Computer Architecture

Assoc. Prof. Nguyễn Trí Thành, PhD
UNIVERSITY OF ENGINEERING AND TECHNOLOGY
FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS
ntthanh@vnu.edu.vn

Intel-based Assembly

Intel-based Assembly

INTEL HISTORY

Intel Microprocessor History

1 The 4-bit processors

- 1.1 Intel 4004
- 1.2 Intel 4040

2 The 8-bit processors

- 2.1 8008
- 2.2 8080
- 2.3 8085

3 Microcontrollers

- 3.1 Intel 8048
- 3.2 Intel 8051
- 3.3 Intel 80151
- 3.4 Intel 80251
- 3.5 MCS-96 Family

4 The bit-slice processor

- 4.1 3000 Family
- 5 The 16-bit processors: MCS-86 family
 - 5.1 8086
 - 5.2 8088
 - 5.3 80186
 - 5.4 80188
 - 5.5 80286

ssor History


```
1 The 4-bit 6 32-bit proc 10 13 64-bit processors: Intel 64 - NetBurst microarchitecture
                                   13.1 Pentium 4F
                 6.1 iAPX
    1.1 Int
                                  13.2 Pentium D
                 6.2 i960
    1.2 Info
                                  13.3 Pentium Extreme Edition
2 The 8-bit
             6.3 i860
                                  13.4 Xeon
    2.180
                 6.4 XSca
                              14 64-bit processors: Intel 64 - Core microarchitecture
    2.2 80 7 32-bit proc
                                  14.1 Xeon
                                  14.2 Intel Core 2
    2.3 80
                 7 1 8038
                                  14.3 Pentium Dual-Core
3 Microcon
                 7.2 8038
                                  14.4 Celeron
    3.1 Into
                 7.3 8037
                                  14.5 Celeron M
    3.2 Into
                              15 64-bit processors: Intel 64 - Nehalem microarchitecture
                 7.4 8038
    3.3 Int
                                   15.1 Intel Pentium
                  7.5 8038
                                  15.2 Core i3
    3.4 Inti 8 32-bit proc 11
                                  15.3 Core i5
    3.5 MC
                  8 1 8048
                                  15.4 Core i7
4 The bit-s
                 8 2 8048
                                  15.5 Xeon
    4.1 30
                              16 64-bit processors: Intel 64 – Sandy Bridge / Ivy Bridge microarchitecture
                 8.3 8048
5 The 16-b
                                  16.1 Celeron
                  8.4 8048
                                  16.2 Pentium
    5.1 80
                  8.5 8048
                                  16.3 Core i3
    5.2 80
             9 32-bit proc 12
                                  16.4 Core i5
    5 3 80
                  9.1 Orig
                                  16.5 Core i7
    5.480
                              17 64-bit processors: Intel 64 – Haswell microarchitecture
                 9.2 Pent
    5.5 80 ---
```

Product code	Marketing name(s)	Codename(s)		
80500	Pentium	P5 (A-step)		
80501	Pentium	P5		
80502	Pentium	P54C, P54CS		
80503	Pentium with MMX Technology	P55C, Tillamook		
80521	Pentium Pro	P6		
80522	Pentium II	Klamath		
80523	Pentium II, Celeron, Pentium II Xeon	Deschutes, Covington, Drake		
80524	Pentium II, Celeron	Dixon, Mendocino		
80525	Pentium III, Pentium III Xeon	Katmai, Tanner		
80526	Pentium III, Celeron, Pentium III Xeon	Coppermine, Cascades		
80528	Pentium 4, Xeon	Willamette (Socket 423), Foster		
80529	canceled	Timna		
80530	Pentium III, Celeron	Tualatin		
80531	Pentium 4, Celeron	Willamette (Socket 478)		
80532	Pentium 4, Celeron, Xeon	Northwood, Prestonia, Gallatin		
80533	Pentium III	Coppermine (cD0-step)		
80534	Pentium 4 SFF	Northwood (small form factor)		
80535	Pentium M, Celeron M 310–340	Banias		
80536	Pentium M, Celeron M 350-390	Dothan		
80537	Core 2 Duo T5xxx, T7xxx, Celeron M 5xx	Merom		
80538	Core Solo, Celeron M 4xx	Yonah		
80539	Core Duo, Pentium Dual-core T-series	Yonah		
80541	Itanium	Merced		

5.5 80___

Product	Product code	Marketing name(s)	Codename(s)		
0500	80601	Core i7, Xeon 35xx	Bloomfield		
0501	80602	Xeon 55xx	Gainestown		
0502	80603	Itanium 93xx	Tukwila		
0503	80604	Xeon 65xx, Xeon 75xx	Beckton		
0521	80605	Core i5-7xx, Core i7-8xx, Xeon 34xx	Lynnfield		
0522	80606	canceled	Havendale		
0523	80607	Core i7-7xx QM, Core i7-8xx QM, Core i7-9xx XM	Clarksfield		
30524	80608	canceled	Auburndale		
0525	80609	Atom Z6xx	Lincroft		
0526	80610	Atom N400, D400, D500	Pineview		
0528	80611	canceled	Larrabee		
0529	80612	Xeon C35xx, Xeon C55xx	Jasper Forest		
0530	80613	Core i7-9xxX, Xeon 36xx	Gulftown		
0531	80614	Xeon 56xx	Westmere-EP		
0532	80615	Xeon E7-28xx, Xeon E7-48xx, Xeon E7-88xx	Westmere-EX		
30533	80616	Pentium G6xxx, Core i3-5xx, Core i5-6xx	Clarkdale		
0534	80617	Core i5-5xx, Core i7-6xxM/UM/LM	Arrandale		
0535	80618	Atom E6x0	Tunnel Creek		
0536	80619	Core i7-3xxx	Sandy Bridge-EP		
0537	80620	Xeon E5-24xx	Sandy Bridge-EP-8, Sandy Bridge-EP-4		
30538	80621	Xeon E5-16xx, Xeon E5-26xx, Xeon E5-46xx	Sandy Bridge-EP-8, Sandy Bridge-EP-4		
80539 80541	80622 5.5 80		Sandy Bridge-EP-8		

