1. Топологічні простори

В курсі математичного аналізу [1, с. 26] уже розглядалися поняття околу точки, відкритої і замкненої множин, точки дотику, граничної точки, границі послідовності в просторі $\mathbb R$ тощо. Всі ці поняття визначалися за допомогою метрики простору $\mathbb R$ і відбивали певні властивості, притаманні множинам, за допомогою яких ми могли описувати основну концепцію цієї теорії — близькість між точками. Адже саме поняття близькості між точками (в розумінні малої відстані) є базовим для таких головних понять математичного аналізу як збіжність послідовностей і неперервність функцій.

Відносним недоліком цього підходу є очевидна залежність від метрики, уведеної в просторі. Тому постало питання, чи не можна побудувати більш абстрактну конструкцію, за допомогою якої можна було б описати ідеї, згадані вище. Серед дослідників цієї проблеми слід відзначити французьких математиків М. Фреше (1906), М.Рісса (1907–1908), німецького математика Ф.Хаусдорфа (1914), польського математика К.Куратовського (1922) і радянського математика П.Александрова (1924).результаті досліджень цих та багатьох інших математиків виникла нова математична дисципліна топологія, предметом якої ϵ вивчення ідеї про неперервність на максимально абстрактному рівні.

В цій та наступній лекціях ми введемо в розгляд ряд важливих топологічних понять. Це дозволить нам вийти на більш високий рівень абстракції і опанувати ідеї, що пронизують майже всі розділи математики. Не буде великим перебільшенням сказати, що в певному розумінні топологія разом з алгеброю ϵ скелетом сучасної математики, а функціональний аналіз — це розділ

математики, головною задачею якого ϵ дослідження нескінченновимірних просторів та їх відображень.

Озн. 1.1. Нехай X — множина елементів, яку ми будемо називати носієм. **Топологією** в X називається довільна система τ його підмножин, яка задовольняє таким умовам (аксіомам Александрова):

A1.
$$\emptyset, X \in \tau$$
.

$$A2. \ G_{\alpha} \in au, \ \alpha \in A \Rightarrow \bigcup_{\alpha \in A} G_{\alpha} \in au$$
 , де $A = \partial o$ вільна множина.

A3.
$$G_{\alpha} \in \tau$$
, $\alpha = 1, 2, ..., n \Rightarrow \bigcap_{\alpha=1}^{n} G_{\alpha} \in \tau$.

Інакше кажучи, топологічною структурою називається система множин, замкнена відносно довільного об'єднання і скінченого перетину.

Озн. 1.2. Пара $T = (X, \tau)$ називається **топологічним** простором.

Приклад 1.1. Нехай X — довільна множина, $\tau = 2^{x}$ — множина всіх підмножин X. Пара $\left(X,2^{x}\right)$ називається простором з дискретною (максимальною) топологією.

Приклад 1.2. Нехай X — довільна множина, $\tau = \{\emptyset, X\}$. Пара (X, τ) називається простором з *тривіальною* (мінімальною, або антидискретною) топологією.

Зрозуміло, що на одній і тій же множині X можна ввести різні топології, утворюючи різні топологічні простори. Припустимо, що на носії X введено дві топології — τ_1 і τ_2 . Вони визначають два топологічні простори: $T_1 = (X, \tau_1)$ і $T_2 = (X, \tau_2)$.

Говорять, що топологія τ_1 є сильнішою, або тонкішою, ніж топологія τ_2 , якщо $\tau_2 \subset \tau_1$. Відповідно, топологія τ_2 є слабкішою, або грубішою, ніж топологія τ_1 . Легко бачити, що найслабкішою є тривіальна топологія, а найсильнішою — дискретна.

Зауваження 1.1. Множина всіх топологій не є цілком упорядкованою, тобто не всі топології можна порівнювати одну з одною. Наприклад, наступні топології (зв'язні двокрапки) порівнювати не можна: $X = \{a,b\}$, $\tau_1 = \{\varnothing, X, \{a\}\}$, $\tau_2 = \{\varnothing, X, \{b\}\}$.

Озн. 1.3. Множини, що належать топології τ , називаються відкритими. Множини, які ϵ доповненням до відкритих множин, називаються **замкненими**.

Наприклад, множина всіх цілих чисел Z замкнена в R^1 .

Зауваження 1.2. Топологія включає в себе всі відкриті множини. Водночає, треба зауважити, що поняття відкритих і замкнених множин не є взаємовиключними. Одна і та ж множина може бути одночасно і відкритою і замкненою (наприклад, \emptyset або X), або ані відкритою, ані замкненою (множини раціональних та ірраціональних чисел в \mathbb{R}^1). Отже, топологія може містити і замкнені множини, якщо вони одночасно є відкритими.

Як бачимо, поняття відкритої множини в топологічному просторі *постулюється* — для того щоб довести, що деяка множина M в топологічному просторі T ϵ відкритою, треба довести, що вона належить його топології.

Озн. 1.4.Нехай (X,τ) — топологічний простір, $M\subset X$. Топологія $(M,\tau_{\scriptscriptstyle M})$, де $\tau_{\scriptscriptstyle M}=\left\{U_{\scriptscriptstyle M}^{(\alpha)}=U_{\scriptscriptstyle \alpha}\cap M,U_{\scriptscriptstyle \alpha}\in\tau\right\}$, називається *індукованою*.

- **Озн. 1.5.** Топологічний простір (X, τ) називається **зв'язним**, якщо лише множини X і \emptyset є замкненими й відкритими одночасно.
- **Озн. 1.6.** Множина M топологічного простору (X, τ) називається **3в'язною**, якщо топологічний простір (M, τ_M) ϵ 3в'язним.
- **Приклад 1.4.** Тривіальний (антидискретний) простір і зв'язна двокрапка ϵ зв'язними просторами.
- **Озн. 1.7.** Довільна відкрита множина $G \subset T$, що містить точку $x \in T$, називається її **околом**.
- **Озн. 1.8.** Точка $x \in T$ називається **точкою дотику** множини $M \subset T$, якщо кожний окіл O(x) точки x містить хоча б одну точку із M: $\forall O(x) \in \tau : O(x) \cap M \neq \emptyset$.
- **Озн. 1.9.** Точка $x \in T$ називається **граничною точкою** множини $M \subset T$, якщо кожний окіл точки x містить хоча б одну точку із M, що не збігається з x: $\forall O(x) \in \tau : O(x) \cap \{M \setminus \{x\}\} \neq \emptyset$
- **Озн. 1.10.** Сукупність точок дотику множини $M \subset T$ називається **замиканням** множини M і позначається \overline{M} .
- **Озн. 1.11.** Сукупність **граничних точок** множини $M \subset T$ називається **похідною** множини M і позначається M'.

Теорема 1.1 (про властивості замикання). Замикання задовольняє наступним умовам:

- 1) $M \subset \overline{M}$;
- 2) $\overline{M} = \overline{M}$ (ідемпотентність);
- 3) $M \subset N \Rightarrow \overline{M} \subset \overline{N}$ (монотонність);
- 4) $\overline{M \cup N} = \overline{M} \cup \overline{N}$ (адитивність).
- 5) $\overline{\emptyset} = \emptyset$.

Доведення.

1). $M \subset \overline{M}$.

Нехай $x \in M$. Тоді x — точка дотику множини M. Отже, $x \in \overline{M}$.

2). $\overline{\overline{M}} = \overline{M}$

Внаслідок твердження 1) $\overline{M} \subset \overline{\overline{M}}$. Отже достатньо довести, що $\overline{\overline{M}} \subset \overline{M}$. Нехай $x_0 \in \overline{\overline{M}}$ і U_0 — довільний окіл точки x_0 . Оскільки $U_0 \cap \overline{M} \neq \emptyset$ (за означенням точки дотику), то існує точка $y_0 \in U_0 \cap \overline{M}$. Отже, множину U_0 можна вважати околом точки y_0 . Оскільки $y_0 \in \overline{M}$, то $U_0 \cap M \neq \emptyset$. Значить, точка $x_0 \in \overline{M}$ с точкою дотику множини M, тобто $x_0 \in \overline{M}$.

3) $M \subset N \Rightarrow \overline{M} \subset \overline{N}$.

Нехай $x_0\in \overline{M}$ і U_0 — довільний окіл точки x_0 . Оскільки $U_0\cap M\neq\varnothing$ (за означенням точки дотику) і $M\subset N$ (за умовою), то $U_0\cap N\neq\varnothing$. Отже, x_0 — точка дотику множини N, тобто $x_0\in \overline{N}$. Таким чином, $\overline{M}\subset \overline{N}$.

4) $\overline{M \cup N} = \overline{M} \cup \overline{N}$.

Із очевидних включень $M \subset M \cup N$ і $N \subset M \cup N$ внаслідок монотонності операції замикання випливає, що $\overline{M} \subset \overline{M} \cup N$ і $\overline{N} \subset \overline{M} \cup N$. Отже, $\overline{M} \cup \overline{N} \subset \overline{M} \cup N$. З іншого боку, припустимо, що $x \notin \overline{M} \cup \overline{N}$, тоді $x \notin \overline{M}$ і $x \notin \overline{N}$. Отже, існує такий окіл точки x, у якому немає точок з множини $M \cup N$, тобто $x \notin \overline{M} \cup \overline{N}$. Таким чином, за законом заперечення, $x \in \overline{M} \cup \overline{N} \Rightarrow x \in \overline{M} \cup \overline{N}$, тобто $\overline{M} \cup \overline{N} \subset \overline{M} \cup \overline{N}$.

5) $\overline{\emptyset} = \emptyset$.

Припустимо, що замикання порожньої множини не ϵ порожньою множиною: $x \in \overline{\emptyset} \Rightarrow \forall O(x) : O(x) \cap \emptyset \neq \emptyset$. Але $\forall N \subset X \ N \cap \emptyset = \emptyset$. Отже, $\overline{\emptyset} = \emptyset$.

Теорема 1.2 (критерій замкненості). Множина M топологічного простору X ϵ замкненою тоді і лише тоді, коли $M = \overline{M}$, тобто коли вона містить всі свої точки дотику.

Доведення. Необхідність. Припустимо, що M — замкнена множина, тобто $G = X \setminus M$ — відкрита множина. Оскільки, $M \subset \overline{M}$, достатньо довести, що $\overline{M} \subset M$. Дійсно, оскільки G — відкрита множина, вона є околом кожної своєї точки. До того ж $G \cap M = \emptyset$. Звідси випливає, то жодна точка $x \in G$ не може бути точкою дотику для множини M, отже всі точки дотику належать множині M, тобто $\overline{M} \subset M$.

$$G = X \setminus M \in \tau \Rightarrow G \cap M = \emptyset \Rightarrow \overline{M} \subset M$$
.

Достатність. Припустимо, що $\overline{M}=M$. Доведемо, що $G=X\setminus M$ — відкрита множина (звідси випливатиме замкненість множини M). Нехай $x_0\in G$. З цього випливає, що $x_0\not\in M$, а значить $x_0\not\in \overline{M}$. Тоді за означенням точки дотику існує окіл U_{x_0} такий, що $U_{x_0}\cap M=\varnothing$. Значить, $U_{x_0}\subset X\setminus M=G$, тобто $G=\bigcup_{x\in G}U_x\in \tau$. ■

Наслідок 1.1. Замикання \overline{M} довільної множини M із простору X ϵ замкненою множиною в X.

Теорема 1.3. Замикання довільної множини M простору (X, τ) збігається із перетином всіх замкнених множин, що містять множину M.

$$\forall M \in (X,\tau) \ \ \overline{M} = \bigcap_{\alpha} F_{\alpha}, F_{\alpha} = \overline{F}_{\alpha}, M \subset F_{\alpha} \ .$$

Доведення. Нехай M — довільна множина із (X, τ) і $N = \bigcap_{\alpha} F_{\alpha}$, де $F_{\alpha} = \overline{F}_{\alpha}$, $M \subset F_{\alpha}$.

Покажемо включення $\bigcap_{\alpha} F_{\alpha} \subseteq \overline{M}$.

$$N = \bigcap_{\alpha} F_{\alpha} \implies N \subseteq F_{\alpha} \ \forall \alpha \Longrightarrow N \subseteq \overline{F}_{\alpha} \ \forall \alpha.$$

Оскільки $\{F_{\alpha}\}$ — множина *усіх* замкнених множин, серед них є множина $\overline{M}: \ \exists \alpha_{\scriptscriptstyle 0}: F_{\alpha_{\scriptscriptstyle 0}} = \overline{M}$. Отже,

$$N \in \overline{F}_{\alpha} \ \forall \alpha \Rightarrow N \in F_{\alpha_0} = \overline{M} \Rightarrow \bigcap_{\alpha} F_{\alpha} \subset \overline{M}$$

 $N\in \overline{F}_{lpha}\ orall lpha \Rightarrow N\in \stackrel{\circ}{F}_{lpha_0}=\overline{M}\Rightarrow \bigcap_{lpha}F_{lpha}\subset \overline{M}\ .$ Тепер покажемо включення $\overline{M}\subseteq \bigcap_{lpha}F_{lpha}.$ Розглянемо

довільну замкнену множину F, що містить $\overline{F} = F$, $M \subset F$. Внаслідок монотонності замикання маємо:

$$\begin{split} \overline{F} &= F, M \subset F \implies \overline{M} \subset \overline{F} = F \implies \\ &\Rightarrow \overline{M} \subset F_{\alpha}, F_{\alpha} = \overline{F}_{\alpha} \ \forall \alpha \implies \overline{M} \subset \bigcap_{\alpha} F_{\alpha} \ . \end{split}$$

Порівнюючи обидва включення, маємо

$$\overline{M} = \bigcap_{\alpha} F_{\alpha} . \blacksquare$$

Наслідок 1.2. Замикання довільної множини М простору $X \in$ найменшою замкненою множиною, що містить множину М.

Озн. 1.12. $Hexa \check{u} A i B \longrightarrow \partial \epsilon i$ множини ϵ топологічному просторі Т. Множина А називається щільною в В, якщо $\overline{A} \supset B$.

Зауваження 1.3. Множина A не обов'язково міститься в B: множина раціональних чисел є щільною в множині ірраціональних чисел і навпаки.

Озн. 1.13. Якщо $\bar{A} = X$, множина A називається **скрізь** щільною.

Озн. 1.14. Множина A називається **ніде не щільною**, якщо вона не ϵ щільною в жодній непорожній відкритій підмножині множини X.

Множина $A \in$ щільною в кожній непорожній відкритій множині, якщо $\forall U \in \tau, U \neq \emptyset \ \overline{A} \supset U$, тобто кожна точка множини $U \in$ точкою дотику множини A. Отже, $\forall x \in U \ \forall O(x) \in \tau \ O(x) \cap A \neq \emptyset$. Заперечення цього твердження збігається з означенням ніде не щільної множини. Формальний запис означення має такий вигляд.

$$\exists U_0 \in \tau, U_0 \neq \emptyset \ \overline{A} \not\supset U_0 \Rightarrow \exists x_0 \in U_0 \ \exists O(x_0) \in \tau : O(x_0) \cap A = \emptyset.$$

Озн. 1.15. Простір Т, що містить скрізь щільну зліченну множину, називається **сепарабельним**.

Приклад 1.5. В топології числової прямої множина всіх раціональних чисел \mathbb{Q} ϵ щільною в множині всіх ірраціональних чисел $\mathbb{R} \setminus \mathbb{Q}$, і навпаки.

Приклад 1.6. Найпростішими прикладами ніде не щільних множин є цілі числа просторі \mathbb{R} і пряма в просторі \mathbb{R}^2 .

Приклад 1.7. Зліченна множина всіх раціональних чисел \mathbb{Q} ϵ скрізь щільною у просторі \mathbb{R} , отже простір \mathbb{R} ϵ сепарабельним.

3 того, що $\overline{\mathbb{Q}}=\mathbb{R}$ і $\overline{\mathbb{R}\setminus\mathbb{Q}}=\mathbb{R}$, зокрема, випливає, що \mathbb{Q} і $\mathbb{R}\setminus\mathbb{Q}$ є ані відкритими, ані замкненими множинами.

Приклад 1.8. Зліченна множина всіх поліномів з раціональними коефіцієнтами за теоремою Вєйєрштрасса є скрізь щільною в просторі неперервних функцій C[a,b]. Отже, простір C[a,b] є сепарабельним.

Література

- 1. Ляшко И.И., Емельянов В.Ф, Боярчук А.К. Основы классического и современного математического анализа. К.: Вища школа, 1988 (стр. 26–27).
- 2. Александрян Р.А., Мирзаханян Э.А . Общая топология. М.: Высшая школа, 1979 (стр. 10–20).
- 3. Энгелькинг Р. Общая топология. М.: Мир, 1986 (стр. 32–50).

2.1 Оператори замикання і взяття внутрішності

Система аксіом, наведена в означенні 1.1 належить радянському математику П.С.Александрову (1925). Проте першу систему аксіом, що визначає топологічну структуру, запропонував польський математик К.Куратовський (1922).

Озн. 2.1. Нехай X — довільна множина. Відображення cl: $2^X \to 2^X$ називається **оператором замикання Куратовського на** X, якщо воно задовольняє наступні умови (**аксіоми Куратовського**):

K.1. cl($M \cup N$) = cl(M) \cup cl(N) (аддитивність);

 $K.2. M \subset cl(M)$;

K.3. cl(cl(M)) = cl(M) (ідемпотентність);

 $K.4. \operatorname{cl}(\emptyset) = \emptyset.$

Теорема 2.1. Якщо в деякій множині X введено топологію в розумінні Александрова, то відображення cl, що задовольняє умові $cl(M) = \overline{M}$ є оператором Куратовського на X.

Доведення. Неважно помітити, що аксіоми К1–К4 просто співпадають із властивостями замикання, доведеними в теоремі 1.1. ■

Теорема 2.2 (про завдання топології оператором **Куратовського**). Кожний оператор Куратовського cl на довільній множині X задає e X топологію $\tau = \{U \subset X : cl(X \setminus U) = X \setminus U\}$ в розумінні Александрова, до того ж замикання \overline{M} довільної підмножини M із X e цій топології τ збігається з cl(M), тобто $cl(M) = \overline{M}$.

Доведення. Побудуємо сімейство

$$\sigma = \{M \subset X : M = X \setminus U, U \in \tau\},\$$

що складається із всіх можливих доповнень множин із системи τ , тобто таких множин, для яких cl(M) = M. Інакше кажучи, система о складається з нерухомих точок оператора замикання Куратовського. За принципом двоїстості де Моргана, для сімейства о виконуються аксіоми замкненої топології

F1.
$$X,\emptyset \in \sigma$$
.

F2.
$$F_{\alpha}\in\sigma,\ \alpha\in A\Rightarrow\bigcap_{\alpha\in A}F_{\alpha}\in\sigma$$
, де A — довільна множина.
F3. $F_{\alpha}\in\sigma,\ \alpha=1,2,...,n\Rightarrow\bigcup_{\alpha=1}^{n}G_{\alpha}\in\sigma$.

F3.
$$F_{\alpha} \in \sigma$$
, $\alpha = 1, 2, ..., n \Rightarrow \bigcup_{\alpha=1}^{n} G_{\alpha} \in \sigma$

Отже, щоб перевірити аксіоми Александрова сімейства множин т, достатньо перевірити виконання аксіом F1-F3 для сімейства множин σ.

1) Перевіримо аксіому F1: $X \in \sigma$? $\emptyset \in \sigma$?

Аксіома K2 стверджує, що $M \subset cl(M)$. Покладемо M = X. Отже, $X \subset \operatorname{cl}(X) \subset X \Rightarrow \operatorname{cl}(X) = X \Rightarrow X \in \sigma$.

Аксіома K4 стверджує, що $cl(\emptyset) = \emptyset \Rightarrow \emptyset \in \sigma$.

2) Перевіримо виконання аксіоми F2.

Спочатку покажемо, що оператор cl ϵ монотонним:

$$\forall A, B \in \sigma : A \subset B \Rightarrow cl(A) \subset cl(B).$$

Нехай $A, B ∈ \sigma$ і $A \subset B$. Тоді

$$cl(B) = cl(B \cup A) = cl(B) \cup cl(A)$$
 (аксіома К1),

Отже,

$$cl(A) \subset cl(A) \cup cl(B) = cl(B \cup A) = cl(B)$$
.

Використаємо це допоміжне твердження для перевірки аксіоми F3. З одного боку,

$$\begin{split} \forall F_{\alpha} &\in \sigma \ \bigcap_{\alpha \in A} F_{\alpha} \subset F_{\alpha} \ \forall \alpha \in A \ \Rightarrow \ \Rightarrow \\ cl \bigg(\bigcap_{\alpha \in A} F_{\alpha} \bigg) &\subset cl(F_{\alpha}) = F_{\alpha} \ \forall \alpha \in A \ \Rightarrow \\ &\Rightarrow cl \bigg(\bigcap_{\alpha \in A} F_{\alpha} \bigg) &\subset \bigcap_{\alpha \in A} F_{\alpha} \ . \end{split}$$

3 іншого боку, за аксіомою К2

$$\bigcap_{\alpha\in A}F_{\alpha}\subset cl\bigg(\bigcap_{\alpha\in A}F_{\alpha}\bigg).$$

Отже,

$$cl\left(\bigcap_{\alpha\in A}F_{\alpha}\right)=\bigcap_{\alpha\in A}F_{\alpha}\in\sigma.$$

3) Перевіримо виконання аксіоми F3.

$$A, B \in \sigma \Rightarrow \operatorname{cl}(A \cup B) = \operatorname{cl}(A) \cup \operatorname{cl}(B) = A \cup B \Rightarrow A \cup B \in \sigma.$$

Таким чином, σ — замкнена топологія, а сімейство τ , що складається із доповнень до множин із сімейства σ — відкрита топологія.

Залишилося показати, що в просторі (X, τ) , побудованому за допомогою оператора cl, замикання \overline{M} довільної множини M збігається з cl(M):

$$cl(M) = \overline{M}$$
.

Дійсно, за теоремою 1.2 множина M ϵ замкненою, якщо $\overline{M}=M$. Із аксіом К2 і К3 випливає, що множина $\mathrm{cl}(M)$ ϵ замкненою і містить M. Покажемо, що ця множина — найменша замкнена множина, що містить множину M, тобто ϵ її замиканням.

Нехай F — довільна замкнена в (X, τ) множина, що містить M:

$$M \subset F$$
, $cl(F) = F$.

Внаслідок монотонності оператора cl отримуємо наступне.

$$M \subset F$$
, $\operatorname{cl}(F) = F \Rightarrow \operatorname{cl}(M) \subset \operatorname{cl}(F) = F$.

Озн. 2.2. Нехай X — довільна множина. Відображення Int: $2^X \to 2^X$ називається **оператором взяття внутрішності множини X**, якщо воно задовольняє наступні умови:

 $K.1. \operatorname{Int}(M \cap N) = \operatorname{Int}(M) \cap \operatorname{Int}(N)$ (аддитивність);

 $K.2. \operatorname{Int}(M) \subset M$;

K.3. Int(Int(M)) = Int(M) (ідемпотентність);

 $K.4. \operatorname{Int}(\emptyset) = \emptyset.$

Наслідок 2.1. Оскільки

Int
$$A = X \setminus \overline{X \setminus A}$$
,

оператор взяття внутрішності є двоїстим для оператора замикання Куратовського. Отже, система множин $\tau = \{A \subseteq X : Int \ A = A\}$ утворює в X топологію, а множина Іпт A в цій топології є внутрішністю множини A.

2.2 Бази

Для завдання в множині X певної топології немає потреби безпосередньо указувати всі відкриті підмножини цієї топології. Існує деяка сукупність відкритих підмножин, яка повністю визначає топологію. Така сукупність називається базою цієї топології.

Озн. 2.3. Сукупність β відкритих множин простору (X,τ) називається базою топології τ або базою простору (X,τ) , якщо довільна непорожня відкрита множина цього

простору ϵ об' ϵ днанням деякої сукупності множин, що належать В.

$$\forall G \in \tau, G \neq \emptyset \ \exists B_{\alpha} \in \beta, \alpha \in A : G = \bigcup_{\alpha \in A} B_{\alpha}.$$

Зауваження 2.1. Будь-який простір (X, τ) має базу, оскільки система всіх відкритих підмножин цього простору утворює базу його топології.

Зауваження 2.2. Якщо в просторі (X,τ) ізольовані точки, вони повинні входити в склад будь-якої бази цього простору.

Теорема 2.3. Для того щоб сукупність В множин із топології т була базою цієї топології, необхідно і достатньо, щоб для кожної точки $x \in X$ і довільної відкритої множини U, що містить точку x, існувала множина V∈ β , така щоб x∈V⊂U.

Доведення. *Необхідність*. Нехай β — база простору (X, τ) , $x_0 \in X$, а $U_0 \in \tau$, таке що $x_0 \in U_0$. Тоді за означенням бази

$$U_0 = \bigcup_{\alpha \in A} V_\alpha \text{ , де } V_\alpha \in \beta. \text{ 3 цього випливає, що } x_0 \in V_{\alpha_0} \subset U_0 \text{ .}$$

$$\beta = \mathcal{B}(\tau), \quad x_0 \in X, \quad U_0 \in \tau, \quad x_0 \in U_0 \Rightarrow U_0 = \bigcup_{\alpha \in A} V_\alpha \text{ , } \quad V_\alpha \in \beta \Rightarrow$$

$$x_0 \in V_{\alpha_0} \subset U_0$$

Достатність. Нехай для кожної точки $x \in X$ і довільної відкритої множини $U \in \tau$, що містить точку x, існує множина V_x \in β , така що x \in V_x \subset U. Легко перевірити, що $U = \bigcup_{x \in U} V_x$.

Дійсно, якщо точка $x \in U$, то за умовою теореми, вона належить множині $V_x \subset U$, а отже і об'єднанню таких множин $\bigcup_{x \in U} V_x$.

$$x \in U \Rightarrow \exists V_x \subset U: x \in V_x \Rightarrow x \in \bigcup_{x \in U} V_x$$
.

I навпаки, якщо точка належить об'єднанню $\bigcup_{x \in U} V_x$, то

вона належить принаймні одній із цих множин $V_x \subset U$, а отже — вона належить множині U.

$$x \in \bigcup_{x \in U} V_x \Rightarrow \exists \ V_x \subset U : x \in V_x \Rightarrow x \in U \ .$$

Таким чином, довільну відкриту множину $U \in \tau$ можна подати у вигляді об'єднання множин із β .

Приклад 2.1. Оскільки $\forall x \in \mathbb{R}^1$ і $\forall (a,b) \ni x \exists (a_0,b_0) \subset (a,b)$, то за теоремою 2.3 сукупність всіх відкритих інтервалів утворює базу топології в \mathbb{R}^1 .

Приклад 2.2. Оскільки $\forall x \in \mathbb{R}^1$ і $\forall (a,b) \ni x \exists (r_1,r_2) \subset (a,b)$, $r_1, r_2 \in \mathbb{Q}$, то за теоремою 2.3 сукупність всіх відкритих інтервалів із раціональними кінцями також утворює базу топології в \mathbb{R}^1 .

Із теореми 2.3 випливають два наслідки.

Властивість 2.1. Об'єднання всіх множин, які належать базі β топології τ , утворює всю множину X.

Доведення. Оскільки $X \in \tau$, то за означенням бази $X = \bigcup_{\alpha \in A} V_{\alpha}$, де $V_{\alpha} \in \beta$.

Властивість 2.2. Для довільних двох множин U і V із бази β і для кожної точки $x \in U \cap V$ існує множина W із β така, що $x \in W \subset U \cap V$.

Доведення. Оскільки $U \cap V \in \tau$, то за теоремою 2.3 в множині $U \cap V$ міститься відкрита множина W із бази, така що $x \in W$.

Теорема 2.4 (про завдання топології за допомогою бази). Нехай в довільній множині X задана деяка сукупність відкритих множин β , що має властивості 2.1 і 2.2. Тоді в

множині X існує єдина топологія τ , однією з баз якої є сукупність β .

Доведення. Припустимо, що τ — сімейство, що містить лише порожню множину і всі підмножини множини X, кожна з яких ϵ об'єднанням підмножин із сукупності β (властивість 2.1).

$$\tau = \left\{ \varnothing, \ G_{\alpha} \subset X, \, \alpha \in A : G_{\alpha} = \bigcup_{i \in I} B_{i}^{\alpha}, \, B_{i}^{\alpha} \in \beta \right\}.$$

Перевіримо, що це сімейство множин є топологією. Виконання аксіом топології 1 і 2 є очевидним: $\emptyset \in \tau$, $X \in \tau$ і G $\alpha \in \tau$, $\alpha \in A \Rightarrow \bigcup_{\alpha \in A} G_{\alpha} \in \tau$. Аксіома 3 є наслідком

властивостей 2.1 і 2.2. Не обмежуючи загальності, можна перевірити її для випадку перетину двох множин.

Нехай
$$U, U' \in \tau$$
. За означенням, $U = \bigcup_{i \in I} V_i$, $U' = \bigcup_{j \in J} V'_j$,

 $V_i, V_i' \in \beta$. Розглянемо перетин

$$U \cap U' = \left(\bigcup_{i \in I} V_i\right) \cap \left(\bigcup_{j \in J} V'_j\right) = \bigcup_{i \in I, j \in J} \left(V_i \cap V'_j\right).$$

Доведемо, що $V_i \cap V_j' \in \tau$. Нехай $x \in V_i \cap V_j'$. Тоді, за властивістю 2.2, існує множина $W_x \in \beta$, така що $x \in W_x \subset V_i \cap V_j'$. Оскільки точка $x \in V_i \cap V_j'$ є довільною, то $V_i \cap V_j' = \bigcup_{x \in V_i \cap V_j} W_x \in \tau$. Отже, $U \cap U' \in \tau$.

