Классификация биологических образцов (клеток) на раковые и нераковые по их спектрам рамановского рассеяния

Студент: Мердалимова Анастасия

Skillfactory

Data Science Track

Содержание

- Введение в тему
- Постановка задачи
- Исследование данных
- Применение методов машинного обучения
 - Снижение размерности
 - Классификация
- Модификация задачи

Содержание

- Введение в тему
- Постановка задачи
- Исследование данных
- Применение методов машинного обучения
 - Снижение размерности
 - Классификация
- Модификация задачи

• Что? Диагностика опухолевых клеток на ранней стадии

• Kaк?

Рамановская спектроскопия

Уровень сигнала слабый:(

+ усиливающие золотые частицы (AuNPs)

Усиливают только вблизи себя :(

• Kaк?

Рамановская спектроскопия

Уровень сигнала слабый:(

+ усиливающие золотые частицы (AuNPs) трех разных типов!

Усиливают только вблизи себя :(

• Kaк?

Рамановская спектроскопия

Уровень сигнала слабый:(

+ усиливающие золотые частицы (AuNPs) ТРЕХ разных типов!

Усиливают только вблизи себя :(

Содержание

- Введение в тему
- Постановка задачи
- Исследование данных
- Применение методов машинного обучения
 - Снижение размерности
 - Классификация
- Модификация задачи

Задача

Формализованная задача

• Различать здоровые и раковые клетки по спектрам усиленного рамановского рассеяния

• Задача классификации

- Сейчас используется 3 типа частиц. Было бы здорово, если бы требовался только 1
- Исследование качества модели в зависимости от кол-ва входных признаков

Данные

Покрытие частиц

		(COOH)2	СООН	NH2	Total	
	Α	53	53	59	165	
	A-S	51	56	50	157	
	DMEM	64	64	65	193	
X	DMEM-S	53	52	53	158	
клеток	G	52	54	51	157	
	G-S	50	51	50	151	_
Типы	HF	56	50	51	157	Healthy cells
Ę	HF-S	50	51	50	151	Cells
	MEL	49	50	50	149	
	MEL-S	50	52	51	153	Concor
	ZAM	50	50	50	150	Cancer cells
	ZAM-S	49	50	52	151	

https://www.kaggle.com/datasets/andriitrelin/cells-raman-spectra Erzina et al. Sensors & Actuators: B. Chemical 308 (2020) 127660

Знакомство с данными

Усиление частицами с -NH2

В каждом спектре:

2000

признаков

Итого на один образец:

6000

признаков

Содержание

- Введение в тему
- Постановка задачи
- Исследование данных
- Применение методов машинного обучения
 - Снижение размерности
 - Классификация
- Модификация задачи

EDA и очистка

- Пропуски в данных: нет
- Выбросы: нет

Статистический анализ

• Поищем спектральные компоненты, отличные у здоровых и больных нормализованных спектров. Чтобы можно было построить модель/бейзлайн без использования ML.

Ожидание:

- 1) Проверим распределение в каждом признаке на нормальность
- 2) Выберем тип теста
- 3) Протестируем

Статистический анализ

- Поищем спектральные компоненты, отличные у здоровых и больных нормализованных спектров.
 - 1) Проверим распределение в каждом признаке на нормальность

Probability that intensities of spectral components are normally distributed

Результат фильтра Савицкого-Голея

Trade-off between smoothing and informativity, as some peaks also may be sharp Mean spectrum of filered HF NH2 spectra

Результат фильтра Савицкого-Голея

All spectra studied, mean+-std:

Raman spectra, mean+-std, Savitzky-Golay filtered

Статистический анализ

После фильтра Савицкого-Голая, снова проверим распределение в каждом признаке на нормальность.

Test for normality: p values for spectral components

Снова очень разные p-value.

Но нам и не нужны все, нам нужны только в пиках

Интересующие пики (фичи)

• Delta between mean spectra:

Delta for healthy-cancer filtered means

• Выделим те компоненты, где abs(delta) > 0.2 Для СООН таких 106 штук.

• Проверим на нормальность их — получим такую гистограмму:

• Видим, что p-value<0.05 у 30 точек из 106.

Correlation matrix

- Используем корреляцию Спирмена, т.к. уже знаем, что не все признаки имеют нормальное распределение
- Видим: данные в одном спектре скоррелированы между собой
- Вывод: стоит попробовать снижение размерности

Содержание

- Введение в тему
- Постановка задачи
- Исследование данных
- Применение методов машинного обучения
 - Снижение размерности
 - Классификация
- Модификация задачи

Снижение размерности: РСА

Тысячи признаков

Данные очень большой размерности!

Всего несколько компонентов имеют значение!

=> Размерность сильно меньше

PCA – Principal Component Analysis

Предобработка:

- Каждый спектр нормализовывался по площади под своей кривой
- Затем, каждый признак стандартизировался по всем спектрам

По РСЗ можно наблюдать практически полное разделение классов

PCA analytics

- все компоненты РСА ортогональны друг другу, их взаимные корреляции = 0
 - РСЗ сильно скоррелирован с меткой класса

-1.00

- 0.75

- 0.50

- 0.25

- 0.00

- -0.25

- -0.50

- -0.75

PCA loadings

Содержание

- Введение в тему
- Постановка задачи
- Исследование данных
- Применение методов машинного обучения
 - Снижение размерности
 - Классификация
- Модификация задачи

Logistic Regression

Train set

	precision	recall	f1-score	support
0.0	1.00	1.00	1.00	40
1.0	1.00	1.00	1.00	40
accuracy			1.00	80
macro avg	1.00	1.00	1.00	80
weighted avg	1.00	1.00	1.00	80

Test set

	precision	recall	f1-score	support
0.0	1.00	1.00	1.00	10
1.0	1.00	1.00	1.00	10
accuracy			1.00	20
macro avg	1.00	1.00	1.00	20
eighted avg	1.00	1.00	1.00	20

100% Качество даже на тестовом сете

Cross Validation

Train k-fold mean recall: 1.00 Valid k-fold mean recall: 1.00

Train k-fold mean rocauc: 1.00 Valid k-fold mean rocauc: 1.00

Все еще 100% качество

Feature importances

Содержание

- Введение в тему
- Постановка задачи
- Исследование данных
- Применение методов машинного обучения
 - Снижение размерности
 - Классификация
- Модификация задачи

Используем только 1 тип частиц

Было:

-NH2

6000 признаков

«... А если нет разницы, зачем платить больше?»

Стало:

2000

признаков

PCA – Principal Component Analysis

PCA analytics

Матрица взаимных корреляций

- все компоненты РСА ортогональны друг другу,
 их взаимные корреляции = 0
 - РС2 сильно скоррелирован с меткой класса

Logistic Regression

Train set

support	f1-score	recall	precision	
40	1.00	1.00	1.00	0.0
40	1.00	1.00	1.00	1.0
80	1.00			accuracy
80	1.00	1.00	1.00	macro avg
80	1.00	1.00	1.00	weighted avg
				Test set
support	f1-score	recall	precision	1631 361
support 10	f1-score	recall	precision	0.0
10	1.00	1.00	1.00	0.0
10 10	1.00 1.00	1.00	1.00	0.0 1.0
10 10 20	1.00 1.00	1.00 1.00	1.00 1.00	0.0 1.0 accuracy

100% Качество даже на тестовом сете

Cross Validation

Train k-fold mean recall: 1.00 Train k-fold mean rocauc: 1.00 Valid k-fold mean rocauc: 1.00

Feature importances

Заключение

- Даже с использованием одного типа частиц можно достаточно просто реализовать классификацию клеток.
- Чтобы проверить «подозрительную идеальность» результатов:
 - Данные были изучены на предмет наличия утечек не выявлено
 - Проведена кросс-валидация качество все так же 100%

- ToDo:
 - Больше измерений

Вопросы?