JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 1月10日

出 願 Application Number:

特願2003-004554

[ST. 10/C]:

[JP2003-004554]

出 願 人 Applicant(s):

富士写真フイルム株式会社

2003年10月

【書類名】

特許願

【整理番号】

P27302J

【あて先】

特許庁長官殿

【国際特許分類】

G06T 3/40

【発明者】

【住所又は居所】

神奈川県足柄上郡開成町宮台798番地 富士写真フイ

ルム株式会社内

【氏名】

亀山 祐和

【発明者】

【住所又は居所】 神奈川県足柄上郡開成町宮台798番地 富士写真フイ

ルム株式会社内

【氏名】

伊藤 渡

【特許出願人】

【識別番号】

000005201

【氏名又は名称】

富士写真フイルム株式会社

【代理人】

【識別番号】

100073184

【弁理士】

【氏名又は名称】

柳田 征史

【選任した代理人】

【識別番号】

100090468

【弁理士】

【氏名又は名称】 佐久間 剛

【手数料の表示】

【予納台帳番号】

008969

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1 3

【物件名】

要約書 1

【包括委任状番号】 9814441

【プルーフの要否】 要

【書類名】

明細書

【発明の名称】

動画像合成方法および装置並びにプログラム

【特許請求の範囲】

【請求項1】 動画像から連続する2つのフレームをサンプリングし、

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定し、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準 フレームの座標空間に座標変換して座標変換済みフレームを取得し、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す相関値を算出し、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して 、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算 出を行い、

前記2つの相関値の変化量を算出し、

該変化量が所定のしきい値以下となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出および隣接する段階の分割数により算出された2つの相関値の変化量の算出を行い、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち、いずれかの相関値を算出した分割数において推定された前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い合成フレームを作成することを特徴とする動画像合成方法。

【請求項2】 動画像から連続する2つのフレームをサンプリングし、

2/

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定し、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準 フレームの座標空間に座標変換して座標変換済みフレームを取得し、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す相関値を前記矩形領域単位で算出し、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して 、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算 出を行い、

前記2つの相関値の変化量を前記矩形領域単位で算出し、

全ての前記矩形領域における前記変化量が所定のしきい値以下となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、 各段階において前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出および隣接する段階の分割数により算出された2つの相関値の前記矩形領域単位での変化量の算出を行い、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち、いずれかの相関値を算出した分割数において推定された前記矩形領域毎の前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して前記矩形領域に対応する領域単位で補間演算を施して、前記各フレームよりも解像度が高い合成フレームを作成することを特徴とする動画像合成方法。

【請求項3】 前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出および前記合成フレームの作成を、前記フレームを構成する少なくとも1つの成分を用いて行うことを特徴とする請求項1ま

たは2記載の動画像合成方法。

【請求項4】 動画像から連続する3以上のフレームをサンプリングし、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の 矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フ レーム以外の他の1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ 内の画像と一致するように、該パッチを前記他の1のフレーム上において移動お よび/または変形し、該移動および/または変形後のパッチおよび前記基準パッ チに基づいて、前記他の1のフレーム上の前記パッチ内の画素と前記基準フレー ム上の前記基準パッチ内の画素との対応関係を推定し、

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記 基準フレームの座標空間に座標変換して座標変換済みフレームを取得し、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す相関値を算出し、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して 、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算 出を行い、

前記2つの相関値の変化量を算出し、

該変化量が所定のしきい値以下となるまで、前記基準パッチおよび前記パッチ 内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の 推定、前記座標変換済みフレームの取得、前記相関値の算出および隣接する段階 の分割数により算出された2つの相関値の変化量の算出を行い、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち、いずれかの相関値を算出した分割数において推定された前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い中間合成フレームを取得し、

全ての前記他のフレームについて、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出および前記中間合成フレームの取得を行い、

全ての前記他のフレームについて取得された複数の前記中間合成フレームを合成することにより合成フレームを作成することを特徴とする動画像合成方法。

【請求項5】 動画像から連続する3以上のフレームをサンプリングし、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の 矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他の1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他の1のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他の1のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定し、

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記 基準フレームの座標空間に座標変換して座標変換済みフレームを取得し、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す相関値を前記矩形領域単位で算出し、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して 、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算 出を行い、

前記2つの相関値の変化量を前記矩形領域単位で算出し、

全ての前記矩形領域における前記変化量が所定のしきい値以下となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、 各段階において前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出および隣接する段階の分割数により算出された2つの相関値の前記矩形領域単位での変化量の算出を行い、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち、いずれかの相関値を算出した分割数において推定された前記矩形領域毎の前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して前記矩形領域に対応する領域単位で補間演算を施して、前記各フレームよりも解像度が高い中間合成フレームを取得し

5/

全ての前記他のフレームについて、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出および前記中間合成フレームの取得を行い、

全ての前記他のフレームについて取得された複数の前記中間合成フレームを合成することにより合成フレームを作成することを特徴とする動画像合成方法。

【請求項6】 前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出、前記中間合成フレームの取得および前記合成フレームの作成を、前記フレームを構成する少なくとも1つの成分を用いて行うことを特徴とする請求項4または5記載の動画像合成方法。

【請求項7】 動画像から連続する2つのフレームをサンプリングするサンプリング手段と、

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する対応関係推定手段と、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準 フレームの座標空間に座標変換して座標変換済みフレームを取得する座標変換手 段と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す相関値を算出する相関値算出手段と、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行うよう、前記対応関係推定手段、前記座標変換手段および前記相関値算出手段を制御する制御手段と、

前記2つの相関値の変化量を算出する変化量算出手段と、

該変化量が所定のしきい値以下となるまで、前記基準パッチおよび前記パッチ

内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の 推定、前記座標変換済みフレームの取得、前記相関値の算出および隣接する段階 の分割数により算出された2つの相関値の変化量の算出を行うよう、前記対応関 係推定手段、前記座標変換手段、前記相関値算出手段および前記変化量算出手段 を制御する比較手段と、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち、いずれかの相関値を算出した分割数において推定された前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い合成フレームを作成する合成手段とを備えたことを特徴とする動画像合成装置。

【請求項8】 動画像から連続する2つのフレームをサンプリングするサンプリング手段と、

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する対応関係推定手段と、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準 フレームの座標空間に座標変換して座標変換済みフレームを取得する座標変換手 段と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す相関値を前記矩形領域単位で算出する相関値算出手段と、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して 、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算 出を行うよう、前記対応関係推定手段、前記座標変換手段および前記相関値算出 手段を制御する制御手段と、

前記2つの相関値の変化量を前記矩形領域単位で算出する変化量算出手段と、

全ての前記矩形領域における前記変化量が所定のしきい値以下となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出および隣接する段階の分割数により算出された2つの相関値の前記矩形領域単位での変化量の算出を行うよう、前記対応関係推定手段、前記座標変換手段、前記相関値算出手段および前記変化量算出手段を制御する比較手段と、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち、いずれかの相関値を算出した分割数において推定された前記矩形領域毎の前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して前記矩形領域に対応する領域単位で補間演算を施して、前記各フレームよりも解像度が高い合成フレームを作成する合成手段とを備えたことを特徴とする動画像合成装置。

【請求項9】 前記対応関係推定手段、前記座標変換手段、前記相関値算出手段、前記制御手段、前記変化量算出手段、前記比較手段および前記合成手段は、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出および前記合成フレームの作成を、前記フレームを構成する少なくとも1つの成分を用いて行う手段であることを特徴とする請求項7または8記載の動画像合成装置。

【請求項10】 動画像から連続する3以上のフレームをサンプリングするサンプリング手段と、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の 矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他の1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他の1のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他の1のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する対応関係推定手段と、

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記 基準フレームの座標空間に座標変換して座標変換済みフレームを取得する座標変 換手段と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す相関値を算出する相関値算出手段と、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行うよう、前記対応関係推定手段、前記座標変換手段および前記相関値算出手段を制御する制御手段と、

前記2つの相関値の変化量を算出する変化量算出手段と、

該変化量が所定のしきい値以下となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出および隣接する段階の分割数により算出された2つの相関値の変化量の算出を行うよう、前記対応関係推定手段、前記座標変換手段、前記相関値算出手段および前記変化量算出手段を制御する比較手段と、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち、いずれかの相関値を算出した分割数において推定された前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い中間合成フレームを取得し、全ての前記他のフレームについて、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出および前記中間合成フレームの取得を行い、全ての前記他のフレームについて取得された複数の前記中間合成フレームを合成することにより合成フレームを作成する合成手段とを備えたことを特徴とする動画像合成装置。

【請求項11】 動画像から連続する3以上のフレームをサンプリングするサンプリング手段と、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の 矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フ レーム以外の他の1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ 内の画像と一致するように、該パッチを前記他の1のフレーム上において移動お よび/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他の1のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する対応関係推定手段と、

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記 基準フレームの座標空間に座標変換して座標変換済みフレームを取得する座標変 換手段と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す相関値を前記矩形領域単位で算出する相関値算出手段と、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行うよう、前記対応関係推定手段、前記座標変換手段および前記相関値算出手段を制御する制御手段と、

前記2つの相関値の変化量を前記矩形領域単位で算出する変化量算出手段と、

全ての前記矩形領域における前記変化量が所定のしきい値以下となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、 各段階において前記対応関係の推定、前記座標変換済みフレームの取得、前記相 関値の算出および隣接する段階の分割数により算出された2つの相関値の前記矩 形領域単位での変化量の算出を行うよう、前記対応関係推定手段、前記座標変換 手段、前記相関値算出手段および前記変化量算出手段を制御する比較手段と、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち、いずれかの相関値を算出した分割数において推定された前記矩形領域毎の前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して前記矩形領域に対応する領域単位で補間演算を施して、前記各フレームよりも解像度が高い中間合成フレームを取得し

全ての前記他のフレームについて、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出および前記中間合成フレームの取得を行い、全ての前記他のフレームについて取得された複数の前記中間合成フレームを合成することにより合成フレームを作成する合成手段とを備えたこ

とを特徴とする動画像合成装置。

【請求項12】 前記対応関係推定手段、前記座標変換手段、前記相関値算出手段、前記制御手段、前記変化量算出手段、前記比較手段および前記合成手段は、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出、前記中間合成フレームの取得および前記合成フレームの作成を、前記フレームを構成する少なくとも1つの成分を用いて行う手段であることを特徴とする請求項10または11記載の動画像合成装置。

【請求項13】 動画像から連続する2つのフレームをサンプリングする手順と、

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する手順と、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準 フレームの座標空間に座標変換して座標変換済みフレームを取得する手順と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す相関値を算出する手順と、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して 、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算 出を行う手順と、

前記2つの相関値の変化量を算出する手順と、

該変化量が所定のしきい値以下となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出および隣接する段階の分割数により算出された2つの相関値の変化量の算出を行う手順と、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち

、いずれかの相関値を算出した分割数において推定された前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い合成フレームを作成する手順とを有する動画像合成方法をコンピュータに実行させるためのプログラム。

【請求項14】 動画像から連続する2つのフレームをサンプリングする手順と、

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する手順と、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準 フレームの座標空間に座標変換して座標変換済みフレームを取得する手順と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す相関値を前記矩形領域単位で算出する手順と、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して 、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算 出を行う手順と、

前記2つの相関値の変化量を前記矩形領域単位で算出する手順と、

全ての前記矩形領域における前記変化量が所定のしきい値以下となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出および隣接する段階の分割数により算出された2つの相関値の前記矩形領域単位での変化量の算出を行う手順と、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち、いずれかの相関値を算出した分割数において推定された前記矩形領域毎の前記

対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して前記矩形領域に対応する領域単位で補間演算を施して、前記各フレームよりも解像度が高い合成フレームを作成する手順とを有する動画像合成方法をコンピュータに実行させるためのプログラム。

【請求項15】 前記対応関係を推定する手順、前記座標変換フレームを取得する手順、前記相関値を算出する手順、前記変化量を算出する手順、および前記合成フレームを作成する手順は、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出および前記合成フレームの作成を、前記フレームを構成する少なくとも1つの成分を用いて行う手順である請求項13または14記載のプログラム。

【請求項16】 動画像から連続する3以上のフレームをサンプリングする 手順と、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の 矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他の1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他の1のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他の1のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する手順と、

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記 基準フレームの座標空間に座標変換して座標変換済みフレームを取得する手順と

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す相関値を算出する手順と、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行う手順と、

前記2つの相関値の変化量を算出する手順と、

該変化量が所定のしきい値以下となるまで、前記基準パッチおよび前記パッチ

内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の 推定、前記座標変換済みフレームの取得、前記相関値の算出および隣接する段階 の分割数により算出された2つの相関値の変化量の算出を行う手順と、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち、いずれかの相関値を算出した分割数において推定された前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い中間合成フレームを取得する手順と、

全ての前記他のフレームについて、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出および前記中間合成フレームの取得を行う手順と、

全ての前記他のフレームについて取得された複数の前記中間合成フレームを合成することにより合成フレームを作成する手順とを有する動画像合成方法をコンピュータに実行させるためのプログラム。

【請求項17】 動画像から連続する3以上のフレームをサンプリングする 手順と、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の 矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他の1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他の1のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他の1のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する手順と、

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記 基準フレームの座標空間に座標変換して座標変換済みフレームを取得する手順と

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す相関値を前記矩形領域単位で算出する手順と、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して

、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算 出を行う手順と、

前記2つの相関値の変化量を前記矩形領域単位で算出する手順と、

全ての前記矩形領域における前記変化量が所定のしきい値以下となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、 各段階において前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出および隣接する段階の分割数により算出された2つの相関値の前記矩形領域単位での変化量の算出を行う手順と、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち、いずれかの相関値を算出した分割数において推定された前記矩形領域毎の前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して前記矩形領域に対応する領域単位で補間演算を施して、前記各フレームよりも解像度が高い中間合成フレームを取得し

全ての前記他のフレームについて、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出および前記中間合成フレームの取得を行う手順と、

全ての前記他のフレームについて取得された複数の前記中間合成フレームを合成することにより合成フレームを作成する手順とを有する動画像合成方法をコンピュータに実行させるためのプログラム。

【請求項18】 前記対応関係を推定する手順、前記座標変換フレームを取得する手順、前記相関値を算出する手順、前記変化量を算出する手順、前記中間合成フレームを取得する手順および前記合成フレームを作成する手順は、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出、前記中間合成フレームの取得および前記合成フレームの作成を、前記フレームを構成する少なくとも1つの成分を用いて行う手順である請求項16または17記載のプログラム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、動画像をサンプリングすることにより得られた連続する複数のフレームを合成して、サンプリングしたフレームよりも高解像度の1の合成フレームを作成する動画像合成方法および装置並びに動画像合成方法をコンピュータに実行させるためのプログラムに関するものである。

[0002]

【従来の技術】

近年のデジタルビデオカメラの普及により、動画像を1フレーム単位で扱うことが可能となっている。このような動画像のフレームをプリント出力する際には、画質を向上させるためにフレームを高解像度にする必要がある。このため、動画像からサンプリングした複数のフレームから、これらのフレームよりも高解像度の1の合成フレームを作成する方法が提案されている(例えば、特許文献1参照)。この方法は、複数のフレーム間の動ベクトルを求め、この動ベクトルに基づいて、複数のフレームから合成フレームを合成する際に、画素間に内挿する信号値を算出する方法である。とくに特許文献1に記載された方法では、各フレームを複数のブロックに分割し、フレーム間で対応するブロックの直交座標係数を算出し、この直交座標係数における高周波の情報を他のブロックにおける低周波の情報と合成して内挿される画素値を算出しているため、必要な情報が低減されることなく、高画質の合成フレームを得ることができる。また、この方法においては、画素間距離よりもさらに細かい分解能にて動ベクトルを算出しているため、フレーム間の動きを正確に補償してより高画質の合成フレームを得ることができる。

[0003]

また、複数のフレームのうち1のフレームを基準フレームとし、基準フレームに複数の矩形領域からなる基準パッチを、基準フレーム以外の他のフレームに基準パッチと同様のパッチを配置し、パッチ内の画像が基準パッチ内の画像と一致するようにパッチを他のフレーム上において移動および/または変形し、移動および/または変形後のパッチおよび基準パッチに基づいて、他のフレーム上のパッチ内の画素と基準フレーム上の基準パッチ内の画素との対応関係を推定して複

数フレームをより精度よく合成する方法も提案されている(例えば、非特許文献 1参照)。

[0004]

非特許文献1の方法においては、基準フレームと他のフレームとの対応関係を 推定し、推定後、他のフレームと基準フレームとを、最終的に必要な解像度を有 する統合画像上に割り当てることにより、高精細な合成フレームを得ることがで きる。

[0005]

【特許文献1】

特開2000-354244号公報

[0006]

【非特許文献1】

中沢祐二、小松隆、斉藤隆弘, 「フレーム間統合による高精細ディジタル画像の獲得」, テレビジョン学会誌, 1995年, Vol. 49, No. 3, p299-308

[0007]

【発明が解決しようとする課題】

しかしながら、非特許文献1に記載された方法においては、他のフレームに含まれる被写体の動きが非常に大きい場合や、局所的に含まれる被写体が複雑な動きをしていたり非常に高速で動いている場合には、被写体の動きにパッチの移動および/または変形が追随できない場合がある。このように、パッチの移動および/または変形が被写体の移動および/または変形に追随できないと、合成フレームの全体がぼけたり、フレームに含まれる動きの大きい被写体がぼけたりするため、高画質の合成フレームを得ることができないという問題がある。この場合、パッチをより多くの矩形領域に分割することにより、被写体の移動および/または変形にパッチの移動および/または変形を追随させることができる。しかしながら、分割数をあまりに多くすると矩形領域が小さくなりすぎて、却って被写体の移動および/または変形にパッチの移動および/または変形を追随させることが困難となってしまう。

[0008]

本発明は上記事情に鑑みなされたものであり、最適なパッチの分割数にて高画質の合成フレームを得ることを目的とする。

[0009]

【課題を解決するための手段】

本発明による第1の動画像合成方法は、動画像から連続する2つのフレームを サンプリングし、

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定し、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準 フレームの座標空間に座標変換して座標変換済みフレームを取得し、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す相関値を算出し、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して 、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算 出を行い、

前記2つの相関値の変化量を算出し、

該変化量が所定のしきい値以下となるまで、前記基準パッチおよび前記パッチ 内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の 推定、前記座標変換済みフレームの取得、前記相関値の算出および隣接する段階 の分割数により算出された2つの相関値の変化量の算出を行い、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち、いずれかの相関値を算出した分割数において推定された前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準

パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い 合成フレームを作成することを特徴とするものである。

[0010]

「分割数を段階的に増加する」とは、相関が所定のしきい値以上となるまで少ない分割数から徐々に分割数を大きくすることをいう。なお、分割数をあまりに大きくすると矩形領域が小さくなりすぎて、似たような画像を表す矩形領域が多く存在することとなり、却って被写体の移動および/または変形にパッチの移動および/または変形が追随できない場合がある。このため、分割数の上限値を設定しておくことが好ましい。

[0011]

「分割数を1段階増加する」とは、上記段階的に増加する分割数における1段階分割数を増加することをいう。

[0012]

「相関値」は、座標変換済みフレームの全体と基準フレームの基準パッチ内の画像の全体との相関を表すものとして算出すればよく、具体的には各画素の相関値のパッチ内の全画素についての平均値や加算値を用いることができる。

[0013]

「2つの相関値の変化量」とは、ある分割数の段階(最初に対応関係を推定する初期段階を含む)により算出された相関値と、そこから1段階増加した分割数により算出された相関値とがどの程度異なるかを表すものであり、具体的にはその2つの相関値の差分値、差分値の絶対値等を用いることができる。

[0014]

本発明による第2の動画像合成方法は、動画像から連続する2つのフレームを サンプリングし、

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩 形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレ ーム以外の他のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画 像と一致するように、該パッチを前記他のフレーム上において移動および/また は変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づい て、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準 パッチ内の画素との対応関係を推定し、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準 フレームの座標空間に座標変換して座標変換済みフレームを取得し、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す相関値を前記矩形領域単位で算出し、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して 、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算 出を行い、

前記2つの相関値の変化量を前記矩形領域単位で算出し、

全ての前記矩形領域における前記変化量が所定のしきい値以下となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、 各段階において前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出および隣接する段階の分割数により算出された2つの相関値の前記矩形領域単位での変化量の算出を行い、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち、いずれかの相関値を算出した分割数において推定された前記矩形領域毎の前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して前記矩形領域に対応する領域単位で補間演算を施して、前記各フレームよりも解像度が高い合成フレームを作成することを特徴とするものである。

[0015]

「相関値」は、座標変換済みフレームと基準フレームの基準パッチ内の画像との相対応する矩形領域の相関を表すものとして算出すればよく、具体的には各画素の相関値の矩形領域内の全前画素についての平均値や加算値を用いることができる。

[0016]

「全ての前記矩形領域における前記変化量が所定のしきい値以下となるまで、 前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して 、各段階において前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出および隣接する段階の分割数により算出された2つの相関値の前記矩形領域単位での変化量の算出を行う」とは、分割数の各段階において、基準パッチおよびパッチ内の全での矩形領域について変化量が所定のしきい値以下となるまで変化量を算出するものであってもよく、ある分割数において基準パッチおよびパッチ内の一部の矩形領域のみについて変化量が所定のしきい値以下となった場合には、次の段階の矩形領域の分割はその一部の矩形領域以外の他の矩形領域についてのみ行い、他の矩形領域についてのみ分割数を増加して変化量を算出するものであってもよい。後者の場合、前者と比較して変化量算出のための演算時間を短縮することができる。

[0017]

ここで、本発明による第2の動画像合成方法においては、変化量が所定のしきい値以下となったときの分割数が基準パッチおよびパッチ内の局所領域で異なる場合がある。このため、「矩形領域に対応する領域単位で補間演算を施す」とは、変化量が所定のしきい値以下となったときの分割数が基準パッチおよびパッチ内の局所領域で異なる場合に、基準パッチおよびパッチ内の局所領域が対応する矩形領域の分割数により推定された対応関係を用いて、基準パッチおよびパッチ内の矩形領域に対応する領域毎に異なる対応関係に基づいて補間演算を行うことを意味する。

[0018]

なお、本発明による第1および第2の動画像合成方法においては、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出および前記合成フレームの作成を、前記フレームを構成する少なくとも1つの成分を用いて行ってもよい。

[0019]

「フレームを構成する少なくとも1つの成分」とは、例えばフレームがRGBの3つの色データからなる場合においてはRGB各色成分のうちの少なくとも1つの成分であり、YCC輝度色差成分からなる場合には、輝度および色差の各成分のうちの少なくとも1つの成分、好ましくは輝度成分である。

[0020]

本発明による第3の動画像合成方法は、動画像から連続する3以上のフレーム をサンプリングし、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の 矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他の1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他の1のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他の1のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定し、

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記 基準フレームの座標空間に座標変換して座標変換済みフレームを取得し、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す相関値を算出し、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して 、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算 出を行い、

前記2つの相関値の変化量を算出し、

該変化量が所定のしきい値以下となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出および隣接する段階の分割数により算出された2つの相関値の変化量の算出を行い、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち、いずれかの相関値を算出した分割数において推定された前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い中間合成フレームを取得し、

全ての前記他のフレームについて、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出および前記中間合成フレー

ムの取得を行い、

全ての前記他のフレームについて取得された複数の前記中間合成フレームを合成することにより合成フレームを作成することを特徴とするものである。

[0021]

本発明による第4の動画像合成方法は、動画像から連続する3以上のフレームをサンプリングし、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の 矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フ レーム以外の他の1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ 内の画像と一致するように、該パッチを前記他の1のフレーム上において移動お よび/または変形し、該移動および/または変形後のパッチおよび前記基準パッ チに基づいて、前記他の1のフレーム上の前記パッチ内の画素と前記基準フレー ム上の前記基準パッチ内の画素との対応関係を推定し、

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記 基準フレームの座標空間に座標変換して座標変換済みフレームを取得し、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す相関値を前記矩形領域単位で算出し、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して 、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算 出を行い、

前記2つの相関値の変化量を前記矩形領域単位で算出し、

全ての前記矩形領域における前記変化量が所定のしきい値以下となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、 各段階において前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出および隣接する段階の分割数により算出された2つの相関値の前記矩形領域単位での変化量の算出を行い、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち、いずれかの相関値を算出した分割数において推定された前記矩形領域毎の前記 対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フ レームの前記基準パッチ内の画像に対して前記矩形領域に対応する領域単位で補間演算を施して、前記各フレームよりも解像度が高い中間合成フレームを取得し

全ての前記他のフレームについて、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出および前記中間合成フレームの取得を行い、

全ての前記他のフレームについて取得された複数の前記中間合成フレームを合成することにより合成フレームを作成することを特徴とするものである。

[0022]

なお、本発明による第3および第4の動画像合成方法においては、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出、前記中間合成フレームの取得および前記合成フレームの作成を、前記フレームを構成する少なくとも1つの成分を用いて行ってもよい。

[0023]

本発明による第1の動画像合成装置は、動画像から連続する2つのフレームを サンプリングするサンプリング手段と、

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する対応関係推定手段と、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準 フレームの座標空間に座標変換して座標変換済みフレームを取得する座標変換手 段と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す相関値を算出する相関値算出手段と、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して

、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行うよう、前記対応関係推定手段、前記座標変換手段および前記相関値算出手段を制御する制御手段と、

前記2つの相関値の変化量を算出する変化量算出手段と、

該変化量が所定のしきい値以下となるまで、前記基準パッチおよび前記パッチ 内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の 推定、前記座標変換済みフレームの取得、前記相関値の算出および隣接する段階 の分割数により算出された2つの相関値の変化量の算出を行うよう、前記対応関 係推定手段、前記座標変換手段、前記相関値算出手段および前記変化量算出手段 を制御する比較手段と、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち、いずれかの相関値を算出した分割数において推定された前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い合成フレームを作成する合成手段とを備えたことを特徴とするものである。

[0024]

本発明による第2の動画像合成装置は、動画像から連続する2つのフレームを サンプリングするサンプリング手段と、

該2つのフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する対応関係推定手段と、

前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像を前記基準 フレームの座標空間に座標変換して座標変換済みフレームを取得する座標変換手 段と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相

関を表す相関値を前記矩形領域単位で算出する相関値算出手段と、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行うよう、前記対応関係推定手段、前記座標変換手段および前記相関値算出手段を制御する制御手段と、

前記2つの相関値の変化量を前記矩形領域単位で算出する変化量算出手段と、

全ての前記矩形領域における前記変化量が所定のしきい値以下となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、 各段階において前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出および隣接する段階の分割数により算出された2つの相関値の前記矩形領域単位での変化量の算出を行うよう、前記対応関係推定手段、前記座標変換手段、前記相関値算出手段および前記変化量算出手段を制御する比較手段と、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち、いずれかの相関値を算出した分割数において推定された前記矩形領域毎の前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して前記矩形領域に対応する領域単位で補間演算を施して、前記各フレームよりも解像度が高い合成フレームを作成する合成手段とを備えたこと特徴とするものである。

[0025]

なお、本発明による第1および第2の動画像合成装置においては、前記対応関係推定手段、前記座標変換手段、前記相関値算出手段、前記制御手段、前記変化量算出手段、前記比較手段および前記合成手段を、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出および前記合成フレームの作成を、前記フレームを構成する少なくとも1つの成分を用いて行う手段としてもよい。

[0026]

本発明による第3の動画像合成装置は、動画像から連続する3以上のフレームをサンプリングするサンプリング手段と、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の

矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他の1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他の1のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他の1のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する対応関係推定手段と、

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記 基準フレームの座標空間に座標変換して座標変換済みフレームを取得する座標変 換手段と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す相関値を算出する相関値算出手段と、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行うよう、前記対応関係推定手段、前記座標変換手段および前記相関値算出手段を制御する制御手段と、

前記2つの相関値の変化量を算出する変化量算出手段と、

該変化量が所定のしきい値以下となるまで、前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、各段階において前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出および隣接する段階の分割数により算出された2つの相関値の変化量の算出を行うよう、前記対応関係推定手段、前記座標変換手段、前記相関値算出手段および前記変化量算出手段を制御する比較手段と、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち、いずれかの相関値を算出した分割数において推定された前記対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フレームの前記基準パッチ内の画像に対して補間演算を施して、前記各フレームよりも解像度が高い中間合成フレームを取得し、全ての前記他のフレームについて、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出および前記中間合成フレームの取得を行い、全ての前記他のフレームについて取

得された複数の前記中間合成フレームを合成することにより合成フレームを作成 する合成手段とを備えたことを特徴とするものである。

[0027]

本発明による第4の動画像合成装置は、動画像から連続する3以上のフレームをサンプリングするサンプリング手段と、

該3以上のフレームのうち、基準となる1の基準フレーム上に1または複数の 矩形領域を有する基準パッチを配置し、該基準パッチと同様のパッチを該基準フレーム以外の他の1のフレーム上に配置し、該パッチ内の画像が前記基準パッチ内の画像と一致するように、該パッチを前記他の1のフレーム上において移動および/または変形し、該移動および/または変形後のパッチおよび前記基準パッチに基づいて、前記他の1のフレーム上の前記パッチ内の画素と前記基準フレーム上の前記基準パッチ内の画素との対応関係を推定する対応関係推定手段と、

前記対応関係に基づいて、前記他の1のフレームの前記パッチ内の画像を前記 基準フレームの座標空間に座標変換して座標変換済みフレームを取得する座標変 換手段と、

該座標変換済みフレームと前記基準フレームの前記基準パッチ内の画像との相関を表す相関値を前記矩形領域単位で算出する相関値算出手段と、

前記基準パッチおよび前記パッチ内の前記矩形領域の分割数を1段階増加して、前記対応関係の推定、前記座標変換済みフレームの取得および前記相関値の算出を行うよう、前記対応関係推定手段、前記座標変換手段および前記相関値算出手段を制御する制御手段と、

前記2つの相関値の変化量を前記矩形領域単位で算出する変化量算出手段と、 全ての前記矩形領域における前記変化量が所定のしきい値以下となるまで、前 記基準パッチおよび前記パッチ内の前記矩形領域の分割数を段階的に増加して、 各段階において前記対応関係の推定、前記座標変換済みフレームの取得、前記相 関値の算出および隣接する段階の分割数により算出された2つの相関値の前記矩 形領域単位での変化量の算出を行うよう、前記対応関係推定手段、前記座標変換 手段、前記相関値算出手段および前記変化量算出手段を制御する比較手段と、

前記変化量が前記所定のしきい値以下となったときの前記2つの相関値のうち

、いずれかの相関値を算出した分割数において推定された前記矩形領域毎の前記 対応関係に基づいて、前記他のフレームの前記パッチ内の画像および前記基準フ レームの前記基準パッチ内の画像に対して前記矩形領域に対応する領域単位で補 間演算を施して、前記各フレームよりも解像度が高い中間合成フレームを取得し

全ての前記他のフレームについて、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出および前記中間合成フレームの取得を行い、全ての前記他のフレームについて取得された複数の前記中間合成フレームを合成することにより合成フレームを作成する合成手段とを備えたことを特徴とするものである。

[0028]

なお、本発明による第3および第4の動画像合成装置においては、前記対応関係推定手段、前記座標変換手段、前記相関値算出手段、前記制御手段、前記変化量算出手段、前記比較手段および前記合成手段を、前記対応関係の推定、前記座標変換済みフレームの取得、前記相関値の算出、前記変化量の算出、前記中間合成フレームの取得および前記合成フレームの作成を、前記フレームを構成する少なくとも1つの成分を用いて行う手段としてもよい。

[0029]

なお、本発明による第1から第4の動画像合成方法をコンピュータに実行させるためのプログラムとして提供してもよい。

[0030]

【発明の効果】

本発明の第1の動画像合成方法および装置によれば、動画像がサンプリングされて連続する複数のフレームが取得され、複数のフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチが配置される。また、基準フレーム以外の他のフレーム上に、基準パッチと同様のパッチが配置される。そして、パッチ内の画像が基準パッチ内の画像と一致するように移動および/または変形され、移動および/または変形後のパッチおよび基準パッチに基づいて、他のフレームの上のパッチ内の画素と基準フレーム上の基準パッチ内

の画素との対応関係が推定される。

[0031]

さらに、対応関係に基づいて他のフレームのパッチ内の画像が基準フレームの 座標空間に座標変換されて座標変換済みフレームが取得され、座標変換済みフレ ームと基準フレームの基準パッチ内の画像との相関を表す相関値が算出される。 そして、基準パッチおよびパッチ内の矩形領域の分割数が1段階増加されて、対 応関係の推定、座標変換済みフレームの取得および相関値の算出が行われ、前後 の段階の分割数により算出された2つの相関値の変化量が算出される。

[0032]

そして、変化量が所定のしきい値以下となるまで、基準パッチおよびパッチ内の矩形領域の分割数が段階的に増加され、各段階において対応関係の推定、座標変換済みフレームの取得、相関値の算出および隣接する段階の分割数により算出された2つの相関値の変化量の算出が行われる。

[0033]

そして、変化量が所定のしきい値以下となったときの2つの相関値のうち、いずれかの相関値を算出した分割数において推定された対応関係に基づいて、他のフレームのパッチ内の画像および基準フレームのパッチ内の画像に対して補間演算が施されて、各フレームよりも解像度が高い合成フレームが作成される。

[0034]

なお、本発明による第3の動画像合成方法および装置のように、フレームが3 以上サンプリングされた場合には、基準フレーム以外の全ての他のフレームについて、変化量が所定のしきい値以下となるまで対応関係の推定、座標変換済みフレームの取得、相関値の算出および変化量の算出が行われ、基準フレームと他のフレームのそれぞれとから複数の中間合成フレームが取得され、さらに複数の中間合成フレームから合成フレームが作成される。

[0035]

このため、フレーム内における動いている被写体の移動および/または変形に 追随可能な最適な分割数により合成フレームを作成することができ、これにより 、フレームに含まれる被写体の動きに拘わらず、高画質の合成フレームを得るこ とができる。

[0036]

また、本発明による第2の動画像合成方法および装置によれば、動画像がサンプリングされて連続する複数のフレームが取得され、複数のフレームのうち、基準となる1の基準フレーム上に1または複数の矩形領域を有する基準パッチが配置される。また、基準フレーム以外の他のフレーム上に、基準パッチと同様のパッチが配置される。そして、パッチ内の画像が基準パッチ内の画像と一致するように移動および/または変形され、移動および/または変形後のパッチおよび基準パッチに基づいて、他のフレームの上のパッチ内の画素と基準フレーム上の基準パッチ内の画素との対応関係が推定される。

[0037]

さらに、対応関係に基づいて他のフレームのパッチ内の画像が基準フレームの 座標空間に座標変換されて座標変換済みフレームが取得され、座標変換済みフレ ームと基準フレームの基準パッチ内の画像との相関を表す相関値が矩形領域単位 で算出される。そして、基準パッチおよびパッチ内の矩形領域の分割数が1段階 増加されて、対応関係の推定、座標変換済みフレームの取得および相関値の算出 が行われ、前後の段階の分割数により算出された2つの相関値の変化量が矩形領 域単位で算出される。

[0038]

そして、全ての矩形領域における変化量が所定のしきい値以下となるまで、基準パッチおよびパッチ内の矩形領域の分割数が段階的に変更され、各段階において対応関係の推定、座標変換済みフレームの取得、相関値の算出および変化量の算出が行われる。

[0039]

そして、変化量が所定のしきい値以下となったときの2つの相関値のうち、いずれかの相関値を算出した分割数において推定された矩形領域毎の対応関係に基づいて、他のフレームのパッチ内の画像および基準フレームのパッチ内の画像に対して矩形領域に対応する領域単位で補間演算が施されて、各フレームよりも解像度が高い合成フレームが作成される。

[0040]

なお、本発明による第4の動画像合成方法および装置のように、フレームが3 以上サンプリングされた場合には、基準フレーム以外の全ての他のフレームについて、変化量が所定のしきい値以下となるまで対応関係の推定、座標変換済みフレームの取得、相関値の算出および変化量の算出が行われ、基準フレームと他のフレームのそれぞれとから複数の中間合成フレームが取得され、さらに複数の中間合成フレームから合成フレームが作成される。

[0041]

このため、フレーム内の各部分に含まれる被写体の動きに追随した最適な分割 数により合成フレームを作成することができ、これにより、フレームに含まれる 被写体の動きに拘わらず、より高画質の合成フレームを得ることができる。

[0042]

請求項3,6,9,12,15,18の発明によれば、対応関係の推定、座標変換済みフレームの取得、相関値の算出、変化量の算出、中間合成フレームの取得(3以上のフレームがサンプリングされた場合)および合成フレームの作成がフレームを構成する少なくとも1つの成分を用いて行われる。このため、各成分毎に画質の劣化を低減した合成フレームを得ることができ、これにより、各成分毎の合成フレームからなる高画質の合成フレームを得ることができる。

[0043]

【発明の実施の形態】

以下図面を参照して本発明の実施形態について説明する。図1は本発明の第1の実施形態による動画像合成装置の構成を示す概略ブロック図である。図1に示すように、第1の実施形態による動画像合成装置は、入力された動画像データM0から複数のフレームをサンプリングするサンプリング手段1と、複数のフレームのうち、基準となる1の基準フレームの画素および基準フレーム以外の他のフレームの画素の対応関係を推定する対応関係推定手段2と、対応関係推定手段2において推定された対応関係に基づいて、他のフレームをそれぞれ基準フレームの座標空間上に座標変換して座標変換済みのフレーム(以下座標変換フレームとする)FrTiを取得する座標変換手段3と、座標変換フレームFrTiと基準

フレームとの相関を表す相関値を算出する相関値算出手段4と、後述するように 対応関係を推定するパッチの分割数を段階的に増加することにより算出された相 関値に基づいて、前後する段階の分割数により算出された2つの相関値について その変化量を算出する変化量算出手段5と、変化量をしきい値Th1と比較する とともに、変化量がしきい値Th1以下となるまで後述するように対応関係を推 定するパッチの分割数を段階的に増加して、対応関係推定手段2、座標変換手段 3、相関値算出手段4および変化量算出手段5に対応関係の推定、座標変換フレ ームの取得、相関値の算出および変化量の算出を行わせる比較手段6と、変化量 がしきい値Th1以下となったときの2つの相関値のいずれか一方の相関値を算 出した分割数において対応関係推定手段2により推定された対応関係に基づいて 、基準フレームおよび他のフレームに対して補間演算を施して各フレームよりも 解像度が高い合成フレームFrGを作成する合成手段7とを備える。なお、本実 施形態において合成フレームFrGはサンプリングしたフレームの縦横それぞれ 2倍の画素を有するものとする。なお、以降では、合成フレームFrGはサンプ リングしたフレームの縦横それぞれ2倍の画素を有するものとして説明するが、 n倍(n:正数)の画素数を有するものであってもよい。

[0044]

サンプリング手段1は、動画像データM0から複数のフレームをサンプリングするが、本実施形態においては動画像データM0から2つのフレームFrNおよびフレームFrN+1をサンプリングするものとする。なお、フレームFrNを基準フレームとする。ここで、動画像データM0はカラーの動画像を表すものであり、フレームFrN,FrN+1はY,Cb,Crの輝度色差成分からなるものとする。なお、以降の説明において、Y,Cb,Crの各成分に対して処理が行われるが、行われる処理は全ての成分について同様であるため、本実施形態においては輝度成分Yの処理について詳細に説明し、色差成分Cb,Crに対する処理については説明を省略する。

[0045]

対応関係推定手段2は、以下のようにしてフレームFrN+1と基準フレームFrNとの対応関係を推定する。図2はフレームFrN+1と基準フレームFr

Nとの対応関係の推定を説明するための図である。なお、図2において、基準フレームFrNに含まれる円形の被写体が、フレームFrN+1においては図面上右側に若干移動しているものとする。

[0046]

まず、対応関係推定手段2は、まず、基準フレームFrN上に1または複数の矩形領域からなる基準パッチP0を配置する。図2(a)は、基準フレームFrN上に基準パッチP0が配置された状態を示す図である。図2(a)に示すように、本実施形態においては、基準パッチP0は2×2の矩形領域に分割されてなるものとする。次いで、図2(b)に示すように、フレームFrN+1の適当な位置に基準パッチP0と同様のパッチP1を配置し、基準パッチP0内の画像とパッチP1内の画像との相関を表す相関値を算出する。なお、相関値は下記の式(1)により平均二乗誤差として算出することができる。また、座標軸は紙面左右方向にx軸、紙面上下方向にy軸をとるものとする。

【数1】

$$E = \frac{1}{N} \sum_{i}^{N} (pi - qi)^{2}$$
 (1)

但し、E:相関値

pi, qi:基準パッチP0, P1内にそれぞれ対応する画素の画素値N:基準パッチP0およびパッチP1内の画素数

[0047]

次いで、フレームFrN+1上のパッチP1を上下左右の4方向に一定画素 Δx , $\pm \Delta y$ 移動し、このときのパッチP1内の画像と基準フレームFrN上の基準パッチP0内の画像との相関値を算出する。ここで、相関値は上下左右方向のそれぞれについて算出され、各相関値をそれぞれ $E(\Delta x, 0)$, $E(-\Delta x, 0)$, $E(0, \Delta y)$, $E(0, -\Delta y)$ とする。

[0048]

そして、移動後の4つの相関値E (Δx , 0), E ($-\Delta x$, 0), E (0, Δy), E (0, $-\Delta y$) から相関値が小さく(すなわち相関が大きく)なる勾

配方向を相関勾配として求め、この方向に予め設定した実数値倍だけ図 2 (c)に示すようにパッチ P 1 を移動する。具体的には、下記の式(2)により係数 C $(\Delta x, 0)$, C $(-\Delta x, 0)$, C $(0, \Delta y)$, C $(0, -\Delta y)$ を算出し、これらの係数 C $(\Delta x, 0)$, C $(-\Delta x, 0)$, C $(0, \Delta y)$, C $(0, \Delta y$

[0049]

【数2】

$$c(\Delta x, \Delta y) = \sqrt{E(\Delta x, \Delta y)} / 255$$
 (2)

$$gx = \frac{c (\Delta x, 0) - c (-\Delta x, 0)}{2}$$
 (3)

$$gy = \frac{c(0, \Delta y) - c(0, -\Delta y)}{2}$$
 (4)

[0050]

[0051]

さらに、パッチP1の格子点を座標軸に沿った4方向に一定画素移動させる。このとき、移動した格子点を含む矩形領域は例えば図3に示すように変形する。そして、変形した矩形領域について基準パッチP0の対応する矩形領域との相関値を算出する。この相関値をそれぞれE1(Δ x, 0),E1($-\Delta$ x, 0),E1(0, Δ y),E1(0, Δ y)とする。

[0052]

そして、上記と同様に、変形後の4つの相関値E1(Δx , 0), E1($-\Delta x$, 0), E1(0, Δy), E1(0, Δy) から相関値が小さく(すなわ

ち相関が大きく)なる勾配方向を求め、この方向に予め設定した実数値倍だけパッチP1の格子点を移動する。これをパッチP1の全ての格子点について行い、これを1回の処理とする。そして格子点の座標が収束するまでこの処理を繰り返す。

[0053]

これにより、パッチP1の基準パッチP0に対する移動量および変形量が求まり、これに基づいて基準パッチP0内の画素とパッチP1内の画素との対応関係を推定することができる。

[0054]

座標変換手段3は、推定された対応関係に基づいて、以下のようにしてフレームFrN+1を基準フレームFrNの座標空間に座標変換して座標変換フレームFrT0を取得する。なお、以降の説明においては、基準フレームFrNの基準パッチP0内の領域およびフレームFrN+1のパッチP1内の領域についてのみ変換および合成が行われる。

[0055]

本実施形態においては、座標変換は双1次変換を用いて行うものとする。双1 次変換による座標変換は、下記の式(5),(6)により定義される。

【数3】

$$x = (1 - u)(1 - v)x1 + (1 - v)ux2 + (1 - u)vx3 + uvx4$$
 (5)

$$y = (1 - u)(1 - v)y1 + (1 - v)uy2 + (1 - u)vy3 + uvy4$$
 (6)

[0056]

式(5), (6)は、2次元座標上の4点(x n, y n)($1 \le n \le 4$)で与えられたパッチP1内の座標を、正規化座標系(u, v)($0 \le u$, $v \le 1$)によって補間するものであり、任意の2つの矩形内の座標変換は、式(5), (6)および式(5), (6)の逆変換を組み合わせることにより行うことができる

[0057]

ここで、図4に示すように、パッチP1(xn, yn)内の点(x, y)が対

応する基準パッチP0(x´n, y´n)内のどの位置に対応するかを考える。まずパッチP1(xn, yn) 内の点(x, y) について、正規化座標(u, v) を求める。これは式(5), (6) の逆変換により求める。そしてこのときの(u, v) と対応する基準パッチP0(x´n, y´n) を元に、式(5), (6) から点(x, y) に対応する座標(x´, y´) を求める。ここで、点(x, y) が本来画素値が存在する整数座標であるのに対し、点(x´, y´) は本来画素値が存在しない実数座標となる場合があるため、変換後の整数座標における画素値は、基準パッチP0の整数座標に隣接する8近傍の整数座標に囲まれた領域を設定し、この領域内に変換された座標(x´, y´) の画素値の荷重和として求めるものとする。

[0058]

具体的には、図5に示すように基準パッチP0上における整数座標 b(x, y)について、その8近傍の整数座標 b(x-1, y-1),b(x, y-1),b(x+1, y-1),b(x-1, y),b(x+1, y),b(x-1, y),b(x+1, y),b(x+1, y+1)に囲まれる領域内に変換されたフレームFrN+1の画素値に基づいて算出する。ここで、フレームFrN+1のm個の画素値が8近傍の画素に囲まれる領域内に変換され、変換された各画素の画素値をI t j (x°, y°) ($1 \le j \le m$)とすると、整数座標 b(x, y) における画素値 I t f (f (f) において f は、下記の式(f)により算出することができる。なお、式(f)において f は荷重和演算を表す関数である。

【数4】

It
$$(x^{\circ}, y^{\circ}) = \phi$$
 (It $j(x^{\circ}, y^{\circ})$)
$$= \{ (W1 \times 1t1(x^{\circ}, y^{\circ}) + W2 \times It2(x^{\circ}, y^{\circ}) + \cdots + Wm \times 1tm(x^{\circ}, y^{\circ})) \} / (W1 + W2 + \cdots + Wk)$$

$$= \frac{\sum_{j=1}^{m} Wj \times It \ j(x^{\circ}, y^{\circ})}{\sum_{j=1}^{m} Wj}$$

$$= \frac{\sum_{j=1}^{m} Wj}{\sum_{j=1}^{m} Wj}$$
(7)

但し、W j $(1 \le j \le m)$: 画素値 I t j (x°, y°) が割り当てられた位置における近傍の整数画素から見た座標内分比の積

[0059]

ここで、簡単のため、図5を用いて8近傍の画素に囲まれる領域内にフレーム FrN+1の2つの画素値It1, It2が変換された場合について考えると、整数座標b(x,y)における画素値 $It(x^{,y})$ は下記の式(8)により算出することができる。

【数5】

It
$$(x^{-}, y^{-}) = \frac{1}{W1 + W2} = (W1 \times It1 + W2 \times It2)$$
 (8)

但し、 $W1 = u \times v$ 、 $W2 = (1-s) \times (1-t)$

[0060]

以上の処理をパッチP1内の全ての画素について行うことにより、パッチP1内の画像が基準フレームFrNの座標空間に変換されて、座標変換フレームFrT0が取得される。

$[0\ 0\ 6\ 1]$

相関値算出手段4は、座標変換フレームFrT0と基準フレームFrNとの相関値d0を算出する。具体的には下記の式(9)に示すように、座標変換フレームFrT0と基準フレームFrNとの対応する画素における画素値FrT0(x,y),FrN(x,y)との差の絶対値の基準パッチP0内の全画素mについての加算値を基準パッチP0内の画素数mで除した値、すなわち各画素毎の差の絶対値の基準パッチP0内の全画素についての平均値を相関値d0として算出する。なお、相関値d0は座標変換フレームFrT0と基準フレームFrNとの相関が大きいほど小さい値となる。

