Calcul Numeric - Tema #6

- **Ex. 1** Să se afle funcția de interpolare spline liniară S asociată funcției f(x) = sin(x) relativ la diviziunea $(-\frac{\pi}{2}, 0, \frac{\pi}{2})$.
- **Ex.** 2 Fie $f:[a,b]\to\mathbb{R}$ o funcție continuă.
 - a) Să se construiască în Matlab procedura **SplineL** având sintaxa y =**SplineL**(X, Y, x), conform metodei de interpolare spline liniară. Datele de intrare: vectorul X, componentele căruia sunt nodurile de interpolare, i.e. $a = X_1 < X_2 < ... < X_{n+1} = b$; vectorul Y definit prin $Y_i = f(X_i), i = \overline{1, n+1}$; variabila scalară $x \in [a, b]$. Datele de ieşire: Valoarea numerică y reprezentănd valoarea funcției spline liniară S(x) calculată conform metodei spline liniare.
 - b) Fie datele: $f(x) = sin(x), x \in [-\frac{\pi}{2}, \frac{\pi}{2}]; n = 2, 4, 10; X$ o diviziune echidistantă a intervalului $[-\frac{\pi}{2}, \frac{\pi}{2}]$ cu n + 1 noduri; Y = f(X). Să se construiască grafic funcția f, punctele de interpolare (X, Y) și un vector S calculat conform procedurii **SplineL**, corespunzător unei discretizări x a intervalului $[-\frac{\pi}{2}, \frac{\pi}{2}]$ cu 100 de noduri. Ind.: $S_i =$ **SplineL** $(X, Y, x_i), i = \overline{1, 100}$.
 - e) Să se modifice procedura $y = \mathbf{SplineL}(X, Y, x)$, astfel încât parametrii de intrare/ieşire x și respectiv y să poată fi vectori.
- **Ex. 3** Să se afle funcția de interpolare spline pătratică S asociată funcției f(x) = sin(x) relativ la diviziunea $(-\frac{\pi}{2}, 0, \frac{\pi}{2})$.
- **Ex.** 4 Fie $f:[a,b]\to\mathbb{R}$ o funcție continuă.
 - a) Să se construiască în Matlab procedura **SplineP** având sintaxa [y, z] =**SplineP**(X, Y, fpa, x), conform metodei de interpolare spline pătratică. Datele de intrare: vectorul X, componentele căruia sunt nodurile de interpolare, i.e. $a = X_1 < X_2 < ... < X_{n+1} = b$; vectorul Y definit prin $Y_i = f(X_i)$, $i = \overline{1, n+1}$; derivata funcției f în capătul din stânga a intervalului, fpa = f'(a); variabila scalară $x \in [a, b]$. Datele de ieșire: Valoarile numerice y, z reprezentănd valoarile funcției spline pătratică S(x) și derivatei S'(x) calculate conform metodei spline pătratice. Indicație: $z = b_j + 2c_j(x x_j)$.
 - b) Fie datele: $f(x) = sin(x), x \in [-\frac{\pi}{2}, \frac{\pi}{2}]; n = 2, 4, 10; X$ o diviziune echidistantă a intervalului $[-\frac{\pi}{2}, \frac{\pi}{2}]$ cu n + 1 noduri; Y = f(X). Să se construiască grafic funcția f, punctele de interpolare (X, Y) și functia spline S(x) calculată conform procedurii **SplineP**, corespunzător unei discretizări x a intervalului $[-\frac{\pi}{2}, \frac{\pi}{2}]$ cu 100 de noduri.
 - c) Într-o altă figură să se construiască grafic derivata funcției spline și derivata funcției f.
 - d) Să se modifice procedura $[y, z] = \mathbf{SplineP}(X, Y, fpa, x)$, astfel încât parametrii de intrare/ieşire x şi respectiv y, z să poată fi vectori.

Ex. 5 Fie $f:[a,b]\to\mathbb{R}$ o funcție continuă.

