Computations of (φ, Γ) -modules for some non semisimple representations modulo p^2

Nataniel Marquis

October 6, 2025

This text aims to compute Fontaine's functor for specific representations. We consider several variations around the same example of a \mathbb{Z}_p -representation V whose underlying \mathbb{Z}_p -module is isomorphic to $(\mathbb{Z}/p^2\mathbb{Z} \oplus \mathbb{F}_p)$ but for which V[p] isn't semi-simple as Galois representation. In this text, the prime p is odd.

1 First univariable case

Consider $E = \mathbb{F}_p((X))$. Following the notations of [Fon07, §1.2], we fix $\mathcal{O}_{\mathcal{E}}$ a p-adically complete and separated \mathbb{Z}_p -algebra, discrete valuation ring with uniformiser p and residue field E, equipped with a lift of Frobenius. We also denote by $\mathcal{O}_{\widehat{\operatorname{Fur}}}$ its strict henselisation.

Fix a non trivial character

$$\chi: \mathcal{G}_E \to \mathbb{F}_p$$

and define F|E to be the Galois extension of degree p corresponding to $\mathrm{Ker}(\chi)$. Consider V_{χ} the \mathbb{Z}_p -representation of \mathcal{G}_E whose underlying \mathbb{Z}_p -module is

$$(\mathbb{Z}/p^2\mathbb{Z}) e_1 \oplus \mathbb{F}_p e_2$$

and whose action is given by

$$\sigma \cdot e_1 = e_1$$

$$\sigma \cdot e_2 = p\chi(\sigma)e_1 + e_2$$

One feature of this representation, is that $V_{\chi}[p]$ has (pe_1,e_2) for basis and that the Galois action in this basis expresses as

$$\begin{pmatrix} 1 & \chi(\sigma) \\ 0 & 1 \end{pmatrix}.$$

Thus $V_{\chi}[p]$ isn't semi-simple.

We compute the $\varphi^{\mathbb{N}}$ -module over $\mathcal{O}_{\mathcal{E}}$

$$\mathbb{D}(V_{\chi}) := \left(\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{ur}}}} \otimes_{\mathcal{O}_{\mathcal{E}}} V_{\chi}\right)^{\mathcal{G}_{E}}$$

$$\cong \left\{ (x, y) \in \left(\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{ur}}}} / p^{2} \mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{ur}}}}\right) \times E^{\mathrm{sep}} \middle| \forall \sigma \in \mathcal{G}_{E}, \begin{array}{c} \sigma(x) + p\chi(\sigma)\sigma(y) = x \\ \sigma(y) = y \end{array} \right\}$$

These equalities imply that x is invariant by \mathcal{G}_F and y by \mathcal{G}_E . Thus, they respectively land in $\mathcal{O}_{\mathcal{F}}/p^2\mathcal{O}_{\mathcal{F}}$ and E. The group $\mathrm{Gal}\,(F|E)$ is cyclic; call $\Sigma:=\chi^{-1}(1)_{|F}$ which is a generator. We obtain that

$$\mathbb{D}(V_{\chi}) \cong \left\{ (x, y) \in \left(\mathcal{O}_{\mathcal{F}}/p^2 \mathcal{O}_{\mathcal{F}} \right) \times E \mid \Sigma(x) + py = x \right\}.$$

We use property A.1 on F|E to produce an element $Y_{\diamond} \in F$ such that $\Sigma(Y_{\diamond}) + 1 = Y_{\diamond}$. We then compute that

$$\mathbb{D}(V_{\chi}) = \left(\mathcal{O}_{\mathcal{E}}/p^2\mathcal{O}_{\mathcal{E}}\right)d_1 \oplus Ed_2$$

where $d_1 = e_1$ and $d_2 = pY_{\diamond}e_1 + e_2$.

Nonetheless, computing the Frobenius in this case requires an understanding of F in terms of Artin-Schreier theory (see [Neu99, Chapter IV, §3] for $\wp = \varphi - \operatorname{Id}$). Precisely, we use

Theorem 1.1 (Artin-Schreier). Let E be a field of characteristic p and $\wp = \varphi - \mathrm{Id}$. The map

$$E/_{\wp}(E) \to \operatorname{Hom}_{\operatorname{TopGp}}(\mathcal{G}_E, \mathbb{F}_p), \ x + \wp(E) \mapsto [\sigma \mapsto \sigma(y) - y],$$

for any y such that $\wp(y) = x$ is well defined. It is an linear isomorphism.

