Physics Formula Sheet

$ \vec{v_{av}} = \left(\frac{\vec{v_1} + \vec{v_2}}{2}\right) $ $ \vec{\Delta d} = \vec{v_2} \Delta t - \frac{1}{2} \vec{a} \Delta t^2 $	$\vec{v}_2 = \vec{v}_1 + \vec{a}\Delta t$ $\vec{v_2}^2 = \vec{v_1}^2 + 2\vec{a}\Delta d$	$ \vec{\Delta d} = \left(\frac{\vec{v}_1 + \vec{v}_2}{2}\right) \Delta t \Delta t = \frac{2v_1 sin\theta}{g} $	$\vec{\Delta d} = \vec{v_1} \Delta t + \frac{1}{2} \vec{a} \Delta t^2$ $\Delta d_x = \frac{v_1^2 \sin 2\theta}{g}$
$\vec{v_{og}} = \vec{v_{om}} + \vec{v_{mg}}$	$F_g = mg$	$F_g = \frac{Gm_1m_2}{r^2}$	$T = 2\pi\sqrt{\frac{L}{g}}$
$\vec{F_{net}} = ma$	$F_f = \mu F_N$	$a_c = \frac{v^2}{r}$	$a_c = \frac{4\pi^2 r}{T^2}$
$a_c = 4\pi^2 r f^2$	$\frac{F_1}{F_2} = \frac{r_2^2}{r_1^2}$	$F_e = kx$	$E_e = \frac{1}{2}kx^2$
$W = \vec{F} \vec{\Delta d}$	$E_g = mgh$	$E_k = \frac{mv^2}{2}$	$W = \Delta E$
$W = E_{k2} - E_{k1}$	$W = E_{g2} - E_{g1}$	$P = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t}$	$E_t = E_t'$
$E_t = E_g + E_k + E_e + \dots$	$E_{\gamma} = E_i - E_f(emission)$	$t_o = \frac{t}{\sqrt{1 - \frac{v^2}{c^2}}}$	$L_o = \frac{L}{\sqrt{1 - \frac{v^2}{c^2}}}$
$m = \frac{m_o}{\sqrt{1 - \frac{v^2}{c^2}}}$	$E = mc^2$	$E_h = mc\Delta t$	$m_c c_c \Delta t_c = -m_h c_h \Delta t_h$
$L_f = \frac{E_h}{m}$	$L_v = \frac{E_h}{m}$	$E_k = \frac{p^2}{2m}$	$ec{p}=mec{v}$
$W = \vec{F} cos\theta \vec{\Delta d}$	$\vec{F}\Delta t = \vec{\Delta p}$	$Eff. = \frac{Useful\ Energy\ Output}{Energy\ Input} x 100\%$	$ec{p}=ec{p'}$
$v_1' = v_1 \left(\frac{m_1 - m_2}{m_1 + m_2} \right)$	$v_2' = v_1 \left(\frac{2m_1}{m_1 + m_2} \right)$	$E_g = \frac{-Gm_1m_2}{r}$	$E_t = \frac{1}{2}E_g$
$v = \sqrt{\frac{2GM}{r}}$	$E_t = E_g + E_k$	$E_k = E_b = E_t $	$f = \frac{1}{T}$
$f = \frac{\# \ of \ cycles}{\Delta t}$	$v = f\lambda$	$n_1 sin\theta_1 = n_2 sin\theta_2$	$sin\theta_c = \frac{n_2}{n_1}$
$\frac{n_1}{n_2} = \frac{v_2}{v_1} = \frac{\lambda_2}{\lambda_1}$	$\frac{1}{f} = \frac{1}{d_i} + \frac{1}{d_o}$	$M = \frac{h_i}{h_o} = \frac{-d_i}{d_o}$	$P = \frac{1}{f}$
$x_n = \frac{\left(n - \frac{1}{2}\right)L\lambda}{d}$	$\frac{x_n}{L} = sin\theta_n$	$x_n = \frac{nL\lambda}{d}$	$y_n = \frac{\left(n + \frac{1}{2}\right)L\lambda}{w}$
$\frac{y_n}{L} = \sin \theta_n$	$y_n = \frac{nL\lambda}{w}$	$\Delta x = \frac{L\lambda}{d}$	$\Delta y = \frac{L\lambda}{w}$
$p = \frac{h}{\lambda}$	$\Delta x = \frac{L\lambda}{2t}$	$I = \frac{q}{\Delta t}$	$V = \frac{E}{q}$
$E = qI\Delta t$	q = ne	V = IR	$\frac{R_1}{R_2} = \frac{A_2}{A_1} = \frac{L_1}{L_2}$
$V_T = V_1 + V_2 + V_3 + \dots + V_n$	$P = I^2 R$	$I_T = I_1 + I_2 + I_3 + \dots + I_n$	$R_T = R_1 + R_2 + R_3 + \dots + R_n$
$P = \frac{V^2}{R}$	$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_n}$	P = VI	$Cost = Energy \times Rate$