Road Accidents Analysis & Severity Prediction

Importing necessary Libraries

```
In [4]: %%time
        import numpy as np
        import pandas as pd
       import matplotlib.pyplot as plt
        import warnings
        import requests
       import seaborn as sns
        import plotly.express as px
       import plotly.graph_objects as go
        from sklearn.preprocessing import StandardScaler
        from sklearn.preprocessing import PolynomialFeatures
        from sklearn.model_selection import cross_val_score,train_test_split
        from sklearn.tree import DecisionTreeRegressor
        from sklearn.linear_model import LinearRegression
        from sklearn.linear_model import Lasso
        from sklearn.pipeline import make_pipeline
        from sklearn.model_selection import GridSearchCV
        from sklearn.svm import SVR
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.model_selection import GridSearchCV
        from sklearn.neighbors import KNeighborsRegressor
        from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score
        CPU times: total: 3.38 s
        Wall time: 8.49 s
```

Loading Dataset

In [5]: data = pd.read_excel('RTAdata.xlsx')
 data.head()

Out[5]:

	Time	Day_of_week	Age_band_of_driver	Sex_of_driver	Educational_level	Vehicle_driver_relation	Driving_experience	Type_of_vehicle	Owner_of_vehicle
0	17:02:00	Monday	18-30	Male	Above high school	Employee	1-2yr	Automobile	Owner
1	17:02:00	Monday	31-50	Male	Junior high school	Employee	Above 10yr	Public (> 45 seats)	Owner
2	17:02:00	Monday	18-30	Male	Junior high school	Employee	1-2yr	Lorry (41-100Q)	Owner
3	01:06:00	Sunday	18-30	Male	Junior high school	Employee	5-10yr	Public (> 45 seats)	Governmental
4	01:06:00	Sunday	18-30	Male	Junior high school	Employee	2-5yr	NaN	Owner

5 rows × 32 columns

In [6]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 12316 entries, 0 to 12315
Data columns (total 32 columns):

#	Column	Non-Null Count	Dtype
0	Time	12316 non-null	object
1	Day_of_week	12316 non-null	object
2	Age_band_of_driver	12316 non-null	object
3	Sex_of_driver	12316 non-null	object
4	Educational_level	11575 non-null	object

```
Cleaning Dataset
 In [7]: # Remove rows with "Unknown" values
         df_cleaned = data[~data.apply(lambda row: row.astype(str).str.contains('Unknown').any(), axis=1)]
         cleaned_file_path = 'cleaned_dataset.xlsx
         df_cleaned.to_excel(cleaned_file_path, index=False)
         print(f"Cleaned data saved to {cleaned_file_path}")
         Cleaned data saved to cleaned dataset.xlsx
 In [8]: data1 = pd.read_excel('cleaned_dataset.xlsx')
         data1.info()
         <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 7417 entries, 0 to 7416
          Data columns (total 32 columns):
In [10]: data1.describe().T
Out[10]:
                                                      std min 25% 50% 75% max
                                    count
                                            mean
          Number_of_vehicles_involved 7417.0 2.036807 0.668984 1.0 2.0 2.0 2.0 7.0
                Number_of_casualties 7417.0 1.586086 1.042470 1.0 1.0 1.0 2.0 8.0
                   Casualty_severity 4675.0 2.898610 0.313694 1.0 3.0 3.0 3.0 3.0
In [11]: #skewness
         selected_columns1=["Number_of_vehicles_involved","Number_of_casualties"]
         skewness = data1[selected_columns1].skew()
         print(skewness)
         Number_of_vehicles_involved 1.260581
         Number_of_casualties
                                         2.227987
         dtype: float64
In [12]: for i in data1.columns:
             if data1[i].dtypes== object:
                  print(i)
                 print(data1[i].unique())
                 print(data1[i].nunique())
                 print()S
            Day_of_week
            ['Monday' 'Sunday' 'Wednesday' 'Friday' 'Saturday' 'Thursday' 'Tuesday']
            Age_band_of_driver
            ['18-30' '31-50' 'Under 18' 'Over 51']
            Sex_of_driver
            ['Male' 'Female']
            Educational_level
            ['Above high school' 'Junior high school' 'Elementary school' nan
              'High school' 'Illiterate' 'Writing & reading']
            Vehicle_driver_relation
            ['Employee' 'Owner' nan 'Other']
            Driving_experience
            ['1-2yr' 'Above 10yr' '5-10yr' '2-5yr' 'No Licence' 'Below 1yr' nan
              'unknown']
            Type_of_vehicle
            ['Automobile' 'Public (> 45 seats)' 'Lorry (41-1000)' nan 'Lorry (11-400)'
             'Public (13-45 seats)' 'Long lorry' 'Public (12 seats)' 'Taxi'
'Pick up upto 100' 'Stationwagen' 'Other' 'Ridden horse' 'Motorcycle'
'Turbo' 'Bicycle' 'Special vehicle' 'Bajaj']
```

