Package 'echoannot'

September 18, 2021

```
Type Package
Title echoverse module: Annotate fine-mapping results
Version 0.99.1
Description echoverse module: Annotate fine-mapping results.
{\bf URL} \ {\tt https://github.com/RajLabMSSM/echoannot}
\pmb{BugReports} \ \text{https://github.com/RajLabMSSM/echoannot/issues}
Encoding UTF-8
LazyData true
Depends R (>= 4.1)
SystemRequirements Python (>= 3.7.0)
biocViews
Imports echodata,
      echotabix,
      dplyr,
      data.table,
      utils,
      stats,
      tidyr,
      parallel,
      haploR,
      ggplot2,
      patchwork,
      ggbio,
      RColorBrewer,
      scales,
      GenomicRanges,
      DescTools,
      pheatmap,
      grDevices,
      rtracklayer,
      S4Vectors,
      GenomeInfoDb,
      biomaRt,
      IRanges
```

2 annotate_missense

```
Suggests markdown,
rmarkdown,
remotes,
knitr,
BiocStyle,
covr,
testthat (>= 3.0.0),
corrplot

Remotes github::RajLabMSSM/echodata,
github::RajLabMSSM/echotabix

RoxygenNote 7.1.2

VignetteBuilder knitr
License GPL-3

Config/testthat/edition 3
```

R topics documented:

annotate_missense	2
CORCES_2020.bulkATACseq_peaks	3
CORCES_2020.cicero_coaccessibility	4
CORCES_2020.get_ATAC_peak_overlap	
CORCES_2020.get_HiChIP_FitHiChIP_overlap	6
CORCES_2020.HiChIP_FitHiChIP_loop_calls	6
CORCES_2020.scATACseq_celltype_peaks	8
CORCES_2020.scATACseq_peaks	9
CS_bin_plot	10
CS_counts_plot	10
get_SNPgroup_counts	11
merge_celltype_specific_epigenomics	11
merge_finemapping_results	12
NOTT_2019.bigwig_metadata	13
NOTT_2019.interactome	14
NOTT_2019.superenhancer_interactome	15
plot_dataset_overlap	16
plot_missense	16
super_summary_plot	17
	18

annotate_missense

Annotate any missense variants

Description

Annotate any missense variants

Usage

Index

```
annotate_missense(merged_DT, snp_filter = "Support>0")
```

See Also

```
Other annotate: biomart_geneInfo(), biomart_snp_info(), biomart_snps_to_geneInfo(), haplor_epigenetics_enrichment(), haplor_epigenetics_summary(), haplor_haploreg(), haplor_regulomedb(), plot_missense(), snps_by_mutation_type()
```

Examples

```
## Not run:
annotated_DT <- annotate_missense(
    merged_DT = echodata::Nalls2019_merged,
    snp_filter = "Support>0"
)
## End(Not run)
```

CORCES_2020.bulkATACseq_peaks

bulkATACseq peaks from human brain tissue

Description

Each row represents an individual peak identified in the bulk ATAC-seq data.

Usage

```
CORCES_2020.bulkATACseq_peaks
```

Format

An object of class data.table (inherits from data.frame) with 186559 rows and 10 columns.

Details

```
Data originally from Corces et al. (bioRxiv), as of May 2020. Specifically: STable2_Features_bulkATAC-seq_Peaks
```

Source

```
https://doi.org/10.1038/s41588-020-00721-x
```

See Also

```
Other CORCES_2020: CORCES_2020.HiChIP_FitHiChIP_loop_calls, CORCES_2020.cicero_coaccessibility, CORCES_2020.get_ATAC_peak_overlap(), CORCES_2020.get_HiChIP_FitHiChIP_overlap(), CORCES_2020.prepaCORCES_2020.prepare_scatAC_peak_overlap(), CORCES_2020.scatACseq_celltype_peaks, CORCES_2020.scatACseq_c
```

Examples

```
## Not run:
dat <- readxl::read_excel(
    file.path(
        "~/Desktop/Fine_Mapping/echolocatoR",
        "annotations/Coceres_2020",
        "STable2_Features_bulkATAC-seq_Peaks.xlsx"
    ),
    skip = 18
)
CORCES_2020.bulkATACseq_peaks <- data.table::data.table(dat)
usethis::use_data(CORCES_2020.bulkATACseq_peaks, overwrite = TRUE)
## End(Not run)</pre>
```

CORCES_2020.cicero_coaccessibility

Cicero_coaccessibility from human brain tissue

Description

Cicero coaccessibility analysis for peaks that overlap SNPs derived from analysis of scATAC-seq data. Each row represents an individual peak identified from the feature binarization analysis (see methods).

