DS 6 : un corrigé

Le barème comporte 70 points.

Exercice 1 (sur 4 points):

Soit $y: t \longmapsto y(t)$ une application de \mathbb{R} dans \mathbb{R} deux fois dérivable.

Pour tout $x \in \mathbb{R}$, posons $z(x) = y(\operatorname{sh}(x)) = y(t)$.

Dérivons cette relation par rapport à x. Ainsi, $z'(x) = \operatorname{ch}(x)y'(\operatorname{sh}(x)) = \operatorname{ch}(x)y'(t)$.

Dérivons à nouveau par rapport à x. On obtient que $z''(x) = \operatorname{sh}(x)y'(t) + \operatorname{ch}(x)^2y''(t)$.

(E)
$$\iff \forall t \in \mathbb{R} \ (1+t^2)y''(t)+ty'(t)-q^2y(t)=0$$

 $\iff \forall x \in \mathbb{R} \ \operatorname{ch}(x)^2y''(t)+\operatorname{sh}(x)y'(t)-q^2y(t)=0 \ (\operatorname{car sh \ est \ bijective \ de } \mathbb{R} \ \operatorname{dans} \ \mathbb{R})$
 $\iff (z''(x)-\operatorname{sh}(x)y'(t))+\operatorname{sh}(x)y'(t)-q^2y(t)=0$
 $\iff \forall x \in \mathbb{R}, \ z''(x)-q^2z(x)=0.$

Cette dernière équation différentielle est linéaire d'ordre 2 à coefficients constants. Son polynôme caractéristique est $X^2 - q^2$, dont les racines sont $\pm q$. Ainsi, d'après le cours, $(E) \iff \exists (a,b) \in \mathbb{R}^2 \ \forall x \in \mathbb{R} \ z(x) = ae^{qx} + be^{-qx}.$

Or $y(t) = z(\operatorname{argsh} t)$, donc $(E) \iff \exists (a,b) \in \mathbb{R}^2 \ \forall t \in \mathbb{R} \ z(x) = ae^{q\operatorname{argsh} t} + be^{-q\operatorname{argsh} t}$. De plus, $\operatorname{argsh} t = \ln(t + \sqrt{1 + t^2})$ et $\frac{1}{t + \sqrt{1 + t^2}} = \sqrt{1 + t^2} - t$,

 $\operatorname{donc} \left| (E) \Longleftrightarrow \overline{\exists (a,b) \in \mathbb{R}^2 \ \forall t \in \mathbb{R} \ y(t) = a(t+\sqrt{1+t^2})^q + b(-t+\sqrt{1+t^2})^q} \right|.$

Exercice 2 (sur 6 points):

Posons $z_n = \rho_n e^{i\theta_n}$ avec $\rho_n \ge 0$ et $\theta_n \in]-\pi,\pi]$. Ainsi, $\rho_{n+1}e^{i\theta_{n+1}} = \frac{1}{2}(\rho_n e^{i\theta_n} + \rho_n) = \frac{1}{2}\rho_n e^{i\theta_n/2}2\cos\frac{\theta_n}{2}$, or $\frac{\theta_n}{2} \in [-\frac{\pi}{2},\frac{\pi}{2}]$, donc $\cos\frac{\theta_n}{2} \ge 0$, donc: $\theta_{n+1} = \frac{\theta_n}{2}$ et $\rho_{n+1} = \rho_n \cos \frac{\theta_n}{2}$.

On en déduit par récurrence que $\theta_n = \frac{\theta_0}{2^n}$.

De plus, $\rho_{n+1} \sin \theta_{n+1} = \frac{1}{2} \rho_n \sin \theta_n$, donc $\rho_n \sin \theta_n = \frac{1}{2n} \rho_0 \sin(\theta_0)$.

Premier cas : Si $z_0 \in \mathbb{R}_+$, alors $z_n = z_0$, donc $z_n \xrightarrow[n \to +\infty]{} z_0$.

Second cas: Si $z_0 \in \mathbb{R}_-$, alors $z_1 = 0$ puis $z_n = 0$ pour tout $n \ge 1$, donc $z_n \longrightarrow 0$.