Таким чином, сімейство τ дійсно утворює топологію на X, а система β є її базою.

Література

Функціональний аналіз, спеціальність «Прикладна математика» Лекція \mathfrak{N}_{2} 2. Методи введення топології

- 1. Александрян Р.А., Мирзаханян Э.А. Общая топология. М.: Высшая школа, 1979 (стр. 14–22).
- 2. Энгелькинг Р. Общая топология. М.: Мир, 1986 (стр. 46–50).

3. Збіжність і неперервність

В основі поняття збіжності послідовностей в топологічних просторах лежать аксіоми зліченності, які в свою чергу використовують поняття локальної бази в точці.

- **Озн. 3.1.** Система β_{x_0} відкритих околів точки x_0 називається **локальною базою в точці x_0**, якщо кожний окіл U точки x_0 містить її деякий окіл V із системи β_{x_0} .
- **Озн. 3.2.** Топологічний простір X називається таким, що **задовольняє першій аксіомі зліченності**, якщо в кожній його точці існує локальна база, що складається із не більш ніж зліченої кількості околів цієї точки.
- **Озн. 3.3.** Топологічний простір X називається таким, що **задовольняє другій аксіомі зліченності**, або **простором із зліченною базою**, якщо воно має базу, що складається із не більш ніж зліченої кількості відкритих множин.
- **Лема 3.1.** Якщо простір X задовольняє другій аксіомі зліченності, то він задовольняє і першій аксіомі зліченності.

Доведення. Нехай $U_1,\ U_2,\dots,U_n,\ \dots$ — зліченна база в просторі X, тоді $\beta_{x_0}=\left\{U_k\in\boldsymbol{\beta}:x_0\in U_k\right\}$ — зліченна локальна база в точці x_0 .

Лема 3.2. *Існують простори, що задовольняють першій аксіомі зліченності, але не задовольняють другій аксіомі зліченності.*

Доведення. В якості контрприкладу розглянемо довільну *незліченну* множину X, в якій введено дискретну топологію $\tau = \{\emptyset, X, 2^X\}$.

Приклад 3.1. Простір R^n , топологія якого утворена відкритими кулями, задовольняє першій аксіомі зліченності, оскільки в кожній точці $x_0 \in X$ існує зліченна локальна база

 $S(x_0, 1/n)$. Очевидно, що цей простір задовольняє і другій аксіомі зліченності, оскільки має зліченну базу, що складається з куль $S(x_n, r)$, де центри куль x_n належать зліченній скрізь щільній множині (наприклад, мають раціональні координати), а r — раціональне число.

Поняття точки дотику і замикання множини відіграють основну роль в топології, оскільки будь-яка топологічна структура повністю описується в цих термінах.

Проте поняття точки дотику занадто абстрактне. Набагато більше змістовних результатів можна отримати, якщо виділити широкий клас просторів, топологічну структуру яких можна описати виключно в термінах границь збіжних послідовностей.

Озн. 3.4. Послідовність точок $\{x_n\}$ топологічного простору X називається збіжною до точки $x_0 \in X$, якщо кожний окіл U_0 точки x_0 містить всі точки цієї послідовності, починаючи з деякої. Точку x_0 називають границею цієї послідовності: $\lim_{n\to\infty} x_n = x_0$.

Приклад 3.2. В довільному тривіальному просторі послідовність збігається до будь-якої точки цього простору.

Довільна гранична точка множини A довільного топологічного простору X ϵ точкою дотику. Проте в загальних топологічних просторах не для всякої точки дотику $x \in \overline{A}$ існу ϵ послідовність $\{x_n\} \in A$, що до неї збігається.

Приклад 3.3. Нехай X— довільна незліченна множина. Задамо в просторі X топологію, оголосивши відкритими порожню множину і всі підмножини, які утворені із X викиданням не більш ніж зліченної кількості точок.

$$\tau = \{\emptyset, X \setminus \{x_1, x_2, ..., x_n, ...\}\}.$$

Спочатку покажемо, що в цьому просторі збіжними є лише стаціонарні послідовності. Припустимо, що в просторі існує нестаціонарна послідовність $\{x_n\} \to x_0$. Тоді, взявши в якості околу точки x_0 множину U, яка утворюється викиданням із X всіх членів послідовності $\{x_n\}$, які відрізняються від точки x_0 , ми дійдемо до протиріччя з тим, що окіл U мусить містити всі точки послідовності $\{x_n\}$, починаючи з деякої.

Тепер розглянемо підмножину $A = X \setminus \{x_0\}$. Точка $x_0 \in X$ точкою дотику множини A. Справді, якщо U — довільний відкритий окіл точки x_0 , то за означенням відкритих в X множин, доповнення $X \setminus U$ є не більш ніж зліченим.

```
U \in \tau \Rightarrow U = X \setminus \{x_1, x_2, ..., x_n, ...\} \Rightarrow

\Rightarrow X \setminus U = X \setminus X \setminus \{x_1, x_2, ..., x_n, ...\} = \{x_1, x_2, ..., x_n, ...\} \Rightarrow

\Rightarrow A \cap U \neq \emptyset (оскільки card A = c, а доповнення X \setminus U і тому не може містити в собі незліченну множину A).
```

З іншого боку, оскільки в просторі X збіжними є лише стаціонарні послідовності, то із $x_0 \notin A$ випливає, що жодна послідовність точок із множини A не може збігатися до точки дотику $x_0 \notin A$.

Теорема 3.1. Якщо простір X задовольняє першій аксіомі зліченності, то $x_0 \in \overline{A}$ тоді і лише тоді, коли x_0 є границею деякої послідовності $\{x_n\}$ точок із A.

Доведення. Достатність. Якщо в довільному топологічному просторі $\{x_n\} \in A$, $\lim_{n \to \infty} x_n = x_0$, то $x_0 \in \overline{A}$.

Необхідність. Нехай $x_0 \in \overline{A}$. Якщо $x_0 \in A$, достатньо в якості $\{x_n\} \in A$ взяти стаціонарну послідовність.

Припустимо, що $x_0 \in \overline{A} \setminus A$ і $U_1, U_2, \dots, U_n, \dots$ — зліченна локальна база в точці x_0 , до того ж $\forall n \in N$ $U_{n+1} \subset U_n$. (Якщо б ця умова не виконувалася, ми взяли б іншу базу $\{V_n\}$, де $V_n = \bigcap_{k=1}^n U_k$). Оскільки $A \cap U_n \neq \emptyset$, взявши за x_n довільну точку із $A \cap U_n$, ми отримаємо послідовність $\{x_n\} \in A$, $\lim_{k \to \infty} x_n = x_0$.

Дійсно, нехай V — довільний окіл точки x_0 . Оскільки $U_1,U_2,\ldots,U_n,\ldots$ база в точці x_0 , існує такий елемент U_{n_0} , який належить цій базі, що $U_{n_0}\subset V$. З іншого боку, для всіх $n\geq n_0 \qquad U_{n+1}\subset U_n$. Це означає, що $\forall n\geq n_0$ $x_n\in A\cap U_n\subset U_{n_0}\subset U$. Отже, $x_0=\lim_{n\to\infty}x_n$.

Поняття неперервного відображення належить до фундаментальних основ топології.

Озн. 3.5. Відображення $f: X \to Y$ називається **сюр'єктивним**, якщо f(X) = Y, тобто множина X відображається на весь простір Y.

Озн. 3.6. Відображення $f: X \to Y$ називається **ін'єктивним**, якщо з того, що $x_1 \neq x_2$ випливає, що $f(x_1) \neq f(x_2)$, тобто відображення є однозначним.

Озн. 3.7. Відображення $f: X \to Y$, яке одночасно є сюр'єктивним та ін'єктивним, називається **бієктивним**, або взаємно однозначною відповідністю між X і Y.

Тепер нагадаємо основні співвідношення для образів та прообразів множин відносно функції $f: X \to Y$.

Якщо $A, B \subset X$, то

1.
$$A \subset B \Rightarrow f(A) \subset f(B) \not\Rightarrow A \subset B$$
;

- 2. $A \neq \emptyset \Rightarrow f(\emptyset) \neq \emptyset$;
- 3. $f(A \cap B) \subset f(A) \cap f(B)$;
- 4. $f(A \cup B) = f(A) \cup f(B)$.

Якщо $A', B' \subset Y$, то

- 5. $A' \subset B' \Rightarrow f^{-1}(A') \subset f^{-1}(B')$;
- 6. $f^{-1}(A' \cap B') = f^{-1}(A') \cap f^{-1}(B');$
- 7. $f^{-1}(A' \cup B') = f^{-1}(A') \cup f^{-1}(B')$.

Якщо $B' \subset A' \subset Y$, то

8.
$$f^{-1}(A' \setminus B') = f^{-1}(A') \setminus f^{-1}(B');$$

9.
$$f^{-1}(Y \setminus B') = X \setminus f^{-1}(B')$$

Для довільних множин $A \subset X$ і $B' \subset Y$

10.
$$A \subset f^{-1}(f(A));$$

11.
$$f(f^{-1}(B')) \subset B'$$
.

Введемо поняття неперервного відображення.

Озн. 3.8. Нехай X і Y — два топологічних простора. Відображення $f: X \to Y$ називається **неперервним в точці** x_0 , якщо для довільного околу V точки $y_0 = f\left(x_0\right)$ існує такий окіл U точки x_0 , що $f\left(U\right) \subset V$.

Озн. 3.9. Відображення $f: X \to Y$ називається **неперервним**, якщо воно є неперервним в кожній точці $x \in X$.

Інакше кажучи, неперервне відображення зберігає граничні властивості: якщо точка $x \in X$ є близькою до деякої множини $A \subset X$, то точка $y = f(x) \in Y$ є близькою до образу множини A.

Теорема 3.2. Для того щоб відображення $f: X \to Y$ було неперервним, необхідно і достатньо, щоб прообраз

 $f^{-1}(V)$ будь-якої відкритої множини $V \subset Y$ був відкритою множиною в X.

Доведення. Heoбxiднicmb. Нехай $f: X \to Y$ — неперервне відображення, а V— довільна відкрита множина в Y. Доведемо, що множина $U = f^{-1}(V)$ є відкритою в X. Для цього візьмемо довільну точку $x_0 \in U$ і позначимо $y_0 = f(x_0)$. Оскільки множина V є відкритим околом точки y_0 в просторі Y, а відображення f є неперервним в точці x_0 , в просторі X існує відкритий окіл U_0 точки x_0 , такий що $f(U_0) \subset V$. Звідси випливає, що $U_0 \subset U$ (властивість 5). Отже, множина U є відкритою в X.

$$f \in C(X,Y) \Rightarrow \exists U_0 \in \tau_X : x_0 \in U_0, f(U_0) \subset V \Rightarrow$$
$$f^{-1}(f(U_0)) \subset f^{-1}(V) = U \Rightarrow U_0 \subset f^{-1}(f(U_0)) \subset U \Rightarrow U \in \tau_X$$

Достатність. Нехай прообраз $f^{-1}(V)$ довільної відкритої в Y множини V є відкритим в X, а $x_0 \in X$ — довільна точка. Доведемо, що відображення f є неперервним в точці x_0 . Дійсно, нехай $y_0 = f(x_0)$, а V— її довільний відкритий окіл. Тоді $U = f^{-1}(V)$ за умовою теореми є відкритим околом точки x_0 , до того ж $f(U) \subset V$ (властивість 11). Отже, відображення f є неперервним в кожній точці $x_0 \in X$. Таким чином, f є неперервним в X.

$$V \in \tau_{X}, U \stackrel{def}{=} f^{-1}(V) \in \tau_{X} \Rightarrow$$

$$\Rightarrow f(U) = f(f^{-1}(V)) \subset V \Rightarrow f \in C(X, Y).$$

Теорема 3.3. Для того щоб відображення $f: X \to Y$ було неперервним, необхідно і достатньо, щоб прообраз $f^{-1}(V)$ будь-якої замкненої множини $V \subset Y$ був замкненою множиною в X.

Доведення випливає з того, що доповнення відкритих множин є замкненими, а прообрази множин, що взаємно доповнюють одна одну, самі взаємно доповнюють одна одну (властивість 9).

Теорема 3.4. Для того щоб відображення $f: X \to Y$ було неперервним, необхідно і достатньо, щоб $\forall A \subset X \ f\left(\overline{A}\right) \subset \overline{f\left(A\right)}$.

Доведення. Heoбxiднicmb. Нехай відображення $f: X \to Y$ є неперервним, а $x_0 \in \overline{A}$. Покажемо, що $y_0 = f\left(x_0\right) \in \overline{f(A)}$. Справді, нехай V — довільний окіл точки y_0 . Тоді внаслідок неперервності f існує окіл U, який містить точку x_0 такий, що $f\left(U\right) \subset V$. Оскільки $x_0 \in \overline{A}$, то в околі U повинна міститись точка $x' \in A$ (можливо, вона збігається з точкою x_0). Разом з тим, очевидно, що $y' = f\left(x'\right)$ належить одночасно множині $f\left(A\right)$ і околу V, тобто $y_0 \in \overline{f(A)}$.

$$f \in C(X,Y) \Rightarrow \forall V \in \tau_{Y} : f(x_{0}) \in V \exists U \in \tau_{X} : x \in U, f(U) \subset V$$
$$x_{0} \in \overline{A} \Rightarrow U \cap A \neq \emptyset \Rightarrow \exists x' \in U \cap A \Rightarrow$$

$$\Rightarrow f(x') \in f(U \cap A) \subset f(U) \cap f(A) \Rightarrow y_0 = f(x_0) \in \overline{f(A)}.$$

 \mathcal{A} остатність. Нехай $\forall A \subset X \ f\left(\overline{A}\right) \subset \overline{f\left(A\right)}$ і B— довільна замкнена в Y множина. Покажемо, що множина $A = f^{-1}(B)$ є замкненою в X. Нехай x_0 — довільна точка із \overline{A} . Тоді $f\left(x_0\right) \in f\left(\overline{A}\right) \subset \overline{f\left(A\right)}$. Разом з тим

$$A = f^{-1}(B) \Rightarrow f(A) = f(f^{-1}(B)) \subset B \Rightarrow \overline{f(A)} \subset \overline{B} = B$$
.

Тому $f(x_0) \in B$, отже, $x_0 \in A$. Таким чином, $\overline{A} \subset A$, тобто A — замкнена множина. Звідси випливає, що відображення f є неперервним.

- **Озн. 3.10.** Бієктивне відображення $f: X \to Y$ називається **гомеоморфним**, або **гомеоморфізмом**, якщо і само відображення f і обернене відображення f^{-1} ϵ неперервними.
- **Озн. 3.11.** Топологічні простор X і Y називаються гомеоморфними, або топологічно еквівалентними, якщо існує хоча б одне гомеоморфне відображення $f: X \to Y$.

Цей факт записується так: $f: X \cong Y$.

Приклад 3.3. Тривіальний приклад гомеоморфізму — тотожнє перетворення.

Приклад 3.4. Відображення, що задається строго монотонними неперервними дійсними функціями дійсної змінної ϵ гомеоморфізмами. Гомеоморфним образом довільного інтервалу ϵ інтервал.

- **Озн. 3.12.** Неперервне відображення $f: X \to Y$ називається відкритим, якщо образ будь-якої відкритої множини простору X ϵ відкритим в Y.
- **Озн. 3.13.** Неперервне відображення $f: X \to Y$ називається **замкненим**, якщо образ будь-якої замкненої множини простору X ϵ замкненим в Y.

Поняття відкритого і замкненого відображення не ϵ взаємовиключними.

Приклад 3.5. Тотожне відображення одночасно ϵ і відкритим, і замкненим.

Приклад 3.6. Відображення *вкладення* (ін'єктивне відображення) $i:A\subset X\to X$ є відкритим, якщо підмножина A є відкритою, і замкненим, якщо підмножина

$A \in$ замкненою.

Теорема 3.5. Відображення $f: X \to Y$ ϵ замкненим тоді і лише тоді, коли $\forall A \subset X$ $f(\overline{A}) = \overline{f(A)}$.

Доведення. Heoбxiднicmb. Оскільки замкнене відображення є неперервним (за означенням), то внаслідок теореми $3.4 \ \forall A \subset X \ f\left(\overline{A}\right) \subset \overline{f\left(A\right)}$. Разом з тим, очевидно, що $f\left(A\right) \subset f\left(\overline{A}\right)$ (властивість 1), тому внаслідок монотонності замикання $\overline{f\left(A\right)} \subset \overline{f\left(\overline{A}\right)}$. Оскільки відображення f є замкненим, то $\overline{f\left(\overline{A}\right)} = f\left(\overline{A}\right)$. Таким чином, $\overline{f\left(A\right)} = f\left(\overline{A}\right)$.

Достатність. Функція f є неперервною внаслідок теореми 3.4. З умови $\overline{f(A)} = f(\overline{A})$ для замкненої множини $A \subset X$ отримуємо, що $f(A) = \overline{f(A)}$, тобто образ будь-якої замкненої множини є замкненим. ■

Теорема 3.6. Відкрите бісктивне відображення $f: X \to Y$ є **гомеоморфізмом**.

Доведення. Оскільки $f: X \to Y-$ бієктивне відображення, існує обернене відображення $f^{-1}: Y \to X$. Оскільки $\forall A \subset X \left(f^{-1}\right)^{-1}(A) = f(A)$ і, за умовою теореми, f- відкрите відображення, то прообрази відкритих підмножин із X є відкритими. З теореми 3.2 випливає, що відображення f^{-1} є неперервним. Оскільки бієктивне відкрите відображення завжди є неперервним, доходимо висновку, що f- гомеоморфізм. \blacksquare

Теорема 3.7. Замкнене бієктивне відображення

 $f: X \to Y$ ϵ гомеоморфізмом.

Доведення цілком аналогічне теоремі 3.6. ■

Теорема 3.8. Гомеоморфне відображення $f: X \cong Y$ одночасно ϵ і відкритим, і замкненим.

Доведення. Нехай $f^{-1}: Y \to X$ — обернене відображення. Тоді $\forall A \subset X$ $f(A) = (f^{-1})^{-1}(A)$. Оскільки відображення $f \in \Gamma$ гомеоморфізмом, відображення $f \in \Gamma$ неперервними. Оскільки образ множини $f \in \Gamma$ при відображенні $f \in \Gamma$ прообразом множини $f \in \Gamma$ при відображенні $f \in \Gamma$ і обидва ці відображення $f \in \Gamma$ неперервними, то відображення $f \in \Gamma$ відкритим і замкненим одночасно, тобто відкриті множини переводить у відкриті, а замкнені — у замкнені.

Теорема 3.9. Бієктивне відображення $f: X \to Y \in \mathcal{E}$ гомеоморфізмом тоді і лише тоді, коли воно зберігає операцію замикання, тобто $\forall A \subset X \ f\left(\overline{A}\right) = \overline{f\left(A\right)}$.

Необхідність випливає з теорем 3.5 і 3.8, а достатність — з теорем 3.5 і 3.7.

Література

- 1. Александрян Р.А., Мирзаханян Э.А. Общая топология. М.: Высшая школа, 1979 (стр. 24–28).
- 2. Энгелькинг Р. Общая топология. М.: Мир, 1986. с.57–68.
- 3. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. 5-е изд. М.: Наука, 1981 (с. 89-91, Гл. II, § 5. Топологические пространства).

4. Аксіоми віддільності

Аналізуючи властивості різних топологічних просторів ми бачили, що їх структура може бути настільки "неприродною", що будь-яка послідовність збігається до будь-яких точок (тривіальний простір), існують точки дотику множин, які не є границями послідовностей їх елементів (простір Зариського) тощо. В математичному аналізі ми не зустрічаємо таких "патологій": там всі послідовності мають лише одну границю, кожна точка дотику є границею тощо. Отже, виникає потреба в інструментах, які дозволили ли б виділити серед топологічних просторів "природні" простори. Такими інструментами є аксіоми віддільності, які разом з аксіомами можливість повністю зліченності дають властивості топологічних просторів.

Аксіоми віддільності в топологічному просторі (X, τ) формулюються наступним чином.

 T_0 (Колмогоров, 1935). Для двох довільних різних точок x і y, що належать множині X, існує множина із топологічної структури τ , яка містить рівно одну з цих точок.

$$\forall x,y \in X: x \neq y \, \exists V_x \in \tau \colon x \in V_x, y \not \in V_x \vee \exists V_y \in \tau \colon y \in V_y, x \not \in V_y.$$

 T_1 (Picc, 1907). Для двох довільних різних точок x і y, що належать множині X, існують множина V_x із топологічної структури τ , яка містить точку x і не містить точки y, і множина V_y із топологічної структури τ , яка містить точку y і не містить точки x.

$$\forall x, y \in X : x \neq y \,\exists V_x, V_y \in \tau : x \in V_x, y \in V_y, x \notin V_y, y \notin V_x$$

 T_2 (Хаусдорф, 1914). Для двох довільних різних точок x і y, що належать множині X, існують множина V_x із топологічної структури τ , яка містить точку x, і множина V_y із топологічної структури τ , яка містить точку y, такі що не перетинаються.

$$\forall x, y \in X : x \neq y \exists V_x, V_y \in \tau : x \in V_x, y \in V_y, V_x \cap V_y = \emptyset$$

 T_3 (В'єторіс, 1921). Для довільної точки x і довільної замкненої множини F, що не містить цієї точки, існують дві відкриті множини V_x і V, що не перетинаються, такі що $x \in V_x$, а $F \subset V$.

$$\forall x \in X, \overline{F} \subset X: x \notin \overline{F} \ \exists V_x, V \in \tau: x \in V_x, F \subset V, V_x \cap V = \emptyset$$
.
 $T_{\frac{31}{2}}$ (Урисон, 1925). Для довільної точки x і довільної

замкненої множини \overline{F} , що не містить цієї точки, існує неперервна числова функція f, задана на просторі X, така що $0 \le f(t) \le 1$, до того ж f(x) = 0 і f(t) = 1, якщо $x \in \overline{F}$.

$$\forall x \in X, \overline{F} \subset X : x \notin \overline{F} \exists f : X \to R^1 :$$

 $0 \le f(t) \le 1, f(x) = 0, f(t) = 1, \text{ seign } t \in \overline{F}.$

 T_4 (B'єторіс, 1921). Для двох довільних замкнених множин $\overline{F_1}$ і $\overline{F_2}$, що не перетинаються, існують відкриті множини G_1 і G_2 , що не перетинаються, такі що $\overline{F_1} \subset G_1$, $\overline{F_2} \subset G_2$.

$$\begin{split} &\forall \overline{F_1}, \overline{F_2} \subset X : \overline{F_1} \cap \overline{F_2} = \varnothing \ \exists G_1, G_2 \in \tau : \\ &\overline{F_1} \subset G_1, \overline{F_2} \subset G_2, G_1 \cap G_2 = \varnothing \ . \end{split}$$

- **Озн. 4.1** (Колмогоров, 1935). Топологічні простори, що задовольняють аксіому T_0 , називаються T_0 -просторами, або колмогоровськими.
- **Озн. 4.2** (**Picc, 1907**). Топологічні простори, що задовольняють аксіому T_1 , називаються T_1 -просторами, або досяжними.
- **Озн. 4.3** (Хаусдорф, 1914). Топологічні простори, що задовольняють аксіому T_2 , називаються хаусдорфовими, або віддільними.
- **Озн. 4.4** (**B'єторіс, 1921**). Топологічні простори, що задовольняють аксіоми T_1 і T_3 , називаються **регулярними**.
- **Озн. 4.5** (**Тихонов, 1930**). Топологічні простори, що задовольняють аксіоми T_1 і $T_{\frac{3}{2}}$, називаються **цілком**

регулярними, або тихоновськими.

Озн. 4.6 (**Тітце** (**1923**), **Александров** і **Урисон** (**1929**)). Топологічні простори, що задовольняють аксіоми T_1 і T_4 , називаються **нормальними**.

Розглянемо наслідки, які випливають із аксіом віддільності.

Теорема 4.1 (критерій досяжності). Для того щоб топологічний простір (X,τ) був T_1 -простором необхідно і достатньо, щоб будь-яка одноточкова множина $\{x\} \subset X$ була замкненою.

Доведення. *Необхідність*. Припустимо, що виконується перша аксіома віддільності: якщо $x \neq y$, то існує окіл $V_y \in \tau : x \notin V_y$. Тоді $\forall y \neq x \ y \notin \overline{\{x\}}$, тобто $\overline{\{x\}} = \{x\}$.

Достатність. Припустимо, що $\{x\} = \{x\}$. Тоді $\forall y \neq x \exists V_y \in \tau : x \notin V_y$. Отже виконується перша аксіома віддільності. ■

Наслідок. В просторі T_1 будь-яка скінченна множина ϵ замкненою.

Теорема 4.2. Для того щоб точка x була граничною точкою множини M в T_1 -просторі необхідно і достатньо, щоб довільний окіл U цієї точки містив нескінченну кількість точок множини M.

Доведення. $Heoбxi\partial hicmb$. Якщо точка $x \in \Gamma$ раничною точкою множини M , то

$$\forall O(x) \in \tau \ O(x) \cap M \setminus \{x\} \neq \emptyset.$$

Припустимо, що існує такий окіл U точки x, що містить лише скінченну кількість точок $x_1, x_2, ..., x_n \in M$. Оскільки простір (X, τ) є T_1 -простором, то існує окіл U_i точки x, що

не містить точку
$$x_i$$
. Введемо в розгляд множину $V = \bigcap_{i=1}^n U_i$.

Ця множина ϵ околом точки x, що не містить точок множини M, за винятком, можливо, самої точки x. Отже, точка x не ϵ граничною точкою множини M, що суперечить припущенню.

Достатність. Якщо довільний окіл U точки x містить нескінченну кількість точок множини M, то вона ϵ граничною за означенням.

Приклад 4.1. Зв'язна двокрапка ϵ колмогоровским, але недосяжним простором.

Приклад 4.2. Простір Зариського ϵ досяжним, але не хаусдорфовим.

Теорема 4.3 (критерій хаусдорфовості). Для того щоб простір (X,τ) був хаусдорфовим необхідно і достатньо, щоб для кожної пари різних точок x_1 і x_2 в X існувало неперервне ін'єктивне відображення f простору X в хаусдорфів простір Y.

Доведення. *Необхідність*. Нехай простір (X,τ) є хаусдорфовим. Тоді можна покласти Y = X і f = I — тотожне відображення.

Достатність. Нехай (X,τ) — топологічний простір і $\forall x_1 \neq x_2 \exists f: X \to Y, \ f(x_1) \neq f(x_2), \ \text{де } Y$ — хаусдорфів, а f — неперервне відображення. Оскільки простір Y є хаусдорфовим, то

$$\exists O(f(x_1)) \in \tau_Y, O(f(x_2)) \in \tau_Y : O(f(x_2)) \cap O(f(x_2)) = \emptyset.$$
 Оскільки відображення $f \in$ неперервним, то $\exists O(x_1) \in \tau_X, O(x_2) \in \tau_Y : f(O(x_1)) \subset O(f(x_1)),$ $f(O(x_2)) \subset O(f(x_2)).$ Тоді околи $V(x_1) = f^{-1}f(O(x_1))$ і $V(x_2) = f^{-1}f(O(x_2))$ не перетинаються.

Озн. 4.7. Замкнена множина, що містить точку x разом з деяким її околом, називається **замкненим околом** точки x.

Теорема 4.4 (критерій регулярності). Для того щоб T_1 -простір (X,τ) був регулярним необхідно і достатньо, щоб довільний окіл U довільної точки x містив її замкнений окіл.

Доведення. *Необхідність*. Нехай простір (X,τ) є регулярним, x — його довільна точка, а U — її довільний окіл. Покладемо $F = X \setminus U$. Тоді внаслідок регулярності

простору (X,τ) існує окіл V точки x і окіл W множини F , такі що $V\cap W=\varnothing$. Звідси випливає, що $V\subset X\setminus W$, отже, $\overline{V}\subset \overline{X\setminus W}=X\setminus W\subset X\setminus F=U$.

Достатність. Нехай довільний окіл довільної точки x містить замкнений окіл цієї точки, а F — довільна замкнена множина, що не містить точку x. Покладемо $G = X \setminus F \in \tau$. Нехай V — замкнений окіл точки x, що міститься в множині G. Тоді $W = X \setminus V$ ϵ околом множини F, який не перетинається з множиною V. ■

Приклад 4.4. Розглянемо множину $X = \mathbb{R}$ і введемо топологію так: замкненими будемо вважати всі множини, що є замкненими у природній топології числової прямой, а також множину $A = \left\{\frac{1}{n}, n = 1, 2,\right\}$. Точка нуль їй не належить, але будь-які околи точки нуль і довільні околи множини A перетинаються. Це означає, що побудований простір не є регулярним, але є хаусдорфовим.

Озн. 4.8. Система $\gamma = \{A_i, i \in I\}$ замкнених підмножин простору X називається його *замкненою базою*, якщо будьяку замкнену в X множину можна подати у вигляді перетину множин із системи γ . Система $\delta = \{B_j\}$ замкнених підмножин B_j називається *замкненою передбазою*, якщо будь-яку замкнену в X множину можна подати у вигляді перетину скінченних об'єднань множин із системи δ .

Озн. 4.9. Підмножини A і B простору X називаються функціонально віддільними, якщо існує дійсна неперервна функція $f: X \to [0,1]$ така, що $f(x) = \begin{cases} 0, \text{ якщо } x \in A, \\ 1, \text{ якщо } x \in B. \end{cases}$

Оскільки замкнені бази і передбази ϵ двоїстими до відкритих, мають місце наступні твердження.

