import pandas as pd
import pickle
import warnings
warnings.filterwarnings("ignore")

In [2]: a=pd.read_csv("C:\\Users\\reshma_koduri\\OneDrive\\Documents\\calories.csv")

Out[2]:		User_ID	Gender	Age	Height	Weight	Duration	Heart_Rate	Body_Temp	Calories
	0	14733363	male	68	190	94	29	105	40.8	231
	1	14861698	female	20	166	60	14	94	40.3	66
	2	11179863	male	69	179	79	5	88	38.7	26
	3	16180408	female	34	179	71	13	100	40.5	71
	4	17771927	female	27	154	58	10	81	39.8	35
	•••									
	14995	15644082	female	20	193	86	11	92	40.4	45
	14996	17212577	female	27	165	65	6	85	39.2	23
	14997	17271188	female	43	159	58	16	90	40.1	75
	14998	18643037	male	78	193	97	2	84	38.3	11
	14999	11751526	male	63	173	79	18	92	40.5	98

15000 rows × 9 columns

In [3]: a.head(5)

Out[3]:		User_ID	Gender	Age	Height	Weight	Duration	Heart_Rate	Body_Temp	Calories
	0	14733363	male	68	190	94	29	105	40.8	231
	1	14861698	female	20	166	60	14	94	40.3	66
	2	11179863	male	69	179	79	5	88	38.7	26
	3	16180408	female	34	179	71	13	100	40.5	71
	4	17771927	female	27	154	58	10	81	39.8	35

In [4]: a.tail(5)

Out[4]: User_ID Gender Age Height Weight Duration Heart_Rate Body_Temp Calories 15644082 40.4 female 17212577 female 39.2 17271188 40.1 female 18643037 male 38.3 40.5 11751526 male

```
In [5]:
           a.describe()
Out[5]:
                     User ID
                                                Height
                                                            Weight
                                                                        Duration
                                     Age
                                                                                   Heart_Rate
                                                                                                Body_1
                1.500000e+04
                             15000.000000
                                          15000.000000 15000.000000 15000.000000 15000.000000
                                                                                              15000.00
          count
                1.497736e+07
                                 42.789800
                                             174.465133
                                                          74.966867
                                                                       15.530600
                                                                                    95.518533
                                                                                                 40.02
          mean
                2.872851e+06
                                 16.980264
                                             14.258114
                                                          15.035657
                                                                        8.319203
                                                                                     9.583328
                                                                                                  0.77
               1.000116e+07
                                 20.000000
                                             123.000000
                                                          36.000000
                                                                        1.000000
                                                                                    67.000000
                                                                                                 37.10
           min
           25%
                1.247419e+07
                                 28.000000
                                             164.000000
                                                          63.000000
                                                                        8.000000
                                                                                    88.000000
                                                                                                 39.60
           50%
               1.499728e+07
                                 39.000000
                                             175.000000
                                                          74.000000
                                                                       16.000000
                                                                                    96.000000
                                                                                                 40.20
           75% 1.744928e+07
                                 56.000000
                                             185.000000
                                                          87.000000
                                                                       23.000000
                                                                                    103.000000
                                                                                                 40.60
           max 1.999965e+07
                                 79.000000
                                                          132.000000
                                                                       30.000000
                                                                                    128.000000
                                             222.000000
                                                                                                 41.50
In [6]:
           a.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 15000 entries, 0 to 14999
          Data columns (total 9 columns):
           #
               Column
                            Non-Null Count Dtype
               ----
                            -----
               User_ID
           0
                            15000 non-null int64
           1
               Gender
                            15000 non-null object
           2
               Age
                            15000 non-null int64
           3
               Height
                            15000 non-null int64
           4
               Weight
                            15000 non-null int64
           5
               Duration
                            15000 non-null int64
           6
               Heart_Rate
                           15000 non-null
                                            int64
           7
               Body Temp
                            15000 non-null float64
               Calories
                            15000 non-null int64
           8
          dtypes: float64(1), int64(7), object(1)
          memory usage: 1.0+ MB
In [8]:
          a['Age'].unique()
         array([68, 20, 69, 34, 27, 36, 33, 41, 60, 26, 21, 66, 32, 53, 39, 46, 50,
Out[8]:
                 67, 31, 48, 29, 42, 62, 38, 25, 24, 22, 74, 70, 44, 61, 63, 54, 47,
                 35, 28, 77, 64, 45, 57, 49, 40, 55, 23, 43, 52, 79, 51, 59, 30, 37,
                 56, 58, 78, 73, 76, 72, 65, 71, 75], dtype=int64)
In [9]:
           a.groupby(['Gender']).count()
                  User_ID Age Height Weight Duration Heart_Rate Body_Temp Calories
Out[9]:
          Gender
          female
                    7553 7553
                                  7553
                                          7553
                                                   7553
                                                              7553
                                                                          7553
                                                                                  7553
            male
                    7447 7447
                                  7447
                                          7447
                                                   7447
                                                              7447
                                                                          7447
                                                                                  7447
In [13]:
           b=a.drop(['User ID', 'Height', 'Weight', 'Duration'], axis=1)
```

