Inhus

Structure: Weekly meetings, more like office hours.

also, show me what has been done in the code.

Go over rough idea:

To do:

- D Watch 3616 videos
- o Find meeting time for next week

 [July 3rd only day I am available)
- Code implementation

 (probably best to use python. Georgle collab .-?)
- Data processing:

 . Use Maist or USPS?
- D Implementation: no hidden layers first?
- a couple how to try to cale the usual network.

(multilayer perioption)

 $a_{1}^{(u)}$ 0.1 $a_{2}^{(u)}$ 0.1 $a_{3}^{(u)}$ 0.1. $a_{1,1}^{(u)}$ 0.1. $a_{1,1}^{(u)}$ 0.2. $a_{2}^{(u)}$ 0.2. $a_{3}^{(u)}$ 0.3. $a_{3}^{(u)}$ 0.8 $a_{3}^{(u)}$ 0.9 $a_{3}^{(u)}$ 0.9 a

input space: [0,1] 784

Final layer: 10 nerms

2 inner layers, lo nevers each.

$$|R^{784} \longrightarrow |R^{16}$$

$$\alpha^{(0)} \mapsto \sigma(w^{(0)}\alpha^{(0)} + b^{(0)})$$

$$\begin{pmatrix}
W_{11} & \cdots & W_{1}, 784 \\
W_{2,1} & \cdots & W_{n}, 784
\end{pmatrix}
\begin{pmatrix}
b_{1} \\
\vdots \\
b_{16}
\end{pmatrix}
\qquad a^{(o)}
\begin{pmatrix}
a_{1}^{(o)} \\
\vdots \\
a_{784}^{(o)}
\end{pmatrix}$$

$$\frac{\sigma(x)}{sishoid.} = \frac{1}{1+e^{-x}}$$

$$\frac{\sigma(x)}{\sigma(x)} = \frac{1}{1+e^{-x}}$$

$$\frac{\sigma(x)}{\sigma(x)} = \frac{1}{1+e^{-x}}$$

So
$$a^{(1)} = \sigma \left(w^{(1)} a^{(2)} + b^{(1)} \right)$$

$$a^{(1)}_{i} = \sigma \left(\left(\sum_{j=0}^{784} w_{i,j} a^{(2)}_{j} \right) + b^{(1)}_{i} \right)$$

over activation

$$A = \sigma(w^{(3)} \cdot \sigma(w^{(4)} \cdot \sigma(w^{(1)} \cdot \phi(w^{(1)} \cdot$$

Tactivation function:

$$A: \mathbb{R}^{784} \longrightarrow \mathbb{R}^{10} \qquad A= A_{\mathcal{W}_{1}, b^{(1)}, \mathbf{W}_{2}, b^{(2)}, \mathbf{W}_{2}^{(3)}, b^{(2)}}$$

$$\left(\text{nulthon: } A_{\mathbf{W}_{1}, \mathbf{b}} \right)$$

(hoices			# prametes:	(hoice)	# _ prametos
$\omega^{(i)}$	€	M 784 × 16 (R)	784x16= 12,594	b(1) € 1816	16
W(+)	ć-	M 16 × 16 (R)	16-16-256	b121 E1R16	16
(3)	E	$M_{l_{6}\times 10}$ (IR)	16×10 = 160	b (3) E R 10	10

total # puranetrs: 13,002.

Training:

Cost function built from a training Set.

Collection of pairs

$$TS = \{(I_1, L_1), (I_1, L_2), \dots, (I_n, L_n)\}$$

really

$$C: M_{789\times16} \times \mathbb{R}^{16} \times M_{16\times16} \times \mathbb{R}^{16} \times M_{16\times10} \times \mathbb{R}^{10} \longrightarrow \mathbb{R}$$

$$(W^{(1)}, b^{(1)}, W^{(1)}, b^{(1)}, W^{(1)}, b^{(1)}) \longmapsto \frac{1}{n} \sum_{i=1}^{n} \|A_{\underline{W},\underline{b}}(\mathbf{I}_{i}) - L_{i}\|_{2}^{2}$$

$$\underset{\text{distance of the}}{\text{distance of the}}$$

average over the answer L; all images in the training data.

Intuition of Cost Function:

 $C(\underline{W}, \underline{b})$ is small (=) the weights $\underline{W}, \underline{b}$ do a good job guessing the convert $W^{(1)}, W^{(1)}, W^{(1)}$ b $(b^{(1)}, b^{(2)}, b^{(3)})$ answer.

=> [Goal] Should be to finds weights

W, b minimizing C.

Gradient Descent

Idey: O Start with Rondom inputs (Wo, bo) to C.

- (2) Find the direction of $(\underline{W}_0,\underline{b}_0)$ that leads the tre larges decrease in C.
- (huge (Wo, bo) to (WI, b) according to the direction term

More precisely:

Fu 2, un - TC (w, b).

 $C: \mathbb{R}^n \longrightarrow \mathbb{R}, \qquad \nabla C: \mathbb{R}^n \longrightarrow \mathbb{R}$ $\nabla C = \begin{pmatrix} \frac{\partial C}{\partial X_1} \\ \frac{\partial C}{\partial X_2} \end{pmatrix}$

 $\begin{bmatrix}
e.5. & C: |R^2 - 1R \\
(x,y) & K^2y + y
\end{bmatrix}$ $\nabla C = \begin{pmatrix} \frac{\partial C}{\partial x} \\ \frac{\partial C}{\partial y} \end{pmatrix} = \begin{pmatrix} 2xy \\ X^2 + 1 \end{pmatrix}$

* To do: defuils for Gradient descent *

$$= \frac{1}{n} \sum_{i=1}^{n} \| A_3 A_2 A_i (a^{ij}) - L$$

July 3rd

Recalling activation

16 784 necrons

From Layer 0 to layer 1:

[i) weight by which neuron k in layer in fluences neuron j in layer i

activation of jth neuron in 1st layer: (j=1,-, 16)

Keep truck of all newrons at once using vectors:

$$\alpha^{(1)} := \begin{pmatrix} \alpha_{1}^{(1)} \\ \vdots \\ \alpha_{16}^{(1)} \end{pmatrix} \epsilon R^{16} \quad \mathcal{L} \qquad 2^{(1)} := \begin{pmatrix} Z_{16}^{(1)} \\ \vdots \\ Z_{16}^{(1)} \end{pmatrix} \epsilon R^{16}$$

j,kth entry Wjk

All together:
$$a^{(1)} = \sigma(z^{(1)})$$
, $z^{(1)} = w^{(1)} \cdot a^{(0)} + b^{(1)}$

$$16 \times 1$$

$$Vector$$

$$Vector$$

$$16 \times 1$$

$$Vector$$

$$Vector$$

$$a^{(2)} = \sigma(z^{(2)}), \qquad z^{(2)} = w^{(2)}a^{(1)} + b^{(2)}$$

$$\frac{16x1}{16x1} = \frac{16x16}{16x16} \frac{16x1}{16x1} + \frac{16x1}{16x1}$$

$$\underline{a^{(3)}} = \sigma(z^{(3)}), \quad \underline{z^{(3)}} = \underline{w^{(3)}} \cdot \underline{a^{(a)}} + \underline{b^{(a)}}$$

Final cost:

$$C = \frac{1}{\# x \text{ in }} \sum_{\substack{\text{training} \\ \text{data}}} C_{x}$$

$$= \frac{1}{4 \times 10^{10}} \sum_{\substack{\text{tox} \\ \text{form} \\ \text{gress}}} C_{x}$$

$$= \frac{1}{4 \times 10^{10}} \sum_{\substack{\text{tox} \\ \text{form} \\ \text{gives}}} C_{x}$$

$$= \frac{1}{4 \times 10^{10}} \sum_{\substack{\text{tox} \\ \text{form} \\ \text{gives}}} C_{x}$$

$$= \frac{1}{4 \times 10^{10}} \sum_{\substack{\text{tox} \\ \text{form} \\ \text{gives}}} C_{x}$$

$$= \frac{1}{4 \times 10^{10}} \sum_{\substack{\text{tox} \\ \text{form} \\ \text{gives}}} C_{x}$$

$$= \frac{1}{4 \times 10^{10}} \sum_{\substack{\text{tox} \\ \text{form} \\ \text{gives}}} C_{x}$$

