Zachary Hampton

Due Date: 11-29-2024

Problem 1

Problem 1. Let A, B, C, and D be subsets of a universal set U.

- (a) Complete the following sentence (write the full sentence in your work): We say that $(A-B)\subseteq (C\cap D)$ provided that for each $x\in U$, if $x\in (A-B)$, then .
- (b) Write a useful negation of the statement from part (a).
- (c) Write the contrapositive of the statement from part (a).

Solution:

- (a) We say that $(A B) \subseteq (C \cap D)$ provided that for each $x \in U$, if $x \in (A B)$, then $x \in C$ and $x \in D$.
- (b) The negation of the statement is: There exists an $x \in U$ such that $x \in (A B)$ and $(x \notin C \text{ or } x \notin D)$.
- (c) The contrapositive of the statement is:

For each $x \in U$, if $x \notin C$ or $x \notin D$, then $x \notin (A - B)$.

Since $x \notin (A - B)$ means that $x \notin A$ or $x \in B$, we can also express it as:

For each $x \in U$, if $x \notin C$ or $x \notin D$, then $x \notin A$ or $x \in B$.

Problem 2

Problem 2. Let $S = \{ x \in \mathbb{R} \mid x^2 < 9 \}$ and $T = \{ x \in \mathbb{R} \mid x < 3 \}$.

- (a) Is $S \subseteq T$? Justify your conclusion with a formal proof or a formal counterexample argument.
- (b) Is $T \subseteq S$? Justify your conclusion with a formal proof or a formal counterexample argument.

Solution:

(a) Yes, $S \subseteq T$.

Proof:

Let $x \in S$. Then by definition, $x^2 < 9$.

This implies that -3 < x < 3.

Therefore, x < 3.

Hence, $x \in T$.

Since every element of S is also in T, we conclude that $S \subseteq T$.

(b) No, $T \nsubseteq S$.

Counterexample:

Consider x = -4.

We have x = -4 < 3, so $x \in T$.

However, $x^2 = (-4)^2 = 16 \ge 9$, so $x \notin S$.

Therefore, $T \nsubseteq S$.

Problem 3

Problem 3. Let $A = \{ x \in \mathbb{Z} \mid x \equiv 1 \pmod{5} \}$ and $B = \{ y \in \mathbb{Z} \mid y \equiv 7 \pmod{10} \}$.

- (a) List at least five different elements of the set A and at least five different elements of the set B. Each list should contain at least one negative integer. Use proper set notation to write your lists.
- (b) Write a formal proof to show that A and B are disjoint (i.e., $A \cap B = \emptyset$).

Solution:

(a) Elements of A:

Since $x \equiv 1 \pmod{5}$, x = 5k + 1 for some $k \in \mathbb{Z}$.

Examples:

$$k = -3:$$
 $x = 5(-3) + 1 = -14$
 $k = -2:$ $x = 5(-2) + 1 = -9$
 $k = -1:$ $x = 5(-1) + 1 = -4$
 $k = 0:$ $x = 5(0) + 1 = 1$
 $k = 1:$ $x = 5(1) + 1 = 6$

Therefore, a subset of A is:

$$A = \{-14, -9, -4, 1, 6, \ldots\}$$

Elements of B:

Since $y \equiv 7 \pmod{10}$, y = 10m + 7 for some $m \in \mathbb{Z}$.

Examples:

$$m = -2$$
: $y = 10(-2) + 7 = -13$
 $m = -1$: $y = 10(-1) + 7 = -3$
 $m = 0$: $y = 10(0) + 7 = 7$
 $m = 1$: $y = 10(1) + 7 = 17$
 $m = 2$: $y = 10(2) + 7 = 27$

Therefore, a subset of B is:

$$B = \{-13, -3, 7, 17, 27, \ldots\}$$

(b) *Proof that* $A \cap B = \emptyset$:

Suppose, for contradiction, that there exists an integer x such that $x \in A \cap B$.

Then:

$$\begin{cases} x \equiv 1 \pmod{5} \\ x \equiv 7 \pmod{10} \end{cases}$$

Since $x \equiv 1 \pmod{5}$, it means $x \mod 5 = 1$.

Since $x \equiv 7 \pmod{10}$, we have $x \mod 10 = 7$.

Observe that:

$$x \mod 5 = (x \mod 10) \mod 5.$$

Compute $(x \mod 10) \mod 5$:

$$(7 \mod 5) = 2.$$

Therefore:

$$x \mod 5 = 2$$
.

But this contradicts the earlier conclusion that $x \mod 5 = 1$.

Therefore, no such x exists, and $A \cap B = \emptyset$.

Problem 4

Problem 4. Read the proof below. For each algebraic step, provide justification by citing the appropriate parts of Theorem 5.18 and Theorem 5.20.

Proposition: If A, B, and C are subsets of some universal set U, then:

$$A - (B \cup C) = (A - B) \cap (A - C).$$

Proof: Let A, B, and C be subsets of some universal set U. Beginning with the left side, we have:

$$A - (B \cup C) = A \cap (B \cup C)^{c}$$

$$= A \cap (B^{c} \cap C^{c})$$

$$= (A \cap B^{c}) \cap C^{c}$$

$$= (A \cap B^{c}) \cap (A \cap C^{c})$$

$$= (A - B) \cap (A - C)$$

Therefore,

$$A - (B \cup C) = (A - B) \cap (A - C)$$

for any sets A, B, and C.

Solution:

Step 1:
$$A - (B \cup C) = A \cap (B \cup C)^c$$
 [Definition of Set Difference]
Step 2: $= A \cap (B^c \cap C^c)$ [De Morgan's Law]
Step 3: $= (A \cap B^c) \cap C^c$ [Associative Law of Intersection]
Step 4: $= (A \cap B^c) \cap (A \cap C^c)$ [Distributive Law]
Step 5: $= (A - B) \cap (A - C)$ [Definition of Set Difference]