NE 323 — 802.11 / Wifi. Quentin Giorgi

"Un pessimiste voit la difficulté dans chaque opportunité, un optimiste voit l'opportunité dans chaque difficulté." Winston Churchill

Historique:

- Modèle OSI de référence:
 - 802.11 définit le fonctionnement de la couche physique et de la souscouche MAC (Media Access Control)
 - Transmission de trames sur un support à accès multiples.

Sous-couche LLC (obligatoire)

Sous-couche MAC

Physique
PLCP
PMD

Application

Présentation

Session

Transport

Réseau

Liaison

Physique

Wifi 802.11

- Ethernet:
 - Différentes couche physiques
 - Couche MAC homogène
 - Half duplex
 - Gestion possible QoS (EDCF ou PCF)

- Couches physiques :
 - Seront vues rapidement, permettent de faire transiter avec différents codages des informations sur un média radio à 2,4Ghz ou 5GHz.
 - Composées de deux couches
 - PLCP (Physical Layer Convergence Procedure)
 - PMD (Physical Media Dependant)

- Suport radio:
 - Dans la gamme ISM de 2,4GHz ou 5GHz, et :
 - potentiellement bruité,
 - partagé avec d'autres réseaux,
 - dont les conditions de propagation varient dans le temps,
 - topologie dynamique (les nœuds de communication bougent),
 - sans frontières « physiques »,
 - Avec eventuellement pas de connectivité entre certaines stations. (diffusion limitée)

- Suport radio:
 - Ne permet pas de recevoir en même temps que l'emission (support half duplex) par nature.
 - Difficulté de distinguer un signal reçu de faible puissance % à l'emission de forte puissance.
 - Diffusion limitée
 - → la détection des collisions n'est pas possible...
 - La sous-couche MAC implémente CSMA/CA.

- Suport radio (choix d'implémentation)
 - Support de stations utilisant des codages différents sur le même réseau, pour :
 - Gérer les problèmes de compatibilité entre les différentes versions de 802.11 (ex b/g)
 - Gérer les problèmes de propogation.
 Une station lointaine utilisera un codage ne permettant qu'un débit plus faible, mais pourra toujours communiquer.

- Couches physiques, principes de base :
 - Codage (ex codeur sans mémoire)
 - 0 → 000
 - 1 → 111

- Couches physiques, principes de base :
 - Codage (ex codeur sans mémoire)
 - 0 → 000
 - 1 → 111

- Couches physiques, principes de base :
 - Entrelacement.

- Couches physiques, principes de base :
 - Modulation

- 802.11 (legacy) 1997
 - 3 couches physiques différentes
 - Infra red → obsolete
 - FHSS (Frequency Hoping Spread Spectrum)
 - DSSS (Direct Sequence Spread Spectrum)

débit de 1Mbits/s ou 2Mbits/s

Couche PLCP

- 802.11a 1999
 - 1 couche physique
 - OFDM
 - 5GHz
 - Débits de 6, 9, 12, 18, 24, 36, 48, et 54
 Mb/s.
 - Support obligatoire des débits jusqu'à 24Mb/s

Couche PLCP

- **802.11b 1999**
 - 1 couche physique
 - HR-DSSS
 - 2,4GHz
 - Débits de 1, 2, 5.5, 11 Mb/s.

Couche PLCP

- **802.11g 2003**
 - couche physique
 - ERP OFDM ou DSSS-OFDM (compatibilité)
 - 2,4GHz
 - Débits de 6,9,12,18,24,36,48,54 Mbit/s.

Couche PLCP

Source IEEE 802.11

- 802.11n 2003
 - couche physique
 - ERP OFDM
 - 2,4 GHz
 - Débits jusqu'à 150 Mbit/s (si canaux 40MHz)

Couche PLCP

Source IEEE 802.11

Figure 20-1—PPDU format

- Sous-couche MAC
 - CSMA/CA.

Une station veut envoyer un message

Une station veut envoyer un message

Truncated Binary Exponential Backoff.

