Topology

K

December 21, 2022

Contents

7	Hierarchy of Rings	19
6	Localization6.1 Definition and Theorems	17 17 17
5	Quotient	15
4	Polynomial Rings	13
3	Anatomy of Rings 3.1 Exercises and Notes	11 11
2	Ideals	7
1	Rings 1.1 Definition and Theorems	5

4 CONTENTS

Rings

1.1 Definition and Theorems

Definition 1 (Ring). A ring is a set A equipped with two binary operations + (addition) and \cdot (multiplication) satisfying the following three sets of axioms, called the ring axioms.

- 1. (A, +) is an abelian group.
- 2. (A, \cdot) is a semigroup.
- 3. Multiplication is distributive with respect to addition, meaning that
 - $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ for all $a, b, c \in A$ (left distributivity).
 - $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$ for all $a,b,c \in A$ (right distributivity).

A ring is called unitary if it contains the multiplicative identity and commutative if multiplication is commutative.

Ideals

Definition 2 (Ideal). Let A be a ring. A subset $\mathfrak{a} \subset A$ is called an ideal if it satisfies the following two conditions.

- 1. $(\mathfrak{a}, +)$ is a subgroup of (A, +).
- 2. For every $r \in A$ and every $x \in \mathfrak{a}$, it is $rx \in \mathfrak{a}$.

Given a subset $S \subset A$, by the ideal (S) that S generates, we mean the smallest ideal containing S. If an ideal is generated by a subset $S \subset A$, then the elements of this subset are called generators.

An ideal that is generated by a single element is called principal.

If an ideal \mathfrak{a} is not the whole ring A, then the ideal is called proper.

Definition 3 (Ideal Operation). Let \mathfrak{a} and \mathfrak{b} be ideals of a ring A.

1. The sum of two ideals $\mathfrak a$ and $\mathfrak b$ is defined by

$$\mathfrak{a}+\mathfrak{b}=\{\,a+b\mid a\in\mathfrak{a}\text{ and }b\in\mathfrak{b}\,\}=(\mathfrak{a},\mathfrak{b})$$

which is again an ideal. It is the smallest ideal in A that contains $\mathfrak a$ and $\mathfrak b$.

- 2. The product of an ideal
- 3. The intersection of
- 4. The radical of an ideal \mathfrak{a} is defined by

$$\sqrt{\mathfrak{a}} = \left\{ x \in A \mid x^n \in \mathfrak{a} \text{ for some } n \in \mathbb{N}^+ \right\}$$

which is again an ideal.

5. The transporter

Proof. We verify the statements made in the definition.

1. (a) " $\mathfrak{a} + \mathfrak{b}$ is an ideal.":

Example 3.1. The union of two ideals is **not** an ideal in general. Consider (2) and (3) in \mathbb{Z} . If $(2) \cup (3)$ was an ideal, then 3-2=1 would be contained in $(2) \cup (3)$. But $1 \notin (2)$ and $1 \notin (3)$, thus $1 \notin (2) \cup (3)$.

Proposition 4. Let \mathfrak{a} be an ideal of A.

- 1. $\mathfrak{a} = A$ if and only if $1 \in \mathfrak{a}$ if and only if \mathfrak{a} contains an unit.
- 2. $\mathfrak{a}^2 \subset \mathfrak{a}$.

8

- 3. $a \cdot b \subset a \cap b \subset a + b$.
- 4. $\mathfrak{a} \subset \mathfrak{a} + \mathfrak{b}$ and $\mathfrak{b} \subset \mathfrak{a} + \mathfrak{b}$.

Proposition 5. Let \mathfrak{a} and \mathfrak{b} be two ideals of a ring A.

- 1. $\mathfrak{a} \subset \sqrt{\mathfrak{a}}$.
- $2. \ \sqrt{\sqrt{\mathfrak{a}}} = \sqrt{\mathfrak{a}}.$
- 3. If $\mathfrak{a} \subset \mathfrak{b}$, then $\sqrt{\mathfrak{a}} \subset \sqrt{\mathfrak{b}}$.
- 4. $\sqrt{\mathfrak{a}} = A$ if and only if $\mathfrak{a} = A$.
- 5. $\sqrt{\mathfrak{a} \cdot \mathfrak{b}} = \sqrt{\mathfrak{a} \cap \mathfrak{b}} = \sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}}$.
- 6. $\sqrt{\mathfrak{a} + \mathfrak{b}} = \sqrt{\sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}}$.
- 7. If $\mathfrak{a} = \mathfrak{p}^n$ for some prime ideal \mathfrak{p} and $n \in \mathbb{N}^+$, then $\sqrt{\mathfrak{a}} = \mathfrak{p}$.

