

radical; or U represents a hydroxyalkyl-G- radical which is optionally substituted by a cycloalkyl, aryl, heteroaryl or heterocyclyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

wherein k is 0 or 1;

G represents a bond, O, S or NH;

Q represents O, S, NH, N-CN or N-alkyl;

R is a radical of hydrogen or alkyl;

B1
R₁ is a radical of alkyl, haloalkyl, R₂₁R₂₂N-alkyl, R₂₁O-alkyl, R₂₁S-alkyl, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

wherein R₂₁ and R₂₂ are each independently a radical of hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

each R₂ is independently a halo, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, alkylamino or dialkylamino radical or two adjacent R₂ radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;

V represents a radical of formula

wherein each W_2 , W_3 , W_4 and W_5 is C-R₄; provided the total number of cycloalkyl, aryl, heteroaryl, heterocyclyl, carboxy, -C(O)-O-R₁₉, -C(O)-R₁₉, -C(O)-NH-R₁₉, -C(O)-N(R₁₉)₂ and -R₁₉ radicals in W_2 , W_3 , W_4 and W_5 is 0-2;

each W_6 is C-H; and

each R₄ is independently a hydrogen, halo, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, hydroxy, cyano, carboxy, -C(O)-O-R₁₉, -C(O)-R₁₉, -C(O)-NH-R₁₉, -C(O)-N(R₁₉)₂, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl radical, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂; or two adjacent R₄ radicals taken together with the carbon atoms to which they are attached represent a fused-phenyl or fused-heteroaryl of 5-6 ring members, wherein the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂;

R₅, R₆ and R₇ are each independently a hydrogen, halo, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, hydroxy or cyano radical; or R₅ and R₆ or R₆ and R₇ taken together with the carbon

atoms to which they are attached represent a fused-phenyl or fused-heteroaryl of 6 ring members, wherein the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂; or R₃ and R₆ taken together with the carbon atoms to which they are attached represent a fused-heteroaryl of 6 ring members optionally substituted by 1-3 radicals of R₂;

A represents a radical of formula

B1
R₈, R₉, R₁₀, R₁₁ and R₁₂ are each independently a hydrogen or alkyl radical; or -CR₈R₉- represents a -C(O)-;

B represents a radical of formula

wherein (a) R₁₅ is a hydrogen or alkyl radical; and R₁₇ is (1) an aryl, heteroaryl, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉ radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉; wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂; or

(b) R₁₇ is a hydrogen or alkyl radical; and R₁₅ is (1) an aryl, heteroaryl, cycloalkyl, heterocyclyl, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉ radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, cycloalkyl, heterocyclyl, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-

NH-R₁₉ or -NH-S(O)₂-NH-R₁₉ radical; wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

provided that when a nitrogen atom is attached to the carbon atom to which R₁₅ is attached, then R₁₅ is (1) an aryl, heteroaryl, cycloalkyl, heterocyclyl or -C(O)-NH-R₁₉ radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, cycloalkyl, heterocyclyl, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉;

B1
wherein R₁₉ is a alkyl, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

R₁₆ and R₁₈ are each independently a hydrogen or alkyl radical; and

E is a radical of carboxy, amido, tetrazolyl, -C(O)-O-R₂₀, -C(O)-NH-R₂₀, -C(O)-NH-S(O)-R₂₀, -C(O)-NH-S(O)₂-R₂₀ or -C(O)-NH-C(O)-R₂₀;

wherein R₂₀ is an alkyl, cycloalkyl, aryl, heteroaryl or heterocyclyl radical or an alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, amino, cycloalkyl, aryl, heteroaryl or heterocyclyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂; and

provided that when U represents amidino, guanidino, -C(Q)-NH-R₁ or -NH-C(Q)-NH-R₁ radical, wherein Q represents NH, N-CN or N-alkyl, then at least one of g, h or j is 1.

2. (Amended) The compound of Claim 1 or a pharmaceutically acceptable salt thereof, wherein

B2
each Alk is independently a C₁-C₁₂ alkyl radical;

U represents guanidino, $-(G-(C_1-C_8 \text{ alkyl}))_k\text{-NH-R}_1$, $-(G-(C_1-C_8 \text{ alkyl}))_k\text{-NH-C(Q)-R}_1$, $-(G-(C_1-C_8 \text{ alkyl}))_k\text{-C(Q)-N(R)-R}_1$, $-(G-(C_1-C_8 \text{ alkyl}))_k\text{-NH-C(Q)-N(R)-R}_1$, $-(G-(C_1-C_8 \text{ alkyl}))_k\text{-NH-C(Q)-O-R}_1$ or $-(G-(C_1-C_8 \text{ alkyl}))_k\text{-O-C(Q)-N(R)-R}_1$ radical; or U represents a hydroxy(C_1-C_{12} alkyl)-G-radical which is optionally substituted by a C_3-C_8 cycloalkyl, aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

Q represents O, S, NH, N-CN or N-(C_1-C_8 alkyl);

R is a radical of hydrogen or C_1-C_8 alkyl;

B²
 R_1 is a radical of C_1-C_8 alkyl, halo(C_1-C_8 alkyl) of 1-7 halo radicals, $R_{21}R_{22}\text{N-}(C_1-C_8 \text{ alkyl})$, $R_{21}\text{O-}(C_1-C_8 \text{ alkyl})$, $R_{21}\text{S-}(C_1-C_8 \text{ alkyl})$, C_3-C_8 cycloalkyl, C_3-C_8 cycloalkyl(C_1-C_8 alkyl), aryl, aryl(C_1-C_8 alkyl), heteroaryl of 5-10 ring members, heteroaryl(C_1-C_8 alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C_1-C_8 alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

wherein R_{21} and R_{22} are each independently a radical of hydrogen, C_1-C_8 alkyl, halo(C_1-C_8 alkyl) of 1-7 halo radicals, C_3-C_8 cycloalkyl, C_3-C_8 cycloalkyl(C_1-C_8 alkyl), aryl, aryl(C_1-C_8 alkyl), heteroaryl of 5-10 ring members, heteroaryl(C_1-C_8 alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C_1-C_8 alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

each R_2 is independently a halo, C_1-C_6 alkyl, C_1-C_6 alkoxy, C_1-C_6 alkylthio, halo(C_1-C_4 alkyl) of 1-5 halo radicals, halo(C_1-C_4 alkoxy) of 1-5 halo radicals, hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, C_1-C_8 alkylamino or di(C_1-C_8 alkyl)amino radical or two adjacent R_2 radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;

each R_3 is independently a hydrogen or C_1-C_6 alkyl radical;

each R₄ is independently a hydrogen, halo, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ alkylthio, halo(C₁-C₄ alkyl) of 1-5 halo radicals, halo(C₁-C₄ alkoxy) of 1-5 halo radicals, hydroxy, cyano, carboxy, -C(O)-O-R₁₉, -C(O)-R₁₉, -C(O)-NH-R₁₉, -C(O)-N(R₁₉)₂, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl(C₁-C₄ alkyl), aryl, aryl(C₁-C₄ alkyl), heteroaryl of 5-10 ring members, heteroaryl(C₁-C₄ alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C₁-C₄ alkyl) of 5-8 ring members radical, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂; or two adjacent R₄ radicals taken together with the carbon atoms to which they are attached represent a fused-phenyl or fused-heteroaryl of 5-6 ring members, wherein the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂;

*B*²

R₅, R₆ and R₇ are each independently a hydrogen, halo, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ alkylthio, halo(C₁-C₄ alkyl) of 1-5 halo radicals, halo(C₁-C₄ alkoxy) of 1-5 halo radicals, hydroxy or cyano radical; or R₅ and R₆ or R₆ and R₇ taken together with the carbon atoms to which they are attached represent a fused-phenyl or fused-heteroaryl of 6 ring members, wherein the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂; or R₃ and R₆ taken together with the carbon atoms to which they are attached represent a fused-heteroaryl of 6 ring members optionally substituted by 1-3 radicals of R₂;

X₂ is C-H, C-(C₁-C₄ alkyl), a C₃-C₈ spirocycloalkyl or spiroheterocyclyl of 5-8 ring members radical; wherein the spirocycloalkyl and spiroheterocyclyl radicals are optionally substituted by an oxo or thioxo radical and 1-2 radicals of C₁-C₆ alkyl, halo(C₁-C₄ alkyl) of 1-5 halo radicals, hydroxy, C₁-C₆ alkoxy or halo(C₁-C₄ alkoxy) of 1-5 halo radicals;

R₈, R₉, R₁₀, R₁₁ and R₁₂ are each independently a hydrogen or C₁-C₆ alkyl radical; or -CR₈R₉- represents a -C(O)-;

B represents a radical of formula

wherein (a) R₁₅ is a hydrogen or C₁-C₆ alkyl radical; and R₁₇ is (1) an aryl, heteroaryl of 5-10 ring members, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉ radical, or (2) an C₁-C₆ alkyl radical substituted by a radical of aryl, heteroaryl of 5-10 ring members, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉; wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂; or

(b) R₁₇ is a hydrogen or C₁-C₆ alkyl radical; and R₁₅ is (1) an aryl, heteroaryl of 5-10 ring members, C₃-C₈ cycloalkyl, heterocyclyl of 5-8 ring members, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉ radical, or (2) an C₁-C₄ alkyl radical substituted by a radical of aryl, heteroaryl of 5-10 ring members, C₃-C₈ cycloalkyl, heterocyclyl of 5-8 ring members, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉ radical; wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

B²
provided that when a nitrogen atom is attached to the carbon atom to which R₁₅ is attached, then R₁₅ is (1) an aryl, heteroaryl, cycloalkyl, heterocyclyl or -C(O)-NH-R₁₉ radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, cycloalkyl, heterocyclyl, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉;

wherein R₁₉ is a C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkyl(C₁-C₆ alkyl), aryl, aryl(C₁-C₆ alkyl), heteroaryl of 5-10 ring members, heteroaryl(C₁-C₆ alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C₁-C₆ alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

R₁₆ and R₁₈ are each independently a hydrogen or C₁-C₆ alkyl radical; and

B2
 R_{20} is a C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members radical or a C_1 - C_6 alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, amino, C_3 - C_8 cycloalkyl, aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 .

5. (Twice Amended) The compound of Claim 4 or a pharmaceutically acceptable salt thereof, wherein

each Alk is independently a C_1 - C_4 alkyl radical;

B3
U represents guanidino, $-(G-(C_1-C_8 \text{ alkyl}))_k-NH-R_1$, $-(G-(C_1-C_8 \text{ alkyl}))_k-NH-C(Q)-R_1$, $-(G-(C_1-C_8 \text{ alkyl}))_k-C(Q)-N(R)-R_1$, $-(G-(C_1-C_8 \text{ alkyl}))_k-NH-C(Q)-N(R)-R_1$ or $-(G-(C_1-C_8 \text{ alkyl}))_k-NH-C(Q)-O-R_1$ radical;

G represents a bond, O or NH;

Q represents O, S, NH, N-CN or N-(C_1 - C_4 alkyl);

R is a radical of hydrogen or C_1 - C_4 alkyl;

R_1 is a radical of C_1 - C_6 alkyl, halo(C_1 - C_6 alkyl) of 1-5 halo radicals, $R_{21}R_{22}N-(C_1-C_6 \text{ alkyl})$, $R_{21}O-(C_1-C_6 \text{ alkyl})$, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl(C_1 - C_6 alkyl), aryl, aryl(C_1 - C_6 alkyl), heteroaryl of 5-10 ring members, heteroaryl(C_1 - C_6 alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C_1 - C_6 alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

R_{21} and R_{22} are each independently a radical of hydrogen, C_1 - C_8 alkyl, aryl, aryl(C_1 - C_4 alkyl), heteroaryl of 5-10 ring members or heteroaryl(C_1 - C_4 alkyl) of 5-10 ring members, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ;

each R₂ is independently a halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, halo(C₁-C₂ alkyl) of 1-5 halo radicals, halo(C₁-C₂ alkoxy) of 1-5 halo radicals, hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, C₁-C₄ alkylamino or di(C₁-C₄ alkyl)amino radical or two adjacent R₂ radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;

