Maximum Subarray problem

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
\boldsymbol{A}	13	-3	-25	20	-3	-16	-23	18	20	_7	12	-5	-22	15	-4	7

maximum subarray

Naive Approach

- Step 1: Read number of elements, n
- Step 2: Read 'n' elements in the array
- Step 3: Let max = minimum negative value
- Step 4: for sub_array_size 1 to n repeat step 5 to 7
- Step 5: Generate sub_array of size sub_array_size repeat step 6 and 7
- Step 6: Compute sum_of_sub_array generated
- Step 7: If sum_of_sub_array > max then make max as sum_of_sub_array

Naive Approach

Complexity $- O(n^3)$

Fine Tuned Naive Approach

- Idea: We are not interested in the order of the elements but only sum
- Traverse array once when you are in ith element find all possible sum of sub arrays that start at index 'i' and formed by including elements at index 'j' >= 'i'

Fine Tuned Naive Approach

Step 1: Read number of elements, n

Step 2: Read 'n' elements in the array

Step 3: Let max = minimum negative value

Step 4: for i in range 1 to n repeat step 5 to 8

Step 5: Let subarray_sum = 0

Step 6: for j in range i to n repeat step 7 and 8

Step 7: subarray_sum += element[j]

Step 8: If subarray_sum > max then make max as sum_of_sub_array

Naive Approach

Complexity – $O(n^2)$

- Idea: any contiguous subarray A[i .. j] of A[low..high] must lie in exactly one of the following places:
- entirely in the subarray A[low..mid], so that low ≤ i ≤ j ≤ mid,
- entirely in the subarray A[mid + 1..high], so that mid < i $\leq j \leq high$, or
- crossing the midpoint, so that low $\leq i \leq mid < j \leq high$.

Figure 4.4 (a) Possible locations of subarrays of A[low..high]: entirely in A[low..mid], entirely in A[mid + 1..high], or crossing the midpoint mid. (b) Any subarray of A[low..high] crossing the midpoint comprises two subarrays A[i..mid] and A[mid + 1..j], where $low \le i \le mid$ and $mid < j \le high$.

```
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
    left-sum = -\infty
    sum = 0
    for i = mid downto low
        sum = sum + A[i]
        if sum > left-sum
            left-sum = sum
            max-left = i
    right-sum = -\infty
    sum = 0
    for j = mid + 1 to high
        sum = sum + A[j]
11
        if sum > right-sum
12
13
            right-sum = sum
            max-right = j
14
    return (max-left, max-right, left-sum + right-sum)
```

Complexity $- O(n \log n)$

Linear Complexity Approach (Kanden's Algorithm)

- Idea: If array contains only postive numbers then maximum sub array is the array itself
- Negative values inbits the total sum of array
- Negative values can also be part of maximum subarray provided elements around it gives a postive weightage

Linear Complexity Approach (Kanden's Algorithm)

- Step 1: Read number of elements, n
- Step 2: Read 'n' elements in the array
- Step 3: Let global_max = first element of array, positive_sum_till_here = 0
- Step 4: for i in range 1 to n repeat step 5 to 8
- Step 5: positive_sum_till_here += elements[i]
- Step 6: if positive_sum_till_here > global_max then global_max =
- positive_sum_till_here
- Step 7: if positive_sum_till_here<0 then positive_sum_till_here = 0
- Step 8: If subarray_sum > max then make max as sum_of_sub_array

Linear Complexity Approach (Kanden's Algorithm)

Complexity - O(n)