Aula 6	
Estrutura de dados	Conversa Inicial
Prof. Vinicius Pozzobon Borin	
	■ Implementação e tratamento de colisões
O objetivo desta aula é apresentar os	Tentativa linear
conceitos que envolvem a estrutura de dados do tipo <i>hash</i>	Tentativa quadrática
■ Funções hash	Listas encadeadas
Método da divisão	 Análise de complexidade Inserção
Método da multiplicação Machine universal Machine universal	Busca
Hashing universal	Remoção
	Cenário
<i>Hashs</i> : definições	■ Você precisa armazenar um grande volume de dados de diferentes estados brasileiros, como capital, população total, lista de cidades, PIB, índice de criminalidade, nome do governador, dentre inúmeros outros dados

Você resolve adotar a sigla de cada estado como palavra-chave para as buscas

Cada posição do vetor conterá a sigla do estado

Aplicações

- Rastreamento de jogadas efetuadas no xadrez
- Compiladores necessitam manter uma tabela com variáveis mapeadas na memória do programa
- Aplicações voltadas para a segurança, como autenticação de mensagens e assinatura digital, empregam hashs
- A estrutura de dados-base que permite às populares criptomoedas (como bitcoins) operarem são hashs

Funções hash

O que uma boa função hash deve ter?

- Facilidade de ser calculada
- Capacidade de distribuir palavras-chave o mais uniformemente possível
- Capacidade de minimizar colisões os dados devem ser inseridos de uma forma que as colisões sejam as mínimas possíveis, reduzindo o tempo gasto na resolução de colisões e também reavendo os dados
- Capacidade de resolver qualquer colisão que ocorrer

Método da divisão h(k) = k MOD m8 dígitos telefônicos k = 99 + 88 + 22 + 33 h(242) = 242 MOD 12 = 2 $h(k) = \left(\sum k_{ASCII_Dec}\right) MOD \ m$ alfanuméricos

Comparativo dos métodos

Método da divisão

k = 242

Caracteres

- Computacional rápido de executar
- O valor de m deve ser escolhido minuciosamente
- Múltiplos de 2 devem ser evitados. É recomendável adotar números primos
- Método da multiplicação
 - Computacional mais lento que o método da divisão
 - O valor de m não tem impacto

Hashing universal

- O uso de uma única função hash pode resultar em uma situação em que todas as chaves precisam ser inseridas na mesma posição, gerando colisão e, consequentemente, piorando o desempenho do algoritmo
- Para minimizar esse problema, adotamos um conjunto H de funções hash. Sorteamos uma função dentro da classe de funções disponíveis para fazer a inserção do dado

Hashing universal: exemplo

 $h_{a,b}(k) = ((ak+b) MOD p) MOD m$ p é um número primo $b = \{0, 1, 2 \dots p - 1\}$

Podemos escolher um valor para p e m e variar a e b aleatoriamente para gerar funções diferentes com resultados diferentes Tabela *hashing* de endereçamento aberto e tentativa linear

Tabela *hashing* de endereçamento aberto e tentativa quadrática

Resolvendo colisões: tentativa quadrática

Quando uma colisão ocorre, a próxima posição é calculada somando-se o valor da variável incremental i

O 1 2 3 4 5 6 7 8 9

SC PR RS PA

d = h(PA) = 5 Colisão i=1 d = h(PA) = (5+1)MOD 10 = 6 d = h(PA) = (d+i)MOD 10

Resolvendo colisões: tentativa quadrática

Quando uma colisão ocorre, a próxima posição é calculada somando-se o valor da variável incremental i

O 1 2 3 4 5 6 7 8 9

SC PR RS PA AP

d = h(AP) = 5 Colisão

i = 1
d = h (AP) = (5+1)MOD 10 = 6 Colisão

i = 2
d = h(AP) = (d+t)MOD 10

d = h (AP) = (6+2)MOD 10 = 8 Colisão

Tabela *hashing* com endereçamento em cadeia

Referências

- ASCENCIO, A. F. G.; ARAÚJO, G. S. Estrutura de dados: algoritmos, análise da complexidade e implementações em JAVA e C/C++. São Paulo: Pearson, 2011.
- ASCENCIO, A. F. G.; CAMPOS, E. A. V. Fundamentos da programação de computadores: algoritmos, Pascal, C/C++ (padrão ANSI) e JAVA. 3. ed. São Paulo: Pearson, 2012.
- CORMEN, T. H. et al. Algoritmos: teoria e prática. 3. ed. São Paulo: Elsevier Brasil, 2012.

- KNUTH, D. E. The art of computer programming. 2. ed. Addison-Wesley, 1998. v. 3. Sorting and searching.
- LAUREANO, M. Estrutura de dados com algoritmos e C. Rio de Janeiro: Brasport, 2008.
- MIZRAHI, V. V. Treinamento em linguagem C. 2. ed. São Paulo: Pearson, 2008.
- PUGA, S.; RISSETTI, G. Lógica de programação e estrutura de dados com aplicações em Java. 3. ed. São Paulo: Pearson, 2016.

