Specification

COMPSCI 2ME3

April 10, 2020

This Module Interface Specification (MIS) document contains three main modules, DotT, Model, and View. And, a DotType module that provides the different-colored dot types required by both DotT and Model modules. The Model is constructed using a customizable row, column, and target size. The methods of the Model module allow the user to delete a matching line of dots from the Model. The deleted dots are replaced by dots located above.

The game over condition will satisfy one of the following conditions.

- The user deletes a selection of same-colored dots that matches or exceeds a given target size.
- The user reaches the allowed number of delete moves per a game. Which is 18.

In other words, the game is set to finish either when the user accomplishes a same-colored dots deletion of target size or when the number of delete moves reaches 18.

EarthquakeBag Module

Template Module

 ${\bf EarthquakeBag\ is\ seq\ of\ EarthquakeT}$

Generic Queue Module

Generic Template Module inherits Iterable(T)

Queue(T)

Uses

None

Syntax

Exported Constants

None

Exported Types

Queue = ?

Internal Types

Node = ?

Internal Node type has a link to next item in the queue.

Exported Access Programs

Routine name	In	Out	Exceptions
Queue		Queue	
isEmpty		\mathbb{B}	
enqueue	Т		
toString		String	
start			
next		Т	NoSuchElementException

Semantics

State Variables

first: Node last: Node

```
n:\mathbb{N}
```

```
s: seq of T
```

```
# For simplification, the linked-node structure is represented by seq of T. # s[1] is the first Node. # s[n] is the last Node.
```

State Invariant

None

Assumptions

None

Access Routine Semantics

Queue():

- transition: first, last, n := null, null, 0
- output: out := self
- exception: none

isEmpty():

- output: $out := (n = 0) \Rightarrow True | True \Rightarrow False$
- exception: None

enqueue(item):

- output: out := s | | item |
- exception: None

toString():

- output: $out := out||(\forall i : \mathbb{N}|i \in [1..n] : s[i])$
- exception: None

<u>Iterator Methods</u>:

 $i:\mathbb{N}$

start():

• transition: i := 0

• exception: none

next():

 $\bullet \ \ \text{transition-output:} \ i, out := i+1, s[i]$

Considerations

When an instance of Queue is iterated in a loop, an iterator consisting of these two methods is returned, and the start() method is call initially, and for the successive iterations next() method is call.

Generic RedBlackBST Module

Generic Template Module

RedBlackBST(T with Comparable(T), V)

Uses

Queue

Syntax

Exported Types

RedBlackBST = ?

Internal Types

Node = ?

State Variables of Node:

key: Key, lst: seq of V, left: Node, right: Node, color: B, size: N

Internal Node type was modified to store a seq of V.

Exported Access Programs

Routine name	In	Out	Exceptions
RedBlackBST		RedBlackBST	
size		N	
isEmpty		\mathbb{B}	
get	Т	seq of V	
put	T, V		
min		T	
max		Т	
keys		Queue of T	
keys	\mathbb{R}, \mathbb{R}	Queue of T	

Semantics

State Variables

root: Node RED: \mathbb{B} BLACK: \mathbb{B}

State Invariant

RED = TrueBLACK = False

Assumptions

None

Access Routine Semantics

RedBlackBST():

- transition: None
- output: out := self
- exception: None

size():

- output: out := root.size
- exception: None

isEmpty():

- output: $out := (root = null) \Rightarrow True | True \Rightarrow False$
- exception: None

get(key):

- output: out := L such that $\langle x, L \rangle$: seq of $V | \langle x, L \rangle \in RedBlackBST : (x.key = key)$
- exception: None

put(key, val):

- transition: $\{\langle x,L\rangle: \text{seq of V}|\langle x,L\rangle \in RedBlackBST: (x.key = key \Rightarrow \langle x,L||[val]\rangle|\text{True} \Rightarrow \langle key,L||[val]\rangle)\}$
- exception: None

$\min()$:

- output: out := smallest key in the RedBlackBST
- exception: None

$\max()$:

- \bullet output: out := largest key in the RedBlackBST
- exception: None

keys():

- output: $out := out || (\forall \langle x, L \rangle : \text{seq of V} | \langle x, L \rangle \in RedBlackBST : x.key)$
- exception: None

keys(lo, hi):

- output: $out := out || (\forall \langle x, L \rangle : \text{seq of V} | \langle x, L \rangle \in RedBlackBST \land lo \leq x.key \leq hi : x.key)$
- exception: None

EarthquakeT Module

Template Module

 ${\bf EarthquakeT}$

Uses

LocalDateTime, PointT

Syntax

Exported Types

EarthquakeT = ?

 $\label{eq:colorRating} \text{ColorRating} = \{ \text{ NOCOLOR, ZERO, PURPLE, BLUE, GREEN, YELLOW, ORANGE, RED } \}$

 ${\it MagType} = \{$ M5, mb, MB, Mb, MC, Mc, mc, ML, MLSn, MN, MS, MW, Ms, Mw, BLANK $\}$

EarthquakeT implements Comparable(EarthquakeT)

Exported Constants

None

Exported Access Programs

Routine name	In	Out	Exceptions
EarthquakeT	String, String, LocalDateTime,	EarthquakeT	
	$\mathbb{R}, \mathbb{R}, \mathbb{R}, \mathbb{R}, \text{MagType, ColorRating}$		
getNameOfProv		String	
getPlace		String	
getPointT		PointT	
getMag		\mathbb{R}	
getDph		\mathbb{R}	
getMagitudeType		MagType	
getDate		LocalDateTime	
getColor		ColorRating	
compareTo	EarthquakeT	\mathbb{Z}	
equals	EarthquakeT	\mathbb{B}	

Semantics

State Variables

place: String

nameOfProv: String date: LocalDateTime

lat: \mathbb{R} lng: \mathbb{R} dph: \mathbb{R} mag: \mathbb{R}

 ${\bf magnitude Type:\ Mag Type}$

color: ColorRating

State Invariant

None

Assumptions

Two earthquakes are not the same if they happened to have two different dates or two different places recorded.

Access Routine Semantics

EarthquakeT(place, prov., date, lat, lng, dph, mag, mgT, color):

lat, lng, place, nameOfProv, date, dph, mag, magnitudeType, color := lat, lng, place, prov, date, dph, mag, mgT, color

- \bullet output: out := self
- exception: None

getNameOfProv():

• transition:

- output: out := nameOfProv
- exception: None

getPlace():

- output: out := place
- exception: None

getPointT():

- output: out := PointT(lat, lng)
- exception: None

getMag():

- output: out := mag
- exception: None

getDph():

- output: out := dph
- exception: None

getMagitudeType():

- output: out := magnitudeType
- exception: None

getDate():

 \bullet output: out := date

• exception: None

getColor():

 \bullet output: out := color

• exception: None

compareTo(eq):

• output: out := an integer value according to the following table.

	out :=
this.mag < eq.mag	-1
this.mag > eq.mag	1
this.mag = eq.mag	0

• exception: None

equals(that):

• output: $out := (sameDate \land samePoint \land samePlace \land sameDepth \land sameMagValue \land sameMagType \land sameEqClass) \Rightarrow True|True \Rightarrow False$

• exception: None

Local Functions

```
sameDate: EarthquakeT \rightarrow \mathbb{B}
sameDate(d) \equiv (d.date) = (this.date)
[Returns true if the given EarthquakeT object has the same date as the current. —SS]
samePoint: EarthquakeT \rightarrow \mathbb{B}
samePoint(d) \equiv (d.Point) = (this.Point)
[Returns true if the given EarthquakeT object has the same Point as the current. —SS]
samePlace: EarthquakeT \rightarrow \mathbb{B}
samePlace(d) \equiv (d.place) = (this.place)
[Returns true if the given EarthquakeT object has the same place as the current. —SS]
sameDepth: EarthquakeT \to \mathbb{B}
sameDepth(d) \equiv |d.dph - this.dph| < 0.0000001
[returns true if the given EarthquakeT object has the same depth value
as the current within the tolerance. —SS
sameMagValue: EarthquakeT \rightarrow \mathbb{B}
\operatorname{sameMagValue}(d) \equiv |d.\operatorname{mag} - this.\operatorname{mag}| < 0.0000001
returns true if the given EarthquakeT object has the same magnitude value
as the current within the tolerance. —SS]
sameMagType: EarthquakeT \rightarrow \mathbb{B}
sameMagType(d) \equiv (d.magnitudeType) = (this.magnitudeType)
Returns true if the given EarthquakeT object has the same magnitude type
as the current. —SS
sameEqClass: EarthquakeT \rightarrow \mathbb{B}
sameEqClass(d) \equiv (d.color) = (this.color)
[Returns true if the given EarthquakeT object has the same class as the current. —SS]
```

CSVreader Module

Module

CSVreader

Uses

CityPostT, CityT, EarthquakeT, EarthquakeT.ColorRating, EarthquakeT.MagType, EarthquakeBag, GeoCollection, RedBlackBST

Syntax

Exported Constants

None

Exported Access Programs

Routine name	In	Out	Exceptions
readEarthquakes	String, EarthquakeBag		
readEarthquakesBST	String, RedBlackBST		
readPopulation	String, GeoCollection		
readCityPosition	String, seq of CityPostT		
rmFirstLastQuote	String	String	
generateColorRating	\mathbb{R}	ColorRating	
fullProvName	String	String	

Semantics

Environment Variables

None

State Variables

None

State Invariant

None

Assumptions

None

Access Routine Semantics

readEarthquakes(filename, bag):

- transition: currentM := cM.toString()
- exception: None

readEarthquakesBST(filename, bst):

```
• transition:
	currentM := ""
	currentM := cM.toString()
```

• exception: None

readPopulation(filename, geoCollec):

- transition: currentM := ""
- exception: None

readCityPosition(filename, cityPostList):

- transition: currentM := ""
- exception: None

rmFirstLastQuote(cell):

- transition: currentM := ""
- exception: None

generateColorRating(cell4):

- transition: currentM := ""
- exception: None

fullProvName(nameP):

• output: a new province name similar to the following table.

	nameP =	out :=
nameP = 2	ON	Ontario
	QC, PQ	Quebec
	NS	Nova Scotia
	NB	New Brunswick
	MB	Manitoba
	BC	British Columbia
	PE	Prince Edward Island
	SK	Saskatchewan
	AB	Alberta
	NL	Newfoundland and Labrador
	NU	Nunavut
	NT	Northwest Territories
	YT	Yukon
	AK	Alaska
	WA	Washington
	default	UNLOCATED
$ nameP \neq 2$	VANCOUVER IS-	British Columbia
	LAND	
	SOUTHERN	Quebec
	QUEBEC	
	default	UNLOCATED

• exception: None

Considerations

There are a number of different variations of geolocation names in the earthquake csv file, for these an appropriate province name should be assigned. For any that could not be matched to a province name, UNLOCATED should be assigned.