Package 'metools'

October 13, 2022

Title Macroeconomics Tools

Version 1.0.0
Description Provides a number of functions to facilitate the handling and production of reports using time series data. The package was developed to be understandable for beginners, so some functions aim to transform processes that would be complex into functions with a few lines. The main advantage of using the 'metools' package is the ease of producing reports and working with time series using a few lines of code, so the code is clean and easy to understand/maintain. Learn more about the 'metools' at https://metoolsr.wordpress.com .
License GPL-3
Encoding UTF-8
LazyData true
Imports ggplot2, scales, stringr, tibble, lubridate, tidyr
RoxygenNote 7.1.0
<pre>URL https://metoolsr.wordpress.com,https://github.com/jvg0mes/metools,https: //jvg0mes.github.io/metoolsr</pre>
NeedsCompilation no
Author João Victor Gomes de Araujo Santana [aut, cre]
Maintainer João Victor Gomes de Araujo Santana < jvg.santana@gmail.com>
Repository CRAN
Date/Publication 2020-06-26 08:50:14 UTC
R topics documented:
col2char

2 col2char

colround	
cuminyear	
cuminyear_var	 7
cum_var	 8
gm.col	 9
gm.col_ord	 10
gm.col_ord_wl	 12
gm.col_wl	 13
gm.line	 15
gm.tscol	 16
gm.tscol2	 17
gm.tsl	 19
me.lag	 20
me.spread	 21
metools	 22
metools.help	 22
month2num	 23
mp.s	 23
mp.ts	 26
num2month	 28
p.col	 29
p.colorbypositive	 31
p.colorbyvar	 31
p.col_ord	 32
p.col_ord_wl	 34
$p.col_wl \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	 36
p.gradientcolor	 39
p.line	 39
p.seqdatebreaks	 41
p.tscol	 42
p.tsl	 44
pct_change	 46
stattable	 47
	48

col2char

Transform defined columns to character.

Description

col2char transform columns type to character.

```
col2char(x, start, end = ncol(x))
```

col2factor 3

Arguments

x a dataframe

start number of start column

end number of last column (default=last)

Value

Return a dataframe with transformed columns.

Examples

```
v=data.frame(c(3,2,5,6,5,4)) class(v[,1]) #here class is numeric v=col2char(v,1) class(v[,1]) #now class is character
```

col2factor

Transform defined columns to factor.

Description

col2factor transform columns type to factor.

Usage

```
col2factor(x, start, end = ncol(x))
```

Arguments

x a dataframe

start number of start column

end number of last column (default=last)

Value

Return a dataframe with transformed columns.

```
v=data.frame(c(3,2,5,6,5,4))
class(v[,1]) #here class is numeric
v=col2factor(v,1)
class(v[,1]) #now class is character
```

4 col2percent

col2num

Transform defined columns to numeric.

Description

col2num transform columns type to numeric.

Usage

```
col2num(x, start, end = ncol(x))
```

Arguments

x a dataframe

start number of start column

end number of last column (default=last)

Value

Return a dataframe with transformed columns.

Examples

```
 v= data.frame(c('3','2','5','6','5','4')) \\ class(v[,1]) \  \, \mbox{there class is factor} \\ v= col2num(v,1) \\ class(v[,1]) \  \, \mbox{thow class is character}
```

col2percent

Add percent in column

Description

col2percent transform columns to percent.

Usage

```
col2percent(x, start, end = ncol(x), mult100 = FALSE)
```

Arguments

x a dataframe

start number of start column

end number of last column (default=last)

multiply by 100 if the number is a decimal fraction(T or F)(default=F)

colpct2num 5

Value

Return a dataframe with transformed columns.

Examples

```
v=data.frame(c(15,5,20,50,10))
col2percent(v,start=1)
v=data.frame(c(0.15,0.05,0.2,0.5,0.1))
col2percent(v,start=1,mult100=TRUE)
```

colpct2num

Remove percent from a column, and transform in number

Description

When use col2percent function to add a percent in a column, the type of this column now is character, colpct2num function remove percent from this column and transform in number.

Usage

```
colpct2num(x, start, end = ncol(x), div100 = TRUE)
```

Arguments

X	a dataframe
start	number of start column
end	number of last column (default=last)

div100 division by 100 (T or F)(default=T)

Value

Return a dataframe with transformed columns.

```
v=data.frame(c(15,5,20,50,10))
v=col2percent(v,start=1)
v=colpct2num(v,start=1,div100=TRUE)
```

6 cuminyear

-	
\sim	round
COT	ı ounu

Round defined columns

Description

colround round defined columns.

Usage

```
colround(x, start, end = ncol(x), digits)
```

Arguments

x a dataframe

start number of start column

end number of last column (default=last)

digits number of round digits

Value

Return a dataframe with transformed columns.

Examples

```
v=data.frame(c(3.255,5.826,4.567,2.462))
v=colround(v,1,digits=1)
```

cuminyear

Accumulated variation in year

Description

cuminyear calculates an accumulated variation in year of a index. Data must be start in january, use start to set this, if you data don't start in january and you need use this values, consider complete the previous months with 0.

```
cuminyear(data, coldate, colnum, start = 1)
```

cuminyear_var 7

Arguments

data a dataframe

coldate number of date column colnum number of values column

start number of start row

Value

Return a dataframe.

Examples

```
v=data.frame(
"Date"=c(seq.Date(as.Date("2018-01-01"),as.Date("2019-12-01"),by='month'))
,"Value"=c(rep(2,6),rep(3,6),rep(1,6),rep(5,6)))
cuminyear(v,coldate=1,colnum=2)

v=data.frame(
"Date"=c(seq.Date(as.Date("2018-06-01"),as.Date("2019-12-01"),by='month'))
,"Value"=c(rep(3,7),rep(1,6),rep(5,6)))

#this case, we can start in january 2019
cuminyear(v,coldate=1,colnum=2,start=8)

#or if we need the previous values i can complete january 2018 to may 2018 with 0.
v1=data.frame(Date=c(seq.Date(as.Date("2018-01-01"),as.Date("2018-05-01"),by='month')),
"Value"=c(rep(0,5)))
v=rbind(v1,v)
cuminyear(v,coldate=1,colnum=2)
```

cuminyear_var

Accumulated variation in year

Description

cuminyear_var calculates an accumulated variation in year of a rate, _var means the data must be a percentage variation. Data must be start in january, if you data don't start in january and you need use this values, consider complete the previous months with 0.

```
cuminyear_var(data, coldate, colnum, div100 = FALSE)
```

8 cum_var

Arguments

data a dataframe

coldate number of date column colnum number of values column

div100 divide data by 100, use if data is not fraction

Value

Return a dataframe.

Examples

```
v=data.frame(
"Date"=c(seq.Date(as.Date("2018-01-01"),as.Date("2019-12-01"),by='month'))
,"Value"=c(rep(0.02,12),rep(0.03,12)))
cuminyear_var(v,coldate=1,colnum=2)

v=data.frame(
"Date"=c('january','february','march')
,"Value"=c('1%','3%','2%'))
v=colpct2num(v,start=2,div100=TRUE)
v[[1]]=month2num(v[[1]])
v[[1]]=paste('2018',v[[1]],'01',sep="-")
v[[1]]=as.Date(v[[1]])
cuminyear_var(v,coldate=1,colnum=2)
```

cum_var

Accumulated variation

Description

cum_var calculates an accumulated variation of a rate, _var means the data must be a percentage variation.

Usage

```
cum_var(data, colnum, t, div100 = FALSE)
```

Arguments

data a dataframe colnum number of column

t number of periods to accumulate

div100 divide data by 100, use if data is not fraction

gm.col 9

Value

Return a dataframe.

Examples

```
v=data.frame(c(0.03,0.02,0.05))
cum_var(v,colnum=1,t=3)
v=data.frame(c('3%','2%','5%'))
v=colpct2num(v,start=1,div100=TRUE)
cum_var(v,colnum=1,t=3)
```

gm.col

Bar Graphic Model

Description

gm.col make a bar plot. Graphic models function family do graphic creation easy, is recommended for new programers, they have less and easyful parameters then p.col_ord but the graphic customize is more limited.

Usage

```
gm.col(
  data,
  ncolx,
  ncoly,
  ntimes,
  title,
  xlab = NULL,
 ylab = NULL,
  div100 = FALSE,
  percent = FALSE,
  fontsize = 0,
  cserie = "#17B221",
  clines = "white",
  ctext = "white",
  cbackground = "#141414",
  cbserie = cbackground
)
```

Arguments

```
data a dataframe

ncolx number of x column in data frame

ncoly number of y column in data frame
```

gm.col_ord

ntimes	number of observations to plot (count by tail)
title	title of plot
xlab	x axis label
ylab	y axis label
div100	If data percent are not in decimal format set TRUE.
percent	If TRUE, y axis in percent (default=F)
fontsize	change size of all words in graphic (only numbers)
cserie	change color of serie
clines	color of lines in graphic
ctext	color of words in graphic
cbackground	color of graphic background
cbserie	color of serie border (default= same cbackground)

Value

Return a graphic.

Examples

```
v=data.frame("x"=seq(from=1, to=4, by=1), "y"=c(5,3,7,2))
gm.col(v,1,2,title="Simple example",ntimes=3)
```

gm.col_ord

Ordered Bar Graphic Model

Description

gm.col_ord make a ordered bar plot. Graphic models function family do graphic creation easy, is recommended for new programers, they have less and easyful parameters then p.col_ord but the graphic customize is more limited.

```
gm.col_ord(
  data,
  ncolx,
  ncoly,
  ntimes,
  title,
  xlab = NULL,
  ylab = NULL,
  percent = FALSE,
```

gm.col_ord

```
div100 = FALSE,
  dec = FALSE,
  fontsize = 0,
  cserie = "#17B221",
  clines = "white",
  ctext = "white",
  cbackground = "#141414",
  cbserie = cbackground
)
```

Arguments

data	a dataframe
ncolx	number of x column in data frame
ncoly	number of y column in data frame
ntimes	number of observations to plot (count by tail)
title	title of plot
xlab	x axis label
ylab	y axis label
percent	If TRUE, y axis in percent (default=F)
div100	If data percent are not in decimal format set TRUE.
dec	If TRUE, bars plot in decrescent order.
fontsize	change size of all words in graphic (only numbers)
cserie	change color of serie
clines	color of lines in graphic
ctext	color of words in graphic
cbackground	color of graphic background
cbserie	color of serie border (default= same cbackground)

Value

Return a graphic.

```
v=data.frame("x"=seq(from=1, to=4, by=1), "y"=c(5,3,7,2))
gm.col_ord(v,1,2,title="Simple example",ntimes=3)
```

gm.col_ord_wl

gm.col_ord_wl

Ordered Bar Graphic with Legend Model

Description

gm.col_ord_wl make a bar plot. Graphic models function family do graphic creation easy, is recommended for new programers, they have less and easyful parameters then p.col_ord but the graphic customize is more limited.

Usage

```
gm.col_ord_wl(
  data,
  ncolx,
  ncoly,
  ntimes,
  title,
  legtitle,
  xlab = NULL,
  ylab = NULL,
  dec = FALSE,
  div100 = FALSE,
  percent = FALSE,
  fontsize = 0,
  colors = grDevices::rainbow(n = ntimes, v = 0.7),
  clines = "white",
  ctext = "white",
  cbackground = "#141414",
  cbserie = cbackground,
  legwpos = 0,
  legheight = 0.5
)
```

Arguments

```
data
                  a dataframe
ncolx
                  number of x column in data frame
                  number of y column in data frame
ncoly
ntimes
                  number of observations to plot (count by tail)
title
                  title of plot
legtitle
                  title of legendbox
xlab
                  x axis label
ylab
                  y axis label
                  If TRUE serie come be decrescent, if FALSE crescent(default=F)
dec
```

gm.col_wl

div100 If data percent are not in decimal format set TRUE. If TRUE, y axis in percent (default=F) percent fontsize change size of all words in graphic (only numbers) colors colors of bars clines color of lines in graphic ctext color of words in graphic cbackground color of graphic background cbserie color of serie border (default= same cbackground)

legwpos legend words position (numeric)

legheight height of legend box

Value

Return a graphic.

Examples

```
v=data.frame("x"=seq(from=1,to=4,by=1),"y"=c(5,3,7,2))
gm.col_ord_wl(v,1,2,title="Simple example",ntimes=3,legwpos=-2.5)
```

gm.col_wl

Bar Graphic with Legend Model

Description

gm.col_wl make a bar plot. Graphic models function family do graphic creation easy, is recommended for new programers, they have less and easyful parameters then p.col_ord but the graphic customize is more limited.

```
gm.col_wl(
  data,
  ncolx,
  ncoly,
  ntimes,
  title,
  legtitle,
  xlab = NULL,
  ylab = NULL,
  div100 = FALSE,
  percent = FALSE,
  fontsize = 0,
```

gm.col_wl

```
colors = grDevices::rainbow(n = ntimes, v = 0.7),
  clines = "white",
  ctext = "white",
  cbackground = "#141414",
  cbserie = cbackground,
  legwpos = 0,
  legheight = 0.5
)
```

Arguments

data a dataframe

ncolx number of x column in data frame ncoly number of y column in data frame

ntimes number of observations to plot (count by tail)

title title of plot

legtitle title of legendbox

xlab x axis label ylab y axis label

div100 If data percent are not in decimal format set TRUE.

percent If TRUE, y axis in percent (default=F)

fontsize change size of all words in graphic (only numbers)

colors colors of bars

clines color of lines in graphic
ctext color of words in graphic
cbackground color of graphic background

cbserie color of serie border (default= same cbackground)

legwpos legend words position (numeric)

legheight height of legend box

Value

Return a graphic.

```
v=data.frame("x"=seq(from=1,to=4,by=1),"y"=c(5,3,7,2))
gm.col_wl(v,1,2,title="Simple example",ntimes=3,legwpos=-2.5)
```

gm.line 15

 ${\tt gm.line} \qquad \qquad {\it Line~Graphic~Model}$

Description

gm.line make a line plot. Graphic models function family do graphic creation easy, is recommended for new programers, they have less and easyful parameters then p.line but the graphic customize is more limited.

