МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

ЗАВДАННЯ ДО РОЗРАХУНКОВОЇ РОБОТИ

з теорії ймовірностей та математичної статистики МОДУЛЬ 1

для студентів інженерно-технічних спеціальностей **Теорія ймовірностей та математична статистика, 1 модуль:** Розрахункові завдання для студентів інженерно-технічних спеціальностей / Укладачі: З.М. Нитребич, В.С. Ільків, П.Я. Пукач. – Львів: Видавництво Національного університету "Львівська політехніка", 2008. – 37 с.

 $m{Y\kappa\hbar a\partial a vi}$: $m{Humpe bu v}\ 3.M.$, канд фіз.-мат. наук, доц., $m{I} m{nb \kappa ie}\ B.C.$, д-р фіз.-мат. наук, проф., $m{\Pi y \kappa a v}\ \Pi. \mathcal{A}.$, канд. фіз.-мат. наук, доц.

Затверджено на засіданні кафедри обчислювальної математики і програмування (протокол № 6 від 12 лютого 2008 р.)

BAPIAHT 1

- 1. На залізничній станції ϵ n світлофорів. Скільки можна дати різних сигналів цими світлофорами, якщо кожен світлофор має три стани: горить або зелене, або червоне, або жовте світло?
- **2.** Гральну кістку підкидають 2 рази. Події: A два рази випало парна кількість очок, B жодного разу не випало число 4, C двічі випала кількість очок, більша ніж 4, D принаймні один раз випала непарна кількість очок. Які з даних подій сумісні, а які ні ? Описати події: $A \cup B$, $A \cap B$, \overline{A} , \overline{B} , \overline{C} , $A \cup B \cup C$, $A \cap D$.
- **3.** У коробці є 8 білих та 6 чорних кульок. Знайти ймовірність того, що серед 4 навмання вийнятих кульок буде: а) саме 2 білих; б) усі кульки будуть чорні.
- **4.** Довільно із відрізка [0; 2] вибрано 2 числа. Знайти ймовірність того, що їх сума більша за одиницю, а добуток менший від одиниці.
- **5.** Є три однакові з вигляду коробки. У першій коробці 10 білих і 5 чорних кульок, у другій 8 білих і 8 чорних куль, а у третій тільки чорні. Навмання виймається коробка, а з неї кулька. а) Яка ймовірність того, що вийнята кулька біла ? б) Нехай вийнята біла кулька. Яка ймовірність того, що вона з першої коробки ?
- **6.** П'ять разів підкидаємо монету. Яка ймовірність того, що герб випаде саме 2 рази ? Принаймні 2 рази ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,1$ і x_2 , якщо $x_1< x_2$ і $M\xi=5,5,\ D\xi=2,25$.
- **8.** Знайти ймовірність того, що подія A станеться рівно 60 разів у 250 незалежних випробуваннях, якщо ймовірність появи події A у кожному випробуванні дорівнює 0,25.
- **9.** Підкидаємо монету три рази. Нехай випадкова величина ξ кількість випадань герба. Побудувати для неї ряд розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.
- **10.** Функція розподілу випадкової величини ξ задається формулою:

$$F(x) = \begin{cases} 0, & x < -1; \\ (x+1)/2, & x \in (-1; 1]; \\ 1, & x > 1. \end{cases}$$

Обчислити моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

- **1.** Поїзд, в якому їдуть n пасажирів, робить k зупинок. Скількома способами можуть вийти пасажири на цих зупинках ?
- **2.** Гральну кістку підкидають один раз. Результат експерименту число очок на верхній грані. Розглянемо події: M— випала одиниця, N випало менше, ніж 6 очок; K випала парна кількість очок. Які з даних подій сумісні, а які ні ? Описати події: \overline{N} , \overline{K} , $M \cup K$, $N \cup M$, $M \cap N$, $N \cap K$, $M \cup N \cup K$, $M \cap N \cap K$.
- **3.** У класі навчається 12 дівчат та 18 хлопців. Знайти ймовірність того, що серед 4 опитаних учнів: а) буде саме 2 дівчини; б) не буде жодної дівчини.
- **4.** Усередині квадрата з вершинами в точках (0,0), (1,0), (0,1) і (1,1) навмання вибирається точка M(x;y). Яка ймовірність події A, яка полягає у тому, що точка M лежатиме всередині одиничного круга з центром у початку координат ?

- 5. Партія виробів, серед яких 10% бракованих, поступила на перевірку. При перевірці бракований виріб виявляється з імовірністю 0,92 і добрий виріб бракується з імовірністю 0,06. Нехай виріб забраковано під час перевірки. Яка ймовірність того, що він дійсно бракований?
- **6.** П'ять разів підкидаємо гральну кістку. Яка ймовірність того, що "6" випаде один раз ? Принаймні один раз ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,2$ і x_2 , якщо $x_1< x_2$ і $M\xi=5,8,\ D\xi=5,76$.
- 8. Імовірність появи події A у кожному зі 100 незалежних випробувань стала і дорівнює 0,6. Знайти ймовірність того, що подія A появиться не менше 50 і не більше 80 разів.
- **9.** Проводяться 4 незалежні постріли по мішені з імовірністю влучення 2/3. Нехай випадкова величина ξ це кількість влучень. Побудувати для ξ ряд розподілу, многокутник розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.
- **10.** Нехай щільність випадкової величини ξ задається формулою:

$$f(x) = \begin{cases} (6-x)/18, & x \in (0;6); \\ 0, & x \notin (0;6). \end{cases}$$

Знайти функцію розподілу та ймовірність попадання величини ξ на проміжок (3; 6). Обчислити моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

- **1.** Скількома способами можна поділити групу з 20 студентів на 3 частини так, щоб в першій було 5 студентів, у другій 7, у третій 8?
- **2.** Гральна кістка підкидається два рази. Результат експерименту пара чисел $(x,y), x,y = 1,2,\ldots,6$. Розглянемо події: A випало 2 парних числа; B випало дві двійки; C сума чисел, що випали, не перевищує трьох. Які з даних подій є сумісні, а які ні ? Описати події: $\overline{A}, \overline{C}, A \cap B, A \cup B, B \cap C, B \cup C$.
- **3.** У колоді 36 карт. Знайти ймовірність того, що серед 4 навмання взятих карт буде: а) саме 1 туз; б) жодного туза.
- **4.** Знайти ймовірність того, що відстань від навмання заданої точки всередині квадрата ABCD зі стороною 20 см до найближчої сторони не перевищуватиме 5 см.
- 5. У продажу є телевізори трьох заводів: 30% телевізорів першого заводу, 40% другого заводу, 30% третього. Продукція першого заводу містить прихований дефект з імовірністю 0,92, другого заводу з імовірністю 0,87, а третього 0,85. а) Яка ймовірність того, що навмання куплений телевізор добрий? б) Нехай куплений телевізор добрий. Яка ймовірність того, що він виготовлений на першому заводі?
- 6. Прилад складається з п'яти вузлів. Імовірність виходу з ладу за час t кожного з вузлів 0,2 (вузли виходять із ладу незалежно один від одного). Знайти ймовірність того, що: а) із ладу вийде саме 3 вузли; б) жоден вузол не вийде з ладу.
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,3$ і x_2 , якщо $x_1< x_2$ і $M\xi=6,6,\ D\xi=13,44$.
- **8.** Імовірність влучення в мішень при одному пострілі дорівнює 0,7. Знайти ймовірність того, що при 100 незалежних пострілах буде рівно 70 влучень у мішень.

- **9.** Проводяться три незалежних досліди, у кожному з яких подія F появляється з імовірністю 0,3. Розглянемо випадкову величину ξ кількість появ події A. Побудувати для ξ ряд розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.
- **10.** Щільність випадкової величини ξ задається формулою:

$$f(x) = \begin{cases} ax^2, & x \in (0; 2); \\ 0, & x \notin (0; 2). \end{cases}$$

Визначити невідомий параметр a. Знайти функцію розподілу, моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

BAPIAHT 4

- **1.** Скількома способами можуть сісти за круглий стіл 5 чоловіків та 5 жінок так, щоб жодні дві особи однієї статі не сиділи поруч ?
- **2.** Гральна кістка підкидається один раз. Результат експерименту число очок на верхній грані. Розглянемо події: M— випало не більше, ніж 2 очки; N випало не менше, ніж 2 очки; K випало більше, ніж 4 очки. Які зі згаданих подій сумісні, а які ні ? Описати події: $M \cap N, \ M \cap K, \ M \cup N, \ N \cup K, \ \overline{N}, \ \overline{K}, \ M \cup N \cup K, \ M \cap N \cap K$.
- **3.** Партія зі 100 виробів містить 5 бракованих. Знайти ймовірність того, що серед вибраних 10 виробів буде: а) рівно 3 браковані; б) жодного бракованого.
- **4.** Промінь локатора переміщується в горизонтальній площині з постійною кутовою швидкістю. Яка ймовірність того, що ціль буде виявлена у фіксованому секторі $\pi/4$ радіан, якщо поява її у довільному напрямі рівноможлива ?
- 5. Проводяться два незалежних постріли снарядами по цілі з імовірністю влучення 0,6 кожен. Ціль знищується з імовірністю 0,5 при влученні в неї і з повною ймовірністю при двох влученнях. а) Яка ймовірність того, що ціль буде знищена ? б) Нехай ціль знищена. Яка ймовірність того, що в неї влучив тільки один снаряд ?
- **6.** Ймовірність влучення в мішень при одному пострілі дорівнює 0,6. Робиться п'ять незалежних пострілів. Яка ймовірність того, що: а) буде 4 влучення ? б) не буде жодного промаху ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,4$ і x_2 , якщо $x_1< x_2$ і $M\xi=4,4,\ D\xi=3,84$.
- **8.** Підкидаємо монету 100 разів. Знайти ймовірність того, що герб появиться не менше 40 і не більше 70 разів.
- 9. Два стрільці незалежно один від одного роблять один постріл по мішені, причому ймовірність влучення для першого стрільця 0,6, а для другого -0,8. Нехай випадкова величина ξ кількість влучень у мішень. Побудувати для неї ряд розподілу, функцію розподілу, многокутник розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.
- **10.** Задано функцію розподілу випадкової величини ξ :

$$F(x) = \begin{cases} 0, & x \le -\pi/2; \\ \cos x, & x \in (-\pi/2; 0); \\ 1, & x \ge 0. \end{cases}$$

Знайти моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

BAPIAHT 5

- **1.** Є 5 різних конвертів і 6 видів марок однакової вартості. Скількома способами можна вибрати конверт з маркою, щоб відправити лист ?
- **2.** Кидають три монети. Розглянемо події: A випав хоча б один герб; B на одній і третій монеті випали герби; C випало принаймні дві цифри. Які з даних подій сумісні, а які ні ? Описати події: \overline{A} , \overline{C} , $A \cap B$, $A \cup C$, $A \cap C$, $B \cap C$.
- **3.** Студент знає 40 питань з 50. Щоб скласти іспит, потрібно відповісти хоча б на два питання з 3, які є в білеті. Яка ймовірність того, що студент складе іспит ?
- **4.** Яка ймовірність того, що сума довжин двох навмання взятих відрізків, кожен із яких довжини не більшої 2, буде більша 2 ?
- 5. Два заводи виготовляють однакові реактиви, причому 8% пачок першого і 6% другого заводу мають більшу від допустимої межі кількість домішок. На складі є 200 пачок реактивів першого заводу і 300 пачок другого заводу. а) Яка ймовірність того, що взята навмання пачка реактивів виявиться доброю ? б) Нехай пачка реактивів добра. Яка ймовірність того, що вона виготовлена на першому заводі ?
- **6.** П'ять разів кидаємо по 2 гральні кістки. Яка ймовірність того, що саме три рази сума очок, які випадуть, буде не менше 10 ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,5$ і x_2 , якщо $x_1 < x_2$ і $M\xi = 4$, $D\xi = 4$.
- **8.** Ймовірність народження хлопчика дорівнює 0,51. Знайти ймовірність того, що серед 150 новонароджених дітей буде рівно 75 хлопчиків.
- **9.** Кидається гральна кістка, випадкова величина ξ кількість очок, які випали. Знайти ряд розподілу та многокутник розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.
- **10.** Щільність випадкової величини ξ задається формулою:

$$f(x) = \begin{cases} ax^2, & x \in (1; 2); \\ 0, & x \notin (1; 2). \end{cases}$$

Визначити невідомий параметр a. Знайти функцію розподілу, моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

- 1. У магазині є 4 сорти морозива. Скількома способами можна купити 10 порцій ?
- **2.** Гральну кістку підкидають один раз. Результат експерименту число очок на верхній грані. Розглянемо події: M випала двійка; N випало менше, ніж 5 очок; K випало непарна кількість очок. Які з даних подій сумісні, а які ні ? Описати події: $M \cap K$, $M \cap K$, $M \cup N$, $N \cup K$, \overline{N} , \overline{K} , $M \cup N \cup K$, $M \cap N \cap K$.
- **3.** Серед 30 коробок реактивів 3 коробки недоброякісні. Знайти ймовірність того, що серед 3 взятих навмання коробок: а) усі пачки будуть доброякісні; б) дві пачки будуть недоброякісними.
- **4.** Знайти ймовірність того, що корені квадратного рівняння $x^2 + px + q = 0$ є комплексними, якщо $p \in [0; 4], q \in [0; 4].$

- **5.** У коробці лежить 25 тенісних м'ячів, причому 15 із них нових, а 10 уже перебувало в грі. Для гри беруть навмання 2 м'ячі, а потім повертають у коробку. Для другої гри теж беруть 2 м'ячі. Яка ймовірність того, що вони будуть новими ?
- **6.** Завод випускає деталі з ймовірністю браку 0,05. Яка ймовірність того, що серед 5 виробів буде не більше одного бракованого ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,6$ і x_2 , якщо $x_1< x_2$ і $M\xi=4, D\xi=6$.
- **8.** Підкидаємо гральну кістку 110 разів. Знайти ймовірність того, що "п'ятірка" випаде не менше 15 і не більше 40 разів.
- 9. Кидається дві монети. Випадкова величина ξ набуває значення 1, коли випадуть два герби, -1 коли випадуть дві цифри, а також 0 в усіх інших випадках. Побудувати для неї ряд розподілу, функцію розподілу та многокутник розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.
- **10.** Нехай щільність випадкової величини ξ задається такою формулою:

$$f(x) = \begin{cases} a \cos x, & x \in (\pi/4; \ \pi/2); \\ 0, & x \notin (\pi/4; \ \pi/2). \end{cases}$$

Знайти a, ймовірність попадання випадкової величини ξ на проміжок ($\pi/4$; $\pi/3$). Обчислити моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

- **1.** На вершину гори ведуть 10 доріг. Скількома способами турист може піднятись на гору і спуститись з неї ?
- **2.** Гральну кістку підкидають двічі. Результат експерименту число очок, що випали. Розглянемо події: M сума очок дорівнює двом; N сума очок, які випали, менша 12; K сума очок, що ділиться на 3. Які з даних подій сумісні, а які ні ? Описати події: $M \cap N, \ M \cap K, \ M \cup N, \ N \cup K, \ \overline{N}, \ \overline{K}, \ M \cup N \cup K, \ M \cap N \cap K$.
- **3.** У коробці є 10 білих та 5 червоних кульок. Знайти ймовірність того, що серед 5 вибраних навмання кульок: а) усі кульки будуть білі; б) буде саме 3 білі кульки.
- **4.** Знайти ймовірність того, що навмання взята точка з круга радіуса 1 попаде в квадрат, який вписано в цей круг.
- **5.** З 24 студентів, які прийшли на іспит, 4 знає всі 30 білетів, 10 знає 25 білетів, 8 знає 20 білетів, а 2 тільки 15. Викликається навмання один студент. а) Яка ймовірність того, що він складе іспит ? б) Нехай студент склав іспит. Яка ймовірність того, що він знав тільки 15 білетів з 30 ?
- **6.** Проводиться 6 незалежних пострілів по мішені з імовірністю влучення 0,7. Яка ймовірність не менше 5 влучень у мішень ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,7$ і x_2 , якщо $x_1< x_2$ і $M\xi=3,8,\ D\xi=7,56$.
- 8. Монета підкидається 200 разів. Знайти ймовірність того, що герб випаде рівно 100 разів.
- **9.** Випадкова величина ξ задана рядом розподілу:

x_i	-2	-1	0	1	2
p_i	0,1	0,2	0,3	0,3	0,1

Знайти функцію розподілу та многокутник розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.

10. Дано функцію розподілу

$$F(x) = \begin{cases} 0, & x \le 0; \\ (x^2 + x)/2, & 0 < x \le 1; \\ 1, & x > 1, \end{cases}$$

випадкової величини ξ . Обчислити її моду, медіану, математичне сподівання та дисперсію.

BAPIAHT 8

- 1. Скількома способами 5 однакових кульок можна розкласти в 6 ящиках?
- **2.** Гральна кістка підкидається один раз. Результат експерименту число очок на верхній грані. Розглянемо події: M— випало більше, ніж 4 очки; N випало менше, ніж 6 очок; K випало число "5". Які з даних подій сумісні, а які ні ? Описати події: $M \cap N$, $N \cap K$, $K \cup N$, $M \cup N$, \overline{N} , $M \cup N \cup K$, $M \cap N \cap K$, \overline{K} .
- **3.** У групі навчається 8 дівчат та 16 хлопців. Знайти ймовірність того, що серед 5 навмання опитаних студентів: а) буде саме 3 хлопці; б) будуть самі дівчата.
- **4.** Знайти ймовірність того, що корені квадратного рівняння $x^2 + px + q = 0$ є дійсні і різні, якщо $p \in [-1; 1], q \in [-1; 1].$
- **5.** У двох коробках є відповідно 20 і 30 кульок, причому по 10 білих, а решта чорні. З першої коробки в другу переклали 2 кульки, перемішали їх, і вийняли одну кульку. Яка ймовірність того, що вона є білою ?
- **6.** Що ймовірніше: випадання 3 гербів при 6 киданнях монети чи 2 гербів при 4 киданнях монети ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,8$ і x_2 , якщо $x_1< x_2$ і $M\xi=3,4,\,D\xi=7,84$.
- **8.** Стріляють 170 разів по мішені з ймовірністю влучення 0,8. Яка ймовірність того, що буде не менше 80 і не більше 110 влучень, якщо постріли незалежні ?
- 9. Нехай дискретна випадкова величина задана функцією розподілу:

$$F(x) = \begin{cases} 0, & x \le 2; \\ 0, 1, & 2 < x \le 4; \\ 0, 4, & 4 < x \le 5; \\ 0, 8, & 5 < x \le 6; \\ 1, & x > 6. \end{cases}$$

Задати ряд розподілу та многокутник розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.

10. Щільність випадкової величини ξ задається формулою:

$$f(x) = \begin{cases} ax^3, & x \in (0; 3); \\ 0, & x \notin (0; 3). \end{cases}$$

Визначити невідомий параметр a. Знайти функцію розподілу, моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

BAPIAHT 9

- **1.** Числа 1, 2, 3, 4, 5 написані на 5 картках. Навмання послідовно вибирають три картки. Скільки парних чисел можна отримати ?
- **2.** З колоди карт навмання виймають одну карту. Розглянемо події: A вийняли карту червоної масті; B вийняли туза; C вийняли бубнову карту. Які з даних подій є сумісні, а які ні ? Описати події: $\overline{A}, A \cap B, A \cup B, A \cap C, B \cap C$.
- **3.** З коробки шашок (24 штук) випадково загубилося 5 штук. Знайти ймовірність того, що: а) пропало саме 3 білі шашки; б) усі шашки, які пропали, чорні.
- **4.** Знайти ймовірність того, що навмання вибрана точка з круга радіуса R попаде всередину рівностороннього трикутника, вписаного в цей круг.
- 5. У групі є два відмінники, 10 добрих студентів та 13 середніх. На іспиті відмінники можуть отримати тільки "5", добрі студенти "4" і "5" з однаковою ймовірністю, а середні "4", "3" і "2" теж з однаковою ймовірністю. Викликається навмання один студент. Яка ймовірність того, що він отримає оцінку не нижче "4"?
- **6.** Нехай імовірність влучення в мішень при одному пострілі дорівнює 0,4. Що ймовірніше: 2 влучення з 5 незалежних пострілів чи 4 влучення з 10?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,9$ і x_2 , якщо $x_1< x_2$ і $M\xi=2,8,\ D\xi=5,76$.
- **8.** Гральна кістка підкидається 120 разів. Знайти ймовірність того, що шістірка випаде саме 20 разів.
- **9.** Проводиться 3 незалежні постріли по мішені з імовірністю влучення 0,6. Нехай випадкова величина ξ це кількість влучень. Побудувати для неї ряд розподілу, многокутник розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення випадкової величини ξ .
- **10.** Дано функцію розподілу випадкової величини ξ :

$$F(x) = \begin{cases} 0, & x \le 0; \\ (x^2 + 2x)/3, & 0 < x \le 1; \\ 1, & x > 1. \end{cases}$$

Обчислити моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

- 1. У шаховому турнірі беруть участь 20 осіб. Їх за жеребкуванням розподілено на 2 групи по 10 осіб. Скільки існує при цьому способів, щоб двоє найсильніших гравців грали у різних групах ?
- **2.** Три рази стріляють по мішені. Розглянемо події: A хоча б одне влучення; B попадання при другому та третьому пострілах; C принаймні два промахи. Які з даних подій сумісні, а які ні ? Описати події: \overline{A} , \overline{C} , $A \cap B$, $A \cup C$, $A \cap C$, $B \cap C$.
- **3.** У колоді є 36 карт. Яка ймовірність того, що серед 3 навмання вийнятих карт буде: а) саме одна дама ? б) жодного короля ?
- **4.** У квадраті зі стороною 10 см навмання вибирається точка. Яка ймовірність того, що віддаль від цієї точки до найближчої сторони не перевищує 2 см?

- 5. € 20 екзаменаційних білетів, у кожному з яких є по 2 питання. Студент знає відповідь тільки на 30 питань. Щоб скласти екзамен, йому потрібно або відповісти на два питання білета, або на одне питання з білета та одне питання з додаткового білета. Яка ймовірність того, що студент складе екзамен?
- **6.** Що ймовірніше: одне випадання "шістки" при шести киданнях гральної кістки чи два випадання з 12 кидань ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,9$ і x_2 , якщо $x_1< x_2$ і $M\xi=3,9,\ D\xi=0,09$.
- 8. Завод виготовляє деталі, 5% із яких є браковані. Яка ймовірність того, що в партії з 220 деталей буде не менше 5 і не більше 20 бракованих ?
- **9.** Проводяться 3 незалежних досліди, у кожному з яких подія A появляється з імовірністю 0,2. Розглянемо випадкову величину ξ кількість появ події A. Побудувати ряд розподілу, функцію розподілу та многокутник розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.
- **10.** Щільність випадкової величини ξ задається формулою:

$$f(x) = \begin{cases} ax^3, & x \in (1; 2); \\ 0, & x \notin (1; 2). \end{cases}$$

Визначити невідомий параметр a. Знайти функцію розподілу, моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

- 1. У шаховому турнірі беруть участь 20 осіб. Їх за жеребкуванням розподілено на 2 групи по 10 осіб. Скільки існує при цьому способів, щоб четверо найсильніших гравців потрапили по двоє у різні групи?
- **2.** Гральну кістку підкидають два рази. Результат експерименту сума очок, що випали. Розглянемо події: M сума очок дорівнює 11; N сума очок не менша 3; K число очок ділиться на 5. Які з даних подій сумісні, а які ні ? Описати події: $M \cap N$, $N \cap K$, $M \cup N$, $M \cup K$, \overline{N} , \overline{K} , $M \cup N \cup K$, $M \cap N \cap K$.
- **3.** Партія з 50 виробів містить 5 бракованих. Знайти ймовірність того, що серед 4 виробів буде: а) саме 2 бракованих; б) жодного бракованого.
- **4.** Усередині квадрата з вершинами в точках (0; 0), (0; 1), (1; 1), (1; 0) навмання вибирається точка M(x; y). Знайти ймовірність того, що xy < a, якщо 0 < a < 1.
- 5. Вироби, які виготовляє завод, з імовірністю 0,09 мають дефект. Працюють два контролери, причому виріб потрапляє до кожного з них з однаковою ймовірністю. Перший контролер бракує поганий виріб з ймовірністю 0,85, а другий з ймовірністю 0,91. Яка ймовірність того, що довільно взятий виріб буде забраковано ?
- **6.** Завод виготовляє деталі, серед яких 5% бракованих. Що ймовірніше: що серед 10 деталей буде саме 2 бракованих чи серед 5 деталей буде не менше однієї бракованої ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,9$ і x_2 , якщо $x_1< x_2$ і $M\xi=3,1,\ D\xi=0,09$.
- **8.** Серед людей, що проживають на даній території, 35% мають карі очі. Які ймовірність того, що серед 350 дітей місцевої школи буде рівно 100 карооких ?

- **9.** Один раз підкидаємо дві гральні кістки. Випадкова величина ξ набуває значення, рівні більшому з чисел, які випали. Побудувати для неї ряд розподілу, многокутник розподілу та функцію розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.
- **10.** Функція розподілу випадкової величини ξ задається формулою:

$$F(x) = \begin{cases} 0, & x \le 1; \\ 2(x-1), & x \in (-1; 1, 5]; \\ 1, & x > 1, 5. \end{cases}$$

Знайти моду, медіану, математичне сподівання та дисперсію випадкової величини ξ . Побудувати криву розподілу.

BAPIAHT 12

- **1.** Скількома способами можна впорядкувати множину $\{1, 2, 3, \ldots, n\}$ так, щоб числа 1, 2, 3 стояли поруч і в порядку зростання ?
- **2.** Гральну кістку підкидають один раз. Результат експерименту число очок на верхній грані. Розглянемо події: M випало число "3"; N випало менше, ніж 4 очки; K випала парна кількість очок. Які з даних подій сумісні, а які ні ? Описати події: $M \cap N, \ M \cup N, \ N \cup K, \ \overline{N}, \ \overline{K}, \ M \cup N \cup K, \ M \cap N \cap K, \ N \cap K$.
- **3.** Студент знає 40 питань з 60. Щоб успішно скласти іспит, потрібно відповісти принаймні на 4 питання з 5, що є в білеті. Яка ймовірність того, що студент складе іспит ?
- **4.** Знайти ймовірність того, що навмання взята точка круга радіуса R попаде в трикутник ABC, якщо AB=2R, $AC=CB=R\sqrt{2}$.
- **5.** Мандрівник виходить з пункту A і на кожному роздоріжжі вибирає навмання одне з можливих продовжень шляху (не повертаючись назад):

Яка ймовірність того, що він попаде в пункт B?

- **6.** Кидається гральна кістка. Що ймовірніше: що з 5 кидань не більше 2 разів випаде парна кількість очок чи з 7 кидань випаде не менше 3 разів парна кількість очок ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,3$ і x_2 , якщо $x_1< x_2$ і $M\xi=3,2,\ D\xi=0,15$.
- 8. Завод випускає телевізори, причому 9% із них мають приховані дефекти. Яка ймовірність того, що серед 180 телевізорів, які є на складі, не менше 15 і не більше 30 мають приховані дефекти ?
- **9.** З урни, яка містить 7 білих і 3 чорні кульки, навмання виймаємо дві. Нехай випадкова величина ξ це кількість серед них білих кульок. Побудувати для ξ ряд розподілу, многокутник розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.

10. Нехай щільність випадкової величини ξ задається формулою:

$$f(x) = \begin{cases} (4-x)/8, & x \in (0; 4); \\ 0, & x \notin (0; 4). \end{cases}$$

Знайти функцію розподілу та ймовірність попадання величини ξ на відрізок [2; 3]. Обчислити моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

BAPIAHT 13

- **1.** Скількома способами з колоди 36 карт можна взяти 10 карт так, щоб 7 з них були однієї масті ?
- **2.** Гральна кістка підкидається два рази. Результат експерименту пара чисел $(x,y), x,y=1,2,\ldots,6$. Розглянемо події: A випало 2 непарні числа; B випало дві п'ятірки; C сума чисел, що випали, не перевищує чотирьох. Які з даних подій є сумісні, а які ні ? Описати події: $\overline{A}, \overline{C}, A \cap B, A \cup C, A \cap C, B \cup A$.
- **3.** Серед 10 коробок реактивів 4 коробки недоброякісні. Знайти ймовірність того, що серед 4 взятих навмання коробок: а) буде одна недоброякісна; б) усі доброякісні.
- **4.** Усередині квадрата зі стороною 5 см навмання вибирається точка. Яка ймовірність того, що її віддаль до точки перетину діагоналей квадрата не перевищує 1 см?
- 5. Є три однакові з вигляду коробки. У першій коробці є 6 білих і 12 чорних кульок, у другій 5 білих і 5 чорних кульок, а в третій 20 білих та 5 чорних кульок. Навмання вибирають коробку, а з неї одну кульку. а) Яка ймовірність того, що вийнята кулька є чорною ? б) Нехай вийнята кулька є чорною. Яка ймовірність того, що вийнята кулька є з третьої коробки ?
- 6. Що ймовірніше: виграти в шахи у рівносильного противника 2 партії з 4 чи 4 партії з 6?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,7$ і x_2 , якщо $x_1< x_2$ і $M\xi=3,3,\ D\xi=0,21$.
- **8.** Завод випускає вироби, серед яких 7% бракованих. Яка ймовірність того, що серед 140 виробів заводу, які надійшли на склад, буде рівно 20 бракованих ?
- **9.** Середній студент отримує оцінку "3" і "4" з імовірністю 0,4, "5" і "2" з імовірністю 0,1. Нехай випадкова величина ξ оцінка, отримана студентом. Побудувати для ξ ряд розподілу, многокутник розподілу, функцію розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.
- **10.** Щільність випадкової величини ξ задається формулою:

$$f(x) = \begin{cases} ax^4, & x \in (0; 2); \\ 0, & x \notin (0; 2). \end{cases}$$

Визначити невідомий параметр a. Знайти функцію розподілу, моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

- 1. Скількома способами можна 10 різних олівців розкласти у три пенали?
- **2.** Гральна кістка підкидається один раз. Результат експерименту число очок на верхній грані. Розглянемо події: M випала четвірка; N випало менше, ніж 3 очки; K випала непарна кількість очок. Які з даних подій сумісні, а які ні ? Описати події: $M \cap N$, $N \cap K$, $M \cup N$, $N \cup K$, \overline{N} , \overline{K} , $M \cup N \cup K$, $M \cap N \cap K$.

- **3.** З повного набору доміно (28 штук) навмання виймають 7 кісток. Яка ймовірність того, що серед них виявиться: а) саме 2 "дублі"; б) жодного "дубля"?
- **4.** Усередині квадрата зі стороною 8 см навмання вибрана точка. Яка ймовірність того, що віддаль від неї до фіксованої сторони не перевищуватиме 6 см?
- 5. Проводяться три незалежних постріли снарядами по цілі з імовірністю влучення 0,6 кожен. Ціль знищується з імовірністю 0,5 при влученні одним снарядом, з імовірністю 0,9 при влученні двома снарядами і з повною ймовірністю при влученні трьох снарядів. а) Знайти повну ймовірність знищення цілі; б) Нехай ціль знищена. Яка ймовірність того, що в неї влучив тільки один снаряд?
- **6.** Кидаємо гральну кістку. Що ймовірніше: що з 6 кидань число "5" випаде саме 2 рази чи з 3 кидань число "2" випаде саме один раз ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,3$ і x_2 , якщо $x_1< x_2$ і $M\xi=3,1,\ D\xi=1,89$.
- 8. Серед населення даної території 28% брюнетів. Яка ймовірність того, що серед 190 покупців універмагу буде не менше 50 і не більше 70 брюнетів ?
- 9. Нехай дискретна випадкова величина задана функцією розподілу:

$$F(x) = \begin{cases} 0, & x \le -2; \\ 0, 2, & -2 < x \le -1; \\ 0, 4, & -1 < x \le 1; \\ 0, 8, & 1 < x \le 2; \\ 1, & x > 2. \end{cases}$$

Задати ряд розподілу та многокутник розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.

10. Задано функцію розподілу випадкової величини ξ :

$$F(x) = \begin{cases} 0, & x \le 0; \\ \sin x, & x \in (0; \pi/2]; \\ 1, & x > \pi/2. \end{cases}$$

Знайти моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

- 1. Довести, що $C_m^n + 2C_m^{n+1} + C_m^{n+2} = C_{m+2}^{n+2}$.
- **2.** Кидають три монети. Розглянемо події: A випало принаймні 2 герби; B на одній монеті випав герб; C випала хоча б одна цифра. Які з даних подій сумісні, а які ні ? Описати події: $\overline{A}, \ \overline{C}, \ A \cup B, \ A \cap C, \ A \cup C, \ B \cap A$.
- **3.** У коробці є 9 жовтих та 7 синіх кульок. Знайти ймовірність того, що серед 5 навмання вийнятих кульок буде: а) саме 2 синіх; б) усі жовті.
- **4.** Усередині квадрата ABCD знаходиться інший квадрат KLMN. Яка ймовірність того, що навмання взята точка з квадрата ABCD попаде у квадрат KLMN, якщо AB=8 см, KL=0,5 см ?
- 5. Студент Митрофанов приходить на лекцію з філософії з ймовірністю 0,8. Залежно від настрою лектор з ймовірністю 0,3 робить перекличку в усіх групах, із тією ж ймовірністю тільки в одній з груп, взятій навмання, і з ймовірністю 0,1 взагалі переклички не робить. Яка ймовірність того, що у випадково взятий день буде зафіксована відсутність студента Митрофанова на лекції з філософії?

- 6. Шість разів підкидаємо монету. Яка ймовірність того, що герб випаде не менше 2 разів ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,5$ і x_2 , якщо $x_1< x_2$ і $M\xi=3,5,\ D\xi=0,25$.
- 8. Завод випускає телевізори, серед яких 8% мають приховані дефекти. Яка ймовірність того, що серед 160 телевізорів, які перевіряються, саме 13 мають прихований дефект?
- **9.** Випадкова величина ξ задана рядом розподілу:

x_i	-5	-1	0	1	5
p_i	0,2	0,1	0,4	0,2	0,1

Знайти функцію розподілу та многокутник розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.

10. Щільність випадкової величини ξ задається формулою:

$$f(x) = \begin{cases} ax^4, & x \in (1; 2); \\ 0, & x \notin (1; 2). \end{cases}$$

Визначити невідомий параметр a. Знайти функцію розподілу, моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

- 1. Скільки різних слів (в тому числі без змісту і без звучання) можна отримати, переставляючи букви у слові "паралелограм"?
- **2.** Гральну кістку підкидають один раз. Результат експерименту число очок на верхній грані. Розглянемо події: M випало більше, ніж 3 очки; N випало менше, ніж 5 очок; K випало число "3". Які з даних подій сумісні, а які ні ? Описати події: $M \cap N$, \overline{K} , $N \cap K$, $M \cup N$, $N \cup K$, $M \cup N \cup K$, $M \cap N \cap K$, \overline{N} .
- **3.** У групі з 25 студентів є тільки 5 дівчат. Яка ймовірність того, що серед 4 опитаних студентів: а) буде саме дві дівчини; б) не буде жодної дівчини ?
- **4.** На перехресті встановлено автоматичний світлофор, в якому 30 сек. горить червоне світло, а потім 5 сек. горить жовте, потім 1 хв. зелене, 5 сек. жовте і знову червоне. Яка ймовірність того, що автомобіль, який з'явився у випадковий момент часу, не затримається на перехресті ?
- 5. Руслана і Тамара близькі подруги. Найчастіше (у 70% випадків) вони разом роблять домашнє завдання з математики і з імовірністю 0,8 воно в них виконано правильно. Але часом завдання робить сама Руслана (у 20% випадків) чи сама Тамара (у 10% випадків), а інша просто переписує. На жаль, Тамара виконує завдання правильно з імовірністю 0,6, а Руслана з імовірністю 0,1. Яка ймовірність того, що на час перевірки у дівчат буде правильно виконане завдання ?
- **6.** Шість разів підкидаємо гральну кістку. Яка ймовірність того, що "двійка" випаде: а) саме 3 рази; б) не випаде жодного разу?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,4$ і x_2 , якщо $x_1< x_2$ і $M\xi=3,6,\ D\xi=0,24$.
- 8. Серед чоловіків, які проживають на даній території, є 15% лисих. Дівчина рахує через вікно перехожих. Яка ймовірність того, що серед 210 чоловіків, яких вона нарахувала, було не менше 20 і не більше 50 лисих ?

- **9.** Підкидаємо 5 разів монету. Нехай випадкова величина ξ це кількість випадань герба. Побудувати для неї ряд розподілу, функцію розподілу та многокутник розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.
- **10.** Нехай щільність випадкової величини ξ задається формулою:

$$f(x) = \begin{cases} a \sin x, & x \in (\pi/4; \ \pi/2); \\ 0, & x \notin (\pi/4; \ \pi/2), \end{cases}$$

де a — невідомий параметр. Знайти ймовірність попадання випадкової величини ξ на проміжок ($\pi/4$; $\pi/3$). Обчислити медіану, моду, математичне сподівання та дисперсію випадкової величини ξ .

BAPIAHT 17

- 1. Скількома способами можна розставити 20 книг у книжковій шафі з 5 полицями, якщо кожна полиця може вмістити усі 20 книг ?
- **2.** Гральну кістку підкидають двічі. Результат експерименту число очок, що випали. Розглянемо події: M сума очок дорівнює трьом; N сума очок, які випали, менша 11; K сума очок, що ділиться на 5. Які з даних подій сумісні, а які ні ? Описати події: $M \cap N$, \overline{K} , $N \cap K$, $M \cup N$, $M \cup K$, \overline{N} , $M \cup N \cup K$, $M \cap N \cap K$.
- **3.** У колоді 36 карт. Яка ймовірність того, що серед 5 навмання взятих карт: а) саме дві бубнової масті; б) жодної черви ?
- **4.** Усередині квадрата з вершинами в точках (0; 1), (1; 0), (0; 0), (1; 1) навмання вибирається точка M(x; y). Яка ймовірність того, що її віддаль до точки (1; 1) не перевищить 0.5?
- 5. Дві сестри ходять у ліс по чорниці з маленьким відерком. Разом вони завжди назбирують повне відерко, старша сестра сама може назбирати відерко в 40% випадків, а молодша тільки в 5%. Мама може залишити сестер незалежно одну від одної вдома з імовірністю 2/3. Яка ймовірність того, що у випадково взятий день буде назбирано повне відерко чорниць ?
- **6.** Прилад складається з 6 вузлів, які виходять із ладу за час t з імовірністю 0,1 незалежно один від одного. Знайти ймовірність того, що за час t з ладу вийде не менше 5 вузлів.
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,3$ і x_2 , якщо $x_1< x_2$ і $M\xi=3,7,\ D\xi=0,21$.
- **8.** Знайти ймовірність того, що подія A станеться рівно 70 разів у 220 випробуваннях, якщо ймовірність появи події A у кожному з них дорівнює 0,3.
- 9. Проводиться три постріли по мішені з імовірністю влучення 2/3. Нехай випадкова величина ξ це кількість влучень. Побудувати для неї ряд розподілу, многокутник розподілу та функцію розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.
- **10.** Дано функцію розподілу випадкової величини ξ :

$$F(x) = \begin{cases} 0, & x \le 0; \\ (x^2 + 3x)/4, & 0 < x \le 1; \\ 1, & x > 1. \end{cases}$$

Обчислити медіану, моду, математичне сподівання та дисперсію випадкової величини ξ .

BAPIAHT 18

- 1. Довести, що $C_n^m + 3C_n^{m+1} + 3C_n^{m+2} + C_n^{m+3} = C_{n+3}^{m+3}$.
- **2.** Гральна кістка підкидається один раз. Результат експерименту число очок на верхній грані. Розглянемо події: M випала п'ятірка; N випало не менше, ніж 2 очки; K випала парна кількість очок. Які з даних подій сумісні, а які ні ? Описати події: $M \cap K, \ N \cap K, \ M \cup N, \ M \cup K, \ \overline{N}, \ \overline{K}, \ M \cup N \cup K, \ M \cap N \cap K$.
- **3.** Партія з 80 телевізорів містить 5 із прихованим дефектом. Знайти ймовірність того, що серед 3 відібраних телевізорів: а) усі будуть добрі; б) буде саме один бракований.
- **4.** Нехай задано рівносторонній трикутник ABC зі стороною 5 см. Знайти ймовірність того, що навмання взята точка в ньому буде знаходитись від точки A на віддалі, більшій ніж 2 см.
- 5. € дві коробки: в першій 10 білих і 15 чорних кульок, а в другій 10 білих і 10 чорних. З першої коробки в другу, не дивлячись, перекидають 5 кульок, перемішують їх і з другої коробки навмання виймають одну кульку. Яка ймовірність того, що вона біла ?
- **6.** Імовірність влучення в мішень при одному пострілі дорівнює 0,7. Робиться 6 незалежних пострілів. Яка ймовірність: а) саме 4 влучень; б) 6 влучень ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,2$ і x_2 , якщо $x_1< x_2$ і $M\xi=8,8,\ D\xi=0,16$.
- 8. Ймовірність появи події A в кожному з 230 незалежних випробувань стала і дорівнює 0,4. Знайти ймовірність того, що подія A станеться не більше, ніж 100 разів.
- 9. Проводиться 4 незалежних досліди, в кожному з яких подія з'являється з ймовірністю 0,4. Нехай випадкова величина ξ кількість появ події A. Побудувати для неї ряд розподілу, многокутник розподілу та функцію розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.
- **10.** Щільність випадкової величини ξ задається формулою:

$$f(x) = \begin{cases} a/x, & x \in (1; 2); \\ 0, & x \notin (1; 2). \end{cases}$$

Визначити невідомий параметр a. Знайти функцію розподілу, моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

- **1.** Скільки дільників має число 3^57^4 ?
- **2.** З колоди карт навмання виймають одну карту. Розглянемо події: A вийняли карту чорної масті; B вийняли короля; C вийняли даму треф. Які з даних подій є сумісні, а які ні ? Описати події: $\overline{A}, A \cap B, A \cup C, A \cup B, A \cap C, B \cap C$.
- **3.** Студент знає 25 питань з 30. Щоб скласти іспит, потрібно відповісти принаймні на 2 питання з 3, що є в білеті. Яка ймовірність того, що студент складе іспит ?
- **4.** Яка ймовірність того, що навмання вибрана точка з круга радіуса R попаде всередину фіксованого сектора в $\pi/3$ радіанів ?
- 5. Вироби, які виготовляє завод, з імовірністю 0,05 мають дефект. Працюють два контролери, причому виріб потрапляє до одного з них з однаковою ймовірністю. Перший контролер бракує поганий виріб з імовірністю 0,9, а другий з імовірністю 0,8. Яка ймовірність того, що навмання взятий виріб буде забраковано?

- **6.** Шість разів підкидаємо пару (дві) гральних кісток. Яка ймовірність того, що саме 3 рази сума очок, які випадуть, буде не більше чотирьох ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,6$ і x_2 , якщо $x_1< x_2$ і $M\xi=3,2,\ D\xi=2,16$.
- **8.** Імовірність влучення в мішень при одному пострілі дорівнює 0,65. Знайти ймовірність того, що з 240 незалежних пострілів буде рівно 150 влучень.
- 9. Два стрільці незалежно один від одного роблять по одному пострілу по мішені, причому ймовірність влучення для першого стрільця становить 0,5, а для другого 0,7. Нехай випадкова величина кількість влучень у мішень. Побудувати для неї ряд розподілу, многокутник розподілу та функцію розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.
- **10.** Дано функцію розподілу випадкової величини ξ :

$$F(x) = \begin{cases} 0, & x \le 0; \\ x^2 + 3x/2, & 0 < x \le 1/2; \\ 1, & x > 1/2. \end{cases}$$

Обчислити моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

- **1.** Студенту потрібно скласти 4 іспити протягом 12 днів. Скількома способами він може це зробити ?
- **2.** Три рази стріляють по мішені. Розглянемо події: A принаймні два попадання; B попадання при першому пострілі; C хоча б один промах. Які з даних подій сумісні, а які ні ? Описати події: $\overline{A}, \ \overline{C}, \ A \cup B, \ A \cup C, \ A \cap B, \ A \cap C$.
- **3.** Серед 50 пачок реактивів 10 пачок недоброякісних. Купили 5 пачок реактивів. Яка ймовірність того, що серед них: а) буде лише одна пачка недоброякісна; б) усі пачки реактивів добрі?
- **4.** У кубі зі стороною 5 см навмання вибирається точка. Яка ймовірність того, що її віддаль до фіксованої вершини куба буде менша за 2 см ?
- **5.** Прилад може працювати у двох режимах: нормальному й ненормальному, причому ймовірність нормального режиму 0,8, а ненормального 0,2. Імовірність виходу з ладу приладу в нормальному режимі 0,1, а в ненормальному 0,4. Відомо, що прилад вийшов із ладу. Яка ймовірність того, що він працював у нормальному режимі ?
- **6.** Завод випускає деталі, серед яких 7% бракованих. Яка ймовірність того, що серед 6 деталей буде не менше однієї бракованої ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,9$ і x_2 , якщо $x_1< x_2$ і $M\xi=2,2,\ D\xi=0,36$.
- **8.** Підкидаємо монету 260 разів. Знайти ймовірність того, що герб появиться не більше 150 разів.
- 9. Один раз підкидається гральна кістка. Випадкова величина ξ набуває значення рівні кількості очок, що випали, мінус 2. Побудувати для неї ряд розподілу, многокутник розподілу та функцію розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.

10. Щільність випадкової величини ξ задається формулою:

$$f(x) = \begin{cases} a/x, & x \in (2; 4); \\ 0, & x \notin (2; 4). \end{cases}$$

Визначити невідомий параметр a. Знайти функцію розподілу, моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

BAPIAHT 21

- **1.** Знайти n, якщо відомо, що в розкладі $(1+x)^n$ коефіцієнти при x^5 і x^{12} є однакові ?
- **2.** Гральну кістку підкидають два рази. Результат експерименту сума очок, що випали. Розглянемо події: M сума очок, що випали, дорівнює 4; N сума очок менша 10; K сума очок ділиться на 3. Які з даних подій сумісні, а які ні ? Описати події: $M \cap N, \ N \cap K, \ \overline{N}, \ \overline{K}, \ M \cup K, \ M \cup N \cup K, \ M \cap N \cap K, \ M \cup N$.
- **3.** У коробці є 7 білих та 11 чорних кульок. Знайти ймовірність того, що серед 5 навмання вийнятих кульок буде: а) саме 4 білих; б) жодної білої.
- **4.** У кулі радіуса 4 см навмання вибрана точка. Яка ймовірність того, що вона розташована не далі, як на 1 см від граничної сфери ?
- **5.** У двох коробках міститься відповідно 12 та 18 кульок, причому по 5 і 7 білих. З першої коробки переклали одну кульку в другу, перемішали й вийняли з другої коробки одну кулю. Яка ймовірність того, що вона біла ?
- **6.** Проводиться 6 незалежних пострілів по мішені з імовірністю влучення 0,4. Яка ймовірність не більше 4 влучень ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,2$ і x_2 , якщо $x_1< x_2$ і $M\xi=2,6,\ D\xi=0,64$.
- **8.** Імовірність народження хлопчика дорівнює 0,51. Знайти ймовірність того, що серед 120 новонароджених дітей буде рівно 60 хлопчиків.
- **9.** Випадкова величина ξ задана рядом розподілу:

x_i	-2	-1	0	2	3
p_i	0,1	0,2	0,2	0,3	0,2

Знайти функцію розподілу та многокутник розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.

10. Функція розподілу випадкової величини ξ задається формулою:

$$F(x) = \begin{cases} 0, & x \le -2; \\ (x+2)/4, & x \in (-2; 2]; \\ 1, & x > 2. \end{cases}$$

Обчислити моду, медіану, математичне сподівання та дисперсію випадкової величини ξ . Побудувати криву розподілу.

BAPIAHT 22

1. В інституті навчаються 1500 студентів. Довести, що принаймні двоє з них мають однакові ініціали.

- **2.** Гральна кістка підкидається один раз. Результат експерименту число очок на верхній грані. Розглянемо події: M випала шістка; N випало більше, ніж 1 очко; K випала непарна кількість очок. Які з даних подій сумісні, а які ні ? Описати події: $M \cap N$, $M \cup K$, \overline{N} , \overline{K} , $M \cup N \cup K$, $M \cap N \cap K$, $M \cup N$, $N \cap K$.
- **3.** У класі навчається 16 дівчат та 20 хлопців. Знайти ймовірність того, що серед 4 чергових у їдальні: а) буде 3 дівчини; б) не буде жодної дівчини.
- **4.** Яка ймовірність того, що навмання взята точка з куба зі стороною 12 см знаходиться всередині максимальної вписаної у нього кулі ?
- **5.** Мандрівник виходить з пункту A і на кожному роздоріжжі вибирає навмання одне з можливих продовжень шляху (не повертаючись назад):

Яка ймовірність того, що він попаде в пункт B?

- 6. Що ймовірніше: випадання 2 гербів при 5 киданнях монети чи 3 гербів при 6 киданнях ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,6$ і x_2 , якщо $x_1< x_2$ і $M\xi=1,4,\,D\xi=0,24.$
- **8.** Гральну кістку підкидають 270 разів. Знайти ймовірність того, що "трійка" випаде не менше 50 разів.
- 9. Нехай дискретна випадкова величина задана функцією розподілу

$$F(x) = \begin{cases} 0, & x \le -1; \\ 0, 1, & -1 < x \le 0; \\ 0, 5, & 0 < x \le 1; \\ 1, & x > 1. \end{cases}$$

Побудувати ряд розподілу та многокутник розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.

10. Нехай щільність випадкової величини ξ задається формулою:

$$f(x) = \begin{cases} (2-x)/2, & x \in (0; 2); \\ 0, & x \notin (0; 2). \end{cases}$$

Знайти функцію розподілу та ймовірність попадання величини ξ на проміжок (1; 2). Обчислити моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

- 1. Скількома способами 20 різних предметів можна розташувати у 5 ящиках ?
- **2.** Гральна кістка підкидається два рази. Результат експерименту пара чисел $(x,y), x,y=1,2,\ldots,6$. Розглянемо події: A сума чисел, які випали, парна; B випало дві четвірки; C принаймні одне число непарне. Які з даних подій є сумісні, а які ні ? Описати події: $\overline{A}, \ \overline{C}, \ A\cap B, \ A\cup C, \ A\cap C, \ B\cup A$.
- **3.** У колоді 36 карт. Знайти ймовірність того, що серед 3 взятих навмання карт буде: а) саме 2 дами; б) жодного валета.

- **4.** Яка ймовірність того, що навмання вибрана точка з рівностороннього трикутника ABC розташована ближче, ніж 1 см до сторони AB, якщо AB = 8 см?
- 5. У першій коробці є 10 білих і 5 чорних кульок, у другій 5 білих і 10 чорних куль, а в третій лише білі кульки. Навмання вибирають коробку, а з неї одна куля. а) Яка ймовірність того, що вийнята кулька є білою ? б) Нехай вийнята кулька є білою. Яка ймовірність того, що ця кулька з третьої коробки ?
- **6.** Нехай імовірність влучення в мішень 0,8. Що ймовірніше: 4 влучення з 6 незалежних пострілів чи 5 влучень з 7 ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,1$ і x_2 , якщо $x_1< x_2$ і $M\xi=1,9,\ D\xi=0,09$.
- 8. Монета підкидається 146 разів. Знайти ймовірність того, що герб випаде рівно 75 разів.
- 9. Підкидаються три монети. Випадкова величина ξ набуває значення 5, коли випадуть всі герби, 1 коли випаде саме 1 герб, 5 усі три цифри і 0 в усіх інших випадках. Побудувати для неї ряд розподілу.
- **10.** Щільність випадкової величини ξ задається формулою:

$$f(x) = \begin{cases} a/x^2, & x \in (1; 2); \\ 0, & x \notin (1; 2). \end{cases}$$

Визначити невідомий параметр a. Знайти функцію розподілу, моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

- **1.** У групі 20 студентів знають англійську мову, 15 німецьку, 7 з них знають обидві мови. Скільки студентів у групі, якщо кожен студент знає хоча б одну із названих мов?
- **2.** Гральна кістка підкидається один раз. Результат експерименту число очок на верхній грані. Розглянемо події: M— випало не більше, ніж 3 очки; N випало не менше, ніж 3 очки; K випало більше, ніж 5 очок. Які з даних подій сумісні, а які ні ? Описати події: $M \cap N, \ N \cap K, \ M \cup N, \ M \cup K, \ M \cup N \cup K, \ \overline{N}, \ \overline{K}, \ M \cap N \cap K$.
- **3.** Партія з 70 деталей містить 5 бракованих. Закупили 10 деталей. Яка ймовірність того, що серед них: а) буде саме 2 браковані; б) не буде жодної бракованої ?
- **4.** Яка ймовірність того, що точка, вибрана навмання з кулі радіуса 6 см знаходиться не більше, як на 2 см від її центру ?
- 5. З 12 студентів, які прийшли на іспит, троє знають 30 білетів з 40, двоє 15 білетів, один 10, а решта знають усі білети. Викликається навмання один студент. а) Яка ймовірність того, що він складе іспит ? б) Нехай студент склав іспит. Яка ймовірність того, що він знав лише 10 білетів з 40 ?
- **6.** Що ймовірніше: два випадання "шістки" при 7 киданнях гральної кістки чи 3 випадання з 6 кидань ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,9$ і x_2 , якщо $x_1< x_2$ і $M\xi=4,1,\,D\xi=0,09$.
- **8.** Стріляють 280 разів по мішені з імовірністю влучення 0,6. Знайти ймовірність того, що влучать не менше 180 разів (постріли незалежні).
- **9.** Один раз підкидають дві гральні кістки. Випадкова величина ξ набуває значення, рівне меншому з них. Побудувати для неї ряд розподілу, многокутник розподілу та функцію розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.

10. Задано функцію розподілу

$$F(x) = \begin{cases} 0, & x \le 1; \\ \frac{(x-1)^2}{4}, & 1 < x \le 3; \\ 1, & x > 3, \end{cases}$$

випадкової величини ξ . Знайти її моду, медіану, математичне сподівання та дисперсію.

BAPIAHT 25

- 1. У їдальні є 3 перші страви, 5 других та 2 треті. Скількома способами можна скласти з них обід, який складається з трьох страв ?
- **2.** Кидають три монети. Розглянемо події: A випало саме 2 герби; B на третій монеті випав герб; C випала хоча б одна цифра. Які з даних подій сумісні, а які ні ? Описати події: \overline{A} , \overline{C} , $A \cap B$, $A \cup C$, $A \cap C$, $B \cap C$.
- **3.** Студент знає 30 питань з 45. Щоб скласти іспит, він має відповісти принаймні на 3 питання з 5, які є в білеті. Яка ймовірність того, що студент складе іспит ?
- **4.** У випадковий момент часу з 7 до 12 години з'являється радіосигнал довжиною в 15 хвилин. У випадковий момент цього проміжку включається на годину приймач. Яка ймовірність виявити сигнал ?
- **5.** Шість кульок, серед яких 3 білі та 3 чорні, розподіляються по трьох коробках. Навмання вибирається коробка і з неї кулька. Як розподілити кульки по коробках, щоб імовірність вийняти білу кульку, була максимальною ?
- **6.** Завод виготовляє деталі, серед яких 6% бракованих. Що ймовірніше: що серед 6 деталей буде саме одна бракована чи, що серед 10 деталей буде не більше однієї бракованої.
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,1$ і x_2 , якщо $x_1< x_2$ і $M\xi=5,8,\,D\xi=0,36$.
- 8. Гральна кістка підкидається 125 разів. Знайти ймовірність того, що "трійка" випаде рівно 21 раз.
- **9.** З урни, в якій 5 білих та 3 чорних кульки, навмання виймаються 2 кульки. Нехай випадкова величина ξ кількість білих кульок серед них. Побудувати для неї ряд розподілу, многокутник розподілу та функцію розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.
- **10.** Щільність випадкової величини ξ задається формулою:

$$f(x) = \begin{cases} a/x^2, & x \in (1; 3); \\ 0, & x \notin (1; 3). \end{cases}$$

Визначити невідомий параметр a. Знайти функцію розподілу, моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

BAPIAHT 26

1. Скількома способами можна зробити триколірний прапорець з горизонтальними смугами однакової ширини, якщо є тканина шести різних кольорів ?

- **2.** Гральну кістку підкидають один раз. Результат експерименту число очок на верхній грані. Розглянемо події: M— випало не більше, ніж 4 очки; N випало не менше, ніж 4 очки; K випало менше, ніж 3 очки. Які з даних подій сумісні, а які ні ? Описати події: $M \cap N, \ N \cap K, \ M \cup K, \ \overline{N}, \ \overline{K}, \ M \cup N \cup K, \ M \cup N, \ M \cap N \cap K$.
- **3.** Серед 40 телевізорів 5 мають приховані дефекти. Яка ймовірність того, що серед чотирьох відібраних для перевірки телевізорів: а) виявиться один бракований; б) жодного бракованого ?
- 4. З 9 до 11 години лікар чекає двох пацієнтів: молодого чоловіка та старшу пані. Яка ймовірність того, що комусь з них доведеться чекати в приймальні, якщо вони прийдуть у випадковий момент часу вказаного проміжку й прийом пані триває 1 годину, а молодого чоловіка -15 хв. ?
- **5.** У коробці лежить 25 тенісних м'ячів, причому 20 нових і 5 граних. Для гри навмання виймають 2 м'ячі, а потім повертають назад. Для другої гри теж виймають 2 м'ячі. Яка ймовірність того, що вони виявляться новими ?
- **6.** Кидається гральна кістка. Що ймовірніше: з 7 кидань 3 рази випаде парна кількість очок чи з 5 кидань не менше одного разу випаде парна кількість очок ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,1$ і x_2 , якщо $x_1< x_2$ і $M\xi=5,5,\ D\xi=2,25.$
- 8. Завод виготовляє деталі, причому 6% із них браковані. Яка ймовірність того, що в партії з 290 деталей буде не більше 20 бракованих ?
- **9.** Проводиться 4 незалежні постріли по мішені з імовірністю влучення 0,8. Нехай випадкова величина ξ це кількість влучень. Побудувати для ξ ряд розподілу, функцію розподілу та многокутник розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.
- **10.** Нехай щільність випадкової величини ξ задається формулою:

$$f(x) = \begin{cases} a \sin x, & x \in (0; \pi/3); \\ 0, & x \notin (0; \pi/3), \end{cases}$$

де a — невідомий параметр. Знайти ймовірність попадання випадкової величини ξ на проміжок (0; $\pi/4$). Обчислити моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

- 1. Рота складається з трьох офіцерів, шести сержантів і шестидесяти рядових. Скількома способами можна виділити з них загін, що складається з одного офіцера, двох сержантів і двадцяти рядових ?
- **2.** Гральну кістку підкидають двічі. Результат експерименту число очок, що випали. Розглянемо події: M— сума очок не менша $5;\ N$ сума очок, які випали, не більша $4;\ K$ сума очок ділиться на $5.\ Які$ з даних подій сумісні, а які ні ? Описати події: $M\cap N,\ N\cap K, M\cup N,\ M\cup K,\ M\cup N\cup K, M\cap N\cap K, \overline{N},\ \overline{K}.$
- **3.** У коробці є 8 білих та 10 чорних кульок. Яка ймовірність того, що серед 4 навмання взятих кульок: а) саме дві білі; б) усі кульки білі?
- **4.** Двоє друзів відвідують одну й ту ж кав'ярню між 10 та 11 годиною. Кожен приходить у випадковий момент даного проміжку, 10 хв. п'є свою каву і йде геть. Яка ймовірність їм зустрітись випадково ?

- 5. Проводиться два незалежних постріли снарядами по цілі з імовірністю влучення 0,6 кожен. Ціль знищена з імовірністю 0,7 при одному влученні в неї і з повною ймовірністю при двох влученнях. а) Яка ймовірність того, що ціль буде знищена ? б) Нехай ціль знищена. Яка ймовірність того, що в ціль влучив рівно один снаряд ?
- **6.** Що ймовірніше: виграти в шахи у рівносильного противника дві партії з п'яти чи не більше двох з шести ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,2$ і x_2 , якщо $x_1< x_2$ і $M\xi=5,8,\ D\xi=5,76$.
- **8.** Серед людей, які проживають на даній території, 28% мають карі очі. Яка ймовірність того, що серед 95 вибраних осіб буде 25 карооких ?
- **9.** Проводиться 4 незалежні досліди, в кожному з яких подія A з'являється з імовірністю 0,6. Нехай випадкова величина ξ – це кількість появ події A. Побудувати для ξ ряд розподілу, многокутник розподілу та функцію розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.
- 10. Дано функцію розподілу

$$F(x) = \begin{cases} 0, & x \le 0; \\ 2x^2 + x, & 0 < x \le 1/2; \\ 1, & x > 1/2, \end{cases}$$

випадкової величини ξ . Обчислити її моду, медіану, математичне сподівання та дисперсію.

- 1. З десяти різних квіток треба скласти букет так, щоб у ньому була непарна кількість квіток. Скількома способами це можна зробити ?
- **2.** Гральна кістка підкидається один раз. Результат експерименту число очок на верхній грані. Розглянемо події: M— випало більше, ніж 2 очки; N випало менше, ніж 4 очки; K випала 5 очок. Які з даних подій сумісні, а які ні ? Описати події: $M \cap N, N \cap K, M \cup K, \overline{N}, \overline{K}, M \cup N \cup K, M \cap N \cap K, M \cup N$.
- **3.** У групі з 23 студентів є 18 хлопців. Яка ймовірність того, що серед 4 опитаних студентів: а) саме 4 хлопці; б) лише 2 хлопці ?
- **4.** На поверхні кулі радіуса 2 см навмання вибирають 2 точки. Яка ймовірність того, що їх можна з'єднати (по поверхні кулі) ниткою довжиною π ?
- 5. Два заводи виготовляють однакові деталі, причому перший з 10% браку, а другий з 15%. Відомо, що є 100 деталей першого заводу і 200 другого. а) Яка ймовірність того, що навмання взята деталь добра ? б) Нехай вибрана деталь добра. Яка ймовірність того, що вона виготовлена на першому заводі ?
- **6.** Кидаємо гральну кістку. Що ймовірніше: з 8 кидань число "2" випаде саме 2 рази чи з 3 кидань число "3" не випаде жодного разу ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,3$ і x_2 , якщо $x_1< x_2$ і $M\xi=6,6,\ D\xi=13,44$.
- 8. Завод випускає телевізори, причому 8% із них мають приховані дефекти. Яка ймовірність того, що серед 200 телевізорів, які перевіряються, буде не менше 50 із дефектами?

- 9. Два стрільці незалежно один від одного роблять по одному пострілу по мішені, причому ймовірність влучення для першого стрільця 0,7, а для другого 0,8. Нехай випадкова величина ξ кількість влучень у мішень. Побудувати для неї ряд розподілу, многокутник розподілу та функцію розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.
- **10.** Щільність випадкової величини ξ задається формулою:

$$f(x) = \begin{cases} a/x^3, & x \in (1; 2); \\ 0, & x \notin (1; 2). \end{cases}$$

Визначити невідомий параметр a. Знайти функцію розподілу, моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

BAPIAHT 29

- **1.** Дві листоноші повинні віднести 10 листів. Скількома способами вони можуть розділити цю роботу ?
- **2.** З колоди 36 карт навмання виймають одну карту. Розглянемо події: A вийняли карту червоної масті; B вийняли дев'ятку; C вийняли бубнового туза. Які з даних подій є сумісні, а які ні ? Описати події: \overline{A} , $A \cup B$, $A \cap B$, $A \cup C$, $A \cap C$, $B \cap C$.
- **3.** З повного набору доміно (28 штук) навмання виймають 7 штук. Яка ймовірність того, що серед них буде саме 2 кістки із сумою очок 6 ?
- **4.** Яка ймовірність того, що сума довжин трьох навмання взятих відрізків довжини меншої 10 см буде не більше 10 см?
- 5. У продажу є телевізори трьох заводів: 20% телевізорів першого заводу, 40% другого і стільки ж третього. Продукція першого заводу містить 10% телевізорів із прихованим дефектом, другого заводу 5%, а третього 8%. а) Яка ймовірність того, що навмання куплений телевізор добрий ? б) Нехай купили добрий телевізор. Яка ймовірність того, що він виготовлений на третьому заводі ?
- **6.** При в'їзді в нову квартиру в електромережу було включено 10 лампочок. Кожна електролампочка на протязі року перегоряє з імовірністю 1/4. Яка ймовірність того, що на протязі року перегорить не менше половини лампочок ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,4$ і x_2 , якщо $x_1< x_2$ і $M\xi=4,4,\ D\xi=3,84$.
- 8. Завод випускає вироби, серед яких є 6% бракованих. Яка ймовірність того, що серед 120 виробів, які поступили для перевірки, буде рівно 15 бракованих ?
- **9.** Випадкова величина ξ задана рядом розподілу:

x_i	-0,5	0	1	2
p_i	0,2	0,6	0,1	0,1

Знайти функцію розподілу та многокутник розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.

10. Дано функцію розподілу

$$F(x) = \begin{cases} 0, & x \le 0; \\ 3x^2 + x/2, & 0 < x \le 1/2; \\ 1, & x > 1/2, \end{cases}$$

випадкової величини ξ . Обчислити її моду, медіану, математичне сподівання та дисперсію.

BAPIAHT 30

- **1.** Скількома способами можна зробити триколірну горизонтальну смугу однакової ширини, якщо ε фарби п'яти різних кольорів ?
- **2.** Три рази стріляють по мішені. Розглянемо події: A саме два попадання; B попадання при третьому пострілі; C хоча б один промах. Які з даних подій сумісні, а які ні ? Описати події: $\overline{A}, \ \overline{C}, \ B \cap C, \ A \cup C, \ A \cap B, \ A \cap C.$
- **3.** Одна стара пані не любить цифру "6". Яка ймовірність того, що в номері нового автомобіля її зятя не буде цифри "6" ?
- 4. Яка ймовірність того, що грати квадратної решітки можуть затримати випадкову кулю (нескінченно малого розміру), якщо решітка зроблена з прутів радіуса 2 см, а віддаль між її осями 10 см?
- 5. Партія деталей, серед яких 5% браку, поступила на перевірку. При перевірці бракована деталь виявляється з імовірністю 0,95 і добра деталь бракується з імовірністю 0,05. Яка ймовірність того, що вибрана навмання деталь буде забракована? Нехай деталь забракували в процесі перевірки. Яка ймовірність того, що вона дійсно бракована?
- **6.** Завод виготовляє вироби, серед яких 8% бракованих. На контрольному пункті бракований виріб виявляється з імовірністю 0,1. Яка ймовірність того, що серед 10 виробів буде виявлено: а) саме 2 браковані; б) жодного бракованого ?
- 7. Знайти закон розподілу дискретної випадкової величини ξ , яка може набувати лише два значення: x_1 з імовірністю $p_1=0,6$ і x_2 , якщо $x_1< x_2$ і $M\xi=3,2,\,D\xi=2,16$.
- **8.** Серед населення даної території 15% блондинів. Яка ймовірність того, що серед 100 випадково вибраних місцевих жительок буде не менше 20 білявок?
- 9. Нехай дискретна випадкова величина задана функцією розподілу:

$$F(x) = \begin{cases} 0, & x \le 0; \\ 0, 1, & 0 < x \le 1; \\ 0, 4, & 1 < x \le 2; \\ 0, 7, & 2 < x \le 4; \\ 1, & x > 4. \end{cases}$$

Задати ряд розподілу та многокутник розподілу. Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення.

10. Щільність випадкової величини ξ задається формулою:

$$f(x) = \begin{cases} a/x^3, & x \in (1; 3); \\ 0, & x \notin (1; 3). \end{cases}$$

Визначити невідомий параметр a. Знайти функцію розподілу, моду, медіану, математичне сподівання та дисперсію випадкової величини ξ .

x	0	1	2	3	4	5	6	7	8	9
0,0	0,3989	3989	3989	3988	3986	3984	3982	3980	3977	3973
0,1	3970	3965	3961	3956	56 3951 394		3939	3932	3925	3918
0,2	3910	3902	3894	3885	3876	3867	3857	3847	3836	3825
0,3	3814	3802	3790	3778	3765	3752	3739	3726	3712	3697
0,4	3683	3668	3653	3637	3621	3605	3589	3572	3555	3538
0,5	3521	3503	3485	3467	3448	3429	3410	3391	3372	3352
0,6	3332	3312	3292	3271	3251	3230	3209	3187	3166	3144
0,7	3123	3101	3079	3056	3034	3011	2989	2966	2943	2920
0,8	2897	2874	2850	2827	2803	2780	2756	2732	2709	2685
0,9	2661	2637	2613	2589	2565	2541	2516	2492	2468	2444
1,0	0,2420	2396	2371	2347	2323	2299	2275	2251	2227	2203
1,1	2179	2155	2131	2107	2083	2059	2036	2012	1989	1965
1,2	1942	1919	1895	1872	1849	1826	1804	1781	1758	1736
1,3	1714	1691	1669	1647	1626	1604	1582	1561	1539	1518
1,4	1497	1476	1456	1435	1415	1394	1374	1354	1334	1315
1,5	1295	1276	1257	1238	1219	1200	1182	1163	1145	1127
1,6	1109	1092	1074	1057	1040	1023	1006	0989	0973	0957
1,7	0940	0925	0909	0893	0878	0863	0848	0833	0818	0804
1,8	0790	0775	0761	0784	0734	0721	0707	0694	0681	0669
1,9	0656	0644	0632	0620	0608	0596	0584	0573	0562	0551
2,0	0,0540	0529	0519	0508	0498	0488	0478	0468	0459	0449
2,1	0440	0431	0422	0413	0404	0396	0387	0379	0371	0363
2,2	0355	0347	0339	0332	0325	0317	0310	0303	0297	0290
2,3	0283	0277	0270	0264	0258	0252	0246	0241	0235	0229
2,4	0224	0219	0213	0208	0203	0198	0194	0189	0184	0180
2,5	0175	0171	0167	0163	0158	0154	0151	0147	0143	0139
2,6	0136	0132	0129	0126	0122	0119	0116	0113	0101	0107
2,7	0104	0101	0099	0096	0093	0091	0088	0086	0084	0081
2,8	0079	0077	0075	0073	0071	0069	0067	0065	0063	0061
2,9	0060	0058	0056	0055	0053	0051	0050	0048	0047	0046
3,0	0,0044	0043	0042	0040	0039	0038	0037	0036	0035	0034
3,1	0033	0032	0031	0030	0029	0028	0027	0026	0025	0025
3,2	0024	0023	0022	0022	0021	0020	0020	0019	0018	0018
3,3	0017	0017	0016	0016	0015	0015	0014	0014	0013	0013
3,4	0012	0012	0012	0011	0011	0010	0010	0010	0009	0009
3,5	0009	0008	0008	0008	0008	0007	0007	0007	0007	0006
3,6	0006	0006	0006	0005	0005	0005	0005	0005	0005	0004
3,7	0004	0004	0004	0004	0004	0004	0003	0003	0003	0003
3,8	0003	0003	0003	0003	0003	0002	0002	0002	0002	0002
3,9	0002	0002	0002	0002	0002	0002	0002	0002	0001	0001

Додаток 2. Таблиця значень функції $\Phi_{0}\left(x\right)=\frac{1}{\sqrt{2\pi}}\int\limits_{0}^{x}e^{-t^{2}/2}dt$

x	0	1	2	3	4	5	6	7	8	9
0,0	0,0000	0040	0080	0120	0159	0199	0239	0279	0319	0359
0,1	0398	0438	0478	0517	0557	0596	0636	0675	0714	0753
0,2	0793	0832	0871	0909	0948	0987	1026	1064	1103	1141
0,3	1179	1217	1255	1293	1331	1368	1406	1443	1480	1517
0,4	1554	1591	1628	1664	1700	1736	1772	1808	1844	1879
0,5	1915	1950	1985	2019	2054	2088	2123	2157	2190	2224
0,6	2257	2291	2324	2356	2389	2421	2454	2486	2517	2549
0,7	2580	2611	2642	2673	2703	2734	2764	2793	2823	2852
0,8	2881	2910	2939	2967	2995	3023	3051	3078	3106	3133
0,9	3159	3186	3212	3238	3264	3289	3315	3340	3365	3389
1,0	3413	3437	3461	3485	3508	3531	3554	3577	3599	3621
1,1	3643	3665	3686	3708	3728	3749	3770	3790	3810	3830
1,2	3849	3869	3888	3906	3925	3943	3962	3980	3997	4015
1,3	4032	4049	4066	4082	4099	4115	4131	4147	4162	4177
1,4	4192	4207	4222	4236	4251	4265	4279	4292	4306	4319
1,5	4332	4345	4357	4370	4382	4394	4406	4418	4429	4441
1,6	4452	4463	4474	4484	4495	4505	4515	4525	4535	4545
1,7	4554	4564	4573	4582	4591	4599	4608	4616	4625	4633
1,8	4641	4648	4656	4664	4671	4678	4686	4692	4699	4704
1,9	4713	4719	4726	4732	4738	4744	4750	4756	4761	4767
2,0	4772	4778	4783	4788	4793	4798	4803	4808	4812	4817
2,1	4821	4826	4830	4834	4838	4842	4846	4850	4854	4857
2,2	4861	4864	4868	4871	4874	4878	4881	4884	4887	4890
2,3	4893	4896	4898	4901	4904	4906	4909	4911	4913	4916
2,4	4918	4920	4922	4924	4927	4929	4930	4932	4934	4936
2,5	4938	4940	4941	4943	4945	4946	4948	4949	4951	4952
2,6	4953	4955	4956	4957	4958	4960	4961	4962	4963	4964
2,7	4965	4966	4967	4968	4969	4970	4971	4972	4973	4974
2,8	4974	4975	4976	4977	4977	4978	4979	4979	4980	4981
2,9	4981	4982	4982	4983	4984	4984	4985	4985	4986	4986

x		x		x	
3,0	0,4986	3,4	0,49966	3,8	0,49993
3,1	0,4990	3,5	0,4998	3,9	0,49995
3,2	0,4993	3,6	0,4998	4,0	0,499968
3,3	0,4995	3,7	0,49989	5,0	0,499999