Rotation around an arbitrary axis

Euler's theorem: Any rotation or sequence of rotations around a point is equivalent to a single rotation arother with the https://powcoder.com

Add WeChat powcoder What does the matrix look like?

Rotation around an arbitrary axis through the origin

Axis: u

Point: P

Angle: β Assignment Project Exam Help

Approach (one of many): ://powcoder.com

1. Two rotations to align **u** with x-axis (arbitral den We Chat powcoder

- 2. Do x-roll by β
- 3. Undo the alignment

1. $R_z(-\phi)R_v(\theta)$

2. $R_x(\beta)$

Assignment Project Exam Help $R_{v}(-\theta)R_{z}(\phi)$

• . .y(∘). ._Z(

Altogether: https://powcoder.com

 $R_y(-\theta)R_z(\phi) R_x(\beta) R_z(\phi)R_y(\theta)$ e Chat powcoder

- 1. $R_z(-\phi)R_v(\theta)$
- 2. $R_x(\beta)$

Assignment Project Exam Help 3. $R_v(-\theta)R_z(\phi)$

Altogether:

https://powcoder.com

 $R_y(-\theta)R_z(\phi) R_x(\beta) R_z(\phi)R_z(\phi)R_z(\phi)$ Chat powcoder

Parameters:

$$cos(\theta) = u_x / \sqrt{u_x^2 + u_z^2}$$
$$sin(\theta) = u_z / \sqrt{u_x^2 + u_z^2}$$
$$sin(\phi) = u_y / |\mathbf{u}|$$
$$cos(\phi) = \sqrt{u_x^2 + u_z^2} / |\mathbf{u}|$$

1.
$$R_z(-\phi)R_y(\theta)$$

$$\cos(\theta) = u_x / \sqrt{u_x^2 + u_z^2}$$

2. $R_x(\beta)$

 $sin(\theta) = u_z / \sqrt{u_x^2 + u_z^2}$ Assignment, Project Exam Help

3. $R_y(-\theta)R_z(\phi)$

https://powcoder.com

Altogether:

Add WeChat powcoder

 $\mathsf{R}_{\mathsf{y}}(\textbf{-}\boldsymbol{\theta})\mathsf{R}_{\mathsf{z}}(\boldsymbol{\phi})\;\mathsf{R}_{\mathsf{x}}(\boldsymbol{\beta})\;\mathsf{R}_{\mathsf{z}}(\textbf{-}\boldsymbol{\phi})\mathsf{R}_{\mathsf{y}}(\boldsymbol{\theta})$

Exercise:

Derive the matrix for rotation around an axis that does not pass through the origin

Properties of affine transformations

- 1. Preservation of affine combinations of points.
- Preservation of lines and planes.
 Assignment Project Exam Help
 Preservation of parallelism of lines and planes.
- 4. Relative ratiostissi appropriate preserved.
- 5. Affine transforded a word to be a represented and the control of the control o elementary ones.

Affine Combinations of Points

Assignment Project Exam Help

$$W = a_1 P_1 + a_2 P_2$$
/powcoder.com
 $T(W) = T(a_1 P_1 + a_2 P_2) = a_1 T(P_1) + a_2 T(P_2)$
Add WeChat powcoder

Proof: from linearity of matrix multiplication

$$MW = M(a_1P_1 + a_2P_2) = a_1MP_1 + a_2MP_2$$

Preservations of Lines and Planes

Line:

$$L(t) = (1 - At) Pgnmt Pt Project Exam Help \\ T(L(t)) = (1 - t)T(P_1) + tT(P_2) \\ \text{https://powcoder.com}$$

Plane

Add WeChat powcoder

$$Pl(s,t) = (1 - s - t)P_1 + tP_2 + sP_3$$
$$T(Pl(s,t)) = (1 - s - t)T(P_1) + tT(P_2) + sT(P_3)$$

Proof: Direct consequence of previous property

Preservation of Parallelism for Lines and Planes

L(t) ssignment Project Exam Help

https://powcoder.com
$$ML = M(P + t\mathbf{u}) = MP + M(t\mathbf{u}) \rightarrow \text{Add WeChat powcoder}$$

$$ML = MP + t(M\mathbf{u})$$

 $M\mathbf{u}$ independent of P.

