Phylogenetic Biology Week 2

Biology 1425
Professor: Casey Dunn, dunnlab.org
Brown University
2013

Front matter...

All original content in this document is distributed under the following license:

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US)

See sources for copyright of non-original content

Sources

Some non-original content is drawn from:

Baum, D and S. Smith (2012) Tree Thinking: and Introduction to Phylogenetic Biology. Roberts and Company Publishers. ISBN 9781936221165

Other non-original content is referenced by url.

Some definitions...

Taxa

A named group of evolving entities (e.g. genes, species, languages)

Phylogeny

A tree depicting the evolutionary relationships between taxa

Monophyletic

To include an ancestor, all of its descendants, and nothing that isn't a descendent

Clade

A monophyletic group

Paraphyletic

To include an ancestor and only some of its descendants

Polyphyletic

To not include an ancestor

Character

Any heritable attribute of a taxon

Homologous characters

Characters that are present in taxa because they were also present in the most recent common ancestor of those taxa

Character state

A value that a character can have. (e.g., A, C,G, or T for a DNA nucleotide)

Apomorphy (Derived character state)

A character state that is different from the character state of an ancestor

Apomorphy (Derived character state)

Fixation of derived character states

Baum and Smith 2012, Figure 4.1

Autapomorphy

An apomorphy that is unique to a single taxon

Synapomorphy

A shared apomorphy

Pleisiomorphy

A character state that is the same as that of an ancestor

Synpleisiomorphy

A shared pleisiomorphy

Homoplasy

Independent origin of the same character state. Causes include convergence and reversals.

A table of character states. Each row corresponds to a taxon, and each column to a homologous character.

Characters

	1	2	3
Α	A	С	A
В	A	G	A
C	A	G	A
D	A	С	A
E	A	С	Т
F	A	С	Т

A table of character states. Each row corresponds to a taxon, and each column to a homologous character.

Characters

	1	2	3
Α	A	С	A
В	A	G	A
С	A	G	A
D	A	С	A
E	A	С	Т
F	A	С	Т

A table of character states. Each row corresponds to a taxon, and each column to a homologous character.

Characters

	1	2	3
Α	A	C	A
В	A	G	A
C	A	G	A
D	A	C	A
E	A	С	Т
F	A	С	Т

A table of character states. Each row corresponds to a taxon, and each column to a homologous character.

Characters

	1	2	3
Α	A	С	A
В	A	G	A
C	A	G	A
D	A	C	A
Ε	A	С	Т
F	A	С	Т

Character 3

Phylogenetic Inference

In a typical phylogenetic study, we have a character matrix that describes the character states at the tips of the tree, and we want to know the phylogeny

In a typical phylogenetic study, we have a character matrix that describes the character states at the tips of the tree, and we want to know the phylogeny

Phylogenetic inference is the estimation of the phylogeny based on the character data and a model of character evolution

In a typical phylogenetic study, we have a character matrix that describes the character states at the tips of the tree, and we want to know the phylogeny

Phylogenetic inference is the estimation of the phylogeny based on the character data and a model of character evolution

In the most basic phylogenetic inference projects, we are looking for the single "best" phylogeny (later we'll expand beyond this)

The model allows us to define an optimality criterion that, for each tree, answers the question, "How well does this tree account for the observed character?"

We then measure the optimality criterion for many trees, and pick the tree with the best value

There are different optimality criteria. These include:

Maximum parsimony - The best tree is the tree that minimizes homoplasy, i.e. the simplest (most parsimonious) explanation

Maximum likelihood - The best tree is the tree that maximizes the likelihood of observing the character matrix

How many trees are there?

$$N = \frac{(2t-5)!}{2^{t-3}(t-3)!}$$

Where:

N is the number of trees

t is the number of taxa

$$t = 3, N = 1$$
:

$$t = 4$$
, $N = 3$:

T	N
3	1
4	3
5	15

L	IN
3	1
4	3
5	15
8	10,395

t	N	
3	1	
4	3	
5	15	
8	10,395	← I,470,000- The number of pixels on this slide

T	N	
3	1	
4	3	
5	15	
8	10,395	← I,470,000- The number of pixels on this slide
10	2,027,025	1, 17 0,000- THE Humber of pixels off this slide
20	$2.21x10^{20}$	

t	N	
3	1	
4	3	
5	15	
8	10,395	← I,470,000- The number of pixels on this slide
10	2,027,025	1, 17 0,000- THE Humber of pixels off time singe
20	2.21x10 ²⁰	← 6.02×10 ²³ - Avagadro's number (1 mole)

t	N	
3	1	
4	3	
5	15	
8	10,395	← I,470,000- The number of pixels on this slide
10	2,027,025	1, 17 0,000 THE Hamber of pixels off this slide
20	$2.21x10^{20}$	← 6.02×10 ²³ - Avagadro's number (1 mole)
23	1.31×10^{25}	0.02x10 - Avagadro's Humber (1 mole)

t	N	
3	1	
4	3	
5	15	
8	10,395	← I,470,000- The number of pixels on this slide
10	2,027,025	1, 17 0,000 The namber of pixels on and sinde
20	$2.21x10^{20}$	← 6.02×10 ²³ - Avagadro's number (1 mole)
23	1.31x10 ²⁵	0.02x10 - Avagadi 03 Hulliber (1 Hible)
		5x10 ²⁷ - Molecules of gas in this room

t	N	
3	1	
4	3	
5	15	
8	10,395	← I,470,000- The number of pixels on this slide
10	2,027,025	1, 170,000 THE Hamber of pixels off this slide
20	$2.21x10^{20}$	← 6.02×10 ²³ - Avagadro's number (1 mole)
23	1.31×10^{25}	
30	8.68x10 ³⁶	5x10 ²⁷ - Molecules of gas in this room
40	1.31x10 ⁵⁵	
50	$2.83x10^{74}$	

t	N	
3	1	
4	3	
5	15	
8	10,395	← I,470,000- The number of pixels on this slide
10	2,027,025	1, 17 0,000 The number of pixels on this side
20	$2.21x10^{20}$	← 6.02×10 ²³ - Avagadro's number (1 mole)
23	1.31×10^{25}	
30	8.68x10 ³⁶	5x10 ²⁷ - Molecules of gas in this room
40	1.31x10 ⁵⁵	
50	2.83x10 ⁷⁴	← 7x10 ⁷⁹ - Number of atoms in the observable universe

t	N	
3	1	
4	3	
5	15	
8	10,395	← I,470,000- The number of pixels on this slide
10	2,027,025	1, 170,000 The number of pixels off this singe
20	$2.21x10^{20}$	← 6.02×10 ²³ - Avagadro's number (1 mole)
23	1.31x10 ²⁵	
30	8.68x10 ³⁶	5x10 ²⁷ - Molecules of gas in this room
40	1.31x10 ⁵⁵	
50	2.83x10 ⁷⁴	\leftarrow 7x10 ⁷⁹ - Number of atoms in the observable universe
60	5.00x10 ⁹⁴	7X10 - INdiffice of acoms in the observable difficise

t	N	
3	1	
4	3	
5	15	
8	10,395	← I,470,000- The number of pixels on this slide
10	2,027,025	1, 170,000- THE Humber of pixels off this slide
20	2.21×10^{20}	← 6.02×10 ²³ - Avagadro's number (1 mole)
23	1.31x10 ²⁵	
30	8.68x10 ³⁶	5x10 ²⁷ - Molecules of gas in this room
40	1.31x10 ⁵⁵	
50	$2.83x10^{74}$	\leftarrow 7x10 ⁷⁹ - Number of atoms in the observable universe
60	5.00x10 ⁹⁴	

t	N	
3	1	
4	3	
5	15	
8	10,395	← I,470,000- The number of pixels on this slide
10	2,027,025	1, 170,000 The number of pixels on this singe
20	2.21×10^{20}	← 6.02×10 ²³ - Avagadro's number (1 mole)
23	1.31×10^{25}	
30	8.68x10 ³⁶	← 5x10 ²⁷ - Molecules of gas in this room
40	1.31x10 ⁵⁵	
50	$2.83x10^{74}$	\leftarrow 7x10 ⁷⁹ - Number of atoms in the observable universe
60	5.00×10^{94}	✓ ✓ Ix10 ¹⁰⁰ - Googol
70	4.99x10 ¹¹ 5	TATO - GOOGOI

1 00v1012

Baum and Smith 2012, Figure 7.9

Maximum parsimony

Maximum parsimony

1. For each tree, find the minimum number of steps (character changes) needed to explain the character data.

2. Find the tree with the fewest steps

An example:

- 4 Taxa (O, A, B, C)
- 8 Characters
- 2 Character states for each character

	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
A	0	1	0	0	0	1	1	0
В	1	1	0	1	1	1	1	1
C	0	0	1	1	0	0	0	0

Baum and Smith 2012, Table 7.5

Baum and Smith 2012, Figure 7.3

Other topics addressed

Rooted vs. unrooted trees

Outgroup/ingroup

Matrix representation of models