Application of Information Theory, Lecture 9 Parallel Repetition of Interactive Arguments

Iftach Haitner

Tel Aviv University.

December 15, 2011

Part I

Interactive Proofs and Arguments

\mathcal{NP} as a Non-interactive Proofs

Definition 1 (\mathcal{NP})

 $\mathcal{L} \in \mathcal{NP}$ iff \exists and poly-time algorithm \lor such that:

- ▶ $\forall x \in \mathcal{L}$ there exists $w \in \{0, 1\}^*$ s.t. V(x, w) = 1
- ▶ V(x, w) = 0 for every $x \notin \mathcal{L}$ and $w \in \{0, 1\}^*$

Only |x| counts for the running time of V.

\mathcal{NP} as a Non-interactive Proofs

Definition 1 (\mathcal{NP})

 $\mathcal{L} \in \mathcal{NP}$ iff \exists and poly-time algorithm \lor such that:

- ▶ $\forall x \in \mathcal{L}$ there exists $w \in \{0, 1\}^*$ s.t. V(x, w) = 1
- ▶ V(x, w) = 0 for every $x \notin \mathcal{L}$ and $w \in \{0, 1\}^*$

Only |x| counts for the running time of V.

This proof system has

Efficient verifier, efficient prover (given the witness)

\mathcal{NP} as a Non-interactive Proofs

Definition 1 (\mathcal{NP})

 $\mathcal{L} \in \mathcal{NP}$ iff \exists and poly-time algorithm \lor such that:

- ▶ $\forall x \in \mathcal{L}$ there exists $w \in \{0, 1\}^*$ s.t. V(x, w) = 1
- ▶ V(x, w) = 0 for every $x \notin \mathcal{L}$ and $w \in \{0, 1\}^*$

Only |x| counts for the running time of V.

This proof system has

- Efficient verifier, efficient prover (given the witness)
- Soundness holds unconditionally

Protocols between efficient verifier and unbounded/efficent prover.

Protocols between efficient verifier and unbounded/efficent prover.

Definition 2 (Interactive proof)

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is a PPT and:

Completeness $\forall x \in \mathcal{L}$: $Pr[(P, V)(x) = 1] \ge 2/3$.

Soundness $\forall x \notin \mathcal{L}$, and any algorithm P*: $\Pr[(P^*, V)(x) = 1] \leq 1/3$.

Protocols between efficient verifier and unbounded/efficent prover.

Definition 2 (Interactive proof)

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is a PPT and:

Completeness $\forall x \in \mathcal{L}$: $Pr[(P, V)(x) = 1] \ge 2/3$.

Soundness $\forall x \notin \mathcal{L}$, and any algorithm P*: $\Pr[(P^*, V)(x) = 1] \leq 1/3$.

IP is the class of languages that have interactive proofs.

▶ IP = PSPACE!

Protocols between efficient verifier and unbounded/efficent prover.

Definition 2 (Interactive proof)

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is a PPT and:

Completeness
$$\forall x \in \mathcal{L}$$
: $Pr[(P, V)(x) = 1] \ge 2/3$.

Soundness $\forall x \notin \mathcal{L}$, and any algorithm P*: $\Pr[(P^*, V)(x) = 1] \leq 1/3$.

- ► IP = PSPACE!
- ▶ The above protocol has completeness error $\frac{1}{3}$, and sourness error $\frac{1}{3}$

Protocols between efficient verifier and unbounded/efficent prover.

Definition 2 (Interactive proof)

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is a PPT and:

Completeness
$$\forall x \in \mathcal{L}$$
: $Pr[(P, V)(x) = 1] \ge 2/3$.

Soundness $\forall x \notin \mathcal{L}$, and any algorithm P*: $\Pr[(P^*, V)(x) = 1] \leq 1/3$.

- ► IP = PSPACE!
- ► The above protocol has completeness error $\frac{1}{3}$, and sourness error $\frac{1}{3}$
- We typically consider achieve (directly) perfect completeness.

Protocols between efficient verifier and unbounded/efficent prover.

Definition 2 (Interactive proof)

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is a PPT and:

Completeness
$$\forall x \in \mathcal{L}$$
: $Pr[(P, V)(x) = 1] \ge 2/3$.

Soundness $\forall x \notin \mathcal{L}$, and any algorithm P*: $\Pr[(P^*, V)(x) = 1] \leq 1/3$.

- ▶ IP = PSPACE!
- ► The above protocol has completeness error $\frac{1}{3}$, and sourness error $\frac{1}{3}$
- We typically consider achieve (directly) perfect completeness.
- Smaller "soundness error" achieved via repetition.

Protocols between efficient verifier and unbounded/efficent prover.

Definition 2 (Interactive proof)

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is a PPT and:

Completeness
$$\forall x \in \mathcal{L}$$
: $Pr[(P, V)(x) = 1] \ge 2/3$.

Soundness $\forall x \notin \mathcal{L}$, and any algorithm P*: $\Pr[(P^*, V)(x) = 1] \leq 1/3$.

- ▶ IP = PSPACE!
- ► The above protocol has completeness error $\frac{1}{3}$, and sourness error $\frac{1}{3}$
- We typically consider achieve (directly) perfect completeness.
- Smaller "soundness error" achieved via repetition.
- ► Relaxation: interactive arguments [also known as, Computationally sound proofs]: soundness only guaranteed against efficient (PPT) provers.

Protocols between efficient verifier and unbounded/efficent prover.

Definition 2 (Interactive proof)

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is a PPT and:

Completeness
$$\forall x \in \mathcal{L}$$
: $Pr[(P, V)(x) = 1] \ge 2/3$.

Soundness $\forall x \notin \mathcal{L}$, and any algorithm P*: $\Pr[(P^*, V)(x) = 1] \leq 1/3$.

- ► IP = PSPACE!
- ► The above protocol has completeness error $\frac{1}{3}$, and sourness error $\frac{1}{3}$
- We typically consider achieve (directly) perfect completeness.
- Smaller "soundness error" achieved via repetition.
- Relaxation: interactive arguments [also known as, Computationally sound proofs]: soundness only guaranteed against efficient (PPT) provers.
- Games no-input protocols.

Section 1

Interactive Proof for Graph Non-Isomorphism

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

$$\blacktriangleright \ \mathcal{GI} = \{(G_0, G_1) \colon G_0 \equiv G_1\} \in \mathcal{NP}$$

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

- $\blacktriangleright \ \mathcal{GI} = \{(G_0, G_1) \colon G_0 \equiv G_1\} \in \mathcal{NP}$
- ▶ Does $\mathcal{GNI} = \{(G_0, G_1) \colon G_0 \not\equiv G_1\} \in \mathcal{NP}$?

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

- $\blacktriangleright \ \mathcal{GI} = \{(G_0, G_1) \colon G_0 \equiv G_1\} \in \mathcal{NP}$
- ▶ Does $\mathcal{GNI} = \{(G_0, G_1) \colon G_0 \not\equiv G_1\} \in \mathcal{NP}$?
- We will show a simple interactive proof for GNT

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

- $\blacktriangleright \ \mathcal{GI} = \{(G_0, G_1) \colon G_0 \equiv G_1\} \in \mathcal{NP}$
- ▶ Does $\mathcal{GNI} = \{(G_0, G_1) \colon G_0 \not\equiv G_1\} \in \mathcal{NP}$?
- We will show a simple interactive proof for GNT

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

- $\blacktriangleright \ \mathcal{GI} = \{(G_0, G_1) \colon G_0 \equiv G_1\} \in \mathcal{NP}$
- ▶ Does $\mathcal{GNI} = \{(G_0, G_1) \colon G_0 \not\equiv G_1\} \in \mathcal{NP}$?
- We will show a simple interactive proof for GNT Idea: Beer tasting...

Interactive proof for \mathcal{GNI}

Protocol 4 ((P, V)(G₀ = ([m], E₀), G₁ = ([m], E₁)))

- **1.** V chooses $b \leftarrow \{0,1\}$ and $\pi \leftarrow \Pi_m$, and sends $\pi(E_b)$ to P.^a
- **2.** P send b' to V (tries to set b' = b).
- 3. V accepts iff b' = b.
 - ${}^{a}\pi(E) = \{(\pi(u), \pi(v) : (u, v) \in E\}.$

Interactive proof for \mathcal{GNI}

Protocol 4 ((P, V)(G₀ = ([m], E₀), G₁ = ([m], E₁)))

- 1. V chooses $b \leftarrow \{0,1\}$ and $\pi \leftarrow \Pi_m$, and sends $\pi(E_b)$ to P.^a
- **2.** P send b' to V (tries to set b' = b).
- 3. V accepts iff b' = b.

$${}^{a}\pi(E) = \{(\pi(u), \pi(v) : (u, v) \in E\}.$$

Claim 5

The above protocol is IP for \mathcal{GNI} , with perfect completeness and soundness error $\frac{1}{2}$.

 Graph isomorphism is an equivalence relation (separates all graph pairs into separate subsets)

 Graph isomorphism is an equivalence relation (separates all graph pairs into separate subsets)

- Graph isomorphism is an equivalence relation (separates all graph pairs into separate subsets)
- ▶ $([m], \pi(E_i))$ is a random element in $[G_i]$ the equivalence class of G_i

- Graph isomorphism is an equivalence relation (separates all graph pairs into separate subsets)
- ▶ $([m], \pi(E_i))$ is a random element in $[G_i]$ the equivalence class of G_i

- Graph isomorphism is an equivalence relation (separates all graph pairs into separate subsets)
- ▶ $([m], \pi(E_i))$ is a random element in $[G_i]$ the equivalence class of G_i

Hence,

$$G_0 \equiv G_1$$
: $Pr[b' = b] \leq \frac{1}{2}$.

- Graph isomorphism is an equivalence relation (separates all graph pairs into separate subsets)
- ▶ $([m], \pi(E_i))$ is a random element in $[G_i]$ the equivalence class of G_i

Hence,

$$G_0 \equiv G_1$$
: $Pr[b' = b] \le \frac{1}{2}$.
 $G_0 \not\equiv G_1$: $Pr[b' = b] = 1$ (i.e., P can, possibly inefficiently, extracted from

 $G_0 \not\equiv G_1$: $\Pr[b' = b] = 1$ (i.e., P can, possibly inefficiently, extracted from $\pi(E_i)$)

Part II

▶ In most settings we need very small soundness error (i.e., close to 0)

- In most settings we need very small soundness error (i.e., close to 0)
- Typically done by "amplifying the security" of an interactive proof/argument of large soundness error.

- ▶ In most settings we need very small soundness error (i.e., close to 0)
- Typically done by "amplifying the security" of an interactive proof/argument of large soundness error.
- Two main approaches:

- In most settings we need very small soundness error (i.e., close to 0)
- Typically done by "amplifying the security" of an interactive proof/argument of large soundness error.
- ► Two main approaches:
 - Sequential repetition: achieves optimal amplification rate in almost any computation model, but increases the round complexity

- ▶ In most settings we need very small soundness error (i.e., close to 0)
- Typically done by "amplifying the security" of an interactive proof/argument of large soundness error.
- ► Two main approaches:
 - Sequential repetition: achieves optimal amplification rate in almost any computation model, but increases the round complexity
 - Parallel repetition: sometimes does not achieve optimal amplification rate and sometimes achieves nothing

- ► In most settings we need very small soundness error (i.e., close to 0)
- Typically done by "amplifying the security" of an interactive proof/argument of large soundness error.
- ► Two main approaches:
 - Sequential repetition: achieves optimal amplification rate in almost any computation model, but increases the round complexity
 - Parallel repetition: sometimes does not achieve optimal amplification rate and sometimes achieves nothing
- How come parallel repetition might not work?

- ► In most settings we need very small soundness error (i.e., close to 0)
- Typically done by "amplifying the security" of an interactive proof/argument of large soundness error.
- ► Two main approaches:
 - Sequential repetition: achieves optimal amplification rate in almost any computation model, but increases the round complexity
 - Parallel repetition: sometimes does not achieve optimal amplification rate and sometimes achieves nothing
- How come parallel repetition might not work?

- ▶ In most settings we need very small soundness error (i.e., close to 0)
- Typically done by "amplifying the security" of an interactive proof/argument of large soundness error.
- ► Two main approaches:
 - Sequential repetition: achieves optimal amplification rate in almost any computation model, but increases the round complexity
 - Parallel repetition: sometimes does not achieve optimal amplification rate and sometimes achieves nothing
- ► How come parallel repetition might not work? Example

- ► In most settings we need very small soundness error (i.e., close to 0)
- Typically done by "amplifying the security" of an interactive proof/argument of large soundness error.
- ► Two main approaches:
 - Sequential repetition: achieves optimal amplification rate in almost any computation model, but increases the round complexity
 - Parallel repetition: sometimes does not achieve optimal amplification rate and sometimes achieves nothing
- How come parallel repetition might not work? Example
- Parallel repetition does achieve optimal amplification rate for interactive proofs and public-coin interactive arguments

- ► In most settings we need very small soundness error (i.e., close to 0)
- Typically done by "amplifying the security" of an interactive proof/argument of large soundness error.
- ► Two main approaches:
 - Sequential repetition: achieves optimal amplification rate in almost any computation model, but increases the round complexity
 - Parallel repetition: sometimes does not achieve optimal amplification rate and sometimes achieves nothing
- ► How come parallel repetition might not work? Example
- Parallel repetition does achieve optimal amplification rate for interactive proofs and public-coin interactive arguments
- ▶ Public-coin interactive proof/argument in each round the verifier flips coins and sends them to the prover. To compute its output, the verifier applies some (fixed) function to the protocol's transcript.

