

# **Time Series Analysis**

**Discussion Section 03** 



### **Nonstationary Stochastic Processes**

- Introduction
- Nonstationarity and Trends
- ARIMA Models
- Unit Root Tests
- Seasonal ARIMA



### Original Time Series (1947q1 to 2010q3)

#### U.S. postwar real GNP per capita (in chained 2005 dollars)



Chained dollars -- A measure used to express real prices. Real prices are those that have been adjusted to remove the effect of changes in the purchasing power of the dollar; they usually reflect buying power relative to a reference year. Prior to 1996, real prices were expressed in constant dollars, a measure based on the weights of goods and services in a single year, usually a recent year. In 1996, the U.S. Department of Commerce introduced the chained-dollar measure. The new measure is based on the average weights of goods and services in successive pairs of years. It is "chained" because the second year in each pair, with its weights, becomes the first year of the next pair. The advantage of using the chained-dollar measure is that it is more closely related to any given period covered and is therefore subject to less distortion over time.



### Original Time Series (1947q1 to 2010q3)

### U.S. postwar real GNP per capita (in chained 2005 dollars)





### **Excursus:** Logarithmic Transformation

Before we even remove a deterministic trend in the trend stationary model (TS-model) or difference in the difference stationary model (DS-model), it is often useful to first lake logs of the original series.

This will linearize an exponential trend, i.e. constant proportional growth.

$$ln(e^{\delta t}) = \delta t$$



### **Excursus:** Logarithmic Transformation

Moreover, 1<sup>st</sup> differences of log-series are approximately growth rates (percentage changes) which can be expected to be stationary even if the original series is not.

$$\Delta \ln(y_{t}) = (1 - L)\ln(y_{t}) = \ln(y_{t}) - \ln(y_{t-1})$$

$$= \ln\left(\frac{y_{t}}{y_{t-1}}\right) = \ln\left(\frac{y_{t-1} + y_{t} - y_{t-1}}{y_{t-1}}\right)$$

$$= \ln\left(1 + \frac{y_{t} - y_{t-1}}{y_{t-1}}\right) \approx \frac{y_{t} - y_{t-1}}{y_{t-1}}$$

Recall:  $\ln(1+X) \approx X$  for X = small



### **Log Time Series** (1947q1 to 2010q3)

 $y_t$  = U.S. postwar log real GNP per capita (in chained 2005 dollars)





### **Autocorrelation Function**

### U.S. postwar log real GNP per capita (in chained 2005 dollars)





### **Exercise 3.1:**

- Write down the general formulas for trend-stationary (TS) and the difference-stationary (DS) models.
- Describe the difference between the trend-stationary (TS) and the difference-stationary (DS) model with respect to the persistence of their dynamic response to a random shock to real GNP per capita.



### **Solution 3.1:**

#### **Trend-stationary (TS) model**

$$y_t = \sum_{j=0}^m \delta_j \cdot t^j + u_t \text{ with } a(L)u_t = b(L)\varepsilon_t$$

#### Difference-stationary (DS) model

$$a(L)(1-L)y_t = \delta + b(L)\varepsilon_t$$

#### **Examples of TS-models:**

$$egin{aligned} m{y}_t &= m{\delta}_0 + m{\delta}_1 m{t} + m{u}_t & ext{- linear trend} \ m{y}_t &= m{\delta}_0 + m{\delta}_1 m{t} + m{\delta}_2 m{t}^2 + m{u}_t & ext{- quadratic trend} \end{aligned}$$

#### **Examples of DS-models:**

$$(1$$
 -  $L)$  y  $_t=\mathcal{E}_t$  - randomwalk  $(1$  -  $L)$  y  $_t=\delta+\mathcal{E}_t$  - randomwalkwithdrift

"In the DS model of output, the effect of a shock persists forever because the disturbance changes the trend component and thus affects the level of output in all future periods. In contrast, the impact of a shock in the TS model is transitory and is eliminated quite quickly as output reverts to its steady trend."

Rudebusch (1993) "The Uncertain Unit Root in Real GNP", p. 264



### U.S. postwar log real GNP per capita (in chained 2005 dollars)





#### **OLS** estimate of the deterministic trend

. regress lnGNP time

| Source              |                          | df<br>      | MS       |       | Number of obs F( 1, 253)         |                                  |
|---------------------|--------------------------|-------------|----------|-------|----------------------------------|----------------------------------|
| Model  <br>Residual | 38.2339928<br>.337475217 | 253 .00     |          |       | Prob > F R-squared Adj R-squared | = 0.0000<br>= 0.9913<br>= 0.9912 |
| Total               | 38.571468                | 254 .15<br> | 018561/3 |       | Root MSE                         | = .03652                         |
| lnGNP               | Coef.                    |             |          | P> t  | -                                | Interval]                        |
| time  <br>_cons     | .0052603<br>9.714362     | .0000311    |          | 0.000 | .0051991<br>9.707932             | .0053215<br>9.720793             |

$$y_t = \sum_{j=0}^{m} \delta_j \cdot t^j + u_t \text{ with } u_t \sim ARMA(p,q) \longrightarrow \hat{y}_t = 9.714 + 0.005 \cdot t + \hat{u}_t$$



