

zero → O					
one > 1			1 22		
S => zero X	one				CNF.
A-> zero X	one		zero rero one one BB		
	one	4	zero tero one one BB	>	
B-> 2ero X	(0,11	1			
X -> Azero					
Y -> Bore					

$$S \rightarrow ASB \mid \epsilon$$

$$A \rightarrow aAS \mid a$$

$$B \rightarrow SbS \mid A \mid bb$$

$$A \rightarrow aAS \mid a$$

$$A \rightarrow aAS \mid$$

Convert the following grammar into CNF: $G = (\{S, A, B\}, \{a, b\}, R, S)$

R:

Determine whether the language $L = \{w \in \{a, b, c\}^* \mid w = a^m b^m c^k; m \le k\}$ is context-free or not. $pumping \mid eng+h \quad n : \quad | \leq l > n \quad , \quad S = u \vee w \times q$ 2) | u x | > 0 3 u v' w x' y \in L; \text{ \formall i \in N} $(1) \mid \vee \omega \times \mid \leq U$ Case 1: $vx = a^{9}$, q70, $vx = b^{9}$, $vx = c^{9}$ $uwy = a^{-9}b^{-1}c^{-1}\varphi L$ uwy = en b c n-9 & L uwy= an-9 bn-rcn $uv^2wx^2y = a^{n+q}b^{n+r}c^n \notin L$ Not CFL

Determine whether the language $L = \{w \in \{a, b, c\}^* \mid w = a^n b^m c^k; k = m^* n\}$ is context-free or not. pumping length n (S)>n, S=uvwxy $J = u \ u \ (n-q) \cdot n = n^2 - qn \neq n^2$ $vx = a^q \Rightarrow uwy = a^{n-q}b^n c^n \notin L$ $vx = b^q$ $vx = c^q$ $vx = a^qb^n$ $vx = a^qb^n$ $vx = b^qc^n$ $uwy = a^{n-q}b^n c^{n^2} \notin L$ $vx = a^qb^n$ $vx = a^q$ nq > n $uwy = a^{n}b^{n-q}c^{n^{2}-r} \not\in L$ $n(n-q) = n^{2} - nq \neq n^{2} - r$ 2< r < n-9 < N

Determine whether the language $L = \{w \in \{a\}^* \mid w = a^p; p \text{ is prime}\}$ is context-free or not.

pumping length
$$n$$
 $|s| \ge n$, $s = uvw \times y$
① $|vwx| \le n$ ② $|vx| > 0$ ③ $|uviw \times y| \in L$; $\forall i \in \mathbb{N}$
 $S = \alpha^{p}$, $p \ge n$, p is a prime $|vx| = \alpha^{p}$, $0 < q \le n$ $|uviw \times y| = \alpha^{p}$, $|vx| = \alpha^{q}$, $|vx| = \alpha^{q$