

Notas de clase: Jueves 04 de Mayo

Índice

1.	Repaso matemático: Transformaciones invertibles	2
2.	Probabilidad clásica 2.1. Ejercicios:	3
3.	Independencia de eventos	3
4.	Ejercicio:	3
5	Probabilidad condicional	q

1. Repaso matemático: Transformaciones invertibles

Decimos que una función $f:A\to B$ es **invertible** si existe una función $g:B\to B$ de manera que f(g(b))=b y g(f(a))=a para los elementos b en B y a en A.

- 1. $f(x) = x^3 \text{ y } g(y) = \sqrt[3]{y}$,
- 2. $f(x) = \sin(x)$ y $g(y) = \arcsin(y)$

¿Son las funciones f(x) = 5x - 3, $g(y) = \frac{y+3}{5}$ funciones inversas?

2. Probabilidad clásica

El primer paso para adentrarnos a la probabilidad es conocer a los espacios donde todos los objetos o elementos tienen la misma probabilidad de ocurrir. Son los conjuntos de equiprobables. La probabilidad clásica es,

$$\mathbb{P}(A) = \frac{\#(A)}{\#(\Omega)}$$

Las primeras propiedades que tenemos de la probabilidad son,

- $1. \ 0 \le \mathbb{P}(A) \le 1,$
- 2. Considera una cantidad infinita numerable de conjuntos ajenos A_n entonces

$$\mathbb{P}(\cup_n A_n) = \sum_n \mathbb{P}(A_n).$$

Propiedades:

- 1. Para cualquier evento A, se tiene que, $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$.
- $2. \ \mathbb{P}(\emptyset) = 0.$
- 3. Si $A \subset B$, se tiene que $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- 4. Si $A \subset B$, se tiene que, $\mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A)$.
- 5. Dados eventos A, B, se tiene que,

$$\mathbb{P}(A \cup B) = \mathbb{P}(B) + \mathbb{P}(A) - \mathbb{P}(A \cap B).$$

2.1. Ejercicios:

Suponga que un estudiante es elegido al azar entre 100 estudiantes, de los cuales 30 cursan matemáticas, 20 cursan química y 10 cursan matemáticas y química. Encuentre la probabilidad de que curse matemáticas o química. Sean M = estudiantes que cursan matemáticas y <math>C = estudiantes que cursan química; es equiprobable el evento?

3. Independencia de eventos

Decimos que dos eventos $A,\,B\subset\Omega$ son independientes si se cumple que

$$\mathbb{P}(A \cap B) = P(A) * P(B)$$

Observación: Ser independientes no implica que sean ajenos. De la misma manera dos eventos ajenos no implica que sean independientes.

4. Ejercicio:

Sea $\Omega = \{1, 2, 3, 4\}$ un espacio muestral. Consideremos los eventos $A = \{1, 2\}, B = \{2, 3\}$ y $C = \{2, 4\}$. ¿Son independientes dos a dos, tres a tres?

5. Probabilidad condicional

Sean A y B dos eventos. Consideremos el caso cuando $\mathbb{P}(B) > 0$. la probabilidad condicionaldel evento A dado el evento B se define como,

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Ejemplos:

- 1. Consideremos el lanzamiento de un dado equilibrado y los eventos $A = \{2\}$ y $B = \{2,4,6\}$
 - $\mathbb{P}(B) = 1/6$, mientras que $\mathbb{P}(A|B) = 1/3$.
- 2. Supongamos el lanzamiento de un dado. ¿Cuál es la probabilidad de sacar menos que 4?
- 3. Si se sabe que en el lanzamiento se obtuvo un número impar.

Ejercicios:

Sea $\mathbb{P}(A)=,5$ y $\mathbb{P}(A\cup B)=,6,$ encuentre $\mathbb{P}(B)$ en cada caso,

- 1. A y B son ajenos.
- 2. A y B son independientes.
- 3. $\mathbb{P}(A|B) = .4$