Mobile Robot Locomotion

07/14/2025 Prof. Jizhong Xiao

Outline

- **1.** Wheeled Mobile Robots
 - Wheel Types
- 2. Mobile Robot Locomotion
 - Differential Drive
 - Tricycle
 - Synchronous Drive
 - Omni-directional
 - Car Drive (Ackerman Steering)

Wheeled Mobile Robots

- Combination of various physical (hardware) and computational (software) components
- A collection of subsystems:
 - Locomotion: how the robot moves through its environment
 - Sensing: how the robot measures properties of itself and its environment
 - Control: how the robot generate physical actions
 - Reasoning: how the robot maps measurements into actions
 - Communication: how the robots communicate with each other or with an outside operator

Notation

Posture: position(x, y) and orientation θ

- {X_m,Y_m} moving frame
- {X_b, Y_b} base frame

$$q = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$
 robot posture in base frame

$$R(\theta) = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation matrix expressing the orientation of the base frame with respect to the moving frame

Wheel Types

Fixed wheel

Off-centered orientable wheel (Castor wheel)

Centered orientable wheel

Swedish wheel:omnidirectional property

Wheels

Idealized Rolling Wheel

Non-slipping and pure rolling

Assumptions

- 1. The robot is built from rigid mechanisms.
- 2. No slip occurs in the orthogonal direction of rolling (non-slipping).
- 3. No translational slip occurs between the wheel and the floor (pure rolling).
- 4. The robot contains at most one steering link per wheel.
- 5. All steering axes are perpendicular to the floor.

Steered Wheel

Steered wheel

The orientation of the rotation axis can be controlled

Robot wheel parameters

- For low velocities, rolling is a reasonable wheel model.
 - This is the model that will be considered in the kinematics models of WMR
- Wheel parameters:
 - o r = wheel radius
 - v = wheel linear velocity
 - w = wheel angular velocity
 - o t = steering velocity

Examples of WMR

- Smooth motion
- Risk of slipping
- Some times use roller-ball to make balance
- Exact straight motion
- Robust to slipping
- Inexact modeling of turning
- Free motion
- Complex structure
- · Weakness of the frame

Mobile Robot Locomotion

- Instantaneous center of rotation (ICR) or Instantaneous center of curvature (ICC)
 - A cross point of all axes of the wheels

Non-holonomic constraint

Physical Meaning?

So what does that mean?

Your robot can move in some directions (forward and backward), but not others (sideward).

Mobile Robot Locomotion

- Differential Drive
 - two driving wheels (plus roller-ball for balance)
 - simplest drive mechanism
 - sensitive to the relative velocity of the two wheels (small error result in different trajectories, not just speed)
- Steered wheels (tricycle, bicycles, wagon)
 - Steering wheel + rear wheels
 - cannot turn ±90°
 - limited radius of curvature
- Synchronous Drive
- Omni-directional
- Car Drive (Ackerman Steering)

Differential Drive

Posture of the robot

$$P = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix}$$
 (x,y) : Position of the robot or comparison of the robot

Control input

$$U = \begin{pmatrix} v \\ w \end{pmatrix}$$
 v: Linear velocity of the robot w: Angular velocity of the robot (notice: not for each wheel)

Differential Drive

- $V_R(t)$ linear velocity of right wheel
- $V_{L}(t)$ linear velocity of left wheel
- r nominal radius of each wheel
- R instantaneous curvature radius of the robot trajectory (distance from ICC to the midpoint between the two wheels).

Differential Drive

Relation between the control input and speed of wheels

$$V_L = r \; \omega_L \qquad V_R = r \; \omega_R$$
 $\omega = \frac{V_R - V_L}{L} \qquad v = \frac{V_R + V_L}{2}$ c model in world frame

Kinematic model in world frame

$$\begin{pmatrix} \vec{x} \\ \vec{y} \\ \theta \end{pmatrix} = \begin{pmatrix} \cos \theta & 0 \\ \sin \theta & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} v \\ \omega \end{pmatrix}$$

Basic Motion Control

Instantaneous center of rotation

$$(V_R-V_L)/\ L = V_R/(R+rac{L}{2})$$

$$R=rac{L}{2}rac{V_R+V_L}{V_R-V_L}$$
 R: Radius of rotation

Straight motion
 R = Infinity → V_R = V_L

Rotational motion

$$R = 0 \rightarrow V_R = -V_L$$

Tricycle

- Three wheels and odometers on the two rear wheels
- Steering and power are provided through the front wheel
- control variables:
 - steering direction α(t)
 - angular velocity of steering wheel w_s(t)

The ICC must lie on the line that passes through, and is perpendicular to the fixed rear wheels

Tricycle

 If the steering wheel is set to an angle α(t) from the straight-line direction, the tricycle will rotate with angular velocity ω(t) about ICC lying a distance R along the line perpendicular to and passing through the rear wheels.

Synchronous Drive

- Typical configuration
 - Three steered wheels arranged as vertices of an equilateral triangle surmounted by a cylindrical platform
 - All of the three wheels point in the same direction and turn at the same rate
 - This is typically achieved through the use of a complex collection of belts that physically link the wheels together
 - o All the wheels turn and drive in unison
 - Two independent motors, one rolls all wheels forward, one rotate them for turning
- This leads to a holonomic behavior
- The synchro drive robot has the ability to control the orientation θ of their pose directly.

Holonomic System

Synchronous Drive

- Control variables (independent)
 - \circ v(t), ω (t)

$$x(t) = \int_{0}^{t} v(\sigma) \cos(\theta(\sigma)) d\sigma$$
$$y(t) = \int_{0}^{t} v(\sigma) \sin(\theta(\sigma)) d\sigma$$
$$\theta(t) = \int_{0}^{t} w(\sigma) d\sigma$$

- The ICC is always at infinity
- Changing the orientation of the wheels manipulates the direction of ICC

Omnidirectional Drive

Holonomic System

Car Drive (Ackerman Steering)

- Used in motor vehicles, the inside front wheel is rotated slightly sharper than the outside wheel (reduces tire slippage).
- Ackerman steering provides a fairly accurate dead-reckoning solution while supporting traction and ground clearance.
- Generally the method of choice for outdoor autonomous vehicles.

Ackerman Steering

• The Ackerman Steering equation:

$$\cot \theta_i - \cot \theta_o = -\frac{d}{l}$$

$$\cot \theta_{i} - \cot \theta_{o}$$

$$= \frac{R - d/2}{l} - \frac{R + d/2}{l}$$

$$= -\frac{d}{l}$$

Summary

- Mobot: Mobile Robot
- Classification of wheels
 - Fixed wheel
 - Centered orientable wheel
 - Off-centered orientable wheel (Caster Wheel)
 - Swedish wheel
- Mobile Robot Locomotion
 - 5 types of driving (steering) methods
- Basic Control

Thank you, enjoy the design!

