

Recap of Introduction to Cryptography

Course Organization

Applied Cryptography - Spring 2024

Bart Mennink January 29, 2024

Institute for Computing and Information Sciences Radboud University

1/40

Outline

Course Organization

Keyed Symmetric Cryptography

How to Model Security?

Block Ciphers

Block Cipher Based Encryption Modes

Conclusion

740

Applied Cryptography

Goal of the Course

- Learn what cryptography is used in applied settings
 - What is used in the real world
 - What is standardized
 - What will (?) be used in the future
- Prepare you for cryptographic aspects you might see later in your career

Feedback Welcome!

- This is the third time the course Applied Cryptography is taught
- We carefully discussed the topics of Applied Cryptography
 - among ourselves
 - with lecturers of earlier courses
- This course is aimed to complement earlier courses, with minimal overlap
- However, there have been slight mutations in the content of the earlier courses
- This means that a minimal overlap with earlier courses is unavoidable
- If you have feedback on the course, please contact the lecturers!

Reflection On Last Year

- Course reasonably well-graded
- Some start-up problems identified by students and lecturers
- Lectures:
 - Further refinement with "Introduction to Cryptography" and "Cryptology"
 - More explanation on how cryptographic functions are used in practice
 - Further overall improvement of applications
- Tutorials/Assignments:
 - Make the assignments clearer
 - Less work-intensive assignments

4 / 40

5 / 40

Who?

Lecturers

- Bart Mennink, M1 3.05, b.mennink@cs.ru.nl
- Simona Samardjiska, M1 03.18, simonas@cs.ru.nl

Assignment Coordinators

• Mario Marhuenda Beltrán, M1 03.17, mario.marhuendabeltran@ru.nl

Tutorial Assistant

• Maximilian Pohl, maximilian.pohl@ru.nl

Lectures

- Weekly: Mon 13.30-15.15 in HG00.514
 - 5 lectures on symmetric cryptography (Bart Mennink)
 - 5 lectures on public-key/post-quantum cryptography (Simona Samardjiska)
 - 2–2.5 lectures on selected topics (guest lectures)
 - 0.5–1 back-up/Q&A
- Exception: lecture **upcoming** Wed 10.30–12.15 instead of next week Monday
- Presence not compulsory...
 - ... but if you are going to come, actually be here!
 - Laptops shut, phones away
- Course material:
 - These slides
 - Lecture recordings
- Background material:
 - Lecture notes "Introduction to Cryptography"

Tutorials/Assignments

- Weekly: Wed 10.30-12.15 in E1.17/EOSN01.560
 - 3 assignments on symmetric cryptography (after lectures 2, 3, 5)
 - 3 assignments on pk/pq cryptography (after lectures 7, 8, 11)
 - 1 assignment on selected topics (after lecture 12)
- Schedule:
 - New assignments on the web by Monday evening
 - Two tutorials for asking questions
 - Hand-in: Sunday after second tutorial, before 23.59 via Brightspace
 - In LaTeX, as single pdf
 - Hint: you are allowed to hand in earlier!
 - General rule: too late means score 0, no exceptions
- Assignment gives up to 1 point (out of 10) bonus on exam
- Assignments can be handed in in pairs (strongly encouraged)

8 / 40

Organization

Assessment

- Final mark is computed from:
 - Average of markings of assignments: A
 - Open-book on-campus exam: *E*
 - Final mark: $F = E + \frac{A}{10}$
- To pass: $E \ge 5$ and $F \ge 6$

Further Information

- All information on the course appears on Brightspace
- Read the course manual!

