An Empirical Analysis of Volatility in China's Green Bond Market

Boyuan Chen

B. A. Candidate in Economics Research Institute of Economics and Management Southwestern University of Finance and Economics

Motivation

What is green bond?

Green bond: a financial instrument to finance "green" and sustainable projects and provide investors with fixed-income payments.

Why care about the green bond market?

- A crucial financial instrument for tackling difficulties related to climate change and environmental issues;
- An fixed-income financial instrument that be contributed to the diversification of investor's portfolios;
- An emerging and promising market, especially for China.

Research Questions

An Increasing Volume:

Scale & Volume of Green Bond Issuance in China

Key Questions:

- How does the volatility pattern of the Chinese green bond market perform, compared to the aggregate conventional Chinese bond market/equity market?
- Do the Chinese green bond market and China's overall bond market/equity market have any short- or long-term volatility transformation phenomenon?

Data source: Wind

Literature Review

Theories of volatility transformation:

Monsoonal Effect (Masson, 1998);
 Spillover Effect (Kim & Lee, 2015);
 Contagion (Aloui & Nguyen, 2011; Desai, 2014; Mendoza & Quadrini, 2010);
 Herd Behavior (Bikhchandani & Sharma, 2000)

Methods of quantifying volatility:

• Univariate GARCH Models:

Seminal ARCH model (Engle, 1983); Generalized ARCH (Bollerslev, 1986); GJR-GARCH (Glosten *et al.*, 1989); EGARCH (Nelson, 1990); NGARCH (Bera and Higgins, 1993); TGARCH (Zakoian, 1994)

• Multivariate GARCH Models:

VEC-GARCH (Bollerslev, Engle and Wooldridge, 1988); CCC-GARCH (Bollerslev, 1990); BEKK-GARCH (Baba, Engle, Kraft and Kroner, 1991); DCC-GARCH (Engle, 2002)

Fixed-income & Equity Market & Green Financial Instrument Research:

- Fixed-income & equity market research: Campbell and Vuolteenaho (2004); Steeley (2006); Christiansen (2010), etc.
- Green Financial Instrument Research: Ortas and Movena (2013); Pham (2016); Climent and Soriano (2011); Nelson, Chang and Witte (2012); Tiwari *et al.* (2022); Khalfaoui, Jabeur, & Dogan (2022), etc.

Description

Three Sources: 05/31/2017 - 04/29/2022

- CSI Exchange Green Bond Index (*China Securities Index*): "labeled" green bond listed on Shanghai & Shenzhen Stock Exchange, excluding ABS, private-placement bond and equity-linked bond.
- S&P China Bond Index (*S&P Global*): daily return of 300 of the largest and most liquid firms from 24 industry groups of the global industry classification standard.
- S&P China A300 Index (*Standard & Poor Global*): government and corporate bonds denominated in the local currency of China.

Data Source: China Securities Index

Descriptive Statistics

Descriptive Statistics of 3 Return Series

	GB Index	Aggregate Bond Index	A 300 Index
Mean	0.023972	0.021338	0.519316
Median	0.03	0.02	1.535
Maximum	0.66	0.69	204.69
Minimum	-0.41	-0.5	-273.55
Std. Dev.	0.067548	0.107095	46.50831
Skewness	0.90787	0.172266	-0.53987
Kurtosis	20.46776	5.926049	5.880188
Jarque-Bera	15626.59	470.1919	478.5854

ADF Test Results

	ADF test results		
Returns on GB	-8.5357***		
Returns on CB	-8.6535***		
Returns on A300	-10.621***		

Note: $GB = green \ bond \ market$; $CB = conventional \ market$; $A300 = equity \ market$; *p < 10%, *** p < 5%, **** p < 1%.

Econometric Specification

Baseline Model

Specifications

Univariate GARCH Model Specification (address the question of how the volatility behaves)

$$Return_{t} = \sum_{h=1}^{r} \varphi_{h} Return_{t-h} + \sum_{k=1}^{s} \chi_{k} \varepsilon_{t-k},$$

$$h_{it} = a_0 + \sum_{p=1}^{P} a_i \varepsilon_{it-p}^2 + \sum_{q=1}^{Q} b_j \sigma_{it-q}^2$$
, where $a_0 > 0$; $a_i > 0 \ \forall i \in [1, p]$; $b_j > 0 \ \forall j \in [1, q]$

- $a_{\rm I}$ and b_j represents the volatility clustering existence where one period of high volatility level is followed by another period of high volatility level;
- The lag terms h and k are determined by "auto.arima" functionality in R:

	GB return	Bond market return	Equity market return
ARIMA Structure	ARIMA(1,0,1)	ARIMA(5,0,3)	ARIMA(1,0,0)

For p & q, following most of the literatures applying GARCH model as analytical framework, I use GARCH(1,1).

Test for ARCH effect: Box-Ljung test of squared residuals:

	GB return	Bond market return	Equity market return
Q-statistics	21.112***	30.616***	66.46***

Baseline Model Extensions

Threshold Effect

$$Return_t = \sum_{h=1}^{r} \varphi_h Return_{t-h} + \sum_{k=1}^{s} \chi_k \varepsilon_{t-k}$$
,

$$h_{it} = a_0 + \sum_{p=1}^{P} a_i \varepsilon_{it-p}^2 + \sum_{q=1}^{Q} b_j \sigma_{it-q}^2 + \delta D_{threshold} \varepsilon_{it-p}^2,$$

where
$$D_{threshold} = \begin{cases} 1, & \text{if } \varepsilon_{it-p} < 0 \\ 0, & \text{if } \varepsilon_{it-p} \ge 0 \end{cases}$$

Examine whether the return of 3 series responds more rapidly to positive or negative shocks

Covid-19's Impact

$$Return_{t} = \sum_{h=1}^{r} \varphi_{h} Return_{t-h} + \sum_{k=1}^{s} \chi_{k} \varepsilon_{t-k},$$

$$h_{it} = a_0 + \sum_{p=1}^{P} a_i \varepsilon_{it-p}^2 + \sum_{q=1}^{Q} b_j \sigma_{it-q}^2 + \lambda D_{pandemic},$$

where
$$D_{threshold} = \begin{cases} 1, & if \ date < 12/01/2019 \\ 0, & if \ date \ge 12/01/2019 \end{cases}$$

Examine whether the return of 3 series become more volatile before/after the pandemic.

Half-life:

$$Half - life(days) = \frac{ln(0.5)}{ln(a_1 + b_1)}$$

Represents how many days each market takes to recover from the shock and return to half of its original volatility

Multivariate Model Specifications

Bivariate DCC-GARCH Model Specification (examine the existence of long-/short-term volatility transformation)

$$R_{Gt} = \mu_G + \varepsilon_{Gt}$$
, $h_{Gt} = a_{0G} + a_{1G}\varepsilon_{Gt-1}^2 + b_{1G}h_{Gt-1}$,

Conditional covariance matrix of z

$$R_{Mt} = \mu_M + \varepsilon_{Mt}, \quad h_{Mt} = a_{0M} + a_{1M}\varepsilon_{Mt-1}^2 + b_{1M}h_{Mt-1},$$

$$\varepsilon_t \left| I_{t-1} = \begin{bmatrix} \varepsilon_{Gt} \\ \varepsilon_{Mt} \end{bmatrix} \right| I_{t-1} \sim WN(0, H_t)$$

$$\varepsilon_{t} \left| I_{t-1} = \begin{bmatrix} \varepsilon_{Gt} \\ \varepsilon_{Mt} \end{bmatrix} \right| I_{t-1} \sim WN(0, H_{t}),$$

$$(2) \mathbf{Q_{T}} = (1 - \alpha - \beta) \mathbf{\overline{R}} + \alpha z_{t-1} z_{t-1}' + \beta \mathbf{Q_{T-1}}, (1) \mathbf{\overline{R}} = E[z_{t-1} z_{t-1}'], \text{ where } \mathbf{z}_{t} = \begin{bmatrix} \varepsilon_{Gt} / \sqrt{h_{Gt}} \\ \varepsilon_{Mt} / \sqrt{h_{Mt}} \end{bmatrix}$$

(4)
$$\Sigma_{\mathbf{t}} = \mathbf{D_{t}} \times \mathbf{R_{t}} \times \mathbf{D_{t}} = \begin{bmatrix} \sigma_{gt}^{2} & \sigma_{gmt} \\ \sigma_{mgt} & \sigma_{mt}^{2} \end{bmatrix}$$
; (3) $\mathbf{R_{t}} = diag(\mathbf{Q_{T}})^{-1/2} \times \mathbf{Q_{T}} \times diag(\mathbf{Q_{T}})^{-1/2}$; $\mathbf{D_{t}} = \begin{bmatrix} \sqrt{h_{Gt}} & 0 \\ 0 & \sqrt{h_{Mt}} \end{bmatrix}$,

Conditional covariance matrix of two series

Conditional correlation matrix of two series

The parameters of interest, α and β , represent the level of volatility transformation between two markets in short-& long-term respectively.

