maximize
$$5x_1 - 3x_2$$

 $x_1 - x_2 \le 1$
 $2x_1 + x_2 \le 2$
 $x_1, x_2 \ge 0$

We first convert to slack form.

$$z = 5x_1 - 3x_2$$

$$x_3 = 1 - x_1 + x_2$$

$$x_4 = 2 - 2x_1 - x_2$$

The nonbasic variables are x_1 and x_2 . Of these, only x_1 has a positive coefficient in the objective function, so we must choose $x_0 = x_1$. Both equations limit x_1 by 1, so we'll choose the first one to rewrite x_1 with. Using $x_1 = 1 - x_3 + x_2$ we obtain the new system

$$z = 5 - 5x_3 + 2x_2$$

 $x_1 = 1 - x_3 + x_2$
 $x_4 = 2x_3 - 2x_2$

Now x_2 is the only nonbasic variable with positive coefficient in the objective function, so we set $x_9 = x_2$. The last equation limits x_2 by 0 which is most restrictive, so we set $x_2 = x_3 - 0.5x_4$. Rewriting, our new system becomes

$$z = 5 - 3x_3 - x_4$$

$$x_1 = 1 - 0.5x_4$$

$$x_2 = x_3 - 0.5x_4$$

Every nonbasic variable now has negative coefficient in the objective function, so we take the basic solution $(x_1, x_2, x_3, x_4) = (1, 0, 0, 0)$. The objective value this achieves is 5.