Introduction to Machine Learning

Lecture 13 - Convolutional Neural Networks (CNN) Guang Bing Yang, PhD

yguangbing@gmail.com, Guang.B@chula.ac.th Apr 23th, 2021

© GuangBing Yang, 2021. All rights reserved.

Convolutional Neural Networks

- · Introduction to Convolutional Neural Networks.
- Case Study

yguangbing@gmail.com, Guang.B@chula.ac.th Apr 23th, 2021

© GuangBing Yang, 2021. All rights reserved.

2

What is Convolutional Neural Networks

- Convolutional Neural Networks is a class of deep neural networks.
- It is a major technique to solve the computer vision problem.
- It arms to provide a richer class of density models than the single one.
- It employs a mathematical operation called convolution, which defines as the integral of the product of the two functions after one is reversed and shifted
- CNNs are regularized versions of multilayer perceptrons
- CNNs are fully connected networks

yguangbing@gmail.com, Guang.B@chula.ac.th Apr 23th, 2021

3

© GuangBing Yang, 2021. All rights reserved.

CNNs

- CNNs have been widely applied in:
- · image and video recognition,
- · recommender systems,
- · image classification,
- · Image segmentation,
- medical image analysis,
- · natural language processing,
- brain-computer interfaces,
- · and financial time series.

yguangbing@gmail.com, Guang.B@chula.ac.th Apr 23th, 2021

© GuangBing Yang, 2021. All rights reserved.

CNNs: Architecture

- · Overview:
 - Regular neural networks consist of input layer, hidden layer(s), and output layer.
 - They are not good enough to full images
 - e.g., in CIFAR-10, images are size 32x32x3 (wide x high x color channels),
 - so a single fully-connected unit in a first hidden layer of a fully connected Neural Network would have 32*32*3 = 3072 weights
 - For any regular size image (e.g., 1920 x 1024 high-resolution image, the number of weights is more than 3 millions!
 - Need a better architecture of the NN to process the images
 yguangbing@gmail.com, Guang.B@chula.ac.th
 Apr 23th, 2021

 @ GuangBir

© GuangBing Yang, 2021. All rights reserved.

5

CNNs: Architecture

- A convolutional neural network consists of an input layer, hidden layers and an output layer
- The convolution process completes at the hidden layers
- Overall architecture is:
 - Input layer—hold the raw image data e.g., 32x32x3
- **convolution layer** (abs. Cone-layer) computing a dot product between their weights and a small region connected to in the input
- ullet **RELU layer** an elementwise activation function, e.g., Relu function
- POOL layer or MAX POOL layer downsampling operation along the spatial dimensions
- Full Connection Layer (or FC) compute the class scores.

 $yguangbing@gmail.com, \ \ Guang.B@chula.ac.th \ \ \ Apr\ 23th,\ 2021$

© GuangBing Yang, 2021. All rights reserved.

6

CNNs: Convolution Example

1 -			, ,,			
3	00	1_0	20	7	4	"convolu
1	5	8	9	3	1	
2	7	20	5_	1	3	*
0	1	3	1	7	8	
4	2	1	6	2	8	3
2	4	5	2	3	9) -> filt-
		6×6	ken			

Image was copied from Prof. Andrew Ng ML course

© GuangBing Yang, 2021. All rights reserved.

CNNs: Architecture

- Convolution layer (CONV)
- filters convolute as scanning the input I w.r.t. its dimensions
- hyperparameters: the filter size F and stride S
- The output O is called *feature map* or *activation map*.

CONV cited from Stanford DeepLearning

 $yguangbing@gmail.com, \ \ \underline{Guang.B@chula.ac.th} \quad \ \ Apr \ 23th, 2021$

© GuangBing Yang, 2021. All rights reserved.

8

CNNs: Architecture

- Pooling (POOL) downsampling operation,
 - applied after CONV-layer
 - two types: max-pooling and average-pooling

- Fully Connected (FC):
- the fully connected layer (FC) operates on a flattened input where each input is connected to all neurons.

CNNs: Architecture

- usually at the end of CNN architectures
- to optimize class scores

yauanabina@amail.com, Guana.B@chula.ac.th Apr 23th, 2021

© GuangBing Yang, 2021. All rights reserved.

10

CNNs: hyperparameters

11

- Hyperparameters of CNNs are:
- receptive field size F
- · stride size S, and
- zero padding P
- Relations with Input and Output dimensions:
- Input volume $I \in W \times H \times D$, width, height, and depth
- Output of CONV as $O \in O_W \times O_H \times K$
- $O_W = (W F + 2P)/S + 1$
- $O_H = (H F + 2P)/S + 1$ yguangbing@gmail.com, Guang.B@chula.ac.th Apr 23th, 2021

© GuangBing Yang, 2021. All rights reserved.

CNNs: Hyperparameters Example

- Hyperparameters of CNNs example:
- receptive field size F = 11
- stride size S = 4
- zero padding P = o
- Relations with Input and Output dimensions:
 - Input volume in ImageNet, $I \in 227 \times 227 \times 3$, width, height, and depth
 - Output of CONV as $O \in 55 \times 55 \times 96$, there are 96 filters total
- $O_W = (227 11 + 2 * 0)/4 + 1 = 55$
- $O_H = (227 11 + 2 * 0)/4 + 1 = 55$

yguangbing@gmail.com, Guang.B@chula.ac.th Apr 23th, 2021

12

© GuangBing Yang, 2021. All rights reserved.

CNNs: hyperparameters

• In general, the formula to calculate convolution output dimensions given the hyperparameters are:

•
$$O = \frac{I - F + P_{start} + P_{end}}{S} + 1$$
,

- usually, $P_{start} = P_{end} = P$, so
- $\bullet O = \frac{I F + 2P}{S} + 1$

yguangbing@gmail.com, Guang.B@chula.ac.th Apr 23th, 2021

© GuangBing Yang, 2021. All rights reserved.

CNNs: Activation Functions

- Commonly used activation function in CNNs:
 - ReLU Rectified Linear Unit
 - $g(z) = \max(0,z)$,
 - · Non-linear
 - Leaky ReLU:
 - $g(z) = \max(\epsilon z, z), \ \epsilon < < 1$
 - ELU:
 - $g(z) = \max(\alpha(e^z 1), z), \ \alpha < < 1$

yguangbing@gmail.com, Guang.B@chula.ac.th Apr 23th, 2021

© GuangBing Yang, 2021. All rights reserved.

14

13

CNNs: Applications

- Object detection:
- three main types:
- · Image classification
- · Classification w. Localization
- Detection
- · Bounding box detection
- · Landmark detection

yguangbing@gmail.com, Guang.B@chula.ac.th Apr 23th, 2021

15

© GuangBing Yang, 2021. All rights reserved.

CNNs: Applications-Object Detection

Landmark detection

yguangbing@gmail.com, Guang.B@chula.ac.th

16

© GuangBing Yang, 2021. All rights reserved.

CNNs: Applications

- Neural style transfer:
 - takes a content image C and a style image S and generates the content image G with the style of style image

Neural style transfer cited from Prof. Andrew Ng DeepLearning

Neural style transfer cited from Prof. Andrew Ng DeepLearning

17

Recap

- A Convolution Neural Network architecture is a set of neural network layers that transform the image volume into an output volume (e.g. holding the class scores)
- There are several types of Layers: CONV, POOL, RELU, and FC
- Each layer accepts an input 3D volume and transforms it to an output 3D volume through a differentiable function
- Layer CONV and FC have parameters, RELU and POOL have no parameters.
- Layer CONV, POOL, and FC have hyperparameters, but RELU has no.
- Output dimensions of CONV layer follow the constraints of stride and zero padding
- Relationship between input dimension, filters and output are given by a formula:

$$\bullet O = \frac{I - F + 2P}{S} + 1$$

yguangbing@gmail.com, Guang.B@chula.ac.th Apr 23th, 2021

18

© GuangBing Yang, 2021. All rights reserved.

Questions?