MATH 4061 HW 1

David Chen, dc3451

September 17, 2020

September 17, 2020

Ch 1, Q2

Euclid's lemma is that if $p \mid ab$, then $p \mid a$ or $p \mid b$. In particular, an easy corollary (the contrapositive) is that if $p \nmid a$ and $p \nmid b$, then we have that $p \nmid ab$.

Let $(p/q)^2 = 12$, where p, q are relatively prime, such that $\nexists n \in \mathbb{N}$ such that n > 1 and $n \mid p$, $n \mid q$.

Then, we have that $p^2 = 12q^2 = 3(4q^2)$. Clearly $3 \mid p^2$, and so $3 \mid p$ (if $3 \nmid p$, then $3 \nmid p^2$ as well as a consequence of the earlier stated corollary to Euclid's lemma). Then, if p = 3k, we have that $9k^2 = 3(4q^2) \implies 3k^2 = 4q^2$. Since $3 \mid 4q^2$, and $3 \nmid 4$, by Euclid's lemma we have that $3 \mid q^2$, and from the same logic as earlier, we have that $3 \mid q$.

Since we have that 3 divides both p and q, we have $\Rightarrow \Leftarrow$ as we earlier assumed that p, q were relatively prime.

Lemma

Now, we first show that for any set $X \subset \mathbb{R}$ bounded above there is an element ϵ -close to $\sup X$ that is contained in X (that is, $\forall \epsilon > 0, \exists x \in X \mid x > \sup X - \epsilon$). To see this, note that if we no such element, then we would have $\sup X - \epsilon$ as a lower upper bound of X.

In particular, this shows that if $\sup(X) > y$, then $\exists x \in X \mid y < x \leq \sup(X)$.

Ch 1, Q6

\mathbf{a}

First, for $a, b \ge 0$, we have that since the n^{th} root of a, b is distinct. This shows the following: if $a^n = b^n$, then the n^{th} root of $b^n = a^n$ is a, and the n^{th} root of $a^n = b^n$ is also b. Since these roots are unique, we must have that a = b.

For $n, m \in \mathbb{N}$, we see that $x^{nm} = x \cdot x \cdot \cdots \cdot x$ nm times. However, we also have that $(x^n)^m = (x \cdot x \cdot \cdots \cdot x) \cdot \cdots \cdot (x \cdot \cdots \cdot x)$, where each group in side the parentheses contains n x's and there are m groups, for a total of nm x's. However, since multiplication is associative, we have that $(x^n)^m$ is then the same as x^{nm} .

If $n, m \in \mathbb{Z}$, nm < 0, we have the same thing as above, but with x replaced by 1/x, and we still have $(x^n)^m = x^{nm}$. This allows us to justify the following manipulations.

Consider now $((b^m)^{1/n})^{nq} = b^{mq}$ and $((b^p)^{1/q})^{nq} = b^{pn}$. However, we have that $m/n = p/q \implies mq = pn$, so we have that $b^{mq} = b^{pn}$. From the earlier statement about distinct n^{th} roots, this suggests that $(b^m)^{1/n} = (b^p)^{1/q}$.

b

Let $r = p_r/q_r$ and $s = p_s/q_s$. Then, we have that

$$b^{r+s} = b^{\frac{p_r q_s + p_s q_r}{q_s q_r}} = (b^{p_r q_s + p_s q_r})^{1/q_r q_s} = (b^{p_r q_s} b^{p_s q_r})^{1/q_r q_s}$$

The last step follows from multiplication commuting, and the next step distributing the exponent is justified by Rudin in the book:

$$(b^{p_rq_s}b^{p_sq_r})^{1/q_rq_s} = (b^{p_rq_s})^{1/q_rq_s}(b^{p_sq_r})^{1/q_rq_s} = (b^{\frac{p_rq_s}{q_rq_s}})(b^{\frac{p_sq_r}{q_rq_s}}) = b^{\frac{p_r}{q_r}}b^{\frac{p_s}{q_s}} = b^rb^s$$

 \mathbf{c}

First, we will show that for b > 1, r > 0 with $b \in \mathbb{R}, r \in \mathbb{Q}$ that $b^r > 1$. Put that r = p/q. Since b > 1, we have that $b^p > 1$ (Rudin claims $0 < y_1 < y_2 \implies y_1^n < y_2^n$ earlier).

Then, since we have that b^r is q^{th} root of b^p , and we know that for $0 < y \le 1$ that $y^n \le 1$, we have that $b^r > 1$ (otherwise, we would have that $(b^r)^q < 1$, but we have that $(b^r)^q = b^p > 1$).

Now, consider $r, s \in \mathbb{Q}$, and r > s. Then, we have that $b^r - b^s = b^s(b^{r-s} - 1)$. Since we have that $b^s > 0$, and that $b^{r-s} > 1$, $b^r - b^s > 0$, and so $b^r > b^s$.

We will show that b^r is an upper bound of B(r) first. For any $b^t \in B(r)$, we have that $t \leq r \implies b^t \leq b^r$. Then, b^r is an upper bound of B(r). To see that it is the least upper bound, note that $b^r \in B(r)$, such that any real number $< b^r$ is not an upper bound for B(r).

We have that $b^{x+y} = \sup B(x+y)$. We will show that $b^x b^y = \sup B(x) \sup B(y)$ is the least upper bound of B(x+y).

First, to see that it is in fact an upper bound, consider any $t \le x + y$. We want to construct two rationals r, s such that $r \le x$, $s \le y$ and r + s = t.

I realized when I'm about to submit that there is an easier construction than what I originally did: pick some rational r in the interval [t-y,x] (since we have $t-y \le x$ and one such rational is guaranteed to exist by the density $\mathbb Q$ as shown by Rudin), and take s=t-r. Then, we have that r < x and $s=t-r \le t-(t-y)=y$ which gives r,s as desired. The boxed construction should also work, but it's irrelevant.

To do this, consider that the denseness of $\mathbb Q$ in $\mathbb R$ (as shown earlier by Rudin) gives some rational x' in the interval $[\frac{x-y+t}{2},x]$ and some other rational y' in $[\frac{y-x+t}{2},y]$. Note that $x'+y'\geq \frac{x-y+t}{2}+\frac{y-x+t}{2}=t$. Then, consider the quantities

$$r = x' - \frac{x' + y' - t}{2}, s = y' - \frac{x' + y' - t}{2}$$

Note that r+s=t, and since $r\leq x'\leq x, s\leq y'\leq y$, we have our desired r,s.

Now, we have that $b^t = b^r b^s$, with $b^t \in B(x+y), b^r \in B(x), b^s \in B(y)$. Now, we have that $\sup B(x) \ge b^r, \sup B(y) \ge b^s$, such that $\sup B(x) \sup B(y) \ge b^r b^s = b^t$. This shows that $\sup B(x) \sup B(y)$ is a upper bound.

Now consider any real a that is less than $\sup B(x) \sup B(y)$. Then, we have that $a < \sup B(x) \sup B(y)$. Then, by the earlier lemma, we have some $b^{\beta} \in B(x)$ such that $\alpha/\sup B(y) < b^{\beta}$, and now some $b^{\gamma} \in B(y)$ such that $\alpha/b^{\beta} < b^{\gamma}$ with β, γ rational. Now, we have that $\alpha < b^{\beta}b^{\gamma} = b^{\beta+\gamma}$. However, since we have that $\beta \leq x$ and $\gamma \leq y$ from the definitions of B(x), B(y), we have that $\beta + \gamma \leq x + y \implies b^{\beta\gamma} \in B(x+y)$. Then, we have that α cannot be an upper bound for $\sup B(x+y)$, and thus $\sup B(x) \sup B(y) = \sup B(x+y)$.

Ch1, Q5

We will show first that $-\sup(-A)$ is a lower bound of A. In particular, for any element $a \in A$, we have that $-a \in -A$, and by definition $-a \le \sup(-A)$. Then, $-(-a) = a \ge -\sup(-A)$.

To see that it is the greatest lower bound, consider any $x > -\sup(-A)$. Then, we would have that $-x < \sup(-A)$. Now, in an earlier problem we showed that there is some element $a \in -A$ such that $\sup(-A) - a < \sup(-A) - (-x) \implies -a < x$. However, since we have that -A has the form of $\{-\alpha \mid \alpha \in A\}$, we have that any $a \in -A \implies -a \in A$. However, since -a < x, x cannot be a lower bound for A.

Thus, we have that $-\sup(-A)$ is the greatest lower bound of A, inf A.

Ch1, Q7

 \mathbf{a}

We have the identity that for any positive integer n, $x^n-y^n=(x-y)(x^{n-1}+x^{n-2}y+\cdots+y^{n-1})$ as used by Rudin earlier. Then, taking x=b,y=1, we have that $b^n-1=(b-1)(b^{n-1}+b^{n-2}+\cdots+1)$. In particular, since b>1, $b^n>1$ (for n any positive integer) and taking the convention that $b^0=1$, we have that

$$\frac{b^{n}-1}{b-1} = \frac{(b-1)\left(\sum_{i=0}^{n-1} b^{i}\right)}{b-1} = \sum_{i=0}^{n-1} b^{i} \ge \sum_{i=0}^{n-1} 1 = n$$

Then, this gives us what we wanted, as $\frac{b^n-1}{b-1} \ge n \implies b^n-1 \ge n(b-1)$.

b

We have that the above holds for any b > 1. In particular, if we wish to show that $b - 1 \ge n(b^{1/n} - 1)$, then we simply take part a and apply it to $b^{1/n}$, which gives us what we wanted. The only thing to check is that for any b > 1, we still have that $b^{1/n} > 1$. Suppose otherwise; then we what that $b^{1/n} \le 1 \implies (b^{1/n})^n \le 1^n = 1, \implies$.

 \mathbf{c}

Applying the above, we have

$$n > \frac{b-1}{t-1} \implies n(t-1) > b-1 \ge n(b^{1/n}-1) \implies t-1 > b^{1/n}-1 \implies t > b^{1/n}$$

 \mathbf{d}

As Rudin suggests, applying the above with $t = yb^{-w}$ yields that for any positive integer n, we have that

$$n > \frac{b-1}{t-1} \implies yb^{-w} > b^{1/n} \implies yb^{-w}b^w > b^{1/n}b^w \implies y > b^{w+1/n}$$

In particular, since b, y, w are fixed (meaning that (b-1)/(t-1) is some fixed real) and that the integers have no greatest element, there exists some positive integer n > (b-1)/(t-1). The only thing left to check is that $t = yb^{-w} > 1$, but this is directly given by $b^w > y \implies b^w b^{-w} = 1 > yb^{-w}$.

Using the same trick as before but with $t = b^w/y$ (note that $b^w > y \implies b^w/y > 1$), we have that for any positive integer n,

$$n > \frac{b-1}{t-1} \implies \frac{b^w}{y} > b^{1/n} \implies b^w b^{-1/n} > b^{-1/n} b^{1/n} y \implies b^{w-1/n} > y$$

Again, we have some fixed bound (b-1)/(t-1) above which $b^{w-1/n} > y$.

f,g

We will first show part g.

If x > 0, we have that $b^x > 1$ as there is some rational r = p/q in the interval (0, x) such that $r \in B(x)$, and we show in Q5, part c that $b^r > 0$. Then, since $b^x = \sup B(x)$, we have that $b^x \ge b^r > 1$. Correspondingly, $b^x > 1 \implies b^x b^{-x} = 1 < b^{-x}$. Now, if $b^x = y$ and x' > x, $b^{x'} = b^x b^{x'-x} = y b^{x'-x} > y$. Similarly, if x' < x, we have that $b^{x'} = b^x b^{x'-x} = y b^{-(x'-x)} < y$. Then, $b^x = b^{x'} \iff x = x'$.

First, we have to see that A is nonempty: for any y > 1, $0 \in A$. Otherwise, $\exists n$ such that $b^n > 1/y$; in particular, we know that n such that n(b-1) > 1/y from the Archimedean property, which gives some $b^n \ge n(b-1) > 1/y$. Then, we have that $b^{-n} < y$.

Now, if $b^x > y$, then we have that $\exists n \in \mathbb{Z}^+$ such that $b^{x-1/n} > y > b^w \implies x - 1/n > w$ for any $w \in A$ via the proof of part g, and so x - 1/n is a lower upper bound of A. \Longrightarrow

If $b^x < y$, then we have that $\exists n \in \mathbb{Z}^+$ such that $b^{x+1/n} < y$, which means that $x + 1/n \in A$, and x cannot be an upper bound of A. $\Rightarrow \leftarrow$

This only leaves $b^x = y$.