Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

Administración Financiera - Catedrático: Jose Solís 11 de noviembre de 2022

Caso 2

Problema 1. Con base a la información provista en el caso, calcule la inversión inicial requerida para establecer el huerto de uvas en un área de cinco acres.

Solución. Se tiene:

Initial Investments					
Distance between Plants in each row (feet 5				
Distance between row (feet)	12	Por Acre	Cantidad	Costo	Suma
Total No of Plants per Acre	700	Total No of Plants per Acre	700	50	35000
Cost of each Plant (Rs)	50	Pit per Plants	700	40	28000
Cost of Each Pit (Rs)	40	Land Preparation Charges per Acre	1	20,000	20000
Land Preparation Charges per Acre	20,000	Farm Yard Manure per Acre	1	15,000	15000
Farm Yard Manure per Acre	15,000	Rows per Acre*Trellis in Each Row	216	1,200	259200
-				TOTAL POR ACRE	357200
Trellis (Concrete Pillars)					
Cost of Each Trellis (Rs)	1,200	TOTAL POR ACRE * 5	1786000		
Rows per Acre	18	Fencing Cost (Rs)	200,000		
Trellis in Each Row	12	Total Cost of Tube-well (Rs)	500,000		
		Infrastructure Cost (Rs)	200,000		
Fencing Cost (Rs)	200,000	TOTAL POR LOS 5 ACRES	2686000		
Total Cost of Tube-well (Rs)	500,000				
Infrastructure Cost (Rs)	200,000				

La solución final es de 2,686,000 rupias.

Problema 2. Estime los flujos de efectivo anuales del proyecto para los años 1–6 y determine el valor terminal con base en los flujos de efectivo de los años 6–60. Suponga que todos los flujos de efectivo ocurren al final de cada año y que no se aplica el impuesto sobre la renta.

Solución. Se tiene:

INGRESOS	Costo Individual	5*Acres	AÑO 1	AÑO 2	AÑO 3	AÑO 4	AÑO 5	AÑO 6	AÑO 6-60
Ingreso neto									
EGRESOS									
Plant Replacement Cost	90		350	210	-	-	-	-	-
Fertilizer and Pesticide Cost (Rs per acre)	28000	140000	700000	3500000	17500000	87500000	437500000	2187500000	10937500000
Irrigation cost (Rs per acre)	20000	100000	100000	100000	100000	100000	100000	100000	100000
Lease Rental (Rs per acre)	30000	150000	150000	150000	150000	150000	150000	150000	150000
Cost of Hiring Each Truck (Rs)	8000	40000	40000	40000	40000	40000	40000	40000	40000
General & Admin Cost (Rs per annum)	20000	100000	100000	100000	100000	100000	100000	100000	100000
Number of Salaried Employees for whole year	8000	40000	40000	40000	40000	40000	40000	40000	40000
Number of Persons Required for Pruning	350	1750	1750	1750	1750	1750	1750	1750	1750
Number of Persons Required for Harvesting	350	1750	1750	1750	1750	1750	1750	1750	1750
Packaging Cost (Rs per box)	60	300	300	300	300	300	300	300	300

Problema 3. ¿Cuál es el valor presente neto $[=VNA() \ o =NPV()]$ y la tasa interna de retorno. $[=TIR() \ o =IRR()]$ del proyecto en función de los flujos de efectivo proyectados?

Solución. Se tiene:

$$NPV_{XYZ} = \frac{Z_1}{1+r} + \frac{Z_2}{(1+r)^2} - X_0$$

Problema 4. ¿Qué tan sensible es el valor presente neto del proyecto a los cambios en el rendimiento de producción y el precio de venta por kg de rendimiento? ¿Por debajo de qué rendimiento y precio el VAN del proyecto se vuelve negativo?

Solución. Se tiene:

$$0 = CF_0 + \frac{CF_1}{(1 + IRR)} + \frac{CF_2}{(1 + IRR)^2} + \frac{CF_3}{(1 + IRR)^3} + \dots + \frac{CF_n}{(1 + IRR)^n}$$
Or
$$0 = NPV = \sum_{n=0}^{N} \frac{CF_n}{(1 + IRR)^n}$$

 $\label{eq:where: Where: CF0 = Initial Investment / Outlay } CF_1, CF_2, CF_3 \dots CF_n = \mathsf{Cash} \ flows } n = \mathsf{Each} \ Period \\ N = \mathsf{Holding} \ Period \\ NPV = \mathsf{Net} \ Present \ Value \\ IRR = \mathsf{Internal} \ \mathsf{Rate} \ \mathsf{of} \ \mathsf{Return}$

2