Code: 21P03601 SR21 SET-2

SRINIVASA INSTITUTE OF ENGINEERING AND TECHNOLOGY

UGC – Autonomous Institution

III B.Tech II Semester II MID Examinations, MAY – 2025 ARTIFICIAL INTELLIGENCE & MACHINE LEARNING MECH

Time: 20 Mins	Max. Marks:20		Date: 01-05.2025
Roll No:	Sign of the Student:		Marks Obtained:
Name:	Sign of invigilator:		Sign of Valuator:
СО	CO 1	CO 2	Marks Obtained:
UNIT	III	IV	Total Marks

1. What is the main disadvantage of KNN?]
A) High training timeB) High computation during inference		
C) Poor accuracy		
D) Requires large amounts of labeled data		
2. In which industry is Naïve Bayes frequently used?	[]
A) Medical diagnosis B) Spam filtering		
C) Self-driving cars		
D) Image processing		
3. The key difference between supervised and unsupervised learning is:	[]
A) Supervised learning does not require labels		
B) Unsupervised learning uses labeled data		
C) Supervised learning requires labeled data		
D) Unsupervised learning uses target variables		
4. Which of the following is an example of unsupervised learning?	[]
A) Decision Trees		
B) K-Means Clustering		
C) Naïve Bayes		
D) Logistic Regression		

5. What is an advantage of the Naïve Bayes classifier?	[]
A) Handles missing data well B) Works well with small datasets C) Provides 100% accuracy D) Requires deep neural networks		
6. Which step is NOT involved in Bayes' Theorem computation?	[]
A) Calculating the prior probabilityB) Calculating the likelihoodC) Calculating the gradient descentD) Calculating the posterior probability		
7. Why is Naïve Bayes called "naïve"?	[]
A) It does not learn from training data B) It assumes feature independence C) It uses deep learning D) It only works for small datasets		
8. What is a key characteristic of Instance-Based Learning?	[]
A) It requires explicit rule-based trainingB) It memorizes training examples for making predictionsC) It is used only for regression problemsD) It requires a pre-trained neural network		
9. What is a real-world application of KNN?	[]
A) Face recognitionB) Fraud detectionC) Stock market predictionD) Game playing		
10. Which of the following is NOT an application of Machine Learning?	[]
A) Speech recognition B) Image classification C) Cooking food D) Spam email detection		
11. What is the primary purpose of evaluating machine learning algorithms?	[]
A) To increase the number of features in the modelB) To compare different models and select the best oneC) To reduce the amount of training dataD) To convert data into numerical form		

12. Which metric is commonly used for evaluating classification models?]
A) Mean Squared Error (MSE) B) Accuracy C) R-squared D) Adjusted R-squared		
13. Which of the following is NOT a method for model selection?	[]
A) Cross-validation B) Hyperparameter tuning C) Overfitting D) Grid search		
14. What is cross-validation used for in machine learning?	[]
A) To test different machine learning models on different datasetsB) To split the dataset into multiple parts for more reliable model evaluationC) To create new features from existing dataD) To apply deep learning techniques		
15. Which of the following statements about ensemble learning is true?	[]
A) It combines multiple weak models to create a strong modelB) It always uses decision treesC) It works only for supervised learningD) It cannot be used for deep learning		
16. What is the key difference between bagging and boosting?	[]
A) Bagging reduces variance, while boosting reduces biasB) Boosting increases variance, while bagging reduces itC) Both methods increase biasD) Boosting is faster than bagging		
17. Which ensemble method creates multiple decision trees and aggregates the	eir	
predictions?]
A) K-Nearest Neighbors B) Random Forest C) Logistic Regression D) Principal Component Analysis		

18. What is the role of weak learners in boosting?	[]
A) They overfit the dataB) They are combined sequentially to improve model performanceC) They work independentlyD) They ignore misclassified instances		
19. Which of the following is an example of a boosting algorithm?	[]
A) Random Forest		
B) AdaBoost		
C) K-Means		
D) PCA		
20. What type of data is typically used in time-series modeling?	[]
A) Unstructured data		
B) Sequential data with timestamps		
C) Randomized categorical data		
D) High-dimensional image data		