Лема 4.1. Для того щоб система $\gamma = \{A_i, i \in I\}$ замкнених множин із X була замкненою базою ϵ X, необхідно і достатньо, щоб для кожної точки $x_0 \in X$ і для кожної замкненої множини F_0 , що не містить точку x_0 , існувала множина $A_{j_0} \in \gamma$ така, що $x_0 \notin A_{j_0} \supset F_0$.

Лема 4.2. Для того щоб система $\delta = \left\{ B_j, j \in J \right\}$ замкнених множин із X була замкненою передбазою в X, необхідно і достатньо, щоб для кожної точки $x_0 \in X$ і для кожної замкненої множини F_0 , що не містить точку x_0 , існував скінченний набір елементів $B_{j_1}, B_{j_2}, ..., B_{j_n}$ такий, що

$$x_0 \notin \bigcup_{k=1}^n B_{j_k} \supset F_0.$$

Теорема 4.5 (критерій цілковитої регулярності). Для того щоб (X,τ) був цілком регулярним (тихоновським) необхідно і достатньо, щоб кожна його точка x_0 була функціонально віддільною від усіх множин із деякої замкненої передбази $\mathcal{S} = \{F_i, i \in I\}$, що її не містять.

Доведення. *Необхідність*. Якщо простір (X,τ) є цілком регулярним (тихоновським), то точка x_0 є функціонально віддільною від *усіх* замкнених множин, що її не містять, а значить, і від усіх множин із деякої замкненої передбази $\delta = \{F_i, i \in I\}$, що її не містять.

 \mathcal{L} остатність. Нехай F_0 — довільна замкнена в X множина, що не містить точку x_0 , і нехай $F_{i_1},...,F_{i_n}$ —

скінченний набір елементів із δ такий, що $x_0 \notin \overline{F} = \bigcup_{k=1}^n F_{i_k} \supset F_0$ (за лемою 4.2). За припущенням, існує неперервна функція $f_k: X \to [0,1]$, яка здійснює функціональну віддільність точки x_0 і замкненої множини F_{i_k} . Покладемо $f\left(x\right) = \sup_k f_k\left(x\right)$ і покажемо, що функція f здійснює функціональну віддільність точки x_0 і множини F , а тим більше, точки x_0 і множини $F_0 \subset F$.

Дійсно, $f\left(x_{0}\right)=\sup_{k}f_{k}\left(x_{0}\right)=0.$ Далі, оскільки $\forall k=1,...,n$ $f_{k}\left(x\right)\leq1$, із $x\in F$ випливає, що $f\left(x\right)=\sup_{k}f_{k}\left(x\right)=1.$ Крім того, із того що $x\in F=\bigcup_{k=1}^{n}F_{i_{k}}$ випливає, що $x\in F_{i_{m}}$, $1\leq m\leq n$, тобто $f_{m}\left(x\right)=1.$

Залишилося показати неперервність побудованої функції. Для цього треба довести, що $\forall x' \in X$ і $\forall \varepsilon > 0$ $\exists U \in \tau : x' \in U : \forall x \in U \ \big| f(x) - f(x') \big| < \varepsilon$. Оскільки f_k — неперервна функція, то існує окіл U_k точки x', такий що

 $\forall x \in U_k \mid f_k(x) - f_k(x') \mid < \varepsilon$. Покладемо $U = \bigcap_{k=1}^n U_k$. Тоді для

кожного $x \in U$ і $\forall k = 1,...,n$ виконуються нерівності

$$f_k(x') - \varepsilon < f_k(x) \le \sup_{k} f_k(x) = f(x),$$

$$f_k(x) < f_k(x') + \varepsilon \le \sup_k f_k(x') + \varepsilon = f(x') + \varepsilon.$$

Звідси випливає, що $f(x') - \varepsilon < f(x) < f(x') + \varepsilon$.

Зауваження. Побудова регулярних просторів, які не ε тихоновськими ε нетривіальною задачею.

Мала лема Урисона (критерій нормальності). Досяжний простір X ϵ нормальним тоді і лише тоді, коли для кожної замкненої підмножини $F \subset X$ і відкритої множини U, що її містить, існує такий відкритий окіл V множини F, що $\overline{V} \subset U$, тобто коли кожна замкнена підмножина має замкнену локальну базу.

Доведення. *Необхідність*. Нехай простір X є нормальним. Розглянемо замкнену множину F та її окіл U. Покладемо $F' = X \setminus U$. Оскільки $F \cap F' = \emptyset$, то існує відкритий окіл V множини F і відкритий окіл V' множини F', такі що $V \cap V' = \emptyset$. Отже, $V \subset X \setminus V'$. З цього випливає, що $\overline{V} \subset \overline{X \setminus V'} = X \setminus V' \subset X \setminus F' = U$.

Достатність. Нехай умови леми виконані, а F і F' — довільні диз'юнктні замкнені підмножини простору X. Покладемо $U = X \setminus F'$. Тоді, оскільки множина U є відкритим околом множини F, то за умовою леми, існує окіл V множини F, такий що $\overline{V} \subset U$. Покладаючи $V' = X \setminus \overline{V}$ безпосередньо переконуємося, що множини V і V' не перетинаються і є околами множини F і F'.

Велика лема Урисона. *Будь-які непорожні диз'юнктні замкнені підмножини нормального простору \epsilon функціонально віддільними*. (Без доведення.)

Література

- 1. Александрян Р.А., Мирзаханян Э.А. Общая топология. М.: Высшая школа, 1979 (стр. 191–206).
- 2. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1981 (стр. 94–97).
- 3. Энгелькинг Р. Общая топология. М.: Мир, 1986 (стр. 69–85).

5. Компактність в топологічних просторах

Велику роль в топології відіграє клас компактних просторів, які мають дуже важливі властивості. Введемо основні поняття.

Озн. 5.1. Система множин $S = \{A_i \subset X, i \in I\}$ називається **покриттям** простору X, якщо $\bigcup A_i = X$.

Озн. 5.2. Покриття S називається **відкритим** (замкненим), якщо кожна із множин A_i є **відкритою** (замкненою).

Озн. 5.3. Підсистема P покриття S простору X називається **підпокриттям** покриття S, якщо сама P утворює покриття X.

Теорема 5.1. (Ліндельоф). Якщо простір X має злічену базу, то із його довільного відкритого покриття можна виділити не більш ніж злічене підпокриття.

Доведення. Нехай $\beta = \{U_n\}$ — деяка злічена база простору X, а $S = \{G_i, i \in I\}$ — довільне відкрите покриття простору X. Для кожного $x \in X$ позначимо через $G_n(x)$ один із елементів покриття S, що містить точку x, а через $U_n(x)$ — один із елементів бази β , що містить точку x і цілком міститься у відкритій множині G_n (теорема 2.3).

$$x \in U_n(x) \subset G_n(x)$$
.

Відібрані нами множини $U_n(x) \in \beta$ утворюють злічену множину. Крім того, кожна точка x простору X міститься в деякій множині $U_n(x)$, отже

$$\bigcup_{x\in X}U_n(x)=X.$$

Вибираючи для кожного $U_n(x)$ відкриту множину $G_n(x)$, ми отримаємо не більш ніж злічену систему, яка є підпокриттям покриття S.

Озн. 5.4. Топологічний простір (X, τ) , в якому із довільного відкритого покриття можна виділити не більш ніж злічене підпокриття, називається **ліндельофовим**, або фінально компактним.

Звузимо клас ліндельофових просторів і введемо наступне поняття.

Озн. 5.5. Топологічний простір (X, τ) називається **компактним** (бікомпактним), якщо будь-яке його відкрите покриття містить скінченне підпокриття (умова Бореля—Лебега).

Приклад 5.1. Простір з тривіальної топологією є компактним.

Приклад 5.2. Простір з дискретною топологією є компактним тоді і лише тоді, коли він складається із скінченної кількості точок.

Приклад 5.3. Простір Зариського є компактним.

Приклад 5.4. Простір \mathbb{R}^n , $n \ge 1$ не є компактним.

Теорема 5.2 (перший критерій компактності). Для компактності топологічного простору (X, τ) необхідно і достатньо, щоб будь-яка сукупність його замкнених підмножин з порожнім перетином містила скінченну підмножину таких множин із порожнім перетином.

$$(X,\tau)$$
 — компактний \Leftrightarrow

$$\iff \forall \left\{ \overline{F}_{\alpha}, \alpha \in A : \prod_{\alpha \in A} \overline{F}_{\alpha} = \emptyset \right\} \ \exists \left\{ \overline{F}_{\alpha_{1}}, \overline{F}_{\alpha_{2}}, ..., \overline{F}_{\alpha_{n}} \right\} : \prod_{i=1}^{n} \overline{F}_{\alpha_{i}} = \emptyset.$$

Доведення. Heoбxiднicmь. Нехай (X, τ) — компактний, а $\{\overline{F}_{\alpha}, \alpha \in A\}$ — довільна сукупність замкнених множин, що задовольняє умові $\prod_{\alpha \in A} \overline{F}_{\alpha} = \emptyset$. Розглянемо множини

 $U_{\alpha}=X\setminus \overline{F}_{\alpha}$. За правилами де Моргана (принцип двоїстості) сукупність множин $\left\{U_{\alpha},\alpha\in A\right\}$ задовольняє умові $\bigcup_{\alpha\in A}U_{\alpha}=X$, тобто утворює покриття простору $\left(X,\tau\right)$. Оскільки, за припущенням, $\left(X,\tau\right)$ — компактний простір, то існує скінченна підмножина множин $\left\{U_{\alpha_{1}},U_{\alpha_{2}},...,U_{\alpha_{n}}\right\}$, які також утворюють покриття: $\bigcup_{i=1}^{n}U_{\alpha_{i}}=X$. Отже, за правилами де Моргана

$$X\setminus \coprod_{i=1}^n \overline{F}_{lpha_i} = igcup_{i=1}^n (X\setminus \overline{F}_{lpha_i}) = igcup_{i=1}^n U_{lpha_i} = X \implies \coprod_{i=1}^n \overline{F}_{lpha_i} = \varnothing.$$

Достатність. Нехай $\{U_{\alpha}, \alpha \in A\}$ — довільне відкрите покриття простору (X,τ) . Очевидно, що множини $\overline{F}_{\alpha} = X \setminus U_{\alpha}, \alpha \in A$ ϵ замкненими, а їх сукупність має порожній перетин: $\prod_{\alpha \in A} \overline{F}_{\alpha} = \emptyset$. За умовою, ця сукупність містить скінченну підмножину множин $\{\overline{F}_{\alpha_1}, \overline{F}_{\alpha_2}, ..., \overline{F}_{\alpha_n}\}$, таку що $\prod_{i=1}^n \overline{F}_{\alpha_i} = \emptyset$. Звідси випливає, що множини U_{α_n} , які ϵ доповненнями множин \overline{F}_{α_n} , утворюють покриття простору (X,τ) , тобто простір (X,τ) ϵ компактним. ■

Озн. 5.6. Система підмножин $\{M_{\alpha} \subset X, \alpha \in A\}$ називається **центрованою**, якщо перетин довільної скінченної кількості цих підмножин є непорожнім.

$$\forall \{\alpha_1, \alpha_2, ..., \alpha_n\} \in A \prod_{i=1}^n M_{\alpha_i} \neq \emptyset \implies$$

$$\Rightarrow$$
 $\{M_{\alpha} \subset X, \alpha \in A\}$ — центрована система.

Теорема 5.3 (другий критерій компактності). Для компактності топологічного простору (X, τ) необхідно і достатньо, щоб будь-яка центрована система його замкнених підмножин мала непорожній перетин.

Доведення. *Необхідність*. Нехай простір (X,τ) — компактний, а $\{F_{\alpha}\}$ — довільна центрована система замкнених підмножин. Множини $G_{\alpha} = X \setminus F_{\alpha}$ відкриті. Жодна скінченна система цих множин G_{α_n} , $1 \le n < \infty$ не покриває X, оскільки

$$\forall n \in N \prod_{i=1}^{n} F_{\alpha_{i}} \neq \emptyset \Rightarrow$$

$$\Rightarrow X \setminus \prod_{i=1}^{n} F_{\alpha_{i}} = \bigcup_{i=1}^{n} (X \setminus F_{\alpha_{i}}) = \bigcup_{i=1}^{n} G_{\alpha_{i}} \neq X \setminus \emptyset = X .$$

Отже, оскільки (X,τ) — компактний простір, система $\{G_{\alpha}\}$ не може бути покриттям компактного простору. Інакше ми могли б вибрати із системи $\{G_{\alpha}\}$ скінченне підпокриття $\{G_{\alpha_1},...,G_{\alpha_n}\}$, а це означало б, що $\prod_{i=1}^n F_{\alpha_i} = \varnothing$. Але, якщо $\{G_{\alpha}\}$ — не покриття, то $\prod_{\alpha_i} F_{\alpha_i} \neq \varnothing$:

$$\bigcup_{\alpha} G_{\alpha} \neq X \Rightarrow X \setminus \bigcup_{\alpha} G_{\alpha} \neq X \setminus X = \emptyset \Rightarrow \prod_{\alpha} (X \setminus G_{\alpha}) = \prod_{\alpha} F_{\alpha} \neq \emptyset.$$

 \mathcal{A} остатність. Припустимо, що довільна центрована система замкнених множин із X має непорожній перетин. Нехай $\{G_{\alpha}\}$ — відкрите покриття (X,τ) . Розглянемо множини $F_{\alpha} = X \setminus G_{\alpha}$. Тоді

$$\bigcup_{\alpha}G_{\alpha}=X\Rightarrow X\setminus\bigcup_{\alpha}G_{\alpha}=X\setminus X=\varnothing\Rightarrow \prod_{\alpha}\left(X\setminus G_{\alpha}\right)=\prod_{\alpha}F_{\alpha}=\varnothing\;.$$
 Це означає, що система $\left\{F_{\alpha}\right\}$ не є центрованою, тобто

існують множини $F_1, F_2, ..., F_N$, такі що

$$\prod_{i=1}^{N} F_{i} = \varnothing \Rightarrow X \setminus \prod_{i=1}^{N} F_{i} = X \setminus \varnothing = X \Rightarrow \bigcup_{i=1}^{N} G_{i} = X.$$

Отже, із покриття $\{G_{\alpha}\}$ ми виділили скінчену підсистему

$$\{G_1,...,G_N\} = \{X \setminus F_1,...,X \setminus F_N\},$$

таку що $\bigcup_{\alpha}^{N} G_{\alpha} = X$. Це означає, що простір (X, τ) є

компактним.

- **Озн. 5.7.** *Множина* $M \subset X$ називається **компактною** (бікомпактною), якщо топологічний підпростір (M, τ_{M}) , що породжується індукованою топологією, є компактним.
- **Озн. 5.8.** *Множина* $M \subset X$ називається відносно компактною (відносно бікомпактною), якщо її замикання $M \in {\it компактною множиною}.$
- Озн. 5.9. Компактний і хаусдорфів простір називається компактом (бікомпактом).
- **Озн. 5.10.** Топологічний простір (X, τ) називається зліченно компактним, якщо із його довільного зліченного покриття відкритого можна виділити скінченне підпокриття (умова Бореля).
- Озн. 5.11. Топологічний простір (X,τ) називається секвенційно компактним, якщо довільна нескінченна послідовність його елементів містить збіжну підпослідовність (умова Больцано-Вейєрштрасса).

Теорема 5.4 (перший критерій зліченної компактності). Для того щоб простір (X, τ) був зліченно компактним необхідно і достатньо, щоб кожна його нескінченна підмножина мала принаймні одну строгу граничну точку, тобто точку, в довільному околі якої міститься нескінченна кількість точок підмножини.

Доведення. Heoбxiднicmb. Нехай (X,τ) — зліченно компактний простір, а M — довільна нескінченна множина в X. Припустимо, усупереч твердженню, що M не має жодної строгої граничної точки. Розглянемо послідовність замкнених множин $\Phi_n \subset M$, таку що $\Phi_n \subset \Phi_{n+1}$. Візьмемо $x_n \in \Phi_n$. За припущенням нескінченна послідовність точок $x_1, x_2, ..., x_n, ...$ не має строгих граничних точок. Побудуємо скінченну систему підмножин $\{F_n, n \in \mathbb{N}\}$, поклавши $F_n = \{x_n, x_{n+1}, ..., ...\}$. Із структури цих множин випливає, що будь-яка скінченна сукупність точок F_n має непорожній перетин, всі множини F_n є замкненими, але $\prod_{n \in \mathbb{N}} F_n = \emptyset$. Отже, ми побудували зліченну центровану систему замкнених множин, перетин яких порожній, що суперечить припущенню, що простір (X,τ) зліченно компактним.

Достатність. Нехай в просторі (X,τ) кожна нескінченна множина M має строгу граничну точку. Доведемо, що простір (X,τ) є зліченно компактним. Для достатньо перевірити, ЩО будь-яка центрована система $\{F_n\}$ замкнених нижонм непорожній перетин. Побудуємо множини $\hat{F}_m = \prod_{k=1}^m F_k$. Оскільки система $\{F_n\}$ є центрованою, то замкнені непорожні множини \hat{F}_m утворюють послідовність $\hat{F}_1, \hat{F}_2, ..., \hat{F}_m, ...$, що не зростає. Очевидно, що $\prod_{n \in \mathbb{N}} F_n = \prod_{m \in \mathbb{N}} \hat{F}_m$.

Можливі два варіанти: серед множин \hat{F}_m є лише скінченна кількість попарно різних множин, або нескінченна кількість таких множин. Розглянемо ці варіанти окремо.

- 1). Якщо серед множин \hat{F}_m ϵ лише скінченна кількість попарно різних множин, то починаючи з деякого номера m_0 виконується умова $F_{m_0} = F_{m_0+1} = \dots$ Тоді твердження доведено, оскільки $\prod_{m \in \mathbb{N}} \hat{F}_m = \hat{F}_{m_0} \neq \emptyset$.
- 2). Якщо серед множин \hat{F}_m є лише нескінченна кількість попарно різних множин, то можна вважати, що $\hat{F}_m \setminus \hat{F}_{m+1} \neq \emptyset$. Оберемо по одній точці з кожної множини $\hat{F}_m \setminus \hat{F}_{m+1}$. Отже, ми побудували нескінченну множину різних точок, яка, за умовою, має граничну точку x^* . Всі точки x_m, x_{m+1}, \ldots належать множинам \hat{F}_m . Отже, $x^* \in \hat{F}_m' \ \forall m \in \mathbb{N}$, до того ж $\overline{\hat{F}_m} = \hat{F}_m$. З цього випливає, що $\mathbf{I} \quad \hat{F}_m \neq \emptyset$.

Зауваження 5.1. Вимогу наявності строгої граничної точки можна замінити аксіомою T_1 . Інакше кажучи, в досяжних просторах будь-яка гранична точка ϵ строгою. Припустимо, що X — досяжний простір, а гранична точка x множини A не ϵ строгою, і тому існу ϵ деякий окіл U, що містить лише скінчену кількість точок множини A, що відрізняються від x. Розглянемо множину

 $V = U \setminus ((A I \ U) \setminus \{x\})$, тобто різницю між множиною U і цим скінченним перетином. Оскільки простір X є досяжним, то в ньому будь-яка скінченна множина є замкненою. Отже, множина V є відкритою $(V = X \ I \ (U \setminus \{A I \ U \setminus \{x\}\}) = U \ I \ (X \setminus (U \ I \ A \setminus \{x\}))$, містить точку x, а перетин множин дорівнює $A I \ V = \{x\}$ або \emptyset . Це суперечить тому, що x — гранична точка множини A.

Зауваження 5.2. Чому не можна взагалі зняти умову наявності строгої граничної точки? Розглянемо як контрприклад топологію, що складається з натуральних чисел на відрізку [1,n], тобто $\tau = \{\emptyset, \Gamma, [1,n] \Gamma \mid \forall n \in \Gamma \}$. Цей простір не є зліченно компактним (порушується другий критерій компактності). Розглянемо нескінченну множину $A \subset \Gamma$ і покладемо $n = \min A$. Тоді будь-який $m \in A \setminus \{n\}$ є граничною точкою множини A, тобто Γ є слабко зліченно компактним простором.

Теорема 5.5 (другий критерій зліченної компактності). Для того щоб досяжний простір (X, τ) був зліченно компактним необхідно і достатньо, щоб кожна нескінченна множина точок із X мала принаймні одну граничну точку (такі простори називаються слабко зліченно компактними). Інакше кажучи, в досяжних просторах слабка зліченна компактність еквівалентна зліченній компактності.

Доведення. Необхідність. Припустимо, що A — злічена підмножина X, що не має граничних точок (це не обмежує загальності, оскільки в будь-якій нескінченій підмножині ми можемо вибрати злічену підмножину). Множина A є замкненою в X (оскільки будь-яка точка

множини $\overline{A} \setminus A$ ϵ граничною точкою множини A, яка за припущенням не має граничних точок, тому A = A). Нехай $A = \{a_1, a_2, ...\}$ і $A_n = \{a_n, a_{n+1}, ...\}$. Із сказаного вище випливає, що $A_n = \overline{A}_n$, інакше $A' \neq \emptyset$. Покладемо $G_n = X \setminus A_n$. Ця множина ϵ доповненням замкненої множини A_n , тому вона ϵ відкритою. Розглянемо послідовність множин G_n . Вона зростає і покриває X, тому що кожна точка x із множини $X \setminus A$ належить $G_{\scriptscriptstyle 1}$, а значить, усім множинам $G_{\scriptscriptstyle n}$, а якщо $x \in A$, то вона дорівнює якомусь a_N , отже, належить G_{N+1} . Таким чином, послідовність множин G_n є покриттям, але скінченне підпокриття вона може містити $\{G_{i}, G_{i}, ..., G_{i}\}$, оскільки об'єднання елементів цього скінченного підпокриття було б найбільшим серед усіх множин G_n (які утворюють зростаючу послідовність).

$$G_1 \subset G_2 \subset ... \subset \bigcup_{k=1}^m G_{i_k} = G_N = X$$
.

У цьому випадку об'єднання $G_N = \bigcup_{k=1}^m G_{i_k}$ не може містити усі елементи a_i , номер яких перевищує N (за конструкцією), отже, воно не покриває X. У такому випадку простір X не є зліченно компактним. Отримане протиріччя доводить бажане.

Достатність. Припустимо, що простір X не ϵ зліченно компактним. Значить, існу ϵ зліченне відкрите покриття $\{G_n\}_{n=1}$, що не містить скінченного підпокриття. Оскільки

жодна сукупність множин $\{G_1,G_2,...,G_i\}$ не ϵ покриттям, виберемо з множин $X\setminus \bigcup_{k=1}^i G_i$ по одній точці x_i і утворимо із них множину A .

Розглянемо довільну точку $x \in X$. Оскільки $\{G_n\}_{n \in \Gamma}$ — покриття простору X, точка x належить якійсь множині G_N , яка в свою чергу може містити лише такі точки x_i із множини A, номер яких задовольняє умові i < N (оскільки за означенням точка x_i не належить жодному G_j , якщо $j \le i$). Отже, множина G_N є околом точки x, перетин якої із множиною A є лише скінченним. В той же час, оскільки простір є досяжним, в околі граничної точки будь-якої множини повинно міститись нескінченна кількість точок цієї множини. Отже, точка x не є граничною точкою множини A. Це твердження є слушним для будь-якої точки x, отже, множина A не має жодної граничної точки. Отримане протиріччя доводить бажане. \blacksquare

Теорема 5.6 (про еквівалентність компактності і зліченої компактності). Для топологічного простору (X,τ) із зліченною базою компактність еквівалентна зліченній компактності.

Доведення. *Необхідність*. Нехай (X,τ) — компактний простір. Тоді із *довільного* відкритого покриття можна виділити скінченне покриття. Значить, скінченне покриття можна виділити із зліченного відкритого покриття.

Достатність. Нехай (X,τ) є зліченно компактним простором, а $S = \{U_{\alpha}, \alpha \in A\}$ — його довільне відкрите покриття. Оскільки простори із зліченою базою мають властивість Ліндельофа (теорема 5.1), то покриття S

містить підпокриття S', яке, внаслідок, зліченної компактності простору (X,τ) містить скінченне підпокриття S''. Отже, простір (X,τ) є зліченно компактним.

Теорема 5.7 (про еквівалентність компактності, секвенційної компактності і зліченної компактності). Для досяжних просторів із зліченою базою компактність, секвенційна компактність і зліченна компактність є еквівалентними.

Доведення. З огляду на теорему 5.6, достатньо показати, що злічена компактність в досяжному просторі із зліченною базою еквівалентна секвенційній компактності.

Heoбxiднicmb. Розглянемо зліченно компактний простір (X,τ) . Нехай $A = \{x_n\}_{n\in\Gamma}$ — довільна нескінченна послідовність (тобто послідовність, що містить нескінченну кількість різних точок), а простір є зліченно компактним. Отже, за теоремою 5.5, множина A має граничну точку x^* . Розглянувши зліченну локальну базу околів $\{G_k\}_{k\in\Gamma}$ точки x^* , так що $G_{k+1} \subset G_k$, можна виділити послідовність x_{n_k} , що збігається до x^* . Отже, простір (X,τ) є секвенційно компактним.

Достатність. Нехай простір (X,τ) є секвенційно компактним. Із теореми 5.4 випливає, що будь-яка зліченна нескінченна підмножина простору X має строгу граничну точку. Це означає, що будь-яка нескінченна зліченна послідовність має граничну точку, тобто із неї можна виділити збіжну підпослідовність.

Література

- 1. Александрян Р.А., Мирзаханян Э.А. Общая топология. М.: Высшая школа, 1979, с. 225–238.
- 2. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1981, с. 98–105.
- 3. Энгелькинг Р. Общая топология. М.: Мир, 1986, с. 195–215.

6. Метричні простори

Численні поняття і теореми математичного аналізу використовують поняття відстані між точками простору. Зокрема, це стосується границі і неперервності. В багатьох випадках самі теореми та їх доведення залежать не від способу завдання метрики, а лише від їхніх властивостей: невід'ємності, симетрії і нерівності трикутника.

Озн. 6.1. Нехай X — довільна множина. Відображення $\rho: X \times X \to R^+$ називається **метрикою**, якщо $\forall x, y, z \in X$ воно має такі властивості (аксіоми метрики):

- 1) $\rho(x, y) = 0 \Leftrightarrow x = y$ (аксіома тотожності);
- 2) $\rho(x, y) = \rho(y, x)$ (аксіома симетрії);
- 3) $\rho(x,y) \le \rho(x,z) + \rho(z,y)$ (нерівність трикутника).

Озн. 6.2. Метричним простором називається пара (X, ρ) , де X — множина-носій, а ρ — метрика.

Приклад 6.1.
$$\left(R^n, \sqrt{\sum_{i=1}^n (x_i - y_i)^2}\right)$$
.

Приклад 6.2.
$$\left(C[a,b], \max_{[a,b]} |x(t)-y(t)|\right)$$
.

Озн. 6.3. Відкритою кулею радіуса $\varepsilon > 0$ з центром в точці $x_0 \in X$ називається множина

$$S(x_0,\varepsilon) = \{x \in X : \rho(x,x_0) < \varepsilon\}.$$

Озн. 6.4. Замкненою кулею радіуса $\varepsilon > 0$ з центром в точці $x_0 \in X$ називається множина

$$S^*(x_0,\varepsilon) = \{x \in X : \rho(x,x_0) \le \varepsilon\}.$$

- **Озн. 6.5.** Множина $G \subset X$ називається відкритою в метричному просторі (X, ρ) , якщо $\forall x \in G \ \exists S(x, r) \subset G$.
- **Озн. 6.6.** Множина $G \subset X$ називається замкненою, якщо $\ddot{i}\ddot{i}$ доповнення ϵ відкритою множиною.
- **Озн. 6.7.** Множина метричного простору ϵ **обмеженою за відстанню**, або просто **обмеженою**, якщо воно міститься в деякій кулі: $\exists S(x,r): M \subset S(x,r)$.
- **Озн. 6.8.** Точка x метричного простору (X, ρ) називається **границею** послідовності точок $x_n \in X$, якщо $\rho(x_n, x) \to 0$ при $n \to \infty$. Така збіжність називається збіжністю за відстанню (або за метрикою).

Цей факт записується так: $x = \lim_{n \to \infty} x_n$.

Приклад 6.3. В просторі $(R^1,|x-y|)$ відкритою кулею $S(x_0,r)$ є інтервал (x_0-r,x_0+r) , а замкненою кулею — сегмент $[x_0-r,x_0+r]$.

Приклад 6.4. В просторі $\left(R^2, \sqrt{\sum_{i=1}^2 \left(x_i - y_i\right)^2}\right)$ відкритою

кулею $S(x_0, r)$ є коло радіуса r з центром в точці x_0 .

Приклад 6.5. В просторі $(R^2, |x_1 - y_1| + |x_2 - y_2|)$ одинична куля є ромбом з вершинами (0,1), (1,0), (0,-1) і (0,-1).

Приклад 6.6. В просторі $\left(C[a,b], \max_{t \in [a,b]} \left| x(t) - y(t) \right| \right)$ околом ϵ смуга, що складається із функцій, які задовольняють умові $\forall t \in [a,b] \ \left| x(t) - y(t) \right| < r$.

