t-Stochastic Neighbor Embedding

Complete 80-Slide Presentation

Prof. Endri Raco

Polytechnic University of Catalonia

November 2025

The Fundamental Challenge of Dimensionality Reduction

784 DimensionsMNIST digit

2 Dimensions
Your screen

The Crowding Catastrophe

High-D Space (10D)

All distances collapse!

Three distinct distances

Projected to 2D

Warning: Linear methods cannot preserve moderate distances in low dimensions 290

The Paradigm Shift: From Geometry to Information

Traditional Methods

Preserve distances or variance

t-SNE

From Distances to Probabilities

Key Transformation:

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)}$$

Insight: σ_i adapts to local density automatic

Why Gaussian? The Maximum Entropy Principle

Derivation from First Principles

Given constraints, choose the least biased distribution:

Optimization Problem:

Maximize:
$$H(P_i) = -\sum_j p_{j|i} \log p_{j|i}$$

Subject to: $\sum_j p_{j|i} = 1$ (probability) $\sum_j p_{j|i} d_{ij}^2 = \sigma_i^2$ (expected distance)

Lagrangian Solution:

$$\mathcal{L} = H(P_i) + \lambda \left(\sum_j p_{j|i} - 1 \right) + \mu \left(\sum_j p_{j|i} d_{ij}^2 - \sigma_i^2 \right)$$

Perplexity: The Effective Number of Neighbors

Dense: Small σ

Sparse: Large σ

Perplexity Definition

 $Perp(P_i) = 2^{H(P_i)} \approx effective number of neighbors$

Binary search finds σ_i to match target perplexity

Measuring Information Loss: KL Divergence

KL Divergence

$$\mathsf{KL}(P||Q) = \sum_{j} p_{j} \log rac{p_{j}}{q_{j}}$$

Extra bits needed when using Q instead of P

Critical Asymmetry:

- Missing a neighbor: p = 0.3, q = 0.01
 - Penalty: $0.3 \log(30) \approx 1.02$ bits
- False neighbor: p = 0.01, q = 0.3
 - \bullet Penalty: $0.01 \log (0.033) \approx -0.035$ bits

Insight: t-SNE heavily penalizes separating true neighbors

Original SNE Algorithm

High-D Similarities:

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)}$$

Low-D Similarities:

$$q_{j|i} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq i} \exp(-\|y_i - y_k\|^2)}$$

Warning: Fatal flaw: The Crowding Problem!

Cost Function:

$$C = \sum_i \mathsf{KL}(P_i||Q_i)$$

Gradient:

$$\frac{\partial C}{\partial y_i} = 2\sum_j (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$$

The Curse: Volume Distribution in High-D

Insight: In 100D, 99.997% of volume is in outer shell!

SNE's Fatal Flaw Visualized

High-D: Room for all

Distinct distances

2D with Gaussian: Crushed!

Cannot represent moderate distances

Solution: Use distribution with heavier tails!

The t-SNE Innovation: Student-t Distribution

Key Properties:

- Polynomial decay
- Heavy tails
- More "room" at moderate distances

Insight: Creates virtual space that

Quantifying the Solution

Similarity Ratio Analysis

For distances $d_1 = 1$ and $d_2 = 3$:

Gaussian:

$$\frac{q(d_1)}{q(d_2)} = \frac{e^{-1}}{e^{-9}} = e^8 \approx 2981$$

Moderate distance becomes "infinite"

Student-t:

$$\frac{q(d_1)}{q(d_2)} = \frac{1/(1+1)}{1/(1+9)} = 5$$

Moderate distance preserved

600× difference in representation capacity!

The Complete t-SNE Algorithm

Key Modifications from SNE

- **1** Symmetrized: $p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$
- ② Student-t in low-D: $q_{ij} = \frac{(1+\|y_i-y_j\|^2)^{-1}}{\sum_{k\neq l}(1+\|y_k-y_l\|^2)^{-1}}$
- **3** Single KL: C = KL(P||Q) not $\sum_i KL(P_i||Q_i)$

Cost Function:

$$C = \sum_{i,j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

The Elegant Gradient:

$$\frac{\partial C}{\partial y_i} = 4 \sum_{i} (p_{ij} - q_{ij}) (y_i - y_j) (1 + ||y_i - y_j||^2)^{-1}$$

Understanding the Gradient: Force Interpretation

$$\nabla C = 4 \sum_{j} \underbrace{(p_{ij} - q_{ij})}_{\text{error}} \underbrace{(y_i - y_j)}_{\text{direction}} \underbrace{(1 + d_{ij}^2)^{-1}}_{\text{adaptive weight}}$$

Insight: Weight term prevents distant clusters from merging

Optimization Tricks for Convergence

Adaptive Learning

Insight: These tricks reduce convergence time by $5-10\times$

Barnes-Hut: Scaling to Large Datasets

Key Idea:

Treat distant clusters as single point

Criterion:

$$rac{r_{
m cell}}{d_{
m to~cell}} < heta$$

Speedup:

ullet 10K points: 50× faster

ullet 100K points: 200× faster

Insight: Trade 1-2% accuracy for massive speedup

Debugging t-SNE: Visual Diagnosis

Warning: Always run multiple times to verify results!

Perplexity: Your Main Control Parameter

Insight: Truth is what's consistent across multiple perplexity values

Critical: What You CANNOT Interpret

The Three Deadly Sins

 $\begin{array}{c} \textbf{Sin} \ \textbf{\#1} \\ \textbf{Size} \neq \textbf{Count} \end{array}$

Sin #2
Gap meaningless

Top?

Bottom?

Sin #3 Position arbitrary

Warning: Only local neighborhoods are meaningful!

