分 $I(f) = \int_0^1 e^{-x^2} dx$.

问 h 因该有多小才能保证 $|I(f)-T_n(f)| \le 10^{-3}$?

分析:

$$|I(f)-T_n(f)| = \frac{1}{12}h^2 |f''(\xi)| \le \frac{1}{12}h^2 \max_{x \in [0,1]} |f''(x)|. \qquad f''(x) = e^{-x^2} \left(4x^2 - 2\right)$$

$$\left|\max_{x \in [0,1]} f''(x)\right| = \left|\max_{x \in [0,1]} e^{-x^2} \left(4x^2 - 2\right)\right| \le e^0 (0-2) = 2.$$

$$h \le \sqrt{0.002} = 0.0774596661...$$

复合梯形规则的稳定性:

$$T_{2n} = \frac{1}{2} [T_n + h \sum_{j=1}^n f(a+jh-\frac{h}{2})]$$

$$g(x) = f(x) + \varepsilon(x)$$

$$T_n(f) = \frac{h}{2} [f(a) + f(b) + 2 \sum_{j=1}^{n-1} f(a+jh)]$$

$$T_n(g) = \frac{h}{2} [g(a) + g(b) + 2 \sum_{j=1}^{n-1} g(a+jh)]$$

$$T_n(f-g) = \frac{h}{2} \left\{ \left[f(a) - g(a) \right] + \left[f(b) - g(b) \right] + 2 \left[\sum_{j=1}^{n-1} f(a+jh) - g(a+jh) \right] \right\}$$

改进梯形公式

$$T_{2n} = \frac{1}{2} [T_n + h \sum_{j=1}^n f(a+jh-\frac{h}{2})]$$

$$R[f] = \int_{a}^{b} f(x)dx - T_{n} = -\frac{h^{3}}{12} \left[\sum_{k=1}^{n} f''(\xi_{k}) \right]$$

$$h^{3} \sum_{k=1}^{n} f''(\xi_{k}) = h^{2} \sum_{i=1}^{n} h f''(\xi_{i,h})$$

$$\sum_{i=1}^{n} hf''(\xi_{i,h}) \approx I(f'') = \int_{a}^{b} f''(x) dx = f'(b) - f'(a)$$

$$R[f] = \int_{a}^{b} f(x)dx - T_{n} = -\frac{h^{3}}{12} \left[\sum_{k=1}^{n} f''(\xi_{k}) \right]$$

改进梯形公式:
$$\sum_{i=1}^{n} hf''\left(\xi_{i,h}\right) \approx f'(b) - f'(a)$$

$$I(f)-T_n(f) \approx -\frac{1}{12}h^2(f'(b)-f'(a)).$$

$$T_n^C(f) = T_n(f) - \frac{1}{12}h^2(f'(b) - f'(a)).$$

例2: 对于右面的积分
$$I(f) = \int_0^1 e^{-x^2} dx$$
. 使得 $T_n(f) \le 10^{-6}$.

方法1:直接估计n,使得

$$I(f)-T_n(f) \approx -\frac{1}{12}h^2(f'(b)-f'(a)).$$
 $f'(x) = -2xe^{-x^2}$

$$E_n(f) = -\frac{h^2}{12} (f'(b) - f'(a)) = \frac{h^2}{6e}. \qquad |E_n(f)| \le 10^{-6}$$

$$|E_n(f)| = \frac{h^2}{6e} \le 10^{-6} \Rightarrow h \le \sqrt{6e} \times 10^{-3} = 4.04 \times 10^{-3}$$

$$n = 256.$$

方法2: 近似导数,比如

$$f'(a) = f'(x_0) = \frac{-3f(x_0) + 4f(x_1) - f(x_2)}{2h} + \frac{h^2}{3}f'''(\xi_a)$$

$$f'(b) = f'(x_n) = \frac{3f(x_n) - 4f(x_{n-1}) + f(x_{n-2})}{2h} + \frac{h^2}{3}f'''(\xi_b)$$

从而有如下修正公式:

$$\tilde{T}_{n}^{C}(f) = T_{n}(f) - \frac{h}{24} \left[3f(x_{n}) - 4f(x_{n-1}) + f(x_{n-2}) + 3f(x_{0}) - 4f(x_{1}) + f(x_{2}) \right].$$

