Math Problems

YILONG LIU

May 2025

1 Question 1: An unbiased estimator of the variance of i.i.d random variables

Let $(Y_i)_{1 \le i \le n}$ be n i.i.d random variables. Let $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ denote the average of these variables. Let Y be a random variable with the same distribution as the Y_i s. The goal of the exercise is to show that $\frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$ is an unbiased estimator of V(Y), the variance of the Y_i s.

- (1) Show that $\frac{1}{n-1} \sum_{i=1}^{n} (Y_i \bar{Y})^2 = \frac{1}{n-1} \sum_{i=1}^{n} Y_i^2 \frac{n}{n-1} (\bar{Y})^2$.
- (2) Use the result in question 1) to prove that $E\left(\frac{1}{n-1}\sum_{i=1}^{n}(Y_i-\bar{Y})^2\right)=V(Y)$.

1.1 Question (1) Solution

We can expand the left hand side equation and have:

$$\frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i^2 - 2Y_i \bar{Y} + \bar{Y}^2)$$

$$= \frac{1}{n-1} (\sum_{i=1}^{n} Y_i^2) - \frac{2}{n-1} \bar{Y} (\sum_{i=1}^{n} Y_i) + \frac{n}{n-1} \bar{Y}^2$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} Y_i^2 - \frac{2}{n-1} \bar{Y} n \bar{Y} + \frac{n}{n-1} \bar{Y}^2$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} Y_i^2 - \frac{n}{n-1} \bar{Y}^2$$

1.2 Quesiton (2) Solution

According to the result in question (1), we have the following:

$$\begin{split} E[\frac{1}{n-1}\sum_{i=1}^{n}(Y_{i}-\bar{Y})^{2}] &= E[\frac{1}{n-1}\sum_{i=1}^{n}Y_{i}^{2}-\frac{n}{n-1}(\bar{Y})^{2}] \\ &= \frac{1}{n-1}E[\sum_{i=1}^{n}Y_{i}^{2}] - \frac{n}{n-1}E[\bar{Y}^{2}] \\ &= E[\frac{1}{n-1}\sum_{i=1}^{n}Y_{i}^{2}] - E[\frac{n}{n-1}\bar{Y}^{2}] \\ &= E[Y^{2}] - E^{2}[Y] \end{split}$$

Note: As $\frac{1}{n-1}\sum_{i=1}^{n}Y_{i}^{2}$ is the unbiased estimator of $E[Y^{2}]$.

2 Exercise 1, Question 2: A super consistent estimator

Assume you observe an iid sample of n random variables $(Y_i)_{1 \le i \le n}$ following the uniform distribution on $[0, \theta]$, where θ is an unknown strictly positive real number we would like to estimate. Let Y be a random variable with the same distribution as the Y_i s.

- (1) Compute E(Y). Write θ as a function of E(Y).
- (2) Use question (1) to propose an estimator $\hat{\theta}_{MM}$ for θ using the method of moments (reminder: that method amounts to replacing expectations by sample means).
- (3) Show that $\hat{\theta}_{MM}$ is an asymptotically normal estimator of θ , and show that its asymptotic variance is 4V(Y).

Consider the following alternative estimator for θ : $\hat{\theta}_{ML} = \max_{1 \leq i \leq n} \{Y_i\}$.

- (4) Why does using $\hat{\theta}_{ML}$ to estimate θ sounds like a natural idea?
- (5) Show that

$$P(\hat{\theta}_{ML} \le x) = \begin{cases} 0 & \text{if } x < 0\\ \left(\frac{x}{\theta}\right)^n & \text{if } x \in [0, \theta]\\ 1 & \text{if } x > \theta \end{cases}$$

2.1 Question (1) Solution

By definition:

$$E[Y] = \int_0^\theta y \cdot f(y) dy$$

As it is uniform distribution: $f(y) = \frac{1}{\theta}$ Then we have the follows:

$$E[Y] = \int_0^\theta \frac{y}{\theta} dy$$
$$= \frac{1}{2\theta} \cdot y^2 |_0^\theta$$
$$= \frac{\theta}{2}$$

Therefore, $E[Y] = \frac{\theta}{2}$, $\theta = 2E[Y]$.

2.2 Question (2) Solution

From (1), $\theta = 2E[Y]$, we propose that the estimator $\hat{\theta}_{MM}$ for θ to be:

$$\hat{\theta}_{MM} = \frac{2}{n} \sum_{i=1}^{n} Y_i$$

based on n random variables $(Y_i)_{1 \le i \le n}$.

2.3 Question (3) Solution

From (1), $\theta = 2E[Y]$, we propose that the estimator $\hat{\theta}_{MM}$ for θ to be:

$$\hat{\theta}_{MM} = \frac{2}{n} \sum_{i=1}^{n} Y_i$$

based on n random variables $(Y_i)_{1 \leq i \leq n}$.

By the Central Limit Theorem, we have:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}-E[Y]\right)\xrightarrow{d}\mathcal{N}(0,V(Y))$$

which implies that

$$\sqrt{n}(\hat{\theta}_{MM} - \theta) = \sqrt{n}(2\bar{Y} - 2E[Y]) = 2\sqrt{n}(\bar{Y} - E[Y]) \xrightarrow{d} \mathcal{N}(0, 4V(Y)).$$

Therefore, $\hat{\theta}_{MM}$ is an asymptotically normal estimator of θ , and its asymptotic variance is 4V(Y).

2.4 Question (4) Solution

It is because that the random variables $(Y_i)_{1 \le i \le n}$ follows a uniform distribution on $[0, \theta]$. Therefore for any i such that $1 \le i \le n$, we have $Y_i \in [0, \theta]$, and it is then a natural idea to assume the key parameter $\hat{\theta}_{ML} = \max_{1 \le i \le n} Y_i$.

2.5 Question (5) Solution

By definition, $P(\hat{\theta}_{ML} \leq x) = P(\max_{1 \leq i \leq n} \{Y_i\} \leq x)$, then: if x < 0, then the probability is 0 as $Y_i \in [0, \theta]$ for any i. if $x \in [0, \theta]$, then:

$$P(\max_{1 \le i \le n} \{Y_i\} \le x) = \prod_{i=1}^n P(Y_i \le x)$$

$$= \prod_{i=1}^n F(X)$$

$$= \left(\frac{x-0}{\theta-0}\right)^n$$

$$= \left(\frac{x}{\theta}\right)^n$$

if $x > \theta$, then the probability is 1 as $Y_i \in [0, \theta]$ for any i.