### 2주 3강

# 문자데이터 표현과 2진 연산



### 문자 데이터의 표현 (1)





#### 영숫자 코드(Alphanumeric Code)

컴퓨터에 사용되는 영문자와 숫자, 특수문자의 데이터를 0과 1의 조합으로 구성된 코드로 표현한 것

### 표준 BCD (Binary Coded Decimal) 코드

• 이진화 십진 코드라고도 부르며, 기본적으로 6비트의 길이를 갖는 코드이지만 좀 더 효율적으로 사용하기 위해서 존(zone)비트와 숫자(digit)비트로 분리하고 이를 조합해서 코드를 생성한다.

### 4. 문자 데이터의 표현 (2)



#### 11 표준 BCD (Binary Coded Decimal) 코드

#### • 6비트의 표준 BCD 코드의 구성

- 가장 왼쪽의 최상위 비트는 패리티(parity) 비트다. 그래서 실질적으로 64(2<sup>6</sup>)가지의 문자, 숫자, 특수문자의 정보를 표현



- 6개의 비트가 각 문자를 나타내는데, 존 비트는 알파벳이나 특수 문자를 나타내기 위해 숫자 비트와 연관해서 사용할 수 있다.

### 4. 문자 데이터의 표현 (3)



#### 표준 BCD 코드의 표

| 문자 | P ZZ8421 |
|----|----------|----|----------|----|----------|----|----------|----|----------|
| Α  | 0 110001 | J  | 1 100001 | S  | 1 010010 | 1  | 0 000001 | =  | 0 001011 |
| В  | 0 110010 | K  | 1 100010 | Т  | 0 010011 | 2  | 0 000010 | >  | 1 001100 |
| C  | 1 110011 | L  | 0 100011 | U  | 1 010100 | 3  | 1 000011 | +  | 0 010000 |
| D  | 0 110100 | М  | 1 100100 | ٧  | 0 010101 | 4  | 0 000100 | ,  | 1 011011 |
| Е  | 1 110101 | N  | 0 100101 | W  | 0 010110 | 5  | 1 000101 | )  | 0 011100 |
| F  | 1 110110 | 0  | 0 100110 | X  | 1 010111 | 6  | 1 000110 | %  | 1 011101 |
| G  | 0 110111 | Р  | 1 100111 | Y  | 1 011000 | 7  | 0 000111 | ?  | 0 011111 |
| Н  | 0 111000 | Q  | 1 101000 | Z  | 0 011001 | 8  | 0 001000 | -  | 1 100001 |
| 1  | 1 111001 | R  | 0 101001 |    |          | 9  | 1 001001 | @  | 1 111010 |
|    |          |    |          |    |          | 0  | 1 001010 | \$ | 1 111111 |

### 4. 문자 데이터의 표현 (4)



#### T ASCII코드

- 미국 국립 표준 연구소(ANSI)가 제정한 정보 교환용 미국 표준 코드 (American Standard Code for Information Interchange)
- 코드의 길이는 7비트와 패리티 비트가 추가된 두 종류의 8비트 코드가 있으며, 128(= 2<sup>7</sup>)가지의 정보를 표현할 수 있다.
  - 128개의 가능한 문자조합을 제공, 처음 32개는 인쇄와 전송 제어용으로 사용된다.
  - 기억장치는 8비트(1바이트, 256조합)를 기본으로 구성 ASCII 코드 7비트에 나머지 하나의 비트를 추가하여 패리티 비트로 사용하거나 특정 문자를 표현하는데 사용된다.
  - 8비트의 코드로 특정문자까지도 표현할 수 있도록 만든 것을 확장 ASCII 코드라고 한다.

### 4. 문자 데이터의 표현 (5)



2 ASCII코드



## 4. 문자 데이터의 표현 (6)



#### J 표준 ASCII 코드표

|   | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | Α   | В   | С  | D  | Е  | F  |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|
| 0 | NUL | SOH | STX | ETX | EOT | ENQ | ACK | BEL | BS  | TAB | LF  | VT  | FF | CR | SO | SI |
| 1 | DLE | DC1 | DC2 | DC3 | DC4 | NAK | SYN | ETB | CAN | EM  | SUB | ESC | FS | GS | RS | US |
| 2 |     | !   | "   | #   | \$  | %   | &   |     | (   | )   | *   | +   | ,  | -  |    | /  |
| 3 | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | :   | ;   |    | =  | >  | ?  |
| 4 | @   | Α   | В   | С   | D   | Е   | F   | G   | Н   | _   | J   | K   | L  | М  | N  | 0  |
| 5 | Р   | Q   | R   | S   | Т   | U   | ٧   | W   | Χ   | Υ   | Z   | [   | ₩  | ]  | ۸  | _  |
| 6 | `   | а   | b   | С   | d   | е   | f   | g   | h   | i   | j   | k   | 1  | m  | n  | 0  |
| 7 | р   | q   | r   | S   | t   | u   | ٧   | W   | X   | у   | Z   | {   | Ī  | }  | ~  |    |

