Numerical methods

There are two classes of methods for solving the linear system

$$A\underline{x} = \underline{b} \tag{1}$$

Direct methods: they give the exact solution (up to computer precision) in a finite number of operations.

Iterative methods: starting from an initial guess $\underline{x}^{(0)}$ they construct a sequence $\{\underline{x}^{(k)}\}$ such that

$$\underline{x} = \lim_{k \to \infty} \underline{x}^{(k)}.$$

Direct methods

The most important direct method is GEM (Gaussian elimination method).

With GEM, the original system (1) is transformed into an equivalent system (i.e., having the same solution)

$$U\underline{x} = \widetilde{\underline{b}}$$
 (*)

with U upper triangular matrix. This is done in n-1 steps where, at each step, one column is eliminated, that is, all the coefficients of that column below the diagonal are transformed into zeros. The cost for computing U is of the order of $\frac{2}{3}n^3$, see later... the cost for computing \widetilde{b} is of the order of n^2 ; the cost for solving the upper triangular system is n^2 , so that the total cost is $\sim \frac{2}{3}n^3 + 2n^2 \sim \frac{2}{3}n^3$.

GEM algorithm

$$A^{(1)} := A, b^{(1)} := b$$

$$A^{(1)}x = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \dots & a_{1n}^{(1)} \\ a_{21}^{(1)} & a_{22}^{(1)} & \dots & a_{2n}^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}^{(1)} & a_{n2}^{(1)} & \dots & a_{nn}^{(1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1^{(1)} \\ b_2^{(1)} \\ \vdots \\ b_n^{(1)} \end{bmatrix} = b^{(1)}$$

• We eliminate the first column:

$$A^{(2)}x = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \dots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & \dots & a_{2n}^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2}^{(2)} & \dots & a_{nn}^{(2)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1^{(1)} \\ b_2^{(2)} \\ \vdots \\ b_n^{(2)} \end{bmatrix} = b^{(2)}$$

$$I_{i1} = a_{i1}^{(1)}/a_{11}^{(1)}, \quad a_{ij}^{(2)} = a_{ij}^{(1)} - I_{i1}a_{1j}^{(1)}, \quad b_i^{(2)} = b_i^{(1)} - I_{i1}b_1^{(1)}$$

GEM algorithm

• We go on eliminating columns in the same way. At the k-th step:

$$A^{(k)}x = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \dots & \dots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & & & a_{2n}^{(2)} \\ \vdots & & \ddots & & \vdots \\ 0 & \dots & 0 & a_{kk}^{(k)} & \dots & a_{kn}^{(k)} \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & a_{nk}^{(k)} & \dots & a_{nn}^{(k)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1^{(1)} \\ b_2^{(2)} \\ \vdots \\ b_k^{(k)} \\ \vdots \\ b_n^{(k)} \end{bmatrix} = b^{(k)}$$

• At the last step $A^{(n)}x = b^{(n)}$ with U upper triangular,

$$\Longrightarrow U := A^{(n)}, \ \widetilde{b} := b^{(n)}$$

GEM pseudocode

```
Input: A \in \mathbb{R}^{n \times n} and b \in \mathbb{R}^n

for k = 1, \dots, n - 1

for i = k + 1, \dots, n

l_{i,k} = a_{i,k}/a_{k,k}

a_{i,k:n} = a_{i,k:n} - l_{i,k}a_{k,k:n}

b_i = b_i - l_{i,k}b_k

end

end

define U = A, \widetilde{b} = b, then solve Ux = \widetilde{b} with back substitution
```

remark: we do not need to define U and b, it is just to be consistent with the notation of the previous slides

Homework

Write the above algorithm in MATLAB

Computational cost of GEM

Let us start by analysing the inner loop:

for
$$i=k+1,\ldots,n$$

$$I_{i,k}=a_{i,k}/a_{k,k} \qquad \qquad 1 \text{ FLOP}$$

$$a_{i,k:n}=a_{i,k:n}-I_{i,k}a_{k,k:n} \qquad \qquad 2(n-k+1)\sim 2(n-k) \text{ FLOPs}$$

$$b_i=b_i-I_{i,k}b_k \qquad \qquad 2 \text{ FLOPs}$$
 end

Let us focus on the outer loop:

- ullet For k=1, the inner loop costs $\sim 2(n-1)(n-1) \sim 2(n-1)^2$ FLOPs
- For k=2, the inner loop costs $\sim 2(n-2)(n-2)\sim 2(n-2)^2$ FLOPs
- . . .
- For k = n 1, the inner loop costs $\sim 2 \sim 2 \cdot (1)^2$ FLOPs

Finally, recalling that:

$$\sum_{t=1}^{T} t^2 = \frac{T \cdot (T+1) \cdot (2T+1)}{6},$$

the cost of GEM is:

$$\sim 2 \cdot \sum_{s=1}^{n-1} s^2 = 2 \frac{(n-1) \cdot n \cdot (2(n-1)+1)}{6} \sim \frac{2}{3} n^3$$
 FLOPs

If we also include the cost for solving the resulting upper triangular system

$$U\underline{x} = \widetilde{\underline{b}}$$
, the total cost is $\sim \frac{2}{3}n^3 + n^2 \sim \frac{2}{3}n^3$ FLOPs.