Usage

```
gm.line(
  data,
 ncolx,
 ncoly,
 ntimes,
  title,
  xlab = NULL,
 ylab = NULL,
 div100 = FALSE,
  percent = FALSE,
  fontsize = 0,
 lwdserie = 1.5,
  cserie = "white",
  clines = "white",
 ctext = "white",
  cbackground = "#141414"
```

Arguments

data	a dataframe
ncolx	number of x column in data frame
ncoly	number of y column in data frame
ntimes	number of observations to plot (count by tail)
title	title of plot
xlab	x axis label
ylab	y axis label
div100	If data percent are not in decimal format set TRUE.
percent	If TRUE, y axis in percent (default=F)
fontsize	change size of all words in graphic (only numbers)
lwdserie	size of serie
cserie	change color of serie

gm.tscol

```
clines color of lines in graphic
ctext color of words in graphic
cbackground color of graphic background
```

Value

Return a graphic.

Examples

```
v=data.frame("x"=seq(from=1,to=4,by=1),"y"=c(5,3,7,2))
gm.line(v,1,2,title="Simple example",ntimes=3)
```

gm.tscol

Time serie bar Graphic Model

Description

gm.tscol make a bar plot in time serie format. Graphic models function family make graphic creation easy, is recommended for new programers, they have less and easyful parameters then p.tscol but the graphic customize is more limited . The data don't need be a ts object.

```
gm.tscol(
  data,
  ncolx,
  ncoly,
  ntimes,
  title,
  ylab = NULL,
  percent = FALSE,
  div100 = FALSE,
  fontsize = 0,
  datebreaks = "1 months",
  dateformat = "%b/%y",
  clines = "white",
  ctext = "white",
  cbackground = "#141414",
  cbserie = cbackground
)
```

gm.tscol2

Arguments

data a da	ıtaframe
-----------	----------

ncolx number of x column in data frame ncoly number of y column in data frame

ntimes number of observations to plot (count by tail)

title title of plot ylab y axis label

percent If TRUE y axis in percent (default=F)

div100 If data percent are not in decimal format set TRUE. fontsize change size of all words in graphic (only numbers)

datebreaks datebreaks in x axis (default="1 month")

dateformat format of date in x axis (need a dataformat string) (default ="%Y-%m")

clines color of lines in graphic
ctext color of words in graphic
cbackground color of graphic background

cbserie color of serie border (default= same cbackground)

Value

Return a graphic.

Examples

```
v=data.frame("x"=seq.Date(as.Date('2020-01-01'),
to = as.Date('2020-04-01'),by='month'),"y"=c(5,3,7,2))
gm.tscol(v,1,2,title="Simple example",ntimes=3)
```

gm.tscol2

Time serie bar Graphic Model

Description

gm.tscol2 make a bar plot in time serie format. The difference between gm.tscol2 and gm.tscol is possibility to select serie color. Graphic models function family make graphic creation easy, is recommended for new programers, they have less and easyful parameters then p.tscol but the graphic customize is more limited. The data don't need be a ts object.

gm.tscol2

Usage

```
gm.tscol2(
 data,
 ncolx,
 ncoly,
 ntimes,
  title,
 ylab = NULL,
 percent = FALSE,
 div100 = FALSE,
  fontsize = 0,
 datebreaks = "1 months",
 dateformat = "%b/%y",
 cserie = "white",
  clines = "white",
  ctext = "white",
 cbackground = "#141414",
  cbserie = cbackground
)
```

Arguments

data	a dataframe
ncolx	number of x column in data frame
ncoly	number of y column in data frame
ntimes	number of observations to plot (count by tail)
title	title of plot
ylab	y axis label
percent	If TRUE y axis in percent (default=F)
div100	If data percent are not in decimal format set TRUE.
fontsize	change size of all words in graphic (only numbers)
datebreaks	datebreaks in x axis (default="1 month")
dateformat	format of date in x axis (need a dataformat string) (default ="%Y-%m")
cserie	color of serie
clines	color of lines in graphic
ctext	color of words in graphic
cbackground	color of graphic background
cbserie	color of serie border (default= same cbackground)

Value

Return a graphic.

gm.tsl

Examples

```
v=data.frame("x"=seq.Date(as.Date('2020-01-01'),
to = as.Date('2020-04-01'),by='month'),"y"=c(5,3,7,2))
gm.tscol2(v,1,2,title="Simple example",ntimes=3)
```

gm.tsl

Time serie line Graphic Model

Description

gm.tsl make a line plot in time serie format. Graphic models function family make graphic creation easy, is recommended for new programers, they have less and easyful parameters then p.tsl but the graphic customize is more limited. The data don't need be a ts object.

Usage

```
gm.tsl(
  data,
  ncolx,
  ncoly,
  ntimes,
  title,
  ylab = NULL,
  percent = FALSE,
  div100 = FALSE,
  fontsize = 0,
  lwdserie = 1,
  datebreaks = "1 months",
  dateformat = "%b/%y",
  cserie = "white",
  clines = "white",
  ctext = "white",
  cbackground = "#141414"
)
```

Arguments

```
data a dataframe

ncolx number of x column in data frame

ncoly number of y column in data frame

ntimes number of observations to plot (count by tail)

title title of plot

ylab y axis label
```

20 me.lag

percent If TRUE y axis in percent (default=F)

div100 If data percent are not in decimal format set TRUE. fontsize change size of all words in graphic (only numbers)

lwdserie size of serie

datebreaks in x axis (default="1 month")

dateformat format of date in x axis (need a dataformat string) (default = "%Y-%m")

cserie color of serie

clines color of lines in graphic ctext color of words in graphic cbackground color of graphic background

Value

Return a graphic.

Examples

```
v=data.frame("x"=seq.Date(as.Date('2020-01-01'),
to = as.Date('2020-04-01'),by='month'),"y"=c(5,3,7,2))
gm.tsl(v,1,2,title="Simple example",ntimes=3)
```

me.lag

Lag a data

Description

me.lag lag a vector if t>0 or lead a vector if t<0.

Usage

```
me.lag(x, t = 1, nafill = NA, extrapolate = FALSE)
```

Arguments

x a vector

t number of times to lag (default=1)
nafill set value to fill NA's before first t value

extrapolate if TRUE extrapolate excedent values, only if t>0 (default=FALSE)

Value

Return a vector.

me.spread 21

Examples

```
v=c(3,2,5,6,5,4)
me.lag(v)
#now lead
me.lag(v,t=-1)
```

me.spread

Spread an dataframe.

Description

Transforms columns into rows and rows into columns.

Usage

```
me.spread(data, namenc = " ", mode = FALSE)
```

Arguments

data a dataframe

name of new column (first column) (default="")

mode if results are incorretly try set this to TRUE

Value

Return a dataframe.

```
 v= data.frame('date'=c('2016','2017'),'value1'=c(12,10),'value2'=c(8,6)) \\ me.spread(v,namenc='old header')
```

22 metools.help

metools

Macroeconomics Tools

Description

The 'metools' package provides a number of functions to facilitate the handling and production of reports using time series data. The package was developed to be understandable for beginners, so some functions aim to transform processes that would be complex into functions with a few lines. The main advantage of using the 'metools' package is the ease of producing reports and working with time series using a few lines of code, so the code is clean and easy to understand/maintain. Learn more about the 'metools' at https://metoolsr.wordpress.com.

Details

metools: A package for work with macroeconomics time series.

The 'metools' package provide two categorys of functions: Data manipulate: don't have prefix. Graphics: have p. prefix.

Author(s)

João Victor Gomes (jvg.santana@gmail.com)

See Also

Useful links:

https://metoolsr.wordpress.com/https://github.com/jvg0mes/metools/https://jvg0mes.github.io/metoolsr

metools.help

Metools Help

Description

Use this function to receive help to use metools.

Usage

metools.help()

Value

Return a info.

Examples

metools.help()

month2num 23

month2num

Transform month names to month numbers

Description

month2num transform month names to month numbers

Usage

```
month2num(date)
```

Arguments

date

a month names vector

Value

Return a month numbers.

Examples

```
v=c("jan","fev","mar","abr","mai","jun","jul","ago","set","out","nov","dez")
month2num(v)
v=data.frame('date'=c("janeiro","fevereiro",'março','abril'),'values'=c(18,27,10,48))
month2num(v$date)
#or
month2num(v[[1]])

#you can substitute column with function:
v$date = month2num(v$date)
v[[1]] = month2num(v[[1]])
```

mp.s

Multi serie plot

Description

mp.s make a plot with one or more series. The object parameter require a ggplot object (Look at the examples).

24 mp.s

Usage

```
mp.s(
  object,
  xaxis,
 yaxis,
 ybreaks = 10,
 percent = FALSE,
 yaccuracy = 0.01,
 ydecimalmark = ".",
  title = "Title",
  xlab = "X axis",
 ylab = "Y axis",
  stitle = NULL,
  note = NULL,
  ctitles = "black",
  cscales = ctitles,
  cbgrid = "white",
  clgrid = cbgrid,
  cplot = "white",
  cticks = "black",
  pnote = 1,
  cbord = cplot,
  titlesize = 20,
 wordssize = 12,
 snote = 11,
 xlim = NULL
)
```

Arguments

object

```
x axis of one of your graphics
xaxis
                  y axis of one of your graphics
yaxis
                   number of y axis breaks (default=10)
ybreaks
percent
                   If TRUE y axis in percent (default=F)
yaccuracy
                   a round for y axis (default=0.01)
ydecimalmark
                  y decimal mark (default=".")
title
                   title of plot
                  x axis label
xlab
ylab
                  y axis label
stitle
                  subtitle
note
                  note
ctitles
                  color of titles (title,xlab,ylab)
cscales
                  color of the scales (default= same ctitles)
```

a ggplot graphic object

mp.s 25

cbgrid	color of grid background
clgrid	color of grid lines
cplot	color of plot background
cticks	color of axis ticks
pnote	position of note (default=1) (only numbers)
cbord	color of plot border (default= same cplot)
titlesize	size of title (default=20) (only numbers)
wordssize	size of words (default=12) (only numbers)
snote	size of note (default=11) (only numbers)
xlim	limit of x axis (default=NULL)

Value

Return a graphic.

```
v=data.frame("x"=c('a','b','c','d','e'),"y"=c(5,3,7,10,9),"y2"=c(7,2,5,8,7))
g= ggplot2::ggplot()+ggplot2::geom_line(mapping=ggplot2::aes(x=v$x,y=v$y,group=1),lwd=2)+
ggplot2::geom_line(mapping=ggplot2::aes(x=v$x,y=v$y2,group=1),color='blue',lwd=2)
mp.s(object=g,xaxis=v$x,yaxis=v$y,title="Simple example")
mp.s(g,v$x,v$y,percent=TRUE,title="Example with percent data",xlab=NULL,ylab=NULL)
mp.s(g,v$x,v$y,percent=TRUE,yaccuracy=1,title="y accuracy set",xlab=NULL,ylab=NULL)
g= ggplot2::ggplot()+ggplot2::geom_area(mapping=ggplot2::aes(x=v$x,y=v$y),
fill='red',lwd=2,group=1)+
ggplot2::geom_area(mapping=ggplot2::aes(x=v$x,y=v$y2),fill='blue',lwd=2,group=1)
mp.s(g,v$x,v$y,title="Example with area plot")
v=data.frame("x"=c('a','b','c','d','e'),"y"=c(5,-3,-6,10,7))
g= ggplot2::ggplot()+ggplot2::geom_col(ggplot2::aes(x=v$x,y=v$y,group=1),
fill=p.colorbypositive(v$y),color='black',lwd=1)+
ggplot2::geom_line(ggplot2::aes(x=v$x,y=v$y,group=1),color='black',lwd=1)
mp.s(g,v$x,v$y,title="Example with colorbypositive",xlab=NULL,ylab=NULL)
```

26 mp.ts

mp.ts

Multi serie plot in time serie format

Description

mp.ts make plot in time serie format with one or more series. The data don't need be a ts object. The object parameter require a ggplot object (Look at the examples).

