Devoir Surveillé, 3 novembre 2014 Durée 2h00, documents interdits

Exercice 1 -

- 1) Soit $P(X) = X^3 + X^2 + X + 1 \in \mathbb{F}_5[X]$. Factoriser le polynôme P(X) dans $\mathbb{F}_5[X]$.
- 2) L'anneau $A = \frac{\mathbb{F}_5[X]}{(P(X))}$ est-il un corps? Quel est son cardinal? Quelle est sa caractéristique?
- 3) À l'aide du théorème chinois, déterminer le cardinal de A^{\times} , le groupe multiplicatif des éléments inversibles de A.
- 4) Montrer, toujours à l'aide du théorème chinois, que tout élément de A^{\times} a pour ordre un diviseur de 4.
- 5) On se propose de retrouver ce résultat sans utiliser le théorème chinois. Soit α la classe de X dans A.
 - a) Montrer que $\alpha^5 = \alpha$.
 - b) En déduire que tout $\beta \in A$ vérifie $\beta^5 = \beta$.
 - c) Conclure.
- **6)** Soit $Q(X) = X^3 + X^2 + X + 3 \in \mathbb{F}_5[X]$. Montrer que Q(X) est irréductible dans $\mathbb{F}_5[X]$.
- 7) Combien y a-t-il de polynômes unitaires irréductibles de degré 3 dans $\mathbb{F}_5[X]$?
- 8) On considère le corps $\frac{\mathbb{F}_5[X]}{(Q(X))}$ que l'on identifie à \mathbb{F}_{125} . Combien y a-t-il d'éléments primitifs dans \mathbb{F}_{125} ?
- 9) Soit γ la classe de X dans \mathbb{F}_{125} . Calculer l'inverse de γ comme combinaison linéaire à coefficients dans \mathbb{F}_5 de $1, \gamma, \gamma^2$.
- 10) Quelles sont a priori les valeurs possibles de l'ordre de γ dans $\mathbb{F}_{125}^{\times}$?
- 11) Calculer γ^3 , γ^4 et γ^{31} (toujours comme combinaisons linéaires à coefficients dans \mathbb{F}_5 de 1, γ , γ^2 et en cherchant à minimiser le nombre de calculs pour γ^{31}).
- 12) Le polynôme Q(X) est-il un polynôme irréductible primitif de $\mathbb{F}_5[X]$?
- 13) Combien y a-t-il de polynômes unitaires irréductibles primitifs de degré 3 dans $\mathbb{F}_5[X]$?

Exercice 2 -

- 1) Montrer que $P(X) = X^6 + X^3 + 1 \in \mathbb{F}_2[X]$ est un polynôme irréductible non primitif de $\mathbb{F}_2[X]$.
- 2) On identifie $\frac{\mathbb{F}_2[X]}{(P(X))}$ à \mathbb{F}_{64} et on note α la classe de X dans \mathbb{F}_{64} . Quels sont les sous-corps de \mathbb{F}_{64} ? Faire le schéma des inclusions.
- 3) Montrer que $\alpha^3 + 1$ appartient à un sous-corps strict de \mathbb{F}_{64} .
- 4) Même question avec $\alpha^4 + \alpha^2 + \alpha$.
- 5) Quels sont les polynômes minimaux sur \mathbb{F}_2 de $\alpha^3 + 1$ et $\alpha^4 + \alpha^2 + \alpha$?
- **6)** On considère la suite $(s_i)_{i\geqslant 0}$ définie par $s_0=1,\ s_i=0$ pour $1\leqslant i\leqslant 5$ et par la relation de récurrence linéaire $s_{i+6}=s_i+s_{i+3}$ pour tout $i\geqslant 0$. Cette suite est-elle une MLS? Répondre à cette question sans calculer les premiers termes de la suite.
- 7) On considère la suite $(t_i)_{i\geqslant 0}$ définie par $t_i=s_i$ pour $0\leqslant i\leqslant 5$ et par la relation de récurrence linéaire $t_{i+6}=t_{i+1}+t_i$ pour tout $i\geqslant 0$. Calculer les premiers termes de cette suite et en déduire sa période. Que dire du polynôme $Q(X)=X^6+X+1$ dans $\mathbb{F}_2[X]$?
- 8) Soit β une racine de Q(X) dans \mathbb{F}_{64} . Exprimer t_i comme trace d'une puissance de β dans \mathbb{F}_{64} . Indication: il suffit de calculer (si possible de façon astucieuse) $\text{Tr}(\beta^i)$ pour $0 \leq i \leq 4$.

Exercice 3 -

- 1) Donner la forme de la factorisation de $X^{16} + 2$ dans $\mathbb{F}_3[X]$ (nombre de facteurs irréductibles et leurs degrés respectifs).
- 2) Même question avec $X^{144} + 2$.