

Arms Services Technical Information Agency

ARLINGTON HALL STATION ARLINGTON 12 VIRGINIA

FOR

MENTION CARD

overnment parcet no responsibility, 10 DAY BRAVINGS, STEM Person or otheres

neria" (2) of the drawings, specifications or other data 1994 O FOR ANT. 1994 CEE STREET THAN IN CONNECTION WITH A DEFINITELY RELATED detect overation, the U.S. Covernment thereby incurs ANT ORLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY DEVE PURMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE ATTORS, ON OTHER DATA IS NOT TO BE REGARDED BY they charton for other finder as in any biadner liverising the holder or any other in, or conveying any rights or permission to manufacture THE ENTENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Best Available Copy

IELL ACRONAUTICAL LABORATORY, INC.

ON MECHANICAL AND CONSION PROPERTIES OF STRUCTURAL AUMINUM ALLAY

BUREAU OF TATES DEPAREMENT OF THE NAVY Contract No. NObs-72258 16 February 1959

0

Best Available Copy

CORNELL AERONAUTICAL LABORATORY, INC. OF CORNELL UNIVERSITY

BUFFALO, N. Y.

REFORT NO. KC-1164-M-11

FINAL FEPORT

KE ECTS OF CONCENTRATED HYDROGEN PEROXIDE ON MECHANICAL AND CORROSION PROPERTIES OF STRUCTURAL ALUMINUM ALLOYS

16 February 1959

BUREAU OF SHIPS DEPARTMENT OF THE NAVY Contract No. NObs-72258 Index Number NS-013-118

Approved by Franklin J. Gilling Principal Metallurgist

Johr. L. Beal, Head Materials Department

POR OF THIS WARREN IN ANY FORM, BY OTHER THAN THE COMMISSANT SCREENMENTAL ACTIVITY, 15 NOT ANTHONISSO EXCLY.
ST. SPECIFIC APPROVAL OF THE COSMIZANT SCREENSWATAL ACTIVITY.

Best Available Copy

Mine wrought and three cast aluminum alloys were exposed to commercial 90% H₂O₂ as manufactured and 90% H₂O₂ with 3 grams per liter chloride ton and 4 grams per liter nitrate ion added. The majority of the exposures were of 6 months duration. Some of the specimens had to be removed promaturely due to severe corrosion or rapid deterioration of the peroxide. Evaluation tests included mechanical properties, stress corrosion, metallographic examination and chemical analyses of the peroxide in order to determine its deterioration. The presence of chloride ion was found to accelerate corrosion greatly in all of the alloys. Wrought alloys 525½ and 3003 years found to be the most compatible and B-21½ was the best cast alloy.

TABLE OF CONTENTS

			Page
ntro	duction		1
l'est	rogram	•	2
est l	desults and Discussion		4
Ger	neral Appearance of Exposed Specimens	ig Hu je	L L
Te	ncilo Tests	•	5
In	tergranular Corrosion	•	5
St	resa Corresion		6
Sle	oshing Tests		
Dec	composition of Peroxide	•	6
Conclu	isions		8
Recomm	nendations	•	9
	list of Tables		
Table			Page
1.	Mechanical Properties of Aluminum Sheet Alloys		
	Before and After Exposure to 90% H2O2 With and Without Additives	•	1.0
e 4	Mechanical Properties of Welded Aluminum Sheet		
	Alloys Before and After Exposure to 90% H2O2 With and Without Additives	•	1.1
3.	Mechanical Properties of Cust Aluminum Alloys in	•	
	the As-Cast and Wolded Conditions Sefore and After		12

LIST OF ILLUSTRATIONS

Figu	re .	Page
1.	Method of Preparation for Specimens of 1260 Alloy Cladding	13
2.	Specimens of Alloys 1100, 1260 and 3003 After 24 Hours Exposure to 90% H202 Containing 220 ppm Added Chlorides	14
3.	Specimens of Alloys 5652, 1060 and 5254 After 24 Hours Exposure to 90% H202 Containing 20 ppm Added Chlorides	15
4.	Specimens of Alloys 6363. 6061 and 5086 After 24 Hours Exposure to 90% H202 Containing 20 ppm Added Chlorides	16
5.	Specimens of Alloy 1100 After 7 Days Exposure to 90% H202 Containing Various Concentrations of Chloride Ion	17
6.	Specimens of Alloy 1260 After 7 Days Exposure to 90% H ₂ C ₂ Containing Various Concentrations of Chloride Ion	Ŧĝ
7.	Stress Corrosion Specimens and Glass Jigs	19
8.	Specimens of Aluminum Alloy 1100	20
9•	Specimens of Aluminum Alloy 1260	21
10.	Specimens of Aluminum Alley 3003	22
11.	Specimens of Aluminum Alloy 5652	23
12.	Specimens of Aluminum Alloy 1060	21,
13.	Specimens of Aluminum Alloy 5254	25
14.	Execimens of Aluminum Alloy 6363	26
15.	Specimens of Aluminum Alloy 6061	27
16.	Specimens of a sinum Alloy 5086	88
17:	Specimens of Casting follow 356	29
18.	Specimens of Casting Alley	30
19.	Specimens of Casting Alloy F-216	31
20.	Specimens Which Were Given a "Sonsitizing Treatment	32

LIST OF ILLUSTRATIONS (Contd.)

