(a)encoder function

```
function codeword = encode(dataword, divisor)
                                   %dataword length
dwL=strlength(dataword);
dvD=strlength(divisor)-1;
                                  %divisor degree
dw=binstr2num(dataword);
                                   %convert dataword(binary string) to decimal number
dv=binstr2num(divisor);
                                   %convert divisor(binary string) to decimal number
dv = bitshift(dv, dwL-1);
                                   %left shift divisor by length of dataword length-1
remainder = bitshift(dw,dvD);
                                 %take initial remainder by left shifting the
dataword by length of divisor degree
for k = 1:dwL
   if bitget(remainder,dwL+dvD)
       remainder = bitxor(remainder, dv);
                                              %bitwise xor operation
    remainder = bitshift(remainder,1);
                                               %updating the remainder
CRC_check_value = bitshift(remainder,-dwL);
                                              %taking CRC by by right shifting final
remainder by length of dataword length
CRC=dec2bin(CRC check value);
if strlength(CRC) < dvD
   need=dvD-strlength(CRC);
    for j=1:need
       CRC=strcat('0',CRC);
codeword=strcat(dataword, CRC);
end
```

Decoder function

```
function string = decode(codeword, divisor)
%we take input as codeword and divisor in binary string form and output
%syndrom in binary string format
dvD=strlength(divisor)-1;
                                                %divisor degree
cwL=strlength(codeword);
                                                %codeword length
cw=binstr2num(codeword);
                                                %codeword in decimal
dv=binstr2num(divisor);
                                                %convert divisor(binary string) to ✔
decimal number
dwL=cwL-dvD;
                                                %dataword length
dv=bitshift(dv,dwL-1);
                                                %divisor is left shifing by length of
dataword-1
for k = 1:dwL
    if bitget(cw,dwL+dvD)
       cw = bitxor(cw,dv);
    cw = bitshift(cw, 1);
end
cw=bitshift(cw,-dwL);
syndrome=dec2bin(cw);
if strlength(syndrome)<dvD
    need=dvD-strlength(syndrome);
    for j=1:need
        syndrome=strcat('0', syndrome);
    end
string=syndrome;
```

(b), (c)

```
Command Window
>> encode('101001111','10111')
ans =
    '1010011110101'
>> decode('1010011110101','10111')
ans =
    '0000'
```

Syndrome is equal to 0 that means received codeword doesn't have ant errors in it.

(d), (e)

Part_1

```
msg='101001111';
     div='10111';
4
      %generate the codeword
5
7 -
     codeword=encode(msg,div);
8 -
     codeword_array=binstr2arr(codeword); %convert binary string to array
9
10
     %send through noisy channel with error of prob p=0.5
11
12-
     x=bsc(codeword_array,0.5);
13
14
     %received codeword
15
16-
     received_codeword=binarr2binstr(x);
18 -
     syndrome=decode(received_codeword,div)
Command Window
 syndrome =
```

When the code word is send through the noisy channel syndrome is not equal to zero that means received codeword has errors in it.

'1101'

Running the above code 10 times

Sending Codeword	Received Codeword	Syndrome
'1010011110101'	'1001011000011'	'0011'
'1010011110101'	'0111001101010'	'0100'
'1010011110101'	'0000110111001'	'0011'
'1010011110101'	'0000001110110'	'0100'
'1010011110101'	'0010110000010'	'1001'
'1010011110101'	'0110011110001'	'1101'
'1010011110101'	'1000101110111'	'1001'
'1010011110101'	'0010011110011'	'1000'
'1010011110101'	'000001001010'	'0001'
'1010011110101'	'0100111011011'	'0011'

Since the binary symmetric channel has an error probability of 0.5, if a codeword of n bits gets transmitted then the received codeword can have a maximum of n/2 errors. Thus, even if one bit gets errored then the syndrome will become non zero.

(f)

Code

(g)Assumptions

- 1. Assume that time-out duration is reasonable and time-out will never occur
- 2. Assume that No packet lost will happen

The algorithm is implemented in the for loop in below code snippet.

(h)

```
arr=randi([0 65535],1,256);
reattempts=0;
for i=1:255
   %for one dataword
   time=0;
                                             %time for one packet in microseconds
   p=0.00001;
   div='100000111';
                                             %CRC-8 divisor
   dw=binstr2binstr16(dec2bin(arr(i)));
   sn=i;
   rn=i;
   retrans_attempts=0;
   frame=tx_frame(dw,sn);
   %send through a noisy channel
   time=time+25+15;
   frame array=binstr2arr(frame);
                                           %convert binary string to array
   x=bsc(frame_array,p);
   %recieved frame
   recieved_frame=binarr2binstr(x);
   syndrome=decode(recieved frame, div);
   if syndrome==0
       %accepts the frame
       rn=rn+1;
   else
       %neglect the frame
   end
   ack_frame=rx_frame(recieved_frame);
    %send through a noisy channel
    time=time+25+15;
   ack frame array=binstr2arr(ack frame);
                                          %convert binary string to array
   x=bsc(ack_frame_array,p);
    %recieved ack frame
   recieved ack frame=binarr2binstr(x);
    syndrome=decode(strcat(recieved_ack_frame(1:16),recieved_ack_frame(25:32)),div);
    while syndrome~=0
       retrans_attempts=retrans_attempts+1;
       %send through a noisy channel
```

```
time=time+25+15;
       frame_array=binstr2arr(frame);
                                             %convert binary string to array
       x=bsc(frame_array,p);
       %recieved frame
       recieved frame=binarr2binstr(x);
       syndrome=decode(recieved_frame, div);
       if syndrome==0
          if rn==sn
              %accecpt the frame
             rn=rn+1;
              %neglect the frame
          end
          %neglect the frame
       ack_frame=rx_frame(recieved_frame);
       %send through a noisy channel
       time=time+15+25;
       ack_frame_array=binstr2arr(ack_frame); %convert binary string to✔
array
       x=bsc(ack_frame_array,p);
       %recieved frame
       recieved_ack_frame=binarr2binstr(x);
       syndrome=decode(strcat(recieved_ack_frame(1:16),recieved_ack_frame(25:32)),div);
   reattempts=reattempts+retrans_attempts;
end
```

Answers for (h),(i),(j)

Number of Datawords	Error probability	Results
256	0.00001	Total attempts=256
		Expected number of
		transmissions=1
		Expected number of
		retransmissions=0
		Efficiency=31.25%
256	0.0001	Total attempts=257
		Expected number of
		transmissions=1.00390625
		Expected number of
		retransmissions=0.00390625
		Efficiency=31.12840467%

Total attempts=256+number of retransmissions

Expected number of transmissions=Total attempts/256

Expected number of retransmissions= number of retransmissions/256

Efficiency=(256*Dtp)/(Total attempts*S) where S=2 x Dtp + 2 x Dp

Codes of the supporting functions

```
1.
function strr = binarr2binstr(b)
  %convert binary array to binary string
  len=length(b);
  strr='';
for i=1:len
     strr=strcat(strr,string(b(i)));
  strr=char(strr);
  end
2.
function numm = binarr2num(b)
  %Convert Binary array to a decimal number
  len=length(b);
  num=0;
for i=1:len
     num = num + (b(len+1-i))*(2^(i-1));
  end
  numm=num;
  end
3.
function list = binstr2arr(a)
  %Convert Binar string to a binary array
 len=(length(a));
 l=zeros(1,len);
for k=1:len
    l(k) = str2num(a(k));
  list=1;
 end
```

```
4.
 function strr= binstr2binstr16(y)
5% this function takes binary string with length less than 16bit and convert
  %it to length of 16 bit binary string and output it
  need=16-strlength(y);
 for j=1:need
       y=strcat('0',y);
  end
  strr=y;
  end
5.

    function numm = binstr2num(c)

  %convert Binary string to decimal number
  len=(length(c));
  num=0;
for i=1:len
      num = num + (str2num(c(len+1-i)))*(2^(i-1));
  end
  numm=num;
  end
function strr= num2digit8binstr(d)
  %this function takes decimal number less than 255 and convert it to 8 bit length binary string
  y=dec2bin(d);
  need=8-strlength(y);
 for j=1:need
     y=strcat('0',y);
  strr=y;
  end
function strr= num2digit9binstr(d)
  %this function takes decimal number less than 512 and convert it to 9 bit length binary string
  y=dec2bin(d);
  if strlength(y)<9
     need=9-strlength(y);
     for j=1:need
         y=strcat('0',y);
     end
  end
  strr=y;
  end
 function frame = rx_frame(frame)
  %we take input as binary array of codeword length of 32 bit and out put CRC-8 encoded ACK/NAK frame
  div='100000111';
                                         %CRC-8 divisor
  dataword=frame(1:16);
                                         %extract dataword from the received frame
  s n=frame(17:24);
                                          %extract sequence number from the received frame
  frame_before_1=encode(dataword, div);
  frame_before_2=strcat(frame_before_1(1:16),s_n);
  frame=strcat(frame_before_2,frame_before_1(17:24));
  end
```

```
9.
```