МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа №3 по курсу «Методы машинного обучения»

Тема: «Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных»

ИСПОЛНИТЕЛЬ:	Ромичева Е.В.
группа ИУ5-22М	подпись
	"_"2019 г.
ПРЕПОДАВАТЕЛЬ:	Гапанюк Ю.Е.
	подпись
	""2019 г.

Москва - 2019

Цель работы

Цель лабораторной работы: изучение способов предварительной обработки данных для дальнейшего формирования моделей.

Задание

- 1. Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.)
- 2. Для выбранного датасета (датасетов) на основе материалов лекции решить следующие задачи:
- обработку пропусков в данных (lab3_1);
- кодирование категориальных признаков (lab3_2);
- масштабирование данных (lab3_3);

lab3_1

March 6, 2019

```
In [1]: import numpy as np
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        %matplotlib inline
        sns.set(style="ticks")
In [22]: data = pd.read_csv(r'shanghaiData.csv', sep=",")
         data.head()
Out[22]:
           world_rank
                                                   university_name national_rank \
         0
                    1
                                                Harvard University
         1
                    2
                                           University of Cambridge
                                                                                1
         2
                    3
                                               Stanford University
                                                                                2
         3
                    4
                                University of California, Berkeley
                                                                                3
                    5 Massachusetts Institute of Technology (MIT)
            total_score alumni
                                 award
                                         hici
                                                  ns
                                                         pub
                                                               рср
                                                                    year
         0
                  100.0
                          100.0
                                 100.0 100.0 100.0
                                                     100.0 72.4
                                                                    2005
         1
                   73.6
                           99.8
                                  93.4
                                         53.3
                                                56.6
                                                       70.9 66.9
                                                                    2005
                           41.1
                                  72.2
         2
                   73.4
                                         88.5
                                                70.9
                                                       72.3 65.0
                                                                    2005
                   72.8
         3
                           71.8
                                  76.0
                                         69.4
                                                 73.9
                                                       72.2 52.7
                                                                    2005
                           74.0
         4
                   70.1
                                  80.6
                                         66.7
                                                 65.8
                                                        64.3 53.0
                                                                    2005
In [23]: for col in data.columns:
             temp_null_count = data[data[col].isnull()].shape[0]
             print('{} - {}'.format(col, temp_null_count))
world rank - 0
university_name - 1
national_rank - 1
total_score - 3796
alumni - 1
award - 2
hici - 2
ns - 22
pub - 2
```

```
pcp - 2
year - 0
In [24]: data.shape
Out [24]: (4897, 11)
In [25]: data.dtypes
Out[25]: world_rank
                              object
         {\tt university\_name}
                              object
         national_rank
                              object
         total_score
                             float64
         alumni
                             float64
         award
                             float64
         hici
                             float64
         ns
                             float64
                             float64
         pub
                             float64
         рср
                               int64
         year
         dtype: object
In [26]: data.isnull().sum()
Out[26]: world_rank
                                0
         university_name
                                1
         national_rank
                                1
         total_score
                             3796
         alumni
                                1
                                2
         award
         hici
                                2
         ns
                               22
         pub
                                2
                                2
         рср
                                0
         year
         dtype: int64
  1.
   1.1. -
In [7]: #,
        data1 = data.dropna(axis=1, how='any')
        (data.shape, data1.shape)
Out[7]: ((2603, 14), (2603, 10))
In [8]: # ,
        data2 = data.dropna(axis=0, how='any')
        (data.shape, data2.shape)
```

```
Out[8]: ((2603, 14), (2362, 14))
In [9]: #
        data3 = data.fillna(0)
        data3.head()
Out [9]:
         world_rank
                                            university_name
                                                                               country \
        0
                   1
                                         Harvard University United States of America
        1
                   2
                         California Institute of Technology United States of America
                   3 Massachusetts Institute of Technology United States of America
        3
                                        Stanford University United States of America
        4
                   5
                                       Princeton University United States of America
           teaching international research citations income total_score \
        0
               99.7
                             72.4
                                       98.7
                                                  98.8
                                                          34.5
                                                                      96.1
        1
               97.7
                             54.6
                                       98.0
                                                  99.9
                                                          83.7
                                                                      96.0
        2
                             82.3
               97.8
                                       91.4
                                                  99.9
                                                          87.5
                                                                      95.6
        3
               98.3
                             29.5
                                       98.1
                                                  99.2
                                                          64.3
                                                                      94.3
        4
               90.9
                             70.3
                                       95.4
                                                  99.9
                                                                      94.2
          num_students student_staff_ratio international_students female_male_ratio \
        0
                20,152
                                        8.9
                                                                25%
        1
                 2,243
                                        6.9
                                                                27%
                                                                              33:67
        2
                11,074
                                                                33%
                                                                              37 : 63
                                        9.0
        3
                15,596
                                                                22%
                                                                              42 : 58
                                        7.8
        4
                 7,929
                                        8.4
                                                                27%
                                                                              45 : 55
           year
        0 2011
        1 2011
        2 2011
        3 2011
        4 2011
In [27]: total_count = data.shape[0]
        print(' : {}'.format(total_count))
 : 4897
  1.2. "" - (imputation)
  1.2.1.
In [28]: #
         num_cols = []
         for col in data.columns:
             #
```

```
temp_null_count = data[data[col].isnull()].shape[0]
              dt = str(data[col].dtype)
              if temp_null_count>0 and (dt=='float64' or dt=='int64'):
                  num_cols.append(col)
                  temp perc = round((temp null count / total count) * 100.0, 2)
                  print(' {}. {}.
                                       {}, {}%.'.format(col, dt, temp_null_count, temp_perc))
                              3796, 77.52%.
 total_score.
                 float64.
 alumni.
           float64.
                         1, 0.02%.
                       2, 0.04%.
 award.
          float64.
hici.
         float64.
                      2, 0.04%.
       float64.
                    22, 0.45%.
 ns.
 pub.
        float64.
                     2, 0.04%.
 pcp.
        float64.
                     2, 0.04%.
In [29]: data_num = data[num_cols]
         data_num
Out [29]:
                total_score
                              alumni
                                       award
                                               hici
                                                         ns
                                                                pub
                                                                       рср
                                                                      72.4
         0
                      100.0
                               100.0
                                       100.0
                                              100.0
                                                      100.0
                                                              100.0
         1
                       73.6
                                99.8
                                        93.4
                                               53.3
                                                       56.6
                                                               70.9
                                                                      66.9
         2
                       73.4
                                41.1
                                        72.2
                                               88.5
                                                       70.9
                                                               72.3
                                                                      65.0
         3
                       72.8
                                71.8
                                        76.0
                                                69.4
                                                       73.9
                                                               72.2
                                                                      52.7
         4
                       70.1
                                74.0
                                        80.6
                                                66.7
                                                       65.8
                                                               64.3
                                                                      53.0
         5
                        67.1
                                59.2
                                        68.6
                                                59.8
                                                       65.8
                                                               52.5
                                                                     100.0
         6
                        62.3
                                79.4
                                        60.6
                                                56.1
                                                       54.2
                                                               69.5
                                                                      45.4
         7
                        60.9
                                63.4
                                        76.8
                                                60.9
                                                       48.7
                                                               48.5
                                                                      59.1
                                        81.9
                                                       44.7
         8
                        60.1
                                75.6
                                                50.3
                                                               56.4
                                                                      42.2
         9
                        59.7
                                64.3
                                        59.1
                                                48.4
                                                       55.6
                                                               68.4
                                                                      53.2
         10
                        56.9
                                52.1
                                        44.5
                                                60.3
                                                       57.2
                                                                      49.3
                                                               63.9
         11
                        54.6
                                46.5
                                        52.4
                                                55.0
                                                       48.8
                                                               66.3
                                                                      39.8
                                        34.7
                                                                      46.6
         12
                        51.0
                                17.7
                                                59.8
                                                       56.5
                                                               64.5
                        50.6
                                27.3
                                        32.8
                                                56.7
                                                       50.1
                                                               75.6
                                                                      34.3
         13
                                        35.1
         14
                        50.2
                                35.5
                                                56.7
                                                       42.9
                                                               71.8
                                                                      39.1
         15
                        49.2
                                43.0
                                        36.3
                                                52.1
                                                       46.3
                                                               68.7
                                                                      29.0
         16
                        48.4
                                28.8
                                        32.4
                                                53.9
                                                       47.1
                                                               73.8
                                                                      27.2
         17
                       47.8
                                 0.0
                                        37.6
                                                55.6
                                                       57.9
                                                               58.8
                                                                      45.2
                                                       52.2
         18
                        46.9
                                51.4
                                        28.3
                                                41.6
                                                               67.7
                                                                      24.9
         19
                        46.7
                                36.0
                                        14.4
                                                38.5
                                                       52.1
                                                               86.5
                                                                      34.7
                        44.9
                                         0.0
                                                       43.0
         20
                                43.0
                                                61.9
                                                               76.5
                                                                      30.9
                                        34.1
         21
                       43.8
                                39.7
                                                34.2
                                                       37.0
                                                               72.3
                                                                      31.1
         22
                        43.7
                                20.8
                                        38.1
                                                40.8
                                                       38.2
                                                                      40.3
                                                               64.6
                                        19.7
                                                       38.9
         23
                        43.1
                                28.1
                                                39.3
                                                               76.7
                                                                      41.9
         24
                        42.8
                                41.6
                                        37.4
                                                44.4
                                                       34.1
                                                               58.0
                                                                      26.0
                                30.7
                        42.6
                                        32.9
                                                       41.5
                                                                      38.8
         25
                                                37.7
                                                               60.5
         26
                        41.7
                                40.2
                                        37.0
                                                35.1
                                                       41.1
                                                               43.4
                                                                      52.4
```

