AMENDMENTS TO THE CLAIMS

1. (Currently amended) A compound having the structural formula IB or a pharmaceutically acceptable salt thereof,

$$X_3$$
 X_3 X_1 X_1 X_2 X_2 X_2 X_3 X_4 X_2 X_2

formula IB

wherein X₁, X₂, R₁ and R₂ are independently selected from the group comprising consisting of oxo, hydrogen, hydroxyl, oxyalkyl, alkyl, alkenyl, alkynyl, alkyloxy, alkyloxyalkyl, alkylthioalkyl, alkoxycarbonyl, alkylthiocarbonyl, alkanoyl, cycloalkylalkyl, cycloalkylcarbonyl, cycloalkylalkoxycarbonyl, cycloalkylthiocarbonyl, cycloalkylalkanoyl, alkylcarbonyloxyalkyl, cycloalkylalkoxythiocarbonyl, cycloalkylthioalkyl, cycloalkylcarbonyloxyalkyl, silyloxyalkyl, aralkyl, arylalkenyl, arylcarbonyl, aryloxycarbonyl, arylthiocarbonyl, aralkoxycarbonyl, arylalkylthiocarbonyl, aryloxyalky, arylthioalkyl, haloalkyl, hydroxyalkyl, aralkanoyl, aroyl, aryloxycarbonylalkyl, aryloxyalkanoyl, carboxyl, alkenylcarbonyl, Het¹oxyalkyl, Het¹aryl, Het¹aralkvl. Het¹cycloalkyl, alkynylcarbonyl, Het¹. Het¹alkyl, Het¹alkoxycarbonyl, Het¹alkylthiocarbonyl, Het¹oxycarbonyl, Het¹thiocarbonyl, Het¹alkanoyl, Het¹aralkanoyl, Het¹aryloxyalkyl, Het¹alkyloxyalkyl, Het¹arylthioalkyl, Het¹aryloxycarbonyl, Het¹aroyl, Het¹oxyalkylcarbonyl, Het¹alkyloxyalkylcarbonyl, Het¹aralkoxycarbonyl, Het¹carbonyloxyalkyl, Het¹alkylcarbonyloxyalkyl, Het¹aryloxyalkylcarbonyl, Het¹aralkylcarbonyloxyalkyl, Het²alkyl, Het²oxyalkyl, Het²alkyloxyalkyl, Het²aralkyl, Het²carbonyl, Het²oxycarbonyl, Het²thiocarbonyl, Het²alkanoyl, Het²alkylthiocarbonyl, Het²alkoxycarbonyl, Het²aralkoxycarbonyl, Het²aryloxycarbonyl, Het²aroyl, Het²aryloxyalkyl, Het²aralkanovl. Het²arylthioalkyl, Het²oxyalkylcarbonyl, Het²alkyloxyalkylcarbonyl, Het²aryloxyalkylcarbonyl, Het²carbonyloxyalkyl, Het²alkylcarbonyloxyalkyl, Het²aralkylcarbonyloxyalkyl, cyano, CR³=NR⁴, CR3=N(OR4), aminocarbonyl, aminoalkanoyl, aminoalkyl, optionally-unsubstituted or substituted by one or more substituents independently selected from the group comprising consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl, aminocarbonyl,

mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen or amino, optionally—unsubstituted, mono- or disubstituted, wherein the substituents are independently selected from the group comprising consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het1, Het2, Het1alkyl, Het2alkyl, Het1amino, Het2amino, Het1alkylamino, Het²alkylamino, Het¹thio, Het²thio, Het¹alkylthio, Het²alkylthio, Het¹oxy and Het²oxy, OR³, SR³, $SO_2NR^3R^4$, $SO_2N(OH)R^3$, CN, $CR^3=NR^4$, $S(O)R^3$, SO_2R^3 , $CR^3=N(OR^4)$, N_3 , NO_2 , NR^3R^4 , $N(OH)R^3$, $C(O)R^3$, $C(S)R^3$, CO_2R^3 , $C(O)SR^3$, $C(O)NR^3R^4$, $C(S)NR^3R^4$, $C(O)N(OH)R^4$, $C(S)N(OH)R^3$ $NR^3C(O)R^4$ $NR^3C(S)R^4$, $N(OH)C(O)R^4$, $N(OH)C(S)R^3$, NR³C(O)NR⁴R⁵, and NR³C(S)NR⁴R⁵, N(OH)CO₂R³, NR³C(O)SR⁴, N(OH)C(O)NR³R⁴, $NR^3C(O)N(OH)R^4$, $NR^3C(S)N(OH)R^4$, $NR^3SO_2R^4$, NHSO₂NR³R⁴, N(OH)C(S)NR³R⁴, NR³SO₂NHR⁴, P(O)(OR³)(OR⁴), wherein t is an integer between 1 and 2 and R³, R⁴ and R⁵ are each independently selected from the group comprising consisting of hydrogen, hydroxyl, alkyl, alkylcarbonylamino, arvicarbonylamino aminoalkyl, aminoaryl. alkenyl, alkynyl, alkylthiocarbonylamino and arylthiocarbonylamino;

wherein X₃ participates together with X₃' toin an oxo functional group, or wherein X₃ is selected from the group comprising consisting of hydrogen, hydroxyl, sulfur, oxyalkyl, alkyl, Het¹alkyl, alkenyl, alkynyl, aminoalkyl, aminoacyl, alkylcarbonylamino, alkylthiocarbonylamino, Het¹, glycosyl, thio derivatives thereof, amino derivatives thereof, hydroxyl-protected derivatives thereof, alkyloxycarbonyl, eptionally-unsubstituted or substituted by one or more substituents independently selected from the group comprising consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl and aminocarbonyl, and X₃ is selected from the group comprising consisting of hydrogen, alkyl, aryl, Het¹, alvcosyl, thio derivatives thereof, amino derivatives thereof, hydroxyl-protected derivatives thereof, aralkyl, and optionally unsubstituted or substituted by one or more substituents independently selected from the group comprising consisting of alkyl, aralkyl, aryl, Het1, Het2, aminocarbonyl, alkyloxycarbonyl, carboxyl, cycloalkyl, alkyloxy, di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen or amino, optionally unsubstituted, mono- or disubstituted, wherein the substituents are independently selected from the group comprising-consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, aylaminoalkoxy, aralkylamino,

PCT/EP2003/014567

Filed : Decem

December 18, 2003

aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl and cycloalkylalkyl;

wherein X₄ and X₇ are independently selected from the group comprising consisting of hydrogen, halogen, oxygen, oxo, carbonyl, thiocarbonyl, hydroxyl, alkyl, aryl, Het¹, glycosyl, thio derivatives thereof, amino derivatives thereof, hydroxyl-protected derivatives thereof, Het¹alkyl, hydroxycarbonylalkyl, hydroxyalkyl, hydroxycarbonyl, Het¹aryl, alkenyl, alkynyl, hydroxycarbonylaryl, hydroxycarbonyloxyalkyl and hydroxycarbonyloxyaryl; aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, aminoalkyl, aminoaryl, cyano, halogen or amino, unsubstituted, optionally mono- or disubstituted, wherein the substituents are independently selected from the group comprising consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, aryloxyalkoxy, aylaminoalkoxy, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylamino, arylthioalkoxy, arylthioalkylthio, alkylamino, Het¹, Het², alkyloxycarbonyl, carboxyl, aminocarbonyl, cycloalkyl and cycloalkylalkyl;

wherein X_5 participates to a double bond between the carbon atoms in position 4 and 5 or between carbon atoms in position 5 and 6, and X_6 is independently selected from the group comprising—consisting of hydrogen, hydroxyl and hydroxyalkyl, or wherein X_5 and X_6 are independently selected from the group comprising—consisting of halogen, hydroxyl, hydroxyalkyl, aminoalkyl, aminoaryl, optionally—unsubstituted or substituted by one or more substituents independently selected from the group comprising—consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl, aminocarbonyl, and

wherein n is an integer between 0 and 10,

provided that when X_6 and X_4 are H, when X_5 participates to a double bond between the carbon atoms in position 5 and 6, when X_3 participates together with X_3 to an oxo functional group, when n is zero and X_1 , X_2 , R_1 and R_2 are H, X_7 is not hydroxyl.

2. (Currently amended) A-The compound according to claim 1,

wherein X_1 , X_2 , R_1 and R_2 are independently selected from the group comprising consisting of oxo, hydrogen, hydroxyl, oxyalkyl, alkyl, alkenyl, alkynyl, alkyloxy, alkyloxyalkyl, alkylthioalkyl, alkoxycarbonyl, alkylthiocarbonyl, alkanoyl, cycloalkylalkyl, cycloalkylcarbonyl,

cycloalkylalkoxycarbonyl, cycloalkylalkanoyl, cycloalkylthiocarbonyl, alkylcarbonyloxyalkyl, cycloalkylalkoxythiocarbonyl, cycloalkylthioalkyl, cycloalkylcarbonyloxyalkyl, silyloxyalkyl, aralkyl, arylalkenyl, arylcarbonyl, aryloxycarbonyl, arylthiocarbonyl, aralkoxycarbonyl, arylalkylthiocarbonyl, aryloxyalky, arylthioalkyl, haloalkyl, hydroxyalkyl, aralkanoyl, aroyl, aryloxycarbonylalkyl, aryloxyalkanoyl, carboxyl, alkenylcarbonyl, Het¹aralkyl, Het¹, Het¹alkyl, Het¹oxyalkyl, Het¹aryl, Het¹cycloalkyl, alkynylcarbonyl, Het alkoxycarbonyl, Het alkylthiocarbonyl, Het oxycarbonyl, Het thiocarbonyl, Het alkanoyl, Het¹aralkanoyl, Het¹aryloxyalkyl, Het¹alkyloxyalkyl, Het¹arylthioalkyl, Het¹aryloxycarbonyl, Het¹aroyl, Het¹alkyloxyalkylcarbonyl, Het¹aralkoxycarbonyl, Het¹oxyalkylcarbonyl, Het¹alkvlcarbonvloxvalkvl. Het¹aryloxyalkylcarbonyl, Het¹carbonyloxyalkyl. Het¹aralkylcarbonyloxyalkyl, Het²alkyl, Het²oxyalkyl, Het²alkyloxyalkyl, Het²aralkyl, Het²carbonyl, Het²oxycarbonyl, Het²thiocarbonyl, Het²alkanoyl, Het²alkylthiocarbonyl, Het²alkoxycarbonyl, Het²aralkoxycarbonyl, Het²aryloxycarbonyl, Het²aroyl, Het²aryloxyalkyl, Het²arvlthioalkyl, Het²oxyalkylcarbonyl, Het²alkyloxyalkylcarbonyl, Het²aryloxyalkylcarbonyl, Het²carbonyloxyalkyl, Het²alkylcarbonyloxyalkyl, Het²aralkylcarbonyloxyalkyl, cyano, CR³=NR⁴, CR3=N(OR4), aminocarbonyl, aminoalkanoyl, aminoalkyl, optionally-unsubstituted or substituted by one or more substituents independently selected from the group comprising consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen or amino, optionally-unsubstituted, mono- or disubstituted, wherein the substituents are independently selected from the group comprising consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, aylaminoalkoxy, aryloxyalkylamino, arylaminoalkylamino, arylthioalkoxy, arylthioalkylamino, aralkylamino, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl, cycloalkylalkyl, Het¹, Het², Het¹alkyl, Het²alkyl, Het¹amino, Het²amino, Het¹alkylamino, Het²alkylamino, Het¹thio, Het²thio, Het¹alkylthio, Het²alkylthio, Het¹oxy-and, Het²oxy, OR³, SR³, $SO_2NR^3R^4$, $SO_2N(OH)R^3$, CN, $CR^3=NR^4$, $S(O)R^3$, SO_2R^3 , $CR^3=N(OR^4)$, N_3 , NO_2 , NR^3R^4 , $N(OH)R^{3}, \quad C(O)R^{3}, \quad C(S)R^{3}, \quad CO_{2}R^{3}, \quad C(O)SR^{3}, \quad C(O)NR^{3}R^{4}, \quad C(S)NR^{3}R^{4}, \quad C(O)N(OH)R^{4}, \quad C(O)N(OH)R^$ NR3C(S)R4, N(OH)C(S)R³, C(S)N(OH)R³, NR3C(O)R4, N(OH)C(O)R⁴, and—NR3C(S)NR4R5, N(OH)CO2R3, NR3C(O)SR4, N(OH)C(O)NR3R4, NR³C(O)NR⁴R⁵, NR³C(O)N(OH)R⁴, NR3SO₂R4. N(OH)C(S)NR³R⁴. NR3C(S)N(OH)R4, NHSO₂NR³R⁴, NR³SO₂NHR⁴, P(O)(OR³)(OR⁴), wherein t is an integer between 1 and 2 and R³, R⁴ and R⁵ are each independently selected from the group comprising-consisting of hydrogen, hydroxyl, alkyl,

alkenyl, alkynyl, aminoalkyl, aminoaryl, alkylcarbonylamino, arylcarbonylamino alkylthiocarbonylamino and arylthiocarbonylamino;

wherein X₃ participates together with X₃' to-in an oxo functional group, or wherein X₃ is selected from the group comprising consisting of hydrogen, hydroxyl, sulfur, oxyalkyl, alkyl, Het alkyl, alkenyl, alkynyl, aminoalkyl, aminoacyl, alkylcarbonylamino, alkylthiocarbonylamino, Het¹, glucosyl, fructosyl, galactosyl, mannosyl, ribosyl, ribulosyl, xylulosyl, erythrosyl, erythrulosyl, rhamnosyl, threosyl, sorbosyl, psicosyl, tagatosyl, fucosyl, arabinosyl, xylofuranosyl, lyxosyl, talosyl, psicosyl, idosyl, gulosyl, mannoheptulosyl, sedoheptulosyl, abequosyl, isomaltosyl, kojibiosyl, laminarabiosyl, nigerosyl, primeverosyl, rutinosyl, tyvelosyl, maltosyl, lactosyl, sucrosyl, cellobiosyl, trehalosyl, gentiobiosyl, melibiosyl, turanosyl, sophorosyl, isosucrosyl, raffinosyl, gentianosyl, 2-amino-2deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2deoxy-galactosyl. 2-amino-2-deoxy mannosyl, 2-acetamido-2-deoxy-mannosyl, 2-amino-1,3cyclohexanediol, L or D isomers thereof, α or β form thereof, pyranose or furanose form thereof, combination thereof, deoxy derivatives thereof, hydroxyl-protected acetate derivatives thereof, amino derivatives thereof, thio derivatives thereof, di-, tri-, oligo- and polysaccharide thereof, alkyloxycarbonyl, optionally-unsubstituted or substituted by one or more substituents independently selected from the group comprising consisting of alkyl, aralkyl, aryl, Het1, Het2, cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl and aminocarbonyl; and X3 is selected from the group comprising consisting of hydrogen, alkyl, aryl, Het¹, glucosyl, fructosyl, galactosyl, mannosyl, ribosyl, ribulosyl, xylulosyl, erythrosyl, erythrulosyl, rhamnosyl, threosyl, sorbosyl, psicosyl, tagatosyl, fucosyl, arabinosyl, xylofuranosyl, lyxosyl, talosyl, psicosyl, idosyl, gulosyl, allosyl, mannoheptulosyl, sedoheptulosyl, abequosyl, isomaltosyl, kojibiosyl, altrosvl. laminarabiosyl, nigerosyl, primeverosyl, rutinosyl, tyvelosyl, maltosyl, lactosyl, sucrosyl, cellobiosyl, trehalosyl, gentiobiosyl, melibiosyl, turanosyl, sophorosyl, isosucrosyl, raffinosyl, gentianosyl. 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2-deoxy-galactosyl, 2-amino-2-deoxy mannosyl, 2-acetamido-2-deoxymannosyl, 2-amino-1,3-cyclohexanediol, L or D isomers thereof, α or β form thereof, pyranose or furanose form thereof, combination thereof, deoxy derivatives thereof, hydroxyl-protected acetate derivatives thereof, amino derivatives thereof, thio derivatives thereof, di-, tri-, oligoand polysaccharide thereof, aralkyl, and optionally unsubstituted or substituted by one or more substituents independently selected from the group comprising consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl, aminocarbonyl, mono- or

di(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, cyano, halogen or amino, optionally unsubstituted, mono- or disubstituted, wherein the substituents are independently selected from the group comprising consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, aylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylaminoalkylamino, arylthioalkylamino, arylthioalkylamino, cycloalkylamino, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, cycloalkyl and cycloalkylalkyl;

wherein X₄ and X₇ are independently selected from the group comprising consisting of hydrogen, oxygen, halogen, oxo, carbonyl, thiocarbonyl, hydroxyl, alkyl, aryl, Het¹, glucosyl, fructosyl, galactosyl, mannosyl, ribosyl, ribulosyl, xylulosyl, erythrosyl, erythrulosyl, rhamnosyl, threosyl, sorbosyl, psicosyl, tagatosyl, fucosyl, arabinosyl, xylofuranosyl, lyxosyl, talosyl, psicosyl, idosyl, gulosyl, altrosyl, allosyl, mannoheptulosyl, sedoheptulosyl, abequosyl, isomaltosyl, kojibiosyl, laminarabiosyl, nigerosyl, primeverosyl, rutinosyl, tyvelosyl, maltosyl, lactosyl, sucrosyl, cellobiosyl, trehalosyl, gentiobiosyl, melibiosyl, turanosyl, sophorosyl, isosucrosyl, raffinosyl, gentianosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2amino-2-deoxy galactosyl, 2-acetamido-2-deoxy-galactosyl, 2-amino-2-deoxy mannosyl, 2acetamido-2-deoxy-mannosyl, 2-amino-1,3-cyclohexanediol, L or D isomers thereof, α or β form thereof, pyranose or furanose form thereof, combination thereof, deoxy derivatives thereof, hydroxyl-protected acetate derivatives thereof, amino derivatives thereof, thio derivatives thereof, di-, tri-, oligo- and polysaccharide thereof; Het¹alkyl, Het¹aryl, alkenyl, alkynyl, hydroxyalkyl, hydroxycarbonyl, hydroxycarbonylalkyl, hydroxycarbonylaryl, hydroxycarbonyloxyalkyl, and hydroxycarbonyloxyaryl; aminocarbonyl, monodi(alkyl)aminocarbonyl, aminosulfonyl, alkylS(=O)t, hydroxy, aminoalkyl, aminoaryl, cyano, halogen or amino, eptionally-unsubstituted, mono- or disubstituted wherein the substituents are independently selected from the group comprising consisting of alkyl, aryl, aralkyl, aryloxy, arylamino, arylthio, aryloxyalkyl, arylaminoalkyl, aralkoxy, alkylthio, alkoxy, aryloxyalkoxy, arylaminoalkylamino. arylthioalkoxy. aylaminoalkoxy, aralkylamino, aryloxyalkylamino, arylthioalkylamino, aralkylthio, aryloxyalkylthio, arylaminoalkylthio, arylthioalkylthio, alkylamino, Het¹, Het², alkyloxycarbonyl, carboxyl, aminocarbonyl, cycloalkyl and cycloalkylalkyl;

wherein X_5 participates te<u>in</u> a double bond between the carbon atoms in position 4 and 5 or between carbon atoms in positions 5 and 6, and X_6 is independently selected from the group comprising consisting of hydrogen, hydroxyl and hydroxyalkyl, or

Appl. No. Filed

PCT/EP2003/014567

December 18, 2003

wherein X_5 and X_6 are independently selected from the group comprising consisting of halogen, hydroxyl, hydroxyl, aminoalkyl, aminoaryl, optionally unsubstituted or substituted by one or more substituents independently selected from the group comprising consisting of alkyl, aralkyl, aryl, Het^1 , Het^2 , cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl, aminocarbonyl, and

wherein n is an integer between 0 and 10.

3. (Currently amended) A-The compound according to claim 1-or 2,

wherein X₁, X₂, R₁ and R₂ is are selected from the group comprising consisting of hydrogen, hydroxyl, oxyalkyl, oxo, alkyl, alkenyl, alkynyl, alkyloxy, alkyloxyalkyl, alkylthioalkyl, cycloalkylcarbonyl, cycloalkylalkyl, alkylthiocarbonyl, alkanoyl, alkoxycarbonyl, cycloalkylalkoxycarbonyl, cycloalkylthiocarbonyl, cycloalkylalkanoyl, alkylcarbonyloxyalkyl, cycloalkylthioalkyl, cycloalkylalkoxythiocarbonyl, cycloalkylcarbonyloxyalkyl, silyloxyalkyl, aralkyl, arylalkenyl, arylcarbonyl, aryloxycarbonyl, arylthiocarbonyl, aralkoxycarbonyl, arylalkylthiocarbonyl, aryloxyalky, arylthioalkyl, haloalkyl, hydroxyalkyl, aralkanoyl, aroyl, aryloxycarbonylalkyl, aryloxyalkanoyl, carboxyl, alkenylcarbonyl and alkynylcarbonyl;

wherein X_3 participates together with X_3 tein an oxo functional group, or wherein X_3 is selected from the group eemprising consisting of hydrogen, hydroxyl, sulfur, oxyalkyl, oxycarbonyl alkyl, Het¹alkyl, alkenyl, alkynyl, aminoalkyl, aminoacyl, alkylcarbonylamino, alkylthiocarbonylamino, Het¹, glucosyl, fructosyl, galactosyl, mannosyl, ribosyl, ribulosyl, xylulosyl, erythrosyl, erythrulosyl, rhamnosyl, threosyl, sorbosyl, psicosyl, tagatosyl, fucosyl, arabinosyl, xylofuranosyl, lyxosyl, talosyl, psicosyl, idosyl, gulosyl, altrosyl, allosyl, mannoheptulosyl, sedoheptulosyl, abequosyl, isomaltosyl, kojibiosyl, laminarabiosyl, nigerosyl, primeverosyl, rutinosyl, tyvelosyl, maltosyl, lactosyl, sucrosyl, cellobiosyl, trehalosyl, gentiobiosyl, melibiosyl, turanosyl, sophorosyl, isosucrosyl, raffinosyl, gentianosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-acetamido-2-deoxy-galactosyl, 2-amino-2-deoxy mannosyl, 2-acetamido-2-deoxy-mannosyl, 2-amino-1,3-cyclohexanediol, L or D isomers thereof, α or β form thereof, pyranose or furanose form thereof, combination thereof, deoxy derivatives thereof, hydroxyl-protected acetate derivatives thereof, amino derivatives thereof, thio derivatives thereof, disaccharide thereof, trisaccharide thereof, oligosaccharide and polysaccharide thereof, alkyloxycarbonyl eptionally unsubstituted

<u>or</u> substituted by one or more substituents independently selected from the group eemprising consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl and aminocarbonyl; and X_3 is selected from the group eemprising consisting of hydrogen, alkyl, aryl, aralkyl, Het¹, glucosyl, fructosyl, galactosyl, mannosyl, ribosyl, ribulosyl, xylulosyl, erythrosyl, erythrulosyl, rhamnosyl, threosyl, sorbosyl, psicosyl, tagatosyl, fucosyl, arabinosyl, xylofuranosyl, lyxosyl, talosyl, psicosyl, idosyl, gulosyl, altrosyl, allosyl, mannoheptulosyl, sedoheptulosyl, abequosyl, isomaltosyl, kojibiosyl, laminarabiosyl, nigerosyl, primeverosyl, rutinosyl, tyvelosyl, maltosyl, lactosyl, sucrosyl, cellobiosyl, trehalosyl, gentiobiosyl, melibiosyl, turanosyl, sophorosyl, isosucrosyl, raffinosyl, gentianosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2-deoxy-galactosyl, 2-amino-1,3-cyclohexanediol, L or D isomers thereof, α or β form thereof, pyranose or furanose form thereof, combination thereof, deoxy derivatives thereof, hydroxyl-protected acetate derivatives thereof, amino derivatives thereof, thio derivatives thereof, disaccharide thereof, trisaccharide thereof, oligosaccharide and polysaccharide thereof;

wherein X_4 and X_7 are independently selected from the group eomprising-consisting of hydrogen, oxygen, oxo, carbonyl, thiocarbonyl, hydroxyl, alkyl, aryl, Het¹, Het¹alkyl, Het¹aryl, alkenyl, alkynyl, hydroxyalkyl, hydroxycarbonyl, hydroxycarbonylalkyl, hydroxycarbonylaryl, hydroxycarbonyloxyalkyl, glucosyl, fructosyl, galactosyl, mannosyl, ribosyl, ribulosyl, xylulosyl, erythrosyl, erythrulosyl, rhamnosyl, threosyl, sorbosyl, psicosyl, tagatosyl, fucosyl, arabinosyl, xylofuranosyl, lyxosyl, talosyl, psicosyl, idosyl, gulosyl, altrosyl, allosyl, mannoheptulosyl, sedoheptulosyl, abequosyl, isomaltosyl, kojibiosyl, laminarabiosyl, nigerosyl, primeverosyl, rutinosyl, tyvelosyl, maltosyl, lactosyl, sucrosyl, cellobiosyl, trehalosyl, gentiobiosyl, melibiosyl, turanosyl, sophorosyl, isosucrosyl, raffinosyl, gentianosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2-deoxy-galactosyl, 2-amino-1,3-cyclohexanediol, L or D isomers thereof, α or β form thereof, pyranose or furanose form thereof, combinations thereof, deoxy derivatives thereof, hydroxyl-protected acetate derivatives thereof, amino derivatives thereof, thio derivatives thereof, disaccharide thereof, trisaccharide thereof, oligosaccharide and polysaccharide thereof;

wherein X_5 participates to<u>in</u> a double bond between the carbon atoms in position 4 and 5 or between carbon atoms in positions 5 and 6, and X_6 is independently selected from the group

PCT/EP2003/014567

Filed

December 18, 2003

comprising consisting of hydrogen, hydroxyl, and hydroxyalkyl, or wherein X_5 and X_6 are independently selected from the group comprising consisting of hydrogen, hydroxyl, hydroxyalkyl, aminoalkyl, aminoaryl, optionally unsubstituted or substituted by one or more substituents independently selected from the group comprising consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl, aminocarbonyl, and

wherein n is an integer between 0 and 5.

4. (Currently amended) A-The compound according to any of claims 1 to 3claim 1,

wherein X_1 , X_2 , R_1 and R_2 is <u>are</u> selected from the group comprising consisting of hydrogen, hydroxyl, alkyloxy, oxo and oxyalkyl,

wherein X_3 participates together with X_3 ' toin an oxo functional group, or wherein X_3 is selected from the group comprising consisting of hydrogen, hydroxyl, oxyalkyl, oxycarbonyl, glucosyl, fructosyl, galactosyl, mannosyl, ribosyl, ribulosyl, xylulosyl, erythrosyl, erythrulosyl, rhamnosyl, threosyl, sorbosyl, psicosyl, tagatosyl, fucosyl, arabinosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2-deoxygalactosyl, 2-amino-2-deoxy mannosyl, 2-acetamido-2-deoxy-mannosyl, L or D isomers thereof, α or β form thereof, pyranose or furanose form thereof, combination thereof, deoxy derivatives · thereof, hydroxyl-protected acetate derivatives thereof, amino derivatives thereof, thio derivatives thereof, disaccharide thereof, trisaccharide thereof, oligosaccharide and polysaccharide thereof; and X'3 is selected from the group comprising consisting of alkyl, aryl and aralkyl, glucosyl, fructosyl, galactosyl, mannosyl, ribosyl, ribulosyl, xylulosyl, erythrosyl, erythrulosyl, rhamnosyl, threosyl, sorbosyl, psicosyl, tagatosyl, fucosyl, arabinosyl, 2-amino-2deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2deoxy-galactosyl, 2-amino-2-deoxy mannosyl, 2-acetamido-2-deoxy-mannosyl, L or D isomers thereof, α or β form thereof, pyranose or furanose form thereof, combinations thereof, deoxy derivatives thereof, hydroxyl-protected acetate derivatives thereof, amino derivatives thereof, thio derivatives thereof, disaccharide thereof, trisaccharide thereof, oligosaccharide and polysaccharide thereof;

wherein X_4 and X_7 are independently selected from the group comprising consisting of hydrogen, oxygen, oxo, hydroxyl, glucosyl, fructosyl, galactosyl, mannosyl, ribosyl, ribulosyl, xylulosyl, erythrosyl, erythrulosyl, rhamnosyl, threosyl, sorbosyl, psicosyl, tagatosyl, fucosyl, arabinosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy

galactosyl, 2-acetamido-2-deoxy-galactosyl, 2-amino-2-deoxy mannosyl, 2-acetamido-2-deoxy-mannosyl, L or D isomers thereof, α or β form thereof, pyranose or furanose form thereof, combination thereof, deoxy derivatives thereof, hydroxyl-protected acetate derivatives thereof, amino derivatives thereof, thio derivatives thereof, disaccharide thereof, trisaccharide thereof, oligosaccharide and polysaccharide thereof;

wherein X_5 and X_6 are hydrogen or wherein X_5 participates to a double bond between the carbon atoms in position 4 and 5, and X_6 is hydrogen, and

wherein n is an integer between 0 and 2.

5. (Currently amended) A-The compound according to any of claims 1 to 4claim 1,

wherein X_1 , X_2 , X_3 , X_3 , X_6 , X_7 , R_1 , R_2 and n are selected from the group indicated in claims 1 to 3claim 1; and

wherein X_4 is equal to X_5 and is selected from the group comprising—consisting of halogen, aminoalkyl, aminoaryl, optionally—unsubstituted or substituted by one or more substituents independently selected from the group comprising—consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl and aminocarbonyl, or wherein X_5 participates to a double bond between the carbon atoms in position 5 and 6, and X_4 is independently selected from the group comprising—consisting of hydrogen, aminoalkyl, aminoaryl, optionally—unsubstituted or substituted by one or more substituents independently selected from the group comprising—consisting of alkyl, aralkyl, aryl, Het¹, Het², cycloalkyl, alkyloxy, alkyloxycarbonyl, carboxyl and aminocarbonyl.

- 6. (Currently amended) A-The compound according to any of claims 1 to 4Claim 1, wherein X_1 and X_2 are -OMe, wherein R_1 and R_2 are -H, wherein X_4 is hydrogen, wherein X_3 participates together with X_3 ' toin an oxo functional group, wherein X_5 participates together with X_6 is hydrogen, wherein X_7 is hydroxyl, glucosyl, fructosyl, galactosyl, mannosyl, fucosyl, cellobiosyl, gentiobiosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, disaccharide or trisaccharide thereof; and wherein n is 0.
- 7. (Currently amended) A-The compound according to any of claims 1 to 4 claim 1, wherein X_1 and X_2 are -OMe, wherein R_1 and R_2 are -H, wherein X_3 is hydrogen, hydroxyl, oxyalkyl or

PCT/EP2003/014567

Filed:

December 18, 2003

oxycarbonyl, wherein X_3 ' is glucosyl, fructosyl, galactosyl, mannosyl, fucosyl, cellobiosyl, gentiobiosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2-deoxy-galactosyl, a disaccharide or a trisaccharide thereof, wherein X_4 is hydrogen, wherein X_5 participates to—in_a double bond between the carbon atoms in position 5 and 6, wherein X_6 is –H, wherein X_7 is hydrogen, oxygen, hydroxyl or oxo, and wherein n is 0.

- 8. (Currently amended) A-<u>The</u> compound according to <u>any of claims 1 to 4claim 1</u>, wherein X_1 and X_2 are -OMe, wherein R_1 and R_2 are -H, wherein X_3 is glucosyl, fructosyl, galactosyl, mannosyl, fucosyl, cellobiosyl, gentiobiosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2-deoxy-galactosyl, a disaccharide or a trisaccharide thereof, wherein X_3 is hydrogen, alkyl or aralkyl, wherein X_4 is hydrogen, wherein X_5 participates te-<u>in</u> a double bond between the carbon atoms in position 5 and 6, wherein X_6 is -H, wherein X_7 is hydrogen, oxygen, hydroxyl or oxo, and wherein n is 0.
- 9. (Currently amended) A-The compound according to any of claims 1 to 4claim 1, wherein X_1 and X_2 are -OMe, wherein R_1 and R_2 are -H, wherein X_3 participates together with X_3 ' toin an oxo functional group, wherein X_4 is hydroxyl, glucosyl, fructosyl, galactosyl, mannosyl, fucosyl, cellobiosyl, gentiobiosyl, 2-amino-2-deoxy glucosyl, 2-acetamido-2-deoxy-glucosyl, 2-amino-2-deoxy galactosyl, 2-acetamido-2-deoxy-galactosyl, a disaccharide or a trisaccharide thereof, wherein X_5 participates to-in a double bond between the carbon atoms in position 5 and 6, wherein X_6 is -H, wherein X_7 is hydrogen, oxygen, hydroxyl or oxo, and wherein n is 0.
- 10. (Currently amended) Compound A compound of formula IB or a pharmaceutically acceptable salt thereof, wherein X_1 , X_2 , X_3 , X_3 , X_4 , X_5 , X_6 , X_7 , X_1 , X_2 and X_3 are selected as indicated in Table A or Table B.
- 11. Method A method for synthesizing a compound having the structural formula IB

$$X_3$$
 X_3 X_4 X_5 X_4 X_2 X_2 X_2

PCT/EP2003/014567

Filed

December 18, 2003

formula IB

wherein X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , R_1 , R_2 and n are selected from the group as indicated in any of claims 1 to 10 claim 1, said method comprising the steps of

a) providing a starting material having the structural formula IV,

formula IV

wherein X_3 , X_3 and X_7 are selected from the group as indicated in any of claims 1 to 10 claim 1, and wherein P is a protecting group,

b) effecting reaction between the compound of step a) with an organometallic compound having the structural formula V

$$R_1$$
 X_1
 R_2
 $(CH_2)n-W-Hal$

formula V

wherein X_1 , X_2 , R_1 , R_2 and n are selected from the group as indicated in any of claims 1-to 10 = 10, wherein W is a metal or a combination of metals and wherein Hal is a halogen atom,

PCT/EP2003/014567

Filed:

December 18, 2003

to result in an intermediate having the structural formula III'B

$$\begin{array}{c|c} X_3 X'_3 & X_1 \\ \hline \\ P-X_7 & X_2 \end{array}$$

formula III'B

wherein X_1 , X_2 , X_3 , X_3 , X_7 , R_1 , R_2 and n are selected from the group as indicated in any of claims 1 to 10claim 1, and wherein p is a protecting group,

c) effecting reaction between the compound of step b) with an organometallic compound having the structural formula VI

Hal-W-X'3

formula VI

wherein X'₃ is selected from the group as indicated in any of claims 1 to 10claim 1, wherein W is a metal or a combination of metals, and wherein Hal is a halogen atom,

to result in an intermediate having the structural formula IIIB

formula IIIB

wherein X_1 , X_2 , X_3 , X_3 , X_7 , R_1 , R_2 and n are selected from the group as indicated in any of claims 1 to 10 claim 1, wherein P is a protecting group,

d) deprotecting the X_7 group of the compound obtained in step c) to form an <u>a</u> compound having the structural formula IIB

formula II B

wherein X_1 , X_2 , X_3 , X_3 , X_7 , R_1 , R_2 and n are selected from the group as indicated in any of claims 1 to 10 claim 1, and

- e) oxidizing by reaction with a suitable oxidizing agent or agents to from a compound of formula IB or
- e) coupling an O-protected glycosyl or non-protected glycosyl to form a compound of formula IIB wherein X_1 , X_2 , X_3 , X_3 , X_4 , X_5 , X_7 , X_8 , X_9 , X
- f) deprotecting the O-protected groups of glycosyl to form a compound of formula IB wherein X_1 , X_2 , X_3 , X'_3 , X_4 , X_5 , X_6 , R_1 , R_2 and n are selected from the group as indicated in any of claims 1 to 10claim 1, and X_7 is a glycosyl, thio derivatives thereof, amino derivatives thereof, or hydroxyl-protected derivatives thereof.
- 12. (Original) A compound obtainable by any of the steps according to the method of claim 11.
- 13. (Original) A compound designated as compound UBS1664

Appl. No. Filed

PCT/EP2003/014567

December 18, 2003

14. (Original) A compound designated as compound UBS3327.

UBS3327

15. (Original) A compound designated as compound UBS3328.

UBS3328

- 16. (Cancelled)
- 17. (Cancelled)
- 18. (Currently amended) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound according to any of claims 1 to 10 and 12 to 15 Claim 1.
- 19. (Cancelled)
- 20. (Currently amended) Method A method of treating cancer comprising administrating to an individual in need of such treatment a pharmaceutical composition according to claim 18.
- 21. (New) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound prepared by the method of Claim 12.

22. (New) A method of treating cancer comprising administrating to an individual in need of such treatment a pharmaceutical composition according to claim 21.