实分析第六周作业

涂嘉乐 PB23151786

2025年4月3日

周一

T1.

证明 由单调性知

$$\int_{\mathbb{R}^d} f dx \ge \int_{E_{\alpha}} f dx \ge \int_{E_{\alpha}} \alpha dx = \alpha m(E_{\alpha})$$

所以 $m(E_{\alpha}) \leq \frac{1}{\alpha} \int_{\mathbb{R}^d} f dx$

T2.

证明 记 A 为 f 可积, B 为 $\sum\limits_{k=-\infty}^{+\infty}2^km(F_k)<\infty$, C 为 $\sum\limits_{k=-\infty}^{+\infty}2^km(E_{2^k})<\infty$

首先我们证明一个引理(积分区域可加性的无穷版本): 设 $\{F_i\}_{i=1}^\infty$ 为可数不交集合 $E=\coprod_{i=1}^\infty F_i$, $f\in L^1(E)$,则

$$\int_{E} f \mathrm{d}x = \sum_{i=1}^{\infty} \int_{F_{i}} f \mathrm{d}x$$

记 $E_k = \bigsqcup_{i=1}^k F_i$,则 $E_1 \subseteq E_2 \subseteq \cdots$,且 $E_k \nearrow E$,下面证明 $f\chi_{E_i} \nearrow f\chi_E, \forall x \in \mathbb{R}^d$

若 $x \in E$, 则 $\exists N_x \gg 1$, s.t. $\forall n \geq N_x, x \in E_n \Longrightarrow f(x) \chi_{E_i}(x) = f(x) = f(x) \chi_{E_i}(x)$, $\forall n \geq N_x$,故 $f \chi_{E_i}(x) \nearrow f \chi_{E_i}(x)$

若 $x \notin E$, 则对 $\forall n \in \mathbb{N}^*, x \notin E_n$, 所以 $f\chi_{E_i}(x) = 0 = f\chi_E(x), \forall i \in \mathbb{N}^*$, 故 $f\chi_{E_i} \nearrow f\chi_E$ 这就说明了 $\forall x \in \mathbb{R}^d, f\chi_{E_i} \nearrow f\chi_E$, 因此

$$\sum_{i=1}^{\infty} \int_{F_i} f dx = \lim_{n \to \infty} \sum_{i=1}^n \int_{F_i} f dx = \lim_{n \to \infty} \int_{\prod_{i=1}^n F_i} f dx$$
$$= \lim_{n \to \infty} \int_{E_n} f dx = \lim_{n \to \infty} \int_{\mathbb{R}^d} f \chi_{E_n} dx$$
$$= \int_{\mathbb{R}^d} f \chi_{E_n} dx = \int_{E} f dx$$

第二行到第三行是因为 MCT,接下来回到本题,因为我们假设了 f 处处有限,所以当 k 足够大时, F_k,E_{2^k} 是空集,因此

$$\{f(x)>0\}=\bigcup_{k=-\infty}^{+\infty}F_k=\lim_{n\to\infty}\bigcup_{k=-n}^{\infty}F_k,\quad \{f(x)>0\}=\bigcup_{k=-\infty}^{+\infty}E_{2^k}=\lim_{n\to\infty}\bigcup_{k=-n}^{\infty}E_{2^k}$$

 $(A)\Longrightarrow (B)$: 由 f 可积知 $\int f\mathrm{d}x<\infty$, 因为在 F_k 上有 $f(x)>2^k$, 所以

$$\sum_{k=-\infty}^{+\infty} 2^k m(F_k) = \sum_{k=-\infty}^{+\infty} \int_{F_k} 2^k dx \le \sum_{k=-\infty}^{+\infty} \int_{F_k} f dx$$
$$= \int_{\bigsqcup_{k=-\infty}^{+\infty} F_k} f dx = \int_{\{f(x)>0\}} f dx$$
$$= \int_{\mathbb{R}^d} f dx < \infty$$

第一行到第二行是由刚刚的引理

 $(B) \Longrightarrow (A)$: 因为在 F_k 上有 $f(x) \leq 2^{k+1}$, 所以

$$\frac{1}{2} \int_{\mathbb{R}^d} f dx = \frac{1}{2} \sum_{k=-\infty}^{+\infty} \int_{F_k} f dx \le \frac{1}{2} \sum_{k=-\infty}^{+\infty} \int_{F_k} 2^{k+1} dx$$
$$= \sum_{k=-\infty}^{+\infty} \int_{F_k} 2^k dx < \infty$$

至此我们证明了 A, B 等价

$$(B) \Longleftrightarrow (C):$$
 因为在 $F_k = E_{2^k} \backslash E_{2^{k+1}}$,且 $E_{2^{k+1}} \subseteq E_{2^k}$,所以 $m(F_k) = m(E_{2^k}) - m(E_{2^{k+1}})$

$$\sum_{k=-\infty}^{+\infty} 2^k m(F_k) = \sum_{k=-\infty}^{+\infty} 2^k [m(E_{2^k}) - m(E_{2^{k+1}})] = \sum_{k=-\infty}^{+\infty} 2^k m(E_{2^k}) - \sum_{k=-\infty}^{+\infty} 2^k m(E_{2^{k+1}})$$

$$= \sum_{k=-\infty}^{+\infty} 2^k m(E_{2^k}) - \frac{1}{2} \sum_{k=-\infty}^{+\infty} 2^{k+1} m(E_{2^{k+1}}) = \frac{1}{2} \sum_{k=-\infty}^{+\infty} 2^k m(E_{2^k})$$

这就说明 (B)(C) 同敛散

(1). 依题意
$$a > 0$$
,因为 $|x|^{-a} > 2^k \iff |x| < 2^{-\frac{k}{a}}$,所以

$$m(E_{2^k}) = \begin{cases} m(B(0,1)), & k \le 0 \\ 2^{-\frac{kd}{a}} m(B(0,1)), & k \ge 0 \end{cases}$$

所以

$$\sum_{k=-\infty}^{+\infty} 2^k m(E_{2^k}) = \sum_{k=-\infty}^{0} 2^k m(B(0,1)) + \sum_{k=1}^{+\infty} 2^k \cdot 2^{-\frac{kd}{a}} \cdot m(B(0,1))$$
$$= 2m(B(0,1)) + m(B(0,1)) \sum_{k=1}^{\infty} 2^{k(1-\frac{d}{a})}$$

所以 f 可积 \iff $1 - \frac{d}{a} < 0$, 即 d > a

(2). 依题意 b > 0,因为 $|x|^{-b} > 2^k \iff |x| < 2^{-\frac{k}{b}}$,所以

$$m(E_{2^k}) = \begin{cases} 0, & k \ge 0 \\ \left(2^{-\frac{kd}{a}} - 1\right) \cdot m(B(0, 1)) \end{cases}$$

所以

$$\sum_{k=-\infty}^{+\infty} 2^k m(E_{2^k}) = \sum_{k=-\infty}^{-1} 2^k \cdot \left(2^{-\frac{kd}{a}} - 1\right) \cdot m(B(0,1))$$

$$= m(B(0,1)) \sum_{k=-\infty}^{-1} 2^{k\left(1 - \frac{d}{a}\right)} - m(B(0,1)) \sum_{-\infty}^{-1} 2^k$$

$$= m(B(0,1)) \sum_{k=-\infty}^{-1} 2^{k\left(1 - \frac{d}{a}\right)} - m(B(0,1))$$

所以 f 可积 \Longleftrightarrow $1 - \frac{d}{b} > 0$, 即 d < b

T3.

解 考虑

$$f_n(x) = \begin{cases} n, & x \in (0, \frac{1}{n}] \\ 0, & x \in \{0\} \cup (\frac{1}{n}, 1] \end{cases}, \quad f(x) = 0, \forall x \in [0, 1]$$

下面证明 $f_n(x) \to f(x), \forall x \in [0,1]$: 首先若 x=0, 则 $f(0)=f_n(0)=0$, 显然有 $f_n(0) \to f(0)$; 假设 $x \in (0,1]$, 则 $\exists N_x \gg 1, \text{s.t.} \ \forall n \geq N_x, x > \frac{1}{n} \Rightarrow f_n(x) = 0$, 所以 $f_n(x) \to f(x) = 0$ 但是 $\int_{[0,1]} f_n(x) \mathrm{d}x = \int_0^{\frac{1}{n}} n \mathrm{d}x = 1$, 而 $\int_{[0,1]} f(x) \mathrm{d}x = 0$, 故

$$\lim_{k \to \infty} \int_{[0,1]} f_k(x) dx \neq \int_{[0,1]} f(x) dx$$

T4.

证明 (1). 考虑

$$h(x) = \begin{cases} \max\{f(x), g(x)\}, & f(x) < +\infty, g(x) < +\infty \\ +\infty, & f(x) = +\infty \end{cases}$$
 or $g(x) = +\infty$

所以 $f \leq h, g \leq h$, 且因为 f = g a.e $x \in E$, 所以 $\forall x \in \{x \in E : f(x) = g(x)\}$, 有

$$h(x) = \max\{f(x), g(x)\} = f(x) = g(x)$$

所以

$$f = h$$
 a.e $x \in E \iff h - f = 0$ a.e $x \in E \iff \int_E (h - f) dx = 0$

同理我们有 $\int_E (h-g) dx = 0$, 因此

$$\begin{cases} \int_E h dx = \int_E (h - f) + f dx = \int_E (h - f) dx + \int_E f dx = \int_E f dx \\ \int_E h dx = \int_E (h - g) + g dx = \int_E (h - g) dx + \int_E g dx = \int_E g dx \end{cases}$$

Fr $\int_E h \mathrm{d}x = \int_E f \mathrm{d}x = \int_E g \mathrm{d}x$

(2). 因为 $f_k \nearrow f$ a.e $x \in E$, 记 N 为 E 中 $f_k(x)$ 不单调递增趋于 f(x) 的集合,则 m(N) = 0, 且 $f_k \nearrow f, \forall x \in E \backslash N$,由 MCT 知

$$\lim_{k \to \infty} \int_{E \setminus N} f_k dx = \int_{E \setminus N} f dx$$

因为 $f\chi_{E\backslash N}=f\chi_E$ a.e $x\in E$ (这是因为 $m(\left\{f\chi_{E\backslash N}\neq f\chi_E\right\})=m(N)=0$),同理对 $\forall k\in\mathbb{N}^*$ 也有 $f_k\chi_{E\backslash N}=f_k\chi_E$,所以

$$\int_{E} f_{k} dx = \int f_{k} \chi_{E} dx = \int f_{k} \chi_{E \setminus N} dx = \int_{E \setminus N} f_{k} dx, \quad \forall k \in \mathbb{N}^{*}$$

同理 $\int_{E \setminus N} f dx = \int_{E} f dx$, 故

$$\lim_{k\to\infty}\int_E f_k\mathrm{d}x = \lim_{k\to\infty}\int_E f\mathrm{d}x$$

周三

T1.

