Multi-Head Attention Forward Pass

Multi-Head Attention Backward Pass

•	Abbrev	Name	Type / Shape	Notes
Operations (Ops)	LN	Layer Normalization	op	Normalizes per token (per last $\dim D$).
	DO	Dropout	op	Training-time stochastic dropout.
	+	Bias Add	op	Adds broadcast bias; see $BC_{B,S}(\cdot)$.
	${ m T}$	Transpose	op	Context-dependent dims (e.g., $[B, N_H, S, D_h] \rightarrow [B, N_H, D_h, S]$).
	R	Reshape / Split / Merge	op	Head split/merge: $[B, S, D] \leftrightarrow [B, N_H, S, D_h]$.
	C	Concatenate	op	Join heads along last dim: $[B, S, N_H, D_h] \rightarrow [B, S, D]$.
	SM	Scale (+ Mask)	op	Multiply by $1/\sqrt{D_h}$ and apply mask to scores.
	S	Softmax	op	Softmax over key length (S) per head.
	$\mathrm{BC}_{B,S}(\cdot)$	Broadcast	op	Broadcast a length- D (or D_h, V) bias to $[B, S, \cdot]$.
	dS	Softmax Backward	op	Backprop through softmax over S .
	dSM	Scale/Mask Backward	op	Backprop through scaling and masking.
	dC	De-concatenate (Backward)	op	Split grads from concatenated heads.
	dLN	LayerNorm Backward	op	Uses cached LN stats (μ, σ) and X .

	Symbol	Name	Shape	Notes
	X	Input hidden states	[B, S, D]	Into MHA block (pre-LN).
	$\mathbf{X}_{ ext{norm}}$	LN output	[B, S, D]	Result of $LN(\mathbf{X})$.
	$\mathbf{Q},\mathbf{K},\mathbf{V}$	Query/Key/Value	$[B, N_H, S, D_h]$	From linear projections of X_{norm} .
	$\widetilde{\mathbf{W}}_Q$	Q weight	[D,D]	Per-head realized by reshape; drawn as single matmul.
	$\widetilde{\mathbf{W}}_K$	K weight	[D,D]	Same convention.
	$\widetilde{\mathbf{W}}_V$	V weight	[D,D]	Same convention.
	$\widetilde{\mathbf{W}}_O$	Output-proj weight	[D,D]	Maps concatenated heads back to model dim.
	$\widetilde{\mathbf{b}}_O$	Output bias	[D]	Broadcast via $BC_{B,S}$.
	\mathbf{A}	Attention scores	$[B, N_H, S, S]$	$\mathbf{Q}\mathbf{K}^T/\sqrt{D_h}$ (plus mask).
	\mathbf{AS}	Attention weights	$[B, N_H, S, S]$	$\operatorname{softmax}(\mathbf{A}).$
	$\mathbf{AO}_{\mathrm{heads}}$	Per-head outputs	$[B, N_H, S, D_h]$	$\mathbf{AS} \cdot \mathbf{V}$.
	$\mathbf{AO}_{\mathrm{cat}}$	Concatenated heads	[B, S, D]	After C .
	$\mathbf{AO}_{\mathrm{lin}}$	Linear output	[B, S, D]	$\mathbf{AO}_{\mathrm{cat}}\widetilde{\mathbf{W}}_{O}.$
	$\mathbf{AO}_{\mathrm{bias}}$	Bias-added output	[B, S, D]	$\mathbf{AO}_{\mathrm{lin}} + \widetilde{\mathbf{b}}_{O}.$
Data Tensors (Values)	${f A}_{ m out}$	MHA output	[B, S, D]	After dropout; to next sublayer.
Data Tensors (Varues)	$\mathbf{dA}_{\mathrm{out}}$	Grad wrt MHA output	[B, S, D]	Backprop signal entering MHA.
	$\mathbf{dQ}, \mathbf{dK}, \mathbf{dV}$	Gradients for Q/K/V	$[B, N_H, S, D_h]$	From attention-core backward.
	$\mathbf{dK^T}$	Grad of K^T	$[B, N_H, D_h, S]$	Before transpose/reshape to dK .
	$\mathbf{dAO}_{\mathrm{heads}}$	Grad at heads	$[B, N_H, S, D_h]$	Split from dAO_{cat} .
	$\mathbf{dX}_{\mathrm{norm},Q}$	Grad wrt X_{norm} (Q branch)	[B, S, D]	Contribution via W_Q^T .
	$\mathbf{dX}_{\mathrm{norm},K}$	Grad wrt X_{norm} (K branch)	[B, S, D]	Contribution via W_K^T .
	$\mathbf{dX}_{\mathrm{norm},V}$	Grad wrt X_{norm} (V branch)	[B, S, D]	Contribution via W_V^T .
	$\mathbf{dX}_{\mathrm{norm}}$	Sum of above	[B, S, D]	Input to dLN.
	dX	Grad wrt input X	[B, S, D]	Output of dLN.
	$\mathbf{d}\widetilde{\mathbf{W}}_Q$	Q weight grad	[D, D]	Standard matmul rule.
	$\mathbf{d} \mathbf{\widetilde{W}}_K$	K weight grad	[D, D]	Standard matmul rule.
	$\mathbf{d} \widetilde{\mathbf{W}}_V$	V weight grad	[D,D]	From reshaped $d\mathbf{V}$ and X_{norm} .
	$\operatorname*{\mathbf{d}\widetilde{\mathbf{W}}_{O}}_{\widetilde{\sim}}$	Output-proj grad	[D,D]	From $\mathbf{AO}_{\mathrm{cat}}^T$ and $d\mathbf{AO}_{\mathrm{lin}}$.
	$\mathbf{d}\mathbf{\hat{b}}_{O}$	Output bias grad	[D]	Sum over B, S of $d\mathbf{AO}_{lin}$.

Shape symbols: B=batch size, S=sequence length, D=model dim, N_H =num heads, $D_h = D/N_H$. Implementation note: Per-head [D,D] drawings depict fused linears realized via reshape to $N_H \times D_h$.