Clase 13

IIC 1253

Prof. Miguel Romero

Outline

Introducción

Funciones

Propiedades básicas de funciones

Epílogo

Objetivos de la clase

- □ Introducir el concepto de función
- Demostrar propiedades básicas de funciones

Outline

Introducción

Funciones

Propiedades básicas de funciones

Epílogo

Definición

Sea f una relación binaria de A en B; es decir, $f \subseteq A \times B$.

Diremos que f es una función de A en B si dado cualquier elemento $a \in A$, si existe un elemento en $b \in B$ tal que afb, este es único:

$$afb \land afc \Rightarrow b = c$$

Si afb, escribimos b = f(a).

- b es la imagen de a.
- a es la preimagen de b.

Notación: $f: A \rightarrow B$

Una función $f: A \rightarrow B$ se dice total si todo elemento en A tiene imagen.

- Es decir, si para todo $a \in A$ existe $b \in B$ tal que b = f(a).
- Una función que no sea total se dice parcial.
- De ahora en adelante, toda función será total a menos que se diga lo contrario.

Ejemplos

Las siguientes relaciones son todas funciones de \mathbb{N}_4 en \mathbb{N}_4 :

$$f_1 = \{(0,0), (1,1), (2,2), (3,3)\}$$

$$f_2 = \{(0,1), (1,1), (2,1), (3,1)\}$$

$$f_3 = \{(0,3), (1,2), (2,1), (3,0)\}$$

¿Cuántas funciones $f: \mathbb{N}_4 \to \mathbb{N}_4$ podemos construir?

También podemos definir funciones mediante expresiones que nos den el valor de f(x).

Ejemplos

Las siguientes son definiciones para funciones de $\mathbb R$ en $\mathbb R$:

$$\begin{aligned} \forall x \in \mathbb{R} & f_1(x) = x^2 + 1 \\ \forall x \in \mathbb{R} & f_2(x) = \left\lfloor x + \sqrt{x} \right\rfloor \\ \forall x \in \mathbb{R} & f_3(x) = 0 \\ \forall x \in \mathbb{R} & f_4(x) = \left\{ \begin{array}{cc} 1 & x \geq 0 \\ -1 & x < 0 \end{array} \right. \end{aligned}$$

Ejemplos

Dado un conjunto A cualquiera, las siguientes son definiciones para funciones de A en $\mathcal{P}(A)$:

$$\forall a \in A$$
 $f_1(a) = \{a\}$
 $\forall a \in A$ $f_2(a) = A - \{a\}$
 $\forall a \in A$ $f_3(a) = \emptyset$

Outline

Introducción

Funciones

Propiedades básicas de funciones

Epílogo

Algunas propiedades básicas

Definición

Diremos que una función $f: A \rightarrow B$ es:

- 1. **Inyectiva** (o 1-1) si para cada par de elementos $x, y \in A$ se tiene que $f(x) = f(y) \Rightarrow x = y$. Es decir, no existen dos elementos distintos en A con la misma imagen.
- Sobreyectiva (o sobre) si cada elemento b ∈ B tiene preimagen. Es decir, para todo b ∈ B existe a ∈ A tal que b = f(a).
- 3. Biyectiva si es inyectiva y sobreyectiva a la vez.

Algunas propiedades básicas

Ejercicio

Determine qué propiedades cumplen o no cumplen las siguientes funciones:

1.
$$f: A \to \mathcal{P}(A), \forall a \in A$$
 $f(a) = \{a\}$

2.
$$f: A \to \mathcal{P}(A), \forall a \in A$$
 $f(a) = \emptyset$

3.
$$f: \mathbb{N} \to \mathbb{N}_4$$
, $\forall n \in \mathbb{N}$ $f(n) = n \mod 4$

4.
$$f: \mathbb{N}_4 \to \mathbb{N}_4$$
, $\forall n \in \mathbb{N}_4$ $f(n) = (n+2) \mod 4$

- 1. es inyectiva y no sobreyectiva.
- 2. ni inyectiva ni sobreyectiva.
- 3. es sobreyectiva y no inyectiva.
- 4. es inyectiva, sobreyectiva y biyectiva.

