

Mark Scheme (Results)

Summer 2023

Pearson Edexcel International GCSE In Further Pure Mathematics (4PM1) Paper 2

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com (some page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2023
Question Paper Log Number P72866A
Publications Code 4PM1_02_2306_MS
All the material in this publication is copyright
© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is given.
- Crossed out work should be marked unless the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- o A marks: accuracy marks
- o B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If the final answer is wrong, always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

If there is a choice of methods shown, then award the lowest mark, unless the answer on the answer line makes clear the method that has been used. If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$ leading to $x=...$
 $(ax^2+bx+c)=(mx+p)(nx+q)$ where $|pq|=|c|$ and $|mn|=|a|$ leading to $x=...$

2. Formula:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for a, b and c, leading to x = ...

3. Completing the square:

$$x^2 + bx + c = 0$$
: $(x \pm \frac{b}{2})^2 \pm q \pm c = 0$, $q \ne 0$ leading to $x = ...$

Method marks for differentiation and integration:

1. <u>Differentiation</u>

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration:

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula:

Generally, the method mark is gained by **either**

quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

or, where the formula is <u>not</u> quoted, the method mark can be gained by implication from the substitution of correct values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers <u>may</u> be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...."**Exact** answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

2306 4PM1 Paper 2 Mark Scheme

Question	Scheme	Marks
1	$\frac{\left(a+2\sqrt{5}\right)}{\left(3-\sqrt{5}\right)} \times \frac{\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)} = \frac{3a+a\sqrt{5}+6\sqrt{5}+10}{9-5} \left(=\frac{3a+10+(6+a)\sqrt{5}}{4}\right)$	M1
	$\left(\frac{3a+10+(6+a)\sqrt{5}}{4} = \frac{11+b\sqrt{5}}{2}\right)$	
	$\Rightarrow \frac{3a+10}{4} = \frac{11}{2} \text{ oe } \Rightarrow a = 4 \Rightarrow \frac{6+a}{4} = \frac{b}{2} \text{ oe } \Rightarrow b = 5$	M1M1A1A1 [5]
	ALT	
	$\left \left(\frac{\left(a + 2\sqrt{5} \right)}{\left(3 - \sqrt{5} \right)} \right = \frac{11 + b\sqrt{5}}{2} \Longrightarrow \right 2\left(a + 2\sqrt{5} \right) = \left(3 - \sqrt{5} \right) \left(11 + b\sqrt{5} \right)$	Na
	$2a + 4\sqrt{5} = 33 + 3b\sqrt{5} - 11\sqrt{5} - 5b(=(33 - 5b) + (3b - 11)\sqrt{5})$	M1
	$\Rightarrow 4 = 3b - 11 \Rightarrow b = 5$	
	$\Rightarrow 2a = 33 - 5b \Rightarrow a = 4$	M1M1A1A1 [5]
	r	Total 5 marks

Mark	Notes
M1	For multiplying both numerator & denominator of $\frac{\left(a+2\sqrt{5}\right)}{\left(3-\sqrt{5}\right)}$ through by $\frac{\left(3+\sqrt{5}\right)}{\left(3+\sqrt{5}\right)}$
	to give $\frac{3a + a\sqrt{5} + 6\sqrt{5} + 10}{9 - 5}$.
	Allow one error on the numerator. The denominator must be correct.
M1	For correctly equating their coefficients with $\frac{11+b\sqrt{5}}{2}$.
	Although this is not a dependent mark, there must be at least one equation in a and b
M1	For a complete and correct attempt to solve one of their equations to find a value for <i>a</i> or a value for <i>b</i> .
	Although this is not a dependent mark, there must be at least one equation in a
	and b .
A1	For either $a = 4$ or $b = 5$
A1	For both $a = 4$ and $b = 5$
	ts may also multiply by $-3-\sqrt{5}$ This produces the correct answer and is the same as in MS, but all the terms are negative. Mark to exactly the same principles.
ALT	
M1	Correctly removes the denominators from the given equation and multiplies out as
	shown to give the equation $2a+4\sqrt{5}=33+3b\sqrt{5}-11\sqrt{5}-5b$
	Allow one error.
M1	For correctly equating their coefficients on either side of the equation.
	Although this is not a dependent mark, there must be at least one equation in a
	and b
M1	For a correct and complete attempt to solve one of their equations to find a value for
	a or a value for b.
	Although this is not a dependent mark, there must be at least one equation in a
A 1	and b
A1	For either $a = 4$ or $b = 5$
A1	For both $a = 4$ and $b = 5$

Question	Scheme	Marks
2	$n = 1 \Rightarrow a = 8^{(1-2)} = 8^{-1}$ oe eg $\frac{1}{8}$	B1
	$n = 2 \Rightarrow ar = 8^{(1-4)} = 8^{-3} \Rightarrow r = \frac{8^{-3}}{8^{-1}} = 8^{-2}$ oe eg $\frac{1}{64}$	M1A1
	$(S_{\infty} =) \frac{8^{-1}}{1 - 8^{-2}} = \frac{2^{-3}}{\frac{63}{2^{6}}} = \frac{8}{63}$ oe eg $\frac{\frac{1}{8}}{1 - \frac{1}{64}} \left(= \frac{\frac{1}{8}}{\frac{63}{64}} = \frac{1}{8} \times \frac{64}{63} \right)$	M1dM1
	$\frac{8}{63}$ oe or $p = 8$, $q = 63$ oe	A1
	Tot	al 6 marks

Mark	Notes
B1	For $a = 8^{-1}$ oe
M1	For substituting $n = 2$ into the expression for <i>n</i> th term to find a value for <i>ar</i> and
	dividing by a to find r. This mark can be implied by a correct value for r.
A1	For $r = 8^{-2}$ oe
M1	For applying the correct formula for the sum to infinity of a convergent geometric
	series for their values of a and r, providing $ r < 1$
	They must be using values they've attained or stated for <i>a</i> and <i>r</i> .
dM1	For a correct attempt to use an index law with their expression to obtain the required
	form or a correct attempt to divide their fractions.
	Dependent on previous method mark.
A1	For the correct answer in the required form any equivalent with p and q integers is
	acceptable.
T .1 *	

In this question, the final dM1 may implied from a correct substitution of their values of r and a, evaluated correctly, if working isn't shown.

