ECN 7060, Cours 5

William McCausland

2020-09-24

Inégalité de Markov

- ▶ Soit $X \ge 0$ une variable aléatoire, soit $\alpha \in (0, \infty)$.
- Inégalité de Markov :

$$E[X] \ge \alpha P[X \ge \alpha]$$

- Preuve :
 - Soit

$$Z \equiv \begin{cases} 0 & X(\omega) < \alpha, \\ \alpha & X(\omega) \ge \alpha. \end{cases}$$

Alors, par monotonicitè,

$$E[Z] = \alpha P[X \ge \alpha] \le E[X].$$

- Questions :
 - 1. Donnez un exemple d'un $X \ge 0$ qui donne une égalité.
 - Donnez des conditions nécessaires et suffisantes pour une égalité.

Inégalité de Chebychev

- ▶ Soit Y une variable aléatoire ou $\mu_Y = E[Y]$ existe et est finie.
- ▶ Soit $\epsilon > 0$.
- ► Inégalité de Chebychev :

$$P[|Y - \mu_Y| \ge \epsilon] \le \frac{1}{\epsilon^2} \text{Var}[Y].$$

- Preuve :
 - Soit $X = (Y \mu_Y)^2$, $\alpha = \epsilon^2$.
 - Alors par l'inégalité de Markov,

$$P(|Y - \mu_Y| \ge \epsilon) = P(X \ge \epsilon^2) \le \frac{1}{\epsilon^2} \text{Var}[Y].$$

- Notes :
 - ▶ $Var[Y] = \infty$ est possible, auquel cas l'inégalité ne contraint pas.
 - ϵ^{-2} peut être très grand, mais c'est fini.
 - Application : borner la probabilité d'une déviation plus grande qu'epsilon, pour chaque X_n d'une suite, où $\mathrm{Var}[X_n] \to 0$. On veut choisir n après ϵ .

Définitions

- ▶ Soit Z_1, Z_2, \ldots une suite de v.a., Z une v.a.
- ▶ Convergence ponctuelle de Z_n à Z : pour tout $\omega \in \Omega$,

$$\lim_{n\to\infty} Z_n(\omega) = Z(\omega).$$

► Convergence de Z_n à Z presque sûre, $Z_n \stackrel{p.s.}{\rightarrow} Z$:

$$P[{Z_n \to Z}] = 1$$
, ou $P(Z_n \to Z) = 1$.

▶ Convergence de Z_n à Z en probabilité, $Z_n \stackrel{p}{\to} Z$: pour tout $\epsilon > 0$,

$$P[\{|Z_n - Z| \ge \epsilon\}] \to 0$$
, ou $P(|Z_n - Z| \ge \epsilon) \to 0$.

Convergence en probabilité mais pas convergence p.s.

- ▶ Prenez l'espace de probabilité (Ω, \mathcal{F}, P) où $\Omega = [0, 1]$, $\mathcal{F} = \mathcal{B}$, P la mesure de Lebesgue.
- ► Soit $A_1 = \Omega = [0, 1]$, $A_2 = [0, 1/2)$, $A_3 = [1/2, 1]$, $A_4 = [0, 1/4)$, $A_5 = [1/4, 1/2)$, $A_6 = [1/2, 3/4)$, $A_7 = [3/4, 1]$, ...
- ▶ Soit X = 0 et pour tout $n \in \mathbb{N}$, $X_n = 1_{A_n}(\omega)$.
- Convergence presque sûre?
 - ▶ Pour tous ω , $\liminf_n X_n(\omega) = 0$, $\limsup_n X_n(\omega) = 1$.
 - Échec de convergence pour tout $\omega \in \Omega!$
 - ▶ Alors $P[\{X_n \to X\}] = 0$.
- Convergence en probabilité?
 - $P(X_n = X) \approx 1 1/n \rightarrow 1.$
 - ▶ Alors pour tout $\epsilon > 0$, $P(|X_n X| \ge \epsilon) \to 0$.

Une condition suffisante pour convergence p.s.

La condition : pour tout $\epsilon > 0$, $\sum_{n=1}^{\infty} P(|Z_n - Z| \ge \epsilon) < \infty$.

Preuve:

- ▶ Soit $\epsilon > 0$ et supposez que $\sum_{n=1}^{\infty} P(|Z_n Z| \ge \epsilon) < \infty$.
- Alors

$$\lim_{m\to\infty}\sum_{k=m}^{\infty}P(|Z_k-Z|\geq\epsilon)=0.$$

▶ Pour *m* fixe,

$$P(\bigcap_{n=1}^{\infty} \cup_{k=n}^{\infty} |Z_k - Z| \ge \epsilon) \le P(\bigcup_{k=m}^{\infty} |Z_k - Z| \ge \epsilon)$$

$$\le \sum_{k=m}^{\infty} P(|Z_k - Z| \ge \epsilon).$$

▶ Puisque m est arbitraire, $P(|Z_k - Z| \ge \epsilon i.o.) = 0$.

Preuve, continuée

Rappel : la condition entraine $P(|Z_k - Z| \ge \epsilon i.o.) = 0.$

Alors

$$P(\exists \epsilon > 0, |Z_n - Z| \ge \epsilon \ i.o) = P(\exists \epsilon \in \mathbb{Q}, \epsilon > 0, |Z_n - Z| \ge \epsilon \ i.o.)$$

$$= P(\cup_{\epsilon \in \mathbb{Q}_{++}} |Z_n - Z| \ge \epsilon \ i.o.)$$

$$\le \sum_{\epsilon \in \mathbb{Q}, \epsilon > 0} P(|Z_n - Z| \ge \epsilon \ i.o.) = 0.$$

Alors

$$P(\forall \epsilon > 0, |Z_n - Z| < \epsilon \text{ a.a.}) = 1,$$

 $P(Z_n \to Z) = 1.$

Convergence presque sûre ightarrow convergence en probabilité

Preuve:

- ▶ Supposez que $P(Z_n \rightarrow Z) = 1$ (convergence p.s.).
- ▶ Soit $\epsilon > 0$.
- ▶ Soit $A_n = \{\exists m \geq n, |Z_m Z| \geq \epsilon\}.$
- Alors

$$A_n \searrow \cap_n A_n \subseteq \{Z_n \not\to Z\}.$$

 $P(A_n) \to P(\cap_n A_n) \le P(Z_n \not\to Z) = 0.$
 $P(|Z_n - Z| \ge \epsilon) \le P(A_n) \to 0.$

▶ Puisque $\epsilon > 0$ est arbitraire, pour tout $\epsilon > 0$, $P(|Z_n - Z| \ge \epsilon) \to 0$ (convergence en probabilité).

Deux exemples

Soit Y=Z=0, Y_n , Z_n des suites de v.a. sur un espace de probabilité (Ω,\mathcal{F},P) telles que

- ▶ $Pr[Y_n = 0] = 1 1/n^2$, $Pr[Y_n = 1] = 1/n^2$.
- ▶ $Pr[Z_n = 0] = 1 1/n$, $Pr[Z_n = 1] = 1/n$.

Par exemple, sur $(\mathbb{R}, \mathcal{B}, P)$, où $P((a, b]) = \min(b, 1) - \max(a, 0)$ pour $b \ge a$,

- $Y_n = 1_{[0,1/n^2]}$
- $ightharpoonup Z_n = 1_{[0,1/n]}$

Deux exemples, suite

Pour la suite Y_n :

- ▶ $\Pr[Y_n \neq Y] = 1/n^2 \rightarrow 0 \text{ alors } Y_n \stackrel{p}{\rightarrow} Y.$

Pour la suite Z_n :

- ▶ $\Pr[Z_n \neq Z] = 1/n \rightarrow 0$ alors $Z_n \stackrel{p}{\rightarrow} Z$.
- ▶ Mais $\sum_{n=1}^{\infty} \Pr[|Z_n Z| \ge 1] = \sum_{n=1}^{\infty} 1/n = \infty$.
- ▶ Si $Z_n = 1_{(0,1/n)}$, P est la mesure de Lebesgue sur $\Omega = [0,1]$, $P(Z_n \to Z) = 1$ (la condition est suffisante, pas nécessaire).
- ightharpoonup Par contre, si les Z_n sont indépendants, par Borel-Cantelli (ii)

$$P(|Z_n - Z| = 1 \text{ i.o.}) = 1, \quad P(Z_n \to Z) = 0.$$

Une faible loi de grands nombres

- Une faible loi de grands nombres :
 - ▶ Soit X_1, X_2, \ldots des v.a. indépendents, $S_n = \frac{1}{n} \sum_{i=1}^n X_i$.
 - ▶ Supposez que pour tous n, $E[X_n] = m$ et $Var[X_n] < v < \infty$.
 - ▶ Alors $S_n \stackrel{p}{\rightarrow} m$.
- Preuve :
 - ▶ Pour tous n, $E[S_n] = m$ et $Var[S_n] \le v/n$.
 - ▶ Par l'inégalité de Chebyshev, $P(|S_n m| \ge \epsilon) \le \frac{v}{n} \frac{1}{\epsilon^2} \to 0$.

Une forte loi de grands nombres

- Une forte loi de grands nombres
 - ▶ Soit X_1, X_2, \ldots des v.a. indépendents, $S_n = \frac{1}{n} \sum_{i=1}^n X_i$.
 - ▶ Supposez que pour tous n, $E[X_n] = m$, $E[(X_n m)^4] \le a < \infty$.
 - ▶ Alors $P(S_n \rightarrow m) = 1$.

Preuve, forte loi de grands nombres

- Notez que $(X_i m)^2 \le (X_i m)^4 + 1$ pour tout $\omega \in \Omega$. (Soit $(X_i m)^2 > 1$, soit non; $y^2 y + 1$ n'a pas de racine réelle)
- ▶ Supposez que m = 0, sans perte de généralité.
- ▶ Remarquez que $S_n^4 = \frac{1}{n^4} \sum_{i,i,k,l} X_i X_j X_k X_l$.
- Alors

$$E[S_n^4] = \frac{1}{n^4} \sum_{i,j,k,l} E[X_i X_j X_k X_l]$$

$$= \frac{1}{n^4} \left[\sum_i E[X_i^4] + {4 \choose 2} \sum_i \sum_{j>i} E[X_i^2 X_j^2] \right]$$

$$\leq \frac{1}{n^4} (na + 3n(n-1)v^2).$$

Alors

$$P(|S_n| \ge \epsilon) = P(|S_n|^4 \ge \epsilon^4) \le \frac{a + 3v^2}{n^2 \epsilon^4}$$

et la somme suivante converge : $\sum_{n=1}^{\infty} P(|S_n| \ge \epsilon) < \infty$

Inégalité de Jensen

- ▶ Soit ϕ : $\mathbb{R} \to \mathbb{R}$ convexe.
- ▶ Soit X une v.a. avec E[X] fini.
- ▶ Par la convexité de ϕ , il y une fonction $g: \mathbb{R} \to \mathbb{R}$ telle que
 - ightharpoonup g(x) = ax + b
 - $g(x) \leq \phi(x)$
 - $g(E[X]) = \phi(E[X])$
- ▶ Il est possible que ϕ n'ait pas de dérivée à E[X], auquel cas g n'est pas unique.
- L'inégalité de Jensen :

$$E[\phi(X)] \ge E[g(X)] = aE[X] + b = \phi(E[X]).$$

Note : Si g n'est pas unique, tous les choix donnent le même résultat.

Applications de l'inégalité de Jensen

1. Kurtosis K, s'il existe, est toujours plus grand que 1, où

$$K \equiv \frac{E[(Z-\mu)^4]}{E[(Z-\mu)^2]^2}.$$

Supposons que les quatre premiers moments existent et sont finis. Soit $Y = Z - \mu$. Prenez $\phi(x) = x^2$, $X = Y^2$.

2. Kurtosis d'un mélange-échelle Z de v.a. gaussiennes. Soit $Y=Z-\mu$.

$$E[Y^4] = E[E[X^4|\sigma^2]] = E[3\sigma^4] \ge 3E[\sigma^2]^2,$$

 $E[Y^2] = E[E[X^2|\sigma^2]] = E[\sigma^2],$
 $K \ge 3.$

Première équation : $X = \sigma^2$, $\phi(x) = x^2$.

3. La fonction d'utilité u(x) concave, richesse X. $(\phi(x) = -u(x))$

$$-E[u(X)] = E[-u(X)] \ge -u(E[X]), \quad u(E(X)) \ge E[u(X)].$$

Une note sur les distributions

- ▶ La fonction de répartition : $F(x) \equiv \Pr[(-\infty, x]]$.
- ► Monotonicité de F par monotonicité de probabilité.
- ▶ Continuité à droite : $x_n \searrow x \Rightarrow (-\infty, x_n] \searrow (-\infty, x] \Rightarrow F(x_n) \rightarrow F(x)$, par continuité de probabilité.
- ► Continuité à gauche? : $x_n \nearrow x \Rightarrow (-\infty, x_n] \nearrow (-\infty, x) \Rightarrow F(x_n) \rightarrow F(x) \Pr[\{x\}].$
- ▶ $\lim_{x\to\infty} F(x) = P(\Omega) = 1$, $\lim_{x\to-\infty} F(x) = P(\emptyset) = 0$ par continuité de probabilité.

Aperçu des chapîtres 9 et 10

- Chapître 9
 - ► Lemme de Fatou
 - ▶ Théorème de convergence monotone, une méthode plus flexible de démontrer $\lim_{n\to\infty} E[X_n] = E[X]$.
 - Deux applications : les dérivées des espérances, la fonction génératrice des moments.
- ► Chapître 10
 - Convergence faible, en loi