Lecture 14: Polar codes

Course instructor: Alexey Frolov

Teaching Assistant: Stanislav Kruglik stanislav.kruglik@skolkovotech.ru

March 7, 2017

Outline

Polarization

2 Encoding

3 Decoding

Introduction

- Polar codes are the "next big thing" in coding theory since the advent of turbo codes and LDPC codes in the late 1990s.
- In terms of performance/complexity trade-off, the only competition to polar codes today are spatially-coupled LDPC codes.

A. Frolov

Outline

Polarization

2 Encoding

3 Decoding

A new class of error-correcting codes, invented in 2009 by Erdal Arıkan, based on the universal phenomenon of *channel polarization*.

Two independent uses of the channel W

Binary-input symmetric DMC

A new class of error-correcting codes, invented in 2009 by Erdal Arıkan, based on the universal phenomenon of *channel polarization*.

Polar code of length n = 2

As the mapping is invertible, we have

$$I(U_0, U_1; Y_0, Y_1) = I(X_0, X_1; Y_0, Y_1) = I(X_0; Y_0) + I(X_1; Y_1)$$

= $2I(X_1; Y_1) = 2I(W)$.

The chain rule decomposition

$$I(U_0, U_1; Y_0, Y_1) = I(U_0; Y_0, Y_1) + I(U_1; Y_0, Y_1|U_0)$$

= $2I(W)$.

Consider "virtual" sub-channels!

"Virtual" sub-channels

"Virtual" sub-channels

Two channels are created

$$(W,W) \rightarrow (W_0,W_1)$$

 W_0 is worse than W, W_1 is better than W. Will be denoted also as W^- and W^+ .

Example

Polarization is easy to analyze when W is a BEC.

If W is a $BEC(\epsilon)$, then so are W^- and W^+ , with erasure probabilities

$$\epsilon^- \stackrel{\Delta}{=} 2\epsilon - \epsilon^2$$

and

$$\epsilon^{+} \stackrel{\Delta}{=} \epsilon^{2}$$

respectively.

n=4

Four independent uses of the channel W

A new class of error-correcting codes, invented in 2009 by Erdal Arıkan, based on the universal phenomenon of *channel polarization*.

Polar code of length n=4

$$U_0 \longrightarrow W_0 \longrightarrow Y_0, Y_1, Y_2, Y_3$$

First bit-channel W_0

$$U_1 \longrightarrow W_1 \longrightarrow Y_0, Y_1, Y_2, Y_3; U_0$$

Second bit-channel W_1

$$U_2 \longrightarrow W_2 \longrightarrow Y_0, Y_1, Y_2, Y_3; U_0, U_1$$
Third bit-channel W_2

n=4

A new class of error-correcting codes, invented in 2009 by Erdal Arıkan, based on the universal phenomenon of *channel polarization*.

Polarization Theorem [Arıkan 2009]

As $n \to \infty$, the bit-channels polarize: they become either good (nearly noiseless) or bad (nearly useless). The fraction of good channels approaches capacity (W).

Polar codes: send information bits over the good channels, freeze the input to the bad channels to *a priori* known values (say, zeros).

General n

Outline

Polarization

2 Encoding

3 Decoding

$$G_2 = \left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right]$$

$$G_2^{\otimes 2} = \left[egin{array}{cc} G_2 & 0 \ G_2 & G_2 \end{array}
ight]$$

$$G_2^{\otimes 2} = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{array} \right]$$

$$G_2^{\otimes 3} = \left[egin{array}{cccc} G_2 & 0 & 0 & 0 \ G_2 & G_2 & 0 & 0 \ G_2 & 0 & G_2 & 0 \ G_2 & G_2 & G_2 & G_2 \end{array}
ight]$$

length
$$N = 2^m$$
, $m \in \mathbb{N}$

generator matrix: rows of $G_2^{\otimes m}$

$$\bar{x} = [u_0 \ u_1 \ u_2 \ u_3 \ u_4 \ u_5 \ u_6 \ u_7]G_2^{\otimes 3}$$

length
$$N = 2^m$$
, $m \in \mathbb{N}$

generator matrix: rows of $G_2^{\otimes m}$

$$\bar{x} = [0\ 0\ 0\ u_3\ 0\ u_5\ u_6\ u_7]G_2^{\otimes 3}$$

How to choose the rows?

Reed-Muller codes

length
$$N = 2^m$$
, $m \in \mathbb{N}$

generator matrix: rows of $G_2^{\otimes m}$

How to choose the rows?

$$G_2^{\otimes 3} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$
 choose rows of largest weight

$$\bar{x} = [0\ 0\ 0\ u_3\ 0\ u_5\ u_6\ u_7]G_2^{\otimes 3}$$

Theorem

Encoding complexity for polar coding is $\mathcal{O}(N \log N)$.

Proof:

- ▶ Polar coding transform can be represented as a graph with $N[1 + \log(N)]$ variables.
- The graph has (1 + log(N)) levels with N variables at each level.
- Computation begins at the source level and can be carried out level by level.
- ▶ Space complexity O(N), time complexity $O(N \log N)$.

Outline

Polarization

2 Encoding

$$F = \{0, 1, 2, 4\}$$

$$F = \{0, 1, 2, 4\}$$

From 0 till N - 1

$$F = \{0, 1, 2, 4\}$$
From 0 till $N - 1$
if $i \in F$, $\hat{u}_i = 0$
if $i \in F^c$,

$$\hat{u}_i = \left\{ \begin{array}{ll} 0, & \text{if } \frac{P(0|\hat{\mathcal{U}}_0^{i-1}, \bar{\mathcal{V}})}{P(1|\hat{\mathcal{U}}_0^{i-1}, \bar{\mathcal{V}})} > 1\\ 1, & \text{otherwise} \end{array} \right.$$

$$F = \{0, 1, 2, 4\}$$

From 0 till N - 1

$$\hat{u}_i = \left\{ \begin{array}{ll} 0, & \text{if } \frac{P(0|\hat{\mathcal{U}}_0^{i-1}, \overline{\mathcal{V}})}{P(1|\hat{\mathcal{U}}_0^{i-1}, \overline{\mathcal{V}})} > 1\\ 1, & \text{otherwise} \end{array} \right.$$

$$\begin{split} F &= \{0,1,2,4\} \\ \text{From 0 till } \textit{N} - 1 \\ &\quad \text{if } i \in \textit{F}, \hat{u}_i = 0 \\ &\quad \text{if } i \in \textit{F}^c, \\ \hat{u}_i &= \left\{ \begin{array}{ll} 0, & \text{if } \frac{P(0|\hat{U}_0^{j-1}, \hat{y})}{P(1|\hat{U}_0^{j-1}, \hat{y})} > 1 \\ 1, & \text{otherwise} \end{array} \right. \end{split}$$

$$\begin{split} F &= \{0,1,2,4\} \\ \text{From 0 till } \textit{N} - 1 \\ &\quad \text{if } i \in \textit{F}, \hat{u}_i = 0 \\ &\quad \text{if } i \in \textit{F}^c. \\ \\ \hat{u}_i &= \left\{ \begin{array}{ll} 0, & \text{if } \frac{P(0|\hat{u}_0^{l-1}, \hat{p})}{P(1|\hat{u}_0^{l-1}, \hat{p})} > 0 \\ 0, & \text{otherwise} \end{array} \right. \end{split}$$

$$F = \{0, 1, 2, 4\}$$
From 0 till $N-1$

if $i \in F$, $\hat{u}_i = 0$

if $i \in F^c$.

$$\hat{u}_i = \begin{cases} 0, & \text{if } \frac{P(0|\hat{u}_0^{j-1}, \bar{y})}{P(1|\hat{u}_0^{j-1}, \bar{y})} > 1 \\ 1, & \text{otherwise} \end{cases}$$

$$F = \{0, 1, 2, 4\}$$

From 0 till N - 1

$$\hat{u}_i = \left\{ \begin{array}{ll} 0, & \text{if } \frac{P(0|\hat{u}_0^{i-1},\bar{y})}{P(1|\hat{u}_0^{i-1},\bar{y})} > 1 \\ 1, & \text{otherwise} \end{array} \right.$$

Complexity $O(N \log N)$

Comparison to another coding schemes

 Polar codes achieve better performance than the best-known LDPC codes with lower complexity, even at very short code lengths.

Summary

- Polar codes provably achieve capacity on general symmetric channels.
- Polar codes have low encoding and decoding complexity both O(n log n).
- Polar codes are explicit: there is no random ensemble to choose from; they also do not suffer from an error-floor.

 Polar codes have beautiful structure that resembles the fast Fourier transform. This makes them well suited for VLSI implementation.

> G. Sarkis, P. Giard, A.Vardy, C. Thibeault, and W.J. Gross, Fast polar decoders: Algorithm and implementation, *IEEE Journal* on Selected Areas in Communications, 32, pp. 946–957, May 2014.

 Polar codes work in many important scenarios other than point-topoint channel coding: wiretap channels, broadcast channels, multiuser channels, Wyner-Ziv coding, source coding, and more... Thank you for your attention!