Recommendation System

CSE272 HW2 Report

Spring 2021, May 26

Alex Salman - <u>aalsalma@ucsc.edu</u>

1. Approaches:

- Looking into the Amazon different datasets, I decided to build my algorithm using only three columns that are user-id (reviewerID), product-id (asin), and rating (overall)
- Since the structure of the JSON files (5-core) are the same across all the datasets then the algorithm should work on all the datasets by only including the dataset required in the correct path
- I looked into different ways to process the data, I tried a few then learned that converting JSON file dataset into pandas dataframe is the best format for the dataset I need to process for the following reasons:
 - In one line, I dropped the columns I don't need for my algorithm
 - In one line, I grouped by the dataframe by user-id to have it ready for splitting
 - I sampled 80% of the dataframe that's grouped by user-id to ensure that 80% of each user ratings are in the training dataset
 - After sampling, I dropped the training dataset from the dataframe to keep the rest of the dataframe, 20% for testing
- I looked into the four popular algorithms, user-based CF, item-based CF,
 Slope One, Matrix Factorization
- I started to implement the user-based CF through implementing the nearest neighbors, pearson_correlation and some other helping functions from scratch
- I found out that the training and prediction are very slow through using some data structure types
- I decided to use NearestNeighbors from sklearn.neighbors to speed up calculating nearest neighbors to items using item-item CF algorithm instead of user-user CF algorithm
- I created a pivot table with ratings as values, user_ids as indices and items as columns of the table
- Iterating through the table, I created two dictionaries: the first dictionary has users as keys and lists of items they rated as list of values

- The second is with keys of users and indices of items they rated as a list of values
- Using the NearestNeighbors function, I calculated the closest nearest neighbors to an item
- I used the algorithm (brute) because it is fast and used the metric (cosine) because it measures similarity between vectors.
- Cosine measures the distance between two vectors. The closest the vectors are, the more correlated they are and the farther they are, the more uncorrelated they are
- Using item distances and the pivot table I measured and calculated the prediction
- With the prediction and the ground truth, I calculated the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) to evaluate my predictions
- Almost in all the runs I made, the values of both of MAE and RMSE are around 1
- Recommendation: my recommendation method uses the distances between items. Also it uses the indices of the items
- After combining both of the indices and the distances, I created a list of descendingly sorted similarities along with the items they refer to with excluding items that users already rated (seen)
- In making a list of 10 recommendations, I picked the top highest similarities with their items for all users and wrote it in a file in the following format:
 - A07047842IR9Y89DH0UA1 ['B002I0K74Y', 'B0041RY3W4', 'B0050SWZHS', 'B0050SX1JO', 'B0073J8BYS', 'B008277M36']
 - 1. B0016MJ7P0 with similarity: 0.9072
 - 2. B002WF13AM with similarity: 0.9053
 - 3. B004Z4ZKL6 with similarity: 0.9049
 - 4. B0036VSCTG with similarity: 0.9038
 - 5. B000HGOHWO with similarity: 0.9025
 - 6. B004WL4LP8 with similarity: 0.9024
 - 7. B0050SXQ12 with similarity: 0.9019
 - 8. B002I0H2G0 with similarity: 0.9015
 - 9. B003KZJA9Y with similarity: 0.8737
 - 10. B003RDEV8E with similarity: 0.8727
- I started with a user-id and their list of items they rated, then the list of items I am recommending along with the the similarity numbers

 Notice that the first recommendation has the highest similarity and the lowest similarity is at the end of the list of 10 items

2. Performance

- The performance of my algorithm varies drastically when changing the number of nearest neighbors
- I ran the algorithm against two different datasets and observed that the higher the number of nearest neighbors the lowest my metrics are
- For example, using Video Games dataset with setting the number of neighbors to be looked for to 5, I got a precision of 0.74% and a recall of 5.07% and a conversion rate of 7.27%

Recommendation Evaluation of Video Games:

- n_neighbors = 10
 - 1. Precision: 0.47%
 - 2. Recall: 3.10%
 - 3. F-measure: 0.82
 - 4. Conversion rate: 4.64%
- \blacksquare n neighbors = 5
 - 1. Precision: 0.74%
 - 2. Recall: 5.07%
 - 3. F-measure: 1.30
 - 4. Conversion rate: 7.27%
- \blacksquare n neighbors = 3
 - 1. Precision: 1.00%
 - 2. Recall: 6.53%
 - 3. F-measure: 1.73
 - 4. Conversion rate: 9.65%

Recommendation Evaluation of Health and Personal Care:

- n neighbors = 10
 - 1. Precision: 0.21%
 - 2. Recall: 1.47%
 - 3. F-measure: 0.37
 - 4. Conversion rate: 1.97%
- n_neighbors = 5
 - 1. Precision: 0.44%

Recall: 3.32%
 F-measure: 0.77

4. Conversion rate: 4.19%

■ n_neighbors = 3

Precision: 0.55%
 Recall: 3.95%
 F-measure: 0.96

4. Conversion rate: 5.31%

3. You can find my CSE272HW2 repository on github:

- o https://github.com/alexsalman/CSE272HW2
- Also find a list of recommendation of Video Games dataset with n=5 in the github txt file users_recommendations.txt