O взаимосвязи двух коинтегрированных процессов

Дерягин Егор Николаевич, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Товстик Т.М. Рецензент: к.ф.-м.н., доц. Сизова А.Ф.

Санкт-Петербург 2011г.

Дерягин Егор Николаевич, гр. 522

$$AR(p): X_t = a_1 X_{t-1} + a_2 X_{t-2} + \dots + a_p X_{t-p} + \varepsilon_t$$
 (1)

— авторегресия порядка p, $\varepsilon \sim N(0,\sigma^2)$

Теорема

Процесс X_t стационарен, если все корни характеристического многочлена

$$\chi(y) = 1 - a_1 y - \ldots - a_p y^p$$

находятся вне единичного круга.

Определение

Если ряд X_t стационарен относительно некоторого детерменированного тренда, то говорят, что такой ряд принадлежит классу TS рядов (TS — time stationary).

Определение

Временной ряд X_t называется интегрированным порядка ${\bf k}$ и обозначается I(k), если:

- 1) ряд X_t не является TS рядом;
- 2) ряд $\Delta^k X_t$, полученный в результате k-кратного дифференцирования ряда X_t , является стационарным рядом;
- 3) ряд $\Delta^{k-1}X_t$ не принадлежит классу TS рядов.
 - При этом характеристический многочлен ряда I(k) будет иметь k единичных корней, а остальные его корни будут лежать вне единичного круга.

Определение

Pяды X_t и Y_t называются коинтегрированными, если существует вектор $\beta = (\beta_1, \beta_2) \neq 0$, для которого $\beta_1 X_t + \beta_2 Y_t$ — стационарный ряд.

Дано: две выборки — реализации двух случайных процессов $X_t \sim I(1)$ и $Y_t \sim I(1)$.

Задача №1:

- подобрать адекватные авторегрессионные модели для обеих выборок;
- проверить наличие единичных корней в каждой модели;
- проверить наличие коинтеграционного эффекта между процессами Y_t и X_t методом Энгла-Грейнджера.

Задача №2 (основная):

• по известным выборкам предсказывать дальнейшее поведение процессов X_t и Y_t в случае их коинтегрированности.

Пример 1. Вид генерируемых процессов.

Рассмотрим случайные процессы

$$X_t = X_{t-1} + \eta_t, \quad Y_t = -2X_t + \xi_t + 2\eta_t,$$
 (2)

где $x_0 = 0$, $\eta_t \sim N(0,1)$, $\xi_t \sim N(0,1)$.

$$Z_t^{(0)} = Y_t + 2X_t, \ Z_t^{(0)} = \xi_t + 2\eta_t, \ Z_t^{(0)} \sim N(0,5)$$
 (3)

$$Z_t^{(-1)} = Y_t + 2X_{t-1}, \ Z_t^{(-1)} = \xi_t, \ Z_t^{(-1)} \sim N(0,1)$$
 (4)

Замечание

Если $X_t \sim I(1)$, то коинтегрированы ряды X_t и X_{t-k} $(X_t - X_{t-k} = \Delta X_t + \Delta X_{t-1} + \ldots + \Delta X_{t-k+1}).$

Реализации процессов. Проверка коинтегрированности.

Рис.: Реализации процессов X_t и Y_t .

Убедившись, что $X_t \sim I(1)$ и $Y_t \sim I(1)$, необходимо оценить модели (5):

$$Y_t = \beta_0 + \beta_1 X_t + Z_t^{(0)}, \ Y_t = \gamma_0 + \gamma_1 X_{t-1} + Z_t^{(-1)}$$

$$\hat{\beta_0} = -0.009, \ \hat{\beta_1} = -1.961, \ \hat{\gamma_0} = -0.012, \ \hat{\gamma_1} = -1.996$$
(5)

Пример 1. Ряды остатков Z_t

$$\hat{Z}_{t}^{(0)} = Y_{t} + 0.009 + 1.961X_{t}, \ \hat{Z}_{t}^{(-1)} = Y_{t} + 0.012 + 1.996X_{t-1}$$
 (6)

Необходимо подобрать модели для рядов остатков Z_t :

$$\hat{Z}_t^{(0)} \sim N(0.003, 4.784), \quad \hat{Z}_t^{(-1)} \sim N(0, 1.101).$$
 (7)

Отвергнув гипотезу о некоинтегрированности рядов Y_t и X_t (Y_t и X_{t-1}), можем перейти к прогнозированию.

Рис.: Ряд остатков $\hat{Z}_{t}^{(0)}$.

Рис.: Ряд остатков $\hat{Z}_t^{(-1)}$.

Пример 1. Задачи прогнозирования.

Какой $Z_t^{(i)}$ лучше применять при прогнозировании: $Corr(Y_t,X_{t-4})=-0.8824, \quad Corr(Y_t,X_{t-3})=-0.9186, \\ Corr(Y_t,X_{t-2})=-0.9524, \quad Corr(Y_t,X_{t-1})=-0.9917, \\ Corr(Y_t,X_t)=-0.9530, \qquad Corr(Y_t,X_{t+1})=-0.9175;$

Таблица: Предсказания через
$$Z_t^{(0)}$$
 и $Z_t^{(-1)}$.

t	X_t	$\hat{Y_t}^{Z^{(0)}}$	$\hat{Y_t}^{Z^{(-1)}}$	$Y_t - \hat{Y_t}^{Z^{(0)}}$	$Y_t - \hat{Y_t}^{Z^{(-1)}}$
231	-3.0729	6.0198	6.4219	-0.5330	-0.1310
232	-3.0503	5.9756	6.1214	-0.2220	-0.0762
233	-4.5540	8.9243	6.0764	4.6289	1.7810
234	-4.2891	8.4050	9.0777	-0.5877	0.0850
235	-4.9408	9.6830	8.5491	1.4794	0.3455

Пример 1. Задачи прогнозирования.

Посчитав выборочные коэффициенты корреляции для пар рядов Y_t и $X_{t\pm i}$ приходим к выводу, что для прогноза следует использовать ряды остатков именно $\hat{Z}_t^{(0)}$ и $\hat{Z}_t^{(-1)}$.

Мы можем использовать формулу $\hat{Z}_t^{(-1)} = Y_t + 0.012 + 1.996 X_{t-1}$ для оценки значения Y_{t+1} по X_t , далее формулу $\hat{Z}_t^{(0)} = Y_t + 0.009 + 1.961 X_t$ для оценки значения X_{t+1} по Y_{t+1} и т.д., то есть можем получать долговременный прогноз.

Пример 2. Необходимое и достаточное условие коинтегрированности.

Рассмотрим процессы вида:

$$X_t = X_{t-1} + A_1 \eta_t + A_2 \eta_{t-1} + A_3 \eta_{t-2} + A_4 \eta_{t-3} + \dots + A_{k+1} \eta_{t-k},$$
 (8)

$$Y_t = Y_{t-1} + B_1 \eta_t + B_2 \eta_{t-1} + B_3 \eta_{t-2} + B_4 \eta_{t-3} + \dots + B_{k+1} \eta_{t-k},$$
 (9)

где $A_j,\; B_j\;, j=\overline{1,k+1}\;$ — постоянные величины, а $\eta_t\sim N(0,\sigma^2).$

Формулы (8) и (9) для k=3 перепишем следующим образом:

$$X_t = A_1 \eta_t + (A_1 + A_2) \eta_{t-1} + (A_1 + A_2 + A_3) \eta_{t-2} + \sum_{n=0}^{4} A_j \sum_{n=0}^{t-3} \eta_n,$$
 (10)

$$Y_t = B_1 \eta_t + (B_1 + B_2) \eta_{t-1} + (B_1 + B_2 + B_3) \eta_{t-2} + \sum_{1}^{4} B_j \sum_{n=0}^{t-3} \eta_n,$$
 (11)

Пример 2. Рассматриваем процессы вида

$$X_t = X_{t-1} + \sum_{1}^{k+1} A_j \eta_{t+1-j}$$

$$Z_t = X_t - \alpha Y_{t-3} =$$

$$= A_1 \eta_t + \sum_{k=1}^2 A_k \eta_{t-1} + \sum_{k=1}^3 A_k \eta_{t-2} + (\sum_{k=1}^4 A_k - \alpha \sum_{k=1}^1 B_k) \eta_{t-3} +$$

$$(\sum_{k=1}^4 A_k - \alpha \sum_{k=1}^2 B_k) \eta_{t-4} + (\sum_{k=1}^4 A_k - \alpha \sum_{k=1}^3 B_k) \eta_{t-5} + (\sum_{k=1}^4 A_k - \alpha \sum_{k=1}^4 B_k) \sum_{k=0}^{t-6} \eta_{t-j}.$$

Предложение

Необходимое и достаточное условие коинтегрированности процессов указанного

вида в общем случае:

$$(\sum_{1}^{k} A_j - \alpha \sum_{1}^{k} B_j) = 0, \tag{12}$$

Результаты

- моделировались процессы класса I(1);
- проверялось наличие эффекта коинтеграции между парами таких процессов;
- рассматривался алгоритм для предсказания будущего коинтегрированных процессов без использования трудоемкой процедуры оценивания коэффициентов в модели коррекции ошибок [Granger, 1983] и был сделан ряд ваных замечаний по этому поводу;
- обнаружено необходимое и достаточное условие коинтегрированности двух процессов определенного вида.