

Recap: Key Components for Model Selection

- Criterion to compare models:
 - R_a^2 , C_p , AIC_p , BIC_p , $Press_p$, etc.
- Procedure to search for good model(s):
 - Best subset selection: Exhaustive search; When the number of potential X variables is not too big
 - Stepwise regression: Greedy search: The number of potential X variables can be large.

Surgical Unit: Model Selection Criteria

Consider X_1, X_2, X_3, X_4 (clotting, prognostic, enzyme, liver) as the potential pool of X variables. There are 16 sub-models.

p i	inter	cept	X1	X2	Х3	Х4	sse	R	^2 R	^2_a	Cı)	aio		bio	2	press	,			
1		1	0	0	0	0	12.805	0.0	00 0	.000	151.	69	-75.7	16	-73.7	27 1	3.292				
2		1	0	0	1	0	7.334	0.4	27 0	.416	66.	18 -	103.8	11	-99.8	333	8.329)			
2		1	0	0	0	1	7.408	0.4	21 0	.410	67.6	96 -	103.2	68	-99.2	90	8.024				
2		1	0	1	0	0	9.974	0.2	21 0	. 206	108.4	169	-87.2	05	-83.2	27 1	0.738				
2		1	1	0	0	0	12.028	0.0	61 0	.043	141.0	93	-77.0	96	-73.1	18 1	3.508				
3		1	0	1	1	0	4.313	0.6	63 0	.650	20.	23 -	130.4	179 -	124.	12	5.066	,			
3		1	0	0	1	1	5.132	0.5	99 0	. 583	33.	36 -	121.6	89 -	115.1	122	6.123				
3		1	1	0	1	0	5.783	0.5	48 0	.531	43.8	373 -	114.6	44 -	108.6	77	6.989)			
3		1	0	1	0	1	6.620	0.4	83 0	.463	57.	175 -	107.3	342 -	101.3	375	7.474				
3		1	1	0	0	1	7.299	0.4	30 0	.408	67.9	61 -	102.0	70	-96.1	L03	8.472				
3		1	1	1	0	0	9.437	0.2	63 0	.234	101.9	37	-88.1	94	-82.2	27 1	1.055				
4		1	1	1	1	0	3.109	0.7	'57 0	.743*	3.38	8* -	146.1	61*	-138	205*	3.91	4*			
4		1	0	1	1	1	3.615	0.7	18 0	.701	11.4	134 -	138.0	11 -	130.0	55	4.598				
4		1	1	0	1	1	4.970	0.6	12 0	. 589	32.9	60 -	120.8	323 -	112.8	367	6.209)			
4		1	1	1	0	1	6.568	0.4	87 0	.456	58.3	358 -	105.7	63	-97.8	307	7.902				
5		1	1	1	1	1	3.084	0.7	59*	0 .739	5.00	00 -	144.5	87	-134	642	4.069)			

Within each subset size, models are sorted in ascending SSE. Consequently, within each subset size, R_p^2 , $R_{a,p}^2$ are from the largest to the smallest and C_p , BIC_p , AIC_p are from the smallest to the largest. $Press_p$ may not be monotone with SSE.

AICp and BICp Criteria

Akaike's information criterion (AIC):

$$AIC_p = n\log \frac{SSE_p}{n} + 2p.$$

Bayesian information criterion (BIC):

$$BIC_p = n\log \frac{SSE_p}{n} + (\log n)p.$$

- We should look for models with small AIC (BIC).
 - Surgical unit. The model with X₁, X₂, X₃ has the smallest AIC and BIC among the models being considered.

- The first term: $n \log \frac{SSE_p}{n}$ reflects the of the model to the observed data.
 - It by adding more X variables into the model.
- The second term, 2p for AIC and (log n)p for BIC, reflects
 - It by adding more X variables into the model.
 - If $n \ge 8$, then $\log n > 2$ and BIC puts penalty on model complexity and tends to choose
 - models than AIC.

- The first term: $n \log \frac{SSE_p}{n}$ reflects the goodness-of-fit of the model to the **observed data**.
 - It decreases by adding more X variables into the model.
- The second term, 2p for AIC and (log n)p for BIC, reflects model complexity.
 - It increases by adding more X variables into the model.
 - If $n \ge 8$, then $\log n > 2$ and BIC puts more penalty on model complexity and tends to choose smaller models than AIC.

- Overly simplified models have small model complexity (p), but they tend to have large SSE (underfitting; high bias).
- Overly complicated models may have a small SSE, but they have large model complexity (overfitting, high variance).
- By minimizing AIC (or BIC), we are trying to find a model that balances between model complexity and the goodness-of-fit.

Press_p Criterion

Predicted residual sum of squares ($Press_p$):

$$Press_p = \sum_{i=1}^n (Y_i - \widehat{Y}_{i(i)})^2.$$

- Y_i is the observed response of the ith case.
- $\widehat{Y}_{i(t)}$ is the predicted value for the ith case obtained by fitting the model only using n-1 cases excluding case i.
- Pressp is also known as leave-one-out-cross-validation (LOOCV).
- Models with small Press, are considered good in terms of predictive ability.
 - Surgical unit: the model with X_1, X_2, X_3 has $Press_p = 3.914$ which is the smallest among all models being considered here.

Calculate Pressp

Press_p can be calculated without actually performing n regressions.

This is because the deleted residual for the ith case:

$$d_i := Y_i - \widehat{Y}_{i(i)} =$$
, $i = 1, \dots, n$.

where $e_i = Y_i - \widehat{Y}_i$ is the residual of the *ith* case and h_{ii} is the *ith* diagonal element of the hat matrix **H**, both from the regression fit using

• So

Calculate Press_p

Press_p can be calculated without actually performing *n* regressions.

This is because the deleted residual for the ith case:

$$d_i := Y_i - \widehat{Y}_{i(i)} = \frac{e_i}{1 - h_{ii}}, \quad i = 1, \dots, n.$$

where $e_i = Y_i - \widehat{Y}_i$ is the residual of the *ith* case and h_{ii} is the *ith* diagonal element of the hat matrix **H**, both from the regression fit using **all** n cases.

So

$$Press_p = \sum_{i=1}^{n} \frac{(Y_i - Y_i)^2}{(1 - h_{ii})^2}.$$

Derive the Deleted Residuals

Optional Reading.

Define $\tilde{\mathbf{Y}}$ by replacing the *i*th element of the response vector \mathbf{Y} with the leave-*i*-out predicted value $\hat{\mathbf{Y}}_{i(i)}$ of the *i*th case:

$$\tilde{\mathbf{Y}} = (Y_1, \dots, Y_{i-1}, \hat{Y}_{i(i)}, Y_{i+1}, \dots, Y_n)^T.$$

• Let $\hat{m{eta}}_{(i)}$ be the leave-i-out LS fitted regression coefficients.

Then $\hat{\beta}_{(i)}$ is also the LS fitted regression coefficients by using $\tilde{\mathbf{Y}}$ as the response vector, i.e. $\hat{\beta}_{(i)} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \tilde{\mathbf{Y}}$. Why?

The leave-i-out fitted values are:

$$\hat{\mathbf{Y}}_{(i)} = \mathbf{X}\hat{\boldsymbol{\beta}}_{(i)} = H\tilde{\mathbf{Y}} = H(\mathbf{d}_{(i)} + \mathbf{Y}), \quad \mathbf{d}_{(i)} = \tilde{\mathbf{Y}} - \mathbf{Y} = (0, \dots, -d_i, \dots, 0)^T.$$

Subtracting the ith element from Yi on both sides gives:

$$d_i = h_{ii}d_i + e_i \Longrightarrow d_i = \frac{e_i}{1 - h_{ii}}.$$

Surgical Unit: Full Model X_1, X_2, X_3, X_4

```
> fit.f =lm(log(Y)~X1+X2+X3+X4. data=data.o)
> summary(fit.f)
Ca11 ·
lm(formula = log(Y) \sim X1 + X2 + X3 + X4, data = data.o)
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.851933  0.266263  14.467  < 2e-16 ***
X 1
           0.083739 0.028834 2.904 0.00551 **
         0.012671 0.002315 5.474 1.50e-06 ***
X2
X3
         0.015627 0.002100 7.440 1.38e-09 ***
X4
         0.032056 0.051466
                                0.623 0.53627
Signif. codes: 0 ?**?0.001 ?*?0.01 ??0.05 ??0.1 ??1
Residual standard error: 0.2509 on 49 degrees of freedom
Multiple R-squared: 0.7591. Adjusted R-squared: 0.7395
F-statistic: 38.61 on 4 and 49 DF. p-value: 1.398e-14
> anova(fit.f)
Analysis of Variance Table
Response: log(Y)
Df Sum Sq Mean Sq F value Pr(>F)
          1 0.7770 0.7770 12.3443 0.0009618 ***
X 1
        1 2.5904 2.5904 41.1565 5.341e-08 ***
X2
Х3
         1 6.3286 6.3286 100 5490 1.838e-13 ***
        1 0.0244 0.0244 0.3879 0.5362698
Residuals 49 3 0841 0 0629
                                                               4 □ b 4 □ b 4 □ b □ ■ 9 Q P
```

Surgical Unit: Full Model

Full model has P = 5 and

$$SSE = 3.0841$$
, $MSE = 0.0629$, $R^2 = 0.7591$, $R_a^2 = 0.7395$.

- By definition, for the full model, $C_P = P = 5$.
- Sample size n = 54, so for the full model:
- $AIC_P = 54 \log(3.0841/54) + 2 \times 5 = -144.5871$ and $BIC_P = 54 \log(3.0841/54) + \log(54) \times 5 = -134.6422.$
- $Press_p = 4.069$.
- > e.f=fit.f\$residuals ## residuals
- h.f=influence(fit.f)\$hat ## diagonals of hat matrix
- > press.f= sum(e.f^2/(1-h.f)^2) ## calculate press

Model Search Procedures

- The number of possible models, 2^{P-1}, grows very fast with the number potential X variables P + 1.
- Evaluating every possible model can be computationally infeasible even for moderate P.
- A variety of search procedures have been developed to efficiently search for the "best" model(s) in the model space.
 - Stepwise regression procedures
 - Best subsets algorithms: Not applicable when the pool of potential X variables is large.

Stepwise Regression Procedures

- Applicable to situations with a large number of potential X variables.
- Use "greedy" search strategies by developing a sequence of models, at each step adding or deleting only one X variable according to a pre-specified criterion (e.g., AIC).
- May end up with a suboptimal model rather than the global "best" model.
- Commonly used stepwise procedures include: forward stepwise, forward selection, backward stepwise and backward elimination.

Forward Stepwise Procedure

Need to specify:

- A model selection criterion, e.g., AIC.
- An initial model M_0 , usually a small model, e.g., the null-model with no X variable.
- The pool of potential X variables X.
- The set of X variables that will always be in the model X_0 , e.g., the intercept term.

Starting from the initial model M₀, at each step:

- (a) Consider the X variables in the potential pool X that are not currently in the model. Examine the change in the criterion by adding each such variable into the current model.
- (b) Consider the X variables that are already in the model but not in the set X_0 . Examine the change in the criterion by dropping each such variable out of the current model.
- Choose the operation that improves the criterion the most and update the current model accordingly. Repeat steps (a) and (b) for the updated model.
 - If there is no operation that can improve the criterion anymore, then stop the search procedure and return the current model as the selected model.

Forward Selection and Backward Elimination

- Forward selection is a simplified version of forward stepwise procedure, omitting the considerations of dropping a variable currently in the model at each step.
- Backward elimination is the opposite of the forward selection.
 - It starts with a "big" initial model, e.g., the full model.
 - At each step, it examines the change of the criterion by dropping a variable currently in the model.
- Backward stepwise procedure. Guess what is it?
- Another commonly used strategy is to perform one pass of forward selection followed by one pass of backward elimination.

stepAIC () Function

We can use the stepAIC() function in the MASS library to perform various stepwise regression.

- direction=''both" corresponds to forward stepwise procedure or backward stepwise procedure (depending on the initial model); direction=""forward" corresponds to froward selection; direction='fbackward' corresponds to backward elimination.
- The option scope specifies the potential pool of X variables (upper) and the X variables that should always be included in the model (lower).
- k=2 corresponds to AIC criterion; k=log(n) corresponds to BIC criterion.

Surgical Unit: Forward Stepwise

Podding material															0									
Reading material: Start with the null-model.																								
								del.																
		brary		S) og(Y)	~1		4040	->	ии :.		1	dal.	11	d.a		a la cu	1 :.							
				og(1) AIC(f																	th",	k=2)		
	Star	t: A	IC=-	75.72																				
	log(Y) ~	1																					
				R																				
				5.470																				
	+ X4			5.396																				
	+ X2			<mark>2</mark> .830																				
	+ X8			1.780																				
	+ X1			<mark>0</mark> .777																				
	+ X6	_		<mark>0.688</mark>																				
	<none< td=""><td></td><td></td><td></td><td></td><td>8045</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></none<>					8045																		
	+ X5			<mark>0</mark> .269																				
	+ X7	1		0.206	7 12	. 5978	-74	1.595																
				03.81																				
		Y) ~																						
		um of			SS		IC																	
	+ X2			3.020																				
	+ X4			2.201																				
	+ X1			1.551																				
	+ X8	_		1.138																				
	<none< td=""><td></td><td></td><td>0.258</td><td></td><td>3337</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></none<>			0.258		3337																		
	+ X6 + X5			0.238																				
	+ X7	1		0.065	97	2679	-102	.298																
	- X3	1		5.470	8 12	. 8045	-7!	.716																
															4	□ ▶	4 ₺	▶ ∢	를 ▶	4 ≣	Þ	Ξ.	9 Q	0

					TÌ I	T É		
Step: AIC=								
log(Y) ~ X	3 + X2							
Df Sum of S	Sq RSS	AIC						
+ X8 1	1.4709 2.842	20 -151.002						
	1.2044 3.108							
+ X4 1								
+ X7 1								
+ X5 1	T							
<none></none>		29 -13 0. 479						
+ X6 1								
	3.0209 7.33							
- X3 1	5.6613 9.97	12 -87.205						
Step: AIC:								
	3 + X2 + X8							
	Sq RSS							
	0.664 <mark>2 2.1</mark> 7							
	0.4658 2.370							
	0.1372 2.704							
<none></none>								
+ X5 1 + X7 1								
- X8 1								
- X2 1								
- X3 1	4.9403 7.78							
AJ I	1.5105 7.70	.5 50.005						
				4	· 4 🗗 > ·	(E > 4 3	 	200

	p: AI				W 1															
	(¥) ~																			
	Sum of																			
	6 1																			
<nc< td=""><td>ne></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></nc<>	ne>																			
+ X			0.076																	
+ X			0.041																	
+ X			0.022																	
- X			0.664																	
- X			9.930																	
- X	2 1		2.989	1 5.1	1670	-118	722													
- X	3 1		5.445	9 7.6	237	-97	717													
Ste	p: AI	C=-1	53.83																	
log	(Y) ~	X3 +	X2 +	X8 +	- X1	+ X6														
Df	Sum of	Sq	RS	S	AIC															
+ X	5 1		0.076	9 2.6	0043	-163	.86													
<nc< td=""><td>ne></td><td></td><td></td><td>2.6</td><td>812</td><td>-163</td><td>83</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></nc<>	ne>			2.6	812	-163	83													
- X			0.096	6 2.1	1778	-163	.38													
+ X			0.021																	
+ X			0.016																	
- X	1 1		0.623	6 2.7	7048	-151	67													
- X	8 1		9.975	4 3.6	567	-145	.07													
- X	2 1		2.828	7 4.9	099	-119	48													
- X	3 1		5.074	2 7.1	1554	-99	14													
											4	□ ▶	4 🗗	▶ ∢	₽►	∢ ≣	Þ	₽	991	0

Step: AIC=-163.86									
log(Y) ~ X3 + X2 + X8 + X1									ī
Df Sum of Sq RSS AI									
<none> 2.0043 - X5 1 0.0769 2.0812</none>	-163.858								
- X6 1 0.0975 2.1018									=
+ X7 1 0.0326 1.9718									
+ X4 1 0.002 <mark>2 2.0</mark> 021									_
- X1 1 0.628 <mark>4</mark> 2.6327									
- X8 1 0.9011 2.9054									_
- X2 1 2.764 <mark>4 4.7</mark> 688									
- X3 1 5.075 <mark>2 7.0</mark> 795	-97.716								-
> step.0\$anova									-
Stepwise Model Path									
Analysis of Deviance Table									-
Initial Model:									
log(Y) ~ 1									_
Final Model:									
log(Y) ~ X3 + X2 + X8 + X1	+ X6 + X5								_
Step Df Deviance Resid. D	f Resid.	Dev	AIC						ı
1	53 12.8	04509	5.71608						_
2 + X3 1 5.47078352	52 7.3	3372 <mark>6 -10</mark>	3.81 <mark>1</mark> 02						
3 + X2 1 3.02085553	51 4.3	12870 -13	0.47855						
4 + X8 1 1.47089284	50 2.8	41977 -15	1.00214						
5 + X1 1 0.66416961	49 2.1	7780 <mark>8</mark> -16	3.37593						
6 + X6 1 0.0 <mark>9</mark> 6590 <mark>84</mark>	48 2.0	8121 <mark>7</mark> -16	3.82569						
7 + X5 1 0.07688125	47 2.0	04335 -16	3.85826						
									Ī
				□	▶ ∢ 🗏	. ∢ 🗏	▶ =	(V) Q (P	

- The selected model is $X_1, X_2, X_3, X_5, X_6, X_8$ (p = 7) with $AIC_p = -163.858.$
- In this case, the forward selection procedure also selects the same model.

```
> step.0.f=stepAIC(fit.0,
                          scope=list(upper="X1+X2+X3+X4+X5+X6+X7+X8, lower="1),
```

+ direction="forward", k=2)

forward selection

4 □ ト 4 □ ト 4 □ ト 4 □ ト 9 へ ○

Surgical Unit: Backward Elimination

```
Start with the full model with all eight predictors.
> fit.f =lm(log(Y)~., data=data.o)
> step.b=stepAIC(fit.f. scope= list(upper="... lower="1), direction="backward", k=2)
Start: AIC=-160.78
log(Y) ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8
Df Sum of Sa RSS
                   AIC
- X4
       1 0.00126 1.9718 -162.74
- X7 1 0.03159 2.0021 -161.92
- X5
       1 0.07359 2.0441 -160.80
<none>
                  1.9705 -160 78
     1 0.08403 2.0545 -160.52
- X6
     1 0.31845 2.2890 -154.69
- X1
- X8
     1 0.84489 2.8154 -143.51
     1 2.09285 4.0634 -123.70
- X2
- X3
       1 2 98863 4.9591 -112.94
```

4 □ b 4 □ b 4 □ b □ ■ 9 Q P

Surgical Unit: Backward Elimination (Cont'd)

Again the model $X_1, X_2, X_3, X_5, X_6, X_8$ is selected. Backward stepwise also selects the same model.

Stepwise Procedures: Comments

- Forward stepwise procedure often works better than forward selection when there is
- Backward procedures are not good when the number of potential X variables, P - 1, is . Particularly. they are not feasible when P n, since then the full model can not be fitted.
- A potential disadvantage of forward procedures is the MSE and thus the standard errors of the LS estimators tend to be in the initial steps due to

Stepwise Procedures: Comments

- Forward stepwise procedure often works better than forward selection when there is high multicollinearity.
- Backward procedures are not good when the number of potential X variables, P - 1, is large. Particularly, they are not feasible when P > n, since then the full model can not be fitted.
- A potential disadvantage of forward procedures is the MSE and thus the standard errors of the LS estimators tend to be overestimated in the initial steps due to underfitting since important X variables are likely to be omitted in those steps.

Model Building: Comments

For the sake of interpretability:

- It is often appropriate to select all the indicator variables corresponding to a qualitative variable as a group (i.e., to be in or out of the model simultaneously).
- Hierarchical principle: If higher-order terms (e.g., interactions, powers) are selected, it is often appropriate to include the related lower-order terms as well.