CRIS DIGNADICE

MECHANICAL ENGINEERING AT THE UNIVERSITY OF BATH

cd927@bath.ac.uk

in https://www.linkedin.com/in/crisdignadi

07480 117949

WATER SAFETY MEASUREMENT DEVICE - INITIAL DESIGN

What?

- Design the body of a device that will be capable of measuring water quality.
- Performed a requirements analysis to initiate the design process

How?

- Used wireframe and surface design workbench on 3DExperience CATIA for the design.
- Inspired from design of a vacuum handle

Results

 Design was ergonomic and intuitive in how water samples were to be taken, however, porosity of PLA meant that the design was unsuitable for intended use.

WATER SAFETY MEASUREMENT DEVICE - CURRENT ITERATION

Changes

- Intake now uses a pipette-based approach.
- Moveable screw component to help dictate the amount of water intake.
- Rear push-button to disconnect pipette end to change the filter.

How?

 Used AutoDesk Inventor to model and model the device.

Results

- Reduced PLA contact with fluid results in a minimum of two additional 2 years of usage of components.
- Filter in tip now easier to change.
- User has no physical contact with fluid being tested.
- Device now suited for 3D printing.

CRIS DIGNADICE

MECHANICAL ENGINEERING AT THE UNIVERSITY OF BATH

cd927@bath.ac.uk

in https://www.linkedin.com/in/crisdignadi

07480 117949

3D PRINTED RC CAR

- Develop a working transmission and suspension system for a 3D-printed RC car
- Minimise weight and filament usage.

How?

- Used AutoDesk Inventor to create and develop parts.
- Used AutoDesk Nastran and Generative shape design to optimise parts for specific uses.

Results

- Reduced initial vehicle weight by 5%.
- Created a working transmission and suspension system.

MATLAB SPACECRAFT MANOEUVERING

To calculate accurately how a projectile would manoeuvre in space and visualise the trajectories in 3D.

- Limit future manoeuvres due to the propellant use in past manoeuvres.
- Account for orbital decay during circular orbit.

How?

- Used past knowledge of orbital mechanics/astrodynamics and the Runge-Kutta method to calculate state derivatives.
- Mathematically determined expected values before verifying them on MATLAB.

X

Results

- 3D visualisation plot of orbits and transfer manoeuvres in script '3DCircOrb'.
- Calculated possible future manoeuvres in 'orbVelocity' script.
- Made assumptions and performed a Hohmann Transfer manoeuvre.
- Used and modified some MATLAB built-in functions to such as 'comet' and 'comet3'.

CRIS DIGNADICE

MECHANICAL ENGINEERING AT THE UNIVERSITY OF BATH

cd927@bath.ac.uk

in https://www.linkedin.com/in/crisdignadi

07480 117949

SNOWMOBILE SHAFT DESIGN

What?

- Design a snowmobile shaft that adheres to the dimensional constraints set.
- Ensure that shaft components are fully located and if not, give justifications.
- Give justifications for all design choices made.

Figure 12 - Shaft deflection angle

How?

- Created an initial design and further iterations using AutoDesk Design Accelerator.
- Calculated values for varying graphs
 Decreased carbon emissions such as deflected, optimal diameter, bending moment, shear stress and torque.

Results

- Successfully created the design of a shaft which could withstand varying loads.
- from the initial concept by 24%.
- · Produced accurate part and assembly drawing with suitable tolerances.

