

Capstone Project-4

Online Retail Customer Segmentation

(Unsupervised Machine Learning)

BY

Prasad Kanagi

Problem Statement:

- To identify major customer segments on a transnational data set.
- ❖ Data set contains all the transactions occurring between 1st December 2010 and 9 th December 2011 for a UK-based and registered non-store online retail.
- The company mainly sells unique all-occasion gifts.
- Many customers of the company are wholesalers

Data Description:

Total Rows= 541909 Total features=8

- ➤ **InvoiceNo**: Invoice number. Nominal, a 6-digit integral number uniquely assigned to each transaction. If this code starts with letter 'c', it indicates a cancellation.
- > **StockCode**: Product (item) code. Nominal, a 5-digit integral number uniquely assigned to each distinct product.
- > **Description**: Product (item) name. Nominal.
- > Quantity: The quantities of each product (item) per transaction. Numeric.
- ➤ InvoiceDate: Invoice Date and time. Numeric, the day and time when each transaction was generated.
- > **UnitPrice**: Unit price. Numeric, Product price per unit in sterling.
- > **CustomerID**: Customer number. Nominal, a 5-digit integral number uniquely assigned to each customer.
- Country: Country name. Nominal, the name of the country where each customer resides.

Data Wrangling:

Information of the data:

- # checking the datatypes and null values in dataset
 df.info()
- C+ <class 'pandas.core.frame.DataFrame'> RangeIndex: 541909 entries, 0 to 541908 Data columns (total 8 columns):

```
Column
                 Non-Null Count
                                  Dtype
     InvoiceNo
                 541909 non-null object
    StockCode
                 541909 non-null
                                  object
    Description 540455 non-null
                                  object
                                  int64
    Quantity
                 541909 non-null
    InvoiceDate 541909 non-null
                                  object
    UnitPrice
                 541909 non-null float64
    CustomerID 406829 non-null float64
    Country
                 541909 non-null object
dtypes: float64(2), int64(1), object(5)
memory usage: 33.1+ MB
```

Invoicedate to datetime:

- If Invoice No starts with C means it cancellation.
- Shape of data after dropping entries=397884

D÷	CustomerID	135080
_	Description	1454
	InvoiceNo	0
	StockCode	0
	Quantity	0
	InvoiceDate	0
	UnitPrice	0
	Country	0
	dtype: int64	

```
# Visulaizing null values using heatmap.
plt.figure(figsize=(15,5))
sns.heatmap(df.isnull(),cmap='YlGn',annot=False,yticklabels=False)
plt.title(" Visualising Missing Values")
```

Text(0.5, 1.0, ' Visualising Missing Values')

Data Wrangling:

 \Box

dataframe have negative values in quantity.
#Here we observed that Invoice number starting with C has negative values and as df[df['Quantity']<0]

dataframe have negative values in quantity.

detaframe have negativ

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
141	C536379	D	Discount	-1	01-12-2010 09:41	27.50	14527.0	United Kingdom
154	C536383	35004C	SET OF 3 COLOURED FLYING DUCKS	-1	01-12-2010 09:49	4.65	15311.0	United Kingdom
235	C536391	22556	PLASTERS IN TIN CIRCUS PARADE	-12	01-12-2010 10:24	1.65	17548.0	United Kingdom
236	C536391	21984	PACK OF 12 PINK PAISLEY TISSUES	-24	01-12-2010 10:24	0.29	17548.0	United Kingdom
237	C536391	21983	PACK OF 12 BLUE PAISLEY TISSUES	-24	01-12-2010 10:24	0.29	17548.0	United Kingdom
	***			***	***	***	***	***
540449	C581490	23144	ZINC T-LIGHT HOLDER STARS SMALL	-11	09-12-2011 09:57	0.83	14397.0	United Kingdom
541541	C581499	M	Manual	-1	09-12-2011 10:28	224.69	15498.0	United Kingdom
541715	C581568	21258	VICTORIAN SEWING BOX LARGE	-5	09-12-2011 11:57	10.95	15311.0	United Kingdom
541716	C581569	84978	HANGING HEART JAR T-LIGHT HOLDER	-1	09-12-2011 11:58	1.25	17315.0	United Kingdom
541717	C581569	20979	36 PENCILS TUBE RED RETROSPOT	-5	09-12-2011 11:58	1.25	17315.0	United Kingdom

Invoice No starting with C had negative entries in the quantity column means negative values in quantity column indicates cancellations.

