

Plotting Data

Till Korten

With material from

Marcelo Leomil Zoccoler Robert Haase, BiAPoL, PoL TU Dresden

napari

matplotlib

napari

キャナ 中口 甘区 🖺

https://github.com/BiAPoL/napari-clusters-plotter

matplotlib

Examples

This page contains example plots. Click on any image to see the full image and source code.

For longer tutorials, see our tutorials page. You can also find external resources and a FAQ in our user guide.

Lines, bars and markers

Matplotlib: Basic Plot Types

plot(x, y)

See plot.

scatter(x, y)

See scatter.

bar(x, height) #

See bar.

Statistical Plots

boxplot(X) #

See boxplot.

hist(x)

See hist.

Plotting Data with Matplotlib

Line plot

import matplotlib.pyplot as plt import numpy as np x = np.array([1, 2, 3, 4, 5, 6]) y = x ** 2 line_plot = plt.plot(x, y)

Scatter plot

Multiple plots in one figure

```
plt.scatter(x, y, marker='*', color='red')
```


subplots: Create multi-panel figures


```
fig, axis = plt.subplots(1,3) ax ax rows columns ax
```

```
axis[0, 0].imshow(median)
axis[0, 1].imshow(mean)
axis[0, 2].imshow(gaussian)
row column
```


Plotting Tabular Data


```
x = df['aspect_ratio']
y = df['intensity_mean']
plt.scatter(x, y)
```


Customize your plot via the axis object


```
fig, axis = plt.subplots(figsize=(7,4))
axis.scatter(x, y, color='magenta',
marker='*', s=80, alpha=0.5)
axis.set_xlabel('aspect ratio')
axis.set_ylabel('mean intensity')
axis.set_title('Aspect Ratio vs.
Intensity')
```


https://seaborn.pydata.org/tutorial/introduction.html

An introduction to seaborn

Seaborn is a library for making statistical graphics in Python. It builds on top of matplotlib and integrates

closely with pandas data structures.

Plotting A Scatter Plot from Tabular Data with Seaborn

aspect_ratio

	area	intensity_mean	major_axis_length	minor_axis_leng
0	139	96.546763	17.504104	10.292
1	360	86.613889	35.746808	14.983
2	43	91.488372	12.967884	4.351
3	140	73.742857	18.940508	10.314
4	144	89.375000	13.639308	13.458

sns.scatterplot(data=df,
x="aspect_ratio",
y="intensity_mean")

file_name

Symbol Size and Color can be Defined by Data


```
sns.scatterplot(data=df,
x="aspect_ratio",
y="intensity_mean",
size="area",
hue="major_axis_length",
palette='magma')
```


relplot: Split Plot by Categorical Variable


```
sns.relplot(data=df, x="aspect_ratio", y="intensity_mean", size="area",
hue="major_axis_length", col="file_name", palette='magma')
```



```
sns.regplot(data=df,
x="aspect_ratio",
y="intensity_mean")
```



```
sns.boxplot(data=df,
x="intensity_mean",
y="file_name")
```


sns.histplot(data=df,
x="intensity_mean",
hue="file_name")

sns.kdeplot(data=df,
x="intensity_mean",
hue="file_name")

jointplot: Visualizing Distributions of a Scatter plot


```
sns.jointplot(data=df,
x="aspect_ratio",
y="area",
hue='file_name')
```


pairplot: Comparing Many Properties


```
sns.pairplot(data=df,
hue="file_name")
```


Exercises

- The examples presented here can be found in the Jupyter notebook "Plotting.ipynb"
- Exercises
 - Exercise 1: line regression
 - Exercise 2: ECDF
 - Exercise 3: non-redundant pairplot
 - Exercise 4: Plot images + data