aws re: Invent

NET403-R

Deep dive: Container networking at scale on Amazon EKS & Amazon EC2

Ikenna Izugbokwe

Sr. Solutions Architect Amazon Web Services

Paavan Mistry

Specialist SA, Security Amazon Web Services

Agenda

- Introduction / Workshop environment overview
- Section 1: Kubernetes networking review
- Section 2: Amazon VPC networking
- Section 3: Amazon EKS networking
- Section 4: Kubernetes on EC2 networking (kops)

Workshop overview

Workshop environment setup

Workshop website https://www.awsk8snetworkshops.com

AWS Event Engine https://dashboard.eventengine.run/

AWS CloudFormation template creates two AWS Cloud9 EC2 environments

Amazon EKS AWS Cloud9 environment

Kops AWS Cloud9 environment

https://dashboard.eventengine.run

Who are you?

- 1. By using Event Engine for the relevant event, you agree to the <u>AWS Event Terms and Conditions</u> and the <u>AWS Acceptable Use</u>
 <u>Policy</u>. You acknowledge and agree that are using an AWS-owned account that you can only access for the duration of the relevant event. If you find residual resources or materials in the AWS-owned account, you will make us aware and cease use of the account. AWS reserves the right to terminate the account and delete the contents at any time.
- 2. You will not: (a) process or run any operation on any data other than test data sets or lab-approved materials by AWS, and (b) copy, import, export or otherwise create derivate works of materials provided by AWS, including but not limited to, data sets.
- 3. AWS is under no obligation to enable the transmission of your materials through [AWS Event Engine] and may, in its discretion, edit, block, refuse to post, or remove your materials at any time.
- 4. Your use of the [event engine] will comply with these terms and all applicable laws, and your access to [AWS Event Engine] will immediately and automatically terminate if you do not comply with any of these terms or conditions.

Team Hash (e.g. abcdef123456)

This is the 12 digit hash that was given to you or your team.

Invalid Hash

Who are you?

- 1. By using Event Engine for the relevant event, you agree to the <u>AWS Event Terms and Conditions</u> and the <u>AWS Acceptable Use Policy</u>. You acknowledge and agree that are using an AWS-owned account that you can only access for the duration of the relevant event. If you find residual resources or materials in the AWS-owned account, you will make us aware and cease use of the account. AWS reserves the right to terminate the account and delete the contents at any time.
- 2. You will not: (a) process or run any operation on any data other than test data sets or lab-approved materials by AWS, and (b) copy, import, export or otherwise create derivate works of materials provided by AWS, including but not limited to, data sets.
- 3. AWS is under no obligation to enable the transmission of your materials through [AWS Event Engine] and may, in its discretion, edit, block, refuse to post, or remove your materials at any time.
- 4. Your use of the [event engine] will comply with these terms and all applicable laws, and your access to [AWS Event Engine] will immediately and automatically terminate if you do not comply with any of these terms or conditions.

This is the 12 digit hash that was given to you or your team.

Windows users: use set or Set-Credential instead of export

Section 1

AWS container services overview

Deployment options

Amazon ECS

Amazon EKS

AWS Fargate

Kubernetes

Amazon ECR

Amazon EC2

Kubernetes concepts and architecture

Key Kubernetes concepts

- Kubernetes control plane
 - Provided by master node objects/components
- Kubernetes data plane
 - Provided by worker nodes objects/components
- Kubernetes master node
 - Kube-apiserver
 - Kube-controller-manager
 - Kube-scheduler
 - etcd
- Kubernetes worker nodes
 - Kubelet
 - Kube-proxy
 - Container runtime
 - Pods

Kubernetes architecture

EKS Kubernetes network architecture

Kubernetes container networking

Four networking problems

Container-to-container communications

Pod-to-pod communications

Pod-to-service communications

External-to-internal communications

What is a pod?

- Smallest and simplest computing unit
- Group of one or more containers
- Co-located and co-scheduled
- Share a network stack and storage
- Containers within a Pod share an IP address

From Kubernetes's perspective

Pods can communicate with other Pods

Every pod gets its own IP address

Mapping container ports to node(host) port not required

Section 2

Kubernetes networking implementation

Kubernetes networking implementations: CNIs

- Kubenet
- Calico
- Multus
- Cilium
- Cni-ipvlan-vpc-k8s
- Amazon-vpc-cni-k8s

Amazon EC2, VPC & hybrid networking considerations for Amazon EKS

Amazon EC2 and VPC considerations: Amazon EKS

- Amazon EC2 instance type
- Amazon EKS requires subnets in at least two AZs
- Use a separate VPC for each Amazon EKS cluster
- VPC DNS hostname and DNS resolution support