Cas général : On suppose que $z_0 \notin \mathbb{R}$. Ainsi, $\sin \theta_0 \neq 0$ et $\rho_0 \neq 0$. Or $\rho_n \sin \theta_n = \frac{1}{2^n} \rho_0 \sin(\theta_0)$, donc pour tout $n \in \mathbb{N}$, $\sin \theta_n \neq 0$ et $\rho_n = \frac{\rho_0 \sin \theta_0}{2^n \sin(2^{-n}\theta_0)}$. Or au voisinage de 0, $\sin t \sim t$, donc $\rho_n \sim \rho_0 \frac{\sin \theta_0}{\theta_0}$.

De plus, $\theta_n \xrightarrow[n \to +\infty]{} 0$, donc $z_n \xrightarrow[n \to +\infty]{} \rho_0 \frac{\sin \theta_0}{\theta_0}$.

Problème

Partie I: polynômes d'endomorphismes (sur 11 points)

1°) (1 point) Si $f, g \in \mathbb{R}^{\mathbb{R}}$ et $\alpha \in \mathbb{R}$, on définit les applications f + g, fg et αf en convenant que, pour tout $x \in \mathbb{R}$, (f + g)(x) = f(x) + g(x), $(fg)(x) = f(x) \cdot g(x)$ et $(\alpha f)(x) = \alpha \cdot f(x)$.

 2°) (3 points)

♦ L'élément neutre de $\mathbb{R}^{\mathbb{R}}$ pour la multiplication est la fonction constante égale à 1. C'est clairement un polynôme, dont les coefficients sont $(a_n) = (\delta_{n,0})_{n \in \mathbb{N}}$. Ainsi, en notant 1 cet élément neutre, $\mathbf{1} \in \mathbb{R}[X]$.

$$\diamond$$
 Soit $P, Q \in \mathbb{R}[X]$ et $\alpha \in \mathbb{R}$. Notons $P(X) = \sum_{n \in \mathbb{N}} a_n X^n$ et $Q(X) = \sum_{n \in \mathbb{N}} b_n X^n$.

Pour tout
$$x \in \mathbb{R}$$
, $(\alpha P)(x) = \sum_{n \in \mathbb{N}} \alpha a_n x^n$, donc $\alpha P \in \mathbb{R}[X]$ et $\alpha P = \sum_{n \in \mathbb{N}} \alpha a_n X^n$.

Pour tout $x \in \mathbb{R}$, $(P+Q)(x) = \sum_{n \in \mathbb{N}} (a_n + b_n) x^n$, et $(a_n + b_n)_{n \in \mathbb{N}}$ est presque nulle,

$$\operatorname{car} \left\{ n \in \mathbb{N} \ / \ a_n + b_n \neq 0 \right\} \subset \left\{ n \in \mathbb{N} \ / \ a_n \neq 0 \right\} \cup \left\{ n \in \mathbb{N} \ / \ b_n \neq 0 \right\}$$
$$\operatorname{donc} P + Q \in \mathbb{R}[X] \text{ et } P + Q = \sum_{n \in \mathbb{N}} (a_n + b_n) X^n.$$

On peut ainsi déjà affirmer que $\mathbb{R}[X]$ est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$ (il est bien non vide).

 \diamond Il existe $N \in \mathbb{N}$ tel que, pour tout n > N, $a_n = b_n = 0$.

Pour tout
$$x \in \mathbb{R}$$
, $(PQ)(x) = \Big(\sum_{n=0}^{N} a_n x^n\Big) \Big(\sum_{n=0}^{N} b_n x^n\Big) = \sum_{0 \le n, m \le N} a_n b_m x^{n+m}$, donc PQ

est une combinaison linéaire de polynômes, or $\mathbb{R}[X]$ est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$, donc $PQ \in \mathbb{R}[X]$.