38.5

26.6

46.5

39.9

53.9

40.7

27

25.1

28	38.8	33.8	25.0	43.0	35.3	55.4	26.3
29	38.2	22.6	59.8	28.3	44.1	24.0	35.9
4867	NaN	0.0	0.0	0.0	9.3	34.0	17.1
4868	NaN	0.0	0.0	3.6	10.3	26.7	14.1
4869	NaN	0.0	0.0	12.1	11.4	22.2	13.5
4870	NaN	0.0	0.0	3.6	8.4	32.8	16.6
4871	NaN	0.0	0.0	0.0	7.7	35.1	14.2
4872	NaN	0.0	0.0	17.4	6.5	17.8	17.3
4873	NaN	0.0	0.0	5.0	5.6	30.9	21.4
4874	NaN	0.0	0.0	3.6	16.3	26.2	12.7
4875	NaN	0.0	0.0	5.1	10.0	28.0	14.0
4876	NaN	0.0	0.0	6.3	6.6	28.2	14.8
4877	NaN	0.0	0.0	13.6	2.1	26.7	19.6
4878	NaN	0.0	0.0	5.0	5.7	30.7	19.7
4879	NaN	0.0	0.0	3.6	7.5	29.3	18.5
4880	NaN	0.0	0.0	0.0	9.8	33.3	16.8
4881	NaN	0.0	0.0	3.6	13.9	27.7	15.2
4882	NaN	0.0	0.0	3.6	9.2	28.1	11.2
4883	NaN	0.0	0.0	15.2	6.1	21.1	16.0
4884	NaN	0.0	0.0	0.0	8.8	33.7	19.2
4885	NaN	0.0	0.0	8.6	8.4	25.0	13.5
4886	NaN	0.0	0.0	7.1	6.1	31.1	13.2
4887	NaN	0.0	0.0	7.1	3.3	30.6	15.7
4888	NaN	0.0	0.0	0.0	7.5	33.7	11.3
4889	NaN	0.0	0.0	8.6	4.9	27.0	18.0
4890	NaN	0.0	13.3	3.6	3.4	21.8	12.8
4891	NaN	0.0	0.0	3.6	7.1	36.1	13.5
4892	NaN	0.0	0.0	5.0	10.9	25.1	20.1
4893	NaN	0.0	0.0	7.6	5.1	33.3	13.1
4894	NaN	13.6	0.0	3.6	10.8	25.1	15.5
4895	NaN	0.0	0.0	0.0	12.2	28.8	22.9
4896	NaN	0.0	0.0	14.9	7.5	25.0	11.9

[4897 rows x 7 columns]

\	national_rank	university_name	world_rank	Out[31]:
	2	Aarhus University	101-152	100
	54-71	Arizona State University - Tempe	101-152	101
	54-71	Baylor College of Medicine	101-152	102
	1-4	Catholic University of Leuven	101-152	103
	1-4	Catholic University of Louvain	101-152	104
	5	College of France	101-152	105
	54-71	Dartmouth College	101-152	106
	54-71	Emory University	101-152	107
	54-71	Georgia Institute of Technology	101-152	108
	1-4	Ghent University	101-152	109
	6-9	Hokkaido University	101-152	110
	6-9	Kyushu University	101-152	111
	54-71	Mayo Medical School	101-152	112
	6-9	Nagoya University	101-152	113
	1	National University of Singapore	101-152	114
	54-71	North Carolina State University - Raleigh	101-152	115
	54-71	Oregon State University	101-152	116
	1	Seoul National University	101-152	117
	54-71	State University of New York at Stony Brook	101-152	118
	2-4	Technion-Israel Institute of Technology	101-152	119