- Recordemos que las relaciones (y por lo tanto las funciones) son conjuntos (de pares ordenados).
- Esto significa que podemos usar las operaciones de conjuntos.
 - Unión
 - Intersección
 - Complemento
 - •
- Existen también operaciones exclusivas para relaciones (y funciones).

Definición

Dada una relación R de A en B, la relación inversa de R es una relación de B en A definida como

$$R^{-1} = \{(b, a) \in B \times A \mid aRb\}$$

Definición

Dada una función f de A en B, diremos que f es **invertible** si su relación inversa f^{-1} es una función de B en A.

Definición

Dadas relaciones R de A en B y S de B en C, la composición de R y S es una relación de A en C definida como

$$S \circ R = \{(a, c) \in A \times C \mid \exists b \in B \text{ tal que } aRb \land bSc\}$$

Proposición

Dadas funciones f de A en B y g de B en C, la composición $g \circ f$ es una función de A en C.

Ejercicio

Demuestre la proposición.

Proposición

Dadas funciones f de A en B y g de B en C, la **composición** $g \circ f$ es una función de A en C.

1. $g \circ f$ es función: supongamos que

$$(x,z_1) \in g \circ f \ y \ (x,z_2) \in g \circ f$$
, con $x \in A, z_1, z_2 \in C$.

Por definición de composición:

existe
$$y \in B$$
 tal que $(x, y) \in f$ y $(y, z_1) \in g$
existe $y' \in B$ tal que $(x, y') \in f$ y $(y', z_2) \in g$

Como f es función, tenemos que y = y'. Luego obtenemos que

$$(y, z_1) \in g \ y \ (y, z_2) \in g$$

y como g también es función, tenemos que $z_1 = z_2$. Concluimos que $g \circ f$ es función.

Proposición

Dadas funciones f de A en B y g de B en C, la composición $g \circ f$ es una función de A en C.

g ∘ f es total: sea x ∈ A.
 Como f es función total, ∃y ∈ B tal que (x,y) ∈ f.
 Similarmente, como g es función total, ∃z ∈ C tal que (y,z) ∈ g.
 Luego, por definición de composición, se cumple (x,z) ∈ g ∘ f.
 Como para cada x ∈ A existe z ∈ C tal que z = (g ∘ f)(x), g ∘ f es total.

Teorema

Si $f: A \to B$ es biyectiva, entonces la relación inversa f^{-1} es una función biyectiva de B en A.

Ejercicio

Demuestre el teorema.

Corolario

Si f es biyectiva, entonces es invertible.

Teorema

Si $f: A \to B$ es biyectiva, entonces la relación inversa f^{-1} es una función biyectiva de B en A.

- 1. <u>Función:</u> supongamos que $yf^{-1}x_1$ e $yf^{-1}x_2$, con $y \in B$ y $x_1, x_2 \in A$. Por definición de relación inversa, esto significa que $x_1 fy$ y $x_2 fy$. Como f es inyectiva, $x_1 = x_2$, y por lo tanto f^{-1} es función.
- 2. <u>Total:</u> como f es sobre, para todo $y \in B$ existe $x \in A$ tal que y = f(x). Luego, para todo $y \in B$ existe $x \in A$ tal que $x = f^{-1}(y)$, y por lo tanto f^{-1} es total.

Teorema

Si $f: A \to B$ es biyectiva, entonces la relación inversa f^{-1} es una función biyectiva de B en A.

- 3. Inyectiva: supongamos que $f^{-1}(y_1) = f^{-1}(y_2) = x$, con $y_1, y_2 \in B$ y $x \in A$. Por definición de relación inversa, esto significa que $f(x) = y_1$ y $f(x) = y_2$. Como f es función, $y_1 = y_2$, y por lo tanto f^{-1} es inyectiva.
- 4. Sobre: como f es total, para todo $x \in A$ existe $y \in B$ tal que y = f(x). Luego, para todo $x \in A$ existe $y \in B$ tal que $x = f^{-1}(y)$, y por lo tanto f^{-1} es sobre.

Teorema

Si $f: A \to B$ es biyectiva, entonces la relación inversa f^{-1} es una función biyectiva de B en A.

Ejercicio

Demuestre el teorema.

Corolario

Si f es bivectiva, entonces es invertible.

¿ Qué pasa con la implicancia contraria?

Teorema

Dadas dos funciones $f: A \rightarrow B$ y $g: B \rightarrow C$:

- 1. Si f y g son inyectivas, entonces $g \circ f$ también lo es.
- 2. Si f y g son sobreyectivas, entonces $g \circ f$ también lo es.

Ejercicio

Demuestre el teorema.

Corolario

Si f y g son biyectivas, entonces $g \circ f$ también lo es.

Teorema

Dadas dos funciones $f: A \rightarrow B$ y $g: B \rightarrow C$:

- 1. Si f y g son inyectivas, entonces $g \circ f$ también lo es.
- 2. Si f y g son sobreyectivas, entonces $g \circ f$ también lo es.
- 1. Supongamos que $(g \circ f)(x_1) = (g \circ f)(x_2)$, con $x_1, x_2 \in A$. Por definición de composición, $g(f(x_1)) = g(f(x_2))$. Como g es inyectiva, se tiene que $f(x_1) = f(x_2)$, y como f también es inyectiva, $x_1 = x_2$. Por lo tanto, $g \circ f$ es inyectiva.
- Sea z ∈ C. Como g es sobre, sabemos que existe y ∈ B tal que z = g(y). Similarmente, como f es sobre, sabemos que existe x ∈ A tal que y = f(x). Entonces, tenemos que z = g(y) = g(f(x)) = (g ∘ f)(x), y por lo tanto para cada z ∈ C existe x ∈ A tal que z = (g ∘ f)(x). Concluimos que g ∘ f es sobre.

Aplicación a conteo

Una aplicación muy importante de las funciones es que nos permiten razonar sobre el tamaño de los conjuntos. Una propiedad interesante sobre los conjuntos finitos es la siguiente:

Principio del palomar

Se tienen m palomas y n palomares, con m > n. Entonces, si se reparten las m palomas en los n palomares, necesariamente existirá un palomar con más de una paloma.

Principio del palomar (matemático)

Si se tiene una función $f: \mathbb{N}_m \to \mathbb{N}_n$ con m > n, la función f no puede ser inyectiva. Es decir, necesariamente existirán $x, y \in \mathbb{N}_m$ tales que $x \neq y$, pero f(x) = f(y).

Aplicación a conteo

Principio del palomar (para sobreyectividad)

Si se tiene una función $f: \mathbb{N}_m \to \mathbb{N}_n$ con m < n, la función f no puede ser sobreyectiva.

Corolario

La única forma en que una función $f: \mathbb{N}_m \to \mathbb{N}_n$ sea biyectiva es que m = n.

Aplicación a conteo

Ejemplo

Si en una sala hay 8 personas, entonces este año necesariamente dos de ellas celebrarán su cumpleaños el mismo día de la semana.

Las 8 personas las podemos modelar como el conjunto $P = \{0, \dots, 7\}$ y los días de la semana como el conjunto $S = 0, \dots, 6$. El día de la semana que se celebra el cumpleaños de cada una resulta ser una función de P en S, por el principio del palomar, esta función no puede ser inyectiva, luego al menos dos personas distintas celebrarán su cumpleaños el mismo día de la semana.

Outline

Introducción

Funciones

Propiedades básicas de funciones

Epílogo

Objetivos de la clase

- □ Introducir el concepto de función
- Demostrar propiedades básicas de funciones