MNIST Case Study: Complete Pipeline

Data Preparation:

- 70,000 handwritten digits
- Scale pixels to [0,1]
- PCA to 50D (95% variance)
- Remove outliers ($\frac{1}{2}3\sigma$)

t-SNE Settings:

- Perplexity = 30
- Iterations = 1000
- Learning rate = 200
- Early exaggeration = 4

Insight: Clear digit separation validates the algorithm

November 2025

Quantitative Validation: Beyond Visual Inspection

Essential Metrics

Neighborhood Preservation (NPr):

$$NPr(k) = \frac{1}{n} \sum_{i} \frac{|N_k^{high}(i) \cap N_k^{low}(i)|}{k}$$

Trustworthiness:

$$T(k) = 1 - \frac{2}{nk(2n-3k-1)} \sum_{i} \sum_{i \in IL(i)} (r(i,j) - k)$$

Continuity:

$$C(k) = 1 - \frac{2}{nk(2n-3k-1)} \sum_{i} \sum_{j \in V_{i}(i)} (r'(i,j) - k)$$

4 D > 4 B > 4 B > 4 B > Warning Nover publish + SNE without these metrical 22/80

Stability Analysis: How Reliable Is Your Embedding?

Protocol:

- Run t-SNE 10 times
- ② Different random seeds
- Compute pairwise correlations
- lacktriangle Report mean \pm std

Interpretation:

- r > 0.9: Very stable
- r = 0.7 0.9: Moderately stable
- r < 0.7: Unreliable

Correlation Matrix

		1	2	3	4	5
	1	1.00	0.92	0.89	0.91	0.88
	2	0.92	1.00	0.93	0.90	0.91
	3	0.89	0.93	1.00	0.88	0.87
	4	0.91	0.90	0.88	1.00	0.92
	5	0.88	0.91	0.87	0.92	1.00

Critical: Data Preprocessing

Essential Steps

- Scaling: Standardize to mean=0, std=1
- Missing Data: Impute or remove
- Outliers: Identify and handle
- Oimensionality: PCA if D ¿ 50

Warning: Bad preprocessing = bad embedding, regardless of parameters!

Modern Alternatives: t-SNE vs UMAP

Aspect	t-SNE	UMAP
Speed	$O(n \log n)$	$O(n^{1.14})$
Global structure	Weak	Better
Local structure	Excellent	Excellent
Scalability	¡100K points	Millions
Theory	Information	Topology
Parameters	Intuitive	Complex
Reproducibility	Random init	More stable
New points	No	Yes

Insight: Use both and trust what's consistent

Symmetric SNE: Solving the Outlier Problem

The Problem with Asymmetric Probabilities

Original SNE: $p_{j|i} = \frac{\exp(-d_{ij}^2/2\sigma_i^2)}{\sum_{k\neq i} \exp(-d_{ik}^2/2\sigma_i^2)}$

For outliers: denominator \rightarrow small, but numerator \rightarrow very small

Solution: Symmetrization

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$$

Properties:

- $p_{ij} = p_{ji}$ (symmetric)
- $\sum_{i,j} p_{ij} = 1$ (normalized)
- Outliers get fair representation

← ← outlier

Insight: Symmetrization ensures even outliers maintain connections

The Full Mathematics: Cost Function

KL Divergence for Symmetric Distributions

$$C = \mathsf{KL}(P||Q) = \sum_{i} \sum_{j} p_{ij} \log rac{p_{ij}}{q_{ij}}$$

Why KL Divergence?

- Information-theoretic optimality
- Natural gradient structure
- Asymmetry penalizes missing neighbors heavily

Expanded Form:

$$C = \sum_{i,j} p_{ij} \log p_{ij} - \sum_{i,j} p_{ij} \log q_{ij}$$

First term: constant (entropy of P)

Second term: cross-entropy to minimize

Gradient Derivation: The Mathematical Core

Starting Point:

$$\frac{\partial C}{\partial y_i} = \sum_{j} \left(\frac{\partial C}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial y_i} + \frac{\partial C}{\partial r_{ji}} \frac{\partial r_{ji}}{\partial y_i} \right)$$

where $r_{ij} = ||y_i - y_i||^2$

Key Steps:

$$\frac{\partial C}{\partial r_{ij}} = p_{ij} \frac{\partial \log q_{ij}}{\partial r_{ij}}$$

$$= p_{ij} \left[\frac{1}{q_{ij}} \frac{\partial q_{ij}}{\partial r_{ij}} - \frac{1}{\beta} \frac{\partial \beta}{\partial r_{ij}} \right]$$

where $\beta = \sum_{k \neq l} (1 + r_{kl})^{-1}$

Final Result:

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j} (p_{ij} - q_{ij})(y_i - y_j)(1 + ||y_i - y_j||^2)^{-1}$$

Why Student-t? The Mathematical Justification

General Student-t:

$$f(z) = \frac{\Gamma(\frac{\delta+1}{2})}{\sqrt{\delta\pi}\Gamma(\frac{\delta}{2})} \left(1 + \frac{z^2}{\delta}\right)^{-\frac{\delta+1}{2}}$$

Special Case ($\delta = 1$):

$$f(z) = \frac{1}{\pi(1+z^2)}$$

Cauchy distribution!

Insight: $\delta=1$ has heaviest tails o maximum space for moderate distances

Generalizing t-SNE: Degrees of Freedom

Van der Maaten 2009 Extension:

$$q_{ij} = \frac{(1 + ||y_i - y_j||^2 / \delta)^{-(\delta+1)/2}}{\sum_{k \neq l} (1 + ||y_k - y_l||^2 / \delta)^{-(\delta+1)/2}}$$

Three Approaches to Choose δ :

- Fixed: $\delta = 1$ (original t-SNE)
- **Dimension-dependent:** $\delta = p 1$ where p = embedding dimension
- **Optimized:** Learn δ via gradient descent

Gradient w.r.t. δ :

$$rac{\partial \mathcal{C}}{\partial \delta} = \sum_{i
eq i} \left[-rac{(1+\delta)z_{ij}^2}{2\delta^2(1+z_{ij}^2/\delta)} + rac{1}{2}\log(1+z_{ij}^2/\delta)
ight] (p_{ij}-q_{ij})$$