Intel micro-processor history

https://en.wikipedia.org/wiki/List_of_Intel_microprocessors

All pro	ocessors	2.6	32-bit processors: the non-x86 microprocessors	2.10 32-bit	processors: P6
2.1	The 4-bit processors		2.6.1 iAPX 432	2.10.1	Pentium Pro
	2.1.1 Intel 4004		2.6.2 i960 a.k.a. 80960	2.10.2	Pentium II
2.2	The 8-bit processors		2.6.3 i860 a.k.a. 80860	2.10.3	Celeron (Penti
	2.2.1 8008		2.6.4 XScale	2.10.4	Pentium III
	2.2.2 8080	2.7	32-bit processors: the 80386 range	2.10.5	Pentium II Xeo
	2.2.3 8085		2.7.1 80386DX	2.10.6	Celeron (Penti
2.3	Microcontrollers		2.7.2 80386SX	2.10.7	Pentium III Tua
	2.3.1 Intel 8048		2.7.3 80376	2.10.8	Celeron (Penti
	2.3.2 Intel 8051		2.7.4 80386SL	2.10.9	Pentium M
	2.3.3 Intel 80151		2.7.5 80386EX	2.10.10	Celeron M
	2.3.4 Intel 80251	2.8	32-bit processors: the 80486 range	2.10.11	Intel Core
	2.3.5 MCS-96 family		2.8.1 80486DX	2.10.12	Dual-Core Xe
2.4	The bit-slice processor		2.8.2 80486SX	2.11 32-bit	processors: Ne
	2.4.1 3000 Family		2.8.3 80486DX2	2.11.1	Pentium 4
2.5	The 16-bit processors: MCS-86 family		2.8.4 80486SL	2.11.2	Xeon (32-bit N
	2.5.1 8086		2.8.5 80486DX4	2.11.3	Mobile Pentiun
	2.5.2 8088	2.9	32-bit processors: P5 microarchitecture	2.11.4	Pentium 4 EE
	2.5.3 80186		2.9.1 Original Pentium	2.11.5	Pentium 4E
	2.5.4 80188		2.9.2 Pentium with MMX Technology		
	2.5.5 80286				

I
2.10 32-bit processors: P6/Pentium M microarchitecture
2.10.1 Pentium Pro
2.10.2 Pentium II
2.10.3 Celeron (Pentium II-based)
2.10.4 Pentium III
2.10.5 Pentium II Xeon and Pentium III Xeon
2.10.6 Celeron (Pentium III Coppermine-based)
2.10.7 Pentium III Tualatin-based
2.10.8 Celeron (Pentium III Tualatin-based)
2.10.9 Pentium M
2.10.10 Celeron M
2.10.11 Intel Core
2.10.12 Dual-Core Xeon LV
2.11 32-bit processors: NetBurst microarchitecture
2.11.1 Pentium 4
2.11.2 Xeon (32-bit NetBurst)
2.11.3 Mobile Pentium 4-M
2.11.4 Pentium 4 EE
2.11.5 Pentium 4E

Intel micro-processor history

https://en.wikipedia.org/wiki/List_of_Intel_microprocessors

- 2.12 64-bit processors: IA-64 2.12.1 Itanium 2.12.2 Itanium 2 2.13 64-bit processors: Intel 64 - NetBurst microarchitecture 2.13.1 Pentium 4F 2.13.2 Pentium D 2.13.3 Pentium Extreme Edition 2.13.4 Xeon (64-bit NetBurst) 2.14 64-bit processors: Intel 64 - Core microarchitecture 2.14.1 Xeon (64-bit Core microarchitecture) 2.14.2 Intel Core 2 2.14.3 Intel Pentium Dual-Core 2.14.4 Celeron (64-bit Core microarchitecture) 2.14.5 Celeron M (64-bit Core microarchitecture) 2.15 64-bit processors: Intel 64 - Nehalem microarchitecture 2.15.1 Intel Pentium (Nehalem) 2.15.2 Core i3 (1st Generation) 2.15.3 Core i5 (1st Generation) 2.15.4 Core i7 (1st Generation) 2.15.5 Xeon (Nehalem Microarchitecture)
- 2.16 64-bit processors: Intel 64 Sandy Bridge / Ivy Bridge microarchitecture 2.16.1 Celeron (Sandy Bridge/Ivy Bridge Microarchitecture) 2.16.2 Pentium (Sandy Bridge/Ivy Bridge Microarchitecture) 2.16.3 Core i3 (2nd and 3rd Generation) 2.16.4 Core i5 (2nd and 3rd Generation) 2.16.5 Core i7 (2nd and 3rd Generation) 2.17 64-bit processors: Intel 64 - Haswell microarchitecture 2.17.1 Core i3 (4th Generation) 2.18 64-bit processors: Intel 64 - Broadwell microarchitecture 2.18.1 Core i3 (5th Generation) 2.18.2 Core i5 (5th Generation) 2.18.3 Core i7 (5th Generation, Including Core-X Series) 2.18.4 Other Broadwell CPUs 2.19 64-bit processors: Intel 64 - Skylake microarchitecture 2.19.1 Core i3 (6th Generation) 2.19.2 Core i5 (6th Generation) 2.19.3 Core i7 (6th Generation) 2.19.4 Other Skylake Processors 2.20 64-bit processors: Intel 64 - Kaby Lake microarchitecture 2.21 64-bit processors: Intel 64 - Coffee Lake microarchitecture 2.22 64-bit processors: Intel 64 - Cannon Lake microarchitecture 2.23 64-bit processors: Intel 64 – Ice Lake microarchitecture 2.24 Intel Tera-Scale 2.25 Intel 805xx product codes 2.26 Intel 806xx product codes

Intel micro-processor series

Model	Pric e (US D)	Cores/Thre ads	Base fr equen cy (GH z)	Max turbo frequenc y (GHz)	L3 cac he (MB)	Relea se
i7-8086K	\$425	6/12	4.0	5.0	12	Q2 2018
i7-8700K	\$359	6/12	3.7	4.7	12	Q4 2017
i7-8700	\$303	6/12	3.2	4.6	12	Q4 2017
i5-8600K	\$257	6/6	3.6	4.3	9	Q4 2017
i5-8500	\$202	6/6	3.0	4.1	9	Q2 2018
i5-8400	\$182	6/6	2.8	4.0	9	Q4 2017
i3-8350K	\$168	4/4	4.0	N/A	8	Q4 2017
i3-8100	\$117	4/4	3.6	N/A	6	Q4 2017

Intel micro-processor series

Model	Price (USD)	Cores/Threads	Base freq uency (G Hz)	Max turb o frequen cy (GHz)	Release
i9-7980XE	\$1999	18/36	2.6	4.2	Q3 2017 ^[1]
i9-7960X	\$1699	16/32	2.8	4.2	Q3 2017 ^[1]
i9-7940X	\$1399	14/28	3.1	4.3	Q3 2017 ^[1]
i9-7920X	\$1189	12/24	2.9	4.3	Q3 2017
i9-7900X	\$999	10/20	3.3	4.3	Q2 2017
i7-7820X	\$599	8/16	3.6	4.3	Q2 2017
i7-7800X	\$389	6/12	3.5	4.0	Q2 2017
i7-7740X	\$350	4/8	4.3	4.5	Q1 2017
i7-7700K	\$350	4/8	4.2	4.5	Q1 2017
i7-7700	\$312	4/8	3.6	4.2	Q1 2017
i7-7700T	\$312	4/8	2.9	3.8	Q1 2017
i5-7640X	\$242	4/4	4.0	4.2	Q1 2017
i5-7600K	\$243	4/4	3.8	4.2	Q1 2017

