אלגברה לינארית סמסטר סתו 2022-23 שאלות חזרה

שאלות

שאלה 1

פתרו את המערכת הבאה

$$iz_1 + (1-i)z_2 = 2i$$
,
 $(1+2i)z_1 - 2z_2 = 1$.

שאלה 2

פתרו את המערכת הבאה

$$3iz_1 + (6 - 6i)z_2 = 6i,$$

$$(1 + i)z_1 - 2z_2 = 1.$$

שאלה 3

פתרו את המערכת הבאה

$$4z_1 + 4z_2 = 4i ,$$

$$(5+10i)z_1 - 5z_2 = 5 .$$

${\mathbb R}$ נתונה המערכת הלינארית הבאה מעל

$$ax + y + 2z = 0$$

$$ax + (a - 2)y + 5z = -5$$

$$2ax + (a - 1)y + (a^{2} - 6a + 15)z = a - 9$$

- א. מצאו את ערכי הפרמטר a עבורם למערכת אין פתרון.
- ב. מצאו את הערכים של a עבורם למערכת יש פתרון יחיד.
- ג. מצאו את הערכים של a עבורם למערכת שאינסוף פתרונות. עבור ערך הגדול מבין אלו שמצאות, רשמו את הפתרון הכללי.

שאלה 5 (מבחן תשפ"ב סמסטר ב מועד ב)

נתונה מערכת משוואות לינאריות:

$$\begin{cases} x + ay + 2z &= 6 - a^2 \\ ax + 2y + z &= 2 \\ (1 - a)x + (a - 2)y + z &= 0 \\ (1 - 2a)x + (a - 4)y &= 8 - 5a \end{cases}$$

- אד. מצאו את ערכי הפרמטר a עבורם למערכת יש לפחות פתרון אחד.
- עבור כל אחד מערכי a שמצאתם בסעיף א', מצאו את פתרון המערכת (יחיד או כללי).

שאלה 6 (מבחן תשע"ט סמסטר א מועד א)

נתונה המערכת הלינארית הבאה:

$$x + 2y + z = -1$$

$$2x + 4y + (k+1)z + w = 0$$

$$2x + 4y + 2kz + (k^2 - 1)w = k - 1$$

- א) מצאו את ערכי הפרמטר k עבורם למערכת אין אף פתרון.
 - מצאו את ערכים של k עבורם למערכת ישנו פתרון יחיד (ב
- . מצאו את הערכים של k עבורם למערכת ישנם ∞ פתרונות.

שאלה 7 (מבחן תשע"ט סמסטר 1 מועד ב)

נתונה המערכת הלינארית הבאה:

$$x + (k - 4)y = 3$$

$$2x + (k^2 - 4k)y = 2 - k$$

$$-3x + 6y + kz = 1$$

- א) מצאו את ערכי הפרמטר k עבורם למערכת אין אף פתרון.
 - מצאו את ערכים של k עבורם למערכת ישנו פתרון יחיד.
- מצאו את הערכים של k עבורם למערכת ישנם ∞ פתרונות.

שאלה 8 (מבחן תשע"ט סמסטר ב מועד א)

נתונה המערכת הלינארית הבאה:

$$x + (a-1)y - z = 4$$

$$(a+1)x + (2a-2)y + (a-4)z = a+10$$

$$(a+2)x + (3a-3)y + (2a-7)z = a+17$$

עבור אילו ערכי הפרמטר a למערכת:

- א) פתרון יחיד
- אין פתרון (ב
- אינסוף פתרונות?

במקרה של אינסוף פתרונות רשום את הפתרון הכללי.

שאלה 9 (מבחן תשפ"א סמסטר ב מועד א)

נתונה המערכת הלינארית הבאה:

$$x - 3z = 0$$

$$x + y + kz = 0$$

$$2x + ky + (2k^{2} + 6k - 16)z = -2k^{3} + 10k^{2} + 82k - 90$$

עבור אילו ערכי הפרמטר k למערכת:

- א) פתרון יחיד
- אין פתרון (ב
- אינסוף פתרונות?

במקרה של אינסוף פתרונות רשום את הפתרון הכללי.

שאלה 10 (מבחן תשפ"א סמסטר ב מועד ב)

נתונה המערכת הלינארית הבאה:

$$x + (k-6)y = k-5$$

$$2x + (k-6)y = k-4$$

$$3x + (k-6)y + (k-2)z = -k^2 + 4k - 5$$

$$-2x + (k-6)y + (k-2)z = 2k - 10$$

עבור אילו ערכי הפרמטר k למערכת:

- א) פתרון יחיד
- אין פתרון (ב

אינסוף פתרונות?

במקרה של אינסוף פתרונות רשום את הפתרון הכללי.

שאלה 11 נתונה המערכת הבאה:

$$x + \overline{3}y + z = \overline{1}$$
$$\overline{3}x + y + \overline{2}z = \overline{2}$$
$$\overline{2}x + \overline{2}y + \overline{3}z = \overline{4}$$

 \mathbb{Z}_5 פתרו את המערכת הבאה מעל \mathbb{Z}_5 . רשמו את כל הפתרונות בצורה מפורשת. כמה פתרונות יש למערכת

שאלה 12 בהינתן מערכת לינארית בעלת 2 משוואות ו-3 משתנים מעל \mathbb{Z}_3 , רשמו את כל האפשרויות למספר הפתרונות של המשוואה.

שאלה 13 (מבחן תשפ"א סמסטר ב מועד א)

ינה הרפיכו: $A,B\in M_n(\mathbb{R})$ תהיינה

- אט אטריצה היחידה. A אז A היא מטריצה היחידה.
 - |A B| = |A| |B| (2

שאלה 14 (מבחן תשע"ט סמסטר 1 מועד ב)

AB אז סימטריות אז $A,B\in M_n(\mathbb{R})$ אם הפרך: הוכח או האם $A^t=A$ סימטרית אם סימטריות שמטריצה סימטרית.

שאלה 15 (מבחן תשפ סמסטר א מועד ב)

תהיינה A, B מטריצות מסדר n imes n הוכיחו או הפריכו:

$$|A+B|=|B+A|$$
 (x

$$|B|=|C|$$
 אם $AB=AC$ אם

$$|B|=0$$
 או $|A|=0$ אז (AB) י בך ש- $v
eq 0 \in \mathbb{R}^n$ או או

יאלה 16 הוכח או הפרך. $A \neq 0$ ו- $A, B, C \in M_n(\mathbb{R})$ או הפרך.

$$AB=C$$
 אז $AB=AC$ א. אם

$$AB=0$$
 או $A=0$ או $AB=0$ ב. אם

 \mathbb{R} פתרו את המערכות הבאות מעל 17

$$x + y - 2z = 0$$

$$2x - y + z = 0$$

$$x + y - z = 6$$

 \mathbb{R} נתונה המערכת הלינארית הבאה מעל

$$x - 3z = -3$$

$$2x + ky - z = -2$$

$$x + 2y + kz = 1$$

- עבורם למערכת אין פתרון. k מצאו את ערכי הפרמטר
- . יחיד. את הערכים של עבורם למערכת של הערכים את מצאו ב
- עבורם למערכת של פתרונות. לכל אחד מערכי k שמצאות, רשמו את מצאו את הערכים אל עבורם למערכת של אינסוף פתרונות. לכל אחד מערכי אות הבארונות. הפתרון הכללי.

