SM-4331 Exercise 5

1. Let a_i, b_j, c and d be any real numbers. Show that

$$\sum_{i=1}^{n} (a_i - c)(b_i - d) = \sum_{i=1}^{n} (a_i - \bar{a})(b_i - \bar{b}) + n(\bar{a} - c)(\bar{b} - d),$$

where $\bar{a} = n^{-1} \sum_{i=1}^{n} a_i$ and $\bar{b} = n^{-1} \sum_{i=1}^{n} b_i$.

2. For the simple linear regression $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, i = 1, ..., n, the ordinary least squares estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are the solutions to

$$\underset{\beta_0,\beta_1}{\arg\min} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2.$$

Use calculus (i.e. differentiate the sum of squared errors with respect to β_0 and β_1) to derive the LSE solutions.

- 3. Let the observations $\{(y_i, x_i)|i=1,\ldots,n\}$ be taken from the simple linear regression model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$. Suppose n is a large integer.
 - (a) Construct a Wald test for $H_0: \beta_1 = 2\beta_0$ against $H_1\beta_1 \neq 2\beta_0$.
 - (b) For a given x, construct a confidence interval for $\mu(x) := E(y) = \beta_0 + \beta_1 x$.
- 4. Consdider a linear model $y_i = \beta x_i + \epsilon_i$, where $E(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma^2 > 0$, $Cov(\epsilon_i, \epsilon_j) = 0$ for $i \neq j$, and x_1, \ldots, x_n are constants.
 - (a) Find the LSE $\hat{\beta}$. Suggest an estimator for σ^2 .
 - (b) Show that the LSE $\hat{\beta}$ is unbiased, and find SE($\hat{\beta}$).
 - (c) If in addition $\epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ find a confidence interval for β .
 - (d) Based on the interval for β , find a confidence interval for $\mu(x) = \mathrm{E}(y)$, where $y = \beta x + \epsilon$.
- 5. The table below lists the USA social security costs in 7 years between 1965 to 1992.

Year	1965	1970	1975	1980	1985	1990	1992
x = number of years from 1960	5	10	15	20	25	30	32
y = social security cost (\$ billions)	17.1	29.6	63.6	117.1	186.4	246.5	285.1

- (a) Plot the data y against x.
- (b) Compute $\sum_i x_i$, $\sum_i y_i$, $\sum_i x_i^2$, $\sum_i y_i^2$, and $\sum_i x_i y_i$, and therefore fit the data to a simple linear regression model $y = \beta_0 + \beta_1 x + \epsilon$. Superimpose the fitted regression line onto the plot in (a).
- (c) Test the hypothesis $H_0: \beta_1 = 0$ against $H_1: \beta_1 > 0$. What can be concluded on the social security costs from the test?

Velocity (mph)	20.5	20.5	30.5	40.5	48.8	57.8
Stopping distance (ft)	15.4	13.3	33.9	73.1	113.0	142.6

- (d) Plot the residuals against x. Are you happy with the fitted model? If not, discuss what you may try to do to achieve a better fitting.
- 6. The stopping distance (y) of a car was studied in relation to the velocity (x) of the car. The table below lists the stop distances at 6 different velocities.
 - (a) Plot y against x, and $z := \sqrt{y}$ against x.
 - (b) Compute the sample correlation coefficients of y and x, and z and x.
 - (c) Fit the linear regression model for y on x, and examine the residuals.
 - (d) Fit the linear regression model for z on x, and examine the residuals.
 - (e) For a given x, a predictive interval for $y = \beta_0 + \beta_1 x + \epsilon$ with coverage probability 1α is given by

$$\hat{\beta}_0 + \hat{\beta}_1 x \pm t_{n-2} (\alpha/2) \hat{\sigma} \sqrt{1 + \frac{\sum_{i=1}^n (x_i - x)^2}{n \sum_{j=1}^n (x_j - \bar{x})^2}}.$$

Based on this formula, compute the predictive intervals with coverage probability 0.95 for y and z when x = 35.

- (f) Which model is better?
- 7. In a regression analysis, three possible models have been tried:
 - Model 1: Regress y on x_1 .
 - Model 2: Regress y on x_2 .
 - Model 3: Regress y on x_1 and x_2 .

The numerical output of these models are shown below.

- (a) Find the missing values A1-A8.
- (b) What can be concluded from these three fitted regression models?

Model 1: $y = \beta_0 + \beta_1 x_1 + \epsilon$

	Estimate	SE	T	P(t > T)
β_0	1.1398	0.1019	11.183	$< 2e^{-16}$
β_1	0.8604	0.1025	$\mathbf{A1}$	$1.6e^{-12}$

 $\hat{\sigma}=0.905$ on 78 degrees of freedom. $R^2=0.4746,\, \tilde{R}^2={\bf A2}$

Model 2: $y = \beta_0 + \beta_2 x_2 + \epsilon$

	Estimate	SE	T	P(t > T)
β_0	1.04989	0.20152	5.210	$1.5e^{-6}$
β_2	-0.01336	$\mathbf{A3}$	-0.092	$\mathbf{A4}$

 $\hat{\sigma} = 1.248$ on 78 degrees of freedom.

Model 3: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$

	Estimate	SE	T	P(t > T)
β_0	1.16464	0.14762	7.890	$1.66e^{-11}$
β_1	0.86067	0.10314	8.345	$2.20e^{-12}$
β_2	-0.02493	0.10635	-0.234	0.815

 $\hat{\sigma} = {f A5}$ on ${f A6}$ degrees of freedom. $R^2 = {f A7}$

ANOVA for Model 3: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$

Source	d.f.	SS	Mean SS	T	P(F > T)
$\sum_{i=1}^{79} (\hat{\beta}_0 + \hat{\beta}_1 x_{i1} - \bar{y})^2$ $\sum_{i=1}^{79} (\hat{\beta}_0 + \hat{\beta}_2 x_{i2} - \bar{y})^2$	1	57.695	57.695	A8	$2.225e^{-12}$
$\sum_{i=1}^{79} (\hat{\beta}_0 + \hat{\beta}_2 x_{i2} - \bar{y})^2$	_	0.046	0.046	0.055	0.8153
$\sum_{i=1}^{79} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2})^2$	77	63.833	0.829		