Math 128: Calculus 2 for the Sciences

Winter 2016

Lecture 28: March 14, 2016

Lecturer: Jen Nelson Notes By: Harsh Mistry

28.1 Absolute/Conditional Convergence

Definition 28.1 A series $\sum_{n=1}^{\infty}$ is

- Convergent if $\sum a_n = a_1 + a_2 + \dots$ is finite
- Absolutely convergent if the series of absolute values $\sum |a_n|$ is convergent
- Conditionally convergent if it is convergent but not absolutely convergent : $\sum a_n$ converges, but $\sum |a_n|$ does not

Theorem 28.2 Absolute Convergence \implies Convergence

Why?

- If an alternating series converges absolutely, there is no need for AST
- Any rearrangements of the series results in the same sum
- Gives us a way to test convergence of a series that has negative terms, but is not alternating

28.2 Ratio Test

Theorem 28.3 -

- (a) If $\lim_{n\to\infty} \left|\frac{a_n+1}{a_n}\right| = L < 1$, then $\sum a_n$ is absolutely convergent
- (b) If $\lim_{n\to\infty} \left|\frac{a_n+1}{a_n}\right| = L > 1$ or $\lim_{n\to\infty} \left|\frac{a_n+1}{a_n}\right| = \infty$, then $\sum a_n$ diverges
- (c) If $\lim_{n\to\infty} \left|\frac{a_n+1}{a_n}\right| = 1$, then **NO CONCLUSION** about the convergence or divergence of $\sum a_n$ can be made

End of Lecture Notes Notes By: Harsh Mistry