Usage

```
mp.ts(
  object,
  xaxis,
 yaxis,
  dateformat = "%Y-%m",
  datebreaks = "1 month",
  ybreaks = 10,
  percent = FALSE,
  yaccuracy = 0.01,
  ydecimalmark = ".",
  title = "Title",
  xlab = "X axis",
  ylab = "Y axis",
  stitle = NULL,
  note = NULL,
  ctitles = "black",
  cscales = ctitles,
  cbgrid = "white",
  clgrid = cbgrid,
  cplot = "white",
  cticks = "black",
  pnote = 1,
  cbord = cplot,
  titlesize = 20,
  wordssize = 12,
  snote = 11,
  xlim = NULL
)
```

Arguments

```
object a ggplot graphic object

xaxis x axis of one of your graphics

yaxis y axis of one of your graphics

dateformat format of date in x axis (need a dataformat string) (default = "%Y-%m")

datebreaks datebreaks in x axis (default="1 month")
```

mp.ts 27

ybreaks number of y axis breaks (default=10)
percent If TRUE y axis in percent (default=F)
yaccuracy a round for y axis (default=0.01)
ydecimalmark y decimal mark (default=".")

title title of plot
xlab x axis label
ylab y axis label
stitle subtitle
note note

ctitles color of titles (title,xlab,ylab)

cscales color of the scales (default= same ctitles)

cbgrid color of grid background

clgrid color of grid lines

cplot color of plot background

cticks color of axis ticks

pnote position of note (default=1) (only numbers)
cbord color of plot border (default= same cplot)
titlesize size of title (default=20) (only numbers)
wordssize size of words (default=12) (only numbers)
snote size of note (default=11) (only numbers)

xlim limit of x axis (default=NULL)

Value

Return a graphic.

```
v=data.frame("x"=seq.Date(as.Date('2020-01-01'),
to = as.Date('2020-05-01'),by='month'),"y"=c(5,3,7,10,9),"y2"=c(7,2,5,8,7))
g= ggplot2::ggplot()+ggplot2::geom_line(mapping=ggplot2::aes(x=v$x,y=v$y),lwd=2)+
ggplot2::geom_line(mapping=ggplot2::aes(x=v$x,y=v$y2),color='blue',lwd=2)
mp.ts(object=g,xaxis=v$x,yaxis=v$y,title="Simple example")
mp.ts(g,v$x,v$y,percent=TRUE,title="Example with percent data",xlab=NULL,ylab=NULL)
mp.ts(g,v$x,v$y,percent=TRUE,yaccuracy=1,title="y accuracy set",xlab=NULL,ylab=NULL)
g= ggplot2::ggplot()+ggplot2::geom_area(mapping=ggplot2::aes(x=v$x,y=v$y),
fill='red',lwd=2)+
ggplot2::geom_area(mapping=ggplot2::aes(x=v$x,y=v$y2),fill='blue',lwd=2)
```

28 num2month

```
mp.ts(g,v$x,v$y,dateformat="%B",title="Example with area plot")
v=data.frame("x"=seq.Date(as.Date('2020-01-01'),
to = as.Date('2020-05-01'),by='month'),"y"=c(5,-3,-6,10,7))
g= ggplot2::ggplot()+ggplot2::geom_col(ggplot2::aes(x=v$x,y=v$y),
fill=p.colorbypositive(v$y),color='black',lwd=1)+
ggplot2::geom_line(ggplot2::aes(x=v$x,y=v$y),color='black',lwd=1)
mp.ts(g,v$x,v$y,title="Example with colorbypositive",xlab=NULL,ylab=NULL)
```

num2month

Transform month numbers to month names

Description

num2month transform month numbers to month names

Usage

```
num2month(date, abbreviate = FALSE, ptbr = FALSE)
```

Arguments

date a month numbers vector abbreviate abbreviate months name

ptbr transalate result to "Portugues (Brasil)".

Value

Return a month names.

```
v=c(01,02,03,04,05,06,07,08,09,10,11,12)
num2month(v)
num2month(v,abbreviate=TRUE)
num2month(v,abbreviate=FALSE,ptbr=TRUE)
num2month(v,abbreviate=TRUE,ptbr=TRUE)

v=data.frame('date'=c(01,02,03,04),'values'=c(18,27,10,48))
num2month(v$date)
#or
num2month(v[[1]])

#you can substitute column with function:
v$date = num2month(v$date)
v[[1]] = num2month(v[[1]])
```

p.col 29

```
#The data can be a string, but is recommended use numbers,
#see a string examples:
v=c('01','02','03','04','05','06','07','08','09','10','11','12')
num2month(v)
v=c('1','2','3','4','5','6','7','8','9','10','11','12')
num2month(v)
```

p.col

Bar plot

Description

p.col make a bar plot.

```
p.col(
  data,
  xaxis,
  yaxis,
  ybreaks = 10,
 percent = FALSE,
  yaccuracy = 0.01,
 ydecimalmark = ".",
  title = "Title",
  xlab = "X axis",
 ylab = "Y axis",
  stitle = NULL,
  note = NULL,
  ctitles = "black",
  cscales = ctitles,
  cbgrid = "white",
  clgrid = cbgrid,
  cplot = "white",
  cserie = "black",
  cbserie = cserie,
  cticks = "black",
  lwdserie = 1,
  pnote = 1,
  cbord = cplot,
  titlesize = 20,
  wordssize = 12,
  snote = 11,
```

p.col

```
xlim = NULL
)
```

Arguments

data a dataframe xaxis x axis data yaxis y axis data

ybreaks number of y axis breaks (default=10)
percent If TRUE y axis in percent (default=F)
yaccuracy a round for y axis (default=0.01)
ydecimalmark y decimal mark (default=".")

title title of plot
xlab x axis label
ylab y axis label
stitle subtitle
note note

ctitles color of titles (title,xlab,ylab)

cscales color of the scales (default= same ctitles)

cbgrid color of grid background

clgrid color of grid lines

cplot color of plot background

cserie color of serie

cbserie color of serie border (default= same cserie)

cticks color of axis ticks lwdserie size of serie

pnote position of note (default=1) (only numbers)
cbord color of plot border (default= same cplot)
titlesize size of title (default=20) (only numbers)
wordssize size of words (default=12) (only numbers)
snote size of note (default=11) (only numbers)

xlim limit of x axis (default=NULL)

Value

Return a graphic.

```
v=data.frame("x"=1:5,"y"=c(10,4,8,5,2))
p.col(v,xaxis= v$x,yaxis=v$y)
#or
p.col(v,xaxis= v[[1]],yaxis=v[[2]])
```

p.colorbypositive 31

p.colorbypositive	Color by positive or negative	
-------------------	-------------------------------	--

Description

p.colorbypositive is a function to create a vector with colors by positive or negative. Recommended to color graphics created with metools p.functions.

Usage

```
p.colorbypositive(x, colorp = "#17B221", colorn = "#B21717")
```

Arguments

X	a numeric vector
colorp	Positive values color (default=Green)
colorn	Negative values color (default=Red)

Value

Return a vector with colors.

Examples

```
v=c(-3,-2,2,-2,3,2)
p.colorbypositive(x=v,colorp="blue",colorn="grey")
barplot(v,col=p.colorbypositive(v))
```

p.colorbyvar *Color by variation*

Description

p.colorbyvar is a function to create a vector with colors by variation. Recommended to color graphics created with metools p.functions.

```
p.colorbyvar(x, colorp = "#17B221", colorn = "#B21717", lag = 1)
```

p.col_ord

Arguments

Х	a numeric vector
colorp	Positive changes color (default=Green)
colorn	Negative changes color (default=Red)
lag	Lag to comparison (default=1)

Value

Return a vector with colors.

