Visão Computacional Aula 14

Reconhecimento de Padrões

Elementos Básicos

Modelo Genérico

Introdução

• Em VC - Modelo Simples

Introdução

• Em VC - Modelo Simples

Elementos Básicos

Modelo Complexo

Output from our system: 1) A person is on artificial rock wall. 2) A person climbing a wall is on artificial rock wall. 3) Person climbs rock wall indoors. 4) Young man tries to climb artificial rock wall. 5) A man demonstrates how to climb a rock wall.

Definindo os "Padrões"

Padrão

- Descrição quantitativa de um objeto ou alguma outra entidade de interesse na imagem
- Em geral, um padrão é formado por um ou mais descritores(Características)

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Características de uma imagem

- Globais: histograma, conteúdo de frequências, etc...
- <u>Locais</u>: regiões com determinada propriedade, arestas, cantos, curvas, etc...

Exemplo: Arestas e cantos

• Locais de mudanças significativas na intensidade da imagem

Exemplo - flores Iris

FIGURE 12.1

Three types of iris flowers described by two measurements.

Exemplo padrão descrito pela assinatura

 Geração de um vetor de características através da assinatura

a b

FIGURE 12.2 A noisy object and its corresponding signature.

Descrição por árvores

FIGURE 12.5 A tree description of the image in Fig. 12.4.

Métodos de decisão teórica

• Dado:

- $= x = (x_1, x_2, ..., x_n)^T$, um vetor de n dimensões
- M classes: $\omega_1, \omega_2, ..., \omega_m$
- Deseja-se encontrar M funções de decisão (discriminantes) $d_1(x),\ d_2(x),\ ...,\ d_M(x),\ {\rm com}$ a propriedade
 - $d_i(x) > d_j(x), j=1,2,...,M; j \neq i$
- Se o padrão x pertencer a classe ω_i

 Suponha que cada classe de padrões seja representada por um vetor protótipo (ou médio)

$$m_{j} = \frac{1}{N_{j}} \sum_{x \in \omega_{j}} x, \qquad j = 1, 2, \dots, M$$

- N_j é o número de vetores da classe ω_j
- Uma maneira de definir a classe de um padrão desconhecido x é atribuí-lo à classe de cujo protótipo encontra-se mais próximo.

 A distância euclidiana pode ser usada para determinar proximidade

$$D_{j}(x) = ||x - m_{j}||, j = 1, 2, \dots, M$$

Dado que
$$||a|| = (a^T a)^{1/2}$$
 é a norma euclidiana

• Atribui-se x à classe ω_j se $D_i(x)$ for a menor distância.

• É possível mostrar que a equação anterior equivale a:

$$d_{j}(x) = x^{T} m_{j} - \frac{1}{2} m_{j}^{T} m_{j}, \quad j = 1, 2, \dots, M$$

• Ou seja, atribuir x à classe ω_j se $d_i(x)$ tiver o maior valor numérico.

• A fronteira de decisão entre as classes ω_i e ω_j para o classificador de distância mínima é:

$$d_{ij}(x) = d_{i}(x) - d_{j}(x)$$

$$= x^{T} (m_{i} - m_{j}) - \frac{1}{2} (m_{i} - m_{j})^{T} (m_{i} - m_{j}) = 0$$

- A superfície dada pela equação é a bisseção perpendicular do segmento de linha entre m_i e m_i .
- Para n=2 é uma linha, para n=3 é um plano e para n>3 é chamada de hiperplano

- O classificador de distância mínima funciona bem quando a distância entre as médias é grande quando comparada com a dispersão de cada classe em relação a sua média.
- Na prática, problemas com essas características são raros, a menos que a entrada dos dados seja bem controlada.

Casamento por correlação - Window Matching

Objetivo:

- □ Encontrar casamentos de uma subimagem w(x,y) de tamanho $J \times K$ dentro de uma imagem f(x,y) de tamanho $M \times N$, assumindo que $J \le M$ e $K \le N$.
- Em sua forma mais intuitiva

$$c(s,t) = \sum_{x} \sum_{y} f(x,y) w(x-s,y-t)$$

Casamento por correlação

FIGURE 12.8 Arrangement for obtaining the correlation of f and w at point (x_0, y_0) .

Casamento por correlação

• A função de correlação dada pela equação anterior possui a desvantagem de ser sensível a mudança na amplitude de f(x,y) e de w(x,y).

Casamento por correlação

• Assim é comum utilizar o coeficiente de correlação para realizar o casamento

$$\gamma(s,t) = \frac{\sum_{x} \sum_{y} \left[f(x,y) - \bar{f}(x,y) \right] \left[w(x-s,y-t) - \overline{w} \right]}{\left\{ \sum_{x} \sum_{y} \left[f(x,y) - \bar{f}(x,y) \right]^{2} \left[w(x-s,y-t) - \overline{w} \right]^{2} \right\}^{\frac{1}{2}}}$$

 \overline{w} – é o valor médio dos pixels em w(x,y)

 $\bar{f}(x,y)$ – é o valor médio na região sob análise de f(x,y)

Casamento por correlação (exemplo)

a b c

FIGURE 12.9

- (a) Image.
- (b) Subimage.
- (c) Correlation coefficient of (a) and (b). Note that the highest (brighter) point in (c) occurs when subimage (b) is coincident with the letter "D" in (a).

Casamento por correlação (exemplo)

Aplicação

- Alinhamento de Imagens
 - Image Registration
- Aplicação que envolve reconhecimento de padrões
 - Transformação de Coordenadas + Correlação de Pontos

Registro de Imagens

- Alinhamento de duas ou mais imagens da mesma cena
- Considera duas imagens: imagem de base ou referência e imagem de entrada
- O objetivo é alinhar a imagem de entrada com a imagem de base através de transformações espaciais aplicadas à imagem de entrada

Pontos de Controle

$$x'=r(x,y)$$

$$y' = s(x,y)$$

Transformação Projetiva

A transformação projetiva mapeia quadriláteros para quadriláteros.

$$[\mathbf{w} \ \mathbf{z} \ \mathbf{h}] = [\mathbf{x} \ \mathbf{y} \ 1] \begin{bmatrix} \mathbf{c}_{1} & \mathbf{c}_{4} & \mathbf{c}_{7} \\ \mathbf{c}_{2} & \mathbf{c}_{5} & \mathbf{c}_{8} \\ \mathbf{c}_{3} & \mathbf{c}_{6} & 1 \end{bmatrix}$$

e

$$x' = \frac{w}{h} \quad , \quad y' = \frac{z}{h}$$

ou

$$x' = \frac{c_1 x + c_2 y + c_3}{c_7 x + c_8 y + 1} , \quad y' = \frac{c_4 x + c_5 y + c_6}{c_7 x + c_8 y + 1}$$

Exemplo 1:

Base

Entrada

Pontos de controle

Entrada (distorcida)

Registrada

Base

Registrada

Superposição (base + registrada)

Links

- Wiki Image Stitching
 - http://en.wikipedia.org/wiki/Photo_stitching
- CleVr
 - http://www.clevr.com/stitcher

Próxima aula...

- Reconhecimento de Padrões
 - Bag of Features