Hello Everyone, I hope you all are fine and doing well.

MABAC (Multi-Attributive Border Approximation Area Comparison) Models

MABAC (多屬性邊界近似區域比較)模型

Theoretical Framework (MABAC Model)

理論架構(MABAC模型)

The Fuzzy MABAC (Multi-Attributive Border Approximation Area Comparison) model incorporates fuzzy logic into the traditional MABAC approach. This is particularly useful when dealing with uncertainty or imprecision in decision-making, allowing for a more flexible evaluation of alternatives.

模糊 MABAC(多屬性邊界近似區域比較)模型將模糊邏輯融入傳統的 MABAC 方法中。這在處理決策中的不確定性或不精確性時特別有用,可以更靈活地評估替代方案。

Fuzzy MABAC Model Steps

Decision Matrix Construction: Create a matrix where rows represent alternatives and columns represent criteria, using fuzzy numbers.

Fuzzy Normalization: Normalize the fuzzy decision matrix to bring all criteria to a common scale.

模糊 MABAC 模型步驟

決策矩陣構造:使用模糊數建立一個矩陣,其中行代表備選方案,

列代表標準。

模糊標準化:標準化模糊決策矩陣,使所有標準達到共同的尺度。

Weight Assignment: Assign weights to each criterion, also using fuzzy numbers.

Fuzzy Border Approximation Area Calculation: Calculate performance scores for each alternative using the weighted normalized values.

Ranking of Alternatives: Rank the alternatives based on their calculated performance scores.

權重分配:為每個標準分配權重,也使用模糊數。模糊邊界近似面積計算:使用加權歸一化值計算每個備選方案的效能分數。

備選方案排名:根據計算的效能分數對備選方案進行排名。

Mathematical Framework (MABAC Model)

數學框架 (MABAC 模型)

The MABAC (Multi-Attributive Border Approximation Area Comparison) model is a multi-criteria decision-making method used to evaluate and rank alternatives based on multiple attributes. Below is the mathematical expression of the MABAC model followed by a detailed example.

MABAC(多屬性邊界近似區域比較)模型是一種多標準決策方法,用於基於多個屬性對備選方案進行評估和排序。以下是 MABAC 模型的數學表達式,並附有詳細的範例。

Mathematical Expressions of MABAC

- **1. Decision Matrix Construction:** Construct a decision matrix *A* where $A = [a_{ij}]$:
 - i = 1, 2, ..., m (alternatives)
 - j = 1, 2, ..., n (criteria)
 - Each element a_{ij} represents the performance of alternative i on criterion j.

MABAC 的數學表達式

- 1. 決策矩陣建構:建構決策矩陣A,其中 $A = [a_{ij}]$:
 - i = 1, 2, ..., m (替代方案)
 - *j* = 1,2,...,*n* (標準)
 - 每個元素 a_{ij} 代表替代方案i在標準j上的表現。

2. Normalization: Normalize the decision matrix to make the criteria comparable. This can be done using min-max normalization:

歸一化:將決策矩陣進行歸一化,使標準具有可比較性。這可以使 用最小-最大歸一化來完成:

$$a'_{ij} = \frac{a_{ij} - \min(a_{*j})}{\max(a_{*j}) - \min(a_{*j})} \text{ for benefit criteria}$$

$$a'_{ij} = \frac{\max(a_{*j}) - a_{ij}}{\max(a_{*j}) - \min(a_{*j})} \text{ for cost criteria}$$

3. Weight Assignment: Assign weights w_j to each criterion such that:

權重分配:為每個標準分配權重 w_j ,以便:

$$\sum_{j=1}^{n} w_j = 1$$

4. Border Approximation Area Calculation: Compute the performance score for each alternative:

邊界近似面積計算:計算每個備選方案的效能得分:

$$B_i = \sum_{j=1}^n w_j a'_{ij}$$

5. Ranking of Alternatives: Rank the alternatives based on their scores B_i .

備選方案排名:根據得分 B_i 對備選方案進行排名。

Example

例子

Let's evaluate three projects (A, B, C) based on two criteria: Cost (lower is better) and Expected Profit (higher is better).

Step 1: Decision Matrix

讓我們根據兩個標準來評估三個項目(A、B、C):成本(越低越好)和預期利潤(越高越好)。

第1步:決策矩陣

Project	Cost (in thousands)	Profit (in thousands)
A	100	150
В	80	120
C	120	200

Step 2: Normalize the Decision Matrix

Criteria:

- Cost is a cost criterion (lower is better).
- Profit is a benefit criterion (higher is better).

Normalize Cost:

$$a'_{A1} = \frac{120 - 100}{120 - 80} = \frac{20}{40} = 0.5$$

$$a'_{B1} = \frac{120 - 80}{120 - 80} = \frac{40}{40} = 1$$

$$a'_{C1} = \frac{120 - 120}{120 - 80} = \frac{0}{40} = 0$$

步驟 2:標準化決策矩陣

標準:

成本是一個成本標準(越低越好)。

利潤是一個效益標準(越高越好)。

標準化成本:

利潤標準化

Normalize Profit:

$$a'_{A2} = \frac{150 - 120}{200 - 120} = \frac{30}{80} = 0.375$$

$$a'_{B2} = \frac{120 - 120}{200 - 120} = 0$$

$$a'_{C2} = \frac{200 - 120}{200 - 120} = \frac{80}{80} = 1$$

Step 3: Weight Assignment

Assume the following weights:

- Weight for Cost $(w_1) = 0.6$
- Weight for Profit $(w_2) = 0.4$

第3步:權重分配

假設以下權重:

- 成本權重 $(w_1) = 0.6$
- 利潤權重 (w₂) = 0.4

Step 4: Calculate Border Approximation Area

• Calculate for Project *A*:

$$B_A = w_1 \cdot a'_{A1} + w_2 \cdot a'_{A2}$$

 $B_A = 0.6 \cdot 0.5 + 0.4 \cdot 0.375 = 0.3 + 0.15 = 0.45$

• Calculate for Project *B*:

$$B_B = w_1 \cdot a'_{B1} + w_2 \cdot a'_{B2}$$

 $B_B = 0.6 \cdot 1.0 + 0.4 \cdot 0 = 0.6 + 0 = 0.6$

• Calculate for Project *C*:

$$B_C = w_1 \cdot a'_{C1} + w_2 \cdot a'_{C2}$$

 $B_C = 0.6 \cdot 0 + 0.4 \cdot 1 = 0 + 0.4 = 0.4$

Step 5: Ranking of Alternatives

Now, we rank the projects based on their B_i values:

- **Project B**: $B_B = 0.6$
- **Project A**: $B_A = 0.45$
- Project C: B_C =0.4

第5步:備選方案排名

現在,我們根據項目的 B_i 值對項目進行排名:

- 項目B: B_B=0.6
- 項目A: B_A=0.45
- 項目 $C: B_C = 0.4$

Conclusion

Based on the MABAC model, **Project B** is identified as the best option, followed by **Project A**, while **Project C** is the least favorable. This example illustrates the step-by-step application of the MABAC technique for multi-criteria decision-making.