Deuteron Electro-Disintegration at Very High Missing Momenta (E12-10-003)

HALL C WINTER COLLABORATION MEETING

Date: January 21, 2017

Spokespersons: W. Boeglin (FIU) and M Jones (Jlab)

Graduate Student: Carlos Yero (FIU)

Beam time is 3 PAC days at beam energy of 10.6 GeV

Study the D(e,e'p)n exclusive reaction by using cut on missing energy.

Previous Hall A experiment

Compare reduced cross section to theoretical calculation of only PWIA, PWIA+FSI with different NN potentials. In PWIA, σ_{red} maps the momentum distribution.

Data for d(e,e'p) n reaction at $Q^2 = 3.25 \text{ GeV}^2$.

New Hall C will focus at $\theta_{nq} \sim 40^{\circ}$ and $p_m > 500$ at $Q^2 = 4.25$ where the difference to NN potential is larger

D(e,e'p)n Theoretical Support

D(e,e'p)n Kinematics

$$E_{\text{\tiny BEAM}} = 11.0 \text{ GeV}$$

 $Q^2 = 4.25 (\text{GeV/c})^2$

$$x_{Bi} = 1.35$$

$$p_{\rm m}^{\rm BJ} = 0.5 - 1.0 \, {\rm GeV/c}$$

$$\Theta_{\mathsf{nq}}$$
 = 40^{o}

W.U. Boeglin et. al Int.J.Mod.Phys. E24 (2015) no.03, 1530003

At $\theta_{nq} \sim 40^{\circ}$, FSI have weak dependence on p_{miss}

Calculation: M. Sargsian

E12-10-003 Collaboration

Motivation:

- Investigate short range structure of the deuteron (high momentum components)
- Explore a new kinematical region of the 2-nucleon system above p_m > 500
- No Deuteron data exist at these kinematics!
- Short range correlation studies cover similar region on missing momenta
- Models are able to reproduce the present data within 20%.
- Signs of a dependence on NN potential at highest missing momentum

The experiment will:

- Determine cross sections at missing momenta above 0.5 GeV/c
- Measure at well defined kinematic settings at $Q^2 = 4.25$
- Selected kinematics to minimize contributions from FSI
- Selected kinematics to minimize effects of delta excitation

Outline a scaled down version of the experiment for the Hall C commissioning period.

Spectrometer Acceptance Requirements During D(e,e'p)n Commissioning

- D(e,e'p)n will NOT use the full SHMS Acceptance
- SIMC kinematic setting: p_{miss} = 500 MeV

Kinematics and Beam Time

Beam:

Energy: 10.6 GeV

Current: 70µA

Target:

 LD_2 (10 cm)

Electron arm fixed at:

SHMS at p_{cen} = 8.92 GeV/c θ_e = 12.17° Q² = 4.25 (GeV/c)² x = 1.35 $\theta_{nq} \sim 40^{\circ}$

Vary Proton arm to measure :

 $p_{\rm m}$ = 0.5, 0.65, 0.8 GeV/c

HMS $2.12 \le p_{cen} \le 2.3 \text{ GeV/c}$ Angles: $59.6^{\circ} \ge \theta_{p} \ge 53.1$

SIMC Results (Radiative Corr.)

- $p_m = 0.5$ (GeV/c), beam time 8 hours
- $p_m = 0.65$ (GeV/c), beam time 18 hours
- = 0.8 (GeV/c), beam time 36 hours III.

Statistical Uncertainties

16.1 %

17.0 %

20.9 %

Calibration Run Kinematics

Beam:

Energy: 10.6 GeV

Current: 70µA

Target:

 LD_2 (10 cm)

Electron arm fixed at:

SHMS at p_{cen} = 8.44 GeV/c θ_e = 12.51° Q² = 4.25 (GeV/c)²

 $x = 1.05 \quad \theta_{nq} \sim 59^{\circ}$

Proton arm to measure:

 $p_m = 0.08 \text{ GeV/c}$

HMS at $p_{cen} = 2.94 \text{ GeV/c}$ Angle: $\theta_p = 39.14^{\circ}$

SIMC Results (Radiative Corr.)

 $p_{m} = 0.08 - 0.1$ (GeV/c), beam time 1 hour

Statistical Uncertainty (1.29 - 1.9) %

compare to real data at same kinematics for cross-calibration

Yields and Cross-Section Sensitivity to Kinematic Uncertainties

Kinematic Variable	Symbol	Conservative Kinematic Uncertainty	Optimum Kinematics Uncertainty
Beam Energy E _{BEAM}	ΔE/E	1 X 10 ⁻³	5 X 10 ⁻⁴
Electron Final Momentum k _f	∆ P / P	1 X 10 ⁻³	5 X 10 ⁻⁴
Proton Final Momentum P _f	∆ P / P	1 X 10 ⁻³	5 X 10 ⁻⁴
Electron Scattering Angle θ _e	$\Delta heta$	∓ 1 mrad	∓ 0.2 mrad
Proton Scattering Angle θ _p	$\Delta heta$	∓ 1 mrad	∓ 0.2 mrad

 Investigate small variations of kinematic variables on yields and final cross-section for systematics

Systematics @ P_{miss} = 0.80 GeV

P _{miss} (GeV/c)	Total Error in dσ/dΩ (%)	E _{INCIDENT} (%)	E _{FINAL} (%)	$\Delta heta_{ m e}(\%)$	$\Delta heta_{ m p}(\%)$
0.69	7.4	1.1	0.6	7.0	2.2
0.72	7.6	1.2	0.7	7.1	2.3
0.76	7.8	1.2	0.8	7.2	2.5
0.80	8.1	1.3	0.9	7.5	2.7
0.84	8.5	1.3	1.0	7.8	2.9
0.88	9.0	1.4	1.1	8.2	3.1
0.91	9.5	1.5	1.2	8.6	3.4
0.95	10.2	1.6	1.3	9.2	3.7
0.99	11.2	1.8	1.4	10.0	4.1

Relative Error

Summary

- First meaningful data at very high missing momenta obtainable during commissioning period
- Systematic errors due to uncertainties in kinematic variables are smaller than statistical
- Requirements on initial spectrometer performance realistic
- 3 days of beam time required
- Good opportunity to obtain new early physics results.

Acknowledgements

Thanks to Drs. W.U. Boeglin, M. Jones and M. Sargsian for their contributions to the D(e,e'p)n experiment and theory.

Nuclear Regulatory Commission (NRC) graduate fellowship recipient Carlos Yero was supported by the NRC fellowship grant No: NRC-HQ-84-14-G-0040 to FIU and by the DOE grant DE-SC0013620

BACKUP SLIDES

Cuts Applied to Extract Yield

Kinematic Cuts:

-10 MeV
$$\leq$$
 E_{miss} \leq 25 MeV
35° $<$ θ _{nq} $<$ 45°
1.30 $<$ x_{Bj} $<$ 1.40
3.1 \leq Q² \leq 5.2

Solid Angle Cuts:

e-arm
$$|dx/dz|_{target}| = |\theta_{target}| \le 0.05 \text{ rad}$$

(SHMS) $|dy/dz|_{target}| = |\phi_{target}| \le 0.025 \text{ rad}$

$$\begin{array}{ll} \text{p-arm} & |\text{dx/dz})_{\text{target}}| = |\theta_{\text{target}}| \leq 0.08 \text{ rad} \\ \text{(HMS)} & |\text{dy/dz})_{\text{target}}| = |\phi_{\text{target}}| \leq 0.035 \text{ rad} \end{array}$$

Momentum Acceptance Cuts:

e-arm
$$-8\% \le \delta_e \le 4\%$$
 (SHMS)
p-arm $-15\% \le \delta_p \le 15\%$ (HMS)

Systematics @ $P_{miss} = 0.5 \text{ GeV}$

• Systematics governed by electron scattering angle θ_{e}

P _{miss} (GeV/c)	Total Error in dσ/dΩ (%)	E _{INCIDENT} (%)	E _{FINAL} (%)	$\Delta \Theta_{ m e}(\%)$	$\Delta heta_{ m p}(\%)$
0.41	8.1	1.4	0.3	7.7	1.9
0.45	7.3	1.2	0.3	6.9	1.8
0.49	6.8	1.1	0.4	6.4	1.8
0.53	6.6	1.0	0.5	6.2	1.8
0.56	6.5	1.0	0.5	6.1	1.9
0.60	6.6	1.0	0.6	6.1	2.0
0.64	6.7	1.0	0.7	6.2	2.1
0.68	6.9	1.0	0.7	6.3	2.2
0.72	7.4	1.1	0.8	6.6	2.4

Systematics @ P_{miss} = 0.65 GeV

P _{miss} (GeV/c)	Total Error in dσ/dΩ (%)	E _{INCIDENT} (%)	E _{FINAL} (%)	$\Delta heta_{ m e}(\%)$	$\Delta heta_{ m p}(\%)$
0.53	7.0	1.1	0.4	6.6	1.7
0.57	6.8	1.1	0.5	6.4	1.8
0.61	6.8	1.0	0.6	6.4	2.0
0.64	6.8	1.0	0.6	6.4	2.1
0.68	7.0	1.1	0.7	6.5	2.2
0.72	7.3	1.1	0.8	6.7	2.4
0.76	7.5	1.1	0.9	6.9	2.6
0.80	7.9	1.2	0.9	7.2	2.7
0.84	8.3	1.3	1.0	7.5	2.9