Лема 6.1. Для довільних точок x, x', y, y' метричного простору (X, ρ) виконується нерівність

$$\left|\rho(x',y')-\rho(x,y)\right| \leq \rho(x,x')+\rho(y,y').$$

Доведення. Із нерівності трикутника випливає:

$$\rho(x', y') \le \rho(x', x) + \rho(x, y') \le \rho(x, x') + \rho(x, y) + \rho(y, y').$$

Отже,

$$\rho(x',y') - \rho(x,y) \le \rho(x,x') + \rho(y,y').$$

Аналогічно,

$$\rho(x, y) \le \rho(x, x') + \rho(x', y) \le \rho(x, x') + \rho(x', y') + \rho(y', y).$$

Звідси випливає, що

$$\rho(x,y)-\rho(x',y') \le \rho(x,x')+\rho(y,y').$$

Таким чином.

$$\left|\rho(x',y')-\rho(x,y)\right| \le \rho(x,x')+\rho(y,y'). \blacksquare$$

Лема 6.2. Метрика $\rho(x, y)$ ϵ неперервною функцію своїх аргументів, тобто якщо $x_n \to x, y_n \to y,$ то $\rho(x_n, y_n) \to \rho(x, y).$

$$\left|\rho\left(x_{n},y_{n}\right)-\rho\left(x_{0},y_{0}\right)\right| \leq \rho\left(x_{n},x_{0}\right)+\rho\left(y_{n},y_{0}\right) \rightarrow 0. \blacksquare$$

Теорема 6.1. Відкрита куля S(a,r) в метричному просторі (X, ρ) є відкритою множиною в топології метричного простору, що породжена його метрикою.

Доведення. Розглянемо довільну точку x∈ S(a, r).

$$x \in S(a, r) \Rightarrow \rho(x, a) < r$$
.

Покладемо $\varepsilon = r - \rho(x, a)$. Розглянемо довільну точку $y \in S(x, \varepsilon)$.

$$y \in S(x, \varepsilon) \Rightarrow \rho(y, x) < \varepsilon$$
.

 $\rho(y, a) \le \rho(y, x) + \rho(x, a) < r \Rightarrow y \in S(a, r) \Rightarrow S(x, \varepsilon) \subset S(a, r)$ Таким чином, точка $x \in$ внутрішньою точкою множини (a, r), тобто S(a, r) — відкрита множина.

Теорема 6.2. Точка x належить замиканню \overline{A} множини $A \subset X$ в топології, що індукована на X метрикою ρ , тоді і лише тоді, якщо існує послідовність точок множини A, що збігається до точки x.

Доведення. Необхідність.

$$x \in \overline{A} \implies \forall n \in N \ \exists x_n \in A \cap S\left(x, \frac{1}{n}\right) \Longrightarrow$$

$$\Rightarrow \rho(x, x_i) < \frac{1}{n} \implies x = \lim_{n \to \infty} x_n.$$

Достатність.

$$x \notin \overline{A} \implies \exists r > 0 : A \cap S(x, r) = \emptyset \implies$$

$$\implies \forall x' \in A \ \rho(x, x') \ge r \implies \not\exists \{x_n\} : \lim_{n \to \infty} x_n = x . \blacksquare$$

Наслідок 1. Теорема 6.2 стверджує, що кожна точка дотику множини в метричному просторі є границею деякої послідовності елементів цієї множини. Отже, топологію метричного простору можна описати не лише за допомогою куль, а й за допомогою збіжних послідовностей.

Наслідок 2. Множина ϵ замкненою, якщо всі послідовності її точок збігаються лише до точок ці ϵ ї ж множини.

Теорема 6.3. Замкнена куля $S^*(a,r)$ ϵ замкненою множиною в топології метричного простору, що породжена його метрикою.

Доведення. Нехай
$$x_n \in S^*(a, r)$$
. $x_n \in S^*(a, r) \Rightarrow \rho(x_n, a) \le r \Rightarrow$

$$\Rightarrow \lim_{n\to\infty} \rho(x_n, a) = \rho(\lim_{n\to\infty} x_n, a) = \rho(x, a) \le r \Rightarrow x \in S^*(a, r).$$

Отже, всі граничні точки множини $S^*(a, r)$, які є точками її дотику, належать кулі $S^*(a, r)$.

Озн. 6.9. Послідовність $\{x_n\}_{n=1}^{\infty}$ точок метричного простору (X, ρ) називається фундаментальною, якщо $\rho(x_n, x_m) \to 0$ при $n \to \infty, m \to \infty$.

Лема 6.3. Будь-яка збіжна послідовність метричного простору ϵ фундаментальною.

Доведення. Нехай $x_n \to x$ при $n \to \infty$. Тоді

$$\rho(x_n, x_m) \le \rho(x_n, x) + \rho(x, x_m) \to 0$$
 при $n, m \to \infty$.

Отже, послідовність ϵ фундаментальною.

Лема 6.4. *Будь-яка* фундаментальна послідовність точок метричного простору є обмеженою.

Доведення. Задамо $\varepsilon > 0$ і підберемо натуральне число N так, щоб $\rho(x_n, x_m) < \varepsilon$ при $n, m \ge N$. Зокрема, $\rho(x_n, x_N) < \varepsilon$ при $n \ge N$. Введемо позначення

$$r = \max \{ \varepsilon, \rho(x_1, x_N), \rho(x_2, x_N), ..., \rho(x_{N-1}, x_N) \}.$$

Тепер при всіх n = 1, 2, ...

$$\rho(x_n,x_N) \leq r.$$

Інакше кажучи,

$$\left\{x_n\right\}_{n=1}^{\infty} \subset S^*\left(x_N,r\right).$$

Замінюючи число r на будь-яке число r' > r, можна заключити послідовність в довільну відкриту кулю:

$$\left\{x_{n}\right\}_{n=1}^{\infty}\subset S\left(x_{N},r'\right).$$

Література

- 1. Александрян Р.А., Мирзаханян Э.А. Общая топология. М.: Высшая школа, 1979. с.47–50.
- 2. Садовничий В,А. Теория операторов. М.: Изд-во Моск. ун-та, 1986. с. 60–69.

7. Повні метричні простори

Озн. 7.1. Метричний простір називається **повним**, якщо в ньому будь-яка фундаментальна послідовність має границю.

Приклад 7.1.
$$\left(R^n, \sqrt{\sum_{i=1}^n (x_i - y_i)^2}\right)$$
.

Приклад 7.2.
$$\left(C[a,b], \max_{[a,b]} |x(t)-y(t)|\right)$$
.

Озн. 7.2. Бієктивне відображення φ одного метричного простору (E_1, ρ_1) на інший (E_2, ρ_2) називається ізометрією, якщо

$$\forall x_1, x_2 \in E_1 \ \rho_1(x_1, x_2) = \rho_2(\varphi(x_1), \varphi(x_2)).$$

- **Озн. 7.3.** Метричні простори, між якими існує ізометрія, називаються ізометричними.
- **Озн. 7.4.** Повний метричний простір $(\tilde{E}, \tilde{\rho})$ називається **поповненням** метричного простору (E, ρ) , якщо
 - 1) $E \subset \tilde{E}$;
 - 2) $\overline{E} = \tilde{E}$.

Теорема про поповнення метричного простору (**Хаусдорф).** *Будь-який метричний простір має поповнення, єдине з точністю до ізометрії, що залишає точки простору нерухомими.*

Лема 7.1. Якщо фундаментальна послідовність містить збіжну підпослідовність, то сама послідовність збігається до тієї ж границі.

Доведення. Припустимо, що
$$\lim_{n_k \to \infty} \rho(x_{n_k}, x_0) = 0$$
, тобто

$$\forall \varepsilon > 0 \,\exists N_1(\varepsilon) > 0 : \forall n \geq N_1 \, \rho(x_{n_{\varepsilon}}, x_0) < \varepsilon$$

За нерівністю трикутника

$$\rho(x_n,x) \leq \rho(x_n,x_{n_k}) + \rho(x_{n_k},x).$$

Оскільки послідовність $\left\{x_n\right\}_{n=1}^{\infty}$ є фундаментальною,

$$\forall \varepsilon > 0 \,\exists N(\varepsilon) > 0 : \forall n, m \geq N \, \rho(x_n, x_m) < \varepsilon$$
.

Таким чином,

$$\forall \varepsilon > 0 \ \forall n, n_{\varepsilon} \geq \max(N_1, N_2)$$

$$\rho(x_n, x_0) \le \rho(x_n, x_{n_k}) + \rho(x_{n_k}, x_0) < \varepsilon + \varepsilon = 2\varepsilon.$$

Лема 7.2. *Будь-яка підпослідовність фундаментальної послідовності є фундаментальною.*

Доведення. За нерівністю трикутника

$$\rho\left(x_{n_k}, x_{n_l}\right) \leq \rho\left(x_{n_k}, x_n\right) + \rho\left(x_n, x_{n_l}\right).$$

Оскільки послідовність $\left\{x_n\right\}_{n=1}^{\infty}$ є фундаментальною,

$$\forall \varepsilon > 0 \, \exists N(\varepsilon) > 0 \, : \forall n, m \geq N \ \rho \left(x_{_{\! n}}, x_{_{\! m}} \right) < \varepsilon \, .$$

Отже,

$$\forall \varepsilon > 0 \ \forall n, n_k, n_l \geq N$$

$$\rho(x_{n_k}, x_{n_l}) \le \rho(x_{n_k}, x_n) + \rho(x_n, x_{n_l}) < \varepsilon + \varepsilon = 2\varepsilon.$$

Теорема 7.1 (принцип вкладених куль). Для того щоб метричний простір був повним, необхідно і достатньо, щоб у ньому будь-яка послідовність замкнених вкладених одна в одну куль, радіуси яких прямують до нуля, мала непорожній перетин.

Доведення. Необхідність. Нехай (X, ρ) — повний метричний простір, а $S_1^*(x_1, r_1) \supset S_2^*(x_2, r_2) \supset ...$ — вкладені одна в одну замкнені кулі.

Послідовність їх центрів є фундаментальною, оскільки $\rho(x_n, x_m) < r_n$ при m > n, а $r_n \to 0$ при $n \to \infty$.

Оскільки (X, ρ) — повний метричний простір, існує елемент $x = \lim_{n \to \infty} x_n$, $x \in X$.

Покажемо, що x належить всім кулям $S_n^* \left(x_n, r_n \right)$, $n=1,2,\ldots,$ тобто $x \in \bigcap_{n=1}^\infty S^* \left(x_n, r_n \right)$. Дійсно, оскільки $x=\lim_{n\to\infty} x_n$, то

$$\forall \varepsilon > 0 \,\exists N > 0 : \forall n \geq N \quad \rho(x_n, x) < \varepsilon.$$

Значить, в довільному околі точки x знайдеться нескінченна кількість точок із послідовності $\{x_n\}$, починаючи з деякого номера N. Оскільки кулі вкладені одна в одну, ці точки належать всім попереднім кулям $S_1^*, S_2^*, ..., S_{N-1}^*$. Отже, для довільного n точка x є точкою дотику множини S_n^* , тобто належить його замиканню. Оскільки кожна куля є замкненою, точка x належить всім S_n^* . Це означає, що

$$x \in \bigcap_{n=1}^{\infty} S_n^*$$
.

Достатність. Покажемо, що якщо $\left\{x_n\right\}_{n=1}^{\infty}$ фундаментальна послідовність, то вона має границю $x \in X$.

- 1. Оскільки послідовність $\left\{x_{n}\right\}$ є фундаментальною, то $\forall \varepsilon > 0 \,\exists n_{1} > 0 \colon \forall n \geq n_{1} \quad \rho\left(x_{n}, x_{n_{1}}\right) < \varepsilon \; . \;$ Поклавши $\varepsilon = \frac{1}{2}$, ми можемо вибрати точку $x_{n_{1}}$ так, що $\rho\left(x_{n}, x_{n_{1}}\right) < \frac{1}{2}$ для довільного $n > n_{1}$. Зробимо точку $x_{n_{1}}$ центром замкненої кулі радіуса $1 \colon S_{1}^{*}\left(x_{n_{1}}, 1\right)$.
- 2. Оскільки підпослідовність $\left\{x_n\right\}_{n=n_1}^{\infty}$ є фундаментальною (за лемою 7.2), то поклавши $\varepsilon=\frac{1}{2^2}$, можна вибрати точку x_{n_2} таку, що $\rho\left(x_n,x_{n_2}\right)<\frac{1}{2^2}$ для довільного $n>n_2>n_1$. Зробимо точку x_{n_2} центром замкненої кулі радіуса $\frac{1}{2}$: $S_2^*\left(x_{n_2},\frac{1}{2}\right)$.
- к. Нехай $x_{n_1}, x_{n_2}, ..., x_{n_{k-1}}$, де $n_1 < n_2 < ... < n_{k-1}$ уже вибрані. Тоді, оскільки підпослідовність $\left\{x_n\right\}_{n=n_{k-1}}^{\infty}$ є фундаментальною, покладемо $\varepsilon = \frac{1}{2^k}$ і виберемо точку x_{n_k} так, щоб виконувалися умови $\rho\left(x_n, x_{n_k}\right) < \frac{1}{2^k}$ для довільного $n \geq n_k > n_{k-1}$. Як і раніше, будемо вважати точку x_{n_k} центром замкненої кулі радіуса $\frac{1}{2^{k-1}}$: $S_k^*\left(x_{n_k}, \frac{1}{2^{k-1}}\right)$.

Продовжуючи цей процес, ми отримаємо послідовність замкнених куль, радіуси яких прямують до нуля. Покажемо, що ці кулі вкладаються одна в одну, тобто

$$S_{k+1}^*\left(x_{n_{k+1}}, \frac{1}{2^k}\right) \subset S_k^*\left(x_{n_k}, \frac{1}{2^{k-1}}\right).$$

Нехай точка $y \in S_{k+1}^* \left(x_{n_{k+1}}, \frac{1}{2^k} \right)$. Значить, $\rho \left(y, x_{n_{k+1}} \right) \leq \frac{1}{2^k}$. За нерівністю трикутника

$$\rho(y, x_{n_k}) \le \rho(y, x_{n_{k+1}}) + \rho(x_{n_{k+1}}, x_{n_k}).$$

Оскільки $n_{k+1} > n_k$, то $\rho(x_{n_{k+1}}, x_{n_k}) < \frac{1}{2^k}$. Значить,

$$\rho(y, x_{n_k}) \le \frac{1}{2^k} + \frac{1}{2^k} = \frac{2}{2^k} = \frac{1}{2^{k-1}}.$$

Інакше кажучи,

$$y \in S_k^* \left(x_{n_k}, \frac{1}{2^{k-1}} \right).$$

Таким чином, ми побудували послідовність вкладених одна в одну замкнених куль, радіуси яких прямують до нуля. За припущенням, в просторі (X,ρ) існує точка x, загальна для всіх таких куль: $x\in\bigcap_{k=1}^\infty S_k^*\left(x_{n_k},\frac{1}{2^{k-1}}\right)$. Крім того, за побудовою, $\rho(x_{n_k},x)=\frac{1}{2^{k-1}}\to 0$, коли $k\to\infty$. Таким чином, фундаментальна послідовність $\{x_n\}$ містить підпослідовність $\{x_{n_k}\}$, що збігається до деякої точки в просторі (X,ρ) . Із леми 7.1 випливає, що і вся

послідовність $\{x_n\}$ прямує то тієї ж точки. Таким чином, простір (X, ρ) є повним. \blacksquare

Зауваження. Покажемо, що умову $r_n \to 0$ зняти не можна. Розглянемо метричний простір (N, ρ) , де N — множина натуральних чисел, а

$$\rho(m,n) = \begin{cases} 1 + \frac{1}{n+m}, \text{ якщо } n \neq m, \\ 0, \text{ якщо } n = m. \end{cases}$$

Визначимо послідовність замкнених куль з центрами в точках n і радіусом $1 + \frac{1}{2n}$.

$$S^*\left(n,1+\frac{1}{2n}\right) = \left\{m: \rho\left(m,n\right) \le 1+\frac{1}{2n}\right\} = \left\{n,n+1,\ldots\right\}, n = 1,2,\ldots$$

Ці кулі є вкладеними одна в одну і замкненими, простір є повним, але перетин куль є порожнім (яке б число ми не взяли, знайдеться нескінченна кількість куль, які лежать правіше цієї точки). Отже, необхідні умови в принципі вкладених куль не виконуються. \blacksquare

Озн. 7.5. Підмножина M метричного простору (X, ρ) називається **множиною першої категорії**, якщо його можна подати у вигляді об'єднання не більш ніж зліченої кількості ніде не щільних множин.

Озн. 7.6. Підмножина M метричного простору (X, ρ) називається **множиною другої категорії**, якщо вона не ϵ множиною першої категорії.

Теорема 7.2 (**теорема Бера про категорії**). *Нехай* (X, ρ) — непорожній повний метричний простір, тоді X ϵ множиною другої категорії.

Доведення. Припустимо супротивне, тобто

$$X = \bigcup_{n=1}^{\infty} E_n ,$$

і кожна множина E_n , n=1,2,... ϵ ніде не щільною в X . Нехай S_0 — деяка замкнена куля радіуса 1.

Оскільки множина $E_{_1}$ є ніде не щільною, існує замкнена куля $S_{_1}$, радіус якої менше $\frac{1}{2}$, така що

$$S_1 \subset S_0 \text{ i } S_1 \cap E_1 = \emptyset.$$

(Якщо існує куля радіуса більше $\frac{1}{2}$, що задовольняє таким умовам, то ми виберемо в ній кулю, радіуса менше $\frac{1}{2}$.)

Оскільки множина E_2 є ніде не щільною, існує замкнена куля S_2 , радіус якої менше $\frac{1}{2^2}$, така що

$$S_2 \subset S_1 \text{ i } S_2 \cap E_2 = \emptyset.$$

Продовжуючи цей процес, ми отримаємо послідовність вкладених одна в одну замкнених куль $\left\{S_n\right\}_{n=1}^{\infty}$, радіуси яких прямують до нуля. За принципом вкладених куль існує точка $x\in\bigcap_{n=1}^{\infty}S_n\cap X$. Оскільки за побудовою $S_n\cap E_n=\emptyset$, то

 $x \notin E_n \ \, \forall n=1,2,\ldots$ Значить, $x \notin \bigcup_{n=1}^\infty E_n$. Це суперечить припущенню, що $X=\bigcup_{n=1}^\infty E_n$. \blacksquare

Озн. 7.7. Відображення $g:(X,\rho) \to (X,\rho)$ називається **стискаючим**, якщо існує таке число $0 < \alpha < 1$, що $\rho(g(x),g(y)) \le \alpha \rho(x,y)$ для довільних $x,y \in X$.

Теорема 7.3. Будь-яке стискаюче відображення ϵ неперервним.

Розв'язок. Нехай $x_n \to x$, а $g: X \to X$ ε стискаючим відображенням. Тоді

$$0 \le \rho(g(x_n), g(x)) \le \alpha \rho(x_n, x) \to 0, n \to \infty.$$

Отже,

$$g(x_n) \rightarrow g(x)$$
, коли $x_n \rightarrow x$.

Теорема 7.4 (принцип стискаючих відображень Банаха). *Будь-яке стискаюче відображення повного метричного простору* (X, ρ) *в себе має лише одну нерухому точку, тобто* $\exists ! x \in X : g(x) = x$.

Розв'язок. Нехай x_0 — деяка точка із X. Визначимо послідовність точок $\{x_n\}$ за таким правилом:

$$x_1 = g(x_0), ..., x_n = g(x_{n-1}).$$

Покажемо, що ця послідовність ϵ фундаментальною. Дійсно, якщо m>n , то

$$\rho\left(x_{n},x_{m}\right)=\rho\left(g\left(x_{n-1}\right),g\left(x_{m-1}\right)\right)\leq\alpha\rho\left(x_{n-1},x_{m-1}\right)\leq\ldots\leq$$

$$\leq \alpha^{n} \rho(x_{0}, x_{m-n}) \leq \alpha^{n} \left\{ \rho(x_{0}, x_{1}) + \rho(x_{1}, x_{2}) + \dots + \rho(x_{m-n-1}, x_{m-n}) \right\} \leq$$

$$\leq \alpha^{n} \rho(x_{0}, x_{1}) \left\{ 1 + \alpha + \alpha^{2} + \dots + \alpha^{m-n-1} \right\} \leq \alpha^{n} \rho(x_{0}, x_{1}) \frac{1}{1 - \alpha}$$

Таким чином, оскільки $0 < \alpha < 1$,

$$\rho(x_n, x_m) \to 0, n \to \infty, m \to \infty, m > n$$
.

Внаслідок повноти простору (X, ρ) в ньому існує границя послідовності $\{x_n\}$. Позначимо її через $x = \lim_{n \to \infty} x_n$.

Із теореми 7.3 випливає, що

$$g(x) = \lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} x_{n+1} = x$$
.

Отже, нерухома точка існує.

Доведемо її єдиність. Якщо g(x) = x і g(y) = y, то $\rho(x,y) \le \alpha \rho(x,y)$, тобто $\rho(x,y) = 0$. за аксіомою тотожності це означає, що x = y.

Наслідок 7.1. Умову $\alpha \le 1$ не можна замінити на $\alpha < 1$.

Доведення. Якщо відображення $g:(X,\rho) \to (X,\rho)$ має властивість $\rho(g(x),g(y)) < \rho(x,y)$ $\forall x,y \in X, x \neq y$, то нерухомої точки може не бути. Дійсно, розглянемо простір $([1,\infty),|x-y|)$ і визначимо відображення $g(x)=x+\frac{1}{x}$. Тоді $\rho(g(x),g(y))=\left|x+\frac{1}{x}-y-\frac{1}{y}\right|<|x-y|$. Оскільки для жодного $x \in [1,\infty)$ $g(x)=x+\frac{1}{x}\neq x$, нерухомої точки немає.

9

Література

- 1. Садовничий В,А. Теория операторов. М.: Изд-во Моск. ун-та, 1986. с.41–47.
- 2. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. (5-е изд.) М.: Наука, 1981. с. 66-75.

8. Компактні метричні простори

- **Озн. 8.1.** Нехай A— деяка множина в метричному просторі (X, ρ) і ε деяке додатне число. Множина B із цього простору називається ε -сіткою для множини A, якщо $\forall x \in A \ \exists y \in B : \rho(x, y) < \varepsilon$.
- **Озн. 8.2.** Множина A називається **цілком обмеженою**, якщо для неї при довільному $\varepsilon > 0$ існує скінченна ε -сітка.

Теорема 8.1 (Хаусдорф). *Нехай* (X, ρ) — метричний простір. *Наступні твердження* ϵ еквівалентними.

- 1) (X, ρ) компактний;
- 2) (X, ρ) повний і цілком обмежений;
- 3) із довільної післідовності точок простору (X, ρ) можна вибрати збіжну підпослідовність (секвенціальна компактність);
- 4) довільна нескінченна підмножина в X має хоча б одну граничну точку (зліченна компактність).

Доведення. $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 1$.

Покажемо, що $1\Rightarrow 2$. Нехай (X,ρ) — компактний простір. Покажемо його повноту. Нехай $\{x_1,x_2,...,x_n,...\}$ — фундаментальна послідовність в X. Покладемо $A_n=\{x_n,x_{n+1},...\}$ і $B_n=\overline{A}_n$. Оскільки система $\{B_n\}$ є центрованою системою замкнених підмножин, то $\bigcap_{i=1}^\infty B_i$ —

непорожня множина. Нехай $x_0 = \bigcap_{i=1}^{\infty} B_i$. Тоді

$$\forall \varepsilon > 0 \ \forall N > 0 \ \exists n > N : \rho(x_0, x_n) < \varepsilon$$

$$\forall \varepsilon > 0 \exists N > 0 \forall n, m > N : \rho(x_n, x_m) < \varepsilon,$$

$$\forall \varepsilon > 0 \exists N > 0 \forall n, m > N :$$

$$\rho(x_0, x_m) \le \rho(x_0, x_n) + \rho(x_n, x_m) < 2\varepsilon.$$

3 цього випливає, що

$$x_0 = \lim_{n \to \infty} x_n \in X .$$

Отже, (X, ρ) — повний простір.

Припустимо тепер, що простір (X, ρ) не є цілком обмеженим. Інакше кажучи, припустимо, що існує таке число $\varepsilon_0 > 0$ таке, що в X немає скінченної ε_0 -сітки. Візьмемо довільну точку $x_1 \in X$.

- 1) $\exists x_2 \in X : \rho(x_1, x_2) > \varepsilon_0$. Інакше точка x_1 утворювала б ε_0 -сітку в X.
- 2) $\exists x_3 \in X: \rho(x_1, x_3) > \varepsilon_0$, $\rho(x_2, x_3) > \varepsilon_0$. Інакше точки x_1 і x_2 утворювали б ε_0 -сітку в X.

n) $\exists x_{n+1} \in X: \rho(x_{n+1}, x_i) > \varepsilon_0, i = 1, 2, ..., n$. Інакше точки $x_1, x_2, ..., x_n$ утворювали б ε_0 -сітку в X.

Таким чином, ми побудували послідовність $\{x_n\}_{n=1}^{\infty}$, яка не є фундаментальною, а, отже, не має границі. З цього випливає, що кожна із множин $A_n = \{x_n, x_{n+1}, ...\}$, які утворюють центровану систему, є замкненою. Їх перетин є порожнім. Це протирічить компактності простору (X, ρ) .

Покажемо, що $2 \Rightarrow 3$. Нехай $\left\{x_n\right\}_{n=1}^{\infty}$ — послідовність точок X .

1) Виберемо в X скінченну 1-сітку і побудуємо навколо кожної з точок, що її утворюють, кулю радіуса 1: $S_i(a_i,1)$, $i=1,...,N_1$. Оскільки X є цілком обмеженою,

$$\bigcup_{i=1}^{N_1} S_i(a_i,1) = X.$$

3 цього випливає, що принаймні одна куля, скажімо, S_1 , містить нескінченну підпослідовність $\left\{x_n^{(1)}\right\}_{n=1}^{\infty}$ послідовності $\left\{x_n\right\}_{n=1}^{\infty}$.

2) Виберемо в X скінченну $\frac{1}{2}$ -сітку і побудуємо навколо кожної з цих точок, що її утворюють кулю радіуса $\frac{1}{2}$: $S_i\bigg(b_i,\frac{1}{2}\bigg),\ i=1,2,...,N_2$. Оскільки множина X є цілком обмеженою,

$$\bigcup_{i=1}^{N_2} S_i\left(b_i, \frac{1}{2}\right) = X.$$

3 цього випливає, що принаймні одна куля, скажімо, S_2 , містить нескінченну підпослідовність $\left\{x_n^{(2)}\right\}_{n=1}^\infty$ послідовності $\left\{x_n^{(1)}\right\}_{n=1}^\infty$.

•••

m) Виберемо в X скінченну $\frac{1}{m}$ -сітку і побудуємо навколо кожної з цих точок, що її утворюють кулю радіуса $\frac{1}{m}$: $S_i\bigg(c_i,\frac{1}{m}\bigg), \quad i=1,2,...,N_m$. Оскільки множина X є цілком обмеженою,

$$\bigcup_{i=1}^{N_m} S_i\left(c_i, \frac{1}{m}\right) = X.$$

3 цього випливає, що принаймні одна куля, скажімо, S_m , містить нескінченну підпослідовність $\left\{x_n^{(m)}\right\}_{n=1}^\infty$ послідовності $\left\{x_n^{(m)}\right\}_{n=1}^\infty$.

Продовжимо цей процес до нескінченності. Розглянемо діагональну послідовність $\left\{x_n^{(n)}\right\}_{n=1}^{\infty}$. Вона є підпослідовністю послідовності $\left\{x_n\right\}_{n=1}^{\infty}$. Крім того, при $m \geq n_0$ $x_m^{(m)} \in \left\{x_n^{(n_0)}\right\}_{n=1}^{\infty} \in S_{n_0}$. Це означає, що $\left\{x_n^{(n)}\right\}_{n=1}^{\infty}$ є фундаментальною і внаслідок повноти (X, ρ) має границю.

Твердження $3\Rightarrow 4$ ϵ тривіальним, оскільки із довільної нескінченної множини можна виділити зліченну множину $\left\{x_n\right\}_{n=1}^{\infty}$, яка внаслідок секвенціальної компактності містить збіжну підпослідовність: $\left\{x_{n_k}\right\}_{n_k=1}^{\infty} \to x_0 \in X$.

Покажемо тепер, що $4\Rightarrow 1$. Для цього спочатку доведемо, що множина X ϵ цілком обмеженою, тобто в ній для довільного числа $\epsilon>0$ існує ϵ -сітка. Якщо б це було не так, то застосувавши той же прийом, що і на етапі $1\Rightarrow 2$, ми побудували б послідовність $\left\{x_n\right\}_{n=1}^{\infty}$, яка не має граничних точок, оскільки вона не ϵ фундаментальною. Для кожного n побудуємо скінченну $\frac{1}{n}$ -сітку і розглянемо об'єднання всіх таких сіток. Воно ϵ щільним і не більше ніж зліченним. Таким чином, простір $\left(X,\rho\right)$ ϵ сепарабельним, отже, має зліченну базу.

Для того щоб довести компактність простору, що має зліченну базу, достатньо перевірити, що із будь-якого зліченного (а не довільного нескінченного) відкритого покриття можна виділити скінченне підпокриття. Припустимо, що $\{U_{\alpha}\}$ — довільне покриття простору (X,ρ) , а $\{V_n\}$ — його зліченна база. Кожна точка $x\in X$ міститься в деякому U_{α} . За означенням бази знайдеться деяке $V_i\in \{V_n\}$ таке, що $x\in V_i\subset U_{\alpha}$. Якщо кожній точці $x\in X$ поставити у відповідність окіл $V_i\in \{V_n\}$, то сукупність цих околів утворить зліченне покриття множини X.

Залишилося довести, що із довільного зліченного відкритого покриття множини X можна вибрати скінченне підпокриття. Для цього достатньо довести еквівалентне твердження для замкнених підмножин, що утворюють зліченну центровану систему.

