Real Analysis: Sequences and Series

Arjun Vardhan

†

Created: 11th January 2022 Last updated: 28th June 2022

1 Convergent Sequences

- A sequence $\{p_n\}$ in metric space X is said to converge if there exists $p \in X$ such that for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $n \geq n \implies d(p_n, p) < \epsilon$. In this case, we say $\lim_{n \to \infty} p_n = p$ or $p_n \to p$.
- If $\{p_n\}$ does not converge, it diverges.
- If $p, p' \in X$ and $\{p_n\}$ converges to p and p', then p = p'. Proof: Let $\epsilon \geq 0$ be given. Then there exist integers N and N' such that $n \geq N \implies d(p_n, p) < \frac{\epsilon}{2}$ and $n \geq N' \implies d(p_n, p') < \frac{\epsilon}{2}$. Let $N^{\circ} = \max(N, N')$. So if $n \geq N^{\circ}$ then $d(p, p') \leq d(p, p_n) + d(p', p_n) < \epsilon$. Since ϵ was arbitrary, we get d(p, p') = 0.
- If $\{p_n\}$ converges, then $\{p_n\}$ is bounded. Proof: Suppose $p_n \to p$. There exists $N \in \mathbb{N}$ such that $n \geq N \implies d(p_n, p) < 1$. Let $r = \max(1, d(p_1, p), d(p_2, p), ..., d(p_N, p))$. Then $d(p_n, p) < r$ for all $n \in \mathbb{N}$.
- If $E \subset X$ and p is a limit point of E, then there is a sequence $\{p_n\}$ in E such that $\lim_{n \to \infty} p_n = p$. Proof: Since p is a limit point, for each $n \in \mathbb{N}$ there exists $p_n \in E$ such that $d(p_n, p) < \frac{1}{n}$. Given $\epsilon > 0$, choose N so that $N > \frac{1}{\epsilon}$. Then $n \geq N \implies n \geq \frac{1}{\epsilon} \implies \epsilon \geq \frac{1}{n} \implies d(p_n, p) < \epsilon$. So $p_n \to p$.
- Suppose $\{s_n\}$ and $\{t_n\}$ are sequences in \mathbb{C} , and $\lim_{n\to\infty} s_n = s$, $\lim_{n\to\infty} t_n = t$. Then:
 - 1. $\lim_{n\to\infty} s_n + t_n = s + t$. Proof: Given $\epsilon > 0$, there exist integers N_1, N_2 such that $n \ge N_1 \implies |s_n s| < \frac{1}{\epsilon}$ and $n \ge N_2 \implies |t_n t| < \frac{1}{\epsilon}$. Let $N_3 = \max(N_1, N_2)$. Then $n \ge N_3 \implies |(s_n + t_n) (s + t)| \le |s_n s| + |t_n t| < \epsilon$.
 - 2. $\lim_{n\to\infty} cs_n = cs$, $\lim_{n\to\infty} c + s_n = c + s$, for all $c \in \mathbb{C}$. Proof: Given $\epsilon > 0$, there exists N such that $n \geq N \implies |s_n s| < \epsilon$ which implies that $|cs_n cs| < \epsilon$ and $|(c + s_n) (c + s)| < \epsilon$.
 - 3. $\lim_{n\to\infty} s_n t_n = st$. Proof: Use the identity $s_n t_n st = (s_n s)(t_n t) + s(t_n t) + t(s_n s)$. Given $\epsilon > 0$, there exist integers N_1 and N_2 such that $n \ge N_1 \implies |s_n s| < \sqrt{\epsilon}$ and $n \ge N_2 \implies |t_n t| < \sqrt{\epsilon}$. If we let $N = \max(N_1, N 2)$, then $n \ge N \implies |(s_n s)(t_n t)| < \epsilon$ and thus $\lim_{n\to\infty} (s_n s)(t_n t) = 0$. By taking the limit of both sides of the identity, we get $\lim_{n\to\infty} s_n t_n st = 0$.
 - 4. $\lim_{n\to\infty}\frac{1}{s_n}=\frac{1}{s}$, where $s_n\neq 0$ for all $n\in\mathbb{N}$. Proof: Choose m such that $|s_n-s|<\frac{1}{2}|s|$. Then $|s_n|>\frac{1}{2}|s|$. Given $\epsilon>0$ there exists an integer N>m such that $n\geq N\implies |s_n-s|<\frac{1}{2}|s|^2\epsilon$. So for $n\geq N$, $\left|\frac{1}{s_n}-\frac{1}{s}\right|=\left|\frac{s_n-s}{s_ns}\right|<\frac{2}{|s|^2}|s_n-s|<\epsilon$.
- A sequence is called a null sequence if its limit is 0.
- If $a_n = k$ for all $n \ge K$ for some natural number K, then $\lim_{n \to \infty} a_n = k$. Proof: Let $\epsilon > 0$. Then, $n \ge K \implies d(a_n, k) = 0 < \epsilon$.
- Let $a_n \to l$ and $b_n \to m$ $(l, m \in \mathbb{R})$. Then:

