

Open-Minded

McCulloch-Pitts Neuron

Neuroinformatics Tutorial 2

Duc Duy Pham¹

¹Intelligent Systems, Faculty of Engineering, University of Duisburg-Essen, Germany

Content

- Revision
- Biological Motivation for ANNs
- McCulloch-Pitts Neuron
- Tasks

Content

- Revision
- Biological Motivation for ANNs
- McCulloch-Pitts Neuron
- Tasks

• Which of the following statements are true?

- Which of the following statements are true?
 - 1. Al \subset ML
 - 2. DL \subset AI
 - 3. $ML \subset DL$
 - 4. ANN CDL
 - 5. ANN CML

Which of the following statements are true?

- 1. Al \subset ML
- 2. DL \subset AI
- 3. $ML \subset DL$
- 4. ANN CDL
- 5. ANN CML

A:	2, 4, 5
B:	2, 5
C:	1, 2, 3, 4
D:	all

• Which of the following statements are true?

1. Al \subset ML

2. DL \subset Al

3. $ML \subset DL$

4. ANN CDL

5. ANN ⊂ ML

A: 2, 4, 5

B: 2, 5

C: 1, 2, 3, 4

D: all

Relation to Al

• What are tasks that can be addressed with ANNs?

- What are tasks that can be addressed with ANNs?
 - 1. Classification
 - 2. Regression
 - 3. Image Synthesis

- What are tasks that can be addressed with ANNs?
 - 1. Classification
 - 2. Regression
 - 3. Image Synthesis

- What are tasks that can be addressed with ANNs?
 - 1. Classification
 - 2. Regression
 - 3. Image Synthesis

• Which statements regarding Artificial Neural Networks are true?

- Which statements regarding Artificial Neural Networks are true?
 - 1. ANNs are basically Turing Machines
 - 2. ANNs can work in parallel
 - 3. ANNs can have connections between all computing components

- Which statements regarding Artificial Neural Networks are true?
 - 1. ANNs are basically Turing Machines
 - 2. ANNs can work in parallel
 - 3. ANNs can have connections between all computing components

- Which statements regarding Artificial Neural Networks are true?
 - 1. ANNs are basically Turing Machines
 - 2. ANNs can work in parallel
 - 3. ANNs can have connections between all computing components

- Which statements regarding Artificial Neural Networks are true?
 - 1. ANNs are basically Turing Machines
 - 2. ANNs can work in parallel
 - 3. ANNs can have connections between all computing components

- Which statements regarding Artificial Neural Networks are true?
 - 1. ANNs are basically Turing Machines
 - 2. ANNs can work in parallel
 - 3. ANNs can have connections between all computing components

How can an ANN be formalized according to the lecture?

- How can an ANN be formalized according to the lecture?
 - 1. Cauchy-Schwartz Equation
 - 2. Quintuple
 - 3. It is not possible, since ANNs are black boxes
 - 4. As a dictionary

- How can an ANN be formalized according to the lecture?
 - 1. Cauchy-Schwartz Equation
 - 2. Quintuple
 - 3. It is not possible, since ANNs are black boxes
 - 4. As a dictionary

UDE

- How can an ANN be formalized according to the lecture?
 - 1. Cauchy-Schwartz Equation
 - 2. Quintuple
 - 3. It is not possible, since ANNs are black boxes
 - 4. As a dictionary

UDE

ANN Formalization

Quintupel $\mathcal{A} := (\mathcal{K}, \mathcal{V}, \mathcal{I}, \mathcal{O}, \mathcal{H})$

Quintupel A := (K, V, I, O, H)

 \mathcal{K} : Knotenmenge

Quintupel A := (K, V, I, O, H)

 \mathcal{K} : Knotenmenge

 \mathcal{V} : Kantenmenge $\mathcal{V} \subset \mathcal{K} \times \mathcal{K}$

Quintupel A := (K, V, I, O, H)

 \mathcal{K} : Knotenmenge

 \mathcal{V} : Kantenmenge $\mathcal{V} \subset \mathcal{K} \times \mathcal{K}$

 \mathcal{I} : Eingabeknoten $\mathcal{I} \subset \mathcal{K}$

Quintupel A := (K, V, I, O, H)