Figu	<u>re</u>	Page
21.	Welded Specimens Which Were Given a "Sensitizing" Treatment .	53
22,	Welded 1260 Cladding Removed From 5086 Backing	3 L
23.	Metallographic Sections Showing Type of Attack in the Vapor Phase and at Liquid-Vapor Interface. 25% - Kellers Etch	35
211.	Metallographic Sections Taken From Various Specimens Showing General and Localized Attack in Liquid Peroxide. 25X Kellers Etch	36
25.	Metallographic Specimens From Sensitized Alloys. 25% - Kellers Etch	37
26.	Preformed Stress Corrosion Specimens of Alloys 1100, 1260, 3003, 5652 and 1060 After 6-Month Exposure	38
27.	Preformed Stress Corrosion Specimens of Alloys 5254, 6363, 6061 and 5086 After 6-Month Exposure	39
28.	Tank Specimens of 1100 and 1260 Alloys After 6-Month Sloshing Test Half-Filled With 90% H202 - No Additives	1:0
29.	Tank Specimens of 3003 and 5652 Alloys After 6-Month Sloshing Tost Half-Filled With 90% H2O2 - No Additives	hl
30•	Tank Specimens of 1060 and 5254 Alloys After 6-Month Sloshing Test Half-Filled With 90% H ₂ O ₂ - No Additives	F5
31.	Tank Specimens of 6363 and 6061 Alloys After 6-Month Sloshing Test Half-Filled With 90% H202 - No Additives	43
32.	Tank Specimens of 5086 Alloy Clad With 1260 After 5-Month Sloshing Test Half-Filled With 90% H202 - No Additives. Discontinuity in 1260 Seal Bead was Purposely Left in Lower	
	Tank	址
33.	Change in Perexide Concentration With Time for Alloy 1100	45
314.	Change in Perexide Concentration With Time for Alloy 1260	h 6
35.	Change in Peroxide Concentration With Time for Alley 3003	1,7
36.	Change in Peroxide Concentration With Time for Alloy 5652	1/8

LIST OF ILLUSTRATIONS (Contd.)

Figur	$rac{a}{a}$	Page
37.	Change in Peroxide Concentration With Time for Alloy 1060	119
38.	Change in Perexide Concentration With Time for Alloy 525h	50
39.	Change in Peroxide Concentration With Time for Alloy 6363	51
40.	Change in Peroxide Concentration With Time for Alloy 6061	52
41.	Change in Peroxide Concentration with Time for Alloy 5086	53
1,2.	Change in Peroxide Concentration With Time for Cast Alloy 356	54
43.	Change in Peroxide Concentration With Time for Cast Alloy 135	55
1:11.	Change in Peroxide Concentration With Time for Cast Alley B-21h	56
115.	Change in Peroxide Concentration With Time for Alleys Given Sensitizing Heat Treatment	5 7
46.	Change in H ₂ O ₂ Concentration for 1260 Cladding Removed From 5086 Base Metal Welded With 1260 Seal Bead (See Fig. 1)	57
1:7.	Change in H ₂ O ₂ Concentration in 1260 Clad 5086 Sloshing Tanks Welded With 1260 Seal Bead and 5356 Filler Passes (See Fig. 32)	57

INTRODUCTION

The objective of this investigation was to determine the effects of concentrated hydrogen peroxide on the mechanical and corrosion properties of selected structural aluminum alloys. Although procedures and materials for storing and handling hydrogen peroxide of this concentration were outlined in NAVAER 06-25-501, "Handbook for Field Handling of Concentrated Hydrogen Peroxiden, and other industrial manuals, it was felt that these did not adequately cover the situations likely to be encountered in shipboard service. The anticipated size of the storage to ke desired was much larger than those constructed for ordinary usage and they would have to conform to the configuration of the ship in order to make maximum use of available space. These requirements called for the use of higher strength allows than the commercially pure grades of aluminum normally used for containers and transportation equipment. The resibility of contamination with small amounts of chloride is always a possibility aboard ship and it was desired to study the effect of chloride critamination on the correction rate and determine allowable concentrations.

The program was undertaken with the aid of the Special Projects
Franch of the Food Machinery and Chemical Corporation who are currently
engaged in research with high concentration peroxide. The preparation
of specimens and metallurgical evaluation was done at Cornell Aeronautical
Laboratory, Inc. and the peroxide exposures and analyses were performed
by the above corporation under subcontract.

Mine wrought alloys and three cast alloys were selected for evaluation based upon previous industrial experience with peroxide storage tanks and recommendations of the aluminum producers. The properties of the alloys were evaluated in the "as-received" condition and also as weldments. Stressed specimens were included to determine the possibility of stress corrosion effects. The specimens were exposed for a maximum of 6 months to 90% commercial hydrogen peroxide with and without added chlorides. After exposure they were examined to determine the type and extent of corrosion. Tensile tests on corroded specimens showed the record of the deterioration of mechanical properties due to exposure. A record of the peroxide concentration was maintained throughout the tests to determine the stability of the solutions in contact with the various specimens.

