Colle 11 - MPSI Suites

Exercice 1

Soient (u_n) et (v_n) deux suites réelles telles que $(u_n + v_n)$ et $(u_n - v_n)$ convergent. Montrer que (u_n) et (v_n) convergent.

Exercice 2

On suppose (u_n) est une suite réelle croissante telle que (u_{2n}) converge. Montrer que (u_n) converge.

Exercice 3

Soit (u_n) une suite définie dans \mathbb{K} telle que les suites (u_{2n}) , (u_{2n+1}) et (u_{n^2}) convergent. Montrer que (u_n) converge.

Exercice 4

Soit (u_n) une suite réelle telle que :

$$\forall n \in \mathbb{N}, u_n \in \mathbb{Z}.$$

Montrer que (u_n) converge si et seulement si (u_n) est stationnaire.

Exercice 5

Justifier que la suite de terme général cos(n) diverge.

Exercice 6

Montrer que les suites suivantes sont adjacentes :

$$u_n = \sum_{k=2}^{n} \frac{1}{k^2 + 1}, \quad v_n = u_n + \frac{1}{n} - \frac{1}{2n^2}, \quad n \ge 3.$$

Exercice 7

Pour tout $n \in \mathbb{N}^*$, on pose

$$S_n = \sum_{k=1}^n \frac{1}{k^2}$$
, et $S'_n = S_n + \frac{1}{n}$.

Montrer que les suites (S_n) et (S'_n) sont adjacentes.

Exercice 8

Soit (u_n) une suite réelle telle que :

$$\forall (m,n) \in (\mathbb{N}^*)^2, \quad 0 \le u_{m+n} \le \frac{m+n}{mn}.$$

Montrer que (u_n) converge vers 0.

Exercice 9

Etudier la suite (u_n) définie par :

$$\begin{cases} u_0 \in \mathbb{R} \\ \forall n \in \mathbb{N}, u_{n+1} = u_n^2 + (-1)^n n. \end{cases}$$

Exercice 10

Soient $(a,b) \in \mathbb{R}^2$, (u_n) , (v_n) deux suites réelles telles que :

$$\begin{cases} \forall n \in \mathbb{N}, & u_n \le a \\ \forall n \in \mathbb{N}, & v_n \le b \\ \lim_{n \to +\infty} u_n + v_n = a + b. \end{cases}$$

Montrer que (u_n) et (v_n) convergent respectivement vers a et b.

Exercice 11

En utilisant

$$\forall x \in \mathbb{R}_+, \quad x - \frac{x^2}{2} \le \ln(1+x) \le x,$$

montrer l'existence de la limite de la suite de terme général $\prod_{k=1}^n \left(1 + \frac{1}{n} + \frac{k}{n^2}\right)$, et calculer cette limite.

Exercice 12

Soient $(a,b) \in \mathbb{R}^2$ et $(u_n),(v_n)$ les suites définies par :

$$\begin{cases} u_0 = a & v_0 = b \\ u_{n+1} = \sqrt{u_n v_n}, & v_{n+1} = \frac{u_n + v_n}{2}, & \forall n \in \mathbb{N} \end{cases}.$$

Correction de l'exercice 1

Correction de l'exercice 2

Correction de l'exercice 3

Correction de l'exercice 4

Correction de l'exercice 5

Par l'absurde. Supposons que la suit de terme général cos(n) converge vers une limite l. Comme $cos(2n) = 2cos^2(n) - 1$ par passage à la limite on en déduit que $l = 2l^2 - 1$

Soit $2l^2 - l - 1 = 0$. 2 racines $l_1 = -\frac{1}{2}$ et $l_2 = 1$. Prenons par exemple l = 1.

 $\forall \epsilon > 0, \ \exists N > 0, \ \forall n > N, \ |\cos(n) - l| < \epsilon$

Prenons alors $\epsilon = 0, 5$, on a : $\exists N > 0, \ \forall n > N, \ |\cos(n) - 1| < 0, 5 \text{ soit } 0, 5 < \cos(n) < 1, 5$

Absurde car si $\cos(n) > 0$ alors $\cos(\lfloor n + \pi \rfloor) < 0$.