This listing of claims will replace all prior versions, and listings of claims in the application.

In the Claims:

- (Currently amended) A method for increasing JNK activation leading to programmed cell death, said method comprising:
 - (a) selecting a peptide comprising an amino acid sequence within the kinase domain of JNKK2 an agent that blocks suppression of JNK activation by Gadd45ß; and
 - (b) <u>using contacting a cell with</u> the <u>agent peptide</u> to increase programmed cell death due to the activation of JNKK2.
- 2. (Cancelled)

death.

- (Withdrawn) The method of claim 2, wherein the agent is an antisense molecule to a gadd45B gene sequence or fragments thereof.
- (Withdrawn) The method of claim 2, wherein the agent is a small interfering RNA molecule (siRNA).
- 5. (Withdrawn) The method of claim 2, wherein the agent is a ribozyme molecule.
- (Currently amended) The method of claim 1, wherein the agent peptide is a cellpermeable peptide.
- 7. (Withdrawn) The method of claim 2, wherein the agent is a small molecule.
- (Withdrawn) The method of claim 6, wherein the molecule is a peptide mimetic that mimics the functions of a Gadd45 protein.
- 9. (Withdrawn) The method of claim 1, said method comprising:
 - interferring with the target by obtaining a molecule that suppresses JNK signaling by interacting with a Gadd45-binding region on JNKK2; and
 - (b) contacting a cell with the molecule to protect the cell from programmed cell
- 10. (Withdrawn) The method of claim 9, comprising:
 - (a) obtaining a cDNA molecule that encodes a full length or portions of a Gadd45 protein;
 - (b) transfecting the cell with the cDNA molecule; and
 - (c) providing conditions for expression of the cDNA in the cell so that JNKK2 is bound and unavailable to activate the JNK pathway that induces programmed cell death.

- (Withdrawn) The method of claim 10, wherein the cDNA molecule encodes a fragment of Gadd45 protein that is sufficient to suppress JNK signaling.
- (Withdrawn) The method of claim 10, wherein the cDNA molecule encodes a peptide that corresponds to amino acids 69-113 of Gadd45β.
- 13. (Withdrawn) The method of claim 10, wherein the programmed cell death is induced by $\text{TNF}\alpha$.
- 14. (Withdrawn) The method of claim 10, wherein the programmed cell death is induced by Fas.
- 15. (Withdrawn) The method of claim 10, wherein the programmed cell death is induced by TRAIL.
- 16. (Withdrawn) The method of claim 10, wherein the programmed cell death is induced by a genotoxic agent.
- 17. (Withdrawn) The method of claim 16, wherein the agent is selected from the group consisting of deunorubicin and cisplatinum.
- 18. (Withdrawn) A method to identify agents that modulate JNK signaling, said method comprising:
 - (a) determining whether the agent binds to Gadd45β; and
 - $\mbox{(b)} \ \ \mbox{assaying for activity of the bound Gadd45β to determine the effect on JNK signaling.}$
- 19. (Withdrawn) A method for obtaining a mimetic that is sufficient to suppress JNK activation by interacting with JNKK2, said method comprising:
 - (a) designing the mimetic to mimic the function of a Gadd45 protein;
 - (b) contacting the mimetic to a system that comprises the JNK pathway; and
 - (c) determining whether there is suppression of JNK signaling.
- 20. (Withdrawn) A method for screening and identifying an agent that modulates JNK pathway in vitro, said method comprising:
 - (a) obtaining a target component of the JNK pathway;
 - (b) exposing a cell to the agent; and
 - (c) determining the ability of the agent to modulate the JNK pathway.
- 21. (Withdrawn) The agent in claim 20, is selected from a group consisting of peptides,

peptide mimetics, peptide-like molecules, mutant proteins, cDNAs, antisense oligonucleotides or constructs, lipids, carbohydrates, and synthetic or natural chemical compounds.

