

Customer Segmentation

Bhavesh Khanchandani

Problem Statement

- A company that sells some of the product, and you want to know how well the selling
 performance of the product. You have the data that we can analyze, but what kind of
 analysis can we do? Well, we can segment customers based on their buying behavior on
 the market.
- Keep in mind that the data is really huge, and we can not analyze it using our bare eyes.
 We will use machine learning algorithms and the power of computing for it.
- This project will show you how to cluster customers on segments based on their behavior using the clustering algorithm in Python.

Proposed Solution

Data Preprocessing: This step performs all pre-processing steps such as data manipulation, data filling, converting categorical into numeric, and all processes.

The EDA process involves performing

- 1. Univariate Analysis
- 2. Bivariate analysis
- 3. Removing Missing values if any / Outlier treatment
- 4. Machine Learning: Build a clustering model to segment the customer-based similarity. Also fine-tune the hyper parameters & compare the evaluation metrics of various classification algorithms

Descriptive Analysis

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom

df.shape		<pre>df.info() <class 'pandas.core.frame.dataframe'=""></class></pre>				
()	- /	#	Column	Non-Null Count	Dtype	
		0	InvoiceNo	541909 non-null	object	
		1	StockCode	541909 non-null	object	
		2	Description	540455 non-null	object	
		3	Quantity	541909 non-null	int64	
		4	InvoiceDate	541909 non-null	datetime64[ns]	
		5	UnitPrice	541909 non-null	float64	
		6	CustomerID	406829 non-null	float64	
		7	Country	541909 non-null	object	

memory usage: 33.1+ MB

dtypes: datetime64[ns](1), float64(2), int64(1), object(4)

df.isnu	11().su	ım().sort_	_values(ascending =False
Custome	rID	135080	
Descrip	tion	1454	
Invoice	No	0	
StockCo	de	0	
Quantit	У	0	
Invoice	Date	0	
UnitPri	ce	0	
Country		0	
dtype:	int64		

<pre>df.describe()</pre>								
# we can	see that	quantuity	has	negative	values			

	Quantity	UnitPrice	CustomerID
count	406829.000000	406829.000000	406829.000000
mean	12.061303	3.460471	15287.690570
std	248.693370	69.315162	1713.600303
min	-80995.000000	0.000000	12346.000000
25%	2.000000	1.250000	13953.000000
50%	5.000000	1.950000	15152.000000
75%	12.000000	3.750000	16791.000000
max	80995 000000	38970 000000	18287 000000

Exploratory Data Analysis

Top 5 Customers with the highest no of orders

tf=df.groupby(by=['CustomerID','Country'], as_index=False)['InvoiceNo'].count()
tf.sort_values(by='InvoiceNo', ascending=False).iloc[:5]

	CustomerID	Country	InvoiceNo
4019	17841.0	United Kingdom	7847
1888	14911.0	EIRE	5677
1298	14096.0	United Kingdom	5111
334	12748.0	United Kingdom	4596
1670	14606.0	United Kingdom	2700

Exploratory Data Analysis

AmountSpent

Machine Learning Modelling

- Feature selection for algorithm
- X = df[['AmountSpent','CustomerID']].values
- Normalize Data using MimMaxScaler
- Find the best value for K using Elbow Method
- Number of cluster = 2

Optimisation

Conclusion

Future Scope