TH-1

Title

Transient response to a step excitation

Description

A spring-mass-damping system, initially at rest, is subjected to a step force. Perform a time history analysis and compare the maximum displacements of the structure between the cases of damping and undamping.

Structural geometry and analysis model

Model

Analysis Type

2-D time history analysis

Unit System

in, lbf

Dimension

Length L = 100.0 in

Mass $M = 0.5 \text{ lbf} \cdot \text{sec}^2/\text{in} (Y \text{ axis})$

Analysis time $t=0.25~{\rm sec}$ Time step $\Delta t=0.0025~{\rm sec}$ Damping ratio $\xi=0.0~(0~\%)$ $\xi=0.5~(50~\%)$

Element

Truss Element

Material

Modulus of elasticity E = 20000 psi

Section Property

Area $A = 1.0 \text{ in}^2$

Boundary Condition

Node 1; Constrain all DOFs. Node 2; Constrain Dx and Ry

Analysis Case

Step force acts in the Y direction.

The time step force data are as follows;

Time (sec)	Force (lbf)	
0.0025	200	
0.2050	200	

Results

Displacements at the nodes 2 (Damping ratio is 0.0)

In the case of damping ratio is 0.5

Comparison of Results

Unit: in

	Result	Theoretical	MIDAS/Civil
Maximum displacement	Damping ratio=0.0	2.000	2.000
Displacement	Damping ratio=0.0	1.654	1.672
(t = 0.2 sec)	Damping ratio=0.5	1.1531	1.1543

References

Thomson, W. T., "Vibration Theory and Applications", Prentice-Hall, Inc., Englewood Cliffs, N. Y., 2nd Printing, 1965, p. 102, Article 4.3.

.

Step force data