120	101-152						nivers	•	2-4
121	101-152	The University of Georgia							54-71
122	101-152	The University of Glasgow							12-15
123	101-152		1		versit	•			3-4
124	101-152			Unive	ersity	Libre	Bruxel	les	1-4
125	101-152				Univer	sity o	f Albe	rta	5
126	101-152			Un	niversi	ty of	Amster	dam	3-4
127	101-152				Uni	versit	y of B	onn	6-11
128	101-152	Un	iversi	ty of	Califo	rnia,	Rivers	ide	54-71
129	101-152	Uni	versit	y of C	Califor	nia, S	anta C	ruz	54-71
4867	401-500				Uni	versit	y of J	ena	29-39
4868	401-500			Un	niversi		•		4-6
4869	401-500				Jnivers	•	•	•	29-39
4870	401-500				sity o	•			3-4
4871	401-500				niversi				1
4872	401-500	Univers	ity of			-	-		126-146
4873	401-500	OHIVOIL	-	-	ty of			-	11-20
4874	401-500	II.			•				19-22
4875	401-500	OI.		•	Nice S	_	_		126-146
			OHIV	rersity	of Ok				
4876	401-500				Univer	•			11-20
4877	401-500					•	of Pa		11-20
4878	401-500					•	of Pa		11-20 11-20
4879	401-500		University of Perugia						
4880	401-500		University of Quebec						
4881	401-500				versit	•	_	_	29-39
4882	401-500			Ü	Jnivers	ity of	Renne	s 1	19-22
4883	401-500			Unive	ersity	of Rho	de Isl	and	126-146
4884	401-500		Unive	ersity	of Rom	a - To	r Verg	ata	11-20
4885	401-500				Univer	sity o	f Rost	ock	29-39
4886	401-500		Univer	sity c	of Sant	iago C	ompost	ela	9-13
4887	401-500		Univ	ersity	of Sc	ience,	Malay	sia	2
4888	401-500				Univer	sity o	f Sevi	lle	9-13
4889	401-500				Unive	rsity	of Sur	rey	34-37
4890	401-500					•	of Sze	·	1-2
4891	401-500		Unive	ersitv	of the	•		_	9-13
4892	401-500			,	Univer	-		·	11-20
4893	401-500			Ţ	Jnivers	•			9-13
4894	401-500				Utah S	•	_		126-146
4895	401-500		Vior	na IIni	versit.			•	4-6
4896	401-500		V 1 G 1		lake Fo	•			126-146
4090	401-300			W	rake ro	rest o	mivers	ıty	120-140
	total_score	alumni	award	hici	ns	pub	рср	year	
100	NaN	15.4	19.3	7.9	22.3	41.6	22.4	2005	
101	NaN	0.0	14.4	20.8	26.3	41.9	17.5	2005	
102	NaN	0.0	0.0	17.6	34.5	44.0	24.9	2005	
103	NaN	0.0	0.0	19.2	16.0	48.7	23.1	2005	
103	NaN	14.0	13.9	13.6	8.3	44.7	26.9	2005	
10 1	ivaiv	14.0	10.3	10.0	0.5	-T-1	20.9	2000	

105	NaN	15.4	37.4	11.1	11.7	16.9	19.3	2005
106	NaN	24.3	0.0	20.8	22.0	33.0	29.1	2005
107	NaN	0.0	0.0	28.3	19.0	48.4	21.6	2005
108	NaN	16.6	0.0	23.6	19.0	43.9	25.8	2005
109	NaN	8.9	15.8	15.7	9.1	48.8	27.2	2005
110	NaN	0.0	0.0	15.7	14.1	53.8	21.5	2005
111	NaN	0.0	0.0	13.6	21.3	52.8	21.6	2005
112	NaN	0.0	0.0	27.2	6.2	50.2	24.4	2005
113	NaN	0.0	14.4	15.7	20.5	52.3	25.1	2005
114	NaN	0.0	0.0	15.7	13.8	56.7	25.7	2005
115	NaN	0.0	0.0	29.4	17.8	44.3	19.0	2005
116	NaN	15.4	0.0	24.8	25.7	36.6	27.1	2005
117	NaN	0.0	0.0	7.9	14.6	61.2	26.9	2005
118	NaN	0.0	0.0	17.6	31.4	40.7	20.5	2005
119	NaN	18.8	23.5	13.6	14.1	42.1	22.8	2005
120	NaN	0.0	0.0	24.8	20.1	54.7	26.9	2005
121	NaN	0.0	0.0	28.3	21.1	46.4	18.4	2005
122	NaN	10.9	0.0	19.2	17.1	44.4	22.1	2005
123	NaN	16.6	0.0	7.9	19.9	50.1	18.9	2005
124	NaN	28.1	19.3	0.0	12.8	37.8	29.1	2005
125	NaN	15.4	0.0	17.6	17.4	55.1	26.1	2005
126	NaN	8.9	0.0	19.2	22.2	50.1	23.1	2005
127	NaN	19.8	20.4	15.7	11.3	41.3	22.0	2005
128	NaN	0.0	0.0	28.3	25.9	36.5	27.0	2005
129	NaN	0.0	0.0	28.3	28.5	31.1	29.2	2005
4867	NaN	0.0	0.0	0.0	9.3	34.0	17.1	2015
4868	NaN	0.0	0.0	3.6	10.3	26.7	14.1	2015
4869	NaN	0.0	0.0	12.1	11.4	22.2	13.5	2015
4870	NaN	0.0	0.0	3.6	8.4	32.8	16.6	2015
4871	NaN	0.0	0.0	0.0	7.7	35.1	14.2	2015
4872	NaN	0.0	0.0	17.4	6.5	17.8	17.3	2015
4873	NaN	0.0	0.0	5.0	5.6	30.9	21.4	2015
4874	NaN	0.0	0.0	3.6	16.3	26.2	12.7	2015
4875	NaN	0.0	0.0	5.1	10.0	28.0	14.0	2015
4876	NaN	0.0	0.0	6.3	6.6	28.2	14.8	2015
4877	NaN	0.0	0.0	13.6	2.1	26.7	19.6	2015
4878	NaN	0.0	0.0	5.0	5.7	30.7	19.7	2015
4879	NaN	0.0	0.0	3.6	7.5	29.3	18.5	2015
4880	NaN	0.0	0.0	0.0	9.8	33.3	16.8	2015
4881	NaN	0.0	0.0	3.6	13.9	27.7	15.2	2015
4882	NaN	0.0	0.0	3.6	9.2	28.1	11.2	2015
4883	NaN	0.0	0.0	15.2	6.1	21.1	16.0	2015
4884	NaN	0.0	0.0	0.0	8.8	33.7	19.2	2015
4885	NaN	0.0	0.0	8.6	8.4	25.0	13.5	2015
4886	NaN	0.0	0.0	7.1	6.1	31.1	13.2	2015
4887	NaN	0.0	0.0	7.1	3.3	30.6	15.7	2015
4888	NaN	0.0	0.0	0.0	7.5	33.7	11.3	2015

```
4889
                    0.0
                           0.0
                                 8.6
                                      4.9 27.0 18.0
             NaN
                                                       2015
4890
             NaN
                    0.0
                          13.3
                                 3.6
                                      3.4 21.8 12.8
                                                       2015
4891
             NaN
                    0.0
                           0.0
                                 3.6
                                      7.1 36.1 13.5
                                                       2015
4892
             NaN
                    0.0
                           0.0
                                 5.0 10.9 25.1 20.1
                                                       2015
4893
                           0.0
                                 7.6
                                      5.1 33.3 13.1
             NaN
                    0.0
                                                      2015
4894
             NaN
                    13.6
                           0.0
                                 3.6 10.8
                                           25.1
                                                 15.5
                                                       2015
4895
                    0.0
                           0.0
                                      12.2 28.8 22.9
             NaN
                                 0.0
                                                       2015
4896
             NaN
                    0.0
                           0.0 14.9
                                      7.5 25.0 11.9
                                                      2015
```