Correlation

Cramer's V for Categorical Variables

```
In [73]: #for categorical variables
         from scipy.stats import chi2_contingency selected_columns2=["Age_band_of_casualty","Sex_of_casualty","Type_of_vehicle","Road_surface_type","Road_surface_conditions",
                             "Light_conditions", "Type_of_collision", "Accident_severity"]
         data2 = data1[selected_columns2]
         # Function to calculate Cramér's V
         def cramers_v(confusion_matrix):
             chi2 = chi2_contingency(confusion_matrix)[0]
             n = confusion_matrix.sum().sum()
             r, k = confusion_matrix.shape
             return np.sqrt(chi2 / (n * (min(r, k) - 1)))
         # Calculate Cramér's V for each variable with respect to the target variable
         target_variable = 'Accident_severity'
         results = {}
         for variable in data2.columns:
             if variable != target_variable:
                 contingency_table = pd.crosstab(data2[variable], data2[target_variable])
                 cramers_v_value = cramers_v(contingency_table)
                 results[variable] = cramers_v_value
         # Display the results
         for variable, value in results.items():
             print(f"Cramér's V for {variable} with respect to {target_variable}: {value}")
         Cramér's V for Age_band_of_casualty with respect to Accident_severity: 0.04100781145890263
         Cramér's V for Sex_of_casualty with respect to Accident_severity: 0.016888876631200308
         Cramér's V for Type_of_vehicle with respect to Accident_severity: 0.060166950245805886
         Cramér's V for Road_surface_type with respect to Accident_severity: 0.022444251595571993
         Cramér's V for Road_surface_conditions with respect to Accident_severity: 0.018750916611646087
         Cramér's V for Light_conditions with respect to Accident_severity: 0.0554158069505708
         Cramér's V for Type_of_collision with respect to Accident_severity: 0.035515244289020614
```

Exploratory Data Analysis (EDA)

Pie Charts for Gender Distribution, Injury Type and Cause of Accidents

Violin plot for Casualties by Road-surface type In [19]: fig4=px.violin(data1,data1['Road_surface_type'], data1['Number_of_casualties'],color='Accident_severity', template='seaborn') Accident_severity Slight Injury Serious Injury Fatal injury Fatal injury

Bar Charts for Casualties by Day of the week, Education-level

Earth roads

Asphalt roads

Gravel roads

Road_surface_type

Other

Asphalt roads with some distress

Bar diagram above doesn't help us, so we will create 3-hour interval groups.

```
Bar diagram above doesnt help us, so we will create 3-hour interval groups
In [11]: print(data1['Time'].dtypes)
            # Convert time to 3-hour interval groups
            bins = pd.to_timedelta(['00:00:00', '03:00:00', '06:00:00', '09:00:00', '12:00:00', '15:00:00', '18:00:00', '21:00:00', '23:59:59'])

labels = ['00:00-02:59', '03:00-05:59', '06:00-08:59', '09:00-11:59', '12:00-14:59', '15:00-17:59', '18:00-20:59', '21:00-23:59']
            data1['time_group'] = pd.cut(pd.to_datetime(data1['Time'],
                                                                       format='%H:%M:%S').dt.time.apply(lambda x: pd.to_timedelta(str(x))),
                                                  bins=bins, labels=labels)
            print(data1[['Time', 'time_group']])
            object
                         Time time_group
                    17:02:00 15:00-17:59
            1
                    17:02:00 15:00-17:59
                   17:02:00 15:00-17:59
            2
            3
                    01:06:00 00:00-02:59
            4
                    01:06:00 00:00-02:59
```