שאלה 19 פתרונות של למערכת?. מעל \mathbb{Z}_7 פתרונות של למערכת?

$$x + \bar{2}y + z = \bar{2}$$

$$\bar{3}x + y + \bar{4}z = \bar{3}$$

$$\bar{2}x + \bar{4}y + \bar{4}z = \bar{3}$$

שאלה 20 פתרו את המערכת הבאה מעל \mathbb{Z}_5 . כמה פתרונות יש למערכת?

$$x + \bar{3}y + z = \bar{1}$$

$$\bar{3}x + y + \bar{2}z = \bar{2}$$

$$\bar{2}x + \bar{2}y + \bar{3}z = \bar{4}$$

שאלה 21 (מבחן תשפ"ב סמסטר ב מועד ב)

 \mathbb{Z}_5 פתרו את מערכת המשואות הבאה מעל שדה

$$\begin{cases} \bar{3}x + \bar{2}y + z &= \bar{4} \\ \bar{4}x + \bar{2}y + z &= \bar{1} \\ x + y + \bar{3}z &= \bar{1} \end{cases}$$

רשמו את כל הפתרונות שלה.

$$A^2-4A+2I$$
 מצאו את $A=egin{pmatrix} 2&0&1\4&2&-5\0&1&3 \end{pmatrix}$ נסמן נסמן אות ישאלה

שאלה 23 תהיינה $A,B,C\in M_n$ הוכח או הפרך:

AB = C אם AB = AC אם

שאלה את המטריצה ההפוכה של
$$A=\begin{pmatrix} -5 & 8 & 0 \\ -5 & 9 & 1 \\ -4 & 7 & 2 \end{pmatrix}$$
 בעזרת את המטריצה החפוכה של **24 שאלה** בעזרת את המטריצה החפוכה של בעזרת את המטריצה החפובה בעזרת את המטריצה החפובה בעזרת המטריצה החפובה בעזרת המטריצה החפובה בעזרת המטריצה החפובה בעזרת המטריצה בעודה ב

$$-5x + 8y = 1$$
$$-5x + 9y + z = 2$$
$$-4x + 7y + 2z = 3$$

שאלה 25 (מבחן תשע"ט סמסטר ב מועד ב)

פתרו את המערכת הבא בעזרת כלל קרמר:

$$\begin{cases} 2x + y + z = 3\\ x + 2y + z = 0\\ x + y + 2z = 0 \end{cases}$$

שאלה 26 פתרו את המערכת הבא בעזרת כלל קרמר:

$$-5x - 4y + 5z - 2t = -2$$

$$4x - y - 5z - 2t = -9$$

$$4x - y - 4z - t = -10$$

$$2x - y - 3z - 2t = -5$$

 \mathbb{R} פתרו את המערכות הבאות מעל

$$2x + y - 4z = 0$$
$$4x + 5y + z = 0$$
$$2x + 3y - z = 6$$

 \mathbb{R} נתונה המערכת הלינארית הבאה מעל

$$x + y = -3$$
$$x + ky = -3$$
$$x + y + 2kz = 1$$

- . עבורם למערכת אין פתרון k מצאו את ערכי הפרמטר
- . עבורם יש פתרון פתרון פתרון מצאו k מצאו את הערכים של
- ג מצאו את הערכים של k עבורם למערכת יש אינסוף פתרונות. לכל אחד מערכי k שמצאות, רשמו את הפתרון הכללי.

$$A^2-3A+2I$$
 נסמן $A=\left(egin{array}{ccc} 3 & 0 & 2 \ 0 & 2 & 5 \ 0 & 2 & 1 \end{array}
ight)$ נסמן נסמן אות 29 מצאו את

שאלה 30 תהיינה $A,B\in M_n$ שאלה 30

אם B=0 ו- $A\neq 0$ איננה הפיכה.

 $A(AB)^2=A^2B^2$: הוכח או הפרך. $A,B\in M_n(\mathbb{R})$ תהיינה 31 שאלה

שאלה את המטריצה את בעזרת אר
$$A=\left(\begin{array}{ccc} 3 & 2 & 1 \\ 4 & 2 & 1 \\ 4 & 6 & 2 \end{array} \right)$$
 שאלה 32 חשבו את המטריצה ההפוכה של

$$3x + 2y + z = 0$$
$$4x + 2y + z = 2$$
$$4x + 6y + 2z = 3$$

שאלה 33 פתרו את המערכת הבא בעזרת כלל קרמר:

$$-5x - 4y + 5z - 2t = -2$$

$$4x - y - 5z - 2t = -9$$

$$4x - y - 4z - t = -10$$

$$2x - y - 3z - 2t = -5$$

שאלה 34 בהינתן מערכת לינארית בעלת 3 משוואות ו-4 משתנים מעל \mathbb{Z}_5 , רשום את כל האפשרויות למספר הפתרונות של המשוואה.

 $A \neq 0$ -ו $A, B, C \in M_n(\mathbb{R})$ ו- 35 שאלה

הוכח או הפרך:

.B=C אם AB=AC אם

שאלה 36 תהיינה $A \neq 0, \ B \neq 0$ ו- $A, B \in M_n(\mathbb{R})$ הוכח או הפרך:

AB = BA

שאלה 37 $A \neq 0, \ B \neq 0$ ו- $A, B \in M_n(\mathbb{R})$ הוכח או הפרך:

 $(A+B)^2 = A^2 + 2AB + B^2$

שאלה 38 תהיינה $A \neq 0, \ B \neq 0$ ו- $A, B \in M_n(\mathbb{R})$ הוכח או הפרך:

 $(A+B)(A-B) = A^2 - B^2$

שאלה 39 הוכח או הפרך. $A \neq 0$ ו- $A, B \in M_n(\mathbb{R})$ או הפרך.

AB=0 או A=0 או AB=0

שאלה 40 $A \neq 0, \ B \neq 0$ ו- $A, B \in M_n(\mathbb{R})$ הוכח או הפרך:

 $(AB)^t = A^t B^t$

שאלה 41 $A \neq 0, \ B \neq 0$ ו- $A, B \in M_n(\mathbb{R})$ הוכח או הפרך:

 $(A+B)^t = A^t + B^t$

פתרונות

שאלה 1

$$x = \frac{2+i}{3}$$
, $y = \frac{-3+5i}{6}$

שאלה 2

$$x = \frac{3+i}{5}$$
, $y = \frac{-3+4i}{10}$

שאלה 3

$$x = \frac{1}{2}$$
, $y = \frac{-1}{2} + i$

שאלה 4 נדרג את המטריצה המורחבת של המערבת:

$$\begin{pmatrix} a & 1 & 2 & 0 \\ a & a-2 & 5 & -5 \\ 2a & a-1 & a^2-6a+15 & a-9 \end{pmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{pmatrix} a & 1 & 2 & 0 \\ 0 & a-3 & 3 & -5 \\ 0 & a-3 & 3 & -5 \\ 0 & 0 & a^2-6a+8 & a-4 \end{pmatrix} = \begin{pmatrix} a & 1 & 2 & 0 \\ 0 & a-3 & 3 & -5 \\ 0 & 0 & (a-4)(a-2) & a-4 \end{pmatrix}$$

 $a \neq 0, 2, 3, 4$ לכן, למערכת יש פתרון יחיד אם"ם

. כאשר a=4 נקבל (שורה כולה אפס) ולמערכת יש אינסוף פתרונות (שורה כולה אפס) כאשר a=4 נקבל (מa=4 נקבל (מa=4 נקבל (מa=4 נקבל (מa=4 הפתרון הכללי הוא (a=4 הוא (a=4 הבתרון הכללי הוא (a=4 הבתרון הבתרון הכללי הוא (a=4 הבתרון ה

. נקבל
$$\begin{pmatrix} 2 & 1 & 2 & 0 \\ 0 & -1 & 3 & -5 \\ 0 & 0 & 0 & -2 \end{pmatrix}$$
 נקבל $a=2$ נקבל $a=2$ נקבל $\begin{pmatrix} 3 & 1 & 2 & 0 \\ 0 & 0 & 3 & -5 \\ 0 & 0 & -1 & -1 \end{pmatrix}$ ולמערכת אין פתרון (שורה $a=3$ נקבל $a=3$ נקבל $a=3$ נקבל $a=3$ נקבל $a=3$ נקבל $a=3$ נקבל $a=3$ פתירה).

כאשר a=0 נקבל

$$\begin{pmatrix} 0 & 1 & 2 & 0 \\ 0 & -3 & 3 & -5 \\ 0 & 0 & 8 & -4 \end{pmatrix} \xrightarrow{R_2 \to R_2 + 3R_1} \begin{pmatrix} 0 & 1 & 2 & 0 \\ 0 & 0 & 9 & -5 \\ 0 & 0 & 8 & -4 \end{pmatrix} \xrightarrow{R_3 \to \frac{9}{8} \cdot R_3 - R_2} \begin{pmatrix} 0 & 1 & 2 & 0 \\ 0 & 0 & 9 & -5 \\ 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$$

כך שלמערכת אין פתרון (שורה כולה אפס).

לסיכום,

- a=0,2,3 אין פתרון כאשר.
- $a \neq 0, 2, 3, 4$ ב. יש פתרון יחיד כאשר
- $(x,y,z) = \left(\frac{z+5}{4}, -5 3z, z \right)$ מצורה a=4 מצורה פתרונות מינסוף פתרונות

שאלה 5

(N

$$\begin{pmatrix} 1 & a & 2 & 6-a^2 \\ a & 2 & 1 & 2 \\ 1-a & a-2 & 1 & 0 \\ 1-2a & a-4 & 0 & 8-5a \end{pmatrix} \xrightarrow{R_2 \to R_1 - aR_1 \atop R_3 \to R_3 + (a-1)R_1 \atop R_4 \to R_4 + (2a-1)R_1} \begin{pmatrix} 1 & a & 2 & 6-a^2 \\ 0 & 2-a^2 & 1-2a & a^3-6a+2 \\ 0 & a^2-2 & 2a-1 & -a^3+a^2+6a-6 \\ 0 & 2a^2-4 & 4a-2 & -2a^3+a^2+7a+2 \end{pmatrix}$$

 $a=2 \Leftarrow \left\{ egin{array}{ll} a^2-4&=0 \\ a^2-5a+6&=0 \end{array}
ight.$ מסקנה: עבור a=2 למערכת ∞ פרתונות. עבור a=2 אין פתרון.

 $\underline{a} = 2$

(2

$$\begin{pmatrix}
1 & 2 & 2 & 2 \\
0 & -2 & -3 & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\xrightarrow{R_1 \to R_1 + R_2}
\begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & \frac{3}{2} & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

פתרון כללי:

$$x=z$$
, $y=-\frac{3}{2}z+1$, $z\in\mathbb{R}$.

שאלה 6

$$\begin{pmatrix} 1 & 2 & 1 & 0 & | & -1 \\ 2 & 4 & k+1 & 1 & | & 0 \\ 2 & 4 & 2k & k^2-1 & | & k-1 \end{pmatrix} \xrightarrow{R_2 \to R_1 - 2R_1} \begin{pmatrix} 1 & 2 & 1 & 0 & | & -1 \\ 0 & 0 & k-1 & 1 & | & 2 \\ 0 & 0 & 2k-2 & k^2-1 & | & k+1 \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 \to R_2} \left(\begin{array}{ccc|ccc|c} 1 & 2 & 1 & 0 & -1 \\ 0 & 0 & k-1 & 1 & 2 \\ 0 & 0 & 0 & k^2-3 & k-3 \end{array} \right)$$

פתרון יחיד – ודאי לא יתכן כי יש 3 משוואות בארבעה משתנים.

אז למערכת יש אם פתרונות. ($k \neq \pm \sqrt{3}, 1$ עבור עבור $k-1 \neq 0$ וגם אם $k^2-3 \neq 0$ עבור k=1 נקבל

$$\left(\begin{array}{ccc|c} 1 & 2 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & -2 & -2 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 2 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 2 \end{array}\right)$$

ולמערכת אין פתרון.

עבור
$$k=\pm\sqrt{3}$$
 נקבל

$$\left(\begin{array}{ccc|ccc}
1 & 2 & 1 & 0 & -1 \\
0 & 0 & \pm\sqrt{3} - 1 & 1 & 2 \\
0 & 0 & 0 & 0 & \pm\sqrt{3} - 3
\end{array}\right)$$

ולמערכת אין פתרון.

$$\begin{pmatrix} 1 & k-4 & 0 & 3 \\ 2 & k^2 - 4k & 0 & 2-k \\ -3 & 6 & k & 1 \end{pmatrix} \xrightarrow{R_2 \to R_1 - 2R_1 \atop R_3 \to R_3 + 3R_1} \begin{pmatrix} 1 & k-4 & 0 & 3 \\ 0 & k^2 - 6k + 8 & 0 & -4-k \\ 0 & 3k - 6 & k & 10 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & k-4 & 0 & 3 \\ 0 & (k-4)(k-2) & 0 & -4-k \\ 0 & 3(k-2) & k & 10 \end{pmatrix}$$

שורה סתירה, ולכן אין פתרון.

 $k \neq 2, 4$

$$\begin{pmatrix} 1 & k-4 & 0 & 3 \\ 0 & (k-4)(k-2) & 0 & (-4-k) \\ 0 & 3(k-2) & k & 10 \end{pmatrix} \xrightarrow{R_2 \to 3R_2} \begin{pmatrix} 1 & k-4 & 0 & 3 \\ 0 & 3(k-4)(k-2) & 0 & 3(-4-k) \\ 0 & 3(k-2)(k-4) & k(k-4) & 10(k-4) \end{pmatrix}$$

.שורה שורה ולכן אין פתרון $\Leftarrow k=0$

:סיכום

- אין אף פתרון. k = 0, 2, 4
- . יש פתרון יחיד $k \neq 0, 2, 4$
- . אין ערכים של k עבורם למערכת ישנם ∞ פתרונות.

8 שאלה

$$\begin{pmatrix} 1 & a-1 & -1 & 4 \\ a+1 & 2a-2 & a-4 & a+10 \\ a+2 & 3a-3 & 2a-7 & a+17 \end{pmatrix} \xrightarrow{R_2 \to R_2 - (a+1)R_1} \begin{pmatrix} 1 & a-1 & -1 & 4 \\ 0 & -a^2 + 2a - 1 & 2a - 3 & -3a + 6 \\ 0 & -a^2 + 2a - 1 & 3a - 5 & -3a + 9 \end{pmatrix}$$

 $a \neq 1,2$ כלומר ($-a^2+2a-1$) $\neq 0$ וגם $a-2 \neq 0$ כלומר אם"ם פתרון יחיד אם"ם לכן,

עבור a=1 נקבל

$$\left(\begin{array}{ccc|c}
1 & 0 & -1 & 4 \\
0 & 0 & -1 & 3 \\
0 & 0 & -1 & 3
\end{array}\right) \rightarrow \left(\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right)$$

לכן למערכת אינסוף פתרונות. מתקבל

$$(x, y, z) = (1, y, -3), \quad y \in \mathbb{R}.$$

עבור a=2 נקבל

$$\left(\begin{array}{ccc|c}
1 & 1 & -1 & 4 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)$$

וקיבלנו שורת סתירה לכן אין פתרון. סיכום:

- .אין אף פתרון a=2
- . יש פתרון יחיד $a \neq 1,2$
- עבור ∞ למערכת ישנם $\alpha=1$ עבור (ג

9 שאלה

$$\begin{pmatrix}
1 & 0 & -3 & 0 \\
1 & 1 & k & 0 \\
2 & k & 2k^2 + 6k - 16 & -2k^3 + 10k^2 + 82k - 90
\end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & -3 & 0 \\ 0 & 1 & k+3 & 0 \\ 0 & 0 & (k+5)(k-2) & -2k^3 + 10k^2 + 82k - 90 \end{pmatrix}$$

 $k \neq -5, 2$ לכן, למערכת יש פתרון יחיד אם"ם

עבור k=2 נקבל

$$\left(\begin{array}{ccc|c}
1 & 0 & -3 & 0 \\
0 & 1 & 5 & 0 \\
0 & 0 & 0 & 98
\end{array}\right)$$

ולכן אין פתרון.

עבור k=-5 נקבל

$$\left(\begin{array}{ccc|c}
1 & 0 & -3 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)$$

ולכן יש אינסוף פתרונות. הפתרון הכללי:

$$(x, y, z) = (3z, 2x, z) , \qquad z \in \mathbb{R} .$$

סיכום:

- אין אף פתרון. k=2
- ב) יש ∞ פתרונות.
- עבור $k \neq 2, -5$ למערכת יש פתרון יחיד.

שאלה 10

$$\begin{pmatrix} 1 & k-6 & 0 & k-5 \\ 2 & k-6 & 0 & k-4 \\ 3 & k-6 & k-2 & -k^2+4k-5 \\ -2 & k-6 & k-2 & 2k-10 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1 \atop R_3 \to R_3 - 3R_1 \atop R_4 \to R_4 + 2R_1} \begin{pmatrix} 1 & k-6 & 0 & k-5 \\ 0 & -(k-6) & 0 & -k+6 \\ 0 & -2(k-6) & k-2 & -k^2+k+10 \\ 0 & 3k-18 & k-2 & 4k-20 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & k-6 & 0 & k-5 \\ 0 & -(k-6) & 0 & -k+6 \\ 0 & 0 & k-2 & k-2 \\ 0 & 0 & 0 & -k^2+2k \end{pmatrix}$$

. כלומר אין איז למערכת אין איז א $k\neq 0,2$ כלומר ,
 $-k^2+2k=k(2-k)\neq 0$ איז לכן אם לכן

עבור k=0 נקבל

$$\left(\begin{array}{ccc|c}
1 & -6 & 0 & -5 \\
0 & 6 & 0 & 6 \\
0 & 0 & -2 & -2 \\
0 & 0 & 0 & 0
\end{array}\right)$$

(x,y,z)=(1,1,1) :ולמערכת יש פתרון יחיד

עבור k=2 נקבל

$$\left(\begin{array}{ccc|c}
1 & -4 & 0 & -3 \\
0 & 4 & 0 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)$$

ולכן יש אינסוף פתרונות. הפתרון הכללי:

$$(x, y, z) = (1, 1, z), \qquad z \in \mathbb{R}.$$

:סיכום

- אף פתרונות. אk=2
- (x,y,z)=(1,1,1) :פתרון יחיד k=0
- עבור $k \neq 0,2$ למערכת אין אף פתרון.

$$x + \overline{3}y + z = \overline{1}$$
$$\overline{3}x + y + \overline{2}z = \overline{2}$$
$$\overline{2}x + \overline{2}y + \overline{3}z = \overline{4}$$

ירמיהו מילר אלגברה ליניארית 1 למדמ"ח תשפ"ג סמסטר א'

$$\begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{3} & \bar{1} & \bar{2} & | & \bar{2} \\ \bar{2} & \bar{2} & \bar{3} & | & \bar{4} \end{pmatrix} \xrightarrow{R_2 \to R_2 - \bar{3}R_1} \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & -\bar{2} & -\bar{1} & | & -\bar{1} \\ \bar{0} & -\bar{4} & \bar{1} & | & \bar{2} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{2} & \bar{4} & | & \bar{4} \\ \bar{0} & \bar{1} & \bar{1} & | & \bar{2} \end{pmatrix}$$

$$\xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{2} & \bar{4} & | & \bar{4} \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - \bar{2}R_2} \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{2} & | & \bar{0} \end{pmatrix}$$

$$\xrightarrow{R_3 \to \bar{3} \cdot R_3} \begin{pmatrix} \bar{1} & \bar{3} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{6} & | & \bar{0} \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - R_3} \begin{pmatrix} \bar{1} & \bar{3} & \bar{0} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{0} \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 - R_3} \begin{pmatrix} \bar{1} & \bar{3} & \bar{0} & | & \bar{1} \\ \bar{0} & \bar{1} & \bar{0} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{0} \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - \bar{3} \cdot R_2} \begin{pmatrix} \bar{1} & \bar{0} & \bar{0} & | & -\bar{5} \\ \bar{0} & \bar{1} & \bar{0} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{0} \end{pmatrix}$$

$$(x, y, z) = (\bar{0}, \bar{2}, \bar{0})$$

פתרון יחיד.

<u>שאלה 12</u>

- אם יש שורה סתירה אז למערכת 0 פתרונות. אחרת, יתכנו המקרי הבאים: ullet
 - . משתנה חופשי אחד ואז למערכת יש3 פתרונות
 - . משתנים חופשיים ואז למערכת יש 3^2 פתרונות 2

שאלה 13

א) הטענה איננה נכונה. דוגמא נגדית:

$$A = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} , \qquad B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} .$$

מתקיים B=B, איננה מטריצת איננה $B\neq 0$, אבל

ב) הטענה איננה נכונה. דוגמא נגדית:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} , \qquad B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} .$$

מתקיים

$$|A - B| = \left| \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right| = -1$$

١

$$|A| - |B| = 0 - 0 = 0 \neq |A - B|$$
.

