Two players at each time step make Their decision at their obsening Xt $PI \rightarrow A' \sim \Pi'(X_{\ell})$ $P2 \rightarrow A^2 \sim \Pi^2(\chi_2) \rightarrow \chi_{41}$ > zero sum game Y + 12=1 > 1= 1= - 12 21(n', n2) => objective of Pl y2(11, 9.3) => objective of P2 $\eta(\Pi',\Pi^2) = \eta'(\eta',\eta') = -\eta'(\eta',\eta') = E_{\eta',\eta'}(\Sigma_{t})$

P1; first player aims to maximize y and respectively y

P2; Jacand player aims to maximize y2, evac minimize y

max y (1,112), miny (1,112)

T1,

How we develope policy gradient method for such setting?

- 02 - 02 + argmi ω2 727 + 002 7 20 100 112 11002112 bilinear Local game > has close form solution, which is the Nash equilibrin of this bilinen same =>0'+0'+ x(I+x2 7007 7001) (7017- 2002 801) 02+02- x([+ a2 000 1 7002) [(002 1 + a0 20 01 1) It is called competebive policy optimization principle (CoPC) Prejapt et al 2020

Bellman residual minimization

we turn the problem of learning Q function to some what chalical regression problem.

f(n) -> y ||f(n)-y|| > 17 x f (n+1)

	Netes:> in general the learned f is
	a biasel estimate al Q.
	Lis well behaved in Linear Q
	This very objective function is the same weed
	in Deep Q Nebwork (DQN)
	-> To tackle Atani games
	-> To tockle Go
	Boosts of the fied Deep RL
	DQN
	Intialize Q
	Urun epsilon greedy policy
	f gramex Q(n19) 1- E
	A GRAMEN OF (NEIN) 1- E
	mitar made
	C ALICONAL ACTIONAL
	2) 2(, , 0 , 10 , 0)
	2) 26 106 1/4 1 Mari
	12) where a -> //a (intical) - 12-swax a (intilal)
_	2) update Q -> Q(ngray)-y-xmaxQ(ngras) 11) using gradient descent
\	

Wednesday,	December 2,	2020

Improve. Q target

for line 3 me we |Q(non-1-2maxQ (non-1)) Line 5) up date a tanset. Q once in a while, 4mh 2015 In linear bondil -> Thompson sempling

Ormal (mean, Cor) Beyesian Linear regresson & -0 N> We (n) -> Q (n19)

learn b using gradient descent lean W wing Bayesian linear For line 1) we do Thomp son samplings 3) 1)(Wmon 6 (m) - Y-Q+ min (m+1/4))

This is called Bayesian DGN (BDQN)

- Meashre theory
_ Bandids.
- MDP -
- PCMBP
_ central settling
_ Medel betel
- Model free Value bejod
- Model free Policy based
- Competation optimization
- Deep RL
- off galicy learner
J T 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

