北京工业大学 2020——2021 学年第一学期 《解析几何 Ⅱ》期末考试试卷 A 卷

考试说明: 考试时长 95 分钟; 闭卷; 解题必须给出必要的步骤, 否则无分承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

承证	若人:			Ė	学号:			班号:	
0000		000000	0000000	0000	000000	00000		000000000000000	
注:	本试卷共	_七	大题,	共	_六_	页,	满分 100 分,	考试时必须	使用卷后附加

卷 面 成 绩 汇 总 表 (阅卷教师填写)

的统一答题纸或草稿纸。

题号	-	<u> </u>	三	四	五.	六	七	总成绩
满分	30	10	15	10	10	10	15	
得分								

一 一 一 一 、 填空题
$1 \ \ $ 已知向量 $\alpha=\{1,2,1\}$ $\beta=\{1,-1,1\}$ $\gamma=\{2,1,0\}$; 则
$\alpha-\beta+2\gamma=$, $\alpha\cdot\beta=$, α 与 β 的夹角为,
$\alpha \times \gamma = \underline{\hspace{1cm}}; (\alpha, \beta, \gamma) = \underline{\hspace{1cm}};$
2、平面 $x-y-2z+4=0$ 的法向量为,点(1,0,0)到此平面的距离为;
3、直线 $\begin{cases} x+y+z=0 \\ x-y-2z+4=0 \end{cases}$ 的方向向量为,过点 $(0,0,0)$ 且与此线平
行的直线的标准方程为;
4 、曲线 $\begin{cases} x = 2z^2 \\ y = 0 \end{cases}$ 绕 x 轴旋转得到的旋转曲面方程为, 这是一个
(填曲面类型);此曲线绕之轴旋转得到的旋转曲面方程

为	;						
5、柱面	5、柱面的准线为 $\begin{cases} x^2 + y^2 + z^2 = 1 \\ x + y + z = 0 \end{cases}$,母线平行于 z 轴,则此柱面的方程						
为	;						
6、二次	工曲线 $x^2 + 2xy + 2y^2 + 2x - 4y - 9 = 0$ 有 个渐近方向,它的中心						
坐标为							
得 分	二、利用向量的运算证明:等腰三角形底边上的中线垂直于底边。						
	(10分)						

三、 已知两直线 $l_1: \frac{x-1}{1} = \frac{y}{2} = \frac{z+1}{1}$ $l_2: \frac{x}{2} = \frac{y-1}{1} = \frac{z}{0}$

1、证明 l₁与l₂ 共面;

2、求此1,与12所在平面的方程。

(15分)

四、 求准线为 $\begin{cases} x^2 + 2y^2 = 1 \\ z = 1 \end{cases}$ 顶点为原点的锥面方程。

(10分)

五、给定两直线

$$l_1: \frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
 $l_2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{4}$,

求过点 P(1,1,1) 且与这两条直线都相交的直线方程。 (10分)

得 分

六、 设动点与A(4,0,0)的距离等于这点到平面x=1的距离 的两倍,求此动点的轨迹方程。 (10分)

七、已知直线
$$l_1$$
:
$$\begin{cases} x = y \\ z = 1 \end{cases}$$

$$l_2$$
:
$$\begin{cases} x = -y \\ z = -1 \end{cases}$$
,

1、求过 l_1 上任一点P(k,k,1) 与 l_2 相交且平行于平面y=0 的直线方程;

2、求与 l_1 、 l_2 都相交且平行于平面 y=0 的直线族构成的曲面的方程.

(15分)