40

Keyed Symmetric Cryptography

General Setting

- Two parties, Alice and Bob, communicate over a public channel
 - They have agreed on a joint key \(\circ\) and use it to transmit data
- A malicious party, Eve, may try to exploit/disturb/... the communication
- In symmetric cryptography, we are concerned with two main security properties:
 - Confidentiality (or data privacy): Eve cannot learn anything about data
 - Authenticity: Eve cannot manipulate the data

Core Functionalities

Encryption

- Uses key to transform data into ciphertext
- Only with the key, one can retrieve data back

Message authentication

- Uses key to complement data with a tag
- Only with the key, the tag can be verified

Authenticated encryption

- Combines encryption and authentication
- Uses key to transform data into ciphertext and tag
- Only with the key, the tag can be verified and data retrieved

These (together with **hashing**) are the core functionalities in symmetric cryptography!

Core Functionalities

- Symmetric stands for:
 - same key for encryption and decryption
 - same key for MAC generation and verification
 - same key for authenticated encryption and verified decryption
 - (cryptographic hashing is an odd one out)
- Throughout, I will assume Alice and Bob managed to share a secret key in such a way that no outsider knows this key

2

• This is a problem on its own!

12 / 40

Security Strength s

- Nothing is unbreakable!
- Strength of a cryptographic construction is typically measured in bits
- E.g., s bits of security means:
 - there are no successful attacks in less than 2^s operations
 - the success probability of one attempt is at most $Pr(success) \leq 1/2^s$
 - generalization: the success probability of an attack with 2^a operations is at most Pr (success) \le 2^a/2^s
- Refinements often in:
 - data complexity: amount of observed data (limited by use case)
 - computation complexity: amount of computation (limited by budget)

What Determines Security?

1

Security is mainly determined by three factors:

Method in which that function is employed

13 / 40

11 / 40

How Are Symmetric Cryptographic Schemes Built?

- Building blocks: primitives
 - Determines security factors 1 and 2
 - These are often fixed size functionalities
- Constructions or modes of use employ primitives to build a cryptographic scheme
 - Determines security factor 3
 - Often, these should process variable-length data
 - Constructions not always trivial
- Distinction is a bit fuzzy:
 - Cryptographic schemes themselves are often employed in cryptographic protocols

How to Model Security?

• Constructions from one primitive may be primitives for another construction

15 / 40

Provable Security

- Symmetric cryptographic schemes on number-theoretical problems exist, but are hardly ever practical
- Symmetric cryptographic approach is more pragmatic
- Primitives:
 - Considered secure if many people looked at it but nobody managed to break it
 - Some properties might still be provable (like: "certain attack approaches do not work")
- Constructions:
 - Often come with a formal security proof
 - No unconditional security: based on assumption on the underlying primitive
 - Reductionist proof: breaking construction implies breaking primitive
 - Ideal model proof: assuming primitive is ideal, construction is secure

16 / 40

Modern Stream Ciphers

- Using key K, diversifier D, and length ℓ , keystream Z of length ℓ is generated
- The diversifier must be different for each message that is transmitted
- Example: data streams, e.g., pay TV and telephone, often split data in relatively short, numbered, frames. One can use frame number as diversifier and encrypt using stream:

$$C_i = M_i \oplus F(K, i, |M_i|)$$

When is a stream cipher strong enough?

Stream Cipher Security, Intuition (1/5)

 $\mathsf{SC}_{\mathcal{K}}$ stream cipher

- Recall Kerckhoffs principle: security should be based on secrecy of K
- Consider attacker that learns some amount of input-output combinations of SC_K
- What should SC_K satisfy, intuitively?
 - It should be "hard" to recover the key, but is that all?
 - If attacker ever sees ... 11111111111... or ... 0101010101..., is that okay?
 - If attacker ever sees ... 0101110101..., is that okay?
 - . .
 - ullet Intuitively, SC_K should not expose any irregularities
 - Its outputs should look completely random

Intermezzo: Random Oracle

Random Oracle

- A database of input-output tuples
- Initially empty
- New query (D, ℓ) :
 - If *D* is not in the database:
 - generate ℓ random bits Z
 - add (D, Z) to the list
 - return Z
 - If *D* is in the database, look at corresponding *Z*:
 - If $|Z| \ge \ell$: return first ℓ bits of Z
 - If $|Z| < \ell$: generate $\ell |Z|$ random bits Z', append Z' to Z, return Z||Z'|

