

MC 34 - MANDOS NEUMÁTICOS E HIDRÁULICOS

Mag. Ing. José Luis Becerra Felipe pcmcjbec@upc.edu.pe

TEMA 4 : ACTUADORES NEUMÁTICOS

Objetivo de la sesión

"Que el estudiante sea capaz de seleccionar adecuadamente un actuador neumático, calculando la fuerza y velocidad necesarias para una aplicación"

Contenido de la sesión

- Tipos de actuadores neumáticos
- Técnicas de manipulación
- Partes y sujeción de cilindros neumáticos
- Propiedades de cilindros neumáticos

Logro de la sesión:

Al finalizar la clase el estudiante será capaz de identificar los tipos de actuadores neumáticos existentes en el mercado; y, será capaz de seleccionar un cilindro neumático calculando fuerza y velocidad.

QUÉ ACTUADORES NEUMÁTICOS PUEDES IDENTIFICAR?

ACTIVIDAD (20 minutos)

Revisar el video e identificar(mínimo 10):

- Tipo de actuador neumático
- Proceso al que pertenece
- Proceso que realiza
- Longitud
- Velocidad (baja, media, alta)
- Trayectoria del vástago (recto, circular, curvo)

Elaborar diapositivas con la captura de pantalla de cada actuador neumático identificado.

TIPOS DE ACTUADORES NEUMÁTICOS

ACTUADORES NEUMÁTICOS

"Los actuadores neumáticos son elementos que convierten la energía contenida en el aire comprimido en trabajo mecánico, generando un movimiento lineal o de rotación."

CILINDRO DE SIMPLE EFECTO

CILINDRO DE SIMPLE EFECTO

- Entregar piezas
- Sujetar piezas
- Derivar piezas
- Distribuir piezas

- Juntar piezas
- Prensar
- Elevar

CILINDRO CON MUELLE

CILINDRO DE MEMBRANA

APLICACIONES DE CARRERA CORTA:

- SUJETAR
- PRENSAR
- ELEVAR

CILINDRO DE FUELLE

APLICACIONES DE CARRERA CORTA:

- SUJETAR
- PRENSAR
- ELEVAR

MÚSCULO NEUMÁTICO -

Genera fuerzas 10 veces superiores a las de un cilindro de un mismo diámetro

CILINDRO DE DOBLE EFECTO

CILINDRO DE DOBLE EFECTO

- Trabaja en ambos sentidos.
- Capacidad de frenar cargas pesadas.
- Mayor resistencia a esfuerzos.
- La fuerza en el avance es superior a la de retroceso.

CILINDRO CON AMORTIGUAMIENTO FINAL

CILINDRO TANDEM

- Duplica fuerzas
- Cuando no se puede incrementar el diámetro del émbolo.

CILINDRO MULTIPOSICIÓN

CILINDRO GIRATORIO

- Permite ángulos de 45°, 90°, 180°, 270° y 360°.
- Fuerzas de 150 N

ACTUADOR GIRATORIO

- Permite ángulos entre 0° Y 180° (regulable)
- Fuerzas de 10N

CILINDRO SIN VÁSTAGO =

CILINDRO SIN VÁSTAGO

- Son más cortos que los cilindros de doble efecto.
- Se aprovecha toda la carrera
- Puede tener carreras de hasta 10m.
- · La fuerza es la misma en ambos sentidos.

CILINDRO DE CINTA

CILINDRO DE CINTA HERMETIZANTE

CILINDRO CON ACOPLAMIENTO MAGNÉTICO

TÉCNICAS DE MANIPULACIÓN

CILINDRO CON PINZAS DE APERTURA ANGULAR

CILINDRO CON PINZAS DE APERTURA PARALELA

UNIDAD GIRATORIA Y LINEAL

PARTES DE UN CILINDRO NEUMÁTICO

- 1.- Camisa del cilindro
- 2.- Culata trasera o anterior
- 3.- Culata delantera o posterior
- 4.- Vástago del cilindro
- 5.- Collarín obturador
- 6.- Cojinete
- 7.- Anillo rascador
- 8.- Junta dinámica
- 9.- Juntas tóricas

SUJECIÓN DE CILINDROS NEUMÁTICOS

Es importante seleccionar la sujeción adecuada del cilindro neumático para evitar lo siguiente:

- Presiones laterales que inciden en el cojinete, desgastándolo prematuramente.
- Presiones fuertes en el collarín obturador.
- Esfuerzos elevados y desiguales en las juntas de los vástagos y las juntas de los cilindros.
- Mayor efecto de pandeo.

- a) Directo.
- b) Roscado.
- c) Pies.
- d) Brida trasera.
- e) Brida frontal.
- f) Brida oscilante trasera.
- g) Brida oscilante central.

PROPIEDADES DE CILINDROS NEUMÁTICOS

Cómo seleccionar el diámetro del émbolo?