Using that $Y_{\diamond} \in F$ and $\Sigma(Y_{\diamond}) - Y_{\diamond} = -1$, we know that

$$\chi = [\sigma \mapsto Y_{\diamond} - \sigma(Y_{\diamond})].$$

The Artin-Shreier theory says that $X_{\diamond}:=Y_{\diamond}^p-Y_{\diamond}\in E$, that χ is associated $-X_{\diamond}+\wp(E)$ and F is the decomposition field of T^p-T+X_{\diamond} . With these notations, we obtain

$$\varphi(d_1) = d_1$$
$$\varphi(d_2) = pX_{\diamond}d_1 + d_2$$

Note that the character χ (i.e. the extension F|E with generator of its Galois group) entirely determines $X_{\diamond} + \wp(E)$. Changing the representative only modify the given base $\mathbb{D}(V_{\chi})$.

2 Second univariable case

In the previous setup, consider W_χ the \mathbb{Z}_p -representation of \mathcal{G}_E whose underlying \mathbb{Z}_p -module is

$$(\mathbb{Z}/p^2\mathbb{Z}) e_1 \oplus \mathbb{F}_p e_2$$

and whose action is given by

$$\sigma \cdot e_1 = e_1 + \chi(\sigma)e_2$$

$$\sigma \cdot e_2 = p\chi(\sigma)e_1 + e_2$$

Like $V_\chi[p]$, the representation $W_\chi[p]$ isn't semi-simple. It is even funnier: where V_χ had a \mathcal{G}_E -stable submodule isomorphic to $Z/p^2\mathbb{Z}$, the representation W_χ has none. Indeed,

$$\forall \lambda \in \mathbb{F}_p, \ \sigma(e_1 + \lambda e_2) = (1 + p\lambda\chi(\sigma)) (e_1 + (\lambda + \chi(\sigma))e_2).$$

We compute the $\varphi^{\mathbb{N}}$ -module over $\mathcal{O}_{\mathcal{E}}$

$$\begin{split} \mathbb{D}(W_{\chi}) &:= \left(\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{ur}}}} \otimes_{\mathcal{O}_{\mathcal{E}}} W_{\chi}\right)^{\mathcal{G}_{E}} \\ &\cong \left\{ (x,y) \in \left(\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{ur}}}}/p^{2}\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{ur}}}}\right) \times E^{\mathrm{sep}} \;\middle|\; \forall \sigma \in \mathcal{G}_{E}, \; \frac{\sigma(x) + p\chi(\sigma)\sigma(y) = x}{\sigma(y) + \chi(\sigma)\sigma(x \bmod p) = y} \right\} \end{split}$$

These equalities for σ in the absolute Galois group of F give that both x and y are invariant by \mathcal{G}_F . Thus, they respectively land in $\mathcal{O}_{\mathcal{F}}/p^2\mathcal{O}_{\mathcal{F}}$ and F. The group $\mathrm{Gal}\,(F|E)$ is cyclic; call $\Sigma:=\chi^{-1}(1)_{|F}$ which is a generator. We obtain that

$$\mathbb{D}(W_\chi) \cong \left\{ (x,y) \in \left(\mathcal{O}_{\mathcal{F}}/p^2 \mathcal{O}_{\mathcal{F}} \right) \times F \ \bigg| \ \Sigma(x) + p\Sigma(y) = x \ \text{ and } \ \Sigma(y) + \Sigma(x \bmod p) = y \right\}.$$

We use property A.1 on F|E to produce a sequence $(1, Y_{\diamond}, Y_{\blacklozenge})$ in F such that $\Sigma(Y_{\diamond}) + 1 = Y_{\diamond}$ and $\Sigma(Y_{\blacklozenge}) + \Sigma(Y_{\diamond}) = Y_{\blacklozenge}$. Then, we compute that

$$\mathbb{D}(V_{\chi}) = (\mathcal{O}_{\mathcal{E}}/p^2\mathcal{O}_{\mathcal{E}}) d_1 \oplus Ed_2$$

where $d_1=(1+pY_{\blacklozenge})e_1+Y_{\diamond}e_2$ and $d_2=pY_{\diamond}e_1+e_2$.

Again, the Artin-Shreier theory says that $X_{\diamond} := Y_{\diamond}^p - Y_{\diamond} \in E$, that χ is associated $-X_{\diamond} + \wp(E)$ and F is the decomposition field of $T^p - T + X_{\diamond}$. We also compute

$$\begin{split} \Sigma(Y^p_{\blacklozenge} - Y_{\blacklozenge}) - (Y^p_{\blacklozenge} - Y_{\blacklozenge}) &= \Sigma(Y_{\blacklozenge})^p - \Sigma(Y_{\blacklozenge}) - (Y^p_{\blacklozenge} - Y_{\blacklozenge}) \\ &= (Y_{\blacklozenge} - Y_{\diamondsuit} + 1)^p - (Y_{\blacklozenge} - Y_{\diamondsuit} + 1) - (Y^p_{\blacklozenge} - Y_{\spadesuit}) \\ &= -(Y^p_{\diamondsuit} - Y_{\diamondsuit}) \\ &= -X_{\diamondsuit} \end{split}$$

Our analysis of $(\Sigma - Id)$ implies that

$$\exists X_{\spadesuit} \in E, \ Y_{\spadesuit}^p - Y_{\spadesuit} = X_{\diamondsuit}Y_{\diamondsuit} + X_{\spadesuit}.$$

With these notations, we obtain

$$\varphi(d_1) = (1 + pX_{\diamond})d_1 + X_{\diamond}d_2$$

$$\varphi(d_2) = pX_{\diamond}d_1 + d_2$$

Note that the character χ (i.e. the extension F|E with generator of its Galois group) entierely determines $X_{\diamond} + \wp(E)$ and $X_{\blacklozenge} + E^p X_{\diamond} + \wp(E)$. Any compatible choice of representatives only change the given base $\mathbb{D}(W_{\chi})$.

3 First multivariable case

We place in the setting of [CKZ21], once again for $E = \mathbb{F}_p((X))$. This article fixes a finite set Δ and construct a multivariable version of Fontaine's equivalence. All indexes α on objects stand for a labelled copy of the corresponding object in the univariable case. The three authors construct rings

$$E_{\Delta} := \mathbb{F}_p[\![X_{\alpha} \mid \alpha \in \Delta]\!][X_{\Delta}^- 1]$$

where $X_{\Delta} = \prod X_{\alpha}$,

$$\mathcal{O}_{\mathcal{E}_{\Delta}} := \left(\mathbb{Z}_p \llbracket X_{\alpha} \, | \, \alpha \in \Delta \rrbracket [X_{\Delta}^{-}1] \right)^{\wedge p}$$

and a ring $\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{\mathrm{ur}}}}.$

Each E_{α} (resp. each $\mathcal{O}_{\mathcal{E}_{\alpha}}$, resp. each $\mathcal{O}_{\widehat{\mathcal{E}^{ur}_{\alpha}}}$) embeds into E_{Δ} (resp. $\mathcal{O}_{\mathcal{E}_{\Delta}}$, resp. $\mathcal{O}_{\widehat{\mathcal{E}^{ur}_{\Delta}}}$). The three rings are equiped with a linear action of the monoid $\Phi_{\Delta,p}:=\prod \varphi_{\alpha,p}^{\mathbb{N}}$ satisfying

$$\varphi_{\alpha,p}(X_{\alpha}) = (1 + X_{\alpha})^p - 1 \text{ and } \forall \beta \neq \alpha, \ \varphi_{\beta,p}(X_{\alpha}) = X_{\alpha}.$$

