Design of Linear Phase FIR Filters using Windowing Technique

Presented by

Dr. Dheeren Ku Mahapatra
Senior Assistant Professor
School of Electronics Engineering (SENSE)

VIT University, Chennai Campus

Design Procedure of Linear Phase FIR Filters by Windowing Technique

Given, $H_d(e^{j\omega}) \rightarrow$ Desired Frequency Response Function of the Filter

Step1: From the desired frequency response specification $H_d(e^{j\omega})$, find the corresponding unit impulse response.

$$h_d[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega$$

Step 2: In most of the practical cases, the obtained impulse response $h_d[n]$ is of infinite duration and is truncated to get an FIR filter of length M by multiplying $h_d[n]$ with window function w[n].

$$h[n] = h_d[n]w[n]$$

where, $w[n] \rightarrow \text{Window Function of length } M$

 $h[n] \rightarrow$ Impulse Response of FIR Filter having length M

Step 3: The transfer function H(z) is obtained from h[n] by taking its z transform.

$$H(z) = \sum_{n=-\infty}^{\infty} h[n]z^{-n} = \sum_{n=0}^{M-1} h[n]z^{-n}$$

Step 4: The magnitude response $|H(e^{j\omega})|$ is obtained from H(z) by substituting $z = e^{j\omega}$.

Summary of Symmetric Window Functions

Rectangular Window,
$$w[n] = \begin{cases} 1 & 0 \le n \le M - 1 \\ 0 & otherwise \end{cases}$$

Bartlett Window, $w[n] = \begin{cases} 1 - \frac{M-1}{2} & 0 \le n \le M - 1 \\ \frac{M-1}{2} & 0 \le n \le M - 1 \end{cases}$

Hanning Window, $w[n] = \begin{cases} 0.5 - 0.5 \cos \frac{2\pi n}{M-1} & 0 \le n \le M - 1 \\ 0 & otherwise \end{cases}$

Hamming Window, $w[n] = \begin{cases} 0.54 - 0.46 \cos \frac{2\pi n}{M-1} & 0 \le n \le M - 1 \\ 0 & otherwise \end{cases}$

Blackman Window, $w[n] = \begin{cases} 0.42 - 0.5 \cos \frac{2\pi n}{M-1} + 0.08 \cos \frac{4\pi n}{M-1} & 0 \le n \le M - 1 \\ 0 & otherwise \end{cases}$

Summary of Frequency Response of Linear Phase FIR Filters

Low Pass Filter

$$H_{d}\left(e^{j\omega}\right) = \begin{cases} e^{-j\omega\tau} & 0 \le |\omega| < \omega_{c} \\ 0 & \omega_{c} \le |\omega| \le \pi \end{cases}$$

High Pass Filter

$$H_d\left(e^{j\omega}\right) = \begin{cases} e^{-j\omega\tau} & \omega_c \le |\omega| < \pi \\ 0 & 0 \le |\omega| \le \omega_c \end{cases}$$

Band Pass Filter

$$H_{d}\left(e^{j\omega}\right) = \begin{cases} e^{-j\omega\tau} & \omega_{c1} \leq |\omega| < \omega_{c2} \\ 0 & 0 \leq |\omega| \leq \omega_{c1} \text{ and } \omega_{c2} \leq |\omega| \leq \pi \end{cases}$$

Band Stop Filter

$$H_{d}\left(e^{j\omega}\right) = \begin{cases} e^{-j\omega\tau} & 0 \le |\omega| \le \omega_{c1} \text{ and } \omega_{c2} \le |\omega| \le \pi \\ 0 & \omega_{c1} \le |\omega| < \omega_{c2} \end{cases}$$

Magnitude Response of Ideal Digital Filters
(a) LPF (b) HPF (c) BPF (d) BSF

Question: For the specifications given below, design a Symmetric FIR Low Pass Filter using Rectangular Window. Also plot the magnitude response of the designed FIR filter.

Length of the Filter = 11

Cutoff Frequency = $\pi/2$ rad/sample.

Solution:

Given Specifications;
$$M = 11, \omega_c = \frac{\pi}{2} rad / sample, \tau = \frac{M-1}{2} = 5$$

Step 1:

$$H_d\left(e^{j\omega}\right) = \begin{cases} e^{-j\omega\tau} & 0 \le |\omega| < \omega_c \\ 0 & \omega_c \le |\omega| \le \pi \end{cases}$$

$$h_d[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega$$

$$=\frac{1}{2\pi}\int_{-\omega_{c}}^{\omega_{c}}e^{j\omega(n-\tau)}d\omega=\frac{1}{2\pi}\left[\frac{e^{j\omega(n-\tau)}}{j(n-\tau)}\bigg|_{-\omega_{c}}^{\omega_{c}}\right]$$

$$=\frac{1}{(n-\tau)\pi}\left[\frac{e^{j\omega_c(n-\tau)}-e^{-j\omega_c(n-\tau)}}{2j}\right]$$

$$\Rightarrow h_d[n] = \frac{\sin \omega_c(n-\tau)}{\pi(n-\tau)} \quad for \ n \neq \tau$$

for
$$n = \tau$$
; $h_d \left[\tau\right] = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} 1 d\omega = \frac{\omega_c}{\pi}$

$$h_d[n] = \frac{\sin(0.5\pi(n-5))}{\pi(n-5)}$$
 for $0 \le n \le 10$ and $n \ne 5$
 $h_d[\tau] = \frac{0.5\pi}{n} = 0.5$ for $n = \tau = 5$

$$h_{d}[0] = \frac{\sin(0.5\pi(0-5))}{\pi(0-5)} = 0.0637 \qquad h_{d}[10] = \frac{\sin(0.5\pi(10-5))}{\pi(10-5)} = 0.0637$$

$$h_{d}[1] = \frac{\sin(0.5\pi(1-5))}{\pi(1-5)} = 0 \qquad h_{d}[9] = \frac{\sin(0.5\pi(9-5))}{\pi(9-5)} = 0$$

$$h_{d}[2] = \frac{\sin(0.5\pi(2-5))}{\pi(2-5)} = -0.1061 \qquad h_{d}[8] = \frac{\sin(0.5\pi(8-5))}{\pi(8-5)} = -0.1061$$

$$h_{d}[3] = \frac{\sin(0.5\pi(3-5))}{\pi(3-5)} = 0 \qquad h_{d}[7] = \frac{\sin(0.5\pi(7-5))}{\pi(7-5)} = 0$$

$$h_{d}[4] = \frac{\sin(0.5\pi(4-5))}{\pi(4-5)} = 0.3183 \qquad h_{d}[6] = \frac{\sin(0.5\pi(6-5))}{\pi(6-5)} = 0.3183$$

$$h_d[5] = \frac{\omega_c}{\pi} = \frac{0.5\pi}{\pi} = 0.5$$

Step 2: Rectangular Window w[n]=1 for $0 \le n \le 10$

$$h[n] = h_d[n]w[n]$$

n	$h_d[n]$	w[n]	h[n]
0	0.0637	1	0.0637
1	0	1	0
2	-0.1061	1	-0.1061
3	0	1	0
4	0.3183	1	0.3183
5	0.5	1	0.5
6	0.3183	1	0.3183
7	0	1	0
8	-0.1061	1	-0.1061
9	0	1	0
10	0.0637	1	0.0637

Step 3:

$$H(z) = \sum_{n=0}^{10} h[n]z^{-n}$$

$$= h[0] + h[1]z^{-1} + h[2]z^{-2} + h[3]z^{-3} + h[4]z^{-4} + h[5]z^{-5} + h[6]z^{-6} + h[7]z^{-7} + h[8]z^{-8} + h[9]z^{-9} + h[10]z^{-1}$$

$$= h[0](1+z^{-10}) + h[1](z^{-1}+z^{-9}) + h[2](z^{-2}+z^{-8}) + h[3](z^{-3}+z^{-7}) + h[4](z^{-4}+z^{-6}) + h[5]z^{-5}$$

$$= z^{-5} \Big[h[0](z^{5}+z^{-5}) + h[1](z^{4}+z^{-4}) + h[2](z^{3}+z^{-3}) + h[3](z^{2}+z^{-2}) + h[4](z^{1}+z^{-1}) + h[5] \Big]$$

$$\Rightarrow H(z) = z^{-5} \Big[0.5 + 0.0637(z^{5}+z^{-5}) - 0.1061(z^{3}+z^{-3}) + 0.3183(z^{1}+z^{-1}) \Big]$$

Step 4:

We have,

$$H(z) = z^{-5} \Big[0.5 + 0.0637 (z^{5} + z^{-5}) - 0.1061 (z^{3} + z^{-3}) + 0.3183 (z^{1} + z^{-1}) \Big]$$

$$H(e^{j\omega}) = H(z) \Big|_{z=e^{j\omega}} = e^{-j5\omega} \Big[0.5 + 0.0637 (e^{j5\omega} + e^{-j5\omega}) - 0.1061 (e^{j3\omega} + e^{-j3\omega}) + 0.3183 (e^{j\omega} + e^{-j\omega}) \Big]$$

$$\Rightarrow H(e^{j\omega}) = e^{-j5\omega} \Big[0.5 + 0.0637 \times 2\cos 5\omega - 0.1061 \times 2\cos 3\omega + 0.3183 \times 2\cos \omega \Big]$$

$$\Rightarrow H(e^{j\omega}) = e^{-j\omega 5} \Big[0.5 + 0.1273\cos 5\omega - 0.2122\cos 3\omega + 0.6366\cos \omega \Big]$$

$$H(e^{j\omega}) = e^{-j\omega 5} [0.5 + 0.1273\cos 5\omega - 0.2122\cos 3\omega + 0.6366\cos \omega]$$

$$\Rightarrow |H(e^{j\omega})| = |0.5 + 0.1273\cos 5\omega - 0.2122\cos 3\omega + 0.6366\cos \omega|$$

$$|H(e^{j\omega})|_{dB} = 20\log_{10}|H(e^{j\omega})|$$

Question: For the given frequency response specifications, design a **Symmetric FIR High Pass Filter** using **Hamming Window**. Also find the magnitude response of the designed FIR filter.

$$H_{d}(e^{j\omega}) = \begin{cases} e^{-j3\omega} & 1 \le |\omega| < \pi \\ 0 & Otherwise \end{cases}$$

Solution:

Given Specifications; $\tau = 3$, $\omega_c = 1 \text{rad} / \text{sample}$, $M = 2\tau + 1 = 7$

Step 1:

$$h_{d}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \left[\int_{-\pi}^{-\omega_{c}} e^{j\omega(n-\tau)} d\omega + \int_{\omega_{c}}^{\pi} e^{j\omega(n-\tau)} d\omega \right]$$

$$= \frac{1}{2\pi} \left[\frac{e^{j\omega(n-\tau)}}{j(n-\tau)} \Big|_{-\pi}^{-\omega_{c}} + \frac{e^{j\omega(n-\tau)}}{j(n-\tau)} \Big|_{\omega_{c}}^{\pi} \right]$$

$$= \frac{1}{(n-\tau)\pi} \left[\frac{e^{-j\omega_{c}(n-\tau)} - e^{-j\pi(n-\tau)}}{2j} + \frac{e^{j\pi(n-\tau)} - e^{j\omega_{c}(n-\tau)}}{2j} \right]$$

$$= \frac{1}{(n-\tau)\pi} \left[\frac{(e^{j\pi(n-\tau)} - e^{-j\pi(n-\tau)})}{2j} - \frac{(e^{j\omega_{c}(n-\tau)} - e^{-j\omega_{c}(n-\tau)})}{2j} \right]$$

$$\Rightarrow h_{d}[\tau] = 1 - \frac{\omega_{c}}{\pi}$$

$$|H_{d}(e^{j\omega})|$$

$$\Rightarrow h_{d}[n] = \frac{\left[\sin \pi (n-\tau) - \sin \omega_{c}(n-\tau)\right]}{(n-\tau)\pi} \quad \text{for } n \neq \tau$$

$$\frac{\omega_{c}(n-\tau)}{2\pi}$$

$$\int \sigma n = \tau; \quad h_{d}[\tau] = \frac{1}{2\pi} \left[\int_{-\pi}^{-\omega_{c}} 1 d\omega + \int_{\omega_{c}}^{\pi} 1 d\omega\right] = \frac{-\omega_{c} + \pi + \pi - \omega_{c}}{2\pi}$$

$$h_d[n] = \frac{\left[\sin \pi (n-3) - \sin (n-3)\right]}{(n-3)\pi} \quad \text{for } 0 \le n \le 6 \text{ and } n \ne 3$$

$$h_d[\tau] = 1 - \frac{\omega_c}{\pi} = 1 - \frac{1}{\pi} \quad \text{for } n = \tau = 3$$

$$h_{d}[0] = \frac{\left[\sin \pi (0-3) - \sin(0-3)\right]}{(0-3)\pi} = -0.0150$$

$$h_{d}[1] = \frac{\left[\sin \pi (1-3) - \sin(1-3)\right]}{(1-3)\pi} = -0.1447$$

$$h_{d}[2] = \frac{\left[\sin \pi (2-3) - \sin(2-3)\right]}{(2-3)\pi} = -0.2678$$

$$h_{d}[4] = \frac{\left[\sin \pi (4-3) - \sin(4-3)\right]}{(4-3)\pi} = -0.2678$$

$$h_d[3] = 1 - \frac{1}{\pi} = 0.6817$$

Step 2:

Hamming Window

$$w[n] = \begin{cases} 0.54 - 0.46\cos\frac{2\pi n}{M-1} & 0 \le n \le M-1 \\ 0 & otherwise \end{cases}$$

$$w[0] = 0.0800$$
 $w[6] = 0.0800$
 $w[1] = 0.3100$ $w[5] = 0.3100$
 $w[2] = 0.7700$ $w[4] = 0.7700$
 $w[3] = 1.0000$

$$h[n] = h_d[n]w[n]$$

n	$h_d[n]$	w[n]	h[n]
0	-0.0150	0.0800	-0.001197
1	-0.1447	0.3100	-0.044862
2	-0.2678	0.7700	-0.206243
3	0.6817	1	0.6817
3 4	0.6817 -0.2678	1 0.7700	0.6817 -0.206243

Step 3:

$$H(z) = \sum_{n=0}^{6} h[n]z^{-n}$$

$$= h[0] + h[1]z^{-1} + h[2]z^{-2} + h[3]z^{-3} + h[4]z^{-4} + h[5]z^{-5} + h[6]z^{-6}$$

$$= z^{-3} \Big[h[3] + h[0](z^{3} + z^{-3}) + h[1](z^{2} + z^{-2}) + h[2](z^{1} + z^{-1}) \Big]$$

$$\Rightarrow H(z) = z^{-3} \Big[0.6817 - 0.001197(z^{3} + z^{-3}) - 0.044862(z^{2} + z^{-2}) - 0.206243(z^{1} + z^{-1}) \Big]$$

Step 4:

We have,

$$H(z) = z^{-3} \left[0.6817 - 0.001197(z^{3} + z^{-3}) - 0.044862(z^{2} + z^{-2}) - 0.206243(z^{1} + z^{-1}) \right]$$

$$H\left(e^{j\omega}\right) = H\left(z\right)\Big|_{z=e^{j\omega}} = e^{-j3\omega}\Big[0.6817 - 0.001197\left(e^{j3\omega} + e^{-j3\omega}\right) - 0.044862\left(e^{j2\omega} + e^{-j2\omega}\right) - 0.206243\left(e^{j\omega} + e^{-j\omega}\right)\Big]$$

$$\Rightarrow H(e^{j\omega}) = e^{-j3\omega} \left[0.6817 - 0.001197 \times 2\cos 3\omega - 0.044862 \times 2\cos 3\omega - 0.044862 \times 2\cos \omega \right]$$

$$\Rightarrow H(e^{j\omega}) = e^{-j3\omega} \left[0.6817 - 0.0023957 \cos 3\omega - 0.0897258 \cos 2\omega - 0.41248674 \cos \omega \right]$$

$$|H(e^{j\omega})| = |0.6817 - 0.0023957\cos 3\omega - 0.0897258\cos 2\omega - 0.41248674\cos \omega|$$