Lemma 18.1. If $|A|^{+3} < \min(A)$, then pcf(A) is a progressive interval of regular cardinals, and pcf(pcf(A)) = pcf(A).

Proof. $|\operatorname{pcf}(A)| \leq |A|^{+3}$ by 17.1, so $\operatorname{pcf}(A)$ is progressive. Hence $\operatorname{pcf}(\operatorname{pcf}(A)) = \operatorname{pcf}(A)$ by 10.10.

Lemma 18.2. Let $|A|^{+3} < \min(A)$, with A a progressive interval of regular cardinals. Then pcf $\upharpoonright \mathscr{P}(\operatorname{pcf}(A))$ is a topological closure operator.

Proof. By 9.1 and 18.1 \Box

Theorem 18.3. Suppose that $|A|^{+3} < \min(A)$, with A a progressive interval of regular cardinals. Then $\operatorname{pcf}(A)$ has a transitive system of generators $\langle b_{\lambda} : \lambda \in \operatorname{pcf}(A) \rangle$ such that $\operatorname{pcf}(b_{\lambda}) = b_{\lambda}$ for all $\lambda \in \operatorname{pcf}(A)$.

Proof. By 13.6, let $f = \langle f^{\lambda} : \lambda \in \operatorname{pcf}(A) \rangle$ be such that f^{λ} is a minimally obedient universal sequence for λ , for each $\lambda \in \operatorname{pcf}(A)$. Let $\kappa = |A|^+$ and choose N, Ψ such that $H_1(A, \kappa, N, \Psi)$. Then by 15.5 we get a transitive system $\langle b_{\lambda} : \lambda \in \operatorname{pcf}(A) \rangle$ of generators for $\operatorname{pcf}(A)$.

Now by induction on $\lambda \in \operatorname{pcf}(A)$ we define a new generator b_{λ}^* for λ over $\operatorname{pcf}(A)$ such that $\operatorname{pcf}(b_{\lambda}^*) = b_{\lambda}^*$. For $\lambda = \min(\operatorname{pcf}(A))$, let $b_{\lambda}^* = \{\lambda\}$. Suppose that we have defined b_{θ}^* for all $\theta < \lambda$, so that:

- (1) b_{θ} is a θ -generator,
- (2) $pcf(b_{\theta}^{*}) = b_{\theta}^{*}$, and
- (3) For all $\rho \in b_{\theta}^*$, also $b_{\rho}^* \subseteq b_{\theta}^*$.

Now $b_{\lambda} \in J_{\leq \lambda}[\operatorname{pcf}(A)]$, so $\operatorname{pcf}(b_{\lambda}) \subseteq \lambda^{+}$. Applying 11.13 to $\operatorname{pcf}(A)$ in place of A and $\operatorname{pcf}(b_{\lambda})$ in place of X, we get a finite subset F of $\operatorname{pcf}(b_{\lambda}) \cap \lambda$ such that $\operatorname{pcf}(b_{\lambda}) \subseteq \bigcup_{\mu \in F} b_{\mu}^{*} \cup b_{\lambda}$. Let $b_{\lambda}^{*} = \bigcup_{\mu \in F} b_{\mu}^{*} \cup b_{\lambda}$. Clearly $\operatorname{pcf}(b_{\lambda}^{*}) \subseteq \lambda^{+}$. Now

$$b_{\lambda} = \left(b_{\lambda} \cap \bigcup_{\mu \in F} b_{\mu}^{*}\right) \cup \left(b_{\lambda}^{*} \setminus \bigcup_{\mu \in F} b_{\mu}^{*}\right),$$

so $b_{\lambda} \in J_{<\lambda}[\operatorname{pcf}(A)] + b_{\lambda}^*$. It follows that b_{λ}^* is a generator for λ , proving (1) for λ . For (2), note that

$$\operatorname{pcf}(b_{\lambda}^{*}) = \operatorname{pcf}\left(\bigcup_{\mu \in F} b_{\mu}^{*} \cup b_{\lambda}\right)$$

$$= \bigcup_{\mu \in F} \operatorname{pcf}(b_{\mu}^{*}) \cup \operatorname{pcf}(b_{\lambda})$$

$$= \bigcup_{\mu \in F} b_{\mu}^{*} \cup b_{\lambda} \cup \operatorname{pcf}(b_{\lambda})$$

$$= \bigcup_{\mu \in F} b_{\mu}^{*} \cup b_{\lambda}$$

$$= b_{\lambda}^{*}.$$

So (2) holds for λ .

Finally, we prove by induction on ρ that if $\rho \in b_{\lambda}^*$ then $b_{\rho}^* \subseteq b_{\lambda}^*$. Assume that this implication is true for all $\nu < \rho$. Now suppose that $\rho \in b_{\lambda}^*$. If $\rho \in b_{\mu}^*$ for some $\mu \in G$, then $b_{\rho}^* \subseteq b_{\mu}^* \subseteq b_{\lambda}^*$ by the inductive hypothesis on λ . Suppose that $\rho \in b_{\lambda}$. Then $b_{\rho} \subseteq b_{\lambda} \subseteq b_{\lambda}^*$. Now by construction, there is a finite $G \subseteq \operatorname{pcf}(b_{\rho}) \cap \rho$ such that $b_{\rho}^* = \bigcup_{\nu \in G} b_{\nu}^* \cup b_{\rho}$. For each $\nu \in G$ we have $\nu \in \operatorname{pcf}(b_{\rho}) \subseteq \operatorname{pcf}(b_{\lambda}) \subseteq b_{\lambda}^*$, and so by the inductive hypothesis on ρ , $b_{\nu}^* \subseteq b_{\lambda}^*$. It follows that $b_{\rho}^* \subseteq b_{\lambda}^*$, as desired in (3) for λ .

Theorem 18.4. Assume that A is a progressive interval of regular cardinals and $|A|^{+3} < \min(A)$. Let $\langle b_{\lambda} : \lambda \in \operatorname{pcf}(A) \rangle$ be a transitive system of pcf -closed generators for $\operatorname{pcf}(A)$, as in 18.3, with $b_{\max(\operatorname{pcf}(A))} = \operatorname{pcf}(A)$.

Then the topological space pcf(A), with topology given in Lemma 18.2, is compact Hausdorff and totally disconnected (i.e., zero-dimensional). Moreover, each b_{λ} is clopen, and $\{b_{\lambda} : \lambda \in pcf(A)\}$ generates the Boolean algebra of clopen subsets of pcf(A). This Boolean algebra is superatomic.

Proof. We prove this in several steps.

(1) If $\lambda \in pcf(A)$, then $\lambda = \max b_{\lambda}$.

This is true since $\lambda = \max(\operatorname{pcf}(b_{\lambda})) = \max b_{\lambda}$ by 11.9(vii).

(2) b_{λ} is clopen for each $\lambda \in pcf(A)$.

In fact, it suffices to show that $\operatorname{pcf}(\operatorname{pcf}(A)\backslash b_{\lambda}) \subseteq \operatorname{pcf}(A)\backslash b_{\lambda}$. So, suppose that $\mu \in \operatorname{pcf}(\operatorname{pcf}(A)\backslash b_{\lambda})$, but suppose also that $\mu \in b_{\lambda}$. Then $b_{\mu} \subseteq b_{\lambda}$. Since $\mu \in \operatorname{pcf}(\operatorname{pcf}(A)\backslash b_{\lambda})$, let D be an ultrafilter on $\operatorname{pcf}(A)$ such that $\operatorname{pcf}(A)\backslash b_{\lambda} \in D$ and $\mu = \operatorname{cf}(\prod \operatorname{pcf}(A)/D)$. Since $b_{\mu} \subseteq b_{\lambda}$, we have $\operatorname{pcf}(A)\backslash b_{\mu} \in D$, in contradiction with 11.9(ii). so (2) holds.

(3) The topology is Hausdorff.

For, suppose that λ, μ are distinct elements of $\operatorname{pcf}(A)$. Say $\mu < \lambda$. By (1), $\lambda \in \operatorname{pcf}(A) \setminus b_{\mu}$. Thus (1) and (2) imply that b_{μ} and $\operatorname{pcf}(A) \setminus b_{\mu}$ are disjoint open neighborhoods of μ, λ respectively.

Now let B be the set of all finite intersections of members of $\{b_{\lambda} : \lambda \in pcf(A)\}$ and their complements.

(4) The nonzero members of B form a base for the topology on pcf(A).

For, suppose that $U \subseteq pcf(A)$ is open and $\lambda \in U$. We claim that the following set does not have fip:

(*)
$$\{b_{\mu} : \lambda \in b_{\mu}\} \cup \{\operatorname{pcf}(A) \setminus b_{\mu} : \lambda \notin b_{\mu}\} \cup \{\operatorname{pcf}(A) \setminus U\}.$$

For, suppose it does have fip; extend it to an ultrafilter D on pcf(A), and let $\mu = cf(\prod pcf(A)/D)$. By 11.9(i), $b_{\mu} \in D$. Hence by the definition of D we get $\lambda \in b_{\mu}$. Since $\mu = \max(b_{\mu})$ by (1), it follows that $\lambda \leq \mu$. Now $\lambda = \max b_{\lambda}$ by (1), so $\lambda \in b_{\lambda}$, and so $b_{\lambda} \in D$. Now $b_{\lambda} \in J_{\leq \lambda}[pcf(A)]$, so $pcf(b_{\lambda}) \subseteq \lambda^{+}$. Since $b_{\lambda} \in D$, it follows that $\mu \leq \lambda$. So $\lambda = \mu$. But also $pcf(A)\setminus U \in D$, so $\lambda \in pcf(pcf(A)\setminus U) = pcf(A)\setminus U$ since U is open, contradiction. So (4) holds.

(5) pcf(A) is compact.

Let \mathscr{A} be an open cover of $\operatorname{pcf}(A)$. We prove by induction on $\lambda \in \operatorname{pcf}(A)$ that b_{λ} is covered by a finite subset of \mathscr{A} . Since $\operatorname{pcf}(A) = b_{\max(\operatorname{pcf}(A))}$, this will prove (5). So suppose that this is true for all $\mu < \lambda$. Choose $U \in \mathscr{A}$ such that $\lambda \in U$. Then by (4), let c be a member of B such that $\lambda \in c \subseteq U$. Now we apply 11.13 to $\operatorname{pcf}(A), b_{\lambda} \setminus c$ in place of A, X. Using the fact that $b_{\lambda} \setminus c$ is closed, we get a finite subset N of $b_{\lambda} \setminus c$ such that $b_{\lambda} \setminus c \subseteq \bigcup_{\mu \in N} b_{\mu}$. Now $\lambda \in c$, so $\lambda \notin b_{\lambda} \setminus c$. also, $b_{\lambda} = \operatorname{pcf}(b_{\lambda}) \subseteq \lambda^{+}$, so $b_{\lambda} \setminus c \subseteq \lambda$. Hence by the inductive hypothesis, for each $\mu \in N$ there is a finite subset \mathscr{A}_{μ} of \mathscr{A} such that $b_{\mu} \subseteq \bigcup \mathscr{A}_{\mu}$. Hence

$$b_{\lambda} \subseteq U \cup \bigcup_{\mu \in N} \bigcup \mathscr{A}_{\mu},$$

finishing the inductive proof.

Thus we have now proved the first part of the theorem: pcf(A) is a compact totally disconnected Hausdorff space. Moreover, by (4) each member of B is clopen. If U is any clopen set, then it is compact, and so by (4) it is a finite union of members of B. This shows that the Boolean algebra of clopen subsets of pcf(A) is generated by $\{b_{\lambda} : \lambda \in pcf(A)\}$.

It remains only to show that this Boolean algebra is superatomic. By duality, it suffices to show that any nonempty closed subset F has an isolated point. Let λ be the least member of F. Then λ is the greatest element of b_{λ} , so b_{λ} is an open set such that $b_{\lambda} \cap F = \{\lambda\}$, as desired.