Листок 5

Неравномерная сложность

Пусть \mathcal{C} – некоторый сложностной класс, а $g:\mathbb{N}\to\mathbb{N}$. Классом $\mathcal{C}/g(n)$ называется множество языков L, для которых

- существует МТ M из класса, определяемого \mathcal{C} ,
- существует последовательность слов $\{\alpha_n\}_{n=0}^{\infty}$, причём $|\alpha_n| = g(n)$,
- $-x \in L$ тогда и только тогда, когда $M(x, \alpha_{|x|}) = 1$.

По определению $\mathcal{P}/\text{poly} = \bigcup_{j=0}^{\infty} \mathcal{P}/n^j = \bigcup_{i,j=0}^{\infty} \text{DTIME}(n^i)/n^j$.

Сравним отдельно \mathcal{P}/poly и \mathcal{NP} .

 $L \in \mathcal{NP}$, если: существует полиномиальная ДМТ M, и существует полином q(n), такие, что

$$\forall x \left((x \in L) \Leftrightarrow \exists y \left(y \in \Sigma^{q(|x|)} \land M(x, y) = 1 \right) \right)$$

 $L \in \mathcal{P}/\text{poly}$, если: существует полиномиальная ДМТ M, и существует полином q(n), такие, что

$$\forall n \exists \alpha_n \in \Sigma^{q(n)} \ \forall x ((x \in L) \Leftrightarrow M(x, \alpha_{|x|}) = 1)$$

Схемная сложность

Схемой из функциональных элементов называется ориентированный граф без циклов, каждая вершина которого помечена одной из меток: вход, выход, ∧, ∨, ¬, **или ещё что-нибудь**. Это не очень-то строгое определение, но в некоторых случаях (при определении некоторых классов/решении некоторых задач) стандартного множества связок не хватает.

Для разумного определения вычислимости на метки стоит наложить следующие ограничения:

- вход это вершина с входной степенью 0,
- есть лишь одна вершина с меткой выход, её выходная степень 0,
- ¬ − это вершина с входной степенью 1,
- для ∧ и ∨ можно как наложить ограничение на входную степень (fan-in 2), так и не накладывать никакого ограничения вовсе (unbounded fan-in).

Если схема C содержит n входов, она может естественным образом принимать (C(x) = 1) или отвергать (C(x) = 0) любое битовое слово x длины n. Для распознавания языка понадобится много схем – по одной на каждую возможную длину слова.

Последовательность схем $\{C_n\}$ (у схемы C_n есть n входных вершин) распознаёт язык $L \subset \{0,1\}^*$, если при всех $x \in \{0,1\}^*$ выполнено $x \in L$ тогда и только тогда, когда $C_{|x|}(x) = 1$.

_

Размером схемы (SIZE) называется количество вершин в соответствующем графе. Глубиной схемы (DEPTH) называется длина самого длинного пути из входной вершины в выходную. Размером (глубиной) последовательности схем называется такая функция f, что размер (глубина) схемы номер n в последовательности есть f(n).

Классом SIZE(f(n)) называется множество языков, которые распознаются последовательностью схем размера O(f(n)).

Класс языков, распознаваемых схемами полиномиального размера $PSIZE = \bigcup_{i=0}^{\infty} SIZE(n^i)$

Классом \mathcal{NC}^d называется класс языков, распознаваемых последовательностью схем одновременно **полиномиального размера** и глубины $O(\log^d n)$, в которых fan-in вершин \vee и \wedge равен 2, $\mathcal{NC} = \bigcup_{i=0}^{\infty} \mathcal{NC}^i$.

По аналогии классом \mathcal{AC}^d называется класс языков, распознаваемых последовательностями схем полиномиального размера и глубины $O(\log^d n)$, с неограниченным fan-in \vee и \wedge , $\mathcal{AC} = \bigcup_{i=0}^{\infty} \mathcal{AC}^i$

Равномерные схемы

Скажем, что последовательность схем $\{C_n\}$ из класса схем S равномерно вычислима в классе C, если существует МТ из класса C, которая на входе 1^n выдаёт кодировку схемы C_n . Писать будем C-UNIFORM-S.

К примеру, язык L лежит в классе \mathcal{P} -UNIFORM- \mathcal{NC}^1 , если существует последовательность схем $\{C_n\}$ и существует ДМТ M такие, что:

- -M работает за полиномиальное время,
- на входе 1^n машина M выдаёт ответ C_n ,
- $-C_n$ имеют полиномиальный размер и логарифмическую глубину,
- $-\{C_n\}$ распознают язык L.

По аналогии определяются, скажем, \mathcal{P} -UNIFORM-PSIZE, \mathcal{L} -UNIFORM- \mathcal{AC} и т.д.

Задачи

Задача 5.1:

Доказать, что

- 1) $\mathcal{P} \subset \mathcal{P}/\text{poly}$,
- 2) $\mathcal{P} \neq \mathcal{P}/\text{poly}$ и даже $\mathcal{P} \neq \mathcal{P}/1$,
- 3) \mathcal{P}/poly содержит разрешимый язык, не принадлежащий $\mathcal{P}.$

Задача 5.2:

Доказать, что если в определении \mathcal{P}/poly ограничиться полиномиально вычислимыми α (т.е. такими, что существует полиномиальная ДМТ на входе n выдающая α_n), такое ограничение даст класс \mathcal{P} .

Задача 5.3:

- 1) Язык называется унарным, если все его слова имеют вид 1^k . Доказать, что любой унарный язык принадлежит \mathcal{P}/poly
- 2) Пусть язык L обладает следующим свойством: любые два слова x и y одинаковой длины либо оба принадлежат L, либо оба не принадлежат L. Доказать, что $L \in \mathcal{P}/\text{poly}$.
- 3) Язык L называется разреженным, если существует полином p такой, что $\forall n | L \cap \{0,1\}^n | \leq p(n)$. Доказать, что любой разреженный язык принадлежит \mathcal{P}/poly
- 4) Язык L называется плотным, если существует полином p такой, что $\forall n | \overline{L} \cap \{0,1\}^n | \leqslant p(n)$. Доказать, что любой плотный язык принадлежит $\mathcal{P}/\mathrm{poly}$

Задача 5.4:

Доказать, что $\mathcal{P}/O(2^n)$ = ALL – множество всех языков.

Задача 5.5:

Доказать, что $\mathcal{P}/\text{poly} = \text{PSIZE}$.

Задача 5.6:

Доказать, что класс \mathcal{P}/poly не изменится, если в качестве размера схемы вместо числа вершин брать число рёбер.

Задача 5.7:

Докажите, что $\mathcal{NC}^d \subset \mathcal{AC}^d \subset \mathcal{NC}^{d+1}$

Докажите, что $\mathcal{NC} = \mathcal{AC}$.

Докажите, что $\mathcal{NC}^0 \neq \mathcal{AC}^0$.

Включения верны как для равномерных, так и для неравномерных классов.

Задача 5.8:

По аналогии с SIZE можно было бы определить полиномиальный, логарифмический и т.д. DEPTH (это не \mathcal{NC} , там есть ограничение и на размер, и на глубину). Покажите, что такие определения малополезны, доказав, что ALL = DEPTH(1).

Задача 5.9:

Докажите, что

- 1) \mathcal{P} -uniform- $\mathcal{NC} \subset \mathcal{P}$,
- 2) \mathcal{L} -uniform- $\mathcal{NC}^1 \subset \mathcal{L}$,
- 3) $\mathcal{NL} \subset \mathcal{L}$ -uniform- \mathcal{AC}^1