שאלה 14

דומגה נגדית:

$$A = \begin{pmatrix} 1 & 3 \\ 3 & 2 \end{pmatrix} , \qquad B = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$$

 $.B^t=B$, $A^t=A$ ייות: סימטריות שA,Bש לראות קל

$$A \cdot B = \begin{pmatrix} 5 & 1 \\ 8 & 3 \end{pmatrix}$$

 $AB^{t}=egin{pmatrix} 5 & 8 \ 1 & 3 \end{pmatrix}
eq AB$ אינה סימטרית כי AB

שאלה 15

:טענה נכונה. הסבר

$$.|A+B|=|B+A|$$
לכן $A+B=B+A$

ב) דוגמה נגדית:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} , \qquad B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} , \qquad C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} .$$
$$A \cdot B = A \cdot C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} , \qquad |B| = 1 , |C| = 0 .$$

טענה נכונה. הסבר:

אט אינסוף ($A\cdot B$) אי כך ש0יע אינסוף (AB), אז למערכת אינס ע $v
eq \bar 0\in \mathbb{R}^n$ יש אינסוף עס קיים קיים אינסוף (AB), אז אינסוף אינסוף פתרונות, לכן אייא

$$|A \cdot B| = |A| \cdot |B| = 0.$$

$$|A|=0$$
 או $|B|=0$ מכאן

 $A \neq 0$ -ו $A, B, C \in M_n(\mathbb{R})$ ו- תהיינה

$$AB=C$$
 אז $AB=AC$ א.

לא נכונה. דוגמה נגדית:

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} , \qquad B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} , \qquad C = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} .$$
$$AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} , \qquad AC = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} ,$$

 $.B \neq C$ אבל AB = AC

$$B=0$$
 או $A=0$ או $AB=0$ ב.

$$A=egin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}$$
 , $A=egin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix}$,בית: דוגמה נגדית:

$$A\cdot B=0\ ,\qquad A\neq 0\ , B\neq 0\ .$$

$$x + y - 2z = 0$$

$$2x - y + z = 0$$

$$x + y - z = 6$$

$$\begin{pmatrix} 1 & 1 & -2 & 0 \\ 2 & -1 & 1 & 0 \\ 1 & 1 & -1 & 6 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R1} \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & -3 & 5 & 0 \\ 1 & 1 & -1 & 6 \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - R1} \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & -3 & 5 & 0 \\ 0 & 0 & 1 & 6 \end{pmatrix}$$

$$\xrightarrow{R_2 \to -\frac{1}{3}R_2} \begin{pmatrix} 1 & 1 & -2 & 0 \\ 0 & 1 & -\frac{5}{3} & 0 \\ 0 & 0 & 1 & 6 \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - R_2} \begin{pmatrix} 1 & 0 & -\frac{1}{3} & 0 \\ 0 & 1 & -\frac{5}{3} & 0 \\ 0 & 0 & 1 & 6 \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 + \frac{5}{3}R_3} \begin{pmatrix} 1 & 0 & -\frac{1}{3} & 0 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & 1 & 6 \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 + \frac{1}{3}R_3} \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & 1 & 6 \end{pmatrix}$$

$$(x, y, z) = (2, 10, 6)$$

$$x-3z = -3$$
$$2x + ky - z = -2$$
$$x + 2y + kz = 1$$

- אן פתרון. עבורם למערכת אין פתרון. k מצאו את ערכי הפרמטר
- ב מצאו את הערכים של k עבורם למערכת יש פתרון יחיד.
- עבורם למערכת של אינסוף פתרונות. לכל אחד מערכי k שמצאות, רשמו את מצאו את הערכים אל עבורם למערכת של אינסוף פתרונות. הפתרון הכללי.

ירמיהו מילר אלגברה ליניארית 1 למדמ"ח תשפ"ג סמסטר א'

$$\begin{pmatrix} 1 & 0 & -3 & | & -3 \\ 2 & k & -1 & | & -2 \\ 1 & 2 & k & | & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & 0 & -3 & | & -3 \\ 0 & k & 5 & | & 4 \\ 1 & 2 & k & | & 1 \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - R_1} \begin{pmatrix} 1 & 0 & -3 & | & -3 \\ 0 & k & 5 & | & 4 \\ 0 & 2 & k + 3 & | & 4 \end{pmatrix}$$

$$\xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & 0 & -3 & | & -3 \\ 0 & 2 & k + 3 & | & 4 \\ 0 & k & 5 & | & 4 \end{pmatrix}$$

$$\xrightarrow{R_2 \to \frac{1}{2}R_2} \begin{pmatrix} 1 & 0 & -3 & | & -3 \\ 0 & 1 & \frac{k+3}{2} & | & 2 \\ 0 & k & 5 & | & 4 \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - kR_2} \begin{pmatrix} 1 & 0 & -3 & | & -3 \\ 0 & 1 & \frac{k+3}{2} & | & 2 \\ 0 & 0 & 5 - \frac{1}{2}k(k+3) & | & 4 - 2k \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & -3 & | & -3 \\ 0 & 1 & \frac{k+3}{2} & | & \frac{1}{2} \\ 0 & 0 & -\frac{1}{2}(k+5)(k-2) & | & -2(k-2) \end{pmatrix}$$

$$\Rightarrow k = -5 \text{ where } \text{ is a part of } \text{ in } \text{ in } \text{ where } \text{ in } \text{ in } \text{ where } \text{ in } \text$$

k=2 אם

. שורה פתרונות ליש אינסוף שורה כולה אפס ואז שורה
$$\left(egin{array}{cc|c} 1 & 0 & -3 & -3 \\ 0 & 1 & \frac{k+3}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 \end{array}\right)$$
 איז נקבל

יחיד: אם אוא $k \neq -5, 2$ אם ג

$$(x, y, z) = (-3 + 3z, 2 - 2.5z, z), \qquad z \in \mathbb{R}.$$

$$x + \overline{2}y + z = \overline{2}$$
$$\overline{3}x + y + \overline{4}z = \overline{3}$$
$$\overline{2}x + \overline{4}y + \overline{4}z = \overline{3}$$

ירמיהו מילר אלגברה ליניארית 1 למדמ"ח תשפ"ג סמסטר א'

$$\begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{3} & \bar{1} & \bar{4} & | & \bar{3} \\ \bar{2} & \bar{4} & \bar{4} & | & \bar{3} \end{pmatrix} \xrightarrow{R_2 \to R_2 - 3R1} \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & -\bar{5} & \bar{1} & | & -\bar{3} \\ \bar{2} & \bar{4} & \bar{4} & | & \bar{3} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{2} & \bar{1} & | & \bar{4} \\ \bar{0} & \bar{0} & \bar{2} & | & -\bar{1} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{2} & \bar{1} & | & \bar{4} \\ \bar{0} & \bar{0} & \bar{2} & | & \bar{1} \end{pmatrix}$$

$$\frac{R_3 \to R_3 - 2R1}{\langle \bar{0} & \bar{0} & \bar{1} & \bar{1} & \bar{1} & \bar{1} \\ \bar{0} & \bar{0} & \bar{2} & | & \bar{1} \end{pmatrix}}{\langle \bar{0} & \bar{0} & \bar{2} & | & \bar{1} \\ \bar{0} & \bar{0} & \bar{2} & | & \bar{1} \end{pmatrix}} = \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{2} & \bar{1} & | & \bar{4} \\ \bar{0} & \bar{0} & \bar{2} & | & \bar{6} \end{pmatrix}$$

$$\frac{R_3 \to R_3 - \bar{2} \cdot R_2}{\langle \bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\ \bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{2} & | & \bar{6} \end{pmatrix}} = \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{2} & | & \bar{6} \end{pmatrix}$$

$$\frac{R_3 \to R_3 + 2 \cdot R_2}{\langle \bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{3} & | & \bar{6} \end{pmatrix}} = \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{2} & | & \bar{6} \end{pmatrix}$$

$$\frac{R_3 \to \bar{4} \cdot R_3}{\langle \bar{0} & \bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{8} & | & \bar{2}4 \end{pmatrix}} = \begin{pmatrix} \bar{1} & \bar{2} & \bar{1} & | & \bar{2} \\ \bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{3} \end{pmatrix}$$

$$\frac{R_1 \to R_1 - 2 \cdot R_2}{\langle \bar{0} & \bar{0} & \bar{1} & | & \bar{4} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{3} \end{pmatrix}} = \begin{pmatrix} \bar{1} & \bar{0} & \bar{0} & | & \bar{5} \\ \bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\ \bar{0} & \bar{0} & \bar{1} & | & \bar{3} \end{pmatrix}$$

$$\frac{R_2 \to R_2 - \bar{4} \cdot R_3}{\langle \bar{0} & \bar{0} & \bar{1} & | & \bar{3} \end{pmatrix}} \begin{pmatrix} \bar{1} & \bar{0} & \bar{0} & | & \bar{5} \\ \bar{0} & \bar{1} & \bar{1} & \bar{3} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{0} & \bar{0} & | & \bar{5} \\ \bar{0} & \bar{1} & \bar{1} & \bar{3} \end{pmatrix}$$

$$(x, y, z) = (\bar{5}, \bar{4}, \bar{3})$$

פתרון יחיד.

שאלה 20 פתרונות של למערכת הבאה מעל \mathbb{Z}_5 . כמה פתרונות של למערכת?

$$x + \overline{3}y + z = \overline{1}$$
$$\overline{3}x + y + \overline{2}z = \overline{2}$$
$$\overline{2}x + \overline{2}y + \overline{3}z = \overline{4}$$

$$\begin{pmatrix} \frac{1}{3} & \frac{3}{1} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{0} & \frac{7}{11} & \frac{1}{6} & \frac{1}{7} \end{pmatrix} = \begin{pmatrix} \frac{1}{0} & \frac{3}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{0} & \frac{1}{1} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 + \bar{2} \cdot R_2} \begin{pmatrix} \frac{1}{0} & \frac{3}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{0} & 0 & 9 & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{0} & \frac{3}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{0} & 0 & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

$$\xrightarrow{R_3 \to \bar{4} \cdot R_3} \begin{pmatrix} \frac{1}{0} & \frac{3}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{0} & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{0} & \frac{3}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{0} & 0 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 + R_3} \begin{pmatrix} \frac{1}{0} & \frac{3}{2} & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{R_2 \to 3R_2} \begin{pmatrix} \frac{1}{0} & \frac{3}{0} & \frac{1}{12} & \frac{1}{0} \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{0} & \frac{3}{1} & \frac{1}{1} \\ \frac{1}{0} & \frac{1}{10} & \frac{1}{2} \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 + \bar{2} \cdot R_2 - R_3} \begin{pmatrix} \frac{1}{0} & 0 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

תשובה סופית:

$$(x, y, z) = (\bar{0}, \bar{2}, \bar{0})$$

פתרון יחיד.

שאלה 21

$$\begin{pmatrix}
\bar{3} & \bar{2} & \bar{1} & \bar{4} \\
\bar{4} & \bar{2} & \bar{1} & \bar{1} \\
\bar{1} & \bar{1} & \bar{3} & \bar{1}
\end{pmatrix}
\xrightarrow{R_2 \to \bar{2}R_1 + R_2 \atop R_3 \to R_1 + \bar{2}R_3}
\begin{pmatrix}
\bar{3} & \bar{2} & \bar{1} & \bar{4} \\
\bar{0} & \bar{1} & \bar{3} & \bar{4} \\
\bar{0} & \bar{4} & \bar{2} & \bar{1}
\end{pmatrix}
\xrightarrow{R_3 \to R_2 + R_3}
\begin{pmatrix}
\bar{3} & \bar{2} & \bar{1} & \bar{4} \\
\bar{0} & \bar{1} & \bar{3} & \bar{4} \\
\bar{0} & \bar{0} & \bar{0} & \bar{0}
\end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 + \bar{3} \cdot R_2} \left(\begin{array}{ccc|c} \bar{3} & \bar{0} & \bar{0} & \bar{1} \\ \bar{0} & \bar{1} & \bar{3} & \bar{4} \\ \bar{0} & \bar{0} & \bar{0} & \bar{0} \end{array} \right)$$

פתרון:

יש 5 פתרונות למערכת:

$$\begin{pmatrix} \bar{2} \\ \bar{4} \\ \bar{0} \end{pmatrix} , \qquad \begin{pmatrix} \bar{2} \\ \bar{1} \\ \bar{1} \end{pmatrix} , \qquad \begin{pmatrix} \bar{2} \\ \bar{3} \\ \bar{2} \end{pmatrix} , \qquad \begin{pmatrix} \bar{2} \\ \bar{0} \\ \bar{3} \end{pmatrix} , \qquad \begin{pmatrix} \bar{2} \\ \bar{2} \\ \bar{4} \end{pmatrix} .$$

שאלה 22 מכתוב $A=(a_1 \ a_2 \ a_3)$ בצורה $A=(a_1 \ a_2 \ a_3)$

$$a_1 = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} \quad a_2 = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \quad a_3 = \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix}$$

כך ש-

$$A \cdot a_1 = \begin{pmatrix} 2 & 0 & 1 \\ 4 & 2 & -5 \\ 0 & 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} = 2a_1 + 4a_2 + 0a_3 = \begin{pmatrix} 4 \\ 16 \\ 4 \end{pmatrix}$$

$$A \cdot a_2 = \begin{pmatrix} 2 & 0 & 1 \\ 4 & 2 & -5 \\ 0 & 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \qquad = 0a_1 + 2a_2 + a_3 = \begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix}$$

$$A \cdot a_3 = \begin{pmatrix} 2 & 0 & 1 \\ 4 & 2 & -5 \\ 0 & 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix} = a_1 - 5a_2 + 3a_3 = \begin{pmatrix} 5 \\ -21 \\ 4 \end{pmatrix}$$

סך הכל

$$A^{2} = A \cdot A = (A \cdot a_{1} \ A \cdot a_{2} \ A \cdot a_{3}) = \begin{pmatrix} 4 & 1 & 5 \\ 16 & -1 & -21 \\ 4 & 5 & 4 \end{pmatrix}$$

$$A^{2} - 4A + 2I = \begin{pmatrix} 4 & 1 & 5 \\ 16 & -1 & -21 \\ 4 & 5 & 4 \end{pmatrix} - 4 \cdot \begin{pmatrix} 2 & 0 & 1 \\ 4 & 2 & -5 \\ 0 & 1 & 3 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -2 & 1 & 1 \\ 0 & -7 & -1 \\ 4 & 1 & -6 \end{pmatrix}$$

שאלה 23

$$B=C$$
 אז $AB=AC$ אם

טענה לא נכונה. דוגמה נגדית:

$$.C = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 $,B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ $,A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

$$A \cdot B = A \cdot C = 0$$
, $B \neq C$.