改进梯形公式:

n	$ ilde{T}_n^C(f)$	$I(f)$ - $\tilde{T}_n^C(f)$	误差率
2	1.718861152	-0.579323E-03	N/A
4	1.718386631	-0.104802E-03	5.5278
8	1.718290593	-0.876407E-05	11.9582
16	1.718282447	-0.618963E-06	14.1593
32	1.718281869	-0.409496E-07	15.1152
64	1.718281831	-0.263078E-08	15.5656
128	1.718281829	-0. l 66666E-09	15.7847
256	1.718281828	-0.104863E-10	15.8938
512	1.718281828	-0.658362E-12	15.9278
1024	1.718281828	-0.406342E-13	16.2022
2048	1.718281828	-0.199840E-14	20.3333

高斯型数值求积公式

考虑函数f(x)在对称区间[-1,1]上的积分. 一般来说,积分关系均基于预先计算或确定的权重和横坐标来构造. 通常积分关系可以写为如下形式

$$G_n(f) = \sum_{i=1}^n w_i f(x_i) \approx \int_{-1}^1 f(x) dx.$$

例:选择恰当的积分节点及相应的积分系数,使下面的插值型 求积公式具有尽可能高的代数精度.

$$\int_{-1}^{1} f(x) dx \approx A_{1} f(x_{1}) + A_{2} f(x_{2})$$

高斯型数值求积公式

$$\int_{-1}^{1} f(x)dx \approx A_0 f(x_0) + A_1 f(x_1)$$

代数精度为3, 取 $f(x)=1, x, x^2, x^3$

$$\begin{cases} A_0 + A_1 = 2 & (1) \\ A_0 x_0 + A_1 x_1 = 0 & (2) & (4) - (2) \times x_0^2 & \Rightarrow x_1^2 = x_0^2 \\ A_0 x_0^2 + A_1 x_1^2 = \frac{2}{3} & (3) & (3) - (1) \times x_0^2 & \Rightarrow x_0^2 = 1/3 \\ A_0 x_0^3 + A_1 x_1^3 = 0 & (4) \end{cases}$$

$$A_0 = 1, A_1 = 1, x_0 = -\frac{1}{\sqrt{3}}, x_1 = \frac{1}{\sqrt{3}}$$

代数精度为3的数值求积公式

$$\int_{-1}^{1} f(x)dx \approx f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$$

对于[a,b]区间上的定积分,构造变换

$$x(t) = \frac{b-a}{2}t + \frac{b+a}{2}$$
 $t \in [-1, 1]$

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{-1}^{1} f(\frac{b-a}{2}t + \frac{b+a}{2})dt$$

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} \left[f\left(-\frac{b-a}{2\sqrt{3}} + \frac{b+a}{2}\right) + f\left(\frac{b-a}{2\sqrt{3}} + \frac{b+a}{2}\right) \right]$$

定义 如果求积结点 x_0, x_1, \dots, x_n , 使插值型求积公式

$$\int_{-1}^{1} f(x)dx \approx \sum_{k=0}^{n} A_k f(x_k)$$

的代数精度为2n+1,则称该求积公式为Gauss型求积公式. 称这些求积结点为Gauss点.

定理7.2 如果多项式 $w_{n+1}(x)=(x-x_0)(x-x_1)\cdots(x-x_n)$ 与任意的不超过n次的多项式P(x) 正交,即

$$\int_{-1}^{1} w_{n+1}(x) P(x) dx = 0$$

则, $w_{n+1}(x)$ 的所有零点 x_0, x_1, \dots, x_n 是Gauss点.

例 验证多项式 $w_2(x) = x^2 - \frac{1}{3}$ 是[-1,1]上正交多项式.

$$\int_{-1}^{1} (a_0 + a_1 x) w_2(x) dx = a_0 \int_{-1}^{1} w_2(x) dx + a_1 \int_{-1}^{1} x w_2(x) dx = 0$$

得Gauss点
$$x_0 = -\frac{1}{\sqrt{3}}, x_1 = \frac{1}{\sqrt{3}}$$

插值公式:
$$f(x) \approx \frac{x_1 - x}{x_1 - x_0} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1)$$

$$\int_{-1}^{1} \frac{x_1 - x}{x_1 - x_0} dx = \frac{2x_1}{x_1 - x_0} = 1 \qquad \int_{-1}^{1} \frac{x - x_0}{x_1 - x_0} dx = \frac{-2x_0}{x_1 - x_0} = 1$$

