TABLE 1
ELECTRON KINETIC ENERGIES IN PHOTOIONIZED NEBULAE

	$\langle E \rangle$	$\langle E \rangle/k$
Photoelectrons:		
H II region SED	$4.54~\mathrm{eV}$	$52.7~\rm kK$
PN SED	$22.9~{\rm eV}$	$266~\mathrm{kK}$
AGN SED	$27.7~\mathrm{eV}$	$321~\mathrm{kK}$
Thermal electron	$0.862~\mathrm{eV}$	10 kK

We can quantify this by considering an average of the photoelectron energy, $h(\nu - \nu_0)$, where $h\nu$ is the ionizing photon energy and $h\nu_0$ is the ionization potential, weighted by the incident photon spectrum $4\pi J_{\nu}/h\nu$ and the photoionization cross section α_{ν} :

$$\langle E \rangle = \langle h(\nu - \nu_0) \rangle = \frac{\int_{\nu_0}^{\infty} \frac{4\pi J_{\nu}}{h\nu} h(\nu - \nu_0) \alpha_{\nu} d\nu}{\int_{\nu_0}^{\infty} \frac{4\pi J_{\nu}}{h\nu} \alpha_{\nu} d\nu}. \quad (1)$$

Table 1 gives this mean energy in both eV and Kelvin units for three different SEDs. The O star is the softest of the three continua, producing photoelectrons with a kinetic energy equivalent to $53~\rm kK$, the planetary nebula is intermediate, and the active galactic nucleus is the hardest SED with $321~\rm kK$.