שאלה 24

$$A^{-1} = \frac{1}{7} \begin{pmatrix} -11 & 16 & -8 \\ -6 & 10 & -5 \\ -1 & -3 & 5 \end{pmatrix}$$
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = A^{-1} \cdot b = \frac{1}{7} \begin{pmatrix} -11 & 16 & -8 \\ -6 & 10 & -5 \\ -1 & -3 & 5 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} -3 \\ -1 \\ 8 \end{pmatrix} .$$

שאלה 25

$$|A| = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{vmatrix} = 2 \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} = 6 - 1 - 1 = 4$$

$$|A_1| = \begin{vmatrix} 3 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix} = 3 \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 9$$

$$|A_2| = \begin{vmatrix} 2 & 3 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 2 \end{vmatrix} = -3 \cdot \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = -3$$

$$|A_3| = \begin{vmatrix} 2 & 1 & 3 \\ 1 & 2 & 0 \\ 1 & 1 & 0 \end{vmatrix} = 3 \cdot \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} = -3$$

$$x = \frac{9}{4}, \qquad y = \frac{-3}{4}, \qquad z = \frac{-3}{4}.$$

$$-5x - 4y + 5z - 2t = -2$$

$$4x - y - 5z - 2t = -9$$

$$4x - y - 4z - t = -10$$

$$2x - y - 3z - 2t = -5$$

$$A = \begin{pmatrix} -5 & -4 & 5 & -2 \\ 4 & -1 & -5 & -2 \\ 4 & -1 & -4 & -1 \\ 2 & -1 & -3 & -2 \end{pmatrix}, \quad b = \begin{pmatrix} -2 \\ -9 \\ -10 \\ -5 \end{pmatrix}$$

$$\Delta = \begin{vmatrix} -5 & -4 & 5 & -2 \\ 4 & -1 & -5 & -2 \\ 4 & -1 & -4 & -1 \\ 2 & -1 & -3 & -2 \end{vmatrix} = -4$$

$$\Delta_{1} = \begin{vmatrix} -2 & -4 & 5 & -2 \\ -9 & -1 & -5 & -2 \\ -10 & -1 & -4 & -1 \\ -5 & -1 & -3 & -2 \end{vmatrix} = 4$$

$$\Delta_{2} = \begin{vmatrix} -5 & -2 & 5 & -2 \\ 4 & -9 & -5 & -2 \\ 4 & -10 & -4 & -1 \\ 2 & -5 & -3 & -2 \end{vmatrix} = -16$$

$$\Delta_{3} = \begin{vmatrix} -5 & -4 & -2 & -2 \\ 4 & -1 & -9 & -2 \\ 4 & -1 & -10 & -1 \\ 2 & -1 & -5 & -2 \end{vmatrix} = -4$$

$$\Delta_{4} = \begin{vmatrix} -5 & -4 & 5 & -2 \\ 4 & -1 & -5 & -9 \\ 4 & -1 & -4 & -10 \\ 2 & -1 & -3 & -5 \end{vmatrix} = 8$$

שאלה 27

$$2x + y - 4z = 0$$
$$4x + 5y + z = 0$$
$$2x + 3y - z = 6$$

 $x = \frac{\Delta_1}{\Lambda} = -1$, $y = \frac{\Delta_2}{\Lambda} = 4$, $z = \frac{\Delta_3}{\Lambda} = 1$, $t = \frac{\Delta_3}{\Lambda} = -2$.

$$\begin{pmatrix} 2 & 1 & -4 & 0 \\ 4 & 5 & 1 & 0 \\ 2 & 3 & -1 & 6 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 2 & 1 & -4 & 0 \\ 4 & 5 & 1 & 0 \\ 2 & 3 & -1 & 6 \end{pmatrix}$$

$$\xrightarrow{R_1 \to \frac{1}{2}R_1} \begin{pmatrix} 1 & \frac{1}{2} & -2 & 0 \\ 4 & 5 & 1 & 0 \\ 2 & 3 & -1 & 6 \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 - 4R_1, R_3 \to R_3 - 2R_1} \begin{pmatrix} 1 & \frac{1}{2} & -2 & 0 \\ 0 & 3 & 9 & 0 \\ 0 & 2 & 3 & 6 \end{pmatrix}$$

$$\xrightarrow{R_2 \to \frac{1}{3}R_2} \begin{pmatrix} 1 & \frac{1}{2} & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 2 & 3 & 6 \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - 2R_2} \begin{pmatrix} 1 & \frac{1}{2} & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & -3 & 6 \end{pmatrix}$$

$$\xrightarrow{R_3 \to -\frac{1}{3}R_3} \begin{pmatrix} 1 & \frac{1}{2} & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & -2 \end{pmatrix}$$

$$\xrightarrow{R_2 \to R_2 - 3R_3} \begin{pmatrix} 1 & \frac{1}{2} & -2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & -2 \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - \frac{1}{2}R_2} \begin{pmatrix} 1 & 0 & -2 & -3 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & -2 \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 + 2R_3} \begin{pmatrix} 1 & 0 & 0 & -7 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & -2 \end{pmatrix}$$

$$(x, y, z) = (-7, 6, -2)$$

 $:\mathbb{R}$ נתונה המערכת הלינארית הבאה מעל

$$x + y = -3$$
$$x + ky = -3$$
$$x + y + 2kz = 1$$

א מצאו את ערכי הפרמטר k עבורם למערכת אין פתרון.

- ב מצאו את הערכים של k עבורם למערכת יש פתרון יחיד.
- ת מצאו את הערכים של k עבורם למערכת יש אינסוף פתרונות. לכל אחד מערכי k שמצאות, רשמו את הפתרון הכללי.

$$\begin{pmatrix} 1 & 1 & 0 & | & -3 \\ 1 & k & 0 & | & -3 \\ 1 & 1 & 2k & | & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - R_1, R_3 \to R_3 - R_1} \begin{pmatrix} 1 & 1 & 0 & | & -3 \\ 0 & k - 1 & 0 & | & 0 \\ 0 & 0 & 2k & | & 4 \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - \frac{1}{k-1} \cdot R_2} \begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & k-1 & 0 & 0 \\ 0 & 0 & 2k & 4 \end{pmatrix}$$

עם שורה סתירה ואז אין פתרון. $\begin{pmatrix} 1 & 1 & 0 & -3 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$ נקבל k=0 א אם k=0

k=1 ב אם

אם אום ארב ארב ארב ארב ארב ארב ארב אינסוף פתרונות.
$$\begin{pmatrix} 1 & 1 & 0 & | & -3 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 2 & | & 4 \end{pmatrix}$$
 אז נקבל אינסוף פתרונות.

- . ואז יש פתרון יחיד $k \neq 0, 1$ אם
- יש אינסוף פתרונות מצורה k=1 אם ד

$$k = 1,$$
 $(x, y, z) = (-3 - s, s, \frac{1}{2}),$ $s \in \mathbb{R}$.

