CLAIMS

5

10

- 1. A method for data scrambling or descrambling modulated signals, where s_i represents the scrambling code, S represents Q symbols with i being odd and I symbols with i being even, comprising the steps of:
 - (a) if de-scrambling the modulated signals and if $B \le |S|$, then $S = \text{sign}(S) * |B \Delta|$, where Δ is a small non-negative number,
 - (b) determining if $s_i = 1$, for i = 0,1, if i > 1 skip to step (d);
 - (c) setting S = -S if in step (a) $s_i = 1$, else setting S = S; and
 - (d) determining if $s_i = 1$, for $i \ge 2$ and if $A \le |S| < B$,

letting S = sign(S) * | (A + B) - | S | |, else S = S; and

where:

$$A = 0$$
, $B = 2D_1$ for $i = 2, 3$;

$$A=0,\ B=D_{I},\ and\ A=D_{I},\ B=2\ D_{I}\ for\ i=4,\ 5;$$

$$A=0,\ B=D_{I}/2;\ A=D_{I}/2,\ B=D_{I};\ A=D_{I},\ B=3D_{I}/2;\ A=3D_{I}/2,\ B=2D_{I},\ for\ i=6,\ 7,\ etc.$$

- 2. A method for data scrambling or de-scrambling modulated signals, where s_i
- represents the scrambling code, S represents Q symbols with i being even and I symbols with i being odd, comprising the steps of:
 - (a) if de-scrambling the modulated signals and if $B \le |S|$, then S = sign (S) * $|B \Delta|$, where Δ is a small non-negative number,
 - (b) determining if $s_i = 1$, for i = 0,1, if i > 1 skip to step (d);
 - (c) setting S = -S if in step (a) $s_i = 1$, else setting S = S;
 - (d) determining if $s_i = 1$, for $i \ge 2$ and if $A \le |S| < B$,

letting
$$S = sign(S) * | (A + B) - | S | |$$
, else $S = S$; and

where:

$$A = 0$$
, $B = 2D_1$ for $i = 2, 3$;

15
$$A = 0$$
, $B = D_1$, and $A = D_1$, $B = 2 D_1$ for $i = 4, 5$;

$$A=0,\,B=D_{1}/2;\,A=D_{1}/2,\,B=D_{1};\,A=D_{1,}\,B=3D_{1}/2;\,A=3D_{1}/2,\,B=2D_{1,}\,for\,\,i=6,\,7,\,etc.$$

3. A method for data scrambling or descrambling modulated signals, where s_i represents the scrambling code, S represents I symbols when i = 0,..., log2(M)/2-1 and associated with Q symbols when i = log2(M)/2,..., log2(M)-1, comprising the steps of:

- (a) if de-scrambling the modulated signals and if $B \le |S|$, then S = sign (S) * $|B \Delta|$, where Δ is a small non-negative number,
 - (b) determining if $s_i = 1$ for i = 1,3;
 - (c) setting S = -S if $s_i = 1$, else setting S = S;
 - (d) determining if s_i = 1 for i = 2,4 and if also A \leq $\mid S \mid$ < B, then S =

sign (S) * |(A + B) - |S||, else S = S; and where: A = 0 and $B = 2D_1$.

- 4. A method for data scrambling or descrambling modulated signals, where s_i represents the scrambling code, S represents Q symbols when i = 0,..., log2(M)/2-1 and associated with I symbols when i = log2(M)/2,..., log2(M)-1, comprising the steps of:
 - (a) if de-scrambling the modulated signals and if $B \leq |S|$, then S = sign $(S) * |B \Delta|, \text{ where } \Delta \text{ is a small non-negative number,}$
 - (b) determining if $s_i = 1$ for i = 1,3;
 - (b) setting S = -S if $s_i = 1$, else setting S = S;
 - (c) determining if $s_i = 1$ for i = 2,4 and if also $A \le |S| < B$, then

$$S = sign(S) * | (A + B) - | S | |$$
, else $S = S$; and

where: A = 0 and $B = 2D_1$.

10

5. A receiver for data descrambling modulated signals, where s_i represents the scrambling code, S represents Q symbols with i being odd and I symbols with i being even, comprising:

a rake receiver; and

a data descrambler coupled to the rake receiver, the data descrambler performing the steps of:

- (a) if $B \le |S|$, then $S = sign(S) * |B \Delta|$, where Δ is a small non-negative number,
- (b) determining if $s_i = 1$, for i = 0,1, if i > 1 skip to step (d);
- (c) setting S = -S if in step (a) $s_i = 1$, else setting S = S;
- (d) determining if $s_i = 1$, for $i \ge 2$ and if $A \le \mid S \mid \le B$,

letting
$$S = sign(S) * | (A + B) - | S | |$$
, else $S = S$; and

where:

$$A = 0$$
, $B = 2D_1$ for $i = 2, 3$;

15
$$A = 0$$
, $B = D_1$, and $A = D_1$, $B = 2$ D_1 for $i = 4$, 5; and
$$A = 0$$
, $B = D_1/2$; $A = D_1/2$, $B = D_1$; $A = D_1$, $B = 3D_1/2$; $A = 3D_1/2$, $B = 2D_1$, for $i = 6$, 7, etc.

6. A receiver for data descrambling modulated signals, where s_i represents the scrambling code, S represents Q symbols with i being even and I symbols with i being odd, comprising:

a rake receiver; and

a data desrambler coupled to the rake receiver, the data descrambler performing the steps of:

- (a) if $B \le |S|$, then $S = sign(S) * |B \Delta|$, where Δ is a small non-negative number,
- (b) determining if $s_i = 1$, for i = 0,1, if i > 1 skip to step (d);
- (c) setting S = -S if in step (a) $s_i = 1$, else setting S = S;
- (d) determining if $s_i = 1$, for $i \ge 2$ and if $A \le \mid S \mid \le B$,

letting
$$S = sign(S) * | (A + B) - | S | |$$
, else $S = S$; and

where:

5

10

$$A = 0$$
, $B = 2D_1$ for $i = 2, 3$;

15
$$A = 0$$
, $B = D_1$, and $A = D_1$, $B = 2 D_1$ for $i = 4$, 5; and

$$A=0,\,B=D_{1}/2;\,A=D_{1}/2,\,B=D_{1};\,A=D_{1},\,B=3D_{1}/2;\,A=3D_{1}/2,\,B=2D_{1},\,for\,\,i=6,\,7,\,etc.$$