Similarly for planes.

Rigid body transformation

Combination of a translation and a rotation

- · Preserve lines, angles and distances Help
- 6 Degrees of fraces of f

General form of 3D affine transformations

Translation Rotation, Scaling, Shear gnment Project Exam Help

Transforming Points and Vectors

Points

$$\begin{pmatrix} Q_x \\ Q_y \\ Q_z \\ 1 \end{pmatrix} = \begin{pmatrix} \textbf{Assignment Project Exam Help} P_x \\ m_{21} & m_{22} & m_{23} & m_{24} \\ \textbf{https://pgwcoder.som} \\ 0 & 0 & 1 \\ \textbf{Add WeChat powcoder} \end{pmatrix} \begin{pmatrix} P_y \\ P_z \\ 1 \end{pmatrix}$$

Vectors

$$\begin{pmatrix} w_x \\ w_y \\ w_z \\ 0 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_x \\ v_y \\ v_z \\ 0 \end{pmatrix}$$

Advanced concepts

Generalized shears

Decomposition of 2D AT:Assignment Project Exam Help
2D: M = T Sh S R

3D: M = T S R Sh₁ https://powcoder.com

Rotations in 3D Add WeChat powcoder

Gimbal lock

Quaternions

Exponential maps

Transformations of Coordinate systems

Coordinate systems consist of vectors and Assignment Project Exam Help an origin (point), therefore we can transform them just://pewaroylenthen group of points and vectors

Add WeChat powcoder

Alternative way to think of transformations:

Transformations as a change of basis

Reminder: Coordinate systems

$$\mathbf{v} = (v_1, v_2, v_3) \to \mathbf{v} = v_1 \mathbf{a} + v_2 \mathbf{b} + v_3 \mathbf{c}$$

$$P = (p_1, p_2, p_3) \rightarrow P - \theta = p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c}$$

 $P = \theta + p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c}$

Reminder: The homogeneous representation of points and vectors

$$\mathbf{v} = v_1 \mathbf{a} + v_2 \mathbf{b} + v_3 \mathbf{c} \rightarrow \mathbf{v} = (\mathbf{a}, \mathbf{b}, \mathbf{c}, \theta) \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
Assignment Project Exam Help

https://powcoder.com
$$P = \theta + p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c} \rightarrow P \equiv (\mathbf{a}, \mathbf{b}, \mathbf{c}, \theta) \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ 1 \end{pmatrix}$$

Assume a coordinate system A and a point P

$$P_A = (a, b, c, 1)_A \rightarrow$$

$$P_A = a\mathbf{x} + b\mathbf{y} + c\mathbf{z} + O$$

$$Assignment Project Exam Help$$

$$https://powcoder.com$$

$$b$$

$$Add WeChat powcoder$$

We define coordinate system B:

$$\mathbf{u} = \mathbf{M}\mathbf{x}, \ \mathbf{v} = \mathbf{M}\mathbf{y}, \ \mathbf{w} = \mathbf{M}\mathbf{z}, \ G = \mathbf{M}O$$

Which means:

$$Q = a\mathbf{u} + b\mathbf{v} + c\mathbf{w} + G$$

Notice that by definition:

$$Q_B = (a, b, c, 1)_B$$

So interpretation one:

$$P_A = (a, b, c, 1)_A$$
 https://powcoder.com b
 $P_A = a\mathbf{x} + b\mathbf{y} + c\mathbf{z} + O$
Transform with Mdd WeChat powcoder

$$Q_A = \mathbf{M}P_A \to Q_A = (d, e, f, 1)_A$$

Assignment Project Exam Help $P_A = (a, b, c, 1)_A \rightarrow P_A = a\mathbf{x} + b\mathbf{y} + c\mathbf{z} + \mathbf{bttps://powcoder.com}$

$$\mathbf{u} = \mathbf{M}\mathbf{x}, \ \mathbf{v} = \mathbf{M}\mathbf{y}, \ \mathbf{w} = \mathbf{M}\mathbf{z}, \ G = \mathbf{M}O$$