You may have to check their final answer.

$$r = \frac{1}{4}, a = \frac{1}{8}$$

$$(S_{\infty} =)\frac{\frac{1}{8}}{1 - \frac{1}{4}} = \frac{1}{6}$$
 is M1 dM1 A0 because the $\frac{1}{6}$ is correct for their a and their r

Question	Scheme	Marks
3	Mark parts (i) and (ii) together.	
	(Let the obtuse angle $AOB = \alpha$ - students do not need to state this,	
	allow use of any symbol or letter, including θ)	
	$53.2 = r\alpha$	B1
		B1
	$372.4 = \frac{r^2 \alpha}{2}$	БІ
	r^2 53.2	M1A1
	$\alpha = \frac{53.2}{r}$, $372.4 = \frac{r^2}{2} \times \frac{53.2}{r}$ oe $\Rightarrow r = 14$	M1
	$\alpha = \frac{53.2}{14} = 3.8$	
	$\theta = (2\pi - 3.8 =) 2.48$	A1
A T / (T) 4		[6]
ALT1 final 4	First 2 marks as ALT2	B1B1
marks	(50.0)2	M1
illai KS	$\left(\frac{53.2}{2}\right)$	1 V1 1
	$r = \frac{53.2}{\alpha},372.4 = \frac{\left(\frac{53.2}{\alpha}\right)^2}{2} \times \alpha \text{oe}$	M1(A1
		on
	$\Rightarrow \alpha = \frac{372.4}{1415.12} = 3.8$	ePen)
	$r\left(=\frac{53.2}{3.8}\right)=14$	A1(M1
		on
	$\theta = (2\pi - 3.8 =) 2.48$	ePen)
		A1
ALT2	$2\pi r - r\theta = 53.2$ oe	[6] B1
ALIZ		וט
	$\pi r^2 - \frac{1}{2}r^2\theta = 372.4$ oe	B1
	$\begin{pmatrix} 2 & 53.2 \\ 2 & 53.2 \end{pmatrix} = \begin{pmatrix} 2 & 53.2 \\ 2 & 53.2 \end{pmatrix} = \begin{pmatrix} 272.4 \\ 272.4 \end{pmatrix}$	3.51
	$\theta = 2\pi - \frac{53.2}{r} \Rightarrow \pi r^2 - \frac{1}{2} \left(2\pi - \frac{53.2}{r} \right) r^2 = 372.4$ oe	M1
	26.6r = 372.4 oe	M1(A1 on
	r = 14	ePen)
	$\theta = 2.48$	A1(M1
	0 – 2.10	on
		ePen)
		A1
		[6]

ALT3	First 2 marks as ALT2	B1B1
	$r = \frac{53.2}{2\pi - \theta}$	M1
	$r^{2} \left(\pi - \frac{\theta}{2} \right) = 372.4 \Rightarrow \left(\frac{53.2}{2\pi - \theta} \right)^{2} = \frac{372.4}{\pi - \frac{\theta}{2}} \text{ oe eg } \left(\frac{53.2}{2\pi - \theta} \right)^{2} = \frac{744.8}{2\pi - \theta}$	M1(A1 on ePen)
	$\frac{53.2^2}{744.8} = 2\pi - \theta \left(\Rightarrow \theta = 2\pi - \frac{53.2^2}{744.8} \right)$	A1(M1 on
	$\theta = 2.48$	ePen)
	r = awrt 14.0	A1
	r - unit i i.u	[6]
	Total	6 marks

Mark	Notes
B1	Correctly uses the formula for length of an arc $53.2 = r \times$ angle in radians
DI	
	or
	correctly uses the formula for length of an arc $53.2 = 2\pi r \times \frac{\text{angle in degrees}}{360}$
B 1	Correctly uses the formula for area of a sector $372.4 = \frac{r^2}{2} \times$ angle in radians
	Correctly uses the formula for area of a sector $3/2.4 =\times$ angle in radians
	or
	angle in degrees
	correctly uses the formula for area of a sector $372.4 = \pi r^2 \times \frac{\text{angle in degrees}}{360}$
M1	Eliminates α from both equations, allow up to one error.
1411	If they have worked in degrees, they must reach an equation where π must not be
	present (ie it has cancelled).
A1	For $r = 14$
M1	For using their r in a correct equation to find a value for α
1411	If they are working in degrees, there must follow a correct attempt to convert their
	angle into radians.
A1	For the correct value of $\theta = 2.48$
ALT1	As main scheme
B1B1	As main scheme
M1	Eliminates r from both equations and reaches an equation in α , allow one error
M1	Solves their equation (allow one error) to find a value for α
(A1 on	Solves their equation (allow one error) to find a value for α
ePen)	
A1(M1	For the correct value for r
on ePen)	
A1	For the correct value of $\theta = 2.48$
ALT2	Correctly uses the formula for length of an arc
B1	Correctly uses the formula for length of all are
B1	Correctly uses the formula for area of a sector
M1	Rearranges for θ (allow one error) and substitutes correctly into the other equation
1,11	to reach an equation for r
M1	For an equation of the form $ar = b \ ab > 0$
(A1 on	Total and a quantitative and a second a second and a second a second and a second a
ePen)	14
A1(M1 on	r = 14
ePen)	
A1	$\theta = 2.48$
ALT3	As ALT2
B1B1	
M1	Rearranges for r (allow one error) and substitutes correctly into the other equation
	to reach an equation for θ
M1	For reaching an equation of the form $d = 2\pi - \theta$ $d > 0$
(A1 on ePen)	
A1(M1	$\theta = 2.48$
on	
ePen)	
A1	r = awrt 14.0

