

443 2002 Patent Classification		443 2002 Patent Classification		443 2002 Patent Classification	
US Class Definitions by Class	US Class Definitions by Class	US Class Definitions by Class	US Class Definitions by Class	US Class Definitions by Class	US Class Definitions by Class
US-10-PC Correspondence by CI	US-10-PC Correspondence by CI	US-10-PC Correspondence by CI	US-10-PC Correspondence by CI	US-10-PC Correspondence by CI	US-10-PC Correspondence by CI
Schedules By Tech Center	Schedules By Tech Center	Schedules By Tech Center	Schedules By Tech Center	Schedules By Tech Center	Schedules By Tech Center
Definitions By Tech Center	Definitions By Tech Center	Definitions By Tech Center	Definitions By Tech Center	Definitions By Tech Center	Definitions By Tech Center
Schedules [MoC]	Schedules [MoC]	Schedules [MoC]	Schedules [MoC]	Schedules [MoC]	Schedules [MoC]
Definitions	Definitions	Definitions	Definitions	Definitions	Definitions
US-10-PC Correspondence	US-10-PC Correspondence	US-10-PC Correspondence	US-10-PC Correspondence	US-10-PC Correspondence	US-10-PC Correspondence
US-10-Locano Correspondence	US-10-Locano Correspondence	US-10-Locano Correspondence	US-10-Locano Correspondence	US-10-Locano Correspondence	US-10-Locano Correspondence
DFR's	DFR's	DFR's	DFR's	DFR's	DFR's

INTEGRATED CIRCUIT STRUCTURE WITH ELECTRICALLY ISOLATED COMPONENTS					
500	Including high voltage or high power devices isolated from low voltage or low power devices in the same integrated circuit				
501	.. Including dielectric isolation means				
502	.. High power or high voltage device extends completely through semiconductor substrate (e.g., backside collector contact)				
503	.. With contact on metallization configuration to reduce parasitic coupling (e.g., separate ground pads for different parts of integrated circuit)				
504	.. Including means for establishing a depletion region throughout a semi-conductor layer for isolating devices in different portions of the layer (e.g., "JFET" isolation)				
505	.. With polycrystalline semiconductor isolation region in direct contact with single crystal active semiconductor material				
506	.. Including dielectric isolation means				
507 With single crystal insulating substrate (e.g., sapphire)				
508 With metallic conductor within isolating dielectric or between semiconductor and isolating dielectric (e.g., metal shield layer or internal connection layer)				
509	.. Combined with pn junction isolation (e.g., isoplanar, LOCOS)				
510	.. Dielectric in groove				
511 With complementary (npn and pnp) bipolar transistor structures				
512 Complementary devices share common active region (e.g., integrated injection logic, I2L)				
513 Vertical walled groove				
514 With active junction abutting groove (e.g., "walled emitter")				
515 With active junction abutting groove (e.g., "walled emitter")				
516 With passive component (e.g., resistor, capacitor, etc.)				
517 With bipolar transistor structure				
518 With polycrystalline connecting region (e.g., polysilicon base contact)				
519 Including heavily doped channel stop region adjacent groove				
520 Conductive filling in dielectric-lined groove (e.g., polysilicon backfill)				
521 Sides of grooves along major crystal planes (e.g., (111), (100) planes, etc.)				
522	.. Air isolation (e.g., beam lead supported semiconductor islands)				

INTEGRATED CIRCUIT DEVICE					
523	524	525	526	527	528
529	530	531	532	533	534
535	536	537	538	539	540
541	542	543	544	545	546
547	548	549	550	551	552
553	554	555	556	557	558
559	560	561	562	563	564
565	566	567	568	569	570
571	572	573	574	575	576
577	578	579	580	581	582
583	584	585	586	587	588
589	590	591	592	593	594
595	596	597	598	599	600
601	602	603	604	605	606
607	608	609	610	611	612
613	614	615	616	617	618
619	620	621	622	623	624
625	626	627	628	629	630
631	632	633	634	635	636
637	638	639	640	641	642
643	644	645	646	647	648
649	650	651	652	653	654
655	656	657	658	659	660
661	662	663	664	665	666
667	668	669	670	671	672
673	674	675	676	677	678
679	680	681	682	683	684
685	686	687	688	689	690
691	692	693	694	695	696
697	698	699	700	701	702
703	704	705	706	707	708
709	710	711	712	713	714
715	716	717	718	719	720
721	722	723	724	725	726
727	728	729	730	731	732
733	734	735	736	737	738
739	740	741	742	743	744
745	746	747	748	749	750
751	752	753	754	755	756
757	758	759	760	761	762
763	764	765	766	767	768
769	770	771	772	773	774
775	776	777	778	779	780
781	782	783	784	785	786
787	788	789	790	791	792
793	794	795	796	797	798
799	800	801	802	803	804
805	806	807	808	809	810
811	812	813	814	815	816
817	818	819	820	821	822
823	824	825	826	827	828
829	830	831	832	833	834
835	836	837	838	839	840
841	842	843	844	845	846
847	848	849	850	851	852
853	854	855	856	857	858
859	860	861	862	863	864
865	866	867	868	869	870
871	872	873	874	875	876
877	878	879	880	881	882
883	884	885	886	887	888
889	890	891	892	893	894
895	896	897	898	899	900
901	902	903	904	905	906
907	908	909	910	911	912
913	914	915	916	917	918
919	920	921	922	923	924
925	926	927	928	929	930
931	932	933	934	935	936
937	938	939	940	941	942
943	944	945	946	947	948
949	950	951	952	953	954
955	956	957	958	959	960
961	962	963	964	965	966
967	968	969	970	971	972
973	974	975	976	977	978
979	980	981	982	983	984
985	986	987	988	989	990
991	992	993	994	995	996
997	998	999	999	999	999

BEST AVAILABLE COPY

Name	Email	From	To	Subject
Drafts				
Pending				
Active				
Failed				
Saved				
Favorites				
Tagged (0)				
UDC				
Queue				
Trash				

BEST AVAILABLE COPY

Document	Inv.	Pages	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1	US 6402931 B1	.8																						
2	US 6319384 B1	12																						
3	US 6309528 B1	12																						
4	US 6303014 B1	23																						
5	US 6210555 B1	14																						
6	US 6223884 B1	11																						
7	US 6309504 A	10																						

DOCUMENT IDENTIFIER: US 6303014 B1
 TITLE: Electrodeposition of metals in small recesses using modulated electric fields

TABLE 2

Ex.	Trench width	Pulse Rate	Reaction Speed	Oscillate peak	Time	Cathodic peak current (mA)	Anodic peak current (mA)	Applied Charge ratio Q
7	0.45	1	400	1	100	425	150	1.2
8	0.25	1	400	1	240	425	115	0.9
9	0.25 ± 0.10	1	400	2	240	250	215	1.3
10	0.15	2	400	2	235	250	150-175	1.1
11	0.25	2	800	2	235	250	175	0.95

Cross sections of the trenches in the plated wafers were exposed by focused ion beam (FIB) excavation, and micrographs were prepared using a scanning electron microscope (SEM).

FIG. 12 shows a cross-section of the plated trenches of Example 7. The trenches, having an aspect ratio of about 2, are fully filled and the thickness of the surfaces deposit is 20 greater than the depth of the trenches.

FIG. 13 shows a cross-section of the plated trenches of Example 8. The trenches, having an aspect ratio of about 2, are conformally coated with a thin surface deposit.

FIG. 14 shows a cross-section of the plated trenches of Example 9. The trenches, having widths of 0.25 micrometers and 1 micrometer, and a depth of about 0.6-0.7 micrometer, are fully filled with a surface plating thickness significantly less than the depth of the trenches.

FIG. 15 shows a cross-section of the plated trenches of Example 10. The surface plating is of moderate thicknesses in Examples 9, 10, and 11, having widths of about 0.25 micrometers and a depth of about 0.6-0.7 micrometer.

FIG. 16 shows a cross-section of the plated trenches of Example 11. The trenches have a conformal coating and the surface plating is thin.

EXAMPLE 12

This example illustrates filling of trenches having a width of about 10 micrometers.

Test coupons made from silicon wafers were prepared as in Examples 7-11, having V-shaped trenches having a top width of about 10 micrometers and a depth of about 5 micrometers. The coupons were plated in an apparatus similar to that used for Examples 7-11 for a period of 38 minutes in a bath similar to that of Example 7, using pulse reverse electric field having a frequency of about 3500 Hz and about 4969 Hz, with excursions between about 2950 Hz and about 4969 Hz.

A cathodic duty cycle of about 14.7%-16.7%, an anodic duty cycle of about 63.3%-83.3%, a cathodic on time of about 0.04-0.058 ms, a charge ratio of about 1:15, a peak cathodic current of about 180 mA, an anodic peak current of about 80 mA, and an average current of about 11 mA. FIG. 17 shows a cross-section of the plated trenches. The trenches

US 6,303,014 B1

22

cycle 26% (anodic on-time (t_a) 155-195 microseconds), anodic off-time (t_d) about 30 microseconds per average cathodic current density (I_D) about 30 amperes per square foot (ASF).

Wave form 2: 9000 Hz, cathodic duty cycle 40-45% (cathodic on-time (t_a) 44-51 microseconds), anodic duty cycle 55-50% (anodic on-time (t_a) 61-67 microseconds), average cathodic current density (I_D) about 30 amperes per square foot (ASF).

The plating was conducted for periods ranging from 210 to 300 seconds as indicated below.

The experimental conditions are summarized in Table 2 below:

We claim:

1. A method for depositing a continuous layer of metal onto a substrate having small recesses in its surface comprising:
 a. immersing an electrically conductive substrate having at least one trench therein wherein at least one transverse dimension of said recess is from about 1 micrometer to about 150 micrometers, in an electrolyte having both constituting ions of a metal to be deposited onto said surface, said electrolyte being substantially devoid of at least one member selected from the group consisting of levers and brighteners, immersing a counter electrode in said plating bath passing an electric current between said substrate and said counter electrode,

said electric current is a modulated reversing electric current comprising pulses that are cathodic with respect to said substrate and pulses that are anodic with respect to said substrate,
 b. said cathodic pulses have a duty cycle less than about 50% and said anodic pulses have a duty cycle greater than about 50%.

the charge transfer ratio of said cathodic pulses to said anodic pulses is greater than one, and the frequency of said train of pulses ranges from about 10 Hertz to about 12000 Hertz.

2. The method of claim 1 wherein an interval of no electric current flow is interposed between said cathodic pulses and succeeding anodic pulses.

3. The method of claim 1 wherein an interval of no electric current flow is interposed between said anodic pulses and succeeding cathodic pulses.

4. The method of claim 1 wherein an interval of no electric current flow is interposed between said cathodic pulses and succeeding anodic pulses.

5. The method of claim 1 wherein said cathodic pulses are said anodic pulses successively each other without intervening intervals of no electric current flow.

6. The method of claim 1 wherein said cathodic pulses and said anodic pulses form a pulse train having a frequency between about 50 Hertz and about 16000 Hertz.

	Document ID	Pages	1	2	3	4	5	6	7	8	C	P	Kind Codes	Subs.
1	US 6402931 B1	18	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	USPAI	
2	US 6319384 B1	12	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	USPAI	
3	US 6309528 B1	12	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	USPAI	
4	US 6303014 B1	24	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	USPAI	
5	US 6210555 B1	24	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	USPAI	
6	US 6203684 B1	11	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	USPAI	
7	US 6080534 A	10	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	USPAI	
8														
9														
10														
11														
12														
13														
14														
15														
16														
17														
18														
19														
20														
21														
22														
23														
24														
25														
26														
27														
28														
29														
30														
31														
32														
33														
34														
35														
36														
37														
38														
39														
40														
41														
42														
43														
44														
45														

DOCUMENT IDENTIFIER: US 6210555 B1
 TITLE: Electrodeposition of metals in small recesses for manufacture of high density interconnects using reverse pulse plating

RWIC -----

1. The method of claim 1 wherein said cathodic pulses and said anodic pulses form a pulse train having a frequency between about 50 Hertz and about 3000 Hertz.

2. The method of claim 1 wherein said cathodic pulses and said anodic pulses form a pulse train having a frequency between about 100 Hertz and about 3000 Hertz.

3. The method of claim 1 wherein said cathodic pulses and said anodic pulses form a pulse train having a frequency between about 300 Hertz and about 1500 Hertz.

4. The method of claim 1 wherein said cathodic pulses and said anodic pulses form a pulse train having a frequency between about 100 Hertz and about 500 Hertz.

5. The method of claim 1 wherein said cathodic pulses and said anodic pulses succeed each other without intervening intervals of no electric current flow.

6. The method of claim 1 wherein said cathodic pulses and said anodic pulses form a pulse train having a frequency between about 50 Hertz and about 5000 Hertz.

7. The method of claim 1 wherein said cathodic pulses and said anodic pulses form a pulse train having a frequency between about 100 Hertz and about 3000 Hertz.

8. The method of claim 1 wherein said cathodic pulses and said anodic pulses form a pulse train having a frequency between about 300 Hertz and about 1500 Hertz.

9. The method of claim 1 wherein said cathodic pulses have a duty cycle of from about 30% to about 15%.

10. The method of claim 1 wherein said cathodic pulses have a duty cycle of from about 30% to about 15%.

11. The method of claim 1 wherein said cathodic pulses have a duty cycle of from about 30% to about 20%.

12. The method of claim 1 wherein said cathodic pulses have a duty cycle of from about 60% to about 90%.

13. The method of claim 1 wherein said anodic pulses have a duty cycle of from about 70% to about 85%.

14. The method of claim 1 wherein said anodic pulses have a duty cycle of from about 70% to about 80%.

15. The method of claim 1 wherein said metal is selected from the group consisting of copper, silver, gold, zinc, chromium, nickel, brass, base alloys thereof.

16. The method of claim 1 wherein a layer of metal of substantially uniform thickness is deposited on said surface and within said recesses.

17. The method of claim 1 wherein said metal layer deposited within said recesses is greater than the thickness of the metal layer deposited on said surface.

18. The method of claim 1 wherein said metal is substantially filled with metal.

19. The method of claim 1 wherein one transverse dimension of said recesses is from about 25 micrometers to about 250 micrometers.

20. The method of claim 1 wherein at least one transverse dimension of said recess is from about 50 micrometers to about 150 micrometers.

21. The method of claim 1 wherein amounts of cathodic plating bath additives that are used in small amounts are minimized in said plating bath.

22. The method of claim 21 wherein said plating bath is essentially devoid of additives that help to produce a leveling coating of metal.

23. The method of claim 1 wherein additives in said plating bath that help to produce a leveling coating of metal are minimized in said plating bath.

24. The method of claim 1 wherein said metal is copper.

25. The method of claim 25 wherein amounts of conventional plating bath additives that are used in small amounts are minimized in said plating bath.

26. The method of claim 25 wherein additives that help to produce a leveling coating of metal are essentially devoid of additives that help to produce a leveling coating of metal.

27. The method of claim 25 wherein said plating bath contains of metal.

28. The method of claim 27 wherein at least one of said small recesses is filled in a single plating step.

29. The method of claim 25 wherein said plating bath contains conventional amounts of copper ions, sulfuric acid, citric acid, and a conventional polyethylene glycol carrier compound.

30. The method of claim 25 wherein said plating bath contains essentially of an aqueous solution containing conventional amounts of copper ions, sulfuric acid, citric acid, and a conventional polyethylene glycol carrier compound.

31. The method of claim 30 wherein at least one of said small recesses is filled in a single plating step.

32. The method of claim 25 wherein said plating bath contains conventional amounts of copper ions, sulfuric acid, citric acid, and a conventional polyethylene glycol carrier compound.

33. The method of claim 32 wherein said plating bath contains about 15 g/L of copper sulfate, about 9% by weight of sulfuric acid, about 50 parts per million of citric acid, and about 5% by weight of a conventional polyethylene glycol carrier compound.

34. The method of claim 33 wherein at least one of said small recesses is filled in a single plating step.

35. The method of claim 25 wherein said plating bath contains of an aqueous solution containing conventional amounts of copper ions, sulfuric acid, citric acid, and a conventional polyethylene glycol carrier compound.

36. The method of claim 25 wherein said plating bath contains about 15 g/L of copper sulfate, about 9% by weight of sulfuric acid, and about 5% by weight of a conventional polyethylene glycol carrier compound.

37. A method for filling a small recess in a surface of an electrically conducting substrate with a void-free deposit of metal comprising:

- immersing an electrically conductive substrate having a generally smooth surface having at least one transverse dimension of said recess, wherein at least one transverse dimension of said recess is from about 5 micrometers to about 250 micrometers, in an electrolytic bath containing ions of a metal to be deposited onto said surface;
- passing an electric current between said substrate and said counter electrode, in said plating bath;
- essentially devoid of said conventional plating bath additives that are used in small amounts;
- removing the substrate from the electrolytic bath.

