Network Motif Discovery: A GPU Approach

Wenqing Lin^{†‡}, Xiaokui Xiao[‡], Xing Xie[§], Xiao-Li Li[†]

[†]A*STAR, Singapore, {linw, xlli}@i2r.a-star.edu.sg

[‡]NTU, Singapore, xkxiao@ntu.edu.sg

[§]Microsoft Research Asia, xing.xie@microsoft.com

Abstract— The identification of network motifs has important applications in numerous domains, such as pattern detection in biological networks and graph analysis in digital circuits. However, mining network motifs is computationally challenging, as it requires enumerating subgraphs from a real-life graph, and computing the frequency of each subgraph in a large number of random graphs. In particular, existing solutions often require days to derive network motifs from biological networks with only a few thousand vertices. To address this problem, this paper presents a novel study on network motif discovery using Graphical Processing Units (GPUs). The basic idea is to employ GPUs to parallelize a large number of subgraph matching tasks in computing subgraph frequencies from random graphs, so as to reduce the overall computation time of network motif discovery. We explore the design space of GPU-based subgraph matching algorithms, with careful analysis of several crucial factors that affect the performance of GPU programs. Based on our analysis, we develop a GPU-based solution that (i) considerably differs from existing CPU-based methods, and (ii) exploits the strengths of GPUs in terms of parallelism while mitigating their limitations in terms of the computation power per GPU core. With extensive experiments on a variety of biological networks, we show that our solution is up to two orders of magnitude faster than the best CPU-based approach, and is around 20 times more cost-effective than the latter, when taking into account the monetary costs of the CPU and GPUs used.

I. Introduction

Given a graph G, a *network motif* in G is a subgraph g of G, such that g appears much more frequently in G than in *random graphs* whose degree distributions are similar to that of G [1]. The identification of network motifs finds important applications in numerous domains. For example, network motifs are used (i) in system biology to predict protein interactions in biological networks and discover functional sub-units [2], (ii) in electronic engineering to understand the characteristics of circuits [3], and (iii) in brain science to study the functionalities of brain networks [4].

Numerous techniques [5]–[13] have been proposed to identify network motifs from sizable graphs. Roughly speaking, all existing techniques adopt a common two-phase framework as follows:

- Subgraph Enumeration: Given a graph G and a parameter k, enumerate the subgraphs g of G with k vertices each;
- Frequency Estimation: For each subgraph g identified in the subgraph enumeration phase, estimate its expected frequency (i.e., expected number of occurrences) in a random graph with identical degree distribution to G; if g's frequency in G is significantly higher than the expected frequency in a random graph, then return g as a motif.

The above framework, albeit conceptually simple, is difficult to implement efficiently due to the significant computation overhead incurred by the frequency estimation phase. Specifically, to estimate the expected frequency of a subgraph g in a random graph, the standard approach [10] is to generate a sizable number r of random graphs (e.g., r = 1000), and then take the average frequency of g in those graphs as an estimation. To compute the frequency of g in a random graph G', however, we need to derive the number of subgraphs of G that are isomorphic to g – this requires a large number of subgraph isomorphism tests [14], which are known to be computationally expensive. The high costs of subgraph isomorphism tests, coupled with the large number r of random graphs, render the frequency estimation phase a computational challenge. Existing techniques attempt to resolve this issue by improving the efficiency of subgraph isomorphism tests, but only achieve limited success. As shown in Section VII, even the state-of-the-art solutions require days to derive network motifs from graphs with only a few thousand vertices.

Motivated by the deficiency of existing work, we present an in-depth study on efficient solutions for network motif discovery. Instead of focusing on the efficiency of individual subgraph isomorphism tests, we propose to utilize Graphics Processing Units (GPUs) to parallelize a large number of isomorphism tests, in order to reduce the computation time of the frequency estimation phase. This idea is intuitive, and yet, it presents a research challenge since there is no existing algorithm for testing subgraph isomorphisms on GPUs. Furthermore, as shown in Section III, existing CPU-based algorithms for subgraph isomorphism tests cannot be translated into efficient solutions on GPUs, as the characteristics of GPUs make them inherently unsuitable for several key procedures used in CPU-based algorithms.

To address above challenges, we propose a novel subgraph matching technique tailored for GPUs. Our technique adopts the filter-refinement paradigm, and is developed with careful considerations of three crucial factors that affect the performance of GPU programs, namely, load balancing on GPU cores, branch divergences in GPU codes, and memory access patterns on the GPU (see Section II-B). Based on those considerations, we make design choices that (i) drastically differ from existing CPU-based methods, but (ii) lead to superior efficiency on GPUs. In addition, our technique incorporates several optimization methods that considerably improve scalability and efficiency. We experimentally evaluate our solution against the state-of-the-art CPU-based methods on a variety of biological networks using two machines, each of which has a 500-dollar CPU, a low-end 300-dollar GPU, and a high-end 2700-dollar GPU. We show that, when running with the high-end (resp. low-end) GPU, our solution outperforms the best CPU-based approach by two orders of magnitude

(resp. one order of magnitude) in terms of computation efficiency. Furthermore, the *per-dollar* performance of our solution is roughly 20 times higher than that of the best CPU-based method. This note only establishes the superiority of our solution, but also demonstrates that, for network motif discovery, GPU-based methods are much more cost-effective than CPU-based ones.

In summary, we present the *first* study on GPU-based algorithms for network motif discovery, and make the following contributions. First, we analyze the deficiency of the existing CPU-based methods, and pinpoint the reasons that they cannot be translated into efficient algorithms on GPUs. Based on our analysis, we propose a novel solution that exploits the strengths of GPUs in terms of parallelism, and mitigates their limitations in terms of the computation power per GPU core. (Sections III, IV, and V)

Second, we develop three optimization techniques that improve the scalability of our solution, avoid under-utilization of GPU, and eliminate redundant computation. Together, those optimizations reduce the computation cost of our solution by 75%, and enable our solution to handle graphs that are ten times larger than those studied in previous work. (Section VI)

Finally, we empirically compare our solution against the state-of-the-art CPU-based methods, using the largest datasets ever tested in the literature of network motif discovery. We show that, even with a low-end GPU, our solution runs 10 times faster than the best CPU-based method, and this performance gap is further widen by 10-fold when a high-end GPU is used. Furthermore, our solution is around 20 times more cost-effective than the best CPU-based method, when taking into account the monetary costs of the CPU and GPUs used. (Section VII)

II. PRELIMINARIES

This section first defines several basic concepts and formalizes the network motif discovery problem, and then introduces the architecture of Graphics Processing Units (GPUs).

A. Problem Definition

Let G=(V,E) be a directed, unlabelled graph 1 with a set V of vertices and a set E of edges. For any two vertices u,v in V, we say that v is an out-neighbor of u if there is a directed edge from u to v, i.e., $(u,v) \in E$. Conversely, we refer to u as an in-neighbor of v. We define the in-degree (resp. out-degree) of u as the number of in-neighbors (resp. out-neighbors) of u. In addition, we define the bi-degree of u as the number of vertices that are both in-neighbors and out-neighbors of u, and we refer to those vertices as the bi-neighbors of u.

Let $g=(V_g,E_g)$ be a connected graph. We say that g is a subgraph of G (denoted by $g\subseteq G$), if and only if there exists at least one injective function $\zeta:V_g\to V$, such that (i) for any vertex $v\in V_g$, we have $\zeta(v)\in V$, (ii) for any edge $(u,v)\in E_g$, there is an edge $(\zeta(u),\zeta(v))\in E$. For each subgraph of G that is isomorphic to g, we refer to it as an

 1 We consider that G is directed and unlabelled, as it is a standard assumption in the literature. Nevertheless, our solution can be easily extended to handle undirected or labelled graphs.

occurrence of g in G. The frequency of g in G, denoted by f(g,G), is the total number of occurrences of g in G. g is a size-k subgraph, if it contains exactly k vertices.

We say that a graph G'=(V',E') is degree-equivalent to G, if and only if (i) |V'|=|V| and |E'|=|E|, and (ii) there exists a bijection $\psi:V\to V'$, such that for any node $v\in V$, v and $\psi(v)$ have the same in-degree, out-degree, and bi-degree.

Let \mathcal{G} denote the set of all graphs that are degree-equivalent to G. For any subgraph g of G, its expected frequency $\overline{f}(g)$ is defined as its average frequency in all graphs in \mathcal{G} , i.e.,

$$\overline{f}(g) = \frac{1}{|\mathcal{G}|} \sum_{G' \in \mathcal{G}} f(g, G'). \tag{1}$$

Note that the exact value of $\overline{f}(g)$ is difficult to compute due to the enormous size of \mathcal{G} . Following the standard practice in the literature [1], we estimate $\overline{f}(g)$ using a sample set of \mathcal{G} with r graphs, denoted as \mathcal{G}_r . The estimation thus obtained is

$$\widetilde{f}(g) = \frac{1}{r} \sum_{G' \in G_{\sigma}} f(g, G'), \tag{2}$$

and the corresponding sample standard deviation is

$$\widetilde{\sigma}(g) = \sqrt{\frac{1}{r-1} \sum_{G' \in \mathcal{G}_r} \left(f(g, G') - \widetilde{f}(g) \right)^2}.$$
 (3)

Definition 1 (Motif): Let $\theta > 0$ be a user-defined threshold. Given G, \mathcal{G}_r , and θ , a subgraph g of G is a **motif** of G, if and only if $\widetilde{\sigma}(g) > 0$ and

$$f(g,G) - \widetilde{f}(g) \ge \theta \cdot \widetilde{\sigma}(g).$$
 (4)

In other words, a motif of G is a subgraph of G that appears more frequently in G than in random graphs that are degree-equivalent to G.

