Muhammad Jasra ____ 22108189

```
In [6]:
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
In [7]: df = pd.read_csv("creditcard.csv")
In [8]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 284807 entries, 0 to 284806
        Data columns (total 31 columns):
         #
             Column Non-Null Count
                                     Dtype
                     -----
                     284807 non-null float64
         0
             Time
         1
                     284807 non-null float64
             ۷1
         2
             V2
                     284807 non-null float64
         3
             ٧3
                     284807 non-null float64
         4
            ٧4
                     284807 non-null float64
         5
            ۷5
                     284807 non-null float64
         6
                     284807 non-null float64
            ۷6
         7
            V7
                     284807 non-null float64
         8
            ٧8
                     284807 non-null float64
         9
             ۷9
                     284807 non-null float64
         10
            V10
                     284807 non-null float64
         11
            V11
                     284807 non-null float64
         12 V12
                     284807 non-null float64
                     284807 non-null float64
         13
            V13
         14
            V14
                     284807 non-null float64
                     284807 non-null float64
         15
            V15
            V16
                     284807 non-null float64
         16
         17
            V17
                     284807 non-null float64
         18
            V18
                     284807 non-null float64
         19
            V19
                     284807 non-null float64
         20
            V20
                     284807 non-null float64
         21
            V21
                     284807 non-null float64
         22
            V22
                     284807 non-null float64
         23 V23
                     284807 non-null float64
         24 V24
                     284807 non-null
                                     float64
         25
            V25
                     284807 non-null float64
         26 V26
                     284807 non-null float64
         27
            V27
                     284807 non-null float64
                     284807 non-null float64
         28
            V28
         29
            Amount 284807 non-null float64
            Class
                     284807 non-null int64
        dtypes: float64(30), int64(1)
```

memory usage: 67.4 MB

In [9]: df.describe().T

Out[9]:

	count	mean	std	min	25%	50%
Time	284807.0	9.481386e+04	47488.145955	0.000000	54201.500000	84692.000000
V1	284807.0	3.918649e-15	1.958696	-56.407510	-0.920373	0.018109
V2	284807.0	5.682686e-16	1.651309	-72.715728	-0.598550	0.065486
V3	284807.0	-8.761736e- 15	1.516255	-48.325589	-0.890365	0.179846
V4	284807.0	2.811118e-15	1.415869	-5.683171	-0.848640	-0.019847
V5	284807.0	-1.552103e- 15	1.380247	-113.743307	-0.691597	-0.054336
V6	284807.0	2.040130e-15	1.332271	-26.160506	-0.768296	-0.274187
V7	284807.0	-1.698953e- 15	1.237094	-43.557242	-0.554076	0.040103
V8	284807.0	-1.893285e- 16	1.194353	-73.216718	-0.208630	0.022358
V9	284807.0	-3.147640e- 15	1.098632	-13.434066	-0.643098	-0.051429
V10	284807.0	1.772925e-15	1.088850	-24.588262	-0.535426	-0.092917
V11	284807.0	9.289524e-16	1.020713	-4.797473	-0.762494	-0.032757
V12	284807.0	-1.803266e- 15	0.999201	-18.683715	-0.405571	0.140033
V13	284807.0	1.674888e-15	0.995274	-5.791881	-0.648539	-0.013568
V14	284807.0	1.475621e-15	0.958596	-19.214325	-0.425574	0.050601
V15	284807.0	3.501098e-15	0.915316	-4.498945	-0.582884	0.048072
V16	284807.0	1.392460e-15	0.876253	-14.129855	-0.468037	0.066413
V17	284807.0	-7.466538e- 16	0.849337	-25.162799	-0.483748	-0.065676
V18	284807.0	4.258754e-16	0.838176	-9.498746	-0.498850	-0.003636
V19	284807.0	9.019919e-16	0.814041	-7.213527	-0.456299	0.003735
V20	284807.0	5.126845e-16	0.770925	-54.497720	-0.211721	-0.062481
V21	284807.0	1.473120e-16	0.734524	-34.830382	-0.228395	-0.029450
V22	284807.0	8.042109e-16	0.725702	-10.933144	-0.542350	0.006782
V23	284807.0	5.282512e-16	0.624460	-44.807735	-0.161846	-0.011193
V24	284807.0	4.456271e-15	0.605647	-2.836627	-0.354586	0.040976
V25	284807.0	1.426896e-15	0.521278	-10.295397	-0.317145	0.016594
V26	284807.0	1.701640e-15	0.482227	-2.604551	-0.326984	-0.052139
V27	284807.0	-3.662252e- 16	0.403632	-22.565679	-0.070840	0.001342
V28	284807.0	-1.217809e- 16	0.330083	-15.430084	-0.052960	0.011244
Amount	284807.0	8.834962e+01	250.120109	0.000000	5.600000	22.000000
Class	284807.0	1.727486e-03	0.041527	0.000000	0.000000	0.000000
4						•

```
In [10]: df.shape
Out[10]: (284807, 31)
In [11]: df.isnull().sum()
Out[11]: Time
                    0
          ۷1
                    0
          V2
                    0
          V3
                    0
          ۷4
                    0
          ۷5
          ۷6
                    0
          ٧7
                    0
          ٧8
                    0
          ۷9
                    0
          V10
                    0
          V11
                    0
          V12
                    0
          V13
                    0
          V14
                    0
          V15
                    0
          V16
                    0
          V17
                    0
          V18
                    0
          V19
                    0
          V20
          V21
                    0
          V22
                    0
          V23
                    0
          V24
                    0
          V25
                    0
          V26
          V27
          V28
                    0
          Amount
          Class
          dtype: int64
In [12]: df.duplicated().sum()
Out[12]: 1081
In [13]: df.drop_duplicates(inplace = True)
In [14]: df['Class'].value_counts()
Out[14]: 0
               283253
                  473
          Name: Class, dtype: int64
```

```
In [15]: plt.figure(figsize=(10,8))
    labels = ['Not fruad','Fruad']
    color = ['skyblue','red']
    ex = [.01,.01]
    sizes = df.Class.value_counts().values
    plt.pie(sizes,ex,labels,autopct='%1.1f%%',colors=color)
    plt.show()
```



```
In [16]: plt.figure(figsize=(10,8))
sns.distplot(df['Time'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:261
9: FutureWarning: `distplot` is a deprecated function and will be remov
ed in a future version. Please adapt your code to use either `displot`
(a figure-level function with similar flexibility) or `histplot` (an ax
es-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[16]: <AxesSubplot:xlabel='Time', ylabel='Density'>