Question	Scheme	Marks
4(a)	Mark parts (i) and (ii) together.	
	$2y-x-4=0 \Rightarrow y=\frac{x+4}{2}$ oe	
	$\frac{x^2}{4} + 2 = \frac{x+4}{2}$ oe $\Rightarrow \frac{x^2+8}{4} = \frac{x+4}{2}$ oe $\Rightarrow x^2+8 = 2x+8$ oe	M1
	$\Rightarrow x^2 - 2x = 0 \Rightarrow x(x-2) = 0$ oe	M1
	$\Rightarrow x = (0,) 2$	
	$\Rightarrow y = 2, 3$	
	So coordinates at point A are $(0, 2)$ * and at point $B(2, 3)$	A1*
	and at point B (2, 3)	A1
	NB SC1 – for correct and complete substitution of $x = 0$ into the equation of	[4]
	curve S or line l to show that $y = 2$, where there is no other work, other work is incorrect or no marks would otherwise be gained. Award this as 1^{st} M mark. THERE ARE NO OTHER MARKS AVAILABLE FOR PART (a) IF	
<i>a</i>)	THIS IS ALL STUDENTS DO	7.61
(b)	$V = \pi \int_{2}^{3} (4y - 8) dy - \pi \int_{2}^{3} (2y - 4)^{2} dy$	M1
	$\left[\Rightarrow \pi \int_{2}^{\text{"3"}} \left(-4y^2 + 20y - 24 \right) dy \text{or} \pi \int_{2}^{\text{"3"}} \left(4y - 8 \right) dy - \pi \int_{2}^{\text{"3"}} \left(4y^2 - 16y + 16 \right) dy \right]$	M1
	$= (\pi) \left[-\frac{4y^3}{3} + \frac{20y^2}{2} - 24y \right]_{("2")}^{("3")}$	
	or $(\pi) \left[\frac{4y^2}{2} - 8y \right]_{\text{("2")}}^{\text{("3")}} - (\pi) \left[\frac{4y^3}{3} - \frac{16y^2}{2} + 16y \right]_{\text{("2")}}^{\text{("3")}}$	
	$= (\pi) \left[\left(\frac{4 \times "3"^3}{3} + \frac{20 \times "3"^2}{2} - 24 \times "3" \right) - \left(\frac{4 \times "2"^3}{3} + \frac{20 \times "2"^2}{2} - 24 \times "2" \right) \right]$	M1
	$=\frac{2}{3}\pi$	A1
	ALT	[4]
	$V = \pi \int_{2}^{3} (4y - 8) dy - \pi \times \frac{1}{3} \times 2^{2} \times 1$	M1
	$= \pi \left[\frac{4y^2}{2} - 8y \right]_{2}^{3} \left(-\frac{4}{3}\pi \right)$	M1
	$=\pi \left[\left(2 \times "3"^2 - 8 \times "3" \right) - \left(2 \times "2"^2 - 8 \times "2" \right) \right] \left(-\frac{4}{3} \pi \right)$	M1
	$=\frac{2}{3}\pi$	A1
	Total 8	8 marks

Part	Mark	Notes
	M1	
(a)	M1	Correctly equates the equation of <i>S</i> with the equation of <i>l</i> Forms a quadratic and a minimally acceptable attempt to solve their quadratic.
	IVII	For a 2TQ the solution of their quadratic for must be correct, but any zero
		solution doesn't need to be shown as it's obvious from the given diagram.
	A 1 ½	If they achieve a 3TQ and attempt to solve – see general guidance.
	A1*	For correct substitution of $x = 0$ to show coordinates of $A(0, 2)$ or $x = 0, y = 2$.
	CSO	Allow coordinates without brackets. SC1 (see MS) if this is the only work done.
	A1	For the coordinates of $B(2,3)$ $x=2, y=3$
NT 4	1 1 11.	Allow coordinates without brackets.
Note on		<u>e</u>
		and (ii) are not present, the marks can be awarded if
		dinates appear in the correct order or
	·	e labelled with A and B
		guity award A1 A0 if both correct and A0 A0 if only one is correct
(b)	M1	For a correct statement for the volume of rotation with 2 and their upper limit
		used correctly and correctly including π . The lower limit must be 2.
	M1	For a minimally acceptable attempt to integrate (see general guidance) and no
		power of y must decrease.
		π and limits do not need to be present to gain this mark.
		There must be a minimum of 2 terms to integrate.
	M1	For substituting their limits into their changed expression the correct way round.
		There must be at least one clear substitution of each limit.
		π does not need to be present to gain this mark.
	A1	For the correct final volume = $\frac{2}{3}\pi$ accept $0.6\pi, 0.67\pi$ or better
		For the correct final volume = $\frac{2}{3}\pi$ accept $0.6\pi, 0.67\pi$ or better
	ALT	<u>-</u>
	M1	For a correct statement for the volume of rotation of the curve with 2 and their
	1411	upper limit used correctly including π minus the correct formula used for the
		volume of a cone. The lower limit must be 2. This mark may also be awarded
		if the integral is subtracted the wrong way round.
	M1	For a minimally acceptable attempt to integrate (see general guidance) and no
	1,11	
		power of y must decrease. π , limits and $-\frac{4}{3}\pi$ do not need to be present to gain
		this mark. There must be a minimum of 2 terms to integrate.
	M1	For substituting their limits into their changed expression. There must be at least
	1411	one clear explicit substitution of each limit. This mark can be implied by a correct
		4
		final answer. π and $-\frac{4}{3}\pi$ do not need to be present to gain this mark.
	A1	For the correct final volume = $\frac{2}{3}\pi$ accept $0.6\pi, 0.67\pi$ or better
		3
		If a negative value is found and changed at the end to a positive value, this
		final A mark cannot be awarded.
	Note: a	any candidate incorrectly rotating around x axis, 2 nd & 3 rd M marks are
		ole for integrating an expression & substituting in. Max mark M0 M1 M1 A0.
	-	

Part	Mark	Notes
The to	lerance t	for all marks in this question is \pm half a small square.
(a)	B1	For one of the lines correctly drawn to within tolerance (as a minimum,
		examiners should check intersections with axes, candidates do not need to
		mark these).
	B 1	For two of the lines drawn to within tolerance (as a minimum, examiners
		should check intersections with axes, candidates do not need to mark these).
	B 1	For all three lines correctly drawn to within tolerance (as a minimum,
		examiners should check intersections with axes, candidates do not need to
		mark these).
		lines must intersect with other for marks in (a) and (b) to be awarded
(b)	B1ft	For the correct enclosed region shaded in or out or for <i>R</i> clearly labelled.
		The ft mark can only be awarded if 3 distinct lines have been drawn and it's
		clear they've shaded on the correct 'side' for each of their lines.
		If there's no labelling and it's not clear which line is which, this mark cannot
_		be awarded.
	-	estion states "using your graph"
		ions which obviously use exact coordinates of intersection points having used a
		ator or from working algebraically can only score M0 M1 A0.
(c)	M1	For reading from the graph at least one point of intersection using their lines.
		The pair used for this and the next method mark must be within the tolerance
		of \pm 0.1 of the values shown in the table. Any solutions which work out the
		values algebraically will not gain this mark or the final accuracy mark, but
		may gain the next method mark.
		Occasionally, students are working out the non-integer coordinates from algebra or from a calculator but reading (-4, -3) from the graph and using this
		to find the value of P . In this case, we can apply bod (benefit of the doubt)
		and this mark can be awarded if subbed in to find the value of P .
	M1	For a correct substitution to find the value of <i>P</i> from at least one set of their
	1411	coordinates of the point of intersection.
		This is not a dependent mark, so they can use any one of their pairs of values
		even if it doesn't fall in tolerance.
	A1	For the correct least value of -28.2 Allow a value between -28.9 and
		-27.5 so long as this follows through from their values.
		Do not allow a value out of range to be rounded to a value within range.

