Processes

Processes

- Process Concept
- Process Scheduling
- Operations on Processes
- Cooperating Processes
- Interprocess Communication

Process Concept

- An operating system executes a variety of programs:
 - Batch system jobs
 - Time-shared systems user programs or tasks
- Textbook uses the terms job and process almost interchangeably
- Process a program in execution; process execution must progress in sequential fashion
- A process includes:
 - program counter
 - stack
 - data section

Process in Memory

Process State

- As a process executes, it changes state
 - **new**: The process is being created
 - running: Instructions are being executed
 - waiting: The process is waiting for some event to occur
 - ready: The process is waiting to be assigned to a process
 - **terminated**: The process has finished execution

Diagram of Process State

Process Control Block (PCB)

Information associated with each process

- Process state
- Program counter
- CPU registers
- CPU scheduling information
- Memory-management information
- Accounting information
- ▶ I/O status information

Process Control Block (PCB)

process state

process number

program counter

registers

memory limits

list of open files

CPU Switch From Process to Process

Process Scheduling Queues

- Job queue set of all processes in the system
- Ready queue set of all processes residing in main memory, ready and waiting to execute
- Device queues set of processes waiting for an I/O device
- Processes migrate among the various queues

Ready Queue And Various I/O Device Queues

Representation of Process Scheduling

Schedulers

- Long-term scheduler (or job scheduler)
 selects which processes should be brought into the ready queue
- Short-term scheduler (or CPU scheduler)
 selects which process should be executed next and allocates CPU

Addition of Medium Term Scheduling

Schedulers (Cont.)

- Short-term scheduler is invoked very frequently (milliseconds) ⇒ (must be fast)
- Long-term scheduler is invoked very infrequently (seconds, minutes) ⇒ (may be slow)
- The long-term scheduler controls the degree of multiprogramming
- Processes can be described as either:
 - I/O-bound process spends more time doing I/O than computations, many short CPU bursts
 - CPU-bound process spends more time doing computations; few very long CPU bursts

Context Switch

- When CPU switches to another process, the system must save the state of the old process and load the saved state for the new process
- Context-switch time is overhead; the system does no useful work while switching
- Time dependent on hardware support

Process Creation

- Parent process create children processes, which, in turn create other processes, forming a tree of processes
- Resource sharing
 - Parent and children share all resources
 - Children share subset of parent's resources
 - Parent and child share no resources
- Execution
 - Parent and children execute concurrently
 - Parent waits until children terminate

Process Creation (Cont.)

- Address space
 - Child duplicate of parent
 - Child has a program loaded into it
- UNIX examples
 - fork system call creates new process
 - exec system call used after a fork to replace the process' memory space with a new program

Process Creation

C Program Forking Separate Process

```
int main()
Pid t pid;
   /* fork another process */
   pid = fork();
   if (pid < 0) { /* error occurred */</pre>
            fprintf(stderr, "Fork Failed");
            exit(-1);
   else if (pid == 0) { /* child process */
            execlp("/bin/ls", "ls", NULL);
   else { /* parent process */
            /* parent will wait for the child to complete */
            wait (NULL);
            printf ("Child Complete");
            exit(0);
```

A tree of processes on a typical Solaris

Process Termination

- Process executes last statement and asks the operating system to delete it (exit)
 - Output data from child to parent (via wait)
 - Process' resources are deallocated by operating system
- Parent may terminate execution of children processes (abort)
 - Child has exceeded allocated resources
 - Task assigned to child is no longer required
 - If parent is exiting
 - Some operating system do not allow child to continue if its parent terminates
 - All children terminated cascading termination

Cooperating Processes

- Independent process cannot affect or be affected by the execution of another process
- Cooperating process can affect or be affected by the execution of another process
- Advantages of process cooperation
 - Information sharing
 - Computation speed-up
 - Modularity
 - Convenience

Producer-Consumer Problem

- Paradigm for cooperating processes, producer process produces information that is consumed by a consumer process
 - unbounded-buffer places no practical limit on the size of the buffer
 - bounded-buffer assumes that there is a fixed buffer size

Bounded-Buffer - Shared-Memory Solution

Shared data

```
#define BUFFER_SIZE 10
Typedef struct {
    ...
} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
```

Solution is correct, but can only use BUFFER_SIZE-1 elements

Bounded-Buffer - Insert() Method

```
while (true) {
    /* Produce an item */
    while (( (in + 1) % BUFFER SIZE ) == out)
    ;    /* do nothing -- no free buffers */
    buffer[in] = item;
    in = (in + 1) % BUFFER SIZE;
{
```

Bounded Buffer - Remove() Method

```
while (true) {
   while (in == out)
       ; // do nothing -- nothing to
consume
  // remove an item from the buffer
  item = buffer[out];
  out = (out + 1) % BUFFER SIZE;
return item;
```

Interprocess Communication (IPC)

- Mechanism for processes to communicate and to synchronize their actions
- Message system processes communicate with each other without resorting to shared variables
- IPC facility provides two operations:
 - send(message) message size fixed or variable
 - receive(*message*)
- ▶ If *P* and *Q* wish to communicate, they need to:
 - establish a *communication link* between them
 - exchange messages via send/receive
- Implementation of communication link
 - physical (e.g., shared memory, hardware bus)
 - logical (e.g., logical properties)

Implementation Questions

- How are links established?
- Can a link be associated with more than two processes?
- How many links can there be between every pair of communicating processes?
- What is the capacity of a link?
- Is the size of a message that the link can accommodate fixed or variable?
- ▶ Is a link unidirectional or bi-directional?

Communications Models

Direct Communication

- Processes must name each other explicitly:
 - send (P, message) send a message to process P
 - receive(Q, message) receive a message from process Q
- Properties of communication link
 - Links are established automatically
 - A link is associated with exactly one pair of communicating processes
 - Between each pair there exists exactly one link
 - The link may be unidirectional, but is usually bidirectional

Indirect Communication

- Messages are directed and received from mailboxes (also referred to as ports)
 - Each mailbox has a unique id
 - Processes can communicate only if they share a mailbox
- Properties of communication link
 - Link established only if processes share a common mailbox
 - A link may be associated with many processes
 - Each pair of processes may share several communication links
 - Link may be unidirectional or bi-directional

Indirect Communication

- Operations
 - create a new mailbox
 - send and receive messages through mailbox
 - destroy a mailbox
- Primitives are defined as:

send(A, message) - send a message to
mailbox A

receive(A, message) - receive a message
from mailbox A

Indirect Communication

Mailbox sharing

- P_1 , P_2 , and P_3 share mailbox A
- P_1 , sends; P_2 and P_3 receive
- Who gets the message?

Solutions

- Allow a link to be associated with at most two processes
- Allow only one process at a time to execute a receive operation
- Allow the system to select arbitrarily the receiver.
 Sender is notified who the receiver was.

Synchronization

- Message passing may be either blocking or non-blocking
- Blocking is considered synchronous
 - Blocking send has the sender block until the message is received
 - Blocking receive has the receiver block until a message is available
- Non-blocking is considered asynchronous
 - Non-blocking send has the sender send the message and continue
 - Non-blocking receive has the receiver receive a valid message or null

Buffering

- Queue of messages attached to the link; implemented in one of three ways
 - 1. Zero capacity 0 messages Sender must wait for receiver
 - 2. Bounded capacity finite length of *n* messages Sender must wait if link full
 - 3. Unbounded capacity infinite length Sender never waits