1) Accuracy

$$Acc = 100+50 = 0.91$$

Confusion matrix

Pred

n=165

50 Actual NO YES 10

100

Pool of 100 partients. Predict if they have cancer

Predicted

	N=100	N0	YES
Λ A D	2	94 _{TN}	1 FP
Actual	YES	3 FN	2 TP

Here, false negative is major concern as patient might die.

Here, recall is more important than precision.

Enample

-> dometimes, there is nost for each error

FP: cost of preventive measures FN: cost of recovery

-> High precision, low recall (20%) Rejects 80% of good fruit, but whatever it picks, those fourts are good.

2 F1-score: A unified measure

$$F_1 = \frac{2}{\frac{1}{\text{recall precision}}}$$

Heavily Penalizes entrene recall f precision scores.

macro FI - normal mean micro FI - weighted mean LCA can be used as a promy to measure severity of mistakes of a model

Metrics in Object Detection Problems

$$IOU = ANB$$
 AVB

usually

Low 100 = High recall

High 100 = Low recall, high precision

Swill only predict

I will only predict when the bones overlap almost enactly.

Red model better than blue model

Consider car object detection:

Every car is detected, but some objects which are not cars may also be detected as cars. This is high recall, low precision.

