CompSci 161
Spring 2021 Lecture 8:
Divide and Conquer III:
Multiplication Algorithms

Integer Multiplication

- ightharpoonup Given two *n*-bit integers X, Y, compute $X \cdot Y$
- ► Example: What is 13 · 11?

$$\begin{array}{c|c}
 & 13 \\
 \times 11 \\
\hline
 & 13 \\
\hline
 & 13 \\
\hline
 & 13 \\
\hline
 & 143
\end{array}$$

$$\begin{array}{c}
 & (12+1)(12-1)^{2}-1^{2} \\
 & = 144-1 = 143 \\
\hline
 & (12+1)(12-1)^{2}-1^{2}-1^{2} \\
 & = 144-1 = 143 \\
\hline
 & (12+1)(12-1)^{2}-1^{2$$

What is a Computer Anyway?

► Example: What is 13 · 11?

Al-Khwarizmi's algorithm

Why does al-Khwarizmi's algorithm work?

► Example: What is 13 · 11?

Starting D&C for Integer Multiplication

$$X \times Y = (X_{H}) \times 2^{n/2} + X_{L}) \times (Y_{H} \times 2^{n/2} + Y_{L})$$

$$= X_{H} \cdot Y_{H} \times 2^{n} + (X_{H}Y_{L} + X_{L}Y_{H}) \times 2^{n/2} + X_{L}Y_{L}$$

$$= X_{H} \cdot Y_{H} \times 2^{n} + (X_{H}Y_{L} + X_{L}Y_{H}) \times 2^{n/2} + X_{L}Y_{L}$$

$$= X_{H} \cdot Y_{H} \times 2^{n} + (X_{H}Y_{L} + X_{L}Y_{H}) \times 2^{n/2} + X_{L}Y_{L}$$

$$= X_{L}Y_{L} \times 2^{n} + (X_{L}Y_{L}Y_{L}) \times 2^{n/2} + X_{L}Y_{L}$$

$$= X_{L}Y_{L}Y_{L} \times 2^{n} + (X_{L}Y_{L}Y_{L}) \times 2^{n/2} + X_{L}Y_{L}$$

$$= X_{L}Y_{L}Y_{L} \times 2^{n} + (X_{L}Y_{L}) \times 2^{n/2} + X_{L}Y_{L}$$

$$= X_{L}Y_{L}Y_{L} \times 2^{n} + (X_{L}Y_{L}) \times 2^{n/2} + X_{L}Y_{L}$$

$$= X_{L}Y_{L}Y_{L} \times 2^{n} + (X_{L}Y_{L}) \times 2^{n/2} + X_{L}Y_{L}$$

$$= X_{L}Y_{L}Y_{L} \times 2^{n} + (X_{L}Y_{L}) \times 2^{n/2} + X_{L}Y_{L}$$

$$= X_{L}Y_{L}Y_{L} \times 2^{n} + (X_{L}Y_{L}) \times 2^{n/2} + X_{L}Y_{L}$$

$$= X_{L}Y_{L}Y_{L} \times 2^{n} + (X_{L}Y_{L}) \times 2^{n/2} + X_{L}Y_{L}$$

$$= X_{L}Y_{L}Y_{L} \times 2^{n} + (X_{L}Y_{L}) \times 2^{n/2} + X_{L}Y_{L}$$

$$= X_{L}Y_{L}Y_{L} \times 2^{n/2} + X_{L}Y_{L}$$

$$= X_{L}Y_{L} \times 2^{n/2} + X_{L}Y_{L} \times 2^{n/2} + X_{L}Y_{L}$$

$$= X_{L}Y_{L}Y_{L} \times 2^{n/2} + X_{L}Y_{L} \times 2^{n/2} + X_{L}Y_{L}$$

$$= X_{L}Y_{L}Y_{L} \times 2^{n/2} + X_{L}Y_{L} \times 2^{n/2} + X_{L}Y_{L} \times 2^{n/2} + X_{L}Y_{L}$$

$$= X_{L}Y_{L}Y_{L} \times 2^{n/2} + X_{L}Y_{L} \times 2^{n/2} + X_{L}Y_{$$

Improved Integer Multiplication

▶ Do we really need to compute $X_H \cdot Y_L$?

$$2^{N} \cdot X_{H} Y_{H} + 2^{N/2} (X_{H} Y_{L} + Y_{H} X_{L}) + X_{L} Y_{L}$$
 $(X_{L} + X_{H}) (Y_{H} + Y_{L}) = X_{L} Y_{H} + X_{L} Y_{L} + X_{H} Y_{H} + X_{H} Y_{L}$
 $A = Mult(X_{H}, Y_{H})$
 $D = Mult(Y_{L}, X_{L})$
 $E = Mult(X_{H} + X_{L}, Y_{H} + Y_{L})$
 $A : 2^{N} + D + F \cdot 2^{N/2}$
 $A : 2^{N} + D + F \cdot 2^{N/2}$

Integer Multiplication Example

► Example: What is 13 · 11?

$$X_{H} \mid X_{L} \mid Y_{H} \mid Y_{L}$$

11 01 10 11
3 1 2 3
 $X_{H} \cdot Y_{H} = 6$
 $Y_{L} \mid X_{L} = 3$
 $(Y_{H} + Y_{L}) = 5$
 $F = 20 - 6 - 3 = 11$
 $(X_{H} + X_{L}) = 4$
 $(X_{H} + X_{L}) = 4$

Matrix Multiplication

$$\begin{bmatrix} A & B \\ \widehat{C} & D \end{bmatrix} \begin{bmatrix} E & F \\ G & \widehat{H} \end{bmatrix} = \begin{bmatrix} I & J \\ \widehat{K} & L \end{bmatrix}$$

►
$$I = AE + BG$$

► $J = AF + BH$
► $K = CE + DG$

$$T(n) = 87(\frac{1}{2}) + \Theta(n^2)$$

$$(s) \Theta(n^3)$$

$$K = CE + DG$$

$$ightharpoonup L = CF + DH$$

- Running time if basis for D & C algorithm?
- ▶ Why must algorithms to solve this be $\Omega(n^2)$?

$$\triangleright$$
 $S_1 = A(F - H)$

$$S_2 = (A+B)H$$

$$I = S_5 + S_6 + S_4 - S_2$$

$$= (A+D)(E+H) + (B-D)(G+H)$$

$$J = S_1 + S_2$$

 $S_5 = (A + D)(E + H)$
 $= AF - AH + AH + BH$

$$F$$
 $S_7 = (A - C)(E + F)$ $K = S_3 + S_4$
 $L = S_1 - S_7 - S_3 + S_5$