Homework 4

MTH 343 Prof. Ren Guo

6.4.5b

Find all the left and right cosets of $\langle 3 \rangle$ in U(8).

Recall $U(8) = \{1, 3, 5, 7\}$ and we have that $\langle 3 \rangle = 1, 3$. Thus we have that:

$$1\langle 3 \rangle = \langle 3 \rangle 1 = \{1, 3\}$$
$$3\langle 3 \rangle = \langle 3 \rangle 3 = \{3, 1\}$$
$$5\langle 3 \rangle = \langle 3 \rangle 5 = \{5, 7\}$$
$$7\langle 3 \rangle = \langle 3 \rangle 7 = \{7, 5\}$$

John Waczak

Date: October 24, 2017

Thus we have that the left cosets and right cosets are the same... i.e. $L_H = R_H = \{\{1,3\},\{5,7\}\}$ which we can see is a partition of U(8) as expected.

6.4.5h

Find all the left and right cosets of $H = \{(1), (123), (132)\}$ in S_4 .

Recall that S_4 is defined as:

$$S_4 = \{(1), (12), (13), (14), (23), (24),$$

$$(34), (12)(34), (13)(24), (14)(23), (123), (124),$$

$$(132), (134), (142), (143), (234), (243),$$

$$(1234), (1243), (1324), (1342), (1423), (1432)\}$$

Now we need to look at gH where g is in S_4 . Note that we know both the left and right cosets must have the same number of elements and the index H in S_4 is 24/3 = 8 Thus we can stop once

we get 8 unique cosets.

```
(1)H = \{(1)(1), (1)(123), (1)(132)\}\
           = \{(1), (123), (132)\}
    (12)H = \{(12)(1), (12)(123), (12)(132)\}\
           = \{(12), (23), (12)\}
    (13)H = \{(13)(1), (13)(123), (13)(132)\}\
           = \{(13), (12), (23)\}
    (14)H = \{(14)(1), (14)(123), (14)(132)\}\
           = \{(14), (1234), (1324)\}
    (23)H = \{(23)(1), (23)(123), (23)(132)\}\
           = \{(23), (13), (12)\}
    (24)H = \{(24)(1), (24)(123), (24)(132)\}\
           = \{(24), (1423), (1342)\}
    (34)H = \{(34)(1), (34)(123), (34)(132)\}\
           = \{(34), (1243), (1432)\}
(12)(34)H = \{(12)(34)(1), (12)(34)(123), (12)(34)(132)\}
           = \{(12)(34), (243), (143)\}
(13)(24)H = \{(13)(24)(1), (13)(24)(123), (13)(24)(132)\}
           = \{(13)(24), (142), (234)\}
(14)(23)H = \{(14)(23)(1), (14)(23)(123), (14)(23)(132)\}
           = \{(14)(23), (134), (124)\}
```

Thus we have found all of the left cosets. They form a partition of S_4 :

$$L_H = \{\{(1), (123), (132)\}$$

$$\{(12), (23), (12)\}$$

$$\{(14), (1234), (1324)\}$$

$$\{(24), (1423), (1342)\}$$

$$\{(24), (1423), (1342)\}$$

$$\{(12)(34), (243), (143)\}$$

$$\{(13)(24), (142), (234)\}$$

$$\{(14)(23), (134), (124)\}\}$$

t Now we will do the same for the right cosets although we will find the partition is not the same

as that created by L_H .

```
H(1) = \{(1)(1), (123)(1), (132)(1)\}
            = \{(1), (123), (132)\}
    H(12) = \{(1)(12), (123)(12), (132)(12)\}\
            = \{(12), (13), (23)\}\
    H(13) = \{(1)(13), (123)(13), (132)(13)\}
            = \{(13), (23), (12)\}
    H(14) = \{(1)(14), (123)(14), (132)(14)\}
            = \{(14), (1423), (1432)\}
    H(23) = \{(1)(23), (123)(23), (132)(23)\}\
           = \{(23), (12), (13)\}
    H(24) = \{(1)(24), (123)(24), (132)(24)\}
            = \{(24), (1243), (1324)\}
    H(34) = \{(1)(34), (123)(34), (132)(34)\}
            = \{(34), (1234), (1342)\}
H(12)(34) = \{(1)(12)(34), (123)(12)(34), (132)(12)(34)\}
           = \{(12)(34), (341), (234)\}
H(13)(24) = \{(1)(13)(24), (123)(13)(24), (132)(13)(24)\}
           = \{(13)(24), (243), (124)\}
H(14)(23) = \{(1)(14)(23), (123)(14)(23), (132)(14)(23)\}
           = \{(14)(23), (142), (143)\}
```

Thus we have found the right cosets of H in S_4 . They form the partition:

$$R_{H} = \{\{(1), (123), (132)\}$$

$$\{(12), (13), (23)\}$$

$$\{(14), (1423), (1432)\}$$

$$\{(24), (1243), (1324)\}$$

$$\{(34), (1234), (1342)\}$$

$$\{(12)(34), (341), (234)\}$$

$$\{(13)(24), (243), (124)\}$$

$$\{(14)(23), (142), (143)\}\}$$

6.4.14

given $g^n = e$ prove the order of q divides n.

By definition of the order of an element g in the group G, the order is the smallest integer k such that $g^k = e$. Thus there are two cases we must consider: $n \neq k$ and n = k.

If n = k then we have that n clearly divides itself. Thus the proposition is true for the first case. Now if $n \neq k$ then for some $q, r \in \mathbb{Z}$ the division algorithm tells us that n = qk + r. Thus the statement

of the proposition becomes: $g^n = g^{qk+r} = g^{qk}g^r = e$. Now $g^{qk} = e$ as $g^{qk} = (g^k)^q = e^q = e$. Therefore in r = 0 and so then we have n = qk which means that k, the order of g divides n. \square

6.4.19

Let H and K be subgroups of G. Prove that $gH \cap gK$ is a coset of $H \cap K$ in G.

Suppose $gH \cap gK \neq \emptyset$. Now let $f \in gH \cap gK$. Then by definition of the intersection of two sets, we have that:

$$f \in gH$$
 and $f \in gK$

This implies that f = gh = gk for some $h \in H, k \in K$. Since G is a subgroup, $\exists g^{-1}$ such that:

$$g^{-1}f = g^{-1}gh = g^{-1}gk$$
$$g^{-1}f = h = k$$
$$\Rightarrow g^{-1}f \in H \cap K$$
$$f \in g(H \cap K)$$

i.e. f is an element of $g(H \cap K)$ which is a coset of $H \cap K$ in G.

9.3.2

Prove that \mathbb{C}^* is isomorphic to the subgroup of $GL_2(\mathbb{R})$ consisting of matrices of the form: $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \forall a, b \in \mathbb{R}$ s.t. $a^2 + b^2 \neq 0$.

Recall that \mathbb{C}^* is $\{\mathbb{C} \setminus \{0\},\cdot\}$. I claim that the mapping $\phi: \mathbb{C}^* \to S$, the subgroup of $GL_2(\mathbf{R})$ defined by:

$$\phi(\gamma + i\delta) = \begin{pmatrix} \gamma & \delta \\ -\delta & \gamma \end{pmatrix}$$

is an isomorphism between the two groups. Clearly this function is a bijection as the inverse can be seen to be:

$$\phi_{-1} \begin{pmatrix} \gamma & \delta \\ -\delta & \gamma \end{pmatrix} = \gamma + i\delta \in \mathbb{C}^*$$

Now all that is left to show is that for any $z_1, z_2 \in \mathbb{C}^*$ we have that $\phi(z_1 \cdot z_2) = \phi(z_1) \cdot \phi(z_2)$. Let

 $z_1 = \alpha + i\beta$ and $z_2 = a + ib$. We have that:

$$\phi(z_1 \cdot z_2) = \phi((\alpha + i\beta)(a + ib))$$

$$= \phi((\alpha a - \beta b) + i(\alpha b + a\beta)$$

$$= \begin{pmatrix} \alpha a - \beta b & \alpha b + a\beta \\ -\alpha b - a\beta & \alpha a + \beta b \end{pmatrix}$$

$$\phi(z_1) \cdot \phi(z_2) = \phi(\alpha + i\beta) \cdot \phi(a + ib)$$

$$= \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} \cdot \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

$$= \begin{pmatrix} \alpha a + \beta(-b) & \alpha b + \beta a \\ -\beta a - \alpha b & -\beta b + \alpha a \end{pmatrix}$$

$$= \begin{pmatrix} \alpha a - \beta b & \alpha b + a\beta \\ -\alpha b - a\beta & \alpha a - \beta b \end{pmatrix}$$

$$\Rightarrow \phi(z_1 \cdot z_2) = \phi(z_1) \cdot \phi(z_2)$$

We have constructed a bijection ϕ that preserves group operations. Thus we have proved that $\mathbb{C}^* \cong S$.

9.3.3

prove or disprove that $U(8) \cong \mathbb{Z}_4$

Suppose that there exists an isomorphism $\phi: U(8) \to \mathbb{Z}_4$. Then by theorem 9.6 there must exist an inverse mapping $\phi^{-1}: \mathbb{Z}_4 \to U(8)$ since ϕ is a bijection. Now again by theorem 9.6 because ϕ^{-1} is an isomorphism, if \mathbb{Z}_4 is cyclic then U(8) must be cyclic. We know \mathbb{Z}_4 is cyclic with $\langle 1 \rangle$ the generator. We can test this by examining the powers of each element in U(8):

$$U(8) = \{1, 3, 5, 7\}$$

$$1^{n} = 1$$

$$3^{2} mod(8) = 1$$

$$5^{2} mod(8) = 1$$

$$7^{2} mod(8) = 1$$

From this we can see that none of the elements in U(8) generate U(8). Therefore, it can *not* be cyclic and so we have a contradiction to our supposition. Therefore we conclude that $U(8) \ncong \mathbb{Z}_4$