[3796 rows x 11 columns]

\	national_rank	university_name	$world_rank$	Out[34]:
	2	Aarhus University	101-152	100
	54-71	Arizona State University - Tempe	101-152	101
	54-71	Baylor College of Medicine	101-152	102
	1-4	Catholic University of Leuven	101-152	103
	1-4	Catholic University of Louvain	101-152	104
	5	College of France	101-152	105
	54-71	Dartmouth College	101-152	106
	54-71	Emory University	101-152	107
	54-71	Georgia Institute of Technology	101-152	108
	1-4	Ghent University	101-152	109
	6-9	Hokkaido University	101-152	110
	6-9	Kyushu University	101-152	111
	54-71	Mayo Medical School	101-152	112
	6-9	Nagoya University	101-152	113
	1	National University of Singapore	101-152	114
	54-71	North Carolina State University - Raleigh	101-152	115
	54-71	Oregon State University	101-152	116
	1	Seoul National University	101-152	117
	54-71	State University of New York at Stony Brook	101-152	118
	2-4	Technion-Israel Institute of Technology	101-152	119
	2-4	Tel Aviv University	101-152	120
	54-71	The University of Georgia	101-152	121
	12-15	The University of Glasgow	101-152	122
	3-4	The University of Queensland	101-152	123
	1-4	University Libre Bruxelles	101-152	124

405	404 450				Univer		C 471		i	_
125	101-152			5						
126	101-152		3-4							
127	101-152	т.	6-1:							
128	101-152		niversi	•					54-7	
129	101-152	Un	iversit	y of C	alifor	nıa, S	anta C		54-7	
 4867	 401-500				Uni	versit	y of J	ena	 29-39	
4868	401-500			Un	iversi		•		4-0	
4869	401-500				nivers	•	•	•	29-39	
4870	401-500			Univer		•			3-4	
4871	401-500				iversi					1
4872	401-500	Univer	sity of			•			126-14	6
4873	401-500		•	iversi				•	11-2	
4874	401-500	U	niversi		•				19-2:	
4875	401-500			ersity		_	_		126-14	
4876	401-500			-	Univer				11-2	
4877	401-500					•	of Pa		11-2	
4878	401-500					-	of Pa		11-2	
4879	401-500				Univer	-			11-20	
4880	401-500					•	of Que	_	19-20	
4881	401-500			Uni	versit	•			29-39	
4882	401-500				nivers	•	_	_	19-2	
4883	401-500				rsity	•			126-14	
4884	401-500		Unive	ersity	•				11-2	
4885	401-500		01111	•	Univer		_		29-39	
4886	401-500		Univer	sity o		•			9-1	
4887	401-500			ersity		_	_			2
4888	401-500			-	Univer		•		9-1	
4889	401-500					•	of Sur		34-3	
4890	401-500					-	of Sze	•	1-:	
4891	401-500		Unive	rsity		•		_	9-1	
4892	401-500			•	Univer	-		•	11-2	
4893	401-500				nivers	•			9-1	
4894	401-500				Utah S	•	_		126-14	
4895	401-500		Vien	na Uni				•	4-(
4896	401-500				ake Fo	•		00	126-14	
								•		
	total_score	alumni	award	hici	ns	pub	pcp	year		
100	NaN	15.4	19.3	7.9	22.3	41.6	22.4	2005		
101	NaN	0.0	14.4	20.8	26.3	41.9	17.5	2005		
102	NaN	0.0	0.0	17.6	34.5	44.0	24.9	2005		
103	NaN	0.0	0.0	19.2	16.0	48.7	23.1	2005		
104	NaN	14.0	13.9	13.6	8.3	44.7	26.9	2005		
105	NaN	15.4	37.4	11.1	11.7	16.9	19.3	2005		
106	NaN	24.3	0.0	20.8	22.0	33.0	29.1	2005		
107	NaN	0.0	0.0	28.3	19.0	48.4	21.6	2005		
108	NaN	16.6	0.0	23.6	19.0	43.9	25.8	2005		
109	NaN	8.9	15.8	15.7	9.1	48.8	27.2	2005		

