1 Converting NFAs to DFAs (*)

Use the generic construction to convert the following two nondeterministic automata to equivalent deterministic finite automata.

2 Constructing & converting NFAs from regular expressions (*)

- 1. Give an NFA recognizing the language $(01 \cup 001 \cup 010)^*$.
- 2. Convert this NFA to an equivalent DFA. Give only the portion of the DFA that is reachable from the start state.

3 Binary addition and regular languages (**)

Let

$$\Sigma_3 = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}.$$

 Σ_3 contains all size 3 columns of 0s and 1s. A string of symbols in Σ_3 gives three rows of 0s and 1s. Consider each row to be a binary number and let

 $B = \{w \in \Sigma_3^* \mid \text{the bottom row of } w \text{ is the sum of the top two rows}\}.$

For example,

$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \in B, \text{ but } \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \not\in B.$$

Show that B is regular. (Hint: Working with $B^{\mathcal{R}}$ is easier. You may assume the result claimed in Problem 4 of Problem Sheet 2, i.e., if a language L is regular, then its 'reverse' language $L^{\mathcal{R}}$ is regular.)

4 Binary multiplication and regular languages $(\star \star \star)$

Let

$$\Sigma_2 = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}.$$

Here, Σ_2 contains all columns of 0s and 1s of height two. A string of symbols in Σ_2 gives two rows of 0s and 1s. Consider each row to be a binary number and let

 $C = \{w \in \Sigma_2^* \mid \text{the bottom row of } w \text{ is three times the top row}\}.$

For example, $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in C$, but $\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \not\in C$. Show that C is regular. (You may assume the result claimed in Problem 4 of Problem Sheet 2.)

5 Regular expressions (*)

For each of the following languages, give two strings that are members and two strings that are *not* members—a total of four strings for each part. Assume the alphabet $\Sigma = \{a, b\}$ in all parts.

- 1. a^*b^*
- 2. a(ba)*b
- $3. \ \mathbf{a}^* \cup \mathbf{b}^*$
- $4. (aaa)^*$
- 5. $\Sigma^* a \Sigma^* b \Sigma^* a \Sigma^*$
- 6. aba \cup bab
- 7. $(\varepsilon \cup \mathbf{a})\mathbf{b}$
- 8. $(a \cup ba \cup bb)\Sigma^*$