Problem Sheet 5

Math40002, Analysis 1

- 1. In lecture, we needed the claim that $\lim_{x\to\infty} xs^{x-1} = 0$ for any $s\in(0,1)$ in order to prove that the term-by-term derivative of a power series converges inside that power series's radius of convergence.
 - (a) Prove that for all c > 0, there exists N > 0 such that $\log(x) < cx$ for all $x \ge N$.
 - (b) Prove that $\lim_{x\to\infty} xs^x = 0$, and show that this implies the above claim.
 - Solution. (a) It's enough to prove that $\lim_{x\to\infty}\frac{\log(x)}{x}=0$, since then there's an N>0 such that $0<\frac{\log(x)}{x}< c$ for all $x\geq N$. This limit exists by l'Hôpital's rule, which says that it is equal to $\lim_{x\to\infty}\frac{1/x}{1}=0$.
 - (b) For any c > 0, part (a) says that $0 < xs^x < e^{cx}s^x = (e^cs)^x$ for all large enough x. Since 0 < s < 1, we can choose a positive $c < \log(1/s)$ so that $0 < e^cs < 1$, and then

$$\lim_{x \to \infty} (e^c s)^x = 0.$$

Thus the squeeze theorem says that $\lim_{x\to\infty} xs^x = 0$ as well. We conclude that

$$\lim_{x \to \infty} x s^{x-1} = \frac{1}{s} \left(\lim_{x \to \infty} x s^x \right) = 0.$$

- 2. (a) Compute the Taylor series P(x) of $f(x) = \log(1+x)$ centered at x = 0, and prove that it converges absolutely on (-1,1).
 - (b) Prove using Taylor's theorem that f(x) = P(x) on some open neighborhood of 0, by showing that the sequence of nth order Taylor polynomials $P_n(x)$ converges uniformly to f(x). Show that the same is true at x = 1, and so $\log(2) = \frac{1}{1} \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{5} \dots$

Solution. (a) We have $f'(0) = \frac{1}{1+x}$, and we claim by induction that

$$f^{(n)}(x) = (-1)^{n-1}(n-1)!(1+x)^{-n}$$

for all $n \ge 1$: if it's true for n = k then we have

$$f^{(k+1)}(x) = (-1)^{k-1}(k-1)! \cdot (-k)(1+x)^{-k-1} = (-1)^k k! (1+x)^{-(k+1)}$$

1

as desired. Then $f^{(n)}(0) = (-1)^{n-1}(n-1)!$ for $n \ge 1$, and $f(0) = \log(1) = 0$, so f(x) has Taylor series

$$P(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(n-1)!x^n}{n!} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n},$$

which has the form $\frac{x}{1} - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$ Absolute convergence follows from the comparison test, since $\left|\frac{(-1)^{n-1}x^n}{n}\right| \leq |x^n|$ and $\sum_{n=1}^{\infty} x^n$ is a geometric series which converges absolutely on (-1,1).

(b) By Taylor's theorem, if x > -1 is nonzero then we have

$$f(x) = P_n(x) + \frac{f^{(n+1)}(t)}{(n+1)!}x^{n+1}$$

for some t between 0 and x. The same computation as in part (a) says that $f^{(n+1)}(t) = (-1)^n n! (1+t)^{-(n+1)}$, so

$$|f(x) - P_n(x)| = \left| \frac{(-1)^n n! (1+t)^{-(n+1)}}{(n+1)!} x^{n+1} \right| = \frac{1}{n+1} \left| \frac{x}{1+t} \right|^{n+1}.$$

Now if $0 < x \le 1$ then we have 0 < t < x, so $1+t > 1 \ge x$ and hence $\left|\frac{x}{1+t}\right| < 1$. If instead $-\frac{1}{2} \le x < 0$ then we have $1+t > 1+x \ge \frac{1}{2} > |x|$, so again $\left|\frac{x}{1+t}\right| < 1$. Thus for any nonzero $x \in [-\frac{1}{2}, 1]$ we have

$$|f(x) - P_n(x)| \le \frac{1}{n+1},$$

and so P_n converges uniformly to $f(x) = \log(1+x)$ on this interval.

