Duração da Ficha Formativa: 180 min | abril de 2018

Caderno 1 + Caderno 2

12.º Ano de Escolaridade | Turma K-G

Caderno 1

- Neste Caderno é permitida a utilização de calculadora
- 1. sendo $\cos(a-b)=\frac{\sqrt{3}}{2}$ e $\sin(a)=-\frac{\sqrt{2}}{2}\wedge\frac{3\pi}{2}< a<2\pi,$ determina o valor exato de $\cos(b)-\sin(b)$
- 2. Mostra que $2\cos^2\left(\frac{x}{4}\right) = 1 + \cos\left(\frac{x}{2}\right), \forall x \in \mathbb{R}$
- 3. Considera a função g definida por $g(x) = \frac{\pi}{2} + 2x \sin\left(\frac{1}{x}\right)$ Na figura 1, está representado, em referencial ortonormado, parte do gráfico da função g.

A reta de equação y=b é assíntota do gráfico de g quando $x\to +\infty$ e também quando $x\to -\infty$

Figura 1

- 4. Seja g a função de domínio \mathbb{R}^+ definida por $g(x) = \ln(x)$ Os gráficos das funções g e g' intersetam-se num ponto A, de abcissa b, (b > 0)Pode-se afirmar que:
 - (A) $b^{-2b} = e$
 - (B) $b^b = e$
 - (C) $b^{2b} = e$
 - (D) $b^{-b} = e$
- 5. Seja b um número real maior do que 1. Considera a função f, de domínio \mathbb{R}^+ , definida por $f(x) = \frac{2 + \ln(x)}{\ln(b)}$
 - **5.1.** Prova que $f\left(\frac{1}{e}\right) f\left(\frac{1}{e^3}\right) = \frac{2}{\ln(b)}$
 - **5.2.** Usando a definição de derivada de uma função num ponto, determina f'(1).

6. Considera a função g, de domínio \mathbb{R}^-

Sabe-se que:

• a reta de equação y = 7x - 2 é assíntota ao gráfico da função g

Qual é o valor de
$$\lim_{x \to -\infty} \frac{e^{-\frac{1}{x^2}} - g(x)}{x}$$
?

(A) 7 (B)
$$-7$$
 (C) $-\infty$ (D) $+\infty$

7. Considera a função g, real de variável real, definida por $g(x) = -\frac{1}{12}x^3 + x + 3$ No referencial ortonormado da figura 2 estão representados parte do gráfico da função g, e duas retas paralelas, $r \in s$

Sabe-se que:

• a reta s é tangente ao gráfico da função no ponto S de abcissa b, com b > 0

arredondamento às centésimas, o valor de α

(A)
$$a = -4 \text{ e } b = 4$$
 (B) $a = -b$ (C) $a = -2b$ (D) $a = -1 \text{ e } b = 1$

Figura 2

8. Na figura 3 está um alvo. Os quadrados representados têm medida de lado $x\ cm$, $2x\ cm$ e $4x\ cm$ Os três quadrados têm o mesmo centro

Todos os pontos do alvo têm igual probabilidade de serem atingidos

O Rodrigo lança um dardo e acerta no alvo

Figura 3

Numa das opções está a probabilidade de o dardo ter acertado na região colorida de azul Em qual delas?

(A)
$$\frac{3}{8}$$
 (B) $\frac{5}{8}$ (C) $\frac{5}{16}$ (D) $\frac{13}{16}$

- 9. Para abrir um cofre é utilizado um código formado por uma sequência de quatro letras seguido de quatro números. Sabe-se que para a sequência das quatro letras só estão disponíveis letras iguais às letras do conjunto $X = \{A; B; C; D; E; F; G; H\}$, e que para a sequência de números não há restrições Escolhido, ao acaso, um código do conjunto de todos os códigos que se podem fazer, nas condições indicadas, qual é a probabilidade de esse código iniciar com AA e terminar com 99? Apresenta o resultado sob a forma de fração irredutível
- 10. Considera as funções f e g, reais de variável real, de domínio \mathbb{R} , definidas, respetivamente, por

Consider as functions
$$f$$
 e g , reals de variaver real, de domining $f(x) = \begin{cases} \frac{-x-4}{x+3} & se \quad x < -3\\ 3 & se \quad -3 \le x \le 2\\ \frac{-x+1}{x-2} & se \quad x > 2 \end{cases}$

Recorrendo à calculadora gráfica, determina as coordenadas dos pontos de interseção dos gráficos das duas

Apresenta as coordenadas arredondadas às centésimas

11. O ponto P desloca-se numa reta numérica durante um intervalo de tempo I, de tal forma que a respetiva abcissa é dada por $x(t) = 3\cos\left(\frac{\pi}{4}t + \frac{\pi}{6}\right)$, com $t \in I$

Qual é a frequência deste oscilador?

(A)
$$\frac{1}{5}$$
 (B) $\frac{1}{6}$ (C) $\frac{1}{7}$ (D) $\frac{1}{8}$

12. Seja f, a função real de variável real, de domínio \mathbb{R} , definida por

Seja
$$f$$
, a função real de variável real, de domínio \mathbb{R} , d
$$f(x) = \begin{cases} \frac{\ln(2+x) + x + 1}{1+x} & se \quad x > -1\\ \frac{\log(e^4)}{\log(e)} - 2 & se \quad x = -1\\ 3 + \frac{e^{x+k}}{x-2} & se \quad x < -1 \end{cases}$$

- 12.1. Averigua se existe um valor de k de modo que a função f seja contínua no ponto x=-1
- 12.2. Determina $\lim_{x\to -\infty} f(x)$ e escreve a equação da assíntota ao gráfico da função f quando $x\to -\infty$
- 12.3. Considera agora que k=2. Escreve a equação reduzida da reta tangente ao gráfico da função no ponto de abcissa -2
- 13. Na figura 4 está representado um paralelepípedo [ABCDEFGH] Sabe-se que:
 - a origem do referencial está situado no centro da base [ABCD]
 - o ponto F tem coordenadas (3;2;2)
 - 13.1. Escolhem-se, ao acaso, três vértices do paralelepípedo Qual é a probabilidade de o plano definido por esses três vértices ser perpendicular ao plano yOzApresenta o resultado sob a forma de fração irredutível

- 13.3. Escreve uma equação cartesiana do plano ADF
- 13.4. Escreve uma condição que caraterize a superfície esférica de diâmetro [BH]

Sabendo que $\log_a(b^3) = 2$, mostra que $\log_b\left(\frac{\sqrt[4]{a^3b}}{b}\right) = \frac{3}{8}$

- \bullet o ponto A, de coordenadas (0,4), pertence à reta r
- ullet o ponto C é o ponto de interseção da reta r com o eixo Ox e tem abcissa 4

Qual é o valor de $\lim_{x\to 2} \frac{f(x)-f(2)}{x^2-4}$? (A) $-\frac{1}{16}$ (B) $\frac{1}{16}$ (C) $-\frac{1}{4}$ (D) $\frac{1}{4}$

(A)
$$-\frac{1}{16}$$
 (B) $\frac{1}{16}$ (C) $-\frac{1}{4}$ (D) $\frac{1}{4}$

Figura 4

Figura 5

• Neste Caderno não é permitida a utilização de calculadora

16. Considera as funções $f \in g$, definidas em $[-\pi; \pi]$, por $f(x) = 2\sin(-x)$ e $g(x) = -2\sin(\frac{x}{2})$

Na figura 6 encontram-se os gráficos das duas funções, e um paralelogramo $\left[ABCD\right]$

Sabe-se que:

- ullet o ponto D tem a mesma ordenada do ponto C e pertence ao eixo Oy
- \bullet o ponto Btem a mesma ordenada do ponto Ae pertence ao eixo Oy

Figura 6

Mostra, analiticamente, que a área do paralelogramo [ABCD] é $\frac{4\sqrt{3}\pi}{3}$ u.a.

17. Na figura 7 está representada a semicircunferência de centro A e raio 2 e um pentágono [APDGH]

Sabe-se que:

- ullet o ponto A pertence ao segmento de reta [EB]
- os pontos B, C e I, pertencem à circunferência de centro no ponto A e de raio igual a 2
- \bullet o segmento de reta[AC] é perpendicular ao segmento de reta [EB]

•
$$\overline{AE} = 1$$
; $\overline{AP} = 2$

Figura 7

Admite que um ponto P se desloca ao longo do arco BC, nunca coincidindo com B nem com C, e que um ponto D acompanha o movimento do ponto P de forma que o quadrilátero [EDPA] seja um trapézio retângulo

O ponto F é a interseção do segmento de reta [PD] com o segmento de reta [AC]Nesse movimento de P, os pontos G e H também acompanham o movimento e tem-se que o quadrilátero [AEGH] é um trapézio retângulo geometricamente igual ao trapézio [EDPA]. Para cada posição do ponto P, seja x a amplitude do ângulo BAP e seja S(x) a área do pentágono [APDGH]

- 17.1. Mostra que $S(x)=4\sin(x)+2\sin(2x)$, com $x\in\left]0;\frac{\pi}{2}\right[$
- 17.2. Para um dado valor de $x \in \left]0; \frac{\pi}{2}\right[$ sabe-se que $\tan(2\pi x) = -\frac{12}{5}$ Determina, para esse valor de x, o valor exato da área do pentágono [APDGH]
- 17.3. Determina o(s) valor(es) de x para os quais a área colorida é máxima
- 18. Considera num referencial ortonormado Oxyz, os planos

$$\alpha: -x + y - z - 2 = 0 \ e \ \beta: ax - 4ay + 2a^2z + 1 = 0, a \in \mathbb{R} \setminus \{0\}$$

Os planos α e β são perpendiculares se:

$$(A) \ a = \frac{2}{5}$$

(B)
$$a = -\frac{5}{2}$$

(C)
$$a = -\frac{2}{5}$$

(D)
$$a = \frac{5}{2}$$

- 19. Considera a função f, real de variável real, definida por $f(x) = (2 x^2)e^{2-x}$. Determina os intervalos de monotonia e os extremos da função
- 20. Na figura 8 está uma caixa com b bolas brancas e p bolas pretas. O Rodrigo introduziu na caixa uma bola preta. Depois, ao acaso, retirou, sucessivamente e sem reposição, duas bolas da caixa

