Title

D. Zack Garza

Table of Contents

Contents

Table of Contents	
1 Lecture 09	

Table of Contents

Lecture 09

1 | Lecture 09

Last time:

- The Čech-to-derived spectral sequence,
- The Mayer Vietoris LES,
 - Computes the étale cohomology of a scheme using a Zariski open cover.
- Étale cohomology of quasicoherent sheaves,
 - Agrees with Zariski cohomology, first legitimate computation!
 - Use this to compute:
- Étale cohomology of \mathbb{F}_p in characteristic p.

Last time we had a scheme $X_{/\mathbb{F}_p}$ and the Artin-Schreier exact sequence of sheaves of $X_{\text{\'et}}$:

$$0 \to \mathbb{F}_p \to \mathcal{O}_X^{\text{\'et}} \xrightarrow{t \mapsto t^p - t} \mathcal{O}_X^{\text{\'et}} \to 0.$$

The map appearing here is referred to as the Artin-Schreier map f This works over arbitrary fields of characteristic p, with a modified definition replacing t^p .

Exercise 1.0.1(?): Check that this is an additive homomorphism of abelian sheaves. This follows from the fact that Frobenius itself is.

Recall that we had a theorem last time showing that the étale cohomology of quasicoherent sheaves is equivalent to the usual Zariski cohomology. From this we got a long exact sequence:

$$\begin{array}{ccc}
& \cdots & \longrightarrow & H^{i}(X, \mathcal{O}_{X}) \\
& & \delta & & \\
H^{i}(X_{\text{\'et}}, \underline{\mathbb{F}_{p}}) & & H^{i}(X, \mathcal{O}_{X}) & \xrightarrow{f} & H^{i}(X, \mathcal{O}_{X})
\end{array}$$

Lecture 09 3