

IBM PROJECT

GLOBAL SALES DATA ANALYTICS

Batch: B8-2A4E

Team ID: PNT2022TMID21528

Team Leader: NAVIN KUMAR V

Team Members:

ASHWIN D

NAVEEN E

BHARAT SRINIVAS R

CONTENTS

ľitle	Page Number
1. INTRODUCTION	4
a. Project Overview	4
b. Purpose	4
2. LITERATURE SURVEY	4
a. Existing problem	4
b. References	4
c. Problem Statement Definition	4
3. IDEATION & PROPOSED SOLUTION	5
a. Empathy Map Canvas	5
b. Ideation & Brainstorming	6
c. Proposed Solution	9
d. Problem Solution fit	10
4. REQUIREMENT ANALYSIS	11
a. Functional requirement	11
b. Non-Functional requirements	11
5. PROJECT DESIGN	12
a. Data Flow Diagíams	12
b. Solution & Technical Architecture	12
c. User Stories	13
6. PROJECT PLANNING & SCHEDULING	14
a. Sprint Planning & Estimation	14
b. Sprint Delivery Schedule	14
c. Burndown chart	15

7. CODING & SOLUTIONING	14
a. Dashboard	14
b. Python code	19
8. TESTING	23
a. User Acceptance Testing	23
9. RESULTS	23
a. Performance Metrics	23
10. ADVANTAGES & DISADVANTAGES	24
11. CONCLUSION	24
12. FUTURE SCOPE	25
13. APPENDIX	25
GitHub & Project Demo Link	25

1. INTRODUCTION

1.1 Project Overview:

This project helps understand customer analysis and product analysis of the super store. Segment wise customers are analyzed and the products most bought or liked by them is also analyzed to improve the sales performance of the store.

1.2 Purpose:

To meet the growing need of shopping online by analyzing the customers and also the product to make the process of buying things online easy.

2. <u>LITERATURE SURVEY</u>

2.1 Existing Problem:

The problem of not analyzing the sales performance leads to loss in business and loss of customers.

2.2 References:

Salespeople Performance Evaluation with Predictive Analytics in B2B - Nelito Calixto and João Ferreira

Predictive Sales Pipeline Analytics - Junchi Yan123, Chao Zhang Analytics as a Source of Business Innovation - Lorraine Eden

2.3Problem statement definition:

Shopping online is currently the need of the hour. Because of this COVID, it's not easy to walk in a store randomly and buy anything you want. So, understanding a few things like, Customer Analysis and Product Analysis of this Global Super Store is essential

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas:

3.2 Ideation & Brainstorming:

Define your problem statement

What problem are you trying to solve? Frame your problem as a How Might We statement. This will be the focus of your brainstorm.

5 minutes

PROBLEM

Shopping online is currently the need of the hour. Because of this COVID, it's not easy to walk in a store randomly and buy anything you want. Hence understanding things like, Customer Analysis and Product Analysis of this Global Super Store is essential.

Key rules of brainstorming

To run an smooth and productive session

Stay in topic. Fincourage wild ideas.

Defer judgment. Listen to others.

Go for volume. If possible, be visual.

2

Brainstorm

Write down any ideas that come to mind that address your problem statement.

10 minutes

Navin Kumar V

Sales analytics refers to the technology and processes used to be support and the technology and processes used to be supported and the sales of the support and the sales of sales and sales and sales darboard which is straight forward, intuitive, and communicate a clear processes used to sales and forward, intuitive, and communicate a clear processes and sales and

Ashwin D

Perform rapid analysis by a construction of the product of sales analytics can enably use a sales against the provious person to get a service product provide provide

Naveen E

Bharat Srinivas R

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. Once all sticky notes have been grouped, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

① 20 minutes

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

0 20 minutes

3.3 Proposed Solution:

S.No.	Parameter	Description					
1	Problem Statement	Develop an efficient system & an application that can monitor and alert the users(workers)					
2	Idea / Solution description	This product helps the industries in monitoring the emission of harmful gasesIn several areas, the gas sensors will be integrated to monitor the gas leakage. If in any area gas leakage is detected the admins will be notified along with the locationIn the web application, admins can view the sensor parameters.					
3	Novelty / Uniqueness	Fastest alerts to the workersUser friendly					
4	Social Impact / Customer Satisfaction	Cost efficientEasy installation and provide efficient resultsCan work with irrespective of fear					
5	Business Model (Revenue Model)	The product is advertised all over the platforms. Since it is economical, it even helps small scale industries from disasters. As the product usage can be understood by everyone, it is easy for them to use it properly for their safest organization.					
6	Scalability of the Solution	Since the product is cost-efficient, it can be placed in many places in the industry. Even when the gas leakage is more, the product senses the accurate values and alerts the workers effectively.					

3.4 Problem Solution Fit:

Define CS, fit into CC	1. CUSTOMER SEGMENT(S) The owners of businesses who seek to understand the performance of their businesses and the sales.	The unavailability of online payment methods like UPI, Netbanking etc. performance of their				
Focus on J&P, tap into BE, understand RC	Which analysis to perform when and how? Determine the type of data presented	Customer satisfication Product rating Product prices Availability	Analyze the Find the collected sales appropriate data using software or analytics tools tools to analyze like office.			
Identify strong TR & EM	3. TRIGGERS To make a serious business decision for the betterment of the business better To understand the performance of the business better 4. EMOTIONS: BEFORE / AFTER BEFORE: Indecisive, anxious, Lazy To understand the performance of the business better AFTER: Clear decisive, Peaceful mind	Developing an interactive dashboard Analyzing the sales Insights into every sale made	ONLINE: Use of third party fee-based subscription service to analyze data. OFFLINE: Using physical sales bill and analyze it physically using offline tools.			

4. <u>REQUIREMENT ANALYSIS</u>

4.1 <u>Functional Requirement:</u>

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Google account Registration through user details
FR-2	User Confirmation	Confirmation through one to one google authentication, OTP.
FR-3	User Login	Login through Google account
FR-4	User uploading data(administrative)	To store the data set through the cloud
FR-5	End user benefits	Getting higher state of efficiency and also to know entire data analysis

4.2 Non-Functional Requirement:

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Easily accessible to all users
NFR-2	Security	Since it has one to one authentication this secured.
NFR-3	Reliability	It is highly reliable
NFR-4	Performance	The performance rate and efficiency rate is high.
NFR-5	Availability	It is available in all platforms 24/7
NFR-6	Scalability	The ability of a hardware and software parallel system to exploit increasing computing resources efficiency in the analysis of the large datasets

5. PROJECT DESIGN

5.1 Data Flow Diagrams:

5.2 Solution & Technical Architecture:

5.3 <u>User Stories:</u>

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Business owner	Online registration	USN-1	As a business owner, I want to login to my account.	Input data fields to enter: 1.Username/email 2.Password 3.Re-enter password 4.Security question 5.Security answer	High	Sprint-1
	Data upload	USN-2	As a business owner, I want to upload my sales data to perform analytics.	Submission of excel file containing the sales data.	High	Sprint-1
	Improve performance	USN-3	As a business owner, I want to use the analytics results to make my business performance better	Reflection of the analytics results to my online store.	High	Sprint-2
Customer (Buyer)	Registration	USN-1	As a buyer, I want to login to my account.	Input data fields to enter: 1.Username/email 2.Password 3.Re-enter password 4.Security question 5.Security answer	High	Sprint-3
	Buy	USN-2	As a buyer, I want to buy products from the online store.	Search for the items to buy in the application	Medium	Sprint-3
Analytics team administrator	Analysis of sales data	USN-1	As an administrator, I want to analyze the sales data for better performance of the store.	Get the sales data form the business owner	High	Sprint-4

6. PROJECT PLANNING AND SCHEDULING

6.1 Sprint Planning & Estimation:

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Collection of Data	USN-1	Collect the dataset from kaggle	2	High	Navin Kumar Ashwin D Naveen E Bharat Srinivas
Sprint-2	Data Cleaning	USN-2	Importing the required libraries and Loading Data Cleaning and preparation of dataset	1	Medium	Navin Kumar Ashwin D Naveen E Bharat Srinivas
Sprint-3	Data Analysis and Visualization	USN-3	Analysis of data using different graph and find the trends and relation between the data	2	High	Navin Kumar Ashwin D Naveen E Bharat Srinivas
Sprint-4	Report Building	USN-4	Building report summarizing the data in the dataset with the Dashboard	2	Medium	Navin Kumar Ashwin D Naveen E Bharat Srinivas

6.2 Sprint Delivery Schedule:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	27 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	03 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	11 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	15 Nov 2022

6.3 Burndown chart:

Burndown Chart

7. CODING AND SOLUTIONING

7.1 <u>Dashboard</u>

Profit and Sales Analysis

Country Wise Analysis

Category Wise analysis

Sub category Wise analysis

Order Priority Wise Analysis

Profit

12.6M

Sales

Sales

1.47M

Profit

Shipping Cost

1.35M

Shipping Cost

Average Shipping Cost

26.376

Shipping Cost

7.2 Python Code

```
In [2]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as shs
```

```
In [3]: df = pd.read_csv('Global_Superstore2.csv',encoding='latin-1')
```

In [5]: df.head()

Out[5]:

Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	City	State	 Product ID	Category	Sub- Category	Product Name	Sales
0 32298	CA- 2012- 124891	31- 07- 2012	31- 07- 2012	Same Day	RH-19495	Rick Hansen	Consumer	New York City	New York	 TEC-AC- 10003033	Technology	Accessories	Plantronics CS510 - Over-the- Head monaural Wir	2309.650
1 26341	IN-2013- 77878	05- 02- 2013	07- 02- 2013	Second Class	JR-16210	Justin Ritter	Corporate	Wollongong	New South Wales	 FUR-CH- 10003950	Furniture	Chairs	Novimex Executive Leather Armchair, Black	3709.395
2 25330	IN-2013- 71249	17- 10- 2013	18- 10- 2013	First Class	CR-12730	Craig Reiter	Consumer	Brisbane	Queensland	 TEC-PH- 10004664	Technology	Phones	Nokia Smart Phone, with Caller ID	5175.171
3 13524	ES- 2013- 1579342	28- 01- 2013	30- 01- 2013	First Class	KM-16375	Katherine Murray	Home Office	Berlin	Berlin	 TEC-PH- 10004583	Technology	Phones	Motorola Smart Phone, Cordless	2892.510
4 47221	SG- 2013- 4320	05- 11- 2013	06- 11- 2013	Same Day	RH-9495	Rick Hansen	Consumer	Dakar	Dakar	 TEC- SHA- 10000501	Technology	Copiers	Sharp Wireless Fax, High- Speed	2832.960

5 rows × 24 columns

4

In [6]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 51290 entries, 0 to 51289 Data columns (total 24 columns): # Column Non-Null Count Dtype -----0 Row ID 51290 non-null int64 Order ID 51290 non-null object 2 Order Date 51290 non-null object 51290 non-null object 51290 non-null object 3 Ship Date 4 Ship Mode 5 Customer ID 51290 non-null object 6 Customer Name 51290 non-null object 7 Segment 51290 non-null object 8 City 51290 non-null object 9 State 51290 non-null object 10 Country 51290 non-null object 11 Postal Code 9994 non-null float64 12 Market 51290 non-null object 51290 non-null object 13 Region to Category 51290 non-null object 16 Sub-Category 51290 non-null object 17 Product 11 17 Product Name 51290 non-null object 18 Sales 51290 non-null float64 51290 non-null int64 19 Quantity 20 Discount 51290 non-null float64 21 Profit 51290 non-null float64 22 Shipping Cost 51290 non-null float64 23 Order Priority 51290 non-null object dtypes: float64(5), int64(2), object(17) memory usage: 9.4+ MB

In [7]: df.shape

Out[7]: (51290, 24)

In [8]: df.describe()

Out[8]:

	Row ID	Postal Code	Sales	Quantity	Discount	Profit	Shipping Cost
count	51290.00000	9994.000000	51290.000000	51290.000000	51290.000000	51290.000000	51290.000000
mean	25645.50000	55190.379428	246.490581	3.476545	0.142908	28.610982	26.375915
std	14806.29199	32063.693350	487.565361	2.278766	0.212280	174.340972	57.296804
min	1.00000	1040.000000	0.444000	1.000000	0.000000	-6599.978000	0.000000
25%	12823.25000	23223.000000	30.758625	2.000000	0.000000	0.000000	2.610000
50%	25645.50000	56430.500000	85.053000	3.000000	0.000000	9.240000	7.790000
75%	38467.75000	90008.000000	251.053200	5.000000	0.200000	36.810000	24.450000
max	51290.00000	99301.000000	22638.480000	14.000000	0.850000	8399.976000	933.570000

```
In [9]: df.isnull().sum()
Out[9]: Row ID
                            0
       Order ID
                            0
       Order Date
                            0
       Ship Date
                            0
       Ship Mode
                            0
       Customer ID
                            0
       Customer Name
                            0
        Segment
                            0
       City
                           0
       State
                          0
       Country
                           0
       Postal Code 41296
       Market
                        0
       Region
                            0
       Product ID
                            0
       Category
                            0
       Sub-Category
                           0
       Product Name
       Sales
                            0
       Quantity
                            0
       Discount
                           0
       Profit
       Shipping Cost
                           0
       Order Priority
                           0
       dtype: int64
In [11]: df.nunique()
Out[11]: Row ID
                       51290
         Order ID
                        25035
         Order Date
                         1430
         Ship Date
                          1464
         Ship Mode
         Customer ID
                          1590
         Customer Name
                          795
         Segment
                           3
         City
                         3636
         State
                          1094
                          147
         Country
         Postal Code
                          631
                          7
13
         Market
         Region
         Product ID
                       10292
                        3
17
         Category
         Sub-Category
         Product Name
                         3788
         Sales
                         22995
         Quantity
                         14
         Discount
                          27
         Profit
                        24575
         Shipping Cost
                         10037
         Order Priority
         dtype: int64
In [12]: | df_customer = df[['Customer ID','Order ID','Order Date', 'Ship Date', 'Ship Mode','Country']]
         df_customer.count()
Out[12]: Customer ID 51290
         Order ID
                      51290
         Order Date
                      51290
         Ship Date
                      51290
         Ship Mode
                      51290
                      51290
         Country
```

dtype: int64

```
In [16]: df.drop(['Row ID','Postal Code'],axis=1,inplace=True)
```

In [17]: df.corr()

Out[17]:

		Sales	Quantity	Discount	Profit	Shipping Cost
	Sales	1.000000	0.313577	-0.086722	0.484918	0.768073
	Quantity	0.313577	1.000000	-0.019875	0.104365	0.272649
	Discount	-0.086722	-0.019875	1.000000	-0.316490	-0.079056
	Profit	0.484918	0.104365	-0.316490	1.000000	0.354441
	Shipping Cost	0.768073	0.272649	-0.079056	0.354441	1.000000

In [18]: sns.heatmap(df.corr(),annot= True,fmt='.0%')

Out[18]: <AxesSubplot:>

8. TESTING

8.1 User Acceptance Testing: _

 $\frac{https://github.com/IBM-EPBL/IBM-Project-27778-1660065423/blob/main/Project%20Development%20Phase/Testing/UAT%20Report.pdf}{}$

9. RESULTS

9.1 Performance Testing:_

10. ADVANTAGES AND DISADVANTAGES

Advantages:

- Analyze segment wise sales
- Analyze regional sales and profit forecast
- Predict sales performance
- Gain customers
- Boost sales performance
- Boost revenue

Disadvantages:

- High technical knowledge is required to perform analytics.
- Privacy is compromised by sharing the sales data with the third party.

11. CONCLUSION

Sales analytics is one of the crucial methods used by the stores to analyze and boost sales performance. With the growing technological field, equipping the business with the latest trend by gaining customers and at the same time not losing the existing customers is essential. Analytics helps achieve that goal,

12. FUTURE SCOPE

- Data Analytics plays a major role in the Financial and Business World. Data in the future provides more information about the Sales which then can be interpreted and can draw many useful conclusions.
- After this pandemic people have practiced using Online shopping and the rates has increased exponentially so products and shipment can be delivered fast using these analytics.
- The Dashboard can be improved a lot with much data to handle and a lot of useful information and inferences can be made in the future which enhances the sales and contributes to the Financial World.

13. APPENDIX

GitHub link - https://github.com/IBM-EPBL/IBM-Project-27778-1660065423

Project Demo Link -

https://drive.google.com/file/d/1_Dn43qRF6Vqis1RA71hZIRs5czUSGrZT/view?usp=share_link