 \mathcal{K} : Knotenmenge

 \mathcal{V} : Kantenmenge $\mathcal{V} \subset \mathcal{K} \times \mathcal{K}$

 \mathcal{I} : Eingabeknoten $\mathcal{I} \subset \mathcal{K}$

 \mathcal{O} : Ausgabeknoten $\mathcal{O} \subset \mathcal{K}$

Quintupel $\mathcal{A} := (\mathcal{K}, \mathcal{V}, \mathcal{I}, \mathcal{O}, \mathcal{H})$

 \mathcal{K} : Knotenmenge

 \mathcal{V} : Kantenmenge $\mathcal{V} \subset \mathcal{K} \times \mathcal{K}$

 \mathcal{I} : Eingabeknoten $\mathcal{I} \subset \mathcal{K}$

 \mathcal{O} : Ausgabeknoten $\mathcal{O} \subset \mathcal{K}$

 \mathcal{H} : Verdeckte Knoten: $\mathcal{H} := \mathcal{K} \setminus (\mathcal{I} \cup \mathcal{O})$

• What is the general purpose of the propagation function f_p ?

- What is the general purpose of the propagation function f_p ?
 - 1. Weighted summation of incoming signals to one scalar
 - 2. Weighted fusion of incoming signals to one scalar
 - 3. Weighted product of incoming signals to a vector

- What is the general purpose of the propagation function f_p ?
 - 1. Weighted summation of incoming signals to one scalar
 - 2. Weighted fusion of incoming signals to one scalar
 - 3. Weighted product of incoming signals to a vector

- What is the general purpose of the propagation function f_p ?
 - 1. Weighted summation of incoming signals to one scalar
 - 2. Weighted fusion of incoming signals to one scalar
 - 3. Weighted product of incoming signals to a vector

- What is the general purpose of the propagation function f_p ?
 - 1. Weighted summation of incoming signals to one scalar
 - 2. Weighted fusion of incoming signals to one scalar
 - 3. Weighted product of incoming signals to a vector

- What is the general purpose of the propagation function f_p ?
 - 1. Weighted summation of incoming signals to one scalar
 - 2. Weighted fusion of incoming signals to one scalar
 - 3. Weighted product of incoming signals to a vector

- What is the general purpose of the propagation function f_p ?
 - 1. Weighted summation of incoming signals to one scalar
 - 2. Weighted fusion of incoming signals to one scalar
 - 3. Weighted product of incoming signals to a vector

• What is the linear associator?

- What is the linear associator?
 - 1. Weighted summation of input signals to one scalar
 - 2. Weighted product of input signals to one scalar
 - 3. A possible propagation function f_p

- What is the linear associator?
 - 1. Weighted summation of input signals to one scalar
 - 2. Weighted product of input signals to one scalar
 - 3. A possible propagation function f_p

- What is the linear associator?
 - 1. Weighted summation of input signals to one scalar
 - 2. Weighted product of input signals to one scalar
 - 3. A possible propagation function f_p

```
A: 2, 3

B: all

C: 1, 3

D: 1
```


- What is the linear associator?
 - 1. Weighted summation of input signals to one scalar
 - 2. Weighted product of input signals to one scalar
 - 3. A possible propagation function f_p

A: 2, 3

B: all

C: 1, 3

D: 1

Beispiele für Propagierungsfunktionen:

- $u_j := \sum_i w_{ij} x_i$ (linearer Assoziator)
- $u_i := \prod_i w_{ij} x_i$ (nicht-linearer Assoziator)
- $u_j := \max_i \{w_{ij}x_i\}$ (Maximum gewichtete Eingaben)
- $\bullet \ u_j := \sum_i s_i, \ \mathrm{mit} \ s_i := \left\{ \begin{array}{l} +1 \ : \ \mathrm{falls} \ w_{ij} x_i > 0 \\ -1 \ : \ \mathrm{sonst} \end{array} \right.$

- What is the linear associator?
 - 1. Weighted summation of input signals to one scalar
 - 2. Weighted product of input signals to one scalar
 - 3. A possible propagation function f_p

A: 2, 3

B: all

C: 1, 3

D: 1

Beispiele für Propagierungsfunktionen:

