REMARKS

Claim 1 has been revised to remove unnecessary language from the preamble and to better tailor the claims to embodiments of interest. The claim now includes the feature of "gene carrier for expression in human or animal cells" (supported at least on page 23, line 3, to page 24, line 9) and explicit recitation of the inherent feature of "ex vivo" cells (supported at least on page 59, last paragraph).

Claims 1-3, 8, 18, 20, and 21 have been revised to use (nucleic acid) "molecule encoding" as alternative language for "gene encoding."

Claim 18 has also been revised to use alternative language in the preamble and to be in independent form with inclusion of claim 1 features as previously presented, as well as explicit recitation of the inherent features of "ex vivo" cells and the inherent features of the gene carrier and cells as previously present in the claim. No change in claim scope is intended or believed to have occurred

No new matter has been introduced, and entry of the above revised claims is respectfully requested.

Alleged Rejection Under 35 U.S.C. § 101

Claims 1-23 were rejected under 35 U.S.C. § 101 as allegedly encompassing nonstatutory subject matter. Applicants have carefully reviewed the statement of the rejection and respectfully traverse. Reconsideration and withdrawal of this rejection is respectfully requested because the basis of the rejection appears to be that "cells" as featured in claim 1 are interpreted as those of a human being *in vivo* and so the claim is alleged to encompass non-statutory subject matter.

But Applicants respectfully point out that the claim was directed to a "pharmaceutical composition" comprising such cells, and no adequate demonstration has been made that a human being is a "pharmaceutical composition" as embraced by the claim as previously presented.

Moreover, the instant rejection is misplaced with respect to claims 18-23 because it is simply not reasonable to interpret the claims as encompassing parenteral administration of a "human being" to an individual as encompassed by the claims.

Nevertheless, and by express recitation of the inherent feature of "ex vivo" cells that are outside a multicellular human being or animal, the claims can no longer be mistakenly interpreted as encompassing a human being and so this rejection may be properly withdrawn.

Alleged Rejections Under 35 U.S.C. § 112, First Paragraph

Claims 1-16 were rejected as allegedly failing to be supported by an adequate written description. Applicants have carefully reviewed the statement of this rejection and respectfully traverse this rejection because no *prima facie* case of an inadequate written description is present. Reconsideration and withdrawal of the rejection are respectfully requested.

The instant rejection appears to be based upon the assertion that the claims encompass "variants" of the featured "genes" encoding human LK68 and LK8. But Applicants respectfully point out that this rejection does not include a clear definition of "variant." Additionally, the instant application does not use or suggest the term. Therefore, the exact basis of this rejection is unclear.

Moreover, Applicants point out that the phrase "gene encoding" has been replaced by alternative, but equivalent, language in the claims as set forth above.

To the extent that the term "variant" is being used to encompass "genes" derived from "any [human] tissue, autologous, allogenic, xenogenic etc." cells, Applicants respectfully point out that the instant rejection fails in at least three respects. First, there is no demonstration that a gene (encoding human LK68 or LK8) from any other human source will have a different sequence from that disclosed in the instant application. Second, there is no demonstration that the disclosed human LK68 and LK8 encoding sequences are not representative of other genes encoding human LK68 and LK8, if such other genes have different sequences. Third, and with respect to the inclusion of "xenogenic" sources, there is no demonstration that any other species would have a gene encoding human LK68 or LK8.

Additionally, Applicants respectfully point out that this rejection is inconsistent with the rejection alleging anticipation based on Chang et al. (WO01/19868) as addressed below. As

alleged in that rejection, Chang et al. teaches "nucleotide sequences encoding human apolipoprotein kringle KIV9-KIV10-KV (LK68) or KV (LK8)" (see pages 6-7, bridging sentence, in the Office Action mailed September 7, 2007). Therefore, the sequences of genes encoding human LK68 and LK8 were already known to the skilled person and so no further description is needed.

Indeed, the standard set forth by the Federal Circuit in Capon v. Eshhar (76 USPQ2d 1078 (Fed Cir 2005)) is applicable here. Specifically, the Federal Circuit reversed a Board of Patent Appeals and Interferences decision that required specific nucleotide sequences to satisfy the written description requirement. The decision expressly held that there is no need to disclose sequence information known in the art to satisfy the written description requirement.

Additionally, the simultaneous assertion of the instant rejection and the rejection based on Chang et al. (addressed below) appears to be an improper "squeeze" against Applicants because the Office appears to be simultaneously asserting that LK68 and LK8 encoding sequences were not known (and so there is an inadequate written description) AND known (so there is anticipation based upon Chang et al.). Applicants respectfully submit that such a "squeeze" is logically inconsistent and so improper. Therefore, the simultaneous assertion of both rejections cannot be maintained.

Finally, and with respect to the citation to the published Written Description

Requirement guidelines, Applicants respectfully point out the emphasis therein of a strong
presumption of the presence of an adequate written description. Applicants respectfully submit
that the burden of overcoming this presumption has not been met by the instant rejection.

In light of the foregoing, Applicants respectfully submit that no prima facie case of an inadequate written description is present and so this rejection may be properly withdrawn.

Claims 1-17 and 22-23 were rejected as allegedly only enabled for the scope of a composition comprising a nucleotide sequence represented by SEQ ID NO:1 or 2. Applicants respectfully traverse this rejection because no *prima facie* case of non-enablement is present.

Reconsideration and withdrawal of the rejection are respectfully requested.

The instant rejection appears to be based on the belief that enablement for the compositions of claims 1-17 and 22-23 is limited to use in the methods of claims 18-21. But

Applicants respectfully point out that the claimed compositions would be recognized by the skilled person as entirely suitable for other uses, such as expressing the encoded LK68 or LK8 proteins or propagating the nucleic acid molecules encoding these useful proteins. As the skilled person would recognize, one use of the proteins is in the method to inhibit angiogenesis as reported by Chang et al. (as cited above), which is part of the alleged anticipation rejection addressed below.

It is well settled that enablement for a product does not have to be for all possible uses of that product. To the contrary, any enabled use is sufficient to satisfy the enablement requirement. In the instant case, there are certainly known and recognized uses for nucleic acids, or cells comprising them, to express an encoded recombinant protein. And where the protein is LK68 or LK8, there are known and recognized uses for the protein.