30 / 80

Early Exaggeration: The Mathematics Behind the Trick

Modification

$$p_{ij}^{\mathsf{early}} = 4 \cdot p_{ij}$$
 for iterations $t < 250$

Effect on Gradient:

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j} (4p_{ij} - q_{ij})(y_i - y_j)(1 + d_{ij}^2)^{-1}$$

Why It Works:

- Large p_{ii} dominate early
- Forms tight clusters first
- Global structure emerges later
- Prevents early dispersion

Momentum: Escaping Local Minima

Update Equation with Momentum:

$$\Delta y_i^{(t)} = -\eta \frac{\partial C}{\partial y_i} + \alpha(t) \Delta y_i^{(t-1)}$$
$$y_i^{(t)} = y_i^{(t-1)} + \Delta y_i^{(t)}$$

Momentum Schedule:

$$\alpha(t) = \begin{cases} 0.5 & \text{if } t < 250 \\ 0.8 & \text{if } t \ge 250 \end{cases}$$

With momentum: escapes local minima

November 2025

Adaptive Learning Rate: The Jacobs Method

Per-parameter learning rate:

$$\eta_{i}^{(t)} = \begin{cases} \eta_{i}^{(t-1)} \cdot 1.2 & \text{if } \nabla_{i}^{(t)} \cdot \nabla_{i}^{(t-1)} > 0\\ \eta_{i}^{(t-1)} \cdot 0.8 & \text{if } \nabla_{i}^{(t)} \cdot \nabla_{i}^{(t-1)} < 0\\ \eta_{i}^{(t-1)} & \text{otherwise} \end{cases}$$

Global constraints:

- $\eta_{\min} = 0.01$
- $\eta_{\sf max} = 1000$
- Initialize: $\eta^{(0)} = 200$

Barnes-Hut Approximation: The Mathematics

Exact Computation:

$$F_i = \sum_{j \neq i} (p_{ij} - q_{ij})(y_i - y_j)(1 + \|y_i - y_j\|^2)^{-1}$$

Complexity: $O(n^2)$

Barnes-Hut Approximation:

- Build quadtree/octree: $O(n \log n)$
- For each point, traverse tree
- **1** If $\frac{r_{\text{cell}}}{d_{\text{cell}}} < \theta$, treat cell as single point

Multipole Expansion:

$$F_i pprox \sum_{ ext{cells}} extstyle N_{ ext{cell}} \cdot (p_i - q_{ ext{cell}}) (y_i - y_{ ext{cell}}) (1 + d_{ ext{cell}}^2)^{-1}$$

Complexity: $O(n \log n)$

Insight: Trade-off: $\theta = 0.5$ gives 1-2% error for 50× speedup

Computational Complexity: Full Analysis

Method	Time	Space	Max n
Exact SNE	$O(n^2)$	$O(n^2)$	\sim 1K
Symmetric SNE	$O(n^2)$	$O(n^2)$	$\sim\!1K$
Exact t-SNE	$O(n^2)$	$O(n^2)$	\sim 5K
Barnes-Hut t-SNE	$O(n \log n)$	O(n)	\sim 100K
VP-tree t-SNE	$O(n \log n)$	O(n)	${\sim}100K$
Random walk t-SNE	O(kn)	O(kn)	\sim 1M
FFT-accelerated	O(n)	O(n)	\sim 10M

Breakdown per iteration:

• Computing $P: O(n^2)$ (once) or $O(kn \log n)$ (approximate)

• Computing $Q: O(n^2)$ or $O(n \log n)$ (Barnes-Hut)

• Gradient: $O(n^2)$ or $O(n \log n)$

• Update: O(n)

Computing σ_i : Binary Search Algorithm

- 1: **Input:** x_i , target perplexity P2: $\sigma_{min} \leftarrow 0$, $\sigma_{max} \leftarrow \infty$
- 3: $\sigma \leftarrow 1$, tolerance $\leftarrow 10^{-5}$
- 4: **while** iterations < 50 **do**
- 5: Compute $p_{i|i}$ with current σ
- 6: $H \leftarrow -\sum_{i} p_{j|i} \log_2 p_{j|i}$
- 7: Perp $\leftarrow 2^H$
- 8: **if** |Perp P| < tolerance**then**
- 9: break
- 10: **else if** Perp > P **then**
- 11: $\sigma_{\mathsf{max}} \leftarrow \sigma$
- 12: $\sigma \leftarrow (\sigma + \sigma_{\min})/2$
- 13: **else**
- 14: $\sigma_{\min} \leftarrow \sigma$
- 15: $\sigma \leftarrow (\sigma + \sigma_{\text{max}})/2$

Out-of-Sample Extension: Kernel Mapping

Problem: How to embed new points without recomputing? **Solution (Gisbrecht et al. 2015):**

$$y(x) = \sum_{j=1}^{n} \alpha_j \frac{k(x, x_j)}{\sum_{\ell=1}^{n} k(x, x_\ell)}$$

where
$$k(x, x_j) = \exp\left(-\frac{\|x - x_j\|^2}{2\sigma_j^2}\right)$$

Finding α_j :

- ② Solution: $A = K^{\dagger}Y$
- **3** For new points: $Y^{(t)} = K^{(t)}A$

Warning: Assumes original embedding is good!

Random Walk Acceleration

Key Idea: Approximate $p_{j|i}$ via random walks on kNN graph

Algorithm:

- Build kNN graph ($k \approx 20$)
- Start walks from landmarks
- **3** Count transitions $i \rightarrow j$
- $p_{j|i} pprox rac{\mathsf{walks}_{i o j}}{\mathsf{total} \; \mathsf{walks} \; \mathsf{from} \; i}$

Complexity:

- Building graph: $O(n \log n)$
- Walks: O(wLk)
- Total: $O(n \log n + wLk)$

Random walks estimate P

VP-Tree: Exact Nearest Neighbors Fast

Vantage Point Tree:

- Choose vantage point v
- Compute distances to all points
- ullet Split at median distance μ
- Recurse on subsets

Search Algorithm:

- Start at root
- ② If $d(q, v) < \mu + r$, search left
- **3** If $d(q, v) > \mu r$, search right
- Prune based on triangle inequality

Partition by distance to v

Implementation Best Practices

Critical Implementation Details

- Numerical Stability:
 - Add $\epsilon = 10^{-12}$ to denominators
 - Clip gradients: $|\nabla| < 4$
 - Use log-space for very small probabilities
- Initialization:
 - $y_i \sim \mathcal{N}(0, 10^{-4})$ (small variance crucial!)
 - Or use PCA initialization
- Convergence Criteria:
 - Monitor $\|\nabla C\| < 10^{-7}$
 - Or fixed iterations (typically 1000)

Warning: Small initialization variance prevents early point explosion!

Real-World Impact: Single-Cell Genomics

Challenge:

- 20,000+ genes per cell
- 100.000+ cells
- Extreme sparsity (90%+ zeros)
- Batch effects
- Technical noise

t-SNE Pipeline:

- Log-normalize counts
- Select highly variable genes
- OPER PROPERTY OF THE PROPER
- 4 t-SNE with perplexity 30-100

Insight: t-SNE revealed previously unknown cell subtypes

1

P

Cell Type Discovery

X.

B-cells

NLP Revolution: Word2Vec + t-SNE

Pipeline:

- Train Word2Vec (300D)
- Select vocabulary subset
- Apply t-SNE
- Discover semantic clusters

Parameters for NLP:

• Perplexity: 20-50

• Learning rate: 500

• Iterations: 5000

Metric: Cosine distance

Insight: Semantic relationships preserved in 2D

Deep Learning: Understanding Neural Networks

Visualizing CNN Features:

- Extract activations from layer
- Apply t-SNE to feature vectors
- Color by class labels
- Analyze cluster structure

Discoveries:

- Hierarchical feature learning
- Class confusion patterns
- Adversarial vulnerabilities
- Feature redundancy

Parametric t-SNE: Learning the Mapping

Key Innovation: Learn $f_{\theta}: \mathbb{R}^d \to \mathbb{R}^p$ via neural network **Architecture:**

- **1** Input: $x \in \mathbb{R}^d$
- Hidden: RBM layers
- **3** Output: $y = f_{\theta}(x) \in \mathbb{R}^2$

Training:

$$\min_{ heta} \sum_{i,j} p_{ij} \log rac{p_{ij}}{q_{ij}(f_{ heta})}$$

Advantages:

- Out-of-sample direct
- Inverse mapping possible
- Fast inference

44 / 80

Dynamic t-SNE: Visualizing Evolution

Problem: How to visualize changing data? **Solution:** Add temporal coherence term

$$C_{\text{dynamic}} = \lambda \sum_{t} \|Y^{(t)} - Y^{(t-1)}\|^2 + \sum_{t} C_{\text{t-SNE}}^{(t)}$$

$$t = 1 \qquad t = 2 \qquad t = 3$$

Insight: Tracks cluster evolution over time

Beyond Student-t: Heavy-Tailed Kernels

Kobak & Berens 2019:

$$q_{ij} \propto (1 + \|y_i - y_j\|^2/\delta)^{-\alpha}$$

where $\alpha < 1$ (sub-Student-t!)

Effects of α :

• $\alpha = 1$: Standard t-SNE

• $\alpha = 0.5$: More local detail

• $\alpha = 1.5$: More global structure

• $\alpha \to \infty$: Approaches SNE

Unifying View: Attraction-Repulsion Forces

Böhm et al. 2020 Framework:

All neighbor embeddings can be written as:

$$F_i = \sum_j w_{ij}^+(y_i - y_j) - \sum_j w_{ij}^-(y_i - y_j)$$

Method	Attraction w^+	Repulsion w^-
MDS	d_{ii}^{-1}	0
SNE	$ \overset{\circ}{p_{ij}} $	q _{ij}
t-SNE	$p_{ij}/(1+d_{ii}^2)$	$q_{ij}/(1+d_{ii}^2)$
UMAP	$p_{ij}/(ad_{ii}^{2b})$	$(1-p_{ij})/(1+d_{ii}^2)$
LargeVis	$p_{ij}/(1+d_{ij}^2)$	$\gamma/(1+d_{ii}^2)^2$

Insight: Different methods = different force balances

Information Theory Foundation

Why KL Divergence?

Information-Theoretic Interpretation

$$\mathsf{KL}(P||Q) = \mathbb{E}_P\left[\lograc{P}{Q}
ight] = H(P,Q) - H(P)$$

- H(P): Entropy (intrinsic uncertainty)
- H(P, Q): Cross-entropy (coding cost)
- KL: Extra bits when using wrong distribution

Alternative Divergences:

$$\begin{split} \mathsf{JS}(P||Q) &= \frac{1}{2}\mathsf{KL}(P||M) + \frac{1}{2}\mathsf{KL}(Q||M) \quad \text{(symmetric)} \\ \mathsf{Renyi}_{\alpha}(P||Q) &= \frac{1}{\alpha-1}\log\sum_{i}p_{i}^{\alpha}q_{i}^{1-\alpha} \quad \text{(generalizes KL)} \end{split}$$

Warning: KL's asymmetry is a feature, not a bug!

Optimization Theory: Why Gradient Descent?

The Optimization Landscape: **Properties:**

- Non-convex
- Many local minima
- Permutation invariance
- Scale invariance

Why Not Newton's Method?

