are equivalent. Moreover, these statements hold if and only if $s(A) \ = \ \sup\{Re \ \lambda \ : \ \lambda \ \in \ \sigma(A) \ \} \ < \ 0 \ ,$

see A-III, Cor.1.2 .

As already discussed in Chapter A-III the situation is far more difficult in the infinite dimensional case. Here, and for unbounded generators, we have to distinguish between strong and generalized (mild) solutions of $\dot{\mathbf{u}}(t) = A\mathbf{u}(t)$ and between various notions of stability. Recall that for $\mathbf{f} \in D(A)$ the function $T(\cdot)\mathbf{f}$ is a strong solution of (ACP) (see A-II,Cor.1.2.); for arbitrary $\mathbf{f} \in E$ the function $T(\cdot)\mathbf{f}$ is called a generalized or mild solution of (ACP). Next we introduce several constants characterizing the growth of the solutions of (ACP).

<u>Definition</u> 1.1 (1st part). Let A be the generator of a strongly continuous semigroup $(T(t))_{t\geq 0}$ on a Banach space E . Then

- (i) $\omega(f) := \inf\{w : \|T(t)f\| \le Me^{wt} \text{ for some } M \text{ and every } t \ge 0\}$ is called the (exponential) growth bound of $T(\cdot)f$.
- (ii) $\omega_1(A) := \sup\{\omega(f) : f \in D(A)\}$ is called the (exponential) growth bound of the solutions of the Cauchy problem $\dot{u}(t) = Au(t)$.
- (iii) $\omega(A) = \sup\{\omega(f) : f \in E\}$ is called the (exponential) growth bound of the mild solutions of the Cauchy problem $\dot{u}(t) = Au(t)$.

Note that, by the Principle of Uniform Boundedness, $\sup\{\omega(f): f\in E\}$ = $\inf\{\omega: \|T(t)\| \le Me^{\omega t}$ for some M and every $t\ge 0\}$. Hence $\omega(A)$ coincides with the growth bound of the semigroup $(T(t))_{t\ge 0}$ as defined in A-I,1.3. With the constants defined above we obtain the following stability concepts.

<u>Definition</u> 1.1 (2nd part). The semigroup $(T(t))_{t \ge 0}$ is called

- (iv) uniformly exponentially stable if $\omega(A) < 0$;
- (v) exponentially stable if $\omega_1(A) < 0$;
- (vi) uniformly stable if $||T(t)f|| \to 0$ (as $t \to \infty$) for every $f \in E$;
- (vii) stable if $||T(t)f|| \to 0$ (as $t \to \infty$) for every $f \in D(A)$.