עאלה $A=(a_1\ a_2\ a_3)$ נסמן $A=(a_1\ a_2\ a_3)$

$$a_1 = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} \quad a_2 = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} \quad a_3 = \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix}$$

כך ש-

$$A \cdot a_1 = \begin{pmatrix} 3 & 0 & 2 \\ 0 & 2 & 5 \\ 0 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix} = 3 \cdot a_1 + 0 \cdot a_2 + 0 \cdot a_3 = \begin{pmatrix} 9 \\ 0 \\ 0 \end{pmatrix}$$

$$A \cdot a_2 = \begin{pmatrix} 3 & 0 & 2 \\ 0 & 2 & 5 \\ 0 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} = 0 \cdot a_1 + 2 \cdot a_2 + 2 \cdot a_3 = \begin{pmatrix} 4 \\ 14 \\ 6 \end{pmatrix}$$

$$A \cdot a_3 = \begin{pmatrix} 3 & 0 & 2 \\ 0 & 2 & 5 \\ 0 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix} = 2 \cdot a_1 + 5 \cdot a_2 + a_3 = \begin{pmatrix} 8 \\ 15 \\ 11 \end{pmatrix}$$

סך הכל

$$A^{2} = A \cdot A = (A \cdot a_{1} \ A \cdot a_{2} \ A \cdot a_{3}) = \begin{pmatrix} 9 & 4 & 8 \\ 0 & 14 & 15 \\ 0 & 6 & 11 \end{pmatrix}$$

$$A^{2} - 3A + 2I = \begin{pmatrix} 9 & 4 & 8 \\ 0 & 14 & 15 \\ 0 & 6 & 11 \end{pmatrix} - 3 \cdot \begin{pmatrix} 3 & 0 & 2 \\ 0 & 2 & 5 \\ 0 & 2 & 1 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 4 & 2 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{pmatrix}$$

איננה הפיכה. B אם B איננה הפיכה. AB=0 איננה הפיכה.

טענה נכונה. הסבר:

לכן . B^{-1} הפיכה. אז קיימת B -ו $A \neq 0$ ו- $A \cdot B = 0$ לכן השליליה ש

$$A \cdot B \cdot B^{-1} = 0 \quad \Rightarrow \quad A = 0 \ .$$

סתירה!

שאלה 31 הטענה לא נכונה. דוגמה נגדית:

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} , \qquad B = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} , \qquad AB = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} , \qquad (AB)^2 = \begin{pmatrix} 3 & 6 \\ 3 & 6 \end{pmatrix} ,$$

$$A^2 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} , \qquad B^2 = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} , \qquad A^2B^2 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} .$$

שאלה $A=\begin{pmatrix}3&2&1\\4&2&1\\4&6&2\end{pmatrix}$ בעזרת זה פתרו את המערכת משלה $A=\begin{pmatrix}3&2&1\\4&6&2\end{pmatrix}$

$$3x + 2y + z = 1$$
$$4x + 2y + z = 2$$
$$4x + 6y + 2z = 3$$

$$A^{-1} = \left(\begin{array}{ccc} -1 & 1 & 0\\ -2 & 1 & \frac{1}{2}\\ 8 & -5 & -1 \end{array}\right)$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = A^{-1} \cdot b = \begin{pmatrix} -1 & 1 & 0 \\ -2 & 1 & \frac{1}{2} \\ 8 & -5 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{3}{2} \\ -5 \end{pmatrix} .$$

שאלה 33 פתרו את המערכת הבא בעזרת כלל קרמר:

$$-5x - 4y + 5z - 2t = -2$$

$$4x - y - 5z - 2t = -9$$

$$4x - y - 4z - t = -10$$

$$2x - y - 3z - 2t = -5$$

$$A = \begin{pmatrix} -5 & -4 & 5 & -2 \\ 4 & -1 & -5 & -2 \\ 4 & -1 & -4 & -1 \\ 2 & -1 & -3 & -2 \end{pmatrix}, \quad b = \begin{pmatrix} -2 \\ -9 \\ -10 \\ -5 \end{pmatrix}$$

$$\Delta = \begin{vmatrix} -5 & -4 & 5 & -2 \\ 4 & -1 & -5 & -2 \\ 4 & -1 & -5 & -2 \\ 4 & -1 & -4 & -1 \\ 2 & -1 & -3 & -2 \end{vmatrix} = -4$$

$$\Delta_1 = \begin{vmatrix} -2 & -4 & 5 & -2 \\ -9 & -1 & -5 & -2 \\ -9 & -1 & -5 & -2 \\ -10 & -1 & -4 & -1 \\ -5 & -1 & -3 & -2 \end{vmatrix} = 4$$

$$\Delta_2 = \begin{vmatrix} -5 & -2 & 5 & -2 \\ 4 & -9 & -5 & -2 \\ 4 & -10 & -4 & -1 \\ 2 & -5 & -3 & -2 \end{vmatrix} = -16$$

$$\Delta_3 = \begin{vmatrix} -5 & -4 & 2 & -2 \\ 4 & -1 & -9 & -2 \\ 4 & -1 & -10 & -1 \\ 2 & -1 & -5 & -2 \end{vmatrix} = -4$$

$$\Delta_4 = \begin{vmatrix} -5 & -4 & 5 & -2 \\ 4 & -1 & -5 & -9 \\ 4 & -1 & -4 & -10 \\ 2 & -1 & -3 & -5 \end{vmatrix} = 8$$

$$x = \frac{\Delta_1}{\Delta} = -1, \quad y = \frac{\Delta_2}{\Delta} = 4, \quad z = \frac{\Delta_3}{\Delta} = 1, \quad t = \frac{\Delta_3}{\Delta} = -2.$$

שאלה 34

ullet אם יש שורה סתירה אז למערכת 0 פתרונות. אחרת, למערכת יש פתרונות. יתכנו המקרי הבאים:

- משתנה חופשי אחד ואז למערכת יש 5 פתרונות.
- . משתנים חופשיים ואז למערכת ש 5^2 פתרונות 2
- . משתנים חופשיים ואז למערכת ש 5^3 פתרונות 3
- . משתנים חופשיים ואז למערכת ש 5^4 פתרונות 4

שאלה 35

$$B=C$$
 אם $AB=AC$ אם

טענה לא נכונה. דוגמה נגדית:

$$.C = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 , $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

$$A \cdot B = A \cdot C = 0$$
, $B \neq C$.

שאלה <u>36</u> לא נכונה. הטענה לא בהכרח מתקיים. דוגמה נגדית:

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \qquad B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} , \qquad AB = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} , \qquad BA = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \neq AB .$$

שאלה 37 הטענה לא נכונה.

$$(A+B)^2 = (A+B)(A+B)$$
$$= A \cdot A + B \cdot A + A \cdot B + B \cdot B$$
$$= A^2 + BA + AB + B^2$$

שים לב שAB=BA לא בהכרח מתקיים ולכן

$$(A+B)^2 \neq A^2 + 2AB + B^2$$

באופן כללי.

שאלה 38 הטענה לא נכונה.

$$(A+B)(A-B) = A \cdot A + B \cdot A - A \cdot B - B \cdot B$$
$$= A^2 + BA - AB - B^2$$

שים לב שAB=BA שים לב ש

$$(A + B)(A - B) \neq A^2 + AB - BA - B^2$$

באופן כללי.

שאלה 39 לא נכונה. דוגמה נגדית:

$$A = \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix}$$
 , $B = \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix}$, $a > 0, b > 0$.

שאלה 40 הטענה לא נכונה. דוגמה נגדית:

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \qquad B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} , \qquad (AB) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} , \qquad (AB)^t = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$A^t = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \qquad B^t = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} , \qquad A^t B^t = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \neq (AB)^t$$

שאלה 41 הטענה נכונה. הסבר:

$$((A+B)^t)_{ij} = (A^t + B^t)_{ij} = (A^t)_{ij} + (B^t)_{ij} = A_{ji} + B_{ji} = (A+B)_{ji} = ((A+B)^t)_{ij}$$

שים לב ששתי מטריצות שוות אם"ם הרכיבים שווים. כיוון שהרכיבים שווים, אז

$$(A+B)^t = A^t + B^t$$