Contrat de Conception et de Développement de l'Architecture

- Solution Foosus Géolocalisée -

David EVAN

21/10/2021

Version 1.0

Contrat de Conception et de Développement de l'Architecture – Foosus

<u>Projet :</u>	Solution Foosus géo-ciblée
<u>Client :</u>	Foosus
<u>Titre :</u>	Contrat de Conception et de Développement de l'Architecture
<u>Préparé par :</u>	EVAN David (Architecte logiciel)
N° de version :	1.0
<u>Date de la version :</u>	21 Octobre 2021
Revu par :	[En attente de révision]
Date de révision :	[En attente de révision]

Tableau 1 – Identification du document

Objectif du document

Dans le cadre du projet de re-construction de la solution « Foosus », ce document défini la conception à haut niveau de la nouvelle architecture. Son utilisation permet de mesurer la réussite de l'exécution du projet d'architecture et forme la base de l'accord contractuel entre le fournisseur et le consommateur de services d'architecture

Ce document ne concerne que la nouvelle solution et ne s'applique pas à l'architecture actuellement existante.

TABLE DES MATIERES

INTRODUCTION ET CONTEXTE	
OBJECTIFS ET PÉRIMÈTRE	6
Objectifs	θ
Perimetre	
Parties prenantes, preoccupations et visions	
ARCHITECTURE ET PRINCIPES STRATÉGIQUES	
SCHEMA PROTOTYPE D'ARCHITECTURE	Ş
DESCRIPTION	
Les applications frontend	
Les middlewares	
Les composants de support	
La ferme de micro-service	
Les données	
SYNTHESE DES COMPOSANTS	
PRINCIPES STRATEGIQUES DE L'ARCHITECTURE	
Maximisation des bénéfices de l'entreprise	
Continuité du business	
Orienté service	
Sécurité des données	12
Accessibilité des données	
Management de l'information	12
Contrôle de la diversité des technologies	
Interopérabilité	
REFERENCE AUX CONDITIONS REQUISES POUR L'ARCHITECTURE	14
PROCESSUS DE DEPLOIEMENT (CI/CD)	15
PLAN DE TRAVAIL COMMUN PRIORISÉ	16
ÉLEMENT DE TRAVAIL 1	16
Activités	
Livrables	
ÉLEMENT DE TRAVAIL 2	16
Activités	16
Livrables	16
ÉLEMENT DE TRAVAIL 3	17
Activités	
Livrables	
ÉLEMENT DE TRAVAIL 4	17
Activités	
Livrables	
ÉVALUATION DES DEMANDES DE CHANGEMENTSPLAN DE COMMUNICATION	18
RISQUES ET FACTEURS DE RÉDUCTION	19

STRUCTURE DE GOUVERNANCE	19
Analyse des risques	19
HYPOTHÈSES	20
CRITÈRES D'ACCEPTATION ET PROCÉDURES	21
METRIQUES ET KPIS DE L'ÉTAT CIBLE DE L'ARCHITECTURE	
CONTRAT DE SERVICE APPLICATION	22
ROADMAP PRÉVISIONNELLE (PROTOTYPE)	23
APPROBATIONS	24
TABLES DES RÉFÉRENCES	25
Figures	25
Tableaux	25

INTRODUCTION ET CONTEXTE

La plateforme actuelle de Foosus a atteint un point au-delà duquel elle en peut plus soutenir les projets de croissance et d'expansion de l'entreprise. Après plusieurs années de développement, la solution technique complexe n'évolue plus au rythme de l'activité et risque d'entraver la croissance de l'entreprise.

Les analyses de marché indiquent que la correspondance avec le marché a été éclipsée par l'instabilité de la plateforme et par une image de marque négative causée par des interruptions de service visibles par les clients.

Les équipes de développement concentrent leurs efforts à maintenir en condition opérationnelle la plateforme via l'introduction de correctif d'urgence.

Une nouvelle plateforme d'e-commerce est nécessaire afin d'améliorer sa compétitivité dans cet environnement concurrentiel intense. Elle devra tirer parti des possibilités offertes par les technologies de géolocalisation afin de faciliter les mises en relation clients / producteurs.

L'innovation et le développement rapide des produits sera placé au cœur de la stratégie de cette nouvelle plateforme, tout en maintenant une cohérence fonctionnelle avec la plateforme existante.

Notons qu'il n'est pas possible d'abandonner les outils actuels pendant l'élaborons des nouveaux car cela impliquerait la mise hors service de la plateforme existante qu'il est nécessaire de maintenir pour pouvoir continuer à accepter de nouvelles adhésions de fournisseurs et de consommateurs. Par ailleurs, il est nécessaire de dissocier les nouvelles livraisons de l'architecture et de l'infrastructure existantes afin de limiter les interruptions de service.

OBJECTIFS ET PÉRIMÈTRE

Objectifs

Les objectifs business de ce chantier d'architecture sont les suivants :

(L'ordre des objectifs est arbitraire et ne fait référence à aucune notion de priorisation)

ld.	Objectif	Description
01	Tirer profit de la géolocalisation	La solution tirera parti de la géolocalisation pour relier des fournisseurs et des consommateurs et pour proposer des produits disponibles près des lieux de résidence de ces derniers. Un calculateur de distance sera inclus pour permettre aux consommateurs de trouver les fournisseurs les plus proches d'eux.
O2	Évolutivité	La solution sera évolutive, tant d'un point de vue fonctionnel que technologique. La solution pourra être déployée dans plusieurs villes / région / pays et adaptée à chacun d'eux.
О3	Sécurité	La sécurité de la nouvelle solution fait partie des priorités pour ce chantier d'architecture. La solution doit garantir la sécurité des utilisateurs, de leurs données personnelles, que la sécurité du système d'information dans sa globalité.
04	Performance	La solution sera performante, peu importe le périphérique utilisé pour y accéder ou la vitesse de connexion internet disponible.
O5	Disponibilité	La solution sera disponible 24h/24h – 7j/7. Les interruptions de services seront inférieures à 2h / mois. Les temps de rétablissement de service seront au maximum d'1 heure. Les modifications apportées aux systèmes de production devront limiter ou supprimer la nécessité d'interrompre le service pour procéder au déploiement.
06	Scalabilité	La solution devra être capable d'absorber les montés en charge ponctuelles ou régulière dû à l'augmentation du nombre d'utilisateur.
07	Innovation	Les livrables doivent pouvoir être fournis à intervalles réguliers pour que le nouveau système soit rapidement opérationnel et puisse être doté de nouvelles fonctionnalités au fil du temps.
08	Adapté à l'utilisateur	La solution doit être disponible sur l'ensemble des périphériques (mobile, tablette, PC). Elle doit pouvoir prendre en charge divers types d'utilisateurs (par exemple, fournisseurs, back-office, consommateurs), avec des fonctionnalités et des services spécifiques pour ces catégories.

Tableau 2 - Catalogue des objectifs business

OBJECTIFS ET PÉRIMÈTRE 24/10/2021

Périmètre

D'un point de vue utilisateur, le périmètre de ce chantier d'architecture sera concentré sur le développement des nouvelles fonctionnalités de géolocalisation et la refonte visuelle des applications web, mobile et tablette.

Toutefois, le chantier technique est bien plus vaste et vise à entamer la conception d'une nouvelle solution et à migrer petit à petit les utilisateurs sur la nouvelle plateforme. Aussi, le périmètre du projet se concentrera sur la nouvelle plateforme mise en place comprenant le backoffice, l'application mobile et l'application web avec les composants backend.

Il n'y aura aucune intervention sur le système existant.

Parties prenantes, préoccupations et visions

Le tableau suivant montre les parties prenantes qui utiliseront ce document, leurs préoccupations, et la façon dont le travail d'architecture répondra à ces préoccupations par l'expression de plusieurs visions, ou perspectives.