En conclusion, on a bien montré que $\mathbb{R}[X]$ est une sous-algèbre de $\mathbb{R}^{\mathbb{R}}$.

$$P + \lambda Q = \sum_{k \in \mathbb{N}} (a_k + \lambda b_k) X^k$$
, donc par définition de φ ,

$$\varphi(P + \lambda Q) = \sum_{k \in \mathbb{N}} (a_k + \lambda b_k) u^k = \sum_{k \in \mathbb{N}} a_k u^k + \lambda \sum_{k \in \mathbb{N}} b_k u^k = \varphi(P) + \lambda \varphi(Q)$$

Ceci prouve que φ est une application linéaire. \Leftrightarrow Soit $Q(X) = \sum_{k \in \mathbb{N}} b_k X^k$ et soit $p \in \mathbb{N}$.

$$\varphi(X^{p}) \circ \varphi(Q) = u^{p} \sum_{k \in \mathbb{N}} b_{k} u^{k} = \sum_{k \in \mathbb{N}} b_{k} u^{k+p}$$

$$= \sum_{k \geqslant p} b_{k-p} u^{k} = \varphi\left(\sum_{k \geqslant p} b_{k-p} X^{k}\right)$$

$$= \varphi\left(\sum_{k \in \mathbb{N}} b_{k} X^{k+p}\right) = \varphi(X^{p} Q).$$

 \diamond $\mathbb{R}[X]$ est une algèbre d'après la question 2 et L(E) est une algèbre d'après le cours. Soit $P = \sum_{x \in \mathbb{N}} a_p X^p$ et $Q(X) = \sum_{k \in \mathbb{N}} b_k X^k$ deux polynômes de $\mathbb{R}[X]$.

 $PQ = \sum_{p,q} a_p X^p Q$ et cette somme est finie, or φ est linéaire,

donc $\varphi(PQ) = \sum_{p \in \mathbb{N}} a_p \varphi(X^p Q) = \sum_{p \in \mathbb{N}} a_p u^p Q(u)$ d'après le point précédent. Ainsi, en

calculant dans l'algèbre
$$L(E)$$
, $\varphi(PQ) = \Big(\sum_{p \in \mathbb{N}} a_p u^p\Big) Q(u) = P(u)Q(u) = \varphi(P)\varphi(Q)$.

De plus on a vu que φ est linéaire et $\varphi(1) = \varphi(X^0) = u^0 = \mathrm{Id}$, donc φ est bien un morphisme d'algèbres.

4°) (3 points)

 \diamond Soit P,Q,R sont trois polynômes de $\mathbb{R}[X]$ tels que P et Q sont premiers avec R. Par définition, il existe $A, B, C, D \in \mathbb{R}[X]$ tels que AP + BR = 1 = CQ + DR. En effectuant le produit dans l'algèbre $\mathbb{R}[X]$, on obtient que

$$1 = (AP + BR)(CQ + DR)$$

= $(AC)(PQ) + (APD + BCQ + BDR)R$
= $A'(PQ) + B'R$,

en posant A' = AC et B' = APD + BCQ + BDR, donc PQ est premier avec R.

Soit $n \in \mathbb{N}^*$. Notons R(n) l'assertion suivante : si P_1, \ldots, P_n sont n polynômes, tous premiers avec un même polynôme $Q \in \mathbb{R}[X]$, alors $\prod P_i$ est premier avec Q.

R(1) est évidente et R(2) résulte du point précédent.

Supposons R(n) et montrons R(n+1). Soit P_1, \ldots, P_{n+1} n+1 polynômes, tous premiers avec un même polynôme $Q \in \mathbb{R}[X]$. D'après R(n), $\prod P_i$ est premier avec Q. De plus P_{n+1} est aussi premier avec Q, donc d'après R(2), $\prod_{i=1}^{n+1} P_i = P_{n+1} \prod_{i=1}^n P_i$ est premier avec Q, ce qui prouve R(n+1). Le principe de récurrence permet de conclure.

Partie II: décomposition des noyaux (sur 19 points)

5°) a) (3 points) Soit $f \in F$, $g \in G$ et $h \in H$ tels que f + g + h = 0. Posons k = f + g. $k \in K$ et k + h = 0 avec $h \in H$. La somme K + H est directe, donc k = h = 0. Ainsi, 0 = k = f + g avec $f \in F$ et $g \in G$. La somme F + G est directe, donc f = g = 0. Ainsi f = g = k = 0, ce qui prouve que la somme F + G + H est directe. De plus, $(F \oplus G) \oplus H = \{(f + g) + h \mid f \in F, g \in G, h \in H\}$ $= \{f + g + h \mid f \in F, g \in G, h \in H\} = F \oplus G \oplus H$.

b) (2 points)