- $u_j := \sum_i w_{ij} x_i$ (linearer Assoziator)
- $u_j := \prod_i w_{ij} x_i$ (nicht-linearer Assoziator)
- $u_j := \max_i \{w_{ij}x_i\}$ (Maximum gewichtete Eingaben)

$$\bullet \ u_j := \sum_i s_i, \ \mathrm{mit} \ s_i := \left\{ \begin{array}{l} +1 \ : \ \mathrm{falls} \ w_{ij} x_i > 0 \\ -1 \ : \ \mathrm{sonst} \end{array} \right.$$

$$h_1 = \sum_{i=1}^{3} w_{i1} x_i$$

$$h_1 = \sum_{i=1}^{3} w_{i1} x_i$$

$$h_2 = \sum_{i=1}^3 w_{i2} x_i$$

$$h_1 = \sum_{i=1}^{3} w_{i1} x_i$$

$$h_2 = \sum_{i=1}^3 w_{i2} x_i$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$h_1 = \sum_{i=1}^{3} w_{i1} x_i$$

$$h_2 = \sum_{i=1}^3 w_{i2} x_i$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad W = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{31} & w_{32} \end{bmatrix}$$

$$h_1 = \sum_{i=1}^{3} w_{i1} x_i$$

$$h_2 = \sum_{i=1}^3 w_{i2} x_i$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad W = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{31} & w_{32} \end{bmatrix}$$

$$\begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = \begin{bmatrix} w_{11} & w_{21} & w_{31} \\ w_{12} & w_{22} & w_{32} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = W^T \cdot x$$

• Which of the following functions can be used as an activation function f_a ?

- Which of the following functions can be used as an activation function f_a ?
 - 1. Identity function
 - 2. Ramp function
 - 3. Step function
 - 4. Signum function
 - 5. Sigmoid function

- Which of the following functions can be used as an activation function f_a ?
 - 1. Identity function
 - 2. Ramp function
 - 3. Step function
 - 4. Signum function
 - 5. Sigmoid function

- Which of the following functions can be used as an activation function f_a ?
 - 1. Identity function
 - 2. Ramp function
 - 3. Step function
 - 4. Signum function
 - 5. Sigmoid function

Scheme of Artificial Neuron

 $f_p|f_a$ wird oft weggelassen, wenn aus dem Zusammenhang klar.

Scheme of Artificial Neuron

 $f_p|f_a$ wird oft weggelassen, wenn aus dem Zusammenhang klar.

Propagation function (linear associator):

$$f_p(x_1, x_2, ..., x_n) := \sum_{i=1}^n w_i x_i$$

Propagation function (linear associator):

$$f_p(x_1, x_2, ..., x_n) := \sum_{i=1}^n w_i x_i$$

Activation function (step function):

$$f_a(\hat{x}, \Theta) := \begin{cases} 1, & \text{if } \hat{x} > \Theta \\ 0, & \text{else} \end{cases}$$

Propagation function (linear associator):

$$f_p(x_1, x_2, ..., x_n) := \sum_{i=1}^n w_i x_i$$

Activation function (step function):

$$f_a(\hat{x}, \Theta) := \begin{cases} 1, & \text{if } \hat{x} > \Theta \\ 0, & \text{else} \end{cases}$$

• Output of a neuron:

$$f_a(f_p(x_1, x_2, ..., x_n), \Theta) := \begin{cases} 1, & \text{if } f_p(x_1, x_2, ..., x_n) > \Theta \\ 0, & \text{else} \end{cases}$$

Propagation function (linear associator):

$$f_p(x_1, x_2, ..., x_n) := \sum_{i=1}^n w_i x_i$$

Activation function (step function):

$$f_a(\hat{x}, \Theta) := \begin{cases} 1, & \text{if } \hat{x} > \Theta \\ 0, & \text{else} \end{cases}$$

Output of a neuron:

$$f_a(f_p(x_1, x_2, ..., x_n), \Theta) := \begin{cases} 1 & \text{if } f_p(x_1, x_2, ..., x_n) > \Theta \\ 0, & \text{else} \end{cases}$$

$$f_p(x_1, x_2, ..., x_n) > \Theta$$

$$x_0 := 1, w_0 := -\Theta$$

• (New) Propagation function (linear associator):

$$f_p(x_1, x_2, ..., x_n) := \sum_{i=1}^n w_i x_i$$
 $f_p(x_0, x_1, ..., x_n) := \sum_{i=0}^n w_i x_i$

• (New) Propagation function (linear associator):

$$f_p(x_1, x_2, ..., x_n) := \sum_{i=1}^n w_i x_i$$
 $f_p(x_0, x_1, ..., x_n) := \sum_{i=0}^n w_i x_i$

• (New) Propagation function (linear associator):

$$f_p(x_1, x_2, ..., x_n) := \sum_{i=1}^n w_i x_i$$
 $f_p(x_0, x_1, ..., x_n) := \sum_{i=0}^n w_i x_i$

• (Simplified) Activation function (step function):

$$f_a(\hat{x},\Theta) := \begin{cases} 1, & \text{if } \hat{x} > \Theta \\ 0, & \text{else} \end{cases}$$
 $f_a(\hat{x}) := \begin{cases} 1, & \text{if } \hat{x} > 0 \\ 0, & \text{else} \end{cases}$

• (New) Propagation function (linear associator):

$$f_p(x_1, x_2, ..., x_n) := \sum_{i=1}^n w_i x_i$$
 $f_p(x_0, x_1, ..., x_n) := \sum_{i=0}^n w_i x_i$

• (Simplified) Activation function (step function):

$$f_a(\hat{x}\Theta) := \begin{cases} 1, & \text{if } \hat{x} > \Theta \\ 0, & \text{else} \end{cases}$$

$$f_a(\hat{x}) := \begin{cases} 1, & \text{if } \hat{x} > 0 \\ 0, & \text{else} \end{cases}$$

• (New) Propagation function (linear associator):

$$f_p(x_1, x_2, ..., x_n) := \sum_{i=1}^n w_i x_i$$
 $f_p(x_0, x_1, ..., x_n) := \sum_{i=0}^n w_i x_i$

• (Simplified) Activation function (step function):

$$\mathbf{f}_a(\hat{x},\Theta) := \begin{cases} 1, & \text{if } \hat{x} > \Theta \\ 0, & \text{else} \end{cases}$$

$$\mathbf{f}_a(\hat{x}) := \begin{cases} 1, & \text{if } \hat{x} > 0 \\ 0, & \text{else} \end{cases}$$

Output of a neuron:

$$\mathbf{f}_a(f_p(x_1,x_2,...,x_n),\Theta) := \begin{cases} 1, \text{ if } f_p(x_1,x_2,...,x_n) > \Theta \\ 0, \text{ else} \end{cases} \quad \mathbf{f}_a(f_p(x_0,x_1,...,x_n)) := \begin{cases} 1, \text{ if } f_p(x_0,x_1,x_2,...,x_n) > 0 \\ 0, \text{ else} \end{cases}$$

• (New) Propagation function (linear associator):

$$f_p(x_1, x_2, ..., x_n) := \sum_{i=1}^n w_i x_i$$
 $f_p(x_0, x_1, ..., x_n) := \sum_{i=0}^n w_i x_i$

• (Simplified) Activation function (step function):

$$\mathbf{f}_a(\hat{x},\Theta) := \begin{cases} 1, & \text{if } \hat{x} > \Theta \\ 0, & \text{else} \end{cases} \qquad \qquad \mathbf{f}_a(\hat{x}) := \begin{cases} 1, & \text{if } \hat{x} > 0 \\ 0, & \text{else} \end{cases}$$

Output of a neuron:

$$\mathbf{f}_a(f_p(x_1, x_2, ..., x_n) \Theta) := \begin{cases} 1, & \text{if } f_p(x_1, x_2, ..., x_n) \Theta \\ 0, & \text{else} \end{cases} \quad \mathbf{f}_a(f_p(x_0, x_1, ..., x_n)) := \begin{cases} 1, & \text{if } f_p(x_0, x_1, ..., x_n) \Theta \\ 0, & \text{else} \end{cases}$$

Scheme of Artificial Neuron

 $f_p|f_a$ wird oft weggelassen, wenn aus dem Zusammenhang klar.