The alloys which were evaluated were as follows:

Wro	ught	Cast
1100-円山	5254 - H34	356
1560-нтр	6363-15	43
3003-н14	6061 -76	B-214
5652-H34	5086-н34	<i>)</i>
1060-HIL		

The above alloys were tested in the "as-received" condition and also as weldments. The base-metal-welding-rod combinations used were as follows:

1000 with parent metal rod
1060 with parent metal rod
1260 with parent metal rod
3003 with parent metal rod
5086 with 5356
5652 with parent metal rod
5254 with parent metal rod
6363 with hold controlled rod
6061 with hold controlled rod
1260 cladding** with 1260 rod

*The controlled 4043 welding rod was alloyed using 99.99% pure aluminum and the finished rod contained 0.001% Cu and 0.024% Mn as impurities.

**The 1260 cladding was obtained by machining away the 50g6 core from a one-inch thick plate as shown in Figure 1.

The original program called for exposure to two solutions: 90% commercial grade hydrogen peroxide and the same solution with 20 ppm (parts per million) added chloride. Tests on the first group of welded

and unwelded sheet allow specimens exposed to the solution containing the 20 ppm chloride had to be discontinued after a 2h-hour exposure because of rapid attack on some of the specimens and decomposition of the solutions. These specimens are shown in Figures 2, 3, and h.

In order to arrive at a more realistic concentration of the chloride for a six-month exposure test, it was decided to try some immersion tests in 90% H₂O₂ solutions containing various amounts of chloride. Solutions were prepared with 0, 2, 4, 6, 8 and 10 mg of chloride ion per liter (multiplying by 1.39 converts these concentrations to ppm). Specimens of two of the alloys presently in use for peroxide storage, 1100 and 1260, were exposed in these solutions for 7 days. The results of these tests are shown in Figures 5 and 6.

Based upon these results and a conference with the technical sponsor, it was decided to use a test solution of 90% H₂O₂ containing 3 mg per liter chloride ion and 4 mg per liter nitrate ion. The nitrate addition was recommended by the peroxide manufacturer as a stabilizer to reduce decomposition of the peroxide due to minor contamination by the corrosion products.

The wrought alloys were procured as 0.065-inch thick sheet and the casting alloys were cast into plates 1/2 inch thick by 9 inches by 9 inches in an iron tilt mold. All alloys and weldments were exposed in both the unstressed and stressed conditions. The unstressed specimens were used for tensile tests subsequent to exposure to determine whether or not exposure to the corrosive environment resulted in a loss of tensile strength or ductility. A section of these specimens was also used for metallographic examination.

Stress corrosion tests were made by placing specimens in the peroxide solutions while under stress. The unwelded sheet specimens were bent to a 900 permanent bend over a smooth mandrel of a radius which was slightly greater than the recommended minimum bend radius for the particular alloy. The specimens were then sheared so that each leg was 3-1/2 inches long. After cleaning, the specimens were sprung into glass clamps having an internal span of 2-1/2 inches. The stressing was performed immediately before exposing the specimens to the peroxide solutions. Welded specimens were sprung into fixed deflection type glass jigs so that they were deformed an amount which would have produced a stress equal to 75% of the yield strength of the unwelded material if the material was uniformly deformed. The heat effect of the welding process caused the deformation to be non-uniform and the maximum stress probably was closer to the yield strength of the annealed material. The casting alloys were stressed by inserting them inside of 1-inch diameter heavy walled glass cylinders and tightening a take-up nut through an angle which was determined on calibration specimens using SR-4 strain gages. The stress corrosion jigs and specimens are shown in Figure 7.

Five of the alloys, 5652, 5254, 5086, 6363 and 6061, were given a sensitizing treatment by exposing them to 215°F for 30 days. Both unwellded and welded specimens were exposed to this treatment. The welded specimens were sensitized after welding. All sensitized specimens were exposed in the stressed condition using the fixed deflection type of jig.

In order to determine the effect of weld metal dilution on the corrosion characteristics of the 1260 cladding on a 5086 alloy backing, a 1-inch thick plate was welded as shown in Figure 1. The 1-inch thick material was chosen because this was the thickness which was recommended for the large tanks contemplated. The 5086 backing was machined off and the 0.060-inch thick welded cladding was exposed to the peroxide solutions.

Sloshing tests were conducted by fabricating rectangular containers, 2-1/2 inches by 2-1/2 inches by 9 inches long, from all of the sheet alloys except 5086. One end of each tank was welded with controlled 4043 rod and the remaining seams with parent metal. Two containers were made from the 5086 plate clad with 1260. These tanks were welded with a 1260 seal bead backed up with several passes of 5356 alloy. One of these containers was purposely made with a skip in the seal bead. The tanks were mounted on a rocking platform which rocked through an angle of 30° at a frequency of 25 cycles per minute. The tanks contained 200 cc of peroxide which was sufficient to fill them about half way.