Il suffit d'adapter le raisonnement précédent : on suppose que $f_1 + \cdots + f_n + g = 0$, où $g \in G$ et où pour tout $i \in \mathbb{N}_n$, $f_i \in F_i$. Posons $k = f_1 + \cdots + f_n$. $k \in K$ et k + g = 0, or K + G est directe, donc k = g = 0. Ainsi, $f_1 + \cdots + f_n = 0$, or $F_1 + \cdots + F_n$ est directe, donc $g = f_1 = \cdots = f_n = 0$, ce qui prouve que $F_1 + \cdots + F_n + G$ est une somme directe. De plus,

$$(F_1 \oplus \cdots \oplus F_n) \oplus H = \{ (f_1 + \cdots + f_n) + h / g \in G, \forall i \in \mathbb{N}_n, f_i \in F_i \}$$
$$= \{ f_1 + \cdots + f_n + h / g \in G, \forall i \in \mathbb{N}_n, f_i \in F_i \}$$
$$= F_1 \oplus \cdots \oplus F_n \oplus H.$$

6°) (2 points) Pour tout $v, w \in L(E)$, $\operatorname{Ker}(w) \subset \operatorname{Ker}(vw)$, car si $x \in E$ vérifie w(x) = 0, alors (vw)(x) = v(w(x)) = v(0) = 0. En particulier, avec v = P(u) et w = Q(u), $\operatorname{Ker}(Q(u)) \subset \operatorname{Ker}((P(u) \circ Q(u)) = \operatorname{Ker}((PQ)(u))$, de plus, $(PQ)(u) = (QP)(u) = Q(u) \circ P(u)$, donc on a aussi $\operatorname{Ker}(P(u)) \subset \operatorname{Ker}((PQ)(u))$.

de plus, $(PQ)(u) = (QP)(u) = Q(u) \circ P(u)$, donc on a aussi $\operatorname{Ker}(P(u)) \subset \operatorname{Ker}((PQ)(u))$. $\operatorname{Ker}((PQ)(u))$ est donc un sous-espace vectoriel de E qui contient $\operatorname{Ker}(P(u)) \cup \operatorname{Ker}(Q(u))$, donc il contient $\operatorname{Vect}(\operatorname{Ker}(P(u)) \cup \operatorname{Ker}(Q(u))) = \operatorname{Ker}(P(u)) + \operatorname{Ker}(Q(u))$, ce qu'il fallait démontrer.

7°) (5 points) D'après l'énoncé, il existe $A, B \in \mathbb{R}[X]$ tels que AP + BQ = 1, donc $\mathrm{Id} = \varphi(1) = \varphi(A)\varphi(P) + \varphi(B)\varphi(Q) = A(u)P(u) + B(u)Q(u)$. On en déduit que, pour tout $x \in E, x = (AP)(u)(x) + (BQ)(u)(x)$. \diamond Soit $x \in \mathrm{Ker}(P(u)) \cap \mathrm{Ker}(Q(u))$. Alors x = A(u)(P(u)(x)) + B(u)(Q(u)(x)) = 0, car P(u)(x) = Q(u)(x) = 0. Ainsi $\mathrm{Ker}(P(u)) \cap \mathrm{Ker}(Q(u)) = \{0\}$, ce qui prouve que la somme est directe. \diamond Soit $x \in \mathrm{Ker}((PQ)(u)), x = [(AP)(u)](x) + [(BQ)(u)](x), \text{ or } Q(u)([(AP)(u)](x)) = (QAP)(u)(x) = A(u)([(PQ)(u)](x)) = 0$ et P(u)([(BQ)(u)](x)) = B(u)([(PQ)(u)](x)) = 0, donc $[(AP)(u)](x) \in \mathrm{Ker}(Q(u))$ et $[(BQ)(u)](x) \in \mathrm{Ker}(Q(u))$.

Ainsi $x \in \text{Ker}(P(u)) \oplus \text{Ker}(Q(u))$.

On a prouvé que $\operatorname{Ker}((PQ)(u)) \subset \operatorname{Ker}(P(u)) \oplus \operatorname{Ker}(Q(u))$. L'inclusion réciproque a été démontrée en question 6, donc $\operatorname{Ker}((PQ)(u)) = \operatorname{Ker}(P(u)) \oplus \operatorname{Ker}(Q(u))$.

