Potential Game based Channel Allocation for Vehicular Edge Computing

02 Problem Formulation

03 Potential Game Model

04 Algorithm Design

Introduction Vehicular Edge Computing Architecture

Objective: Allocating sub-channels for different data transmission tasks and maximizing the number of completed tasks

9/22/20 3/19

02 Problem Formulation

03 Potential Game Model

04 Algorithm Design

Problem Formulation Mobility-aware Communication Model

Signal to Interference and Nosie Ratio, SINR

$$\mu_{nm}^k(t_i) = \frac{|h_{nm}|^2 \cdot \Psi \cdot d_{nm} \ (t_i)^{-\lambda} \cdot p_n}{\sum_{x=1, x \neq n}^{|E(t_i)|} \sum_{y=1}^{|B(t_i)|} |h_{xm}|^2 \Psi d_{xm}(t_i)^{-\lambda} p_x \mathbb{I}_{xy}^k(t_i) + N_0}$$
 Signal

Transmission Rate

$$\delta_{nm}^{k}(t_i) = \omega_n \log_2 \left(1 + \mu_{nm}^{k}(t_i) \right)$$

Transmission Data Size

$$z_{nm}^{k} = \int_{t_i}^{\min(t_{mi}^e, t_i + t_{mi}^c)} \delta_{nm}^{k}(t) dt$$

Co-channel Interference

Problem Formulation Channel Allocation Problem

Allocation Strategy

$$A(t_i) \in \{0,1\}^{|E(t_i)| \times |B(t_i)| \times |Q|}$$

$$a_{nm}^k(t_i) = 1$$

Allocation Strategy
$$A(t_i) \in \{0,1\}^{|E(t_i)| \times |B(t_i)| \times |Q|} \qquad a_{nm}^k(t_i) = 1 \qquad \mathbb{A}(t_i) = \prod_{j=i}^{|T|} A(t_j) = A(t_i) \times A(t_{i+1}) \times \cdots \times A(t_{|T|})$$

Objective Function

$$\sum\nolimits_{i=1}^{|T|} \max_{\mathbb{A}(t_i)} \sum\nolimits_{m=1}^{|B(t_i)|} \mathbb{1}_{z_{mi} \leq \sum_{n=1}^{|E(t_i)|} \sum_{k=1}^{|Q_n(t_i)|} \int_{t_i}^{t_i + \beta} \sum_{j=i}^{|T|} a_{nm}^k(t_j)} \delta_{nm}^k(t) \, \mathrm{d}t$$

Task Completion Indicator

$$CC1: a_{nm}^k(t_i) \in \{0,1\}, \forall e_n \in E(t_i), \forall b_m \in B(t_i), \forall q_k \in Q_n(t_i), \forall t_i \in T(t_i), \forall t_i \in T(t_i)$$

C2:
$$a_{nm}^{k}(t_{i}) = 0$$
, if $d_{nm}(t_{i}) > c_{n}$

C3:
$$a_{nm}^k(t_i) = 0$$
, if $q_k \notin Q_n(t_i)$

$$S. t. \begin{cases} C1: a_{nm}^k(t_i) \in \{0,1\}, \forall e_n \in E(t_i), \forall b_m \in B(t_i), \forall q_k \in Q_n(t_i), \forall t_i \in T \\ C2: a_{nm}^k(t_i) = 0, \text{ if } d_{nm}(t_i) > c_n \\ C3: a_{nm}^k(t_i) = 0, \text{ if } q_k \notin Q_n(t_i) \end{cases}$$

$$C3: a_{nm}^k(t_i) = 0, \text{ if } q_k \notin Q_n(t_i)$$

$$C4: \sum_{m=1}^{|B_i|} a_{nm}^k(t_i) \leq 1, \forall q_k \in Q_n(t_i)$$

$$C4: \sum_{m=1}^{|T|} a_{nm}^k(t_i) \leq 1, \forall q_k \in Q_n(t_i)$$

$$C4: \sum_{j=i}^{|T|} a_{nm}^k(t_j) \leq \left\lfloor \frac{\min(t_m(t_i) - t_i, t_m^c)}{\beta} \right\rfloor$$

$$C5: \sum_{j=i}^{|T|} a_{nm}^k(t_j) \leq \left\lfloor \frac{\min(t_m(t_i) - t_i, t_m^c)}{\beta} \right\rfloor$$

$$C5: \sum_{j=i}^{|T|} a_{nm}^k(t_j) \leq \left\lfloor \frac{\min(t_m(t_i) - t_i, t_m^c)}{\beta} \right\rfloor$$

$$C5: \sum_{j=i}^{|T|} a_{nm}^k(t_j) \leq \left\lfloor \frac{\min(t_m(t_i) - t_i, t_m^c)}{\beta} \right\rfloor$$

$$C5: \sum_{j=i}^{|T|} a_{nm}^k(t_j) \leq \left\lfloor \frac{\min(t_m(t_i) - t_i, t_m^c)}{\beta} \right\rfloor$$

$$C5: \sum_{j=i}^{|T|} a_{nm}^k(t_j) \leq \left\lfloor \frac{\min(t_m(t_i) - t_i, t_m^c)}{\beta} \right\rfloor$$

$$C5: \sum_{j=i}^{|T|} a_{nm}^k(t_j) \leq \left\lfloor \frac{\min(t_m(t_i) - t_i, t_m^c)}{\beta} \right\rfloor$$

$$C5: \sum_{j=i}^{|T|} a_{nm}^k(t_j) \leq \left\lfloor \frac{\min(t_m(t_i) - t_i, t_m^c)}{\beta} \right\rfloor$$

$$C5: \sum_{j=i}^{|T|} a_{nm}^k(t_j) \leq \left\lfloor \frac{\min(t_m(t_i) - t_i, t_m^c)}{\beta} \right\rfloor$$

$$C5: \sum_{j=i}^{|T|} a_{nm}^k(t_j) \leq \left\lfloor \frac{\min(t_m(t_i) - t_i, t_m^c)}{\beta} \right\rfloor$$

$$C5: \sum_{j=i}^{|T|} a_{nm}^k(t_j) \leq \left\lfloor \frac{\min(t_m(t_i) - t_i, t_m^c)}{\beta} \right\rfloor$$

$$C5: \sum_{j=i}^{|T|} a_{nm}^k(t_j) \leq \left\lfloor \frac{\min(t_m(t_i) - t_i, t_m^c)}{\beta} \right\rfloor$$

$$C5: \sum_{j=i}^{|T|} a_{nm}^k(t_j) \leq \left\lfloor \frac{\min(t_m(t_i) - t_i, t_m^c)}{\beta} \right\rfloor$$

02 Problem Formulation

03 Potential Game Model

04 Algorithm Design

Potential Game Model Distributed Game Transformation

■ Potential Function

$$\phi_n \big(a_n(t_i), \pmb{a}_{-n}(t_i) \big) = \sum_{m=1}^{|B(t_i)|} \mathbb{I}_{z_{mi} - \theta_{m, E(t_i)/\{n\}} \leq \sum_{k=1}^{|Q_n(t_i)|} \int_{t_i}^{t_i + \beta \sum_{j=i}^{|T|} a_{nm}^k(t_j)} \delta_{nm}^k(t) \, dt$$

■ Exact Potential Game

$$u_n(a_n(t_i)^*, \mathbf{a}_{-n}(t_i)) - u_n(a_n(t_i), \mathbf{a}_{-n}(t_i)) = \phi_n(a_n(t_i)^*, \mathbf{a}_{-n}(t_i)) - \phi_i(a_n(t_i), \mathbf{a}_{-n}(t_i))$$

Theorem: Given the potential function of the game, the channel allocation game is an exact potential game, which possesses at least one Nash Equilibrium

9/22/20

02 Problem Formulation

03 Potential Game Model

04 Algorithm Design

Algorithm Design Incentive-based Probability Update and Strategy Selection (IPUS²)

Initialization

■ Strategy Selection Probability

$$x_{n,0}(a_n(t_i)) = 1/|\mathcal{A}_n(t_i)|$$

Iteration	0	1	2	3	4
Strategy	/	$a_1 b_1$	$a_2 b_1$	$a_1 b_1$	a_2b_2
$s(a_1)$	0	0	0	-0.5	0
$s(a_2)$	0	0	1	0	2
$s(b_1)$	0	0	1	-0.5	0
$s(b_2)$	0	0	0	0	2
$x_A(a_1)$	0.5	0.5	0.5	0.375	0.375
$x_A(a_2)$	0.5	0.5	0.75	0.75	1
$x_B(\mathcal{b}_1)$	0.5	0.5	0.75	0.6625	0.6625
$x_B(\mathcal{b}_2)$	0.5	0.5	0.5	0.5	1

9/22/20

► Algorithm Design Incentive-based Probability Update and Strategy Selection (IPUS²)

■ Probability Update Value

Iteration	0	1	2	3	4
Strategy	1	$a_1 b_1$	a_2b_1	a_1b_1	a_2b_2
$s(a_1)$	0	(0.5-0.5)/0.	5 0	-0.5	0
$s(a_2)$	0	0	1	0	2
$s(\mathcal{b}_1)$	0	(0.5-0.5)/0.	5 1	-0.5	0
$s(\mathcal{b}_2)$	0	0	0	0	2
$x_A(a_1)$	0.5	0.5	0.5	0.375	0.375
$x_A(a_2)$	0.5	0.5	0.75	0.75	1
$x_B(\mathcal{b}_1)$	0.5	0.5	0.75	0.6625	0.6625
$x_B(\mathcal{b}_2)$	0.5	0.5	0.5	0.5	1

► Algorithm Design Incentive-based Probability Update and Strategy Selection (IPUS²)

Initialization

■ Probability Update Function

$$x_{n,\tau+1}(a_n(t_i)) = \begin{cases} x_{n,\tau}(a_n(t_i)) + \eta s_n(a_n(t_i)) \left(1 - x_{n,\tau}(a_n(t_i))\right) & s_n(a_n(t_i)) \ge 0 \\ x_{n,\tau}(a_n(t_i)) + \eta s_n(a_n(t_i)) x_{n,\tau}(a_n(t_i)) & s_n(a_n(t_i)) < 0 \end{cases} \quad \mathcal{B}_2$$

