Московский физико-технический институт (национальный исследовательский университет) Физтех-школа физики и исследований им.Ландау

Лабораторная работа №2.4.1 (Лабораторный практикум по общей физике)

Определение теплоты испарения жидкости

Работу выполнил: Климанов Даниил, группа Б02-115

г. Долгопрудный, 2022

Цель работы: измерение давления насыщенного пара при разной температуре; вычисление по измеренным данным теплоты испарения с помощью уравнения Клапейрона-Клаузиуса

Оборудование: термостат; герметический сосуд, заполненный исследуемой жидкостью; отсчётный микроскоп

1 Теоретическое введение:

Испарение - переход вещества из жидкого в газообразное состояние. При испарении с поверхности жидкости вылетают молекулы, образуя пар над ней. Эти молекулы должны обладать достаточно большой кинетической энергией, так как им предстоит совершить работу против сил поверхностного натяжения и внешнего давления. Следовательно, в процессе испарения жидкость постепенно охлаждается, теряя самые быстрые частицы.

По этой причине для поддержания постоянства температуры жидкости в процессе испарения к ней необходимо подводить тепло. Количество теплоты, необходимое для термического испарения одного моля жидкости при внешнем давлении, равном упругости её насыщенных паров, называется молярной теплотой парообразования.

В настоящей работе для измерения теплоты испарения используется косвенный метод, использующий формулу Клапейрона-Клаузиуса:

$$\frac{dP}{dT} = \frac{L}{T \cdot (V_2 - V_1)} \tag{1}$$

, где P - давление паров при температуре $T,\,L$ - теплота парообразования жидкости, V_2 - объём пара, V_1 - объём жидкости. Величины $L,\,V_1,\,V_2$ будем относить к одному молю вещества.

Рассмотрим уравнение состояния реального газа Вандер-Ваальса(для одного моля):

$$(P + \frac{a}{V^2}) \cdot (V - b) = RT \tag{2}$$

, причём $b \sim V_1$, а объём жидкости много меньше объёма пара; Моном $\frac{a}{V^2}$ можно выбросить по аналогичным причиным, поэтому уравнение можно переписать в виде:

$$V = \frac{RT}{P} \tag{3}$$

, откуда уравнение (1) получает следующий вид:

$$L = \frac{dP}{dT} \cdot \frac{RT^2}{P} = -R \cdot \frac{d(\ln P)}{d(\frac{1}{T})} \tag{4}$$

2 Экспериментальная установка

Давление насыщенных паров равно давлению столба ртути, который пары вытесняют при расширении. Его высоту можно измерить с помощью шкалы штангенциркуля, погрешность измерений которого равна 0.01 см.

Рис. 1. Схема установки для определения теплоты испарения

Figure 1: Установка для измерения зависимости давления насыщенных паров от температуры

3 Выполнение измерений

Цель - измерить давление паров при каждой конкретной температуре, значение которой будет варьироваться от 296K до 316K. Так как термометр измеряет температуру установки, а не сосуда с жидкостью и её паром, то для повышения точности эксперимента измерения будут проводиться сначала при нагревании, а затем при охлаждении сосуда с жидкостью. Зависимость высоты ртутного столба от температуры представлена в таблице ниже (в двух колонках справа представлен пересчёт в единицы давления):

$N_{\overline{0}}$	T, K	$\triangle h$, cm	Р, Па	Nº	<i>T</i> , K	$\triangle h$, cm	$P, \Pi a$
1	294	2,20	2919,2	-	-	-	-
2	296	2,46	3264,2	1	296	2,49	3304
3	298	2,70	3582,7	2	298	2,73	3622,5
4	300	2,99	3967,5	3	300	3,03	4020,6
5	302	3,31	4387	4	302	3,37	4471,7
6	304	3,66	4856,5	5	304	3,73	4949,4
7	306	4,02	5334,2	6	306	4,13	5480,2
8	308	4,42	5865	7	308	4,54	6024,2
9	310	4,88	6475,4	8	310	5,01	6647,9
10	312	5,42	7191,9	9	312	5,54	7351,1
11	314	5,99	7948,3	10	314	6,11	8107,5
12	316	6,59	8744,4	11	316	6,59	8744,4

В рассчётах использовалась плотность ртути, равная 13596 ${\rm кг/m}^3$

4 Обработка измерений

4.1 Графики в координатах Р, Т

Figure 2: График в естественных координатах

В выбранном диапазоне температур график представляет собой участок кривой с практически постоянной производной, то есть график можно приблизить прямой,

Figure 3: Приближение прямыми

тем самым узнав коэффициент наклона $\frac{dP}{dT}$ в соотношении (4). Если $P\cong a+b\cdot T,$ то задача состоит в оценке коэффициента b по MHK:

$$b = \frac{\langle PT \rangle - \langle P \rangle \cdot \langle T \rangle}{\langle T^2 \rangle - \langle T \rangle} \tag{5}$$

$$\sigma b = \sqrt{\frac{\frac{\langle P^2 \rangle - \langle P \rangle^2}{\langle T^2 \rangle - \langle T \rangle^2} - b}{N}}$$
 (6)

, где в <> взяты средние обозначенных величин; N - число точек в исследуемой зависимости.