### 4. 문자 데이터의 표현 (7)



- 유니코드(unicode)
  - ASCII 코드는 미국 표준으로 알파벳과 그 확장형인 몇 가지 기호들의 표현하고 크기가 1바이트
  - 1 바이트 이상 코드로 표현되는 한국, 일본, 중국등 의 비유럽 국가의 언어를 표현하는데 한계
  - 전세계 국가의 문자를 표현하기 위해, ISO/IEC JTC1 에서 1995년 9월 국제표준으로 제정

### 유니코드(unicode)의 특징



- 문자마다 고유한 코드 값을 제공하는 새로운 개념의 코드다
- 26개 언어의 문자와 특수기호에 대해 일일이 코 드값을 부여하고 있다.
- 2바이트(16비트) 길이를 사용하므로 최대로 수 용할 수 있는 문자수는 6만 5,536자이다.
- 국가문자 표현을 위해 3만 8,885자가 이미 할당 되었고, 사용자 영역으로6400자가 할당되었다

### 1. 2진수의 산술 연산 (1)



2 부호를 갖는 2진 정수의 산술 연산은 2의 보수를 활용하여 수행된다. 그리고 부동소수점의 수에 대한 산술 연산은 지수부분과 가수부분을 분리해서 독립적으로 수행된다.

### 1. 2진수의 산술 연산 (2)



#### 🧻 정수의 산술 연산

- **부호 변경(2의 보수)**: A = A'+ 1 (A': 1의 보수)
- 덧 셈: C = A + B
- 뺄 셈: C = A B
- **곱 셈:** C = A × B
- 나눗셈: C = A / B

#### 2 부호 변경

- 2의 보수를 사용
- 음의 정수를 2진수로 표현할 때 사용

+19: 00010011

1의 보수: 11101100

+

-19: 11101101

### 1. 2진수의 산술 연산 (7)



- 🗘 2진수 정수의 뺄셈 연산
  - 2의 보수를 사용 결과적으로 덧셈을 수행한다.

$$A - (+B) = A + (-B), A - (-B) = A + (+B)$$

 빼지는 수 A를 피감수(minuend)라 하며, 빼는 수 B를 감수 (subtrahend)라고 한다.

### 2. 2진수의 논리 연산 (1)



- 1 논리 연산은 주어진 명제에 대하여 참(true)과 거짓(false)을 결정하는 연산이다.
- 2 컴퓨터와 같은 디지털 장치에서는 많은 산술 연산뿐만 아니라 다양한 논리 연산을 지원하고 있다.

### 2. 2진수의 논리 연산 (2)



### 1 기본적인 논리 연산

- AND 연산:
  - 2진수의 모든 입력이 모두 1일 때, 1을 출력하고 나머지의 경우에는 0을 출력
- OR 연산 :

2진수의 입력 중 하나만 1이면, 1을 출력하고, 모든 입력이 0일 때는 0을 출력

- Exclusive-OR(XOR) 연산:
  2진수의 입력이 모두 동일할 경우에는 0이고, 나머지의 경우에는
  1이 됨
- NOT 연산 : 입력에 반대를 출력하는 연산

## 3. 기본적인 논리연산의 진리표



| 입력 (A) | 입력 (B) | AND 출력 | OR 출력 | NOT 출력 | XOR 출력 |
|--------|--------|--------|-------|--------|--------|
| 0      | 0      | 0      | 0     | 1      | 0      |
| 0      | 1      | 0      | 1     | 1      | 1      |
| 1      | 0      | 0      | 1     | 0      | 1      |
| 1      | 1      | 1      | 1     | 0      | 0      |

| 입력 (A) | 입력 (B) | NAND 출력 | NOR 출력 | NXOR 출력 |  |
|--------|--------|---------|--------|---------|--|
| 0      | 0      | 1       | 1      | 1       |  |
| 0      | 1      | 1       | 0      | 0       |  |
| 1      | 0      | 1       | 0      | 0       |  |
| 1      | 1      | 0       | 0      | 1       |  |

### 다음시간

3주. 컴퓨터에서 활용되는 디지털 논리회로

