Préparation du TP C2

Dosage par oxydo-réduction

1 Dosage colorimétrique par iodométrie

Les demi-équations du dosage du diiode par le thiosulfate de sodium sont $S_4O_6^{2-}+2\,e^-=2\,S_2O_3^{2-}$ et $I_2+2\,e^-=2\,I^-$. Les ions Na^+ sont spectateurs. L'équation de la réaction est donc $2\,S_2O_3^{2-}+I_2=S_4O_6^{2-}+2\,I^-$.

À l'équivalence, $n(\mathbf{S}_2\mathbf{O}_3^{2-})=n(\mathbf{I}_2),$ donc

$$[I_2] = c_3 = \frac{[S_2 O_3^{2-}]}{2} \cdot \frac{v_{\text{\'eq},3}}{20.00 \text{ mL}}$$

.

Par composition des incertitudes, on a

$$\frac{u(c_3)}{c_3} = \sqrt{\left(\frac{u([\mathbf{S}_2\mathbf{O}_3^{2-}])}{[\mathbf{S}_2\mathbf{O}_3^{2-}]}\right)^2 + \left(\frac{u(v_{\rm \acute{eq},3})}{v_{\rm \acute{eq},3}}\right)^2 + \left(\frac{u(v_0)}{v_0}\right)^2},$$

où v_0 est le volume du bécher.

On calcule le nombre d'oxydations de S dans $S_4O_6^{2-}$: on sait que $4 \operatorname{no}(S) + 6 \operatorname{no}(O) = -II$, et $\operatorname{no}(O) = -II$. Or, cette équation n'a pas de solution entière en $\operatorname{no}(S)$, d'où le problème.

Dans
$$S_2O_3^{2-}$$
, on a $2\operatorname{no}(S)+3\operatorname{no}(O)=-II$ donc $\operatorname{no}(S)=+II.$

Si on considère que deux des quatre atomes de soufre ont un nombre d'oxydation de +II, et les deux autres ont un nombre d'oxydations de $\overline{\underline{O}}$ (oui, c'est un zéro en chiffres romains). Dans ce cas, l'équation sur les nombres d'oxydations est bien vérifiée.

$\mathbf{2}$ Dosage potentiométrique par manganimétrie

On réalise une pile \oplus Pt | Fe³⁺, Fe²⁺ | | Ag⁺ | AgCl \ominus . On applique la loi de Nernst au couple Fe³⁺/Fe²⁺:

$$U = E^{\circ} + \frac{RT}{\mathcal{F}} (\ln 10) \cdot \log \left(\frac{[\mathrm{Fe}^{3+}]}{[\mathrm{Fe}^{2+}]} \right).$$

 $\begin{array}{ll} \text{on} & \text{a} & [\mathrm{Fe}^{3+}] = [\mathrm{Fe}^{2+}] \\ U(v_{\mathrm{\acute{e}a}}) = E^{\circ}. \end{array}$ À l'équivalence, donc

À la demi-équivalence, on a $U(v_{\text{\'eq}}/2) = E^{\circ} - RT \ln 2 / \mathcal{F}$. À la double-équivalence, on a $U(2v_{\rm \acute{e}q}) = E^{\circ} + RT \ln 2 / \mathcal{F}$.

Dans le dosage, MnO_4^-/Mn^{2+} et Fe^{3+}/Fe^{2+} interviennent. Leurs demi-équations sont

(1)
$$MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O_4$$

(2)
$$Fe^{3+} + e^{-} = Fe^{2+}$$
.

L'équation bilan du dosage est donc $(1) - 5 \cdot (2)$:

$${\rm MnO_4^-} + 8\,{\rm H^+} + 5\,{\rm Fe^{2+}} = {\rm Mn^{2+}} + 4\,{\rm H_2O} + 5\,{\rm Fe^{3+}}.$$

À l'équivalence, on a $n(\text{Fe}^{2+})/5 = n(\text{MnO}_4^-)$, donc

$$[\mathrm{MnO_4^-}] = [\mathrm{Fe^{2+}}] \cdot \frac{v_0}{v_{\mathrm{\acute{e}q}}}.$$

Ainsi, par composition des incertitudes, on a

$$\frac{u([\mathrm{MnO_4^-}])}{[\mathrm{MnO_4^-}]} = \sqrt{\left(\frac{u([\mathrm{Fe^{2+}}])}{[\mathrm{Fe^{2+}}]}\right)^2 + \left(\frac{u(v_0)}{v_0}\right)^2 + \left(\frac{u(v_{\mathrm{\acute{e}q}})}{v_{\mathrm{\acute{e}q}}}\right)^2}.$$

Figure 1

L'ion permanganate MnO_4^- n'est pas stable dans l'eau, car il oxyde l'eau en dioxygène.