

IIC2223 - Teoría de Autómatas y Lenguajes Formales

Ayudantía 9

Franco Bruña y Dante Pinto 19 de Noviembre, 2021

Pregunta 1

Demuestre que todo subconjunto infinito de $\{a^nb^nc^n|n>0\}$ no es libre de contexto.

Pregunta 2

En clases definieron el lenguaje aceptado por un PDA $\mathcal{P} = (Q, \Sigma, \Gamma, \Delta, q_0, \bot, F)$ como:

$$L(\mathcal{P}) = \{ w \in \Sigma^* \mid (q_0 \perp, w) \vdash_{\mathcal{P}}^* (q_f, \varepsilon) \land \exists q_f \in F \}$$

Sin embargo, en su versión más tradicional, los autómatas apiladores definen dos lenguajes. El lenguaje aceptado por estados finales $(M(\mathcal{P}))$ y el lenguaje aceptado por stack vacío $(N(\mathcal{P}))$ que definimos formalmente como:

$$M(\mathcal{P}) = \{ w \in \Sigma^* \mid (q_0 \perp, w) \vdash_{\mathcal{P}}^* (q_f \gamma, \varepsilon \land \exists q_f \in F \land \gamma \in \Gamma^*) \}$$

$$N(\mathcal{P}) = \{ w \in \Sigma^* \mid (q_0 \perp, w) \vdash_{\mathcal{P}}^* (q, \varepsilon) \land q \in Q \}$$

Demuestre que si existe un autómata apilador \mathcal{P} tal que $L = N(\mathcal{P})$ entonces existe un autómata apilador \mathcal{P}' tale que $N(\mathcal{P}) = M(\mathcal{P}')$

Propuesto: Si existen los dos autómatas anteriores, existirá \mathcal{P}'' tal que $N(\mathcal{P}) = M(\mathcal{P}') = L(\mathcal{P}'')$

Pregunta 3

Sea $\Sigma = \{0,1\}^*$ y $L \subseteq \Sigma$. Construya una gramática y un autómata apilador para cada uno de los siguientes lenguajes.

- 1. $L = \{w = 0^n 10^n 1 \mid n > 0\}$
- 2. $L = \{w \in \{0,1\}^* \mid |w|_0 = |w|_1 \}$, dónde $|w|_a$ representa el número de símbolos a en w.
- 3. $L = \{w \mid w \neq w^r\}$

Pregunta 4

- Convierta el PDA de 1.1 en una CFG. ¿Cómo se compara con la gramática construida para este lenguaje?
- Convierta la CFG de 1.2 en un PDA. ¿Cómo se compara con el autómata construido para este lenguaje?