MATEMÁTICA

Notações

 $\mathbb{N} = \{1, 2, 3, \dots\}$: o conjunto dos números naturais.

 \mathbb{R} : o conjunto dos números reais.

 \mathbb{C} : o conjunto dos números complexos.

i: unidade imaginária, $i^2 = -1$.

Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

Questão 1. Sejam A, B e C conjuntos contidos num mesmo conjunto U. Seja x um elemento de U, define-se:

$$C_B^A = \{ x \in U | x \in B \text{ e } x \notin A \}$$

Então, $C_C^{(A \cup B)}$ é igual a:

A () $C_C^A \cup C_C^B$

 \mathbf{C} () C_A^B

E () n.d.a.

B () $C_C^A \cap C_C^B$

D () O conjunto vazio

Questão 2. Sejam A, B e D subconjuntos não vazios o conjunto $\mathbb R$ dos números reais. Sejam as funções $f: A \to B(y = f(x))$, $g: D \to B(x = g(t))$, e a função composta $g \circ f: E \to K$ (e, portanto $Z = (g \circ f)(t) = g(t)$) f(q(t)). Então os conjuntos E e K são tais que:

A () $E \subset A \in K \subset D$

 \mathbf{C} () $E \supset D \in D \neq E \in K \subset B$ \mathbf{E} () n.d.a.

B () $E \subset B \in K \supset A$

D () $E \subset D \in K \subset B$

Questão 3. O volume de um tetraedro regular de aresta igual a l é:

A () $l\sqrt{2}$

D () $\frac{l^3\sqrt{3}}{2}$

B () $\frac{l^2\sqrt{3}}{2}$

E () n.d.a.

C ()
$$\frac{l^2\sqrt{2}}{3}$$

Questão 4. Seja a>0 o 1° termo de uma progressão aritmética de razão r e também de uma progressão geométrica de razão $q = 2r\sqrt{3}/3a$. A relação entre a e r para que o terceiro termo da progressão geométrica coincida com a soma dos 3 primeiros termos da progressão aritmética é:

A () r = 3a

B () r = 2a

 \mathbf{C} () r=a \mathbf{D} () $r=\sqrt{2a}$ \mathbf{E} () n.d.a.

Questão 5. Sobre a raiz da equação podemos afirmar:

$$3^x - \frac{12}{3^{x-1}} + 3^{x-3} = \frac{23}{3^{x-2}}$$

A () não é real

B () é menor que -1

C () está no intervalo [0, 6]

- D () é um número primo
- **E** () n.d.a.

Questão 6. A condição para que $\binom{n}{k}$ seja o dobro de $\binom{n}{k-1}$ é que:

- **E** () n.d.a.

Questão 7. Sejam as matrizes

$$A = \begin{bmatrix} 2 & 4 \\ 0 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix}, Z = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Então temos:

- \mathbf{A} () BA = I
- \mathbf{B} () BA=AB \mathbf{C} () A=2B \mathbf{D} () AI=BZ \mathbf{E} () n.d.a.

Questão 8. Seja a equação matricial

$$\begin{bmatrix} 1 & 4 & 5 \\ 3 & -1 & 7 \\ 1 & -22 & -11 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Podemos afirmar:

- A () a equação tem uma e somente uma solução.
- B () a equação tem duas e somente duas soluções.
-) a equação tem três e somente três soluções.
-) a equação não tem solução.
- **E** () n.d.a.

Questão 9. O valor da expressão $x = \frac{2 \tan \theta}{1 - \tan^2 \theta}$, quando $\cos \theta = -\frac{3}{7}$ e $\tan \theta < 0$, é:

A () $4\sqrt{10}/31$

C () $2\sqrt{10}/15$

E () n.d.a.

B () $-2\sqrt{10}/3$

D () $3\sqrt{10}/7$

Questão 10. $\left[\frac{1-\tan x}{1+\tan x}\right]^2$ vale:

- **A** () $\frac{1-2\sin 2x}{1+\sin 2x}$
- $\mathbf{C} \ (\quad) \ \frac{1+\sin 2x}{1+\sin 2x}$

E () n.d.a.

- **B** () $\frac{1+2\sin 2x}{1-\sin 2x}$
- **D** () $\frac{1 \sin 2x}{1 + \sin 2x}$

Questão 11. Seja BC = CD no quadrilátero ABCD, mostrado na figura abaixo. Então podemos garantir que:

$$\mathbf{A} \ (\quad) \ \frac{\sin \gamma}{\sin \delta} = \frac{\sin \alpha}{\sin \beta}$$

B ()
$$\delta \alpha = \beta \gamma$$

$$\mathbf{C}$$
 () $\tan \alpha \tan \beta = \tan \delta \tan \gamma$

$$\mathbf{D} \ (\) \ BC^2 = AB.AB$$

Questão 12. A reta que passa pelas interseções das circunferências $x^2 + y^2 = 1$ e $(x - 1)^2 + (y - 1)^2 = 2$, é tal que:

$${\bf A}$$
 () tem equação $\frac{3}{5}x-\frac{2}{3}y+\frac{1}{4}=0$

B () não passa pela origem.

C () passa pela origem.

D () não é perpendicular à reta que passa pelos centros das circunferências.

E () n.d.a.

Questão 13. Os zeros da função $P(x) = 3x^6 - 8x^5 + 3x^4 + 2x^3$:

A () todos inteiros.

B () 2 imaginários puros e 4 reais

C () todos racionais

D () 4 racionais e 2 irracionais

E () n.d.a.

Questão 14. A equação $x^n - 1$, onde n é um número natural maior do que 5, tem:

 ${\bf A}$ () 1 raiz positiva, 1 raiz negativa e (n-2) raízes complexas quando n é par.

- **B** () 1 raiz positiva, (n-1) raízes não reais quando n é par.
- ${f C}$ () 1 raiz negativa, (n-1) raízes complexas quando n é ímpar.
- \mathbf{D} () 1 raiz positiva, 1 raiz negativa e (n-2) raízes complexas quando n é um número natural qualquer.
- **E** () n.d.a.

Questão 15. O valor absoluto da soma das duas menores raízes da equação $x^2 + 1/x^2 + x + 1/x = 4$ é:

- **A** () 2
- **B**()3
- C () $\frac{4-\sqrt{3}}{2}$ D () 4
- **E** () n.d.a.

Questão 16. Se a, b e c são raízes da equação $x^3 - 2x^2 + 3x - 4 = 0$, então o valor de 1/a + 1/b + 1/c é:

- **A** () 1/4

- **B** () -1/4 **C** () 3/4 **D** () 3/2 **E** () n.d.a.

Questão 17. O conjunto de todos os valores de x para os quais existe um y real de modo que

$$y = \log\left[\log\left(\frac{7 - 2x - x^2}{3 - 4x^2}\right)\right]$$

- **A** () intervalo aberto A, de extremos $-\sqrt{2}$ e $\sqrt{2}$
- **B** () intervalo aberto A, de extremos $-\sqrt{3}$ e $\sqrt{3}$
- C () intervalo aberto A, de extremos 0 e $\sqrt{3}/2$
-) intervalo aberto A, de extremos $-\sqrt{3}/2$ e 1
-) n.d.a.

Questão 18. Um lado de um triângulo ABC mede lcm. Os valores dos ângulos e dos lados do triângulo formam duas progressões aritméticas. A área S desse triângulo é:

- **A** () $l^2(\sqrt{3}+1) cm^2$
- **B** () $l^2(\sqrt{3}-1) cm^2$
- **C** () $l^2\sqrt{3} cm^2$
- **D** () $\frac{l^2\sqrt{3}}{4} cm^2$
- **E** () n.d.a.

Questão 19. Sendo a_1, a_2, \ldots, a_n números reais, o maior valor de n tal que as igualdades ao lado são verdadeiras

$$\log 123478 = a_1$$

$$\log a_1 = a_2$$

$$\log a_{n-1} = a_n$$

A () n = 3 **B** () n = 4 **C** () n = 5 **D** () n = 6 **E** () n.d.a.

Questão 20. Seja $M = 1/a^2 + 1/b^2 + 1/c^2$, onde a, b e c são as raízes da equação $x^3 - \sqrt{3}x^2 + 54 = 0$. Então podemos afirmar que:

 \mathbf{A} () $\log_3 M$ é um número irracional

 \mathbf{B} () $\log_3 M$ é um número primo

C () $\log_3 M = 5/3$

D () $\log_3 M = -5/2$

E () n.d.a.

Questão 21. Deseja-se construir uma ferrovia ligando o ponto A ao ponto B que está $40\sqrt{2}$ km a sudeste de A. Um lago, na planície onde estão A e B impede a construção em linha reta. Para contornar o lago, a estrada será construída e 2 trechos retos com o vértice no ponto C, que está 36 km a leste e 27 km ao sul de A. O comprimento do trecho CB é:

A () 182

C () 184

E () n.d.a.

B () 183

D () 185

Questão 22. O conjunto dos valores de k, para os quais $f(x) = x^3 - 2x^2 + 3x - k$ tem um ou três zeros reais entre 1 e 2, é:

A () k < 2

C () 2 > k ou k > 6

E () n.d.a.

B () 1 < k < 2

D () k > 7

Questão 23. Seja c um quarto de circunferência AB de raio R e centro O, e seja t a reta tangente a c em A. Traça-se pelo centro O de c uma reta que corta c num ponto M, e corta a reta tangente num ponto N, distintos de A. Se k a razão entre o volume gerado pelo setor OAM e o volume gerado pelo triângulo OAN, ambos obtidos girando-se de 2π em torno de AO. O comprimento do segmento AN é igual ao raio R se:

A ()
$$1 < k < 2, 5$$

C ()
$$0 < k \le 2$$

B ()
$$2, 5 \le k \le 3$$

D ()
$$0 < k < 1, 5$$

Questão 24. Um cone equilátero está inscrito em uma esfera de raio 4 cm. Cortam-se os sólidos (esfera e cone) por um plano paralelo à base, de modo que a diferença entre as áreas das secções seja igual à área da base do cone. O raio da secção do cone é:

A ()
$$2\sqrt{3}$$
 cm

C ()
$$\sqrt{3}/3$$
 cm

$$\mathbf{B}$$
 () $\sqrt{3}$ cm

D ()
$$4\sqrt{3}/3$$
 cm

Questão 25. Seja a_k um número complexo, solução da equação $(z+1)^5+z^5=0, K=0,1,2,3,4$. Podemos afirmar que:

 ${\bf A}$ ($\,\,\,$) todos os z_k , $K=0,1,\ldots,4$ estão sobre uma circunferência.

 ${\bf B}$ () odos os z_k , $K=0,1,\ldots,4$ estão sobre uma reta paralela ao eixo real.

 ${\bf C}$ ($\,\,$) todos os z_k , $K=0,1,\ldots,4$ estão sobre uma reta paralela ao eixo imaginário.

D () a equação não admite solução

E () n.d.a.