За итоговое значение b возьмём среднее арифметическое коэффициентов наклона прямых, приближающих зависимость для нагревания и охлаждения (коэффициенты b_1 и b_2 соответственно):

$$b1 = \frac{1652710, 1 - 305 \cdot 5378}{93072.7 - 305^2} = (260.4 \pm 11.3)$$

$$b2 = \frac{1755864.8 - 306 \cdot 5702.1}{93676 - 306^2} = (275.3 \pm 9.7)$$
(8)

$$b2 = \frac{1755864.8 - 306 \cdot 5702.1}{93676 - 306^2} = (275.3 \pm 9.7) \tag{8}$$

, следовательно, средний коэффициент b^{av} определён как: $b_{av} = \frac{b1+b2}{2} = (267.8 \pm 10.5) \text{ } \Pi \text{a/K}.$

Графики в координатах $\ln P, \frac{1}{T}$

Аналогичное происходит в координатах $\ln P, \frac{1}{T}$, но зависимость получается более похожая на линейную. Результат обработки измерений по МНК даёт следующий

Figure 4: График в логарифмических координатах

коэффициент наклона графика $\frac{d \ln P}{d \frac{1}{T}}$:

$$b3 = \frac{0.0279 - 0.0033 \cdot 8.53}{1.076 \cdot 10^{-5} - 0.0032^{2}} \approx (-4620.9 \pm 22.5)$$

$$b4 = \frac{0.0281 - 0.0033 \cdot 8.6}{1.07 \cdot 10^{-5} - 0.0033^{2}} \approx (-4643.9 \pm 20.5)$$
(9)

$$b4 = \frac{0.0281 - 0.0033 \cdot 8.6}{1.07 \cdot 10^{-5} - 0.0033^2} \approx (-4643.9 \pm 20.5) \tag{10}$$

 $b_{av2} \approx (-4632.4 \pm 21.5)$

Оценка значения L с помощью полученных коэффициентов 4.3

4.3.1Первый метод

Рассмотрим первое равенство. Удельная теплота испарения в данном случае зависит от температуры и давления, а поскольку во всех предыдущих пунктах рассчитывались средние значения величин на выбранном диапазоне температур, то в формуле положим T^2 и P равными $< T^2 >$ и < P >:

$$L_1 = \frac{RT^2}{P} \cdot \frac{dP}{dT} = \frac{8,31 \cdot 93676}{5702} \cdot 267, 8 \approx 36560$$
 (11)

$$\sigma L_1 = \frac{RT}{P} \sqrt{4(\frac{dP}{dT})^2 \sigma T^2 + (\frac{T}{P} \frac{dP}{dT})^2 \sigma P^2 + T^2 \sigma (\frac{dP}{dT})^2} =$$
(12)

$$= \frac{RT}{P} \sqrt{4(b_{av})^2 \sigma T^2 + (\frac{T}{P}(b_{av})^2 \sigma P^2 + T^2 \sigma^2(b_{av})} \approx 1427$$
 (13)

Figure 5: Аппроксимация прямыми

Чтобы узнать теплоту испарения 1кг вещества, нужно умножить полученное значение на $\frac{1000}{46}$, так как масса одного моля спирта равна ≈ 46 г:

$$L_1 = (794795 \pm 31021) \tag{14}$$

4.3.2 Второй метод

Во втором равенстве удельная теплота испарения постоянна на всём интервале, поэтому аналогично посчитаем сначала её значение и погрешность, а затем переведём в значение для 1кг вещества:

$$L_2 = -R \cdot \frac{d(\ln P)}{d\frac{1}{T}} = R \cdot b_{av2} \approx 38387$$
 (15)

$$\sigma L_2 = R \cdot \sigma(\frac{d(\ln P)}{d\frac{1}{T}}) = R \cdot \sigma(b_{av2}) \approx 179 \tag{16}$$

Домножим на $\frac{1000}{46}$, получим теплоту испарения 1кг вещества:

$$L_2 = (834500 \pm 3891) \tag{17}$$

Оценим относительные погрешности L_1 и L_2 :

$$\begin{cases} \varepsilon_{L_1} = \frac{\sigma L_1}{L_1} = \frac{31021}{794795} \approx 0.04\\ \varepsilon_{L_2} = \frac{\sigma L_2}{L_2} = \frac{3891}{834500} \approx 0.005 \end{cases}$$
(18)

Второй способ даёт меньшую относительную погрешность, хотя и не позволяет определить теплоту парообразования для каждого значения температуры.

5 Итоги

В работе с помощью полученных экспериментальных данных мы измерили удельную теплоту парообразования спирта двумя способами, которые основаны на применении уравнения Клапейрона-Клаузиуса. Первый способ оказался менее точным, чем второй, но оба метода дают теплоту парообразования, меньшую, чем табличное значение в [1](Таблица 8, стр. 271): 855 кДж.

References

[1] Под редакцией проф. А.Д. Гладуна - Лабораторный практикум по термодинамике. Том 1