Series

Definición 1. Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión en \mathbb{R} . Definimos la sucesión de sumas parciales $(s_n)_{n\in\mathbb{N}}$ de $(x_n)_{n\in\mathbb{N}}$ de manera recursiva:

$$s_1 := \sum_{k=1}^{1} x_k = x_1$$
$$s_{n+1} := \sum_{k=1}^{n+1} x_k = x_{n+1} + \sum_{k=1}^{n} x_k.$$

Si la sucesión $(s_n)_{n\in\mathbb{N}}$ converge, nos referimos a su límite como la suma de la serie y decimos que la sucesión $(x_n)_{n\in\mathbb{N}}$ es sumable. La serie será denotada de la siguiente manera:

$$\sum_{k=1}^{\infty} x_k := \lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^{n} x_k.$$

Como nos interesa la convergencia de la sucesión de sumas parciales, reformulamos el criterio de convergencia sucesiones de Cauchy para sumas.

Proposición 2. Sea $(x_k)k \in \mathbb{N}$ una sucesión en \mathbb{R} . Entonces, $(x_k)_{k \in \mathbb{N}}$ es sumable si y solo si para cada $\varepsilon > 0$ existe $N \in \mathbb{N}$ tal que para todos n, m > N, n > m,

$$|x_{m+1} + \dots + x_n| < \varepsilon.$$

Proposición 3. Sean $a, b \in \mathbb{R}$ y $(x_k)_{k \in \mathbb{N}}$, $(y_k)_{k \in \mathbb{N}}$ tales que

$$\sum_{k=1}^{\infty} x_k = a, \quad y \quad \sum_{k=1}^{\infty} y_k = b.$$

Entonces,

a)

$$\sum_{k=1}^{\infty} (x+y)_k = a+b.$$

b) Sea $\alpha \in \mathbb{R}$. Entonces,

$$\sum_{k=1}^{\infty} (\alpha x)_k = \alpha c.$$

Demostración. Ejercicio.

Lema 4. Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión sumable. Entonces,

$$\lim_{k \to \infty} x_k = 0.$$

Demostración. Denotamos por $(s_n)_{n\in\mathbb{N}}$ a la sucesión de sumas parciales. Notamos que para cada $n\in\mathbb{N}$,

$$x_{n+1} = s_{n+1} - s_n.$$

Pasando al límite de ambos lados de la igualdad, tenemos

$$\lim_{k \to \infty} x_{k+1} = \lim_{n \to \infty} (s_{n+1} - s_n) = 0.$$

El lema anterior no da una condición suficiente para la convergencia de series. Es decir, existen sucesiónes que convergen a 0 pero no son sumables.

Ejemplo 5. Consideramos la sucesión $\left(\frac{1}{k}\right)_{k\in\mathbb{N}}$.

Como la sucesión de sumas parciales es creciente, basta analizar una subsucesión. Sea $\alpha \colon \mathbb{N} \to \mathbb{N}, \ \alpha(k) \coloneqq 2^k$. Se puede verificar por inducción que para cada $k \in \mathbb{N}$,

$$s_{\alpha(k)} \ge 1 + \frac{k}{2}.$$

Por lo tanto, la sucesión de sumas parciales no es acotada.

Ejemplo 6. Sea $a \in (-1,1)$. Consideramos la sucesión $(a^k)_{k \in \mathbb{N}}$. Veamos que esta sucesión es sumable.

Para cada $n \in \mathbb{N}$, denotamos por S_n a la n-ésima suma parcial. Entonces, para cada $n, m \in \mathbb{N}$, si n > m,

$$|S_n - S_m| = |a^{m+1} + \dots + a^n|$$

= $\left| \frac{a^{n+1} - a^{n+1}}{1 - a} \right|$.

Como |a| < 1, se tiene que $|a|^{n+1}$, $|a|^{m+1} < 1$. Luego,

$$|S_n - S_m| \le \frac{|a|^{n+1} + |a|^{m+1}}{1 - a} \le 2\frac{|a|^{m+1}}{1 - a}.$$

Recordemos que $\lim_{k\to\infty} a^k = 0$. Por lo tanto, $(S_n)_{n\in\mathbb{N}}$ es de Cauchy. Es decir, la sucesión $(a^k)_{k\in\mathbb{N}}$ es sumable. Notamos que

$$S_{n+1} = a + a^2 + \dots + a^n + a^{n+1}$$

= $a + a(a + \dots + a^n)$
= $a + aS_n$.