▶ Give a protocol $\pi = (P, V)$ and $k \in \mathbb{N}$, let $\pi^{(k)} = (P^{(k)}, V^{(k)})$ be the k-fold parallel repetition of π : i.e., k parallel independent copies of π

- ▶ Give a protocol $\pi = (P, V)$ and $k \in \mathbb{N}$, let $\pi^{(k)} = (P^{(k)}, V^{(k)})$ be the k-fold parallel repetition of π : i.e., k parallel independent copies of π
- Assume $\Pr\left[(\widetilde{P},V)=1\right] \leq \varepsilon$ for any *s*-size algorithm \widetilde{P} , we would like to prove that $\Pr\left[(\widetilde{P^{(k)}},V^{(k)})=1^k\right] \leq f(\varepsilon)$ for any $s^{(k)}$ -size algorithm $\widetilde{P^{(k)}}$.

- ▶ Give a protocol $\pi = (P, V)$ and $k \in \mathbb{N}$, let $\pi^{(k)} = (P^{(k)}, V^{(k)})$ be the k-fold parallel repetition of π : i.e., k parallel independent copies of π
- Assume $\Pr\left[(\widetilde{P},V)=1\right] \leq \varepsilon$ for any *s*-size algorithm \widetilde{P} , we would like to prove that $\Pr\left[(\widetilde{P^{(k)}},V^{(k)})=1^k\right] \leq f(\varepsilon)$ for any $s^{(k)}$ -size algorithm $\widetilde{P^{(k)}}$.
- ▶ Typically, $s^{(k)} = s \cdot poly(f(\varepsilon)/k)$

- ▶ Give a protocol $\pi = (P, V)$ and $k \in \mathbb{N}$, let $\pi^{(k)} = (P^{(k)}, V^{(k)})$ be the k-fold parallel repetition of π : i.e., k parallel independent copies of π
- Assume $\Pr\left[(\widetilde{P},V)=1\right] \leq \varepsilon$ for any *s*-size algorithm \widetilde{P} , we would like to prove that $\Pr\left[(\widetilde{P^{(k)}},V^{(k)})=1^k\right] \leq f(\varepsilon)$ for any $s^{(k)}$ -size algorithm $\widetilde{P^{(k)}}$.
- ▶ Typically, $s^{(k)} = s \cdot poly(f(\varepsilon)/k)$
- ▶ If $f(\varepsilon) = \varepsilon^{\Omega(k)}$, the above is an exponential-rate amplification (and hence optimal)

- ▶ Give a protocol $\pi = (P, V)$ and $k \in \mathbb{N}$, let $\pi^{(k)} = (P^{(k)}, V^{(k)})$ be the k-fold parallel repetition of π : i.e., k parallel independent copies of π
- Assume $\Pr\left[(\widetilde{P},V)=1\right] \leq \varepsilon$ for any *s*-size algorithm \widetilde{P} , we would like to prove that $\Pr\left[(\widetilde{P^{(k)}},V^{(k)})=1^k\right] \leq f(\varepsilon)$ for any $s^{(k)}$ -size algorithm $\widetilde{P^{(k)}}$.
- ▶ Typically, $s^{(k)} = s \cdot poly(f(\varepsilon)/k)$
- ▶ If $f(\varepsilon) = \varepsilon^{\Omega(k)}$, the above is an exponential-rate amplification (and hence optimal)
- ▶ If $f(\varepsilon) = \varepsilon^{\delta_1 \cdot k^{\delta_2}}$, the above is a weakly-exponential-rate amplification

- ▶ Give a protocol $\pi = (P, V)$ and $k \in \mathbb{N}$, let $\pi^{(k)} = (P^{(k)}, V^{(k)})$ be the k-fold parallel repetition of π : i.e., k parallel independent copies of π
- Assume $\Pr\left[(\widetilde{P},V)=1\right] \leq \varepsilon$ for any *s*-size algorithm \widetilde{P} , we would like to prove that $\Pr\left[(\widetilde{P^{(k)}},V^{(k)})=1^k\right] \leq f(\varepsilon)$ for any $s^{(k)}$ -size algorithm $\widetilde{P^{(k)}}$.
- ▶ Typically, $s^{(k)} = s \cdot poly(f(\varepsilon)/k)$
- ▶ If $f(\varepsilon) = \varepsilon^{\Omega(k)}$, the above is an exponential-rate amplification (and hence optimal)
- ▶ If $f(\varepsilon) = \varepsilon^{\delta_1 \cdot k^{\delta_2}}$, the above is a weakly-exponential-rate amplification
- Why size?

- ▶ Give a protocol $\pi = (P, V)$ and $k \in \mathbb{N}$, let $\pi^{(k)} = (P^{(k)}, V^{(k)})$ be the k-fold parallel repetition of π : i.e., k parallel independent copies of π
- Assume $\Pr\left[(\widetilde{P},V)=1\right] \leq \varepsilon$ for any *s*-size algorithm \widetilde{P} , we would like to prove that $\Pr\left[(\widetilde{P^{(k)}},V^{(k)})=1^k\right] \leq f(\varepsilon)$ for any $s^{(k)}$ -size algorithm $\widetilde{P^{(k)}}$.
- ▶ Typically, $s^{(k)} = s \cdot poly(f(\varepsilon)/k)$
- ▶ If $f(\varepsilon) = \varepsilon^{\Omega(k)}$, the above is an exponential-rate amplification (and hence optimal)
- ▶ If $f(\varepsilon) = \varepsilon^{\delta_1 \cdot k^{\delta_2}}$, the above is a weakly-exponential-rate amplification
- ▶ Why size?
- Concrete security

- ▶ Give a protocol $\pi = (P, V)$ and $k \in \mathbb{N}$, let $\pi^{(k)} = (P^{(k)}, V^{(k)})$ be the k-fold parallel repetition of π : i.e., k parallel independent copies of π
- Assume $\Pr\left[(\widetilde{P},V)=1\right] \leq \varepsilon$ for any *s*-size algorithm \widetilde{P} , we would like to prove that $\Pr\left[(\widetilde{P^{(k)}},V^{(k)})=1^k\right] \leq f(\varepsilon)$ for any $s^{(k)}$ -size algorithm $\widetilde{P^{(k)}}$.
- ▶ Typically, $s^{(k)} = s \cdot poly(f(\varepsilon)/k)$
- ▶ If $f(\varepsilon) = \varepsilon^{\Omega(k)}$, the above is an exponential-rate amplification (and hence optimal)
- ▶ If $f(\varepsilon) = \varepsilon^{\delta_1 \cdot k^{\delta_2}}$, the above is a weakly-exponential-rate amplification
- Why size?
- Concrete security
- ▶ In the following we focus on games (no input protocols)

Section 2

Parallel repetition of public-coin interactive argument

Theorem 6

Let $\pi = (P, V)$ be m-round, public-coin protocol with $\Pr\left[(\widetilde{P}, V) = 1\right] \le \varepsilon$ for any s-size \widetilde{P} , then $\Pr\left[(\widetilde{P^{(k)}}, V^{(k)}) = 1^k\right] \le \varepsilon^{k/4}$ for any $s \cdot \frac{\varepsilon^{k/4}}{mk^3s_V}$ -size $\widetilde{P^{(k)}}$, where s_V is V's size.

Theorem 6

Let $\pi = (P, V)$ be m-round, public-coin protocol with $\Pr\left[(\widetilde{P}, V) = 1\right] \le \varepsilon$ for any s-size \widetilde{P} , then $\Pr\left[(\widetilde{P^{(k)}}, V^{(k)}) = 1^k\right] \le \varepsilon^{k/4}$ for any $s \cdot \frac{\varepsilon^{k/4}}{mk^3s_V}$ -size $\widetilde{P^{(k)}}$, where s_V is V's size.

Proof plan: Let $\widetilde{\mathsf{P}^{(k)}}$ be $s^{(k)}$ -size algorithm with $\Pr\left[\left(\widetilde{\mathsf{P}^{(k)}},\mathsf{V}^{(k)}\right)=1^k\right]=\varepsilon^{(k)}$, we construct $s^{(k)}\cdot\frac{mk^3\mathsf{s}_\mathsf{V}}{\varepsilon^{(k)}}$ -size $\widetilde{\mathsf{P}}$ with $\Pr\left[\left(\widetilde{\mathsf{P}},\mathsf{V}\right)=1\right]\geq (\varepsilon^{(k)})^{4/k}$.

Theorem 6

Let $\pi = (P, V)$ be m-round, public-coin protocol with $\Pr\left[(\widetilde{P}, V) = 1\right] \le \varepsilon$ for any s-size \widetilde{P} , then $\Pr\left[(\widetilde{P^{(k)}}, V^{(k)}) = 1^k\right] \le \varepsilon^{k/4}$ for any $s \cdot \frac{\varepsilon^{k/4}}{mk^3 s_V}$ -size $\widetilde{P^{(k)}}$, where s_V is V's size.

Proof plan: Let
$$\widetilde{\mathsf{P}^{(k)}}$$
 be $s^{(k)}$ -size algorithm with $\Pr\left[\left(\widetilde{\mathsf{P}^{(k)}},\mathsf{V}^{(k)}\right)=1^k\right]=\varepsilon^{(k)}$, we construct $s^{(k)}\cdot\frac{mk^3\mathsf{s}_\mathsf{V}}{\varepsilon^{(k)}}$ -size $\widetilde{\mathsf{P}}$ with $\Pr\left[\left(\widetilde{\mathsf{P}},\mathsf{V}\right)=1\right]\geq (\varepsilon^{(k)})^{4/k}$.

▶ The k/4 in the exponent can be pushed to be almost k.

Theorem 6

Let $\pi = (P, V)$ be m-round, public-coin protocol with $\Pr\left[(\widetilde{P}, V) = 1\right] \le \varepsilon$ for any s-size \widetilde{P} , then $\Pr\left[(\widetilde{P^{(k)}}, V^{(k)}) = 1^k\right] \le \varepsilon^{k/4}$ for any $s \cdot \frac{\varepsilon^{k/4}}{mk^3 s_V}$ -size $\widetilde{P^{(k)}}$, where s_V is V's size.

Proof plan: Let
$$\widetilde{\mathsf{P}^{(k)}}$$
 be $s^{(k)}$ -size algorithm with $\Pr\left[\left(\widetilde{\mathsf{P}^{(k)}},\mathsf{V}^{(k)}\right)=1^k\right]=\varepsilon^{(k)}$, we construct $s^{(k)}\cdot\frac{mk^3\mathsf{s}_\mathsf{V}}{\varepsilon^{(k)}}$ -size $\widetilde{\mathsf{P}}$ with $\Pr\left[\left(\widetilde{\mathsf{P}},\mathsf{V}\right)=1\right]\geq (\varepsilon^{(k)})^{4/k}$.

- ► The k/4 in the exponent can be pushed to be almost k.
- Assume for simplicity that P(k) is deterministic

Theorem 6

Let $\pi = (P, V)$ be m-round, public-coin protocol with $\Pr\left[(\widetilde{P}, V) = 1\right] \le \varepsilon$ for any s-size \widetilde{P} , then $\Pr\left[(\widetilde{P^{(k)}}, V^{(k)}) = 1^k\right] \le \varepsilon^{k/4}$ for any $s \cdot \frac{\varepsilon^{k/4}}{mk^3 s_V}$ -size $\widetilde{P^{(k)}}$, where s_V is V's size.

Proof plan: Let
$$\widetilde{\mathsf{P}^{(k)}}$$
 be $s^{(k)}$ -size algorithm with $\Pr\left[(\widetilde{\mathsf{P}^{(k)}},\mathsf{V}^{(k)})=1^k\right]=\varepsilon^{(k)}$, we construct $s^{(k)}\cdot\frac{mk^3\mathsf{s}_\mathsf{V}}{\varepsilon^{(k)}}$ -size $\widetilde{\mathsf{P}}$ with $\Pr\left[(\widetilde{\mathsf{P}},\mathsf{V})=1\right]\geq(\varepsilon^{(k)})^{4/k}$.

- ► The k/4 in the exponent can be pushed to be almost k.
- Assume for simplicity that P(k) is deterministic
- Assume wlg. that V sends the first message in π and that in each round it sends ℓ coins.

Theorem 6

Let $\pi = (P, V)$ be m-round, public-coin protocol with $\Pr\left[(\widetilde{P}, V) = 1\right] \le \varepsilon$ for any s-size \widetilde{P} , then $\Pr\left[(\widetilde{P^{(k)}}, V^{(k)}) = 1^k\right] \le \varepsilon^{k/4}$ for any $s \cdot \frac{\varepsilon^{k/4}}{mk^3s_V}$ -size $\widetilde{P^{(k)}}$, where s_V is V's size.

Proof plan: Let
$$\widetilde{\mathsf{P}^{(k)}}$$
 be $s^{(k)}$ -size algorithm with $\Pr\left[\left(\widetilde{\mathsf{P}^{(k)}},\mathsf{V}^{(k)}\right)=1^k\right]=\varepsilon^{(k)}$, we construct $s^{(k)}\cdot\frac{mk^3\mathsf{s}_\mathsf{V}}{\varepsilon^{(k)}}$ -size $\widetilde{\mathsf{P}}$ with $\Pr\left[\left(\widetilde{\mathsf{P}},\mathsf{V}\right)=1\right]\geq (\varepsilon^{(k)})^{4/k}$.