Bar diagram for Casualties by Time of the day

Casualties by Time of the day

Data Pre-processing In [13]: #making a duplicate dataset data3=data1.copy(deep=True) data3.head() Out[13]: sualty Age_band_of_casualty Casualty_severity Work_of_casuality Fitness_of_casuality Pedestrian_movement Cause_of_accident Accident_severity time_group Not a Pedestrian Moving Backward Slight Injury 15:00-17:59 Overtaking NaN NaN NaN NaN NaN Not a Pedestrian Slight Injury 15:00-17:59 Changing lane to Male 31-50 3.0 Driver NaN Not a Pedestrian Serious Injury 15:00-17:59 Changing lane to Not a Pedestrian 18-30 3.0 Driver Normal Slight Injury 00:00-02:59 emale the right NaN NaN NaN NaN Not a Pedestrian Slight Injury 00:00-02:59 NaN Overtaking

Selecting required columns

In [34]: data_for_model.head()

dtypes: category(1), object(7)

-		E to a 1	١.
···	uu	34	

		time_group	Accident_severity	Day_of_week	Type_of_vehicle	Road_surface_type	Type_of_collision	Casualty_class	Sex_of_casualty
(0	15:00-17:59	Slight Injury	Monday	Automobile	Asphalt roads	Collision with roadside-parked vehicles	NaN	NaN
	1	15:00-17:59	Slight Injury	Monday	Public (> 45 seats)	Asphalt roads	Vehicle with vehicle collision	NaN	NaN
1	2	15:00-17:59	Serious Injury	Monday	Lorry (41-100Q)	Asphalt roads	Collision with roadside objects	Driver or rider	Male
	3	00:00-02:59	Slight Injury	Sunday	Public (> 45 seats)	Earth roads	Vehicle with vehicle collision	Pedestrian	Female
4	4	00:00-02:59	Slight Injury	Sunday	NaN	Asphalt roads	Vehicle with vehicle collision	NaN	NaN

Since data type is object, we need to convert them into nominal type before appling any machine learning technique.

```
In [37]: data_RF=data_for_model.copy(deep=True)
         data_RF.head()
         data_RF.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 7417 entries, 0 to 7416
         Data columns (total 8 columns):
                          Non-Null Count Dtype
         # Column
         0 time_group 7417 non-null in
          1 Accident_severity 7417 non-null int32
          2 Day_of_week 7417 non-null int32
3 Type_of_vehicle 7417 non-null int32
          4 Road_surface_type 7417 non-null int32
          5 Type_of_collision 7417 non-null int32
6 Casualtv class 7417 non-null int32
             Casualty_class 7417 non-null
          7 Sex_of_casualty 7417 non-null int32
         dtypes: int32(8)
```

Random-Forest Classifier

```
In [57]: from sklearn.model_selection import train_test_split
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.model selection import GridSearchCV
          from sklearn.metrics import confusion_matrix
          from sklearn.metrics import classification_report
          from sklearn.metrics import accuracy_score,recall_score,f1_score,precision_score
         x1=data RF.drop('Accident severity',axis=1)
         y1=data_RF['Accident_severity']
         xtrain, xtest, ytrain, ytest = train_test_split(x1,y1,test_size=0.30)
          rf = RandomForestClassifier()
          rf.fit(xtrain,ytrain)
         ypred=rf.predict(xtest)
          print('confusion matrix :',confusion_matrix(ytest,ypred))
          print('classification report:',classification_report(ytest,ypred))
         print('accuracy :',round(accuracy_score(ytest,ypred),2))
print('precision :',round(precision_score(ytest,ypred,average='weighted'),2))
          print('recall :',round(recall_score(ytest,ypred,average='weighted'),2))
          print('f1 :',round(f1_score(ytest,ypred,average='weighted'),2))
          print()
```

```
confusion matrix : [[ 2 1 23]
[ 1 14 294]
[ 1 83 1807]]
classification report:
                               precision recall f1-score support
         0
                0.50
                      0.08
                                0.13
                                          26
         1
                0.14
                        0.05
                                 0.07
                                           309
                      0.96
                                0.90
                0.85
                                          1891
   accuracy
                                0.82
                                          2226
             0.50 0.36
                              0.37
0.78
  macro avg
                                          2226
weighted avg
               0.75
                      0.82
                                          2226
accuracy : 0.82
precision: 0.75
recall : 0.82
f1: 0.78
```

```
In [58]: #variance importance and Gini coefficient
    feature_importances = rf.feature_importances_
    features = x1.columns
    importance_df = pd.DataFrame({
        'reature': features,
        'Importance': feature_importances
})

importance_df = importance_df.sort_values(by='Importance', ascending=False)

print('Feature Importances (Variance Importance / Gini Coefficient):')

print(importance_df)

import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(12, 8))
    sns.barplot(x='Importance', y='Feature', data=importance_df)
    plt.title('Feature Importances (Variance Importance / Gini Coefficient)')
    plt.show()
```

```
Feature Importances (Variance Importance / Gini Coefficient):

Feature Importance

Type_of_vehicle 0.274236

Day_of_week 0.224294

Type_of_coulision 0.211873

Type_of_collision 0.130441

Casualty_class 0.061067

Sex_of_casualty 0.050696

Road_surface_type 0.047393
```


K-Nearest Neighbour

```
In [41]: data_KNN=data_for_model.copy(deep=True)
          data_KNN.head()
          data_KNN.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 7417 entries, 0 to 7416
           Non-Null Count Dtype

0 time_group 7417 non avii
          Data columns (total 8 columns):
           0 time_group 7417 non-null int32
1 Accident_severity 7417 non-null int32
               Day_of_week 7417 non-null int32
Type_of_vehicle 7417 non-null int32
           2 Day_of_week
           3
           4 Road_surface_type 7417 non-null int32
5 Type_of_collision 7417 non-null int32
6 Casualty_class 7417 non-null int32
           7 Sex_of_casualty 7417 non-null int32
          dtypes: int32(8)
          memory usage: 231.9 KB
In [61]: from sklearn.neighbors import KNeighborsClassifier
          X2 = data_KNN.drop('Accident_severity', axis=1)
          y2 = data_KNN['Accident_severity']
          X_train X_test, y_train, y_test = train_test_split(X2, y2, test_size=0.2)
          scaler = StandardScaler()
          X_train = scaler.fit_transform(X_train)
          X_test = scaler.transform(X_test)
           knn = KNeighborsClassifier(n_neighbors=5)
          knn.fit(X_train, y_train)
```

```
In [53]: y_pred = knn.predict(X_test)
         accuracy = accuracy_score(y_test, y_pred)
         print(f'Accuracy: {accuracy}')
         cm = confusion_matrix(y_test, y_pred)
         print('Confusion Matrix:')
         print(cm)
         print('Classification Report:')
         print(classification_report(y_test, y_pred))
         Accuracy: 0.8140161725067385
         Confusion Matrix:
         [[ 0 1 13]
[ 0 5 222]
[ 4 36 1203]]
         Classification Report:
                      precision recall f1-score support
                   0
                          0.00
                                 0.00
                                            0.00
                                                         14
                                 0.02
0.97
                   1
                          0.12
                                             0.04
                                                         227
                   2
                          0.84
                                              0.90
                                                        1243
                                              0.81
                                                        1484
            accuracy
                                 0.33
                         0.32
                                                        1484
            macro avg
                                              0.31
         weighted avg
                         0.72
                                 0.81
                                              0.76
                                                        1484
```

