

Arhitektura i Razvoj Inteligentnih Sustava

Tjedan 9: Praćenje i metrika

Creative Commons

- imenovanje: morate priznati i označiti autorstvo djela na način kako je specificirao autor ili davatelj licence (ali ne način koji bi sugerirao da Vi ili Vaše korištenje njegova djela imate njegovu izravnu podršku).
- nekomercijalno: ovo djelo ne smijete koristiti u komercijalne svrhe.
- dijeli pod istim uvjetima: ako ovo djelo izmijenite, preoblikujete ili stvarate koristeći ga, preradu možete distribuirati samo pod licencom koja je ista ili slična ovoj.

U slučaju daljnjeg korištenja ili distribuiranja morate drugima jasno dati do znanja licencne uvjete ovog djela. Od svakog od gornjih uvjeta moguće je odstupiti, ako dobijete dopuštenje nositelja autorskog prava. Ništa u ovoj licenci ne narušava ili ograničava autorova moralna prava. Tekst licence preuzet je s http://creativecommons.org/

Osvrt na dosadašnje teme

- Explaineri i drift detektori su bitne komponente
 - Ukoliko su ovakvi modeli u sekvenci sa osnovnim modelom (inference), tada se izlaz vidi u odgovoru s kojim se pozvao cjevovod na Seldon Core v2 serveru
 - Ukoliko su ovakvi modeli u paraleli sa osnovnim modelom, tada se odgovori mogu potražiti u Kafka toku podataka – ili korištenjem CLI-a (pipeline output inspect)
 - Rezultati ovih modela su informativni omogućavaju nam reakciju i zahvat na sam model
 - Podešavanje prostora značajki
 - Ponovno učenje modela s novim podacima

Standardna metrika

- ML serveri izlažu REST endpoint-ove za metriku
 - OpenMetrics projekt za uspostavu standarda
 - Iniciran od Prometheusa, kako bi se uspostavio jedinstven način dijeljenja metrike
 - Tipovi metrika Gauge, Counter, Histogram, Summary, ...
- Seldon MLServer posebni endpoint za metriku
 - Može se konfigurirati u settings. json opisniku
 - Daje osnovnu metriku za modele
 - Broj poziva, trajanje poziva i slično
 - Koristi zajednički store za višedretveni način rada
 - Na taj se endpoint može spojiti Prometheus i čitati vrijednosti
 - Postoji i prometheus_client python modul kojim se to može raditi ručno

Prilagođena (custom) metrika

- Seldon ML server omogućava i prilagođenu metriku za naše modele
 - Prilagođeni modeli imaju mogućnost registrirati svoje metrike

```
mlserver.register mlserver.log
```

- Ovako definirane metrike će biti dostupne kroz endpoint za metriku u obliku histograma
- Uobičajeno je da se kod učitavanja modela (*load* metoda u prilagođenom modelu) registriraju i prilagođene metrike
- Kod *predict* metode se zatim logiraju podaci te metrike
- Seldon Core v2
 - Dodatna zajednička standardna metrika za sve modele
 - Brojači (counter) i mjerači (gauge) brojanje poziva, vremena odaziva i slično
 - Hodometer komponenta koja skuplja stanja resursa na kubernetes clusteru na kojem je Seldon Core instaliran
 - Ta se metrika resursa zatim izlaže kroz endpoint za metriku

Kubernetes metrika

- Generalno
 - Ova se metrika odnosi na performanse modela
 - To nam je bitno da ocijenimo koliko je opterećenje na infrastrukturu, koliko se dugo izvršavaju naši modeli, koliko poziva, ...

Zatvoreni krug zahtjeva

- Korisničke zahtjeve dijelimo na
 - Funkcionalne što model treba raditi?
 - Funkcionalna metrika se dobiva iz explainera, drift detektora i prilagođene metrike
 - Nefunkcionalne kako to taj model treba raditi?
 - Brzina, skalabilnost, broj korisnika, broj poziva u jedinici vremena
 - Nefunkcionalna metrika se dobiva iz metrike modela
- Funkcionalna nesukladnost se rješava
 - Intervencijom u podatke i postupak obrade podataka
 - Promjenom pristupa drugi algoritam, drugi model, isto sučelje (?)
 - Ponovnim učenjem na novijem skupu podataka

Zatvoreni krug zahtjeva

- Nefunkcionalna nesukladnost se rješava
 - Promjenom pristupa drugi algoritam, drugi model pokušaj simplifikacije modela drugim algoritmom
 - Redukcija prostora značajki temeljem rezultata rada explainera
 - Intervencijama u infrastrukturu
 - Korištenje skalabilne i elastične infrastrukture
 - Dodavanje čvorova, dodavanje replika, ...

Ostali podaci

- Recimo da postoji servisni cjevovod iz kojeg zovemo cjevovod u Seldon Core-u
 - U servisnom cjevovodu agregiramo podatke koje zatim upisujemo u razne baze podataka
 - Sve ono što je ostalo a toga ima mnogo možemo uhvatiti i obraditi prilagođenim obradama u servisnom cjevovodu
 - Primjer, uobičajen je poziv za pokretanje cjevovoda za učenje u slučaju kada drift detektor utvrdi značajno odstupanje od originalnih klasifikacija u trenutku učenja modela
 - Ovo je podložno određenoj statističkoj relaksaciji potrebna je određena količina drift detekcija kako bi se ustvrdilo da model nije odgovarajuć
 - U jedinici vremena?

Utjecaj rada inteligentnog servisa na podatke

- Inteligentni servisi svojim radom utječu na svoju okolinu
 - Tim utjecajem, to jest klasifikacijama, predikcijama i odlukama utječu na druge informacijske sustave u koje su uključeni
 - Ali utječu i na same korisnike
 - Forsirano inteligentni sustav donosi odluku i upravlja
 - Kroz preporuke inteligentni sustav daje preporuku, a korisnik u konačnici odlučuje
 - Procesno inteligentno upravljanje usmjerava korisnike i pojačava neke tokove u procesima
 - Podatkovno recimo kupci se usmjeravaju na određene proizvode što oni mogu prihvatiti ili ne – ali to može imati utjecaja na kulturu kupca
 - Korisnici u manjoj ili većoj mjeri preuzimaju navike u skladu s interakcijom s inteligentnim sustavom
 - Po onome "brže, lakše, bolje"
 - Po onome "ako je trend, mora da je dobro"

Utjecaj rada inteligentnog servisa na podatke

- No, to u neku ruku mijenja podatke koji su rezultata rada inteligentnog sustava
 - Ako optimiramo proces (pa čak i kroz preporuku), neki tokovi u procesu će postati sparse
 - Ako nudimo samo trendy robu, sasvim je moguće da će to prouzročiti kanibalizaciju suplementarnih proizvoda
- U konačnici postoji sprega između modela i krajnjeg korisnika
 - Model utječe na korisnika, što se reflektira na podacima korisnik se približava modelu
 - Korisnik utječe na model, što se reflektira opet na podacima model se ponovnim učenjem približava korisniku

