(19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-241515 (P2002-241515A)

(43)公開日 平成14年8月28日(2002.8.28)

| (51) Int.Cl.7  | 餓別記号                      | FI             |                      | テーマコード(参考)  |  |  |
|----------------|---------------------------|----------------|----------------------|-------------|--|--|
| C08J · 5/18    | CEZ                       | CO8J 5/18      | CE                   | Z 4F071     |  |  |
| B 2 9 C 47/34  |                           | B 2 9 C 47/34  |                      | 4 F 2 O 7   |  |  |
| 47/92          |                           | 47/92          |                      | 4 J 0 0 2   |  |  |
| C08L 71/12     |                           | C08L 71/12     |                      |             |  |  |
| // (CO8L 71/12 | ·                         | (C08L 71/12    |                      |             |  |  |
| •              | 審査請求                      | 未請求 請求項の数      | 3 OL (全              | 8 頁) 最終頁に続く |  |  |
| (21)出願番号       | 特願2001-44022(P2001-44022) | 1 11 - 12 - 13 | 000000033<br>旭化成株式会社 |             |  |  |
| (22) 出願日       | 平成13年2月20日(2001.2.20)     | (72) 発明者 加茂    |                      | 島浜1丁目2番6号   |  |  |
|                |                           | 会社             |                      |             |  |  |
|                |                           |                |                      |             |  |  |
|                |                           |                |                      | ·           |  |  |
|                |                           |                |                      |             |  |  |
|                | . <del>*</del>            |                |                      |             |  |  |

最終頁に続く

# (54) 【発明の名称】 樹脂組成物製シート

# (57)【要約】

【課題】 シート成形性に優れ、難燃性、外観、熱時剛性、厚み均一性に優れ、熱収縮の小さいポリフェニレンエーテル系樹脂組成物製シートおよびその製造方法を提供すること。

【解決手段】 (A) ボリフェニレンエーテル系樹脂 5  $1\sim99$ . 9重量部および (B) 液晶ボリエステル 0.  $1\sim49$ 重量部からなり、熱収縮率が 3 %未満で、かつ厚みむら D t が 5 %未満であることを特徴とするボリフェニレンエーテル系樹脂組成物製シート。

1

## 【特許請求の範囲】

【請求項1】 (A) ポリフェニレンエーテル系樹脂5  $1 \sim 99$ . 9重量部および(B) 液晶ポリエステル0.  $1 \sim 49$  重量部からなり、熱収縮率が3%未満で、かつ厚みむらが5%未満であることを特徴とするポリフェニレンエーテル系樹脂組成物製シート。

【請求項2】 絶縁破壊強さが30kV/mm以上である請求項1記載のポリフェニレンエーテル系樹脂組成物 製シート。

【請求項3】 押出シート成形する際に、押出成形機の 10 Tダイの直後の圧延ロールの表面温度を120~200 ℃の範囲とすることを特徴とする請求項1または2に記載のポリフェニレンエーテル系樹脂組成物製シートの製造方法。

## 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、シート成形性に優れ、かつ熱時剛性、難燃性および外観に優れるポリフェニレンエーテル系樹脂組成物製シートおよびその製造方法に関する。

[0002]

【従来の技術】一般に、ポリフェニレンエーテルは耐熱性、耐熱水性、寸法安定性および機械的、電気的性質などの優れた性質を有する樹脂であるが、一方その溶融粘度が高いために成形性が悪いという欠点を有している。一方これらの成形性を改良するために、ポリフェニレンエーテルにポリスチレンなどをアロイすることで成形性を改良してきたが、耐熱性が低下するという問題があった。

【0003】一方、例えば特開昭56-115357号 30 公報に、液晶ボリエステルにボリフェニレンエーテルなどの重合体を配合し、ポリフェニレンエーテルの溶融加工性を改良することが提案されているが、100~1000(1/秒)の高いシェアレートがかかる射出成形に関するものであり、シェアレートの低い押出成形についての記載はなく、物性も十分とはいえないものであった。また特許第3117136号公報に熱可塑性樹脂に液晶ボリマーを添加したシートについての記載があるが、実質ボリエステルやボリカーボネートをマトリクスにするものであり、熱時剛性において十分ではなかっ 40 た。

【0004】特開平2-97555号公報には、はんだ耐熱性を向上させる目的で液晶ポリエステルに各種のポリアリレンオキサイドを配合することが提案され、さらには特開平6-122762号公報には、アミン類で変性したポリフェニレンエーテルと液晶ポリエステルを配合することが提案されているが、いずれも押出成形シートの成形性についての記述はなく、物性についても十分ではなかった。また、特開平5-86288号公報に強度、剛性のリサイクル保持性を高める方法が提案されて50

いるが、シートにおいての記述はなく、物性も十分とはいえないものであった。

[0005]

【発明が解決しようとする課題】本発明は、シート成形性に優れ、かつ熱時剛性、難燃性および外観に優れるポリフェニレンエーテル系樹脂組成物製シートおよびその製造方法を提供することである。

[0006]

(課題を解決するための手段) 本発明者らは上記課題を達成する技術を鋭意検討した結果、ポリフェニレンエーテル系樹脂と液晶ポリエステルからなり、かつ特定の熱収縮率および厚みむらを有するシートとすることで、シート成形性、熱時剛性、難燃性および外観に優れるシートを得ることができることを見出し本発明を完成するに至った。

【0007】すなわち本発明は、

- 1. (A) ポリフェニレンエーテル系樹脂 5 1 ~ 9 9.9 重量部および (B) 液晶ポリエステル 0.1 ~ 4 9 重量部からなり、熱収縮率が 3 %未満で、かつ厚みむらが 5 %未満であることを特徴とするポリフェニレンエーテル系樹脂組成物製シート、
- 2. 絶縁破壊強さが30kV/mm以上である上記1 に記載のポリフェニレンエーテル系樹脂組成物製シート
- 3. 押出シート成形する際に、押出成形機のTダイの直後の圧延ロールの表面温度を $120\sim200$   $\mathbb C$ の範囲とすることを特徴とする上記1または2に記載のポリフェニレンエーテル系樹脂組成物製シートの製造方法、を提供するものである。

[8000]

【発明の実施の形態】以下、本願発明について具体的に 説明する。本発明の(A)ポリフェニレンエーテル系樹 脂とは、下記式(1)の繰返し単位構造

[0009]

【化1】

【0010】( $R_1$ 、 $R_4$ はそれぞれ独立して、水素、第一級もしくは第二級の低級アルキル、フェニル、アミノアルキルまたは炭化水素オキシを表す。 $R_2$ 、 $R_3$ はそれぞれ独立して、水素、第一級もしくは第二級の低級アルキルまたはフェニルを表す。)からなり、還元粘度(0.5g/d1、クロロホルム溶液、30  $^{\circ}$  別定)が、 $0.15\sim1.0d1/g$ の範囲にあるホモ重合体および/または共重合体である。さらに好ましい還元粘度は、 $0.20\sim0.70d1/g$ の範囲、最も好ましくは $0.40\sim0.60$  の範囲である。

0 【0011】 具体的な例としては、ポリ(2,6-ジメ

チルー1、4-フェニレンエーテル)、ポリ(2-メチ ルー6-エチルー1,4-フェニレンエーテル)、ポリ (2-メチルー6-フェニルー1, 4-フェニレンエー テル)、ポリ(2,6-ジクロロ-1,4-フェニレン エーテル) 等が挙げられ、さらに、2,6-ジメチルフ ェノールと他のフェノール類(例えば、2,3,6ート リメチルフェノールや2-メチルー6-ブチルフェノー ル) との共重合体のようなポリフェニレンエーテル共重 合体も挙げられる。中でもポリ(2,6-ジメチルー 1, 4-フェニレンエーテル)、2, 6-ジメチルフェ 10 る。 ノールと2、3、6-トリメチルフェノールとの共重合 体が好ましく、さらにポリ(2,6-ジメチル-1,4 -フェニレンエーテル) が好ましい。

【0012】本発明で使用する(A)ポリフェニレンエ ーテルの製造方法の例として、米国特許第330687 4号明細書記載の第一銅塩とアミンのコンプレックスを 触媒として用い、2,6-キシレノールを酸化重合する 方法がある。米国特許第3306875号、同第325 7357号および同第3257358号の明細書、特公 昭52-17880号および特開昭50-51197号 および同63-152628号の各公報等に記載された 方法も (A) ポリフェニレンエーテルの製造方法として 好ましい。本発明の(A)ポリフェニレンエーテル系樹 脂は、重合行程後のパウダーのまま用いてもよいし、押 出機などを用いて、窒素ガス雰囲気下あるいは非窒素ガ ス雰囲気下、脱揮下あるいは非脱揮下にて溶融混練する ことでペレット化して用いてもよい。

【0013】本発明の(A) ポリフェニレンエーテル系 樹脂は、種々のジエノフィル化合物により官能化された ポリフェニレンエーテルも含まれる。ジエノフィル化合 30 物には、例えば無水マレイン酸、マレイン酸、フマル 酸、フェニルマレイミド、イタコン酸、アクリル酸、メ タクリル酸、メチルアリレート、メチルメタクリレー ト、グリシジルアクリレート、グリシジルメタクリレー ト、ステアリルアクリレート、スチレンなどの化合物が 挙げられる。さらにこれらジエノフィル化合物により官 能化する方法としては、ラジカル発生剤存在下あるいは 非存在下で押出機などを用い、脱揮下あるいは非脱揮下 にて溶融状態で官能化する方法、あるいはラジカル発生 剤存在下あるいは非存在下で、非溶融状態にて官能化す 40 得ることができる。上記構造単位(ハ)、(二)中のX る方法などが挙げられる。

【0014】本発明の(A)ポリフェニレンエーテル系 樹脂には、ポリフェニレンエーテル樹脂単独またはポリ フェニレンエーテル樹脂と芳香族ビニル系重合体との混 合物であり、さらに他の樹脂が混合されたものも含まれ る。芳香族ビニル系重合体とは、例えば、アタクティッ クポリスチレン、シンジオタクティックポリスチレン、 アクリロニトリルースチレン共重合体などが挙げられ る。ポリフェニレンエーテル樹脂と芳香族ビニル系重合 体との混合物を用いる場合は、ポリフェニレンエーテル 樹脂と芳香族ビニル系重合体との合計量に対して、ポリ フェニレンエーテル樹脂が70wt%以上、好ましくは 80wt%以上、さらに好ましくは90wt%以上であ

【0015】本発明の(B)液晶ポリエステルはサーモ トロピック液晶ポリマーと呼ばれるポリエステルで、公 知のものを使用できる。例えば、p-ヒドロキシ安息香 酸およびポリエチレンテレフタレートを主構成単位とす るサーモトロピック液晶ポリエステル、p-ヒドロキシ 安息香酸および2-ヒドロキシー6-ナフトエ酸を主構 成単位とするサーモトロピック液晶ポリエステル、p-ヒドロキシ安息香酸および4,4′-ジヒドロキシビフ ェニルならびにテレフタル酸を主構成単位とするサーモ トロピック液晶ポリエステルなどが挙げられ、特に制限 はない。本発明で使用される(B)液晶ポリエステルと しては、下記構造単位(イ)、(ロ)、および必要に応 じて (ハ) および/または (二) からなるものが好まし く用いられる。

[0016]

【化2】

【0017】ここで、構造単位(イ)、(ロ)はそれぞ れ、p-ヒドロキシ安息香酸から生成したポリエステル の構造単位と、2-ヒドロキシー6-ナフトエ酸から生 成した構造単位である。構造単位(イ)、(ロ)を使用 することで、優れた耐熱性、流動性や剛性などの機械的 特性のバランスに優れた本発明の熱可塑性樹脂組成物を は、下記式(2)よりそれぞれ任意に1種あるいは2種 以上選択することができる。

[0018]

【化3】

【0019】構造式(ハ)において好ましいのは、エチレングリコール、ハイドロキノン、4,4′ージヒドロキシピフェニル、2,6ージヒドロキシナフタレン、ビスフェノールAそれぞれから生成した構造単位であり、さらに好ましいのは、エチレングリコール、4,4′ージヒドロキシピフェニル、ハイドロキノンであり、特に好ましいのは、エチレングリコール、4,4′ージヒドロキシピフェニルである。構造式(ニ)において好ましいのは、テレフタル酸、イソフタル酸、2,6ージカルボキシナフタレンそれぞれから生成した構造単位であり、さらに好ましいのは、テレフタル酸、イソフタル酸である。

【0020】構造式(ハ)および構造式(二)は、上記に挙げた構造単位を少なくとも1種あるいは2種以上を併用することができる。具体的には、2種以上併用する場合、構造式(ハ)においては、1)エチレングリコールから生成した構造単位/ハイドロキノンから生成した構造単位/4,4′ージヒドロキシビフェニルから生成した構造単位、3)ハイドロキノンから生成した構造単位、3)ハイドロキシビフェニルから生成した構造単位、などを挙げることができる。

【0021】また、構造式(二)においては、1)テレフタル酸から生成した構造単位/イソフタル酸から生成した構造単位/イソフタル酸から生成した構造単位/2,6ージカルボキシナフタレンから生成した構造単位、などを挙げることができる。ここでテレフタル酸量 40は2成分中、好ましくは40wt%以上、さらに好ましくは60wt%以上、特に好ましくは80wt%以上である。テレフタル酸量を2成分中40wt%以上とすることで、比較的に流動性、耐熱性が良好な樹脂組成物となる。液晶ボリエステル(B)成分中の樹造単位

(イ)、(ロ)、(ハ)、(二)の使用分割は特に限定されない。ただし、構造単位(ハ)と(二)は基本的にほぼ等モル量となる。

【0022】また、構造単位(ハ)、(二)からなる構 くは $10\sim1$ , 000Pa·sである。見かけの溶融粘造単位(ホ)を、(B)成分中の構造単位として使用す 50 度をこの範囲にすることは、得られる組成物の流動性を

ることもできる。具体的には、1) エチレングリコールとテレフタル酸から生成した構造単位、2) ハイドロキノンとテレフタル酸から生成した構造単位、3) 4, 4′ージヒドロキシビフェニルとテレフタル酸から生成した構造単位、4) 4, 4′ージヒドロキシビフェニルとイソフタル酸から生成した構造単位、5) ビスフェノールAとテレフタル酸から生成した構造単位、などを挙げることができる。

[0023]

【化4】

【0024】本発明の(B)液晶ポリエステル成分には、必要に応じて本発明の特徴と効果を損なわない程度の少量の範囲で、他の芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシカルボン酸から生成する構造単位を導入することができる。本発明の(B)成分の溶融時での液晶状態を示し始める温度(以下、液晶開始温度という)は、好ましくは150~350℃、さらに好ましくは180~320℃である。液晶開始温度をこの範囲にすることは、得られる樹脂組成物を好ましい色調と耐熱性と成形加工性バランスの良いものとする。

【0025】本発明の(B)液晶ボリエステル成分の25℃、1MHzにおける誘電正接( $tan\delta$ )は、好ましくは0.03以下であり、さらに好ましくは0.025以下である。この誘電正接の値が小さければ小さいほど、誘電損失は小さくなり、この樹脂組成物を電気・電子部品の原料として用いる時、発生する電気的ノイズが抑制され好ましい。特に25℃、高周波数領域下、すなわち1~10GHz領域において、誘電正接( $tan\delta$ )は、好ましくは0.03以下であり、さらに好ましくは0.025以下である。

【0026】本発明の(B) 液晶ポリエステル成分の見かけの溶融粘度(液晶開始温度+30℃でずり速度100/秒)は、好ましくは10~3,000 Pa·s、さらに好ましくは10~2,000 Pa·s、特に好ましくは10~1,000 Pa·sである。見かけの溶融粘度をこの範囲にすることは、得られる組成物の流動性を

好ましいものとする。

【0027】本発明における(A)ポリフェニレンエーテル系樹脂の配合量は、51~99.9重量部で、好ましくは60~99重量部で、さらに好ましくは70~98重量部である。この配合量が99.9重量部より多いと、流動性が大きく低下し、Tダイ部にめやにが発生しやすくなり、成形安定性の低下を招く。この配合量が51重量部より少ないと、シートの厚みむらの悪化、熱収縮性の悪化を招く。ここで、めやにとは、押出成形の際、Tダイのうち溶融樹脂が吐出される直近部位に異物として析出する分解オリゴマーや樹脂の架橋物などのことである。このめやには、時々シートに付着することで、生産安定性に悪影響を及ぼす。

【0028】本発明における(B)成分の液晶ボリエステルの配合量は、 $0.1\sim49$  重量部で、好ましくは $1\sim40$  重量部で、さらに好ましくは $2\sim30$  重量部である。この配合量が49 重量部より多いと、液晶ボリマーの異方性のため、シートの厚みむらの悪化や熱収縮性の悪化を招いてしまう。この配合量が0.1 重量部より少ないと、流動性が大きく低下し、めやに発生を招いたり、押出成形機の負荷の関係上で吐出量を小さくしなければならず、生産の低下などの問題がある。

【0029】本発明では、上記の成分の他に、本発明の特徴および効果を損なわない範囲で必要に応じて他の附加的成分、例えば、酸化防止剤、難燃剤(有機リン酸エステル系化合物、フォスファゼン系化合物、シリコン系化合物)、エラストマー、可塑剤(オイル、低分子量ポリエチレン、エポキシ化大豆油、ポリエチレングリコール、脂肪酸エステル類等)、難燃助剤、耐候(光)性改良剤、ボリオレフィン用造核剤、スリップ剤、各種着色 30 剤、離型剤等を添加してもかまわない。

【0030】本発明の樹脂組成物は種々の方法で製造することができる。例えば、単軸押出機、二軸押出機、ロール、ニーダー、ブラベンダープラストグラフ、バンバリーミキサー等による加熱溶融混練方法が挙げられるが、中でも二軸押出機を用いた溶融混練方法が最も好ましい。この際の溶融混練温度は特に限定されるものではないが、通常150~350℃の中から任意に選ぶことができる。本発明のシートとは、厚みが0.010~1.0mmのものであり、好ましくは0.050~0.50mmであり、場合によってはフィルムと呼ばれることもある。

【0031】本発明のポリフェニレンエーテル系樹脂組成物製シートは、上記で得られた樹脂組成物を原料とし、押出シート成形により得られる。 Tダイ押出成形、インフレーション成形が好ましく、さらに熱収縮率、厚みむらの観点からTダイ押出成形が好ましい。 無延伸のまま用いてもよいし、1軸延伸してもよいし、2軸延伸することによっても得られる。本発明のシートの製造方法は、押出成形機のTダイの直後の圧延ロールの表面温

度を $120\sim200$  Cの範囲内から選ぶことが好ましい。この表面温度は、さらに好ましくは $130\sim180$  Cであり、よりさらに好ましくは $150\sim170$  Cである。また設定温度はプレはばが小さいことが好ましく、そのはばは、 $\pm10$  C以内、好ましくは $\pm5$  C以内、さらに好ましくは $\pm2$  C以内である。このはばは小さければ小さいほど、厚みむらおよび熱収縮率の観点から好ましい。

【0032】本発明の熱収縮率は、MD(流動方向)とTD(流動方向に対して直角方向)に各片が平行になるように、 $150 \,\mathrm{mm} \times 150 \,\mathrm{mm}$ の大きさにカットしたシートを $150 \,\mathrm{C}$ に設定したオープン中に $5 \,\mathrm{Bll}$ で、心に設定したオープン中に $5 \,\mathrm{Bll}$ で、心に決力では、 $5 \,\mathrm{C}$ で、温度 $5 \,\mathrm{O}$ 、多雰囲気にて $5 \,\mathrm{C}$  は、以下の式に従って求めることができる。

熱収縮率(%)=  $(1 - (加熱後の辺の長さ/加熱前の辺の長さ)) \times 100$ 

【0033】本発明の厚みむらDtは、MDとTDに各 片が平行になるように、150mm×150mmの大き 20 さにカットしたシートの9カ所の厚みを測定し、以下の 式に従って求めることができる。

Dt (%) =  $(T_{max} - T_{av}) / T_{av} \times 100$  $T_{max} : 9$  カ所の厚みのうち、最大のもの。

T。v: 9カ所の厚みの平均値。

【0034】本発明の本質は、シートの熱収縮率と厚みむらD t がある特定の範囲に限定されたものが、シートの外観、剛性、熱時剛性が同時に高いレベルで満足されうることを見出した点にある。すなわち、本発明のポリフェニレンエーテル系樹脂組成物のシート成形を実施するにあたり、押出成形機のTダイの直後の圧延ロールの表面温度を120~200℃の範囲内から選び、シートの熱収縮率が3%未満で、かつ厚みむらD t が5%未満になるように制御することにより、外観、剛性、熱時剛性が同時に高いレベルで満足されうるシートが得られる点にある。

【0035】本発明の絶縁破壊強さは、シートサンプルを用いて、JIS K 6911に準拠して測定することで求めることができる。また本発明のシートはポリフェニレンエーテル系樹脂製シートであり、優れた絶縁破壊強さを有することを特徴としている。その絶縁破壊強さは、30kV/mm以上であり、好ましくは <math>40kV/mm以上であり、さらに好ましくは 50kV/mm以上であり、もっとさらに好ましくは 60kV/mm以上である。

【0036】こうして得られた本発明のシートは、難燃性、外観、熱時剛性に優れ、さらに絶縁破壊強さに優れるものである。従って、これらの特性が要求される以下の用途に用いることができる。パソコンや携帯電話や冷蔵庫やファクシミリや複写機などに代表される家電やOAに関連する製品の中の機構部品、ブリント悲板、ある

50

10

いはリチウムイオン電池の絶縁ワッシャーと呼ばれる絶 縁部品、などが挙げられる。

「【0037】前述したように、本発明において、(A) 成分と(B)成分とを配合した樹脂組成物を用い、特定 の温度範囲の圧延ロールを用いることで押出成形するこ とにより、難燃性、外観、熱時剛性、厚み均一性に優 れ、さらに熱収縮率が小さく、優れた絶縁破壊強さが得 られる。それらの理由については、かならずしも明らか ではないが、以下のように考えることができる。ポリフ エニレンエーテル系樹脂そのものは本来溶融粘度が高 く、押出成形機中で高トルクになり、より高いせん断発 熱を伴い、より高温にさらされることで、ポリフェニレ ンエーテル樹脂の好まれざる架橋などの副反応を起こ す。しかしながら本発明の(B)成分である液晶ポリエ ステルを配合することで、溶融粘度を下げることがで き、せん断発熱が抑制され、本来ポリフェニレンエーテ ル系樹脂が有するリニアな分子鎖を保持できる。さらに おどろくべきことに本発明では、めやにの発生がきわめ て少なくなるが、これは、液晶ポリエステルの溶融時の 異方性のために、Tダイスを溶融樹脂が通過する際、滑 20 条件下にて押出シート成形を実施した。 り現象がおき、樹脂の滞留が抑制され、架橋などの副反 応が抑制されるため、と考えることができる。そしてこ れらのおかげで、さらに難燃性、外観、熱時剛性、厚み 均一性に優れ、さらに熱収縮率が小さく、絶縁破壊強さ に優れる、と考えられる。

【0038】本発明を以下、実施例に基づいて説明す る。但し本発明はその主旨を越えない限り以下の実施例 に限定されるものではない。

# 実施例で用いた成分

(ポリフェニレンエーテル)

PPE-1:2,6-ジメチルフェノールを酸化重合し て得た還元粘度 0. 42のパウダー状のポリ(2,6-ジメチルー1, 4-フェニレンエーテル)。

#### (液晶ポリエステル)

LCP-1:窒素雰囲気下において、p-ヒドロキシ安 息香酸、2-ヒドロキシー6-ナフトエ酸、無水酢酸を 仕込み、加熱溶融し、重縮合することにより、以下の理 論構造式を有する液晶ポリエステルを得た。

なお、組成の成分比はモル比を表す。

[0039]

【化5】

k/l = 0.73/0.27

【0040】 LCP-2: 窒累雰囲気下において、p-ヒドロキシ安息香酸、ポリエチレンテレフタレート、無 50

水酢酸を仕込み、加熱溶融し、重縮合することにより、 以下の理論構造式を有する液晶ポリエステルを得た。な お組成の成分比はモル比を表す。

[0041] 【化6】

【0042】各樹脂組成物のシート成形と物性評価を、 以下の方法に従って実施した。

#### (1)シート成形

得られたペレットを、シリンダー温度300℃、Tダイ ス温度300℃に設定したスクリュー径65mmの単軸 押出機を用い、吐出量60kg/hr、引き取り速度 4. 2~4.8m/分、ダイクリアランス 0.5 mm、 圧延ローラークリアランス0.25~0.30mm、の

【0043】(2)成形性

(2-1)シート成形性

上記(1)の条件下にて、押出シート成形を実施した 際、シート成形性を以下の判断基準にて判定した。

〇:押出機のトルクは問題なく、30分以上連続的に安 定して均一な厚みのシートが成形できた。

△:押出機のトルクは問題ないが、圧延ロール部で樹脂 だまりが発生し、均一なシート成形が困難であった。

×:押出機のトルクに問題があり、成形できなかった。

【0044】(2-2)めやに量 30

> 押出成形時のTダイ部に発生するめやには、Tダイのリ ップ部に析出し、時々シート側に付着し、シート中に褐 色異物として混入した。そこで、そのめやに盘につい て、以下の判断基準にて判定した。

> 〇:連続30分間成形されたシート中に、褐色異物が全 く検出されなかった。

> ×:連続30分間成形されたシート中に、褐色異物が1 個以上検出された。

【0045】(3)難燃性

(3-1) 最大燃焼時間

上記(1)の条件下で得られたシートを長さ200mm ×幅50mmのサイズに切り取り、Underwriters Labor atoriesのUL-94フィルム規格に基づき、燃焼試験 を実施した。すなわち、径13mmの筒状にシートを巻 いて固定し、上部の輪の部分をふさぎ、垂直にした状態 で下部に接炎した。5本の試験片について燃焼試験を実 施し、3秒間の接炎後、炎を離してから炎が消えるまで の燃焼時間を t 」 (秒) とし、再び 3 秒間の接炎後、炎 を離してから炎が消えるまでの燃焼時間をも。(秒)と した。各5本のも、とも、すなわちあわせて10点の中 11

から最大の燃焼時間を選んだ。

【0046】(3-2)合計燃焼時間

上記燃焼試験時、各5本のt₁とt₂、すなわちあわせて 10点の燃焼時間を合計した。

#### (3-3)燃焼距離

筒状サンプルの最下部から125mmの距離ところに標線を記入し、以下の判定基準にて判定した。

〇:10点とも標線より下で自己消火したもの。

x:1点でも標線より上まで燃焼するものがあったもの。

## 【0047】(4)外観

上記(1)で得られたシートの表面を以下の判定基準に て判定した。

〇:表面が平滑で、シルバーストリークスもなく、小さなくぼみも認められないもの。

×:表面にシルバーストリークスや小さなくぼみが認められたもの。

#### 【0048】(5)引張特性(熱時剛性)

オートグラフ(AG-5000、島津製作所(株)社製)を用い、上記(1)で得られたシートを幅6mmのたんざく状に切り取り、チャック間距離80mm、試験速度50mm/minで引っ張り試験を実施し、引張強度(TS)を測定した。試験片の長さ方向がMDとTD各々測定を実施した。測定温度雰囲気は23℃、150℃各々測定を実施した。

## 【0049】(6)厚みむら(Dt)

上記(1)で得られたシートを、MD(流動方向)とTD(流動方向に対して直角方向)に各片が平行になるように、150mm×150mmの大きさにカットし、9カ所の厚みをマイクロゲージを用いて測定し、以下の式30に従って求めた。

Dt (%) =  $(T_{max} - T_{av}) / T_{av} \times 100$ 

Tmax: 9カ所の厚みのうち、最大のもの。

T av: 9カ所の厚みの平均値。

# 【0050】(7)熱収縮率

上記(1)で得られたシートを、MDとTDに各片が平行になるように、150mm×150mmの大きさにカットし、150℃に設定したオーブン中に5時間セットし、冷却後、23℃、湿度50%雰囲気にて24時間調整する。MD、TD各々加熱前後の寸法を測定し、以下40の式に従って求めた。熱収縮率(%)=(加熱前の辺の長さー加熱後の辺の長さ)/(加熱前の辺の長さ)×100

# 【0051】(8)絶縁破壊強さ

上記(1)で得られたシートを $100mm \times 100mm$  にカットし、JISK6911 に準拠し、耐電圧試験機(SD-12型、東芝(株)製)を用いて、測定を実施した。測定温度雰囲気は23  $\mathbb{C}$ 。

# [0052]

【実施例1】 ポリフェニレンエーテル (PPE-1) と 50

12

液晶ポリエステル(L C P − 1)を表1に示す割合(重量部)で、250~300℃に設定したベントポート付き二軸押出機(Z S K − 25; W E R N E R & P F L E I D E R E R 社製)を用いて溶融混練し、ベレットとして得た。このベレットを用い、上に示した方法により、シート成形加工した。圧延ロールの表面温度を130℃に制御した。安定してシートが得られ、Tダイ部のめやにの発生はほとんど認められなかった。シートの平均厚みは0.38mmであった。これらのシートを、上に示した方法に従って物性評価を実施した。その結果を表1に示した。

#### [0053]

【実施例2】液晶ポリエステル(LCP-1およびLCP-2)と表1に示す割合(重量部)にすること以外は、実施例1と同様に溶融混練し、ペレットを得た。このペレットを用い、上に示した方法により、シート成形加工した。圧延ロールの表面温度を150 ℃に制御した。安定してシートが得られ、T ダイ部のめやにの発生はほとんど認められなかった。シートの平均厚みは0.35 mmであった。これらのシートを、上に示した方法に従って物性評価を実施した。その結果を表1 に示した。

#### [0054]

【実施例3】ポリフェニレンエーテル系樹脂として、ポリフェニレンエーテル(PPE-1)とハイインパクトポリスチレン(H9405、A&M社製、表中「HIPS」と略した。)を用い、表1に示す割合にすること以外は、実施例1と同様に実施して、ペレットを得て、シート成形加工した。圧延ロールの表面温度を130 ℃に制御した。安定してシートが得られ、Tダイ部のめやにの発生はほとんど認められなかった。シートの平均厚みは0.36 mmであった。これらのシートを、上に示した方法に従って物性評価を実施した。その結果を表1に示した。

#### [0055]

【比較例1】耐熱グレードである変性ポリフェニレンエーテル(ザイロンX9102、旭化成(株)製)100 重量部を原料とすること以外は、実施例1と同様の方法でシート成形を実施した。 Tダイ部にめやにの発生が認められた。シートの平均厚みは0.34mmであった。これらのシートを、上に示した方法に従って物性評価を実施した。その結果を表1に示した。

#### [0056]

【比較例 2 】 ボリフェニレンエーテル (PPE-1) 1 0 0 重量部を原料して、実施例 1 と同様の方法で、溶融混練し、ペレットを得た。このペレットを用い、上に示した方法により、シート成形加工を試みたが、同条件では押出成形機のトルク負荷が過大であったため、シート成形ができなかった。

# [0057]

#### 【表1】

|   |                  |             |        |         | 吳施例1 | 実施例2 | 実施例3 | 比較例1  | 比較例2 |
|---|------------------|-------------|--------|---------|------|------|------|-------|------|
|   | (A)              |             | PPE-   | - 1     | 95   | 93   | 92   |       | 100  |
|   |                  |             | HIPS   |         |      |      | Б    |       |      |
| 粗 | (B) <sub>.</sub> |             | LCP-   | - 1     | 5    | 5    | 3    |       |      |
| 成 |                  |             | L C P- | - 2     |      | 2    |      |       |      |
|   |                  |             | ザイロン   | X9102   |      |      |      | 100   |      |
| 成 | シート成形            | 生           |        |         | 0    | 0    | 0    | Δ     | ×    |
| 形 | めやに量             |             |        |         | 0    | 0    | 0    | ×     | -    |
|   | <b>建燃性</b>       | MD          | 最大燃烧   | 時間(秒)   | 15   | 13   | 19   | *     | -    |
|   |                  |             | 合計燃煤   | 時間(秒)   | 59   | 53   | 64   | *     | -    |
| ļ |                  |             | 燃烧距离   | 1       | 0    | 0    | 0    | ×     |      |
| シ |                  | TD          | 最大燃烧   | 時間(秒)   | 11   | 10   | 13   | *     | -    |
| 1 |                  |             | 合計燃烧   | 時間(秒)   | 59   | 48   | 59   | - *   | -    |
| ۲ |                  |             | 燃烧距离   | l       | 0    | 0    | 0    | ×     |      |
| 他 | 外観               |             |        |         | 0    | 0    | 0    | ×     | -    |
| 性 | 引張強度             | MD          | (a t   | 23°C)   | 78   | 93   | 80   | 72    | -    |
| Ì | (MPa)            | <del></del> | (at    | 150℃)   | 42   | 50   | 41   | 31    |      |
|   | ŀ                | TD          | (at    | 2 3 °C) | 58   | 60   | 63   | - 46  | -    |
|   |                  |             | (at    | 150°C)  | 28   | 29   | 27   | 24    |      |
| ĺ | 厚みむら             | Dt          | (%)    |         | 0.8  | 1.1  | 0.9  | 5. 2  |      |
|   | 熱収縮率             | MD          | (%)    |         | 0.15 | 0.12 | 0.17 | 2.4   |      |
|   |                  | TD          | (%)    |         | 0.20 | 0.21 | 0.23 | 2.3   |      |
| l | 絶緣破壞強            | 2           | _{k V/ | mm)     | 60.3 | 68.1 | 65.6 | 59. 0 |      |

#### \*: n=5いずれも、燃焼中滴下し、自己消火性は認められなかった。

#### [0058]

【比較例3】実施例1で得られたペレットを用い、圧延ロールの表面温度を90℃に設定したこと以外は、実施例1と同様にシート成形加工を実施した。圧延ロールで急冷されるため、収縮したシートと圧延ロールの間に空隙ができてしまい、安定してシート成形ができなかった。

#### [0059]

【比較例4】実施例1で得られたペレットを用い、圧延 さいボリフェニレンエーテル系樹脂組成物製シーロールの表面温度を220℃に設定したこと以外は、実\*30 びその製造方法を提供することが可能となった。

\*施例1と同様にシート成形加工を実施した。得られたシートの厚みは、0.31mmであった。上記(7)の方法に従い、熱収縮率の測定を実施した。MDの熱収縮率は、5.2%であり、TDの熱収縮率は、3.3%であった。

# [0060]

【発明の効果】本発明により、シート成形性に優れ、難燃性、外観、熱時剛性、厚み均一性に優れ、熱収縮の小さいポリフェニレンエーテル系樹脂組成物製シートおよびその製造方法を提供することが可能となった。

# フロントページの続き

(51)Int.Cl. \* 識別記号 FI デーマコート\*(参考)
C 0 8 L 67:00)
B 2 9 K 67:00
71:00
B 2 9 L 7:00
B 2 9 L 7:00

Fターム(参考)、4F071 AA43 AA51 AF39 AF39Y

AF61 AF61Y AH12 AH13
AH16 BA01 BB06 BC01 BC12
4F207 AA24 AA32 AC01 AG01 AR06
KA01 KA17 KF01 KL76 KL84
KM16 KW26

4J002 CF002 CF052 CF062 CF162 CF182 CH071 FD020 FD130 GQ01

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

# IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.