Proof. We verify each statement.

- 1. Let $x \in \mathfrak{a}$, then trivially, $x^1 \in \mathfrak{a}$, so $x \in \sqrt{\mathfrak{a}}$.
- 2. Since $\sqrt{\sqrt{\mathfrak{a}}} \supset \sqrt{\mathfrak{a}}$ from above, it suffices to verify the other inclusion. Let $x \in \sqrt{\sqrt{\mathfrak{a}}}$, then $x^n \in \sqrt{\mathfrak{a}}$ and in turn, $(x^n)^m \in \mathfrak{a}$. Thus, $x^{nm} \in \mathfrak{a}$, therefore, $x \in \sqrt{\mathfrak{a}}$.
- 3. Suppose $\mathfrak{a} \subset \mathfrak{b}$ and let $x \in \sqrt{\mathfrak{a}}$. Then, $x^n \in \mathfrak{a}$ for some $n \in \mathbb{N}^+$, thus $x^n \in \mathfrak{b}$. It follows that $x \in \sqrt{\mathfrak{b}}$.
- 4. " \Rightarrow ": Let $\sqrt{\mathfrak{a}} = A$, then for all $x \in A$, we have that $x^n \in \mathfrak{a}$ for some $n \in \mathbb{N}^+$. In particular, $1^n \in \mathfrak{a}$, but $1^n = 1$ for all $n \in \mathbb{N}^+$. Thus, $\mathfrak{a} = A$.
 - " \Leftarrow ": On the other hand, let $\mathfrak{a}=A$. In general, it is $\mathfrak{a}\subset\sqrt{\mathfrak{a}}$, therefore $A\subset\sqrt{\mathfrak{a}}$ which immediately yields the desired equality $A=\sqrt{\mathfrak{a}}$.
- 5. " $\sqrt{\mathfrak{a} \cdot \mathfrak{b}} \subset \sqrt{\mathfrak{a} \cap \mathfrak{b}}$ ": If $x \in \sqrt{\mathfrak{a} \cdot \mathfrak{b}}$, then $x^n \in \mathfrak{a} \cdot \mathfrak{b}$ for some $n \in \mathbb{N}^+$. Since $\mathfrak{a} \cdot \mathfrak{b} \subset \mathfrak{a} \cap \mathfrak{b}$, we have $x^n \in \mathfrak{a} \cap \mathfrak{b}$, and it follows that $x \in \sqrt{\mathfrak{a} \cap \mathfrak{b}}$.
 - " $\sqrt{\mathfrak{a} \cdot \mathfrak{b}} \supset \sqrt{\mathfrak{a} \cap \mathfrak{b}}$ ": Let $x \in \sqrt{\mathfrak{a} \cap \mathfrak{b}}$, then $x^n \in \mathfrak{a} \cap \mathfrak{b}$ for some $n \in \mathbb{N}^+$. Hence it is $x^n \in \mathfrak{a}$ and $x^n \in \mathfrak{b}$, therefore $x^n \cdot x^n = x^{2n} \in \mathfrak{a} \cdot \mathfrak{b}$. Conclude $x \in \sqrt{\mathfrak{a} \cdot \mathfrak{b}}$.
 - " $\sqrt{\mathfrak{a} \cap \mathfrak{b}} \subset \sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}}$ ": If $x \in \sqrt{\mathfrak{a} \cap \mathfrak{b}}$, then $x^n \in \mathfrak{a} \cap \mathfrak{b}$, thus $x^n \in \mathfrak{a}$ and $x^n \in \mathfrak{b}$. We may write $x \in \sqrt{\mathfrak{a}}$ and $x \in \sqrt{\mathfrak{b}}$, therefore $x \in \sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}}$.
 - " $\sqrt{\mathfrak{a} \cap \mathfrak{b}} \supset \sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}}$ ": Finally, let $x \in \sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}}$. Then, $x\sqrt{\mathfrak{a}}$ and $x\sqrt{\mathfrak{b}}$, so $x^n \in \mathfrak{a}$ and $x^m \in \mathfrak{b}$ for some $n, m \in \mathbb{N}^+$. Say $n \geq m$, then $x^n \in \mathfrak{b}$. This yields $x^n \in \mathfrak{a} \cap \mathfrak{b}$, thus $x \in \sqrt{\mathfrak{a} \cap \mathfrak{b}}$.
- 6. " $\sqrt{\mathfrak{a} + \mathfrak{b}} \subset \sqrt{\sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}}$ ": Let $x \in \sqrt{\mathfrak{a} + \mathfrak{b}}$, then $x^n \in \mathfrak{a} + \mathfrak{b}$ for some $n \in \mathbb{N}^+$. By definition of sum of ideals, we have that $x^n = a + b$ for some $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$. Since $\mathfrak{a} \subset \sqrt{\mathfrak{a}}$ and $\mathfrak{b} \subset \sqrt{\mathfrak{b}}$, we have $x^n \in \sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}$, thus $x \in \sqrt{\sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}}$.
 - " $\sqrt{\mathfrak{a} + \mathfrak{b}} \supset \sqrt{\sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}}$ ": Now let $x \in \sqrt{\sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}}$, then $x^n \in \sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}$ for some $n \in \mathbb{N}^+$. Hence there exists $a \in \sqrt{\mathfrak{a}}$ and $b \in \sqrt{\mathfrak{b}}$ such that $x^n = a + b$. We have that $a^p \in \mathfrak{a}$ and $b^q \in \mathfrak{b}$