### **OLS Residuals**





#### **ACF of OLS Residuals**





#### **PACF of OLS Residuals**





#### **ML** estimate of the stationary fluctuations

$$\hat{\mathbf{u}}_{t} = 1.296\mathbf{u}_{t-1} - 0.212\mathbf{u}_{t-2} - 0.139\mathbf{u}_{t-3}$$



### ACF of AR(3) Residuals





### **PACF of AR(3) Residuals**





### Q statistics computed from AR(3) Residuals

. corrgram res\_AR3

|     | _       |         |        |        | -1 0                                                | 1 -1                | 0 1                     |
|-----|---------|---------|--------|--------|-----------------------------------------------------|---------------------|-------------------------|
| LAG | AC      | PAC     | Q      | Prob>Q | [Autocorrelation                                    | on] [Partia         | al Autocor]             |
| 1   | 0.0220  | 0.0220  | .12491 | 0.7238 | <br>                                                |                     |                         |
| 2   | 0.0480  | 0.0479  | .72119 | 0.6973 | 1                                                   |                     | 1                       |
| 3   | -0.0529 | -0.0548 | 1.4485 | 0.6942 |                                                     |                     | 1                       |
| 4   | -0.0447 | -0.0460 | 1.9709 | 0.7411 |                                                     |                     | 1                       |
| 5   | -0.0883 | -0.0832 | 4.0146 | 0.5473 |                                                     |                     | 1                       |
| 6   | 0.0481  | 0.0533  | 4.6233 | 0.5930 |                                                     |                     | 1                       |
| 7   | 0.0144  | 0.0182  | 4.6777 | 0.6992 |                                                     |                     | 1                       |
| 8   | 0.0224  | 0.0087  | 4.8107 | 0.7776 |                                                     |                     | 1                       |
| 9   | 0.0972  | 0.0986  | 7.3293 | 0.6029 |                                                     |                     | 1                       |
| 10  | 0.0769  | 0.0792  | 8.9114 | 0.5405 |                                                     |                     | 1                       |
| 11  | 0.0862  | 0.0971  | 10.906 | 0.4512 |                                                     |                     | 1                       |
| 12  | -0.1136 | -0.1175 | 14.384 | 0.276  | K .                                                 |                     |                         |
| []  |         |         |        | Q      | $=T(T+2)\sum_{k=1}^{N}\frac{1}{\hat{\rho}_{k}^{2}}$ | $\sim x^2$ with $K$ | -p-q degrees of freedom |
| 38  | -0.0727 | -0.1209 | 40.921 | 0.343  | $\frac{1}{k-1}T-k^{r-k}$                            | ^                   | 7                       |
| 39  | -0.0579 | -0.0579 | 41.939 | 0.344  |                                                     |                     |                         |
| 40  | -0.0304 | -0.0109 | 42.221 | 0.3752 | . di 1-chi2(1,                                      | 1.9709)             |                         |
|     |         |         |        |        | .16035236                                           | ,<br>               |                         |



#### **Exercise 3.2:**

### **Trend-stationary (TS) Model**

$$y_t = \sum_{j=0}^m \delta_j \cdot t^j + u_t \text{ with } u_t \sim ARMA(p,q)$$

$$\hat{y}_t = 9.714 + 0.005 \cdot t + \hat{u}_t$$

$$\hat{\mathbf{u}}_{t} = 1.296\mathbf{u}_{t-1} - 0.212\mathbf{u}_{t-2} - 0.139\mathbf{u}_{t-3}$$

• Show that the series  $y_t$  is not stationary if the estimated TS model is the right model.

Hint: Consider  $E[y_t]$ .

 Calculate the average percentage annual growth rate of the log GNP per capita.



### **Solution 3.2-1:**

#### **Trend-stationary (TS) Model**

$$y_t = \sum_{j=0}^m \delta_j \cdot t^j + u_t \text{ with } u_t \sim ARMA(p,q)$$

$$\hat{y}_t = 9.714 + 0.005 \cdot t + \hat{u}_t$$

$$\hat{\mathbf{u}}_{t} = 1.296\mathbf{u}_{t-1} - 0.212\mathbf{u}_{t-2} - 0.139\mathbf{u}_{t-3}$$

Show that the series  $y_t$  is not stationary if the estimated TS model is the right model.

$$E[y_t] = E[\hat{y}_t] = E[9.714 + 0.005 \cdot t + \hat{u}_t] = 9.714 + 0.005 \cdot t = \mu_t$$



### **Solution 3.2-2:**

#### **Trend-stationary (TS) Model**

$$y_t = \sum_{j=0}^m \delta_j \cdot t^j + u_t \text{ with } u_t \sim ARMA(p,q)$$

$$\hat{y}_t = 9.714 + 0.005 \cdot t + \hat{u}_t$$

$$\hat{\mathbf{u}}_{t} = 1.296\mathbf{u}_{t-1} - 0.212\mathbf{u}_{t-2} - 0.139\mathbf{u}_{t-3}$$

Calculate the average percentage annual growth rate of the log GNP per capita.

