2. Differentiation

(1994-CE-A MATH 1 #04) (6 marks)

4. Let
$$y = \tan\left(\frac{1}{x}\right)$$
.

Show that
$$x^2 \frac{dy}{dx} + (y^2 + 1) = 0$$
.

Hence show that
$$\frac{d^2y}{dx^2} + \frac{2(x+y)}{x^2} \frac{dy}{dx} = 0$$
.

(1996-CE-A MATH 1 #01) (3 marks)

1. Let
$$f(x) = \sin^3 x$$
.

Find
$$f'(x)$$
 and $f''(x)$.

(1997-CE-A MATH 1 #01) (3 marks)

1. Let
$$f(x) = \sqrt{3 + x^2}$$
. Find $f'(-1)$.

(1997-CE-A MATH 1 #02) (3 marks)

2.
$$P(8,1)$$
 is a point on the curve $y^2 + \sqrt[3]{x}y - 3 = 0$. Find the value of $\frac{dy}{dx}$ at P .

(1999-CE-A MATH 1 #01) (4 marks)

1. Find

(a)
$$\frac{d}{dx}\sin(x^2+1) ,$$

(b)
$$\frac{d}{dx} \left[\frac{\sin(x^2 + 1)}{x} \right]$$
.

(2000-CE-A MATH 1 #02) (4 marks)

2. Find

(a)
$$\frac{\mathrm{d}}{\mathrm{d}x}\sin^2 x$$
,

(b)
$$\frac{\mathrm{d}}{\mathrm{d}x}\sin^2(3x+1) \ .$$

(2001-CE-A MATH #01) (3 marks)

1. Find
$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{x^2}{2x+1} \right)$$
.

Past Papers Questions

(2002-CE-A MATH #03) (4 marks)

3. Let $x \sin y = 2002$.

Find
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
.

(2003-CE-A MATH #04) (4 marks)

4. Given that $3x^2 + 3y^2 - 2xy = 12$, find $\frac{dy}{dx}$ when x = 2, y = 0.

(2005-CE-A MATH #09) (6 marks)

- 9. (a) Find $\frac{d}{dx}\sin^3(x^2 + 1)$.
 - (b) Let $xy + y^2 = 2005$. Find $\frac{dy}{dx}$.

(2006-CE-A MATH #01) (3 marks)

1. Find
$$\frac{d}{dx} \left[\frac{\sin(2x+1)}{x} \right]$$
.

(2010-CE-A MATH #01) (4 marks)

- 1. Find
 - (a) $\frac{\mathrm{d}}{\mathrm{d}x}\cos(x^3+1) ,$
 - (b) $\frac{\mathrm{d}}{\mathrm{d}x} \left[x \cos(x^3 + 1) \right] .$

(PP-DSE-MATH-EP(M2) #07) (5 marks)

- 7. Let $f(x) = e^x(\sin x + \cos x)$.
 - (a) Find f'(x) and f''(x).
 - (b) Find the value of x such that f''(x) f'(x) + f(x) = 0 for $0 \le x \le \pi$.

(2014-DSE-MATH-EP(M2) #04) (3 marks)

4. Let
$$x = 2y + \sin y$$
. Find $\frac{d^2y}{dx^2}$ in terms of y.

Past Papers Questions

(2015-DSE-MATH-EP(M2) #02) (5 marks)

- 2. Let $y = x \sin x + \cos x$.
 - (a) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
 - (b) Let k be a constant such that $x \frac{d^2y}{dx^2} + k \frac{dy}{dx} + xy = 0$ for all real values of x. Find the value of k.

ANSWERS

(1994-CE-A MATH 1 #04) (6 marks)

(1996-CE-A MATH 1 #01) (3 marks)

$$1. \qquad f'(x) = 3\sin^2 x \cos x$$

$$f''(x) = 6\sin x \cos^2 x - 3\sin^3 x$$

(1997-CE-A MATH 1 #01) (3 marks)

1.
$$-\frac{1}{2}$$

(1997-CE-A MATH 1 #02) (3 marks)

$$2. \qquad \frac{\mathrm{d}y}{\mathrm{d}x} \bigg|_{(8,1)} = \frac{-1}{48}$$

(1999-CE-A MATH 1 #01) (4 marks)

- 1. (a) $2x \cos(x^2 + 1)$
 - (b) $\frac{2x^2\cos(x^2+1) \sin(x^2+1)}{x^2}$

(2000-CE-A MATH 1 #02) (4 marks)

- 2. (a) $2\sin x \cos x$
 - (b) $6\sin(3x+1)\cos(3x+1)$

(2001-CE-A MATH #01) (3 marks)

1.
$$\frac{2x(x+1)}{(2x+1)^2}$$

(2002-CE-A MATH #03) (4 marks)

$$3. \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-\tan y}{x}$$

(2003-CE-A MATH #04) (4 marks)

4

(2005-CE-A MATH #09) (6 marks)

- 9. (a) $6x\sin^2(x^2+1)\cos(x^2+1)$
 - (b) $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-y}{x + 2y}$

(2006-CE-A MATH #01) (3 marks)

1.
$$\frac{2x\cos(2x+1) - \sin(2x+1)}{x^2}$$

(2010-CE-A MATH #01) (4 marks)

- 1. (a) $-3x^2\sin(x^3+1)$
 - (b) $-3x^3\sin(x^3+1) + \cos(x^3+1)$

(PP-DSE-MATH-EP(M2) #07) (5 marks)

- 7. (a) $f'(x) = 2e^x \cos x$ $f''(x) = 2e^x (\cos x - \sin x)$
 - (b) $x = \frac{\pi}{4}$

(2014-DSE-MATH-EP(M2) #04) (3 marks)

4.
$$\frac{d^2y}{dx^2} = \frac{\sin y}{(2 + \cos y)^3}$$

(2015-DSE-MATH-EP(M2) #02) (5 marks)

2. (a) $\frac{\mathrm{d}y}{\mathrm{d}x} = x \cos x$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\sin x + \cos x$$

(b)
$$k = -2$$