

Input-Convex Deep Networks

Brandon Amos and J. Zico Kolter School of Computer Science, Carnegie Mellon University

Carnegie Mellon University

Introduction

- We introduce a new neural network architecture:
- Input-Convex Neural Networks (ICNNs)
- **Definition:** Scalar-valued neural network $f(x; \theta)$
- f is **convex** in the input x
- (f is not convex in the parameters $\theta = \{W_i, b_i\}$)
- Model allows **global** optimization over some of the inputs to the network, given fixed values for other inputs
- Many existing neural-network architectures can be "easily" made input-convex

Input-Convex Neural Networks

Typical ICNN model:

$$z_{i+1} = g_i \left(W_i^{(z)} z_i + W_i^{(x)} x + b_i \right) \quad i = 0, \dots, k-1$$

 $f(x; \theta) = z_k$

- z_i are the layer activations (with $z_0 \equiv 0$)
- g_i are non-linear activation functions
- Also supports linear operations like convolutions

Proposition 1. The function f is convex in x provided that all $W_{1:k-1}^{(z)}$ are non-negative, and all functions g_i are convex and non-decreasing

- Many common non-linearities g_i (e.g., (PL)ReLU and max-pooling) are already convex and non-decreasing
- ullet Non-negativity of $W^{(z)}$ terms is a notable restriction
- Joint convexity in all inputs also restrictive (can be extended to partial convexity, which then generalizes ICNNs and traditional feedforward networks)

ICNN Use Cases

- Structured prediction
- Similar model to Belanger and McCallum [1] (nonconvex deep networks for structured prediction)
- Network takes input and output pairs: $f(x, y; \hat{\theta})$
- Inference for an input x:

$$\hat{y} = \underset{y}{\operatorname{argmin}} f(x, y; \theta)$$

(for ICNNs, a convex, thus globally solvable problem)

- Exemplars in learning
- Same setting as above, but also inference over \boldsymbol{x}

$$f(x_k^*, y = e_k; \theta) \le \min_{x} f(x, y = e_k; \theta)$$

- Data imputation*
- Infer missing values from values that are present
- $\hat{x}_{\mathcal{I}} = \operatorname{argmin}_{x_{\mathcal{I}}} f(x_{\mathcal{I}}, x_{\neg \mathcal{I}}; \theta)$
- Reinforcement learning*
- Represent $Q(s, a; \theta)$ function as a (negated) ICNN
- Finding best action $\operatorname{argmax}_a Q(s,a;\theta)$ (even for continuous action spaces) is a convex problem

*Work in progress

ICNN Inference

- In general, inference requires optimization over some inputs given other inputs (always a convex problem!)

 E.g. structured prediction: $\hat{y} = \operatorname{argmin}_{y} f(x, y; \theta)$
- For ICNNs with ReLUs, max pooling, fully connected units, and convolutions, inference is a **linear program**

$$\min_{y,z_1,\dots,z_k} z_k \text{ s.t. } z_{i+1} \ge W_i^{(z)} z_i + W_i^{(xy)} \begin{bmatrix} x \\ y \end{bmatrix} + b_i, \quad \forall i$$
$$z_i \ge 0, \quad \forall i \ne k$$

Solution approaches:

- Full LP formulation (variable for each hidden unit)
- ADMM or an off-the-shelf solver (like ECOS)
- Gradient-based methods
- Gradient descent, bundle and cutting plane methods

Inference in a 600L-600L ICNN:

ICNN Learning

- Can train networks using framework similar to maxmargin structured prediction [4, 3]
- E.g., in structured prediction setting, want to find θ such that for all training inputs (x_i, y_i)

$$f(x_i, y_i; \theta) \le \min_{y \in \mathcal{Y}} (f(x_i, y; \theta) - \Delta(y_i, y))$$

- $\Delta(y_i, y)$ is a margin-scaling term
- Margin for the inequality when y_i different from y
- In multi-class classification: ${\cal Y}$ is simplex and $\Delta(y_i,y)=y^T(1-y_i)$
- Note: training network is not a convex problem

Subgradient method for structured prediction [2]:

- Training example x_i, y_i
- Solve $y^* = \operatorname{argmin}_{y \in \mathcal{Y}} f(x_i, y; \theta) \Delta(y_i, y)$
- If margin is violated, update

$$\theta \leftarrow \mathcal{P}_{+} \left[\theta - \alpha \left(\lambda \theta + \nabla_{\theta} f(x_i, y_i, \theta) - \nabla_{\theta} f(x_i, y^*; \theta) \right) \right]$$

where \mathcal{P}_+ projects $W_{1:k-1}^{(z)}$ onto the non-negative orthant

Experiment: MNIST Classification

LeNet (20C-MP-50C-MP-500L, 5×5 conv) Feedforward (430k Params) ICNN (826k Params)

Error summary at last iteration:

		Train	Test
Feedforward	Fully Connected	$3.3 \cdot 10^{-5}$	0.029
	LeNet	0.010	0.012
ICNN	Fully Connected	0.0075	0.034
	LeNet	0.010	0.021

CUDA LeNet runtimes:

• Training minibatch with 128 instances

Feedforward 0.038 ± 0.006 seconds ICNN 0.302 ± 0.010 seconds

Experiment: Synthetic Classification

- 2-layer linear ICNN with ReLU (200 units per layer)
- ICNNs can learn non-convex decision boundaries

Experiment: Exemplar Learning

- Consider each class in a fully connected MNIST ICNN
- Network from MNIST results with 1.32M params
- $-\min_{x} f(x, y = k; \theta)$ of the trained network on digits:

- ullet Regularization idea: Jointly optimize y and x
- In classification, average the examples for each class
- Represent the exemplar for class i as x_{st}^i
- Use margin scaling term $\Delta(x_*^i,x) = \frac{\gamma}{2}||x-x_*^i||_2^2$
- Requires that we use $f \equiv f(x,y) + \frac{\gamma}{2}||x||_2^2$ to maintain convexity in the augmented inference problem

MNIST classification with exemplar learning:

In each minibatch, learn all 10 exemplars and 128 classification samples

Network learns exemplars at the expense of accuracy

References

- D. Belanger and A. McCallum. "Structured Prediction Energy Networks". In: *arXiv:1511.06350* (2015).
- [2] N. Ratliff, J. Bagnell, and M. Zinkevich. "(Approximate) Subgradient Methods for Structured Prediction". In: *ICAIS*. 2007.
- [3] B. Taskar et al. "Learning structured prediction models: A large margin approach". In: *ICML*. 2005.
- [4] I. Tsochantaridis et al. "Large margin methods for structured and interdependent output variables". In: *JMLR* (2005).