

Outline

- Review of Volta and Turing architectures
- Inference
- Training

GV100

21B transistors 815 mm²

80 SM 5120 CUDA Cores 640 Tensor Cores

16 GB HBM2 900 GB/s HBM2 300 GB/s NVLink

*full GV100 chip contains 84 SMs

More details - Volta: Programmability and Performance (HotChips 2017)

https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.21-Monday-Pub/HC29.21.10-GPU-Gaming-Pub/HC29.21.132-Volta-Choquette-NVIDIA-Final3.pdf

Volta SM

Volta SM Subcore

Warp Scheduler

- 1 Warp instr/clk
- L0 I\$, branch unit

Math Dispatch Unit

Keeps 2+ Datapaths Busy

MIO Instruction Queue

Hold for Later Scheduling

Two 4x4x4 Tensor Cores

- [

TENSOR CORE

Mixed Precision Matrix Math 4x4 matrices

$$D = AB + C$$

Volta Tensor Cores

- https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
- Used by cuDNN and CUBLAS libraries
- Exposed in CUDA as WMMA
 - https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma
- Accelerate convolutions and matrix multiplication
 - A single instruction multiply-accumulates matrices
 - Think: computes many dot-products in parallel

-

Turing

- Inference and Graphics oriented chip
- Extends Volta Tensor Core by adding matrix multiply accumulate for:
 - Int8
 - Int4
 - Int1 (XOR followed by popcount)
- All accumulate into int32
- Library and WMMA support for int8
- Int4 and int1 supported via WMMA in CUDA
 - https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma

Tensor Core Throughputs

Multiply-Accumulates per clock per SM

(multiply by 2x for ops counts)

	FP32	FP16	INT8	INT4	INT1
Volta	64	512			
Turing	64	512	1,024	2,048	8,192

Inference

• FP16:

- Network can be trained in either FP32 or FP16
- FP16 accumulation suggested for Tensor Cores
 - Some performance improvement due to power and register bandwidth savings
- Normalization helps control activation value range

Fixed point:

- Some networks can be quantized after FP32/FP16 training
- Some networks require fine tuning to maximize accuracy

Int8 Quantized Inference (TensorRT)

	FP32		INT8					
			Calibration using 5 batches		Calibration using 10 batches		Calibration using 50 batches	
NETWORK	Top1	Top5	Top1	Top5	Top1	Top5	Top1	Top5
Resnet-50	73.23%	91.18%	73.03%	91.15%	73.02%	91.06%	73.10%	91.06%
Resnet-101	74.39%	91.78%	74.52%	91.64%	74.38%	91.70%	74.40%	91.73%
Resnet-152	74.78%	91.82%	74.62%	91.82%	74.66%	91.82%	74.70%	91.78%
VGG-19	68.41%	88.78%	68.42%	88.69%	68.42%	88.67%	68.38%	88.70%
Googlenet	68.57%	88.83%	68.21%	88.67%	68.10%	88.58%	68.12%	88.64%
Alexnet	57.08%	80.06%	57.00%	79.98%	57.00%	79.98%	57.05%	80.06%
NETWORK	Top1	Top5	Diff Top1	Diff Top5	Diff Top1	Diff Top5	Diff Top1	Diff Top5
Resnet-50	73.23%	91.18%	0.20%	0.03%	0.22%	0.13%	0.13%	0.12%
Resnet-101	74.39%	91.78%	-0.13%	0.14%	0.01%	0.09%	-0.01%	0.06%
Resnet-152	74.78%	91.82%	0.15%	0.01%	0.11%	0.01%	0.08%	0.05%
VGG-19	68.41%	88.78%	-0.02%	0.09%	-0.01%	0.10%	0.03%	0.07%
Googlenet	68.57%	88.83%	0.36%	0.16%	0.46%	0.25%	0.45%	0.19%
Alexnet	57.08%	80.06%	0.08%	0.08%	0.08%	0.07%	0.03%	-0.01%

More details: 8-bit Inference with TensorRT (GTC 2017): http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf

Training: Mixed Precision Training

- Reduced precision tensor math with FP32 accumulation, FP16 storage
- Benefits:
 - Accelerates math
 - TensorCores have 8x higher throughput than FP32
 - 125 Tflops theory
 - Reduces memory bandwidth pressure
 - FP16 halves the memory traffic compared to FP32
 - Reduces memory consumption
 - Halve the size of activation and gradient tensors
 - Enables larger minibatches or larger input sizes

ILSVRC12 Classification Networks, Top-1 Accuracy

	FP32 Baseline	Mixed Precision
AlexNet	56.8%	56.9%
VGG-D	65.4%	65.4%
GoogLeNet	68.3%	68.4%
Inception v2	70.0%	70.0%
Inception v3	73.9%	74.1%
Resnet 50	75.9%	76.0%
ResNeXt 50	77.3%	77.5%

In all cases hyper-parameters were the same as for FP32 training

Detection Networks, mAP

	FP32 Baseline	Mixed Precision
Faster R-CNN, VOC 07 data	69.1%	69.7%
Mask R-CNN, COCO data and eval	37.7%	37.7%
Multibox SSD, VOC 07+12 data	76.9%	77.1%

NVIDIA's proprietary automotive networks train with mixed-precision matching FP32 baseline accuracy.

Mixed Precision for Resnet50

4 Lines of Code => 2.3x Training Speedup

- Single-GPU runs using TorchVision ImageNet example
 - NVIDIA PyTorch 18.08-py3 container
 - AMP for mixed precision
- Minibatch=256 per GPU
- Single GPU RN-50 speedup for FP32 -> M.P. (with 2x batch size):
 - MxNet: 2.9x
 - TensorFlow: 2.2x
 - TensorFlow + XLA: ~3x
 - PyTorch: 2.3x
- Work ongoing to bring to 3x everywhere

Mixed Precision: Not Just for Imagenet

Model	FP32 -> M.P. Speedup	Comments	
GNMT (Translation)	2.3x	lso-batch size	
FairSeq Transformer (Translation)	2.9x 4.9x	lso-batch size 2x lr + larger batch	
ConvSeq2Seq (Translation)	2.5x	2x batch size	
Deep Speech 2 (Speech recognition)	4.5x	Larger batch	
wav2letter (Speech recognition)	3.0x	2x batch size	
Nvidia Sentiment (Language modeling)	4.0x	Larger batch	

^{*}In all cases trained to same accuracy as FP32 model

Speedups

- Memory limited ops: should see ~2x speedup
- Math limited ops: will vary based on arithmetic intensity
 - 125 Tflops: 900 GB/s -> 138 flops/B
- Speedups continuously improve:
 - libraries are continuously optimized
 - TensorCore paths are being added to more operation varieties

Tensor Core Performance Guidance

Requirements to trigger TensorCore operations:

- Convolutions:
 - Number of input channels a multiple of 8
 - Number of output channels a multiple of 8
- Matrix Multiplies:
 - M, N, K sizes should be multiples of 8
 - Larger K sizes make multiplications more efficient (amortize the write overhead)
 - Makes wider recurrent cells more practical (K is input layer width)

If you're designing models

- Make sure to choose layer widths that are multiples of 8
- Pad input/output dictionaries to multiples of 8
 - Speeds up embedding/projection operations

If you're developing new cells

Concatenate cell matrix ops into a single call

Considerations for Mixed Precision Training

- Which precision to use for storage, for math?
- Instructive to walk through by DNN operation type:
 - Weight update
 - Point-wise
 - Reduction
 - Convolution, Matrix multiply

Weight update

- FP16 mantissa is sufficient for some networks, some require FP32
- Sum of FP16 values whose ratio is greater than 2¹¹ is just the larger value
 - FP16 has a 10-bit mantissa, binary points have to be aligned for addition
 - Weight update: if $w \gg lr * dw$ then update doesn't change w
 - Examples: multiplying a value by 0.01 leads to 27 ratio, 0.001 leads to 210 ratio

Conservative recommendation:

- FP32 update:
 - Compute weight update in FP32
 - Keep a master copy of weights in FP32, make an FP16 copy for fwd/bwd passes
- If FP32 storage is a burden, try FP16 it does work for some nets
 - ie convnets

Pointwise Operations

- FP16 is safe for most of these: ReLU, Sigmoid, Tanh, Scale, Add, ...
 - Inputs and outputs to these are value in a narrow range around 0
 - FP16 storage saves bandwidth -> reduces time

