# **Exploratory Analysis of Telecom Customer Churn Factors**

## Importing important libraries

```
1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import seaborn as sns
```

# Reading the data set

```
1 df=pd.read_csv('/content/Telco-Customer-Churn.csv')
 2 df.head()
₹
        customerID gender SeniorCitizen Partner Dependents tenure PhoneService MultipleLines InternetService OnlineSecurity
              7590-
                                                                                             No phone
                    Female
                                         0
                                                Yes
                                                             No
                                                                                                                   DSL
                                                                                                                                    No
            VHVEG
                                                                                               service
              5575-
                                                                                                                   DSL
                                         0
     1
                      Male
                                                 No
                                                             No
                                                                     34
                                                                                   Yes
                                                                                                                                    Yes
                                                                                                  No
            GNVDE
             3668-
                      Male
                                         0
                                                 No
                                                             No
                                                                                   Yes
                                                                                                                   DSI
                                                                                                                                    Yes
                                                                                                  No
            QPYBK
              7795-
                                                                                             No phone
                      Male
                                         0
                                                 No
                                                             No
                                                                     45
                                                                                                                   DSL
                                                                                                                                    Yes
           CFOCW
                                                                                               service
              9237-
                                         0
                    Female
                                                 No
                                                             No
                                                                                   Yes
                                                                                                  No
                                                                                                              Fiber optic
                                                                                                                                    No
             HQITU
    5 rows × 23 columns
```

# Data Cleaning

```
1 df.info()
  <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 7032 entries, 0 to 7031
   Data columns (total 23 columns):
       Column
                         Non-Null Count Dtype
                         7032 non-null
       customerID
       gender
                         7032 non-null
                                         object
       SeniorCitizen
                         7032 non-null
                                         int64
       Partner
                         7032 non-null
                                         object
       Dependents
                         7032 non-null
                                         object
                         7032 non-null
       tenure
                                         int64
       PhoneService
                         7032 non-null
                                         object
       MultipleLines
                         7032 non-null
                                         object
       InternetService
                         7032 non-null
       OnlineSecurity
                         7032 non-null
    10 OnlineBackup
                          7032 non-null
                         7032 non-null
       DeviceProtection
                                         object
                          7032 non-null
       TechSupport
                                         object
    13
       StreamingTV
                          7032 non-null
                                         object
                         7032 non-null
    14
       StreamingMovies
                                         obiect
    15
       Contract
                          7032 non-null
                                         object
       PaperlessBilling
    16
                         7032 non-null
                                         object
    17
       PaymentMethod
                         7032 non-null
                                         object
    18
       MonthlyCharges
                         7032 non-null
                                          float64
    19
       TotalCharges
                          7032 non-null
                                         float64
    20
       Churn
                         7032 non-null
                                         object
       Unnamed: 21
                          0 non-null
                                          float64
       Tenure Group
                          1 non-null
                                          object
   dtypes: float64(3), int64(2), object(18)
   memory usage: 1.2+ MB
1 df.columns
```

```
Index(['customerID', 'gender', 'SeniorCitizen', 'Partner', 'Dependents', 'tenure', 'PhoneService', 'MultipleLines', 'InternetService',
```

