Introduction to Complex Analysis

Qitian Liao

Aug 3, 2020

Contents

1	Alg	ebra of	f the Complex Plane	2
	1.1	Introd	uction to Complex Numbers)
	1.2	Conjug	gate of Complex Numbers	2
		1.2.1	Definition of Conjugate	2
		1.2.2	Properties of Conjugate	2
		1.2.3	Real and Imaginary Parts	2
	1.3	Modul	us of Complex Numbers	2
		1.3.1	Definition of Modulus	2
		1.3.2	Properties of Modulus	
		1.3.3	Triangle Inequality	
		1.3.4	Complex Division	
		1.3.5	Distance in the plane	
	1.4		ex Polynomial	
		1.4.1	Fundamental Theorem of Algebra	
2	\mathbf{Geo}	metry	of the Complex Plane	1
	2.1		ties of Polar Forms	1
	2.2	Definit	ion of Argument and argument	1
	2.3	Euler's	s Formula	1
	2.4	Geome	etric Understanding of Multiplication	1
_	~ .			_
3			phic Projections, Exponentials and Logs	
	3.1	,	graphic Projections	
	0.0	3.1.1	Mapping	
	3.2	-	ex Logarithm	
		3.2.1	Logarithm of Real Numbers	
		3.2.2	Logarithm of Complex Numbers	
		3.2.3	Derivation of Complex Logarithm	
		3.2.4	Conclusion from Derivation	
		3.2.5	How Logarithm acts on curves	j
4	Ton	ology i	in $\mathbb C$	7
•			ex Sequence	
	7.1	4.1.1	Cauchy Sequence	
		4.1.2	Sequence Convergence	
		4.1.2	Completeness of $\mathbb C$	
	4.2	_	ex Set	
	7.2	4.2.1	Open Set	
		4.2.1	Closed Set	7
		4.2.3	Compact Set	7
		4.2.4	Compact Set	7
		4.2.4 $4.2.5$	Connected Set	7
		4.2.6	Boundary of Set	
		4.2.0 $4.2.7$	v	
		4.2.7	Interior of Set	
			Closure of Set	
		4.2.9	Domain	
		4 / 10	FTACHCE PARAMORES	٠

Ъ	5.1 Complex Continuity 5.2 Complex Limits 5.3 Branch Cuts 5.3.1 Example of a Branch Cut 5.3.2 Definition of Branch Cuts and Branch Points	6 6 6 6		
6	Differentiability in \mathbb{C} 6.1 Difference between \mathbb{R} and \mathbb{C} differentiability	10		
7	The Cauchy Riemann equations	11		
8	Harmonic Functions	11		
9	Conformal Maps	11		
10	10 Bilinear Transformations			
11	11 Contour Integral in $\mathbb C$			
12	Cauchy's Closed Curve Theorem and the Fundamental Theorem of Calculus	11		
13	Cauchy's Integral Formula	11		
14	14 Growth Conditions of Holomorphic Functions			
15 Convergence of Infinite Series in $\mathbb C$				
16	Power Series in $\mathbb C$	11		
17	Series Expansion of Holomorphic Functions	11		
18	Open Mapping Theorem and Reflection Principle	11		
19	Laurent Series	11		
20	20 Residue Theorem			
21	21 Improper Integrals			
22	Argument Principle and Rouche's Theorem	11		

1 Algebra of the Complex Plane

1.1 Introduction to Complex Numbers

Let $z = a + ib \in \mathbb{C}$ where $a, b \in \mathbb{R}$ and $i^2 = -1$.

This number can be thought of as a point in 2-space, \mathbb{R}^2 , (a,b) or as a position in \mathbb{C} .

 \mathbb{R}^2 : \oplus addition; \odot scalar multiplication.

 \mathbb{C} : \oplus addition; \odot scalar multiplication; a vector space; have multiplication of elements, \mathbb{C} is a field.

If
$$z = a + ib$$
, $w = c + id$, then $zw = (ac - bd) + i(ad + cb)$

$$zw = wz$$

$$z(w + \alpha) = zw + z\alpha$$

$$(zw)\alpha = z(w\alpha)$$

1.2 Conjugate of Complex Numbers

1.2.1 Definition of Conjugate

The complex conjugate of z, \overline{z} , is defined by

$$\overline{z} = a - ib$$

Geometric representation: The image of \bar{z} is the reflection of z about the Real axis.

