โครงงานรายวิชาวิทยาการคำนวณ (Computational Science) ประจำภาคเรียนที่ 2 ปีการศึกษา 2565

การตรวจจับแมลงน้ำ Aquatic insect detection

จัดทำโดย นายเอกราช ชัยสงค์ 653380355-5 นายณดล มูลตลาด 653380325-4

> อาจารย์ประจำวิชา นายธนพล ตั้งชูพงศ์

สาขาวิทยาการคอมพิวเตอร์ วิทยาลัยการคอมพิวเตอร์ มหาวิทยาลัยขอนแก่น

หน้าที่ที่ได้รับมอบหมาย

นายเอกราช ชัยสงค์

- -ทำการรวบรวมข้อมูลตัวอย่าง
- -เขียนรุปเล่มโครงการ
- -ปรับสไลด์ที่ใช้ในการพรีเซนต์

นายณดล มูลตลาด

- -ทำการรวบรวมข้อมูลตัวอย่าง
- -เขียน Code ต่างๆในโครงงาน
- -สไลด์ที่ใช้ในการพรีเซนต์

ชื่อเรื่อง การตรวจจับแมลงน้ำ Aquatic insect detection

ผู้จัดทำ นายเอกราช ชัยสงค์

นายณดล มูลตลาด

อาจารย์ประจำวิชา นายธนพล ตั้งชูพงศ์ สถานที่ศึกษา มหาวิทยาลัยขอนแก่น

ปีการศึกษา 2565

บทคัดย่อ

การจัดทำโครงงานเรื่องการตรวจจับแมลงน้ำ (Aquatic insect detection) วัตถุประสงค์เพื่อพัฒนาวิธีการในการ ตรวจจับและนับแมลงน้ำที่นำมาศึกษา เพื่อพัฒนาโมเดลแมชชีนเลิร์นนิ่งที่สามารถตรวจจับและจำแนกแมลงในน้ำได้อย่างแม่นยำ เพื่อเปรียบเทียบความแม่นยำและประสิทธิภาพของโมเดลแมชชีนเลิร์นนิ่งกับวิธีการตรวจจับและจำแนกแมลงในน้ำแบบแมนนวล แบบดั้งเดิม โดยในการศึกษาทำให้เราเข้าใจในเรื่องdetection โมเดลและได้ฝึกการเทรนโมเดล และในผลสรุปที่ผู้จัดทำได้ทำมา จากการศึกษาตัวอย่างแมลงน้ำทั้ง 5 สายพุนธุ์จำนวนรูปภาพที่นำมาใช้ประมาณ 700รูป ได้ข้อสรุปว่าการใช้การตรวจจับแบบ detection โมเดลมีความรวดเร็วที่มากกว่า แม่นยำกว่าการทำแบบแมนนวล เป็นไปตามสมมุตฐานที่ได้ตั้งไว้

คำสำคัญ: แมลงน้ำ ตรวจจับ วัตถุ

สารบัญ

บทที่1	1
บทน้ำ	1
บทที่ 2	3
เอกสารและโครงงานที่เกี่ยวข้อง	3
บทที่3	۵
วิธีการจัดทำโครงงาน	4
บทที่4	7
ผลการศึกษา	7
บทที่5	8
สรุปผลและข้อเสนอแนะ	8
เอกสารอ้างอิง	ç

บทน้ำ

1.1)ที่มาและความสำคัญ

แมลงน้ำเป็นสิ่งมีชีวิตชนิดหนึ่งที่อาศัยอยู่ในน้ำทั้งระบบนิเวศน้ำนิ่งและน้ำไหล มีช่วงหนึ่งของวงจรชีวิตในระยะตัวอ่อน หรือดักแด้อาศัยอยู่ในแหล่งน้ำ(ธนพงศ์, 2558) โดยปกติแมลงน้ำหลายชนิดมีความไวต่อการเปลี่ยนแปลงของสภาพน้ำ น้ำเป็น ทรัพยากรสำคัญต่อระบบนิเวศ สิ่งมีชีวิตที่อาศัยอยู่ในแหล่งน้ำ และชีวิตมนุษย์ในด้านการอุปโภคบริโภค การเกษตร และ อุตสาหกรรม การศึกษาเกี่ยวกับคุณภาพน้ำจึงมีความสำคัญ โดยการใช้แมลงน้ำเป็นหนึ่งในวิธีที่ได้ผล โดยแมลงน้ำเป็นหนึ่งในดัชนี ที่ใช้ในการวิเคราะห์และช่วยแก้ปัญหาต่างๆ ของน้ำในระบบนิเวศได้การตรวจจับวัตถุ (Object Detection) คือ เทคโนโลยีในทาง คอมพิวเตอร์หลักการที่เกี่ยวกับComputer Vision และ Image Processing ที่ใช้ในงาน AI ตรวจจับวัตถุชนิดที่กำหนด เช่น มนุษย์ รถยนต์ อาคาร ที่อยู่ในรูปภาพหรือวิดีโอและในการทดลองนี้เราจะนำมาใช้ในการตรวจจับแมลงน้ำ

1.2)วัตถุประสงค์

- 1. เพื่อพัฒนาวิธีการในการตรวจจับและนับแมลงน้ำที่นำมาศึกษา
- 2. เพื่อพัฒนาโมเดลแมชชีนเลิร์นนิ่งที่สามารถตรวจจับและจำแนกแมลงในน้ำได้อย่างแม่นยำ
- 3. เพื่อเปรียบเทียบความแม่นยำและประสิทธิภาพของโมเดลแมชชีนเลิร์นนิ่งกับวิธีการตรวจจับและ จำแนกแมลงในน้ำแบบแมนนวลแบบดั้งเดิม
- 4. เพื่อให้โครงการโอเพ่นซอร์สและเปิดให้ชุมชนวิทยาศาสตร์ได้อย่างอิสระเพื่ออำนวยความสะดวกใน การวิจัยและพัฒนาในด้านการตรวจจับและจำแนกแมลงในน้ำ

1.3)ขอบเขตของโครงงาน

1.3.1)ขอบเขตด้านข้อมูล

จะทำการจำแนกชุดตัวอย่างแมลงน้ำ ที่ได้จากการรวบรวมข้อมูลโดยข้อมูลนำมาจากวิจัยเรื่องความ
หลากหลายของแมลงน้ำเพื่อเป็นดัชนีบ่งชี้คุณภาพ้ำห้วยพันศิลาตำบลหนองบัวใต้ อำเภอศรีบุญเรืองจังหวัดหนองบัวลำภู
โดยในการศึกษาเราได้นำแมลงน้ำจำนวน 5 วงศ์โดยจะทำการจำแนกแมลงน้ำทั้ง 5 วงศ์โดยทั้ง 5 วงศ์ที่เลือกมาทำการทดลองเป็น
วงศ์ที่สามารถพบเห็นได้ง่ายและสามารถนำมาทดลองได้ง่าย

- 1. Notonectidae
- 2. Micronectidae
- 3. Baetidae
- 4. Caenidae
- 5. Chironomidae

1.3.2) สมมุติฐานของการทำโครงงาน

1.การใช้ระบบการตรวจจับแมลงน้ำของเราสามารถ จำแนกชนิดของแมลงน้ำได้รวดเร็วหว่าการจำแนกแบบ แมนนวล

1.4)ผลที่คาดว่าจะได้รับ

- 1.สามารถจำแนกแมลงน้ำแต่ละชนิดได้อย่างแม่นยำและรวดเร็ว
- 2.ได้ความรู้เกี่ยวกับการเขียนโปรแกรมและหลักการของการทำ Detection models

