Remarque : la figure ci-dessus illustre une approche ascendante alors que la formule nous donne l'intuition d'une résolution avec une approche descendante.

 $\hfill \square$ Types d'états – La table ci-dessous présente la terminologie relative aux états dans le contexte de la recherche à coût uniforme :

État	Explication	
Exploré ${\cal E}$	États pour lesquels le chemin optimal a déjà été trouvé	
Frontière \mathcal{F}	États rencontrés mais pour lesquels on se demande toujours comment s'y rendre avec un coût minimal	
Inexploré \mathcal{U}	États non rencontrés jusqu'à présent	

 \square Recherche à coût uniforme – La recherche à coût uniforme (uniform cost search ou UCS en anglais) est un algorithme de recherche qui a pour but de trouver le chemin le plus court entre les états s_{start} et s_{end} . Celui-ci explore les états s_{end} en les triant par coût croissant de PastCost(s_{end}) et repose sur le fait que toutes les actions ont un coût non négatif.

Remarque 1 : UCS fonctionne de la même manière que l'algorithme de Dijkstra. Remarque 2 : cet algorithme ne marche pas sur une configuration contenant des actions à coût négatif. Quelqu'un pourrait penser à ajouter une constante positive à tous les coûts, mais cela ne résoudrait rien puisque le problème résultant serait différent.

- □ Théorème de correction Lorsqu'un état s passe de la frontière \mathcal{F} à l'ensemble exploré \mathcal{E} , sa priorité est égale à PastCost(s), représentant le chemin de coût minimal allant de s_{start} à s.
- $\hfill \blacksquare$ Récapitulatif des algorithmes de parcours de graphe En notant N le nombre total d'états dont n sont explorés avant l'état final $s_{\rm end},$ on a :

Algorithme	Acyclicité	Coûts	Temps/Espace
Programmation dynamique	oui	peu importe	$\mathcal{O}(N)$
Recherche à coût uniforme	non	$c \geqslant 0$	$\mathcal{O}(n\log(n))$

 $Remarque: ce \ d\'ecompte \ de \ la \ complexit\'e \ suppose \ que \ le \ nombre \ d'actions \ possibles \ \grave{a} \ partir \ de \ chaque \ \acute{e}tat \ est \ constant.$