Next steps: ( Generate code with df

```
'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies', 'Contract', 'PaperlessBilling', 'PaymentMethod', 'MonthlyCharges', 'TotalCharges', 'Churn', 'Unnamed: 21', 'Tenure Group'],
             dtype='object')
  1 #dropping unnecessary columns
  2 df.drop(['customerID', 'Unnamed: 21', 'Tenure Group'], axis=1, inplace=True)
  1 #Converting total charges into numeric
  2 df['TotalCharges'] = pd.to_numeric(df['TotalCharges'], errors='coerce')
  3 df.dropna(inplace=True)
  1 #Converted senior citizen value from 0 and 1 to yes and No.
  2 def conv(value):
        if value == 1:
             return 'Yes'
 4
             return 'No'
 6
  8 # Apply the function to the 'SeniorCitizen' column
  9 df['SeniorCitizen'] = df['SeniorCitizen'].apply(conv)
 1 df.head()
\rightarrow
          gender SeniorCitizen Partner Dependents tenure PhoneService MultipleLines InternetService OnlineSecurity OnlineBackup Do
                                                                                               No phone
      Female
                                                                                                                        DSI
                                                                    1
                                                                                   Nο
                                Nο
                                          Yes
                                                         No
                                                                                                                                             Nο
                                                                                                                                                             Yes
            Male
                                No
                                           No
                                                         No
                                                                   34
                                                                                   Yes
                                                                                                     No
                                                                                                                        DSL
                                                                                                                                            Yes
                                                                                                                                                              No
      2
            Male
                                No
                                           No
                                                         No
                                                                    2
                                                                                   Yes
                                                                                                     No
                                                                                                                        DSL
                                                                                                                                            Yes
                                                                                                                                                             Yes
                                                                                               No phone
      3
                                                                                                                        DSL
            Male
                                No
                                                         No
                                                                   45
                                                                                   No
                                           No
                                                                                                                                            Yes
                                                                                                                                                              No
                                                                                                 service
      4 Female
                                                                    2
                                No
                                           No
                                                         No
                                                                                   Yes
                                                                                                     No
                                                                                                                  Fiber optic
                                                                                                                                             No
                                                                                                                                                              No
```

# Summary of numerical columns (statistical info for numerical columns)

View recommended plots



New interactive sheet

```
### Churn

| No | 73.421502
| Yes | 26.578498
```

dtype: float64

# Univariate Analysis

```
1 print(df.groupby('gender')['Churn'].value_counts(normalize=True))
₹
    gender
            Churn
                     0.730405
    Female
            No
             Yes
                     0.269595
                     0.737954
    Male
            Nο
                     0.262046
            Yes
    Name: proportion, dtype: float64
  1 print(df.groupby('Contract')['Churn'].value_counts(normalize=True))
   Contract
                    Churn
    Month-to-month
                             0.572903
                    No
                    Yes
                             0.427097
    One year
                    No
                             0.887228
                             0.112772
                    Yes
    Two year
                    No
                             0.971513
                    Yes
                             0.028487
    Name: proportion, dtype: float64
```

### Visualize Churn Distribution:

```
1 # Count plot of Churn
2 ax = sns.countplot(x='Churn', data=df)
3 plt.title('Churn Distribution')
4 ax.bar_label(ax.containers[0])
5 plt.show()
```



```
1 #This is a pie chart showing overall churn in percentage
2 plt.figure(figsize=(4, 4))
3 gb = df.groupby('Churn').agg({'Churn': 'count'})
4 plt.pie(gb['Churn'], labels = gb.index, autopct='%1.2f%%')
5 plt.title('Churn Distribution')
6 plt.show()
```



### Churn Distribution



From the given pie chart, most customers stay, but about 27% leave. This shows there is a potential area for improvement in customer retention.

# Now, exploring the factors behind churn

```
1 plt.figure(figsize=(4,5))
2 sns.countplot(x='gender', hue='Churn', data=df)
3 plt.title('Churn by Gender Type')
4 plt.xlabel('gender Type')
5 plt.ylabel('Count')
6 plt.show()
```



From the given plot, we can say that the churn is not gender specific.

```
1 plt.figure(figsize=(3, 4))
2 sns.countplot(x='SeniorCitizen', hue='Churn', data=df)
3
4 plt.title('Churn by SeniorCitizen')
5 plt.xlabel('SeniorCitizen')
6 plt.ylabel('Count')
7 plt.show()
```

<del>\_</del>



```
1 # Step 1: Count Churn for each SeniorCitizen group
 2 count_data = df.groupby(['SeniorCitizen', 'Churn']).size().unstack()
4 # Step 2: Convert counts to percentage
5 percent_data = count_data.div(count_data.sum(axis=1), axis=0) * 100
 7 # Step 3: Plot the stacked bar chart
8 ax = percent_data.plot(kind='bar', stacked=True, figsize=(6, 6), color=['darkblue', 'orange'])
10 plt.title('Churn Percentage by Senior Citizen')
11 plt.xlabel('Senior Citizen (0 = No, 1 = Yes)')
12 plt.ylabel('Percentage')
13 plt.xticks(rotation=0)
14
15 # Step 4: Add percentage labels
16 for i in range(len(percent_data)):
17
      bottom = 0
18
      for j in range(len(percent_data.columns)):
19
           value = percent_data.iloc[i, j]
20
           if value > 0:
              ax.text(i, bottom + value / 2, f'{value:.1f}%', ha='center', va='center', fontsize=10, color='white')
21
22
              bottom += value
23
24 plt.legend(title='Churn', loc='upper right')
25 plt.tight_layout()
26 plt.show()
27
```



Senior Citizens have comapritavily more chur than non-senior citizens

# Tenure Distribution (How long customers have stayed)

```
1 plt.figure(figsize=(8, 5))
2 sns.histplot(data = df, x = 'tenure',bins=30, color='skyblue', hue = 'Churn')
3 plt.title('Distribution of Customer Tenure')
4 plt.xlabel('Tenure (Months)')
5 plt.ylabel('Number of Customers')
6 plt.show()
```



### Observations from the Tenure Histogram:

- 1. High Churn at the Beginning (0–1 months): This might reflect poor onboarding, unmet expectations, or uncompetitive offerings for new users.
- 2. Steady Decline and Flat Midsection (10–60 months): Customers who stay beyond the first few months tend to continue for a relatively steady period, showing moderate retention.
- 3. Another Peak at 70–72 Months: These could be loyal customers who've been with the company for the full duration. This segment may be highly satisfied or have long-term contracts.

# Churn by contract

```
1 # Count plot of Churn
2 ax = sns.countplot(x='Contract', data=df)
3 plt.title('Churn Distribution')
4 ax.bar_label(ax.containers[0])
5 plt.show()
6
7 sns.countplot(x='Contract', hue='Churn', data=df)
8 plt.title('Churn by Contract')
9 plt.xlabel('Contract')
10 plt.ylabel('Count')
11 plt.show()
```

₹





From the given chart, customer retention improves with longer contract durations, and month-to-month plans exhibit the highest churn rates than those who have 1 or 2 years plans. This trend suggests that incentivizing longer contracts could reduce churn rates.

### Service-Wise Churn Comparison in Telecom Dataset

```
17 for i, col in enumerate(cols):
    # Use the single Axes object from the flattened array
    sns.countplot(x=col, hue='Churn', data=df, ax=axes[i])
20
    axes[i].set_title(f'Churn by {col}')
21
    axes[i].set_xlabel(col)
    axes[i].set_ylabel('Count')
22
23
24 #Remove empty subplots
25 # Start the loop from the number of columns to remove the remaining axes
26 for i in range(len(cols), n_rows * n_cols):
    fig.delaxes(axes[i])
28
29 plt.tight_layout()
30 plt.show()
```



## Here are the key insights from these subplots.

1. PhoneService: Customers with Phone Service are more likely to churn compared to those without.

However, a majority still do not churn, indicating that this service alone isn't a strong churn driver.

2. MultipleLines: Churn is higher among customers who have multiple lines than those who do not.

No phone service group has the lowest churn, but it's also a small segment.

3. InternetService: Fiber optic users show a much higher churn rate than DSL or those without internet.

This may suggest dissatisfaction with fiber service or pricing.

4. OnlineSecurity: Churn is significantly higher among those without online security.

Customers who have OnlineSecurity tend to stay longer.

5. OnlineBackup: Similar to OnlineSecurity, customers without online backup churn more.

Offering backup services may reduce churn.

6. DeviceProtection: Customers without device protection show a higher churn rate.

Those who opt for this add-on appear more committed to the service.

7. TechSupport: One of the strongest patterns: customers without tech support churn the most.

Tech support availability correlates with retention.

8. StreamingTV: Customers with StreamingTV churn slightly more than those without it.

Still, not as strong an indicator as security/tech support.

9. StreamingMovies: Churn is higher among those who use StreamingMovies compared to those who don't.

The difference is moderate, similar to StreamingTV.

#### **Churn by Payment Method**

**→** 

```
1 plt.figure(figsize=(5, 4))
2 ax = sns.countplot(x='PaymentMethod', hue='Churn', data=df)
3
4 # plt.xlabel('PaymentMethod')
5 # plt.ylabel('Count')
6 ax.bar_label(ax.containers[0])
7 ax.bar_label(ax.containers[1])
8 plt.xticks(rotation=45)
9 plt.title('Churn by PaymentMethod')
10 plt.show()
```



#### Insights from Churn by PaymentMethod Plot:

- Electronic Check users show the highest churn rate.
- 1071 customers churned vs 1294 who stayed.
- This suggests electronic check users might be less loyal or more price-sensitive.
- Mailed Check, Bank Transfer (automatic), and Credit Card (automatic) users have significantly lower churn rates.
- Each of these methods shows much higher "No" (non-churn) counts compared to "Yes".
- Indicates that automatic payments are correlated with higher customer retention.

<del>\_</del>

### **MonthlyCharges Distribution**

```
1 plt.figure(figsize=(8, 5))
2 sns.histplot(df['MonthlyCharges'], kde=True, bins=30, color='salmon')
3 plt.title('Distribution of Monthly Charges')
4 plt.xlabel('Monthly Charges')
5 plt.ylabel('Number of Customers')
6 plt.show()
```



### **TotalCharges Distribution**

```
1 plt.figure(figsize=(8, 5))
2 sns.histplot(df['TotalCharges'], kde=True, bins=30, color='lightgreen')
3 plt.title('Distribution of Total Charges')
4 plt.xlabel('Total Charges')
5 plt.ylabel('Number of Customers')
6 plt.show()
```



# Bivariate Analysis:

This helps us understand how each feature affects customer churn.

1. Churn vs. Tenure

```
1 plt.figure(figsize=(8, 5))
2 sns.boxplot(x='Churn', y='tenure', data=df)
3 plt.title('Churn vs. Tenure')
4 plt.xlabel('Churn')
5 plt.ylabel('Tenure')
6 plt.show()
```



Insight: Churned customers often have lower tenure (shorter stay with the company).

### 2. Churn vs. Monthly Charges

```
1 plt.figure(figsize=(8, 5))
2 sns.boxplot(x='Churn', y='MonthlyCharges', data=df)
3 plt.title('Churn vs. Monthly Charges')
4 plt.xlabel('Churn')
5 plt.ylabel('Monthly Charges')
6 plt.show()
```



- Insight: Customers paying higher monthly charges are more likely to churn.
- 3. Churn vs. Categorical Features (e.g., Contract Type)

```
1 # Histogram of MonthlyCharges
2 sns.histplot(data=df, x='MonthlyCharges', hue='Churn', kde=True)
3 plt.title('Monthly Charges by Churn')
4 plt.show()
```



· Customers with lower monthly charges are significantly more likely to churn compared to those with higher charges.

```
1 # Heatmap of correlations (after converting categorical to numeric if needed)
2 df_encoded = df.copy()
3 df_encoded['Churn'] = df_encoded['Churn'].map({'Yes': 1, 'No': 0})
4 corr = df_encoded.corr(numeric_only=True)
5 sns.heatmap(corr, annot=True)
6 plt.title('Correlation Heatmap')
7 plt.show()
```



The heatmap shows weak to moderate relationships among the variables. Key points are:

- Longer customer tenure is strongly linked to higher total charges.
- Monthly charges are positively related to total charges.
- Customers with shorter tenure are more likely to churn.
- Other relationships among variables are generally weak.

Overall, tenure and charges are closely connected, and shorter tenure is associated with increased churn risk.

### Conclusion

The customer churn analysis effectively highlighted the key patterns and features that influence customer attrition in a telecom setting. Using exploratory data analysis, we identified meaningful trends that can support data-driven decision-making for improving customer retention.

#### **Key Insights**

- **Tenure is Critical:** Customers with a shorter tenure (i.e., newer customers) are far more likely to churn compared to long-term customers.
- Contract Type Matters: Month-to-month contract users show the highest churn rates. In contrast, those with one- or two-year contracts are more loyal.
- Monthly Charges Impact Churn: Higher monthly charges are associated with an increased likelihood of churn, especially when combined with short tenure.
- Total Charges Are Not Directly Indicative: While total charges show distribution differences, their standalone impact on churn is less significant compared to tenure or contract.
- **Gender Has Minimal Effect:** Churn patterns between male and female customers are nearly identical, indicating gender is not a strong predictor.
- Churn Rate: Around 26.6% of the customers in the dataset have churned, while 73.4% have remained.