Нехай $\left\{F_{n}\right\}_{n=1}^{\infty}$ — центрована система замкнених підмножин X . Покажемо, що

$$\bigcap_{n=1}^{\infty} F_n \neq \emptyset.$$

Нехай $\Phi_n = \bigcap_{k=1}^n F_k$. Ясно, що множини Φ_n є замкненими і

непорожніми, оскільки система $\left\{F_n\right\}_{n=1}^{\infty}$ є центрованою, і

$$\Phi_1 \supset \Phi_2 \supset ..., \bigcap_{n=1}^{\infty} \Phi_n = \bigcap_{n=1}^{\infty} F_n$$
.

Можливі два випадки.

1) Починаючи з деякого номера

$$\Phi_{n_0} = \Phi_{n_0+1} = \dots = \Phi_{n_0+k} = \dots$$

Тоді

$$\bigcap_{n=1}^{\infty} F_n = \bigcap_{n=1}^{\infty} \Phi_n = \Phi_{n_0} \neq \emptyset.$$

2) Серед Φ_n ϵ нескінченно багато попарно різних. Достатньо розглянути випадок, коли всі вони відрізняються одна від одної. Нехай $x_n \in \Phi_n \setminus \Phi_{n+1}$. Тоді послідовність $\{x_n\}_{n=1}^{\infty}$ ϵ нескінченною множиною різних точок із X і, внаслідок уже доведеного факту (зліченна компактність), має хоча б одну граничну точку x_0 . Оскільки Φ_n містить всі точки x_n, x_{n+1}, \ldots то x_0 — гранична точка для кожної множини Φ_n і внаслідок замкненості Φ_n

$$\forall n \in \mathbb{N} \quad x_0 \in \Phi_n$$
.

Отже,

$$x_0 \in \bigcap_{n=1}^{\infty} \Phi_n = \bigcap_{n=1}^{\infty} F_n ,$$

тобто $\bigcap_{n=1}^{\infty} F_n$ є непорожнім.

Література

1. Садовничий В,А. Теория операторов. — М.: Изд-во Моск. ун-та, 1986. — с.49–51.

9. Лінійні простори

Лінійна система ϵ алгебраїчною структурою, яка абстрагує властивості, пов'язані із додаванням та множенням векторів евклідова простору на скаляр.

Озн. 9.1. Дійсним лінійним (векторним) простором називається упорядкована трійка $(E,+,\times)$, що складається з множини E, елементи якого називаються векторами, операції додавання і операції множення на дійсні числа, якщо для кожних двох її елементів x та y визначено їх суму $x+y\in E$, і для будь-якого x та дійсного числа λ визначено добуток $\lambda x\in E$, які задовольняють аксіоми лінійного простору:

- 1. $\exists \theta \in E$, що $x + \theta = x$ для довільного $x \in E$;
- 2. $\exists (-x) \in E : x + (-x) = \theta$
- 3. (x + y) + z = x + (y + z) (асоціативність додавання);
- 4. x + y = y + x (комутативність додавання);
- 5. $(\lambda + \mu)x = \lambda x + \mu x$ (дистрибутивність);
- 6. $\lambda(x+y) = \lambda x + \lambda y$ (дистрибутивність);
- 7. $(\lambda \mu)x = \lambda(\mu x)$ (асоціативність множення);
- 8. $1 \cdot x = x$.

Властивості 1—4 означають, що лінійний простір є абелевою (тобто комутативною) групою.

Приклад 9.1. Сукупність дійсних чисел R^1 із звичайними арифметичними операціями додавання та множення ϵ лінійним простором.

Приклад 9.2. Евклідів простір R^n — сукупність векторів $x = (x_1, x_2, ..., x_n)$, що складаються с дійсних чисел, ϵ лінійним.

Озн. 9.2. Лінійні простори E і F називаються **ізоморфними**, якщо між їхніми елементами можна установити взаємно-однозначну відповідність, яка узгоджена із операціями в цих просторах, тобто $x \leftrightarrow x'$, $y \leftrightarrow y'$, $x, y \in E$, $x', y' \in F \Rightarrow x + y \leftrightarrow x' + y'$, $\lambda x \leftrightarrow \lambda x'$.

Ізоморфні простори можна вважати різними реалізаціями одного простору.

Приклад 9.3. Простір R^n і простір поліномів, степінь яких не перевищує n-1 ϵ ізоморфними.

Озн. 9.3. Числова функція f, визначена на лінійному просторі E, називається функціоналом.

Озн. 9.4. Функціонал називається адитивним, якщо

$$\forall x, y \in E \ f(x+y) = f(x) + f(y)$$

Озн. 9.5. Функціонал називається **однорідним**, якщо $\forall x \in E \ f(\alpha x) = \alpha f(x)$.

Озн 9.6. Адитивний однорідний функціонал називається лінійним.

Озн 9.7. Функціонал називається неперервним у точці x_0 , якщо з того що довільна послідовність x_n прямує до x_0 випливає, що послідовність $f\left(x_n\right)$ прямує до $f\left(x_0\right)$.

Озн. 9.8. Сукупність усіх лінійних неперервних функціоналів, заданих на лінійному топологічному просторі E, називається простором, спряженим до E, і позначається як E^* .

Приклад 9.4. $I(x) = \int_{a}^{b} x(t) dt$ є лінійним функціоналом в C[a,b].

Озн 9.9. Нехай E— лінійний простір. Визначений на просторі E функціонал p(x) називається **опуклим**, якщо

 $\forall x, y \in E, 0 \le \alpha \le 1 \colon p(\alpha x + (1 - \alpha)y) \le \alpha p(x) + (1 - \alpha)p(y).$

Озн 9.9. Функціонал p(x) називається **додатно**однорідним, якщо $\forall x \in E, \alpha > 0: p(\alpha x) = \alpha p(x)$.

Приклад 9.4. Будь-який лінійний функціонал ϵ додатнооднорідним.

Озн 9.11. Нехай E — дійсний лінійний простір, а E_0 — його підпростір. До того ж на підпросторі E_0 заданий деякий лінійний функціонал f_0 . Лінійний функціонал f , визначений на всьому просторі E , називається продовженням функціонала f_0 , якщо $\forall x \in E_0$ $f(x) = f_0(x)$.

Озн 9.12. Непорожня підмножина L' лінійного простору L називається **лінійним підпростором**, якщо вона сама утворює лінійний простір відносно операцій додавання і множення на число, уведених в просторі L.

Теорема Хана-Банаха. Нехай p(x)—додатно-однорідний і опуклий функціонал, визначений на дійсному лінійному просторі L, а L_0 — лінійний підпростір в L. Якщо f_0 — лінійний функціонал, заданий на L_0 і підпорядкований на цьому підпросторі функціоналу p, тобто

$$f_0(x) \le p(x),\tag{1}$$

то функціонал f_0 може бути продовжений до лінійного функціонала f, заданого на просторі L і підпорядкованого функціоналу p на всьому просторі L:

$$f(x) \le p(x). \tag{2}$$

Доведення. Покажемо, що якщо $L_0 \neq L$, то f_0 можна продовжити на $L' \supset L_0$, зберігаючи умову підпорядкованості. Нехай $z \in L' \setminus L_0$, а L'— елементарне розширення L_0 :

$$L' = \left\{ x' : x' = tz + x, \ x \in L_0, \ z \in L \setminus L_0, \ t \in R^1 \right\} = \left\{ L_0; z \right\}.$$

Якщо f' — шукане продовження f_0 на L', то

$$f'(tz+x) = tf'(z) + f(x) = tf'(z) + f_0(x)$$
.

Покладемо f'(z) = c . Тоді $f'(tz + x) = tc + f_0(x)$. Виберемо

с так, щоб виконувалась умова підпорядкованості:

$$\forall x \in L_0 \quad f_0(x) + tc \le p(x + tz). \tag{3}$$

Якщо t > 0, поділимо (3) на t і отримаємо еквівалентну умову

$$\forall x \in L_0 \ f_0\left(\frac{x}{t}\right) + c \le p\left(\frac{x}{t} + z\right) \Rightarrow c \le p\left(\frac{x}{t} + z\right) - f_0\left(\frac{x}{t}\right). \tag{4}$$

Якщо t < 0, поділимо (3) на -t. Тоді

$$\forall x \in L_0 - f_0\left(\frac{x}{t}\right) - c \le p\left(-\frac{x}{t} - z\right) \Rightarrow c \ge -p\left(-\frac{x}{t} - z\right) - f_0\left(\frac{x}{t}\right)$$
(5)

Покажемо, що число c, що задовольняє умови (4) і (5) існує.

Нехай y' і $y'' \in L_0$, а $z \in L' \setminus L_0$. Тоді

$$f_0(y'' - y') = f_0(y'') - f_0(y') \le p(y'' - y') =$$

$$= p(y'' + z - y' - z) \le p(y'' + z) + p(-y' - z).$$

З цього випливає, що

$$-f_0(y'')+p(y''+z) \ge -f_0(y')-p(-y'-z).$$

Покладемо

$$c'' = \inf_{y'} \left(-f_0(y'') + p(y'' + z) \right), c' = \sup_{y'} \left(-f_0(y') + p(-y' - z) \right).$$

Оскільки y' і y'' — довільні, то з умови підпорядкованості випливає, що c'' > c'. Отже, $\exists c : c'' \ge c \ge c'$.

Визначимо функціонал f' на L':

$$f'(tz+x)=tc+f_0(x).$$

За побудовою цей функціонал задовольняє умову (1). Отже, якщо f_0 задано на $L_0 \subset L$ і задовольняє на L_0 умову (1), то його можна продовжити на $L' \supset L_0$ із збереженням цієї умови.

Якщо в просторі L існує злічена система елементів $x_1, x_2, ..., x_n, ...$, така що будь-який елемент простору L можна подати як лінійну комбінацію елементів $x_1, x_2, ..., x_n, ...$, то продовження функціонала f_0 на L можна побудувати за індукцією, розглядаючи зростаючий ланцюжок підпросторів

$$L^{(1)} = \left\{L_0, x_1\right\}, \ L^{(2)} = \left\{L^{(1)}, x_2\right\}, ..., \ L^{(n)} = \left\{L^{(n-1)}, x_n\right\}, ...,$$

де $L^{(k)} = \left\{L^{(k-1)}, x_{k+1}\right\}$ — мінімальний лінійний підпростір, що містить $L^{(k)}$ і $x^{(k+1)}$. Тоді кожний елемент $x \in L$ увійде в деякий $L^{(k)}$ і функціонал f_0 буде продовжений на весь простір L. В загальному випадку використовується схема, яка базується на лемі Цорна. Уведемо в розгляд потрібні означення.

Озн 9.13. Говорять, що на множині X задано відношення часткового порядку \leq , якщо виділено деяку сукупність пар $P = \{(x, y) \in X \times X\}$, для яких

- 1) $x \le x$;
- 2) $x \le y$, $y \le z \Rightarrow x \le z$.

При цьому не вимагається, щоб усі елементи були порівняними.

Приклад 9.6. Площина R^2 , на якій між точками $x = (x_1, x_2)$ і $y = (y_1, y_2)$ установлено відношення $x \le y$, якщо $x_1 \le x_2$ і $y_1 \le y_2$.

Озн 9.14. Якщо всі елементи $X \in$ попарно порівняними, то множина X називається **лінійно упорядкованою**.

Озн 9.15. Лінійно упорядкована підмножина частково упорядкованої множини називається **ланцюгом**.

Приклад 9.7. Пряма R^1 із покоординатним порядком, що розглядається як підмножина площини R^2 , є ланцюгом.

Озн 9.16. Якщо X — частково упорядкована множина і $M \subset X$, то елемент $\mu \in X$ називається **мажорантою** множини X, якщо

$$m \le \mu \quad \forall m \in M$$
.

Озн 9.17. Якщо m — така мажоранта $M \subset X$, що $m \le \hat{m}$ для будь-якої іншої мажоранти \hat{m} множини M, то m називається **точною верхньою гранню** множини M.

Озн 9.18. Елемент $m \in X$ називається **максимальним**, якщо немає такого елемента $m' \in X$, що $m \le m'$.

Лема Цорна. Якщо будь-який ланцюг в частково упорядкованій множині X має мажоранту, то в X існує максимальний елемент.

Позначимо через \mathfrak{M} сукупність ycix продовжень функціоналу f_0 на більш широкі підпростори з умовою підпорядкованості p. Кожне таке продовження f'має лінійну область визначення L', на якій $f' \le p$ і $f'|_{X_0} = f_0$. Будемо вважати продовження f' підпорядкованим продовженню f'', якщо для відповідних областей визначення маємо $L' \subset L''$ і $f''|_{I'} = f'$. Таким чином, маємо частковий порядок. Умова щодо ланцюгів виконана: якщо дано ланцюг продовжень f_{α} з областями визначення L_{α} , то мажоранта $f\in\mathfrak{M}$ будується так. Розглянемо множину $L=\bigcup L_{\alpha}$, яка ϵ лінійним простором, оскільки $\forall x,y \in L \ \exists L_{\alpha},L_{\beta}$, такі що $x \in L_{\alpha}$ і $y \in L_{\beta}$. Але за означенням ланцюга або $L_{\alpha} \subset L_{\beta}$, або

 $L_{\beta} \subset L_{\alpha}$, тобто $x+y \in L$. Ясно, що $tx \in L$ $\forall t \in R^1$. З тих же причин функціонал $f(x) = f_{\alpha}(x_{\alpha})$ для $x = x_{\alpha}$ коректно заданий на L, тобто $f_{\alpha}(x_{\alpha}) = f_{\beta}(x_{\beta})$, якщо $x_{\alpha} = x_{\beta}$. До того ж $f \leq p$ на L. Отже, $f \in \mathfrak{M}$ — мажоранта для всіх f_{α} . За лемою Цорна в \mathfrak{M} є максимальний елемент f. Отже, область визначення функціонала f збігається із X, інакше функціонал f можна було б лінійно продовжити на більш широкий простір із умовою підпорядкованості p, що суперечить максимальності p. \blacksquare

Література

- 1. Садовничий В,А. Теория операторов. М.: Изд-во Моск. ун-та, 1986, 91-96, 106-109.
- 2. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. (5-е изд.) М.: Наука, 1981, с.119-138.
- 3. Богачев В.И., Смолянов О.Г. Действительный и функциональный анализ. Университетский курс. М.: Ижевск: НИЦ "Регулярная и хаотическая динамика", 2009. с. 14-16, 258-264.

10. Нормовані простори і простір лінійних неперервних операторів

Озн. 10.1. Нехай E — лінійний простір над полем K. Відображення $\|\cdot\|: E \to R^+$ називається **нормою** в просторі E, якщо $\forall (x \in E, y \in E, \lambda \in K)$ виконуються аксіоми норми:

- 1. ||x|| = 0 тоді і тільки тоді, коли x = 0 (віддільність);
- 2. $\|\lambda x\| = |\lambda| \cdot \|x\|$ (однорідність);
- 3. $||x + y|| \le ||x|| + ||y||$ (нерівність трикутника).

Озн. 10.2. Лінійний простір із введеною на ньому нормою називається **нормованим**.

Ясно, що нормований простір є метричним, оскільки в ньому можна ввести метрику $\rho(x,y) = \|x-y\|$. З цього випливає, що норма елемента в нормованому просторі є відстанню між ним і нульовим елементом: $\|x\| = \rho(x,\theta)$.

Приклад 10.1. Простір

$$l = \left\{ x = (x_1, x_2, ..., x_n, ...) : \sum_{i=1}^{\infty} |x_i| < \infty \right\}$$

 ϵ нормованим з нормою $||x|| = \sum_{i=1}^{\infty} |x_i|$.

Озн. 10.3. Послідовність $\{x_n\}$ елементів нормованого простору E називається **збіжною за нормою**, або **сильно збіжною**, або просто **збіжною**, до елемента $x_0 \in E$, якщо $\|x_n - x_0\| \to 0$ при $n \to \infty$.

Якщо $\left\{x_n\right\}$ збігається до елемента $x_0\in E$, то $\lim_{n\to\infty} \lVert x_n\rVert = \lVert x_0\rVert.$

Озн. 10.4. Повний нормований простір називається **банаховим**.

Озн. 10.5. Функціонал називається обмеженим, якщо $\exists C > 0 : |f(x)| \le C ||x||_{\scriptscriptstyle E}$. (1)

Озн. 10.7. Найменша серед усіх додатних констант, що задовольняють нерівність (1) називається **нормою функціонала**.

$$||f|| = \sup_{x \neq 0, x \in E} \frac{|f(x)|}{||x||}.$$

Озн. 10.8. Нехай E_1 і E_2 — нормовані простори. На множині $D \subset E_1$ задано **оператор**, або відображення A, із значеннями в E_2 , якщо кожному елементу $x \in D$ поставлено у відповідність елемент $y = Ax \in E_2$.

Озн. 10.9. Оператор А називається лінійним, якщо

- 1. $\alpha x_1 + \beta x_2 \in D$ для довільних $x_1, x_2 \in D$, де $\alpha, \beta \partial i \ddot{u} c h i$ числа;
- 2. $A(\alpha x_1 + \beta x_2) = \alpha A(x_1) + \beta A(x_2)$ для довільних $x_1, x_2 \in D$, $\alpha, \beta \partial i \ddot{u} c h i$ числа.

Озн. 10.10. Якщо A — лінійний оператор з E_1 в E_2 такий, що $D = E_1$, та з умови $x_n \to x_0$, $x_n, x_0 \in E_1$ випливає, що $A(x_n) \to A(x_0)$ в E_2 , то A називається лінійним неперервним оператором.

Озн. 10.10. Оператор A називається **обмеженим** в просторі E, якщо існує така константа C, якщо $\forall x \in E$

$$||Ax|| \le C ||x||.$$

Озн. 10.12. Найменша константа C, яка $\forall x \in E$ задовольняє нерівність $||Ax|| \le C ||x||$, називається **нормою** оператора A.

Теорема 10.1. Лінійний оператор, заданий на лінійному нормованому просторі, є неперервним тоді і тільки тоді, коли він обмежений.

Доведення. Необхідність. Припустимо, що A — неперервний, лінійний, але не обмежений оператор. Тоді

$$\forall n \in N \ \exists x_n \in E : \|Ax_n\|_F > n \|x_n\|_E.$$

Покладемо

$$\xi_n = \frac{1}{n} \frac{x_n}{\|x_n\|}.$$

За побудовою

$$\xi_n = \frac{1}{n} \frac{x_n}{\|x_n\|} \to 0, \quad n \to \infty.$$

Оцінимо норму елемента $||A\xi_n||_F$:

$$\|A\xi_n\|_F = \left\|A\left(\frac{1}{n}\frac{x_n}{\|x_n\|}\right)\right\|_F = \frac{1}{n\|x_n\|_E}\|Ax_n\|_F > \frac{n\|x_n\|_E}{n\|x_n\|_E} = 1.$$

3 цього виплива€, що

$$\lim_{n\to\infty} ||A\xi_n||_F \neq 0 \Rightarrow \lim_{n\to\infty} A\xi_n \neq 0.$$

A — лінійний оператор \Rightarrow

$$\Rightarrow A0 = A(x-x) = Ax - Ax = 0 \Rightarrow \lim_{n \to \infty} A\xi_n \neq A0$$

 \Rightarrow A — не неперервний. Отримане протиріччя доводить, що оператор A ϵ обмеженим.

Достатність. A — обмежений оператор \Rightarrow

$$\exists C > 0 \ \forall x \in E \|Ax\|_{F} \le C \|x\|_{F}.$$

Нехай

$$x_n \to x \Rightarrow \|x_n - x\|_E \to 0 \Rightarrow \|Ax_n - Ax\|_F = \|A(x_n - x)\|_F \le$$
 $\le C \|x - x_n\|_E \to 0 \Rightarrow \|Ax_n - Ax\|_F \to 0 \Rightarrow Ax_n \to Ax \ npu \ n \to \infty$ Це означає, що оператор A — неперервний.

Озн. 10.13. Лінійні оператори A, що відображають нормований простір E в нормований простір F, утворюють **нормований простір операторів** L(E,F) з нормою

$$||A|| = \sup_{\|x\| \neq 0, x \in E} \frac{||Ax||_F}{\|x\|_F} = \sup_{\|x\| = 1, x \in E} ||Ax||_F = \sup_{\|x\| \le 1, x \in E} ||Ax||_F.$$

Теорема 10.2. Нехай A — лінійний обмежений оператор, що діє із нормованого простору E в банахів простір F. Якщо область визначення оператора D(A) щільна в E, то існує такий лінійний обмежений оператор $\overline{A}: E \to F$ такий що, $\overline{A}x = Ax \ \forall x \in D(A)$ і $\|\overline{A}\| = \|A\|$.

Доведення. Нехай
$$x \in E \setminus D(A)$$
. Оскільки $\overline{D(A)} = E$, то
$$\exists \big\{ x_n \big\}_{n=1}^{\infty} \subset D(A) \colon \lim_{n \to \infty} x_n = x \; .$$

Із нерівності

$$||Ax_n - Ax_m||_E \le ||A|| ||x_n - x_m||_E$$

і обмеженості оператора А випливає, що

$$\forall \varepsilon > 0 \,\exists N > 0 : \forall n, m \ge N \, \|Ax_n - Ax_m\|_F \le \|A\| \cdot \|x_n - x_m\|_E < \varepsilon.$$

Це означає, що послідовність $\left\{Ax_n\right\}_{n=1}^{\infty}$ є фундаментальною.

Оскільки простір F є повним, ця послідовність є збіжною:

$$\exists \overline{A}x = \lim_{n \to \infty} A_n x .$$

Покажемо, що цей елемент визначений коректно, тобто не залежить від вибору послідовності $\left\{x_n\right\}_{n=1}^{\infty} \subset D\left(A\right) : \lim_{n \to \infty} x_n = x$

Припустимо, що існує ще одна послідовність $\left\{x_n'\right\}_{n=1}^{\infty} \subset D(A)$, яка збігається до елемента x:

$$\lim_{n\to\infty}x'_n=x.$$

Нехай

$$y = \lim_{n \to \infty} Ax_n, y' = \lim_{n \to \infty} Ax'_n.$$

3 того що

$$\lim_{n \to \infty} \|Ax_n - Ax_n'\|_F \le \lim_{n \to \infty} \|A\| \|x_n - x_n'\|_E = 0,$$

випливає

$$||y - y'||_{F} = \lim_{n \to \infty} ||y - y'||_{F} \le$$

$$\le \lim_{n \to \infty} ||y - Ax_{n}||_{F} + \lim_{n \to \infty} ||Ax_{n} - Ax'_{n}||_{F} + \lim_{n \to \infty} ||Ax'_{n} - y'||_{F} = 0.$$

Отже, y = y'.

Лінійність оператора \overline{A} випливає із лінійності оператора A і властивостей границь.

Оскільки оператор \overline{A} збігається с оператором A в області визначення D(A), але має більш широку область визначення,

$$||A|| \leq ||\overline{A}||$$
.

3 іншого боку,

$$||Ax_n||_E \le ||A|| \cdot ||x_n||_E \quad \forall x_n \in E.$$

Отже,

$$\begin{split} &\lim_{n\to\infty} \left\|Ax_n\right\|_F = \left\|A\left(\lim_{n\to\infty} x_n\right)\right\|_F = \left\|\overline{A}x\right\|_F \leq \\ &\leq \left\|A\right\| \cdot \left\|\lim_{n\to\infty} x_n\right\|_F = \left\|A\right\| \cdot \left\|x\right\|_E \ \, \forall x \in E. \end{split}$$

Це означає, що

$$\|\overline{A}\| \leq \|A\|$$
.

Порівнюючи оцінки $\|\overline{A}\|$, отримуємо

$$\|\overline{A}\| = \|A\| . \blacksquare$$

Теорема Хана-Банаха в нормованому просторі. Hexaй E — дійсний нормований простір, L — його підпростір, f_0 — обмежений лінійний функціонал на L. Цей лінійний функціонал можна продовжити до деякого лінійного функціонала f , заданого на всьому просторі E без збільшення норми:

$$||f|| = ||f_0||.$$

Доведення. Нехай f_0 — обмежений лінійний функціонал на L . Значить,

$$|f_0(x)| \le ||f_0|| \cdot ||x||, x \in L.$$

За теоремою Хана-Банаха в лінійному просторі

$$\exists f$$
 — продовження f_0 на $E: |f(x)| \le ||f_0|| \cdot ||x|| \ \forall x \in E$

3 цього випливає, що

$$||f|| \le ||f_0||.$$

3 іншого боку, $L \subset E \Rightarrow$

$$||f|| = \sup_{x \neq 0, x \in E} \frac{|f(x)|}{||x||} \ge \sup_{x \neq 0, x \in L} \frac{|f(x)|}{||x||} = \sup_{x \neq 0, x \in L} \frac{|f_0(x)|}{||x||} = ||f_0||.$$

Отже,
$$||f|| = ||f_0||$$
.

Література

1. Садовничий В,А. Теория операторов. — М.: Изд-во Моск. ун-та, 1986. — с.96–102.

11. Спряжений простір

Ввести топологію в лінійному просторі можна не лише за допомогою норми.

- **Озн. 11.1.** Упорядкована четвірка $(L, +, \times, \tau)$ називається лінійним топологічним простором, якщо
 - 1) $(L,+,\times)$ дійсний лінійний простір;
 - 2) (L, τ) топологічний простір;
- 3) операція додавання і множення на числа в L ϵ неперервними, тобто
- а) якщо $z_0 = x_0 + y_0$, то для кожного околу U точки z_0 можна указати такі околи V і W точок x_0 і y_0 відповідно, що $\forall x \in V$, $y \in W$ $x + y \in U$;
- б) якщо $\alpha_0 x_0 = y_0$, то для кожного околу U точки y_0 існує окіл V точки x_0 і таке число $\varepsilon > 0$, що $\forall \alpha \in R^1: |\alpha \alpha_0| < \varepsilon$ і $\forall x \in V$ $\alpha x \in U$.

Зауваження 11.1. Оскільки будь-який окіл будь-якої точки x в лінійному топологічному просторі можна отримати зсувом околу нуля U шляхом операції U+x, топологія в лінійному топологічному просторі повністю визначається локальною базою нуля.

Спочатку доведемо деякі допоміжні факти щодо лінійних функціоналів, заданих на лінійному топологічному просторі L.

Приклад 11.1. Всі нормовані простори ϵ лінійними топологічними просторами.

Озн. 11.2. Функціонал, визначений на лінійному топологічному просторі L, називається **неперервним**, якщо для будь-якого $x_0 \in L$ і будь-якого $\varepsilon > 0$ існує такий окіл U елемента x_0 , що

$$|f(x)-f(x_0)| < \varepsilon \text{ npu } x \in U.$$

Лема 11.1. Якщо лінійний функціонал $f \in \text{неперервним } B$ якійсь одній точці x_0 лінійного топологічного простору L, то він ϵ неперервним на усьому просторі L.

Доведення. Дійсно, нехай y — довільна точка простору L і $\varepsilon > 0$. Необхідно знайти такий окіл V точки y, щоб

$$\forall z \in V |f(z) - f(y)| < \varepsilon$$
.

Виберемо окіл U точки x_0 так, щоб

$$\forall x \in U |f(x) - f(x_0)| < \varepsilon$$
.

Побудуємо окіл точки y шляхом зсуву околу U на елемент $y-x_0$:

$$V = U + (y - x_0) = \{z \in L : z = u + y - x_0, u \in U\}$$

Із того, що $z \in V$, випливає, що $z - y + x_0 \in U$, отже,

$$|f(z)-f(y)| = |f(z-y)| =$$

= $|f(z-y+x_0-x_0)| = |f(z-y+x_0)-f(x_0)| < \varepsilon.$

Що і треба було довести. ■

Зауваження 11.2. Для того щоб перевірити неперервність лінійного функціонала в просторі, достатньо перевірити його неперервність в одній точці, наприклад, в точці 0.

Зауваження 11.3. У скінчено-вимірному лінійному топологічному просторі будь-який лінійний функціонал ϵ неперервним.

Теорема 11.1. Для того щоб лінійний функціонал f був неперервним на лінійному топологічному просторі L, необхідно і достатньо, щоб існував такий окіл нуля в L, на якому значення функціонала f ϵ обмеженими в сукупності.

Доведення. Необхідність. З того що функціонал $f \in$ неперервним в точці 0, випливає що

$$\forall \varepsilon > 0 \exists U(0) : |f(x)| < \varepsilon \ \forall x \in U(0).$$

Отже, його значення ϵ обмеженими в сукупності на U(0).

Достатність. Нехай U(0) — такий окіл нуля, що

$$|f(x)| < C \quad \forall x \in U(0).$$

Крім того, нехай $\varepsilon > 0$. Тоді в околі нуля $\frac{\varepsilon}{C}U\left(0\right) = \left\{x \in L : x = \frac{\varepsilon}{C} \, y, \, y \in U\left(0\right)\right\}$ виконується нерівність $\left|f\left(x\right)\right| < \varepsilon \, .$

Це означає, що функціонал f є неперервним в околі нуля, а значить в усьому просторі L.

Нехай E — нормований простір. Нагадаємо, що спряженим простором E^* називається сукупність усіх лінійних неперервних функціоналів, заданих на просторі E із нормою

$$||f|| = \sup_{x \in E, x \neq 0} \frac{|f(x)|}{||x||} = \sup_{x \in E, ||x|| \le 1} |f(x)|.$$

Теорема 11.2. Для того щоб лінійний функціонал f був неперервним на нормованому просторі E, необхідно і достатньо, щоб значення функціонала f були обмеженими в сукупності на одиничній кулі.

