Topic and contents

UNSW, School of Mathematics and Statistics

MATH2089 - Numerical Methods

Week 04 – Structured Linear Systems and Sparse Matrices

Structured Systems of Linear Equations

- Symmetric matrices
- Positive definite matrices

- Banded matrices
- Fill-in
- Tridiagonal matrices
- Sparse matrices

- MATLAB M-files
 - chksym.m
 - pdex1.m
 - diagex1.m
- tridiag.m
- test_thomas.m
- spex1.m

(Numerical Methods)

WK 04 - Matrix Structure, Sparsity

T2 2019

1 / 19

west.m

Structured Systems of Linear Equations Symmetric matrices

Symmetric matrices - examples

Example (Symmetric matrices)

Are the following matrices symmetric?

$$A = \begin{pmatrix} 5 & -7 & -6 \\ -7 & 13 & 2 \\ -6 & 2 & 20 \end{pmatrix}, \qquad B = \begin{pmatrix} 5 & -7 & -6 \\ -7 & 13 & 2 \\ -5 & 2 & 20 \end{pmatrix}$$

Solution

A is symmetric (why?), B is not symmetric (why?)

Example (A^TA)

Show that for any $A \in \mathbb{R}^{m \times n}$, the matrix $B = A^T A$ is symmetric.

Solution

The transpose satisfies $(UV)^T = V^TU^T$ and $(U^T)^T = U$. Thus

$$B^{T} = (A^{T}A)^{T} = A^{T}(A^{T})^{T} = A^{T}A = B,$$

so $B = A^T A$ is symmetric.

Structured Systems of Linear Equations Symmetric matrices

Symmetric Matrices

Definition (Symmetric, Skew-symmetric matrices)

- A is symmetric $\iff A^T = A$
- A is skew-symmetric $\iff A^T = -A$
- ullet A symmetric or skew-symmetric $\Longrightarrow A$ square, $A \in \mathbb{R}^{n \times n}$
- A symmetric $\iff a_{ij} = a_{ji}$ for all $i, j = 1, \dots, n$
- A symmetric \Longrightarrow storage n(n+1)/2 elements
- A skew-symmetric $\iff a_{ij} = -a_{ij}$ for all $i, j = 1, \dots, n$
- A skew-symmetric $\implies a_{ii} = 0$ for all $i = 1, \dots, n$

Example (Testing for symmetry)

Give Matlab commands to determine if A is symmetric

Solution

See function M-file chksym.m

(Numerical Methods)

WK 04 - Matrix Structure, Sparsity

T2 2019 2 / 19

Structured Systems of Linear Equations Symmetric matrices

(Numerical Methods) WK 04 - Matrix Structure, Sparsity T2 2019 3 / 19 Structured Systems of Linear Equations Positive definite matrices

Positive definite matrices

Definition (Positive-definite matrices)

Symmetric matrix $A \in \mathbb{R}^{n \times n}$ is

- positive definite $\iff \mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} \neq \mathbf{0}$
- positive semi-definite $\iff \mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^n$
- A is positive definite \iff eigenvalues $\lambda_i(A) > 0$ for all $i = 1, \dots, n$
- A positive definite \iff Cholesky factorization $A = R^T R$ exists
 - R upper triangular, $R_{ii} > 0, i = 1, \ldots, n$
 - MATLAB R = chol(A) or [R, p] = chol(A)
 - No pivoting required for numerical stability
 - Flops: Cholesky $\frac{n^3}{2} + O(n^2)$ versus $LU \frac{2n^3}{2} + O(n^2)$
- ullet A^TA symmetric positive semi-definite for any $A\in\mathbb{R}^{m imes n}$

(Numerical Methods)

WK 04 - Matrix Structure, Sparsity

T2 2019

5 / 19

Structured Systems of Linear Equations Positive definite matrices

Positive definite matrices - examples

Example (Positive definite matrices)

Consider the matrices

$$A = \begin{pmatrix} 5 & -7 & -6 \\ -7 & 13 & 2 \\ -6 & 2 & 20 \end{pmatrix}, \ B = \begin{pmatrix} 6 & -7 & -6 \\ -7 & 14 & 2 \\ -6 & 2 & 21 \end{pmatrix}, \ C = \begin{pmatrix} 4 & -7 & -6 \\ -7 & 13 & 2 \\ -6 & 2 & 20 \end{pmatrix}.$$

Calculate. in MATLAB.

- \bullet S1 = A'==A, S2 = A' A, S3 = norm(A'-A,1)
- \bigcirc The eigenvalues of A.
- The Cholesky factorization using [R, p] = chol(A)

Is A positive definite? Is A symmetric? Repeat for the matrices B and C.

MATLAB pdex1.m

(Numerical Methods)

WK 04 - Matrix Structure, Sparsity

T2 2019

Structured Systems of Linear Equations Banded matrices

Banded matrices

Definition (Banded matrices)

 $A \in \mathbb{R}^{m \times n}$ has

- upper bandwidth $m_u \iff a_{ij} = 0 \quad \forall i > i + m_u$
- lower bandwidth $m_l \iff a_{ij} = 0 \quad \forall i > j + m_l$
- total bandwidth $m_l + m_u + 1$
- L lower triangular \iff upper bandwidth $m_u = 0$
- U upper triangular \iff lower bandwidth $m_l = 0$
- D diagonal \iff lower bandwidth $m_l = 0$, upper bandwidth $m_u = 0$
- MATLAB spy plots: pattern of non-zero elements in matrix

Proposition (Factorization of banded matrices)

Banded matrix A, lower bandwidth m_l and upper bandwidth $m_u \Longrightarrow$ LU factorization of A: L lower bandwidth m_l , U upper bandwidth m_u

7 / 19

Structured Systems of Linear Equations Banded matrices

Structured Systems of Linear Equations Banded matrices

Banded matrix - Example

Example

Spy plot: non-zero elements in A: give size, upper, lower and total bandwidth, number of non-zero elements

Solution

- $size(A) = [40 \ 40]$
- Upper bandwidth $m_u = 5$
- Lower bandwidth $m_l = 5$
- Bandwidth 11
- nnz(A) = 174

(Numerical Methods)

WK 04 - Matrix Structure, Sparsity

T2 2019

(Numerical Methods)

WK 04 - Matrix Structure, Sparsity

T2 2019

10 / 19

Structured Systems of Linear Equations Banded matrices

Fill-in

Definition (Fill-in)

Fill-in: creation of non-zero elements where original elements were zero

• Row operations can cause fill-in

Matrix multiplication can cause fill-in

Structured Systems of Linear Equations

Banded matrices - fill-in

- Banded matrix: fill-in during factorization only occurs within bands
- Inverse A^{-1} can get lot of fill-in \Longrightarrow avoid explicitly calculating A^{-1}

T2 2019

12 / 19

(Numerical Methods) WK 04 - Matrix Structure, Sparsity T2 2019 11 / 19 (Numerical Methods) WK 04 - Matrix Structure, Sparsity

Diagonals

Definition (Diagonals)

Diagonal k of $A \in \mathbb{R}^{m \times n} \iff a_{ij} : j - i = k$

- Diagonal $0 \iff i-i=0 \iff i=j$ main diagonal
- Diagonal $1 \iff j-i=1 \iff j=i+1$ super-diagonal
- Diagonal $-1 \iff j-i=-1 \iff j=i-1$ sub-diagonal
- MATLAB command diag

Example (MATLAB diag command)

Give the results of

 $u = [2 \ 1 \ 0 \ -1 \ 2];$ A = diag(u), B = diag(u,1), C = diag(u,-1) $X = [11 \ 12 \ 13; \ 21 \ 22 \ 23; \ 31 \ 32 \ 33]$ diag(X), diag(diag(X))

Solution (MATLAB M-file diagex1.m)

(Numerical Methods)

