Task1:
Test distribution:

IGD: for the normal distribution

Xk_norm_1: 0.5535598182086459 Xk_norm_2: 0.5216169817907977

IGD for the uniform distribution:

Xk_uniform_1: 0.5658370784582423 Xk_uniform_2: 0.5063676327702041

Conclusion and breifly prove:

According to the plot, we found the 'without_replacement' method can generate better result of the task1.

Because of multiple times of randomization, IGD_wo_task1 can always converge to the mean of y and

the value of the objective result is more steady

Proof of convergence:

$$\label{eq:continuous_problem} y_mean-x_{k+1}=y_mean-x_k+gamman_k(x_k-y_{ik})=y_mean-k/(k+1)*x_k-1/(k+1)*y_{ik}=\\ y_mean-k/(k+1)*((k-1)/k*x_{k-1}+1/k*y_{ik-1})-1/(k+1)*y_{ik}=\\ y_mean-(k-1)/(k+1)*x_{k-1}-1/(k+1)(y_{ik}+y_{ik-1})=......\\ =y_mean-0-1/(k+1)*(k)*y_mean...0 \ when \ k \ is sufficiently large$$

Task2:

Xk_1=xk_2=50.00

Conclusion:

The "without replacement" method is more robust, so that it is better

Task 3:

|x-xsatr|:

Conclusion:

Actually in this case, the two methods are quite similar, but if we try more time, we find the method without

replacement is still a little bit better