Johns Hopkins Engineering

Power Electronics 525.725

Module 7 Lecture 7
Converter Transfer Functions

Some elements of design-oriented analysis, discussed in this chapter

- Writing transfer functions in normalized form, to directly expose salient features
- Obtaining simple analytical expressions for asymptotes, corner frequencies, and other salient features, allows element values to be selected such that a given desired behavior is obtained
- Use of inverted poles and zeroes, to refer transfer function gains to the most important asymptote
- Analytical approximation of roots of high-order polynomials
- Graphical construction of Bode plots of transfer functions and polynomials, to
 - avoid algebra mistakes approximate transfer functions obtain insight into origins of salient features

8.1. Review of Bode plots

Decibels

$$\|G\|_{\mathrm{dB}} = 20 \log_{10}(\|G\|)$$

Decibels of quantities having units (impedance example): normalize before taking log

$$||Z||_{\mathrm{dB}} = 20 \log_{10} \left(\frac{||Z||}{R_{base}} \right)$$

Table 8.1. Expressing magnitudes in decibels

A ctual magnitude	Magnitude in dB
1/2	- 6dB
1	0 dB
2	6 dB
5 = 10/2	20 dB - 6 dB = 14 dB
10	20dB
$1000 = 10^3$	$3 \cdot 20 dB = 60 dB$

 5Ω is equivalent to 14dB with respect to a base impedance of R_{base} = 1Ω , also known as 14dB Ω .

60dBμA is a current 60dB greater than a base current of 1μA, or 1mA.

Bode plot of *f*ⁿ

Bode plots are effectively log-log plots, which cause functions which vary as f^n to become linear plots. Given:

$$\|G\| = \left(\frac{f}{f_0}\right)^n$$

Magnitude in dB is

$$\|G\|_{dB} = 20 \log_{10} \left(\frac{f}{f_0}\right)^n = 20n \log_{10} \left(\frac{f}{f_0}\right)$$

- Slope is 20n dB/decade
- Magnitude is 1, or 0dB, at frequency $f = f_0$

8.1.1. Single pole response

Simple R-C example

Transfer function is

$$G(s) = \frac{v_2(s)}{v_1(s)} = \frac{\frac{1}{sC}}{\frac{1}{sC} + R}$$

Express as rational fraction:

$$G(s) = \frac{1}{1 + sRC}$$

This coincides with the normalized form

$$G(s) = \frac{1}{\left(1 + \frac{s}{\omega_0}\right)}$$

with

$$\omega_0 = \frac{1}{RC}$$

$G(j\omega)$ and $||G(j\omega)||$

Let $s = j\omega$:

$$G(j\omega) = \frac{1}{\left(1 + j\frac{\omega}{\omega_0}\right)} = \frac{1 - j\frac{\omega}{\omega_0}}{1 + \left(\frac{\omega}{\omega_0}\right)^2}$$

Magnitude is

$$\|G(j\omega)\| = \sqrt{\left[\text{Re}\left(G(j\omega)\right)\right]^2 + \left[\text{Im}\left(G(j\omega)\right)\right]^2}$$
$$= \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_0}\right)^2}}$$

Magnitude in dB:

$$\|G(j\omega)\|_{dB} = -20 \log_{10} \left(\sqrt{1 + \left(\frac{\omega}{\omega_0}\right)^2} \right) dB$$

Asymptotic behavior: low frequency

For small frequency,

$$\omega << \omega_0$$
 and $f << f_0$:

$$\left(\frac{\omega}{\omega_0}\right) << 1$$

Then $||G(j\omega)||$ becomes

$$\|G(j\omega)\| \approx \frac{1}{\sqrt{1}} = 1$$

Or, in dB,

$$\|G(j\omega)\|_{dB} \approx 0$$
dB

This is the low-frequency asymptote of $\parallel G(j\omega) \parallel$

$$\|G(j\omega)\| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_0}\right)^2}}$$

Asymptotic behavior: high frequency

The high-frequency asymptote of $||G(j\omega)||$ varies as f^1 . Hence, n=-1, and a straight-line asymptote having a slope of -20dB/decade is obtained. The asymptote has a value of 1 at $f=f_0$.

Deviation of exact curve near $f = f_0$

Evaluate exact magnitude:

$$at f = f_0:$$

$$\|G(j\omega_0)\| = \frac{1}{\sqrt{1 + \left(\frac{\omega_0}{\omega_0}\right)^2}} = \frac{1}{\sqrt{2}}$$

$$\|G(j\omega_0)\|_{dB} = -20 \log_{10} \left(\sqrt{1 + \left(\frac{\omega_0}{\omega_0}\right)^2}\right) \approx -3 \text{ dB}$$

at
$$f = 0.5f_0$$
 and $2f_0$:

Similar arguments show that the exact curve lies 1dB below the asymptotes.

Summary: magnitude

Phase of $G(j\omega)$

$$G(j\omega) = \frac{1}{\left(1 + j\frac{\omega}{\omega_0}\right)} = \frac{1 - j\frac{\omega}{\omega_0}}{1 + \left(\frac{\omega}{\omega_0}\right)^2}$$

$$\angle G(j\omega) = -\tan^{-1}\left(\frac{\omega}{\omega_0}\right)$$

Phase of $G(j\omega)$

Phase asymptotes

Low frequency: 0°

High frequency: -90°

Low- and high-frequency asymptotes do not intersect

Hence, need a midfrequency asymptote

Try a midfrequency asymptote having slope identical to actual slope at the corner frequency f_0 . One can show that the asymptotes then intersect at the break frequencies

$$f_a = f_0 e^{-\pi/2} \approx f_0 / 4.81$$

$$f_b = f_0 e^{\pi/2} \approx 4.81 f_0$$

Phase asymptotes

Phase asymptotes: a simpler choice

Summary: Bode plot of real pole

8.1.2. Single zero response

Normalized form:

$$G(s) = \left(1 + \frac{s}{\omega_0}\right)$$

Magnitude:

$$\|G(j\omega)\| = \sqrt{1 + \left(\frac{\omega}{\omega_0}\right)^2}$$

Use arguments similar to those used for the simple pole, to derive asymptotes:

0dB at low frequency, $\omega << \omega_0$

+20dB/decade slope at high frequency, $\omega \gg \omega_0$

Phase:

$$\angle G(j\omega) = \tan^{-1}\left(\frac{\omega}{\omega_0}\right)$$

—with the exception of a missing minus sign, same as simple pole

Summary: Bode plot, real zero

8.1.3. Right half-plane zero

Normalized form:

$$G(s) = \left(1 - \frac{s}{\omega_0}\right)$$

Magnitude:

$$\|G(j\omega)\| = \sqrt{1 + \left(\frac{\omega}{\omega_0}\right)^2}$$

—same as conventional (left half-plane) zero. Hence, magnitude asymptotes are identical to those of LHP zero.

Phase:

$$\angle G(j\omega) = -\tan^{-1}\left(\frac{\omega}{\omega_0}\right)$$

—same as real pole.

The RHP zero exhibits the magnitude asymptotes of the LHP zero, and the phase asymptotes of the pole

Summary: Bode plot, RHP zero

Asymptotes, inverted pole

Asymptotes, inverted zero

8.1.5. Combinations

Suppose that we have constructed the Bode diagrams of two complex-values functions of frequency, $G_I(\omega)$ and $G_2(\omega)$. It is desired to construct the Bode diagram of the product, $G_3(\omega) = G_I(\omega) G_2(\omega)$.

Express the complex-valued functions in polar form:

$$G_1(\omega) = R_1(\omega) e^{j\theta_1(\omega)}$$

 $G_2(\omega) = R_2(\omega) e^{j\theta_2(\omega)}$
 $G_3(\omega) = R_3(\omega) e^{j\theta_3(\omega)}$

The product $G_3(\omega)$ can then be written

$$G_3(\omega) = G_1(\omega) G_2(\omega) = R_1(\omega) e^{j\theta_1(\omega)} R_2(\omega) e^{j\theta_2(\omega)}$$

$$G_3(\omega) = \left(R_1(\omega) R_2(\omega)\right) e^{j(\theta_1(\omega) + \theta_2(\omega))}$$

Combinations

$$G_3(\omega) = \left(R_1(\omega) R_2(\omega)\right) e^{j(\theta_1(\omega) + \theta_2(\omega))}$$

The composite phase is

$$\theta_3(\omega) = \theta_1(\omega) + \theta_2(\omega)$$

The composite magnitude is

$$R_3(\omega) = R_1(\omega) R_2(\omega)$$

$$\left| R_3(\omega) \right|_{dB} = \left| R_1(\omega) \right|_{dB} + \left| R_2(\omega) \right|_{dB}$$

Composite phase is sum of individual phases.