Problem Statement. Given G, r > 0, k > 2, and $\theta > 0$, the problem of network motif discovery asks for all size-k motifs of G with respect to \mathcal{G}_r (i.e., a sample set of \mathcal{G} with r random graphs).

B. Graphics Processing Units

GPUs were initially designed for graphical processing, but are now widely used for general-purpose parallel computing, e.g., sorting [15] and data mining [16]. Figure 1 shows the general architecture of a GPU. Compared with a CPU (which usually contains only a few cores), a GPU can easily have thousands of computation units. Specifically, a GPU contains several multiprocessors (MPs), each of which has a large number of stream processors (SPs). The SPs in each multiprocessor work in single-instruction multiple-data (SIMD) manner, i.e., they execute the same instructions at the same time on different input data. Each MP has a small but fast memory that is shared by all of its SPs. In addition, all SPs in the GPU share accesses to a larger but slower global memory of the GPU. Data can be exchanged between GPU's global memory and the main memory via a high speed I/O bus (e.g., PCI-Express), albeit at a relatively slow rate.

Fig. 1. The general architecture of a GPU.

For parallel computing on GPUs, we adopt the Nvidia CUDA programming framework. In the following, we introduce several key concepts in CUDA, so as to facilitate our discussions in the subsequent sections.

Kernels. A CUDA program alternates between codes running on the CPU and those on the GPU. The latter are referred to as kernels, and they are invoked only by the CPU. Each kernel starts by transferring input data from the main memory to the GPU's global memory, and then processes the data on the GPU; after that, it copies the results from the GPU's global memory back to the main memory, and then terminates.

Thread Hierarchy. The GPU executes each kernel with a user-specified number of threads. The threads are divided into a number of *blocks*, each of which is assigned to one MP (and cannot be re-assigned at runtime). In turn, each MP divides an assigned block of threads into smaller *warps*, and executes each warp of threads concurrently. Note that threads in the GPU cannot communicate with each other directly, but are allowed to retrieve data from, or write data to, arbitrary locations of the GPU's global memory.

Branch Divergences. Due to the SIMD nature of the GPU's SPs, all threads on the GPU cannot execute different programs at a given time. As a consequence, if two threads in a warp have different execution paths, then the GPU would execute those paths sequentially. For example, suppose that a piece of GPU code contains a statement "if A then B, else C". For this statement, the GPU first asks each thread in a warp to evaluate condition A. Then, if A equals true in some threads, the GPU executes B on those threads; Meanwhile, the remaining threads in the warp remain idle, and they execute C only after all other threads finish performing B. Such branch divergence is detrimental to the efficiency of GPU programs and should be avoided whenever possible [17].

Memory Coalescing. Suppose that the threads in a warp request to access data in the GPU's global memory, and the set of data requested is stored in consecutive memory addresses. In that case, the MP responsible for the warp would retrieve all data with one memory access and then distribute them to each thread, instead of issuing one access for each thread individually. This is referred to as memory coalescing, and it helps reduce memory access overheads. In contrast, if the data to be accessed is stored in k disjoint memory spaces, then k random accesses are required. Thus, it is important that we carefully arrange data in the GPU's global memory, so that the data required by each warp resides in consecutive locations.

III. CPU-BASED METHODS REVISITED

This section revisits existing CPU-based methods for network motif discovery. Section III-A summarizes the existing methods, while Section III-B elaborates why they cannot be translated into efficient solutions on GPUs.

A. Summary of CPU-Based Methods

As mentioned in Section I, existing CPU-based methods [5], [8]–[13] for motif discovery typically run in two steps:

- 1) Subgraph enumeration: Compute the set S_k of all subgraphs in the input graph G, as well as the frequency f(g,G) of each subgraph g in G.
- 2) Frequency estimation: Generate a set \mathcal{G}_r of r random graphs that are degree-equivalent to G. For each subgraph $g \in S_k$ and each random graph $G' \in \mathcal{G}_r$, compute the frequency f(g, G') of g in G', and then determine whether g is a motif of G according to Equation 4.

Among the above two phases, frequency estimation incurs by far the highest overhead due to the large number of random graphs in \mathcal{G}_r that need to be examined. To alleviate this overhead, existing methods construct indices on the subgraphs in S_k for efficient subgraph search. In what follows, we first clarify the indices utilized by existing methods, and then explain the details of each phase.

CL-Index and AM-Index. Consider a random graph G' in \mathcal{G}_r . To derive subgraph frequencies in G', we need to identify, for any given subgraph g' in G', whether g' appears in S_k . For this purpose, existing methods index the subgraphs in S_k as follows. First, for each subgraph g in S_k , they compute the *canonical labeling* [14] of g, which is a sequence of numbers that uniquely identifies a graph, i.e., two graphs have the same canonical labeling if and only if they are isomorphic. A hash index, referred to as the *canonical labeling index* (*CL-index*), is built to map each canonical labeling to each subgraph $g \in S_k$.

Given the CL-index, we can determine whether a subgraph q' appears in S_k , by first computing the canonical labeling of g' and then checking whether the labeling appears in the CLindex. However, deriving the canonical labeling of q' is often computationally expensive. To mitigate this issue, existing methods construct an additional hash index, referred to as the adjacency matrix index (AM-index), that maps adjacency matrices to subgraphs in S_k . Specifically, for each subgraph gin S_k , the AM-index records the adjacency matrix of at least one graph that is isomorphic to g. (Note that two isomorphic graphs may have different adjacency matrices.) As such, when we are to check whether a subgraph g' is in S_k , we can first examine whether the adjacency matrix of g' is indexed by AM-index. If it is indexed, then we have $g' \in S_k$; otherwise, we proceed to compute the canonical labeling of g', and check if it appears in the CL-index. This filter-refinement approach leads to higher efficiency, as the adjacency matrix of g' is much easier to compute than its canonical labeling.

Phase 1: Subgraph Enumeration. To enumerate all size-k subgraphs in a given graph G, a naive approach is to examine all possible combinations of k vertices in G. This approach,

however, incurs prohibitive overheads due to the enormous number of vertex combinations that need to be inspected. In fact, most of the vertex combinations do not induce connected graphs, and hence, could have been ignored. (Recall that we require any subgraph to be connected.) Motivated by this, existing methods adopt the following heuristic to avoid inspecting all vertex combinations in subgraph enumeration. For each vertex v in G, they first identify a set nbr(v, k) of vertices that are at most k hops to v in G (regardless of the directions of the edges). Observe that if a size-k subgraph contains v, then all vertices in the subgraph must appear in $nbr(v,k) \cup \{v\}$. Accordingly, existing methods enumerate all size-k subgraphs containing v, by inspecting the combinations of k vertices in $nbr(v,k) \cup \{v\}$; if a vertex combination induces a connected graph g containing v, then g's adjacency matrix and canonical labeling are computed and inserted into the AM-index and CL-index, respectively. Once the k-hop neighborhood nbr(v, k) of each vertex v is processed, the subgraph enumeration step terminates.

Phase 2.1: Random Graph Generation. Existing methods adopt Monte Carlo techniques to generate random graphs that are degree-equivalent to G. The most well adopted technique is the *switching algorithm* [1], which runs in an iterative manner. In each iteration, the algorithm randomly selects two directed edges $\langle v_1, v_2 \rangle$ and $\langle v_3, v_4 \rangle$ from G, and then replaces them with two new edges $\langle v_1, v_4 \rangle$ and $\langle v_3, v_2 \rangle$, if the replacement does not result in a self-loop or two identical edges in G. The algorithm terminates after $\alpha |E|$ iterations, where α is a large pre-defined constant.

Phase 2.2: Frequency Computation. To compute the frequency of each subgraph $g \in S_k$ in each random graph $G' \in \mathcal{G}_r$, existing methods enumerate each size-k subgraph g' of G', and then utilize the AM-index and CL-index to check if it appears in S_k . In addition, if g' appears in the CL-index but not the AM-index, then its adjacency matrix m is inserted into the AM-index, so that any other subgraph with the same adjacency matrix can be efficiently processed without inspecting the CL-index. Once all size-k subgraphs from all random graphs are examined, the estimated frequency of each subgraph in S_k (with respect to \mathcal{G}_r) is computed, based on which the motifs of G are identified.

B. Difficulties in GPU Translations

The CPU-based methods reviewed in Section III-A are difficult to be adopted on GPUs, for three reasons. First, both phases of the existing methods require computing the canonical labelings of numerous subgraphs. The algorithms [14], [18] for computing canonical labelings, however, contain complicated execution paths with a large number of branches. As a consequence, if we are to directly adopt those algorithms on GPUs, the execution of the algorithms would be highly inefficient due to the effects of branch divergences (see Section II-B).

Second, CPU-based methods rely on the CL-index and AM-index to check whether a subgraph appears in S_k . If we adopt the same approach on a GPU, then we need to store the CL-

Algorithm 1: FreqComp

```
\begin{array}{l} \text{input}: g \in S_k \text{ and } G' \in \mathcal{G}_r \\ \text{output}: f(g,G') \\ \\ 1 \quad \text{[CPU]: Choose a matching order of the vertices in } g, \text{ denoted as } \\ \langle u_1,u_2,\ldots,u_k \rangle \text{ (see Section V-B);} \\ 2 \quad \text{Let } g(2) \text{ be the subgraph of } g \text{ induced by } \{u_1,u_2\}; \\ 3 \quad \text{[CPU]: Identify the set } C_2 \text{ of all subgraphs in } G' \text{ that are isomorphic to } g_2; \\ 4 \quad \text{for } i=3,\cdots,k \quad \text{do} \\ 5 \quad \text{Let } g(i) \text{ be the subgraph of } g \text{ induced by } \{u_1,u_2,\ldots,u_i\}; \\ 6 \quad \text{[GPU]: Based on } C_{i-1}, \text{ compute the set } C_i \text{ of subgraphs in } G \text{ that are isomorphic to } g(i) \text{ (see Algorithm 2);} \\ 7 \quad \text{return } |C_k|; \\ \end{array}
```

index and AM-index in the GPU's global memory, and ask each GPU thread to probe the indices for subgraph matching. In that case, the GPU threads in each warp are likely to access drastically different memory, which prevents the GPU from applying memory coalescing to reduce memory access costs. Furthermore, when G is large, the CL-index and AM-index can become so large that they do not even fit in the global memory of the GPU.

Finally, if we are to ask each GPU thread to examine whether a subgraph appears in S_k , then it is likely that some threads will incur considerably higher overheads than the others, since the subgraphs in random graphs may have much different structures. Therefore, there can be significant imbalance in the GPU threads' workload. In that case, all GPU threads in the same warp would need to wait for the slowest thread to finish, before they can be terminated to allow new GPU threads to be created. This leads to severe underutilization of the GPU's parallel processing power.

IV. SOLUTION OVERVIEW

As with existing CPU-based methods, our solution also consists a subgraph enumeration phase and a frequency estimation phase. In particular, the subgraph enumeration phase of our solution adopts the CPU-based method in [12], and the frequency estimation phase also utilizes the CPU-based switching algorithm [1] to generate the set \mathcal{G}_r of random graphs that are degree-equivalent to G. To compute the average frequency of each subgraph $g \in S_k$ with respect to \mathcal{G}_r , however, we employ a GPU-based algorithm that provides much higher efficiency than existing CPU-based methods. The reason that we focus on optimizing the computation of average subgraph frequency is that it incurs significantly higher overheads than the other components of our solution (due to the large number of random graphs to be processed). In the following, we present an overview of our GPU-based algorithm, assuming that G, S_k , and \mathcal{G}_r are given.

In a nutshell, our algorithm examines each pair of g and G' where $g \in S_k$ and $G' \in \mathcal{G}_r$, and it computes the frequency of g in G' with the FreqComp method in Algorithm 1. The algorithm first arranges the vertices in g in a certain sequence $\langle u_1, u_2, \ldots, u_k \rangle$ (Line 1), such that for any $i \in [2, k]$, u_1, u_2, \ldots, u_i induces a connected subgraph of g (denoted as g(i)). We refer to $\langle u_1, u_2, \ldots, u_k \rangle$ as a *matching order*, and we clarify how it is derived in Section V-B. After that, it

identifies all subgraphs of G' that are isomorphic to g(2), and stores them in a set C_2 (Lines 2-3).

The subsequent part of the algorithm runs in k-2 iterations (Lines 4-6), such that each iteration utilizes the GPU to transform C_{i-1} ($i \in [3,k]$) into C_i , i.e., the set of all subgraphs of G' that are isomorphic to g(i). Once C_k is computed, the algorithm terminates and returns $|C_k|$, which equals the frequency of g in G' (Line 7). We clarify the generation of C_i in Section V-B.

Compared with the existing CPU-based methods [5], [8]–[13], FreqComp does not compute any canonical labeling or construct any index on S_k , which helps avoid the branch divergence and memory coalescing issues that render existing methods inefficient on GPUs. Instead, FreqComp adopts an incremental approach that first identifies the subgraphs of G' that can be matched to parts of g (i.e., $g(2), g(3), \ldots, g(k-1)$), and then utilizes such "partial occurrences" of g to pinpoint the size-g subgraphs of g' that are isomorphic to g. This incremental approach is not as efficient as the CPU-based indexing methods in deciding whether a g subgraph of g' is isomorphic to g, but it is much more amendable to GPU paralellization.

It is noteworthy that FreqComp is similar in spirit to existing CPU-based algorithms [18]–[21] for subgraph isomorphism tests, which incrementally match the vertices in a small graph g to those in a larger graph G' to decide whether g appears in G'. However, FreqComp aims to decide the exact number of occurrences of g in G', whereas the algorithms in [18], [20], [21] only determine whether g has at least one occurrence in G'. Furthermore, as the algorithms in [18]–[21] are CPU-based, they involve complex execution paths, which render them unsuitable for GPU adoptions, due to the effect of branch divergences. In contrast, FreqComp is devised with careful considerations of GPUs' characteristics, which lead to design choices that drastically differ from those in [18]–[21], as we demonstrate in Section V.

V. GPU-BASED SUBGRAPH MATCHING

This section presents the details of the FreqComp algorithm. Section V-A clarifies how we represent each random graph G' in a GPU's global memory. Sections V-B and V-C elaborates each step of FreqComp. Section V-D proves FreqComp's correctness.

A. Representation of Graphs

We represent each random graph $G' \in \mathcal{G}_r$ using six arrays in the GPU's global memory, namely, E_{out} , E_{in} , E_{bi} , O_{out} , O_{in} , and O_{bi} . Each element in E_{out} (resp. E_{in}) is an ordered pair of vertices $\langle v_a, v_b \rangle$, such that v_b is an out-neighbor (resp. inneighbor) of v_a . Meanwhile, each element in E_{bi} is an ordered pair of vertices that are bi-neighbors of each other. All pairs in E_{out} , E_{in} , and E_{bi} are sorted by their first vertices, with ties broken based on the second vertices. As a consequence, the pairs with the same first vertices are stored as a block of consecutive elements in E_{out} , E_{in} , and E_{bi} . We refer to E_{out} , E_{in} , and E_{bi} as the edge arrays.

On the other hand, O_{out} is an array that maps each vertex in G' to its corresponding block in E_{out} . Specifically, for the i-th vertex v_i in G', if it has at least one out-neighbor, then the i-th element in O_{out} records the position of the first element in E_{out} where v_i is the first vertex. If v_i has no out-neighbor, however, then the i-th element in O_{out} is identical to the (i+1)-th element. For convenience, we append an extra element to the end of O_{out} , and set its value to the total number of elements in E_{out} plus one. We refer to O_{out} as the offset array for E_{out} . Accordingly, O_{in} and O_{bi} are the offset arrays for E_{in} and E_{bi} , respectively, and are defined in the same manner.

By the way O_{out} is constructed, if we are to identify the out-degree of the i-th vertex in G', then we can simply subtract the i-th element in O_{out} from the (i+1)-th element. The indegree (resp. bi-degree) of any vertex can be computed from O_{in} (resp. O_{bi}) in the same manner.

B. Construction of C_i

As mentioned in Section IV, the FreqComp algorithm first determines a matching order $\langle u_1, u_2, \ldots, u_k \rangle$ for the vertices in g, and then iteratively identifies the set C_i $(i \in [2, k])$ of subgraphs in G' that are isomorphic to g(i), i.e., the subgraph of g induced by $\{u_1, u_2, \ldots, u_i\}$. For ease of exposition, we defer the discussion of the matching order to end of Section V-B. In what follows, we first clarify the construction of C_i , assuming that $\langle u_1, u_2, \ldots, u_k \rangle$ are given.

Construction of C_2 . First, consider the case when i=2. If u_1 and u_2 are bi-neighbors, then C_2 consists of all 2-cycles in G'; otherwise, C_2 contains all forward (resp. backward) edges in G' if u_2 is an out-neighbor (resp. in-neighbor) of u_1 . In any of those three cases, C_2 can be constructed with a linear scan of E_{in} , E_{out} , or E_{bi} .

For each graph $c \in C_2$, we record the two vertices of the graph as an ordered pair, where the first and second vertices are mapped to u_1 and u_2 , respectively, in the isomorphism of c and g(2). In case that there exist multiple isomorphisms (i.e., when u_1 and u_2 are bi-neighbors), we store in C_2 one ordered pair of each mapping. In general, for graph $c \in C_i$ and each isomorphism of c and g(i), we store a sequence of i vertices in C_i , such that the j-th $(j \in [1,i])$ vertex in the sequence is the vertex in c mapped to u_j in the isomorphism. (We discuss in Section V-C how we may reduce the number of sequences in C_i without affecting the correctness of our solution.) For convenience, we refer to each sequence s in c is a size-s candidate, and we abuse notation by using s to refer to the graph that it represents.

Construction of C_3, C_4, \ldots, C_k . Next, suppose that we have constructed C_{i-1} $(i \in [3, k])$, based on which we are to compute C_i by launching a kernel on the GPU. Our basic idea is to invoke a large number of parallel GPU threads, such that each thread (i) examines a size-(i-1) candidate $c \in C_{i-1}$ and (ii) tries to transform c into a size-i candidate c^* by adding one vertex in G' into c.

To explain, recall that c is a size-(i-1) subgraph of G' that is isomorphic to g(i-1). Let v_j $(j \in [1, i-1])$ be the

Algorithm 2: BuildCi

```
\begin{array}{l} \textbf{input}: g, \ G', \ \text{and} \ C_{i-1} \\ \textbf{output}: \ C_i \\ \\ 1 \ \{A_o, A_v\} = \textit{InitArray} \ (g, \ C_{i-1}); \quad \textit{// see Algorithm 3} \\ 2 \ \{I, A_o'\} = \textit{GenCand}(A_o, A_v, g, G', C_{i-1}); \quad \textit{// see Algorithm 4} \\ 3 \ C_i = \textit{CleanCand}(I, \ A_o'); \quad \textit{// see Algorithm 5} \\ 4 \ \textbf{return} \ C_i; \end{array}
```

vertex in c that is mapped to u_j in g(i-1). To convert c into a graph isomorphic to g(i), a natural approach is to inspect each neighbor v of each v_j to see if v can be mapped to u_i . That is, we check whether the following condition holds:

• Vertex Validity Condition: For all $j \in [1, i-1]$, if u_j is an in-neighbor of u_i in g, then v_j is an in-neighbor of v_i ; furthermore, if u_j is an out-neighbor of u_i in g, then v_j is an out-neighbor of v_i .

If the above condition holds for v, the subgraph of G' induced by $\{v_1, \ldots, v_{i-1}, v\}$ must be isomorphic to g(i); accordingly, we can record the sequence $\langle v_1, \ldots, v_{i-1}, v \rangle$ as a size-i candidate in C_i .

To implement the above approach on a GPU, a straightforward method is to create one GPU thread for each neighbor v of a vertex in $c \in C_{i-1}$, to check whether the vertex validity condition holds for v. This method, however, requires different threads in the same warp to access the neighbors of different vertices v, which diminishes the chance of memory coalescing since the edges of different vertices are unlikely to reside in consecutive memory addresses. Furthermore, the method leads to workload unbalance among the threads, as different vertices v may have drastically different numbers of neighbors.

We address the above deficiencies with a more advanced method as follows. Without loss of generality, assume that u_i is an out-neighbor of a vertex u_{α} ($\alpha \in [1,i-1]$) in g. Then, for each vertex v in G' that is an out-neighbor of v_{α} , we create |E(v)| GPU threads, where E(v) is the set of all edges incident to v in G'. (We refer to v_{α} as the anchor vertex.) In particular, the ℓ -th thread examines the ℓ -th edge $e' \in E(v)$, and checks whether the following edge validity conditions hold simultaneously:

- 1) e' connects v to some v_i $(j \in [1, i-1])$ in c.
- 2) If e' is an outgoing edge from v, then u_j is an outneighbor of u.
- 3) If e' is an incoming edge to v, then u_j is an in-neighbor of u.

The thread returns *true* if all of the above conditions hold, and *false* otherwise. After all |E(v)| threads terminate, we count the number of threads that return *true*. If this number equals the number of edges incident to u_i , then we confirm that v satisfies the validity condition. In that case, we insert $\langle v_1, \ldots, v_{i-1}, v \rangle$ into C_i as a size-i candidate.

Compared with the straightforward method, the advanced method increases the total workload on GPU, since the latter examines all |E(v)| edges of each v, whereas the former only needs to perform $|E(u_i)|$ binary searches on v's edge lists. As a trade-off, however, the advanced approach has a much smaller running time for two reasons. First, it ensures a

Algorithm 3: InitArray

```
\begin{array}{l} \text{input}: g \text{ and } C_{i-1} \\ \text{output}: A_o \text{ and } A_v \\ 1 \text{ create arrays } A_{deg} \text{ and } A_v, \text{ both of size } |C_{i-1}|; \\ 2 \text{ for } each \ x = 1, 2, \ldots, |C_{i-1}| \text{ in parallel do} \\ 3 \text{ } & \text{let } c_x = \langle v_1, \ldots, v_{i-1} \rangle \text{ be the } x\text{-th graph in } C_{i-1}; \\ 4 \text{ } & \text{identify the vertex } v_\alpha \text{ in } c_x \text{ with the smallest non-zero relevant degree}; \\ 5 \text{ } & A_{deg}[x] \leftarrow \text{the relevant degree of } v_\alpha; \\ 6 \text{ } & A_v[x] \leftarrow v_\alpha; \\ 7 \text{ run a parallel prefix sum on } A_{deg}; \text{ let } A_o \text{ be the resulting array}; \\ 8 \text{ return } A_v \text{ and } A_o; \\ \end{array}
```

balanced workload for each GPU thread. Second, it facilitates memory coalescing, because (i) the threads in the same warp are likely to handle the neighbors of the same v, and (ii) the edges of v are stored in consecutive addresses.

It remains to discuss how we select the anchor vertex v_{α} ($\alpha \in [1, i-1]$) to start the exploration of candidate vertices v. For any $j \in [1, i-1]$, we define v_j 's relevant neighbor set as:

$$R(v_j) = \left\{ \begin{array}{ll} v_j\text{'s out-neighbor set,} & \text{if } u_i \text{ is } u_j\text{'s out-neighbor;} \\ v_j\text{'s in-neighbor set,} & \text{if } u_i \text{ is } u_j\text{'s in-neighbor;} \\ v_j\text{'s bi-neighbor set,} & \text{if } u_i \text{ is } u_j\text{'s bi-neighbor;} \\ \emptyset, & \text{otherwise.} \end{array} \right.$$

We also define $|R(v_j)|$ as the *relevant degree* of v_j . Observe that (i) we can set $v_\alpha = v_j$ only if $R(v_j) \neq \emptyset$, and (ii) if $v_\alpha = v_j$, then the advanced method needs to explore $|R(v_j)|$ of v_j 's relevant neighbors. To minimize the number of vertices that need to be explored, we set v_α to the vertex in c with the smallest *non-zero* relevant degree.

Implementation. Algorithm 2 shows the pseudo-code of our method (dubbed BuildCi) for constructing C_i from C_{i-1} ($i \in [3,k]$). The algorithm first invokes the InitArray function (Algorithm 3) to create two arrays A_v and A_o . In particular, A_v stores $|C_{i-1}|$ vertices, such that the x-th vertex is the anchor vertex in the x-th graph in C_{i-1} . Meanwhile, A_o records $|C_{i-1}|$ offset values, such that the x-th offset equals the sum of the relevant degrees of first x vertices in A_v . These offsets are used to indicate the memory locations where the GPU threads in the subsequent step should write their outputs to.

Next, BuildCi feeds A_v and A_o as inputs to the GenCand function (Algorithm 4). Let c_x denote the x-th graph in C_{i-1} . GenCand examines each $c_x = \langle v_1, \ldots, v_{i-1} \rangle$, and retrieves from A_v the anchor vertex v_α in c_x . For each vertex v in the relevant neighbor set of v_α , GenCand regards $\langle v_1, \ldots, v_{i-1}, v \rangle$ as a potential size-i candidate, and uses a GPU thread to write it into an array I. In addition, GenCand creates an array A'_{deg} , where the j-th element equals the number of edges incident to the vertex v associated with the j-th element in I. It then generates an array A'_{o} of offset values, by computing the prefix sum of A'_{deg} . Finally, it returns I and A'_{o} .

Finally, BuildCi applies the RefineCand function (Algorithm 5) to refine the potential size-i candidates in I. In particular, for each $\langle v_1, \ldots, v_{i-1}, v \rangle$ recorded in I, RefineCand creates |E(v)| GPU threads, each of which (i) checks whether an edge of v satisfies all of the edge validity conditions, and (ii) writes the result of the check into an array B. Then,

Algorithm 4: GenCand

```
 \begin{array}{c} \text{input}: A_o, A_v, g, G', \text{ and } C_{i-1} \\ \text{output}: I \text{ and } A'_o \\ 1 \text{ let } \theta \text{ be the last element of } A_o; \\ 2 \text{ create arrays } A'_{deg} \text{ and } I, \text{ both of the size } \theta; \\ 3 \text{ for } each \ y = 1, 2, \ldots, \theta \text{ in parallel do} \\ 4 \text{ identify the integer } x \text{ such that } A_o[x] \leq y < A_o[x+1]; \\ 5 \text{ let } c_x \text{ be the } x\text{-th graph in } C_{i-1}; \\ 6 \text{ let } v_\alpha \text{ be the vertex recorded in } A_v[x]; \\ 7 \text{ let } z = y - A_o[x]; \\ 8 \text{ } v \leftarrow \text{ the } z\text{-th vertex in } v_\alpha \text{'s relevant neighbor set;} \\ 9 \text{ } I[y] \leftarrow \langle v_1, \ldots, v_{i-1}, v \rangle; \\ 10 \text{ } A'_{deg}[y] \leftarrow \text{ the number of edges incident to } v \text{ in } G'; \\ 11 \text{ run a parallel prefix sum on } A'_{deg}; \text{ let } A'_o \text{ be the resulting array;} \\ 12 \text{ return } I \text{ and } A'_o; \\ \end{array}
```

RefineCand examines B to identify those vertices v that has $E(u_i)$ edges passing the validity check; for each such v, it inserts $\langle v_1, \ldots, v_{i-1}, v \rangle$ into C_i as a size-i candidate. After that, the algorithm returns C_i and terminates.

Matching Order. We now discuss how we decide the matching order for the vertices in g. In general, we aim to select a matching order that minimizes the sizes of C_i $(i \in [2, k-1])$, so as to reduce computation overheads. That is, we aim to arrange the vertices in g into a sequence u_1, u_2, \ldots, u_k , such that each subgraph induced by u_1, u_2, \ldots, u_j $(j \in [2, k])$ has as fewer occurrences in G' as possible. This problem has been studied in the context of subgraph isomorphism tests, and there exist several CPU-based heuristic solutions [18]–[21]. In our solution, we adopt the CPU-based technique in [21] for choosing a matching order for g. We do not consider GPU-based techniques, since the costs of generating matching orders are insignificant when compared with the overheads of the other parts of our solution.

C. Avoiding Duplicates

Let g_i' be an occurrence of g_i in G'. As mentioned in Section V-B, if there are multiple isomorphisms of g_i' and g_i , then we record each isomorphism as a vertex sequence in C_i . This could lead to an excessive number of vertex sequences in C_i . For example, if g_i is a clique, then there exist i! isomorphisms of g_i and g_i' , which result in i! vertex sequences in C_i . Previous work [6] addresses this problem with technique that exploits graph automorphism, and we adopt the same technique in our GPU-based solution. To explain, we first introduce the concept of automorphism groups.

Definition 2 (Automorphism Groups): An **automorphism group** of g is a set A of ordered pairs that satisfy the following conditions:

- 1) The two elements in each order pair are vertices in g.
- 2) In each ordered pair (u, u'), the vertex ID of u is smaller than that of u'.
- 3) The set of edges in g remains unchanged even if, for each ordered pair $(u, u') \in A$, we exchange u and u' in all edges incident to u or u'.

For example, consider the graph g_1 in Figure 2, assuming that the ID of each node u_i $(i \in [1,6])$ equals i. $A_1 = \{(u_1, u_2)\}$ is an automorphism group of g_3 because (i) there

Algorithm 5: RefineCand

```
input : I and A'_{\alpha}
    output: C_i
 1 let \gamma be the number of edges incident to u_i in g ;
 2 create an array B of size \gamma \cdot |I|, with all elements set to 0 ;
   let \theta' be the value of the last element of A'_{o};
   for each z = 1, 2, \dots, \theta' in parallel do
          identify the integer y such that A'_{o}[y] \leq z < A'_{o}[y+1];
          let \ell = z - A'_o[y];
          let \langle v_1, \ldots, v_{i-1}, v \rangle be the y-th element of I;
          let e' be the \ell-th edge incident to v in G';
          let v^{\prime} be the node that is connected to v by e ;
          if there exists v_j = v' (j \in [1, i-1]) then
10
                scan the edges of u;
11
                if the \beta-th edge e connects u to u_i then
12
                      if (e starts from v and e' starts from u) or (e starts from v_j and
13
                         starts from u_j) then
14
                           B[y \cdot \gamma + \beta] = 1;
15 create an array B^* of size |I| with all elements set to 0;
16 for each y=1,2,\ldots,|I| in parallel do 17 if B[y\times\gamma+\ell] equals 1 for each \ell\in[1,\gamma] then
           B^*[y] = 1;
18
19 run a parallel prefix sum on B^*; let A_o^* be the result;
20 let \theta^* be the last element of A_o^*;
21 create an array C_i of size \theta^*
22 for each y=1,2,\ldots,|I| in parallel do 23 if B^*[y] equals 1 then
           25 return C_i;
```


Fig. 2. A graph g_1 with several automorphism groups.

are only two edges in g_3 that are incident to u_1 or u_2 , namely, $\langle u_1, u_3 \rangle$ and $\langle u_2, u_3 \rangle$, and (ii) even if we exchange u_1 and u_2 into those two edges, we still have $\langle u_2, u_3 \rangle$ and $\langle u_1, u_3 \rangle$, i.e., the set of edges in g_3 remain unchanged. It can be verified that g_3 has another two automorphism groups $A_2 = \{(u_1, u_5), (u_2, u_6), (u_3, u_4)\}$ and $A_3 = \{(u_5, u_6)\}$.

Based on g's automorphism groups, we construct a *symmetry constraint set (SCS)* Q for g, which contains exactly one ordered pair from each automorphism group. For example, for the graph g_3 in Figure 2, $\{(u_1,u_2),(u_3,u_4),(u_5,u_6)\}$ is an SCS, since, as mentioned, (i) g_3 has three automorphism groups A_1, A_2 , and A_3 , and (ii) $(u_1,u_2) \in A_1, (u_3,u_4) \in A_2$, and $(u_5,u_6) \in A_3$.

Given an SCS Q for g, we impose the following symmetry constraint on each size-i candidate $c = \langle v_1, v_2, \dots, v_i \rangle$ in C_i :

• Symmetry Constraint: For any ordered pair $(u_x, u_y) \in Q$ with $1 \le x < y \le i$, the vertex v_x in c has a smaller ID than the vertex v_y does.

It is proved in [6] that even if there are multiple isomorphisms of g and a subgraph of G', only one of them satisfies the symmetry constraint given an SCS. Hence, imposing the symmetry constraint eliminates duplicates 2 in C_k , and ensures that the frequency of g can be correctly computed from C_k .

In our solution, we compute an SCS Q for g using the CPU-based algorithm in [6], and we impose the symmetry constraint

²It also reduces the number of duplicates in C_i $(i \in [2, k-1])$ but does not necessarily eliminate them, since an SCS is computed based on the automorphism groups of q instead of q(i).

on C_i during its generation in our GPU-based Algorithm 4. In particular, after Line 9 of Algorithm 4 constructs a potential size-i candidate $c = \langle v_1, v_2, \ldots, v_i \rangle$, we test whether c satisfies the symmetry constraint by inspecting all ordered pairs in Q that contain u_i . If c fails the test, then we set $A'_{deg}[y] = 0$ in Line 10; this ensures that c will be subsequently eliminated by the RefineCand function.

D. Correctness

The following lemma shows the correctness of our solution. Lemma 1: For any g and $G' \in \mathcal{G}_r$, Algorithm 1 correctly computes the frequency of g in G'.

Proof Sketch: To prove the lemma, we show that the set C_k constructed by Algorithm 2 contains exactly one vertex sequence for each occurrence of g in G'. First, due to the symmetry constraint approach [6] in Section V-C, C_k contains at most one vertex sequence for each occurrence of g in G'. Second, by an induction on i, we can prove that there is at least one vertex sequence in C_i for each occurrence of g_i in G', since (i) each occurrence of g_i in G' can be obtained by extending an occurrence of g_{i-1} in G' by one vertex, and (ii) Algorithm 2 considers all such extensions when constructing C_i from C_{i-1} .

VI. OPTIMIZATIONS

This section presents several crucial techniques for optimizing the performance of our GPU-based method.

A. Handling Large Candidate Sets

Our GPU-based solution requires generating a few intermediate results, e.g., the size-i candidate sets C_i and the temporary arrays (e.g., A_{deg} , A_o , I, B) utilized in Algorithms 3, 4, and 5. When G_r is sizable, those intermediate results could be too large to fit in the global memory of the GPU. To address this issue, one straightforward approach is to use the machine's main memory (and harddisk, if necessary) as a secondary storage for the GPU. In particular, if the intermediate results in the conversion from C_i to C_{i+1} $(i \in [2, k-1])$ exceed the size of the GPU memory, then we may store C_i in the main memory, and divide it into several subsets $C_i^{(1)}, C_i^{(2)}, \dots, C_i^{(\beta)}$, such that each subset is small enough to be processed by the GPU. After that, we transfer the subsets to the GPU one by one, and ask the GPU to (i) convert each subset $C_i^{(j)}$ into a partial set $C_{i+1}^{(j)}$ of size-(i+1) candidates and (ii) send each $C_{i+1}^{(j)}$ back to the main memory. Once all $C_{i+1}^{(j)}$ are produced, we take their union to obtain the size-(i+1) candidate set C_{i+1} .

The above approach, however, is inefficient as it requires numerous rounds of data transfers between the main memory and the GPU memory, which are only connected via a (relatively slow) I/O bus. To address this problem, we propose a divide-and-conquer approach that processes all data in the GPU's global memory, without utilizing the main memory as a secondary storage. To explain, assume that the GPU memory is sufficient to construct C_2, C_3, \ldots, C_i , but not C_{i+1} . That is, the GPU would first run out of memory when transforming

 C_i to C_{i+1} . We first clarify how our approach works when i = k - 2, and then extend our discussion to the general case.

Given C_{k-2} , we first invoke Algorithm 3 to obtain two arrays A_v and A_o . Recall that the j-th element of A_o equals the number of potential size-(k-1) candidates that we need to generate from the z-th graphs in C_{k-2} where $z \leq j$. Therefore, based on A_o , we can calculate the amount of memory required in processing each graph in C_{k-2} . Given this information, we divide C_{k-2} into subsets, such that each subset $C_{k-2}^{(j)}$ can be converted into a set $C_{k-1}^{(j)}$ of size-(k-1) candidates using a fraction λ of the vacant memory on the GPU. (We will discuss the setting of λ shortly.) Then, we process each $C_{k-2}^{(j)}$ in turn. Whenever a size-(k-1) candidate subset $C_{k-1}^{(j)}$ is generated, however, we do not transfer it to the main memory of the machine; instead, we use the remaining $1 - \lambda$ fraction of the vacant GPU memory to convert $C_{k-1}^{(j)}$ into a size-k candidate subset $C_k^{(j)}$. In case that this conversion requires more memory than available, we further divide $C_{k-1}^{(j)}$ into subsets and process each subset in turn, in the same manner as the processing of C_{k-2} . Once a subset of size-k candidates are produced, we record the size of the subset, and then delete the subset from the GPU memory to make room for the processing of other subsets of $C_{k-1}^{(j)}$. In summary, we partition the vacant memory of the GPU into two parts, and use them to pipeline the generation of size-(k-1) and size-k candidates.

In general, if we have sufficient GPU memory to construct C_2, \ldots, C_i but not C_{i+1} , we start pipelining right after C_i is generated. Specifically, we divide the vacant GPU memory into k-i parts, and assign the j-th part for the conversion from C_{i+j-1} to C_{i+j} . We heuristically set the size of the jth part to be λ fraction of the GPU memory that is vacant after the first j-1 parts are assigned, except that the last part utilizes all remaining GPU memory. To choose an appropriate value for λ , we model the total number of candidate subsets produced in the pipelining process (i.e., the total number of "splits" required on C_i, \ldots, C_{k-1}) as a function of λ , and we derive the λ that minimizes the function. The rationale is as follows: each candidate subset needs to be processed with a few GPU kernels, each of which takes a certain amount of time to start up; therefore, if the total number of candidate subsets is large, then the total start-up overhead of the GPU kernels would be significant, which leads to inferior efficiency.

Let M be the amount of vacant GPU memory right after C_i is constructed. Observe that, in the conversion from C_i to C_{i+1} , the total size of the intermediate results is $O(|C_i|)$. Given that we assign λM GPU memory for the conversion from C_i to C_{i+1} , the number of subsets of C_i generated is roughly proportional to $\frac{|C_i|}{\lambda M}$. By the same reasoning, the number of subsets of C_j (j>i) produced is approximately proportional to

$$\begin{cases} \frac{|C_j|}{\lambda \cdot (1-\lambda)^{j-i} \cdot M}, & \text{if } j \in [i+1, k-2]; \\ \frac{|C_{k-1}|}{(1-\lambda)^{k-i-1} \cdot M}, & \text{if } j = k-1. \end{cases}$$

Observe that $|C_{j+1}| \le d \cdot |C_j|$, where d is the maximum vertex degree in G. We consider that $|C_{j+1}| = d \cdot |C_j|$, in which case the total number of subsets produced in the pipelining process is roughly proportional to:

$$\left(\sum_{i=i}^{k-2} \frac{d^{j-i} \cdot |C_i|}{\lambda \cdot (1-\lambda)^{j-i} \cdot M}\right) + \frac{d^{k-i-1} \cdot |C_i|}{(1-\lambda)^{k-i-1} \cdot M}.$$
 (5)

It can be verified that Equation 5 is minimized when $\lambda = \frac{1}{k-i}$. Therefore, we set $\lambda = \frac{1}{k-i}$ in our solution.

B. Handling Multiple Graphs

Our previous discussions have focused on computing subgraph frequencies in one random graph $G' \in \mathcal{G}_r$. When G'contains relatively small numbers of vertices and edges, the frequency computation processes on G' may not engage all GPU cores, which leads to under-utilization of the GPU. We address this issue as follows. First, we divide the random graphs in \mathcal{G}_r into several groups, each of which contains μ graphs, where μ is a tunable parameter. After that, for each group R of random graphs, we regard it as a graph G^* consisting of |R| disjoint components, each of which is a graph in R. Then, we invoke our GPU-based frequency estimation method on G^* , with additional bookkeeping to (i) record the subgraph frequencies in each random graph separately, and (ii) ignore any subgraph of G^* that contains vertices from different graphs in R. In other words, we process the random graphs in each group in a batch manner, and thus, we avoid under-utilizing the GPU.

One crucial question remains: How do we decide the number μ of random graphs in each group? A naive approach is to set $\mu = |\mathcal{G}_r|$, i.e., we process all random graphs in \mathcal{G}_r in one batch. This, however, severely exacerbates the GPU memory issue discussed in Section VI-A, and leads to inferior efficiency. To tackle the problem, we choose μ using a heuristic method, as explained in the following. First, observe that for any subgraph g in G and any random graph $G' \in \mathcal{G}_r$, the size-2 candidate set of G' (i.e., C_2) has a size at most $\mu \cdot m$, where m is the number of edges in G'. In addition, each size-2 candidate in C_2 leads to at most d possible size-3 candidates in Algorithm 4, where d is the maximum vertex degree in G. Given $\mu \cdot m$ and d, we can derive an upperbound τ of the amount of GPU memory required in the conversion from C_2 to C_3 , and we set μ to the maximum integer such that the upperbound τ no more than $\frac{1}{k-2}$ fraction of the vacant GPU memory. In other words, we ensure that the conversion from C_2 to C_3 can be performed without invoking the divide-and-conquer method in Section VI-A, which helps avoid overloading the GPU. Although such a μ thus obtained does not guarantee that the GPU won't be overloaded in the computation of C_4, C_5, \ldots, C_k , we find that it leads to satisfactory performance in our experiments.

C. Matching Tree

Let g and g' be two size-k subgraphs of G (i.e., $g, g' \in S_k$) that differ in only one node. Further assume that the matching orders of g and g' share a common prefix of length k-1, e.g.,

Fig. 3. Illustration of a matching tree.

 $g_1 = \langle u_1, \dots, u_{k-1}, u_k \rangle$ and $g_2 = \langle u_1, \dots, u_{k-1}, u_k' \rangle$. Then, when we compute the frequency of g in a random graph $G' \in \mathcal{G}_r$ (i.e., f(g,G')), the size-(k-1) candidate set would be the same as in the computation of the frequency of f(g',G'). In other words, the computation of f(g,G') overlaps significantly with that of f(g',G').

Generally, if two graphs in S_k share a common prefix in their matching order, then the frequency estimation processes for the two graphs share a common component. A natural question is: How can we avoid redundant computation in the processing of such "similar" graphs? We answer this question with a method that carefully arranges the order in which we process the graphs in S_k .

Specifically, we first compute the matching order for every graph in S_k . After that, we organize all matching orders into a prefix tree, referred as the *matching tree*. Then, we perform a depth-first search (DFS) on the matching tree, and we process the graphs in S_k in the order in which they are encountered during the DFS. We refer to such a sequence of graphs induced by the DFS as the *DFS order*.

For example, Figure 3 illustrates 5 graphs in an S_k with k=4, as well as a matching tree for S_k . The DFS order corresponding to the matching tree is $g_1,g_2,g_3,g_4,g_5,\ldots$ Given this DFS order, we avoid redundant computation in processing g_i ($i \in [1,5]$) as follows. First, given any random graph $G' \in \mathcal{G}_r$, we compute g_1 's size-2 candidate set C_2 and size-3 candidate set C_3 . Based on C_3 , we derive the occurrences of g_1 in G', as well as those of g_2 and g_3 , i.e., we avoid recomputing C_3 for g_2 and g_3 . This is feasible since the matching orders of g_1 , g_2 , and g_3 share a common prefix $\langle u_1, u_2, u_3 \rangle$. After that, we reuse C_2 to the derive the size-3 candidate set C'_3 for g_4 (as g_1 and g_4 have a common prefix of length 2), and then utilize C'_3 to compute $f(g_4, G')$ and $f(g_5, G')$ in one batch.

