Mixed Model PDS

Data

```
Datos %>%
  ungroup() %>%
  dplyr::select(Subject,Level,PDS) %>%
  group_by(Subject,Level) %>%
  mutate(mid = 1:n()) %>%
  pivot_wider(names_from=mid,values_from=PDS) %>%
  arrange(Subject,Level) %>%
  kable("latex", booktabs = T) %>%
  kable_styling(latex_options = c("striped", "scale_down"))
```

Subject	Level	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
s01	low	1.3570	3.0190	0.6290	1.9890															
s01	medium	0.4380	1.3710	0.6230																
s01	high	1.3570	3.2590																	
s02	low	1.6490	2.9590	2.1990																
s02	medium	1.3220	2.8890	4.5790	0.7360	1.0680	1.2230	4.6190												
s02	high	1.2570	1.4780	0.7250	1.3410	1.3440	1.6890	1.1610	0.7740											
s03	low	2.1890	1.6690	1.3330																
s03	medium	1.4090	1.9090	1.1670	0.7770		1.8890	1.2440												
s03	high	1.2050	1.8090	1.5870	0.8670	1.7090	1.2150	1.0290	1.0170											
s04	low	2.4390	1.2620	0.9740	0.7157															
s04	medium	2.0890	2.4290	1.5200	1.4820															
s04	high	1.8090	1.9290	1.4480	1.2080	1.4590	1.3690	1.0610												
s05	low	3.1890	3.1090	0.7052	2.7990	1 1100	1.0500	0.5010												
s05	medium	1.2820	1.2990	1.3540	1.2270	1.4420	1.0530	0.7310												
s05	high	0.9530	1.0020	2.0590	1.2180	1.0900	1.1660													
s06	low	2.5990	1.6280	1.5520	1.2780															
s06	medium	1.1690	1.1150	1.1990	1.3630	1.8790	1.0920	1.4550	1.0840	1.244										
s06	high	1.8190	1.7190	1.3870	0.7990	0.6989	1.1060													
s07 s07	low medium	5.9090	1.4670 1.2360	1.0790	2.4590 1.3650	1.4410	2.8690	0.9020	1.3940	1.563	2.049									
		1.5240		1.3940				0.9020	1.5940	1.505	2.049									
s07	high	2.7090	1.6390	1.1740	1.5110	1.6990	1.5210													
s08	low	1.1690	1.5650	1.7590	0.9620	0.5000	0.5550	0.0040	0.0410											
s08	medium	1.3960	0.6936	1.0070	0.5407	0.7800	0.7770	0.8640	0.8410											
s08 s09	high low	1.1760 1.8990	0.7350 2.3590	1.6020 2.0790	2.0890	0.9830 1.5380	0.7340													
s09	medium	3.2790	2.8090	1.9290	1.7690	2.7490		1.7090												
s09	high	1.7190	2.4790 2.4990	1.6890 3.4890	1.8290	1.5850	0.8380													
s10 s10	low medium	1.1310 1.0210	1.7390	1.5330	0.8590	1.7390	0.6558	3.7090	1.1580											
s10	high	1.3480	0.8810	1.0570	0.9980	1.3130	1.0180	3.1030	1.1000											
	-							0.1000	1 4010											
s11	low medium	1.0510 1.9690	0.8780 1.1960	1.2700 1.1640	0.8560	1.1650 2.3690	5.2990 0.8690	0.1230 1.8690	1.4610	1 770	1 100	1 100	0.005	0.5040	1 400	2.000	0.070	0.799	2.059	0.6242
s11 s11	high	2.4890	0.9890	1.1640	0.4530 1.0850	0.7360	0.8090	0.6044	0.7310 0.6916	1.779 2.539	1.120 1.161	1.133	0.865 1.119	0.5648	1.436	3.029	0.873	0.799	2.059	0.0242
s12	low	1.9890	1.1730	0.4750	0.7236	0.7300	0.9100	0.0044	0.0910	2.009	1.101	1.4/4	1.119							
s12	medium	1.5720	1.2170	1.4500	1.5720	0.2770	0.7830	1.0780	1.2300											
s12																				
s12 s13	high low	1.3070 0.6290	1.5220 0.6901	1.2990 0.6541	1.4000 1.8190	0.8880 1.4130	1.2430													
s13	medium	0.6290	0.8190	1.6200	0.6290	1.4130														
s13	high	0.6777	0.9360	0.9000	0.7880	0.8570														
s14	low	0.6290	1.5620	0.000	0.1.000															
s14	medium	1.4100		1.5420	0.2010	0.9270	0.0010	0.7960												
s14 s14	high	1.1770	0.6802	1.5420	1.3020	0.9270	1.0840	0.7900												
s14 s15	low	1.0000	1.4810	3.3390	1.0060			1.0920												
s15	medium	0.9970	0.7283	1.2840	0.7246	3.1110	2.1200	0020												
s15	high	1.4640	1.1500	0.8300	1.3250	1.9290	0.9970													
s16	low	1.2850	1.0080	1.3620	1.7990	3.1490														
s16	medium	1.7690	0.5587	1.0910	1.1270	1.2100	1.2280													
s16	high	1.5440	0.7124	1.1120	1.1020	1.2420	0.6924													
s17	low	3.6090	1.2990	1.4030																
s17	medium	2.2590	0.8280	1.8390	0.9550	0.9180	0.8670													
s17	high	1.5620	1.9690	1.6290	1.3550															
	8	2.0020	2.0000	1.0200	1.0000															

Level	n	MD	SD
low	72	1.712	1.0415
medium	124	1.369	0.7588
high	106	1.294	0.4703

Summary by group

```
Datos %>%
  group_by(Level) %>%
  summarise(n=n(),MD=mean(PDS),SD=sd(PDS)) %>%
  kable()%>%
  kable_styling(latex_options = c("striped"))
(q <-Datos %>% ggplot(aes(x=Level,y=PDS)) +
    geom_point() + facet_wrap(~ Subject)+
    labs(x="Difficulty level")+theme_bw()+
    stat_summary(fun="mean", geom="point",color="red"))
           s01
                                                 s03
                                                                    s04
                                                                                       s05
  6
  4
           s06
                              s07
                                                 s08
                                                                    s09
                                                                                       s10
  6
  4
  2
           s11
                              s12
                                                 s13
                                                                    s14
                                                                                        s15
  2 -
  0 -
                                                                                     medium high
                                               medium high
                                                               low medium high
           s16
                              s17
  6
  2 -
          medium high
                             medium high
```

Difficulty level

Random Intercept and Slope Model

The following model is used to investigate whether there are significant differences between the study variables:

$$y_{ij} = \mu + l_k + s_j + (sl)_{jk} + \epsilon_{ij}, \tag{1}$$

where y_{ij} is the response variable (PDS) for the i-th observation from the j-th subject, μ is the intercept, l_k is the k-th difficulty level, s_j is the jth subject effect, $(sl)_{jk}$ is the subject-level effect, i.e., the k-th level effect at the j-th subject, ϵ_{ij} is the error term (residual) for the ith observation from the jth subject.

We called level l a fixed effect, and ϵ is our error term that represent deviations from our predictions due to random factors that we cannot control experimentally. However, several measurements were taken for each subject at each difficulty level and that violates the assumption of independence of a linear model. On the other hand, each individual has a different cognitive load capacity, and this will be a characteristic factor that will affect all the responses of the same subject, which will make these responses interdependent instead of independent, see figure ??. The way we approaches this situation is adding a random effect to the subject and to the subject-level interaction. This allows us to solve this lack of independence by assuming a different intercept and slope for each subject. And finally, we assume that the residual, subject and subject-level effects are all relations of separate distributions, all with zero means:

$$\begin{aligned} \epsilon_{ij} \sim N(0, \sigma^2), \\ s_j \sim N(0, \sigma_s^2), \\ (sl)_{jk} \sim N(0, \sigma_{sl}^2). \end{aligned}$$

Hence, s_j and $(sl)_{jk}$ are now random effects, and μ and l_k are fixed effects.

Using the \mathbf{R} notation the model is

##

Data: Datos

$$PDS = (b_0 + u_{Subject}) + b_{Level}Level + \epsilon$$

In order to evaluate if there is an effect due to the difficulty level we will use the likelihood ratio test of the model with the *Level* effect against the model without the *Level* effect.

```
PDS_mixed_reducido <- lme4::lmer(PDS ~ 1 + (1+Level|Subject),data=Datos,REML=F)
PDS_mixed_lme4 <- lme4::lmer(PDS ~ Level + (1+Level|Subject), data=Datos, REML=F)
anova(PDS_mixed_reducido, PDS_mixed_lme4)
## Data: Datos
## Models:
## PDS_mixed_reducido: PDS ~ 1 + (1 + Level | Subject)
## PDS_mixed_lme4: PDS ~ Level + (1 + Level | Subject)
##
                      npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## PDS_mixed_reducido
                         8 705 735
                                      -345
                                                689
                        10 686 723
                                      -333
## PDS_mixed_lme4
                                                666
                                                     23.2 2 0.0000091 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
The p-value of the ratio test is significant at a level of 0.001.
PDS_mixed_lme4 <- lme4::lmer(PDS ~ Level + (1+Level|Subject), data=Datos)
summary(PDS_mixed_lme4)
## Linear mixed model fit by REML ['lmerMod']
## Formula: PDS ~ Level + (1 + Level | Subject)
```

```
## REML criterion at convergence: 674.7
## Scaled residuals:
     Min
              1Q Median
                            3Q
## -2.132 -0.584 -0.181 0.342 5.323
## Random effects:
## Groups
            Name
                         Variance Std.Dev. Corr
## Subject (Intercept) 0.1274
                                 0.357
##
             Levelmedium 0.0315
                                  0.178
                                           -0.21
##
                         0.0603
                                  0.245
                                           -1.00 0.31
             Levelhigh
## Residual
                         0.4924
                                  0.702
## Number of obs: 302, groups: Subject, 17
## Fixed effects:
##
               Estimate Std. Error t value
                                     14.35
## (Intercept)
                 1.732
                             0.121
                                     -3.28
## Levelmedium
                -0.378
                             0.115
## Levelhigh
                 -0.442
                             0.124
                                     -3.58
##
## Correlation of Fixed Effects:
##
               (Intr) Lvlmdm
## Levelmedium -0.565
## Levelhigh
             -0.818 0.554
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
p<-plot_model(PDS_mixed_lme4, type = "diag")</pre>
({p[[1]]+theme(plot.title=element_blank(),plot.subtitle=element_blank())+scale_x_continuous(name="Theor
```



```
## Multiple Comparisons of Means: Tukey Contrasts
##
##
##
## Fit: lme4::lmer(formula = PDS ~ Level + (1 + Level | Subject), data = Datos)
##
## Quantile = 2.344
## 95% family-wise confidence level
##
##
## Linear Hypotheses:
## Estimate lwr upr
## medium - low == 0 -0.3776 -0.6472 -0.1081
## high - low == 0 -0.4422 -0.7317 -0.1528
## high - medium == 0 -0.0646 -0.3292 0.1999
plot(confint(contr))
```

95% family-wise confidence level


```
contr.cld <- cld(contr)
old.par <- par(mai=c(1,1,1.25,1), no.readonly = TRUE)
plot(contr.cld)</pre>
```

Subject	Name	Training	Nivel	BLPS	MPDC	APCPS	PD	Entropy	TTP	PDS	SequenceMemory	SMN	id	Level	res	fit
s07	SequenceMemory_r04		1	3.862	-0.1728	-0.0447	0.2026	-1.885	2451974	5.909	r04	4	3	low	3.736	
s11	SequenceMemory_r21	FALSE	1	3.555	-0.0893	-0.0251	0.0867	-1.794	2132932	5.299	r21	21		low	3.680	1.619
s02	SequenceMemory_r25	FALSE	3	4.322	-0.2127	-0.0492	0.1096	-2.040	2990249	4.619	r25	25	15	medium	2.664	1.955
s02	SequenceMemory_r13	FALSE	3	4.256	-0.2476	-0.0582	0.0684	-2.005	2113081	4.579	r13	13	7	medium	2.624	1.955
s10	SequenceMemory_r24	FALSE	3	2.744	1.1568	0.4215	1.6368	-1.974	7176806	3.709	r24	24	14	medium	2.167	1.542
s01	SequenceMemory_r17	FALSE	6	4.023	-0.2674	-0.0665	0.1099	-1.911	2292544	3.259	r17	17	7	high	1.995	1.264

Subject	Name	Training	Nivel	BLPS	MPDC	APCPS	PD	Entropy	TTP	PDS	SequenceMemory	SMN	id	Level	res	fit
s04	SequenceMemory_r28	FALSE	1	3.380	0.0179	0.0053	0.1979	-1.765	3947164	0.7157	r28	28	14	low	-1.044	1.760
s01	SequenceMemory_r19	FALSE	1	3.768	-0.2440	-0.0648	0.0726	-1.819	2033340	0.6290	r19	19	8	low	-1.048	1.677
			1	3.649	0.0934	0.0256	0.5135	-1.905	3727821	1.0790	r20	20	13	low	-1.095	2.174
s05	SequenceMemory_r20	FALSE	1	4.460	-0.0907	-0.0203	0.1021	-2.127	7415622	0.7052	r20	20	10	low	-1.201	1.906
s02	SequenceMemory_r20	FALSE	3	3.963	0.0280	0.0071	0.2739	-1.998	12937956	0.7360	r20	20	11	medium	-1.219	1.955
s11	SequenceMemory_r31	FALSE	1	3.800	0.0792	0.0208	0.2124	-1.956	4425479	0.1230	r31	31		low	-1.496	1.619


```
par(old.par)
Datos2 = Datos
Datos2$res = residuals(PDS_mixed_lme4,type="pearson")
Datos2$fit = fitted(PDS_mixed_lme4,type="pearson")

Datos2 %>% arrange(desc(res)) %>% head() %>% kable() %>% kable_styling(latex_options = c("striped", "scale_down"))

Datos2 %>% arrange(desc(res)) %>% tail() %>% kable() %>% kable_styling(latex_options = c("striped", "scale_down"))
```

```
shapiro.test(Datos2$res)
##
   Shapiro-Wilk normality test
##
## data: Datos2$res
## W = 0.87, p-value = 0.000000000000002
goftest::ad.test(Datos2$res,null="pnorm",mean=mean(Datos2$res), sd=sd(Datos2$res), estimated=TRUE)
##
## Anderson-Darling test of goodness-of-fit
## Braun's adjustment using 17 groups
## Null hypothesis: Normal distribution
## with parameters mean = 0.000000000000000793745812849067, sd =
## 0.682747266266956
## Parameters assumed to have been estimated from data
##
## data: Datos2$res
## Anmax = 3, p-value = 0.4
rstatix::levene_test(data=ungroup(Datos2),res~Level)
## # A tibble: 1 x 4
      df1
           df2 statistic
     <int> <int> <dbl>
                              <dbl>
        2 299
                     8.37 0.000291
## 1
The same model without the outliers
We repeat the analysis without the outlier
# we exclude the outlier
Datos <- Datos %>% filter(!(Subject=="s07"&SMN==4),
                          !(Subject=="s11"&SMN==21),
                          !(Subject=="s02"&SMN==25),
                          !(Subject=="s02"&SMN==13))
PDS_mixed_lme4 <- lme4::lmer(PDS ~ Level + (1+Level|Subject), data=Datos)
summary(PDS_mixed_lme4)
## Linear mixed model fit by REML ['lmerMod']
## Formula: PDS ~ Level + (1 + Level | Subject)
##
      Data: Datos
```

-0.61

REML criterion at convergence: 554.4

3Q

Levelmedium 0.109 0.330

Max

Variance Std.Dev. Corr

1Q Median

-2.400 -0.603 -0.170 0.405 3.899

Subject (Intercept) 0.142 0.376

Scaled residuals:

Random effects:

Groups Name

##

```
##
            Levelhigh
                        0.104
                                 0.322
                                          -0.92 0.87
                        0.329
                                 0.574
## Residual
## Number of obs: 297, groups: Subject, 17
## Fixed effects:
##
              Estimate Std. Error t value
## (Intercept)
                 1.637
                            0.115
                                    14.17
## Levelmedium
                -0.327
                            0.120
                                    -2.72
## Levelhigh
                -0.347
                            0.119
                                    -2.91
##
## Correlation of Fixed Effects:
##
               (Intr) Lvlmdm
## Levelmedium -0.686
## Levelhigh
             -0.839 0.736
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
anova(PDS_mixed_lme4)
## Analysis of Variance Table
        npar Sum Sq Mean Sq F value
                        1.51
            2
               3.02
## Level
                                 4.6
coef(PDS_mixed_lme4)
## $Subject
##
       (Intercept) Levelmedium Levelhigh
## s01
                    -0.418902 -0.41379
           1.679
            1.972
                    -0.560987 -0.63690
## s02
## s03
            1.730
                    -0.282396 -0.37452
## s04
            1.558
                    0.009823 -0.14203
## s05
            2.082
                    -0.763502 -0.79276
            1.704
                    -0.402666 -0.41873
## s06
## s07
            1.737
                    -0.176216 -0.32664
## s08
            1.381
                    -0.426423 -0.26074
## s09
            2.029
                    -0.049890 -0.41880
## s10
            2.044
                    -0.571699 -0.67984
## s11
            1.179
                    0.082709
                                0.09270
## s12
            1.294
                    -0.132521 -0.07224
## s13
            1.181
                    -0.249272 -0.06926
## s14
            1.280
                    -0.338774 -0.16509
## s15
            1.436
                    -0.319033 -0.23734
## s16
            1.656
                    -0.466351 -0.42451
## s17
            1.886
                    -0.488540 -0.55618
##
## attr(,"class")
## [1] "coef.mer"
p<-plot_model(PDS_mixed_lme4, type = "diag")</pre>
(q<-{p[[1]]+theme(plot.title=element_blank(),plot.subtitle=element_blank())+scale_x_continuous(name="Th
```


Simultaneous Confidence Intervals

95% family-wise confidence level


```
contr.cld <- cld(contr)
### use sufficiently large upper margin
old.par <- par(mai=c(1,1,1.25,1), no.readonly = TRUE)
### plot
plot(contr.cld)</pre>
```

```
2.0
                                                   0
      1.8
linear predictor
      1.6
                                                                            0
      1.
      1.0
                                                medium
                                                                          high
                         low
                                                 Level
par(old.par)
Datos2=Datos
Datos2$res = residuals(PDS_mixed_lme4,type="pearson")
Datos2$fit = fitted(PDS_mixed_lme4,type="pearson")
shapiro.test(Datos2$res)
##
    Shapiro-Wilk normality test
##
##
## data: Datos2$res
## W = 0.94, p-value = 0.0000000004
goftest::ad.test(Datos2$res,null="pnorm",mean=mean(Datos2$res), sd=sd(Datos2$res), estimated=TRUE)
##
  Anderson-Darling test of goodness-of-fit
##
## Braun's adjustment using 17 groups
## Null hypothesis: Normal distribution
  with parameters mean = 0.00000000000000671390181825922, sd =
## 0.552432179624567
##
    Parameters assumed to have been estimated from data
##
## data: Datos2$res
```

а

b

а

```
## Anmax = 4, p-value = 0.1
rstatix::levene_test(data=ungroup(Datos2),res~Level)

## # A tibble: 1 x 4

## df1 df2 statistic p

## <int> <dbl> <dbl>
## 1 2 294 7.10 0.000976
```

Box-Cox transformation

```
(PDS_lm <- lm(PDS ~ Level ,data=Datos))

##

## Call:
## lm(formula = PDS ~ Level, data = Datos)
##

## Coefficients:
## (Intercept) Levelmedium Levelhigh
## 1.607 -0.291 -0.313

boxcox.list <- EnvStats::boxcox(PDS_lm)
plot(boxcox.list)</pre>
```

Box-Cox Transformation Results: PPCC vs. lambda for PDS_Im

Level	n	MD	SD
low	69	0.4608	0.6562
medium	122	0.2312	0.5626
high	106	0.2444	0.3958

```
(boxcox.list <- EnvStats::boxcox(PDS_lm,optimize = TRUE))</pre>
```

```
## $lambda
## [1] 0.5307
##
## $objective
## [1] 0.9888
##
## $objective.name
## [1] "PPCC"
##
## $optimize
## [1] TRUE
##
## $optimize.bounds
## lower upper
      -2
##
##
## $eps
## [1] 0.00000000000000222
## $lm.obj
##
## Call:
## lm(formula = PDS ~ Level, data = Datos, y = TRUE, qr = TRUE)
##
## Coefficients:
## (Intercept) Levelmedium
                               Levelhigh
                     -0.291
                                  -0.313
##
         1.607
##
##
## $sample.size
## [1] 297
##
## $data.name
## [1] "PDS_lm"
##
## attr(,"class")
## [1] "boxcoxLm"
DatosPDS = (DatosPDS^(0.5307)-1)/(0.5307)
Datos %>%
  group_by(Level) %>%
  summarise(n=n(),MD=mean(PDS),SD=sd(PDS)) %>%
  kable() %>%
 kable_styling(latex_options = c("striped"))
(q <-Datos %>% ggplot(aes(x=Level,y=PDS)) +
```

```
geom_point() + facet_wrap(~ Subject)+
labs(x="Difficulty level")+theme_bw()+
stat_summary(fun="mean", geom="point",color="red"))
```


PDS_mixed_lme4 <- lme4::lmer(PDS ~ Level + (1+Level|Subject),data=Datos)
summary(PDS_mixed_lme4)</pre>