解 (a). 对 $\forall n \in \mathbb{Z}$,考虑在 [n,n+1] 中构造一个底为 $2^{-2|n|}$,高为 $2^{|n|}$ 的三角形,它的顶点为 n 和 $n+\frac{1}{2^{2|n|}}$,记

$$E_n = \left(n, n + \frac{1}{2^{2n}}\right), \quad E = \bigcup_{n = -\infty}^{+\infty} E_n$$

考虑函数

$$f(x) = \begin{cases} 2^{3|n|+1} \inf_{y \in E^c} |x - y|, & x \in E_n \\ 0, & x \in E^c \end{cases}$$

因此当 x 位于每个 E_n 中点时,f(x) 取得 E_n 上的最大值,为 $2^{3|n|+1} \cdot \frac{1}{2^{2|n|}} \cdot \frac{1}{2} = 2^{|n|}$,因此在 E_n 上的积分为 f(x) 图像与 E_n 所围成的三角形的面积,即

$$\int_{E_n} f dx = \frac{1}{2} \cdot \frac{1}{2^{2|n|}} \cdot 2^{|n|} = \frac{1}{2^{|n|+1}}$$

所以

$$\int_{\mathbb{R}} f dx = \sum_{n=-\infty}^{+\infty} \frac{1}{2^{|n|+1}} = \frac{1}{2} + 2 \sum_{n=1}^{\infty} \frac{1}{2^{n+1}} = \frac{3}{2}$$

但是在每个 E_n 上, f 的最大值为 $2^{|n|}$, 所以

$$\lim\sup_{x\to\infty} f(x) = \infty$$

(b). 假设 $\lim_{|x|\to\infty} f(x) \neq 0$,则存在 $\varepsilon_0 > 0$ (不妨设 $\varepsilon_0 > 0$,否则考虑 -f(x))s.t. $\forall M > 0, \exists |x| > M$, s.t. $f(x) \geq \varepsilon_0$,所以我们可以构造一个数列 $\{x_n\}$ 满足: $|x_{n+1}| > |x_n| + 1$,且 $\forall n \in \mathbb{N}^*, f(x_n) \geq \varepsilon_0$,具体如下: 取 M = 1,则 $\exists |x_1| > 1$, s.t. $f(x_1) \geq \varepsilon_0$,取 $M_2 = |x_1| + 1$,则 $\exists |x_2| > M_2$, s.t. $f(x_2) \geq \varepsilon_0$,依次下去即可

由 f 一致连续知, 对 $\frac{\epsilon_0}{2} > 0$, $\exists \delta' > 0$, s.t. $\forall |x_1 - x_2| < \delta', |f(x_1) - f(x_2)| < \frac{\epsilon_0}{2}$, 取 $\delta = \min\left\{\delta', \frac{1}{2}\right\}$, 则对 $\forall n \in \mathbb{N}^*$, 在 $(x_n - \delta, x_n + \delta)$ 上,均有 $f(x) > \frac{\epsilon_0}{2}$,因此我们得到了无穷多个长度为 2δ ,且两两不交的区间,且区间内的点取值均大于 $\frac{\epsilon_0}{2}$,故 $m\left(\left\{x: f(x) > \frac{\epsilon_0}{2}\right\}\right) = \infty$,由切比雪夫不等式

$$\int_{\mathbb{R}} f dx \ge \frac{\varepsilon_0}{2} m \left(\left\{ x : f(x) > \frac{\varepsilon_0}{2} \right\} \right) = \infty$$

故 f 不可积,矛盾! 因此 $\lim_{|x|\to\infty} f(x) = 0$

T2.

证明 假设 f(x) 不满足 $f(x) \geq 0$ a.e $x \in \mathbb{R}$,则 $A \stackrel{\mathrm{def}}{=} m(\{f < 0\}) > 0$,又因为

$$\left\{ f < -\frac{1}{n} \right\} \nearrow \bigcup_{n=1}^{\infty} \left\{ f < -\frac{1}{n} \right\} = \left\{ f < 0 \right\}$$

所以

$$\lim_{n\to\infty} m\left(\left\{f<-\frac{1}{n}\right\}\right) = A \Longrightarrow \exists N\gg 1, \text{s.t.} \ \forall n\geq N, m\left(\left\{f<-\frac{1}{n}\right\}\right) > \frac{A}{2}$$

因此对于 $E_n = \left\{ f < -\frac{1}{n} \right\}$, 当 $n \geq N$ 时有

$$\int_{E_n} f dx \le \int_{E_n} -\frac{1}{n} dx = -\frac{1}{n} m(E_n) < -\frac{A}{2n} < 0$$

但由 f 可测知, E_n 可测,且不满足 $\int_{E_n} f \mathrm{d}x \geq 0$,故矛盾!因此 $A = m(\{f < 0\}) = 0$

T3.

证明 设 $a_j(x) = \chi_{E_j}(x)$, 由于

$$\limsup_{j\to\infty} E_j = \{$$
 存在无穷多个 j ,使得 $x \in E_j \}$

因此 $x \in \limsup_{j \to \infty} E_j \iff \sum_{j=1}^{\infty} a_j(x) = \infty$,所以 $m\left(\sum_{j=1}^{\infty} a_j(x) = \infty\right) = m\left(\limsup_{j \to \infty} E_j\right)$,由逐项积分定理

$$\int \sum_{j=1}^{\infty} a_j(x) dx = \sum_{j=1}^{\infty} \int a_j(x) dx = \sum_{j=1}^{\infty} m(E_j) < \infty$$

所以 $\sum_{j=1}^{\infty} a_j(x) \in L^1(\mathbb{R})$, 故它几乎处处有限, 即

$$m\left(\sum_{j=1}^{\infty} a_j(x) = \infty\right) = m\left(\limsup_{j \to \infty} E_j\right) = 0$$

T4.

证明 (a). 构造

$$f_n(x) = \begin{cases} n, & x \in \left(0, \frac{1}{n}\right] \\ 0, & x \in \left\{0\right\} \cup \left(\frac{1}{n}, 1\right] \end{cases}$$

所以 $\liminf_{n\to\infty} f_n(x) \equiv 0$, $\int_{[0,1]} f_n(x) dx \equiv 1$, 所以

$$0 = \int_{[0,1]} \liminf_{n \to \infty} f_n(x) dx \le \liminf_{n \to \infty} \int_{[0,1]} f_n(x) dx = 1$$

(b). 因为 $\{g-f_k\}$ 是一列非负可测函数, 因为

$$\lim_{n \to \infty} \inf -x_n = \lim_{n \to \infty} \inf_{k \ge n} -x_n = \lim_{n \to \infty} -\sup_{k > n} x_n = -\lim_{n \to \infty} \sup_{n \to \infty} x_n$$

所以对 $\{g-f_k\}$ 应用 Fatou 引理得

$$\int_{E} \liminf_{k \to \infty} g(x) - f_k(x) dx \le \liminf_{k \to \infty} \int_{E} g(x) - f_k(x) dx$$

两边同时减去 $\int_E g dx$, 并用 $\limsup f$ 代替 $\liminf -f$, 因此

$$\int_{E} -\limsup_{k \to \infty} f_k(x) dx \le -\limsup_{k \to \infty} \int_{E} f_k(x) dx$$

移项即证

(c). 由 f_k 逐点收敛至某个函数 f,则上下极限相等: $\liminf_{k \to \infty} f_k(x) = \limsup_{k \to \infty} f_k(x) = f(x)$,所以

$$\int_E \liminf_{n \to \infty} f_k(x) \mathrm{d}x \leq \liminf_{k \to \infty} \int_E f_k(x) \mathrm{d}x \leq \limsup_{k \to \infty} \int_E f_k(x) \mathrm{d}x \leq \int_E \limsup_{k \to \infty} f(x) \mathrm{d}x$$

上式第一项和第四项均等于 $\int_E f(x) \mathrm{d}x$, 因此这四项相等, 所以上下极限相等, 极限存在:

$$\liminf_{k \to \infty} \int_E f_k(x) dx = \limsup_{k \to \infty} \int_E f_k(x) dx = \lim_{k \to \infty} \int_E f_k(x) dx$$

故

$$\int_{E} f(x) dx = \lim_{k \to \infty} \int_{E} f_k(x) dx$$