- ► The k/4 in the exponent can be pushed to be almost k.
- Assume for simplicity that P(k) is deterministic
- Assume wlg. that V sends the first message in π and that in each round it sends ℓ coins.
- ▶ We view the coins of $V^{(k)}$ as a matrix $R \in \{0,1\}^{m \times (k\ell)}$, letting R_j denote the coins of the j'th round

Theorem 6

Let $\pi = (P, V)$ be m-round, public-coin protocol with $\Pr\left[(\widetilde{P}, V) = 1\right] \le \varepsilon$ for any s-size \widetilde{P} , then $\Pr\left[(\widetilde{P^{(k)}}, V^{(k)}) = 1^k\right] \le \varepsilon^{k/4}$ for any $s \cdot \frac{\varepsilon^{k/4}}{mk^3 s_V}$ -size $\widetilde{P^{(k)}}$, where s_V is V's size.

Proof plan: Let
$$\widetilde{\mathsf{P}^{(k)}}$$
 be $s^{(k)}$ -size algorithm with $\Pr\left[\left(\widetilde{\mathsf{P}^{(k)}},\mathsf{V}^{(k)}\right)=1^k\right]=\varepsilon^{(k)}$, we construct $s^{(k)}\cdot\frac{mk^3\mathsf{s}_\mathsf{V}}{\varepsilon^{(k)}}$ -size $\widetilde{\mathsf{P}}$ with $\Pr\left[\left(\widetilde{\mathsf{P}},\mathsf{V}\right)=1\right]\geq (\varepsilon^{(k)})^{4/k}$.

- ► The k/4 in the exponent can be pushed to be almost k.
- Assume for simplicity that P(k) is deterministic
- Assume wlg. that V sends the first message in π and that in each round it sends ℓ coins.
- ▶ We view the coins of $V^{(k)}$ as a matrix $R \in \{0,1\}^{m \times (k\ell)}$, letting R_j denote the coins of the j'th round
- ▶ Let $x^j = x_1, ..., x_j$ (hence R^j denote the coins used in the first j rounds).

Theorem 6

Let $\pi = (P, V)$ be m-round, public-coin protocol with $\Pr\left[(\widetilde{P}, V) = 1\right] \leq \varepsilon$ for any s-size \widetilde{P} , then $\Pr\left[(\widetilde{P^{(k)}}, V^{(k)}) = 1^k\right] \leq \varepsilon^{k/4}$ for any $s \cdot \frac{\varepsilon^{k/4}}{mk^3 s_V}$ -size $\widetilde{P^{(k)}}$, where s_V is V's size.

Proof plan: Let
$$\widetilde{\mathsf{P}^{(k)}}$$
 be $s^{(k)}$ -size algorithm with $\Pr\left[\left(\widetilde{\mathsf{P}^{(k)}},\mathsf{V}^{(k)}\right)=1^k\right]=\varepsilon^{(k)}$, we construct $s^{(k)}\cdot\frac{mk^3\mathsf{s}_\mathsf{V}}{\varepsilon^{(k)}}$ -size $\widetilde{\mathsf{P}}$ with $\Pr\left[\left(\widetilde{\mathsf{P}},\mathsf{V}\right)=1\right]\geq (\varepsilon^{(k)})^{4/k}$.

- ► The k/4 in the exponent can be pushed to be almost k.
- Assume for simplicity that P^(k) is deterministic
- Assume wlg. that V sends the first message in π and that in each round it sends ℓ coins.
- ▶ We view the coins of $V^{(k)}$ as a matrix $R \in \{0,1\}^{m \times (k\ell)}$, letting R_j denote the coins of the j'th round
- ▶ Let $x^j = x_1, ..., x_j$ (hence R^j denote the coins used in the first j rounds).
- ▶ Let $\mathbf{R} \sim \{0,1\}^{m \times (k\ell)}$

Algorithm \widetilde{P}

Algorithm \widetilde{P} Let $q = k^2$.

Algorithm P

Let $q = k^2$.

Algorithm 7 (\widetilde{P})

- 1. Let $i^* \leftarrow [k]$.
- **2.** Upon getting the j'th message r from V, do:
 - **2.1** Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \widetilde{R}_{1,\dots,j-1}$ and $R_{j,i^*} = r$.
 - **2.2** If $(P^{(k)}, V^{(k)}(R)) = 1^k$:
 - **2.2.1** Set $\widetilde{R}_j = R_j$
 - **2.2.2** Send a_{j,i^*} back to V, for a_j being the j'th message $P^{(k)}$ send to $V^{(k)}$ in $(P^{(k)}, V^{(k)}(R))$.

Else, GOTO Line 2.1

2.3 Abort if the overall number of sampling exceeds $\lceil qm/\varepsilon^{(k)} \rceil$.

Algorithm P

Let $q = k^2$.

Algorithm 7 (\widetilde{P})

- 1. Let $i^* \leftarrow [k]$.
- **2.** Upon getting the j'th message r from V, do:
 - **2.1** Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \widetilde{R}_{1,\dots,j-1}$ and $R_{j,i^*} = r$.
 - **2.2** If $(P^{(k)}, V^{(k)}(R)) = 1^k$:
 - **2.2.1** Set $\widetilde{R}_j = R_j$
 - **2.2.2** Send a_{j,i^*} back to V, for a_j being the j'th message $P^{(k)}$ send to $V^{(k)}$ in $(\widetilde{P^{(k)}}, V^{(k)}(R))$.

Else, GOTO Line 2.1

- **2.3** Abort if the overall number of sampling exceeds $\lceil qm/\varepsilon^{(k)} \rceil$.
- Let \widetilde{P}' be the non aborting variant of \widetilde{P} , let \widetilde{R} and \widetilde{N} be the value of \widetilde{R} and # of samples done in a random execution of $(\widetilde{P}', V^{(k)})$.

Algorithm \widetilde{P}

Let $q = k^2$.

Algorithm 7 (\widetilde{P})

- 1. Let $i^* \leftarrow [k]$.
- **2.** Upon getting the j'th message r from V, do:
 - **2.1** Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \widetilde{R}_{1,\dots,j-1}$ and $R_{j,j^*} = r$.
 - **2.2** If $(\widetilde{P^{(k)}}, V^{(k)}(R)) = 1^k$:
 - **2.2.1** Set $\widetilde{R}_j = R_j$
 - **2.2.2** Send a_{j,i^*} back to V, for a_j being the j'th message $P^{(k)}$ send to $V^{(k)}$ in $(\widehat{P^{(k)}}, V^{(k)}(R))$.

Else, GOTO Line 2.1

- **2.3** Abort if the overall number of sampling exceeds $\lceil qm/\varepsilon^{(k)} \rceil$.
- Let \widetilde{P}' be the non aborting variant of \widetilde{P} , let \widetilde{R} and \widetilde{N} be the value of \widetilde{R} and # of samples done in a random execution of $(\widetilde{P}', V^{(k)})$.
- $\qquad \qquad \Pr\left[(\widetilde{P},V)=1\right] \geq \Pr\left[\text{win}(\widetilde{\textbf{R}},\widetilde{\textbf{N}}) := (\widetilde{P^{(k)}},V^{(k)}(\widetilde{\textbf{R}})) = 1^k \wedge \widetilde{\textbf{N}} \leq qm/\varepsilon^{(k)}\right].$

Experiment 8 (P)

- 1. Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \hat{R}_{1,\dots,j-1}$.
- **2.** If $(\widetilde{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\hat{R}_j = R_j$. Else, GOTO Line 1.

Experiment 8 (P)

- 1. Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \hat{R}_{1,\dots,j-1}$.
- **2.** If $(\widetilde{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\hat{R}_j = R_j$. Else, GOTO Line 1.
- Let $\hat{\mathbf{R}}$ be the value of $\hat{\mathbf{R}}$ in the end of a random execution of $\hat{\mathbf{P}}$.

Experiment 8 (P)

- 1. Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \hat{R}_{1,\dots,j-1}$.
- **2.** If $(\widetilde{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\hat{R}_j = R_j$. Else, GOTO Line 1.
- Let $\hat{\mathbf{R}}$ be the value of $\hat{\mathbf{R}}$ in the end of a random execution of $\hat{\mathbf{P}}$.
- $\blacktriangleright \ \hat{\boldsymbol{R}} \sim \boldsymbol{R}|_{(\widetilde{P^{(k)}},V^{(k)}(\boldsymbol{R}))=1^k}$

Experiment 8 (P)

- 1. Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \hat{R}_{1,\dots,j-1}$.
- **2.** If $(\widetilde{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\hat{R}_i = R_i$. Else, GOTO Line 1.
- Let $\hat{\mathbf{R}}$ be the value of $\hat{\mathbf{R}}$ in the end of a random execution of $\hat{\mathbf{P}}$.
- $\blacktriangleright \ \hat{\boldsymbol{R}} \sim \boldsymbol{R}|_{(\widetilde{P^{(k)}},V^{(k)}(\boldsymbol{R}))=1^k}$
- ► In particular, $Pr\left[(\widetilde{P^{(k)}}, V^{(k)}(\hat{\mathbf{R}}) = 1^k\right] = 1$

Experiment 8 (P)

- 1. Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \hat{R}_{1,\dots,j-1}$.
- **2.** If $(\widetilde{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\hat{R}_i = R_i$. Else, GOTO Line 1.
- Let $\hat{\mathbf{R}}$ be the value of $\hat{\mathbf{R}}$ in the end of a random execution of $\hat{\mathbf{P}}$.
- $\blacktriangleright \ \hat{\boldsymbol{R}} \sim \boldsymbol{R}|_{\widetilde{(P^{(k)},V^{(k)}(\boldsymbol{R}))}=1^k}$
- ► In particular, $Pr\left[(\widetilde{P^{(k)}}, V^{(k)}(\hat{\mathbf{R}}) = 1^k\right] = 1$
- ▶ Let $\hat{\mathbf{N}}$ be # of samples done in $\hat{\mathbf{P}}$.

Experiment 8 (P)

- 1. Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \hat{R}_{1,\dots,j-1}$.
- **2.** If $(\widetilde{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\hat{R}_i = R_i$. Else, GOTO Line 1.
- Let $\hat{\mathbf{R}}$ be the value of $\hat{\mathbf{R}}$ in the end of a random execution of $\hat{\mathbf{P}}$.
- $\blacktriangleright \ \hat{\boldsymbol{R}} \sim \boldsymbol{R}|_{\widetilde{(P^{(k)},V^{(k)}(\boldsymbol{R}))}=1^k}$
- ► In particular, $Pr\left[(\widetilde{P^{(k)}}, V^{(k)}(\hat{\mathbf{R}}) = 1^k\right] = 1$
- ▶ Let $\hat{\mathbf{N}}$ be # of samples done in $\hat{\mathbf{P}}$.

Ideal "attacker"

Experiment 8 (P)

For j = 1 to m:

- 1. Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \hat{R}_{1,\dots,j-1}$.
- **2.** If $(\widetilde{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\hat{R}_j = R_j$. Else, GOTO Line 1.
- Let $\hat{\mathbf{R}}$ be the value of $\hat{\mathbf{R}}$ in the end of a random execution of $\hat{\mathbf{P}}$.
- $\blacktriangleright \ \hat{\boldsymbol{R}} \sim \boldsymbol{R}|_{(\widetilde{P^{(k)}},V^{(k)}(\boldsymbol{R}))=1^k}$
- ► In particular, $Pr\left[(\widetilde{P^{(k)}}, V^{(k)}(\hat{\mathbf{R}}) = 1^k\right] = 1$
- ▶ Let N̂ be # of samples done in P̂.

Lemma 9

$$\Pr\left[\hat{m{N}}>qm/arepsilon^{(k)}
ight]<rac{1}{q}$$

Ideal "attacker"

Experiment 8 (P)

For j = 1 to m:

- 1. Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \hat{R}_{1,\dots,j-1}$.
- **2.** If $(\widetilde{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\hat{R}_j = R_j$. Else, GOTO Line 1.
- Let $\hat{\mathbf{R}}$ be the value of $\hat{\mathbf{R}}$ in the end of a random execution of $\hat{\mathbf{P}}$.
- $\blacktriangleright \ \hat{\boldsymbol{R}} \sim \boldsymbol{R}|_{(\widetilde{P^{(k)}},V^{(k)}(\boldsymbol{R}))=1^k}$
- ► In particular, $Pr\left[(\widetilde{P^{(k)}}, V^{(k)}(\hat{\mathbf{R}}) = 1^k\right] = 1$
- ▶ Let N̂ be # of samples done in P̂.

Lemma 9

$$\Pr\left[\hat{m{N}}>qm/arepsilon^{(k)}
ight]<rac{1}{q}$$

Ideal "attacker"

Experiment 8 (P)

For j = 1 to m:

- 1. Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned that $R_{1,\dots,j-1} = \hat{R}_{1,\dots,j-1}$.
- **2.** If $(\widetilde{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\hat{R}_j = R_j$. Else, GOTO Line 1.
- Let $\hat{\mathbf{R}}$ be the value of $\hat{\mathbf{R}}$ in the end of a random execution of $\hat{\mathbf{P}}$.
- $\blacktriangleright \ \hat{\boldsymbol{R}} \sim \boldsymbol{R}|_{\widetilde{(P^{(k)},V^{(k)}(\boldsymbol{R}))=1^k}}$
- ► In particular, $\Pr\left[(\widetilde{\mathsf{P}^{(k)}},\mathsf{V}^{(k)}(\widehat{\mathsf{R}})=1^k\right]=1$
- ▶ Let N̂ be # of samples done in P̂.