D

1100

1111010101101101

001000011100

Ζ

101011101010101

1101011101111101101

101011010111010101011

• update (D, Z) in the list

19 / 40

Stream Cipher Security, Intuition (2/5)

- We thus want to "compare" SC_K with a random oracle RO
- ullet We model a distinguisher ${\cal D}$ that is given oracle access to either of the worlds
 - We toss a coin:
 - head: D is given oracle access to SC_K
 - tail: \mathcal{D} is given oracle access to RO
 - \bullet \mathcal{D} does a priori not know which oracle it is given access to
 - \mathcal{D} can now make queries (\mathcal{D}, ℓ) to receive Z
 - At the end, \mathcal{D} has to guess the outcome of the coin toss (head/tail)

Stream Cipher Security, Intuition (3/5)

- Denote \mathcal{D} 's success probability in correctly guessing head/tail by \mathbf{Pr} (success)
- $\mathcal D$ can always guess and succeeds with probability $\geq 1/2$, so we scale the probability to $\mathcal D$'s advantage:

$$Adv(\mathcal{D}) = 2 \cdot Pr(success) - 1$$

• This turns out to be equal to (see Section 4.4 of "Intro2Crypto-symmetric.pdf")

$$\mathbf{Adv}(\mathcal{D}) = \mathbf{Pr}\left(\mathcal{D}^{\mathsf{SC}_{\mathsf{K}}} \text{ returns head}\right) - \mathbf{Pr}\left(\mathcal{D}^{\mathsf{RO}} \text{ returns head}\right)$$

20 / 40

Stream Cipher Security, Intuition (4/5)

- Recall: distinguisher is limited by certain constraints
 - data complexity: amount of observed data (limited by use case)
 - computation complexity: amount of computation (limited by budget)
- How do these constraints relate to the security model?
- Data (or online) complexity q: total cost of queries \mathcal{D} can make
- Computation (or time) complexity t: everything that \mathcal{D} can do "on its own"

Stream Cipher Security, Intuition (5/5)

- Computation (or time) complexity t: everything that \mathcal{D} can do "on its own"
 - SC (without key input) is a public algorithm
 - \mathcal{D} can evaluate it offline
 - ullet For instance, it can try evaluate $SC_{K'}$ for different keys K'
 - ullet Even stronger: ${\mathcal D}$ can evaluate individual internal parts of SC offline
 - It can do so regardless of the oracle it is communicating with
 - Offline access to these internals is, however, often left implicit

22 / 40

Stream Cipher Security, Formal (1/2)

- Two oracles: SC_K (for secret key K) and RO (secret)
- ullet Distinguisher ${\mathcal D}$ has query access to one of these
- ullet ${\cal D}$ tries to determine which oracle it communicates with
- Its advantage is defined as:

$$\textbf{Adv}_{\text{SC}}^{\mathrm{prf}}(\mathcal{D}) = \Delta_{\mathcal{D}}\left(\text{SC}_{\mathcal{K}} \; ; \; \text{RO}\right) = \left|\textbf{Pr}\left(\mathcal{D}^{\text{SC}_{\mathcal{K}}} = 1\right) - \textbf{Pr}\left(\mathcal{D}^{\text{RO}} = 1\right)\right|$$

Stream Cipher Security, Formal (2/2)

• Its advantage is defined as:

$$\mathsf{Adv}^{\mathrm{prf}}_{\mathsf{SC}}(\mathcal{D}) = \Delta_{\mathcal{D}}\left(\mathsf{SC}_{\mathcal{K}}\;;\;\mathsf{RO}\right) = \left|\mathsf{Pr}\left(\mathcal{D}^{\mathsf{SC}_{\mathcal{K}}} = 1\right) - \mathsf{Pr}\left(\mathcal{D}^{\mathsf{RO}} = 1\right)\right|$$