```
In [17]: plt.figure(figsize=(35,35))
sns.heatmap(df.corr(),annot=True, cmap='Reds')
```

Out[17]: <AxesSubplot:>


```
In [18]: x= df.iloc[:,0:-1]
y = df.iloc[:,-1]
```

In [19]: x.shape

Out[19]: (283726, 30)

In [20]: y.shape

Out[20]: (283726,)

In [21]: from sklearn.model_selection import train_test_split

In [22]: x_train, x_test, y_train,y_test = train_test_split(x,y, train_size=0.75

```
In [23]: x_train.shape
Out[23]: (212794, 30)
In [24]: |y_train.shape
Out[24]: (212794,)
In [25]: x_test.shape
Out[25]: (70932, 30)
In [26]: y_test.shape
Out[26]: (70932,)
In [27]: from sklearn.linear_model import LogisticRegression
In [28]: logit = LogisticRegression()
In [29]: logit.fit(x_train,y_train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear model\ logist
         ic.py:814: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown
         in:
             https://scikit-learn.org/stable/modules/preprocessing.html (http
         s://scikit-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-
         regression (https://scikit-learn.org/stable/modules/linear_model.html#l
         ogistic-regression)
           n_iter_i = _check_optimize_result(
Out[29]: LogisticRegression()
In [30]: y predict train= logit.predict(x train)
         y_predict_test= logit.predict(x_test)
In [31]: from sklearn.metrics import confusion_matrix, classification_report, according
In [32]: cm tr = confusion matrix(y train, y predict train)
         cm_tr
Out[32]: array([[212348,
                              89],
                             220]], dtype=int64)
                    137,
         cm_tst = confusion_matrix(y_test, y_predict_test)
In [33]:
         cm tst
Out[33]: array([[70784,
                            32],
                    37,
                           79]], dtype=int64)
```

```
cl_rep = classification_report(y_train, y_predict_train)
In [34]:
         cl_rep
Out[34]:
                                      recall f1-score
                                                         support\n\n
                                                                                a
                        precision
         1.00
                   1.00
                              1.00
                                      212437\n
                                                                 0.71
                                                                            0.62
                                                                    1.00
                                                                            212794
         0.66
                    357\n\n
                               accuracy
                                                           212794\nweighted avg
                              0.86
                                         0.81
                                                   0.83
         \n
              macro avg
         1.00
                   1.00
                              1.00
                                      212794\n'
In [35]: |print(f"Classification Report\n\n{cl_rep}")
         Classification Report
                       precision
                                    recall f1-score
                                                        support
                    0
                             1.00
                                       1.00
                                                 1.00
                                                         212437
                    1
                             0.71
                                       0.62
                                                 0.66
                                                            357
                                                 1.00
                                                         212794
             accuracy
                            0.86
                                       0.81
                                                 0.83
                                                         212794
            macro avg
         weighted avg
                            1.00
                                       1.00
                                                 1.00
                                                         212794
In [36]: | cl_rep_tst = classification_report(y_test,y_predict_test)
In [37]:
         print(f"Classification Report\n\n{cl_rep_tst}")
         Classification Report
                                     recall f1-score
                       precision
                                                        support
                    0
                             1.00
                                       1.00
                                                 1.00
                                                          70816
                    1
                             0.71
                                       0.68
                                                 0.70
                                                            116
             accuracy
                                                 1.00
                                                          70932
                                                          70932
                            0.86
                                       0.84
                                                 0.85
            macro avg
         weighted avg
                            1.00
                                       1.00
                                                 1.00
                                                          70932
In [38]:
         ac train
                   = accuracy_score(y_train,y_predict_train)
         ac_train
Out[38]: 0.9989379399795107
In [39]: print(f"Accuracy Score : {ac_train}%")
         Accuracy Score : 0.9989379399795107%
In [40]:
         ac_test = accuracy_score(y_test,y_predict_test)
         ac_test
Out[40]: 0.9990272373540856
In [41]: |print(f"Accuracy Score : {ac_test}%")
         Accuracy Score : 0.9990272373540856%
```

```
In [42]: import joblib
  joblib.dump(logit, "model_filename.pkl")
Out[42]: ['model_filename.pkl']
In [ ]:
```