Lemma 9

$$\Pr\left[\hat{\mathbf{N}}>qm/arepsilon^{(k)}
ight]<rac{1}{q}$$

Hence,
$$\Pr\left[\text{win}(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}) \right] = \Pr\left[(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(\widehat{\mathbf{R}})) = 1^k \wedge \widehat{\mathbf{N}} \leq qm/\varepsilon^{(k)} \right] \geq 1 - \frac{1}{q}$$

Proving Lemma 9 — $\Pr\left[\hat{\mathbf{N}} > qm/arepsilon^{(k)}
ight] < rac{1}{q}$

Proving Lemma 9 —
$$\Pr\left[\hat{\mathbf{N}} > qm/arepsilon^{(k)}
ight] < rac{1}{q}$$

▶ Let $(X_1, ..., X_m) = \mathbf{R}$ and $(Y_1, ..., Y_m) = \widehat{\mathbf{R}}$

Proving Lemma 9 — $\Pr\left[\hat{\mathbf{N}} > qm/arepsilon^{(k)} ight] < rac{1}{q}$

- ► Let $(X_1, ..., X_m) = \mathbf{R}$ and $(Y_1, ..., Y_m) = \widehat{\mathbf{R}}$
- ▶ For $\mathbf{y} \in \text{Supp}(Y^j)$, let

$$v(\mathbf{y}) := \text{Pr}\left[(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(X^m) = 1^k \mid X^j = \mathbf{y} \right]$$

Proving Lemma 9 — $\Pr\left[\hat{\mathbf{N}} > qm/\varepsilon^{(k)}\right] < \frac{1}{q}$

- ► Let $(X_1, ..., X_m) = \mathbf{R}$ and $(Y_1, ..., Y_m) = \widehat{\mathbf{R}}$
- ▶ For $\mathbf{y} \in \text{Supp}(Y^j)$, let

$$v(\boldsymbol{y}) := \text{Pr}\left[(\widetilde{P^{(k)}}, V^{(k)}(X^m) = 1^k \mid X^j = \boldsymbol{y} \right]$$

► Conditioned on $Y^j = \mathbf{y}$, the expected # of samples done in (j + 1)'th round of \widehat{P} is $\frac{1}{V(\mathbf{y})}$.

Proving Lemma 9 — $\Pr\left[\hat{\mathbf{N}} > qm/arepsilon^{(k)} ight] < rac{1}{q}$

- ► Let $(X_1, ..., X_m) = \mathbf{R}$ and $(Y_1, ..., Y_m) = \widehat{\mathbf{R}}$
- ► For $\mathbf{y} \in \text{Supp}(Y^j)$, let

$$v(\boldsymbol{y}) := \text{Pr}\left[(\widetilde{P^{(k)}}, V^{(k)}(X^m) = 1^k \mid X^j = \boldsymbol{y} \right]$$

- ► Conditioned on $Y^j = \mathbf{y}$, the expected # of samples done in (j + 1)'th round of \widehat{P} is $\frac{1}{V(\mathbf{y})}$.
- ▶ We prove Lemma 9 showing that $E\left[\frac{1}{\nu(Y^{j})}\right] \leq \frac{1}{\varepsilon^{(k)}}$ for every $j \in \{0, ..., m-1\}$

Proving Lemma 9 — $\Pr\left[\hat{\mathbf{N}} > qm/arepsilon^{(k)} ight] < rac{1}{q}$

- ► Let $(X_1, ..., X_m) = \mathbf{R}$ and $(Y_1, ..., Y_m) = \widehat{\mathbf{R}}$
- ► For $\mathbf{y} \in \text{Supp}(Y^j)$, let

$$v(\boldsymbol{y}) := \text{Pr}\left[(\widetilde{P^{(k)}}, V^{(k)}(X^m) = 1^k \mid X^j = \boldsymbol{y} \right]$$

- ► Conditioned on $Y^j = \mathbf{y}$, the expected # of samples done in (j + 1)'th round of \widehat{P} is $\frac{1}{V(\mathbf{y})}$.
- ▶ We prove Lemma 9 showing that $E\left[\frac{1}{\nu(Y^{j})}\right] \leq \frac{1}{\varepsilon^{(k)}}$ for every $j \in \{0, ..., m-1\}$

Proving Lemma 9 — $\Pr\left[\hat{\mathbf{N}} > qm/\varepsilon^{(k)}\right] < \frac{1}{q}$

- ► Let $(X_1, \ldots, X_m) = \mathbf{R}$ and $(Y_1, \ldots, Y_m) = \widehat{\mathbf{R}}$
- For $\mathbf{y} \in \text{Supp}(Y^j)$, let $v(\mathbf{y}) := \text{Pr}\left[(\widehat{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(X^m) = 1^k \mid X^j = \mathbf{y}\right]$
- ► Conditioned on $Y^j = \mathbf{y}$, the expected # of samples done in (j + 1)'th round of \widehat{P} is $\frac{1}{V(\mathbf{y})}$.
- ▶ We prove Lemma 9 showing that $\mathsf{E}\left[\frac{1}{\nu(Y^j)}\right] \leq \frac{1}{\varepsilon^{(k)}}$ for every $j \in \{0, \dots, m-1\}$

Claim 10

For $j \in \{0, \dots, m-1\}$ and $\mathbf{y} \in \operatorname{Supp}(Y^j)$, it holds that $\Pr_{Y^j}[\mathbf{y}] = \Pr_{X^j}[\mathbf{y}] \cdot \frac{v(\mathbf{y})}{\varepsilon^{(k)}}$

Proving Lemma 9 — $\Pr\left[\hat{\mathbf{N}} > qm/arepsilon^{(k)} ight] < rac{1}{q}$

- ► Let $(X_1, ..., X_m) = \mathbf{R}$ and $(Y_1, ..., Y_m) = \widehat{\mathbf{R}}$
- For $\mathbf{y} \in \text{Supp}(Y^j)$, let $v(\mathbf{y}) := \Pr \left[(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(X^m) = \mathsf{1}^k \mid X^j = \mathbf{y} \right]$
- ► Conditioned on $Y^j = \mathbf{y}$, the expected # of samples done in (j + 1)'th round of \widehat{P} is $\frac{1}{V(\mathbf{y})}$.
- ▶ We prove Lemma 9 showing that $\mathsf{E}\left[\frac{1}{\nu(Y^j)}\right] \leq \frac{1}{\varepsilon^{(k)}}$ for every $j \in \{0, \dots, m-1\}$

Claim 10

For $j \in \{0,\dots,m-1\}$ and $\mathbf{y} \in \operatorname{Supp}(Y^j)$, it holds that $\Pr_{Y^j}[\mathbf{y}] = \Pr_{X^j}[\mathbf{y}] \cdot \frac{v(\mathbf{y})}{\varepsilon^{(k)}}$

Hence,
$$\mathsf{E}\left[\frac{1}{v(Y^j)}\right] = \sum_{\mathbf{y} \in \mathsf{Supp}(Y^j)} \mathsf{Pr}[Y^j = \mathbf{y}] \cdot \frac{1}{v(\mathbf{y})}$$

Proving Lemma 9 — $\Pr\left[\hat{\mathbf{N}} > qm/\varepsilon^{(k)}\right] < \frac{1}{q}$

- ► Let $(X_1, ..., X_m) = \mathbf{R}$ and $(Y_1, ..., Y_m) = \widehat{\mathbf{R}}$
- For $\mathbf{y} \in \text{Supp}(Y^j)$, let $v(\mathbf{y}) := \text{Pr}\left[(\widehat{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(X^m) = \mathsf{1}^k \mid X^j = \mathbf{y}\right]$
- ► Conditioned on $Y^j = \mathbf{y}$, the expected # of samples done in (j + 1)'th round of \widehat{P} is $\frac{1}{V(\mathbf{y})}$.
- ▶ We prove Lemma 9 showing that $\mathsf{E}\left[\frac{1}{\nu(Y^j)}\right] \leq \frac{1}{\varepsilon^{(k)}}$ for every $j \in \{0, \dots, m-1\}$

Claim 10

For $j \in \{0, \dots, m-1\}$ and $\mathbf{y} \in \operatorname{Supp}(Y^j)$, it holds that $\Pr_{Y^j}[\mathbf{y}] = \Pr_{X^j}[\mathbf{y}] \cdot \frac{\nu(\mathbf{y})}{\varepsilon^{(k)}}$

Hence,
$$\mathsf{E}\left[\frac{1}{v(Y^j)}\right] = \sum_{\mathbf{y} \in \mathsf{Supp}(Y^j)} \mathsf{Pr}[Y^j = \mathbf{y}] \cdot \frac{1}{v(\mathbf{y})}$$

$$= \sum_{\mathbf{y}} \mathsf{Pr}[X^j = \mathbf{y}] \cdot \frac{v(\mathbf{y})}{\varepsilon^{(k)}} \cdot \frac{1}{v(\mathbf{y})} = \frac{1}{\varepsilon^{(k)}} \cdot \sum_{\mathbf{y} \in \mathsf{Supp}(Y^j)} \mathsf{Pr}[X^j = \mathbf{y}] \leq \frac{1}{\varepsilon^{(k)}}. \quad \Box$$

Proving Claim 10 —
$$\Pr_{Y^j}[\mathbf{y}] = \Pr_{X^j}[\mathbf{y}] \cdot \frac{v(\mathbf{y})}{\varepsilon^{(k)}}$$

$$\text{Recall } \nu(\mathbf{y}) := \text{Pr}\left[(\widetilde{\mathbf{P}^{(k)}}, \mathbf{V}^{(k)}(X^m) = \mathbf{1}^k \mid X^j = \mathbf{y} \right].$$

Proving Claim 10 —
$$\Pr_{Y^j}[\mathbf{y}] = \Pr_{X^j}[\mathbf{y}] \cdot \frac{v(\mathbf{y})}{\varepsilon^{(k)}}$$

Recall
$$v(\mathbf{y}) := \Pr\left[(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(X^m) = \mathsf{1}^k \mid X^j = \mathbf{y} \right]$$
. Note that

$$\Pr_{Y_{j}|Y^{j-1}=\mathbf{y}_{1...,j-1}}[y_{j}] = \sum_{\ell=1}^{\infty} (1 - v(\mathbf{y}_{1...,j-1}))^{\ell-1} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1...,j-1}}[y_{j}] \cdot v(\mathbf{y}) \qquad (1)$$

$$= \frac{1}{v(\mathbf{y}_{1...,j-1})} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1...,j-1}}[y_{j}] \cdot v(\mathbf{y})$$

Proving Claim 10 —
$$\Pr_{Y^j}[\mathbf{y}] = \Pr_{X^j}[\mathbf{y}] \cdot \frac{v(\mathbf{y})}{\varepsilon^{(k)}}$$

Recall $v(\mathbf{y}) := \Pr\left[(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(X^m) = 1^k \mid X^j = \mathbf{y} \right]$. Note that

$$\Pr_{Y_{j}|Y^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] = \sum_{\ell=1}^{\infty} (1 - \nu(\mathbf{y}_{1,...,j-1}))^{\ell-1} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] \cdot \nu(\mathbf{y}) \qquad (1)$$

$$= \frac{1}{\nu(\mathbf{y}_{1,...,j-1})} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] \cdot \nu(\mathbf{y})$$

Proving Claim 10 —
$$\Pr_{Y^j}[\mathbf{y}] = \Pr_{X^j}[\mathbf{y}] \cdot \frac{v(\mathbf{y})}{\varepsilon^{(k)}}$$

Recall $v(\mathbf{y}) := \Pr\left[(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(X^m) = 1^k \mid X^j = \mathbf{y} \right]$. Note that

$$\Pr_{Y_{j}|Y^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] = \sum_{\ell=1}^{\infty} (1 - \nu(\mathbf{y}_{1,...,j-1}))^{\ell-1} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] \cdot \nu(\mathbf{y}) \qquad (1)$$

$$= \frac{1}{\nu(\mathbf{y}_{1,...,j-1})} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] \cdot \nu(\mathbf{y})$$

$$\Pr_{Y_{i}}[\mathbf{y}] = \Pr_{Y_{i-1}}[\mathbf{y}_{1...,j-1}] \cdot \Pr_{Y_{i}|Y_{i-1} = \mathbf{y}_{1...,i-1}}[y_{i}]$$

Proving Claim 10 —
$$\Pr_{Y^j}[\mathbf{y}] = \Pr_{X^j}[\mathbf{y}] \cdot \frac{v(\mathbf{y})}{\varepsilon^{(k)}}$$

Recall $v(\mathbf{y}) := \Pr\left[(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(X^m) = 1^k \mid X^j = \mathbf{y} \right]$. Note that

$$\Pr_{Y_{j}|Y^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] = \sum_{\ell=1}^{\infty} (1 - v(\mathbf{y}_{1,...,j-1}))^{\ell-1} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] \cdot v(\mathbf{y}) \qquad (1)$$

$$= \frac{1}{v(\mathbf{y}_{1,...,j-1})} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] \cdot v(\mathbf{y})$$

$$\Pr_{Y_{j}}[\mathbf{y}] = \Pr_{Y_{j-1}}[\mathbf{y}_{1...,j-1}] \cdot \Pr_{Y_{j}|Y^{j-1} = \mathbf{y}_{1...,j-1}}[y_{j}]
= \Pr_{X_{j-1}}[\mathbf{y}_{1...,j-1}] \cdot \frac{v(\mathbf{y}_{1...,j-1})}{\varepsilon^{(k)}} \cdot \Pr_{Y_{j}|Y^{j-1} = \mathbf{y}_{1...,j-1}}[y_{j}]$$
(i.h.)

Proving Claim 10 — $\Pr_{Y^j}[\mathbf{y}] = \Pr_{X^j}[\mathbf{y}] \cdot \frac{v(\mathbf{y})}{\varepsilon^{(k)}}$

Recall $v(\mathbf{y}) := \Pr\left[(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(X^m) = 1^k \mid X^j = \mathbf{y} \right]$. Note that

$$\Pr_{Y_{j}|Y^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] = \sum_{\ell=1}^{\infty} (1 - v(\mathbf{y}_{1,...,j-1}))^{\ell-1} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] \cdot v(\mathbf{y}) \qquad (1)$$

$$= \frac{1}{v(\mathbf{y}_{1,...,j-1})} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1,...,j-1}}[y_{j}] \cdot v(\mathbf{y})$$

$$\begin{aligned}
&\Pr_{Y_{j}}[\mathbf{y}] = \Pr_{Y_{j-1}}[\mathbf{y}_{1...,j-1}] \cdot \Pr_{Y_{j}|Y^{j-1} = \mathbf{y}_{1...,j-1}}[y_{j}] \\
&= \Pr_{X^{j-1}}[\mathbf{y}_{1...,j-1}] \cdot \frac{\mathbf{v}(\mathbf{y}_{1...,j-1})}{\varepsilon^{(k)}} \cdot \Pr_{Y_{j}|Y^{j-1} = \mathbf{y}_{1...,j-1}}[y_{j}] \\
&= \Pr_{X^{j-1}}[\mathbf{y}_{1...,j-1}] \cdot \frac{\mathbf{v}(\mathbf{y}_{1...,j-1})}{\varepsilon^{(k)}} \cdot \frac{\mathbf{v}(\mathbf{y})}{\mathbf{v}(\mathbf{y}_{1...,j-1})} \cdot \Pr_{X_{j}|X^{j-1} = \mathbf{y}_{1...,j-1}}[y_{j}] \quad \text{(Eq. (1))}
\end{aligned}$$

Proving Claim 10 — $Pr_{Y^j}[\mathbf{y}] = Pr_{X^j}[\mathbf{y}] \cdot \frac{v(\mathbf{y})}{\varepsilon^{(k)}}$

Recall $v(\mathbf{y}) := \Pr\left[(\widetilde{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(X^m) = 1^k \mid X^j = \mathbf{y} \right]$. Note that

$$\Pr_{Y_{j}|Y^{j-1}=\mathbf{y}_{1...,j-1}}[y_{j}] = \sum_{\ell=1}^{\infty} (1 - v(\mathbf{y}_{1...,j-1}))^{\ell-1} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1...,j-1}}[y_{j}] \cdot v(\mathbf{y}) \qquad (1)$$

$$= \frac{1}{v(\mathbf{y}_{1...,j-1})} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1...,j-1}}[y_{j}] \cdot v(\mathbf{y})$$

$$\Pr_{Y_{j}}[\mathbf{y}] = \Pr_{Y_{j-1}}[\mathbf{y}_{1...,j-1}] \cdot \Pr_{Y_{j}|Y^{j-1}=\mathbf{y}_{1...,j-1}}[y_{j}]
= \Pr_{X^{j-1}}[\mathbf{y}_{1...,j-1}] \cdot \frac{v(\mathbf{y}_{1...,j-1})}{\varepsilon^{(k)}} \cdot \Pr_{Y_{j}|Y^{j-1}=\mathbf{y}_{1...,j-1}}[y_{j}]$$

$$= \Pr_{X^{j-1}}[\mathbf{y}_{1...,j-1}] \cdot \frac{v(\mathbf{y}_{1...,j-1})}{\varepsilon^{(k)}} \cdot \frac{v(\mathbf{y})}{v(\mathbf{y}_{1...,j-1})} \cdot \Pr_{X_{j}|X^{j-1}=\mathbf{y}_{1...,j-1}}[y_{j}]$$

$$= \Pr_{Y}[\mathbf{y}] \cdot \frac{v(\mathbf{y})}{\varepsilon^{(k)}}.$$
(i.h.)

Let \widetilde{I} be the value of i^* in \widetilde{P} .

Let $\tilde{\mathbf{I}}$ be the value of i^* in $\tilde{\mathbf{P}}$.

$$D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}||_{\widetilde{\mathbf{I}}=i}).$$

Let \widetilde{I} be the value of i^* in \widetilde{P} .

Claim 11

$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}} ||_{\widetilde{\mathbf{I}} = i}).$$

$$\sum_{i\in[k]}D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}|_{\widetilde{\mathbf{I}}=i})\leq D(\widehat{\mathbf{R}}||\mathbf{R}).$$

Let \tilde{I} be the value of i^* in \tilde{P} .

Claim 11

$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}} ||_{\widetilde{\mathbf{I}} = i}).$$

Claim 12

$$\sum_{i\in[k]} D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}|_{\widetilde{\mathbf{I}}=i}) \leq D(\widehat{\mathbf{R}}||\mathbf{R}).$$

1. Thm. 7 in Lecture 7 $\implies D(\widehat{\mathbf{R}}||\mathbf{R}) \leq \log \frac{1}{\Pr[\widehat{P^{(k)}}, V^{(k)}(\mathbf{R})] = 1^k]} = \log \frac{1}{\varepsilon^{(k)}}$

Let $\tilde{\mathbf{I}}$ be the value of i^* in $\tilde{\mathbf{P}}$.

Claim 11

$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}} ||_{\widetilde{\mathbf{I}} = i}).$$

$$\sum_{i\in[k]}D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}|_{\widetilde{\mathbf{I}}=i})\leq D(\widehat{\mathbf{R}}||\mathbf{R}).$$

- 1. Thm. 7 in Lecture 7 $\implies D(\widehat{\mathbf{R}}||\mathbf{R}) \leq \log \frac{1}{\Pr[(\widetilde{P^{(k)}}, V^{(k)}(\mathbf{R})) = 1^k]} = \log \frac{1}{\varepsilon^{(k)}}$
- 2. Hence, $D(\min(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})||\min(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})) \leq D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}||\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq -\frac{1}{k} \cdot \log \varepsilon^{(k)}$

Let \tilde{I} be the value of i^* in \tilde{P} .

Claim 11

$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}} ||_{\widetilde{\mathbf{I}} = i}).$$

$$\sum_{i\in[k]}D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}|_{\widetilde{\mathbf{I}}=i})\leq D(\widehat{\mathbf{R}}||\mathbf{R}).$$

- 1. Thm. 7 in Lecture 7 $\implies D(\widehat{\mathbf{R}}||\mathbf{R}) \le \log \frac{1}{\Pr[(\widetilde{P^{(k)}},V^{(k)}(\mathbf{R}))=1^k]} = \log \frac{1}{\varepsilon^{(k)}}$
- 2. Hence, $D(\min(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})||\min(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})) \leq D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}||\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq -\frac{1}{k} \cdot \log \varepsilon^{(k)}$
- **3.** Lemma 15 $\implies \alpha := \Pr[\text{win}(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})] \ge 1 \frac{1}{q}$, and let $\beta := \Pr[\text{win}(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})]$.

Let \tilde{I} be the value of i^* in \tilde{P} .

Claim 11

$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}} ||_{\widetilde{\mathbf{I}} = i}).$$

$$\sum_{i\in[k]}D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}|_{\widetilde{\mathbf{I}}=i})\leq D(\widehat{\mathbf{R}}||\mathbf{R}).$$

- 1. Thm. 7 in Lecture 7 $\implies D(\widehat{\mathbf{R}}||\mathbf{R}) \le \log \frac{1}{\Pr[(\widetilde{P^{(k)}}, V^{(k)}(\mathbf{R})) = 1^k]} = \log \frac{1}{\varepsilon^{(k)}}$
- 2. Hence, $D(\min(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})||\min(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})) \leq D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}||\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq -\frac{1}{k} \cdot \log \varepsilon^{(k)}$
- 3. Lemma 15 $\implies \alpha := \Pr[\min(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})] \ge 1 \frac{1}{q}$, and let $\beta := \Pr[\min(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})]$.
- **4.** By (2), $\alpha \cdot \log \frac{\alpha}{\beta} + (1 \alpha) \log \frac{1 \alpha}{1 \beta} \le -\frac{1}{k} \cdot \log \varepsilon^{(k)}$

Let $\tilde{\mathbf{I}}$ be the value of i^* in $\tilde{\mathbf{P}}$.

Claim 11

$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}} ||_{\widetilde{\mathbf{I}} = i}).$$

$$\sum_{i\in[k]}D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}|_{\widetilde{\mathbf{I}}=i})\leq D(\widehat{\mathbf{R}}||\mathbf{R}).$$

- 1. Thm. 7 in Lecture 7 $\implies D(\widehat{\mathbf{R}}||\mathbf{R}) \le \log \frac{1}{\Pr[(\widetilde{P^{(k)}}, V^{(k)}(\mathbf{R})) = 1^k]} = \log \frac{1}{\varepsilon^{(k)}}$
- 2. Hence, $D(\min(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})||\min(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})) \leq D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}||\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq -\frac{1}{k} \cdot \log \varepsilon^{(k)}$
- 3. Lemma 15 $\implies \alpha := \Pr[\min(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})] \ge 1 \frac{1}{q}$, and let $\beta := \Pr[\min(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})]$.
- **4.** By (2), $\alpha \cdot \log \frac{\alpha}{\beta} + (1 \alpha) \log \frac{1 \alpha}{1 \beta} \le -\frac{1}{k} \cdot \log \varepsilon^{(k)}$ $\implies \beta \ge 2^{\log \alpha + \frac{1 \alpha}{\alpha} \log(1 \alpha) + \frac{1}{\alpha k} \log \varepsilon^{(k)}}$

Let $\tilde{\mathbf{I}}$ be the value of i^* in $\tilde{\mathbf{P}}$.

Claim 11

$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}} ||_{\widetilde{\mathbf{I}} = i}).$$

$$\sum_{i\in[k]}D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}|_{\widetilde{\mathbf{I}}=i})\leq D(\widehat{\mathbf{R}}||\mathbf{R}).$$

- 1. Thm. 7 in Lecture 7 $\implies D(\widehat{\mathbf{R}}||\mathbf{R}) \le \log \frac{1}{\Pr[(\widetilde{P^{(k)}}, V^{(k)}(\mathbf{R})) = 1^k]} = \log \frac{1}{\varepsilon^{(k)}}$
- 2. Hence, $D(\min(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})||\min(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})) \leq D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}||\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq -\frac{1}{k} \cdot \log \varepsilon^{(k)}$
- 3. Lemma 15 $\implies \alpha := \Pr[\min(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})] \ge 1 \frac{1}{q}$, and let $\beta := \Pr[\min(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})]$.
- 4. By (2), $\alpha \cdot \log \frac{\alpha}{\beta} + (1 \alpha) \log \frac{1 \alpha}{1 \beta} \le -\frac{1}{k} \cdot \log \varepsilon^{(k)}$ $\implies \beta \ge 2^{\log \alpha + \frac{1 \alpha}{\alpha} \log(1 \alpha) + \frac{1}{\alpha k} \log \varepsilon^{(k)}}$
- **5.** Since $q = k^2$: $\alpha \ge 2^{-\frac{2}{q}} \ge 2^{-\frac{1}{k}}$ and $\frac{1-\alpha}{\alpha} \log(1-\alpha) \ge -\frac{4 \log k}{k^2} \ge -\frac{1}{k}$

Let \tilde{I} be the value of i^* in \tilde{P} .

Claim 11

$$D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}|_{\widetilde{\mathbf{I}}=i}).$$

$$\sum_{i\in[k]}D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}|_{\widetilde{\mathbf{I}}=i})\leq D(\widehat{\mathbf{R}}||\mathbf{R}).$$

- 1. Thm. 7 in Lecture 7 $\implies D(\widehat{\mathbf{R}}||\mathbf{R}) \leq \log \frac{1}{\Pr[(\widetilde{P^{(k)}}, V^{(k)}(\mathbf{R})) = 1^k]} = \log \frac{1}{\varepsilon^{(k)}}$
- 2. Hence, $D(\min(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})||\min(\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}})) \leq D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}||\widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq -\frac{1}{k} \cdot \log \varepsilon^{(k)}$
- 3. Lemma 15 $\implies \alpha := \Pr[\text{win}(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})] \ge 1 \frac{1}{q}$, and let $\beta := \Pr[\text{win}(\widehat{\mathbf{R}}, \widehat{\mathbf{N}})]$.
- **4.** By (2), $\alpha \cdot \log \frac{\alpha}{\beta} + (1 \alpha) \log \frac{1 \alpha}{1 \beta} \le -\frac{1}{k} \cdot \log \varepsilon^{(k)}$ $\implies \beta \ge 2^{\log \alpha + \frac{1 \alpha}{\alpha} \log(1 \alpha) + \frac{1}{\alpha k} \log \varepsilon^{(k)}}$
- 5. Since $q=k^2$: $\alpha \geq 2^{-\frac{2}{q}} \geq 2^{-\frac{1}{k}}$ and $\frac{1-\alpha}{\alpha}\log(1-\alpha) \geq -\frac{4\log k}{k^2} \geq -\frac{1}{k}$
- **6.** We conclude that $\beta \geq 2^{\frac{4}{k}\log \varepsilon^{(k)}} = \sqrt[k]{\xi^{(k)}}$.