Usage

```
CORCES_2020.cicero_coaccessibility
```

Format

An object of class data.table (inherits from data.frame) with 9795 rows and 14 columns.

Details

Data originally from Corces et al. (bioRxiv), as of May 2020. Specifically: STable10_Coacessibility_Peak_loop_connect Cicero Coaccessibility sheet. Peak_ID_Peak1 - A unique number that identifies the peak across supplementary tables.

Column dictionary:

hg38_Chromosome_Peak1 The hg38 chromosome of the first loop Peak.

hg38_Start_Peak1 The hg38 start position of the first loop Peak.

hg38_Stop_Peak1 The hg38 stop position of the first loop Peak.

Width_Peak1 The width of the first loop Peak.

Peak_ID_Peak2 A unique number that identifies the peak across supplementary tables.

hg38_Chromosome_Peak2 The hg38 chromosome of the second loop Peak.

hg38_Start_Peak2 The hg38 start position of the second loop Peak.

hg38_Stop_Peak2 The hg38 stop position of the second loop Peak.

Width_Peak2 The width of the second loop Peak.

Coaccessibility The coaccessibility correlation for the given peak pair.

Peak1_hasSNP A boolean variable determining whether the first peak overlaps a SNP from our AD/PD GWAS analyses.

Peak2_hasSNP A boolean variable determining whether the second peak overlaps a SNP from our AD/PD GWAS analyses.

Source

```
https://doi.org/10.1038/s41588-020-00721-x
```

See Also

```
Other CORCES_2020: CORCES_2020.HiChIP_FitHiChIP_loop_calls, CORCES_2020.bulkATACseq_peaks, CORCES_2020.get_ATAC_peak_overlap(), CORCES_2020.get_HiChIP_FitHiChIP_overlap(), CORCES_2020.prepactor(), CORCES_2020.scATACseq_celltype_peaks, CORCES_2020.scATACseq_cel
```

Examples

```
## Not run:
dat <- readxl::read_excel(
    file.path(
        "~/Desktop/Fine_Mapping/echolocatoR/annotations",
        "Coceres_2020/STable10_Coacessibility_Peak_loop_connection.xlsx"
    ),
    skip = 21, sheet = 2
)
CORCES_2020.cicero_coaccessibility <- data.table::data.table(dat)
usethis::use_data(CORCES_2020.cicero_coaccessibility)
## End(Not run)</pre>
```

```
CORCES_2020.get_ATAC_peak_overlap
```

Get overlap between datatable of SNPs and scATAC peaks

Description

Can optionally add Cicero coaccessibility scores, which are also derived from scATAC-seq data.

Usage

```
CORCES_2020.get_ATAC_peak_overlap(
  finemap_dat,
  FDR_filter = NULL,
  add_cicero = TRUE,
  cell_type_specific = TRUE,
  verbose = TRUE
)
```

Source

```
https://doi.org/10.1038/s41588-020-00721-x
```

See Also

Other CORCES_2020: CORCES_2020.HiChIP_FitHiChIP_loop_calls, CORCES_2020.bulkATACseq_peaks, CORCES_2020.cicero_coaccessibility, CORCES_2020.get_HiChIP_FitHiChIP_overlap(), CORCES_2020.prepar CORCES_2020.prepare_scATAC_peak_overlap(), CORCES_2020.scATACseq_celltype_peaks, CORCES_2020.scATACseq_cellt

CORCES_2020.get_HiChIP_FitHiChIP_overlap

Get overlap between data table of SNPs and HiChIP_FitHiChIP coaccessibility anchors

Description

Anchors are the genomic regions that have evidence of being functionally connected to one another (coaccessible), e.g. enhancer-promoter interactions.