FP32 math and storage is recommended for:

- operations f where |f(x)| >> |x|
 - Examples: Exp, Square, Log, Cross-entropy
- These typically occur as part of a normalization or loss layer that is unfused
- FP32 ensures high precision, no perf impact since bandwidth limited

Conservative recommendation :

- Leave pointwise ops in FP32 (math and storage) unless they are known types
- Pointwise op fusion is a good next step for performance
 - Use libraries for efficient fused pointwise ops for common layers (eg BatcNorm)

Reductions

Examples:

• Large sums of values: L1 norm, L2 norm, Softmax

FP32 Math:

- Avoids overflows
- Does not affect speed these operations are memory limited

• Storage:

- FP32 output
- Input can be FP16 if the preceding operation outputs FP16
 - If your training frameworks supports different input and output types for an op
 - Saves bandwidth -> speedup

A Note on Normalization and Loss Layers

Normalizations:

- Usually constructed from primitive ops (reductions, squares, exp, scale)
- Storage:
 - Input and normalized output can be in FP16
 - Intermediate results should be stored in FP32
- Ideally should be fused into a single op:
 - Avoids round-trips to memory -> faster
 - Avoids intermediate storage

Loss, probability layers:

- Softmax, cross-entropy, attention modules
- FP32 math, FP32 output

Convolution, Matrix Multiply

- Fundamentally these are collections of dot-products
- Math: Tensor Cores starting with Volta GPUs
 - Training: use FP32 accumulation
 - Inference: FP16 accumulation can be used
 - Many frameworks have integrated libraries with TensorCore support
 - http://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/
- FP16 Storage (input and output)

Summary so far

- FP32 Master weights and update
- Math: FP32 and TensorCores
- Storage:
 - Use FP16 for most layers
 - Use FP32 for layers that output probabilities or large magnitude values
 - Fuse to optimize speed and storage
- Example layer time breakdowns for FP32-only training:
 - Resnet50: ~73% convolutions, 27% other
 - DS2: ~90% convolutions and matrix multiplies (LSTM), ~10% other
- One more mixed-precision consideration: Loss Scaling
 - Scale the loss, unscale the weight gradients before update/clipping/etc.
 - Preserves small gradient values

(C) NVIDIA

Range representable in FP16: ~40 powers of 2

Range representable in FP16: ~40 powers of 2

Gradients are small, don't use much of FP16 range FP16 range not used by gradients: ~15 powers of 2

Range representable in FP16: ~40 powers of 2

Gradients are small, don't use much of FP16 range FP16 range not used by gradients: ~15 powers of 2

Loss Scaling:

multiply the loss by some constant s by chain rule backprop scales gradients by s preserves small gradient values unscale the weight gradient before update

Loss Scaling

Algorithm

- Pick a scaling factor s
- for each training iteration
 - Make an fp16 copy of weights
 - Fwd prop (fp16 weights and activations)
 - Scale the loss by s
 - Bwd prop (fp16 weights, activations, and gradients)
 - Scale *dW* by **1/s**
 - Update W

• For simplicity:

- Apply gradient clipping and similar operations on gradients after 1/s scaling
 - Avoids the need to change hyperparameters to account for scaling

• For maximum performance: fuse unscaling and update

- Reduces memory accesses
- Avoids storing weight gradients in fp32

Automatic Loss Scaling

- Frees users from choosing a scaling factor
 - Too small a factor doesn't retain enough small values
 - Too large a factor causes overflows

Algorithm

- Start with a large scaling factor s
- for each training iteration
 - Make an fp16 copy of weights
 - Fwd prop
 - Scale the loss by s
 - Bwd prop
 - Update scaling factor s
 - If dW contains Inf/NaN then reduce s, skip the update
 - If no Inf/NaN were detected for N updates then increase s
 - Scale *dW* by **1/***s*
 - Update W

Automatic Loss Scale Factor for a Translation Net

Smallest scaling factor = 2^{20} -> max dw magnitude didn't exceed 2^{-5}

Automatic Loss Scaling Parameters

Factor for increasing/decreasing loss-scaling

In our experiments we use 2

Number of iterations without overflow

- In our experiments we use N = 2,000
- Separate study showed that randomly skipping 0.1% of updates didn't affect result
- N = 2,000 gives extra margin by skipping at most 0.05% of updates in steady state

