ÁLGEBRA Y GEOMETRÍA ANALÍTICA

TEMA 8: SISTEMA DE ECUACIONES LINEALES

Ecuaciones lineales: Definición.

Definición: Se llama ecuación lineal para las incógnitas x_1, x_2, \dots, x_n , sobre un cuerpo \mathbb{R} , toda ecuación de la forma:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

donde a_1, a_2, \cdots, a_n y b son elementos del cuerpo $\mathbb R$. Los elementos a_i son los coeficientes de las incógnitas x_i y b es el término independiente.

Particularmente si el término independiente b, es el neutro de la suma en R, la ecuación lineal toma la forma

$$a_1x_1+a_2x_2+\cdots+a_nx_n=0$$

y pasa a llamarse ecuación lineal homogénea.

Definición: Una solución de la ecuación lineal es toda n-upla $(\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{R}^n$, tal que:

$$a_1\alpha_1+a_2\alpha_2+\cdots+a_n\alpha_n=b$$

- Ejemplo:
- La terna (2,1,2) es solución de la ecuación:

$$2x - 3y + \frac{1}{2}z = 2.$$

Verifique que la terna (1,-1,-6) también es solución de la ecuación

Sistemas de ecuaciones lineales. Conjunto solución.

▶ <u>Definición:</u> un sistema lineal de m ecuaciones para las incógnitas x_1, x_2, \cdots, x_n , sobre un cuerpo \mathbb{R} , es todo conjunto de m ecuaciones de la forma:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

▶ <u>Definición:</u> Una solución del sistema de ecuaciones lineales para las incógnitas x_1, x_2, \cdots, x_n es toda n-upla $(\alpha_1, \alpha_2, \cdots, \alpha_n) \in \mathbb{R}^n$, que sea solución de cada una de las ecuaciones del sistema.

 $Sol = \{(\alpha_1, \alpha_2, \cdots, \alpha_n) \in \mathbb{R}^n, (\alpha_1, \alpha_2, \cdots, \alpha_n) \text{ es solución del sistema de ecuaciones}\}$

al conjunto de todas las soluciones del sistema de ecuaciones.

Propiedad: el conjunto solución de un sistema homogéneo para las incógnitas x_1, x_2, \cdots, x_n , sobre un cuerpo \mathbb{R} , es un subespacio de \mathbb{R}^n .

 Un sistema lineal de ecuaciones compatible es determinado si admite solución única, contrariamente si admite infinitas soluciones, es indeterminado

Sistemas equivalentes. Sistemas homogéneos.

- Dos sistemas lineales de m ecuaciones para las incógnitas x_1, x_2, \cdots, x_n , sobre \mathbb{R} , son equivalentes si tienen el mismo conjunto solución.
- > El sistema de ecuaciones

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

es homogéneo si $b_1 = b_2 = \cdots = b_n = 0$.

Un sistema homogéneo es siempre compatible, pues la n-upla (0,0, ···, 0) es solución. Esta solución, se llama solución trivial del sistema y cualquier otra solución se dirá, no trivial.

Expresión matricial de un sistema de ecuaciones lineales.

Dado el sistema:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

- <u>Definición:</u> Se llama matriz del sistema a la matriz $m \times n$: $A = (a_{ij})$, formada por los coeficientes de las incógnitas
- <u>Definición:</u> Se llama matriz ampliada, u orlada, del sistema a la matriz $m \times (n+1)$:

$$A' = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

La matriz de las incógnitas es la matriz columna:

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

La matriz de los términos independientes es la matriz columna:

$$B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b \end{pmatrix}$$

La expresión matricial del sistema es: A.X = B

Teorema de Rouché - Frobenius.

- Un sistema de ecuaciones lineales es compatible si y solo si la matriz de los coeficientes A y la matriz ampliada con los términos independientes A' tienen igual rango.
- Consecuencias:
- 1. Un sistema es incompatible si y sólo si $R(A) \neq R(A')$
- 2. Si un sistema es homogéneo, siempre R(A) = R(A').
- 3. Si en un sistema compatible el *R*(*A*) es igual al número de incógnitas n, el sistema es determinado.
- 4. Un sistema homogéneo con R(A) igual al número de incógnitas, sólo admite la solución trivial.
- 5. Si en un sistema compatible el *R*(*A*) es menor al número de incógnitas n, el sistema es indeterminado.

Sistemas de ecuaciones lineales cuadrados.

Teorema de Cramer:

Si $A \in \mathbb{K}^{n \times n}$ es no singular y $B \in \mathbb{K}^{n \times 1}$, entonces el sistema lineal A.X = B admite solución única.

Ejemplo:

$$\begin{cases} x - z &= -1 \\ x + 2y - 2z &= -1 \\ 2x - y + z &= 3 \end{cases}$$

 Observación: Los sistemas de n ecuaciones con n variables se llaman cuadrados, y si el determinante de la matriz A es distinto de cero, reciben el nombre de crameriano

Regla de Cramer.

• Si $A \in \mathbb{K}^{n \times n}$ es no singular y $B \in \mathbb{K}^{n \times 1}$, en el sistema lineal A.X = B, el valor de cada variable x_i es el cociente entre el determinante que se obtiene al sustituir, en el determinante del sistema, la columna de los coeficientes de la variable por la columna de los términos independientes, y el determinante del sistema, es decir:

$$x_i = \frac{|A_1 \quad A_2 \quad \cdots \quad B \quad \cdots \quad A_n|}{|A|}$$