Proving Claim 12 — $\sum_{i \in [k]} D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}|_{\widetilde{\mathbf{I}}=i}) \leq D(\widehat{\mathbf{R}}||\mathbf{R})$

Proving Claim 12 — $\sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}}|_{\widetilde{\mathbf{I}}=i}) \leq D(\widehat{\mathbf{R}} || \mathbf{R})$

Lemma 13

Let $Z = \{Z_{ij}\}_{(i,j) \in [k] \times [m]}$ be iids and let W be an event. For $z \in \text{Supp}(Z)$, let

$$\xi_i(z) := \prod_{j=1}^m \Pr[Z_{j,i} = z_{i,j}] \cdot \Pr[Z_{j,-i} = z_{i,j-1} | Z_{1,...,j-1} = z_{1,...,j-1} \wedge Z_{j,i} = z_{i,j} \wedge W].$$

Then $\sum_{i=1}^{k} D(Z|_{W}||\xi_{i}) \leq D(Z|_{W}||Z)$.

Proving Claim 12 — $\sum_{i \in [k]} D(\widehat{\mathbf{R}}||\widetilde{\mathbf{R}}|_{\widetilde{\mathbf{I}}=i}) \leq D(\widehat{\mathbf{R}}||\mathbf{R})$

Lemma 13

Let $Z = \{Z_{ij}\}_{(i,j) \in [k] \times [m]}$ be iids and let W be an event. For $z \in \text{Supp}(Z)$, let

$$\xi_{i}(z) := \prod_{j=1}^{m} \Pr[Z_{j,i} = z_{i,j}] \cdot \Pr[Z_{j,-i} = z_{i,j-1} | Z_{1,...,j-1} = z_{1,...,j-1} \wedge Z_{j,i} = z_{i,j} \wedge W].$$

Then $\sum_{i=1}^{k} D(Z|_{W}||\xi_{i}) \leq D(Z|_{W}||Z)$.

Letting
$$Z = \mathbf{R}$$
 and W be the event $(\widehat{\mathsf{P}^{(k)}}, \mathsf{V}^{(k)}(\mathbf{R})) = 1^k$, Lemma 13 yields that $\sum_{i \in [k]} D(\widehat{\mathbf{R}}||\widehat{\mathbf{R}}_{\widehat{\mathbf{l}}=i}) = \sum_{i \in [k]} D(\mathbf{R}|_W||\widehat{\mathbf{R}}_{\widehat{\mathbf{l}}=i}) \le D(\mathbf{R}|_W||\mathbf{R}) = D(\widehat{\mathbf{R}}||\mathbf{R})$. \square

Proving Lemma 13

We prove for m = k = 2.

Proving Lemma 13

We prove for m = k = 2.

$$Z = (X_0, X_1, Y_0, Y_1)$$
 iids and W an event.

$$\xi_i(x_0, x_1, y_0, y_1) := \Pr[X_i = x_i] \cdot \Pr[X_{\bar{i}} = x_{\bar{i}} \mid X_i = x_i \land W] \cdot \Pr[Y_i = y_i] \cdot \Pr[Y_{\bar{i}} = Y_{\bar{i}} \mid Y_i = y_i \land (X_0, X_1) = (x_0, x_1) \land W].$$

Proving Lemma 13

We prove for m = k = 2.

 $Z = (X_0, X_1, Y_0, Y_1)$ iids and W an event.

$$\xi_i(x_0, x_1, y_0, y_1) := \Pr[X_i = x_i] \cdot \Pr[X_{\bar{i}} = x_{\bar{i}} \mid X_i = x_i \land W] \cdot \Pr[Y_i = y_i] \cdot \Pr[Y_{\bar{i}} = Y_{\bar{i}} \mid Y_i = y_i \land (X_0, X_1) = (x_0, x_1) \land W].$$

We need to prove that $\sum_{i=1}^{2} D(Z|W||\xi_i) \leq D(Z|W||Z)$.

We prove for m = k = 2.

 $Z = (X_0, X_1, Y_0, Y_1)$ iids and W an event.

$$\xi_i(x_0, x_1, y_0, y_1) := \Pr[X_i = x_i] \cdot \Pr[X_{\bar{i}} = x_{\bar{i}} \mid X_i = x_i \land W] \cdot \Pr[Y_i = y_i] \cdot \Pr[Y_{\bar{i}} = Y_{\bar{i}} \mid Y_i = y_i \land (X_0, X_1) = (x_0, x_1) \land W].$$

We need to prove that $\sum_{i=1}^{2} D(Z|_{W}||\xi_{i}) \leq D(Z|_{W}||Z)$.

▶ Let $U = p_Z$ and $C = p_{Z|_W}$.

We prove for m = k = 2.

 $Z = (X_0, X_1, Y_0, Y_1)$ iids and W an event.

$$\xi_i(x_0, x_1, y_0, y_1) := \Pr[X_i = x_i] \cdot \Pr[X_{\bar{i}} = x_{\bar{i}} \mid X_i = x_i \land W] \cdot \Pr[Y_i = y_i] \cdot \Pr[Y_{\bar{i}} = Y_{\bar{i}} \mid Y_i = y_i \land (X_0, X_1) = (x_0, x_1) \land W].$$

We need to prove that $\sum_{i=1}^{2} D(Z|_{W}||\xi_{i}) \leq D(Z|_{W}||Z)$.

- ▶ Let $U = p_Z$ and $C = p_{Z|_W}$.
- ► Let $X = (X_0, X_1)$

We prove for m = k = 2.

 $Z = (X_0, X_1, Y_0, Y_1)$ iids and W an event.

$$\xi_i(x_0, x_1, y_0, y_1) := \Pr[X_i = x_i] \cdot \Pr[X_{\bar{i}} = x_{\bar{i}} \mid X_i = x_i \land W] \cdot \Pr[Y_i = y_i] \cdot \Pr[Y_{\bar{i}} = Y_{\bar{i}} \mid Y_i = y_i \land (X_0, X_1) = (x_0, x_1) \land W].$$

We need to prove that $\sum_{i=1}^{2} D(Z|w||\xi_i) \leq D(Z|w||Z)$.

- ▶ Let $U = p_Z$ and $C = p_{Z|_W}$.
- ▶ Let $X = (X_0, X_1)$
- $\begin{array}{l} \blacktriangleright \ \ Q(x_0,x_1,y_0,y_1) := \Pr[X_0 = x_0|W] \cdot \Pr[X_1 = x_1|W] \cdot \\ \Pr[Y_0 = y_0|W,X = (x_0,x_1)] \cdot \Pr[Y_1 = y_1|W,X = (x_0,x_1)] \end{array}$

We prove for m = k = 2.

 $Z = (X_0, X_1, Y_0, Y_1)$ iids and W an event.

$$\xi_{i}(x_{0}, x_{1}, y_{0}, y_{1}) := \Pr[X_{i} = x_{i}] \cdot \Pr[X_{\overline{i}} = x_{\overline{i}} \mid X_{i} = x_{i} \wedge W] \cdot \\ \Pr[Y_{i} = y_{i}] \cdot \Pr[Y_{\overline{i}} = Y_{\overline{i}} \mid Y_{i} = y_{i} \wedge (X_{0}, X_{1}) = (x_{0}, x_{1}) \wedge W].$$

We need to prove that $\sum_{i=1}^{2} D(Z|w||\xi_i) \leq D(Z|w||Z)$.

- ▶ Let $U = p_Z$ and $C = p_{Z|_W}$.
- ▶ Let $X = (X_0, X_1)$
- ► $Q(x_0, x_1, y_0, y_1) := \Pr[X_0 = x_0 | W] \cdot \Pr[X_1 = x_1 | W] \cdot \Pr[Y_0 = y_0 | W, X = (x_0, x_1)] \cdot \Pr[Y_1 = y_1 | W, X = (x_0, x_1)]$
- ► We write $\frac{C(x_0, x_1, y_0, y_1)}{U(x_0, x_1, y_0, y_1)} = \frac{\Pr[X_0 = x_0 | W] \cdot \Pr[Y_0 = y_0 | W, X = (x_0, x_1)]}{\Pr[X_0 = x_0] \cdot \Pr[Y_0 = y_0]} \cdot \frac{\Pr[X_1 = x_1 | W] \cdot \Pr[Y_1 = y_1 | W, X = (x_0, x_1)]}{\Pr[X_1 = x_1] \cdot \Pr[Y_1 = y_1]} \cdot \frac{C(x_0, x_1, y_0, y_1)}{Q(x_0, x_1, y_0, y_1)}$

$$D(C||U) = \underset{(x_0, x_1, y_0, y_1) \leftarrow C}{\mathsf{E}} \left[\log \frac{\Pr[X_0 = x_0|W] \cdot \Pr[Y_0 = y_0|W, X = (x_0, x_1)]}{\Pr[X_0 = x_0] \cdot \Pr[Y_0 = y_0]} \right]$$

$$+ \underset{(x_0, x_1, y_0, y_1) \leftarrow C}{\mathsf{E}} \left[\log \frac{\Pr[X_1 = x_1|W] \cdot \Pr[Y_1 = y_1|W, X = (x_0, x_1)]}{\Pr[X_1 = x_1] \cdot \Pr[Y_1 = y_1]} \right]$$

$$+ \underset{(x_0, x_1, y_0, y_1) \leftarrow C}{\mathsf{E}} \left[\log \frac{C(x_0, x_1, y_0, y_1)}{Q(x_0, x_1, y_0, y_1)} \right].$$

$$D(C||U) = \underset{(x_0, x_1, y_0, y_1) \leftarrow C}{\mathsf{E}} \left[\log \frac{\Pr[X_0 = x_0|W] \cdot \Pr[Y_0 = y_0|W, X = (x_0, x_1)]}{\Pr[X_0 = x_0] \cdot \Pr[Y_0 = y_0]} \right]$$

$$+ \underset{(x_0, x_1, y_0, y_1) \leftarrow C}{\mathsf{E}} \left[\log \frac{\Pr[X_1 = x_1|W] \cdot \Pr[Y_1 = y_1|W, X = (x_0, x_1)]}{\Pr[X_1 = x_1] \cdot \Pr[Y_1 = y_1]} \right]$$

$$+ \underset{(x_0, x_1, y_0, y_1) \leftarrow C}{\mathsf{E}} \left[\log \frac{C(x_0, x_1, y_0, y_1)}{Q(x_0, x_1, y_0, y_1)} \right].$$

It follows that

$$\begin{split} D(C||U) &= D(X_0|_W, X_1|_{W,X_0}, Y_0|_{W,X}, Y_1|_{W,X,Y_0}||X_0, X_1|_{W,X_0}, Y_0, Y_1|_{W,X,Y_0}) \\ &+ D(X_1|_W, X_1|_{W,X_1}, Y_1|_{W,X}, Y_1|_{W,X,Y_1}||X_1, X_1|_{W,X_1}, Y_1, Y_1|_{W,X,Y_1}) \\ &+ D(C||Q) \end{split}$$

$$\begin{split} D(C||U) &= \mathop{\mathbb{E}}_{(x_0, x_1, y_0, y_1) \leftarrow C} \left[\log \frac{\Pr[X_0 = x_0|W] \cdot \Pr[Y_0 = y_0|W, X = (x_0, x_1)]}{\Pr[X_0 = x_0] \cdot \Pr[Y_0 = y_0]} \right] \\ &+ \mathop{\mathbb{E}}_{(x_0, x_1, y_0, y_1) \leftarrow C} \left[\log \frac{\Pr[X_1 = x_1|W] \cdot \Pr[Y_1 = y_1|W, X = (x_0, x_1)]}{\Pr[X_1 = x_1] \cdot \Pr[Y_1 = y_1]} \right] \\ &+ \mathop{\mathbb{E}}_{(x_0, x_1, y_0, y_1) \leftarrow C} \left[\log \frac{C(x_0, x_1, y_0, y_1)}{Q(x_0, x_1, y_0, y_1)} \right]. \end{split}$$

It follows that

$$\begin{split} D(C||U) &= D(X_0|_W, X_1|_{W,X_0}, Y_0|_{W,X}, Y_1|_{W,X,Y_0}||X_0, X_1|_{W,X_0}, Y_0, Y_1|_{W,X,Y_0}) \\ &+ D(X_1|_W, X_1|_{W,X_1}, Y_1|_{W,X}, Y_1|_{W,X,Y_1}||X_1, X_1|_{W,X_1}, Y_1, Y_1|_{W,X,Y_1}) \\ &+ D(C||Q) \\ &= \sum_{i=1}^2 D(Z|_W||\xi_i) + D(C||Q) \\ &\geq \sum_{i=1}^2 D(Z|_W||\xi_i). \Box \end{split}$$

Experiment 14 (P)

- 1. Let $i^* \leftarrow [k]$.
- **2.** For j = 1 to m:
 - **2.1** Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned on $R_{1,...,j-1} = \widehat{R}_{1,...,j-1}$.
 - **2.2** If $(P^{(k)}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_{j,j^*} = R_{j,j^*}$. Else, GOTO Line 2.1.
 - **2.3** Let $R \leftarrow \{0,1\}^{m \times \ell}$, conditioned on $R_{1,...,j-1} = \widehat{R}_{1,...,j-1}$ and $R_{j,i^*} = \widehat{R}_{j,i^*}$.
 - **2.4** If $(P^{(k)}, V^{(k)}(R)) = 1^k$, set $\hat{R}_i = R_i$. Else, GOTO Line 2.3.