Examples

```
v=c(3,2,5,6,5,4)
p.colorbyvar(x=v,colorp="blue",colorn="grey")
barplot(v,col=p.colorbyvar(v))
```

p.col_ord

Ordered bar plot

Description

p.col_ord make a ordered bar plot.

```
p.col_ord(
 data,
 xaxis,
 yaxis,
 ybreaks = 10,
 dec = FALSE,
 percent = FALSE,
 yaccuracy = 0.01,
 ydecimalmark = ".",
  title = "Title",
 xlab = "X axis",
 ylab = "Y axis",
  stitle = NULL,
  note = NULL,
  ctitles = "black",
  cscales = ctitles,
  cbgrid = "white",
  clgrid = cbgrid,
  cplot = "white",
```

p.col_ord 33

```
cserie = "black",
cbserie = cserie,
cticks = "black",
lwdserie = 1,
pnote = 1,
cbord = cplot,
titlesize = 20,
wordssize = 12,
snote = 11,
xlim = NULL
)
```

Arguments

data a dataframe xaxis x axis data yaxis y axis data

ybreaks number of y axis breaks (default=10)

dec If TRUE serie come be decrescent,if FALSE crescent(default=F)

percent If TRUE y axis in percent (default=F)
yaccuracy a round for y axis (default=0.01)
ydecimalmark y decimal mark (default=".")

title title of plot
xlab x axis label
ylab y axis label
stitle subtitle
note note

ctitles color of titles (title,xlab,ylab)

cscales color of the scales (default= same ctitles)

cbgrid color of grid background

clgrid color of grid lines

cplot color of plot background

cserie color of serie

cbserie color of serie border (default= same cserie)

cticks color of axis ticks
lwdserie size of serie

pnote position of note (default=1) (only numbers)
cbord color of plot border (default= same cplot)
titlesize size of title (default=20) (only numbers)
wordssize size of words (default=12) (only numbers)
snote size of note (default=11) (only numbers)

xlim limit of x axis (default=NULL)

p.col_ord_wl

Value

Return a graphic.

Examples

```
v=data.frame("x"=1:5,"y"=c(10,4,8,5,2))
p.col_ord(v,xaxis= v$x,yaxis=v$y)
#or
p.col_ord(v,xaxis= v[[1]],yaxis=v[[2]])

p.col_ord(v,xaxis= v$x,yaxis=v$y,dec=TRUE,percent=FALSE)
p.col_ord(v,xaxis= v$x,yaxis=v$y,dec=TRUE,percent=TRUE)
p.col_ord(v,xaxis= v$x,yaxis=v$y,dec=FALSE,percent=FALSE)
p.col_ord(v,xaxis= v$x,yaxis=v$y,dec=FALSE,percent=TRUE)
```

p.col_ord_wl

Ordered bar plot with legend

Description

p.col_ord_wl make a ordered bar plot with legend.

```
p.col_ord_wl(
  data,
  xaxis,
 yaxis,
  ybreaks = 10,
  percent = FALSE,
  dec = FALSE,
  yaccuracy = 0.01,
  ydecimalmark = ".",
  title = "Title",
  xlab = "X axis",
 ylab = "Y axis",
  stitle = NULL,
  note = NULL,
  ctitles = "black",
  cscales = ctitles,
  cbgrid = "white",
  clgrid = cbgrid,
  cplot = "white",
  cbserie = "black",
  cticks = "black",
  lwdserie = 1,
```

p.col_ord_wl 35

```
legtitle = "Legend",
  legsize = 8,
  cleg = ctitles,
  legheight = 0.5,
  pnote = 1,
  cbord = cplot,
  titlesize = 20,
 wordssize = 12,
  snote = 11,
  legpos = "right",
  legdir = "horizontal",
  legcol = "white",
  legspa = 1,
  legvjust = 0.5,
  colors = grDevices::rainbow(length(xaxis), v = 0.7)
)
```

Arguments

data a dataframe x axis data xaxis yaxis y axis data number of y axis breaks (default=10) ybreaks percent If TRUE y axis in percent (default=F) dec If TRUE serie come be decrescent, if FALSE crescent(default=F) a round for y axis (default=0.01) yaccuracy y decimal mark (default=".") ydecimalmark title title of plot xlab x axis label ylab y axis label subtitle stitle note note ctitles color of titles (title,xlab,ylab) cscales color of the scales (default= same ctitles) cbgrid color of grid background clgrid color of grid lines cplot color of plot background cbserie color of serie border (default= same cserie) cticks color of axis ticks lwdserie size of serie legtitle title of legend box legsize size of legend

p.col_wl

colors of bars, need same number of correspondencies.

color of legend words cleg legheight height of legend box pnote position of note (default=1) (only numbers) cbord color of plot border (default= same cplot) titlesize size of title (default=20) (only numbers) wordssize size of words (default=12) (only numbers) snote size of note (default=11) (only numbers) legpos legend position legend direction legdir legcol color of legend box legspa spacement in legend box legvjust vertical adjust in legend box

Value

colors

Return ordered bar plot with legend.

Examples

```
v=data.frame("x"=1:5,"y"=c(10,4,8,5,2))
p.col_ord_wl(v,xaxis= v$x,yaxis=v$y)
#or
p.col_ord_wl(v,xaxis= v[[1]],yaxis=v[[2]])

p.col_ord_wl(v,xaxis= v$x,yaxis=v$y,dec=TRUE,percent=FALSE)
p.col_ord_wl(v,xaxis= v$x,yaxis=v$y,dec=TRUE,percent=TRUE)
p.col_ord_wl(v,xaxis= v$x,yaxis=v$y,dec=FALSE,percent=FALSE)
p.col_ord_wl(v,xaxis= v$x,yaxis=v$y,dec=FALSE,percent=TRUE)

#Layout example
p.col_ord_wl(v,v$x,v$y,note = "metools - 2020",title = "Layout example",
stitle = "Ordered bar plot",ylab=NULL,wordssize = 10,titlesize = 32,
legspa = 0.5,legvjust = -2.5,legsize = 10,cplot='grey',
cbgrid="black",clgrid= "grey",ctitles = 'white',cleg = 'white',
legcol='black',colors=topo.colors(length(v$x),alpha=0.8))
```

p.col_wl

Bar plot with legend

Description

p.col_wl make a bar plot with legend.

