Statistical Modelling

401-3622-00L Autumn Semester 2019

Classical Linear Regression

Coefficients of determination \mathbb{R}^2

- For OLS, $R^2=r_{\hat{m{u}}m{v}}^2$. (For simple linear regression, $R^2=r_{m{x}m{y}}^2$.)
- Model comparison only meaningful if every model uses the same response variable and has the same number of paramaters.
- R² can be arbitrarily low when model is completely correct (low signal to noise ratio), can be close to 1 when the model is totally wrong (misspecified), cannot be compared between a model with untransformed Y and one with transformed Y (can go down when the model assumptions are better fulfilled).

Statistical properties

Let
$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$
, $E(\boldsymbol{\epsilon}) = 0$, $Cov(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{I}$, $rank(\mathbf{X}) = p$.

- (Gauss-Markov Theorem). Furthermore, let b be an arbitrary p-dimensional vector and $\hat{\beta}$ the LSE. Then $b^{\top}\hat{\beta}$ has minimal variance amongst all linear unbiased estimators of $b^{\top}\beta$ (BLUE).
- Let furthermore ϵ be normally distributed. Then $b^{\top}\hat{\beta}$ has minimal variance amongst all unbiased estimators of $b^{\top}\beta$ (UMVU).
- Additionally, assume $X^{\top}X/n \to V$ as $n \to \infty$ where V is a positive definite matrix, and that $\max_j H_{jj} \to 0$. Then $\hat{\beta}, \hat{\sigma}^2_{ML}$ and $\hat{\sigma}^2$ are consistent. The least squares estimator asymptotically follows a normal distribution $\sqrt{n}(\hat{\beta}-\beta) \stackrel{d}{\to} \mathcal{N}(0,\sigma^2V^{-1})$.
- Assume normality of ϵ . $\hat{\beta}$ and $\hat{\sigma}^2$ are independent. $SSE/\sigma^2 \sim \chi^2_{n-n}$.

Exact F-test

- The least squares estimator under $H_0: C\beta = d$ gives $\hat{\beta}^R = \hat{\beta} (X^\top X)^{-1}C^\top (C(X^\top X)^{-1}C^\top)^{-1}(C\hat{\beta} d).$
- The difference in residual sum of squares $\Delta SSE = (C\hat{\beta} d)^{\top} (C(X^{\top}X)^{-1}C^{\top})^{-1} (C\hat{\beta} d).$
- Assume normality of $\pmb{\epsilon}$. ΔSSE and SSE are independent. Under $H_0, \Delta SSE/\sigma^2 \sim \chi_r^2$, the test statistic $F = \frac{n-p}{r} \frac{\Delta SSE}{SSE} = \frac{1}{r} (\pmb{C} \hat{\pmb{\beta}} \pmb{d})^\top (\widehat{\text{Cov}}(\pmb{C} \hat{\pmb{\beta}}))^{-1} (\pmb{C} \hat{\pmb{\beta}} \pmb{d}) \sim F_{r,n-p}$. A global F-test for $H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0$, $F = \frac{n-p}{k} \frac{R^2}{1-R^2} \sim F_{k,n-p}$.

Model specification

- Missing variables: Coefficients of model with missing variables β₁ are biased, but have smaller variance, unless covariates are orthogonal.
- Irrelevant variables: Both $\hat{\beta}_1$ and $\tilde{\beta}_1$ are biased, but coefficients of model with irrelevant variables have larger variance, unless covariates are orthogonal.

• Prediction quality: Expected squared prediction error $SPSE = n\sigma^2 + |M|\sigma^2 + \sum_i (\mu_{iM} - \mu_i)$, where $y_{n+i} = \mu_i + \epsilon_{n+i}, i = 1, \dots, n$ and $\mu_{iM} = E(\hat{y}_{iM})$.