两点Gauss公式
$$\int_{-1}^{1} f(x)dx \approx f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$$

定理 令 $\{w_i\}$ 为一组权重, $\{x_i\}$ 为一组高斯点,使得

$$G_n(f) = \sum_{i=1}^n w_i f(x_i) \approx \int_{-1}^1 f(x) dx.$$

对所有2n-1次多项式均精确成立,则 $\{w_i\}$ 必须满足 $w_i = \int_{-1}^{1} L_i^{(n)}(x) dx$

其中,
$$L_i^{(n)}(x) = \prod_{k=1, k \neq i}^n \frac{x - x_k}{x_i - x_k}$$

定理: (高斯积分的构造)

对于2n-1次多项式,存在一个高斯点集 $\{x_i\}$ 和权重 $\{w_i\}$,即权重

$$w_i = \int_{-1}^{1} L_i^{(n)}(x) dx$$
,使得 $G_n(f) = \sum_{i=1}^{n} w_i f(x_i) \approx \int_{-1}^{1} f(x) dx$. 对于所有不超过 $2n-1$ 次多项式均成立.

Legendre多项式递推式

$$\begin{cases} p_0 = 1, & p_1 = x, \\ p_{n+1} = \frac{2n+1}{n+1} x p_n - \frac{n}{n+1} p_{n-1}, & x \in [-1,1] \end{cases}$$

$$p_2(x) = \frac{1}{2} (3x^2 - 1) \qquad p_3(x) = \frac{1}{2} (5x^3 - 3x)$$

$$p_3(x) = \frac{1}{2} (5x^3 - 3x) = 0 \qquad x_{0,2} = \mp \sqrt{\frac{3}{5}} \approx -0.7745067 \qquad x_1 = 0$$

三点Gauss数值求积公式

$$\int_{-1}^{1} f(x)dx \approx 0.5556 f(-0.7745) + 0.8889 f(0) + 0.5556 f(0.7745)$$

常见高斯型数值求积公式

2点公式	高斯点	积分系数	高斯点	积分系数
	-0.5773502691896	1. 0000000000000	0.5773502691896	1. 0000000000000
3点公式	高斯点	积分系数	高斯点	积分系数
	-0.7745966692414	0. 55555555555	0. 0000000000000	0. 888888888888
	0.7745966692414	<mark>0. 5555555555</mark>		

例: 两点Gauss公式计算 $\int_0^1 \frac{\sin x}{x} dx$

解: 变换
$$x = 0.5(t+1)$$

$$\int_0^1 \frac{\sin x}{x} dx = \int_{-1}^1 \frac{\sin 0.5(t+1)}{t+1} dt$$

取
$$t_0 = \frac{-1}{\sqrt{3}} \approx -0.57735$$
 $t_1 = \frac{1}{\sqrt{3}} \approx 0.57735$

$$\int_0^1 \frac{\sin x}{x} dx \approx \frac{1}{2} \left[\frac{\sin 0.5(t_0 + 1)}{0.5(t_0 + 1)} + \frac{\sin 0.5(t_1 + 1)}{0.5(t_1 + 1)} \right]$$

Simpsion三点公式	0.94614588227359
MATLAB命令	0.94608307036718
Gauss两点公式	0.94604113689782

高斯型数值求积公式的误差

利用插值多项式的特点,通过一些计算,我们可以下面高斯积分的误差公式为: **2**20+1 (20)4

$$I(f)-G_n(f)=\frac{2^{2n+1}(n!)^4}{(2n+1)[(2n)!]^3}f^{(2n)}(\eta_n).$$

利用斯特啉公式(Stirling)公式

$$n! = C_n \sqrt{n} (n/e)^n$$
, $(2n)! = C_{2n} \sqrt{2n} (2n/e)^{2n}$

$$\frac{2^{2n+1}(n!)^4}{(2n+1)[(2n)!]^3} = \frac{2^{2n+1}C_n^4n^2(n/e)^{4n}}{(2n+1)C_{2n}^3(2n)^{3/2}(2n/e)^{6n}} = K_n \frac{\sqrt{n}}{n+\frac{1}{2}} \left(\frac{e}{16n}\right)^{2n}$$

其中 $K_n = \frac{C_n^4}{2^{3/2}C_{2n}^3}$ 在0.7和1.04之间.该此估算值表明只要被积函数足够平滑。误差就会随着 n 呈指数下降.

