ELTE-IK Matematikai alapok 2020. őszi félév

5. Trigonometrikus azonosságok, egyenletek, egyenlőtlenségek az "Órai feladatok" szakasz 1., 4a., 4d., 4e., 4i., 4m., 7a., 7c. feladatainak megoldása (írta: Lócsi Levente)

5.2.1. Órai feladatok / 1.

$$\operatorname{tg} \frac{\pi}{12} = \frac{\sin\frac{\pi}{12}}{\cos\frac{\pi}{12}} = \frac{\sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right)}{\cos\left(\frac{\pi}{3} - \frac{\pi}{4}\right)} = \frac{\sin\frac{\pi}{3} \cdot \cos\frac{\pi}{4} - \cos\frac{\pi}{3} \cdot \sin\frac{\pi}{4}}{\cos\frac{\pi}{3} \cdot \sin\frac{\pi}{4}} = \frac{\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} - \frac{1}{2} \cdot \frac{\sqrt{2}}{2}}{\frac{1}{2} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}} = \frac{\frac{\sqrt{2}}{2} \cdot \left(\frac{\sqrt{3} - 1}{2}\right)}{\frac{\sqrt{2}}{2} \cdot \left(\frac{1 + \sqrt{3}}{2}\right)} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = \frac{(\sqrt{3} - 1) \cdot (\sqrt{3} - 1)}{(\sqrt{3} + 1) \cdot (\sqrt{3} - 1)} = \frac{3 - 2\sqrt{3} + 1}{3 - 1} = \frac{4 - 2\sqrt{3}}{2} = \frac{2 - \sqrt{3}}{2}$$

5.2.1. Órai feladatok / 4a.

 $\sin \alpha = \sin \beta$

•
$$\alpha = \beta + k \cdot 2\pi$$
 $(k \in \mathbb{Z})$

•
$$\alpha + \beta = \pi + k \cdot 2\pi$$
 $(k \in \mathbb{Z})$

 $\sin 4x = \sin x$

•
$$4x = x + k \cdot 2\pi$$
, $3x = k \cdot 2\pi$, $\underline{x = k \cdot \frac{2\pi}{3}}$ $(k \in \mathbb{Z})$

•
$$4x + x = \pi + k \cdot 2\pi$$
, $5x = \pi + k \cdot 2\pi$, $\underline{x = \frac{\pi}{5} + k \cdot \frac{2\pi}{5}}$ $(k \in \mathbb{Z})$

5.2.1. Órai feladatok / 4d.

$$\cos 2x - 3\cos x + 2 = 0$$

$$\cos^2 x - \sin^2 x - 3\cos x + 2 = 0$$

$$\cos^2 x - (1 - \cos^2 x) - 3\cos x + 2 = 0$$

$$2\cos^2 x - 3\cos x + 1 = 0$$

$$t := \cos x$$

$$2t^2 - 3t + 1 = 0$$
, $t_{1,2} = \frac{3 \pm \sqrt{9 - 4 \cdot 2}}{4} = \frac{3 \pm 1}{4}$, $t_1 = \frac{1}{2}$, $t_2 = 1$

•
$$\cos x = \frac{1}{2}$$
, $\underline{x = \pm \frac{\pi}{3} + k \cdot 2\pi}$ $(k \in \mathbb{Z})$

•
$$\cos x = 1$$
, $\underline{x = k \cdot 2\pi}$ $(k \in \mathbb{Z})$

5.2.1. Órai feladatok / 4e.

Ért.:
$$x \neq k \cdot \frac{\pi}{2} \quad (k \in \mathbb{Z})$$

1. út (melyen elakadunk)

$$\operatorname{ctg} x - \operatorname{tg} x = 2\sqrt{3}, \qquad \frac{1}{\operatorname{tg} x} - \operatorname{tg} x = 2\sqrt{3}, \qquad 1 - \operatorname{tg}^{2} x = 2\sqrt{3} \cdot \operatorname{tg} x$$

$$\operatorname{tg}^{2} x + 2\sqrt{3} \cdot \operatorname{tg} x - 1 = 0, \qquad t := \operatorname{tg} x, \qquad t^{2} + 2\sqrt{3}t - 1 = 0, \qquad \dots$$

2. út (melyen célba érünk)

$$\cot x - \cot x = 2\sqrt{3}$$

$$\frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} = 2\sqrt{3}$$

$$\cos^2 x - \sin^2 x = 2\sqrt{3} \cdot \sin x \cos x$$

$$\cos 2x = \sqrt{3} \cdot \sin 2x$$

$$\frac{\cos 2x}{\sin 2x} = \sqrt{3}$$

$$\cot 2x = \sqrt{3}$$

ctg
$$2x = \sqrt{3}$$
, $2x = \frac{\pi}{6} + k \cdot \pi$, $\underline{x = \frac{\pi}{12} + k \cdot \frac{\pi}{2}}$ $(k \in \mathbb{Z})$

5.2.1. Órai feladatok / 4i.

