PH 716 Applied Survival Analysis

Part IV: Competing risks

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

Competing risks

- $K \geq 2$ (mutually exclusive) events of interest
 - Occurrence of one of these events precluding us from observing the other event on this subject
 - Observation for each subject terminated if
 - * encountering one (and only one) of these K events or
 - * censoring
 - E.g., death from different causes: natural causes, accidental death, homicide, suicide, etc.
 - E.g., disease-free survival from multiple conditions: heart disease, cancer, chronic respiratory diseases, stoke, diabetes, kidney diseases, etc.
- Notations
 - -i: subject index, $i=1,\ldots,n$
 - $-\widetilde{T}_i = \min(T_i, C_i)$: observed survival time for subject i
 - * T_i : authentic survival time for subject i
 - * C_i : censoring time for subject i
 - Δ_i : the (re-defined) event indicator for subject i
 - * $\Delta_i = k, k = 1, \dots, K$: $T_i = \widetilde{T}_i$ and the event label is k
 - * $\Delta_i = 0$: $T_i = C_i$
 - $-x_{i1},\ldots,x_{ip}$: values of covariates for subject i

Recall functions characterizing the survival distribution

- Limited to continuous T_i
- Hazard function

$$\lambda_{T_i}(t) = \lim_{\delta \to 0^+} \frac{\Pr(t \le T_i < t + \delta \mid T_i \ge t)}{\delta}$$

- The instantaneous risk of experiencing one event at time t, assuming the subject has survived up
- Cumulative hazard function $\Lambda_{T_i}(t) = \int_0^t \lambda_{T_i}(u) du$
- Survival function $S_{T_i}(t) = \Pr(T_i > t)$
- (Cumulative) distribution function $F_{T_i}(t) = \Pr(T_i \leq t) = 1 S_{T_i}(t)$
- Probability density function $f_{T_i}(t) = dF_{T_i}(t)/dt$
- Interaction among the above functions

$$-\lambda_{T_i}(t) = -d \ln S_{T_i}(t)/dt = -d \ln \{1 - F_{T_i}(t)\}/dt$$

- $-\Lambda_{T_i}(t) = -\ln S_{T_i}(t)$
- $-S_{T_i}(t) = \exp\{-\Lambda_{T_i}(t)\} = \exp\{-\int_0^t \lambda_{T_i}(u) du\}$ $-f_{T_i}(t) = -dS_{T_i}(t)/dt = S_{T_i}(t)\lambda_{T_i}(t)$

Motivation to consider the event type k

- May sacrifice valuable information by ignoring the event label (i.e., merging all the K events together)

 - E.g., $\lambda_{T_i}(t) = \lambda_0(t) \exp(\sum_{j=1}^p x_{ij}\beta_j)$ * β_1 potentially insignificant in general with x_{i1} as a strong predictor for certain specific event

Cause-specific functions characterizing the survival distribution

• Cause-specific hazard function

$$\lambda_{T_i}^{(k)}(t) = \lim_{\delta \to 0^+} \frac{\Pr(t \le T_i < t + \delta, \Delta_i = k \mid T_i \ge t)}{\delta}, \quad k = 1, \dots, K$$

- The instantaneous risk of experiencing event k at time t, assuming the subject has survived up to t $\sum_{k=1}^{K} \lambda_{T_i}^{(k)}(t) = \lambda_{T_i}(t)$
- Cumulative cause-specific hazard function $\Lambda_{T_i}^{(k)}(t) = \int_0^t \lambda_{T_i}^{(k)}(u) \mathrm{d}u$
 - $-\sum_{k=1}^{K} \Lambda_{T_i}^{(k)}(t) = \Lambda_{T_i}(t)$
- Sub-distribution function/cumulative incidence function (CIF) $F_{T_i}^{(k)}(t) = \Pr(T_i \leq t, \Delta_i = k)$
 - NOT a (cumulative) distribution function
 - The probability of dying from event k up to time t, while acknowledging that the subject may die
- of other K-1 causes first $-\sum_{k=1}^K F_{T_i}^{(k)}(t) = F_{T_i}(t) \Rightarrow S_{T_i}(t) = 1 \sum_{k=1}^K F_{T_i}^{(k)}(t)$ Sub-distribution hazard function

$$\bar{\lambda}_{T_i}^{(k)}(t) = -\frac{\mathrm{d}\ln\{1 - F_{T_i}^{(k)}(t)\}}{\mathrm{d}t} = \frac{\mathrm{d}F_{T_i}^{(k)}(t)/\mathrm{d}t}{1 - F_{T_i}^{(k)}(t)}, \quad k = 1, \dots, K$$

- The instantaneous risk at time t of experiencing event k, assuming the subject has survived from event k up to t
- NOT the cause-specific hazard function: $\bar{\lambda}_{T_i}^{(k)}(t) \leq \lambda_{T_i}^{(k)}(t)$

• Interaction among the above functions
$$-\lambda_{T_i}^{(k)}(t) = \frac{\mathrm{d}F_{T_i}^{(k)}(t)/\mathrm{d}t}{S_{T_i}(t)}$$

* Proof:
$$\lambda_{T_{i}}^{(k)}(t) = \lim_{\delta \to 0^{+}} \frac{\Pr(t \le T_{i} < t + \delta, \Delta_{i} = k, T_{i} \ge t)}{\delta \Pr(T_{i} \ge t)} = \lim_{\delta \to 0^{+}} \frac{\Pr(t \le T_{i} < t + \delta, \Delta_{i} = k)}{\delta S_{T_{i}}(t)} = \frac{\mathrm{d}F_{T_{i}}^{(k)}(t)/\mathrm{d}t}{\delta S_{T_{i}}(t)} - F_{T_{i}}^{(k)}(t) = \int_{0}^{t} \lambda_{T_{i}}^{(k)}(u) S_{T_{i}}(u) \mathrm{d}u = 1 - \exp\{-\int_{0}^{t} \bar{\lambda}_{T_{i}}^{(k)}(u) \mathrm{d}u\}$$

Naive KM estimator [DM, Sec. 9.2.1]

- Assuming that
 - T_i iid across i, i.e., $T_i \stackrel{\text{iid}}{\sim} T$
 - T_i independent of C_i given covariates (if any)
 - Times to different events are independent (typically violated in medical cases)
 - * Implying that at each time point the hazard of each event is the same for subjects at risk as for subjects that have experienced other competing events by that time
- Estimation procedure
 - Take the event k as the event of interest with other events considered as censored
 - Apply KM estimator to the resulting binary setting and then estimate the probability of survival from one event (in the absence of other causes) by $\prod_{j:t_i \leq t} \{1 - \hat{\lambda}_T^{(k)}(t_j)\}$
 - * $0 = t_0 < t_1 < \cdots < t_J$: unique failure times
 - * $\hat{\lambda}_T^{(k)}(t_j) = d_{kj}/r_j$: an estimate of the cause-specific hazard function
 - d_{kj} : # of event k that happened exactly at time t_i
 - r_i : # of individuals at risk up to time t_i
- Underestimating the survival probability (i.e., overestimating the failure probability)
 - Potentially treating subjects that will never fail as if they could fail
 - The bias inflated when the competition when the hazards of competing events are larger

Ex. 9.1 High risk population in asaur::prostateSurvival

- Dataset asaur::prostateSurvival involves covariates as below.
 - grade: a factor with levels mode (moderately differentiated) and poor (poorly differentiated)
 - stage: a factor with levels T1ab (Stage T1, clinically diagnosed), T1c (Stage T1, diagnosed via a PSA test), and T2 (Stage T2)
 - ageGroup: a factor with levels 66-69, 70-74, 75-79, & 80+
 - survTime: the survival time from diagnosis to death (from prostate cancer or other causes) or last date known alive
 - status: a censoring variable, 0 (censored), 1 (death from prostate cancer), and 2 (death from other causes)
- Consider the high risk population (i.e.,grade="poor", stage="T2" & ageGroup="80+").

```
options(digits=4)
library(asaur)
library(survival)
sapply(asaur::prostateSurvival, class)
data.ex91 = asaur::prostateSurvival[
  asaur::prostateSurvival$grade == "poor" &
  asaur::prostateSurvival$stage == "T2" &
  asaur::prostateSurvival$ageGroup == "80+"
٦
km.prost.naive = survfit(
  Surv(survTime, event=(data.ex91$status==1)) ~ 1,
  data=data.ex91
km.other.naive = survfit(
  Surv(survTime, event=(data.ex91$status==2)) ~ 1,
  data=data.ex91
)
plot(
  km.prost.naive$surv ~ km.prost.naive$time, type="s", ylim=c(0,1), lwd=2, col="blue",
  xlab="Months from prostate cancer diagnosis",
  ylab='Estimated survival probability',
lines(km.other.naive$surv ~ km.other.naive$time, type="s", col="green", lwd=2)
legend(
  "topright",
    "Prostate",
    "Other"
  ),
  col=c('blue','green'), lwd=2
```

KM estimator of CIF [DM, Sec. 9.2.2]

- Assuming that
 - T_i iid across i, i.e., $T_i \stackrel{\text{iid}}{\sim} T$
 - T_i independent of C_i given covariates (if any)
- Estimation procedure
 - Estimate overall survival $S_T(t)$ by $\widehat{S}_{T,KM}(t) = \prod_{j:t_j \leq t} \{1 \sum_{k=1}^K \widehat{\lambda}_T^{(k)}(t_j)\}$ * $0 = t_0 < t_1 < \dots < t_J$: unique failure times

```
* \hat{\lambda}_{T}^{(k)}(t_{j}) = d_{kj}/r_{j}: an estimate of the cause-specific hazard function \cdot d_{kj}: # of event k that happened exactly at time t_{j} \cdot r_{j}: # of individuals at risk up to time t_{j} – Estimate CIF F_{T}^{(k)}(t) by \widehat{F}_{T,KM}^{(k)}(t) = \sum_{j:t_{j} \leq t} \hat{\lambda}_{T}^{(k)}(t_{j}) \widehat{S}_{T,KM}(t_{j}-1)
```

Revisit Ex. 9.1

```
options(digits=4)
library(asaur)
library(survival)
library(mstate)
sapply(asaur::prostateSurvival, class)
data.ex91 = asaur::prostateSurvival[
  asaur::prostateSurvival$grade == "poor" &
  asaur::prostateSurvival$stage == "T2" &
  asaur::prostateSurvival$ageGroup == "80+"
]
km.cif = Cuminc(
  time = data.ex91\survTime,
  status = data.ex91$status
)
km.cif
# Plot of CIFs and the overall survival function
plot(
  km.cif$CI.1 ~ km.cif$time, type="s", ylim=c(0,1), lwd=2, col="blue",
  xlab="Months from prostate cancer diagnosis",
  ylab="Probability"
lines(km.cif$CI.2 ~ km.cif$time, type="s", lwd=2, col="green")
lines(km.cif$Surv ~ km.cif$time, type="s", lwd=2, col="red")
legend(
  "topright",
  c(
    "CIF (prostate)",
    "CIF (other)",
    'Overall survival'
  ),
  col=c('blue','green','red'), lwd=2
# Stacked plot
library(ggplot2)
cuminc_data = as.data.frame(km.cif[, c('time', 'Surv', 'CI.1', 'CI.2')])
cuminc_data = tidyr::pivot_longer(
  cuminc_data, cols = -time, names_to = "Types", values_to = "estimate")
ggplot(data = cuminc_data, aes(x = as.numeric(time), y = estimate, fill = Types)) +
  geom_area(alpha = 0.6) +
  labs(x = "Months from prostate cancer diagnosis", y = "Probability") +
  theme_minimal()
```

Regression on cause-specific hazards

- Assuming that
 - $-T_i$ independent across i given covariates
 - The independent and non-informative censoring

 - The independent that has the state of the independent that has the state of the independent of the independent of the independent indepen
- Procedure
 - Specify one event of interest and fit a Cox PH model with the remaining K-1 events treated as censoring
 - Repeat the above step and obtain K Cox PH models
- If assuming that $\lambda_{T_i}^{(k)}(t) = \lambda_0^{(k)}(t) \exp(\sum_{j=1}^p x_{ij}\beta_j)$, i.e., β_j shared by all the K events First reshape the data frame in an alternative way (i.e., the long format)
 - - * Long format: encoding the event label by K rows
 - Then fit a Cox PH model stratified by event
- When $\hat{\lambda}_{T_i}^{(k)}(t)$ is ready
 - $-\widehat{S}_{T_{i}} = \exp\{-\sum_{k=1}^{K} \int_{0}^{t} \widehat{\lambda}_{T_{i}}^{(k)}(u) du\}$ $-\widehat{F}_{T_{i}}^{(k)}(t) = \int_{0}^{t} \widehat{\lambda}_{T_{i}}^{(k)}(u) \widehat{S}_{T_{i}}(u) du$
 - - * Inconvenient to interpret the contribution of $\hat{\beta}_i^{(k)}$ due to the nested non-linear structure

Ex. 9.2 Patients at "T2"-stage in asaur::prostateSurvival

• Consider patients with stage="T2".

```
options(digits=4)
library(asaur)
library(survival)
sapply(asaur::prostateSurvival, class)
data.ex92 = asaur::prostateSurvival[
  asaur::prostateSurvival$stage == "T2"
]
# Regression on cause-specific hazards
cph.prost = coxph(
  Surv(survTime, status==1)~grade + ageGroup,
  data = data.ex91
summary(cph.prost)
cph.other = coxph(
  Surv(survTime, status==2)~grade + ageGroup,
  data = data.ex91
summary(cph.other)
# Regression on cause-specific hazards with shared coefficients
## Reshape the data into the long format
data.ex92.long = NULL
K = length(unique(data.ex92$status))-1
for (i in 1:nrow(data.ex92)){
  data.curr = data.ex92[rep(i, times=K),]
  data.curr$event = c('prostate', 'other')
```

```
data.curr$status=rep(0,K-1)
  if(data.ex92$status[i]>=1) {
    data.curr$status[which(data.curr$event==c('prostate', 'other')[data.ex92$status[i]])]=1
  }
  data.ex92.long = rbind(data.ex92.long, data.curr)
}
head(data.ex92)
head(data.ex92)
head(data.ex92.long)
## Cox PH model stratified by event
cph.strat = coxph(
    Surv(survTime, status)~grade + ageGroup+strata(event),
    data = data.ex92.long
)
summary(cph.strat)
```

Fine-Gray sub-distribution hazards model

```
Assuming that

T<sub>i</sub> independent across i given covariates
The independent and non-informative censoring
λ̄<sup>(k)</sup><sub>T<sub>i</sub></sub>(t) = λ̄<sup>(k)</sup><sub>0</sub>(t) exp(∑<sup>p</sup><sub>j=1</sub> x<sub>ij</sub>β<sup>(k)</sup><sub>j</sub>)
λ̄<sup>(k)</sup><sub>0</sub>(t): baseline sub-distribution hazard of event k
β<sup>(k)</sup><sub>1</sub>,...,β<sup>(k)</sup><sub>p</sub>: covariate effects potentially varying from one event to another

When λ̄<sup>(k)</sup><sub>T<sub>i</sub></sub>(t) is ready
F̄<sup>(k)</sup><sub>T<sub>i</sub></sub>(t) = 1 − exp{− ∫<sup>t</sup><sub>0</sub>λ̄<sup>(k)</sup><sub>T<sub>i</sub></sub>(u)du}
```

Revisit Ex. 9.2

- Poorly differentiated patients (grade=poor) have higher risk for death from both prostate and other.
- Elder patients also have higher risk for the death from both conditions.

```
options(digits=4)
library(asaur)
data.ex92 = asaur::prostateSurvival[
  asaur::prostateSurvival$stage == "T2"
cph.subdisthz.prost = cmprsk::crr(
 ftime = data.ex92\$survTime,
 fstatus = data.ex92$status,
  cov1 = model.matrix(~ grade + ageGroup, data = data.ex92)[,-1],
  failcode=1
summary(cph.subdisthz.prost)
cph.subdisthz.other = cmprsk::crr(
 ftime = data.ex92\survTime,
 fstatus = data.ex92$status,
  cov1 = model.matrix(~ grade + ageGroup, data = data.ex92)[,-1],
  failcode=2
summary(cph.subdisthz.other)
```