

LÓGICA (MATEMÁTICAS I)

GRADO INGENIERÍA INFORMÁTICA

D. GRADO INFORMÁTICA-ADE

DPT. CIENCIA COMPUTACIÓN -IA

20**17-18**

Ejercicios resueltos de lógica

Ejercicios relacionados con el estudio de la validez de razonamientos en el contexto del sistema formal de la Lógica de primer orden.

- **Formalizar** razonamientos deductivos con el lenguaje proposicional y predicativo de primer orden mediante fórmulas lógicas (fbfs) que conformarán la estructura lógica de dichos razonamientos.
- Interpretar las fórmulas lógicas usando la valoración de las Tablas de Verdad.
- Demostrar la validez de los razonamientos mediante Tablas de Verdad, Método del Contraejemplo y Deducción Natural.

Usaremos:

- Pi: Enunciado de la proposición i. En un razonamiento Pi hará referencia a una proposición premisa.
- Q: Enunciado de la proposición conclusión.
- Fbf: fórmula lógica bien formada. Fbf-P: fórmula lógica bien formada de la proposición P.
- ≡ símbolo para indicar expresiones equivalentes.
- ⇔ símbolo para indicar fórmulas equivalentes.

En los enunciados de los ejercicios en los que aparecen las letras A, B,... éstas represetan proposiciones cualesquiera.

EJERCICIO 1 Formalizar con el lenguaje de **proposiciones** las expresiones propuestas donde A, B, C y D representan proposiciones cualesquiera. Usar los mismos nombres (A, B...) para identificar las variables proposicionales. Indicar también la conectiva principal (CP) de cada fórmula.

1. A y B.

CP: ∧	Fbf: A∧B

2. Dadas A y B, al menos una de ellas es cierta.

CP: ∨	Fbf: A∨B		

3. Es cierto A y B pero falso C.

CP: ∧	Fbf: A \ B \ ¬C

4. Es cierto A aunque no lo es B ni C ni D.

CP: ∧	Fbf: A∧¬B∧¬C∧¬D

5. O es cierto A y B, o es falso, C y D.

```
CP: \lor \qquad Fbf: (A \land B) \lor \neg (C \land D)
```

6. Si es cierto A también lo es B pero no C ≡ Es suficiente que sea cierto A para que lo sea B y no C.

```
CP: \rightarrow Fbf: A \rightarrow B \land \neg C
```

7. Sólo si es cierto A o B, lo es C y D ≡ Es necesario que sea cierto A o B para que lo sea C y D.

```
CP: \rightarrow \qquad Fbf: \ \mathbf{C} \wedge \mathbf{D} \rightarrow \mathbf{A} \vee \mathbf{B}
```

8. Es cierto A a menos que sea falso B ≡ Si no es cierto A tampoco lo es B ≡ Sólo si no B, no A.

$$CP: \rightarrow \qquad Fbf: \neg A \rightarrow \neg B$$

9. A menos que sea cierto B, es falso A pero cierto C ≡ Si no B entonces no A y C.

$$\mathsf{CP} : \to \mathsf{Fbf} : \neg (\neg \mathbf{A} \land \mathbf{C}) \to \mathbf{B}$$

10. Si es cierto A y B, no lo es C ni D \equiv Es suficiente A y B para que sea no C y no D.

$$CP: \rightarrow \qquad Fbf: \mathbf{A} \wedge \mathbf{B} \rightarrow \neg \mathbf{C} \wedge \neg \mathbf{D}$$

11. Sólo si es falso A o falso B, pero cierto D, entonces es cierto B

$$CP: \rightarrow Fbf: B \rightarrow (\neg A \lor \neg B) \land D$$

12. A menos que sea cierto B, no lo es A pero sí lo es C.

CP: →	Fbf: $\neg (\neg A \land C) \rightarrow B$
Ci . /	TOTAL ACTIVE

13. No es suficiente, pero sí necesario, que sea cierto A o B para que sea cierto C.

CP:
$$\land$$
 Fbf: $\neg (A \lor B \to C) \land (C \to A \lor B)$

14. No es necesario que sea falso B pero cierto C, para que sea cierto A.

```
CP: \neg Fbf: \neg (A \rightarrow \neg B \land C)
```

15. Si es cierto A y B entonces, si no es cierto C pero sí lo es D tenemos que es falso A o es falso B.

```
\mathsf{CP} : \to \qquad \mathsf{Fbf} \colon \ \mathsf{A} \wedge \mathsf{B} \to (\neg \mathsf{C} \wedge \mathsf{D} \to \neg \mathsf{A} \vee \neg \mathsf{B})
```

16. Es suficiente que sea cierto A para que lo sea B, sin embargo es cierto C si, y sólo si, es falso A.

```
CP: \rightarrow Fbf: (A \rightarrow B) \land (C \leftrightarrow \neg A)
```

17. A menos que sea cierto B o falso C, es cierto A, pero es necesario y suficiente que sea cierto D y B para que sea falso A.

```
CP: \wedge Fbf: (\neg A \rightarrow B \lor \neg C) \land (D \land B \leftrightarrow \neg A)
```

18. No es cierto A y B a menos que sea cierto B pero falso A, aunque o es falso B y cierto A, o es falso A pero cierto B.

```
CP: \wedge Fbf: (A \wedge B \rightarrow B \wedge \neg A) \wedge ((\neg B \wedge A) \vee (\neg A \wedge B))
```

19. No es cierto A y B a menos que sea cierto B pero falso A, aunque o es falso B y cierto A, o es falso A pero cierto B.

```
CP: \wedge Fbf: (A \wedge B \rightarrow B \wedge \neg A) \wedge ((\neg B \wedge A) \vee (\neg A \wedge B))
```

20. No es cierto A o B sólo si es falso A y cierto B, pero para que sea cierto A y B es necesario y suficiente que no sea cierto A ni B.

```
CP: \land \qquad Fbf: (\neg(A \lor B) \to \neg A \land B) \land ((A \land B \leftrightarrow \neg A \land \neg B))
```

EJERCICIO 2 Dado el siguiente marco conceptual:

MC = { ba: bailo; ca: canto; za: necesito zapatillas; gu: necesito guitarra}

Para cada una de las fbfs propuestas (1,...,7) escribir una fbf equivalente usando las reglas de equivalencia (ver hoja de reglas). Después escribir los enunciados de ambas fbfs en **lenguaje natural** teniendo en cuenta MC.

- 1. ba ∧ ca
- 2. $ba \wedge ca \rightarrow za$
- 3. ba \vee ca
- 4. ba \vee ca \rightarrow gu
- 5. $(ba \rightarrow za) \land (ca \rightarrow gu)$
- 6. ba \wedge ca \leftrightarrow za \vee gu
- 7. \neg (ba \vee ca) $\rightarrow \neg$ gu

Solución

- 1. ba \wedge ca $\Leftrightarrow \neg(\neg ba \lor \neg ca)$; se aplicó la regla de De Morgan. Bailo y canto \equiv Es falso que, no baile o no cante.
- ba ∧ ca → za ⇔ ¬(ba ∧ ca) ∨ za; se aplicó la regla (DI∨).
 Si bailo y canto necesito zapatillas ≡ Es falso que baile y cante, o que necesite zapatillas.
- ba ∨ ca ⇔ ¬ba → ca; se aplicó la regla (DI∨).
 Bailo o canto ≡ Si no bailo entonces canto.
- 4. ba \vee ca \rightarrow gu \Leftrightarrow \neg (ba \wedge ca) \vee gu; se aplicó la regla (DI \vee).

Es suficiente que cante o baile para que necesite guitarra \equiv Es falso que baile y cante, o que necesite gutarra.

- (ba → za) ∧ (ca → gu) ⇔ (¬ba ∨ za) ∧ (¬ca ∨ gu); se aplicó 2 veces la regla (DI∨).
 Si bailo necesito zapatillas y si canto necesito guitarra ≡ No bailo o necesito zapatillas, y no canto o necesito guitarra.
- 6. (ba ∧ ca ↔ za ∨ gu) ⇔ (ba ∧ ca → za ∨ gu) ∧ (za ∨ gu → ba ∧ ca); se aplicó la regla (ECO).
 Bailo y canto si, y sólo si, necesito zapatillas o guitarra ≡ Es suficiente que baile y cante para que necesite zapatillas o necesite guitarra, y es necesario que baile y cante para que necesite zapatillas o guitarra.
- 7. (¬ba ∧ ¬ca → ¬gu) ⇔ ¬((¬ba ∧ ¬ca) ∧ gu); se aplicó la regla (Dl∧).
 Si no bailo ni canto entonces no necesito guitarra ≡ No es cierto que no baile y no cante y necesite guitarra.

EJERCICIO 3 Formalizar las proposiciones siguientes a) lenguaje proposicional, b) lenguaje predicativo, escribiendo el marco conceptual y la fbf correspondiente.

- 1. Juan estudia y lee.
- 2. Ana es novia de Juan o de Miguel.
- 3. Si Ana estudia entonces es novia de Juan que estudia.
- 4. Sólo si Ana lee, no estudia ni es novia de Miguel.
- 5. Es necesario que Ana estudie para que sea novia de Juan que también estudia.
- 6. Para que Ana estudie es suficiente que Juan estudie y que Ana y Juan sean novios.

Solución

1. a) MC = { jes: Juan estudia; jle: Juan lee }.

Fbf-1: jes
$$\wedge$$
 jle.

b) MC = $\{ Es(x): x \text{ estudia}; Le(x): x \text{ lee} \}.$

Fbf-1: Es(juan)
$$\land$$
 Le(juan).

2. a) MC = { aj: Ana es novia de Juan; am: Ana es novia de Miguel }.

Fbf-2: aj
$$\vee$$
 am.

b) MC = { Nv(x,y): x es novia de y}.

3. a) MC = { aes: Ana estudia; aj: Ana es novia de Juan; jes: Juan estudia}.

Fbf-3: aes
$$\rightarrow$$
 aj \land jes.

b) MC = { Es(x): x estudia; Le(x): x lee; Nv(x,y): x es novia de y }

Fbf-3: Es(ana)
$$\rightarrow$$
 Nv(ana,juan) \land Es(juan).

4. a) MC = { ale: Ana lee; aes: Ana estudia; am: Ana es novia de Miguel}.

Fbf-4:
$$\neg aes \land \neg am \rightarrow ale$$
.

b) MC = { Es(x): x estudia; Le(x): x lee; Nv(x,y): x es novia de y }.

Fbf-4:
$$\neg$$
Es(ana) $\land \neg$ Nv(ana,miguel) \rightarrow Le(ana).

5. a) MC = { aes: Ana estudia; aj: Ana es novia de Juan}.

Fbf-5: aj
$$\land$$
 jes \rightarrow aes.

b) MC = { Es(x): x estudia; Nv(x,y): x es novia de y }.

Fbf-5: Nv(ana,juan)
$$\wedge$$
 Es(juan) \rightarrow Es(ana).

a) MC = { aes: Ana estudia; aj: Ana es novia de Juan}.

Fbf-5: aj
$$\land$$
 jes \rightarrow aes.

b) MC = { Es(x): x estudia; Nv(x,y): x es novia de y }.

Fbf-5: Nv(ana,juan)
$$\land$$
 Es(juan) \rightarrow Es(ana).

EJERCICIOS RESUELTOS DE LÓGICA

En los siguientes ejercicios determina la **fbf equivalente** a la dada usando reglas de equivalencia (ver hoja de reglas).

EJERCICIO 4

Al simplificar la fbf: $\neg [\neg (\neg p \lor q) \rightarrow p] \lor q$, se obtiene la fbf:

- a) p∨¬q
- b) $p \wedge q$
- c) ¬q
- d) q

Solución de cómo obtener la opción correcta.

$$\neg [\neg (\neg p \lor q) \to p \] \lor q$$

$$\neg [\neg \neg (\neg p \lor q) \lor p] \lor q$$
 REGLA: DI \lor

$$\neg [(\neg p \lor q) \lor p \] \lor q \qquad \qquad \mathsf{DN}$$

$$\neg(\neg p \lor q) \land \neg p) \lor q$$
 de Morgan

$$(\neg\neg p \land \neg q \land \neg p) \lor q$$
 de Morgan

$$(p \land \neg q \land \neg p) \lor q$$
 DN

$$F \lor q$$
 E1 y E5

q E6

EJERCICIO 5

Al simplificar la fbf: $[(p \land \neg q) \land (q \rightarrow p) \land r] \lor p$, se obtiene la fbf:

- a) $p \vee q$
- b) $p \wedge q$
- c) p
- d) ¬q

EJERCICIO 6

Al simplificar la fbf: $p \land [q \lor (p \rightarrow (\neg p \land r))]$, se obtiene la fbf:

- a) $p \vee \neg q$
- b) p∧q
- c) p
- d) ¬p

EJERCICIO 7

Al simplificar la fbf: $[(\neg p \lor q) \to (p \land q)] \lor (\neg p \land \neg q)$, se obtiene la fbf:

- a) $\neg p \lor q$
- b) $\neg p \wedge q$
- c) $p \vee q$
- d) $p \vee \neg q$

EJERCICIO 8

Al simplificar la fbf: [$\neg(p \to q) \to \neg (q \to p)$] \land (p \lor q), se obtiene la fbf:

- a) р
- b) q
- c) $p \vee q$
- d) $p \vee \neg q$

EJERCICIO 9

Al simplificar la fbf: $p \land \{ [(\neg p \land q) \lor q] \lor [\neg q \lor p] \}$, que se corresponde con el siguiente circuito, se obtiene el circuito equivalente:

- a) р
- b) q
- c) ¬р
- d) $p \rightarrow q$
- e) ¬q

EJERCICIO 10

Al simplificar la fbf: $[(p \rightarrow q) \rightarrow q] \land [\neg p \rightarrow (\neg p \rightarrow q)]$ se obtiene la fbf:

- a) р
- b) q
- c) $p \wedge q$
- d) ¬р
- e) $p \vee q$

EJERCICIO 11

Al simplificar la fbf: $p \land \{q \lor [p \rightarrow (\neg p \land r)]\}$ se obtiene la fbf:

- a) $p \wedge q$
- b) $q \wedge r$
- c) $p \wedge q$
- d) q∧r
- e) р

EJERCICIO 12 Formalizar con el lenguaje de predicados los siguientes enunciados usando el marco conceptual:

 $MC = \{ Me(x): x \text{ es médico}; Jug(x,y): x \text{ juega a y}; Al(x): x \text{ es alumno}; Am(x,y): x \text{ es amigo de y } \}$

1. Pedro es médico y Juan alumno, ambos juegan al tenis

Fbf: Me(pedro) ∧ Al(juan) ∧ Jug(pedro, tenis) ∧ Jug(juan, tenis)

2. **Es suficiente que Pedro juegue al tenis para que Juan juegue** ≡ Si Pedro juega al tenis, Juan también.

Fbf: Jug(pedro, tenis) → Jug(juan, tenis)

3. **Sólo si Pedro juega al tenis, Juan juega** ≡ Juan juega al tenis sólo si Pedro también juega.

Fbf: Jug(juan, tenis) \rightarrow Jug(pedro, tenis)

4. Pedro juega al tenis a menos que juegue Juan.

Fbf: \neg Jug(pedro, tenis) \rightarrow Jug(juan, tenis)

5. Algunos médicos y alumnos juegan al tenis.

Fbf: $\exists x \exists y [Me(x) \land Al(y) \land Jug(x, tenis) \land Jug(y, tenis)]$

6. Los médicos juegan al tenis ≡ Es suficiente que un sujeto sea médico para que juegue al tenis.

Fbf: $\forall x [Me(x) \rightarrow Jug(x, tenis)]$

7. Todos los médicos son amigos de los alumnos.

Fbf: $\forall x \forall y [Me(x) \land Al(y) \rightarrow Am(x,y)]$

8. Sólo los médicos son amigos de los alumnos.

Fbf: $\forall x \forall y [Al(x) \land A(y,x) \rightarrow Me(y)]$

9. Los alumnos que juegan al tenis son amigos de algunos médicos.

Fbf: $\forall x [Al(x) \land Jug(x, tenis) \rightarrow \exists y [Me(y) \land Am(x,y)]]$

10. Los alumnos que juegan al tenis son amigos de todos los médicos.

Fbf: $\forall x [Al(x) \land Jug(x, tenis) \rightarrow \forall y [Me(y) \rightarrow Am(x,y)]]$

EJERCICIO 13 Formalizar con el lenguaje de predicados los siguientes enunciados usando el marco conceptual:

 $MC = \{ Ca(x): x canta; Ba(x): x baila; Fe(x): x es feliz; Ta(x): x taconea \}$

1. Si Luis canta entonces Ana baila y es feliz.

Fbf: Ca(Luis)
$$\rightarrow$$
 Ba(ana) \land Fe(ana)

2. Es suficiente, pero no necesario, que Luis cante y baile para que Ana baile y sea feliz.

Fbf:
$$[Ca(Luis) \land Ba(Luis) \rightarrow Ba(ana) \land Fe(ana)] \land \neg [Ba(ana) \land Fe(ana) \rightarrow Ca(Luis) \land Ba(Luis)]$$

3. Sólo si Luis y Ana cantan pero no bailan son felices.

Fbf: Fe(luis)
$$\wedge$$
 Fe(ana) \rightarrow Ca(Luis) \wedge Ca(ana) \wedge ¬Ba(luis) \wedge ¬Ba(ana)

4. Para que Ana sea feliz aunque no cante, es necesario que Luis no baile ni taconee.

Fbf: Fe(ana)
$$\land \neg$$
Ca(ana) $\rightarrow \neg$ Ba(luis) $\land \neg$ Ta(luis)

5. A menos que Luis cante aunque no baile, Ana canta pero no taconea.

Fbf:
$$\neg$$
(Ca(ana) $\land \neg$ Ta(ana)) \rightarrow Ca(Luis) $\land \neg$ Ba(luis)

6. Ana canta a menos que Luis cante, pero no es feliz a menos que Luis lo sea.

Fbf:
$$[\neg Ca(ana) \rightarrow Ca(Luis)] \land [Fe(ana) \rightarrow Fe(Luis)]$$

7. Ana y Luis cantan y al menos uno de los dos es feliz.

Fbf: Ca(ana)
$$\wedge$$
 Ca(Luis) \wedge (Fe(luis) v Fe(ana))

8. Todos los que cantan o bailan, son felices aunque no taconeen.

Fbf:
$$\forall x [Ca(x) \lor Ba(x) \rightarrow Fe(x) \land \neg Ta(x)]$$

9. Todos los que cantan y bailan son felices pero los que taconean y no bailan, no.

Fbf:
$$\forall x [Ca(x) \land Ba(x) \rightarrow Fe(x)] \land \forall y [Ta(y) \land \neg Ba(y) \rightarrow \neg Fe(y)]$$

10. Sólo los que cantan y taconean son felices.

Fbf:
$$\forall x [Fe(x) \rightarrow Ca(x) \land Ta(x)]$$

11. Algunos de los que taconean, bailan, pero no son felices aunque canten.

Fbf:
$$\exists x [Ba(x) \land Ta(x) \land \neg Fe(x) \land Ca(x)]$$

12. Existen sujetos que cantan y bailan aunque no taconeen.

Fbf:
$$\exists x [Ca(x) \land Ba(x) \land \neg Ta(x)]$$

En los siguientes ejercicios se usarán los valores V para cierto, F para falso y NS para indicar que no se puede saber con los datos que nos dan si la fbf es V o F.

EJERCICIO 14 Escribir una **interpretación modelo** y otra **contramodelo** para cada una de las expresiones Ei (i=1...5) siguientes. Si alguna interpretación de ese tipo no existe, explicar por qué, pero para la que exista, interpretar con ella la fbf-Ei. Después, y según la existencia o no de ambas interpretaciones, indicar y explicar cómo se clasifica cada fbf-Ei.

1. E1: Es cierto A y B a menos que lo sea C.

Fbf-E1: $\neg(A \land B) \rightarrow C$			
Existe, al menos, una Interpretación modelo: SI Es I1 = { A=V, B=V, C=V } NO porque:	Existe, al menos, una Interpretación contramodelo: SI Es I2 = { A=F, B=F, C=F }. NO porque:		
La fbf-E1 para I1 se interpreta como: verdadera	La fbf-E1 para I2 se interpreta como: falsa		
La fbf-E1 se clasifica semánticamente como: contingente Porque: Existe al menos una interpretación modelo y otra contramodelo			

2. E2: Si es cierto A entonces es cierto B, si y sólo si, o es falso A o es cierto B.

Fbf-E2: $(A \rightarrow B) \leftrightarrow (\neg A \lor B)$]	
Existe, al menos, una Interpretación modelo SI Es I1 = { A=V, B=V } NO porque:	Existe, al menos, una Interpretación contramodelo SI Es I2 = NO porque: no existen valores de A, B que hagan la fbf-E2 falsa.	
La fbf-E2 para I1 se interpreta como: verdadera	La fbf-E2 para I2 se interpreta como:	
La fbf-E2 se clasifica semánticamente como: tautología Porque: no existe ninguna interpretación contramodelo que la haga F.		

MATEMÁTICAS-1. GII. CURSO 2016-2017

3. E3: Para que suceda A y B es necesario y suficiente que sea falso A o falso B.

Fbf-E3: : $A \land B \leftrightarrow \neg A \lor \neg B$	
Existe, al menos, una Interpretación modelo SI Es I1 NO porque: no hay valores de A y B que hagan V la fbf La fbf-E3 para I1 se interpreta como: verdadera	Existe, al menos, una Interpretación contramodelo SI Es I2 = { A=F, B=V } NO porque: La fbf-E3 para I2 se interpreta como: falsa
La fbf-E3 se clasifica semánticamente como: contradicción Porque: No existe ninguna interpretación modelo.	

4. E4: Sucede A, o no.

Fbf-E4: : A ∨ ¬A			
Existe, al menos, una Interpretación modelo SI Es I1 = { A=V} NO porque:	Existe, al menos, una Interpretación contramodelo SI NO porque: siempre es verdadera		
La fbf-E4 para I1 se interpreta como: verdadera	La fbf-E4 para I2 se interpreta como:		
La fbf-E4 se clasifica semánticamente como: tautología Porque: no existe ninguna interpretación contramodelo que la haga F.			

5. E5: Si no sucede A ni B entonces no es cierto que sea cierto A a menos que sea cierto B

$Fbf\text{-E5} : (\neg A \ \land \neg B) \to \neg(\neg A \to B)$			
Existe, al menos, una Interpretación modelo SI Es I1 = { A=V, B=V} NO porque:	Existe, al menos, una Interpretación contramodelo SI NO porque: siempre es verdadera		
La fbf-E5 para I1 se interpreta como: verdadera	La fbf-E5 para I2 se interpreta como:		
La fbf-E5 se clasifica semánticamente como: tautología Porque: no existe ninguna interpretación contramodelo que la haga F.			

MATEMÁTICAS-1. GII. CURSO 2016-2017

Si la fbf: $(p \land \neg q) \rightarrow (r \rightarrow \neg s)$ es falsa, el valor de verdad de las variables proposicionales en el orden **EJERCICIO 15** p, q, r, s, es:

- a) **VFVV**
- b) FVVV
- c) VVFF
- d) VFFF
- e) VVVF

EJERCICIO 16 Si la fbf: $(p \rightarrow \neg q) \lor (\neg r \rightarrow s)$ se interpreta como falsa, las siguientes fbfs se interpretan:

- a) $(\neg p \land \neg q) \lor \neg q$
- V

F

- b) $(\neg r \lor q) \leftrightarrow [(\neg q \lor r) \land s]$
- V
- NS
- c) $(p \rightarrow q) \rightarrow [(p \lor q) \land \neg q]$
- V
- NS

NS

EJERCICIO 17 Si la fbf: $s \rightarrow \neg (p \lor q)$ y la variable s se interpretan como verdaderas, entonces las siguientes fbfs se interpretan como:

- a) $\neg(p \land \neg q)$
- V

F

NS

NS

- b) $(p \rightarrow q) \vee \neg s$

- c) $s \vee (q \rightarrow p)$
- NS

EJERCICIO 18 Cuando la fbf: $[(p \land \neg q) \leftrightarrow (r \rightarrow s)] \rightarrow (\neg s \rightarrow r)$ se interpreta como falsa, ¿cómo se interpreta la fbf: $[(w \lor (p \land q)] \leftrightarrow (r \rightarrow s) \land p$? Para averiguarlo reduce esta fbf a partir de los valores semánticos de las variables p, q, r, s que se obtienen de la fbf dada.

- F a)
- b) V
- Depende del valor de la variable w. c)
- d) Depende del valor de la variable r
- Depende del valor de la proposición: w \wedge p e)

EJERCICIO 19 Si la fbf: **p** se interpreta como verdadera, ¿cómo se interpretan las siguientes fbfs?:

 $(p \lor q) \leftrightarrow (\neg p \land \neg q)$

b) $(p \land q) \rightarrow (p \lor r)$

- V
- - F

- $(p \rightarrow q) \rightarrow r$
- ٧
- F
 - NS

NS

NS

Si la fbf: $(p \land r) \rightarrow (q \lor s)$ se interpreta como falsa, ¿cómo se interpretan las fbfs? **EJERCICIO 20**

- a) $p \wedge [q \vee (r \vee s)]$
- V
- F
- NS

- b) $(q \lor r \lor p) \rightarrow s$
- ٧
- F

F

- NS NS
- c) $(q \rightarrow p) \rightarrow (p \land s)$
- V
- F
- d) $(s \rightarrow q) \rightarrow (p \land \neg r)$
- V
- NS

EJERCICIO 21 Si las fórmulas Fbf1: $(p \land q)$ y Fbf2: $(q \rightarrow t)$ se interpretan como falsas. ¿Cómo se interpretan las siguientes fbfs?

- a) $(\neg p \lor t) \lor s$
- V
- F NS
- b) $\neg (p \land (\neg q \land \neg p))$
- V
- F

F

- c) $\neg p \lor (q \land \neg t)$
- ٧
- NS

EJERCICIO 22 Si la Fbf1: $[(r \to s) \to t] \leftrightarrow [r \to (s \to t)]$ se interpreta como falsa. ¿Cómo se interpretan las siguientes fbfs?

- a) $(r \leftrightarrow s) \rightarrow (s \leftrightarrow t)$
- **/**
- F

- b) $(r \rightarrow s) \leftrightarrow (t \rightarrow s)$
- V F
- NS

NS

- c) $[(r \rightarrow s) \leftrightarrow t] \leftrightarrow [r \leftrightarrow (s \leftrightarrow t)]$
- F
- NS

Solución

El que la Fbf1 = F puede ser por dos motivos:

1º que
$$(r \rightarrow s) \rightarrow t = V (1) y [r \rightarrow (s \rightarrow t)] = F (2)$$

Si la fbf (2) es F, entonces: r=V, s=V, t=F, lo que contradice que la fbf (1) sea V.

2º que
$$(r \rightarrow s) \rightarrow t = F (1) \Rightarrow [r \rightarrow (s \rightarrow t)] = V (2)$$

Si la fbf (1) es F entonces $r \rightarrow s = F y t = F$. Con esto la fbf-(2) puede ser V con los valores r = F, s = F.

Luego con la interpretación I1= {t=F, s=F, r=F} tenemos que la fbf-(1) =F y fbf-(2) =V

También la fbf-(2) = V con r=V, luego $I2 = \{t=F, s=F, r=V\}$

Tenemos entonces que con I1 = {t=F, s=F, r=F}

fbf- a) =
$$(F \leftrightarrow F) \rightarrow (F \leftrightarrow F) = V$$

fbf b) =
$$(F \rightarrow F) \leftrightarrow (F \rightarrow F) = V$$

fbf c) =
$$[(F \rightarrow F) \leftrightarrow F] \leftrightarrow [F \leftrightarrow (F \leftrightarrow F)] = F \leftrightarrow F = V$$

Pero con la interpretación $I2 = \{t=F, s=F, r=V\}$

fbf a) =
$$(V \leftrightarrow F) \rightarrow (F \leftrightarrow F) = V$$

fbf b) =
$$(V \rightarrow F) \leftrightarrow (F \rightarrow F) = F$$

fbf c) =
$$[(V \rightarrow F) \leftrightarrow F] \leftrightarrow [V \leftrightarrow (F \leftrightarrow F)] = V \leftrightarrow V = V$$

Por tanto la respuesta para la fbf-b) sería de NS, porque para I1 es V y para I2 es F. Sin embargo vemos que para las fbf-a) y fbf-c) en ambos casos (para I1, I2) se interpretan como V.

<u>EJERCICIO 23</u> Indica el **número de interpretaciones (NºI)** y la evaluación semántica (Ev) de las siguientes fbfs proposicionales haciendo, si lo crees conveniente, la tabla de verdad:

Fbf1: p

Solución

 N° de variables proposicionales: 1 \Rightarrow N° I (Fbf1) = 2^1 = 2

Ev(Fbf1)= contingencia.

2. **Fbf2: p ∧ q**

Solución

 N° de variables proposicionales: $2 \Rightarrow N^{\circ}$ I (Fbf2) = 2^2 = 4

Ev(Fbf2) = contingencia.

Tabla de verdad:

р	q	p∧q
٧	٧	V
٧	F	F
F	٧	F
F	F	F

3. **Fbf3:** $p \rightarrow p \lor (q \land \neg q)$

Solución

 N° de variables proposicionales: $2 \Rightarrow N^{\circ}$ I (Fbf3) = 2^2 = 4

Ev(Fbf3) = tautología.

Tabla de verdad:

р	q	¬q	q ^ ¬q	p ∨ (q ∧ ¬q)	$p \to p \lor (q \land \neg q)$
V	٧	F	F	V	V
V	F	V	F	V	V
F	٧	F	F	F	V
F	F	V	F	F	V

<u>EJERCICIO 24</u> ¿Cómo se debe interpretar la fbf: p, para que la fbf-A: $(p \rightarrow (p \rightarrow \neg p)) \rightarrow (p \rightarrow p \land \neg p)$, sea verdadera?

Solución

Como la fbf: p aparece como antecedente en todos los implicadores de la fbf-A. Es suficiente interpretar "p" como falsa para que dichos implicadores sean verdaderos y por lo tanto la fbf-A también sea verdadera.

<u>EJERCICIO 25</u> ¿Cómo se debe interpretar la fbf: p para que la fbf-B: $\neg (p \land \neg p) \rightarrow p \land p$, sea verdadera?

Solución

La fbf: p, se debe interpretar como verdadera.

EJERCICIOS RESUELTOS DE LÓGICA

"Si (<encendido> y <configurado> y <conectado>) entonces <accedo-servidor>

	Si <icono-parpadea> entonces <conectado>"</conectado></icono-parpadea>				
1.	Si <luce-piloto> e <icono-parpadea> entonces:</icono-parpadea></luce-piloto>				
	a1. <encendido> se interpreta como:</encendido>	V	F	NS	
	a2. <conectado> se interpreta como:</conectado>	V	F	NS	
	a3. <accedo-servidor> se interpreta como:</accedo-servidor>	V	F	NS	
2.	Si no <luce piloto=""> ni <icono parpadea=""> pero < accedo-</icono></luce>	servi	dor>	ent	onces:
	a1. No <encendido> se interpreta como:</encendido>	V	F	NS	
	a2. No <conectado> se interpreta como:</conectado>	V	F	NS	
	a3. <conectado> se interpreta como:</conectado>	V	F	NS	
3.	Si no <encendido> ni <conectado> ni <configurado> en</configurado></conectado></encendido>	tonc	es:		
	a1. No <luce-piloto> se interpreta como:</luce-piloto>	V	F	NS	
	a2. No <icono-parpadea> se interpreta como:</icono-parpadea>	V	F	NS	
	a3. No <accedo-servidor> se interpreta como:</accedo-servidor>	V	F	NS	
4.	Si no <encendido> o no <conectado> entonces:</conectado></encendido>				
	a1. No < luce-piloto > se interpreta como:	V	F	NS	
	a2. No <icono-parpadea> se interpreta como:</icono-parpadea>	V	F	NS	
	a3. No <accedo-servidor> se interpreta como:</accedo-servidor>	V	F	NS	
5.	Si <luce-piloto> o <icono-parpadea> o <configurado> e</configurado></icono-parpadea></luce-piloto>	nton	ces:		
	a1. <encendido> se interpreta como:</encendido>	V	F	NS	
	a2. <conectado> se interpreta como:</conectado>	V	F	NS	
	a3. <accedo-servidor> se interpreta como:</accedo-servidor>	V	F	NS	

deducción natural para obtener la conclusión a partir de las premisas.

Si <luce-piloto> entonces <encendido>

comprobaremos su validez aplicando algún método semántico y luego para los que sean válidos aplicaremos

MATEMÁTICAS-1. GII. CURSO 2016-2017

EJERCICIO 26

Raz-1 P1: "María y Pedro fueron al parque pero no de botellón".

Q: "Al menos uno de ellos no fue al botellón"

Usa MC = { mp: Mª fue parque; pp: Pedro fue parque; mb: Mª fue botellón; pb: Pedro fue botellón }

Formalización:

Fbf-P1:
$$mp \land pp \land \neg mb \land \neg pb$$

Interpretación: Se estudia la validez de R aplicando el método del contraejemplo.

Suponemos que R admite una interpretación contraejemplo:

$$Fbf-P1 = V y Fbf-Q = F.$$

Es decir:
$$mp \land pp \land \neg mb \land \neg pb = V$$
 (1)

$$\neg mb \lor \neg pb = F$$
 (2)

De (1) se deduce que
$$mp = V$$
; $pp = V$; $\neg mb = V$; $\neg pb = V$.

De (2) se deduce
$$\neg mb = F$$
 y $\neg pb = F$.

En (1) la variable
$$\neg mb = V$$
 pero en (2) $\neg mb = F$.

Esta contradicción indica que la suposición de la existencia del contraejemplo fracasa.

Luego R es válido.

Deducción natural: Como R es válido Q se puede obtener de P1. Se aplican reglas de inferencia a la premisa P1.

-1 mp
$$\land$$
 pp \land ¬mb \land ¬pb

Raz-2 P1: "Para que el patio se moje es suficiente que llueva".

P2: "El patio se moja".

Q: "Llueve".

Formalización: MC = { II: Llueve; mo: el patio se moja}

Fbf-P1: $II \rightarrow mo$;

Fbf-P2: mo;

Fbf-Q: II

Estructura lógica R: $II \rightarrow mo$, $mo \Rightarrow II$

<u>Interpretación</u>: Se estudia la validez de R interpretando su estructura en una tabla de verdad.

	П	mo	P1: II → mo	P2: mo	Q: II
1	٧	٧	V	V	٧
2	٧	F	F	F	٧
3	F	V	V	V	F
4	F	F	V	F	F

En la fila 3 se interpretan las premisas como V y la conclusión F.

Luego R no es válido.

<u>Deducción natural</u>: No se puede deducir Q a partir de P1 y P2 ya que R no es válido.

Hasta cambiar de enunciado usar:

MC = {A: se enciende lámpara A; B: se enciende lámpara B; L: leemos; D: dormimos}

Raz-3 P1: "Si se enciende la lámpara A o la B entonces leemos"

P2: "Se enciende la lámpara A"

Entonces Q: Leemos

Formalización: Fbf-P1: $A \vee B \rightarrow L$;

Fbf-P2: A;

Fbf-Q: L

Estructura lógica R: $A \lor B \to L$, $A \Rightarrow L$

Interpretación de R: Se estudia la validez de R interpretando su estructura en una tabla de verdad.

	Α	В	L	A ∨ B	P1: $A \vee B \rightarrow L$	P2: A	Q: L
1	٧	٧	٧	V	V	V	V
2	٧	٧	F	V	F	V	F
3	٧	F	٧	V	V	V	V
4	٧	F	F	V	F	V	F
5	F	٧	٧	V	V	F	V
6	F	٧	F	V	F	F	F
7	F	F	٧	F	V	F	V
8	F	F	F	F	V	F	F

En las filas 1 y 3 se interpretan las premisas y la conclusión como V. No existe ninguna fila que sea una interpretación contraejemplo (premisas V y conclusión F).

Luego R es válido.

Deducción natural. Como R es válido, Q se puede obtener de P1 y P2. Aplicamos reglas de inferencia a las premisas.

 $-1 \text{ A} \vee \text{B} \rightarrow \text{L}$

-2 A

 $3 A \vee B$ ID, 2

4 L MP, 1, 3

EJERCICIOS RESUELTOS DE LÓGICA

Raz-4 P1: "Si se enciende la lámpara A o la lámpara B entonces leemos"

P2: "No se enciende A ni B"

Entonces Q: No leemos

Formalización: Fbf-P1: $A \lor B \to L$;

Fbf-P2: $\neg A \land \neg B$;

Fbf-Q: ¬L

Estructura lógica R: $A \lor B \to L$, $\neg A \land \neg B \Rightarrow \neg L$

Interpretación: Se estudia la validez de R interpretando su estructura en una tabla de verdad.

	Α	В	L	¬A	¬B	$A \vee B$	P1: $A \vee B \rightarrow L$	P2:¬A ∧ ¬B	Q: ¬L
1	٧	٧	٧	F	F	V	V	F	F
2	٧	٧	F	F	F	V	F	F	V
3	٧	F	٧	F	V	V	V	F	F
4	٧	F	F	F	V	V	F	F	V
5	F	٧	٧	٧	F	V	V	F	F
6	F	٧	F	٧	F	V	F	F	V
7	F	F	٧	٧	V	F	V	V	F
8	F	F	F	V	V	F	V	V	V

En las filas 7 y 8 se interpretan las premisas como V. Pero en la fila 7 Q es falsa.

Luego R no es válido.

<u>Deducción natural</u> Como R no es válido, Q no se puede obtener de P1 y P2.

MATEMÁTICAS-1. GII. CURSO 2016-2017

Raz-5 P1: "Si se encienden las lámparas A y B entonces leemos"

P2: "Al menos se enciende una lámpara"

Entonces, Q: Leemos

Formalización: Fbf-P1: $A \wedge B \rightarrow L$;

Fbf-P2: $A \vee B$;

Fbf-Q: L

Estructura lógica R: $A \land B \rightarrow L$, $A \lor B \Rightarrow L$

<u>Interpretación</u>: Se estudia la validez de R interpretando su estructura en una tabla de verdad.

	Α	В	L	$A \wedge B$	P1: $A \wedge B \rightarrow L$	P2: A ∨ B	Q: L
1	٧	٧	٧	V	V	V	V
2	٧	٧	F	V	F	V	F
3	٧	F	٧	F	V	V	V
4	٧	F	F	F	V	V	F
5	F	٧	٧	F	V	V	V
6	F	٧	F	F	<mark>V</mark>	V	F
7	F	F	٧	F	V	F	V
8	F	F	F	F	V	F	F

En las filas 1, 3, 5 y 6 las premisas son V. En la fila 6 las premisas son V pero Q es F.

Luego R no es válido.

<u>Deducción natural</u> Como R no es válido, Q no se puede obtener de P1 y P2.

Raz-6 P1: "Si se enciende la lámpara A o la B entonces leemos, y si no, dormimos"

P2: "Dormimos"

Entonces, Q: "No se ha encendido ninguna lámpara"

Formalización: Fbf-P1: $A \vee B \rightarrow L$;

Fbf-P2: $\neg(A \lor B) \to D$;

Fbf-P3: D;

Fbf-Q: ¬A ∧ ¬B

Estructura lógica R: $A \vee B \rightarrow L$, $\neg(A \vee B) \rightarrow D$, $D \Rightarrow \neg A \wedge \neg B$

Interpretación: Se estudia si la fórmula asociada a R es una tautología aplicando el método del contraejemplo.

Fbf-R: $(A \lor B \to L) \land (\neg(A \lor B) \to D) \land D \to (\neg A \land \neg B)$

➤ Suponemos Fbf-R = F. Entonces:

 $(A \lor B \to L) \land (\neg(A \lor B) \to D) \land D = V (1)$

 $\neg A \land \neg B = F$ (2)

De (1) tenemos (A \vee B \rightarrow L) = V, \neg (A \vee B) \rightarrow D = V, D = V.

De (2) se deducen 3 posibilidades:

 $1^{\underline{a}} \neg A = V, \neg B = F;$

 $2^{\underline{a}} \neg A = F, \neg B = V;$

 $3^{\underline{a}} \neg A = F, \neg B = F;$

Elegimos una de ellas, por ejemplo, la 3° opción: $\neg A = F$, $\neg B = F$, es decir, A=V, B=V.

Por P, con estos valores será L=V y por P3 es D=V entonces la fórmula es falsa, al menos, para la interpretación $I = \{ A = V, B = V, L = V, D = V \}$.

La Fbf-R no es tautología, luego R no es correcto.

<u>Deducción natural</u> Como R no es válido, Q no se puede obtener de P1, P2 y P3.

Raz-7 P1: "Si se encienden las lámparas A y B entonces leemos, y si no, dormimos"

P2: "Dormimos"

Entonces, Q: "Al menos una lámpara no se ha encendido".

Formalización: Fbf-P1: $A \wedge B \rightarrow L$;

Fbf-P2: $\neg(A \land B) \rightarrow D$;

Fbf-P3: D;

Fbf-Q: ¬A∨¬B

Estructura lógica R: $A \wedge B \rightarrow L$, $\neg(A \wedge B) \rightarrow D$, $D \Rightarrow \neg A \vee \neg B$

Interpretación: Se estudia si la fórmula asociada a R es una tautología aplicando el método del contraejemplo.

Fbf-R:
$$(A \land B \rightarrow L) \land (\neg(A \land B) \rightarrow D) \land D \rightarrow (\neg A \lor \neg B)$$

Suponemos Fbf-R = F. Entonces:

 $(A \wedge B \rightarrow L) \wedge (\neg (A \wedge B) \rightarrow D) \wedge D = V (1)$

 $\neg A \lor \neg B = F$ (2)

De (1) tenemos $(A \land B \rightarrow L) = V$, $\neg (A \land B) \rightarrow D = V$, D = V.

De (2) se deduce: $\neg A = F$, $\neg B = F$. Luego A = V, B = V.

Si A = V y B = V entonces para que $(A \land B \rightarrow L)$ = V tiene que ser L = V pero si L = F la fbf es falsa.

Luego la fbf admite al menos una interpretación contraejemplo, que es, I = { A = V, B = V, L = V, D = V}.

La Fbf-R no es tautología, luego R no es correcto.

<u>Deducción natural</u> Como R no es válido, Q no se puede obtener de P1, P2 y P3.

Raz-8 P1: "Si se encienden las lámparas A y B entonces leemos, y si no, dormimos"

P2: "Al menos una lámpara no se ha encendido"

Entonces, Q: "Dormimos"

Formalización: Fbf-P1: $A \wedge B \rightarrow L$;

Fbf-P2: $\neg(A \land B) \rightarrow D$;

Fbf-P3: $\neg A \lor \neg B$;

Fbf-Q: D.

Estructura lógica R: $A \land B \rightarrow L$, $\neg(A \land B) \rightarrow D$, $\neg A \lor \neg B \Rightarrow D$

Interpretación: Se estudia si la fórmula asociada a R es una tautología aplicando el método del contraejemplo.

Estructura lógica R: $A \wedge B \rightarrow L$, $\neg(A \wedge B) \rightarrow D$, $\neg A \vee \neg B \Rightarrow D$

Fbf-R: $(A \land B \rightarrow L) \land (\neg(A \land B) \rightarrow D) \land (\neg A \lor \neg B) \rightarrow D$

➤ Suponemos Fbf-R = F. Entonces:

$$(A \land B \rightarrow L) \land (\neg(A \land B) \rightarrow D) \land (\neg A \lor \neg B) = V (1)$$

D = F (2)

De (1) tenemos $(A \land B \rightarrow L) = V$, $\neg(A \land B) \rightarrow D = V$, $(\neg A \lor \neg B) = V$.

Como D = F, para que $\neg(A \land B) \rightarrow D = V$ debe ser $\neg(A \land B) = F$, es decir, $\neg A \lor \neg B = F$, luego $\neg A = F$, $\neg B = F$.

estos valores se contradicen con los deducidos en (1). Luego la fbf no es falsa tal como se había supuesto.

La Fbf-R es tautología, luego R es correcto.

Deducción natural Como R es válido, Q se puede obtener de P1, P2 y P3. Estrategia: reducción al absurdo.

 $-1 A \wedge B \rightarrow L$

 $-2 \neg (A \land B) \rightarrow D$

-3 ¬A∨¬B

4 ¬D

 $5 \neg \neg (A \land B)$ MT, 2, 4

6 A ∧ B EN, 5

7 A

EC, 6

8 ¬B

SD, 3, 7

9 B

EC, 6

10 B ∧ ¬B 11 ¬¬D IC, 8, 9

40.5

IN, 4-10

12 D

EN, 11

Raz-9 P1: "Si se enciende la lámpara A o la B entonces leemos, y si no, dormimos"

P2: "No leemos"

Entonces, Q: "Al menos una lámpara no se ha encendido"

Formalización: Fbf-P1: $A \vee B \rightarrow L$;

Fbf-P2: $\neg(A \lor B) \to D$;

Fbf-P3: ¬L;

Fbf-Q: ¬A∨¬B

Estructura lógica R: $A \lor B \to L$, $\neg(A \lor B) \to D$, $\neg L \Rightarrow \neg A \lor \neg B$

Interpretación: Se estudia si la fórmula asociada a R es una tautología aplicando el método del contraejemplo.

Fbf-R:
$$(A \lor B \to L) \land (\neg(A \lor B) \to D) \land \neg L \to \neg A \lor \neg B$$

Suponemos Fbf-R = F. Entonces:

$$(A \lor B \to L) \land (\neg(A \lor B) \to D) \land \neg L = V$$
 (1)

$$\neg A \lor \neg B = F$$
 (2)

De (1) se deduce $(A \lor B \to L) = V$, $\neg (A \lor B) \to D = V$, $\neg L = V$.

De (2) se deduce sólo una posibilidad:

$$\neg A = F y \neg B = F \implies A = V y B = V.$$

Con esta interpretación de A y B, y con L = F tenemos que la fbf: $A \lor B \to L = F$, valor que se contradice con el que se deduce de (1). Luego la fbf-R no admite una interpretación contraejemplo que la haga falsa.

La Fbf-R es tautología, luego R es válido.

<u>Deducción natural</u> Como R es válido, Q se puede obtener de P1, P2 y P3.

Estrategia: transformamos la conclusión $\neg A \lor \neg B \Leftrightarrow A \to \neg B (DI \lor)$ y aplicamos la prueba directa.

$$-1 \text{ A} \lor \text{B} \rightarrow \text{L}$$

$$-2 \neg (A \lor B) \rightarrow D$$

-3 ¬L

4 A

 $5 A \lor B$

ID, 4

6 L

MP, 1, 5

 $7~L \land \neg L$

IC, 3, 6

8 ¬B

ECQ, 7

 $9 A \rightarrow \neg B$

TD, 4-8

OjO: intenta hacer la deducción por reducción absurdo. ¿Qué fbf supondrías como cierta para obtener una contradicción?

Raz-10 P1: "Soy feliz sólo si canto".

P2: "Es suficiente que cante para que sonría".

Q: "No soy feliz a menos que sonría".

Usar MC = { fe: soy feliz; ca: canto; so: sonrío}

Formalización: Fbf-P1: fe \rightarrow ca;

Fbf-P2: ca \rightarrow so;

Fbf-Q: fe \rightarrow so

Estructura lógica R: $fe \rightarrow ca$, $ca \rightarrow so \Rightarrow fe \rightarrow so$

Interpretación: Se estudia la validez de R interpretando su estructura en una tabla de verdad.

	fe	ca	so	P1: fe \rightarrow ca	P2: ca → so	Q: fe \rightarrow so
1	٧	V	V	V	V	V
2	>	٧	F	V	F	F
3	>	F	V	F	V	V
4	>	F	F	F	V	F
5	F	٧	٧	V	V	V
6	F	٧	F	V	F	V
7	F	F	٧	V	V	V
8	F	F	F	V	V	V

En las filas 1, 5, 7 y 8 las premisas y la conclusión son V. No existen interpretaciones contraejemplo. Luego R es válido.

<u>Deducción natural</u> Como R es válido, Q se puede obtener de P1 y P2. Estrategia: prueba directa:

-1 fe
$$\rightarrow$$
 ca

2 ca \rightarrow so

3 fe

4 ca MP, 1, 3

5 so MP, 2, 4

6 fe \rightarrow so TD, 3-5

Raz-11 Anoche una banda de ladrones robó una joyería. Los sospechosos son Makinavaja, Popeye y el Pirata.

Hipótesis:

P1: "Nadie aparte de estos tres estuvo involucrado en el robo" (al menos uno de los tres es culpable).

P2: "Popeye nunca trabaja sin un cómplice" (Si Popeye es culpable, Maki o Pirata también).

P3: "El Pirata dijo que era inocente" (El Pirata no es culpable).

Se debe averiguar cuál de los tres es culpable.

Usar MC = { ma: Maki es culpable; pi: Pirata es culpable; po: Popeye es culpable}

Formalización: Fbf-P1: ma \vee pi \vee po;

Fbf-P2: po \rightarrow pi \vee ma;

Fbf-P3: ¬pi;

Fbf-Q1:po; Fbf-Q2: pi; Fbf-Q3: ma

Estructura lógica R1: ma \vee pi \vee po, po \rightarrow pi \vee ma, \neg pi \implies po

Estructura lógica R2: ma \vee pi \vee po, po \rightarrow pi \vee ma, \neg pi \Rightarrow pi

Estructura lógica R3: ma \vee pi \vee po, po \rightarrow pi \vee ma, \neg pi \Rightarrow ma

Interpretación: Se estudia si alguna de las tres estructuras admite una interpretación contraejemplo.

1) Estructura lógica R1: ma ∨ pi ∨ po, po → pi ∨ ma, ¬pi ⇒ po

Se demuestra si Popeye es culpable suponiendo que no lo es.

> Suponemos P1 = V, P2 = V, P3 = V y Q = F. Entonces:

$$(ma \lor pi \lor po) = V, (po \rightarrow pi \lor ma) = V, \neg pi = V (1)$$

po = F(2)

De (1) se deduce que pi = F y de (2) que po = F.

Como pi = F y po = F, para que P1=V, tenemos que asignar a ma=V.

Con la siguiente interpretación contraejemplo I = {ma = V, po = F, pi = F} las premisas P1, P2 y P3 son verdaderas y Q es falsa.

Luego R1 no es válido.

2) Estructura lógica R2: ma \vee pi \vee po, po \rightarrow pi \vee ma, \neg pi \Rightarrow pi

Se demuestra si El Pirata es culpable suponiendo que no lo es.

> Suponemos P1 = V, P2 = V, P3 = V y Q = F. Entonces:

$$(ma \lor pi \lor po) = V$$
, $(po \rightarrow pi \lor ma) = V$, $\neg pi = V$ (1)

$$pi = F(2)$$

Como pi = F, para que P1 = V, tenemos tres posibilidades:

 1^{a} ma = V, po = F

 2^{a} ma = V, po = V

3º ma = F, po = V. Esta posibilidad hace P2 falsa.

Con cualquiera de las dos primeras posibilidades la premisa P2 es cierta, luego con la siguiente interpretación contraejemplo I = {ma = V, po = F, pi = F} las premisas P1, P2 y P3 son verdaderas y Q es falsa.

Luego R2 no es válido.

3) Estructura lógica R3: ma \vee pi \vee po, po \rightarrow pi \vee ma, \neg pi \Rightarrow ma

Se demuestra si Maki es culpable suponiendo que no lo es.

Suponemos P1 = V, P2 = V, P3 = V y Q = F. Entonces

$$(ma \lor pi \lor po) = V, (po \rightarrow pi \lor ma) = V, \neg pi = V$$
 (1)

$$ma = F (2)$$

De (1) se deduce que pi = F.

Para que P1 = V, y teniendo en cuenta que ma = F, pi = F, tenemos que interpretar po = V.

La interpretación $I = \{ ma = F, pi = F, po = V \}$ hace que P2 = F.

Esto se contradice con la hipótesis de que P2 = V.

No existe contraejemplo para R3, luego R3 es válido y por lo tanto Maki fue culpable del robo.

<u>Deducción natural</u>: Sólo se puede obtener a Maki. Estrategia: reducción al absurdo.

-1 ma∨pi∨po

$$-2 po \rightarrow pi \lor ma$$

-3 ¬pi

4 ¬ma

5 pi \vee po SD, 1, 4

6 po SD, 3, 5

7 pi ∨ ma MP, 2, 6

8 pi SD, 4, 7

9 ¬pi ∧ pi IC, 3, 8

10 ma IN, 4-9

Raz-12 P1: "Sólo si bebo vino en la cena, no bebo cerveza".

P2: "Es suficiente que beba cerveza y vino para que no tome chinchón".

P3: "No bebo vino a menos que beba chinchón y cerveza".

Q: "Bebo cerveza"

Usar MC = { vi: bebo vino; ce: bebo cerveza; ch: bebo chinchón }

Formalización: Fbf-P1: $\neg ce \rightarrow vi$;

Fbf-P2: ce \wedge vi \rightarrow ¬ch;

Fbf-P3: vi \rightarrow ce \land ch;

Fbf-Q: ce

Estructura lógica R: $\neg ce \rightarrow vi$, $ce \land vi \rightarrow \neg ch$, $vi \rightarrow ce \land ch \Rightarrow ce$

Interpretación: Se estudia si la estructura R admite una interpretación contraejemplo usando tablas de verdad.

	ce	vi	ch	¬ce	¬ch	ce ∧ vi	ce ∧ ch	P1:	P2:	P3:	Q: ce
								¬ce → vi	ce∧vi → ¬ch	$vi \rightarrow ce \wedge ch$	
1	V	V	V	F	F	V	V	V	F	V	V
2	V	٧	F	F	٧	٧	V	V	V	V	V
3	٧	F	V	F	F	F	V	V	V	V	V
4	V	F	F	F	٧	F	F	V	V	V	V
5	F	٧	V	V	F	F	F	V	V	F	F
6	F	٧	F	V	٧	F	F	V	V	F	F
7	F	F	V	V	F	F	F	F	V	V	F
8	F	F	F	V	V	F	F	F	V	V	F

En las filas 2, 3 y 4 las premisas y la conclusión son V. No existen interpretaciones contraejemplo. Luego R es válido.

<u>Deducción natural</u> Estrategia: reducción al absurdo.

