Project ID: C23-M001-00010 Report No.: AA-23-00038_ONC Date Reported: Jan 13, 2023

ACTOnco® + Report

PATIENT	
Identifier: 李姿瑤	Patient ID: 4494773
Date of Birth: Jan 08, 1966	Gender: Female
Diagnosis: Lung adenocarcinoma	
ORDERING PHYSICIAN	
Name: 陳育民醫師	Tel: 886-228712121
Facility: 臺北榮總	
Address: 臺北市北投區石牌路二段 201 號	
SPECIMEN	
Specimen ID: S11154788A/B Collection site: Lung	Type: FFPE tissue
Date received: Jan 03, 2023 Lab ID: AA-23-00038	D/ID: NA

ABOUT ACTORCO®+

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic	Probable Effects in Patient's Cancer Type		Probable Sensitive in Other	
Alterations/Biomarkers	Sensitive	Resistant	Cancer Types	
	Afatinib, Dacomitinib,			
EGFR L858R	Erlotinib, Gefitinib,	-	-	
	Osimertinib			

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
CCND1 Amplification	Abemaciclib, Palbociclib, Ribociclib	-

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 1 of 30

Project ID: C23-M001-00010 Report No.: AA-23-00038_ONC Date Reported: Jan 13, 2023

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
EGFR	L858R	26.9%

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
Chr13	BRCA2	Heterozygous deletion	1
Chr18	SMAD4	Heterozygous deletion	1
Chr7	KMT2C	Heterozygous deletion	1
Chr9	CDKN2A	Heterozygous deletion	1
Chr11	CCND1	Amplification	6

- Fusions

Fusion Gene & Exon	Transcript ID
	No fusion gene detected in this sample

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	1.3 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 40% tumor purity.
- For more therapeutic agents which are possibly respond to heterozygous deletion of genes listed above, please refer to APPENDIX for more information.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 2 of 30

ACTOnco® + Report

THERAPEUTIC IMPLICATIONS

TARGETED THERAPIES

Genomic Alterations	Therapies	Effect	
Level 1			
EGFR L858R	Afatinib, Dacomitinib, Erlotinib, Gefitinib, Osimertinib	sensitive	
Level 3B			
CCND1 Amplification	Abemaciclib, Palbociclib, Ribociclib	sensitive	

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
зА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 3 of 30

李姿瑤

Project ID: C23-M001-00010 Report No.: AA-23-00038_ONC Date Reported: Jan 13, 2023

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
EGFR aberration	Likely associated with WORSE response to ICIs

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to chemotherapies.

HORMONAL THERAPIES

Genomic Alterations	Therapies	Effect	Level of Evidence	Cancer Type
CCND1	Anastrozole	Less sensitive	Clinical	Breast cancer
Amplification	Tamoxifen	Less sensitive	Clinical	Breast cancer

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 4 of 30

李姿瑤

Project ID: C23-M001-00010 Report No.: AA-23-00038_ONC Date Reported: Jan 13, 2023

VARIANT INTERPRETATION

EGFR L858R

Biological Impact

The EGFR gene encodes for the Epidermal Growth Factor Receptor, a receptor tyrosine kinase which binds to its ligands, including Epidermal Growth Factor (EGF) and Transforming Growth Factor-alpha (TGF-alpha), activates downstream signaling pathways, including the canonical oncogenic MAPK and PI3K/AKT/mTOR signaling cascades^[1]. Increased EGFR activity by mutations and/or amplification of the EGFR gene has been described in a wide range of cancers, such as lung, brain, colorectal and head and neck cancer^[2]. Mutations in the kinase domain of EGFR are commonly observed in non-small cell lung cancer (NSCLC), resulting in a constitutively activated form of the receptor^[3]. On the other hand, in the brain and colorectal cancers, the most prevalent EGFR alteration is copy number amplification that results in receptor overexpression^[4].

EGFR L858R is a missense mutation at position 858, located in exon 21, which encodes part of the kinase domain, from a leucine to an arginine residue^[5]. The two most common EGFR alterations, L858R mutation and exon 19 deletions can result in constitutive activation of signal transduction pathways, leading to cell proliferation or anti-apoptosis without ligand binding^[6].

Therapeutic and prognostic relevance

There is accumulated clinical evidence suggested that patients with MDM2/MDM4 amplification or EGFR aberrations exhibited poor clinical outcome and demonstrated a significantly increased rate of tumor growth (hyper-progression) after receiving immune checkpoint (PD-1/PD-L1) inhibitors therapies^[7](Annals of Oncology (2017) 28 (suppl_5): v403-v427. 10.1093/annonc/mdx376).

The first- and second-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs), dacomitinib, erlotinib, gefitinib and afatinib have been approved by the U.S. Food and Drug Administration (FDA) as the first-line treatment in non-small cell lung cancer (NSCLC) patients whose tumor carries EGFR exon 19 deletion or L858R mutation [8][9][10], as detected by a U.S. FDA-approved test. A Phase III clinical trial (NCT01774721) show that dacomitinib significantly improved progression-free survival over gefitinib in first-line treatment of patients with EGFR-mutation-positive NSCLC^[8]. Another Phase III clinical trial (NCT00949650) demonstrated that median progression-free survival (PFS) among lung cancer patients with exon 19 deletion or L858R EGFR mutation (n=308) was 13.6 months for afatinib and 6.9 months for chemotherapy. The EGFR T790M mutation has been demonstrated to confer resistance to TKIs (dacomitinib, gefitinib, erlotinib, and afatinib) in preclinical and clinical studies [11][12][13][14].

Osimertinib, a third-generation irreversible EGFR-TKI that selectively inhibits both EGFR-TKI–sensitizing and EGFR T790M resistance mutations, has been approved by the U.S. FDA for NSCLC patient harboring T790M mutation-positive tumor^{[15][16][17]}. Results from a double-blind, Phase 3 trial further showed that osimertinib significantly demonstrated longer PFS than standard EGFR-TKIs (18.9 months vs. 10.2 months) in previously untreated EGFR mutation–positive (exon 19 deletion or L858R) advanced NSCLC^[18].