Remark: In fact f(x) = P(x) on all of (-1, 1), but we need better control over t to prove this on the interval $(-1, \frac{1}{2})$.

3. Suppose that $f: \mathbb{R} \to \mathbb{R}$ has at least six continuous derivatives, and that $f^{(i)}(0) = 0$ for i = 1, 2, 3, 4, 5 but $f^{(6)}(0) = 1$. Prove that f(x) has a local minimum at x = 0.

Solution. We apply Taylor's theorem to see that if $x \in (-\delta, \delta)$ is nonzero, then there is some t between 0 and x such that

$$f(x) = \sum_{i=0}^{5} \frac{f^{(i)}(0)x^{i}}{i!} + \frac{f^{(6)}(t)x^{6}}{6!} = f(0) + \frac{f^{(6)}(t)x^{6}}{6!}.$$

Since $f^{(6)}(x)$ is continuous, there is some $\delta > 0$ such that

$$|y-0| < \delta \implies |f^{(6)}(y) - f^{(6)}(0)| < 1,$$

hence $f^{(6)}(y) > 0$ for all $y \in (-\delta, \delta)$. If we take $x \in (-\delta, \delta)$ above then $t \in (-\delta, \delta)$ as well, so $f^{(6)}(t) > 0$, and then since $\frac{x^6}{6!} \ge 0$ we conclude that $f(x) \ge f(0)$ for all $x \in (-\delta, \delta)$.

- 4. (a) Suppose that some function $f:(-R,R)\to\mathbb{R}$ is equal to the power series $\sum_{n=0}^{\infty}\frac{a_nx^n}{n!}$, which converges absolutely on (-R,R). Prove that the Taylor series of f centered at a=0 is precisely $\sum_{n=0}^{\infty}\frac{a_nx^n}{n!}$, and hence that this power series is unique.
 - (b) Compute the Taylor series of $f(x) = \frac{1}{1-x^2}$ centered at a = 0. What is $f^{(100)}(0)$?
 - Solution. (a) Since we can differentiate power series term by term inside their radius of convergence, it follows by induction that $f^{(k)}(x)$ exists and that

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)a_n x^{n-k},$$

absolutely convergent on the interval (-R, R), for all k. This gives us $f^{(k)}(0) = k!a_k$, and so f(x) has Taylor series

$$P(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)x^n}{n!} = \sum_{n=0}^{\infty} \frac{n!a_n \cdot x^n}{n!} = \sum_{n=0}^{\infty} a_n x^n.$$

In other words, if f is equal to some power series on (-R, R) then that power series must be the Taylor series centered at x = 0, and so that power series is unique.

(b) Computing the derivatives of f(x) gets messy very quickly, so instead we note that f(x) is the sum of a geometric series

$$f(x) = 1 + x^2 + x^4 + x^6 + \dots = \sum_{n=0}^{\infty} x^{2n}$$

on the interval (-1,1), and this is a power series, so it must be the Taylor series for f(x). The coefficient of x^{100} is 1, and it's also supposed to be equal to $\frac{f^{(100)}(0)}{100!}$, so we must have $f^{(100)}(0) = 100!$.

- 5. (a) Prove that $f(x) = e^x$ is convex on all of \mathbb{R} .
 - (b) Let a, b > 0. Use the convexity of e^x to prove the arithmetic mean-geometric mean inequality

$$\frac{a+b}{2} \ge \sqrt{ab}.$$

(Hint: think about $\alpha = \log(a)$ and $\beta = \log(b)$.)

- (c) Prove for any a, b > 0 and $s \in [0, 1]$ that $sa + (1 s)b \ge a^s b^{1-s}$.
- (d) Prove Young's inequality: for any $x, y \ge 0$ and p, q positive with $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$\frac{x^p}{p} + \frac{y^q}{q} \ge xy.$$

- Solution. (a) It suffices to check that that $f''(x) \ge 0$ for all x, and this is certainly true since $f''(x) = e^x$.
- (b) Assuming $\alpha < \beta$ without loss of generality, the convexity of e^x implies for $\alpha < \frac{\alpha + \beta}{2} < \beta$ that

$$\frac{e^{\alpha} + e^{\beta}}{2} \ge e^{(\alpha + \beta)/2} = \sqrt{e^{\alpha} \cdot e^{\beta}}$$

which is equivalent to $\frac{a+b}{2} \ge \sqrt{ab}$.

(c) Since e^x is convex, we know that

$$se^{\alpha} + (1-s)e^{\beta} \ge e^{s\alpha + (1-s)\beta}$$

and the left side is sa + (1-s)b while the right side is $(e^{\alpha})^s(e^{\beta})^{1-s} = a^sb^{1-s}$.

(d) We may assume that x, y > 0, since otherwise the inequality reduces to $\frac{x^p}{p} + \frac{y^q}{q} = 0$, which is true. We now use part (c), setting $s = \frac{1}{p}$ (so $1 - s = \frac{1}{q}$) and $(a, b) = (x^p, y^q)$, to get

$$\frac{x^p}{p} + \frac{y^q}{q} \ge (x^p)^{1/p} (y^q)^{1/q} = xy.$$

- 6. (*) Let (a_n) denote the Fibonacci sequence, with $a_0 = 0$, $a_1 = 1$, and $a_{n+2} = a_{n+1} + a_n$ for all $n \ge 0$.
 - (a) Prove by induction that $a_n < 2^n$ for all $n \ge 0$. What is the radius of convergence of the exponential generating function

$$F(x) = \sum_{n=0}^{\infty} \frac{a_n x^n}{n!} = 0 + 1x + \frac{1x^2}{2} + \frac{2x^3}{6} + \frac{3x^4}{24} + \dots$$
?

- (b) Prove that F''(x) = F'(x) + F(x), and that F(0) = 0 and F'(0) = 1.
- (c) Solve this differential equation for F(x).
- (d) Use the solution from part (c) to prove Binet's formula:

$$a_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right).$$

Solution. (a) We have $a_0 < 2^0$ and $a_1 < 2^1$, and if $a_n < 2^n$ and $a_{n+1} < 2^{n+1}$ then

$$a_{n+2} = a_{n+1} + a_n < 2^{n+1} + 2^n < 2 \cdot 2^{n+1} = 2^{n+2}$$

so it follows by induction that $a_k < 2^k$ for all $k \ge 0$.

We now have $\left|\frac{a_n x^n}{n!}\right| < \left|\frac{2^n x^n}{n!}\right| = \left|\frac{(2x)^n}{n!}\right|$, so the comparison test says that F(x)

converges absolutely whenever $\sum_{n=0}^{\infty} \frac{(2x)^n}{n!}$ does. The latter is equal to e^{2x} for all $x \in \mathbb{R}$, so F(x) has infinite radius of convergence.

(b) Since the power series for F has infinite radius of convergence, we can differentiate term by term to get

$$F'(x) = \sum_{n=0}^{\infty} \frac{na_n x^{n-1}}{n!} = \sum_{n=1}^{\infty} \frac{a_n x^{n-1}}{(n-1)!} = \sum_{m=0}^{\infty} \frac{a_{m+1} x^m}{m!},$$

where in the last step we substitute m=1, and this also has infinite radius of convergence. We repeat this argument to get

$$F''(x) = \sum_{n=0}^{\infty} \frac{na_{n+1}x^{n-1}}{n!} = \sum_{n=1}^{\infty} \frac{a_{n+1}x^{n-1}}{(n-1)!} = \sum_{m=0}^{\infty} \frac{a_{m+2}x^m}{m!}.$$

Since these power series all converge absolutely, we can rearrange them to get

$$F(x) + F'(x) = \sum_{n=0}^{\infty} \frac{a_n x^n}{n!} + \sum_{n=0}^{\infty} \frac{a_{n+1} x^n}{n!}$$
$$= \sum_{n=0}^{\infty} \frac{(a_n + a_{n+1}) x^n}{n!}$$
$$= \sum_{n=0}^{\infty} \frac{a_{n+2} x^n}{n!} = F''(x).$$

We also have $F(0) = a_0 = 0$ and $F'(0) = a_1 = 1$ by inspection.

(c) The roots of $x^2 - x - 1 = 0$ are $r = \frac{1}{2}(1 + \sqrt{5})$ and $s = \frac{1}{2}(1 - \sqrt{5})$, so the general solution to y'' - y' - y = 0 is

$$y = c_1 e^{rx} + c_2 e^{sx}.$$

The initial conditions y(0) = 0 and y'(0) = 1 are equivalent to

$$c_1 + c_2 = 0$$
$$rc_1 + sc_2 = 1,$$

with solution $c_1 = \frac{1}{r-s} = \frac{1}{\sqrt{5}}$ and $c_2 = -c_1 = -\frac{1}{\sqrt{5}}$, so we have

$$F(x) = \frac{e^{rx} - e^{sx}}{\sqrt{5}}.$$

(d) From the above closed form for F(x), we have

$$F(x) = \frac{1}{\sqrt{5}} \left(\sum_{n=0}^{\infty} \frac{(rx)^n}{n!} - \sum_{n=0}^{\infty} \frac{(sx)^n}{n!} \right)$$
$$= \sum_{n=0}^{\infty} \left(\frac{r^n - s^n}{\sqrt{5}} \right) \frac{x^n}{n!}.$$

Since this power series is equal to $\sum_{n=0}^{\infty} \frac{a_n x^n}{n!}$, the coefficients of each x^n must be the same, so

$$a_n = \frac{r^n - s^n}{\sqrt{5}} = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right).$$

- 7. Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0 \\ 0, & x = 0. \end{cases}$
 - (a) Prove that for all integers $n \geq 0$, there is a polynomial $p_n(x)$ such that

$$f^{(n)}(x) = \frac{p_n(x)}{r^{3n}}e^{-1/x^2}$$
 for all $x \neq 0$.

- (b) Prove that $f^{(n)}(0) = 0$ for all n, and hence that f(x) does not equal its Taylor series (centered at a = 0) at any nonzero x.
- (c) Define $g: \mathbb{R} \to \mathbb{R}$ by $g(x) = \begin{cases} 0, & x \le 0 \\ e^{-1/x^2}, & x > 0. \end{cases}$ Prove that $g^{(n)}(x)$ exists for all $n \ge 0$ and all $x \in \mathbb{R}$, and that $g^{(n)}(0) = 0$ for all n.
- (d) Define $h: \mathbb{R} \to \mathbb{R}$ by h(x) = g(x)g(1-x). Prove that h is infinitely differentiable, meaning that $h^{(n)}(x)$ exists for all $n \geq 0$ and all $x \in \mathbb{R}$, and that $h(x) \neq 0$ if and only if 0 < x < 1.

Solution. (a) When n=0 we take $p_0(x)=1$. If this holds for n=k, we compute

$$f^{(k+1)}(x) = \frac{d}{dx} \left(\frac{p_k(x)}{x^{3k}} e^{-1/x^2} \right)$$

$$= \frac{p'_k(x)x^{3k} - 3kx^{3k-1}p_k(x)}{x^{6k}} e^{-1/x^2} + \frac{p_k(x)}{x^{3k}} \left(\frac{2}{x^3} e^{-1/x^2} \right)$$

$$= \left(\frac{p'_k(x)x^3 - 3kx^2p_k(x) + 2p_k(x)}{x^{3k+3}} \right) e^{-1/x^2},$$

so we can take $p_{k+1} = x^3 p_k' - (3kx^2 - 2)p_k$ and the proof follows by induction.

(b) When n = 0 it is true by definition. If we have proved it for all $n \le k$, then for n = k + 1 we have

$$f^{(k+1)}(0) = \lim_{x \to 0} \frac{f^{(k)}(x) - f^{(k)}(0)}{x - 0} = \lim_{x \to 0} \frac{f^{(k)}(x)}{x},$$

assuming the limit exists, and so using part (a) we wish to prove that

$$\lim_{x \to 0} \frac{p_k(x)}{r^{3k+1}e^{1/x^2}} = 0.$$

Since $p_k(x)$ is continuous, it will suffice to prove that $\lim_{x\to 0} |x^{3k+1}e^{1/x^2}| = \infty$. By the substitution $y = \frac{1}{x}$ we have

$$\lim_{x \to 0} |x^{3k+1}e^{1/x^2}| = \lim_{|y| \to \infty} \left| \frac{e^{y^2}}{y^{3k+1}} \right| = \lim_{y \to \infty} \frac{e^{y^2}}{y^{3k+1}}.$$

But since $y^2 \ge 0$, every term in the power series $e^{y^2} = \sum_{i=0}^{\infty} \frac{(y^2)^i}{i!}$ is nonnegative, and so if we single out the i = 2k + 1 term then

$$e^{y^2} \ge \frac{(y^2)^{2k+1}}{(2k+1)!} \implies \frac{e^{y^2}}{y^{3k+1}} \ge \frac{y^{4k+2}/(2k+1)!}{y^{3k+1}} = \frac{y^{k+1}}{(2k+1)!}.$$

The right side certainly goes to ∞ as $y \to \infty$, hence $\lim_{x\to 0} |x^{3k+1}e^{1/x^2}| = \infty$ and this proves that $f^{(k+1)}(0) = 0$. The proof follows for all n by induction.

The Taylor series of f at a=0 is $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = 0$, but clearly for all $x \neq 0$ this is not equal to $f(x) = e^{-1/x^2} > 0$.

(c) For all n, we have

$$g^{(n)}(x) = \begin{cases} 0, & x < 0 \\ f^{(n)}(x), & x > 0. \end{cases}$$

so we only need to check that $g^{(n)}(0)$ exists and is zero for all n. Again, we induct: it is true when n = 0, and if it is true for for n = k then

$$\frac{g^{(k)}(x) - g^{(k)}(0)}{x - 0} = \frac{g^{(k)}(x)}{x} = \begin{cases} 0, & x < 0 \\ f^{(k)}(x), & x > 0. \end{cases}$$

Thus $\lim_{x\uparrow 0} \frac{g^{(k)}(x) - g^{(k)}(0)}{x - 0} = 0$ by inspection, and

$$\lim_{x \downarrow 0} \frac{g^{(k)}(x) - g^{(k)}(0)}{x - 0} = \lim_{x \downarrow 0} \frac{f^{(k)}(x)}{x} = f^{(k+1)}(0) = 0$$

by part (b), so $g^{(k+1)}(0) = \lim_{x\to 0} \frac{g^{(k)}(x) - g^{(k)}(0)}{x - 0}$ exists and is zero as well.

(d) Since g(x) and g(1-x) are infinitely differentiable, repeated application of the product rule says that h(x) = g(x)g(1-x) has n derivatives for all n as well. Moreover, we have g(x) = 0 for $x \le 0$ and g(1-x) = 0 for $x \ge 1$, so h(x) = 0 for all $x \notin (0,1)$; and if 0 < x < 1 then

$$h(x) = g(x)g(1-x) = e^{-1/x^2} \cdot e^{-1/(1-x)^2} > 0$$

Here is a graph of h(x):

Note that h(x) is very small on the interval (0,1) – the maximum value is $h(\frac{1}{2}) = e^{-8} \approx 0.000335...$ – and it decays to zero so quickly that it's hard to see from the graph that h(x) > 0 for most x on this interval, but h(x) is indeed positive there.