

3026 Brookview Dr. Pearland, TX, 77584

□ 832-589-6203 | ☑ nickytong@gmail.com | 🌴 nickytong.github.io | ☑ nickytong
☐ pan-tong-98155127 | ⑤ Citizen: China, Permanent resident: US

"Be the change that you want to see in the world."

Summary_

I am a data scientist eager to reveal unforeseen patterns, evaluate intriguing hypothesis and make predictions that help informed decision-making. I am keen to practice full-stack data science for improved productivity.

Education_

University of Texas Health Science Center at Houston

Ph.D. in Biomathematics and Biostatistics

• Thesis: integrative biomarker identification and classification using high throughput assays

Huazhong University of Science and Technology

B.E. in Bioinformatics

• Thesis: microRNA prediction using sequence conservation for fruit flies

Houston, USA

2008 - 2013

2004 - 2008

Wuhan, China

Work Experience _____

Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center

Houston, Texas

Research/Senior Statistical Analyst

• Develop novel methodologies for data analysis and publish research paper

 Provide collaborators with visualizations, reports, analytic insights, and recommendations enabling effective experiment planning, preclinical drug prioritization, hypothesis generation and validation

Data Science Projects _____

StackBooks: best programming books recommended by Stack Overflow experts

Techniques: Python | SQL | pandas | web crawling | Scrapy | text mining | sentiment analysis | D3 | web development | AWS Cloud

- Analyzed the entire Stack Overflow questions and answers (50G), indexed and managed the data with a SQL database to extract all books discussed in different tags.
- · Scraped Amazon website for Book information including cover page, title, authors and book summary
- Performed text mining on the posts and questions including sentiment analysis and word frequency and visualized the data with D3/NVD3 library
- Built a website with Flask and deployed it on Amazon EC2 using Beanstalk, now live at: http://stackbooks.us-west-2.elasticbeanstalk.com/

Forecasting how many visitors a restaurant will receive (Kaggle)

Techniques: Machine learning | time series forecasting | feature engineering | cross-validation | model stacking | scikit-learn | pandas

- Performed exploratory data analysis for the Recruit Holdings' restaurant data including reservation data, visitor data, and restaurant characteristic data
- $\bullet \ \, \text{Built an AROMA model for each restaurant genre and predicted number of visitors each restaurant would receive during the 1-month test period and the following the 1-month test period are the 1-month test period are$
- Carried out feature engineering to extract visitor and reservation summary by week of day across stores, holiday lagging effect, encoding of restaurant genre and location.
- Implemented a fixed length cross-validation strategy for time series data and built a stacking model consisting of level 1 models light GBM, GBM, K-nearest neighbor and level 2 linear model.

Course projects spanning big data, text mining, machine learning and social network analysis

Techniques: Apache Spark | AWS Cloud | text mining | TF-IDF | topic modeling | supervised machine learning | social network analysis | node importance | link prediction

- Introduction to Apache Spark and AWS: Analyze the ebooks from the Gutenberg Project (the largest collection of free ebooks) by building a Spark cluster on EC2. Ebook in RDF format was manipulated using Python RDFlib and queried with SPARQL. From the collection of unstructured data, I extracted the number of times each ebook had mentioned males and females and finally stored the structured data in csv format on AWS S3.
- Applied Text Mining in Python: (I) Spam email classification. For feature engineering, I obtained TF-IDF for single word, 2-gram 5-gram as the primary features and added features such as email length, number of digits mentioned, and number of non-word characters. A L2 penalized logistic regression model was used to make the final prediction. (II): Evaluate the quality of paraphrases generated by human using document similarity calculated based on word similarity. (III) Topic modeling of news using Gensim's Latent Dirichlet Allocation (LDA) model.
- Applied Social Network Analysis in Python: (I) Given a company's email communication network, predict whether an employee will receive a manager-level salary. I extracted different node metrics including degree, closeness, betweenness and page rank, which department the person is working at and optimized a gradient boosted decision trees classifier using cross-validation that achieved an AUC of 0.95. (II) Given an employee connection network, predict future connections that employees will build later.

Building RESTful web service using Python Django and R

Techniques: Experimental design | Django | REST framework | Python-R interface

- Implemented various statistical randomization schemes using R including: complete randomization, stratified complete randomization, block randomization, stratified block randomization and minimization randomization
- Enabled seamless bi-directional communication between R and Python using Rserve
- Build a RESTful web service using Django which served as core computation engine empowering clinical trial design functions.

Predicting chemotherapy response using high throughput gene expression data

Techniques: mixture model | maximum likelihood estimation | outlier detection | feature selection | classification | cross-validation

- Developed the bimodality index approach using mixture models to identify features with sustained abnormality pattern. An R package SIBER was published to facilitate bimodality index applications.
- Built prediction models to classify chemotherapy response of cancer patients based on genomic expression data using linear discriminant analysis (LDA), k-nearest neighbors, support vector machine (SVM), random forest, artificial neural network and gradient boosting.

Generating client-side code from screenshot of graphical user interface (GUI) using deep neural network

Techniques: object tagging | image processing | convolution neural network | object classification | transfer learning | tensorflow-keras

- · Tagged training and testing data from GUI images using imglab to generate bounding boxes and object labels for different GUI widgets.
- Using Faster RCNN (consisting of a region proposal network and an object classification network) as the object detection model, trained a Keras implementation to detect GUI elements on a cloud GPU machine.
- · Assembled the detected widgets with bounding boxes into a hierarchical structure which was later compiled into client-side code.

SKILLS AND TOOLS

- High level languages: R (9 years) | Python (4 years) | SQL (2 years) | SAS/IML (1 year)
- Low level language: C++ (2 years) | Java (1 year)
- Machine learning tools: scikit-learn (3-years) | pandas (3 years) | Tensorflow-Keras (1 year) | Pig (1 year) | Hive (1 year) | Spark (2 years)
- Web technology: Django (2 years) | Javascript (2 years) | HTML (2 years) | MySQL (2 years) | MongoDB (1 year)

Software Products

- StackBooks: http://stackbooks.us-west-2.elasticbeanstalk.com/
- REST API for experimental design: https://github.com/nickytong/graphmydata
- drexplorer for dose-response analysis: https://github.com/nickytong/drexplorer
- SIBER for detecting outlier measurements: https://github.com/nickytong/SIBER

SELECTED PUBLICATIONS

Google Scholar: https://scholar.google.com/citations?user=F_jaJakAAAAJ&hl=en

- Tong, Pan, and Hua Li. "Mining Massive Genomic Data for Therapeutic Biomarker Discovery in Cancer: Resources, Tools, and Algorithms." Big Data Analytics in Genomics. Springer International Publishing, (2016): 337-355.
- Tong, Pan, et al. "SIBER: systematic identification of bimodally expressed genes using RNAseq data." Bioinformatics (2013): 605-613.
- Tong, Pan, and Kevin R. Coombes. "integIRTy: a method to identify genes altered in cancer by accounting for multiple mechanisms of regulation using item response theory." Bioinformatics (2012): 2861-2869.
- Tong, Pan, et al. "drexplorer: A tool to explore dose-response relationships and drug-drug interactions." Bioinformatics (2015): btv028.
- · Akbani, Rehan, et al. "A pan-cancer proteomic perspective on The Cancer Genome Atlas." Nature communications (2014): 3887.