- Hessian: $O(n^2p^2)$ storage
- Inversion: $O(n^3p^3)$ time
- Often indefinite

Insight: Momentum helps escape shallow minima

Detailed Proof: Gradient Derivation

Claim:
$$\frac{\partial C}{\partial y_i} = 4 \sum_j (p_{ij} - q_{ij}) (y_i - y_j) (1 + ||y_i - y_j||^2)^{-1}$$

Proof: Let $r_{ij} = ||y_i - y_j||^2$. By chain rule:

$$\frac{\partial C}{\partial y_i} = \sum_{j} \left(\frac{\partial C}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial y_i} + \frac{\partial C}{\partial r_{ji}} \frac{\partial r_{ji}}{\partial y_i} \right)$$

Since $\frac{\partial r_{ij}}{\partial y_i} = 2(y_i - y_j)$ and $C = \sum_{k,l} p_{kl} \log \frac{p_{kl}}{q_{kl}}$:

$$\frac{\partial C}{\partial r_{ij}} = -p_{ij} \frac{\partial \log q_{ij}}{\partial r_{ij}}$$

For $q_{ij} = \frac{(1+r_{ij})^{-1}}{\sum_{l=1}^{(1+r_{ij})^{-1}}}$, let $Z = \sum_{k \neq l} (1+r_{kl})^{-1}$

$$rac{\partial \log q_{ij}}{\partial r_{ii}} = -rac{1}{1+r_{ii}} + rac{1}{Z}rac{\partial Z}{\partial r_{ii}} = -rac{1}{1+r_{ii}}(1-q_{ij})$$

Therefore: $\frac{\partial C}{\partial r_i} = (p_{ij} - q_{ij})(1 + r_{ij})^{-1}$

November 2025

Initialization: Critical for Success

Three Strategies: Random:

$$y_i \sim \mathcal{N}(0, \sigma^2 I)$$

$$\sigma = 10^{-4}$$
 crucial!

Pros:

- Simple
- Unbiased

Cons:

- Slow convergence
- Multiple runs needed

PCA:

$$Y = U_p \Lambda_p^{1/2}$$

First p components

Pros:

- Deterministic
- Faster convergence

Cons:

- Linear bias
- May miss structure

Laplacian Eigenmaps:

$$Y = eigvecs(L)$$

Graph Laplacian

Pros:

- Manifold-aware
- Good for graphs

Cons:

- Expensive
- Parameter sensitive

Warning: Large σ causes early point explosion!

Early Iteration Jitter: Escaping Local Optima

Original SNE Technique:

$$y_i^{(t)} = y_i^{(t)} + \mathcal{N}(0, \eta^2)$$
 for $t < 100$

Effect on Cost Function:

$$C_{\mathsf{noisy}} = C + rac{\eta^2}{2} \mathsf{tr}(
abla^2 C)$$

Adds implicit regularization!

Modern View:

- Similar to SGD noise
- Helps exploration
- Not needed with momentum

52 / 80

Distance Metrics: Beyond Euclidean

Standard Euclidean:

$$d_{ij}^2 = \|x_i - x_j\|_2^2$$

Alternatives:

• Cosine: Better for text

$$d_{ij} = 1 - \frac{x_i \cdot x_j}{\|x_i\| \|x_j\|}$$

Manhattan: Robust to outliers

$$d_{ij} = \|x_i - x_j\|_1$$

• Correlation: For gene expression

$$d_{ii} = 1 - \operatorname{corr}(x_i, x_i)$$

Insight: Choice depends on data domain

Multiscale t-SNE: Multiple Perplexities

Lee et al. 2015:

$$p_{ij} = \sum_{s=1}^{S} \omega_s p_{ij}^{(s)}$$

where $p_{ij}^{(s)}$ uses perplexity P_s

Implementation:

- **1** Choose $P_1 < P_2 < ... < P_S$
- ② Compute each $p_{ii}^{(s)}$
- **3** Weight: $\omega_s = 1/S$ or learned
- Standard t-SNE gradient

Benefits:

- Captures multiple scales
- More robust
- Better global structure

Multiple scales simultaneously

Alternative Divergences to KL

Im et al. 2018: f-divergences

$$D_f(P||Q) = \sum_j q_j f\left(rac{p_j}{q_j}
ight)$$

Divergence	f(t)	Properties
KL	t log t	Asymmetric, unbounded
Reverse KL	$-\log t$	Mode-seeking
JS	$t \log t - (t+1) \log \frac{t+1}{2}$	Symmetric, bounded
χ^2	$(t-1)^2$	Sensitive to small q
Hellinger	$(\sqrt{t}-1)^2$	Symmetric, bounded

Gradient for general f:

$$\frac{\partial D_f}{\partial y_i} = 4 \sum_{i} \left(p_{ij} f'' \left(\frac{p_{ij}}{q_{ij}} \right) - f' \left(\frac{p_{ij}}{q_{ij}} \right) \right) \frac{(y_i - y_j)}{1 + \|y_i - y_j\|^2}$$

Insight: JS divergence gives more stable embeddings

Cross-Validation: Finding Optimal Parameters

Challenge: How to validate unsupervised method?

Solution: Hold-out probability validation

- Split neighbors: 90% train, 10% test
- Optimize using only train probabilities
- Evaluate on test probabilities

Modified Cost:

$$C_{\mathsf{train}} = \sum_{(i,j) \in \mathsf{Train}} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

Validation Metric:

$$\mathsf{Perplexity}_{\mathsf{test}} = 2^{H_{\mathsf{test}}} = 2^{-\sum_{(i,j) \in \mathsf{Test}} p_{ij} \log q_{ij}}$$

Streaming t-SNE: Online Learning

Problem: Data arrives sequentially **Solution:** Incremental updates

- Embed initial batch with t-SNE
- ② For new point x_{new} :
 - Find position minimizing local cost
 - Update existing points slightly

Update Rule:

$$y_{\text{new}} = \arg\min_{y} \sum_{j \in \text{batch}} p_{j|\text{new}} \log \frac{p_{j|\text{new}}}{q_{j|\text{new}}}$$

Existing Points:

$$y_i^{(t+1)} = y_i^{(t)} - \eta \cdot \rho \cdot \frac{\partial C_{\text{new}}}{\partial v_i}$$

where $\rho \ll 1$ prevents disruption

Warning: Quality degrades over time - periodic full recomputation needed

GPU Acceleration: Massive Speedups

Parallelizable Components:

- Distance computation: $O(n^2)$
- Exponential evaluation
- Probability normalization
- Gradient computation
- Point updates

CUDA Kernels:

- o compute_pairwise_dist
- o compute_gaussian_perp
- compute_q_matrix
- compute_gradients

Insight: 200× speedup for 100K points!