Mostra que a expressão que dá o valor da probabilidade de as bolas retiradas da caixa serem de cores diferentes, é igual a $\frac{2(bp+b)}{(p+b)^2+(p+b)}$

Figura 8

- 21. Em qual das opções está o valor de $\lim_{x \to \frac{\pi}{2}} \frac{\cos(x)}{e^4 e^{4 + \cos(x)}}$?
 - (A) e^4
 - (B) e^{-4}
 - (C) $-e^{-4}$
 - (D) $-e^4$
- $22.\,$ De uma certa linha do triângulo de Pascal, sabe-se que a soma do segundo elemento com o penúltimo é $30\,$

Qual é o maior elemento da linha seguinte?

- 23. Determina $k \in \mathbb{R}$ de modo que $\lim \left(\frac{4n-1}{4n+1}\right)^{2n} = \frac{1}{e^{3k+2}}$
- 24. Seja f a função, de domínio $\mathbb{R}\setminus\{0\}$, definida por $f(x)=\frac{\sin(-2x)}{3x}$

Considera a sucessão de números reais (x_n) tal que $x_n = \frac{1}{e^n}$

Qual é o valor de $\lim (f(x_n))$?

- (A) -1
- (B) $-\frac{2}{3}$
- (C) 0
- (D) $\frac{2}{3}$
- 25. Considera todos os números de seis algarismos que se podem formar com os algarismos de 1 a 9. Destes números, quantos têm exatamente dois algarismos iguais a 4?

Numa das opções está a expressão que dá esse número

Em qual delas?

- (A) ${}^{6}C_{4} \times 8^{4}$
- (B) ${}^{6}C_{4} \times 9^{4}$
- (C) 2×8^4
- (D) 2×9^4

FIM

Geometria

Comprimento de um arco de circunferência:

 αr (α - amplitude, em radianos, do ângulo ao centro; r - raio)

área de um polígono regular: $Semiperímetro \times Apótema$

área de um setor circular:

$$\frac{\alpha r^2}{2}$$
 (\$\alpha\$- amplitude, em radianos, do ângulo ao centro, \$r\$ - raio)

área lateral de um cone: πrg (r - raio da base, g - geratriz)

área de uma superfície esférica: $4\pi r^2$ (r - raio)

Volume da pirâmide: $\frac{1}{3} \times \acute{a}rea \ da \ base \times Altura$

Volume do cone: $\frac{1}{3} \times \text{ área da base} \times \text{Altura}$

Volume da esfera: $\frac{4}{3}\pi r^3$ (r - raio)

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

 $\begin{array}{l} \textbf{Progress\~ao} \ \text{aritm\'etica:} \ \frac{u_1+u_n}{2}\times n \\ \textbf{Progress\~ao} \ \text{geom\'etrica:} \ u_1\times\frac{1-r^n}{1-r}, \ r\neq 1 \end{array}$

Trigonometria

$$\sin(a+b) = \sin a \cos b + \sin b \cos a$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

Lei dos senos

$$\frac{\sin \hat{A}}{a} = \frac{\sin \hat{B}}{b} = \frac{\sin \hat{C}}{c}$$

Lei dos cossenos ou Teorema de Carnot

$$a^2 = b^2 + c^2 - 2bc \cos \hat{A}$$

Complexos

$$\begin{split} &(\rho cis\theta)^n = \rho^n cis(n\theta) \text{ ou } (\rho e^{i\theta})^n = \rho^n e^{in\theta} \\ &\sqrt[n]{\rho cis\theta} = \sqrt[n]{\rho} cis\left(\frac{\theta + 2k\pi}{n}\right) \text{ ou } \sqrt[n]{\rho e^{i\theta}} = \sqrt[n]{\rho} e^{\frac{\theta + 2k\pi}{n}} \\ &(k \in \{0, \cdots, n-1\} \quad \text{e} \quad n \in \mathbb{N}) \end{split}$$

Probabilidades

$$\mu = p_1 x_1 + \dots + p_n x_n$$

$$\sigma = \sqrt{p_1 (x_1 - \mu)^2 + \dots + p_n (x_n - \mu)^2}$$
Se $X \sim N(\mu, \sigma)$, então:
$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.6827$$

Se
$$X \sim N(\mu, \sigma)$$
, entao:

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.954$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.9545$$

 $P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(uv)' = u'v + uv'$$

$$(u^n)' = nu^{n-1}u' \quad (n \in \mathbb{I})$$

$$(\sin u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u'$$

$$(\tan u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u'e^u$$

$$(a^u)' = u'a^u \ln a \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(e^u)' = u'e^u$$

$$(\ln u)' = \frac{u}{u}$$

$$(a^u)' = u'a^u \ln a \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{e^x} = 1$$

$$\lim_{x \to 0} \frac{x}{\ln x} = 0$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$