Supplement to "Design of c-Optimal Experiments for High-dimensional Linear Models"

HAMID EFTEKHARI*, MOULINATH BANERJEE and YA'ACOV RITOV

Department of Statistics, University of Michigan, Ann Arbor, Michigan, USA E-mail: hamidef@umich.edu; moulib@umich.edu; yritov@umich.edu

The technical proofs and background material for the main paper are collected in this supplement.

Keywords: Optimal Design; Inference; Sparsity; Compressed Sensing

1. Proofs

For completeness, we record here Elfving's theorem [3] which has been alluded to in the main text.

Theorem 2 (Elfving (1952)). Let $(x_i)_1^N \in \mathbb{R}^p$ be the available design points and let $c \in \mathbb{R}^p$. Define the Elfving set to be the convex hull of $(\pm x_i)_1^N$:

$$\mathcal{E} := \text{conv}(\{x_i : 1 \le i \le N\} \cup \{-x_i : 1 \le i \le N\}).$$

Let x_c be the point on the boundary of \mathcal{E} that intersects the half-line passing through the origin and c:

$$x_c = \partial \mathcal{E} \cap \{tc : t \ge 0\}.$$

If we write $x_c = \sum_{i=1}^N v_i x_i$, then the c-optimal design is given by $w_i^* := |v_i| / \sum_{i=1}^N |v_i|$.

Definition 1 (Restricted Eigenvalue Condition). A matrix A is said to satisfy the restricted eigenvalue condition $RE(s_0, k_0, A)$ with parameter λ_{RE} if

$$\lambda_{RE} := \min_{\substack{J \subset \{1, \dots, P\} \ \|v_{J^c}\|_1 \leq k_0 \|v_J\|_1 \\ |J| \leq s_0}} \min_{\substack{\|v_{J^c}\|_1 \leq k_0 \|v_J\|_1 \\ v \neq 0}} \frac{\|Av\|_2}{\|v_J\|_2} > 0.$$

We also denote this quantity by $\lambda_{RE}(s_0, k_0, A)$.

We record here a theorem by Rudelson and Zhou [4] that relates the restricted eigenvalues of random matrices to the (restricted) eigenvalues of the corresponding population covariance matrices. In the theorem the smallest k-sparse eigenvalue of A is defined as

$$\rho_{\min}(k, A) = \min_{\substack{\|t\|_0 \le k \\ t \ne 0}} \frac{\|At\|_2}{\|t\|_2}.$$

Theorem 3 (Rudelson & Zhou, Theorem 8). Let $0 < \delta < 1$ and $0 < s_0 < p$. Let $X \in \mathbf{R}^p$ be a random vector such that $||X||_{\infty} \leq M$ a.s. and denote $\Sigma = \mathbf{E}XX^T$. Let \mathbb{X} be an $n \times p$ matrix whose rows X_1, X_2, \ldots, X_n are independent copies of X. Let Σ satisfy the $RE(s_0, 3k_0, \Sigma^{\frac{1}{2}})$ condition as in Definition 1. Define

$$d = s_0 \left(1 + \max_j \| \Sigma^{\frac{1}{2}} e_j \|_2^2 \frac{16(3k_0)^2 (3k_0 + 1)}{\delta^2 \cdot \lambda_{RF}^2 (s_0, k_0, \Sigma^{\frac{1}{2}})} \right).$$

Assume that $d \leq p$ and $\rho = \rho_{\min}(d, \Sigma^{\frac{1}{2}}) > 0$. Assume that the sample size n satisfies

$$n \ge n_0 := \frac{C_{RZ} M^2 d \cdot \log p}{\rho^2 \delta^2} \cdot \log^3 \left(\frac{C_{RZ} M^2 d \cdot \log p}{\rho^2 \delta^2} \right),$$

for an absolute constant C_{RZ} . Then with probability at least $1 - \exp\left(-\delta \rho^2 n/(6M^2d)\right)$, the $RE(s_0,k_0,\mathbb{X}/\sqrt{n})$ condition holds for matrix \mathbb{X}/\sqrt{n} with $\lambda_{RE}(s_0,k_0,\mathbb{X}/\sqrt{n}) \geq (1-\delta) \cdot \lambda_{RE}(s_0,k_0,\Sigma^{\frac{1}{2}})$.

Note that this theorem concerns observations obtained via i.i.d sampling. The next proposition shows that a similar result holds for Poisson sampling as used in our work. Since the usual Lasso guarantees require $RE(s_0, k_0 = 3, \mathbb{X}/\sqrt{n})$, we will be using the above theorem with $k_0 = 3$.

Proposition 1. Suppose that K_1, \ldots, K_N are independent Poisson random variables with $K_j \sim \operatorname{Poisson}(nw_j)$ and $\sum_1^N w_j = 1$, so that $K := \sum_1^N K_j \sim \operatorname{Poisson}(n)$. Let $\mathbb X$ be a $K \times p$ matrix where x_j^T is repeated in the rows of $\mathbb X$ exactly K_j times. Suppose that

• The population covariance matrix $\Sigma = \sum_{i=1}^{N} w_i x_i x_i^T$ satisfies

$$\lambda_{\star} \leq \lambda_{\min}(\Sigma) \leq \lambda_{\max}(\Sigma) \leq \lambda^{\star}$$
.

• The expected sample size n satisfies

$$\begin{split} n \geq \frac{5}{4}\tilde{n}_0 & \quad \textit{where } \tilde{n}_0 = \frac{\tilde{C}M^2\lambda^{\star}s_0\log p}{\lambda_{\star}^2}\log^3\left(\frac{\tilde{C}M^2\lambda^{\star}s_0\log p}{\lambda_{\star}^2}\right), \\ & \quad \textit{and } \tilde{C} = 4\times51841C_{RZ}. \end{split}$$

Then with probability at least $1-e^{-\frac{\tilde{n}_0}{4}}-e^{-\frac{n_0\lambda_\star}{12M^2d}}$ we have $\lambda_{RE}(s_0,3,\mathbb{X}/\sqrt{K})\geq\lambda_{RE}(s_0,3,\Sigma^{\frac{1}{2}})/2$.

Proof. The basic idea is that conditioned on the total number of samples K, the conditional distribution of (K_1,\ldots,K_N) is multinomial with success probabilities (w_1,\ldots,w_N) . Thus conditionally, the rows of $\mathbb X$ form an i.i.d. sample of the population $(x_i)_{i=1}^N$ with probabilities $(w_i)_{i=1}^N$. Therefore, the result of Theorem 3 can be applied to get a lower bound on the restricted eigenvalue of $\mathbb X/\sqrt{K}$. For this, we first find upper bounds on d, n_0 and a lower bound on ρ , λ_{RE} as needed in the theorem.

From the assumption on the spectrum of Σ and the definitions of sparse and restricted eigenvalues it is clear that $\rho^2 \geq \lambda_\star$ and $\lambda_{RE}^2(s_0,3,\Sigma^{\frac{1}{2}}) \geq \lambda_\star$. From these inequalities, and using $\delta=1/2$ and $k_0=3$, we obtain an upper bound on d:

$$d \le s_0 \left(1 + \frac{\lambda^*}{\lambda_*} 4 \cdot 64 \cdot 9^2 \cdot 10 \right)$$

$$\leq 51841 \cdot s_0 \frac{\lambda^*}{\lambda_*}.$$

Next, writing the n_0 in Theorem 3 as $m_0 \log^3(m_0)$, we can bound m_0 by

$$m_0 = \frac{C_{RZ}M^2d \cdot \log p}{\rho^2 \delta^2}$$

$$\leq \frac{4 \times 51841C_{RZ}M^2 \lambda^* s_0 \log p}{\lambda_{\star}^2}$$

$$= \frac{\tilde{C}M^2 \lambda^* s_0 \log p}{\lambda_{\star}^2}$$

It follows that

$$\tilde{n}_0 \ge m_0 \log^3 m_0 = n_0.$$

Next, we show that with high probability, the sample size K is not smaller than n_0 . We have

$$\mathbf{P}(K < n_0) \le \mathbf{P}(K < \tilde{n}_0) = e^{-n} \sum_{j=0}^{\tilde{n}_0 - 1} \frac{n^j}{j!} \le e^{\tilde{n}_0 - n} \le e^{-\frac{\tilde{n}_0}{4}}.$$

Now we proceed by conditioning on K=k for $k\geq n_0$. Note that as mentioned before, given K=k, the rows of $\mathbb X$ have the same distribution as a weighted i.i.d. sample from $(x_i)_1^N$ with probabilities $(w_i)_1^N$, and since $k\geq n_0$, by Theorem 3 the probability that the $RE(s_0,3,\mathbb X/\sqrt{k})$ does not hold is at most $\exp(-k\lambda_\star/(12M^2d))$. Denote by B the event that $\lambda_{RE}(s_0,3,\mathbb X/\sqrt{K})<\lambda_{RE}(s_0,3,\Sigma^{\frac{1}{2}})/2$. Then we have

$$\mathbf{P}(B) \leq \mathbf{P}(K < n_0) + \mathbf{P}(B \cap [K \geq n_0])$$

$$\leq e^{-\frac{\tilde{n}_0}{4}} + \sum_{k=n_0}^{\infty} \mathbf{P}(B \mid K = k) \cdot \mathbf{P}(K = k)$$

$$\leq e^{-\frac{\tilde{n}_0}{4}} + \sum_{k=n_0}^{\infty} \exp\left(-\frac{k\lambda_{\star}}{12M^2d}\right) \cdot \mathbf{P}(K = k)$$

$$\leq e^{-\frac{\tilde{n}_0}{4}} + e^{-\frac{n_0\lambda_{\star}}{12M^2d}}.$$

Next we record here a conditional central limit theorem due to [2, Theorem 1 and Corollary 3] that will be used in the proof of theorem 1. Let $\{U_{n,k}\}_{n,k}$ be a triangular array and \mathcal{A}_n be the σ -algebra that can change with n. Denote by $\mathbf{E}^{\mathcal{A}_n}[\cdot] = \mathbf{E}[\cdot \mid \mathcal{A}_n]$ the conditional expectation with respect to \mathcal{A}_n and define

$$S_n := \sum_{k=1}^{N} U_{n,k}, \qquad (\sigma_n^{\mathcal{A}_n})^2 := \mathbf{Var}^{\mathcal{A}_n} S_n = \mathbf{E}^{\mathcal{A}_n} (S_n - \mathbf{E}^{\mathcal{A}_n} S_n)^2$$

Theorem 4 (Theorem 1 and Corollary 3 of Bulinski [2]). Let $\{U_{n,k}: k=1,\ldots,k_n \text{ and } n\in \mathbb{N}\}$ be an array of random variables, which are \mathcal{A}_n -independent (i.e. independent given \mathcal{A}_n) in each row (for some σ -algebra $\mathcal{A}_n\subset \mathcal{F}$, where $n\in \mathbb{N}$), and $\mathbf{Var}^{\mathcal{A}_n}(U_{n,k})<\infty$ (a.s.) for $k=1,\ldots,k_n,n\in \mathbb{N}$. Assume that $(\sigma_n^{\mathcal{A}_n})^2:=\mathbf{Var}^{\mathcal{A}_n}S_n>0$ (a.s.) for all n large enough. Then the two relations

$$\max_{k=1,\dots,k_n} \frac{\mathbf{Var}^{\mathcal{A}_n} U_{n,k}}{(\sigma_n^{\mathcal{A}_n})^2} \to_p 0 \tag{1}$$

and

$$\mathbf{E}^{\mathcal{A}_n} \exp \left\{ it \frac{S_n - \mathbf{E}^{\mathcal{A}_n} S_n}{\sigma_n^{\mathcal{A}_n}} \right\} \to_p \exp \left\{ -\frac{t^2}{2} \right\}, \quad n \to \infty.$$

hold if and only if the A_n -Lindeberg condition is satisfied in a weak form: for any t > 0

$$T_n := \frac{1}{(\sigma_n^{\mathcal{A}})^2} \sum_{i=1}^N \mathbf{E}^A \left[(U_k - \mathbf{E}^{\mathcal{A}} U_k)^2 \mathbf{1} \{ |U_k - \mathbf{E}^{\mathcal{A}} U_k| > t \sigma_n^{\mathcal{A}} \} \right] \to_p 0.$$

Furthermore, if the above A_n -Lindeberg condition holds, then we have

$$\frac{S_n - \mathbf{E}^{\mathcal{A}_n} S_n}{\sigma_n^{\mathcal{A}_n}} \to_d Z \sim N(0, 1), \quad \text{as } n \to \infty.$$

Proof of Theorem 1 of main paper. To lighten notation, in the following we write Σ instead of Σ_w . Also, since the size of the Poisson sample $K = \sum_1^N N_i$ is itself a Poisson random variable with mean n, it follows that $\mathbf{P}(K=0) = e^{-n} \to 0$. Therefore in the following analysis it is implicit that K > 0 (more formally, the analysis is restricted to the event [K>0] that occurs with probability $1-e^{-n}$.) Finally, in what follows we repeatedly use the fact that conditionally given K=k, the random variables X_1,\ldots,X_k form an i.i.d. sample from $(x_i)_1^N$ with weights $(w_i)_1^N$. This is true because of the well-known fact that given $\sum_1^N N_i = k$, the distribution of $(N_i)_1^N$ is multinomial with parameters k and $(w_i)_1^N$.

We present the proof in three parts:

Part 1. (Bias Bound) First note that using weighted lasso with weights $\widehat{W}_j = \sqrt{\sum_{i=1}^K X_{ij}^2}/K$ for $1 \le j \le p$ is equivalent to normalizing the columns of \mathbb{X} before applying the lasso. Furthermore, since $\widehat{\mathbf{E}W}_j^2 = \mathbf{E}[\mathbf{E}[\sum_{i=1}^K X_{ij}^2/K \mid K]] = \sum_{jj}$ and each $|X_{ij}|$ is bounded by M by assumption, we can use Hoeffding's concentration inequality to write for each j and every t > 0

$$\mathbf{P}\left(|\widehat{W}_{j}^{2} - \Sigma_{jj}| \ge t \,\middle|\, K\right) \le 2\exp\left(-\frac{2Kt^{2}}{4M^{2}}\right).$$

Setting $t = 2M\sqrt{\log(p)/K}$ in the above inequality yields

$$\mathbf{P}\left(|\widehat{W}_j^2 - \Sigma_{jj}| \ge 2M\sqrt{\frac{\log(p)}{K}} \,\middle|\, K\right) \le 2p^{-2}.$$

Taking the expectations on both sides with respect to the distribution of K we obtain

$$\mathbf{P}\left(|\widehat{W}_j^2 - \Sigma_{jj}| \ge 2M\sqrt{\frac{\log(p)}{K}}\right) \le 2p^{-2}.$$

Using a union bound over $j=1,\ldots,p$ and dividing by $\Sigma_{jj} \geq \lambda_{\star} > 0$ we obtain

$$\mathbf{P}\left(\max_{1\leq j\leq p}\left|\frac{\widehat{W}_{j}^{2}}{\Sigma_{jj}}-1\right|\geq \frac{2M}{\lambda_{\star}}\sqrt{\frac{\log(p)}{K}}\right)\leq \frac{2}{p}\to 0.$$

We have $K/n \to_p 1$ since $\operatorname{Var}[K/n] = n^{-1} \to 0$. Moreover, by assumption we have $M\sqrt{\log(p)} = o(\sqrt{n})$. Together, these imply that $M\sqrt{\log(p)/K} \to 0$ and since λ_{\star} is bounded away from zero by assumption, we obtain

$$\max_{1 \leq j \leq p} \left| \frac{\widehat{W}_j^2}{\Sigma_{jj}} - 1 \right| \to_p 0 \quad \text{ as } n \to \infty.$$

Therefore with high probability the weights \widehat{W}_j are bounded away from $0,\infty$ and thus the standard (unweighted) lasso guarantees apply [1, see Section 6.9 for the error analysis of the weighted lasso]. Next, observe that since $0<\lambda_\star\leq\lambda_{\min}(\Sigma)\leq\lambda_{\max}(\Sigma)\leq\lambda^\star<\infty$ and because by assumption $\sqrt{n}\gg s\log^{3/2}(p)$, Proposition 1 guarantees that the scaled design matrix \mathbb{X}/\sqrt{K} satisfies the RE condition with a restricted eigenvalue larger than $\sqrt{\lambda_\star}/2$ with probability 1-o(1), where K is the number of samples obtained via Poisson sampling. Calling this event G, we have P(G)=1-o(1). Given G, we have

$$\mathbf{P}\left(\|\widehat{\beta} - \beta\|_1 \lesssim \frac{\sigma_{\varepsilon}s}{\lambda_{\star}} \sqrt{\frac{\log(p)}{K}} \,\middle|\, G\right) = 1 - o(1).$$

(for a proof see for example Theorem 6.1 and Corollary 6.6 of Bühlmann and Van De Geer [1]). It follows that

$$\mathbf{P}\left(\|\widehat{\beta} - \beta\|_{1} \lesssim \frac{\sigma_{\varepsilon}s}{\lambda_{\star}} \sqrt{\frac{\log(p)}{K}}\right) \geq \mathbf{P}\left(\|\widehat{\beta} - \beta\|_{1} \lesssim \frac{\sigma_{\varepsilon}s}{\lambda_{\star}} \sqrt{\frac{\log(p)}{K}} \,\middle|\, G\right) \cdot \mathbf{P}(G)$$

$$= (1 - o(1)) \cdot (1 - o(1))$$

$$= (1 - o(1)).$$

Next, note that since $K/n \rightarrow_p 1$, we can substitute n for K in the above bound and write

$$\mathbf{P}\left(\|\widehat{\beta} - \beta^{\star}\|_{1} \lesssim \frac{\sigma_{\varepsilon}s}{\lambda_{\star}} \sqrt{\frac{\log(p)}{n}}\right) \to 1.$$
 (2)

Let $\widehat{w}_i = N_i/n$ where N_i are obtained using Poisson sampling. Then the debiased lasso estimator can be written as

$$\widehat{\gamma} = \langle c, \widehat{\beta} \rangle + u^T \widehat{\Sigma} (\beta^* - \widehat{\beta}) + \frac{1}{n} u^T X^T \varepsilon$$

¹ note that the lower bound $\sqrt{\lambda_{\star}}/2$ on the restricted eigenvalue is uniform over G

$$= \gamma + c^T (\Sigma^{-1} \widehat{\Sigma} - I)(\beta^* - \widehat{\beta}) + \frac{1}{n} c^T \Sigma^{-1} X^T \varepsilon.$$

Subtracting γ from both sides and multiplying by \sqrt{n} we obtain

$$\sqrt{n}(\widehat{\gamma} - \gamma) = \sqrt{n}c^T(\widehat{\Sigma}^{-1}\widehat{\Sigma} - I)(\beta^* - \widehat{\beta}) + \frac{1}{\sqrt{n}}c^T\Sigma^{-1}X^T\varepsilon.$$

We show that the first term is $o_p(1)$. Using an $\ell_1 - \ell_\infty$ bound and the error rate of the lasso estimate, with probability 1 - o(1) we have

$$\sqrt{n}|c^T(\widehat{\Sigma}^{-1}\widehat{\Sigma} - I)(\beta^* - \widehat{\beta})| \leq \sqrt{n}||c^T(\widehat{\Sigma}^{-1}\widehat{\Sigma} - I)||_{\infty} \cdot ||\widehat{\beta} - \beta^*||_1$$

Thus we need first to upper bound $\|c^T(\widehat{\Sigma}^{-1}\widehat{\Sigma}-I)\|_{\infty}$. Let $\widehat{w}_i=N_i/n$ and note that

$$c^{T}(\Sigma^{-1}\widehat{\Sigma} - I) = \sum_{i=1}^{N} (\widehat{w}_i - w_i)c^{T}\Sigma^{-1}x_ix_i^{T}.$$

Recall that N_i is a Poisson random variable with mean nw_i , and therefore $N_i - nw_i$ is subexponential with

$$\mathbf{E}\exp(t(N_i - nw_i)) = \exp(nw_i(e^t - 1 - t))$$

$$\leq \exp(nw_i(e^{|t|}t^2/2)$$

$$\leq \exp(nw_i(t^2)) \quad \text{for } |t| \leq \frac{1}{2}.$$

This shows that $||N_i - nw_i||_{\psi_1} \lesssim \sqrt{nw_i}$ [5, Proposition 2.7.1], and therefore, $||\widehat{w}_i - w_i||_{\psi_1} \lesssim \sqrt{w_i/n}$. Define $V_{ij} = (\widehat{w}_i - w_i)c^T \Sigma^{-1} x_i x_{ij}$. Using Bernstein's inequality for subexponential random variables [5, Theorem 2.8.1], for some absolute constant b > 0 and all $j = 1, \ldots, p$ we have

$$\mathbf{P}\left(\left|\sum_{i=1}^{N} V_{ij}\right| > t\right) \le 2 \exp\left(-b \min\left\{\frac{t^2}{\sum_{i=1}^{N} \|V_{ij}\|_{\psi_1}^2}, \frac{t}{\max_i \|V_{ij}\|_{\psi_1}}\right\}\right). \tag{3}$$

Using the bound $\max_{i,j} |x_{ij}| \leq M$, we have

$$\sum_{i} \|V_{ij}\|_{\psi_{1}}^{2} \leq \frac{M^{2}}{n} \sum_{i} w_{i} (c^{T} \Sigma^{-1} x_{i})^{2}$$

$$= \frac{M^{2}}{n} \sum_{i} w_{i} c^{T} \Sigma^{-1} x_{i} x_{i}^{T} \Sigma^{-1} c$$

$$= \frac{M^{2}}{n} c^{T} \Sigma^{-1} (\sum_{i} w_{i} x_{i} x_{i}^{T}) \Sigma^{-1} c$$

$$= \frac{M^{2}}{n} c^{T} \Sigma^{-1} c.$$

Similarly,

$$\max_{i} ||V_{ij}||_{\psi_1} \le M \cdot \max_{i} \sqrt{w_i/n} |c^T \Sigma^{-1} x_i| \le M \sqrt{\frac{c^T \Sigma^{-1} c}{n}}.$$

Using these bounds and for $t = \sqrt{2\log(p)/(nb)}$ the Bernstein bound (3) implies

$$\mathbf{P}\left(\left|\sum_{i=1}^{N} V_{ij}\right| > \frac{2M\log(p)}{b} \sqrt{\frac{c^T \Sigma^{-1} c}{n}}\right) \le 2\exp\left(-\min\left\{\frac{4\log^2(p)}{b}, 2\log(p)\right\}\right).$$