Memory Optimization: Scaling to Millions

Memory Bottlenecks:

- Full P matrix: $O(n^2) \rightarrow 40$ GB for n = 100K
- Full Q matrix: $O(n^2) \rightarrow 40 \text{GB}$ for n = 100 K

Solutions:

1. Sparse *P*:

- Store only k-NN
- Memory: O(kn)
- $k \approx 3$ · perplexity

2. Compute *Q* on-fly:

- Never store full matrix
- Recompute as needed
- Trade computation for memory

3. Mini-batch gradients:

$$abla \mathit{C} pprox rac{n}{m} \sum_{j \in \mathsf{batch}} (p_{ij} - q_{ij}) (y_i - y_j) \omega_{ij}$$

4. Landmark approximation:

- Select $L \ll n$ landmarks
- Approximate others
- Memory: O(Ln)

Convergence Diagnostics: When to Stop?

Monitor These Metrics:

Cost function: Should decrease

2 Gradient norm: $\|\nabla C\| < \epsilon$

o Point movement: $\max_{i} ||y_{i}^{(t)} - y_{i}^{(t-1)}||$

KL divergence: Should stabilize

Typical Behavior:

• Iterations 0-250: Rapid change

Iterations 250-750: Fine-tuning

• Iterations 750+: Minor adjustments

Insight: Most improvement in first 500 iterations

Fisher Kernel t-SNE: Supervised Embedding

Gisbrecht et al. 2015: Incorporating Label Information Modified Similarities:

$$p_{ij} = \begin{cases} \frac{p_{j|i} + p_{i|j}}{2n} \cdot (1 + \lambda) & \text{if } c_i = c_j \\ \frac{p_{j|i} + p_{i|j}}{2n} \cdot (1 - \lambda) & \text{if } c_i \neq c_j \end{cases}$$

where c_i is class label, $\lambda \in [0,1]$

Fisher Information:

Enhanced class separation

$$g_{ij} = \nabla_{\theta} \log p(x_i|\theta)^T \nabla_{\theta} \log p(x_j|\theta)$$

Insight: Supervision improves class separation while preserving structure

Heavy-Tailed Symmetric SNE

Yang et al. 2009: Alternative Heavy-Tailed Approaches Generalized Kernel:

$$q_{ij} = \frac{h(\|y_i - y_j\|^2)}{\sum_{k \neq I} h(\|y_k - y_I\|^2)}$$

Method	Kernel $h(d^2)$	Tail Behavior
SNE	$\exp(-d^2)$	Exponential decay
t-SNE	$(1+d^2)^{-1}$	Polynomial $O(d^{-2})$
lpha-SNE	$(1+d^2)^{-\alpha}$	Polynomial $O(d^{-2\alpha})$
Exp-SNE	$\exp(-d^{\alpha}), \ \alpha < 2$	Sub-Gaussian

Gradient for General *h*:

$$\frac{\partial C}{\partial y_i} = 4 \sum_{i} (p_{ij} - q_{ij}) (y_i - y_j) \frac{h'(\|y_i - y_j\|^2)}{h(\|y_i - y_j\|^2)}$$

Complete Proof: Symmetric SNE Gradient

Theorem: For symmetric SNE with Gaussian kernels:

$$\frac{\partial C}{\partial y_i} = 4\sum_j (p_{ij} - q_{ij})(y_i - y_j)$$

Proof: Starting from $C = \sum_{i.i} p_{ij} \log(p_{ij}/q_{ij})$ and $r_{ii} = ||y_i - y_i||^2$:

$$\begin{split} \frac{\partial C}{\partial y_i} &= 2 \sum_{j} \left(\frac{\partial C}{\partial r_{ij}} + \frac{\partial C}{\partial r_{ji}} \right) (y_i - y_j) \\ \frac{\partial C}{\partial r_{ij}} &= - \sum_{k,l} p_{kl} \frac{\partial \log q_{kl}}{\partial r_{ij}} \\ &= - p_{ij} \frac{\partial \log q_{ij}}{\partial r_{ij}} \quad \text{(only } k = i, l = j \text{ contributes)} \\ &= p_{ij} - q_{ij} \quad \text{(after simplification)} \end{split}$$

Since $p_{ij} = p_{ji}$ and $q_{ij} = q_{ji}$ in symmetric SNE:

Complete Mathematics: General Degrees of Freedom

Van der Maaten 2009: Full Derivation

For
$$q_{ij} = rac{(1+z_{ij}^2/\delta)^{-(\delta+1)/2}}{\sum_{k
eq l} (1+z_{kl}^2/\delta)^{-(\delta+1)/2}}$$

Gradient w.r.t. y_i :

$$rac{\partial \mathcal{C}}{\partial y_i} = rac{2(\delta+1)}{\delta} \sum_{i} (p_{ij} - q_{ij}) (y_i - y_j) (1 + \|y_i - y_j\|^2 / \delta)^{-1}$$

Gradient w.r.t. δ :

$$rac{\partial \mathcal{C}}{\partial \delta} = \sum_{i
eq j} \left[-rac{(1+\delta)z_{ij}^2}{2\delta^2(1+z_{ij}^2/\delta)} + rac{1}{2}\log(1+z_{ij}^2/\delta)
ight] (p_{ij}-q_{ij})$$

Alternating Optimization:

- **1** Update Y with fixed δ
- ② Update δ with fixed Y: $\delta^{(t+1)} = \delta^{(t)} \eta_{\delta} \cdot \text{sign}(\partial C/\partial \delta)$

November 2025

Mathematical Analysis: Volume Requirements

Why $\delta = p - 1$? Volume of *p*-dimensional sphere:

$$V_p(r) = \frac{\pi^{p/2}}{\Gamma(p/2+1)} r^p$$

Volume ratio (shell):

$$\frac{V_p(1) - V_p(0.9)}{V_p(1)} = 1 - 0.9^p$$

Tail thickness of Student-t:

Tail
$$\sim d^{-(\delta+1)}$$

Insight: Linear relationship emerges from exponential volume growth

Out-of-Sample Extension: Complete Mathematics

Kernel Mapping (Gisbrecht et al. 2015):

Optimization Problem:

$$\min_{\alpha_1,\ldots,\alpha_n} \sum_{i=1}^n \left\| y_i - \sum_{j=1}^n \alpha_j \frac{k(x_i,x_j)}{\sum_{\ell=1}^n k(x_i,x_\ell)} \right\|^2$$

Matrix Form:

$$\min_{A} \|Y - KA\|_F^2$$

Solution via Pseudo-inverse:

$$A = K^{\dagger}Y = (K^{T}K)^{-1}K^{T}Y$$

For new points $X^{(t)}$:

$$Y^{(t)} = K^{(t)}A = K^{(t)}(K^TK)^{-1}K^TY$$

where
$$K_{ij}^{(t)} = rac{k(x_i^{(t)}, x_j)}{\sum_\ell k(x_i^{(t)}, x_\ell)}$$

Random Walk Acceleration: Mathematical Foundation

Van der Maaten & Hinton 2008:

Random Walk Probability:

$$p_{j|i}^{\text{walk}} = \frac{\text{\# walks from } i \text{ to } j}{\text{total walks from } i}$$

Connection to Original:

$$p_{j|i}^{\mathsf{walk}} pprox p_{j|i} = rac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_k \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)}$$

Walk Strategy:

- **1** Build k-NN graph with weights $w_{ij} = \exp(-\|x_i x_j\|^2/2\sigma^2)$
- 2 Transition probability: $T_{ij} = w_{ij} / \sum_k w_{ik}$
- Multiple random walks of length L
- Estimate: $p_{j|i} \approx \sum_{\text{paths}} P(\text{path})$
- **Complexity:** O(nkL) instead of $O(n^2)$

Landmark Methods: Mathematical Framework

Three Approaches:

1. Nystrom Approximation:

$$P \approx P_{LL} P_{LN}^T (P_{LL}^{-1} P_{LN})^T$$

where L = landmarks, N = non-landmarks

2. Sparse Approximation:

$$p_{j|i} pprox egin{cases} p_{j|i}^{ ext{exact}} & ext{if } j \in ext{landmarks} \ 0 & ext{otherwise} \end{cases}$$

3. Interpolation:

$$y_i = \sum_{I \in L} w_{iI} y_I$$

where weights from kernel:

$$w_{il} = \frac{k(x_i, x_l)}{\sum_{l' \in L} k(x_i, x_{l'})}$$

Error Bound:

$$\|P - \tilde{P}\|_F \le \epsilon \cdot \|P\|_F$$

with $|L| = O(\log n/\epsilon^2)$ landmarks

Barnes-Hut: Complete Tree Algorithm

1: **function** ComputeForce(point, node) Tree Construction: if node is leaf then 2. 1: **function** BUILDTREE(points, bounds) return exact force if $|points| \leq 1$ then end if return leaf(points) $r \leftarrow \text{size}(\text{node})$ 5: end if $d \leftarrow \text{distance(point, node.center)}$ 4: 6. $mid \leftarrow center(bounds)$ 7: if $r/d < \theta$ then for each octant do 8: return approximate force $pts \leftarrow points in octant$ g. else $child \leftarrow BuildTree(pts, octant)$ 8: 10: force $\leftarrow 0$ end for for each child do 9: 11: force += ComputeForce(point, 10: Compute center of mass 12: 11: Compute total mass child) 12: return node(children, mass, center) end for 13: 13: end function return force 14: end if 15: end function

Force Calculation:

VP-Tree: Complete Implementation

Vantage Point Tree for Exact Nearest Neighbors: Search:

```
1: function SEARCH(node, query, k)
Construction:
                                                                   \tau \leftarrow \mathsf{d}(\mathsf{query}, \mathsf{node.vp})
 1: function BUILDVPTREE(points)
                                                                   if \tau < best dist then
 2:
        vp ← SelectVantagePoint(points)
                                                                       Update k-nearest
        distances \leftarrow [d(vp, p) for p in points]
                                                            5.
                                                                   end if
        median ← Median(distances)
 4:
                                                            6:
                                                                   if \tau-best dist < node.median then
 5:
        left \leftarrow \{p : d(vp,p) < median\}
                                                                       Search(node.left, query, k)
        right \leftarrow \{p : d(vp,p) > median\}
                                                                   end if
 7:
        return Node(vp, median,
                                                            9:
                                                                   if \tau+best_dist \geq node.median then
    BuildVPTree(left), BuildVPTree(right))
                                                           10:
                                                                       Search(node.right, query, k)
 8: end function
                                                                   end if
                                                           11:
                                                           12: end function
```

Insight: Triangle inequality enables aggressive pruning

FFT Acceleration: Interpolation Method

Linderman et al. 2017: Linear Complexity Key Idea: Approximate sums on regular grid **Interpolation:**

$$q_{ij} pprox \sum_{u \in \mathsf{grid}} K(y_i, u) \hat{q}(u, y_j)$$

where K is interpolation kernel

FFT Convolution:

$$\hat{q}(u, v) = \mathsf{FFT}^{-1}[\mathsf{FFT}[K] \cdot \mathsf{FFT}[p]]$$

Complexity:

- Grid: $O(m^p)$ where m = grid size
- FFT: $O(m^p \log m)$
- Total: $O(n + m^p \log m)$

Interpolate to grid

Negative Sampling: Word2Vec Connection

Alternative to Normalization: Standard t-SNE:

$$q_{ij} = rac{(1+d_{ij}^2)^{-1}}{\sum_{k
eq l} (1+d_{kl}^2)^{-1}}$$

Requires $O(n^2)$ for denominator

Negative Sampling:

$$\mathcal{L}_{ij} = \log \sigma(f(d_{ij})) + \sum_{k \sim P_n} \log(1 - \sigma(f(d_{ik})))$$

where P_n = noise distribution

Implementation:

- For each edge (i, j)
- Sample K negative points
- Update via logistic function
- No normalization needed!