Ért.: a négyzetgyök miatt $1 + \cos x \ge 0$ szükséges, de ez minden $x \in \mathbb{R}$ esetén teljesül.

$$\sqrt{2} \cdot \sin x \cdot \cos \frac{x}{2} = \sqrt{1 + \cos x}$$

$$\sin x \cdot \cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}} \qquad y := \frac{x}{2}$$

$$\sin 2y \cdot \cos y = \sqrt{\frac{1 + \cos 2y}{2}} = \sqrt{\cos^2 y}$$

$$\sin 2y \cdot \cos y = |\cos y|$$

• 1. eset: $\cos y = 0$, azaz $y = \frac{\pi}{2} + k \cdot \pi \ (k \in \mathbb{Z})$, ekkor

$$\sin 2y \cdot \cos y = |\cos y|$$
$$\sin 2y \cdot 0 = |0| = 0$$

azonosság, vagyis minden $y = \frac{\pi}{2} + k \cdot \pi \ (k \in \mathbb{Z})$ megoldás.

• 2. eset: $\cos y > 0$, azaz $-\frac{\pi}{2} + k \cdot 2\pi < y < \frac{\pi}{2} + k \cdot 2\pi \ (k \in \mathbb{Z})$, ekkor

$$\sin 2y \cdot \cos y = |\cos y|$$

$$\sin 2y \cdot \cos y = \cos y$$

$$\sin 2y = 1$$

$$2y = \frac{\pi}{2} + k \cdot 2\pi$$

$$y = \frac{\pi}{4} + k \cdot \pi \qquad (k \in \mathbb{Z})$$

ezek közül a megengedett intervallumokban vannak: $y = \frac{\pi}{4} + k \cdot 2\pi \ (k \in \mathbb{Z}).$

• 3. eset: $\cos y < 0$, azaz $\frac{\pi}{2} + k \cdot 2\pi < y < \frac{3\pi}{2} + k \cdot 2\pi \ (k \in \mathbb{Z})$, ekkor

$$\sin 2y \cdot \cos y = |\cos y|$$

$$\sin 2y \cdot \cos y = -\cos y$$

$$\sin 2y = -1$$

$$2y = -\frac{\pi}{2} + k \cdot 2\pi$$

$$y = -\frac{\pi}{4} + k \cdot \pi \qquad (k \in \mathbb{Z})$$

ezek közül a megengedett intervallumokban vannak: $\underline{y = \frac{3\pi}{4} + k \cdot 2\pi} \ (k \in \mathbb{Z}).$

 $y = \frac{x}{2}$ volt, így x = 2y, visszatérve:

•
$$x = \pi + k \cdot 2\pi$$
 • $x = \frac{\pi}{2} + k \cdot 4\pi$ • $x = \frac{3\pi}{2} + k \cdot 4\pi$ $(k \in \mathbb{Z})$

Számegyenesen a megoldások (halványan függvényként az egyenlet két oldala):

5.2.1. Órai feladatok / 4m.

$$\cos 2x = \cos x - \sin x$$
$$\cos^2 x - \sin^2 x = \cos x - \sin x$$
$$(\cos x + \sin x) \cdot (\cos x - \sin x) = \cos x - \sin x$$

• 1. eset:
$$\cos x - \sin x = 0$$
, $\cos x = \sin x$, $\sin \left(\frac{\pi}{2} - x\right) = \sin x$
• $\frac{\pi}{2} - x = x + k \cdot 2\pi$, $2x = \frac{\pi}{2} + k \cdot 2\pi$, $\underline{x = \frac{\pi}{4} + k \cdot \pi}$ $(k \in \mathbb{Z})$
• $\frac{\pi}{2} - x + x = \pi + k \cdot 2\pi$, $0 \cdot x = \frac{\pi}{2} + k \cdot 2\pi$ $(k \in \mathbb{Z})$, nincs ilyen $x \in \mathbb{R}$

