## **Lab 3 Normal Distribution**

```
In [78]: import pandas as pd
import matplotlib
import numpy as np
```

1.what is the expected daily rate of return of this stock

2.which stock have higher risk and volatility and daily return and concernt

3.which stock has higher probability of daily return 2% or more

4.which stock has high end pribability of making a loss of 2% or more

```
In [79]: beml_df = pd.read_csv(r"C:\Users\HOME\Desktop\DSA\Lab3\BEML.csv")
    glaxo_df = pd.read_csv(r"C:\Users\HOME\Desktop\DSA\Lab3\GLAXO.csv")

#df.head()
    glaxo_df.tail()
```

#### Out[79]:

|      | Date           | Open    | High    | Low     | Last   | Close   | Total Trade<br>Quantity | Turnover<br>(Lacs) |
|------|----------------|---------|---------|---------|--------|---------|-------------------------|--------------------|
| 1734 | 2016-12-<br>26 | 2703.00 | 2740.00 | 2677.00 | 2715.0 | 2723.50 | 3953.0                  | 107.15             |
| 1735 | 2016-12-<br>27 | 2722.95 | 2725.00 | 2683.00 | 2692.0 | 2701.75 | 10600.0                 | 286.10             |
| 1736 | 2016-12-<br>28 | 2701.75 | 2718.00 | 2690.00 | 2698.0 | 2702.15 | 6050.0                  | 163.44             |
| 1737 | 2016-12-<br>29 | 2702.05 | 2739.00 | 2691.95 | 2710.0 | 2727.90 | 7649.0                  | 207.87             |
| 1738 | 2016-12-<br>30 | 2730.00 | 2740.45 | 2705.00 | 2730.0 | 2729.80 | 6513.0                  | 177.65             |

# **Finding Mean**

```
In [80]: beml_df = beml_df[['Date','Close']]
glaxo_df = glaxo_df[['Date','Close']]
```

In [81]: glaxo\_df

#### Out[81]:

|      | Date       | Close   |
|------|------------|---------|
| 0    | 2010-01-04 | 1625.65 |
| 1    | 2010-01-05 | 1616.80 |
| 2    | 2010-01-06 | 1638.50 |
| 3    | 2010-01-07 | 1648.70 |
| 4    | 2010-01-08 | 1639.80 |
|      |            |         |
| 1734 | 2016-12-26 | 2723.50 |
| 1735 | 2016-12-27 | 2701.75 |
| 1736 | 2016-12-28 | 2702.15 |
| 1737 | 2016-12-29 | 2727.90 |
| 1738 | 2016-12-30 | 2729.80 |
|      |            |         |

1739 rows × 2 columns

#### Converting date to date time index

```
In [82]: glaxo_df = glaxo_df.set_index(pd.DatetimeIndex(glaxo_df['Date']))
    beml_df = beml_df.set_index(pd.DatetimeIndex(beml_df['Date']))
    glaxo_df
```

Out[82]:

|            | Date       | Close   |
|------------|------------|---------|
| Date       |            |         |
| 2010-01-04 | 2010-01-04 | 1625.65 |
| 2010-01-05 | 2010-01-05 | 1616.80 |
| 2010-01-06 | 2010-01-06 | 1638.50 |
| 2010-01-07 | 2010-01-07 | 1648.70 |
| 2010-01-08 | 2010-01-08 | 1639.80 |
|            |            |         |
| 2016-12-26 | 2016-12-26 | 2723.50 |
| 2016-12-27 | 2016-12-27 | 2701.75 |
| 2016-12-28 | 2016-12-28 | 2702.15 |
| 2016-12-29 | 2016-12-29 | 2727.90 |
| 2016-12-30 | 2016-12-30 | 2729.80 |
|            |            |         |

1739 rows × 2 columns

### Glaxo plot

```
In [83]: import matplotlib.pyplot as plt
import seaborn as sn
%matplotlib inline
plt.plot(glaxo_df.Close);
plt.xlabel('Time');
plt.ylabel('Close Price');
```



```
In [84]: import matplotlib.pyplot as plt
import seaborn as sn
%matplotlib inline
plt.plot(beml_df.Close);
plt.xlabel('Time');
plt.ylabel('Close Price');
```



```
In [85]: glaxo_df['gain'] = glaxo_df.Close.pct_change(periods=1)
beml_df['gain'] = beml_df.Close.pct_change(periods=1)
```

```
In [86]: #dropping first row since null
    glaxo_df = glaxo_df.dropna()
    beml_df = beml_df.dropna()
    glaxo_df
```

gain

| Out  | X6 I • |  |
|------|--------|--|
| oucl |        |  |
|      |        |  |

| Date       |            |         |           |
|------------|------------|---------|-----------|
| 2010-01-05 | 2010-01-05 | 1616.80 | -0.005444 |
| 2010-01-06 | 2010-01-06 | 1638.50 | 0.013422  |
| 2010-01-07 | 2010-01-07 | 1648.70 | 0.006225  |
| 2010-01-08 | 2010-01-08 | 1639.80 | -0.005398 |
| 2010-01-11 | 2010-01-11 | 1629.45 | -0.006312 |
|            |            |         |           |
| 2016-12-26 | 2016-12-26 | 2723.50 | -0.001283 |
| 2016-12-27 | 2016-12-27 | 2701.75 | -0.007986 |
| 2016-12-28 | 2016-12-28 | 2702.15 | 0.000148  |
| 2016-12-29 | 2016-12-29 | 2727.90 | 0.009529  |
| 2016-12-30 | 2016-12-30 | 2729.80 | 0.000697  |
|            |            |         |           |

Date

Close

1738 rows × 3 columns

```
In [87]: #plotting gain
    plt.figure(figsize= (8,6));
    plt.plot(glaxo_df.index,glaxo_df.gain);
    plt.xlabel('Time');
    plt.ylabel('gain')
```

Out[87]: Text(0, 0.5, 'gain')



```
In [88]: #plotting gain
    plt.figure(figsize= (8,6));
    plt.plot(beml_df.index,beml_df.gain);
    plt.xlabel('Time');
    plt.ylabel('gain')
```

Out[88]: Text(0, 0.5, 'gain')



```
In [89]: sn.distplot(glaxo_df.gain, label='glaxo')
plt.xlabel('gain');
plt.ylabel('Density');
plt.legend();
```

C:\Users\HOME\AppData\Local\Temp\ipykernel\_1112\1954850185.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sn.distplot(glaxo\_df.gain, label='glaxo')



```
In [90]: sn.distplot(beml_df.gain, label='beml')
plt.xlabel('gain');
plt.ylabel('Density');
plt.legend();
```

C:\Users\HOME\AppData\Local\Temp\ipykernel\_1112\2275164977.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sn.distplot(beml\_df.gain, label='beml')



#### mean and std for glaxo

```
In [91]: print('Mean', round(glaxo_df.gain.mean(),4))
print('Standard Deviation: ', round(glaxo_df.gain.std(),4))
```

Mean 0.0004

Standard Deviation: 0.0134

#### mean and std for beml

Out[93]: 0.06352488667177397