The point maintains its coordinates but with respect to the new CS B $Q_B = (a, b, c, 1)_B$

In other words the point is fixed with respect to the moving CS

Let's show explicitly the coordinates of each side of the matrix $Q_A = {}_A \mathbf{M}_B Q_B$

Remember, the same matrix transforms CS A into CS B, e.g.

$$\mathbf{u}_A = {}_A \mathbf{M}_B \mathbf{x}_A$$

Then chain them all together:

$$Q_A = {}_{A}\mathbf{M}_{BB}\mathbf{M}_{C}Q_{C}$$

 $Q_B = {}_B \mathbf{M}_C Q_C$

Chain of CS

Chain or hierarchy of CS (frames): $A \to B \to C$

Represented by the matrix relationships:

$$Q_B = {}_B \mathbf{M}_C Q_C, \quad Q_A = {}_A \mathbf{M}_B Q_B, \quad Q_A = {}_A \mathbf{M}_{BB} \mathbf{M}_C Q_C$$

Chain can be reformulated

Chain or hierarchy of CS (frames): $A \to B \to C$

Represented by the matrix relationships:

$$Q_B = {}_B \mathbf{M}_C Q_C, \quad Q_A = {}_A \mathbf{M}_B Q_B, \quad Q_A = {}_A \mathbf{M}_{BB} \mathbf{M}_C Q_C$$

Reformulate chain $B \to A \to C$

Represented by the matrix relationships:...?

Chain can be reformulated

Chain or hierarchy of CS (frames): $A \to B \to C$

$$Q_B = {}_B \mathbf{M}_C Q_C, \quad Q_A = {}_A \mathbf{M}_B Q_B, \quad Q_A = {}_A \mathbf{M}_{BB} \mathbf{M}_C Q_C$$

Reformulate chain $B \to A \to C$

$$Q_B = {}_B \mathbf{M}_A Q_A, \quad Q_A = {}_A \mathbf{M}_C Q_C, \quad Q_B = {}_B \mathbf{M}_{AA} \mathbf{M}_C Q_C$$

remember: Non-trivial affine transformations can be inverted

$$_{B}\mathbf{M}_{A}=(_{A}\mathbf{M}_{B})^{-1},_{A}\mathbf{M}_{C}=_{A}\mathbf{M}_{BB}\mathbf{M}_{C}$$

Exercise

Chain:
$$A \to B \to C$$

$$Q_B = {}_B \mathbf{M}_C Q_C, \quad Q_A = {}_A \mathbf{M}_B Q_B, \quad Q_A = {}_A \mathbf{M}_{BB} \mathbf{M}_C Q_C$$

Chain
$$B \to A \to C$$

$$Q_B = {}_B \mathbf{M}_A Q_A, \quad Q_A = {}_A \mathbf{M}_C Q_C, \quad Q_B = {}_B \mathbf{M}_{AA} \mathbf{M}_C Q_C$$

 ${}_B \mathbf{M}_A = ({}_A \mathbf{M}_B)^{-1}, {}_A \mathbf{M}_C = {}_A \mathbf{M}_{BB} \mathbf{M}_C$

What is ${}_{C}\mathbf{M}_{A}$?