Question	Scheme	Marks
6 (a)	$(V =) 5 \times \frac{1}{2} \times r^2 \times \sin\left(\frac{\pi}{3}\right) = \frac{5\sqrt{3}}{4} r^2 *$	B1*cso [1]
(b)	$\left(\frac{dV}{dr} = \right) \frac{5\sqrt{3}}{2} r \text{oe}$ (When the area of $BCDF = 60 \text{ cm}^2$, $BC = DF = r =)12 \text{ cm}$	M1 B1
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t} \qquad \text{oe}$	M1
	$\left(\frac{\mathrm{d}V}{\mathrm{d}t} = \right) \frac{5\sqrt{3}}{2} \times 12 \times 0.2 = 6\sqrt{3} \text{oe } \left(\mathrm{cm}^3 / \mathrm{s}\right)$	dM1A1 [5]
	Total	6 marks

Part	Mark	Notes
(a)	B1* cso	For a correct expression for the volume of a prism $V = 5 \times \frac{1}{2} \times r^2 \times \sin\left(\frac{\pi}{3}\right)$
		followed by the given answer stated. No errors. Use of 60° for $\frac{\pi}{3}$ is fine.
(b)	M1	For differentiating the expression for V to given an expression of the form pr
		where p is a positive constant. We don't need to see $\left(\frac{dV}{dr}\right)$ if it's clear the
		candidate has attempted to differentiate the given volume.
	B 1	For finding the length BC or DF when the area of the face $BCDF = 60$ and
		deducing that $r = 12$ cm.
	M1	For a correct chain rule involving $\frac{dV}{dt}$, $\frac{dV}{dr}$ and $\frac{dr}{dt}$ [Can be implied by later correct substitution.]
	dM1	For substituting their $\frac{dV}{dr}$, their r and the given value of $\frac{dr}{dt} = 0.2$
		Dependent on the first method mark.
	A1	For $\left(\frac{\mathrm{d}V}{\mathrm{d}t}\right) = 6\sqrt{3} \left(\mathrm{cm}^3/\mathrm{s}\right)$

Que	Scheme	Marks
stio n		
7()	$\left(1+\frac{x}{3}\right)^{-3} = \left[1+(-3)\left(\frac{x}{3}\right)+\frac{(-3)(-3-1)}{2!}\left(\frac{x}{3}\right)^2+\frac{(-3)(-3-1)(-3-2)}{3!}\left(\frac{x}{3}\right)^3\dots\right]$	M1A1
	$=1-x+\frac{2}{3}x^2-\frac{10}{27}x^3$	A1 [3]
(b)	-3 < x < 3 or $ x < 3$	B1 [1]
(c)	$\left(\left(3+x \right)^{-3} = 3^{-3} \times \left(1 + \frac{x}{3} \right)^{-3} = \frac{1}{27} \times \left(1 + \frac{x}{3} \right)^{-3} \right)$	
	$P = \frac{1}{27}, \ Q = \frac{1}{3}$	B1, B1 [2]
(d)	$\frac{(1+4x)}{(3+x)^3} = (1+4x) \times \frac{1}{27} \times \left(1-x+\frac{2}{3}x^2\right)$	
	$= \frac{1}{27} \times \left(1 - x + \frac{2}{3}x^2 + 4x - 4x^2 + \dots \right)$	M1
	$= \frac{1}{27} \left(1 + 3x - \frac{10x^2}{3} \right) \text{or} \frac{1}{27} + \frac{x}{9} - \frac{10x^2}{81}$	A1 [2]
(e)	$\int_0^{0.2} \left(\frac{1}{27} + \frac{x}{9} - \frac{10x^2}{81} \right) dx = \left[\frac{x}{27} + \frac{x^2}{18} - \frac{10x^3}{243} \right]_0^{0.2}$	M1
	$= \left(\frac{0.2}{27} + \frac{0.2^2}{18} - \frac{10 \times 0.2^3}{243}\right) - [0]$	M1
	= 0.0093004	A1
		[3]
	Tota	al 11 marks

Part	Mark	Notes			
(a)		For applying a correct binomial expansion in unsimplified form.			
		Minimum required:			
		• The expansion begins with 1			
		The next term is correct			
	M1	• The powers of $\frac{x}{3}$ must be correct eg $\left(\frac{x}{3}\right)^2$			
		The denominators are correct.			
		Do not allow missing brackets unless recovered later – this is a general point of marking. Ignore any terms with powers higher than 3.			
	A1	Following M1 (this is a general point of marking, A marks can only follow M marks), all conditions above met, must see $1 - x$ and at least the term in x^2 or x^3 correct and simplified. Ignore any terms with powers higher than 3.			
	A1	A fully correct and simplified expansion. Ignore any terms with powers higher than 3			
(b)	B1	For the correct validity.			
(c)	B1	For the correct value of P or Q explicitly written or embedded in $\frac{1}{27} \times \left(1 + \frac{x}{3}\right)^{-3}$			
	B1	For the correct values of P and Q explicitly written or embedded in $\frac{1}{27} \times \left(1 + \frac{x}{3}\right)^{-3}$			
(d)	M1	For attempting to multiply their expansion, which must be of the form " P "× (their expansion from part (a), with a minimum of 3 terms, by $(1 + 4x)$. An attempt must include 3 correctly multiplied out terms of their expansion before simplification. The " P " may remain factorised. Ignore any terms which to powers of x higher than 2.			
	A1	For the correct expansion in either form shown. Allow equivalent coefficients. Ignore powers of x higher than 2.			
(e)	M1	For an attempt to integrate their expression from part (d), provided it has at least one constant term and at least one algebraic term. See general guidance, no power of x must decrease.			
	M1	For substituting in the value of 0.2 into a changed expression and subtracting the correct way. Must see the explicit substitution of 0.2 at least once, if the final answer is not correct. Can be implied if final answer correct. Substitution of 0 does not need to be seen.			
	A1	For the value of 0.0093004 [The calculator value is 0.0093316] Accept the value of $\frac{113}{12150}$ if seen.			

