

Wind Tunnel Testing

Test Readiness Review

Test Model Overview

1/3 Scale Mechanized Wing

1/2 Scale Aircraft Model

Wind Tunnel Team Introduction

Jacob McMillin Program Manager

Ryan Lundell Chief Engineer

Marcello Montes Aerodynamics Engineer

Joshua Carver CFD Engineer

Presentation Objectives

- Demonstrate that the test articles are ready for wind tunnel testing.
- Provide a description of the test articles and the testing procedure.
- Describe the testing plan in detail.
- Discuss impact of results on design.

Wind Tunnel Models

Mechanized Wing Model

- Constructed from ABS (blue) and PLA (grey)
- Flaps articulate by 10% (LE) and 30% (TE)

Parameter	Value
Scaling Factor	33%
Wingspan	8 in
Chord	4.67 in
Leading Edge Flap Chord	0.93 in
Trailing Edge Flap Chord	1.40 in

Whole Aircraft Model

 Constructed from ABS (blue), PLA (grey), and a steel frame (dark grey)

Strakes are bonded into slots on fuselage

CG location within 25% chord of FTA location

Parameter	Value
Scaling Factor	50%
Wingspan	36 in
Chord	7 in
Strake Vertical Area	104 in ²
CG Location (Aft of Leading Edge)	1.75 in

Steel Frame Reinforces Aircraft Structure and Locates Printed Components

CG Locations are Within Range for Useful Results

Test Articles Use Existing Mounts

- Wing model uses blade mount for the 12" by 12" tunnel
- Center span has slot for blade
- Aircraft model uses
 4-bolt mount for the
 48" by 32" tunnel
- Matching plate will be welded to frame

Model Structure Satisfies Strength Requirement

Testing Procedure

Wind Tunnel Testing Outcomes

- Verify Calypso aircraft meets all performance criteria
- Discover areas of high drag requiring design changes
- Determine aerodynamic response to high-alpha and sideslip
- Establish benefits of experimental components
 - Mechanized wing, with leading & trailing-edge flaps
 - Aft-body strakes, mounted near the T-Tail

Test Conditions Simulate Mission Parameters

- Open-circuit 12" x 12" wind tunnel used to test wing section with leading & trailingedge flaps
- Closed-circuit 32" x 48" wind tunnel used to test plane model.

Test Case	Air Density	Air Viscosity	Flow Velocity	Aero. Chord	Re
Wing Model– Takeoff	$1.05 rac{kg}{m^3}$	$1.76 * 10^{-5} \frac{kg}{m * s}$	22 m/s	0.118 m (4.67 in)	150k
Aircraft Model- Takeoff			15 m/s	0.178 m (7 in)	150k
Aircraft Model- Cruise			48 m/s	0.178 m (7 in)	500k

Data Acquisition

Hardware

- Pyramidal force balance/strain gauge balance to measure forces and moments in 6 directions
- Manual controlled sideslip
- Servo controlled angle of attack

Software

- AC-DC converter connects to LabView
- Results are stored as CSV file
- All tests are time independent

Sideslip measurement

Balance controls

Test Plan (1/3-Scale Wing)

Objective: Validate XFLR5 Data for MRC-16 Airfoil

Test Configurations:

Combinations of leading- and trailing-edge flaps

Test Conditions:

- Reynolds Number of 150,000 (takeoff)
- Range of AoA from -4° to 20°

Test Plan (1/2-Scale Aircraft)

Objective: Determine overall aerodynamic performance

- Lift, drag, and stability
- Examine stall behavior

Test Configurations:

- With and without strakes
- With flow visualization tufts

Test Conditions:

- Reynolds Number of 150,000 (takeoff) or 500,000 (cruise)
- Range of AoA from -4° to 20°
- Range of sideslip from -10° to 10°

Test Case Details and Order

Test Designation	Velocity, (m/s)	AoA,°	Sideslip, °	LE Flap Angle, °	TE Flap Angle, °	Re
MW-1	22	-4:2:20	0	0	0	150K
MW-2	22	-4:2:20	0	10	0	150K
MW-3	22	-4:2:20	0	0	30	150K
MW-4	22	-4:2:20	0	10	30	150K

1/3 Scale Wing

MW - Mechanized Wing

TO - Takeoff

CR - Cruise

FV - Flow Visualization

Test Designation	Velocity, (m/s)	AoA,°	Sideslip, °	Strakes	Tufts	Re
TO-1	15	-4:2:20	0	N	N	150K
TO-2	15	α_{C_L} Max	-10:2:10	N	N	150K
CR-1	48	-4:2:20	0	N	N	500K
CR-2	48	$\alpha_{L/D}$ Max	-10:2:10	N	N	500K
TO-3	15	-4:2:20	0	Y	N	150K
TO-4	15	α_{C_L} Max	-10:2:10	Y	N	150K
CR-3	48	-4:2:20	0	Y	N	500K
CR-4	48	$\alpha_{L/D}$ Max	-10:2:10	Y	N	500K
FV-1	15	-4:2:20	0	Y	Y	150K
FV-2	48	-4:2:20	0	Y	Y	500K

1/2 Scale Model

Conclusions and Significance of Results

Testing Accurately Represents Aircraft Design

3D printed parts allow for dimensional accuracy

Models support structural loads at planned velocities

Test cases match planned flight regimes

Test Outputs Determine Design Compliance

Establish compliance with aerodynamic requirements through preliminary calculations

- Maximum continuous cruise speed (100 kts)
- Take-off & landing speeds (27 kts)
- Stability & control response (Positive stability in all conditions)

Selection of experimental components for finalized design

Questions?

