Elementary Linear Algebra - MATH 2250 - Day 13

Name:

1.	Mark each of the followings as True or False. In each case draw some pictures to clarify your answer. $\boxed{\mathbf{T}}$ $\boxed{\mathbf{F}}$ The xy -plane and the yz -plane are perpendicular to each other as vector spaces.
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
	T F The zero vector is perpendicular to any vector.
	T Two planes through the origin are perpendicular to each other.
	T Two planes through the origin could be perpendicular to each other.
	T F A lines in the plane through the origin is perpendicular to that plane.
2.	Let A be a matrix. Find the intersection of the null space of A and the row space of A .

3. Let A be a matrix. Find the intersection of the left null space of A and the column space of A.

4. Give an example of two matrices A and B such that AB = I but $BA \neq I$.

5. Consider the matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. "Draw" the row space and the column space of A in one system of coordinates, \mathbb{R}^2 .

What is the angle between the two spaces?

"Draw" the column space and the left null space of A in one system of coordinates, \mathbb{R}^2 .

What is the angle between the two spaces?

6. Find a vector orthogonal to v = (2, 2, -1).

7. Build a matrix whose row space has the basis v=(2,2,-1), and call it A.

Find the null space of A Find the dot product of any vector in null space of A with v.

10.	Is there a matrix with 4 columns whose row space and null space have the same dimension? If yes, give an example, if no, why?
11.	Recall that each column of AB is a linear combination of the columns of A . Then, $\dim C(AB) \square \dim C(A)$. That is, column rank $AB \square \operatorname{column} \operatorname{rank} A$.
12.	Recall that each row of AB is a linear combination of the rows of B . Then, $\dim R(AB) \square \dim R(A)$. That is, row rank $AB \square \operatorname{row} \operatorname{rank} B$.
13.	Recall that for any matrix X , $\dim R(X) = \dim C(X)$ (why?). Then, row rank of X column rank of X .
14.	Using the results from problems 11–13,
	$\operatorname{rank}(\operatorname{AB}) \square \operatorname{rank}(\operatorname{A}),$
	$\operatorname{rank}(\operatorname{AB}) \square \operatorname{rank}(\operatorname{B}).$
15.	Give an example of two matrices A and B such that $\operatorname{rank}(AB) = \operatorname{rank}(A) = \operatorname{rank}(B)$.
16.	Give an example of two matrices A and B such that $\operatorname{rank}(AB) < \operatorname{rank}(A)$ AND $\operatorname{rank}(AB) < \operatorname{rank}(B)$.