

FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND NUMERICAL METHODS (MA211TA)

UNIT 5: NUMERICAL METHODS

TUTORIAL SHEETS – 1

Objective type Questions:

1. Construct the table of differences for the data below and evaluate $\Delta^3 f(1)$

x	0	1	2	3	4
f(x)	1	1.5	2.2	3.1	4.6

- 2. The value of $\Delta^3[(1+3x)(1-5x)(1-4x)]$ taking interval of differencing h=1 is _____.
- 3. Construct the difference table of the polynomial $f(x) = x^3 + 5x 7$ for x = -1,0,1,2,3,4 and hence find $\Delta y_0, \Delta y_3, \Delta^2 y_1$.
- 4. The $(n+1)^{th}$ order difference of the n^{th} degree polynomial is ______.

Descriptive Questions:

1. Find a polynomial f(x) which takes the values given by the following table

x	0	1	2	3	4
f(x)	10	21	6	43	66

2. The following data defines the sea-level concentration of dissolved oxygen for fresh water as a function of temperature:

$T^o(\mathcal{C})$	0	8	16	24	32
O(mg/L)	14.621	11.843	9.870	8.418	7.305

Using Newton-Gregory formula, calculate the amount of oxygen when temperature $10^{\circ}C$ and $35^{\circ}C$.

3. From the following data, estimate the number of students who obtained marks between 40 and 45 using Newton's interpolation method

Marks:	30-40	40-50	50-60	60-70	70-80
Number of Students:	31	42	51	35	31

4. Estimate the values of f(22) and f(42) from the following data

x				35		
f(x)	354	332	291	260	231	204

FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND NUMERICAL METHODS (MA211TA)

UNIT 5: NUMERICAL METHODS

TUTORIAL SHEETS - 2

Descriptive Questions:

- 1. Given that f(0) = 7, f(1) = 18, f(3) = 18, f(5) = -230, f(6) = 18 find f(x) as a polynomial in x and hence find f(2).
- 2. The following table gives the viscosity of an oil as a function of temperature. Use Lagrange's formula to find viscosity of oil at a temperature of 140° .

Temp:	110	130	160	190
Viscosity:	10.8	8.1	5.5	4.8

3. Using Lagrange's interpolation, find the polynomial of lowest degree which agrees with the point (x, y) given in the following table. Hence find y(2.5)

x	3	2	1	-1	0
y(x)	8	26	32	-40	14

4. The following data was collected for the distance travelled versus time:

t(sec):	0	25	50	75	100	125
y(km):	0	32	59	78	92	100

Use numerical differentiation to calculate velocity and acceleration at t = 25 and t = 100.

5. A rod is rotating in a plane. The following table gives the angle θ (radians) through which the rod has turned for various values of the time t second.

		0.2					
θ :	0	0.12	0.49	1.12	2.02	3.20	4.67

Calculate the angular velocity and the angular acceleration of the rod, when t = 1.0 second.

6. Find f'(1), f''(1) and f'(3) from the following data:

х	1	2	3	4	5	6
f(x)	3.614	4.604	5.857	7.451	9.467	11.985

7. The following table gives the temperature θ (in degree Celsius) of a cooling body at different instants of time t (in sec).

t:	1	3	5	7	9
θ :	85.3	74.5	67	60.5	54.3

WAS TITLUTION OF

FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND NUMERICAL METHODS (MA211TA)

UNIT 5: NUMERICAL METHODS

Calculate θ at t=2 and also find approximately the rate of cooling at t=9 sec.

TUTORIAL SHEETS - 3

Objective type Questions:

- 1. While applying Simpson's three-eight rule, the number of sub intervals should be taken as
- 2. f(x) is given by

х	0	0.5	1	1.5	2
f(x)	0	0.25	1	2.25	4

Then the value of $\int_0^2 f(x) dx$ by Simpson's three-eight rule.

3. Find $\int_0^{0.3} f(x) dx$ if f(0) = 1, f(0.1) = 0.99, f(0.2) = 0.9608 and f(0.3) = 0.9139 by Simpson's three-eight rule.

Descriptive Questions:

- 1. Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{\cos(x)} \, dx$ by dividing the interval into six equal parts using Simpson's one-three rule, Simpson's three-eight rule and Weddle's rule.
- 2. Find an approximate value of $\int_0^{\pi} e^{\sin\theta} d\theta$, by considering seven ordinates of the interval (0, π) using Simpson's one-three rule, Simpson's three-eight rule and Weddle's rule.
- 3. Find $\int_2^5 y \, dx$ by (i) the Simpson's one-three rule (ii) Simpson's three-eight rule (iii) Weddle's rule if x and y are as given below

x	2	2.5	3	3.5	4	4.5	5
y	1.3863	1.4351	1.4816	1.5260	1.5686	1.6094	1.6486

4. A river is 80feet wide. The depth d in feet at a distance x feet from one bank is given by:

			20						
d	0	4	7	9	12	15	14	8	3

Find approximately the area of across section of the river.

5. A curve is drawn to pass through the points given by the following table:

FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND NUMERICAL METHODS (MA211TA)

UNIT 5: NUMERICAL METHODS

х	1	1.5	2	2.5	3	3.5	4
y	2	2.4	2.7	2.8	3	2.6	2.1

Using Simpson's one-three rule, Simpson's three-eight rule and Weddle's rule, estimate the area bounded by the curve, the axis and the lines x = 1, x = 4.