$$X:(\Omega, \mathcal{F}, P)$$
 \longrightarrow $(\mathbb{R} \mathcal{B})$ 6-dgolva
6-field

6-algebra

Content all intervals

(an prove

(a,b) [a,b], [a,b]

$$\chi^{-1}(B) \stackrel{\times^{-1}}{\leftarrow} \beta$$

$$\chi^{-1}(B) = \left\{\omega : \chi(\omega) \in B\right\}$$

$$(-\omega, +\omega)$$

$$P_{\times}(\phi) = 0.$$

Firel sets

Constant all intervals
$$(a,b)$$

Can prove

 (a,b) (a,b) , (a,h) $\{a\}C$
 $\{a\}$
 $\{a\}$
 $\{a\}$
 $\{a\}$
 $\{a\}$

$$\begin{aligned}
\overline{f}_{x}(x) &= P_{+} \left\{ X \leq x \right\} = P\left(x^{-1}(-\omega, x) \right) \\
&= P_{x} \left\{ (-\omega, x) \right\} \\
&= \int_{u \leq x} P_{x}(u) du \quad \text{discrete} \\
&= \int_{-\omega} f_{x}(u) du \quad \text{continuous}
\end{aligned}$$

dominuting measure M

9 is medensity of
$$Q = P_X$$
if $Q(A) = \int_A Q d\mu = \int_A Q I_A d\mu$

$$F_{x}(x) = \int p(u) d\mu(w)$$

$$(-\omega, x)$$

County measure -> Sum

Leshejne Meason -> L.I

$$X_1, X_2, \dots, X_n, \dots$$
 as $n \to \infty$
 $C \times n, f_n, P_n$)

modes of convergence

Lecture 2

$$F_{0} \leftarrow \Sigma_{0},$$

$$P\left(|\chi_{n} - \chi| > \Sigma\right) \longrightarrow 0, \text{ as } n \to \infty$$

$$P_{h}(\Sigma)$$

$$P \left(\left| x_{n} - x \right| \leq \xi \right) \longrightarrow 0, \quad \text{as } n \to \infty$$

$$Q = [0,1]$$

$$P = [S(\Omega)] \quad \text{Porol cets}$$

$$P = [A] = [A] \quad \text{degre Measo}$$

$$P(A) = [A] \quad \text{degre}$$

$$P($$

L)	(n(w)	
1	\	with Prob 1, Xu(w)
2	0	
ζ	0	does not converge.
, U	J	(100) 1000 Covidery.
T		
	1	
	L	
	0	
	0	
	1	
	6 V	
	,	
	1	
	(O)	
)	
	0	
	1	

$$P\left\{\omega: \left|\chi_{n}(\omega) - \chi(\omega) \leq \varepsilon, \forall n > n_{\varepsilon}(\omega)\right| = 1\right\}$$

$$P\left(\underset{n\to\infty}{\text{lim}} \times_n = \right.$$

$$P(\frac{1}{h} \leq 0) = |$$

$$P(\chi_n \leq \chi) \qquad P(\chi_n \leq 0) = 0, \quad n \to 0$$

$$P(\chi_n \leq \chi) \qquad P(\chi \leq 0) = 0$$

$$\|X\|_{p} = \left(E |X|^{p} \right)^{\frac{1}{p}}$$

$$p = 1$$
 ahs

$$\int ||X+Y||_p \leq ||X||_p + ||Y||_p$$

$$||CX||_p = |C|||X||_p$$
, CGR

$$\begin{cases} ||X+Y||_{p} & ||X||_{p} + ||Y||_{p} \\ ||CX||_{p} & = ||C|||X||_{p} , \quad C6R \\ ||X||_{p=0}, \quad X=0, \text{ ase}, \quad P(x+3)=0 \end{cases}$$

$$\times_{p} \xrightarrow{L_{p}} \times$$

Consequence:
$$E(|x_{n}|^{p})$$
, $E(|x|^{p}) < \infty$
 $\times_{n} \xrightarrow{L_{p}} \times = \sum_{i=1}^{n} |x_{i}|^{p} \rightarrow E(|x|^{p})$
 $E(|x_{n}|^{p}) \rightarrow E(|x|^{p})$
Whenever the manners are defined.

$$X^{p} = \exp \left[p \log x \right]$$

$$\left| E \left[X_{n} \right] - E \left[X \right] \right|$$

$$0^{1-}$$

$$\left| E \left(X_{n} \right) - E \left(X \right) \right| \leq E \left[X_{n} - X \right]$$

Thus Lz convergence >> L, convergence

$$\chi_n \xrightarrow{L_1} \chi \Rightarrow E |\chi_1|^S \rightarrow E |\chi|^S$$

$$for all ||\leq S \leq P$$

$$b(\lambda)>4) \leq \frac{4}{E(\lambda)}$$