Organizational Diversity Effect on Dynamic Business Environment: A Simulation Approach

Geonsik Yu, Yerim Chung and Sunju Park.

Table of Contents

- 1. Concept: Organizational Diversity
- 2. Research Question
- 3. Method: Simulation
- 4. Results Analysis

Definition) Organizational Diversity:

"The distribution of personal attributes among interdependent members of a work unit."

In Organizational Behavior:

"Source of Creativity & Innovation"

In Social Network Theory

"Information Diffusion or Network Learning"

In Business Practice

"Not always successful"

In Organizational Behavior:

"Source of Creativity & Innovation"

In Organizational Behavior:

"Source of Creativity & Innovation"

In Social Network Theory

"Information Diffusion or Network Learning"

In Organizational Behavior:

"Source of Creativity & Innovation"

In Social Network Theory

"Information Diffusion or Network Learning"

In Business Practice

"Not always successful"

2. Research Questions

✓ Under what conditions, do efforts to build a diverse R&D team pay off?

: Market Environment

✓ What is the relationship between market variability and diversity effect?

2. Research Questions

Importance

Suggest theoretical basis, for the decision to take the diversification strategy or not.

Originality

Try to explain the mechanism of the diversity effect including market variability using simulations.

Validity

Conduct experiments with simulation process under many different parameter settings.

market variability - diversity effect

Evaluation

Evaluation

4. Evaluation& Learning

3. Simulation: Market Trend

< d-Dimensional Perceptual Map(d=3) >

$$\mu = 0.0$$
 $\sigma = 1.0$

3. Simulation: Treatments

- Identical Retirement Treatment (Random)
- Different Recruitment Treatment

- Add a Node Different from Existing Nodes

3. Simulation: Parameter Settings

Parameters	remarks	values
n	Number of members in the organization	20, 40, 60, 80, 100
d	Number of dimensions	3, 4, 5
r _{learning}	Learning rate	0.3, 0.5, 0.7, 1.0
r retirement	Retirement rate	0.05, 0.1, 0.15, 0.2
μ	Market variability : Brownian motion mean	1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 1.0, 3.0, 5.0, 7.0, 9.0
σ	Market variability : Brownian motion sigma	<i>1.0, 3.0, 6.0</i>
\mathcal{T}	Time interval	200

4. Result Analysis

$$n = 40$$

$$r_{learnii}$$

$$d = 3$$

$$T = 200$$

$$r_{learning} = 0.5$$

$$r_{retirement} = 0.05$$

$$\mu = 3.0$$

$$\sigma = 9.0$$

Performance

Black: Homophily, Red: Heterophily

Thank You

* Related Works & Motivation

- Amabile, T. (1998). How to Kill Creativity. Harvard Business Review.
- Davidson, M. (2011). **The end of diversity as we know it.** San Francisco: Berrett-Koehler Publishers.
- Simons, S. and Rowland, K. (2011). Diversity and its Impact on Organizational Performance: The Influence of Diversity Constructions on Expectations and Outcomes. Journal of Technology Management & Innovation, 6(3), pp. 171-183.
- Fang, C., Lee, J. and Schilling, M. (2010). Balancing Exploration and Exploitation Through Structural Design: The Isolation of Subgroups and Organizational Learning. Organization Science, 21(3), pp.625-642.

- Organization at T
- Opinions at T
- Trend Given at T
- Evaluations at T Record It
- Retirement / Recruitment
- Pear Learning(HOW: No Evaluation Result with new one)
- Pear Learning with Neighbor Average Point
- Organization at (T + 1)
- Opinions at (T + 1)
- Trend Given at (T + 1)
- Evaluations at (T + 1) Record It

* Related Works & Motivation

- Amabile, T. (1998). How to Kill Creativity. Harvard Business Review.
- Davidson, M. (2011). **The end of diversity as we know it.** San Francisco: Berrett-Koehler Publishers.
- Simons, S. and Rowland, K. (2011). Diversity and its Impact on Organizational Performance: The Influence of Diversity Constructions on Expectations and Outcomes. Journal of Technology Management & Innovation, 6(3), pp. 171-183.
- Fang, C., Lee, J. and Schilling, M. (2010). Balancing Exploration and Exploitation Through Structural Design: The Isolation of Subgroups and Organizational Learning. Organization Science, 21(3), pp.625-642.

Bibliography.

• Fang, C., Lee, J. and Schilling, M. (2010). **Balancing Exploration and Exploitation Through Structural Design: The Isolation of Subgroups and Organizational Learning.** Organization Science, 21(3), pp.625-642.

Figure 5 Effect of Turnover in Changing Environment

Table 1 Mean Performance of Organizations Under Different Rates of Turnover and Environmental Change

	Rates of turnover		Rates of environmental change			
	$ No (p_{turnover} = 0) $	$Low (p_{turnover} = 0.01)$	High $(p_{turnover} = 0.1)$	Low $(p_{envir} = 0.1)$	Medium $(p_{envir} = 0.4)$	High $(p_{envir} = 0.7)$
Nearly isolated	31.17	44.45	23.32	44.45	26.05	23.41
Semi-isolated	36.42	61.49	41.71	61.49	38.13	34.22
Random	32.39	54.47	38.63	54.47	32.11	28.64
F-value	21.18	1,127.23	4,187.54	1,129.23	361.31	257.55
P-value	0.001	0.001	0.001	0.001	0.001	0.001

Notes. This table reports the levels of organizational performance across three levels of turnover and three different levels of environmental change. For the results where turnover is varied, the value for p_{envir} is fixed at 0.1. For the results where environmental change is varied, $p_{turnover}$ is fixed at 0.01. The results show that the semi-isolated subgroup structure is always the highest performer across different turnover and environmental change conditions, and the performance differences among different structures are statistically significant at p < 0.01.

Market 변동성 고정

Retirement / Recruitment(%) 고정(임의 채용)

Appendix. Simulations

Simulation Process: Parameter Settings

Parameters	remarks	values	
n	Number of members in the organization	20, 40, 60, 80, 100	
d	Number of dimensions (Product Complexity?)	3, 4, 5	
r learning	Learning rate	0.1, 0.3, 0.5, 0.7, 1.0	
r retirement	Retirement rate	0.05, 0.1, 0.15, 0.2	
μ	Market variability : Brownian motion mean	0.0	
σ	Market variability : Brownian motion sigma	1.0, 3.0, 5.0, 7.0, 9.0	
T	Time interval	1000	
period	Trend change interval	20	

3. Trend Change

- Weinner Process:

$$W_n(t) = \frac{1}{\sqrt{n}} \sum_{1 \le k \le \lfloor nt \rfloor} \xi_k$$

- Weinner Process Applied:

$$\theta_{t+1} = \theta_t + (1/sqrt(n)) * X_1$$

 $\phi_{t+1} = \phi_t + (1/sqrt(n)) * X_2$

X₁ ~ Normal(0, Sigma) X₂ ~ Normal(0, Sigma)

mean = 0, dimension = 3

Sigma	Mean(Angle in Radian)	Mean(Angle in Degree)
1.0	0.077	4.4
2.0	0.15	8.6
3.0	0.22	12.6
4.0	0.30	17.2
5.0	0.37	21.2
6.0	0.44	25.2
7.0	0.51	29.2
8.0	0.58	33.2
9.0	0.65	37.2
10.0	0.72	41.3

4. Treatment

Oracle Recruitment

 $\theta_{\text{new}} = \text{mean}(\theta_{\text{new_trend}})$

 $\varphi_{\text{new}} = \text{mean}(\varphi_{\text{new_trend}})$

Homophily Recruitment

 $\theta_{\text{new}} = \text{mean}(\theta_{\text{i}})$

 $\varphi_{new} = mean(\varphi_i)$

Heterophily Recruitment

 $\theta_{\text{new}} = \text{mean}(\theta_{\text{i}}) + \pi$

 $\varphi_{\text{new}} = \text{mean}(\varphi_i) + \pi$

5. Network Learning

$$\theta_{i, t+1} = (1-\ell)^* \theta_{i,t} + \ell^* \theta_{best_neighbor}$$

$$\phi_{i, t+1} = (1-\ell)^* \phi_{i,t} + \ell^* \phi_{best_neighbor}$$

*Unexpected Effect

Simulation Process: Example

Parameter Setting

n = 60 $\mu = 0$ d = 3 $\sigma = 10.0$ $r_{learning} = 0.1$ T = 1000 $r_{retirement} = 2/60$ period = 20

Simulation Process: Example

$$n = 60$$
 $\mu = 0$
 $d = 3$ $T = 400$
 $r_{learning} = 0.1$ $period = 20$
 $r_{retirement} = 2/60$

Simulation Process: Example

Trend #1, Network #1~100

	Sima = 0.1	Sigma = 10.0
Oracle	28.2315	22.2885
Homophily	18.8098(66%)	4.7032(21%)
Heterophily	20.2629(71%)	15.3298(68%)

Appendix. Trend Tendency

Trend Direction Tendency

$$\theta_{t+1} = \theta_t + (1/sqrt(n)) * X_1$$

 $\phi_{t+1} = \phi_t + (1/sqrt(n)) * X_2$

X₁ ~ Normal(8, Sigma) X₂ ~ Normal(8, Sigma) 0.9553, 0.7853 1.6928, 1.4148 2.4332, 1.9734 3.3514, 2.8737 4.0854, 3.6153 4.6977, 4.0377 5.8189, 5.1154 5.8257, 6.2331 6.4184, 7.0647 7.2677, 7.3118

$$\theta_{t+1} = \theta_t + (1/sqrt(n)) * X_1$$

 $\phi_{t+1} = \phi_t + (1/sqrt(n)) * X_2$

X₁ ~ Normal(8, Sigma) X₂ ~ Normal(-8, Sigma) 0.9553, 0.7853 0.7533, 1.223 -0.0758, 1.600 -0.8422, 2.0968 -1.2829, 2.7962 -1.1444, 4.0588 -1.2148, 4.9531 -1.8252, 5.3716 -2.882, 5.1557 -3.5617, 6.0948