GEOMETRÍA RETROALIMENTACIÓN

4th
SECONDARY

TOMO 2

1. En el gráfico, halle AB.

Trazamos BH

Aplicamos teorema de la bisectriz

• **ABH** : (37° - 53°)

$$AB = 15$$

2. En un triángulo ABC, donde la m \angle BCA = 35°, la mediatriz de \overline{AC} intersecta a \overline{BC} en P, tal que AB = PC. Halle la m \angle ABP.

3. En el gráfico, halle el valor de x.

• Trazamos \overline{MN} (T. base media)

 Aplicamos teorema ángulos alternos internos

MNT: Isósceles

$$3x = 72^{\circ}$$

$$x = 24^{\circ}$$

4. En un triángulo rectángulo ABC recto en B, en \overline{AC} y \overline{BC} se ubican los puntos D y E respectivamente, tal que: AD = DC = 7 y m $\pm BAD = m \pm BED = \alpha$, halle el mínimo valor que puede tomar \overline{BE} .

5. En un trapecio ABCD donde \overline{BC} // \overline{AD} , m \neq BCD = 2(m \neq BAD) y CD = 6. Halle la longitud del segmento que une los puntos medios de sus diagonales.

- Trazamos CP // BA
- ABCP (PARALELOGRAMO)
- △ CDP : ISÓSCELES

Aplicamos teorema del segmento que une los puntos medios de las diagonales de un trapecio

6. En un rombo ABCD, en AC se ubica el punto E, tal que m∢BEC = 53°, AE = 9 y EC = 21. Calcular el perímetro de dicha figura.

7. En la figura, ABCD es un rectángulo. Halle el valor de x.

8. En la figura, halle el valor de X.

Trazamos MN

HELICO | RETROALIMENTACIÓN

9. Desde un punto P, exterior a una circunferencia, se trazan las tangentes \overline{PA} y \overline{PC} . Luego en el menor \widehat{AC} se ubica el punto B, tal que m $\not\prec$ ABC = 7x y m $\not\prec$ APC = 4x. Halle el valor de x.

Aplicamos T. del A. inscrito

Aplicamos T. del A. exterior formado por dos secantes

$$360^{\circ}$$
- $14x + 4x = 180^{\circ}$
 $180^{\circ} = 10x$

$$x = 18^{\circ}$$

10. Halle el valor de x si O es centro.

Aplicamos T. ángulo inscrito en una semicircunferencia