Question	Scheme	Marks
8(a)	$(Grad_{AB}) = \frac{2-8}{12-(-6)}$ oe	M1
		dM1
	$y-2 = "\left(-\frac{1}{3}\right)"(x-12)$ oe	(A1 on
	$\Rightarrow x + 3y - 18 = 0 \qquad \text{or} \qquad -x - 3y + 18 = 0 \qquad \text{oe}$	ePen) A1
	$\rightarrow x + 3y - 16 = 0$ Of $-x - 3y + 16 = 0$ Oc	[3]
(b)	Length = $\sqrt{(12-6)^2 + (2-8)^2} = 6\sqrt{10}$ eg $\sqrt{360}$ oe	M1A1 [2]
(c)	$\left(\left(\frac{2\times -6 + 1\times 12}{1+2}, \frac{2\times 8 + 1\times 2}{1+2}\right)\right)$	B1 B1
	$\left(\left(\begin{array}{cccccccccccccccccccccccccccccccccc$	(M1A1 on ePen)
	(0,6) or $m=0, n=6$	[2]
(d) Mark	Gradient of $CA = \frac{q-8}{p+6}$ or gradient of $CB = \frac{q-2}{p-12}$ oe	M1
parts (i) and (ii) together	$\frac{q-8}{p+6} = -\frac{1}{q-2} = -\left(\frac{p-12}{q-2}\right) \Rightarrow q^2 - 10q + 16 = -p^2 + 6p + 72$	M1
	$p-12$ Gradient of $XC = -\frac{1}{-\frac{1}{2}} \Rightarrow -\frac{1}{-\frac{1}{2}} = \frac{q-6}{p-0} (\Rightarrow q = 3p+6)$	B1ft
	$3 \qquad 3$ $('3p+6')^2 -10('3p+6') +16 = -p^2 +6p +72 \Rightarrow 10p^2 -80 = 0$	ddM1A1
	$10p^2 - 80 = 0 \Rightarrow p = \sqrt{8}$ oe $q = 3 \times \sqrt{8} + 6 = 6 + 6\sqrt{2}$ oe	M1A1 [7]
ALT1 Mark	(midpoint of $AB = $) $\left(\frac{-6+12}{2}, \frac{8+2}{2}\right)$ (= (3,5))	M1
parts (i) and (ii) together	$\left(\text{radius of }C\right) = \frac{\text{"}6\sqrt{10}\text{"}}{2} \qquad \text{oe}$	M1
	or $\sqrt{(-6-3)^2 + (8-5)^2}$ oe	
	or $\sqrt{(-6-3)^2 + (8-5)^2}$ oe $y = \frac{-1}{-\frac{1}{3}} x + 6$ $(y = 3x + 6)$ oe	B1ft
	$(x-"3")^{2} + (y-"5")^{2} = \left(\frac{"6\sqrt{10}"}{2}\right)^{2} \Rightarrow (x-"3")^{2} + ("3x+6"-"5")^{2} = \left(\frac{"6\sqrt{10}"}{2}\right)^{2}$ $10x^{2} = 80 \qquad \text{oe}$	ddM1
	$10x^2 = 80$ oe	A1
	$10x^{2} = 80 oe$ $x = \sqrt{8} oe$ $p = \sqrt{8}, q = 6 + 3\sqrt{8} oe$	M1 A1
	$p = \sqrt{8}, q = 6 + 3\sqrt{8}$ oe	[7]

	M1 M1 B1ft ddM1A1
together $q = 3p + 6$ $((AB)^{2} = (AC)^{2} + (BC)^{2})$ $("6\sqrt{10}")^{2} = (p6)^{2} + ("3p + 6" - 8)^{2} + (p - 12)^{2} + ("3p + 6" - 2)^{2}$	B1ft
together $q = 3p + 6$ $((AB)^{2} = (AC)^{2} + (BC)^{2})$ $("6\sqrt{10}")^{2} = (p6)^{2} + ("3p + 6" - 8)^{2} + (p - 12)^{2} + ("3p + 6" - 2)^{2}$	B1ft
$\left((AB)^2 = (AC)^2 + (BC)^2 \right)$ $\left("6\sqrt{10}" \right)^2 = (p6)^2 + ("3p + 6" - 8)^2 + (p - 12)^2 + ("3p + 6" - 2)^2$	ddM1A1
$\left("6\sqrt{10}" \right)^2 = (p6)^2 + ("3p + 6" - 8)^2 + (p - 12)^2 + ("3p + 6" - 2)^2 $	
	M1
$10p^2 = 80$ oe	IVI I
$p = \sqrt{8}$ oe	A1
$p = \sqrt{8}, q = 6 + 3\sqrt{8}$ oe	[7]
(e) Length $CX = \sqrt{("\sqrt{8}" - "0")^2 + ("6 + 6\sqrt{2}" - "6")^2} (= 4\sqrt{5})$	M1
Area of triangle $ABC = \frac{1}{2} \times 4\sqrt{5} \times 6\sqrt{10} = 60\sqrt{2}$ oe	dM1 A1 [3]
ALT $\frac{1}{2} \begin{vmatrix} -6 & 12 & \sqrt{8} & -6 \\ 8 & 2 & 6 + 3\sqrt{8} & 8 \end{vmatrix}$ oe	M1
$ 2 8 2 "6+3\sqrt{8}" 8 $	
$\frac{1}{2} \left[\left(-6 \times 2 + 12 \times "(6 + 3\sqrt{8})" + "\sqrt{8}" \times 8 \right) - \left(-6 \times "(6 + 3\sqrt{8})" + "\sqrt{8}" \times 2 + 12 \times 8 \right) \right] \text{ oe}$	dM1
$\frac{1}{60\sqrt{2}}$ oe	A1 [3]
Total 17	

