Image Segmentation

Advanced Computer Vision

Niels Landwehr

Overview

- Introduction: Computer Vision
- Data, Models, Optimization
- Neural Networks and Automatic Differentiation
- Convolutional Architectures For Image Classification
- Visualization and Transfer Learning
- Metric Learning
- Image Segmentation

Problem Setting Segmentation

- Problem setting image segmentation
 - Input: image as $m \times l \times d$ tensor (typically, d=3).
 - Output: for each of the pixels, a class label from a predefined set of classes $\{c_1,...,c_k\}$ (semantic category).
 - Typically, output is an $m \times l \times k$ tensor of class scores.

- More fine-grained analysis compared to classification or object detection.
- To arrive at segmentation, model needs to (implicitly) identify and classify objects in image and find their exact contours

Problem Setting Segmentation

• Many applications: autonomous driving, medical domains, ...

Cordts, Marius, et al.
"The cityscapes dataset."

CVPR Workshop on the Future
of Datasets in Vision. Vol. 2.
2015.

Brain tumor segmentation in MRI images

Chen, Chen, et al. "3D dilated multi-fiber network for real-time brain tumor segmentation in MRI." *International Conference on Medical Image Computing and Computer-Assisted Intervention*. Springer, Cham, 2019.

Network Architectures for Segmentation?

- How can we design a network architecture that maps $m \times l \times d$ tensors to $m \times l \times k$ tensors (and implicitly reasons about spatial objects)?
- First idea: use convolution layers with spatial dimension $m \times l$ throughout

- Problem: without spatial pooling, difficult to learn about larger-scale objects in images. Without large-scale context cannot perform good segmentation.
- Problem: convolutions at full spatial resolutions are expensive.

Spatial Downsampling

- To reason about large-scale objects (and reduce computational cost), should use pyramid-shaped architecture as in classification networks
- Pooling or strided convolution layers to reduce spatial dimension

However, need high resolution in output. How do we go back?

Spatial Downsampling and Upsampling

- Idea: first downsample by pooling and strided convolutions, then upsample again to the final resolution
- Learnable upsampling operation that again constructs high-resolution features and finally class labels based on the more abstract low-resolution representations learned at intermediate layers

Recap: Convolution Layers

- Transposed convolution layers: learnable upsampling operation
- Recap: normal convolution operation
 - Learnable k x k kernel matrix
 - Move kernel matrix across input to generate single element in output
 - Multiply kernel elements with input elements and sum up
 - Stride controls movement of kernel in input, stride > 1 reduces output size

Standard convolution: 6 x 6 input, 3 x 3 kernel, stride one

	Input									
0	0 0 0 0				0					
0	-1	2	2	1	0					
0	1 -1		1	2	0					
0	-1	0	2	1	0					
0	1	1	0	2	0					
0	0	0	0	0	0					

K	erne	91		
1	0	-1		
2	1	0	+0	
0	1	2		
				ŕ

Output									
-2									

Output

Recap: Convolution Layers

- Transposed convolution layers: learnable upsampling operation
- Recap: normal convolution operation
 - Learnable $k \times k$ kernel matrix
 - Move kernel matrix across input to generate single element in output
 - Multiply kernel elements with input elements and sum up
 - Stride controls movement of kernel in input, stride > 1 reduces output size

Standard convolution: 6 x 6 input, 3 x 3 kernel, stride one

Input										
0	0	0	0	0	0					
0	-1	2	2	1	0					
0	1	-1	1	2	0					
0	-1	0	2	1	0					
0	1	1	0	2	0					
0	0	0	0	0	0					

I.	eme	: 1	
1	0	-1	
2	1	0	+0
0	1	2	

Varnal

Output								
-2	1							

- Transposed convolution layers: learnable upsampling operation
 - Learnable k x k kernel matrix
 - Move across single elements in input, multiply kernel matrix with input element and copy the "weighted" kernel matrix to the output
 - Overlapping outputs accumulate
 - Stride controls movement in output space, stride > 1 increases output size

Transposed convolution: 4 x 4 input, 3 x 3 kernel, stride one

Input								
1	2	1	0					
-1	1	0	1					
0	2	-2	1					
1	1	2	-1					

Weighted kernel

Kerrier								
1	0	-1						
2	1 0							
0	1	2						

Kornol

1	0	-1
2	1	0
0	1	2

	1	0	-1		
ટ્	2	2 1			
1	0	1	2		

- Transposed convolution layers: learnable upsampling operation
 - Learnable $k \times k$ kernel matrix
 - Move across single elements in input, multiply kernel matrix with input element and copy the "weighted" kernel matrix to the output
 - Overlapping outputs accumulate
 - Stride controls movement in output space, stride > 1 increases output size

Input			Kernel				Output (in progress)						
1	2	1	0		1	0	-1		1	2	-1	-2	
-1	1	0	1		2	1	0		2	5	2	0	
0	2	-2	1		0	1	2		0	1	4	4	
1	1	2	-1		2	0	-2	copy & accur	nulate				
Weighted kernel					4	2	0	COFF					
					0	2	4						

- Transposed convolution layers: learnable upsampling operation
 - Learnable $k \times k$ kernel matrix
 - Move across single elements in input, multiply kernel matrix with input element and copy the "weighted" kernel matrix to the output
 - Overlapping outputs accumulate
 - Stride controls movement in output space, stride > 1 increases output size

	Input			Kernel				Output (in progress)							
	1	2	1	0		1	0	-1		1	2	0	-2	-1	
Ī	-1	1	0	1		2	1	0		2	5	4	1	0	
Ī	0	2	-2	1		0	1	2		0	1	4	5	2	
	1	1	2	-1		1	0	-1	copy & accur	nulate			—		
	Weighted kernel				2	1	0	copy a							
						0	1	2							

- Transposed convolution layers: learnable upsampling operation
 - Learnable $k \times k$ kernel matrix
 - Move across single elements in input, multiply kernel matrix with input element and copy the "weighted" kernel matrix to the output
 - Overlapping outputs accumulate
 - Stride controls movement in output space, stride > 1 increases output size

	Input			Kernel			Output (in progress)								
	1	2	1	0		1	0	-1		1	2	0	-2	-1	0
	-1	1	0	1		2	1	0		2	5	4	1	0	0
	0	2	-2	1		0	1	2		0	1	4	5	2	0
İ	1	1	2	-1					1	Vote			~		
l						0	0	0	coby & accn,	hulate					
	Weighted kernel					0	0	0	сору						
						0	0	0							

- Transposed convolution layers: learnable upsampling operation
 - Learnable $k \times k$ kernel matrix
 - Move across single elements in input, multiply kernel matrix with input element and copy the "weighted" kernel matrix to the output
 - Overlapping outputs accumulate
 - Stride controls movement in output space, stride > 1 increases output size

	Input			Kernel			Οι	Output (in progress)							
	1	2	1	0		1	0	-1		1	2	0	-2	-1	0
	-1	1	0	1		2	1	0		1	5	5	1	0	0
	0	2	-2	1		0	1	2		-2	0	4	5	2	0
	1	1	2	-1		-1	0	1		0	-1	-2			
Ī							_	copy & accur	nulate	*					
	Weighted kernel				-2	-1	0	CODY & accur	110						
						0	-1	-2							

- Transposed convolution layers: learnable upsampling operation
 - Learnable $k \times k$ kernel matrix
 - Move across single elements in input, multiply kernel matrix with input element and copy the "weighted" kernel matrix to the output
 - Overlapping outputs accumulate
 - Stride controls movement in output space, stride > 1 increases output size

	Input			Kernel			Οι	Output (in progress)						
1	2	1	0		1	0	-1		1	2	0	-2	-1	0
-1	1	0	1		2	1	0		1	6	5	0	0	0
0	2	-2	1		0	1	2		-2	2	5	5	2	0
1	1	2	-1		1	0	-1]	0	-1	-1	2		
	•				_	0	_	_		7				
	Weighted kernel			2	1	0	coby & accn.	nulate						
					0	1	2	Cobi						

- Padding for transposed convolution operation: preserve size at stride=1
- For standard convolution, we pad the input with zeros to preserve size

Padded Input

0	0	0	0	0	0
0	-1	2	2	1	0
0	1	-1	1	2	0
0	-1	0	2	1	0
0	1	1	0	2	0
0	0	0	0	0	0

Kernel

1	0	-1
2	1	0
0	1	2

+0

Output

	-2		
ı			
ı			
ı			

For transposed convolutions, we crop the output (also called padding)

Input

1	2	1	0
-1	1	0	1
0	2	-2	1
1	1	2	-1

Kernel

1	0	-1
2	1	0
0	1	2

Output (in progress)

				_	
1	2	0	-2	-1	0
1	6	5	0	0	0
-2	2	5	5	2	0
0	-1	-1	2		

- Striding for transposed convolution operation: actual upsampling
 - Striding s moves kernel in output space by s elements each time
 - If s > 1, this increases output size and performs upsampling

Example: Stride 2

			1
n	n		т
	LJ	u	ı

	· ·							
1	2	1	0					
-1	1	0	1					
0	2	-2	1					
1	1	2	-1					

1	0	-1
2	1	0
0	1	2

Kernel

Weighted kernel

1	0	-1	
2	1	0	
0	1	2	

1	0	-1			
2	1	0			
0	1	2			

- Striding for transposed convolution operation: actual upsampling
 - Striding s moves kernel in output space by s elements each time
 - If s > 1, this increases output size and performs upsampling

Example: Stride 2

nnut	
nnii	L
	Ī

1	2	1	0
-1	1	0	1
0	2	-2	1
1	1	2	-1

Kernel

1	0	-1
2	1	0
0	1	2

Weighted kernel 4

2	0	-2	
4	2	0	
0	2	4	

Output (in progress)

1	0	1	0	-2		
2	1	4	2	0		
0	1	2	2	4		

- Striding for transposed convolution operation: actual upsampling
 - Striding s moves kernel in output space by s elements each time
 - If s > 1, this increases output size and performs upsampling

Example: Stride 2

nnut	
nnii	L
	Ī

1	2	1	0
-1	1	0	1
0	2	-2	1
1	1	2	-1

Weighted kernel

Kernel

1	0	-1
2	1	0
0	1	2

1	0	-1
2	1	0
0	1	2

1	0	1	0	-1	0	-1	
2	1	4	2	2	1	0	
0	1	2	2	4	1	2	

- Striding for transposed convolution operation: actual upsampling
 - Striding s moves kernel in output space by s elements each time
 - If s > 1, this increases output size and performs upsampling

Example: Stride 2

nnut	
nnii	L
	Ī

1	2	1	0
-1	1	0	1
0	2	-2	1
1	1	2	-1

Weighted kernel

Kernel

1	0	-1
2	1	0
0	1	2

0	0	0
0	0	0
0	0	0

1	0	1	0	-1	0	-1	0	0
2	1	4	2	2	1	0	0	0
0	1	2	2	4	1	2	0	0

- Striding for transposed convolution operation: actual upsampling
 - Striding s moves kernel in output space by s elements each time
 - If s > 1, this increases output size and performs upsampling

Example: Stride 2

			_
r١	r١		
	v	u	L

1	2	1	0			
-1	1	0	1			
0	2	-2	1			
1	1	2	-1			

Kernel

0	-1
1	0
1	2
	1

Weighted kernel

-1	0	1
-2	-1	0
0	-1	-2

1	0	1	0	-1	0	-1	0	0
2	1	4	2	2	1	0	0	0
-1	1	3	2	4	1	2	0	0
-2	-1	0						
0	-1	-2						

Transposed Convolutions: Input Channels

- As for normal convolution layers, we usually have multiple input channels for a transposed convolution layer
- As for normal convolution layers, in this case there is a further dimension in the kernel that corresponds to the different input channels
- Each channel in the kernel is multiplied with the element from corresponding channel in input. Results in output are accumulated over the channels

Example: Two input channels, stride 1

Transposed Convolutions: Input Channels

- As for normal convolution layers, we usually have multiple input channels for a transposed convolution layer
- As for normal convolution layers, in this case there is a further dimension in the kernel that corresponds to the different input channels
- Each channel in the kernel is multiplied with the element from corresponding channel in input. Results in output are accumulated over the channels

Example: Two input channels, stride 1

Output (in progress)						
5	2	0	-1			
2	7	7	2			
-4	-1	6	5			

Transposed Convolutions: Output Channels

- As for normal convolution layers, we usually have multiple output channels for a transposed convolution layer
- As for normal convolution layers, each output channel is given by applying a
 different kernel to the same input in the same way. Resulting output channels
 are then stacked as usual.

Problem Setting Segmentation

- Back to full architecture: Transposed convolution can be used for spatial upsampling
- Also called "deconvolution", "upconvolution", "fractionally strided convolution"
- Yields hourglass-shaped architecture with downsampling for learning about largescale spatial context followed by upsampling for higher spatial resolution features learned based on the intermediate layers
- Upsampling step has learnable parameters, learns spatially high-resolution features that are helpful for the final segmentation

Special Case 1x1 Convolution

Reminder: A frequently used special case of the standard convolution operation is a convolution with a 1x1 kernel size (and stride 1)

Example with three input channels

2	-1	1
1	1	0
-1	0	1

3 x 3 x 3 input

3 x 3 x 1 output (one channel)

	1) = -	2 (<i>2)</i> '
1	-4	2	2
	-1	2	6
	0	1	3

Spatial size of output is unchanged, number of channels can be increased or reduced.

Acts like a linear model in the channel dimension, applied independently to every x/y position

 The "copy"-pathes in UNet combine the information from the higher-resolution representations in the original image and the early layers with the more large-scale context from the intermediate layers

U-Net Loss Function for Segmentation

• Model is trained on annotated images, that is, pairs of images and class maps:

$$\mathbf{X} = {\mathbf{x}_1, ..., \mathbf{x}_n}, \mathbf{Y} = {\mathbf{y}_1, ..., \mathbf{y}_n} \text{ with } \mathbf{x}_i \in \mathbb{R}^{m \times l \times d}, \ \mathbf{y}_i \in \mathbb{R}^{m \times l}$$

- Let $\mathbf{s}_i \in \mathbb{R}^{m \times l \times k}$ denote the final output tensor of the model (class scores for all pixels in output) for input \mathbf{x}_i .
- For each position x, y: compute a predicted class distribution by

Probability for class
$$j$$
 according to model
$$p(\mathbf{y}[x,y] = j \mid \mathbf{x}_i, \mathbf{\theta}) = \frac{\exp(\mathbf{s}_i[x,y,j])}{\sum_{j'=1}^k \exp(\mathbf{s}_i[x,y,j'])}$$
All model parameters

Loss for an image is cross entropy summed over positions in output

$$\ell(f_{\boldsymbol{\theta}}(\mathbf{x}_i), \mathbf{y}_i) = -\sum_{x,y} \log p(\mathbf{y}[x, y] = \mathbf{y}_i[x, y] | \mathbf{x}_i, \boldsymbol{\theta})$$

Summary: Segmentation, U-Net Architecture

Segmentation problem:

 U-Net Architecture: downsampling for large-scale context, upsampling for final segmentation map, "copy"-connections to reuse local features

 As usual, gradient of entire model can be derived via automatic differentiation, and model can be trained end-to-end by stochastic gradient descent