Project: IBM HR Analytics Employee Attrition & Performance

Executive Summary

The analysis of the IBM HR Analytics dataset reveals valuable insights into employee demographics and organizational dynamics, with a focus on attrition rates and employee behaviors. The study encompasses data preprocessing, exploratory data analysis, statistical testing, and clustering, leading to a thorough understanding of factors influencing workforce stability and employee satisfaction.

Key Insights

- **Stable Workforce:** The dataset shows a low attrition rate of 16%, indicating a stable workforce, yet a deeper investigation into turnover drivers is warranted.
- **Sales Dominance:** A significant proportion of employees are concentrated in the Sales department, highlighting a need for targeted support and retention strategies.
- Correlations and Satisfaction: Strong positive correlations between job level and monthly
 income were identified, while weak correlations with job satisfaction metrics suggest areas for
 enhancement.

Recommendations

- **Enhance Retention Strategies:** Develop targeted retention strategies for departments with higher turnover, particularly Sales.
- **Career Development Programs:** Implement initiatives aimed at employees in lower job levels to improve morale and engagement.
- **Explore Demographic Insights:** Tailor engagement strategies based on demographic factors such as gender distribution and marital status.
- **Investigate Weak Correlations:** Analyze weak correlations to uncover potential issues affecting employee satisfaction and retention.

Key Takeaways

- **Data-Driven Strategies:** Leverage identified correlations to guide management strategies for improving employee retention and satisfaction.
- **Targeted Development:** Focus on career development for employees at lower levels to enhance engagement and morale.
- **Further Exploration:** Weak and uncorrelated variables should be investigated further to gain a better understanding of employee experiences.

Next Steps

- **Conduct In-Depth Analysis:** Explore relationships between demographic factors and employee satisfaction for actionable insights.
- **Implement Pilot Programs:** Test recommended career development and retention strategies in specific departments.
- Monitor Changes: Continuously assess employee feedback and attrition rates to refine strategies and improve workplace dynamics.
- **Engage Stakeholders:** Collaborate with department heads and HR to discuss findings and develop collective engagement and retention strategies.

Dataset Information

- **Title:** IBM HR Analytics Employee Attrition & Performance
- **Source:** Kaggle IBM HR Analytics Dataset
- **Data Preview:** The dataset comprises 1,470 entries with 35 columns, including various employee demographics and performance metrics.

```
In [1]:
         # Load Dataset
          import pandas as pd
          df = pd.read_csv('IBM_HR.csv')
          # Initial Data Preview
In [2]:
          df.head()
             Age Attrition
Out[2]:
                              BusinessTravel DailyRate
                                                        Department DistanceFromHome Education EducationField
              41
                                Travel_Rarely
                                                  1102
                                                               Sales
                                                                                                  2
                                                                                                        Life Sciences
                        Yes
                                                                                       1
                                                          Research &
              49
                        No Travel_Frequently
                                                   279
                                                                                       8
                                                                                                  1
                                                                                                        Life Sciences
          1
                                                        Development
                                                          Research &
          2
              37
                        Yes
                                Travel_Rarely
                                                  1373
                                                                                       2
                                                                                                  2
                                                                                                              Other
                                                        Development
                                                          Research &
          3
              33
                        No Travel_Frequently
                                                                                       3
                                                                                                        Life Sciences
                                                        Development
                                                          Research &
                                                                                       2
                                                                                                  1
          4
              27
                        No
                                Travel_Rarely
                                                   591
                                                                                                            Medical
                                                        Development
         5 rows × 35 columns
```

Summary of Initial Data Preview

- The dataset preview provides a glimpse of the first five rows, showing the column names and their respective values.
- This helps ensure that the data is loaded correctly and gives us an initial sense of the variables present.

```
in [3]: # Preprocessing Summary
import numpy as np
```

```
initial rows = len(df)
# Removing rows where all columns are missing
df.dropna(how='all', inplace=True)
# Replacing empty strings with NaN and dropping remaining NaNs
df.replace('', np.nan, inplace=True)
df.dropna(inplace=True)
removed_rows_all = initial_rows - len(df)
# Handling numerical columns
numerical_cols = df.select_dtypes(include=['int64', 'float64']).columns
for col in numerical_cols:
    df[col] = df[col].fillna(df[col].mean()) # Fill missing values with column mean
imputed_numerical = df[numerical_cols].isnull().sum().sum()
# Handling categorical columns
categorical cols = df.select dtypes(include=['object']).columns
for col in categorical cols:
    df[col] = df[col].fillna(df[col].mode()[0]) # Fill missing values with column mode
imputed_categorical = df[categorical_cols].isnull().sum().sum()
# Removing duplicates
initial_rows = len(df)
df.drop_duplicates(inplace=True)
removed_duplicates = initial_rows - len(df)
# Converting low-variance categorical features to 'category' dtype
for col in categorical_cols:
   if df[col].nunique() / len(df) < 0.5:</pre>
        df[col] = df[col].astype('category')
# Winsorizing numerical data to reduce the impact of outliers
from scipy.stats.mstats import winsorize
for col in numerical_cols:
    df[col] = winsorize(df[col], limits=[0.05, 0.05])
```

Summary of Preprocessing

- Removed {} rows where all values were missing.
- Imputed missing values in numerical columns using the column mean.
- Imputed missing values in categorical columns using the mode.
- Removed {} duplicate rows.
- Winsorized numerical data to limit the influence of extreme outliers.
- The data is now clean and ready for analysis. "'.format(removed_rows_all, removed_duplicates)

```
In [4]: # Data Information
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

#	Column	Non-Null Cou	
0	Age	1470 non-nul	
1	Attrition	1470 non-nul	ll category
2	BusinessTravel	1470 non-nul	
3	DailyRate	1470 non-nul	ll int64
4	Department	1470 non-nu	ll category
5	DistanceFromHome	1470 non-nu	ll int64
6	Education	1470 non-nu	ll int64
7	EducationField	1470 non-nul	ll category
8	EmployeeCount	1470 non-nul	ll int64
9	EmployeeNumber	1470 non-nu	ll int64
10	EnvironmentSatisfaction	1470 non-nu	ll int64
11	Gender	1470 non-nul	ll category
12	HourlyRate	1470 non-nul	ll int64
13	JobInvolvement	1470 non-nu	ll int64
14	JobLevel	1470 non-nul	ll int64
15	JobRole	1470 non-nul	ll category
16	JobSatisfaction	1470 non-nul	ll int64
17	MaritalStatus	1470 non-nul	ll category
18	MonthlyIncome	1470 non-nul	ll int64
19	MonthlyRate	1470 non-nul	ll int64
20	NumCompaniesWorked	1470 non-nul	ll int64
21	Over18	1470 non-nul	ll category
22	OverTime	1470 non-nul	ll category
23	PercentSalaryHike	1470 non-nul	ll int64
24	PerformanceRating	1470 non-nul	ll int64
25	RelationshipSatisfaction	1470 non-nul	
26	StandardHours	1470 non-nul	ll int64
27	StockOptionLevel	1470 non-nul	ll int64
28	TotalWorkingYears	1470 non-nul	ll int64
29	TrainingTimesLastYear	1470 non-nu	ll int64
30	WorkLifeBalance	1470 non-nul	ll int64
31	YearsAtCompany	1470 non-nul	ll int64
32	YearsInCurrentRole	1470 non-nul	ll int64
33	YearsSinceLastPromotion	1470 non-nu	ll int64
34	YearsWithCurrManager	1470 non-nu	ll int64
dtvpe	es: category(9), int64(26)		

dtypes: category(9), int64(26)

memory usage: 313.1 KB

Summary of Data Information

- The dataset contains {} rows and {} columns after cleaning.
- There are {} numerical columns and {} categorical columns.
- The data types are consistent and appropriate for analysis. "".format(len(df), len(df.columns), len(numerical_cols), len(categorical_cols))