- $Adv_{SC}^{prf}(q,t)$: supremal advantage over any distinguisher with complexity q,t
 - More complexity parameters may apply, e.g., total length, different complexity bounds for different oracles, . . .
 - ullet In addition, t is sometimes left implicit if not needed for a security proof

Stream Cipher Security, Implication

- A bound $Adv_{SC}^{prf}(q, t)$ implies that
 - no key recovery attack succeeds with advantage higher than $Adv_{SC}^{prf}(q, t)$
 - no bias in keystream can be exploited with advantage higher than $Adv_{SC}^{prf}(q,t)$
 - ..
 - no meaningful attack can be mounted with advantage higher than $Adv_{SC}^{prf}(q,t)$
- Bound on the advantage can serve two purposes:
 - Security claim for a concrete design
 - A proven security bound assuming security of an underlying building block
- Security definition of pseudorandom functions (PRF) is in fact more general: it applies to functions with possibly arbitrary length inputs and outputs

26 / 40

Block Ciphers

- Using key K, message M is bijectively transformed to ciphertext C
- Key, plaintext, and ciphertext are typically of fixed size
- For fixed key, E_K is invertible and the inverse is denoted as E_K^{-1}
- A good block cipher should behave like a random permutation

Block Ciphers

Block Cipher Security

- Two oracles: E_K (for secret key K) and p (secret)
- ullet Distinguisher ${\mathcal D}$ has query access to one of these
- ullet ${\mathcal D}$ tries to determine which oracle it communicates with
- Its advantage is defined as:

$$\mathsf{Adv}^{\mathrm{prp}}_{\mathsf{E}}(\mathcal{D}) = \Delta_{\mathcal{D}}\left(\mathsf{E}_{\mathsf{K}}\;;\; \mathsf{p}\right) = \left|\mathsf{Pr}\left(\mathcal{D}^{\mathsf{E}_{\mathsf{K}}} = 1\right) - \mathsf{Pr}\left(\mathcal{D}^{\mathsf{p}} = 1\right)\right|$$

• $Adv_F^{prp}(q,t)$: supremal advantage over any $\mathcal A$ with query/time complexity q/t

Strong Block Cipher Security

- Two oracles: (E_K, E_K^{-1}) (for secret key K) and (p, p^{-1}) (secret)
- ullet Distinguisher ${\mathcal D}$ has query access to one of these
- \bullet \mathcal{D} tries to determine which oracle it communicates with
- Its advantage is defined as:

$$\mathsf{Adv}_{\mathsf{E}}^{\mathsf{sprp}}(\mathcal{D}) = \Delta_{\mathcal{D}}\left(\mathsf{E}_{\mathsf{K}}, \mathsf{E}_{\mathsf{K}}^{-1} \; ; \; \mathsf{p}, \mathsf{p}^{-1}\right) = \left|\mathsf{Pr}\left(\mathcal{D}^{\mathsf{E}_{\mathsf{K}}, \mathsf{E}_{\mathsf{K}}^{-1}} = 1\right) - \mathsf{Pr}\left(\mathcal{D}^{\mathsf{p}, \mathsf{p}^{-1}} = 1\right)\right|$$

ullet ${f Adv}_E^{
m sprp}(q,t)$: supremal advantage over any ${\cal A}$ with query/time complexity q/t

Block Cipher Security: How to Model Key Recovery?

- Suppose \mathcal{D} has $q \geq 1$ query and t time
- It can mount the following attack:
 - Make 1 construction query $(0; \mathcal{O}(0))$
 - Make t offline key attempts $E_{L_i}(0)$
 - If $E_{L_i}(0) = \mathcal{O}(0)$ for some i, key recovery very likely
- For this distinguisher (simplified, ignoring false positives): $\mathbf{Adv}_E^{\mathrm{sprp}}(\mathcal{D}) \approx t/2^k$
- Supremized: $\mathbf{Adv}_E^{\mathrm{sprp}}(q,t) \geq t/2^k$

