APLICACIÓN DE VOTOS BASADO EN BLOCKCHAIN

DOCENTE:

ING. ROLANDO MARTINEZ

MATERIA:

INGENIERIA DE SOFTWARE I

GRUPO:

INF 422-SC

INTEGRANTES

- **ESPOSO MEDRANO JAIME**
- > LAURA CHOQUE IVAN CESAR
- MORRORE AMACOINE BEATRIZ

TABLA DE CONTENIDO

1.	Int	troduccióntroducción	1
2.		opósito del proyecto	
3.		escripción del problema	
4.		efiniciones para las estimaciones del software	
	4.1.	Tamaño del proyecto	2
	4.2.	Complejidad del proyecto	2
5.	Ok	bjetivos del proyectobjetivos del proyecto	3
	5.1.	Objetivo general	3
	5.2.	Objetivos específicos	3
6.	Re	equerimientos principales	3
	6.1.	Requisitos funcionales	3
	6.2.	Requisitos no funcionales	4
7.	Re	estricciones	4
	7.1.	Restricciones técnicas	
	7.2.		
		Restricciones legales	
	7.3.	Restricciones de recursos	
8.	M	étricas del software	5
	8.1.	Métricas orientadas al tamaño	5
	8.2.	Métricas orientadas a las funciones	6
9.	Es	timaciones	9
	9.1.	Cocomo II	<u>S</u>
10		Gestión de riesgo	11
11		Planificación del tiempo	13
	11.1.	. Identificar actividades	13
Dia	agran	na de Gantt	16
		na de Pert	
0 ا ر	⊿61 a∏	III WC I CI CIIII	/

Tabla	Tabla de Recursos						
Orga	Organización del equipo						
М	lecani	ismo de seguimiento y control	. 22				
Anex	os		. 31				
1.	Mod	elo C4	. 36				
1.	1.	Diagrama de contexto	. 36				
1.	2.	Diagrama de contenedores	. 36				
1.	3.	Diagrama de componentes	. 37				
2.	Mod	lelos de desarrollo	. 40				
2.	1.	Requisitos	. 40				
3.	Marc	co de trabajo Scrum	. 40				
3.	1.	Producto backlog	. 40				
4.	Sprir	nt 0	. 41				
4.	1.	Pila del Sprint 0	. 41				
4.	2.	Burdown (Grafica de Tareas y Datos de Tareas	. 42				
5.	Sprir	nt 1	. 44				
5.	1.	Personal y roles del proyecto	. 44				
5.	2.	Sprint Planning	. 44				
5.	3.	Planeación de la Iteración	. 45				
5.	4.	Pila del Sprint 1	. 46				
5.	5.	Historias de usuario	. 46				
6.	Sprir	nt 2	. 48				
6.	1.	Personal y roles del proyecto	. 48				
6.	2.	Planeación de la iteración	. 48				
6.	3.	Pila de Sprint 2	. 48				
6.	4.	Historias de usuario	. 49				
7.	Sprir	nt 3	. 50				

	7.1.	Personal y roles del proyecto	50
	7.2.	Planeación de la iteración	50
	7.3.	Pila de Sprint3	50
	7.4.	Historias de usuario	51
8.	Prot	otipo	52

CAPÍTULO I PLAN DE ADMINISTRACIÓN DE PROYECTO DE SOFTWARE

1. INTRODUCCIÓN

El proceso electoral tradicional para las elecciones de lideres y representantes guarda mucho que desear en cuando a tecnologías y seguridad, ya que están realizando conteos de forma manual, los votos son realizados en boletas electorales marcados con bolígrafos, por lo cual son demasiado inseguro y fraudulentos.

El avance tecnológico hasta hoy en día, tiene maneras eficientes de hacer de un proceso electora fácil, seguro, confiable y rápido. Un nivel de seguridad elevado con conteos de votos en tiempo real, con servidores potentes y tecnologías de seguridad de última generación.

La tecnología de Blockchain aplicado al proceso electoral es la mejor opción en cuanto a seguridad se refiere, dando mayor confianza y simplificando auditorias, un seguimiento de los votos en tiempo real, libre de fraudes.

Existen muchos sistemas que utilizan esta tecnología en países extranjeros, especialmente reconocido en la seguridad de monedas digitales como Bitcoin, Ethereum, etc. Demuestran un nivel impenetrable para individuos con malas intenciones, ya que se maneja una cadena de bloques que esta almacenada en cada dispositivo conectado al software.

Este proyecto presentará un proceso de votación local, para realizar elecciones democráticas de lideres y representantes políticos, aplicando la tecnología de Blockchain se mantendrá un alto nivel de seguridad, desarrollado con las tecnologías mas avanzadas del mercado como Flutter, y Firebase, tecnologías bajo el dominio de la gran G "Google Ink".

2. PROPÓSITO DEL PROYECTO

El propósito de la Planificación del Proyecto de Software es proporcionar un marco de trabajo que permita al gestor hacer estimaciones razonables de recursos, costo y planificación temporal. Estas estimaciones se hacen dentro de un marco de tiempo limitado al comienzo de un proyecto de software y deberían actualizarse regularmente a medida que progresa el proyecto. La intención de este documento es presentar un marco de trabajo que permita identificar información acerca del proyecto incluyendo el tipo de proceso de gestión a utilizar, la funcionalidad de la aplicación, los recursos necesarios para desarrollarlo, la estimación en esfuerzo, tiempo y coste del proyecto, hitos a conseguir y una lista de actividades del proceso.

3. DESCRIPCIÓN DEL PROBLEMA

El proceso electoral tradicional para las elecciones de lideres y representantes guarda mucho que desear en cuando a tecnologías y seguridad, ya que están realizando conteos de forma manual, los votos son realizados en boletas electorales marcados con bolígrafos, por lo cual son demasiado inseguro y fraudulentos.

4. DEFINICIONES PARA LAS ESTIMACIONES DEL SOFTWARE

4.1. TAMAÑO DEL PROYECTO

Para la estimación del tamaño del proyecto se basó en la cantidad funciones esenciales que necesitaría en su primera revisión. Con esta información se determinó que el tamaño del proyecto es mediano debido que sus funcionalidades principales no son masivas.

4.2. COMPLEJIDAD DEL PROYECTO

Se estimó que dicho proyecto tiene una complejidad media. Esto se debe a las herramientas, componentes y las tecnologías usadas en la realización del software no son desconocidas para los desarrolladores, y que la complejidad reside en más que todo en el tamaño de líneas de códigos que poseerá.

5. OBJETIVOS DEL PROYECTO

5.1. OBJETIVO GENERAL

Desarrollar una aplicación de votos basado en la tecnología de blockchain.

5.2. OBJETIVOS ESPECÍFICOS

- ✓ Identificar los requisitos funcionales y no funcionales.
- ✓ Aplicación para desarrollo de la aplicación de votos.
- ✓ Implementación de la tecnología de Blockchain para seguridad.
- ✓ Desarrollo con Arquitectura de software Modelo Vista Controlador (MVC).
- ✓ Diseñar un prototipo para el software.
- Realizar pruebas para garantizar que la aplicación desarrollada cumpla con los requerimientos del usuario.

6. REQUERIMIENTOS PRINCIPALES

6.1. REQUISITOS FUNCIONALES

RF1: GESTIÓN DE USUARIOS

Se podrán gestionar distintos roles para los usuarios, en función de los actores participantes en el sistema. Administrador, funcionarios y Electores.

RF2: GESTIÓN DE CANDIDATOS

Registro de candidatos a representantes y lideres, por los cuales serán electos por los votantes.

RF3: GESTIÓN DE ELECTORES (VOTANTES)

Registro de los electores que participaran de la votación en la elección de los candidatos a representantes y lideres políticos.

RF4: PROCESO DE VOTACIÓN

Método de votación online a través del sistema, para un conteo en tiempo real, eficiente y eficaz, con seguridad basada en la tecnología de blockchain.

RF5: ESTADISTICAS

El proceso de conteo de votos se llevará a cabo en tiempo real, todos los votos serán visibles a través de una interfaz dinámica, donde se verán el avance de los votantes y el porcentaje de votos por candidato.

6.2. REQUISITOS NO FUNCIONALES

- ✓ RNF1: Facilidad de uso: El sistema funcionará para celulares smartphone
- ✓ RNF2: Desempeño: Realizar pruebas funcionales, aceptación y de integración para el producto cuando se requiera
- ✓ RNF3: Confiablidad: La información de los usuarios debe ser administrada por personal autorizado
- ✓ **RNF4: Eficiencia:** Agilidad de tiempos de respuesta.
- ✓ RNF5: Portabilidad: La aplicación móvil multiplataforma.
- ✓ RNF6: Operabilidad: El esfuerzo que el usuario usara para operar la aplicación es mínima.
- ✓ **RNF7: Simplicidad:** La muestra de una forma intuitiva para el cliente.

7. RESTRICCIONES

7.1. RESTRICCIONES TÉCNICAS

- Se usará la metodología de e Proceso unificado de desarrollo de software.
- Para el desarrollo de diagramas en la documentación usara Architect Enterprise

7.2. RESTRICCIONES LEGALES

• No existe restricciones legales para el desarrollo de software

7.3. RESTRICCIONES DE RECURSOS

- El personal disponible para el desarrollo del software es de tres personas con dedicación de medio tiempo.
- Se posee una duración de proyecto hasta el 4 de marzo del 2022.

8. MÉTRICAS DEL SOFTWARE

8.1. MÉTRICAS ORIENTADAS AL TAMAÑO

Proyecto	KLDC	Tiempo (mes)	Esfuerzo (Persona- Mes)	Costo (\$us)	#Personal	Pág. Doc.	Errores	Defectos
Aplicación de Voto basado en Blockchain	150.5	1	18	200			100	12

$$Calidad = \frac{Errores + Defectos}{KLDC} = \frac{100 + 12}{150.5} = 0.7441$$

$$Productividad = \frac{KLDC}{Esfuerzo (per.mes)} * 1000 = \left(\frac{150.5}{18}\right) * 1000 = 8.361$$

$$Documentacion = \frac{pag.\,doc}{KLDC} = \left(\frac{180}{150.5}\right) = 1.196$$

$$Costo = \frac{Costo}{KLDC} = \left(\frac{200}{150.5}\right) = 1.329$$

8.2. MÉTRICAS ORIENTADAS A LAS FUNCIONES

	Factores	No influye	Incidental	Moderado	Medio	Significativo	Esencial	L.
1.	¿Requiere el sistema copias de seguridad y de recuperación fiables?						Х	5
2.	¿Se requiere comunicación de datos?				x			3
3.	¿Existen funciones de procesamiento distribuido?			х				2
4.	¿Es crítico el rendimiento?						х	5
5.	¿Se ejecutará el sistema en un entorno operativo existente y fuertemente utilizado?					х		4
6.	¿Requiere el sistema entrada de datos interactiva?						х	5
7.	¿Requiere la entrada de datos interactiva que las					х		4

		I	I		I		I	
	transacciones de entrada se lleven a cabo sobre múltiples pantallas u operaciones?							
8.	¿Se actualizan los archivos maestros de forma interactiva?						х	5
9.	¿Son complejos las entradas, las salidas, los archivos o las peticiones?			х				2
10.	¿Es complejo el procesamiento interno?					х		4
11.	¿Se ha diseñado el código para ser reutilizable?						x	5
12.	¿Están incluidas en el diseño la conversión y la instalación'?	х						0
13.	¿Se ha diseñado el sistema para soportar múltiples instalaciones en diferentes organizaciones?				х			3
14.	¿Se ha diseñado la aplicación para facilitar los cambios y para ser fácilmente utilizada por el usuario?						х	5
								52

Parámetros de medición	Cuenta	Simple	Medio	Complejo	Total
# de entradas de usuario	13	3	4	6	52
# de salidas de usuario	5	4	5	7	25
# de peticiones de usuario	14	3	4	6	56
# de archivos	2	7	10	15	14
# de interfaces externas	6	5	7	10	42
					189

$$PF = CTA.TOT * \left[0.65 + 0.01 * \sum_{i=1}^{n} Fi \right]$$

$$PF = 189 * [0.65 + 0.01 * 52]$$

$$PF = 221.13 \approx 221$$

9. ESTIMACIONES

Para este punto es necesario tener en cuenta que las estimaciones de coste y esfuerzo para el desarrollo de software nunca será una ciencia exacta. Esto se debe que son demasiadas variables humanas como el entorno de trabajo, técnicas, experiencias de cada persona que afectan el costo final del software y el esfuerzo necesario para su pleno desarrollo. Ante esta realidad, aplicaremos

9.1. COCOMO II

Tipo de Objeto	Cuenta	Simple	Medio	Avanzado	Total
Pantallas	20	1	2	3	40
Reportes	5	2	5	8	10
Componentes	2	-	-	20	40
Total (PO)					90

El proyecto presenta 90 Puntos objetos. Se estima que se tendrá un 25 % de reutilización de los objetos empleados en el proyecto.

$$PRO = 92$$

$$PO = 25$$

$$PON = PO * \left[\frac{100 - \%Reutilizacion}{100} \right]$$

$$PON = 92 * \left[\frac{100 - 24}{100} \right]$$

$$PON = 69.92$$

Se obtuvo 69.92 nuevos puntos de objetos a desarrollar para el proyecto.

Proporciones de productividad	Muy baja	Baja	Normal	Alta	Muy alta
Capacidad y Madurez del Desarrollador			Х		
Capacidad y Madurez del Entorno			Х		
Prod	7	10	12	25	50

$$E = \frac{PON}{PRO} = \frac{69.92}{24} = 2.91$$

$$E = \frac{3Personas}{Mes}$$

Se requieren 3 personas para realizar la implementación en un mes.

10. GESTIÓN DE RIESGO

Riesgo	Probabilidad %	Impacto
R1. Incumplimiento con la fecha de entrega	25	Critico
R2. El cliente no estará conforme con el software	40	Critico
R3. Abandono de personal	20	critico
R4. Al programador le tomara tiempo dominar el lenguaje.	25	Significativo
R5. Problemas de comunicación en el equipo.	15	Significativo
R6. Nuevos integrante programador sin experiencia en el tipo software	30	Significativo
R7. Mala planificación en el diseño	45	Significativo
R8. No se cumplirá con el horario asignado a los programadores	25	Significativo
R9Incumplimiento con las fechas intermedias	25	Critico

Riesgo	Probabilidad	Impacto
R1. Incumplimiento con la fecha de entrega	Se deberá evaluar más a detalle el proyecto.	Evaluar el proyecto a mitad del desarrollo, para ver si contratar más personal.
R2. El cliente no estará conforme con el software	Mostrar el avance del software continuamente al cliente.	Cumplir estándares de codificación.
R3. Abandono de personal	Buen trato a los programadores, brindar buen ambiente e incentivar por objetivos logrados.	Elegir estándares de codificación.

R4. Al programador le tomara tiempo dominar el lenguaje.	Se debe capacitar y actualizar al personal en diferentes lenguajes.	Buscar un desarrollador para que lo capacite en un tiempo corto	
R5. Problemas de comunicación en el equipo.	Realizar actividades de trabajo en equipo donde participen de manera colaborativa.	Confraternizar los fines de semana con el equipo.	
R6. Nuevos integrante programador sin experiencia en el tipo software	Hacerles conocer el tipo de software a realizar.	Prepararlos a los programadores Brindarles cursos.	
R7. Mala planificación en el diseño	Realizar una buena captura de requisitos. Utilizar un ciclo de vida flexible.	Volver a una etapa anterior.	
R8. No se cumplirá con el horario asignado a los programadores	Establecer horarios fijos de acuerdo a la disponibilidad de tiempo de los programadores.	Trabajar fines de semana y horas extras.	
R9Incumplimiento con las fechas intermedias	Planificar las fechas holgadas	Trabajar más tiempo de lo programado.	

11. PLANIFICACIÓN DEL TIEMPO

Todo proyecto requiere una planificación del tiempo a emplear en las diversas actividades que se van a llevar a cabo para el cumplimiento del mismo, a través de 2 diagramas se pretende mostrar la distribución de tiempos planificada, primeramente, el diagrama de Gantt, a través del cual se podrá apreciar el tiempo que se le va a otorgar para la realización de cada actividad y las actividades que son requisitos para realizar otras actividades.

Mientras que en el diagrama PERT se podrá apreciar las relaciones de cada actividad una con otra y así mismo se podrá ver la ruta critica el proyecto, es decir aquellas actividades que un retraso en las mismas ocasionaría un retraso en todas las demás actividades y por lo tanto un retraso en el proyecto en sí.

En planificación temporal se consideran 2 etapas:

11.1. IDENTIFICAR ACTIVIDADES

Para desarrollar el software aplicaremos como estrategias las Fases del Proceso Unificado

1ra: Fase de Inicio

A 1 Requisitos del Software

A 1.1 Captura de Requisitos como Casos de Uso

A 1.1.1 Encontrar Actores y Casos de Uso

A 1.1.2 Priorizar Casos de Uso

A 1.1.3 Detallar un Caso de Uso

A 1.1.4 Prototipar la Interfaz de Usuario

A 1.1.5 Estructurar el Modelo de Casos de Uso

2da: Fase de Elaboración

A 2 Análisis del Software

A 2.1	Realizar el Análisis de la Arquitectura
A 2.2	Analizar Casos de Uso
A 2.3	Analizar Clases
A 2.4	Analizar Paquetes

3ra: Fase de Construcción

A 3 Diseño del Software

- A 3.1 Realizar el Diseño de la Arquitectura
- A 3.2 Diseñar Casos de Uso
- A 3.3 Diseñar Clases

A 4 Implementación del Software

- A 4.1 Realizar la Implementación de la Arquitectura
- A 4.2 Integrar el Sistema
- A 4.3 Implementar Clases
- A 4.4 Realizar pruebas de Unidad

Actividad	Después de	Duración de la Actividad
A 1 Requisitos del Software	-	21 días
A 1.1 Captura de Requisitos como Casos de Uso	-	5 días
A 1.1.1 Encontrar Actores y Casos de Uso	-	2 días
A 1.1.2 Priorizar Casos de Uso	A 1.1.1	4 días
A 1.1.3 Detallar Casos de Uso	A 1.1.2	5 días
A 1.1.4 Prototipar la Interfaz de Usuario	A 1.1.3	2 días
A 1.1.5 Estructurar el Modelo de Casos de Uso	A 1.1.4	2 días
A 1.1.6 Revisión y Aprobación	A 1	1 días
A 2 Análisis del Software	A 1	22 días
A 2.1 Realizar el Análisis de la Arquitectura	A 1	8 días
A 2.2 Analizar Casos de Uso	A 2.2	5 días
A 2.3 Análisis de Clases	A 2.3	4 días
A 2.4 Análisis de Paquetes	A 2.4	4 días
A 2.5 Revisión y Aprobación	A 2	1 días
A 3 Diseño del Software	A 2	18 días
A 3.1 Diseño de la Arquitectura	A 2	6 días
A 3.2 Diseñar Casos de Uso	A 3.1	5 días
A 3.3 Diseñar Clases	A 3.2	3 días
A 3.4 Diseño de Subsistema	A 3.3	3 días
A 3.5 Revisión y Aprobación	A3	1 días

A 4 Implementación del software	A 3	18 días
A 4.1 Realizar la Implementación de la Arquitectura	A 3	5 días
A 4.2 Integrar el Sistema	A 4.1	4 días
A 4.3 Implementar un subsistema	A 4.2	3 días
A 4.3 Implementar Clases	A 4.2	3 días
A 4.2 Revisión y Aprobación	A 4	3 días
TOTAL + 1 día Reunión Inicial		79 días Aprox.

DIAGRAMA DE GANTT

DIAGRAMA DE PERT

NRO	NOMBRE	Actividad	Precedentes	duración	primera fec	ha
					inicio	fin
1	CAPTURA	А		21	0	21
2	CR	В		5	0	5
3	EN AC.	С		2	5	7
4	PRIO	D		4	7	11
5	DETALLAR	E	С	5	11	16
6	PROT	F	D	2	16	18
7	MODELO	G	E	2	18	20
8	EVALU	Н	B,F,G	1	20	21
9	ANA	I	A,H	22	21	43
10	ANALISIS	J	A,H	8	21	29
11	AN CU	К	A,H	5	29	34
12	AN CLASES	L	A,H	4	34	38
13	AN PAQUETES	М	A,H	4	38	42
14	REV	N	I,J,K,L,M	1	42	43
15	DISEÑO	0	I,N	18	43	61
16	D. ARQUI	Р	I,N	6	43	49
17	D CU	Q	Р	5	49	54
18	D CLASES	R	Q	3	54	57
19	D SUBSI	S	R	3	57	60
20	REV	Т	S	1	60	61
21	IMP	U	O,T	18	61	79
22	IMP ARQ	V	O,T	5	61	66
23	IMP SIS	W	O,T	4	66	70
24	IMP SUBSIS	Х	O,T	3	70	73
25	IMP CLASES	Υ	O,T	3	73	76
26	REV	Z	Υ	3	76	79

TABLA DE RECURSOS

	Recurs o	Fecha desde	Fecha hasta	Tot al Mes es	Cantid ad	Precio Unitario (\$)	% de Depreciac ion al mes	Prec io Neto	Preci o Total
Hardware	PC	15/10/2 021	31/12/2 021	2,5	2	800		98, 1	104
	Router	15/10/2 021	31/12/2 021	2,5	1	50		4,9	2,6
Software	Window s	15/10/2 021	31/12/2 021	2,5	2	60		0,0	120
	Office	15/10/2 021	31/12/2 021	2,5	1	136		8,3	4,42
	Enterpri se Architec Profesio nal	15/10/2 021	31/12/2 021	2,5	2	199		24, 4	12,94
	Mysql	15/10/2 021	31/12/2 021	2,5	1	Free			0
Gente	Ing de Software	15/10/2 021	31/12/2 021	2,5	2	800			3922, 60
Infraestruc tura	Agua	15/10/2 021	31/12/2 021	2,5	1	30			73,5 5
	Luz	15/10/2 021	31/12/2 021	2,5	1	30			73,5 5

	Local	15/10/2 021	31/12/2 021	2,5	1	300		735,4 9
	Internet	15/10/2 021	31/12/2 021	2,5	1	50		122,5 9
		15/10/2 021	31/12/2 021	2,5				0
Logistica	Almuerz o	15/10/2 021	31/12/2 021	2,5	2	100		490,3 3
	Hojas Bond	15/10/2 021	31/12/2 021	2,5	1	10		24,5 2
	TOTAL							5689, 71

ORGANIZACIÓN DEL EQUIPO

Una organización interna eficaz se basa en 4 elementos: Personal, Producto, Proceso, Proyecto (a continuación, explico cada uno), sirve para desarrollar software, seguro, eficiente, amistoso (con buena interfaz y documentación), fiable.

PERSONAL

Debe ser preparado y motivado, cinco tipos de participantes gestores superiores, gestores del proyecto(técnicos), profesionales en el producto o aplicación, cliente que especifica los requisitos (que pueden ser los mismos que la desarrollan), usuarios que son los que interactúan con el software.

PRODUCTO

Software a desarrollar.

La primera actividad de gestión de un proyecto es determinar el ámbito del software. El ámbito es: el contexto, objetivos de información, funciones y rendimiento, debe ser unívoco, entendible a nivel técnico y de gestión.

PROCESO

Se elige el modelo de proceso más adecuado en base al cliente, las características de producto y el equipo de desarrollo.

PROYECTO

Para gestionar un proyecto debemos comprender que puede ir mal, los desarrolladores no comprenden la necesidad del cliente, cambios mal realizados, tecnología elegida cambiante, fechas no realistas, etc.

La organización Descentralizada Democrática no tiene un jefe permanente, se nombran coordinadores de tareas a corto plazo. La comunicación entre jefe y los miembros es horizontal. Este tipo de organización se emplea en equipos pequeños y medianos.

MECANISMO DE SEGUIMIENTO Y CONTROL

El procedimiento de SEGUIMIENTO Y CONTROL DEL PROYECTO establece el conjunto de acciones que se llevarán a cabo para la comprobación de la correcta ejecución de las actividades del proyecto (Aplicación) establecida en la planificación del mismo. Su propósito es proporcionar un entendimiento del progreso de la aplicación de forma que se puedan tomar las acciones correctivas apropiadas cuando la ejecución de la aplicación.

REPORTE DE TAREAS

REI	PORTE DE TAREAS
# De Reporte: Fed	cha: / /
Lugar: Hoi	ra:
a) Tarea a cargo:	b)
Descripción de la funcionalid	,
c) % de avance en su desarro	
	d) Control de avance:
- Retrasado:	Si No
- Según Planifica	do Si No
e) Lista de problemas	

encontrados:	
f) Lista de posibles soluciones:	
	_
g) Integrantes del equipo a cargo de la tarea:	
Nombres:	
h) Observaciones:	
h) Observaciones:	

TAREAS EN PROCESO

	Reportes de tareas en proceso					
	de Reunión:Fecha:// ar: Hora:::					
a)	RTF:					
b)	Descripción de tareas:					

Nombre del personal encargado

Reportes de tareas finalizadas				
Nombre de la tarea:	Fecha://			
Lugar:	Hora:::			
Descripción de la tarea:				
Recomendación:				

Capítulo I	
PAPS	

Nombre del personal encargado	

INFORME DE ERRORES

Informes de errores		
Nombre de la tarea:	Fecha://	
Lugar:	Hora:::	
Descripción y ubicación:		
Impacto:		
Causa:		
Solución:		

Nombre del personal encargado	

ANEXOS

IMPRESORA:

Las impresoras disponibles son 2:

DOS EPSON L220 SERIES

PC:

Procesador i5 de 3era generación con 500gb HD 4 de Ram.

Procesador i7 7ma generación con 1tb HD y 16 de Ram.

Procesador i5 de 2da generación con 750gb y 8 de Ram.

Procesador i5 7ma generación con 1tb HD y 12gb de Ram.

Router tp-link mh300

RED:

Las computadoras se encuentran conectadas en red, con el cableado correspondiente y WI-FI. 20Mbits.

SOFTWARE:

El sistema operativo con el que se cuenta y se tiene pensado realizar el proyecto es WINDOWS 10.

ENTERPRISE ARCHITEC:

La herramienta case a utilizarse es Enterprise Architec, es un software libre, pero contempla todas las características de apoyo al PUDS.

MICROSOFT OFFICE

CAPITULO II MODELOS DE DESARROLLO DE SOFTWARE

1. MODELO C4

1.1. DIAGRAMA DE CONTEXTO

1.2. DIAGRAMA DE CONTENEDORES

1.3. DIAGRAMA DE COMPONENTES

2. MODELOS DE DESARROLLO

2.1. REQUISITOS

GESTIÓN DE USUARIOS

Se podrán gestionar distintos roles para los usuarios, en función de los actores participantes en el sistema. Administrador, funcionarios y Electores.

GESTIÓN DE CANDIDATOS

Registro de candidatos a representantes y lideres, por los cuales serán electos por los votantes.

GESTIÓN DE ELECTORES (VOTANTES)

Registro de los electores que participaran de la votación en la elección de los candidatos a representantes y lideres políticos.

PROCESO DE VOTACIÓN

Método de votación online a través del sistema, para un conteo en tiempo real, eficiente y eficaz, con seguridad basada en la tecnología de blockchain.

ESTADISTICAS

El proceso de conteo de votos se llevará a cabo en tiempo real, todos los votos serán visibles a través de una interfaz dinámica, donde se verán el avance de los votantes y el porcentaje de votos por candidato.

3. MARCO DE TRABAJO SCRUM

3.1. PRODUCTO BACKLOG

CODIGO (Historia de usuaria)	DESCRIPCION DE LA TAREA	ESTIMADO
HUO-01	Recopilación de fuentes de información	1 días
HUO-02	Planteamiento del problema	
HUO-03	metodología	
HUO-04	Definir la visión del software	
HUO-05	Capacitación del equipo	1
HUO-06	Designación de roles	
HUO-07	Definir plan de desarrollo del sistema	
HUO-08	Elección de herramientas	
HUO-09	Diseño de base de datos	1
HUO-10	Definir el plan de entrega	1
HU1-01	Gestión de Usuarios	5
HU1-02	Gestión de Candidatos	5
HU1-03	Gestión de Electores (Votantes)	5
HU1-04	Proceso de Votación	5
HU1-05	Estadísticas	5

4.1. P	ILA DEL SPRIN	Т 0									
	SPRINT	SPRINT	SPRINT								
	TAREAS PEN	NDIENTES									
		HORAS DE	TRABAJO	4	3	5	6	6	5	2	
PILA DE	SPRINT 0				ES	FUE	RZO				
CODIG O	TAREAS	TIPO	ESTADO	RESPONSAB LE							
HUO- 01	Recopilació n de fuentes de información	Requisito s	Termina do		3						
HUO- 02	Planteamie nto del problema	Análisis	Termina do	EQUIPO	1	1					
HUO- 03	metodología	Análisis	Termina do			2					

HUO- 04	Definir la visión del software	Análisis	Termina do
HUO- 05	Capacitació n del equipo	Preparaci ón	Termina do
HUO- 06	Designación de roles	Análisis	Termina do
HUO- 07	Definir plan de desarrollo del sistema	Preparaci ón	Termina do
HUO- 08	Elección de herramienta s	Análisis	Termina do
HUO- 09	Diseño de base de datos	Diseño	Termina do
HUO- 10	Definir el plan de entrega	Análisis	Termina do

4.2. BURDOWN (GRAFICA DE TAREAS Y DATOS DE TAREAS

Tarea	is									
HU	Nombre de las historia	Tiempo Estimado	DIA1	DIA2	DIA3	DIA4	DIA5	DIA6	DIA7	TOTAL
HU0	Recopilación de fuentes de información									
	Planteamiento del problema									
	metodología									
	Definir la visión del software									
	Capacitación del equipo	25	4	3	3	5	2	4	5	26
	Designación de roles									
	Definir plan de desarrollo del sistema									
	Elección de herramientas									
	Diseño de base de datos									

Capítulo II Modelos de Desarrollo de Software

HOR RES	AS TANTES	26	22	19	16	11	9	5	0
	AS MADAS TANTES	25	21	17	13	11	6	3	0

El objetivo del Sprint 1 consiste en conocer el tema. Familiarizarse con el tema que se va a desarrollar, desde el punto de vista técnico, conceptual y de experiencia, en base a investigaciones planteadas o conocimiento de otras personas en el área.

5.1. PERSONAL Y ROLES DEL PROYECTO

ROL	ENCARGADO	TAREAS
PRODUCT OWNER	Ing. Rolando Martinez	 Especificar los requisitos del producto Responsable de desarrollar, mantener y priorizar las tareas en el (product backlog)
SCRUM MASTER	Beatriz Morrore Amacoine	 Realizar un seguimiento de los procesos. Garantizar el cumplimiento de roles y responsabilidades Mejorar el trabajo en equipo.
DEVELOPER	Esposo Medrano Jaime	Implementar los requisitos del sprint
STAKEHOLDERS	Laura Choque Iván Cesar	Detallar los requerimientos solicitados

5.2. SPRINT PLANNING

Código	Prioridad	Descripción	Responsable	Puntos Estimados	Estimación	#Subtask
HU1- 01	High	Gestión de Usuarios		13	5 días	Existe tres tipos de usuarios: AdministradorEs la autoridad mas alta del sistema, encargado de gestionar los registros de funcionarios, asignación de grupos y gestión de perfiles. FuncionariosEstán a cargo de registrar a los electores y candidatos.
HU1- 02	High	Gestión de Candidatos		13	5 días	Esta función se encarga de Registrar, actualizar, visualizar y suspender el perfil de candidato. Solo los funcionarios pueden registrar. Solo el administrador puede editar-actualizar un perfil de candidato.
HU1- 03	High	Gestión de Electores (Votantes)		13	5 días	Los funcionarios están a cargo de registrar el perfil de los electores.

HU1- 04	High	Proceso de Votación	1	10	5 días	Hasta este punto en fecha de votación, los electores buscaran su perfil, después de verificar sus datos procederán a realizar la elección de su candidato favorito y finalmente enviaran su voto de forma segura y en tiempo real
HU1- 05	High	Estadísticas	5	5	5 días	Todos los datos recopilados del proceso de votación serán visibles en tiempo real, podrán verse la cantidad de votos ejecutados y los faltantes, así también el porcentaje de votos por candidato.

5.3. PLANEACIÓN DE LA ITERACIÓN

Se realizó una reunión que se dividió en dos partes:

Parte Uno: ¿Qué trabajo será realizado?

Para la planificación del Sprint 1, el PRODUCT OWNER presentó en orden las Historias del Product Backlog al Equipo de Desarrollo, y el Equipo Scrum completo colaboró para comprender el trabajo a realizar.

Equipo de Desarrollo considera el estado actual del Incremento de Producto, el rendimiento del equipo en el pasado, la capacidad actual del equipo y el Product Backlog ordenado.

Una vez ya concluida la primera parte de la reunión el Equipo de Desarrollo decidió tomar las siguientes historias:

- Gestión de Usuarios
- Gestión de Candidatos
- Gestión de Electores

Parte Dos: ¿Cómo será realizado el trabajo?

En la segunda parte de la reunión, el Equipo de Desarrollo colabora para decidir cómo producir el próximo Incremento de Producto de acuerdo con la Definición de Hecho actual.

Donde el equipo de desarrollo realizo el diseño y planificación del Sprint 1, para un tiempo de una semana (5 días).

5.4. PILA DEL SPRINT 1

	Semana 2										
	SPRINT	SPRINT	SPRINT								
	TAREAS PEN	IDIENTES									
		HORAS DE	TRABAJO	8	8	8	8	8	8	8	
PILA DE S	SPRINT 1				ES	FUEF	RZO				
CODIGO	TAREAS	TIPO	ESTADO	RESPONSABLE							
HU1-01	Gestión de	Desarrollo	Terminado	EQUIPO	8	8	4	1			
	Usuarios										
HU1-02	Gestión de	Desarrollo	Terminado				4	7	6		
	Candidatos										
HU1-03	Gestión de	Desarrollo	Terminado						2	8	8
	Electores										
	(Votantes)										

5.5. HISTORIAS DE USUARIO

Historia									
Numero: HU1-01 HU1-02	actor: Administrador, funcionario, Electores, Candidatos.								
Nombre de la historia: Gestión de Usuarios, Gestionar Candidatos, Gestionar Electores									
Prioridad del negocio: Alto	Riesgo Desarrollo:								
Responsables: Beatriz Jaime Iván Cesar									
Descripción:									

- Todos los actores tienen atributos en común, siendo estos datos personales de la persona, se creará una clase abstracta "Persona", de la cual se va heredar para los demás actores.
 - Atributos:
 - UID, CI, nombre, teléfono, correo, isActivate
 - Metodos:
 - iniciarSesion(), cerrarSesion(), set-get isActivate
- Gestión de Administrador: Solo existe un administrador que gestiona al personal de a cargo de las elecciones.
 - Atributos
 - isAdmin
 - Metodos
 - Set-get isAdmin, registrarAdministrador(UserCredential), cargarAdministrador(), actualizarAdministrador()
- Gestionar funcionario: Los funcionarios solo pueden ser registrador por un Administrador.
 - Atributos
 - isFuncionario
 - Metodos
 - Set-get isFuncionario, registrarFuncionario(UserCredential),
 verFuncionario(String), _cargarFuncionario(), actualizarFuncionario.
- Gestionar Candidato: Los candidatos son registrados solo por un funcionario, pero solo puede ser editado por un administrador.
 - o Atributos
 - urllmage, cargo, sigla, alias.
 - Metodos
 - registrarCandidato(), verCandidato(String), actualizarCandidato()
- Gestionar Elector: Son gestionados solo por un funcionario.
 - Atributos:
 - isVote
 - o Metodos:
 - Set-get isVote, registrarElector(), verElector(String), actualizarElector().

Condicionen de satisfacción: Estos requisitos deben ir satisfaciendo al product owner

6.1. PERSONAL Y ROLES DEL PROYECTO

ROL	ENCARGADO	TAREAS
PRODUCT OWNER	Ing. Rolando Martinez	 Especificar los requisitos del producto Responsable de desarrollar, mantener y priorizar las tareas en el (product backlog)
SCRUM MASTER	Beatriz Morrore Amacoine	 Realizar un seguimiento de los procesos. Garantizar el cumplimiento de roles y responsabilidades Mejorar el trabajo en equipo.
DEVELOPER	Esposo Medrano Jaime	Implementar los requisitos del sprint
STAKEHOLDERS	Laura Choque Iván Cesar	Detallar los requerimientos solicitados

6.2. PLANEACIÓN DE LA ITERACIÓN

Para la realización del Sprint 2, se planteó continuar desde el punto donde quedó el Sprint 1, indicando todas las tareas que tenía el Product Owner, que fueron presentadas en el orden que se muestra a continuación:

Proceso de votación

De acuerdo a las tareas presentadas, el equipo de desarrollo determinó que las tareas podrían realizarse en un tiempo de 5 días, delicadamente planificada y probada cada historia.

6.3. PILA DE SPRINT 2

Semana 3							
SPRINT	SPRINT	SPRINT					

	TAREAS P	ENDIENTES												
		HORAS DE	HORAS DE TRABAJO				3	2	5	4	3			
	PILA DE SPR	INT	NT .					ESFUERZO						
CODIG O	TAREAS	TIPO	ESTADO	RESPONSABL E										
HU1-04	Proceso de Votación	Desarroll o	Terminad o	Equipo										

6.4. HISTORIAS DE USUARIO

Historia								
Numero: HU1-04	actor: Electores.							
Nombre de la historia: Proceso de Votación								
Prioridad del negocio: Alto Riesgo Desarrollo:								
Responsables: Beatriz Jaime Iván Cesar								
Descripción: En este proceso de votación, los electores podrán buscar su perfil con un registro único de carnet de identidad, una vez verifiquen sus datos, podrán acceder a la urna virtual para efectuar su voto, este voto se guardará en una blockchain, se visualizará y contabilizara en tiempo real con todos los votos efectuados.								
Condicionen de satisfacción: Estos requisitos deben ir satisfaciendo al product owner								

7.1. PERSONAL Y ROLES DEL PROYECTO

ROL	ENCARGADO	TAREAS
PRODUCT OWNER	Ing. Rolando Martinez	 Especificar los requisitos del producto Responsable de desarrollar, mantener y priorizar las tareas en el (product backlog)
SCRUM MASTER	Beatriz Morrore Amacoine	 Realizar un seguimiento de los procesos. Garantizar el cumplimiento de roles y responsabilidades Mejorar el trabajo en equipo.
DEVELOPER	Esposo Medrano Jaime	Implementar los requisitos del sprint
STAKEHOLDERS	Laura Choque Iván Cesar	Detallar los requerimientos solicitados

7.2. PLANEACIÓN DE LA ITERACIÓN

Para la realización del Sprint 3, se planteó continuar desde el punto donde quedó el Sprint 2, indicando todas las tareas que tenía el Product Owner, que fueron presentadas en el orden que se muestra a continuación:

Estadísticas

De acuerdo a las tareas presentadas, el equipo de desarrollo determinó que las tareas podrían realizarse en un tiempo de 7 días, delicadamente planificada y probada cada historia.

_	_						— -
7	- 2	рп	Δ	DE	CD	RΙ	NT3
•				ν L	JI	111	111 3

		Semana 4										
		SPRINT	SPRIN T	SPRINT								
TAREAS PENDIENTES												
			HORAS DE TRABAJO			4	5	5	4	5	5	4
PILA DE SPRINT					ES	FUE	RZO				-	

CODIG O	TAREAS	TIPO	ESTADO	RESPONSABL E							
HU1-05	Estadísti cas	Análisis	Terminad o	EQUIPO	4	5	5	4	5	5	4

7.4. HISTORIAS DE USUARIO

Historia							
Numero: HU1-05	actor: Administradores, funcionarios						
Nombre de la historia: Estadisticas							
Prioridad del negocio: Alto	Riesgo Desarrollo:						
Responsables: Beatriz Jaime Iván Cesar							
Descripción: Es una vista dinámica en tiempo real del avance y conteo de votos.							
Condicionen de satisfacción: Estos requisitos deben ir satisfaciendo al product owner							

8. PROTOTIPO

