Conversão entre bases numéricas: Binário e Octal

Eduardo Furlan Miranda 2024-08-01

Baseado em: Tangon, LG; Santos, RC. Arquitetura e organização de computadores. EDE. 2016. ISBN 978-85-8482-382-6.

Conversão de decimal para octal

Converter 29₁₀ para a base octal

Octal para decimal

$$1^2$$
 6^1 7^0 =

$$(1 * 8^2) + (6 * 8^1) + (7 * 8^0) =$$

$$64 + 48 + 7 = 119_{10}$$

• Decimal → base divide

• Base → decimal multiplica

• Sai de decimal, divide

• Para decimal, multiplica

$$2^{3}$$
 5^{2} 6^{1} 7^{0} = $(2 * 8^{3}) + (5 * 8^{2}) + (6 * 8^{1}) + (7 * 8^{0}) =$

$$1024 + 320 + 48 + 7 = 1399_{10}$$

• 1359₈ está correto?

Binário para hexadecimal (base para base)

- Duas formas
 - passando pelo decimal
 - · converte para decimal, e depois para hexadecimal
 - sem passar pelo decimal
 - · usa uma tabela

Passando primeiro pelo decimal

110100111100₂ (para decimal, multiplica)

$$1^{11} 1^{10} 0^9 1^8 0^7 0^6 1^5 1^4 1^3 1^2 0^1 0^0 =$$

$$(1 * 2^{11}) + (1 * 2^{10}) + (1 * 2^{8}) + (1 * 2^{5}) + (1 * 2^{4}) + (1 * 2^{3}) + (1 * 2^{2}) =$$

$$2048 + 1024 + 256 + 32 + 16 + 8 + 4 = 3388_{10}$$

Depois converte de decimal para hexa

Saindo de decimal, divide

Resultado: D3C₁₆

Conversão direta

Tabela 3.5 | Tabela de valores entre bases

DECIMAL	BINÁRIO	OCTAL	HEXA
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

110100111100₂ = 1101 0011 1100 1101 = D | 0011 = 3 | 1100 = C

D3C₁₆

111 1100 1111

0111 1100 1111

0111 = 7, 1100 = Ce 1111 = F

7CF₁₆

Hexadecimal para binário

$$CA5_{16} \rightarrow ____{10} \rightarrow ____{2}$$

$$C^2$$
 A^1 5^0 = 12^2 10^1 5^0 =

$$(12 * 16^2) + (10 * 16^1) + (5 * 16^0) = 3072 + 160 + 5 = 3237_{10}$$

Conversão direta

$$CA5_{16} \rightarrow ----2$$
 $CA5_{16} \rightarrow ----2$
 $CA5_{16} \rightarrow ----2$
 $CA5_{16} \rightarrow -----2$
 $CA5_{16} \rightarrow -----2$
 $CA5_{16} \rightarrow -----2$

12 na tabela em binário é 1100, 10 representa 1010 e 5 representa 0101

110010100101₂

Sistemas de Numeração: Conversão Hexadecimal - Binário

Subscribe

Conversão entre bases numéricas: octal

Tabela 3.7 | Valores binários e octais

BINÁRIO	OCTAL	
000	0	
001	1	
010	2	
011	3	
100	4	
101	5	
110	6	
111	7	

1011010₂
$$\rightarrow$$
 ____8

O número em octal é 132₈

111111110101101₂
$$\rightarrow$$
 _____8

011 111 110 101 101 \rightarrow (passo a e b)

3 7 6 5 5 (passo c)

Temos como resultado o número 37655,

Conversão de octal para binário

3 7 1 6 →

011 111 001 110

O valor em binário é 011111001110,

101 101 010 011

Temos o resultado 101101010011₂

Conversão de octal para hexadecimal

Passa pelo binário

Converte de octal para binário, e depois para hexadecimal

DECIMAL	BINÁRIO	OCTAL	HEXA
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

$$1657_8 \rightarrow ____2 \rightarrow ____{16}$$

1 6 5 7
$$\rightarrow$$
 (passo a)

001 110 101 111
$$\rightarrow$$
 (passo b)

001110101111₂ Valor em Binário

0011 1010 1111
$$\rightarrow$$
 (passo c)

$$3 \quad A \quad F \rightarrow$$
 (passo d)

O resultado em hexadecimal é 3AF₁₆

$$356_8 \rightarrow _{---16}$$

$$0 E E \rightarrow$$

Conversão de hexadecimal para octal

Passa pelo binário

$$3AF_{16} \rightarrow ----_{2} \rightarrow ----_{8}$$
 $3 \quad A \quad F \rightarrow \qquad \text{(passo a)}$
 $0011 \quad 1010 \quad 1111 \rightarrow \qquad \text{(passo b)}$
 $0011101011111 \rightarrow \qquad \text{Valor encontrado em binário}$
 $001 \quad 110 \quad 101 \quad 111 \rightarrow \qquad \text{(passo c)}$
 $1 \quad 6 \quad 5 \quad 7 \rightarrow \qquad \text{(passo d)}$

O resultado em octal é 1657₈

FACA₁₆ ----8

F A C A \rightarrow

1111 1010 1100 1010 →

1111101011001010 →

001 111 101 011 001 010 >

1 7 5 3 1 $2 \rightarrow$