[Aula 08] Propriedade das LR: Bombeamento para linguagens regulares

Prof. João F. Mari joaof.mari@ufv.br

[AULA 08] Propriedades das LR – Bombeamento para LR

SIN 131 – Introdução à Teoria da Computação (PER-3)

ROTEIRO

- Linguagens não regulares
- **[EX]** B = $\{0^n1^n \mid n >= 0\}$
- Lema do bombeamento para LRs
- [TEOREMA] Lema do Bombeamento
- IDEIA da Prova
- **[EX]** B = $\{0^n1^n \mid n >= 0\}$
- Bombeamento para baixo
- **[EX]** $E = \{0^i 1^j \mid i > j\}$

Linguagens Não Regulares

- Como provar que certas linguagens NÃO podem ser reconhecidas por NENHUM autômato finito.
- **[EX]** A linguagem $B = \{0^n1^n \mid n \ge 0\}$
 - Ao tentar encontrar um AFD que reconheça B,
 - descobrimos que a máquina precisa lembrar quantos 0s foram vistos até então à medida que lê a entrada.
 - Como o número de Os não é limitado,
 - A máquina precisa registrar um número infinito de possibilidades.
 - Impossível para uma máquina com quantidade finita de estados.

Prof. João Fernando Mari (joaof.mari@ufv.br)

3

[AULA 08] Propriedades das LR – Bombeamento para LR

SIN 131 – Introdução à Teoria da Computação (PER-3)

[EX] $B = \{0^n1^n \mid n >= 0\}$

 ∞

Impossível pela definição de Autômato **Finito**

Linguagens Não Regulares

- Só porque uma linguagem parece precisar de memória ilimitada não significa que ela realmente necessita.
- Considere as linguagens C e D sobre {0, 1}:
 - C = { w | w tem um número igual de 0s e 1s}
 - É não regular. Precisa de memória auxiliar para contar o número de Os e replicar o número de 1s.
 - D = { w | w tem um número igual de 01 e 10 como subcadeias e somente elas}
 - É REGULAR. Apesar de parecer necessitar de memória auxiliar, NÃO precisa!!!!
 - Palavras que pertencem a linguagem são do tipo:
 - **-** 101, 10101, 1010101, ...,
 - 010, 01010,0101010, ...

Prof. João Fernando Mari (joaof.mari@ufv.br)

[AULA 08] Propriedades das LR – Bombeamento para LR

SIN 131 – Introdução à Teoria da Computação (PER-3)

Lema do bombeamento para LRs

- Lema do bombeamento:
 - Teorema sobre as Linguagens Regulares.
 - Todas as Linguagens Regulares têm uma propriedades especial:
 - Se mostrarmos que uma linguagem não possui essa propriedade, temos a garantia de que ela não é regular.
- O lema do bombeamento <u>diz</u>:
 - Todas as palavras (cadeias) de uma linguagem podem ser "bombeadas" se:
 - Elas são no mínimo tão longas do que um determinado valor especial.
 - (Comprimento de bombeamento).
 - Cada palavra (cadeia) contém uma parte que pode ser repetida um número qualquer de vezes:
 - Com a cadeia resultante permanecendo na linguagem.

[TEOREMA] Lema do Bombeamento

- Lema do bombeamento:
 - Se A é uma linguagem regular;
 - Então, existe um número p (comprimento de bombeamento) tal que;
 - Se **s** é qualquer palavra de **A** de comprimento no mínimo **p**, então **s** pode ser dividida em três partes:

$$s = xyz$$

- E satisfaça as seguintes condições:
 - 1) para cada i >= 0, xyⁱz ∈ A,
 - 2) |y| > 0, e
 - 3) | xy | <= p.

Prof. João Fernando Mari (joaof.mari@ufv.br)

7

[AULA 08] Propriedades das LR – Bombeamento para LR

SIN 131 – Introdução à Teoria da Computação (PER-3)

IDEIA da Prova

- Seja um autômato **M** que reconhece **A**
 - Ao comprimento de bombeamento p atribuímos o número de estados de M.
 - Mostramos que:
 - Qualquer cadeia s em A de comprimento pelo menos p pode ser quebrada nas três partes xyz, satisfazendo as nossas 3 condições.
 - E se nenhuma cadeia em A tem comprimento no mínimo p?
 - O teorema se torna verdadeiro por vacuidade,
 - As 3 condições são verdadeiras para as cadeias >= a pois não existem tais cadeias.