Probabilité de succès en fonction de n slots (pour 1,2,...8 stations simultanées)

- Malgré CSMA/CA des collisions peuvent toujours exister, il y a donc nécessité de fiabiliser l'échange de données par l'emission d'une trame d'acquittement de la destination vers la source.
 - à la fin de la trame précédente.
 - L'acquitement est-il ensuite en compétition avec les autres stations en attente CS, pour l'accès au média ?
 - Que cela impliquerait-il ?
 - Toutes les trames de données sont elles acquittables ?

- Sous-couche MAC
 - CSMA/CA.

Une station A veut envoyer un message

Une station B veut envoyer un message

- Truncated Binary Exponential Backoff
 - « Effet capture » du media ?
 - Dans le cas où une station ne peut pas emettre sa trame (car le backoff choisi est inférieur à celui d'une autre station), la valeur de son backoff est conservé pour les prochaines tentatives.
 - Evite l' « effet capture »

- Problème de la station cachée
 - 2 méthodes de CCA
 - Physique (comme avant), écoute de la porteuse
 - NAV (Network Allocation Vector), canal virtuel permettant de réserver le média pendant le temps des émissions.

Une station met à jour son NAV, si:

- elle n'est pas la destination de la trame.
- le temps indiqué est > à la durée de son NAV actuel

Exercice :

- Quelle est la durée de transmission indiquée dans une trame :
 - De type RTS ?
 - De type CTS ?
 - De type data ?
- La durée dépend t-elle de la modulation utilisée ?

- NAV, utilisation.
 - Le NAV peut servir aussi pour réserver le média pour les stations « cachées » de la modulation utilisée (ex 802.11g/802.11b)
 - L'émission d'une station 802.11g via une modulation non supportée par une station 802.11b ne sera peut être pas perçue par le mécanisme de CS de la station 802.11b
 - Risque élevé de collision
 - CTS to self.

- Format des trames :
 - Frame Control, un champ important.
 - 4 champs d'adresses
 - Taille max de données 2324 octets
 - Controle d'erreurs FCS. (crc)
 - Format différent selon le type de trame

Figure 7-1—MAC frame format

- Frame control
 - 3 types de trames:
 - Management (ex : association,beacon,probe, authentication)
 - Control (ex :RTS,CTS,ACK)
 - Data (ex : Data, QoSData)

Figure 7-2—Frame Control field

From DS/ To DS :

Fragmentation:

- Mécanisme permettant de se prémunir des effets des perturbations
- Une perturbation courte n'impactera que la transmission d'un fragment, pas de toute la trame, seul le fragment impacté est retransmis.
- Utilisation du bit (retry) et du Sequence control field (12 bits d'identifiant, 4 bits de numéro de fragments)

Fragmentation:

Fragmentation:

Interconnexion :

Une station qui veut se connecter au réseau doit:

- découvrir les BSSID environnants
 - scan actif (probe)
 - scan passif (attente balise)
- s'authentifier avec l'AP (forme obsolète)
- s'associer avec l'AP.
- echange d'informations concernant les fonctionnalités suportées (méthode d'accès DCF/PCF, modulations, gestion de l'energie, etc...)

Interconnexion :

- La sécurisation de l'accès (authentificaton)
 anciennement basée sur les trames
 d'authentification (cf. WEP) sont remplacées
 depuis 802.11i par le WPA/WPA2
- WPA/WPA2 implémente la norme 802.1x
 - WPA personnal (PSK/TKIP)
 - WPA Entreprise (EAP/CCMP)
 - Seule les trames EAP (Extended Authentication Protocol) sont acceptées par l'AP tant que l'authentification n'est pas réussie.

- 802.11 c'est aussi :
 - Gestion des modes économies d'énergie
 - Plusieurs modes de fonctionnement de la sous couche MAC (DCF/PCF/HCF)
- Exercice :
 - Où est le champ protocole de couche supérieur ???