For $p > \exp(b/2)$, the exponential tail prevailes, and we obtain

$$\mathbf{P}\left(\left|\sum_{i=1}^{N} V_{ij}\right| > \frac{2M\log(p)}{b} \sqrt{\frac{c^T \Sigma^{-1} c}{n}}\right) \le 2p^{-2}, \text{ for all } j = 1, \dots, p.$$

A union bound over all $j = 1, \dots, p$ now yields

$$\mathbf{P}\left(\max_{1 \le j \le p} \left| \sum_{i=1}^{N} V_{ij} \right| > \frac{2M \log(p)}{b} \sqrt{\frac{c^T \Sigma^{-1} c}{n}} \right) \le 2p^{-1} \quad , \text{ for } p > e^{b/2}.$$
(4)

Continuing with the $\ell_1 - \ell_{\infty}$ bound and using the upper bound (4) and the error rate of the lasso estimate (2), with probability 1 - o(1) we have

$$\begin{split} |\sqrt{n}|c^T(\widehat{\Sigma}^{-1}\widehat{\Sigma} - I)(\beta^\star - \widehat{\beta})| &\leq \sqrt{n} \|c^T(\widehat{\Sigma}^{-1}\widehat{\Sigma} - I)\|_{\infty} \cdot \|\widehat{\beta} - \beta^\star\|_1 \\ &\lesssim \sqrt{n} \cdot \left(M \log(p) \sqrt{\frac{c^T \Sigma^{-1} c}{n}}\right) \cdot \frac{\sigma_{\varepsilon}}{\lambda_\star} s \sqrt{\frac{\log(p)}{n}} \\ &= \frac{M \sigma_{\varepsilon} \sqrt{c^T \Sigma^{-1} c}}{\lambda_\star} \cdot \frac{s \log^{\frac{3}{2}}(p)}{\sqrt{n}}. \end{split}$$

Part 2.(Variance Approximation) Next, we prove the third part of the theorem as the argument used here will be useful in the proof of asymptotic normality. The conditional variance of the noise term is

$$\mathbf{Var}(\frac{1}{\sqrt{n}}c^T\Sigma^{-1}X^T\varepsilon\mid X)=c^T\Sigma^{-1}\widehat{\Sigma}\Sigma^{-1}c.$$

We show that this variance can be approximated by $c^T \Sigma^{-1} c$, i.e.

$$\frac{c^T \Sigma^{-1} \widehat{\Sigma} \Sigma^{-1} c}{c^T \Sigma^{-1} c} \to_p 1.$$

We assume $N = |\{i : w_i \neq 0\}|$ as otherwise one can throw out the zero weights. We want to show:

$$A := \frac{\sum_{i} w_{i} (c^{T} \Sigma^{-1} x_{i})^{4}}{n (c^{T} \Sigma^{-1} c)^{2}} \le \frac{1}{n}.$$

Let $d_i = \Sigma^{-1/2} x_i$ and $v = \Sigma^{-1/2} c$. Then A can be written as

$$A = \frac{\sum_{i} w_{i} (d_{i}^{T} v)^{4}}{n \|v\|_{2}^{4}}.$$

Step 1. First suppose that N = p. We have

$$\sum_{i} w_i d_i d_i^T = \Sigma^{-\frac{1}{2}} \left(\sum_{i} w_i x_i x_i^T \right) \Sigma^{-\frac{1}{2}} = I_p.$$

(This is true for N > p too.) Let d_j^{\star} be the projection of d_j on the ortho-complement of the span of $\{d_i \mid i \neq j\}$. Then multiplying both sides by d_j^{\star} we obtain

$$w_j(d_j^T d_j^{\star}) d_j = d_j^{\star}.$$

Note that $d_j^T d_j^\star \neq 0$ for all $j=1,\ldots,p$ as d_1,\ldots,d_p form a basis for R^p (since Σ is non-singular by construction.) From this equation it follows that d_1,\ldots,d_p are orthogonal, and after multiplying both sides by d_j one also obtains $\|d_j\|_2^2 = w_j^{-1}$.

Now since A does not depend on $||v||_2$, we have

$$A \le \max_{u \ne 0} \frac{\sum_{i} w_{i} (d_{i}^{T} u)^{4}}{n \|u\|_{2}^{4}} = \frac{1}{n} \max_{\|u\|_{2}^{2} = 1} \sum_{i} w_{i} (d_{i}^{T} u)^{4}.$$

The Lagrangian for the last maximization problem is

$$L(u,\lambda) = \sum_{i} w_i (d_i^T u)^4 - 2\lambda (u^T u - 1).$$

Taking derivative w.r.t. u and setting to zero yields

$$\sum_{i} w_i (d_i^T \widehat{u})^3 d_i = \lambda \widehat{u}. \tag{5}$$

Changing variables to $\tilde{u} = \sqrt{1/\lambda} \hat{u}$, we can rewrite (5) as

$$\sum_{i} w_i (d_i^T \tilde{u})^3 d_i = \tilde{u}. \tag{6}$$

Multiplying on the left once by \tilde{u}^T and once by d_j^T and using $d_j^T d_j = w_j^{-1}$ gives

$$\sum_{i} w_i (d_i^T \tilde{u})^4 = \tilde{u}^T \tilde{u} \quad \text{ and } \quad (d_j^T \tilde{u})^2 = 1.$$
 (7)

Note that $\sum_i w_i (d_i^T u)^4 / \|u\|_2^4$ does not depend on the norm of u, so that any nonzero multiple of \widehat{u} , and in particular \widetilde{u} , is a maximizer. Plugging \widetilde{u} in this expression and using (7) we obtain

$$A \le \frac{\sum_{i} w_{i} (d_{i}^{T} \tilde{u})^{4}}{n(\tilde{u}^{T} \tilde{u})^{2}}$$
$$\le \frac{1}{n \cdot \sum_{i} w_{i} (d_{i}^{T} \tilde{u})^{4}} = \frac{1}{n}.$$

This finishes the proof for the N = p case.

Step 2. Now consider the N > p case. The idea is to reduce this case to the N = p case by appropri-

ately extending the length of $d_i, v \in R^p$ from p to N. Note that the identity $\sum_i w_i d_i d_i^T = I_p$ is still valid. Define the vectors $\tilde{d}_i \in R^N$ by $\tilde{d}_i^T = (d_i^T, f_i^T)$ for some vectors $f_i \in R^{N-p}$ such that

$$\sum_{i} w_{i} \tilde{d}_{i} \tilde{d}_{i}^{T} = I_{N}.$$

A construction of these f_i 's is given in the Appendix. For any $u \in R^N$ use a similar decomposition $u^T = (u_1^T, u_2^T)$ with $u_1 \in R^p$ and $u_2 \in R^{N-p}$. Then

$$\begin{split} n \cdot A &\leq \max_{\|v\|_2^2 = 1} \sum_i w_i (d_i^T v)^4 \\ &= \max_{\|u\|_2^2 = 1} \sum_i w_i (\tilde{d}_i^T u)^4 \\ &\leq \max_{\|u\|_2^2 = 1} \sum_i w_i (\tilde{d}_i^T u)^4 \\ &\leq 1, \end{split}$$

where the last inequality follows from the argument in **Step 1** (since now $\tilde{p} := \dim(\tilde{d}_i) = N$). This finishes the proof of the N > p case.

Part 3. (Asymptotic Normality) Before we establish asymptotic normality, let us introduce some notation. Let A be the σ -algebra generated by $(N_i)_{i=1}^N$ (note that we are suppressing the dependence of $A = A_n$ on n to lighten notation). As in Theorem 4, denote by $\mathbf{E}^{A}[\cdot] = \mathbf{E}[\cdot \mid A]$ the conditional expectation with respect to A and define

$$U_{n,k} := \begin{cases} \frac{1}{\sqrt{n}} c^T \Sigma^{-1} x_k (\varepsilon_1^{(k)} + \dots + \varepsilon_{N_k}^{(k)}), & N_k > 0\\ 0, & N_k = 0. \end{cases}$$
$$S_n := \sum_{i=1}^N U_{n,k}, \quad (\sigma_n^{\mathcal{A}})^2 := \mathbf{E}^{\mathcal{A}} (S_n - \mathbf{E}^{\mathcal{A}} S_n)^2,$$

where $\varepsilon_i^{(j)}\sim \varepsilon_n$ are iid mean-zero random variables with variance equal to $\mathbf{E}\varepsilon_n^2=\sigma^2$ and sub-Guassian norm $\|\varepsilon_i^{(j)}\|_{\psi_2} \leq \sigma_{\varepsilon}$. It follows that in general $\sigma \lesssim \sigma_{\varepsilon}$. Observe that since $\mathbf{E}^{\mathcal{A}} S_n = 0$, we

$$(\sigma_n^{\mathcal{A}})^2 = \mathbf{E}^{\mathcal{A}} S_n^2 = \frac{1}{n} \sum_{k=1}^N (c^T \Sigma^{-1} x_k)^2 \mathbf{E} [(\varepsilon_1^{(k)} + \dots + \varepsilon_{N_k}^{(k)})^2 \mid N_k]$$
$$= \sum_{k=1}^N \left(\frac{N_k}{n}\right) (c^T \Sigma^{-1} x_i)^2 \sigma^2$$
$$= \sigma^2 \cdot c^T \Sigma^{-1} \widehat{\Sigma} \Sigma^{-1} c.$$

Thus we want to show

$$\frac{c^T \Sigma^{-1} \mathbb{X}^T \varepsilon}{\sqrt{n\sigma^2 \cdot c^T \Sigma^{-1} \widehat{\Sigma} \Sigma^{-1} c}} = \frac{S_n - \mathbf{E}^{\mathcal{A}_n} S_n}{\sigma_n^{\mathcal{A}_n}} \to_d Z \sim N(0,1), \quad \text{ as } n \to \infty.$$

In light of Theorem 4, it suffices to prove the following conditional Lindeberg condition is satisfied:

$$\forall t > 0: \quad T_n := \frac{1}{(\sigma_n^{\mathcal{A}})^2} \sum_{i=1}^N \mathbf{E}^A \left[(U_k - \mathbf{E}^{\mathcal{A}} U_k)^2 \mathbf{1} \{ |U_k - \mathbf{E}^{\mathcal{A}} U_k| > t \sigma_n^{\mathcal{A}} \} \right] \to_p 0.$$

Next we find appropriate upper bounds on the summands in the Lindeberg condition. Also note that by assumption the noise variance σ^2 is bounded away from 0 and ∞ , we can assume without loss of generality that $\sigma^2 = 1$ in what follows. Using the Cauchy-Schawrz inequality,

$$\begin{split} \mathbf{E}^{\mathcal{A}}[U_{n,k}^{2}\mathbf{1}\{|U_{n,k}| > t\sigma_{n}^{\mathcal{A}}\}] &\leq \left((\mathbf{E}U_{n,k}^{4})(\mathbf{E}^{\mathcal{A}}\mathbf{1}\{|U_{n,k}| > t\sigma_{n}^{\mathcal{A}}\})\right)^{\frac{1}{2}} \\ &\leq \left((\mathbf{E}^{\mathcal{A}}U_{n,k}^{4}) \cdot \frac{\mathbf{E}^{\mathcal{A}}U_{n,k}^{2}}{t^{2}(\sigma_{n}^{\mathcal{A}})^{2}}\right)^{\frac{1}{2}}. \end{split}$$

The fourth moment of $U_{n,k}$ can be bounded as follows

$$\mathbf{E}^{\mathcal{A}}U_{n,k}^{4} = \frac{1}{n^{2}}(c^{T}\Sigma^{-1}x_{i})^{4}\mathbf{E}^{\mathcal{A}}(\epsilon_{1}^{(k)} + \dots + \epsilon_{N_{k}}^{(k)})^{4}$$

$$= \frac{1}{n^{2}}(c^{T}\Sigma^{-1}x_{i})^{4} \cdot (N_{k}\mathbf{E}\varepsilon^{4} + N_{k}(N_{k} - 1)(\mathbf{E}\varepsilon^{2})^{2})$$

$$\leq \frac{C}{n^{2}}(c^{T}\Sigma^{-1}x_{i})^{4} \cdot (N_{k}^{2}\sigma_{\varepsilon}^{4}),$$

where the last inequality follows because $N_k \leq N_k^2$ and by sub-Gaussianity of ε we have $\mathbf{E}\varepsilon^4 \leq C \cdot \sigma_\varepsilon^4$ for an absolute constant C>0. Combined with the equality $\mathbf{E}^{\mathcal{A}}U_{n,k}^2 \lesssim N_k(c^T\Sigma^{-1}x_i)^2\sigma_\varepsilon^2$, we find the upper bound

$$\mathbf{E}^{\mathcal{A}}[U_{n,k}^{2}\mathbf{1}\{|U_{n,k}| > t\sigma_{n}^{\mathcal{A}}\}] \leq \left(\frac{C}{t^{2}(\sigma_{n}^{\mathcal{A}})^{2}} \left(\frac{N_{k}}{n}\right)^{3} \cdot (c^{T}\Sigma^{-1}x_{k})^{6}\right)^{\frac{1}{2}}$$

$$\leq \frac{1}{\sigma_{n}^{\mathcal{A}}} \left(\frac{C}{t^{2}}\frac{\sum_{i=1}^{N}N_{i}}{n}\right)^{\frac{1}{2}} \left(\frac{N_{k}}{n}\right) |c^{T}\Sigma^{-1}x_{k}|^{3}.$$

Therefore the expression in the Lindeberg condition has the following upper bound:

$$T_n \le \left(\frac{C}{t^2} \frac{\sum_{i=1}^{N} N_i}{n}\right)^{\frac{1}{2}} \left(\frac{(c^T \Sigma^{-1} c)}{(\sigma_n^{\mathcal{A}})^2}\right)^{\frac{3}{2}} \frac{1}{(c^T \Sigma^{-1} c)^{\frac{3}{2}}} \sum_{k=1}^{N} |c^T \Sigma^{-1} x_k|^3 \widehat{w}_k$$

Since, as shown before, $\sum_i N_i/n \to_p 1$ and $(\sigma_n^{\mathcal{A}})^2/(c^T \Sigma^{-1} c) \to_p 1$, it suffices to show that

$$\frac{1}{(c^T \Sigma^{-1} c)^{\frac{3}{2}}} \sum_{k=1}^{N} |c^T \Sigma^{-1} x_k|^3 \widehat{w}_k \to_p 0.$$

We will show the variance of this term converges to zero:

$$\frac{1}{n \cdot (c^T \Sigma^{-1} c)^3} \sum_{k=1}^N |c^T \Sigma^{-1} x_k|^6 w_k \to 0.$$

A similar technique as before is applicable here. Let $d_k = \Sigma^{-\frac{1}{2}} x_k$ and $v = \Sigma^{-\frac{1}{2}} c$. The variance can be rewritten as

$$\frac{1}{n\|v\|_{2}^{6}} \sum_{k} w_{k} (d_{k}^{T} v)^{6} \leq \frac{1}{n} \cdot \max_{\|u\|_{2}^{2} = 1} \left\{ \sum_{k} w_{k} (d_{k}^{T} u)^{6} \right\}$$
$$\leq \frac{1}{n} \to 0, \quad \text{as } n \to \infty.$$

where the last inequality follows because the value of the maximization problem is seen to be 1 using a similar argument as the one used in Part 2 (Variance Approximation). \Box

Proposition 2. Problem P2 can be recast as a semidefinite program (SDP).

Proof. We can write problem P2 as

$$\mathbf{P2}': \min_{t \in \mathbb{R}, w \in \mathbb{R}^N} \quad t$$
 s.t.
$$\Sigma = \sum_{i=1}^N w_i x_i x_i^T, \quad \sum_{i=1}^N w_i = 1$$

$$\lambda_{\star} I \preccurlyeq \Sigma \preccurlyeq \lambda^{\star} \star I, \quad c^T \Sigma^{-1} c \leq t$$

$$w \geq 0.$$

The constraint $c^T \Sigma^{-1} c \le t$ is equivalent to

$$\begin{bmatrix} t \ c^T \\ c \ \Sigma \end{bmatrix} \succcurlyeq 0$$

since, given that Σ is positive definite (guaranteed by the constraint $\Sigma - \alpha I \geq 0$), the above matrix is positive semidefinite if and only if the Schur complement $t - c^T \Sigma^{-1} c$ is positive semidefinite, by the following decomposition:

$$\begin{bmatrix} t \ c^T \\ c \ \Sigma \end{bmatrix} = \begin{bmatrix} 1 \ c^T \Sigma^{-1} \\ 0 \ I \end{bmatrix} \cdot \begin{bmatrix} t - c^T \Sigma^{-1} c \ 0 \\ 0 \ \Sigma \end{bmatrix} \cdot \begin{bmatrix} 1 \ c^T \Sigma^{-1} \\ 0 \ I \end{bmatrix}^T.$$

2. Appendix

The following provides the details left out in example 1:

Example 1 (continued). First we show that on event E, the lasso estimate with the theoretical value of the tuning parameter $\lambda = \sqrt{(2+\eta)\log(p)/n}$ for some $\eta > 0$ vanishes with high probability. Let $L(\beta)$ be the objective of the weighted lasso and \widehat{W} be a diagonal matrix with \widehat{W}_j 's on its diagonal. For any β , on E we have

$$L(\beta) - L(0_p) = \frac{1}{2n} \|\varepsilon - \mathbb{X}\beta\|_2^2 + \lambda \sum_{j=1}^p \widehat{W}_j |\beta_j| - \|\varepsilon\|_2^2$$
$$= \|\mathbb{X}\beta\|_2^2 + \frac{-1}{n} \varepsilon^T \mathbb{X}\beta + \lambda \|\widehat{W}\beta\|_1$$
$$\geq \|\mathbb{X}\beta\|_2^2 + \left(\lambda - \frac{\|\varepsilon^T X W^+\|_{\infty}}{n}\right) \cdot \|\widehat{W}\beta\|_1.$$

A standard union argument shows that we have

$$\mathbf{P}(\lambda > \|\varepsilon^T \mathbb{X} W^+\|_{\infty}/n) \to 1.$$

This implies that with probability 1-o(1) and for any β , we have $L(\beta) \geq L(0)$, so that $0_p \in \arg\min_{\beta} L(\beta)$. In fact, for all $j \in [p]$ we have $\widehat{W}_j \widehat{\beta}_j = 0$.

Next, we sketch an explicit construction of the experimental domain $(x_i)_1^p$ used in Example 1 (recall that in this example N=p). We start with the matrix D of the discrete cosine transform (DCT) defined by equation (5) in Section 3 of the article. The matrix $B=\sqrt{p}D^T$ satisfies $B^TB=p\cdot I_p$ and $B_{i1}=1$ for all $1\leq i\leq p$ and $\max_{i,j}|B_{ij}|\leq \sqrt{2}$. Denote by B_i the i-th row of B and define

$$x_i = \begin{cases} \frac{1}{\sqrt{2}}(B_i + B_{i+1}) &: i \text{ is odd,} \\ \frac{1}{\sqrt{2}}(B_{i-1} - B_i) &: i \text{ is even.} \end{cases}$$

Then it is straightforward to check that $p^{-1}\sum_i x_i x_i^T = I_p$ and $||x_i||_{\infty} \le 2$ for all $i \le p$. Furthermore, we have

$$x_{i1} = \begin{cases} \sqrt{2} & : i \text{ is odd,} \\ 0 & : i \text{ is even.} \end{cases}$$

Constructing f_i 's. To construct the f_i 's alluded to in the proof of the second part of Theorem 1, consider the following matrix (with the f_i 's to be specified shortly)

$$D = \begin{pmatrix} d_1^T & f_1^T \\ \vdots & \vdots \\ d_N^T & f_N^T \end{pmatrix} = \begin{pmatrix} | & \dots & | \\ g_1 & \dots & g_N \\ | & \dots & | \end{pmatrix} \in R^{N \times N}.$$

In our notation we write $d_i = (d_{ij})_{j=1}^p$ and $g_i = (g_{ij})_{j=1}^N$, so that d_{ij} is the j-th coordinate of d_i , etc. Then we know that

$$\langle g_i, g_j \rangle_w := \sum_k w_k g_{ik} g_{jk} = \sum_k w_k d_{ki} d_{kj} = \left[\sum_k w_k d_k d_k^T \right]_{ij} = \delta_{ij}$$

for $1 \le i, j \le p$. In other words, $\{g_1, \dots, g_p\}$ forms an orthonormal basis (w.r.t. $\langle \cdot, \cdot \rangle_w$) of its span. All we need is to choose g_{p+1}, \dots, g_N in such a way that $\{g_1, \dots, g_N\}$ is an orthonormal basis of R^N under $\langle \cdot, \cdot \rangle_w$, which is easy to construct using e.g. the Gram-Schmidt procedure. This will ensure that $\langle g_i, g_j \rangle_w = \delta_{ij}$ for all $1 \le i, j \le N$.

With this choice, the (i,j)-th coordinate of $\sum_k w_k \tilde{d}_k \tilde{d}_k^T$ is given by

$$\begin{split} \sum_k w_k [\tilde{d}_k \tilde{d}_k^T]_{ij} &= \sum_k w_k \tilde{d}_{ki} \tilde{d}_{kj} \\ &= \sum_k w_k g_{ik} g_{jk} \\ &= \langle g_i, g_j \rangle_w = \delta_{ij} \quad \text{ for all } 1 \leq i, j \leq N. \end{split}$$

It follows that $\sum_k w_k \tilde{d}_k \tilde{d}_k^T = I_N$.

References

- [1] BÜHLMANN, P. and VAN DE GEER, S. (2011). Statistics for high-dimensional data: methods, theory and applications. Springer Science & Business Media.
- [2] BULINSKI, A. (2017). Conditional Central Limit Theorem. Theory of Probability and Its Applications 61 613-631.
- [3] ELFVING, G. (1952). Optimum allocation in linear regression theory. *The Annals of Mathematical Statistics* **23** 255–262.
- [4] RUDELSON, M. and ZHOU, S. (2012). Reconstruction from anisotropic random measurements. In *Conference on Learning Theory* 10–1.
- [5] VERSHYNIN, R. (2018). *High-dimensional probability: An introduction with applications in data science* **47**. Cambridge University Press.