Out[13]:		Gender	Age	Heart_Rate	Body_Temp	Calories
	0	male	68	105	40.8	231
	1	female	20	94	40.3	66
	2	male	69	88	38.7	26
	3	female	34	100	40.5	71
	4	female	27	81	39.8	35
	•••					
	14995	female	20	92	40.4	45
	14996	female	27	85	39.2	23
	14997	female	43	90	40.1	75
	14998	male	78	84	38.3	11
	14999	male	63	92	40.5	98

15000 rows × 5 columns

```
In [14]:
    c=pd.get_dummies(b,dtype=int)
    c
```

Out[14]:		Age	Heart_Rate	Body_Temp	Calories	Gender_female	Gender_male
	0	68	105	40.8	231	0	1
	1	20	94	40.3	66	1	0
	2	69	88	38.7	26	0	1
	3	34	100	40.5	71	1	0
	4	27	81	39.8	35	1	0
	•••						
	14995	20	92	40.4	45	1	0
	14996	27	85	39.2	23	1	0
	14997	43	90	40.1	75	1	0
	14998	78	84	38.3	11	0	1
	14999	63	92	40.5	98	0	1

15000 rows × 6 columns

14996 23 14997 75 14998 11 14999 98

Name: Calories, Length: 15000, dtype: int64

```
In [19]: x=c.drop(['Calories'],axis=1)
x
```

Out[19]:		Age	Heart_Rate	Body_Temp	Gender_female	Gender_male
	0	68	105	40.8	0	1
	1	20	94	40.3	1	0
	2	69	88	38.7	0	1
	3	34	100	40.5	1	0
	4	27	81	39.8	1	0
	•••					
	14995	20	92	40.4	1	0
	14996	27	85	39.2	1	0
	14997	43	90	40.1	1	0
	14998	78	84	38.3	0	1
	14999	63	92	40.5	0	1

15000 rows × 5 columns

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=55)

In [21]: x_train

Out[21]: Age Heart_Rate Body_Temp Gender_female Gender_male 38.2 39.5 39.6 40.6 41.0 ... ••• 40.0 40.8 39.2 40.1 40.0

 $10050 \text{ rows} \times 5 \text{ columns}$

```
In [22]:
          y_train
                     8
          12943
Out[22]:
                    34
          659
          7964
                    40
          13569
                    88
          993
                   145
                   . . .
          14877
                    84
          968
                   135
          12583
                    32
          4762
                    63
          12749
                    61
          Name: Calories, Length: 10050, dtype: int64
In [23]:
          from sklearn.linear_model import LinearRegression
          reg=LinearRegression()
          reg.fit(x_train,y_train)
          LinearRegression()
Out[23]:
In [24]:
          ypred=reg.predict(x_test)
          ypred
          array([ -4.65157304,
                                 62.73575692, 58.65968775, ..., 168.48952062,
Out[24]:
                 170.46822995,
                                 55.54179259])
In [25]:
           from sklearn.metrics import r2_score
          r2_score(ypred,y_test)
          0.8462802527979185
Out[25]:
In [26]:
           from sklearn.metrics import mean squared error
          mean_squared_error(y_test,ypred)
          510.9104768590488
Out[26]:
In [28]:
           results=pd.DataFrame(columns=['Calories', 'Predicted'])
          results['Calories']=y_test
          results["Predicted"]=ypred
          results=results.reset index()
          results['ID']=results.index
           results.head(5)
Out[28]:
             index Calories
                             Predicted
                                      ID
          0 10827
                         5
                             -4.651573
                                       0
          1
              2990
                        60
                            62.735757
                                       1
          2
             6780
                        49
                                       2
                            58.659688
              4828
          3
                        46
                            53.224977
                                       3
              7602
                       177 160.989545
                                       4
```

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Calories',data=results.head(50))
sns.lineplot(x='ID',y='Predicted',data=results.head(50))
plt.plot()
```

Out[30]: []


```
import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Calories',data=results.tail(50))
sns.lineplot(x='ID',y='Predicted',data=results.tail(50))
plt.plot()
```

Out[32]: []

In [33]: cor=c.corr() cor

Out[33]:		Age	Heart_Rate	Body_Temp	Calories	Gender_female	Gender_male
	Age	1.000000	0.010482	0.013175	0.154395	-0.003222	0.003222
	Heart_Rate	0.010482	1.000000	0.771529	0.897882	-0.011555	0.011555
	Body_Temp	0.013175	0.771529	1.000000	0.824558	-0.007264	0.007264

	Age	Heart_Rate	Body_Temp	Calories	Gender_female	Gender_male
Calories	0.154395	0.897882	0.824558	1.000000	-0.022357	0.022357
Gender_female	-0.003222	-0.011555	-0.007264	-0.022357	1.000000	-1.000000
Gender_male	0.003222	0.011555	0.007264	0.022357	-1.000000	1.000000

import seaborn as sb
sb.heatmap(cor,vmax=0,vmin=-2,annot=True,linewidth=-5,cmap="bwr")

Out[34]: <AxesSubplot:>

In []: