				I I	I I	1		The state of the s						
Use Lagrange multipli	er techniques to fin	d the local ex	treme values of	the given function	on subject to	the stated	constrain	t. If appropriate	, determine	if the ext	rema are	global. (It	f a local or	globa
extreme value does n	ot exist enter DNE.))												

 $f(x, y) = x^2 + y^2 + 2x + 2$ with constraint $x^2 + y^2 = 64$

local max	Select V

minSelect >		
Let g(x, y) = x2+y3	2 -64	
Vr = XVg		
$2x + 2 = \lambda(2x)$		
$2x + 2 = \lambda (2x)$ $2y = \lambda (2y)$ $x^{2} + y^{2} = 64$		
$X + 1 = \lambda X$	(1)	
$y = \lambda y$ $\chi^2 + y^2 = 64$	(3)	
Find Cases		
1a x=0	Ib x ≠0	
O≠ I	$X - \lambda X = -1$	
Eliminate case	$\chi(1-\lambda)=-1$	
	$X = -\frac{1}{1-\lambda}$	

¥(0,8) = 64 + 0 + 2 (8) +2	
	= 82		
F(0,-3	8)=64+0+2	(-8) -2	
	= 50		
Gobal	Max at (0,8	r) cx 82	
	Min at Co,-	8) or 50	

Use Lagrange multiplier techniques to find the local extreme values of the given function subject to the stated constraint. If appropriate, determine if the extrema are global. (If a local or global extreme value does not exist enter DNE.)

local max			Select V										
local min			Select V										
1	e+	01	(=)	(y -	-							
7	Vf	= >	Vg										
	-) = /	16	y)										
	= /	\ (x)										
	(y :												
J) = ,	λγ										(1)
	$= \lambda$	X										(2))
	(=										(3))

Find Cases	
1a y=0	
$5 \neq 0$ $y = \frac{5}{\lambda}$	
Fliminate Cuse	
2a x=0 2b x ≠ 0	
$1\neq 0$ $x = \frac{1}{x}$	
Eliminate Case	
Check Cases	
Case 1626	
$y = \frac{s}{\lambda}$ and $x = \frac{1}{\lambda}$	
$\left(\frac{S}{\lambda}\right)\left(\frac{1}{\lambda}\right) = 1$	
$\frac{S}{\lambda^2} = 1$	
$\lambda^2 = 5$	

$$\begin{array}{c}
 \lambda = \pm \sqrt{5} \\
 X = \pm \sqrt{5} \\
 \text{ and }
 Y = \pm \frac{5}{\sqrt{5}} \text{ when either both }
 X \\
 \text{ and }
 X = vositive or beth one hepartive

$$\left(\frac{1}{15}, \frac{5}{15} \right) \text{ and } \left(-\frac{1}{15}, -\frac{5}{15} \right) \\
 \text{ Points of Intrest} \\
 + \left(\frac{1}{15}, \frac{5}{15} \right) = \frac{5}{15} + \frac{5}{15} + 7 \\
 = \frac{10}{15} + 7$$

$$= \frac{10}{15} + 7$$$$

Use Lagrange multiplier techniques to find the local extreme values of the given function subject to the stated constraint. (If a local or global extreme value does not exist enter DNE.)

 $f(x, y) = e^{3xy}$ with constraint $g(x, y) = x^3 + y^3 = 16$

local max

local min

$$g(x, y) = x^3 + y^3 - 16$$

$$e^{3xy}(3y) = \lambda (3x^2)$$

$$e^{2xy}(2x) = \lambda (3y^2)$$

$$y e^{3xy} = \lambda x^2$$

$$\chi e^{3xy} = \lambda y^2$$

$$\chi^3 + y^3 = 16$$

$$\chi, y, \text{ and } \lambda \text{ cannet equal } 0 \text{ hanse it Would mean that } 0 = 16$$

$$(1) \text{ and } (2)$$

$$e^{3xy} = \frac{\lambda x^2}{x}$$

$$e^{3x} = \frac{\lambda x^2}{x}$$

$$\chi = x$$

$$\chi = y$$

$$|y|_{U_3} \text{ inle } \text{ constraint}$$

$$\chi^3 + \chi^3 = 16$$

$$2\chi^3 = 16$$

$$\chi^5 = 8$$

$$X = 2$$

$$Y = 2$$

$$(2,2)$$

$$Points of Interst$$

$$(2,2) = e^{12}$$

$$Second Derivertive Test$$

$$f_x = 3y e^{3xy}$$

$$f_{xx} = 9y^2 e^{3xy}$$

$$f_{yy} = 3x e^{3xy}$$

$$f_{yy} = 9x^2 e^{3xy}$$

$$f_{xy} = 3[(y)(3x e^{3xy}) + (e^{3xy})(1)]$$

$$= 3(3xy e^{3xy} + e^{7xy})$$

$$= 3e^{3xy}(3xy+1)$$

$$D(x,y) = (9y^{2}e^{3xy})(9x^{2}e^{3xy}) - (3e^{3yy}(3xy+1))^{2}$$

$$= 81x^{2}y^{2}e^{6xy} - (3e^{3yy}(3xy+1))^{2}$$

$$= 81x^{2}y^{2}e^{6xy} - 9e^{6xy}(3xy+1)^{2}$$
Check Paint (2,2)
$$D(x,y) = -5.96e12$$
For some versen the second dominative test is wrong on this problem

