

Spatial Light Modulator Based Propagation of Partially Coherent Speckle Fields in a 4f setup

Bachelor Thesis

Paul Schulze

- Motivation
- Hypotheses
- The Theory of the Propagation of Light
- Experimental and Numerical Methods
- Results from the Experiment and the Simulation
- Conclusion

- Motivation
- Hypotheses
- The Theory of the Propagation of Light
- Experimental and Numerical Methods
- Results from the Experiment and the Simulation
- Conclusion

Motivation

- Measuring micro parts (size ~ 1mm)
- Requirements:
 - High accuracy
 - High speed
 - Robustness
 - Extended depth of field

- State of the art:
 - No current method can fulfill all the requirements at the same time

Motivation

 Measuring micro parts (size ~ 1mm)

	Phase evaluation	SWLI and OCT	SCP	
High accuracy	X	✓	✓	
High speed	✓	X	✓	
Robustness	X	X	X	
Extended depth of field	✓	✓	X	

- Motivation
- Hypotheses
- The Theory of the Propagation of Light
- Experimental and Numerical Methods
- Results from the Experiment and the Simulation
- Conclusion

Hypotheses

- The 4f setup can be simulated on the basis of Fourier optics.
- The Speckle size can be predicted from parameters of the light source and the 4f setup
- The spatial light modulator can move the focal plane in the 4f setup
- I. The depth of focus can be predicted from parameters of the light source and the 4f setup

- Motivation
- Hypotheses
- The Theory of the Propagation of Light
- Experimental and Numerical Methods
- Results from the Experiment and the Simulation
- Conclusion

Theory of Propagation of light

Transfer Function

$$H_z = e^{ikz\sqrt{1-\lambda^2\xi^2}}$$

 \Rightarrow The transfer function of propagation H_z is a <u>phase</u> modulating function in the <u>Fourier domain</u>

The 4f setup

- A Fourier representation is created in the center
- The SLM utilizes the transfer function H_z to create a propagated representation in the output plane

- Motivation
- Hypotheses
- The Theory of the Propagation of Light
- Experimental and Numerical Methods
- Results from the Experiment and the Simulation
- Conclusion

Simulation of the Object

- The rough surface is approximated by a set of points
- The superposition of the spherical waves create the speckle pattern

Speckle Size Estimation in the Simulation

Experimental Setup

- Motivation
- Hypotheses
- The Theory of the Propagation of Light
- Experimental and Numerical Methods
- Results from the Experiment and the Simulation
- Conclusion

Simulation: Speckle Size

 \Rightarrow The Speckle size Δs is inversely proportional to the aperture diameter ρ

$$\Delta s \propto \frac{1}{\rho}$$

Experiment: Speckle Size

• $\rho = 4.5 \text{ mm}$ • $\rho = 6 \text{ mm}$

 ρ : Aperture diameter

⇒ Experimental validation of

$$\Delta s \propto \frac{1}{\rho}$$

Simulation: Partial Coherence

Amplitude cross sections of

 a fully coherent wavefield

 a partially coherent wavefield

⇒ For partially coherent illumination, the area of high contrast is restricted to the vicinity of the surface

Simulation: Partial Coherence

Simulated Results

Experimental Results

bias

SLM Propagation

Paul Schulze 2018

Experimental Results

Contrast Difference

No SLM Modulation

Conclusion

١.	Simulation of the 4f setup
	on the basis of Fourier
	optics

- II. Predictability of Speckle size from parameters of the 4f setup and the light source
- III. Spatial light modulator based propagation
- IV. Predictablity of the area of high contrast for partially coherent illumination

Simulation	Experimen ^a
Simulation	Exhemmen

Conclusion

bias

Hypotheses:

- I. Validation in part
- II. Full validation in simulation validation in part experimentally
- III. Full validation in simulation & experiment
- IV. Evidence strongly sugesst validity