- 1. If $a_n \ge 0$ for all $n \ge K$, for some $K \in \mathbb{N}$, then $l \ge 0$. Proof: Suppose l < 0. Let $\epsilon = \frac{|l|}{2}$. Since $a_n \ge 0$, $|a_n l| \ge |l| > \epsilon$ for all $n \in \mathbb{N}$, which is a contradiction. So $l \ge 0$.
- 2. If $a_n \leq b_n$ for all $n \geq K$, for some $K \in \mathbb{N}$, then $l \leq m$. Proof: Let $c_n = b_n a_n$. Then $c_n \geq 0$ for all $n \geq K$. Since $c_n \to m l$, $m l \geq 0$.
- 3. If $a_n \leq \alpha$ for all $n \geq K$, for some $K \in \mathbb{N}$, $\alpha \in \mathbb{R}$, then $l \leq \alpha$. Proof: Let $c_n = \alpha a_n$. Then $c_n \geq 0$ for all $n \geq K$. Since $c_n \to \alpha l$, $\alpha l \geq 0$.
- 4. If $a_n \geq \alpha$ for all $n \geq K$, for some $K \in \mathbb{N}$, $\alpha \in \mathbb{R}$, then $l \geq \alpha$. Proof: Let $c_n = a_n \alpha$. The proof follows similarly as above.
- Sandwich/Squeeze Theorem (V1): Let $\{a_n\}$ and $\{b_n\}$ be sequences in \mathbb{R} . If $0 \le b_n \le ka_n$, for all $n \ge K$, for some $k \in \mathbb{R}$, $K \in \mathbb{N}$, and $a_n \to 0$, then $b_n \to 0$. Proof: Let $\epsilon > 0$. As $a_n \to 0$, there exists M such that $n \ge M \implies |a_n| < \frac{\epsilon}{|k|+1}$. Then, $n \ge \max(K, M) \implies |b_n| \le |ka_n| = |k||a_n| < |k| \frac{\epsilon}{|k|+1} < \epsilon$. Thus, $b_n \to 0$.
- Sandwich/Squeeze Theorem (V2): Let $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ be sequences in \mathbb{R} . If $c_n \leq b_n \leq a_n$, for all $n \geq K$, for some $k \in \mathbb{R}, K \in \mathbb{N}$, and $a_n \to \alpha$, $c_n \to \alpha$, then $b_n \to \alpha$. Proof: For all $n \geq K$, $0 \leq b_n c_n \leq a_n c_n$. Since $(a_n c_n) \to 0$, $(b_n c_n) \to 0 \Longrightarrow b_n \to \alpha$.
- Let $\{a_n\}$ be a sequence in \mathbb{R} . If $a_n \to \alpha$, then $|a_n| \to |\alpha|$. Proof: Let $\epsilon > 0$. There exists K such that $n \ge K \implies |a_n \alpha| < \epsilon$. By the triangle inequality, $||a_n| |\alpha|| \le |a_n \alpha|$, and thus $|a_n| \to |\alpha|$.

2 Subsequences

- Given a sequence $\{p_n\}$, consider a sequence $\{n_k\}$ of positive integers where $n_1 < n_2 < n_3 < ...$ and so on. Then the sequence $\{p_{n_i}\}$ is a subsequence of $\{p_n\}$. $\{p_{n_i}\}$ converges, its limit is a subsequential limit of $\{p_n\}$.
- $n_k \ge k$ for all $k \in \mathbb{N}$.
- If $n_k = k + 1$, then $\{a_{n_k}\}$ is called the 1-tail of $\{a_n\}$.
- $\{p_n\}$ converges to p if and only if every subsequence of $\{p_n\}$ converges to p. Proof: Suppose every subsequence of $\{p_n\}$ converges to p. Then since $\{p_n\}$ is also a subsequence of itself, $\{p_n\}$ converges to p. Conversely, suppose $\{p_n\}$ converges to p and let $\{p_{n_k}\}$ be a subsequence of $\{p_n\}$. Given $\epsilon > 0$, there exists an integer M such that $n \ge M \implies |p_n p| < \epsilon$. Now choose some integer $N \in \{n_k\}$ such that N > M. Then $n \ge N \implies |p_{n_k} p| < \epsilon$, so $\{p_{n_k}\}$ converges to p.
- \bullet Bolzano-Weierstrass Theorem: Every bounded sequence in $\mathbb R$ has a convergent subsequence.

3 Infinite Limits and Properly Divergent Sequences

- Let $\{a_n\}$ be a sequence in \mathbb{R} such that given $K \in \mathbb{R}$, there exists M such that $n \geq M \implies a_n > K$. In this case, we say that $a_n \to \infty$, or a_n properly diverges to ∞ .
- Similarly, let $\{a_n\}$ be a sequence in \mathbb{R} such that given $K \in \mathbb{R}$, there exists M such that $n \geq M \implies a_n < K$. In this case, we say that $a_n \to -\infty$, or a_n properly diverges to $-\infty$.
- $a_n \to \infty$ if and only if $-a_n \to -\infty$.
- If $a_n \to \infty$, then $\{a_n\}$ is bounded below but not above. If $a_n \to -\infty$, then $\{a_n\}$ is bounded above but not below.
- $\{a_n\}$ has a subsequence which tends to ∞ if and only if $\{a_n\}$ is unbounded above. $\{a_n\}$ has a subsequence which tends to $-\infty$ if and only if $\{a_n\}$ is unbounded below.

• $a_n \to \infty$ if and only if every subsequence of $\{a_n\}$ tends to ∞ . $a_n \to -\infty$ if and only if every subsequence of $\{a_n\}$ tends to $-\infty$. Proof: If every subsequence of a_n tends to ∞ , then $a_n \to \infty$. Conversely, let $a_n \to \infty$. Let a_{n_k} be a subsequence of a_n . Given $K \in \mathbb{R}$, there exists M such that $n \ge M \implies a_n > K$. Therefore $k \ge M \implies n_k \ge M \implies a_{n_k} > K$. Thus $a_{n_k} \to \infty$. Proof for the $-\infty$ case is analogous.

4 Cauchy Sequences

- A sequence $\{p_n\}$ in a metric space X is a Cauchy sequence if for every $\epsilon > 0$, there is an integer N such that $d(p_m, p_n) < \epsilon$ if $m, n \ge N$.
- In any metric space X, every convergent sequence is a Cauchy sequence. Proof: Let $\{p_n\}$ be a sequence in X. If $p_n \to p$, then for all $\epsilon > 0$ there is an integer N such that $n \ge N \Longrightarrow d(p_n,p) < \epsilon$. Then $d(p_n,p_m) \le d(p,p_n) + d(p,p_m) < 2\epsilon$ whenever $n \ge N$ and $m \ge N$. So $\{p_n\}$ is a Cauchy sequence.
- In \mathbb{R}^k , every Cauchy sequence converges.
- A metric space in which every Cauchy sequence converges is said to be complete.
- A sequence $\{s_n\}$ in \mathbb{R} is said to be monotonically increasing if $s_n \leq s_{n+1}$ for all $n \in \mathbb{N}$.
- A sequence $\{s_n\}$ in \mathbb{R} is said to be monotonically decreasing if $s_n \geq s_{n+1}$ for all $n \in \mathbb{N}$.
- Monotone Convergence Theorem: If $\{s_n\}$ is monotonic, then $\{s_n\}$ converges if and only if it is bounded. Proof: Suppose $s_n \leq s_{n+1}$. Let E be the range of $\{s_n\}$. Since $\{s_n\}$ is bounded, let $s = \sup E$. Then $s_n \leq s$ for all $n \in \mathbb{N}$. For every $\epsilon > 0$, there exists an integer N such that $s \epsilon < s_N \leq s$ since if it were not so, then $s \epsilon$ would be an upper bound for E. Since $\{s_n\}$ is increasing, $n \geq N \implies s \epsilon < s_n \leq s < s + \epsilon$, and so $\{s_n\}$ converges to s. The converse has already been proved previously, and the proof where $\{s_n\}$ is decreasing is analogous.

5 Upper and Lower Limits

- We define the extended real numbers, $\tilde{\mathbb{R}} = \mathbb{R} \cup \{\infty, -\infty\}$, where $-\infty < r < \infty$ for all $r \in \mathbb{R}$. The arithmetic operations of \mathbb{R} are partially extended to $\tilde{\mathbb{R}}$:
 - 1. $a + \infty = \infty + a = \infty$ for $a \neq -\infty$
 - 2. $a \infty = -\infty + a = -\infty$ for $a \neq \infty$
 - 3. $\infty \infty$ is not defined.
- Let $\{s_n\}$ be a sequence in \mathbb{R} with the property that for every $M \in \mathbb{R}$ there is an integer N such that $n \geq N \implies s_n \geq M$. Then we say that $s_n \to \infty$. Similarly, if for every $M \in \mathbb{R}$ there an integer N such that $n \geq N \implies s_n \leq M$, we say that $s_n \to -\infty$.
- Let $\{a_n\}$ be a sequence in \mathbb{R} . We define the limit superior and limit inferior of $\{a_n\}$ as such:
 - 1. $\limsup a_n = \infty$ if and only if $\{a_n\}$ is unbounded above.
 - 2. If $\{a_n\}$ is bounded above, then let $M_k = \sup\{a_k, a_{k+1}, a_{k+2}, ...\}$. Then $\limsup a_n = \lim_{k \to \infty} M_k$.
 - 3. If $a_n \to -\infty$, then $M_k \to -\infty$ and $\limsup a_n = -\infty$.
 - 4. $\liminf a_n = -\infty$ if and only if $\{a_n\}$ is unbounded below.
 - 5. If $\{a_n\}$ is bounded below, then let $m_k = \inf\{a_k, a_{k+1}, a_{k+2}, \ldots\}$. Then $\liminf a_n = \lim_{k \to \infty} m_k$.
 - 6. If $a_n \to \infty$, then $m_k \to \infty$ and $\liminf a_n = \infty$.
- An alternate definition follows:
 - 1. $\limsup a_n = \infty$ if and only if $\{a_n\}$ is unbounded above.
 - 2. If $\{a_n\}$ is bounded above, and there exists $u \in \mathbb{R}$ such that, for all $\epsilon > 0$, there exists an integer M where $n \geq M \implies a_n < u + \epsilon$ and there exist infinitely many n where $a_n > u \epsilon$, then $\limsup a_n = u$.

- 3. Otherwise, $\limsup a_n = -\infty$.
- 4. $\liminf a_n = -\infty$ if and only if $\{a_n\}$ is unbounded below.
- 5. If $\{a_n\}$ is bounded below, and there exists $l \in \mathbb{R}$ such that, for all $\epsilon > 0$, there exists an integer M where $n \geq M \implies a_n > l \epsilon$ and there exist infinitely many n where $a_n < l + \epsilon$, then $\liminf a_n = l$.
- 6. Otherwise, $\liminf a_n = \infty$.
- Another equivalent definition: Let \mathbb{S} be the set containing all subsequential limits of a_n , including ∞ and $-\infty$. Then $\limsup a_n = \sup \mathbb{S}$ and $\liminf a_n = \inf \mathbb{S}$. These numbers exist since \mathbb{S} is non-empty. If $\{a_n\}$ is bounded, then there exists at least one real subsequential limit. If a_n is unbounded in either direction, then there exist subsequences that diverge in either direction.
- $\limsup a_n \le \limsup a_n$. Proof: If $\limsup a_n = \infty$ or $\liminf a_n = -\infty$, we are done. So suppose $\limsup a_n = -\infty$. Then $\sup \mathbb{S} = -\infty$ and thus $\mathbb{S} = \{-\infty\}$. So $\liminf a_n = -\infty$. If $\liminf a_n = \infty$, then by similar reasoning we can show that $\limsup a_n = \infty$. So let $\limsup a_n = \alpha \in \mathbb{R}$ and let $\liminf a_n = \beta \in \mathbb{R}$. $\alpha = \sup \mathbb{S}$ and $\beta = \inf \mathbb{S}$, so $\alpha \le \beta$.
- $a_n \to \infty$ if and only if $\liminf a_n = \limsup a_n = \infty$. Proof: Suppose $a_n \to \infty$. Then for all $\alpha \in \mathbb{R}$, there exists K such that $n \ge K \implies a_n > \alpha$. So a_n is bounded below.
- $a_n \to -\infty$ if and only if $\liminf a_n = \limsup a_n = -\infty$. Proof:
- If there exists $v \in \mathbb{R}$ such that given $\epsilon > 0$, there exists M such that $n \ge M \implies a_n < v + \epsilon$, then $v \ge \limsup a_n$. Proof: Let $\limsup a_n = \alpha$, and suppose $v < \alpha$. Then $\alpha = v + \delta$, where $\delta > 0$. There exists N such that $n \ge N \implies a_n < v + \frac{1}{2}\delta$. But there also exist infinitely many n such that $a_n > \alpha \frac{1}{2}\delta = v + \frac{1}{2}\delta$, so we have a contradiction. Thus, $v \ge \limsup a_n$.
- If there exists $v \in \mathbb{R}$ such that given $\epsilon > 0$, there exist infinitely many n such that $a_n > v \epsilon$, then $v \leq \limsup a_n$. Proof: Let $\limsup a_n = \alpha$, and suppose $v > \alpha$. Then $v = \alpha + \delta$, where $\delta > 0$. There exist infinitely many n such that $a_n > v \frac{1}{2}\delta = \alpha + \frac{1}{2}\delta$. But there also exists N such that $n \geq N \implies a_n < \alpha + \frac{1}{2}\delta$, and so we have a contradiction. Thus $v \leq \limsup a_n$.
- If there exists $v \in \mathbb{R}$ such that given $\epsilon > 0$, there exists M such that $n \ge M \implies a_n > v \epsilon$, then $v \le \liminf a_n$. Proof: Let $\liminf a_n = \alpha$, and suppose $v > \alpha$. Then $v = \alpha + \delta$, where $\delta > 0$. There exists N such that $n \ge N \implies a_n > v \frac{1}{2}\delta = \alpha + \frac{1}{2}\delta$. But there also exist infinitely many n such that $a_n < \alpha + \frac{1}{2}\delta$, so we have a contradiction. Thus $v \le \liminf a_n$.
- If there exists $v \in \mathbb{R}$ such that given $\epsilon > 0$, there exist infinitely many n such that $a_n < v + \epsilon$, then $v \ge \liminf a_n$. Proof: Let $\liminf a_n = \alpha$, and suppose $v < \alpha$. Then $\alpha = v + \delta$, where $\delta > 0$. There exist infinitely many n such that $a_n < v + \frac{1}{2}\delta = \alpha \frac{1}{2}\delta$. But there also exists N such that $n \ge N \implies a_n > \alpha \frac{1}{2}\delta$, so we have a contradiction. Thus $v \ge \liminf a_n$.
- For a sequence $\{a_n\}$ in \mathbb{R} , $\lim_{n\to\infty} a_n = a \in \mathbb{R}$ if and only if $\limsup a_n = \liminf a_n = a$. Proof: Let $\limsup a_n = \liminf a_n = a$. Then for all $\epsilon > 0$, there exist integers M,N such that $n \geq M \implies a_n < a + \epsilon$ and $n \geq N \implies a_n > a \epsilon$. Let $P = \max(M,N)$. Then $n \geq P \implies |a_n a| < \epsilon$. Conversely, suppose $a_n \to a$. For all $\epsilon > 0$, there exists K such that $n \geq K \implies a \epsilon < a_n < a + \epsilon$. Thus $a \leq \liminf a_n$ and $a \geq \limsup a_n$. Since $\liminf a_n \leq \limsup a_n$, we have $\liminf a_n = a$.
- $\liminf(-a_n) = -\limsup a_n$. Proof: Let $\limsup a_n = \alpha$. Then, for every $\epsilon > 0$ there exists M such that $n \ge M \implies a_n < \alpha + \epsilon$ and there exist infinitely many n such that $a_n > \alpha \epsilon$. So for every $\epsilon > 0$, there exists M such that $n \ge M \implies -a_n > -\alpha \epsilon$ and there exist infinitely many n such that $-a_n < -\alpha + \epsilon$. So $\liminf(-a_n) = -\alpha$.
- Let $a_n \leq b_n$ for all $n \geq K$. Then $\limsup a_n \leq \limsup b_n$. Proof: If $\limsup b_n = \infty$ then we are done. Let $\limsup b_n = b \in \mathbb{R}$.

6 Special Sequences

- If p > 0, then $\lim_{n \to \infty} \frac{1}{n^p} = 0$. Proof: Let $\epsilon > 0$. By the archimedean property, there exists $K \in \mathbb{N}$ such that $K > (\frac{1}{\epsilon})^{\frac{1}{p}}$. So $n \ge K \implies n^p > \frac{1}{\epsilon} \implies \frac{1}{n^p} = \left|\frac{1}{n^p} 0\right| < \epsilon$.
- If p > 0, then $\lim_{n \to \infty} p^{\frac{1}{n}} = 1$. Proof: If p = 1 the result is trivial. Let p > 1, and let $x_n = p^{\frac{1}{n}} 1$. Then $x_n > 0$ and by bernoulli's inequality, $1 + nx_n \le (1 + x_n)^n = p$. Thus $0 < x_n \le \frac{p-1}{n}$. By the squeeze theorem, $x_n \to 0$.
- $\lim_{n\to\infty} n^{\frac{1}{n}} = 1$. Proof: Let $x_n = n^{\frac{1}{n}} 1$. Then $x_n \ge 0$ and by the binomial theorem, $n = (1+x_n)^n \ge (n-1)(x_n)^2 = \frac{n(n-1)}{2}(x_n)^2$. Thus $0 \le x_n \le \left(\frac{2}{n-1}\right)^{\frac{1}{2}}$, for $n \ge 2$. By the squeeze theorem, $x_n \to 0$.
- If p > 0 and $\alpha \in \mathbb{R}$, then $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$. Proof:
- If |x| < 1, then $\lim_{n \to \infty} x^n = 0$. Proof:

7 Series

- Given a sequence $\{a_n\}$, let $S_n = \sum_{k=0}^n a_k$. Then, $\sum_{n=0}^\infty a_n = \lim_{n \to \infty} S_n$. We say that $\sum_{n=0}^\infty a_n$ converges if and only if S_n converges. If S_n properly diverges to $\pm \infty$, then $\sum_{n=0}^\infty a_n$ properly diverges.
- S_n is called the sequence of partial sums of the series $\sum_{n=0}^{\infty} a_n$.
- The Cauchy criterion can be restated in terms of series. S_n converges if and only if for all $\epsilon > 0$, there exists K such that $m \ge n \ge K \implies |S_n S_m| < \epsilon \implies \left| \sum_{k=0}^n a_k \sum_{k=0}^m a_k \right| < \epsilon \implies \left| \sum_{k=n}^m a_k \right| < \epsilon$.
- If we let m = n, then we get $|a_n| < \epsilon$. Thus, if $\sum a_n$ converges, then $a_n \to 0$. The converse is not necessarily true.
- $\sum a_n$ is said to be absolutely convergent if $\sum |a_n|$ converges.
- $\sum a_n$ is said to be conditionally convergent if $\sum |a_n|$ diverges but $\sum a_n$ converges.
- Let $x \in R$. Then, $x^+ = \max(x, 0)$ and $x^- = \max(-x, 0)$. So $x = x^+ x^-$ and $|x| = x^+ + x^-$.
- Let a_n be a sequence that is ultimately non-negative, and let A_n be the sequence of its partial sums. Then $\sum a_n$ converges if and only if A_n is bounded above. Proof: Suppose $\sum a_n$ converges. Then A_n converges and is thus bounded. Conversely, suppose A_n is bounded above. Since a_n is ultimately non-negative, A_n is ultimately monotonically increasing. Thus A_n and $\sum a_n$ converge.
- Basic Comparison Test: If $|a_n| \leq b_n$ for $n \geq N_1$, and if $\sum b_n$ converges, then $\sum a_n$ converges. If $c_n \geq d_n \geq 0$ for $n \geq N_2$, and if d_n diverges, then c_n diverges. Here, N_1, N_2 are fixed integers. Proof: Suppose $\sum b_n$ converges. Given $\epsilon > 0$, there exists K such that $m \geq n \geq K$ $\Longrightarrow \left|\sum_{k=n}^m b_k\right| < \epsilon$. Thus, $\left|\sum_{k=n}^m a_k\right| \leq \sum_{k=n}^m b_k \leq \left|\sum_{k=n}^m b_k\right| < \epsilon$. So $\sum a_n$ converges. Now, suppose $\sum d_n$ diverges. If $\sum c_n$ converges, then $\sum d_n$ must also converge. So $\sum c_n$ diverges.

- Comparison Test V1: If a_n and b_n are ultimately non-negative, and if there exist $M \in \mathbb{N}$, $\alpha, \beta > 0$ such that $n > M \implies \alpha a_n \le b_n \le \beta a_n$, then $\sum b_n$ converges if and only if $\sum a_n$ converges. Proof: Suppose $\sum b_n$ converges. Since $|\alpha a_n| = \alpha a_n \le b_n$ for n > M, $\sum \alpha a_n$ converges and thus $\sum a_n$ converges. Conversely, suppose $\sum a_n$ converges. Since $|b_n| = b_n \le \beta a_n$ for n > M, $\sum b_n$ converges.
- Comparison Test V2: If a_n and b_n are ultimately non-negative, and if there exist $M \in \mathbb{N}$ such that $n > M \implies 0 \le \frac{b_n}{b_{n+1}} \le \frac{a_n}{a_{n+1}}$, then $\sum a_n$ converges if $\sum b_n$ converges. Proof: Suppose $\sum b_n$ converges.
- Comparison Test V3: If a_n is ultimately non-negative and b_n is ultimately positive, and if $0 < \liminf \frac{a_n}{b_n} \le \limsup \frac{a_n}{b_n} < \infty$, then $\sum a_n$ converges if and only if $\sum b_n$ converges. *Proof:*
- Comparison Test V4: If a_n is ultimately non-negative and b_n is ultimately positive, and if $0 = \liminf \frac{a_n}{b_n} \le \limsup \frac{a_n}{b_n} < \infty$, then $\sum a_n$ converges if $\sum b_n$ converges. Proof:
- Comparison Test V5: If a_n is ultimately non-negative and b_n is ultimately positive, and if $0 < \liminf \frac{a_n}{b_n} \le \limsup \frac{a_n}{b_n} = \infty$, then $\sum b_n$ converges if $\sum a_n$ converges. Proof:
- Limit Comparison Test: Let x_n and y_n be strictly positive sequences and $r = \lim \frac{x_n}{y_n}$. If $r \neq 0$ then $\sum x_n$ converges if and only if $\sum y_n$ converges. If r = 0 then $\sum x_n$ converges if $\sum y_n$ converges. Proof: Let $r \neq 0$. Since $r = \lim \frac{x_n}{y_n}$, there exists K such that $n \geq K \implies \frac{1}{2}r \leq \frac{x_n}{y_n} \leq 2r \implies (\frac{1}{2}r)y_n \leq x_n \leq (2r)y_n$. Comparison Test V1 gives us the desired result. Now let r = 0. Then there exists K such that $0 < x_n \leq y_n$ for $n \geq K$. The Basic Comparison Test gives the desired result. \blacksquare

