

planetmath.org

Math for the people, by the people.

characterization of primitive recursive functions of one variable

 $Canonical\ name \qquad Characterization Of Primitive Recursive Functions Of One Variable$

Date of creation 2013-03-22 16:45:25 Last modified on 2013-03-22 16:45:25

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 9

Author rspuzio (6075) Entry type Theorem Classification msc 03D20 It is possible to characterize primitive recursive functions of one variable in terms of operations involving only functions of a single variable. To describe how this goes, it is useful to first define some notation.

Definition 1. Define the constant function $K : \mathbb{N} \to \mathbb{N}$ by K(n) = 1 for all n.

Definition 2. Define the identity function $I: \mathbb{N} \to \mathbb{N}$ by I(n) = n for all n.

Definition 3. Define the excess over square function $E: \mathbb{N} \to \mathbb{N}$ by $E(n) = n - m^2$, where m is the largest integer such that $m^2 \leq n$.

Definition 4. Given a function $f: \mathbb{N} \to \mathbb{N}$, define the function $R(f): \mathbb{N} \to \mathbb{N}$ by the following conditions:

- R(f)(0) = 0
- R(f)(n+1) = f(R(f)(n)) for all integers $n \ge 0$.

Theorem 1. The class of primitive recursive functions of a single variable is the smallest class X of functions which contains the functions E and K defined above and is closed under the following three operations:

- 1. If $f \in X$ and $g \in X$, then $f \circ g \in X$.
- 2. If $f \in X$, then $f + I \in X$.
- 3. If $f \in X$, then $R(f) \in X$.

¹Here f + I has the usual meaning of pointwise addition — (f + I)(x) = f(x) + I(x)