MÉTODOS COMPUTACIONAIS

DR. MARCOS NAPOLEÃO RABELO

DR. WANDERLEI M. PEREIRA JUNIOR

Métodos diretos - Eliminação de Gauss

Grupo de Pesquisa e Estudos em Engenharia (GPEE)





# CONDIÇÃO DE EXISTÊNCIA DA SOLUÇÃO

A primeira condição que devemos nos atentar é se o sistema possui uma única solução como visto anteriormente. Umas das maneiras de observar tal condição é o uso de determinantes.

Para que o sistema seja solucionável a matriz **A** não pode ser singular, ou seja, se o seu determinante deve ser diferente de zero.



## **OPERAÇÕES ELEMENTARES**

Os métodos diretos de maneira geral trabalharam com operações elementares sobre as equações do sistema permitindo que após um determinado número finito de operações a solução do sistema possa ser encontrada.

Permutação de linhas do sistema de equações;

Multiplicação de uma equação por uma constante não nula;

 $L_i \longleftrightarrow L_j$  $L_i \longleftarrow k.L_i$ 

Adicionar ou subtrair um múltiplo de uma equação a uma outra.

$$L_j \leftarrow k.L_i + L_j$$



Para entender um pouco mais sobre as operações elementares imaginemos o seguinte sistema de equações:

$$2. x_1 - 3. x_2 = -8$$

$$3.x_1 + 4.x_2 = 5$$

$$A = \begin{bmatrix} 2 & -3 \\ 3 & 4 \end{bmatrix}$$
 Fazendo o determinante  $|A| = 17 \neq 0$ . Sistema Possível.





Figura 1 - Solução gráfica do conjunto de duas equações (sistema possível e determinado).



Aplicando uma operação elementar tipo 2:

$$k.(2.x_1-3.x_2)=k.(-8)$$
 Exemplo  $k=8.5$  não alteraria a linha 1 por exemplo.

Agora vamos a uma sequência de operações:  $L_1 \leftarrow -\frac{1}{2}.L_1$  e  $L_2 \leftarrow 3.L_1 + L_2$ 

$$\begin{bmatrix} 2 & -3 & -8 \\ 3 & 4 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 1,5 & 4 \\ 3 & 4 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 1,5 & 4 \\ 0 & 8,5 & 17 \end{bmatrix}$$

Obtendo a visualização gráfica do problema.





Figura 2 - Solução gráfica do conjunto de duas equações após as operações elementares.



#### SISTEMAS TRIANGULARES

A matriz de coeficientes apresenta uma forma triangular, seja ele superior ou inferior:

$$\begin{cases} a_{11}.x_1 + a_{12}.x_2 + a_{13}.x_3 + \dots + a_{1n}.x_n &= b_1 \\ a_{22}.x_2 + a_{23}.x_3 + \dots + a_{1n}.x_n &= b_2 \\ a_{33}.x_3 + \dots + a_{3n}.x_n &= b_3 \\ & \ddots & & \\ & & a_{nn}.x_n &= b_n \end{cases}$$
(1)

Após a formação do sistema superior ou inferior é possível determinar o valor do vetor solução:

$$x_n = \frac{b_n}{a_{nn}} \tag{2}$$

$$x_{n-1} = \frac{b_{n-1} - a_{(n-1)n} \cdot x_n}{a_{(n-1)(n-1)}} \tag{3}$$



Fazendo o caso geral para a forma triangular superior:

$$x_i = \frac{b_i - \sum_{j=i+1}^n a_{ij} \cdot x_j}{a_{ii}} \tag{4}$$

Para um sistema triangular inferior:

$$x_i = \frac{b_i - \sum_{j=i+1}^{i-1} a_{ij} \cdot x_j}{a_{ii}}$$
 (5)



**Exemplo 1.1 [1]:** Utilizando a formulação para sistemas triangulares determine o vetor solução dos seguintes sistemas lineares. Considere que o mesmo já foi verificado quanto a existência de uma solução.

$$\begin{cases} 2.x_1 + x_2 + 3.x_3 = 11 \\ x_2 - x_3 = 1 \text{ a} \end{cases}$$
$$2.x_3 = 4$$

$$\begin{cases} 3. x_1 & = 9 \\ x_1 + 2. x_2 & = 5 \\ 2. x_1 - 4. x_2 + x_3 = 7 \end{cases}$$



Solução manual do exemplo a)

Montagem da matriz aumentada [A | b]

$$\begin{bmatrix} 2 & 1 & 3 & 11 \\ & 1 & -1 & 1 \\ & & 2 & 4 \end{bmatrix}$$

$$Iteração k = 1 i = 3$$

$$x_3 = \frac{b_3 - \sum a_{ij} \cdot x_j}{a_{33}}$$

$$x_3 = \frac{4}{2} = 2$$



Iteração k = 2 i = 2

$$x_2 = \frac{b_2 - (a_{23}.x_3)}{a_{22}}$$

$$x_2 = \frac{1 - (-1.2)}{1} = 3$$

Iteração k = 3 i = 1

$$x_1 = \frac{b_1 - (a_{12} \cdot x_2 + a_{13} \cdot x_3)}{a_{11}}$$
  $x_1 = \frac{11 - (1 \cdot 3 + 3 \cdot 2)}{2} = 1$ 

$$x_1 = \frac{11 - (1.3 + 3.2)}{2} = 1$$

$$x = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$



Conforme o exercício acima é possível criar o pseudocódigo do modelo triangular superior:

$$1 \quad x = b_n / a_{nn}$$

2 para 
$$i = (n-1)$$
 até 1

$$3 \quad soma = 0$$

4 para 
$$j = (i+1)$$
 até  $n$ 

$$soma = soma + a_{ij} . x_j$$

$$6 x_i = (b_i - soma) / a_{ii}$$



## **ELIMINAÇÃO GAUSSIANA**

O primeiro método de solução de sistemas consiste em transformar o sistema de equações lineares em um modelo triangular e a partir desse modelo é possível aplicar os algoritmos vistos anteriormente.

Para este processo de eliminação progressiva vamos empregar o conceito de pivô que um elemento escolhido para fazer a transformação de uma determinada linha. Chamaremos essa linha "especial" de linha do pivô. A ideia básica é que possamos chegar a um sistema semelhante ao da equação (1).



A Figura 3 ilustra o processo de eliminação progressiva. Basicamente será aplicada uma operação elementar sobre a linha subsequente ao pivô, no caso deste exemplo linha i.

Pivô

 $m_{ik} = a_{ik}/a_{kk}$ 

Adicionar ou subtrair um múltiplo de uma equação a uma outra.

$$L_i \leftarrow L_i - m_{ik} \cdot L_k$$





Figura 3 – Ilustração do processo de eliminação de Gauss.



Exemplo da ideia do método:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix}$$

Iteração 1

$$m_{21} = a_{21}/a_{11}$$

$$L_2 \leftarrow L_2 - m_{21} \cdot L_1$$

$$m_{31} = a_{31}/a_{11}$$

$$m_{31} = a_{31}/a_{11}$$
  $L_3 \leftarrow L_3 - m_{31}.L_1$ 

Iteração 2

$$m_{32} = a_{32}/a_{22}$$

$$L_3 \leftarrow L_3 - m_{32} \cdot L_2$$



**Exemplo 1.2** [2]: Utilizando a formulação da eliminação de Gauss determine o conjunto solução dos sistemas de equações descritos abaixo:

$$\begin{cases} 3,0. x_1 - 0,1. x_2 - 0,2. x_3 = 7,85 \\ 0,1. x_1 + 7,0. x_2 - 0,3. x_3 = -19,3 \text{ a} ) \\ 0,3. x_1 - 0,2. x_2 + 10,. x_3 = 71,4 \end{cases}$$

$$\begin{cases} 1,0. x_1 -1,0. x_2 -2,0. x_3 = 2,0 \\ 2,0. x_1 +1,0. x_2 -1,0. x_3 = 1,0 \text{ b}) \\ -2,0. x_1 -5,0. x_2 +3,0. x_3 = 3,0 \end{cases}$$



Solução manual do exemplo

Verificação da existência da solução

Resolução do determinante da matriz A que corresponde a matriz de coeficientes:

$$\begin{bmatrix} 3,0 - 0,10 - 0,20 \\ 0,1 & 7,0 & -0,30 \\ 0,3 - 0,20 & 10,0 \end{bmatrix} det(A) \cong 210,35$$

Após verificar que o sistema possui solução podemos iniciar o procedimento iterativo de transformação das linhas.



#### Iteração 1

$$m_{21} = 0.10/3.0 \cong 0.0333$$
  $L_2 = L_2 - 0.0333.L_1$   
 $m_{31} = 0.30/3.0 = 0.1$   $L_3 \leftarrow L_3 - 0.10.L_1$ 

$$\begin{bmatrix} 3,0 & -0,10 & -0,20 & 7,85 \\ 0,1 & 7,0 & -0,30 & -19,3 \\ 0,3 & -0,20 & 10,0 & 71,4 \end{bmatrix} \rightarrow \begin{bmatrix} 3,0 & -0,10 & -0,20 & 7,85 \\ 0,0 & 7,003 & -0,2933 & -19,5617 \\ 0,3 & -0,20 & 10,0 & 71,4 \end{bmatrix} \text{ Operações na linha 2}$$

$$\begin{bmatrix} 3,0-0,10 & -0,20 & 7,85 \\ 0,0&7,003&-0,2933 & -19,5617 \\ 0,3-0,20 & 10,0 & 71,4 \end{bmatrix} \rightarrow \begin{bmatrix} 3,0-0,10 & -0,20 & 7,85 \\ 0,0&7,003&-0,2933 & -19,5617 \\ 0,0&-0,19 & 10,02 & 70,6150 \end{bmatrix} \text{Operações na linha 3}$$



Iteração 2

$$m_{32} = -0.19/7,0033 \cong -0.0271 \qquad L_3 = L_3 - (-0.0271).L_2$$
 
$$\begin{bmatrix} 3.0 - 0.10 & -0.20 & 7.85 \\ 0.0 & 7.003 & -0.2933 & -19.5617 \\ 0.0 & -0.19 & 10.02 & 70.6150 \end{bmatrix} \rightarrow \begin{bmatrix} 3.0 - 0.10 & -0.20 & 7.85 \\ 0.0 & 7.003 & -0.2933 & -19.5617 \\ 0.0 & 0.0 & 10.012 & 70.0843 \end{bmatrix} \text{ Operações na linha 3}$$

Aplicando agora o conceito de sistema triangular superior com substituição retroativa:

$$\mathbf{x} = \begin{bmatrix} 3,0000 \\ -2,5000 \\ 7,00003 \end{bmatrix}$$



Conforme o exercício acima é possível criar o pseudocódigo da eliminação Gaussiana:

- 1 para k = 1 até (n-1)
- 2 para i = (k+1) até n

$$3 m = \frac{AB[i,k]}{AB[k,k]}$$

- AB[i,k:n+1] = AB[i,k:n+1] m.AB[k,k:n+1]
- 5 Execute x = SISTRIANGULAR[A, B]



#### **REFERÊNCIAS**

- [1] Vitorino A, Ruggiero MAG. Algebra Linear e Aplicações 20--. https://www.ime.unicamp.br/~marcia/AlgebraLinear/sistemas\_triangulares.html (accessed August 23, 2021).
- [2] Chapra SC. Métodos Numéricos Aplicados com MATLAB® para Engenheiros e Cientistas. 3ª edição. AMGH; 2013.



# **GPEE**

GRUPO DE PESQUISAS E ESTUDOS EM ENGENHARIA