Composite magnitude, when expressed in dB, is sum of individual magnitudes.

Example 1:
$$G(s) = \frac{G_0}{\left(1 + \frac{s}{\omega_1}\right)\left(1 + \frac{s}{\omega_2}\right)}$$

with $G_0 = 40 \Rightarrow 32 \text{ dB}$, $f_1 = \omega_1/2\pi = 100 \text{ Hz}$, $f_2 = \omega_2/2\pi = 2 \text{ kHz}$

8.1.6 Quadratic pole response: resonance

Example

$$G(s) = \frac{v_2(s)}{v_1(s)} = \frac{1}{1 + s\frac{L}{R} + s^2 LC}$$

Second-order denominator, of the form

$$G(s) = \frac{1}{1 + a_1 s + a_2 s^2}$$

with $a_1 = L/R$ and $a_2 = LC$

How should we construct the Bode diagram?

Approach 1: factor denominator

$$G(s) = \frac{1}{1 + a_1 s + a_2 s^2}$$

We might factor the denominator using the quadratic formula, then construct Bode diagram as the combination of two real poles:

$$G(s) = \frac{1}{\left(1 - \frac{s}{s_1}\right)\left(1 - \frac{s}{s_2}\right)} \quad \text{with} \quad s_1 = -\frac{a_1}{2a_2} \left[1 - \sqrt{1 - \frac{4a_2}{a_1^2}}\right]$$

$$s_2 = -\frac{a_1}{2a_2} \left[1 + \sqrt{1 - \frac{4a_2}{a_1^2}}\right]$$

- If $4a_2 \le a_1^2$, then the roots s_1 and s_2 are real. We can construct Bode diagram as the combination of two real poles.
- If $4a_2 > a_1^2$, then the roots are complex. In Section 8.1.1, the assumption was made that ω_0 is real; hence, the results of that section cannot be applied and we need to do some additional work.

Approach 2: Define a standard normalized form for the quadratic case

$$G(s) = \frac{1}{1 + 2\zeta \frac{s}{\omega_0} + \left(\frac{s}{\omega_0}\right)^2} \qquad \text{or} \qquad G(s) = \frac{1}{1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

- When the coefficients of s are real and positive, then the parameters ζ , ω_0 , and Q are also real and positive
- The parameters ζ , ω_0 , and Q are found by equating the coefficients of s
- The parameter ω_0 is the angular corner frequency, and we can define $f_0 = \omega_0/2\pi$
- The parameter ζ is called the *damping factor*. ζ controls the shape of the exact curve in the vicinity of $f = f_0$. The roots are complex when $\zeta < 1$.
- In the alternative form, the parameter Q is called the *quality factor*. Q also controls the shape of the exact curve in the vicinity of $f = f_0$. The roots are complex when Q > 0.5.

The *Q*-factor

In a second-order system, ζ and Q are related according to

$$Q = \frac{1}{2\zeta}$$

Q is a measure of the dissipation in the system. A more general definition of Q, for sinusoidal excitation of a passive element or system is

$$Q = 2\pi \frac{\text{(peak stored energy)}}{\text{(energy dissipated per cycle)}}$$

For a second-order passive system, the two equations above are equivalent. We will see that Q has a simple interpretation in the Bode diagrams of second-order transfer functions.

Analytical expressions for f_0 and Q

Two-pole low-pass filter example: we found that

$$G(s) = \frac{v_2(s)}{v_1(s)} = \frac{1}{1 + s\frac{L}{R} + s^2 LC}$$

Equate coefficients of like powers of s with the standard form

$$G(s) = \frac{1}{1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

Result:

$$f_0 = \frac{\omega_0}{2\pi} = \frac{1}{2\pi\sqrt{LC}}$$

$$Q = R\sqrt{\frac{C}{L}}$$

Magnitude asymptotes, quadratic form

In the form
$$G(s) = \frac{1}{1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

let $s = j\omega$ and find magnitude:

$$\|G(j\omega)\| = \frac{1}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_0}\right)^2\right)^2 + \frac{1}{Q^2} \left(\frac{\omega}{\omega_0}\right)^2}}$$

Asymptotes are

$$||G|| \rightarrow 1$$
 for $\omega \ll \omega_0$

$$\|G\| \to \left(\frac{f}{f_0}\right)^{-2}$$
 for $\omega >> \omega_0$

Deviation of exact curve from magnitude asymptotes

$$\|G(j\omega)\| = \frac{1}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_0}\right)^2\right)^2 + \frac{1}{Q^2} \left(\frac{\omega}{\omega_0}\right)^2}}$$

At $\omega = \omega_0$, the exact magnitude is

$$||G(j\omega_0)|| = Q$$
 or, in dB:

$$\left\| G(j\omega_0) \right\|_{\mathrm{dB}} = \left| Q \right|_{\mathrm{dB}}$$

The exact curve has magnitude Q at $f = f_0$. The deviation of the exact curve from the asymptotes is $|Q|_{dB}$

Two-pole response: exact curves

8.2.1. Example: transfer functions of the buck-boost converter

Small-signal ac equations of the buck-boost converter, derived in section 7.2:

$$L\frac{d\hat{i}(t)}{dt} = D\hat{v}_g(t) + D'\hat{v}(t) + \left(V_g - V\right)\hat{d}(t)$$

$$C\frac{d\hat{v}(t)}{dt} = -D'\hat{i}(t) - \frac{\hat{v}(t)}{R} + I\hat{d}(t)$$

$$\hat{i}_g(t) = D\hat{i}(t) + I\hat{d}(t)$$

Definition of transfer functions

The converter contains two inputs, $\hat{d}(s)$ and $\hat{v}_s(s)$ and one output, $\hat{v}(s)$

Hence, the ac output voltage variations can be expressed as the superposition of terms arising from the two inputs:

$$\hat{v}(s) = G_{vd}(s) \ \hat{d}(s) + G_{vg}(s) \ \hat{v}_g(s)$$

The control-to-output and line-to-output transfer functions can be defined as

$$G_{vd}(s) = \frac{\hat{v}(s)}{\hat{d}(s)} \bigg|_{\hat{v}_g(s) = 0} \quad \text{and} \quad G_{vg}(s) = \frac{\hat{v}(s)}{\hat{v}_g(s)} \bigg|_{\hat{d}(s) = 0}$$

Derivation of transfer functions

Algebraic approach

Take Laplace transform of converter equations, letting initial conditions be zero:

$$sL\hat{i}(s) = D\hat{v}_g(s) + D'\hat{v}(s) + \left(V_g - V\right)\hat{d}(s)$$
$$sC\hat{v}(s) = -D'\hat{i}(s) - \frac{\hat{v}(s)}{R} + I\hat{d}(s)$$

Eliminate $\hat{i}(s)$, and solve for $\hat{v}(s)$

$$\hat{i}(s) = \frac{D\hat{v}_g(s) + D'\hat{v}(s) + \left(V_g - V\right)\hat{d}(s)}{sL}$$

Derivation of transfer functions

$$sC\hat{v}(s) = -\frac{D'}{sL} \left[D\hat{v}_g(s) + D'\hat{v}(s) + \left(V_g - V \right) \hat{d}(s) \right] - \frac{\hat{v}(s)}{R} + I\hat{d}(s)$$

$$\hat{v}(s) = \frac{-DD'}{D'^2 + s\frac{L}{R} + s^2 LC} \hat{v}_g(s) - \frac{V_g - V - sLI}{D'^2 + s\frac{L}{R} + s^2 LC} \hat{d}(s)$$

write in normalized form:

$$\hat{v}(s) = \left(-\frac{D}{D'}\right) \frac{1}{1 + s \frac{L}{D'^2 R} + s^2 \frac{LC}{D'^2}} \hat{v}_g(s) - \left(\frac{V_g - V}{D'^2}\right) \frac{\left(1 - s \frac{LI}{V_g - V}\right)}{1 + s \frac{L}{D'^2 R} + s^2 \frac{LC}{D'^2}} \hat{d}(s)$$

Derivation of transfer functions

Hence, the line-to-output transfer function is

$$G_{vg}(s) = \frac{\hat{v}(s)}{\hat{v}_g(s)} \bigg|_{\hat{d}(s) = 0} = \left(-\frac{D}{D'}\right) \frac{1}{1 + s \frac{L}{D'^2 R} + s^2 \frac{LC}{D'^2}}$$

which is of the following standard form:

$$G_{vg}(s) = G_{g0} \frac{1}{1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

Salient features of the line-to-output transfer function

Equate standard form to derived transfer function, to determine expressions for the salient features:

$$G_{g0} = -\frac{D}{D'}$$

$$\frac{1}{\omega_0^2} = \frac{LC}{D'^2}$$

$$\omega_0 = \frac{D'}{\sqrt{LC}}$$

$$\frac{1}{Q\omega_0} = \frac{L}{D^{\prime 2}R}$$

$$Q = D'R \sqrt{\frac{C}{L}}$$

Control-to-output transfer function

$$G_{vd}(s) = \frac{\hat{v}(s)}{\hat{d}(s)} \bigg|_{\hat{v}_g(s) = 0} = \left(-\frac{V_g - V}{D}\right) \frac{\left(1 - s \frac{LI}{V_g - V}\right)}{\left(1 + s \frac{L}{D'^2} R + s^2 \frac{LC}{D'^2}\right)}$$

Standard form:

$$G_{vd}(s) = G_{d0} \frac{\left(1 - \frac{s}{\omega_z}\right)}{\left(1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0}\right)^2\right)}$$

Salient features of control-to-output transfer function

$$G_{d0} = -\frac{V_g - V}{D'} = -\frac{V_g}{D'^2} = \frac{V}{DD'}$$

$$\omega_z = \frac{V_g - V}{L I} = \frac{D'^2 R}{D L} \qquad (RHP)$$

$$\omega_0 = \frac{D'}{\sqrt{LC}}$$

$$Q = D'R \sqrt{\frac{C}{L}}$$

— Simplified using the dc relations: $V = -\frac{D}{D'} V_{g}$ $I = -\frac{V}{D' R}$

Plug in numerical values

Suppose we are given the following numerical values:

$$D = 0.6$$

$$R = 10\Omega$$

$$V_g = 30V$$

$$L = 160\mu\text{H}$$

$$C = 160\mu\text{F}$$

Then the salient features have the following numerical values:

$$|G_{g0}| = \frac{D}{D'} = 1.5 \Rightarrow 3.5 \text{dB}$$

$$|G_{d0}| = \frac{|V|}{DD'} = 187.5 \text{V} \Rightarrow 45.5 \text{dBV}$$

$$f_0 = \frac{\omega_0}{2\pi} = \frac{D'}{2\pi\sqrt{LC}} = 400 \text{Hz}$$

$$Q = D'R\sqrt{\frac{C}{L}} = 4 \Rightarrow 12 \text{dB}$$

$$f_z = \frac{\omega_z}{2\pi} = \frac{D'R}{2\pi DL} = 2.65 \text{kHz}$$

Bode plot: control-to-output transfer function

Bode plot: line-to-output transfer function

8.2.2. Transfer functions of some basic CCM converters

Table 8.2. Salient features of the small-signal CCM transfer functions of some basic dc-dc converters

Converter	G_{g0}	G_{d0}	ω_0	Q	ω_z
buck	D	$\frac{V}{D}$	$\frac{1}{\sqrt{LC}}$	$R\sqrt{rac{C}{L}}$	∞
boost	$\frac{1}{D'}$	$\frac{V}{D'}$	$rac{D'}{\sqrt{LC}}$	$D'R\sqrt{\frac{C}{L}}$	$\frac{D'^2R}{L}$
buck-boost	$-rac{D}{D'}$	$rac{V}{DD'^2}$	$rac{D'}{\sqrt{LC}}$	$D'R \sqrt{\frac{C}{L}}$	$\frac{D^{\prime 2}R}{DL}$

where the transfer functions are written in the standard forms

$$G_{vd}(s) = G_{d0} \frac{\left(1 - \frac{s}{\omega_z}\right)}{\left(1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0}\right)^2\right)}$$

$$G_{vg}(s) = G_{g0} \frac{1}{1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

8.2.3. Physical origins of the right half-plane zero

 transient response: output initially tends in wrong direction

Two converters whose CCM control-to-output transfer functions exhibit RHP zeroes

Waveforms, step increase in duty cycle

$$\left\langle i_{\scriptscriptstyle D} \right\rangle_{T_{\scriptscriptstyle S}} = d' \left\langle i_{\scriptscriptstyle L} \right\rangle_{T_{\scriptscriptstyle S}}$$

- Increasing d(t)
 causes the average
 diode current to
 initially decrease
- As inductor current increases to its new equilibrium value, average diode current eventually increases