Partie prenante	Préoccupation	Vision
Ash CALLUM Chief Executive Officer	Rentabilité, Alignement à la stratégie de l'entreprise	Business
Natasha JARON Chief Information Officer	Flux d'informations, confidentialité, sécurité	Infrastructure Opérationnelle
Daniel ANTHONY Chief Product Officer	Partie fonctionnelle et cas d'utilisations Métriques	Business
Christina ORGEGA Chief Marketing Officer	Partie fonctionnelle et cas d'utilisations	Business
Jo KUMAR Chief Financial Officer	Rentabilité	Financière, Budget, coûts
David EVAN Architecte Logiciel	Développement, évolution technique et fonctionnelle, gouvernance d'architecture	Applicative, architecture

ARCHITECTURE ET PRINCIPES STRATÉGIQUES

Schéma prototype d'architecture

Componants Collaboration Diagram (Foosus)

Figure 1 - Componants collaboration diagram

Description

L'architecture présentée en prototype ci-avant (figure 1) représente la future architecture (simplifiée) cible à atteindre. Cette construction est une architecture distribuée en micro-service et basé sur une plateforme cloud (AWS).

Ce schéma est divisé en 5 grandes familles de composants.

(Les couleurs des groupes de composants ne sont utilisées que pour une distinction visuelle et n'ont nullement une fonction sémantique)

Les applications frontend

Les applications frontend représente l'ensemble des applications (mobile ou web) accessibles aux utilisateurs. Ils fournissent les composants UI et sont développées sur la stack Angular (web) et Ionic (mobile). Pour rappel, Ionic est un Framework permettant de développer des applications mobiles crossplatform à l'aide de la librairie Angular et du langage Typescript.

Les middlewares

Les middleware sont les principaux composants technologique permettant d'accéder aux backend. Ils regroupent les principaux composants permettant la fédération (API Gateway), le contrôle d'accès (WAF) et la répartition de la charge réseau (Load Balancing).

Ils sont construits à partir de brique standard pouvant faiblement couplée et évolutive.

Les composants de support

Les composants supports regroupent les composants transverses accessibles par les différents microservices : Système de log (Graylog via instance EC2), cache applicatif (ElasticCache), stockage de masse (Amazon S3) ...

Ils sont construits à partir de brique standard pouvant faiblement couplée et évolutive.

La ferme de micro-service

La ferme de micro-service contient le cœur du SI et l'ensemble des micro-services permettant de réaliser les fonctionnalités (passage de commande, gestion des stocks, des utilisateurs, de la géolocalisation ...). Les micro-services sont développé sur une stack technologique Java / Spring. Les micro-services sont conteneurisées via docker et scalable horizontalement (Il doit exister à minima 2 instances de chaque).

Les données

Les données sont isolées par micro-service afin de favoriser un couplage faible et de pouvoir aisément modifier chaque composants en limitant les risques de régression. Elles sont principalement stockées sur la plateforme AWS Aurora qui fournit des bases de données réplicables et auto-scalables.

Synthèse des composants

Le tableau ci-après fourni la description synthétique des différents composants de l'architecture présentée.

Composant applicatif	Description	Langage / Stack technologique	Composant AWS
Application Mobile	Application mobile Foosus IOS / Android	Typescript / Angular / Ionic	N/A
Application Web	Application Web Foosus accessible mobile, tablette et desktop.		AWS EC2
Web Application Firewall	Firewall applicatif assurant la sécurité des requêtes HTTPS.	N/A	AWS WAF
API Gateway	Plateforme fédératrice des micro services permettant de disposer d'un point central d'accès aux API REST et de gérer les accès aux ressources (via OAuth).	N/A	AWS API Gateway
Application Load Balancer	Composant assurant la répartition de charge entre les différentes instances de chaque micro-services.	N/A	AWS Application Load Balancer
Micro-service	Micro-services backend assurant les fonctionnalités métiers. Conteneurisés et scalable horizontalement. Principalement disponible sous forme d'API RESTFul.	Java / Spring Framework / Docker Container	AWS ECS
Cache de données à accès rapide	Cache de données permettant des accès rapides aux données déjà précalculés.	N/A	AWS ElasticCache
Stockage de masse	Stockage des données ou ressources volumineuses.	N/A	AWS S3
Système de log	Système de log disposant de composant d'alerting.	Graylog / ElasticSearch	AWS EC2
Données	Données micro-services.	SQL / MongoDB	Aurora DB / Mongo DB

Principes stratégiques de l'architecture

Maximisation des bénéfices de l'entreprise

Principe : Les décisions relatives à la gestion de l'information sont prises afin de procurer un avantage maximal à l'entreprise dans son ensemble.