$$= \frac{1}{4 \times 10^{10}} \sum_{\substack{\text{tox} \\ \text{form} \\ \text{gives}}} C_{x}$$

$$= \frac{1}{4 \times 10^{10}} \sum_{\substack{\text{tox} \\ \text{form} \\ \text{gives}}} C_{x}$$

$$= \frac{1}{4 \times 10^{10}} \sum_{\substack{\text{tox} \\ \text{form} \\ \text{gives}}} C_{x}$$

$$= \frac{1}{4 \times 10^{10}} \sum_{\substack{\text{tox} \\ \text{form} \\ \text{gives}}} C_{x}$$

need to find
$$\nabla C = \frac{1}{\sharp 1...} \nabla \cdot C_x$$

$$a_{1}^{(0)} O \bigvee_{w_{12}^{(1)}}^{w_{11}^{(1)}} a_{1}^{(1)}$$

$$\alpha^{(o)} = \begin{pmatrix} \alpha_{1}^{(o)} \\ \alpha_{2}^{(o)} \end{pmatrix}, \qquad \alpha^{(1)} = \sigma(2^{(1)}), \\
2^{(1)} = (w_{11}^{(1)} w_{12}^{(1)}) \begin{pmatrix} \alpha_{1}^{(o)} \\ \alpha_{2}^{(o)} \end{pmatrix} + b_{1}^{(1)}$$

$$= w_{11}^{(1)} \alpha_{1}^{(o)} + w_{12}^{(1)} \alpha_{2}^{(o)} + b_{1}^{(1)}$$

Exercise: If
$$W^{(1)} = (2 \ln (2))$$
 and $Q^{(0)} = {0 \choose 1}$, and $Q^{(0)} = {0 \choose 1}$.

In the activation of the newson in the output layer.

$$b^{(1)} = 0$$

data point:

$$\left(\left(\begin{array}{c} 1 \\ 2 \end{array} \right), \quad 1 \right)$$

$$|| \sigma (V_{11}^{(1)} \cdot 1 + W_{13}^{(1)} \cdot 2 + b_{1}^{(1)}) - 1 ||^{2}$$

$$W_{1} = W_{11}^{(1)}$$

$$W_{2} = V_{12}^{(1)}$$

$$b = b_{1}^{(1)}$$

$$C(W_{1}, W_{2}, b) = (\sigma(W_{1} + 2W_{2} - b) - 1)^{2}$$

Exerise: Find the Godicat of the cost function.

$$\frac{\partial C}{\partial w_{1}} = 2(\sigma(w_{1} + 2w_{2} - b) - 1) \cdot \sigma'(w_{1} + 2w_{2} - b) \cdot 1$$

$$\frac{\partial w_{1}}{\partial w_{1}} = 1$$

$$\frac{\partial C}{\partial w_{2}} = 2(\sigma(w_{1} + 2w_{2} - b) - 1) \cdot \sigma'(w_{1} + 2w_{2} - b) \cdot 2$$

$$\frac{\partial (w_{1} + 2w_{2} - b)}{\partial w_{2}} = 2$$

$$\frac{\partial (w_{1} + 2w_{2} - b)}{\partial w_{2}} = 2$$

$$\frac{\partial (w_{1} + 2w_{2} - b)}{\partial w_{2}} = 2$$

$$\Delta C = \begin{pmatrix} 3c & 3c \\ 3c & 3c \end{pmatrix}$$

Exercise: Go through chapter 2 in the book, and for all the humalus displayed there, write what they are in this simple case.

Exercise: Do the same for other simple newal networks, e.s.

Assignment:

Reading: Ch1 & Ch2 of the book.

(More theoretical)

muth!

Programming: (Recommended as group work!)

- Ron the code in the book for MNIST disits

experiment with using different stuckers of neural

ncharks, e.s. of shipe (784, 11, 16, 107)

- Run the code in the book for USPS disits.

experiment to sind good primeters.

- If there is some other data sit you want to analyze, go for it!

Next meeting \sqrt{me} : $J_{vly} 17-21$ (in pinn or 200m...)

Streets only meeting next week encouraged!