1. Look for the information related to the minimum and recommended specifications that Windows and Linux have. Make a table to compare two versions of each kind of OS with both kind of specs.

	Specifications for Windows 10	Specifications for Linux Manjaro
RAM	1GB (for 32 bits) or 2GB (for 64bits)	1GB
Hard disk	16 GB (for 32 bits) or 32 GB (for 64 bits)	30GB
Graphic card API	DirectX 9	You will have to install it yourself
Driver	WDDM 1.0	You will have to install it yourself
Screen	800x600	320x200 (minimun)
Internet conexion	yes	Yes
Processor	1GHz	1GHz

2. The operating system's tasks, in the most general sense, fall into six categories:

Processor management

The OS decides which process gets the processor when and for how much time. This function is called process scheduling and might include: keep track of processor and status of process, allocate the processor (CPU) to a process, de-allocate processor when a process is no longer required.

Memory management

It includes the following: keep track of primary memory, i.e., what part of it is in use by whom and what part is not in use; allocate the memory when a process requests it to do so; deallocate the memory when a process no longer needs it or has been terminated.

Device management

To manage device communication via their respective drivers: keep track of all devices (I/O controller); decide which process gets the device when and for how much time; allocate the device in the efficient way; de-allocate devices.

Storage management

To provide a uniform, logical view of information storage. It maps files onto physical media and accesses these files via the storage devices

Application interface

This explains how an application can open a file on a disk without knowing what kind of disk it is. It can be very different from one I/O to another, in fact, the interfaces are defined by the device drivers, that export one of the standard interfaces

User interface

A user interface (UI) refers to the part of an operating system, program, or deivce that allows a user to enter tand receive information. It can be text-based or GUI but it still is a user interface.