# BREVET DE TECHNICIEN SUPÉRIEUR

Série: SIO

Épreuve : Mathématiques

Session 2014

Durée de l'épreuve : 2h

Coefficient: 2

PROPOSITION DE CORRIGÉ

## **EXERCICE 1:**

**1.** Les sommets A et D n'ont pas de prédécesseur, ils sont donc de niveau 0.  $_0 = \{A, D\}$ . Pour déterminer les sommets de niveau 1 : on barre les « A » et les « D » du tableau, les sommets B et E se retrouvent sans prédécesseurs. Ils sont donc de niveau 1.  $N_1 = \{B, E\}$ .

$$_{2} = \{C, F\}.$$
  $_{3} = \{G\}.$   $N_{4} = \{H\}.$ 

2.

| Sommet | Successeurs |
|--------|-------------|
| Α      | В           |
| В      | C, F        |
| С      | G           |
| D      | E           |
| E      | F           |
| F      | G           |
| G      | Н           |
| Н      | -           |

3. a)



- **b)** Le chemin critique est  $\mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \mathbf{H}$ . La durée minimale de réalisation du projet est de **22 jours**.
- **4.** Ce changement **a une incidence** sur le projet, car avec cette nouvelle durée, la date au plus tôt de F serait de 12 (au lieu de 11) ce qui amènerait à une durée de totale de 23 jours. Autrement dit : la marge totale de B est de 5 et il aurait fallu une marge totale de 6 jours.

## **Exercice 2:**

**1.**  $u_1 = 2 \times 9\ 000 = \boxed{18\ 000}$ . C'est le nombre de transistors pour un micro-processeur fabriqué en **1977**.

$$u_1 = 2 \times 18\ 000 = \boxed{36\ 000}$$
. De même pour l'année **1979**.

**2.** La suite  $(u_n)$  est **géométrique** de raison q=2 et de premier terme  $u_0=9~000$ .

$$u_n = u_0 \times q^n = \boxed{9\ 000 \times 2^n}$$

**3.**  $1975 + 2 \times 13 = 2001$ . Donc il s'agit de  $u_{13} = 9000 \times 2^{13} = \boxed{73728000}$ 

**4.** On peut résoudre l'inéquation  $u_n > 100\ 000\ 000\ 000 = 10^{11}$  :

$$9\ 000\times 2^n>10^{11} \quad , \quad 2^n>\frac{10^{11}}{9\ 000}=\frac{10^8}{9} \quad , \quad n\ln 2>\ln\left(\frac{10^8}{9}\right) \quad , \quad n>\frac{\ln\left(\frac{10^8}{9}\right)}{\ln 2}\approx 23.4$$
 Donc à partir de l'année de rang  $n_0=24$  , c'est-à-dire en  $1975+2\times 24=\boxed{2023}$  .

## **Exercice 3:**

### Partie A

- **1. a)**  $2014 = 2 \times 19 \times 53$
- **b)** 1, 2, 19, 38, 53, 106, 1007, 2014
- **2.**  $PGCD(2014, 212) = \boxed{106}$ .

### Partie B

**1. a)** Les 15 numéros suivants : 106 - 318 - 530 - 742 - 954 - 1166 - 1378 - 1590 - 1802 - 2014 - 212 - 424 - 636 - 848 - 1060.

La valeur n=212 ne permet pas de convoquer tous les candidats, en effet on obtient toujours le même cycle de 19 valeurs à chaque tour.

- **b)** Avec cette valeur de n, le nombre de numéros différents obtenus est : **19**.
- **2.**  $2014 = 38 \times 53$ . Ainsi en choisissant n = 38, la liste contiendra **53 numéros**.

#### **Partie C**

- **1.** PGCD(2014,15) = 1. La procédure **permet de convoquer** tous les candidats avec n = 15.
- 2. a) Il y a 200 multiples de 2 non nuls inférieurs ou égaux à 400.
- **b)** 19 57 95 133 171 209 247 285 323 361 399.
- c) 53 159 265 371.
- d) Le nombre d'entiers n qui ne permettent pas de convoquer tous les candidats est égal à la somme du nombre de multiples non nuls, inférieurs ou égaux à 400, de 2, 19 et 53 (qui sont les diviseurs premiers de 2014).

Il y en a : 
$$200 + 11 + 4 = \boxed{215}$$

If y a donc  $400 - 215 = \boxed{185}$  entiers n qui permettent de convoquer tous les candidats.

3