School of Electronic Engineering and Computer Science Queen Mary University of London

CBU5201 Machine Learning Supervised learning: Regression

Dr Chao Liu

Sep 2023

Credit to Dr Jesu's Requena Cami'on

How far is the equator from the north pole?

"By using this method, a sort of equilibrium is established between the **errors** which prevents the extremes from prevailing [...] [getting us closer to the] **truth**."

Adrien-Marie Legendre, 1805

Embrace the error!

Agenda

Recap

Formulation of regression problems

Basic regression models

Flexibility, interpretability and generalisation

Summary

Machine learning

There are two main ways of thinking about ML:

- Data-first view: ML is a set of tools for extracting knowledge from data.
- Deployment-first (our) view: ML is a set of tools together with a methodology for solving problems using data.

In ML, data is organised as a **dataset** (a collection of **items** described by a set of **attributes**) and knowledge is represented as a **model**.

Machine learning distinguishes between different types of problems, techniques and models, which can be arranged into a **taxonomy**.

Machine learning taxonomy

Agenda

Recap

Formulation of regression problems

Basic regression models

Flexibility, interpretability and generalisation

Summary

Problem formulation

- Regression is a supervised problem: Our goal is to predict the value of one attribute (label) using the remaining attributes (predictors).
- The label is a **continuous** variable.
- Our job is then to find the best model that assigns a unique label to a given set of predictors.
- We use datasets consisting of labelled samples.

Predictors → Model? → Label

Examples of regression problems

The following are examples of business and scientific problems that can be formulated as a regression problem:

- Predict the energy consumption of a household, given the location of the house, household size, income, intensity of occupation.
- Predict future values of a company stock, given past stock prices.
- Predict distance driven by a vehicle given its speed and journey duration.
- Predict demand given past demand and currency exchange rate.
- Predict tomorrow's temperature given today's temperature and pressure.
- Predict the probability to develop a specific heart condition given BMI, alcohol consumption, diet, number of daily steps.

Can you identify labels and predictors? Do we need data to solve them?

Predictors and labels

	Age	Salary
S_1	18	12000
S_2	37	68000
S3	66	80000
S_4	25	45000
S5	26	30000

In this dataset:

- (a) Age is the predictor, Salary is the label
- (b) Salary is the predictor, Age is the label
- (c) Both options can be considered

Association and causation

Prediction models are sometimes interpreted through a **causal lens**: the predictor is the **cause**, the label its **effect**. However this is **not correct**.

Our ability to build predictors is due to **association** between attributes, rather than **causation**. Two attributes in a dataset appear associated:

- If one causes the other (directly or indirectly).
- When both have a common cause.
- Due to the way we collect samples (sampling).

Take-home message: In machine learning we don't build causal models!

Mathematical notation

Population:

- x is the **predictor** attribute
- y is the label attribute

Dataset:

- \mathbf{N} is the number of samples, *i* identifies each sample
- \mathbf{x} i is the predictor of sample i
- y_i is the actual label of sample i
- (x_i, y_i) is sample $i, \{(x_i, y_i) : 1 \le \le V\}$ is the entire dataset

Model:

- $f(\cdot)$ denotes the model
- $\mathbf{y} \hat{\mathbf{y}} = \hat{\mathbf{y}} \cdot \mathbf{f}(x_i)$ is the **predicted label** for sample i
- $y_i \hat{y_i}$ is the **prediction error** for sample i

Candidate solutions

Which line is the best mapping of age to salary?

What is a good model?

In order for us to find the **best** model we need a notion of **model quality**.

The **squared error** $e_i^2 = (y_i - \hat{y}_i)^2$ is a common quantity used in regression to encapsulate the notion of single prediction quality.

Two quality metrics based on the squared error are the **sum of squared errors** (SSE) and the **mean squared error** (MSE), which can be computed using a dataset as:

$$E_{SSE} = e_1^2 + e_2^2 + \dots + e_N^2 = \sum_{i=1}^N e_i^2$$

$$E_{MSE} = \frac{1}{N} \sum_{i=1}^N e_i^2$$

MSE: Example

A zero-error model?

Given a dataset, is it possible to find a model such that $\hat{y_{i}} = y_i$ for every instance i in the dataset, i.e. a model whose **error is zero**, EMSE = 0?

- (a) Never, there will always be a non-zero error
- (b) It is never guaranteed, but might be possible for some datasets
- (c) Always, there will always be a model complex enough that achieves this

The nature of the error

When considering a regression problem we need to be aware that:

- The chosen predictors might not include all the factors that determine the label.
- The chosen model might not be able to represent the true relationship between response and predictor (the pattern).
- Random mechanisms (noise) might be present.

Mathematically, we represent this discrepancy as

$$y = \hat{y} + e$$
$$= f(x) + e$$

There will always be some discrepancy (error e) between the true label y and our model prediction f(x). **Embrace the error!**

Regression as an optimisation problem

Given a dataset $\{(x, y_i): 1 \le i \le N\}$, every candidate model f has its own E MSE. Our goal is to find the **model with the lowest** E MSE:

$$f_{best}(x) = \underset{f}{\operatorname{arg\,min}} \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2$$

The question is, how do we find such model? Finding such a model is an **optimisation problem**.

Note that we are defining regression as finding the model that minimises $E \, MSE$ on the dataset, without considering what happens once deployed.

Agenda

Recap

Formulation of regression problems

Basic regression models

Flexibility, interpretability and generalisation

Summary

Our regression learner

- Priors: Type of model (linear, polynomial, etc). Data:
- Labelled samples (predictors and true label). Model:
- Predicts a label based on the predictors.

Simple

regression

Simple regression considers **one predictor** x and one label y.

Simple linear regression

In simple **linear** regression, **models** are defined by the mathematical expression

$$f(x) = w_0 + wx_1$$

Hence, the predicted label \hat{y} ican be expressed as

$$\hat{y_i} \neq (x_i) = w_0 + w_1 x_i$$

A linear model has therefore **two parameters** w_0 (intercept) and w_1 (gradient), which need to be **tuned** to achieve the highest quality.

In machine learning, we use a **dataset** to tune the parameters. We say that we **train the model** or **fit the model** to the **training dataset**.

Linear solution: Example

Beyond linearity

Sketch the model that you would choose for the Salary Vs Age dataset and try to find a suitable mathematical expression.

Simple polynomial regression

The general form of a polynomial regression model is:

$$f(x_i) = w_0 + w_1 x_i + w_2 x_i^2 + \dots + w_D x_i^D$$

where D is the degree of the polynomial.

Polynomial regression defines a **family of families** of models. For each value of D, we have a different family: D =1 corresponds to the linear family, D =2 to the quadratic, D =3 to the cubic, and so on.

We call D a **hyperparamenter**. What it means is that setting its value results in a different family, with a different collection of parameters.

Quadratic solution

Cubic solution

5-power solution