1.2.2 Properties of Conjugate

$$\begin{split} \overline{\overline{z}} &= z \\ \overline{zw} &= \overline{zw} \\ \overline{z+w} &= \overline{z} + \overline{w} \\ \overline{z} &= z \text{ if and only if } z \in \mathbb{R} \end{split}$$

1.2.3 Real and Imaginary Parts

We can project z onto the Real or Imaginary axis and measure its distance from 0:

$$\Re(z) = a$$

$$\Im(z) = b, \text{ not } ib$$

Each function is a map $\mathbb{C} \to \mathbb{R}$. Then

$$\Re(z) = \frac{z + \overline{z}}{2}$$

$$\Im(z) = \frac{z - \overline{z}}{2i}$$

This is similar to the pattern with even/odd functions.

1.3 Modulus of Complex Numbers

Note:
$$z\overline{z} = (a+ib)(a-ib) = a^2 + b^2 \in \mathbb{R}$$

1.3.1 Definition of Modulus

|z| length/modulus of z is defined by:

$$|z| = (a^2 + b^2)^{\frac{1}{2}} = (z\overline{z})^{\frac{1}{2}} \in \mathbb{R}$$

2

1.3.2 Properties of Modulus

$$|zw| = |z||w|$$
$$|z| = |\overline{z}|$$
$$|z| \geqslant 0$$

$$|z| = 0$$
 if and only if $z = 0$

1.3.3 Triangle Inequality

Triangle Inequality:

$$|z + w| \le |z| + |w|$$

Reverse Triangle Inequality:

$$|z| - |w| \leqslant |z - w|$$

$$z = z - w + w \Rightarrow |z| = |z - w + w| \Rightarrow |z| \leqslant |z - w| + |w| \Rightarrow |z| - |w| \leqslant |z - w|.$$

1.3.4 Complex Division

With $z\overline{z} \in \mathbb{R}$, we can define complex division by reducing it to a multiplication problem.

$$\frac{z}{w} = \frac{z\overline{w}}{w\overline{w}} = \frac{1}{w\overline{w}}(z\overline{w})$$

We also have

$$\left|\frac{z}{w}\right| = \frac{|z|}{|w|} \text{ for } w \neq 0$$

1.3.5 Distance in the plane

A disk in the complex plane centered at c of radius $r \in \mathbb{R}$ is of the form

$$\{z \in \mathbb{C} \mid |z - c| \leqslant r\}$$

1.4 Complex Polynomial

A complex polynomial p(z) of degree n is of the form:

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

where $a_n \neq 0$ and $a_i \in \mathbb{C}$ for $i = 0, \dots, n$

1.4.1 Fundamental Theorem of Algebra

The factorization of p(z) factors over \mathbb{C} is unique,

$$p(z) = c(z - z_1)^{m_1}...(z - z_k)^{m_k}$$

We have roots $z_i \in \mathbb{C}$ of p(z) with order $m_i \in \mathbb{N}$.

For example, if $p(z) = z^2 + 4 = (z + 2i)(z - 2i)$, then it factors over $\mathbb C$ but not $\mathbb R$.

Note: \mathbb{C} is an algebraically closed field, there are no irreducible polynomials in \mathbb{C} .

Note: \mathbb{R} , \mathbb{Q} , \mathbb{Z} , \mathbb{N} are not algebraically closed.

$\mathbf{2}$ Geometry of the Complex Plane

2.1 Properties of Polar Forms

Complex numbers can be represented in polar forms:

$$z = |z|(\cos\theta + i\sin\theta)$$

with modulus |z| and argument θ . To change between the coordinate systems it follows:

$$|z| = (a^2 + b^2)^{\frac{1}{2}}$$
$$\tan \theta = \frac{b}{a}$$
$$a = |z| \cos \theta = \Re(z)$$
$$b = |z| \sin \theta = \Im(z)$$

Note: $\theta_R = \arctan(\frac{b}{a})$ is a reference angle of z. To find θ from θ_R , you need to consider the signs of a and b. Example:

$$\begin{split} z &= -3 + 3i = 3\sqrt{2}(\cos\frac{3\pi}{4} + \sin\frac{3\pi}{4})\\ \theta_R &= \arctan(\frac{3}{-3}) = -\frac{\pi}{4}\\ \theta &= \pi + \theta_R = \pi - \frac{\pi}{4} = \frac{3\pi}{4}, \text{ since } \theta \text{ is in } II. \end{split}$$

Definition of Argument and argument

 $\operatorname{Arg}(z)$ is z's principle polar angle θ , $z \neq 0$, where $\theta \in (-\pi, \pi]$. arg(z) is all of z's polar angles, $\theta + 2k\pi$, $k \in \mathbb{Z}$.

