Técnicas de Inteligência Artificial para diagnóstico de acidente vascular cerebral através de imagens e dados textuais sobre possíveis vítimas

Nome: Vinícius de Paula Pilan

RA: 191025399

Resumo – sobre o projeto

- **Problema abordado:** quanto mais tardio é o diagnóstico de Acidente vascular cerebral (AVC), pior são os prejuízos para a vítima
- Criar um classificador de dados e de imagens sobre AVC com intuito de agilizar diagnósticos da doença
- Ao total serão desenvolvidos dois modelos:
 - **1. Classificador de dados:** recebe informações sobre determinado indivíduo e o classifica como possível vítima ou não
 - **2. Classificador de imagens (rede neural):** recebe imagens de radiografia sobre um indivíduo e o classifica como possível vítima ou não

Cronograma atualizado

1° mês (julho)	1° mês (julho)	1° mês (julho)	2° mês (agosto)	2° mês (agosto)
Início	Modelo preditivo para dados textuais			
Coleta dos dados	Pré	Processamento	Modelagem a	Avaliação dos
textuais e	processamento	dos dados e	partir de diferentes	modelos criados.
imagens.	dos dados,	análises	algoritmos de	
	correções e	descritivas.	Aprendizagem de	
	adaptações.		Máquina.	

Cronograma atualizado

3° mês (set.)	3° mês (set.)	3° mês (set.)	4° mês (out.)	4° mês (out.)
	Implementação			
Pré	Pesquisas mais	Criação da Rede	Teste do modelo	Criação de uma
processamento	aprofundadas	Neural	criado e ajustes	interface gráfica
das imagens.	sobre o assunto	Convolucional.	da rede para	que implemente
	para melhor		alcançar melhor	os dois modelos
	abordagem.		desempenho.	criados.

Cronograma atualizado

5° mês (nov.)	5° mês (nov.)	6° mês (dez.)	6° mês (dez.)	7° mês (jan.)
	Pós implementad	ção dos modelos		Apresentação
Identificar e aplicar correções nos modelos e na interface criada, caso necessário.	Desenvolver a par documentação do		Realizar a revisão final do projeto e a finalização.	Apresentação do trabalho à banca.

Desenvolvimento até o momento

Base de dados com informações sobre vítimas

- Stroke Prediction Dataset
 - 12 diferentes características e 5110 entradas
- Informações presentes no conjunto:
 - 1. id: identificador único
 - 2. gender: sexo
 - 3. age: idade
 - 4. hypertension: indica se o paciente tem hipertensão
 - 5. heart_disease: indica se o paciente tem alguma doença cardíaca
 - **6. ever married:** indica se o paciente é casado
 - 7. work_type: indica se o paciente trabalha e, se sim, qual o tipo de emprego
 - 8. Residence_type: tipo de residencia, rural ou urbana
 - 9. avg_glucose_level: media do nível de glicose no sangue do paciente
 - **10. bmi:** índice de massa corporal (padrão americano)
 - 11. smoking_status: situação do paciente com relação a fumar
 - 12. stroke: indica se o paciente teve ou não avc

Classificador de dados

Fases da criação:

- 1. Preparação da base de dados
- 2. Modelagem
- 3. Avaliação dos resultados

Preparação da base de dados - Balanceamento

- Distribuição original da variável alvo:
 - 249 casos para ocorrência de AVC (5%)
 - 4861 casos de não ocorrência de AVC (95%)

- Subamostragem do conjunto de dados da classe *não AVC (4861 → 251* elementos)
 - total: $5110 \rightarrow 500$ elementos

Preparação da base de dados - Correção de formato

Correção para variáveis de texto com apenas dois possíveis valores:

Nesses casos, para corrigir o formato dessas colunas para um formato numérico pode-se substituir um desses valores pelo dígito "1" e o outro pelo "0".

Preparação da base de dados - Correção de formato

• Correção para variáveis de texto com vários possíveis valores:

Tipo de emprego	Privado	Autônomo	Cargo público	Criança
Privado	1	0	0	0
Privado	1	0	0	0
Autônomo	 0	1	0	0
Privado	1	0	0	0
Criança	0	0	0	1
Cargo público	0	0	1	0
Autônomo	0	1	0	0

Nesses casos, para corrigir o formato dessas colunas para um formato numérico cria-se novas colunas binárias para cada um dos possíveis valores da coluna original.

Preparação da base de dados - Dados nulos

• Única coluna com dados nulos foi *bmi*:

Distribuição da variável BMI com relação a dados nulos				
	249 casos de AVC	209 valores não nulos (84%)		
	249 Casos de AVC	40 valores nulos (16%)		
Conjunto de dados total		245 valores não nulos (98%)		
	251 casos de não AVC	6 valores nulos (2%)		

• Correção feita: substituição pela mediana

Preparação da base de dados - Normalização

- Normalização escolhida: *min-max*
 - redimensiona para o intervalo [0,1] ou [-1, 1]
 - lida melhor com dados de distribuição não normal

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$

Modelagem – Algoritmos utilizados

- Algoritmos de aprendizado supervisionado:
 - ✓ Máquina de vetor de suporte (SVM)
 - ✔ Floresta aleatória
- Treinamentos feitos para cada um desses dois com intuito de se escolher o que melhor soluciona o problema

Modelagem - Conjunto para treino e para teste

- Validação cruzada com **cinco** dobras diferentes:
 - 500 elementos totais → 100 elementos por dobra (escolhidos aleatoriamente)
- Uma dobra para teste e as demais para treino
 - 100 elementos para teste (20% dos dados totais)
 - 400 elementos para treino (80% dos dados totais)
- Cinco possibilidades de treinamentos e testagens diferentes

Avaliação dos resultados - Métricas escolhidas

- Métricas para avaliar classificação:
 - Precision
 - ✓ Recall
 - ✓ F1-score
 - ✓ AUC ROC score
- Taxa de falso positivo
- Taxa de falso negativo

O que falta ser feito

O que falta ser feito

3° mês (set.)	3° mês (set.)	3° mês (set.)	4° mês (out.)	4° mês (out.)
	Implementação			
Pré processamento das imagens.	Pesquisas mais aprofundadas sobre o assunto para melhor abordagem.	Criação da Rede Neural Convolucional.	Teste do modelo criado e ajustes da rede para alcançar melhor desempenho.	Criação de uma interface gráfica que implemente os dois modelos criados.

O que falta ser feito

5° mês (nov.)	5° mês (nov.) 6° mês (dez.)	6° mês (dez.)	7° mês (jan.)
	Pós implementação dos modelos		Apresentação
Identificar e aplicar correções nos modelos e na interface criada, caso necessário.	Desenvolver a parte da documentação do projeto.	Realizar a revisão final do projeto e a finalização.	Apresentação do trabalho à banca.

Obrigado pela atenção!