In light of the foregoing, the instant rejection is misplaced and may be properly withdrawn

Claims 18-21 were rejected as allegedly only enabled for the scope of methods comprising use of a plasmid or AAV vector to express SEQ ID NO:1 or 2. Applicants respectfully traverse this rejection because no *prima facie* case of non-enablement is present. Reconsideration and withdrawal of the rejection are respectfully requested.

As an initial matter, Applicants point out that the instant rejection is in conflict with the alleged obviousness rejection based upon a combination of Chang et al. (as cited above) and Trieu et al. The obviousness rejection asserts in part that it would have been obvious "to replace the full length apo(a) fragment in the gene therapeutic vector construct of Trieu to substitute fragment of apo(a) gene that codes for LK68 and LK8 kringles and treat a solid tumor or metastasis of thereof" (see page 8 of the Action mailed September 7, 2007).

As pointed out below, however, there was no expectation of success in using the LK68 and LK8 encoding sequences to treat tumors as reported by Tricu et al. Therefore, the alleged obviousness rejection is based upon the premise that there was sufficient enablement to "try" such a combination. But if, assumed only for the sake of argument, this level of experimentation was enabled based upon Tricu et al., Applicants respectfully submit that the testing of other gene carriers (e.g. vectors, etc.), and other LK68 and LK8 encoding sequences

(as known to the skilled person), must also be enabled without the need for undue experimentation.

After all, and based on the logic of the alleged obviousness rejection, there is enablement for combining LK68 or LK8 encoding sequences with a gene vector to "try" and see if the combination would be sufficient to treat tumors. Clearly, this type of routine and repetitive experimentation is being alleged as permissible even with some level of unpredictability as to the likelihood of success.

Applicants submit that only the same type of routine and repetitive experimentation is necessary to make and use the claimed methods with gene carriers beyond plasmids and AAV or LK68 and LK8 encoding sequences beyond SEQ ID NO:1 and 2. There is no adequate demonstration of this type of "substitute and try" experimentation as being any different from that asserted as "obvious" based on Chang et al. and Trieu et al.

Therefore, type of experimentation must be the opposite of "undue." So Applicants respectfully submit that the instant rejection fails to present a case of undue experimentation, and this rejection may be properly withdrawn.

Alleged Rejection Under 35 U.S.C. § 102(b)

Claims 1-4 and 8-10 have been rejected as allegedly anticipated by Chang et al. (WO 01/19868). Applicants have carefully reviewed the statement of rejection as well as the cited document and respectfully traverse.

It is well settled that for a document to anticipate a claim, the document must teach each and every feature of the claim. In the instant case, Chang et al. report <u>bacterial</u> vectors and <u>bacterial</u> cells that are different and distinct from the "gene carriers for expression in human and animal cells" and "ex vivo cells" as featured in the claims.

Therefore, Chang et al. do not teach all the features of the claimed subject matter, and this rejection may be properly withdrawn.

Alleged Rejection Under 35 U.S.C. § 103(a)

Claims 6 and 18-21 were rejected as allegedly unpatentable over a combination of Chang et al. (as cited above) and Trieu et al. (1999, BBRC 257:714-718). Applicants have

carefully reviewed the statement of rejection as well as the cited document and respectfully traverse because no *prima facie* case of obviousness is present.

The instant rejection appears to contend that it would have been obvious to one of skill in the art to place sequences encoding LK68 and LK8 into the cells reported in Trieu et al. to create cells with recombinant gene sequences for use in tumor therapy.

But neither Chang et al. nor Trieu et al. provide a reasonable expectation of success in such a combination. For example, Trieu et al. report that CHO cells secreting a truncated apo(a) protein with only six kringle 4 repeats did not exhibit delayed tumor growth nor did it impair angiogenesis. Specifically, Trieu et al. report that Ha6, consisting of 6 repeated kringle IVs and one kringle V failed to suppress tumor angiogenesis. And Chang et al. are silent as to use of nucleic acids to productively express the proteins for therapeutic purposes.

Additionally, Applicants respectfully point out that a case of successful, direct protein therapy, like that reported by Chang et al., does not necessarily provide a reasonable expectation of success for therapies based on protein delivery by cell-based nucleic acid mediated expression. For example, Kuo et al. (a copy of which is enclosed as Exhibit A) report that an adenovirus based vector system used to express endostatin or angiostatin demonstrated little or no inhibition of tumors in an animal model despite potent antitumor effects of endostatin and angiostatin when delivered directly.

This is in sharp contrast to the instant application, where there already is demonstration of successful use of nucleic acids to express LK68 and LK8 in the therapeutic methods of claims 18-21. With such success, no more than routine and repetitive experimentation is needed to practice the claimed methods.

Therefore, the skilled person would not expect that Chang et al. provides a reasonable expectation of success in delivering LK68 and LK8 by cell-based nucleic acid mediated expression for therapeutic purposes. And because Trieu et al. fail to remedy this deficiency by Chang et al., there instant rejection is misplaced and may be properly withdrawn.

 Application No.
 Patent

 10/584,383
 58049-00032

Conclusion

It is believed that the application is now in condition for allowance. Applicants request the Examiner to issue a notice of Allowance in due course. The Examiner is encouraged to contact the undersigned to further the prosecution of the present invention.

The Commissioner is authorized to charge JHK Law's Deposit Account No. 502486 for any fees required under 37 CFR §§ 1.16 and 1.17 and to credit any overpayment to said Deposit Account No. 502486.

Respectfully submitted,

JHK Law

Dated: December 7, 2007 By: /Joseph Hyosuk Kim/

Joseph Hyosuk Kim, Ph.D.

Reg. No. 41,425

P.O. Box 1078

La Canada, CA 91012-1078

(818) 249-8177 - direct

(818) 249-8277 - fax

Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer

Calvin J. Kuo*^{1‡}, Filip Farnebo*[†], Evan Y. Yu*[†], Rolf Christofferson*[†], Rebecca A. Swearingen*[†], Robert Carter*[†], Horst A. von Recum*[†], Jenny Yuan[§], Junne Kamihara*[†], Evelyn Flynn[§], Robert D'Amato[§], Judah Folkman[§], and Richard C. Mullican*[†]

*Department of Genetics, Harvard Medical School, 'Oxision of Molecular Medicine, and *Department of Surgery, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115

Communicated by R. L. Frikson, Harvard University, Cambridge, MA, December 22, 2000 freceived for review October 25, 2000

