Logica Proposicional

Juegos de lógica:

Premisas = condicioner prexistentes

Proposición abierta => P(x): X > 4

PN4 Conjunción (and)

PV4 disyunción (or)

TP no (not)

P = 4 (si p, entoucer q), implicación

P => 9 doble implicación (P si y solo si q

Tablas de verdad

1	P	9	P => 9	P (=> 9
	Ø	Ø	1	1
	0	1	1	0
	1	0	Ø	0
	1	1	1	1

Si estudio mate discreta entonces aprieba el curso. Proposiciones:

m: el mayardomo dice la verdad

c: el cocinero dia la verdad

d: el jardinero dice la verdad

e: el empleado sotor ducundo la verdad

Premisas:

Argunento:

8.
$$e = 0$$
 o $e = 1$ 9. $e \neq 0$ y conclusion parcial $j \neq 0$

4) e c	e → 7C
0 0 To Fi	1
0 11	1
1 [0

DC }	(Nà	7((1)
[O [O [1 1 1 1 1 1 1 1 1 1	0 0 0	[1 [1 4]
L	•	

53. Superemos
$$c=0$$

6'. $j=0$ (perque z es verded)
7'. $e=1$ (perque 3 es verded)
8'. $e=0$ (contradicción)

10 en esta hapitación hay una dama y en la otra hay una tigre.

20 er una de estas habitatones hay una dama y en una un tigin

4		1	1
1.	12	T	DAT
	0	10	0
	0	1	0
	11/	0	O
	111	1	1

D	T	DYT
0	6	0
0	1	1
1	0	1
1	7	0

1	7	112
0	0	
0	11	
1 1	0	
1 1	1	

 $P \Rightarrow Q$