Ce principe incarne le principe du "service avant tout". Les décisions prises à l'échelle de l'entreprise ont une plus grande valeur à long terme que celles prises dans une perspective organisationnelle particulière. Un rendement maximal des investissements exige que les décisions en matière de gestion de l'information soient conformes aux facteurs et aux priorités de l'entreprise. Aucun groupe minoritaire ne pourra nuire au bénéfice de l'ensemble.

Les priorités doivent être ajustées en fonction des besoins ; ces décisions doivent être prises par un comité où l'entreprise est représentée de manière exhaustive.

Continuité du business

Principe : Les opérations de l'entreprise sont maintenues malgré les interruptions du système.

Au fur et à mesure que le fonctionnement des systèmes devient plus omniprésent, nous devenons plus dépendants d'eux ; par conséquent, nous devons tenir compte de la fiabilité de ces systèmes tout au long de leur conception et de leur utilisation.

Les défaillances matérielles, les catastrophes naturelles et la corruption des données ne doivent pas perturber ou arrêter les activités de l'entreprise. Les fonctions commerciales de l'entreprise doivent être capables de fonctionner sur des mécanismes alternatifs de diffusion de l'information.

Les applications doivent être évaluées en fonction de leur criticité et de leur impact sur la mission de l'entreprise, afin de déterminer le niveau de continuité requis et le plan de reprise correspondant.

Orienté service

Principe : L'architecture est basée sur une conception de services qui reflètent les activités commerciales réelles comprenant les processus commerciaux de l'entreprise (ou interentreprises).

L'orientation vers les services assure la souplesse de l'entreprise et un flux d'informations sans frontières.

Représentation des services utilisant des descriptions d'entreprise pour fournir le contexte (c'est-à-dire le processus d'entreprise, le but, la règle, la politique, l'interface de service et le composant de service) et mettant en œuvre les services en utilisant l'orchestration des services.

L'orientation des services impose des exigences uniques à l'infrastructure, et les implémentations doivent utiliser des normes ouvertes pour s'assurer de l'interopérabilité et de la transparence des emplacements.

Les implémentations sont spécifiques à l'environnement ; elles sont limitées ou activées par le contexte et doivent être décrites dans ce contexte.

Une gouvernance forte de la représentation et de la mise en œuvre des services est nécessaire.

Sécurité des données

Principe : Les données sont protégées contre toute utilisation ou divulgation non autorisée. En plus des aspects traditionnels de la classification de la sécurité nationale, cela inclut, mais sans s'y limiter, la protection des informations pré-décisionnelles, sensibles, sensibles à la sélection des sources et propriétaires.

Le partage ouvert des informations et la diffusion des informations doivent être mis en balance avec la nécessité de restreindre la disponibilité des informations classifiées, exclusives et sensibles.

Les lois et règlements en vigueur exigent la sauvegarde et la confidentialité des données, tout en permettant un accès libre et ouvert. Les informations pré-décisionnelles (en cours de réalisation, dont la diffusion n'est pas encore autorisée) doivent être protégées afin d'éviter toute spéculation injustifiée, toute interprétation erronée et toute utilisation inappropriée.

Accessibilité des données

Principe: Les données sont accessibles aux utilisateurs pour qu'ils puissent remplir leurs fonctions.

Un large accès aux données permet de prendre des décisions de manière efficace et efficiente, de répondre rapidement aux demandes d'information et de fournir des services. L'utilisation des informations doit être envisagée dans une perspective d'entreprise afin de permettre l'accès à une grande variété d'utilisateurs. Le personnel gagne du temps et la cohérence des données est améliorée.

