Adversarially Constrained Autoencoder Interpolations using Wasserstein Autoencoder

Machine Learning

Lorenzo Palloni

University of Florence

lorenzo.palloni@stud.unifi.it

April 16, 2020

Introduction

- Unsupervised Learning context
- we aim to obtain "high-quality" interpolations
- interpolations example:

000 INSERT AN IMAGE HERE 000

2 / 11

Motivation

- uncover underlying structure of dataset
- \bullet better representations \rightarrow better results in other tasks

Entity Embedding

- Entity Embedding
- maps each state of a categorical variable

$$x \in \left\{ \text{ 'red', 'green', 'blue'} \right\}$$

- in a D-dimensional Euclidean space
- where $D \in \mathbb{N}^+$ is user-defined¹

$$x \in \left\{ \text{ [0.5, } -1.2], \text{ [1.3, 0.23], [0.4, 1.1] } \right\}.$$

 ^{1}D might be chosen in range $[1,\ K-1]$.

Motivation

- Let x be a categorical variable with
 - 11981 different states.
- One Hot Encoding representation of x needs
 11981-dimensional vectors.
- Entity Embedding representation of x might be e.g.
 19-dimensional vectors.
- Explosions in dimensionality like this leads to
 - drop in prediction performance (overfitting);
 - 2 computational cost in space and time.

.

Experiments - Dataset

- Dataset take from a Kaggle competition called
 - $\rightarrow \ \, \text{Categorical Feature Encoding Challenge};$
 - 300k observations;
 - 23 variables (all categorical);
 - binary problem $(y \in \{0,1\})$.
- Dataset divided into
 - $80\% \rightarrow train$
 - $20\% \rightarrow \text{test}$

Experiments - Neural Network hyperparameters

- To extract the Entity Embeddings we use the following architecture:
 - input layer: concatenation of embedded features + other variables;
 - first layer: 400 hidden units and ReLU activation;
 - 3 second layer: 600 hidden units and ReLU activation;
 - output layer: logistic function.
- Training hyperparameters:
 - number of epochs: 2
 - number of observations per mini-batch: 32
 - optimization algorithm: Adam[2] (default values)
- Implementation in Tensorflow[3].

Experiments - Random Forest hyperparameters

- Random search with 4-fold cross-validation on:
 - number of decision trees:
 - 125
 - \rightarrow 175
 - maximum number of features used by each tree in each split:
 - \rightarrow 'sqrt'
 - 'log2'
 - max depth of each tree:
 - 10
 - → 20
 - None
 - minimum number of samples needed to perform a split:
 - 2
 - \rightarrow 6

8 / 1

Experiments - Random Forest Results

	AUC
Train	0.9879
Test	0.6121

Figure: Random Forest + Entity Embeddings results.

	AUC
Train	0.6818
Test	0.5640

Figure: Random Forest + One Hot Encoding² results.

o 6 9 / 11

²Variables with max 50 states used.

Conclusion

- Entity Embedding is an useful technique to put into your toolbox;
- in some situations can lead to a **crucial** saving in computational resources.

10 / 11

References

Guo, C., & Berkhahn, F. (2016). Entity embeddings of categorical variables. arXiv preprint arXiv:1604.06737.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016). Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) (pp. 265-283).