เอกสารและโครงงานที่เกี่ยวข้อง

2.1) ทฤษฐีที่เกี่ยวข้อง

- 2.1.1 Object Detection การตรวจจับวัตถุ คือ เทคโนโลยีในทางคอมพิวเตอร์ หลักการที่เกี่ยวกับ Computer Vision และ Image Processing ที่ใช้ในงาน AI ตรวจจับวัตถุชนิดที่กำหนด เช่น มนุษย์ รถยนต์ อาคาร ที่อยู่ในรูปภาพ หรือวิดีโอ หรือในงานนี้ เรานำมาศึกษาแมลงน้ำ
- 2.1.2 1 การประมวลผลภาพ (Image Processing) คือเทคโนโลยีคอมพิวเตอร์ที่ดำเนินการประมวลผลบางอย่างกับรูปภาพ เพื่อให้ ได้รูปภาพที่สามารถดึงข้อมูลได้ข้อมูลทั้งเชิงปริมาณและคุณภาพและนำไปใช้ประยุกต์ใช้ต่าง ๆ ยกตัวอย่างเช่น ภาพถ่ายดาวเทียม ใช้หลักการของการประมวลผลภาพ การประชมทางไกลผ่านระบบเทเลคอนเฟอเรน ใช้เทคนิคการบีบอัดภาพ เป็นต้น
- 2.1.3 YOLO หรือ You Only Look Once คือ Realtime Object Detection Model ที่มีความโดดเด่นเรื่อง ความเร็วและความ ถูกต้อง YOLO เป็นระบบตรวจจับวัตถุที่ล้ำสมัยแบบเรียลไทม์ที่รวดเร็วและแม่นยำอย่างไม่น่าเชื่อ ความโดดเด่นของ YOLO คือ สามารถ detect แม้กระทั่งวัตถุที่มันซ้อนกันได้ด้วย โดยมีโครงสร้างที่ค่อนข้างซับซ้อนของ grid ในแต่ละชั้นที่เล็กลงเรื่อยๆในแต่ละ Layers

2.2)โครงงานที่เกี่ยวข้อง

สมควร ไข่แก้ว **การประเมินคุณภาพน้ำกับความหลากชนิดของแมลงน้ำในบึงสีมหาวิทยาลัยขอนแก่น** โรงเรียนเมืองถลาง อำเภอถลาง จ.ภูเก็ต 83110

กัญญาณัฐ สุนทรประสิทธิ์, ศิริลักษณ์ วลัญช์เพียร และ สันธิวัฒน์ พิทักษ์พล (2556) **ความหลากหลายของแมลงน้ำในแม่น้ำอิง** สาขาวิชาการประมง คณะเกษตรศาสตร์และทรัพยากรธรรมชาติ มหาวิทยาลัยพะเยา อำเภอเมือง จังหวัด พะเยา

ชนโชติ ภาชะนัย และคณะ งานวิจัยนี้สร้างและทดสอบประสิทธิภาภาพการทำงานของเครื่องคัดแยกขยะรีไซเคิลด้วยการ ประมวลผลภาพโดยรับอินพุตภาพจากกล้องเพื่อทำการประมวลผลแบบเรียลไทม์

สิริทัศน์ เลิศตระกูลถาวร การพัฒนาระบบนับจำนวนนกแอ่นกินรับด้วย YOLO Object Detection ผ่านกล้องถ่ายภาพความ ร้อน

สถาบันเทคโนโลยีไทย-ญี่ปุ่น 2563

จักรภัทร แก้วทอง,ไตรปิฎก อนิทสุวรรณ **โปรแกรมตรวจจับวัตถุและข้อความบนป้ายโฆษณา** สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

วิธีการจัดทำโครงงาน

จากการศึกษาคณะผู้จัดทำได้ดำเนินการพัฒนาตามหัวข้อต่าง ๆ

- 3.1 เก็บรวบรวมข้อมูลตัวอย่างแมลงน้ำ
- 3.2 เครื่องมือที่ใช้ในการทำวิจัย เครื่องมือที่ใช้พัฒนาแอปพลิเคชันครั้งนี้ แบ่งตามหมวดหมู่ ได้ดังนี้
- 1) เครื่องมือประเภท ซอฟต์แวร์ (software) ประกอบด้วย
 - 1.1)) ภาษาไพธอน (Google Colab) และส่วนขยายต่าง ๆ ได้แก่
 - 1.1.1Python torch
 - 1.1.2) Utils
 - 1.1.3) wandb
 - 1.2) Roboflow ใช้ในการ Lebel ภาพตัวอย่าง
 - 1.3) แบบจำลองโมเดล YOLOV5
- 2) เครื่องมือประเภท ฮาร์ดแวร์ (hardware) ประกอบด้วย

CPU: Intel I5-12500

RAM: 16 GB

GPU: GeForce RTX 3060

3.3 วิธีการจัดทำโครงงาน

1) ทำการรวบรวมตัวอย่างแมลงน้ำ ดังภาพที่

3.1

โดยทำการรวบรวม 5 ชนิดดังนี้

- 1. Notonectidae
- 2. Micronectidae
- 3. Baetidae
- 4. Caenidae
- 5. Chironomidae

<u>ภาพที่ 3.1</u> ตัวอย่างรูปแมลงน้ำที่ทำการเก็บรวบรวมมา

7) ลองเทรนโมเดล data เอาจาก path file.yaml เมื่อรันแล้วจะได้ผลลัพธ์ดังนี้ ดังภาพ 3.7

<u>ภาพที่ 3.7</u> ลองเทรนโมเดล มื่อรันแล้วจะได้ผลลัพธ์ดังนี้

8)กำหนดค่าเปอร์เซ็นต์ความแม่นยำ และ รูปภาพที่ถูกเทรน ดังภาพ 3.8

ภาพที่ 3.8 กำหนดค่าเปอร์เซ็นต์ความแม่นยำ

9) ผลลัพท์ของการเทรน ข้อมูลจาก WandB ดัง ภาพ 3.9

ภาพที่ 3.9 ผลลัพท์ของการเทรน ข้อมูลจาก WandB

ผลการศึกษา

ผลการดำเนินงานการพัฒนาการตรวจจับแมลงน้ำ YOLO 5 มีดังนี้

4.1) ผลจากการทดลองด้วยแบบจำลอง YOLO มีรายละเอียดดังนี้ ภาพที่ใช้ในการทดลองประมาณ700รูป จากทั้ง5ชนิด

ผลที่ได้จากการทดลอง

ภาพข้างต้นได้มาจากwandb จะสังเกตได้ว่า Confusion Matrix ของ Notonectidae และ Chironomidae มีค่าใกล้ความเป็น จริงมากที่สุด และลดลงมาตามจำนวนของdata set แต่ละชนิดลงมาเรื่อยๆ และจากภาพแรกจะมีบางภาพที่ไม่สามารถตรวจสอบ ได้ อาจเกิดจากคุณภาพของภาพที่มีขนาดต่ำ และ label ไม่ตรงตามที่ต้องการ

จากการนำภาพตัวอย่างแมลง
น้ำไปทำการตรวจสอบ ผลที่
ออกมาอยู่ในระดับที่ค่อนข้าง
พอใจ มีการตรวจจับชนิดที่
ถูกต้อง แต่ยังตรวจจับได้ไม่
แม่นยำเท่าที่ควร

สรุปผลและข้อเสนอแนะ

จากการจัดทำโครงงาน เรื่อง Aquatic insect detection ผู้จัดทำได้จัดทำโครงงานจนได้ผลการดำเนินงาน ซึ่งสามารถ สรุปผลและให้ข้อเสนอแนะได้ดังนี้

5.1) วัตถุประสงค์

- 1. เพื่อพัฒนาวิธีการในการตรวจจับและนับแมลงน้ำที่นำมาศึกษา
- 2. เพื่อพัฒนาโมเดลแมชชีนเลิร์นนิ่งที่สามารถตรวจจับและจำแนกแมลงในน้ำได้อย่างแม่นยำ
- 3. เพื่อเปรียบเทียบความแม่นยำและประสิทธิภาพของโมเดลแมชชีนเลิร์นนิ่งกับวิธีการตรวจจับและ จำแนกแมลงในน้ำแบบแมนนวลแบบดั้งเดิม
- 4. เพื่อให้โครงการโอเพ่นซอร์สและเปิดให้ชุมชนวิทยาศาสตร์ได้อย่างอิสระเพื่ออำนวยความสะดวกใน การวิจัยและพัฒนาในด้านการตรวจจับและจำแนกแมลงในน้ำ