WK 04 - Matrix Structure, Sparsity

T2 2019 13 / 19

Structured Systems of Linear Equations Tridiagonal matrices

Tridiagonal matrices

Definition (Tridiagonal matrix)

A tridiagonal \iff upper bandwidth $m_u = 1$ and lower bandwidth $m_l = 1$

Tridiagonal matrix

$$A = \begin{bmatrix} b_1 & c_1 & 0 & \cdots & 0 & 0 \\ a_2 & b_2 & c_2 & 0 & \cdots & 0 \\ 0 & a_3 & b_3 & c_3 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{n-1} & b_{n-1} & c_{n-1} \\ 0 & 0 & \cdots & 0 & a_n & b_n \end{bmatrix}$$

- Storage n + 2(n 1) = 3n 2 elements
- Thomas algorithm
 - Gaussian elimination/ back-substitution exploiting structure
 - MATLAB function M-file tridiag.m
 - 8n + O(1) flops

(Numerical Methods)

WK 04 - Matrix Structure, Sparsity

Structured Systems of Linear Equations Tridiagonal matrices

14 / 19

T2 2019

Thomas algorithm

test_thomas.m

```
\Rightarrow a = [-2 -1 \ 0 \ 1]:
>> b = [1 2 2 4 1];
>> c = [6 4 8 6];
\Rightarrow d = [8 16 32 32 8];
>> x = tridiag(a,b,c,d)
>> x = x
 -28 6 -13 8 0
```

$$\begin{bmatrix} 1 & 6 & 0 & 0 & 0 \\ -2 & 2 & 4 & 0 & 0 \\ 0 & -1 & 2 & 8 & 0 \\ 0 & 0 & 0 & 4 & 6 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 8 \\ 16 \\ 32 \\ 32 \\ 8 \end{bmatrix}$$

(Numerical Methods) WK 04 - Matrix Structure, Sparsity T2 2019 15 / 19 (Numerical Methods)

WK 04 - Matrix Structure, Sparsity

T2 2019 16 / 19

Sparse matrices

Definition (Sparse matrix)

- A sparse \iff zero elements in A can be exploited to improve efficiency (storage, time)
- Sparsity of $A \in \mathbb{R}^{m \times n}$ is number of non-zero elements in A divided by total number of elements (mn) in A (express as %)

Example (Sparsity)

Give the sparsity of $A \in \mathbb{R}^{n \times n}$ where A is diagonal, tridiagonal, triangular

Solution

- Diagonal matrix: sparsity = $100n/n^2 \approx 100/n\%$
- Tridiagonal matrix: sparsity = $100(3n-2)/n^2 \approx 300/n\%$
- Triangular matrix: sparsity = $100n(n+1)/(2n^2) \approx 50\%$

(Numerical Methods)

WK 04 - Matrix Structure, Sparsity

T2 2019 17 / 19

Reordering to reduce fill-in

- Chemical Engineering plant simulation:
 - http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/chemwest/chemwest.html
- Column reordering: q = colamd(A); $x = A(:,q) \setminus b$
- Symmetric reordering: p = symrcm(A); $y = A(p,p) \setminus b(p)$
- MATLAB M-file west.m

(Numerical Methods)

WK 04 - Matrix Structure, Sparsity

19 / 19

Sparse matrices – storage

- A sparse \Longrightarrow only store non-zero elements of A
 - Row index i, column index j, element a_{ij}
 - More efficient, more complicated sparse storage schemes
- MATLAB M-file spex1.m
 - number of non-zero elements nnz(A)
 - sparsity 100*nnz(A)/numel(A)
 - sparse, full commands
 - speye
 - sparse diagonals spdiags
- Fill-in during matrix operations
 - Reorder rows and columns to reduce fill-in
 - Conflict with reordering for numerical stability, except Cholesky
 - A symmetric apply same reordering to rows, columns
 - MATLAB functions amd, colamd, symamd, symrcm

(Numerical Methods)

WK 04 - Matrix Structure, Sparsity

T2 2019

18 / 19