30 / 40

AES

Slide credit: Joan Daemen

- Block cipher with block and key lengths $\in \{128, 160, 192, 224, 256\}$
 - Set of 25 block ciphers
 - AES limits block length to 128 and key length to multiples of 64
- We only consider AES in this course
- Iteration of a round function with following properties:
 - 4 layers: nonlinear, shuffling, mixing and round key addition
 - All rounds are identical . . .
 - ... except for the round keys
 - ... and omission of mixing layer in last round
 - Parallel and symmetric
- Key schedule
 - Expansion of cipher key to round key sequence
 - Recursive procedure that can be done in-place
- Manipulates bytes rather than bits

The Non-Linear Layer: SubBytes

29 / 40

31 / 40

- The same invertible S-box applied to all bytes of the state
- Assembled from building blocks that were proposed and analyzed in cryptographic literature
- Criteria:
 - Offer resistance against DC, LC and algebraic attacks . . .
 - ... when combined with the other layers

Slide credit: Joan Daemen 32 / 40

The Mixing Layer: MixColumns

- Same invertible mapping applied to all 4 columns
- Multiplication by a 4×4 circulant matrix in $GF(2^8)$
 - Difference in 1 input byte propagates to 4 output bytes
 - Difference in 2 input bytes propagates to 3 output bytes
 - Difference in 3 input bytes propagates to 2 output bytes
 - Difference in 4 input bytes propagates to 1 output byte

Slide credit: Joan Daemen 33/40

The Shuffling Layer: ShiftRows

- Each row is shifted by a different amount
- Different shift offsets for higher block lengths
- Moves bytes in a given column to 4 different columns
- Combined with MixColumns and SubBytes this gives fast diffusion

Slide credit: Joan Daemen 34 / 40

Round Key Addition: AddRoundKey

$a_{0,0}$	$a_{0,1}$	$a_{0,2}$	$a_{0,3}$
$a_{1,0}$	$a_{1,1}$	$a_{1,2}$	$a_{1,3}$
$a_{2,0}$	$a_{2,1}$	$a_{2,2}$	$a_{2,3}$
$a_{3,0}$	$a_{3,1}$	$a_{3,2}$	

$b_{0,0}$	$b_{0,1}$	$b_{0,2}$	$b_{0,3}$
$b_{1,0}$	$b_{1,1}$		
	$b_{2,1}$		$b_{2,3}$

• Round key is computed from the cipher key K

Key Schedule: Example with 192-bit Key ${\it K}$

• Expansion: put K in 1st columns and compute others recursively:

$$k_{6n} = k_{6n-6} \oplus f(k_{6n-1})$$

 $k_i = k_{i-6} \oplus k_{i-1}, i \neq 6n$

with f: 4 parallel AES S-boxes followed by 1-byte cyclic shift

• Selection: round key *i* is columns 4i to 4i + 3

AES: Summary

- 10 rounds for 128-bit key, 12 for 192-bit key and 14 for 256-bit key
- Last round has no MixColumns so that inverse is similar to cipher

Slide credit: Joan Daemen 37 / 40

Block Cipher Based Encryption Modes

Block Cipher Encryption Modes

38 / 40

Open question: advantages/disadvantages?

Overview

	ECB	CBC	OFB	CTR
parallel encryption	✓	_	_	✓
parallel decryption	\checkmark	\checkmark		\checkmark
inverse free	_	_	\checkmark	\checkmark
absence of message expansion	_	_	\checkmark	\checkmark
tolerant to bit flips in $C o P$	_	_	\checkmark	\checkmark
graceful degradation if nonce violation		\checkmark	_	_

Conclusion

Conclusion

Conclusion

- Cryptographic functions: often expected to behave like random oracles
- Designing fixed-length primitives that behave like random functions is harder than one might think
- Easier to design fixed-length primitives that behave like random permutations
- At "Introduction to Cryptography", you learned about some symmetric cryptographic designs

Next Lectures

- Advanced techniques on how to argue security
- More involved functions such as authenticated encryption
- Standardization efforts (NIST, ISO, CFRG, PKCS)