- 22. (Withdrawn) A method for screening and identifying an agent that modulates JNK activity in vivo, said method comprising:
 - (a) obtaining a candidate agent;
 - (b) administering the agent to a non-human animal; and
 - determining the level of JNK activity in the animal compared to JNK activity in animals not receiving the agent.
- 23. (Withdrawn) A method for identifying an agent that prevents Gadd45β from blocking apoptosis, said method comprising:
 - (a) contacting cells that express high levels of Gadd45β which are protected against TNFα-induced apoptosis with the agent and TNFα;
 - (b) comparing apoptosis in the cells in (a) with control cells exposed to the agent but not to $TNF\alpha$; and
 - (c) inferring from differences in apoptosis in treated versus control cells, whether the agent prevents Gadd45β from blocking apoptosis.
- 24. (Withdrawn) A method for screening for a modulator of the JNK pathway, said method comprising:
 - (a) obtaining a candidate modulator of the JNK pathway, wherein the candidate
 is potentially any agent capable of modulating a component of the JNK
 pathway, including peptides, mutant proteins, cDNAs, anti-sense
 oligonucleotides or constructs, synthetic or natural chemical compounds;
 - (b) administering the candidate agent to a cancer cell;
 - (c) determining the ability of the candidate substance to modulate the JNK pathway, including either upregulation or downregulation of the JNK pathway and assaying the levels of up or down regulation.
- 25. (Withdrawn) A method of treating degenerative disorders and other conditions caused by effects of apoptosis in affected cells, said method comprising:
 - (a) obtaining a molecule that interferes with the activation of JNK pathways;
 and
 - (b) contacting the affected cells with the molecule.

26. (Withdrawn) A method of aiding the immune system to kill cancer cells by augmenting JNK signaling, said method comprising:

- (a) obtaining an inhibitor to block JNK signaling; and
 - (b) contacting the cancer cells with the inhibitor.
- (Withdrawn) The method of claim 26, wherein the inhibitor blocks activation of JNKK2 by Gadd45β.
- 28. (Withdrawn) A method for transactivating a gadd45β promoter, said method comprising:
 - (a) binding NF- κ B complexes to promoter elements of $gadd45\beta$; and
 - (b) assaying for gadd45B gene expression.
- 29. (Withdrawn) A method for treating cancer, said method comprising:
 - (a) increasing JNK activity by inhibiting Gadd45β function; and
 - (b) administering inhibitors that interfere with Gadd45β function.
- 30. (Withdrawn) A method to determine agents that interfere with binding between Gadd45 protein and JNKK2, said method comprising:
 - (a) obtaining an agent that binds to Gadd45 protein;
 - (b) contacting a cell with the agent under conditions that would induce transient JNK activation: and
 - (c) comparing cells contacted with the agent to cells not contacted with the agent to determine if the JNK pathway is activated.
- (Withdrawn) A molecule with a nucleotide sequence having Gene Bank Acc. # AF441860 that functions as a gadd45β promoter.
- 32. (Withdrawn) A molecule with a nucleotide sequence that is an element of the promoter at amino acid positions selected from the group consisting of positions -447/-438 (κβ-1), -426/-417 (κβ-2), -377/-368 (κβ-3) according to FIG. 8.
- (Withdrawn) A molecule comprising a region of Gadd45β, characterized by the amino acid sequence from positions 60-114 of the full length of Gadd45β protein.
- 34. (Withdrawn) A molecule comprising a binding region of JNKK2 characterized by the amino acid sequence from positions 132-156 of SEQ ID NO: 50 (GPVWKMRFRKTGHVIAVKQMRRSGN) of the full length JNKK2.

35. (Withdrawn) A molecule comprising a binding region of JNKK2 characterized by the amino acid sequence from positions 220-234 of SEQ ID NO: 50 (GKMTVAIVKALYYLK) of the full length JNKK2.

- 36. (Previously presented) The method of claim 6, wherein the peptide comprises the amino acid sequence from positions 132-156 of SEQ ID NO: 50, wherein the sequence is GPVWKMRFRKTGHVIAVKQMRRSGN.
- (Withdrawn) The method of claim 6, wherein the peptide comprises the amino acid sequence from positions 220-234 of SEQ ID NO: 50, wherein the sequence is GKMTVAIVKALYYLK.