例如

对于
$$n = 16$$
,
$$\frac{2^{2n+1}(n!)^4}{(2n+1)[(2n)!]^3} = K_n \frac{\sqrt{n}}{n+\frac{1}{2}} \left(\frac{e}{16n}\right)^{2n} = K_n \times 1.653181645 \times 10^{-64}.$$

定理: (通用高斯积分) 令 $w(x) \ge 0$ 是区间[a, b]的权重函数,并且令

 $\phi_k(x)$ 是与此权重函数和区间有关的正交多项式族. 定义积分关系为

$$G_n(f) = \sum_{i=1}^n w_i^{(n)} f(x_i^{(n)}),$$

对于 $\phi_n(x)$ 的根 $x_i^{(n)}$, 令 $w_i^{(n)}$ 由下式定义

$$w_i^{(n)} = \int_a^b w(x) \left(\prod_{k=1}^n \frac{x - x_k^{(n)}}{x_i^{(n)} - x_k^{(n)}} \right) dx$$

那么 $G_n(P)$ 对于所有2n-1阶多项式都是精确的,并且存在 $\xi_n \in [a,b]$ 使:

$$\int_{a}^{b} w(x) f(x) dx - G_{n}(f) = \frac{1}{(2n)!} \left(\int_{a}^{b} \psi_{n}(x) dx \right) f^{(2n)}(\xi_{n}),$$

对于所有 $f \in C^{2n}([a,b])$ 均成立,其中 $\psi_n(x) = \prod_{k=1}^n (x - x_k^{(n)})^2$

引例: 构造
$$I(f) = \int_0^\infty e^{-x} f(x) dx$$
. 高斯积分关系

解:
$$L_2(x) = \frac{1}{2}(x^2 - 4x + 2)$$
. 对应的高斯点是

$$x_1 = 2 - \sqrt{2} = 0.5857864376$$
, $x_2 = 2 + \sqrt{2} = 3.414213562$.

相应的权重是

$$w_1 = \int_0^\infty e^{-x} \left(\frac{x - x_2}{x_1 - x_2} \right) dx = \frac{1}{4} (2 + \sqrt{2}) = 0.8535533903,$$

$$w_2 = \int_0^\infty e^{-x} \left(\frac{x - x_1}{x_2 - x_1} \right) dx = \frac{1}{4} (2 - \sqrt{2}) = 0.1464466092.$$

$$R[f] = \int_a^b f(x)dx - T_n = -\frac{(b-a)h^2}{12}f''(\xi_h).$$

龙贝格外推计算公式

定理: (欧拉一麦克劳林公式)

如果 f 具有足够的可微性,则对于任何N>0,都有一组常数 C_k , $1 \le k \le N+1$, 使得对于 $\xi \in [a,b]$,梯形公式中的误差满足

$$I(f) - T_n(f) = \gamma_1 h^2 + \gamma_2 h^4 + \dots + \gamma_N h^{2N} + c_{N+1}(b-a)h^{2N+2} f^{(2N+2)}(\xi).$$

其中
$$\gamma_k = c_k \left(f^{(2k-1)}(b) - f^{(2k-1)}(a) \right).$$

复合梯形公式

$$I(f)-T_n=-\frac{(b-a)h^2}{12}f''(\xi_h).$$

$$T_n = \frac{h}{2} [f(a) + f(b) + 2 \sum_{j=1}^{n-1} f(a+jh)] \qquad T_{2n} = \frac{h}{4} [f(a) + f(b) + 2 \sum_{j=1}^{2n-1} f(a+jh/2)]$$

$$I - T_n = -\frac{(b-a)h^2}{12}f''(\xi_1) \qquad I - T_{2n} = -\frac{(b-a)h^2}{4 \times 12}f''(\xi_2)$$

