1. Sean k un entero, $k \ge 2$, y G una gráfica simple. Demuestra que G es k-partita completa si y sólo si G es libre de $\{K_{k+1}, \overline{P_3}\}$.

Recordemos la definción de k-partita, esto es, dado un entero positivo k, decimos que una gráfica simple G es k-partita completa si su conjunto de vértices admite una partición (V_1, V_2, \ldots, V_k) donde cada V_i es un conjunto independiente, y V_i es completamente adyacente a V_i siempre que $i \neq j$.

Recordemos que K_{k+1} es la gráfica completa de orden k+1 vértices, $\overline{P_3}$ es Si G es k-partita completa entonces, G es libre de $\{K_{k+1}, \overline{P_3}\}$

Decimos que G es libre de H si no existe algún conjunto de vertices de G,

Como G es k-partita completa entonces V_G se puede dividir en subconjutos (V_1, V_2, \ldots, V_k) independientes. Por el principio del palomar, si G contiene un K_{k+1} tal que su orden es de k+1 vérticesm, entonces, al menos dos vértices deben caer en la misma partición.