IDEIA da Prova

- A sequencia de estados pelos quais M passa quando computa uma entrada s.
 - Se s em A tem comprimento n.
 - E n tem comprimento pelo menos p (n >= p).
- q₀, q₃, q₂₀, q₉, ..., q₁₃ tem comprimento n+1
 - Como n>=p, então n+1>p.
 - A sequencia têm que conter um estado repetido.

- Principio da casa de Pombos:
 - Se p pombos for colocados em menos de p casas, alguma casa recebe mais de um pombo.

Prof. João Fernando Mari (joaof.mari@ufv.br)

C

[AULA 08] Propriedades das LR – Bombeamento para LR

SIN 131 – Introdução à Teoria da Computação (PER-3)

IDEIA da Prova

- Dividimos s em x, y e z.
 - X é a parte que aparece antes de q_9 .
 - X leva M de q₁ para q₉.
 - Y aparece antes das duas ocorrências de q₉.
 - Y leva M de q₉ de volta para q₉.
 - Z é o resto de s (após a segunda ocorrência de q₀)
 - Z leva M de q₉ para q₁₃ (final).

IDEIA da Prova

- Essa divisão de **s** satisfaz as 3 condições?
 - Computemos xyyz pelo autômato M:
 - O x leva M de q1 para q9.
 - O primeiro y leva de q9 de volta para q9, assim com o segundo y.
 - O z leva de q9 para q13, sendo q13 um estado final... M aceita xyyz.
 - Condição 1:
 - Analogamente M aceitará xyⁱz para qualquer i>0
 - Para *i=0*, xyⁱz = xz
 - Portanto xz é aceito por razões semelhantes.
 - Condição 2:
 - |y| > 0, pois é a parte de s entre duas ocorrências de q9.
 - Condição 3:
 - Pelo princípio da casa de pombos, os primeiros p+1 estados deve ter uma repetição, portanto |xy| <= p.

Prof. João Fernando Mari (joaof.mari@ufv.br)

11

 q_{35} q_{13}

[AULA 08] Propriedades das LR – Bombeamento para LR

SIN 131 – Introdução à Teoria da Computação (PER-3)

[EXEMPLO] $B = \{0^n1^n \mid n >= 0\}$

- Usar o lema do bombeamento para provar que B não é regular.
 - Suponha, inicialmente, que B seja Regular.
 - Lembrando: p é o comprimento do bombeamento.
 - Escolha $\mathbf{s} = \mathbf{0}^p \mathbf{1}^p$
 - Como s ∈ B e |s| >= p (s tem comprimento maior que p),
 - O lema do bombeamento, garante que s pode ser dividida:
 - -s = xyz
 - e para *i >=0* a palavra *xyⁱz* continua em *B*
 - 3 formas de bombear y que provam que B é não regular.
 - 1) y contém apenas Os;
 - 2) y contém apenas 1s;
 - 3) y contém 0s e 1s.

[EXEMPLO] $B = \{0^n1^n \mid n >= 0\}$

- 1) A palavra y contém apenas 0s:
 - s = 00001111, então:
 - x = 00; y = 00; z = 1111.
 - Bombeando 2 vezes:
 - $s_2 = xy^2z = xyyz = 00\ 0000\ 1111 \notin B \ (6\ zeros\ e\ 4\ uns).$
 - Portanto B não é regular. Não é possível construir um AFD que reconheça 0ⁿ1ⁿ.
- 2) A palavra y contém apenas 1s (desconsidere a condição 3):
 - s = 00001111, então:
 - x = 0000; y = 11; z = 11.
 - Bombeando 2 vezes:
 - $s_2 = xy^2z = xyyz = 0000 \ 1111 \ 11 \notin B \ (4 \ zeros \ e \ 6 \ uns)$
 - Portanto B não é regular. Não é possível construir um AFD que reconheça 0^n1^n .

Prof. João Fernando Mari (joaof.mari@ufv.br)

13

[AULA 08] Propriedades das LR – Bombeamento para LR

SIN 131 – Introdução à Teoria da Computação (PER-3)

[EXEMPLO] $B = \{0^n1^n \mid n >= 0\}$

- 3) A palavra y contém apenas 0s e 1s (desconsidere a condição 3):
 - s = 00001111, então:
 - x = 00; y = 0011; z = 11.
 - Bombeando 1 vez:
 - $s_2 = xy^2z = xyyz = 00\ 0011\ 0011\ 11 \notin B$
 - Mesmo número de 0s e 1s, porém estão fora de ordem!!!
 - Portanto B não é regular. Não é possível construir um AFD que reconheça 0^n1^n .
- !!! Se considerarmos a condição 3 do lema: |xy| <= p.
 - Podemos simplificar nossa prova para os casos 2 e 3:
 - Caso 2) y contém 1s
 - Se s = 0^p1^p e p = 4, conseq. s = 00001111
 - Então x = 0000 e y = no mínimo 1 (condição 2) PORTANTO |xy| = 5 > p!!!!!
 - Caso 3) y contém 0s e 1s → A prova é semelhante.

[EXEMPLO] $B = \{0^n1^n \mid n >= 0\}$

- Cuidado!!! Nesse exemplo, qualquer cadeia em B não pode ser bombeada.
 - Em outros casos, algumas escolhas para s podem ser bombeadas.
 - Devemos ter cuidado em escolher s que não possa ser bombeada
 - Ou esgotar TODAS as possibilidades de existência de s ∈ a linguagem L, e conseguir bombear todas, provando que L é regular.
 - Complete a prova construindo o AFD que reconhece L.

Prof. João Fernando Mari (joaof.mari@ufv.br)

15

[AULA 08] Propriedades das LR – Bombeamento para LR

SIN 131 – Introdução à Teoria da Computação (PER-3)

Bombeamento para baixo

- Algumas vezes o recurso de "bombear para baixo" é útil para provar que certas linguagens não são regulares.
 - Bombear para baixo é testar $s = xy^iz$ para i = 0.

[EX] $E = \{0^{i}1^{j} \mid i>j\}$

- Suponha *E* regular.
 - − p é o comprimento de bombeamento;
 - $-s=0^{p+1}1^p \rightarrow |s| > p \in s \in E$.
 - Dividimos s em xyz:
 - Pela condição 3 y possui somente 0s: |xy| <= p.
 - Podemos bombear y quantas vezes quisermos:
 - xyyz, xyyyz, xyyyyz, xyy...yyz → aumentamos apenas o número de 0s, consequentemente s ainda ∈ E.
 - Porém, o lema do bombeamento diz que xyⁱz deve ∈ E para i >= 0, ou seja, para i = 0 também.
 - Concatenando y com ele mesmo 0 vezes, removemos y de s.
 - Bombeamento para baixo.
 - Como /y/ é pelo menos 1 (condição 2)...
 - xz não tem mais 0s do que 1s, portanto xz ∉E.

Prof. João Fernando Mari (joaof.mari@ufv.br)

17

[AULA 08] Propriedades das LR – Bombeamento para LR

SIN 131 – Introdução à Teoria da Computação (PER-3)

BIBLIOGRAFIA

- SIPSER, M. Introdução a Teoria da Computação,
 - 1. Ed., Thomson Pioneira, 2007.
 - Seção 1.4

- MENEZES, P. B. Linguagens formais e autômatos,
 6. ed., Bookman, 2011.
 - Capítulo 4.
 - + Slides disponibilizados pelo autor do livro.

Material complementar

- Hemerson Pistori. *Lema do Bombeamento para Linguagens Regulares (Pumping Lemma)*. YouTube.
 - https://www.youtube.com/watch?v=MaRdDPivgYg

Prof. João Fernando Mari (joaof.mari@ufv.br)

10

[AULA 08] Propriedades das LR – Bombeamento para LR

SIN 131 – Introdução à Teoria da Computação (PER-3)

[FIM]

- FIM:
 - [AULA 08] Propriedades das linguagens regulares –
 Bombeamento para linguagens regulares
- Próxima aula:
 - [AULA 09] Propriedades das linguagens regulares –
 Minimização de ADF