Intel-based Assembly

INTEL REGISTERS

Basic Execution Environment

- General-purpose registers
- Index and base registers
- Specialized register uses
- Status flags
- Floating-point, MMX, XMM registers

Some Specialized Register Uses (1 of 2)

- General-Purpose
 - RAX/EAX accumulator
 - RCX/ECX loop counter
 - RSP/ESP stack pointer
 - RSI/ESI, RDI/EDI index registers
 - RBP/EBP extended frame pointer (stack)
- RIP/EIP/IP instruction pointer
- RFLAGS/EFLAGS
 - status and control flags
 - each flag is a single binary bit

Status Flags

- Carry (CF)
 - unsigned arithmetic out of range
- Overflow (OF)
 - signed arithmetic out of range
- Sign (SF)
 - result is negative
- Zero (ZF)
 - result is zero
- Auxiliary Carry
 - carry from bit 3 to bit 4
- Parity (PF)
 - sum of 1 bits is an even number

X86_64

- AMD architecture
 - http://developer.amd.com/documentation/guide s/Pages/default.aspx
 - https://software.intel.com/en-us/articles/intelsdm
- Expand the registers into 64bits, rax, rbx, rcx, rdx, ...

ZMMO	YMMO	XMMO	ZMM1	Y	MM1	XMM1	ST(0)	ММО	ST(1) M	M1	ацан ДХЕ	AX RAX	RSB RSW RSD	R8 R128 R12	WR12DR12	MSWC	RO CR	4
ZMM2	YMM2	XMM2	ZMM3	Y	ммз	XMM3	ST(2)	MM2	ST(3) M	МЗ	вценВХЕ	BX RBX	RSS RSW RSD	R9 N138 R13	WR130R13	CR1	CR	5
ZMM4	YMM4	XMM4	ZMM5	Y	MM5	XMM5	ST(4)	MM4	ST(5) M	M5	CLCH CXE	CX RCX	FILE RIOW RIOD	R10 R148 R14	WR14DR14	CR2	CR	6
ZMM6	YMM6	XMM6	ZMM7	Y	MM7	XMM7	ST(6)	ММ6	ST(7) M	M7	рценDXE	DXRDX	EDE RIIWRIID	R11 RISB R15	WRISD R15	CR3	CR	7
ZMM8	8MMY	XMM8	ZMM9	Y	мм9	XMM9					BPLBPEB	PRBP	DI DI EDI	RDI IP	EIP RIP	MXCS	SR CR	8
ZMM10	YMM10	XMM10	ZMM1	1 Y	MM11	XMM11	CW	FP_IP	FP_DP FI	P_CS	SIL SI ES	SI RSI	SPESPE	SP			CR	9
ZMM12	YMM12	XMM12	ZMM1	3 Y	MM13	XMM13	SW										CR1	0
ZMM14	YMM14	XMM14	ZMM1	5 Y	MM15	XMM15	TW		8-bit reg			register	80-bit	register t register	256-bit	ISE THE RESERVE OF THE PARTY OF	CR1	1
ZMM16 ZMM	M17 ZMM1	8 ZMM19	ZMM20	ZMM2	ZMM2	2 ZMM23	FP_DS	888	16-bit re	gister	64-bit	register	120-01	register	312-bit	register	CR1	2
ZMM24 ZMM	M25 ZMM2	6 ZMM27	ZMM28	ZMM2	ZMM3	O ZMM31	FP_OPC	FP_DP	FP_IP	CS	SS	DS	GDTR	IDTR	DRO	DR6	CR1	.3
										ES	FS	GS	TR	LDTR	DR1	DR7	CR1	4
										188	5666	1000	FLAGS EFLAGS	RFLAGS	DR2	DR8	CR1	.5
														, , , , , , ,	DR3	DR9		
															DR4	DR10	DR12	DR:
															DR5	DR11	DR13	DRI

X86_64 registers

General-Purpose Registers (GPRs)		Bit Media and g-Point Registe	rs	128-Bit Me Register	
	RAX RBX RCX		MMXo/FPRo MMX1/FPR1 MMX2/FPR2		XMM0 XMM1 XMM2
	RDX RBP		MMX3/FPR3 MMX4/FPR4		XMM3 XMM4
	RSI RDI RSP		MMX5/FPR5 MMX6/FPR6		XMM5 XMM6 XMM7
	R8 63 R9	0	MMX7/FPR7		XMM8 XMM9
	R11	ngs Register EFLAGS	RFLAGS		XMM10 XMM11 XMM12
	R13	uction Pointer	RIP		XMM13 XMM14 XMM15
63 0	63	0		127	0
	sters, supported in all r ions, supported in 64-b		128-bit media control-a	ing registers also include the and-status register and the word, and status-word registers	

X86_64 registers (cont'd)

RAX	EAX	AX	AH	AL
RBX	EBX	BX	ВН	BL
RCX	ECX	CX	СН	CL
RDX	EDX	DX	DH	DL
RDI	EDI	DI		DIL
RSI	ESI	SI		SIL
RBP	EBP	BP		BPL
RSP	ESP	SP		SPL
R8	R8D	R8W		R8B
•••				
R15	R15D	R15W		R15B

Intel-based Assembly

BASIC INSTRUCTIONS

ASM programs can perform input-output at each of the following levels:

Program structure


```
.section .data
output: .asciz "The processor Vendor ID is '%s'\n"
.section .text
.globl _start
_start:
    program_body
```

Data Definition Statement

- A data definition statement sets aside storage in memory for a variable.
- Syntax:[name:] directive initializer [,initializer] . . .
- All initializers become binary data in memory
- Data type: .byte, .short (.2byte), .int (.long, .4byte), .quad (.8byte), .float, .double, .asciz, .zero expression

```
value1: .BYTE 'A'  # character constant
value2: .BYTE 0  # smallest unsigned byte
str: .asciz "Hello World" # string
```

Operand Types

- Three basic types of operands:
 - Immediate a constant integer
 - Imm8, imm16, imm32, imm64
 - Register the name of a register
 - register name is converted to a number and encoded within the instruction
 - r8, r16, r32, r64, x (real number processing register)
 - Memory reference to a location in memory
 - memory address is encoded within the instruction, or a register holds the address of a memory location
 - m8, m16, m32, m64

Instruction Operand Notation

Convention:

- o w (word): 16 bits;
- o d (double word): 32 bits;
- o q (quadword): 64 bits

Operand	Description
r8	8-bit general purpose register: AH, AL, BH, BL, CH, CL, r8b,
r16	16 bit general purpose register: AX, BX, CX, DX, SI, DI, r8w,
r32	32 bit general purpose register: EAX, EBX, ECX, EDX, r8d,
r64	64 bit general purpose register: RAX, RBX, RCX, RDX, r8,
imm8/16/32/64	An immediate of 8, 16, 32, 63 bit
m8/16/32/64	A variable of 8, 16, 32, 64 bit
X	xmm register
r/m8/16/32/64	A register or variable of 8, 16, 32, 64
reg	any general purpose register

Assembly standards

Intel standard

AT&T standard


```
mov dst, src
mov eax, 4
add ebx, 1
sub ecx, ebx
```

mov src, dst
mov \$4, %eax
add \$1, %ebx
sub %ebx, %ecx

ADD AL, imm8

ADD AX, imm16

ADD EAX, imm32

ADD RAX, imm32

ADD r/m8, imm8

ADD r/m8*, imm8

ADD r/m16, imm16

ADD r/m32, imm32

ADD r/m64, imm32

movss	M_{32}/X	\boldsymbol{X}
movss	X	M_{32}
movsd	M_{64}/X	X
movsd	X	M_{64}

Manual

ADD-Add

Opcode	Instruction	Op/ En	64-bit Mode	Compat/ Leg Mode	Description
04 ib	ADD AL, imm8	L	Valid	Valid	Add imm8 to AL.
05 iw	ADD AX, imm16	1	Valid	Valid	Add imm16 to AX.
05 id	ADD EAX, imm32	1	Valid	Valid	Add imm32 to EAX.
REX.W + 05 id	ADD RAX, imm32	1	Valid	N.E.	Add imm32 sign-extended to 64-bits to RAX
80 /0 ib	ADD r/m8, imm8	MI	Valid	Valid	Add imm8 to r/m8.
REX + 80 /0 ib	ADD r/m8*, imm8	MI	Valid	N.E.	Add sign-extended imm8 to r/m64.
81 /0 iw	ADD r/m16, imm16	MI	Valid	Valid	Add imm16 to r/m16.
81 /0 id	ADD r/m32, imm32	MI	Valid	Valid	Add imm32 to r/m32.
REX.W + 81 /0 id	ADD r/m64, imm32	MI	Valid	N.E.	Add imm32 sign-extended to 64-bits to r/m64.

Description

Adds the destination operand (first operand) and the source operand (second operand) and then stores the result in the destination operand. The destination operand can be a register or a memory location; the source operand can be an immediate, a register, or a memory location. (However, two memory operands cannot be used in one instruction.) When an immediate value is used as an operand, it is sign-extended to the length of the destination operand format.

Operation

 $DEST \leftarrow DEST + SRC;$

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

MOV Instruction (assigment)

Move from source to destination. Syntax:

MOV source, destination

- Both operands must be the same size
- No more than one memory operand permitted

```
.section .data
Output: .asciz "The result is: "
Val: .int 10
.section text
...
  mov $4, %eax  #eax=4
  mov $1, %ebx  #ebx=1
  mov $output, %rcx #rcx=&output
  mov $12, %edx  #edx=12
...
  mov val, %eax  #eax=val
...
  mov %eax,val  #val=eax
```


Direct-Offset Operands

An offset is added to a data label to produce an effective address (EA).

Addition and Subtraction

- INC and DEC Instructions
- ADD and SUB Instructions
- NEG Instruction
- Implementing Arithmetic Expressions
- Flags Affected by Arithmetic
 - Zero
 - Sign
 - Carry
 - Overflow

- Add 1, subtract 1 from destination operand
 - operand may be register or memory
- INC destination
 - Logic: destination ← destination + 1
- DEC destination
 - Logic: destination ← destination 1

- ADD source, destination
 - Logic: *destination* ← *destination* + source
- SUB source, destination
 - Logic: *destination* ← *destination* source
- Same operand rules as for the MOV instruction

ADD and **SUB** Examples

NEG (negate) Instruction

Reverses the sign of an operand. Operand can be a register or memory operand.

- NEG destination
 - Logic: *destination* ← *destination*

```
valB: .BYTE -1
valW .int +32767
...
mov valB,%al # AL = -1
neg %al # AL = +1
neg valW # valW = -32767
```


- Unsigned multiplication
- MUL r8/m8 MUL r16/m16
- MUL r32/m32 MUL r64/m64

Multiplicant	Multiplier	Product
AL	r8/m8	AX
AX	r16/m16	DX:AX
EAX	r32/m32	EDX:EAX
RAX	r64/m64	RDX:RAX

Homework: study imul instruction for signed numbers

DIV Instruction

- Unsigned multiplication
- DIV r8/m8 DIV r16/m16 DIV r32/m32 DIV r64/m64

Dividend	Divisor	Quotient	Remainder
AX	r8/m8	AL	AH
DX:AX	r16/m16	AX	DX
EDX:EAX	r32/m32	EAX	EDX
RDX:RAX	r64/m64	RAX	RDX

Division preparation: zero upper registers

Instruction	Meaning
CBW	AX=SE(AL)
CWD	DX:AX=SE(AX)
CDQ	EDX:EAX=SE(EAX)
CQO	RDX:RAX=SE(RAX)

Homework: study idiv instruction for signed numbers. Use left instructions for preparation

Flags Affected by Arithmetic

- The ALU has a number of status flags that reflect the outcome of arithmetic (and bitwise) operations
 - based on the contents of the destination operand
- Essential flags:
 - Zero flag set when destination equals zero
 - Sign flag set when destination is negative
 - Carry flag set when unsigned value is out of range
 - Overflow flag set when signed value is out of range
- The MOV instruction never affects the flags.

Zero Flag (ZF)

The Zero flag is set when the result of an operation produces' zero in the destination operand.

```
mov $1,%cx  # no change in flags
sub $1,%cx  # CX = 0, ZF = 1
mov $0xFFFF,%ax
inc %ax  # AX = 0, ZF = 1
inc %ax  # AX = 1, ZF = 0
```

Remember...

- A flag is set when it equals 1.
- A flag is clear when it equals 0.

JMP Instruction

- JMP is an unconditional jump to a label that is usually within the same procedure.
- Syntax: JMP *target*
- Logic: RIP ← *target*
- Example:

```
top:
.
.
.
jmp top #goto top
```

JMP Instruction

- JMP is an unconditional jump to a label that is usually within the same procedure.
- Syntax: JMP target
- Logic: RIP ← *target*
- Example:

```
top:
.
.
.
jmp top
```

A jump outside the current procedure must be to a special type of label called a global label (see Section 5.5.2.3 for details).

- Performs a nondestructive AND operation between each pair of matching bits in two operands
- No operands are modified, but the Zero flag is affected.
- Example: jump to a label if either bit 0 or bit 1 in AL is set.

```
test $11,%al
jnz ValueFound
```

CMP Instruction (1 of 3)

- Compares the destination operand to the source operand
 - Nondestructive subtraction of source from destination (destination operand is not changed)
 - The flags will be affected
 - One source or destination can be an immediate
- Syntax: CMP source, destination

```
mov $5,%al
cmp %al,%bl # Zero flag set
```

Example: destination == source?

