Tribhuvan University Institute of Science and Technology 2078

XX

Master Level / I Year/ Ist Semester/ Science Computer Science and Information Technology (CSc. 539) Full Marks: 45 Pass Marks: 22.5 Time: 2 hours.

(Object Orientation Software Engineering)

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

Group A

Long answer questions:

Attempt any two questions.

 $(2 \times 10 = 20)$

- Discuss different software life cycle models and compare among them with advantages, disadvantages and applicability.
- Explain object-oriented software engineering with object oriented software development with practical example.
- 3. Explain object oriented analysis -COAD-Yourdon method and compare with traditional object oriened analysis method.

Group B

Short answer questions:

Attempt all questions.

 $(5 \times 5 = 25)$

- 4. Discuss the requirement model from the user requirements prospective.
- 5. Explain the component base software engineering in brief.
- 6. Explain function/data oriented method and object- oriented method.
- 7. Explain the software mertics with example.
- 8. Compare between hierarchical object-oriented design with responsibility driven design.

Tribhuvan University

Institute of Science and Technology

2078

ΧΏ

Master Level / I Year/ Ist Semester/ Science

Computer Science and Information Technology (CSc. 544)

(Parallel and Distributed Computing)

Full Marks: 45 Pass Marks: 22.5

Time: 2 hours.

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

Group A

Long answer questions:

Attempt any two questions.

 $(2 \times 10 = 20)$

- 1. Mention the semantic definition for await then rule. Describe about observation bisimilarity with an example. Using the bitonic sort arrange the list $\{10,20,30,40,4,3,2,1\}$ in increasing order. [3+5+2]
- 2. What does dual nature of TM means? State the formal definition of generalized BSR model. Find the Lowest Common Ancestor in following tree graph. [2+2+6]

3. List any two model for communication. Find the task schedule for the following in-forest / out-forest with communication. [2+8]

Group B

Short answer questions:

Attempt all questions
4. What is domino effect? Discuss about open distributed system.

 $(5\times 5=25)$

[1+4]

5. Apply the one criterion BSR model to solve the parenthesis matching problem for the set (())()().

[5]

6. List any two basic primitives for data flow model. Describe about LogP model.

[2 + 3]

- 7. How do you perform scheduling in partitioning and scheduling? Using PRAM model find the smallest integer in the aray {5, 78, 4, 99, -7, 45, 3, 2}. [2+3]
- 8. Explain the properties of petri nets.

[5]

Tribhuvan University

Institute of Science and Technology

2078

Χ

Master Level / I Year/ Ist Semester/ Science

Computer Science and Information Technology (CSc. 543)

(Neural Networks)

Full Marks: 45

Pass Marks: 22.5

Time: 2 hours.

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

Group A

Long answer questions:

Attempt any two questions.

 $(2 \times 10 = 20)$

1. Consider following ANN with logistic activation function. Calculate weight updates for the training sample (0.7, 0.3, 0.6) using Momentum. Assume $\alpha = 0.1$ $\beta = 0.8$.

2. Consider following 1-D SOM and initial weight matrix. Show the working of SOM for the input (0.2,0.1,0.3).

Initial Weight Matrix

	0.1	0.2	0.3
Ì	0.2	0.4	0.5
Ì	0.3	0.6	0.4

3. Why BPTT is employed in RNNs rather than Backpropagation? Derive weight update rule for BPTT algorithm.

M.Sc. CSc. 543-2078

Group B

Short answer questions:

Attempt all questions.

 $(5 \times 5 = 25)$

- 4. Discuss Non-deterministic model of neuron with example.
- 5. Fit the quadratic curve through the following data using gradient descent. Show one epoch of training.

X	1	2	3	4
y=f(x)	1	1	4	9

6. Train perceptron up to one epoch using given training set and predict class for the input (20, High).

Hair Length	Sound Pitch	Gender (Class)
18	High	Female
24	High	Female
3 .	Low	Male
8	Low	Male

- 7. Derive formula for determining weight vector for RBFNN output layer using LMS estimation method.
- 8. Discuss working of linear and non-linear support vector machine classifier.

Tribhuvan University Institute of Science and Technology

2078

Master Level / I Year/ Ist Semester/ Science

Computer Science and Information Technology (CSc. 538)

(Advanced Operating System)

Full Marks: 45

Pass Marks: 22.5

Time: 2 hours.

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

Group A

Long answer questions:

Attempt any two questions.

 $(2 \times 10 = 20)$

1. Consider the following set of processes with the length of the CPU burst given in millisecond:

Process	Priority	Burst Time
P1	2	2
P2	1	1
P3	8	4
P4	.4	2
P5	5	3

The processes are assumed to have arrived in the order of P1, P2, P3, P4, P5, all at time 0.

- a) Draw the Gantt charts illustrating execution of these processes using scheduling algorithms: SJF, non – preemptive priority (a larger number implies a higher priority) and RR (quantum = 2 ms).
- b) Determine TAT and waiting time of each process for each algorithm.
- c) Which of the algorithm results in minimum average waiting time (over all processes)?
- 2. What do you mean by encryption? Explain the principle behind its different types. Show an example for asymmetric encryption algorithm.
- 3. Define RTS (Real Time System). Explain its various characteristics. Describe the approaches for translating addresses in RTS.

Group B

Short answer questions:

Attempt all questions.

 $(5 \times 5 = 25)$

- 4. What is IPC? Explain message passing and shared memory modes of IPC.
- 5. Explain the sequence of steps involved in handling a page fault in demand paging.
- 6. Define the following terms: Track, Cylinder, Seek time, Transfer Rate and Rotational Latency.
- 7. Explain the implementation of access matrix in the context of protection using Global Table and List of Objects.
- 8. Compare and contrast between stateful file system with stateless file system.

Tribhuvan University Institute of Science and Technology 2078

χ

Master Level / I Year/ Ist Semester/ Science

Computer Science and Information Technology (CSc. 540)

(Algorithms and Complexity)

Full Marks: 45 Pass Marks: 22.5

Time: 2 hours.

Candidates are required to give their answers in their own words as for as practicable. The figures in the margin indicate full marks.

Group A

Long answer questions:

Attempt any two questions.

 $(2 \times 10 = 20)$

- 1. Explain aggregate method of amortized analysis with reference to Hash Table.
- 2. Let $X_1 = 3, 6, 9, 17$ and $X_2 = 2, 5, 8, 1$. Perform odd even merge sort in a Butterfly Network.
- 3. Perform List ranking on the following neighbor array.

5	4	2	3	0	1

Group B

Short answer questions:

Attempt all questions.

 $(5 \times 5 = 25)$

- 4. What do you understand by embedding of networks? Explain embedding of binary tree on Hypercube. Calculate Expansion, Dilation and Congestion.
- 5. Explain work optimal PRAM algorithm to solve prefix computation problem with an example.
- 6. Perform shear sort (sorting on Mesh) on the following

. 5	27	7	13
8	- 6".	9	11
27	23	1	22
17	10	4	3

- 7. Explain "Reduction" with an example
- 8. Write Short notes
 - a. Longest Forward Distance
 - b. Las Vegas algorithm

M.Sc. CSc. 545-2078

Tribhuvan University Institute of Science and Technology 2078

XX

Master Level / I Year/ Ist Semester/ Science

Computer Science and Information Technology (CSc. 545)

(Algorithmic Mathematics)

Full A

Pass A

Time:

Candidates are required to give their answers in their own words as for as practical. The figures in the margin indicate full marks.

Group A

Long questions:

Attempt any two questions.

[2:

- 1. Explain "system of linear equations". Write an algorithm to find the roots of equation using Newton Raphson's method and Trace the algorithms with o example.
- What do you mean by numerical differentiation? Write an algorithm for central quotient formula with example.
- What is joint probability distribution? Explain Poisson's distribution with suitable.
 Write down its algorithm

Group B

Short questions:

Attempt all questions.

15×

- 4. What are uses of Newton interpolation? Write down its equation, algorithm and
 - 5. Explain Fast Fourier Transformation with suitable example.

[5] [5]

6. What do you mean by Optimization? What are application areas of Integer Program

[5]

7. What do you mean by Numerical Differentiation? Write an algorithm for Central formula.

8. Write short notes (Any Two)

[2 × 2.

- a) Everett's Formula
- b) Baye's Theorem
- c) Joint Probability Distribution

IOST,TU