CHRIS JEPEWAY MIDS 231, FALL 2016

ON THE TRAIL OF THE NETFLIX PRIZE KILLERS

A WHODUNNIT IN 7 PARTS

- 1. The Victim
- 2. The Crime
- 3. The Criminals
- 4. The Weapon
- 5. Crime Scene Reconstruction
- 6. The Case
- 7. The Evidence Locker

THE VICTIM

NETFLIX PRIZE

- AKA, NFP
- ▶ Home Address: http://www.netflixprize.com
- Rules: Beat Netflix's in-house recommender to win \$1M
- Projected Lifespan: 2 Oct 2006 2 Oct 2011

THE CRIME

MURDER: ENDING COLLABORATIVE FILTERING...FOREVER

- NFP Fatally wounded 5 Feb 2008
- Death from complications on 21 Sep 2009
 - \$1M awarded to BelKor's Pragmatic Chaos
- For collaborative filtering, nothing was ever the same

THE CRIMINALS

APB: PERP #1 - ARVIND NARAYANAN

- Known Hangouts
 - https://33bits.org
 - ▶ Freedom to Tinker
 - Princeton CS Department

APB: PERP #2 - VITALY SHMATIKOV

- Known Hangouts
 - Cornell CS Dept

THE WEAPON

ROBUST DE-ANONYMIZATION OF LARGE DATASETS (HOW TO BREAK ANONYMITY OF THE NETFLIX PRIZE DATASET)

- **2008**
- Results include
 - 2 de-anonymization algorithms
 - Showing "curse of dimensionality" yields ready de-anonymization
 - Measure of how much add'l info needed when de-anonymization fails

CRIME SCENE RECONSTRUCTION

CRIMINAL RE-ENACTORS

- Two toy data sets
 - One that's been anonymized db
 - Contains sensitive data
 - One that's loosely related to the first aux
 - What the perp knows
- A handful of records
- Few fields

RE-ENACTORS: DB - ANONYMIZED CANDY DEMOGRAPHICS

Age Home Town Favorite Candy

12 Ghost Planet

12

Ghost Planet

198

Darmstadt

RE-ENACTORS: AUX - VOTER REGISTRY

	Name	DOB	Home Town
	Brak	2/29/2004	Ghost Planet
	Sisto	2/29/2004	Ghost Planet
6 - 7 - 8 2 - 1 - 8	Frank	1/1/1918	Darmstadt

RECREATING THE WEAPON

- mapping of comparable columns
 - Home town <=> Home town
 - Age <=> DOB
- > sim() compares attributes
 - ▶ 1 if hometown same, 0 if not
 - ▶ 1 if age consistent with DOB, 0 if not

RECREATING THE WEAPON: GENERAL ALGORITHM

- de_anon()
 - 1. Compute $S = \{ Score(aux, r') \text{ for each } r' \text{ in } DB \}$
 - 2. Apply match criteria over S
 - 1. matching set empty => output {}
 - 3. Otherwise
 - 1. Need a best guess? Output r' with highest score
 - 2. Need distribution? Output S with p.d.f

RECREATING THE WEAPON: ALGORITHM 1A

- Score(aux, r')
 - ▶ The min sim() across comparable columns
 - So, the least similar attribute counts
- Matching criteria
 - Any score in $S > \alpha$?
- Output
 - All r' with scores > α
 - > p.d.f = U()

RECREATING THE WEAPON: ALGORITHM 1B

- Score(aux, r')
 - Weighted sum across non-null aux columns of sim()
 - Weights are inverse of log of count of non-null column entries in DB
- Matching criteria
 - ▶ Are top 2 scores in S too close? Then, no match
 - ▶ Too close: $\Delta/\sigma_S < \phi$
- Output
 - Top scoring record
 - $p.d.f = C \cdot e^{Score(aux, r')/\sigma}$

RE-ENACTING THE CRIME: ALGORITHM 1A

Candy	Score	Prob
?		
STAINUIS SHARE SIZE-	1	0.5
Oron Oron Oron Oron Oron Oron Oron Oron	1	0.5
China Croit	1	0.5
GRANUS SHARE SIZE	1	0.5

RE-ENACTING THE CRIME: FRANKIE'S RELAXED. HOW DID WE MISS HIM?

- ▶ The sim() function is too precise
 - ▶ He was born in early 1818
 - So, he's made 199 trips around the sun
 - But it's not yet 2017 (= 1818 + 199), so we say he's 198 yo
- Remember: Algorithm 1A scores on worst match

RE-ENACTING THE CRIME: BRAK & SISTO?

likes

is all about the

They're fraternal twins and live together, so min over the comparable sim()'s is 1 for both => each is equally likely

RE-ENACTING THE CRIME: ALGORITHM 1B

RE-ENACTING THE CRIME: AGAIN WITH BRAK & SISTO?

&

- Have 2 matching attributes each
- Their top 2 are equal, so Δ is $0 < \varphi$
- No match

RE-ENACTING THE CRIME: WHAT'S α AND ϕ ?

- For Algorithm 1A, choose $\alpha = 1 \varepsilon$ so that deanonymization is likely, within a given tolerance ε
- For Algorithm 1B, choose $oldsymbol{arphi}$ to reject false positives within a multiple of $oldsymbol{\sigma}_{s}$

CASE IS STILL OPEN

REMAINING WORK

- Complete measure of bits needed for de-identification
- Use a real data set
 - Anonymize it
 - Extract & synthesize aux
- Use two real, related data sets
- Use some of Khaled's techniques
- Contact authors criminals re: methods, motives
- Wrap my head around proofs

EVIDENCE LOCKER

REFERENCES

- Netflix Prize @ http://www.netflixprize.com
- Arvind Narayanan and Vitaly Shmatikov. "Robust De-anonymization of Large Sparse Datasets" @ http://ieeexplore.ieee.org/document/4531148/
- Arvind Narayanan and Vitaly Shmatikov. "De-anonymizing Social Networks" @ https://www.cs.cornell.edu/~shmat/shmat_oak09.pdf
- Khaled El Emam and Luk Arbuckle. <u>Anonymizing Health Data Case Studies and Methods to Get You Started</u> @ http://shop.oreilly.com/product/0636920029229.do

ANY TIPS?