- a) Să se construiască în Matlab procedura **SplineC** având sintaxa [y, z, t] =**SplineC** (X, Y, fpa, fpb, x), conform metodei de interpolaree spline cubice. Datele de intrare: vectorul X, componentele căruia sunt nodurile de interpolare, i.e. $a = X_1 < X_2 < ... < X_{n+1} = b$; vectorul Y definit prin $Y_i = f(X_i), i = \overline{1, n+1}$; derivata funcției f în capetele intervalului, fpa = f'(a) și fpb = f'(b); variabila scalară $x \in [a, b]$. Obs.: Pentru rezolvarea sistemului din care determină coeficienții $b_i, i = \overline{1, n+1}$ se va apela metoda Jacobi pentru matrice diagonal dominante. Se va considera $\varepsilon = 10^{-8}$. Datele de ieșire: Valoarile numerice y, z, t reprezentănd valorile funcției spline cubice S(x), primei derivate S'(x) și derivatei a doua S''(x) determinate numeric. Indicație: $z = b_j + 2c_j(x X_j) + 3d_j(x X_j)^2$; $t = 2c_j + 6d_j(x X_j)$.
- b) Fie datele: $f(x) = sin(x), x \in [-\frac{\pi}{2}, \frac{\pi}{2}]; n = 2, 4, 10; X$ o diviziune echidistantă a intervalului $[-\frac{\pi}{2}, \frac{\pi}{2}]$ cu n+1 noduri; Y = f(X). Să se construiască grafic funcția f, punctele de interpolare (X, Y) și funcția S calculat conform procedurilor **SplineC**, corespunzător unei discretizări x a intervalului $[-\frac{\pi}{2}, \frac{\pi}{2}]$ cu 100 de noduri.
- c) Într-o altă figură să se construiască grafic derivata funcției spline și derivata funcției f.
- d) Într-o altă figură să se construiască grafic derivata a doua a funcției spline și a funcției f.
- e) Să se modifice procedura $y = \mathbf{SplineC}(X, Y, fpa, fpb, x)$, astfel încât parametrii de intrare/ieşire x şi respectiv y să poată fi vectori.
- Ex. 6 a) Să se creeze în Matlab procedura **DerivNum** cu sintaxa $dy = \mathbf{DerivNum}(x, y, metoda)$. Parametrii de intrare sunt: vectorul x, reprezentând discretizarea $x_1 < a = x_2 < \dots < x_m = b < x_{m+1}$; vectorul y, reprezentând valoarea funcției f în x; $metoda \in \{'diferente finite progresive', 'diferente finite regresive', 'diferente finite centrale'\}$. Parametrul de ieșire este vectorul dy calculat conform Algoritmului (Derivare numerică).

Se va folosi instrucțiunea de selecție **switch** cu sintaxa Matlab:

```
switch variabila_switch

case variabila_case

corp de instrucţiuni

case variabila_case

corp de instrucţiuni

...

otherwise (optinal)

corp de instrucţiuni
```

unde variabila_switch poate fi un scalar sau un şir de caractere delimitat cu apostrof la început şi la final. Instrucţiunea switch alege să execute acel bloc de instrucţiuni pentru care variabila_switch coincide cu variabila_case.

- b) Fie datele: f(x) = sin(x), $a = 0, b = \pi$; m = 100;; y = f(x). Să se construiască grafic, derivata funcției f și derivata obținută numeric în baza procedurii **DerivNum**, pe intervalul $[0, \pi]$.
- c) Într-un alt grafic construiți eroarea, reprezentând diferența în modul dintre derivata exactă și cea calculată numeric.
- **Ex. 7** a) Să se construiască în Matlab procedura **MetRichardson** cu sintaxa $[df] = \mathbf{MetRichardson}(f, x, h, n)$, conform algoritmului (Formula de extrapolare Richardson).
 - b) Să se construiască grafic funcția f'(x) și derivata aproximativă determinată în baza procedurii **MetRichardson** pe intervalul [a, b]. Considerați x o discretizare a intervalului [a, b] cu 100 de noduri și construiți vectorul df apelând procedura **MetRichardson** în fiecare nod al discretizării.

Se vor considera următoarele date:

$$-a=0; b=\pi$$

-
$$sin(x)$$
;

$$-n = 4, 6, 8;$$

$$- \phi(x,h) = \frac{f(x+h) - f(x)}{h}.$$

- c) Să se construiască grafic într-o altă figură eroarea pe intervalul [a, b], reprezentând diferența dintre valoarea exactă a derivatei f'(x) și valoarea aproximativă calculată cu ajutorul procedurii **MetRichardson**.
- d) Să se calculeze derivata aproximativă f''(x) prin Metoda Richardson cu ordinul de aproximare $O(h^n)$ apelând aceași procedură, $[d2f] = \mathbf{MetRichardson}(f, x, h, n-1)$ și $\phi(x, h) = \frac{f(x+h) 2f(x) + f(x-h)}{h^2}$.

Obs.: Datorită faptului că formula de aproximare pentru f''(x) este de ordinul doi am suprimat o coloană, astfel că matricea Q_{ij} va avea n-1 linii şi n-1 coloane.

e) Să se reprezinte grafic pe intervalul [a, b] derivata de ordinul doi exactă și aproximativă calculată conform procedurii **MetRichardson**.