

Naïve Bayesian Learning

Marcílo Souto DIMAp/UFRN

Teorema de Bayes

Probabilidade de um evento H dada evidência E:

$$\Pr[H \mid E] = \frac{\Pr[E \mid H] \Pr[H]}{\Pr[E]}$$

- Probabilidade a *priori* de H: $\frac{\Pr[H]}{}$
 - Probabilidade do evento antes da evidência ser vista
- Probabilidade a posteriori H: Pr[H | E]
 - Probabilidade do evento ápos a evidência é vista

•Seja

M=doença meningite

S= dor no pescoço

·Um Médico sabe:

Pr(S/M)=0.5

Pr(M)=1/50000

Pr(S)=1/20

·A probabilidade de uma pessoa ter meningite dado que ela está com dor no pescoço é 0,02% ou ainda 1 em 5000.

- Aprendizado: qual a probabilidade da classe dada uma instância?
 - Evidência E = uma instância (padrão)
 - Evento H = valor da classe para a instância (Play=yes, Play=no)
- Suposição Naïve Bayes: evidência pode ser dividida em partes independentes (i.e., os atributos das instâncias são independentes)

$$Pr[H | E] = \frac{Pr[E_1 | H]Pr[E_2 | H]...Pr[E_n | H]Pr[H]}{Pr[E]}$$

Conjunto de Dados "Tempo"

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14

Outlook	Temperature	Humidity	Windy	Play
overcast	cool	normal	true	yes
overcast	hot	high	false	yes
overcast	hot	normal	false	yes
overcast	mild	high	true	yes
rainy	cool	normal	false	yes
rainy	mild	high	false	yes
rainy	mild	normal	false	yes
sunny	cool	normal	false	yes
sunny	mild	normal	true	yes
rainy	cool	normal	true	no
rainy	mild	high	true	no
sunny	hot	high	false	no
sunny	hot	high	true	no
sunny	mild	high	false	no

Exemplo para o conjunto de dados de Tempo

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

$$Pr[yes \mid E] = Pr[Outlook = Sunny \mid yes] \times$$

$$Pr[Temperature = Cool \mid yes] \times$$

$$Pr[Humdity = High \mid yes] \times$$

$$Classe "yes"$$

$$Pr[Windy = True \mid yes] \times Pr[yes]$$

$$Pr[E]$$

Probabilidades para o Conjunto

Outlook			Temp	erature		Humidity			Windy			Play	
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

Um dia novo:

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

Likelihood of the two classes

For "yes" =
$$2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$$

For "no" =
$$3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$$

Conversion into a probability by normalization:

$$P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.205$$

$$P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795$$

Por que Naïve?

- Suponha que todos os atributos são independentes, dada a classe
- O que isso significa?

Conjunto de Dados "Tempo"

Outlook	Windy	Play
overcast	FALSE	yes
rainy	FALSE	yes
rainy	FALSE	yes
overcast	TRUE	yes
sunny	FALSE	yes
rainy	FALSE	yes
sunny	TRUE	yes
overcast	TRUE	yes
overcast	FALSE	yes

A suposição é satisfeita?

- #yes=9
- #sunny=2
- #windy, yes=3
- #sunny|windy, yes=1

Pr(outlook=sunny|windy=true, play=yes)=1/3

Pr(outlook=sunny|play=yes)=2/9

Pr(windy|outlook=sunny,play=yes)=1/2

Pr(windy|play=yes)=3/9

Assim, a suposição NÃO é satisfeita.

Outlook	Windy	Play
overcast	FALSE	yes
rainy	FALSE	yes
rainy	FALSE	yes
overcast	TRUE	yes
sunny	FALSE	yes
rainy	FALSE	yes
sunny	TRUE	yes
overcast	TRUE	yes
overcast	FALSE	yes

O problema de "frequência-zero"

- E se um valor de atributo não ocorre para cada valor da classe (e.g., "Humidity = high" para a classe "yes")?
 - Probabilidade será zero!
 - Probabilidade a posteriori probability também será zero!
 (Não importa os valores dos outros atributos!)
- Solução: adicione 1 ao contador de cada valor de atributo para cada combinação de classe (Laplace estimator)
- Resultado: probabilidades nunca serão zero

$$Pr[Humdity = High \mid yes] = 0$$

$$\Pr[yes \mid E] = 0$$

- Em alguns casos a adição de uma constante diferente de zero pode ser apropriada
- Exemplo: atributo outlook para a classe yes

$$\frac{2+\mu/3}{9+\mu}$$

$$\frac{4+\mu/3}{9+\mu}$$

$$\frac{3+\mu/3}{9+\mu}$$

Rainy

Valores faltosos

- Treinamento: instância não é incluida na frequência do contador
- Classificação: atributo será omitido do cálculo
- Exemplo:

Outlook	Temp.	Humidity	Windy	Play
?	Cool	High	True	?

Likelihood of "yes" =
$$3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238$$

Likelihood of "no" = $1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343$
P("yes") = $0.0238 / (0.0238 + 0.0343) = 41\%$
P("no") = $0.0343 / (0.0238 + 0.0343) = 59\%$

Atributos numéricos?

- Suposição usual: os valores dos atributos têm uma distribuição normal ou Gaussiana (dada a classe)
- A função de densidade probabilidade para a distribuição normal é definida por dois parâmetros:
 - Média da amostra μ :

 $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$

• Desvio padrão σ :

 $\sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2$

Função de densidade f(x):

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Estatísticas para a base Tempo

О	utlook		Temperat	ure		Н	umidity			Windy		Pl	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3		83	85		86	85	False	6	2	9	5
Overcast	4	0		70	80		96	90	True	3	3		
Rainy	3	2		68	65		80	70					
Sunny	2/9	3/5	mean	73	74.6	mean	79.1	86.2	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	std dev	6.2	7.9	std dev	10.2	9.7	True	3/9	3/5		
Rainy	3/9	2/5											

Exemplo:

$$f(temperature = 66 \mid yes) = \frac{1}{\sqrt{2\pi}6.2}e^{-\frac{(66-73)^2}{2*6.2^2}} = 0.0340$$

Classificando um novo dia

Novo dia:

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

```
Likelihood of "yes" = 2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036

Likelihood of "no" = 3/5 \times 0.0291 \times 0.0380 \times 3/5 \times 5/14 = 0.000136

P("yes") = 0.000036 / (0.000036 + 0.000136) = 20.9\%

P("no") = 0.000136 / (0.000036 + 0.000136) = 79.1\%
```

 Valores faltosos durante treinamento: não são incluidos no cálculo da média e do desvio padrão

Observações

- ☑ Junto com árvores de decisão, redes neurais, vizinhos mais-próximos, é um dos métodos de aprendizagem mais práticos
- □ Quando usa-lo
 - Quando se tem disponível um conjunto de treinamento médio ou grande
 - □ Os atributos que descrevem as instâncias forem condicionalmente independentes dada uma classificação
 - Note também que nem todos os atributos numéricos vão obedecer uma distribuição normal
- - □ Diagnóstico
 - □ Classificação de documentos (texto)