Доведення. Необхідність. Нормований простір E є лінійним топологічним простором. За теоремою 11.1 будь-

яке значення неперервного лінійного функціонала f в деякому околі нуля ϵ обмеженими в сукупності.

$$\forall C > 0 \,\exists U(0) : |f(x)| < C \ \forall x \in U(0).$$

В нормованому просторі будь-який окіл нуля містить кулю.

$$\exists S(0,r)\subset U(0)$$
.

Отже, значення функціонала f ϵ обмеженими в сукупності в деякій кулі. Оскільки f — лінійний функціонал, це еквівалентно тому, що значення функціонала f ϵ обмеженими в сукупності в одиничній кулі, оскільки

$$\forall x \in S(0,r): |f(x)| < C \Rightarrow \forall y = \frac{1}{r} x \in S(0,1): |f(y)| < \frac{C}{r}.$$

Достатність. Оскільки значення функціонала $f \in$ обмеженими в сукупності в одиничній кулі, а одинична куля ϵ околом точки 0, то за теоремою 11.1 він ϵ неперервним в точці 0. Отже, лінійний функціонал $f \in \epsilon$ неперервним в нормованому просторі E.

На спряженому просторі можна ввести різні топології. Найважливішими з них ϵ сильна і слабка топології.

Озн. 11.3. Сильною топологією в просторі E^* називається топологія, визначена нормою в просторі E^* , тобто локальною базою нуля

$$\{f \in E^* : ||f|| < \varepsilon\},$$

де функціонали ƒ задовольняють умову

$$|f(x)| < \varepsilon \quad \forall x \in E : ||x|| \le 1.$$

 $a \ \epsilon - \partial o \delta i$ льне $\partial o \partial \delta a m$ не число.

Теорема 11.3. Спряжений простір E^* є повним..

Доведення. Нехай $\left\{f_n\right\}_{n=1}^{\infty}$ — фундаментальна послідовність лінійних неперервних функціоналів, тобто

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n, m \ge N \| f_n - f_m \| < \varepsilon.$$

Отже,

$$\forall x \in E \ \left| f_n(x) - f_m(x) \right| \le \|f_n - f_m\| \|x\| < \varepsilon \|x\|. \tag{1}$$

Покладемо $\forall x \in E$

$$f(x) = \lim_{n \to \infty} f_n(x).$$

Покажемо, що f — лінійний неперервний функціонал.

$$f(\alpha x + \beta y) = \lim_{n \to \infty} f_n(\alpha x + \beta y) =$$

$$= \lim_{n \to \infty} \left[\alpha f_n(x) + \beta f_n(y) \right] = \alpha f(x) + \beta f(y).$$

Крім того, з нерівності (1) випливає, що

$$\forall x \in E \lim_{m \to \infty} \left| f_n(x) - f_m(x) \right| = \left| f(x) - f_n(x) \right| < \varepsilon ||x||.$$
 (2)

Це означає, що функціонал $f-f_n$ є обмеженим. Оскільки він є лінійним і обмеженим, значить він є неперервним. Таким чином, функціонал $f=f_n+\big(f-f_n\big)$ також є неперервним. Крім того, $\|f-f_n\|\leq \epsilon \ \, \forall n\geq N$, тобто $f_n\to f$ при $n\to\infty$ за нормою простору E^* .

Зауваження 11.4. Зверніть увагу на те, що простір E^* повний незалежно від того, чи є повним простір E.

Приклад 11.2.
$$(c_0)^* = l_1$$
.

Приклад 11.3.
$$(l_1)^* = m$$
.

Приклад 11.4.
$$\left(l_{p}\right)^{*} = l_{q}$$
 , де $\frac{1}{p} + \frac{1}{q} = 1$, $p > 1$.

Озн. 11.4. Другим спряженим простором E^{**} називається сукупність усіх лінійних неперервних функціоналів, заданих на просторі E^* .

Лема 11.2. Будь-який елемент $x_0 \in E$ визначає певний лінійний неперервний функціонал, заданий на E^* .

Доведення. Введемо відображення

$$\pi: E \to E^{**} \tag{3}$$

поклавши

$$\varphi_{x_0}(f) = f(x_0), \tag{4}$$

де x_0 — фіксований елемент із E, а f — довільний лінійний неперервний функціонал із E^* . Оскільки рівність (4) ставить у відповідність кожному функціоналу f із E^* дійсне число $\phi_{x_0}(f)$, вона визначає функціонал на просторі E^* . Покажемо, що ϕ_{x_0} — лінійний неперервний функціонал, тобто він належить E^{**} .

Дійсно, функціонал ϕ_{x_0} ϵ лінійним, оскільки

$$\varphi_{x_0}(\alpha f_1 + \beta f_2) = \alpha f_1(x_0) + \beta f_2(x_0) = \alpha \varphi_{x_0}(f_1) + \beta \varphi_{x_0}(f_2).$$

Крім того, нехай $\varepsilon > 0$ і A — обмежена множина в E , що містить x_0 . Розглянемо в E^* окіл нуля $U(\varepsilon,A)$:

$$U(\varepsilon, A) = \left\{ f \in E^*, x_0 \in A : \left| f(x_0) \right| \le \varepsilon \right\},\,$$

тобто

$$U(\varepsilon, A) = \left\{ f \in E^*, x_0 \in A : \left| \varphi_{x_0}(f) \right| \le \varepsilon \right\}$$

З цього випливає, що функціонал ϕ_{x_0} є неперервним в точці 0, а значить і на всьому просторі E^* .

Озн. 11.5. Відображення $\pi: E \to E^{**}$, побудоване в лемі 11.2, називається **природним відображенням простору** E в другий спряжений простір E^{**} .

Озн. 11.6. Якщо природне відображення $\pi: E \to E^{**}$ є бієкцією і $\pi(E) = E^{**}$, то простір E називається напіврефлексивним.

Озн. 11.7. Якщо простір E ϵ напіврефлексивним і відображення $\pi: E \to E^{**}$ ϵ неперервним, то простір E називається **рефлексивним**.

Зауваження 11.5. Якщо E — рефлексивний простір, то природне відображення $\pi \colon E \to E^{**}$ ϵ ізоморфізмом.

Теорема 11.4. Якщо E — нормований простір, то природне відображення $\pi: E \to E^{**}$ ϵ ізометрією.

Доведення. Нехай $x \in E$. Покажемо, що

$$||x||_E = ||\pi(x)||_{E^*}.$$

Нехай f — довільний ненульовий елемент простору E^* . Тоді

$$|f(x)| \le ||f|| ||x|| \implies ||x|| \ge \frac{|f(x)|}{||f||}.$$

Оскільки ліва частина нерівності не залежить від f , маємо

$$||x|| \ge \sup_{f \in E^*, f \ne 0} \frac{|f(x)|}{||f||} = ||\pi(x)||_{E^{**}}.$$

3 іншого боку, внаслідок теореми Хана-Банаха, якщо x — ненульовий елемент в нормованому просторі E, то існує такий неперервний лінійний функціонал f, визначений на E, що

$$||f|| = 1 \ i \ f(x) = ||x||$$

(визначаємо функціонал на одновимірному підпросторі формулою $f(\alpha x) = \alpha \|x\|$, а потім продовжуємо без збільшення норми на весь простір). Отже, для кожного $x \in E$ знайдеться такий ненульовий лінійний функціонал f, що

$$|f(x)| = ||f|| ||x||,$$

TOMY

$$\|\pi(x)\|_{E^{**}} = \sup_{f \in E^*, f \neq 0} \frac{|f(x)|}{\|f\|} \ge \|x\|.$$

Отже, $\|x\|_E = \|\pi(x)\|_{E^*}$.

Зауваження 11.6. Оскільки природне відображення нормованих просторів $\pi: E \to E^{**}$ є ізометричним, поняття напіврефлексивних і рефлексивних просторів для нормованих просторів є еквівалентними.

Зауваження 11.7. Оскільки простір, спряжений до нормованого, є повним (теорема 11.3), *будь-який* рефлексивний нормований простір є повним.

Зауваження 11.8. Обернене твердження є невірним.

Приклад 11.5. Простір c_0 є повним, але нерефлексивним, тому що спряженим до нього є простір l_1 , а спряженим до простору l_1 є простір m.

Приклад 11.6. Простір неперервних функцій C[a,b] є повним, але нерефлексивним (більше того, немає жодного нормованого простору, для якого простір C[a,b] був би спряженим).

Приклад 11.7. Приклад рефлексивного простору, що не збігається із своїм спряженим:

$$l_p^{**} = l_q^* = l_p, \ p > 1, \ p \neq 2, \frac{1}{p} + \frac{1}{q} = 1.$$

Приклад 11.8. Приклад рефлексивного простору, що збігається із своїм спряженим:

$$l_2^{**} = l_2^* = l_2 .$$

Література

- 1. Садовничий В,А. Теория операторов. М.: Изд-во Моск. ун-та, 1986. с. 112–123.
- 2. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. (5-е изд.) М.: Наука, 1981. с. 175-178, 182-192.

12. Слабка топологія і слабка збіжність

Ми розглянули поняття сильної топології і сильної збіжності в нормованому просторі E, а також сильної топології і сильної збіжності в спряженому просторі E^* . Ці топології та поняття збіжності спиралися на поняття норми. Розглянемо відповідні поняття слабкої топології і слабкої збіжності в нормованих просторах E і E^* .

Озн. 12.1. Слабкою топологією в просторі E^* називається топологія, визначена локальною базою нуля, тобто сукупністю множин

$$U_{f_1,...,f_n,\varepsilon} = \left\{ x \in L : \left| f_i(x) \right| < \varepsilon, i = 1, 2, ..., n \right\},$$

 $\partial e = f_1, f_2, ..., f_n$ — скінченна сукупність неперервних функціоналів, а \mathcal{E} — довільне додатне число.

Лема 12.1. Слабка топологія слабкіша за вихідну топологію простору L.

Доведення. Розглянемо скінчену сукупність неперервних функціоналів $f_1, f_2, ..., f_n$ і довільне додатне число ε . Тоді внаслідок неперервності функціоналів $f_1, f_2, ..., f_n$ множина $U_{f_1, ..., f_n, \varepsilon}$ ε відкритою в вихідній топології простору L, оскільки прообразом відкритої множини при неперервному відображенні ε відкрита множина, і містить нуль, тобто ε околом нуля, оскільки ці функціонали ε лінійними. Перетин двох таких околів сам містить множину точок, в яких скінченна кількість функціоналів за модулем менше ε , отже, виконується критерій локальної бази. Оскільки нова топології, вона ε слабкішою. \blacksquare

Зауваження 12.1. Слабка топологія ϵ найменшою з усіх топологій, в яких ϵ неперервними всі лінійні функціонали, неперервні у природній топології простору.

Зауваження 12.2. У нормованому просторі слабка топологія задовольняє аксіому T_2 , але може не задовольняти першу аксіому зліченності, отже, вона не описується за допомогою збіжних послідовностей.

Озн. 12.2. Послідовність $\{x_n\}_{n=1}^{\infty}$ називається **слабко збіжною**, якщо вона ϵ збіжною в слабкій топології.

Лема 12.2. Послідовність $\{x_n\}_{n=1}^{\infty}$ елементів лінійного топологічного простору L є слабко збіжною до $x_0 \in L$ тоді і лише тоді, коли для будь-якого неперервного лінійного функціонала f на L числова послідовність $f(x_n)$ збігається до $f(x_0)$.

Доведення. Необхідність. Не обмежуючи загальності, розглянемо випадок, коли $x_0=0$. Якщо для будь-якого околу $U_{f_1,\dots,f_k,\varepsilon}$ в слабкій топології існує таке число N, що $x_n\in U_{f_1,\dots,f_k,\varepsilon}$ для всіх $n\geq N$, то ця умова виконується і для околу $U_{f,\varepsilon}$, де $f\in L^*$ — довільний фіксований функціонал, а це означає, що $f\left(x_n\right)\to 0$ при $n\to\infty$.

Достатність. Припустимо, що $f(x_n) \to 0$ для будь-якого $f \in L^*$. Тоді ця умова виконується і для всіх функціоналів $f_i \in L^*, i=1,2,...,k$, що визначають довільний окіл в слабкій топології:

$$U_{f_{i},f_{2},...,f_{k},\varepsilon} = \left\{ x \in L : \left| f_{i}(x) \right| < \varepsilon, i = 1,2,...,k \right\}.$$

Виберемо числа N_i так, щоб $\left|f_i(x_n)\right| < \varepsilon$ при $n \ge N_i$ і покладемо $N = \max_{i=1,\dots,k} N_i$. Отже, при всіх $n \ge N$ виконується умова $x_n \in U$. Це означає, що послідовність $\left\{x_n\right\}_{n=1}^{\infty}$ збігається в слабкій топології.

Лема 12.3. Будь-яка сильно збіжна послідовність ϵ слабко збіжною, але не навпаки.

Доведення. Відповідно до леми 12.1, слабка топологія слабкіша за вихідну топологію лінійного топологічного простору, тому будь-яка послідовність, що збігається в сильній топології, буде збігатися і в слабкій.

Обернене твердження ϵ невірним, тому що, наприклад, в просторі l_2 послідовність ортів $e_n = (0,0,...,0,1,0,...)$ слабко збігається до нуля, але не збігається до нуля сильно.

Розглянемо поняття слабкої збіжності в нормованому просторі E .

Теорема 12.1. Якщо послідовність $\{x_n\}_{n=1}^{\infty}$ слабко збігається в нормованому просторі E, то існує така константа C, що

$$||x_n|| \leq C$$
,

тобто будь-яка слабко збіжна послідовність в нормованому просторі ϵ обмеженою.

Доведення. Розглянемо в просторі E^* множини

$$A_{kn} = \{ f \in E^* : |f(x_n)| \le k \}, k, n = 1, 2, \dots$$

Оскільки при фіксованому x_n функціонали $\varphi_{x_n}(f) = f(x_n)$ є неперервними (лема 11.2), множини A_{kn} є замкненими.

Дійсно,

$$f_m \to f$$
, $f_m \in A_{kn} \Rightarrow \varphi_{x_n}(f_m) = f_m(x_n) \le k \Rightarrow f(x_n) \le k$.

Отже, множина

$$A_k = \bigcap_{n=1}^{\infty} A_{kn}$$

 ϵ замкненою. Оскільки послідовність $\{x_n\}_{n=1}^{\infty}$ збігається слабко, послідовність $\varphi_{x_n}(f)$ ϵ обмеженою для кожного $f \in E^*$. Дійсно,

$$x_n \xrightarrow{w} x \implies \varphi_{x_n}(f) = f(x_n) \rightarrow f(x) \implies \exists k > 0 : |f(x_n)| \le k$$
.

Отже, будь-який функціонал $f \in E^*$ належить деякій множині A_k , тобто

$$E^* = \bigcup_{k=1}^{\infty} A_k .$$

Оскільки простір E^* є повним (теорема 11.3), то за теоремою Бера хоча б одна з множин A_k , наприклад, A_{k_0} повинна буди щільною в деякій кулі $S(f_0, \varepsilon)$. Оскільки множина A_{k_0} є замкненою, це означає, що

$$S(f_0,\varepsilon)\subset \overline{A}_{k_0}=A_{k_0}$$

Звідси випливає, що послідовність $\left\{ \varphi_{x_n}\left(f\right) \right\}_{n=1}^{\infty}$ є обмеженою на кулі $S\left(f_0, \epsilon\right)$, а значить, на будь-якій кулі в просторі E^* , оскільки E^* є лінійним топологічним простором. Зокрема, це стосується одиничної кулі. Таким чином, послідовність $\left\{ x_n \right\}_{n=1}^{\infty}$ є обмеженою як послідовність елементів з E^{**} . Оскільки природне відображення $\pi: E \to E^{**}$ є ізометричним, це означає обмеженість послідовності $\left\{ x_n \right\}_{n=1}^{\infty}$ в просторі E.

Теорема 12.2. Послідовність $\{x_n\}_{n=1}^{\infty}$ елементів нормованого простору E слабко збігається до $x \in E$, якщо

- 1) значення $\|x_n\|$ ϵ обмеженими в сукупності деякою константою M ;
- 2) $f(x_n) \to f(x)$ для будь-яких функціоналів f, що належать множині, лінійні комбінації елементів якого скрізь щільними в E^* .

Доведення. Із умови 2) і властивостей операцій над лінійними функціоналами випливає, що якщо φ — лінійна комбінація функціоналів f, то

$$\varphi(x_n) \to \varphi(x)$$
.

Нехай φ — довільний елемент з E^* і $\{\varphi_k\}_{k=1}^\infty$ — сильно збіжна до φ послідовність лінійних комбінацій із функціоналів f, тобто $\|\varphi_k - \varphi\| \to 0$ (вона завжди існує внаслідок щільності). Покажемо, що $\varphi(x_n) \to \varphi(x)$.

Нехай M задовольняє умову

$$||x_n|| \le M$$
, $n = 1, 2, ...$ i $||x|| \le M$.

Оскільки $\varphi_{\scriptscriptstyle k} o \varphi$, то

$$\forall \varepsilon > 0 \ \exists K \in \mathbb{N} : \forall k \ge K \ \|\varphi - \varphi_k\| < \varepsilon.$$

3 цього випливає, що

$$\begin{aligned} \left| \varphi(x_n) - \varphi(x) \right| &\leq \left| \varphi(x_n) - \varphi_k(x_n) \right| + \left| \varphi_k(x) - \varphi(x) \right| + \left| \varphi_k(x_n) - \varphi_k(x) \right| \leq \\ &\leq \left\| \varphi - \varphi_k \right\| M + \left\| \varphi - \varphi_k \right\| M + \left| \varphi_k(x_n) - \varphi_k(x) \right| \leq \\ &\leq \varepsilon M + \varepsilon M + \left| \varphi_k(x_n) - \varphi_k(x) \right|. \end{aligned}$$

За умовою теореми, $\varphi_k(x_n) \to \varphi_k(x)$ при $n \to \infty$. Отже,

$$\varphi(x_n) - \varphi(x) \to 0$$
 при $n \to \infty \quad \forall \varphi \in E^*$.

Розглянемо поняття слабкої топології в спряженому просторі E^* . Спочатку згадаємо, що із означення 11.3 сильної топології в спряженому просторі випливає, що цю топологію можна задати за допомогою локальної бази нуля. Наведемо її еквівалентне формулювання.

Озн. 12.4. Сильною топологією в спряженому просторі E^* називається топологія, визначена локальною базою нуля, тобто сукупністю множин

$$B_{\varepsilon,A} = \{ f \in E^* : |f(x)| < \varepsilon, x \in A \subset E \},$$

де A — довільна обмежена множина в E, а ${\it E}$ — довільне додатне число.

Зауваження 12.3. Оскільки будь-яка скінченна множина є обмеженою, то слабка топологія в E^* є слабкішою, ніж сильна топологія цього простору.

Озн. 12.5. Послідовність $\{f_n\}_{n=1}^{\infty}$ називається **слабко збіжною**, якщо вона є збіжною в слабкій топології E^* , інакше кажучи, $f_n(x) \to f(x)$ для кожного $x \in E$.

Зауваження 12.4. В спряженому просторі сильно збіжна послідовність ϵ одночасно слабко збіжною, але не навпаки.

В спряженому просторі мають місце теореми, аналогічні теоремам 12.1 і 12.2.

Теорема 12.3. Якщо послідовність лінійних функціоналів $\{f_n\}_{n=1}^{\infty}$ слабко збігається на банаховому просторі E, то існує така константа C, що

$$||f_n|| \leq C$$
,

тобто будь-яка слабко збіжна послідовність простору, спряженого до банахова простору, ϵ обмеженою.

Теорема 12.4. Послідовність лінійних функціоналів $\{f_n\}_{n=1}^{\infty}$ елементів спряженого простору E^* слабко збігається до $f \in E$, якщо

- 1) послідовність $\left\|f_{n}\right\|$ ϵ обмеженою, тобто
 - $\exists C \in R^1 : ||f_n|| \le C, \ n = 1, 2, ...;$
- 2) $\varphi_x(f_n) \to \varphi_x(f)$ для будь-яких елементів x, що належать множині, лінійні комбінації елементів якого скрізь щільними в E.

Простір E^* лінійних неперервних функціоналів, заданих на просторі E, можна тлумачити і як простір, спряжений до простору E, і як основний простір, спряженим до якого є простір E^{**} . Відповідно, слабку топологію в просторі E^* можна ввести або за означенням 12.4 (через скінченні множини елементів простору E), або як в основному просторі відповідно до означення 12.1 (через функціонали із простору E^{**}). Для рефлексивних просторів це одне й теж, а для нерефлексивних просторів ми таким чином отримуємо різні слабкі топології.

- **Озн. 12.6.** Топологія в спряженому просторі E^* , що вводиться за допомогою простору E^{**} (як в означенні 12.1), називається слабкою і позначається як $\sigma(E^*, E^{**})$.
- **Озн. 12.7.** Топологія в спряженому просторі E^* , що вводиться за допомогою простору E (як в означенні 12.4), називається *-слабкою і позначається як $\sigma(E^*,E)$

Зауваження 12.5. Очевидно, що *-слабка топологія в E^* є більш слабкою, ніж слабка топологія простору E, тобто в слабкій топології не менше відкритих множин, ніж в *-слабкій топології.

Література

- 1. Садовничий В.А. Теория операторов. М.: Изд-во Моск. ун-та, 1986. с. 114–117.
- 2. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. (5-е изд.) М.: Наука, 1981. с. 192–202.

13. Принцип рівномірної обмеженості

В цій лекції ми розглянемо види збіжності послідовностей лінійних неперервних операторів і з'ясуємо, коли простір $\mathcal{L}(E,F)$ є банаховим в розумінні тої чи іншої збіжності.

Озн. 13.1. Послідовність операторів $\left\{A_n\right\}_{n=1}^{\infty}$, що діють із нормованого простору E в нормований простір F, збігається до оператора A **поточково** в просторі $\mathcal{L}(E,F)$ при $n \to \infty$, якщо $\forall x \in E \lim_{n \to \infty} A_n x = Ax$.

Озн. 13.2. Послідовність операторів $\left\{A_n\right\}_{n=1}^{\infty}$, що діють із нормованого простору E в нормований простір F, збігається до оператора A **рівномірно** в просторі $\mathcal{L}(E,F)$ при $n \to \infty$, якщо $\lim_{n \to \infty} \left\|A_n - A\right\| = 0$

Зауваження 13.1. Якщо $F = \mathbb{R}$, то простір $\mathcal{L}(E,\mathbb{R})$ є спряженим простором, поточкова збіжність є аналогом слабкої збіжності в спряженому просторі, а рівномірна збіжність є аналогом сильної збіжності в спряженому просторі.

Лема 13.1. Якщо послідовність лінійних обмежених операторів $A_n: E \to F$, де E, F — нормовані простори, є такою, що послідовність $\left\{ \left\| A_n \right\| \right\}_{n=1}^{\infty}$ є необмеженою, то послідовність $\left\{ \left\| A_n x \right\| \right\}_{n=1}^{\infty}$ є необмеженою в будь-якій замкненій кулі.

Доведення. Припустимо супротивне: послідовність $\left\{ \left\| A_n x \right\| \right\}_{n=1}^{\infty} \varepsilon$ обмеженою в деякій замкненій кулі $\overline{S}(x_0, \varepsilon)$:

$$\exists (\overline{S}(x_0, \varepsilon), C > 0) : \forall n \in N \ \forall x \in \overline{S}(x_0, \varepsilon) \ \|A_n x\|_{F} \leq C.$$

Кожному елементу $\xi \in E$ поставимо у відповідність елемент

$$x = \frac{\varepsilon}{\|\xi\|_E} \xi + x_0$$
, якщо $\xi \neq 0$. Елементу $\xi = 0$ поставимо у

відповідність елемент $x = x_0$.

$$\xi \neq 0 \Longrightarrow \left\| x - x_0 \right\|_E = \left\| \frac{\varepsilon}{\left\| \xi \right\|_E} \xi + x_0 - x_0 \right\|_E = \left\| \frac{\varepsilon}{\left\| \xi \right\|_E} \xi \right\|_E = \varepsilon.$$

Це означає, що для довільних $\xi \in E$ всі елементи $x \in \overline{S}(x_0, \varepsilon)$.

Оцінимо наступну величину (використовуючи допоміжну нерівність $||x|| - ||y|| \le ||x + y||$.

$$\left| \frac{\varepsilon}{\|\xi\|_{E}} \|A_{n}\xi\|_{F} - \|A_{n}x_{0}\|_{F} \right| \leq \left\| \frac{\varepsilon}{\|\xi\|_{E}} A_{n}\xi + A_{n}x_{0} \right\|_{F} =$$

$$= \left\| A_{n} \left(\frac{\varepsilon}{\|\xi\|_{E}} \xi + x_{0} \right) \right\|_{F} \leq C$$

Отже,

$$\frac{\varepsilon}{\|\xi\|_{E}} \|A_{n}\xi\|_{F} - \|A_{n}x_{0}\|_{F} \leq C.$$

Звідси випливає, що

$$\left\|A_{n}\xi\right\|_{F} \leq \frac{C + \left\|A_{n}x_{0}\right\|_{F}}{\varepsilon} \left\|\xi\right\|_{E} \leq \frac{2C}{\varepsilon} \left\|\xi\right\|_{E}.$$

Отже,

$$\exists C_1 = \frac{2C}{\varepsilon} > 0 : \forall \xi \in E \ \|A_n \xi\|_E \le C_1 \|\xi\|_E \Rightarrow \|A_n\| \le C_1.$$

Отримане протиріччя доводить лему.

Теорема 13.1 (Банаха-Штейнгауза). Нехай послідовність лінійних обмежених операторів $\left\{A_n\right\}_{n=1}^{\infty}$, що відображають банахів простір E в нормований простір F, поточково збігається до оператора A при $n \to \infty$. Тоді послідовність $\left\{\|A_n\|\right\}_{n=1}^{\infty}$ ϵ обмеженою, оператор A ϵ лінійним і неперервним, а $A_n x \to A x$ рівномірно по n на кожному компакті $K \subset E$ (тобто n не залежить від x).

Доведення. Припустимо, що послідовність $\left\{ \left\| A_n \right\| \right\}_{n=1}^{\infty} \epsilon$ необмеженою. Тоді за лемою 13.1 послідовність $\left\{ \left\| A_n x \right\| \right\}_{n=1}^{\infty} \epsilon$ необмеженою на довільній замкненій кулі $\overline{S}\left(x_0, \mathbf{\epsilon}_0\right)$.

Отже,
$$\exists (n_1 \in N, x_1 \in \overline{S}(x_0, \varepsilon_0) : ||A_{n_1}x_1||_{E} > 1$$
.

Оскільки A_n — неперервний оператор,

$$\exists \overline{S}(x_1, \varepsilon_1) \subset \overline{S}(x_0, \varepsilon_0) \colon \|A_{n_1} x\|_F > 1 \ \forall x \in \overline{S}(x_1, \varepsilon_1).$$

На кулі $\overline{S}\left(x_1, \mathbf{\epsilon}_1\right)$ послідовність $\left\{\left\|A_n x\right\|_F\right\}_{n=1}^{\infty}$ також ϵ необмеженою. Отже,

$$\exists \overline{S}(x_2, \varepsilon_2) \subset \overline{S}(x_1, \varepsilon_1) \colon \|A_{n_2} x\|_{\varepsilon} > 2 \ \forall x \in \overline{S}(x_2, \varepsilon_2)$$

Нехай $A_{n_1}, A_{n_2}, ..., A_{n_k}$ і $x_1, x_2, ..., x_k$:

$$n_1 < n_2 < ... < n_k \text{ i } \overline{S}(x_0, \varepsilon_0) \supset \overline{S}(x_1, \varepsilon_1) \supset ... \supset \overline{S}(x_k, \varepsilon_k).$$

Продовжуючи цей процес при $k \to \infty$, отримуємо послідовність вкладених замкнених куль, таких що

$$\|A_{n_k}x\|_F > k \ \forall x \in \overline{S}(x_k, \varepsilon_k), \ \varepsilon_k \to 0.$$

Оскільки E — повний простір, за принципом вкладених куль

$$\exists x^* \in \bigcap_{k=1}^{\infty} S(x_k, \varepsilon_k) : \|A_{n_k} x^*\|_F \ge k \quad \forall k \in \mathbb{N}.$$

Звідси випливає, що $\exists x^* \in E$ така, що послідовність $\left\{A_n x^*\right\}$ не збігається. Це суперечить умові теореми, згідно якої послідовність операторів $\left\{A_n x\right\}_{n=1}^{\infty}$ поточково збігається в кожній точці простору E.

Покажемо, що оператор A — лінійний. Оскільки

$$A_n(x+y) = A_n(x) + A_n(y), A_n(\lambda x) = \lambda A_n(x),$$

маємо

$$A(x+y) = \lim_{n \to \infty} A_n(x+y) = \lim_{n \to \infty} A_n(x) + \lim_{n \to \infty} A_n(y) = Ax + Ay$$

$$A(\lambda x) = \lim_{n \to \infty} A_n(\lambda x) = \lambda \lim_{n \to \infty} A_n(x) = \lambda Ax.$$

Крім того,

$$||A_n x||_F \le C ||x||_E \Rightarrow \lim_{n \to \infty} ||A_n x||_F = ||\lim_{n \to \infty} A_n x||_F = ||Ax||_E \le C ||x||_E$$

Отже, А — лінійний і обмежений, а значить, неперервний.

Нехай $K \subset E$ — компакт, $\varepsilon > 0$. За теоремою Хаусдорфа існує скінчена $\frac{\varepsilon}{3C}$ -сітка M :

$$\forall x \in K \ \exists x_{\alpha} \in M : ||x - x_{\alpha}||_{E} < \frac{\varepsilon}{3C}, \alpha \in \mathfrak{A},$$

де 21 — скінчена множина.

