Improving Quantum Annealing through microcanonical thermalization

a one-dimensional study

Gianni Mossi

NASA Quantum Al Laboratory gianni.mossi@nasa.gov

15th of March 2022

RQMLS Project

Reversible/Quantum Machine Learning and Simulation

Eliot Kapit

Vadim Oganesyan

OF NEW YORK

OF NEW YORK

CITY UNIVERSITY

CENTER

Zhijie Tang

Gianni Mossi

Motivations: Pitfalls of Quantum Annealing

Bottleneck of "standard" QA: exponentially-small avoided crossings in the adiabatic path (*e.g.* first-order phase tr.)

Believed to be obiquitous in QA for finiteconnectivity comb. opt. problems

Reverse Annealing/Population Transfer/etc.: use quantum dynamics to tunnel from a low-energy state to *new* low-energy states

New proposal: microcanonical thermalization through RFQA

Additional Desiderata (for quantum speedup):

- generic mechanism ("problem-blind")
- not approachable by QMC methods
- noise-robust by design

"Microcanonical Thermalization"

induce a diabatic dynamics which close to an exp-small anticrossing populates

- both states approx. equally
- faster than e.g. uniform transverse field driver

RFQA driver: a uniform transverse field driver
Hamiltonian is replaced by one where every transverse
field oscillates independently at a randomly chosen
frequency

Kapit and Oganesyan, QST 6, 025013 (2021)

By oscillating K single-spin operators, one can increase the tunnelling rate

$$r_{0\to 1} \propto \frac{\Omega_0^2}{W} \sum_{m=0}^K \Lambda^{2m} \binom{2K}{m} \propto \frac{\Omega_0^2}{W} (1 + 2\Lambda^2)^K$$

where Λ is a quantity which depends on the details of the system, but does **not** scale with the system size, or with K

Applications:

-) canonical QA approach (find the GS)
- 2) "fair sampling" (find multiple low-energy states given a low-energy state as a seed)

The Model: Transverse-Field Ising Chain

$$H=-J\sum_i\sigma_i^z\sigma_{i+1}^z-\Gamma\sum_i\sigma_i^x$$
 Second-order Quantum Phase Transition at $~\Gamma/J=1$

Doubly-degenerate ground state for $0<\Gamma< J$ and $N\to\infty$ is split at finite N by an exponentially small gap

MAIN GOALS OF THIS WORK:

- 1. Use the exponentially-small *empirical* gap between the quasi-degenerate ground states as a proxy for a "hard" avoided crossing in AQC
- 2. Study a simplified form of the chain freezing effect in an embedded problem

We will compare an **RFQA protocol** with a (uniform tr. field) **reverse-annealing-type protocol** as we move to

$$\Gamma \to \Gamma_c$$

 h_i are randomly chosen so that the energy splitting between the two unperturbed ferromagnetic GSs is "small"

$$E_{+} - E_{-} \sim \operatorname{unif}\left([-\epsilon, \epsilon]\right), \quad \epsilon = O(1)$$

Combinatorial "Problem":

Start in the initial state: $\left| \uparrow \cdot \cdot \uparrow \right\rangle$ **GOAL:** find the state: $\left| \downarrow \cdot \cdot \downarrow \right\rangle$

 h_i are randomly chosen so that the energy splitting between the two unperturbed ferromagnetic GSs is "small"

$$E_{+} - E_{-} \sim \text{unif}\left([-\epsilon, \epsilon]\right), \quad \epsilon = O(1)$$

PT Driver

$$D_0(t) = -\Gamma(t) \sum_i \sigma_i^x$$
Energy Scales i

 h_i are randomly chosen so that the energy splitting between the ${f two}$ unperturbed ferromagnetic GSs is "small"

$$E_{+} - E_{-} \sim \text{unif}\left([-\epsilon, \epsilon]\right), \quad \epsilon = O(1)$$

PT Driver

$$D_0(t) = -\Gamma(t) \sum_i \sigma_i^x$$
Energy Scales i

RFQA Driver

$$D_{RFQA}(t) = -\Gamma(t) \sum_{j} \left[\cos \left(\theta_{j}(t) \right) \sigma_{j}^{x} + \sin \left(\theta_{j}(t) \right) \sigma_{j}^{y} \right]$$

"windshield wiper" XY tr. field $heta_j(t) = lpha \sin(2\pi\omega_j t)$

 $1/\sqrt{N}$

Energy Scales

 $O(1/\sqrt{N})$

 $-1/\sqrt{N}$

0.8

0.6

0.2

0.0

P(

0

P(t)

 h_i are randomly chosen so that the energy splitting between the two unperturbed ferromagnetic GSs is "small"

$$E_{+} - E_{-} \sim \text{unif}\left([-\epsilon, \epsilon]\right), \quad \epsilon = O(1)$$

disordered fields

RFQA Driver

$$D_{RFQA}(t) = -\Gamma(t) \sum_{j} \left[\cos \left(\theta_{j}(t) \right) \sigma_{j}^{x} + \sin \left(\theta_{j}(t) \right) \sigma_{j}^{y} \right]$$

"windshield wiper" XY tr. field

$$\theta_j(t) = \alpha \sin(2\pi f_j t)$$

$$f_j = \pm \omega_j, \quad \mathbb{E}[\omega_j] = \sigma[\omega_j] = O\left(\frac{1}{\sqrt{N}}\right)$$

"uncorrelated small frequencies" RFQA

PT vs RFQA Protocols

1) Prepare the ferromagnetic state

- 2) Dynamics
 - Ramp up the driver to the desired intensity
 - Wait for tunnelling
 - Ramp the driver down to zero

3) Measure the tunnelling probability to the target state

$$|\psi(0)\rangle = |\uparrow \cdots \uparrow\rangle$$

$$|\psi(t_f)\rangle = U(t_f)|\uparrow \cdots \uparrow\rangle \qquad t_f = O(N)$$

$$P(t_f) = |\langle \downarrow \cdots \downarrow | U(t_f) | \uparrow \cdots \uparrow \rangle|^2$$

4) Repeat and compute the TTS

$$TTS \equiv \frac{\log(1 - 0.99)}{\log(1 - \langle P(t_f) \rangle)} \qquad \langle P(t_f) \rangle = \int P(t_f; \mathbf{f}, \mathbf{h}) \, \rho(\mathbf{f}) \, \rho(\mathbf{h}) \, d\mathbf{f} \, d\mathbf{h}$$

Generic behaviour for large enough I

$$\Gamma \to \Gamma_c = 1$$

Exponential Fit: $TTS(N) = \beta N2^{\alpha N}$

	ΡΤ α exp.	RFQA α exp.	speedup
0.7	0.9(7)	0.7(1)	≈ 1.4
0.75	0.7(7)	0.3(3)	≈ 2.3
0.8	0.6(5)	0.1(6)	≈ 4.1
0.85	0.4(4)	0.0(4)	≈ 11. 0
0.9	0.30(7)	-0.0(2)	?
0.95	0.12(7)	-0.0(9)	?

$$\frac{\alpha_{PT}}{\alpha_{RFQA}} = p$$

$$\frac{\alpha_{RFQA}}{\text{means}}$$

$$\sqrt[p]{-\text{speedup}}$$

Conclusions

We've compared the RFQA and a uniform-field driver

- RFQA exhibits a scaling advantage over a uniform-field driver
- the scaling advantage increases as $\Gamma
 ightarrow \Gamma_c$
- for the system sizes studied, the TTS scaling exponent of RFQA is indistinguishable from zero close to the critical point of the QPT
- we expect this behaviour to generalize to finite-connectivity models (nothing in the protocols explicitly relies the 1-d structure of the model)

Possible future directions

- experimental implementation in open-system setting (MIT/LL)
- extend analysis to finite-connectivity combinatorial optimization problems
- better understand the behaviour close to criticality

Thank You for Your Attention

Contact: gianni.mossi@nasa.gov

SUPPLEMENTARY MATERIAL

Numerical/Experimental Implementation: the Rotating Frame Picture

$$i\frac{d}{dt}|\phi_R(t)\rangle = i\dot{R}(t)|\psi(t)\rangle + R(t)i\frac{d}{dt}|\psi(t)\rangle$$

$$= i\dot{R}(t)R^{-1}(t)|\phi_R(t)\rangle + R(t)H(t)R^{-1}(t)|\phi_R(t)\rangle$$

$$\equiv H_R(t)|\phi_R(t)\rangle$$

$$|\phi_R(t)\rangle \equiv R(t)|\psi(t)\rangle$$

$$|\phi_R(t)\rangle \equiv R(t)|\psi(t)\rangle$$

$$R(t) \equiv \exp\left(i\sum_j \frac{\theta_j(t)}{2}\sigma_j^z\right)$$

RFQA Effective Hamiltonian:

$$H_R(t) = -\frac{1}{2} \sum_j \frac{\partial \theta_j(t)}{\partial t} \sigma_j^z - J \sum_j \sigma_j^z \sigma_{j+1}^z - \sum_j h_j \sigma_j^z - \Gamma(t) \sum_j \sigma_j^x$$

Advantages of the rotating frame Hamiltonian:

- (Marginally) easier form
- Easy to implement on soon-to-be-available quantum hardware (S. Disseler @ MIT/LL)