Задача 3.6.1 Спектральный анализ электрических сигналов

Лось Денис (группа 611) 8 декабря 2017

Цель работы: изучение спектрального состава периодических электрических сигналов.

В работе используются: персональный компьютер, USB-осциллограф АКИП-4107, функциональный генератор WaveStation 2012, соединительные кабели

Описание

В работе изучаются спектры периодических электрических сигналов различной формы (последовательности прямоугольных импульсов и цугов, а также амплитудно- и фазо-модулированных гармонических колебаний). Спектры этих сигналов наблюдаются с помощью спектроанализатора, входящего в состав USB-осциллографа и сравниваются с рассчитанными теоритически.

Экспериментальная установка

Рис. 1: Схема экспериментальной установки

Схема экспериментальной установки приведена на рис.1. Функциональный генератор WaveStation 2012 позволяет сформировать два различных электрических сигнала, которые выводятся на два независимых канала СН1 и СН2. Сигнал с канала СН1 подаётся на вход А, а сигнал с канала СН2 подаётся на вход В USB-осциллографа. Затем эти сигналы подаются на вход компьютера через USB-соединение. При работе USB-осциллографа в режиме осциллографа, на экране компьютера можно наблюдать каждый из сигналов в отдельности, а также их произведение. В режиме спектроанализатора можно наблюдать спектры этих сигналов.

Исследование спектра периодической последовательности прямоугольных импульсов

- 1. На генераторе установим разность максимального и минимального значений сигнала равной 1 B, смещение сигнала равным 0.5 B, частоту повторения импульсов $f_{\text{повт}} = 1 \text{ к} \Gamma$ ц, а длительность импульса $\tau = 100 \text{ мкс}$.
- 2. Проанализируем, как меняется спектр: при увеличении τ вдвое при неизменной частоте $f_{\text{повт}} = 1 \text{ к} \Gamma$ ц и при увеличении $f_{\text{повт}}$ вдвое при неизменном $\tau = 100 \text{ мкс}$.

Рис. 2: Спектр сигнала при $f_{\text{повт}}=1$ к Γ ц и au=100 мкс

Рис. 3: Спектр сигнала при $f_{\text{повт}}=1$ к Γ ц и $\tau=200$ мкс

Рис. 4: Спектр сигнала при $f_{\mbox{\tiny повт}}=2$ к Г
ц и $\tau=100$ мкс

3. Проведём измерения ширины спектра $\Delta \nu$ от длительности импульса τ при увеличении τ от 40 до 200 мкс при $f_{\text{повт}}=1$ к Γ ц.

τ , MKC	$\Delta \nu$, к Γ ц
40	25.0
50	20.0
60	17.0
70	14.0
80	12.5
120	8.5
150	7.0
200	5.0

Построем график зависимости $\Delta \nu = 1/\tau$ и по его наклону убедимся в справедливости соотношения неопределённостей ($\Delta \nu \Delta t \simeq 1$), что мы уже в принципе можем сделать, анализируя полученные измерения в таблице.

Рис. 5: График зависимости $\Delta \nu = f(1/\tau)$

Коэффицент наклона

$$k = (1.003 \pm 0.005)$$

4. Для $f_{\text{повт}}=1$ к Γ ц и $\tau=50$ мкс и $\tau=100$ мкс измерим частоты и амплитуды спектральных составляющих сигнала и занесём результаты в таблицу, где N- номер гармоники, f- частота, а A- амлитуда.

N	f , к Γ ц	A, мВ
2	2.016	102.1
3	3.015	100.6
4	3.993	99.1
5	4.992	93.2
6	6.011	85.8
7	6.968	81.7
8	8.028	72.5
9	9.006	66.6
10	9.964	62.13

Измерения при $f_{\text{повт}}=1$ к Γ ц и au=50 мкс

N	f , к Γ ц	A, MB
1	0.997	211.5
2	1.996	199.7
3	2.994	177.5
4	3.973	158.3
5	5.032	130.2
6	5.990	102.1
7	7.009	74.0
8	7.986	45.9
9	9.006	20.7

Измерения при $f_{\text{повт}}=1$ к Γ ц и au=100 мкс

Исследование спектра периодической последовательности цугов гармонических колебаний

- 1. Сделав все необходимые настройки в программе, проанализуем, как изменяется вид спектра для произведения A*B при увеличении длительности τ импульса от 100 до 200 мкс.
- 2. Установив длительность импульса $\tau=100$ мкс, проследим, как меняется картина спектра при изменении несущей частоты ν_0 ($\nu_0=10,2540$ к Γ ц).

Рис. 6: Спектр сигнала при $f_{\mbox{\tiny повт}}=1$ к Γ ц и au=100 мкс

Рис. 7: Спектр сигнала при $f_{\text{повт}}=1$ к Γ ц и au=200 мкс

Рис. 8: Спектр сигнала при $\nu_0=10$ к Г
ц и $\tau=100$ мкс

3. Установим частоту несущей $\nu_0=30$ к Γ ц и длительность импульса $\tau=100$ мкс. Определим расстоние $\delta\nu$ между соседними спектральными компонентами для разных частот повторения импульса $f_{\text{повт}}$ ($f_{\text{повт}}=0.5,1,2,4,5$ к Γ ц)

Рис. 9: Спектр сигнала при $\nu_0=25$ к Γ ц и au=100 мкс

Рис. 10: Спектр сигнала при $\nu_0=40$ к
Гц и $\tau=100$ мкс

$f_{\text{повт}}$, к Γ ц	δv , к Γ ц
0.5	0.48
1	0.98
2	1.99
4	4.00
5	5.01

Построим график $\delta \nu = g(f_{\text{повт}})$ (рис.11) и найдём угловой коэффициент полученной зависимости.

В результате получим, что угловой коэффициент:

$$k = (1.000 \pm 0.002)$$

4. Установим $\tau=100$ мкс и $f_{\text{повт}}=1$ к Γ ц. Определим амплитуды и частоты для различных гармоник при $f_{\text{повт}}$ равной 1 и 2 к Γ ц и занесём результаты в таблицу, где N — номер гармоники, f — частота, а A — амлитуда.

Рис. 11: График зависимости $\delta \nu = g(f_{\text{повт}})$

N	f , к Γ ц	А, мВ
1	1	4.57
2	2	8.74
3	3	12.02
4	4	13.91
5	5	15.00
11	11	4.67
15	15	19.57
25	25	44.71

Измерения при $f_{\text{повт}}=1$ к Γ ц и au=100 мкс

N	f , к Γ ц	A, мВ
1	2	15.1
2	4	28.12
6	12	19.67
7	14	35.57
11	22	36.76
12	24	74.10
13	26	102.10

Измерения при $f_{\text{повт}}=2$ к Γ ц и au=100 мкс

Исследование спектра гармонических колебаний, модулированных по амлитуде

1. Для канала СН2 на генераторе установим двойную амплитуду сигнала равной 1 В, частоту несущей ν_0 равной 25 к Γ ц, также установим смещение сигнала

равным нулю.

Для канала СН1 на генераторе установим двойную амплитуду сигнала равной 0.2 В и частоту модуляции $f_{\rm mod}$ равной 1 к Γ ц. Смещение сигнала установим равным 1 В.

2. Меняя двойную амплитуду сигнала канала СН1 от 0.2 до 2, измерим для каждого значения максимальную $A_{\rm max}$ и $A_{\rm min}$ амплитуды сигналов модулированного колебания и амплитуды спектральных компонент. Рассчитаем соответствующие значения глубины модуляции m по формуле

$$m = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}}$$

2U, B	A_{\min} , мВ	A_{max} , мВ	$a_{\text{осн}}$, мВ	$a_{\text{бок}}$, мВ	m
0.2	430.5	548.6	322.3	40.6	0.12
0.5	361.5	617.5	322.3	65.0	0.26
0.8	278.0	691.3	322.3	97.4	0.43
1.2	189.4	784.7	322.3	131.0	0.61
1.6	95.9	893.0	322.3	170.0	0.81

Построим график отношения $a_{\text{бок}}/a_{\text{осн}}$ в зависимости от m (рис.12) и определим угловой коэффициент наклона графика.

Рис. 12: График зависимости $a_{\text{бок}}/a_{\text{осн}}$ от m

Угловой коэффициент наклона графика

$$k = (0.68 \pm 0.03)$$