

Predicting Hourly Electrical Energy Output of a Combined-Cycle Power Plant

Andy Alvarez 6140523

CNT 6154

Introduction

Goal: Predict net hourly electrical energy output of a combined cycle power plant.

Combined Cycle Power Plant:

 A power plant that uses both gas and steam powered turbines to generate electricity.

Why make this prediction?

- ☐ Estimate costs and forecast profit
- ☐ Price service accordingly
- ☐ Optimize feature values for improved efficiency and higher output production

Dataset

Train Data:								
Rows,	Rows, Columns (9568, 5)							
		Fea	atures		Target			
	AT	V	AP	RH	PE			
0	29.07	72.51	1009.24	58.38	449.371855			
1	32.38	67.17	1006.97	60.04	450.861043			
2	19.29	67.71	1007.94	63.71	460.894029			
3	16.45	41.48	1016.64	45.21	467.577314			
4	21.43	46.97	1013.94	61.25	469.805723			
9563	4.44	38.44	1016.14	75.35	499.615488			
9564	18.18	67.71	1004.50	87.26	461.130122			
9565	10.96	45.01	1017.97	95.82	481.245635			
9566	8.70	36.24	1013.34	89.50	490.928341			
9567	27.97	58.84	1002.25	57.88	457.630310			

	Test Data: Rows, Columns (38272, 4)							
	AT	v	AP	RH				
0	16.98	53.16	1013.95	82.80				
1	9.60	41.03	1021.01	69.03				
2	6.11	38.68	1017.53	79.23				
3	12.34	43.22	1009.28	78.23				
4	27.67	59.14	1016.51	61.20				
38267	14.60	53.82	1016.28	64.83				
38268	29.67	66.51	1015.60	34.10				
38269	20.13	47.03	1012.59	83.03				
38270	27.14	70.32	1007.08	73.08				
38271	18.82	61.27	1019.50	72.23				

Features:

- Ambient Temperature (AT)
- o Ambient Pressure (AP)
- Relative Humidity (RH)
- Exhaust Vacuum (V)

- 'Train Data' is treated as collected data since it already has the target column
- ➤ 'Train Data' uses 70/30 Train-Test Split
- 'Test Data' is treated as future data that needs to be predicted

Model Performance Analysis

Actual Hourly Electrical Energy Output

KNN Optimization

	K	MSE	RMSE	MAE	MAPE	R^2
0	1	14.604987	3.821647	2.498038	0.005366	0.948646
1	2	14.181611	3.765848	2.663358	0.005721	0.950135
2	3	14.782327	3.844779	2.838465	0.006092	0.948023
3	4	15.426672	3.927680	2.907300	0.006238	0.945757
4	5	15.681565	3.959996	2.948056	0.006325	0.944861
5	6	15.932094	3.991503	2.984852	0.006402	0.943980
6	7	16.075200	4.009389	3.007458	0.006450	0.943477
7	8	16.608688	4.075376	3.070116	0.006582	0.941601
8	9	16.898264	4.110750	3.104823	0.006656	0.940583

Random Forest Configuration

	n	MSE	RMSE	MAE	MAPE	R^2
0	1	19.677679	4.435953	2.929579	0.006278	0.930810
1	50	9.158551	3.026310	2.122525	0.004551	0.967797
2	100	9.038739	3.006450	2.108166	0.004519	0.968218
3	200	9.078228	3.013010	2.113968	0.004532	0.968079
4	400	9.029537	3.004919	2.108857	0.004520	0.968251
5	500	9.040920	3.006812	2.113495	0.004531	0.968210
6	800	9.001730	3.000288	2.108794	0.004521	0.968348
7	1000	9.047273	3.007869	2.114193	0.004532	0.968188

Overlayed Plots

Decision Tree v Random Forest

Error Metrics Analysis

Goal: $R^2 > 0.90$

	MSE	RMSE	MAE	MAPE	\mathbb{R}^2
Linear	22.208463	4.712586	3.758167	0.008065	0.921911
Ridge	22.208463	4.712586	3.758167	0.008065	0.921911
Lasso	22.208459	4.712585	3.758166	0.008065	0.921911
ElasticNet	22.208460	4.712585	3.758168	0.008065	0.921911
KNN	14.782327	3.844779	2.838465	0.006092	0.948023
DTR	14.354885	3.788784	2.452637	0.005256	0.949526
RF	9.016432	3.002737	2.109750	0.004522	0.968297
SVR	190.444886	13.800177	11.369381	0.024092	0.330361

Electrical Energy Prediction for Future Data

Without Prediction

	AT	٧	AP	RH
0	16.98	53.16	1013.95	82.80
1	9.60	41.03	1021.01	69.03
2	6.11	38.68	1017.53	79.23
3	12.34	43.22	1009.28	78.23
4	27.67	59.14	1016.51	61.20
38267	14.60	53.82	1016.28	64.83
38268	29.67	66.51	1015.60	34.10
38269	20.13	47.03	1012.59	83.03
38270	27.14	70.32	1007.08	73.08
38271	18.82	61.27	1019.50	72.23

With Prediction

	AT	ν	AP	RH	PE
0	16.98	53.16	1013.95	82.80	473.254274
1	9.60	41.03	1021.01	69.03	490.843863
2	6.11	38.68	1017.53	79.23	495.703278
3	12.34	43.22	1009.28	78.23	480.961193
4	27.67	59.14	1016.51	61.20	448.666474
38267	14.60	53.82	1016.28	64.83	474.870863
38268	29.67	66.51	1015.60	34.10	447.316109
38269	20.13	47.03	1012.59	83.03	468.323381
38270	27.14	70.32	1007.08	73.08	447.117325
38271	18.82	61.27	1019.50	72.23	465.664402

Pair Plot

Correlation Matrix

Conclusion

- ✓ Random Forest Regression performed the best for this application.
- ✓ Net hourly electrical energy output was predicted for a future dataset.
- ✓ To improve production, scientists may want to explore methods to decrease **Ambient Temperature** and **Exhaust Vacuum**.

