Electronic and Electrical Engineering

Home [/] > EEE [/eee] > Staff [/eee/staff] > Professor David Stone

Professor David Stone

email: d.a.stone@sheffield.ac.uk [mailto:d.a.stone@sheffield.ac.uk]

tel: +44 (0) 114 222 5046

BEng (University of Sheffield) PhD (University of Liverpool) MIET, CEng

Research Interests

Prof Stone has interests in all facets of power electronics and energy storage, including:

- Development of 'smart' battery packs for all-electric and hybrid-electric vehicles, based on both Li-based chemistries,
 Ni-MH and VRLA cells containing cell state-of-charge monitoring and conditioning electronics to extend the lifetime of
 the cells. Incorporation of observer techniques into state of function monitoring for cells to increase operation lifetime
 and consumer confidence in battery technology.
- Investigation into second life operation of EV batteries for Grid support and localised energy storage.
- High efficiency EV-contact less battery charging
- Modelling and control of novel fluorescent lamps to improve the efficiency of light generation. Incorporation of
 physical lamp models (based on electron energy level interactions) into both Simulink and spice based packages has
 led to novel lamp models based on the physical interactions within the plasma
- Design, modelling and digital control of high-order resonant converter topologies for high frequency switched mode
 power supplies for use in 'white goods', and concentrates on the analysis and design of high order resonant converter
 topologies, with the inclusion of piezzo electric transformers where possible.
- Investigation into high frequency, high power, resonant converters for induction heating applications. Continuing work
 is now looking at the use of high frequency matrix converters (operating above 150kHz) for direct ac-ac conversion for
 heating applications.
- Design and digital control of matrix converters for aerospace and sub-sea applications in specialist environments.
- Power Electronics Packaging for high temperature and harsh environments, including high temperature gate drive design and thermal management of converters

David A Stone

Professor of Electrical Engineering, University of Sheffield , UK

Power Electronics Energy Storage Energy Conversion

GET MY OWN PROFILE

	All	Since 2013
Citations	3152	1869
h-index	27	21
i10-index	66	45

TITLE	CITED BY	YEAR
Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles BS Bhangu, P Bentley, DA Stone, CM Bingham IEEE transactions on vehicular technology 54 (3), 783-794	418	2005
Rotor loss in permanent-magnet brushless AC machines K Atallah, D Howe, PH Mellor, DA Stone IEEE Transactions on Industry Applications 36 (6), 1612-1618	350	2000
New battery model and state-of-health determination through subspace parameter estimation and state-observer techniques CR Gould, CM Bingham, DA Stone, P Bentley IEEE Transactions on Vehicular Technology 58 (8), 3905-3916	168	2009
Improved rotor-position estimation by signal injection in brushless AC motors, accounting for cross-coupling magnetic saturation Y Li, ZQ Zhu, D Howe, CM Bingham, DA Stone IEEE Transactions on Industry Applications 45 (5), 1843-1850	99	2009
Flat and projective character modules TJ Cheatham, DR Stone Proceedings of the American Mathematical Society, 175-177	78	1981
Analysis of CLL voltage-output resonantconverters using describing functions MP Foster, CR Gould, AJ Gilbert, DA Stone, CM Bingham IEEE Transactions on Power Electronics 23 (4), 1772-1781	71	2008
Parameter estimation for condition monitoring of PMSM stator winding and rotor permanent magnets K Liu, ZQ Zhu, DA Stone IEEE Transactions on Industrial Electronics 60 (12), 5902-5913	69	2013
Review of variable-flux permanent magnet machines R Owen, ZQ Zhu, JB Wang, DA Stone, I Urquhart Electrical Machines and Systems (ICEMS), 2011 International Conference on, 1-6	69	2011
The parallel combination of a VRLA cell and supercapacitor for use as a hybrid vehicle peak power buffer P Bentley, DA Stone, N Schofield Journal of power sources 147 (1-2), 288-294	61	2005
State-of-the-art piezoelectric transformer technology EL Horsley, MP Foster, DA Stone Power Electronics and Applications, 2007 European Conference on, 1-10	60	2007
Single phase matrix converter for radio frequency induction heating N Nguyen-Quang, DA Stone, CM Bingham, MP Foster Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM	47	2006
A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery state S Nejad, DT Gladwin, DA Stone Journal of Power Sources 316, 183-196	S 44	2016
Design of robust fuzzy-logic control systems by multi-objective evolutionary methods with hardware in the loop P Stewart, DA Stone, PJ Fleming Engineering Applications of Artificial Intelligence 17 (3), 275-284	43	2004
Observer techniques for estimating the state-of-charge and state-of-health of VRLABs for hybrid electric vehicles BS Bhangu, P Bentley, DA Stone, CM Bingham Vehicle Power and Propulsion, 2005 IEEE Conference, 10 pp.	42	2005
Normalized analysis and design of LCC resonant converters AJ Gilbert, CM Bingham, DA Stone, MP Foster IEEE Transactions on power Electronics 22 (6), 2386-2402	40	2007
Pathways for energy storage in the UK P Taylor, R Bolton, D Stone, XP Zhang, C Martin, P Upham Report for the centre for low carbon futures, York	37	2012
Design oriented analysis of fourth-order LCLC converters with capacitive output filter YA Ang, CM Bingham, MP Foster, DA Stone, D Howe IEE Proceedings-Electric Power Applications 152 (2), 310-322	36	2005
Matrix converters for sensorless control of PMSMs and other auxiliaries on deep-sea ROVs P Snary, B Bhangu, CM Bingham, DA Stone, N Schofield IEE Proceedings-Electric Power Applications 152 (2), 382-392	33	2005