1 Recover a relation from a partition

Suppose a set S can be nicely partitioned into mutually disjoint subsets S_{α} where $\alpha \in \Lambda^1$.

Is it possible to construct an equivalence relation \sim on S such that the set of equivalence classes of \sim is identical to the set $\{S_{\alpha} \mid \alpha \in \Lambda\}$?

2 Enforcing a group structure

Let X be the set of all plans that a supervisor can provide². Define the equivalence relation \sim on X as $p \sim q$ if and only if p and q generate the same set-up when executed separately from the start state.

Figure 1: Start state

Exercises:

If $p \sim p'$ and $q \sim q'$, verify if $p \star q \sim p' \star q'$.

Let (X/\sim) be the set of all equivalence classes. Define $\widetilde{\star}: (X/\sim) \times (X/\sim) \to (X/\sim)$ as $[p] \, \widetilde{\star} \, [q] = [p \star q]$.

Is $((X/\sim), \widetilde{\star}, [\phi])$ a group³?

Is there a nice subset of (X/\sim) that behaves like (Z,+,0)?

¹Remember you can have n partitions, countably infinite partitions, and an uncountably infinite number of partitions. We'll use Λ as a placeholder since the exact number of partitions is context dependant. Λ is formally called an index set.

²Look at the material provided on 27/8 for more details.

³It is a group, you can read more about it here.