B3
each R₄ is independently a hydrogen, halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, halo(C₁-C₂ alkyl) of 1-5 halo radicals, halo(C₁-C₂ alkoxy) of 1-5 halo radicals, hydroxy, cyano, carboxy, -C(O)-O-R₁₉, -C(O)-R₁₉, -C(O)-NH-R₁₉, -C(O)-N(R₁₉)₂, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl(C₁-C₄ alkyl), aryl, aryl(C₁-C₄ alkyl), heteroaryl of 5-10 ring members, heteroaryl(C₁-C₄ alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C₁-C₄ alkyl) of 5-8 ring members radical, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂; and

R₂₀ is a C₁-C₄ alkyl, aryl or heteroaryl of 5-10 ring members or a C₁-C₄ alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, amino, aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members, wherein the aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂.

6. (Amended) The compound of Claim 5 or a pharmaceutically acceptable salt thereof, wherein

B4
U represents guanidino, -(G-(C₁-C₈ alkyl))_k-NH-R₁, -NH-C(Q)-R₁, -(G-(C₁-C₈ alkyl))_k-C(Q)-N(R)-R₁, -NH-C(Q)-N(R)-R₁ or -NH-C(Q)-O-R₁ radical;

Q represents O or NH;

R is a radical of hydrogen or C₁-C₂ alkyl;

R₁ is a radical of C₁-C₆ alkyl, halo(C₁-C₆ alkyl) of 1-5 halo radicals, R₂₁R₂₂N-(C₁-C₄ alkyl), R₂₁O-(C₁-C₄ alkyl), C₃-C₈ cycloalkyl, C₃-C₈ cycloalkyl(C₁-C₄ alkyl), aryl, aryl(C₁-C₄ alkyl), heteroaryl of 5-10 ring members, heteroaryl(C₁-C₄ alkyl) of 5-10 ring members, heterocyclyl of

5-8 ring members or heterocyclyl(C₁-C₄ alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

R₂₁ and R₂₂ are each independently a radical of hydrogen, C₁-C₆ alkyl, aryl or heteroaryl of 5-10 ring members, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂;

each R₂ is independently a halo, C₁-C₂ alkyl, C₁-C₂ alkoxy, C₁-C₂ alkylthio, CF₃-, CF₃O-, hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, C₁-C₂ alkylamino or di(C₁-C₂ alkyl)amino radical or two adjacent R₂ radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;

B4
each W₂, W₃, W₄ and W₅ are independently C-R₄;

each R₄ is independently a hydrogen, halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, halo(C₁-C₂ alkyl) of 1-5 halo radicals, halo(C₁-C₂ alkoxy) of 1-5 halo radicals, hydroxy or cyano radical;

A represents a radical of formula

(a) R₁₅ is a hydrogen or C₁-C₂ alkyl radical; and R₁₇ is -NH-C(O)-R₁₉, -NH-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -NH-S(O)₂-R₁₉ or -NH-S(O)₂-NH-R₁₉ radical; or (b) R₁₇ is a hydrogen or C₁-C₂ alkyl radical; and R₁₅ is (1) an aryl, heteroaryl of 5-10 ring members, C₃-C₈ cycloalkyl or heterocyclyl of 5-8 ring members radical, or (2) an C₁-C₂ alkyl radical substituted by a radical of aryl, heteroaryl of 5-10 ring members, C₃-C₈ cycloalkyl or heterocyclyl of 5-8 ring members radical; wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

R₁₉ is a C₁-C₄ alkyl, aryl, aryl(C₁-C₄ alkyl), heteroaryl of 5-10 ring members or heteroaryl(C₁-C₄ alkyl) of 5-10 ring members, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂;

B4 R₁₆ and R₁₈ are each independently a hydrogen or C₁-C₄ alkyl radical;

E is a radical of carboxy, amido, tetrazolyl or -C(O)-O-R₂₀; and

R₂₀ is a C₁-C₂ alkyl, aryl or heteroaryl of 5-10 ring members or a C₁-C₂ alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, aryl or heteroaryl of 5-10 ring members, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂.

Please ADD new Claim 19.

19. (New) A method for the treatment of rheumatoid arthritis comprising administering an effective amount of a compound according to Claim 1.

B5