Usage

```
CORCES_2020.get_HiChIP_FitHiChIP_overlap(finemap_dat, verbose = TRUE)
```

Arguments

finemap_dat Fine-mapping results. verbose Print messages.

Source

https://doi.org/10.1038/s41588-020-00721-x

See Also

Other CORCES_2020: CORCES_2020.HiChIP_FitHiChIP_loop_calls, CORCES_2020.bulkATACseq_peaks, CORCES_2020.cicero_coaccessibility, CORCES_2020.get_ATAC_peak_overlap(), CORCES_2020.prepare_bulkACORCES_2020.prepare_scATAC_peak_overlap(), CORCES_2020.scATACseq_celltype_peaks, CORCES_2020.scATACseq_cellty

CORCES_2020.HiChIP_FitHiChIP_loop_calls

FitHiChIP loop calls from human brain tissue

Description

FitHiChIP loop calls that overlap SNPs derived from analysis of H3K27ac HiChIP data. Each row represents an individual peak identified from the feature binarization analysis (see methods).

Usage

CORCES_2020.HiChIP_FitHiChIP_loop_calls

Format

An object of class data.table (inherits from data.frame) with 11542 rows and 11 columns.

Details

Data originally from Corces et al. (bioRxiv), as of May 2020. Specifically: STable10_Coacessibility_Peak_loop_connect HiChIP FitHiChIP Loop Calls sheet.

Column dictionary

hg38 Chromosome Anchor1 The hg38 chromosome of the first loop Anchor.

hg38_Start_Anchor1 The hg38 start position of the first loop Anchor.

hg38_Stop_Anchor1 The hg38 stop position of the first loop Anchor.

Width_Anchor1 The width of the first loop Anchor.

hg38_Chromosome_Anchor2 The hg38 chromosome of the second loop Anchor.

hg38_Start_Anchor2 The hg38 start position of the second loop Anchor.

hg38_Stop_Anchor2 The hg38 stop position of the second loop Anchor.

Width_Anchor2 The width of the second loop Anchor.

Score The -log10(q-value) of the loop call from FitHiChIP.

Anchor1_hasSNP A boolean variable determining whether the first anchor overlaps a SNP from our AD/PD GWAS analyses.

Anchor2_hasSNP A boolean variable determining whether the second anchor overlaps a SNP from our AD/PD GWAS analyses.

Source

```
https://doi.org/10.1038/s41588-020-00721-x
```

See Also

```
Other CORCES_2020: CORCES_2020.bulkATACseq_peaks, CORCES_2020.cicero_coaccessibility, CORCES_2020.get_ATAC_peak_overlap(), CORCES_2020.get_HiChIP_FitHiChIP_overlap(), CORCES_2020.prepacCORCES_2020.prepare_scatAC_peak_overlap(), CORCES_2020.scatACseq_celltype_peaks, CORCES_2020.scatACseq_celltype_p
```

```
## Not run:
dat <- readxl::read_excel(
    file.path(
        "~/Desktop/Fine_Mapping/echolocatoR/annotations",
        "Coceres_2020/STable10_Coacessibility_Peak_loop_connection.xlsx"
    ),
    skip = 19, sheet = 1
)
CORCES_2020.HiChIP_FitHiChIP_loop_calls <- data.table::data.table(dat)
usethis::use_data(CORCES_2020.HiChIP_FitHiChIP_loop_calls)
## End(Not run)</pre>
```

```
{\it CORCES\_2020.scATACseq\_celltype\_peaks} \\ scATACseq\ cell\ type-specific\ peaks\ from\ human\ brain\ tissue
```

Description

Each row represents an individual peak identified from the feature binarization analysis (see methods).

Usage

```
CORCES_2020.scATACseq_celltype_peaks
```

Format

An object of class data.table (inherits from data.frame) with 221062 rows and 13 columns.

Details

```
Data originally from Corces et al. (bioRxiv), as of May 2020. Specifically: STable6_Features_scATAC-seq_celltype_Peaks
```

Source

```
https://doi.org/10.1038/s41588-020-00721-x
```

See Also

```
Other CORCES_2020: CORCES_2020.HiChIP_FitHiChIP_loop_calls, CORCES_2020.bulkATACseq_peaks, CORCES_2020.cicero_coaccessibility, CORCES_2020.get_ATAC_peak_overlap(), CORCES_2020.get_HiChIP_FiCORCES_2020.prepare_bulkATAC_peak_overlap(), CORCES_2020.prepare_scATAC_peak_overlap(), CORCES_2020.scATACseq_peaks
```

```
## Not run:
dat <- readxl::read_excel(
    file.path(
        "~/Desktop/Fine_Mapping/echolocatoR/annotations",
        "Coceres_2020/STable6_Features_scATAC-seq_celltype_Peaks.xlsx"
    ),
    skip = 15
)
CORCES_2020.scATACseq_celltype_peaks <- data.table::data.table(dat)
usethis::use_data(CORCES_2020.scATACseq_celltype_peaks, overwrite = TRUE)
## End(Not run)</pre>
```

```
CORCES_2020.scATACseq_peaks

scATACseq peaks from human brain tissue
```

Description

Each row represents an individual peak identified in the single-cell ATAC-seq data.

Usage

```
CORCES_2020.scATACseq_peaks
```

Format

An object of class data.table (inherits from data.frame) with 359022 rows and 10 columns.

Details

```
Data originally from Corces et al. (bioRxiv), as of May 2020. Specifically: STable5_Features_scATAC-seq_Peaks_all
```

Source

```
https://doi.org/10.1038/s41588-020-00721-x
```

See Also

```
Other CORCES_2020: CORCES_2020.HiChIP_FitHiChIP_loop_calls, CORCES_2020.bulkATACseq_peaks, CORCES_2020.cicero_coaccessibility, CORCES_2020.get_ATAC_peak_overlap(), CORCES_2020.get_HiChIP_FiCORCES_2020.prepare_bulkATAC_peak_overlap(), CORCES_2020.prepare_scATAC_peak_overlap(), CORCES_2020.scATACseq_celltype_peaks
```

```
## Not run:
dat <- readxl::read_excel(
    file.path(
        "~/Desktop/Fine_Mapping/echolocatoR/annotations",
        "Coceres_2020/STable5_Features_scATAC-seq_Peaks_all.xlsx"
    ),
    skip = 18
)
CORCES_2020.scATACseq_peaks <- data.table::data.table(dat)
usethis::use_data(CORCES_2020.scATACseq_peaks, overwrite = TRUE)
## End(Not run)</pre>
```

10 CS_counts_plot

CS_bin_plot

Plot CS bin counts

Description

Plot CS bin counts

Usage

```
CS_bin_plot(merged_DT, show_plot = TRUE)
```

See Also

```
Other summarise: CS_counts_plot(), get_CS_bins(), get_CS_counts(), get_SNPgroup_counts(), peak_overlap_plot(), plot_dataset_overlap(), results_report(), super_summary_plot()
```

Examples

```
bin_plot <- CS_bin_plot(merged_DT = echodata::Nalls2019_merged)</pre>
```

CS_counts_plot

Bar plot of tool-specific CS sizes

Description

Loci ordered by UCS size (smallest to largest).

Usage

```
CS_counts_plot(
  merged_DT,
  show_numbers = TRUE,
  ylabel = "Locus",
  legend_nrow = 3,
  label_yaxis = TRUE,
  top_CS_only = FALSE,
  show_plot = TRUE
)
```

See Also

```
Other summarise: CS_bin_plot(), get_CS_bins(), get_CS_counts(), get_SNPgroup_counts(), peak_overlap_plot(), plot_dataset_overlap(), results_report(), super_summary_plot()
```

```
gg_CS <- CS_counts_plot(merged_DT = echodata::Nalls2019_merged)</pre>
```

get_SNPgroup_counts 11

```
get_SNPgroup_counts Tally locus-specific SNP group sizes
```

Description

Tally locus-specific SNP group sizes

Usage

```
get_SNPgroup_counts(merged_DT, grouping_vars = "Locus")
```

See Also

```
Other summarise: CS_bin_plot(), CS_counts_plot(), get_CS_bins(), get_CS_counts(), peak_overlap_plot(), plot_dataset_overlap(), results_report(), super_summary_plot()
```

Examples

```
data("merged_DT")
snp_groups <- get_SNPgroup_counts(merged_DT = echodata::Nalls2019_merged)</pre>
```

```
merge_celltype_specific_epigenomics

Merge all cell-type-specific epigenomics
```

Description

Merges multiple cell-type-specific epigenomic datasets (Nott 2019, Corces 2020) into a single GRanges object.

