Figuras y Tablas para Tercer Informe de sardina común Centro sur

1. ANTECEDENTES

2. METODOLOGÍA

Año.biológico	Desembarques.t.	Porcentaje.descarte	${\bf Captura. descartada.t.}$	${\bf Captura.total.t.}$
1990-91	494567	0%	0	494567
1991-92	514787	0%	0	514787
1992-93	250237	0%	0	250237
1993-94	358949	0%	0	358949
1994-95	120608	0%	0	120608
1995-96	361735	0%	0	361735
1996-97	552515	0%	0	552515
1997-98	73892	0%	0	73892
1998-99	212993	0%	0	212993
1999-00	205616	0%	0	205616
2000-01	50451	4%	2018	52469
2001-02	305257	4%	12210	317467
2002-03	282360	4%	11294	293654
2003-04	372689	4%	14908	387597
2004-05	242976	4%	9719	252695
2005-06	496438	4%	19858	516296
2006-07	344596	4%	13784	358380
2007-08	713623	4%	28545	742168
2008-09	905818	4%	36233	942051
2009-10	603450	4%	24138	627588
2010-11	796319	4%	31853	828172
2011-12	826505	4%	33060	859565
2012,13	402507	4%	16100	418607
2013-14	500641	4%	20026	520667
2014-15	401201	4%	16048	417249
2015-16	289013	4%	11561	300574
2016-17	399415	4%	15977	415391
2017-18	348574	7%	24400	372974
2018-19	301557	5%	15078	316634
2019-20	273376	4%	10935	284311
2020-21	376245	4%	15050	391294

3. RESULTADOS

##

##

```
0 0.3
0 0.3
0 0 0
                                      0 100 361735 0.01
                          0 0.3
0 0.3
0 0.3
## [6,] 1996
##
   [7,] 1997
                                        0 100 552515 0.01
                                      0 100 73892 0.01
   [8,] 1998
##
               0 0.3
## [9,] 1999
                              0 0.3
                                       0 100 212993 0.01
                                       0 100 205616 0.01
                           0 0.3
## [10,] 2000 252601 0.3
## [11,] 2001 567819 0.3
                             0 0.3
                                        0 100 52469 0.01
                           0 0.3 0 100 5211
0 0.3 498337 100 317467 0.01
## [12,] 2002 844713 0.3
## [13,] 2003 477998 0.3
                            0 0.3 0 100 293654 0.01
                           0 0.3 5186 100 387597 0.01
## [14,] 2004 351125 0.3
## [15,] 2005 339783 0.3
                            0 0.3 125008 100 252695 0.01
## [16,] 2006 2178397 0.3 552880 0.3
                                      0 100 516296 0.01
## [17,] 2007 2134043 0.3 188675 0.3 168611 100 358380 0.01
## [18,] 2008 4813144 0.3 0 0.3 109162 100 742168 0.01
## [19,] 2009 1555625  0.3 991730  0.3 213762  100 942051 0.01
## [20,] 2010 2623565   0.3 2467720   0.3 579715   100 627588 0.01
## [21,] 2011 3216857  0.3 1416034  0.3 649985  100 828172  0.01
## [23,] 2013 1133477 0.3 2296489 0.3 87575 100 418607 0.01
## [24,] 2014 3079434 0.3 1805815 0.3 83554 100 520667 0.01
## [25,] 2015 1972148 0.3 0 0.3
                                      0 100 417249 0.01
## [26,] 2016 2032684 0.3 1482799 0.3
                                        0 100 300574 0.01
## [27,] 2017 2025002 0.3 1565315 0.3
                                        0 100 415391 0.01
## [28,] 2018 2424330 0.3 1577507 0.3
                                      0 100 372974 0.01
                                     0 100 316634 0.01
0 100 284311 0.01
0 100 391294 0.01
## [29,] 2019 2275425  0.3 1421176  0.3
## [30,] 2020 1050175 0.3 867257 0.3
## [31,] 2021 2363380 0.3 1100020 0.3
```


3.1. Ajuste del modelo a los datos

CRUCEROS DE VERANO

CRUCEROS DE OTOÑO

3.2. Comparación con asesorías previas

3.3. Análisis retrospectivo

3.4. Perfil de verosimilitud

3.5. Variables poblacionales

Año	BD_{sept}	BD_{marzo}	BD_{julio}	BT_{sept}	BT_{marzo}	BT_{julio}	R_{sept}	R_{marzo}	R_{julio}	F_{sept}	F_{marzo}	F_{julio}
1990/	92007000	2030000	2015480	2844200	2870400	2854570	170470	170120	170639	0.209	0.207	0.208
1991/	92345500	1358500	1351070	1950300	1966700	1957010	93630	94041	93684.9	0.386	0.382	0.384
1992/	93646070	652550	648897	956570	964360	960132	94588	94707	94732.2	0.378	0.375	0.377
1993/	94859110	362070	360662	906560	909000	908707	143530	143180	143611	0.574	0.57	0.573
1994/	9394340	395090	395593	767360	767170	769117	116190	115760	116301	0.191	0.19	0.19
1995/	96174070	473120	475138	1524800	1517100	1526620	213000	211490	213115	0.346	0.347	0.346
1996/	9 7 652790	647450	653825	1084700	1077600	1086140	83143	82828	83214	0.797	0.803	0.796
1997/	98350640	346010	351479	747860	741130	749454	35196	35062	35261.1	0.137	0.138	0.137
1998/	9 3 15340	311640	316169	652660	646260	654159	34570	34292	34642.9	0.55	0.555	0.548
1999/	0097450	194090	198246	471920	465230	473346	46684	46073	46792.4	0.773	0.786	0.77
2000/	0121680	118470	122362	451930	444970	453525	87216	86319	87439.7	0.17	0.172	0.169
2001/	0 2 50610	246340	251598	720530	713020	722233	126870	126130	127032	0.679	0.686	0.678
2002/	0 3 269460	264590	270551	763250	753550	765101	106090	105110	106224	0.635	0.643	0.633
2003/	0420060	215090	221022	774220	767100	775923	74079	73955	74159.6	1.107	1.12	1.104
2004/	0133220	130190	133954	632780	626840	634685	67948	67638	68097.8	0.807	0.813	0.804
2005/	0669440	166450	170388	1317900	1299600	1321650	366140	361230	366988	0.629	0.636	0.628
2006/	07627440	612730	630224	1088000	1058400	1091760	73946	70839	74055.3	0.407	0.419	0.406
2007/	0 % 57470	533910	560080	3116600	3029800	3125370	590530	576230	591892	0.386	0.397	0.385
2008/	09280800	1230300	1285730	2868400	2794700	2875880	333050	329460	333486	0.54	0.557	0.539
2009/	1 9 02390	867720	906147	1846800	1828600	1852850	259120	268470	259700	0.506	0.509	0.505
2010/	1938520	936800	942980	2954600	2926400	2963710	363670	358290	364438	0.397	0.398	0.395
2011/	1 2 162100	1147700	1167280	2719300	2690600	2728000	497560	492960	498579	0.499	0.504	0.498
2012/	1 3 106300	1088100	1111240	1855800	1824500	1862960	97047	95115	97325.9	0.298	0.303	0.297
2013/	1 4 877460	857790	881823	3155500	3096700	3165820	289110	284180	289821	0.265	0.269	0.264
,	15280800	1250400	1286070	2246000	2202700	2254280	242630	240020	243378	0.263	0.268	0.262
2015/	1 6 044600	1021300	1049280	1914100	1876300	1921390	107730	106000	108023	0.213	0.217	0.212
2016/	17850040	831090	853911	2717300	2663200	2726220	243040	238570	243660	0.265	0.264	0.264
,	1 9 24370	907150	928190	2811400	2763000	2826010	272200	267990	273830	0.224	0.216	0.223
2018/	19323200	1307200	1331900	1842500	1811000	1855990	79600	75099	80726.6	0.205	0.21	0.203
2019/	2858050	832960	866506	1346200	1305400	1352630	58944	56309	58187.9	0.307	0.326	0.306
2020/	21492050	430060	511108	2011100	1782600	2000590	229910	257750	220797	0.331	0.183	0.326

```
## Rlast_1991_2007 -1.0216677 -0.93642902 0.01984598 113722.9 1038561 502012.9 ## Rlast_2008_2012 0.4375786 0.25546251 0.49181828 408786.0 2701140 968256.0 ## Rlast_2013_2021 -0.2771114 0.09045272 0.49428848 180023.4 2211100 972985.6 ## Rlast_2013_2020 -0.3229365 0.10062162 0.52371618 173787.6 2236100 1033102.5 ## Rlast_historico -0.2733002 -0.22096961 0.31080359 180562.3 1647134 713947.4
```


3.6. Puntos biológicos de referencia

	Septiembre	Marzo	Julio
BDpromedio	714.00	702.00	718.00
Fmh	0.39	0.38	0.38
$\%BDPR_Fmh$	52.60	52.90	52.80
$\%BDPR_F_{RMS}$	60.00	60.00	60.00
$\%BD_Fmh$	47.60	47.90	47.80
$\%BD_F_{RMS}$	55.00	55.00	55.00
BDo	1488.00	1456.00	1491.00
BD55%	818.00	801.00	820.00
BD27.5%	409.00	401.00	410.00

3.7. Estatus

Años	$F/F_{RMS_{sept}}$	$F/F_{RMS_{marzo}}$	$F/F_{RMS_{julio}}$	$BD/BD_{RMS_{sept}}$	$BD/BD_{RMS_{marz}}$	$BD/BD_{RMS_{julio}}$
1990/91	0.699	0.693	0.696	2.452	2.534	2.457
1991/92	1.289	1.279	1.283	1.644	1.696	1.647
1992/93	1.265	1.256	1.259	0.789	0.815	0.791
1993/94	1.92	1.911	1.913	0.439	0.452	0.44
1994/95	0.637	0.637	0.635	0.482	0.493	0.482
1995/96	1.157	1.161	1.155	0.579	0.591	0.579
1996/97	2.665	2.689	2.658	0.798	0.808	0.797
1997/98	0.459	0.464	0.458	0.428	0.432	0.429
1998/99	1.837	1.859	1.831	0.385	0.389	0.385
1999/00	2.586	2.632	2.573	0.241	0.242	0.242
2000/01	0.568	0.576	0.566	0.149	0.148	0.149
2001/02	2.272	2.299	2.263	0.306	0.308	0.307
2002/03	2.124	2.155	2.116	0.329	0.33	0.33
2003/04	3.702	3.751	3.687	0.269	0.269	0.269
2004/05	2.697	2.724	2.685	0.163	0.163	0.163
2005/06	2.104	2.131	2.096	0.207	0.208	0.208
2006/07	1.362	1.405	1.355	0.767	0.765	0.768
2007/08	1.291	1.331	1.286	0.681	0.667	0.683
2008/09	1.807	1.865	1.799	1.565	1.536	1.568
2009/10	1.693	1.707	1.685	1.103	1.083	1.105
2010/11	1.327	1.335	1.321	1.147	1.17	1.15
2011/12	1.669	1.688	1.662	1.42	1.433	1.423
2012/13	0.998	1.016	0.992	1.352	1.358	1.355
2013/14	0.885	0.901	0.881	1.072	1.071	1.075
2014/15	0.88	0.898	0.875	1.565	1.561	1.568

Años	$F/F_{RMS_{sept}}$	$F/F_{RMS_{marzo}}$	$F/F_{RMS_{julio}}$	$BD/BD_{RMS_{sept}}$	$BD/BD_{RMS_{marz}}$	$BD/BD_{RMS_{julio}}$
2015/16	0.711	0.726	0.707	1.276	1.275	1.279
2016/17	0.887	0.886	0.883	1.039	1.038	1.041
2017/18	0.751	0.725	0.746	1.13	1.133	1.132
2018/19	0.685	0.705	0.679	1.617	1.632	1.624
2019/20	1.028	1.091	1.021	1.048	1.04	1.056
2020/21	1.108	0.613	1.088	0.601	0.537	0.623

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ios	Y/BT_{sept}	Y/BT_{marzo}	Y/BT_{julio}	C/N_{sept}	C/N_{marzo}	C/N_{julio}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)/91	0.174	0.172	0.173	0.101	0.101	0.101
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/92	0.263	0.261	0.263	0.179	0.178	0.179
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2/93	0.262	0.26	0.261	0.168	0.167	0.167
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3/94	0.396	0.395	0.395	0.23	0.23	0.23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/95	0.157	0.157	0.157	0.088	0.088	0.087
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5/96	0.237	0.238	0.237	0.148	0.149	0.147
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6/97	0.509	0.513	0.509	0.321	0.324	0.321
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7/98	0.099	0.1	0.099	0.069	0.069	0.069
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8/99	0.326	0.33	0.326	0.234	0.236	0.233
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9/00	0.436	0.442	0.435	0.293	0.298	0.292
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0/01	0.116	0.118	0.116	0.075	0.076	0.074
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/02	0.441	0.445	0.44	0.263	0.266	0.262
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2/03	0.385	0.39	0.384	0.253	0.256	0.252
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3/04	0.501	0.505	0.499	0.39	0.394	0.389
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/05	0.399	0.403	0.398	0.301	0.304	0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5/06	0.392	0.397	0.391	0.236	0.239	0.235
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6/07	0.329	0.339	0.328	0.19	0.196	0.189
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7/08	0.238	0.245	0.237	0.156	0.161	0.155
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8/09	0.328	0.337	0.327	0.227	0.234	0.227
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9/10	0.34	0.343	0.339	0.214	0.215	0.213
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0/11	0.28	0.283	0.279	0.167	0.169	0.167
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/12	0.316	0.319	0.315	0.204	0.206	0.203
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2/13	0.226	0.229	0.225	0.148	0.15	0.147
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3/14	0.165	0.168	0.164	0.116	0.119	0.116
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/15	0.186	0.189	0.185	0.12	0.122	0.119
2017/18 0.133 0.129 0.132 0.101 0.098 2018/19 0.172 0.176 0.171 0.104 0.107	5/16	0.157	0.16	0.156	0.104	0.107	0.104
2018/19 0.172 0.176 0.171 0.104 0.107	5/17	0.153	0.153	0.152	0.117	0.117	0.116
	7/18	0.133	0.129	0.132	0.101	0.098	0.101
2019/20 0.211 0.222 0.21 0.147 0.155	3/19	0.172	0.176	0.171	0.104	0.107	0.103
	9/20	0.211	0.222	0.21	0.147	0.155	0.146
2020/21 0.195 0.123 0.196 0.139 0.08	0/21	0.195	0.123	0.196	0.139	0.08	0.137

	Septiembre 2021	Marzo 2021	Julio 2021
Año biológico	2020/21	2020/21	2020/21
F_{RMS}	0.3	0.3	0.3°
BD_{RMS}	818	801	820
BD_{LIM}	409	401	410
$p(BD_{last} < BD_{RMS})$	1	1	1
$p(F_{last} > F_{RMS})$	0.64	0.02	0.62
$p(sobre - explotaci\'{o}n)$	0.99	1	0.98
p(agotado/colapsado)	0.22	0.38	0.18
p(sobrepesca)	0.51	0	0.48

$3.8.~\mathrm{CBA}$ 2021 Inicial (Asesoría de septiembre 2021)

	R1	R2	R3
BD _{RMS} (mil t)	818.38	818.38	818.38
BD_{2022} (mil t)	755.00	755.00	755.00
C_{2022} (mil t)	316.00	583.00	376.00
$C_{1erS2022}$ (mil t)	221.00	408.00	263.00
C_{2022} (-descarte mil t)	303.00	560.00	361.00
C _{1erS2022} (-descarte mil t)	212.00	392.00	253.00
$\mathrm{BD}_{2022}/\mathrm{BD}_{\mathrm{RMS}}$	0.92	0.92	0.92
$p(BD_{2022} < BD_{RMS})$	0.63	0.63	0.63
$p(sobre explotaci\'{o}n)$	0.46	0.46	0.46
p(agotado/colapsado)	0.03	0.03	0.03

R1	R2	R3
818.38	818.38	818.38
624.00	1395.00	797.00
271.00	765.00	382.00
81.00	230.00	115.00
261.00	735.00	367.00
78.00	220.00	110.00
0.76	1.70	0.97
0.99	0.00	0.58
0.90	0.00	0.29
0.01	0.00	0.00
	818.38 624.00 271.00 81.00 261.00 78.00 0.76 0.99 0.90	818.38 818.38 624.00 1395.00 271.00 765.00 81.00 230.00 261.00 735.00 78.00 220.00 0.76 1.70 0.99 0.00 0.90 0.00

4.0. Proyección del stock (Asesoría de septiembre 2021)

	$1991\text{-}2007[\mathrm{F_{RMS}}*1]$	$[\mathrm{F_{RMS}}*0.9]$	$[\mathrm{F_{RMS}}*0.7]$
p(sobre-explotación)_2019/20	0.21	0.21	0.21
p(colapso)_2019/20	0.00	0.00	0.00
p(sobre-explotación)_2020/21	0.99	0.99	0.99
p(colapso)_2020/21	0.22	0.22	0.22
p(sobre-explotación)_2021/22	0.46	0.45	0.47
p(colapso)_2021/22	0.03	0.03	0.03
p(sobre-explotación)_2022/23	0.90	0.85	0.94
p(colapso)_2022/23	0.01	0.00	0.01

	$2008\text{-}2012[\mathrm{F_{RMS}}*1]$	$[\mathrm{F_{RMS}}*0.9]$	$[F_{RMS}*0.7]$
p(sobre-explotación)_2019/20 p(colapso) 2019/20	0.21 0.00	0.21 0.00	0.21 0.00
p(sobre-explotación)_2020/21 p(colapso) 2020/21	$0.99 \\ 0.22$	$0.99 \\ 0.22$	0.99 0.22
p(sobre-explotación)_2021/22 p(colapso) 2021/22	0.46 0.03	0.45 0.03	0.47 0.03
p(sobre-explotación)_2022/23 p(colapso) 2022/23	0.00 0.00 0.00	0.00 0.00	0.00 0.00
P(compso)_2022/20	0.00	0.00	0.00

	2013-2021[F _{RMS} *1]	[F _{RMS} *0.9]	[F _{RMS} *0.7]
p(sobre-explotación)_2019/20	0.21	0.21	0.21
p(colapso)_2019/20	0.00	0.00	0.00
p(sobre-explotación)_2020/21	0.99	0.99	0.99
p(colapso)_2020/21	0.22	0.22	0.22
p(sobre-explotación)_2021/22	0.46	0.45	0.47
p(colapso)_2021/22	0.03	0.03	0.03
p(sobre-explotación)_2022/23	0.29	0.23	0.36
p(colapso)_2022/23	0.00	0.00	0.00

	1991-2007	2008-2012	2013-2021
mean	302530	637630	377830
std	60685	99903	78870
10%	224759	509599	276754
20%	251456	553550	311451
30%	270707	585241	336471
40%	287156	612320	357849
50%	302530	637630	377830

	1991-2007	2008-2012	2013-2021
10%	0.26	0.20	0.27
20%	0.17	0.13	0.18
30%	0.11	0.08	0.11
40%	0.05	0.04	0.05
50%	0.00	0.00	0.00

	1991-2007	2008-2012	2013-2021
mean	290430	612130	362710
std	58258	95907	75716
10%	215769	489220	265676
20%	241399	531413	298986
30%	259879	561836	323004
40%	275671	587832	343528
50%	290430	612130	362710

3.9. Primera revisión CBA 2021 (Asesoría de marzo 2021)

	1991-2007	2008-2012	2013-2021
30%	256311	295048	261787
40%	264276	304342	270979
50%	271720	313030	279570

10% 0.14 0.14 0.16 20% 0.09 0.09 0.10 30% 0.06 0.06 0.06 40% 0.03 0.03 0.03				
20% 0.09 0.09 0.10 30% 0.06 0.06 0.06 40% 0.03 0.03 0.03		1991-2007	2008-2012	2013-2021
30% 0.06 0.06 0.06 40% 0.03 0.03 0.03	10%	0.14	0.14	0.16
40% 0.03 0.03 0.03	20%	0.09	0.09	0.10
	30%	0.06	0.06	0.06
50% 0.00 0.00 0.00	40%	0.03	0.03	0.03
	50%	0.00	0.00	0.00

	1991-2007	2008-2012	2013-2021
10%	224700	258321	226667
20%	237110	272803	240989
30%	246059	283246	251316
40%	253705	292169	260140
50%	260851	300509	268387

	1991-2007	2008-2012	2013-2021
10%	6	-46	-13
20%	0	-48	-18
30%	-3	-49	-21
40%	-6	-49	-23
50%	-8	-50	-24

4.0. Segunda revisión CBA 2021 (Asesoría de julio 2021)


```
library(strucchange)
library(tidyverse)
```

```
## -- Attaching packages ----- tidyverse 1.3.0 --
```

^{##} v tibble 3.0.3 v purrr 0.3.4 ## v tidyr 1.1.2 v forcats 0.5.0

^{##} v readr 1.3.1

```
## -- Conflicts ----- tidyverse_conflicts() --
## x strucchange::boundary() masks stringr::boundary()
## x tidyr::expand()
                              masks reshape::expand()
## x dplyr::filter()
                               masks stats::filter()
## x dplyr::lag()
                               masks stats::lag()
## x dplyr::rename()
                               masks reshape::rename()
library(lubridate)
##
## Attaching package: 'lubridate'
## The following object is masked from 'package:reshape':
##
##
## The following objects are masked from 'package:base':
##
##
       date, intersect, setdiff, union
x1 \leftarrow arima.sim(model = list(ar = 0.9), n = 100)
x2 <- arima.sim(model = list(ma = 0.1), n = 100)
x3 <- arima.sim(model = list(ar = 0.5, ma = 0.3), n = 100)
y \leftarrow c((1 + x1), x2, (0.5 - x3))
plot.ts(y)
```



```
dat <- tibble(ylag0 = y,ylag1 = lag(y))
  qlr <- Fstats(ylag0 ~ ylag1, data = dat)
sctest(qlr, type = "supF")</pre>
```

##

```
## supF test
##
## data: qlr
## sup.F = 44.755, p-value = 7.223e-09
```

	1991-2007	2008-2012	2013-2021
mean	378670	419950	385460
std	22259	28186	25850
10%	350144	383828	352332
20%	359936	396228	363704
30%	366997	405169	371904
40%	373031	412809	378911
50%	378670	419950	385460

	1991-2007	2008-2012	2013-2021
10%	0.08	0.09	0.09
20%	0.05	0.06	0.06
30%	0.03	0.04	0.04
40%	0.01	0.02	0.02
50%	0.00	0.00	0.00

	1991-2007	2008-2012	2013-2021
10%	336138	368475	338239
20%	345539	380379	349156
30%	352317	388962	357028
40%	358110	396297	363755
50%	363523	403152	370042

	1991-2007	2008-2012	2013-2021
10%	59	-23	30
20%	46	-27	19
30%	38	-29	13
40%	33	-31	8
50%	28	-33	4

```
# Asesoría septiembre R1
# densidad de probabilidad
xbs1a <-rnorm(1000, mean = CBAp_sept[1], sd = CBApstd_sept[1])</pre>
xbsa <-seq(min(xbs1a), max(xbs1a), 0.5)
ybsa <-dnorm(xbsa, mean = CBAp_sept[1], sd =CBApstd_sept[1])</pre>
icbsa <-qnorm(c(0.10,0.50,0.5),CBAp_sept[1],CBApstd_sept[1])
\#distribuci\'on\ probabilidad
xxbsa
        <- c(xbsa[xbsa>=icbsa[1]&xbsa<=icbsa[2]],
            rev(xbsa[xbsa>=icbsa[1]&xbsa<=icbsa[2]]))</pre>
yybsa
         <- c(ybsa[xbsa>=icbsa[1]&xbsa<=icbsa[2]],
            rep(0,length(ybsa[xbsa>=icbsa[1]&xbsa<=icbsa[2]])))</pre>
densb_bsa <- data.frame(x=xxbsa, y=yybsa , t=rep('a', length(xxbsa)), r=seq(1,length(xxbsa),1))</pre>
# Asesoría septiembre R2
# densidad de probabilidad
xbs1b <-rnorm(1000, mean = CBAp_sept[3], sd = CBApstd_sept[3])</pre>
xbsb <-seq(min(xbs1b),max(xbs1b),0.5)</pre>
```

```
ybsb <-dnorm(xbsb, mean = CBAp_sept[3], sd = CBApstd_sept[3])</pre>
icbsb <-qnorm(c(0.10,0.50,0.5),CBAp_sept[3],CBApstd_sept[3])
#distribución probabilidad
xxbsb
           <- c(xbsb[xbsb>=icbsb[1]&xbsb<=icbsb[2]],
               rev(xbsb[xbsb>=icbsb[1]&xbsb<=icbsb[2]]))</pre>
           <- c(ybsb[xbsb>=icbsb[1]&xbsb<=icbsb[2]],
yybsb
               rep(0,length(ybsb[xbsb>=icbsb[1]&xbsb<=icbsb[2]])))</pre>
densb_bsb <- data.frame(x=xxbsb, y=yybsb , t=rep('a', length(xxbsb)), r=seq(1,length(xxbsb),1))</pre>
plot(xbsa,ybsa ,type="n",ylab="Densidad de probabilidad",xaxs="i",yaxs= "i",xlab="CBA 2021 (toneladas)", main="",xlim=c(10000,500)
polygon(xxbsb,yybsb,col=gray(0.9,0.3),border="gray95")
polygon(xxbsa,yybsa,col=gray(0.9,0.3),border="gray95")
lines(xbsb,ybsb,lwd=1,lty=2,col=1)
lines(xbsa,ybsa,lwd=1,lty=1,col=1)
legend(1000,0.00017,c("CBA2021_Hito1_Rbajo","CBA2021_Hito1_Rreciente"),lwd=c(2,1),col=c(1,2),lty=c(1,1),bty="n",cex=0.8)
text(904.3,0.0022,"Crms")
```


	$1991-2007[F_{RMS}*1]$	$[F_{RMS}*0.9]$	$[F_{RMS}*0.7]$
p(BD<0,9BD _{RMS})_2020/21	1.00	1.00	1.00
$p(BD<0.5BD_{RMS})_2020/21$	0.38	0.38	0.38
$p(BD<0.9BD_{RMS})_2021/22$	0.27	0.26	0.26
p(BD<0,5BD _{RMS})_2021/22	0.04	0.03	0.03
	2008-2012[F _{RMS} *1]	[F _{RMS} *0.9]	[F _{RMS} *0.7]
p(BD<0,9BD _{RMS})_2020/21	1.00	1.00	1.00
$p(BD<0.5BD_{RMS})_2020/21$	0.38	0.38	0.38
$p(BD<0.9BD_{RMS})_2021/22$	0.27	0.26	0.26
p(BD<0,5BD _{RMS})_2021/22	0.04	0.03	0.03
	2013-2021[F _{RMS} *1]	[F _{RMS} *0.9]	[F _{RMS} *0.7]
p(BD<0,9BD _{RMS})_2020/21	1.00	1.00	1.00
$p(BD<0.5BD_{RMS})_2020/21$	0.38	0.38	0.38
$p(BD<0.9BD_{RMS})_2021/22$	0.27	0.26	0.26
$p(BD < 0.5BD_{RMS}) _2021/22$	0.04	0.03	0.03

	2013-2021[F _{RMS} *1]	$[F_{RMS}*0.9]$	$[F_{RMS}*0.7]$
p(BD<0,9BD _{RMS})_2020/21	0.98	0.98	0.98
$p(BD<0.5BD_{RMS})_2020/21$	0.18	0.18	0.18
$p(BD<0.9BD_{RMS})_2021/22$	0.49	0.48	0.46
$p(BD<0.5BD_{RMS})_2021/22$	0.04	0.03	0.03

5. DISCUSIÓN

• ¿Cuánto se sobrepasa el RMS en la captura 2020/21?

Por lo tanto, podríamos concluir que la causa de exceder el objetivo de manejo Frms para el año 2020/21 se debe al remanente de cuota autorizado.

¿Cuál es la captura semestral del año biológico 2020/21 y la captura descartada?

- CBA recomendada 2021 = 251.316 t
- Desembarque 1er semestre 2021 = 22% sobre CBA recomendada (306.406 t)

¿Cuál debería haber sido la captura para un F_{RMS} ?

La captura 2020/21 al RMS debería ser 359.250 (C_{RMS}) - 14.370 (4%
descarte) = 344.880 t

Por lo tanto, de las 344.880 t que se podían capturar entre el 2020/21, si consideramos que durante el 2do semestre 2020 se capturaron 69.839 t, entonces, durante el 1er semetre 2021 la captura no debería haber superado las 275.041 t. Se sobrepasó en torno a las 31 mil toneladas la captura biológicamente aceptable 2020/21.

Sobre las estacionalidad de las capturas

Figure 1: Capturas mensuales de sardina común realizadas entre 2007-2021, registradas por SERNAPESCA en la zona centro-sur.

• Revisar la estacionalidad de la captura en año biológico

```
prop1ersemestre<-c(0.81, 0.70, 0.65, 0.77, 0.47, 0.81, 0.72, 0.81, 0.85, 0.90, 0.8 plot(seq(1991,2021),prop1ersemestre,type="o",ylab="Proporción de captura 1er semestre (año biológico",x
```

Separar la Captura en año biológico para revisar el efecto de la Captura 2020/21 sobre el cálculo de CBA en año calendario

Qué pasaría si los usuarios deciden no capturar durante el 2do semestres y traspasar ese remanente de cuota para el 1er semestre del siguiente año???

cuál es la captura biológicamente aceptable 2021/2022