Math 113 Definitions.

- 1. **Set.** A set is an unordered collection of elements.
- 2. **Map.** A map from X to Y is $f: X \to Y$ (a rule that assigns elements to Y to elements in X). So, for any $x \in X$ there exists a unique $y \in Y$ such that f(x) = y.
- 3. **Cartesian Product.** The Cartesian product of *X* and *Y* is the set $X \times Y = \{(x,y) \mid x \in X, y \in Y\}$.
- 4. **Equivalence Relation.** An equivalence relation R, \sim on X is a subset $R \subseteq X \times X$ such that
 - (a) Reflexive. $((x,x) \in R \text{ for all } x \in X)$.
 - (b) Symmetric. (if $(x,y) \in R$, then $(y,x) \in R$).
 - (c) Transitive. (if $(x,y) \in R$ and $(y,z) \in R$, then $(x,z) \in R$).
- 5. **Equivalence Class.** Let X be a set and R be an equivalence relation on X. Then, an equivalence class of $x \in X$ is the set $[x] = [x]_R = [x]_\sim = \{a \in X \mid x \sim a\}$.
- 6. $\mathbb{Z}/m\mathbb{Z}$. The set of distinct equivalence classes of $\equiv \pmod{n}$ is $\mathbb{Z}/m\mathbb{Z}$.