Although the systemic administration of a number of different gene products has been shown to result in the inhibition of angiogenesis and tumor growth in different animal tumor models, the relative potency of those gene products has not been studied rigorously. To address this issue, recombinant adenoviruses encoding angiostatin, endostatin, and the ligand-binding ectodomains of the vascular endothelial growth factor receptors Fik1, Fit1, and neuropilin were generated and used to systemically deliver the different gene products in several different preexisting murine tumor models. Single i.v. injections of viruses encoding soluble forms of Flk1 or Flt1 resulted in ~80% inhibition of preexisting tumor growth in murine models involving both murine (Lewis lung carcinoma, T241 fibrosarcoma) and human (BxPC3 pancreatic carcinoma) tumors. In contrast, adenoviruses encoding angiostatin, endostatin, or neuropilin were significantly less effective. A strong correlation was observed between the effects of the different viruses on tumor growth and the activity of the viruses in the inhibition of corneal micropocket angiogenesis. These data underscore the need for comparative analyses of different therapeutic approaches that target tumor angiogenesis and provide a rationale for the selection of specific antiangiogenic gene products as lead candidates for use in gene therapy approaches aimed at the treatment of malignant and ocular disorders.

The central role of angiogenesis in the development of numerous pathologic conditions including canner, diabetic retainopathy, and vascular malformations is now well appreciated (1). In the case of cancer, the concept of an "angiogenesis which" has been proposed by Hanahan and Folkmart (2), wherein angiogenesis obth precedes and in necessary to the development of trank tumoriganicity. Recent findings nevertheless have understored the mechanistic complexity underlying the development of tumor blood supply including delayed angiogenesis into unitally avascular tumor masses (3), the early cooption of vasculature from neighboring those (3), and the entiribution of circulating endottleilal stem cells (5).

Extensive data have implicated the vascular endothelial growth factor (VEGF) family and their receptors as critical mediators of physiologic and turnor blood vessel formation, and consequently these molecules have attracted particular attention as targets for autiangiogenic therapy by a variety of strategies (6-13). Recently, the administration of several tumor-derived circulating proteins have been proposed also as an alternative strategy for achieving the systemic inhibition of angiogenesis. In particular, both human and murine forms of angiostatin (AS), a proteolytic fragment of plasminogen, have been described to exert potent antiangiogenic and antitumor activities in a variety of murine tumor models, extending to frank regression of tumors (14, 15), Similarly, a C-terminal fragment of collagen XVIII, termed endostatin (ES), has been reported to exhibit antiangiogenic and tumor-regressing activities accompanied by a lack of acquired tumor resistance (16, 17).

Interestingly, despite the large number of previous studies that have domonstrated the antitumor activity of different gene products that inhibit angiogenesis via either VEGF-dependent or -independent pathways, a systematic comparison of the relative efficacy of the different gene products in the same tumor models has no been described. The toge into address this important issue, we have generated a series of recombinant adenoviral vectors encoding different antiangiogenic gene products and have used the viruses to deliver the different gene products in several different processing murine tumor models. Here, we present a comparative evaluation of the antitumor and antiangiogenic activity of those gene products.

Methods

Construction and Purification of Recombinant Adenoviruses. The FBG-Fe cDNA was a cift from T. Niederman (Children's Hospital, Boston) and contained the murine Flk1 cDNA sequence encoding the signal peptide and the ectodomnin (to TER-RVRKEDGG, amino acid 731) fused to a murine IgG2a Fc fragment. The Flk1-Fc fusion gene was released with Xha1 and BamHI and inserted in the polylinker of the adenovirus shuttle vector HIHG Add2 (J. Gray and R.C.M., unpublished data). In the resulting construct, Fik1-Fc expression is controlled by the human cytomegalovirus promoter and the rabbit B-globin intron and polyadenylation signal. The expression cassette is flanked by the adenovirus type 5 sequences encompassing nucleotides 1-459 and 3328-4619. The murine Fu1(1-3) cDNA was amplified by PCR from Fit-1 cDNA (S. Soker, Children's Hospital, Buston) resulting in amplification of the Fit-1 signal sequence. coding sequence with the first three Ig repeats to FNTSVHV, with an added C-terminal 6/ His tag. The tagged cDNA then was ligated into HHIG Add2 as an EcoRI-Sall fragment.

For the control Fe fregment, a cDNA encoding the murine IgGZa Fe cDNA (Laxkgen, Lexington, MA) was released with Mol and Abal and ligated into HHG Add2. The human soluble neuropinin (SNP) cDNA with signal peptide, ABC domains, and a C-terminal 6× Hs tag (S. Soker) was excised with Baon HI and Abal and defoned into HHBG Add2. A fragment comprising the human growth hormone leader peptide-encoding sequence freed to the human As CDNA (Lys-97-Glb-4-Sk, kringle domains 1-4) was synthesized by PCR of human plasminogen cDNA. The PCR product was digested with flownH and Abal and cloned into the shuttle vector pAd-MDM, which differs from HHBG Add2 conly by the plasmid backbore. A cDNA encoding the murine ES coding sequence (HTHOD)... TSFSK) fused to the collagen XVIII signal peptide (B. OSen, Harvard Medical School. Box

Abbroxistions: VEGE, vascular and otherical growth factor, sNRP, soluble neuropilin: ES, endestation AS, angiotestury plu, plaque framing unit, LLC Leave Nung cardinomic SCID, reviews consisted immunoclefetiers.

Present address Staniord University School of Medicine, Hemstalogy Distrion, CCM North 3100, 269 Commis Orine, Stanford, CA 96005. *To where reprint requests should be addressed at Children's Hospital Enders 861, 320

Europeoud Sweene, Boston, MA 02115. Email: multigantifeneral meta harvard edu.
The publication most of this article were deltayed in part by page charge pagment. This article must therefore be hereby marked "achiertrament" in accordance with 18 v1.5 C 97708 schieft or individual this tack.

inn) was cloned into the HHG Add2 shuttle vector to generate pAdd2 mit onlo II. An alternative cDNA containing the same ES sequence (MATCHSTELLLEPWIGEGOA) was produced by PCR from mirrine collagen XVIII cDNA (B. Olsen), and the BornHI and Xiol-testiced product cloned into pAdMDM to generate pAdd2 mit endo I. All the PCR generated DNA fragments were sequenced on both stransfats reached PCR.

The HIHG pAdd2-derived recombinant shuttle vectors then were digested with Pacl and Mile I to release a fragment where the transgene is Hanked by 2.0 and 1.4 sh of homology with the adenovirus plasmid pAd-GM-CSF. The GM-CSF insert of the adenovirus plasmid is replaced with our transgene by homologous recombination in Excherichia coli (18). The FBL-Fe, FHHI-3, Fe, SMFR, and mu ends I adenovertous passential to release the translection of the Pacl-restricted adenovirus plasmids in 293 cells. Homologous recombination between the pAd-MDM-derived shuttle vectors and viral DNA in 293 cells (19) allowed the rescue of the AS and mu endo I recombinant Advectors. The viral vectors are propagated on 293 rells and partified by CSCI banding as described (18).

Protein Analysis of Virally Produced ES and HTH-31. C57BL/6 mice were injected with Ad mu endo I or Ad BTLI (-3) [10" plaque-forming units (pfu) by rail vein]. After 3 days mice were bled, and the respective proteins were partified from plasma by using either heparin-Sephanose chromatography with NaCl elution [E8]. On Ni-aganose chromatography with imidazole elution [HTL[-3]]. These partified proteins were transferred to poplyvimylidene diffuontied) membrane and digested in sin with trypsin followed by N-terminal sequencing and mass spectroscopies.

EUSA Determination of transgene Expression. Plasma samples were obtained by retrorobital puttern with heparinized capillary tubes after anesthesia, Murine Fik1-Fc concentrations were determined by sandwich ELISA with anti-murine Fik1 primary (PharMingen) and anti-murine (IgGZe Fc-brosteadish peroxidase secondary (Jackson Immunol Research). Murine ES plasma levels were quantitated by competition ELISA (CytImmuno Sciences, College Park, MD) and human AS plasma levels by sandwich ELISA (Entremed, Rodville, MD).

Western Blot Determination of francesene Expression, Plasma was analyzed by Western blot for Flk-Te (rat anti-murine Flk). Planchingen, or goat anti-murine Fc, Jackson ImmimoResearch), Flt(T-3) (rabbé anti-His, Santa Cruz Biouchenloogy), ES (rabbit anti-His, Santa Cruz Biouchenloogy), ES (rabbit anti-His, Santa Cruz Westbury, NY) or SNRP (rabbit anti-His, Santa Cruz Vestbury, NY) or SNRP (rabbit anti-His, Santa

Tumor cell tines, fitie, and Adenoviral Injections. Murfine Lewis Imp carcinoma (LLC) cells were passaged on the dorsal midline of CSTBL/6 mice or in DMEM/10% FCS/ponicillin/straptomycin (PNS)/1-glutamine. T241 murfine fibrosaronen was grown in DMEM/10% FCS/PNS/1-glutamine and human proncreate ByPc3 adenocarcinoma in RPM median 1649/10% FCS/PNS. Tumor cells (10°) were injected see, into the dossal midline of CSTBL/6 mice 18–10 weeks odd) for marine tumors and severe combined unmenodeficient (SCID) mice for human tumors, grown to 100–200 ma³ (typically 10–14 days) to demonstrate tumor take, and 10° plut of antiagogene adenoviruses or the control adenovirus Ad Pegiven by is, tail-wein injection. In Fig. 28, seven Bit control animals received Ad GFP instead of Ad Fe, although we have not observed any differences in timor inhibition with either control construct. Ad un end of I was used in all ES experiments, except in Fig. 2B in which Ad mu endo I was used. Timor size in min 'was calculated by cafiper measurements over a 10- to 14-day period by using the formula 0.52 / length (min) xwight (2) (min), using with us self-smaller dimension. P values were determined by using a 1wo-tailed r test assuming unequal variances (Microsoft Executa).

Corneal Micropocket Assay, C57BL/6 mice received 10° pfp. i.v. of antiangiogenic adenoviruses or the comrol adenovirus Ad Fe 2 days before assay. Mice were anesthetized with avertin i.o. and the eye was treated with topical proparacaine/HCl (Allergan, Irvine, CA), Hydron/sucraffate pellets containing VEGF-Aiss (R & D Systems) were implanted into a corneal micropocket at I mm from the limbus of both eves under an operating microscope (Zeiss) followed by intrastomal linear keratotomy by using a microknife (Medtroni Xomed, Jacksonville, FL). A corneal micropocket was dissected toward the limbus with a von Graefe knife #3 (2 × 30 mm), followed by pellet implantation and application of topical erythromycin. After 5 days, neovascularization was quantitated by using a slit tamp biomicroscope and the formula $2\pi \times$ (vessel length/10) × (clock hours). P values were determined by using a two-tailed t test assuming unequal variances (Microsoft EXCEL).

Immunohistochemistry, C57BL/6rnice bearing LLC tumors on the dorsal indiline at 50 mm² received 10° pfu is, of 4d Fe, Ad Filk-Fe, or Ad Filt/Fe, or Ad Filt/Fe. Or Ad Filt/Fe. Are tumor growth to ≈200 mm², tumors were harvested, fixed in formalin, and parafilie-embedded sections were stained for CD31 by using a biotistreptavidin horseradish peravidase system (Vectastatin). Microvessel areas were quantitated by manual counting of hotspots in sections.

Results

Construction and Characterization of Adenoviruses Encoding Antiagiopenic Gene Products. By using hornologous recombination in techniques in hacteria (18), DNA sequences encoding human AS, marine ES, and the ligand-binding exclodomans of the VEGF receptures FBI, FII, and neuropilin were introduced into the EI region of a standard E-ledeted adenoviral vector (Fig. 1/2) see Adminst for details of construction). Viruses encoding each of the gene products were generated after transfection of the different vector DNAs into 295 cells as described (18), In the case of each vector, particle titres of ~10¹³ yill and infections ities of ~10¹³ pfly/ml were obtained routinely, with a particle/ intectivity ratio of 416/60.

To evaluate the in vivo expression potential of the different viruses, 10° pfu of each virus was administered by i.v. or i.m. routes into immunocompetera C57BL/6 mice. Transgene expression was easily detectable in the plasma of infected mice by Western blotting (Fig. 18). In the case of Fik-Fc, AS, and ES, plasma expression levels at different times after injection of virus were quantitated by sandwich ELISA (Fig. 1C). Ad Fik1-Fe virus provided very high levels of protein expression (2-8 ing/inf) compared with Ad AS (100-250 µg/ml) or Ad ES (>10 µg/ml), and the expression of all gene products declined progressively with time, consistent with the known transient nature of transgene expression afforded by first-generation adenoviral vectors (20). In the case of animals injected with varies encoding Ph(1-3) or sNRP, Western blot analysis, in conjunction with purified protein standards, was used to estimate the scrumconcentration of each gene product. By this method, neak Flt(1-3) cetodomain plasma levels were 3-10 µg/ml, whereas peak sNRP levels were estimated to be >50 µg/ml (data not

In vitro assays were used to confirm the functional activity of

Fig. 1. Construction and characterization of antimaplegenic Adenostruse. (A) Schematic Orderstruor of virolus antimagleganic (ADN) into the EF region of £3 deleted a demonstrus (yes 5. (6) Western blot analysis of adenovirus expressed antimigningonic proteins in mouse planna, CS1951, mice received is injection of 10° particles of the appropriate adenovirus, followed after 3–3 design of the propriate and elementary, followed after 3–3 design of the 10° particles of 10° particle

several of the adenovirus-expressed gene products. Vector encoded Flt1(1-3) and Flk1-Fc proteins both were shown to inhibit VEGF-induced human umbilical vein endothelial cells (HUVEC) proliferation in vitro, with IC106 of ~5 and 100 ng/ml, respectively (data not shown), paralleling reports of the relative affinities of the two receptors for VEGF (21). Because endothelial proliferation assays take at least 3 days and migration assays through a Boyden chamber are demanding technically, we used a bioassay for virally encoded ES on the basis of the dispersion of endothelial cells from endothelial tubes in Matrigel in ritro. In this assay, we were able to show that the virus-encoded protein consistently inhibited endothelial migration in Matrigel cultures in a manner similar to that observed with recombinant ES produced in yeast, baculovirus, or myeloma cells (C.J.K., unpublished observations). In addition, as an additional biochemical measure of the structural integrity of the virally encoded ES, we were able to demonstrate by both mass spectroscopy and N-terminal sequencing analysis that the virally encoded ES purified from the serum of mice injected with ES-encoding virus possessed the expected protein sequence (K. Javaherian and C.J.K., unpublished data).

Systemic Inhibition of Tumor Growth by Antiangiogenic Adenoviruse. The ability of each recombinant adenovarus vector to provide systemic inhibition of procestabilished tumors was evaluated first in the aggressive LLC model in which recombinant AS and ES had been evaluated previously (14–17). LLC cells were implated s.c. on the duratum of CSPBL/6 mine for 10–14 days to a size of 100–150 mm², consistent with definitive tumor origination. The control of the process of the control of t

In mice hearing preexisting LLC tumors, i.v. injection of Ad Fe did not inhibit tumor growth, with animals often requiring sacrifice by 14 days after virus injection, and no significant difference was observed between tumor growth in Ad Fe- and PBS-treated animals (F.F., C.J.K., and R.C.M., unpublished observations), in contrast, after 10-14 days of treatment, monors in either Ad Fik1-Fo- or Ad Fk1-injected mice exhibited ~80% growth inhibition relative to controls, which was statistically significant compared with the Ad Fe control virus (P < 0.000001) Fig. 2.A and E). On the other hand, LLC growth was inhibited less strongly by Ad ES (27%, P = 0.004). Ad AS (24%, P = 0.001), or Ad neuropilin (14%, $P \approx 0.15$; Fig. 2A). The antitumor effects of both Ad Fiki-Fe and Ad Fit1 were dose-dependent, with the minimal day-3 plasma concentrations for effective systemic tumor suppression being approximately >1 mg/ml for Flk1-Fe and >2 ug/ml for Flt1(1-3) (F.F., E.Y., B.S., and C.K., unpublished data). In most cases, tumor growth eventually supervened after 3-4 weeks (data not shown). Although the studies do not rule out acquired endothelial and/or tumor resistance as the mechanism underlying the observed escape from inhibition, the rapid decline of vector-mediated gene expression over time most likely accounts for the observed nunliu

A similar relative efficacy of the different viruses was observed in a syngencic murine T241 fibrosarcoma-C57BL/6 tumor model (Fig. 2 B-D) and in a xenogeneic BxPc3-5CID tumor model (Fig. 3 A and B). In the case of the T241 model, strong tumor suppression was exhibited again by Ad Flk1-Fc (83%, P < 0.000001) and Ad Flt1 (87%, P < 0.000001); yet in this model, little or no inhibition of tumor growth was achieved by Ad ES (6%, P = 0.71), Ad AS (6%, P = 0.86), or Ad neuropilin (6%, P = 0.77) (Fig. 2 B-D), in the case of the BxPc3 model. Ad Fik1-Fc produced a strong suppression of tumor growth (83%, P = 0.025), whereas Ad ES, Ad sNRP, or Ad AS did not inhibit growth of preestablished BxPC3 tumors significantly with <12% inhibition (P = 0.60-0.98) (Fig. 3 A and B). For these latter studies, the data for Ad Fh1-injected animals was not included because of the death of the animals before completion of the experiments (see Discussion). In a last series of experiments, Ad PR-Fe was shown also to strongly inhibit tumor growth in another xenogenic tumor model involving LS174T human colon carcinoma and SCID mice (79%, P = 0.0003; Fig. 3C).

Systemic Inhibition of Tumor Angiogenesis by Ad Flk1-Fc and Ad Flt1. Microvessel density has been used extensively as a marker for tumor angiogenesis, tumor grade, and inhibition of microvessel density as a measure of amiangiogenic activity (22). To evaluate the mechanism for Ad Fik1-Fc and Ad Flt1 suppression of tumor growth, the microvessel density of treated vs. nontreated tumors was measured. LLC cells (106) were implanted s.c. in the dorsal midline of C57BL/6 mice, and tumors were allowed to grow to ~50 mm3. The tamor-bearing mice then received i.v. injections of Ad FR1-Fc. Ad Flt1(1-3), or Ad Fc followed by confirmation of expression levels by ELISA and were killed for histologic analysis after reaching a size of 200 mm2. Immunohistochemistry for the endothelial antigen CD31 demonstrated an ~50% reduction of microvessel density in Flt1(1-3) and Flk1-Fe mice relative to Fe mice (Fig. 4). Parallel administration of Ad lucZ virus produced strong staining in liver and minor staining in lung but did not produce significam intratumoral B-galactosidase staining (data not shown).

Systemic inhibition of VEFE-Simulated Corneal Angiogenesis by Antiangiogenesis to the different adents of the different adents of the different adents produced proteins to provide systemic inhibition of angion produced proteins to provide systemic inhibition of angion and the systemic and the systemic inhibition of angion and the systemic corneal neovascularization model. CSTBL/6 with the processor of the various adamont remost of standard remost policy and was by implantation of the various adamont remost policy and was by implantation.

Fig. 2. Inhibition of pressisting tumor growth by antiangiogenic adenoviruses. CS78L/6 mice were implanted sic, with 10° cells of murine LLC (A) or murine 1241 fibrossicoma (B). At a tumor volume of 100-150 mm², tumor-bearing mice received t.v. injection of 10° pfu of the control virus Ad Fc (green bars) or the appropriate antiangiquenic adenovirus (vellow bars), and tumor volume was calculated after 10-14 days. Tumor size is expressed as percentage of maximal tumor volume standardized to 199% for Ad Fc, which did not produce significant inhibition relative to PBS controls, Percentage of inhibition of unimals receiving antianglogenic adenguiruses religive to animals injected with the centrol virus Ad Fc is calculated, Error bars, 1, T SEM: N, number of individual mice assayed with each adenovirus. For LLC, the number of animals was as follows for Fc and the treatment group: £5, n = 24,22; A5, n = 11,9; Fik1-Fc, n = 18,17; Fix1, n = 8,10; sNRP, $n \sim 8.8$. For T241, the number of animals was as follows for Fc and the treatment group: £S, $n \sim 6,10$; AS, $n \sim 6,7$; Fik F.E., $n \sim 24,25$; Fit f. $n \sim 19,20$; sNRP, n = 7,5. (C and D) Representative growth curves of T241 fibrosercoma in CS78L/6 mice treated with Ad Fik1-fc (n = 6) (c) or Ad Fik1(1-3; n = 7) (d). C578L/6 mice bearing preexisting T241 tumors of 100-150 mm3 received 109 pfu i.v. of the appropriate adenoviruses, and tumor size was measured over time. Error bars, : 1 SD (E) Suppression of LLC growth by Ad Fix 1-Fc. Mixe with predicting tumors of 150 mm2 received Ly. Injections of 109 particles of Ad Fc (n = 4), Ad Fix 1-Fc in ~ 5), or Ad Fit1(1-3) (n ~ 5), and tumor growth was measured over time. Error bars, ± 1 50.

of hydron pellers containing human VEGF-Azes into the mouse cornea. Plasma expression of the appropriate transgene was confirmed by ELISA or Western blotting followed by quantita-

Fig. 3. Suppression of human tumor xenografts in SCID mice by Ad PRc1-Fc. (4) Treatment of BxPC3 Forman pancreatic carcinoma with Ad Flk1-Fc. CB17 SCID mice bearing preexisting tumors 8xPC3 tumors of 60 mm3 received 109 pfully, of the appropriate adenoviruses, and tumor size was measured over time. Error bars. 1. 1 SO: Fc. n = 6; Flk 1-Fc. n = 7, (8) Comparative inhibition of preexisting ExPC3 turnor growth by antiangiogenic adenoviruses. Ad Fr. and Ad Fix 1-Fc mice in A were compared with tumor-bearing mice in the same experiment that received Ad ES (n = 7), Ad AS (n = 7), or Ad sARP (n = 6). Tumor size is expressed as percentage of maximal tumor volume standardized to 100% for Ad Fe, which did not produce significant inhibition relative to PBS controls. Error bars. :: 1 SEM: N, number of individual mice assayed with each adenovirus, (C) Treatment of human UST/4T colon adenocardinoma in SCID mice with Ad Filir1-Fc. n = 5 per group. Error bars, 1. 150.

tion of corneal neovascularization 5 days after pellet implantation. In mice receiving VEGF pellets, corneal neovascularization was inhibited strongly by Ad Flkt-Fe (74%, P < 0.0000001) or Ad Fir1 (80%, P < 0.0000001), which was statistically significant relative to the Ad Fc control virus (Fig. 5 A and B). VEGFstimulated corneal angiogenesis was inhibited to a lesser degree by Ad ES (33%, P = 0.0001), Ad AS (23%, P = 0.002), or Ad neuropilin (35%, P = 0.027) Fig. 5 A and B).

Discussion

The studies presented above provide important information regarding the relative potency of a number of antiangiogenic gene products previously shown to possess anthumor activity and specifically identify soluble forms of Flk1 and Flt1 as candidates for future gene therapy strategies. Our finding that soluble forms of Flk1 and Flt1 possessed significantly more potent antitumor

Fig. 4. Decreased microvessel density in tumors treated with Ad Flk1-Ft or Ad Fit 1(1-3), C57BL/6 mice bearing LLC tursors of ~50 mm³ received cv. injection of 10° pfu of Ad Fc, Ad Fik3-Fc, or Ad Fit1(1-3). Tumors were harvested at a size of 200 mm³ for CD31 immunohistochemistry, magnification, and manual quantitation of microvessel density. Error bars, v. 150 with four representative fields counted per condition.

Fig. 5. Systemic inhibition of corneal angiogenesis by antiangiogenic adenoviruses. (A) Comparative activity in VEGF corneal micropocket assays. CS78L /5 mice received i.v. injection of 10° ofu of the appropriate adequatrus. followed after 2 days by implantation of VEGF-Appropriating hydron pellets into the mouse cornea. Five days after pellet implantation, corneal neovascularization was quantitated by slit lamp examination. Results are presented as necentage of maximal necessful arization relative to the control virus &d Fc, which was standardized at 100% and produced < 5% inhibition relative to PBS. Error bars, :: 1 SEM. The number of eyes examined was as follows for FC and the treatment group. ES, n = 13,18; AS, n = 13,14; Fik1-Fc, n = 16,15; Fit1, n = 21,25, sNRP, n = 10,8. (8) Systemic inhibition of corneal neovascularization by Ad Flk1-Fc or Ad Flt 1(1-3). Representative corneas from experiments in A with preinjection of Ad Fc, Ad Fix 1-Fc, or Ad Fix (1-3) were photographed 5 days after pellet implantation. The position of the VEGF pellet is indicated by the arrow. Robust blood vessel ingrowth toward the pellet is noted in Ad Fr. but not Ad Fik1-Fc or Ad Fit 1(1-3) mice.

activity than AS or ES when delivered via gene transfer was quite snexpected and is of particular interest in light of previous reports of the extremely potent antitumor effects of ES and AS delivered via conventional protein administration (14-16). The reasons for this unportant discrepancy are unclear currently. Although the scrum levels of AS and ES achieved in the previous studies that reported frank tumor regression were not measured (14-17), it is highly likely that the levels of the proteins obtained after adenoviral-mediated gene transfer are far greater. In addition, although differences in protein structure, folding, or posttranslational processing between the conventionally produced molecules and those produced via gene transfer could account for differences in their bioactivity, at least in the case of vector-encoded ES, mass spectroscopy and N-terminal sequencing demonstrated that the expected protein structure was present in mouse serum after gone transfer. Moreover, in this regard, the adenovirus-produced ES exhibits motility-inhibiting properties comparable to that of recombinant ES produced in yeast, baculovirus, or myeloma cells in matrigel assays. Taken together, the data suggests that, at a minimum, ES or AS will not be as easily utilizable as soluble VEGF receptors in conventional single-injection adenoviral strategies aimed at the systemic delivery of protein and may require more innovative approaches with different vector systems, modified transgenes, or alternative routes of administration. Clearly, further studies aimed as understanding the discrepancy between our results and those involving the administration of conventionally produced ES and AS are warranted

Although several previous reports also had documented the antitumor effects of vector-mediated delivery of AS, ES, soluble Flt1 ectodomains, and sNRP domains {13, 23–271, the ability of

the gene products to provide for the potent inhibition of large (>100 mm3) aggressive preexisting tumors such as LLC had not been demonstrated previously. For example, although it has been shown that tumor lines stably transfected with AS cDNA exhibit impaired tumor growth, systemic gene therapy with AS has not been well documented to strongly suppress preexisting numor growth (23, 25). Additionally, although several studies report the inhibition of tumor growth and metastases in mice after vector-mediated delivery of ES, no strong activity against preexisting tumors has been reported (24-27). In the case of soluble Fh-1 ectodomains, Kong et al. (28) have documented the efficacy of adenovirus vector-encoded Fit when delivered locally but not systemically, whereas Takayama et al. (13) have reported systemic antitumor efficacy of adenovirus FII, but only against coinjected and not preexisting tumor burdens. In this latter case, the inability to observe significant activity against preexisting tumors may have resulted from insufficient production of Fit ectodomains, as our preliminary dosing studies suggest that high levels of gene product (>2 µg/ml) may be necessary for activity against preexisting tumors of >100 mm2. In the case of soluble forms of neuropilin (sNRP), previous studies have shown that a sotable form of neuropilin representing a naturally occurring spliced form of the gene product was able to inhibit the ability of rat prostatic carcinoma cell lines engineered to express the gene product to grow as tumors (29). The inability of our Ad sNRP to inhibit tumor growth could reflect either the stringency of the tumor models used in our study or the use of a suboptimal soluble form of NRP (the sNRP gene used in the current studies differs from that used in previous studies in that the "C" domain is included). It is noteworthy that sNRP binds to regions of VEGF encoded by exon 7 (30, 31), whereas Flk1 and Flt1 bind to more N-terminal domains of VEGP (32).

In addition to identifying candidate gene products of potential use in cancer therapy, our studies also represent the first comparative study of systemically administered antiangiogenic agents against coular angiogenessis. Small molecule inhibitors of the FRI /RDR kinase domain, direct intraocular injection of soluble VEGF receptors, or adenouval production of soluble FRI-flave been shown previously to inhibit experimental retinal vascularization (C3-35). Potentially, a warlevy of conditions accompanied by pathologic eye angiogenesis, such as diabetic retinopalty, macular degeneration, retinal isolemia, and ocular melanounas (36, 37) could benefit from the sustained delivery afforded by single injection dosing of gene transfer vectors.

Lastly, although the comparative analysis we have presented is obviously imperfect in that we were not able to provide for the same level of each gene product in the circulation, the expression levels we have achieved likely represent a theoretical "maximum" that reflects the inherent pharmacokinetic properties governing the circulating levels of each protein that can be achieved via gene transfer. As such, the results provide important practical information regarding which antiangiogenic gene products are most likely to be therapeutically effective when delivered via sone therapy. In addition to the need to evaluate the use of vector systems that can provide for the sustained high level expression of genes in vivo such as the recently developed guiless" adenoviral vectors (35), considerably more effort will need to be paid to the issue of the safety and long-term sequelae of systemic, soluble receptor-mediated VEGF inhibition in adult organisms. In this regard, we have observed that although non-tumor-bearing animals injected with Ad Flk1-Fe and viruses encoding ES, AS, and sNRP remained grossly asymptomatic for >1 year, ~30% of animals injected with Ad Fit1(1-3) develop ascites after 22-28 days followed by frequent mortality despite a several log lower scrim concentration of Fit than Fikl-Fe (annublished results). Determination of whether the toxicity we have observed after injection of Ad Ftil results from either excessive VEGF chelation by higher affinity Flt1 (21) or the

distinct VEGF binding spectra of these receptors should aid the safety assessment of chronic VEGF-based antiangiogenic therapies.

We are indebted to C. Chartier for advice with adenovirus methods and comments on the manuscript, J.-S. Lee, T. Sheehan, R. Smyder, R. Bash, and S. Jungles for large-scale adenovirus preparation, O. Kisker and C. Becker for assistance with unimal experimentation, and members of the Mulligan lab, M. Klagsbrun, S. Artundi, and H.-P. Biemann for many helpful discussions. We thank K. Javaherian for anti-marine ES polyclonal sera and for mass spectroscopy analysis, Entremed for human AS

- 1. Folkman, J. (1995) N. Enel, J. Med. 333, 1757-1763.
- 2. Harrston, D. & Folkman, J. (1996) Cell 86, 353-364. Folkman, I. & D'Amore, P. A. (1996) Cell 87, 1153-1155.
- 4. Hotash, I., Maisoupierre, P. C., Compton, D., Boland, P., Alexander, C. B. Zagzag, O., Yancopoulos, O. O. & Wiegand, S. J. (1999) Senses 284,
- 1994-1998 5. Asabers, T., Masuda, H., Tokahashi, T., Kalko, C., Pastore, C., Silver, M.,
- Kenrine, M., Magner, M. & Issue, J. M. (1990) Cov. Res. 88, 221-228 6. Kim. K. J., Li, B., Winer, J., Armanini, M., Gillest, N., Phillips, H. S. & Perrara,
- N. (1993) Nuture (London) 362, 841-844. 7. Presta, L. G., Chen, H., O'Connor, S. J., Chisholm, V., Meng, Y. G., Kremmen.
- Winkier, M. & Perrara, N. (1987) Concer Rev. 57, 4393-4399.
 Lin, P., Sankar, S., Shan, S., Dewhirst, M. W., Polverint, P. J., Oninn, T. Q. &
- Peters, K. G. (1988) Cell Chowth Differ. 9, 49-88.
- 9. Perrara, N. & Alitalo, K. (1999) Nat. Mod. 5, 1359-1364.
- Asano, M., Yukita, A. & Sueuki, H. (1999) Ipn. J. Cancer Rev. 98, 93-100. 11 Fong, T. A., Showver, L. K., Sun, L., Tang, C., Ann, H., Powell, T. L., Kim, Y. H.,
- Schrieck, R., Wang, X., Rison, W., et al. (1999) Concer Res. 59, 99-106. 12. Wedge, S. R., Ogilvic, D. J., Dukes, M., Kendrew, J., Curwen, J. O., Hannequin, 1. F., Thomas, A. P., Stokes, E. S., Curry, B., Richmond, G. H. & Wadsworth, P. F. (2008) Contract Ser. 68, 970-925.
- 13. Takayanya, K., Ueno, H., Nakanishi, Y., Sakamoto, T., Inoue, K., Shimiza, K., Oohashi, H. & Ham, N. (2000) Canoer Res. 60, 2169-2177.
- 14 O'Rolly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthai, R. A., Moses,
- M., Lanz, W. S., Cies, Y., Sago, E. H. & Polkman, J. (1994) Cell 79, 315-328 15. O'Reity, M. S., Holmgron, L., Chen C. & Folkman, J. (1996) Nat. Mod. 2.
- 15. O'Roilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., Flynn, F., Birkhand, J. R., Oken, B. R. & Folkman, J. (1997) Cell 88, 277-285
- 17. Boulun, T., Folkman, J., Browler, T. & O'Reilly, M. S. (1997) Nature (London) 398, 4634 - 467.
- 18. Charlser, C., Dogryse, E., Gantzer, M., Diefetle, A., Pavirani, A. & Meltati, At (1996) 2. Phot 70, 4803-4840.
- 19 Berener, K. L. (1992) Curr. Top. Microbiol. Immunol. 188, 39-06
- 20. Yens, Y. Nuncs, F. A., Berenosi, K., Fierth, P., E., Gonczof, E. & Wilson, J. M. 13994) Proc. Natl. Acad. Sci. USA 91, 4407-4411.
- Waltenberget, J., Classon-Weish, L., Siegbaim, A., Shibuya, M. & Heldin, C. H. (1994) J. Brol. Chem. 269, 26983–26985

- ELISA protocols, T. Niederman for generously providing l'ik)-Fe eDNA, S. Soker for Ftt-1 and sNRP cDNA, and B. Olsen for murine collagen XVIII cDNA, CJ.K. was supported by an Haward Hughes Medical Institute Physician-Scientist Fellowship. F.F. was supported by the Wenner-Gren Foundation and The Swedish Institute, R.C. was supported by the Swedish Children's Cancer Fund and Her Royal Highness Crown Princess Louisa's Fund for Child Care, R.A.S. and J.K. were supported by the Katharine Papeas Foundation. This work was supported by the National Institutes of Health, Howard Hughes Medical Institute, and generous grants from The Association for the Cure of Cancer of the Prostate (CaPCURE) and Radley Family Foundations.
- 22. Weidner, N. (1985) Am. J. Pathol. 147, 9-19.
- 23. Grotcelli, F., Li, H., Bennaceur Criscelli, A., Soria, J., Opolon, P., Soria, C., Personnales, M., Yen, P. & Lu, H. (1998) Proc. Natt. Acad. Sci. USA 95, 6367-6372
- 24. Blownger, P., Wang, J., Overdo, M., Oucouda, A., Mohrons, D., French, M., Singhst, A., Sullivan, S., Rolland, A., Rabson, R. & Mitt, W (1989) Nat. Biotechnol. 17, 343-348.
- 25. Chen, Q. R., Kumar, D., Stavs, S. A. & Misson, A. J. (1987) Concer Sos. 59, 3306-3312
- 26. Sauter, B. V., Martinet, O., Zhang, W. J., Mandeli, J. & Wins, S. L. (2000) Proc. Natl. Acad. Sci. USA 97, 4803-4807, (First Published April 11, 2000; 10,1073) pnus-3900065907)
- 27. Feldman, A. L., Rostifo, N. F., Alexander, H. R., Bartiett D. L., Hwo, P., Seth, P. & Libutti, S. K. (2009) Cancer Res. 60, 1503-1506.
- 28. Kone, H. L., Hocht, D., Song, W., Kovesdi, L., Hackett, N. R., Yavon, A. & Crystal, R. G. (1998) Hum. Genc Ther. 9, 823-833.
- 29. Gagnon, M. L., Bielenberg, D. R., Goriaman, Z., Miao, H. O., Takanhima, S., Sokur, S. & Khugshrun, M. (3000) Proc. Natl. Acad. Sci. USA 97, 2573-2578. (First Published February 25, 2000; 10.1073/noas.040337597)
- Soker, S., Takushima, S., Mino, H. O., Neufeld, G. & Klaushrun, M. (1998) Cell. 92, 735,785
- 31. Soker, S., Fjutter, B., Neufeld, G. & Klaysbron, M. (1995) J. Biol. Chem. 271, \$761-5767
- 32. Keyi, B. A., Nguyen, H. V., Berlenn, L. Y., Lhoure, C. M., Park, J., Chen, H. & Ferrara, N. 119961 I. Blod. Chem. 271, 5638-5646
- 33. AleBo, L. P., Pierce, E. A., Foley, E. D., Tokagi, H., Chen, H., Rossie, L., Ferrara, N., King, G. L. & Smith, I. E. (1995) Proc. Natl. Acad. Sci. USA 92, 10457-19461.
- Honda, M., Sakamoro, T., Ishihashi, T., Inomata, H. & Ueno, H. (2000) Gene Ther. 7, 978-985.
- 38. Ozaki, H., Seo, M. S., Ozaki, K., Yamada, H., Yamada, E., Okamoto, N., Hofmann, F., Wood, J. M. & Campochiaro, P. A. (2005) Am. J. Pathol. 156, 697-707.
 - 36. Ajello, L. F. (1997) Ophthalmic Res. 29, 354-362.
- 37. Aleffo, L. P. (1997) Cur. Opin, Ophthalmol, 8, 19-31.
- 38. Mountain, A. (2009) Trends Biotechnol. 18, 119-128.