Feature Engineering:

Changed the datatype of Invoice Date column into datetime.

```
# Converting InvoiceDate to datetime. InvoiceDate is in format of 01-12-2010 08:26.
df["InvoiceDate"] = pd.to_datetime(df["InvoiceDate"], format="%d-%m-%Y %H:%M")

[ ] df["year"] = df["InvoiceDate"].apply(lambda x: x.year)
    df["day_num"] = df["InvoiceDate"].apply(lambda x: x.month)
    df["day_num"] = df["InvoiceDate"].apply(lambda x: x.day)
    df["hour"] = df["InvoiceDate"].apply(lambda x: x.minute)

[ ] # extracting month from the Invoice date
    df['Month']=df['InvoiceDate'].dt.month_name()

[ ] # extracting day from the Invoice date
    df['Day']=df['InvoiceDate'].dt.day_name()

[ ] df['TotalAmount']=df['Quantity']*df['UnitPrice']
```

1250

Count

1500

1750

	StockCode	Count
0	85123A	2035
1	22423	1723
2	85099B	1618
3	84879	1408
4	47566	1396
5	20725	1317
6	22720	1159
7	20727	1105
8	POST	1099
9	23203	1098

- WHITE HANGING
 HEART T- LIGHT
 HOLDER is the
 highest selling
 product almost 2018
 units were sold.
- ❖ REGENCY CAKESTAND 3 TIER is the 2nd highest selling product almost 1723 units were sold.
- StockCode-85123A is the first highest selling product.
- StockCode-22423 is the 2nd highest selling product.

Germany

France

Country

EIRE

Spain

United Kingdom

- CustomerID-17841 had purchased highest number of products.
- CustomerID-14911 is the 2nd highest customer who purchased the most the products.
- UK has highest number of customers.
- Germany, France and Ireland has almost equal number of customers.

- There are very less customers from Saudi Arabia.
- Bahrain is the 2nd Country having least number of customers.

- ❖ 77183 (Pounds) is the highest average amount spent by the CustomerID-12346.
- ❖ 56157 (Pounds) is the 2nd highest average amount spent by the CustomerID-16446.

- Most of the sales happened in November month.
- February Month had least sales

- Sales On Thursdays are very high.
- Sales On Fridays are very less.

- Most of the sales happens in the afternoon.
- Least sales happens in the evening

What is RFM?

RFM- is a method used to analyze customer value.

RFM stands for RECENCY, Frequency, and Monetary.

Recency: How recently did the customer visit our website or how recently did a customer

purchase?

Frequency: How often do they visit or how often do they purchase?

Monetary: How much revenue we get from their visit or how much do they spend when they

purchase?

Why it is Needed?

RFM Analysis is a marketing framework that is used to understand and analyze customer behavior based on the above three factors RECENCY, Frequency, and Monetary.

The RFM Analysis will help the businesses to segment their customer base into different homogenous groups so that they can engage with each group with different targeted marketing strategies.

RFM Model Analysis:

- Recency = Latest Date Last Invoice Data.
- Frequency = Count of invoice no. of transaction(s).
- Monetary = Sum of Total Amount for each customer.

	CustomerID	Recency	Frequency	Monetary	R	F	М	RFM_Group	RFM_Score	RFM_Loyalty_Level
0	14646.0	1	2076	280206.02	1	1	1	111	3	Platinaum
1	18102.0	0	431	259657.30	1	1	1	111	3	Platinaum
2	17450.0	8	337	194550.79	1	1	1	111	3	Platinaum
3	14911.0	1	5675	143825.06	1	1	1	111	3	Platinaum
4	14156.0	9	1400	117379.63	1	1	1	111	3	Platinaum
5	17511.0	2	963	91062.38	1	1	1	111	3	Platinaum
6	16684.0	4	277	66653.56	1	1	1	111	3	Platinaum
7	14096.0	4	5111	65164.79	1	1	1	111	3	Platinaum
8	13694.0	3	568	65039.62	1	1	1	111	3	Platinaum
9	15311.0	0	2379	60767.90	1	1	1	111	3	Platinaum

Model Building:

RFM Model Analysis:

Log transformation on Frequency, Recency and Monetary.