More details and derivations

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Using an affine matrix M
 Assignment Project Exam Help
 https://powcoder.com
 CS2
 Add WeChat powooder ''
 CS1
 O
 i
 x

Using an affine matrix M

Transform each element of the frame: $O'_{CS1} = T(O_{CS1}) = \mathbf{T}(\mathbf{S}, \mathbf{S}, \mathbf{S}$

$$O'_{CS2} = (0, 0, 0, 1)_{CS2}, \quad \mathbf{i}'_{CS2} = (1, 0, 0, 0)_{CS1} \cdots$$

Also remember that:

$$\mathbf{i}_{CS1} = (0, 0, 0, 0)_{CS1}$$
 means $\mathbf{i}_{CS1} = 1\mathbf{i}_{CS1} + 0\mathbf{j}_{CS1} + 0\mathbf{j}\mathbf{K}_{CS1} + 0O_{CS1}$

Using an affine matrix M

The following hold by definition for a point P in the space:

$$P_{CS1} = (a, b, c, 1)_{CS1} = a\mathbf{i}_{CS1} + b\mathbf{j}_{CS1} + c\mathbf{k}_{CS1} + O_{CS1}$$

$$P_{CS2} = (d, e, f, 1)_{CS2} = d\mathbf{i}'_{CS2} + e\mathbf{j}'_{CS2} + f\mathbf{k}'_{CS2} + O'_{CS2}$$

$$P_{CS1} = (a, b, c, 1)_{CS1} = d\mathbf{i}'_{CS1} + e\mathbf{j}'_{CS1} + f\mathbf{k}'_{CS1} + O'_{CS1}$$

$$P_{CS2} = (d, e, f, 1)_{CS2} = a\mathbf{i}_{CS2} + b\mathbf{j}_{CS2} + c\mathbf{k}_{CS2} + O_{CS2}$$

Both systems are equivalent.
There is nothing special about CS1

What is the relationship between P in CS2 and P in CS1 if CS2 = T(CS1) and T is an M?

affine transformation represented by matrix Assignment Project Exam Help Notation and whathttpkn/powcoder.com $P_{CS1} = (a, b, c, 1)^T$ Add WeChat powdoder $P_{CS2} = (d, e, f, 1)^T$ CS1 X

$$O' = T(O), \ \mathbf{i}' = T(\mathbf{i}), \ \mathbf{j}' = T(\mathbf{j}), \ \mathbf{k}' = T(\mathbf{k})$$

Reminder:

$$O'_{CS2} = (0, 0, 0, 1), \quad O'_{CS1} = T((0, 0, 0, 1)) = M\mathbf{0}$$

 $\mathbf{i}'_{CS2} = (1, 0, 0, 0), \quad \mathbf{i}'_{CS1} = T((1, 0, 0, 0))$

In any frame $P = d\mathbf{i}' + e\mathbf{j}' + f\mathbf{k}' + O'$ so in CS1 $P_{CS1} = d\mathbf{i}'_{CS1} + e\mathbf{j}'_{CS1} + f\mathbf{k}'_{CS1} + O'_{CS1}$ We know that $(\mathbf{i}, \mathbf{j}', \mathbf{k}', O') = T((\mathbf{i}, \mathbf{j}, \mathbf{k}, O))$

All vectors below are
$$\mathbf{M}$$
 traing of the of Projecti Exam, Welp $P_{CS1} = dT(\mathbf{i}) + eT(\mathbf{j}) + fT(\mathbf{k}) + T(O) = d(\mathbf{Mi}) + e(\mathbf{Mj}) + f(\mathbf{Mk}) + \mathbf{M}O$

$$= d(\mathbf{M} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}) + e(\mathbf{M} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + f(\mathbf{M} \\ 0 \end{bmatrix}) + f(\mathbf{M} \\ 0 \end{bmatrix} + f(\mathbf{M} \\ 0 \end{bmatrix} + f(\mathbf{M} \\ 0 \end{bmatrix}) + f(\mathbf{M} \\ 0 \end{bmatrix} + f(\mathbf{M} \\ 0 \end{bmatrix}$$

P in CS1 vs P in CS2

Successive transformations of the Coordinate System

Transformations as a change of basis

Another way of approaching the issue of relating two coordinate systems. Assignment Project Exam Help

