Chapter 6

\mathcal{LODE} - The Logic of Knowledge Bases

6.1 Basic Concepts

Exercise 6.1 (Well-formed formulas of \mathcal{LOE} or \mathcal{LOD}) Indicate which of the following statements are correct:

- 1. A \sqcap B is a nonatomic well-formed formula of \mathcal{LOD}
- 2. A $\sqsubseteq \exists R.C \sqcap B$ is a well-formed formula of \mathcal{LOD}
- 3. A $\sqsubseteq \exists R. \top \sqcap B$ is a well-formed atomic formula of \mathcal{LOD}
- 4. A \equiv R(a,b) is a well-formed formula of \mathcal{LOD}
- 5. A $\sqsubseteq \exists R.(\neg \forall S.C)$ is a well-formed formula of \mathcal{LOD}

Exercise 6.2 Given a Tbox \mathcal{T} and two w.f.f. P,Q, which of the following statements are true?

- 1. P and Q are satisfiable with respect to \mathcal{T} if and only if $\mathcal{T} \models P \land Q$
- 2. $\mathcal{T} \models \neg (P \subseteq Q)$ is a logical consequence of $\mathcal{T} \models P \cap Q \subseteq \bot$
- 3. $\mathcal{T} \models P \cap Q \subseteq \bot$ is a logical consequence of $\mathcal{T} \models P \subseteq Q$
- 4. $\mathcal{T} \models P \subseteq Q$ is a logical consequence of $\mathcal{T} \models P \cap Q \subseteq \bot$
- 5. $\mathcal{T} \models \neg((Q \subseteq P) \cup (P \subseteq Q))$ is a logical consequence of $\mathcal{T} \models P \cap Q \subseteq \bot$
- 6. $\mathcal{T} \models \neg((Q \subseteq P) \cup (P \subseteq Q))$ if and only if $\mathcal{T} \models P \cap Q \subseteq \bot$

Exercise 6.3 Given \mathcal{T} a terminology in Description Logics written in a language L, and I the interpretation function that maps \mathcal{T} to the domain Δ . Having C, C_1 , C_2 in \mathcal{T} , say which of the following statements are true:

- 1. if $\mathcal{T} \models C_1$ then $\mathcal{T} \models C_1 \sqsubseteq C_2$ for every formula C2
- 2. $I(\exists R.\top) = \{a \in \Delta \mid \text{there exists b so that } (a,b) \in I(R)\}$
- 3. $I(C_1 \sqsubseteq C_2) = \top$ iff $I(C_1) = \top$ and $I(C_2) = \top$
- 4. $\mathcal{T} \models C$ if there exists an interpretation I so that $I \models C_i$ for all $C_i \in \mathcal{T}$ and I(C) = T

Exercise 6.4 [Definition of expansion and unfolding in \mathcal{LODE}] Say which of the following statements are true (one or more):

- 1. The conceptual expansion ("expansion") of an ABox with respect to a reference \mathcal{LODE} definitional TBox applies only after the TBox has been developed ("unfolded").
- 2. The result of the exhaustive expansion ("expansion") of an ABox with respect to all concepts defined in a reference TBox is always and only an Entity Graph (\mathcal{EG}) .
- 3. The expansion ("expansion") of an ABox with respect to a reference TBox cannot extend the original Entity Graph, as formalized by the ABox, with new arcs ("links").
- 4. Expansion ("expansion") of an ABox with respect to a reference TBox may extend the original Entity Graph, as formalized by the ABox, with a new node whose entity is not anonymous.

6.2 Translations

Exercise 6.5 Given the knowledge base K

```
\mathcal{T} = \begin{cases} Nammal & \text{Whale } \sqsubseteq Mammal \\ Mammal & \text{LivesIn.Habitat} \\ Nammal & \text{LivesIn.Habitat} \\ Nammal & \text{LivesIn.Habitat} \\ Nammal & \text{LivesIn.Habitat} \\ Nammal & \text{LivesIn} \\ Nammal & \text{Live
```

Draw a Knowledge Graph representation of K.

