Теореми про гомоморфізм. Перша теорема про гомоморфізм

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

12 жовтня 2022

FACULTY OF MECHANICS AND MATHEMATICS

Природний гомоморфізм

Нехай G — група, H ⊲ G. Тоді відображення

$$\pi: G \to G/H: a \mapsto aH$$

є епіморфізмом.

Дійсно,

$$\pi(ab) = abH = aH \cdot bH = \pi(a)\pi(b).$$

Сюр'єктивність очевидна.

Означення

Епіморфізм π називається природним епіморфізмом.

Універсальна властивість природного епіморфізму

Нехай G — група, $H \triangleleft G$, $\pi: G \rightarrow G/H$ — природний епіморфізм.

Для довільного такого гомоморфізму $\varphi: G \to G'$, для якого $\varphi(H) = \{e\}$, існує єдиний гомоморфізм

$$\overline{\varphi}: G/H \to G',$$

який робить діаграму

комутативною, тобто

$$\forall g \in G : \varphi(g) = \overline{\varphi}(\pi(g)),$$

тобто $\varphi = \pi \circ \overline{\varphi}$.

Універсальна властивість природного епіморфізму

Чому це так?

Для будь-якого $g \in G$: $\varphi(gh) = \varphi(g)\varphi(h) = \varphi(g)$ для всіх $h \in H \Rightarrow \varphi(gH) = \varphi(g)$. Тоді φ індукує гомоморфізм

$$\overline{\varphi}: G/H \to G': \overline{\varphi}(gH) = \varphi(g).$$

Це дійсно гомофорфізм, бо

$$\overline{\varphi}(gH\cdot g'H) = \overline{\varphi}(gg'H) = \varphi(gg') = \varphi(g)\varphi(g') = \overline{\varphi}(gH)\overline{\varphi}(g'H).$$

Тоді для всіх $g \in G$

$$\overline{\varphi}(\pi(g)) = \overline{\varphi}(gH) = \varphi(g).$$

Єдиність випливає з сюр'єктивності π .

Перша теорема про гомоморфізм: основна теорема про гомоморфізм для груп

Теорема

Нехай $\varphi: G \to G'$ — гомоморфізм груп G та G'. Тоді

- $\ker \varphi$ нормальна підгрупа групи *G*;
- \bullet Im φ підгрупа групи G';
- гомоморфізм φ розкладається у композицію епіморфізму π , ізоморфізму $\overline{\varphi}$ та мономорфізму μ , тобто діаграма

$$egin{aligned} G & & \stackrel{m{\phi}}{\longrightarrow} G' \ \downarrow^{\pi} & & \stackrel{\mu}{\longleftarrow} \ G/\operatorname{Ker}m{\phi} & \stackrel{\overline{\phi}}{\longrightarrow} \operatorname{Im}m{\phi} \end{aligned}$$

є комутативною.

Основна теорема про гомоморфізм для груп

Доведення.

Вже доведено: $\operatorname{Ker} \varphi \triangleleft G$; $\operatorname{Im} \varphi < G'$.

Канонічний епіморфізм: $\pi: G \to G / \operatorname{Ker} \varphi: g \mapsto g \operatorname{Ker} \varphi$.

Для всіх $k \in \text{Ker } \varphi$: $\varphi(k) = e$.

Відображення $g\mapsto \varphi(g): G\to \operatorname{Im} \varphi$ визначає гомоморфізм $\overline{\varphi}: G/\operatorname{Ker} \varphi\to \operatorname{Im} \varphi: g\operatorname{Ker} \varphi\mapsto \varphi(g).$

 $\overline{\phi}$ — епіморфізм.

 $\overline{\phi}$ — мономорфізм, бо

$$\overline{\varphi}(g \operatorname{Ker} \varphi) = e \Leftrightarrow \varphi(g) = e \Leftrightarrow g \in \operatorname{Ker} \varphi \Leftrightarrow g \operatorname{Ker} \varphi = \operatorname{Ker} \varphi$$

$$\Rightarrow$$
 Ker $\overline{\varphi}$ = Ker φ .

Отже, $\overline{\varphi}$ — ізоморфізм.

Мономорфізм $\mu : \operatorname{Im} \varphi \to G' : g' \mapsto g'$.

$$g \stackrel{\pi}{\longrightarrow} g \operatorname{\mathsf{Ker}} \phi \stackrel{\overline{\phi}}{\longrightarrow} \phi(g) \stackrel{\mu}{\longrightarrow} \phi(g) \ \Box$$

Основна теорема про гомоморфізм для груп

Теорема

Нехай $\varphi: G \to G'$ — гомоморфізм груп G та G'. Тоді $\operatorname{Ker} \varphi$ — нормальна підгрупа групи G, $\operatorname{Im} \varphi$ — підгрупа групи G' та

 $G/\operatorname{Ker} \varphi \simeq \operatorname{Im} \varphi$.

Приклад

Приклад

За допомогою основної теореми про гомоморфізм довести, що $GL_n(\mathbb{R})/SL_n(\mathbb{R})\simeq \mathbb{R}^*.$

Доведення.

Потрібно: епіморфізм $\varphi: GL_n(\mathbb{R}) \to \mathbb{R}^*$ з ядром $SL_n(\mathbb{R})$.

Візьмемо $\varphi: GL_n(\mathbb{R}) \to \mathbb{R}^*: \quad \varphi(A) = \det A.$

$$\det(AB) = \det A \cdot \det B \Rightarrow \varphi$$
— гомоморфізм.

$$\forall r \in \mathbb{R}^* \exists A \in GL_n(\mathbb{R}) : \det A = r \Rightarrow \varphi -$$
епіморфізм.

$$\operatorname{Ker} \varphi = SL_n(\mathbb{R}).$$

Основна теорема про гомоморфізм:

$$GL_n(\mathbb{R})/SL_n(\mathbb{R}) \simeq \mathbb{R}^*$$
. \square

Приклад

Приклад

За допомогою основної теореми про гомоморфізм довести, що $\mathbb{Z}/n\mathbb{Z}\simeq\mathbb{Z}_n$.

Доведення.

Потрібно: епіморфізм $\varphi: \mathbb{Z} \to \mathbb{Z}_n$ з ядром $n\mathbb{Z}$.

Візьмемо
$$\varphi : \mathbb{Z} \to \mathbb{Z}_n : a \mapsto a \pmod{n}$$
.

$$(a+b) \pmod{n} \equiv a \pmod{n} + b \pmod{n} \Rightarrow \varphi$$
 — гомоморфізм.

$$\forall \, \overline{r} \in \mathbb{Z}_n \, \exists \, \alpha \in \mathbb{Z} : \alpha = qn + r \Rightarrow \varphi$$
 — епіморфізм.

$$\operatorname{Ker} \varphi = n\mathbb{Z}.$$

Основна теорема про гомоморфізм:

$$\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}_n$$
. \square