Similar to the previous one but from a different point of View

Transformations as a change of

basis

We know the basis of CS2 with respect to CS1 i.e.:

$$\mathbf{i}'_{CS1} = (i_x, i_y, i_z)$$
 $\mathbf{j}'_{CS1} = (j_x', j_y') \mathbf{j}'_z \mathbf{ps://powcoder.com}$
 $\mathbf{k}'_{CS1} = (k_x', k_x') \mathbf{k}'_z \mathbf{powcoder.com}$
 $\mathbf{O}'_{CS1} = (O_x', O_y', O_z')$

Can we find the matrix *M* that transforms points from CS2 to CS1?

$$P_{CS1} = MP_{CS2}$$

Transformations as a change of

basis

$$P_{CS1} = MP_{CS2}$$
 Assignment Project Exam Help

What is M with respect to the basis vectors?
https://powcoder.com
$$P_{CS2} = a\mathbf{i}'_{CS2} + b\mathbf{j}'_{CS2} + c\mathbf{k}'_{CS2} + O'_{CS2} = a \quad 0 \quad + b \quad 1 \\ \text{Add WeChat powcoder 0} + c \quad 0 \\ 1 \end{bmatrix} + c \quad 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$P_{CS1} = a\mathbf{i}'_{CS1} + b\mathbf{j}'_{CS1} + c\mathbf{k}'_{CS1} + O'_{CS1} = a\begin{bmatrix} i'_x \\ i'_y \\ i'_z \end{bmatrix} + b\begin{bmatrix} j'_x \\ j'_y \\ j'_z \end{bmatrix} + c\begin{bmatrix} k'_x \\ k'_y \\ k'_z \end{bmatrix} + \begin{bmatrix} O'_x \\ O'_y \\ O'_z \end{bmatrix}$$

$$P_{CS1} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} i'_x & j'_x & k'_x & O'_x \\ i'_y & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} = MP_{CS2}$$

Transformations as a change of basis

- Note that this is actually the matrix that transforms
 CS1 into CS2 with respect to CS1
 Assignment Project Exam Help
- Sanity check: https://powcoder.com

$$M\mathbf{x}_{CS1} = \begin{bmatrix} i'_x & j'_x \mathbf{A} \mathbf{d} \mathbf{c}'_x & \mathbf{We'Chat} & \mathbf{powco} \mathbf{de'}_{i'_y} & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{i}'_y \\ i'_y \\ i'_z \\ 0 \end{bmatrix} = \mathbf{i}'_{CS1}$$

Similarly

$$M\mathbf{y}_{CS1} = \mathbf{j}'_{CS1}, \ M\mathbf{z}_{CS1} = \mathbf{k}'_{CS1}, \ MO_{CS1} = O'_{CS1}$$

Transformations as a change of

basis

$$P_{CS1} = MP_{CS2}$$
Assignment Project Exam Help

$$P_{CS1} = \begin{bmatrix} x & \text{https://poy/coder.com} \\ y & \text{Add} & \text{i'y } \text{j'y } \text{k'y } \text{O'y} \\ z & \text{1} & \text{0 0 0 1} & \text{1} \end{bmatrix} = MP_{CS2}$$

That is:

We can view transformations as a change of coordinate system

So really this matrix operation has two interpretations

Mathematically equivalent
but conceptually different
Assignment Project Exam Help
x

https://powcoder.com

$$P_{CS1} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} i'_x & j'_x & k'_x & O'_x \\ i'_y & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} = MP_{CS2}$$

A. Transformation in a single coordinate system

Ignore CS2:

• Point (x,y,z,1), in CS1 is transformed Assignment Project Exam Help x to point P'=(x',y',z',1) in CS1 by a transformation represented: by ow coder.com

$$P'_{CS1} = \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} i'_x & j'_x & k'_x & O'_x \\ i'_y & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = MP_{CS1}$$

A. Transformation in a single coordinate system

Ignore CS2:

- Point (x,y,z,1), in CS1 is transformed to point P=(x',y',z',1) in CS1 by a transformation representation.
- The transformation transported for the transported for the transformation transported for the transported fo

$$P'_{CS1} = \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} i'_x & j'_x & k'_x & O'_x \\ i'_y & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = MP_{CS1}$$

B. Transformation of Coordinate System (change of basis)

Interpretation two:

CS1 is transformed to CS2 through a Assignment Project Exam Help transformation and the point remains fixed with respect to CS2https://powcoder.com

$$P_{CS1} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} i'_x & j'_x & k'_x & O'_x \\ i'_y & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} = MP_{CS2}$$

B. Transformation of Coordinate System (change of basis)

Interpretation two:

CS1 is transformed to CS2 through a Assignment Project Exam Help x transformation and the point remains fixed with respect to CS2https://powcoder.com

$$P_{CS1} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} i'_x & j'_x & k'_x & O'_x \\ i'_y & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} = MP_{CS2}$$

B. Transformation of Coordinate System (change of basis)

Interpretation two:

CS1 is transformed to CS2 through a Assignment Project Exam Help transformation and the point remains fixed with respect to CS2https://powcoder.com

$$P_{CS1} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} i'_x & j'_x & k'_x & O'_x \\ i'_y & j'_y & k'_y & O'_y \\ i'_z & j'_z & k'_z & O'_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix} = MP_{CS2}$$

Transforming a point through transforming coordinate systems

Assignment Project Exam Help

https://powcoder.com

Transforming a point through transforming coordinate systems

Assignment Project Exam Help

Transforming a point through transforming coordinate systems

Assignment Project Exam Help

In 2D homogeneous coordinates

Assignment Project Exam Help

$$P = [1,1,1]^T$$

https://powcoder.com

Transformation A(1,0): Meant Project Exam Help $P' = M[1,1,1]^T = MP = [2,1,1]^T$ https://powcoder.com

Equivalently

Transformation A(1.0): Mon CSA Project Exam Help

$$P_A = {}_AM_BP$$

$$P = [1,1,1]^T$$

https://powcodencolmifference: the local

coordinates of P stay the same, the AddPWeChaespowcoder

In other words we transformed system A and P along with it.

However the fixed coordinates of P are now in CSB

Transformation A(1.0): Mon CSA Project Exam Help

 $P_A = {}_AM_BP$

Next transformation? https://powcoder.com

Assignment Project Exam Help

https://powcoder.com

AddPWeChat powcoder

CS B

CS A

We now have 3 systems we can work in the Pa = AMBBMCP

We now have 3 systems we can work in the Pa = AMBBMCP

https://powcoder.com

Main point

Interpreting a transformation matrix

Assignment Project Exam Help

• P_A = _AM_B P_B

https://powcoder.com
transforms a point within system A, from its current
location to a newdorke Chat powcoder

P_A = _AM_B P_B
 transforms system A into B. Right of matrix M we talk in B coordinates. Left of matrix M we talk in A coordinates

Rule of thumb

Transforming a point P:

Transformations: T1,T2,T3

Matrix: M = M3 xAM2sigMment Project Exam Help

Point transformed by: MP

Successive transformations pappen with respect to the same CS

Transforming a CS Add WeChat powcoder

Transformations: T1, T2, T3

Matrix: $M = M1 \times M2 \times M3$

A point has original coordinates MP

Each transformations happens with respect to the new CS

The **last** coordinate system (right most) represents the **first** transformation applied to the point

Rule of thumb

To find the transformation matrix that transforms P from CSB coordinates to CSA Assignment Project Exam Help coordinates, we find the sequence of transformations that align CSA to CSB accumulating Matwices from Jeft to right.

Explanation of this rule

If we think transforming systems, M takes CS A from the left and produces B on the right.

Assignment Project Examplelp

Transformation M: AMB ttps://powcoder.com/after this transformation we talk in B coordinates (right side).

Explanation of this rule

Take this simple example where to produce B we translate A by 1

Assignment Project Exam Help

CS B

CS A

Transformation M: AMB https://powcoder.com If we move A by +1 to transform it into B then the coordinates of P AddPWeChat portwespect to the new system are shortened by 1 (B is closer to P than A by 1). So if we want to transform the coordinates of P from B to A we need to add 1 in x. Exactly what we need to do to transform system A to B.