

EDUCACIÓN PROFESIONAL

Programación en R para ciencia de datos DBDC

Educación Profesional Escuela de Ingeniería

Profesor:

Miguel Jorquera Viguera

REGLAS DE ASOCIACIÓN

www.educacionprofesional.ing.uc.cl

Objetivo

- Generar "reglas" que asocien productos.
- Estas reglas deben ser:
 - Frecuentes
 - Razonables.

Definiciones

{Zapatos, cartera} → {Traje de Baño}

Conceptos claves:

- Item
- Itemset
- Antecedente
- Consecuente
- Regla de asociación

Métricas claves:

- Support
- Confidence
- Lift

Definiciones

Reglas basadas en probabilidades.

•
$$Supp(\{a,b\}) = \frac{\# Transacciones \ que \ contienen \ a \ y \ b}{\# Transacciones}$$

•
$$Conf(\{a,b\} \to \{c\}) = \frac{Supp(\{a,b,c\})}{Supp(\{a,b\})} = \hat{P}(\{c\} \mid \{a,b\})$$

Definiciones

¿Qué hace "buena" a una regla? Debe ser común:

$$Supp(\{a,b\}) \ge \theta$$

¿Cómo generar las reglas?

Debe ser razonable:

$$Conf(\{a,b\} \rightarrow \{c\}) \ge minconf$$

Algoritmo:

- Se buscan los itemset de un item y se filtran aquellos con soporte mayor o igual que θ
- Repetir hasta que no se puedan formar nuevos Itemsets:
 - Crea itemsets candidatos: Para cada par de itemsets ya listados con k elementos, combinarlos si comparten k-1 elementos.
 - Poda: Retener candidato si tiene un soporte de al menos θ para definir la lista con itemset con k+1 elementos.
 - Fin: si la lista de itemsets con k+1 elementos es vacía.

Itemsets

Itemset	Supp	
{1}	2	
{2}	3	
{3}	3	
{5}	3	
{1,3}	2	
{2, 3}	3	
{2,5}	3	
{3,5}	2	
{2,3,5}	2	

¿Qué reglas escogemos?

Reglas de asociación

Regla	Confidence	Regla	Confidence
1 → 3	2/2 = 1	5 → 3	2/3 = 0.66
$2 \rightarrow 3$	3/3 = 1	$\{2,3\} \to 5$	2/3 = 0.66
$2 \rightarrow 5$	3/3 = 1	${3,5} \rightarrow 2$	2/2 = 1
$3 \rightarrow 5$	2/3 = 0.66	$\{2,5\} \rightarrow 3$	2/3 = 0.66
3 → 1	2/3 = 0.66	$5 \rightarrow \{2,3\}$	2/3 = 0.66
$3 \rightarrow 2$	3/3 = 1	$2 \rightarrow \{3,5\}$	2/3 = 0.66
5 → 2	3/3 = 1	$3 \rightarrow \{2,5\}$	2/3 = 0.66

¿Qué reglas son preferibles?

• Ordenar por confidence:

$$Conf(a \to b) = \hat{P}(b|a) = \frac{Supp(a \cup b)}{Supp(a)}$$

Ordenar por lift:

$$Lift(a \to b) = \frac{Conf(a \to b)}{Supp(b)} = \frac{\hat{P}(a \cup b)}{\hat{P}(a)\hat{P}(b)}$$

• Ordenar por lift:
$$Lift(a \to b) = \frac{Conf(a \to b)}{Supp(b)} = \frac{\hat{P}(a \cup b)}{\hat{P}(a)\hat{P}(b)}$$

www.educacionprofesional.ing.uc.cl

Wikipedia:

"Lift is a measure of the performance of a targeting <u>model</u> (association rule) at predicting or classifying cases as having an enhanced response (with respect to the population as a whole), measured against a random choice targeting model. A targeting model is doing a good job if the response within the target is much better than the average for the population as a whole. Lift is simply the ratio of these values:"

$$Lift = \frac{target\ response}{average\ response}$$

Wikipedia:

Por ejemplo,

En una población la tasa de respuesta es de un 5%, pero cierto modelo (o regla) logra identificar un segmento con una tasa de respuesta de un 20%. Entonces dicho segmento tiene un lift de 4.0 (20%/5%).

Vamos!