- A conditional jump instruction branches to a label when specific register or flag conditions are met
- Examples:
 - JB, JC jump to a label if the Carry flag is set
 - JE, JZ jump to a label if the Zero flag is set
 - JS jumps to a label if the Sign flag is set
 - JNE, JNZ jump to a label if the Zero flag is clear
 - JRCXZ (JECXZ or JCXZ) jumps to a label if RCX (ECX or CX) equals 0

Jumps Based on Specific Flags

Instruction	Description	C instruction
JZ label	Jump if zero	if(ZF==1) goto label;
JNZ label	Jump if not zero	if(ZF==0) goto label;
JC label	Jump if carry	if(CF==1) goto label;
JNC label	Jump if not carry	if(CF==0) goto label;
JO label	Jump if overflow	if(OF==1) goto label;
JNO label	Jump if not overflow	if(OF==0) goto label;
JS label	Jump if signed	if(SF==1) goto label;
JNS label	Jump if not signed	if(SF==0) goto label;
JP label	Jump if parity (even)	if(PF==1) goto label;
JNP label	Jump if not parity (odd)	if(PF==0) goto label;

cmp left, right

Instruction	Description
JE label	if(right==left) goto label;
JNE label	if(right!=left) goto label;
JCXZ label	if (%CX==0) goto label;
JECXZ	if (%ECX==0) goto label;
JRCXZ	if (%RCX==0) goto label;

Jumps Based on Unsigned Comparisons

cmp left, right

Mnemonic	Description	Flag
JA label	if (right>left) goto label;	CF=0 && ZF=0
JNBE label	if (right>left) goto label;	CF=0 && ZF=0
JAE label	if (right>=left) goto label;	CF=0
JNB label	if (right>=left) goto label;	CF=0
JB <i>label</i>	if (right <left) goto="" label;<="" td=""><td>CF=1</td></left)>	CF=1
JNAE label	if (right <left) goto="" label;<="" td=""><td>CF=1</td></left)>	CF=1
JBE label	if (right<=left) goto label;	CF=1 && ZF=1
JNA label	if (right<=left) goto label;	A=Above; E=Equal;
JE label	if (right==left) goto label;	N=Not; J=Jump
JNE label	if (right!=left) goto label;	B=Below

Jumps Based on Signed Comparisons

cmp left, right

Mnemonic	Description	Flag
JG label	if (right>left) goto label;	SF=OF && ZF=0
JNLE label	if (right>left) goto label;	SF=OF && ZF=0
JGE label	if (right>=left) goto label;	SF=OF
JNL label	if (right>=left) goto label;	SF=OF
JL label	if (right <left) goto="" label;<="" td=""><td>SF!=OF</td></left)>	SF!=OF
JNGE label	if (right <left) goto="" label;<="" td=""><td>SF!=OF</td></left)>	SF!=OF
JLE label	if (right<=left) goto label;	SF!=OF && ZF=1
JNG label	if (right<=left) goto label;	SF!=OF && ZF=1
JE <i>label</i>	if (right==left) goto label;	G=Greater than
JNE label	if (right!=left) goto label;	L=Less than

Intel-based Assembly

CONTROL STRUCTURE

Conditional Structures

- Block-Structured IF Statements
- Compound Expressions with AND
- Compound Expressions with OR
- WHILE Loops
- Table-Driven Selection

Applications

- Task: Jump to a label if unsigned EAX is greater than EBX
- Solution: Use CMP, followed by JA

```
cmp %ebx, %eax
ja Larger
```

```
if (%eax > %ebx)
    goto Larger
```

Applications

- Task: Jump to a label if unsigned EAX is greater than EBX
- Solution: Use CMP, followed by JA

```
cmp %ebx, %eax
ja Larger
```

```
if (%eax > %ebx)
    goto Larger
```

- Task: Jump to a label if signed EAX is greater than EBX
- Solution: Use CMP, followed by JG

```
cmp %ebx,%eax
jg Greater
```

```
if (%eax > %ebx)
    goto Larger
```

Block-Structured IF Statements

Assembly language programmers can easily translate logical statements written in C++/Java into assembly language. For example:

```
if( op1 == op2 )
    X = 1;
else
    X = 2;
```

```
mov op1,%eax
mov op2,%ebx
if:
    cmp %ebx,%eax
    jne else
then: mov $1,X
    jmp endif
else: mov $2,X
endif:
```


Implement the following pseudocode in assembly language. All values are unsigned:

```
if(ebx <= ecx )
{
   eax = 5;
   edx = 6;
}</pre>
```


Implement the following pseudocode in assembly language. All values are unsigned:

```
if(ebx <= ecx )
{
   eax = 5;
   edx = 6;
}</pre>
```


Implement the following pseudocode in assembly language. All values are unsigned:

```
if(ebx <= ecx )
{
  eax = 5;
  edx = 6;
}</pre>
```

```
if:cmp %ecx,%ebx
    ja endif
    mov $5, %eax
    mov $6,%edx
endif:
```

```
if: cmp %ecx,%ebx
    jbe then
    jmp endif
then: mov $5, %eax
    mov $6,%edx
endif:
```

Compound Expression with AND (2 of 3)


```
if ((al > bl) && (bl > cl))
  X = 1;
```

This is one possible implementation . . .

```
if: cmp %bl,%al  # first expression...
  ja L1
  jmp endif
L1:
  cmp %cl,%bl  # second expression...
  ja L2
  jmp endif
L2:  # both are true
  mov $1,X  # set X to 1
  endif:
```

Compound Expression with AND (3 of 3)


```
if ((al > bl) && (bl > cl))
  X = 1;
```

But the following implementation uses 29% less code by reversing the first relational operator. We allow the program to "fall through" to the second expression:

```
if: cmp %bl,%al  # first expression...
  jbe endif  # quit if false
  cmp %cl,%bl  # second expression...
  jbe endif  # quit if false
  then: mov $1,X  # both are true
  endif:
```


Implement the following pseudocode in assembly language. All values are unsigned:

```
if( ebx <= ecx
&& ecx > edx )
{
   eax = 5;
   edx = 6;
}
```


Implement the following pseudocode in assembly language. All values are unsigned:

```
if( ebx <= ecx
&& ecx > edx )
{
  eax = 5;
  edx = 6;
}
```

```
if:cmp %ebx,%ecx
    ja next
    cmp %ecx,%edx
    jbe next
    mov $5,%eax
    mov $6,%edx
next:
```

Compound Expression with OR (1 of 2)

- When implementing the logical OR operator, consider that HLLs use short-circuit evaluation
- In the following example, if the first expression is true, the second expression is skipped:

```
if ((al > bl) || (bl > cl))
  X = 1;
```

Compound Expression with OR (1 of 2)


```
if ((al > bl) || (bl > cl))
X = 1;
```

We can use "fall-through" logic to keep the code as short as possible:

```
if:cmp %bl,%al  # is AL > BL?
  ja then  # yes
  cmp %cl,%bl  # no: is BL > CL?
  jbe endif  # no: skip next statement
then:mov $1, X  # set X to 1
endif:
```