Part	Mark	Notes			
(a)	M1	For correctly finding the gradient of AB in unsimplified form.			
	dM1	For a full and correct attempt to find the equation of the line using their gradient.			
	(A1 on	No simplification is required.			
	ePen)	If using $y = mx + c$, a value for c must be found.			
	A1	For a correct equation in the required form.			
(b)	M1	For using a correct method to find the length of line segment AB, in unsimplified			
		form.			
	A1	For the correct exact length.			
(c)	B1 (M1	For either coordinate correct.			
	on				
	ePen)				
	B1 (A1	For both correct coordinates (0, 6)			
	on	For part c the values of m and n can be explicitly identified or written in a			
	ePen)	coordinate.			
		p to be interchangeable with x , q to be interchangeable with y throughout			
(d)	M1	For a correct statement of the gradient for either CA or CB			
	M1	For using the negative perpendicular of either gradient and equating the gradients			
	D4.0:	to form an equation in terms of p and q only.			
	B1ft	For finding the negative reciprocal of their gradient of XC and placing this equal			
	1 13 74	to a correctly substituting their linear expression for <i>n</i> or <i>q</i> into a quadratic			
	ddM1	For correctly substituting their linear expression for p or q into a quadratic			
		equation in q or p to obtain an equation in one variable.			
	A1	Must use their $q = 3p + 6$ and is dependent on both previous method marks.			
	M1	For the correct two term quadratic			
	A1	For correctly solving their quadratic to find a value for either <i>p</i> or <i>q</i> For both <i>p</i> and <i>q</i> correct.			
ALT1	M1	For the correct method to find the midpoint of AB			
(d)	M1	For the correct method to find the radius of C, ft their answer from part b if used.			
(u)	B1ft	For the equation of the line, unsimplified, ft their gradient of AB			
	ddM1	For correctly substituting their $y = 3x + 6$ into the equation of a circle, using their			
	uuivii	midpoint of AB and their radius of C			
		Must use their $y = 3x + 6$ and is dependent on both previous method marks.			
	A1	Correct equation			
	M1	For correctly solving their quadratic to find a value for either x or y			
	A1	For both p and q correct.			
ALT2	M1	For the correct method to find the length of AC or $(AC)^2$			
(d)	M1	For the correct method to find the length of BC or $(BC)^2$			
	B1ft	For the equation of the line, unsimplified, ft their gradient of AB			
	ddM1	For correctly substituting their lengths and their $q = 3p + 6$ into a correct			
		Pythagorean equation, dependent on both previous method marks.			
	A1	Correct equation			
	M1	For correctly solving their quadratic to find a value for either p or q			
	A1	For both p and q correct.			

(e)	M1	For using a correct method to find the length of the perpendicular from AB to C		
	dM1	For using their results from part (b) and their length of perpendicular from AB to		
		C with the correct formula for the area of a triangle.		
		Dependent on previous method mark.		
	A1	For the correct area of $60\sqrt{2}$ or $30\sqrt{8}$ (units ²)		
ALT	M1	For a correct statement for the area such as the one shown, using their values of p		
		and q		
	dM1	For the correct evaluation of their determinant		
		Dependent on previous method mark.		
	A1	For the correct area of $60\sqrt{2}$ or $30\sqrt{8}$ (units ²)		

Useful Sketch for Parts c/d – look for any working on or near a sketch.

Question	Scheme	Marks
9	Be careful to look on the sketch to award marks for the question and for any equivalent calculations or alternative methods. IF IN DOUBT SEND TO REVIEW $X_{}$ is the point directly below V positioned on the base $ABCDE$ Perpendicular from the mid-point of BC (M) to point X	
	$(\angle BXC =) 72^{\circ} \text{ or } (\angle ABC =) 108^{\circ}$	B1
	Length of BX eg $(BX =) \frac{x}{\sin 36^{\circ}} (=1.701x)$ or $\frac{\sin 54}{\sin 72} \times 2x$ or $\frac{x}{\cos 54}$ oe	M1
	$(VX =)\sqrt{(3x)^2 - ("1.701x")^2} = 2.471x$ or $(VM =)\sqrt{(3x)^2 - (x)^2} = \sqrt{8}x (= 2.828x)$	M1
	$(MX =)\sqrt{("1.701x")^2 - x^2} = 1.376x \text{ or } \frac{x}{\tan 36} \text{ oe or } x \tan 54$	M1
	Required angle is $\angle VMX$ or $\angle VME$	
	$\left(\tan \angle VMX = \right) \frac{2.471x}{1.376x} \Rightarrow \left(\angle VMX = 60.888^{\circ}\right) \text{ oe}$	
	$(\cos \angle VME =) \frac{("\sqrt{8}x")^2 + ("1.701"x + "1.376"x)^2 - (3x)^2}{2 \times "\sqrt{8}x" \times ("1.701"x + "1.376"x)} \text{ oe}$	dddM1
	\Rightarrow awrt 60.9° or better	A1 [6]
ALT1	May only be applied if they attempt to find MX in one step and attempt to find VM and use triangle VMX . If they find MX any other way, apply one of the other schemes	
	$(\angle BXC =)72^{\circ}$ or $(\angle ABC =)108^{\circ}$	B1
	$(MX =)$ $\frac{x}{\tan 36}$ oe or $x \tan 54$	M2
	$(VM =)\sqrt{(3x)^2 - (x)^2} = \sqrt{8}x (= 2.828x)$	M1
	$\left(\cos \angle VMX = \right) \frac{"x \tan 54"}{"2\sqrt{2}x"} \Rightarrow \left(\angle VMX = 60.888^{\circ}\right)$	dddM1
	\Rightarrow awrt 60.9° or better	A1 [6]

ALT2	$(\angle BXC =)72^{\circ} \text{ or } (\angle ABC =)108^{\circ}$	B1
	$(EB =)\sqrt{(2x)^2 + (2x)^2 - 2(2x)(2x)\cos 108} (= 3.236x)$	
	$(\angle BXC =) 72^{\circ} \text{ or } (\angle ABC =) 108^{\circ}$ $(EB =) \sqrt{(2x)^{2} + (2x)^{2} - 2(2x)(2x)\cos 108} (= 3.236x)$ or $(EB =) \frac{2x}{\sin 36} \times \sin 108 (= 3.236x)$	M1
	$(VM =) \sqrt{(3x)^2 - (x)^2} = \sqrt{8}x (= 2.828x)$	M1
	$(EM =) \sqrt{("3.236x")^2 - x^2} (= 3.077x)$	M1
	$(\cos \angle VME =) \frac{\left("\sqrt{8}x"\right)^2 + ("1.701"x + "1.376"x)^2 - (3x)^2}{2 \times "\sqrt{8}x" \times ("1.701"x + "1.376"x)}$	dddM1
	\Rightarrow awrt 60.9° or better	A1 [6]
	1	Total 6 marks

