TFY4155/FY1003 Elektr. & magnetisme

Øving 8 Likestrømskretser. Lorentzkrafta.

Veiledning: Fredag 27 feb. ifølge nettsider. Innlevering: Mandag 2. mars kl. 14:00

Lever øvinger i bokser utenfor R1.

Oppgave 1. Strøm i en leder.

- a) Estimer driftshastigheten $v_{\rm d}$ for elektroner i en kopperwire med diameter d=0,200 cm som fører en strøm på 1,00 A. For kopper anta ett fritt elektron per atom, massetetthet på 8,92 g/cm³ og molvekt 63,5 g/mol. Avogadros tall $N_{\rm A}=6,022\cdot 10^{23}\,{\rm mol}^{-1}$. Elektronladning $e=1,602\cdot 10^{-19}$ C.
- b) Bestem også strømtet
theten, resistansen og det elektriske feltet når det er gitt at wiren er
 L=10,0m lang og kopperresistiviteten $\rho=1,72\cdot 10^{-8}\,\Omega{\rm m}.$

Oppgave 2. Resistans i aluminiumsledning.

En motstand med resistans $R=10,00\,\Omega$ er kopla i serie med to aluminiumsledninger som vist i figuren. Over ytterpunktene er det en spenning V=1,500 V. Al-ledningene har tverrsnitt 0,700 mm² og hver lengde 30,0 cm. Aluminium har elektrisk ledningsevne (konduktivitet): $3,546\cdot 10^7~\Omega^{-1} {\rm m}^{-1}$.

- a) Finn først resistansen $R_{\rm Al}$ i hver av Al-trådene og beregn deretter spenningsfallet over henholdsvis Al-trådene og over motstanden.
- b) Bestem strømstyrken og utviklet effekt i kretsen.

Du bør i denne oppgaven lære at motstand og spenningsfall i vanlige ledninger er svært liten. Med mindre noe annet er spesifisert, regner vi i alle følgende oppgaver at ledningene mellom de ulike kretskomponenter er *perfekte ledere*, dvs. med null motstand.

Oppgave 3. Motstandsnettverk.

Figuren til venstre viser en elektrisk krets med 5 motstander R_j , j = 1, ..., 5.

a) Bestem total motstand R mellom punktene A og B, dvs: Bestem motstanden R i den ekvivalente kretsen i følgende figur:

b) En ideell spenningskilde med elektromotorisk spenning \mathcal{E} kobles til kretsen slik at $\Delta V = V_{\rm A} - V_{\rm B} = \mathcal{E}$. Bestem hvor stor strøm I_j som da passerer gjennom hver av motstandene R_j .

Oppgave 4. Kirchhoffs regler.

Bruk Kirchhoffs knutepunktregel og maskestrømsregel for aktuelle knutepunkt og masker i kretsen i figuren og finn verdi for strømmen I_5 . Verdien på ems'ene er $\mathcal{E}_1=12$ V, $\mathcal{E}_2=9,0$ V med polaritet som gitt i figuren. Resistansverdiene er gitt i figuren.

TIPS: Du kan her tillate deg å sette inn verdier for R_i og \mathcal{E}_i fra starten og unnlate å skrive enheter, idet du forsikrer deg om at strømmene skal ende opp i ampere.

Oppgave 5. RC-krets I (oppvarming til neste).

Kretsen i figuren har kretselementer med følgende verdier: $\mathcal{E} = 12$ V, R = 100 Ω og C = 10,0 μ F. Bryteren settes i posisjon a ved tida t = 0. Kretsen er gjennomgått i forelesning hvor det er vist at strømmen i kretsen I(t) og ladningen Q(t) på kondensatoren er

$$I(t) = I_0 e^{-\frac{t}{\tau}}$$
 $Q(t) = Q_f \left(1 - e^{-\frac{t}{\tau}}\right)$.

- a) Finn verdi for alle størrelser i disse likningene: Startstrøm I_0 , sluttladning $Q_{\rm f}$, og tidskonstant τ .
- b) Finn arbeidet gjort av batteriet for å lade opp kondensatoren. Hva har energien gått med til?
- c) Hvor lang tid tar det før kondensatoren er ladet opp til 99,9 % av sluttladningen?

Oppgave 6. RC-krets II.

I kretsen i figuren settes bryteren i posisjon a ved tida t=0. La spenninger og strømmer være som angitt i figuren. Kondensatoren har til enhver tid ladningen $Q_{\rm C}(t)$. Ved t<0 er $V_{\rm C}=0$ og dermed alle strømmer lik null (og $V_{\rm a}=\mathcal{E}$).

- a) Finn uttrykk for følgende størrelser ved $t=0^+$ (umiddelbart etter bryteren er slått på): $V_{\rm C},\,Q_{\rm C},\,I_{\rm C},\,I_{\rm R},\,I.$
- b) Finn uttrykk for de samme størrelser ved $t=\infty$ (etter svært lang tid).

c) Finn uttrykk for de samme størrelser som funksjon av tida for t > 0. Uttrykk svarene med bl.a. tidskonstanten τ som du skal finne uttrykk for. Sikre deg at grensetilfellene stemmer med svarene i a) og b). Opptegning av grafene for alle størrelsene under hverandre kan være lærerikt.

TIPS: Bruks Kirchhoffs regler og husk at strømmen til kondensatoren har følgende sammenheng med ladningen på kondensatoren: $I_C = \frac{dQ_C}{dt}$. Finn en differensiallikning for $I_C(t)$.

Oppgave 7. Lorentzkrafta: Vektorregning.

Jordas magnetfelt er et sted på jordoverflata målt til å ha en størrelse $0,60~\rm G$ retta nedover og nordover med en vinkel på 70° med horisontalplanet som vist i figuren. (Jordas magnetfelt varierer fra sted til sted – dette er feltet som finnes sentralt i USA, i Trondheim er verdien ca $0,50~\rm G$ og vinkelen litt større.) $\rm G=gauss=10^{-4}~\rm T.$

Et proton med ladning $e = 1,60 \cdot 10^{-19}$ C beveger seg horisontalt i nordover-retning med hastighet v = 10,0 Mm/s = $1,00 \cdot 10^7$ m/s. Beregn den magnetiske krafta \vec{F} på protonet (størrelse og retning).

TIPS: Velg et kartesisk koordinatsystem med x øst og y nord, og uttrykk \vec{B} -vektor og \vec{v} -vektor på komponentform, og utfør kryssproduktet.