Redes soma-produto e sua relação com redes bayesianas

Tiago Madeira

<madeira@ime.usp.br>

PCS5708 - Técnicas de Raciocínio Probabilístico em Inteligência Artificial

Prof. Paulo Sergio Cugnasca Escola Politécnica – Universidade de São Paulo

Maio de 2018

Roteiro

- Introdução
 - Motivação
 - Projeto
- Noções intuitivas dos fundamentos
 - Redes soma-produto
 - Diagramas de decisão algébrica
- 3 De redes soma-produto para redes bayesianas
 - Representação gráfica
 - Algoritmo de Zhao et al.
- Conclusão
 - Distribuições, tratabilidade e compactibilidade
 - Considerações finais

Motivação (1/2)

Redes soma-produto (Sum-Product Network = SPN)¹ são modelos profundos tratáveis para inferência probabilística.

Resultados muito bons para diversas aplicações como modelagem de linguagem², classificação e reconstrução de imagens¹.

¹POON, H. DOMINGOS, P. Sum-Product Networks: A New Deep Architecture (2011). *Uncertainty in Artificial Intelligence (UAI 2011)*

²CHENG, W. KOK, S. PHAM, H. CHIEU, H. MING, K. CHAI, A. Language Modeling with Sum-Product Networks (2014). Disponível em http://spn.cs.washington.edu/papers/is14.pdf

Motivação (2/2)

Em 2015, artigo³ apresentou conexão teórica entre redes soma-produto e redes bayesianas ($Bayesian\ Network = BN$), junto com algoritmo polinomial para realizar conversão.

O que essa conexão pode nos dizer sobre o conhecimento probabilístico codificado nas redes soma-produto?

³ZHAO, H. MELIBARI, M. POUPART, P. On the Relationship between Sum-Product Networks and Bayesian Networks (2015). Disponível em http://arxiv.org/abs/1501.01239

No que consiste o projeto?

- Estudo sobre redes soma-produto e sua relação com redes bayesianas
- Implementação de algoritmo para construir uma rede bayesiana a partir de uma rede soma-produto

Uma rede soma-produto é um **grafo** acíclico dirigido enraizado de somas e produtos, no qual folhas são indicadores de variáveis ou distribuições univariadas.

Arestas que saem de nós do tipo soma são ponderadas com um peso nãonegativo.

•
$$P(X_1, \overline{X}_2) = ?$$

•
$$P(X_1, \overline{X}_2) = ?$$

•
$$P(X_1, \overline{X}_2) = ?$$

•
$$P(X_1, \overline{X}_2) = ?$$

•
$$P(X_1, \overline{X}_2) = ?$$

•
$$P(X_1, \overline{X}_2) = ?$$

•
$$P(X_1, \overline{X}_2) = ?$$

•
$$P(X_1, \overline{X}_2) = ?$$

•
$$P(X_1, \overline{X}_2) = ?$$

•
$$P(X_1, \overline{X}_2) = ?$$

•
$$P(X_1, \overline{X}_2) = \frac{1776}{?}$$

•
$$P(X_1, \overline{X}_2) = \frac{1776}{3500}$$

•
$$P(X_1, \overline{X}_2) = \frac{1776}{3500}$$

• $P(X_1) = ?$

•
$$P(X_1) = ?$$

•
$$P(X_1, \overline{X}_2) = \frac{1776}{3500}$$

• $P(X_1) = \frac{2370}{3500}$

$$P(X_1) = \frac{2370}{3500}$$

•
$$P(X_1, \overline{X}_2) = \frac{1776}{3500}$$

• $P(X_1) = \frac{2370}{3500}$
• $P(\overline{X}_2|X_1) = ?$

$$P(X_1) = \frac{2370}{3500}$$

•
$$P(\overline{X}_2|X_1) = ?$$

•
$$P(X_1, \overline{X}_2) = \frac{1/76}{3500}$$

$$P(X_1) = \frac{2370}{3500}$$

•
$$P(X_1, \overline{X}_2) = \frac{1776}{3500}$$

• $P(X_1) = \frac{2370}{3500}$
• $P(\overline{X}_2|X_1) = \frac{P(X_1, \overline{X}_2)}{P(X_1)}$

•
$$P(X_1, \overline{X}_2) = \frac{1/76}{3500}$$

$$P(X_1) = \frac{2370}{3500}$$

•
$$P(X_1, \overline{X}_2) = \frac{1776}{3500}$$

• $P(X_1) = \frac{2370}{3500}$
• $P(\overline{X}_2|X_1) = \frac{P(X_1, \overline{X}_2)}{P(X_1)} = \frac{1776}{2370}$

•
$$P(X_1, \overline{X}_2) = \frac{1776}{3500}$$

$$P(X_1) = \frac{2370}{3500}$$

•
$$P(X_1, \overline{X}_2) = \frac{1776}{3500}$$

• $P(X_1) = \frac{2370}{3500}$
• $P(\overline{X}_2|X_1) = \frac{P(X_1, \overline{X}_2)}{P(X_1)} = \frac{1776}{2370}$

⇒ inferência em tempo linear

Propriedades de redes soma-produto

- Escopo de um nó: conjunto de variáveis na sub-rede enraizada em tal nó [scope]
- SPN decomponível: todo nó produto tem filhos com escopos disjuntos [decomposable]
- SPN completa: todo nó soma tem filhos com o mesmo escopo [complete/smooth]

Forma normal

(a) SPN completa e decomponível.

(b) Mesma SPN na forma normal.

Forma normal

Exemplo:

$$P(X_1, \overline{X}_2) = \frac{1776}{3500}$$

(b) Mesma SPN na forma normal.

Diagramas de decisão algébrica (Bahar et al, 1993)

Um diagrama de decisão algébrica⁴ (*Algebraic Decision Diagram* = *ADD*) é um **grafo acíclico dirigido enraizado** que representa uma função de variáveis com domínio finito.

Intuitivamente é como uma árvore de decisão, mas mais compacto porque explora subgrafos isomórficos.

⁴BAHAR, R. FROHM, E. GAONA, C. HACHTEL, G. MACII, E. PARDO, A. SOMENZI, F. Algebraic decision diagrams and their applications (1993). Disponível em https://doi.org/10.1109/ICCAD.1993.580054

Exemplo de ADD binária e relação com árvore de decisão

(a) Representação de uma função de variáveis binárias com árvore de decisão.

(b) Representação da mesma função com diagrama de decisão algébrica.

Representação gráfica

Redes bayesianas: Representação gráfica de dependências diretas

Redes soma-produto: Representação gráfica da computação

Algoritmo de Zhao et al. (2015)

Dada uma SPN normal S sobre variáveis booleanas $X_{1:N}$, retorna uma rede bayesiana B que representa a mesma distribuição com |B| = O(N|S|).

- Construção da estrutura
- Computação das distribuições de probabilidade condicional (conditional probability distribution = CPD)

Algoritmo de Zhao et al. (2015) - Estrutura (1/2)

(a) SPN na forma normal.

(b) Estrutura da BN correspondente.

Algoritmo de Zhao et al. (2015) - Estrutura (2/2)

Quando fazemos inferência, implicitamente estamos marginalizando as variáveis ocultas.

A rede bayesiana resultante tem uma **estrutura bipartida** com uma camada de variáveis ocultas apontando para uma camada de variáveis observáveis.

Algoritmo de Zhao et al. (2015) - CPDs (1/3)

Variáveis ocultas: Seja H_v a variável oculta correspondente ao nó soma v de \mathcal{S} . Seja I o grau de saída de v. Como a SPN é normal temos $\sum_{i=1}^{I} w_i = 1$ e $w_i \ge 0 \quad \forall i$.

Isso sugere tomar $P(H_v = i) = w_i$.

E as variáveis observáveis?

Algoritmo de Zhao et al. (2015) - CPDs (2/3)

- (a) Sub-SPNs usadas para calcular CPDs.
- (b) BN correspondente com ADDs.

Algoritmo de Zhao et al. (2015) - CPDs (2/3)

	<i>x</i> ₁	\overline{x}_1
h_1	0.6	0.4
h ₂	0.6	0.4
h ₃	0.9	0.1

	<i>x</i> ₂	\overline{x}_2
h_1	0.3	0.7
h ₂	0.2	0.8
h ₃	0.2	0.8

- (a) Sub-SPNs usadas para calcular CPDs.
- (b) BN com tabelas de CPDs.

Algoritmo de Zhao et al. (2015) - CPDs (3/3)

Como a SPN é decomponível, cada nó produto tem filhos com escopos disjuntos. Para cada variável observável X, construímos uma ADD extraindo de $\mathcal S$ a sub-SPN induzida por X e contraindo todos seus nós produto.

Percorremos a ADD para encontrar $P(X|H_1 = h_1^*, \dots, H_m = h_m^*)$.

Exemplos (1/2)

Exemplos (2/2)

Exemplos (2/2)

Conclusões de Zhao et al. (2015)

- A BN resultante da conversão tem estrutura simples (bipartida), mas é possível relacionar a profundidade de uma SPN com a treewidth da BN — mais camadas → maior treewidth, distribuições mais complexas.
- Pode haver outras técnicas para converter uma SPN numa BN com uma representação mais compacta e um treewidth menor.
- Algoritmos para aprender estrutura e parâmetros de SPNs podem ser usados para aprender BNs com ADDs.

Distribuições, tratabilidade e compactibilidade⁵

A: SPNs tratáveis = SPNs compactas = BNs tratáveis

B: BNs compactas

C: SPNs gerais = BNs gerais

⁵POUPART, P. Guest Lecture in STAT946: Deep Learning, University of Waterloo. Disponível em https://www.youtube.com/watch?v=Nm0jNq0nQ2o

Considerações finais

- Redes soma-produto são um modelo relativamente novo e promissor. Estudar sua teoria é interessante porque há muitas questões em aberto e alguns equívocos na literatura, como mostra Peharz (2015)⁶.
- Pretende-se disponibilizar o código implementado (em Go) publicamente na Internet.

 $^{^6}$ PEHARZ, R. Foundations of Sum-Product Networks for Probabilistic Modeling (2015). PhD Thesis.

Fim

Se alguém tiver interesse na apresentação ou na monografia: <madeira@ime.usp.br>

Perguntas e comentários?