Complexity:

- Per iteration: $O(|E| \cdot K)$
- Total: $O(n \cdot k \cdot K \cdot T)$

Insight: Trade statistical efficiency for comp

VAE-SNE: Neural Network Integration

Graving & Couzin 2020:

Architecture:

• Encoder:
$$x \to \mu(x), \sigma(x)$$

② Sample:
$$z \sim \mathcal{N}(\mu, \sigma)$$

3 t-SNE space:
$$y = f_{\theta}(z)$$

1 Decoder:
$$\hat{x} = g_{\phi}(y)$$

Loss Function:

$$\mathcal{L} = \underbrace{\mathsf{KL}(P||Q)}_{\text{t-SNE}} + \lambda \underbrace{\|x - \hat{x}\|^2}_{\text{reconstruction}}$$

Insight: Combines dimensionality reduction with generation

Input
$$x$$

Encoder

Latent z

t-SNE y

Decoder

Output \hat{x}

Numerical Stability: Critical Implementation Details

Common Numerical Problems and Solutions:

Problem 1: Exponential Overflow

In computing $p_{i|i} = \exp(-d_{ii}^2/2\sigma_i^2)/Z$ Solution: Log-sum-exp trick

$$\log Z = \max_{k} \left(-d_{ik}^2/2\sigma_i^2\right) + \log \sum_{k} \exp(-d_{ik}^2/2\sigma_i^2 - \max)$$

Problem 2: Division by Zero

When $\sum_{k\neq l} (1 + d_{kl}^2)^{-1} \approx 0$

Solution: Add machine epsilon

$$q_{ij} = rac{(1+d_{ij}^2)^{-1} + \epsilon}{\sum_{k
eq l} (1+d_{kl}^2)^{-1} + n^2 \epsilon}$$

Comprehensive Validation Framework

Complete Set of Metrics:

1. Local Metrics:

- Trustworthiness: T(k)
- Continuity: C(k)
- Neighborhood preservation
- Mean relative rank error

2. Global Metrics:

- Shepard correlation
- Procrustes distance
- Silhouette coefficient
- Davies-Bouldin index

3. Stability Metrics:

- Run-to-run correlation
- Cluster consistency (ARI)
- Point-wise variance
- Convergence rate

4. Task Metrics:

- Classification accuracy
- Clustering purity
- Retrieval precision
- Visual separability

Warning: Report multiple metrics - no single metric captures everything!

Ethics and Limitations: Critical Awareness

Fundamental Limitations

- Non-deterministic: Different runs → different results
- Parameter sensitive: Perplexity dramatically affects output
- Local focus: Global structure not preserved
- Computational cost: Quadratic for exact version

Ethical Considerations:

- Misinterpretation: Visual clusters may not reflect true structure
- Confirmation bias: Can find patterns in noise
- Opening Publication bias: Cherry-picking best visualization
- Accessibility: Interactive visualizations exclude some users

Ethics: Always provide raw data, parameters, and multiple runs

Future Research Directions

Open Problems and Opportunities: Theoretical:

- Convergence guarantees
- ullet Optimal δ selection
- Information-theoretic bounds
- Connection to manifold learning

Algorithmic:

- True O(n) algorithms
- Online/streaming variants
- Hierarchical embeddings
- Uncertainty quantification

Applications:

- Time-varying data
- Multi-modal integration
- Interpretable embeddings
- Causal discovery

Extensions:

- Higher-dimensional targets
- Non-Euclidean spaces
- Quantum t-SNE
- Differentiable t-SNE

Insight: Rich area for both theory and applications

Complete t-SNE: Final Algorithm

1: **Input:** $X = \{x_1, ..., x_n\}$, perplexity *P* 2: **Output:** $Y = \{y_1, ..., y_n\}$ 3: // Compute affinities 4: **for** each x_i **do** Find σ_i such that $Perp(P_i) = P$ using binary search Compute $p_{i|i} = \exp(-\|x_i - x_i\|^2 / 2\sigma_i^2) / \sum_{k} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)$ 7: end for 8: Set $p_{ii} = (p_{i|i} + p_{i|i})/2n$ 9: // Initialize 10: Sample $y_i \sim \mathcal{N}(0, 10^{-4}I)$ for all i 11: Apply early exaggeration: $p_{ii} \leftarrow 4 \cdot p_{ii}$ 12: **// Optimize** 13: **for** t = 1 to T **do** Compute $q_{ii} = (1 + ||y_i - y_i||^2)^{-1} / \sum_{k \neq l} (1 + ||y_k - y_l||^2)^{-1}$ 14: Compute gradients: $\frac{\partial C}{\partial v_i} = 4 \sum_i (p_{ii} - q_{ii}) (y_i - y_i) (1 + ||y_i - y_i||^2)^{-1}$ 15:

16: 17: Update: $y_i \leftarrow y_i - \eta \frac{\partial C}{\partial y_i} + \alpha (y_i^{(t)} - y_i^{(t-1)})$

Test Your Understanding

Key Questions:

- Why does SNE fail for moderate distances?
- **②** What makes Student-t distribution special for $\delta = 1$?
- Why symmetrize the probability matrix?
- What does perplexity actually control?
- Why is early exaggeration helpful?
- When should you NOT trust t-SNE results?
- Mow do you validate an embedding?
- What's the computational bottleneck?
- Why can't we interpret cluster sizes?
- How does Barnes-Hut approximation work?

If you can answer these, you understand t-SNE!

Resources and Final Thoughts

Essential Resources:

- Original paper: van der Maaten & Hinton (2008)
- Degrees of freedom: van der Maaten (2009)
- Tutorial: Ghojogh et al. (2022)
- Implementation: scikit-learn, Rtsne
- Interactive: distill.pub/2016/misread-tsne

Remember:

- t-SNE is a tool, not truth
- Always run multiple times
- Trust what's consistent
- Validate quantitatively
- Document everything

Thank you for your attention!

