The Gram-Schmidt Process

Theorem 6.3.5

Every nonzero finite-dimensional inner product space has an orthonormal basis.

The Gram-Schmidt Process

To convert a basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r\}$ into an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$, perform the following computations:

Step 1.
$$v_1 = u_1$$

Step 2.
$$\mathbf{v}_2 = \mathbf{u}_2 - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1$$

Step 3.
$$\mathbf{v}_3 = \mathbf{u}_3 - \frac{\langle \mathbf{u}_3, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_3, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2$$

Step 4.
$$\mathbf{v}_4 = \mathbf{u}_4 - \frac{\langle \mathbf{u}_4, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_4, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2 - \frac{\langle \mathbf{u}_4, \mathbf{v}_3 \rangle}{\|\mathbf{v}_3\|^2} \mathbf{v}_3$$

$$\vdots$$
(continue for r steps)

Optional Step. To convert the orthogonal basis into an orthonormal basis $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_r\}$, normalize the orthogonal basis vectors.

EXAMPLE 8 | Using the Gram-Schmidt Process

Assume that the vector space \mathbb{R}^3 has the Euclidean inner product. Apply the Gram-Schmidt process to transform the basis vectors

$$\mathbf{u}_1 = (1, 1, 1), \quad \mathbf{u}_2 = (0, 1, 1), \quad \mathbf{u}_3 = (0, 0, 1)$$

into an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, and then normalize the orthogonal basis vectors to obtain an orthonormal basis $\{\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3\}$.

Solution

Step 1.
$$\mathbf{v}_1 = \mathbf{u}_1 = (1, 1, 1)$$

Step 2.
$$\mathbf{v}_2 = \mathbf{u}_2 - \operatorname{proj}_{W_1} \mathbf{u}_2 = \mathbf{u}_2 - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1$$

= $(0, 1, 1) - \frac{2}{3}(1, 1, 1) = \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)$

Step 3.
$$\mathbf{v}_3 = \mathbf{u}_3 - \text{proj}_{W_2} \mathbf{u}_3 = \mathbf{u}_3 - \frac{\langle \mathbf{u}_3, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_3, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2$$

$$= (0, 0, 1) - \frac{1}{3} (1, 1, 1) - \frac{1/3}{2/3} \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3} \right)$$

$$= \left(0, -\frac{1}{2}, \frac{1}{2} \right)$$

Thus,

$$\mathbf{v}_1 = (1, 1, 1), \quad \mathbf{v}_2 = \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right), \quad \mathbf{v}_3 = \left(0, -\frac{1}{2}, \frac{1}{2}\right)$$

form an orthogonal basis for \mathbb{R}^3 . The norms of these vectors are

$$\|\mathbf{v}_1\| = \sqrt{3}, \quad \|\mathbf{v}_2\| = \frac{\sqrt{6}}{3}, \quad \|\mathbf{v}_3\| = \frac{1}{\sqrt{2}}$$

so an orthonormal basis for \mathbb{R}^3 is

$$\begin{aligned} \mathbf{q}_1 &= \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \quad \mathbf{q}_2 &= \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right), \\ \mathbf{q}_3 &= \frac{\mathbf{v}_3}{\|\mathbf{v}_3\|} = \left(0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \end{aligned}$$

Question:

In Exercises 29–30, let R^3 have the Euclidean inner product and use the Gram–Schmidt process to transform the basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ into an orthonormal basis.

29.
$$\mathbf{u}_1 = (1, 1, 1), \ \mathbf{u}_2 = (-1, 1, 0), \ \mathbf{u}_3 = (1, 2, 1)$$

Solution:

$$\begin{aligned} \mathbf{v}_{1} &= \mathbf{u}_{1} = (1,1,1) \\ \mathbf{v}_{2} &= \mathbf{u}_{2} - \frac{\langle \mathbf{u}_{2}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} = (-1,1,0) - \frac{-1+1+0}{1+1+1} (1,1,1) = (-1,1,0) - 0 (1,1,1) = (-1,1,0) \\ \mathbf{v}_{3} &= \mathbf{u}_{3} - \frac{\langle \mathbf{u}_{3}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} - \frac{\langle \mathbf{u}_{3}, \mathbf{v}_{2} \rangle}{\|\mathbf{v}_{2}\|^{2}} \mathbf{v}_{2} = (1,2,1) - \frac{1+2+1}{1+1+1} (1,1,1) - \frac{-1+2+0}{1+1+0} (-1,1,0) \\ &= (1,2,1) - \frac{4}{3} (1,1,1) - \frac{1}{2} (-1,1,0) = (\frac{1}{6}, \frac{1}{6}, -\frac{1}{3}) \end{aligned}$$

An orthonormal basis is formed by the vectors $\mathbf{q}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \frac{1}{\sqrt{3}} (1,1,1) = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$,

$$\mathbf{q}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \frac{1}{\sqrt{2}} \left(-1, 1, 0\right) = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \text{ and } \mathbf{q}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_3\|} = \frac{1}{1/\sqrt{6}} \left(\frac{1}{6}, \frac{1}{6}, -\frac{1}{3}\right) = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}\right).$$