Exercise 9: Instrumental variable methods

Background reading

The background material for this exercise is Sections 7.5 and 7.6 of Ljung (System Identification; Theory for the User, 2nd Ed., Prentice-Hall, 1999).

Problem 1:

Suppose that a true description of a certain system is given by

$$y(k) + a_1 y(k-1) + \dots + a_{n_a} y(k-n_a) = b_1 u(k-1) + \dots + b_{n_b} u(k-n_b) + e(k)$$

where $\{e(k)\}\$ is white noise independent of the input. Let the regressor $\phi(k)$ be defined as usual as

$$\phi(k) = [-y(k-1)\dots - y(k-n_a) \quad u(k-1)\dots u(k-n_b)]^T$$
.

Moreover, let $\tilde{\phi}(k)$ be given by

$$\tilde{\phi}(k) = [-y_0(k-1)\dots - y_0(k-n_a) \quad u(k-1)\dots u(k-n_b)]^T$$

where

$$y_0(k) + a_1 y_0(k-1) + \dots + a_{n_a} y_0(k-n_a) = b_1 u(k-1) + \dots + b_{n_b} u(k-n_b)$$
.

Note that y_0 is the noise-free response of the true system.

Prove that for the vector of instrumental variables $z(k) = [u(k-1) u(k-2)]^T$ we have

$$\mathbb{E}[z(k)\phi(k)^T] = \mathbb{E}[z(k)\tilde{\phi}(k)^T].$$

Problem 2:

Consider the following system:

$$y(k) + ay(k-1) = b_1u(k-1) + b_2u(k-2) + v(k).$$

Parameters of the system should be estimated by using the instrumental variables method. To this end, it has been decided to use delayed inputs as instruments:

$$z(k) = [u(k-1)u(k-2)u(k-3)]^T$$
.

Assuming that u(k) is white noise with zero mean and unit variance and that it is uncorrelated with v(k), find for which values of parameters a, b_1 and b_2 , the instrumental variables are correlated with the regression variables (i.e. $E\{z(k)\varphi^T(k)\}$ is nonsingular).

Matlab exercise:

The dataset 'Data_ex9.mat' needed for this exercise can be downloaded from the resources page on Piazza.

Consider data, y(k) and u(k), collected from the system,

$$y(k) = \frac{B(z)}{A(z)}u(k) + C(z)e(k), \quad e(k) \sim \mathcal{N}(0, \lambda).$$

The polynomials are of the form:

$$A(z) = 1 + a_1 z^{-1} + a_2 z^{-2},$$

 $B(z) = b_1 z^{-1},$
 $C(z) = 1 + c_1 z^{-1}.$

For the questions below, the following experimental data is provided:

- ex9_u: the input signal, u(k), for k = 1, 2, ..., K,
- ex9_y: the corresponding output signal, y(k), for k = 1, 2, ..., K.

The system is at rest and that there is no noise for $k \leq 0$,

$$u(k) = y(k) = e(k) = 0$$
 for all $k \le 0$.

- 1. Using pseudo-linear regression (PLR) over the entire data, estimate the problem parameters $\hat{\theta}_{PLR} = [\hat{a}_1 \ \hat{a}_2 \ \hat{b}_1 \ \hat{c}_1]^T$.
 - (a) Formulate a pseudo-linear regression that, when solved, estimates the parameters $\hat{\theta}_{PLR}$. Express the one-step-ahead prediction estimator in terms of the solution to the pseudo-linear regression.
 - (b) For the given input and output sequence, ex9_u and ex9_y, solve the above problem for the estimated parameters $\hat{\theta}_{PLR}$. Generate the resulting vector of prediction errors, $\epsilon(k) = y(k) \hat{y}(k|\hat{\theta}_{PLR}), \ k = 1, \dots, K$.
- 2. Use an instrumental variable (IV) method to estimate $\hat{\theta}_{\text{IV}} = [\hat{a}_1 \ \hat{a}_2 \ \hat{b}_1]^T$. Starting from a least-squares initialization, compute suitable instruments $\zeta(k)$.
 - (a) Describe your choice of instrumental variables, $\zeta(k)$.
 - (b) Estimate $\hat{\theta}_{\text{IV}}$ using your chosen $\zeta(k)$.