ψ (4040)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

ψ (4040) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
4039 ± 1 OUR ESTIMATE				
4039.6± 4.3	$^{ m 1}$ ABLIKIM	08 D	BES2	$e^+e^- o$ hadrons
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
4034 ± 6	² MO	10	RVUE	$e^+e^- o$ hadrons
4037 ± 2	³ SETH	05A	RVUE	$e^+e^- o$ hadrons
4040 ± 1	⁴ SETH	05A	RVUE	$e^+e^- o$ hadrons
4040 + 10	BRANDFI IK	78 <i>c</i>	DASP	e^+e^-

¹ Reanalysis of data presented in BAI 02C. From a global fit over the center-of-mass energy region 3.7–5.0 GeV covering the $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, and $\psi(4415)$ resonances. Phase angle fixed in the fit to $\delta=(130\pm46)^\circ$.

ψ (4040) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
80 \pm 10 OUR ESTIMATE				
84.5±12.3	⁵ ABLIKIM	08 D	BES2	$e^+e^- ightarrow hadrons$
• • • We do not use the following	data for averages	, fits,	limits, e	etc. • • •
87 ±11	⁶ MO	-	-	$e^+e^- ightarrow $ hadrons
85 ±10		05A	RVUE	$e^+e^- ightarrow hadrons$
89 ± 6	⁸ SETH	05A	RVUE	$e^+e^- ightarrow hadrons$
52 ± 10	BRANDELIK	78 C	DASP	e^+e^-

⁵ Reanalysis of data presented in BAI 02C. From a global fit over the center-of-mass energy region 3.7–5.0 GeV covering the $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, and $\psi(4415)$ resonances. Phase angle fixed in the fit to $\delta=(130\pm46)^\circ$.

² Reanalysis of data presented in BAI 00 and BAI 02C. From a global fit over the center-of-mass energy 3.8-4.8 GeV covering the $\psi(4040)$, $\psi(4160)$ and $\psi(4415)$ resonances and including interference effects.

³ From a fit to Crystal Ball (OSTERHELD 86) data.

⁴ From a fit to BES (BAI 02C) data.

⁶ Reanalysis of data presented in BAI 00 and BAI 02C. From a global fit over the center-of-mass energy 3.8-4.8 GeV covering the $\psi(4040)$, $\psi(4160)$ and $\psi(4415)$ resonances and including interference effects.

⁷ From a fit to Crystal Ball (OSTERHELD 86) data.

⁸ From a fit to BES (BAI 02C) data.

ψ (4040) DECAY MODES

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

	Mode	Fraction (Γ_i/Γ_i)	·) Co	nfidence level
Γ_1	e^+e^-	(1.07 ± 0.16)	$) \times 10^{-5}$	
Γ_2^-	$D\overline{D}$	seen		
Γ_3	$D^0 \overline{D}{}^0$	seen		
Γ ₄	D^+D^-	seen		
	$D^*\overline{D}$ + c.c.	seen		
	$D^*(2007)^0 \overline{D}{}^0 + \text{c.c.}$	seen		
Γ ₇	$D^*(2010)^+D^-+$ c.c.	seen		
Γ ₈	$D^*\overline{D}^*$	seen		
Γ ₉	$D^*(2007)^0 \overline{D}^*(2007)^0$	seen		
Γ ₁₀	$D^*(2010)^+ D^*(2010)^-$	seen		
Γ ₁₁	$D\overline{D}\pi(\text{excl. }D^*\overline{D})$			
Γ_{12}^{-1}	$D^{0}D^{-}\pi^{+}+\text{c.c.}$ (excl.	not seen		
	$D^*(2007)^0 \overline{D}^{0} + c.c.,$			
	$D^*(2010)^+D^- + c.c.$			
Γ_{13}	$D\overline{D}^*\pi$ (excl. $D^*\overline{D}^*$)	not seen		
Γ_{14}^{-3}	$D^0 \overline{D}^{*-} \pi^+ + \text{c.c.}$ (excl.	seen		
	$D^*(2010)^+ D^*(2010)^-)$			
Γ_{15}	$D_s^+D_s^-$	seen		
_	$J/\psi(1S)$ hadrons			
	$J/\psi \pi^+ \pi^-$	< 4	$\times10^{-3}$	90%
Γ ₁₈	$J/\psi \pi^0 \pi^0$	< 2	$\times 10^{-3}$	90%
Γ ₁₀	$J/\psi\eta$	(5.2 ± 0.7)		
Γ ₂₀	$J/\psi \overset{\cdot}{\pi}^{0}$	< 2.8	$\times 10^{-4}$	90%
Γ ₂₁	. ^	< 2	$\times 10^{-3}$	90%
_	$\chi_{c1}\gamma$	< 3.4	$\times 10^{-3}$	90%
Γ_{23}	$\chi_{c2}\gamma$	< 5	$\times 10^{-3}$	90%
Γ ₂₄	$\chi_{c1} \pi^+ \pi^- \pi^0$	< 1.1	%	90%
Γ_{25}^{27}	$\chi_{c2}\pi^+\pi^-\pi^0$	< 3.2	%	90%
Γ_{26}	$h_c(1P)\pi^+\pi^-$	< 3	$\times 10^{-3}$	90%
Γ ₂₇	$\phi \pi^+ \pi^-$	< 3	\times 10 ⁻³	90%
Γ ₂₈	$\Lambda \overline{\Lambda} \pi^+ \pi^-$	< 2.9	$\times 10^{-4}$	90%
Γ ₂₉	$\Lambda \overline{\Lambda} \pi^0$	< 9	$\times 10^{-5}$	90%
Γ ₃₀	$\Lambda \overline{\Lambda} \eta$	< 3.0	$\times 10^{-4}$	90%
Γ ₃₁	$\Sigma + \frac{\Sigma}{\Sigma}$	< 1.3	$\times10^{-4}$	90%
Γ ₃₂	$\Sigma^0 \overline{\Sigma}{}^0$	< 7	$\times10^{-5}$	90%
<u> </u>				

Г ₃₃	<u>=</u> + <u>=</u> −	< 1.6	$\times 10^{-4} \times 10^{-4}$	90%
Г ₂₄	<u>=</u> 0 <u>=</u> 0	< 1.8		90%
	$\frac{-}{\mu^{+}}\frac{-}{\mu^{-}}$	\ 1.0	× 10	3070

ψ (4040) PARTIAL WIDTHS

$\Gamma(e^+e^-)$					Γ ₁
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
0.86±0.07 OUR ESTIMATE					
0.83 ± 0.20	⁹ ABLIKIM	08 D	BES2	$e^+e^- ightarrow hadro$	ons
• • • We do not use the followi	ng data for average	s, fits,	limits, e	etc. • • •	
0.6 to 1.4	¹⁰ MO	10	RVUE	$e^+e^- o$ hadro	ons
0.88 ± 0.11	$^{11}SETH$	05A	RVUE	$e^+e^- ightarrow hadron$	ons
0.91 ± 0.13	¹² SETH	05A	RVUE	$e^+e^- ightarrow hadro$	ons
0.75 ± 0.15	BRANDELIK	78 C	DASP	e^+e^-	
_					

⁹ Reanalysis of data presented in BAI 02C. From a global fit over the center-of-mass energy region 3.7–5.0 GeV covering the $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, and $\psi(4415)$ resonances. Phase angle fixed in the fit to $\delta=(130\pm46)^{\circ}$.

$\psi(4040) \Gamma(i) \times \Gamma(e^+e^-)/\Gamma(total)$

$\Gamma(\chi_{c1}\gamma) \times \Gamma(e^+$	$e^-)/\Gamma_{\rm tot}$	al				$\Gamma_{22}\Gamma_1/\Gamma$
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT	
<2.9	90	¹³ HAN	15	BELL	$10.58 e^{+}e^{-}$	$\rightarrow \chi_{c1} \gamma$
13 Using B($\eta ightarrow \gamma \gamma$	$\gamma) = (39.41$	\pm 0.21)%.				
$\Gamma(\chi_{c2}\gamma) \times \Gamma(e^+$	e^-)/ Γ_{tot}	al				$\Gamma_{23}\Gamma_1/\Gamma$
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT	
<4.6	90	¹⁴ HAN	15	BELL	$10.58 e^{+}e^{-}$	$\rightarrow \chi_{c2} \gamma$
14 Using B($\eta ightarrow \gamma \gamma$	$\gamma) = (39.41)$	\pm 0.21)%.				V -

$\psi(4040) \Gamma(i) \times \Gamma(e^+e^-)/\Gamma^2(total)$

$\Gamma(J/\psi\eta)/\Gamma_{\text{total}} \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_{19}/\Gamma\times\Gamma_1/\Gamma$

VALUE (units 10^{-8})	DOCUMENT I	ID	TECN	COMMENT	
• • • We do not use the follow	ving data for avera	ges, fits,	limits,	etc. • • •	
$5.1 \!\pm\! 1.4 \!\pm\! 1.5$	¹⁵ WANG	13 B	BELL	$\mathrm{e^+e^-} ightarrow ~J/\psi\eta\gamma$	
$12.8 \pm 2.1 \pm 1.9$	¹⁶ WANG	13 B	BELL	$e^+e^- o J/\psi\eta\gamma$	

¹⁵ Solution I of two equivalent solutions in a fit using two interfering resonances. Mass and width fixed at 4039 MeV and 80 MeV, respectively.

Reanalysis of data presented in BAI 00 and BAI 02C. From a global fit over the center-of-mass energy 3.8-4.8 GeV covering the $\psi(4040)$, $\psi(4160)$ and $\psi(4415)$ resonances and including interference effects. Four sets of solutions are obtained with the same fit quality, mass and total width, but with different e^+e^- partial widths. We quote only the range of values.

¹¹ From a fit to Crystal Ball (OSTERHELD 86) data.

 $^{^{12}}$ From a fit to BES (BAI 02C) data.

¹⁶ Solution II of two equivalent solutions in a fit using two interfering resonances. Mass and width fixed at 4039 MeV and 80 MeV, respectively.

ψ (4040) BRANCHING RATIOS

$\Gamma(e^+e^-)/\Gamma_{ m total}$					Γ_1/Γ
VALUE (units 10^{-5})	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following	g data for averages	s, fits,	limits, e	etc. • • •	
~ 1.0	FELDMAN	77	MRK1	e^+e^-	
$\Gamma(D^0\overline{D}{}^0)/\Gamma_{ m total}$					Г ₃ /Г
VALUE	DOCUMENT ID		TECN	COMMENT	
seen	AUBERT	09м		e^+e^-	
seen	CRONIN-HEN	09		e^+e^-	
seen	PAKHLOVA	80	BELL	$e^+e^- \rightarrow$	$D^0 \overline{D}{}^0 \gamma$
$\Gamma(D^+D^-)/\Gamma_{ m total}$					Γ ₄ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
seen	AUBERT	09м		$e^+e^- \rightarrow$,
seen	CRONIN-HEN			e^+e^-	
seen	PAKHLOVA	80	BELL	e^+e^-	$D^+D^-\gamma$
$\Gamma(D\overline{D})/\Gamma(D^*\overline{D}+c.c.)$					Γ_2/Γ_5
VALUE	DOCUMENT ID				
$0.24 \pm 0.05 \pm 0.12$	AUBERT	09м	BABR	$e^+e^ \rightarrow$	$_{\gamma D}(*)\overline{D}$
$\Gamma(D^0\overline{D}^0)/\Gamma(D^*(2007)^0\overline{D}^0+$	+ c.c.)				Γ_3/Γ_6
VALUE	DOCUMENT ID				
0.05 ± 0.03	¹⁷ GOLDHABER	77	MRK1	e^+e^-	
17 Phase-space factor (p^3) explic	citly removed.				
$\Gamma(D^*(2007)^0\overline{D}^0 + \text{c.c.})/\Gamma_{\text{tot}}$	~I				Γ ₆ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	. 0/ -
seen	AUBERT	09м	BABR	$e^+e^- \rightarrow$	$D^{*0}\overline{D}^{0}\gamma$
seen	CRONIN-HEN	09	CLEO	$e^+e^- \to$	$D^{*0}\overline{D}^{0}$
$\Gamma(D^*(2010)^+D^- + \text{c.c.})/\Gamma_{to}$					Γ ₇ /Γ
VALUE			TFCN	COMMENT	17/1
seen	AUBERT				$D^{*+}D^{-}\gamma$
seen	CRONIN-HEN				,
seen	PAKHLOVA	07	BELL	$e^+e^- \rightarrow$	$D^{*+}D^{-}\gamma$
E(D*(2010)+ D= +)/E(D*(2007)0 <u>T0</u> 0 +	\			г /г
$\Gamma(D^*(2010)^+D^- + \text{c.c.})/\Gamma(D^*(2010)^+D^- + \text{c.c.})$,		COMMENT	Γ_7/Γ_6
<u>VALUE</u> 0.95±0.09±0.10	<u>DOCUMENT ID</u> AUBERT				
0.95 ± 0.09 ± 0.10	AUDERT	U9IVI	DADK	e · e →	γυ υ
$\Gamma(D^*\overline{D}^*)/\Gamma(D^*\overline{D}+c.c.)$					Γ_8/Γ_5
VALUE	DOCUMENT ID				
$0.18 \pm 0.14 \pm 0.03$	AUBERT	09м	BABR	$e^+e^- \rightarrow$	$_{\gamma D}(*)\overline{D}(*)$

$\Gamma(D^*(2007)^0\overline{D}^*$	*(2007) ⁰)	/Γ _{tota}	al .					/و۲
<u>VALUE</u>		_	DOCUME	ENT ID		TECN	COMMENT	
seen			AUBER					$D^{*0}\overline{D}^{*0}\gamma$
seen			CRONI	N-HEN	09	CLEO	$e^+e^- \rightarrow$	$D^{*0}\overline{D}^{*0}$
$\Gamma(D^*(2007)^0\overline{D}^*$	*(2007) ⁰)	•				•		٦/و٦
VALUE		_ 10	<u>DOCUME</u>	ENT ID		TECN	$\frac{COMMENT}{e^+e^-}$	
32.0±12.0					77	MRK1	e^+e^-	
¹⁸ Phase-space fa	ector (p^3) e	×plicitly	y remove	ed.				
$\Gamma(D^*(2010)^+D$	*(2010) ⁻)/Γ _{tot}	tal					Γ ₁₀ /
VALUE		_	DOCUME	ENT ID			<u>COMMENT</u>	
seen			AUBER					$D^{*+}D^{*-}$
seen							e^+e^-	
seen			PAKHL	OVA	07	BELL	$e^+e^- \rightarrow$	$D^{*+}D^{*-}$
$\Gamma(D^0D^-\pi^++c)$.c. (excl.	D*(2	2007) ⁰ <u>T</u>	⁷⁰ +c.	c., <i>D</i>	*(2010) ⁺ <i>D</i> ⁻ +c.	.c.))/
Γ _{total}	•	`						ν Γ ₁₂ /
VALUE		_					COMMENT	0 1
not seen			PAKHL	OVA	A80	BELL	$e^+e^- \rightarrow$	$D^{0}D^{-}\pi^{+}$
$\Gamma(D\overline{D}^*\pi(\text{excl.})$	$D^*\overline{D}^*))/$	Γ _{total}						Γ ₁₃ /
VALUE		_		ENT ID		TECN	<u>COMMENT</u>	
not seen			CRONI	N-HEN	09	CLEO	$e^+e^ \rightarrow$	$D\overline{D}^*\pi$
$\Gamma(D^0\overline{D}^{*-}\pi^+ +$	c.c. (excl	. D*(2010) ⁺	D*(2	010)=	-))/Γ _{to}	tal	Γ ₁₄ /
VALUE						•	OMMENT	,
seen		Р	'AKHLO	VA C)9 B	BELL e	$e^+e^- \rightarrow D$	$0^{0}D^{*-}\pi^{+}\gamma$
$\Gamma(D_s^+D_s^-)/\Gamma_{\rm tot}$:al							Γ ₁₅ /
VALUE		_	DOCUME	ENT ID		TECN	COMMENT	
seen			PAKHL	OVA	11	BELL	e^+e^-	$D_s^+ D_s^- \gamma$
seen			DEL-AN	ИО-SA			$e^+e^-\to$	
seen			CRONI	N-HEN	09	CLEO	$e^+e^- \rightarrow$	$D_s^+ D_s^-$
$\Gamma(J/\psi\pi^+\pi^-)/$	Г							Γ ₁₇ /
$VALUE$ (units 10^{-3})		DOCUI	MENT ID		TECN	СОММ	IFNIT	
<4	90	COAN						→ hadrons
-						·	- -	
$\Gamma(J/\psi\pi^0\pi^0)/\Gamma$								Γ ₁₈ /
VALUE (units 10^{-3})	·		MENT ID			_		
<2	90	COAN	1	06	CLEO	3.97-	4.06 e ⁺ e ⁻	\rightarrow hadrons

$\Gamma(J/\psi\eta)/\Gamma_{\text{tota}}$	ı				I	Γ ₁₉ /Γ
$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT	
$5.2 \pm 0.5 \pm 0.5$	19) ABLIKIM	12K	BES3	$e^+e^- ightarrow \ell^+\ell^- 2\gamma$	
• • • We do not	use the follo	owing data for a	verage	es, fits, I	imits, etc. • • •	
<7	90	COAN	06	CLEO	$3.97-4.06 \ e^{+} e^{-} \rightarrow \text{ ha}$	drons
19 ABLIKIM 12 K $_{\eta}$ $^{J/\psi}$ fully ori	ζ measure σ iginates fron	$(e^+e^- ightarrow~J/\psi$ n $\psi($ 4040 $)$ decay	/η) = /s.	32.1 \pm	2.8 ± 1.3 pb. They assure	me the
$\Gamma ig(J/\psi \pi^0 ig) / \Gamma_{ m tot}$	tal				I	Γ ₂₀ /Γ
\underline{VALUE} (units 10^{-3})					COMMENT	
<0.28					$e^+e^- \rightarrow \ell^+\ell^-2\gamma$	
• • • We do not	use the follo					
<2	90	COAN			3.97–4.06 $e^+e^- \to ha$	
²⁰ ABLIKIM 12k originates fror			$\psi \pi^0$)	<1.6 pl	b. They assume the $\eta J/r$	ψ fully
$\Gamma(J/\psi\pi^+\pi^-\pi^-)$	$^{0})/\Gamma_{total}$				I	Γ ₂₁ /Γ
$\underline{\mathit{VALUE}}$ (units 10^{-3})	CL%	DOCUMENT ID			·	
<2	90	COAN	06	CLEO	3.97–4.06 $e^+e^- o ha$	drons
$\Gamma(\chi_{c1}\gamma)/\Gamma_{total}$	I				ı	Γ ₂₂ /Γ
$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT	
\bullet \bullet We do not	use the follo	owing data for a	verag	es, fits, l	imits, etc. • • •	
<11	90	COAN	06	CLEO	3.97–4.06 $e^+e^- \to ha$	drons
$\Gamma(\chi_{c2}\gamma)/\Gamma_{\text{total}}$	1				ı	Γ ₂₃ /Γ
$\underline{\mathit{VALUE}}$ (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT	
ullet $ullet$ We do not	use the follo	owing data for a	verage	es, fits, I	imits, etc. • • •	
<17	90	COAN	06	CLEO	$3.97-4.06 \ e^{+} e^{-} \rightarrow \text{ ha}$	drons
$\Gamma(\chi_{c1}\pi^{+}\pi^{-}\pi^{0})$	$^{0})/\Gamma_{\text{total}}$				I	Γ ₂₄ /Γ
$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID				
<11	90	COAN	06	CLEO	3.97–4.06 $e^+e^- \to ha$	drons
$\Gamma(\chi_{c2}\pi^{+}\pi^{-}\pi^{0})$	•				ļ	Γ ₂₅ /Γ
$VALUE$ (units 10^{-3})		DOCUMENT ID		TECN	COMMENT	
<32	90	COAN	06	CLEO	$3.97-4.06 \ e^{+} e^{-} \rightarrow \text{ ha}$	drons
$\Gamma(h_c(1P)\pi^+\pi^-)$						Г ₂₆ /Г
VALUE (units 10 ⁻³)	<u>CL%</u>	DOCUMENT	T ID		EO $\frac{COMMENT}{e^+e^- ightarrow h_c(1P) au}$	
$\sigma(e^+e^- ightarrow$	$h_c(1P)\pi^+$	π^{-}) = 1.0 ± 8	3.0 ±	5.4 ± 0	(4040), PEDLAR 11 me .2 pb, where the errors a	re sta-
tistical, systen	natic, and d	ue to uncertaint	y in E	$8(\psi(2S))$	$\rightarrow \pi^0 h_c(1P)$), respective	∕ely.

$\Gamma(\phi\pi^+\pi^-)/\Gamma_{ m to}$	tal								Γ ₂₇ /Γ
$VALUE$ (units 10^{-3})	CL%		DOCUM	ENT ID		TECN	COM	<i>MENT</i>	
<3	90		COAN		06	CLEO	3.97-	-4.06 e ⁺ e ⁻	→ hadrons
$\Gamma(\Lambda \overline{\Lambda} \pi^+ \pi^-)/\Gamma$	total								Γ ₂₈ /Γ
VALUE (units 10 ⁻⁴) <2.9		CL%	_	DOCUMEN	NT ID		TECN	COMMENT	
<2.9		90	22	ABLIKIN	1	13Q	BES3	$e^+e^- \rightarrow$	ψ (4040)
²² Assuming that	interfe	erence	e effects	s betweer	n reso	nance	and cor	ntinuum can	be neglected.
$\Gamma(\Lambda \overline{\Lambda} \pi^0)/\Gamma_{ m total}$									Γ ₂₉ /Γ
VALUE (units 10^{-4})		CL%	_	DOCUMEN	NT ID		TECN	COMMENT	
<0.9		90	23	ABLIKIN	1	13Q	BES3	$e^+e^- \rightarrow$	ψ (4040)
²³ Assuming that	interfe	rence	e effects	betweer	n reso	nance	and cor	ntinuum can	be neglected.
$\Gamma(\Lambda \overline{\Lambda} \eta)/\Gamma_{\text{total}}$									Γ ₃₀ /Γ
VALUE (units 10 ⁻⁴)		CL%	_	DOCUMEN	NT ID		TECN	COMMENT	
<3.0		90	24	ABLIKIN	1	13Q	BES3	$e^+e^- ightarrow$	ψ (4040)
²⁴ Assuming that	interfe	erence	e effects	s betweer	n reso	nance	and cor	ntinuum can	be neglected.
$\Gamma(\Sigma^{+}\overline{\Sigma}^{-})/\Gamma_{tot}$	tal								Γ ₃₁ /Γ
VALUE (units 10^{-4})		CL%	=	DOCUMEN	NT ID		TECN	COMMENT	
<1.3		90	25	ABLIKIN	1	13Q	BES3	$e^+e^ \rightarrow$	ψ (4040)
²⁵ Assuming that	interfe	erence	e effects	s betweer	n reso	nance	and cor	ntinuum can	be neglected.
$\Gamma(\Sigma^0\overline{\Sigma}^0)/\Gamma_{tota}$									Γ ₃₂ /Γ
$VALUE$ (units 10^{-4})		CL%	_	DOCUMEN	NT ID		TECN	COMMENT	
<0.7		90	26	ABLIKIN	1	13Q	BES3	$e^+e^- \to$	ψ (4040)
²⁶ Assuming that	interfe	rence	e effects	betweer	ı reso	nance	and cor	ntinuum can	be neglected.
$\Gamma(\overline{\Xi}^{+}\overline{\overline{\Xi}}^{-})/\Gamma_{\text{tot}}$	al								Γ ₃₃ /Γ
VALUE (units 10 ⁻⁴)		CL%	_	DOCUMEN			TECN	COMMENT	
<1.6		90	27	ABLIKIN	1	13Q	BES3	$e^+e^- ightarrow$	ψ (4040)
²⁷ Assuming that	interfe	rence	e effects	s betweer	n reso	nance	and cor	ntinuum can	be neglected.
$\Gamma(\Xi^0\overline{\Xi}^0)/\Gamma_{\text{tota}}$	l								Г ₃₄ /Г
VALUE (units 10 ⁻⁴)		CL%	_	DOCUMEN	VT ID		TECN	COMMENT	
<i>VALUE</i> (units 10 ^{−4}) <1.8		90	28	ABLIKIN	1	13Q	BES3	$e^+e^- \rightarrow$	ψ (4040)
²⁸ Assuming that	interfe	rence	e effects	betweer	n reso	nance	and cor	ntinuum can	be neglected.

ψ (4040) REFERENCES

HAN ABLIKIM WANG ABLIKIM PAKHLOVA PEDLAR DEL-AMO-SA MO AUBERT CRONIN-HEN PAKHLOVA ABLIKIM PAKHLOVA PAKHLOVA COAN SETH	10 09M	PR D92 012011 PR D87 112011 PR D87 051101 PR D86 071101 PR D83 011101 PRL 107 041803 PR D82 052004 PR D82 077501 PR D79 092001 PR D80 072001 PR D80 091101 PL B660 315 PR D77 011103 PRL 100 062001 PRL 98 092001 PRL 98 092001 PRL 98 092001 PRL 96 162003 PR D72 017501	Y.L. Han et al. Ablikim M. et al. X.L. Wang et al. M. Ablikim et al. G. Pakhlova et al. T. Pedlar et al. P. del Amo Sanchez et al. X.H. Mo, C.Z. Yuan, P. Wai B. Aubert et al. D. Cronin-Hennessy et al. G. Pakhlova et al. M. Ablikim et al. G. Pakhlova et al. G. Pakhlova et al. T.E. Coan et al. K.K. Seth	(BELLE Collab.) (BES III Collab.) (BES III Collab.) (BES III Collab.) (BELLE Collab.) (CLEO Collab.) (BABAR Collab.) (CLEO Collab.) (CLEO Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (CLEO Collab.) (CLEO Collab.)
-				
PAKHLOVA	80	PR D77 011103	G. Pakhlova <i>et al.</i>	(BELLE Collab.)
PAKHLOVA	A80	PRL 100 062001	G. Pakhlova <i>et al.</i>	
				(CLEO Collab.)
				/ · · · ·
BAI	02C	PRL 88 101802	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI	00	PRL 84 594	J.Z. Bai <i>et al.</i>	(BES Collab.)
OSTERHELD	86	SLAC-PUB-4160	A. Osterheld <i>et al.</i>	(SLAC Crystal Ball Collab.)
BRANDELIK Also	78C	PL 76B 361	R. Brandelik <i>et al.</i> R. Brandelik <i>et al.</i>	(DASP Collab.)
FELDMAN	77	ZPHY C1 233 PRPL 33C 285	G.J. Feldman, M.L. Perl	(DASP Collab.) (LBL, SLAC)
GOLDHABER	77	PL 69B 503	G. Goldhaber <i>et al.</i>	(Mark I Collab.)
GOLDHADLK	"	1 6 090 303	G. Goldhabel et al.	(Wark I Collab.)