CÂU HỎI ÔN TẬP

Cho ảnh xám F₀ kích thước 6x6 như sau:

D1	M1	Y1	Y2	Y4	D2
D1	M1	Y2	Y1	Y3	Y3
D2	M1	Y3	Y1	Y4	M2
D2	M2	Y4	Y1	Y4	D2
D2	M2	Y1	Y2	D1	Y3
D2	M1	Y2	Y3	M1	M2

Ånh F₀

Trong đó:

- Số mức xám L sử dụng trong F_0 là 10 (mức xám lớn nhất $r_{max} = L-1 = 9$)
- Chỉ số dòng, cột các điểm ảnh trên F₀ được đánh số từ 0.
- 1. Hãy ghi ngày tháng năm sinh của sinh viên dạng $D_1D_2/M_1M_2/Y_1Y_2Y_3Y_4$, sau đó tạo ảnh F bằng cách thay các ký hiệu tương ứng trong F0 bằng giá trị thực của ngày sinh. Số mức xám L sử dụng trong F là 10 (mức xám lớn nhất $r_{max} = L-1 = 9$); chỉ số dòng, cột các điểm ảnh trên F được đánh số từ 0.
- 2. Hãy xác định ảnh kết quả G qua phép biến đổi âm bản (Negative transformation) đối với ảnh F.
- 3. Hãy xác định ảnh kết quả G qua phép biến đổi Log (Log transformation) đối với ảnh F.
- 4. Hãy xác định ảnh kết quả G qua phép biến đổi hàm mũ (Power-Law transformation) đối với ảnh F với $\gamma = 0.5$.
- 5. Hãy xác định ảnh kết quả G qua phép biến đổi hàm mũ (Power-Law transformation) đối với ảnh F với $\gamma = 4$.
- 6. Hãy xác định ảnh kết quả G qua phép biến đổi cắt theo mức (Gray-level slicing transformation) đối với ảnh F, với a=5 và b=7 và không giữ nền.
- 7. Hãy xác định ảnh kết quả G qua phép biến đổi cắt theo mức (Gray-level slicing transformation) đối với ảnh F, với a=5 và b=7 và có giữ nền.
- 8. Vẽ histogram của F.
- 9. Hãy xác định ảnh kết quả G qua phép biến đổi cân bằng histogram (histogram equalization) đối với ảnh F, vẽ histogram ảnh kết quả G, nêu nhận xét so sánh giữa histogram của ảnh F và histogram của ảnh G.

- 10. Hãy xác định ảnh kết quả G qua phép biến đổi khớp histogram (histogram matching) đối với ảnh F, trong đó sinh viên tự xác định histogram mong muốn p_z;
- 11. Hãy xác định ảnh kết quả G qua phép biến lọc sử dụng M đối với ảnh F; Mặt nạ lọc M được cho như sau:

	1	1	1
1/9	1	1	1
	1	1	1

12. Hãy xác định ảnh kết quả G qua phép biến lọc sử dụng M đối với ảnh F; Mặt nạ lọc M được cho như sau:

	1	2	1
1/16	2	4	2
	1	2	1

- 13. Hãy xác định ảnh kết quả G qua phép biến lọc trung bị (Median Filter) với dạng mặt nạ vuông 3x3.
- 14. Hãy xác định ảnh kết quả G qua phép biến lọc trung bị (Median Filter) với dạng mặt nạ vuông 5x5.
- 15. Hãy xác định ảnh kết quả G qua phép biến lọc sử dụng M đối với ảnh F; Mặt nạ lọc M được cho như sau:

0	-1	0
-1	4	-1
0	-1	0

16. Hãy xác định ảnh kết quả G qua phép biến lọc sử dụng M đối với ảnh F; Mặt nạ lọc M được cho như sau:

-1	-1	-1
-1	8	-1
-1	-1	-1

17. Hãy xác định ảnh kết quả G qua phép lọc sử dụng toán tử gradient với hai mặt mạ Mx và My đối với ảnh F; Mặt nạ lọc Mx, My được cho như sau:

-1	-1	-1
0	0	0
1	1	1

Mặt nạ Mx

-1	0	1
-1	0	1
-1	0	1

Mặt nạ My

18. Hãy xác định ảnh kết quả G qua phép lọc sử dụng toán tử gradient với hai mặt mạ Mx và My đối với ảnh F; Mặt nạ lọc Mx, My được cho như sau:

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

Măt na Mx

Măt na My

19. Hãy xác định ảnh kết quả G qua phép lọc sử dụng toán tử gradient với hai mặt mạ Mx và My đối với ảnh F; Mặt nạ lọc Mx, My được cho như sau:

0	1	1
-1	0	1
-1	-1	0

Măt na Mx

Măt na My

20. Hãy xác định ảnh kết quả G qua phép lọc sử dụng toán tử gradient với hai mặt mạ Mx và My đối với ảnh F; Mặt nạ lọc Mx, My được cho như sau:

0	1	2
-1	0	1
-2	-1	0

-2	-1	0
-1	0	1
0	1	2

Măt na Mx

Mặt nạ My

- 21. Hãy xác định ảnh kết quả G qua phép phân ngưỡng trên ảnh F với ngưỡng cố định T = 5.
- 22. Hãy xác định ảnh kết quả G qua phép phân ngưỡng trên ảnh F với ngưỡng T được xác định qua thuật toán "Basic Global Thresholding".
- 23. Hãy xác định ảnh kết quả G qua phép phân ngưỡng trên ảnh F với ngưỡng T được xác định qua thuật toán Otsu.
- 24. Hãy xác định ảnh kết quả G qua phép biến đổi "Region Growing" trên ảnh F sử dụng quan hệ láng giềng 4, sinh viên tự xác định tập "seed point" và điều kiện giống nhau của các pixel.
- 25. Hãy xác định ảnh kết quả G qua phép biến đổi "Region Growing" trên ảnh F sử dụng quan hệ láng giềng 8, sinh viên tự xác định tập "seed point" và điều kiện giống nhau của các pixel.
- 26. Hãy cho kết quả nén ảnh F bằng phương pháp RLC;

- 27. Hãy cho kết quả nén ảnh F bằng phương pháp Huffman;
- 28. Hãy cho kết quả nén ảnh F bằng phương pháp LZW;
- 29. Phân ngưỡng ảnh F với ngưỡng cố định T=5, chọn 1 đoạn đường biên rồi biểu diễn nó theo dạng chain code.
- 30. Phân ngưỡng ảnh F với ngưỡng cố định T=5, chọn 1 đoạn đường biên rồi biểu diễn nó theo dạng signatures.
- 31. Phân ngưỡng ảnh F với ngưỡng cố định T=5, mô tả ảnh kết quả bởi các tham số vùng dạng đơn giản (Simple Regional Descriptors)
- 32. Tính ma trận tương quan giữa F và mẫu T, chỉ ra vị trí subimage trên F giống nhất với T; T được cho như sau:

2	4	3
2	5	2
3	4	7

33. Tính ma trận hệ số tương quan giữa F và mẫu T, chỉ ra vị trí subimage trên F giống nhất với T; T được cho như sau::

3	6	3
3	7	2
2	7	2