## Document Type Classification

## Content

- 01. 팀원 소개
- 02. 대회 소개
- 03. Data Description
- 04. Modeling
- 05. 결과
- 06. 경진대회 진행 소감



 01

 팀원소개

| 강승현 | 김형수 | 김창희 | 김하연 | 이소영 | 진성준 |
|-----|-----|-----|-----|-----|-----|
| 팀장  | 조원  | 조원  | 조원  | 조원  | 조원  |

(02) 대회소개

#### Document Type Classification | 문서 타입 분류



## 문서 이미지 분류

• 17종 문서 이미지 분류

평가지표: Macro F1





## Data Description

#### **Train Data**

- Input
  - o count : 1570개
  - 0 17 종
- Output
  - ㅇ 주어진 이미지의 클래스

#### **Test Data**

• count : 3140개

### 클래스 불균형



#### 잘못 라벨링된 데이터

• 8개의 잘못 라벨링 된 데이터 수정

#### 테스트셋의 이미지

- 비교적 선명하고 정방향인 훈련 데이터셋과 달리 원본사진에서 다양하게 변형된 사진들을 다수 확인할 수 있음
  - ㅇ 회전
  - ㅇ 좌우반전
  - 이동
  - ㅇ 노이즈
  - 잉크 번짐
  - Mixup

#### Data Processing - Albumentation





HorizontalFlip

Transpose, ToGray, HorizontalFlip, Blur,
 GaussianNoise, ShiftScaleRotation, ISONoise
 등을 사용



GaussianNoise



ShiftScaleRotation

#### Data Processing - Augraphy



#### Original

## Lorem Ipsum

dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

#### BrightnessTexturize

## Lorem Ipsum

dolor sit amet, consectetur adipiscing elit, sed do elusmod tempor incididunt ut labore et dolore magna aliqua.

PatternGenerator - 패턴 노이즈 생성

Lorem ipsum dolor sit amet, consectetur adipiscing elit

#### InkBleed

## Lorem Ipsum

dolor sit amet, consectetur adipiscing elit, sed do elusmod tempor incididunt ut labore et dolore magna aliqua.



#### Modeling (강승현)

#### Model Selection

- resnet34, resnet50, wide\_resnet101\_2, efficientnet\_b0, dit-large-finetuned-rvlcdip
- 학습 시간과 리더보드 결과를 고려했을 때 efficientnet\_b0 최종 선택

#### Modeling Process

- ㅇ 데이터 분할
  - K-Fold Cross-Validation 章 voting
  - 8:2,9:1 random split
  - 최종 선택 : K-Fold Cross-Validation 후 voting
- 학습률(LR): 0.001 ~ 0.005
  - 최종 선택: 0.001
- 손실 함수는 Cross-Entropy Loss 최적화 알고리즘은 Adam 사용

#### Model Selection

○ resnet\_34, deit\_base\_patch16\_224, vit, efficientnet\_b0, efficientnet\_b4 중 efficientnet\_b4가 가장 성능이 좋아 선택

#### Modeling Process

- 3, 4, 7, 14 번에 예측 성능이 떨어지는 것을 확인
  - 3, 4, 7, 14번에 클래스 가중치 적용
  - 3, 4, 7, 14번 데이터 추가적인 증강
- fine-tuning에서 Ir과 batch\_size에는 양의 상관관계가 있다는 것을 확인
  - 최적의 조합인 batch\_size: 16, Ir: 1e-4 사용
- 최종적으로 상위 3개의 예측값들을 hard-voting으로 앙상블 -> public f1 score 0.9560

#### Model Select (이소영)

resnet50, resnext50, efficientnet\_b0, efficientnet\_b4 pre-trained 모델로 실험

-> 성능이 가장 좋았던 efficientnet\_b4으로 고정



valid\_loss

15

0.1

0.08

0.06

0.04

0.02









#### Modeling Process (이소영)

**Optimizer** - Adam

**Learning Rate** - 0.001 -> 0.0005

#### **Early Stopping**

● patience를 5로 설정하여 5 epoch 동안 validation score가 감소하지 않으면 조기 종료

#### 이미지 전처리

● Resize 대신 문서의 가로 세로 비율이 유지되도록 Padding 적용 -> 성능 향상

예측 결과 시각화 결과 양식이 유사한 3, 7, 14 클래스에 대한 예측 성능이 떨어지는 것 확인

- 3,7,14 클래스에 대한 오버샘플링 가중치를 증가시킴
  - -> 성능 향상 (리더보드 F1 스코어 0.9444)
- 3,7,14 클래스 별도 학습
  - efficientnet\_b5 pre-trained 모델로 해당 클래스만 따로 학습하여 기존 결과값 대체 -> 기대한 만큼은 아니지만 스코어 향상 (리더보드 F1 스코어 0.9480)