Exercise 6.6 Formulate \mathcal{LODE} concepts: for each of the following concepts, build a suitable \mathcal{LODE} concept description, using only the concept names

Person, Happy, Animal, Cat,Old, Fish

and the role name

6.2 Translations 47

owns

- 1. Happy person
- 2. Happy pet owner
- 3. Person who owns only cats
- 4. Unhappy pet owners who own an old cat
- 5. Pet owners who own only cat and fish

Then, draw a set representation that depicts the described situation

Exercise 6.7 Given the knowledge base

- Car \equiv Vehicle \sqcap \exists hasPart.Wheel \sqcap \exists poweredBy.Engine
- Bicycle ≡ Vehicle □ ∃hasPart.Wheel □ ∃poweredBy.Human
- Boat ≡ Vehicle □ ∃travelsOn.Water
- Boat ⊆ ∀hasPart.¬Wheel
- Car ⊔ Bicycle ⊆ ∀travelsOn.¬Water
- Wheel ≡ Device □ ∃hasPart.Axle □ ∃capableOf.Rotation
- Driver \equiv Human \sqcap \exists controls. Vehicle
- Driver

 ∃controls.Car

 Adult
- Human ⊆ ¬Vehicle
- Wheel ⊔ Engine ⊆ ¬Human
- Human \subseteq Adult \sqcup Child
- Adult $\subseteq \neg$ Child
- Bob :(∃controls.Car)
- Bob : Human
- (Bob, QE2) : controls
- QE2 :(Vehicle □ ∃travelsOn.Water)

draw a possible interpretation of the given knowledge base as a Schema knowledge graph

Exercise 6.8 (Define a \mathcal{LODE} theory) Define a \mathcal{LODE} theory for the following knowledge graph:

Exercise 6.9 (Define a \mathcal{LODE} **theory)** Define a \mathcal{LODE} theory for the following problem: In a hospital patients, doctors and computers are equipped with proximity sensors able to detect whether doctors curated a patient or worked at their computer. The system detected that doctor Peter curated the patient Smith.

Exercise 6.10 Given the LOD etype graph (\mathcal{ETG}) corresponding to the following TBOX:

$$\mathcal{T} = \begin{cases} Mother \equiv Woman \sqcap \exists hasChild.Person \\ Father \equiv Man \sqcap \exists hasChild.Person \\ Wife \equiv Woman \sqcap \forall marriedWith.Father \\ Husband \equiv Man \sqcap \exists marriedWith.Mother \end{cases}$$

and given the LOE entity graph (\mathcal{EG}) depicted in the figure: Construct the LODE

Entity Graph (\mathcal{EG}) that results from the composition, through development ("unfolding") of the TBOX and expansion ("expansion") of the ABOX and indicate which of the following statements are true (one or more):

- 1. The EG consists of 6 arcs and 8 nodes
- 2. EG consists of 8 arcs and 7 nodes
- 3. EG consists of 8 arcs and 6 nodes
- 4. The EG contains two nodes representing anonymous entities
- 5. The EG contains one node representing an anonymous entity
- 6. The EG contains 4 entities of type Person

6.3 Reasoning

6.3.1 Entailment

Exercise 6.11 Given the following TBOX in \mathcal{LODE} language:

6.3 Reasoning 49

$$\mathcal{T} = \begin{cases} Mother \equiv Woman \sqcap \exists hasChild.Person \\ Father \equiv Man \sqcap \exists hasChild.Person \\ Wife \equiv Woman \sqcap \forall marriedWith.Father \\ Husband \equiv Man \sqcap \exists marriedWith.Mother \end{cases}$$

And the following ABOX in \mathcal{LODE} language:

 $\mathcal{A} = \Big\{ Father(Paul)Person(Mary)Person(Tom)hasChild(Mary, Tom)marriedWith(Paul, Mary) \\$

Indicate which of the following statements are true (one or more):

- 1. $T \models Man(Tom)$
- 2. $T \models Man(Paul)$
- 3. $T \models Husband(Paul)$
- 4. $T \models \text{hasChild(Paul, Tom)}$
- 5. $T \models Mother(Mary)$

Exercise 6.12 Given the following Knowledge Base:

$$\mathcal{T} = \begin{cases} A \iff B \sqcap C \\ C \iff D \sqcap E \\ E \subseteq F \sqcap G \end{cases}$$
$$\mathcal{A} = \Big\{ A(1)$$

Provide A' obtained by expanding A with respect to T.

Exercise 6.13 Extend the Knowledge Base \mathcal{K} in exercise 6.7 to a Knowledge Base \mathcal{K}' with a translation of the following sentences:

- A human who legally controls a car holds a driving license and is an adult
- A car with a broken part is broken
- Bob controls a car with a wheel that has a broken axle

Then, say whether the following statements are true or false:

- K' is consistent
- \exists legallyControls. \top is subsumed by \exists controls. \top w.r.t. \mathcal{K}'
- Bob is an instance of \exists controls.(Car \sqcap Broken) w.r.t. \mathcal{K}'

Exercise 6.14 Given the following Knowledge Base:

$$\mathcal{T} = \begin{cases} A \equiv B \sqcap C \\ C \equiv D \sqcap E \\ E \subseteq F \sqcap G \end{cases}$$

$$A = \{A(1)\}$$

Provide A' obtained by extending A with respect to T.

Exercise 6.15 (Expansion of a \mathcal{LODE} **concept)** Given the following TBOX, compute the expansion of the ABox A = StepMother(Mary):

- Mother ≡ Woman □ ∃hasChild.Person
- Father \equiv Man \sqcap \exists hasChild.Person
- StepMother ≡ Woman □ ∃marriedWith.Father
- StepFather ≡ Man □ ∃marriedWith.Mother
- Parent \equiv Father \sqcup Mother \sqcup StepFather \sqcup StepMother

Exercise 6.16 (Expansion of a \mathcal{LODE} **concept)** Given the following TBOX, compute the expansion of the ABox A = StepMother(Mary), marriedWith(Paul):

- Mother ≡ Woman □ ∃hasChild.Person
- Father \equiv Man \sqcap \exists hasChild.Person
- StepMother ≡ Woman □ ∃marriedWith.Father
- StepFather

 Man

 ∃marriedWith.Mother
- Parent \equiv Father \sqcup Mother \sqcup StepFather \sqcup StepMother

Exercise 6.17 (Instance checking in \mathcal{LODE}) Given the following \mathcal{LODE} theory T, does T |= Professor(John)?

- Lecturer $\equiv \forall$ Teaches.Course $\sqcap \neg$ Undergrad \sqcap Professor
- Lecturer (John)
- Teaches(John, Logics)
- Course(Logics)

Exercise 6.18 (Instance retrieval in \mathcal{LODE}) Given the following \mathcal{LODE} theory T, find all the instances of Lecturer.

- Lecturer $\equiv \forall$ Teaches.Course $\sqcap \neg$ Undergrad \sqcap Professor
- Lecturer (John)
- Teaches(John, Logics)
- Course(Logics)
- Teaches(Paul, Logics)
- ¬Undergrad(Paul)
- Professor(Paul)

Exercise 6.19 (Concept realization in \mathcal{LODE}) Given the following \mathcal{LODE} theory T, find the most specific concept for Paul.

- Lecturer $\equiv \forall$ Teaches.Course $\sqcap \neg$ Undergrad \sqcap Professor
- Lecturer (John)
- Teaches(John, Logics)
- Course(Logics)
- Teaches(Paul, Logics)
- ¬Undergrad(Paul)
- Professor(Paul)