Mateusz Stasiak, Szymon Malec Grupa 8

Wyznaczanie pojemności kondensatora

1. Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie pojemności kondensatora. Metoda, która została do tego wykorzystana, polega na mierzeniu czasu ładowania kondensatora i za jego pomocą wyliczeniu pojemności.

2. Wstęp teoretyczny

Chcemy znaleźć wzór funkcji $U_C(t)$. Przyjmijmy, że t_c jest czasem ładowania kondensatora od αU_0 do βU_0 ($\alpha > \beta$), a więc $U_C(0) = \alpha U_0$ i $U_C(t_c) = \beta U_0$.

Rysunek 1. Schemat obwodu elektrycznego, który posłużył do uzyskania pomiarów

Wyjdziemy od równania

$$I = \frac{\mathrm{d}Q}{\mathrm{d}t},$$

następnie korzystając z tego, że $Q = CU_C$ dostajemy

$$I = C \frac{\mathrm{d}U_C}{\mathrm{d}t}.$$

Z prawa Ohma wiemy, że $I=\frac{U_R}{R}$. Podstawiając do równania, otrzymujemy

$$\frac{\mathrm{d}U_C}{\mathrm{d}t} = \frac{U_R}{RC}.$$

Z kolei z prawa Kirchhoffa mamy $U_R=U_0-U_C,$ co po podstawieniu da nam następujące równanie różniczkowe:

$$\frac{\mathrm{d}U_C}{\mathrm{d}t} + \frac{1}{RC}U_C = \frac{1}{RC}U_0.$$

Rozwiązując to równanie i korzystając z warunku początkowego $U_C(0) = \alpha U_0$ otrzymamy

 $U_C(t) = U_0 - (1 - \alpha)U_0 e^{-\frac{t}{RC}}.$

Następnie korzystając z tego, że $U_C(t_c) = \beta U_0$ możemy wyprowadzić wzór na pojemność kondensatora:

$$C = \frac{t_c}{R \ln\left(\frac{1-\alpha}{1-\beta}\right)}. (1)$$

3. Wyniki pomiarów

Pomiary zostały wykonane dla parametrów $\alpha = \frac{1}{3}$ oraz $\beta = \frac{2}{3}$. Opór rezystora wynosi $R = 10000\Omega$. Mierzony był czas ładowania t_c i na jego podstawie wyliczona została pojemność kondensatora C ze wzoru (1).

Rysunek 2. Obwód elektryczny wykorzystany do pomiarów

Rysunek 3. Wykres oscyloskopu $U_C(t)$

	e: [1		o: [-1		o. f. —3
$t_c [\mu s]$	$C [\mu F]$	$t_c \ [\mu m s]$	$C [\mu F]$	$t_c [\mu s]$	$C [\mu F]$
3144616	453.67	3140288	453.05	3143408	453.5
3144512	453.66	3145104	453.74	3142320	453.34
3147008	454.02	3146056	453.88	3143648	453.53
3140528	453.08	3145320	453.77	3142800	453.41
3146280	453.91	3143880	453.57	3143280	453.48
3143056	453.45	3146768	453.98	3141624	453.24
3145576	453.81	3143168	453.46	3145096	453.74
3141480	453.22	3144736	453.69	3145696	453.83
3145088	453.74	3144728	453.69	3145208	453.76
3143640	453.53	3142688	453.39	3144248	453.62
3143048	453.45	3144728	453.69	3143528	453.52
3145448	453.79	3146280	453.91	3141016	453.15
3143760	453.55	3138264	452.76	3145680	453.83
3142808	453.41	3142576	453.38	3154928	455.16
3144856	453.71	3143648	453.53	3146280	453.91
3147728	454.12	3143656	453.53	3147608	454.1
3155160	455.19	3146896	454.0	3146296	453.91
3145200	453.76	3142936	453.43	3147248	454.05
3141720	453.25	3148808	454.28	3142920	453.43
3140296	453.05	3144720	453.69	3146040	453.88
3143536	453.52	3144864	453.71	3143536	453.52
3148320	454.21	3145696	453.83	3136684	452.53
3145328	453.77	3144488	453.65	3141968	453.29
3144000	453.58	3144136	453.6	3144120	453.6
3146544	453.95	3144000	453.58	3154800	455.14
3143288	453.48	3144736	453.69	3182416	459.13
3145456	453.79	3144720	453.69	3194648	460.89
3148808	454.28	3141360	453.2	3192496	460.58
3145344	453.78	3146296	453.91	3207480	462.74
3144368	453.64	3144504	453.66	3213496	463.61
3141840	453.27	3144840	453.7	3207240	462.71
3140784	453.12	3144360	453.64	3212040	463.4
3144968	453.72	3142088	453.31	3219496	464.48
3143880	453.57	3145816	453.85	3211688	463.35
3144368	453.64	3140408	453.07	3209288	463.0
3138000	452.72	3144848	453.71	3212192	463.42
3142216	453.33	3144016	453.59	3209520	463.04
3145560	453.81	3147368	454.07	3208928	462.95
3144120	453.6	3143520	453.51	3213128	463.56
3148328	454.21	3140648	453.1	3217808	464.23
3145088	453.74	3141976	453.29	3215040	463.83
3139920	452.99	3137536	452.65	3216480	464.04
3144368	453.64	3144240	453.62	3212896	463.52
3143656	453.53	3142080	453.31	3216736	464.08
3152768	454.85	3144856	453.71	3207512	462.75
3208200	462.85	3140664	453.1	3209540	463.04
3170888	457.46	3144008	453.58	3210624	463.2
3207744	462.78	3146528	453.95	3211444	463.31
3206288	462.57	3144496	453.65	3211448	463.31
3205096	462.4	3143528	453.52	3209400	463.02
3193328	460.7	3147128	454.03	3213864	463.66

	~ [~ [- -
$t_c [\mu s]$	$C [\mu F]$	$t_c [\mu s]$	$C [\mu F]$	$t_c [\mu s]$	$C [\mu F]$
3216720	464.07	3225976	465.41	3219496	464.48
3214560	463.76	3218904	464.39	3224040	465.13
3214080	463.69	3218520	464.33	3216136	463.99
3215288	463.87	3219508	464.48	3222368	464.89
3215168	463.85	3227880	465.68	3221648	464.79
3216480	464.04	3221888	464.82	3219992	464.55
3217576	464.2	3218776	464.37	3221640	464.78
3220680	464.65	3221536	464.77	3219008	464.4
3218880	464.39	3221640	464.78	3218768	464.37
3218656	464.35	3219488	464.47	3220088	464.56
3219968	464.54	3221768	464.8	3222720	464.94
3219968	464.54	3220568	464.63	3221296	464.73
3216744	464.08	3222488	464.91	3212896	463.52
3219608	464.49	3221048	464.7	3220576	464.63
3216736	464.08	3219000	464.4	3221040	464.7
3215648	463.92	3220704	464.65	3217088	464.13
3222368	464.89	3220468	464.62	3217688	464.21
3220800	464.66	3219376	464.46	3182656	459.16
3220688	464.65	3219720	464.51	3249968	468.87
3220112	464.56	3218888	464.39	3222360	464.89
3212416	463.45	3219488	464.47	3225024	465.27
3216608	464.06	3220336	464.6	3218656	464.35
3191880	460.49	3217808	464.23	3221160	464.72
3181216	458.95	3219256	464.44	3217336	464.16
3181448	458.99	3220920	464.68	3218520	464.33
3183616	459.3	3220568	464.63	3191656	460.46
3184460	459.42	3217800	464.23	3222960	464.97
3180720	458.88	3213008	463.54	3185168	459.52
3182520	459.14	3221280	464.73	3183000	459.21
3216248	464.01	3216720	464.07	3143880	453.57
3215048	463.83	3222624	464.93	3147368	454.07
3212888	463.52	3219720	464.51	3145704	453.83
3211088	463.26	3219864	464.53	3143904	453.57
3210840	463.23	3221768	464.8	3149296	454.35
3219724	464.51	3217576	464.2	3157116	455.48
3218520	464.33	3222488	464.91	3199920	461.65
3222136	464.86	3221056	464.7	3215768	463.94
3218040	464.27	3220208	464.58	3200408	461.72
3215656	463.92	3221056	464.7	3217592	464.2
3218528	464.34	3219736	464.51	3215040	463.83
3215776	463.94	3222856	464.96	3215888	463.95
3222728	464.94	3218296	464.3	3218896	464.39
3224640	465.22	3222960	464.97	3220208	464.58
3216968	464.11	3217344	464.16	3216488	464.04
3222728	464.94	3219728	464.51	3220688	464.65
3217088	464.13	3219368	464.46	3218648	464.35
3216968	464.11	3218648	464.35	3220804	464.66
3222256	464.87	3220328	464.6	3189848	460.2
3222848	464.96	3219152	464.43	3183360	459.26
3222128	464.85	3216000	463.97	3186496	459.71
3213728	463.64	3221760	464.8	3215184	463.85
_		_			

$t_c \ [\mu \mathrm{s}]$	$C [\mu F]$	$t_c [\mu \mathrm{s}]$	$C [\mu F]$	$t_c [\mu \mathrm{s}]$	$C [\mu F]$
3218648	464.35	3216496	464.04	3205800	462.5
3220336	464.6	3212520	463.47	3211928	463.38
3219984	464.55	3201848	461.93	3216840	464.09
3220080	464.56	3211080	463.26	3214712	463.78
3220336	464.6	3219496	464.48	3213968	463.68
3219976	464.54	3224760	465.23	3217596	464.2
3218764	464.37	3216976	464.11	3215648	463.92
3226920	465.55	3224288	465.17	3214336	463.73
3220584	464.63	3222264	464.87	3220208	464.58
3223440	465.04	3219600	464.49	3214216	463.71
3224672	465.22	3219960	464.54	3213360	463.59
3218400	464.32	3224896	465.25	3214320	463.73
3224544	465.2	3219968	464.54	3217688	464.21
3219496	464.48	3223440	465.04	3216248	464.01
3222000	464.84	3225968	465.41	3214936	463.82
3224168	465.15	3218416	464.32	3216136	463.99
3228728	465.81	3220336	464.6	3211456	463.32
3221888	464.82	3218784	464.37	3215672	463.92
3220200	464.58	3220560	464.63	3214088	463.69
3220680	464.65	3222968	464.98	3213720	463.64
3224776	465.24	3216368	464.02	3217816	464.23
3224048	465.13	3212776	463.51	3216120	463.99
3223568	465.06	3180608	458.86	3212648	463.49
3222136	464.86	3185176	459.52	3212768	463.5
3218172	464.28	3187208	459.82	3214928	463.82
3224648	465.22	3185168	459.52	3215664	463.92
3220576	464.63	3186008	459.64	3219368	464.46
3220680	464.65	3179288	458.67	3217568	464.2
3220824	464.67	3184088	459.37	3214920	463.81
3223576	465.06	3181808	459.04	3217584	464.2
3220800	464.66	3183016	459.21	3218408	464.32
3218768	464.37	3187080	459.8	3212520	463.47
3217576	464.2	3184456	459.42	3217568	464.2
3219028	464.41	3183496	459.28	3219848	464.53
3219360	464.46	3182768	459.18	3221640	464.78
3218544	464.34	3182288	459.11	3216608	464.06
3218160	464.28	3184080	459.37	3218040	464.27
3220448	464.61	3184800	459.47	3219600	464.49
3214808	463.8	3180240	458.81	3214096	463.7
3216728	464.08	3202808	462.07	3215880	463.95
3220100	464.56	3183000	459.21	3199112	461.53
3211808	463.37	3183120	459.23	3211832	463.37
3214112	463.7	3186008	459.64	3207480	462.74
3217088	464.13	3183480	459.28	3212648	463.49
3215888	463.95	3188520	460.01	3215400	463.88
3216000	463.97	3179912	458.76	3215760	463.94
3211928	463.38	3192008	460.51	3211216	463.28
3208096	462.83	3183608	459.3	3210840	463.23
3218648	464.35	3185888	459.63	3210368	463.16
3214216	463.71	3204728	462.34	3211448	463.31
3216488	464.04	3215640	463.92		

4. Opracowanie wyników

Rysunek 4. Wykres punktowy wyników pomiarów

Na rys. 4. możemy zauważyć, że wartości pojemności kondensatora zachowują się specyficznie. Wyniki wyraźnie dzielą się na dwie grupy, oscylujące wokół wartości $454\mu\mathrm{F}$ i $464\mu\mathrm{F}$. Pomimo regularnego rozłożenia danych, na wykresie występują znaczące skoki. Są one prawdopodobnie spowodowane zmianą oporu obwodu, na skutek podłączania i odłączania oscyloskopu. Powyższą hipotezę uzasadnia chwilowe podłączenie rozładowanego urządzenia w pierwszej fazie doświadczenia, po którym następuje czas oczekiwania na sprawny oscyloskop. Z powodu dużej rozbieżności między grupami danych policzymy dwie wartości średnie.

4.1. Średnia z pomiarów bez podłączonego oscyloskopu

Obliczymy średnią ucinaną biorąc wyniki mieszczące się w zakresie od $452\mu F$ do $456\mu F$, żeby wykluczyć odstające wartości spowodowane błędami pomiarowymi.

$$\bar{C} = \frac{1}{n} \sum_{i} C_i \approx 453,6642 \mu F$$

Policzymy jeszcze niepewność tej średniej.

$$u(\bar{C}) = \sqrt{\frac{1}{n(n-1)} \sum_{i} (C_i - \bar{C})^2} \approx 0.0016 \mu F$$

4.2. Średnia z pomiarów z podłączonym oscyloskopem

Podobnie jak w poprzednim przypadku, policzymy średnią ucinaną, tym razem dla wartości od $462\mu F$ do $466\mu F$.

$$\bar{C} \approx 464,2143 \mu F$$

Następnie obliczamy niepewność.

$$u(\bar{C}) \approx 0.0015 \mu F$$

5. Wnioski

Wartości parametrów α i β wykorzystane przy pomiarach sumują się do 1, więc powinniśmy spodziewać się symetrii ładowania i rozładowania kondensatora. Jednakże, rezystory zastosowane w obwodzie elektrycznym mają różne wartości oporu w celu wydłużenia czasu ładowania i skróceniu czasu rozładowania, co pozwala na osiągnięcie większej dokładności pomiarów. Nie pokrywa się to z wykresem oscyloskopu. Widoczna krzywa wskazuje, że czas rozładowania jest wyraźnie dłuższy. Może to sugerować, że oscyloskop lub oporniki zostały podłączone odwrotnie, jednak cały obwód został dokładnie sprawdzony. Stąd wnioskujemy, że albo wykorzystany oscyloskop był wadliwy, albo pomiary są błędne. Jeżeli prawdziwa jest pierwsza opcja, to udało nam się otrzymać dwie pojemności kondensatora. Bardziej wiarygodna jest ta dla pomiarów bez podłączonego oscyloskopu, ze względu na wpływ urządzenia na całkowity opór obwodu elektrycznego. Mała niepewność tego wyniku potwierdza, że jest on bardzo dokładny.