Since the permutations of $\{a,b,c,d\}$ are generated by the above transpositions, the cross-ratio takes at most six values. Letting $\lambda = [a,b,c,d]$, if $\lambda \in \{\infty,0,1\}$, then any permutation of $\{a,b,c,d\}$ yields a cross-ratio in $\{\infty,0,1\}$, and if $\lambda \notin \{\infty,0,1\}$, then there are at most the six values

$$\lambda$$
, $\frac{1}{\lambda}$, $1-\lambda$, $1-\frac{1}{\lambda}$, $\frac{1}{1-\lambda}$, $\frac{\lambda}{\lambda-1}$.

It can be shown that the function

$$\lambda \mapsto 256 \frac{(\lambda^2 - \lambda + 1)^3}{\lambda^2 (1 - \lambda)^2}$$

takes a constant value on the six values listed above.

We also define when four points form a harmonic division. For this, we need to assume that K is not of characteristic 2.

Definition 26.9. Given a projective line Δ , we say that a sequence of four collinear points (a, b, c, d) in Δ (where a, b, c are distinct) forms a harmonic division if [a, b, c, d] = -1. When [a, b, c, d] = -1, we also say that c and d are harmonic conjugates of a and b.

If a, b, c are distinct collinear points in some affine space, from

$$[a, b, c, \infty] = \frac{\overrightarrow{ca}}{\overrightarrow{cb}},$$

we note that c is the midpoint of (a, b) iff $[a, b, c, \infty] = -1$, that is, if (a, b, c, ∞) forms a harmonic division. Figure 26.22 shows a harmonic division (a, b, c, d) on the real line, where the coordinates of (a, b, c, d) are (-2, 2, 1, 4).

Figure 26.22: Four points forming a harmonic division.

If $\Delta = \mathbb{P}^1_K$ and a, b, c, d are all distinct from ∞ , then we see immediately from the formula

$$[a, b, c, d] = \frac{c - a}{c - b} / \frac{d - a}{d - b}$$

that [a, b, c, d] = -1 iff

$$2(ab+cd) = (a+b)(c+d).$$

We also check immediately that $[a, b, c, \infty] = -1$ iff

$$a+b=2c$$
.