Nikola B. Kovachki

1200 E. California Blvd., MC 305-16, Pasadena, California 91125, USA nkovachki@caltech.edu • +1 (323) 423-6884 • https://kovachki.github.io/

EDUCATION

California Institute of Technology, Pasadena, CA, USA

Ph.D. in Applied and Computational Mathematics

Oct 2016 – Present

• Cumulative GPA: 4.0/4.0

Cumulative GPA: 3.9 / 4.0

· Adviser: Prof. Andrew M. Stuart

■ B. Sc. in Mathematics

Oct 2012 – Jun 2016

RESEARCH EXPERIENCE

California Institute of Technology, Pasadena, CA, USA

Oct 2016 – Present

Research Assistant

Teaching Assistant

Entos Inc., Los Angeles, CA, USA

May 2020 – Aug 2020

Machine Learning Researcher (Intern)

PUBLICATIONS

PUBLISHED

- [1] <u>Kovachki N. B.</u>, Liu B., Sun X., Zhou H., Bhattacharya K., Ortiz M., Stuart A. M., "Multiscale Modeling of Materials: Computing, Data Science, Uncertainty and Goal-oriented Optimization," Accepted: *Mechanics of Materials*, (2022).
- [2] Liu B., <u>Kovachki N.B.</u>, Li Z., Azizzadenesheli K., Stuart A.M., Bhattacharya K., Anandkumar A., "A Learning-based Multiscale Method and its Application to Inelastic Impact Problems," *Journal of the Mechanics and Physics of Solids*, vol. 158, (2022).
- [3] Bhattacharya K., Hosseini B., Kovachki N.B., Stuart A.M., "Model Reduction and Neural Networks for Parametric PDE(s)," *The SMAI journal of computational mathematics*, vol. 7, (2021).
- [4] <u>Kovachki N.B.</u>, Stuart A.M., "Continuous Time Analysis of Momentum Methods," *Journal of Machine Learning Research*, vol. 22, no. 17, (2021)
- [5] Li Z., <u>Kovachki N.B.</u>, Azizzadenesheli K., Liu B., Stuart A.M., Bhattacharya K., Anandkumar A., "Fourier Neural Operator for Parametric Partial Differential Equations," *9th International Conference on Learning Representations (ICLR)*, (2021).
- [6] Li Z., <u>Kovachki N.B.</u>, Azizzadenesheli K., Liu B., Stuart A.M., Bhattacharya K., Anandkumar A., "Multipole graph neural operator for parametric partial differential equations," *Advances in Neural Information Processing Systems* 33, (2020).
- [7] Cheng L., <u>Kovachki N.B.</u>, Welborn M., and Miller T.F. III, "Regression-clustering for improved accuracy and training cost with molecular-orbital-based machine learning," *J. Chem. Theory Comput.*, vol. 15, no. 6668, (2019).
- [8] <u>Kovachki N.B.</u>, Stuart A.M., "Ensemble Kalman Inversion: A Derivative-Free Technique For Machine Learning Tasks," *Inverse Problems*, vol. 35, no. 9, (2019).

PREPRINTS

- [1] Li Z., Zheng H., <u>Kovachki N.B.</u>, Jin D., Chen H., Liu B., Azizzadenesheli K., and Anandkumar A., "Physics-Informed Neural Operator for Learning Partial Differential Equations," Submitted: *ICLR* 2022, arXiv: 108.12515, (2021).
- [2] Hoop M.V., <u>Kovachki N.B.</u>, Nelsen N.H., and Stuart A.M., "Convergence Rates for Learning Linear Operators from Noisy Data," Submitted: *SIAM JUQ*, arXiv: 108.12515, (2021).
- [3] <u>Kovachki N.B.</u>, Li Z., Liu B., Azizzadenesheli K., Bhattacharya K., Stuart A.M., and Anandkumar A., "Neural Operator: Learning Maps Between Function Spaces," Submitted: *JMLR*, arXiv: 2108.08481, (2021).
- [4] Li Z., <u>Kovachki N.B.</u>, Azizzadenesheli K., Liu B., Stuart A.M., Bhattacharya K., Anandkumar A., "Markov Neural Operators for Learning Chaotic Systems," arXiv: 2106.06898, (2021).

- [5] <u>Kovachki N.B.</u>, Lanthaler S., Mishra S., "On Universal Approximation and Error Bounds for Fourier Neural Operators," Submitted: *JMLR*, arXiv: 2107.07562, (2021).
- [6] <u>Kovachki N.B.</u>, Baptsita R., Hosseini B., Marzouk Y., "Conditional Sampling With Monotone GANs," arXiv:2006.06755, (2020).
- [7] Li Z., <u>Kovachki N.B.</u>, Azizzadenesheli K., Liu B., Stuart A.M., Bhattacharya K., Anandkumar A., "Neural Operator: Graph Kernel Network for Partial Differential Equations," arXiv:2003.03485, (2020).

	(2020).	
AWARDS	■ Amazon AI4Science Fellowship	2020 – 2021
	■ Computing and Mathematical Sciences First Year Graduate Student Fellowship	2016 – 2017
INVITED TALKS &	Deep Learning on Function Spaces	
PRESENTATIONS	■ Rough Paths Interest Group. <i>Talk</i> (Virtual).	Nov 2021
	 Deep Learning and Inverse Problems (INI MDLW02). Talk. 	Sep 2021
	■ Computation and Learning in High Dimensions (MFO). <i>Talk</i> .	Aug 2021
	■ Foundations of Bayesian Inference for Complex Statistical Models (MFO). <i>Talk</i> (Virtual).	May 2021
	■ The Aerospace Corporation. <i>Talk</i> (Virtual).	Dec 2020
	■ SIAM Conference on Mathematics of Data Science (MDS20). <i>Talk</i> (Virtual).	Jun 2020
	■ MEDE-ARL Fall Meeting. <i>Poster</i> .	Oct 2019
	■ MEDE-ARL Fall Meeting. <i>Poster</i> .	Oct 2018
	Conditional Sampling via Measure Transport	
	 Second Symposium on Machine Learning and Dynamical Systems. Talk (Virtual). 	Sep 2020
	■ SIAM Conference on Imaging Science (IS20). <i>Talk</i> (Virtual).	Jul 2020
	Understanding Momentum through Continuous Time Analysis	
	• International Congress on Industrial and Applied Mathematics (ICIAM). Talk.	Jul 2019
	 Applied Inverse Problems (AIP). Talks. 	Jul 2019
	 Inverse Problems and Machine Learning (IPML). Talk. 	May 2019
	 SIAM Conference on Applications of Dynamical Systems (DS19). Talk. 	May 2019
	Regression Clustering for Molecular Predictions	
	 CMS 273 (Schmidt Futures). Talk. 	Mar 2019
	Ensemble Kalman Inversion for Machine Learning	
	 International Congress on Industrial and Applied Mathematics (ICIAM). Talk. 	Jul 2019
	 Applied Inverse Problems (AIP). Talks. 	Jul 2019
	 SIAM Conference on Computational Science and Engineering (CSE19). Talk. 	Feb 2019
	 Southern California Applied Mathematics Symposium (SOCAMS). Poster. 	Apr 2018
	 UQ for Inverse Problems in Complex Systems (INI UNQW04). Poster. 	Apr 2018
	■ Inverse Problems and Machine Learning (IPML). <i>Talk</i> .	Feb 2018
ORGANIZING	■ SIAM Conference on Uncertainty Quantification (UQ22)	Apr 2022
	Minisymposium: Operator Learning in PDEs, Inverse Problems, and UQ	
TEACHING	TEACHING ASSISTANTSHIP	
	Clustering and Classification on Graphs (ACM 270-2)	2020
	■ Linear Analysis with Applications (CMS/ACM/IDS 107)	2019
	■ Linear Analysis with Applications (CMS/ACM/IDS 107)	2018
	■ Linear Analysis with Applications (CMS/ACM/IDS 107)	2017
	■ Introduction to Probability Models (ACM/EE 116)	2016
	■ Technical Seminar Presentations (E 10)	2016

REVIEWING JOURNALS

2021 – Present
2021 – Present
2021 – Present
2020 – Present
2020 – Present
2020 – Present

CONFERENCES

■ International Conference on Learning Representations (ICLR)	2022
■ International Conference on Learning Representations (ICLR)	2021
 Neural Information Processing Systems (NeurIPS) 	2021
 Mathematical and Scientific Machine Learning (MSML2021) 	2021
■ International Conference on Machine Learning (ICML)	2021
■ International Conference on Learning Representations (ICLR)	2020
 Mathematical and Scientific Machine Learning (MSML2020) 	

PATENTS

- U.S. Patent 16/817,489: "Systems and Methods for Determining Molecular Structures with Molecular-Orbital-Based Features," *Filled* September 17, 2020.
- U.S. Patent 62/817,344: "Harvesting, Databasing, And Regressing Molecular-Orbital-Based Features For Accelerating Quantum Chemistry," Filled March 12, 2019.

SKILLS

- Python (numpy, scipy, sklearn, pytorch, pytorch-geometric)
- MATLAB
- Mathematica
- Julia
- C/C++

LANGUAGES

English (fluent), Bulgarian (native).

REFERENCES

■ Professor Andrew M. Stuart

Bren Professor of Computing and Mathematical Sciences California Institute of Technology 1200 E California Blvd, Pasadena, CA 91125 astuart@caltech.edu • +1 (626) 395 4076

■ Professor Animashree Anandkumar

Bren Professor of Computing and Mathematical Sciences Director of Machine Learning Research at NVIDIA California Institute of Technology 1200 E California Blvd, Pasadena, CA 91125 anima@caltech.edu

■ Professor Kaushik Bhattacharya

Howell N. Tyson, Sr. Professor of Mechanics California Institute of Technology 1200 E California Blvd, Pasadena, CA 91125 bhatta@caltech.edu • +1 (626) 395 8306

■ Professor Thomas F. Miller III

Professor of Chemistry California Institute of Technology 1200 E California Blvd, Pasadena, CA 91125 tfm@caltech.edu • +1 (626) 395 6588