

Arquitetura e Organização de Computadores

Conjunto de Instruções

#### Introdução

- Se um programador estiver usando uma linguagem de alto nível, muito pouco da arquitetura da máquina básica é visível
- Um limite onde o projetista de computador e o programador podem ver a mesma máquina é o conjunto de instruções de máquina

# O que é um conjunto de instruções?

- A coleção completa de instruções que são entendidas por uma CPU.
- Código de máquina.
- Binário.
- Normalmente, representado por códigos em assembly.

#### Elementos de uma instrução

- Código de operação (Op code):
  - Faça isto.
- Referência a operando fonte:
  - Nisto.
- Referência a operando de destino:
  - Coloque a resposta aqui.
- Referência à próxima instrução:
  - Quando tiver feito isso, faça isto...

# Diagrama de estado do ciclo de instrução



#### Operandos fonte e destino

- Memória principal ou virtual
  - Como as referências à próxima instrução
- Registrador do processador
  - Com raras exceções, um processador contém um ou mais registradores que podem ser referenciados por instruções. Se houver apenas 1 registrador, a referência é implícita
- Imediato
  - O valor do operando está contido na instrução
- Dispositivo de E/S
  - A instrução precisa especificar o módulo de E/S

#### Representação da instrução

- Em código de máquina, cada instrução tem um padrão de bits exclusivo.
- Para consumo humano (bem, para programadores), uma representação simbólica é utilizada.
  - Ex: ADD, SUB, LOAD.
- Operandos também podem ser representados desta maneira:
  - ADD A,B.

#### Representação da instrução

- Formato de instrução simples
  - Registrador de instruções (IR) do processador



#### Tipos de instrução

- Processamento de dados.
  - Aritmética e lógica
- Armazenamento de dados
  - Movimentação de dados para dentro ou fora do registrador e/ou locais de memória
- Movimentação de dados (E/S).
  - Instruções e E/S
- Controle de fluxo do programa.
  - Instruções de teste e desvio

#### Tipos de instrução

- Considere uma instrução em linguagem de alto nível X = X+Y
- Como isso poderia ser feito com instruções de máquina? Supor X e Y como 513 e 514
  - 1. Carregue um registrador com o conteúdo do local de memória 513
  - 2. Some o conteúdo do local de memória 514 ao registrador
  - 3. Armazene o conteúdo do registrador no local de memória 513

- 3 endereços:
  - Operando 1, Operando 2, Resultado.
  - a = b + c.
  - Pode ser uma instrução for-next (normalmente implícita).
  - Não é comum.
  - Precisa de palavras muito longas para manter tudo.
- 2 endereços:
  - Um endereço servindo como operando e resultado.
  - a = a + b.
  - Reduz tamanho da instrução.
  - Requer algum trabalho extra.
    - Armazenamento temporário para manter alguns resultados.

- 1 endereço:
  - Segundo endereço implícito.
  - Normalmente, um registrador (acumulador).
  - Comum nas primeiras máquinas.
- 0 (zero) endereços:
  - Todos os endereços implícitos.
  - Usa uma pilha.
  - Ex: push a.
  - push b.
  - add.
  - pop c.
  - c = a + b.

#### Mais endereços:

- Instruções mais complexas (poderosas?).
- Mais registradores.
- Operações entre registradores são mais rápidas.
- Menos instruções por programa.

#### Menos endereços:

- Instruções menos complexas (poderosas?).
- Mais instruções por programa.
- Busca/execução de instruções mais rápida.

**Figura 10.3** Programas para executar  $Y = \frac{A - B}{C + (D \times E)}$ 

| Instrução   | Comentário                |  |
|-------------|---------------------------|--|
| SUB Y, A, B | $Y \leftarrow A - B$      |  |
| MPY T, D, E | $T \leftarrow D \times E$ |  |
| ADD T, T, C | $I \leftarrow I + C$      |  |
| DIV Y, Y, T | $Y \leftarrow Y \div T$   |  |

(a) Instruções com três endereços

| Instrução | Comentário                |
|-----------|---------------------------|
| MOVE Y, A | Y ← A                     |
| SUB Y, B  | $Y \leftarrow Y - B$      |
| MOVE Y, D | $T \leftarrow D$          |
| MPY T, E  | $1 \leftarrow 1 \times E$ |
| ADD T, C  | 1 ← 1 + (                 |
| DIV Y, T  | $Y \leftarrow Y \div T$   |

(b) Instruções de dois endereços

| Instruçã | o 0 | omentário                  |
|----------|-----|----------------------------|
| LOAD D   | AC  | $\leftarrow$ D             |
| MPY E    | AC  | $\leftarrow$ AC $\times$ E |
| ADD C    | AC  | $\leftarrow$ AC + C        |
| STOR Y   | Υ   | $\leftarrow$ AC            |
| LOAD A   | AC  | ← A                        |
| SUB B    | AC  | $\leftarrow$ AC $-$ B      |
| DIV Y    | AC  | $\leftarrow$ AC $\div$ T   |
| STOR Y   | Υ   | ← AC                       |

(c) Instruções de um endereço

**Tabela 10.1** Utilização de endereços de instrução (instruções sem desvio)

| Número de endereços | Representação simbólica | Interpretação                      |
|---------------------|-------------------------|------------------------------------|
| 3                   | OP A, B, C              | A ← B OP C                         |
| 2                   | OP A, B                 | $A \leftarrow A OP B$              |
| 1                   | OP A                    | AC ← AC OP A                       |
| 0                   | OP                      | $T \leftarrow (T-1) \text{ OP } T$ |

AC = acumulador

T = topo da pilha

(T-1) = segundo elemento da pilha

A, B, C = locais de memória ou registradores

#### Decisões de projeto

- Repertório de operações:
  - Quantas operações?
  - O que elas podem fazer?
  - Qual a complexidade delas?
- Tipos de dados.
- Formatos de instrução:
  - Tamanho do campo de código de operação.
  - Número de endereços.
- Registradores:
  - Número de registradores da CPU disponíveis.
  - Quais operações podem ser realizadas sobre quais registradores?
- Modos de endereçamento

#### Tipos de operandos

- Endereços.
- Números:
  - Inteiro/ponto flutuante.
- Caracteres:
  - ASCII etc.
- Dados lógicos:
  - Bits ou flags

- Transferência de dados.
- Aritmética.
- Lógica.
- Conversão.
- E/S.
- Controle do sistema.
- Transferência de controle.

**Tabela 10.3** Operações comuns do conjunto de instruções

| Tipo                   | Nome da operação     | Descrição                                         |  |
|------------------------|----------------------|---------------------------------------------------|--|
|                        | Move (transferência) | Transfere palavra ou bloco da origem ao destino   |  |
|                        | Store (armazenar)    | Transfere palavra do processador para a memória   |  |
|                        | Load (carregar)      | Transfere palavra da memória para o processador   |  |
|                        | Exchange             | Troca o conteúdo da origem e do destino           |  |
| Transferência de dados | Clear (reset)        | Transfere palavra de Os para o destino            |  |
|                        | Set                  | Transfere palavra de 1s para o destino            |  |
|                        | Push                 | Transfere palavra da origem para o topo da pilha  |  |
|                        | Рор                  | Transfere palavra do topo da pilha para o destino |  |
|                        | Add                  | Calcula a soma de dois operandos                  |  |
|                        | Subtract             | Calcula a diferença de dois operandos             |  |
|                        | Multiply             | Calcula o produto de dois operando                |  |
| Autom (dina            | Divide               | Calcula o quociente de dois operandos             |  |
| Aritmética             | Absolute             | Substitui o operando pelo seu valor absoluto      |  |
|                        | Negate               | Troca o sinal do operando                         |  |
|                        | Increment            | Soma 1 ao operando                                |  |
|                        | Decrement            | Subtrai 1 do operando                             |  |

| Тіро   | Nome da operação      | Descrição                                                                                                            |  |
|--------|-----------------------|----------------------------------------------------------------------------------------------------------------------|--|
|        | AND                   | Realiza o AND lógico                                                                                                 |  |
|        | OR                    | Realiza o OR lógico                                                                                                  |  |
|        | NOT (complemento)     | Realiza o NOT lógico                                                                                                 |  |
|        | Exclusive-OR          | Realiza o XOR lógico                                                                                                 |  |
|        | Test                  | Testa condição especificada; define flag(s) com base no resultado                                                    |  |
| Lógica | Compare               | Faz comparação lógica ou aritmética de dois ou mais operandos;<br>define flag(s) com base no resultado               |  |
|        | Set control variables | Classe de instruções para definir controles para fins de proteção, tratamento de interrupção, controle de tempo etc. |  |
|        | Shift                 | Desloca o operando para a esquerda (direita),                                                                        |  |
|        |                       | introduzindo constantes na extremidade                                                                               |  |
|        | Rotate                | Desloca ciclicamente o operando para a esquerda (direita),                                                           |  |
|        |                       | de uma extremidade à outra                                                                                           |  |

- Transferência de dados
  - Especificam:
    - Origem.
    - Destino.
    - Quantidade de dados.
  - Podem ser instruções diferentes para diferentes movimentações.
    - Ex: IBM 370.
  - Ou uma instrução e diferentes endereços.
    - Ex: VAX.

- Aritmética
  - Adição, Subtração, Multiplicação, Divisão.
  - Inteiro com sinal.
  - Ponto flutuante?
  - Pode incluir:
    - Incremento (a++).
    - Decremento (a--).
    - Negação (-a).

#### Lógicas

- Operações lógicas básicas sobre dados booleanos ou binários
- NOT: inverte um bit
- AND, OR, Exclusive-OR (XOR): mais comuns
- EQUAL: teste binário útil
- Deslocamento lógicos:
  - Os bits de uma palavra são deslocados para direita ou esquerda
  - O bit deslocado para fora se perde
  - Na outra extremidade, um 0 é deslocado para dentro

Lógicas (Deslocamento e rotação)



- Conversão
  - Mudam o formato ou operam sobre o formato dos dados
    - EX: decimal para binário

- Entrada/saída
  - Podem ser instruções específicas.
  - Pode ser feita usando instruções de movimentação de dados (mapeadas na memória).
  - Pode ser feita por um controlador separado (DMA).

- Controle do sistema
  - Instruções privilegiadas.
  - CPU precisa estar em estado específico:
    - Anel 0 no 80386+.
    - Modo kernel.
  - Para uso dos sistemas operacionais.

- Transferência de controle
  - Desvio:
    - Ex: desvio para x se resultado for zero.
  - Salto:
    - Ex: incrementa e salta se for zero.
    - ISZ Registrador 1.
    - Desvia xxxx.
    - ADD A.
  - Chamada de sub-rotina:
    - C.f. chamada de interrupção.

• Transferência de controle



#### Transferência de controle



# Modos de Endereçamento

- Os campos de endereços das instruções são relativamente pequenos
- Para possibilitar o acesso a uma grande quantidade de posições da memória, foram criados vários modos de endereçamento
- Quase todas as arquiteturas de computadores fornecem mais de um desses modos de endereçamento

# Modos de Endereçamento mais Comuns

- Endereçamento Imediato
- Endereçamento Direto
- Endereçamento Indireto
- Endereçamento de Registrador
- Endereçamento Indireto via Registrador
- Endereçamento por Deslocamento
  - Endereçamento Relativo
  - Endereçamento via Registrador Base
  - Indexação
- Endereçamento à Pilha

## Endereçamento Imediato

 O valor do operando é especificado diretamente na instrução



- Principal vantagem:
  - Nenhum acesso à memória (economia de tempo)
- Principal desvantagem:
  - O tamanho do operando é limitado pelo tamanho do campo de endereço da instrução

# Endereçamento Direto

 O campo de endereço da instrução contém o endereço do operando na memória



- Principal desvantagem:
  - Espaço de endereçamento limitado

# Endereçamento Indireto

 O campo de endereço da instrução contém um endereço da memória cujo conteúdo é o endereço do operando na memória



- Principal vantagem:
  - Espaço de endereçamento grande
- Principal desvantagem:
  - Acessos múltiplos à memória

# Endereçamento de Registrador

Semelhante ao endereçamento direto



- Principal vantagem:
  - Nenhum acesso à memória
- Principal desvantagem:
  - Espaço de endereçamento limitado

# Endereçamento Indireto via Registrador

Semelhante ao endereçamento indireto



- Principal vantagem:
  - Espaço de endereçamento grande
- Principal desvantagem:
  - Acesso extra à memória

#### Endereçamento por Deslocamento

 É uma combinação dos modos Direto e Indireto via Registrador



- Principal vantagem:
  - Flexibilidade
- Principal desvantagem:
  - Complexidade



#### Endereçamento por Deslocamento

- Tipos comuns:
  - Endereçamento Relativo
  - Endereçamento via Registrador Base
  - Indexação

### Endereçamento Relativo

 Explora o conceito de localidade, economizando bits no campo de endereço da instrução



#### Endereçamento via Registrador Base

 É uma generalização do Endereçamento Relativo



Útil na implementação de segmentação de memória

 Interpretação oposta ao do Endereçamento via Registrador Base



Útil em operações iterativas

- Auto-indexação: incremento do registrador índice no mesmo ciclo de instrução
  - Realizada automaticamente em registradores dedicados exclusivamente à indexação
  - Quando registradores de propósito geral são utilizados, é necessária indicação na instrução de que deva ser realizada
- Algumas máquinas permitem Endereçamento Indireto e Indexação na mesma instrução

 Quando a indexação é feita após o endereçamento indireto, ela é chamada PÓS INDEXAÇÃO



 Na PRÉ INDEXAÇÃO, a indexação é feita antes do endereçamento indireto



### Endereçamento à Pilha

- Pilha: Fila LIFO (Last In First Out)
- Operações: PUSH, POP, operações unárias, operações binárias



### Endereçamento à Pilha

Implementações típicas da Pilha:





### Endereçamento à Pilha

 Trata-se de uma especialização do Endereçamento Indireto via Registrador



- Layout de bits em uma instrução.
- Inclui opcode.
- Inclui operando(s) (implícitos ou explícitos).
- Normalmente, mais de um formato de instrução em um conjunto de instruções.

- Tamanho da instrução
  - Afetado por e afeta:
    - Tamanho da memória.
    - Organização da memória.
    - Estrutura de barramento.
    - Complexidade da CPU.
    - Velocidade da CPU.
  - Escolha entre repertório de instrução poderoso e economia de espaço.

- Alocação de bits
  - Número de modos de endereçamento.
  - Número de operandos.
  - Registrador versus memória.
  - Número de conjuntos de registradores.
  - Intervalo de endereços.
  - Granularidade do endereço.

Formato de instrução X86



#### Referências

- STALLINGS, W. Arquitetura e organização de computadores: projeto para o desempenho. 8. ed. Prentice Hall, 2009.
- DELGADO, J.; RIBEIRO, C. Arquitetura de Computadores. 2 ed. LTC, 2009.
- PATTERSON, D. A.; HENNESSY, J.L. Organização e projeto de computadores – a interface hardware software. 3. ed. Editora Campus, 2005.