110	NaN	0.0	0.0	15.7	14.1	53.8	21.5	2005
111	NaN	0.0	0.0	13.6	21.3	52.8	21.6	2005
112	NaN	0.0	0.0	27.2	6.2	50.2	24.4	2005
113	NaN	0.0	14.4	15.7	20.5	52.3	25.1	2005
114	NaN	0.0	0.0	15.7	13.8	56.7	25.7	2005
115	NaN	0.0	0.0	29.4	17.8	44.3	19.0	2005
116	NaN	15.4	0.0	24.8	25.7	36.6	27.1	2005
117	NaN	0.0	0.0	7.9	14.6	61.2	26.9	2005
118	NaN	0.0	0.0	17.6	31.4	40.7	20.5	2005
119	NaN	18.8	23.5	13.6	14.1	42.1	22.8	2005
120	NaN	0.0	0.0	24.8	20.1	54.7	26.9	2005
121	NaN	0.0	0.0	28.3	21.1	46.4	18.4	2005
122	NaN	10.9	0.0	19.2	17.1	44.4	22.1	2005
123	NaN	16.6	0.0	7.9	19.9	50.1	18.9	2005
124	NaN	28.1	19.3	0.0	12.8	37.8	29.1	2005
125	NaN	15.4	0.0	17.6	17.4	55.1	26.1	2005
126	NaN	8.9	0.0	19.2	22.2		23.1	2005
127	NaN	19.8	20.4	15.7	11.3	41.3	22.0	2005
128	NaN	0.0	0.0	28.3	25.9	36.5	27.0	2005
129	NaN	0.0	0.0	28.3	28.5	31.1	29.2	2005
4867	NaN	0.0	0.0	0.0	9.3	34.0	17.1	2015
4868	NaN	0.0	0.0	3.6	10.3	26.7	14.1	2015
4869	NaN	0.0	0.0	12.1	11.4	22.2	13.5	2015
4870	NaN	0.0	0.0	3.6	8.4	32.8	16.6	2015
4871	NaN	0.0	0.0	0.0	7.7	35.1	14.2	2015
4872	NaN	0.0	0.0	17.4	6.5	17.8	17.3	2015
4873	NaN	0.0	0.0	5.0	5.6	30.9	21.4	2015
4874	NaN	0.0	0.0	3.6	16.3	26.2	12.7	2015
4875	NaN	0.0	0.0	5.1	10.0	28.0	14.0	2015
4876	NaN	0.0	0.0	6.3	6.6	28.2	14.8	2015
4877	NaN	0.0	0.0	13.6	2.1	26.7	19.6	2015
4878	NaN	0.0	0.0	5.0	5.7	30.7	19.7	2015
4879	NaN	0.0	0.0	3.6	7.5	29.3	18.5	2015
4880	NaN	0.0	0.0	0.0	9.8	33.3	16.8	2015
4881	NaN	0.0	0.0	3.6	13.9	27.7	15.2	2015
4882	NaN	0.0	0.0	3.6	9.2	28.1	11.2	2015
4883	NaN	0.0	0.0	15.2	6.1	21.1	16.0	2015
4884	NaN	0.0	0.0	0.0	8.8	33.7	19.2	2015
4885	NaN	0.0	0.0	8.6	8.4	25.0	13.5	2015
4886	NaN	0.0	0.0	7.1	6.1	31.1	13.2	2015
4887	NaN	0.0	0.0	7.1	3.3	30.6	15.7	2015
4888	NaN	0.0	0.0	0.0	7.5	33.7	11.3	2015
4889	NaN	0.0	0.0	8.6	4.9	27.0	18.0	2015
4890	NaN	0.0	13.3	3.6	3.4	21.8	12.8	2015
4891	NaN	0.0	0.0	3.6	7.1	36.1	13.5	2015
4892	NaN	0.0	0.0	5.0	10.9	25.1	20.1	2015
4893	NaN	0.0	0.0	7.6	5.1	33.3	13.1	2015

```
4895
                         NaN
                                  0.0
                                         0.0
                                                0.0 12.2 28.8 22.9
         4896
                                                      7.5 25.0 11.9
                         NaN
                                  0.0
                                         0.0 14.9
          [3796 rows x 11 columns]
In [36]: #
         data_num[data_num.index.isin(flt_index)]['total_score']
Out[36]: 100
                 NaN
          101
                 NaN
          102
                 {\tt NaN}
         103
                 NaN
         104
                 {\tt NaN}
         105
                 NaN
         106
                 NaN
         107
                 NaN
         108
                 NaN
         109
                 NaN
         110
                 NaN
         111
                 NaN
         112
                 NaN
                 NaN
         113
         114
                 NaN
         115
                 NaN
         116
                 NaN
         117
                 {\tt NaN}
         118
                 NaN
                 NaN
         119
         120
                 NaN
         121
                 NaN
         122
                 NaN
         123
                 NaN
         124
                 NaN
          125
                 NaN
          126
                 NaN
          127
                 NaN
          128
                 NaN
          129
                 NaN
                  . .
         4867
                 NaN
         4868
                 NaN
         4869
                 NaN
         4870
                 NaN
         4871
                 NaN
         4872
                 NaN
         4873
                 NaN
         4874
                 NaN
```

