

Description

The VST15N056 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{DS(ON)}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

- $V_{DS} = 150V, I_{D} = 140A$ $R_{DS(ON)} < 6.2 m\Omega @ V_{GS} = 10V$
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST15N056-T7	VST15N056	TO-247	-	-	-

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	150	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	140	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	100	А	
Pulsed Drain Current	I _{DM}	560	А	
Maximum Power Dissipation	P _D	320	W	
Derating factor		2.1	W/°C	
Single pulse avalanche energy (Note 5)	Eas	1296	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	°C	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	$R_{ heta JC}$	0.47	°C/W
---	----------------	------	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	150	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =150V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	·		•			
Gate Threshold Voltage	shold Voltage $V_{GS(th)}$ $V_{DS}=V_{GS},I_D=250\mu A$		2.0	3.0	4.0	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =70A	-	5.6	6.2	mΩ
Forward Transconductance	g FS	V _{DS} =10V,I _D =70A	70	-	-	S
Dynamic Characteristics (Note4)			•			
Input Capacitance	C _{lss}	V _{DS} =75V,V _{GS} =0V,	-	5500	7150	PF
Output Capacitance	C _{oss}		-	690	890	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	24	31	PF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}	V_{DD} =75V, I_{D} =70A V_{GS} =10V, R_{G} =4.7 Ω	-	26	-	nS
Turn-on Rise Time	t _r		-	36	-	nS
Turn-Off Delay Time	t _{d(off)}		-	47	-	nS
Turn-Off Fall Time	t _f		-	15	-	nS
Total Gate Charge	Qg	V _{DS} =75V,I _D =70A,	-	80	104	nC
Gate-Source Charge	Q _{gs}		-	32	41	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	22	28	nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _F = I _S	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	140	Α
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C, I_F = I_S$	-	140		nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	498		nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

280
240
(M) 200
(it) 160
(it) 160
(it) 160
(it) 120
(it) 160
(it)

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance