[4]

Q.5		Attempt any two:						
	i.	Difference between Traditional Algorithms and Genetic	5					
		Algorithm.						
	ii.	Explain the following types of binary crossover operators with	5					
	reference to genetic algorithm.							
		(a) Single point crossover						
		(b) Double point crossover						
		(c) Multi point crossover						
		(d) Uniform crossover						
		(e) Matrix crossover						
	iii.	What is 'Roulette Wheel Selection'?	5					
Q.6		Attempt any two:						
	i.	What is a Genetic Algorithm based Backpropagation Network?	5					
		Explain and Draw its architecture.						
	ii.	What is hybrid intelligent control system? What are the	5					
		advantages and disadvantages of Fuzzy control system.						
	iii.	. What are the different types of Neuro-Fuzzy system? Explain an						
	one architecture in detail with the help of diagram.							

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

Faculty of Engineering End Sem (Even) Examination May-2019 CS3EA03 Soft Computing

Programme: B.Tech. Branch/Specialisation: CSE

Duration: 3 Hrs. Maximum Marks: 60

of

	-	estions are compulsory. Internal choices, if any, are indicated. Answe should be written in full instead of only a, b, c or d.	ers (
Q.1	i.	A perceptron is:							
		(a) A single layer feed-forward neural network with pre-processing							
		(b) An auto-associative neural network							
		(c) A double layer auto-associative neural network							
		(d) A neural network that contains feedback							
	ii.	An auto-associative network is:	1						
		(a) A neural network that contains no loops							
		(b) A neural network that contains feedback							
		(c) A neural network that has only one loop							
		(d) A single layer feed-forward neural network with pre-processing							
	iii.	A 4-input neuron has weights 1, 2, 3 and 4. The transfer function	1						
		is linear with the constant of proportionality being equal to 2. The							
		inputs are 4, 10, 5 and 20 respectively. The output will be:							
		(a) 238 (b) 76 (c) 119 (d) 123							
	iv.	Which of the following is true?	1						
		I. On average, neural networks have higher computational rates							
		than conventional computers.							
		II. Neural networks learn by example.							
		III. Neural networks mimic the way the human brain works.							
		(a) All of these are true (b) II and III are true							
		(c) I and III are true (d) None of these							

P.T.O.

v.	Which of the following is true for neural networks?					
	I. The training time depends on the size of the network.					
	II. Neural networks can be simulated on a conventional					
	computer.					
	III. Artificial neurons are identical in operation to biological ones.					
	(a) All of these (b) II is true					
	(c) I and II are true (d) None of these					
vi.	What is back propagation?	1				
	(a) It is another name given to the curvy function in the					
	perceptron					
	(b) It is the transmission of error back through the network to					
	adjust the inputs					
	(c) It is the transmission of error back through the network to					
	allow weights to be adjusted so that the network can learn					
	(d) None of these					
vii.	Fuzzy logic is a form of	1				
	(a) Two-valued logic (b) Crisp set logic					
	(c) Many-valued logic (d) Binary set logic					
viii.	Fuzzy logic is extension of Crisp set with an extension of handling	1				
	the concept of Partial Truth.					
	(a) True (b) False					
ix.	The room temperature is hot. Here the hot (use of linguistic	1				
	variable is used) can be represented by					
	(a) Fuzzy Set (b) Crisp Set					
	(c) Both (a) and (b) (d) None of these					
х.	The values of the set membership are represented by	1				
	(a) Discrete Set (b) Degree of truth					
	(c) Probabilities (d) Both (b) and (c)					
	Attempt any two:	_				
i.	Define soft computing? Distinguish between soft computing and	5				
	hard computing.					
ii.	'Conventional computing fails to give solution in applications.'					
	Justify with some examples.	5				
iii.	Explain any five characteristics of soft computing.					

Q.2

Q.3		Attempt any two:								
	i.	Compare the strength and weakness of human brain with respect 5								
		to a computer.								
	ii.	What is forward pass and backward pass in the training of back 5								
		propagation neural network.								
	iii.	Explain the weight updation process in a back propagation neural network in both hidden and output layers using sigmoidal function.								
Q.4		Atten	npt aı	ny two):					
	i.		-	•		fuzzy	set operation with example:	5		
		(a) In	terse	ction (of fuz	zy set	S			
		(b) U	nion	of fuz	zy set	S				
		(c) C	ompl	ement	of fu	zzy se	ets			
	ii.		and	S be t	wo fu	zzy re	elations defined here:	5		
		R =		1	1	1				
				y1	y2	y 3				
			x 1	0.0	0.2	0.8				
			x2	0.3	0.6	1.0				
		S =								
				z 1	z2	z3				
			y1	0.3	0.7	1.0				
				0.5	1.0	0.6	_			
			y2							
			y3	1.0	0.2	0.0				
		-	-				using			
		(a) max -min composition(b) max- product composition								
	iii.							5		
		fuzzification techniques.								

P.T.O.

Marking Scheme CS3EA03 Soft Computing

) .1	i.	A perceptron is:	1					
		(a) A single layer feed-forward neural network with pre-processing						
	ii.	An auto-associative network is:	1					
		(b) A neural network that contains feedback						
	iii.	A 4-input neuron has weights 1, 2, 3 and 4. The transfer function is						
		linear with the constant of proportionality being equal to 2. The						
		inputs are 4, 10, 5 and 20 respectively. The output will be:						
	iv.	(a) 238 Which of the following is true?	1					
	IV.	(a) All of these are true	1					
	v.	Which of the following is true for neural networks?	1					
	٧.	(c) I and II are true						
	vi.	What is back propagation?	1					
	, 1.	(c) It is the transmission of error back through the network to allow						
		weights to be adjusted so that the network can learn						
	vii.	Fuzzy logic is a form of						
		(c) Many-valued logic						
	viii.	Fuzzy logic is extension of Crisp set with an extension of handling	1					
	the concept of Partial Truth.							
		(a) True						
	ix.	The room temperature is hot. Here the hot (use of linguistic variable	1					
		is used) can be represented by						
		(a) Fuzzy Set						
	х.	The values of the set membership are represented by	1					
		(b) Degree of truth						
) .2	:	Attempt any two:	_					
	i.	Soft computing 2 marks Difference soft computing and hard computing. 3 marks	5					
	ii.	Difference soft computing and hard computing. 3 marks 'Conventional computing fails to give solution in applications.'	5					
	11.	Proportionate marking	J					
	iii.	Any five characteristics of soft computing.	5					
	1111	1 mark for each (1 mark * 5)	·					
		(1 mark 0)						
2.3		Attempt any two:						
	i.	Compare the strength and weakness of human brain						
		At least five point 1 mark for each (1 mark * 5)						

	ii. iii.	Forward pass and backward pass eight updation process in a back propagation neural network in both hidden and output layers using sigmoidal function.						
Q.4		Attempt any two:						
	i.	(a) Intersection of fuzzy sets	1.5 marks	5				
		(b) Union of fuzzy sets	1.5 marks					
		(c) Complement of fuzzy sets	1.5 marks					
		Example	0.5 mark					
	ii.	Compute the result of R o S using		5				
		(a) max -min composition	2.5 marks					
		(b) max- product composition	2.5 marks					
	iii.	De-fuzzification	1 mark	5				
		Any TWO De-fuzzification techniques						
		2 marks for each (2 marks * 2)	4 marks					
Q.5		Attempt any two:						
	i.	Difference b/w Traditional Algorithms and Genetic Algorithm. 5						
	ii.	(a) Single point crossover	1 mark	5				
		(b) Double point crossover	1 mark					
		(c) Multi point crossover	1 mark					
		(d) Uniform crossover	1 mark					
		(e) Matrix crossover	1 mark					
	iii.	Roulette Wheel Selection		5				
Q.6		Attempt any two:						
	i.	Genetic Algorithm based Backpropagation Network						
			2 marks					
		Its architecture.	3 marks					
	ii.	Hybrid intelligent control system	2 marks	5				
		Advantages and disadvantages of Fuzzy co	ontrol system.					
			3 marks					
	iii.	Types of Neuro-Fuzzy system	2 marks	5				
		Any one architecture with diagram.	3 marks					