Str	ate	gy
Sel	lect	ion

Environmental Interactions

Iteration

Probability Update

Iteration	0	1	2	3	4
Strategy	/	$a_1 b_1$	a_2b_1	a_1b_1	a_2b_2
$s(a_1)$	0	0	0	-0.5	0
$s(a_2)$	0	0	1	0	2
$s(b_1)$	0	0	1	-0.5	0
$s(b_2)$	0	0	0	0	2
$x_A(a_1)$	0.5	0.5	0.5	0.375	0.375
$x_A(a_2)$	0.5	0.5	0.75	0.75	1
$x_B(\mathcal{b}_1)$	0.5	0.5	0.75	0.6625	0.6625
$x_B(\mathcal{b}_2)$	0.5	0.5	0.5	0.5	1

Algorithm Design Incentive-based Probability Update and Strategy Selection (IPUS²)

■ Probability Update Function

$$x_{n,\tau+1}(a_n(t_i)) = \begin{cases} x_{n,\tau}(a_n(t_i)) + \eta s_n(a_n(t_i)) \left(1 - x_{n,\tau}(a_n(t_i))\right) & s_n(a_n(t_i)) \ge 0 \\ x_{n,\tau}(a_n(t_i)) + \eta s_n(a_n(t_i)) x_{n,\tau}(a_n(t_i)) & s_n(a_n(t_i)) < 0 \end{cases}$$

	a_1	a_2
\mathcal{b}_1	0.5	1
\mathcal{B}_2	1	2 2

Strategy	
Selection	

Environmental Interactions

Probability Update

Strategy

 a_2b_2

Iteration	0	1	2	3	4
Strategy	/	$a_1 b_1$	a_2b_1	a_1b_1	a_2b_2
$s(a_1)$	0	0	0	-0.5	0
$s(a_2)$	0	0	1	0	2
$s(\mathcal{b}_1)$	0	0	1	-0.5	0
$s(b_2)$	0	0	0	0	2
$x_A(a_1)$	0.5	0.5	0.5	0.375	0.375
$x_A(a_2)$	0.5	0.5	0.75	0.75	1
$x_B(\mathcal{B}_1)$	0.5	0.5	0.75	0.6625	0.6625
$x_B(\mathcal{b}_2)$	0.5	0.5	0.5	0.5	1

02 Problem Formulation

03 Potential Game Model

04 Algorithm Design

Performance Evaluation Experiment Settings

- **Experiment Dataset**
- Taxi Trajectories in 3x3 km Area of Chengdu City
- 2 Base Stations, 9 RSUs, 5 Vehicular Edge Nodes Price of Anarchy, PoA

▲ Base Station • RSU + Vehicular Edge Node

$$PoA = \frac{\max_{a \in \mathbb{A}} w(a)}{\min_{a^* \in \mathbb{A}^{NE}} w(a^*)}$$

Task Completion Ratio

$$\mathcal{L}_{m=1}^{|B(t_i)|} \mathbb{I}_{z_{mi} \leq \sum_{n=1}^{|E(t_i)|} \sum_{k=1}^{|Q_n(t_i)|} \int_{t_i}^{t_i + \beta \sum_{j=i}^{|T|} a_{nm}^k(t_j)} \delta_{nm}^k(t) dt} = \frac{z_{mi} \leq \sum_{n=1}^{|E(t_i)|} \sum_{k=1}^{|Q_n(t_i)|} \int_{t_i}^{t_i + \beta \sum_{j=i}^{|T|} a_{nm}^k(t_j)} \delta_{nm}^k(t) dt}{|B(t_i)|}$$

Channel Utilization Efficiency

$$\mathcal{E}(t_i) = \sum_{m=1}^{|B(t_i)|} \frac{\sum_{n=1}^{|E(t_i)|} \sum_{k=1}^{|Q_n(t_i)|} \int_{t_i}^{t_i + \beta \sum_{j=i}^{|T|} a_{nm}^k(t_j)} \delta_{nm}^k(t) dt}{\sum_{k=1}^{|Q_n(t_i)|} \sum_{j=i}^{|T|} a_{nm}^k(t_j)} / |B(t_i)|$$

Performance Evaluation Simulation Results

The Convergence of The IPUS²

The Effectiveness of The Nash Equilibrium

9/22/20 16/19

Performance Evaluation Simulation Results

- The Comparative Algorithms
- Random Allocation, RA
- Water Filling, WF

Task Completion Ratio

Channel Utilization Efficiency

Conclusion

■ We formulated the problem of channel allocation in vehicular edge computing, and transformed the global optimization problem into a distributed channel allocation potential game

■ We proposed an Incentive-based Probability Update and Strategy Selection (IPUS²) algorithm, and verified the convergence of the IPUS² and the effectiveness of the Nash Equilibrium

■ We give an experiment with real vehicle trajectories, and the results showed IPUS² outperforms existing representative algorithms

9/22/20 18/19

Thank You