• 2. eset: $\cos x - \sin x \neq 0$, leoszthatunk vele

$$\cos x + \sin x = 1$$

$$\frac{1}{\sqrt{2}} \cdot \cos x + \frac{1}{\sqrt{2}} \cdot \sin x = \frac{1}{\sqrt{2}}$$

$$\sin \frac{\pi}{4} \cdot \cos x + \cos \frac{\pi}{4} \cdot \sin x = \frac{1}{\sqrt{2}}$$

$$\sin \left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

$$\circ x + \frac{\pi}{4} = \frac{\pi}{4} + k \cdot 2\pi, \qquad \underline{x = k \cdot 2\pi} \qquad (k \in \mathbb{Z})$$

$$\circ x + \frac{\pi}{4} = \frac{3\pi}{4} + k \cdot 2\pi, \qquad \underline{x = \frac{\pi}{2} + k \cdot 2\pi} \qquad (k \in \mathbb{Z})$$

5.2.1. Órai feladatok / 7a.

$$2\sin^2 x - \sin x - 1 > 0, \qquad y := \sin x$$

$$2y^2 - y - 1 > 0$$
, $y_{1,2} = \frac{1 \pm \sqrt{1 + 4 \cdot 2}}{4} = \frac{1 \pm 3}{4}$, $y_1 = -\frac{1}{2}$, $y_2 = 1$

$$y_1 = -\frac{1}{2}, \quad y_2 = 1$$

$$y<-\frac{1}{2}$$
vagy $y>1 \qquad \left(\text{másképp: } y\in (-\infty,-1/2)\cup (1,+\infty) \right.\right)$

•
$$\sin x < -\frac{1}{2},$$

$$-\frac{5\pi}{6} + k \cdot 2\pi < x < -\frac{\pi}{6} + k \cdot 2\pi \qquad (k \in \mathbb{Z})$$

• $\sin x > 1$, nincs ilyen $x \in \mathbb{R}$

5.2.1. Órai feladatok / 7c.

$$\frac{2\sin x + 1}{2\cos x} \le 0$$

• 1. eset:

$$\left. \begin{array}{l}
2\sin x + 1 \le 0 \\
2\cos x > 0
\end{array} \right\} \qquad \left. \begin{array}{l}
\sin x \le -1/2 \\
\cos x > 0
\end{array} \right\} \qquad \left. \begin{array}{l}
-\frac{5\pi}{6} + k \cdot 2\pi \le x \le -\frac{\pi}{6} + k \cdot 2\pi \\
-\frac{\pi}{2} + k \cdot 2\pi < x < \frac{\pi}{2} + k \cdot 2\pi
\end{array} \right\} \qquad (k \in \mathbb{Z})$$

$$-\frac{\pi}{2} + k \cdot 2\pi < x \le -\frac{\pi}{6} + k \cdot 2\pi \quad (k \in \mathbb{Z})$$

• 2. eset:

$$2\sin x + 1 \ge 0 \\ 2\cos x < 0$$

$$\sin x \ge -1/2 \\ \cos x < 0$$

$$-\frac{\pi}{6} + k \cdot 2\pi \le x \le \frac{7\pi}{6} + k \cdot 2\pi \\ \frac{\pi}{2} + k \cdot 2\pi < x < \frac{3\pi}{2} + k \cdot 2\pi$$

$$(k \in \mathbb{Z})$$

$$\frac{\pi}{2} + k \cdot 2\pi < x \le \frac{7\pi}{6} + k \cdot 2\pi \quad (k \in \mathbb{Z})$$

A teljes megoldás ezek uniója.

Érdemes lehet (legalább) egy periódusnyi előjelet táblázatban is összefoglalni.

	$-\pi$		$-\frac{5}{6}\pi$		$-\frac{1}{2}\pi$		$-\frac{1}{6}\pi$		$\frac{1}{2}\pi$		π
$2\sin x + 1$	+	+	0			_	0	+	+	+	+
$2\cos x$	_	_	_	_	0	+	+	+	0	_	_

Továbbá érdemes lehet a végső megoldást, az intervallumokat szemléltetni is. Esetleg a számlálót és a nevezőt mint függvényeket is.

