

B2 Proposer un modèle de connaissance et de comportement

chapter.1

1.1	Proposer un modèle de connaissance et c	le compor-
	tement	2

- 1.1.1 Modéliser la cinématique d'un ensemble de solides ... 2
- Modéliser la cinématique d'un ensemble de solides ...9
- section. 1.2 section. 1.3 subsection. 1.3.1 section. 1.4 section. 1.5 subsection. 1.5.1

Proposer un modèle de connaissance et de comportement

Modéliser la cinématique d'un ensemble de so-

Exercice 1 - Mouvement T - *

C2-05

B2-13

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 Quel est le mouvement de 1 par rapport

Question 2 Donner l'équation paramétrique de la trajectoire du point B, point appartenant à 1 par rapport à 0.

Indications: 2. $x_B(t) = \lambda(t)$.

Corrigé voir 26.

Exercice 2 - Mouvement R *

C2-05

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \,\mathrm{mm}$.

Question 1 Quel est le mouvement de 1 par rapport à **0**.

Question 2 Quelle est la trajectoire du point B appartenant à 1 par rapport à 0.

Question 3 Donner l'équation paramétrique de la trajectoire du point B, point appartenant à 1 par rapport à

Indications: 3. $x_B(t) = R \cos \theta(t)$ et $y_B(t) = R \sin \theta(t)$.

Corrigé voir 35.

Exercice 3 - Mouvement TT - *

C2-05

B2-13

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et

Question 1 Quel est le mouvement de 2 par rapport à **0**.

Question 2 Donner l'équation du mouvement du point C dans le mouvement de 2 par rapport à 0.

On souhaite que le point C réalise un cercle de centre A et de rayon $R = 10 \,\mathrm{cm}$ à la vitesse $v = 0.01 \,\mathrm{m\,s^{-1}}$.

Question 3 Donner la relation liant $\theta(t)$, v et R.

Par ailleurs la vitesse du point C est donnée par $\overrightarrow{V(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AC}\right]_{\mathcal{R}_0} = R \dot{\theta} \overrightarrow{e_{\theta}}.$

Question 4 *Donner les expressions de* $\lambda(t)$ *et* $\mu(t)$ *per*mettant la réalisation de cette trajectoire en fonction de v, R et du temps.

Question 5 *En utilisant Python, tracer* $\lambda(t)$, $\mu(t)$ *et la* trajectoire générée.

Indications:

Corrigé voir 28.

Exercice 4 - Mouvement RR *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \,\mathrm{mm} \,\mathrm{et} \, \overrightarrow{BC} = L \,\overrightarrow{i_2} \,\mathrm{avec} \, L = 15 \,\mathrm{mm}.$

Question 1 Donner l'ensemble des positions accessibles par le point C.

Question 2 Donner l'équation du mouvement du point C dans son mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un segment entre les points [-25,25] et [25,25] à la vitesse linéaire v.

Question 3 Donner la durée du mouvement si C se déplace à vitesse quelconque.

Question 4 Donner l'équation paramétrique que doit suivre le point C.

Question 5 Donner les expressions de $\theta(t)$ et $\varphi(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \,\mathrm{m\,s^{-1}}$.

Question 6 En utilisant Python, tracer $\theta(t)$, $\varphi(t)$ et la trajectoire générée.

Corrigé voir 29.

Exercice 5 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Corrigé voir 30.

Exercice 6 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$ avec R = 30 mm.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25, 25] et [25, 25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Corrigé voir 31.

Exercice 7 - Mouvement RR 3D **

C2-05

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \,\text{mm}$ et $r = 10 \,\text{mm}$.

Question 1 Donner l'ensemble des positions accessibles par le point C.

Question 2 Donner l'équation du mouvement du point C dans le mouvement de **2** par rapport à **0**.

Indications:

1. . 2. $x_C(t) = (R+\ell)\cos\theta - r\cos\varphi\sin\theta$, $y_C(t) = (R+\ell)\sin\theta + r\cos\varphi\cos\theta$, $z_C(t) = r\sin\varphi$.

Corrigé voir 32.

Exercice 8 - Mouvement RR 3D **

C2-05

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, R = 20 mm, L = 10 mm.

Question 1 Donner l'ensemble des positions accessibles par le point C.

Question 2 Donner l'équation de mouvement du point C dans le mouvement de **2** par rapport à **0**.

Indications

1. Tore

2. $x_C(t) = R\cos\theta + L\cos\varphi\cos\theta$, $y_C(t) = H + L\sin\varphi$, $z_C(t) = -R\sin\theta - L\cos\varphi\sin\theta$.

Corrigé voir 41.

Exercice 9 - Mouvement T - * B2-13

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(1/0) \}$ *au point B*.

Question 2 *Déterminer* $\overrightarrow{\Gamma(B, 1/0)}$.

Indications:
1.
$$\{\mathscr{V}(1/0)\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ \dot{\lambda}(t)\overrightarrow{i_0} \end{array} \right\}_{\forall P}$$

2. $\overrightarrow{\Gamma(B, 1/0)} = \ddot{\lambda}(t)\overrightarrow{i_0}$.

Corrigé voir 34.

Exercice 10 - Mouvement R *

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \mathrm{mm}$.

Question 1 Déterminer V(B, 1/0) par dérivation vectorielle.

Question 2 Déterminer $\overline{V(B, 1/0)}$ par une autre méthode.

Question 3 Donner le torseur cinématique $\{ \mathcal{V}(1/0) \}$ au point B.

Question 4 *Déterminer* $\Gamma(B, 1/0)$.

Indications:

1.
$$V(B, 1/0) = R\dot{\theta} \overrightarrow{j_1}$$
.

2. $V(B, 1/0) = R\dot{\theta} \overrightarrow{j_1}$.

3. $\{\mathcal{V}(1/0)\} = \begin{cases} \dot{\theta} \overrightarrow{k_0} \\ R\dot{\theta} \overrightarrow{j_1} \end{cases} \begin{cases} R\dot{\theta} \overrightarrow{j_1} \\ R\dot{\theta} \overrightarrow{j_1} \end{cases}$.

4. $\Gamma(B, 1/0) = R\ddot{\theta} \overrightarrow{j_1} - R\dot{\theta}^2 \overrightarrow{i_1}$.

Corrigé voir 35.

Exercice 11 - Mouvement TT - *

B2-13

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 1 Déterminer $\overrightarrow{V(C,2/0)}$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C,2/0)$.

Indications:
1.
$$V(C,2/0) = \dot{\lambda}(t)\overrightarrow{i_0} + \dot{\mu}(t)\overrightarrow{j_0}$$
.
2. $\{\mathcal{V}(2/0)\} = \left\{ \overrightarrow{0} \\ \dot{\lambda}(t)\overrightarrow{i_0} + \dot{\mu}(t)\overrightarrow{j_0} \right\}_{\forall P}$.
3. $\Gamma(C,2/0) = \ddot{\lambda}(t)\overrightarrow{i_0} + \ddot{\mu}(t)\overrightarrow{j_0}$.

Corrigé voir 36.

Exercice 12 - Mouvement RR * B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$ avec $L = 15 \, \text{mm}$.

Question 1 Déterminer $\overrightarrow{V(C,2/0)}$ par dérivation vectorielle.

Question 2 Déterminer $\overrightarrow{V(C,2/0)}$ par composition. **Question 3** Donner le torseur cinématique $\{ \mathscr{V}(2/0) \}$ au point C.

Question 4 *Déterminer* $\overrightarrow{\Gamma(C,2/0)}$.

Indications:
1.
$$V(C,2/0) = R\dot{\theta}\overrightarrow{j_1} + L(\dot{\theta} + \dot{\varphi})\overrightarrow{j_2}$$
.
2. $V(C,2/0) = L\dot{\varphi}\overrightarrow{j_2} + \dot{\theta}\left(L\overrightarrow{j_2} + R\overrightarrow{j_1}\right)$ (c'est la même :)).
3. $\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{c} (\dot{\theta} + \dot{\varphi})\overrightarrow{k_0} \\ R\dot{\theta}\overrightarrow{j_1} + L(\dot{\theta} + \dot{\varphi})\overrightarrow{j_2} \end{array} \right\}_C$.
4. $\overline{\Gamma(C,2/0)} = R\ddot{\theta}\overrightarrow{j_1} - R\dot{\theta}^2\overrightarrow{i_1} + L(\ddot{\theta} + \ddot{\varphi})\overrightarrow{j_2} - L(\dot{\theta} + \dot{\varphi})^2\overrightarrow{i_2}$.

Corrigé voir 37.

Exercice 13 - Mouvement RT *

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Déterminer $\overline{V(B,2/0)}$ par dérivation vectorielle.

Question 2 Déterminer V(B,2/0) par composition. **Question 3** Donner le torseur cinématique $\{V(2/0)\}$ au point B.

Question 4 Déterminer $\Gamma(B,2/0)$.

Indications:

1.
$$\overrightarrow{V(B,2/0)} = \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}$$
.

2. $\overrightarrow{V(B,2/0)} = \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}$.

3. $\{\mathscr{V}(2/0)\} = \begin{cases} \dot{\theta}(t)\overrightarrow{k_0} \\ \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1} \end{cases} = (\ddot{\lambda}(t) - \lambda(t)\dot{\theta}(t)^2)\overrightarrow{i_1} + (\dot{\lambda}(t)\dot{\theta}(t) + \dot{\lambda}(t)\dot{\theta}(t))\overrightarrow{j_1}$.

Corrigé voir 38.

Exercice 14 - Mouvement RT *

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$ avec R = 30 mm.

Question 1 Déterminer $\overrightarrow{V(C,2/0)}$ par dérivation vectorielle ou par composition.

Question 2 *Donner le torseur cinématique* $\{ \mathcal{V}(2/0) \}$ *au point C* .

Question 3 Déterminer $\Gamma(C,2/0)$.

Indications:
1.
$$\overrightarrow{V(C,2/0)} = \overrightarrow{\lambda}(t) \overrightarrow{i_0} + R \overrightarrow{\theta} \overrightarrow{j_2}$$
.
2. $\{\mathscr{V}(2/0)\} = \left\{ \begin{array}{c} \overrightarrow{\Omega(2/0)} = \overrightarrow{\theta} \overrightarrow{k_0} \\ \overrightarrow{V(C,2/0)} \end{array} \right\}_C$.
3. $\overrightarrow{\Gamma(C,2/0)} = \overrightarrow{\lambda}(t) \overrightarrow{i_0} + R \left(\overrightarrow{\theta} \overrightarrow{j_2} - \overrightarrow{\theta}^2 \overrightarrow{i_2} \right)$.

Corrigé voir 39.

Exercice 15 - Mouvement RR 3D *

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \mathrm{mm}$ et $r = 10 \, \mathrm{mm}$.

Question 1 Déterminer $\overline{V(C,2/0)}$ par dérivation vectorielle.

Question 2 Déterminer $\overline{V(C,2/0)}$ par composition. **Question 3** Donner le torseur cinématique $\{ \sqrt[4]{(2/0)} \}$ au point C.

Question 4 *Déterminer* $\Gamma(C, 2/0)$.

Corrigé voir 32.

Exercice 16 - Mouvement RR 3D *

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm.

Question 1 Déterminer $\overrightarrow{V(C,2/0)}$ par dérivation vectorielle.

Question 2 Déterminer $\overline{V(C,2/0)}$ par composition du vecteur vitesse.

Question 3 Donner le torseur cinématique $\{ \sqrt[4]{(2/0)} \}$ au point C.

Question 4 Déterminer $\Gamma(C,2/0)$.

Indications:
1.
$$V(C,2/0) = -R\dot{\theta}\overrightarrow{k_1} + L\left(-\dot{\theta}\cos\varphi\overrightarrow{k_1} + \dot{\varphi}\overrightarrow{j_2}\right)$$
.
2. $V(C,2/0) = L\dot{\varphi}\overrightarrow{j_2} - \dot{\theta}\left(R\overrightarrow{k_1} + L\cos\varphi\overrightarrow{k_1}\right)$.
3. $\{\mathcal{V}(2/0)\} = \begin{cases} \dot{\varphi}\overrightarrow{k_2} + \dot{\theta}\overrightarrow{j_0} \\ L\dot{\varphi}\overrightarrow{j_2} - \dot{\theta}\left(R\overrightarrow{k_1} + L\cos\varphi\overrightarrow{k_1}\right) \end{cases}$.
4. $\overrightarrow{\Gamma(C,2/0)} = L\ddot{\varphi}\overrightarrow{j_2} + L\dot{\varphi}\left(\dot{\theta}\sin\varphi\overrightarrow{k_1} - \dot{\theta}\overrightarrow{i_2}\right) - \ddot{\theta}\left(R\overrightarrow{k_1} + L\cos\varphi\overrightarrow{k_1}\right) - \dot{\theta}\left(R\dot{\theta}\overrightarrow{k_1} + L\cos\varphi\overrightarrow{k_1}\right) - \dot{\theta}\left(R\dot{\theta}\overrightarrow{k_1}\right) - \dot{\theta}\left(R\dot{\theta}\overrightarrow{k_1}\right)$

Corrigé voir 41.

Exercice 17 - Mouvement RT - RSG ** B2-13

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I.

Question 1 *Déterminer* $\overline{V(B,2/0)}$.

Question 2 *Donner le torseur cinématique* $\{\mathcal{V}(2/0)\}$ *au point B*.

Question 3 *Déterminer* $\Gamma(B,2/0)$.

Corrigé voir 42.

Exercice 18 - Pompe à palettes *

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Il est possible de mettre la loi entrée-sortie sous la forme $\dot{\lambda}_+(t) = -e\,\dot{\theta}(t)\sin\theta(t) - \frac{e^2\dot{\theta}(t)\cos\theta(t)\sin\theta(t)}{\sqrt{e^2\cos^2\theta(t)-e^2+R^2}}$ (voir exercice 62 – à vérifier).

Question 1 *Donner le torseur cinématique* $\{\mathcal{V}(2/0)\}$ *au point B*.

Question 2 Déterminer $\Gamma(B,2/0)$.

Indications:
1.
$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{c} \dot{\theta}(t)\overrightarrow{k_0} \\ \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1} \end{array} \right\}_B$$
.
2. $\overrightarrow{\Gamma(B,2/0)} = \ddot{\lambda}(t)\overrightarrow{i_1} + 2\dot{\lambda}(t)\dot{\theta}(t)\overrightarrow{j_1} + \lambda(t)\ddot{\theta}(t)\overrightarrow{j_1} - \lambda(t)\dot{\theta}^2(t)\overrightarrow{i_1}$.

Corrigé voir 43.

Exercice 19 – Pompe à piston axial *

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \overrightarrow{i_1}$ et $\overrightarrow{BI} = R \overrightarrow{j_0}$. De plus, e = 10 mm et R = 20 mm. Le contact entre

1 et 2 en *B* est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre 0 et 2.

