Sum of Product Page 1 of 2

Problem B

Sum of Product

Time limit: 1 second

Given n, there can be n! circular arrangement of the numbers 0 to n-1. Let's represent every permutation as $P_1 P_2 P_3 ... P_{n!}$

 $SOP(P_k)$ = sum of product of every two contiguous numbers in P_k .

Consider an example where n = 4 and $P_k = (1 \ 3 \ 2 \ 0)$, therefore $SOP(P_k) = 1*3 + 3*2 + 2*0 + 0*1 = 9$.

You have to find out the number of distinct values of $SOP(P_k)$ for k = 1 to n!.

For n = 3,

$\underline{\mathbf{P}}_{\underline{\mathbf{k}}}$	Permutation	$SOP(P_k)$
\mathbf{P}_{1}	0 1 2	2
P_2	0 2 1	2
P_3	102	2
P_4	1 2 0	2
P ₅	2 0 1	2
P ₅ P ₆	2 1 0	2

So, for n = 3, there is only 1 distinct value of $SOP(P_k)$.

Input

There will be multiple test cases. Each case consists of a line containing a positive integer $n (1 < n \le 20)$. The last line of input file contains a single 0 that doesn't need to be processed. The total number of test cases will be at most 30.

Output

For each case, output the case number followed by the number of distinct SOPs.

Sample Input	Output for Sample Input
3	Case #1: 1
4	Case #2: 3
6	Case #3: 21
0	

Sum of Product Page 2 of 2

ProblemSetter: Sohel Hafiz

Next Generation Contest 2