4894

 ${\tt NaN}$

13.6

0.0

3.6 10.8 25.1 15.5

2015

2015

2015

```
4875
                NaN
         4876
                NaN
         4877
                NaN
         4878
                NaN
         4879
                NaN
         4880
                NaN
         4881
                NaN
         4882
                NaN
         4883
                NaN
         4884
                NaN
         4885
                NaN
         4886
                NaN
         4887
                NaN
         4888
                NaN
         4889
                NaN
         4890
                NaN
         4891
                NaN
         4892
                NaN
         4893
                NaN
         4894
                NaN
         4895
                NaN
         4896
                NaN
         Name: total_score, Length: 3796, dtype: float64
In [37]: data_num_MasVnrArea = data_num[['total_score']]
         data_num_MasVnrArea.head()
Out [37]:
            total_score
         0
                  100.0
         1
                   73.6
         2
                   73.4
         3
                   72.8
                   70.1
In [38]: from sklearn.impute import SimpleImputer
         from sklearn.impute import MissingIndicator
In [39]: #
         indicator = MissingIndicator()
         mask_missing_values_only = indicator.fit_transform(data_num_MasVnrArea)
         mask_missing_values_only
Out[39]: array([[False],
                 [False],
                 [False],
                ...,
                [True],
                 [True],
                [True]])
```

```
In [40]: strategies=['mean', 'median', 'most_frequent']
In [41]: def test_num_impute(strategy_param):
             imp_num = SimpleImputer(strategy=strategy_param)
             data_num_imp = imp_num.fit_transform(data_num_MasVnrArea)
             return data_num_imp[mask_missing_values_only]
In [42]: strategies[0], test num impute(strategies[0])
Out [42]: ('mean', array([36.38346957, 36.38346957, 36.38346957, ..., 36.38346957,
                 36.38346957, 36.38346957]))
In [44]: strategies[1], test_num_impute(strategies[1])
Out [44]: ('median', array([31.3, 31.3, 31.3, ..., 31.3, 31.3, 31.3]))
In [45]: strategies[2], test num impute(strategies[2])
Out[45]: ('most_frequent', array([24.9, 24.9, 24.9, ..., 24.9, 24.9, 24.9]))
In [46]: #
         def test_num_impute_col(dataset, column, strategy_param):
             temp_data = dataset[[column]]
             indicator = MissingIndicator()
             mask_missing_values_only = indicator.fit_transform(temp_data)
             imp_num = SimpleImputer(strategy=strategy_param)
             data_num_imp = imp_num.fit_transform(temp_data)
             filled_data = data_num_imp[mask_missing_values_only]
             return column, strategy_param, filled_data.size, filled_data[0], filled_data[filled_data]
In [49]: data[['hici']].describe()
Out [49]:
                       hici
         count 4895.000000
                  16.221491
         mean
         std
                  14.382710
                  0.000000
        min
         25%
                  7.300000
         50%
                  12.600000
         75%
                  21.700000
         max
                 100.000000
In [50]: test_num_impute_col(data, 'hici', strategies[0])
Out [50]: ('hici', 'mean', 2, 16.22149131767109, 16.22149131767109)
```

```
In [51]: test_num_impute_col(data, 'hici', strategies[1])
Out[51]: ('hici', 'median', 2, 12.6, 12.6)
In [52]: test_num_impute_col(data, 'hici', strategies[2])
Out[52]: ('hici', 'most_frequent', 2, 0.0, 0.0)
  1.2.2.
In [53]: #
         cat_cols = []
         for col in data.columns:
             temp_null_count = data[data[col].isnull()].shape[0]
             dt = str(data[col].dtype)
             if temp_null_count>0 and (dt=='object'):
                 cat_cols.append(col)
                 temp_perc = round((temp_null_count / total_count) * 100.0, 2)
                                   {}, {}%.'.format(col, dt, temp_null_count, temp_perc))
                 print(' {}. {}.
university_name.
                               1, 0.02%.
                    object.
national_rank.
                  object.
                             1, 0.02%.
In [54]: cat_temp_data = data[['national_rank']]
         cat_temp_data.head()
Out [54]:
          national_rank
         0
         1
                       1
         2
                       2
         3
                       3
         4
In [56]: cat_temp_data['national_rank'].unique()
Out[56]: array(['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12',
                '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23',
                '24', '26', '27', '28', '29', '30', '32', '33', '35', '37', '38',
                '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49',
                '50', '51', '52', '53', '54-71', '1-4', '6-9', '2-4', '12-15',
                '3-4', '6-11', '2-3', '1-2', '72-90', '16-19', '5-7', '6-8', '5-6',
                '12-16', '4-5', '9-13', '9-17', '8-9', '91-119', '10-13', '20-30',
                '7-9', '17-23', '1-3', '120-140', '18-19', '14-24', '24-33',
                '14-19', '10-11', '3-7', '10-18', '3-5', '31-36', '5-9', '141-168',
                '25-34', '11-14', '34-40', '20-23', '19-23', '37-40', '20-21',
                '25', '31', '34', '36', '54', '55-69', '16-22', '70-87', '4-6',
```

```
'88-118', '7-12', '9-16', '10-12', '23-33', '2-5', '119-140',
                '17-19', '13-20', '23-36', '13-17', '6-7', '8-14', '34-37',
                '38-43', '141-167', '18-21', '21-32', '15-23', '20-22', '55-70',
                '7-11', '16-23', '71-88', '89-117', '8-12', '8-17', '2-6', '15-22',
                '118-140', '13-18', '9-14', '38-42', '141-166', '19-33', '37-41',
                '15-20', '12-17', '71-90', '17-22', '12-14', '91-114', '7-18',
                '1-6', '15-24', '115-139', '25-35', '15-17', '10-14', '4-7',
                '34-38', '140-159', '39-42', '19-21', '13-22', '19-31', '8-18',
                '18-23', '36-40', '55', '56-70', '3-6', '91-112', '113-138',
                '25-36', '15-19', '7-8', '12-19', '8-13', '34-36', '139-152',
                '19-22', '14-21', '20-31', '9-18', '14-17', '6-10', '70-89',
                '90-111', '5-8', '112-137', '14-18', '11-17', '31-35', '8-10',
                '138-154', '36-38', '14-22', '18-25', '11-22', '34-39', '54-68',
                '11-15', '7-10', '69-89', '90-110', '2-7', '20-29', '111-137',
                '11-12', '11-16', '24-32', '30-33', '9-10', '138-151', '13-23',
                '8-11', '33-39', '54-67', '68-85', '86-109', '1.0', '2.0', '3.0',
                '4.0', '5.0', '6.0', '7.0', '8.0', '9.0', '10.0', '11.0', '12.0',
                '13.0', '14.0', '15.0', '16.0', '17.0', '18.0', '19.0', '20.0',
                '21.0', '22.0', '23.0', '24.0', '25.0', '26.0', '27.0', '28.0',
                '29.0', '30.0', '31.0', '32.0', '33.0', '35.0', '36.0', '37.0',
                '38.0', '39.0', '41.0', '42.0', '43.0', '44.0', '45.0', '46.0',
                '47.0', '49.0', '50.0', nan, '53-64', '65-77', '18-20', '78-104',
                '8-16', '21-29', '13-25', '105-125', '23-30', '9-12', '17-18',
                '126-146', '31-39', '26-32', '13-21', '52-65', '10-17', '66-78',
                '1-5', '79-102', '9-15', '9-11', '7-16', '22-28', '14-27',
                '103-125', '16-18', '29-33', '29-39', '28-32', '19-20', '11-20'],
               dtype=object)
In [57]: cat_temp_data[cat_temp_data['national_rank'].isnull()].shape
Out[57]: (1, 1)
In [58]: #
         imp2 = SimpleImputer(missing values=np.nan, strategy='most frequent')
         data_imp2 = imp2.fit_transform(cat_temp_data)
         data imp2
Out[58]: array([['1'],
                ['1'],
                ['2'],
                ['126-146'],
                ['4-6'],
                ['126-146']], dtype=object)
In [59]: #
         np.unique(data_imp2)
Out[59]: array(['1', '1-2', '1-3', '1-4', '1-5', '1-6', '1.0', '10', '10-11',
                '10-12', '10-13', '10-14', '10-17', '10-18', '10.0', '103-125',
```

```
'141-167', '141-168', '15', '15-17', '15-19', '15-20', '15-22',
                '15-23', '15-24', '15.0', '16', '16-18', '16-19', '16-22', '16-23',
                '16.0', '17', '17-18', '17-19', '17-22', '17-23', '17.0', '18',
                '18-19', '18-20', '18-21', '18-23', '18-25', '18.0', '19', '19-20',
                '19-21', '19-22', '19-23', '19-31', '19-33', '19.0', '2', '2-3',
                '2-4', '2-5', '2-6', '2-7', '2.0', '20', '20-21', '20-22', '20-23',
                '20-29', '20-30', '20-31', '20.0', '21', '21-29', '21-32', '21.0',
                '22', '22-28', '22.0', '23', '23-30', '23-33', '23-36', '23.0',
                '24', '24-32', '24-33', '24.0', '25', '25-34', '25-35', '25-36',
                '25.0', '26', '26-32', '26.0', '27', '27.0', '28', '28-32', '28.0',
                '29', '29-33', '29-39', '29.0', '3', '3-4', '3-5', '3-6', '3-7',
                '3.0', '30', '30-33', '30.0', '31', '31-35', '31-36', '31-39',
                '31.0', '32', '32.0', '33', '33-39', '33.0', '34', '34-36',
                '34-37', '34-38', '34-39', '34-40', '35', '35.0', '36', '36-38',
                '36-40', '36.0', '37', '37-40', '37-41', '37.0', '38', '38-42',
                '38-43', '38.0', '39', '39-42', '39.0', '4', '4-5', '4-6', '4-7',
                '4.0', '40', '41', '41.0', '42', '42.0', '43', '43.0', '44',
                '44.0', '45', '45.0', '46', '46.0', '47', '47.0', '48', '49',
                '49.0', '5', '5-6', '5-7', '5-8', '5-9', '5.0', '50', '50.0', '51',
                '52', '52-65', '53', '53-64', '54', '54-67', '54-68', '54-71',
                '55', '55-69', '55-70', '56-70', '6', '6-10', '6-11', '6-7', '6-8',
                '6-9', '6.0', '65-77', '66-78', '68-85', '69-89', '7', '7-10',
                '7-11', '7-12', '7-16', '7-18', '7-8', '7-9', '7.0', '70-87',
                '70-89', '71-88', '71-90', '72-90', '78-104', '79-102', '8',
                '8-10', '8-11', '8-12', '8-13', '8-14', '8-16', '8-17', '8-18',
                '8-9', '8.0', '86-109', '88-118', '89-117', '9', '9-10', '9-11',
                '9-12', '9-13', '9-14', '9-15', '9-16', '9-17', '9-18', '9.0',
                '90-110', '90-111', '91-112', '91-114', '91-119'], dtype=object)
In [60]: #
         imp3 = SimpleImputer(missing_values=np.nan, strategy='constant', fill_value='!!!')
         data_imp3 = imp3.fit_transform(cat_temp_data)
         data imp3
Out[60]: array([['1'],
                ['1'],
                ['2'],
                ['126-146'],
                ['4-6'],
                ['126-146']], dtype=object)
                                        20
```

'105-125', '11', '11-12', '11-14', '11-15', '11-16', '11-17', '11-20', '11-22', '11.0', '111-137', '112-137', '113-138',

'115-139', '118-140', '119-140', '12', '12-14', '12-15', '12-16', '12-17', '12-19', '12.0', '120-140', '126-146', '13', '13-17', '13-18', '13-20', '13-21', '13-22', '13-23', '13-25', '13.0', '138-151', '138-154', '139-152', '14', '14-17', '14-18', '14-19', '14-21', '14-22', '14-24', '14-27', '14.0', '140-159', '141-166',

In [61]: np.unique(data_imp3)

```
Out[61]: array(['!!!', '1', '1-2', '1-3', '1-4', '1-5', '1-6', '1.0', '10',
                '10-11', '10-12', '10-13', '10-14', '10-17', '10-18', '10.0',
                '103-125', '105-125', '11', '11-12', '11-14', '11-15', '11-16',
                '11-17', '11-20', '11-22', '11.0', '111-137', '112-137', '113-138',
                '115-139', '118-140', '119-140', '12', '12-14', '12-15', '12-16',
                '12-17', '12-19', '12.0', '120-140', '126-146', '13', '13-17',
                '13-18', '13-20', '13-21', '13-22', '13-23', '13-25', '13.0',
                '138-151', '138-154', '139-152', '14', '14-17', '14-18', '14-19',
                '14-21', '14-22', '14-24', '14-27', '14.0', '140-159', '141-166',
                '141-167', '141-168', '15', '15-17', '15-19', '15-20', '15-22',
                '15-23', '15-24', '15.0', '16', '16-18', '16-19', '16-22', '16-23',
                '16.0', '17', '17-18', '17-19', '17-22', '17-23', '17.0', '18',
                '18-19', '18-20', '18-21', '18-23', '18-25', '18.0', '19', '19-20',
                '19-21', '19-22', '19-23', '19-31', '19-33', '19.0', '2', '2-3',
                '2-4', '2-5', '2-6', '2-7', '2.0', '20', '20-21', '20-22', '20-23',
                '20-29', '20-30', '20-31', '20.0', '21', '21-29', '21-32', '21.0',
                '22', '22-28', '22.0', '23', '23-30', '23-33', '23-36', '23.0',
                '24', '24-32', '24-33', '24.0', '25', '25-34', '25-35', '25-36',
                '25.0', '26', '26-32', '26.0', '27', '27.0', '28', '28-32', '28.0',
                '29', '29-33', '29-39', '29.0', '3', '3-4', '3-5', '3-6', '3-7',
                '3.0', '30', '30-33', '30.0', '31', '31-35', '31-36', '31-39',
                '31.0', '32', '32.0', '33', '33-39', '33.0', '34', '34-36',
                '34-37', '34-38', '34-39', '34-40', '35', '35.0', '36', '36-38',
                '36-40', '36.0', '37', '37-40', '37-41', '37.0', '38', '38-42',
                '38-43', '38.0', '39', '39-42', '39.0', '4', '4-5', '4-6', '4-7',
                '4.0', '40', '41', '41.0', '42', '42.0', '43', '43.0', '44',
                '44.0', '45', '45.0', '46', '46.0', '47', '47.0', '48', '49',
                '49.0', '5', '5-6', '5-7', '5-8', '5-9', '5.0', '50', '50.0', '51',
                '52', '52-65', '53', '53-64', '54', '54-67', '54-68', '54-71',
                '55', '55-69', '55-70', '56-70', '6', '6-10', '6-11', '6-7', '6-8',
                '6-9', '6.0', '65-77', '66-78', '68-85', '69-89', '7', '7-10',
                '7-11', '7-12', '7-16', '7-18', '7-8', '7-9', '7.0', '70-87',
                '70-89', '71-88', '71-90', '72-90', '78-104', '79-102', '8',
                '8-10', '8-11', '8-12', '8-13', '8-14', '8-16', '8-17', '8-18',
                '8-9', '8.0', '86-109', '88-118', '89-117', '9', '9-10', '9-11',
                '9-12', '9-13', '9-14', '9-15', '9-16', '9-17', '9-18', '9.0',
                '90-110', '90-111', '91-112', '91-114', '91-119'], dtype=object)
```

