DL 4 - inspiré d'EDHEC 2013

pour le jeudi 12/10

On dispose d'une urne contenant au départ n boules blanches et (n+2) boules noires. $(\acute{e}tat \, n)$ Le contenu de l'urne évolue au cours d'une succession d'épreuves.

À chaque épreuve, on tire une boule de l'urne dans l'état $j \ge 1$ (j blanches, j + 2 noires), puis :

- Si la boule est blanche, alors cette boule n'est pas remise dans l'urne et on enlève de plus une boule noire de l'urne.
 (nouvel état : j − 1).
- ► Si la boule est noire, elle est remise dans l'urne avec en plus une boule blanche et une boule noire dans l'urne. (nouvel état : j + 1).

Erratum

Lorsque, à une étape quelconque, l'urne atteint l'état 0, on arrète définitivement l'expérience. En particulier, si n = 0 (départ de l'état 0), l'expérience est sans objet, car aucun tirage n'a lieu.

On note *X* le nombre de boules blanches présentes dans l'urne après la première épreuve.

- **1. a)** Montrer que la variable X vérifie : $X(\Omega) = \{n-1, n+1\}$.
 - **b)** Calculer $\mathbb{P}(X = n 1)$ et $\mathbb{P}(X = n + 1)$.

On fixe maintenant un entier $m \ge 1$.

On s'intéresse à l'événement E: «l'urne finit par atteindre l'état m au cours de l'expérience». La probabilité de cet événement dépend de l'état initial de l'urne.

On note donc e_n la probabilité de E lorsque l'état de l'urne est l'entier $n \in [0, m]$.

- **2.** Montrer que $e_0 = 0$. Combien vaut e_m ?
- **3. a)** Justifier que : $\mathbb{P}_{[X=n-1]}(E) = e_{n-1}$ et $\mathbb{P}_{[X=n+1]}(E) = e_{n+1}$.
 - **b)** Montrer, pour $n \in [1, m-1]$ que : $e_n = \frac{n}{2n+2} \cdot e_{n-1} + \frac{n+2}{2n+2} \cdot e_{n+1}$.

On définit la suite $(u_n)_{n \in [0,m]}$ par : $u_n = (n+1) \cdot e_n$.

- **4. a)** Pour $n \in [1, m-1]$ une expression de u_n en fonction de u_{n-1} et u_{n+1} . Pour $n \in [1, m-1]$, on trouve : $u_n = \frac{1}{2} \cdot u_{n-1} + \frac{1}{2} \cdot u_{n+1}$.
 - **b)** En déduire une relation entre $u_{n+1}-u_n$ et u_n-u_{n-1} . Pour $n\in [1,m-1]$, on a donc : $u_{n+1}-u_n=u_n-u_{n-1}$.

La suite $(u_n - u_{n-1})_{n \in [\![1,m]\!]}$ est donc **constante**.

c) Montrer que la suite (u_n) est arithmétique sur [0,m]. La suite $(u_n-u_{n-1})_{n\in [1,m]}$ est constante. Pour $n\in [1,m]$, on peut donc écrire donc : $u_n-u_{n-1}=a\in \mathbb{R}$. La suite (u_n) est donc arithmétique de raison $a\in \mathbb{R}$.

On peut donc écrire pour $\forall n \in [0,m]$, $u_n = a \cdot n + u_0$.

Ce qu'il reste à faire

Trouver la valeur de la raison a et le terme initial u_0 .

Pour ce faire, on utilise les valeurs trouvées pour e_0 et e_m et la relation $u_n = (n+1) \cdot e_n$.

- **5.** a) Grâce aux valeurs trouvées à la question 2., trouver l'expression de u_n pour $n \in [0, m]$.
 - **b)** En déduire, pour $n \in [0, m]$, l'expression : $e_n = \frac{m+1}{m} \cdot \frac{n}{n+1}$.

On s'intéresse au passage à la limite $m \to \infty$.

- **6. a)** Déterminer la limite, pour $n \in \mathbb{N}$: $\lim_{m \to \infty} e_n$.
 - **b)** Si on part de l'état 1 *(1 boule blanche et trois noires)*, quelle est la probabilité que l'urne finisse par contenir un nombre arbitrairement élevé de boules blanches?