8 Series of Non-negative Terms

- If $0 \le x < 1$, then $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$. If $x \ge 1$, this series diverges. Proof: If $x \ne 1$, then $X_n = \sum_{k=0}^n x^k = \frac{1-x^{n-1}}{1-x}$. If $0 \le x < 1$, then $\lim_{n \to \infty} \frac{1-x^{n-1}}{1-x} = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$. If x = 1, then the sum is $1+1+1+\dots$ which diverges. If x > 1 then $\frac{1-x^{n-1}}{1-x}$ diverges.
- $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if and only if p > 1. Proof: If $p \le 0$, then $\frac{1}{n^p}$ does not tend to 0, and thus the series diverges.

9 Euler's Number

- We define Euler's number as: $e = \sum_{n=0}^{\infty} \frac{1}{n!}$.
- $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$. Proof:
- *e* is irrational. *Proof:*

10 Root and Ratio Tests

• Root Test: Let (a_n) be a sequence in \mathbb{R} , and let $\limsup |a_n|^{\frac{1}{n}} = l$. Then, $\sum a_n$ diverges if l > 1, $\sum a_n$ converges if l < 1, and the test is inconclusive if l = 1. Proof: Suppose l < 1. Choose x such that l < x < 1. Then there exists M such that $n \ge M \implies |a_n|^{\frac{1}{n}} > x \implies |a_n| > x^n$. Since x < 1, $\sum x^n$ converges. So $\sum a_n$ converges absolutely by the comparison test. If l > 1, then there exist infinitely many n such that $|a_n| > 1$. Therefore a_n does not tend to 0 and thus $\sum a_n$ diverges. \blacksquare

• Ratio Test: Let (a_n) be a sequence in $\mathbb R$ that is ultimately non-zero. Let $\liminf \left| \frac{a_{n+1}}{a_n} \right| = r$, and $\limsup \left| \frac{a_{n+1}}{a_n} \right| = R$. Then, $\sum a_n$ diverges if r > 1, $\sum a_n$ converges absolutely if R < 1, and the test is inconclusive if $r \le 1 \le R$. Proof: Suppose R < 1. Then there exists $x \in \mathbb R$ such that R < x < 1. Thus there exists K such that $n \ge K \implies \left| \frac{a_{n+1}}{a_n} \right| < x$. Since $x = \frac{x^{n+1}}{x^n}$, we have $\left| \frac{a_{n+1}}{a_n} \right| < \frac{x^{n+1}}{x^n} \implies \left| \frac{a_n}{a_{n+1}} \right| > \frac{x^n}{x^{n+1}}$. Since $\sum x^n$ converges, by V2 of the comparison test, $\sum |a_n|$ converges. Now, suppose x > 1. Let $x = \frac{1}{2}(x - 1)$. Then, there exists x = x + 1 such that $x \ge x + 1$ such that x

11 Rearrangements

- Let $\pi : \mathbb{N} \to \mathbb{N}$ be bijective, i.e, π is a permutation of \mathbb{N} . Let (a_n) be a sequence of complex numbers, and let $c_n = a_{\pi(n)}$. Then (c_n) is called a rearrangement of (a_n) and $\sum c_n$ is called a rearrangement of $\sum a_n$.
- Given (a_n) , a sequence of complex numbers and natural numbers $n_1 < n_2 < ...n_k < ...$, let $b_1 = (a_1 + ... + a_{n_1})$ and $b_{k+1} = (a_{n_k+1} + ... + a_{n_{k+1}})$. Then $\sum b_n$ is the series obtained from $\sum a_n$ by bracketing.

7