Scheme of Artificial Neuron

 $f_p|f_a$ wird oft weggelassen, wenn aus dem Zusammenhang klar.

Calculation of propagated value

Calculation of propagated value

$$h_1 = \sum_{i=0}^{3} w_{i1} x_i$$

$$h_2 = \sum_{i=0}^3 w_{i2} x_i$$

Calculation of propagated value

$$h_1 = \sum_{i=0}^{3} w_{i1} x_i$$

$$h_2 = \sum_{i=0}^3 w_{i2} x_i$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad W = \begin{bmatrix} w_{01} & w_{02} \\ w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{31} & w_{32} \end{bmatrix}$$

$$\begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = W^T \cdot x$$

• Which of the following terms describe a parts of a biological neuron?

- Which of the following terms describe a parts of a biological neuron?
 - 1. Perikaryon
 - 2. Dentrites
 - 3. Axon
 - 4. Axon hillhock
 - 5. Glia
 - 6. Soma

- Which of the following terms describe a parts of a biological neuron?
 - 1. Perikaryon
 - 2. Dentrites
 - 3. Axon
 - 4. Axon hillhock
 - 5. Glia
 - 6. Soma

- Which of the following terms describe a parts of a biological neuron?
 - 1. Perikaryon
 - 2. Dentrites
 - 3. Axon
 - 4. Axon hillhock
 - 5. Glia
 - 6. Soma

Content

- Revision
- Biological Motivation for ANNs
- McCulloch-Pitts Neuron
- Tasks

Multiple signals are received at dendrites

- Multiple signals are received at dendrites
- Depending on synapse there are
 - Excitatory and
 - Inhibiting signals

- Multiple signals are received at dendrites
- Depending on synapse there are
 - Excitatory and
 - Inhibiting signals
- Incoming signals are processed in axon hillhock
 - Summation of postsynaptic potentials

- Multiple signals are received at dendrites
- Depending on synapse there are
 - Excitatory and
 - Inhibiting signals
- Incoming signals are processed in axon hillhock
 - Summation of postsynaptic potentials
- Resulting signal is transferred along axon to terminals

Content

- Revision
- Biological Motivation for ANNs
- McCulloch-Pitts Neuron
- Tasks

Very simple model of neuron by McCulloch and Pitts

- Very simple model of neuron by McCulloch and Pitts
- Input:
 - N-dimensional binary vector $(x_1,x_2,\ldots x_n)\in\{0,1\}^n$

- Very simple model of neuron by McCulloch and Pitts
- Input:
 - N-dimensional binary vector $(x_1,x_2,\ldots x_n)\in\{0,1\}^n$

- Very simple model of neuron by McCulloch and Pitts
- Input:
 - N-dimensional binary vector $(x_1, x_2, \dots x_n) \in \{0, 1\}^n$
 - Each component represents incoming signal

- Very simple model of neuron by McCulloch and Pitts
- Input:
 - N-dimensional binary vector $(x_1, x_2, \dots x_n) \in \{0, 1\}^n$
 - Each component represents incoming signal
 - Each signal can be either:
 - Excitatory or
 - Inhibiting

- Very simple model of neuron by McCulloch and Pitts
- Input:
 - N-dimensional binary vector $(x_1, x_2, \dots x_n) \in \{0, 1\}^n$
 - Each component represents incoming signal
 - Each signal can be either:
 - Excitatory or
 - Inhibiting
- Output (binary):

- Very simple model of neuron by McCulloch and Pitts
- Input:
 - N-dimensional binary vector $(x_1, x_2, \dots x_n) \in \{0, 1\}^n$
 - Each component represents incoming signal
 - Each signal can be either:
 - Excitatory or
 - Inhibiting
- Output (binary):
 - 1. Sum over all excitatory signals

- Very simple model of neuron by McCulloch and Pitts
- Input:
 - N-dimensional binary vector $(x_1,x_2,\ldots x_n)\in\{0,1\}^n$
 - Each component represents incoming signal
 - Each signal can be either:
 - Excitatory or
 - Inhibiting
- Output (binary):
 - 1. Sum over all excitatory signals
 - 2. If sum is greater than (or equal to) a threshold $\Theta \in \mathbb{R}$