【数6】

$$d0 = \sum_{x=0}^{m} \left| FrTO(x, y) - FrN(x, y) \right| / m$$
 (9)

[0 0 6 2]

なお、本実施形態では座標変換フレームFrT0と基準フレームFrNとの対応する画素における画素値の差の絶対値から相関値d0を算出しているが、差の 二乗から相関値を算出してもよい。また、座標変換フレームFrT0と基準フレ ームFrNとの対応する画素における画素値の差の絶対値の加算値を相関値としてもよい。また、座標変換フレームFrTOおよび基準フレームFrNのヒストグラムをそれぞれ算出し、座標変換フレームFrTOおよび基準フレームFrNのヒストグラムの平均値、メディアン値または標準偏差の差分値、もしくはヒストグラムの差分値の累積和を相関値として用いてもよい。また、基準フレームFrNに対する座標変換フレームFrTOの動きを表す動きベクトルを基準フレームFrNの各画素または小領域毎に算出し、算出された動ベクトルの平均値、メディアン値または標準偏差を相関値として用いてもよく、動ベクトルのヒストグラムの累積和を相関値として用いてもよい。

[0063]

変化量算出手段5は、分割数が初期値(本実施形態では2×2)の場合には、 分割数を1段階増加させ(本実施形態では4×4)、増加させた分割数により相 関値算出手段4において算出された相関値d1とその前の段階の分割数により取 得された相関値d0との変化量Δd0を算出する。

[0064]

具体的には、対応関係推定手段2において、図6(a)に示すように基準パッチP0およびパッチP1の分割数を2×2から4×4に増加して、基準パッチP0およびパッチP1を基準フレームFrNおよびフレームFrN+1の適当な位置に配置し、上記と同様にパッチP1の基準パッチP0に対する移動量および変形量を求め、基準パッチP0内の画素とパッチP1内の画素との対応関係を推定する。そして、座標変換手段3において、対応関係推定手段2により推定された対応関係に基づいてフレームFrN+1を基準フレームFrNの座標空間に座標変換して座標変換フレームFrT1を取得する。さらに、相関値算出手段4において、座標変換フレームFrT1と基準フレームFrNとの相関値d1を算出する。具体的には下記の式(10)に示すように、座標変換フレームFrT1と基準フレームFrNとの対応する画素における画素値FrT1(x,y),FrN(x,y)との差の絶対値の基準パッチP0内の全画素についての平均値を相関値d1として算出する。さらに、下記の式(11)に示すように、相関値d0と相関値d1との差の絶対値を変化量 Δd0として算出する。

【数7】

$$d1 = \sum_{x=0}^{m} |FrT1(x, y) - FrN(x, y)| / m$$
 (10)

$$d0 = |d0 - d1| \tag{11}$$

[0065]

なお、相関値 d 0 を算出するのみでは変化量 Δ d 0 を算出できないため、分割数 1 を初期の段階から 1 段階増加させての相関値 d 1 の算出は、変化量算出手段 5 が対応関係推定手段 2、座標変換手段 3 および相関値算出手段 4 を制御することにより行われる。

[0066]

比較手段 6 は変化量 Δ d 0 をしきい値 T h 1 と比較する。このしきい値 T h 1 は予め定められて比較手段 6 の不図示のメモリに記憶されてなるものである。そして、変化量 Δ d 0 がしきい値 T h 1 以下となった場合に、変化量 Δ d 0 を算出した 2 つの相関値 d 0、d 1 の分割数のうち、相関値 d 0 を得た小さい方の分割数を、後述するように合成手段 7 においてフレーム F r N, F r N + 1 から合成フレーム F r G を作成するために用いる対応関係を推定した合成分割数と決定する。

[0067]

一方、比較手段 6 は、変化量 Δ d 0 がしきい値 T h 1 を越えた場合には、基準パッチ P 0 およびパッチ P 1 の分割数を 1 段階増加して対応関係の推定、座標変換フレームの取得、相関値の算出および変化量の算出を行うように、対応関係推定手段 2、座標変換手段 3、相関値算出手段 4 および変化量算出手段 5 を制御する。

[0068]

具体的には、対応関係推定手段2において、図6 (b)に示すように基準パッチP0およびパッチP1の分割数を4×4から8×8に増加して、基準パッチP0およびパッチP1を基準フレームFrNおよびフレームFrN+1の適当な位置に配置し、上記と同様にパッチP1の基準パッチP0に対する移動量および変形量を求め、基準パッチP0内の画素とパッチP1内の画素との対応関係を推定

[0069]

そして、比較手段6は、算出された変化量 Δ d1をしきい値Th1と比較し、変化量 Δ d1がしきい値Th1を越える場合には、さらに16×16に基準パッチP0およびパッチP1の分割数を増加して、増加した段階の分割数において相関値di+1(-1 \leq i) (以下、一般化のためにiを用いる)を算出し、さらに、相関値diと相関値d1+1との変化量 Δ diがしきい値Th1以下となるまで、対応関係推定手段2、座標変換手段3、相関値算出手段4および変化量算出手段5に、対応関係の推定、座標変換フレームの取得、相関値の算出および変化量の算出を行わせる。なお、本実施形態においては、基準パッチP0およびパッチP1のi段階目の分割数は $2^{i+1}\times 2^{i+1}$ であり、i段階目の分割数により得られた座標変換フレームをFrTi、相関値をdiとする。そして、i+1段階目の分割数により算出された相関値diとの変化量 Δ diがしきい値Th1以下となったときの基準パッチP0およびパッチP1の分割数を合成分割数と決定する。なお、合成分割数は変化量 Δ diを得た2つの相関値を算出した分割数のうちの小さい方の分割数である。

[0070]

なお、分割数があまりに大きくなると矩形領域が小さくなりすぎて、似たような画像を表す矩形領域が多く存在することとなり、却って被写体の移動および/または変形にパッチの移動および/または変形が追随できない場合がある。このため、分割数の上限値を設定しておくことが好ましい。

[0071]

合成手段 7 は、比較手段 6 において決定された合成分割数により推定された対応関係に基づいて、基準フレーム F r N およびフレーム F r N + 1 に対して補間演算を施して合成フレーム F r G を作成する。具体的には、まず図 7 に示すように、最終的に必要な画素数を有する統合画像(本実施形態においては、フレーム F r N, F r N + 1 の縦横それぞれ 2 倍の画素数を有する場合について説明するが、 n +

【数8】

 $I1N + 1(x^{\circ}, y^{\circ}) = \prod (FrN + 1(x, y))$ (12)

但し、I 1 N + 1 (x°, y°) : 統合画像上に割り当てられたフレームF r N + 1 の画素値

FrN+1(x, y): フレームFrN+1の画素値

[0072]

このように統合画像上にフレームFrN+1の画素値を割り当てることにより画素値I1N+1(x°, y°)を得、各画素についてI1(x°, y°)(=I1N+1(x°, y°))の画素値を有する第1の補間フレームを取得する。

[0073]

ここで、画素値を統合画像上に割り当てる際に、統合画像の画素数とフレーム FrN+1の画素数との関係によっては、フレームFrN+1上の各画素が統合 画像の整数座標(すなわち画素値が存在すべき座標)に対応しない場合がある。 本実施形態においては、統合画像の整数座標における画素値は、統合画像の整数 座標に隣接する8近傍の整数座標に囲まれた領域を設定し、この領域内に割り当てられたフレームFrN+1上の各画素の画素値の荷重和として求める。

[0074]

すなわち、図8に示すように統合画像における整数座標 p (x, y) について

は、その8近傍の整数座標 p(x-1, y-1), p(x, y-1), p(x+1, y-1), p(x-1, y-1), p(x-1, y), p(x-1, y+1), p(x, y+1), p(x+1, y+1) に囲まれる領域内に割り当てられたフレーム p(x) アンカーム p(x) アンカー

【数9】

$$\begin{split} &I\,1N+1\,(x^{\hat{}},\,y^{\hat{}}\,) = \Phi\,(\,I\,1N+1\,(x^{\,\circ},\,y^{\,\circ}\,)) \\ &= &\Big\{ (M1\times I\,1N+1\,1\,(x^{\,\circ},y^{\,\circ}\,)+M2\times I\,1\,N+12\,(x^{\,\circ},y^{\,\circ}\,)+\cdots +Mk\times I\,1N+1k(x^{\,\circ},y^{\,\circ}\,)) \,\Big\} / \,(M1+M2+\cdots +Mk) \\ &= \frac{k}{\sum_{i} Mi \times I\,1N+1i\,(x^{\,\circ},y^{\,\circ}\,)} \\ &= \frac{i=1}{\sum_{i} Mi} \end{split} \tag{13}$$

但し、Mi ($1 \le i \le k$):画素値 I1N+1i (x°, y°) が割り当てられた位置における近傍の整数画素から見た座標内分比の積

[0075]

ここで、簡単のため、図8を用いて8近傍の画素に囲まれる領域内にフレーム FrN+1の2つの画素値I1N+11, I1N+12が割り当てられた場合に ついて考えると、整数座標p(x,y) における画素値 $I1N+1(x^,y^)$ は下記の式 (14) により算出することができる。

【数10】

I 1N + 1(x², y²) =
$$\frac{1}{M1 + M2}$$
 = (M1×I 1N + 11 + M2×I 1N + 12) (14)
但し、M 1 = u × v、M 2 = (1 - s) × (1 - t)
【0076】

そして、統合画像の全ての整数座標について、フレームFrN+1の画素値を

[0077]

