Laboratorio di Immagini

Esercitazione 6:

Texture analysis

- Immagine che rappresenta forme e colori di una superficie
- Generate una texture a scacchiera con elementi di diversa dimensione
 - Dimensione immagine: 256x256
 - Singolo quadrato: 8x8, 16x16, 32x32 64x64

In matlab: doc/help checkerboard

• Generare un'immagine di rumore bianco Gaussiano con μ =128 e σ^2 =64 (verificare che tutti i valori restino nel range 0-255)

- Caricare l'immagine rice.png e vedere altre tessiture di matlab.
- Nel caso si trovino meno di 4 tessiture, caricare le tessiture di Brodatz

- Per ogni tessitura fare uno zoom:
 - o Interpolazione con ingrandimento 4 e 8
 - Crop per mantenere le dimensioni a 256x256
- In matlab: doc/help imcrop e doc/help

imresize

Co-occorrenza

- Per ognuna delle precedenti tessiture (comprese quelle ottenute dallo zoom)
- 1. Calcolare la matrice di co-occorrenza con diversi valori di angolo (come nel sorgente) e di distanza (da 1 a 16 con step di 2 o 4 a seconda di quanto sia lento l'algoritmo)
 - In matlab: help cooccurrence (fornita per la lezione)

Autocorrelazione

- 2. Calcolare la matrice di autocorrelazione
 - In matlab: doc/help xcorr2
 - Esempio su rice.png

Istogramma

- 3. Estrarre l'istogramma delle immagini originali e mettere in relazione l'istogramma con la matrice di co-occorrenza
 - mettere in relazione con la forma delle matrici di cooccorrenza
 - In matlab: doc/help imhist e doc/help surf

Fourier

4. Fare la trasformata di Fourier delle tessiture e visualizzare lo spettro

Fourier

5. Fare la trasformata di Fourier delle funzioni di autocorrelazione e visualizzarle