Usage

```
merge_celltype_specific_epigenomics(keep_extra_cols = FALSE)
```

```
gr.merged <- merge_celltype_specific_epigenomics()</pre>
```

```
merge_finemapping_results
```

Merge fine-mapping results from all loci

Description

Gather fine-mapping results from echolocatoR across all loci and merge into a single data.frame.

Usage

```
merge_finemapping_results(
  dataset = "./Data/GWAS",
  minimum_support = 1,
  include_leadSNPs = TRUE,
  LD_reference = NULL,
  save_path = tempfile(fileext = "merged_results.csv.gz"),
  from_storage = TRUE,
  haploreg_annotation = FALSE,
  regulomeDB_annotation = FALSE,
  biomart_annotation = FALSE,
  PP_{threshold} = 0.95,
  consensus_threshold = 2,
  exclude_methods = NULL,
  top_CS_only = FALSE,
  verbose = TRUE,
  nThread = 1
)
```

Arguments

dataset

Path to the folder you want to recursively search for results files within (e.g. "Data/GWAS/Nalls23andMe_2019"). Set this to a path that includes multiple subfolders if you want to gather results from multiple studies at once (e.g. "Data/GWAS").

minimum_support

Filter SNPs by the minimum number of fine-mapping tools that contained the SNP in their Credible Set.

include_leadSNPs

Include lead GWAS/QTL SNPs per locus (regardless of other filtering criterion).

from_storage Search for stored results files.

haploreg_annotation

Annotate SNPs with HaploReg (using HaploR).

regulomeDB_annotation

Annotate SNPs with regulaomeDB (using HaploR).

biomart_annotation

Annotate SNPs with biomart.

PP_threshold Mean posterior probability threshold to include SNPs in mean PP Credible Set (averaged across all fine-mapping tools).

```
exclude_methods
```

Exclude certain fine-mapping methods when estimating **mean.CS** and **Consensus_SNP**.

verbose Print messages.

xlsx_path Save merged data.frame as excel file.

consensus_thresh

The minimum number of tools that have the SNPs in their Credible Set to classify it as a **Consensus_SNP**.

NOTT_2019.bigwig_metadata

Metadata and links to data

Description

Metadata for cell type-specific epigenomic bigWig files hosted on UCSC Genome Browser. bigWig files contain the genomic ranges from each epigenomic assay, as well as a Score column which describes the peaks of the aggregate reads.

Usage

```
NOTT_2019.bigwig_metadata
```

Format

An object of class data.table (inherits from data.frame) with 18 rows and 14 columns.

Source

```
https://science.sciencemag.org/content/366/6469/1134
```

See Also

```
Other NOTT_2019: NOTT_2019.epigenomic_histograms(), NOTT_2019.get_epigenomic_peaks(), NOTT_2019.get_interactions(), NOTT_2019.get_interactome(), NOTT_2019.get_promoter_celltypes(), NOTT_2019.get_promoter_interactome_data(), NOTT_2019.get_regulatory_regions(), NOTT_2019.interactome_NOTT_2019.get_promoter_interactome_data(), NOTT_2019.get_regulatory_regions(), NOTT_2019.superenhancers()
```

NOTT_2019.interactome Brain cell type-specific enhancers, promoters, and interactomes

Description

Originally from Nott et al. (2019). Specifically: aay0793-Nott-Table-S5.xlsx.

Usage

NOTT_2019.interactome

Format

An object of class list of length 12.