Permutation Importance

XGBOOST(eXtreme Gradient Boosting)

```
In [84]: import xgboost as xgb
         X3 = data_XGB.drop('Accident_severity', axis=1)
         y3 = data_XGB['Accident_severity']
         X_train, X_test, y_train, y_test = train_test_split(X3, y3, test_size=0.2)
         dtrain = xgb.DMatrix(X_train, label=y_train)
         dtest = xgb.DMatrix(X_test, label=y_test)
         params = {'objective': 'multi:softmax','num_class': 3,'eval_metric': 'mlogloss','eta': 0.3,'max_depth':
                   6, 'min_child_weight': 1,
                   'subsample': 1,'colsample_bytree': 1}
In [85]: num rounds = 100
         evals = [(dtrain, 'train'), (dtest, 'eval')]
         model = xgb.train(params, dtrain, num_boost_round=num_rounds, evals=evals)
         y_pred = model.predict(dtest)
         accuracy = accuracy_score(y_test, y_pred)
         print(f'Accuracy: {accuracy}')
         print('Classification Report:')
         print(classification_report(y_test, y_pred))
```

```
train-mlogloss:0.86080 eval-mlogloss:0.86569
train-mlogloss:0.72372 eval-mlogloss:0.73336
[0]
[1]
         train-mlogloss:0.63806 eval-mlogloss:0.65146
[2]
[3]
         train-mlogloss:0.58258 eval-mlogloss:0.59957
        train-mlogloss:0.54459 eval-mlogloss:0.56653
train-mlogloss:0.51835 eval-mlogloss:0.54410
[4]
[5]
[6]
        train-mlogloss:0.49906 eval-mlogloss:0.52861
        train-mlogloss:0.48518 eval-mlogloss:0.51847
[7]
         train-mlogloss:0.47384 eval-mlogloss:0.51271
[8]
         train-mlogloss:0.46532 eval-mlogloss:0.50776
[9]
[10]
         train-mlogloss:0.45840 eval-mlogloss:0.50476
[11]
         train-mlogloss:0.45302 eval-mlogloss:0.50200
         train-mlogloss:0.44710 eval-mlogloss:0.50073
[12]
[13]
         train-mlogloss:0.44243 eval-mlogloss:0.49962
```

```
CL0711-WT081033'0''77004
                                CV01-M1081033.0.33203
[74]
       train-mlogloss:0.32925 eval-mlogloss:0.53290
[75]
       train-mlogloss:0.32815 eval-mlogloss:0.53410
[76]
       train-mlogloss:0.32704 eval-mlogloss:0.53475
       train-mlogloss:0.32613 eval-mlogloss:0.53505
[77]
[78]
       train-mlogloss:0.32550 eval-mlogloss:0.53565
[79]
       train-mlogloss:0.32463 eval-mlogloss:0.53643
train-mlogloss:0.32377 eval-mlogloss:0.53721
[80]
       train-mlogloss:0.32279 eval-mlogloss:0.53733
[81]
       train-mlogloss:0.32206 eval-mlogloss:0.53752
[82]
[83]
       train-mlogloss:0.32132 eval-mlogloss:0.53803
       train-mlogloss:0.32026 eval-mlogloss:0.53924
[84]
[85]
       train-mlogloss:0.31947 eval-mlogloss:0.54055
[86]
       train-mlogloss:0.31894 eval-mlogloss:0.54092
       train-mlogloss:0.31798 eval-mlogloss:0.54206
[87]
[88]
       train-mlogloss:0.31711 eval-mlogloss:0.54241
       train-mlogloss:0.31605 eval-mlogloss:0.54246
[89]
[90]
       train-mlogloss:0.31554 eval-mlogloss:0.54292
       train-mlogloss:0.31504 eval-mlogloss:0.54383
[91]
[92]
       train-mlogloss:0.31425 eval-mlogloss:0.54453
[93]
       train-mlogloss:0.31357 eval-mlogloss:0.54524
       train-mlogloss:0.31305 eval-mlogloss:0.54540
[94]
[95]
       train-mlogloss:0.31254 eval-mlogloss:0.54617
[96]
       train-mlogloss:0.31211 eval-mlogloss:0.54659
[97]
       train-mlogloss:0.31154 eval-mlogloss:0.54674
[98]
       train-mlogloss:0.31009 eval-mlogloss:0.54709
       train-mlogloss:0.30893 eval-mlogloss:0.54801
[99]
Accuracy: 0.8268194070080862
Classification Report:
                         recall f1-score support
             precision
           0
                  0.67
                            0.09
                                       0.15
                                                   23
                  0.17
                           0.02
                                       0.03
           2
                  0.84
                           0.98
                                      0.91
                                               1241
    accuracy
                                       0.83
                                                1484
  macro avg
                 0.56 0.36
                                     0.36
                                                1484
weighted avg
                  0.74
                            0.83
                                      0.76
                                                 1484
```

Feature Importance

```
In [86]: importance = model.get_score(importance_type='weight')
         importance_df = pd.DataFrame({
              'Feature': list(importance.keys()),
              'Importance': list(importance.values())
         })
         # Sort the DataFrame by importance
         importance_df = importance_df.sort_values(by='Importance', ascending=False)
         print('Feature Importances:')
         print(importance_df)
         # Plot feature importances
         plt.figure(figsize=(12, 8))
         \verb|sns.barplot(x='Importance', y='Feature', data=importance\_df)|\\
         plt.title('Feature Importances')
         plt.show()
         Feature Importances:
                     Feature Importance
              Type_of_vehicle 2636.0
Day_of_week 2187.0
         2
         1
                  time_group
                                  2182.0
         4 Type_of_collision
                                   1440.0
              Casualty_class
                                 1281.0
                                   652.0
         3 Road_surface_type
             Sex_of_casualty
                                    505.0
```