Оскільки послідовність $\left\{A_n x\right\}_{n=1}^{\infty}$ поточково збігається в кожній точці простору E , то вона збігається і в кожній точці сітки M :

$$\forall x_{\alpha} \in M \ \exists n_{\alpha} \in N \ \forall n \ge n_{\alpha} \ \left\| A_{n} x_{\alpha} - A x_{\alpha} \right\|_{F} < \frac{\varepsilon}{3}.$$

Нехай
$$n_0 = \max_{\alpha \in \mathfrak{A}} n_\alpha$$
. Тоді $\forall \left(n \geq n_0, \, x \in S\left(x_\alpha, \frac{\varepsilon}{3C}\right) \right)$ (сітка

M ϵ скінченою, тому максимум існу ϵ)

$$||A_n x - Ax||_F \le ||A_n x - A_n x_\alpha + A_n x_\alpha - Ax_\alpha + Ax_\alpha - Ax||_F \le ||A_n x - A_n x_\alpha + A_n x_\alpha - Ax_\alpha + Ax_\alpha + Ax_\alpha - Ax_\alpha + Ax_\alpha + Ax_\alpha - Ax_\alpha + Ax_$$

$$\leq \|A_n(x-x_\alpha)\|_F + \|A_nx_\alpha - Ax_\alpha\|_F + \|A(x_\alpha - x)\|_F <$$

$$< C\|x-x_\alpha\|_F + \frac{\varepsilon}{3} + C\|x-x_\alpha\|_F = \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Отже,
$$\forall (n \ge n_0, x \in K) \|A_n x - Ax\|_F < \varepsilon$$
,

до того ж номер n_0 не залежить від точки x . Це означає, що $A_n x \to A x$ рівномірно по n на кожному компакті $K \subset E$.

З'ясуємо, коли простір $\mathcal{L}(E,F)$ є повним у розумінні рівномірної або точкової збіжності.

Теорема 13.2. Якщо нормований простір F — банахів, то $\mathcal{L}(E,F)$ — банахів у розумінні рівномірної збіжності.

Доведення. Нехай $\left\{A_{n}\right\}_{n=1}^{\infty}$ — фундаментальна послідовність операторів, тобто

$$||A_n - A_m|| \to 0, n, m \to \infty.$$

Тоді $\forall x \in E$

$$||A_n x - A_m x|| \le ||A_n - A_m|| \cdot ||x|| \to 0, n, m \to \infty.$$

Для кожного фіксованого $x \in E$ послідовність $\{A_n x\}$ є фундаментальною в F. Оскільки простір F є повним за умовою теореми, то послідовність $\{A_n x\}$ збігається до певного елемента $y \in F$. Позначимо $y = \lim_{n \to \infty} A_n x$. Отже, ми визначили відображення $A : E \to F$. Його лінійність випливає із властивостей границі. Прокажемо його обмеженість.

$$\begin{split} & \left\|A_n - A_m\right\| \to 0 \,, & n, m \to \infty \qquad \Rightarrow \\ & \left\|\left|A_n\right|\right| - \left\|A_n\right\|\right\| \to 0, \, n, m \to \infty \,\Rightarrow \\ & \Rightarrow \left\{\left\|A_n\right\|\right\}_{n=1}^{\infty} \,-\, \text{фундаментальна в } \mathbb{R} \,\Rightarrow \\ & \Rightarrow \quad \left\{\left\|A_n\right\|\right\}_{n=1}^{\infty} \,-\, \text{обмежена} \quad \text{в} \quad \mathbb{R} \quad \Rightarrow \\ & \exists \, C > 0 \, \left\|A_n\right\| \le C \ \, \forall n \in \mathbb{N} \,. \end{split}$$

Отже,

$$||A_n x|| \le ||A_n|| \cdot ||x|| \le C ||x||.$$

Внаслідок неперервності норми, маємо

$$||Ax|| = \lim_{n \to \infty} ||A_n x|| \le C ||x||.$$

Покажемо, що A_n рівномірно збігається до A в просторі $\mathcal{L}(E,F)$. Задамо $\varepsilon>0$ і виберемо n_0 так, щоб

$$\left\|A_{n+p}x-A_nx\right\|<\varepsilon \ \text{для}\ n\geq n_0,\ p>0\ \text{i}\ \text{для}\ \text{будь-якого}$$

$$x:\left\|x\right\|\leq 1\,.$$

Нехай $p \rightarrow \infty$. Тоді

$$\forall n \geq n_0, x : ||x|| \leq 1 ||Ax - A_n x|| < \varepsilon \Rightarrow$$

$$\Rightarrow ||A_n - A|| = \sup_{\|x\| \leq 1} ||(A_n - A)x|| \leq \varepsilon \Rightarrow$$

$$\Rightarrow A = \lim_{n \to \infty} A_n \quad \text{в розумінні рівномірної}$$

збіжності.

Отже, $\mathcal{L}(E,F)$ є банаховим. ■

Теорема 13.3. Якщо нормовані просторі E і F — банахові, то $\mathcal{L}(E,F)$ — банахів у розумінні точкової збіжності.

Доведення. Розглянемо точку $x \in E$ і фундаментальну у розумінні поточкової збіжності послідовність $\left\{A_n\right\}_{n=1}^{\infty}$. Оскільки F — банахів простір, то існує елемент $y = \lim_{n \to \infty} A_n x$. Таким чином, визначений оператор $A \colon E \to F$, такий що y = Ax. Лінійність цього оператора випливає із лінійності границі, а обмеженість — із теореми Банаха-Штейнгауза.

$$||Ax|| = ||\lim_{n \to \infty} A_n x|| \le \lim_{n \to \infty} ||A_n|| \cdot ||x|| = C ||x||.$$

Література

- 1. Садовничий В,А. Теория операторов. М.: Изд-во Моск. ун-та, 1986. с.96–102.
- 2. Ляшко И.И., Емельянов В.Ф., Боярчук А.К. Основы классического и современного математического анализа. М.: Выща школа, 1988. с. 576-578.

14. Принцип відкритості відображення

Лема 14.1. Нехай E і F — банахові простори, $A \in \mathcal{L}(E,F)$, E_n — множина тих точок $x \in E$, для яких $\|Ax\|_F \le n \|x\|_F$ n = 1, 2,

Тоді $E = \bigcup_{n=1}^{\infty} E_n$ і принаймні одна із множин E_n є всюди щільною в E.

Доведення. Спочатку пересвідчимось в тому, що $\forall x \in E \ \exists n \in N : x \in E_n \, .$

Очевидно, що $E_n \neq \emptyset$, оскільки $\forall n \in N \ 0 \in E$. Якщо $x \neq 0$, позначимо через n найменше натуральне число, що задовольняє нерівність

$$n \ge \frac{\left\|Ax\right\|_F}{\left\|x\right\|_F}.$$

Тоді

$$\forall x \in E \ \exists n \in \mathbb{N} : \|Ax\|_F \le n \|x\|_E.$$

Звідси випливає, що

$$E = \bigcup_{n=1}^{\infty} E_n.$$

Згідно теореми Бера, банахів простір E не може бути поданий у вигляді не більш ніж зліченного об'єднання ніде не щільних множин. Значить, одна із множин E_{n_0} не є ніде не щільною. Отже, існує відкрита куля $S\left(x_0,r\right)$, така що $S\left(x_0,r\right)\subset \overline{E}_{n_0}$.

Розглянемо замкнену кулю $\overline{S}\left(x_{\!\scriptscriptstyle 1},r_{\!\scriptscriptstyle 1}\right)$ з центром $x_{\!\scriptscriptstyle 1}\!\in E_{n_{\!\scriptscriptstyle 0}}$, таку що

$$\overline{S}(x_1,r_1)\subset S(x_0,r).$$

Візьмемо довільний елемент x з нормою $\|x\|=r_1$. Оскільки

$$||x_1 + x - x_1||_E = ||x||_E = r_1,$$

отримаємо, що $x_1+x\in \overline{S}\left(x_1,r_1\right)$. Отже,

$$\overline{S}(x_1,r_1)\subset \overline{E}_{n_0} \Rightarrow$$

$$\exists \big\{y_k\big\}_{k=1}^{\infty} \in S\left(x_1,r_1\right) \cap E_{n_0}: y_k \to x_1+x, k \to \infty\,.$$

Якщо $x_1+x\in E_{n_0}$, ця послідовність може бути стаціонарною. Таким чином, $\exists \big\{x_k\big\}_{k=1}^\infty = \big\{y_k-x_1\big\}_{k=1}^\infty$, така що

$$\lim_{k\to\infty} x_k = \lim_{k\to\infty} y_k - x_1 = x.$$

Оскільки

$$||x||_E = r_1 \text{ i } ||x_k||_E \le r_1,$$

можна вважати, що

$$||x_k||_E \ge \frac{r_1}{2} \quad \forall k \in N. \tag{1}$$

Із умов $y_k \in E_{n_0}, x_1 \in E_{n_0}, y_k = x_k + x_1$ маємо наступні оцінки

$$||Ax_k||_F = ||Ay_k - Ax_1||_F \le ||Ay_k||_F + ||Ax_1||_F \le n_0 (||y_k||_E + ||x_1||_E)$$

$$\|y_k\|_F = \|x_k + x_1\|_F \le \|x_k\|_F + \|x_1\|_F \le r_1 + \|x_1\|_F.$$
 (3)

Беручи до уваги умову (1) і оцінки (2), (3), маємо

$$||Ax_k||_F \le n_0 (r_1 + 2||x_1||_E) \le \frac{2n_0}{r_1} (r_1 + 2||x_1||_E) ||x_k||_E.$$

Нехай n — найменше натуральне число, що задовольняє нерівність

$$n \ge \frac{2n_0}{r_1} \Big(r_1 + 2 \|x_1\|_E \Big).$$

Тоді

$$||Ax_k||_F \le n||x_k||_F \Rightarrow x_k \in E_n.$$

Таким чином, довільний елемент x, норма якого дорівнює r_1 можна апроксимувати елементами множини E_n .

Нехай $x \in E$ — довільний ненульовий елемент. Розглянемо точку

$$\xi = r_1 \frac{x}{\|x\|_E}.$$

Вище ми довели, що існує послідовність

$$\left\{\xi_{k}\right\}_{k=1}^{\infty}: \xi_{k} \in E_{n}, \lim_{k \to \infty} \xi_{k} = \xi.$$

Тоді

$$\lim_{k \to \infty} x_k = \lim_{k \to \infty} \xi_k \frac{\|x\|_E}{r_1} = x,$$

$$\|Ax_k\|_F = \frac{\|x\|_E}{r_1} \|A\xi_k\|_F \le \frac{\|x\|_E}{r_1} n \|\xi_k\|_E = n \|x_k\|_E$$

Отже, $x_k \in E_n$ і $\lim_{k \to \infty} x_k = x$ $\forall x \in E$. Таким чином,

множина E_n скрізь щільна в E.

Теорема 14.1 (теорема Банаха про обернений оператор). $Hexa \ E$ i F — formula formula

лінійний обмежений взаємно-однозначний оператор, що діє із E в F. Тоді існує лінійний обмежений обернений оператор $A^{-1}: F \to E$.

Доведення. Покажемо лінійність оберненого оператора. Покладемо $\forall (x_1 \in E, x_2 \in E) \ Ax_1 = y_1, Ax_2 = y_2$. Внаслідок лінійності оператора A

$$\forall (\alpha \in \mathbb{R}, \beta \in \mathbb{R}) \ A(\alpha x_1 + \beta x_2) = \alpha y_1 + \beta y_2. \tag{4}$$

Оскільки $A^{-1}y_1 = x_1$, $A^{-1}y_2 = x_2$, помножимо ці рівності на α і β відповідно і складемо результати:

$$\alpha A^{-1} y_1 + \beta A^{-1} y_2 = \alpha x_1 + \beta x_2.$$
 (5)

Із рівності (4) і означення оберненого оператора випливає, що

$$\alpha x_1 + \beta x_2 = A^{-1} (\alpha y_1 + \beta y_2).$$

Беручи до уваги рівність (5), отримуємо

$$A^{-1}(\alpha y_1 + \beta y_2) = \alpha A^{-1} y_1 + \beta A^{-1} y_2.$$

Отже, оператор A^{-1} є лінійним. Тепер доведемо його обмеженість.

За лемою 14.1 банахів простір ${\it F}\,$ можна подати у вигляді

$$F = \bigcup_{k} F_{k} ,$$

де $F_{\scriptscriptstyle k}$ — множина таких елементів $\,y\!\in F\,$, для яких

$$\left\|A^{-1}y\right\|_{F} \le k \left\|y\right\|_{E} \quad \forall k \in N,$$

до того ж одна із множин F_k скрізь щільна в F . Позначимо цю множину через F_n . Візьмемо довільну точку $y \in F$, а її норму позначимо як $\|y\|_E = a$. Знайдемо таку точку $y_1 \in F_n$, щоб виконувались нерівності

$$\|y - y_1\|_E \le \frac{a}{2}, \|y_1\|_E \le a.$$

Такий вибір можливий, оскільки множина $\overline{S}\left(0,a\right) \cap F_n$ є щільною в замкненій кулі $\overline{S}\left(0,a\right)$ і $y \in \overline{S}\left(0,a\right)$. Знайдемо такий елемент $y_2 \in F_n$, щоб виконувались умови

$$\|y - y_1 - y_2\|_F \le \frac{a}{2^2}, \|y_2\|_E \le \frac{a}{2}.$$

Продовжуючи вибір, побудуємо елементи $y_k \in F_n$, такі що

$$\forall k \in N \ \|y - (y_1 + y_2 + ... + y_k)\|_F \le \frac{a}{2^k}, \ \|y_k\|_F \le \frac{a}{2^{k-1}}.$$

Внаслідок вибору елементів y_k маємо

$$\lim_{m\to\infty} \left\| y - \sum_{k=1}^m y_k \right\|_F = 0.$$

Це означає, що ряд $\sum_{k=1}^{\infty} y_k$ збігається до елемента y .

Покладемо $x_k = A^{-1} y_k$. Тоді отримуємо оцінку

$$||x_k||_E \le n||y_k||_F \le \frac{na}{2^{k-1}}.$$

Оскільки

$$\begin{split} & \left\| v_{k+p} - v_k \right\|_E = \left\| \sum_{i=k+1}^{k+p} x_i \right\|_E \le \sum_{i=k+1}^{k+p} \left\| x_i \right\|_E \le \\ & \le \sum_{i=k+1}^{\infty} \left\| x_i \right\|_E = \sum_{i=k+1}^{\infty} \left\| x_i \right\|_E \le \sum_{i=k+1}^{\infty} \frac{na}{2^{i-1}} = \\ & = \sum_{i=1}^{\infty} \frac{na}{2^{i+k-1}} = \frac{na}{2^k} \sum_{i=1}^{\infty} \frac{1}{2^{i-1}} = \frac{na}{2^k} \frac{1}{1 - \frac{1}{2}} = \frac{na}{2^{k-1}}. \end{split}$$

а простір E — повний, послідовність $\left\{v_k\right\}_{k=1}^{\infty}$, де $v_k=\sum_{i=1}^k x_i$ збігається до деякої границі $x\in E$. Отже,

$$x = \lim_{k \to \infty} \sum_{i=1}^{k} x_i = \sum_{i=1}^{\infty} x_i.$$

Внаслідок лінійності і неперервності оператора A, маємо

$$Ax = A\left(\lim_{k \to \infty} \sum_{i=1}^{k} x_i\right) = \lim_{k \to \infty} \sum_{i=1}^{k} Ax_i = \lim_{k \to \infty} \sum_{i=1}^{k} y_i = y.$$

Звідси отримуємо, що

$$||A^{-1}y||_{E} = ||x||_{E} = \lim_{k \to \infty} \left| \sum_{i=1}^{k} x_{i} \right|_{E} \le$$

$$\le \lim_{k \to \infty} \sum_{i=1}^{k} ||x_{i}||_{E} \le \sum_{i=1}^{\infty} \frac{na}{2^{i-1}} = 2na = 2n||y||_{E}.$$

Оскільки у — довільний елемент із простору F, обмеженість оператора A^{-1} доведено.

Наслідок 14.1. Якщо E і F — банахові простори, $A \in \mathcal{L}(E,F)$, то образ будь-якого околу нуля простору E містить деякий окіл нуля простору F.

Теорема 14.2 (принцип відкритості відображення). Лінійне сюр'єктивне і неперервне відображення банахова простору E на банахів простір F ϵ відкритим відображенням.

Доведення. Покажемо, що образ будь-якої відкритої множини простору E є відкритою множиною простору F. Нехай $G \subset E$ — непорожня відкрита множина, $x \in G$, а G_0 — окіл нуля в E, такий що $x + G_0 \subset G$. Розглянемо окіл нуля G_1 в просторі F, такий що $G_1 \subset AG_0$, який існує завдяки наслідку 14.1. Мають місце включення

$$Ax + G_1 \subset Ax + AG_0 = A(x + G_0) \subset AG.$$

Оскільки $Ax+G_1$ ϵ околом точки Ax, а x — довільна точка із множини G і $Ax \in AG$, то множина AG разом із кожною своєю точкою містить її деякий окіл Ω . Отже, множина AG ϵ відкритою і відображення A ϵ відкритим.

Нехай E,F — банахові простори. Відокремимо в банаховому просторі $\mathcal{L}(E,F)$ множину операторів $\mathfrak{M}(E,F)$, що мають обернений оператор.

Теорема 14.3. $Hexa\~u$ $A_0 \in \mathfrak{M}\big(E,F\big), \Delta \in \mathcal{L}\big(E,F\big)$ і $\|\Delta\| < \frac{1}{\|A_0^{-1}\|}$. $To \partial i \ A = A_0 + \Delta \in \mathfrak{M}\big(E,F\big)$.

Доведення. Зафіксуємо довільний $y \in F$ і розглянемо відображення $B: E \to E$, таке що $Bx = A_0^{-1}y - A_0^{-1}\Delta x$.

Оскільки $\|\Delta\| < \frac{1}{\|A_0^{-1}\|}$, відображення B ϵ стискаючим.

Простір E — банахів, тому існує єдина нерухома точка відображення B

$$x = Bx = A_0^{-1}y - A_0^{-1}\Delta x$$
,

Отже,

$$Ax = A_0x + \Delta x = y$$
.

Якщо існує ще одна точка x', така що Ax' = y, то x' також є нерухомою точкою відображення B. Оскільки це відображення має єдину нерухому точку, це означає,що x' = x. Отже, для будь-якого $y \in F$ рівняння Ax = y має єдиний розв'язок в просторі E. Значить, оператор A має обернений оператор A^{-1} . За теоремою Банаха про обернений оператор A^{-1} є обмеженим.

Теорема 14.4. Нехай E — банахів простір, I — тотожній оператор, що діє в E, $A \in \mathcal{L}(E,E)$ і ||A|| < 1. Тоді оператор $(I-A)^{-1}$ існує, обмежений и може бути

Тоді оператор (I-A) існує, обмежений и може бут поданий у вигляді

$$\left(I-A\right)^{-1} = \sum_{k=0}^{\infty} A^k.$$

Доведення. Спочатку зауважимо, що

$$||A|| < 1 \Rightarrow \sum_{k=0}^{\infty} ||A^k|| \le \sum_{k=0}^{\infty} ||A||^k < \infty.$$

Простір E — банахів, тому із збіжності ряду $\sum_{k=0}^{\infty} \left\| A^k \right\|$

випливає, що $\sum_{k=0}^{\infty}A^k\in\mathcal{L}ig(E,Eig)$. Для довільного $n\in\mathbb{N}$

$$(I-A)\sum_{k=0}^{n}A^{k}=\sum_{k=0}^{n}A^{k}(I-A)=I-A^{n+1}.$$

Перейдемо до границі при $n \to \infty$ і зважимо на те, що $\left\|A^{n+1}\right\| \le \left\|A\right\|^{n+1} \to 0$. Отже,

$$(I-A)\sum_{k=0}^{\infty}A^{k}=\sum_{k=0}^{\infty}A^{k}(I-A)=I.$$

Звідси випливає, що

$$(I-A)^{-1} = \sum_{k=0}^{\infty} A^k . \blacksquare$$

Література

- 1. Березанский Ю.М., Ус Г.Ф., Шефтель З.Г. Функциональный анализ. К.: Выща школа, 1990. с. 254–255.
- 2. Ляшко И.И., Емельянов В.Ф., Боярчук А.К. Основы классического и современного математического анализа. К.: Выща школа, 1988. с. 578-581.
- 3. Садовничий В.А. Теория операторов. М.: Изд-во МГУ, 1986. с. 102–106.
- 4. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1981. c.224—233.

15. Спряжені оператори, спектр і компактні оператори

Нехай E і F — лінійні топологічні простори. Розглянемо неперервний лінійний оператор $A:E \to F$ і функціонал $g \in F^*$. Застосуємо функціонал g до елемента y = Ax. Це визначає функціонал $f \in E^*$, який визначається формулою f(x) = g(Ax).

Озн. 15.1. Оператор $A^*: F^* \to E^*$, що визначається формулою f(x) = g(Ax) і ставить кожному функціоналу g із простору F^* функціонал f із простору E^* , називається спряженим до оператора A.

Приклад 15.1. Розглянемо оператор

$$A: \mathbb{R}^n \to \mathbb{R}^m$$

і функціонал

$$y = Ax$$
,

який визначається як

$$y_i = \sum_{j=1}^n a_{ij} x_j, \quad i = 1, 2, ..., m.$$

Тоді

$$f(x) = g(Ax) = \sum_{i=1}^{m} g_i y_i = \sum_{i=1}^{n} \sum_{j=1}^{m} g_i a_{ij} x_j = \sum_{i=1}^{n} x_j \sum_{j=1}^{m} g_i a_{ij}.$$

Отже,

$$f_i = \sum_{i=1}^m g_i a_{ij}, \quad j = 1, 2, ..., n.$$

З цього випливає, що

$$f = A^* g \Rightarrow A^* = A^T$$
.

Це означає, що спряжений оператор визначається транспонованою матрицею. ■

Позначивши значення функціонала f на елементі x символом (f,x), отримаємо, що

$$(g,Ax) = (f,x) = (A^*g,x).$$

Теорема 15.1. Якщо $A \in \mathcal{L}(E, F)$, де E, F — банахові простори, то $||A|| = ||A^*||$.

Доведення. З одного боку

$$|(A^*g, x)| = |(g, Ax)| \le ||g|| ||A|| ||x|| \Rightarrow ||A^*g|| \le ||A|| ||g||$$
$$\Rightarrow ||A^*|| \le ||A||.$$

3 іншого боку, для $x \in E$ і $Ax \neq 0$ існує елемент

$$y_0 \stackrel{\text{def}}{=} \frac{Ax}{\|Ax\|} \in F \Rightarrow \|y_0\| = 1.$$

Отже, за теоремою Хана-Банаха існує функціонал g , такий що $\|g\|=1$, $(g,y_0)=1$. 3 цього випливає, що

$$(g, y_0) = \left(g, \frac{Ax}{\|Ax\|}\right) = \frac{1}{\|Ax\|}(g, Ax) = 1.$$

Тоді

$$(g,Ax) = ||Ax||.$$

Таким чином,

$$(g,Ax) = ||Ax|| = |(A^*g,x)| \le ||A^*|| ||g|| ||x|| = ||A^*|| ||x|| \implies ||A|| \le ||A^*||.$$

3 цього випливає, що $||A|| = ||A^*||$. \blacksquare

Озн. 15.2. Нехай $A: E \to E$, де E — комплексний банахів простір. Число λ називається **регулярним** для оператора A, якщо оператор $R_{\lambda} = \left(A - \lambda I\right)^{-1}$ визначений на всьому просторі E.

Озн. 15.3. Оператор $R_{\lambda} = (A - \lambda I)^{-1}$ називається **резольвентою**.

Озн. 15.4. Сукупність всіх чисел λ , які не є регулярними для оператора A, називається його **спектром**.

Озн. 15.5. Число λ , таке що рівняння

$$Ax = \lambda x$$

має ненульові розв'язки, називається власним числом оператора A.

Озн. 15.6. Всі власні числа оператора A належать його спектру і утворюють **точковий спектр**.

Озн. 15.7. Доповнення до точкового спектру називається **неперервним спектром**.

Приклад 15.2. Розглянемо простір C[a,b] і оператор

$$Ax(t) = tx(t)$$
.

Тоді

$$(A - \lambda I)x(t) = (t - \lambda)x(t).$$

Із умови

$$(t-\lambda)x(t)=0 \quad \forall \lambda \in \mathbb{R}$$

випливає, що неперервна функція x(t) тотожно дорівнює нулю, тому оператор $(A - \lambda I)^{-1}$ існує для довільного λ .

Проте при $\lambda \in [a,b]$ обернений оператор, що діє за формулою

$$(A-\lambda I)^{-1}x(t) = \frac{1}{t-\lambda}x(t)$$

визначений не на всьому просторі C[a,b] і не є обмеженим. Таким чином, спектром є весь відрізок [a,b], власних чисел немає, тобто оператор A має лише неперервний спектр.

Зауваження 15.1. У скінченновимірних просторах неперервний спектр оператора є порожньою множиною, спектр збігається із точковим спектром і складається лише із власних чисел. У нескінченновимірних просторах кожне число відносно оператора є регулярним значенням, власним значенням або елементом точкового спектру.

Теорема 15.2. Якщо $A \in \mathcal{L}(E,E)$, де E — банахів простір і $|\lambda| > ||A||$, то λ — регулярне значення для оператора A.

Доведення. Оскільки

$$A - \lambda I = -\lambda \left(I - \frac{1}{\lambda} A \right),\,$$

TO

$$R_{\lambda} = \left(A - \lambda I\right)^{-1} = -\frac{1}{\lambda} \left(I - \frac{A}{\lambda}\right)^{-1} = -\frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{A^{k}}{\lambda^{k}}.$$

За умови $|\lambda| > ||A||$ цей ряд збігається і визначає на E обмежений оператор (теорема 14.4).

Зауваження 15.2. З теореми 15.2 випливає, що спектр оператора A міститься в колі радіусу ||A|| з центром в нулі.

Озн. 15.8. Оператор A, що діє із банахового простору E в банахів простір F називається **компактним**, або **цілком неперервним**, якщо кожну обмежену множину він переводить у відносно компактну множину.

Приклад 15.2. Лінійний неперервний оператор A, що переводить банахів простір E в його скінченновимірний підпростір, є компактним.

Теорема 15.3. Якщо послідовність компактних операторів $\left\{A_n\right\}_{n=1}^{\infty}$ в банаховому просторі E збігається до оператора A рівномірно, то оператор A теж є компактним.

Доведення. Для доведення компактності оператора A доведемо, що для будь-якої обмеженої послідовності $\left\{x_n\right\}_{n=1}^{\infty} \subset E$ із послідовності $\left\{Ax_n\right\}_{n=1}^{\infty}$ можна виділити збіжну підпослідовність.

Оператор $A_{\rm l}$ — компактний, тому із послідовності $\left\{A_{\rm l}x_n\right\}_{n=1}^{\infty}$ можна виділити збіжну підпослідовність. Нехай $\left\{x_n^{(1)}\right\}_{n=1}^{\infty} \subset E$ — послідовність, на якій збігається послідовність, яку ми виділили із $\left\{A_{\rm l}x_n\right\}_{n=1}^{\infty}$.

Оператор A_2 — компактний, тому із послідовності $\left\{A_2 x_n^{(1)}\right\}_{n=1}^\infty$ можна виділити збіжну підпослідовність. Нехай $\left\{x_n^{(2)}\right\}_{n=1}^\infty \subset E$ — послідовність, на якій збігається послідовність, яку ми виділили із $\left\{A_2 x_n^{(1)}\right\}_{n=1}^\infty$.

Продовжимо цей процес і виділимо діагональну послідовність

$$X_1^{(1)}, X_2^{(2)}, ..., X_n^{(n)}, ...$$

Оператори $A_1,A_2,...,A_n,...$ переводять її у збіжну послідовність. Покажемо, що оператор A теж переводить її в збіжну послідовність. Простір E — повний, тому достатньо показати, що $\left\{Ax_n^{(n)}\right\}_{n=1}^\infty$ ϵ фундаментальною послідовністю.

$$\begin{aligned} & \left\| Ax_{n}^{(n)} - Ax_{m}^{(m)} \right\| \leq \\ & \leq \left\| Ax_{n}^{(n)} - A_{k}x_{n}^{(n)} + A_{k}x_{n}^{(n)} - A_{k}x_{m}^{(m)} + A_{k}x_{m}^{(m)} - Ax_{m}^{(m)} \right\| \leq \\ & \leq \left\| Ax_{n}^{(n)} - A_{k}x_{n}^{(n)} \right\| + \left\| A_{k}x_{n}^{(n)} - A_{k}x_{m}^{(m)} \right\| + \left\| A_{k}x_{m}^{(m)} - Ax_{m}^{(m)} \right\| \end{aligned}$$

Нехай $\left\|x_{n}\right\| \leq C$. Оскільки $\left\|A_{n}-A\right\| \to 0$ при $n \to \infty$,

$$\exists K \in \mathbb{N} : \forall k \geq K \quad ||A - A_k|| < \frac{\varepsilon}{3C}.$$

Крім того, оскільки послідовність $\left\{A_k x_n^{(n)}\right\}$ є збіжною,

$$\exists N \in \mathbb{N} : \forall n, m \ge N \ \left\| A_k x_n^{(n)} - A_k x_m^{(m)} \right\| < \frac{\varepsilon}{3}.$$

Вибравши $M = \max(K, N)$, отримуємо

$$\forall n,m \geq M \ \left\| Ax_n^{(n)} - Ax_m^{(m)} \right\| < \varepsilon. \blacksquare$$

Теорема 15.4. Якщо A — лінійний компактний оператор, оператор B — лінійний обмежений, то оператори AB і BA ϵ компактними.