The alloys were carefully segregated during the exposure to the peroxide solutions. Duplicate or triplicate specimens for a particular test were sometimes grouped in one container and individual containers were provided for others. During the course of the exposure the concentration of the peroxide was determined at intervals and the solution replaced whenever the concentration dropped below 85%.

TEST RESULTS AND DISCUSSION

General Appearance of Exposed Specimens

At the completion of the exposures to the peroxide solutions, representative specimens were photographed to record the extent of corrosion. These photographs are shown in Figures 8 through 22. A study of these photographs reveal several significant details. The presence of chloride in concentrations as low as 3 mg per liter (4.2 ppm) results in greatly accelerated corrosion in nearly all cases. The only exceptions being the two casting alloys B-214 and 435 in which the attack was only mildly accelerated. A number of the alloys which show little or no attack in the portion of the specimen which was immersed

0

in the 90% peroxide without additives were attacked by the vapor phase. The attack on welded specimens was in almost all cases localized in the heat affected zone some distance from the centerline of the weld outside the weld and fusion zones. This points to a heat sensitizing effect which is clearly evident in Figures 20 and 21. Figure 20 shows that the 6061 alloy was little affected by the liquid peroxide because the "sensitizing" treatment at 215°F was below the aging temperature. The heat affected zone of the welded specimen in Figure 21 was heated above the aging temperature which apparently sensitized this zone. The extensive vapor phase attack on the unwelled specimen is not present in the case of the welded specimen. Comparison of the stressed and unstressed specimens of the various alloys shows that macro stress is not necessary to initiate corrosion and does not accelerate it to any appreciable extent. The appearance of the 1260 cladding which was removed from the 5086 backing as shown in Figure 22 does not differ from the same alloy in sheet form as shown in Figure 9.

Tensile Tests

The ultimate tensile and yield strengths along with elongation were determined on both unexposed and exposed specimens. These tests were run in duplicate. The results may be found in Tables 1, 2, and 3. There is little evidence of deterioration of mechanical properties of any of the alloys due to exposure to the 90% H202 without additives. Even with the additives present the effects are minor with only small decreases in yield and ultimate strength occurring in some specimens and a general reduction in elongation due to notches caused by the corrosion pits. There are a number of cases where an increase in strength was found after the 6-month exposure to the peroxide without additives. This was probably due to a room temperature aging effect, the unexposed specimens being tested before the exposures were started. The temper of the 1260 cladding on the 5086 alloy was harder than the temper of the sheet material but as shown previously this did not alter the corrosion characteristics.

Intergranular Corrosion

The sections of the specimens and weldments that were examined for intergranular corrosion susceptibility in the peroxide solutions did not show any presence of this type of attack. A number of representative metallographic sections which were taken from various specimens are shown in Figures 23, 24, and 25. In general, the attack in both the liquid and vapor phases is a pitting type with penetration occurring by enlargement of sites at which the attack is initiated without preference for grain boundaries. The deep pitting at localized sites is evidence that the corrosion is assized by galvanic action rather than being just chemical solution of the metal. Two of the photomicrographs have different characteristics which are worthy of note, 24 (a) and 24 (f). Figure 24 (a) shows the general corrosion

which occurred between pits on a specimen of alloy 1060. A general decrease in thickness was apparent over wide areas of this specimen indicating a chemical solution of the metal between the deeper pits which had the same characteristics shown in the other photomicrographs. Figure 2h (f) shows the type of attack on the cast alloy 356. This appears to be an exidation of the eutectic constituent by the perexide rather than a dissolution of it.

Stress Corrosion

There were no stress corrosion failures in any of the specimens exposed for this type of test. The stress corrosion test fixtures used were previously discussed and are shown in Figure 7. All but the preformed stress corrosion test specimens are shown in Figures 8 through 22. The preformed stress corrosion specimens are shown in Figures 26 and 27. It appears in these latter photographs that cold work may accelerate the general corrosion of the 525h and 1060 alloys in the presence of chlorides. The corrosion appears to have initiated at the bend and along the machined edges of these specimens. Cold work is often responsible for setting up a galvanic corrosion cell in many solutions. It is to be emphasized that there were no stress corrosion failures in this test program.

Sloshing Tests

At the completion of the 6-month sloshing tests during which the 2-1/2-inch by 2-1/2 inch by 9-inch tanks were continuously rocked back and forth while half filled with 90% H₂O₂, the tanks were sawed lengthwise to expose the interior. Photographs were taken of all the tanks and these are shown in Figures 28 through 31. The interior surface of all tanks was bright and uncorroded with the exception of the one made of 6061 alloy which had a frosty discolored surface and some light corrosion of the parent metal welds as shown in Figure 31. There was also some discoloration of the 43S welds in the 6363 alloy tank. It was expected that some corrosion might occur in the 1260 clad 5086 tank where a discontinuity had been left in the 1260 seal bead exposing the 5086 alloy to attack in a localized area. Figure 32 shows that this did not occur. There was no chloride added to the 90% peroxide used in the sloshing tests. The presence of chloride would undoubtedly cause destructive attack as it did in the other specimens.