```
In [5]: # Exploratory Data Analysis (Histograms and Data Distributions)
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots

# Function to create histograms with distribution tables for numerical variables
def plot_numerical_distributions(df, numerical_cols):
    for col in numerical_cols:
        # Create a subplot: 1 row, 2 columns
```

```
fig = make subplots(rows=1, cols=2,
                            subplot_titles=(f"Histogram of {col}", f"Data Distribution of
                            # Specify the subplot type for the second column as 'table'
                            specs=[[{"type": "xy"}, {"type": "table"}]])
       # Histogram
        hist_data = go.Histogram(x=df[col], nbinsx=30, name='Histogram', opacity=0.75)
       fig.add_trace(hist_data, row=1, col=1)
        # Data distribution table
        # Calculate the distribution
        distribution = df[col].describe()
        distribution_table = go.Table(
            header=dict(values=["Statistic", "Value"],
                        fill_color='paleturquoise',
                        align='left'),
            cells=dict(values=[distribution.index, distribution.values],
                       fill_color='lavender',
                       align='left'))
        # Add the table trace directly
       fig.add_trace(distribution_table, row=1, col=2)
       # Update Layout
       fig.update_layout(title_text=f"Histogram and Data Distribution of {col}",
                          showlegend=False,
                          height=400)
        # Show figure
       fig.show()
# Function to create histograms with distribution tables for categorical variables
def plot_categorical_distributions(df, categorical_cols):
   for col in categorical cols:
        # Create a subplot: 1 row, 2 columns
       fig = make_subplots(rows=1, cols=2,
                            subplot_titles=(f"Histogram of {col}", f"Data Distribution of
                            # Specify the subplot type for the second column as 'table'
                            specs=[[{"type": "xy"}, {"type": "table"}]])
        # Histogram
        cat_counts = df[col].value_counts()
       fig.add trace(go.Bar(x=cat counts.index, y=cat counts.values, name='Histogram', open
        # Data distribution table
        distribution table = go.Table(
           header=dict(values=["Category", "Count"],
                        fill_color='paleturquoise',
                        align='left'),
            cells=dict(values=[cat_counts.index, cat_counts.values],
                       fill color='lavender',
                       align='left'))
        # Add the table trace directly
       fig.add_trace(distribution_table, row=1, col=2)
        # Update Layout
        fig.update_layout(title_text=f"Histogram and Data Distribution of {col}",
                          showlegend=False,
                          height=400)
        # Show figure
       fig.show()
```

```
# Execute the functions
plot_numerical_distributions(df, numerical_cols)
plot_categorical_distributions(df, categorical_cols)

C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
```

Histogram and Data Distribution of Age

C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:

Warning: 'partition' will ignore the 'mask' of the MaskedArray.

Histogram and Data Distribution of DailyRate

C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.

Histogram and Data Distribution of DistanceFromHome

Histogram of DistanceFromHome

Histogram and Data Distribution of Education

C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.

Histogram and Data Distribution of EmployeeCount

Histogram and Data Distribution of EmployeeNumber

C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.

Histogram and Data Distribution of EnvironmentSatisfaction

Histogram of EnvironmentSatisfaction

400

Histogram and Data Distribution of HourlyR	i iiStoui ai ii	anu Data	DISHIDUHOH	i oi i ioulivkate
--	-----------------	----------	------------	-------------------

Histogram	of	Hourl	vRate
HISLOGIANI	ΟI	Houli	vnate

C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.

Histogram and Data Distribution of JobInvolvement

Histogram of JobInvolvement

800

Histogram and Data Distribution of JobLevel

C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.

Histogram and Data Distribution of JobSatisfaction

Histogram of JobSatisfaction

400

Histogram and Data Distribution of MonthlyIncome

C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.

Histogram and Data Distribution of MonthlyRate

Histogram of MonthlyRate

Histogram and Data Distribution of NumCompaniesWorked

C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.

Histogram and Data Distribution of PercentSalaryHike

Histogram of PercentSalaryHike

Histogram and Data Distribution of PerformanceRating

Histogram of PerformanceRating

C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.

Histogram and Data Distribution of RelationshipSatisfaction

Histogram of RelationshipSatisfaction

400

Histogram and Data Distribution of StandardHours

C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.

Histogram and Data Distribution of StockOptionLevel

Histogram and Data Distribution of TotalWorkingYears

C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.

Histogram and Data Distribution of TrainingTimesLastYear

Histogram and Data Distribution of WorkLifeBalance

800

C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.

Histogram and Data Distribution of YearsAtCompany

Histogram of YearsAtCompany

200

Histogram and Data Distribution of YearsInCurrentRole

Histogram of YearsInCurrentRole

C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.

Histogram and Data Distribution of YearsSinceLastPromotion

Histogram and Data Distribution of YearsWithCurrManager

Histogram of YearsWithCurrManager

300

Histogram and Data Distribution of Attrition

Histogram of Attrition

1200

Histogram and Data Distribution of BusinessTravel

Histogram and Data Distribution of Department

Histogram and Data Distribution of EducationField

Histogram and Data Distribution of Gender

Histogram of Gender

800

Histogram and Data Distribution of JobRole

Histogram and Data Distribution of MaritalStatus

Histogram of MaritalStatus

600

Histogram and Data Distribution of Over18

Histogram and Data Distribution of OverTime


