

Mukesh Patel School of Technology Management & Engineering / School of Technology Management & Engineering

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

Experiment: 3

PART A

(PART A: TO BE REFERRED BY STUDENTS)

Aim: Implementing programs using conditional/Decision making/selection statements

Learning Outcomes: The learner would be able to

- 1. Identify appropriate decision-making statement
- 2. Understand the syntax of decision-making statements
- 3. Use decision-making statements to solve problems by writing programs
- 4. Work with nested decision-making statements

Theory:

C++ Control Constructs/Structure/Statements

- Control statements are used to alter the flow of program execution.
- Control statements evaluate the condition (uses relational and/or logical operators) & control the flow of execution.
- C++ control constructs/statements are as follows.

Decision Making Statements	Loop Control Statements	Jump Control Instructions
or	or	or
Conditional Statements	Iterative Statements	Branching Statement
Or		

Selection Statements

- if
- if-else
- Nested if-else
- else if Ladder
- switch-case

- for
- while
- do-while

- break
- continue
- return

if

- if is a decision-making statement.
- "if" is the keyword used to decide to control the flow of execution.

Syntax:-

1. 'if' with single statement

if(condition)

true_statement;

Mukesh Patel School of Technology Management & Engineering / School of Technology Management & Engineering

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

- In the above syntax, the condition is evaluated first; if the condition is evaluated as true, then true_statement is executed.
- The default scope of 'if' is a single statement; that's why there is no need to use curly braces.

'if' with multiple statement.

```
if(condition){
          true_statement 1;
          true_statement 2;
          .....
          true_statement n;
}
```

Using curly braces increased(multiple statements) the scope of the 'if' statement.

if-else

- If-else is a decision-making statement.
- The else clause is an extension to the if clause & contains a false part.
- "if" & "else" are keywords used to decide to control the flow of execution.
- The else block should have matching if, otherwise, mismatch else error will occur.
- As per syntax, no condition is required with the else block.

In the above syntax, if (condition) is evaluated first, if the condition is evaluated as true, then true_statement is executed. If the condition is evaluated as false, then false_statement is executed.

SVKM'S NMIMS

SVKM's NMIMS

Mukesh Patel School of Technology Management & Engineering / School of Technology Management & Engineering

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

2. if-else with multiple statement. Flowchart:if(condition){ true_statement 1; If(condn) True_statements true_statement 2; true_statement n; No else{ False statements true_statement 1; true_statement 2; true_statement n; }

Using curly braces shows the increased scope of the 'if' & 'else' clauses. If the condition is evaluated as true, then true statements are executed; otherwise, false statements are executed.

Nested if-else

- It is a complex decision-making statement if and/or else clause can be nested one inside another (as per syntax of else).
- If clause may have if-else and/or its chain in nested if-else. Similarly, the else clause may have if-else and/or its chain or both if & else clauses have sub if-else clause/block.
- Complex nested if-else (Multiple decision-making) statements may cause problems maintaining the program.

Syntax:-

Mukesh Patel School of Technology Management & Engineering / School of Technology Management & Engineering

BTI	Workbook	Academic Year- 2023-24	
Year: III	Subject:- Programming for Problem Solving	Semester: V	

In the above syntax, the inner if and/or else clauses may have if-else clauses in one another. It may confuse; that's why to be careful when nesting if-else. Nested if-else is nothing but chained with one another.

else-if ladder

- It is a common programming construct used to make multiple decisions. Sometimes, we may call this as if-else-if ladder.
- It is different than that of nested if-else & less confusing than that of nested if-else.

Syntax:-

```
if(condition){
     statements:
}
else if(condition){
     statements;
}
else if(condition){
     statements;
}
:
else {
     statements;
}
```

In above format, condition is evaluated from top to down.

switch case

- It is a multiple-branching statement.
- It checks for equality, not condition.

Advantages:-

- Easy to use
- Easy to find out errors(if any) & debug.
- Complexity of the program is minimized.

Syntax:

```
switch(equality_constant or variable or expression){
    case constant1:
        statement1;
        break;
    case constant2:
        statement2;
        break;
:
```

SVKM's NMIMS

Mukesh Patel School of Technology Management & Engineering / School of Technology Management & Engineering

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

- equality_constant or variable or expression should be of type int or char.
- default is optional

Nested switch case:

- outer switch block may contain inner switch block, i. e. switch with in a switch.
- The inner and/or outer switch may contain same equality constant.

Syntax:-

```
switch(equality_constant or variable or expression){
    case constant1: statement1; break;
    case constant2: statement2; break;
    case constant_n: statement2; break;
    default: default_statement;
        switch(equality_constant or variable or expression){
            case constant1: statement1; break;
            case constant2: statement2; break;
            case constant_n: statement2; break;
            default: default_statement;
        }
}
```

SVKMS NMIMS

SVKM's NMIMS

Mukesh Patel School of Technology Management & Engineering / School of Technology Management & Engineering

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

Instructions: - All the students are informed to write all executed code in workbook in following sequence and format.

- 1. Problem Statement
- 2. Input and Output
- 3. Test Cases
- 4. Flowchart
- 5. Program (with color codes)
 - a) Red Directives
 - **b**) Blue Keywords, constants values
 - c) Green Comments, messages
 - **d)** Black {variables, functions, class, object} name, operators, punctuation
- 6. Trace Table (additional columns may require in some concepts)

Var-1	Var-2	• • • •	Var-n	Condition	Output

Mukesh Patel School of Technology Management & Engineering / School of Technology Management & Engineering

BTI Workbook		Academic Year- 2023-24	
Year: III		Subject:- Programming for Problem Solving	Semester: V

Tasks:

Sr.	Problem Statement				I/O	Test	Flow	Program-	Trace
No.						Cases	chart	with color codes	Table
1	Develop a program that accepts sale the sales amount; otherwise, it is 79			han 5000, then the discount is 12% of nt to be paid after the discount.	✓		√	√	
2	Write a program to test whether a giv and vice versa.	en character is a capi	tal or small letter and	d change small letters to capital letters	✓		1	√	
3	Implement a program to accept a year as input and print whether it is a leap. A year is a leap if divisible by 4, and centennial years (years divisible by 100) are leap years only when divisible by 400.					✓	1	✓	✓
4	Develop a program to perform divisible print "THREE"; if the number is divisible "BOTH" otherwise, print "NOT"	•		per is divisible by three and not by five "; if divisible by both 3 & 5 print	✓		√	√	
5	2i	D3 in nm/ML	Status		✓	✓	√	√	
		<20	Deficiency						
		20-30	Insufficiency						
		30-100	Sufficiency						
		>100	Toxicity						
6	Write a program that takes three coeff possible roots, and print them with ap		a quadratic equation	$a; ax^2+bx+c=0$ as input, compute all	✓	√	√	✓	✓

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

7		✓			✓	
8	Write a program that takes an arithmetic operator (+, -, *, or /) and two operands from the user. Perform corresponding arithmetic operations on the operands using switch case.	✓	√	√	√	
9	Implement a menu-driven program to calculate the area of a triangle, rectangle, circle, and sphere.	√			√	

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V

BTI	Workbook	Academic Year- 2023-24
Year: III	Subject:- Programming for Problem Solving	Semester: V