FUERZA DEL ÉMBOLO CILINDRO DE SIMPLE EFECTO

$$F = \pi \times \frac{D^2}{4} \times P - (F_r + F_m)$$

F: Fuerza teórica del émbolo (N)

D: Diámetro del émbolo (m)

P: Presión de trabajo (Pa)

Fr: Fuerza de rozamiento (N) (de 4 a 8 bar aprox. 10% de F)

Fm: Fuerza del muelle (N)

FUERZA DEL ÉMBOLO CILINDRO DE DOBLE EFECTO

$$F_{avance} = \pi \times \frac{D^2}{4} \times P - F_r$$

$$F_{retroceso} = \pi \times \frac{(D^2 - d^2)}{4} \times P - F_r$$

D : Diámetro del émbolo (m)

d : Diámetro del vástago (m)

P: Presión de trabajo (Pa)

Fr: Fuerza de rozamiento (N) (de 4 a 8 bar aprox. 10% de F)

cilindros neumáticos para elevar la carga y trabajará a una presión de 6 bar.

$$50 \times 9.8 = \pi \times \frac{D^2}{4} \times 600000 * 90\%$$

$$D = \dots m$$

Cómo seleccionar el diámetro del vástago?

SELECCIÓN DEL VÁSTAGO DEL PISTÓN

- Se debe tener en cuenta el factor de pandeo recomendado, el cual dependerá de la instalación a realizar.
- La carrera de cilindros neumáticos con vástago no debería exceder los 2 m.
- La carrera de cilindros neumáticos sin vástago no debería exceder los 10m.

 $Longitud\ b$ ásica = $Carrera\ actual\ *\ factor\ de\ pandeo$

Tipos de montaje	Conexión del extremo del vástago	Tipo de conexión	Factor de pandeo
Grupos 1 o 3 - Los cilindros de gran longitud de carrera deben montarse usando en un extremo una base rígida y alineada para soportar la fuerza principal y en el extremo opuesto un soporte parecido. Se aconseja un soporte intermedio para el caso de carre- ras muy largas	Fijo y guiado rígido		0,5
	Pivote y guiado rígido		0,7
	Soporte sin guiado rígido		2
Grupo 2	Pivote y guiado rígido		1
	Pivote y guiado rígido	v □ ■□□□	1,5
	Pivote y guiado rígido		2

Diagrama de pandeo – Diámetro del émbolo FUENTE: FESTO

Gráfico de diámetro del vástago. Fuente: Parker Hannifin Corporation

Ejemplo:

Hallar el diámetro del vástago para un cilindro con Ø 50 mm, trabaja a 7 bar, con vástago de carrera 1.200 mm con pivote y guiado rígido (grupo 2 tipo IV).

$$F_{avance} = (\pi \times \frac{0.05^2}{4} \times 700000) \times 0.9$$

F=1237 N

Factor de pandeo = 1 (tabla)

Longitud básica = 1200mm x 1 = 1200 mm

φ=20 mm

CONSUMO DE AIRE DEL CILINDRO • NEUMÁTICO

Consumo de aire en una carrera $\left(\frac{dm^3}{min}\right) = R_c * \pi * \frac{D^2}{4000000} * L * n$

$$R_c = \frac{0.987 + P_{aire}}{0.987}$$

Rc : Relación de compresión al nivel del mar

P_{aire} : bar

D : Diámetro del émbolo (mm)

L : Carrera del cilindro (mm)
n : ciclos / minuto

Ejemplo:

Calcular el caudal necesario de aire para una operación de 10 ciclos por minuto.

Consumo de aire
$$\left(dm^3/min\right) = \frac{0.987 + 7}{0.987} * \pi * \frac{50^2}{4000000} * 1200 * 10$$

= 190,57 dm^3/min

Q_{cilindro doble efecto} (2 carreras)=381,4 dm³/min

VELOCIDAD DEL PISTÓN

- La velocidad media del émbolo recomendada en cilindros estándar es de 0,1 a 1,5 m/s.
- En cilindros de impacto puede alcanzar hasta 10 m/s

$$V(dm/min) = \frac{0.987 + P_{aire}}{0.987} * \frac{L * n}{100}$$

P_{aire} : bar

L : Carrera del cilindro (mm)

n: ciclos por minuto

Ejemplo:

$$V(dm/min) = \frac{0.987 + 7}{0.987} * \frac{1200}{100} * 10 = 971 \frac{dm}{min}$$

ACTIVIDAD

 Buscar en internet y seleccionar el cilindro neumático que cumpla con las condiciones requeridas en el problema anterior.

Proveedores

- FESTO
- SMC
- AIRTAC
- AVENTICS

Conclusiones

- Los actuadores neumáticos convierten la energía del aire comprimido en trabajo y movimiento.
- Los actuadores neumáticos están agrupados en: lineales y rotativos.
- Los actuadores neumáticos son útiles para diversas aplicaciones en la industria.
- Para seleccionar la longitud del pistón o el diámetro del vástago es necesario tener en cuenta el pandeo.
- Las velocidades recomendadas para cilindros neumáticos varían entre 0,1 y 1,5 m/s.
- El accionamiento neumático está pensado para trayectorias definidas.

LOGRO CONSEGUIDO

- Puedes identificar los tipos de actuadores neumáticos existentes en el mercado y sus aplicaciones.
- Puedes seleccionar un cilindro neumático de acuerdo a la necesidad de la aplicación

GRACIAS