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: PDS ~ Level + (1 + Level | Subject)
##
      Data: Datos
##
## REML criterion at convergence: 450.1
##
## Scaled residuals:
##
      Min
              1Q Median
                            3Q
                                  Max
## -3.395 -0.611 -0.090 0.510 3.194
##
## Random effects:
                         Variance Std.Dev. Corr
##
    Groups
             Name
            (Intercept) 0.0904
##
    Subject
                                  0.301
##
             Levelmedium 0.0650
                                  0.255
                                            -0.47
             Levelhigh
                         0.0581
                                  0.241
                                            -0.91 0.80
##
##
                         0.2305
                                  0.480
   Residual
## Number of obs: 297, groups: Subject, 17
```

```
##
## Fixed effects:
##
                                                      Estimate Std. Error t value
                                                             0.4831
                                                                                                    0.0939
                                                                                                                                        5.15
##
         (Intercept)
## Levelmedium
                                                        -0.2590
                                                                                                    0.0971
                                                                                                                                    -2.67
                                                         -0.2429
## Levelhigh
                                                                                                    0.0954
                                                                                                                                    -2.54
##
## Correlation of Fixed Effects:
##
                                                      (Intr) Lvlmdm
## Levelmedium -0.617
## Levelhigh
                                                     -0.821 0.695
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
p<-plot_model(PDS_mixed_lme4, type = "diag")</pre>
(\{p[[1]] + theme(plot.title=element_blank(), plot.subtitle=element_blank()) + scale_x_continuous(name="Theorem on the continuous of the 
                                                                                                                                                                                                                     Levelmedium
                                                                                                                                                        (Intercept)
                                                                                                                                                                                                                                                                                            Levelhigh
                                                                                                                     Random effect quantiles
                                                                                                                                0.4
Residuals
                                                                                                                                0.0
                                                              0.3
                                     0.0
                                                                                     0.6
                                    Theoretical quantiles
                                                                                                                                                                                                Standard normal quantiles
        1.00
        0.75
                                                                                                                                                                     Residuals
        0.50
        0.25
        0.00
                                                                                                                                                                                                                 0.0
                                                                                                                                                                                                                                                     0.3
                                                                                                                                                                                                                                                                                        0.6
                                                                            Residuals
                                                                                                                                                                                                                                         Fitted values
contr <- glht(PDS_mixed_lme4,linfct=mcp(Level="Tukey"))</pre>
summary(contr, test = adjusted("holm"))
##
##
                  Simultaneous Tests for General Linear Hypotheses
## Multiple Comparisons of Means: Tukey Contrasts
```

```
##
##
## Fit: lme4::lmer(formula = PDS ~ Level + (1 + Level | Subject), data = Datos)
## Linear Hypotheses:
                     Estimate Std. Error z value Pr(>|z|)
##
## medium - low == 0 -0.2590
                                0.0971 - 2.67
                                                    0.023 *
                      -0.2429
## high - low == 0
                                          -2.54
                                                    0.023 *
                                  0.0954
## high - medium == 0 0.0161
                                  0.0752
                                            0.21
                                                    0.830
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- holm method)
confint(contr)
##
    Simultaneous Confidence Intervals
##
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lme4::lmer(formula = PDS ~ Level + (1 + Level | Subject), data = Datos)
## Quantile = 2.337
## 95% family-wise confidence level
##
## Linear Hypotheses:
                     Estimate lwr
                                      upr
## medium - low == 0 - 0.2590 - 0.4860 - 0.0321
## high - low == 0 -0.2429 -0.4659 -0.0198
## high - medium == 0 0.0161 -0.1597 0.1920
plot(confint(contr))
```

95% family-wise confidence level


```
contr.cld <- cld(contr)
old.par <- par(mai=c(1,1,1.25,1), no.readonly = TRUE)
plot(contr.cld)</pre>
```


Non parametric tests

```
kruskal.test(PDS ~ Level, data=Datos)
##
##
   Kruskal-Wallis rank sum test
##
## data: PDS by Level
## Kruskal-Wallis chi-squared = 6.7, df = 2, p-value = 0.03
PMCMR::posthoc.kruskal.nemenyi.test(data=Datos,PDS~Level, dist="Tukey")
##
##
   Pairwise comparisons using Tukey and Kramer (Nemenyi) test
                      with Tukey-Dist approximation for independent samples
##
##
        PDS by Level
## data:
##
          low
                medium
## medium 0.040 -
## high
         0.067 0.986
```

```
##
## P value adjustment method: none

PMCMRplus::tukeyTest(data=Datos,PDS~Level)

## low medium
## medium 0.013 -
## high 0.025 0.981
```