Iteration count:

 We did not observe model accuracy difference between incrementing and not incrementing iteration count on skips

A Note on Gradients During Training

Popular belief:

Gradient magnitudes become smaller during training

Observation:

- Not true for a number of networks
- Thus FP16 range is not a concern
- Normalizations especially tend to maintain distributions throughout training

Resnet50 Weight Gradient Histograms

Resnet50 Activation Gradient

VIDEO

Conclusions

Mixed precision training benefits:

- Math, memory speedups
- Larger minibatches, larger inputs

Mixed precision matches FP32-trained accuracy for a variety of:

- Tasks: classification, regression, generation
- Problem domains: images, language translation, language modeling, speech
- Network architectures: feed forward, recurrent
- Optimizers: SGD, Adagrad, Adam
- With the same hyper-parameters as FP32 training

Automatic Loss Scaling simplifies training

• For example, Amp for PyTorch: https://github.com/NVIDIA/apex/tree/master/apex/amp

• Inference:

- Can be purely FP16: storage and math (use library calls with FP16 accumulation)
- Turing Tensor Cores also provide int8/int4/int1 matrix operations

(C) NVIDIA

Backup

Language Translation

GNMT:

- https://github.com/tensorflow/nmt
- 8 layer encoder, 8 layer decoder, 1024x LSTM cells, attention
- German -> English (train on WMT, test on newstest2015)
- FP32 and Mixed Precision: ~29 BLEU using SGD
 - Both equally lower with Adam, match the paper

FairSeq:

- https://github.com/facebookresearch/fairseq
- Convolutional net for translation, English French
- FP32 and Mixed Precision: ~40.5 BLEU after 12 epochs

Transformer:

- MLPerf
- English to German
- FP32 and Mixed Precision: ~25 BLEU
 - MLPerf v0.5.0 target accuracy, to be increased in the future

(C) NVIDIA

Speech

Courtesy of Baidu

- 2 2D-conv layers, 3 GRU layers, 1D conv
- Baidu internal datasets

Character Error Rate (lower is better)

	FP32 Baseline	Mixed Precision
English	2.20	1.99
Mandarin	15.82	15.01

Progressive Growing of GANs

- Generates 1024x1024 face images
 - http://research.nvidia.com/publication/2017-10 Progressive-Growing-of
- No perceptible difference between FP32 and mixed-precision training
- Loss-scaling:
 - Separate scaling factors for generator and discriminator (you are training 2 networks)
 - <u>Automatic loss scaling greatly simplified training</u> gradient stats shift drastically when image resolution is increased

(C) NVIDIA

Sentiment Analysis

Multiplicative LSTM, based on https://arxiv.org/abs/1704.01444

	Train BPC	Val BPC	SST acc	IMDB acc
FP32	1.116	1.073	91.8	92.8
Mixed Precision	1.115	1.075	91.9	92.8

(C) NVIDIA

Image Inpainting

- Fill in arbitrary holes
- Network Architecture:
- U-Net with partial convolution
- VGG16 based Perceptual loss + Style loss
- Speedup: 3x, at 2x bigger batch size
 - We can increase batch size only in mixed precision

Input

Inpainted Result

Image Inpainting: result

Training Loss Curve

Testing Input

Mixed Precision Result

FP32 Result

Text to speech synthesis

Using Tacotron 2

Fig. 1. Block diagram of the Tacotron 2 system architecture.

Shen et al, Natural TTS Synthesis by Conditioning Wavenet on Mel-Spectrogram Predictions, https://arxiv.org/abs/1712.05884

Text to speech synthesis: results

50

Decoder timestep

100

50

Decoder timestep

Wavenet

- 12 Layers of dilated convolutions
- Dilations reset every 6 layers
- 128 channels for dilated convs.
 (64 per nonlinearity)
 64 channels for residual convs.
 256 channels for skip convs.

Wavenet: results

Mixed precision: Pink FP32: Green

Weights and wgrad of LSTM cells

- Weights of LSTM are never >1
- Wgrad of LSTM cells rarely go below subnormal fp16 range
- See more detailed break down of all layers in html file

Data and dgrad of LSTM cells

