Branch-Line Coupler Design Validation in AWR AXIEM EM Solver

Microwave Circuits (B2M17MIO)

Viktor Adler, Karel Hoffmann
CTU in Prague, Faculty of Electrical Engineering

Global Definitions

substrate Duroid 5880

$$\circ \varepsilon_r = 2.2$$

$$\circ h = 0.127 \text{ mm}$$

$$\circ tg\delta = 0.0009 @ 10 GHz$$

$$\circ t = 17 \, \mu \text{m}$$

$$\circ \sigma_{Cu} = 5.88 \times 10^7 \text{ S/m} \rightarrow \text{Rho} = 0.7$$

MSUB Er=2.2 H=0.127 mm T=0.017 mm Rho=0.7 Tand=0.0009 ErNom=2.2 Name=SUB1

Branch-Line Coupler Design

3 dB coupler at 5.4 GHz

$$\circ Z_{\rm v} = 50 \ \Omega \to w_1 = 0.375 \ {\rm mm}$$

$$\circ Z_1 = Z_{\rm v} \rightarrow w_1 = 0.375 \, {\rm mm}, L_1 = 10.155 \, {\rm mm}$$

$$\circ Z_2 = \frac{Z_v}{\sqrt{2}} \rightarrow w_2 = 0.621 \text{ mm}, L_1 = 9.984 \text{ mm}$$

Straight Branch-Line Coupler - Schematic

- discontinuities included
- straight lines used
- L_1 and L_2 tuned

Straight Branch-Line Coupler - Layout

Straight Branch-Line Coupler - Results

Reduction of Size - Meander Lines

- possible reduction of size meandered lines
- crosstalks between elements
 - not considered by linear simulator
- verification by EM simulator is needed

Meander Branch-Line Coupler - Schematic

Meander Branch-Line Coupler - Layout

Meander Branch-Line Coupler - Results

linear simulation results

Meander Branch-Line Coupler - Results

• after slight tunning of L_1 , L_2 , w_1 and w_2

AXIEM - Planar EM Simulator

- methods of moments
 - conducting parts between dielectric layers (2.5D)
 - only conducting parts meshed
 - no side boundaries
- direct extraction of layout to EM simulator
- discrete 2D ports

STACKUP Definition

- define materials in EM simulation
- find Elements→Substrates→STACKUP
- place it to Global Definitions as SUB2
- double click properties are shown

MSUB Er=2.2 H=0.127 mm T=0.017 mm Rho=0.7 Tand=0.0009 ErNom=2.2 Name=SUB1

STACKUP

STACKUP Definition - Material Defs.

add dielectric substrate Duroid 5880

STACKUP Definition - Material Defs.

add conductor Cu (predefined)

STACKUP Definition - Dielectric Layers

- add layer with substrate Duroid 5880
- thickness of Air above circuit is 2 mm

STACKUP Definition - Dielectric Layers

define boundaries as Open and Cu

STACKUP Definition - Materials

add material TOP for mapping from layout

STACKUP Definition - EM Layer Mapping

define new material map MyMaterialMap

STACKUP Definition - EM Layer Mapping

set material TOP and layer 2 to drawing layer
 Copper

STACKUP Definition - Line Type

- change Material Name to TOP
- push OK

EXTRACT Definition

- define export from layout to EM simulator and simulation properties
- find Elements→Simulation Control→EXTRACT
- place it to schematic with coupler
 - it is convenient to have separate schematics for linear simulation and for EM extraction

EXTRACT Definition

- EM_Doc name of future EM Structure
- Simulator choose AXIEM
- X and Y_CellSize size of grid for mesh - 0.02mm is good choice
- STACKUP SUB2
- double click on EXTRACT lot of advanced properties can be setted
 o we use default

+ + +

EXTRACT
ID=EX1
EM_Doc="Meander Coupler MoM"
Name="EM_Extract"
Simulator=AXIEM
X_Cell_Size=0.02 mm
Y_Cell_Size=0.02 mm
STACKUP="SUB2"
Override_Options=Yes
Hierarchy=Off
SweepVar_Names=""

EXTRACT Definition

- show layout of meandered coupler
- select all Ctrl+A
- right click→Element Properties→Model
 Options→EM Extraction Options Enable

EXTRACT Definition - Check

- click on EXTRACT element in schematic
 associated elements for extraction should be red

Extraction of Layout to EM Structure

 right click on EXTRACT→Add Extraction

new EM Structure is created

EM Structure - Ports Definition

- imported ports do not keep original numbers
- for all ports: double click→change Port Number and set Ground Reference to lower

EM Structure - Meshing

- to mesh structure: right click on Meander Coupler MoM→Mesh
- mesh was computed for highest frequency in project (10 GHz)

EM Structure - Simulation

 to simulate structure: right click on Meander Coupler MoM→Simulate

EM Structure - Results

EM Structure - Results

- coupler is retuned because of crosstalks between lines
- mesh and simulation was performed with default settings
 - but value of X and Y_Cell_Size is very important
- always check sensitivity of simulation task on mesh density

Thank you for your attention!

