Assignment 3

By:-

Vidhu Arora (IMT2021082)

Shlok Agrawal (IMT2021103)

Shreyan Gupta (IMT2021039)

Question 1 (Cache)

Q1(a)

- We have implemented the cache in the form of 2-D array. The block size, cache size and number of ways can be varied dynamically through input. Other values such as number of sets, number of blocks etc. are calculated by the program and the user need not worry about them.
- In the code, we created a structure called **block** which represents an individual block in cache. It has attributes valid, tag and time. Time attribute in a cache block contains the time at which the block was last accessed. For the values of time, we simply use the instruction number (first instruction has instruction number equal to 1, second instruction = 2 and so on).
- We have implemented LRU policy for replacement using the time field.

<u>Instructions to run code</u>

- 1.) Compile the main.cpp file using command g++ <roll number> main.cpp
- 2.) Place the extracted Trace files in the same folder as the a.out file generated in step 1. Your folder should look like the following:

- 3.) Run the a.out file using the command ./a.out
- 4.) You will be prompted to enter the cache size, block size and associativity of the cache. Enter the desired values and hit enter.
- 5.) Now the program will run and report the hit rate, hits and misses for the five traces files provided.
- 6.) Alternatively, if you are using an IDE, make sure that the trace file are in the same folder as the main.cpp file and run the code as you would normally run any code in your IDE. Sample Output:

```
vidhu@vidhu-lenovo-Legion-S-15ARHOS:-/OneDrive/Academic/Sem 2/Computer Architecture/assignment/assignment 3$ ./a.out
Enter cache size (in KB), block size (in Bytes) and associativity
512 4 4
input file: gcc.trace
Htt Rate = 93.8353720495%
Htts = 483894 || Misses = 31790
input file: gzip.trace
Htt Rate = 66.7056096623%
Htts = 320884 || Misses = 160161
input file: mcf.trace
Htt Rate = 1.03254674237%
Htts = 7909 || Misses = 719722
input file: swim.trace
Htt Rate = 92.622545301%
Htts = 280826 || Misses = 22368
input file: twolf.trace
Htt Rate = 99.7614560141%
Htts = 476845 || Misses = 5980

Program executed in 1.12333 seconds
vidhu@vidhu-Lenovo-Legion-5-15ARHOS:-/OneDrive/Academic/Sem 2/Computer Architecture/assignment/assignment 3$ []
```

Q1(b)

Upon changing the cache size from 512KB to 2048KB, following observations are made:

- 1.) Hit rates increase slightly for gcc.trace.
- 2.) However, for the rest of the traces, the hit rates remain the same.

Varying Cache Size								
Cc	omparing Hi	ts						
Cache Size	512KB	2048KB						
gcc	483894	483895						
gzip	320884	320884						
mcf	7509	7509						
swim	280826	280826						
twolf	476845	476845						
Comparing Hit Rate								
Cache Size	512KB	2048KB						
gcc	93.8354	93.836						
gzip	66.7056	66.7056						
mcf	1.03255	1.03255						
swim	92.6225	92.6225						
twolf	98.7615	98.7615						

Q1(c)

Upon increasing the block size, hit rates for all the trace files show an increasing trend.

mcf.trace shows the biggest jump in hit rate, going from 1.03846% to 50.5031% upon changing the block size from 8 to 16 Bytes.

Varying Block Size									
Comparing Hits									
Block size	1B	4B	8B	16B					
gcc	480611	483894	494677	504466					
gzip	320876	320884	320892	321269					
mcf	7452	7509	7552	367274					
swim	280589	280826	283378	291771					
twolf	475471	476845	477320	479870					
	Co	mparing Hit	Rates						
Block size	1B	4B	8B	16B					
gcc	93.1987	93.8354	95.9264	97.8246					
gzip	66.7039	66.7056	66.7073	66.7856					
mcf	1.02471	1.03255	1.03846	50.5031					
swim	92.5444	92.6225	93.4643	96.2324					
twolf	98.4769	98.7615	98.8598	99.388					

The following graphs illustrate this data:

gcc.trace

gzip.trace

mcf.trace

swim.trace

twolf.trace

Q1(d)

Upon increasing the associativity, there is an increase in the hit rate up to a certain value, after which the hit rate seems to plateau. gzip.trace shows no change in hit rate upon increasing associativity.

Varying Associativity									
Comparing Hits									
Sets	1	2	4	8	16				
gcc	483845	483879	483894	483895	483895				
gzip	320884	320884	320884	320884	320884				
mcf	7506	7508	7509	7509	7509				
swim	280739	280826	280826	280826	280826				
twolf	476772	476842	476845	476845	476845				
Comparing Hit Rates									
					4.6				
Sets	1	2	4	8	16				
gcc	93.8259	93.8325	93.8354	93.8356	93.8356				
gzip	66.7056	66.7056	66.7056	66.7056	66.7056				
mcf	1.03213	1.03241	1.03255	1.03255	1.03255				
swim	92.5939	92.6225	92.6225	92.6225	92.6225				
twolf	98.7463	98.7608	98.7615	98.7615	98.7615				

The following graphs illustrate this data:

gcc.trace

gzip.trace

mcf.trace

swim.trace

twolf.trace