BRCA2 Heterozygous deletion

Biological Impact

The BRCA2 gene encodes a tumor suppressor involved in the homologous recombination pathway for double-strand DNA repair^[19]. BRCA2 has been implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^[20]. BRCA2 germline mutations confer an increased lifetime risk of developing breast, ovarian, prostate and pancreatic cancer, limited reports of related gastric cancer, and Fanconi anemia subtype D1-associated risk of brain cancer, medulloblastoma, pharyngeal cancer, chronic lymphocytic leukemia and acute myeloid leukemia^[21]. Somatic mutations in BRCA2 are highest in colorectal, non-small cell lung cancer (NSCLC), and ovarian cancers^[22].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **5** of **30**

Therapeutic and prognostic relevance

The U.S. FDA has approved olaparib in advanced ovarian cancer under several settings including (1) first-line maintenance treatment for patients with deleterious or suspected deleterious germline or somatic BRCA mutation who are in complete or partial response to first-line platinum-based chemotherapy[23]; (2) in combination with bevacizumab as first-line maintenance treatment for patients who are in complete or partial response to first-line platinum-based chemotherapy and whose cancer is associated with homologous recombination deficiency (HRD)-positive status^[24]; (3) maintenance treatment for patients with recurrent ovarian cancer who are in complete or partial response to platinumbased chemotherapy[25][26]. In addition, olaparib has also been approved in patients with deleterious or suspected deleterious germline BRCA-mutated, HER2-negative breast cancer who have been treated with chemotherapy in either neoadjuvant, adjuvant, or metastatic setting[27] and germline BRCA-mutated metastatic pancreatic cancer[28]. Of note, in May 2020, the U.S. FDA approved olaparib for the treatment of adult patients with metastatic castration-resistant prostate cancer (mCRPC) who carry mutations in homologous recombination repair (HRR) genes, including BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L, and progressed following prior treatment with enzalutamide or abiraterone acetate(NCT02987543)[29].

Rucaparib has been approved for the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in a complete or partial response to platinum-based chemotherapy[30]. NCCN guidelines recommend rucaparib as recurrence therapy for patients with BRCA-mutated ovarian cancer, who have been treated with two or more lines of chemotherapies[31]. In May 2020, the U.S. FDA also approved rucaparib to treat adult patients with a deleterious BRCA mutation-associated metastatic castration-resistant prostate cancer (mCRPC) who have been treated with androgen receptor-directed therapy and a taxane-based chemotherapy (TRITON2, NCT02952534). Moreover, NCCN guidelines recommend rucaparib as maintenance therapy following prior platinumbased therapy for patients with metastatic pancreatic cancer harboring germline or somatic BRCA mutation.

The U.S. FDA has approved niraparib for the maintenance treatment of patients with advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in response to first-line platinum-based chemotherapy and patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in response to platinum-based chemotherapy[32][33]. Besides, NCCN guidelines recommend niraparib as maintenance therapy for ovarian cancer patients with BRCA mutations. The U.S. FDA also approved talazoparib for patients with deleterious or suspected deleterious germline BRCA-mutated, HER2 negative locally advanced or metastatic breast cancer[34].

CCND1 Amplification

Biological Impact

The cyclin D1 (CCND1) gene encodes a protein involved in the control of cell growth, proliferation, transcription, and DNA repair^[35]. CCND1 forms a complex with CDK4 and CDK6, leading to G1-S cell-cycle transition by inhibiting the retinoblastoma (RB) protein[35]. Amplification or overexpression of CCND1 could be oncogenic and is associated with carcinogenesis of various cancer types[36].

Therapeutic and prognostic relevance

Several CDK4 inhibitors, including palbociclib (PD0332991), LEE011, and LY2835219 have entered clinical trials for tumors with CCND1 amplification[37][38]. In the Phase II study of palbociclib and letrozole in patients with ER-positive HER2-negative metastatic breast cancer, patient selection based on CCND1 amplification or p16 loss did not further improve patient outcome^[39]. Preclinical studies also demonstrated conflicting results regarding the correlation between high-level CCND1 and palbociclib sensitivity[40][41][42].

CCND1 amplification has been implicated in predicting poor clinical outcomes in postmenopausal breast cancer patients treated with either anastrozole or tamoxifen[43]. In lung cancer patients, the increased CCND1 copy number is associated with poorer overall survival^[44]. A retrospective study showed that melanoma patients whose tumor harboring CCND1, cRAF or KRAS gene copy number gain had better treatment response with CPS (carboplatin, paclitaxel, and

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 6 of 30

Project ID: C23-M001-00010 Report No.: AA-23-00038_ONC Date Reported: Jan 13, 2023

ACTOnco® + Report

sorafenib)^[45]. Of note, 3 of 4 patients treated with ribociclib for the longest duration had CCND1 amplification in a phase I trial^[46].

Amplification of CCND1 are frequent and contributes to dedifferentiation and cellular proliferative activity of intrahepatic cholangiocarcinoma (ICC), and also indicates a poor prognosis for ICC patients^[47]. Of note, CCND1 amplification has been selected as an inclusion criterion for the trial examining CDK4/6 inhibitors in different types of malignant solid tumors (NCT02187783, NCT02896335, NCT03526250, NCT02693535, NCT01037790, NCT03454919, NCT03310879, and NCT03356223).

CDKN2A Heterozygous deletion

Biological Impact

The Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) gene encodes the p16 (p16INK4a) and p14 (ARF) proteins. p16INK4a binds to CDK4 and CDK6, inhibiting these CDKs from binding D-type cyclins and phosphorylating the retinoblastoma (RB) protein whereas p14 (ARF) blocks the oncogenic activity of MDM2 by inhibiting MDM2-induced degradation of p53^{[48][49][50]}. CDKN2A has been reported as a haploinsufficient tumor suppressor with one copy loss that may lead to weak protein expression and is insufficient to execute its original physiological functions^[51]. Loss of CDKN2A has been frequently found in human tumors that result in uncontrolled cell proliferation^{[52][53]}.

Therapeutic and prognostic relevance

Intact p16-Cdk4-Rb axis is known to be associated with sensitivity to cyclin-dependent kinase inhibitors^{[54][39]}. Several case reports also revealed that patients with CDKN2A-deleted tumors respond to the CDK4/6-specific inhibitor treatments^{[55][56][57]}. However, there are clinical studies that demonstrated CDKN2A nuclear expression, CDKN2A/CDKN2B co-deletion, or CDKN2A inactivating mutation was not associated with clinical benefit from CDK4/6 inhibitors, such as palbociclib and ribociclib, in RB-positive patients^{[58][46][59]}. However, CDKN2A loss or mutation has been determined as an inclusion criterion for the trial evaluating CDK4/6 inhibitors efficacy in different types of solid tumors (NCT02693535, NCT02187783).

