Toffoli Depth Optimized Quantum Multiplication

장경배

https://youtu.be/35jFwt5cnmA

D. Maslov et al.

ON THE DESIGN AND OPTIMIZATION OF A QUANTUM POLYNOMIAL-TIME ATTACK ON ELLIPTIC CURVE CRYPTOGRAPHY

DMITRI MASLOV

Department of Combinatorics and Optimization, University of Waterloo Waterloo, Ontario, N2L 3G1, Canada

JIMSON MATHEW

Department of Computer Science, University of Bristol Bristol, BS8 1UB, UK

DONNY CHEUNG

Department of Computer Science, University of Calgary Calgary, Alberta, T2N 1N4, Canada

DHIRAJ K. PRADHAN

Department of Computer Science, University of Bristol Bristol, BS8 1UB, UK

- 일반적인 Schoolbook 곱셈
- $h = f \cdot g$ (size = n)의 곱셈에 3n개의 큐비트 사용
- Modular 연산 고려, 상위 곱셈부터 수행
- Toffoli 게이트: n^2

S. Kepley et al.

- Karatsuba 곱셈
- $h = f \cdot g \ (size = n)$ 의 곱셈에 Karatsuba 알고리즘을 재귀적으로 적용
- 곱셈 시 CNOT 게이트가 추가적으로 사용되지만, Toffoli 게이트를 최대한 감소시킬 수 있음
- 큐비트를 추가 사용 → (2n + 사용 된 Toffoli 게이트 수)
- Toffoli 게이트: $n^2 \cdot \frac{3^{\log_2 n}}{4}$

S. Kepley et al.

Example 3 For $\mathbb{F}_2[t]/(f)$ with $f = t^4 + t + 1$, before reduction we can form the appropriate coefficients in the product as follows:

j	z_j		
0	$C_0 + C_2 +$	$C_5 + C_6 +$	C_8
1	$C_0 + C_1 + \cdots +$	$C_5 + C_7$	
2	$C_0 + C_2 + C_3 +$	C_7	
	$C_0 + C_1 + C_2 + C_3 + C_4$	$+C_5+C_6+C_7$	

I. van Hoof

Space-efficient quantum multiplication of polynomials for binary finite fields with sub-quadratic Toffoli gate count

Iggy van Hoof

Technische Universiteit Eindhoven i.v.hoof@student.tue.nl

Gustavo Banegas¹, Daniel J. Bernstein^{2,3}, Iggy van Hoof⁴ and Tanja Lange⁴

¹ Chalmers University of Technology, Gothenburg, Sweden gustavo@cryptme.in
² University of Illinois at Chicago, Chicago, USA djb@cr.yp.to
³ Ruhr University Bochum, Bochum, Germany
⁴ Eindhoven University of Technology, Eindhoven, The Netherlands
i.v.hoof@tue.nl,tanja@hyperelliptic.org

• S. Kepley et al.와 동일하게 Karatsuba 알고리즘을 재귀적으로 적용하여 Toffoli 게이트를 최대한 줄임

 \rightarrow

- 차이점은 큐비트 수
 - LUP 분해를 활용하여, Schoolbook 곱셈과 동일하게 3n의 큐비트만을 사용
 - CNOT 게이트를 조금 더 사용하긴 하지만, 그렇게 큰 단점은 아님
- Banegas, Bernstein의 **Binary ECC에 대한 Shor 알고리즘 적용 논문에서** 해당 곱셈 기법을 사용
 - S. Kepley의 곱셈보다 Toffoli Depth와 Full depth는 더 높을 것으로 보임

Ours

- 기존 연구들은 Depth를 신경 쓰지 않음
- 이번 곱셈은 Toffoli depth 최적화 → Full depth 또한 감소
- I. van Hoof의 곱셈(LUP 분해)을 사용하는 것은 X
 - Toffoli depth 최적화가 불가능
- 동일하게 Karatsuba 알고리즘을 재귀적으로 적용
 - 곱셈이 나눠지기 때문에 이것 만으로도 효과는 있음
 - 하지만 여전히 종속성이 존재
- Karatsuba를 적용할 때 마다 생기는 종속성을 다 제거
 - 추가 큐비트
 - 끝까지 Karatsuba를 적용하고, 한 번에 곱셈
- 모든 Field size 2ⁿ에 대해 **Toffoli depth 1** 곱셈 가능

S. Kepley et al.

Ours

Table 1. Quantum resources required for $f \cdot g$ with Karatsuba Level-1

Field size 2^n	#CNOT	#Toffoli	Toffoli depth	#qubits	Full depth
Schoolbook		n^2	n^2	4n-1	$8n^2$
Karatsuba Level-1	5n-4	$3\cdot (n/2)^2$	$(n/2)^2$	$3\cdot(2n-1)$	$8 \cdot (n/2)^2 + 5$
Karatsuba Level-2	$(5n-4)+ \\ 3 \cdot (5n/2-4)$	$3^2 \cdot (n/2^2)^2$	$(n/2^2)^2$	$3^2 \cdot (n-1)$	$8 \cdot (n/4)^2 + 10$
Karatsuba Level-3	$ (5n-4) + 3 \cdot (5n/2 - 4) + 9 \cdot (5n/4 - 4) $	$3^3 \cdot (n/2^3)^2$	$(n/2^3)^2$	$3^3 \cdot (n/2 - 1)$	$8 \cdot (n/8)^2 + 15$

(Before Modular)

Ours

```
def Karatsuba_Toffoli_Depth_1(eng) :
    n = 8
    a = eng.allocate_qureg(n)
    b = eng.allocate_qureg(n)
    r_a = eng.allocate_gureg(n)
    r_b = eng.allocate_qureg(n)
    c = eng.allocate_qureg(27)
    if (not resource_check):
        Round_constant_XOR(eng, a, 0xff, n)
        Round_constant_XOR(eng, b, 0xff, n)
    new_a = []
   new b = []
    new_r = []
    for i in range(int(n/2)):
       CNOT | (a[i], r_a[i])
        CNOT | (a[int(n/2)+i], r_a[i])
        CNOT | (b[i], r_b[i])
        CNOT | (b[int(n/2) + i], r_b[i])
    new_a = karatsuba_mul_4bit(eng, a[0:4], b[0:4], c[0:9])
    new_b = karatsuba_mul_4bit(eng, a[4:8], b[4:8], c[18:27])
    new_r = karatsuba_mul_4bit(eng, r_a, r_b, c[9:18])
    # Combine
    result = []
    result = combine(eng, new_a, new_b, new_r, n)
    # modular
    if(not resource_check):
        print_state(eng, result, 2*n-1)
```

- Performance
 - Field 2⁸ 곱셈 (T + Clifford Level)

```
/Users/kb/PycharmProjects/
Result : 101010101010101

Gate counts:
    Allocate : 81
    CX : 300
    Deallocate : 81
    H : 54
    T : 81
    T^\dagger : 108

Depth : 23.
```

감사합니다