Use Lagrange multiplier techniques to find the dimensions of the rectangle with largest perimeter that can be inscribed inside an ellipse $\frac{x^2}{144} + \frac{y^2}{25} = 1$, when the sides of the rectangle are parallel to the coordinate axes.

x-dimension

Optimize
$$F(x, y) = 2x + 2x + 2y + 1y$$

With the constraint $g(x) = \frac{x^2}{144} + \frac{y^2}{25} - 1$

$$f(x, y) = 4x + 4y$$

$$g(x, y) = \frac{1}{144} x^2 + \frac{1}{25} y^2 - 1$$

$$A = \lambda \left(\frac{1}{144} x\right)$$

$$A = \lambda \left(\frac{2}{125} y\right)$$

$$|A| \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = 1$$

$$X = \frac{4 \cdot 144}{2\lambda}$$

$$= \frac{288}{\lambda}$$

$$Y = \frac{4 \cdot 25}{2\lambda}$$

$$= \frac{56}{\lambda}$$
Plus into constraint
$$\frac{1}{144} \left(\frac{288}{\lambda}\right)^2 + \frac{1}{25} \left(\frac{5}{\lambda}\right)^2 = 1$$

$$\frac{298^2}{144} + \frac{50^2}{\lambda^2} + \frac{1}{25} \left(\frac{5}{\lambda}\right)^2 = 1$$

$$576 + \frac{1}{\lambda^2} + \frac{1}{2} + \frac{1}{\lambda^2} = 1$$

$$476 + \frac{1}{\lambda^2} = 1$$

$$\lambda^2 = 676$$

$$\lambda = \frac{1}{2} \cdot 261$$
If λ is negative λ and λ wald be negative. This is help pecsible.
$$\lambda = 261$$

$$X = \frac{288}{26}$$

$$Y = \frac{50}{76}$$

$$W = 2 \cdot \frac{288}{26}$$

$$L = 2 \cdot \frac{50}{26}$$

Use Lagrange multiplier techniques to find shortest and longest distances from the origin to the curve $x^2 + xy + y^2 = 2$.

shortest distance

longest distance

Distance function
$$L = \sqrt{x^2 + y^2}$$

$$= (x^2 + y^2)^{y_2}$$

$$= (x^2 + y^2)^{-\frac{1}{2}} (x^2 + y^2)$$

$$= \frac{x}{\sqrt{x^2 + y^2}} = \lambda (2x + y)$$

$$\frac{y}{\sqrt{x^{2}+y^{2}}} = \lambda(x+2y)$$

$$\frac{x}{\sqrt{x^{2}+y^{2}}} = \lambda(2x+y)$$

$$\frac{y}{\sqrt{x^{2}+y^{2}}} = \lambda(x+2y)$$

$$\chi^{2}+ xy + y^{2} = 2$$

$$\frac{x}{\sqrt{x^{2}+y^{2}}} = \lambda(x+2y)$$

$$\frac{x}{\sqrt{x^{2}+y^{2}}} = \lambda(x+2y)$$

$$\frac{x}{\sqrt{x^{2}+y^{2}}} = \lambda(x+2y)$$

$$\chi^{2}+ xy + y^{2} = 2$$

$$\frac{x}{\sqrt{x^{2}+y^{2}}} = \lambda(x+2y)$$

$$\frac{x}{\sqrt{x^{2}+y^{2}}} = \lambda(2x+y)$$

$$\frac{x}{\sqrt{x^{2}+y^{$$

Neit All		_							C) 4	cr	The	Ve	us <i>o</i> n	lug	in	la.
2a	Х	<i>‡0</i>	C	ZV C		/ ≠	0										
		a															
		+ 72															
V	Xzt	χ²	= -	እ (X = 2	7)											
_	× (2,	X+7)	- =	$\overline{\lambda}$	<u> </u>	27)											
	X X (χì	27)) =	X	y (:	2×	4 7)								
		2x;		2	XÍ	t y	2										
Ĭ		Y															
	Ť	= 1	•														
		in															
		X 2					17		(-γ) '-	y 2	+	y ² =	2		