p.col_wl 37

Usage

```
p.col_wl(
  data,
  xaxis,
  yaxis,
 ybreaks = 10,
  percent = FALSE,
  yaccuracy = 0.01,
  ydecimalmark = ".",
  title = "title",
  xlab = "X axis",
  ylab = "Y axis",
  stitle = NULL,
  note = NULL,
  ctitles = "black",
  cscales = ctitles,
  cbgrid = "white",
  clgrid = cbgrid,
  cplot = "white",
  cbserie = "black",
  cticks = "black",
  lwdserie = 1,
  legtitle = "Legend",
  legsize = 8,
  cleg = ctitles,
  legheight = 0.5,
  pnote = 1,
  cbord = cplot,
  titlesize = 20,
  wordssize = 12,
  snote = 11,
  legpos = "right",
  legdir = "horizontal",
  legcol = "white",
  legspa = 1,
  legvjust = 0.5,
  colors = grDevices::rainbow(length(xaxis), v = 0.7)
)
```

Arguments

```
data a dataframe

xaxis x axis data

yaxis y axis data

ybreaks number of y axis breaks (default=10)

percent If TRUE y axis in percent (default=F)

yaccuracy a round for y axis (default=0.01)
```

p.col_wl

ydecimalmark y decimal mark (default=".")

title title of plot
xlab x axis label
ylab y axis label
stitle subtitle
note note

ctitles color of titles (title,xlab,ylab)

cscales color of the scales (default= same ctitles)

cbgrid color of grid background

clgrid color of grid lines

cplot color of plot background

cbserie color of serie border (default= same cserie)

cticks color of axis ticks

lwdserie size of serie

legtitle title of legend box legsize size of legend

cleg color of legend words legheight height of legend box

pnote position of note (default=1) (only numbers)
cbord color of plot border (default= same cplot)
titlesize size of title (default=20) (only numbers)
wordssize size of words (default=12) (only numbers)
snote size of note (default=11) (only numbers)

legposlegend positionlegdirlegend directionlegcolcolor of legend boxlegspaspacement in legend boxlegvjustvertical adjust in legend box

colors colors of bars, need same number of correspondencies.

Value

Return a dataframe with transformed columns.

```
v=data.frame("x"=1:5,"y"=c(10,4,8,5,2))
p.col_wl(v,xaxis= v$x,yaxis=v$y)
p.col_wl(v,xaxis= v$x,yaxis=v$y,colors=c('red','blue','green','grey','yellow'))
```

p.gradientcolor 39

p.gradientcolor

Create Gradient

Description

p.gradientcolor is a function to make easy create gradient pallet. Recommended to color graphics created with metools p.functions.

Usage

```
p.gradientcolor(color1, color2, n)
```

Arguments

color1 First gradient color
color2 Last gradient color
n Number of colors

Value

Return a vector with colors.

Examples

```
p.gradientcolor(color1="white",color2="blue",n=10)
v = p.gradientcolor("white","blue",n=20)
barplot(seq.int(from=1,to=20,by=1),col=v)
```

p.line

Line plot

Description

p.line make a line plot.

Usage

```
p.line(
  data,
  xaxis,
  yaxis,
  ybreaks = 10,
  percent = FALSE,
  yaccuracy = 0.01,
```

p.line

```
ydecimalmark = ".",
  title = "Title",
 xlab = "X axis",
 ylab = "Y axis",
  stitle = NULL,
 note = NULL,
  ctitles = "black",
  cscales = ctitles,
  cbgrid = "white",
  clgrid = cbgrid,
  cplot = "white",
  cserie = "black",
  cticks = "black",
  lwdserie = 1,
  pnote = 1,
  cbord = cplot,
  titlesize = 20,
 wordssize = 12,
  snote = 11,
  xlim = NULL
)
```

Arguments

```
data
                  a dataframe
xaxis
                  x axis data
yaxis
                  y axis data
                  number of y axis breaks (default=10)
ybreaks
                  If TRUE y axis in percent (default=F)
percent
                  a round for y axis (default=0.01)
yaccuracy
ydecimalmark
                  y decimal mark (default=".")
title
                  title of plot
xlab
                  x axis label
ylab
                  y axis label
stitle
                  subtitle
note
                  note
ctitles
                  color of titles (title,xlab,ylab)
cscales
                  color of the scales (default= same ctitles)
cbgrid
                  color of grid background
clgrid
                  color of grid lines
cplot
                  color of plot background
                  color of serie
cserie
cticks
                  color of axis ticks
```

p.seqdatebreaks 41

lwdserie	size of serie
pnote	position of note (default=1) (only numbers)
cbord	color of plot border (default= same cplot)
titlesize	size of title (default=20) (only numbers)
wordssize	size of words (default=12) (only numbers)
snote	size of note (default=11) (only numbers)
xlim	limit of x axis (default=NULL)

ATTIII IIIIII OI A AAIS (GCIAGIL—IVOL

Value

Return a line graphic.

Examples

```
v=data.frame("x"=1:5,"y"=c(10,4,8,5,2))
p.line(v,xaxis= v$x,yaxis=v$y)
#or
p.line(v,xaxis= v[[1]],yaxis=v[[2]])
```

p.seqdatebreaks

Create Date Interval

Description

p.seqdatebreaks is a function to break a time axis from graphic in specific interval. This function are recommended to select timeinterval of graphics created with metools p.functions.

Usage

```
p.seqdatebreaks(x, periodicity)
```

Arguments

```
x Time data from a Timeserie
periodicity Time interval (string)
```

Value

Return a vector with timeinterval.

```
x <- seq.Date(from=as.Date("2019-01-01"),to=as.Date("2020-01-01"),by=1)
p.seqdatebreaks(x,periodicity= "2 month")</pre>
```

p.tscol

p.tscol

Bar plot in time serie format

Description

p.tscol make a bar plot in time serie format. The data don't need be a ts object.

Usage

```
p.tscol(
  data,
  xaxis,
  yaxis,
  dateformat = "%Y-%m",
  datebreaks = "1 month",
  ybreaks = 10,
  percent = FALSE,
  yaccuracy = 0.01,
  ydecimalmark = ".",
  title = "Title",
  xlab = "X axis",
  ylab = "Y axis",
  stitle = NULL,
  note = NULL,
  ctitles = "black",
  cscales = ctitles,
  cbgrid = "white",
  clgrid = cbgrid,
  cplot = "white",
  cserie = "black",
  cbserie = cserie,
  cticks = "black",
  lwdserie = 1,
  pnote = 1,
  cbord = cplot,
  titlesize = 20,
  wordssize = 12,
  snote = 11,
  xlim = NULL
)
```

Arguments

```
data a dataframe xaxis x axis data yaxis y axis data
```

p.tscol 43

dateformat format of date in x axis (need a dataformat string) (default = "%Y-%m")

datebreaks datebreaks in x axis (default="1 month")

ybreaks number of y axis breaks (default=10)

percent If TRUE y axis in percent (default=F)

yaccuracy a round for y axis (default=0.01)

ydecimalmark y decimal mark (default=".")

