I

Names: $_{-}$			
NI (II)			
NetIDs:			

Discussion section: f D _____ Group number: _____

MATH 257 - WORKSHEET 14

Given a real $m \times n$ matrix A, recall we have a linear transformation $L \colon \mathbb{R}^n \to \mathbb{R}^m$ defined by $L(\mathbf{x}) = A\mathbf{x}$. When A is also square and symmetric, the Spectral Theorem assures us an orthonormal eigenbasis \mathcal{B} for A. This implies that $L_{\mathcal{B},\mathcal{B}}$ is a diagonal matrix with diagonal entries the eigenvalues of A. Note that the basis \mathcal{B} is doubly nice: (1) it is orthonormal, and (2) it is an eigenbasis for A. For general rectangular matrices, can we find nice ordered bases \mathcal{F}, \mathcal{G} for $\mathbb{R}^n, \mathbb{R}^m$ respectively so that $L_{\mathcal{G},\mathcal{F}}$ is diagonal, i.e. having non-zero entries only along the main-diagonal?

In this worksheet we will investigate how to do this by finding certain orthonormal bases (**ONB**) for each of the four fundamenatal subspaces so that they together "play well" with the matrix A to yield a coordinate matrix that is diagonal. This will lead us to the powerful **Singular Value Decomposition** (**SVD**).

Note: Occasionally we will use brackets to denote matrices but this has no additional mathematical meaning. It is for ease of typesetting.

(1) First, an example: Consider the matrix $A = \begin{pmatrix} 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 1 & 1 & -1 & -1 \end{pmatrix}$ which has the following four fundamental subspaces:

$$Col(A^{T}) = span\left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix} \right\} \qquad Nul(A) = span\left\{ \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\-1\\1 \end{pmatrix} \right\}$$

$$Col(A) = span\left\{ \begin{pmatrix} 2\\2\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\2\\-1 \end{pmatrix} \right\} \qquad Nul(A^{T}) = span\left\{ \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix} \right\}$$

where the given tuples are basis vectors for their respective subspaces. Let

$$\mathcal{F} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4) = \begin{pmatrix} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\-1\\1 \end{pmatrix} \end{pmatrix}$$
$$\mathcal{G} = (\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3) = \begin{pmatrix} \begin{pmatrix} 2\\2\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\2\\-1 \end{pmatrix}, \begin{pmatrix} -1\\1\\0 \end{pmatrix} \end{pmatrix}$$

(a) Assuming \mathcal{G}, \mathcal{F} are bases for $\mathbb{R}^m, \mathbb{R}^n$ respectively, find $L_{\mathcal{G},\mathcal{F}}$.

We compute that

$$A\mathbf{v}_1 = 2\mathbf{w}_1 + 2\mathbf{w}_2$$
$$A\mathbf{v}_2 = 2\mathbf{w}_2$$

so that

$$L_{\mathcal{G},\mathcal{F}} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \end{bmatrix}$$

which is (lower) "triangular".

(b) (**Optional**, slight messy) What if we apply the Gram-Schmidt process to get orthonormal bases $\hat{\mathcal{F}}, \hat{\mathcal{G}}$? What is $L_{\hat{\mathcal{G}},\hat{\mathcal{F}}}$.

We compute that

$$\hat{\mathcal{F}} = (\hat{\mathbf{v}}_1, \hat{\mathbf{v}}_2, \hat{\mathbf{v}}_3, \hat{\mathbf{v}}_4) = \begin{pmatrix} \frac{1}{2} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} -1\\-1\\1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\0\\-1\\1 \end{pmatrix} \end{pmatrix}$$
$$\hat{\mathcal{G}} = (\hat{\mathbf{w}}_1, \hat{\mathbf{w}}_2, \hat{\mathbf{w}}_3) = \begin{pmatrix} \frac{1}{3} \begin{pmatrix} 2\\2\\1 \end{pmatrix}, \frac{1}{3\sqrt{2}} \begin{pmatrix} 1\\1\\-4 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\1\\0 \end{pmatrix} \end{pmatrix}$$

Let V, U be matrices with columns the elements of $\hat{\mathcal{F}}, \hat{\mathcal{G}}$ respectively so that $V = I_{\mathcal{E}_4,\hat{\mathcal{F}}}$ and $U = I_{\mathcal{E}_3,\hat{\mathcal{G}}}$ are orthogonal matrices where \mathcal{E}_k is the standard basis in \mathbb{R}^k . Then,

$$L_{\mathcal{G},\mathcal{F}} = U^T A V = \begin{bmatrix} B & 0 \\ \hline 0 & 0 \end{bmatrix}_{4\times3} \qquad B = \frac{1}{3} \begin{pmatrix} 16 & -2 \\ 4\sqrt{2} & 4\sqrt{2} \end{pmatrix}$$

In particular,

$$A\hat{\mathbf{v}}_1 = \frac{16}{3}\hat{\mathbf{w}}_1 + \frac{4\sqrt{2}}{3}\hat{\mathbf{w}}_2$$

$$A\hat{\mathbf{v}}_2 = -\frac{2}{3}\hat{\mathbf{w}}_1 + \frac{4\sqrt{2}}{3}\hat{\mathbf{w}}_2$$

- (2) We didn't quite achieve our goal, but the preceding example(s) have been informative. Let's consider what the previous example(s) indicate.
 - (a) First, let's clear up the assumption we used earlier: Suppose rk(A) = r with $\mathcal{A} = (\mathbf{v}_1, \dots, \mathbf{v}_r)$ an ordered ONB for $Col(A^T)$ and $\mathcal{B} = (\mathbf{v}_{r+1}, \dots, \mathbf{v}_n)$ an ordered ONB for Nul(A). Explain why $\mathcal{F} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ is an ordered ONB for \mathbb{R}^n . Similarly, if $\mathcal{C} = (\mathbf{u}_1, \dots, \mathbf{u}_r)$ is an ordered ONB for Col(A) and $\mathcal{D} = (\mathbf{u}_{r+1}, \dots, \mathbf{u}_m)$ an ordered ONB for $Nul(A^T)$, then $\mathcal{G} = (\mathbf{u}_1, \dots, \mathbf{u}_m)$ is an ordered ONB for \mathbb{R}^m .

 $Col(A^T)$, Nul(A) are orthogonal complements of each other in \mathbb{R}^n so that \mathcal{F} is a spanning set for \mathbb{R}^n . Since it contains $n = \dim(\mathbb{R}^n)$ vectors, it is a basis for \mathbb{R}^n . The claim for \mathcal{G} follows analogously.

- (b) Next, notice that we could choose any ONB for each of Nul(A), $Nul(A^T)$ without changing the fact that $L_{\mathcal{G},\mathcal{F}} = \begin{bmatrix} B & 0 \\ \hline 0 & 0 \end{bmatrix}_{m \times n}$ for some matrix $B_{r \times r}$. Why is this true?
 - For any vector $\mathbf{v} \in Nul(A)$ we have $A\mathbf{v} = \mathbf{0}$ so that columns $r+1,\ldots,n$ of $L_{\mathcal{G},\mathcal{F}}$ are always zero. For any $\mathbf{v} \in V$ we have $A\mathbf{v} \in Col(A)$ so that written as a linear combination of basis vectors, we need only utilize those for Col(A). Thus, the lower-left block of $L_{\mathcal{G},\mathcal{F}}$ is entirely zero.
- (c) If we want B diagonal, we need ONB $(\mathbf{v}_1, \dots, \mathbf{v}_r)$ for $Col(A^T)$ and ONB $(\mathbf{u}_1, \dots, \mathbf{u}_r)$ for Col(A) compatible in the sense that for each $i = 1, \dots, r$ the tuple $A\mathbf{v}_i$ is a multiple of \mathbf{u}_i . Show that this implies the collection $\{A\mathbf{v}_1, \dots, A\mathbf{v}_r\}$ is orthogonal.

 The collection $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ is orthogonal, and $A\mathbf{v}_i$ is parallel to \mathbf{u}_i for each $i = 1, \dots, r$. Thus, $\{A\mathbf{v}_1, \dots, A\mathbf{v}_r\}$ is orthogonal.
- (3) The preceding result implies for $i \neq j$ we have $0 = (A\mathbf{v}_i) \cdot (A\mathbf{v}_j) = \mathbf{v}_i^T(A^TA)\mathbf{v}_j$ so that we want to choose ONB $(\mathbf{v}_1, \dots, \mathbf{v}_r)$ for $Col(A^T)$ with the property that $0 = \mathbf{v}_i \cdot (A^TA)\mathbf{v}_j$ whenever $i \neq j$.
 - (a) Show that this condition implies that the \mathbf{v}_i are eigenvectors of A^TA .

 The condition implies that $A^TA\mathbf{v}_i$ is orthogonal to all \mathbf{v}_j for $i \neq j$. Since $A^TA\mathbf{v}_i \in Col(A^T)$ and $\mathbf{v}_1, \ldots, \mathbf{v}_r$ is an ONB for $Col(A^T)$, we have $A^TA\mathbf{v}_i \in span(\mathbf{v}_i)$ so that \mathbf{v}_i is an eigenvector of A^TA .
 - (b) This directs our attention to the matrix A^TA . Recall from the lecture modules that $Nul(A^TA) = Nul(A)$. Explain why an ONB for the 0-eigenspace of A^TA is an ONB for Nul(A) and why $rk(A^TA) = r$
 - The 0-eigenspace of a square matrix is the same as the nullspace of the matrix. Since $\text{Nul}(A^TA) = \text{Nul}(A)$, the first claim follows. Then, $\dim \text{Nul}(A^TA) = n r$ so that $rk(A^TA) = r$ by the Rank-Nullity Theorem.
 - (c) Since $A^T A$ is symmetric, the Spectral Theorem yields an orthonormal eigenbasis $(\mathbf{v}_1, \dots, \mathbf{v}_n)$. Suppose $\mathcal{B} = (\mathbf{v}_{r+1}, \dots, \mathbf{v}_n)$ is an ONB for $Nul(A^T A)$. Why is $\mathcal{A} = (\mathbf{v}_1, \dots, \mathbf{v}_r)$ an ONB for $Col(A^T)$?
 - $Col(A^T)$ and Nul(A) are orthogonal complements in \mathbb{R}^n and so are $Col((A^TA)^T)$ and $Nul(A^TA)$. Since $Nul(A^TA) = Nul(A)$, we have \mathcal{A} an ONB for $Col((A^TA)^T) = Col(A^T)$.
- (4) Let $\mathcal{F} = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ orthonormal eigenbasis for $A^T A$, which we now recognize as merging ONB for each of $Col(A^T)$ and Nul(A).
 - (a) By our earlier work, we know that $\{A\mathbf{v}_1, \dots, A\mathbf{v}_r\}$ is an orthogonal collection in Col(A). Show that the collection is actually an orthogonal basis for Col(A).

It suffices to show that the collection is either linearly independent or a spanning set for Col(A). Since $\dim(Col(A)) = r$ this will show that the collection is a basis. Say we want to show the former: Since $\mathbf{v}_1, \ldots, \mathbf{v}_r \in Col(A^T) = \operatorname{Nul}(A)^{\perp}$ the orthogonal collection $\{A\mathbf{v}_1, \ldots, A\mathbf{v}_r\}$ does not contain zero and is hence linearly independent. Alternatively, $\mathbf{0} = \sum_{i=1}^r a_i A \mathbf{v}_i = A(\sum_{i=1}^r a_i \mathbf{v}_i)$ implies $\sum_{i=1}^r a_i \mathbf{v}_i \in \operatorname{Nul}(A)$. Since $\mathbf{v}_i \in \operatorname{Col}(A^T)$ so is their linear combination. Thus, $\sum_{i=1}^r a_i \mathbf{v}_i = 0$ and the linear independence of $\mathbf{v}_1, \ldots, \mathbf{v}_r$ implies $a_i = 0$ for all $i = 1, \ldots, r$. Say we want to show the former: Any vector $\mathbf{w} \in \operatorname{Col}(A)$ has the form $\mathbf{w} = A\mathbf{v}$ for some $\mathbf{v} \in V$. Writing $\mathbf{v} = \sum_{i=1}^n a_i \mathbf{v}_i$ as a linear combination of the basis vectors $\{\mathbf{v}_i\}$ we have $\mathbf{w} = A\mathbf{v} = \sum_{i=1}^n a_i A \mathbf{v}_i = \sum_{i=1}^r a_i A \mathbf{v}_i$. Thus, the collection $\{A\mathbf{v}_1, \ldots, A\mathbf{v}_r\}$ is a spanning set for (A).

(b) Find the lengths $||A\mathbf{v}_i||$ and so obtain an ONB $\mathcal{C} = (\mathbf{w}_1, \dots, \mathbf{w}_r)$ for Col(A).

For $i = 1, \ldots, r$ we have

$$||A\mathbf{v}_i||^2 = \mathbf{v}_i^T A^T A \mathbf{v}_i = \lambda_i \mathbf{v}_i^T \mathbf{v}_i = \lambda_i$$

since $(A^T A)\mathbf{v}_i = \lambda_i \mathbf{v}_i$ and the \mathbf{v}_i are unit length. This computation also shows that the non-zero eigenvalues of $A^T A$ are strictly positive. Thus, if we define $\mathbf{u}_i = \frac{1}{\sqrt{\lambda_i}} A \mathbf{v}_i$ then the collection $\mathcal{C} = (\mathbf{u}_1, \dots, \mathbf{u}_r)$ is an ONB for Col(A).

(c) Pick any ONB $\mathcal{D} = (\mathbf{u}_{r+1}, \dots, \mathbf{u}_n)$ for $Nul(A^T)$. Let $\mathcal{G} = (\mathbf{u}_1, \dots, \mathbf{u}_n)$. Find $L_{\mathcal{G},\mathcal{F}}$.

We compute

$$A\mathbf{v}_{i} = \sqrt{\lambda_{i}} \frac{1}{\sqrt{\lambda_{i}}} A\mathbf{v}_{i} = \sqrt{\lambda_{i}} \mathbf{u}_{i} \qquad i = 1, \dots, r$$
$$A\mathbf{v}_{i} = \mathbf{0} \qquad i = r + 1, \dots, n$$

so that

$$L_{\mathcal{G},\mathcal{F}} = \begin{bmatrix} D & 0 \\ \hline 0 & 0 \end{bmatrix}_{m \times n} \qquad D = \begin{pmatrix} \sqrt{\lambda_1} & & \\ & \ddots & \\ & & \sqrt{\lambda_r} \end{pmatrix}_{r \times r}$$

with D diagonal as desired.

(d) Let \mathcal{E}_n , \mathcal{E}_m denote the standard bases in \mathbb{R}^n , \mathbb{R}^m respectively. Since $L_{\mathcal{E}_m,\mathcal{E}_n} = A$, use the change of coordinates formula $L_{\mathcal{E}_m,\mathcal{E}_n} = I_{\mathcal{E}_m,\mathcal{G}}L_{\mathcal{G},\mathcal{F}}I_{\mathcal{F},\mathcal{E}_n}$ to write A as a product of three matrices.

Let $V_{n\times n} = (\mathbf{v}_1 \dots \mathbf{v}_n)$ be a matrix with columns \mathbf{v}_i and define $U_{m\times m} = (\mathbf{u}_1 \dots \mathbf{u}_m)$ similarly. Then, $I_{\mathcal{E}_n,\mathcal{F}} = V$ and $I_{\mathcal{E}_n,\mathcal{G}} = U$. Since \mathcal{F} is an orthonormal basis, we have $I_{\mathcal{F},\mathcal{E}_n} = I_{\mathcal{E}_n,\mathcal{F}}^T = V^T$ so that

$$A = L_{\mathcal{E}_m, \mathcal{E}_n} = I_{\mathcal{E}_m, \mathcal{G}} L_{\mathcal{G}, \mathcal{F}} I_{\mathcal{F}, \mathcal{E}_n} = U \begin{bmatrix} D & 0 \\ \hline 0 & 0 \end{bmatrix}_{m \times n} V^T \qquad D = \begin{pmatrix} \sqrt{\lambda_1} & & \\ & \ddots & \\ & & \sqrt{\lambda_r} \end{pmatrix}_{r \times n}$$

(5) Congratulations! You've just rediscovered Singular Value Decomposition (SVD). The positive values $\sigma_i = \sqrt{\lambda_i}$ are called **singular values** and we usually order the basis for $Col(A^T)$ so that the singular values will be arranged in non-increasing order $\sigma_1 \geq \ldots \geq \sigma_r$ within the diagonal block D. We often write $\Sigma = L_{\mathcal{G},\mathcal{F}}$ so that SVD is written $A = U\Sigma V^T$.

Is SVD unique, i.e. given A are there unique U, V such that $A = U \Sigma V^T$ with the diagonal entries of Σ in non-increasing order?

No. Recall that the choices of ONB for Nul(A), $Nul(A^T)$ are immaterial to the desired final diagonal form for $L_{\mathcal{G},\mathcal{F}}$.

Epilogue: We see that Singular Value Decomposition of real matrices is not magic but rather the nigh inexorable conclusion of a specific goal and specific approach:

- Goal: Find bases \mathcal{F}, \mathcal{G} of $\mathbb{R}^n, \mathbb{R}^m$ respectively such that $L_{\mathcal{G},\mathcal{F}}$ is diagonal.
- Approach: choose appropriate ONB for each of the four fundamental subspaces to obtain the goal.

These observations support SVD's claim as a beautiful and significant result of linear algebra.