Experiment 14 (P)

- 1. Let $i^* \leftarrow [k]$.
- **2.** For j = 1 to m:
 - **2.1** Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned on $R_{1,...,j-1} = \widehat{R}_{1,...,j-1}$.
 - **2.2** If $(\widehat{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_{j,j^*} = R_{j,j^*}$. Else, GOTO Line 2.1.
 - **2.3** Let $R \leftarrow \{0,1\}^{m \times \ell}$, conditioned on $R_{1,...,j-1} = \widehat{R}_{1,...,j-1}$ and $R_{j,i^*} = \widehat{R}_{j,i^*}$.
 - **2.4** If $(\widehat{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_j = R_j$. Else, GOTO Line 2.3.
- Let $\widehat{\mathbf{R}}$ be the final value of $\widehat{\mathbf{R}}$ in $\widehat{\mathbf{P}}$.

Experiment 14 (P)

- 1. Let $i^* \leftarrow [k]$.
- **2.** For j = 1 to m:
 - **2.1** Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned on $R_{1,\dots,j-1} = \widehat{R}_{1,\dots,j-1}$.
 - **2.2** If $(\widehat{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_{j,j^*} = R_{j,j^*}$. Else, GOTO Line 2.1.
 - **2.3** Let $R \leftarrow \{0,1\}^{m \times \ell}$, conditioned on $R_{1,...,j-1} = \widehat{R}_{1,...,j-1}$ and $R_{j,i^*} = \widehat{R}_{j,i^*}$.
 - **2.4** If $(P^{(k)}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_j = R_j$. Else, GOTO Line 2.3.
- $\blacktriangleright \ \widehat{\boldsymbol{R}} \sim \boldsymbol{R}|_{(\widetilde{P^{(k)}},V^{(k)}(\boldsymbol{R}))=1^k}$

Let $\hat{\mathbf{R}}$ be the final value of $\hat{\mathbf{R}}$ in $\hat{\mathbf{P}}$.

Experiment 14 (P)

- 1. Let $i^* \leftarrow [k]$.
- **2.** For j = 1 to m:
 - **2.1** Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned on $R_{1,\dots,j-1} = \widehat{R}_{1,\dots,j-1}$.
 - **2.2** If $(\widehat{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_{j,j^*} = R_{j,j^*}$. Else, GOTO Line 2.1.
 - **2.3** Let $R \leftarrow \{0, 1\}^{m \times \ell}$, conditioned on $R_{1,...,j-1} = \widehat{R}_{1,...,j-1}$ and $R_{j,i^*} = \widehat{R}_{j,i^*}$. **2.4** If $(\widehat{P}^{(k)}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_i = R_i$. Else, GOTO Line 2.3.
- ▶ Let $\hat{\mathbf{R}}$ be the final value of $\hat{\mathbf{R}}$ in $\hat{\mathbf{P}}$.
- $\blacktriangleright |\widehat{\mathbf{R}} \sim \mathbf{R}|_{(\widetilde{P^{(k)}}, \mathsf{V}^{(k)}(\mathbf{R})) = 1^k}$
- ▶ Let \hat{N} be the # of Step-2.3-samples done in \hat{P} .

Experiment 14 (P)

- 1. Let $i^* \leftarrow [k]$.
- **2.** For j = 1 to m:
 - **2.1** Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned on $R_{1,\dots,j-1} = \widehat{R}_{1,\dots,j-1}$.
 - **2.2** If $(\widehat{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_{j,j^*} = R_{j,j^*}$. Else, GOTO Line 2.1.
 - **2.3** Let $R \leftarrow \{0, 1\}^{m \times \ell}$, conditioned on $R_{1,...,j-1} = \widehat{R}_{1,...,j-1}$ and $R_{j,i^*} = \widehat{R}_{j,i^*}$. **2.4** If $(\widehat{P}^{(k)}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_i = R_i$. Else, GOTO Line 2.3.
- ▶ Let $\hat{\mathbf{R}}$ be the final value of $\hat{\mathbf{R}}$ in $\hat{\mathbf{P}}$.
- $\blacktriangleright |\widehat{\mathbf{R}} \sim \mathbf{R}|_{(\widetilde{P^{(k)}}, \mathsf{V}^{(k)}(\mathbf{R})) = 1^k}$
- ▶ Let \hat{N} be the # of Step-2.3-samples done in \hat{P} .

Experiment 14 (P)

- 1. Let $i^* \leftarrow [k]$.
- **2.** For j = 1 to m:
 - **2.1** Let $R \leftarrow \{0,1\}^{m \times (k\ell)}$, conditioned on $R_{1,\dots,j-1} = \widehat{R}_{1,\dots,j-1}$.
 - **2.2** If $(\widehat{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_{j,j^*} = R_{j,j^*}$. Else, GOTO Line 2.1.
 - **2.3** Let $R \leftarrow \{0,1\}^{m \times \ell}$, conditioned on $R_{1,\dots,j-1} = \widehat{R}_{1,\dots,j-1}$ and $R_{j,j^*} = \widehat{R}_{j,j^*}$. **2.4** If $(\widehat{P^{(k)}}, V^{(k)}(R)) = 1^k$, set $\widehat{R}_i = R_i$. Else, GOTO Line 2.3.
- Let $\hat{\mathbf{R}}$ be the final value of \hat{R} in $\hat{\mathbf{P}}$.
- $\blacktriangleright \ \widehat{\boldsymbol{\mathsf{R}}} \sim \boldsymbol{\mathsf{R}}|_{(\widetilde{\mathsf{P}^{(k)}},\mathsf{V}^{(k)}(\boldsymbol{\mathsf{R}}))=1^k}$
- ▶ Let \hat{N} be the # of Step-2.3-samples done in \hat{P} .

Lemma 15 (essentially the same proof as of Lemma 9)

$$\Pr\left[\text{win}(\widehat{\textit{\textbf{R}}},\widehat{\textit{\textbf{N}}})\right] = \Pr\left[(\widetilde{P^{(k)}},V^{(k)}(\widehat{\textit{\textbf{R}}})) = 1^k \wedge \widehat{\textit{\textbf{N}}} \leq qm/\varepsilon^{(k)}\right] \geq 1 - \tfrac{1}{q}$$

Proving Claim 11 — $D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}} ||_{\widetilde{\mathbf{I}} = i})$

Let $\widehat{\mathbf{I}}$ be the value of i^* in $\widehat{\mathbf{P}}$ (recall that $\widetilde{\mathbf{I}}$ is the value of i^* in $\widetilde{\mathbf{P}}$).

Proving Claim 11 — $D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}} ||_{\widetilde{\mathbf{I}} = i})$

Let \widehat{I} be the value of i^* in \widehat{P} (recall that \widetilde{I} is the value of i^* in \widetilde{P}).

$$\text{Let }(\widetilde{\mathbf{R}}_{(i)},\widetilde{\mathbf{N}}_{(i)})=(\widetilde{\mathbf{R}},\widetilde{\mathbf{N}})|_{\widetilde{\mathbf{I}}=i} \text{ and } (\widehat{R}_{(i)},\widehat{\mathbf{N}}_{(i)})=(\widehat{\mathbf{R}},\widehat{\mathbf{N}})|_{\widehat{\mathbf{I}}=i}. \text{ Note that } \widehat{R}_{(i)}=\widehat{\mathbf{R}}.$$

Proving Claim 11 — $D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}} ||_{\widetilde{\mathbf{I}} = i})$

Let $\hat{\mathbf{I}}$ be the value of i^* in $\hat{\mathbf{P}}$ (recall that $\tilde{\mathbf{I}}$ is the value of i^* in $\tilde{\mathbf{P}}$).

$$\text{Let }(\widetilde{\textbf{R}}_{(i)},\widetilde{\textbf{N}}_{(i)})=(\widetilde{\textbf{R}},\widetilde{\textbf{N}})|_{\widetilde{\textbf{I}}=i} \text{ and } (\widehat{R}_{(i)},\widehat{\textbf{N}}_{(i)})=(\widehat{\textbf{R}},\widehat{\textbf{N}})|_{\widehat{\textbf{I}}=i}. \text{ Note that } \widehat{R}_{(i)}=\widehat{\textbf{R}}.$$

$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} | | \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}, \widehat{\mathbf{I}} | | \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}, \widetilde{\mathbf{I}})$$

Proving Claim 11 —
$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}} ||_{\widetilde{\mathbf{I}} = i})$$

Let \widehat{I} be the value of i^* in \widehat{P} (recall that \widetilde{I} is the value of i^* in \widetilde{P}).

$$\text{Let }(\widetilde{\textbf{R}}_{(i)},\widetilde{\textbf{N}}_{(i)})=(\widetilde{\textbf{R}},\widetilde{\textbf{N}})|_{\widetilde{\textbf{I}}=i} \text{ and } (\widehat{R}_{(i)},\widehat{\textbf{N}}_{(i)})=(\widehat{\textbf{R}},\widehat{\textbf{N}})|_{\widehat{\textbf{I}}=i}. \text{ Note that } \widehat{R}_{(i)}=\widehat{\textbf{R}}.$$

$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}}, \widehat{\mathbf{I}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}, \widetilde{\mathbf{I}})$$

(data-processing)

Proving Claim 11 —
$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}} ||_{\widetilde{\mathbf{I}} = i})$$

Let $\widehat{\mathbf{I}}$ be the value of i^* in $\widehat{\mathbf{P}}$ (recall that $\widetilde{\mathbf{I}}$ is the value of i^* in $\widetilde{\mathbf{P}}$).

$$\text{Let }(\widetilde{\textbf{R}}_{(i)},\widetilde{\textbf{N}}_{(i)})=(\widetilde{\textbf{R}},\widetilde{\textbf{N}})|_{\widetilde{\textbf{I}}=i} \text{ and } (\widehat{R}_{(i)},\widehat{\textbf{N}}_{(i)})=(\widehat{\textbf{R}},\widehat{\textbf{N}})|_{\widehat{\textbf{I}}=i}. \text{ Note that } \widehat{R}_{(i)}=\widehat{\textbf{R}}.$$

$$\begin{split} D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) &\leq D(\widehat{\mathbf{R}},\widehat{\mathbf{N}},\widehat{\mathbf{I}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}},\widetilde{\mathbf{I}}) \\ &= D(\widehat{\mathbf{I}}||\widetilde{\mathbf{I}}) + \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_{(i)},\widehat{\mathbf{N}}_{(i)}||\widetilde{\mathbf{R}}_{(i)},\widetilde{\mathbf{N}}_{(i)}) \end{split} \tag{data-processing}$$

Proving Claim 11 —
$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}} ||_{\widetilde{\mathbf{I}} = i})$$

Let \hat{I} be the value of i^* in \hat{P} (recall that \hat{I} is the value of i^* in \hat{P}).

$$\text{Let }(\widetilde{\textbf{R}}_{(i)},\widetilde{\textbf{N}}_{(i)})=(\widetilde{\textbf{R}},\widetilde{\textbf{N}})|_{\widetilde{\textbf{I}}=i} \text{ and } (\widehat{R}_{(i)},\widehat{\textbf{N}}_{(i)})=(\widehat{\textbf{R}},\widehat{\textbf{N}})|_{\widehat{\textbf{I}}=i}. \text{ Note that } \widehat{R}_{(i)}=\widehat{\textbf{R}}.$$

$$\begin{split} D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) &\leq D(\widehat{\mathbf{R}},\widehat{\mathbf{N}},\widehat{\mathbf{I}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}},\widetilde{\mathbf{I}}) \\ &= D(\widehat{\mathbf{I}}||\widetilde{\mathbf{I}}) + \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_{(i)},\widehat{\mathbf{N}}_{(i)}||\widetilde{\mathbf{R}}_{(i)},\widetilde{\mathbf{N}}_{(i)}) \end{split} \tag{chain rule}$$

Proving Claim 11 —
$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}} ||_{\widetilde{\mathbf{I}} = i})$$

Let \widehat{I} be the value of i^* in \widehat{P} (recall that \widetilde{I} is the value of i^* in \widetilde{P}).

$$\text{Let }(\widetilde{\textbf{R}}_{(i)},\widetilde{\textbf{N}}_{(i)})=(\widetilde{\textbf{R}},\widetilde{\textbf{N}})|_{\widetilde{\textbf{I}}=i} \text{ and } (\widehat{R}_{(i)},\widehat{\textbf{N}}_{(i)})=(\widehat{\textbf{R}},\widehat{\textbf{N}})|_{\widehat{\textbf{I}}=i}. \text{ Note that } \widehat{R}_{(i)}=\widehat{\textbf{R}}.$$

$$\begin{split} D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) &\leq D(\widehat{\mathbf{R}},\widehat{\mathbf{N}},\widehat{\mathbf{I}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}},\widetilde{\mathbf{I}}) \\ &= D(\widehat{\mathbf{I}}||\widetilde{\mathbf{I}}) + \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_{(i)},\widehat{\mathbf{N}}_{(i)}||\widetilde{\mathbf{R}}_{(i)},\widetilde{\mathbf{N}}_{(i)}) \\ &= \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_{i},\widehat{\mathbf{N}}_{(i)}||\widetilde{\mathbf{R}}_{(i)},\widetilde{\mathbf{N}}_{(i)}) \end{split} \tag{chain rule}$$

Proving Claim 11 —
$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}} ||_{\widetilde{\mathbf{I}} = i})$$

Let $\hat{\mathbf{I}}$ be the value of i^* in $\hat{\mathbf{P}}$ (recall that $\hat{\mathbf{I}}$ is the value of i^* in $\hat{\mathbf{P}}$).

$$\text{Let } (\widetilde{\textbf{R}}_{(i)},\widetilde{\textbf{N}}_{(i)}) = (\widetilde{\textbf{R}},\widetilde{\textbf{N}})|_{\widetilde{\textbf{I}}=i} \text{ and } (\widehat{R}_{(i)},\widehat{\textbf{N}}_{(i)}) = (\widehat{\textbf{R}},\widehat{\textbf{N}})|_{\widehat{\textbf{I}}=i}. \text{ Note that } \widehat{R}_{(i)} = \widehat{\textbf{R}}.$$

$$\begin{split} D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) &\leq D(\widehat{\mathbf{R}},\widehat{\mathbf{N}},\widehat{\mathbf{I}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}},\widetilde{\mathbf{I}}) \\ &= D(\widehat{\mathbf{I}}||\widetilde{\mathbf{I}}) + \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_{(i)},\widehat{\mathbf{N}}_{(i)}||\widetilde{\mathbf{R}}_{(i)},\widetilde{\mathbf{N}}_{(i)}) \\ &= \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_{i},\widehat{\mathbf{N}}_{(i)}||\widetilde{\mathbf{R}}_{(i)},\widetilde{\mathbf{N}}_{(i)}) \end{split} \tag{chain rule}$$

$$D(\widehat{\boldsymbol{\mathsf{R}}}_{(i)},\widehat{\boldsymbol{\mathsf{N}}}_{(i)}||\widehat{\boldsymbol{\mathsf{R}}}_{(i)},\widetilde{\boldsymbol{\mathsf{N}}}_{(i)}) = D(\widehat{\boldsymbol{\mathsf{R}}}_{(i)}||\widehat{\boldsymbol{\mathsf{R}}}_{(i)}) + \underset{r \leftarrow \widehat{\boldsymbol{\mathsf{R}}}_{(i)}}{\mathsf{E}} \left[D(\widehat{\boldsymbol{\mathsf{N}}}_{(i)}|_{\widehat{\boldsymbol{\mathsf{R}}}_{(i)} = r}||\widehat{\boldsymbol{\mathsf{N}}}_{(i)}|_{\widehat{\boldsymbol{\mathsf{R}}}_{(i)} = r}) \right]$$

Proving Claim 11 —
$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}} |_{\widetilde{\mathbf{I}} = i})$$

Let $\hat{\mathbf{I}}$ be the value of i^* in $\hat{\mathbf{P}}$ (recall that $\hat{\mathbf{I}}$ is the value of i^* in $\hat{\mathbf{P}}$).

Let
$$(\widetilde{\mathbf{R}}_{(i)},\widetilde{\mathbf{N}}_{(i)})=(\widetilde{\mathbf{R}},\widetilde{\mathbf{N}})|_{\widetilde{\mathbf{I}}=i}$$
 and $(\widehat{R}_{(i)},\widehat{\mathbf{N}}_{(i)})=(\widehat{\mathbf{R}},\widehat{\mathbf{N}})|_{\widehat{\mathbf{I}}=i}$. Note that $\widehat{R}_{(i)}=\widehat{\mathbf{R}}$.

$$\begin{split} D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) &\leq D(\widehat{\mathbf{R}},\widehat{\mathbf{N}},\widehat{\mathbf{I}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}},\widetilde{\mathbf{I}}) \\ &= D(\widehat{\mathbf{I}}||\widetilde{\mathbf{I}}) + \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_{(i)},\widehat{\mathbf{N}}_{(i)}||\widetilde{\mathbf{R}}_{(i)},\widetilde{\mathbf{N}}_{(i)}) \\ &= \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_{i},\widehat{\mathbf{N}}_{(i)}||\widetilde{\mathbf{R}}_{(i)},\widetilde{\mathbf{N}}_{(i)}) \end{split} \tag{chain rule}$$

$$D(\widehat{\mathbf{R}}_{(i)}, \widehat{\mathbf{N}}_{(i)}||\widetilde{\mathbf{R}}_{(i)}, \widetilde{\mathbf{N}}_{(i)}) = D(\widehat{\mathbf{R}}_{(i)}||\widetilde{\mathbf{R}}_{(i)}) + \underset{r \leftarrow \widehat{\mathbf{R}}_{(i)}}{\mathsf{E}} \left[D(\widehat{\mathbf{N}}_{(i)}|_{\widehat{\mathbf{R}}_{(i)}=r}||\widetilde{\mathbf{N}}_{(i)}|_{\widetilde{\mathbf{R}}_{(i)}=r}) \right] \quad \text{(chain rule)}$$

Proving Claim 11 —
$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}} ||_{\widetilde{\mathbf{I}} = i})$$

Let $\widehat{\mathbf{I}}$ be the value of i^* in $\widehat{\mathbf{P}}$ (recall that $\widetilde{\mathbf{I}}$ is the value of i^* in $\widetilde{\mathbf{P}}$).

Let
$$(\widetilde{\mathbf{R}}_{(i)},\widetilde{\mathbf{N}}_{(i)})=(\widetilde{\mathbf{R}},\widetilde{\mathbf{N}})|_{\widetilde{\mathbf{I}}=i}$$
 and $(\widehat{R}_{(i)},\widehat{\mathbf{N}}_{(i)})=(\widehat{\mathbf{R}},\widehat{\mathbf{N}})|_{\widehat{\mathbf{I}}=i}$. Note that $\widehat{R}_{(i)}=\widehat{\mathbf{R}}$.

$$\begin{split} D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) &\leq D(\widehat{\mathbf{R}},\widehat{\mathbf{N}},\widehat{\mathbf{I}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}},\widetilde{\mathbf{I}}) \\ &= D(\widehat{\mathbf{I}}||\widetilde{\mathbf{I}}) + \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_{(i)},\widehat{\mathbf{N}}_{(i)}||\widetilde{\mathbf{R}}_{(i)},\widetilde{\mathbf{N}}_{(i)}) \\ &= \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_{i},\widehat{\mathbf{N}}_{(i)}||\widetilde{\mathbf{R}}_{(i)},\widetilde{\mathbf{N}}_{(i)}) \end{split} \tag{chain rule}$$

$$\begin{split} D(\widehat{\mathbf{R}}_{(i)},\widehat{\mathbf{N}}_{(i)}||\widetilde{\mathbf{R}}_{(i)},\widehat{\mathbf{N}}_{(i)}) &= D(\widehat{\mathbf{R}}_{(i)}||\widetilde{\mathbf{R}}_{(i)}) + \mathop{\mathsf{E}}_{r \leftarrow \widehat{\mathbf{R}}_{(i)}} \left[D(\widehat{\mathbf{N}}_{(i)}|_{\widehat{\mathbf{R}}_{(i)} = r}||\widetilde{\mathbf{N}}_{(i)}|_{\widetilde{\mathbf{R}}_{(i)} = r}) \right] \quad \text{(chain rule)} \\ &= D(\widehat{\mathbf{R}}_{(i)}||\widetilde{\mathbf{R}}_{(i)}) \end{split}$$

Proving Claim 11 —
$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}} ||_{\widetilde{\mathbf{I}} = i})$$

Let $\widehat{\mathbf{I}}$ be the value of i^* in $\widehat{\mathbf{P}}$ (recall that $\widetilde{\mathbf{I}}$ is the value of i^* in $\widetilde{\mathbf{P}}$).

Let
$$(\widetilde{\mathbf{R}}_{(i)},\widetilde{\mathbf{N}}_{(i)})=(\widetilde{\mathbf{R}},\widetilde{\mathbf{N}})|_{\widetilde{\mathbf{I}}=i}$$
 and $(\widehat{R}_{(i)},\widehat{\mathbf{N}}_{(i)})=(\widehat{\mathbf{R}},\widehat{\mathbf{N}})|_{\widehat{\mathbf{I}}=i}$. Note that $\widehat{R}_{(i)}=\widehat{\mathbf{R}}$.

$$\begin{split} D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}}) &\leq D(\widehat{\mathbf{R}},\widehat{\mathbf{N}},\widehat{\mathbf{I}}||\widetilde{\mathbf{R}},\widetilde{\mathbf{N}},\widetilde{\mathbf{I}}) \\ &= D(\widehat{\mathbf{I}}||\widetilde{\mathbf{I}}) + \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_{(i)},\widehat{\mathbf{N}}_{(i)}||\widetilde{\mathbf{R}}_{(i)},\widetilde{\mathbf{N}}_{(i)}) \\ &= \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_{i},\widehat{\mathbf{N}}_{(i)}||\widetilde{\mathbf{R}}_{(i)},\widetilde{\mathbf{N}}_{(i)}) \end{split} \tag{chain rule}$$

$$\begin{split} D(\widehat{\mathbf{R}}_{(i)}, \widehat{\mathbf{N}}_{(i)} || \widetilde{\mathbf{R}}_{(i)}, \widetilde{\mathbf{N}}_{(i)}) &= D(\widehat{\mathbf{R}}_{(i)} || \widetilde{\mathbf{R}}_{(i)}) + \mathop{\mathbb{E}}_{r \leftarrow \widehat{\mathbf{R}}_{(i)}} \left[D(\widehat{\mathbf{N}}_{(i)}|_{\widehat{\mathbf{R}}_{(i)} = r} || \widetilde{\mathbf{N}}_{(i)}|_{\widetilde{\mathbf{R}}_{(i)} = r}) \right] &\quad \text{(chain rule)} \\ &= D(\widehat{\mathbf{R}}_{(i)} || \widetilde{\mathbf{R}}_{(i)}) &\quad \text{(since } \widehat{\mathbf{N}}_{(i)}|_{\widehat{\mathbf{R}}_{(i)} = r} \equiv \widetilde{\mathbf{N}}_{(i)}|_{\widetilde{\mathbf{R}}_{(i)} = r}) \end{split}$$

Proving Claim 11 —
$$D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}} || \widetilde{\mathbf{R}} |_{\widetilde{\mathbf{I}} = i})$$

Let $\hat{\mathbf{I}}$ be the value of i^* in $\hat{\mathbf{P}}$ (recall that $\tilde{\mathbf{I}}$ is the value of i^* in $\tilde{\mathbf{P}}$).

Let
$$(\widetilde{\mathbf{R}}_{(i)},\widetilde{\mathbf{N}}_{(i)})=(\widetilde{\mathbf{R}},\widetilde{\mathbf{N}})|_{\widetilde{\mathbf{I}}=i}$$
 and $(\widehat{R}_{(i)},\widehat{\mathbf{N}}_{(i)})=(\widehat{\mathbf{R}},\widehat{\mathbf{N}})|_{\widehat{\mathbf{I}}=i}$. Note that $\widehat{R}_{(i)}=\widehat{\mathbf{R}}$.

$$\begin{split} D(\widehat{\mathbf{R}},\widehat{\mathbf{N}}||\widehat{\mathbf{R}},\widehat{\mathbf{N}}) &\leq D(\widehat{\mathbf{R}},\widehat{\mathbf{N}},\widehat{\mathbf{I}}||\widehat{\mathbf{R}},\widetilde{\mathbf{N}},\widetilde{\mathbf{I}}) \\ &= D(\widehat{\mathbf{I}}||\widehat{\mathbf{I}}) + \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_{(i)},\widehat{\mathbf{N}}_{(i)}||\widehat{\mathbf{R}}_{(i)},\widetilde{\mathbf{N}}_{(i)}) \\ &= \frac{1}{k} \sum_{i \in [k]} D(\widehat{\mathbf{R}}_{i},\widehat{\mathbf{N}}_{(i)}||\widehat{\mathbf{R}}_{(i)},\widetilde{\mathbf{N}}_{(i)}) \end{split} \tag{chain rule}$$

For $i \in [k]$, it holds that

$$\begin{split} D(\widehat{\mathbf{R}}_{(i)}, \widehat{\mathbf{N}}_{(i)} || \widetilde{\mathbf{R}}_{(i)}, \widetilde{\mathbf{N}}_{(i)}) &= D(\widehat{\mathbf{R}}_{(i)} || \widetilde{\mathbf{R}}_{(i)}) + \underset{r \leftarrow \widehat{\mathbf{R}}_{(i)}}{\mathsf{E}} \left[D(\widehat{\mathbf{N}}_{(i)} ||_{\widehat{\mathbf{R}}_{(i)} = r} || \widetilde{\mathbf{N}}_{(i)} ||_{\widetilde{\mathbf{R}}_{(i)} = r}) \right] &\quad \text{(chain rule)} \\ &= D(\widehat{\mathbf{R}}_{(i)} || \widetilde{\mathbf{R}}_{(i)}) &\quad \text{(since } \widehat{\mathbf{N}}_{(i)} ||_{\widehat{\mathbf{R}}_{(i)} = r} \equiv \widetilde{\mathbf{N}}_{(i)} ||_{\widetilde{\mathbf{R}}_{(i)} = r}) \end{split}$$

Hence, $D(\widehat{\mathbf{R}}, \widehat{\mathbf{N}} || \widetilde{\mathbf{R}}, \widetilde{\mathbf{N}}) \leq \frac{1}{k} \sum_{e \in [k]} D(\widehat{\mathbf{R}}_{(i)} || \widetilde{\mathbf{R}}_{(i)}) \square$

Similar proof to the public-coin proof we gave above.

- Similar proof to the public-coin proof we gave above.
- ▶ In each round, the attacker \widetilde{P} samples random continuations of $(\widetilde{P^{(k)}}, V^{(k)})$, till he gets an accepting execution.

- Similar proof to the public-coin proof we gave above.
- In each round, the attacker P samples random continuations of (P(k), V(k)), till he gets an accepting execution.
- Why fails us to extend this approach for non-public-coin interactive arguments?

Section 3

Parallel amplification for any interactive argument

Parallel amplification theorem for any protocol

Can we amplify the security of any interactive argument "in parallel"?

Parallel amplification theorem for any protocol

- Can we amplify the security of any interactive argument "in parallel"?
- Yes we can!