Tweedr: Twitter for Disaster Response

Zahra Ashktorab

Chris Brown

Jit Nandi

Aron Culotta

August 15, 2013

1 Introduction

- I. Context
- II. Problem
- III. Solution Overview

2 Data

- I. Unlabeled data from different disasters
- II. Labeling for classification (and uniform vs keyword sampling)
- III. Labeling for extraction
- IV. Summary statistics (number labeled/unlabeled; number of each class; number by disaster)

3 Methods

- I. Classification
- II. Clustering
- III. Extraction

4 Experiments

- I. Classification results
 - A. overall precision, recall, f1
 - B. compared with predicting on unseen disasters
 - C. comparison of sLDA and vanilla classifiers
 - D. visualize important features (e.g., sLDA graph)
 - E. list some exemplary good/bad classifications

Correctly identified as damage or casualty
XXXX
Incorrectly identified as damage or casualty
XXXX

- II. Clustering results (maybe don't need accuracy, but at least what percent is duplicate)
- III. Extraction
 - A. overall precision, recall, f1, confusion matrix
 - B. compared with predicting on unseen disasters
 - C. visualize important features
 - D. list some exemplary good/bad classifications

5 Related Work

- Extracting Information Nuggets from Disaster-Related Messages in Social Media
- Practical Extraction of Disaster-Relevant Information from Social Media
- Social Media Data Mining: A Social Network Analysis Of Tweets During The 2010-2011 Australian Floods
- TweetTracker: An Analysis Tool for Humanitarian and Disaster Relief
- Natural Language Processing to the Rescue?: Extracting Situational Awareness Tweets During Mass Emergency

	All			New Disaster		
Method	F1	Pr	Re	F1	Pre	Re
sLDA	0.01 ± 0.10					
SVM	F1	\Pr	Re	F1	Pre	Re
\mathbf{LogReg}	F1	Pr	Re	F1	Pre	Re

Table 1: Classification results

	All			New Disaster		
Features	F1	Pr	Re	F1	Pre	Re
All	0.01 ± 0.10					
feature1	F1	\Pr	Re	F1	Pre	Re
feature2	F1	Pr	Re	F1	Pre	Re

Table 2: Extraction results

6 Conclusions and Future Work

- I. Summarize what we did
- II. Mention limitations
- III. Summarize next steps $\,$