The ring $\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{ur}}}}$ is also equiped with an action of $\mathcal{G}_{E,\Delta} := \prod \mathcal{G}_{E_{\alpha}}$, acting via the quotient $\mathcal{G}_{E_{\alpha}}$ on $\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{ur}}}}$ as predicted. The two actions commutes and

$$\mathcal{O}^{\mathcal{G}_{E,\Delta}}_{\widehat{\mathcal{E}}^{\mathrm{ur}}_{\Delta}} = \mathcal{O}_{\mathcal{E}_{\Delta}}, \ \ \mathcal{O}^{\Phi_{\Delta,p}}_{\widehat{\mathcal{E}}^{\mathrm{ur}}_{\Delta}} = \mathbb{Z}_p.$$

Now, we consider the functor

$$\mathbb{D}_{\Delta} : \operatorname{Rep}_{\mathbb{Z}_p} \mathcal{G}_{E,\Delta} \to \operatorname{Mod}(\Phi_{\Delta,p}, \mathcal{O}_{\mathcal{E}_{\Delta}}), \ V \mapsto \left(\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{\operatorname{ur}}}} \otimes_{\mathbb{Z}_p} V\right)^{\mathcal{G}_{E,\Delta}}$$

from finite type continuous \mathbb{Z}_p -representations of $\mathcal{G}_{E,\Delta}$ to $\mathcal{O}_{\mathcal{E}}$ -modules with a semilinear action of $\Phi_{\Delta,p}$. Our goal is to compute this functor in one case.

Take $\Delta = \{\alpha, \beta\}$. Choose a pair of continuous characters

$$\chi = (\chi_{\alpha} : \mathcal{G}_{E_{\alpha}} \to \mathbb{F}_p, \chi_{\beta} : \mathcal{G}_{E_{\beta}} \to \mathbb{F}_p).$$

Call F_{α} and F'_{β} their kernels, which are extensions of degree p of E_{α} and E_{β} . Consider $V_{\underline{\chi}}$ the \mathbb{Z}_p -representation of $\mathcal{G}_{E,\Delta}$ whose underlying \mathbb{Z}_p -module is

$$\left(\mathbb{Z}/p^2\mathbb{Z}\right)e_1\oplus\mathbb{F}_pe_2$$

and whose action is given by

$$\sigma_{\alpha} \cdot e_1 = (1 + p\chi_{\alpha}(\sigma_{\alpha}))e_1$$
 $\sigma_{\beta} \cdot e_1 = e_1 + \chi_{\beta}(\sigma_{\beta})e_2$
 $(\sigma_{\alpha}, \sigma_{\beta}) \cdot e_2 = e_2$

Like $V_{\chi}[p]$, the representation $V_{\underline{\chi}}[p]$ isn't semi-simple and $V_{\underline{\chi}}$ has no $\mathcal{G}_{\mathbb{Q}_p}$ -stable submodule isomorphic to $\mathbb{Z}/p^2\mathbb{Z}$. Indeed,

$$\forall \lambda \in \mathbb{F}_p, \ \sigma_{\beta}(e_1 + \lambda e_2) = e_1 + (\lambda + \chi_{\beta}(\sigma_{\beta}))e_2.$$

We compute the $\Phi_{\Delta,p}$ -module over $\mathcal{O}_{\mathcal{E}_{\Delta}}$

$$\mathbb{D}_{\Delta}(V_{\underline{\chi}}) := \left(\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{\mathrm{ur}}}} \otimes_{\mathcal{O}_{\mathcal{E}_{\Delta}}} V_{\underline{\chi}}\right)^{\mathcal{G}_{E,\Delta}}$$

$$\cong \left\{ (x,y) \in \left(\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{\mathrm{ur}}}}/p^2 \mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{\mathrm{ur}}}}\right) \times E_{\Delta}^{\mathrm{sep}} \middle| \forall \sigma \in \mathcal{G}_{E,\Delta}, \begin{array}{c} (1+p\chi_{\alpha}(\sigma_{\alpha}))\sigma_{\alpha}(x) = x \\ \sigma_{\alpha}(y) = y \\ \sigma_{\beta}(x) = x \\ \sigma_{\beta}(y) + \chi_{\beta}(\sigma_{\beta})(\sigma_{\beta}(x) \bmod p) = y \end{array} \right\}$$