#### Test-Time Augmentation 적용

- inference 단계에서 평가 이미지에 online 방식으로 augmentation 적용
  - Flip(반전)
  - RandomRotate(90도 단위 랜덤 회전)
- N회 예측 수행
  - 20회 inference 후 soft-voting으로 앙상블 -> 스코어 향상 (리더보드 F1 스코어 0.9562)

### Modeling Process (이소영)

리더보드 Public 스코어 최상위 예측값 3개를 hard-voting으로 앙상블

-> Public F1 score: 0.9631

#### Modeling Process (김하연)

Hybrid EfficientNet Swin-Transformer

ImageNet이 사전학습된 EfficientNet 인코더와 swin transformer block을 활용하는 Hybrid Swin Transformer 사용

Train Accuracy: 0.8893, Train F1 Score: 0.8546

Validation Accuracy: 0.8604, Validation F1 Score: 0.8224

| 53150388<br>2560 |
|------------------|
|                  |
| L                |
| )                |
| 279616           |
| 32768            |
| 33544            |
| 256              |
| 23953            |
| 33               |

Total params: 53,523,085 Trainable params: 53,231,053 Non-trainable params: 292,032

#### Modeling Process (김하연)

#### EfficientNet Ensemble



EfficientNet B0, B1, B2는 모델 크기와 input image resolution에서 차이가 있으며 B0가 가장 작은 크기를 가지고 B2가 상대적으로 큰 크기를 가짐

각 모델 K-Fold 결과값 hard voting ensemble하여 최종 제출 결과 f1 score 0.9384

#### <u>김용담 강사님</u>

Q: Public score 0.94 에서 점수가 더 이상 오르지 않고, 특히 몇몇 클래스들에서 성능 떨어졌습니다. 혹시 추가로 시도해볼 수 있는 방법이 있을까요?

A: 점수를 높이기 위해서는 고퀄리티의 데이터가 필요하며, resnet 혹은 elasticnet 보다 더 큰모델 사용(ViT LAION 2B)하면 성능 향상을 기대할 수 있다. 추가로 Contrastive Learning을 시도해보거나 loss function metric을 변경해 볼 수 있다.

#### 민진홍 멘토님

Q: 현재까지 주어진 학습 데이터를 Albumentation의 여러 기법들을 활용하여 augmentation을 시도해보았습니다. 혹시 추가로 시도해 볼 수 있는 augmentation 기법들이 있을까요?

**A:** Augraphy의 augmentation 기법들을 사용해보는 것을 추천. 또 대회 마지막에 여러 모델들의 결과물을 앙상블 하는 것을 추천.

Q: 양식이 비슷한 클래스들 간의 예측 성능을 개선할 수 있는 방법이 있을까요?

A: 해당 클래스들만 따로 학습하는 방법이 도움이 될 것.



#### 최종 순위 및 평가지표 결과

Public F1 score: 0.9631(4/9)

Private F1 score: 0.9547 (4/9)

| 72 | Finished | S | 0.9631 →<br>0.9547 | 상세<br>보기 | 2024-02-19<br>18:38 | $\checkmark$ | ₽ |
|----|----------|---|--------------------|----------|---------------------|--------------|---|
| 68 | Finished | S | 0.9603 →<br>0.9504 | 상세<br>보기 | 2024-02-19<br>16:18 | $\checkmark$ | ₽ |

4

CV 4조









0.9631

9h

06

경진 대회 진행 소감

| 강승현 | 처음 경험해본 CV 경진대회여서 미숙한 점이 많았지만, 팀원들과 함께 진행하면서 다양한<br>아이디어와 접근 방식을 공유하고 해결해 나가는 과정에서 많은 것을 배울 수 있었습니다. |
|-----|------------------------------------------------------------------------------------------------------|
| 김형수 | 첫 CV 대회였던만큼 어려움도 많았지만, 다양한 augmentation 방법들을 공부해보고 시도해볼 수 있었던 좋은 기회가 되었습니다.                          |
| 김창희 | 강의에서 배운 내용을 복습하고, 알지 못했던 것들을 알게 되어 좋은 기회가 되었던 것<br>같습니다.                                             |

| 김하연 | CV 모델링을 처음 해봤는데 다양한 기법들을 배울 수 있어서 좋았습니다.                          |
|-----|-------------------------------------------------------------------|
| 이소영 | CV 딥러닝 프로세스를 경험해보고 문제 해결을 위해 다양한 방법론을 시도해보면서 많은<br>것을 배울 수 있었습니다. |
| 진성준 | CV와 프로젝트 수행에 많은 부족함을 느꼈고, 타 조원들의 프로젝트 수행하는 것을 볼<br>기회가 되어 좋았습니다.  |

# Q&A

# 감사합니다.