文本识别-MORAN

<Excerpt in index | 首页摘要>

MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition

KeyWords Plus: Scene text recognition optical character recognition

• relevant blog: MORAN不规则文本纠正: 刷新多个OCR数据集最优算法

paper : MORANcoding : Github

<The rest of contents | 余下全文>

Introduction

MORAN是一种文本识别算法,可以针对不规则文本进行处理 MORAN文本识别算法由矫正子网络MORN和识别子网络ASRN组成,在MORN中设计了一种 新颖的**像素级弱监督学习机制用于不规则文本的形状纠正**,大大降低了不规则文本的识别难度。

Figure 2. Overview of the MORAN. The MORAN contains a MORN and an ASRN. The image is rectified by the MORN and given to the ASRN. The dashed lines show the direction of gradient propagation, indicating that the two sub-networks are jointly trained.

The training of the **MORN** is guided by the **ASRN**, which requires only text labels. Without any geometric-level or pixel-level supervision, the MORN is trained in a weak supervision way.

几个创新点和论文贡献:

- 1. propose the MORAN framework to recognize irregular scene text.
- 2. Trained in a weak supervision way, the subnetwork MORN is flexible. It is free of

geometric constraints and can rectify images with complicated distortion.

3、propose a **fractional pickup method** for the training of the attention-based decoder in the ASRN. To address noise perturbations, we expand the visual field of the MORAN, which further improves the sensitivity of the attentionbased decoder.

Multi-Object Rectification Network

Comparison of the **MORN** and affine transformation. The MORN is free of geometric constraints. The main direction of rectification predicted by the MORN for each character is indicated by a **yellow arrow**.

在黄色和蓝色之间的像素补偿是0,颜色的深浅程度代表着补偿的量级,矫正网络如下。

place a pooling layer before the convolutional layer to **avoid noise and reduce the amount of calculation.**

Table 1. Architecture of the MORN

T	C C C C			
Type	Configurations	Size		
Input	-	$1\times32\times100$		
MaxPooling	k2, s2	$1\times16\times50$		
Convolution	maps:64, k3, s1, p1	64×16×50		
MaxPooling	k2, s2	64×8×25		
Convolution	maps:128, k3, s1, p1	128×8×25		
MaxPooling	k2, s2	128×4×12		
Convolution	maps:64, k3, s1, p1	64×4×12		
Convolution	maps:16, k3, s1, p1	16×4×12		
Convolution	maps:2, k3, s1, p1	$2\times4\times12$		
MaxPooling	k2, s1	2×3×11		
Tanh	-	2×3×11		
Resize	-	2×32×100		

Here k, s, p are kernel, stride and padding sizes, respectively. For example, k3 represents a 3×3 kernel size.

Similar to the offset maps, the grid contains two channels, which represent the xcoordinate and y-coordinate

如下图所示,通过补偿网络会产生一个offset maps,他有两个通道分别代表着x和y方向上的补偿信息,同时也会产生一个basic grid用于记录original positions of the pixels。最终的补偿网络计算如下:

$$offset_{(c,i,j)}^{'} = offset_{(c,i,j)} + basic_{(c,i,j)}, c = 1,2$$

Figure 4. Overall structure of MORAN.

整体的MORAN如上图所示,左边为矫正网络,右边为识别网络

The advantages of the MORN are manifold:

- 1. The rectified images are more readable owing to the regular shape of the text and the reduced noise
- 2. The MORN is more flexible than the affine transformation. It is free of geometric constraints, which enables it to rectify images using complicated transformations.
- 3. The MORN is **more flexible than methods using a specific** number of regressing points

free of geometric constraints, which enables it to rectify images using complicated transformations.

4. The MORN does not **require extra labelling information** of character positions.

Attentionbased Sequence Recognition Network

ASRN网络框架如下图所示:

Table 2. Architecture of the ASRN

Type	Configurations	Size		
Input	-	1×32×100		
Convolution	maps:64, k3, s1, p1	64×32×100		
MaxPooling	k2, s2	64×16×50		
Convolution	maps:128, k3, s1, p1	128×16×50		
MaxPooling	k2, s2	128×8×25		
Convolution	maps:256, k3, s1, p1	256×8×25		
Convolution	maps:256, k3, s1, p1	256×8×25		
MaxPooling	k2, s2x1, p0x1	256×4×26		
Convolution	maps:512, k3, s1, p1	512×4×26		
Convolution	maps:512, k3, s1, p1	512×4×26		
MaxPooling	k2, s2x1, p0x1	512×2×27		
Convolution	maps:512, k2, s1	512×1×26		
BLSTM	hidden unit:256	256×1×26		
BLSTM	hidden unit:256	256×1×26		
GRU	hidden unit:256	256×1×26		

Here, k, s, p are kernel, stride and padding sizes, respectively. For example, $s2 \times 1$ represents a 2×1 stride size. "BLSTM" stands for bidirectional-LSTM. "GRU" is in attention-based decoder.

先经过pooling和卷积层之后再接blstm,Each convolutional layer is followed by a batch normalization layer and a ReLU layer.

The largest number of steps that the decoder **generates is T**. The decoder stops processing when it predicts an end-of-sequence token "EOS" [47]. At time step t, **output yt is:**

$$y_t = Softmax(W_{out}s_t + b_{out})$$

State s^t is computed as:

$$s_t = GRU(y_{prev}, g_t, s_{t-1})$$

Fractional Pickup

针对一些由于噪声干扰而产生的误测,如下图所示,该论文还提出了一种措施叫做fractional pickup

An attention-based decoder trained by fractional pickup method can **perceive adjacent characters**. The wider field of attention contributes to the **robustness of the MORAN**.

a pair of attention weights are selected and modified at every time step:

$$\begin{cases} \alpha'_{t,k} = \beta \alpha_{t,k} + (1-\beta)\alpha_{t,k+1} \\ \alpha'_{t,k+1} = (1-\beta)\alpha_{t,k} + \beta \alpha_{t,k+1} \end{cases}$$

主要有以下几个优点:

1. Variation of Distribution

因为参数是参考临近features,而且具有随机性,增强了参数 $\alpha^{t,k}$, $\alpha^{t,k+1}$ 的鲁棒性,这就造成了即使对于同一张图片,每一个step产生的贡献可能不相同,所以容易**避免过拟合和增强编码的鲁棒性。**

2. Shortcut of Forward Propagation

for step k+1 in the bidirectional-LSTM, a shortcut connecting to step k is created by fractional pickup. The shortcut retains some features of the previous step in the training phase, which is the interference to the forget gate in bidirectional-LSTM.

3, Broader Visual Field

Without fractional pickup, the error term of sequence feature vector $\emph{\emph{h}}^\emph{\emph{k}}$ is

$$\delta_{h_k} = \delta_{g_t} \alpha_{t,k}$$

结果只和一个固定的参数相关,但是加入了fractional pickup以后,等式就变成了:

$$\delta_{h_k} = \delta_{g_t}(\beta \alpha_{t,k} + (1 - \beta)\alpha_{t,k+1})$$

结果不仅与当前的feature相关,也与相邻的features相关,back-propagated gradients are able to **dynamically optimize** the decoder over a **broader range of neighbouring regions**.

Performance of the MORAN

Table 6. Comparison with STAR-Net.

Method	IIIT5K	SVT	IC03	IC13	SVT-P
Liu et al. [28]	83.3	83.6	89.9	89.1	73.5
Ours	87.5	83.9	92.5	89.1	74.6

Table 8. Results on general benchmarks. "50" and "1k" are lexicon sizes. "Full" indicates the combined lexicon of all images

in the benchmarks. "None" means lexicon-free.

Method	IIIT5K		SVT		IC03			IC13	
Method	50	1k	None	50	None	50	Full	None	None
Almazán et al [1]	91.2	82.1	-	89.2	-	-	-	-	-
Yao et al. [52]	80.2	69.3	-	75.9	-	88.5	80.3	-	-
RSerrano et al. [38]	76.1	57.4	-	70.0	-	-	-	-	-
Jaderberg et al. [23]	-	-	-	86.1	-	96.2	91.5	-	-
Su and Lu [44]	-	-	-	83.0	-	92.0	82.0	-	-
Gordo [12]	93.3	86.6	-	91.8	-	-	-	-	-
Jaderberg et al. [21]	95.5	89.6	-	93.2	71.7	97.8	97.0	89.6	81.8
Jaderberg et al. [22]	97.1	92.7	-	95.4	80.7*	98.7	98.6	93.1*	90.8*
Shi, Bai, and Yao [41]	97.8	95.0	81.2	97.5	82.7	98.7	98.0	91.9	89.6
Shi et al. [42]	96.2	93.8	81.9	95.5	81.9	98.3	96.2	90.1	88.6
Lee and Osindero [27]	96.8	94.4	78.4	96.3	80.7	97.9	97.0	88.7	90.0
Liu et al. [28]	97.7	94.5	83.3	95.5	83.6	96.9	95.3	89.9	89.1
Yang et al. [51]	97.8	96.1	-	95.2	-	97.7	-	-	-
Yin et al. [54]	98.7	96.1	78.2	95.1	72.5	97.6	96.5	81.1	81.4
Cheng et al. [5]	98.9	96.8	83.7	95.7	82.2	98.5	96.7	91.5	89.4
Cheng et al. [6]	99.6	98.1	87.0	96.0	82.8	98.5	97.1	91.5	-
Ours	97.9	96.2	91.2	96.6	88.3	98.7	97.8	95.0	92.4

Limitation of the MORAN

because of complicated background, the MORAN will fail when the **curve angle is too** large.

Input Image	Rectified Images (Ground Truth Prediction
WEST	WEST	west
UNITED	UNITED	united united
RSENAL	ARSENAL	arsenal arsenal
COTBALL	FOOTBALL	football football
THE THE P	Z IIII KR	manchester messageid
IN SECTIONS	THE STONE	briogestone contracers

Conclusion

The proposed framework involves two stages: **rectification and recognition.** First, a multiobject rectification network, which is free of geometric constraints and flexible enough to handle complicated deformations, was proposed to transform an image containing **irregular text into a more readable one.** The proposed MORAN is trained in **a weak-supervised way,** which requires **only images and the corresponding text labels.**

反馈与建议

• 微博: @柏林designer

• 邮箱: weijia_wu@yeah.net