Amazon EC2 and VPC considerations (cont'd)

- Private subnets for worker nodes recommended
- Public subnets for load balancers
- Cluster upgrades require 2-3 IP's per initial cluster subnet
- Docker runs in the 172.17.0.0/16 CIDR range in Amazon EKS clusters
- Disable SNAT external VPC, VPN of AWS Direct Connect access

Pod IP wiring within VPC

SNAT consideration

VPC Public Subnet-10.1.0.0/24

SNAT consideration cont'd

Section 3

Amazon EKS: CNI details

CNI overview

Set up network namespace

Assign an IP to a pod

Clean up when a pod goes away

Tear down network namespace

CNI networking details: Control plane

Kubelet invokes CNI Add or Delete commands for pods

 CNI requests secondary IPs from ipamD and sets up networking stack for pod

For fast pod startup time, the IP address manager database (ipamD)
creates a secondary IP warm pool with 1 more ENI and its IP address

CNI networking details: Control plane

CNI networking details: Data plane

amazon-vpc-cni-k8s: New node starting

amazon-vpc-cni-k8s: Pod scheduled

amazon-vpc-cni-k8s: Pod scheduled

amazon-vpc-cni-k8s: More IPs added

SRC-MAC: Pod1's eth0 MAC

SRC-IP: Pod1

DST-MAC: veth-pod1 MAC

DST-IP: Pod2

SRC-IP: Pod1

DST-MAC: veth-pod2

DST-IP: Pod2

SRC-MAC: veth-pod2 MAC

SRC-IP: Pod1

DST-MAC: Pod2 eth0 MAC

DST-IP: Pod2

Done!

Now, pod 2 will send a package to pod 3 on another node

SRC-MAC: Pod2's eth0 MAC

SRC-IP: Pod2

DST-MAC: veth-pod2 MAC

DST-IP: Pod3

SRC-MAC: eth1 MAC

SRC-IP: Pod2

DST-MAC: Gateway MAC

DST-IP: Pod3

> ip route show table 2

default via VPC-router-IP dev eth1
VPC-router-IP dev eth1 scope link

HPC, ML, Big Data workload optimizations

AWS_VPC_K8S_CNI_CUSTOM_NETWORK_CFG

WARM_ENI_TARGET

WARM_IP_TARGET

amazon-vpc-cni-k8s: Configuration

	Default	Purpose
WARM_IP_TARGET	0	For small subnets, reduce the IP usage; for small clusters with low pod churn
WARM_ENI_TARGET	1	Increase to pre-allocate more IPs for clusters with a lot of pod churn (also related to MAX_ENI)
AWS_VPC_K8S_CNI_ EXTERNALSNAT	false	When you have an external NAT gateway for the VPC
AWS_VPC_K8S_CNI_ EXCLUDE_SNAT_CIDRS	un	When you have peered VPCs
AWS_VPC_K8S_CNI_ LOG_FILE	un	Common to set to stdout . (Adjustable _LOGLEVEL)

Section 4

Kubernetes on EC2-kops

Networking explained

Pod-to-pod communications (kops)

Pods on the same instance:

Pod-to-pod communications (kops)

Pods across EC2 instances:

Pod-to-service communications (kops):

External-to-internal communications (kops):

Workshop activity module 0: Prerequisites

Workshop activity module 1: Container networking

Workshop activity module 2: Amazon EKS & kops cluster creation

Workshop activity module 3: Amazon EKS cluster networking

Workshop activity module 4: Kops cluster networking

References:

- https://github.com/aws/amazon-vpc-cni-k8s
- https://aws.amazon.com/ec2/instance-types/
- https://kubernetes.io/
- https://kubernetes.io/docs/concepts/cluster-administration/networking/
- https://kubernetes.io/docs/concepts/services-networking/service/
- https://aws.amazon.com/blogs/compute/kubernetes-clusters-aws-kops/

Learn networking with AWS Training and Certification

Resources created by the experts at AWS to help you build and validate networking skills

Free digital courses cover topics related to networking and content delivery, including Introduction to Amazon CloudFront and Introduction to Amazon VPC

Validate expertise with the **AWS Certified Advanced Networking - Specialty** exam

Visit aws.amazon.com/training/paths-specialty

Thank you!

Ikenna Izugbokwe

ikeni@amazon.com

Paavan Mistry

paavan@amazon.co.uk

Please complete the session survey in the mobile app.