Il est possible de mettre la loi entrée-sortie sous la forme $\lambda(t) = e \sin \theta + R$ ou encore $\dot{\lambda}(t) = e \dot{\theta}(t) \cos \theta(t)$ (voir exercice 63).

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(2/0) \}$ *au point C*.

Question 2 Déterminer $\Gamma(C,2/0)$.

Indications:
1.
$$\{\mathscr{V}(2/0)\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ \dot{\lambda}(t)\overrightarrow{j_0} \end{array} \right\}_C$$
.
2. $\Gamma(C,2/0) = \ddot{\lambda}(t)\overrightarrow{j_0}$.

Corrigé voir 44.

Exercice 20 - Système bielle manivelle * B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CB} = L \overrightarrow{i_2}$. De plus, $R = 10 \,\text{mm}$ et $L = 20 \,\text{mm}$.

Il est possible de mettre la loi entrée-sortie sous la forme $\lambda(t) = \pm \sqrt{L^2 - R^2 \cos^2 \theta(t)} + R \sin \theta(t)$ et $\dot{\lambda}(t) = \pm \left(\frac{R^2 \dot{\theta}(t) \cos \theta(t) \sin \theta(t)}{\sqrt{L^2 - R^2 \cos^2 \theta(t)}}\right) + \dot{\theta}(t) R \cos \theta(t)$. (à vérifier – voir exercice 64).

Question 1 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point B. On commence par calculer $\overline{V(B,2/0)} = \overrightarrow{V(B,2/1)} + \overrightarrow{V(B,1/0)} = \overrightarrow{V(B,1/0)}$.

• Méthode 1 – dérivation vectorielle : $\overrightarrow{V(B,1/0)} = \frac{\mathrm{d}}{\mathrm{d}t}[AB]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t}\left[R\overrightarrow{i_1}\right]_{\mathcal{R}_0} = R\dot{\theta}(t)\overrightarrow{j_1}$.

Méthode 2 - formule de changement de point : $\overrightarrow{V(B,1/0)} = \overrightarrow{V(A,1/0)} + \overrightarrow{BA} \wedge \overrightarrow{\Omega(1/0)} = -\overrightarrow{Ri_1} \wedge \dot{\theta} t \overrightarrow{k_0}$ $=R\dot{\theta}(t)\overrightarrow{j_1}$.

On a alors, $\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{c} \dot{\varphi}(t)\overrightarrow{k_0} \\ R\dot{\theta}(t)\overrightarrow{j_1} \end{array} \right\}_B$.

Question 2 *Donner le torseur cinématique* $\{ \mathcal{V}(2/0) \}$ et au point C.

On a,
$$\{\mathcal{V}(2/0)\}=\left\{\begin{array}{c} \dot{\varphi}(t)\overrightarrow{k_0} \\ \dot{\lambda}(t)\overrightarrow{j_0} \end{array}\right\}_C$$
.

Par ailleurs, on peut remarquer que V(C,2/0) = $\overrightarrow{V(B,2/0)} + \overrightarrow{CB} \wedge \overrightarrow{\Omega(2/0)} = R\dot{\theta}(\overrightarrow{t})\overrightarrow{j_1} + L\overrightarrow{i_2} \wedge \dot{\varphi}(t)\overrightarrow{k_0} =$ $R\dot{\theta}(t)\overrightarrow{j_1} - L\dot{\varphi}(t)\overrightarrow{j_2}$.

On a donc nécessairement $\dot{\lambda}(t)\overrightarrow{j_0} = R\dot{\theta}(t)\overrightarrow{j_1} L\dot{\varphi}(t)\overline{j_2}$

$$\begin{array}{ccc}
L\varphi(t)J_{2} \\
\Rightarrow & \dot{\lambda}(t)\overrightarrow{j_{0}} &= R\dot{\theta}(t)\Big(\cos\theta(t)\overrightarrow{j_{0}} - \sin\theta(t)\overrightarrow{i_{0}}\Big) - \\
L\dot{\varphi}(t)\Big(\cos\varphi(t)\overrightarrow{j_{0}} - \sin\varphi(t)\overrightarrow{i_{0}}\Big).
\end{array}$$

On a donc:

$$\begin{cases} 0 = -R\dot{\theta}(t)\sin\theta(t) + L\dot{\varphi}(t)\sin\varphi(t) \\ \dot{\lambda}(t) = R\dot{\theta}(t)\cos\theta(t) - L\dot{\varphi}(t)\cos\varphi(t) \\ \Rightarrow \begin{cases} R\dot{\theta}(t)\sin\theta(t) = L\dot{\varphi}(t)\sin\varphi(t) \\ \dot{\lambda}(t) - R\dot{\theta}(t)\cos\theta(t) = L\dot{\varphi}(t)\cos\varphi(t) \end{cases}$$

$$\Rightarrow \tan \varphi(t) = \frac{R\dot{\theta}(t)\sin \theta(t)}{\dot{\lambda}(t) - R\dot{\theta}(t)\cos \theta(t)}$$

Il resterait à supprimer $\varphi(t)$ pour (espérons-le) retomber sur la loi entrée-sortie cinématique.

Question 3 Déterminer $\Gamma(B, 2/0)$.

$$\overrightarrow{\Gamma(B,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(B,2/0)} \right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[R\dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathcal{R}_0} = R\ddot{\theta}(t) \overrightarrow{j_1} - R\dot{\theta}^2(t) \overrightarrow{j_1}.$$

Question 4 Déterminer
$$\Gamma(C, 2/0)$$
.

$$\overrightarrow{\Gamma(C, 2/0)} = \frac{d}{dt} \left[\overrightarrow{V(C, 2/0)} \right]_{\Re_0} = \ddot{\lambda}(t) \overrightarrow{j_0}.$$

Corrigé voir 45.

Exercice 21 - Système de transformation de mouvement *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} =$ \overrightarrow{I}_{j_0} . De plus, $R = 30 \,\mathrm{mm}$ et $H = 40 \,\mathrm{mm}$.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 65).

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(3/0) \}$ au point B.

Question 2 *Déterminer* $\Gamma(B, 3/0)$.

Corrigé voir 46.

Exercice 22 - Barrière Sympact **

Pas de corrigé pour cet exercice. Soit le B2-13 mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \,\text{mm}$, $R = 40 \,\text{mm}$ $BI = 10 \,\text{mm}$.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 66).

Question 1 En utilisant la condition de roulement sans glissement au point I, déterminer $\gamma(t)$ et $\dot{\gamma}(t)$.

Question 2 *Donner le torseur cinématique* $\{ \mathcal{V}(3/2) \}$ au point B.

Corrigé voir 47.

Exercice 23 - Système 4 barres ***

B2-13 Pas de corrigé pour cet exercice.

- $\overrightarrow{OA} = a \overrightarrow{x_1} f \overrightarrow{y_1}$ avec $a = 355 \,\mathrm{mm}$ et $f = 13 \,\mathrm{mm}$;
- $\overrightarrow{AB} = b \overrightarrow{x_2}$ avec $b = 280 \,\mathrm{mm}$;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$ avec $c = 280 \,\mathrm{mm}$;
- $\overrightarrow{OC} = -d\overrightarrow{x_0} e\overrightarrow{y_0}$ avec $d = 89.5 \,\mathrm{mm}$ et e =160 mm;

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 69). On définit le point G tel que $\overrightarrow{OG} = L\overrightarrow{x_1}$.

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(1/0) \}$ *au point G*.

Question 2 *Déterminer* $\Gamma(G, 1/0)$.

Corrigé voir 48.

Exercice 24 - Maxpid ***

B2-13 Pas de corrigé pour cet exercice. Soit le schéma suivant.

Par ailleurs $a=107.1\,\mathrm{mm},\ b=80\,\mathrm{mm},\ c=70\,\mathrm{mm},\ d=80\,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 70).

On définit le point G tel que $\overrightarrow{OG} = L\overrightarrow{x_4}$.

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(4/0) \}$ *au point G* .

Question 2 Déterminer $\Gamma(G, 4/0)$.

Corrigé voir 49.

Exercice 25 - Mouvement RR - RSG **

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = L \overrightarrow{i_2}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I.

Question 1 Déterminer $\overrightarrow{V(B,2/0)}$.

Question 2 Donner le torseur cinématique $\{ \sqrt[4]{(2/0)} \}$ au point B.

Question 3 *Déterminer* $\Gamma(B,2/0)$.

Indications (à vérifier...):
$$1. \quad \overrightarrow{V(B,2/0)} = L\dot{\varphi}(t)\overrightarrow{j_2} + \dot{\theta}(t)\Big(L\overrightarrow{j_1} - R\overrightarrow{i_0}\Big).$$

$$2. \quad \{\mathscr{V}(2/0)\} = \left\{ \begin{array}{c} \overrightarrow{\Omega(2/0)} = \left(\dot{\varphi}(t) + \dot{\theta}(t)\right)\overrightarrow{k_0} \\ L\dot{\varphi}(t)\overrightarrow{j_2} + \dot{\theta}(t)\Big(L\overrightarrow{j_1} - R\overrightarrow{i_0}\Big) \end{array} \right\}_B.$$

$$3. \quad \overrightarrow{\Gamma(B,2/0)} = L\ddot{\varphi}(t)\overrightarrow{j_2} - L\dot{\varphi}(t)\Big(\dot{\varphi}(t) + \dot{\theta}(t)\Big)\overrightarrow{i_2} + \ddot{\theta}(t)\Big(L\overrightarrow{j_1} - R\overrightarrow{i_0}\Big) - L\dot{\theta}^2(t)\overrightarrow{i_1}.$$

Corrigé voir 50.

1.1.2 Modéliser la cinématique d'un ensemble de solides

Exercice 26 - Mouvement T - *

C2-05

B2-13

Question 1 Quel est le mouvement de 1 par rapport à 0.

1 est en translation de direction $\overrightarrow{i_0}$ par rapport à 0. Question 2 Donner l'équation paramétrique de la trajectoire du point B, point appartenant à 1 par rapport à 0.

On a
$$\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$$
. La trajectoire du point B est donc donnée par
$$\begin{cases} x_B(t) = \lambda(t) \\ y_B(t) = 0 \\ z_B(t) = 0 \end{cases}$$
 dans le repère $(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{z_0})$.

Exercice 27 - Mouvement R *

C2-05

B2-13

Question 1 Quel est le mouvement de 1 par rapport à 0. 1 est en rotation de centre A et d'axe $\vec{k_0}$ par rapport à 0. Question 2 Quelle est la trajectoire du point B appartenant à 1 par rapport à 0. B est est en rotation par rapport à **0** (cercle de centre *A* et de rayon *R*).

Question 3 Donner l'équation paramétrique de la trajectoire du point B, point appartenant à 1 par rapport à 0.

On a
$$\overrightarrow{AB} = R \overrightarrow{i_1} = R \cos \theta \overrightarrow{i_0} + R \sin \theta \overrightarrow{j_0}$$
. La trajectoire du point B est donc donnée par
$$\begin{cases} x_B(t) = R \cos \theta(t) \\ y_B(t) = R \sin \theta(t) \\ z_B(t) = 0 \end{cases}$$

dans le repère $(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{z_0})$.

Exercice 28 - Mouvement TT - *

C2-05

B2-13

Question 1 Quel est le mouvement de 2 par rapport à 0.

Le point C a un mouvement quelconque dans le plan $(A, \overline{i_0}, \overline{j_0})$.

Question 2 Donner l'équation du mouvement du point C dans le mouvement de 2 par rapport à 0.

On a
$$\overrightarrow{AC} = \lambda(t) \overrightarrow{i_0} + \mu(t) \overrightarrow{j_0}$$
 et donc, on a directement
$$\begin{cases} x_C(t) = \lambda(t) \\ y_C(t) = \mu(t) \\ z_C(t) = 0 \end{cases}$$
 dans le repère $(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0})$.

On souhaite que le point C réalise un cercle de centre A et de rayon R = 10 cm à la vitesse v = 0.01 m s⁻¹.

Question 3 *Donner la relation liant* $\theta(t)$ *, v et* R.

Par ailleurs la vitesse du point C est donnée par $\overrightarrow{V(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AC}\right]_{\mathcal{R}_0} = R \dot{\theta} \overrightarrow{e_{\theta}}$.

On a $v = R\dot{\theta}(t)$. Par intégration, $\theta(t) = \frac{v}{R}t$ (avec $\theta(t) = 0$ rad pour t = 0 s).

Question 4 Donner les expressions de $\lambda(t)$ et $\mu(t)$ permettant la réalisation de cette trajectoire en fonction de v, Ret du temps.

Exprimons la trajectoire du point $C: \overrightarrow{AC} = R\overrightarrow{e_r} = R\cos\theta(t)\overrightarrow{i_0} + R\sin\theta(t)\overrightarrow{j_0}$. Par identification $\lambda(t) = R\cos\theta(t)$ et $\mu(t) = R \sin \theta(t)$.

Au final,
$$\begin{cases} \lambda(t) = R \cos\left(\frac{\nu}{R}t\right) \\ \mu(t) = R \sin\left(\frac{t\nu}{R}t\right) \end{cases}$$

Question 5 En utilisant Python, tracer $\lambda(t)$, $\mu(t)$ et la trajectoire générée.

```
import numpy as np
import matplotlib.pyplot as plt
import math as m
R = 0.1 \# m
v = 0.01 \# m.s-1
# Temps pour faire un tour
T = 2*m.pi*R/v
les_t = np.linspace(0,T,200)
les_lambda = R*np.cos(v/R*les_t)
les_mu = R*np.sin(v/R*les_t)
plt.plot(les_t,les_lambda,label="$\\lambda(t)$")
```



```
plt.plot(les_t,les_mu,label="$\\mu(t)$")
plt.xlabel("Temps_($s$)")
plt.ylabel("Position<sub>□</sub>($m$)")
plt.legend()
#plt.show()
plt.savefig("03_TT_01_c.pdf")
plt.cla()
plt.grid()
plt.axis("equal")
plt.plot(les_lambda,les_mu,label="Trajectoire_de_sC$")
plt.legend()
#plt.show()
plt.savefig("03_TT_02_c.pdf")
```


Exercice 29 - Mouvement RR *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 *Donner l'ensemble des positions accessibles par le point C*.

Le point C peut atteindre tous les points situés compris entre deux cercles de rayon 5 mm et de rayon 25 mm.

Question 2 Donner l'équation du mouvement du point C dans son mouvement de 2 par rapport à 0.

On a $\overrightarrow{AC}=R$ $\overrightarrow{i_1}+L$ $\overrightarrow{i_2}$. On projetant ce vecteur dans le repère $\mathcal{R}_A i_0 j_0 k_0$ on a

$$\overrightarrow{AC} = R\left(\cos\theta \overrightarrow{i_0} + \sin\theta \overrightarrow{j_0}\right) + L\left(\cos\left(\theta + \varphi\right)\overrightarrow{i_0} + \sin\left(\theta + \varphi\right)\overrightarrow{j_0}\right). \text{ On a donc}: \begin{cases} x_C(t) = R\cos\theta + L\cos\left(\theta + \varphi\right) \\ y_C(t) = R\sin\theta + L\sin\left(\theta + \varphi\right) \\ z_C(t) = 0 \end{cases}$$

dans le repère $(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0})$. **Question 3** Donner la durée du mouvement si C se déplace à vitesse quelconque.

$$\forall t \in \left[0, \frac{0.05}{v}\right], y_C(t) = 0.025. \text{ Pour } t = 0, x_C(0) = -0.025. \text{ On a alors } x_C(t) = -0.025 + vt.$$

Question 3 Donner la durée du mouvement si
$$C$$
 se déplace à vitesse quelconque.

Distance à parcourir : 0,05 m. Durée du parcours : $T = \frac{0,05}{v}$.

Question 4 Donner l'équation paramétrique que doit suivre le point C .

 $\forall t \in \left[0, \frac{0,05}{v}\right], \ y_C(t) = 0,025. \ \text{Pour } t = 0, \ x_C(0) = -0,025. \ \text{On a alors } x_C(t) = -0,025 + v t$.

Au final, $\forall t \in \left[0, \frac{0,05}{v}\right], \begin{cases} x_C(t) = -0,025 + v t \\ y_C(t) = 0,025 \end{cases}$ dans le repère $\left(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0}\right)$.

Question 5 Donner les expressions de $\theta(t)$ et $\varphi(t)$ permettant la réalisation de cette trajectoire à la vitesse v= $0.01 \,\mathrm{m\,s^{-1}}$.

Afin que le point C suive un segment, il faut donc que $\begin{cases} -0.025 + vt = R\cos\theta + L\cos(\theta + \varphi) \\ 0.025 = R\sin\theta + L\sin(\theta + \varphi) \end{cases}$

$$\Leftrightarrow \begin{cases} -0.025 + vt - R\cos\theta = L\cos(\theta + \varphi) \\ 0.025 - R\sin\theta = L\sin(\theta + \varphi) \end{cases}$$

$$\Rightarrow \begin{cases} (-0.025 + vt - R\cos\theta)^2 = L^2\cos^2(\theta + \varphi) \\ (0.025 - R\sin\theta)^2 = L^2\sin^2(\theta + \varphi) \end{cases}$$

$$\Rightarrow (-0.025 + vt - R\cos\theta)^2 + (0.025 - R\sin\theta)^2 = L^2$$

$$\Rightarrow (-0.025 + vt - R\cos\theta)^2 + (0.025 - R\sin\theta)^2 = L^2$$

$$\Rightarrow 0.025^2 + v^2t^2 + R^2\cos^2\theta - 2 \times 0.025vt + 2R\cos\theta - vtR\cos\theta + 0.025^2 + R^2\sin^2\theta - 2 \times 0.025R\sin\theta = L^2$$

$$\Rightarrow (2 - vt)\cos\theta - 2 \times 0.025\sin\theta = \frac{L^2}{R} - \frac{2 \times 0.025^2}{R} - \frac{v^2t^2}{R} - R + 2 \times 0.025\frac{vt}{R}$$
Équation trigonométrique de la forme $a\cos x + b\sin x = c$.

Équation trigonométrique de la forme $a \cos x + b \sin x = c$.

Il y a donc une solution analytique. On peut aussi résoudre l'équation numériquement.

Une fois $\theta(t)$ déterminée, on a $0,025 - R \sin \theta = L \sin(\theta + \varphi) \Rightarrow \arcsin\left(\frac{0,025 - R \sin \theta(t)}{L}\right) - \theta(t) = \varphi(t)$

Question 6 En utilisant Python, tracer $\theta(t)$, $\varphi(t)$ et la trajectoire générée

Exercice 30 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 *Donner l'ensemble des positions accessibles par le point B.*

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de 2 par rapport à 0.

On souhaite que le point B réalise un segment entre les points [-25, 25] et [25, 25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse v=

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Exercice 31 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de 2 par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25, 25] et [25, 25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse v=

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Exercice 32 - Mouvement RR 3D **

C2-05

B2-13

Question 1 Donner l'ensemble des positions accessibles par le point C. Ca ressemble à un tore, mais c'est pas vraiment un tore :) (aussi bien l'intérieur que l'extérieur...)...

Question 2 Donner l'équation du mouvement du point C dans le mouvement de **2** par rapport à **0**.

On a
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = R\overrightarrow{i_1} + \ell\overrightarrow{i_2} + r\overrightarrow{j_2}$$
. Soit $\overrightarrow{AC} = (R + \ell)\left(\cos\theta\overrightarrow{i_0} + \sin\theta\overrightarrow{j_0}\right) + r\left(\cos\varphi\overrightarrow{j_1} + \sin\varphi\overrightarrow{k_1}\right) = (R + \ell)\left(\cos\theta\overrightarrow{i_0} + \sin\theta\overrightarrow{j_0}\right) + r\left(\cos\varphi\left(\cos\theta\overrightarrow{j_0} - \sin\theta\overrightarrow{i_0}\right) + \sin\varphi\overrightarrow{k_0}\right)$.

On a donc :
$$\begin{cases} x_C(t) = (R+\ell)\cos\theta - r\cos\varphi\sin\theta \\ y_C(t) = (R+\ell)\sin\theta + r\cos\varphi\cos\theta & \text{dans le repère } \left(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0}\right). \\ z_C(t) = r\sin\varphi \end{cases}$$

Exercice 33 - Mouvement RR 3D **

C2-05

B2-13

Question 1 Donner l'ensemble des positions accessibles par le point C. Le point C peut décrire un tore de grand rayon *R* et de petit rayon *L* (surface torique uniquement, pas l'intérieur du tore).

Question 2 Donner l'équation de mouvement du point C dans le mouvement de 2 par rapport à 0.

On a
$$\overrightarrow{AC} = H\overrightarrow{j_1} + R\overrightarrow{i_1} + L\overrightarrow{i_2} = H\overrightarrow{j_0} + R\cos\theta\overrightarrow{i_0} - R\sin\theta\overrightarrow{k_0} + L\cos\varphi\overrightarrow{i_1} + L\sin\varphi\overrightarrow{j_1} = H\overrightarrow{j_0} + R\cos\theta\overrightarrow{i_0} - R\sin\theta\overrightarrow{k_0} + L\cos\varphi(\cos\theta\overrightarrow{i_0} - \sin\theta\overrightarrow{k_0}) + L\sin\varphi\overrightarrow{j_0}$$
.

On a
$$AC = H \underbrace{J_1 + R t_1 + L t_2}_{1} = H \underbrace{J_0 + R \cos \theta}_{0} + R \sin \theta \underbrace{k_0 + L \cos \varphi}_{0} \underbrace{t_1 + L \sin \varphi}_{1} + L \sin \varphi$$

$$L \cos \varphi \left(\cos \theta \underbrace{i_0 - \sin \theta \underbrace{k_0}}_{0}\right) + L \sin \varphi \underbrace{j_0}_{0}.$$
On a donc:
$$\begin{cases} x_C(t) = R \cos \theta + L \cos \varphi \cos \theta \\ y_C(t) = H + L \sin \varphi \\ z_C(t) = -R \sin \theta - L \cos \varphi \sin \theta \end{cases}$$
 dans le repère $\left(A; \underbrace{i_0}_{0}, \underbrace{j_0}_{0}, \underbrace{k_0}_{0}\right).$

Exercice 34 - Mouvement

B2-13

Question 1 *Donner le torseur cinématique* $\{\mathcal{V}(1/0)\}$ *au point B*.

$$\begin{split} \{\mathcal{V}(1/0)\} &= \left\{ \begin{array}{c} \overrightarrow{0} \\ \dot{\lambda}(t) \overrightarrow{i_0} \end{array} \right\}_{\forall P} \cdot \\ \overrightarrow{V(B, 1/0)} &= \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AB} \right]_{\mathcal{R}_0} = \dot{\lambda}(t) \overrightarrow{i_0} \, . \end{split}$$

Question 2 Déterminer $\Gamma(B, 1/0)$

$$\frac{\mathbf{d}}{\Gamma(B,1/0)} = \frac{\mathbf{d}}{\mathbf{d}t} \left[\overline{V(B,1/0)} \right]_{\Re_0} = \ddot{\lambda}(t) \, \overline{i_0} \, .$$

Exercice 35 - Mouvement R

B2-13

Question 1 Déterminer $\overrightarrow{V(B,1/0)}$ par dérivation vectorielle.

$$\overrightarrow{V(B,1/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \overrightarrow{[AB]}_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \overrightarrow{[R\ \overrightarrow{i_1}]}_{\mathcal{R}_0}. \text{ Or } \frac{\mathrm{d}}{\mathrm{d}t} \overrightarrow{[i_1]}_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \overrightarrow{[i_1]}_{\mathcal{R}_1} + \overrightarrow{\Omega(1/0)} \wedge \overrightarrow{i_1} = \overrightarrow{0} + \overrightarrow{\theta} \overrightarrow{k_0} \wedge \overrightarrow{i_1} = \overrightarrow{\theta} \overrightarrow{j_1}.$$

$$\overrightarrow{D'} \text{où } \overrightarrow{V(B,1/0)} = R\overrightarrow{\theta} \overrightarrow{j_1}.$$

Question 2 Déterminer $\overline{V(B, 1/0)}$ par une autre méthode.

$$\overrightarrow{V(B,1/0)} = \overrightarrow{V(A,1/0)} + \overrightarrow{BA} \wedge \overrightarrow{\Omega(1/0)} = \overrightarrow{0} - R \overrightarrow{i_1} \wedge \theta \overrightarrow{k_0} = R \theta \overrightarrow{j_1}.$$
Question 3 Donner le torseur cinématique {\mathcal{V}(1/0)} au point B.

On a directement
$$\{\mathcal{V}(1/0)\} = \left\{ \begin{array}{c} \dot{\theta} \overrightarrow{k_0} \\ R \dot{\theta} \overrightarrow{j_1} \end{array} \right\}_B$$
.

Question 4 Déterminer
$$\Gamma(B,1/0)$$
.
$$\overrightarrow{\Gamma(B,1/0)} = \frac{\mathrm{d}}{\mathrm{d}\,t} \left[\overrightarrow{V(B,1/0)} \right]_{\mathscr{R}_0} = R \, \overrightarrow{\theta} \, \overrightarrow{j_1} - R \, \dot{\theta}^2 \, \overrightarrow{i_1} \, . \, \text{(En effet, } \frac{\mathrm{d}}{\mathrm{d}\,t} \left[\overrightarrow{j_1} \right]_{\mathscr{R}_0} = \frac{\mathrm{d}}{\mathrm{d}\,t} \left[\overrightarrow{j_1} \right]_{\mathscr{R}_1} + \overrightarrow{\Omega(1/0)} \wedge \overrightarrow{j_1} = \overrightarrow{0} + \dot{\theta} \, \overrightarrow{k_0} \wedge \overrightarrow{j_1} = -\dot{\theta} \, \overrightarrow{i_1} \, . \text{)}$$
Exercice 36 – Mouvement TT – \star

Question 1 Déterminer $\overline{V(C,2/0)}$ par dérivation vectorielle ou par composition.

Par dérivation vectorielle, on a : $\overrightarrow{V(C,2/0)} = \frac{d}{dt} \left[\overrightarrow{AC} \right]_{\mathcal{R}_0} = \dot{\lambda}(t) \overrightarrow{i_0} + \dot{\mu}(t) \overrightarrow{j_0}$.

Par composition du torseur cinématique, on a : $\overline{V(C,2/0)} = \overline{V(C,2/1)} + \overline{V(C,1/0)} = \frac{d}{dt} \left[\overrightarrow{BC} \right]_{\Re} + \frac{d}{dt} \left[\overrightarrow{AC} \right]_{\Re}$ $=\dot{\lambda}(t)\overrightarrow{i_0} + \dot{\mu}(t)\overrightarrow{j_0}.$

Question 2 Donner le torseur cinématique
$$\{ \mathcal{V}(2/0) \}$$
 au point C .

$$\{ \mathcal{V}(2/0) \} = \left\{ \begin{array}{c} \overrightarrow{0} \\ \dot{\lambda}(t) \overrightarrow{i_0} + \dot{\mu}(t) \overrightarrow{j_0} \end{array} \right\}_{\forall P}.$$

$$\overrightarrow{\Gamma(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(C,2/0)} \right]_{\mathcal{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_0} + \ddot{\mu}(t) \overrightarrow{j_0}.$$
Exercise 37 – Mouvement RR *

B2-13

Question 2 *Déterminer* V(C, 2/0) *par composition.*

On a $\overline{V(C,2/0)} = \overline{V(C,2/1)} + \overline{V(C,1/0)}$.

$$\frac{\overrightarrow{V(C,2/1)}}{\overrightarrow{V(C,2/1)}} = \frac{\overrightarrow{V(B,2/1)}}{\overrightarrow{V(B,2/1)}} + \frac{\overrightarrow{CB} \wedge \overrightarrow{\Omega(2/1)}}{\overrightarrow{CB} \wedge \overrightarrow{\Omega(1/0)}} = -L \overrightarrow{i_2} \wedge \overrightarrow{\phi} \overrightarrow{k_0} = L \overrightarrow{\phi} \overrightarrow{j_2}.$$

$$\overrightarrow{V(C,1/0)} = \overrightarrow{V(A,1/0)} + \overrightarrow{CA} \wedge \overrightarrow{\Omega(1/0)} = \left(-L \overrightarrow{i_2} - R \overrightarrow{i_1}\right) \wedge \overrightarrow{\theta} \overrightarrow{k_0} = \overrightarrow{\theta} \left(L \overrightarrow{j_2} + R \overrightarrow{j_1}\right).$$

Au final,
$$\overrightarrow{V(C,2/0)} = L \dot{\varphi} \overrightarrow{j_2} + \dot{\theta} \left(L \overrightarrow{j_2} + R \overrightarrow{j_1} \right)$$
.

Question 3 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

 $\{ \mathcal{V}(2/0) \} = \{ \mathcal{V}(2/1) \} + \{ \mathcal{V}(1/0) \}. \text{ Pour sommer les torseurs, il faut écrire les vecteurs vitesses au même point, ici en } C.$ $\{ \mathcal{V}(2/0) \} = \left\{ \begin{array}{c} (\dot{\theta} + \dot{\varphi}) \overrightarrow{k_0} \\ R \dot{\theta} \overrightarrow{j_1} + L (\dot{\theta} + \dot{\varphi}) \overrightarrow{j_2} \end{array} \right\}_C$

$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{c} (\dot{\theta} + \dot{\varphi}) k_0 \\ R \dot{\theta} \overrightarrow{j_1} + L(\dot{\theta} + \dot{\varphi}) \overrightarrow{j_2} \end{array} \right\}_C$$

$$\begin{split} \overrightarrow{\Gamma(C,2/0)} &= \frac{\mathrm{d}}{\mathrm{d}\,t} \Big[\overrightarrow{V(C,2/0)} \Big]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}\,t} \Big[R\,\dot{\theta}\,\overrightarrow{j_1} + L\big(\dot{\theta} + \dot{\varphi}\big)\,\overrightarrow{j_2} \Big]_{\mathcal{R}_0}. \\ \text{De plus, } &\frac{\mathrm{d}}{\mathrm{d}\,t} \Big[\overrightarrow{j_1} \Big]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}\,t} \Big[\overrightarrow{j_1} \Big]_{\mathcal{R}_1} + \overrightarrow{\Omega(1/0)} \wedge \overrightarrow{j_1} = \dot{\theta}\,\overrightarrow{k_0} \wedge \overrightarrow{j_1} = -\dot{\theta}\,\overrightarrow{i_1} \text{ et } \frac{\mathrm{d}}{\mathrm{d}\,t} \Big[\overrightarrow{j_2} \Big]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}\,t} \Big[\overrightarrow{j_2} \Big]_{\mathcal{R}_2} + \overrightarrow{\Omega(2/0)} \wedge \overrightarrow{j_2} = (\dot{\theta} + \dot{\varphi})\,\overrightarrow{k_0} \wedge \overrightarrow{j_2} = -(\dot{\theta} + \dot{\varphi})\,\overrightarrow{i_2}. \end{split}$$

On a donc $\overrightarrow{\Gamma(C,2/0)} = R \overrightarrow{\theta} \overrightarrow{j_1} - R \overrightarrow{\theta}^2 \overrightarrow{i_1} + L (\overrightarrow{\theta} + \overrightarrow{\varphi}) \overrightarrow{j_2} - L (\overrightarrow{\theta} + \overrightarrow{\varphi})^2 \overrightarrow{i_2}$.

Exercice 38 - Mouvement RT *

Question 1 Déterminer $\overline{V(B,2/0)}$ par dérivation vectorielle.

$$\overrightarrow{V(B,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AB} \right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\lambda(t) \overrightarrow{i_1} \right]_{\mathcal{R}_0} = \dot{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1}.$$

Question 2 Déterminer V(B, 2/0) par composition.

$$\overrightarrow{V(B,2/0)} = \overrightarrow{V(B,2/1)} + \overrightarrow{V(B,1/0)}.$$

$$\forall P, \overrightarrow{V(P,2/1)} = \dot{\lambda}(t)\overrightarrow{i_1}.$$

Par ailleurs
$$\overrightarrow{V(B,1/0)} = \overrightarrow{V(A,1/0)} + \overrightarrow{BA} \wedge \overrightarrow{\Omega(1/0)} = -\lambda(t)\overrightarrow{i_1} \wedge \dot{\theta}(t)\overrightarrow{k_0} = \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}$$
.

Au final,
$$\overrightarrow{V(B,2/0)} = \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}$$
.

Question 3 *Donner le torseur cinématique* $\{ \mathcal{V}(2/0) \}$ *au point B*.

$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{c} \dot{\theta}(t)\overrightarrow{k_0} \\ \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1} \end{array} \right\}_B.$$

$$\overrightarrow{\Gamma(B,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(B,2/0)} \right]_{\mathscr{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta} \overrightarrow{j_1} + \dot{\lambda}(t) \dot{\theta} \overrightarrow{j_1} - \lambda(t) \dot{\theta}(t)^2 \overrightarrow{i_1} = \left(\ddot{\lambda}(t) - \lambda(t) \dot{\theta}(t)^2 \right) \overrightarrow{i_1} + \left(\dot{\lambda}(t) \dot{\theta}(t) + \dot{\lambda}(t) \dot{\theta}(t) \right) \overrightarrow{j_1} .$$
 Exercice 39 – Mouvement RT *

B2-13

Question 1 Déterminer $\overline{V(C,2/0)}$ par dérivation vectorielle ou par composition.

Méthode 1 - Dérivation vectorielle

$$\overrightarrow{V(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AC}\right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AB}\right]_{\mathcal{R}_0} + \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{BC}\right]_{\mathcal{R}_0} = \dot{\lambda}(t) \overrightarrow{i_0} + R \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{i_2}\right]_{\mathcal{R}_0} = \dot{\lambda}(t) \overrightarrow{i_0} + R \dot{\theta} \overrightarrow{j_2}$$

$$\mathbf{M\acute{e}thode\ 2-Composition\ du\ torseur\ cin\acute{e}matique}$$

$$V(C,2/0) = V(C,2/1) + V(C,1/0)$$

Pour tout point P, $\overrightarrow{V(P,1/0)} = \dot{\lambda} \overrightarrow{i_0}$.

$$\overrightarrow{V(C,2/1)} = \overrightarrow{V(B,2/1)} + \overrightarrow{CB} \wedge \overrightarrow{\Omega(2/1)} = -R \overrightarrow{i_2} \wedge \overrightarrow{\theta} \overrightarrow{k_0} = R \overrightarrow{\theta} \overrightarrow{j_2}.$$

On a donc
$$\overrightarrow{V(C,2/0)} = \dot{\lambda} \overrightarrow{i_0} + R \dot{\theta} \overrightarrow{j_2}$$
.

Question 2 Donner le torseur cinématique
$$\{\mathcal{V}(2/0)\}\$$
 au point C .
$$\{\mathcal{V}(2/0)\} = \left\{\begin{array}{c} \overrightarrow{\Omega(2/0)} = \dot{\theta} \overrightarrow{k_0} \\ \overrightarrow{V(C,2/0)} = \dot{\lambda} \overrightarrow{i_0} + R \dot{\theta} \overrightarrow{j_2} \end{array}\right\}_C.$$

Question 3 Déterminer $\Gamma(C)$

$$\overrightarrow{\Gamma(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(C,2/0)} \right]_{\mathcal{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_0} + R \frac{\mathrm{d}}{\mathrm{d}t} \left[\dot{\theta} \overrightarrow{j_2} \right]_{\mathcal{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_0} + R \left(\ddot{\theta} \overrightarrow{j_2} - \dot{\theta}^2 \overrightarrow{i_2} \right).$$

B2-13

Question 1 Déterminer $\overrightarrow{V(C,2/0)}$ par dérivation vectorielle.

$$\overline{V(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AC} \right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[R \overrightarrow{i_1} + \ell \overrightarrow{i_2} + r \overrightarrow{j_2} \right]_{\mathcal{R}_0}.$$

•
$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{i_1} \right]_{\mathscr{R}_0} = \overline{\Omega(1/0)} \wedge \overrightarrow{i_1} = \dot{\theta} \overrightarrow{k_0} \wedge \overrightarrow{i_1} = \dot{\theta} \overrightarrow{j_1}$$
.

•
$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{i_2} \right]_{\mathcal{R}_0} = \dot{\theta} \overrightarrow{j_1} (\overrightarrow{i_1} = \overrightarrow{i_2}).$$

•
$$\frac{\overrightarrow{d}}{dt} \left[\overrightarrow{j_2} \right]_{\mathcal{R}_0} = \overline{\Omega(2/0)} \wedge \overrightarrow{j_2} = \left(\overrightarrow{\theta} \overrightarrow{k_0} + \overrightarrow{\varphi} \overrightarrow{i_1} \right) \wedge \overrightarrow{j_2} = \overrightarrow{\theta} \overrightarrow{k_1} \wedge \overrightarrow{j_2} + \overrightarrow{\varphi} \overrightarrow{i_1} \wedge \overrightarrow{j_2} = -\overrightarrow{\theta} \cos \varphi \overrightarrow{i_1} + \overrightarrow{\varphi} \overrightarrow{k_2}.$$

On a donc, $\overrightarrow{V(C,2/0)} = (R+\ell)\dot{\theta}\overrightarrow{j_1} - r\dot{\theta}\cos\varphi\overrightarrow{i_1} + r\dot{\varphi}\overrightarrow{k_2}$.

Question 2 Déterminer V(C,2/0) par composition.

On a
$$\overrightarrow{V(C,2/0)} = \overrightarrow{V(C,2/1)} + \overrightarrow{V(C,1/0)}$$
.

- $\overrightarrow{V(C,2/1)}$: on passe par B car B est le centre de la pivot entre 2 et 1 et que $\overrightarrow{V(B,2/1)} = \overrightarrow{0}$. $\overrightarrow{V(C,2/1)} = \overrightarrow{0}$ $\overrightarrow{V(B,2/1)} + \overrightarrow{CB} \wedge \overrightarrow{\Omega(2/1)} = \left(-\ell \overrightarrow{i_2} - r \overrightarrow{j_2}\right) \wedge \overrightarrow{\varphi} \overrightarrow{i_1}$ $= -\ell \overrightarrow{i_2} \wedge \varphi \overrightarrow{i_1} - r \overrightarrow{j_2} \wedge \varphi \overrightarrow{i_1}.$
- $\overline{V(C,1/0)}$: on passe par A car A est le centre de la pivot entre 1 et 0 et que $\overline{V(A,1/0)} = \overrightarrow{0}$ est nul. $\overline{V(C,1/0)} = \overrightarrow{0}$ $\overrightarrow{V(A,1/0)} + \overrightarrow{CA} \wedge \overrightarrow{\Omega(1/0)}$ $=(-r\overrightarrow{j_2}-\ell\overrightarrow{i_2}-R\overrightarrow{i_1})\wedge \theta\overrightarrow{k_1}$ $=-r\dot{\theta}\cos\varphi\overrightarrow{i_1}+\ell\dot{\theta}\overrightarrow{j_1}+R\dot{\theta}\overrightarrow{j_1}$ Au final, $\overrightarrow{V(C,2/0)} = r \dot{\varphi} \overrightarrow{k_2} - r \dot{\theta} \cos \varphi \overrightarrow{i_1} + \ell \dot{\theta} \overrightarrow{j_1} + R \dot{\theta} \overrightarrow{j_1}$

Question 3 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C.

$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{l} \dot{\theta} \, \overrightarrow{k_1} + \dot{\varphi} \, \overrightarrow{i_1} \\ (R+\ell) \, \dot{\theta} \, \overrightarrow{j_1} - r \, \dot{\theta} \cos \varphi \, \overrightarrow{i_1} + r \, \dot{\varphi} \, \overrightarrow{k_2} \end{array} \right\}_C$$

$$\begin{split} &\overrightarrow{\Gamma(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(C,2/0)} \right]_{\mathcal{R}_0} \\ &= \frac{\mathrm{d}}{\mathrm{d}t} \left[(R+\ell) \, \dot{\theta} \, \overrightarrow{j_1} - r \, \dot{\theta} \cos \varphi \, \overrightarrow{i_1} + r \, \dot{\varphi} \, \overrightarrow{k_2} \right]_{\mathcal{R}_0} \end{split}$$

Calculons:
•
$$\frac{d}{dt} \left[\overrightarrow{i_1} \right]_{\mathcal{R}_0} = \overline{\Omega(1/0)} \wedge \overrightarrow{i_1} = \dot{\theta} \overrightarrow{k_0} \wedge \overrightarrow{i_1} = \dot{\theta} \overrightarrow{j_1}$$
.

•
$$\frac{d}{dt} \left[\overrightarrow{j_1} \right]_{\mathcal{R}_0} = \overline{\Omega(1/0)} \wedge \overrightarrow{j_1} = \dot{\theta} \overrightarrow{k_0} \wedge \overrightarrow{j_1} = -\dot{\theta} \overrightarrow{i_1}.$$

$$\underbrace{\frac{\mathbf{d}}{\mathbf{d}t} \left[\overrightarrow{k_2} \right]_{\mathcal{R}_0}}_{\mathbf{f}} = \underline{\Omega(2/0)} \wedge \overrightarrow{k_2} = \left(\dot{\theta} \overrightarrow{k_0} + \dot{\varphi} \overrightarrow{i_1} \right) \wedge \overrightarrow{k_2} = \dot{\theta} \overrightarrow{k_1} \wedge \overrightarrow{k_2} + \dot{\varphi} \overrightarrow{i_2} \wedge \overrightarrow{k_2} = \dot{\theta} \sin \varphi \overrightarrow{i_1} - \dot{\varphi} \overrightarrow{j_2}.$$

$$\underline{\Gamma(C, 2/0)} = (R + \ell) \overrightarrow{\theta} \overrightarrow{j_1} - (R + \ell) \dot{\theta}^2 \overrightarrow{i_1} - r \ddot{\theta} \cos \varphi \overrightarrow{i_1} + r \dot{\theta} \dot{\varphi} \sin \varphi \overrightarrow{i_1} - r \dot{\theta}^2 \cos \varphi \overrightarrow{j_1} + r \ddot{\varphi} \overrightarrow{k_2} + r \dot{\varphi} \left(\dot{\theta} \sin \varphi \overrightarrow{i_1} - \dot{\varphi} \overrightarrow{j_2} \right).$$

Exercice 41 - Mouvement RR 3D *

Question 1 Déterminer V(C,2/0) par dérivation vectorielle. $V(C,2/0) = \frac{d}{dt} \left[\overrightarrow{AC} \right]_{\Re_0} = \frac{d}{dt} \left[\overrightarrow{H} \overrightarrow{j_1} + \overrightarrow{R} \overrightarrow{i_1} + \overrightarrow{L} \overrightarrow{i_2} \right]_{\Re_0}$

Calculons: • $\frac{d}{dt} \left[\overrightarrow{j_0} \right]_{\Re_0} = \overrightarrow{0}$;

•
$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{i_1} \right]_{\mathcal{R}_0} = \overline{\Omega(1/0)} \wedge \overrightarrow{i_1} = \dot{\theta} \overrightarrow{j_1} \wedge \overrightarrow{i_1} = -\dot{\theta} \overrightarrow{k_1};$$

•
$$\frac{\mathrm{d}t}{\mathrm{d}t} \left[\overrightarrow{i_2} \right]_{\mathcal{R}_0} = \overline{\Omega(2/0)} \wedge \overrightarrow{i_2} = \left(\dot{\theta} \overrightarrow{j_1} + \dot{\varphi} \overrightarrow{k_2} \right) \wedge \overrightarrow{i_2} = \dot{\theta} \overrightarrow{j_1} \wedge \overrightarrow{i_2} + \dot{\varphi} \overrightarrow{k_2} \wedge \overrightarrow{i_2} = -\dot{\theta} \cos \varphi \overrightarrow{k_1} + \dot{\varphi} \overrightarrow{j_2}.$$

On a donc $\overrightarrow{V(C,2/0)} = -R\dot{\theta} \overrightarrow{k_1} + L(-\dot{\theta}\cos\varphi \overrightarrow{k_1} + \dot{\varphi} \overrightarrow{j_2}).$

- **Question 2** Déterminer $\overrightarrow{V(C,2/0)}$ par composition du vecteur vitesse. $\overrightarrow{V(C,2/0)} = \overrightarrow{V(C,2/1)} + \overrightarrow{V(C,1/0)}$.

 Pour calculer $\overrightarrow{V(C,2/1)}$, passons par B car $\overrightarrow{V(B,2/1)} = \overrightarrow{0}$: $\overrightarrow{V(C,2/1)} = \overrightarrow{V(B,2/1)} + \overrightarrow{CB} \wedge \overrightarrow{\Omega(2/1)} = \overrightarrow{CB} \wedge \overrightarrow{\Omega(2/1)}$ $=-L\overrightarrow{i_2}\wedge \overrightarrow{\phi} \overrightarrow{k_2}=L\overrightarrow{\phi} \overrightarrow{j_2}.$
- Pour calculer $\overrightarrow{V(C,1/0)}$, passons par A car $\overrightarrow{V(A,1/0)} = \overrightarrow{0}$: $\overrightarrow{V(C,1/0)} = \overrightarrow{V(A,1/0)} + \overrightarrow{CA} \wedge \overrightarrow{\Omega(1/0)} = \overrightarrow{CA} \wedge \overrightarrow{\Omega(1/0)}$ $= -\left(H\overrightarrow{j_1} + R\overrightarrow{i_1} + L\overrightarrow{i_2}\right) \wedge \theta \overrightarrow{j_1} = -\theta \left(R\overrightarrow{i_1} \wedge \overrightarrow{j_1} + L\overrightarrow{i_2} \wedge \overrightarrow{j_1}\right) = -\theta \left(R\overrightarrow{k_1} + L\cos\varphi\overrightarrow{k_1}\right).$

Au final, $\overrightarrow{V(C,2/0)} = L\dot{\varphi} \overrightarrow{j_2} - \dot{\theta} \left(R \overrightarrow{k_1} + L \cos \varphi \overrightarrow{k_1} \right)$.

Question 3 Donner le torseur cinématique
$$\{ \mathcal{V}(2/0) \}$$
 au point C .

$$\{ \mathcal{V}(2/0) \} = \left\{ \begin{array}{c} \dot{\varphi} \overrightarrow{k_2} + \dot{\theta} \overrightarrow{j_0} \\ L \dot{\varphi} \overrightarrow{j_2} - \dot{\theta} \left(R \overrightarrow{k_1} + L \cos \varphi \overrightarrow{k_1} \right) \end{array} \right\}_C.$$

Question 4 Déterminer $\Gamma(C,2/0)$

$$\frac{d}{\Gamma(C,2/0)} = \frac{d}{dt} \left[\overline{V(C,2/0)} \right]_{\mathcal{R}_0}$$

$$= \frac{d}{dt} \left[L\dot{\varphi} \, \overrightarrow{j_2} - \dot{\theta} \left(R \, \overrightarrow{k_1} + L \cos \varphi \, \overrightarrow{k_1} \right) \right]_{\mathcal{R}_0}.$$
Calculons:

Calculons:
•
$$\frac{d}{dt} \left[\overrightarrow{j_2} \right]_{\mathcal{R}_0} = \overrightarrow{\Omega(2/0)} \wedge \overrightarrow{j_2} = \left(\dot{\theta} \overrightarrow{j_1} + \dot{\theta} \overrightarrow{k_1} \right) \wedge \overrightarrow{j_2} = \dot{\theta} \overrightarrow{j_1} \wedge \overrightarrow{j_2} + \dot{\theta} \overrightarrow{k_1} \wedge \overrightarrow{j_2} = \dot{\theta} \sin \varphi \overrightarrow{k_1} - \dot{\theta} \overrightarrow{i_2}.$$

•
$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{k_1} \right]_{\mathcal{R}_0} = \dot{\theta} \overrightarrow{i_1}$$
.

 $\frac{\mathrm{d}t^{1}}{\Gamma(C,2/0)} = L\ddot{\varphi} \overrightarrow{j_{2}} + L\dot{\varphi} \left(\dot{\theta} \sin\varphi \overrightarrow{k_{1}} - \dot{\theta} \overrightarrow{i_{2}} \right) - \ddot{\theta} \left(R\overrightarrow{k_{1}} + L\cos\varphi \overrightarrow{k_{1}} \right) - \dot{\theta} \left(R\dot{\theta} \overrightarrow{i_{1}} + L\cos\varphi \dot{\theta} \overrightarrow{i_{1}} - L\dot{\varphi}\sin\varphi \overrightarrow{k_{1}} \right).$

Exercice 42 - Mouvement RT - RSG **

Question 1 Déterminer $\overline{V(B,2/0)}$.

$$\overrightarrow{V(B,2/0)} = \overrightarrow{V(B,2/1)} + \overrightarrow{V(B,1/0)}$$
.

D'une part,
$$V(B,2/1) = \lambda \vec{i_1}$$
.

D'autre part, en utilisant le roulement sans glissement en I, $\overline{V(B,1/0)} = \overline{V(I,1/0)} + \overline{BI} \wedge \overline{\Omega(1/0)} = \overrightarrow{0} + \left(-\lambda(t)\overrightarrow{i_1} - R\overrightarrow{j_0}\right) \wedge \overline{C(I/0)} = \overline{C(I/0)} + \overline$ $\dot{\theta} \overrightarrow{k_0} = -\dot{\theta} \left(\lambda(t) \overrightarrow{i_1} \wedge \overrightarrow{k_0} + R \overrightarrow{j_0} \wedge \overrightarrow{k_0} \right) = \dot{\theta} \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right).$

Au final,
$$\overrightarrow{V(B,2/0)} = \dot{\lambda} \overrightarrow{i_1} + \dot{\theta} \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right)$$

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point B.

$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{l} \dot{\theta} \, \overrightarrow{k_0} \\ \dot{\lambda} \, \overrightarrow{i_1} + \dot{\theta} \left(\lambda(t) \, \overrightarrow{j_1} - R \, \overrightarrow{i_0} \right) \end{array} \right\}_B.$$

Question 3 Déterminer $\Gamma(B,2/0)$

$$\overrightarrow{\Gamma(B,2/0)} = \frac{\mathrm{d}}{\mathrm{d}\,t} \left[\overrightarrow{V(B,2/0)} \right]_{\mathcal{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta} \overrightarrow{j_1} + \ddot{\theta}(t) \left(\lambda(t) \overrightarrow{j_1} - R \overrightarrow{i_0} \right) + \dot{\theta}(t) \left(\dot{\lambda}(t) \overrightarrow{j_1} - \lambda(t) \dot{\theta} \overrightarrow{i_1} \right).$$

Exercice 43 - Pompe à palettes *

B2-13

Question 1 *Donner le torseur cinématique* $\{\mathcal{V}(2/0)\}$ *au point B*.

En utilisant la décomposition du vecteur cinématique, on a : $\overline{V(B,2/0)} = \overline{V(B,2/1)} + \overline{V(B,1/0)}$

•
$$\overrightarrow{V(B,2/1)} = \dot{\lambda}(t)\overrightarrow{i_1}$$
.

•
$$\overrightarrow{V(B,1/0)} = \overrightarrow{V(A,1/0)} + \overrightarrow{BA} \wedge \overrightarrow{\Omega(1/0)} = -\lambda(t) \overrightarrow{i_1} \wedge \theta(t) \overrightarrow{k_0} = \lambda(t) \overrightarrow{\theta(t)} \overrightarrow{j_1}$$
.

$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{l} \dot{\theta}(t)\overrightarrow{k_0} \\ \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1} \end{array} \right\}_B.$$

$$\overrightarrow{\Gamma(B,2/0)} = \frac{\mathrm{d}}{\mathrm{d}\,t} \left[\overrightarrow{V(B,2/0)} \right]_{\mathcal{R}_0} = \ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta}(t) \overrightarrow{j_1} + \dot{\lambda}(t) \dot{\theta}(t) \overrightarrow{j_1} + \lambda(t) \ddot{\theta}(t) \overrightarrow{j_1} - \lambda(t) \dot{\theta}^2(t) \overrightarrow{i_1}.$$

Exercice 44 - Pompe à piston axial *

Il est possible de mettre la loi entrée-sortie sous la forme $\lambda(t) = e \sin \theta + R$ ou encore $\dot{\lambda}(t) = e \dot{\theta}(t) \cos \theta(t)$ (voir exercice 63).

Question 1 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}\$ au point C. $\{\mathcal{V}(2/0)\}=\left\{\begin{array}{c} \overrightarrow{0} \\ \dot{\lambda}(t)\overrightarrow{i}_{\circ} \end{array}\right\}$.

Question 2 Déterminer $\Gamma(C,2/0)$. $\Gamma(C,2/0) = \ddot{\lambda}(t)$

Exercice 45 - Système bielle manivelle *

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme $\lambda(t) = \pm \sqrt{L^2 - R^2 \cos^2 \theta(t)} + R \sin \theta(t)$ et $\dot{\lambda}(t) =$ $\pm \left(\frac{R^2\dot{\theta}(t)\cos\theta(t)\sin\theta(t)}{\sqrt{L^2-R^2\cos^2\theta(t)}}\right) + \dot{\theta}(t)R\cos\theta(t). \text{ (à vérifier – voir exercice 64)}.$

Question 1 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point B. On commence par calculer $\overline{V(B,2/0)} = \overline{V(B,2/1)} +$ V(B, 1/0) = V(B, 1/0).

- Méthode 1 dérivation vectorielle : $\overrightarrow{V(B,1/0)} = \frac{\mathrm{d}}{\mathrm{d}t} [AB]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[R \overrightarrow{i_1} \right]_{\mathcal{R}_0} = R \dot{\theta}(t) \overrightarrow{j_1}$.
- Méthode 2 formule de changement de point : $\overrightarrow{V(B,1/0)} = \overrightarrow{V(A,1/0)} + \overrightarrow{BA} \wedge \overrightarrow{\Omega(1/0)} = -R \overrightarrow{i_1} \wedge \overrightarrow{\theta} \ t \ \overrightarrow{k_0} = R \overrightarrow{\theta}(t) \ \overrightarrow{j_1}$

On a alors,
$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{c} \dot{\varphi}(t)\overrightarrow{k_0} \\ R\dot{\theta}(t)\overrightarrow{j_1} \end{array} \right\}_B$$
.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ et au point C.

On a,
$$\{\mathcal{V}(2/0)\}=\left\{\begin{array}{c} \dot{\varphi}(t)\overrightarrow{k_0} \\ \dot{\lambda}(t)\overrightarrow{j_0} \end{array}\right\}_C$$
.

Par ailleurs, on peut remarquer que $\overrightarrow{V(C,2/0)} = \overrightarrow{V(B,2/0)} + \overrightarrow{CB} \wedge \overrightarrow{\Omega(2/0)} = R\dot{\theta}(t)\overrightarrow{j_1} + L\overrightarrow{i_2} \wedge \dot{\varphi}(t)\overrightarrow{k_0} = R\dot{\theta}(t)\overrightarrow{j_1} - R\dot{\theta}(t)\overrightarrow{j_1} + L\overrightarrow{i_2} \wedge \dot{\varphi}(t)\overrightarrow{k_0} = R\dot{\theta}(t)\overrightarrow{k_0} = R\dot{\theta}(t)\overrightarrow{k_0} + R\dot{\theta}(t)\overrightarrow{k_0} = R\dot{\theta}(t)\overrightarrow{k_0$

On a donc nécessairement
$$\dot{\lambda}(t)\overrightarrow{j_0} = R\dot{\theta}(t)\overrightarrow{j_1} - L\dot{\varphi}(t)\overrightarrow{j_2}$$

 $\Rightarrow \dot{\lambda}(t)\overrightarrow{j_0} = R\dot{\theta}(t)\Big[\cos\theta(t)\overrightarrow{j_0} - \sin\theta(t)\overrightarrow{i_0}\Big] - L\dot{\varphi}(t)\Big[\cos\varphi(t)\overrightarrow{j_0} - \sin\varphi(t)\overrightarrow{i_0}\Big].$

$$\begin{cases} 0 = -R\dot{\theta}(t)\sin\theta(t) + L\dot{\varphi}(t)\sin\varphi(t) \end{cases}$$

$$\dot{\lambda}(t) = R\dot{\theta}(t)\cos\theta(t) - L\dot{\varphi}(t)\cos\varphi(t)$$

$$\Rightarrow \begin{cases} R\dot{\theta}(t)\sin\theta(t) = L\dot{\varphi}(t)\sin\varphi(t) \\ \dot{\varphi}(t) = R\dot{\theta}(t)\cos\theta(t) = L\dot{\varphi}(t)\cos\theta(t) \end{cases}$$

$$\Rightarrow \left(\lambda(t) - R\theta(t)\cos\theta(t) = L\varphi(t)\cos\varphi \right)$$

$$\Rightarrow \tan \varphi(t) = \frac{R\theta(t)\sin \theta(t)}{\dot{\lambda}(t) - R\dot{\theta}(t)\cos \theta(t)}$$

 $\begin{cases}
0 = -R\theta(t)\sin\theta(t) + L\varphi(t)\sin\varphi(t) \\
\dot{\lambda}(t) = R\dot{\theta}(t)\cos\theta(t) - L\dot{\varphi}(t)\cos\varphi(t) \\
\Rightarrow \begin{cases} R\dot{\theta}(t)\sin\theta(t) = L\dot{\varphi}(t)\sin\varphi(t) \\
\dot{\lambda}(t) - R\dot{\theta}(t)\cos\theta(t) = L\dot{\varphi}(t)\cos\varphi(t) \end{cases} \\
\Rightarrow \tan\varphi(t) = \frac{R\dot{\theta}(t)\sin\theta(t)}{\dot{\lambda}(t) - R\dot{\theta}(t)\cos\theta(t)} \\
\text{Il resterait à supprimer } \underline{\varphi(t) \text{ pour (espérons-le) retomber sur la loi entrée-sortie cinématique.}$

Question 3 *Déterminer* $\Gamma(B, 2/0)$

$$\overrightarrow{\Gamma(B,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(B,2/0)} \right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[R\dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathcal{R}_0} = R\ddot{\theta}(t) \overrightarrow{j_1} - R\dot{\theta}^2(t) \overrightarrow{j_1}.$$

B-Modéliser

Question 4 Déterminer $\Gamma(C, 2/0)$. $\overrightarrow{\Gamma(C, 2/0)} = \frac{d}{dt} \left[\overrightarrow{V(C, 2/0)} \right]_{\Re_0} = \ddot{\lambda}(t) \overrightarrow{j_0}.$

Exercice 46 - Système de transformation de mouvement *

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 65).

