Elastizität

Relative Veränderungen von zwei Dimensionen (z.B. Preis und Menge) in einer Funktion (z.B. Nachfragefunktion).

Formel	Beispiel/ Ergänzungen
Allgemeinde Definition: Elastizität von y bezüglich x	$\varepsilon_{y,x} = -2 \rightarrow Erh\ddot{o}hung\ x\ um\ 1\%\ bewirkt\ abnahme\ y\ um\ 2\%$
dy x	
$\varepsilon_{y,x} = \frac{1}{\mathrm{d}x} \cdot \frac{1}{y}$	
Elastizität bezüglich Nachfrage eines Preises im Punkt P(x, p)	relative Änderung x
$arepsilon_{x,p} = rac{\Delta x}{\Delta p} \cdot rac{p}{x}$	$ \varepsilon_{x,p} = {\text{relative Änderung p}} $
Ist die Funktion linear so ist der Quotient die Umkehrfunktion der Steigung	Für nichtlineare Funktion gilt:
$\varepsilon = \frac{\mathrm{d}x}{\mathrm{d}p} * \frac{p_0}{x_0} = a * \frac{p_0}{x_0} = \varepsilon_0$	$\varepsilon_{x,p} = \frac{\mathrm{d}x}{\mathrm{d}p} \cdot \frac{p}{x} = x'(p) \cdot \frac{p}{x}$
Lineare Nachfragekurve	Vielmals Nachfragefunktion nicht bekannt, sondern nur ein
$a = \frac{\varepsilon_0 \cdot x_0}{p_0}$	Näherungswert der Nachfrage-Elastizität, die nachfragte Menge und der Marktpreis.
Isoelastizität	Die Elastizität bleibt konstant.
$y = ax^b$; $\varepsilon_{y,x} = b$	

Nachfrage und Angebot

	Angebot $(\varepsilon_{x,p} \text{ positiv})$	Nachfrage $(\varepsilon_{x,p} \text{ negativ})$
elastisch	$\varepsilon_{x,p} > 1$	$\varepsilon_{x,p} < -1$
unelastisch	$0 < \varepsilon_{x,p} < 1$	$-1 < \varepsilon_{x,p} < 0$
fliessend (proportional elastisch)	$\varepsilon_{x,p} = 1$	$\varepsilon_{x,p} = -1$

Ist ${m \epsilon}$ positiv handelt es sich um substitutive Güter.

Ist ${m \epsilon}$ negativ handelt es sich um komplementär Güter.

Übersicht Grössenpaare

Formel		Beispiel/ Ergänzungen
Kostenfunktion		
	$\varepsilon_{K,x} = \frac{\mathrm{d}k}{\mathrm{d}x} * \frac{x}{K} = K'(x) * \frac{x}{K}$	
Nachfragefunktion	dr n n	x: Nachgefragte Menge Da die Nachfragefunktion fällt ist die Preiselastizität in aller Regel
	$\varepsilon_{x,p} = \frac{\mathrm{d}x}{\mathrm{d}p} * \frac{p}{x} = x'(p) \cdot \frac{p}{x}$	negativ.
Angebotsfunktion		x: Angebotene Menge
	$\varepsilon_{x,p} = \frac{\mathrm{d}x}{\mathrm{d}p} \cdot \frac{p}{x} = x'(p) \cdot \frac{p}{x}$	Da die Angebotsfunktion steigt ist die Preiselastizität in aller Regel positiv.
Produktionsfunktion	·	r: eingesetzte Menge des Produktionsfaktors
	$\varepsilon_{x,r} = \frac{\mathrm{d}x}{\mathrm{d}r} * \frac{r}{x} = x'(r) \cdot \frac{r}{x}$	x: Outputmenge
Konsumfunktion		C: Konsum
	$\varepsilon_{C,Y} = \frac{\mathrm{d}C}{\mathrm{d}Y} \cdot \frac{Y}{C} = C'(Y) \cdot \frac{Y}{C}$	Y: Einkommen

Beitriebs-optimum und Minimum

Vorgehen Ergänzung Betriebsoptimum 70 Im Betriebsoptimum sind die Durchschnittskosten minimal. k'(x) =60 Im Betriebsoptimum sind die Durchschnitsskosten gleich gross wie 50 die Grenzkosten. k(x) = K'(x)Die Durchschnittskosten $k(x_0)$ im Betriebsoptimum stellen die 40 langfristige Preisuntergrenze p_{lang} dar. Betriebsminimum 30 Im Betriebsminimum sind die durchschnittlichen variablen Kosten minimal. 20 Im Betriebsminimum sind die durchschnittlichen variablen Kosten gleich gross wie die Grenzkosten. 10 Die variablen Durchschnittskosten $k_v(xm)$ stellen die kurzfristige Preisuntergrenze p_{kurz} dar. Für quadratische Kostenfunktion gilt: Kostenfunktion kann anhand Daten mit sys-solv erstellt

$$x_0 = \sqrt{\frac{c}{a}}$$

Wobei x das Betriebsoptimum ist.

werden.

Partielle Ableitungen

r di cielle / loreitariberi	1
Formel	Beispiel
1. Ordnung	$f(x,y) = 4x^3 - 3x^2y + y^3 - 3x - 7y + 20$
$\partial f \partial a = a a a$	$f_x = 12x^2 - 6xy - 3 \rightarrow y_{const} = z.B. \ 10$
$\frac{\partial \mathbf{f}}{\partial x}, \frac{\partial}{\partial x} f(x, y), f'_{\mathbf{x}}, f_{\mathbf{x}}$	$f_y = -3x^2 + 3y^2 - 7$
2. Ordnung: zuerst nach x dann nach y	$f_{xx} = 24 - 6y; f_{yy} = 6y$
$\frac{\partial^2 f}{\partial y \partial x}, \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x}\right) f, fxy$	$f_{xy} = -6x; f_{yx} = -6x$
Partielle Elastizität	$\frac{\partial x}{\partial p} = \frac{\partial}{\partial p} \left[\ln(1 + 2w) \cdot p^{-0.5} \right] = \ln(1 + 2w) \cdot (-0.5) \cdot p^{-1.5} = -\frac{\ln(1 + 2w)}{2p^{1.5}}$
$\varepsilon_{f,x_i} := \frac{\frac{df_{xi}}{f}}{\frac{dx_i}{x_i}} = \frac{\partial f}{\partial x_i} \cdot \frac{x_i}{f} = f_{x_i} * \frac{x_i}{f}$	$\epsilon_{x,p} = \frac{\partial x}{\partial p} \cdot \frac{p}{x} = -\frac{\ln(1+2w)}{2p^{1.5}} \cdot \frac{p}{x} = -\frac{\ln(1+2w)}{2p^{1.5}} \cdot \frac{p}{\ln(1+2w) \cdot p^{-0.5}} = -0.5$
Kreuzpreiselastizität	Wenn Elastizität positiv, dann handelt es sich um ein
$\partial x_i p_j$	substitutives Gut
$\varepsilon_{x_i,p_j} = \frac{\partial x_i}{\partial n_i} * \frac{p_j}{r_i}$	Wenn Elastizität negativ, dann handelt es sich um ein
$\mathcal{S}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}_{\mathcal{F}}}}}$	komplementär Gut.
Extrema	$f(u,v,w) = u^2 + 2v^2 + 3w^2 - 2uv + 6uw + 10v - 4$
Kandindaten für Extrema sind die stationären Stellen von f.	Ableitungen im Gleichungssystem auflösen
$\partial f \partial f \qquad \partial f \qquad \partial f$	
$\frac{\partial f}{\partial x_i} \rightarrow \frac{\partial f}{\partial x_1} = 0 \land \frac{\partial f}{\partial x_2} = 0 \land \dots \land \frac{\partial f}{\partial x_n}$	$ \begin{vmatrix} 2u - 2v + 6w = 0 \\ -2u + 4v + 0w = -10 \\ 6u + 0v + 6w = 0 \end{vmatrix} $
$\partial x_i \partial x_1 \partial x_2 \partial x_n$	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$

Integralrechnung

Formel			Beispiel
f(x)	$\int f(x) dx$	Bemerkungen	$24\int (2x+1)^{11} dx - \int e^{-x} dx + \frac{1}{2} \int x^{-\frac{3}{2}} dx + 30 \int (16-5x)^{-1} dx$
0	С	C = const.	
x	$\frac{1}{2}x^2 + C$		$= \frac{24}{12 \cdot 2} (2x+1)^{12} - (-1)e^{-x} + \frac{1}{2} \cdot \frac{1}{-\frac{1}{2}} x^{-\frac{1}{2}} + 30 \cdot \left(-\frac{1}{5}\right) \ln(16-5x) + 6$
x ⁿ	$\frac{x^{n+1}}{n+1} + C$	n ≠ −1	$= (2x+1)^{12} + e^{-x} - \frac{1}{\sqrt{x}} - 6\ln(16-5x) + C \qquad 16-5x > 0$
x^{-1} bzw. $\frac{1}{x}$	ln(x)+ C	x > 0	$= (2x+1) + e - \frac{10-3x}{\sqrt{x}} - 0 \ln(10-3x) + C \qquad 10-3x > 0$
e ^x	e ^x + C		
	$yx^n \to \frac{yx^n}{n}$	n+1 + 1	
$(ax+b)^n$	$\frac{1}{a} \cdot \frac{(ax+b)^{n+1}}{n+1} + C$	a ≠ 0 , n ≠ −1	
$(ax+b)^{-1}$ bzw. $\frac{1}{ax+b}$	$\frac{1}{a} \cdot \ln(ax + b) + C$	$ax + b > 0$, $a \neq 0$	
e ^{ax+b}	$\frac{1}{a} \cdot e^{ax+b} + C$	a ≠ 0	
Das bestimmte Inte	egral		$\int_{0}^{1} (0.5x+1)^{\frac{1}{2}} dx = \frac{1}{2} \frac{1}{1} (0.5x+1)^{\frac{3}{2}} \Big _{0}^{1} = \frac{4}{1} (0.5x+1)^{\frac{3}{2}} \Big _{0}^{1} = 2.45 - 1.33 = 1.12$

Das bestimmte Integral

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x)\Big|_{a}^{b}$$

	$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x) \Big _{a}^{b}$	$ \int\limits_{0}^{} (0.5x+1)^{\frac{\gamma}{2}} dx = \frac{1}{\frac{\gamma}{2}} \frac{1}{\frac{\gamma}{2}} (0.5x+1)^{\frac{\gamma}{2}} \bigg _{0}^{} = \frac{4}{3} (0.5x+1)^{\frac{\gamma}{2}} \bigg _{0}^{} \cong 2.45-1.33=1.12 $ Wichtig! : Zur Berechnung Integral direkt in Taschenrechner eingeben.
Konsum	nenten- und Produzentenrente	
Vorgehe	n	Ergänzung
Zur Berd Verfahr 1. 2. 3. 4.	echnung der Konsumentrente eignet sich folgendes en Gleichgewichtspreis p_G über $x_N(p)=x_A(p)$ finden Nullstellen der Umkehrfunktionen bestimmen Konsumentenrente K: $\int_{p_G}^{p_{N_0}} x_N(p)$ Produzentenrente P: : $\int_{p_{A_0}}^{p_G} x_A(p)$	
Oder m	an macht es wie folgt:	p 60
1.	Lösung x_G Martgleichgewicht $p_N(x) = p_A(x)$ bestimmen	50
2.	Dann mit x_G den Gleichgewichtspreis p_G bestimmen.	G G
3.	Konsumentenrente K: $\int_0^{x_G} p_N(x) dx - p_G * x_G$	PG P
4.	Produzentenrente P: : $p_G * x_G - \int_0^{x_G} p_A(x) dx$	10 N N N N N N N N N N N N N N N N N N N

Finanzmathematik

Variable Kastan and and Dradution of unliting	I
Variable Kosten annhand Produtionsfunktion $K_v(x) = p_r \cdot r(x)$	
Endwert und Barwert	Umformung
K_0 , $PV = Anfangskpaital$, $Barwert$, $Gegenwartswert$	
K_n , $FV = Kapital \ nach \ n \ Jahren, Endwert$	$i = {n \over r} \left {FV \over r} - 1 \right $ $n = \log_{100} \left({FV \over r} \right)$
$FV = PV * (1+i)^n$	$i = \sqrt[n]{\frac{FV}{PV}} - 1; \ n = \log_{1+1}\left(\frac{FV}{PV}\right)$ Barwert der Einzahlungen: $10'000 + \frac{5'000}{11^3} = 13'756.57$
Separations-Prinzip	Barwert der Einzahlungen: $10'000 + \frac{5'000}{11^3} = 13'756.57$
Auf ein neu eröffnetes Konto werden CHF 10'000	A.A
einbezahlt	Barwert der Auszahlungen: $\frac{2'000}{1.1} + \frac{2'000}{1.1^2} + \frac{2'000}{1.1^4} = 4'837.10$
 Nach 1 Jahr werden CHF 2'000 abgehoben, ebenso nach 2 und 4 Jahren. 	1.1 1.1
Nach 3 Jahren werden CHF 5'000einbezahlt.	Netto-Barwert der Zahlungen: 13'756.57 – 4'837.10 = 8'919.47
Berechnen Sie den Kontostand nach 4 Jahren. Annahme	Netto-Endwert der Zahlungen: 8'919.47 · 1.1 ⁴ = 13'059 Franken
Zinssatz:10%)	
Geometrische Reiehen	GR: Geometrische Reihe: Summe der Glieder aus GF
GF: Geometrische Folge: Quotient aus Glieder bleibt konstant	$s_n = a_1 * \frac{q^n - 1}{q - 1}; \ s_\infty = \frac{a_1}{1 - a}$
$\frac{a_n}{a_{n-1}} = q; q = 1 + i$	4 4
Nachschüssig: Einzahlung nach Jahr 1 mit Jahr n am 31.12	Vorschüssig: Einzahlung mit Jahr 1 ohne Jahr n am 1.1
E _n ♠	<u> </u>
Jahr 1 Jahr 2 Jahr 3 Jahr n	Jahr 1 Jahr 2 Jahr 3 Jahr n
	\(\frac{1}{2} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2} \
Nachschüssiger Rentenendwert	Vorschüssiger Rentenendwert
Endwert aus n gleichen Raten	Endwert n Raten nach der letzten Einzahlung
$s_n = r * \frac{q^n - 1}{q - 1}$	n .
$3n - 1 * \frac{q-1}{q-1}$	$s_n' = r * q * \frac{q^n - 1}{q - 1}$
Nachschüssiger Rentenbarwert	Vorschüssiger Rentenbarwert
Barwert aus n gleichen Raten	Barwert aus n gleichen Raten vor erster Einzahlung
$B = \frac{s_n}{q^n} = \frac{r}{q^n} * \frac{q^n - 1}{q - 1}; B_{\infty} = \frac{r}{q - 1} = \frac{r}{i}$	$B' = \frac{s_n'}{q^n} = \frac{r}{q^{n-1}} * \frac{q^n - 1}{q - 1}; B_{\infty}' = \frac{r * q}{q - 1} = \frac{r(1 + i)}{i}$
Nachschüssiges Endkaptial (Sparkassenformeln)	Vorschüssiges Endkaptial
Hinzufügen/Entnahme von n-maligen Jahresrenten.	Endkapital nach der letzten Einzahlung
n 4	20 4
$E_n = K * q^n + / - r * \frac{q^n - 1}{q - 1};$	$E'_n = K * q^n + r * q \frac{q^n - 1}{q - 1}$
Umformungen Nachschüssiges Endkapital	Umformungen Vorschüssiges Endkapital
Zahlung: $c = (a - b * y^{-t}) * \frac{i}{1 - y^{-t}}$	Zahlung: $c = \frac{(a-b*y^{-t})}{y} * \frac{i}{1-y^{-t}}$
- 2	
$TR: expr - eval\ mit\ x = \frac{c}{v-1} = \frac{+/-c}{i}$	$TR: expr - eval\ mit\ x = \frac{c * y}{v - 1} = \frac{+/-c * y}{i}$
Zeitperioden: $\log_y \frac{b-x}{a-x}$	Rest analog Naschüssiges Endkapital
Anfangskapital a: $x + (b - x) * y^{-t}$	Merke: $+ \rightarrow Auszahlung/- \rightarrow Einzahlung$
Endkapital b: $x + (a - x) * y^t$	Theree Hassantang
Tilgung	Gleichbleibende Annuität
Schuldbetrag K in n nachschüssigen Annuitäten bezahlen.	
Gleichbleibende Tilgung	$A = K * q^n * \frac{q-1}{q^n - 1}$
	Monatliche Tilgung (Barkredit)
$T = \frac{K}{n}; A = Z + T$	$r = K * q^n * \frac{q-1}{q^n-1}$; n = Monatsraten; q = 1 + i _M
	$r = K * q^n * \frac{1}{q^n - 1}$; $n = Monatsraten$; $q = 1 + 1_M$
Net-Present-Value (Nettobarwert)	Beispiel: Investitionsbetrag $I_0 = CHF 400\ 000.$ Nutzungsdauer (Jahre) $n = 5$
$\sum_{t=0}^{n} e_t - a_t \qquad L_n$	jährl. Nettoeinzahlungen $e_1 - a_1 = CHF$ 90 000
$NPV = -I_0 + \sum_{t=1}^{\infty} \frac{e_t - a_t}{(1+i)^t} + \frac{L_n}{(1+i)^n}$	$e_2 - a_2 = CHF 120 000.$ $e_3 - a_3 = CHF 100 000.$
NPV ≥ 0 Die Investition ist vorteilhaft	$e_4 - a_4 = CHF 90\ 000.$
THE VETO DIC INVESTIGION IS VOICEMINANT	$e_5 - a_5 = CHF 80 000.$

NPV < 0 Lieber Kapital in Kalkulationszinssatz investieren

 $L_5 = CHF = 80\ 000.5$

 $NPV = -400^{\circ}000 + \frac{90^{\circ}000}{1.1} + \frac{120^{\circ}000}{1.1^{2}} + \frac{100^{\circ}000}{1.1^{3}} + \frac{90^{\circ}000}{1.1^{4}} + \frac{160^{\circ}000}{1.1^{5}} = 16\,\,942. - 100^{\circ}000 + \frac{100^{\circ}000}{1.1^{2}} + \frac{100^$ i=10%: $f(x) = -400 + 90x + 120x^2 + 100x^3 + 90x^4 + 160x^5 \quad \Rightarrow \quad 1 \ 000 \cdot f\left(\frac{1}{1.1}\right)$

"Standardformel" nachschüssig
$$y^t*a=b+\frac{1-y^t}{1-y}*c$$

IRR berechnen bei gleichbleibenden Raten TR: num - solv

$$TR: num - solv$$

$$y^{t} * a - b - \frac{1 - y^{t}}{1 - y} * c = 0$$

$$y =?= 0$$

Internal Rate of Return (IRR) N Die Investition ist vorteilhaft, we mindestens so hoch ist wie der

Die Investition ist vorteilhaft, wenn der interne Ertragssatz *IRR* mindestens so hoch ist wie der Kalkulationszinssatz *i*.

Differenztrechnung IRR

$$NPV_{Diff\ A-B} > 0 \rightarrow A \ ist \ besser \ als \ B$$

Für $i > IRR_{A-B} \ ist \ A \ besser \ als \ B$

NPV = 0

Unterjährige Verzinsung

Effektiver Jahreszinsatz i = Selbes Endkapital bei jährlichen Verzinsung wie Unterjährlicher.

$$K_1 = K_0 \left(1 + \frac{i_{nom}}{m}\right)^m = K_0 * (1 + i); m = Monate$$

wobei
$$q = 1 + i$$
.

 $NPV = -400'000 + \frac{90'000}{2} + \frac{120'000}{2} + \frac{100'000}{2} + \frac{90'000}{4} + \frac{80'000}{5} + \frac{80'000}{5} = 0$

$$f(x) = -400 + 90x + 120x^2 + 100x^3 + 90x^4 + 160x^5$$

TR: num-solv
$$f\left(\frac{1}{x}\right) = 0$$

liefert bei einem Startwert von z.B. x=1 die Lösung x=1.1154251.