8°) (3 points)

Soit $n \in \mathbb{N}$ avec $n \geq 2$. Notons R(n) l'assertion suivante : si P_1, \ldots, P_n sont n polynômes de $\mathbb{R}[X]$ deux à deux premiers entre eux, alors $\bigoplus_{i=1}^n \operatorname{Ker}(P_i(u)) = \operatorname{Ker}\left(\left[\prod_{i=1}^p P_i\right](u)\right)$.

La question précédente prouve R(2).

Supposons que R(n) et montrons R(n+1). Soit P_1, \ldots, P_{n+1} n+1 polynômes de $\mathbb{R}[X]$

deux à deux premiers entre eux. Posons $P = \prod_{i=1}^{n} P_i$ et $Q = P_{n+1}$. D'après la question 4,

P est premier avec Q, donc d'après R(2), en posant K = Ker(P(u)) et G = Ker(Q(u)), $K \oplus G = \text{Ker}((PQ)(u))$.

De plus, d'après R(n), en posant $F_i = \operatorname{Ker}(P_i(u))$ pour tout $i \in \mathbb{N}_n$, $F_1 + \cdots + F_n$ est une somme directe et $F_1 \oplus \cdots \oplus F_n = \operatorname{Ker}(P(u))$. Alors d'après la question 5.b, $F_1 + \cdots + F_n + G$ est une somme directe et $(F_1 \oplus \cdots \oplus F_n) \oplus G = F_1 \oplus \cdots \oplus F_n \oplus G$. On a donc montré que

On a donc montre que
$$\operatorname{Ker}(P_1(u)) \oplus \cdots \oplus \operatorname{Ker}(P_{n+1}(u)) = \operatorname{Ker}(P(u)) \oplus \operatorname{Ker}(Q(u)) = \operatorname{Ker}((PQ)(u))$$

$$= \operatorname{Ker}\left(\left[\prod_{i=1}^{n+1} P_i\right](u)\right).$$

9°) (4 points)

 \diamond Soit $(\alpha_{i,j})_{\substack{1 \leq i \leq p \\ 1 \leq j \leq p_i}}$ une famille de réels telle que $\sum_{\substack{1 \leq i \leq p \\ 1 \leq j \leq p_i}} \alpha_{i,j} e_{i,j} = 0.$

Pour tout $i \in \mathbb{N}_p$, posons $x_i = \sum_{j=1}^{p_i} \alpha_{i,j} e_{i,j}$. Ainsi, pour tout $i \in \mathbb{N}_p$, $x_i \in F_i$ et $\sum_{i=1}^p x_i = 0$.

La somme étant supposée directe, on en déduit que, pour tout $i \in \mathbb{N}_p$, $x_i = 0$.

Soit $i \in \mathbb{N}_p$. On a donc $0 = \sum_{j=1}^{p_i} \alpha_{i,j} e_{i,j}$, or b_i est une famille libre, donc pour tout $j \in \mathbb{N}_{p_i}$, $\alpha_{i,j} = 0$. Ceci prouve que b est une famille libre de vecteurs.

 $\diamond \text{ Soit } x \in F. \ F = \bigoplus_{i=1}^{p} F_i, \text{ donc pour tout } i \in \mathbb{N}_p, \text{ il existe } x_i \in F_i \text{ tels que } x = \sum_{i=1}^{p} x_i.$ Pour tout $i \in \mathbb{N}_p$, b_i est une base de F_i et $x_i \in F_i$, donc il existe $(\alpha_{i,j})_{1 \leq j \leq p_i} \in \mathbb{R}^{p_i}$

Pour tout $i \in \mathbb{N}_p$, b_i est une base de F_i et $x_i \in F_i$, donc il existe $(\alpha_{i,j})_{1 \leq j \leq p_i} \in \mathbb{R}^{p_i}$ telle que $x_i = \sum_{j=1}^{p_i} \alpha_{i,j} e_{i,j}$. On en déduit que $x = \sum_{1 \leq i \leq p} \alpha_{i,j} e_{i,j}$, donc b est une famille

génératrice de E.

 \Leftrightarrow En conclusion, b est une base de E. En passant aux cardinaux, on en déduit que $\dim(F) = |b| = \sum_{i=1}^{p} |b_i| = \sum_{i=1}^{p} \dim(F_i)$.

