

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Wintersemester 2023/24

Paula Reichert, Siddhant Das

Lineare Algebra (Informatik) Übungsblatt 9

Aufgabe 1 (Lineare Unabhängigkeit in \mathbb{R}^3)

Prüfen Sie, ob die folgenden Mengen von Vektoren linear abhängig oder linear unabhängig in \mathbb{R}^3 sind:

- (i) $\{(-1,1,5)\}$
- (i) $\{(0,0,0),(-1,1,5)\}$
- (iii) $\{(-1,1,5),(2,1,3),(-2,2,10)\}$

Bestimmen Sie außerdem die lineare Hülle für jede dieser Mengen.

Lösung

- (i) $\{(-1,1,5)\}$ is a linearly independent set because $\lambda(-1,1,5)=(0,0,0)\Rightarrow\lambda=0$.
- (ii) $\{(0,0,0), (-1,1,5)\}$ is a linearly dependent set becasue $\lambda_1(0,0,0) + \lambda_2(-1,1,5) = (0,0,0) \Rightarrow \lambda_2 = 0$ but $\lambda_1 \in \mathbb{R}$.
- (iii) $\{(-1,1,5),(2,1,3),(-2,2,10)\}$ is a linearly dependent set becasue $\lambda_1(-1,1,5) + \lambda_2(2,1,3) + \lambda_3(-2,2,10) = (0,0,0) \Rightarrow (-\lambda_1 + 2\lambda_2 2\lambda_3, \lambda_1 + \lambda_2 + 2\lambda_3, 5\lambda_1 + 3\lambda_2 + 10\lambda_3) = (0,0,0) \Rightarrow \lambda_2 = 0$ but $0 \neq \lambda_3 = -\frac{\lambda_1}{2} \in \mathbb{R}$.

Aufgabe 2 (Lineare Unabhängigkeit in \mathbb{C}^3)

Man betrachte \mathbb{C}^3 als Vektorraum über \mathbb{C} . Untersuchen Sie,

(i) ob die Vektoren
$$\begin{pmatrix} i \\ 2 \\ -1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix}$, $\begin{pmatrix} 3i \\ 4-i \\ -1+i \end{pmatrix}$ in \mathbb{C}^3 linear unabhängig sind,

(ii) ob die Vektoren
$$\begin{pmatrix} i \\ 1 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ -i \\ i \end{pmatrix}$, $\begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}$ in \mathbb{C}^3 linear unabhängig sind.

Aufgabe T: a) $\begin{pmatrix} i \\ 2 \\ -1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix}$ $\begin{pmatrix} 3i \\ 4-i \\ -1ii \end{pmatrix}$ \in C sind linear abliangig, denn sind 1, 2, 1 EC $= \begin{pmatrix} i J_1 + J_2 + 3i J_3 \\ 2J_1 - i J_2 + (4-i)J_3 \\ -J_1 + (-1+i)J_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ so folgt 1, = (-1+i)/3 aus 3. Gleichung => i/-1+i/3+ 12+3i/3 = 12+3/-1+2i/=0(1) 2(-1+i)/3-1/2+(4-i)/3=-i2+/3(2+i)=0(2) i.(1)+(2): i(2+/3(-1+21))-i/2+/3(24i)= - le (-2-1+2+1) - la.0=0 defiell für alle be C Wahle also 2 = -1+i, 2 = 1, 2 = 1-2i

daun st $\left(-1+i\right)\left(\frac{1}{2}\right)+\left(1-2i\right)\left(-1\right)+\left(\frac{3}{4-i}\right)=$ $= \begin{vmatrix} -i-1+1-2i+3i \\ -2+2i-i-2+4-i \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$ $\begin{vmatrix} 1-i-1+i \end{vmatrix}$ also | 2 | -i | | 3i | e (3 linear abliangis. b) $\begin{pmatrix} i \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ -i \end{pmatrix} \begin{pmatrix} -1 \\ 0 \end{pmatrix} \in \mathbb{C}$ sind linear unablings, denn für 1, 12, 3 € C mit 1 (1) + 2 (-i) + 3 (0) = (1-i) = (0) = (0) = (3), +ido - (2) = (0) => 1 - il (aus 2. Gleichung) -12+212-13 = 12-13 = 9 [in 1. Gleichung] in 3. Gleichung: Sitz +itz-1= (4:-1)tz-0 => 1 = 1 = 3 = 0 linzige Loseny

Aufgabe 3 (Basis von Polynomen)

Es sei $P_2(\mathbb{R}) := \{P : \mathbb{R} \to \mathbb{R}, x \mapsto ax^2 + bx + c, a, b, c \in \mathbb{R}\}.$

- (i) Zeigen Sie, daß sowohl $\mathcal{B}_1 := \{1, x, x^2\}$ als auch $\mathcal{B}_2 := \{1, x, \frac{1}{2}(3x^2 1)\}$ Basen von $P_2(\mathbb{R}) = \text{sind}$.
- (ii) Drücken Sie das Polynom $P' \in P_2(\mathbb{R}), P'(x) := (x+1)^3 (x-1)^3$ sowohl bezüglich der Basis $\mathcal{B}_1 := \{1, x, x^2\}$ als auch bezüglich der Basis $\mathcal{B}_2 := \{1, x, \frac{1}{2}(3x^2 1)\}$ aus.

Lösung:

- (i) To show that \mathcal{B}_1 is a basis of $P_2(\mathbb{R})$, see Beispiel 4.5.2 (it is the same argument for showing that \mathcal{B}_2 is a basis of $P_2(\mathbb{R})$). To show that \mathcal{B}_2 is a linearly independent set, define $q_i \in P_2(\mathbb{R})$ with $q_0(x) = 1$, $q_1(x) = x$, and $q_2(x) = \frac{1}{2}(3x^2 1)$. Let $\alpha_0 q_0 + \alpha_1 q_1 + \alpha_2 q_2 = 0$, where $\alpha_1, \alpha_2, \alpha_2 \in \mathbb{R}$. This implies, $\forall x \in \mathbb{R} : \alpha_0 q_0(x) + \alpha_1 q_1(x) + \alpha_2 q_2(x) = 0$. A quadratic equation in a single (real) variable x can only identically vanish (i.e., for every x) iff $\alpha_0 = \alpha_1 = \alpha_2 = 0$. To show that $\lim(\mathcal{B}_2) = P_2(\mathbb{R})$, notice that an arbitrary polynomial in $P_2(\mathbb{R})$, given by $p(x) = ax^2 + bx + c$ can be written as $p(x) = c'q_0(x) + b'q_1(x) + a'q_2(x)$, where a' = 2a/3, b' = b, and c' = c + a/3.
- (ii) We have the following Binomial expansions: $(x\pm 1)^3 = x^3 \pm 3x^2 + 3x \pm 1$; see Satz 2.2.3. This imples, $p(x) := (x+1)^3 (x-1)^3 = 6x^2 + 2 \in P_2(\mathbb{R})$. Expressing p is the basis \mathcal{B}_1 is straightforward. In order to express p in the second basis, we need only to substitute a = 6, b = 0 and c = 2 in the formulae for a', b', and c', above.

Aufgabe 4 (\mathbb{R} als \mathbb{R} -Vektorraum vs. \mathbb{Q} -Vektorraum)

 \mathbb{R} ist sowohl über dem Köper \mathbb{R} als auch über dem Köper \mathbb{Q} ein Vektorraum. Zeigen Sie, dass die Vektoren $1 \in \mathbb{R}$ und $\sqrt{2} \in \mathbb{R}$

- (i) linear abhängig sind, wenn man \mathbb{R} als \mathbb{R} -Vektorraum auffasst,
- (ii) linear unabhängig sind, wenn man \mathbb{R} als \mathbb{Q} -Vektorraum auffasst.

Aus olen Reclumezetu für Abldition und Multiplikation in PR Jolet, Olas PR sowold ein PR-Veldorraum als and ein Q-Veldorraum ist.

· 1, /2 R-linear ablangig, pleun 2.8. -/2 · 1 + 1 · /2 = 0 d.h. die Gleichung 2, · 1+ 2/2 = 0 ist für (1, ½) = (-/2, 1) + (0,0) erfüllt.

• 1, 12 Q linear unabliancis:

Es seien $\lambda_1, \lambda_2 \in \mathbb{Q}$ suit $\lambda_1 \cdot 1 + \lambda_1/2 = 0$,

dann gibt es nach Definition von \mathbb{Q} $M_1, M_2 \in \mathbb{Z}$, $M_1, M_2 \in \mathbb{N}$ suit $\lambda_1 = \frac{M_1}{M_1}, \quad \lambda_2 = \frac{M_2}{M_2}$

also $-\frac{M_1}{M_1} = \frac{M_2}{M_2} / 2$. Ist $(uu_1, uu_2) \neq (0,0)$ so folgt $/2 = -\frac{M_1 M_2}{M_2 M_1} \in \mathbb{Q}$ & Daker kann $\lambda_1 \cdot 1 + \lambda_1 / 2 = 0$ mur durch: $(\lambda_1, \lambda_2) = (0,0) \in \mathbb{Q}$ gelost werden, d.l. 1, 1/2sind in \mathbb{Q} -Veletorraum \mathbb{R} linear abliancy.