Доведення. Якщо множина $M \subset E$ є обмеженою, то BM — обмежена множина, оскільки обмежений оператор переводить будь-яку обмежену множину в обмежену множину. Отже, множина ABM є відносно компактною. Це означає, що оператор AB є компактним. Аналогічно, якщо множина $M \subset E$ є обмеженою, то AM — відносно компактна множина, оскільки компактний оператор переводить будь-яку обмежену множину у відносно компактну множину. Оператор B — неперервний, тому множина BAM є відносно компактною. Це означає, що оператор BA є компактним.

Наслідок 15.1. В нескінченновимірному просторі E компактний оператор не може мати обмеженого оберненого оператору.

Теорема 15.4. Оператор, спряжений до компактного, ϵ компактним. (Без доведення).

Спряжені, самоспряжені і компактні оператори відіграють особливо важливу роль у гільбертових просторах. Саме на цих поняттях побудована теорія розв'язності операторних рівнянь в гільбертових просторах.

Література

1. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. — М.: Наука, 1981. — с. 230–250.

16. Гільбертові простори

Озн. 16.1. Дійсна лінійна система H називається дійсним передгільбертовим простором (або евклідовим, або унітарним), якщо кожній парі елементів x, y поставлено у відповідність дійсне число (x, y), що задовольняє умови (аксіоми скалярного добутку):

1.
$$(x,x) \ge 0$$
, до того ж $(x,x) = 0$ тільки при $x = 0$;

2.
$$(x,y)=(y,x)$$
;

3.
$$(x_1 + x_2, y) = (x_1, y) + (x_2, y);$$

4.
$$(\lambda x, y) = \lambda(x, y)$$
.

Лема 16.1. В дійсному передгільбертовому просторі має місце нерівність Коші-Буняковського

$$|(x,y)| \le \sqrt{(x,x)}\sqrt{(y,y)}$$
,

для довільних $x, y \in H$.

Доведення. Розглянемо вираз

$$(x + \lambda x, x + \lambda x) = (x, x) + 2\lambda(x, y) + \lambda^{2}(y, y) \ge 0$$

Це означає, що дискримінант цього квадратного трьохчлена ϵ недодатним:

$$(x,y)^2 - (x,x)(y,y) \le 0.$$

Отже,

$$|(x,y)| \le \sqrt{(x,x)}\sqrt{(y,y)}$$
.

За скалярним добутком в H можна ввести норму $\|x\| = \sqrt{(x,x)}$.

Лема 16.2. Відображення $\|\cdot\|: x \to \sqrt{(x,x)}$ є нормою.

Доведення. Перевіримо аксіоми норми.

1.
$$\forall x \in H ||x|| = 0 \Leftrightarrow x = \theta$$

$$\sqrt{(x,x)} = 0 \Leftrightarrow (x,x) = 0 \Leftrightarrow x = \theta$$
.

2.
$$\|\lambda x\| = |\lambda| \cdot \|x\| \quad \forall x \in H, \lambda \in R^1$$
.

$$\sqrt{\left(\lambda x, \lambda x\right)} = \sqrt{\lambda \left(x, \lambda x\right)} = \sqrt{\lambda^{2}\left(x, x\right)} = \left|\lambda\right| \cdot \sqrt{\left(x, x\right)} = \left|\lambda\right| \cdot \left\|x\right\|$$

3.
$$||x + y|| \le ||x|| + ||y|| \ \forall x, y \in H$$

$$||x + y||^2 = (x + y, x + y) = (x, x) + (x, y) + (y, x) + (y, y) =$$

$$\leq ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2 = (||x|| + ||y||)^2 \Rightarrow ||x + y|| \leq ||x|| + ||y||.$$

Лема 16.3. Скалярний добуток ϵ неперервним відображенням, тобто

$$\lim_{n\to\infty} x_n = x, \lim_{n\to\infty} y_n = y \implies \lim_{n\to\infty} (x_n, y_n) = (x, y).$$

Доведення.

$$\begin{aligned} & |(x,y) - (x_n, y_n)| = |(x,y) - (x, y_n) + (x, y_n) - (x_n, y_n)| = \\ & = |(x,y-y_n) + (x-x_n, y_n)| \le |(x,y-y_n)| + |(x-x_n, y_n)| \le \\ & \le ||x|| \cdot ||y-y_n|| + ||x-x_n|| \cdot ||y_n|| \end{aligned}$$

$$\lim_{n \to \infty} y_n = y \implies \exists C > 0 : \forall n \ \|y_n\| \le C.$$

$$\lim_{n \to \infty} |(x, y) - (x_n, y_n)| \le 0 \implies \lim_{n \to \infty} (x_n, y_n) = (x, y). \blacksquare$$

Характеристична властивість передгільбертових просторів. Для того щоб нормований простір Е був передгильбертовим необхідно і достатньо, щоб для довільних елементів х і у виконувалась рівність

$$\forall x, y \in H \|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2). \tag{1}$$

Доведення. Необхідність.

$$||x + y||^2 + ||x - y||^2 = (x + y, x + y) + (x - y, x - y) =$$

$$= (x, x) + (x, y) + (y, x) + (y, y) + (x, x) - (x, y) - (y, x) + (y, y) =$$

$$= 2(||x||^2 + ||y||^2).$$

Достатність. Нехай рівність (1) виконується. Покладемо

$$(x,y) = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2).$$
 (2)

Покажемо, що рівність (2) виконується, то функція (2) задовольняє всім аксіомам скалярного добутку.

Оскільки при x = y маємо

$$(x,x) = \frac{1}{4} (\|x+x\|^2 + \|x-x\|^2) = \|x\|^2,$$

за допомогою такого скалярного добутку можна задати норму в просторі E.

Властивість 1 (невід'ємність). Оскільки

$$(x,x) = \frac{1}{4} (\|x+x\|^2 + \|x-x\|^2) = \|x\|^2 \ge 0.$$

Властивість 2 (симетричність). Ця аксіома виконана, оскільки

$$(x,y) = (y,x).$$

Властивість 3 (адитивність). Для перевірки цієї аксіоми розглянемо функцію, що залежить від трьох векторів.

$$\Phi(x,y,z) = 4\lceil (x+y,z) - (x,z) - (y,z) \rceil.$$

Покажемо, що ця функція тотожно дорівнює нулю.

$$\Phi(x, y, z) = ||x + y + z||^{2} - ||x + y - z||^{2} - ||x + z||^{2} + ||x - z||^{2} - ||y + z||^{2} + ||y - z||^{2}.$$
(3)

Із рівності (1) випливає, що

$$||x + y \pm z||^2 = 2||x \pm z||^2 + 2||y||^2 - ||x \pm z - y||^2.$$

Підставляючи цю рівність в (3), маємо

$$\Phi(x, y, z) = -\|x + y - z\|^2 + \|x - y - z\|^2 + \|x + z\|^2 - \|x - z\|^2 - \|y + z\|^2 + \|y - z\|^2.$$
(4)

Обчислимо напівсуму виразів (3) і (4).

$$\Phi(x, y, z) = \frac{1}{2} \|y + z + x\|^2 + \|y + z - x\|^2 + \frac{1}{2} \|y - z + x\|^2 + \|y - z - x\|^2 - \|y + z\|^2 + \|y - z\|^2.$$

Внаслідок (1) перший член дорівнює

$$||y+z||^2+||x||,$$

а другий —

$$-\|y-z\|^2-\|x\|$$
.

Отже,

$$\Phi(x,y,z) \equiv 0.$$

Властивість 4 (однорідність). Розглянемо функцію $\varphi(c) = (cx, y) - c(x, y)$.

Із рівності (2) випливає, що

$$\varphi(0) = \frac{1}{4} (\|g\|^2 - \|g\|^2) = 0,$$

а, оскільки (-x, y) = -(x, y), то

$$\varphi(-1)=0.$$

Отже, для довільного цілого числа n

$$(nx, y) = (\operatorname{sgn} n(x + x + ... + x), y) =$$

$$= \operatorname{sgn} n[(x, y) + (x, y) + ... + (x, y)] =$$

$$= |n| \operatorname{sgn} n(x, y) = n(x, y).$$

Таким чином,

$$\varphi(n) = 0.$$

При цілих p, q і $q \neq 0$ маємо

$$\left(\frac{p}{q}x,y\right) = p\left(\frac{1}{q}x,y\right) = \frac{p}{q}q\left(\frac{1}{q}x,y\right) = \frac{p}{q}(x,y).$$

Отже, $\varphi(c) = 0$ при всіх раціональних числах c. Оскільки функція φ є неперервною, з цього випливає, що

$$\varphi(c) \equiv 0.$$

Озн. 16.2. Повний передгільбертів простір H називається гільбертовим.

Приклад 16.1. Простір l_2 із скалярним добутком $(x,y) = \sum_{i=1}^{\infty} x_i y_i$ і нормою $\|x\| = \sqrt{\sum_{i=1}^{\infty} x_i^2}$ є гільбертовим.

Приклад 16.2. Простір $C_2[a,b]$ із скалярним добутком

$$(x,y) = \int_a^b x(t)y(t)dt$$
 і нормою $||x|| = \sqrt{\int_a^b x(t)y(t)dt}$ є гільбертовим.

Приклад 16.3. Простір $C\left[0,\frac{\pi}{2}\right]$ з нормою

 $\|x\| = \max_{t \in \left[0, \frac{\pi}{2}\right]} |x(t)|$ не є передгільбертовим — в ньому не

виконується основна характеристична властивість. Нехай $x(t) = \sin t$ і $y(t) = \cos t$. Оскільки $\|x\| = \|y\| = 1$, $\|x + y\| = \sqrt{2}$, $\|x - y\| = 1$, то

$$||x + y||^2 + ||x - y||^2 = 1 + 2 \neq 2(||x||^2 + ||y||^2) = 2(1 + 1) = 4$$

Гільбертів простір ϵ банаховим. Отже, на нього переносяться всі попередні означення і факти.

Озн. 16.1. Елементи x і y гільбертова простору називаються **ортогональними**, якщо (x, y) = 0. Цей факт записується як $x \perp y$.

Озн. 16.2. Якщо фіксований елемент $x \in H$ ϵ ортогональним до кожного елемента деякої множини $E \subset H$, говорять, що елемент $x \in \text{ортогональним}$ множині E. Цей факт позначається як $x \perp E$.

Озн. 16.3. Сукупність усіх елементів, ортогональних до даної множини $E \subset H$ ϵ підпростором простору Н. Цей підпростір називається **ортогональним доповненням** множини E.

Теорема Релліха. Нехай H_1 — підпростір гільбертова простору H і H_2 — його ортогональне доповнення. Будьякий елемент $x \in H$ можна єдиним способом подати у вигляді

$$x = x' + x'', x' \in H_1, x'' \in H_2.$$
 (1)

До того ж елемент x' реалізує відстань від x до H_1 , тобто

$$||x - x'|| = \rho(x, H_1) = \inf_{y \in H_1} \rho(x, y).$$
 (2)

Доведення. Позначимо $d = \rho(x, H_1)$. За означенням точної нижньої грані $\inf_{y \in H_1} \rho(x, y)$ існують елементи $x_n \in H_1$ такі, що

$$||x - x_n||^2 < d^2 + \frac{1}{n^2}, n = 1, 2, ...$$
 (3)

Застосуємо лему 16.4 до елементів $x-x_n$ і $x-x_m$:

$$\|(x - x_n) + (x - x_m)\|^2 + \|x_n - x_m\|^2 = 2(\|x - x_n\|^2 + \|x - x_m\|^2)$$
(4)

Оскільки $\frac{1}{2}(x_n + x_m) \in H_1$,

$$\left\| \left(x - x_n \right) + \left(x - x_m \right) \right\|^2 = 4 \left\| x - \frac{x_n + x_m}{2} \right\|^2 \ge 4d^2.$$
 (5)

Отже

$$||x_n - x_m||^2 \le 2\left(d^2 + \frac{1}{n^2} + d^2 + \frac{1}{m^2}\right) - 4d^2 = \frac{2}{n^2} + \frac{2}{m^2}.$$

Таким чином, послідовність $\left\{x_n\right\}_{n=1}^{\infty}$ є фундаментальною. Оскільки H — повний простір, $\exists x' = \lim_{n \to \infty} x_n$. В гільбертовому просторі будь-який підпростір є замкненою лінійною множиною, отже $x' \in H_1$.

Перейдемо до границі в нерівності (3). Отримаємо, що $\|x - x'\| \le d \ . \tag{6}$

3 іншого боку,

$$\forall y \in H_1 \ \|x - y\| \ge d \Rightarrow \|x - x'\| \ge d. \tag{7}$$

Порівнюючи нерівності (6) і (7), доходимо висновку, що $\|x-x'\|=d\;.$

Доведемо твердження:

$$x'' = x - x' \perp H_1 \Rightarrow x'' \in H_2$$
.

Візьмемо $y \in H_1$, $y \neq 0$. Тоді

$$\forall \lambda \in R^1 \ x' + \lambda y \in H_1 \Rightarrow \|x'' - \lambda y\|^2 = \|x - (x' + \lambda y)\|^2 \ge d^2 \Rightarrow$$

$$\Rightarrow (x'' - \lambda y, x'' - \lambda y) = (x'', x'') - \lambda(x'', y) - \lambda(y, x'') + \lambda^2(y, y) =$$

$$= d^{2} - \lambda(x'', y) - \lambda(y, x'') + \lambda^{2}(y, y) \ge d^{2} \Rightarrow$$

$$\Rightarrow -\lambda(x'', y) - \lambda(y, x'') + \lambda^2(y, y) \ge 0.$$

Покладемо
$$\lambda = \frac{(x'', y)}{(y, y)}$$
. Тоді

$$-\frac{(x'',y)^2}{(y,y)} - \frac{(x'',y)^2}{(y,y)} + \frac{(x'',y)^2}{(y,y)} \ge 0 \Longrightarrow (x'',y)^2 \le 0.$$

Це можливо лише тоді, коли

$$(x'', y) = 0 \Rightarrow x'' \perp y$$
.

Доведемо тепер єдиність подання (1). Припустимо, що існують два подання:

$$x = x' + x'', x' \in H_1, x'' \in H_2$$

$$x = x'_1 + x''_1, x'_1 \in H_1, x''_1 \in H_2.$$
i

З цього випливає, що

$$x' - x_1' = x_1'' - x'', \ x' - x_1' \in H_1, x_1'' - x'' \in H_2$$

 $\Rightarrow x' - x_1' \perp x_1'' - x'' \Rightarrow$
 $\Rightarrow x' - x_1' = x_1'' - x'' = 0. \blacksquare$

Озн. 16.4. Елементи x' і x'', які однозначно визначаються елементом x=x'+x'', називаються **проекціями** елемента x на підпростори H_1 і H_2 відповідно.

Теорема Рісса. Якщо $f \in H^*$, то існує єдиний елемент $y(f) \in H$, такий що f(x) = (x, y) для довільного $x \in H$, та $\|f\|_{H^*} = \|y\|_H$.

Доведення. Спочатку доведемо існування елемента y . Позначимо через $H_0 = Ker\ f$ множину тих елементів $x \in H$, які функціонал f відображає в нуль:

$$\forall x \in H_0 f(x) = 0.$$

Оскільки $f \in H^*$, він є лінійним і неперервним, отже, $H_0 = Ker\ f$ — підпростір, тобто замкнена лінійна множина. Якщо $H_0 = H$, покладемо y = 0.

Розглянемо випадок, коли $H_0 \neq H$. Нехай $y_0 \in H \setminus H_0$. За теоремою Релліха подамо його у вигляді

$$y_0 = y' + y'', y' \in H_0, y'' \perp H_0.$$

Якщо $y'' \neq 0$, то $f(y'') \neq 0$. Значить, можна покласти f(y'') = 1

(інакше ми могли б взяти замість y'' елемент $\frac{y''}{f(y'')}$).

Виберемо довільний елемент $x \in H$ і позначимо $f(x) = \alpha$. Розглянемо елемент $x' = x - \alpha y''$. Тоді

$$f(x') = f(x) - \alpha f(y'') = \alpha - \alpha = 0.$$

Отже.

$$x' \in H_0 \Rightarrow (x, y'') = (x' + \alpha y'', y'') = \alpha(y'', y'') \Rightarrow$$

$$\Rightarrow f(x) = \alpha = \left(x, \frac{y''}{(y'', y'')}\right) \Rightarrow y = \frac{y''}{(y'', y'')}.$$

Доведемо єдиність цього елемента. Дійсно, якщо $\forall x \in H \ \exists y, y_1 \in H \ (x, y) = (x, y_1),$

то

$$(x, y - y_1) = 0 \Rightarrow y - y_1 \perp H \Rightarrow y = y_1.$$

Оцінимо норму функціонала.

$$|f(y)| \le ||f|| ||y|| \Rightarrow ||f|| \ge f\left(\frac{y}{||y||}\right) = \frac{(y,y)}{||y||} = ||y||.$$

3 іншого боку,

$$|f(x)| = |(x, y)| \le ||x|| \cdot ||y|| \Rightarrow ||f|| \le ||y||.$$

Зауваження. З теореми Рісса випливає, що між гільбертовим простором H і спряженим простором H^* існує ізоморфізм, і скалярні добутки вичерпують весь запас функціоналів, які можна задати на просторі H.

Література

- 1. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1981. с. 143–147.
- 2. Канторович Л.В., Акилов Г.П. Функциональный анализ. М.: 1977. с. 160–167, 197–198.

17. Теорема про ізоморфізм

Обравши в n-вимірному евклідовому просторі ортогональний нормований базис $e_1, e_2, ..., e_n$, можна кожний вектор $x \in \mathbb{R}^n$ записати у вигляді

$$x = \sum_{k=1}^{n} c_k e_k , \qquad (1)$$

де

$$c_k = (x, e_k)$$
.

Постає питання, як узагальнити цей розклад на випадок нескінченновимірного евклідова простору. Введемо наступні поняття.

Озн. 17.1. Система ненульових векторів $\{e_k\}$ \subset E називається **ортогональною**, якщо

$$(e_k, e_l) = 0$$
 npu $k \neq l$.

Озн. 17.2. Система $\{e_k\}$ \subset E , елементи якой задовольняють умову

$$\left(e_{k},e_{l}\right)=\begin{cases}0,% \in\mathbb{R},\\1,% \in\mathbb{R},\\0\end{cases}$$
 якщо $k=l$

називається ортонормованою.

Нагадаємо означення із теорії лінійних просторів.

Озн. 17.3. Найменший лінійний підпростір, що містить множину A у лінійному просторі X, називається **лінійною оболонкою** множини A, або **лінійним підпростором, що породжений множиною** A. Цей підпростір позначається як **span** A.

Зауваження 17.1. Лінійна оболонка *лінійної* множини A ϵ замкненою, але якщо множина A ϵ довільною, це не

обов'язково так. В той же час у *нормованих* просторах підпростори ϵ замкненими за означенням, тому лінійна оболонка множини в нормованому просторі ϵ замкненою.

Озн. 17.4. Система $\{e_k\} \subset E$ називається **повною**, якщо її лінійна оболонка є скрізь щільною в E, тобто $\overline{span\{e_k\}} = E$.

Озн. 17.5. Повна ортонормована система $\{e_k\} \subset E$ називається **ортонормованим базисом**.

Приклад 17.1. В просторі l_2 ортонормований базис

утворюють послідовності
$$e_i = \left(0,...,0,\underbrace{1}_{i-mu\bar{u}},0,...,0,...\right).$$

Скалярний добуток:
$$(x, y) = \sum_{n=1}^{\infty} x_n y_n$$
.

Приклад 17.2. В просторі $C_2(a,b)$ ортонормований базис утворюють вектори

$$\frac{1}{2},\cos\frac{2\pi t}{b-a},\sin\frac{2\pi t}{b-a},...,\cos n\frac{2\pi t}{b-a},\sin n\frac{2\pi t}{b-a},....$$

Скалярний добуток:
$$(f,g) = \int_{-\pi}^{\pi} f(t)g(t)dt$$
.

Лема 17.1. В сепарабельному евклідовому просторі будьяка ортогональна система ϵ не більш ніж зліченною.

Доведення. Не обмежуючи загальності, розглянемо ортонормовану систему $\{\phi_k\} \subset E$. Тоді

$$\|\varphi_{k} - \varphi_{l}\| = \sqrt{(\varphi_{k} - \varphi_{l}, \varphi_{k} - \varphi_{l})} =$$

$$= \sqrt{(\varphi_{k}, \varphi_{k}) - 2(\varphi_{k}, \varphi_{l}) + (\varphi_{l}, \varphi_{l})} =$$

$$= \sqrt{(\varphi_{k}, \varphi_{k}) + (\varphi_{l}, \varphi_{l})} = \sqrt{1 + 1} = \sqrt{2}.$$

Розглянемо сукупність куль $S\left(\mathbf{\phi}_{k},\frac{1}{2}\right)$. Ці кулі не перетинаються. Якщо зліченна множина $\left\{\psi_{k}\right\}$ є скрізь щільною в E , то в кожну кулю потрапить принаймні один

щільною в E, то в кожну кулю потрапить принаимні один елемент ψ_k . Отже, потужність множини таких куль не може перевищувати потужність зліченої множини.

Озн. 17.6. Ортонормована система $\{\phi_k\} \subset E$ називається **замкненою**, якщо для довільного $f \in E$ виконується рівність Парсеваля

$$\sum_{k=1}^{\infty} c_k^2 = \|f\|^2.$$
 (2)

Озн. 17.6. Нехай $\{ \phi_k \} \subset E$ — ортонормована система в евклідовому просторі, а f — довільний елемент із E. Поставимо у відповідність елементу $f \in E$ послідовність чисел

$$c_k = (f, \varphi_k), k = 1, 2, ...$$

Числа c_k називаються координатами, або коефіцієнтами $\mathbf{\Phi}$ ур'є елемента f по системі $\{\mathbf{\phi}_k\}$ \in E , а ряд

$$\sum_{k=1}^{\infty} c_k \varphi_k$$

називається **рядом Фур'** ϵ елемента f по системі $\{\phi_k\} \in E$.

Теорема 17.1. Ряд Фур'є збігається тоді і лише тоді, коли система $\{\phi_k\}$ $\in E$ є замкненою.

Доведення. Розглянемо суму

$$S_n = \sum_{k=1}^n \alpha_k \varphi_k$$

і для заданого числа n відшукаємо коефіцієнти α_k , що мінімізують $\left\|f-S_n\right\|^2$.

$$||f - S_n||^2 = \left(f - \sum_{k=1}^n \alpha_k \varphi_k, f - \sum_{k=1}^n \alpha_k \varphi_k\right) =$$

$$= (f, f) - 2\left(f, \sum_{k=1}^n \alpha_k \varphi_k\right) + \left(\sum_{k=1}^n \alpha_k \varphi_k, \sum_{k=1}^n \alpha_k \varphi_k\right) =$$

$$= ||f||^2 - 2\sum_{k=1}^n \alpha_k c_k + \sum_{k=1}^n \alpha_k^2 =$$

$$= ||f||^2 - \sum_{k=1}^n c_k^2 + \sum_{k=1}^n (\alpha_k - c_k)^2.$$

Мінімум цього виразу досягається тоді, коли останній член дорівнює нулю, тобто, коли

$$\alpha_k = c_k, k = 1, 2, ..., n$$
.

В цьому випадку

$$||f - S_n||^2 = ||f||^2 - \sum_{k=1}^n c_k^2.$$
 (3)

Оскільки $\|f - S_n\|^2 \ge 0$, то

$$\sum_{k=1}^{n} c_k^2 \le \|f\|^2.$$

Переходячи до границі при $n \to \infty$, отримуємо нерівністю Бесселя:

$$\sum_{k=1}^{\infty} c_k^2 \le \left\| f \right\|^2. \tag{4}$$

Із тотожності (3) випливає, що рід Фур'є збігається тоді і лише тоді, коли виконується рівність Парсеваля, тобто система є замкненою.

Теорема 17.2. В сепарабельному евклідовому просторі E будь-яка повна ортонормована система ϵ замкненою, і навпаки.

Доведення. Необхідність. Нехай система $\{\phi_k\} \subset E$ є замкненою. Тоді за теоремою 17.1 для довільного елемента $f \in E$ послідовність часткових сум його ряду Фур'є збігається до f. Це означає, що $\overline{span\{\phi_k\}} = E$, тобто система $\{\phi_k\}$ є повною.

Достатність. Нехай система $\{\phi_k\}$ є повною, тобто довільний елемент $f \in E$ можна скільки завгодно точно апроксимувати лінійною комбінацією $\sum_{k=1}^n \alpha_k \phi_k$ елементів системи $\{\phi_k\}$:

$$\forall \varepsilon > 0 \exists \sum_{k=1}^{n} \alpha_k \varphi_k : \left\| f - \sum_{k=1}^{n} \alpha_k \varphi_k \right\| < \varepsilon.$$

За теоремою 17.1 елементом найкращого наближення серед усіх сум вигляду $\sum_{k=1}^{n} \alpha_k \phi_k$ є ряд Фур'є. Отже, цей ряд збігається, а, значить, виконується рівність Парсеваля, тобто система $\{\phi_k\}$ є замкненою.

Теорема Рісса-Фішера. Нехай $\{\varphi_k\}\subset E$ — довільна ортонормована система в гільбертовому просторі E, а числа $c_1, c_2, ..., c_n, ...$ ϵ такими, що ряд $\sum_{k=1}^{\infty} c_k^2$ ϵ збіжним. Тоді існує такий елемент $f\in E$, такий що $c_k=(f,\varphi_k)$ і $\sum_{k=1}^{\infty} c_k^2 = (f,f) = \|f\|^2$.

Доведення. Розглянемо суму

$$f_n = \sum_{k=1}^n c_k \varphi_k .$$

Тоді,

$$||f_{n+p} - f_n||^2 = ||c_{n+1} \varphi_{n+1} + \dots + c_{n+p} \varphi_{n+p}||^2 = \sum_{k=n+1}^{n+p} c_k^2.$$

Оскільки ряд $\sum_{k=1}^{\infty} c_k^2$ є збіжним, а простір E — повним,

послідовність $\left\{f_n\right\}_{n=1}^{\infty}$ збігається до деякого елемента $f\in E$. Оцінимо наступний скалярний добуток.

$$(f, \varphi_i) = (f_n, \varphi_i) + (f - f_n, \varphi_i).$$

При $n \ge i$ перший доданок дорівнює c_i , а другий доданок при $n \to \infty$ прямує до нуля, оскільки

$$|(f-f_n,\mathbf{\varphi}_i)| \leq ||f-f_n|| ||\mathbf{\varphi}_i||.$$

Ліва частина рівності від n не залежить. Переходячи до границі при $n \to \infty$, доходимо висновку, що

$$(f, \mathbf{\varphi}_i) = c_i$$
.

Оскільки за означенням елемента f

$$\lim_{n\to\infty} ||f-f_n|| = 0,$$

то

$$\left(f - \sum_{k=1}^{n} c_k \varphi_k, f - \sum_{k=1}^{n} c_k \varphi_k\right) = \left(f, f\right) - \sum_{k=1}^{n} c_k^2 \to 0$$
 при $n \to \infty$.

Отже,

$$\sum_{k=1}^{\infty} c_k^2 = (f, f).$$

Теорема про ізоморфізм. Довільні два сепарабельних гільбертових простора ϵ ізоморфними один до одного.

Доведення. Покажемо, що кожний гільбертів паростір H ϵ ізоморфним простору l_2 . Це доведе теорему про ізоморфізм.

Виберемо в H довільну повну ортонормовану систему $\{\phi_k\}\subset H$ і поставимо у відповідність елементу $f\in H$ сукупність його коефіцієнтів Фур'є за цією системою $c_1,c_2,...,c_n,...$ Оскільки $\sum_{k=1}^\infty c_k^2<\infty$, то послідовність $\{c_1,c_2,...,c_n,...\}$ належить l_2 . І навпаки, за теоремою Рісса—Фішера довільному елементу $\{c_1,c_2,...,c_n,...\}\in l_2$ відповідає деякий елемент $f\in H$, у якого числа

 $c_1, c_2, ..., c_n, ...$ ϵ коефіцієнтами Фур'є за системою $\left\{ \phi_k \right\} \subset E$. Ця відповідність ϵ взаємно-однозначною. Крім того, якщо

$$f \leftrightarrow \{c_1, c_2, ..., c_n, ...\},$$

i

$$g \leftrightarrow \{d_1, d_2, ..., d_n, ...\},$$

то

$$f + g \leftrightarrow \{c_1 + d_1, c_2 + d_2, ..., c_n + d_n, ...\}$$

i

$$\alpha f \leftrightarrow \{\alpha c_1, \alpha c_2, ..., \alpha c_n, ...\}.$$

Крім того, із рівності Парсеваля випливає, що

$$(f,f) = \sum_{k=1}^{\infty} c_k^2, (g,g) = \sum_{k=1}^{\infty} d_k^2,$$

$$(f+g,f+g) = (f,f) + 2(f,g) + (g,g) =$$

$$= \sum_{k=1}^{\infty} (c_k + d_k)^2 = \sum_{k=1}^{\infty} c_k^2 + 2\sum_{k=1}^{\infty} c_k d_k + \sum_{k=1}^{\infty} d_k^2.$$

Отже,

$$(f,g) = \sum_{k=1}^{\infty} c_k d_k$$
.

Таким чином, установлена відповідність між елементами просторів H і l_2 є ізоморфізмом. \blacksquare

Література

1. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. — М.: Наука, 1981. — с. 149–157.