The phase II TAPUR trial demonstrated clinical benefits to palbociclib monotherapy in advanced NSCLC or head and neck cancer harboring a CDKN2A mutation or copy number loss. However, pancreatic and biliary cancer patients harboring a CDKN2A mutation or copy number loss did not demonstrate an objective response or stable disease when treated with palbociclib monotherapy for 16 weeks (DOI: 10.1200/JCO.2021.39.15 suppl.6043)^{[60][61]}.

Notably, the addition of several CDK4/6 inhibitors to hormone therapies, including palbociclib in combination with letrozole, ribociclib plus letrozole, and abemaciclib combines with fulvestrant, have been approved by the U.S. FDA for the treatment of ER+ and HER2- breast cancer^{[39][62][63]}.

In a Phase I trial, a KRAS wild-type squamous non-small cell lung cancer (NSCLC) patient with CDKN2A loss had a partial response when treated with CDK4/6 inhibitor abemaciclib^[56]. Administration of combined palbociclib and MEK inhibitor PD-0325901 yield promising progression-free survival among patients with KRAS mutant non-small cell lung cancer (NSCLC) (AACR 2017, Abstract CT046). Moreover, MEK inhibitor in combination with CDK4/6 inhibitor demonstrates significant anti-KRAS-mutant NSCLC activity and radiosensitizing effect in preclinical models^[64].

A retrospective analysis demonstrated that concurrent deletion of CDKN2A with EGFR mutation in patients with non-small cell lung cancer (NSCLC), predicts worse overall survival after EGFR-TKI treatment^[65].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **7** of **30**

李姿瑤

Project ID: C23-M001-00010 Report No.: AA-23-00038_ONC Date Reported: Jan 13, 2023

KMT2C Heterozygous deletion

Biological Impact

Lysine methyltransferase 2C (KMT2C) gene encodes the histone methyltransferase MLL3, which methylates lysine residue four on the tail of histone H3 (H3K4)^[66]and regulates the gene expression during development and hematopoiesis^{[67][68][69]}. KMT2C is ubiquitously expressed, and its function is essential for normal embryonal development and cell proliferation^[70]. Genetic deletion of the region containing KMT2C is the most common chromosomal abnormality in acute myeloid leukemia^{[71][72]}, and KMT2C mutation has been reported in breast cancer, cutaneous squamous cell carcinoma, and leukemia^{[73][74][75][76][77]}. KMT2C was implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^[78]. Animal studies revealed that MLL3 haploinsufficiency enhances hematopoietic stem cells (HSCs) self-renewal capacity and induces extensive division of HSCs (AACR; Cancer Res 2018;78(13 Suppl): Abstract nr 4996).

Therapeutic and prognostic relevance

Preclinical studies of cell lines and xenograft models demonstrated that cells with reduced KMT2C expression and activity are deficient in homologous recombination-mediated double-strand break DNA repair and therefore, are more sensitive to olaparib, a PARP1/2 inhibitor^[79].

A meta-analysis indicated that low levels of KMT2C expression was associated with better overall survival in pancreatic ductal adenocarcinoma (PDAC) patients^[80]. However, another study of ER-positive breast cancer patients (n = 401) demonstrated that low KMT2C expression was associated with worse overall survival^[81].

SMAD4 Heterozygous deletion

Biological Impact

The SMAD family member 4 (SMAD4) gene encodes a transcription factor that acts as a downstream effector in the TGF- β signaling pathway. Upon phosphorylated and activated by serine-threonine receptor kinase, Smad4 is the Co-Smad which recruits other activated R-Smad proteins to the Smad transcriptional complex and regulate TGF- β -targeted genes^[82]. Smad4 has been identified as a haploinsufficient gene with one copy loss may lead to a weak protein expression and is insufficient to execute its original physiological function^[83]. SMAD4 germline mutations are associated with juvenile polyposis syndrome (JPS)^{[84][85][86][87]}. Somatic mutations of SMAD4 are commonly observed in pancreatic cancer^[88], colorectal cancer (CRC)^{[86][89][90]}, and less frequently seen in other cancers such as lung adenocarcinoma^[91], head and neck cancer^{[92][93]}, and cutaneous squamous cell carcinoma^[94].

Therapeutic and prognostic relevance

In Chinese patients with metastatic colorectal cancer, SMAD4 or NF1 mutations are suggested as a potential biomarker for poor prognosis to cetuximab-based therapy^[95]. Preclinical data demonstrated that depletion of SMAD4 by shRNA knockdown increased clonogenic survival and cetuximab resistance in HPV-negative head and neck squamous cell carcinoma cells^[96].

SMAD4 is also suggested as a predictive marker for 5-fluorouracil-based chemotherapy in colorectal cancer (CRC)^{[97][98]}. CRC patients with normal SMAD4 diploidy exhibited three-fold higher benefit of 5-FU/mitomycin-based adjuvant therapy when compared with those with SMAD4 deletion^[99].

Results from clinical and meta-analyses showed that loss of SMAD4 in CRC, pancreatic cancer was correlated with poor prognosis^{[100][101][102][103][104][105][106][107]}. In cervical cancer patients, weak cytoplasmic SMAD4 expression and absent nuclear SMAD4 expression were shown to be significantly associated with poor disease-free and overall 5-year survival^[108].

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **8** of **30**

Project ID: C23-M001-00010 Report No.: AA-23-00038_ONC Date Reported: Jan 13, 2023

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Abemaciclib (VERZENIO)

Abemaciclib is a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor. Abemaciclib is developed and marketed by Eli Lilly under the trade name VERZENIO.

- FDA Approval Summary of Abemaciclib (VERZENIO)

	Breast cancer (Approved on 2021/10/12)
MONARCH E	HR+/HER2-
NCT03155997	Abemaciclib + tamoxifen/aromatase inhibitor vs. Tamoxifen/aromatase inhibitor [IDFS at 36 months(%): 86.1 vs. 79.0]
MONARCH 3 ^[109]	Breast cancer (Approved on 2018/02/26)
NCT02246621	HR+/HER2-
NC102240021	Abemaciclib + anastrozole/letrozole vs. Placebo + anastrozole/letrozole [PFS(M): 28.2 vs. 14.8]
MONARCH 2 ^[63]	Breast cancer (Approved on 2017/09/28)
NCT02107703	HR+/HER2-
NC102107703	Abemaciclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 16.4 vs. 9.3]
MONARCH 1 ^[110]	Breast cancer (Approved on 2017/09/28)
NCT02102490	HR+/HER2-
110102102490	Abemaciclib [ORR(%): 19.7 vs. 17.4]

Afatinib (GILOTRIF)

Afatinib acts as an irreversible covalent inhibitor of the ErbB family of receptor tyrosine kinases, including epidermal growth factor receptor (EGFR) and erbB-2 (HER2). Afatinib is developed and marketed by Boehringer Ingelheim under the trade name GILOTRIF (United States) and GIOTRIF (Europe).

