Oppgåve 1 Rekn ut

$$\lim_{x \to 0+} \sqrt{x + \frac{x^2 + \sqrt{x} + e^{x^2}}{8 + \frac{\sin(\sqrt{x})}{\sqrt{x}}}}.$$

Svaret må grunngjevast.

Oppgåve 2 Finn taylorpolynomet av grad 2 om x = 0 til funksjonen $f(x) = (1+x)^{1/3} = \sqrt[3]{1+x}$ for $x \ge 0$.

Bruk dette til å finne ein tilnærma verdi av $\sqrt[3]{1.3}$.

Oppgåve 3 Avgjer om følgande ueigentlege integral konvergerer eller divergerer

$$\int_{-\pi/2}^{\pi/2} \frac{\cos(x)}{\sin^2(x)} dx.$$

Oppgåve 4 Vis at funksjonen

$$f(x) = \begin{cases} 2 + \cos(\frac{1}{x})\sin(x) & \text{for } x \neq 0, \\ 2 & \text{for } x = 0, \end{cases}$$

er kontinuerleg i x = 0.

Oppgåve 5 Vis at likninga

$$|x-3| + x^4 - 7 = 0$$

har nøyaktig ei løysing for $x \ge 0$.

Oppgåve 6 Finn *x*-verdiane som gjev maksimum og minimum av

$$F(x) = \int_0^x \cos(t^2) dt, \quad \text{for } -2 \le x \le 2.$$

Du kan fritt bruke at F(2) > 0 > F(-2).

Oppgåve 7 La $f(x) = x^2$ for $0 \le x \le 1$. Vis at arealet av rotasjonsflata som oppstår ved å dreie grafen til f(x) om linja y = -1 kan skrivast som

$$I = 2\pi \int_0^1 (1+x^2)\sqrt{1+4x^2} dx.$$

Finn ein tilnærmingsverdi til I ved å bruke trapesmetoden med n=3 delintervall.

Oppgåve 8 La x > -1. Løys initialtverdiproblemet

$$y'(x) = \frac{y(x)}{3(1+x)}, \quad y(0) = 1.$$

Oppgåve 9 Følga $\{a_n\}_{n=1}^{\infty}$ er slik at $a_n \geqslant 4$ for alle n og ho er gjeve rekursivt ved

$$a_{n+1} = \frac{1}{2}a_n + 2$$
, der $a_1 = 8$.

Vis at følga konvergerer og finn grenseverdien $\lim_{n\to\infty} a_n$.

Oppgåve 10 Gå ut i frå at $f:[0,1] \to \mathbb{R}$ er kontinuerleg og f(0)=0. Gå òg ut i frå at f(x) er deriverbar for $x \in (0,1)$. Figuren under syner grafen til f'(x).

Skisser grafane til f(x) og f''(x). Svara må grunngjevast.

