CS M146 - Week 8

Xinzhu Bei

xzbei@cs.ucla.edu

March 2, 2018

Overview

- Multi-class decision boundary
- Boosting, Adaboost
- Deterministic v.s. Probabilistic
- K means v.s. GMM
- Recap: Bayes Theorem, Bayesian Learning
- Maximum a posteriori v.s. Maximum Likelihood Estimation
- KKT v.s. Lagrange multipliers

Survey

- How many people think multi-class classification and boosting are difficult?
- How many people think Kmeans and GMM are difficult?
- How many people think Bayesian Learning is difficult?

Decision Boundary of Multi-categorical Classifiers

One v.s. All:

Training: Decompose into k binary classification tasks Ideal Testing: only the correct label will have a positive score In class, we use: $\hat{y} = \arg\max_{y \in \{1,...,k\}} w_v^T x$

One v.s. One:

Training: Decompose into C(K, 2) binary classification tasks Testing: each label gets k-1 votes, majority, tournament

Xinzhu Bei (UCLA) (S. 1004) 19 Session March 2, 2018 4 / 30

Decision Boundary of Multi-categorical Classifiers

- Both of these approaches can lead to regions in which the classification is undefined.
- In practice, all we need is for $w_i^T x$ to be more than all others \Rightarrow this is a weaker requirement: for examples with label i, we need

$$w_i^T x > w_j^T x$$
, for all $j \neq i$

• The resulting classifier is called a **linear machine**.

Xinzhu Bei (UCLA) SS W146 TA Sassion March 2, 2018

5 / 30

Decision Boundary of Multi-categorical Classifiers

• If \mathcal{R}_i and \mathcal{R}_j are contiguous, the boundary between them is a portion of the hyperplane H_{ij} defined by

$$\mathbf{w}_{i}^{T}\mathbf{x} + \mathbf{w}_{i0} = \mathbf{w}_{j}^{T}\mathbf{x} + w_{j0}$$

$$(\mathbf{w}_{i} - \mathbf{w}_{j})^{T}\mathbf{x} + (w_{i0} - w_{j0}) = 0$$

$$\rightarrow \mathbf{w}_{i} - \mathbf{w}_{i} \text{ is normal to } H_{ij}$$

$$(1)$$

• Thus, with the linear machine it is not the weight vectors themselves but their differences that are important.

Boosting Algorithm: Adaboost

Given: $(x_1, y_1), \ldots, (x_m, y_m)$ where $x_i \in X$, $y_i \in Y = \{-1, +1\}$ Initialize $D_1(i) = 1/m$. For $t = 1, \ldots, T$:

- Train weak learner using distribution D_t.
- Get weak hypothesis $h_t: X \to \{-1, +1\}$ with error

$$\epsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i].$$

- Choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$.
- Update:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{cases}$$
$$= \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

Boosting Algorithm: Adaboost

- Weak learner or weak learning algorithm is applied to find a weak hypothesis $h_t: \mathcal{X} \to \{-1, +1\}$, where the aim of the weak learner is to find a weak hypothesis with low weighted error ϵ_t relative to D_t
- Advanced topic: How to derive α_t
- Minimize $Z_t = \sum_i D_t(i) \exp(-\alpha_t y_i h_t(x_i)) \leftrightarrow$ minimize the error bound Choose $\alpha_t = \frac{1}{2} \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$ to minimize Z_t Choose h_t that minimize the weighted error to minimize Z_t

<ロ > < 回 > < 回 > < 巨 > くき > しき > しき の < ○

8 / 30

Xinzhu Bei (UCLA) CS MING TA Session March 2, 2018

	D1	
1	0.1	
2	0.1	
3	0.1	
4	0.1	
5	0.1	
6	0.1	
7	0.1	
8	0.1	
9	0.1	
10	0.1	

$$\mathbf{\epsilon}_{1} = 0.30$$

$$\alpha_{1} = 0.42$$

$$\alpha_{t} = \frac{1}{2} \ln \left(\frac{1 - \epsilon_{t}}{\epsilon_{t}} \right)$$

Xinzhu Bei (UCLA) CSIMIND IN Session March 2, 2018 10,

$$D_{t+1} = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t} \quad e^{\alpha_t} = 1.52$$

	D1	D2'	
1	0.1	0.10*0.65	
2	0.1	0.10*0.65	
3	0.1	0.10*1.52	
4	0.1	0.10*1.52	
5	0.1	0.10*1.52	
6	0.1	0.10*0.65	
7	0.1	0.10*0.65	
8	0.1	0.10*0.65	
9	0.1	0.10*0.65	
10	0.1	0.10*0.65	

Xinzhu Bei (UCLA) CS 1/1/40 TA Session March 2, 2018

	D1	D2	
1	0.1	0.07	
2	0.1	0.07	
3	0.1	0.17	
4	0.1	0.17	
5	0.1	0.17	
6	0.1	0.07	
7	0.1	0.07	
8	0.1	0.07	
9	0.1	0.07	
10	0.1	0.07	

$$\epsilon_2 = 0.21$$

 $\alpha_2 = 0.65$
 $e^{\alpha_t} = 1.92$
 $e^{-\alpha_t} = 0.52$

$$D_{t+1} = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$
 $e^{-\alpha_t} = 1.92$ $e^{-\alpha_t} = 0.52$

	D1	D2	D3'
1	0.1	0.07	0.07*1.92
2	0.1	0.07	0.07*0.52
3	0.1	0.17	0.17*0.52
4	0.1	0.17	0.17*0.52
5	0.1	0.17	0.17*0.52
6	0.1	0.07	0.07*1.92
7	0.1	0.07	0.07*1.92
8	0.1	0.07	0.07*1.92
9	0.1	0.07	0.07*1.92
10	0.1	0.07	0.07*1.92

14 / 30

Xinzhu Bei (UCLA) CS M146 TA Session March 2, 2018

$$D_{t+1} = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t} \quad e^{\alpha_t} = 1.92$$

	D1	D2	D3
1	0.1	0.07	0.04
2	0.1	0.07	0.04
3	0.1	0.17	0.11
4	0.1	0.17	0.11
5	0.1	0.17	0.11
6	0.1	0.07	0.16
7	0.1	0.07	0.16
8	0.1	0.07	0.16
9	0.1	0.07	0.04
10	0.1	0.07	0.04

Xinzhu Bei (UCLA) CS M140 TA Session March 2, 2018

Xinzhu Bei (UCLA) CS M146 TA Session March 2, 2018

Deterministic v.s. Probabilistic

Deterministic: All data is known beforehand

- Once you start the system, you know exactly what is going to happen.
- Example. Predicting the amount of money in a bank account.
 - If you know the initial deposit, and the interest rate, then:
 - You can determine the amount in the account after one year.

Probabilistic: Element of chance is involved

- You know the likelihood that something will happen, but you dont know when it will happen.
- Example. Roll a die until it comes up 5.
 - Know that in each roll, a 5 will come up with probability 1/6.
 - Dont know exactly when, but we can predict well.

18 / 30

Xinzhu Bei (UCLA) CS MUSC TA Session March 2, 2018

Deterministic v.s. Probabilistic

- Are classifiers we learned until now (like SVM, perceptron, KNN, etc.) deterministic or probabilistic?
 - Unfortunately, they are deterministic.
 - A deterministic approach does not model the distribution of classes but rather separates the feature space and return the class associated with the space where a sample originates from.
- It's important to point out that probabilism and determinism are not mutually exclusive.
 - It is possible for every probabilistic method to simply return the class with the highest probability and therefore seem deterministic. (e.g. Logistic Regression, $p(y|x,\theta) > 0.5$)
 - Based on the distance to the seperating hyperplane in SVMs a probability can be computed and returned for each class.

19 / 30

Xinzhu Bei (UCLA) CS MUSC TA Session March 2, 2018

Deterministic v.s. Probabilistic

What about K-means v.s. GMM?

K-Means make hard assignments of points to clusters:

$$\gamma_{nk} \in \{0,1\}$$

• GMM is an probabilistic approach of clustering:

$$\gamma_{nk} = P(z_n = k|x_n) \tag{2}$$

$$p(z_n = k | \boldsymbol{x}_n) = \frac{p(\boldsymbol{x}_n | z_n = k) p(z_n = k)}{p(\boldsymbol{x}_n)} = \frac{\frac{[\boldsymbol{N}(\boldsymbol{x} | \boldsymbol{\mu_k}, \boldsymbol{\Sigma_k})]}{p(\boldsymbol{x}_n | z_n = k) p(z_n = k)}}{\sum_{k'=1}^{K} p(\boldsymbol{x}_n | z_n = k') p(z_n = k')}$$

Both of them are unsupervised learning algorithm.

K-means algorithm a.k.a Llyod's algorithm

- Step 0: randomly assign the cluster centers {μ_k}
- **Step 1**: Minimize J over $\{r_{nk}\}$ -- Assign every point to the closest cluster center

$$r_{nk} = \left\{ egin{array}{ll} 1 & ext{if } k = rg \min_j \|oldsymbol{x}_n - oldsymbol{\mu}_j\|_2^2 \ 0 & ext{otherwise} \end{array}
ight.$$

Step 2: Minimize J over {μ_k} -- update the cluster centers

$$oldsymbol{\mu}_k = rac{\sum_n r_{nk} oldsymbol{x}_n}{\sum_n r_{nk}}$$

Loop until it converges

4 D > 4 D > 4 E > 4 E > E 990

GMM

- Let θ represent all parameters $\{w_k, \nu_k, \Sigma_k\}$
- Step 0: Initialize θ with some values (random or otherwise)
- Step 1: Computer $\gamma_{nk} = p(z_n = k | \mathbf{x}_n)$ using the current θ

$$N(x|\mu_k,\Sigma_k)$$

$$p(z_n = k | \boldsymbol{x}_n) = \frac{p(\boldsymbol{x}_n | z_n = k) p(z_n = k)}{p(\boldsymbol{x}_n)} = \frac{p(\boldsymbol{x}_n | z_n = k) p(z_n = k)}{\sum_{k'=1}^K p(\boldsymbol{x}_n | z_n = k') p(z_n = k')}$$

• Step 2: Update θ using the just computer γ_{nk}

$$\begin{aligned} \omega_k &= \frac{\sum_n \gamma_{nk}}{\sum_k \sum_n \gamma_{nk}}, \quad \boldsymbol{\mu}_k = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} \boldsymbol{x}_n \\ \boldsymbol{\Sigma}_k &= \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^{\mathrm{T}} \end{aligned}$$

Loop until converge

22 / 30

Xinzhu Bei (UCLA) SS MUS TA Session March 2, 2018

Kmeans v.s. GMM

	K means	GMM
Supervision	Unsupervised	Unsupervised
Model	Deterministic	Probabilistic
Hyperparameter	k	k
Objective	$\min \sum_{n,k} \gamma_{nk} x_n - \mu_k _2^2$	$\max p(x \theta) = \prod_{n} p(x_{n} \theta)$ $= \prod_{n} \sum_{k} p(z_{n} = k) p(x_{n} z_{n} = k, \theta_{k})$
Parameter	γ_{nk},μ_{k}	w_k, μ_k, Σ_k
	$\gamma_{nk} \in \{0,1\}$	$\gamma_{nk} = p(\underline{z_n} = k x_n)$
	$\mu_k = \frac{\sum_n \gamma_{nk} x_n}{\sum_n \gamma_{nk}}$	$\mu_k = \frac{\sum_n \gamma_{nk} \times_n}{\sum_n \gamma_{nk}}$
	-	w_k, Σ_k
Testing	$k = \arg\min_{j} x_n - \mu_j _2^2$	$k = \operatorname{argmax}_j p(Z_n = j x_n)$

 Xinzhu Bei (UCLA)
 C5 MH 0 TA Session
 March 2, 2018
 23 / 30

Bayes Theorem

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

Posterior probability: What is the probability of Y given that X is observed?

Likelihood: What is the likelihood of observing X given a specific Y?

Prior probability: What is our belief in Y before we see X?

Posterior / Likelihood £ Prior

Bayesian Learning

Given a dataset D, we want to find the best hypothesis h What does *best* mean?

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

Posterior probability: What is the probability that h is the hypothesis, given that the data D is observed?

Likelihood: What is the probability that this data point (an example or an entire dataset) is observed, given that the hypothesis is h?

What is the probability that the data D is observed (independent of any knowledge about the hypothesis)? Bavesian Learning:

Prior probability of h: Background knowledge.

What do we expect the hypothesis to be even before we see any data? For example, in the absence of any information, maybe the uniform distribution.

Karush-Kuhn-Tucker conditions

Given general problem

$$\min_{x \in \mathbb{R}^n} \ f(x)$$

subject to $h_i(x) \leq 0, \ i = 1, \dots m$
 $\ell_j(x) = 0, \ j = 1, \dots r$

The Karush-Kuhn-Tucker conditions or KKT conditions are:

•
$$0 \in \partial f(x) + \sum_{i=1}^m u_i \partial h_i(x) + \sum_{j=1}^r v_j \partial \ell_j(x)$$
 (stationarity)

• $u_i \cdot h_i(x) = 0$ for all i

- (complementary slackness)
- $h_i(x) \leq 0$, $\ell_j(x) = 0$ for all i, j

(primal feasibility)

• $u_i \ge 0$ for all i

(dual feasibility)

Optimization - Lagrange multipliers

- In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equality constraints.
- Consider an optimization problem:

minimize
$$f(x_1, \dots, x_n)$$

subject to $g_k(x_1, \dots, x_n) = 0, \quad k = 1, \dots, M$ (3)

The Lagrangian takes the form

$$\mathcal{L}(x_1,\dots,x_n,\lambda_1,\dots,\lambda_M)=f(x_1,\dots,x_n)-\sum_{k=1}^M\lambda_kg_k(x_1,\dots,x_n)$$

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めのぐ

27 / 30

Xinzhu Bei (UCLA) CS W146 TA Session March 2, 2018

Optimization - Lagrange multipliers

Methods of solving optimizaiton using Lagrangian multipliers:

• Step 1: Solve the following system of equations.

$$\begin{split} \frac{\partial \textit{L}(\textit{x}_1,\cdots,\textit{x}_n, \lambda_1,\cdots,\lambda_M)}{\partial \textit{x}_i} &= 0 \text{ , where } i = 1 \cdots n \\ \frac{\partial \textit{L}(\textit{x}_1,\cdots,\textit{x}_n, \lambda_1,\cdots,\lambda_M)}{\partial \lambda_k} &= 0 \text{ , where } k = 1 \cdots M \end{split} \tag{4}$$

$$g_k(x_1,\cdots,x_n)=0$$
 , where $k=1\cdots M$

• Step 2:Plug in all solutions x_1, \dots, x_n , from the first step into $f(x_1, \dots, x_n)$ and identify the minimum and maximum values, provided they exist.

Optimization - Lagrange multipliers

Find the extrema of the function f(x, y) = 2y + x subject to the constraint $0 = g(x, y) = y^2 + xy - 1$. Solution: Set $\mathcal{L}(x, y, \lambda) = f(x, y) + \lambda g(x, y)$, then

$$\frac{\partial L}{\partial x} = 1 + \lambda y$$

$$\frac{\partial L}{\partial y} = 2 + 2\lambda y + \lambda x$$

$$\frac{\partial L}{\partial \lambda} = y^2 + xy - 1$$
(5)

Setting these equal to zero, we see from the third equation that $y \neq 0$, and from the first equation that $\lambda = \frac{-1}{y}$, so that from the second equation $0 = \frac{-x}{y}$ implying that x = 0. From the third equation, we obtain $y = \pm 1$.

^{**} Note that it doesn't matter if you are using $f(\cdot) \pm \lambda g(\cdot)$, since all that changes is the sign of λ^* , where (λ^*, x^*, \cdots) is the critical point.

The End