RFM Model Analysis:

So just using RFM Model analysis we created 4 clusters namely Platinum, Gold, Silver and Bronze

		Recency		Frequency			Monetary				
		mean	min	max	mean	min	max	mean	min	max	count
RFA	_Loyalty_Level										
	Platinaum	19.412510	0	140	228.559778	20	7847	5255.277617	360.93	280206.02	1263
	Gold	63.376133	0	372	57.959970	1	543	1169.031202	114.34	168472.50	1324
	Silver	126.029562	1	373	24.503568	1	99	583.936944	6.90	77183.60	981
	Bronz	217.261039	51	373	10.955844	1	41	199.159506	3.75	660.00	770

K-means Clustering: (Recency and Monetary):

Finding the Optimal value of cluster using Elbow method and Silhouette Score

K-means Clustering: (Recency and Monetary)

K-means Clustering: (Recency and Monetary)

K-means Clustering: (Frequency and Monetary):

Finding the Optimal value of cluster using Elbow method and

Silhouette Score.


```
For n_clusters = 2, silhouette score is 0.478535709506603
For n_clusters = 3, silhouette score is 0.40764120562174455
For n_clusters = 4, silhouette score is 0.3715810384601166
For n_clusters = 5, silhouette score is 0.3742965607959301
For n_clusters = 6, silhouette score is 0.3586829219947334
For n_clusters = 7, silhouette score is 0.3586829219947334
For n_clusters = 8, silhouette score is 0.34342098057749704
For n_clusters = 8, silhouette score is 0.3540546906243836
For n_clusters = 9, silhouette score is 0.34419928062567495
For n_clusters = 10, silhouette score is 0.36238664926507114
For n_clusters = 11, silhouette score is 0.3682455762844025
For n_clusters = 12, silhouette score is 0.3534862139672636
For n_clusters = 13, silhouette score is 0.36139542577471895
For n_clusters = 14, silhouette score is 0.3486849890768239
For n_clusters = 15, silhouette score is 0.3628225939841498
```

Model Building:

K-means Clustering: (Frequency and Monetary):

Al

K-means Clustering: (Frequency and Monetary):

DBSCAN Algorithm (Frequency and Monetary):

K-means Clustering: (Recency, Frequency and Monetary):

Finding the Optimal value of cluster using Elbow method and Silhouette Score

Al

K-means Clustering: (Frequency and Monetary):

K-means Clustering: (Recency, Frequency and Monetary):

DBSCAN Algorithm (Recency and Monetary):

Hierarchical Clustering(Recency, Frequency and Monetary):

Optimal Number of clusters using Dendrogram. (Optimal Clusters=2)

Summary and Conclusion:

Firstly we did clustering based on RFM analysis. We had 4 clusters/Segmentation of customers based on RFM score.

	Recency		Frequency			Monetary				
	mean	min	max	mean	min	max	mean	min	max	count
RFM_Loyalty_Level										
Platinaum	19.412510	0	140	228.559778	20	7847	5255.277617	360.93	280206.02	1263
Gold	63.376133	0	372	57.959970	1	543	1169.031202	114.34	168472.50	1324
Silver	126.029562	1	373	24.503568	1	99	583.936944	6.90	77183.60	981
Bronz	217.261039	51	373	10.955844	1	41	199.159506	3.75	660.00	770

- Platinum customers=1263 (less recency but high frequency and heavy spending)
- Gold customers=1324 (good recency, frequency and monetary)
- ❖ Silver customers=981(high recency, low frequency and low spending)
- Bronze customers=770 (very high recency but very less frequency and spending)

Later we implemented the machine learning algorithms to cluster the customers

Summary and Conclusion:

SL.No	Model Name	Data	Optimal Number of Clusters
1	Kmeans with Elbow method(Elbow Visualizer)	Recency and Monetary	2
2	Kmeans with Silhouette Score method	Recency and Monetary	2
3	DBSCAN	Recency and Monetary	2
4	Kmeans with Elbow method(Elbow Visualizer)	Frequency and Monetary	2
5	Kmeans with Silhouette Score method	Frequency and Monetary	2
6	DBSCAN	Frequency and Monetary	2
7	Kmeans with Elbow method(Elbow Visualizer)	Recency ,Frequency and Monetary	2
8	Kmeans with Silhouette Score method	Recency ,Frequency and Monetary	2
9	DBSCAN	Recency ,Frequency and Monetary	2
10	Hierarchical clustering	Recency ,Frequency and Monetary	2

	Recency			Frequency			Monetary				
	mean	min	max	mean	min	max	mean	min	mace	count	
Cluster_based_on_freq_mon_rec											
	140.818973	1	373	24.930406	1	168	470.256961	3.75	77183.60	2414	
1	30.900208	1	372	175.520790	1	7847	4041.687917	161.03	280206.02	1924	

Above clustering is done with recency, frequency and monetary data(Kmeans Clustering) as all 3 together will provide more information.

- Cluster 0 has high recency rate but very low frequency and monetary. Cluster 0 contains 2414 customers.
- Cluster 1 has low recency rate but they are frequent buyers and spends very high money than other customers as mean monetary value is very high. Thus generates more revenue to the retail business.
- ❖ With this, we are done. Also, we can use more robust analysis for the clustering, using not only RFM but other metrics such as demographics or product features.

Thank You