Management de l'information

Principe : Toutes les organisations de l'entreprise participent aux décisions de gestion de l'information nécessaires pour atteindre les objectifs de l'entreprise.

Les utilisateurs de l'information sont les principales parties prenantes, dans l'application de la technologie pour répondre à un besoin commercial. Afin de garantir que la gestion de l'information est alignée sur l'activité, toutes les organisations de l'entreprise doivent être impliquées dans tous les aspects de l'environnement de l'information. Les experts de l'entreprise et le personnel technique chargé de développer et de maintenir l'environnement informatique doivent se réunir en équipe pour définir conjointement les buts et les objectifs de l'informatique.

Contrôle de la diversité des technologies

Principe : La diversité technologique est contrôlée pour minimiser le coût du maintien de l'expertise des logiciels développées et de la connectivité entre plusieurs environnements.

Il existe un coût réel et non négligeable de l'infrastructure nécessaire pour prendre en charge les technologies alternatives pour les environnements applicatifs. D'autres coûts d'infrastructure sont encourus pour assurer l'interconnexion et la maintenance des constructions à processeurs multiples.

Les avantages commerciaux d'une diversité technique minimale sont les suivants : conditionnement standard des composants ; impact prévisible de la mise en œuvre ; évaluations et retours prévisibles ; redéfinition des tests ; statut d'utilité ; et flexibilité accrue pour s'adapter aux avancées technologiques. Une technologie commune à l'ensemble de l'entreprise permet de bénéficier d'économies d'échelle. Les coûts d'administration et de support technique sont mieux contrôlés lorsque des ressources limitées peuvent se concentrer sur cet ensemble de technologies partagées.

Interopérabilité

Principe : Les logiciels et le matériel doivent être conformes à des normes définies qui favorisent l'interopérabilité des données, des applications et des technologies.

Les normes contribuent à assurer la cohérence, améliorant ainsi la capacité de gérer les systèmes et la satisfaction des utilisateurs, et à protéger les investissements informatiques existants, maximisant ainsi le retour sur investissement et réduisant les coûts. Les normes d'interopérabilité contribuent en outre à garantir le soutien de plusieurs fournisseurs pour leurs produits et à faciliter l'intégration de la chaîne d'approvisionnement.

Les normes d'interopérabilité et les normes industrielles seront suivies, sauf s'il existe une raison commerciale impérieuse de mettre en œuvre une solution non standard.

Il faut établir un processus pour fixer les normes, les examiner et les réviser périodiquement, et accorder des exceptions.

Les plateformes informatiques existantes doivent être identifiées et documentées.

Référence aux Conditions requises pour l'architecture

Le catalogue ci-après (Tableau 3) liste les exigences attendues pour l'architecture cible :

Catégorie	ld.	Exigence
	AR1	L'architecture devra être évolutive pour permettre aux services de se déployer sur diverses régions à travers des villes et des pays donnés.
	AR2	La mise en place d'une certaine standardisation pour la maintenance des développements futurs et à venir (uniformisée des technologies)
Évolutivité	AR3	Chaque nouvelle version doit être de taille réduite, présenter peu de risques, être transparente pour les utilisateurs et rester accessible en tout lieu et à tout moment.
	AR4	L'architecture devra prendre en charge chaque nouvel emplacement géographique et fournir la fiabilité nécessaire aux clients, fournisseurs et consommateurs.
	AR5	Les améliorations et autres modifications apportées aux systèmes de production devront limiter ou supprimer la nécessité d'interrompre le service pour procéder au déploiement.
Disponibilité	AR6	La solution doit être disponible pour les fournisseurs et les consommateurs, où qu'ils se trouvent. La solution doit être utilisable avec des appareils mobiles et fixes. Elle doit tenir compte des contraintes de bande passante pour les réseaux cellulaires et les connexions Internet haut débit
	AR7	Même si le système est surchargé, les utilisateurs connectés doivent pouvoir continuer à accéder à tous les services de façon dégradée.
Performance	AR8	Elle doit pouvoir prendre en charge différents types d'utilisateurs (par exemple, fournisseurs, back-office, consommateurs) avec des fonctionnalités et des services spécifiques pour ces catégories.
	AR9	La solution doit être accessible sur l'ensemble des réseaux, même avec des connexions mobiles à faible débit.
Sécurité	AR10	La sécurité est au cœur des priorités et doit être assuré à tout moment et particulièrement lors des changements de version ou de déploiement dans des nouvelles régions.

Tableau 3 - Catalogue des exigences d'architecture

Processus de déploiement (CI/CD)

Afin de satisfaire à l'objectif de déploiement rapide et favoriser l'innovation, le processus de déploiement s'appuira sur des pipelines CI/CD intégrants :

- Des tests unitaires / fonctionnels automatisés
- De l'analyse de code automatisé,
- Des contrôle de conformité (sécurité, code qualité ...)
- Du déploiement continu automatisé sur les environnements de développement et pré-production (avec validation humaine pour l'environnement de production)

Figure 2 - Processus de déploiement CI/CD

PLAN DE TRAVAIL COMMUN PRIORISÉ

Cette section décrit les activités et les livrables du travail d'architecture.

Élément de travail 1

Activités

Demande de chantier d'architecture, la phase préliminaire et la phase A de l'ADM

Livrables

- Autorisation de projet
- Périmètre couvert
- Feuille de route
- Vision macroscopique
- Risques majeurs

Élément de travail 2

Activités

Livraison de l'architecture, les phases B, C, D de l'ADM.

Livrables

- Objectifs stratégiques et opérationnels
- Fonctions et services métier
- Processus métier
- Lexique Ubiquitous language
- Architecture des données
- Architecture applicative
- Architecture technique
 - Composants logiciels
 - Infrastructures

Élément de travail 3

Activités

Planification de la transition, les phases E et F de l'ADM

Livrables

- Faisabilité technique et organisationnelle
- Contraintes intégration
- Planning de migration
- Constitution des projets de mise en œuvre
- Organisation
- Objectifs
- Coûts

Élément de travail 4

Activités

Gouvernance de l'architecture, les phases G et H de l'ADM

Livrables

- Version définitive des contrats d'architecture
- Prototype réalisé

ÉVALUATION DES DEMANDES DE CHANGEMENTSPLAN DE COMMUNICATION

Le tableau ci-dessous présente les principaux canaux de communication pour l'organisation du chantier d'évolution de l'architecture.

Événement	Participants	Contenu	Fréquence
Daily Meeting	Équipes projets / PO	Suivi de l'avancement, des difficultés et des opportunités	Quotidien
Sprint planning	Équipes projets / PO / Représentant des utilisateurs	Définition des lots de travaux pour le sprint à venir	Bimensuel
Sprint Retro	Équipes projets / PO	Revue du workflow et amélioration des process	Bimensuel
Sprint Review	Équipes projets / PO / Représentant des utilisateurs	Présentation / Validation des lots de travaux terminés	Bimensuel
COPIL (Comité de pilotage)	Responsables projets / PO	Suivi de la planification et des ressources projet	Hebdomadaire
COOP (Comité opérationnel)	Responsables d'unités / PO	Suivi des indicateurs qualités et validation expérience utilisateur	Bimensuel
COMEX (Comité exécutif)	Équipe de direction	Choix stratégique - Suivi des indicateurs qualités – Arbitrage	Hebdomadaire
Instance industrialisation	Instance	Industrialisation des process et des workflows	Mensuel
Instance d'architecture	Instance	Gouvernance d'architecture	Bimensuel
Instance sécurité	Instance	Revue des indicateurs sécurité et suivi d'avancement	Bimensuel