$$f''(\eta_1) \approx f''(\eta_2) \qquad I - T_n \approx 4(I - T_{2n})$$

误差估计

$$T_{2n} - T_n \approx 3(I - T_{2n})$$

外推计算 $I \approx \frac{4T_{2n} - T_n}{3}$

$$R[f] = -\frac{(b-a)^3}{12n^2} f''(\eta), \quad \eta \in (a,b)$$

欧拉-马克劳林公式

记
$$I = \int_a^b f(x)dx$$
 $T(h) = \frac{h}{2}[f(a) + f(b) + 2\sum_{j=1}^{n-1} f(a+jh)]$

$$| I - T(h) = -\frac{(b-a)^3}{12n^2} f''(\eta) \qquad T(h) = I + \frac{(b-a)}{12} f''(\eta) h^2$$

$$T(h) = I + O(h^2)$$

$$T(h) = I + \alpha_1 h^2 + \alpha_2 h^4 + \alpha_3 h^6 + \dots + \alpha_k h^{2k} + O(h^{2k+2})$$

$$T(\frac{h}{2}) = I + \alpha_1(\frac{h}{2})^2 + \alpha_2(\frac{h}{2})^4 + \dots + \alpha_k(\frac{h}{2})^{2k} + O(\left(\frac{h}{2}\right)^{2k+2})$$

$$4T(\frac{h}{2}) - T(h) = 3I + \alpha_2 \left[\frac{1}{4} - 1\right]h^4 + \cdots$$

所以
$$[4T(\frac{h}{2})-T(h)]/3 = I + O(h^4)$$
 记 $T^{(1)}(h) = \frac{4T(\frac{h}{2})-T(h)}{4-1}$

$$T^{(1)}(h) = I + \beta_2 h^4 + \beta_3 h^6 + \dots + \beta_k h^{2k} + O(h^{2k+2})$$

$$T^{(1)}(\frac{h}{2}) = I + \beta_2(\frac{h}{2})^4 + \beta_3(\frac{h}{2})^6 + \dots + \beta_k(\frac{h}{2})^{2k} + O(\left(\frac{h}{2}\right)^{2k+2})$$

记
$$T_0^{(0)} = \frac{b-a}{2} [f(a)+f(b)]$$

$$T_k^{(0)} = \frac{b-a}{2^{k+1}} [f(a)+f(b)+2\sum_{j=1}^{2^k-1} f(a+j(b-a)/2^k)]$$

龙贝格外推计算公式
$$T_k^{(m)} = \frac{4^m T_{m-1}^{(k)} - T_{m-1}^{(k-1)}}{4^m - 1}$$

$$\downarrow T_{n}^{(0)}$$
 $\downarrow T_{2n}^{(0)} o T_{2n}^{(1)}$
 $\downarrow T_{4n}^{(0)} o T_{4n}^{(1)} o T_{4n}^{(2)}$
 $\downarrow T_{8n}^{(0)} o T_{8n}^{(1)} o T_{8n}^{(2)} o T_{8n}^{(3)}$

例: 利用外推求 $f(x) = (1+x^4)^{-1}$, [a,b] = [0,1] 的积分. 为了以最少的工作量,给出积分的基本梯形公式值(即 $T_n^{(0)}(f) = T_n(f)$ 的近似)

$$I(f) = \int_0^1 \frac{\mathrm{d}x}{1+x^4} = 0.8669729871.$$

n = 2 ^k	积分值
1	0. 750000000
2	0. 8455882353
4	0. 8617323343

第一次外推产生第一个龙贝格值:

$$\theta_1(f) = T_2^{(1)}(f) = \frac{4T_2^{(0)}(f) - T_1^{(0)}(f)}{3} = 0.8774509800.$$

需要两个推断才能得出第二个龙贝格值:

$$T_4^{(1)}(f) = \frac{4T_4^{(0)}(f) - T_2^{(0)}(f)}{3} = 0.8616289989,$$

$$\theta_2(f) = T_4^{(2)}(f) = \frac{16T_4^{(1)}(f) - T_2^{(1)}(f)}{15} = 0.8605742004.$$

$T_4^{(1)}(f)$ 和 $T_2^{(1)}(f)$ 误差估计由下式给出

$$E_4^{(1)}(f) = \frac{T_2^{(1)}(f) - T_4^{(1)}(f)}{15} = 0.00105479874.$$

因此,龙贝格值 $\theta_2(f)$ 可以精确到10⁻³以内.