title title of plot
xlab x axis label
ylab y axis label
stitle subtitle
note note

ctitles color of titles (title,xlab,ylab)

cscales color of the scales (default= same ctitles)

cbgrid color of grid background

clgrid color of grid lines

cplot color of plot background

cserie color of serie

cbserie color of serie border (default= same cserie)

cticks color of axis ticks

lwdserie size of serie

pnote position of note (default=1) (only numbers)
cbord color of plot border (default= same cplot)
titlesize size of title (default=20) (only numbers)
wordssize size of words (default=12) (only numbers)
snote size of note (default=11) (only numbers)

xlim limit of x axis (default=NULL)

Value

Return a graphic.

```
v=data.frame("x"=seq.Date(as.Date('2020-01-01'),
to = as.Date('2020-04-01'),by='month'),"y"=c(5,3,7,2))
p.tscol(v,v$x,v$y,title="Simple example")
p.tscol(v,v$x,v$y,dateformat="%B",title="Example with colorbyvar",
ylab="Values",xlab=NULL,cserie=p.colorbyvar(v$y))
v=data.frame("x"=seq.Date(as.Date('2020-01-01'),
```

p.tsl

```
to = as.Date('2020-04-01'),by='month'),"y"=c(0.03,-0.05,0.08,-0.02))
p.tscol(v,v$x,v$y,percent=TRUE,title="Example with percent data",xlab=NULL,ylab=NULL)
p.tscol(v,v$x,v$y,percent=TRUE,yaccuracy=1,title="y accuracy set",xlab=NULL,ylab=NULL)
p.tscol(v,v$x,v$y,percent=TRUE,yaccuracy=1,title="Example with colorbypositive",xlab=NULL,ylab=NULL,cserie=p.colorbypositive(v$y),cbserie="black",lwdserie=1) #lwdserie change the board in this case
```

p.tsl

Line plot in time serie format

Description

p.tsl make a line plot in time serie format. The data don't need be a ts object.

Usage

```
p.tsl(
  data,
  xaxis,
  yaxis,
  dateformat = "%Y-%m",
  datebreaks = "1 month",
  ybreaks = 10,
  percent = FALSE,
  yaccuracy = 0.01,
  ydecimalmark = ".",
  title = "Title",
  xlab = "X axis",
  ylab = "Y axis",
  stitle = NULL,
  note = NULL,
  ctitles = "black",
  cscales = ctitles,
  cbgrid = "white",
  clgrid = cbgrid,
  cplot = "white",
  cserie = "black"
  cticks = "black",
  lwdserie = 1,
  pnote = 1,
  cbord = cplot,
  titlesize = 20,
 wordssize = 12,
  snote = 11,
  xlim = NULL
)
```

p.tsl 45

Arguments

note

data a dataframe xaxis x axis data yaxis y axis data

dateformat format of date in x axis (need a dataformat string) (default ="%Y-%m")

datebreaks datebreaks in x axis (default="1 month")

ybreaks number of y axis breaks (default=10)

percent If TRUE y axis in percent (default=F)

yaccuracy a round for y axis (default=0.01)

ydecimalmark y decimal mark (default=".")

title title of plot
xlab x axis label
ylab y axis label
stitle subtitle

ctitles color of titles (title,xlab,ylab)

cscales color of the scales (default= same ctitles)

cbgrid color of grid background

note

clgrid color of grid lines

cplot color of plot background

cserie color of serie

cticks color of axis ticks

lwdserie size of serie

pnote position of note (default=1) (only numbers)
cbord color of plot border (default= same cplot)
titlesize size of title (default=20) (only numbers)
wordssize size of words (default=12) (only numbers)
snote size of note (default=11) (only numbers)

xlim limit of x axis (default=NULL)

Value

Return a dataframe with transformed columns.

pct_change

Examples

```
v=data.frame("x"=seq.Date(as.Date('2020-01-01'),
to = as.Date('2020-04-01'),by='month'),"y"=c(5,3,7,2))
p.tsl(v,v$x,v$y,title="Simple example")
v=data.frame("x"=seq.Date(as.Date('2020-01-01'),
to = as.Date('2020-04-01'),by='month'),"y"=c(0.03,-0.05,0.08,-0.02))
p.tsl(v,v$x,v$y,percent=TRUE,title="Example with percent data",xlab=NULL,ylab=NULL)
p.tsl(v,v$x,v$y,percent=TRUE,yaccuracy=1,title="y accuracy set",xlab=NULL,ylab=NULL)
```

pct_change

Percentual change

Description

pct_change calculate the percentual change in t periods of a serie. We can use this function to calculate the acumulated variation of an index, for example to calculate the accumulated variation in 12 months just set t parameter to 12

Usage

```
pct_change(data, colnum, t = nrow(data[colnum]) - 1, nafill = NA)
```

Arguments

data a dataframe

colnum number of column

t number of periods to accumulate (default= number of rows)

nafill set value to fill NA's before first t value

Value

Return a dataframe.

stattable 47

stattable Descritive statistic table

Description

stattable make a descritive statistic table.

Usage

```
stattable(data, horiz = FALSE, translate = FALSE)
```

Arguments

data a dataframe

horiz defines table be a horizontal table (default=FALSE) translate if TRUE translate table to PT-BR (default=FALSE)

Value

Return a dataframe with descritive statistics.

```
 v= data.frame(dataone=c(3,2,5,6,5,4), datatwo=c(33,22,55,66,55,44), datathree=c(133,122,155,166,155,144)) \\ stattable(v) #vertical table \\ stattable(v,translate=TRUE) #vertical table translated \\ stattable(v,horiz=TRUE) #horizontal table \\ stattable(v,horiz=TRUE,translate=TRUE) #horizontal table translated \\ stattable(v,horiz=TRUE,translate=TRUE) #horizontal table \\ stattable(v,horiz=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=TRUE,translate=
```

Index

```
col2char, 2
                                                   pct_change, 46
col2factor, 3
                                                   stattable, 47
col2num, 4
col2percent, 4
colpct2num, 5
colround, 6
cum_var, 8
cuminyear, 6
cuminyear_var, 7
gm.col, 9
gm.col_ord, 10
gm.col_ord_wl, 12
gm.col_w1, 13
gm.line, 15
gm.tscol, 16
gm.tscol2, 17
gm.tsl, 19
\text{me.lag}, \textcolor{red}{20}
me.spread, 21
metools, 22
metools.help, 22
month2num, 23
mp.s, 23
mp.ts, 26
num2month, 28
p.col, 29
p.col_ord, 32
p.col_ord_wl, 34
p.col_wl, 36
p.colorby positive, 31
p.colorbyvar, 31
p.gradientcolor, 39
p.line, 39
p.seqdatebreaks, 41
p.tscol, 42
p.tsl,44
```