Optimizacijski problem: Maksimizirati profit knjižare korištenjem Gomorijevih rezova

Ema Djedović

Odsjek za matematičke i kompjuterske nauke Prirodno-matematički fakultet Univerzitet u Sarajevu

06/2024

Opis problema

Cilj: Maksimizirati profit knjižare određivanjem optimalnog broja knjiga iz različitih kategorija.

- Beletristika
- Publicistika
- ► Edukativne knjige

Ograničenja su postavljena u odnosu na budžet, prostor na policama i minimalne zalihe knjiga za svaku kategoriju.

Formulacija problema

Varijable odluke:

- x₁: broj beletrističkih knjiga
- x₂: broj publicističkih knjiga
- x₃: broj edukativnih knjiga

Koeficijenti:

- ▶ $p_1 = 5 \in$, $p_2 = 6 \in$, $p_3 = 8 \in$ (profit po knjizi za svaku kategoriju)
- $ightharpoonup c_1=12$ \in , $c_2=15$ \in , $c_3=20$ \in (trošak po knjizi za svaku kategoriju)
- $ightharpoonup s_1=0.5\,\mathrm{m}^2$, $s_2=0.7\,\mathrm{m}^2$, $s_3=1.0\,\mathrm{m}^2$ (prostor po knjizi za svaku kategoriju)
- B = 2000 € (ukupni budžet)
- $ightharpoonup S = 100 \,\mathrm{m}^2$ (ukupni prostor na policama)
- $ightharpoonup m_1=10,\ m_2=5,\ m_3=8$ (minimalne zalihe za svaku kategoriju)

Funkcija cilja

Maksimizirati
$$Z = 5x_1 + 6x_2 + 8x_3$$

$$12x_1 + 15x_2 + 20x_3 \le 2000$$

$$0.5x_1 + 0.7x_2 + 1.0x_3 \le 100$$

$$x_1 \ge 10$$

$$x_2 \ge 5$$

$$x_3 \ge 8$$

$$x_1, x_2, x_3 \ge 0$$

 $x_1, x_2, x_3 \in \mathbb{Z}$

Algoritam:

- Riješiti linearnu relaksaciju problema.
- Ako rješenje nije cjelobrojno, generirati Gomorijev rez.
- Dodati rez u originalni problem.
- Ponovno riješiti LP relaksaciju s novim ograničenjem.
- Ponavljati dok se ne pronađe cjelobrojno rješenje.

Riješimo problem "Optimizacija knjižare" korak po korak koristeći Simplex metodu, a zatim primijenimo Gomory rezove kako bismo dobili cijelo brojno rješenje. Pretvorite nejednadžbe u jednadžbe uvođenjem pomoćnih varijabli s_1 i s_2 .

$$12x_1 + 15x_2 + 20x_3 + s_1 = 2000$$

$$0.5x_1 + 0.7x_2 + 1.0x_3 + s_2 = 100$$

$$x_1 \ge 10$$

$$x_2 \ge 5$$

$$x_3 \ge 8$$

$$x_1, x_2, x_3, s_1, s_2 \ge 0$$

Postavite početnu Simplex tablicu.

	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	RHS
Jedn. 1 (Budžet)	12	15	20	1	0	2000
Jedn. 2 (Prostor)	0.5	0.7	1	0	1	100
Cilj	-5	-6	-8	0	0	0

Koristite Simplex metodu za pronalaženje optimalnog rješenja LP relaksacije.

Iteracija 1

- 1. Identificirajte ulaznu varijablu: x₃ (najnegativniji koeficijent u ciljanom redu: -8).
- 2. Izračunajte omjere za identifikaciju izlazne varijable:

$$\frac{2000}{20} = 100, \quad \frac{100}{1} = 100$$

Oba ograničenja imaju isti omjer, pa možemo izabrati bilo koje. Neka s_1 izađe.

3. Pivotirajte na x_3 .

Pivotiranje rezultira novom tablicom:

	x_1	<i>x</i> ₂	<i>X</i> ₃	s_1	<i>s</i> ₂	RHS
Jedn. 1 Jedn. 2	0.6	0.75	1	0.05	0	100
Jedn. 2	0.3	0.35	0	-0.05	1	0
Cilj	-1.8	-2.2	0	0.4	0	800

- 1. Identificirajte ulaznu varijablu: x_2 (najnegativniji koeficijent u ciljanom redu: -2.2).
- 2. Izračunajte omjere za identifikaciju izlazne varijable:

$$\frac{100}{0.75} pprox 133.33$$
, Neizvodivo (negativan omjer)

Dakle, s_1 izlazi.

3. Pivotirajte na x_2 .

Pivotiranje rezultira novom tablicom:

	x_1	<i>x</i> ₂	<i>X</i> ₃	s_1	<i>s</i> ₂	RHS
Jedn. 1	0	1	0.4	0.0667	0	133.33
Jedn. 2	0	1	0	-0.1429	2.857	0
Cilj	-1.8	0	1.8	0.2	0	600

Ponavljajte ove korake dok ne bude negativnih koeficijenata u ciljanom redu.

Nakon rješavanja LP relaksacije, primijenite Gomory rezove kako biste iterativno došli do cjelobrojnog rješenja.

Iteracija s Gomory rezom:

- Pretpostavimo da smo pronašli da x_1 ima frakcijsku vrijednost (npr. $x_1 = 7.5$).
- Generirajte Gomory rez na temelju frakcijskog dijela:

$$0.5x_1+\ldots\geq 1$$

Dodajte ovaj rez problemu i ponovno riješite LP.

Nastavite ovaj proces dok sve varijable ne budu cijele.