Mark	Notes		
B1	For writing down or finding the angle $BXC = 72^{\circ}$ or $\angle ABC = 108^{\circ}$, any notation.		
	Clear identification or implicit use of this angle in later working is acceptable.		
	Note use of 36 degrees or 54 degrees implied this mark.		
M1	Ignore missing <i>x</i> 's throughout their solution.		
	For any correct, suitable trigonometry to find the length BX		
M1	Correct use of Pythagoras theorem (with a – sign) or suitable trigonometry to find		
	the height VX of the pyramid or the length VM		
M1	Correct use of Pythagoras theorem (with a – sign) or suitable trigonometry to find		
	the length of the midpoint of BC to point X		
dddM1	For any suitable trigonometry to find the size of the required angle.		
	Dependent on all 3 previous method marks.		
<u>A1</u>	For the correct angle, awrt 60.9°		
ALT1	For writing down or finding the angle $BXC = 72^{\circ}$ or $\angle ABC = 108^{\circ}$, any notation.		
B 1	Clear identification or implicit use of this angle in later working is acceptable.		
	Note use of 36 degrees or 54 degrees implied this mark.		
M2	Ignore missing x's throughout their solution.		
	For any correct method to find the length MX		
M1	Correct method to find the length <i>VM</i>		
dddM1	For any suitable trigonometry to find the size of the required angle.		
	Dependent on all 3 previous method marks.		
A1	For the correct angle, awrt 60.9°		
ALT2	For writing down or finding the angle $BXC = 72^{\circ}$ or $\angle ABC = 108^{\circ}$, any notation.		
B1	Clear identification or implicit use of this angle in later working is acceptable.		
	Note use of 36 degrees or 54 degrees implied this mark.		
M1	Ignore missing x's throughout their solution.		
	For any correct method to find the length EB		
M1	For any correct method to find VM		
M1	For any correct method to find <i>EM</i>		
dddM1	For any suitable trigonometry to find the size of the required angle.		
	Dependent on all 3 previous method marks.		
<u>A1</u>	For the correct angle, awrt 60.9°		
	Where students are allowed to use their values, indicated by inverted commas, it		
MUST be clear from working or their sketch this is the correct use of the relevant			
side. Beware $\sqrt{8}x$ coming from incorrect working of $\sqrt{(2x)^2 + (2x)^2}$			
	. 0		

Question	Scheme	Marks
10(a)	When $y = 0$, $x = 2$ or $(2, 0)$	B1
(i)		B1
(ii)	When $x = 0$, $y = -\frac{6}{4}$ oe or $\left(0, -\frac{6}{4}\right)$ oe	[2]
	If not labelled part (i) and (ii), do not award marks unless the candidate has presented in the correct order or has made it clear which coordinate or pair of values is <i>P</i> and which is <i>Q</i>	
(b)	(i) $x = 4$ (ii) $y = -3$	B1 B1
	If not labelled part (i) and (ii), do not award marks unless the candidate has presented in the correct order or has identification of horizontal (or parallel to x-axis) and vertical (or parallel to y-axis) is clear.	[2]
(c)	•	
	x = 4	B1 B1 ft B1 ft
	$\left(0, -\frac{6}{4}\right) Q \qquad \qquad (2, 0) P$	[3]
	10	
	y = -3	
(d)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} = \right) \frac{-3(x-4) - (6-3x) \times 1}{(x-4)^2} = \left[\frac{6}{(x-4)^2}\right] \text{ oe}$ where $x = 2$	M1A1A1
	$\frac{dy}{dx} = \frac{6}{(2-4)^2} = \frac{6}{4} \Rightarrow \text{Gradient of normal} = -\frac{4}{6} \text{ oe}$	M1
	Equation of normal: $y-0="-\frac{4}{6}"(x-2) \Rightarrow [3y=-2x+4]$ oe	dM1A1 [6]
(e)	$\frac{6-3x}{x-4} = \frac{-2x+4}{3} \Rightarrow 2x^2 - 21x + 34 = 0$	M1
	$\Rightarrow (2x-17)(x-2)=0$	M1
	At $R \Rightarrow x = \frac{17}{2}$, (2)	A1
		[3]
	Tota	al 16 marks

Part	Mark	Notes
(a) (i)	B1	Must state $y = 0$, $x = 2$ or $(2, 0)$ or clearly stating $x = 2$
(ii)	B1	Must state $y = 0$, $x = 2$ or $(2, 0)$ or clearly stating $x = 2$ Must state $x = 0$, $y = -\frac{6}{4}$ oe or $\left(0, -\frac{6}{4}\right)$ oe or clearly stating $y = -\frac{6}{4}$
(b)(i)	B1	For $x = 4$
(ii)	B1	For $y = -3$
(c)	B1	For a negative reciprocal curve drawn anywhere in the grid – there must be two branches present, they must not cross any asymptotes drawn and must not obviously 'bend back' on themselves. Mark intention.
	B1ft	For the asymptotes drawn, follow through their (b)(i) and (ii). There must be at least one branch of a negative reciprocal curve present in the correct place for their work in (a) and (b), which must not cross or obviously bend back from the asymptotes. The asymptotes must be labelled with their equation or shown as passing through 4 on the <i>x</i> -axis and – 3 on the <i>y</i> -axis, both clearly labelled.
	B1ft	For at least one branch of a negative reciprocal curve in the correct place for their work in (a) and (b), passing through their intercepts on the axes. The intercepts should be correctly labelled with the coordinates or the axes labelled correctly with $-\frac{6}{4}$ (oe) and 2 (or their ft values) but condone labelling to be P and Q .
(d)	M1	For an expression of the form. $\frac{-a(x-4)-(6-3x)\times b}{(x-4)^2}$ oe
	A1	For an expression of the form. $\frac{-3(x-4)-(6-3x)\times b}{(x-4)^2} \text{or} \frac{-a(x-4)-(6-3x)\times 1}{(x-4)^2}.\text{oe}$
	A1	Fully correct – need not be simplified.
	M1	For substituting $x = 2$ into their $\frac{dy}{dx}$ and finding the gradient of the normal. This is not a dependent method mark, but the substitution must be into a changed function. If their expression does not allow substitution of $x = 2$, this mark cannot be awarded.
	dM1	For a complete and correct method to find the equation of the normal using their (changed gradient), $y = 0$ and $x = 2$. Dependent on the previous mark. If $y = mx + c$ is used they must find a value for c .
(-)	A1	For any correct equation. This can be in any form and may be left unsimplified.
(e)	M1	For equating their equation of the normal to <i>C</i> and attempting to form a 3TQ. The attempt must involve correctly removing both denominators of the equation as a minimum and any attempt to collect terms.
	M1	For a minimally acceptable (see general guidance) and complete attempt to solve their quadratic equation, leading to a value of x .
	A1	For the x coordinate of point R $x = \frac{17}{2}$

Question	Scheme	Marks
11 (a)(i)	$(\alpha - \beta = 2\sqrt{6} \Rightarrow (\alpha - \beta)^2 = 24) \Rightarrow (\alpha + \beta)^2 - 4\alpha\beta = 24$ oe (1)	M1
	$\alpha^2 + \beta^2 = 30 \Rightarrow (\alpha + \beta)^2 - 2\alpha\beta = 30$ oe (2)	M1
		dM1A1*
	$(2) - (1) \qquad 6 = 2\alpha\beta \Rightarrow \alpha\beta = 3 \operatorname{cso}$	[4]
ALT1	$((\alpha - \beta)^2 = \alpha^2 + \beta^2 - 2\alpha\beta \Rightarrow) 2\alpha\beta = \alpha^2 + \beta^2 - (\alpha - \beta)^2 \text{oe}$	M1
	$30 - \left(2\sqrt{6}\right)^2 = 6$	M1
	$2\alpha\beta = 6 \Rightarrow \alpha\beta = 3$	dM1A1
(ii)	$a_{1} = a_{1} + a_{2} + a_{3} + a_{4} + a_{5} + a_{5$	[4] M1A1*
	$30 = (\alpha + \beta)^2 - 2 \times 3 \Rightarrow (\alpha + \beta)^2 = 36 \Rightarrow \alpha + \beta = 6 [\alpha > \beta > 0] \text{ cso}$	[2]
ALT2 (i)	$\alpha - \beta = 2\sqrt{6} \to \alpha = 2\sqrt{6} + \beta$	
	$\alpha^2 + \beta^2 = 30 \rightarrow \left(2\sqrt{6} + \beta\right)^2 + \beta^2 = 30$	M1
	$2\beta^2 + 4\sqrt{6}\beta - 6 = 0$ oe eg $\beta^2 + 2\sqrt{6}\beta - 3 = 0$	M1
	$(\beta =)$ $\frac{-2\sqrt{6} \pm \sqrt{(2\sqrt{6})^2 - 4(1)(-3)}}{2}$ oe $\rightarrow \beta (= 3 - \sqrt{6})$	
	$(\beta =) \xrightarrow{\qquad \qquad } 6 = 3 - \sqrt{6}$	dM1
	$\alpha = 3 + \sqrt{6}$	
	$\alpha\beta = (3 + \sqrt{6})(3 - \sqrt{6}) = 9 + 6\sqrt{3} - 6\sqrt{3} - 6 = 3$	A1*
(ii)	$\alpha + \beta = 3 + \sqrt{6} + 3 - \sqrt{6} = 6$	[4] M1A1
. ,		[2]
(b)(i)	$\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2 = 30^2 - 2 \times 3^2 = 882$	M1A1 [2]
(b) ii)	$\alpha^4 - \beta^4 = (\alpha^2 + \beta^2)(\alpha^2 - \beta^2) = (\alpha^2 + \beta^2)(\alpha - \beta)(\alpha + \beta)$	M1
	$\alpha^4 - \beta^4 = 30 \times 6 \times 2\sqrt{6} = 360\sqrt{6}$	A1
		[2]
(c)	$(\alpha^4 + \beta^4) + (\alpha^4 - \beta^4) = 2\alpha^4 = 882 + 360\sqrt{6} \Rightarrow \alpha^4 = 441 + 180\sqrt{6}$	M1A1 [2]
ALT1	$\alpha - \beta = 2\sqrt{6}, \alpha + \beta = 6 \Rightarrow \alpha = 3 + \sqrt{6}$	
	$\alpha^4 = \left(3 + \sqrt{6}\right)^4$	M1
	$\alpha^4 = 441 + 180\sqrt{6}$	A1 [2]
ALT2	$\alpha - \beta = 2\sqrt{6}, \alpha + \beta = 6 \Rightarrow \beta = 3 - \sqrt{6}$	
	$\alpha^4 = \beta^4 + 360\sqrt{6} = (3 - \sqrt{6})^4 + 360\sqrt{6}$	M1
	$\alpha^4 = 441 + 180\sqrt{6}$	A1
	•	[2] l 12 marks

Part	Mark	Notes
(a) (i)	M1	For forming an equation of the form $(\alpha + \beta)^2 \pm p\alpha\beta = 24$ oe or $(\alpha + \beta)^2 \pm t\alpha\beta = 30$
		oe
	M1	For this equation being fully correct. Both marks may be implied by early substitution of values.
	dM1	For correctly solving their simultaneous equations in $\alpha + \beta$ and $\alpha\beta$ to find a value for $\alpha\beta$, dependent on 1 st method mark.
	A1*cso	For the correct value of $\alpha\beta$
ALT1	M1	For forming an equation of the form $q\alpha\beta = \alpha^2 + \beta^2 - (\alpha - \beta)^2$ oe
	M1	For this equation being fully correct. Both marks may be implied by early substitution of values.
	dM1	For correct substitution into their equation, dependent on 1st method mark.
	A1*cso	For the correct value of $\alpha\beta$
(a) (ii)	M1	Correctly uses either of their equations (must be of the required form) to substitute the given value of $\alpha\beta$ and obtains a value for $\alpha + \beta$
	A1*cso	For the correct value of $\alpha + \beta$
ALT2 (i)	M1	For an attempt to eliminate α or β and arrive at an unsimplified quadratic equation in
(1)	M1	one variable. Allow one error For the correct quadratic equation
	dM1	For a fully correct method to solve their quadratic equation in α or β , dependent on
	•	the 1 st method mark
	A1*cso	For correctly finding α and β and showing the minimum steps shown to find $\alpha\beta$
	M1	For finding $\alpha + \beta$ with their values
	A1*cso	For finding $\alpha + \beta$ with the correct values, minimum steps as shown.
(b) (i)	M1	For the correct algebra $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2$, if they use more complex
		algebra, it must be correct and fully ready for substitution of given values.
		Do not allow $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2$ unless recovered
	A1	For substituting the given values to find the correct value for $\alpha^4 + \beta^4$
(b) (ii)	M1	For the correct algebra to write $\alpha^4 - \beta^4$ in terms of $(\alpha^2 + \beta^2), (\alpha - \beta)$ and $(\alpha + \beta)$
(11)	A1	For the correct value of $\alpha^4 - \beta^4$
(c)	M1	For adding together $\alpha^4 + \beta^4$ and $\alpha^4 - \beta^4$ to eliminate β^4 and reach α^4 either as an expression or implied by adding their values together and dividing by 2. If students subtract $\alpha^4 + \beta^4$ and $\alpha^4 - \beta^4$ to eliminate α^4 and reach β^4 , they must then reach α^4 as an expression or implied by subtracting their values, using one of the expressions from part b and dividing by 2.
	A1	For the correct value of $\alpha^4 = 441 + 180\sqrt{6}$
ALT1	M1	For $\alpha^4 = \left(3 + \sqrt{6}\right)^4$
	A1	For the correct value of $\alpha^4 = 441 + 180\sqrt{6}$
ALT2	M1	For $\alpha^4 = \beta^4 + 360\sqrt{6} = (3 - \sqrt{6})^4 + 360\sqrt{6}$
	A1	For the correct value of $\alpha^4 = 441 + 180\sqrt{6}$

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom