Logistic Regression in the Context of Machine Learning
Logistic Regression Introduction
Linear Algebra Orientation
Hypothesis Function
Cost Function
Gradient Descent

Logistic Regression

Collin Prather

April 25th, 2018

- 1 Logistic Regression in the Context of Machine Learning
- 2 Logistic Regression Introduction
- 3 Linear Algebra Orientation
- 4 Hypothesis Function
 - Representation
 - Interpretation
- Cost Function
 - When y = 1
 - When y = 0
- Gradient Descent

Logistic Regression in the Context of Machine Learning

Logistic Regression Introduction Linear Algebra Orientation Hypothesis Function Cost Function Gradient Descent

Machine Learning

Arthur Samuel

Machine learning is "Field of study that gives computers the ability to learn without being explicitly programmed".

- Logistic Regression in the Context of Machine Learning
- 2 Logistic Regression Introduction
- 3 Linear Algebra Orientation
- 4 Hypothesis Function
 - Representation
 - Interpretation
- Cost Function
 - \bullet When y = 1
 - When y = 0
- 6 Gradient Descent

Class 0 Class 1

- Logistic Regression in the Context of Machine Learning
- 2 Logistic Regression Introduction
- 3 Linear Algebra Orientation
- 4 Hypothesis Function
 - Representation
 - Interpretation
- Cost Function
 - When y = 1
 - When y = 0
- Gradient Descent

Iris Flower Data

	Sepal Length (cm)	Sepal Width (cm)	Target
0	5.1	3.5	0
1	4.9	3.0	0
2	4.7	3.2	0
3	4.6	3.1	0
4	5.0	3.6	0
5	5.4	3.9	0
6	4.6	3.4	0
7	5.0	3.4	0
8	4.4	2.9	0
9	4.9	3.1	0

Logistic regression as a linear classifier

• The linear combination z,

$$z=\theta_1x_1+\theta_2x_2,$$

Logistic regression as a linear classifier

• The linear combination z,

$$z=\theta_1x_1+\theta_2x_2,$$

• can be represented as the matrix equation

$$\underbrace{\begin{bmatrix}
x_1^1 & x_2^1 \\
x_1^2 & x_2^2 \\
\vdots & \vdots \\
x_1^{150} & x_2^{150}
\end{bmatrix}}_{150 \times 2} \cdot \underbrace{\begin{bmatrix}
\theta_1 \\
\theta_2\end{bmatrix}}_{2 \times 1} = \underbrace{\begin{bmatrix}
z_1 \\
z_2 \\
\vdots \\
z_m\end{bmatrix}}_{150 \times 1}$$

- Logistic Regression in the Context of Machine Learning
- 2 Logistic Regression Introduction
- 3 Linear Algebra Orientation
- 4 Hypothesis Function
 - Representation
 - Interpretation
- 6 Cost Function
 - When y = 1
 - When y = 0
- 6 Gradient Descent

Hypothesis Representation

Sigmoid/Logistic Function:
$$g(z) = \frac{1}{1 + e^{-z}}$$

Hypothesis Interpretation

Predictions interpreted as Probabilities

$$h_{\theta}(x)=g(z)=\frac{1}{1+e^{-z}}$$

Hypothesis Interpretation

Predictions interpreted as Probabilities

$$h_{ heta}(x) = g(z) = rac{1}{1 + e^{-z}}$$

= $p(y = 1|x; heta)$

- Logistic Regression in the Context of Machine Learning
- 2 Logistic Regression Introduction
- 3 Linear Algebra Orientation
- 4 Hypothesis Function
 - Representation
 - Interpretation
- Cost Function
 - When y = 1
 - When y = 0
- Gradient Descent

$$\mathsf{Cost}(h_{\theta}(x),y) = egin{cases} -\log(h_{\theta}(x)) & \text{if } y=1 \\ -\log(1-h_{\theta}(x)) & \text{if } y=0 \end{cases}$$

• the domain of $Cost(h_{\theta}(x), y)$ is [0, 1].

When y = 1

Figure: $Cost(h_{\theta}(x), y)$ when y = 1

as
$$h_{ heta}(x) o 1$$
, $\operatorname{Cost}(h_{ heta}(x),y) o 0$ as $h_{ heta}(x) o 0$, $\operatorname{Cost}(h_{ heta}(x),y) o \infty$

When y = 0

Figure: Cost($h_{\theta}(x), y$) when y = 0

as
$$h_{ heta}(x) o 1$$
, $\operatorname{Cost}(h_{ heta}(x), y) o \infty$
as $h_{ heta}(x) o 0$, $\operatorname{Cost}(h_{ heta}(x), y) o 0$

Simplified Cost Function

Previously, we had defined $Cost(h_{\theta}(x), y)$ by cases like so:

$$\mathsf{Cost}(h_{\theta}(x),y) = egin{cases} -\log(h_{\theta}(x)) & \text{if } y=1 \ -\log(1-h_{\theta}(x)) & \text{if } y=0 \end{cases}$$

Simplified Cost Function

Previously, we had defined $Cost(h_{\theta}(x), y)$ by cases like so:

$$\operatorname{\mathsf{Cost}}(h_{ heta}(x),y) = egin{cases} -\log(h_{ heta}(x)) & ext{if } y=1 \ -\log(1-h_{ heta}(x)) & ext{if } y=0 \end{cases}$$

However, it can be compressed:

$$\operatorname{Cost}(h_{\theta}(x), y) = \underbrace{-y \log(h_{\theta}(x))}_{=0 \text{ when } y=0} \underbrace{-(1-y) \log(1-h_{\theta}(x))}_{=0 \text{ when } y=1}$$

- 1 Logistic Regression in the Context of Machine Learning
- 2 Logistic Regression Introduction
- 3 Linear Algebra Orientation
- 4 Hypothesis Function
 - Representation
 - Interpretation
- Cost Function
 - When y = 1
 - When y = 0
- **6** Gradient Descent

Gradient Descent

Cost Over Entire Dataset

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \mathsf{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

Gradient Descent

Cost Over Entire Dataset

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

Gradient Descent

Iterative Gradient Descent Algorithm

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

The Partial Derivative Term

• When we calculate the partial derivative term $\frac{\partial}{\partial \theta_j}J(\theta)$, we find that

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} \left(\frac{1}{m} \left[\sum_{i=1}^m \mathsf{Cost}(h_{\theta}(x^{(i)}), y^{(i)}) \right] \right)$$
$$= \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

The Partial Derivative Term

• When we calculate the partial derivative term $\frac{\partial}{\partial \theta_j}J(\theta)$, we find that

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \left(\frac{1}{m} \left[\sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)}) \right] \right)$$
$$= \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

Updated Gradient Descent Algorithm

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

9 Q (P

The Learning Rate α

Batch Gradient Descent

$$\theta_1 := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_1^{(i)}$$

$$\theta_2 := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_2^{(i)}$$