

Лекция 14. Поиск подстроки в строке

Полиномиальный хеш, алгоритм Рабина-Карпа. Сортировка строк хешами. Хеш-таблицы. Коллизии. Открытая и закрытая адресация. Гипотеза равномерного хеширования.

Хеширование (hashing) — класс методов поиска, идея которого состоит в вычислении хеш-кода, однозначно определяемого элементом с помощью хеш-функции, и использовании его, как основы для поиска (индексирование в памяти по хеш-коду выполняется за O(1)). В общем случае, однозначного соответствия между исходными данными и хеш-кодом нет в силу того, что количество значений хеш-функций меньше, чем вариантов исходных данных, поэтому существуют элементы, имеющие одинаковые хеш-коды — так называемые коллизии, но если два элемента имеют разный хеш-код, то они гарантированно различаются. Вероятность возникновения коллизий играет немаловажную роль в оценке качества хеш-функций. Для того чтобы коллизии не замедляли работу с таблицей существуют методы для борьбы с ними.

Сириус Полиномиальный хеш

Пусть дана строка s[0...n-1]. Тогда полиномиальным хешем (polynomial hash) строки s называется число $h = hash(s[0..n-1]) = p^0s[0]+...+p^{n-1}s[n-1]$, где p — некоторое простое число, а s[i]– код i-ого символа строки s.

Пример:

$$s="sirius", p=3$$
 $h=hash(s)=3^0115+3^1105+3^2114+3^3105+3^4117+3^5115=$ $=115+315+1026+2835+9477+27945=41713$

Проблему переполнения при вычислении хешей довольно больших строк можно решить так – считать хеши по модулю $r=2^{64}$ (или 2^{32}), чтобы модуль брался автоматически при переполнении типов.

Сириус Для работы алгоритма поиска подстроки потребуется считать хеш подстроки s[i...j]. Делать это можно следующим образом:

Рассмотрим хеш s[0...j]:

$$hash(s[0..j]) = s[0] + ps[1] + \ldots + p^{i-1}s[i-1] + p^is[i] + \ldots + p^{j-1}s[j-1] + p^js[j]$$

Разобьем это выражение на две части:

$$hash(s[0..j]) = (s[0] + ps[1] + \ldots + p^{i-1}s[i-1]) + (p^is[i] + \ldots + p^{j-1}s[j-1] + p^js[j])$$

Вынесем из последней скобки множитель p^i :

$$hash(s[0..j]) = (s[0] + ps[1] + \ldots + p^{i-1}s[i-1]) + p^i(s[i] + \ldots + p^{j-i-1}s[j-1] + p^{j-i}s[j])$$

Выражение в первой скобке есть не что иное, как хеш подстроки $s[0..\,i-1]$, а во второй — хеш нужной нам подстроки $s[i..\,j]$. Итак, мы получили, что:

$$hash(s[0\mathinner{\ldotp\ldotp} j]) = hash(s[0\mathinner{\ldotp\ldotp} i-1]) + p^i hash(s[i\mathinner{\ldotp\ldotp} j])$$

Отсюда получается следующая формула для $hash(s[i\mathinner{\ldotp\ldotp} j])$:

$$hash(s[i\mathinner{\ldotp\ldotp} j]) = (1/p^i)(hash(s[0\mathinner{\ldotp\ldotp} j]) - hash(s[0\mathinner{\ldotp\ldotp} i-1]))$$

Однако, как видно из формулы, чтобы уметь считать хеш для всех подстрок начинающихся с i, нужно предпосчитать все p^i для $i \in [0...n-1]$. Это займет много памяти. Но поскольку нам нужны только подстроки размером m – мы можем подсчитать хеш подстроки s[0...m-1], а затем пересчитывать хеши для всех $i \in [0...n-m]$ за O(1) следующим образом:

$$hash(s[i+1...i+m-1]) = (hash(s[i...i+m-1]) - p^{m-1}s[i]) \mod r$$
 $hash(s[i+1...i+m]) = (p \cdot hash(s[i+1...i+m-1]) + s[i+m]) \mod r$

Получается : $hash(s[i+1...i+m]) = (p \cdot hash(s[i...i+m-1]) - p^i s[i] + s[i+m]) \mod r$

Сириус Алгоритм Рабина-Карпа

Алгоритм начинается с подсчета hash(s[0..m-1]) и hash(p[0..m-1]), а также с подсчета p^m , для ускорения ответов на запрос.

Для $i \in [0...n-m]$ вычисляется hash(s[i...i+m-1]) и сравнивается с hash(p[0...m-1]). Если они оказались равны, то образец p скорее всего содержится в строке s начиная с позиции i, хотя возможны и ложные срабатывания алгоритма. Если требуется свести такие срабатывания к минимуму или исключить вовсе, то применяют сравнение некоторых символов из этих строк, которые выбраны случайным образом, или применяют явное сравнение строк, как в наивном алгоритме поиска подстроки в строке. В первом случае проверка произойдет быстрее, но вероятность ложного срабатывания, хоть и небольшая, останется. Во втором случае проверка займет время, равное длине образца, но полностью исключит возможность ложного срабатывания.

Если требуется найти индексы вхождения нескольких образцов, или сравнить две строки – выгоднее будет предпосчитать все степени p, а также хеши всех префиксов строки s.

Сириус Алгоритм Рабина-Карпа

Алгоритм находит все вхождения строки w в строку s и возвращает массив позиций, откуда начинаются вхождения.

```
def rabinKarp (s, w):
    answer = []
    n = len(s)
    m = len(w)
    hashS = hash(s[:m])
    hashW = hash(w[:m])
    for i in range(n - m):
        if hashS == hashW:
            answer.add(i)
        hashS = (p * hashS - (p ** m) * hash(s[i]) + hash(s[i + m])) % r
    return answer
```

Новый хеш hashS был получен с помощью быстрого пересчёта. Для сохранения корректности алгоритма нужно считать, что s[n+1] — пустой символ.

Хеш-таблица (англ. hash-table) — структура данных, реализующая интерфейс ассоциативного массива. В отличие от деревьев поиска, реализующих тот же интерфейс, обеспечивают меньшее время отклика в среднем. Представляет собой эффективную структуру данных для реализации словарей, а именно, она позволяет хранить пары (ключ, значение) и выполнять три операции: операцию добавления новой пары, операцию поиска и операцию удаления пары по ключу.

Существует два основных вида хеш-таблиц: с цепочками и открытой адресацией. Хеш-таблица содержит некоторый массив H, элементы которого есть пары (хеш-таблица с открытой адресацией) или списки пар (хеш-таблица с цепочками).

Выполнение операции в хеш-таблице начинается с вычисления хеш-функции от ключа. Хеш-код i=h(key) играет роль индекса в массиве H, а зная индекс, мы можем выполнить требующуюся операцию (добавление, удаление или поиск).

Коллизия (collision): $\exists x \neq y : h(x) = h(y)$ - существует х не равный у, такой что h(x)=h(y).

Разрешение коллизий (collision resolution) в хеш-таблице, задача, решаемая несколькими способами: метод цепочек, открытая адресация и т.д. Очень важно сводить количество коллизий к минимуму, так как это увеличивает время работы с хеш-таблицами.

Сириус Разрешение коллизий с помощью цепочек

Каждая ячейка i массива H содержит указатель на начало списка всех элементов, хеш-код которых равен i, либо указывает на их отсутствие. Коллизии приводят к тому, что появляются списки размером больше одного элемента.

В зависимости от того нужна ли нам уникальность значений операция вставки у нас будет работать за разное время. Если не важна, то мы используем список, время вставки в который будет в худшем случае равна O(1). Иначе мы проверяем есть ли в списке данный элемент, а потом в случае его отсутствия мы его добавляем. В таком случае вставка элемента в худшем случае будет выполнена за O(n)

Время работы поиска в наихудшем случае пропорционально длине списка, а если все n ключей захешировались в одну и ту же ячейку (создав список длиной n) время поиска будет равно $\Theta(n)$ плюс время вычисления хеш-функции, что ничуть не лучше, чем использование связного списка для хранения всех n элементов.

Удаления элемента может быть выполнено за O(1), как и вставка, при использовании двухсвязного списка.

Сириус Разрешение коллизий с помощью цепочек

Все элементы хранятся непосредственно в хеш-таблице, без использования связных списков. В отличие от хеширования с цепочками, при использовании этого метода может возникнуть ситуация, когда хеш-таблица окажется полностью заполненной, следовательно, будет невозможно добавлять в неё новые элементы. Так что при возникновении такой ситуации решением может быть динамическое увеличение размера хеш-таблицы, с одновременной её перестройкой.

Последовательный поиск

При попытке добавить элемент в занятую ячейку i начинаем последовательно просматривать ячейки i+1, i+2, i+3 и так далее, пока не найдём свободную ячейку. В неё и запишем элемент.

Линейный поиск

Выбираем шаг q. При попытке добавить элемент в занятую ячейку i начинаем последовательно просматривать ячейки $i+(1\cdot q), i+(2\cdot q), i+(3\cdot q)$ и так далее, пока не найдём свободную ячейку. В неё и запишем элемент. По сути последовательный поиск - частный случай линейного, где q=1.

Квадратичный поиск

Шаг q не фиксирован, а изменяется квадратично: q=1,4,9,16... Соответственно при попытке добавить элемент в занятую ячейку i начинаем последовательно просматривать ячейки i+1,i+4,i+9 и так далее, пока не найдём свободную ячейку.

Сириус Гипотеза равномерного хеширования

Универсальное хеширование (Universal hashing) — это вид хеширования, при котором используется не одна конкретная хеш-функция, а происходит выбор из заданного семейства по случайному алгоритму. Такой подход обеспечивает равномерное хеширование: для очередного ключа вероятности помещения его в любую ячейку совпадают. Известно несколько семейств универсальных хеш-функций, которые имеют многочисленные применения в информатике, в частности в хештаблицах, вероятностных алгоритмах и криптографии.

Впервые понятие универсального хеширования было введено в статье Картера и Вегмана в 1979 году.

Сириус Гипотеза равномерного хеширования

Созданный алгоритм универсального хеширования представлял собой случайный выбор хешфункции из некоторого набора хешфункций (называемого универсальным семейством хешфункций), обладающих определёнными свойствами. Авторами было показано, что в случае универсального хеширования число обращений к хеш-таблице (в среднем по всем функциям из семейства) для произвольных входных данных оказывается очень близким теоретическому минимуму для случая фиксированной хешфункции со случайно распределёнными входными данными.

Сириус Гипотеза равномерного хеширования

Пусть U — множество ключей, H — конечное множество хеш-функций, отображающих U во множество $\{0,1,\ldots,m-1\}$. Возьмем произвольные $h\in H$ и $x,y\in U$ и определим функцию коллизий $\delta_h(x,y)$:

$$\delta_h(x,y) = egin{cases} 1, & ext{if } x
eq y ext{ and } h(x) = h(y) \ 0, & ext{otherwise} \end{cases}$$

Если $\delta_h(x,y)=1$, то говорят, что имеет место **коллизия**. Можно определить функцию коллизии не для отдельных элементов x,y,h, а для целого множества элементов — для этого надо произвести сложение функций коллизий по всем элементам из множества. Например, если H — множество хешфункций, $x\in U$, $S\subset U$, то для функции коллизии $\delta_H(x,S)$ получим:

$$\delta_H(x,S) = \sum_{h \in H} \sum_{y \in S} \delta_h(x,y)$$

Причём порядок суммирования не имеет значения.

: Сириус Гипотеза равномерного хеширования

Семейство хеш-функций H называется **универсальным**, если

$$orall x,y\in U\longrightarrow \delta_H(x,S)=rac{|H|}{m}$$

Универсальные семейства хеш-функций для:

1. Чисел

p - некоторое простое число

$$h_{a,b}(x) = ((ax+b) \mod p) \mod m$$

∴ Сириус Гипотеза равномерного хеширования

2. Векторов

Пусть число m является простым. Пусть входные данные x представлены как последовательность r+1 элементов, принадлежащих $\{0,1,\dots,p-1\}$, то есть $x=\langle x_0,x_1,\dots,x_r \rangle$.

Для всех последовательностей вида $a=\langle a_0,a_1,\dots,a_r
angle,a_i\in\mathbb{Z}_p,i=\overline{0,r}$ рассмотрим функцию h_a вида

$$h_a(x) = \sum_{i=0}^r a_i x_i \mod m$$

Сириус Гипотеза равномерного хеширования т-Колледж

Строк

$$h_a(ar{x}) = h_a^{ ext{int}} \left(ig(\sum_{i=0}^\ell x_i \cdot a^i ig) mod p
ight),$$

где $h_a^{ ext{int}}:\{0,1,\ldots,p-1\} o\{0,1,\ldots,m-1\}$ является универсальной хеш-функцией для числовых аргументов.