- Very simple model of neuron by McCulloch and Pitts
- Input:
 - N-dimensional binary vector $(x_1, x_2, \dots x_n) \in \{0, 1\}^n$
 - Each component represents incoming signal
 - Each signal can be either:
 - Excitatory or
 - Inhibiting
- Output (binary):
 - 1. Sum over all excitatory signals
 - 2. If sum is greater than (or equal to) a threshold $\Theta \in \mathbb{R}$ AND if **all** inhibiting signals are zero, then return 1, elso return 0

Content

- Revision
- Biological Motivation for ANNs
- McCulloch-Pitts Neuron
- Tasks

• Given a binary input vector, assign a binary output, i.e.: $f:\{0,1\}^N \to \{0,1\}$

Given a binary input vector, assign a binary output, i.e.:

$$f: \{0,1\}^N \to \{0,1\}$$

Example: AND function:

$$f_{AND}: \{0,1\}^2 \rightarrow \{0,1\}$$

with:

$$f_{AND}(0,0) \coloneqq 0$$

 $f_{AND}(0,1) \coloneqq 0$
 $f_{AND}(1,0) \coloneqq 0$
 $f_{AND}(1,1) \coloneqq 1$

Representation of binary function as truth table:

x_1	x_2	f_{AND}
0	0	0
0	1	0
1	0	0
1	1	1

Task: Construct a McCulloch Pitts Neuron, that models AND

• Task: Construct a McCulloch Pitts Neuron, that models AND

- Given a binary input vector, assign a binary output, i.e.: $f: \{0,1\}^N \to \{0,1\}$
- Example: OR function:

$$f_{OR}: \{0,1\}^2 \rightarrow \{0,1\}$$

with:

$$f_{OR}(0,0) \coloneqq 0$$

 $f_{OR}(0,1) \coloneqq 1$
 $f_{OR}(1,0) \coloneqq 1$
 $f_{OR}(1,1) \coloneqq 1$

Representation of binary function as truth table:

x_1	x_2	f_{OR}
0	0	0
0	1	1
1	0	1
1	1	1

• Task: Construct a McCulloch Pitts Neuron, that models OR

• Task: Construct a McCulloch Pitts Neuron, that models OR

Notation:

$$f(x_1, x_2, x_3) \coloneqq x_1 \neg x_2 x_3$$

means:

"
$$x_1$$
 and (not x_2) and x_3 "

x_1	x_2	x_3	$x_1 \neg x_2 x_3$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

x_1	x_2	x_3	$x_1 \neg x_2 x_3$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

• Task: Construct a McCulloch Pitts Neuron, that models $f(x_1, x_2, x_3) \coloneqq x_1 \neg x_2 x_3$

• Task: Construct a McCulloch Pitts Neuron, that models $f(x_1, x_2, x_3) \coloneqq x_1 \neg x_2 x_3$

Notation:

$$f(x_1, x_2, x_3) \coloneqq x_1 \neg x_2 x_3 \lor x_2$$

means:

$$_{''}[x_1$$
 and (not x_2) and x_3] or x_2 "

x_1	x_2	x_3	$x_1 \neg x_2 x_3 \lor x_2$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

x_1	x_2	x_3	$x_1 \neg x_2 x_3 \lor x_2$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

x_1	x_2	x_3	$x_1 \neg x_2 x_3 \lor x_2$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	1
1	1	0	
1	1	1	

x_1	x_2	x_3	$x_1 \neg x_2 x_3 \lor x_2$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	1
1	1	0	
1	1	1	

x_1	x_2	x_3	$x_1 \neg x_2 x_3 \lor x_2$
0	0	0	
0	0	1	
0	1	0	1
0	1	1	1
1	0	0	
1	0	1	1
1	1	0	1
1	1	1	1

x_1	x_2	x_3	$x_1 \neg x_2 x_3 \lor x_2$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

• Task: Construct a McCulloch Pitts Net, that models $f(x_1,x_2,x_3) \coloneqq x_1 \neg x_2 x_3 \lor x_2$

• Task: Construct a McCulloch Pitts Net, that models $f(x_1,x_2,x_3)\coloneqq x_1\neg x_2x_3 \lor x_2$

