```
import numpy as np
import pandas as pd
# Loading the dataset
df = pd.read csv('D:/ibm/datafile 02.csv')
print(df.columns)
df.head()
Index(['Port', 'Traffic in Eleventh Plan (MT) (2011-12)Proj.',
       'Traffic in Eleventh Plan (MT) (2011-12) Ach.',
       'Traffic in Eleventh Plan (MT) (2011-12) %',
       'Total Capacity in Eleventh Plan (MT) (2011-12) Proj.',
       'Total Capacity in Eleventh Plan (MT) (2011-12) Ach.',
       'Total Capacity in Eleventh Plan (MT) (2011-12) %'],
      dtype='object')
            Port Traffic in Eleventh Plan (MT) (2011-12) Proj.
         Kolkata
1
          Haldia
                                                            4450
        Paradeep
                                                            7640
2
3
                                                            8220
  Visakhapatnam
4
          Ennore
                                                            4700
   Traffic in Eleventh Plan (MT) (2011-12) Ach.
0
                                             1223
1
                                             3101
2
                                             5425
3
                                             6742
4
                                            1496
   Traffic in Eleventh Plan (MT) (2011-12) % \
0
                                          9100
1
                                         7000
2
                                         7100
3
                                         8200
4
                                         3200
   Total Capacity in Eleventh Plan (MT) (2011-12) Proj. \
0
                                                  3145
1
                                                  6340
2
                                                 10640
3
                                                 10810
4
                                                  6420
   Total Capacity in Eleventh Plan (MT) (2011-12) Ach.
0
                                                  1635
1
                                                  5070
2
                                                  7650
3
                                                  7293
                                                  3100
```

Preprocessing the dataset

Renaming the columns

7230

df.rename(columns = {'Traffic in Eleventh Plan (MT) (201112)Proj.':'Traffic_Projected','Traffic in Eleventh Plan (MT) (2011-12)
Ach.':'Traffic_Achieved', 'Total Capacity in Eleventh Plan (MT)
(2011-12) Proj.':'Total_Capacity_Projected', 'Total Capacity in
Eleventh Plan (MT) (2011-12) Ach.':'Total_Capacity_Achieved'}, inplace
= True)
df

\

	Port	Traffic_Projected	Traffic_Achieved
0	Kolkata	1343	1223
1	Haldia	4450	3101
2	Paradeep	7640	5425
3	Visakhapatnam	8220	6742
4	Ennore	4700	1496
5	Chennai	5750	5571
6	Tuticorin	3172	2810
7	Cochin	3817	2010
8	NMPT	4881	3294
9	Mormugao	4455	3900
10	Mumbai	7105	5618
11	JNPT	6604	6575
12	Kandla	8672	8250

```
6
                                           8900
6398
7
                                           5300
5475
                                           6800
6050
                                           8800
6690
10
                                           7900
9191
11
                                          10000
9560
12
                                           9500
12220
    Total_Capacity_Achieved Total Capacity in Eleventh Plan (MT)
(2011-12) - %
0
                        1635
5100
                        5070
1
7900
                        7650
7100
                        7293
6700
                        3100
4800
                        7972
11000
                        3334
5200
7
                        4098
7400
                        5097
8400
                        4190
6200
10
                        4453
4800
11
                        6400
6600
12
                        8691
7100
# Perparing the Calculations:
Traffic Percent =
round((df.Traffic Achieved/df.Traffic Projected)*100,2)
Traffic_Percent
```

```
91.06
0
1
      69.69
2
      71.01
3
      82.02
4
      31.83
5
     96.89
6
      88.59
7
      52.66
8
      67.49
9
      87.54
10
      79.07
11
      99.56
12
      95.13
dtype: float64
Total Percent =
round( (df.Total Capacity Achieved/df.Total Capacity Projected) *100,2)
Total Percent
0
      51.99
1
       79.97
2
      71.90
3
      67.47
4
      48.29
5
     110.26
6
      52.11
7
      74.85
8
      84.25
9
      62.63
10
      48.45
11
       66.95
12
      71.12
dtype: float64
# Replacing the existing columns with newly created columns
df.rename(columns = {'Traffic in Eleventh Plan (MT) (2011-12)
%':'Traffic Percent','Total Capacity in Eleventh Plan (MT) (2011-12)
%':'Total_Percent'}, inplace = True)
df.iloc[:,3:4] = Traffic Percent
df.iloc[:,6:] = Total_Percent
df
             Port Traffic Projected Traffic Achieved
Traffic Percent \
         Kolkata
                                1343
                                                   1223
91.06
          Haldia
                                4450
                                                   3101
69.69
         Paradeep
                                7640
                                                   5425
71.01
3 Visakhapatnam
                                8220
                                                  6742
```

82.02			
4	Ennore	4700	1496
31.83			
5	Chennai	5750	5571
96.89	—	2170	0010
6 88.59	Tuticorin	3172	2810
7	Cochin	3817	2010
52.66	00011111	3017	2010
8	NMPT	4881	3294
67.49			
9	Mormugao	4455	3900
87.54			
10	Mumbai	7105	5618
79.07 11	JNPT	6604	6575
99.56	ONFI	0004	0373
12	Kandla	8672	8250
95.13			

	Total Capacity Projected	Total Capacity Achieved	Total Percent
0	3145	1635	51.99
1	6340	5070	79.97
2	10640	7650	71.90
3	10810	7293	67.47
4	6420	3100	48.29
5	7230	7972	110.26
6	6398	3334	52.11
7	5475	4098	74.85
8	6050	5097	84.25
9	6690	4190	62.63
10	9191	4453	48.45
11	9560	6400	66.95
12	12220	8691	71.12

df.shape

(13, 7)

Checking for null values

df.isnull().sum()

Port	0
Traffic_Projected	0
Traffic_Achieved	0
Traffic_Percent	0
Total_Capacity_Projected	0
Total_Capacity_Achieved	0
Total_Percent	0
dtype: int64	

Summary of Dataset

df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 13 entries, 0 to 12
Data columns (total 7 columns):

Non-Null Count Dtyr

#	Column	Non-Null Count	Dtype
0	Port	13 non-null	object
1	Traffic_Projected	13 non-null	int64
2	Traffic_Achieved	13 non-null	int64
3	Traffic_Percent	13 non-null	float64
4	Total_Capacity_Projected	13 non-null	int64
5	Total_Capacity_Achieved	13 non-null	int64
6	Total_Percent	13 non-null	float64

dtypes: float64(2), int64(4), object(1)

memory usage: 856.0+ bytes

df.describe()

Traffic_Projected	Traffic Achieved	Traffic Percent	\
13.00000	$\overline{1}3.000000$	$1\overline{3}.000000$	
5446.846154	4308.846154	77.887692	
2133.280019	2212.894855	19.382398	
1343.000000	1223.000000	31.830000	
4450.00000	2810.000000	69.690000	
4881.000000	3900.000000	82.020000	
7105.00000	5618.000000	91.060000	
8672.00000	8250.000000	99.560000	
	13.000000 5446.846154 2133.280019 1343.000000 4450.000000 4881.000000 7105.000000	13.000000 13.000000 5446.846154 4308.846154 2133.280019 2212.894855 1343.000000 1223.000000 4450.00000 2810.000000 4881.000000 3900.000000 7105.000000 5618.000000	13.000000 13.000000 13.000000 5446.846154 4308.846154 77.887692 2133.280019 2212.894855 19.382398 1343.000000 1223.000000 31.830000 4450.000000 2810.000000 69.690000 4881.000000 3900.000000 82.020000 7105.000000 5618.000000 91.060000

	Total_	_Capacity_	_Projected	Total_	_Capacity_	_Achieved
Total	Percent	+				

Total_Percent		
count	13.000000	13.000000
13.000000		
mean	7705.307692	5306.384615
68.480000		
std	2570.242673	2140.254796
17.252637		
min	3145.000000	1635.000000
48.290000		
25%	6340.000000	4098.00000
52.110000		
50%	6690.000000	5070.000000
67.470000		
75%	9560.000000	7293.000000
74.850000		
max	12220.000000	8691.000000
110.260000		

cor = df.corr

cor

				Port	Traff	fic_Projected
	c_Achieved Traf	fic_Percen			1000	
0	Kolkata		1343		1223	
91.06 1			4450		3101	
69.69	Haldia		4450		3101	
2	Paradeep		7640		5425	
71.01	raradeep		7040		3423	
	sakhapatnam		8220		6742	
82.02	Samapa cham		0220		0,12	
4	Ennore		4700		1496	
31.83						
5	Chennai		5750		5571	
96.89						
6	Tuticorin		3172		2810	
88.59						
7	Cochin		3817		2010	
52.66						
8	NMPT		4881		3294	
67.49						
9	Mormugao		4455		3900	
87.54	34 1 1		7105		F 61 0	
10	Mumbai		7105		5618	
79.07	TNIDIII		6604		6575	
11 99.56	JNPT		6604		6575	
12	Kandla		8672		8250	
95.13	Nandia		0072		0230	
JJ • 1 J						
Тο	tal Capacity Pr	niected T	otal Ca	nacity Achi	eved	Total Percent
0	car_capacity_ii	3145	.0041_04		1635	51.99
1		6340			5070	
2		10640			7650	
3		10810			7293	67.47
4		6420			3100	48.29
5		7230			7972	110.26
6		6398			3334	52.11
7		5475			4098	74.85
8		6050			5097	84.25
9		6690			4190	62.63
10		9191			4453	48.45
11		9560			6400	66.95
12		12220			8691	71.12
>						

#Finding Outliers anr replacing the outliers

import matplotlib.pyplot as plt
import seaborn as sns

sns.boxplot(x='Port',y='Traffic_Projected',data=df)

```
plt.rcParams["figure.figsize"] = [17.50, 3.50]
plt.rcParams["figure.autolayout"] = True
```


Check For Categorical Columns and do encoding

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
print(df.Port.value counts())
df.Port = le.fit transform(df.Port)
print(df.Port.value counts())
Kolkata
Haldia
Paradeep
Visakhapatnam
Ennore
Chennai
                  1
Tuticorin
                  1
Cochin
NMPT
Mormugao
                  1
Mumbai
                 1
JNPT
Kandla
Name: Port, dtype: int64
      1
```

```
3
      1
10
      1
12
      1
2
      1
0
      1
11
      1
1
      1
9
      1
7
      1
8
      1
4
      1
5
      1
Name: Port, dtype: int64
# Classification
#y = df.Traffic Percent
#print(y)
#df.drop(['Traffic Percent'],axis=1)
df.head()
   Port Traffic Projected Traffic Achieved Traffic Percent \
0
                                          1223
                                                           91.06
      6
                       1343
1
     3
                       4450
                                          3101
                                                           69.69
2
     10
                       7640
                                          5425
                                                           71.01
3
                                                           82.02
     12
                       8220
                                          6742
4
    2
                       4700
                                          1496
                                                           31.83
   Total Capacity Projected Total Capacity Achieved Total Percent
0
                        3145
                                                  1635
                                                                 51.99
1
                        6340
                                                  5070
                                                                 79.97
2
                       10640
                                                  7650
                                                                 71.90
3
                       10810
                                                  7293
                                                                 67.47
                        6420
                                                  3100
                                                                 48.29
ddf = df.drop(['Traffic Percent'],axis=1)
ddf
    Port Traffic Projected Traffic Achieved
Total Capacity Projected \
                        1343
                                           1223
3145
1
       3
                        4450
                                           3101
6340
      10
                        7640
                                           5425
10640
      12
                        8220
                                           6742
```

1081	0 2	4700	1496
6420 5	0	5750	5571
7230 6 6398	11	3172	2810
7 5475	1	3817	2010
8 6050	9	4881	3294
9 6690	7	4455	3900
10 9191	8	7105	5618
11 9560	4	6604	6575
12 1222	5 0	8672	8250
ŗ	Total_	Capacity_Achieved	Total_Percent

	Total_Capacity_Achieved	Total_Percent
0	1635	51.99
1	5070	79.97
2	7650	71.90
3	7293	67.47
4	3100	48.29
5	7972	110.26
6	3334	52.11
7	4098	74.85
8	5097	84.25
9	4190	62.63
10	4453	48.45
11	6400	66.95
12	8691	71.12

x = ddf.iloc[:,1:]
print(x)

	Traffic_Projected	Traffic_Achieved	Total_Capacity_Projected `	\
0	1343	1223	3145	
1	4450	3101	6340	
2	7640	5425	10640	
3	8220	6742	10810	
4	4700	1496	6420	
5	5750	5571	7230	
6	3172	2810	6398	
7	3817	2010	5475	
8	4881	3294	6050	
9	4455	3900	6690	
10	7105	5618	9191	

```
11
                  6604
                                     6575
                                                                 9560
12
                  8672
                                     8250
                                                                12220
    Total Capacity Achieved Total Percent
0
                        1635
                                       51.99
1
                        5070
                                       79.97
2
                        7650
                                       71.90
3
                        7293
                                       67.47
4
                        3100
                                       48.29
5
                                      110.26
                        7972
6
                        3334
                                       52.11
7
                                       74.85
                        4098
8
                        5097
                                       84.25
9
                                       62.63
                        4190
10
                                       48.45
                        4453
11
                                       66.95
                        6400
12
                                       71.12
                        8691
y = df.iloc[:,2:3]
print(y)
    Traffic Achieved
0
                 1223
1
                 3101
2
                 5425
3
                 6742
4
                 1496
5
                 5571
6
                 2810
7
                 2010
8
                 3294
9
                 3900
10
                 5618
11
                 6575
12
                 8250
#1. Logistic Regression
from sklearn.model selection import train test split
x_train,x_test,y_train,y_test =
train test split(x,y,test size=0.2,random state=0)
print(x train.shape
print(x test.shape)
print(y train.shape)
print(y test.shape)
(10, 5)
(3, 5)
(10, 1)
```

(3, 1)

```
from sklearn.linear model import LinearRegression
mlr=LinearRegression()
mlr.fit(x train, y train)
LinearRegression()
x test[0:5]
    Traffic Projected Traffic Achieved Total Capacity Projected \
                 3172
                                                               6398
6
                                    2810
11
                 6604
                                    6575
                                                               9560
4
                 4700
                                    1496
                                                               6420
    Total Capacity Achieved Total Percent
6
                       3334
                                     52.11
                                     66.95
11
                       6400
                       3100
                                     48.29
y test[0:5]
    Traffic Achieved
6
                2810
11
                6575
                1496
mlr.predict(x_test[0:5])
array([[2810.],
       [6575.],
       [1496.]])
from sklearn.metrics import r2 score
r2 score(mlr.predict(x test),y test)
1.0
from sklearn.metrics import mean squared error
a = mlr.predict(x test)
mean squared error(a,y test)
6.376183888429589e-25
```