Tableau 4 - Plan de communication

RISQUES ET FACTEURS DE RÉDUCTION

Structure de gouvernance

Décrivez et concluez un accord sur la Structure de gouvernance

Analyse des risques

Risque	Effet	Fr.	Imp.	Crit.	Actions préventives et correctives
Serveur d'une région non disponible	Indisponibilité de service, augmentation de la latence	1	4	4	Permettre d'utiliser les ressources du serveur le plus proches le temps de l'indisponibilité.
Indisponibilité des services suite à une mise en production	Perte de crédibilité, indisponibilité de service	2	5	10	Les déploiements quotidiens doivent se faire dans les périodes creuses de la région. Faire le lien de la passerelle après le déploiement pour avoir le minimum de downtime.
Vol de données	Conséquences juridiques	2	5	10	Vérifier la régulation des données de chaque région où l'application sera déployé pour s'adapter aux législations locales.
Capacité de monter en charge sous-évaluée	Interruption du service	3	5	15	Évaluer la capacité de connexion simultanée nécessaire. Mise en place d'une supervision pour évaluer le trafic. Configuration d'un cluster pour une création des instances dynamiques automatiquement lors d'une montée en charge.
Risque technique / Manque de compétence Cloud	Architecture non adaptée aux besoins et exigences	4	5	20	Suivre les bonnes pratiques en termes de Cloud. Prévoir une formation Architecte Cloud. Recruter un consultant maîtrisant ce sujet.

Tableau 5 - Catalogue des risques et mesures d'atténuation

HYPOTHÈSES

Les solutions proposées ci-dessus viennent tracer les grandes lignes des réponses à apporter aux hypothèses formulées par Foosus pour l'évolution de l'architecture.

ld.	Hypothèse	Solution proposée
Н1	Plutôt que d'investir davantage dans la plateforme existante, nous la conserverons en mode de maintenance. Aucune nouvelle fonctionnalité ne sera développée.	Aucune fonctionnalité ne sera ajoutée à l'ancienne plateforme. Un nouveau SI sera déployé et supportera les nouvelles fonctionnalités.
H2	La nouvelle architecture sera construite en fonction des technologies actuelles et avec la capacité de s'adapter à de nouvelles technologies lorsque cellesci seront disponibles.	Architecture micro-service ; Pattern CQRS / SAGA pour les performances et l'intégrité des données ; Duo Java (Spring) – Angular pour le front.
нз	Les équipes étant attachées à la plateforme existante, les dirigeants devront éviter de prendre de faux raccourcis en intégrant un nouveau comportement dans le système existant.	Les fonctionnalités du nouveau SI seront similaire et devront reprendre les mêmes processus.
Н4	L'offre initiale impliquera la coexistence de deux plateformes et la montée en puissance empirique du volume d'utilisateurs qui migreront vers la nouvelle plateforme à mesure que le produit évoluera. Cette augmentation sera proportionnelle à l'évolution des fonctionnalités.	Déploiement dans le cloud AWS pour adapter la nouvelle plateforme aux besoins d'évolution.
Н5	La géolocalisation, si elle est modélisée suffisamment tôt dans la nouvelle plateforme, permettra d'introduire d'autres innovations en fonction de l'emplacement de l'utilisateur ou du fournisseur alimentaire	Utilisation du Service MaxMind GeoIP2 et de l'API Angular Google Maps.
Н6	L'élaboration sur mesure d'une approche architecturale de type « Lean » pourra contribuer à la réalisation de cette feuille de route, ce qui évitera de priver les équipes de leur autonomie et de compromettre la rapidité des cycles de versions.	Utilisation de la méthodologie Scrum pour les équipes de développement.

Tableau 6 - Hypothèses formulées et solutions proposées

CRITÈRES D'ACCEPTATION ET PROCÉDURES

Métriques et KPIs de l'État Cible de l'Architecture

Les métriques suivantes seront utilisées pour déterminer le succès de ce travail d'architecture :

ld.	Métrique	Mesure	Valeur initiale	Valeur cible
KPI1	Adhésions journalière (utilisateurs)	Surveillance du nombre de nouveau utilisateurs.	NC	+ 10 %
KPI2	Adhésions journalière (Producteur)	Surveillance du nombre de nouveaux producteurs.	1,4 / mois	> 4 / mois
КРІЗ	Délai de déploiement d'une mise à jour	Audit régulier du délai de parution d'une offre.	3,5 semaines	< 1 semaine
KPI4	Taux d'incidents de production P1	Liste des incidents visibles par le client.	> 25 / mois	< 1 / mois

Tableau 7- Catalogue des métriques de référence pour la mesure du succès

Contrat de service application

ld.	Objectif de niveau de service	Mesure
A-SLA1	Le délai de déploiement d'une fonctionnalité achevée doit être >= 7 jours.	Délai moyen entre merge-request sur une branche « master » et déploiement de la branche.
A-SLA2	Le taux de couverture de code par des tests automatisés devra être >= 75%.	Rapport de couverture de code par les tests.
A-SLA3	Le nombre de vulnérabilités / mauvaises pratiques de sécurité détectées dans les applications devront être égal à 0.	Analyse statique (SonarQube - Vunerabilities) et code-review.
A-SLA4	Le code des logiciels fournis devra être en conformité avec les chartes de développement établi et les mesures d'analyse automatisé de la « dette technique » devront être < 1h / dépôt de code source.	Analyse statique (SonarQube – Debt) et code- review.
A-SLA5	Les logiciels livrés devront être totalement conforme aux principes de conception définis par la gouvernance d'architecture.	Validation des logiciels par la gouvernance d'architecture.
A-SLA6	Les navigateurs web disposant d'une part de marché > 2% des utilisateurs (Mesures Foosus ou GlobalStats, la plus haute étant retenue) mobile ou desktop seront supportés.	Analyse statistiques + Plan de test.

Tableau 8 - SLA Application

ROADMAP PRÉVISIONNELLE (PROTOTYPE)

La roadmap ci-après présente les grandes étapes pour ce chantier d'architecture.

Une seconde roadmap sera produite durant la phase de planification et affinée en phase de prototype pour le déploiement de la solution à grande échelle. Notons que cette phase de prototypage est impérative pour s'assurer du succès de l'architecture finale et supprimer l'ensemble des inconnues inhérente aux projets de cette ampleur.

Figure 3 - Roadmap prévisionnelle pour la livraison du prototype

APPROBATIONS 24/10/2021

APPROBATIONS

Le tableau ci-après liste toutes les parties prenantes ayant approuvé cet accord.

Nom	Poste	Signature	Date
Ash CALLUM	Chief Executive Officer	[En attente d'approbation]	XX/XX/2021
Natasha JARON	Chief Information Officer	[En attente d'approbation]	XX/XX/2021
Daniel ANTHONY	Chief Product Officer	[En attente d'approbation]	XX/XX/2021
Christina ORGEGA	Chief Marketing Officer	[En attente d'approbation]	XX/XX/2021
Jo KUMAR	Chief Financial Officer	[En attente d'approbation]	XX/XX/2021
David EVAN	Architecte Logiciel	David Evan	22/10/2021

Tableau 9 - Approbation du contrat de développement de l'architecture

TABLES DES RÉFÉRENCES

	•				
ᆫ	12		_	Δ	c
г	ı۷	u.		C	3
-	-0	_	_	_	_

Figure 1 - Componants collaboration diagram	8	
Figure 2 - Processus de déploiement CI/CD	15	
Figure 3 - Roadmap prévisionnelle pour la livraison du prototype	23	
Tableaux		
Tableau 1 – Identification du document	2	
Tableau 2 - Catalogue des objectifs business	6	
Tableau 3 - Catalogue des exigences d'architecture	14	
Tableau 4 - Plan de communication	18	
Tableau 5 - Catalogue des risques et mesures d'atténuation	19	
Tableau 6 - Hypothèses formulées et solutions proposées	20	
Tableau 7- Catalogue des métriques de référence pour la mesure du succès	21	
Tableau 5 - SLA Application	22	
Tableau 8 - Approbation du contrat de développement de l'architecture	24	