PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN IIC2223 - Teoría de Autómatas y Lenguajes Formales Segundo semestre de 2024

Profesor: Cristian Riveros AYUDANTE: AMARANTA SALAS

Ayudantia 13 Apiladores

Problema 1

1. Demuestre un autómata apilador para el siguiente lenguaje:

$$L_1 = \{ w \in \{0, 1\}^* \mid 2 \cdot |w|_0 = |w|_1 \}$$

dónde $|w|_a$ representa el número de a-letras en w. Explique su correctitud.

2. Para una palabra $w \in \{0,1\}^+$ sea $bin(w) \in \mathbb{N}$ el número natural que representa la palabra binaria w, donde los bits más significativos son los primeros. Demuestre un autómata apilador para el siguiente lenguaje:

$$L_2 = \{u \# v \mid u, v \in \{0, 1\}^+ \text{ y } bin(v^r) = bin(u) + 1\}$$

donde v^r es el reverso de v (esto es, si $v=a_1\ldots a_n$, entonces $v_r=a_na_{n-1}\ldots a_1$). Explique su correctitud.

Problema 2

La notación polaca de una sentencia φ en lógica proposicional se define recursivamente como:

$$\begin{split} \operatorname{np}(0) &= 0 \\ \operatorname{np}(1) &= 1 \\ \operatorname{np}(\neg \varphi) &= \neg \cdot \operatorname{np}(\varphi) \\ \operatorname{np}(\varphi_1 \wedge \varphi_2) &= \wedge \cdot \operatorname{np}(\varphi_1) \cdot \operatorname{np}(\varphi_2) \\ \operatorname{np}(\varphi_1 \vee \varphi_2) &= \vee \cdot \operatorname{np}(\varphi_1) \cdot \operatorname{np}(\varphi_2) \\ \operatorname{np}([\varphi]) &= [\cdot \operatorname{np}(\varphi) \cdot] \end{split}$$

Donde · representa la concatenación y el alfabeto es $\Sigma = \{0, 1, \neg, \land, \lor, [,]\}$. Considere el lenguaje de todas las sentencias en lógica proposicional que se evalúan verdadero:

$$L = \{ np(\varphi) | \varphi \text{ es una sentencia en lógica proposicional y } \varphi \equiv 1 \}$$

Construya un autómata apilador alternativo para L y explique la correctitud de su construcción.

Página 1 de 2 IIC2223 - Ayudantia 13

Problema 3

Sea $\mathcal{D}=(Q,\Sigma,\Delta,q_0,F)$ un autómata apilador alternativo. Sea R una expresión regular sobre Q, esto es, $\mathcal{L}(R)\subseteq Q^*$. Decimos que D acepta una palabra $w\in\Sigma^*$ por R-stack si existe una ejecución de \mathcal{D} sobre w que empieza en la configuración inicial (q_0,w) y termina en una configuración (γ,ϵ) con $\gamma\in\mathcal{L}(R)$. Se define el lenguaje aceptado por R-stack como:

$$\mathcal{L}_R(\mathcal{D}) = \{ w \in \Sigma^* \mid \mathcal{D} \text{ acepta } w \text{ por } R\text{-stack} \}.$$

En otras palabras, \mathcal{D} acepta w por R-stack si existe una ejecución tal que el contenido del stack de la última configuración satisface la expresión regular R. Por ejemplo, si $F = \{p_1, \ldots, p_k\}$ y $R = p_1 + \cdots + p_k$ entonces es fácil ver que $\mathcal{L}(\mathcal{D}) = \mathcal{L}_R(\mathcal{D})$.

Demuestre que para todo autómata apilador alternativo \mathcal{D} y para toda expresión regular R, existe un autómata apilador alternativo \mathcal{D}' tal que $\mathcal{L}_R(\mathcal{D}) = \mathcal{L}(\mathcal{D}')$.

IIC2223 – Ayudantia 13 Página 2 de 2