Decomposition of Peroxide

The suitability of a particular alloy for use with 90% hydrogen peroxide storage is dependent upon two important factors: (1) The corrosion rate of the alloy when in contact with the peroxide under storage conditions, and (2) the rate of decomposition of the peroxide when in contact with the alloy under these conditions. In order to obtain a good correlation between the corrosion data and peroxide

behavior, periodic checks were made on the peroxide concentration. Whenever it was found that the concentration had fallen below 85%, the solution was replaced with fresh 90% solution. The records of peroxide concentration are shown graphically in Figures 33 through 47. It is apparent that the chloride containing solutions were subject to decomposition at a much faster rate than those without additives. It is not meant to imply that the chloride causes the decomposition but the increased surface area due to corrosion and the resulting corrosion products are probably responsible. In general, those alloys which showed the best resistance to corrosion also caused the least decomposition of the peroxide.

If the alloys which were exposed to the peroxide without chloride additions are examined closely, one finds very little corrosion occurring except in the vapor phase. Grouping these specimens according to the amount of corrosion results in the following order of increasing attack:
(1) 3003 (2) 5086 (3) 1100 (4) 6061 (5) 5254 (6) 6363 (7) 5652 (8) 1260 (9) 1060. A regrouping of the alloys results if the specimens exposed to the solution with chloride-nitrate additions are considered: (1) 5254 (2) 5652 (3) 3003 (4) 5086 (5) 6363 (6) 1060 (7) 6061 (8) 1100 (9) 1260.

As pointed out previously, the decomposition of the peroxide is an important factor to consider. Examination of the curves in Figures 33 through 17 allows one to rate the alloys qualitatively according to rate of peroxide decomposition as follows:

In the solution without additives: (1) 6061 (2) 3003 (3) 1100 (h) 525h (5) 5652 (6) 5086 (7) 6363 (8) 1260 (9) 1060.

In the solution with additives: (1) 525h (2) 6061)3) 5086 (h) 6363 (5) 5652 (6) 3003 (7) 1100 (8) 1060 (9) 1260.

An estimate of the relative order of the alloys when both the presence of chloride and the decomposition of the peroxide are considered can be obtained by adding the integers which designate the relative orders of the alloys as given above. If this is done, the following order results: (1) 525h (2) 3003 (3) 6061 (h) 5086 (5) 5652 (6) 6363 (7) 1060 (8) 1100 (9) 1260. This is only an indication of the relative order and not too much weight can be given to the placement of the individual alloys. However, three distinct groupings can be made in order of decreasing compatibility of alloys which are roughly equivalent when all factors are considered:

(1) 5254, 3003

(2) 5086, 6061, 5652

(3) 6363, 1060, 1100, 1260

The cast alloys can be analysed in the seme manner with much less difficulty and the following relative order of preference for peroxide service established: (1) B-214 (2) 438 (3) 356.

It is important to keep in mind that only one heat of each alloy is represented in these tests and that variations in chemical composition and temper within commercial tolerances could cause changes in the test results.

CONCLUSIONS

Although a number of conclusions can be drawn from the data which were obtained during the course of this test program, they must be considered in the light of the fact that some of the results could be altered by minor changes in alloy composition and temper.

- 1. The most general conclusion that can be drawn is that even small concentrations of chloride, as low as 2 mg/liter, cause a marked increase in the corrosion rate.
- 2. The results of the tensile tests and metallographic examination reveal no evidence of intergranular attack.
- 3. The alloys tested are not susceptible to stress corrosion under the test conditions and solutions used.
- h. Localised cold work appears to accelerate mildly the corrosive attack in the 525h and 1060 alloys.
- 5. The corrosion rate for 5652, 5254, 5086 and 6363 is greatly accelerated by prolonged heating at 215°F. Alloy 6061 will be sensitized by heating to higher temperatures. The remaining alloys were not given a sensitising treatment.
- 6. Sloshing has little effect on accelerating the corrosion rate of 90% peroxide without additives.
- 7. Discontinuities in the 1260 seal bead on welded clad 5086 alloy do not result in increased localized corrosion in 90% peroxide without additives.
- 8. The chloride containing solutions decomposed at a faster rate than those without chloride. This is also a function of the greater amount of corrosion which occurred in the chloride containing solutions.
- 9. Those alloys which showed the best resistance to corresion also caused the least decomposition of the peroxide.

-

- 10. The wrought alloys tested can be grouped into three groups in order of decreasing compatibility as follows:

 - (1) 5254, 3003 (2) 5086, 6061, 5652 (3) 6363, 1060, 1100, 1260
- 11. The cast alloys rank in the following relative order:
 - (1) B-21h
 - (2) 138
 - (3) 356

RECOMMENDATIONS

It is recommended that additional work be carried out to define the effects of variations in chemical composition and rolling temper within commercial tolerances and that the nature of the corresive attack be studied to arrive at a better understanding which could possibly lead to the development of special alloys for peroxide service.