Source

https://science.sciencemag.org/content/366/6469/1134

See Also

```
Other NOTT_2019: NOTT_2019.bigwig_metadata, NOTT_2019.epigenomic_histograms(), NOTT_2019.get_epiger NOTT_2019.get_interactions(), NOTT_2019.get_interactome(), NOTT_2019.get_promoter_celltypes(), NOTT_2019.get_promoter_interactome_data(), NOTT_2019.get_regulatory_regions(), NOTT_2019.plac_seq_NOTT_2019.superenhancer_interactome, NOTT_2019.superenhancers()
```

```
## Not run:
file <- file.path(</pre>
    "~/Desktop/Fine_Mapping/echolocatoR/annotations",
    "Nott_2019/aay0793-Nott-Table-S5.xlsx"
sheets <- readxl::excel_sheets(file)</pre>
enh_prom_sheets <- grep("enhancers|promoters", sheets, value = TRUE)</pre>
other_sheets <- grep("enhancers|promoters", sheets,</pre>
    value = TRUE,
    invert = TRUE
NOTT_2019.interactome <- lapply(other_sheets, function(s) {</pre>
    readxl::read_excel(file, sheet = s, skip = 2)
})
NOTT_2019.interactome <- append(
    NOTT_2019.interactome,
    lapply(enh_prom_sheets, function(s) {
        readxl::read_excel(file,
            sheet = s, skip = 2,
            col_names = c("chr", "start", "end")
        )
    })
names(NOTT_2019.interactome) <- c(other_sheets, enh_prom_sheets)</pre>
usethis::use_data(NOTT_2019.interactome, overwrite = TRUE)
```

```
## End(Not run)
```

```
NOTT_2019.superenhancer_interactome
```

Brain cell type-specific interactomes with superenhancers

Description

Originally from Nott et al. (2019). Specifically: aay0793-Nott-Table-S6.xlsx.

Usage

```
NOTT_2019.superenhancer_interactome
```

Format

An object of class data.table (inherits from data.frame) with 2954 rows and 29 columns.

Source

```
https://science.sciencemag.org/content/366/6469/1134
```

See Also

```
Other NOTT_2019: NOTT_2019.bigwig_metadata, NOTT_2019.epigenomic_histograms(), NOTT_2019.get_epiger NOTT_2019.get_interactions(), NOTT_2019.get_interactome(), NOTT_2019.get_promoter_celltypes(), NOTT_2019.get_promoter_interactome_data(), NOTT_2019.get_regulatory_regions(), NOTT_2019.interactome_notT_2019.plac_seq_plot(), NOTT_2019.superenhancers()
```

16 plot_missense

Description

Cross-tabulate SNP overlap (after applying filter) between each pair of studies.

Usage

```
plot_dataset_overlap(
  merged_DT,
  snp_filter = "!is.na(SNP)",
  filename = NA,
  formula_str = "~ SNP + Dataset",
  triangle = FALSE,
  proxies = NULL
)
```

See Also

Other summarise: CS_bin_plot(), CS_counts_plot(), get_CS_bins(), get_CS_counts(), get_SNPgroup_counts() peak_overlap_plot(), results_report(), super_summary_plot()

plot_missense

Plot any missense variants

Description

Plot any missense variants

Usage

```
plot_missense(
  merged_DT,
  snp_filter = "Support>0",
  label_yaxis = FALSE,
  x_label = "UCS missense\nmutations",
  show.legend = TRUE,
  show_numbers = FALSE,
  show_plot = TRUE
)
```

See Also

```
Other annotate: annotate_missense(), biomart_geneInfo(), biomart_snp_info(), biomart_snps_to_geneInfo() haplor_epigenetics_enrichment(), haplor_epigenetics_summary(), haplor_haploreg(), haplor_regulomedb(), snps_by_mutation_type()
```

super_summary_plot 17

Examples

```
## Not run:
merged_DT <- echodata::Nalls2019_merged
gg_missense <- plot_missense(
    merged_DT = merged_DT,
    snp_filter = "Support>0"
)
gg_missense <- plot_missense(
    merged_DT = merged_DT,
    snp_filter = "Consensus_SNP==TRUE"
)
## End(Not run)</pre>
```

super_summary_plot

Merge all summary plots into one super plot

Description

Merge all summary plots into one super plot

Usage

```
super_summary_plot(
  merged_DT,
  snp_filter = "Consensus_SNP==TRUE",
  coloc_results = NULL,
  plot_missense = TRUE,
  show_plot = TRUE,
  save_plot = FALSE,
  height = 15,
  width = 13,
  dpi = 500
)
```

