PEP542 Homework Spring 2025

Instructor: Dr. Chunlei Qu (cqu5@stevens.edu)
February 16, 2025

- There could be typos, please let me know if you find any issues.
- Do not copy solutions from Google or other online resources. It is very easy to tell whether the solution is original work or not.
- You are encouraged to discuss the problems with the other students.
- Please scan your solutions (make sure that the solution is recognizable) and upload the PDF file to Canvas.
- Late homework will not be counted in the final grade.
- Each student is granted one late-homework exemption, provided the homework is submitted within five days of the deadline. Please use it wisely.

Homework 3 (Due 2pm, Feb 21)

- 1. Find the electric field (magnitude and direction) a distance z above the midpoint between equal and opposite charges $(\pm q)$, a distance d apart.
- 2. Find the electric field a distance z above the center of a flat circular disk of radius R that carries a uniform surface charge σ . What does your formula give in the limit $R \to \infty$? Also check the case $z \gg R$.
- 3. Suppose the electric field in some region is found to be $\mathbf{E} = kr^3\hat{r}$, in spherical coordinates (k is some constant).
 - (a) Find the charge density ρ .
 - (b) Find the total charge contained in a sphere of radius R, centered at the origin. (Do it two different ways. Hint: Gauss's law in integration and differential forms.)
- 4. Use Gauss's law to find the electric field inside and outside a **spherical** shell of radius R that carries a uniform surface charge density σ .
- 5. A long coaxial cable carries a uniform **volume** charge density ρ on the inner cylinder (radius a), and a uniform **surface** charge density on the outer cylindrical shell (radius b). This surface charge is negative and is of just the right magnitude that the cable as a whole is electrically neutral. Find the electric field in each of the three regions:
 - (i) inside the inner cylinder (s < a),
 - (ii) between the cylinders (a < s < b),
- (iii) outside the cable (s > b).

Plot $|\mathbf{E}|$ as a function of s.