Partie III: applications (sur 11 points)

10°) a) (2 points) Soit y une application de \mathbb{R} dans \mathbb{R} solution de (E). Alors y est nécessairement trois fois dérivable.

On montre par récurrence sur n que y est de classe C^n : en effet, y''' = 2y'' + y' - 2y est dérivable donc continue, donc y est de classe C^3 , et si y est C^n pour $n \geq 3$, y''' = 2y'' + y' - 2y est C^{n-2} donc y est C^{n+1} .

Ainsi toute solution de (E) est un vecteur de $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$.

b) (2 points)

Notons D l'application de E dans E définie par : pour tout $f \in E$, D(f) = f'. Clairement $D \in L(E)$ et pour tout $y \in E$, $(E) \iff D^3(y) = 2D^2(y) + D(y) - 2y$, donc en notant S l'ensemble des solutions de (E),

$$S = \text{Ker}(D^3 - 2D^2 - D + 2\text{Id}) = \text{Ker}(P(D)), \text{ où } P(X) = X^3 - 2X^2 - X + 2.$$

c) (4 points) On a
$$P(X) = (X-1)(X^2-X-2) = (X-1)(X+1)(X-2) = P_1P_2P_3$$
, où $P_1 = X-1$, $P_2 = X+1$ et $P_3 = X-2$.

Lorsque $\alpha, \beta \in \mathbb{R}$ avec $\alpha \neq \beta$, les polynômes $X - \alpha$ et $X - \beta$ sont premiers entre eux car $\frac{P - Q}{\beta - \alpha} = 1$. Ainsi les polynômes P_1, P_2 et P_3 sont deux à deux premiers entre eux.

Alors, d'après la question 8, $S = \text{Ker}(D - \text{Id}) \oplus \text{Ker}(D + \text{Id}) \oplus \text{Ker}(D - 2\text{Id})$.

De plus $y \in \text{Ker}(D - \text{Id}) \iff y' = y \iff \exists \lambda \in \mathbb{R} \ y = \lambda e^t$, donc Ker(D - Id) est la droite vectorielle engendrée par $e_1 = (t \longmapsto e^t)$.

De même $\operatorname{Ker}(D+\operatorname{Id})=\operatorname{Vect}(e_2)$ et $\operatorname{Ker}(D-2\operatorname{Id})=\operatorname{Vect}(e_3)$ où $e_2=(t\longmapsto e^{-t})$ et $e_3=(t\longmapsto e^{2t}).$

Alors d'après la question précédente, (e_1, e_2, e_3) est une base de S, donc l'ensemble des solutions de (E) est exactement l'ensemble des applications de la forme $t \mapsto \alpha e^t + \beta e^{-t} + \gamma e^{2t}$ où $\alpha, \beta, \gamma \in \mathbb{R}$.

11°) (3 points) On choisit maintenant $E = \mathbb{R}^{\mathbb{N}}$ et D désigne l'application de E dans E définie par : $D((v_n)_{n\in\mathbb{N}}) = (v_{n+1})_{n\in\mathbb{N}}$. On note S l'ensemble des suites $(u_n)_{n\in\mathbb{N}}$ de réels satisfaisant la relation de récurrence $u_{n+3} = 2u_{n+2} + u_{n+1} - 2u_n$ pour tout $n \in \mathbb{N}$. Alors $S = \text{Ker}(D^3 - 2D^2 - D + 2\text{Id}) = \text{Ker}(P(D))$, où $P(X) = X^3 - 2X^2 - X + 2$. Comme lors de la question précédente, $S = \text{Ker}(D - \text{Id}) \oplus \text{Ker}(D + \text{Id}) \oplus \text{Ker}(D - 2\text{Id})$. De plus,

 $(v_n) \in \operatorname{Ker}(D-2\operatorname{Id}) \iff [\forall n \in \mathbb{N}, \ v_{n+1} = 2v_n] \iff [\exists \alpha \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ v_n = \alpha 2^n],$ donc $\operatorname{Ker}(D-2\operatorname{Id})$ est la droite vectorielle de E engendrée par la suite géométrique $e_2 = (2^n)_{n \in \mathbb{N}}$. Comme lors de la question précédente, on en déduit que S est l'ensemble des suites de la forme $(\alpha + \beta(-1)^n + \gamma 2^n)_{n \in \mathbb{N}}$, où $\alpha, \beta, \gamma \in \mathbb{R}$.

Partie IV: Une décomposition plus fine (sur 19 points)

12°) \diamond (3 points) Notons $v' = v|_S$: $S \longrightarrow E \\ x \longmapsto v(x)$.

Soit $x \in S$. Si $x \in \text{Ker}(v')$, alors v(x) = 0, donc $x \in S \cap \text{Ker}(v) = \{0\}$. Ainsi $\text{Ker}(v') = \{0\}$ et v' est injective.

Soit $y \in E$. v étant surjective, il existe $x \in E$ tel que v(x) = y. De plus, $S \oplus \text{Ker}(v) = E$, donc il existe $(s, k) \in S \times \text{Ker}(v)$ tel que x = s + k. Ainsi v(x) = v(s) + v(k) = v'(s) donc y = v'(s). Cela prouve la surjectivité de v'.

 \diamond (2 points) On peut alors définir l'application w de E dans E en convenant que, pour tout $x \in E$, $w(x) = (v|_S)^{-1}(x)$. D'après le cours, $v|_S$ est linéaire, donc pour tout $x, y \in E$ et $\alpha \in \mathbb{R}$, $w(\alpha x + y) = \alpha w(x) + w(y)$. Ainsi, $w \in L(E)$.

Soit $x \in E$. $vw(x) = v((v|_S)^{-1}(x))$, or $(v|_S)^{-1}(x) \in S$,

donc $vw(x) = v|_S((v|_S)^{-1}(x)) = x$. Ceci prouve que vw = Id.

Soit $x \in \text{Ker}(w)$. Alors x = Id(x) = v(w(x)) = v(0) = 0, donc $\text{Ker}(w) = \{0\}$, ce qui prouve que w est injectif.

13°) (3 points)

 \diamond Soit $i \in \mathbb{N}$. Notons R(i) l'assertion suivante : $v^i w^i = \mathrm{Id}$.

Pour i = 0, $v^0 = w^0 = \text{Id}$, d'où R(0).

Soit $i \in \mathbb{N}$. Supposons R(i).

 $v^{i+1}w^{i+1} = v(v^iw^i)w$, donc d'après R(i), $v^{i+1}w^{i+1} = vw = \text{Id}$.

Ainsi, d'après le principe de récurrence, $\forall i \in \mathbb{N}, \ v^i w^i = \mathrm{Id}.$

 \diamond Soient $i \in \{0, \dots, k-1\}$ et $x \in w^i(\operatorname{Ker}(v))$: Il existe $y \in \operatorname{Ker}(v)$ tel que $x = w^i(y)$. Alors $v^k(x) = v^k(w^i(y)) = v^{k-i}v^iw^i(y) = v^{k-i}(y)$ car $v^iw^i = \operatorname{Id}$, or $k-i-1 \geq 0$, donc $v^k(x) = v^{k-i-1}(v(y))$, de plus v(y) = 0, donc $v^k(x) = 0$. Ainsi, $x \in \operatorname{Ker}(v^k)$, ce qui prouve que $w^i(\operatorname{Ker}(v)) \subset \operatorname{Ker}(v^k)$.

$14^{\circ})$

♦ (2 points) Soit $x \in E$ et soit $i \in \{0, ..., k-1\}$: $w^{i}v^{i}(x) - w^{i+1}v^{i+1}(x) = w^{i}(v^{i}(x) - wv^{i+1}(x))$ et $v(v^{i}(x) - wv^{i+1}(x)) = 0$, car vw = Id. Ainsi $w^{i}v^{i}(x) - w^{i+1}v^{i+1}(x) \in w^{i}(\text{Ker}(v))$.

$$\diamond$$
 (5 points) Soit $x \in \text{Ker}(v^k) : x = x - w^k v^k(x) = \sum_{i=0}^{k-1} \left[w^i v^i(x) - w^{i+1} v^{i+1}(x) \right],$

donc $\operatorname{Ker}(v^k) \subset \sum_{i=0}^{k-1} w^i(\operatorname{Ker}(v)).$

De plus d'après la question précédente, l'inclusion réciproque est vraie.

Ainsi,
$$\operatorname{Ker}(v^k) = \sum_{i=0}^{k-1} w^i(\operatorname{Ker}(v)).$$

Il reste à montrer que cette somme est directe.

 $\diamond~$ Soit $(y_i)_{0\leqslant i\leqslant k-1}$ une famille de vecteurs de E verifiant :

$$\forall i \in \{0, \dots, k-1\}, \ y_i \in w^i(\text{Ker}(v)) \text{ et } \sum_{i=0}^{k-1} y_i = 0.$$

Pour tout $i \in \{0, ..., k-1\}$, il existe $x_i \in \text{Ker}(v)$ tel que $y_i = w^i(x_i)$.

Ainsi,
$$\sum_{i=0}^{k-1} w^{i}(x_{i}) = 0.$$

Supposons qu'il existe $i \in \{0, \dots, k-1\}$ tel que $w^{i}(x_{i}) \neq 0$.

Alors, $\{i \in \{0, \dots, k-1\} / w^i(x_i) \neq 0\}$ est un ensemble fini et non vide inclus dans

 \mathbb{N} , donc il admet un maximum noté i_0 . Alors $\sum_{i=0}^{i_0} w^i(x_i) = 0$.

Ainsi $0 = v^{i_0} \left(\sum_{i=0}^{i_0} w^i(x_i) \right) = v^{i_0} w^{i_0}(x_{i_0}), \text{ car, d'après b), pour tout } i \in \{0, \dots, i_0 - 1\},$

 $w^{i}(\operatorname{Ker}(v)) \subset \operatorname{Ker}(v^{i_{0}})$. De plus, $v^{i_{0}}w^{i_{0}} = \operatorname{Id} \operatorname{donc} x_{i_{0}} = 0$, ce qui est imposible. Ainsi $\forall i \in \{0, \dots, k-1\}, y_{i} = w^{i}(x_{i}) = 0$.

En conclusion, on a montré que $\operatorname{Ker}(v^k) = \bigoplus^{k-1} w^i(\operatorname{Ker}(v))$.

- 15°) (1 point) Par composition d'endomorphismes injectif, pour tout $i \in \{0, ..., k-1\}$, w^i est un endomorphisme injectif, donc $w^i(\text{Ker}(v))$ est de dimension finie égale à s. Alors, d'après la question 14, $\dim(\text{Ker}(v^k)) = ks$.
- **16**°) (3 points) Pour tout $q \in \mathbb{N}_p$, posons $P_q = (X r_q)^{n_q}$.

Soit $q, m \in \mathbb{N}_p$ avec $q \neq m$. Alors d'après l'énoncé, $r_q \neq r_m$. On a vu en question 10.b qu'alors $X - r_q$ et $X - r_m$ sont premiers entre eux. D'après la question 4, on en déduit que $(X - r_q)^{n_q}$ est premier avec $X - r_m$, puis que $P_m = (X - r_m)^{n_m}$ est premier avec $P_q = (X - r_q)^{n_q}$.

Ainsi les polynômes P_1, \ldots, P_p sont deux à premiers entre eux, donc d'après la question

8,
$$\operatorname{Ker}(P(u)) = \bigoplus_{q=1}^{p} \operatorname{Ker}(P_q(u)).$$

De plus, pour tout $q \in \mathbb{N}_p$, $\operatorname{Ker}(P_q(u)) = \operatorname{Ker}(v_q^{n_q})$, où $v_q = u - r_q \operatorname{Id}$, donc d'après la question 14, $\operatorname{Ker}(P_q(u)) = \bigoplus_{k=0}^{n_q-1} w_q^k (\operatorname{Ker}(u - r_q \operatorname{Id}))$.

question 14, $\operatorname{Ker}(P_q(u)) = \bigoplus_{k=0}^{n_q-1} w_q^k(\operatorname{Ker}(u - r_q \operatorname{Id})).$ On en déduit que $\operatorname{Ker}(P(u)) = \bigoplus_{q=1}^p \Big(\bigoplus_{k=0}^{n_q-1} w_q^k(\operatorname{Ker}(u - r_q \operatorname{Id}))\Big).$

Ensuite, d'après les questions 9 et 15, lorsque $\operatorname{Ker}(u - r_q \operatorname{Id})$ est de dimension finie s_q pour tout $q \in \{1, \dots, p\}$, on obtient $\dim(\operatorname{Ker}(P(u))) = \sum_{q=1}^{p} n_q s_q$.