$\Delta A = A - A^*$ $\Delta A^* = ||\Delta A||$ $\Delta B = B - B^*$ $\Delta B^* = ||\Delta B||$ $\Delta X = X - X^*$ $\Delta X^* = ||\Delta X||$

 $||A\overline{X}|| = ||B||$ $||A\overline{X}|| \le ||A|| * ||\overline{X}||$

Опр Линейное пространство - множество элементов, на котором выполнено 3 условия: 1. Определена операция суммы:

 $\forall x, y \in L \quad \exists z = x + y : z \in L$ 2. Определена операция умножения: $\forall x \in L, \lambda \in R \quad y = \lambda x : y \in L$ 3. Выполнено 8 аксиом: $1. x + y = y + x \quad \forall x, y \in L$

 $2.x + (y+z) = \overline{(x+y)} + 2 \quad \forall x, y, z \in L$ 3. $\exists \theta \in L : \forall x \in L \quad x + \theta = x$

 $4. \ \forall x \in L \exists (-x) \in L : x + (-x) = \theta$ 5. $\lambda(x+y) = \lambda x + \mu x \quad \forall x \in L \quad \forall \lambda, \mu \in R$ 6. $\lambda(\mu x) = (\lambda \mu) x \quad \forall x \in L \quad \forall \lambda, \mu \in R$

7. $\lambda(\mu x) = (\lambda \mu) x \quad \forall x \in L \quad \forall \lambda, \mu \in R$ $8. \ 1 * x = x \quad \forall x \in L$

Опр Нормальное минимальное пространство - линейное пространство, в котором $\forall x \in L$ поставлено в соответствие действительное число, называемое нормой ||x||, причём выполняются условия (аксиома 4. $\forall x ||x|| \ge 0$; $||x|| = 0 \to x = \theta$ 5. $||\lambda x|| = |\lambda| * ||x|| \quad \forall x \in L, \forall \lambda \in R$ 6. $||x + y|| \le ||x|| + ||y||$

Опр Расстояние между $x \in L$ и $y \in L$ определяется разностью их норм: $\rho(x;y) = ||x-y||$ Примеры - см. onanists.ru лекция 2 🙃 $A\overline{X} = B$

 $(A + \Delta A) (\overline{X} + \Delta \overline{X}) = B + \Delta B$ $A\overline{X} + A\Delta\overline{X} + \Delta A\overline{X} + \Delta A\Delta\overline{X} \uparrow^0 = B + \Delta B \mid -A\overline{X}$

 $A\Delta \overline{X} + \Delta A \overline{X} = \Delta B$ $A\Delta \overline{X} = \Delta B - \Delta A \overline{X}$

 $\Delta \overline{X} = A^{-1} \left(\Delta B - \Delta A \overline{X} \right)$ $||\Delta \overline{X}|| = ||A^{-1}(\Delta B - \Delta A \overline{X}||$ $||\Delta \overline{X}|| \le ||A^{-1}|| * || (\Delta B - \Delta A \overline{X})||^{-1}$ $||\Delta \overline{X}|| \le ||A^{-1}|| \left(||\Delta B|| + ||\Delta A \overline{X}|| \right) / : ||\overline{X}||^{-2}$

 $\frac{\Delta \overline{X}}{\|\overline{X}} \le \|A^{-1}\|^* \left(\frac{\|\Delta B\|}{\|\overline{X}\|} + \frac{\|\Delta A \overline{X}\|}{\|\overline{X}\|} \right)$ $\frac{\|\Delta \overline{X}\|}{\|\overline{X}\|} \le \|A^{-1}\|^* \left(\frac{\|\Delta B\|}{\|B\|} * \frac{\|B\|}{\|\overline{X}\|} + \frac{\|\Delta A\|}{\|A\|} * \|A\| \right)$ $^{1,\,2}||\overline{X}-\overline{Y}||=||\overline{X}+\left(-\overline{Y}\right)\,\leq||\overline{X}||+||-\overline{Y}||=||\overline{X}||+|-1|*||\overline{Y}=||\overline{X}||+||\overline{Y}||$

 $\delta x \le ||A^{-1}|| \left(\delta B * \frac{||A\overline{X}||}{||\overline{X}||} + \delta A * ||A|| \right)$ $\delta x \le ||A^{-1}|| \left(\delta B * \frac{||A|| * ||\overline{X}||}{||\overline{X}||} + \delta A * ||A|| \right)$ $\delta x \le ||A^{-1}|| * ||A|| * (\delta B + \delta A)$ $u\left(A\right) = |A^{-1}| * |A||$ - число обусловленности матрицы. Чем меньше, тем лучше

 $\uparrow ||A^{-1}|| * ||A|| \to ||A * A^{-1}|| = ||E|| = 1$ Факторизация матрицы

LU-разложение

 $1 \le \nu(A) \le \infty$

Опр Факторизация (разложение) матрицы - представление матрицы в виде произведения нескольких матриц

Ищем коэффициенты! С помощью доп. матриц

 $L + U - E = \left(\begin{array}{ccccc} u_{11} & u_{12} & \dots & u_{1n} \\ l_{21} & u_{22} & \dots & u_{2n} \\ \dots & \dots & \dots & \dots \\ l_{n1} & \dots & \dots & u_{nn} \end{array} \right)$

 $\begin{pmatrix} 1 & 0 & \dots & 0 \\ l_{21} & 1 & \dots & \dots \\ \dots & \dots & \dots & \dots \\ l_{n1} & \dots & \dots & 1 \end{pmatrix} * \begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & u_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$ $\Rightarrow \begin{pmatrix} u_{11} = a_{11} & u_{12} = a_{12} & \dots & u_{1n} = a_{1n} \\ l_{21} = \frac{a_{21}}{u_{21}} & u_{22} = a_{22} - l_{21} * u_{12} & \dots & u_{2n} = a_{2n} - l_{21} * u_{1n} \\ \dots & \dots & \dots & \dots \\ l_{n1} = \frac{a_{n1}}{u_{n1}} & l_{n2} = (a_{n2} - l_{n1} * u_{1n}) * \frac{1}{u_{22}} & \dots & u_{nn} = a_{nn} - \sum_{j=1}^{n-1} l_{nj} * u_{jn} \end{pmatrix}$

Общие формуль $u_{ij} = a_{ij} - \sum k = 1^{i-1} l_{ik} * u_{ki} , i \le j$ $l_{ij} = rac{1}{u_{ij}} * \left(\overline{a_{ij}} - \sum k = 1^{j-1} l_{ik} * u_{kj}
ight)$ Программировать проще и накопленная ошибка меньше чем у метода Гаусса

Th Если все главные миноры квадратной матрицы А отличны от 0, то существуют такие верхние U и нижние L треугольники матрицы, что А представима в виде произведения LU Th Если элементы диагонали одной из матриц зафикмировать, то такое разложение будет единственным 🔼 QR-разложение, Q - ортогональная матрица, R - правый верхний треугольник матиицы

 $1. Q^{-1} = Q^T$

Опр Матрица α ортогональна, если:

 $2. |Q| = 1 \lor |Q| = -1$ 3. Q & P - ортогональны ightarrow Q*P - отртогональна 4. ||QX|| = ||X||

 $||\overline{X}||\sqrt{\left(\,\overline{X},\overline{X}\,
ight)}|$

Возвращаемся к QR-разложению

 $Q = \begin{pmatrix} \cos \Theta & \sin \Theta \\ \sin \Theta & -\cos \Theta \end{pmatrix}$ $\overline{Y} = Q^{T} * \overline{X}$

 $Q * Q^T = Q^T * Q = E \rightarrow$

Опр Линейное пространство - пространство со скалярным произведением, если ∀ упорядоченной паре векторов ставится число, называемое скалярным произведением (x,y) и выполнены условия (аксиомы скалярного произведения):

5. (x,y) = (y,x)6. $(\lambda x, y) = \lambda (x, y)$ 7. (x + y,z) = (x,z) + (y,z)

8. (x,x) = 0 $\overline{X} = \left(egin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right); \quad \overline{Y} = \left(egin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_n \end{array} \right) \quad \in R^n$ $(\overline{X}, \overline{Y}) = x_1 y_1 + \dots + x_n y_n$

 $\cos u = rac{\left(\overline{X},\overline{Y}
ight)}{||X||^*||Y||}$ - угол между многомерными векторами $\mathrm{пр}_y\overline{X} = rac{\left(\overline{X},\overline{Y}
ight)}{||\overline{Y}||}$ - проекция \overline{X} на \overline{Y} Метол Хаусхолдера (метод отражения) (какого холдера блять???)

Метод Хаусхолдера для многомерного случая

 H_0 - линейное одномерное пространство с базисом $\{\overline{X_0}\}$

 $\overline{X_0} \in \mathbb{R}^n$

 $\overline{q}=\left(egin{array}{c} \cosrac{artheta}{2} \ \sinrac{artheta}{2} \end{array}
ight)$ - направленный вектор

 $\overline{X} = X_{\perp} + \lambda X_0$ P - матрица, при умножении \overline{X} на которую получится отражение $P\overline{X} = P(X_{\perp} + \lambda X_0) = X_{\perp} - \lambda X_0 = X - 2\lambda X_0 = *$

 $\lambda = \pi p_{\overline{X}_0} \overline{X} = \frac{\left(\overline{X}, \overline{X}_0\right)}{||X_0||}$

 $x_0 = \omega \quad ||\omega|| = 1 \quad \lambda = (x, \omega)$

 $* = X - 2\left(X,\omega\right) * \omega = \overline{X} - 2\omega\left(\overline{X},\omega\right) = \overline{X} - 2\omega\left(\omega,\overline{X}\right) = (\) = \left|\left(\omega,\overline{X}\right) = \omega^T\overline{X}\right| = \overline{X} - 2\omega\omega^T\overline{X} = \left(E - 2\omega\omega^T\overline{X} + 2\omega\omega^T\overline{X}\right) = 0$ Oпр $P=E-2\omega\omega^T$ - метод отражения (метод Хаусхолдера) на линейном пространстве ω - вектор Хаусхолдера

 H_{\perp} - ортогональное дополнение - пространство всех векторов $\ \perp\ \forall$ векторов $\ \in H_0$ (гиперплоскость)