Baseline Result

Volatility clustering phenomenon

	GB returns	Bond market return Equity market return		
α_0	0.000115***	0.005721**	34.60248*	
$lpha_1$	0.062198***	0.147723**	0.12849***	
b_1	0.924123***	0.597723***	0.86842***	
Persistence: $\alpha_1 + b_1$	0.986321	0.745446	0.99691	
Half-life (Days)	50.325	2.360	223.973	
Threshold effect (When it's negative shock, the dummy variable = 1)	-0.028337**	-0.017194	0.058595***	
Covid-19 impact (After Covid = 1, Before Covid = 0)	-0.000330*	-0.000643	0.000207**	

Bivariate Result Analysis

Volatility Transformation:

GB & CB					GB & Equity			
Paramet estimate:		Parameter estimate: CB		Parame estimate:		Parameter estimate: Equity		
$lpha_{0g}$	0.000273	$lpha_{0b}$	0.000691**	$lpha_{0g}$	0.000273	$lpha_{0e}$	37.962883*	
$lpha_{1g}$	0.141202*	$lpha_{1b}$	0.092199***	$lpha_{1g}$	0.141202*	$lpha_{1e}$	0.130569***	
b_{1g}	0.827441***	b_{1b}	0.855476***	b_{1g}	0.827441***	b_{1e}	0.863876***	
	Estimates for the conditi	onal covariance pa	arameters]	Estimates for the condition	nal covariance pa	rameters	
α 0.011759		11759	α		0.054674			
	β	0.959	9064***		β	0.384	216***	
	Conditional Correlation	n between GB & CB	p + 1		Conditional Correlation between	en GB & CB		
litional elation:	0.50 0.45 0.40 0.35			0.50 0.2 0.45 0.0 0.40 -0.2 -0.4 0.35 -0.6				

Further Discussion

Why does there only exists long-term volatility transformation phenomenon?

In the short run, investors shall keep their green bond since:

- Green bond has policy funding support and relatively manageable risk.
- Most of the green bonds are highly rated and are high-quality assets.
- "Isolation" of the green bond market:

Optimal Hedge Ratio = $\frac{\sigma_{gmt}}{\sigma_{mt}^2}$ Hedge Ratio between GB & Equity Market Hedge Ratio between GB & CB 0.7 0.7 0.0005 0.6 0.6 0.0000 0.5 0.5 0.0005 0.4 0.3 0.3 0.0010 Extremely Small Hedge Ratios 0.0015

Further Discussion

Why does there only exists long-term volatility transformation phenomenon?

In the long run, long-term volatility transformation might be related to some structural shocks that change the ecology of the financial environment in equity or conventional bond market. For instance:

- Rating companies are less able to reveal credit risk.
- Inadequate regulation of the financial system.
- Non-market factors in local government bond issuance, leading to distorted market prices.

REUTERS

Business Markets Breakingviews

REUTERS

亚洲 OCTOBER 30, 2020 / 6:09 PM / UPDATED 2 YEARS AGO

中国地方政府债务率年底料达到100%,应避免 债务规模无序膨胀--原财政部官员

亚洲 JANUARY 4, 2021 / 7:33 PM / UPDATED 2 YEARS AGO

中国央行研究文章:金融监管做到有所为、有所 不为,促发展和防风险并重

深度关注 | 东方金诚高管被查引出信用评级领域系列腐败案:量钱评级

来源:中央纪委国家监委网站

发布时间:2020-12-11 17:30

分享 ▼

News related to the causes of structural shock in the finance sector

Source: the Central Commission for Discipline Inspection of the Communist Party of China; Reuters

Conclusion

Conclusion

The Chinese green bond market's volatility is mainly determined by its own 01 "experience" rather than "innovation" (shock);

02 The Chinese green bond market responds more rapidly to its positive shock, and during the period of Covid-19, the volatility of the green bond market became smaller;

03 There only exists significant long-term volatility transformation phenomenon between the green bond market and other two benchmark markets;

The weak connection between the green bond market and the equity market shows 04 that green bonds could not provide a sufficient hedge protection against stock market.

More policy support and regulations should be implemented to stimulate social capital investment in the green bond market and enhance risk management capabilities.

05

Thank You For Your Listening & Invaluable Comments!