TABLE 1

MECHANICAL PROPERTIES OF ALUMINUM SHEET ALLOYS BEFORE AND AFTER ETPOSUME. TO 90% H202 WITH AND WITHOUT ADDITIVES

	Tree	property to	Hofo	7-7	Total River	ddi +1 m o	Per nead	TACK L	4. MA. €
		Ultimate	7.7		T thatte			77.7	
	Tield	Tensile	- 7-1	Tield	Tensile		Tield	Tensile	
Alloy	Strength PSI	Strength PSI	Elongation	Strength PSI	Strength PSI	Elongation \$	Strength PSI	Strength PSI	Elongation X
1100	16,670 041,21	18,140 18,100	6.5 6.	17,790	19,390	6.5 6.	15,920	18,090 18,090	200
1260	5,160 001,2	9,950 9,740	29.	7,260	8,200 8,350	26 . 22.	7, 160 6,960	12,150	33.5
3003	19,400 19,150	21,700 22,100	7.5	21,100	22,800 22,900	9 4	19,250 18,850	20,900	-in
5652 "	29,700 32,500	31,650 38,200	& &	32,000 29,900	37,600 38,300	***	30,100	33,200	W.M.
1060	12,160	13,340 13,810	11.5	12,110 12,980	16,710 15,450	10.5	11,120 001,130	11,990 11,720	w.
5254	31,700	37,000 1,0,700	ห พืช	29, 700 30, 100	11,000 11,100	ដុង	30,200	36,700 112,900	/V, Ø
6363	22,100 19,950	20, 690	~ ₩	20,100 19,850	24, 700 25,500	ໝ ໝູ້ໜູ້	18,850	22,100	W. 0.
6061	14,300	52, 700 47, 700	ii.	001,11	16,900	13°	12,200 11,100	13,300	M.CO.
5086	36,100 36,699	16,600	10.	35,500 36,800	48,100 118,600	11.	34,000	47,200	w or N.N.
126 0 (Cladding)	12,300	17,600 18,100	8.5 8.					· .	
WOOM IS	£ 11	4							

*90% H202+ 3 mg/l Cl + li mg/l 1003

TABLE 2

1

1

MECHANICAL PROPERTIES OF WEIDED ALUMINUM SHEET ALLOYS BEFORE AND AFTER EXPOSULE TO 90% H202 WITH AND WITHOUT ADDITIVES

		Orac	Unexposed to	to H202	Exposed	H202 No	Additives	Pasodag	d #202 + CI	* 102 + I
1	i A	Meld Strength		Flongation	Yield	1.	Elongation	Teld Strength		5longation
	Alley	PSI	PST	084	PSI	PSI) 64	781	, IZ	×
	1100	13,100	16,600	12.5 11.	11,960	15,100	ส่ส่	10,040 10,350	11,890	8. 114.
	1260	9,740 10,270	12,980 12,840	10.5	9,190	11,220	01	7,610	9,730 9,740	9.5
	3003	9,490 12,810	15,730	ii.	10,320	15,350	v v v r	12,000 11,210	15,300 18,100	5.1.1
্ প্ৰ	5652 °	27,600	32,500	7.	25, 700 27, 100	29, 700 32, 300	i, e	23,800 24,500	27,500 28,400	2.
ر ،	1060	7,700	11,520	8 ° ′ ° ′ ° ′ ° ′ ° ′ ° ′ ° ′ ° ′ ° ′ °	9,760	11,160	7.5	9,500	13,360	15.
	5254	26,500 26,700	32,100 33,245	9,00% 10,10%	25,500	33,600 28,800	**	23,659 26,100	30,500	7.5
	6363	23,1,00	27,500 28,000	7. 6.5	21,500	24,300 23,090	6.5	16,220 16,810	18,820	1
	1909	24,900 27,100	26, 700 28, 300	.	27,100	28, 600 28, 700	44	23, 100 23, 600	27, 700 25,900	22
	50 86	33,330 32,700	113,600 116,1100	φ. 6.	35,000	38,100 43,800	7.	29,200 28,300	1,0,300 1,1,300	24. 23.
		•	. !							

^{*90%} H202 + 3 mg / Cl + l mg / H03 ** Fractured 1s. Weld

1,3

TABLE 3

MECHANICAL PROPERTIES OF CAST ALIMINUM ALLOYS IN THE AS-CAST AND WELLED CONDITIONS BEFORE AND AFTER EXPOSITE TO 90% H202 WITH AND WITHOUT ADDITIVES