5.2) สมมุติฐานของการทำโครงงาน

1.การใช้ระบบการตรวจจับแมลงน้ำของเราสามารถ จำแนกชนิดของแมลงน้ำได้รวดเร็วหว่าการจำแนกแบบ แมนนวล

5.3) สรุปผล

ระบบตรวจจับของเราสามารถจำแนกแมลงน้ำได้ตามวัตถุประสงค์ สามารถจำแนกชนิดของแมลงน้ำได้แต่ความแม่นยำ จะยังไม่สูงมาก จากผลการเทรนโมเดลของเรา ทำให้เราได้รู้ว่าสามารถตรวจจับ Notonectidae และ Chironomidae ได้ดีทาง เราคิดว่าเป็นเพราะรูปตัวอย่างที่นำมาเทรนมีจำนวนมาก

ในหัวข้อด้านการเปรียบเทียบระหว่างการจำแนกแบบใช้โมเดลการตรวจจับของเราและการจำแนกแบบแมนนวล ได้ผล สรุปว่าวิธีการของเรามีวิธีการที่รวดเร็ว แม่นยำและสามารถลดเวลาในขั้นตอนการจำแนกตัวอย่างไปได้เป็นจำนวนมาก

5.4) ข้อเสนอแนะ

- 5.4.1) ควรทำการเก็บตัวอย่างให้มากขึ้นและ Annotate ที่มากขึ้น
- 5.4.2) ควรทำเป็นเว็ปเพจเพื่อให้มีการเข้าถึงและการใช้งานที่กว้างขวางกว่าเดิม

เอกสารอ้างอิง

Rohit Kundu, (2023), YOLO: Algorithm for Object Detection Explained [+Examples], Retrieved 15 March 2023, from https://www.v7labs.com/blog/yolo-object-detection

McCafferty, P., 1989. Aquatic Entomology. Jones and Bartlett Publishers Inc., Boston

.Mustow, S.E. 2002. Biological Monitoring of rivers in Thailand: use and adaptation of the BMWP Score. Hydrobiol. 479: 191-229

ธนโชติ ภาชะนัย,จักรกริช ปานเงิน,กรรณิการ์ คนงาม,วรชัย ศรีสมุดคำ,และวาสนา วงศ์ษา. (2022). เครื่องคัดแยกขยะรีไซเคิลด้วย การประมวลผลภาพ.สืบค้นจาก https://ph02.tci-thaijo.org/index.php/psru-jite/article/view/247342

ชลธิศา เวทโอสถ,และนิคม สุวรรณวร. (2013). การพัฒนาอัลกอริทึมเพื่อตรวจนับปริมาณรถบนถนนด้วยการประมวลผลภาพจาก กล้องวิดีโอ. สืบค้นจาก https://li01.tci-thaijo.org/index.php/pnuir/article/view/53924

จักรภัทร แก้วทอง,ไตรปิฎก อนิทสุวรรณ โปรแกรมตรวจจับวัตถุและข้อความบนป้ายโฆษณา

สืบค้นจาก https://www.it.kmitl.ac.th/~sirion/senior_project/billboard/5770157040-doc2.pdf

กัญญาณัฐ สุนทรประสิทธิ์ การใช้แมลงน้ำเป็นดัชนีชี้วัดคุณภาพน้ำในอ่างเก็บน้ำแม่ต่ำ จังหวัดพะเยา

สืบค้นจาก https://li01.tci-thaiio.org/index.php/agkasetkai/article/view/251906/172292

กัญญาณัฐ สุนทรประสิทธิ์, ศิริลักษณ์ วลัญช์เพียร และ สันธิวัฒน์ พิทักษ์พล. 2556. ความหลากหลายของแมลงน้ำในแม่น้ำอิง. แก่นเกษตร 41: 142-148

สมควร ไข่แก้ว. 2553. การประเมินคุณภาพน้ำกับความหลากชนิดของแมลงน้ำในบึงสีฐาน มหาวิทยาลัยขอนแก่น.