Question 1 Donner le torseur cinématique $\{ \mathcal{V}(3/0) \}$ au point B.

Question 2 *Déterminer* $\Gamma(B, 3/0)$.

Exercice 47 - Barrière Sympact **

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 66).

Question 1 En utilisant la condition de roulement sans glissement au point I, déterminer $\gamma(t)$ et $\dot{\gamma}(t)$.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(3/2)\}$ au point B.

Exercice 48 - Système 4 barres ***

B2-13 Pas de corrigé pour cet exercice.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 69). On définit le point G tel que $\overrightarrow{OG} = L\overrightarrow{x_1}$.

Question 1 Donner le torseur cinématique $\{\mathcal{V}(1/0)\}$ au point G.

Question 2 Déterminer $\Gamma(G, 1/0)$.

Exercice 49 - Maxpid ***

B2-13 Pas de corrigé pour cet exercice.

Par ailleurs $a = 107.1 \,\mathrm{mm}$, $b = 80 \,\mathrm{mm}$, $c = 70 \,\mathrm{mm}$, $d = 80 \,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice 70).

On définit le point G tel que $\overrightarrow{OG} = L\overrightarrow{x_4}$.

Question 1 Donner le torseur cinématique $\{\mathcal{V}(4/0)\}$ au point G.

Question 2 *Déterminer* $\Gamma(G, 4/0)$.

Exercice 50 - Mouvement RR - RSG **

B2-13

Question 1 Déterminer $\overline{V(B,2/0)}$. En utilisant la décomposition du vecteur vitesse : $\overline{V(B,2/0)} = \overline{V(B,2/1)} + \overline{V(B,1/0)}$.

- Calcul de $\overrightarrow{V(B,2/1)}$: $\overrightarrow{V(B,2/1)} = \overrightarrow{V(A,2/1)} + \overrightarrow{BA} \wedge \overrightarrow{\Omega(2/1)}$. 2 et 1 étant en pivot d'axe $(A, \overrightarrow{k_0})$, on a $\overrightarrow{V(B,2/1)} = \overrightarrow{V(B,2/1)} = \overrightarrow{$
- $\overrightarrow{0}-L\overrightarrow{i_2}\wedge\dot{\varphi}(t)\overrightarrow{k_0}=L\dot{\varphi}(t)\overrightarrow{j_2}.$ Calcul de $\overrightarrow{V}(B,1/0)$: $\overrightarrow{V}(B,1/0)=\overrightarrow{V}(I,1/0)+\overrightarrow{BI}\wedge\overrightarrow{\Omega}(1/0)=\overrightarrow{0}-L\overrightarrow{i_1}\wedge\dot{\varphi}(t)\overrightarrow{k_0}.$ En utilisant l'hypothèse de roulement sans glissement : $\overrightarrow{V}(B,1/0)=\left(-L\overrightarrow{i_1}-R\overrightarrow{j_0}\right)\wedge\dot{\theta}(t)\overrightarrow{k_0}=\dot{\theta}(t)\left(L\overrightarrow{j_1}-R\overrightarrow{i_0}\right).$

Au final, $\overrightarrow{V(B,2/0)} = L\dot{\varphi}(t)\overrightarrow{j_2} + \dot{\theta}(t)\left(L\overrightarrow{j_1} - R\overrightarrow{i_0}\right)$.

Question 2 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}\$ au point $B.\{\mathcal{V}(2/0)\}=\left\{\begin{array}{c} \overrightarrow{\Omega(2/0)}=\left(\dot{\varphi}(t)+\dot{\theta}(t)\right)\overrightarrow{k_0}\\ L\dot{\varphi}(t)\overrightarrow{j_2}+\dot{\theta}(t)\left(L\overrightarrow{j_1}-R\overrightarrow{i_0}\right)\end{array}\right\}_{p}$.

Question 3 Déterminer $\Gamma(B,2/0)$.

$$\begin{split} &\overrightarrow{\Gamma(B,2/0)} = \frac{\mathrm{d}}{\mathrm{d}\,t} \left[\overrightarrow{V(B,2/0)} \right]_{\mathcal{R}_0} \\ &= \frac{\mathrm{d}}{\mathrm{d}\,t} \left[L\dot{\varphi}(t) \overrightarrow{j_2} \right]_{\mathcal{R}_0} + \frac{\mathrm{d}}{\mathrm{d}\,t} \left[\dot{\theta}(t) \left(L \overrightarrow{j_1} - R \overrightarrow{i_0} \right) \right]_{\mathcal{R}_0} \\ &= L \ddot{\varphi}(t) \overrightarrow{j_2} - L \dot{\varphi}(t) \left(\dot{\varphi}(t) + \dot{\theta}(t) \right) \overrightarrow{i_2} + \ddot{\theta}(t) \left(L \overrightarrow{j_1} - R \overrightarrow{i_0} \right) - L \dot{\theta}^2(t) \overrightarrow{i_1} \,. \end{split}$$

1.2 Proposer une démarche de résolution

1.3 Mettre en œuvre une démarche de résolution analytique

1.3.1 Déterminer les relations entre les grandeurs géométriques ou cinématiques

Exercice 51 - Pompe à piston radial *

C2-06

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\lambda(t)$ en fonction de $\theta(t)$.

Question 3 En utilisant Python, tracer $\lambda(t)$ en fonction de $\theta(t)$.

Question 4 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

On prendra une section de piston **2** de 1 cm² et une fréquence de rotation de $\dot{\theta}(t) = 2\pi \, \text{rad} \, \text{s}^{-1}$. **Question 5** *Exprimer le débit instantané de la pompe*.

Question 6 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour $e = 10 \,\mathrm{mm}$ et $e = 15 \,\mathrm{mm}$.

Question 7 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour e = 10 mm pour une pompe à 5 pistons (5 branches 1+2).

Indications (à vérifier...) : 1. . 2. $\lambda(t) = e \cos \theta(t) \pm \sqrt{e^2 \cos^2 \theta(t) - e^2 + R^2}$. 3. . 4. $q(t) = S\dot{\lambda}(t)$. 5. .

Corrigé voir 62.

Exercice 52 - Pompe à piston axial *

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \overrightarrow{i_1}$ et $\overrightarrow{BI} = R \overrightarrow{j_0}$ et $\overrightarrow{AC} = \lambda(t) \overrightarrow{j_0}$. De plus, e = 10 mm et R = 20 mm. Le contact entre $\mathbf{1}$ et $\mathbf{2}$ en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre $\mathbf{0}$ et $\mathbf{2}$.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 On note S la section du piston **2**. Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour $e=10\,\mathrm{mm}$ et $R=10\,\mathrm{mm}$ ainsi que pour $e=20\,\mathrm{mm}$ et $R=5\,\mathrm{mm}$. La fréquence de rotation est $\dot{\theta}(t)=100\,\mathrm{rad}\,\mathrm{s}^{-1}$, la section du piston est donnée par $S=1\,\mathrm{cm}^2$.

Indications: 1. . 2. $e \sin \theta + R - \lambda(t) = 0$. 3. $\dot{\lambda}(t) = e \dot{\theta}(t) \cos \theta(t)$. 4. $q(t) = e S \dot{\theta}(t) \cos \theta(t)$. 5. .

Corrigé voir 63.

Exercice 53 – Système bielle manivelle **

C2-06

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$, $\overrightarrow{CB} = L \overrightarrow{i_2}$ et $\overrightarrow{AC} = \lambda(t) \overrightarrow{j_0}$.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer la vitesse du piston en fonction du temps. La fréquence de rotation est $\dot{\theta}(t) = 100 \, \mathrm{rad} \, \mathrm{s}^{-1}$, on prendra $R = 10 \, \mathrm{mm}$ et $L = 20 \, \mathrm{mm}$ puis $L = 30 \, \mathrm{mm}$.

Question 5 En utilisant Python, tracer l'accélération du piston en fonction du temps en utilisant les mêmes valeurs que dans la question précédente. On utilisera une dérivation numérique.

Indications:
1. .
2.
$$\lambda(t) = \pm \sqrt{L^2 - R^2 \cos^2 \theta(t)} + R \sin \theta(t)$$
.
3. $\dot{\lambda}(t) = \pm \left(\frac{R^2 \dot{\theta}(t) \cos \theta(t) \sin \theta(t)}{\sqrt{L^2 - R^2 \cos^2 \theta(t)}}\right) + \dot{\theta}(t)R \cos \theta(t)$.
4. .
5. .

Corrigé voir 64.

Exercice 54 - Pompe oscillante *

C2-06

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} = H \overrightarrow{j_0}$. De plus, R = 40 mm et H = 60 mm. Par ailleurs, on note $\overrightarrow{CB} = \lambda(t) \overrightarrow{i_2}$.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, donner le débit instantané de la pompe pour un tour de pompe pour un piston de diamètre $D = 10 \,\mathrm{mm}$.

Indications:

- 1. . 2. $\lambda(t) = \pm \sqrt{R^2 + H^2 + 2HR\sin\theta(t)}$
- 3. $\dot{\lambda}(t) = \frac{1}{2} \left(-2HR\dot{\theta}(t)\cos\theta(t) \right) \left(R^2 + H^2 + 2HR\sin\theta(t) \right)^{-\frac{1}{2}}$ 4. $q(t) = S\dot{\lambda}(t)$

Corrigé voir 65.

Exercice 55 - Barrière Sympact *

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} =$ $\overrightarrow{R}i_1$. De plus, $H = 120 \,\mathrm{mm}$ et $R = 40 \,\mathrm{mm}$.

Question 1 *Tracer le graphe des liaisons.*

Question 2 *Exprimer* $\varphi(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce 1 est de 10 tours par minute.

Indications:

- 1. . 2. $\tan \varphi(t) = \frac{R \sin \theta(t) + h}{1}$
- $R\cos\theta(t)$
- $R\dot{\theta}(t)(R+h\sin\theta(t))$
- $\overline{R^2 + h^2 + 2Rh\sin\theta(t)}$

Corrigé voir 66.

Exercice 56 - Barrière Sympact avec galet **

B2-13

C2-05

C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} =$ $R \overrightarrow{i_1}$. De plus, $H = 120 \,\mathrm{mm}$ et $R = 40 \,\mathrm{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\varphi(t)$ *en fonction de* $\theta(t)$.

Question 3 *Exprimer* $\dot{\varphi}(t)$ *en fonction de* $\dot{\theta}(t)$.

Question 4 En utilisant la condition de roulement sans glissement au point I, déterminer $\gamma(t)$ et $\dot{\gamma}(t)$.

Question 5 En utilisant Python, tracer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce 1 est de 10 tours par minute.

Corrigé voir 67.

Exercice 57 - Poussoir *

C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = L\overrightarrow{i_0} + H\overrightarrow{j_0}$, $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$. De plus, H = 120 mm, $L = 40 \,\mathrm{mm}$.

Question 1 *Tracer le graphe des liaisons.*

Question 2 *Exprimer* $\mu(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\mu}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer $\dot{\mu}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce 1 est de 10 tours par minute.

Corrigé voir 68.

Exercice 58 - Système 4 barres **

C2-06 Pas de corrigé pour cet exercice.

- $\overrightarrow{OA} = a \overrightarrow{x_1} f \overrightarrow{y_1}$ avec $a = 355 \,\mathrm{mm}$ et $f = 13 \,\mathrm{mm}$;
- $\overrightarrow{AB} = b \overrightarrow{x_2}$ avec $b = 280 \,\mathrm{mm}$;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$ avec $c = 280 \,\text{mm}$; $\overrightarrow{OC} = -d \overrightarrow{x_0} e \overrightarrow{y_0}$ avec $d = 89.5 \,\text{mm}$ et e =160 mm;

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\theta_1(t)$ en fonction de $\theta_4(t)$.

Question 3 Exprimer $\dot{\theta}_1(t)$ en fonction de $\dot{\theta}_4(t)$.

Question 4 En utilisant Python, tracer $\dot{\theta}_1(t)$ en fonction de $\dot{\theta}_4(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir 69.

Exercice 59 - Maxpid ***

C2-06 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Par ailleurs $a=107.1\,\mathrm{mm},\ b=80\,\mathrm{mm},\ c=70\,\mathrm{mm},\ d=80\,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Question 1 *Tracer le graphe des liaisons.*

Question 2 *Exprimer* $\theta(t)$ *en fonction de* $\lambda(t)$.

Question 3 Exprimer $\dot{\theta}(t)$ en fonction de $\dot{\lambda}(t)$.

Question 4 Exprimer $\dot{\theta}(t)$ en fonction de $\omega(t)$, vitesse

de rotation du rotor moteur 2 par rapport au stator 1.

Question 5 En utilisant Python, tracer $\dot{\theta}(t)$ en fonction de $\omega(t)$. On considérera que la fréquence de rotation de la pièce **2** par rapport à **1** est de 500 tours par minute.

Corrigé voir 70.

Exercice 60 - Variateur de Graham 1 * * *

D'après ressources de Michel Huguet.

B2-13 C2-05

C2-06 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

On note
$$\overrightarrow{AJ} = -L \overrightarrow{i_0} + \frac{d_3}{2} \overrightarrow{j_2}$$
 et $\overrightarrow{KJ} = -\ell \overrightarrow{i_2} + \frac{d_2}{2} \overrightarrow{j_2}$.

Soit $\mathcal{R} = \left(A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0}\right)$ un repère lié au bâti $\mathbf{0}$ du variateur. L'arbre moteur $\mathbf{1}$ et l'arbre récepteur $\mathbf{3}$ ont une liaison pivot d'axe $\left(A, \overrightarrow{i_0}\right)$ avec le bâti $\mathbf{0}$. On pose $\overline{\Omega(1/0)} = \omega_1 \overrightarrow{i_0}$ et $\overline{\Omega(3/0)} = \omega_3 \overrightarrow{i_0}$.

Soit $\mathcal{R}_1 = (A; \overrightarrow{i_0}, \overrightarrow{j_1}, \overrightarrow{k_1})$ et $\mathcal{R}_2 = (B; \overrightarrow{i_2}, \overrightarrow{j_2}, \overrightarrow{k_1})$ deux repères liés respectivement à $\mathbf{1}$ et $\mathbf{2}$ tels que \overrightarrow{AB} ait même direction que $\overrightarrow{j_1}$. On pose $\alpha = (\overrightarrow{i_1}, \overrightarrow{i_2})$ constant.

Le satellite **2** a une liaison pivot d'axe $(\overrightarrow{B}, \overrightarrow{i_2})$ avec **1**. **2** est un tronc de cône de révolution d'axe $(\overrightarrow{B}, \overrightarrow{i_2})$ de demi angle au sommet α . On pose $\overrightarrow{\Omega(S_2/S_1)} = \omega \overrightarrow{i_2}$.

La génératrice de **2** du plan $(O, \overrightarrow{i_0}, \overrightarrow{j_1})$ la plus éloignée de l'axe $(O, \overrightarrow{i_0})$ est parallèle à $\overrightarrow{i_0}$. Notons d sa distance à l'axe $(O, \overrightarrow{i_0})$

2 roule sans glisser au point I, sur une couronne **4**, immobile par rapport à **0** pendant le fonctionnement. Le réglage du rapport de variation s'obtient en déplaçant **4** suivant l'axe $(O, \overrightarrow{i_0})$.

Soit K le centre de la section droite du tronc de cône passant par I. On pose $\overrightarrow{BI} = \lambda j_2$. À l'extrémité de $\mathbf{2}$ est fixée une roue dentée de n dents, d'axe $\left(B,\overrightarrow{i_2}\right)$, qui engrène avec une couronne dentée intérieure d'axe $\left(A,\overrightarrow{i_0}\right)$, de n_2 dents, liée à $\mathbf{3}$.

Question 1 Tracer le graphe des liaisons.

^{1.} Les éventuelles erreur de texte font partie intégrante de la difficulté :).

Question 2 En exprimant que **2** roule sans glisser sur **4** au point I, déterminer ω en fonction de ω_1 , d et λ .

Question 3 Quelle relation obtient-on entre ω_1 , ω_3 et ω en exprimant l'engrènement des deux roues dentées? (c'est à dire que **2** et **3** roulent sans glisser l'un sur l'autre en I).

Question 4 En déduire le rapport de variation $\frac{\omega_3}{\omega_1}$ du mécanisme en fonction de λ , d_2 , d_3 et d.

Question 5 Tracer la courbe représentative du rapport de variation $\frac{\omega_3}{\omega_1}$ du mécanisme en fonction de λ , sachant que $\frac{n}{n_3} = \frac{d_1}{d_3}$, $d = 55\,\mathrm{mm}$ et que λ varie entre $\lambda_{mini} = 12\,\mathrm{mm}$ et la valeur $\lambda_{maxi} = 23\,\mathrm{mm}$.

Corrigé voir 72.

Exercice 61 - Variateur à billes *****

B2-13

C2-05

C2-06

Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Question 1 *Tracer le graphe des liaisons.* **Question 2** *Déterminer la loi entrée – sortie.*

Corrigé voir 72.

Proposer une démarche de résolution

1.5 Mettre en œuvre une démarche de résolution analytique

1.5.1 Déterminer les relations entre les grandeurs géométriques ou cinématiques

Exercice 62 - Pompe à piston radial *

C2-06

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

On a $\overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{BO} = \overrightarrow{0}$ soit $-\overrightarrow{e} \overrightarrow{i_0} + \lambda \overrightarrow{i_1} - R \overrightarrow{u} = \overrightarrow{0} \Leftrightarrow -\overrightarrow{e} \overrightarrow{i_0} + \lambda(t) \cos \theta(t) \overrightarrow{i_0} + \lambda(t) \sin \theta(t) \overrightarrow{j_0} - R \cos \varphi(t) \overrightarrow{i_0} - R \cos \varphi(t) \overrightarrow{i_0} = 0$ $R\sin\varphi(t)\overrightarrow{j_0} = \overrightarrow{0}$.

En projetant les expressions sur $\overrightarrow{i_0}$ et $\overrightarrow{j_0}$, on a : $\begin{cases} -e + \lambda(t)\cos\theta(t) - R\cos\varphi(t) = 0 \\ \lambda(t)\sin\theta(t) - R\sin\varphi(t) = 0 \end{cases}$

On cherche à supprimer $\varphi(t)$; donc

$$\begin{cases} -e + \lambda(t)\cos\theta(t) = R\cos\varphi(t) \\ \lambda(t)\sin\theta(t) = R\sin\varphi(t) \end{cases}$$

En élevant au carré les expressions et en sommant, on obtient $R^2 = (-e + \lambda(t)\cos\theta(t))^2 + \lambda(t)^2\sin^2\theta(t) \Rightarrow R^2 =$ $(-e + \lambda(t)\cos\theta(t))^2 + \lambda(t)^2\sin^2\theta(t)$

$$\Rightarrow R^2 = e^2 - 2e\lambda(t)\cos\theta(t) + \lambda(t)^2.$$

Résolution de l'équation : $\lambda(t)^2 - 2e\lambda(t)\cos\theta(t) + e^2 - R^2 = 0$. On a $\Delta = (-2e\cos\theta(t))^2 - 4(e^2 - R^2) = 4e^2\cos^2\theta(t) - 4e^2 + 4R^2$.

On a donc

$$\lambda(t) = \frac{2e \cos \theta(t) \pm \sqrt{4e^2 \cos^2 \theta(t) - 4e^2 + 4R^2}}{2e^2 \cos^2 \theta(t) - 4e^2 + 4R^2}$$

$$\lambda(t) = \frac{2}{e^2 \cos^2 \theta(t) - e^2 + R^2}$$

Question 3 *En utilisant Python, tracer* $\lambda(t)$ *en fonction de* $\theta(t)$. On garde la solution positive et obtient la courbe suivante.

Question 4 *Exprimer* $\dot{\lambda}(t)$ *en fonction de* $\dot{\theta}(t)$.

En dérivant l'expression précédente, on a $\dot{\lambda}_+(t) = -e \dot{\theta}(t) \sin \theta(t) + \frac{1}{2} \left(e^2 \cos^2 \theta(t) \right)' \left(e^2 \cos^2 \theta(t) - e^2 + R^2 \right)^{-\frac{1}{2}}$ $=-e\dot{\theta}(t)\sin{\theta}(t) \sqrt{e^2\cos^2\theta(t)-e^2+R^2}$

À revoir

Question 5 Exprimer le débit instantané de la pompe.

Le débit instantané de la pompe est donné par $q(t) = S\dot{\lambda}(t)$.

Question 6 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour $e=10\,\mathrm{mm}$ et $e=15\,\mathrm{mm}$.

Question 7 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour $e = 10 \, \text{mm}$ pour une pompe à 5 pistons (5 branches 1+2).

```
def plot_debit5p():
   plt.cla()
   w = 2*m.pi # rad/s (1tr/s)
   les_t = np.linspace(0,6,6000)
   les_theta = w*les_t
   # Calcul de la vitesse instantanée des pistons.
   les_lambda = calc_lambda(les_theta)
   les_lambdap = calc_lambdap_bis(les_t,les_lambda)
   les_lambdap = np.array(les_lambdap)
   S= 1e-4 # Surface en m2
   # 5 courbes de débit décalées d'un cinquième de tour
   les_q1 = S*les_lambdap
   les_q2 = S*les_lambdap[200:]
   les_q3 = S*les_lambdap[400:]
   les_q4 = S*les_lambdap[600:]
   les_q5 = S*les_lambdap[800:]
   # On conserve que les valeurs que sur un tour
   les_q1 = les_q1[:1000]
   les_q2 = les_q2[:1000]
   les_q3 = les_q3[:1000]
```



```
les_q4 = les_q4[:1000]
les_q5 = les_q5[:1000]
plt.grid()
les_t = les_t[:1000]
les_theta = les_theta[:1000]
plt.xlabel("$\\theta$\(\deg\)")
plt.ylabel("Débituinstantanéu$m^3s^{-1}$")
# On conserve que les valeurs positives (débit)
for i in range(len(les_q1)):
   if les_q1[i]<0:</pre>
       les_q1[i]=0
    if les_q2[i]<0:
       les_q2[i]=0
    if les_q3[i]<0:
       les_q3[i]=0
    if les_q4[i]<0:
       les_q4[i]=0
    if les_q5[i]<0:
       les_q5[i]=0
plt.plot(np.degrees(les_theta),les_q1)
plt.plot(np.degrees(les_theta),les_q2)
plt.plot(np.degrees(les_theta),les_q3)
plt.plot(np.degrees(les_theta),les_q4)
plt.plot(np.degrees(les_theta),les_q5)
# Le débit instantané est la sommme des contributions
plt.plot(np.degrees(les_theta),les_q1+les_q2+les_q3+les_q4+les_q5)
#plt.show()
#plt.savefig("10_05_c.pdf")
```


Exercice 63 - Pompe à piston axial *

C2-06

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

En écrivant la fermeture géométrique, on a $\overrightarrow{AB} + \overrightarrow{BI} + \overrightarrow{IC} + \overrightarrow{CA} = \overrightarrow{0}$.

On a donc, $e\overrightarrow{i_1} + R\overrightarrow{j_0} + \mu\overrightarrow{i_0} - \lambda(t)\overrightarrow{j_0} = \overrightarrow{0}$. En projetant l'expression sur $\overrightarrow{j_0}$ (dans ce cas, l'expression suivant $\overrightarrow{i_0}$ n'est pas utile) : $e\sin\theta + R - \lambda(t) = 0$.

On a donc, $\lambda(t) = e \sin \theta + R$.

Question 3 *Exprimer* $\dot{\lambda}(t)$ *en fonction de* $\dot{\theta}(t)$.

En dérivant l'expression précédente, on a $\dot{\lambda}(t) = e \dot{\theta}(t) \cos \theta(t)$.

Question 4 On note S la section du piston **2**. Exprimer le débit instantané de la pompe.

En notant q(t) le débit instantané, $q(t) = eS\dot{\theta}(t)\cos\theta(t)$.

Question 5 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour $e = 10 \,\mathrm{mm}$ et $R = 10 \,\mathrm{mm}$ ainsi que pour $e = 20 \,\mathrm{mm}$ et $R = 5 \,\mathrm{mm}$. La fréquence de rotation est $\dot{\theta}(t) = 100 \,\mathrm{rad} \,\mathrm{s}^{-1}$, la section du piston est donnée par $S = 1 \,\mathrm{cm}^2$.

```
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""11_PompePistonAxial.py"""
__author__ = "Xavier_Pessoles"
__email__ = "xpessoles.ptsi@free.fr"
import numpy as np
import matplotlib.pyplot as plt
import math as m
from scipy.optimize import newton
from scipy.optimize import fsolve
R = 0.02 \# m
e = 0.01 \# m
def calc_lambda(theta):
   res= e*np.sin(theta)+R
   return res
def calc_lambdap(theta,w):
   res = e*w*np.cos(theta)
   return res
def plot_debit():
   plt.cla()
   w = 100 \# rad/s
   les_t = np.linspace(0,0.1,1000)
   les_theta = w*les_t
   global e
   S = 1e-4
   e = 20e - 3
   les_q = e*S*w*np.cos(les_theta)
   plt.plot(les_t,les_q)
   plt.xlabel("Temps<sub>□</sub>(s)")
   plt.ylabel("Débit_{\sqcup}(_{m}^3s^{-1})")
   plt.grid()
```


Exercice 64 - Système bielle manivelle **

C2-06

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

En réalisant une fermeture géométrique, on obtient $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0} \iff R \overrightarrow{i_1} - L \overrightarrow{i_2} - \lambda(t) \overrightarrow{j_0} = \overrightarrow{0}$. On projette alors cette expression dans \mathscr{R}_0 :

```
\begin{cases} R\cos\theta(t) - L\cos\varphi(t) = 0 \\ R\sin\theta(t) - L\sin\varphi(t) - \lambda(t) = 0 \end{cases} On cherche à éliminer \varphi(t): \begin{cases} R\cos\theta(t) = L\cos\varphi(t) \\ R\sin\theta(t) - \lambda(t) = L\sin\varphi(t) \end{cases} En élevant au carré, on a donc \begin{cases} R^2\cos^2\theta(t) = L^2\cos^2\varphi(t) \\ (R\sin\theta(t) - \lambda(t))^2 = L^2\sin^2\varphi(t) \end{cases} En conséquence, R^2\cos^2\theta(t) + (R\sin\theta(t) - \lambda(t))^2 = L^2 et (R\sin\theta(t) - \lambda(t))^2 = L^2 - R^2\cos^2\theta(t) \Rightarrow \lambda(t) = \pm \sqrt{L^2 - R^2\cos^2\theta(t)} + R\sin\theta(t). Question 3 Exprimer \lambda(t) en fonction de(t). \lambda(t) = \pm \left(\frac{R^2\dot{\theta}(t)\cos\theta(t)\sin\theta(t)}{\sqrt{L^2 - R^2\cos^2\theta(t)}}\right) + \dot{\theta}(t)R\cos\theta(t)
```

Question 4 En utilisant Python, tracer la vitesse du piston en fonction du temps. La fréquence de rotation est $\dot{\theta}(t) = 100 \,\mathrm{rad}\,\mathrm{s}^{-1}$, on prendra $R = 10 \,\mathrm{mm}$ et $L = 20 \,\mathrm{mm}$ puis $L = 30 \,\mathrm{mm}$.

```
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""12_BielleManivelle.py"""
__author__ = "Xavier_Pessoles"
```



```
__email__ = "xpessoles.ptsi@free.fr"
import numpy as np
import matplotlib.pyplot as plt
import math as m
from scipy.optimize import newton
from scipy.optimize import fsolve
R = 0.01 \# m
L = 0.03 \# m
w = 100
def calc_lambda(theta):
   #res = R*np.sin(theta)
   #print(L*L-R*R*np.cos(theta)*np.cos(theta))
   \#res = res + np.sqrt(L*L-R*R*np.cos(theta)*np.cos(theta))
   res = np.sqrt(L*L-R*R*np.cos(theta)*np.cos(theta))+R*np.sin(theta)
   return res
def plot_lambda():
    les_theta=np.linspace(-2*np.pi,2*np.pi,1000)
   les_l = [calc_lambda(x) for x in les_theta]
   plt.grid()
   plt.xlabel("Temps_(s)")
   plt.ylabel("Vitesse_(${m}s^{-1}$)")
   plt.plot(les\_theta, les\_1, label=str("R=")+str(R)+"_{\sqcup}mm,"+str("L=")+str(L)+"_{\sqcup}mm")
   plt.legend()
   plt.show()
plot_lambda()
```


Question 5 En utilisant Python, tracer l'accélération du piston en fonction du temps en utilisant les mêmes valeurs que dans la question précédente. On utilisera une dérivation numérique.

Exercice 65 - Pompe oscillante *

C2-06

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

En réalisant une fermeture géométrique, on a $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0} \iff R \overrightarrow{i_1} - \lambda(t) \overrightarrow{i_2} + H \overrightarrow{j_0} = \overrightarrow{0}$.

En projetant cette expression dans le repère \Re_0 , on a $R\left(\cos\theta(t)\overrightarrow{i_0} + \sin\theta(t)\overrightarrow{j_0}\right) - \lambda(t)\left(\cos\varphi(t)\overrightarrow{i_0} + \sin\varphi(t)\overrightarrow{j_0}\right) + \sin\varphi(t)\overrightarrow{j_0}$ $H\overrightarrow{j_0} = \overrightarrow{0}$.

On obtient alors les équation scalaires suivantes : $\begin{cases} R\cos\theta(t) - \lambda(t)\cos\varphi(t) = 0 \\ R\sin\theta(t) - \lambda(t)\sin\varphi(t) + H = 0 \end{cases}$ On cherche à supprimer $\varphi(t)$, on va donc isoler la variable : $\begin{cases} \lambda(t)\cos\varphi(t) = R\cos\theta(t) \\ \lambda(t)\sin\varphi(t) = R\sin\theta(t) + H \end{cases} \Rightarrow \begin{cases} \lambda(t)^2\cos^2\varphi(t) = R^2\cos^2\varphi(t) = R^2\cos^2\varphi(t$

En sommant les expressions, on a : $\lambda(t)^2 = R^2 \cos^2 \theta(t) + (R \sin \theta(t) + H)^2$

Au final,
$$\lambda(t)^2 = R^2 + H^2 + 2HR\sin\theta(t)$$
 et

$$\lambda(t) = \pm \sqrt{R^2 + H^2 + 2HR\sin\theta(t)}.$$

Question 3 *Exprimer* $\dot{\lambda}(t)$ *en fonction de* $\dot{\theta}(t)$.

En dérivant l'expression obtenue à la question précédente, on obtient

$$\dot{\lambda}(t) = \frac{1}{2} \left(-2HR\dot{\theta}(t)\cos\theta(t) \right) \left(R^2 + H^2 + 2HR\sin\theta(t) \right)^{-\frac{1}{2}}.$$

Question 4 Exprimer le débit instantané de la pompe.

On note q le débit instantané de la pompe. On a $q(t) = S\lambda(t)$ avec S la section du piston 3.

Question 5 En utilisant Python, donner le débit instantané de la pompe pour un tour de pompe pour un piston de $diamètre D = 10 \,\mathrm{mm}$.


```
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""13_TransfoMouvement.py"""
__author__ = "Xavier_Pessoles"
__email__ = "xpessoles@lamartin.fr"
import numpy as np
import matplotlib.pyplot as plt
import math as m
R = 0.04 \# m
H = 0.06 \# m
D = 10e-3 \# 10 mm
w = 60 \# tours /min
  = w*2*m.pi/60 # rad/s
```



```
def calc_lambda(theta):
       res = R*R+H*H+2*H*R*np.sin(theta)
       return np.sqrt(res)
def calc_lambdap(theta):
        res = -H*R*w*np.cos(theta)*np.power(R*R+H*H+2*H*R*np.sin(theta),-0.5)
        return np.sqrt(res)
def calc_lambdap_bis(les_t,les_lambda):
        les_lambda_p = []
       for i in range(len(les_t)-1):
               \verb|les_lambda_p.append((les_lambda[i+1]-les_lambda[i])/(les_t[i+1]-les_t[i]))|
       return les_lambda_p
def plot_lambda():
        les_t = np.linspace(0,2,1000)
        les_theta = w*les_t
        les_lambda = calc_lambda(les_theta)
       plt.grid()
       plt.xlabel("Temps_(s)")
       plt.ylabel("Position linéaire du piston ($m$)")
       plt.plot(les\_t,les\_lambda,label=str("\$\backslash \$, LR=")+str(R)+"Lmm, LR=")+str("H=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+"LR=")+str(H)+str(H)+"LR=")+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)+str(H)
       plt.legend()
       plt.show()
def plot_lambdap():
        les_t = np.linspace(0,2,1000)
        les_theta = w*les_t
        les_lambda = calc_lambda(les_theta)
        les_lambdap = calc_lambdap(les_theta)
       plt.grid()
       plt.xlabel("Temps<sub>□</sub>(s)")
       plt.ylabel("Vitesse_du_piston_($m/s$)")
        #plt.plot(les_t,les_lambdap,label=str("$\dot{\\lambda}$, R=")+str(R)+" mm, "+str("H=")+str(H
       les_lambdap_bis = calc_lambdap_bis(les_t,les_lambda)
       plt.plot(les_t[:-1],les_lambdap_bis,label=str("$\dot{\lambda}$,_LR=")+str(R)+"_Lmm,_L"+str("H=0)
                ") +str(H) +"_mm")
       plt.legend()
       plt.show()
def plot_debit():
        les_t = np.linspace(0,2,1000)
        les_theta = w*les_t
        les_lambda = calc_lambda(les_theta)
        les_lambdap = calc_lambdap(les_theta)
       plt.grid()
       plt.xlabel("Temps<sub>□</sub>(s)")
       plt.ylabel("Débit_\(\shr^3/\s\)")
       )+" mm")
        les_lambdap_bis = calc_lambdap_bis(les_t,les_lambda)
       for i in range(len(les_lambdap_bis)):
               les_lambdap_bis[i] = les_lambdap_bis[i]*np.pi*D*D/4
       plt.plot(les_t[:-1],les_lambdap_bis,label=str("Débit_(\sm^3/s\s),_R=")+str(R)+"_mm,_"+str("H="
                )+str(H)+"__mm")
       plt.legend()
       plt.show()
```

B2- Proposer un modèle de connaissance et de comportement

Exercice 66 - Barrière Sympact *

C2-06

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\varphi(t)$ en fonction $de\ \theta(t)$. On a $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$ soit $\lambda(t)\overrightarrow{i_2} - R\overrightarrow{i_1} - h\overrightarrow{j_0} = \overrightarrow{0}$. En exprimant l'équation vectorielle dans le repère \mathcal{R}_0 , on a $\lambda(t) \Big(\cos\varphi(t)\overrightarrow{i_0} + \sin\varphi(t)\overrightarrow{j_0}\Big) - R\Big(\cos\theta(t)\overrightarrow{i_0} + \sin\theta(t)\overrightarrow{j_0}\Big)$. $h\overrightarrow{j_0} = \overrightarrow{0}$.

On a alors
$$\begin{cases} \lambda(t)\cos\varphi(t) - R\cos\theta(t) = 0 \\ \lambda(t)\sin\varphi(t) - R\sin\theta(t) - h = 0 \end{cases}$$
 soit
$$\begin{cases} \lambda(t)\cos\varphi(t) = R\cos\theta(t) \\ \lambda(t)\sin\varphi(t) = R\sin\theta(t) + h \end{cases} .$$

En faisant le rapport des équations, on a donc : $\tan \varphi(t) = \frac{R \sin \theta(t) + h}{R \cos \theta(t)}$ (pour $\theta(t) \neq \frac{\pi}{2} \mod \pi$).

Question 3 Exprimer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$. On a : $\varphi(t) = \arctan\left(\frac{R \sin \theta(t) + h}{R \cos \theta(t)}\right)$.

Pour commencer, $(R \sin \theta(t) + h)' = R\dot{\theta}(t)\cos \theta(t)$ et $(R \cos \theta(t))' = -R\dot{\theta}(t)\sin \theta(t)$.

$$\begin{split} &\operatorname{De}\operatorname{plus}, \left(\frac{R\sin\theta(t)+h}{R\cos\theta(t)}\right)' \\ &= \frac{R\dot{\theta}(t)\cos\theta(t)R\cos\theta(t)+R\dot{\theta}(t)\sin\theta(t)(R\sin\theta(t)+h)}{R^2\cos^2\theta(t)} \\ &= \frac{R^2\dot{\theta}(t)\cos^2\theta(t)+R\dot{\theta}(t)\sin\theta(t)(R\sin\theta(t)+h)}{R^2\cos^2\theta(t)} \\ &= \frac{R\dot{\theta}(t)\cos^2\theta(t)+R\sin^2\theta(t)\dot{\theta}(t)+h\dot{\theta}(t)\sin\theta(t)}{R\cos^2\theta(t)} \\ &= \dot{\theta}(t)\frac{R+h\sin\theta(t)}{R\cos^2\theta(t)}. \end{split}$$

Au final,

Att final,
$$\dot{\varphi}(t) = \frac{\dot{\theta}(t) \frac{R + h \sin \theta(t)}{R \cos^2 \theta(t)}}{1 + \left(\frac{R \sin \theta(t) + h}{R \cos \theta(t)}\right)^2} \frac{\dot{\theta}(t) \frac{R + h \sin \theta(t)}{R \cos^2 \theta(t)}}{1 + \frac{(R \sin \theta(t) + h)^2}{R^2 \cos^2 \theta(t)}}.$$

$$\dot{\varphi}(t) = R^2 \cos^2 \theta(t) \frac{\dot{\theta}(t) \frac{R + h \sin \theta(t)}{R \cos^2 \theta(t)}}{R^2 \cos^2 \theta(t)} = \frac{R\dot{\theta}(t)(R + h \sin \theta(t))}{R^2 \cos^2 \theta(t) + (R \sin \theta(t) + h)^2}.$$

$$\dot{\varphi}(t) = \frac{R\dot{\theta}(t)(R + h \sin \theta(t))}{R^2 \cos^2 \theta(t) + R^2 \sin^2 \theta(t) + h^2 + 2Rh \sin \theta(t)} = \frac{R\dot{\theta}(t)(R + h \sin \theta(t))}{R^2 + h^2 + 2Rh \sin \theta(t)}.$$
Ouestion 4. En utilisant Python, tracer $\dot{\varphi}(t)$ on function de $\dot{\theta}(t)$. On considérera que

Question 4 En utilisant Python, tracer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce 1 est de 10 tours par minute.


```
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""14_Sympact.py"""
__author__ = "Xavier_Pessoles"
__email__ = "xpessoles.ptsi@free.fr"
import numpy as np
import matplotlib.pyplot as plt
import math as m
from scipy.optimize import newton
from scipy.optimize import fsolve
R = 0.03 \# m
H = 0.12 \# m
w = 10 \# tours /min
w = 10*2*m.pi/60 # rad/s
def calc_phi(theta):
   num = R*np.sin(theta) + H
    den = R*np.cos(theta)
   return np.arctan2(num,den)
def calc_phip(theta):
   num = R*w*(R+H*np.sin(theta))
    den = R*R+H*H+2*R*H*np.sin(theta)
   return np.arctan2(num,den)
def plot_phi():
    les_t = np.linspace(0,12,1000)
    les_theta = w*les_t
    les_phi = calc_phi(les_theta)
   plt.grid()
   plt.xlabel("Temps_(s)")
   plt.ylabel("Position_angulaire_($rad$)")
    #plt.plot(les_t,les_theta,label=str("$\\theta$, R=")+str(R)+" mm,"+str("H=")+str(H)+" mm")
   plt.plot(les_t,les_phi,label=str("$\\varphi$,_R=")+str(R)+"_mm,_"+str("H=")+str(H)+"_mm")
   plt.legend()
   plt.show()
def plot_phip():
    les_t = np.linspace(0,12,1000)
    les_theta = w*les_t
    les_phip = calc_phip(les_theta)
   plt.grid()
   plt.xlabel("Temps<sub>□</sub>(s)")
   plt.ylabel("Vitesse_angulaire_($rad/s$)")
```

```
\#plt.plot(les_t,les_theta,label=str("\{\t = 0, R="\}+str(\{t = 0, R="\}+str(\{t = 0, R="\}+str(\{t = 0, R="\})+str(\{t = 0, R="\}
    plt.plot(les_t, les_phip, label=str("\$\\\\\\\)+str(R)+"_{mm}, "+str("H=")+str(H)+"_{mm}")
    plt.legend()
    plt.show()
for R in [0.03, 0.06, 0.09]:
    plot_phip()
```

Exercice 67 - Barrière Sympact avec galet **

B2-13

C2-05

C2-06 Pas de corrigé pour cet exercice.

Question 1 *Tracer le graphe des liaisons.*

Question 2 *Exprimer* $\varphi(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant la condition de roulement sans glissement au point I, déterminer $\gamma(t)$ et $\dot{\gamma}(t)$.

Question 5 En utilisant Python, tracer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce 1 est de 10 tours par minute.

Exercice 68 - Poussoir *

C2-06 Pas de corrigé pour cet exercice.

Question 1 *Tracer le graphe des liaisons.*

Question 2 *Exprimer* $\mu(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\mu}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer $\dot{\mu}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce 1 est de 10 tours par minute.

Exercice 69 - Système 4 barres **

C2-06 Pas de corrigé pour cet exercice.

Question 1 *Tracer le graphe des liaisons.*

Question 2 Exprimer $\theta_1(t)$ en fonction de $\theta_4(t)$.

Question 3 Exprimer $\dot{\theta}_1(t)$ en fonction de $\dot{\theta}_4(t)$.

Question 4 En utilisant Python, tracer $\dot{\theta}_1(t)$ en fonction de $\dot{\theta}_4(t)$. On considérera que la fréquence de rotation de la pièce 1 est de 10 tours par minute.

Exercice 70 - Maxpid ***

C2-06 Pas de corrigé pour cet exercice.

Par ailleurs $a = 107,1 \,\mathrm{mm}$, $b = 80 \,\mathrm{mm}$, $c = 70 \,\mathrm{mm}$, $d = 80 \,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Question 1 *Tracer le graphe des liaisons.* **Question 2** *Exprimer* $\theta(t)$ *en fonction de* $\lambda(t)$.

Question 3 *Exprimer* $\dot{\theta}(t)$ *en fonction de* $\dot{\lambda}(t)$.

Question 4 Exprimer $\dot{\theta}(t)$ en fonction de $\omega(t)$, vitesse de rotation du rotor moteur **2** par rapport au stator **1**.

Question 5 En utilisant Python, tracer $\theta(t)$ en fonction de $\omega(t)$. On considérera que la fréquence de rotation de la pièce **2** par rapport à **1** est de 500 tours par minute.

Exercice 71 - Variateur de Graham* * *

D'après ressources de Michel Huguet.

B2-13

C2-05

C2-06 Pas de corrigé pour cet exercice.

Question 1 *Tracer le graphe des liaisons.*

Question 2 En exprimant que **2** roule sans glisser sur **4** au point I, déterminer ω en fonction de ω_1 , d et λ .

Question 3 Quelle relation obtient-on entre ω_1 , ω_3 et ω en exprimant l'engrènement des deux roues dentées? (c'est à dire que 2 et 3 roulent sans glisser l'un sur l'autre en J).

Question 4 En déduire le rapport de variation $\frac{\omega_3}{\omega_1}$ du mécanisme en fonction de λ , d_2 , d_3 et d.

Question 5 Tracer la courbe représentative du rapport de variation $\frac{\omega_3}{\alpha_1}$ du mécanisme en fonction de λ , sachant

que $\frac{n}{n_3} = \frac{d_1}{d_3}$, d = 55 mm et que λ varie entre $\lambda_{mini} = 12$ mm et la valeur $\lambda_{maxi} = 23$ mm.

Exercice 72 - Variateur à billes *****

B2-13

C2-05

C2-06 Pas de corrigé pour cet exercice.

Question 1 Tracer le graphe des liaisons.

La Martinière
On publicari

Question 2 Déterminer la loi entrée – sortie.