SSPCAB가 결합된 Reconstruction 기반 모델을 이용한 이미지의 재구성과 이상탐지

2024 1학기 산업공학캡스톤 1조

contents

- 1. 논문의 개요
- 2. SSPCAB의 원리
- 3. pytorch를 이용한 SSPCAB 구현
- 4. MVTec AD 데이터셋 소개
- 5. 제품 이미지의 재구성 및 이상탐지 실험
- 6. 결론, 한계 및 개선방안

Part 1, 논문의 개요

- 이미지의 이상탐지는 주로 이상이 있는 원본 이미지와 재구성된 이미지 사이의 오차를 측정한다.
- 정상 데이터를 통해 학습된 reconstruction 모델(CAE, GAN 등)을 통해 비정상 데이터를 재구성하여 비정상 데이터와 재구성된 데이터 사이의 error을 통해 이상을 판별한다.
- 논문에서는 reconstruction 모델을 자가 지도 예측 아키텍처 빌딩 블록에 결합할 것을 제안한다.

Part 1, 논문의 개요

Venue		Avenue				ShanghaiTech			
	Method	AUC		RBDC	TBDC	AUC		RBDC	TBDC
		Micro	Macro			Micro	Macro		
BMVC 2018	Liu et al. [38]	84.4	-	-	-	-		-	-
CVPR 2018	Sultani et al. [66]	-	-	-	-	-	76.5	-	-
ICASSP 2018	Lee et al. [32]	87	7.2	-	-	70	5.2	-	-
WACV 2019	Ionescu et al. [27]	88.9	100	16	-	-	1=	(#	-
ICCV 2019	Nguyen et al. [47]	86.9	-	-	-	-	-	(-	-
CVPR 2019	Ionescu et al. [25]	87.4	90.4	15.77	27.01	78.7	84.9	20.65	44.54
TNNLS 2019	Wu et al. [73]	86	5.6	-	-	-	-	(=	-
TIP 2019	Lee et al. [33]	90	0.0	-	-	-	-	-	-
ACMMM 2020	Yu et al. [77]	89.6	-	-		74.8	-	-	-
WACV 2020	Ramachandra et al. [50]	72	2.0	35.80	80.90	_	-	-	
WACV 2020	Ramachandra et al. [51]	87	7.2	41.20	78.60			-	-
PRL 2020	Tang et al. [69]	85	5.1	-	-	73	3.0	-	-
Access 2020	Dong et al. [12]	84	1.9	-	-	73	3.7	-	-
CVPRW 2020	Doshi et al. [13]	86	5.4	-	-	7	1.6	-	-
ACMMM 2020	Sun et al. [67]	89	0.6	-	-	74.7		-	-
ACMMM 2020	Wang et al. [72]	87	7.0	-	-	79	9.3	-	-
ICCVW 2021	Astrid et al. [4]	84.7	-		-	73.7	-		
BMVC 2021	Astrid et al. [3]	87.1	-		-	75.9	-		-
CVPR 2021	Georgescu et al. [17]	91.5	92.8	57.00	58.30	82.4	90.2	42.80	83.90
CVPR 2018	Liu et al. [37]	85.1	81.7	19.59	56.01	72.8	80.6	17.03	54.23
CVPR 2022	Liu et al. [37] + SSPCAB	87.3	84.5	20.13	62.30	74.5	82.9	18.51	60.22
CVPR 2020	Park et al. [49]	82.8	86.8	-		68.3	79.7	-	-
CVPR 2022	Park et al. [49] + SSPCAB	84.8	88.6	-		69.8	80.2	-	-
ICCV 2021	Liu et al. [39]	89.9	93.5	41.05	86.18	74.2	83.2	44.41	83.86
CVPR 2022	Liu et al. [39] + SSPCAB	90.9	92.2	62.27	89.28	75.5	83.7	45.45	84.50
TPAMI 2021	Georgescu et al. [18]	92.3	90.4	65.05	66.85	82.7	89.3	41.34	78.79
CVPR 2022	Georgescu et al. [18] + SSPCAB	92.9	91.9	65.99	64.91	83.6	89.5	40.55	83.46

• 이미지와 영상 데이터의 이상탐지를 위한 state- of- the- art 모델에 쉽게 결합할 수 있고, 대체로성능의 향상을 보였다.

Part 2, SSPCAB의 원리 – Dilated Masked Filters

- Sub-kernel(k'), dilation(d)의 하이퍼파라미터를 가짐
- 중심부(M)의 사이즈는 1 × 1 × C
- 필터의 corner에 (W, H) = (k', k')인 4개의 sub-kerner을 포함
- Width와 Height는 각각 2k'+2d+1
- 이렇게 구성된 커널은 Squeeze and excitation 블록으로 넘어감
- 기본값으로 d = 1, k' = 1을 사용

Part 2, SSPCAB의 원리 – Channel Attentive Module

- Dilated Masked Filter의 중심부(M)에 해당하는 부분을 예측하여 masked convolution layer을 생성
- Global (mean) pooling을 통해 (1x1xC)의 텐서 생성
- 이 텐서를 C/reduction_ratio만큼 줄이고 다시 복구시키는 과정을 거쳐 각 channel 별 weight 텐서 생성
- masked convolution layer 과 weight 텐서 간 component wise 연산을 통해 reconstruction map 생성
- Input과 동일한 shape의 Output 생성

Dilated Masked Filters

```
class SSPCAB(nn.Module):
    def __init__(self, channels, kernel_dim=1, dilation=1, reduction_ratio=8):
        super(SSPCAB, self). init ()
        self.pad = kernel_dim + dilation
        self.border_input = kernel_dim + 2*dilation + 1
        self.relu = nn.ReLU()
        self.se = SELayer(channels, reduction ratio=reduction ratio)
        self.conv1 = nn.Conv2d(in channels=channels.
                                out_channels=channels,
                                kernel_size=kernel_dim)
        self.conv2 = nn.Conv2d(in_channels=channels,
                                out channels=channels.
                                kernel_size=kernel_dim)
        self.conv3 = nn.Conv2d(in channels=channels.
                                out channels=channels,
                                kernel size=kernel dim)
        self.conv4 = nn.Conv2d(in channels=channels.
                                out_channels=channels,
                                kernel size=kernel dim)
    def forward(self, x):
        x = F.pad(x, (self.pad, self.pad, self.pad, self.pad), "constant", 0)
       x1 = self.conv1(x[:, :, :-self.border_input, :-self.border_input])
       x2 = self.conv2(x[:, :, self.border_input:, :-self.border_input])
        x3 = self.conv3(x[:, :, :-self.border_input, self.border_input:])
        x4 = self.conv4(x[:, :, self.border_input:, self.border_input:])
        x = self.relu(x1 + x2 + x3 + x4)
        x = self.se(x)
        return x
```


Channel attentive Module

```
class SELaver(nn.Module):
    def __init__(self, num_channels, reduction_ratio=8):
            reduction ratio: The reduction ratio 'r' from the paper
       super(SELayer, self).__init__()
       num channels reduced = num channels // reduction ratio
        self.reduction_ratio = reduction_ratio
        self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias=True)
        self.fc2 = nn.Linear(num channels reduced, num channels, bias=True)
        self.relu = nn.ReLU()
        self.sigmoid = nn.Sigmoid()
    def forward(self, input tensor):
       batch size, num channels, H, W = input tensor.size()
        squeeze_tensor = input_tensor.view(batch_size, num_channels, -1).mean(dim=2)
       fc out 1 = self.relu(self.fc1(saueeze tensor))
        fc_out_2 = self.sigmoid(self.fc2(fc_out_1))
        a, b = squeeze tensor.size()
        output_tensor = torch.mul(input_tensor, fc_out_2.view(a, b, 1, 1))
        return output tensor
```


Hyperparameters

po	Loss type	d	k'		r Attention type	Al	UC		
Method				r		Micro	Macro	RBDC	TBDC
Plain auto-encoder	-	-	-	-	-	80.0	83.4	49.98	51.69
		0	1	•	-	83.3	84.1	47.46	52.11
	MAE	1	1	-	-	83.9	84.6	49.05	52.21
		2	1	-	_	83.2	84.3	48.56	52.03
		0	1		-	83.6	84.2	47.86	52.21
	MSE	1	1	-	-	84.2	84.9	49.22	52.29
		2	1	-	-	83.6	84.3	48.44	51.98
	MSE	0	2			83.7	84.0	47.41	53.02
		1	2	-	-	84.0	85.1	48.22	51.84
		2	2	-	-	82.7	83.1	46.94	50.22
	MSE	0	3	-	-	82.6	83.7	48.28	51.91
		1	3	-	-	82.9	84.7	48.13	52.07
		2	3	-	-	83.1	83.8	47.13	49.96
	MSE	1	1	8	CA	85.9	85.6	53.81	56.33
		1	1	-	SA	84.3	84.4	53.31	53.41
		1	1	8	CA+SA	85.7	85.6	53.98	54.11
	MSE	1	1	4	CA	85.6	85.3	53.83	55.99
		1	1	16	CA	84.4	84.9	53.28	54.37

4개의 하이퍼파라미터 포함

- channels: CNN의 채널 수
- kernel_dim (default : 1) sub-kerner의 크기
- dilation (default : 1) mask와 sub-kerner의 간격
- reduction_ratio (default : 8)
 채널 수의 감소율

```
class SSPCAB(nn.Module):
    def __init__(self, channels, kernel_dim=1, dilation=1, reduction_ratio=8):
```

Default 값들은 SSPCAB를 오토 인코더에 결합했을 때 성능을 기 준으로 정함

활용 예시

```
class Encoder_SSPCAB(nn.Module):
    def __init__(self, encoded_space_dim,fc2_input_dim):
        super().__init__()

    self.encoder_cnn = nn.Sequential(
        nn.Conv2d(1, 8, 3, stride=2, padding=1),

        nn.ReLU(True),
        nn.Conv2d(8, 16, 3, stride=2, padding=1),

        nn.BatchNorm2d(16),
        nn.ReLU(True),
        nn.Conv2d(16, 32, 3, stride=2, padding=0),

        SSPCAB(32),
        nn.ReLU(True)
)
```

이전 Layer의 채널 수를 input parameter로 한다.

Part 4, MVTec AD 데이터셋 소개

- 산업 검사에 초점을 둔 이상탐지 방법을 벤치마킹하기 위한 데이터셋
- 정상 이미지로 구성된 train set과 비정상 이미지를 포함하는 test set으로 구성
- 연구 및 개발 목적으로 공개된 데이터셋

Part 4, MVTec AD 데이터셋 소개

• Train set: 정상 제품들만으로 구성

• Test set: 결함이 있는 제품들과 일부 정상품들로 구성

• Ground truth: Test set에서 결함에 해당하는 영역을 표시

Reconstruction 기반 모델인 Convolutional Auto Encoder 정의 SSPCAB 계층을 추가한 Convolutional Auto Encoder 정의

```
class Autoencoder(nn.Module):
    def __init__(self, input_shape=(3, 126, 126)):
        super(Autoencoder, self).__init__()

self.encoder = nn.Sequential(
        self.conv_block(3, 32),
            nn.MaxPool2d(2, stride=2),
        self.conv_block(32, 64),
            nn.MaxPool2d(3, stride=3),
        self.conv_block(64, 128),

        )

self.bottleneck = nn.Sequential(
            nn.Conv2d(128, 128, kernel_size=3, padding=1),
            nn.ReLU(inplace=True)
        )

self.decoder = nn.Sequential(
            self.conv_block(128, 128),
            nn.ConvTranspose2d(128, 64, kernel_size=3, stride=3),
            self.conv_block(64, 64),
            nn.ConvTranspose2d(64, 32, kernel_size=2, stride=2),
            self.conv_block(32, 32),
            nn.Signoid()
        )

def conv_block(self, in_channels, out_channels):
        return nn.Sequential(
            nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
            nn.PeLU(inplace=True)
        )

def forward(self, x):
    encoded = self.encoder(x)
    latent = self.bottleneck(encoded)
    decoded = self.decoder(latent)
    return decoded
```

Convolutional Auto Encoder

```
super(Autoencoder_SSPCAB, self).__init__()
self.encoder = nn.Sequential(
   nn.MaxPool2d(2, stride=2)
    self.conv block(32, 64
   nn.MaxPool2d(3, stride=3
   SSPCAB(128, kernel_dim = 1) # SSPCAB 제품 추가
self.bottleneck = nn.Sequential(
self.decoder = nn.Sequential(
   self.conv block(
   self.conv block(32.
   nn Sigmoid()
return nn.Sequential(
  nn.Conv2d(in channels, out channels, kernel size=3, padding=1).
   nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
   nn.ReLU(inplace=True)
latent = self.bottleneck(encoded)
return decoded
```

Convolutional Auto Encoder
With SSPCAB

정상 데이터로 구성된 train set으로 모델 학습

```
epochs = 500
learning rate = 0.001
model = Autoencoder()
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(),                             lr=learning_rate)
train_losses = []
for epoch in range(epochs):
    running loss = 0.0
    for data in train_loader:
      img = data
      img = img.view(img.size(0), 3, 126, 126)
      output = model(img)
      loss = criterion(output, img)
      running_loss += loss.item()
      train_losses.append(loss.item())
      optimizer.zero grad()
      loss.backward()
      optimizer.step()
    if (epoch+1) \% 10 == 0 or epoch == 0:
        print(f'Epoch: {epoch+1}, Loss: {running_loss / len(train_loader)}
```

Loss Function : MSE

Optimizer : Adam

• Epoch: 500

재구성된 이미지와 원본 이미지와의 차이를 확인하고 이상 영역 탐지

• 이상이 있는 이미지(왼쪽)을 모델에 입력하여 재구성 이미지를 구함(오른쪽)

• 두 이미지 간의 차이를 확인

• 차이가 임계를 넘어가는 지점을 표시(왼쪽)하고, ground truth(오른쪽)와 비교

CAE와 CAE+SSPCAB의 reconstruction image 비교

원본 이미지와 재구성 이미지간 RGB값의 MSE를 구하여 임계값(0.02)을 초과하는 영역을 이상영역으로 표시

• RGB 값의 차이가 두드러진 결함(변색 등)은 ground truth와 유사함을 보임

• RGB 값의 차이가 적은 결함(작은 깨짐이나 스크래치 등)은 ground truth와 차이가 발생

Part 6, 결론, 한계 및 개선방안

- SSPCAB는 reconstruction 성능을 높이는 데에 도움을 줌
- 재구성 이미지와 원본이미지의 RGB 값의 MSE를 통한 이상영역 탐지 방법은 RGB값의 차이가 적은 영역에 대해 한계를 보임
- 실제 산업현장에 활용하기 위해서는 original과 reconstructed 이 미지간의 차이를 잘 확인하는 모델을 추가로 필요함
- 논문상에는 SSPCAB를 결합한 모델의 종류는 표기되어 있지만, 구체적 모델 구조는 설명되어있지 않음. 논문의 설명을 통해 정황상유추 및 실험을 통한 모델 설계로 탐지를 진행함.

Thank you