-1
$$\neg ce \rightarrow vi$$

-2 ce
$$\wedge$$
 vi \rightarrow ¬ch

-3 vi
$$\rightarrow$$
 ce \wedge ch

4 ¬ce

5 vi MP, 1, 4

6 ce ∧ ch MP, 3, 5

7 ce EC 6

8 ce ∧ vi IC 5,7

9 ¬ch MP 2,8

10 ch EC, 6

11 ch ∧ ¬ch IC, 7, 8

12 ce IN, 4-9

Raz-13 P1: "Si pierdes el boli, te quedas sin boli".

P2: "Si te quedas sin boli, no copias apuntes".

P3: "Si no copias apuntes, no puedes estudiar".

P4: "Si no puedes estudiar, te sube la adrenalina".

P5: "Si te sube la adrenalina, te mueres".

Luego, ¿es cierto que "si no quieres morir entonces no tienes que perder el boli"?

Usar MC = { pb: pierde boli; bo: tienes bolis; ap: copias apuntes; es: estudias; ad: sube adrenalina; mo: mueres }

Formalización: Fbf-P1: pb \rightarrow ¬bo; Fbf-P2: ¬bo \rightarrow ¬ap; Fbf-P3: ¬ap \rightarrow ¬es;

Fbf-P4: $\neg es \rightarrow ad$; Fbf-P5: $ad \rightarrow mo$; Fbf-Q: $\neg mo \rightarrow \neg pb$

Estructura lógica R: pb ightarrow ¬bo, ¬bo ightarrow ¬ap ightarrow ¬es, ¬es ightarrow ad, ad ightarrow mo ightarrow ¬pb

Interpretación: Se demuestra si la fórmula asociada a R es una tautología buscando un contraejemplo en dicha fbf.

Fbf-R:
$$(pb \rightarrow \neg bo) \land (\neg bo \rightarrow \neg ap) \land (\neg ap \rightarrow \neg es) \land (\neg es \rightarrow ad) \land (ad \rightarrow mo) \rightarrow (\neg mo \rightarrow \neg pb)$$

Suponemos Fbf-R = F. Entonces:

$$(pb \rightarrow \neg bo) = V$$
, $(\neg bo \rightarrow \neg ap) = V$, $(\neg ap \rightarrow \neg es) = V$, $(\neg es \rightarrow ad) = V$, $(ad \rightarrow mo) = V$ (1)

 $\neg mo \rightarrow \neg pb = F$ (2)

De (2) se deduce que \neg mo = V y \neg pb = F, luego mo = F y pb = V.

Como pb = V, para que pb $\rightarrow \neg$ bo = V, tiene que ser \neg bo = V.

Como ¬bo = V, para que ¬bo \rightarrow ¬ap = V, tiene que ser ¬ap = V.

Como $\neg ap = V$, para que $\neg ap \rightarrow \neg es = V$, tiene que ser $\neg es = V$.

Como $\neg es = V$, para que $\neg es \rightarrow \neg ad = V$, tiene que ser $\neg ad = V$.

Como $\neg ad = V$, para que $\neg ad \rightarrow mo = V$, tiene que ser mo = V.

De esta última interpretación se deduce una contradicción con lo deducido en (2) de que mo = F.

La fbf-R no puede ser falsa, es una tautología y por lo tanto R es válido.

Deducción natural: Estrategia: prueba directa.

-1 pb \rightarrow \neg bo

 $-2 \neg bo \rightarrow \neg ap$

-3 ¬ap → ¬es

-4 $\neg es$ → ad

-5 ad \rightarrow mo

6 ¬mo

11 ¬pb

7 ¬ad MT, 5, 6

8 es MT, 4, 7

9 ap MT, 3, 8

10 bo MT, 2, 9

MT, 1, 10

12 mo $\rightarrow \neg pb$ TD, 6-11

Raz-14 "Si eres alegre y haces reir a tus amigos aunque seas torpe, entonces eres un tipo OK, pero si no, eres KO".

"No eres torpe pero eres alegre y haces reir a tus amigos" entonces ¿qué clase de tipo eres?

Usar MC = { Al: eres alegre; Re: haces reir; To: eres torpe; OK: tipo OK; KO: tipo KO }

<u>Formalización</u>: Fbf-P1: Al \wedge Re \wedge To \rightarrow OK; Fbf-P2: \neg (Al \wedge Re \wedge To) \rightarrow KO; Fbf-P3: Al \wedge Re \wedge ¬To

Fbf-Q1: OK; Fbf-Q2: KO

Estructura lógica R1: Al \wedge Re \wedge To \rightarrow OK, \neg (Al \wedge Re \wedge To) \rightarrow KO, Al \wedge Re \wedge ¬To \Rightarrow OK;

Estructura lógica R2: Al \land Re \land To \rightarrow OK, \neg (Al \land Re \land To) \rightarrow KO, Al \land Re \land ¬To \Rightarrow KO;

Interpretación: Se demuestra si la fórmula asociada a R1 es una tautología aplicando el método del contraejemplo.

1) Fbf-R1: (Al \wedge Re \wedge To \rightarrow OK) \wedge (¬(Al \wedge Re \wedge To) \rightarrow KO) \wedge (Al \wedge Re \wedge ¬To) \rightarrow OK

➤ Suponemos Fbf-R1 = F. Entonces

$$(Al \land Re \land To \rightarrow OK) \land (\neg(Al \land Re \land To) \rightarrow KO) \land (Al \land Re \land \neg To) = V$$
 (1)

OK = F (2)

De (1) se deduce (Al \land Re \land To \rightarrow OK) =V, (¬(Al \land Re \land To) \rightarrow KO) =V, Al=V, Re=V, ¬To = V (1)

Como OK=F, para que Al \land Re \land To \rightarrow OK = V, tiene que ser Al \land Re \land To = F.

De (1), \neg To = V luego To = F. Esto hace que la fbf (Al \wedge Re \wedge To \rightarrow OK) =V.

También la fbf $(\neg(Al \land Re \land To) \rightarrow KO) = V$, ya que $\neg(Al \land Re \land To) = F$.

La fbf-R1 admite, al menos, una interpretación contraejemplo, I = {Al =V, Re = V, To = F, OK = F, KO = V}.

La fbf-R1 no es tautología por lo que R1 no es válido.

Se demuestra si la fbf-R2 asociada a R2 es una tautología aplicando el método del contraejemplo.

2) Fbf-R2: (Al \wedge Re \wedge To \rightarrow OK) \wedge (¬(Al \wedge Re \wedge To) \rightarrow KO) \wedge (Al \wedge Re \wedge ¬To) \rightarrow KO

Suponemos Fbf-R2 = F. Entonces

(Al
$$\wedge$$
 Re \wedge To \rightarrow OK) \wedge (¬(Al \wedge Re \wedge To) \rightarrow KO) \wedge (Al \wedge Re \wedge ¬To) = V (1) KO = F (2)

Como KO = F, para que $\neg(Al \land Re \land To) \rightarrow KO = V$, es $\neg(Al \land Re \land To) = F$, luego Al = V, Re = V, To = V. Este valor de To se contradice con el deducido en (1), donde $\neg To = V$. La fbf-R2 es tautología, R2 es válido.

<u>Deducción natural</u>: La deducción de R2 se hace por reducción al absurdo.

-1 Al
$$\wedge$$
 Re \wedge To \longrightarrow OK

$$-2$$
 ¬(Al ∧ Re ∧ To) \rightarrow KO

9 KO IN, 4-8

Raz-15 "Si estudias entonces apruebas y eres feliz".

"Como no has aprobado, se deduce que no has estudiado".

Usar MC = { es: estudias; ap: apruebas; co: haces los controles; fe: eres feliz}

Formalización:

Fbf-P1: es
$$\rightarrow$$
 ap \land fe;
Fbf-P2: \neg ap;
Fbf-Q: \neg es

Estructura lógica R: es \rightarrow ap \land fe, \neg ap $\Rightarrow \neg$ es;

Interpretación: Se demuestra en una tabla de verdad si la fórmula asociada a R es una tautología.

$$ightharpoonup$$
 Fbf-R: (es \rightarrow ap \land fe) \land ¬ap \rightarrow ¬es

	es	ар	fe	P1: es \rightarrow ap \land fe	P2: ¬ap	P1 ∧ P2	Q: ¬es	$P1 \land P2 \rightarrow Q$
1	٧	V	V	V	F	F	F	V
2	٧	V	F	F	F	F	F	V
3	٧	F	٧	F	V	F	F	V
4	V	F	F	F	V	F	F	V
5	F	V	٧	V	F	F	V	V
6	F	V	F	V	F	F	V	V
7	F	F	٧	V	V	V	V	V
8	F	F	F	V	V	V	V	V

La fbf-R es una tautología, luego R es válido.

<u>Deducción natural</u>: Estrategia: reducción al absurdo.

Raz-16 "Al final no has estudiado y no has hecho los controles (Q) ya que has suspendido (no has aprobado) y no eres feliz (P1), y para aprobar y ser feliz era necesario que estudiaras y que hicieras los controles" (P2)".

Usar MC = { es: estudias; ap: apruebas; co: haces los controles; fe: eres feliz}

Formalización: Fbf-P1: ¬ap ∧ ¬fe;

Fbf-P2: ap \wedge fe \rightarrow es \wedge co;

Fbf-Q: ¬es ∧ ¬co

Estructura lógica R: ap \rightarrow es \land fe, \neg ap \land fe \Rightarrow \neg es

Interpretación: Se estudia la validez del razonamiento aplicando el método del contraejemplo a la estructura R.

Suponemos:

P1= V, P2 = V $\Rightarrow \neg ap \land \neg fe = V$ y $ap \land fe \rightarrow es \land co = V$ (1)

 $Q = F \Rightarrow \neg es \land \neg co = F$ (2)

De (1) y P1 = V se deduce: $\neg ap = V$, $\neg fe = V \Rightarrow ap = F$, $fe = F \Rightarrow ap \land fe = F$

Como ap \land fe = F, entonces con estos valores de ap y fe tenemos que P2 = V.

De (2) se deducen 3 posibilidades:

 $1^{\underline{a}} \neg es = V, \neg co = F;$

 $2^{\underline{a}} \neg es = F, \neg co = V;$

 $3^{a} - es = F, -co = F;$

Elegimos una de ellas, por ejemplo, la 3º opción: es=V, co=V. Con estos valores Q = F.

Luego R no es válido ya que existe al menos una interpretación contraejemplo I = { es = V, co = V, ap = F, fe = F }.

<u>Deducción natural</u>: No se puede deducir Q a partir de P1 y P2 ya que R no es válido.

Raz-17 "Sólo si estudias, apruebas". (P1).

"Como no has aprobado aunque eres feliz, (P2) se deduce que no has estudiado" (Q)

Usar MC = { es: estudias; ap: apruebas; co: haces los controles; fe: eres feliz}

Formalización: Fbf-P1: ap \rightarrow es;

Ffbf-P2: ¬ap ∧ fe;

Fbf-Q: ¬es

Estructura lógica R: ap \rightarrow es \land fe; ¬ap \land fe; Fbf-Q: ¬es;

Interpretación: Se demuestra en una tabla de verdad si la fórmula asociada a R es una tautología.

 \triangleright Fbf-R: $(ap \rightarrow es) \land (\neg ap \land fe) \rightarrow \neg es$

	es	ар	fe	P1: ap → es	P2: ¬ap ∧ fe	P1 ∧ P2	Q:¬es	$P1 \land P2 \rightarrow Q$
1	٧	٧	٧	V	F	F	F	V
2	٧	٧	F	V	F	F	F	V
3	٧	F	٧	V	V	V	F	F
4	٧	F	F	V	F	F	F	V
5	F	٧	٧	F	F	F	V	V
6	F	٧	F	F	F	F	V	V
7	F	F	٧	V	V	V	V	V
8	F	F	F	V	F	F	V	V

En la fila 3 la fbf-R se interpreta como falsa. La fbf-R es contingencia, no es tautología, por lo que R no es correcto.

Deducción natural: No se puede deducir Q a partir de P1 y P2 ya que R no es válido.

Raz-18 "Para que apruebes y seas feliz no es suficiente que estudies (P1), es necesario (P2). Al final resulta que no has aprobado ni eres feliz (Q) puesto que no has estudiado (P3)".

Usar MC = { es: estudias; ap: apruebas; co: haces los controles; fe: eres feliz}

Formalización: Fbf-P1: \neg (es \rightarrow ap \land fe);

Fbf-P2: ap \land fe \rightarrow es;

Fbf-P3: ¬es;

Fbf-Q: ¬ap ∧ ¬fe

Estructura lógica R: \neg (es \rightarrow ap \land fe), ap \land fe \rightarrow es, \neg es $\Rightarrow \neg$ ap $\land \neg$ fe

Interpretación: Se demuestra en una tabla de verdad si la fbf asociada a R es una tautología.

Fbf-R:
$$(\neg(es \rightarrow ap \land fe)) \land (ap \land fe \rightarrow es) \land \neg es \rightarrow \neg ap \land \neg fe$$

	es	ар	fe	P1: \neg (es \rightarrow ap \land fe)	P2: $ap \land fe \rightarrow es$	P3: ¬es	P2 ∧ P2 ∧ P3	Q: ¬ap ∧ ¬fe	$P2 \land P2 \land P3 \rightarrow Q$
1	V	V	٧	F	V	F	F	F	V
2	٧	V	F	V	V	F	F	F	V
3	٧	F	٧	V	V	F	F	F	V
4	٧	F	F	V	V	F	F	V	V
5	F	V	٧	F	F	V	F	F	V
6	F	V	F	F	V	V	F	F	V
7	F	F	٧	F	V	V	F	F	V
8	F	F	F	F	V	V	F	V	V

En ningún caso las premisas son verdaderas a la vez.

Las 8 interpretaciones de la fbf-R son verdaderas, luego fbf-R es una tautología y R es correcto.

<u>Deducción natural</u>: Estrategia: aplicando reglas de inferencia a las premisas.

-1 ¬(es
$$\rightarrow$$
 ap \land fe)

-2 ap
$$\wedge$$
 fe \rightarrow es

-3 ¬es

$$4 \neg (\neg es \lor (ap \land fe))$$
 DI \lor , 1

$$5 \neg -es \land \neg (ap \land fe)$$
 Morgan, 4

6 es
$$\wedge \neg$$
 (ap \wedge fe) DN, 5

7 es EC, 6

8 es ∧ ¬es IC, 3, 7

9 ¬ap ∧ ¬fe ECQ, 8

Raz-19 "No apruebas a menos que estudies o hagas todos los controles (P1).

No sucede que, no apruebes o hagas los controles (P2)

Deduzco que has aprobado pero que no eres feliz (Q), puesto que no has estudiado ni has hecho los controles (P3)"

Usa MC = { es: estudias; ap: apruebas; co: haces los controles; fe: eres feliz}

Formalización: Fbf-P1: ap \rightarrow es \lor co;

Fbf-P2: \neg (\neg ap \lor co);

Fbf-P3: ¬es∧¬co;

Fbf-Q: ap ∧ ¬fe

Estructura lógica R: ap \rightarrow es \vee co, \neg (\neg ap \vee co), \neg es \wedge \neg co \Rightarrow ap \wedge \neg fe

Interpretación: Estudiamos la validez de la estructura R aplicando el método del contraejemplo.

Suponemos P1= V, P2 = V, P3 = V y Q = F.

Como P2 = V $\Rightarrow \neg(\neg ap \lor co) = V \Rightarrow \neg ap \lor co = F, \neg ap = F y co = F.$

Como P1 = V \Rightarrow como ap = V \Rightarrow es \vee co = V y como co = F \Rightarrow es = V.

Como P3 = V $\Rightarrow \neg$ es $\land \neg$ co = V $\Rightarrow \neg$ es = V y \neg co = V \Rightarrow es =F que se contradice con el valor obtenido en evaluación de P3. Como R no tiene interpretación contraejemplo, R es válido.

<u>Deducción natural</u>: Estrategia: se aplican reglas de inferencia a las premisas hasta encontrar una contradicción y entonces se aplica la regla ECQ.

-1 ap \rightarrow es ∨ co

-2 ¬(¬ap ∨ co)

-3 ¬es∧¬co

4 ¬es EC, 3

5 ¬¬ap∧¬co Morgan, 2

6 ap ∧ ¬co EN, 5

7 ap EC, 6

 $8 \text{ es} \lor \text{co}$ MP, 1, 7

9 co SD, 4, 8

10 ¬co EC, 3

11 co ∧ ¬co IC, 9, 10

12 ap ∧ ¬fe ECQ, 11

Raz-20 "La Lógica es fácil a no ser que (a menos que) el profesor explique mal (P1), sin embargo, la Lógica es fácil sólo si los alumnos no tienen miedo a formalizar (P2). Luego, es suficiente que los alumnos tengan miedo a formalizar para que el profesor explique mal (Q)".

Usar MC = { fc: la Lógica es fácil; ml: el profesor explica mal; fr: los alumnos tienen miedo a formalizar }

Formalización: Fbf-P1: $\neg fc \rightarrow ml$;

Fbf-P2: $fc \rightarrow \neg fr$;

Fbf-Q: $fr \rightarrow ml$

Estructura lógica R: $\neg fc \rightarrow ml$, $fc \rightarrow \neg fr \Rightarrow fr \rightarrow ml$

Interpretación: Se estudia la validez de la estructura R en una Tabla de verdad.

	fc	ml	fr	P1: ¬fc → ml	P2: fc → ¬fr	Q: fr \rightarrow mI
1	V	V	٧	V	F	V
2	٧	V	F	V	V	V
3	٧	F	٧	V	F	F
	٧	F	F	V	V	V
5	F	V	٧	V	V	V
6	F	٧	F	V	V	V
7	F	F	٧	F	V	F
8	F	F	F	F	V	V

No existe ninguna fila en la cual las premisas sean verdaderas y la conclusión falsa luego R es válido.

<u>Deducción natural</u>: Estrategia: prueba directa.

-2 fc
$$\rightarrow \neg$$
fr

3 fr

4 ¬fc

MT, 2, 3

5 ml

MP, 1, 4

 $6 \text{ fr} \rightarrow \text{ml}$

TD, 3-5

Raz-21 "Aprobarás el examen de mates sólo si te animas a estudiar los domingos (P1). Para que seas un buen informático es suficiente que te animes a estudiar los domingos, sin embargo no es necesario que apruebes el examen de mates (P2). Por lo que, o no apruebas el examen de mates o eres un buen informático (Q)".

Usar MC = {ap: apruebas examen mates; in: buen informático; do: te animas a estudiar domingos }

Formalización: Fbf-P1: ap \rightarrow do;

Fbf-P2: (do \rightarrow in) $\land \neg$ (in \rightarrow ap);

Fbf-Q: ¬ap ∨ in

Estructura lógica R: ap \rightarrow do, (do \rightarrow in) $\land \neg$ (in \rightarrow ap) $\Rightarrow \neg$ ap \lor in

Interpretación: Estudiamos la existencia de un contraejemplo en la estructura P1, P2 ⇒ Q

Como P2: $(do \rightarrow in) \land \neg(in \rightarrow ap) = V \Rightarrow (do \rightarrow in) = V \quad y \quad \neg(in \rightarrow ap) = V \Rightarrow (in \rightarrow ap) = F \Rightarrow in = V y ap = F.$

Por otro lado, Q=F, por hipótesis, pero como ap = F (por P2) ⇒ ¬ap=V ⇒ Q=V, contradicción.

Luego, como R no admite una interpretación contraejemplo, R es válido.

<u>Deducción natural</u>: Estrategia: reducción al absurdo.

-1 ap \rightarrow do

 $-2 (do \rightarrow in) \land \neg (in \rightarrow ap)$

 $3 \neg (\neg ap \lor in)$

4 ¬¬ap ∧ ¬in de Morgan, 3

5 ap ∧ ¬in DN, 4

6 ap EC, 5

7 do MP, 1, 6

 $8 do \rightarrow in$ EC, 2

9 in MP, 7, 8

10 ¬in EC, 5

11 in ∧ ¬in IC, 9, 10

12 ¬ap ∨ in IN, 3-11

Raz-22 "El profesor Lógicus se enfurruña a no ser que (a menos que) la profesora Chusita apruebe a los alumnos (P1).

O la profesora Chusita no aprueba a los alumnos o éstos no hacen gansadas (P2). Luego, el profesor Lógicus se enfurruña a menos que la profesora Chusita apruebe a los alumnos o éstos no hagan gansadas" (Q).

Usa MC = {en: profesor Lógicus se enfurruña; ap: profesora Chusita aprueba alumnos; ga: alumnos hacen gansadas}

Formalización: Fbf-P1: $\neg en \rightarrow ap$;

Fbf-P2: $\neg ap \lor \neg ga;$

Fbf-Q: $\neg en \rightarrow ap \lor \neg ga$

Estructura lógica R: $\neg en \rightarrow ap$, $\neg ap \lor \neg ga \Rightarrow \neg en \rightarrow ap \lor \neg ga$

Interpretación: Se demuestra en una Tabla de verdad si la fbf asociada a R es una tautología.

Fbf asociada a R: $(\neg en \rightarrow ap) \land (\neg ap \lor \neg ga) \rightarrow (\neg en \rightarrow ap \lor \neg ga)$

	En	ар	ga	¬en	¬ар	¬ga	A:	B:	A ∧ B	C:	D:	$A \wedge B \rightarrow D$
		- 1-	,		- 1	5	$\neg en \rightarrow ap$	¬ap∨¬ga		ap∨¬ga	$\neg en \rightarrow C$, _
1	>	V	٧	F	F	F	V	F	F	٧	٧	V
2	V	٧	F	F	F	V	V	V	V	V	V	V
3	V	F	V	F	V	F	V	V	V	F	V	V
4	٧	F	F	F	V	V	V	V	V	V	V	V
5	F	٧	٧	V	F	F	V	F	F	V	٧	V
6	F	٧	F	V	F	٧	V	V	V	V	٧	V
7	F	F	V	V	V	F	F	V	F	F	F	V
8	F	F	F	V	V	٧	F	V	F	V	V	V

Las 8 interpretaciones de la fbf-R son verdaderas, luego fbf-R es una tautología y R es correcto.

<u>Deducción natural</u> Estrategia: la prueba directa.

$$-1$$
 ¬en → ap

3 ¬en

4 ap

MP, 1, 3

5 ap∨¬ga

ID, 4

6 ¬en → ap \lor ¬ga

TD, 3-5

Raz-23 "Para que suceda A es necesario que no suceda B (P1), sin embargo sí es necesario que ocurra C para que no suceda A (P2). Se cumple E a menos que suceda F (P3) pero sólo si es cierto D se puede asegurar que es cierto E (P4). Luego, si es cierto B lo es C, y si no es cierto F es cierto D (Q)".

Usar las mismas letras de proposiciones para las variables proposicionales

Formalización: Fbf-P1:
$$A \to \neg B$$
;
Fbf-P2: $\neg A \to C$;
Fbf-P3: $\neg E \to F$;
Fbf-P4: $E \to D$;
Fbf-Q: $(B \to C) \land (\neg F \to D)$

Estructura lógica R: $A \to \neg B$, $\neg A \to C$, $\neg E \to F$, $E \to D \Rightarrow (B \to C) \land (\neg F \to D)$

Interpretación: Estudiamos la existencia de un contraejemplo en la estructura R: P1, P2, P3, P4 ⇒ Q

Suponemos que P1= V, P2 = V, P3 = V, P4 = V y Q = F.

Puede suceder que Q=F porque B \rightarrow C = F, entonces B = V y C = F. Con esta interpretación tenemos que \neg B = F.

Para que P1 = V, si ¬B=F entonces debe ser A = F, pero si esto sucede la premisa P2 = F, ya que C = F (por Q). Contradicción.

Si Q = F porque ¬F \rightarrow D = F, entonces ¬F=V y D=F, con esta interpretación para que P3=V debe ser ¬E=F \Rightarrow E=V, pero con esta interpretación P4=F. Contradicción.

Q no puede ser falsa y las premisas verdaderas, luego no existe contraejemplo, y por lo tanto R es válido.

Deducción natural Estrategia: prueba directa a cada sub-fórmula de la conclusión.

```
-1 A \rightarrow \neg B
-2 \neg A \rightarrow C
-3 \neg E \rightarrow F
-4 E \rightarrow D \Rightarrow (B \rightarrow C) \land (\neg F \rightarrow D)
               5 B
                                     (suponemos cierta la fbf antecedente de un condicional de la conclusión)
               6 B \rightarrow \neg A
                                     CTP, 1
               7 ¬A
                                     MP, 5, 6
               8 C
                                     MP, 2, 7 (deducimos la fbf consecuente del implicador)
               9 B \rightarrow C
                                     TD 5-8
               10 ¬F
                                     (suponemos cierta la fbf antecedente de un condicional de la conclusión)
               11 \neg F \rightarrow E
                                     CTP, 3
               12 E
                                     MP, 11, 10
               13 D
                                     MP, 4, 12 (deducimos la fbf consecuente del implicador)
               14 \neg F \rightarrow D
                                     TD, 10-13
    15 (B \rightarrow C) \wedge (\negF \rightarrow D)
                                     IC, 9, 14
```

Raz-24 "Voy a la facultad o me quedo en casa pero no ambas cosas (P1). Para que vaya a la facultad es necesario que vaya a clase de mates (P2) y para que estudie Lógica es suficiente que me quede en casa (P3). Luego estudio Lógica ya que no voy a clase de mates (Q)".

Usar MC = { fa: voy a la facultad; ca: me quedo en casa; ma: voy a clase de mates; lo: estudio Lógica }

Formalización: Fbf-P1: (fa \vee ca) \wedge ¬(fa \wedge ca);

Fbf-P2: fa \rightarrow ma;

Fbf-P3: ca \rightarrow lo;

Fbf-Q: $\neg ma \rightarrow lo$

Estructura lógica R: (fa \vee ca) $\wedge \neg$ (fa \wedge ca), fa \rightarrow ma, ca \rightarrow lo $\Rightarrow \neg$ ma \rightarrow lo

Interpretación: Estudiamos la existencia de un contraejemplo en la estructura R: P1, P2, P3 ⇒ Q

Suponemos P1= V, P2 = V, P3 = V y Q = F.

Como Q=F $\Rightarrow \neg ma=V$ y lo=F.

Como P3=V y ma=F \Rightarrow fa=F.

Para que P1=V como fa=F ⇒ ca=V

Si ca=V la premisa P3=F.

Contradicción con la suposición inicial. Luego R es válido.

Deducción natural Estrategia: prueba directa.

-1 (fa ∨ ca) ∧ ¬(fa ∧ ca)

-2 fa \rightarrow ma

 $-3 ca \rightarrow lo \Rightarrow \neg ma \rightarrow lo$

4 ¬ma

5 ¬fa MT, 2, 4

7 ca SD, 5, 6

8 lo MP, 3, 7

9 \neg ma \rightarrow lo TD, 4-8

Raz-25 "Si la bola roja golpea a la bola blanca, la bola blanca se mueve (P1). Es suficiente que la bola blanca se mueva para que golpee a la bola verde y ganes la partida (P2)".

Demuestra si es cierto que:

"Has ganado la partida (Q) porque la bola roja ha golpeado a la bola blanca (P3)."

Usa MC = { **rb**: bola roja golpea bola blanca; **bv**: bola blanca golpea bola verde;

gp: ganas la partida; mb: bola blanca se mueve }

Formalización: Fbf-P1: rb \rightarrow mb;

 $Fbf\text{-P2:}\ mb \to bv \land gp;$

Fbf-P3: rb; Fbf-Q: gp

Estructura lógica R: $rb \rightarrow mb$, $mb \rightarrow bv \land gp$, $rb \Rightarrow gp$

Interpretación Estudiamos la existencia de un contraejemplo en la estructura R: P1, P2, P3 ⇒ Q

Suponemos P1= V, P2 = V, P3 = V y Q1 = F.

Como Q=F \Rightarrow gp=F.

Si gp=F \Rightarrow bv \land gp=F entonces para que la premisa P2=V, tiene que ser mb=F.

Si mb=F, para que la premisa P1=V tiene que ser rb=F, pero este valor se contradice con el de la premisa P3 donde rb=V. Contradicción.

Luego razonamiento R es válido.

<u>Deducción natural</u> Estrategia: reducción al absurdo.

-1 rb \rightarrow mb

-2 mb → bv \land gp

-3 rb \Rightarrow gp

4 ¬gp

5 mb MP, 1, 3

6 bv \wedge gp MP, 2, 5

7 gp EC, 6

8 ¬gp ∧ gp IC, 4, 7

9 gp IN, 4-8

Raz-26 "Para que la bola roja golpee a la bola blanca es necesario que la bola blanca se mueva. La bola azul golpea a la bola verde sólo si ganas la partida. O la bola roja golpea a la bola blanca o la bola azul golpea a la bola verde. Luego o la bola blanca se mueve o ganas la partida".

Usa MC = { **rb**: bola roja golpea bola blanca; **bv**: bola blanca golpea bola verde; **gp**: ganas la partida; **mb**: bola blanca se mueve }

Formalización: Fbf-P1: $rb \rightarrow mb$;

Fbf-P2: av \rightarrow gp;

Fbf-P3: $rb \lor av$;

Fbf-Q: $mb \lor gp$

Estructura lógica R: $rb \rightarrow mb$, $av \rightarrow gp$, $rb \lor av \Rightarrow mb \lor gp$

Interpretación: Estudiamos la existencia de un contraejemplo en la estructura R: P1, P2, P3 ⇒ Q

Suponemos P1= V, P2 = V, P3 = V y Q1 = F.

Como Q=F \Rightarrow mb \vee gp = F \Rightarrow mb =F y gp = F

Si gp=F, para que la premisa P2 = V, debe ser av = F;

Para que la premisa P3 = V, como av = F, tiene que ser rb = V;

Si rb = V, y mb = F (por Q) tenemos que P1 = F.

Luego, no existe contraejemplo que interprete todas las premisas como V y Q como F.

Luego R es válido.

<u>Deducción natural</u> Estrategia: reducción al absurdo.

-1 rb \rightarrow mb

-2 av \rightarrow gp

-3 rb \vee av \Rightarrow mb \vee gp

 $4 \neg (mb \lor gp)$

5 ¬mb ∧ ¬gp de Morgan, 4

6 ¬gp EC, 5

7 ¬av MT, 2, 6

8 rb SD, 3, 7

9 mb MP, 1, 8

10 ¬mb EC, 5

11 mb ∧ ¬mb IC, 9, 10

12 mb ∨ gp IN, 4-11

Raz-27 "Puesto que los alumnos copian las prácticas a no ser que el profesor lo impida y el profesor no lo impide a menos que tenga un día malo, se infiere que es suficiente que el profesor no tenga un día malo para que los alumnos copien las prácticas".

Usa MC = { im: profesor impide que copies; cp: alumnos copian prácticas; ml: profesor tiene día malo }

<u>Formalización</u>: Fbf-P1: $\neg im \rightarrow cp$;

Fbf-P2: im \rightarrow ml;

Fbf-Q: $\neg ml \rightarrow cp$

Estructura lógica R: $\neg im \rightarrow cp$, $im \rightarrow ml \Rightarrow \neg ml \rightarrow cp$

<u>Interpretación</u>: Se interpreta la estructura R: P1, P2 ⇒ Q en una Tabla de verdad.

	im	cn	ml	im	¬ml	P1:	P2:	Q:
	im	ср	ml	¬im	71111	$\neg im \rightarrow cp$	$im \rightarrow ml$	¬ml → cp
1	>	>	٧	F	F	V	V	V
2	>	>	F	F	٧	V	F	V
3	٧	F	V	F	F	V	V	V
4	V	F	F	F	V	V	F	F
5	F	V	V	V	F	V	V	V
6	F	V	F	V	V	V	V	V
7	F	F	V	V	F	F	V	V
8	F	F	F	V	V	F	V	F

La estructura R es válida ya que en las filas 1, 3, 5 y 6 donde las premisas son V la conclusión también lo es. Las otras filas no nos interesan.

<u>Deducción natural</u> Estrategia: prueba directa.

$$-1 \neg im \rightarrow cp$$

$$-2 \text{ im} \rightarrow \text{ml} \implies \neg \text{ml} \rightarrow \text{cp}$$

4 ¬ml

5 ¬im MT, 2, 4

6 cp MP, 1, 5

 $7 \text{ -ml} \rightarrow \text{cp}$ TD, 4-6

☐ Libros para revisar teoría de lógica y encontrar más ejercicios

Lógica Formal para Informáticos

Lourdes Arenas Alegrías. Ediciones Díaz de Santos, S. A., Madrid 1996.

☼ Lógica de Primer Orden

Mª Jesús Castel y Faraón Llorens. Dpto. Ciencia de la Computación e IA. Universidad de Alicante, 1999.

⋄ Lógica Informática

José Cuena. Alianza Editorial, S.A., 1985.

⋄ Lógica Simbólica

Manuel Garrido. Editorial Tecnos, S.A. 2ª ed. 1991.

Lógica de predicados: http://di002.edv.uniovi.es/~labra/FTP/LPRED.pdf