Problem set 3, ORF550

Bachir El Khadir

November 9, 2016

1 Problem 3.13a

We want to show that:

$$Ent(Z) = \inf_{t>0} E[Z \log Z - Z \log t - Z + t]$$

Which is the same as:

$$-E[Z] \log E[Z] = \inf_{t>0} -E[Z] \log t - E[Z] + t$$

Or

$$\inf_{t>0} \frac{t}{E[Z]} - \log \frac{t}{E[Z]} = 1$$

Or

$$\inf_{u>0} u - \log u = 1$$

Which is true, because $f: u \to u - \log u$ is convex $(f''(u) = \frac{1}{u^2})$, and its first derivative $(f'(u) = 1 - \frac{1}{u})$ is 0 at 1.

2 Problem 3.20

a.

$$\begin{split} Ent_{\nu}X &= \inf_{t>0} E_{\nu}[X\log X - X\log t - X + t] \\ &= \inf_{t>0} E_{\mu}[(X\log X - X\log t - X + t)\frac{d\nu}{d\mu}] \\ &\leq ||\frac{d\nu}{d\mu}||_{\infty} \inf_{t>0} E_{\mu}[X\log X - X\log t - X + t] \quad (X\log X - X\log t - X + t = X(t/X - \log(t/X) - 1) \geq 0) \\ &\leq ||\frac{d\nu}{d\mu}||_{\infty} Ent_{\mu}X \end{split}$$

b.

$$\begin{split} \nu(\Gamma(\log f, f)) &= \mu(\frac{\Gamma(\log f, f)}{d\nu/d\mu}) \\ &\geq \frac{1}{\delta}\mu(\Gamma(\log f, f)) \\ &\geq \frac{1}{c\delta}Ent_{\mu}(f) \\ &\geq \frac{c\varepsilon}{\delta}Ent_{\nu}(f) \end{split}$$

c.

 $\nu(dx) = \frac{1}{Z} e^{-V(x) + x^2} \mu(dx)$, where $\mu \sim N(0, \sqrt{2})$

$$\frac{d\nu}{d\mu} \in [\frac{1}{Z'}e^{-b}, \frac{1}{Z'}e^{-a}]$$

So:

$$Ent_{\nu}f^{2} \leq \frac{1}{c}e^{b-a}\nu(\Gamma(\log f^{2}, f^{2})) = \frac{1}{c}e^{b-a}\nu((2f'/f).(2ff')) = \frac{1}{4c}e^{b-a}\nu(|f'|^{2})$$

d.

$$Var_{\nu}(f) = \inf_{c \in \mathbb{R}} E_{\nu}[(f - c)^{2}]$$

$$= \inf_{c \in \mathbb{R}} E_{\mu}[(f - c)^{2} \frac{d\nu}{d\mu}]$$

$$\leq \inf_{c \in \mathbb{R}} E_{\mu}[(f - c)^{2}] || \frac{d\nu}{d\mu} ||_{\infty}$$

$$\leq Var_{\mu}f|| \frac{d\nu}{d\mu} ||_{\infty}$$

$$\leq c\delta_{\mu}(\Gamma(f, f))$$

$$\leq c\delta_{\nu}(\frac{\Gamma(f, f)}{d\nu/d\mu})$$

$$\leq \frac{c\delta}{\varepsilon}\nu(\Gamma(f, f))$$

3 Problem 4.2

a. Suppose med(f) attained at x_0 .

 $A = \{ f \le med(f) \}, x_0 \in A$ $\mu(A) = \frac{1}{2}$ by definition

Let $x \in A^t$, then for all $\varepsilon > 0$, there exist $y \in A$ such that $d(x,y) \le t + \varepsilon$.

Since f is Lip, this implies that $|f(x)-f(y)| \le t+\varepsilon$. So that $f(x)-med(f) \le f(x)-f(y)+f(y)-med(f) \le t+\varepsilon$. In particular, letting $\varepsilon \to 0$ gives that $f(x) - med(f) \le t$. We have just proved that $1 - Ce^{-t^2/2\sigma^2} \le \mu(A^t) \le \mathbb{P}(f(x) - med(f) \le t)$. So $Ce^{-t^2/2\sigma^2} \ge \mathbb{P}(f(x) - med(f) \ge t)$

b. Let A be a set of measure $\geq \frac{1}{2}$, and consider f(x) = d(x, A). Then:

- f is Lipschiz
- med(f) = 0

In addition to that, $A^{\varepsilon} = \{x, d(x, A) \ge \varepsilon\} = \{f(x) \ge \varepsilon\}.$

The result follow from the concentration inequality we assumed.

c.

$$E_{\mu}[(f - med(f))_{+}] = \int_{0}^{\infty} P_{\mu}[f - med(f) \ge t]dt$$

$$\le \int_{0}^{\infty} Ce^{-\frac{t^{2}}{2\sigma^{2}}}dt$$

$$= C\sqrt{\frac{\pi}{2}}\sigma$$

$$E_{\mu}[f] - med(f) \le E_{\mu}[(f - med(f))_{+}] \le \sqrt{\frac{\pi}{2}}C\sigma$$

We conclude by considering -f, which is also lipschiz.

The result follow by noting that $t \to P(X \ge t)$ is non-decreasing.

d. For $t_0 = 2\sigma\sqrt{\log 2C}$, $Ce^{-t^2/2\sigma^2} = \frac{1}{2}$, and $P(f \ge E_{\mu}f + t_0) \le \frac{1}{2}$. But $P(f \ge med\ f) = \frac{1}{2}$, so $P(f \ge E_{\mu}f + t_0) \le P(f \ge med\ f)$. As a result:

$$med f \leq E_{\mu}f + t_0$$

Consider -f to conclude.

$$P(f - med(f) \ge t) \le P(f - Ef \ge t - t_0) \le Ce^{-(t - t_0)^2/2\sigma^2} \le 2Ce^{-t^2/8\sigma^2}$$

e. Let $f = d(x, B), \mu_A = \mu(.|A), \mu_B = \mu(.|B)$

Notice that f(x) = 0 on B, and $f(x) \ge d(A, B)$ on A. So:

 $W_1(\mu_A, \mu_B) \ge \int f(x) d\mu_A \ge d(A, B) \mu_A(A) = d(A, B)$

But $W_1(\mu_A, \mu_B) \leq W_1(\mu_A, \mu) + W_1(\mu_B, \mu)$ and

- $W_1(\mu_A, \mu)^2 \le 2\sigma^2 D(\mu_A||\mu) \le 2\sigma^2 \log \frac{1}{\mu(A)}$
- $W_1(\mu_B, \mu)^2 \le 2\sigma^2 \log \frac{1}{\mu(B)}$

Which yields the result.

f. In this case, $d(A,B) = \varepsilon$ so $\varepsilon \leq \sqrt{2\sigma^2}(\sqrt{\log 1/\mu(A)} + \sqrt{\log 1/\mu(B)}) \leq \sqrt{2\sigma^2}(\sqrt{\log 2} + \sqrt{\log 1/\mu(B)})$ so $\mu(A^{\varepsilon}) = 1 - \mu(B) \geq 1 - 2e^{\frac{\varepsilon^2}{8\sigma^2}}$

4 Problem 4.5

a. Choose an ε optimal coupling $M_1 \in \mathcal{C}(\rho_1, \rho_2)$ for $\inf_{M \in \mathcal{C}(\rho_1, \rho_2)} P_{(X,Y) \sim M}(X \neq Y) = ||\rho_1 - \rho_2||$ Choose an ε optimal coupling $M_2 \in \mathcal{C}(\rho_2, \rho_3)$ for $\inf_{M \in \mathcal{C}(\rho_2, \rho_2)} P_{(Y,Z) \sim M}(Z \neq Y) = ||\rho_2 - \rho_3||$ define $M \in \mathcal{C}(\rho_1, \rho_2, \rho_3)$ by:

- $M(X) = \rho_1$
- $M(Y|X) = M_1(Y|Z)$
- $M(Z|X,Y) = M_2(Z|Y)$

It is clear that M is ε -optimal.

We assume that we can take ε to 0.

b. We proceed by induction, and using part a. at each step. Assume we have the claim up to k < n, then we construct Z_{k+1} by applying a. as with:

$$\rho_1 = Q_{k+1}(X_k,.), \rho_2 = Q_{k+1}(Y_k,.), \rho_3 = \nu(Y_{k+1} \in .|Y_1,...Y_k)$$

To show the result, notice that: $X_k = \tilde{X}_k, \tilde{X}_k = Y_k \implies X_k = Y_k$, so:

$$\begin{split} M[X_{k} \neq Y_{k} | Z_{1}, \dots Z_{k-1}] &\leq M[\tilde{X}_{k} \neq X_{k} | Z_{1}, \dots Z_{k-1}] + M[\tilde{X}_{k} \neq Y_{k} | Z_{1}, \dots Z_{k-1}] \\ &= ||Q_{k}(Y_{k-1}, .) - \nu(Y_{k} \in . | Y_{1}, \dots Y_{k})||_{TV} + ||Q_{k}(X_{k-1}, .) - Q_{k}(Y_{k-1}, .)||_{TV} \\ &\leq \sqrt{\frac{1}{2}} D(\nu(Y_{k} \in . | Y_{1}, \dots Y_{k-1}) ||Q_{k}(Y_{k-1}, .)) + (1 - \alpha) 1_{X_{k-1} \neq Y_{k-1}} \end{split} \tag{Bobkov-Gotze}$$

c.

$$M[X_k \neq Y_k | Z_1, \dots Z_{k-1}] \leq \sqrt{\frac{1}{2}D(\nu(Y_k \in . | Y_1, \dots Y_{k-1}) | |Q_k(Y_{k-1}, .))} + (1 - \alpha)1_{X_{k-1} \neq Y_{k-1}}$$

Take the expectation with respect to $Z_1, \ldots Z_{k-1}$ on both sides:

$$\alpha M[X_k \neq Y_k] \leq E[\sqrt{\frac{1}{2}D(\nu(Y_k \in .|Y_1, ... Y_{k-1})||Q_k(Y_{k-1}, .))}]$$

5 Problem 4.7

a. Let

$$Y_i = \begin{cases} 1 & \text{if bin } i \text{ is empty} \\ 0 & \text{otherwise} \end{cases}$$

The Y_i are iid, and their common distribution is

$$E[Y_i] = P(Y_i = 1) = P(\forall j \in [m] \text{ ball } j \text{ missed bin } i) = (1 - \frac{1}{n})^m$$

$$E[Z] = E[Y_1 + \dots Y_n] = nE[Y_1] = n(1 - \frac{1}{n})^m$$

b. $Z = f(Y_1, \dots, Y_m)$, with $f(Y) = \sum_i Y_i$. It is clear that:

- The Y_i are independent
- $||D_k f||_{\infty} = 1$
- $\sum ||D_k f||_{\infty} = m$

By McDiarmid's inequality, Z is m/4 -subgaussian.

b. $f_m(b) \leq f_{2m}(b_1, b'_1, \dots b_m, b'_m) = f_{2m}(b_1, \dots b_m, b'_1, \dots b'_m)$ because the number of non-empty bins can only increases if we add new balls.

Also: $f_{2m}(b_1, \dots b_m, b'_1, \dots b'_m) = f_m(b') + \sum_{i=1}^m 1_{b'_i \neq b'_j \text{ for } i < j \land b'_i \neq b_j \text{ for } i \le m} \le f_m(b') + \sum_{i=1}^m 1_{b'_i \neq b'_j \text{ for } j < i \land b'_i \neq b_i}$ Which proves the two inequalities.

Now we have: $f_m(b) - f_m(b') \leq \sum_{i=1}^m \underbrace{1_{b'_i \neq b'_j \text{ for } j < i}}_{c_i(b')} 1_{b'_i \neq b_i}$ Notice that $\sum_i c_i(b')^2 = \sum_i c_i(b') = f_m(b') \leq n$, which

proves that Z is also n -subgaussian.

6 Problem 4.8

- a. Lower bound:
 - $L_n \ge \sum_i \min_{j \ne i} ||X_i X_j||$, because at some point when we are X_i , we are going to travel to some other city X_j , and that quantity is bounded below by the minimum distance from X_i .
 - Let $Z = \min_{j>1} ||X_1 X_j||$]. $Z \ge r \iff \forall j > 1, ||X_j X_i|| \ge r$
 - Conditioning on X_1 , $||X_j X_1|| \le r$ happens with probability $Surface(B(X_1, r) \cap [0, 1]^2) := a(X_1, r)$.
 - $a(X_1,r) \le \pi r^2 \wedge 1$
 - $P(Z \ge r|X_1) = (1 a(X_1))^n$
 - $E[Z] = E_{X_1} \left[\int_0^1 P(Z \ge r | X_1) dr \right] \ge \int_0^1 (1 \pi r^2)_+^n dr = \frac{\Gamma(n + \frac{1}{2})}{\Gamma(n + \frac{3}{2})} \sim \frac{1}{\sqrt{n}}$
 - As a result, $E[L_n] \ge nE[Z] \sim \sqrt{n}$

Upper bound:

• $L_n \leq L_{n-1} + 2\min_{k < n} ||X_k - X_n||$. This is true, because $X_{\sigma(1)}, \dots X_{\sigma(n-1)}$ is an optimal tour of the first n cities, $k^* = \arg\min_{k < n} ||X_{\sigma(k)} - X_n||$, then, $X_{\sigma(1)}, \dots X_{\sigma(k^*)}, X_n, X_{\sigma(k^*)}, \dots, X_{\sigma(n-1)}$, is a valid tour of the n cities of cost $L_{n-1} + 2\min_{k < n} ||X_k - X_n||$.

This proves that $L_n \leq 2 \sum \min_{k \leq n} ||X_k - X_n||$. Using a similar technique as in the last question by bounding $a(X_1, r)$ from below by πr^2 , we get that $\min_{k \leq n} ||X_k - X_n|| \sim \frac{1}{\sqrt{i}}$.

But $\sum_{i} \frac{1}{\sqrt{i}} \sim \int_{1}^{n} \frac{dt}{\sqrt{t}} \sim \sqrt{n}$, which proves the result.

- b. $L_n = L_n(X_1, ..., X_n)$. $|D_k L_n| \le 2\sqrt{2}$. Indeed:
 - Let $X_{\sigma(1)}, \dots X_{\sigma(n)}$ is an optimal tour, and $i = \sigma^{-1}(k)$
 - Starting with an optimal tour, changing X_k can only change the portion of the tour to and from X_k , in both cases by at most $\sqrt{2}$.
 - We conclude by McDiarmid's inequality.
 - c. Let $x = x_1 u + x_2 v$. $x \in T \implies 0 \le x_1 \le 1, 0 \le x_2 \le 1 \implies x_1^2 \le x_1, x_2^2 \le x_2$

$$||x - u||^{2} + ||x - v||^{2} \le ||u - v||^{2} \iff 2||x||^{2} - 2\langle x, u + v \rangle \le 0$$

$$\iff \langle x_{1}u + x_{2}v, (x_{1} - 1)u + (x_{2} - 1)v \rangle \le 0$$

$$\iff x_{1}(x_{1} - 1) + x_{2}(x_{2} - 1) \le 0$$

$$\iff x_{1}^{2} + x_{2}^{2} \le x_{1} + x_{2}$$

And the last inequality is true.

- d. We proceed by induction like the hint suggests.
- Suppose the the result true up to n-1, consider n points $x_1, \ldots x_n$ in T
- Divide T into two right triangles S_1 , S_2 until both are not empty. Without loss of generality, because the length of the path can only get shorter, we can assume $S_1 \cup S_2 \neq \emptyset$
- Apply the induction hypothesis on S_1 and S_2 to get two paths, the first one v, y_1, \ldots, y_m, O of length at most a, the other O, z_1, \ldots, z_r with m + r = n with length at most b.
- Consider the path $v, y_1 \dots y_m, z_1, \dots z_r, w$ that has length:

$$||v,y_1||^2+\ldots ||y_{m-1}-y_m||^2+||y_m-z_1||^2+\ldots ||z_r-w||^2\leq ||v,y_1||^2+\ldots ||y_{m-1}-y_m||^2+||y_m-O||^2+||O-z_1||^2+\ldots ||z_r-w||^2+||v,y_1||^2+\ldots ||z_r-w||^2+||v,y_1||^2+|$$

Where the first inequality comes from the fact that $||y-z||^2 \le ||y-O||^2 + ||O-z||^2$ whenever $\langle z,y\rangle \ge 0$, which is true on T.

- e. By d., consider a path $v, x_{\sigma(1)}, \dots x_{\sigma(n)}, w$ of length at most 2. Consider the path $x_{\sigma(1)}, \dots x_{\sigma(n)}, x_{\sigma(1)}$, which is, for the same reason as above, has shorter length than: $x_{\sigma(1)}, \dots x_{\sigma(n)}, x_{\sigma(n-1)}, \dots x_{\sigma(1)}$, so smaller than 4.
- f. We follow the hint, we start following τ until the first time we get to a point in $x \cap y$, then we follow σ until right beforewe hit $x \cup y$ again, then we follow the last portion of the path in reverse. It is clear that the length of this path has the following components:
 - $l_n(y,\tau)$, if we ignore the excursions we do when we meet some element from x, because we start and end at the same point.
 - $2d_i(x,\sigma)$ whenever $x_i \notin y$, because we go to and then from x_i once.

g.

- If $x \cup y \neq \emptyset$, we use f. by noting that $\min_{\sigma} l_n(x,\sigma) \leq l_{2n}(x \cup y,\rho)$
- Otherwise, notice that $l_n(x,\sigma) \leq 2\sum_i d(x_i,\sigma) = 2\sum_i 1_{x_i \in y} d(x_i,\sigma)$
- h. Use Talagrand inequality with $c_i = 2d(x_i, \sigma)$, so that $||\sum c_i^2||_{\infty} \le 16$ by e.