Considering $\sigma_{\alpha} \in \mathcal{G}_{E_{\alpha}}$ or $\mathcal{G}_{F_{\alpha}}$ and $\sigma_{\beta} \in \mathcal{G}_{E_{\beta}}$ or $\mathcal{G}_{F'_{\beta}}$ and using [Záb18, Lemma 3.2 and Proposition 3.3] we found that

$$x \in (\mathcal{O}_{\mathcal{F}_{\alpha}} \otimes_{\mathcal{O}_{\mathcal{E}_{\alpha}}} \mathcal{O}_{\mathcal{E}_{\Delta}})/p^2 \text{ and } y \in E_{\Delta} \otimes_{E_{\beta}} F'_{\beta}.$$

As in the first univariable case, we call Σ_{α} the generator of $\mathrm{Gal}\left(F_{\alpha}|E_{\alpha}\right)$ pinned down by χ_{α} . Take $Y_{\diamond,\alpha} \in F_{\alpha}$ such that $\Sigma_{\alpha}(Y_{\diamond,\alpha}) + 1 = Y_{\diamond,\alpha}$ and $X_{\diamond,\alpha} := Y_{\diamond,\alpha}^p - Y_{\diamond,\alpha} \in E_{\alpha}$. Likewise, define $\Sigma_{\beta}, Y_{\diamond,\beta}' \in F_{\beta}'$ and $X_{\diamond,\beta} \in E_{\beta}$. We obtain

$$\mathbb{D}_{\Delta}(V_{\chi}) = \left(\mathcal{O}_{\mathcal{E}_{\Delta}}/p^{2}\mathcal{O}_{\mathcal{E}_{\Delta}}\right)d_{1} \oplus E_{\Delta}d_{2}$$

where $d_1 = (1 + pY_{\diamond,\alpha})e_1 + Y'_{\diamond,\beta}e_2$ and $d_2 = e_2$. Remark that pe_1 belongs to this module and is equal to pd_1 . We also have

$$\varphi_{\alpha,p}(d_1) = (1 + pX_{\diamond,\alpha})d_1$$
$$\varphi_{\beta,p}(d_1) = d_1 + X_{\diamond,\beta}d_2$$
$$\varphi_{\alpha,p}(d_2) = \varphi_{\beta,p}(d_2) = d_2$$

A One useful proposition

We prove the proposition about cyclic p-prime extension of characteristic p fields.

Proposition A.1. Let p be a prime and Let E be a field of characteristic p and F|E be a cyclic Galois extension of order p^n for some $n \ge 1$. Let τ be a generator of $\operatorname{Gal}(F|E)$. If $k \le p^n$ and $x_1 \in E$, there exists a sequence $(x_2, \ldots, x_k) \in F^k$ such that

$$\forall 1 \le i < k, \ \tau(x_{i+1}) - x_{i+1} = x_i.$$

Proof. Considerer the map

$$T: F \to F, x \mapsto \tau(x) - x.$$

It is an E-linear endomorphism of a p^n -dimensional E-vector space. Because the group $\operatorname{Gal}(F|E)$ is cyclic generated by τ , the kernel of T equals E (hence one dimensional). Moreover,

$$T^{\circ p^n} = (X - 1)^{p^n} (\tau) = \tau^{\circ p^n} - \mathrm{Id}_F = 0.$$

The endomorphism T is nilpotent of order precisely p^n thanks to the decreasing of the dimensional gaps in the iterated kernel sequence. Jordan decomposition concludes.

References

- [Neu99] Jürgen Neukirch. *Algebraic Number Theory*. Vol. 322. Grundlehren der mathematischen Wissenschaften. Springer Link, 1999.
- [Fon07] Jean-Marc Fontaine. "Représentations *p*-adiques des corps locaux, 1^{ère} partie". In: *The Grothendieck Festschrift.* Vol. II. Birkhäuser, Boston, MA, 2007, pp. 249–309.
- [Záb18] Gergely Zábrádi. "Multivariable (φ, Γ) -modules and products of Galois groups". In: *Math. Res. Lett.* 25(2) (2018), pp. 687–721.
- [CKZ21] Annie Carter, Kiran Kedlaya, and Gergely Zábrádi. "Drinfeld's lemma for perfectoid spaces and overconvergence of multivariate (φ, Γ) -modules". In: *Documenta Math.* (2021), pp. 1329–1393.