Model selection

- Expected squared prediction error (SPSE)
 - Approach 1: Estimate the expected squared prediction error using independent data, $\widehat{SPSE} = \sum_{i=1}^{m} (y_{n+i} \hat{y}_{iM})^2$.
 - Approach 2: Use all data to estimate $\hat{\beta}_M$ and correct sum of squared residuals, $\widehat{SPSE} = \sum_{i=1}^n (y_i \hat{y}_{iM})^2 + 2|M|\hat{\sigma}^2$.
- Mallow's complexity parameter $C_p = \frac{\sum_{i=1}^n (y_i \hat{y}_{iM})^2}{\hat{\sigma}^2} n + 2|M|.$ Can be understood as estimate of $SMSE/\sigma^2$.
- Akaike information criterion $AIC = -2l(\hat{eta}_M, \hat{\sigma}^2_{ML}) + 2(|M|+1)$. In a linear model with Gaussian errors, $AIC = n\log(\hat{\sigma}^2_{ML}) + 2(|M|+1)$ (ignoring constants).
- Bayesian information criterion $BIC = -2l(\hat{eta}_M, \hat{\sigma}^2_{ML}) + \log(n)(|M|+1)$. In a linear model with Gaussian errors, $BIC = n\log(\hat{\sigma}^2_{ML}) + \log(n)(|M|+1)$ (ignoring constants).
- Adjusted coefficient of determination $\bar{R}^2 = 1 \frac{n-1}{n-n}(1-R^2)$.
- Leave-one-out cross validation $LOOCV = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_{iM}^{-i})^2$. Special case for LSE, $LOOCV = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i \hat{y}_{iM}}{1 H_{i,iM}} \right)^2$.

Model diagnostics

- Residual plots: (standardized or studentized) residuals against \hat{y}_i , (standardized or studentized) residuals against each predictor x_j , "scale-location" plot ($\sqrt{|\text{standardised residual}_i|}$ against \hat{y}_i).
- $\begin{aligned} \bullet & \text{ Transformation: power family } \psi(u,\lambda) = \begin{cases} u^{\lambda}, & \text{for } \lambda \neq 0 \\ \log(u), & \text{for } \lambda = 0 \end{cases} \text{ (for strictly positive } u), \text{ scaled power family } \\ \psi_S(x,\lambda) = \begin{cases} \frac{x^{\lambda}-1}{\lambda}, & \text{for } \lambda \neq 0 \\ \log(x), & \text{for } \lambda = 0 \end{cases} \text{ (for strictly positive } x, \end{aligned}$

preserves direction of association), variance stabilising transformation (for positive u):

- \sqrt{y} : Relatively "mild" and most appropriate when the response follows a Poisson distribution
- $-\log(y)$: Most commonly used transformation, appropriate when the error standard deviation is a percent of the response (rather than absolute units), "empirical log rule"
- 1/y: Often applied when the response is a time until an event; Can be appropriate when responses are mostly close to 0, but occasional large values occur
- Autoccorelation detection: correlograms, Durbin-Watson test for $H_0: \rho=0$ in AR(1) model, $d=\frac{\sum_{i=2}^n(\hat{\epsilon}_i-\hat{\epsilon}_{i-1})^2}{\sum_{i=1}^n\hat{\epsilon}_i^2}\approx 2(1-\hat{\rho}).$

- Colinearity analysis: variance inflation factor $VIF_j=\frac{1}{1-R_j^2}$, "serious collinearity problem" exists when $VIF_j>10$.
- $\begin{array}{l} \bullet \ \, \text{Outlier detection: studentised "leave-one-out" residuals} \\ r_i^* = \frac{\hat{\epsilon}_{(i)}}{\hat{\sigma}_{(i)}\sqrt{1+\boldsymbol{x}_i^\top(\boldsymbol{X}_{(i)}^\top\boldsymbol{X}_{(i)})^{-1}\boldsymbol{x}_i}} = \frac{\hat{\epsilon}_i}{\hat{\sigma}_{(i)}\sqrt{1-\boldsymbol{H}_{ii}}} \sim t_{n-p-1}. \end{array}$
- Influence analysis: leverage $1/n \leq H_{ii} \leq 1$, should pay attention to observations with $H_{ii} > 2p/n$ (twice the average), but large values do not necessarily lead to problems, Cook's distance $D_i = \frac{\|\hat{\mathbf{y}}_{(i)} \hat{\mathbf{y}}\|_2^2}{p\hat{\sigma}^2} = \frac{1}{p} \frac{\hat{\sigma}_i^2}{\hat{\sigma}^2(1 H_{ii})} \frac{H_{ii}}{1 H_{ii}}, \text{ plot of the standardized residuals against } H_{ii} \text{ is often used to detect influential observations}$
- Linearity analysis: residual Prediction (RP) tests, scaled residuals $\tilde{r} = \frac{\hat{\epsilon}}{\|\hat{\epsilon}\|_2^2} \text{ has the same distribution of } \frac{(I-H)z}{\|(I-H)z\|_2^2} \text{ where } z \sim \mathcal{N}(0,I)$

General linear models

Weighted least squares

- (Gauss-Markov Theorem). Under the assumptions of the general linear model, the WLS estimator has minimal variance among all linear and unbiased estimators.
- Assuming $\epsilon \sim \mathcal{N}(0, \sigma^2 \boldsymbol{W}^{-1})$, can show that WLS estimator coincides with ML estimator for $\boldsymbol{\beta}$, and $\hat{\sigma}^2 = \frac{1}{n-p} \hat{\boldsymbol{\epsilon}}^\top \boldsymbol{W} \hat{\boldsymbol{\epsilon}}$ is unbiased.
- For grouped data with response as arithmetic mean \bar{y}_i , $\boldsymbol{W} = \operatorname{diag}(n_1, \dots, n_G)$, for sum $n_i \bar{y}_i$, $\boldsymbol{W} = \operatorname{diag}(1/n_1, \dots, 1/n_G)$.
- Two-stage least squares: Obtain estimates $\hat{\alpha}$ from an unweighted regression between $\log(\hat{\epsilon}_i^2)$ and the variance explanatory variables z_i . Then fit a linear model using the weights $\hat{w}_i = 1/\exp(z_i^\top \hat{\alpha})$.
- White estimator: $\widehat{\mathrm{Cov}}(\hat{\beta}) = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\operatorname{diag}(\hat{\epsilon}_1^2,\dots,\hat{\epsilon}_n^2)\boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1} \text{ is consistent under general conditions. No assumption about type of heteroscedasticity but larger variances.}$
- Two-stage estimation (Prais-Winsten estimator) for AR(1) model: $\hat{\rho} = \frac{\sum_{i=2}^n \hat{\epsilon}_i \hat{\epsilon}_{i-1}}{\sqrt{\sum_{i=2}^n \hat{\epsilon}_i^2} \sqrt{\sum_{i=2}^n \hat{\epsilon}_{i-1}^2}}.$ Then insert $\hat{\rho}$ to get $\hat{\boldsymbol{W}}$.

Instrumental variables

- An instrumental variable z has to satify, relevance $\mathrm{Cov}(x,z) \neq 0$ and exogeneity $\epsilon \perp z$.
- Moment-based estimator $\hat{eta}^{IV} = \frac{\widehat{\mathrm{Cov}}(z,y)}{\widehat{\mathrm{Cov}}(z,x)}$ is consistent.
- Two-stage least squares (2SLS): Regress x on z, construct estimate of x without influence of unobserved confounder: \tilde{x} , regress y on \tilde{x} to obtain $\hat{\beta}^{IV-2SLS}$.
- A weak instrument z can lead to large estimation variance.

Penalised regression

Ridge regression

- Ridge regression shrinks directions in the column space of X according to how X varies along those directions
- Effective degrees of freedom

$$df(\lambda) = \operatorname{tr}(\boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}) = \sum_{j=1}^{k} \frac{d_j^2}{d_j^2 + \lambda}.$$

· Ridge estimator is biased but has smaller variance than OLS.

Lasso regression

- Small coefficients will be more strongly shrunken towards zero while larger coefficients will be less affected by the penalty.
- · Lasso estimator is biased but has smaller variance than OLS.

Explicit solutions for design matrix with orthonormal columns, i.e., $X^{\top}X = I$. Let $\hat{\beta}_i$ be the OLS solution, then

Estimator	Formula
Best subset	$\hat{\beta}_j 1(\hat{\beta}_j > \sqrt{\lambda})$
Ridge	$\hat{\beta}_j/(1+\lambda)$
Lasso	$\operatorname{sign}(\hat{\beta}_j)(\hat{\beta}_j - \lambda/2)_+$

Robust regression

- In case of heavy-tailed error distributions robust estimators have smaller variance than OLS.
- Finite sample breakdown point of an estimator: Fraction of data that can be given arbitrary values without making the estimator arbitrarily bad. 0 for mean, (n-1)/2n for median.
- Huber's loss function $ho_{H_c}(\epsilon) = \begin{cases} \frac{1}{2}\epsilon^2, & \text{if } |\epsilon| \leq c \\ c(|\epsilon| \frac{c}{2})|, & \text{if } |\epsilon| > c \end{cases}$, using $c = 1.345S \approx 2MAD$ yields 95% efficiency relative to the sample mean when the distribution is normal + resistance to outliers.
- · Biweight loss function

$$\rho_{BW_c}(\epsilon) = \begin{cases} \frac{c^2}{6} \left\{ 1 - \left[1 - \left(\frac{\epsilon}{c}\right)^2\right]^3 \right\}, & \text{if } |\epsilon| \leq c \\ \frac{c^2}{6}, & \text{if } |\epsilon| > c \end{cases}, \text{ using }$$

 $c=4.685S\approx 7MAD$ yields 95% efficiency relative to the sample mean when the distribution is normal.

- Using the weight function $w(\epsilon) = \psi(\epsilon)/\epsilon$.
- Bounded-influence regression: Least-trimmed-squares (LTS) regression selects regression coefficients to minimize smaller half of the squared residuals, least median of squares.

Generalised linear models

Logistic regression

• Fisher scoring algorithm $\hat{\boldsymbol{\beta}}^{(t+1)} = \hat{\boldsymbol{\beta}}^{(t)} + (\boldsymbol{X}\boldsymbol{V}^{(t)}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}(\boldsymbol{y} - \hat{\boldsymbol{\pi}}^{(t)}), \text{ where } \\ \boldsymbol{V}^{(t)} = \operatorname{diag}(\hat{\boldsymbol{\pi}}_{1}^{(t)}(1 - \hat{\boldsymbol{\pi}}_{1}^{(t)}), \dots, \hat{\boldsymbol{\pi}}_{n}^{(t)}(1 - \hat{\boldsymbol{\pi}}_{n}^{(t)})).$

- Asymptotic distribution under (weak) regularity conditions $\hat{\boldsymbol{\beta}} \stackrel{d}{\to} \mathcal{N}(\boldsymbol{\beta}, \boldsymbol{F}^{-1}(\hat{\boldsymbol{\beta}}))$
- Under $H_0: C\boldsymbol{\beta} = \boldsymbol{d}$ with $\operatorname{rank}(\boldsymbol{C}) = r$, Wald statistic $w = (C\hat{\boldsymbol{\beta}} \boldsymbol{d})^{\top} (CF^{-1}(\hat{\boldsymbol{\beta}})C)^{-1} (C\hat{\boldsymbol{\beta}} \boldsymbol{d}) \sim \chi_r^2$.
- Deviance $D(\hat{\pi}) = -2l(\hat{\pi})$ for individual data model, and $D(\hat{\pi}) = 2(l(\tilde{\pi}) l(\hat{\pi})) \overset{d}{\to} \chi^2_{G-p}$ for group data model, if there is no overdispersion, and if approximation is based on a limiting operation where G is fixed and $n_i \to \infty$.
- Deviance residual $r_{D_i}=\mathrm{sign}(\hat{y}_i-\hat{\pi}_i)\sqrt{d_i}, \sum_i r_{D_i}^2=D,$ Pearson residual $r_{P_i}=\frac{\hat{y}_i-\hat{\pi}_i}{\sqrt{\hat{\pi}_i(1-\hat{\pi}_i)/n_i}},$ based on $\chi^2=\sum_i r_{P_i}^2.$
- This empirical variance $\bar{y}_i(1-\bar{y}_i)/n_i$ is often much larger than $\hat{\pi}_i(1-\hat{\pi}_i)$. If $\mathrm{Var}(\bar{y}_i)=\phi\pi_i(1-\pi_i)$, one estimates $\hat{\phi}_P=\frac{1}{n-p}\chi^2$ or $\hat{\phi}_D=\frac{1}{n-p}D$. Then $\widehat{\mathrm{Cov}}(\hat{\pmb{\beta}})=\hat{\phi}\pmb{F}^{-1}(\hat{\pmb{\beta}})$.
- Metrics: accuracy $\frac{\#TP+\#TN}{n}$, true positive rate / recall / sensitivity $TPR=\frac{\#TP}{\#TP+\#FN}$, specificity $\frac{\#TN}{\#TN+\#FP}$, false positive rate $FPR=\frac{\#FP}{\#TN+\#FP}$

General settings

- Linear predictor $\eta = \mathbf{x}^{\top} \boldsymbol{\beta}$, response function $\mu = h(\eta)$, link function $\eta = q(\mu)$.
- Distribution of response $Y|\theta$ in exponential family $f(y|\theta) = \exp\Big(\frac{y\theta b(\theta)}{\phi}w + c(y,\phi,w)\Big).$
- For individual data, w = 1. For group data when y is group mean, $w = n_i$; when y is group total, set $w = 1/n_i$.
- $E(y) = \mu = b'(\theta)$, $Var(y) = \phi b''(\theta)/w$.
- Unique canonical link function specified by $\eta=\theta$. Then log-likelihood is always concave so that the ML estimator is always unique (if it exists), and $F(\beta)=H(\beta)$.

Cumulative model

- Let $u_i = \boldsymbol{x}_i^{\top} \boldsymbol{\beta} + \epsilon_i$, where ϵ_i had cdf F. Then $Y_i = r \equiv \theta_{r-1} < u_i \leq \theta_r$ for $r = 1, 2, \ldots, c+1$, where $-\infty = \theta_0 < \theta_1 < \cdots < \theta_{c+1} = \infty$.
- Logistic model is called proportional odds model because ratio of the cumulative odds for subpopulations characterized by \boldsymbol{x}_i and $\tilde{\boldsymbol{x}}_i$ is $\frac{P(Y_i \leq r|\boldsymbol{x}_i)/P(Y_i > r|\boldsymbol{x}_i)}{P(Y_i \leq r|\tilde{\boldsymbol{x}}_i)/P(Y_i > r|\tilde{\boldsymbol{x}}_i)} = \exp((\boldsymbol{x}_i \tilde{\boldsymbol{x}}_i)^{\top}\boldsymbol{\beta})$

Nonparametric regression

Polynomial splines

- A function $f:[a,b]\to\mathbb{R}$ is called a polynomial spline of degree $l\ge 0$ with knots $a=\kappa_1<\dots<\kappa_m=b$ if f(z) is (l-1)-times continuously differentiable, and f(z) is a polynomial of degree l on the intervals $[\kappa_j,\kappa_{j+1})$.
- Truncated power series uses the model $y_i=\gamma_1+\gamma_2z_i+\cdots+\gamma_{l+1}z_i^l+\gamma_{l+2}(z_i-\kappa_2)_+^l+\cdots+\gamma_{l+m-1}(z_i-\kappa_{m-1})_+^l+\epsilon_i.$ The functions B_1,\ldots,B_d are called basis functions. Numerical instabilities for covariates with large values. Basis functions are nearly collinear, especially when two knots are close to one another.

- B-splines: only positive on an interval based on l+2 adjacent knots, at any point l+1 basis functions are positive. Bounded from above, hence numerically more stable.
- P-splines: introduce an additional penalty term that prevents overfitting, minimise

$$PLS(\lambda) = \sum_{i=1}^n \left(y_i - \sum_{j=1}^d \gamma_j B_j(z_i) \right)^2 + \lambda \sum_{j=l+2}^d \gamma_j^2$$
 for TP basis.

- Smoothing splines: only assume that f(z) is twice continuously differentiable, so that we can use $\sum_{i=1}^n (y_i f(z_i))^2 + \lambda \int (f''(z))^2 dz.$ Natural cubic splines with knots at the d ordered and unique covariate values $z_{(1)} < \cdots < z_{(d)}.$
- The function f(z) is a natural cubic spline based on the knots $a \leq \kappa_1 < \cdots < \kappa_m \leq b$ if f(z) is a cubic polynomial spline for the given knots, and satisfy boundry conditions f''(a) = f''(b) = 0, linear in the intervals $[a, \kappa_2]$ and $[\kappa_{m-1}, b]$. Need m instead of m+2 basis functions compared to standard cubic polynomial splines.

Local polynomial regression

- Estimation is usually based on a weighted version of the residual sum of squares $\sum_{i=0}^n \left(y_i \sum_{j=0}^l \gamma_j (z_i z)^j\right)^2 w_\lambda(z,z_i)$, where the weights are based on kernel functions $K\left(\frac{z-z_i}{\lambda}\right)$.
- Uniform kernel $K(u)=\frac{1}{2}1(|u|\leq 1)$, Epanechnikov kernel $K(u)=\frac{3}{4}(1-u^2)1(|u|\leq 1)$, Gaussian kernel $K(u)=\phi(u)$.
- Nadaraya-Watson estimator: local constant polynomial model $\hat{f}(z) = \frac{\sum_i w_{\lambda}(z, z_i) y_i}{\sum_i w_{\lambda}(z, z_i)}.$
- LOESS/LOWESS: weights $w_{\Delta(z)}(z,z_i)=K\left(\frac{|z-z_i|}{\Delta(z)}\right)$ where $\Delta(z)=\max_{i,j\in N(z)}|z_i-z_j|$ for k-nearest neighbourhood N(z) of z.
- If $\hat{f}(z) = \mathbf{s}(z)^{\top}\mathbf{y}$ and $\mathrm{Var}(\boldsymbol{\epsilon}) = \sigma^2\mathbf{I}$, then $\hat{f}(x) f(z) \overset{d}{\to} \mathcal{N}(0, \sigma^2\mathbf{s}(z)^{\top}\mathbf{s}(z))$, assuming that $\hat{f}(z)$ is (approximately) unbiased.
- Choose smoothing parameters by leave-one-out cross validation $LOOCV = \frac{1}{n} \sum_{i=1}^n \left(\frac{y_i \hat{f}(z)}{1 S_{ii}} \right)^2$, exact for classical linear model and smoothing splines.
- Assume additive structure $f(z) = f_1(z_1) + \cdots + f_q(z_q)$ to protect against curse of dimensionality.