Effects of Noise on Image Data

Quantitative and Functional Imaging
BME 4420/7450
Fall 2022

Effects of noise

- Random noise in images
 - Interferes with feature detection
 - Causes errors in calculated parameters

Detection threshold depends on contrast, noise, and resolution

Feature detection

- Example: threshold detection of an object in a noisy image
 - Is the object present?
 - Simple rule: compare intensity to a threshold value

Binary decisions

- Correct answers
 - True positive
 - True negative
- Incorrect answers
 - False positive
 - False negative
- Always possible to get true positives
 - At the cost of false positives
- Get best compromise between
 - True positives
 - False positives

	Object reported to be absent	Object reported to be present
Object absent	True negative (TN)	False positive (FP)
Object present	False negative (FN)	True positive (TP)

Binary decisions

- Correct answers
 - True positive
 - True negative
- Incorrect answers
 - False positive
 - False negative
- Always possible to get true positives
 - At the cost of false positives
- Get best compromise between
 - True positives
 - False positives

Rating

Binary decisions

- Correct answers
 - True positive
 - True negative
- Incorrect answers
 - False positive
 - False negative
- Always possible to get true positives
 - At the cost of false positives
- Get best compromise between
 - True positives
 - False positives

	Object reported to be absent	Object reported to be present
Object absent	True negative (TN)	False positive (FP)
Object present	False negative (FN)	True positive (TP)

Correct?

Optimizing feature detection

- Example: threshold detection of an object in a noisy image
 - Is the object present?
 - Simple rule: compare intensity to a threshold value
- Optimizing detection:
 - Algorithm
 - Parameters of the algorithm
- How can we quantify the effect of different choices?

Receiver Operating Characteristic (ROC) curves

- Fraction of true positives plotted as a function of false positives
 - Points on curve correspond to values of continuous parameter
 - Different curves correspond to values of discrete parameters or algorithms
- Perfect detector: curve passes through the upper-left corner of the plot
- Example: comparison to a threshold value
- The ROC curve quantifies detector performance

Effects of noise

- Random noise in images
 - Interferes with feature detection
 - Also causes errors in calculated parameters
- How can we assess these?
 - How does noise affect calculated quantities?
- Let's look at an example...

Hippocampal sclerosis

- Major cause of temporal lobe epilepsy
- Refractory cases may require surgery
- Where is the seizure focus?
- Localize gliosis based on T₂

Briellmann et al, AJNR (2004)

Imaging protocol design task

- To identify the seizure focus, you want to make an accurate measurement of hippocampal T₂
- Image intensity is given by

$$S = S_0 \cdot \exp\left(-T_E/T_2\right)$$

- Acquire 2 images
 - Very short echo time ($T_E=0$): $S(0)=S_0$
 - Longer echo time ($T_E>0$): $S = S_0 \cdot \exp(-T_E/T_2)$
- What is the uncertainty in the estimated T₂?

Protocol design task

The uncertainty in the measured T₂ is

$$\frac{\sigma_{T_2}}{T_2} = \left(\frac{\sigma}{S_0}\right) \cdot \frac{T_2}{T_E} \cdot \sqrt{1 + \exp\left(2T_E/T_2\right)}$$

- What value of T_E minimizes the uncertainty?
- What is the fractional uncertainty in the T_2 estimate at the optimal T_F ?

Protocol design task

The uncertainty in the measured T₂ is

$$\frac{\sigma_{T_2}}{T_2} = \left(\frac{\sigma}{S_0}\right) \cdot \frac{T_2}{T_E} \cdot \sqrt{1 + \exp\left(2T_E/T_2\right)}$$

- What value of T_E minimizes the uncertainty?
- What is the fractional uncertainty in the T_2 estimate at the optimal T_F ?
- What is the minimum SNR to detect hippocampal sclerosis?

Protocol design task

The optimal echo time is

$$T_E \approx 1.11 \cdot T_2$$

The fractional uncertainty at this T_E is

$$\frac{\sigma_{T_2}}{T_2} = \left(\frac{1}{SNR}\right) \cdot \frac{1}{1.11} \cdot \sqrt{1 + \exp(2.22)}$$
$$= \frac{2.88}{SNR}$$

How can SNR be improved?

In-class exercise: Improving SNR through averaging

Calculate the average of two images:

$$\bar{S} = (S_1 + S_2)/2$$

- Suppose the noise variance, $\sigma^2(S_1) = \sigma^2(S_2) = \sigma^2$ and the noise is independent in the two images
- What is the noise variance $\sigma^2(\bar{S})$ in the \bar{S} image?
- Is the SNR of the average image higher?

Image accuracy

- Images can be inaccurate in many ways
 - Geometry
 - Blurring (resolution)
 - Distortion (shift variance)
 - Misplaced signal (reconstruction artifact)
 - Sensitivity
 - Undetectable features
 - Errors due to noise
 - Spatial dependence (shift variance)
 - Temporal drift

Summary

- Noise affects quantities (like T₂) calculated from image data
- Propagation of errors is a convenient way to find the uncertainty in calculated quantities
 - And to find the experimental parameters that minimize uncertainty
- Image SNR can be improved by averaging multiple images
 - Assumes stationary signal