Luego, tenemos la identidad

$$S_{n+1} - aS_n = a. (1)$$

Denotamos por S a la suma de la suceción. Entonces, al tomar el límite en (1), tenemos

$$S - aS = a$$

$$S(1 - a) = a$$

$$S = \frac{a}{1 - a}.$$

Así, para cada $a \in (-1, 1)$,

$$\sum_{k=1}^{\infty} a^k = \frac{a}{1-a}.$$

La siguiente proposición se sigue inmediatamente de la teoría de sucesiones.

Proposición 7. Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión de números reales no negativos. Supongamos que $(s_n)_{n\in\mathbb{N}}$ es acotada. Entonces, $(x_k)_{k\in\mathbb{N}}$ es sumable.

Definición 8. Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R} . Decimos que $\sum_{k=1}^{\infty} x_k$ es absolutamente sumable si $(|x_k|)_{k\in\mathbb{N}}$ es sumable.

Proposición 9. Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión absolutamente sumable. Entonces, $(x_k)_k$ es sumable.

Proposición 10. Sean $(x_k)_{k\in\mathbb{N}}$ y $(y_k)_{k\in\mathbb{N}}$ sucesiones de números reales no negativos tales que para cada $k\in\mathbb{N}$, $x_k\leq y_k$. Supongamos que $(y_k)_{k\in\mathbb{N}}$ es sumable. Entonces, $(x_k)_{k\in\mathbb{N}}$ es sumable.

Proposición 11. Sean $(x_k)_{k\in\mathbb{N}}$ y $(y_k)_{k\in\mathbb{N}}$ sucesiones tales que

$$\lim_{k \to \infty} \frac{x_k}{y_k} \neq 0.$$

Entonces, $(x_k)_{k\in\mathbb{N}}$ es sumamble, si y solo si $(y_k)_{k\in\mathbb{N}}$ es sumable.

Demostración. Sea $c := \lim_{k \to \infty} \frac{x_k}{y_k}$. Entonces, existe $N \in \mathbb{N}$ tal que para k > N,

$$\frac{1}{c}x_k \le y_k \le cx_k.$$

Así, el resultado se sigue de la proposición 10.

Los siguientes resultados se siguen de la convergencia de la serie geometrica (Ejemplo 6).

Proposición 12. Sean $(x_k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R} y $r\in(0,1)$ tal que existe $N\in\mathbb{N}$ tal que para todo n > N,

$$|x_n|^{\frac{1}{n}} < r.$$

Entonces, $(x_k)_{k\in\mathbb{N}}$ es absolutamente sumable.

 $Si \ r > 1$, la serie diverge.

Corolario 13 (Criterio de la raíz enésima). Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R} y sea r := $\lim_{k\to\infty} |x_k|^{\frac{1}{k}}$.

- 1. Si r < 1, la sucesión es absolutamente sumable.
- 2. $Si \ r > 1$, la serie diverge.

Proposición 14. Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R} tal que para cada $k\in\mathbb{N}, x_k\neq 0$. Supongamos que existe $r \in (0,1)$ tal que para todo $k \in \mathbb{N}$,

$$\frac{x_{k+1}}{x_k} \le r.$$

Entonces, $(x_k)_{k \in \mathbb{N}}$ es absolutamente sumable. Si r > 1 y $\frac{|x_{k+1}|}{|x_k|} > r$, la serie diverge.

Corolario 15 (Criterio del cociente). Sea $(x_k)_{k\in\mathbb{N}}$ una sucesión en \mathbb{R} tal que para cada $k \in \mathbb{N}, \ x_k \neq 0. \ Sea \ r := \lim_{k \to \mathbb{N}} \frac{x_{k+1}}{x_k}.$

- 1. Si r < 1, $(x_k)_{k \in \mathbb{N}}$ es absolutamnte sumable.
- 2. $Si \ r > 1$, la serie diverge.

Ejercicios

- 1. Determinar la convergencia o divergencia de las siguientes series. De ser posible, encontrar su suma:

 - a) $\sum_{k=1}^{\infty} \frac{1}{4^k}$. b) $\sum_{k=1}^{\infty} \frac{3^{k-1}}{2^k}$
 - c) $\sum_{k=1}^{\infty} \log\left(2^{\frac{1}{k}}\right)$.
 - $d) \sum_{k=1}^{\infty} \left(\frac{1}{\sqrt{k}} \frac{1}{\sqrt{k+1}} \right).$
 - $e) \sum_{k=1}^{\infty} \frac{1}{k(k+2)}$.

$$f) \sum_{k=1}^{\infty} \frac{k!}{k^k}.$$

2. Considere la serie

$$\sum_{k=1}^{\infty} \left(\frac{x}{2}\right)^k.$$

¿Para qué valores de x se garantiza su convergencia?