Отчёт по лабораторной работе №1

Установка и конфигурация операционной системы на виртуальную машину

Бронникова де Менезеш Эвелина

Содержание

Цель работы	1
Теоретическое введение	
Техническое обеспечение	
Соглашения об именовании	
Выполнение лабораторной работы	
Выводы	13
Контрольные вопросы	
Библиография	14

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Теоретическое введение

Техническое обеспечение

Лабораторная работа подразумевает установку на виртуальную машину VirtualBox (https://www.virtualbox.org/) операционной системы Linux (дистрибутив Rocky (https://rockylinux.org/) или CentOS (https://www.centos.org/)).

Выполнение работы возможно как в дисплейном классе факультета физикоматематических и естественных наук РУДН, так и дома. Описание выполнения работы приведено для дисплейного класса со следующими характеристиками: – Intel Core i3-550 3.2 GHz, 4 GB оперативной памяти, 20 GB свободного места на жёстком диске; – OC Linux Gentoo (http://www.gentoo.ru/); – VirtualBox верс. 6.1 или старше; – каталог с образами ОС для работающих в дисплейном классе: /afs/dk.sci.pfu.edu.ru/common/files/iso/.

Соглашения об именовании

При выполнении работ следует придерживаться следующих правил именования: имя виртуальной машины, имя хоста вашей виртуальной машины, пользователь внутри виртуальной машины должны совпадать с логином студента, выполняющего лабораторную работу. Вы можете посмотреть ваш логин, набрав в терминале ОС типа Linux команду id -un. ¹

Выполнение лабораторной работы

Для создания новой виртуальной машины необходимо запустить VirtualBox и выбрать *Машина > Создать*. Затем указать имя виртуальной машины (логин в дисплейном классе), тип операционной системы — Linux, RedHat.

Имя и тип ОС

Указать размер основной памяти виртуальной машины — 2048МБ (или большее число, кратное 1024 МБ, если позволяют технические характеристики компьютера).

¹ Кулябов Д.С. Лабораторная работа № 1. Установка и конфигурация операционной системы на виртуальную машину - 14 с.

Объём памяти виртуальной машины

Задать конфигурации жёсткого диска — загрузочный, VDI (BirtualBox Disk Image), динамический виртуальный диск.

Конфигурация жёсткого диска

Задать размер диска — 40 ГБ (или больше), его расположение — в данном случае /var/tmp/имя_пользователя/имя_пользователя.vdi.

Имя и размер виртуального жёсткого диска

Выбрав в VirtualBox для виртуальной машины *Настройки > Носители*, добавить новой привод оптических дисков и выбрать образ операционной системы, Rocky-9.0-x86_64-boot.iso.

Добавление нового привода оптических дисков

Затем запускается виртуальную машину. Необходимо выбрать English в качестве языка интерфейса и перейдите к настройкам установки операционной системы.

Выбор языка интерфейса

Настройки установки операционной системы

Корректируем раскладку клавиатуры (добавился русский язык, но в качестве языка по умолчанию указан английский язык; задана комбинация клавиш для переключения между раскладками клавиатуры — Alt + Shift).

Расклад клавиатуры

В разделе выбора программ указывается в качестве базового окружения Server with GUI, а в качестве дополнения — Development Tools.

Раздел выбора программ

Отключается KDUMP.

Отключение KDUMP

Место установки ОС оставляем без изменений. Проверяем сетевое соединение и в качестве имени узла указываем user.localdomain, где вместо user указано имя пользователя в соответствии с соглашением об именовании.

Сетевое соединение

Устанавливается пароль для root и пользователя с правами администратора.

Установка пароля

После завершения установки операционной системы перезапустили виртуальную машину.

Заходим в ОС под заданной при установке учётной записью. В меню *Устройства* виртуальной машины подключаем образ диска дополнений гостевой ОС. После загрузки дополнений нажимаем Enter и перезагружаем виртуальную машину.

Домашнее задание

Дождитесь загрузки графического окружения и откройте терминал. В окне терминала проанализируйте последовательность загрузки системы, выполнив команду dmesg.

```
[dmbronnikova@dmbronnikova ~]$ dmesg
        ux.org) (gcc (GCC) 11.2.1 20220127 (Red Hat 11.2.1-9), GNU ld version 2.35.2-17.el9) #1 SMP PREEMPT Tue A ug 9 19:45:51 UTC 2022
      0.000000] The list of certified hardware and cloud instances for Red Hat Enterprise Linux 9 can be v
iewed at the Red Hat Ecosystem Catalog, https://catalog.redhat.com.
       0.000000] Command line: BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.14.0-70.22.1.el9_0.x86_64 root=/dev/mapper
/rl-root ro resume=/dev/mapper/rl-swap rd.lvm.lv=rl/root rd.lvm.lv=rl/swap rhgb quiet
[ 0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point registers'
[ 0.000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'
[ 0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'
[ 0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'
[ 0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'
[ 0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'
      0.000000] x86/fpu: Enabled xstate features 0x7, context size is 832 bytes, using 'standard' format.
      0.000000] signal: max sigframe size: 1776
       0.000000] BIOS-provided physical RAM map:
      0.000000] BIOS-e820: [mem 0x00000000000000000000000000009fbff] usable 0.000000] BIOS-e820: [mem 0x00000000009fc00-0x00000000009ffff] reserved
       \hbox{\tt 0.000000] BIOS-e820: [mem 0x000000000000000000000000000000000fffff] reserved } \\
       \hbox{0.000000] BIOS-e820: [mem 0x0000000000000000000000000000007ffeffff] usable } \\
      0.000000] BIOS-e820: [mem 0x000000007fff0000-0x000000007fffffff] ACPI data
       \hbox{0.000000] BIOS-e820: [mem 0x000000000fec00000-0x000000000fec00fff] reserved } \\
       \hbox{0.000000] BIOS-e820: [mem 0x000000000fee000000-0x000000000fee00fff] reserved } \\
       \hbox{0.000000] BIOS-e820: [mem 0x000000000fffc0000-0x000000000ffffffff] reserved } \\
      0.000000] NX (Execute Disable) protection: active
      0.000000] SMBIOS 2.5 present.
      0.000000] DMI: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
      0.000000] Hypervisor detected: KVM
       0.000000] kvm-clock: Using msrs 4b564d01 and 4b564d00
      0.000000] kvm-clock: cpu 0, msr 53e01001, primary cpu clock
0.000004] kvm-clock: using sched offset of 12452783306 cycles
0.000008] clocksource: kvm-clock: mask: 0xfffffffffffffff max_cycles: 0x1cd42e4dffb, max_idle_ns: 8
81590591483 ns
      0.000014] tsc: Detected 1800.000 MHz processor
      0.002229] e820: update [mem 0x000000000-0x00000fff] usable ==> reserved 0.002239] e820: remove [mem 0x000a0000-0x000fffff] usable
      0.002251] last_pfn = 0x7fff0 max_arch_pfn = 0x400000000
      0.002275] Disabled
      0.002277] x86/PAT: MTRRs disabled, skipping PAT initialization too.
0.002283] CPU MTRRs all blank - virtualized system.
0.002288] x86/PAT: Configuration [0-7]: WB WT UC- UC WB WT UC- UC
0.002433] found SMP MP-table at [mem 0x0009fff0-0x00009ffff]
      0.002806] RAMDISK: [mem 0x319cf000-0x34cdffff]
0.002817] ACPI: Early table checksum verification disabled
       0.002833] ACPI: XSDT 0x000000007FFF0030 00003C (v01 VB0X
                                                                                       VB0XXSDT 00000001 ASL 00000061)
       0.002845] ACPI: FACP 0x000000007FFF00F0 0000F4 (v04 VB0X
                                                                                       VBOXFACP 00000001 ASL 00000061)
       0.002859] ACPI: DSDT 0x000000007FFF0470 002325 (v02 VBOX
                                                                                       VBOXBIOS 00000002 INTL 20100528)
```

Команда dmesg

Можно просто просмотреть вывод этой команды: dmesg | less

```
ⅎ
                                           dmbronnikova@dmbronnikova:~ - less
     0.000000] Linux version 5.14.0-70.22.1.el9 0.x86 64 (mockbuild@dal1-prod-builder001.bld.equ.rockylin
ux.org) (gcc (GCC) 11.2.1 20220127 (Red Hat 11.2.1-9), GNU ld version 2.35.2-17.el9) #1 SMP PREEMPT Tue A
ug 9 19:45:51 UTC 2022
     0.000000] The list of certified hardware and cloud instances for Red Hat Enterprise Linux 9 can be v
.
iewed at the Red Hat Ecosystem Catalog, https://catalog.redhat.com.
[ 0.000000] Command line: BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.14.0-70.22.1.el9_0.x86_64 root=/dev/mapper
    root ro resume=/dev/mapper/rl-swap rd.lvm.lv=rl/root rd.lvm.lv=rl/swap rhgb quiet
     0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point registers' 0.000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'
     0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'
     0.0000000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]: 256
0.000000] x86/fpu: Enabled xstate features 0x7, context size is 832 bytes, using 'standard' format.
     0.000000] signal: max sigframe size: 1776
     0.000000] BIOS-provided physical RAM map:
     0.000000] BIOS-e820: [mem 0x0000000000000000000000000000009fbff] usable
     0.000000] BIOS-e820: [mem 0x00000000009fc00-0x00000000009ffff]
                                                                                reserved
     reserved
     0.000000] BIOS-e820: [mem 0x000000000100000-0x000000007ffeffff]
                                                                                usable
     0.000000] BIOS-e820: [mem 0x000000007fff0000-0x000000007fffffff] ACPI data
     0.000000] BIOS-e820: [mem 0x00000000fec00000-0x00000000fec00fff] reserved
     0.000000] BIOS-e820: [mem 0x00000000fee00000-0x0000000fee00fff] reserved
     0.000000] BIOS-e820: [mem 0x00000000fffc0000-0x00000000ffffffff] reserved
     0.000000] NX (Execute Disable) protection: active
     0.000000] SMBIOS 2.5 present.
     0.000000] DMI: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/2006
     0.000000] Hypervisor detected: KVM
     0.000000] kvm-clock: Using msrs 4b564d01 and 4b564d00
     0.000000] kvm-clock: cpu 0, msr 53e01001, primary cpu clock
0.000004] kvm-clock: using sched offset of 12452783306 cycles
0.000008] clocksource: kvm-clock: mask: 0xfffffffffffffff max_cycles: 0x1cd42e4dffb, max_idle_ns: 8
81590591483 ns
     0.000014] tsc: Detected 1800.000 MHz processor
     0.002229] e820: update [mem 0x00000000-0x000000fff] usable ==> reserved
     0.002239] e820: remove [mem 0x000a0000-0x000fffff] usable
0.002251] last_pfn = 0x7fff0 max_arch_pfn = 0x400000000
     0.002275] Disabled
     0.002277] x86/PAT: MTRRs disabled, skipping PAT initialization too.
     0.002283] CPU MTRRs all blank - virtualized system.
0.002288] x86/PAT: Configuration [0-7]: WB WT UC- UC WB WT UC- UC
     0.002433] found SMP MP-table at [mem 0x0009ffff0-0x0009ffff]
0.002806] RAMDISK: [mem 0x319cf000-0x34cdffff]
     0.002833] ACPI: XSDT 0x000000007FFF0030 00003C (v01 VB0X
                                                                         VBOXXSDT 00000001 ASL 00000061)
VBOXFACP 00000001 ASL 00000061)
     0.002845] ACPI: FACP 0x000000007FFF00F0 0000F4 (v04 VB0X
     0.002859] ACPI: DSDT 0x000000007FFF0470 002325 (v02 VB0X
                                                                         VBOXBIOS 00000002 INTL 20100528)
```

Команда dmesg | less

Можно использовать поиск с помощью grep: dmesg | grep -i "то, что ищем" Получите следующую информацию. 1. Версия ядра Linux (Linux version).

```
[dmbronnikova@dmbronnikova ~]$ dmesg | grep -i "Linux version"
[ 0.000000] <mark>Linux version</mark> 5.14.0-70.22.1.el9_0.x86_64 (mockbuild@dal1-prod-builder001.bld.eq
u.rockylinux.org) (gcc (GCC) 11.2.1 20220127 (Red Hat 11.2.1-9), GNU ld version 2.35.2-17.el9)
#1 SMP PREEMPT Tue Aug 9 19:45:51 UTC 2022
```

Частота процессора (Detected Mhz processor).

```
[dmbronnikova@dmbronnikova ~]$ dmesg | grep -i "Mhz"
[ 0.000014] tsc: Detected 1800.000 MHz processor
[ 7.304160] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:cd:76:24
```

Модель процессора (CPU0).

```
[ 0.303616] smpboot: CPU0: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz (family: 0x6, model: 0x8 e, stepping: 0xa)
```

4. Объем доступной оперативной памяти (Memory available).

Объем доступной оперативной памяти

5. Тип обнаруженного гипервизора (Hypervisor detected).

```
[dmbronnikova@dmbronnikova ~]$ dmesg | grep -i "Hypervisor"
[ 0.000000] Hypervisor detected: KVM
[ 0.183465] SRBDS: Unknown: Dependent on hypervisor status
[ 6.196925] [drm] Max dedicated hypervisor surface memory is 507904 kiB
```

Тип обнаруженного гипервизора

Тип файловой системы корневого раздела.

```
[dmbronnikova@dmbronnikova ~]$ dmesg | grep -i "Filesystem"
[ 8.876127] XFS (dm-0): Mounting V5 Filesystem
[ 31.711397] XFS (sda1): Mounting V5 Filesystem
```

Тип файловой системы корневого раздела

7. Последовательность монтирования файловых систем.

```
[dmbronnikova@dmbronnikova ~]$ dmesg | grep -i "mount
                            t-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
      0.180334]
      0.180347]
                            point-cache hash table entries: 8192 (order: 4, 65536 bytes, linear)
      8.876127] XFS (dm-0): M
                                             ting V5 Filesystem
      9.411321] XFS (dm-0): Ending clean
     23.734828] systemd[1]: Set up automount Arbitrary Executable File Formats File System Auto
      Point.
    23.893865] systemd[1]: Mounting Huge Pages File System...
23.904821] systemd[1]: Mounting POSIX Message Queue File System...
23.914442] systemd[1]: Mounting Kernel Debug File System...
23.922264] systemd[1]: Mounting Kernel Trace File System...
    24.286424] systemd[1]: Starting Remount Root and Kernel File Sy 24.303999] systemd[1]: Mounted Huge Pages File System. 24.305112] systemd[1]: Mounted POSIX Message Queue File System.
                                                               Root and Kernel File Systems...
                                             ted Kernel Debug File System.
ted Kernel Trace File System.
     24.305646] systemd[1]:
     24.306235] systemd[1]:
     31.711397] XFS (sda1): Moun
                                              ting V5 Filesystem
     32.033672] XFS (sda1): Ending clean
```

Последовательность монтирования файловых систем

Выводы

В ходе выполнения данной лабораторной работы приобрелись практические навыки установки операционной системы на виртуальную машину и были выполнены все задания.

Контрольные вопросы

- 1. Какую информацию содержит учётная запись пользователя? Учётная запись пользователя содержит информацию о имени, пароле и доступе/полномочий пользователя
- 2. Укажите команды терминала и приведите примеры: для получения справки по команде; help, например ls –help для перемещения по файловой системе; cd, например cd для просмотра содержимого каталога; ls, например ls для определения объёма каталога; du для создания / удаления каталогов / файлов; mkdir/rm для задания определённых прав на файл / каталог; chmod, например chmod u+x для просмотра истории команд. history
- 3. Что такое файловая система? Приведите примеры с краткой характеристикой. Файловая система правила порядка, определяющие организацию, хранение и именование данных на носителях информации. Например, система «FAT32» логически разделена на три сопредельные области: зарезервированную область для служебных структур, табличную форму указателей и зону записи содержимого файлов. Однако размер отдельных файлов на диске с этой системой не может превышать четыре гигабайта. В отличие от «exFAT», которая также отличается по сниженному числу перезаписей секторов, ответственных за хранение информации, но в остальном похоже на «FAT32».
- 4. Как посмотреть, какие файловые системы подмонтированы в ОС? Использовать findmnt.
- 5. Как удалить зависший процесс? Использовать kill. Например, kill

Библиография

1. Кулябов Д.С. Лабораторная работа № 1. Установка и конфигурация операционной системы на виртуальную машину - 14 с.