for some $p, q \in \mathbb{N}^+$. Consider

$$(x^n)^{(p+q-1)} = (a+b)^{(p+q-1)}$$
$$= \sum_{k=0}^{p+q-1} {p+q-1 \choose k} a^k \cdot b^{p+q-1-k}.$$

For each $k \in \{0, 1, \dots, p+q-1\}$, we have $a^k \in \mathfrak{a}$ or $b^{p+q-1} \in \mathfrak{b}$. Thus, the whole sum lies in $\mathfrak{a} + \mathfrak{b}$ or in other words $x^{n(p+q-1)} \in \mathfrak{a} + \mathfrak{b}$. Conclude $x \in \sqrt{\mathfrak{a} + \mathfrak{b}}$.

7. " $\sqrt{\mathfrak{a}} \subset \mathfrak{p}$ ": Let $x \in \sqrt{\mathfrak{a}}$, then $x^m \in \mathfrak{a}$ for some $m \in \mathbb{N}^+$. Because $\mathfrak{a} = \mathfrak{p}^n$, we have $x^m \in \mathfrak{p}^n$. We also have $\mathfrak{p}^n \subset \mathfrak{p}$, thus $x^m \in \mathfrak{p}$ and since \mathfrak{p} is prime, $x \in \mathfrak{p}$.

" $\sqrt{\mathfrak{a}} \supset \mathfrak{p}$ ": On the other hand, if $x \in \mathfrak{p}$, then $x^n \in \mathfrak{p}^n = \mathfrak{a}$, therefore $x \in \sqrt{\mathfrak{a}}$.

Proposition 6. 1. $\mathfrak{a} \subset (\mathfrak{a} : \mathfrak{b})$.

Example 6.1. Does $\sqrt{\mathfrak{a}^2} = \mathfrak{a}$ hold?

Anatomy of Rings

Definition 7 (Nilpotent Element and Nilradical). An element x of a ring A is called nilpotent if there exists some positive integer $n \in \mathbb{N}^+$, called the index or the degree, such that $x^n = 0$.

The set of all nilpotent elements is called the nilradical of the ring and is denoted by Nil(A).

3.1 Exercises and Notes

Example 7.1. Let *K* be a field and $A = K[X,Y]/(X - XY^2, Y^3)$.

1. Compute the nilradical Nil(A).

Solution. Denote $(X - XY^2, Y^3) =: \mathfrak{a}$.

$$\begin{split} X+\mathfrak{a}&=XY^2+\mathfrak{a} & \text{because } X-XY^2\Rightarrow X\sim XY^2.\\ &=XY^2Y^2+\mathfrak{a} & \text{because } XY^2-XY^2Y^2=Y^2(X-XY^2)=0\Rightarrow XY^2\sim XY^2Y^2\\ &=XY\cdot Y^3+\mathfrak{a}\\ &=XY\cdot 0+\mathfrak{a}\\ &=0+\mathfrak{a}. \end{split}$$

Thus, $X \in (X-XY^2,Y^3)$. We have therefore the isomorphism ${}^{K[X,Y]}/(X-XY^2,Y^3) \simeq {}^{K[Y]}/(Y^3)$. [I WANT A ELEGANT REASON FOR THIS. PROBABLY ISOMORPHISM THEOREM.]

Clearly, $Y \in \text{Nil}(A)$ or in other words $(Y) \subset \text{Nil}(A)$. But we also have that K[Y]/(Y) = K which is a field, therefore (Y) is a maximal ideal. Because $1 \notin \text{Nil}(A)$ conclude Nil(A) = (Y).

Polynomial Rings

Quotient

Localization

6.1 Definition and Theorems

Definition 8 (Localization). $S^{-1}A$ is again a ring.

Lemma 9. Let A be a ring and $S \subset A$ be a multiplicative subset that does not contain 0. A is an integral domain if and only if $S^{-1}A$ is an integral domain.

Proof. " \Rightarrow ": Let A be an integral domain. Since S does not contain 0, the localization $S^{-1}A$ is a nonzero ring (see EXAMPLE). Let $(x,s) \in S^{-1}A \setminus \{0\}$ be a nonzero element and suppose there is a $(y,t) \in S^{-1}A$ with $(x,s) \cdot (y,t) = 0$. It is (xy,st) = (0,1) and thus $xy \cdot u = 0$ for some $u \in S$. Because x was nonzero and S does not contain 0 we must have y = 0. Hence $S^{-1}A$ is an integral domain.

" \Leftarrow ": On the other hand, let $S^{-1}A$ be an integral domain. JUST USE THE CANONIC MAPPING $\varphi_S:A\longrightarrow S^{-1}A$.

Remark. In the lemma above, the condition $0 \notin S$ is required because if S contains 0, then $S^{-1}A = 0$ and by definition, an integral domain is a nonzero ring.

6.2 Exercises and Notes

Example 9.1. Let A_1 and A_2 be rings. Consider $A = A_1 \times A_2$ and set $S := \{ (1,1), (1,0) \}$. Prove $A_1 \simeq S^{-1}A$.

Solution. I don't understand the solution.

Example 9.2. Let A be a ring and S a multiplicative subset, then the following are equivalent.

- 1. $S^{-1}A = 0$.
- 2. S contains a nilpotent element.
- 3. $0 \in S$.

Proof. "1. \Rightarrow 2.": Let $S^{-1}A = 0$, then for all $x \in A$ and $s \in S$ it is $(x, s) \sim (0, 1)$, thus $x \cdot u = 0$ for some $u \in S$. In particular, this holds for x = 1, therefore $1 \cdot u = 0$. Since a unit can never be a zero divisor, we must have u = 0 which is nilpotent and lies in S.

"1. \Leftarrow 2.": On the other hand, let $x \in S$ be nilpotent, i.e. $x^n = 0$ for some $n \in \mathbb{N}^+$. Because S is multiplicatively closed $x^n = 0$ lies in S. Fix an element $(y, s) \in S^{-1}A$, then $y \cdot 1 \cdot 0 = 0 \cdot s \cdot 0$. Hence $(y, s) \sim (0, 1)$ and we have $S^{-1}A = 0$.

"2. \Rightarrow 3.": Again, let $x \in S$ be nilpotent, thus $x^n = 0$ for some $n \in \mathbb{N}^+$. S is multiplicatively closed and we have $x^n = 0 \in S$.

"2. \Leftarrow 3.": If $0 \in S$, then S simply contains a nilpotent element because 0 is nilpotent.

Example 9.3. Let A be a ring and S a multiplicative subset. Prove $S^{-1}A = 0$ if and only if $0 \in S$.

Example 9.4. Find all intermediate rings $\mathbb{Z} \subset A \subset \mathbb{Q}$, and describe each A as a localization of \mathbb{Z} . As a starter, prove $\mathbb{Z}\left[\frac{2}{3}\right] = S_3^{-1}\mathbb{Z}$ where $S_3 := \left\{3^i \mid i \in \mathbb{N}^+\right\}$.

Hierarchy of Rings