In general, for any size-i ($i \geq 2$) candidate set C_i that corresponds to a node p_i in the matching tree, we compute C_i only once and reuse it for deriving the occurrences of any graph in S_k that corresponds to a leaf node in the subtree under p_i . As such, we avoid all redundant computation of candidate sets. The downside of this approach is that it requires retaining C_i until all graphs in the subtree of p_i are processed, but this issue can be easily addressed with the divide-and-conquer method in Section VI-A. That is, we divide C_i into several subsets and process each subset in turn. For each subset $C_i^{(j)}$, we derive the occurrences of all graphs depending on $C_i^{(j)}$, and transfer the relevant results to the main memory of the

TABLE I SPECIFICATIONS OF E5645, Q2000, AND K20C.

Name	# of cores	Core freq.	GPU memory	Price (USD) ³
E5645	6	2400MHz	N/A	513.39
Q2000	192	625MHz	1GB	277.77
K20	2496	706MHz	5GB	2695.00

machine. After that, we remove $C_i^{(j)}$ from the GPU's memory and use the freed space to process the next subset $C_i^{(j+1)}$.

VII. EXPERIMENTS

A. Experimental Settings

We implement our GPU-based algorithm for network motif discovery (dubbed NemoGPU) in C++ under Nvidia CUDA 5.5, and compare it against four state-of-the-art CPU-based algorithms: Kavosh [8], OuateXelero [10], NetMode [11], and DistributedNM [12]. We adopt the C++ implementations of Kavosh, QuateXelero, and NetMode made available by their respective inventors, and we implement DistributedNM in C++ with multi-core optimizations. All of our experiments are conducted on two machines with identical hardware and software configurations. In particular, each machine runs CentOS 5.0. and has 32GB main memory, an Intel Xeon E5645 CPU, a low-end Nvidia Quadro 2000 (Q2000) GPU, as well as a highend Nvidia Telsa K20 GPU. Table I shows the specifications of the CPU and GPUs. We run NetMode, DistributedNM, and the CPU part of NemoGPU with 6 threads (i.e., one thread per CPU core), but Kavosh and QuateXelero with only one thread as their implementations do not support parallelism. The GPU part of NemoGPU is ran on Q2000 and K20 separately.

We use seven biological networks in our experiments, as shown in Table II. In particular, Yeast (YE) is the transcription network of yeasts; *H.sapiens* (HS) captures the proteinprotein interaction (PPI) in the MINT dataset; YeastPPI (YP), M.musculus (MM), and D.melanogaster (DM) are the PPI networks of the budding yeast, fly genes, and mouse genes, respectively; A.thaliana (AT) describes the shared domains in Arabidopsis proteins; C.elegans (CE) represents the coexpression of worm genes. YE and YP are obtained from [22], while the other datasets are available from [23]. Our datasets are relatively small compared with those (with millions of nodes and edges) used in the literature of graph databases [19], [24], but we note that (i) biological networks are typically small, and (ii) identifying network motifs from our data is highly challenging due to the large number of random graphs that we need to process, and the huge number of subgraph isomorphism tests required. Furthermore, to our knowledge, YP is the largest dataset used in the previous work on network motif discovery [5]-[11]. In other words, the datasets that we use are up to one order of magnitude larger than those used in previous work, in terms of the numbers of nodes and edges.

Following previous work [6], [9], [11], [12], we vary k (i.e., the size of the network motifs to be discovered) from 4 to 8, and set the default value of r (i.e., the number of random graphs) to 1000. However, if an algorithm's running time exceeds 24 hours in an experiment, then we reduce r to 100 for that particular algorithm in the experiment, and measure

TABLE II DATASETS.

Name	V	E	AVG deg.	MAX out-deg.	MAX in-deg.
YE	688	1,079	3.14	71	13
HS	1,509	5,598	7.42	71	45
YP	2,361	6,646	5.63	64	47
MM	4,293	7,987	3.72	91	111
DM	6,303	18,224	5.78	88	122
AT	9,216	50,669	11.00	58	89
CE	17,179	124,599	14.51	67	107

its computation time t_1 (resp. t_2) for the first (resp. second) phase of network motif discovery; after that, we estimate the running time of the algorithm for r=1000 as $t_1+10\cdot t_2$. That said, if the algorithm does not terminate within 24 hours even when r=100, then we omit it from the experiment. We repeat each experiment 3 times and report the average computation cost of each method.

B. Comparisons with CPU-Based Techniques

In the first set of experiments, we evaluate the computation time of all algorithms on all datasets, setting k=6. Figure 4 illustrates the results. As shown in Figure 4a, our NemoGPU algorithm, when running with the high-end K20 GPU, outperforms all CPU-based methods by two orders of magnitude in terms of computation efficiency, regardless of the dataset used. When running with the low-end Q2000 GPU, NemoGPU is approximately ten times slower than with K20, as Q2000 has a much smaller GPU memory and considerably few GPU cores. However, even with Q2000, NemoGPU is still significantly more efficient than all CPU-based solutions. Among the CPU-based methods, NetMode and DistributedNM yield similar performance, with the latter slightly outperforming the former in most cases. Meanwhile, Kavosh and QuateXelero incur noticeably larger overheads than NetMode and DistributedNM.

Figure 4b and 4c illustrate the running time of each algorithm's first and second phases, respectively. Observe that, for all algorithms, the computation overhead of the first phase is negligible compared with that of the second phase, which justifies our choice of optimizing only the second phase in our GPU-based solution. The first phase of *NemoGPU* incurs exactly the same overhead as *DistributedNM* does, since they adopt the same CPU-based algorithm for the first phase, as mentioned in Section IV.

To more clearly illustrate the superiority of our GPU-based solution, we compute the *improvement ratio* of *NemoGPU* over *DistributedNM* (i.e., the most efficient CPU-based method), defined as the running time of the latter divided by that of the former. Figure 6a shows the improvement ratio of *NemoGPU* when k=6, on all datasets except CE (as *DistributedNM* fails to terminate on CE). On the other hand, we also take into account the price differences among the CPU and GPUs, and compute the *performance-price ratio* of *NemoGPU*, defined as

Improvement ratio of $NemoGPU \times \frac{\text{Price of the E5625 CPU}}{\text{Price of the GPU}}$.

Figure 6b plots the performance-price ratio of *NemoGPU* with Q2000 and K20. The ratio for K20 (resp. Q2000) is up to 33 (resp. 27), and is above 18 (resp. 15) in all cases. This indicates that both K20 and Q2000 yield much higher "performance per

³These prices were obtained from Amazon.com in August 2014.

(a) Improvements over DistributedNM. (b) Per

Fig. 6. NemoGPU (with Q2000 and K20) vs. DistributedNM.

dollar" than the E5625 CPU does. In other words, if one is to improve the efficiency of network motif discovery, it is much more economical to invest in GPUs instead of CPUs.

Next, we evaluate the effects of k on the efficiency of network motif discovery. Figure 5 shows the computation time of each algorithm as a function of k, using datasets YE, HS, YP, and MM. We omit DM, AT, and CE from this experiment, as all CPU-based methods incur prohibitive overheads on those datasets. In addition, we omit NetMode when k>6, since it is exclusively designed for the cases when $k\leq 6$. As shown in Figure 5, our GPU-based solutions still outperform all CPU-based methods by large margins, regardless of the value of k. In particular, when running with K20, NemoGPU is more than 250 times faster than DistributedNM for $k\geq 7$.

C. Effects of Optimizations

Finally, we evaluate the effects of the three optimization techniques proposed in Section VI: the divide-and-conquer (DC) method for handling large candidate sets, the graph merging (GM) technique for processing multiple random graphs simultaneously, and the matching tree (MT) approach for avoiding redundant computation. We consider three "crippled" versions of *NemoGPU* on K20: one with all three optimization disabled (denoted as *NA*), one with only DC enabled (denoted as *DC*), and one with only DC and GM enabled (denoted as *DC-GM*). For each crippled version of *NemoGPU*, we define its *relative overhead* on a dataset *D* as its running time on *D* divided by the running time of *NemoGPU* with all three optimizations enabled.

Figure 7 shows the relative overheads of DC-GM, DC, and NA on each dataset. DC-GM's relative overhead is around 2 in all cases, which indicates that the MT optimization reduces the running time of NemoGPU by half. Meanwhile, the relative overhead of DC is roughly two times that of DC-GM, implying that the GM optimization improves the efficiency of NemoGPU by a factor of 2. On the other hand, NA's relative overhead is slightly lower than that of DC on the two smallest datasets, YE and HS. The reason is that the pipelining approach employed by DC incurred additional costs in terms of the running time of *NemoGPU*. However, *NA* fails to handle any of the four larger graphs due to its excessive demand on the GPU's global memory. This shows that, although DC entails additional overheads, it is crucial for the scalability of *NemoGPU*. In summary, the three optimizations in Section VI improve the efficiency of NemoGPU by four-fold, and help scale NemoGPU to large graphs whose candidate sets do not fit in the GPU memory.

VIII. RELATED WORK

A plethora of CPU-based techniques [5]–[12], [25] have been proposed for network motif discovery. As discussed in Section III, those techniques typically utilize indices and complex algorithms to improve the efficiency of individual subgraph isomorphism tests in the frequency estimation phase, which make them unsuitable for GPU adoption. Furthermore, as we show in Section VII, our GPU-based solution significantly outperforms the state-of-the-art CPU-based methods in terms of both computation efficiency and cost-effectiveness.

Besides the aforementioned algorithms, there exist a number of CPU-based algorithms [26]–[28] for approximate network motif discovery. The basic idea is to heuristically sample subgraphs from the input graph G and the random graphs in G_r , and then identify motifs from the those samples. Those algorithms are generally more efficient than conventional methods for network motif discovery, but due to their heuristic nature, they fail to provide any quality guarantees on the results produced.

Fig. 7. Effects of optimization vs. dataset.

In addition, there are several recent studies [29], [30] on $subgraph\ listing$, i.e., identify the occurrences of a query graph g in a large graph G. Although this problem is closely related to network motif discovery, the techniques in [29], [30] focus on the scenario where G is a sizable graph (with billions of nodes and edges) that does not fit in the main memory of a single machine, and they employ distributed systems (e.g., MapReduce) to address the scalability issues that arise from this particular scenario. In contrast, in network motif discovery, we focus on the case where (i) G is relatively small, but (ii) there exist a large number of random graphs whose subgraphs need to be compare with those in G. As a consequence, the techniques in [29], [30] are not suitable for network motif discovery.

Finally, there exist numerous techniques for frequent subgraph mining (see [24] for a survey) and significant subgraph mining [31]–[33], but those two problems are considerably different from network motif discovery. In particular, in frequent subgraph mining, we are given a set of graph \mathcal{G} , and we aim to identify the subgraphs that appear in a large portion of the graphs in \mathcal{G} , disregarding the number of occurrences of each subgraph g in each individual graph. Similarly, significant subgraph mining also focuses on the portion of graphs in \mathcal{G} where each subgraph g appears, and it quantifies the significance of g based on this portion instead of the frequency of g in each graph in \mathcal{G} . Therefore, algorithms for frequent subgraph mining and significant subgraph mining are inapplicable for identifying network motifs.

IX. CONCLUSIONS

This paper studies the problem of network motif discovery, and proposes the first GPU-based solution to the problem. Our solution is considerably different from the existing CPU-based method, due to the design choices that we make to exploit the strengths of GPUs in terms of parallelism and mitigate their limitations in terms of the computation power per GPU core. With extensive experiments on a variety of biological networks, we show that our solution is up to two orders of magnitude faster than the best CPU-based approach, and is around 20 times more cost-effective than the latter, when taking into account the monetary costs of the CPU and GPUs used. For future work, we plan to investigate how our solution can be extended to other network analysis tasks.

ACKNOWLEDGEMENT

Xiaokui Xiao was supported by a grant (ARC19/14) from MOE, Singapore and a gift from Microsoft Research Asia.

REFERENCES

 R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, "Network motifs: simple building blocks of complex networks." *Science*, vol. 298, no. 5594, pp. 824–827, October 2002.

- [2] R. Sole and S. Valverde, "Are network motifs the sprandrels of cellular complexity?" *Trends Ecol. Evol.*, vol. 21, no. 8, pp. 419–422, 2006.
- [3] S. Itzkovitz, R. Levitt, N. Kashtan, R. Milo, M. Itzkovitz, and U. Alon, "Coarse-graining and self-dissimilarity of complex networks," *Phys. Rev. E*, vol. 71, p. 016127, 2005.
- [4] O. Sporns and R. Ktter, "Motifs in brain networks," PLoS Biol, vol. 2, no. 11, p. e369, 10 2004.
- [5] S. Wernicke and F. Rasche, "Fanmod: a tool for fast network motif detection," *Bioinformatics*, vol. 22, no. 9, pp. 1152–1153, 2006.
- [6] J. A. Grochow and M. Kellis, "Network motif discovery using subgraph enumeration and symmetry-breaking," in RECOMB, 2007, pp. 92–106.
- [7] S. Omidi, F. Schreiber, and A. Masoudi-Nejad, "MODA: an efficient algorithm for network motif discovery in biological networks." *Genes* & genetic systems, vol. 84, no. 5, pp. 385–395, 2009.
- [8] Z. R. M. Kashani, H. Ahrabian, E. Elahi, A. Nowzari-Dalini, E. S. Ansari, S. Asadi, S. Mohammadi, F. Schreiber, and A. Masoudi-Nejad, "Kavosh: a new algorithm for finding network motifs," *BMC Bioinformatics*, vol. 10, p. 318, 2009.
- [9] P. M. P. Ribeiro and F. M. A. Silva, "g-tries: an efficient data structure for discovering network motifs," in SAC, 2010, pp. 1559–1566.
- [10] S. Khakabimamaghani, I. Sharafuddin, N. Dichter, I. Koch, and A. Masoudi-Nejad, "Quatexelero: An accelerated exact network motif detection algorithm," *PLoS ONE*, vol. 8, no. 7, p. e68073, 07 2013.
- [11] X. Li, D. S. Stones, H. Wang, H. Deng, X. Liu, and G. Wang, "Netmode: Network motif detection without nauty," *PLoS ONE*, vol. 7, no. 12, p. e50093, 12 2012.
- [12] P. M. P. Ribeiro, F. M. A. Silva, and L. M. B. Lopes, "Parallel discovery of network motifs," JPDC, vol. 72, no. 2, pp. 144–154, 2012.
- [13] T. Wang, J. W. Touchman, W. Zhang, E. B. Suh, and G. Xue, "A parallel algorithm for extracting transcription regulatory network motifs," in *BIBE*, 2005, pp. 193–200.
- [14] B. D. McKay and A. Piperno, "Practical graph isomorphism, ii," *J. Symb. Comput.*, vol. 60, pp. 94–112, 2014.
- [15] E. Sintorn and U. Assarsson, "Fast parallel gpu-sorting using a hybrid algorithm," JPDC, vol. 68, no. 10, pp. 1381–1388, 2008.
- [16] W. Fang, M. Lu, X. Xiao, B. He, and Q. Luo, "Frequent itemset mining on graphics processors," in *DaMoN*, 2009, pp. 34–42.
- [17] T. D. Han and T. S. Abdelrahman, "Reducing branch divergence in gpu programs," in GPGPU, 2011, p. 3.
- [18] X. Yan and J. Han, "gspan: Graph-based substructure pattern mining," in *ICDM*, 2002, pp. 721–724.
- [19] W.-S. Han, J. Lee, and J.-H. Lee, "Turbo_{iso}: towards ultrafast and robust subgraph isomorphism search in large graph databases," in *SIGMOD Conference*, 2013, pp. 337–348.
- [20] J. R. Ullmann, "An algorithm for subgraph isomorphism," J. ACM, vol. 23, no. 1, pp. 31–42, 1976.
- [21] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, "Taming verification hardness: an efficient algorithm for testing subgraph isomorphism," *PVLDB*, vol. 1, no. 1, pp. 364–375, 2008.
- [22] http://lbb.ut.ac.ir/Download/LBBsoft/QuateXelero/networks/.
- [23] http://genemania.org.
- [24] C. Jiang, F. Coenen, and M. Zito, "A survey of frequent subgraph mining algorithms," *Knowledge Eng. Review*, vol. 28, no. 1, pp. 75–105, 2013.
- [25] J. Chen, W. Hsu, M.-L. Lee, and S.-K. Ng, "Nemofinder: dissecting genome-wide protein-protein interactions with meso-scale network motifs," in KDD, 2006, pp. 106–115.
- [26] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon, "Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs," *Bioinformatics*, vol. 20, no. 11, pp. 1746–1758, 2004.
- [27] I. Bordino, D. Donato, A. Gionis, and S. Leonardi, "Mining large networks with subgraph counting," in *ICDM*, 2008, pp. 737–742.
- [28] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp, "Biomolecular network motif counting and discovery by color coding," in *ISMB*, 2008, pp. 241–249.
- [29] F. N. Afrati, D. Fotakis, and J. D. Ullman, "Enumerating subgraph instances using map-reduce," in *ICDE*, 2013, pp. 62–73.
- [30] Y. Shao, B. Cui, L. Chen, L. Ma, J. Yao, and N. Xu, "Parallel subgraph listing in a large-scale graph," in SIGMOD Conference, 2014, pp. 625– 636.
- [31] S. Ranu and A. K. Singh, "Graphsig: A scalable approach to mining significant subgraphs in large graph databases," in *ICDE*, 2009, pp. 844– 855.
- [32] X. Yan, H. Cheng, J. Han, and P. S. Yu, "Mining significant graph patterns by leap search," in SIGMOD Conference, 2008, pp. 433–444.
- [33] H. He and A. K. Singh, "Graphrank: Statistical modeling and mining of significant subgraphs in the feature space," in *ICDM*, 2006, pp. 885–890.