IRR = 11.5%

effektiver Jahreszinssatz = 12%

Monatszinssatz=? $\sqrt[12]{1.12} = 1.00949$ Monatszinssatz: 0.949% nomineller Jahreszinssatz=? $12 \cdot 0.9488793\% = 11.4\%$

nomineller Jahreszinssatz = 11.4%

nomineller Jahreszinssatz = 12%

Monatszinssatz=? $\frac{12\%}{12} = 1\%$

effektiver Jahreszinssatz=? $1.01^{12} = 1.127$

effektiver Jahreszinssatz = 12.7%

Cobb-Douglas-Produktionsfunktion

$$x(r_1, r_2) = c * r_1^{\alpha_1} * r_2^{\alpha_2}$$

 $K(r_1, r_2) = p$

Bei der Gewinnmaximierung lohnt es sich das Gleichungssystem zu logarithmieren. $\ln(m*n) = \ln(m) + \ln(n)$

$$\ln\left(\frac{m}{n}\right) = \ln(m) - \ln(n)$$

$$\begin{vmatrix} r_1^{-0.4} r_2^{0.3} &=& 0.5 \\ r_1^{0.6} r_2^{-0.7} &=& 2 \end{vmatrix} \begin{vmatrix} -0.4 & |n(r_1)| + 0.3 & |n(r_2)| = |n(0.5)| \\ 0.6 & |n(r_1)| + 0.7 & |n(r_2)| = |n(2)| \end{vmatrix} = |n(2)|$$

$$\text{TR: sys-solv:}$$

$$x = \frac{|n(r_1)| = 2.772}{|n(r_2)| = 16} \text{ und } y = \frac{|n(r_2)| = 1.386}{|n(r_2)| = 1.386} \dots$$

$$r_1 = \frac{e^{2.772}}{|n(r_2)| = 16} \text{ und } r_2 = \frac{e^{1.386}}{|n(r_2)| = 1.386} = 4 \quad (\text{TR: } e^x \text{ und } e^y)$$

Pigousteuer

$$TK = ERK + EFK$$

 $ERGK = |EFGK| \rightarrow Steuer$

Grenzwertlösung:

- 1. Berechnen der zu reduzierenden Emissionen
- 2. Berechnen Emissionsreduktionskosten anhand Emissionsreduktionsgrenzkostenfunktion

Abgabelösung:

 Gleichungssystem auflösen -> ergibt zu reduzierende Emissionen

$$x_1 + x_2 = Abgabe$$

 $y_1 = y_2$

4. Berechnen Emissionsreduktionskosten anhand Emissionsreduktionsgrenzkostenfunktion

Totale Kosten = Emmissionsreduktionskosten + Emissionsfolgekosten

Abgabelösung:

$$\begin{aligned} y_2 &= 5 & 0.1x_2^2 &= 5 & x_2 &= 7.07\,\text{ME} \\ ERK_2 &= \int\limits_0^{7.07} 0.1x_2^2 dx_2 &= 11.78\,\text{GE} \end{aligned}$$

Emissionsmenge₂ = 10 - 7.07 = 2.93 ME

Abgabe₂ = $5 \cdot 2.93 = 14.65 \,\text{GE}$

Grenzwertlösung:

$$\begin{vmatrix} x_1 + x_2 = 4 \\ 2 + 0.5x_1 = e^{0.4x_2} - 1 \end{vmatrix}$$

Nach x_1 auflösen und in Gleichung einsetzen.

Mit num - solv Gleichung auflösen.

Polypol und Monopol

Eigenschaft	Monopol	Polypol
Marktpreis	Preis-Absatz-Funktion p(x) entspricht	Markpreis p ist konstant
	Nachfragefunktion $E(x) = p(x) * x$	E(x) = p * x
Gewinnmaximum	E'(x) = K'(x)	p = K'(x)
	$G_{max} = (p_G - k(x_G)) * x_G$	
Gewinnmaximierung	$G(x_1, x_2) = (p_1(x_1, x_2) * x_1 +$	$G(x_1, x_2) = (p_1 * x_1 + p_2 * x_2) - K(x_1, x_2)$
	$p_2(x_1,x_2)*x_2))-K(x_1,x_2)$	Partielle Ableitungen von G_{x_n} Gleichungssystem
	Partielle Ableitungen von G_{x_n}	auflösen
	Gleichungssystem auflösen	
ertragsgesetzlich KV	G(x) = E(x) - K(x)	$G'^{(x)} = E'^{(x)} - K'^{(x)} = 0$

Taschenrechner

Eine Funktion mit mehreren Variablen Werten ausrechenen

2nd + expr-eval (table) + <enter> function + <set> parameter values + <enter>