See Also

```
Other summarise: CS_bin_plot(), CS_counts_plot(), get_CS_bins(), get_CS_counts(), get_SNPgroup_counts() peak_overlap_plot(), plot_dataset_overlap(), results_report()
```

Index

```
* CORCES_2020
                                             biomart_snp_info, 3, 16
    CORCES_2020.bulkATACseq_peaks, 3
                                             biomart_snps_to_geneInfo, 3, 16
    CORCES_2020.cicero_coaccessibility,
                                             CORCES_2020.bulkATACseq_peaks, 3, 5-9
                                             CORCES_2020.cicero_coaccessibility, 3,
    CORCES_2020.get_ATAC_peak_overlap,
                                                      4.6-9
    5, 6-9
                                             CORCES_2020.get_HiChIP_FitHiChIP_overlap,
    CORCES_2020.HiChIP_FitHiChIP_loop_calls,
                                                      3, 5, 6, 6, 7–9
                                             CORCES_2020.HiChIP_FitHiChIP_loop_calls,
    CORCES_2020.scATACseq_celltype_peaks,
                                                      3, 5, 6, 6, 8, 9
                                             CORCES_2020.prepare_bulkATAC_peak_overlap,
    CORCES_2020.scATACseq_peaks, 9
                                                      3, 5–9
* NOTT_2019
                                             CORCES_2020.prepare_scATAC_peak_overlap,
    NOTT_2019.bigwig_metadata, 13
                                                      3, 5–9
    NOTT_2019.interactome, 14
                                             CORCES_2020.scATACseq_celltype_peaks,
    NOTT_2019.superenhancer_interactome,
                                                      3, 5–7, 8, 9
                                             CORCES_2020.scATACseq_peaks, 3, 5–8, 9
* annotate
                                             CS_bin_plot, 10, 10, 11, 16, 17
    annotate_missense, 2
                                             CS_counts_plot, 10, 10, 11, 16, 17
    plot_missense, 16
* datasets
                                             get_CS_bins, 10, 11, 16, 17
    CORCES_2020.bulkATACseq_peaks, 3
                                             get_CS_counts, 10, 11, 16, 17
    CORCES_2020.cicero_coaccessibility,
                                             get_SNPgroup_counts, 10, 11, 16, 17
                                             GRanges, 11
    CORCES_2020.HiChIP_FitHiChIP_loop_calls,
                                             haplor_epigenetics_enrichment, 3, 16
    CORCES_2020.scATACseq_celltype_peaks,
                                             haplor_epigenetics_summary, 3, 16
                                             haplor_haploreg, 3, 16
    CORCES_2020.scATACseq_peaks, 9
                                             haplor_regulomedb, 3, 16
    NOTT_2019.bigwig_metadata, 13
    NOTT_2019.interactome, 14
                                             merge_celltype_specific_epigenomics,
    NOTT_2019.superenhancer_interactome,
        15
                                             merge_finemapping_results, 12
* summarise
                                             NOTT_2019.bigwig_metadata, 13, 14, 15
    CS_bin_plot, 10
                                             NOTT_2019.epigenomic_histograms, 13-15
    CS_counts_plot, 10
                                             NOTT_2019.get_epigenomic_peaks, 13–15
    get_SNPgroup_counts, 11
                                             NOTT_2019.get_interactions, 13-15
    plot_dataset_overlap, 16
                                             NOTT_2019.get_interactome, 13–15
    super_summary_plot, 17
                                             NOTT_2019.get_promoter_celltypes,
                                                      13–15
annotate_missense, 2, 16
                                             NOTT_2019.get_promoter_interactome_data,
biomart_geneInfo, 3, 16
                                                      13–15
```

INDEX 19

```
NOTT_2019.get_regulatory_regions, 13-15

NOTT_2019.interactome, 13, 14, 15

NOTT_2019.plac_seq_plot, 13-15

NOTT_2019.superenhancer_interactome, 13, 14, 15

NOTT_2019.superenhancers, 13-15

peak_overlap_plot, 10, 11, 16, 17

plot_dataset_overlap, 10, 11, 16, 17

plot_missense, 3, 16

results_report, 10, 11, 16, 17

snps_by_mutation_type, 3, 16

super_summary_plot, 10, 11, 16, 17
```