Lecture 12: Repeated Observations II

POL-GA 1251 Quantitative Political Analysis II Prof. Cyrus Samii NYU Politics

March 28, 2022

(i indexes units, t time periods, and k periods under treatment)

► One-way FE: $Y_{it} = \rho D_{it} + \alpha_i + \varepsilon_{it}$

- One-way FE: $Y_{it} = \rho D_{it} + \alpha_i + \varepsilon_{it}$
 - ▶ Equiv. of dummy var, within, and unit-mean centering (sweep).
 - Yields conditional variance weighted estimate of ρ under strong parametric restrictions (confounders are linearly separable and time-invariant, effects don't accumulate over time).
 - ► Centered-interaction specification can target, e.g., ATE.

- ► One-way FE: $Y_{it} = \rho D_{it} + \alpha_i + \varepsilon_{it}$
 - Equiv. of dummy var, within, and unit-mean centering (sweep).
 - Yields conditional variance weighted estimate of ρ under strong parametric restrictions (confounders are linearly separable and time-invariant, effects don't accumulate over time).
 - ► Centered-interaction specification can target, e.g., ATE.
- ► Two-way FE: $Y_{it} = \sum_{k} \rho^{k} D_{it}^{k} + \alpha_{i} + \lambda_{t} + \varepsilon_{it}$

- ► One-way FE: $Y_{it} = \rho D_{it} + \alpha_i + \varepsilon_{it}$
 - Equiv. of dummy var, within, and unit-mean centering (sweep).
 - Yields conditional variance weighted estimate of ρ under strong parametric restrictions (confounders are linearly separable and time-invariant, effects don't accumulate over time).
 - ► Centered-interaction specification can target, e.g., ATE.
- ► Two-way FE: $Y_{it} = \sum_{k} \rho^{k} D_{it}^{k} + \alpha_{i} + \lambda_{t} + \varepsilon_{it}$
 - Single-post-period DID or multi-post-period event study.
 - Identifies ATTs under parallel trends. (i.e., for two-period DID, constructs counterfactual trend in treatment group: $E[Y_{i1}^C Y_{i0}^C \mid g[i] = 1] = E[Y_{i1} Y_{i0} \mid g[i] = 0].$
 - Extend to triple differences (debiasing argument).

- ► One-way FE: $Y_{it} = \rho D_{it} + \alpha_i + \varepsilon_{it}$
 - Equiv. of dummy var, within, and unit-mean centering (sweep).
 - Yields conditional variance weighted estimate of ρ under strong parametric restrictions (confounders are linearly separable and time-invariant, effects don't accumulate over time).
 - ► Centered-interaction specification can target, e.g., ATE.
- ► Two-way FE: $Y_{it} = \sum_{k} \rho^k D_{it}^k + \alpha_i + \lambda_t + \varepsilon_{it}$
 - Single-post-period DID or multi-post-period event study.
 - Identifies ATTs under parallel trends. (i.e., for two-period DID, constructs counterfactual trend in treatment group:

$$E[Y_{i1}^C - Y_{i0}^C \mid g[i] = 1] = E[Y_{i1} - Y_{i0} \mid g[i] = 0].$$

- Extend to triple differences (debiasing argument).
- Synthetic control: construct counterfactual post-treatment trend using weighted average of controls: $Y_{it}^C = \sum_j w_j Y_{it}^C$.

Today

- ▶ Multiple post-treatment periods and variable treatment timing.
- Changes in changes.
- Generalized synthetic control and interactive FE.
- ► Regularized high-dimensional estimators.

Vanilla TWFE

 Vanilla TWFE involves using OLS with multiperiod data to fit specifications like,

$$Y_{it} = \rho D_{it} + \alpha_i + \lambda_t + \varepsilon_{it}$$

or (with multiple pre or post periods)

$$Y_{it} = lpha_i + \lambda_t + \sum_{k=-K}^{-1} \gamma_t^{lead} D_{it}^k + \sum_{k=1}^{L} \gamma_t^{lag} D_{it}^k + arepsilon_{it}$$

▶ Problems arise when there are multiple post-treatment periods, variable treatment timing, and effect heterogeneity over time.

Problems with vanilla TWFE

Specification:
$$Y_{it} = \alpha_i + \lambda_t + \sum_{k=-K}^{-1} \gamma_t^{lead} D_{it}^k + \sum_{k=1}^{L} \gamma_t^{lag} D_{it}^k + \varepsilon_{it}$$

(Callaway & Sant'Anna, 2020 lecture slides)

Problems with vanilla TWFE

		Time			1	Γime	е			Tin	ne
Unit	1	2	3	Unit	1	2	3	Uni	t	1 2	3
1	0		1	1	0	1	1	1	-) 1	1
2	0	$\sqrt{1}$	1	2	0	1	1	2	() 1	1
3	0	0	1	3	0	0	1	3	(0	1
4	0	0	1	4	0	0	1	4	(0	1
5	0	0	0	5	0	0	0	5	1	0	0

Matched controls Valid second differences Invalid second differences

(Strezhnev, 2018)

To construct counterfactual Y_{12}^C , TWFE involves the following:

- ► *Match* within period 2: take mean for units 3,4,5 (panel 1). Biased, bc doesn't account for cross-sectional heterogeneity.
- ▶ *De-bias* with second differences across periods:
 - First, subtract differences between unit 1 and 3,4,5 when all *under control* (panel 2). Fine, what traditional two-period DID does.
 - Second, subtract differences btwn 1 and 3,4,5 when all are *under treatment*. Problem: 3,4,5 under treatment for one period.

Problems with TWFE

- ► Result "caution[s] against summarizing time-varying effects with a single-coefficient" (Goodman-Bacon, 2019, 3).
- ▶ A few versions of this result: Borusyak & Jaravel (2017), de Chaisemartin & D'Haultfoeuille (2020), Goodman-Bacon (2019), Imai & Kim (2020), Strezhnev (2018).
- ▶ de Chaisemartin & D'Haulftfoeuille (2020) and Goodman-Bacon (2019) propose diagnostic measures to examine the extent of the problem.
- ▶ Abraham & Sun (2018) derive a similar result for bias when using leads to estimate pre-trend differences in DID or event study designs.

In place of TWFE

Abraham & Sun (2018), de Chaisemartin & D'Haultfoeuille (2020), and Goodman-Bacon (2019):

- Separate DID estimates for each cohort entering into treatment.
- ► Take an average of these separate DIDs.
- ▶ Under other parallel trends assumption for *ATC*, can work with groups that *drop out* of treatment too (see de Chaisemartin & D'Haultfoeuille, 2020).

In place of TWFE

(Callaway & Sant'Anna, 2020 lecture slides)

In place of TWFE

- Key take-away: make sure you are always using clean controls (don't use treated-treated differences, only control-control differences to do debiasing).
- Callaway & Sant' Anna (2018) and Strezhnev (2018) note that parallel trends between *same control group* and different treatment cohorts may be implausible.
- ► Implies *conditional DID* important in this setting.
- C & S'A and Strezhnev propose IPW estimators and augmented-IPW (doubly-robust) estimators that use covariates to line up treated cohorts with appropriately reweighted/modeled untreated trajectories.
- C & S'A develop methods for uniform inference for effect trajectories.
- Method extends to event studies as well.

- ► Athey & Imbens (2006) drop linearity assumptions.
- ▶ Develop a more agnostic "changes in changes" approach.
- Characterize not just conditional mean effects, but entire distributional effects.
- ► Can be used to estimate, e.g., median and other quantile effects.

Consider an unconditional DID setting (could incorporate *X* via matching or IPW). Now suppose:

Consider an unconditional DID setting (could incorporate *X* via matching or IPW). Now suppose:

1. $Y_{it}^C = h(U_i, t)$, where U_i unobserved variables whose distribution may vary over groups (g).

Consider an unconditional DID setting (could incorporate *X* via matching or IPW). Now suppose:

- 1. $Y_{it}^C = h(U_i, t)$, where U_i unobserved variables whose distribution may vary over groups (g).
- 2. h(u,t) is strictly increasing in u (thus, u a latent score). Fixing u, this preserves rank ordering of units from h(u,0) to h(u,1).

Consider an unconditional DID setting (could incorporate *X* via matching or IPW). Now suppose:

- 1. $Y_{it}^C = h(U_i, t)$, where U_i unobserved variables whose distribution may vary over groups (g).
- 2. h(u,t) is strictly increasing in u (thus, u a latent score). Fixing u, this preserves rank ordering of units from h(u,0) to h(u,1).
- 3. Support of U_i for g = 0 fully overlaps support of U_i for g = 1.

► Then for the counterfactual of interest,

$$\mathrm{E}\left[Y_{i1}^{C}|g[i]=1\right] = \mathrm{E}\left[F_{Y,01}^{-1}\left(F_{Y,00}(Y_{i0})\right)|g[i]=1\right],$$

where $F_{Y,00}(.)$ and $F_{Y,01}^{-1}(.)$ are the CDF and inverse CDF of outcomes for g = 0, t = 0 and g = 0, t = 1, respectively.

► Then for the counterfactual of interest,

$$\mathbf{E}\left[Y_{i1}^{C}|g[i]=1\right] = \mathbf{E}\left[F_{Y,01}^{-1}\left(F_{Y,00}(Y_{i0})\right)|g[i]=1\right],$$

where $F_{Y,00}(.)$ and $F_{Y,01}^{-1}(.)$ are the CDF and inverse CDF of outcomes for g = 0, t = 0 and g = 0, t = 1, respectively.

And so,

$$\begin{split} & \mathbf{E}\left[Y_{i1}^{T} - Y_{i1}^{C}|g[i] = 1\right] \\ & = \mathbf{E}\left[Y_{i1}^{T}|g[i] = 1\right] - \mathbf{E}\left[F_{Y,01}^{-1}\left(F_{Y,00}(Y_{i0})\right)|g[i] = 1\right]. \end{split}$$

Constructing E
$$\left[F_{Y,01}^{-1}(F_{Y,00}(Y_{i0}))|g[i]=1\right]$$
 requires three steps:

- 1. Take y from quantile q of pretreatment distribution (Y_{10}) .
- 2. Feed it into pre-treatment control group CDF (Y_{00}), match quantile (q') with post-treatment control group CDF (Y_{01}).
- 3. Then cast back onto the outcome to form quantile *q* of post-treatment *counterfactual Y*₁₁ CDF.

- ▶ $y + \Delta CIC$ is the counterfactual value for g = 1 units with $Y_{i0} = y$.
- We can do this over the support of the outcomes for g = 1 and t = 0, completing the distribution of counterfactual Y_{i1}^C 's for g = 1.
- ► We can then use these to compute ATT, or any difference-in-distribution effect (e.g., quantile effects).

- ▶ $y + \Delta CIC$ is the counterfactual value for g = 1 units with $Y_{i0} = y$.
- We can do this over the support of the outcomes for g = 1 and t = 0, completing the distribution of counterfactual Y_{i1}^C 's for g = 1.
- ➤ We can then use these to compute ATT, or any difference-in-distribution effect (e.g., quantile effects).
- ► Athey and Imbens show quantile effect estimator is asymptotically normal, so could use bootstrap inference. They also provide analytical standard errors.
- ► If the standard DID assumptions hold, this ATT estimator converges to the standard DID ATT estimator.
- ► For discrete outcomes, Athey and Imbens provide bounds results and additional point identification results.

- Synthetic control different than DID:
- ▶ DID: You think the untreated trends subject only to uniform time shocks. Allows for selection on level differences pre-treatment such that you don't even need overlap between treated and control trends.
- Synthetic control: construct a counterfactual trend as a convex combination of untreated trends. Requires overlap between treated trend and control trends.

- ► Following Xu (2017) (cf. Bai (2009) "interactive fixed effects")
- \triangleright N_{tr} (not just one) and N_{co} control, T periods.
- For those treated, T_0 pretreatment periods ($D_{it} = 1$ as of $T_0 + 1$).

- ► Following Xu (2017) (cf. Bai (2009) "interactive fixed effects")
- $ightharpoonup N_{tr}$ (not just one) and N_{co} control, T periods.
- For those treated, T_0 pretreatment periods ($D_{it} = 1$ as of $T_0 + 1$).
- ▶ DGP is a "factor model": $Y_{it} = \delta_{it}D_{it} + X'_{it}\beta + \lambda'_{i}f_{t} + \varepsilon_{it}$
 - \triangleright ε_{it} independent mean zero error,
 - \triangleright f_t vector of period-specific factors, normalized and orthogonal,
 - \triangleright λ_i corresponding vector of unit-specific factor loadings.

- ► Following Xu (2017) (cf. Bai (2009) "interactive fixed effects")
- $ightharpoonup N_{tr}$ (not just one) and N_{co} control, T periods.
- For those treated, T_0 pretreatment periods ($D_{it} = 1$ as of $T_0 + 1$).
- ▶ DGP is a "factor model": $Y_{it} = \delta_{it}D_{it} + X'_{it}\beta + \lambda'_{i}f_{t} + \varepsilon_{it}$
 - \triangleright ε_{it} independent mean zero error,
 - \triangleright f_t vector of period-specific factors, normalized and orthogonal,
 - \triangleright λ_i corresponding vector of unit-specific factor loadings.
- **Estimating ATT:**
 - ightharpoonup Estimate \hat{f}_t on control,
 - Use these \hat{f}_t s to estimate $\hat{\lambda}_i$ and $\hat{\beta}$ in treated,
 - Construct counterfactual trend for treated with $X'_{it}\hat{\beta} + \hat{\lambda}'_i\hat{f}_i$
 - Use observed treated trend and counterfactual trend to estimate ATT.

► Following Doudchenko and Imbens (2017), the inference problem here is one of missing counterfactual data. We see

$$\mathbf{Y}^{obs} = \left(\begin{array}{cc} \mathbf{Y}_{t,post}(1) & \mathbf{Y}_{c,post}(0) \\ \mathbf{Y}_{t,pre}(0) & \mathbf{Y}_{c,pre}(0) \end{array} \right) \Rightarrow \mathbf{Y}(0) = \left(\begin{array}{cc} ? & \mathbf{Y}_{c,post}(0) \\ \mathbf{Y}_{t,pre}(0) & \mathbf{Y}_{c,pre}(0) \end{array} \right).$$

► Following Doudchenko and Imbens (2017), the inference problem here is one of missing counterfactual data. We see

$$\mathbf{Y}^{obs} = \left(\begin{array}{cc} \mathbf{Y}_{t,post}(1) & \mathbf{Y}_{c,post}(0) \\ \mathbf{Y}_{t,pre}(0) & \mathbf{Y}_{c,pre}(0) \end{array} \right) \Rightarrow \mathbf{Y}(0) = \left(\begin{array}{cc} ? & \mathbf{Y}_{c,post}(0) \\ \mathbf{Y}_{t,pre}(0) & \mathbf{Y}_{c,pre}(0) \end{array} \right).$$

▶ Most counterfactual estimators have the form,

$$\hat{Y}_{0,T}(0) = \mu + \sum_{i=1}^{N} \omega_i Y_{i,T}^{obs}.$$

- Synth: $\mu = 0$, ω_i 's add to 1 and ≥ 0 , although can vary.
- ▶ DID: $\mu \neq 0$, but ω_i 's add to 1, nonnegative, and constant.

► Following Doudchenko and Imbens (2017), the inference problem here is one of missing counterfactual data. We see

$$\mathbf{Y}^{obs} = \left(\begin{array}{cc} \mathbf{Y}_{t,post}(1) & \mathbf{Y}_{c,post}(0) \\ \mathbf{Y}_{t,pre}(0) & \mathbf{Y}_{c,pre}(0) \end{array} \right) \Rightarrow \mathbf{Y}(0) = \left(\begin{array}{cc} ? & \mathbf{Y}_{c,post}(0) \\ \mathbf{Y}_{t,pre}(0) & \mathbf{Y}_{c,pre}(0) \end{array} \right).$$

▶ Most counterfactual estimators have the form,

$$\hat{Y}_{0,T}(0) = \mu + \sum_{i=1}^{N} \omega_i Y_{i,T}^{obs}.$$

- Synth: $\mu = 0$, ω_i 's add to 1 and ≥ 0 , although can vary.
- ▶ DID: $\mu \neq 0$, but ω_i 's add to 1, nonnegative, and constant.
- ▶ Doudchenko and Imbens (2017) drop the restrictions. This introduces an identification problem—MMSE solution is non-unique. Their solution: regularization.

► Following Doudchenko and Imbens (2017), the inference problem here is one of missing counterfactual data. We see

$$\mathbf{Y}^{obs} = \left(\begin{array}{cc} \mathbf{Y}_{t,post}(1) & \mathbf{Y}_{c,post}(0) \\ \mathbf{Y}_{t,pre}(0) & \mathbf{Y}_{c,pre}(0) \end{array} \right) \Rightarrow \mathbf{Y}(0) = \left(\begin{array}{cc} ? & \mathbf{Y}_{c,post}(0) \\ \mathbf{Y}_{t,pre}(0) & \mathbf{Y}_{c,pre}(0) \end{array} \right).$$

▶ Most counterfactual estimators have the form,

$$\hat{Y}_{0,T}(0) = \mu + \sum_{i=1}^{N} \omega_i Y_{i,T}^{obs}.$$

- Synth: $\mu = 0$, ω_i 's add to 1 and ≥ 0 , although can vary.
- ▶ DID: $\mu \neq 0$, but ω_i 's add to 1, nonnegative, and constant.
- ▶ Doudchenko and Imbens (2017) drop the restrictions. This introduces an identification problem—MMSE solution is non-unique. Their solution: regularization.
- ▶ Athey et al. (2017) use another approach: "complete" **Y**(0) based on a best-fitting factorized decomposition of the matrix, under matrix regularization constraints (approx. rank minimization).

➤ Doudchenko and Imbens (2017) develop useful ideas for inference.

- ▶ Doudchenko and Imbens (2017) develop useful ideas for inference.
- We want to account for uncertainty in the counterfactual estimate:

$$\hat{\tau} = Y_{11} - \hat{Y}_{11}^C \Rightarrow E(\hat{\tau} - \tau)^2 = E(\hat{Y}_{11}^C - Y_{11}^C)^2.$$

- Doudchenko and Imbens (2017) develop useful ideas for inference.
- We want to account for uncertainty in the counterfactual estimate:

$$\hat{\tau} = Y_{11} - \hat{Y}_{11}^C \Rightarrow E(\hat{\tau} - \tau)^2 = E(\hat{Y}_{11}^C - Y_{11}^C)^2.$$

- One way to approximate this is to assume that Y_{11}^C is exchangeable wrt the Y_{01}^C values that we observe.
- ► Then, you can estimate E $(\hat{Y}_{11}^C Y_{11}^C)^2$ with the residual distribution from *placebo estimates* of the Y_{01}^C values.

What to use?

Estimator	Situation
Classic DID	
	Single treatment cohort
	Control trends don't overlap treated trend
	Use CIC for distributional effects, issues with linearity
Classic Synth	
	► Single treatment unit
	Control trends overlap treated trend
	Long pretrend data
New DID (dCM & dH; C	
& S'A)	Multiple cohorts receiving treatment at different times
	 Control trends don't overlap treated trend
Gen. Synth	
	Multiple treated units, possibly at different times
	 Control trends overlap treated trends
	Long pretrend data
High-dim. est.	
	Multiple treated units, possibly at different times
	► Large N (needed to "train" these models)
	At least some control trends overlap treated trends
	20

Remarks

- Liu, Wang & Xu (2019) offer tests for different identifying assumptions (R package: fect).
- Recently proposed, improved methods address problems with classic TWFE and event studies in different ways:
- Some proposed improvements to TWFE are "going back to basics"— run many simple DIDs and aggregate. Idea is to restore design-based foundation.
- Others, like generalized synthetic control and the regularized high-dimensional estimators, work with more flexible and complete DGPs, and then use modest restrictions or regularization to address underidentification.