- FDA Approval Summary of Afatinib (GILOTRIF)

L LIV L	Non-small cell lung carcinoma (Approved on 2016/04/15)
LUX-Lung 8 ^[111] NCT01523587	EGFR ex19del or L858R
NC101523567	Afatinib vs. Erlotinib [PFS(M): 2.4 vs. 1.9]
LUX L o [112]	Non-small cell lung carcinoma (Approved on 2013/07/13)
LUX-Lung 3 ^[112] NCT00949650	EGFR ex19del or L858R
	Afatinib vs. Pemetrexed + cisplatin [PFS(M): 11.1 vs. 6.9]

Dacomitinib (VIZIMPRO)

Dacomitinib is an oral kinase inhibitor that targets EGFR. Dacomitinib is developed and marketed by Pfizer under the trade name VIZIMPRO.

- FDA Approval Summary of Dacomitinib (VIZIMPRO)

ARCHER 1050 ^[8]	Non-small cell lung carcinoma (Approved on 2018/09/27)
	EGFR ex19del or L858R
NCT01774721	Dacomitinib vs. Gefitinib [PFS(M): 14.7 vs. 9.2]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **9** of **30**

ACTOnco® + Report

Erlotinib (TARCEVA)

Erlotinib is a small molecule, reversible inhibitor of epidermal growth factor receptor (EGFR), a receptor tyrosine kinase. Erlotinib is developed by OSI Pharmaceuticals, Genentech and Roche, and marketed by Astellas Pharm Global Development under the trade name TARCEVA.

- FDA Approval Summary of Erlotinib (TARCEVA)

RELAY NCT02411448	Non-small cell lung carcinoma (Approved on 2020/05/29)
	EGFR ex19del or L858R
	Erlotinib + ramucirumab vs. Erlotinib + placebo [PFS(M): 19.4 vs. 12.4]
EURTAC ^[113] NCT00446225	Non-small cell lung carcinoma (Approved on 2013/05/14)
	EGFR ex19del or L858R
	Erlotinib vs. Cisplatin + gemcitabine or cisplatin + docetaxel or carboplatin + gemcitabine or carboplatin + docetaxel [PFS(M): 10.4 vs. 5.2]
PA.3 ^[114] NCT00026338	Pancreatic cancer (Approved on 2005/11/02)
	Gemcitabine vs. Placebo [OS(M): 6.4 vs. 6]

Gefitinib (IRESSA)

Gefitinib is a small molecule inhibitor of epidermal growth factor receptor (EGFR), a receptor tyrosine kinase. Gefitinib is developed and marketed by AstraZeneca under the trade name IRESSA.

- FDA Approval Summary of Gefitinib (IRESSA)

IFUM ^[115]	Non-small cell lung carcinoma (Approved on 2015/07/13)
	EGFR ex19del or L858R
NCT01203917	Gefitinib [ORR(%): 50.0]

Niraparib (ZEJULA)

Niraparib is an oral, small molecule inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1 and -2 (PARP-1, -2). Niraparib is developed and marketed by Tesaro under the trade name ZEJULA.

- FDA Approval Summary of Niraparib (ZEJULA)

DDIMA	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2020/04/29)
PRIMA	-
NCT02655016	Niraparib vs. Placebo [PFS (overall population)(M): 13.8 vs. 8.2]
NOVA ^[33]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/03/27)
	-
NCT01847274	Niraparib vs. Placebo [PFS (overall population)(M): 11.3 vs. 4.7]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 10 of 30

ACTOnco® + Report

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

- FDA Approval Summary of Olaparib (LYNPARZA)

OhmaiA	Her2-negative high-risk early breast cancer (Approved on 2022/03/11)
OlympiA NCT02032823	HER2-/gBRCA mutation
	Olaparib vs. Placebo [invasive disease-free survival (IDFS)(M):]
PROfound ^[29] NCT02987543	Prostate cancer (Approved on 2020/05/19)
	HRR genes mutation
	Olaparib vs. Enzalutamide or abiraterone acetate [PFS(M): 5.8 vs. 3.5]
PAOLA-1 ^[24] NCT02477644	Ovarian cancer (Approved on 2020/05/08)
	HRD+
	Olaparib + bevacizumab vs. Placebo + bevacizumab [PFS(M): 37.2 vs. 17.7]
(202)	Pancreatic adenocarcinoma (Approved on 2019/12/27)
POLO ^[28]	gBRCA mutation
NCT02184195	Olaparib vs. Placebo [ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]
201 0 4[23]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/12/19)
SOLO-1 ^[23]	gBRCA mutation or sBRCA mutation
NCT01844986	Olaparib vs. Placebo [PFS(M): NR vs. 13.8]
Olaman : A D[27]	Breast cancer (Approved on 2018/02/06)
OlympiAD ^[27]	HER2-/gBRCA mutation
NCT02000622	Olaparib vs. Chemotherapy [PFS(M): 7 vs. 4.2]
COLO 2/ENCOT 0-24[116]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)
SOLO-2/ENGOT-Ov21 ^[116]	gBRCA mutation
NCT01874353	Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]
C4d. 4 0[117]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)
Study19 ^[117] NCT00753545	
	Olaparib vs. Placebo [PFS(M): 8.4 vs. 4.8]

Osimertinib (TAGRISSO)

Osimertinib is a third-generation tyrosine kinase inhibitor (TKI) for patients with tumors harboring EGFR T790M mutation. Osimertinib is developed and marketed by AstraZeneca under the trade name TAGRISSO.

- FDA Approval Summary of Osimertinib (TAGRISSO)

ADAUDA	Non-small cell lung carcinoma (Approved on 2020/12/18)
ADAURA NCT02511106	EGFR ex19del or L858R
NC102511100	Osimertinib vs. Placebo + adjuvant chemotherapy [DFS(M): NR vs. 19.6]
EL ALID A [18]	Non-small cell lung carcinoma (Approved on 2018/04/18)
FLAURA ^[18]	EGFR ex19del or L858R
NCT02296125	Osimertinib vs. Gefitinib or erlotinib [PFS(M): 18.9 vs. 10.2]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 11 of 30

ACTOnco® + Report

AURA3 ^[118]	Non-small cell lung carcinoma (Approved on 2017/03/30)
	EGFR T790M
NCT02151981	Osimertinib vs. Chemotherapy [PFS(M): 10.1 vs. 4.4]
AURA ^[17]	Non-small cell lung carcinoma (Approved on 2015/11/13)
710.0.	EGFR T790M
NCT01802632	Osimertinib [ORR(%): 59.0]

Palbociclib (IBRANCE)

Palbociclib is an oral, cyclin-dependent kinase (CDK) inhibitor specifically targeting CDK4 and CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Palbociclib is developed and marketed by Pfizer under the trade name IBRANCE.

- FDA Approval Summary of Palbociclib (IBRANCE)

	PALOMA-2 ^[119]	Breast cancer (Approved on 2017/03/31)
	NCT01740427	ER+/HER2-
	NC101740427	Palbociclib + letrozole vs. Placebo + letrozole [PFS(M): 24.8 vs. 14.5]
	DAL OM A 2[120]	Breast cancer (Approved on 2016/02/19)
	PALOMA-3 ^[120] NCT01942135	ER+/HER2-
		Palbociclib + fulvestrant vs. Placebo + fulvestrant [PFS(M): 9.5 vs. 4.6]

Ribociclib (KISQALI)

Ribociclib is a cyclin-dependent kinase (CDK) inhibitor specifically targeting cyclin D1/CDK4 and cyclin D3/CDK6, thereby inhibiting retinoblastoma (Rb) protein phosphorylation. Ribociclib is developed by Novartis and Astex Pharmaceuticals and marketed by Novartis under the trade name KISQALI.

- FDA Approval Summary of Ribociclib (KISQALI)

MONALEECA OFF2	Breast cancer (Approved on 2017/03/13)
MONALEESA-2 ^[62] NCT01958021	HR+/HER2-
NC101958021	Ribociclib vs. Letrozole [PFS(M): NR vs. 14.7]

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

- FDA Approval Summary of Rucaparib (RUBRACA)

TRITONIO	Prostate cancer (Approved on 2020/05/15)
TRITON2	gBRCA mutation or sBRCA mutation
NCT02952534	Rucaparib [ORR(%): 44.0, DOR(M): NE]
	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/04/06)
ARIEL3 [30]	-
NCT01968213	Rucaparib vs. Placebo [PFS (All)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS (tBRCA)(M): 16.6 vs. 5.4]

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **12** of **30**

Project ID: C23-M001-00010 Report No.: AA-23-00038_ONC Date Reported: Jan 13, 2023

ACTOnco® + Report

Talazoparib (TALZENNA)

Talazoparib is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1 and PARP2. Talazoparib is developed and marketed by Pfizer under the trade name TALZENNA.

- FDA Approval Summary of Talazoparib (TALZENNA)

EMBRACA ^[34]	Breast cancer (Approved on 2018/10/16)
	HER2-/gBRCA mutation
NCT01945775	Talazoparib vs. Chemotherapy [PFS(M): 8.6 vs. 5.6]

D=day; W=week; M=month

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **13** of **30**

Project ID: C23-M001-00010 Report No.: AA-23-00038_ONC Date Reported: Jan 13, 2023

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **14** of **30**

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
EGFR	L858R	21	c.2573T>G	NM 005228	COSM6224	26.9%	1668

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

AA-23-00038

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **15** of **30**

ACTOnco® + Report

OTHER DETECTED VARIANTS

						A.I. I		
Gene	Amino Acid Pe Exon Change		cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage	
ADAMTS16	H655R	13	c.1964A>G	NM_139056	-	36.4%	1055	
ATM	R832C	17	c.2494C>T	NM_000051	COSM143902	37.5%	1564	
BRCA1	V191I	8	c.571G>A	NM_007294	-	46.3%	387	
CCNB1	P37L	2	c.110C>T	NM_031966	-	55.1%	2020	
EPCAM	R153T	4	c.458G>C	NM_002354	-	26.5%	1029	
ESR1	E542V	8	c.1625A>T	NM_000125	-	27.4%	929	
FGFR1	V368M	9	c.1102G>A	NM_023110	-	47.0%	857	
MTHFR	D234N	5	c.700G>A	NM_005957	-	54.8%	914	
MUC6	T1207M	28	c.3620C>T	NM_005961	COSM2108073	73.0%	497	
PAX5	V208M	6	c.622G>A	NM_016734	-	50.0%	1324	
TP53	Splice region	-	c.97-8_97-7insG	NM_000546	-	27.5%	109	
XIAP	D367G	6	c.1100A>G	NM_001167	-	56.1%	114	

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **16** of **30**

ACTOnco® + Report

TEST DETAILS

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

- Collection date: Dec 27, 2022
- Facility retrieved: 臺北榮總
- H&E-stained section No.: S11154788A/B
- Collection site: Lung
- Examined by: Dr. Yun-An Chen
 - 1. The percentage of viable tumor cells in total cells in the whole slide (%): 30%/20%
 - 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 55%/30%
 - 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%/0%
 - 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%/0%
 - 5. Additional comment: N/A/N/A
- Manual macrodissection: Performed on the highlighted region
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

Panel: ACTOnco®+

DNA test

- Mean Depth: 835x
- Target Base Coverage at 100x: 95%

RNA test

- Average unique RNA Start Sites per control GSP2: 159

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 17 of 30

Project ID: C23-M001-00010 Report No.: AA-23-00038 ONC

Date Reported: Jan 13, 2023

LIMITATIONS

- This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.
- The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available

NEXT-GENERATION SEQUENCING (NGS) METHODS

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage ≥ 20, allele frequency ≥ 5% and actionable variants with allele frequency ≥ 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at 100x ≥ 85% with a mean coverage ≥ 500x.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to ≥ 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to < 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is < 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 18 of 30

ACTOnco® + Report

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to lon Proton or lon S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be ≥ 10.

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiguous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 \geq 3; (2) Number of supporting reads spanning the fusion junction \geq 5; (3) Percentage of supporting reads spanning the fusion junction \geq 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫檢師張筑芜 博士 Chu-Yuan Chang Ph.D. 檢字第 020115 號 hwepmchay

Sign Off

解剖病理專科醫師王業翰 Yeh-Han Wang M.D. 病解字第 000545 號

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-501

AG4-QP4001-02(07) page 19 of 30

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	ВТК	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	КМТ2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	МАРЗК7	MAPK1	МАРК3
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	MUC6	MUTYH	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	РІКЗСЗ
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1*
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

AL	K BRAF	EGER	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1
		EGFK										

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 20 of 30

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Gene	Therapies	Possible effect		
CDKN2A	Abemaciclib, Palbociclib, Ribociclib	sensitive		
BRCA2	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive		
KMT2C	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive		
SMAD4	Cetuximab	resistant		

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

Receptor Tyrosine Kinase/Growth Factor Signalling

1: Gefitinib, Afatinib, Erlotinib, Osimertinib, Dacomitinib; 2: Afatinib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **21** of **30**

ACTOnco® + Report

1: Abemaciclib, Palbociclib, Ribociclib

1: Olaparib, Niraparib, Rucaparib, Talazoparib

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **22** of **30**

李姿瑤

Project ID: C23-M001-00010 Report No.: AA-23-00038_ONC Date Reported: Jan 13, 2023

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報 告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 23 of 30

ACTOnco® + Report

REFERENCE

- PMID: 18045542; 2007, Cell;131(5):1018
 SnapShot: EGFR signaling pathway.
- PMID: 10880430; 2000, EMBO J;19(13):3159-67
 The ErbB signaling network: receptor heterodimerization in development and cancer.
- PMID: 15329413; 2004, Proc Natl Acad Sci U S A;101(36):13306-11
 EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib.
- 4. PMID: 11426640; 2000, Oncogene;19(56):6550-65
 The EGF receptor family as targets for cancer therapy.
- PMID: 17318210; 2007, Nat Rev Cancer;7(3):169-81
 Epidermal growth factor receptor mutations in lung cancer.
- PMID: 22263017; 2010, J Thorac Dis;2(1):48-51
 Epidermal growth factor receptor (EGFR) in lung cancer: an overview and update.
- PMID: 28351930; 2017, Clin Cancer Res;23(15):4242-4250
 Hyperprogressors after Immunotherapy: Analysis of Genomic Alterations Associated with Accelerated Growth Rate.
- PMID: 28958502; 2017, Lancet Oncol;18(11):1454-1466
 Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial.
- PMID: 24868098; 2014, Oncologist;19(7):774-9
 U.S. Food and Drug Administration approval summary: Erlotinib for the first-line treatment of metastatic non-small cell lung cancer with epidermal growth factor receptor exon 19 deletions or exon 21 (L858R) substitution mutations.
- PMID: 23982599; 2013, Drugs;73(13):1503-15
 Afatinib: first global approval.
- PMID: 27912760; 2016, J Biomed Sci;23(1):86
 Update on recent preclinical and clinical studies of T790M mutant-specific irreversible epidermal growth factor receptor tyrosine kinase inhibitors.
- 12. PMID: 15728811; 2005, N Engl J Med;352(8):786-92 EGFR mutation and resistance of non-small-cell lung cancer to gefitinib.
- 13. PMID: 26862733; 2016, Oncotarget;7(11):12404-13
 The mechanism of acquired resistance to irreversible EGFR tyrosine kinase inhibitor-afatinib in lung adenocarcinoma patients.
- PMID: 29410323; 2018, J Thorac Oncol;13(5):727-731
 EGFR T790M and C797S Mutations as Mechanisms of Acquired Resistance to Dacomitinib.
- PMID: 24893891; 2014, Cancer Discov;4(9):1046-61
 AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer.
- PMID: 27071706; 2016, J Hematol Oncol;9():34
 Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer.
- PMID: 25923549; 2015, N Engl J Med;372(18):1689-99
 AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer.
- PMID: 29151359; 2018, N Engl J Med;378(2):113-125
 Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page **24** of **30**

Project ID: C23-M001-00010 Report No.: AA-23-00038_ONC Date Reported: Jan 13, 2023

ACTOnco® + Report

- PMID: 11239455; 2001, Mol Cell;7(2):263-72
 BRCA2 is required for homology-directed repair of chromosomal breaks.
- PMID: 17597348; 2007, Ann Surg Oncol;14(9):2510-8
 Heterogenic loss of the wild-type BRCA allele in human breast tumorigenesis.
- PMID: 22193408; 2011, Nat Rev Cancer;12(1):68-78
 BRCA1 and BRCA2: different roles in a common pathway of genome protection.
- 22. PMID: 27283171; 2016, J Natl Compr Canc Netw;14(6):795-806
 The Relevance of Hereditary Cancer Risks to Precision Oncology: What Should Providers Consider When Conducting Tumor Genomic Profiling?
- PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505
 Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428
 Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.
- 25. PMID: 28884698; 2017, Lancet Oncol;18(9):e510 Correction to Lancet Oncol 2017; 18: 1274-84.
- PMID: 22452356; 2012, N Engl J Med;366(15):1382-92
 Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer.
- PMID: 28578601; 2017, N Engl J Med;377(6):523-533
 Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
- PMID: 31157963; 2019, N Engl J Med;381(4):317-327
 Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer.
- PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102
 Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- 30. PMID: 28916367; 2017, Lancet;390(10106):1949-1961
 Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
- 31. PMID: 28882436; 2017, Gynecol Oncol;147(2):267-275
 Antitumor activity and safety of the PARP inhibitor rucaparib in patients with high-grade ovarian carcinoma and a germline or somatic BRCA1 or BRCA2 mutation: Integrated analysis of data from Study 10 and ARIEL2.
- PMID: 31562799; 2019, N Engl J Med;381(25):2391-2402
 Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- PMID: 27717299; 2016, N Engl J Med;375(22):2154-2164
 Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer.
- 34. PMID: 30110579; 2018, N Engl J Med;379(8):753-763
 Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.
- PMID: 8114739; 1994, Mol Cell Biol;14(3):2077-86
 Identification of G1 kinase activity for cdk6, a novel cyclin D partner.
- 36. PMID: 12432268; 2002, Cancer Biol Ther;1(3):226-31 Cycling to cancer with cyclin D1.
- PMID: 24795392; 2014, Clin Cancer Res;20(13):3379-83
 Molecular pathways: CDK4 inhibitors for cancer therapy.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 25 of 30

Project ID: C23-M001-00010 Report No.: AA-23-00038_ONC Date Reported: Jan 13, 2023

ACTOnco® + Report

- PMID: 27030077; 2016, Nat Rev Clin Oncol;13(7):417-30
 Treating cancer with selective CDK4/6 inhibitors.
- 39. PMID: 25524798; 2015, Lancet Oncol;16(1):25-35
 The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study.
- PMID: 27334220; 2016, Ann Surg Oncol;23(9):2745-52
 Targeting Cyclin-Dependent Kinases in Synovial Sarcoma: Palbociclib as a Potential Treatment for Synovial Sarcoma Patients.
- 41. PMID: 19874578; 2009, Breast Cancer Res;11(5):R77
 PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro.
- 42. PMID: 23898052; 2013, Anticancer Res;33(8):2997-3004
 PD-0332991, a potent and selective inhibitor of cyclin-dependent kinase 4/6, demonstrates inhibition of proliferation in renal cell carcinoma at nanomolar concentrations and molecular markers predict for sensitivity.
- 43. PMID: 22475046; 2012, Breast Cancer Res;14(2):R57
 Effects of cyclin D1 gene amplification and protein expression on time to recurrence in postmenopausal breast cancer patients treated with anastrozole or tamoxifen: a TransATAC study.
- PMID: 17070615; 2007, Lung Cancer;55(1):1-14
 Cyclin D1 in non-small cell lung cancer: a key driver of malignant transformation.
- 45. PMID: 26307133; 2016, Clin Cancer Res;22(2):374-82
 Copy Number Changes Are Associated with Response to Treatment with Carboplatin, Paclitaxel, and Sorafenib in Melanoma.
- 46. PMID: 27542767; 2016, Clin Cancer Res;22(23):5696-5705
 A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas.
- PMID: 11495045; 2001, J Hepatol;35(1):74-9
 The role of overexpression and gene amplification of cyclin D1 in intrahepatic cholangiocarcinoma.
- 48. PMID: 17055429; 2006, Cell;127(2):265-75
 The regulation of INK4/ARF in cancer and aging.
- 49. PMID: 8521522; 1995, Cell;83(6):993-1000
 Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest.
- 50. PMID: 9529249; 1998, Cell;92(6):725-34
 ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.
- 51. PMID: 16115911; 2005, Clin Cancer Res;11(16):5740-7 Comprehensive analysis of CDKN2A status in microdissected urothelial cell carcinoma reveals potential haploinsufficiency, a high frequency of homozygous co-deletion and associations with clinical phenotype.
- PMID: 7550353; 1995, Nat Genet;11(2):210-2
 Frequency of homozygous deletion at p16/CDKN2 in primary human tumours.
- 53. PMID: 24089445; 2013, Clin Cancer Res;19(19):5320-8
 The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma.
- 54. PMID: 27849562; 2017, Gut;66(7):1286-1296
 Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma.
- 55. PMID: 28283584; 2017, Oncologist;22(4):416-421
 Clinical Benefit in Response to Palbociclib Treatment in Refractory Uterine Leiomyosarcomas with a Common CDKN2A Alteration.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 26 of 30

Project ID: C23-M001-00010 Report No.: AA-23-00038_ONC Date Reported: Jan 13, 2023

ACTOnco® + Report

- 56. PMID: 27217383; 2016, Cancer Discov;6(7):740-53
 - Efficacy and Safety of Abemaciclib, an Inhibitor of CDK4 and CDK6, for Patients with Breast Cancer, Non-Small Cell Lung Cancer, and Other Solid Tumors.
- 57. PMID: 26715889; 2015, Curr Oncol;22(6):e498-501 Does CDKN2A loss predict palbociclib benefit?
- 58. PMID: 25501126; 2015, Clin Cancer Res;21(5):995-1001
 CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment.
- 59. PMID: 24797823; 2014, Oncologist;19(6):616-22
 Enabling a genetically informed approach to cancer medicine: a retrospective evaluation of the impact of comprehensive tumor profiling using a targeted next-generation sequencing panel.
- 60. PMID: 35050752; 2020, JCO Precis Oncol;4():757-766
 Palbociclib in Patients With Non-Small-Cell Lung Cancer With CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization Registry Study.
- 61. PMID: 35100714; 2019, JCO Precis Oncol;3():1-8
 Palbociclib in Patients With Pancreatic and Biliary Cancer With CDKN2A Alterations: Results From the Targeted Agent and Profiling Utilization Registry Study.
- PMID: 27717303; 2016, N Engl J Med;375(18):1738-1748
 Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer.
- 63. PMID: 28580882; 2017, J Clin Oncol;35(25):2875-2884

 MONARCH 2: Abemaciclib in Combination With Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy.
- 64. PMID: 26728409; 2016, Clin Cancer Res;22(1):122-33
 Coadministration of Trametinib and Palbociclib Radiosensitizes KRAS-Mutant Non-Small Cell Lung Cancers In Vitro and In Vivo.
- 65. PMID: 31401335; 2019, Transl Oncol;12(11):1425-1431
 Concomitant Genetic Alterations are Associated with Worse Clinical Outcome in EGFR Mutant NSCLC Patients Treated with Tyrosine Kinase Inhibitors.
- PMID: 25998713; 2015, Nat Rev Cancer; 15(6):334-46
 Hijacked in cancer: the KMT2 (MLL) family of methyltransferases.
- 67. PMID: 24081332; 2013, Mol Cell Biol;33(23):4745-54
 The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers.
- 68. PMID: 23166019; 2012, Genes Dev;26(23):2604-20
 Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian MII3/MII4.
- PMID: 27926873; 2016, Cell Rep;17(10):2715-2723
 FOXA1 Directs H3K4 Monomethylation at Enhancers via Recruitment of the Methyltransferase MLL3.
- PMID: 17021013; 2006, Proc Natl Acad Sci U S A;103(42):15392-7
 Coactivator as a target gene specificity determinant for histone H3 lysine 4 methyltransferases.
- 71. PMID: 11891048; 2002, Gene;284(1-2):73-81

 MLL3, a new human member of the TRX/MLL gene family, maps to 7q36, a chromosome region frequently deleted in myeloid leukaemia.
- 72. PMID: 22234698; 2012, Blood;119(10):e67-75
 High-resolution genomic profiling of adult and pediatric core-binding factor acute myeloid leukemia reveals new recurrent genomic alterations.
- PMID: 25537518; 2015, Oncotarget;6(4):2466-82
 Genetic alterations of histone lysine methyltransferases and their significance in breast cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 27 of 30

李姿瑤

Project ID: C23-M001-00010 Report No.: AA-23-00038_ONC Date Reported: Jan 13, 2023

ACTOnco® + Report

- PMID: 25303977; 2014, Clin Cancer Res;20(24):6582-92
 Mutational landscape of aggressive cutaneous squamous cell carcinoma.
- 75. PMID: 25151357; 2014, Nat Genet;46(10):1097-102 Genetic landscape of esophageal squamous cell carcinoma.
- PMID: 28801450; 2017, Blood;130(14):1644-1648
 Genomic analysis of hairy cell leukemia identifies novel recurrent genetic alterations.
- PMID: 25794446; 2015, Cancer Genet; 208(5):178-91
 The cancer COMPASS: navigating the functions of MLL complexes in cancer.
- PMID: 24794707; 2014, Cancer Cell;25(5):652-65
 MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia.
- PMID: 30665945; 2019, EMBO Rep;20(3):
 The lysine-specific methyltransferase KMT2C/MLL3 regulates DNA repair components in cancer.
- 80. PMID: 27280393; 2016, Cancer Res;76(16):4861-71
 Reduced Expression of Histone Methyltransferases KMT2C and KMT2D Correlates with Improved Outcome in Pancreatic Ductal Adenocarcinoma.
- 81. PMID: 27986439; 2017, Clin Breast Cancer;17(3):e135-e142
 Expression Levels of KMT2C and SLC20A1 Identified by Information-theoretical Analysis Are Powerful Prognostic Biomarkers in Estrogen Receptor-positive Breast Cancer.
- PMID: 25935112; 2015, Trends Biochem Sci;40(6):296-308
 Structural determinants of Smad function in TGF-β signaling.
- PMID: 19014666; 2008, Pathogenetics;1(1):2
 Smad4 haploinsufficiency: a matter of dosage.
- PMID: 9545410; 1998, Am J Hum Genet;62(5):1129-36
 A gene for familial juvenile polyposis maps to chromosome 18q21.1.
- PMID: 8553070; 1996, Science;271(5247):350-3
 DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1.
- PMID: 8673134; 1996, Nat Genet; 13(3):343-6
 Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers
- 87. PMID: 18662538; 2008, Cell;134(2):215-30 TGFbeta in Cancer.
- 88. PMID: 9135016; 1997, Cancer Res;57(9):1731-4 Tumor-suppressive pathways in pancreatic carcinoma.
- PMID: 23139211; 2013, Cancer Res;73(2):725-35
 SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer.
- PMID: 22810696; 2012, Nature;487(7407):330-7
 Comprehensive molecular characterization of human colon and rectal cancer.
- 91. PMID: 25890228; 2015, World J Surg Oncol;13():128
 Clinical outcome and expression of mutant P53, P16, and Smad4 in lung adenocarcinoma: a prospective study.
- PMID: 19841540; 2009, J Clin Invest;119(11):3208-11
 Smad4: gatekeeper gene in head and neck squamous cell carcinoma.
- 93. PMID: 15867212; 2005, Clin Cancer Res;11(9):3191-7

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 28 of 30

Project ID: C23-M001-00010 Report No.: AA-23-00038_ONC Date Reported: Jan 13, 2023

ACTOnco® + Report

Differences in Smad4 expression in human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck squamous cell carcinoma.

- 94. PMID: 25589618; 2015, Clin Cancer Res;21(6):1447-56 Genomic analysis of metastatic cutaneous squamous cell carcinoma.
- 95. PMID: 29703253; 2018, BMC Cancer;18(1):479 SMAD4 and NF1 mutations as potential biomarkers for poor prognosis to cetuximab-based therapy in Chinese metastatic colorectal cancer patients
- 96. PMID: 28522603; 2017, Clin Cancer Res;23(17):5162-5175
 SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells.
- 97. PMID: 16144935; 2005, Clin Cancer Res;11(17):6311-6 SMAD4 levels and response to 5-fluorouracil in colorectal cancer.
- PMID: 24384683; 2014, Br J Cancer;110(4):946-57
 Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway.
- PMID: 12237773; 2002, Br J Cancer;87(6):630-4
 SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer.
- PMID: 25749173; 2015, Transl Oncol;8(1):18-24
 A Meta-Analysis of SMAD4 Immunohistochemistry as a Prognostic Marker in Colorectal Cancer.
- 101. PMID: 19478385; 2009, Cell Oncol;31(3):169-78
 Presence of a high amount of stroma and downregulation of SMAD4 predict for worse survival for stage I-II colon cancer patients.
- 102. PMID: 25681512; 2015, J Clin Pathol;68(5):341-5 Smad4 inactivation predicts for worse prognosis and response to fluorouracil-based treatment in colorectal cancer.
- PMID: 26861460; 2016, Clin Cancer Res;22(12):3037-47
 Reduced Expression of SMAD4 Is Associated with Poor Survival in Colon Cancer.
- 104. PMID: 26947875; 2016, Transl Oncol;9(1):1-7 Prognostic Value of SMAD4 in Pancreatic Cancer: A Meta-Analysis.
- PMID: 25760429; 2015, Pancreas;44(4):660-4
 SMAD4 expression predicts local spread and treatment failure in resected pancreatic cancer.
- 106. PMID: 22504380; 2012, Pancreas;41(4):541-6 SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma.
- PMID: 19584151; 2009, Clin Cancer Res;15(14):4674-9
 SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer.
- 108. PMID: 18425078; 2008, Mod Pathol;21(7):866-75
 Expression of Smad2 and Smad4 in cervical cancer: absent nuclear Smad4 expression correlates with poor survival.
- PMID: 28968163; 2017, J Clin Oncol;35(32):3638-3646
 MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer.
- 110. PMID: 28533223; 2017, Clin Cancer Res;23(17):5218-5224
 MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR+/HER2-Metastatic Breast Cancer.
- 111. PMID: 26156651; 2015, Lancet Oncol;16(8):897-907
 Afatinib versus erlotinib as second-line treatment of patients with advanced squamous cell carcinoma of the lung (LUX-Lung 8): an open-label randomised controlled phase 3 trial.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 29 of 30

Project ID: C23-M001-00010 Report No.: AA-23-00038_ONC Date Reported: Jan 13, 2023

ACTOnco® + Report

- 112. PMID: 23816960; 2013, J Clin Oncol;31(27):3327-34
 Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations.
- 113. PMID: 22285168; 2012, Lancet Oncol;13(3):239-46
 Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial.
- 114. PMID: 17452677; 2007, J Clin Oncol;25(15):1960-6
 Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group.
- 115. PMID: 24263064; 2014, Br J Cancer;110(1):55-62 First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open-label, single-arm study.
- 116. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284
 Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.
- 117. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589

 Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.
- PMID: 27959700; 2017, N Engl J Med;376(7):629-640
 Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer.
- PMID: 27959613; 2016, N Engl J Med;375(20):1925-1936
 Palbociclib and Letrozole in Advanced Breast Cancer.
- PMID: 26030518; 2015, N Engl J Med;373(3):209-19
 Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(07) page 30 of 30