## LDL-콜레스테롤 추정식 개발

## 1. 배 경

- 심근경색이나 뇌졸중 같은 심뇌혈관질환(cardio-cerebrovascular disease)은 우리나라 사람의 대표적인 사망원인 질환이다 (우리나라 사람의 사망원인 질환 1위는 암이며, 심뇌혈관질환은 2위이다).
- LDL-콜레스테롤(low-density lipoprotein cholesterol)은 심뇌혈관질환의 주된 위험인자로서. 그 정확한 측정값을 임상(질환의 예방과 관리)에 적용하는 것이 중요하다.
- 하지만 전 세계적으로 건강검진과 같은 대규모 LDL-콜레스롤 측정에서, 비용을 절감하기 위해 직접 측정이 아닌 Friedewald 공식에 의한 계산법이 널리 이용되고 있다.
- 우리나라 국가건강검진에서도 중성지방(triglyceride) 수준이 400 mg/dL 이상인 사람들에 대해서는 LDL-콜레스테롤을 직접 측정하지만, 중성지방 400 mg/dL 미만인 사람들에 대해서 Friedewald 공식에 의한 계산값을 사용하도록 되어있다. 2015년 국가건강검진에서 중성지방을 측정한 14,024,331명 중 중성지방 농도가 400 mg/dL 이상인 사람은 281,059명으로 2%에 불과하였다. 이는 건강검진 수검자의 98%에 대하여 LDL-콜레스테롤 실측값이 아닌 계산값이 사용되었다는 것을 의미한다.
- 하지만 Friedewald 공식에 의한 계산값은 중성지방 농도 400 mg/dL 미만에서도, 그 정확도가 문제될 수 있음이 지적되어왔다. 중성지방 수준이 높을수록 LDL-콜레스테롤을 과소 추정하여 심뇌혈관질환 위험도를 낮게 평가하는 경향이 있다. 특히 중성지방 수준이높고 LDL-콜레스테롤 계산값이 낮은 경우에서의 과소 평가 문제점이 지적되어 왔다.

### 2. 목 표

• LDL-콜레스테롤 추정식으로서 Friedewald 공식의 정확도를 평가하고(중성지방 < 400 mg/dL), 이의 문제점 개선하여 정확도를 높이는 추정식을 개발하는 것이다.

## 3. 기존 연구

#### (1) Friedewald formula

• 총 콜레스테롤(total cholesterol, TC)은 다음 세 가지로 구성된다: ① HDL-콜레스테롤 (high-density lipoprotein cholestrol, HDL-C), ② LDL-콜레스테롤(low-density lipoprotein cholesterol, LDL-C), 그리고 ③ VLDL-콜레스테롤(very low-density lipoprotein cholesterol, VLDL-C). 즉

#### TC = HDL-C + LDL-C + VLDL-C

Friedewald 등은 1972년 논문에서 중성지방 400 mg/dL 미만에서 VLDL-콜레스테롤 (VLDL-C)은 중성지방(triglyceride, TG)의 1/5 정도로 추정될 수 있음을 발견하였다. 즉 VLDL-콜레스테롤의 추정값 "VLDL-C<sub>F</sub> = TG / 5"라는 것이다. 따라서 총 콜레스테롤(TC),

HDL-콜레스테롤(HDL-C), 중성지방(TG)의 실측값을 알고 있는 경우, LDL-콜레스테롤의 추정값 LDL- $C_F$ 는 다음과 같다.

$$LDL-C_F = TC - HDL-C - (TG/5)$$

• 이 Friedewald 공식에서 총 콜레스테롤에서 HDL-콜레스테롤을 뺀 "TC — HDL-C"을 Non-HDL-콜레스테롤(Non-HDL-C)라고 하면,

$$LDL-C_F = Non-HDL-C - (TG/5)$$

# (2) Marin formula

- Matin 등(2013)은 Friedewald 공식의 대안으로서, LDL-콜레스테롤 추정값의 정확도를 개선하기 위한 새로운 방법을 제안하였다.
- Friedewald 공식에서 VLDL-콜레스테롤의 추정값을 "TG / 5"로 사용하는 반면, Martin은 아래 표와 같이 중성지방(Triglyceride)과 Non-HDL-C 수준에 따라 "TG / 5"의 5 대신에 다양한 값을 사용할 것을 제시하였다.

| Triglyceride -             | Non-HDL-C, mg/dL |         |         |         |         |      |  |  |
|----------------------------|------------------|---------|---------|---------|---------|------|--|--|
| Levels, mg/dL <sup>a</sup> | <100             | 100-129 | 130-159 | 160-189 | 190-219 | ≥220 |  |  |
| 7-49                       | 3.5              | 3.4     | 3.3     | 3.3     | 3.2     | 3.1  |  |  |
| 50-56                      | 4.0              | 3.9     | 3.7     | 3.6     | 3.6     | 3.4  |  |  |
| 57-61                      | 4.3              | 4.1     | 4.0     | 3.9     | 3.8     | 3.6  |  |  |
| 62-66                      | 4.5              | 4.3     | 4.1     | 4.0     | 3.9     | 3.9  |  |  |
| 67-71                      | 4.7              | 4.4     | 4.3     | 4.2     | 4.1     | 3.9  |  |  |
| 72-75                      | 4.8              | 4.6     | 4.4     | 4.2     | 4.2     | 4.1  |  |  |
| 76-79                      | 4.9              | 4.6     | 4.5     | 4.3     | 4.3     | 4.2  |  |  |
| 80-83                      | 5.0              | 4.8     | 4.6     | 4.4     | 4.3     | 4.2  |  |  |
| 84-87                      | 5.1              | 4.8     | 4.6     | 4.5     | 4.4     | 4.3  |  |  |
| 88-92                      | 5.2              | 4.9     | 4.7     | 4.6     | 4.4     | 4.3  |  |  |
| 93-96                      | 5.3              | 5.0     | 4.8     | 4.7     | 4.5     | 4.4  |  |  |
| 97-100                     | 5.4              | 5.1     | 4.8     | 4.7     | 4.5     | 4.3  |  |  |
| 101-105                    | 5.5              | 5.2     | 5.0     | 4.7     | 4.6     | 4.5  |  |  |
| 106-110                    | 5.6              | 5.3     | 5.0     | 4.8     | 4.6     | 4.5  |  |  |
| 111-115                    | 5.7              | 5.4     | 5.1     | 4.9     | 4.7     | 4.5  |  |  |
| 116-120                    | 5.8              | 5.5     | 5.2     | 5.0     | 4.8     | 4.6  |  |  |
| 121-126                    | 6.0              | 5.5     | 5.3     | 5.0     | 4.8     | 4.6  |  |  |
| 127-132                    | 6.1              | 5.7     | 5.3     | 5.1     | 4.9     | 4.7  |  |  |
| 133-138                    | 6.2              | 5.8     | 5.4     | 5.2     | 5.0     | 4.7  |  |  |
| 139-146                    | 6.3              | 5.9     | 5.6     | 5.3     | 5.0     | 4.8  |  |  |
| 147-154                    | 6.5              | 6.0     | 5.7     | 5.4     | 5.1     | 4.8  |  |  |
| 155-163                    | 6.7              | 6.2     | 5.8     | 5.4     | 5.2     | 4.9  |  |  |
| 164-173                    | 6.8              | 6.3     | 5.9     | 5.5     | 5.3     | 5.0  |  |  |
| 174-185                    | 7.0              | 6.5     | 6.0     | 5.7     | 5.4     | 5.1  |  |  |
| 186-201                    | 7.3              | 6.7     | 6.2     | 5.8     | 5.5     | 5.2  |  |  |
| 202-220                    | 7.6              | 6.9     | 6.4     | 6.0     | 5.6     | 5.3  |  |  |
| 221-247                    | 8.0              | 7.2     | 6.6     | 6.2     | 5.9     | 5.4  |  |  |
| 248-292                    | 8.5              | 7.6     | 7.0     | 6.5     | 6.1     | 5.6  |  |  |
| 293-399                    | 9.5              | 8.3     | 7.5     | 7.0     | 6.5     | 5.9  |  |  |
| 400-13975                  | 11.9             | 10.0    | 8.8     | 8.1     | 7.5     | 6.7  |  |  |

Friedewald 공식과 Martin 방법은 모두 총 콜레스테롤(TC), HDL-콜레스테롤(HDL-C), 중성지방(TG)의 실측값을 이용하여 LDL-콜레스테롤을 추정한다. 하지만 Friedewald 공식은 중성지방에 대한 VLDL-콜레스테롤(TG:VLDL-C)의 비율로 고정된 5를 사용하는 반면, Martin 방법은 위의 표와 같이 중성지방(Triglyceride)과 Non-HDL-C 수준에 따라 분류된 하위 집단에 최적의 TG:VLDL-C 비율을 적용하고자 한다. 이를 위해 각 하위집단의 TG:VLDL-C 비율의 중앙값(median)을 도출하여 사용하였다. 이 각 하위집단의 중앙값을 AF(adjustable factor), 그리고 Martin 방법의 LDL-콜레스테롤의 추정값을 LDL-C<sub>M</sub>라고 하면,

$$LDL-C_M = Non-HDL-C - (TG/AF_{ij})$$

• Martin 등(2013)은 Friedewald 공식에 비해 자신들의 방법이 LDL-콜레스테롤의 추정값의 정확도를 개선하였다고 보고하였다.

#### (3) Simpson formula

• Simpson 등(2020)은 Friedewald 공식의 대안으로 아래와 같은 회귀식 모델을 제시하였다. Simpson 방법의 LDL-콜레스테롤의 추정값을 LDL-C<sub>S</sub>라고 하면,

$$LDL-C_{S} = \frac{TC}{0.948} - \frac{HDL-C}{0.971} - \left[\frac{TG}{8.56} + \frac{TG \times Non-HDL-C}{2140} - \frac{TG^{2}}{16100}\right] - 9.44$$

• Simpson 방법은 중성지방 농도 400 mg/dL 이상인 집단의 LDL-콜레스테롤 추정값을 개선 하고자 하는 것이었지만, 중성지방 농도 400 mg/dL 미만에서도 회귀식 모델이 추정식으로 사용될 수 있음을 제시한다.

### (4) AI-based Model

• 최근에는 인공지능 알고리즘을 사용하여 LDL-콜레스테롤 추정값의 정확도를 높이려는 연구들이 있다. 『Deep neural network for estimating low density lipoprotein cholesterol, Taesic Lee 외 3명』



Fig. 1. DNN model for estimating LDL-C. Input takes three values: total cholesterol, HDL-C, and triglyceride, and the output is the LDL-C. The DNN model consists of six hidden layers, and each hidden layer has 30 nodes. Each node's response is "z" based on activation function "g," where  $z = bias + \Sigma_{i=1}$ " $X_i w_i$ , and  $g(z) = \max(0, z)$  (Rectified Linear Unit).

## 4. 데이터와 변수

### (1) Data Set

- 여러분이 본 과제를 수행하기 위한 데이터로서 다음 두 가지가 제공된다.
  - ① Data Set 1 [Derivation Data Set] 새로운 추정식을 개발하기 위해 사용되는 데이터
  - ② Data Set 2 [Validation Data Set] 개발된 새로운 추정식의 타당도(LDL-콜레스테롤 추정 값의 정확도 개선 등)를 평가하기 위해 사용되는 데이터
- Data Set 2 [Validation Data Set] 는 우리나라 국민을 대표할 수 있도록 표본이 추출되어, 타당성 분석에 적절하다 (n = 5,483명)
- Data Set 1 [Derivation Data Set] 는 Data Set 2 [Validation Data Set]과 비교하여, 중성지방 200mg/dL~ 399mg/dL인 사람의 비중이 높다 (n = 11.564명)

### (2) Variables

- 두 데이터 셋은 다음과 같은 변수로 구성된다.
  - ① ID: 각 개인의 고유 번호
  - ② Sex: 각 개인의 성별 구분(남자 = 0, 여자 = 1)
  - ③ Age: 각 개인의 연령(years)
  - ④ TC: 각 개인의 총 콜레스테롤(total cholesterol) 실측값
  - ⑤ HDL-C: 각 개인의 HDL-콜레스테롤(high-density lipoprotein cholestro) 실측값
  - ⑥ LDL-C: 각 개인의 LDL-콜레스테롤(low-density lipoprotein cholesterol) 실측값
  - ⑦ TG: 각 개인의 중성지방(triglyceride) 실측값
  - ⑧ Non-HDL-C: 각 개인의 Non-HDL-콜레스테롤 계산값, TC HDL-C
  - ⑨ VLDL-C: 각 개인의 VLDL-콜레스테롤 계산값, Non-HDL-C LDL-C
  - ⑩ TG to VLDL-C: 각 개인의 TG:VLDL-C 비율 계산값, TG/VLDL-C

## 5. 새로운 추정식 개발과 성과 평가

## (1) 새로운 추정식의 개발

- 먼저 **Data Set 1 [Derivation Data Set]**을 이용하여 Friedewald 공식, Martin 공식, Sampson 공식의 LDL-콜레스테롤 추정값을 도출한다.
- 아래 "성과 평가"를 참조하여 세 가지 공식(Friedewald 공식, Martin 공식, Sampson 공식) 의 타당성을 평가한다.
- 이러한 타당성 평가를 기초로 새로운 추정식을 개발한다.

## (2) 성과 평가

• 여러분이 개발한 새로운 추정식의 성과는 다음과 같은 두 가지 측면에서 평가된다.

#### ① LDL-콜레스테롤 수준의 분류 일치도

• 임상적으로 LDL-콜레스테롤 수준은 다음 6가지로 분류되어 관리된다:

- (1) 70 mg/dL 미만, (2) 70-99 mg/dL, (3) 100-129 mg/dL, (4) 130-159 mg/dL, (5) 160-189 mg/dL, 그리고 (6) 190 mg/dL 이상
- 따라서 여러분이 개발한 "LDL-콜레스테롤 추정값"과 "LDL-콜레스테롤 실측값(LDL-C)" 수준을 상기 6가지 집단으로 분류하고, 이의 분류 일치도를 계산한다.
- <Table 1>은 Friedewald 공식의 "LDL-콜레스테롤 추정값"과 "LDL-콜레스테롤 실측값 (LDL-C)"의 분류 일치도를 분석한 결과이다.
- <Table 2>는 중성지방 수준에 따라, Friedewald 공식의 "LDL-콜레스테롤 추정값"과 "LDL-콜레스테롤 실측값(LDL-C)"의 분류 일치도를 분석한 결과이다. 중성지방 수준이 높은 집 단일수록 분류 일치도가 낮아지는 것을 알 수 있다.
- <Table 2>에서 Friedewald 공식의 "LDL-콜레스테롤 추정값"과 "LDL-콜레스테롤 실측값 (LDL-C)"의 분류 일치도는 80.2% 수준임을 알 수 있다.
- Data Set 2 [Validation Data Set]을 이용하여 세 가지 공식(Friedewald 공식, Martin 공식, Sampson 공식)의 "LDL-콜레스테롤 추정값"과 "LDL-콜레스테롤 실측값(LDL-C)"의 분류 일치도를 각각 계산하여 비교한다.
- Data Set 2 [Validation Data Set]을 이용하여, 여러분이 개발한 새로운 추정식의 분류 일치도를 계산하고, 이의 개선 정도가 하나의 성과 지표가 된다.

# ② LDL-콜레스테롤 실측값과 추정값의 상관계수 혹은 $R^2$

- Data Set 2 [Validation Data Set]을 이용하여 세 가지 공식(Friedewald 공식, Martin 공식, Sampson 공식)의 "LDL-콜레스테롤 추정값"과 "LDL-콜레스테롤 실측값(LDL-C)"의 상관계수 혹은 이의 제곱값(설명력)을 각각 계산하여 비교한다.
- Data Set 2 [Validation Data Set]을 이용하여, 여러분이 개발한 "LDL-콜레스테롤 추정값" 과 "LDL-콜레스테롤 실측값(LDL-C)"의 상관계수 혹은 이의 제곱값(설명력)이 얼마인지 계산하고, 이의 개선 정도가 하나의 성과 지표가 된다.
- <Table 3>은 Friedewald 공식의 "LDL-콜레스테롤 추정값"과 "LDL-콜레스테롤 실측값 (LDL-C)"의 상관계수 혹은 이의 제곱값(설명력)을 계산한 것이다. 상관계수 = 0.968, 그리고 R² = 0.937임을 알 수 있다.
- 여러분이 개발한 새로운 추정식이 이러한 두 가지 성과 지표에서, 세 가지 공식 (Friedewald 공식, Martin 공식, Sampson 공식)보다 높은 스코어를 얻는다면 개선을 이룬 것이다
- 이러한 두 가지 성과 지표 이외에서, 여러분이 개발한 추정식의 성과를 제시할 수 있다면 자유롭게 제출하면 된다.

### <Table 1>

CG\_6\_LDLC\_Friedewald \* CG\_6\_LDLC\_direct 교차표<sup>a</sup>

|                      |    | CG_6_LDLC_direct            |       |       |       |       |       |       |        |  |
|----------------------|----|-----------------------------|-------|-------|-------|-------|-------|-------|--------|--|
|                      |    |                             | 1     | 2     | 3     | 4     | 5     | 6     | 전체     |  |
| CG_6_LDLC_Friedewald | 31 | 빈도                          | 340   | 117   | 0     | 0     | 0     | 0     | 457    |  |
|                      |    | CG_6_LDLC_Friedewald<br>중%  | 74.4% | 25.6% | 0.0%  | 0.0%  | 0.0%  | 0.0%  | 100.0% |  |
|                      | 2  | 빈도                          | 79    | 1350  | 270   | 1     | 0     | 0     | 1700   |  |
|                      |    | CG_6_LDLC_Friedewald<br>중 % | 4.6%  | 79.4% | 15.9% | 0.1%  | 0.0%  | 0.0%  | 100.0% |  |
|                      | 3  | 빈도                          | 0     | 144   | 1580  | 181   | 0     | 0     | 1905   |  |
|                      |    | CG_6_LDLC_Friedewald<br>중 % | 0.0%  | 7.6%  | 82.9% | 9.5%  | 0.0%  | 0.0%  | 100.0% |  |
|                      | 4  | 빈도                          | 0     | 0     | 132   | 817   | 68    | 0     | 1017   |  |
|                      |    | CG_6_LDLC_Friedewald<br>중 % | 0.0%  | 0.0%  | 13.0% | 80.3% | 6.7%  | 0.0%  | 100.0% |  |
|                      | 5  | 빈도                          | 0     | 0     | 0     | 61    | 253   | 17    | 331    |  |
|                      |    | CG_6_LDLC_Friedewald<br>중%  | 0.0%  | 0.0%  | 0.0%  | 18.4% | 76.4% | 5.1%  | 100.0% |  |
|                      | 6  | 빈도                          | 0     | 0     | 0     | 0     | 18    | 55    | 73     |  |
|                      |    | CG_6_LDLC_Friedewald<br>중 % | 0.0%  | 0.0%  | 0.0%  | 0.0%  | 24.7% | 75.3% | 100.0% |  |
| 전체                   |    | 빈도                          | 419   | 1611  | 1982  | 1060  | 339   | 72    | 5483   |  |
|                      |    | CG_6_LDLC_Friedewald<br>중 % | 7.6%  | 29.4% | 36.1% | 19.3% | 6.2%  | 1.3%  | 100.0% |  |

# <Table 2>

# CG\_8\_TG\_50\_100\_150\_200\_300\_400\_800 \* YN\_CG\_6\_D\_Friedewald 교치표<sup>a</sup>

|                                        |     |                                            | YN_CG_6_D_I |       |        |
|----------------------------------------|-----|--------------------------------------------|-------------|-------|--------|
|                                        |     |                                            | 0           | 1     | 전체     |
| CG_8_TG_50_100_150_<br>200_300_400_800 | 1   | 빈도                                         | 400         | 65    | 465    |
|                                        |     | CG_8_TG_50_100_150_<br>200_300_400_800 중 % | 86.0%       | 14.0% | 100.0% |
|                                        | 50  | 빈도                                         | 1808        | 316   | 2124   |
|                                        |     | CG_8_TG_50_100_150_<br>200_300_400_800 중 % | 85.1%       | 14.9% | 100.0% |
|                                        | 100 | 빈도                                         | 1225        | 283   | 1508   |
|                                        |     | CG_8_TG_50_100_150_<br>200_300_400_800     | 81.2%       | 18.8% | 100.0% |
|                                        | 150 | 빈도                                         | 557         | 167   | 724    |
|                                        |     | CG_8_TG_50_100_150_<br>200_300_400_800 중%  | 76.9%       | 23.1% | 100.0% |
|                                        | 200 | 빈도                                         | 332         | 167   | 499    |
|                                        |     | CG_8_TG_50_100_150_<br>200_300_400_800 중 % | 66.5%       | 33,5% | 100.0% |
|                                        | 300 | 빈도                                         | 73          | 90    | 163    |
|                                        |     | CG_8_TG_50_100_150_<br>200_300_400_800 중 % | 44.8%       | 55,2% | 100.0% |
| 전체                                     |     | 빈도                                         | 4395        | 1088  | 5483   |
|                                        |     | CG_8_TG_50_100_150_<br>200_300_400_800 중 % | 80.2%       | 19.8% | 100.0% |

### <Table 3>

|    |                   |      |          | 모형            | g 요약a    |           |      |      |                |  |
|----|-------------------|------|----------|---------------|----------|-----------|------|------|----------------|--|
|    |                   |      |          |               | 등계량 변화량  |           |      |      |                |  |
| 모형 | R                 | RMZ  | 수정된 R 제곱 | 추정값의 표준<br>오차 | R 제곱 변화량 | F변화량      | 자유도1 | 자유도2 | 유의확률 F 번<br>화랑 |  |
| 1  | .968 <sup>b</sup> | .937 | .937     | 7.925         | .937     | 81873.141 | 1    | 5481 | .000           |  |

a. CG\_3\_year = 2 b. 예측자: (상수), E\_LDLC\_Friedewald