In [62]: data_imp3[data_imp3=='!!!'].size

Out[62]: 1

lab3_2

March 6, 2019

```
2.
In [1]: import numpy as np
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        %matplotlib inline
        sns.set(style="ticks")
        from sklearn.impute import SimpleImputer
        from sklearn.impute import MissingIndicator
        from sklearn.preprocessing import LabelEncoder, OneHotEncoder
In [2]: data = pd.read_csv(r'student-por.csv', sep=",")
        data.head()
Out [2]:
          school sex
                       age address famsize Pstatus
                                                      Medu Fedu
                                                                       Mjob
                                                                                 Fjob
                                                                                       . . .
        0
               GP
                    F
                        18
                                  U
                                        GT3
                                                   Α
                                                          4
                                                                4
                                                                   at_home
                                                                              teacher
        1
              GP
                    F
                        17
                                  U
                                        GT3
                                                   Τ
                                                          1
                                                                1
                                                                   at_home
                                                                                other
        2
              GP
                    F
                        15
                                  U
                                        LE3
                                                   Τ
                                                          1
                                                                1
                                                                   at_home
                                                                                other
        3
               GP
                    F
                                  U
                                        GT3
                                                   Τ
                                                          4
                                                                2
                        15
                                                                    health
                                                                             services
                                                   Τ
                                                          3
              GP
                    F
                        16
                                  U
                                        GT3
                                                                3
                                                                      other
                                                                                other
          famrel freetime
                             goout
                                    Dalc
                                          Walc health absences
                                                                  G1
        0
                4
                         3
                                 4
                                              1
                                                     3
                                                                   0
                                                                       11
                                                                           11
                                       1
                                                               4
        1
                         3
                5
                                 3
                                       1
                                              1
                                                     3
                                                               2
                                                                   9
                                                                      11
                                                                           11
        2
                4
                         3
                                 2
                                       2
                                              3
                                                     3
                                                               6 12
                                                                      13
                                                                           12
        3
                         2
                                 2
                3
                                                     5
                                                               0
                                                                  14
                                                                       14
                                                                           14
                                       1
                                              1
        4
                                                     5
                4
                         3
                                       1
                                              2
                                                                  11
                                                                       13
                                                                           13
        [5 rows x 33 columns]
        - label encoding
   2.1.
In [3]: le = LabelEncoder()
        data_le = le.fit_transform(data['sex'])
In [4]: data['sex'].unique()
Out[4]: array(['F', 'M'], dtype=object)
```

```
In [5]: np.unique(data_le)
Out[5]: array([0, 1])
In [6]: le.inverse_transform([0, 1])
Out[6]: array(['F', 'M'], dtype=object)
   2.2.
         - one-hot encoding
In [7]: ohe = OneHotEncoder()
        data_ohe = ohe.fit_transform(data[['sex']])
In [8]: data.shape
Out[8]: (649, 33)
In [9]: data_ohe.shape
Out[9]: (649, 2)
In [10]: data_ohe
Out[10]: <649x2 sparse matrix of type '<class 'numpy.float64'>'
                  with 649 stored elements in Compressed Sparse Row format>
In [11]: data_ohe.todense()[0:10]
Out[11]: matrix([[1., 0.],
                  [1., 0.],
                  [1., 0.],
                  [1., 0.],
                  [1., 0.],
                  [0., 1.],
                  [0., 1.],
                  [1., 0.],
                  [0., 1.],
                  [0., 1.]])
In [12]: data.head(10)
Out[12]:
                                                                                    Fjob \
           school sex
                        age address famsize Pstatus
                                                       Medu
                                                              Fedu
                                                                         Mjob
         0
                GP
                                   U
                                                           4
                                                                 4
                     F
                          18
                                          GT3
                                                    Α
                                                                      at_home
                                                                                 teacher
                                   U
                                                    Τ
         1
                GP
                     F
                          17
                                          GT3
                                                           1
                                                                  1
                                                                      at_home
                                                                                   other
         2
                GP
                     F
                          15
                                   U
                                          LE3
                                                    Τ
                                                           1
                                                                  1
                                                                      at_home
                                                                                   other
         3
                GP
                                   U
                                                    Τ
                                                           4
                                                                 2
                         15
                                          GT3
                                                                       health
                                                                                services
         4
                GP
                     F
                         16
                                   U
                                          GT3
                                                    Τ
                                                           3
                                                                 3
                                                                        other
                                                                                   other
         5
                GP
                     М
                         16
                                   U
                                          LE3
                                                    Τ
                                                           4
                                                                 3
                                                                     services
                                                                                   other
         6
                GP
                     Μ
                          16
                                   U
                                          LE3
                                                    Τ
                                                           2
                                                                 2
                                                                        other
                                                                                   other
         7
                GP
                     F
                                   U
                                          GT3
                                                    Α
                                                           4
                                                                 4
                          17
                                                                        other
                                                                                 teacher
```

8 9	GP GP	M M	15 15	U U	LE3 GT3	A T	3 3	2 se 4	rvice othe		other other
				•		_	· ·	-	0 0110	_	0 01101
	fa	amrel	freetime	goout	Dalc	Walc	health	absences	G1	G2	G3
0		4	3	4	1	1	3	4	0	11	11
1		5	3	3	1	1	3	2	9	11	11
2		4	3	2	2	3	3	6	12	13	12
3		3	2	2	1	1	5	0	14	14	14
4		4	3	2	1	2	5	0	11	13	13
5		5	4	2	1	2	5	6	12	12	13
6		4	4	4	1	1	3	0	13	12	13
7		4	1	4	1	1	1	2	10	13	13
8		4	2	2	1	1	1	0	15	16	17
9		5	5	1	1	1	5	0	12	12	13

[10 rows x 33 columns]

2.3. Pandas get_dummies - one-hot \H

Out[13]: F M
0 1 0
1 1 0
2 1 0
3 1 0
4 1 0

In []:

lab3_3

March 6, 2019

```
In [2]: import numpy as np
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        %matplotlib inline
        sns.set(style="ticks")
        from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer
  3.1. MinMax ű
In [15]: data = pd.read_csv(r'cwurData.csv', sep=",")
         data.head()
Out[15]:
            world_rank
                                                    institution
                                                                        country \
         0
                                            Harvard University
                                                                            USA
                     2 Massachusetts Institute of Technology
                                                                            USA
         1
                     3
         2
                                           Stanford University
                                                                            USA
         3
                     4
                                       University of Cambridge United Kingdom
                     5
                            California Institute of Technology
                                                                            USA
                                                                      quality_of_faculty \
            national_rank
                           quality_of_education alumni_employment
         0
                                                                   9
                                               7
                                                                                        1
                         2
         1
                                               9
                                                                  17
                                                                                        3
                                                                                        5
         2
                         3
                                              17
                                                                  11
         3
                         1
                                              10
                                                                  24
                                                                                        4
         4
                                               2
                                                                  29
            publications influence citations broad_impact
                                                               patents
                                                                          score
                                                                                  year
         0
                       1
                                              1
                                                           NaN
                                                                      5
                                                                        100.00
                                                                                 2012
                                   1
                                   4
                       12
                                              4
                                                                      1
                                                                          91.67
                                                                                  2012
         1
                                                           NaN
         2
                       4
                                   2
                                              2
                                                           NaN
                                                                     15
                                                                          89.50
                                                                                  2012
         3
                       16
                                  16
                                             11
                                                           NaN
                                                                     50
                                                                          86.17
                                                                                  2012
                                  22
                                             22
                                                           NaN
                                                                     18
                                                                          85.21 2012
In [16]: sc1 = MinMaxScaler()
         sc1_data = sc1.fit_transform(data[['score']])
In [17]: plt.hist(data['score'], 50)
         plt.show()
```


3.2. Z--StandardScalerű

3.3.

In []: