A Simple Framework for Contrastive Learning of Visual Representations (SimCLR)

[Chen et al., ICML 2020]

-Summary-

Introduction

• Discriminative approaches based on contrastive learning in the latent space have recently shown promising state-of-the-art results (Oord et al., 2018, Bachman et al., 2019)

- This paper introduce simple framework for contrastive learning of visual representations
 - 1. Composition of multiple data augmentation : Crop + Color distortion (most effective)
 - 2. Introducing learnable nonlinear transformation (projection head) $g:h_i \to z_i \ (h_i: representation)$
 - 3. Representation learning with **NT-Xent** loss benefits from normalized embedding (cosine similarity) and adjusted temperature parameter (τ)
 - 4. CL benefits from larger batch sizes and longer training, also deeper and wider networks

Method

- Basic idea of SimCLR:
 - Learns representations by maximizing agreement between differently augmented views of the same data example via a contrastive loss in the latent space

Framework for SimCLR:

Notations:

- x: data / $\widetilde{x_i}$, $\widetilde{x_j}$: two different views by applying t, t' to x
- \mathcal{T} : data augmentation distribution (ex : crop location / gaussian noise injection size)
- f : encoder network (here, author used ResNet)
- h_i : learned representation of \widetilde{x}_i
- g: projection head MLP with one hidden layer
- $z_i:g(h_i)$

Method

Note (intuition behind NT-Xent loss):

- $l_{i,j} = log \left(1 + \sum_{k=1, k \neq j}^{2N-1} exp(f^T f_k f^T f^+)\right)$
- Framework of SimCLR:
- Use $f \rightarrow z$ by projection head and <u>cosine similarity</u> instead of inner product
- Sample a minibatch of N examples, which leads to 2(N-1) negative examples corresponding one positive pair.
- Adopts NT-Xent loss (originated from multi-class N pair loss, Sohn, 2016):

$$l_{i,j} = -\log \frac{\exp\left(\frac{sim(z_i, z_j)}{\tau}\right)}{\sum_{k=1, k \neq i}^{2N} \exp\left(\frac{sim(z_i, z_j)}{\tau}\right)}, \qquad L = \frac{1}{2N} \sum_{k=1}^{N} [l(2k-1, 2k) + l(2k, 2k-1)]$$

• Adopts similarity function (sim) as cosine similarity :

$$sim(u, v) \coloneqq u^T v / \|u\| \|v\|$$

Method

Main learning algorithm of SimCLB:

Batch sampling

Data augmentation strategy sampling

Encode & projection

Cosine similarity

NT-Xext loss

Algorithm 1 SimCLR's main learning algorithm.

```
input: batch size N, constant \tau, structure of f, g, \mathcal{T}.
for sampled minibatch \{x_k\}_{k=1}^N do
    for all k \in \{1, ..., N\} do
       draw two augmentation functions t \sim T, t' \sim T
       # the first augmentation
       \tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)
       h_{2k-1} = f(\tilde{x}_{2k-1})
                                                            # representation
       z_{2k-1} = g(h_{2k-1})
                                                                  # projection
       # the second augmentation
       \tilde{x}_{2k} = t'(x_k)
      \boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})
                                                            # representation
       \boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})
                                                                  # projection
    end for
   for all i \in \{1, ..., 2N\} and j \in \{1, ..., 2N\} do
       s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|) # pairwise similarity
    end for
   define \ell(i,j) as \ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}
   \mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[ \ell(2k-1, 2k) + \ell(2k, 2k-1) \right]
    update networks f and q to minimize \mathcal{L}
end for
return encoder network f(\cdot), and throw away g(\cdot)
```

- Claim ①: Composition of multiple data augmentation is crucial for downstream performance
 - It turns out that single transformation does not suffices to learn good representation
 - The best composition of data augmentation: Crop -> Color distortion (56.3% top-1 acc)

Left: Linear evaluation (by ImageNet top-1 acc) / Right: Illustrations of data augmentation strategies

- ullet Claim oxin 1: Composition of multiple data augmentation is crucial for downstream performance
 - Q: Why color distortion leads to distinctively higher downstream performance?
 - If we analyze histograms of pixel intensities, the model easily can distinguish images, biasing only to color histograms (act as short-cut) -> X helpful for generalization.

	Color distortion strength					
Methods	1/8	1/4	1/2	1	1 (+Blur)	AutoAug
SimCLR Supervised	59.6	61.0	62.6	63.2	64.5	61.1
Supervised	77.0	76.7	76.5	75.7	75.4	77.1

Side note: Higher color distortion strength helps better on unsupervised LR

Histogram of pixel intensities (over all channels) for different crops of two different images (two rows)

- Claim ②: Unsupervised CL benefits more from bigger models than supervised learning.
- Observe that the gap between supervised model and linear classifiers from CL shrinks as the model size increase

∴ unsupervised learning benefits more from bigger models than its supervised counterparts

Linear evaluation of models with varied depth and width

- Claim ③: Nonlinear projection head improves the representation quality of the layer before it.
 - As the penultimate layer forms useful representation on supervised learning, we can expect the layer before projection head to have useful representations.
 - By experiments, it turns out that using the layer before projection head improves the
 - downstream performance dramatically.
 - Linear : $g(h) = W^{(1)}(h)$

Non-linear : $g(h) = W^{(2)} \sigma(W^{(1)} h)$

None : g(h) = h (identity)

- Claim ③: Nonlinear projection head improves the representation quality of the layer before it.
 - Q : Fundamentally, why do we need projection head, and use the h rather than g(h)?
 - 1. z = g(h) is trained to be invariant to data transformation. (only positive / negative)
 - 2. Hence, g can remove useful information, which might be useful for downstream task (ex : color or orientation of objects)
 - 3. h can capture this information much more than g(h) (Answer)

What to pradict?	Dandom guass	Representation	
What to predict?	Random guess	$m{h}$	$g(m{h})$
Color vs grayscale	80	99.3	97.4
Rotation	25	67.6	25.6
Orig. vs corrupted	50	99.5	59.6
Orig. vs Sobel filtered	50	96.6	56.3

Left: Accuracy of training additional MLPs on different representations to predict the transformation applied

h contains more information about transformation than g(h)

- Claim 4: Normalized cross entropy loss with adjustable temperature works better than alternatives
 - What is the 'Normalized cross entropy loss with adjustable temperature'?
 - Recall the NT-Xent loss as below:

Normalized (blue)

$$l_{i,j} = -\log \frac{\exp\left(\frac{sim(z_i, z_j)}{\tau}\right)}{\sum_{k=1, k \neq i}^{2N} \exp\left(\frac{sim(z_i, z_j)}{\tau}\right)}$$
 Cross entropy loss (yellow)

(assuming u, v^+, v^- are l_2 normalized) temperature (red)

- Claim 4: Normalized cross entropy loss with adjustable temperature works better than alternatives
 - If we check the input gradient with respect to anchor u for various CL loss,
 - 1. l_2 normalization (cosine similarity) effectively weights different examples.
 - 2. Appropriate temperature τ helps the model learn from hard negatives. (~entropy) (ex : Assume $u^T v_{easy-} = -0.4$, $u^T v_{hard-} = -0.1$, then appropriate τ can exploit the exponential function to highlight the value (=exp($u^T v_{hard-}/\tau$)) effectively)

Name	Negative loss function	Gradient w.r.t. $oldsymbol{u}$
NT-Xent	$u^T v^+ / \tau - \log \sum_{v \in \{v^+, v^-\}} \exp(u^T v / \tau)$	$\left(1 - \frac{\exp(u^T v^+/\tau)}{Z(u)}\right)/\tau v^+ - \sum_{v^-} \frac{\exp(u^T v^-/\tau)}{Z(u)}/\tau v^-$
NT-Logistic	$\log \sigma(\boldsymbol{u}^T \boldsymbol{v}^+ / \tau) + \log \sigma(-\boldsymbol{u}^T \boldsymbol{v}^- / \tau)$	$(\sigma(-\boldsymbol{u}^T\boldsymbol{v}^+/ au))/\tau\boldsymbol{v}^+ - \sigma(\boldsymbol{u}^T\boldsymbol{v}^-/ au)/\tau\boldsymbol{v}^-$
Margin Triplet	$-\max(\boldsymbol{u}^T\boldsymbol{v}^ \boldsymbol{u}^T\boldsymbol{v}^+ + m, 0)$	$oldsymbol{v^+} - oldsymbol{v^-}$ if $oldsymbol{u}^T oldsymbol{v}^+ - oldsymbol{u}^T oldsymbol{v}^+ - oldsymbol{v}^T oldsymbol{v}^+ - oldsymbol{v}^T oldsymbol{v}^+ - oldsymbol{u}^T oldsymbol{v}^+ -$

Negative loss function and their gradients from well-known CL loss

- Claim 4: Normalized cross entropy loss with adjustable temperature works better than alternatives
 - If we check the input gradient with respect to anchor u for various CL loss,
 - 1. l_2 normalization (cosine similarity) effectively weights different examples.
 - 2. Appropriate temperature τ helps the model learn from hard negatives. (~entropy) (ex : Assume $u^T v_{easy-} = -0.4$, $u^T v_{hard-} = -0.1$, then appropriate τ can exploit the exponential function to highlight the value (=exp($u^T v_{hard-}/\tau$)) effectively)

ℓ_2 norm?	au	Entropy	Contrastive acc.	Top 1
Yes	0.05	1.0	90.5	59.7
	0.1	4.5	87.8	64.4
	0.5	8.2	68.2	60.7
	1	8.3	59.1	58.0
No	10	0.5	91.7	57.2
	100	0.5	92.1	57.0

Linear evaluation for models trained with different choices of

 $oldsymbol{l}_2$ normalization and temperature au for NT-Xent loss

Entropy: entropy of softmax score (next slide)

Contrastive acc: accuracy to discriminate positive or negative.

Margin	NT-Logi.	Margin (sh)	NT-Logi.(sh)	NT-Xent
50.9	51.6	57.5	57.9	63.9

Linear evaluation for models trained with different loss

- Claim 4: Normalized cross entropy loss with adjustable temperature works better than alternatives
 - Unlike cross-entropy, other objective functions (Margin Triplet) do not weight the negatives by their relative hardness.
 - NT-Xent: Use Softmax score as the measure for hardness of data.
 - NT-Logistic : Use $Sigmoid(u^Tv^-/\tau)$ for data valuation (but may not be effective)
 - Margin Triplet : Not consider
 - Hence, NT-Logistic / Margin Triplet benefits a lot from semi-hard negative mining (=sh)

Name	Negative loss function	Gradient w.r.t. <i>u</i>
NT-Xent	$u^T v^+ / \tau - \log \sum_{v \in \{v^+, v^-\}} \exp(u^T v / \tau)$	$\left(1 - \frac{\exp(u^T v^+ / \tau)}{Z(u)}\right) / \tau v^+ - \sum_{v^-} \frac{\exp(u^T v^- / \tau)}{Z(u)} / \tau v^-$
NT-Logistic	$\log \sigma(\boldsymbol{u}^T \boldsymbol{v}^+ / \tau) + \log \sigma(-\boldsymbol{u}^T \boldsymbol{v}^- / \tau)$	$(\sigma(-\boldsymbol{u}^T\boldsymbol{v}^+/ au))/\tau\boldsymbol{v}^+ - \sigma(\boldsymbol{u}^T\boldsymbol{v}^-/ au)/\tau\boldsymbol{v}^-$
Margin Triplet	$-\max(\boldsymbol{u}^T\boldsymbol{v}^ \boldsymbol{u}^T\boldsymbol{v}^+ + m, 0)$	$oldsymbol{v}^+ - oldsymbol{v}^-$ if $oldsymbol{u}^T oldsymbol{v}^+ - oldsymbol{u}^T oldsymbol{v}^+ -$

- Claim (5): Contrastive learning benefits more from larger batch sizes and longer training.
 - It turns out that larger batch size (>= 2048) have a significant advantage over the smaller ones.
 - With more training epochs, the performance gaps between different batch sizes decrease

of disappear.

Linear evaluation trained with different batch size and epochs

Note: why this happens? (conjecture)

- 1. Larger batch size -> more negative samples per batch
- 2. Longer training -> more negative samples for entire training

Claims and experiments - Summary

- Claim ①: Composition of multiple data augmentation is crucial for downstream performance
- Claim ②: Unsupervised CL benefits more from bigger models than supervised learning.
- Claim ③: Nonlinear projection head improves the representation quality of the layer before it.
- Claim 4: Normalized cross entropy loss with adjustable temperature works better than alternatives.
- Claim (5): Contrastive learning benefits more from larger batch sizes and longer training.

ImageNet Top-1 accuracy of linear classifiers trained on representations learned with different self-supervised methods