Project 3: Prediction task is to determine whether a person makes over 50K a year.

In [1]:

```
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
```

In [2]:

```
# Importing the dataset
train = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.d
test = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.te
```

In [3]:

```
train.head(5)
```

Out[3]:

	0	1	2	3	4	5	6	7	8	9	10	11
0	39	State- gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in- family	White	Male	2174	0
1	50	Self- emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	Male	0	0
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White	Male	0	0
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Female	0	0
4												•

In [4]:

```
column_names = ['age', 'workclass', 'fnlwgt', 'education', 'educational_num', 'marital_statu
train.columns = column_names
test.columns = column_names
```

In [5]:

train.head(5)

Out[5]:

	age	workclass	fnlwgt	education	educational_num	marital_status	occupation	relationship
0	39	State-gov	77516	Bachelors	13	Never-married	Adm- clerical	Not-in-famil _!
1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-famil _\
3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband
4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife
4								•

In [6]:

test.head(5)

Out[6]:

	age	workclass	fnlwgt	education	educational_num	marital_status	occupation	relationship
0	25	Private	226802	11th	7	Never-married	Machine- op-inspct	Own-child
1	38	Private	89814	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband
2	28	Local-gov	336951	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband
3	44	Private	160323	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband
4	18	?	103497	Some- college	10	Never-married	?	Own-child
4								•

In [7]:

```
train.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):
age
                   32561 non-null int64
workclass
                   32561 non-null object
fnlwgt
                   32561 non-null int64
education
                   32561 non-null object
educational num
                   32561 non-null int64
marital_status
                   32561 non-null object
occupation
                   32561 non-null object
relationship
                   32561 non-null object
race
                   32561 non-null object
                   32561 non-null object
gender
                   32561 non-null int64
capital_gain
capital_loss
                   32561 non-null int64
                   32561 non-null int64
hours_per_week
native_country
                   32561 non-null object
income
                   32561 non-null object
dtypes: int64(6), object(9)
memory usage: 3.7+ MB
```

In [8]:

test.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16281 entries, 0 to 16280
Data columns (total 15 columns):
                   16281 non-null int64
age
workclass
                   16281 non-null object
fnlwgt
                   16281 non-null int64
                   16281 non-null object
education
educational num
                   16281 non-null int64
marital status
                   16281 non-null object
occupation
                   16281 non-null object
relationship
                   16281 non-null object
race
                   16281 non-null object
gender
                   16281 non-null object
capital gain
                   16281 non-null int64
capital loss
                   16281 non-null int64
hours_per_week
                   16281 non-null int64
                   16281 non-null object
native_country
income
                   16281 non-null object
dtypes: int64(6), object(9)
memory usage: 1.9+ MB
```

In [9]:

```
print(train.describe())
print('*'*100)
print(test.describe())
```

```
educational_num
                            fnlwgt
                                                     capital_gain
                age
count
       32561.000000
                      3.256100e+04
                                       32561.000000
                                                      32561.000000
          38.581647
                     1.897784e+05
                                           10.080679
                                                       1077.648844
mean
std
          13.640433
                     1.055500e+05
                                            2.572720
                                                       7385.292085
min
          17.000000
                     1.228500e+04
                                            1.000000
                                                          0.000000
25%
          28.000000
                     1.178270e+05
                                            9.000000
                                                          0.000000
50%
          37.000000
                     1.783560e+05
                                          10.000000
                                                          0.000000
75%
          48.000000
                     2.370510e+05
                                           12.000000
                                                          0.000000
          90.000000
                                           16.000000
                     1.484705e+06
                                                     99999.000000
max
       capital loss
                     hours_per_week
count
       32561.000000
                        32561.000000
mean
          87.303830
                           40.437456
         402.960219
                           12.347429
std
min
           0.000000
                            1.000000
25%
                           40.000000
           0.000000
50%
           0.000000
                           40.000000
                           45.000000
75%
           0.000000
        4356.000000
                           99.000000
max
********
                age
                            fnlwgt
                                    educational num
                                                      capital gain
                                       16281.000000
count
       16281.000000
                     1.628100e+04
                                                      16281.000000
                                           10.072907
                                                       1081.905104
mean
          38.767459
                     1.894357e+05
          13.849187
                     1.057149e+05
                                            2.567545
                                                       7583.935968
std
min
          17.000000
                     1.349200e+04
                                            1.000000
                                                          0.000000
25%
          28.000000
                     1.167360e+05
                                            9.000000
                                                          0.000000
50%
          37.000000
                     1.778310e+05
                                           10.000000
                                                          0.000000
75%
                                           12.000000
          48.000000
                     2.383840e+05
                                                          0.000000
          90.000000
                     1.490400e+06
                                           16.000000
                                                      99999.000000
max
       capital loss
                     hours_per_week
       16281.000000
                        16281.000000
count
          87.899269
                           40.392236
mean
                           12.479332
std
         403.105286
                            1.000000
           0.000000
min
25%
           0.000000
                           40.000000
                           40.000000
50%
           0.000000
75%
           0.000000
                           45.000000
        3770.000000
                           99.000000
max
```

From the primary data analysis, we can note that there are both numeric and object variables and there are ? values

In [10]:

```
train = train.replace(' ?',np.nan)
test = test.replace(' ?',np.nan)
```

```
In [11]:
```

```
print(train.isna().sum())
print('*'*100)
print(test.isna().sum())
                     0
age
workclass
                  1836
fnlwgt
                     0
                     0
education
educational_num
                     0
marital_status
                     0
occupation
                  1843
relationship
                     0
                     0
race
gender
                     0
capital_gain
                     0
capital_loss
                     0
hours_per_week
                     0
native_country
                   583
income
                     0
dtype: int64
****************************
********
                    0
age
                  963
workclass
fnlwgt
                    0
education
                    0
educational num
                    0
marital_status
                    0
occupation
                  966
relationship
                    0
race
                    0
gender
                    0
capital_gain
                    0
capital_loss
                    0
hours_per_week
                    0
native_country
                  274
income
                    0
dtype: int64
In [12]:
# As there are large number of null values we will drop the null values
```

```
train = train.dropna()
test = test.dropna()
```

In [13]:

```
dataset = pd.concat([train,test],axis=0)
```

```
In [14]:
```

dataset.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 45222 entries, 0 to 16280
Data columns (total 15 columns):
age
                   45222 non-null int64
                   45222 non-null object
workclass
fnlwgt
                   45222 non-null int64
education
                   45222 non-null object
                   45222 non-null int64
educational num
marital_status
                   45222 non-null object
occupation
                   45222 non-null object
                   45222 non-null object
relationship
race
                   45222 non-null object
                   45222 non-null object
gender
                   45222 non-null int64
capital_gain
capital_loss
                   45222 non-null int64
                   45222 non-null int64
hours_per_week
native_country
                   45222 non-null object
income
                   45222 non-null object
dtypes: int64(6), object(9)
memory usage: 5.5+ MB
In [15]:
dataset.income.unique()
Out[15]:
array([' <=50K', ' >50K', ' <=50K.', ' >50K.'], dtype=object)
In [16]:
dataset['income'] = dataset.income.replace({' <=50K':' <=50K', ' >50K':' >50K', ' <=50K.':</pre>
```

In [17]:

```
dataset.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 45222 entries, 0 to 16280
Data columns (total 15 columns):
                   45222 non-null int64
workclass
                   45222 non-null object
fnlwgt
                   45222 non-null int64
education
                   45222 non-null object
educational_num
                  45222 non-null int64
marital_status
                   45222 non-null object
                   45222 non-null object
occupation
                   45222 non-null object
relationship
race
                   45222 non-null object
gender
                   45222 non-null object
capital_gain
                   45222 non-null int64
capital_loss
                   45222 non-null int64
hours_per_week
                   45222 non-null int64
native_country
                   45222 non-null object
                   45222 non-null object
income
dtypes: int64(6), object(9)
memory usage: 5.5+ MB
```

EDA

In [18]:

```
import seaborn as sns
fig, ((a,b),(c,d)) = plt.subplots(2,2,figsize=(20,15))
plt.xticks(rotation=45)
sns.countplot(dataset['workclass'],hue=dataset['income'],ax=a)
sns.countplot(dataset['relationship'],hue=dataset['income'],ax=b)
sns.countplot(dataset['gender'],hue=dataset['income'],ax=c)
sns.countplot(dataset['race'],hue=dataset['income'],ax=d)
```

Out[18]:

<matplotlib.axes._subplots.AxesSubplot at 0x218a5eb2c50>

In [19]:

```
plt.xticks(rotation=45)
sns.countplot(dataset['marital_status'],hue=dataset['income'])
```

Out[19]:

<matplotlib.axes._subplots.AxesSubplot at 0x218a66d7ac8>

In [20]:

```
fig, (a,b)= plt.subplots(1,2,figsize=(20,6))
sns.boxplot(y='hours_per_week',x='income',data=dataset,ax=a)
sns.boxplot(y='age',x='income',data=dataset,ax=b)
```

Out[20]:

<matplotlib.axes._subplots.AxesSubplot at 0x218a6a1a5c0>

Data preprocessing

In [21]:

```
#Feature Engineering
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
for i in dataset.columns:
    dataset[i]=le.fit_transform(dataset[i])
```

In [22]:

```
hmap = dataset.corr()
plt.subplots(figsize=(12, 9))
sns.heatmap(hmap,annot=True);
```


In [23]:

```
#split the
X = dataset.iloc[:,:-1].values
y = dataset.iloc[:,14].values
X_train = X[:train.shape[0]] # Up to the last initial training set row
y_train = y[:train.shape[0]] # Up to the last initial training set row
X_test = X[train.shape[0]:] # Past the last initial training set row
y_test = y[train.shape[0]:] # Past the last initial training set row
```

In [24]:

```
print(X_train.shape,'**',y_train.shape,'**', X_test.shape,'**',y_test.shape)
(30162, 14) ** (30162,) ** (15060, 14) ** (15060,)
```

In [25]:

```
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

C:\Users\mallikarjuna.m\AppData\Local\Continuum\anaconda3\lib\site-packages \sklearn\utils\validation.py:595: DataConversionWarning: Data with input dty pe int64 was converted to float64 by StandardScaler.

warnings.warn(msg, DataConversionWarning)

C:\Users\mallikarjuna.m\AppData\Local\Continuum\anaconda3\lib\site-packages \sklearn\utils\validation.py:595: DataConversionWarning: Data with input dty pe int64 was converted to float64 by StandardScaler.

warnings.warn(msg, DataConversionWarning)

C:\Users\mallikarjuna.m\AppData\Local\Continuum\anaconda3\lib\site-packages \sklearn\utils\validation.py:595: DataConversionWarning: Data with input dty pe int64 was converted to float64 by StandardScaler.

warnings.warn(msg, DataConversionWarning)

Classification Models

Logistic Regression

In [26]:

```
# Fitting Logistic Regression to the Training set
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
logistic = LogisticRegression(random_state = 0)
logistic.fit(X_train, y_train)
y_pred = logistic.predict(X_test)
cm_log = confusion_matrix(y_test, y_pred)
Correct = cm_log [0,0] + cm_log [1,1]
Total = cm_log [0,0] + cm_log [0,1] + cm_log [1,0] + cm_log [1,1]
Logistic_accuracy = Correct / Total
print('Logistic_Regression_Accuracy : ', Logistic_accuracy*100,'%' )
```

C:\Users\mallikarjuna.m\AppData\Local\Continuum\anaconda3\lib\site-packages
\sklearn\linear_model\logistic.py:433: FutureWarning: Default solver will be
changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.
FutureWarning)

Logistic Regression Accuracy: 81.83266932270917 %

K-Nearest Neighbors (K-NN)

In [27]:

```
# Fitting K-NN to the Training set
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix
knn = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
cm_knn = confusion_matrix(y_test, y_pred)
Correct = cm_knn[0,0] + cm_knn[1,1]
Total = cm_knn[0,0] + cm_knn[0,1]+ cm_knn[1,0] + cm_knn[1,1]
knn_accuracy = Correct / Total
print('knn_Accuracy : ', knn_accuracy*100,'%' )
```

knn_Accuracy: 82.78884462151395 %

Support Vector Machine (SVM)

In [28]:

```
# Fitting SVM to the Training set
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix
svm = SVC(kernel = 'linear', random_state = 0)
svm.fit(X_train, y_train)
y_pred = svm.predict(X_test)
cm_svm = confusion_matrix(y_test, y_pred)
Correct = cm_svm [0,0] + cm_svm [1,1]
Total = cm_svm [0,0] + cm_svm [0,1]+ cm_svm [1,0] + cm_svm [1,1]
svm_accuracy = Correct / Total
print('svm_Accuracy : ', svm_accuracy*100,'%')
```

svm_Accuracy : 80.37848605577689 %

Kernel SVM

In [29]:

```
# Fitting Kernel SVM to the Training set
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix
ksvm = SVC(kernel = 'rbf', random_state = 0)
ksvm.fit(X_train, y_train)
y_pred = ksvm.predict(X_test)
cm_ksvm = confusion_matrix(y_test, y_pred)
Correct = cm_ksvm [0,0] + cm_ksvm [1,1]
Total = cm_ksvm [0,0] + cm_ksvm [0,1]+ cm_ksvm [1,0] + cm_ksvm [1,1]
ksvm_accuracy = Correct / Total
print('ksvm_Accuracy : ', ksvm_accuracy*100,'%' )
```

ksvm_Accuracy : 84.7011952191235 %

Naive Bayes

In [30]:

```
# Fitting Naive Bayes to the Training set
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import confusion_matrix
nb = GaussianNB()
nb.fit(X_train, y_train)
y_pred = nb.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
Correct = cm[0,0] + cm[1,1]
Total = cm[0,0] + cm[0,1] + cm[1,0] + cm[1,1]
nb_accuracy = Correct / Total
print('nb_Accuracy: ', nb_accuracy*100,'%')
```

nb_Accuracy : 81.28818061088977 %

Decision Tree Classification

In [31]:

```
# Fitting Decision Tree Classification to the Training set
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix
dt = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
dt.fit(X_train, y_train)
y_pred = dt.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
Correct = cm[0,0] + cm[1,1]
Total = cm[0,0] + cm[0,1] + cm[1,0] + cm[1,1]
dt_accuracy = Correct / Total
print('Decision_Tree_Accuracy : ', dt_accuracy*100,'%' )
```

Decision_Tree_Accuracy: 80.87649402390437 %

Random Forest Classification

In [32]:

```
# Fitting Random Forest Classification to the Training set
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix
rf = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0)
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
Correct = cm[0,0] + cm[1,1]
Total = cm[0,0] + cm[0,1]+ cm[1,0] + cm[1,1]
rf_accuracy = Correct / Total
print('Random_Forest_Accuracy : ', rf_accuracy*100,'%' )
```

Random_Forest_Accuracy : 84.32934926958832 %

XGBoost

In [33]:

```
# Fitting XGBoost to the Training set
from xgboost import XGBClassifier
from sklearn.metrics import confusion_matrix
xgb = XGBClassifier()
xgb.fit(X_train, y_train)
y_pred = xgb.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
Correct = cm[0,0] + cm[1,1]
Total = cm[0,0] + cm[0,1] + cm[1,0] + cm[1,1]
xgb_accuracy = Correct / Total
print('XGBoost Accuracy: ', xgb_accuracy*100,'%' )
print(cm)
```

```
XGBoost Accuracy: 86.15537848605578 % [[10785 575] [ 1510 2190]]
```

Visualising the Test set results

In [34]:

Out[34]:

	Model
Score	
0.861554	XGBoost
0.847012	Kernel Support Vector Machine
0.843293	Random Forest
0.827888	KNN
0.818327	Logistic Regression
0.812882	Naive Bayes
0.808765	Decision Tree
0.803785	Support Vector Machines

Cross Validation

In [35]:

```
# Applying k-Fold Cross Validation
from sklearn.model_selection import cross_val_score
accuracies = cross_val_score(estimator = xgb, X = X_train, y = y_train, cv = 10)
print(accuracies.mean()*100)
print(accuracies.std())
```

```
85.97247279281186
0.004258902229655589
```

The best model that predict the income @ ~86% accuracy

Feature Importance

In [36]:

```
importances = list(zip(xgb.feature_importances_, dataset.columns))
importances.sort(reverse=True)
importances
```

Out[36]:

```
[(0.14985591, 'capital_gain'),
  (0.14985591, 'age'),
  (0.13400577, 'capital_loss'),
  (0.12391931, 'educational_num'),
  (0.093659945, 'relationship'),
  (0.0907781, 'hours_per_week'),
  (0.06916427, 'marital_status'),
  (0.06628242, 'occupation'),
  (0.0648415, 'fnlwgt'),
  (0.031700287, 'workclass'),
  (0.014409222, 'gender'),
  (0.007204611, 'race'),
  (0.0028818443, 'education'),
  (0.0014409221, 'native_country')]
```

In []: