ECE560 - ASSERTION BASED VERIFICATION

FINAL PROJECT REPORT

VERIFICATION OF AXI4 LITE BUS PROTOCOL USING SYSTEM VERILOG ASSERTIONS

Guided by Shruthi Sharma

- Balaji Rao Vavintaparthi (balaji2@pdx.edu)
- Gagan Ganapathy Machiyanda Belliappa (gagan3@pdx.edu)

INDEX:

Objective		3
Introduction		3
Methodology		4
Validation Plar	7	6
Assertions, Ass	sumptions and Covers	7
Bugs Encounte	red	8
Waveforms		9
References		10

Objective:

This project outlines the execution of Assertion-Based Verification for the AXI4 Bus Protocol utilizing the FPV tool.

Introduction:

The Advanced eXtensible Interface 4 (AXI4) belongs to the fourth generation of the ARM Advanced Microcontroller Bus Architecture (AMBA) standard. It is a family of buses designed for high-performance, synchronous, and multi-master on-chip communication. The AXI4 bus protocol includes five channels for communication: Read address, Read data, Write address, Write data, and Write response.

Implemented using Finite State Machines (FSMs), the design ensures that the master initiates read/write requests to the slave, allowing the slave to read/write data to memory based on the received requests.

Within the AMBA specification, there are three AXI4 protocols: AXI4, AXI4-Lite, and AXI4-Stream. AXI4-Lite is a subset of AXI4, specifically lacking burst access capability. It features a simpler interface compared to the full AXI4, utilizing a traditional Address/Data format (single address, single data) and supporting only 32- or 64-bits data width.

Fig1: AXI4-Lite architecture during read operation

Fig 2: AXI4-Lite architecture during write operation

Methodology:

During READ operation:

- In READ Operation the Master will send a particular address location from where it would like to read the data. When an address is found on the read address channel, the ARVALID Signal goes high.
- The address from the Master remains stable until the RREADY is high. Slave gives acknowledgment to Master by asserting ARREADY indicating that it accepts the address.
- Since both ARVALID and ARREADY are asserted, on the next rising clock edge the handshake occurs. After this the master and slave deassert ARVALID and the ARREADY, respectively.
- The Slave will receive the Address and puts the data on the data bus. When valid data is present in the data bus then RVALID signal goes high.
- When RREADY signal is high, it allows the Master to accept the data.
- Since both RREADY and RVALID are asserted, the next rising clock edge completes the transaction. RREADY and RVALID can now be deasserted

During WRITE operation:

- During WRITE Operation the Master sends a particular address to the slave. If the address is present in the write address channel then AWVALID Signal will be high.
- The Slave gives acknowledgement to the Master by asserting AWREADY indicating that it accepts the address. The address from the Master remains stable until the AWREADY is high.
- Because Valid and Ready signals are present on both the Write Address and Write Data channels, handshakes occur, and the corresponding Valid and Ready signals can be deasserted.
- The Master will send the data to the slave using a data bus. When valid data is present in the data bus then the WVALID signal goes high.
- When the Slave is ready to accept the information, it asserts WREADY and the Slave will receive that data present in the data bus
- The Slave asserts BVALID, indicating there is a valid response on the Write response channel.

Read Address Channel

Name	Description
ARADDR	Read address (32 bit wide)
ARVALID	Master generates this signal when Read Address and the control signals are valid.
ARREADY	Slave generates this signal when it can accept the read address and control signals.

Read Data Channel

Name	Description	
RDATA	Read data (32 bits)	
RVALID	Slave generates this signal when Read Data is valid	
RREADY	Master generates this signal when it can accept the Read Data and response.	

Write Address Channel

Name	Description
AWADDR	Write address (32 bits wide)
AWVALID	Master generates this signal when Write Address and control signals are valid
AWREADY	Slave generates this signal when it can accept Write Address and control signals

Write Data Channel

Name	Description
WDATA	Write data (32 bits)
WVALID	Master generates this signal when valid data is present on the data bus
WREADY	Slave generates this signal indicating that memory accepts the data

Write Response Channel

Name	Description
BVALID	This signal indicates successful completion of data received during a write operation

BREADY	Master generates this signal when it can accept a
	write response

Global Signals

Name	Description
Clk	Clock source
Reset	Global reset source

Validation Plan:

Our initial verification process will involve the following steps:

- Establishing the verification environment to execute with the FPV tool.
- Creating covers, assertions, and assumptions.
- Troubleshooting any failed covers and assertions through debugging.
- Incorporating constraints to validate the anticipated behavior of the design.

Assumptions, Assertions and Covers:

Covers:

Statement	Description
bfm.AWVALID inside {0,1}	cover to check AWVALID signal only outputs valid values
bfm.AWREADY inside {0,1}	cover to check AWREADY signal only outputs valid values
bfm.WVALID inside {0,1}	cover to check WVALID signal only outputs valid values
bfm.WREADY inside {0,1}	cover to check WREADY signal only outputs valid values
bfm.BREADY inside {0,1}	cover to check BREADY signal only outputs valid values
bfm.BVALID inside {0,1}	cover to check BVALID signal only outputs valid values
bfm.ARVALID inside {0,1}	cover to check ARVALID signal only outputs valid values
bfm.ARREADY inside {0,1}	cover to check ARREADY signal only outputs valid values
bfm.RVALID inside {0,1}	cover to check RVALID signal only outputs valid values
bfm.RREADY inside {0,1}	cover to check RREADY signal only outputs valid values
rd_en == 1	cover to check rd_en goes high
wr_en == 1	cover to check wr_en goes high

Assumptions:

Statement	Description
<pre>\$onehot({wr_en,rd_en})</pre>	Read and Write enable can't be high at the same time
(!\$isunknown(Read_Address))	Read Address should be known
(!\$isunknown(Write_Data))	Write Data should be known
(\$countbits(bfm.AWADDR) == 32)	Write Address should be 32 bits wide
(\$countbits(bfm.WDATA) == 32)	Write Data should be 32 bits wide
(\$countbits(bfm.RDATA) == 32)	Read Data should be 32 bits wide

Assertions:

Statement	Description	Pass /Fail
assertion1	AWADDR remains stable when AWVALID is asserted and AWREADY is low	Fail
assertion2	AWREADY is not asserted until AWVALID is high	Pass
assertion3	A value of X on AWADDR is not permitted when AWVALID is high	Pass
assertion4	AWVALID is LOW for the first cycle after reset signal goes high	Pass
assertion5	When AWVALID is asserted, then it remains asserted until AWREADY is high	Pass
assertion6	AWREADY is eventually true after AWVALID is asserted	Pass
assertion7	A value of X on AWVALID is not permitted when not in reset	Pass
assertion8	A value of X on AWREADY is not permitted when not in reset	Pass
assertion9	When AWVALID and AWREADY are high at the same time, the next cycle AWVALID goes low	Pass

assertion10	WDATA remains stable when WVALID is	Fail
assertionito		Fall
	asserted and WREADY is low	
assertion11	WREADY is not asserted until WVALID is high	Pass
assertion12	A value of X on WDATA is not permitted	Pass
assertioniz	when WVALID is high	Pass
	-	Dana
assertion13	WVALID is LOW for the first cycle after reset	Pass
	signal goes high	
assertion14	When WVALID is asserted, then it remains	Pass
	asserted until WREADY is high	
assertion15	WREADY is eventually true after WVALID is	Pass
	asserted	
assertion16	A value of X on WVALID is not permitted	Pass
	when not in reset	
assertion17	A value of X on WREADY is not permitted	Pass
	when not in reset	
assertion18	When WVALID and WREADY are high at the	Pass
	same time, the next cycle AWVALID is low	
assertion19	When AWVALID is high and AWREADY is low,	Pass
	BVALID is low until AWREADY is high	
assertion20	When WVALID and WREADY are high BVALID	Pass
	and BREADY will be high	
assertion21	A value of X on BVALID is not permitted	Pass
	when not in reset	1 333
assertion22	A value of X on BREADY is not permitted	Pass
45501.001122	when not in reset	1 433
assertion23	BREADY is eventually true after BVALID is	Pass
433611101123	asserted	1 433
assertion24	When BVALID is asserted, then it must	Pass
assertion24	remain asserted until BREADY is HIGH	1 033
assertion25	ARADDR remains stable when ARVALID is	Fail
assertion25	asserted and ARREADY is low	Fall
assertion26		Docc
assertion26	A value of X on ARADDR is not permitted	Pass
	when ARVALID is high	D
assertion27	ARVALID is LOW for the first cycle after reset	Pass
	goes high	
assertion28	When ARVALID is asserted, then it remains	Pass
	asserted until ARREADY is high	
assertion29	A value of X on ARVALID is not permitted	Pass
	when not in reset	
assertion30	A value of X on ARREADY is not permitted	Pass
	when not in reset	
assertion31	ARREADY is eventually true after ARVALID is	Pass
	asserted	
assertion32	When ARVALID and ARREADY are high at the	Pass
	same time, the next cycle ARVALID goes low	
assertion33	RDATA remains stable when RVALID is	Fail
	asserted, and RREADY is low	
assertion34	A value of X on RDATA valid byte lanes is not	Pass
	permitted when RVALID is high.	
	ļ	
assertion35	RVALID is LOW for the first cycle after reset	Pass
assertion36		Pass
	remain asserted until RREADY is high	1 333
assertion35 assertion36	RVALID is LOW for the first cycle after reset goes high When RVALID is asserted, then it must remain asserted until RREADY is high.	Pass Pass

assertion37	A value of X on RVALID is not permitted	Pass
	when not in reset	
assertion38	A value of X on RREADY is not permitted	Pass
	when not in reset	
assertion39	RREADY is eventually true after RVALID is	Pass
	asserted	
assertion40	When RVALID and RREADY are high at the	Pass
	same time, the next cycle RVALID goes low	
assertion41	When AWVALID and AWREADY are high,	Pass
	WVALID and WREADY are high eventually	
assertion 42	When ARVALID and ARREADY are high,	Pass
	RVALID and RREADY are high eventually	
assertion 43	ARREADY is not asserted until ARVALID goes	Pass
	high	
assertion44	AWREADY is not asserted until AWVALID	Pass
	goes high	
assertion45	WREADY is not asserted until WVALID goes	Pass
	high	
assertion46	BVALID is not asserted until AWREADY goes	Pass
	high	
assertion47	BVALID is not asserted until WREADY goes	Pass
	high	
assertion 48	WREADY is not asserted until WVALID and	Pass
	AWVALID is asserted	

Bugs Encountered:

After writing multiple assertions and validating the design, we discovered a few bugs during execution with the FPV tool. Upon debugging and backtracking, it became apparent that the AXI4 Lite design we initially worked with had inherent flaws.

Property	Description of Bug	
(bfm.ARVALID) && (!bfm.ARREADY) => \$stable(bfm.ARADDR) && (bfm.ARVALID)	Read Address Remains Stable when Read Address Valid is asserted and Read Address Ready is low	
(bfm.RVALID) && (!bfm.RREADY) => \$stable(bfm.RDATA) && (bfm.RVALID)	Read Data Remains Stable when Read Data Valid is asserted and Read Data Ready is low	
(bfm.AWVALID && !bfm.AWREADY) => \$stable(bfm.AWADDR) && (bfm.AWVALID)	Write Address Remains Stable when Write Address Valid is asserted and Write Address Ready is low	
(bfm.WVALID && (!bfm.WREADY)) => \$stable(bfm.WDATA)	Write Data Remains Stable when Write Data Valid is asserted and Write Data Ready is low	

Waveforms

AXI4 Lite Read Transaction

AXI4 Lite Write Transaction

References:

- Formal verification an essential toolkit for modern VLSI design by Kumar, M. V. Achutha Kiran Schubert, Tom Seligman, Erik.
- https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI4-Lite-Interface-Specification (AXI4 lite specification from documentation by ARM developer website).