# UAV Trajectory Planning for Data Collection from Time-Constrained IoT Devices

Moataz Samir, Sanaa Sharafeddine, Chadi M. Assi, Tri Minh Nguyen, and Ali Ghrayeb, IEEE Transactions on Wireless Communications, 2019

Willy Fitra Hendria willyfitrahendria@gmail.com

## **Short Summary**

- The authors jointly optimize the trajectory of a UAV and the radio resource allocation to maximize the number of served IoT devices, in order to guarantee the performance of UAV when collecting data from time-constrained IoT devices.
- The authors propose:
  - a global optimal algorithm based on branch, reduce and bound (BRB) algorithm for relatively small scale scenarios,
  - a sub-optimal algorithm based on successive convex approximation (SCA) in order to obtain results for larger networks.
  - an extension of the SCA algorithm to further minimize the UAV flight distance.



Fig 1: System model: timely data collection in a smart city environment using UAV

## Optimization Problem

To optimize the UAV trajectory and allocation of resources to maximize the total number of served IoT devices within a flight mission duration based on a given set of target time constraints.

This original problem is non-convex,

 $\sum b_i^n \leq 1, \quad \forall n.$ 

$$(\mathcal{P}_{1}): \max_{\mathbf{X},\mathbf{Y},\mathbf{B},\mathbf{K}} \sum_{i \in \mathcal{M}} \kappa_{i}$$
 (10a)
s.t. 
$$S_{i}(b_{i}^{n}, x^{n}, y^{n}) \geq \kappa_{i} S_{i}^{min}, \quad \forall n, i \in \mathcal{M}, \quad (10b)$$

$$\kappa_{i} \in \{0, 1\}, \quad i \in \mathcal{M}, \quad (10c)$$

$$0 \leq b_{i}^{n} \leq \kappa_{i}, \quad \forall n, i \in \mathcal{M}, \quad (10d)$$

$$(2), (6), \quad (10e)$$

$$[x^{0} \ y^{0}] = [x_{s} \ y_{s}], \quad (10f)$$

$$[x^{N} \ y^{N}] = [x_{e} \ y_{e}], \quad (10g)$$

```
(x^{n+1}-x^n)^2+(y^{n+1}-y^n)^2 \le (v_{max}\delta_t)^2, \ n=1,\ldots,N-1, (2)
```

Where,

: set of M IoT devices

 $\{x^n, \forall n\}$ 

: x-axis location of UAV in time slot n

 $: \{y^n, \forall n\}$ 

: y-axis location of UAV in time slot n

 $\{b_i^n, i \in M, \forall n\}$ 

: fraction of spectrum allocated to IoT device i in time slot n, and it is equivalent to a number of resource blocks

 $\{k_i, i \in M\}$ 

: binary variable for device i, that is asserted if the

UAV can successfully serve device i with a minimum service amount Simin; otherwise, it is set to 0.

: minimum amount of information (bits/Hz) that need to be uploaded by device i

 $[x^0 y^0]$ : initial position located at  $[x_g y_g]$  $[x^N y^N]$ : final position located at  $[x_Q y_Q]$ 

#### Non-convex constraint 10b

Service amount, the amount of data that one IoT device delivers to the UAV within a given deadline during a data collection mission,

$$S_i(b_i^n, x^n, y^n) = \delta_t \sum_{i=1}^N s_i^n, \quad \forall i \in \mathcal{M},$$
 (8)

Where,

$$s_i^n = \begin{cases} r_i^n(b_i^n, x^n, y^n), & \text{if } \tau_i \le n \le \delta_i \\ 0, & \text{otherwise} \end{cases}$$

instantaneous achievable rate for each IoT device i in time slot n,

$$r_i^n(b_i^n, x^n, y^n) = b_i^n \log_2(1 + \Upsilon_{i,n}),$$
 (5)

b<sub>i</sub><sup>n</sup>: fraction of spectrum allocated to IoT device i in time slot n, and it is equivalent to a number of resource blocks

x<sup>n</sup> : x-axis location of UAV in time slot n : y-axis location of UAV in time slot n

 $oldsymbol{0}_t$  : length of each time slot

: data generation time of device i

: expiry deadline of device i

 $\Upsilon_{i,n}$  : The signal-to-noise ratio (SNR) of

each IoT device i in time slot n

## Approximation to Convex Problem

- Introduce Slack Variable  $G = \{g_i^n \ge 0, \forall n, i \in M\}$  and  $C = \{c_i^n \ge 0, \forall n, i \in M\}$ M}
- Relax binary variable in equation (10c), make it continuous between 0 and 1
- Approximate the log function of SNR with the following inequality,

$$\begin{split} \log_2(1+\Upsilon_{i,n}) &\geq -A_i^{r,n} \Big( (x_i-x^n)^2 + (y_i-y^n)^2 \\ &-(x_i-x^{r,n})^2 - (y_i-y^{r,n})^2 \Big) + B_i^{r,n}, \\ &\triangleq \zeta_i^{n,r}(x^n,y^n), \end{split} \qquad \begin{array}{l} \alpha & \text{: path loss exponent} \\ P & \text{: device transmission power} \\ \gamma_0 & \text{: Channel power gain} \\ \sigma^2 & \text{: noise power} \\ \widehat{h}_i^n & \text{: small scale fading} \\ \end{array}$$

Where,

$$A_{i}^{r,n} = \frac{\alpha(P\gamma_{0}|\hat{h}_{i}^{n}|^{2}/\sigma^{2})\log_{2}e}{2\left((H^{2}+(x_{i}-x^{r,n})^{2}+(y_{i}-y^{r,n})^{2})^{\alpha/2}+(P\gamma_{0}|\hat{h}_{i}^{n}|^{2}/\sigma^{2})\right)} = \log_{2}\left(1 + \frac{P\gamma_{0}|\hat{h}_{i}^{n}|^{2}}{\sigma^{2}\left(H^{2}+(x_{i}-x^{r,n})^{2}+(y_{i}-y^{r,n})^{2}\right)^{\alpha/2}}\right) - \frac{1}{\left(H^{2}+(x_{i}-x^{r,n})^{2}+(y_{i}-y^{r,n})^{2}\right)}, \quad \forall n, i \in \mathcal{M}, \quad (13)$$

$$B_{i}^{r,n} = \log_{2} \left( 1 + \frac{P\gamma_{0}|\hat{h}_{i}^{n}|^{2}}{\sigma^{2} \left( H^{2} + (x_{i} - x^{r,n})^{2} + (y_{i} - y^{r,n})^{2} \right)^{\alpha/2}} \right), \forall n, i \in \mathcal{M},$$

## Reformulated problem

$$\mathcal{P}1_L: \max_{\mathbf{X}, \mathbf{Y}, \mathbf{B}} \sum_{i \in \mathcal{M}} \kappa_i$$
 Replace the right side of (15c) by an equivalent Difference of Convex (DC) function, 
$$\sum_{n=\tau_i} c_i^n \geq \kappa_i S_i^{min}, \quad i \in \mathcal{M}, \qquad (15b)$$
 function, 
$$\frac{(b_i^n + g_i^n)^2 - (b_i^n - g_i^n)^2}{4}$$
 
$$\frac{c_i^n \leq b_i^n g_i^n, \quad i \in \mathcal{M}, n = \tau_i, \dots, \delta_i, }{g_i^n \leq \zeta_i^{n,r}(x^n, y^n), \quad i \in \mathcal{M}, n = \tau_i, \dots, \delta_i, }$$
 (15c) 
$$\frac{(b_i^n + g_i^n)^2 - (b_i^n - g_i^n)^2}{4}$$
 (15d) 
$$0 \leq \kappa_i \leq 1, \quad i \in \mathcal{M}, \qquad (15e)$$
 Linearize the concave term, 
$$0 \leq b_i^n \leq \kappa_i, \quad \forall n, i \in \mathcal{M}, \qquad (15f)$$
 of the constraint at iteration r. 
$$(x^{n+1} - x^n)^2 + (y^{n+1} - y^n)^2 \leq (v_{max}\delta_t)^2, \quad n = 1, \dots, N - 1,$$
 (2) Hence, the constraint (15c) is approximated as 
$$\sum_{i \in \mathcal{M}} b_i^n \leq 1, \quad \forall n. \qquad (6) \quad -\frac{(b_i^{r,n} + g_i^{r,n})^2}{4} - \frac{(b_i^{r,n} - g_i^{r,n})(b_i^n - b_i^{r,n} + g_i^n - g_i^{r,n})}{2}$$
 
$$[x^0 \ y^0] = [x_s \ y_s], \qquad (10f) \qquad +\frac{(b_i^n - g_i^n)^2}{4} + c_i^n \leq 0$$
 (16) 
$$[x^N \ y^N] = [x_e \ y_e], \qquad (10g)$$

## Algorithm

## **Algorithm 2** Sub-optimal: Proposed SCA for Solving $\mathcal{P}1_L$ and $\mathcal{P}2_L$

- 1: **Inputs:** The error tolerance  $\varepsilon$ , the minimum service amount  $S_i^{min}$ , and the deadlines  $\delta_i$ .
- 2: Initialization:
- 3: Set the initial trajectory  $x^{r,n}$   $y^{r,n}$ ,  $\forall n$  the resource allocation  $b_i^{r,n}$ ,  $\forall n$ ,  $\forall i$  and iteration number r = 1.
- 4: while  $(\text{Obj } (r-1) \text{Obj } (r)) \geq \varepsilon \text{ do}$
- 5: For SCA-algorithm problem  $\mathcal{P}1_L$ : solve the convex problem (15) to obtain the trajectory  $x^{r+1,n}$   $y^{r+1,n}$ ,  $\forall n$  and  $b_i^{r+1,n}$ ,  $\forall n, \forall i \in \mathcal{M}$ .
- 6: For SCA-distance problem  $\mathcal{P}2_L$ : solve the convex problem (20) with the updated subset  $\mathcal{M}'$  devices to obtain the trajectory  $x^{r+1,n}$   $y^{r+1,n}$ ,  $\forall n$  and  $b_i^{r+1,n}$ ,  $\forall n$ ,  $\forall i \in \mathcal{M}'$ .
- 7: Update the UAV's trajectory  $x^{r,n}$   $y^{r,n}$ ,  $\forall n$ ,
- 8: Update the resource allocation  $b_i^{r,n}$ ,  $\forall i$ ,
- 9: Update r = r + 1.
- 10: end while
- 11: Output:
- 12: For SCA-algorithm problem  $\mathcal{P}1_L$ , the output is the sub-optimal solution for maximizing the number of served IoT devices  $\mathcal{M}'$
- 13: For SCA-distance problem  $\mathcal{P}2_L$ , the output is the sub-optimal solution for minimizing the flight distance.

## Variable Declaration & Objective Function

```
\mathcal{P}1_L: \max_{\substack{\mathbf{X},\mathbf{Y},\mathbf{B},\ \mathbf{K},\mathbf{G},\mathbf{C}}} \sum_{i\in\mathcal{M}} \kappa_i
                                                                                           (15a)
  variable K(M,1);
  variable C(M, N);
  variable B(M, N)
  variable G(M, N)
  variable X(N)
  variable Y(N)
  obj = 0;
  for i=1:M
    obj = obj + K(i);
  end
 maximize (obj)
```

#### Constraint 15b

```
\delta_t \sum_{i=1}^{n} c_i^n \ge \kappa_i S_i^{min}, \quad i \in \mathcal{M},
                                                                               (15b)
    n=\tau_i
for i=1:M
  c sum = 0;
  for n=data generation(i):deadline(i)
    c sum = c sum + C(i,n);
  end
  delta t*c sum >= K(i) *S min;
end
```

#### Constraint 16

$$-\frac{(b_i^{r,n} + g_i^{r,n})^2}{4} - \frac{(b_i^{r,n} - g_i^{r,n})(b_i^n - b_i^{r,n} + g_i^n - g_i^{r,n})}{2} + \frac{(b_i^n - g_i^n)^2}{4} + c_i^n \le 0 \quad (16)$$

```
for i=1:M
    for n=data_generation(i):deadline(i)
        -(((B_r(i, n) + G_r(i,n))^2)/4) ...
        - (((B_r(i, n) - G_r(i,n))*(B(i, n) - B_r(i, n) + G(i,n) - G_r(i,n)))/2) ...
        + (((B(i, n) - G(i,n))^2)/4) ...
        + C(i, n) <= 0
    end
end</pre>
```

### Constraint 15d

$$\begin{split} &A_{i}^{r,n} & B_{i}^{r,n} \\ &= \frac{\alpha(P\gamma_{0}|\widehat{h}_{i}^{n}|^{2}/\sigma^{2})\log_{2}e}{2\left((H^{2} + (x_{i} - x^{r,n})^{2} + (y_{i} - y^{r,n})^{2})^{\alpha/2} + (P\gamma_{0}|\widehat{h}_{i}^{n}|^{2}/\sigma^{2})\right)} &= \log_{2}\left(1 + \frac{P\gamma_{0}|\widehat{h}_{i}^{n}|^{2}}{\sigma^{2}\left(H^{2} + (x_{i} - x^{r,n})^{2} + (y_{i} - y^{r,n})^{2}\right)^{\alpha/2}}\right) \\ &\cdot \frac{1}{\left(H^{2} + (x_{i} - x^{r,n})^{2} + (y_{i} - y^{r,n})^{2}\right)}, \ \forall n, i \in \mathcal{M}, \quad (13) \end{split}$$

$$g_i^n \le \zeta_i^{n,r}(x^n, y^n), \quad i \in \mathcal{M}, n = \tau_i, \dots, \delta_i, \quad (15d)$$

Where, 
$$\zeta_i^{n,r}(x^n, y^n) \triangleq -A_i^{r,n} \Big( (x_i - x^n)^2 + (y_i - y^n)^2 - (x_i - x^{r,n})^2 - (y_i - y^{r,n})^2 \Big) + B_i^{r,n}$$

#### Constraint 15e & 15f

$$0 \le \kappa_i \le 1, \quad i \in \mathcal{M},$$

$$0 \le b_i^n \le \kappa_i, \quad \forall n, i \in \mathcal{M},$$

$$(15e)$$

#### Constraint 2 & 6

```
(x^{n+1}-x^n)^2+(y^{n+1}-y^n)^2 \le (v_{max}\delta_t)^2, n=1,\ldots,N-1,
for n=1:N-1
     ((X(n+1) - X(n))^2) + ((Y(n+1) - Y(n))^2) \le (v \max*delta t)^2
end
\sum b_i^n \le 1, \quad \forall n.
                                          (6)
i \in \mathcal{M}
for n=1:N
     b sum = 0;
     for i=1:M
          b sum = b sum + B(i, n);
     end
     b sum <= 1;
 end
```

## Constraint 10f & 10g

```
% 10f
X(1) = 0
Y(1) = 400

[x^0 y^0] = [x_s y_s], (10f)
[x^N y^N] = [x_e y_e], (10g)
X(N) = 800
Y(N) = 400
```

## Comparison of Reproduced Figure & Original Figure



#### **Problem:**

(21

Data generation time of each devices is not given in the paper. Here, I assume all devices are generating data from the beginning (time slot 1)

The exact initial trajectory, and also initial B & G are also not given in the paper.

(a) Path-loss channel.

(b) Rician channel K = 3.

## **Simulation Parameter**

TABLE I SIMULATION PARAMETERS

| Parameter                         | Value     |
|-----------------------------------|-----------|
| IoT device transmission power, P  | 0.1mW     |
| UAV altitude, H                   | 100m      |
| Channel power gain, $\gamma_0$    | -50 dB    |
| Noise power, $\sigma^2$           | -110dBm   |
| UAV max speed, $v_{max}$          | 50m/s     |
| Pathloss exponent, $\alpha$       | 2.7       |
| The error tolerance $\varepsilon$ | $10^{-3}$ |

## Changing delta\_t from 1 to 1.5