なお、基準フレームFr Nについては、基準フレームFr Nの画素を統合画像の整数座標に補間して直接割り当てることにより取得される。この基準フレーム Fr Nを統合画像の整数座標に割り当てることにより得られた画素値を I2 (x $^{\circ}$, y $^{\circ}$) とし、画素値 I2 (x $^{\circ}$, y $^{\circ}$) を有するフレームを第2の補間フレームとする。

[0078]

そして、第1および第2の補間フレームの対応する画素における画素値 I 1(x^n, y^n)および I 2(x^n, y^n)を加算または重み付け加算することにより、画素値 F r G(x^n, y^n)を有する合成フレーム F r G を作成する。なお、画素値 I 1(x^n, y^n)のみから画素値 F r G(x^n, y^n)を有する合成フレーム F r G を作成してもよい。

[0079]

なお、統合画像の全ての整数座標に画素値を割り当てることができない場合がある。このような場合は、割り当てられた画素値または基準フレームの画素値 (割り当てられていない座標に対応する)に対して線形補間演算、スプライン補間演算等の種々の補間演算を施して、画素値が割り当てられなかった整数座標の画素値を算出すればよい。

[0080]

また、上記では輝度成分Yについての合成フレームFrGを求める処理について説明したが、色差成分Cb, Crについても同様に合成フレームFrGが取得される。そして、輝度成分Yから求められた合成フレームFrG(Y)および色差成分Cb, Crから求められた合成フレームFrG(Cb), FrG(Cr)を合成することにより、最終的な合成フレームが得られることとなる。なお、処理の高速化のためには、輝度成分Yについてのみ基準フレームFrNとフレームFrN+1との対応関係を推定し、色差成分Cb, Crについては輝度成分Yに

[0081]

次いで、第1の実施形態の動作について説明する。図9は第1の実施形態において行われる処理を示すフローチャートである。まず、サンプリング手段1に動画像データM0が入力され(ステップS1)、ここで、動画像データM0から基準フレームFrNおよびフレームFrN+1がサンプリングされる(ステップS2)。続いて、対応関係推定手段2により、基準フレームFrNとフレームFrN+1との対応関係が推定される(ステップS3)。

[0082]

[0083]

続いて、相関値が基準パッチP0およびパッチP1の0段階目の分割数すなわち初期の分割数において算出されたものであるか否かが判定され(ステップS6)、ステップS6が肯定されると、基準パッチP0およびパッチP1の分割数が1段階増加され(ステップS7)、ステップS3に戻り、増加された分割数によりステップS3からステップS5の処理が繰り返され、座標変換フレームFrT0と基準フレームFrNとの相関値di+1が算出される。

[0084]

[0085]

ステップS9が否定されると、ステップS7に進み、基準パッチP0およびパ

ッチP1の分割数が1段階増加されて(ステップS7)ステップS3に戻り、増加された分割数によりステップS3からステップS9の処理が繰り返される。

[0086]

ステップS 9 が肯定されると、変化量 Δ d i を得た 2 つの相関値 d i 、 d i + 1 のうち、分割数が小さい方の相関値 d i を得た基準パッチ P 0 およびパッチ P 1 の分割数が合成分割数に決定され(ステップS 1 0)、決定された合成分割数により推定された対応関係に基づいて、合成手段 7 により基準フレーム F r N およびフレーム F r N + 1 から合成フレーム F r G が作成され(ステップS 1 1)、処理を終了する。

[0087]

このように、第1の実施形態においては、しきい値Th1以下となる変化量を 算出した相関値を算出した分割数により推定された対応関係に基づいて、フレームFrNおよびフレームFrN+1から合成フレームFrGを作成しているため、フレーム内における動いている被写体の移動および/または変形に追随可能な 最適な分割数により合成フレームFrGを作成することができ、これにより、フレームに含まれる被写体の動きに拘わらず、高画質の合成フレームFrGを得る ことができる。

[0088]

次いで、本発明の第2の実施形態について説明する。上記第1の実施形態においては、変化量がしきい値Th1以下となる相関値を算出した分割数により推定されたフレームFrN,FrN+1のパッチ内の画像全体の対応関係に基づいて合成フレームFrGを作成しているが、第2の実施形態においては、基準パッチP0およびパッチP1を分割することにより得られる矩形領域毎に相関値の変化量を算出し、矩形領域毎の変化量をしきい値Th1と比較して合成分割数を矩形領域単位で決定して合成フレームFrGを作成するようにしたものである。

[0089]

図10は矩形領域毎の相関値の算出を説明するための図である。図10(a)に示すように分割数が2×2の基準パッチP0およびパッチP1の各矩形領域を矩形領域A1~A4とする。一方、図10(b)に示すように分割数が4×4の

基準パッチP0およびパッチP1の各矩形領域を矩形領域A11~A14,A2 1~A24,A31~A34,A41~A44とする。なお、矩形領域A1が矩 形領域A1~A14に、矩形領域A2が矩形領域A21~A24に、矩形領域A 3が矩形領域A31~A34に、矩形領域A4が矩形領域A41~A44にそれ ぞれ対応する。

[0090]

そして、分割数が 2×2 の場合には、矩形領域 $A \ 1 \sim A \ 4$ 毎に基準フレームF r N とフレームF r N + 1 との相関値を算出する。矩形領域 $A \ 1 \sim A \ 4$ のそれぞれにおける相関値を d $0 \ 1$, d $0 \ 2$, d $0 \ 3$, d $0 \ 4$ とする。

[0091]

また、変化量の算出のため、分割数が 4×4 の場合の矩形領域A 1 $1 \sim$ A 1 4 , A 2 1 \sim A 2 4 , A 3 1 \sim A 3 4 , A 4 1 \sim A 4 4 の相関値の加算値を算出する。この相関値の加算値を相関値 d 1 1 , d 1 2 , d 1 3 , d 1 4 とする。

[0092]

そして、対応する矩形領域間で相関値の差分値の絶対値を変化量として算出する。すなわち、分割数が 2×2 の場合について矩形領域A $1\sim A$ 4 にそれぞれ対応する変化量 Δ d 0 1 , Δ d 0 2 , Δ d 0 3 , Δ d 0 4 をそれぞれ下記の式(1 5) \sim (1 8) により算出する。

【数11】

$\Delta d01 = d01 - d11 $	(15)	
$\Delta d02 = \left d02 - d12 \right $	(16)	
$\Delta d03 = d03 - d13 $	(17)	
$\Delta d04 = d04 - d14 $	(18)	

[0093]

続いて、算出された変化量 Δ d01, Δ d02, Δ d03, Δ d04をしきい値Th1と比較し、変化量がしきい値Th1以下となった矩形領域に対応する基準パッチP0およびパッチP1内の領域については、その変化量を算出した2つの相関値を算出した分割数のうち小さい方の分割数(すなわち2×2)を合成分割数と決定する。一方、変化量がしきい値Th1を越えた矩形領域については分

割数を1段階増加して、対応関係の推定、座標変換フレームの取得、相関値の算出および変化量の算出を再度行う。そして、基準パッチP0およびパッチP1内の全ての領域について変化量がしきい値Th1以下となるまで分割数を段階的に増加して相関値および変化量を算出し、変化量がしきい値Th1以下となったときの2つの相関値を算出した分割数のうち小さい方の分割数を、その矩形領域に対応する基準パッチP0およびパッチP1内の領域についての合成分割数と決定する。

[0094]

例えば、分割数が 2×2 の場合における矩形領域A1,A2については変化量 Δ d01, Δ d02がしきい値Th1以下となり、矩形領域A3,A4については変化量 Δ d03、 Δ d04がしきい値Th1を越えた場合には、基準パッチP0およびパッチP1の矩形領域A1,A2に対応する領域については変化量を算出した2つの相関値の分割数のうち小さい方の分割数(すなわち 2×2)を合成分割数に決定する。

[0095]

一方、矩形領域A3, A4については、基準パッチP0およびパッチP1を8×8に分割した場合と同様の分割数となるように矩形領域A3, A4に対応する矩形領域A31~A34, A41~A44をさらに分割し、その分割数により、基準パッチP0およびパッチP1の矩形領域A31~A34, A41~A44に対応する領域についてのみ、対応関係の推定、座標変換および相関値の算出を行う。そして、矩形領域A31~A34, A41~A44のそれぞれに対応する4つの矩形領域についての相関値の加算値を矩形領域A31~A34, A41~A44にそれぞれ対応する相関値として算出し、矩形領域A31~A34, A41~A44の相関値と、8×8の分割数により算出された各矩形領域の矩形領域A31~A34, A41~A44の相関値と、8×8の分割数により算出された各矩形領域の矩形領域A31~A34, A41~A44に対応する相関値との変化量を算出し、算出された変化量をしきい値Th1と比較する。

[0096]

そして、全ての矩形領域A31~A34, A41~A44についての変化量が しきい値Th1以下となった場合には、基準パッチP0およびパッチP1の矩形

領域A31~A34, A41~A44に対応する領域については変化量を算出した2つの相関値の分割数のうち小さい方の分割数(すなわち4×4)を合成分割数に決定する。

[0097]

この場合、基準パッチP 0 およびパッチP 1 内の画像の合成分割数は、図11に示すように左半分の領域は2×2に、右半分の領域は4×4となる。なお、矩形領域A 3 1~A 3 4,A 4 1~A 4 4 についての変化量が再度しきい値T h 1を越えた場合には、基準パッチP 0 およびパッチP 1 内の全領域について、相関値がしきい値T h 1 以下となるまで、相関値がしきい値T h 1を越えた矩形領域に対応する基準パッチP 0 およびパッチP 1 の領域について、段階的に分割数を増加して対応関係の推定、座標変換フレームの取得、相関値の算出および変化量の算出を行う。

[0098]

次いで、第2の実施の形態の動作について説明する。図12は、第2の実施形態において行われる処理を示すフローチャートである。まず、サンプリング手段1に動画像データM0が入力され(ステップS21)、ここで、動画像データM0から基準フレームFrNおよびフレームFrN+1がサンプリングされる(ステップS22)。続いて、対応関係推定手段2により、基準フレームFrNとフレームFrN+1との対応関係が推定される(ステップS23)。

[0099]

[0100]

続いて、相関値が基準パッチP0およびパッチP1の0段階目の分割数すなわち初期の分割数において算出されたものであるか否かが判定され(ステップS26)、ステップS26が肯定されると、基準パッチP0およびパッチP1の分割

数が1段階増加され(ステップS27)、ステップS23に戻り、増加された分割数によりステップS23からステップS25の処理が繰り返され、座標変換フレームFrNとの相関値が矩形領域毎に算出される。

[0101]

増加された分割数により相関値が算出されるとステップS26が否定され、1 つ前の分割数により算出された相関値と現在の分割数により算出された相関値との変化量が矩形領域毎に算出される(ステップS28)。そして、比較手段6により複数の矩形領域のうちの1の矩形領域(小さい方の分割数に対応するもの)について、矩形領域毎の変化量がしきい値Th1以下であるか否かが判定される(ステップS29)。

[0102]

ステップS 2 9 が否定されると、その矩形領域について基準パッチP 0 およびパッチP 1 の分割数が 1 段階増加され(ステップS 3 0)、後述するステップS 3 2 に進む。一方、ステップS 2 9 が肯定されると、その矩形領域についてはその変化量を算出した 2 つの相関値の分割数のうち小さい方の分割数が合成分割数に決定される(ステップS 3 1)。そして全ての矩形領域についてステップS 2 9 の判定が終了したか否かが判定され(ステップS 3 2)、ステップS 3 2 が否定されると次の矩形領域に判定の対象が変更され(ステップS 3 3)、ステップS 2 9 に戻りそれ以降の処理が繰り返される。

[0103]

ステップS32が肯定されると、基準パッチP0およびパッチP1内の全領域について合成分割数が決定されたか否かが判定され(ステップS34)、ステップS34が否定されるとステップS23に戻り、基準パッチP0およびパッチP1内において合成分割数が決定されていない領域についてのみ、ステップS23以降の処理が繰り返される。一方、ステップS34が肯定されると、決定された合成分割数により推定された対応関係に基づいて、合成手段7により基準フレームFrNおよびフレームFrN+1から合成フレームFrGが作成され(ステップS35)、処理を終了する。

[0104]

このように、第2の実施形態においては、合成フレームFrGの作成に用いる 対応関係を矩形領域毎に決定しているため、基準パッチおよびパッチ内における 分割された矩形領域に対応する領域単位で合成フレームFrGが作成されること となる。このため、フレーム内の各部分に含まれる被写体の動きに追随した最適 な分割数により合成フレームFrGを作成することができ、これにより、フレー ムに含まれる被写体の動きに拘わらず、より高画質の合成フレームFrGを得る ことができる。

[0105]

なお、上記第1および第2の実施形態においては、基準フレームFrNおよびフレームFrN+1の輝度色差成分Y,Cb,Cr毎に合成フレームFrGを取得しているが、輝度成分Yについてのみ合成フレームFrGを取得し、色差成分Cb,Crについては、基準フレームFrNの色差成分Cb,Crを線形補間して色差成分の合成フレームを求めてもよい。

[0106]

また、フレームFrN,FrN+1がRGBの色データからなる場合には、R GB各色データ毎に処理を行って合成フレームFrGを作成してもよい。

[0107]

また、上記第1および第2の実施形態においては、輝度色差成分Y, Cb, Cr毎に相関値diを算出しているが、下記の式(19)に示すように、例えば相関値diについて、輝度成分の相関値diY、色差成分の相関値diCb, diCrを重み係数a, b, cにより重み付け加算することにより、1の相関値di´を算出し、この用に算出された相関値di´および分割数を1段階増加した相関値di+1´から変化量 Δ di´を算出してもよい。

【数12】

また、下記の式(20)に示すように、座標変換フレームFrTiの輝度成分 FrTiY(x, y)および色差成分FrTiCb(x, y), FrTiCr(x, y)と、基準フレームFrNのFrNY(x, y)および色差成分FrNC b(x, y), FrNCr(x, y) との重み係数a, b, c を用いたユークリッド距離を基準パッチP0内の各画素毎に算出し、これを1の相関値di'(x, y) とし、この相関値di'(x, y)の基準パッチP0内の全画素についての平均値を変化量算出のための相関値としてもよい。

【数13】

$$di'(x,y) = \left\{ a \left(FrTiY(x,y) - FrNY(x,y) \right)^{2} + b \left(FrTiCb(x,y) - FrNCb(x,y) \right)^{2} + c \left(FrTiCr(x,y) - FrNCr(x,y) \right)^{2} \right\}^{0.5}$$

$$\left\{ 0 \ 1 \ 0 \ 9 \right\}$$
(20)

[0110]

そして、全ての他のフレームFrN+tについて中間合成フレームFrGtを取得し、下記の式(21)により中間合成フレームFrGtを対応する画素同士で加算することにより、画素値 $FrG(x^{,}y^{,})$ を有する合成フレームFrGを作成する。

【数14】

FrG(x, y) =
$$\sum_{t=1}^{T-1}$$
 FrGt(x, y) (21)

[0111]

なお、統合画像の全ての整数座標に画素値を割り当てることができない場合がある。このような場合は、割り当てられた画素値または基準フレームの画素値 (割り当てられていない座標に対応する)に対して線形補間演算、スプライン補間演算等の種々の補間演算を施して、画素値が割り当てられなかった整数座標の画素値を算出すればよい。

[0112]

また、3以上の複数のフレームから合成フレームFrGを作成する場合において、中間合成フレームFrGtを取得する際に、上記第2の実施形態と同様に、パッチを構成する矩形領域毎に変化量を算出し、矩形領域に対応する領域単位で推定された対応関係に基づいて中間合成フレームFrGtを作成してもよい。

[0113]

また、上記実施形態においては、変化量 Δ d i を算出した 2 つの相関値 d i , d i + 1 を算出した分割数のうち、小さい方の相関値 d i を算出した分割数を合成分割数としているが、大きい方の相関値 d i + 1 を算出した分割数を合成分割数として合成フレーム F r G を作成してもよい。

【図面の簡単な説明】

図1

本発明の第1の実施形態による動画像合成装置の構成を示す概略ブロック図

【図2】

フレーム F r N + 1 と基準フレーム F r N との対応関係の推定を説明するための図

図3

パッチの変形を説明するための図

【図4】

パッチP1と基準パッチP0との対応関係を説明するための図

【図5】

双1次内挿を説明するための図

【図6】

分割数が異なるパッチを示す図

【図7】

フレーム F r N + 1 の統合画像への割り当てを説明するための図

【図8】

統合画像における整数座標の画素値の算出を説明するための図

【図9】

第1の実施形態において行われる処理を示すフローチャート

【図10】

本発明の第2の実施形態において行われる処理を説明するための図(その1)

【図11】

本発明の第2の実施形態において行われる処理を説明するための図(その2)

【図12】

第2の実施形態において行われる処理を示すフローチャート

【符号の説明】

- 1 サンプリング手段
- 2 対応関係推定手段
- 3 座標変換手段
- 4 相関値算出手段
- 5 変化量算出手段
- 6 比較手段
- 7 合成手段

【図1】

【図2】

【図4】

【図5】

【図6】

[図7]

【図9】

【図10】

				P0,P1
A11	A13	A31	A33	
A12	A14	A32	A34	
A21	A23	A41	A43	
A22	A24	A42	A44	

【図11】

【図12】

【書類名】

要約書

【要約】

【課題】 動画像データからサンプリングされた複数のフレームから1の高解像度フレームを得るに際し、フレームに含まれる被写体の動きに拘わらず画質の 劣化を抑えた高解像度フレームを得る。

【解決手段】 複数のフレームFrN,FrN+1に1以上の矩形領域に分割されたパッチを配置し、パッチを移動および/または変形させて各フレームの対応関係を推定し、推定された対応関係に基づいてフレームFrN+1を座標変換し、これとフレームFrNとの相関値を算出する。パッチの分割数を1段階贈介して同様に相関値を算出する。2つの相関値の変化量を算出してこれをしきい値と比較し、変化量がしきい値以下となるまで分割数を増加して同様に変化量を算出する。しきい値以下となった変化量を算出した2つの相関値の分割数のうち、小さい方の分割数により推定された対応関係に基づいて、フレームFrN,FrN+1から合成フレームFrGを作成する。

【選択図】

図 1

認定・付加情報

特許出願の番号 特願2003-004554

受付番号 50300034241

書類名 特許願

担当官 第一担当上席 0090

作成日 平成15年 1月14日

<認定情報・付加情報>

【提出日】 平成15年 1月10日

【特許出願人】

【識別番号】 000005201

【住所又は居所】 神奈川県南足柄市中沼210番地

【氏名又は名称】 富士写真フイルム株式会社

【代理人】 申請人

【識別番号】 100073184

【住所又は居所】 神奈川県横浜市港北区新横浜3-18-3 新横

浜KSビル 7階

【氏名又は名称】 柳田 征史

【選任した代理人】

【識別番号】 100090468

【住所又は居所】 神奈川県横浜市港北区新横浜3-18-3 新横

浜KSビル 7階

【氏名又は名称】 佐久間 剛

特願2003-004554

出願人履歴情報

識別番号

[000005201]

1. 変更年月日 [変更理由]

住所氏名

1990年 8月14日

新規登録

神奈川県南足柄市中沼210番地

富士写真フイルム株式会社