then $\Delta_{\text{CH}[4]} = K_3 \Delta_{\text{CHANNEL}[3]} - K_X \Delta_{\text{GYRO-X}} + K_Z \Delta_{\text{GYRO-Z}} + K_4 \Delta_{\text{CHANNEL}[4]}$:

if $e_{ROLL} \in [-10^{\circ}, -5^{\circ}] \cup [5^{\circ}, 10^{\circ}]$

then $\Delta_{\text{CH}[4]} = K_3 \Delta_{\text{CHANNEL}[3]} - K_R \Delta_{\text{ROLL}} - K_X \Delta_{\text{GYRO-X}} + K_Z \Delta_{\text{GYRO-Z}} + K_4 \Delta_{\text{CHANNEL}[4]}$;

if $e_{ROLL} \in [-15^{\circ}, -10^{\circ}] \cup [10^{\circ}, 15^{\circ}]$

then $\Delta_{CH[4]} = K_3 \Delta_{CHANNEL[3]} - K_R \Delta_{ROLL} + K_2 \Delta_{GYRO-Z} + K_4 \Delta_{CHANNEL[4]}$;

 $CH[4]_{k} = CH[4]_{k-1} + \Delta_{CH[4]};$

式中: K_R 、 K_X 、 K_Z 、 K_3 、 K_4 为控制系数, $CH[4]_k$ 为左旋翼控制输出量;

参数 K_P 、 K_R 、 K_X 、 K_Y 、 K_Z 、 K_3 、 K_4 需要通过实验来确定。

面临的问题:

- 1 控制系统还难以建立合理的模型,控制系数的确定需要大量反复的实验;难以确定出最优控制参数。
- 2 当飞行条件改变时,比如载重增加等,控制参数需要重新调整;
- 3 碟形飞行器的控制率有待进一步研究,离实用还有一定差距;
- 4 稳定性还难以从理论上进行验证:

3.2 硬件设计

3.2.1 总体设计[24][25][26][31]

本半自主飞行控制系统主要实现人的遥控操作及自动增稳功能。飞行器通过接收机接收到的遥控指令完成操作者的遥控操作,同时具有感知飞行姿态并自动调整的功能。

整个控制系统包括电源功能模块、遥控接收模块、角度传感模块、角速率传感模块、电机驱动模块、MCU 及接口与扩展等部分。该控制系统的原理图如图 3-2 所示。

电源功能模块主要为其他模块提供电压,主要提供的电压有 2.5V, 3.3V、5.0V和 7.5V。其中 2.5V 电压为信号放大器提供电源, 3.3V 为微处理器提供电源, 5.0V 为角度传感器和角加速度传感器及接收模块提供电源, 7.5V 为电机提供电源。

遥控接收模块主要用来实现人的遥操作,共有四个通道的信号,分别为行器 提供升降、前后飞、左右飞、及旋转指令。为了提高飞行器的智能度和可操作性, 因此为飞行器安装角度传感器作为姿态反馈传感器,通过角度传感器采集到的角 度信号,可以感知到飞行器当前姿态,并与目标姿态比较,形成闭环控制。由于 四桨碟形飞行器是一个极其发散的系统,为提高其飞行稳定性,因此加入角速率 陀螺反馈环。 微控制器的主要功能是将接收到的遥控指令、角度信息、以及角速率信号, 经 PID 及模糊控制运算,得出电机控制率,以 PWM 的方式输出并驱动电机。

由于飞行器空间有限,考虑到安装方便,因此将电路板设计为上下两层结构,两层板之间以 20 个接口相连接。并考虑到调试和扩展需要,预留了串口及三个模拟输入通道。

图 3-2 控制系统原理图

3.2.2 电源功能模块设计

在电路中电源是一个不可缺少的部分,很大程度上影响到电路的性能指标。在设计电源时,需要满足电路的电压和功率要求,而且输出稳定,为提高电源特性,增加去偶电容。

在本控制系统中, 电路对电源的要求如下:

- 为电机提供 7.5V 电源,对电源的稳定性要求不高,但功率要求很高, 经测量,每个电机功率为 30 瓦特。
- 角度传感器、角速率传感器、接收模块、LED等需要提供 5.0V 电压, 对稳定性要求高,但对功率要求不大。
- MCU、LED 需要提供 3.3V 稳压电源。
- 放大器 LM324 需要提供 2.5V 比较电压。

可见除了 7.5V 电源以外, 其他电源都要求具有相当高的稳定性, 但输出功率相对较小。

由于 7.5V 电源需要提供较大功率, 而对稳定性没有多大要求, 目前暂无满足需要的稳压芯片, 因此直接采用有缆电源。

3.2.2.1 5.0V 电源设计

本电路采用 L7805 三端稳压器作为 5.0V 电源,该稳压器具有输出电压稳定(5.0 ± 0.2 V)、输出电流大(可达 1.5A)、温度补偿、短路保护等优点。主要封装形式有 TO-3、TO-220、 D^2 PAK、ISOWATT220。其原理框图如图 3-3 所示。