Praca Domowa 3

Bartosz Siński

```
In [2]:
         import pandas as pd
         import numpy as np
```

Załadowanie modelu i podział zbioru na treningowy i testowy.

```
In [3]:
         from sklearn.model_selection import train_test_split
         df_aus = pd.read_csv("./src/australia.csv")
         X= df_aus.drop(["RainTomorrow"], axis=1)
         y = df_aus["RainTomorrow"]
         X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y,random_state = 42
```

Regresia logistyczna

```
In [4]:
          from sklearn.linear_model import LogisticRegression
          from sklearn.metrics import accuracy_score
          lreg = LogisticRegression(random_state=1613, penalty='l1', solver='saga', max_iter=500).1
          aus_pred1 = lreg.predict(X_test)
          accuracy_score(aus_pred1,y_test)
         C:\Users\komp\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.8_qbz5n2kfra8p0
         \LocalCache\local-packages\Python38\site-packages\sklearn\linear_model\_sag.py:328: Co
         nvergenceWarning: The max_iter was reached which means the coef_ did not converge warnings.warn("The max_iter was reached which means "
```

Dobraliśmy parametry *penalty, max_iter* oraz *solver. Penalty* ustawia rodzaj kary, którą nakładamy na

Out[4]: 0.8519673874512584

model za overfitting. Parametr *Solver* odpowiada za wybór algorytmu opdowiedzialnego za optymalizacje, a max_iter za ograniczenie liczby iteracji naszego solvera. Wybraliśmy saga ponieważ pozwala on na wybranie parametru regularyzacji L1 i działa szybko na dużych zbiorach danych. Zmiana kary na L1 i zwiększenie liczby iteracji nieznacznie poprawiło accuracy naszego modelu.

SVM

```
In [5]:
         from sklearn.svm import SVC
         svm = SVC(random_state=1613, kernel = 'linear', C=10)
         svm.fit(X_train, y_train)
         aus_pred2 = svm.predict(X_test)
         accuracy_score(aus_pred2,y_test)
```

W powyższym modelu SVC ustawiliśmy parametr kernel, który ustala typ jądra używanego w algorytmie na

Out[5]: 0.8530308401276143

liniowy. Zmieniliśmy także parametr regularyzacji C z domyślnego 1 na 10. W obu przypadkach zmiana parametru podniosła nasze accuracy.

Random Forrest

```
In [6]:
         from sklearn.ensemble import RandomForestClassifier
         rfc = RandomForestClassifier(random_state=1613,n_estimators = 1000,max_features='log2
         rfc.fit(X_train,y_train)
         aus_pred3 = rfc.predict(X_test)
         accuracy_score(aus_pred3,y_test)
```

W modelu Random Forrest zmieniliśmy domyślne wartości parametrów *n_estimators* i *max_features*.

Out[6]: 0.8644452321871676

n estimators ustala liczbę drzew w naszym lesie na podstawie których będziemy przewidywać wartość targetu. Parametr max_features odpowiada za liczbę zmiennych przy podziałach liści. Wartość n_estimators podnieśliśmy z 100 do 1000 co zwiększyło czas przygotowania modelu jednak podniosło też jego accuracy. max_features zmieniliśmy z domyślnej sqrt na log2 co nie wpłyneło na predykcje naszego modelu.

0 Logistic Regression

Porównanie wyników

```
In [12]:
                                      from sklearn.metrics import precision_score
                                      from sklearn.metrics import recall_score
                                      from sklearn.metrics import roc_auc_score
                                      from sklearn.metrics import f1_score
                                      results = {
                                                     "algorithm" : ['Logistic Regression','SVM','Random Forrest'],
                                                     "accuracy" : [accuracy_score(y_test,aus_pred1),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score(y_test,aus_pred2),accuracy_score
                                                     "precision" : [precision_score(y_test,aus_pred1),precision_score(y_test,aus_pred2)
                                                     "recall" :[recall_score(y_test,aus_pred1),recall_score(y_test,aus_pred2),recall_sc
                                                      'ROC AUC' : [roc_auc_score(y_test,aus_pred1),roc_auc_score(y_test,aus_pred2),roc_&
                                                      'F1' : [f1_score(y_test,aus_pred1),f1_score(y_test,aus_pred2),f1_score(y_test,aus_
                                      pd.DataFrame(results)
                                                                                                                                                                                                                                                    F1
                                                                                                                                                                             recall ROC AUC
Out[12]:
                                                                    algorithm accuracy precision
```

0.526231

0.735110 0.610302

1 SVM 0.853031 0.726357 0.533956 0.738564 0.615470 2 Random Forrest 0.864445 0.775473 0.541358 0.748539 0.637604 Najlepszym klasyfikatorem okazał się Random Forest. We wszystkich metrykach osiągnął lepszy wynik niż pozstałe modele. Ciekawe wydaje się być, że SVM i Regresja Logistyczna osiągneły bardzo podobne

1635

616

1659

0.726344

0.851967

from sklearn.metrics import confusion_matrix

Positive predictions

Negative predictions

Regresja Logistyczna

confusion dla tych modeli.

```
tn, fp, fn, tp = confusion_matrix(y_test, aus_pred1).ravel()
         pd.DataFrame({"Actual positives": [tp, fp], "Actual negatives": [fn, tn]}, index = ["F
Out[8]:
                           Actual positives  Actual negatives
```

1472

10382

wyniki we wszystkich metrykach.Dodatkowo zaskakujący jest tak wysoki wynik Regresji logistycznej w porównaniu do bardziej zaawansowanych modeli SVM i Random Forrest. Spojrzymy także na table of

SVM

In [8]:

```
In [9]:
         tn, fp, fn, tp = confusion_matrix(y_test, aus_pred2).ravel()
         pd.DataFrame({"Actual positives": [tp, fp], "Actual negatives": [fn, tn]}, index =
                                        Actual negatives
Out[9]:
                          Actual positives
```

1448

Positive predictions Negative predictions 625 10373 Random Forest

In [10]:

```
tn, fp, fn, tp = confusion_matrix(y_test, aus_pred3).ravel()
pd.DataFrame({"Actual positives": [tp, fp], "Actual negatives": [fn, tn]}, index = ["F
```

Out[10]:		Actual positives	Actual negatives
	Positive predictions	1682	1425
	Negative predictions	487	10511

Powyżej widzimy, że Random Forrest najbardziej różni się od pozostałych modeli pod względem zdecydowanie mniejszej liczby predykcji False Negative. Widzimy także, że modele o wiele lepiej radzą sobie z klasyfikacją obserwacji, gdzie model przewiduje brak deszczu. Może się to wiązać z dużo większą ilością obserwacji gdzie deszczu nie ma.