A WHILE loop is really an IF statement followed by the body of the loop, followed by an unconditional jump to the top of the loop. Consider the following example:

```
while( eax < ebx)
eax = eax + 1; #do</pre>
```


A WHILE loop is really an IF statement followed by the body of the loop, followed by an unconditional jump to the top of the loop. Consider the following example:

```
while( eax < ebx) {
    eax = eax + 1;
}</pre>
```

This is a possible implementation:

Implement the following loop, using unsigned 32-bit integers:

```
while( ebx <= val1)
{
    ebx = ebx + 5;
    val1 = val1 - 1;
}</pre>
```


Implement the following loop, using unsigned 32-bit integers:

```
while( ebx <= val1)
{
    ebx = ebx + 5;
    val1 = val1 - 1;
}</pre>
```

```
while:cmp val1,%ebx  # check loop condition
    ja endwhile  # false? exit loop
do: add $5,%ebx  # body of loop
    dec val1
    jmp while  # repeat the loop
endwhile:
```

DO ...WHILE Loops

```
r8=0; rax=0;
do{
   rax++;
   r8+= rax;
}while(rax < rbx);</pre>
```

This is a possible implementation:

LOOP Instruction- for loop

- The LOOP instruction creates a counting loop
- Syntax: LOOP target
- Logic:
 - ECX ← ECX 1
 - if ECX != 0, jump to *target*
- Implementation:
 - The assembler calculates the distance, in bytes, between the offset of the following instruction and the offset of the target label. It is called the relative offset.
 - The relative offset is added to EIP.


```
Calculate the total of the first n integers (n>0)

for (r9d=0,ecx=n;ecx>0;ecx--) r9d+=ecx;
```

```
init:
    mov $0,%r9d
    mov n,%ecx
for:
    add %ecx,%r9d
    loop for
```



```
Calculate the total of the first n integers (n>0)

for (r9d=0,r10d=0;r10d<=n;r10d++) r9d+=
r10d;
```

```
init:
    mov $0,%r9d
    xor %r10d,%r10d
while:
    cmp n,%r10d
    ja endwhile
do:
    add %r10d,%r9d
    inc %r10d
    jmp while
endwhile:
```


Intel-based Assembly

REAL NUMBER MANIPULATION

Streaming SIMD Extension (SSE)

- Use 16× 128-bit registers
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit single precision
 - Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data
- SSE4 (version 4) is now available

SSE introduction

General-Purpose Registers (GPRs)	64-Bit Media and Floating-Point Regist		128-Bit Media Registers	
	RAX	MMXo/FPRo		ХММо
	RBX	MMX1/FPR1		XMM1
	RCX	MMX2/FPR2		XMM2
	RDX	MMX3/FPR3		XMM3
R	RBP	MMX4/FPR4		XMM4
R	RSI	MMX5/FPR5		XMM5
R	RDI	MMX6/FPR6		XMM6
R	RSP	MMX7/FPR7		XMM7
R	R8 63	0		XMM8
R	89			XMM9
R	R10 Flags Register			XMM10
R	O EFLAGS	RFLAGS		XMM11
R	R12			XMM12
R	R13	0		XMM13
R	R14 Instruction Pointer	r s		XMM14
R	R15 EIP	RIP		XMM15
3 0	63	0	127	0
Legacy x86 register	rs, supported in all modes		g registers also include the d-status register and the	
Register extensions	s, supported in 64-bit mode		rd, and status-word registers	7

ZMMO	YMMO	XMMO	ZMM1	Y	MM1	XMM1	ST(0)	ММО	ST(1) M	M1	ацан ДХЕ	AX RAX	RSB RSW RSD	R8 R128 R12	WR12DR12	MSWC	RO CR	4
ZMM2	YMM2	XMM2	ZMM3	Y	ммз	XMM3	ST(2)	MM2	ST(3) M	МЗ	вценВХЕ	BX RBX	RSS RSW RSD	R9 N138 R13	WR130R13	CR1	CR	5
ZMM4	YMM4	XMM4	ZMM5	Y	MM5	XMM5	ST(4)	MM4	ST(5) M	M5	CLCH CXE	CX RCX	FILE RIOW RIOD	R10 R148 R14	WR14DR14	CR2	CR	6
ZMM6	YMM6	XMM6	ZMM7	Y	MM7	XMM7	ST(6)	ММ6	ST(7) M	M7	рценDXE	DXRDX	EDE RIIWRIID	R11 RISB R15	WRISD R15	CR3	CR	7
ZMM8	8MMY	XMM8	ZMM9	Y	мм9	XMM9					BPLBPEB	PRBP	DI DI EDI	RDI IP	EIP RIP	MXCS	SR CR	8
ZMM10	YMM10	XMM10	ZMM1	1 Y	MM11	XMM11	CW	FP_IP	FP_DP FI	P_CS	SIL SI ES	SI RSI	SPESPE	SP			CR	9
ZMM12	YMM12	XMM12	ZMM1	3 Y	MM13	XMM13	SW										CR1	0
ZMM14	YMM14	XMM14	ZMM1	5 Y	MM15	XMM15	TW		8-bit reg			register	80-bit	register t register	256-bit	ISE THE RESERVE OF THE PARTY OF	CR1	1
ZMM16 ZMM	M17 ZMM1	8 ZMM19	ZMM20	ZMM2	ZMM2	2 ZMM23	FP_DS	888	16-bit re	gister	64-bit	register	120-01	register	312-bit	register	CR1	2
ZMM24 ZMM	M25 ZMM2	6 ZMM27	ZMM28	ZMM2	ZMM3	O ZMM31	FP_OPC	FP_DP	FP_IP	CS	SS	DS	GDTR	IDTR	DRO	DR6	CR1	.3
										ES	FS	GS	TR	LDTR	DR1	DR7	CR1	4
										188	5866	1000	FLAGS EFLAGS	RFLAGS	DR2	DR8	CR1	.5
														, , , , , , ,	DR3	DR9		
															DR4	DR10	DR12	DR:
															DR5	DR11	DR13	DRI

SSE instructions: assignment

Instruction	Source	Destination	Description
movss	M32/X	X	dst=src;
movss	X	M32	dst=src;
movsd	M64/X	X	dst=src;
movsd	X	M64	dst=src;

X: XMM register (e.g., %xmm3)

R32: 32-bit general purpose register (e.g., %eax)

R64: 64-bit general purpose register (e.g., %rax)

M32: 32-bit variable / memory range

M64: 64-bit variable / memory range


```
len: .double 23.45
result: .double 0.0
arr: .double 3.1,2.3,3.4,4.5,5.6
...
movsd len,%xmm0
movsd %xmm0,result
mov $1, %edx
movsd arr(,%edx,8),%xmm1
```

SSE instructions (cont'd)

float	double	Description
addss src, dst	addsd src, dst	dst+=src;
subss src, dst	subsd src, dst	dst-=src;
mulss src, dst	mulsd src, dst	dst*=src;
divss src, dst	divsd src, dst	dst/=src;
maxss src, dst	maxsd src, dst	dst=max(src,dst);
minss src, dst	minsd src, dst	dst=max(src, dst);
sqrtss src, dst	sqrtsd src, dst	dst=sqrt(src);

xorps S,D	D ← D xor S	S, D are xmm registers
ucomiss left,right	like cmp left, right	Compare single precision
ucomisd left,right	like cmp left, right	Compare double precision

Use JA, JB, JAE, JBE, JE, JNE to make a branch, s is an xmm or a variable


```
len: .double 23.45
result: .double 0.0
arr: .double 3.1,2.3,3.4,4.5,5.6
...
movsd len,%xmm0
movsd arr(,%edx,8),%xmm1
addsd %xmm1,%xmm0
movsd %xmm0,result
```



```
ucomisd %xmm1, %xmm0
jb else
movsd %xmm1,%xmm0
else:
movsd %xmm0,result
```


Exercises

- Write a program to add two double numbers and print the result on screen
- Write a program to multiply two double numbers and print the result on screen
- Write a program to print the maximum number of the two double numbers
- Write a program to sum the elements of a double array and print the result on screen

- Write a program to solve the equation ax+b=0
- Write a program to solve the equation $ax^2+bx+c=0$
- Write a program to print the first of n numbers of a geometric sequence (cấp số nhân) with a given value of a and r
- Write a program to print the first of n number in an arithmetic sequence (cấp số cộng) with a given value of d and u
- Write a program to find the maximum number of a double array

Intel-based Assembly

NUMERIC TYPE CONVERSION

Numeric types and conversions

- There are a number of numeric types
 - char, unsigned char, int, unsigned int, short, unsigned short, long, unsigned long, long long, unsigned long long, float, double
- There are pointers to the above types
 - how to handle these complexity

Integer data type (in bits)

Model	char	short	int	long	pointer (long)
LP64	8	16	32	64	64

SSE: real-2-real, integer-2-real conversion

Instruction	Source	Destination	Description
cvtss2sd	M32/X	X	dst=double(src);//src is float
cvtsd2ss	M64/X	X	dst=float(src);//src is double
cvtsi2ss	M32/R32	X	dst=float(src); //src is int
cvtsi2sd	M32/R32	X	dst=double(src)//src is int
cvtsi2ssq	M64/R64	X	dst=float(src); //src is long
cvtsi2sdq	M64/R64	X	dst=double(src); //src is long

X: XMM register (e.g., %xmm3)

R32: 32-bit general purpose register (e.g., %eax), or int

R64: 64-bit general purpose register (e.g., %rax), or long

M32: 32-bit variable / memory range, of int or float

M64: 64-bit variable / memory range, of long or double

Instruction	Source	Destination	Description
cvttss2si	M32/X	R32	dst=int(src); //src is float
cvttsd2si	M64/X	R32	dst=int(src);//src is double
cvttss2siq	M32/R32	R64	dst=long(src); //src is float
cvttsd2siq	M64/R64	R64	dst=long(src)//src is double

X: XMM register (e.g., %xmm3)

R32: 32-bit general purpose register (e.g., %eax)

R64: 64-bit general purpose register (e.g., %rax)

M32: 32-bit variable / memory range

M64: 64-bit variable / memory range

unsigned Integer data conversion

unsigned char uc=12; unsigned short us=71; unsigned int ui = 23; unsigned long ul=98;

Instruction	Description	Example
movzx r/m8, r16	us=unsigned short(uc);	movzx uc, %ax
movzx r/m8, r32	ui=unsigned int(uc);	movzx uc, %eax
movzx r/m8, r64	ul=unsigned long(uc);	movzx uc, %rax
movzx r/m16, r32	ui=unsigned int(us);	movzx us, %eax
mov r/m16, r64	ul=unsigned long(us);	movzx us, %rax
mov r/m32, r32	ul=unsigned long(ui);	mov ui, %eax #(*)

(*) Upper 32 bits of %rax will be filled by 0

=> %rax = unsigned long(ui);

Signed Integer data conversion

char c=-12; short s=71; int i = -23; long l=98;

Instruction	Description	Example
movsx r/m8, r16	s=short(c);	movsx c, %ax
movsx r/m8, r32	i=int(c);	movsx c, %eax
movsx r/m8, r64	I=long(c);	movsx c, %rax
movsx r/m16, r32	i=int(s);	movsx s, %eax
movsx r/m16, r64	I=long(s);	movsx s, %rax
movsxd r/m32, r64	l=long(i);	movsxd i, %rax

Instruction	Description
CBW	AX=SE(AL)
<u>CWDE</u>	EAX=SE(AX)
CDQE	RAX=SE(EAX)

Bigger to smaller Integer conversion


```
char c=-12; short s=71;
int i = -23; long l=98;
unsigned char uc=12; unsigned short us=71;
unsigned int ui = 23; unsigned long ul=98;
```

Instruction	Description
mov ul, %rax	ui=%eax; us= %ax; uc=%al;
mov I, %rax	i=%eax; s= %ax; c=%al;
mov ui, %eax	us= %ax; uc=%al;
mov I, %eax	s= %ax; c=%al;
mov us, %ax	uc=%al;
mov s, %ax	c=%al;

Integer conversions


```
i: .int -6
1: .long # l=long(i); is translated as
msg: .asciz "long value is %ld"
mov i , %eax
movsxd %eax, %rsi #conversion
mov %rsi, 1
mov $msg, %rdi
call printf
```

Unsigned Integer conversions

```
ui: .int 0xFFAABBCC #unsigned int ui;
ul: .long # unsigned long ul;
msg: .asciz "ulong value is %lu"
#1=unsigned long(ui); is translated as
mov ui , %eax
mov %eax, %esi #conversion
mov %rsi, 1
mov $msg, %rdi
call printf # 0xFFAABBCC
```


Intel-based Assembly

FUNCTION/PROCEDURE

Procedure/Function

Define

convert:

mov \$10,%ebx

xor %ecx, %ecx

• • •

ret

Parameters are passed via registers

Call convert

Steps to call:

- Assign parameters to suitable registers
- 2. call proc/funct
- 3. Use the returned value

C library function arguments

Real arguments: 1. xmm0, 2. xmm1, ...; return value xmm0

64	32	16	8	Description
%rax	%eax	%ax	%al	return value
%rbx	%ebx	%bx	%bl	Callee saved
%rcx	%ecx	%cx	%cl	4 th argument
%rdx	%edx	%dx	%dl	3 rd argument
%rsi	%esi	%si	%sil	2 nd argument
%rdi	%edi	%di	%dil	1 st argument
%rbp	%ebp	%bp	%bpl	Callee saved
%rsp	%esp	%sp	%spl	Stack pointer
%r8	%r8d	%r8w	%r8b	5 th argument
%r9	%r9d	%r9w	%r9b	6 th argument