2.3 Euler's Formula

Euler's Formula is defined as a linear combination of $\cos \theta$ and $\sin \theta$, \mathbb{R} -valued functions.

$$e^{i\theta} = \cos\theta + i\sin\theta$$

It allows us to express z in polar form by

$$z = |z|e^{i\theta}$$

-1 has polar angle π and modulus 1,

$$-1 = e^{i\pi}$$
 or $e^{i\pi} + 1 = 0$

By the angle addition formulas from trigonometry we find:

$$e^{i\theta}e^{i\varphi} = e^{i(\theta+\varphi)}$$

 $(e^{i\theta})^k = e^{i\theta k}$

Geometric Understanding of Multiplication

The polar angle of zw is the sum of the polar angles of z and w. The modulus is the product of the moduli.

$$Arg(zw) = Arg(z) + Arg(w)$$

 $Arg(\overline{z}) = -Arg(z)$

Question: How about $\frac{z}{w}$ and z^4 ?

It follows from trigonometry that $|e^{i\theta}| = 1$, if $\theta \in (-\pi, \pi]$ we get a parametrization of the unit circle.

Example: Discover all solutions to $w^3 = i = z$

Let $p(z) = w^3 - i$. By Fundamental Theorem of Algebra, there are 3 roots of p(z).

Therefore, $3\theta = \frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}$

This gives us infinitely many solutions, but the solutions form 3 equivalence classes.

All we need is k=0,1,2, which gives $\theta_1=\frac{\pi}{6}, \theta_2=\frac{5\pi}{6}, \theta_3=\frac{3\pi}{2}$

Our solutions partitioned the unit circle into 3 equally spaced wedges.

The solutions to $w^3 = i$ are $w_1 = \frac{\sqrt{3}}{2} + \frac{1}{2}i$, $w_2 = -\frac{\sqrt{3}}{2} + \frac{1}{2}i$ and $w_3 = -i$. This problem of unity can be extended to solving $w^k = z$ for $k \in \mathbb{N}$, $z \in \mathbb{C}$ for unknown k-solutions w.

3 Stereographic Projections, Exponentials and Logs

3.1 Stereographic Projections

We can express the complex plane on the unit sphere in \mathbb{R}^3 . To perform this we project points on the surface of the sphere along the line from the North Pole (0,0,1) through the point and onto the plane $z=0,\mathbb{C}$

$$p_1 = (x_1, x_2, x_3) \to z = a + ib = \frac{x_1 + ix_2}{1 - x_3}$$

$$x_1 = \frac{2a}{|z|^2 + 1}, \ x_2 = \frac{2b}{|z|^2 + 1}, \ x_3 = \frac{|z|^2 - 1}{|z|^2 + 1}$$

Points in the northern hemisphere P_1 , have $|z_1| > 1$; while points in the southern hemisphere P_2 , have $|z_2| < 1$.

3.1.1 Mapping

$$\mathbb{S}^2 \to \mathbb{C}$$

$$N = (0, 0, 1) \to \infty$$

$$S = (0, 0, -1) \rightarrow 0$$

lines of latitude $\rightarrow |z| = r$, circles

lines of longitude $\to \text{Arg}(z) = \pm \theta$, lines through (0,0)

Note: In general, circles on \mathbb{S}^2 map to circles and lines in \mathbb{C} , orientation is not always preserved.

3.2 Complex Logarithm

3.2.1 Logarithm of Real Numbers

Anytime we are dealing with power, the log function is very useful.

$$\log x = \int_{1}^{x} \frac{1}{t} dt \text{ for } x \in \mathbb{R}$$
 (1)

$$\frac{d}{dx}x^{x} = \frac{d}{dx}e^{\ln x^{x}} = \frac{d}{dx}e^{x \ln x} = e^{x \ln x}(x \cdot \frac{1}{x} + \ln x) = x^{x}(1 + \ln x)$$

3.2.2 Logarithm of Complex Numbers

Remember from Euler's Formula, $e^{i\theta} = \cos \theta + i \sin \theta$.

$$e^z = e^{a+ib} = e^a e^{ib}$$

$$Arg(e^z) = b, |e^z| = e^a > 0$$

Therefore, if a is held fixed, e^z maps to a circle as b changes.

On the other hand, if b is held fixed, e^z maps to a line through (0,0).

3.2.3 Derivation of Complex Logarithm

We want $e^{\log(z)} = z$ for all $z \neq 0$, and thus

$$\begin{split} e^{\Re(\log(z)) + i\Im(\log(z))} &= e^{\Re(\log(z))} e^{i\Im(\log(z))} = |z| e^{i\theta} = z \\ \Rightarrow |z| &= e^{\Re(\log(z))} \\ \Rightarrow \Re(\log(z)) &= \log|z| \end{split}$$

From the imaginary part we find

$$e^{i\theta} = e^{i\Im(\log{(z)})}$$

$$\Rightarrow \arg(z) = \theta = \Im(\log(z))$$

$$\Rightarrow \Im(\log(z)) = \operatorname{Arg}(z)$$

because arg(z) is not well defined.

Our constructed inverse of e^z is a multi-valued function

$$\log(z) = \log|z| + i\arg(z)$$

3.2.4 Conclusion from Derivation

$$\log(z) = \log|z| + i \arg(z)$$

$$\log(z) = \log|z| + i \operatorname{Arg}(z)$$

Note: Log(z) does not have all the nice behavior as \mathbb{R} -valued log(x): $\text{Log}(z^k)$. Sometimes they are co-terminal angles, but they are not equal. See the following example:

$$\begin{cases} \operatorname{Log}(i^3) = \operatorname{Log}(-i) = -i\frac{\pi}{2} \\ 3\operatorname{Log}(i) = 3\cdot(i\frac{\pi}{2}) = i\frac{3\pi}{2} \end{cases}$$

Example: Compute 3^i :

$$3^{i} = e^{\text{Log } 3^{i}} = e^{i \text{ Log } 3} = \cos(\text{Log } 3) + i \sin(\text{Log } 3)$$

3.2.5 How Logarithm acts on curves

Maps a circle with radius r to a vertical line passing through $(\ln(r), 0)$ Maps a line with angle θ passing through the origin to a horizontal line passing through $(0, i\theta)$

4 Topology in \mathbb{C}

4.1 Complex Sequence

Let $\{Z_n\}$ be a sequence in \mathbb{C} .

4.1.1 Cauchy Sequence

The sequence is Cauchy if for all $\epsilon > 0$, there is a $N \in \mathbb{N}$ such that for all n, m > N, $|z_n - z_m| < \epsilon$.

4.1.2 Sequence Convergence

The sequence converges if $|z_n - z| \to 0$ as $n \to \infty$. The distance between z_n and z vanishes.

4.1.3 Completeness of \mathbb{C}

 $\{z_n\}$ converges if and only if $\{z_n\}$ is Cauchy.

Proof:

We show this by treating \mathbb{C} as \mathbb{R}^2 and exploiting $\{X_n\}$ converges if and only if $\{X_n\}$ is Cauchy. (\Longrightarrow) (If $z_n \to z$, then $\Re(z_n) \to \Re(z)$ and $\Im(z_n) \to \Im(z)$. Since the sequences of \mathbb{R}^2 converge, they are Cauchy. $|Z_n - Z_m| \leq |\Re(Z_n - Z_m)| + |\Im(Z_n - Z_m)| = |\Re(Z_n) - \Re(Z_m)| + |\Im(Z_n) - \Im(Z_m)|$ Upper bounds can be picked to be less than $\frac{\epsilon}{2}$ for some N. Therefore, $|Z_n - Z_m| \to 0$.

 (\Leftarrow) If $\{Z_n\}$ is Cauchy, so are $\{\Re(Z_n)\}$ and $\{\Im(Z_n)\}$. But these are \mathbb{R} -sequences that converge. Therefore, $\{Z_n\}$ converges.

4.2 Complex Set

Let $\Omega \subset \mathbb{C}$. Sets can be open, closed, both, or neither.

4.2.1 Open Set

If for any $z_0 \in \mathbb{C}$, there exist some $\epsilon > 0$, such that the set $B_{\epsilon}(z_0) = \{z | |z - z_0| < \epsilon\}$ is contained in Ω , then Ω is open.

 Ω is open if and only if Ω^c is closed.

 Ω is open if and only if Ω is equal to its own interior, which means it does not contain its boundary points $\partial\Omega$, i.e. it does not contain its closure.

4.2.2 Closed Set

If Ω contains its limit point, then Ω is closed.

 Ω is closed if and only if Ω^c is open.

 Ω is closed if and only if Ω contains its boundary points.

4.2.3 Compact Set

If Ω can be contained in a disk of finite radius, then Ω is bounded.

4.2.4 Compact Set

If Ω is closed and bounded, then Ω is compact. This resembles [a,b] in \mathbb{R} .

4.2.5 Connected Set

If any two points in Ω can be connected by a path, then Ω is connected.

Simply Connected Set: A simply connected set has no "holes" in it. For example, $\Omega = \{z | |z - c| < 4\}$.

A connected but not simply connected set is an annulus, $\Omega = \{z | z < |z - c| < 4\}$

4.2.6 Boundary of Set

The boundary of Ω , $\partial\Omega$ is all points with ϵ -balls intersecting Ω and Ω^c for all $\epsilon > 0$.

4.2.7 Interior of Set

The interior of Ω , Int(Ω), is all points in Ω with a ϵ -ball contained in Ω for some $\epsilon > 0$. "Largest open set in Ω ".

4.2.8 Closure of Set

The closure of Ω is the union of Ω and its boundary $\partial\Omega$.

4.2.9 Domain

If a set is open and connected in \mathbb{C} , it is a domain.

A domain can be traversed by a path of horizontal and vertical line segments.

4.2.10 Practice Examples

Determine whether the following sets are open or closed.

- 1. $\Omega = \mathbb{C} \setminus \{0\}$
 - Ω is open since it does not contain its closure, the point 0.
 - Ω is not closed since it does not contain its limit points. Let $z_n = \frac{1}{n}$. Then $z_n = \frac{1}{n} \to 0 \notin \Omega$. Therefore, Ω is open.
- $2. \ \Omega = \{z||z| \geqslant 1\}$
 - Ω is not open since any ϵ -ball at 1 intersects Ω^c .
 - Ω is closed since Ω^c is open.

Therefore, Ω is closed.

- 3. $\Omega = \{z | |z| > 1\}$
 - Ω is open since Ω^c is closed.
 - Ω is not closed since it does not contain its limit points. Let $z_n = \frac{1}{n} + 1$. Then $z_n = \frac{1}{n} + 1 \to 1 \notin \Omega$.
- 4. $\Omega = \mathbb{C} \setminus (0,1)$
 - Ω is not open. Its complement is [0,1]. Even though it is closed in \mathbb{R} , it is not closed in \mathbb{C} , because any 2D ϵ -ball will always extend outside of the set $z \in (0,i)$. Hence, Ω^c is not open and not closed.
 - Ω is not closed since it does not contain its limit points. Let $z_n = \frac{1}{3} + i\frac{1}{n}$. Then $z_n = \frac{1}{3} + i\frac{1}{n} \to \frac{1}{3} \notin \Omega$. Therefore, Ω is neither open nor closed.
- 5. $\Omega = \mathbb{C}\setminus[0,1]$ Ω is open since $\Omega^c = [0,1]$ is closed in \mathbb{C} .
 - Ω is not closed since it does not contain its limit points. Let $z_n = \frac{1}{3} + i\frac{1}{n}$. Then $z_n = \frac{1}{3} + i\frac{1}{n} \to \frac{1}{3} \notin \Omega$. Therefore, Ω is open.

Note: Ω^c is not open in \mathbb{C} .

5 Continuity and Branch Cuts

5.1 Complex Continuity

Let $f: \Omega \to \mathbb{C}$, Ω is open and connected. If $z_n \to z_0$ implies $f(z_n) \to f(z_0)$, then f is continuous at z_0 . Also, f is bounded near z_0 .

f is continuous if for every $\epsilon > 0$, there is $\delta > 0$ such that $|z - z_0| < \delta \Rightarrow |f(z) - f(z_0)| < \epsilon$.

- In either case, $\Re(f(z))$ and $\Im(f(z))$ are each continuous if and only if f(z) is continuous. This follows the pattern as \mathbb{C} being complete.
- If f and g are continuous, then so are f+gm $f\times g$ and $\frac{f}{g}$ (provided $g(z)\nrightarrow 0$)

5.2 Complex Limits

Just like in \mathbb{R}^2 , limits are direction independent. Do not restrict limits to just $\Re \to 0$ or $\Im \to 0$. See the following example.

$$\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^4+y^2} \text{ does not exist}$$

as $x \to 0$, y = 0, then $f \to 0$, while $y = x^2, x \to 0$, then $f \to 1$.

5.3 Branch Cuts

Log, $z^{\frac{1}{2}}$ and $\arctan(z)$ are constructed by restricting the range of e^z , z^2 and $\tan(z)$. For example, in creating $\operatorname{Log}(z) = \ln|z| + i\operatorname{Arg}(z)$, we made a choice that $\operatorname{Arg}(z) \in (-\pi, \pi]$, $\operatorname{Arg}(0)$ does not exist.

5.3.1 Example of a Branch Cut

Consider a path around $z_0 \neq 0$, $\gamma(t) = z_0 + re^{it}$. $\theta(t) = \arg(\gamma(t))$ As we traverse the circle, $t \in (-\pi, \pi]$,

$$\theta(t) = \arg(\gamma(t)) = \arg(z_0 + re^{it}) + 2\pi k = \arg(z_0 + re^{i(t+2\pi)}) + 2\pi k = \arg(\gamma(t+2\pi)) = \theta(t+2\pi)$$

Therefore, the angle $\theta(t)$ changes smoothly for all t and we stay on the same branch of $\operatorname{Arg}(\gamma(t))$. That is to say, the $k \in \mathbb{Z}$ is the same for all t.

Compare this with any circular path about z=0, γ_0 . Let $\gamma_0(t)=re^{it}$, $t\in(-\pi,\pi]$. As we traverse the circle once, we have a discontinuity in the principal angle of $\gamma_0(t)$. In particular, $\theta(\gamma_0(t))\neq\theta(\gamma_0(t+2\pi))$

$$\theta(t) = \arg(\gamma(t)) = \arg(re^{it}) + 2\pi k \neq \arg(re^{i(t+2\pi)}) + 2\pi(k+1) = \arg(\gamma(t+2\pi)) = \theta(t+2\pi)$$

We jump from the kth to the (k+1)th branch of Arg. Therefore, Arg(z) has a branch point at z=0.

5.3.2 Definition of Branch Cuts and Branch Points

If every neighborhood of z_0 contains a path $\gamma(t)$ around z_0 that leads to a jump discontinuity in f, then z_0 is a branch point of f(z).

- At this point, it suffices to study paths of the form $\gamma(t) = z_0 + re^{it}$ for $t \in (-\pi, \pi)$, and see if $f(\gamma(t)) = f(\gamma(t+2\pi))$ holds for all t.
- Arg is discontinuous for all x on the negative \mathbb{R} -axis, \mathbb{R}^- . We call this the principal branch cut of the multi-valued function arg. Specifically,

$$Arg(\gamma_0(t)) \to \pi \text{ as } t \to \pi^-$$

$$Arg(\gamma_0(t)) \to -\pi \text{ as } t \to -\pi^+$$

but $\gamma_0(\pi) = \gamma_0(-\pi)$ since π and $-\pi$ are coterminal.

 \mathbb{R}^- is the principal branch of Log, Arg, and $z^{\frac{1}{2}}$.

• The endpoints of a branch cut are branch points, Arg has 0 and ∞ as its branch points.

6 Differentiability in \mathbb{C}

Let $f:\Omega\to\mathbb{C}$ for some domain Ω . Then f is differentiable at z_0 if the following exists.

$$\frac{d}{dz}f(z)|_{z=z_0} = f'(z_0) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

This limit must exist on all paths to z_0 , since $h \in \mathbb{C}$. We could also take $z_n \to z_0$ and use $\frac{f(z_0) - f(z_n)}{z_0 - z_n} \to f'(z_0)$. Remember limits are computed by looking at the difference in the modulus, $\left|\frac{f(z_0)-f(z_n)}{z_0-z_0}-f'(z_0)\right|\to 0$ as $n\to\infty$. If $f'(z_0)$ exists on all points $z_0 \in \Omega$, open and connected in \mathbb{C} , then f is holomorphic/ \mathbb{C} -differentiable/analytic on Ω . The connection between \mathbb{R} and \mathbb{C} analytic will be clear when we cover \mathbb{C} -power series. If f'(z) exists everywhere in \mathbb{C} , then f is an entire/meromorphic function.

Difference between \mathbb{R} and \mathbb{C} differentiability 6.1

• $f: \mathbb{R} \to \mathbb{R}$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x)$$

has only two paths to x, namely $h \to 0^+$ and $h \to 0^-$.

Tangent plane or linear approximation:

$$f(x) \approx f(a) + f'(a)(x - a)$$

• $f: \mathbb{R}^2 \to \mathbb{R}$

$$\lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} = f_x$$

is also a 1D limit and a partial derivative.

Tangent plane or linear approximation:

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

• $f: \mathbb{R}^2 \to \mathbb{R}^2$ f(x,y) = (u(x,y), v(x,y))

Then f is differentiable if the Jacobian Matrix

$$J(f) = \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix}$$

can approximate the local change in f.

In each of the cases above, we are only measuring change in a few directions. However, $h \to 0$ in $\mathbb C$ can be from any direction in 2-space. Therefore, f'(z) existing is a much stronger condition for f on $\mathbb C$ than on $\mathbb R$. Consider the following example:

Let $g(z) = \Re(z) = \frac{z+\overline{z}}{2}$, which is a linear combination of continuous functions. Assume $h \in \mathbb{R}$, $\frac{g(z+ih)-g(z)}{h} = \Re(z)$ $\frac{\Re(z)-\Re(z)}{h} \to 0 \text{ as } h \to 0$

Compare this with $\frac{g(z+ih)-g(z)}{h} = \frac{\Re(z)+h-\Re(z)}{h} = 1 \to 1$ as $h \to 0$. Therefore, the function is nowhere differentiable in \mathbb{C} . The problem with g'(z) had to do with \overline{z} , despite reflection in \mathbb{R}^2 about y=0 is differentiable. We will discover conditions on u_x , u_y , v_x , and v_y that ensure f' exists for f(z) = u(x,y) + iv(x,y) in the next chapter.

If f is differentiable on Ω , it is continuous on Ω .

The power rule holds too: $\frac{d}{dz}z^n = nz^{z-1}$

As does the product, quotient, L'Hospital's and chain rule. In fact, most old results hold as well.

If f(z) = Log(z), then $f'(z) = \frac{1}{z}$ If $f(z) = \tan^{-1}(z)$, then $f'(z) = \frac{1}{z^2+1} = \frac{1}{(z+i)(z-i)}$, which does not exist for $z = \pm i$

- 7 The Cauchy Riemann equations
- 8 Harmonic Functions
- 9 Conformal Maps
- 10 Bilinear Transformations
- 11 Contour Integral in \mathbb{C}
- 12 Cauchy's Closed Curve Theorem and the Fundamental Theorem of Calculus
- 13 Cauchy's Integral Formula
- 14 Growth Conditions of Holomorphic Functions
- 15 Convergence of Infinite Series in \mathbb{C}
- 16 Power Series in \mathbb{C}
- 17 Series Expansion of Holomorphic Functions
- 18 Open Mapping Theorem and Reflection Principle
- 19 Laurent Series
- 20 Residue Theorem
- 21 Improper Integrals
- 22 Argument Principle and Rouche's Theorem

Chapter 1: Algebra in C

$$f(x) = x^2$$

this formula is an example f(x) = x

$$1 + 2 = 3$$

 $1 = 3 - 2$

$$f(x) = x^{2}$$

$$g(x) = \frac{1}{x}$$

$$h(x) = \int_{b}^{a} \frac{1}{x}x^{3}$$

$$F(x) = \frac{1}{\sqrt{x}}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\left(\frac{1}{\sqrt{x}}\right)$$

Core Material: 1. Finding patterns in data; using them to make predictions. 2. Models and statistics help us understand patterns. 3. Optimization algorithms "learn" the patterns. Classification: 1.