```
specs=[[{"type": "histogram"}] for in range(len(numerical cols))
       # Data for consolidated distribution table
       distribution_data = []
       for i, col in enumerate(numerical_cols):
              # Histogram
              hist_data = go.Histogram(x=df[col], nbinsx=30, name='Histogram', opacity=0.75)
              fig.add_trace(hist_data, row=i + 1, col=1)
              # Calculate distribution
              distribution = df[col].describe()
              distribution_data.append([col] + distribution.values.tolist())
       # Create consolidated distribution table for numerical variables
       distribution_df = pd.DataFrame(distribution_data, columns=["Variable"] + list(distribution_data, columns=["Variable"] +
       # Add table to the figure
       fig.add_trace(go.Table(
              header=dict(values=distribution df.columns,
                                    fill_color='paleturquoise',
                                     align='left'),
              cells=dict(values=[distribution_df[col] for col in distribution_df.columns],
                                   fill_color='lavender',
                                   align='left')),
              row=len(numerical_cols) + 1, col=1) # Add the table to the last row
       # Update Layout
       fig.update_layout(title_text="Histograms and Data Distribution of Numerical Variables"
       # Show figure
       fig.show()
# Function to create histograms for categorical variables and consolidate distributions
def plot_categorical_distributions(df, categorical_cols):
       # Create a subplot for histograms with an extra row for the table
       fig = make_subplots(rows=len(categorical_cols) + 1, cols=1,
                                            subplot_titles=[f"Histogram of {col}" for col in categorical_cols]
                                            specs=[[{"type": "bar"}] for _ in range(len(categorical_cols))] +
       # Data for consolidated distribution table
       distribution_data = []
       for i, col in enumerate(categorical cols):
              # Histogram
              cat counts = df[col].value counts()
              fig.add_trace(go.Bar(x=cat_counts.index, y=cat_counts.values, name='Histogram', open
              # Collect counts for the distribution table
              distribution_data.append([col] + cat_counts.values.tolist())
       # Create consolidated distribution table for categorical variables
       # Prepare the table headers based on the maximum category count
      max_categories = max([len(d) - 1 for d in distribution_data]) # Exclude the variable
      table_headers = ["Variable"] + [f"Category {i+1}" for i in range(max_categories)]
       # Create DataFrame for distribution
       distribution_df = pd.DataFrame(distribution_data, columns=table_headers).fillna("")
       # Add table to the figure
       fig.add_trace(go.Table(
              header=dict(values=distribution_df.columns,
                                    fill_color='paleturquoise',
```

```
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
```

```
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
C:\Users\joero\anaconda3\Lib\site-packages\numpy\lib\function_base.py:4737: UserWarning:
Warning: 'partition' will ignore the 'mask' of the MaskedArray.
```

Histograms and Data Distribution of Numerical Variables

Histograms and Data Distribution of Categorical Variables

 The analysis of the dataset reveals key insights into various employee demographics and organizational dynamics:

Attrition:

- **Majority Retention:** A significant majority (84%) of employees remain with the company, reflecting low attrition rates.
- **Exit Rates:** Approximately 16% of employees have left the organization, indicating areas for potential improvement in retention strategies.

Business Travel:

 Travel Frequency: The most common travel frequency is "Travel Frequently" at 71%, followed by "Travel Rarely" (19%) and "Travel Occasionally" (10%).

Departmental Representation:

• Largest Department: The "Sales" department constitutes 65% of the workforce, whereas "Research & Development" and "Human Resources" have significantly fewer employees.

Educational Background:

 Common Fields: Employees predominantly have educational backgrounds in "Human Resources" and "Marketing," with "Life Sciences" and "Medical" fields being less represented.

Gender Distribution:

• **Slight Male Majority:** The workforce is slightly male-dominated, with a distribution of 60% male to 40% female.

Job Role Insights:

• **Common Roles:** The "Sales Executive" role is the most prevalent, while "Research Scientist" and "Laboratory Technician" roles are less common.

Marital Status:

• **Predominantly Married:** Nearly half (46%) of employees are married, with "Single" and "Divorced" statuses more evenly distributed among the remaining employees.

Age and Work Patterns:

• Over 18: All employees are over 18 years old, and approximately 72% work overtime, indicating a high level of employee commitment.

Overall Observations:

- Skewed Categories: The dataset shows significant skewness in categories like Department, Job Role, and Business Travel.
- Demographic Insights: The workforce is characterized by a male-dominated, married demographic primarily employed in Sales, with a notable portion working overtime.
- **Low Attrition:** Despite the low attrition rates, further analysis is needed to understand the factors driving employee turnover.

Key Insights

- **Attrition Stability:** The low attrition rate suggests a stable workforce, but further investigation into turnover factors is essential.
- **Workforce Composition:** The predominance of employees in Sales and their overtime work patterns highlight areas for enhancing employee support and satisfaction.
- **Demographic Trends:** The slight male majority and marital status distribution provide context for tailoring employee engagement strategies.

Key Takeaways

- Retention Strategies: Management should focus on developing strategies to enhance employee retention, particularly in departments with higher turnover.
- Career Development: Targeting career development opportunities for employees in lower job levels could boost morale and engagement.
- **Further Analysis:** Investigating the relationships between different demographic factors and employee satisfaction can uncover insights to improve workplace dynamics.

```
import plotly.graph_objs as go
import numpy as np
import pandas as pd

# Define your numerical columns from the DataFrame
numerical_cols = df.select_dtypes(include=['float64', 'int64']).columns.tolist()

# Check for NaN values in the numerical columns
if df[numerical_cols].isnull().values.any():
    print("NaN values found. Filling NaN values with column means.")
    df[numerical_cols] = df[numerical_cols].fillna(df[numerical_cols].mean())

# Check for constant columns and remove them
constant_cols = [col for col in numerical_cols if df[col].nunique() <= 1]
if constant_cols:
    print(f"Removing constant columns: {constant_cols}")
    numerical_cols = [col for col in numerical_cols if col not in constant_cols]</pre>
```

```
# Calculate correlation matrix for the numerical columns
corr_matrix = np.corrcoef(df[numerical_cols].values.T)
# Check if the correlation matrix is empty
if corr matrix.size == 0:
   print("Correlation matrix is empty. Exiting.")
else:
   print("Correlation matrix calculated successfully.")
# Create heatmap with color scale optimized for colorblindness
heatmap = go.Figure(data=go.Heatmap(
   z=corr_matrix,
   x=numerical cols,
   y=numerical_cols[::-1], # Reverse y-axis for readability
   colorscale='Viridis', # Color scale optimized for colorblindness
   zmin=-1, zmax=1, # Set the range for correlations
   showscale=True, # Show the color scale for clarity
   hoverongaps=False
))
# Add annotations (correlation values) for significant correlations
threshold = 0.5 # Example threshold for significant correlation
annotations = []
for i in range(len(corr_matrix)):
   for j in range(len(corr_matrix)):
       if abs(corr_matrix[i, j]) > threshold:
           annotations.append(
               dict(
                   x=numerical_cols[j],
                    y=numerical cols[i],
                    text=str(round(corr_matrix[i, j], 2)), # Show values up to 2 decimal
                    showarrow=False,
                    font=dict(color="white", size=12), # Reduced font size for better fit
               )
           )
# Add annotations to the layout
for annotation in annotations:
   heatmap.add annotation(annotation)
# Improve layout
heatmap.update_layout(
   title=dict(text='Correlation Matrix of Numerical Columns', font=dict(size=24)),
   font=dict(size=14),
   xaxis_title='Features',
   yaxis_title='Features',
   xaxis=dict(tickangle=-45, titlefont=dict(size=16)), # Rotate x-axis labels for clarit
   yaxis=dict(tickangle=0, titlefont=dict(size=16)),
   width=900, height=900,
   plot_bgcolor='white', # White background for better contrast
   margin=dict(l=100, r=20, t=100, b=100) # Add margins for better spacing
# Show the heatmap
heatmap.show()
# Now, compute the top and bottom correlations using the corr_matrix
# Convert the correlation matrix to a DataFrame for easier manipulation
corr df = pd.DataFrame(corr matrix, index=numerical cols, columns=numerical cols)
# Extract the upper triangle of the correlation matrix to avoid duplicate pairs
upper_tri = corr_df.where(np.triu(np.ones(corr_df.shape), k=1).astype(bool))
```

```
# Unstack the upper triangle matrix and sort by absolute correlation values
sorted_corr = upper_tri.unstack().dropna().abs().sort_values(ascending=False)

# Top 10 positive correlations
top_10_positive = sorted_corr.head(10)

# Bottom 10 negative correlations (sorted in reverse)
bottom_10_negative = sorted_corr.tail(10)

# Combine results in a DataFrame, flattening the MultiIndex
top_bottom_corr = pd.DataFrame({
    'Top 10 Correlations': [f"{a} and {b}" for a, b in top_10_positive.index],
    'Bottom 10 Correlations': [f"{a} and {b}" for a, b in bottom_10_negative.index],
    'Bottom 10 Values': bottom_10_negative.values
})

# Display the combined table
top_bottom_corr
```

Removing constant columns: ['EmployeeCount', 'StandardHours'] Correlation matrix calculated successfully.

Correlation Matrix of Numerical Columns

Features

	Top 10 Correlations	Top 10 Values	Bottom 10 Correlations	Bottom 10 Values
0	MonthlyIncome and JobLevel	0.934033	YearsAtCompany and EnvironmentSatisfaction	0.001144
1	YearsWithCurrManager and YearsAtCompany	0.809258	YearsWithCurrManager and EnvironmentSatisfaction	0.000953
2	YearsInCurrentRole and YearsAtCompany	0.805600	MonthlyRate and JobSatisfaction	0.000932
3	TotalWorkingYears and JobLevel	0.783599	YearsWithCurrManager and WorkLifeBalance	0.000902
4	TotalWorkingYears and MonthlyIncome	0.774523	YearsAtCompany and JobSatisfaction	0.000600
5	PerformanceRating and PercentSalaryHike	0.758391	PerformanceRating and DailyRate	0.000441
6	YearsWithCurrManager and YearsInCurrentRole	0.743470	TotalWorkingYears and HourlyRate	0.000307
7	TotalWorkingYears and Age	0.679590	YearsAtCompany and EmployeeNumber	0.000275
8	YearsAtCompany and TotalWorkingYears	0.607889	PerformanceRating and Age	0.000116
9	YearsSinceLastPromotion and YearsAtCompany	0.604095	JobLevel and EnvironmentSatisfaction	0.000028

Summary of Correlation Analysis

The heatmap visualization of the correlation matrix for the dataset's numerical variables indicates varying degrees of correlation:

- **Strong Positive Correlations** (yellow in the heatmap):
 - Highest Correlation:
 - MonthlyIncome and JobLevel (0.934)
 - Other notable correlations include:
 - YearsWithCurrManager and YearsAtCompany (0.809)
 - YearsInCurrentRole and YearsAtCompany (0.806)
 - TotalWorkingYears with JobLevel (0.784)
 - TotalWorkingYears with MonthlyIncome (0.775)
 - PerformanceRating and PercentSalaryHike (0.758)
- Strong Negative Correlations:
 - Represented by darker hues, though less prominent.
- Weakest Correlations:
 - YearsAtCompany with EnvironmentSatisfaction (0.001)
 - YearsWithCurrManager with WorkLifeBalance (0.001)

- Almost Uncorrelated Variables:
 - Appearing as neutral (dark purple).

Key Insights

- The strongest correlation is between **MonthlyIncome and JobLevel**, indicating that higher job levels are associated with increased monthly income.
- Significant positive correlations exist among variables related to employee tenure, such as
 YearsWithCurrManager and YearsAtCompany, suggesting that employees who have been with
 the company longer also tend to have longer tenures with their managers.
- Weak correlations highlight potential areas for improvement in employee satisfaction metrics, such as **EnvironmentSatisfaction**.

Key Takeaways

- **Data-Driven Strategies**: The strong correlations identified can guide management strategies to enhance employee retention and satisfaction.
- **Focus on Development**: Targeting career development and salary enhancement for employees in lower job levels may improve overall employee morale.
- **Further Exploration**: Weak and almost uncorrelated variables warrant further investigation to identify underlying issues and improve workplace dynamics.

```
In [31]: # Statistical Tests
          from scipy.stats import pearsonr, chi2_contingency, f_oneway, ttest_ind
          import pandas as pd
          # Set pandas display option to show all rows
          #pd.set option('display.max rows', None)
          # Function to perform numerical-numerical correlation tests
          def numerical_numerical_tests(df, numerical_cols):
             results = []
             for i in range(len(numerical_cols)):
                 for j in range(i + 1, len(numerical_cols)):
                      col1, col2 = numerical_cols[i], numerical_cols[j]
                      corr, p val = pearsonr(df[col1], df[col2])
                      results.append([col1, col2, corr, p_val])
              num_num_df = pd.DataFrame(results, columns=['Variable 1', 'Variable 2', 'Correlation',
              return num num df
          # Function to perform categorical-categorical chi-square tests
          def categorical_categorical_tests(df, categorical_cols):
             results = []
             for i in range(len(categorical_cols)):
                 for j in range(i + 1, len(categorical_cols)):
                     col1, col2 = categorical cols[i], categorical cols[j]
                      contingency_table = pd.crosstab(df[col1], df[col2])
                     chi2, p_val, _, _ = chi2_contingency(contingency_table)
                      results.append([col1, col2, chi2, p_val])
              cat_cat_df = pd.DataFrame(results, columns=['Variable 1', 'Variable 2', 'Chi-Square',
              return cat_cat_df
          # Function to perform categorical-numerical ANOVA or T-tests
          def categorical_numerical_tests(df, categorical_cols, numerical_cols):
```

```
results = []
    for cat_col in categorical_cols:
        for num col in numerical cols:
            categories = df[cat col].unique()
            groups = [df[df[cat_col] == cat][num_col] for cat in categories]
            if len(categories) == 2: # T-test case
                t_stat, p_val = ttest_ind(*groups)
                results.append([cat_col, num_col, 'T-test', t_stat, p_val])
            elif len(groups) >= 2: # ANOVA case
                f stat, p val = f oneway(*groups)
                results.append([cat_col, num_col, 'ANOVA', f_stat, p_val])
            else:
                print(f"Skipping tests for {cat col} and {num col} - not enough groups.")
    cat_num_df = pd.DataFrame(results, columns=['Categorical Variable', 'Numerical Variable')
    return cat num df
# Function to get top 10 and bottom 10 results based on p-value or statistic
def get top bottom(df, top n=10, bottom n=10, sort column='P-value'):
    top results = df.nsmallest(top n, sort column)
    bottom results = df.nlargest(bottom n, sort column)
    return top_results, bottom_results
# Execute the tests
num_num_results_df = numerical_numerical_tests(df, numerical_cols)
cat_cat_results_df = categorical_categorical_tests(df, categorical_cols)
cat_num_results_df = categorical_numerical_tests(df, categorical_cols, numerical_cols)
# Get top 10 and bottom 10 results
num_num_top, num_num_bottom = get_top_bottom(num_num_results_df)
cat_cat_top, cat_cat_bottom = get_top_bottom(cat_cat_results_df)
cat_num_top, cat_num_bottom = get_top_bottom(cat_num_results_df, sort_column='P-value')
# Display the results
print("Numerical-Numerical Test Results:")
display(num_num_results_df)
print("Top 10 Numerical-Numerical Results:")
display(num num top)
print("Bottom 10 Numerical-Numerical Results:")
display(num num bottom)
print("Categorical-Categorical Test Results:")
display(cat_cat_results_df)
print("Top 10 Categorical-Categorical Results:")
display(cat cat top)
print("Bottom 10 Categorical-Categorical Results:")
display(cat cat bottom)
print("Categorical-Numerical Test Results:")
display(cat_num_results_df)
print("Top 10 Categorical-Numerical Results:")
display(cat num top)
print("Bottom 10 Categorical-Numerical Results:")
display(cat num bottom)
```

```
Skipping tests for Over18 and Age - not enough groups.
Skipping tests for Over18 and DailyRate - not enough groups.
Skipping tests for Over18 and DistanceFromHome - not enough groups.
Skipping tests for Over18 and Education - not enough groups.
Skipping tests for Over18 and EmployeeNumber - not enough groups.
Skipping tests for Over18 and EnvironmentSatisfaction - not enough groups.
Skipping tests for Over18 and HourlyRate - not enough groups.
Skipping tests for Over18 and JobInvolvement - not enough groups.
Skipping tests for Over18 and JobLevel - not enough groups.
Skipping tests for Over18 and JobSatisfaction - not enough groups.
Skipping tests for Over18 and MonthlyIncome - not enough groups.
Skipping tests for Over18 and MonthlyRate - not enough groups.
Skipping tests for Over18 and NumCompaniesWorked - not enough groups.
Skipping tests for Over18 and PercentSalaryHike - not enough groups.
Skipping tests for Over18 and PerformanceRating - not enough groups.
Skipping tests for Over18 and RelationshipSatisfaction - not enough groups.
Skipping tests for Over18 and StockOptionLevel - not enough groups.
Skipping tests for Over18 and TotalWorkingYears - not enough groups.
Skipping tests for Over18 and TrainingTimesLastYear - not enough groups.
Skipping tests for Over18 and WorkLifeBalance - not enough groups.
Skipping tests for Over18 and YearsAtCompany - not enough groups.
Skipping tests for Over18 and YearsInCurrentRole - not enough groups.
Skipping tests for Over18 and YearsSinceLastPromotion - not enough groups.
Skipping tests for Over18 and YearsWithCurrManager - not enough groups.
Numerical-Numerical Test Results:
```

	Variable 1	Variable 2	Correlation	P-value
0	Age	DailyRate	0.007397	7.769047e-01
1	Age	DistanceFromHome	-0.005364	8.371847e-01
2	Age	Education	0.204215	2.646757e-15
3	Age	EmployeeNumber	-0.010552	6.860392e-01
4	Age	EnvironmentSatisfaction	0.011997	6.458035e-01
•••				
271	YearsAtCompany	YearsSinceLastPromotion	0.604095	6.416817e-147
272	YearsAtCompany	YearsWithCurrManager	0.809258	0.000000e+00
273	YearsInCurrentRole	YearsSinceLastPromotion	0.550674	2.507874e-117
274	YearsInCurrentRole	YearsWithCurrManager	0.743470	8.972045e-259
275	YearsSinceLastPromotion	YearsWithCurrManager	0.518823	4.371246e-102

276 rows × 4 columns

Top 10 Numerical-Numerical Results:

	Variable 1	Variable 2	Correlation	P-value
157	JobLevel	MonthlyIncome	0.934033	0.000000e+00
270	YearsAtCompany	YearsInCurrentRole	0.805600	0.000000e+00
272	YearsAtCompany	YearsWithCurrManager	0.809258	0.000000e+00
164	JobLevel	TotalWorkingYears	0.783599	9.048888e-306
191	MonthlyIncome	TotalWorkingYears	0.774523	2.707170e-294
221	PercentSalaryHike	PerformanceRating	0.758391	3.613256e-275
274	YearsInCurrentRole	YearsWithCurrManager	0.743470	8.972045e-259
16	Age	TotalWorkingYears	0.679590	9.403270e-200
257	TotalWorkingYears	YearsAtCompany	0.607889	3.079497e-149
271	YearsAtCompany	YearsSinceLastPromotion	0.604095	6.416817e-147

Bottom 10 Numerical-Numerical Results:

	Variable 1	Variable 2	Correlation	P-value
107	EnvironmentSatisfaction	JobLevel	-0.000028	0.999156
13	Age	PerformanceRating	0.000116	0.996448
101	EmployeeNumber	YearsAtCompany	0.000275	0.991586
133	HourlyRate	TotalWorkingYears	-0.000307	0.990623
35	DailyRate	PerformanceRating	-0.000441	0.986536
181	JobSatisfaction	YearsAtCompany	-0.000600	0.981656
269	WorkLifeBalance	YearsWithCurrManager	0.000902	0.972450
172	JobSatisfaction	MonthlyRate	0.000932	0.971519
122	EnvironmentSatisfaction	YearsWithCurrManager	-0.000953	0.970883
119	EnvironmentSatisfaction	YearsAtCompany	0.001144	0.965048

Categorical-Categorical Test Results:

	Variable 1	Variable 2	Chi-Square	P-value
0	Attrition	BusinessTravel	24.182414	5.608614e-06
1	Attrition	Department	10.796007	4.525607e-03
2	Attrition	EducationField	16.024674	6.773980e-03
3	Attrition	Gender	1.116967	2.905724e-01
4	Attrition	JobRole	86.190254	2.752482e-15
5	Attrition	MaritalStatus	46.163677	9.455511e-11
6	Attrition	Over18	0.000000	1.000000e+00
7	Attrition	OverTime	87.564294	8.158424e-21
8	BusinessTravel	Department	0.201885	9.952355e-01
9	BusinessTravel	EducationField	5.168394	8.796489e-01
10	BusinessTravel	Gender	4.031372	1.332290e-01
11	BusinessTravel	JobRole	11.987696	7.448263e-01
12	BusinessTravel	MaritalStatus	7.502066	1.116182e-01
13	BusinessTravel	Over18	0.000000	1.000000e+00
14	BusinessTravel	OverTime	2.853795	2.400525e-01
15	Department	EducationField	1024.979247	7.771588e-214
16	Department	Gender	2.964492	2.271270e-01
17	Department	JobRole	2594.428134	0.000000e+00
18	Department	MaritalStatus	6.648506	1.556705e-01
19	Department	Over18	0.000000	1.000000e+00
20	Department	OverTime	0.093607	9.542751e-01
21	EducationField	Gender	2.941424	7.090163e-01
22	EducationField	JobRole	864.756198	1.723301e-155
23	EducationField	MaritalStatus	9.585125	4.776135e-01
24	EducationField	Over18	0.000000	1.000000e+00
25	EducationField	OverTime	1.758246	8.814816e-01
26	Gender	JobRole	16.029879	4.195444e-02
27	Gender	MaritalStatus	3.547839	1.696666e-01
28	Gender	Over18	0.000000	1.000000e+00
29	Gender	OverTime	2.397258	1.215481e-01
30	JobRole	MaritalStatus	26.912647	4.246433e-02
31	JobRole	Over18	0.000000	1.000000e+00
32	JobRole	OverTime	6.568397	5.838314e-01
33	MaritalStatus	Over18	0.000000	1.000000e+00
34	MaritalStatus	OverTime	0.816721	6.647391e-01

	Variable 1	Variable 2	Chi-Square	P-value
35	Over18	OverTime	0.000000	1.000000e+00
Тор	10 Categori	cal-Categoric	al Results:	
	Variable 1	Variable 2	Chi-Square	P-value
17	Department	JobRole	2594.428134	0.000000e+00
15	Department	EducationField	1024.979247	7.771588e-214
22	EducationField	JobRole	864.756198	1.723301e-155
7	Attrition	OverTime	87.564294	8.158424e-21
4	Attrition	JobRole	86.190254	2.752482e-15
5	Attrition	MaritalStatus	46.163677	9.455511e-11
0	Attrition	BusinessTravel	24.182414	5.608614e-06
1	Attrition	Department	10.796007	4.525607e-03
2	Attrition	EducationField	16.024674	6.773980e-03
26	Gender	JobRole	16.029879	4.195444e-02

Bottom 10 Categorical-Categorical Results:

	Variable 1	Variable 2	Chi-Square	P-value
6	Attrition	Over18	0.000000	1.000000
13	BusinessTravel	Over18	0.000000	1.000000
19	Department	Over18	0.000000	1.000000
24	EducationField	Over18	0.000000	1.000000
28	Gender	Over18	0.000000	1.000000
31	JobRole	Over18	0.000000	1.000000
33	MaritalStatus	Over18	0.000000	1.000000
35	Over18	OverTime	0.000000	1.000000
8	BusinessTravel	Department	0.201885	0.995236
20	Department	OverTime	0.093607	0.954275

Categorical-Numerical Test Results:

	Categorical Variable	Numerical Variable	Test Type	Statistic	P-value
0	Attrition	Age	T-test	-5.918583	4.035679e-09
1	Attrition	DailyRate	T-test	-2.184750	2.906490e-02
2	Attrition	DistanceFromHome	T-test	3.080189	2.107098e-03
3	Attrition	Education	T-test	-1.067550	2.858990e-01
4	Attrition	EmployeeNumber	T-test	-0.359468	7.192964e-01
•••					
187	OverTime	WorkLifeBalance	T-test	-1.038393	2.992583e-01
188	OverTime	YearsAtCompany	T-test	-0.901895	3.672607e-01
189	OverTime	YearsInCurrentRole	T-test	-1.126866	2.599833e-01
190	OverTime	YearsSinceLastPromotion	T-test	-0.538090	5.905967e-01
191	OverTime	YearsWithCurrManager	T-test	-1.536691	1.245845e-01

192 rows × 5 columns

Top 10 Categorical-Numerical Results:

	Categorical Variable	Numerical Variable	Test Type	Statistic	P-value
128	JobRole	JobLevel	ANOVA	540.604101	0.000000e+00
130	JobRole	MonthlyIncome	ANOVA	811.101844	0.000000e+00
160	MaritalStatus	StockOptionLevel	ANOVA	625.298277	3.997636e-197
137	JobRole	TotalWorkingYears	ANOVA	141.977964	1.853228e-176
120	JobRole	Age	ANOVA	42.597195	1.385206e-61
140	JobRole	YearsAtCompany	ANOVA	40.637630	7.315923e-59
141	JobRole	YearsInCurrentRole	ANOVA	21.517489	3.659669e-31
143	JobRole	YearsWithCurrManager	ANOVA	21.385362	5.777720e-31
142	JobRole	YearsSinceLastPromotion	ANOVA	15.237266	1.185794e-21
17	Attrition	TotalWorkingYears	T-test	-7.038438	2.974289e-12

Bottom 10 Categorical-Numerical Results:

	Categorical Variable	Numerical Variable	Test Type	Statistic	P-value
184	OverTime	StockOptionLevel	T-test	-0.017191	0.986287
101	Gender	EnvironmentSatisfaction	T-test	-0.019476	0.984464
79	EducationField	JobInvolvement	ANOVA	0.197234	0.963619
147	MaritalStatus	Education	ANOVA	0.045794	0.955240
102	Gender	HourlyRate	T-test	0.057289	0.954322
121	JobRole	DailyRate	ANOVA	0.365032	0.939076
129	JobRole	JobSatisfaction	ANOVA	0.365213	0.938989
98	Gender	DistanceFromHome	T-test	0.083615	0.933374
109	Gender	PercentSalaryHike	T-test	-0.085840	0.931605
27	BusinessTravel	Education	ANOVA	0.086176	0.917438

Summary of Statistical Findings

• The analysis provides a comprehensive overview of relationships among variables, highlighting both strong and weak correlations across different statistical tests.

Numerical-Numerical Correlation Tests:

- Strong Positive Relationships: Significant correlations were found among numerical variables, with JobLevel and MonthlyIncome exhibiting a correlation of 0.9340 (p-value: 0.0000), indicating a very strong relationship. Other notable correlations include:
 - YearsAtCompany with YearsInCurrentRole (0.8056) and YearsWithCurrManager (0.8093), both also highly significant (p-value: 0.0000).
- Weak/Negative Relationships: Conversely, the bottom results showed negligible correlations, such as:
 - EnvironmentSatisfaction and JobLevel (-0.000028, p-value: 0.9992) and Age and PerformanceRating (0.000116), indicating a lack of meaningful relationship.

Categorical-Categorical Chi-Square Tests:

- Significant Associations: The Chi-square tests revealed strong associations among categorical variables, particularly between Department and JobRole (Chi-square: 2594.43, p-value: 0.0000). Other significant pairs included:
 - Department and EducationField (Chi-square: 1024.98, p-value: 7.77e-214) and EducationField and JobRole (Chi-square: 864.76, p-value: 1.72e-155).
- **Insignificant Associations**: The bottom results indicated no associations, such as between **Attrition and Over18** (Chi-square: **0.0000**, p-value: **1.0000**), confirming weak relationships.

Categorical-Numerical ANOVA or T-Tests:

- Significant Differences: The analysis identified notable differences through ANOVA and T-tests, with JobRole and JobLevel showing an ANOVA statistic of 540.60 (p-value: 0.0000). Other significant findings included:
 - **JobRole with MonthlyIncome** (811.10) and **MaritalStatus with StockOptionLevel** (625.30), both demonstrating high significance.
- Minimal Differences: Conversely, the bottom results revealed minimal differences, such as between OverTime and StockOptionLevel (-0.0172, p-value: 0.9863), indicating a lack of significant difference.

Key Insights

- The analysis uncovers strong positive relationships among variables, notably between JobLevel
 and MonthlyIncome, indicating that as job level increases, monthly income also tends to
 increase.
- Weak or negligible relationships were found, particularly in variables like
 EnvironmentSatisfaction and JobLevel, suggesting that employee satisfaction may not directly correlate with their job level.

Key Takeaways

- **Understanding Relationships**: The findings illustrate key relationships that can inform management strategies and employee engagement initiatives.
- **Focus Areas**: Areas with weak correlations highlight potential opportunities for further investigation to understand employee experiences better.
- **Data-Driven Decisions**: Insights from the analysis can guide future policy-making and organizational strategies aimed at improving job satisfaction and retention.

```
In [32]: # Optimized K-Means Clustering
         from sklearn.preprocessing import StandardScaler
          from sklearn.cluster import KMeans
          import matplotlib.pyplot as plt
          # Standardizing the data before clustering
          scaler = StandardScaler()
          df scaled = scaler.fit transform(df[numerical cols])
          # Finding the optimal number of clusters using the Elbow method
          inertia = []
          k_range = range(1, 11)
          for k in k_range:
              kmeans = KMeans(n_clusters=k, random_state=42)
              kmeans.fit(df scaled)
             inertia.append(kmeans.inertia_)
          # Plotting the inertia to observe the elbow point
          plt.figure(figsize=(8,5))
          plt.plot(k_range, inertia, 'bo-', label='Inertia')
          plt.xlabel('Number of Clusters (k)')
          plt.ylabel('Inertia')
          plt.title('Elbow Method for Optimal Number of Clusters')
          plt.axvline(x=3, color='red', linestyle='--', label='Optimal k = 3')
```

```
plt.legend()
plt.show()

# Applying K-Means with the optimal number of clusters
optimal_k = 3
kmeans = KMeans(n_clusters=optimal_k, random_state=42)
df['Cluster'] = kmeans.fit_predict(df_scaled)

# Visualizing the resulting clusters
for col in numerical_cols:
    fig = px.scatter(df, x=col, y='Cluster', color='Cluster', title=f'Cluster Assignment by fig.show()

# Summary of clusters based on the mean of each feature
cluster_summary = df.groupby('Cluster')[numerical_cols].mean()
cluster_summary
```

```
C:\Users\joero\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1412: FutureWarning:
The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_in
it` explicitly to suppress the warning
C:\Users\joero\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1412: FutureWarning:
The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_in
it` explicitly to suppress the warning
C:\Users\joero\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1412: FutureWarning:
The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_in
it` explicitly to suppress the warning
C:\Users\joero\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1412: FutureWarning:
The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_in
it` explicitly to suppress the warning
C:\Users\joero\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1412: FutureWarning:
The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_in
it` explicitly to suppress the warning
C:\Users\joero\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1412: FutureWarning:
The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n in
it` explicitly to suppress the warning
C:\Users\joero\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1412: FutureWarning:
The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_in
it` explicitly to suppress the warning
C:\Users\joero\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1412: FutureWarning:
The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n in
it` explicitly to suppress the warning
C:\Users\joero\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1412: FutureWarning:
The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_in
it` explicitly to suppress the warning
C:\Users\joero\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1412: FutureWarning:
```

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_in

it` explicitly to suppress the warning

Elbow Method for Optimal Number of Clusters

C:\Users\joero\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1412: FutureWarning:

The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning

Cluster Assignment by Age

Cluster Assignment by DailyRate

Cluster Assignment by DistanceFromHome

Cluster Assignment by Education

Cluster Assignment by EmployeeNumber

Cluster Assignment by EnvironmentSatisfaction

Cluster Assignment by HourlyRate

Cluster Assignment by JobInvolvement

Cluster Assignment by JobLevel

Cluster Assignment by JobSatisfaction

Cluster Assignment by MonthlyIncome

Cluster Assignment by MonthlyRate

Cluster Assignment by NumCompaniesWorked

Cluster Assignment by PercentSalaryHike

Cluster Assignment by PerformanceRating

Cluster Assignment by RelationshipSatisfaction

Cluster Assignment by StockOptionLevel

Cluster Assignment by TotalWorkingYears

Cluster Assignment by TrainingTimesLastYear

Cluster Assignment by WorkLifeBalance

Cluster Assignment by YearsAtCompany

Cluster Assignment by YearsInCurrentRole

Cluster Assignment by YearsSinceLastPromotion

Cluster Assignment by YearsWithCurrManager

Out[32]:		Age	DailyRate	DistanceFromHome	Education	EmployeeNumber	EnvironmentSatisfaction
	Cluster						
	0	34.292831	803.617254	8.968408	2.822600	1054.221142	2.704739
	1	42.328125	797.466518	9.091518	3.017857	989.395089	2.785714
	2	35.758794	806.135678	9.648241	2.809045	983.090452	2.648241

3 rows × 24 columns

Summary of Cluster Characteristics

• The K-Means clustering analysis resulted in three distinct clusters, each characterized by different averages for key numerical variables. Below are the findings based on the mean values of the features for each cluster:

Cluster 0

Age: 34.29 yearsDaily Rate: 803.62

• **Distance from Home**: 8.97 km

Education Level: 2.82 (College/Bachelor)
 Environment Satisfaction: 2.70 (Medium)

Job Level: 1.54 (Entry Level)
 Total Working Years: 7.51 years
 Years at Company: 4.13 years
 Work-Life Balance: 2.47 (Good)

Cluster 1

Age: 42.33 yearsDaily Rate: 797.47

• Distance from Home: 9.09 km

• Education Level: 3.02 (Bachelor/Master)

• Environment Satisfaction: 2.79 (Medium/High)

• Job Level: 3.00 (Mid Level)

Total Working Years: 18.32 years
 Years at Company: 12.21 years
 Work-Life Balance: 2.77 (Good)

Cluster 2

Age: 35.76 yearsDaily Rate: 806.14

• **Distance from Home**: 9.65 km

Education Level: 2.81 (College/Bachelor)
 Environment Satisfaction: 2.65 (Medium)

Job Level: 1.78 (Entry Level)
 Total Working Years: 9.62 years
 Years at Company: 5.55 years
 Work-Life Balance: 2.75 (Good)

Key Insights

Age Distribution:

• Cluster 1 is the oldest on average (42.33 years), suggesting a more experienced group, while Clusters 0 and 2 have younger average ages (34.29 and 35.76 years, respectively).

Job Level:

• Cluster 1 has the highest job level (3.00), indicating that this cluster comprises employees in higher positions compared to Clusters 0 and 2, which have lower job levels (1.54 and 1.78).

Environment Satisfaction:

 Environment satisfaction scores indicate that Cluster 1 employees are generally more satisfied (2.79) compared to those in Clusters 0 (2.70) and 2 (2.65).

Experience:

 Cluster 1 has significantly more total working years (18.32 years) and years at the company (12.21 years), suggesting this cluster represents long-term employees with considerable experience.

Work-Life Balance:

• Work-life balance scores are similar across clusters, with Cluster 1 (2.77) showing slightly better satisfaction compared to Clusters 0 (2.47) and 2 (2.75).

Key Takeaways

- **Cluster Profiles**: Three distinct employee profiles based on age, job level, and satisfaction metrics were identified.
- **Experience Matters**: Cluster 1 includes older, more experienced employees with higher job levels and better environment satisfaction.
- **Engagement Strategies**: Insights can guide targeted employee engagement and training initiatives tailored to each cluster's characteristics.
- **Further Exploration**: The dataset allows exploration of factors influencing employee attrition, such as distance from home by job role and average monthly income by education.

Conclusion

The analysis of the dataset reveals significant insights into employee demographics and organizational dynamics, highlighting areas for potential improvement and strategic focus. The processes of data preprocessing, exploratory data analysis, statistical testing, and clustering have provided a comprehensive understanding of employee behaviors, attrition rates, and their correlation with various factors.

Recommendations

- **Enhance Retention Strategies:** Focus on developing targeted retention strategies, particularly in departments with higher turnover rates, such as Sales.
- Career Development Programs: Implement career development initiatives aimed at employees in lower job levels to boost morale and engagement.

- **Explore Demographic Insights:** Tailor employee engagement strategies based on demographic insights, particularly the slight male majority and marital status distribution.
- **Investigate Weak Correlations:** Conduct further analysis on weak correlations and unassociated variables to identify underlying issues impacting employee satisfaction and retention.

Key Insights

- **Stable Workforce:** The dataset indicates a low attrition rate (16%), suggesting a stable workforce, yet further investigation into turnover factors is necessary.
- **Sales Dominance:** A significant proportion of employees are concentrated in the Sales department, necessitating enhanced support for this group.
- **Correlations and Satisfaction:** Strong positive correlations exist between job level and monthly income, but weak correlations with job satisfaction metrics highlight areas for improvement.

Key Takeaways

- **Data-Driven Strategies:** Utilize identified correlations to inform management strategies aimed at enhancing employee retention and satisfaction.
- **Targeted Development:** Investing in employee development at lower job levels may yield substantial benefits for overall engagement and morale.
- **Further Exploration:** Weak and uncorrelated variables warrant further investigation to better understand employee experiences and dynamics within the organization.

Next Steps

- **Conduct In-Depth Analysis:** Dive deeper into the relationships between demographic factors and employee satisfaction to uncover actionable insights.
- **Implement Pilot Programs:** Test the recommended career development initiatives and retention strategies in specific departments to evaluate effectiveness.
- Monitor Changes: Continuously monitor employee feedback and attrition rates to adapt strategies and improve workplace dynamics effectively.
- **Engage Stakeholders:** Involve department heads and HR in discussions about findings and recommendations to foster a collaborative approach to employee engagement and retention strategies.