- Each <u>system call</u> has different arguments
- Assign parameters to appropriate registers
- Use int 0x80
- Example

```
Exit from the program

mov $0, %ebx

mov $1, %eax

int $0x80
```

```
Print a string

msg: .asciz "Hello World"

mov $4, %eax

mov $1, %ebx

mov $msg, %ecx

mov $10, %edx

int $0x80
```


Call C library function

64bit architecture: use registers to pass arguments


```
    compiler: as, linker: ld, debugger: gdb

   .section .data
  output: .asciz "The Vendor ID is '%d'\n"
  vendor id : .byte 12
   .section .text
   .globl start
  start:
  mov $format string, %edi
  mov vendor id, %esi
  mov $0, %eax
  call printf
  call exit
  Compile, link and run the program
  $ as -o print.o printf.s
  $ Id -dynamic-linker /lib64/ld-linux-x86-64.so.2 -lc -o print print.o
  $./print
```



```
double cel2fahr(float temp)
{
    return 1.8 * temp + 32;
}
convert the above function into an assembly procedure
```



```
double cel2fahr(int *temp) {
    return 1.8 * (*temp) + 32.0;
}
convert the above function into an assembly
    procedure
```



```
#rdi=&temp
proc cel2fahrenheit:
  mov 0(%rdi),%ebx
                       #ebx=*rdi;#ebx=temp
                       #xmm0=double(ebx)
  cvtsi2sd %ebx, %xmm0
  mov $32, %eax
                       \#eax=32
  cvtsi2sd %eax, %xmm2
                       #xmm2=double(eax)
                       #xmm1=scale
  movsd scale, %xmm1
  mulsd %xmm1, %xmm0
                       #xmm0*=xmm1
  addsd %xmm2, %xmm0
                       \#xmm0+=xmm2
  ret
```

Exercises

```
void proc(int a1, double *a1p)
{
    *a1p = a1*2.5;
}
Convert the above function into an assembly procedure
```

Exercises (cont'd)

```
double fcvt(int i, float *fp, double *dp, long *lp)
{
  float f = *fp; double d = *dp; long l = *lp;
  *lp = (long) d;
  *fp = (float) i;
  *dp = (double) l;
  return (double) f;
}
Convert the above function into an assembly procedure
```


Exercises (cont'd)

Exercises

- Write a procedure to print a number (in %eax)
- Write a program to print the value of factorial N (N!)
- Write a program to print the value of factorial N (N!) in a recursive procedure
- Write a program to print the product of two integer numbers (a*b) by an addition procedure
- Write a program to print the dividend of two integer numbers (a%b) by a recursive subtraction procedure
- Write a program to calculate the sum of an array
- Write a program to calculate the sum of the first n natural numbers (1+2+3+...+n)

- Write a program to print the first n fibonaci numbers
- Write a program to print the first of n numbers of a geometric sequence with a given value of a and r
- Write a program to print the first of n number in an arithmetic sequence with a given value of d and u
- Write a program to find out the greatest common divisor of the two numbers a and b
- Write a program to find out the lowest common multiple of the two numbers a and b
- Write a program to sort an array

Fast calculate the function

$$f(x)=a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+\cdots+a_1x+a_0$$
 with the following method

$$f(x) = (a_n x + a_{n-1})x + a_{n-2})x + \dots + a_1)x + a_0$$

Where a_i is the element of an array float a[n+1]. For example: float a[]={1, 2, 3, 4, 5}; then $a_0 = 1, a_1 = 2, ..., a_n = 5$

Fibonaci

```
ebx=1; eax=1;
for(ecx=3;ecx<=n;ecx++) {
    r8d=ebx+eax;
    ebx=eax;
    eax=r8d;
}</pre>
```


Fibonaci-recursive version

```
unsigned long fibonaci(unsigned long
n) {
  if(n<=2) return 1;
  n1=fibonaci(n-1);
  n2=fibonaci(n-2);
  return n1+n2;
}</pre>
```



```
eax=1;
for (ebx=1;ebx<=n;ebx++)eax*=ebx;</pre>
```


Factorial-recursive version

```
unsigned long fact(unsigned long n) {
  if(n==1) return 1;
  unsigned long t=fact(n-1);
  t*=n;
  return t;
}
```



```
#a(n) = a(n-1) *r = a.r<sup>n-1;</sup>
xmm0 = a;
xmm1 = r;
for(ecx = 0; exc < n; ecx + +) xmm0 * = xmm1;</pre>
```

Equation ax+b=0


```
xmm0=a; xmm2=b; xmm1=0;
if(xmm0==xmm1){ #a==0?
 if (xmm2!=xmm1) #b==0
  edx=-1; #impossible equation
 else edx=0; #countless solution
}else{
 edx=1; #one solution
 xmm0=-xmm2/xmm0;
```

Maximum number of an array


```
xmm0=a[0];
for(ecx=1;ecx<n;ecx++)
  if(xmm0<a[ecx])xmm0=a[ecx];</pre>
```

Sum of an array

```
xmm0=0;
for (ecx=0;ecx<n;ecx++)
xmm0+=a[ecx];</pre>
```

Equation $ax^2+bx+c=0$ (a!=0)

```
xmm5=a; xmm1=b; xmm2=c; xmm3=0;
xmm4=xmm1*xmm1-4*xmm5*xmm2; #delta=b*b-4*a*c;
if(xmm4<xmm3) edx=0; #impossible equation</pre>
else if(xmm4==xmm3) {
  edx=1; xmm0=-xmm1/xmm5; #one solution
}else {
 edx=2; #two solutions
 xmm0 = (-xmm1 - sqrt(xmm4)) / (2*xmm5);
 xmm1 = (-xmm1 + sqrt(xmm4)) / (2*xmm5);
```

Reference

 Professional Assembly Language,

Richard Blum, 2005

Reference

Assembly

 Language for
 Intel-Based
 Computers,

Kip R.Irvine, 2003

Reference

http://x86.renejeschke.de/

https://en.wikipedia.org/wiki/X86 instruction listings

Intel® 64 and IA-32
Architectures
Software Developer's
Manual
Volume 2 (2A, 2B & 2C):
Instruction Set Reference,
A-Z

AMD64 Technology

AMD64 Architecture
Programmer's Manual
Volume 3:
General-Purpose and
System Instructions

Publication No. 24594	Revision 3.15	Date November 2009	
24594			

End of chapter

- Happy coding!
- Any questions?

Intel-based Assembly

APPENDICES

Appendix: Call C library function in 32 bit architecture

Use stack to pass arguments

```
.section .data
output: .asciz "The Vendor ID is '%d'\n"
buffer: .byte 12
.section .text
.globl _start
_start:
push $12
push $0
tall printf
addl $8, %esp
push $0
```


- Originally based on 8087 FP coprocessor
 - 8 × 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT	FICOMP FIUCOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X

Optional variations

- I: integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed