ECE 108 - Assignment 9

Sayed Hayat Ahmad, Robert Yin

March 23, 2025

Question 2a

You are verifying the correctness of floating-point divider circuits. Your first task is to figure out how large of a circuit (as measured in the number of bits in the input data) you can verify.

- The circuit has 2 inputs, each of n bits, where n is the value that you need to determine.
- It takes 2000 clock cycles on a computer to simulate one test case.
- Your computers have a clock speed of 3.5 GHz.
- You have a rack of 200 computers to use for simulation.
- You may run the simulations for 3 months (90 days).

What is the maximum value of n that satisfies your constraints?

Solution

The maximum value of n that satisfies the given constraints is 25 bits.

To arrive at this conclusion, let's break down the problem:

Total available clock cycles:

Clock speed =
$$3.5 \text{ GHz} = 3.5 \times 10^9 \text{ Hz}$$

Number of computers = 200
Simulation duration = $90 \text{ days} = 90 \times 24 \times 60 \times 60 \text{ seconds}$
Total clock cycles = $3.5 \times 10^9 \times 200 \times 90 \times 24 \times 60 \times 60$
= $5.4432 \times 10^{18} \text{ cycles}$

Maximum number of test cases:

Each test case requires = 2000 clock cycles
$$\text{Maximum test cases} = \frac{5.4432 \times 10^{18}}{2000} \approx 2.7216 \times 10^{15} \text{ test cases}$$

Determining the maximum value of n:

The floor of this value gives us the maximum integer n: 25

Question 2b

If the circuit has 64 bit inputs, how long will it take to run the verification?

Solution

To determine how long it will take to run verification with 64-bit inputs, we need to calculate:

Total number of test cases:

With two 64-bit inputs =
$$2^{(2\times 64)} = 2^{128}$$
 possible input combinations = 3.40282×10^{38} test cases

Total available computational power:

$$\label{eq:clock-speed} \begin{split} & \text{Clock speed} = 3.5 \text{ GHz} = 3.5 \times 10^9 \text{ cycles per second} \\ & \text{Number of computers} = 200 \\ & \text{Simulation duration} = 90 \text{ days} = 90 \times 24 \times 60 \times 60 \text{ seconds} \\ & \text{Total available clock cycles} = 3.5 \times 10^9 \times 200 \times 90 \times 24 \times 60 \times 60 \\ & = 5.4432 \times 10^{18} \text{ cycles} \end{split}$$

Time required for verification:

Each test case requires = 2000 clock cycles
Total clock cycles needed =
$$3.40282 \times 10^{38} \times 2000$$

= 6.80564×10^{41} cycles
Time required (in seconds) = $\frac{6.80564 \times 10^{41}}{5.4432 \times 10^{18}}$
= 1.25031×10^{23} seconds
Time required (in years) = $\frac{1.25031 \times 10^{23}}{60 \times 60 \times 24 \times 365}$
= 3.96468×10^{15} years

Therefore, it would take approximately 3.96×10^{15} years to complete the verification of a circuit with two 64-bit inputs.