

EC 763 : Mathématiques pour l'ingénieur 2

Travaux Dirigés n° 2 : Calcul matriciel

Guillaume Franchi

Année universitaire 2025-2026

■ Opérations élémentaires _

Exercice 1

On considère les matrices

$$A = \begin{pmatrix} 2 & 0 & -1 \\ 4 & -5 & 2 \end{pmatrix}, B = \begin{pmatrix} 7 & -5 & 1 \\ 1 & -4 & -3 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} D = \begin{pmatrix} 3 & 5 \\ -1 & 4 \end{pmatrix} \text{ et } E = \begin{pmatrix} -5 \\ 3 \end{pmatrix}.$$

Calculer, lorsque c'est possible :

1)
$$B - 2A$$

2)
$$3C - D$$

■ Puissances de matrices _

Exercice 2 Soit $A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.

- 1) Calculer A^2 , A^3 et A^4 .
- 2) Reprendre le calcul précédent en écrivant $A = I_2 + J$, où J est une matrice que l'on déterminera.
- ${\bf 3)} \ \ {\bf Quelles} \ {\bf solution} \ {\bf semble} \ {\bf la} \ {\bf plus} \ {\bf simple} \ ?$

Exercice 3 Soit $a \in \mathbb{R}$ et

$$D = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}, \quad N = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

On note A = D + N.

- 1) Vérifier que $N^3 = 0$ et que DN = ND.
- 2) En déduire la valeur de A^3 .

Exercice 4 On pose $J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

- 1) Calculer J^2 , J^3 , et en déduire (intuitivement) J^n .
- **2**) On pose, pour $a, b \in \mathbb{R}$, $A = aI_3 + bJ$. Calculer A^2 et A^3 .
- 3) En dédire sans calcul B^3 , où $B = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$.

■ Pour aller plus loin _

Exercice 5 Parmi les propositions suivantes, lesquelles sont vraies ou fausses? (On justifiera chaque réponse par une preuve, un exemple ou un contre-exemple)

- 1) Il existe deux matrices non nulles dont le produit est nul.
- 2) Si AC = BC avec C non nulle, alors A = B.
- 3) La somme de deux matrices symétriques est symétrique.

Exercice 6 On définit la matrice de centrage de dimension n par

$$H = I_n - n^{-1} \mathbf{1} \cdot \mathbf{1}^T,$$

où $\mathbf 1$ est me vecteur colonne composé de n fois 1.

- 1) Ecrire la matrice H pour n = 2 et n = 3.
- 2) Vérifier les propriétés suivantes.
 - a) $H^T = H$.
 - **b**) $H^2 = H$.
 - **c**) $H \cdot 1 = 0$.
 - $\mathbf{d}) \ H \cdot \mathbf{1} \cdot \mathbf{1}^T = 0.$
 - e) Pour tout $x \in \mathbb{R}^n$, $H \cdot x = x \overline{x} \mathbf{1}$.
 - **f**) Pour tout $x \in \mathbb{R}^n$, $x^T H x = n^{-1} \sum_{i=1}^n (x_i \overline{x})^2$.