

Open-Set Semi-Supervised Object Detection

Yen-Cheng Liu¹, Chih-Yao Ma², Xiaoliang Dai², Junjiao Tian¹, Peter Vajda², Zijian He², Zsolt Kira¹

Georgia Tech, ²Meta

Motivation

- 1. Existing Semi-Supervised Object Detection (SSOD) works implicitly assumes <u>closed-set</u> setting
- Label spaces of labeled and unlabeled data are identical

ID Objects

- 2. A more practical setting is Open-Set Semi-Supervised Object Detection (OSSOD)
- Open-set unlabeled data have out-of-distribution (OOD) objects, which are unseen, undefined, and unknown in labeled data

Analysis & Challenges

1. Applying existing SSOD method leads to unsatisfactory results due to seemantic.expansion

- ▲ Existing SSOD method (Unbiased Teacher)
- Semantic expansion: OOD objects are mis-predicted as ID objects with high confidence and used as pseudo-labels
 - Lower accuracy in open-set settings

Experiments

Adding an OOD detector in SSOD frameworks <u>significantly improves</u> the results in all open-set conditions

✓ Varying num. of labeled images

Num. of Labeled Images1,0002,0004,000Label-only 10.20 ± 0.34 11.84 ± 0.33 16.35 ± 0.28 UT $11.77 \pm 0.38 (+1.57)$ $13.87 \pm 0.68 (+2.03)$ $18.23 \pm 0.47 (+1.88)$ UT + OF-DINO $16.80 \pm 0.53 (+6.60)$ $18.10 \pm 0.71 (+6.26)$ $22.56 \pm 0.51 (+6.21)$

 $17.10\pm0.46~(+6.90)$ $19.32\pm0.53~(+7.48)$ $23.01\pm0.67~(+6.66)$

✓ Varying num. of ID/OOD classes

UT + OF-ViT

	Num. of ID/OOD objects	20/60	40/40	60/20
	Label-only	$16.89{\pm}2.6$	15.98 ± 0.49	16.64 ± 0.59
	UT	18.37±1.67 (+1.48)	20.28±0.85 (+4.29)	23.09±0.25 (+6.45)
	UT + OF-DINO	23.43±2.19 (+6.54)	22.91±0.28 (+6.93)	24.89±0.34 (+8.25)
-	UT + OF-ViT	25.20±2.00 (+8.31)	25.10±1.01 (+9.12)	26.11±0.40 (+9.47)

/ Large-scale unlabeled data

	mAP
Supervised	40.90
Proposal Learning [34]	38.40
CSD [14]	38.82
STAC [32]	39.21
Instant-Teaching [46]	40.20
MOCOv2 + Instagram-1B [35]	41.10
Humble Teacher [35]	42.37
SoftTeacher ³ [40]	44.05
Unbiased Teacher* [21]	44.06
Unbiased Teacher* + OF-DINO	45.14
Unbiased Teacher* + OF-ViT	45.16

✓ Large-scale unconstrained unlabeled data

		-
	OpenImage GT labels	mAP
COCO		40.90
COCO + OpenImage	\checkmark	42.91
Unbiased Teacher* [21]		41.81
Unbiased Teacher* + OF-DINO		43.14
Unbiased Teacher* + OF-ViT		43.48

Methods

1. To address this issue, we propose to detect and remove OOD objects in pseudo-labels by using online/offline OOD detectors

✓ Online OOD Detectors

- Add a new head on object detector and apply existing OOD methods
- Jointly train OOD detector and SSOD

✓ Offline OOD Detectors

- Apply a pretrained DINO
- Individually Fine-tune DINO using labeled data

Results:

- SSOD and OOD affect each others
- Both SSOD and OOD performance are bad

Results:

 Offline detectors are much better than online detectors

Performance Comparison

OOD Models	Methods	OoD Scores γ_{ood}	AUROC ↑	FPR75↓	FPR95↓
Online	Vanilla	MSP [8]	67.0 / 71.0	58.4 / 52.4	92.3 / 91.1
		Energy [20]	75.5 / 68.2	36.8 / 49.0	83.6 / 87.8
		Entropy	75.9 / 68.4	38.5 / 51.1	83.1 / 87.7
		Mahalanobis [17]	50.2 / 61.6	83.0 / 65.7	98.1 / 93.7
		Euclidean	56.3 / 61.5	74.3 / 66.9	96.1 / 94.1
(ROIhead)	OE [9]	MSP	67.0 / 73.3	55.0 / 45.9	89.1 / 85.6
	OVA [29]	MSP	73.0 / 76.0	45.7 / 40.2	90.0 / 84.8
	GODIN [11]	Cosine $h(x)$	77.8 / 73.5	33.8 / 45.0	77.4 / 84.5
	GSD [38]	Feat. angle	78.7 / 71.3	32.1 / 48.8	73.9 / 83.4
Offline (DINO)	AC [24]	IAC [37]	83.6 / 86.0	22.4 / 18.7	61.7 / 57.9
		Energy	89.6 / 85.9	12.2 / 18.8	47.5 / 56.8
		Entropy	88.9 / 84.7	12.6 / 20.3	51.1 / 59.9
		Mahalanobis [17]	81.8 / 75.7	25.6 / 35.9	57.6 / 68.9
		Euclidean	90.8 / 86.1	10.7 / 18.5	38.6 / 51.6