	Une	Unexposed to Hada	H202	Exposed Robo No Additives	Exposed Hoto No Additives	ddi tiwes	Smose	Emosed Hofts + Cl + Mrs*	******
£110y	Yield Strength PSI	Ultimate Tensile Strength PSI	Elongation	field Strength FSI	Ultimate Tensile Strength PSI	Elongation %	rield Strength FSI	Ultimate Tensile Strength PSI	Slongation &
356-F	12,110	28,500 29,900	2,5 4.	20 , 800 16, 240	28,500 25,900	8.	17,160	31,300	6. 5. L.S.
l <u>t</u> 3−F°	11,050	21,300 22,100	N, N,	12,860 10,010	22,100 19,810	्रं प	12,860 9,740	22,100	7.
B211;-F	13,190	27,100 25,700	พาก	18,110	25,700	11.	23, 700	25,200	9.
356 (Welded)	11,160	19,550 20,300	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	15,750	20,700 16,650	10. 6.	13,650	20, 790	\$ \\ \phi \h \phi \\ \phi \\ \phi \\ \phi \\ \phi \\ \phi \h \phi \\ \phi \h \phi \\ \phi \h \
43 (Welded)	10,340	19, 190	14.00 14.70	9,090	18,960 17,480	14. 9.5	9,740 10,790	19,350	ë ti
B214 (Welded)	10,150	19,000	3.0 3.5	15,590 16,890	18,500	**	15,980	23,900	1.5

*90% H202 + 3 mg / Cl + \lambda mg / M03

No of the last of

1

**

Test Plate (1260 Clad on 5086)

Tensile and Stress Corrosion Specimens Will be Made as Follows:

- 1) Penetration of first pass removed flush with surface!
- 2) Plate cut into 1-inch wide strips with weld at center.
- 3) Strips press straightened.
- 4) 15/16 inch metal removed from 5086 side.

Test specimens will represent 1260 face on one side and alloy dilution at 1/16 inch below surface.

Figure 1 Method of Preparation for Specimens of 1260 Alloy Cladding

1100 1260 3003

Figure 2 SPECIMENS OF ALLOYS 1100, 1260 AND 3003 AFTER 24 HCURS EXPOSURE TO 90% H 202 CONTAINING 20 ppm ADDED CHLORIDES

5652 1060 5254

Figure 3 SPECIMENS OF ALLOYS 5652, 1060 AND 5254 AFTER 24 HOURS EXPOSURE TO 90% $\rm H_2O_2$ CONTAINING 20 m ADDED CHLORIDES

6363 6061 5086

1 Page 4 SPECIMENS OF ALLOYS 6363, 6061 AND 5086 AFTER 24 HOURS EXPOSURE TO 901 H OF CONTAINING 20 ppm ADDED CHLORIDES

Figure 5 SPECIMENS OF ALLOY 1100 AFTER 7 DAYS EXPOSURE TO SOT H202 CONTAINING VARIOUS CONCENTRATIONS OF CHLOR DE 10N

Figure 6 SPECIMENS OF ALLOY 128G AFTER 7 DAYS ENPOSURE TO 90% H202 CONTAINING VARIOUS CONCENTRATIONS OF CHLORIDE ION

Figure 7 STRESS CORROSION SPECIMENS AND GLASS JIGS: (A) SHEET SPECIMENS (B) CAST SPECIMENS (C) WELDED AND "SENSITIZED SPECIMENS"

13

Best Available Copy

50% H202+3 mg/2 CL AND 4mg/2 NO3

SPECIMENS ALUMINIM ALLOY 1260

Figure 9

6 MO. -- 90% H₂0₂- NO ADDITIVES --

6 K0

44 DAYS

7 DAYS

21

Figure 10 SPECIMENS ALLMINUM ALLOY 3003

Figure 11 SPECIMENS ALUMINUM ALLOY 5652 (STRESSED) 6 MD.

2.

SPECIMENS ALUMINUM ALLOY 5254

(STRESSED)

25

Figure 14 SPECIMENS ALUMINUM ALLOY 6363

Best Available Copy

2+

1

Figure 5 SPECIMENS ALUMINUM ALLOY 636

027

77 DAYS 6 MC - 90% H₂0₂ + 3 mg/R CL AND 4 mg/ SPECIMENS ALUMINUM ALLOY 5086 Figure 16

AS-CAST UNSTRESSED

STRESSED

UNSTRESSED

WELDED

STRESSED

AS-CAST

UNSTRESSED

STRESSED

WELDED

STRESSED UNSTRESSED 90% H_2O_2 - +3 mg/L CL AND 4 mg/L NO₃ Figure 17 SPECIMENS OF CASTING ALLOY 356 (ALL EXPOSURES 6 MONTHS EXCEPT AS NOTED)

UNSTRESSED

STRESSED

UNSTRESSED

STRESSED

90% H202- NO ADDITIVES

AS-CAST

UNSTRESSED

STRESSED UNSTRESSED 90% $\rm H_2O_2 + 3~mg/L~CL~AND~4~mg/L~NO_3$

Figure 18 SPECIMENS OF CASTING ALLOY 43S (ALL EXPOSED FOR 6 MONTHS)

WELDED

STRESSED

UNSTRESSED

AS-CAST

STRESSED UNSTRESSED 90% H202- NO ADDITIVES

WELDED

STRESSED

UNSTRESSED

AS-CAST

STRESSED

UNSTRESSED

STRESSED

90" H202+3 mg/L CL AND 4 mg/L NO3 Figure 19 SPECIMENS OF CASTING ALLOY B-214 (ALL EXPOSED FOR 6 MONTHS)

SPECIMENS WHICH WERE GIVEN A "SENSITIZING" TREATMENT Figure 20

w.,

WELDED SPECIMENS WHICH WERE GIVEN A "SENSITIZING" TREATHEN Figure 21

90% $\rm H_2O_2 + 3~mg/R$ CL and 4 mg/R NO3 (ALL SPECIMENS STRESSED DURING EXPOSURE)

90% H_2O_2 90% $H_2O_2 + 3mg/L$ CL AND $H_2O_2 + 3mg/L$ NO3

BASE METAL SIDE OUTER SIDE BASE METAL SIDE OUTER SIDE
6 MO. 6 MO. 9 DAYS 9 DAYS

Figure 22 WELDED 1260 CLADDING REMOVED FROM 5086 BACKING

Figure 23 METALLOGRAPHIC SECTIONS SHOWING TYPE OF ATTACK IN THE VAPOR PHASE AND AT LIQUID-VAPOR INTERFACE. 25x - KELLERS ETCH

(d) ALLOY 3003 (WELDED) HEAT AFFECTED ZONE H202 + ADDITIVES

Figure 24 METALLOGRAPHIC SECTIONS TAKEN FROM VARIOUS SPECIMENS SHOWING GENERAL AND LOCALIZED ATTACK IN LIQUID PEROXIDE. 25X - KELLERS ETCH

Figure 25 METALLOGRAPHIC SPECIMENS FROM SENSITIZED ALLOYS. 25X - KELLERS ETCH

WELDED 6061 (SENSITI.
WELD ZONE - 3 MONTH:
H₂O₂+ ADDITIVES

(e) ALLOY 6061 (SENSITIZED) VAPOR PHASE ATTACK

6 MONTHS H₂0₂+ ADDITIVES

90% H₂0₂ NO ADDITIVES

 $90\% H_2 O_2 +$ 3 mg/CL AND 4 mg/L NO₃

Figure 26 PREFORMED STRESS CORROSION SPECIMENS OF ALLOYS 1100, 1260, 3003, 5652 AND 1060 AFTER 6 MONTH EXPOSURE 38

Topper

90% H₂0₂ NO ADDITIVES 90% H_2O_2+ 3 mg/L CL AND 4 mg/L NO3

Figure 27 PREFORMED STRESS CORROSION SPECIMENS OF ALLOYS 5254, 6363, 6061 AND 5086 AFTER 6 MONTH EXPOSURE

TANK SPECIMENS OF 1100 AND 1260 ALLOYS AFTER 6 MONTH SLUSHING TEST HALF-FILLED WITH 90% $\rm H_2O_2-$ NO ADDITIVES Figure 28

TANK SPECIMENS OF 3003 AND 5652 ALLOYS AFTER 6 MONTH SLOSHING TEST HALF-FILLED WITH 90% H20,- NO ADDITIVES Figure 29

Ø

Figure 30 TANK SPECIMENS OF 1060 AND 5254 ALLOYS AFTER 6 MONTH SLOSHING TEST HALF-FILLED WITH 90% H₂0₂- NO ADDITIVES

Figure 31 TANK SPECIMENS OF 6363 AND 6061 ALLOYS AFTER 6 MONTH SLOSHIMG FEST HALF-FILLED WITH 90% H₂0₂- NO ADDITIVES.

Ü

Ħ

Figure 32 TANK SPECIMENS OF 5086 ALLOY CLAD WITH 1260 AFTER 6 MONTH SLOSHING TEST HALF-FILLED WITH 90% $\rm H_2O_2-$ NO ADDITIVES. DISCONTINUITY IN 1260 SEAL BEAD WAS PURPOSELY LEFT IN LOWER TANK.

ø

Figure 33 CHANGE IN PEROXIDE CONCENTRATION WITH TIME FOR ALLOY 1100

25

Figure 34 CHANGE IN PEROXIDE CONCENTRATION WITH TIME FOR ALLOY 1260

ار بدر هموسود بط

Figure 35 CHANGE IN PERDXIDE CONCENTRATION WITH TIME FOR ALLOY 3003

(5)

Ô

Figure 37 CHANGE IN PEROXIDE CONCENTRATION WITH TIME FOR ALLIN 1060

.. _ 0

3

42

Figure 36 CHANGE IN PEROXIDE CONCENTRATION WITH TIME FOR ALLOY 5254

Figure 39 CHANGE IN PEROXIDE CONCENTRATION WITH TIME FOR ALLOY 6363

6,3

9

9

25

.);;;

52

W.

1.7

53

Figure 42 CHANGE IN PENOXIDE CONCENTRATION WITH TIME FOR CAST ALLOY 356

Figure 43 CHANGE IN PERDXIDE CONCENTRATION WITH TIME FOR CAST ALLOY 435

 C_{0}

FISURE NE CHANGE IN PEROXIDE CONCENTRATION WITH TIME FOR CAST ALLOY BZIN

Best Available Copy

Best Available Copy