12.5 Inverse Functions

Benjamin Basseri

January 9, 2025

Problem 1

Check that $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(n) = 6 - n is bijective. Then compute f^{-1} .

To show that it is bijective, show that it is injective and surjective. Injectivity: suppose f(n) = f(n). Then 6 - m = 6 - n and m = n. Surjectivity: for any $y \in Z$ you want to reach, we solve y = 6 - n for n, obtaining n = 6 - y. To check, f(6 - y) = 6 - (6 - y) = y. Since any y can be reached on f, the function is surjective.

To find the inverse, set y = 6 - n and solve for n. We just did that, so $f^{-1}(y) = 6 - y$. To check:

$$f^{-1}(f(n)) = f^{-1}(6-n) = 6 - (6-n) = n$$

Since $f^{-1} \circ f$ is the identity, this confirms f^{-1} is the correct inverse function.

Problem 2

In Exercise 9 of Section 12.2 you proved that $f: \mathbb{R} - \{2\} \to \mathbb{R} - \{5\}$ defined by $f(x) = \frac{5x+1}{x-2}$ is bijective. Now find its inverse.

Write f(x) = y and solve for y:

$$\frac{5x+1}{x-2} = y$$

$$5x+1 = xy - 2y$$

$$2y+1 = xy - 5x$$

$$2y+1 = x(y-5)$$

$$\frac{2y+1}{y-5} = x$$

Now we can say $f^{-1}(x) = \frac{2x+1}{x-5}$. To check:

$$f(f^{-1}(x)) = f\left(\frac{2x+1}{x-5}\right)$$

$$= \frac{5\left(\frac{2x+1}{x-5}\right) + 1}{\frac{2x+1}{x-5} - 2}$$

$$= \frac{11x}{11}$$

$$= x$$

Problem 3

Let $B = \{2^n : n \in \mathbb{Z}\} = \{\dots, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, 8, \dots\}$. Show that the function $f : \mathbb{Z} \to B$ defined as $f(n) = 2^n$ is bijective. Then find f^{-1} .

To show bijectivity we could show the inverse, but let's show it's injective and surjective. Injectivity: suppose f(m) = f(n). Then $2^m = 2^n$ and m must equal n. The function is surjective by the construction of B: the set is all integer powers of 2 and the domain of f is all integers, so any integer power of 2 is in the image of f.

The inverse function must map 2^n back to n, and the \log_2 function does this:

$$\log_2 2^n = n \log_2 2 = n \cdot 1 = n$$

Problem 4

The function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ defined by the formula f(m,n) = (5m+4n,4m+3n) is bijective. Find its inverse.

We can solve a system of equations:

$$5m + 4n = x$$
$$4m + 3n = y$$

Solving the system for m, n gives m = 4y - 3x, n = 4x - 5y. Checking we see

$$f(f^{-1}(m,n)) = f(4y - 3x, 4x - 5y)$$

$$= (5(4y - 3x) + 4(4x - 5y), 4(4y - 3x) + 3(4x - 5y))$$

$$= (20y - 15x + 16x - 20y, 16y - 12x + 12x - 15y)$$

$$= (x, y)$$

Problem 5

Show that the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by the formula $f(x,y) = ((x^2+1)y, x^3)$ is bijective. Then find its inverse.

To show bijectivity, we can show the inverse, but let's show injectivity and surjectivity.

Injectivity: suppose f(a,b) = f(x,y). This means $((a^2+1)b,a^3) = ((x^2+1)y,x^3)$. But since the coordinates must match this gives $a^3 = x^3$. Since the cubing function is bijective, this means a = x. Then the first coordinates being equal means $(a^2+1)b = (x^2+1)y$. Since a = x we can write this as $(x^2+1)b = (x^2+1)y$, and by the cancelation law b = y.

For surjectivity, the second coordinate can reach any real value by choosing the corresponding cube root for x. For the first coordinate, if it is 0 let y=0. Otherwise $(x^2+1)y\neq$ which means $x^2+1\neq 0$. Then for any desired value z on the first coordinate, let $y=\frac{z}{x^2+1}$. So any value in \mathbb{R}^2 can be reached by f.

To find the inverse where f(x,y)=(a,b), we must have $x^3=b$ or $x=b^{1/3}$. To solve for y we have $(x^2+1)y=a$, or by substition $(b^{2/3}+1)y=a$ so that $y=\frac{a}{b^{2/3}+1}$. Checking we see

$$f(f^{-1}(a,b)) = f(b^{1/3}, \frac{a}{b^{2/3} + 1})$$
$$= ((b^{2/3} + 1)\frac{a}{b^{2/3} + 1}, b)$$
$$= (a,b)$$

Problem 6

Is the function $\theta: \mathcal{P}(\mathbb{Z}) \to \mathcal{P}(\mathbb{Z})$ defined as $\theta(X) = \overline{X}$ bijective? If so, find its inverse.

It is bijective because it has an inverse function: itself. The complement of a complement is the original set. Therefore $\theta(\theta(X)) = X$ and θ composed with θ is the identity function.

Problem 7

Consider the function $f: \mathbb{R} \times \mathbb{N} \to \mathbb{N} \times \mathbb{R}$ defined as f(x,y) = (y,3xy). Check that this is bijective; find its inverse.

Injectivity: suppose f(a,b) = f(x,y). Then (b,3ab) = (y,3xy). This means b = y and 3ab = 3xb, so a = x. Surjectivity: for any $y \in \mathbb{N}$ needed in the codomain's first coordinate, choose that y as the second input. Then for any $z \in \mathbb{R}$ needed in the codomain's second coordinate, z must equal 3xy. Then x = z/3y (assuming $0 \notin \mathbb{N}$). Therefore the function's image is all of $\mathbb{N} \times \mathbb{R}$.

This also give us the inverse function $f^{-1}(x,y) = (y/3x,x)$. Checking:

$$f(f^{-1}(x,y)) = f(y/3x,x) = (x,3(y/3x)) = (x,y)$$

Problem 8

Consider $f: \mathbb{N} \to \mathbb{Z}$ defined as $f(n) = \frac{(-1)^n (2n-1)+1}{4}$. Find its inverse.

Evaluating the first few function values we get:

$$f(1) = 0$$

$$f(2) = 1$$

$$f(3) = -1$$

$$f(4) = 2$$

$$f(5) = -2$$

So we see that negative integers come from odd naturals and positive integers come from even ones. From this we can form a piecewise function:

$$f^{-1}(x) = \begin{cases} 2x, & x > 0\\ 1 - 2x, & x \le 0 \end{cases}$$