- Average percentage quarterly growth rate of the log GNP per capita = 0.5%
- Average percentage annual growth rate of the log GNP per capita:  $1.005 \cdot 1.005 \cdot 1.005 \cdot 1.005 \cdot 1.005 1 = 0.0201505 \approx 2\%$



#### **Exercise 3.3:**

#### **Trend-stationary (TS) Model**

$$y_t = \sum_{j=0}^m \delta_j \cdot t^j + u_t \text{ with } u_t \sim ARMA(p,q)$$

$$\hat{y}_t = 9.714 + 0.005 \cdot t + \hat{u}_t$$

$$\hat{\mathbf{u}}_{t} = 1.296\mathbf{u}_{t-1} - 0.212\mathbf{u}_{t-2} - 0.139\mathbf{u}_{t-3}$$

How does a shock today affect the level of  $y_t$  one year hence and infinitely far in the future?

**Hint:** MA representation of  $y_t$ 

$$y_t = \mu + \varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-2} + ... = \mu + \psi(L) \varepsilon_t$$



### Solution 3.3-1:

$$\hat{y}_t = 9.714 + 0.005 \cdot t + \hat{u}_t \text{ with } \hat{u}_t = 1.296 u_{t-1} - 0.212 u_{t-2} - 0.139 u_{t-3}$$
 MA representation of  $y_t$ 

$$y_{t} = \mu + \varepsilon_{t} + \psi_{1}\varepsilon_{t-1} + \psi_{2}\varepsilon_{t-2} + \dots = \mu + \psi(L)\varepsilon_{t}$$
$$y_{t} = c(L)\varepsilon_{t}$$

$$\boldsymbol{y}_{t} = \boldsymbol{\varphi}_{1} \boldsymbol{y}_{t-1} + ... + \boldsymbol{\varphi}_{p} \boldsymbol{y}_{t-p} + \boldsymbol{\varepsilon}_{t} - \boldsymbol{\theta}_{1} \boldsymbol{\varepsilon}_{t-1} - ... - \boldsymbol{\theta}_{q} \boldsymbol{\varepsilon}_{t-q}$$

$$y_{t} = \varphi_{1}y_{t-1} + \dots + \varphi_{p}y_{t-p} + \varepsilon_{t} - \theta_{1}\varepsilon_{t-1} - \dots - \theta_{q}\varepsilon_{t-q}$$

$$(1 - \varphi_{1}L - \varphi_{2}L^{2} - \dots - \varphi_{p}L^{p})y_{t} = (1 - \theta_{1}L - \theta_{2}L^{2} - \dots - \theta_{q}L^{q})\varepsilon_{t}$$

$$a(L)y_t = b(L)\varepsilon_t$$

$$a(L)c(L) = b(L)$$



### **Solution 3.3-2:**

$$\begin{split} \hat{y}_t &= 9.714 + 0.005 \cdot t + \hat{u}_t \text{ with } \hat{u}_t = 1.296 u_{t-1} - 0.212 u_{t-2} - 0.139 u_{t-3} \\ y_t &= \varphi_1 y_{t-1} + ... + \varphi_p y_{t-p} + \varepsilon_t - \theta_1 \varepsilon_{t-1} - ... - \theta_q \varepsilon_{t-q} \\ \hat{y}_t &= 9.714 + 0.005 \cdot t + 1.296 u_{t-1} - 0.212 u_{t-2} - 0.139 u_{t-3} \\ y_{t-1} &= \delta_0 + \delta_1 (t-1) + u_{t-1} \Rightarrow u_{t-1} = y_{t-1} - \delta_0 - \delta_1 (t-1) \\ y_{t-2} &= \delta_0 + \delta_1 (t-2) + u_{t-2} \Rightarrow u_{t-2} = y_{t-2} - \delta_0 - \delta_1 (t-2) \\ y_{t-3} &= \delta_0 + \delta_1 (t-3) + u_{t-3} \Rightarrow u_{t-3} = y_{t-3} - \delta_0 - \delta_1 (t-3) \\ \hat{y}_t &= 9.714 + 0.005 \cdot t \\ &+ 1.296 (y_{t-1} - 9.714 - 0.005 (t-1)) \\ &- 0.212 (y_{t-2} - 9.714 - 0.005 (t-2)) \\ &- 0.139 (y_{t-3} - 9.714 - 0.005 (t-3)) \\ &= 0.537 + 0.000275 t + 1.296 y_{t-1} - 0.212 y_{t-2} - 0.139 y_{t-3} \end{split}$$



### **Solution 3.3-3:**

$$\hat{\boldsymbol{y}}_t = 9.714 + 0.005 \cdot t + 1.296\boldsymbol{u}_{t-1} - 0.212\boldsymbol{u}_{t-2} - 0.139\boldsymbol{u}_{t-3}$$

. regress lnGNP time L.lnGNP L2.lnGNP L3.lnGNP

| Source              | SS df                    |         | MS                      |       | Number of obs                               |                      |
|---------------------|--------------------------|---------|-------------------------|-------|---------------------------------------------|----------------------|
| Model  <br>Residual | 37.1251786<br>.020552824 |         | 9.28129465<br>.00008321 |       | F( 4, 247) Prob > F R-squared Adj R-squared | = 0.0000<br>= 0.9994 |
| Total               | 37.1457314               | 251 .   | 147990962               |       | Root MSE                                    | = .00912             |
| lnGNP               | Coef.                    | Std. Er | r. t                    | P> t  | [95% Conf.                                  | Interval]            |
| time  <br>lnGNP     | .0002734                 | .000088 | 9 3.08                  | 0.002 | .0000983                                    | .0004486             |
| L1.                 | 1.291802                 | .062979 | 1 20.51                 | 0.000 | 1.167757                                    | 1.415846             |
| L2.                 | 2091396                  | .102716 | 3 -2.04                 | 0.043 | 4114512                                     | 006828               |
| L3.                 | 1359682                  | .063801 | 5 -2.13                 | 0.034 | 2616327                                     | 0103038              |
| _cons               | .5207294                 | .162716 | 3 3.20                  | 0.002 | .2002411                                    | .8412177             |



### **General Solution: Use "MA representation"**

Any stationary ARMA(p,q) process can be written as an infinite MA:

$$y_t = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}$$
 with  $\psi_0 = 1$ 

$$y_{T+I} = \varepsilon_{T+I} + \psi_1 \varepsilon_{T+I-1} + ... + \psi_{I-1} \varepsilon_{T+1} + \psi_I \varepsilon_T + \psi_{I+1} \varepsilon_{T-1} + ...$$

$$\widetilde{y}_{T+I} = \psi_I \varepsilon_T + \psi_{I+1} \varepsilon_{T-1} + \dots$$

#### **Forecast Error**

$$e_{T+I} = y_{T+I} - \mathcal{J}_{T+I|T} = \varepsilon_{T+I} + \psi_1 \varepsilon_{T+I-1} + ... + \psi_{I-1} \varepsilon_{T+1}$$

$$E[e_{T+I}^2] = Var[e_{T+I}] = (1 + \psi_1^2 + ... + \psi_{I-1}^2)\sigma_{\varepsilon}^2$$

#### **Prediction Interval**

$$\left[ \mathcal{J}_{T+I|T} \pm \mathbf{z}_{1-\frac{\alpha}{2}} \left( 1 + \boldsymbol{\psi}_{1}^{2} + \ldots + \boldsymbol{\psi}_{I-1}^{2} \right)^{\frac{1}{2}} \boldsymbol{\sigma}_{\varepsilon} \right]$$



### How do we find $\psi_1, ..., \psi_{l-1}$ ?

$$y_{t} = \varphi_{1}y_{t-1} + \dots + \varphi_{p}y_{t-p} + \varepsilon_{t} - \theta_{1}\varepsilon_{t-1} - \dots - \theta_{q}\varepsilon_{t-q}$$

$$(1 - \varphi_{1}L - \varphi_{2}L^{2} - \dots - \varphi_{p}L^{p})y_{t} = (1 - \theta_{1}L - \theta_{2}L^{2} - \dots - \theta_{q}L^{q})\varepsilon_{t}$$

$$a(L)y_{t} = b(L)\varepsilon_{t}$$

$$y_{t} = c(L)\varepsilon_{t}$$

$$= \sum_{i=0}^{\infty} \psi_{i}\varepsilon_{t-j} \quad \text{with} \quad \psi_{0} = 1$$

So the  $\psi_1$ ,  $\psi_2$ , ... coefficients in c(L), can be obtained by equating coefficients of  $L^j$ , j = 1, 2, ... in a(L)c(L) = b(L).

### Solution 3.3-4:

$$\hat{y}_t = 9.714 + 0.005 \cdot t + 1.296 u_{t-1} - 0.212 u_{t-2} - 0.139 u_{t-3}$$

$$\boldsymbol{y}_{t} = \boldsymbol{\varphi}_{1} \boldsymbol{y}_{t-1} + ... + \boldsymbol{\varphi}_{p} \boldsymbol{y}_{t-p} + \boldsymbol{\varepsilon}_{t} - \boldsymbol{\theta}_{1} \boldsymbol{\varepsilon}_{t-1} - ... - \boldsymbol{\theta}_{q} \boldsymbol{\varepsilon}_{t-q}$$

$$(1 - \varphi_1 L - \varphi_2 L^2 - \dots - \varphi_p L^p) y_t = (1 - \theta_1 L - \theta_2 L^2 - \dots - \theta_q L^q) \varepsilon_t$$

$$a(L)y_t = b(L)\varepsilon_t$$

Attention: Here Lag-Operator Notation  $\rightarrow \varepsilon_t$ 

 $b(L) \equiv all information from \varepsilon at t-i, with$ 

Lag-Operator. Since we only have  $\varepsilon_t$ 

i={0,...,p}, with the corresponding

without a factor it's equal to 1.

$$(1-1.296L+0.212L^2+0.139L^3)y_t = 0.537+0.000275t+\varepsilon_t$$

$$\mathbf{y}_{t} = \boldsymbol{\mu} + \boldsymbol{\varepsilon}_{t} + \boldsymbol{\psi}_{1} \boldsymbol{\varepsilon}_{t-1} + \boldsymbol{\psi}_{2} \boldsymbol{\varepsilon}_{t-2} + \dots = \boldsymbol{\mu} + \boldsymbol{\psi}(L) \boldsymbol{\varepsilon}_{t}$$

$$y_t = c(L)\varepsilon_t$$

$$a(L)c(L) = b(L)$$

$$(1-1.296L+0.212L^2+0.139L^3)(1+\psi_1L+\psi_2L^2++\psi_3L^3+\psi_4L^4...)=1$$

 $a(L) \equiv$  all information from y at t-i, with  $i=\{0,...,p\}$ , with the corresponding Lag-Operator

$$c(L) = \tilde{y}_t = (1 + \hat{\psi}_1 L + \hat{\psi}_2 L^2 + \hat{\psi}_3 L^3 + ...)$$

Franziska Plitzko



### Solution 3.3-5:

$$\begin{array}{l} \left(1-1.296L+0.212L^2+0.139L^3\right)\left(1+\psi_1L+\psi_2L^2++\psi_3L^3+\psi_4L^4...\right)=1\\ 1-1.296L+0.212L^2+0.139L^3\\ +\psi_1L-1.296\psi_1L^2+0.212\psi_1L^3+0.139\psi_1L^4\\ +\psi_2L^2-1.296\psi_2L^3+0.212\psi_2L^4+0.139\psi_2L^5\\ +\psi_3L^3-1.296\psi_3L^4+0.212\psi_3L^5+0.139\psi_3L^6\\ +\psi_4L^4-1.296\psi_4L^5+0.212\psi_4L^6+0.139\psi_4L^7\\ +\psi_5L^5-1.296\psi_5L^6+0.212\psi_5L^7+0.139\psi_5L^8+...=1\\ -1.296+\psi_1=0\Rightarrow\psi_1=1.296\\ 0.212-1.296\psi_1+\psi_2=0\Rightarrow\psi_2=-0.212+1.296\psi_1=-0.212+1.296^2=1.467\\ 0.139+0.212\psi_1-1.296\psi_2+\psi_3=0\Rightarrow\psi_3=1.487\\ 0.139\psi_1+0.212\psi_2-1.296\psi_3+\psi_4=0\Rightarrow\psi_4=1.436\\ 0.139\psi_2+0.212\psi_3-1.296\psi_4+\psi_5=0\Rightarrow\psi_5=1.342 \end{array}$$



### **Solution 3.3-5:**

| Quarter | 1     | 2     | 3     | 4     | 8     | 16    | 32    | 64    |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| Ψ       | 1.296 | 1.467 | 1.487 | 1.436 | 0.988 | 0.339 | 0.034 | 0.000 |

The TS model exhibits fairly rapid reversion to trend, with about two-thirds of a shock dissipated after four years.

For any TS series,  $\psi_{\infty} = 0$ , because the effect of any shock is eliminated as reversion to the deterministic trend eventually dominates.

Rudebusch (1993) "The Uncertain Unit Root in Real GNP", p. 266



U.S. postwar log real GNP per capita (in chained 2005 dollars), D.





#### **ACF of D.InGNP**





#### **PACF of D.InGNP**





#### Estimated ARIMA(3,1,0)

arima(#p,#d,#q) is an alternative, shorthand notation for specifying models with ARMA disturbances.

The dependent variable and any independent variables are differenced #d times, and 1 through #p lags of autocorrelations and 1 through #q lags of moving averages are included in the model. For example, the specification

. arima D.lnGNP, ar(1/3) Or . arima lnGNP, arima(3,1,0) [...] OPG D.lnGNP | Coef. Std. Err. z P>|z| [95% Conf. Interval] lnGNP cons | .0048788 .0009102 5.36 0.000 .0030949 .0066627 ARMA ar L1. | .3468049 .0515245 6.73 0.000 .2458187 .4477911 L2. | .1381909 .0561872 2.46 0.014 .028066 .2483158 L3. | -.1459299 .0568711 -2.57 0.010 -.2573953 -.0344646 /sigma | .0091259 .0003021 30.21 0.000 .0085338 .009718  $(1-0.347L-0.138L^2+0.146L^3)(1-L)y_t = 0.0032 + \varepsilon_t$ 



ACF of the residuals of the estimated ARIMA(3,1,0)





# Difference-stationary (DS) Model

PACF of the residuals of the estimated ARIMA(3,1,0)





#### **Exercise 3.4:**

#### **Difference-stationary (DS) Model**

$$(1 - 0.347L - 0.138L^{2} + 0.146L^{3})(1 - L)y_{t} = 0.0032 + \varepsilon_{t}$$

How does a shock today affect the level of  $y_t$  one year hence and infinitely far in the future?

**Hint:** MA representation of  $\Delta y_t$ 

$$\Delta y_t = \mu + \varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-1} + ... = \mu + \psi(L) \varepsilon_t$$



#### **Solution 3.4-1:**

$$\begin{pmatrix} 1 - 0.347L - 0.138L^2 + 0.146L^3 \end{pmatrix} \begin{pmatrix} 1 + \psi_1 L + \psi_2 L^2 + + \psi_3 L^3 + \psi_4 L^4 ... \end{pmatrix} = 1$$

$$1 - 0.347L - 0.138L^2 + 0.146L^3$$

$$+ \psi_1 L - 0.347\psi_1 L^2 - 0.138\psi_1 L^3 + 0.146\psi_1 L^4$$

$$+ \psi_2 L^2 - 0.347\psi_2 L^3 - 0.138\psi_2 L^4 + 0.146\psi_2 L^5$$

$$+ \psi_3 L^3 - 0.347\psi_3 L^4 - 0.138\psi_3 L^5 + 0.146\psi_3 L^6$$

$$+ \psi_4 L^4 - 0.347\psi_4 L^5 - 0.138\psi_4 L^6 + 0.146\psi_4 L^7$$

$$+ \psi_5 L^5 - 0.347\psi_5 L^6 - 0.138\psi_5 L^7 + 0.146\psi_5 L^8 + ... = 1$$

$$- 0.347 + \psi_1 = 0 \Rightarrow \psi_1 = 0.347$$

$$- 0.138 - 0.347\psi_1 + \psi_2 = 0 \Rightarrow \psi_2 = 0.258$$

$$0.146 - 0.138\psi_1 - 0.347\psi_2 + \psi_3 = 0 \Rightarrow \psi_3 = -0.009$$

$$0.146\psi_1 - 0.138\psi_2 - 0.347\psi_3 + \psi_4 = 0 \Rightarrow \psi_4 = -0.018$$

$$0.146\psi_2 - 0.138\psi_3 - 0.347\psi_4 + \psi_5 = 0 \Rightarrow \psi_5 = -0.045$$



#### **Solution 3.4-2:**

| Quarter | 1     | 2     | 3      | 4      | 5      | 6      | 7      | 8     | 9     | 10    | 11    | 12    |
|---------|-------|-------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|
| Ψ       | 0.347 | 0.258 | -0.009 | -0.018 | -0.045 | -0.017 | -0.009 | 0.001 | 0.002 | 0.002 | 0.001 | 0.000 |

$$\Delta y_t = \mu + \varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-1} + ... = \mu + \psi(L) \varepsilon_t$$

A unit shock in period t affects  $\Delta Y_{t+h}$  by  $\psi_h$  and  $Y_{t+h}$  by  $c_h = 1 + \psi_1 + ... + \psi_h$ .

| Quarter | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| С       | 1.347 | 1.605 | 1.596 | 1.578 | 1.533 | 1.516 | 1.506 | 1.507 | 1.509 | 1.511 | 1.512 | 1.512 |

The impulse response of the DS model implies not only shock persistence but shock magnification. The effect of an innovation is not reversed through time, and it eventually increases the level of real GNP by more than one and a half times the size of the innovation.

For a DS series,  $c_{\infty} \neq 0$ , that is, each shock has some permanent effect.

Rudebusch (1993) "The Uncertain Unit Root in Real GNP", p. 266



# **Part Availability**

"The data for this case are adapted from a series provided by a large U.S. corporation. There are 90 weekly observations showing the percent of the time that parts for an industrial product are available when needed."



#### **Exercise 3.5:**

- Identification: Which model would you chose and why?
- Estimation: Estimate your model!
- Diagnostic checking: Is the selected model a statistically adequate representation of the available data?



# **Solution 3.5-1:**

## **Original Time Series**





# **Solution 3.5-2:**

#### **ACF** → maybe not stationary



$$Var(\hat{\rho}_k) = \begin{cases} \frac{1}{T} & k = 1\\ \frac{1}{T} \left\{ 1 + 2 \sum_{i=1}^{k-1} \hat{\rho}_i^2 \right\} & k > 1 \end{cases}$$



## **Solution 3.5-3:**

#### **Deterministic Trend**





## **Solution 3.5-4:**

#### **Deterministic Trend**

#### . regress parts\_availability time

| Source              | SS                       | df         | MS                       |         | r of obs        | _                  | 90                                 |
|---------------------|--------------------------|------------|--------------------------|---------|-----------------|--------------------|------------------------------------|
| Model  <br>Residual | 48.2660077<br>456.383779 | 1<br>88    | 48.266007°<br>5.18617933 | l R-squ | > F             | =<br>=<br>=<br>d = | 9.31<br>0.0030<br>0.0956<br>0.0854 |
| Total               | 504.649787               | 89         | 5.6702223                | 2 Root  | MSE             | =                  | 2.2773                             |
| parts_avai~y        | Coef.                    | Std. Err.  | t<br>                    | P> t    | [95% (          | Conf.              | Interval]                          |
| time  <br>_cons     | .0281887<br>80.83853     | .0092401   | 3.05<br>166.98           | 0.003   | .00982<br>79.87 |                    | .0465514<br>81.80063               |
| $\hat{v} = 0$       | 01   0 020               | <i>t</i> . | with w                   | . 1D1   | 11/00           | ~ )                | (2)                                |

 $\hat{y}_t = 80.84 + 0.028 \cdot t + \hat{u}_t \quad \text{with} \quad u_t \approx ARMA(p,q)$  (?)



# **Solution 3.5-5:**

#### **OLS Residuals**



#### **ACF OLS Residuals**





## **Solution 3.5-6:**

#### **Differenced Series**





## **Solution 3.5-7:**

#### **ACF of the Differenced Series**





## **Solution 3.5-8:**

#### **PACF** of the Differenced Series





## **Solution 3.5-8:**

```
. arima parts availability, arima(0 1 1)
[...]
Sample: 2 to 90
                                       Number of obs = 89
                                       Wald chi2(1) = 69.20
Log likelihood = -188.7081
                                       Prob > chi2 = 0.0000
                         OPG
D.
parts avai~y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
parts avai~y |
     cons | .0426991 .0657141 0.65 0.516 -.0860981 .1714963
ARMA
        ma l
       L1. | -.7242702 .0870639 -8.32 0.000 -.8949124 -.553628
    /sigma | 2.008118 .1710866 11.74 0.000 1.672794 2.343441
```



#### Solution 3.5-9: Alternative

```
. arima D.parts availability, ma(1)
[...]
Sample: 2 to 90
                                      Number of obs = 89
                                      Wald chi2(1) = 69.20
Log likelihood = -188.7081
                                      Prob > chi2 = 0.0000
                         OPG
D.
parts_avai~y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
parts avai~y |
     cons | .0426991 .0657141 0.65 0.516 -.0860981 .1714963
ARMA
       ma l
       L1. | -.7242702 .0870639 -8.32 0.000 -.8949124 -.553628
    /sigma | 2.008118 .1710866 11.74 0.000 1.672794 2.343441
```



#### **Solution 3.5-10:**

#### Stata's arima command

. arima parts\_availability, arima(0 1 1) noconstant
[...]

$$\boldsymbol{y}_{t} = \sum_{i=1}^{p} \varphi_{i} \boldsymbol{y}_{t-i} + \sum_{j=1}^{q} \boldsymbol{\theta}_{j} \boldsymbol{\varepsilon}_{t-j} + \boldsymbol{\varepsilon}_{t}$$

| OPG
D. |
parts\_avai~y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-----ARMA |
ma |
L1. | -.7175448 .0901645 -7.96 0.000 -.8942639 -.5408257

$$x_t \sim ARMA(0,1)$$
  $x_t = (1-0.7175448L)\varepsilon_t$   
 $y_t \sim ARIMA(0,1,1)$   $(1-L)y_t = (1-0.7175448L)\varepsilon_t$ 

Lag-Operator-Notation!



## **Solution 3.5-11:**

## ACF of the Residuals of the estimated ARIMA(0,1,1) Model





## **Solution 3.5-12:**

#### PACF of the Residuals of the estimated ARIMA(0,1,1) Model





## **Solution 3.5-13:**

. corrgram residuals, lags(22)

|     |         |         |        |         | -1 0                                                       | 1 -1                | 0 1                     |
|-----|---------|---------|--------|---------|------------------------------------------------------------|---------------------|-------------------------|
| LAG | AC      | PAC     | Q      | Prob>Q  | [Autocorrelation                                           | ] [Partia           | al Autocor]             |
| 1   | -0.1034 | -0.1132 | .98422 | 0.3212  | <br>                                                       |                     |                         |
| 2   | -0.0256 | -0.0343 | 1.045  | 0.5930  |                                                            |                     | 1                       |
| 3   | 0.1172  | 0.1351  | 2.3394 | 0.5050  |                                                            |                     | -                       |
| 4   | 0.0415  | 0.0648  | 2.5036 | 0.6440  |                                                            |                     |                         |
| 5   | 0.0629  | 0.0833  | 2.8846 | 0.7178  |                                                            |                     |                         |
| 6   | -0.0504 | -0.0593 | 3.1327 | 0.7920  |                                                            |                     |                         |
| []  |         |         |        |         |                                                            |                     |                         |
| 12  | 0.0590  | 0.1052  | 6.9822 | 0.8588  |                                                            |                     |                         |
| 13  | -0.0689 | -0.0963 | 7.4876 | 0.8753  |                                                            |                     |                         |
| 14  | -0.0168 | -0.0833 | 7.5181 | 0.9129  |                                                            |                     |                         |
| 15  | -0.0856 | -0.2088 | 8.3196 | 0.9103  |                                                            |                     | -                       |
| 16  | -0.0279 | 0.0180  | 8.4058 | 0.9359  |                                                            |                     |                         |
| 17  | -0.0672 | -0.1072 | 8.9144 | 0.9429  |                                                            |                     |                         |
| 18  | -0.0307 | 0.0264  | 9.0221 | 0.9597  |                                                            | _                   |                         |
| 19  | -0.0397 | -0.0253 | 9.2042 | 0.969:0 | $= T(T+2) \sum_{k=1}^{K} \frac{1}{T-k} \hat{\rho}_{k}^{2}$ | $\sim v^2$ with $K$ | -p-q degrees of freedom |
| 20  | 0.1282  | 0.2464  | 11.133 | 0.942   | $T - k^{N}$                                                |                     | p quograda in naddain.  |
| 21  | -0.1067 | -0.1214 | 12.489 | 0.925   |                                                            |                     |                         |
| 22  | -0.0606 | -0.1801 | 12.933 | 4       | di 1-chi2(21,                                              | 12.933)             |                         |
|     |         |         |        |         | 91095258                                                   |                     |                         |



# Percentiles of the chi-squared distribution

|    | Percentiles of the χ² Distribution |           |           |           |           |           |           |           |           |           |  |
|----|------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
|    |                                    |           |           |           | Perce     |           |           |           |           |           |  |
| df | 0.005                              | 0.01      | 0.025     | 0.05      | 0.1       | 0.9       | 0.95      | 0.975     | 0.99      | 0.995     |  |
| 1  | 0.000039                           | 0.000157  | 0.000982  | 0.003932  | 0.015791  | 2.705544  | 3.841459  | 5.023886  | 6.634897  | 7.879439  |  |
| 2  | 0.010025                           | 0.020101  | 0.050636  | 0.102587  | 0.210721  | 4.605170  | 5.991465  | 7.377759  | 9.210340  | 10.596635 |  |
| 3  | 0.071722                           | 0.114832  | 0.215795  | 0.351846  | 0.584374  | 6.251388  | 7.814728  | 9.348404  | 11.344867 | 12.838156 |  |
| 4  | 0.206989                           | 0.297109  | 0.484419  | 0.710723  | 1.063623  | 7.779440  | 9.487729  | 11.143287 | 13.276704 | 14.860259 |  |
| 5  | 0.411742                           | 0.554298  | 0.831212  | 1.145476  | 1.610308  | 9.236357  | 11.070498 | 12.832502 | 15.086272 | 16.749602 |  |
| 6  | 0.675727                           | 0.872090  | 1.237344  | 1.635383  | 2.204131  | 10.644641 | 12.591587 | 14.449375 | 16.811894 | 18.547584 |  |
| 7  | 0.989256                           | 1.239042  | 1.689869  | 2.167350  | 2.833107  | 12.017037 | 14.067140 | 16.012764 | 18.475307 | 20.277740 |  |
| 8  | 1.344413                           | 1.646497  | 2.179731  | 2.732637  | 3.489539  | 13.361566 | 15.507313 | 17.534546 | 20.090235 | 21.954955 |  |
| 9  | 1.734933                           | 2.087901  | 2.700390  | 3.325113  | 4.168159  | 14.683657 | 16.918978 | 19.022768 | 21.665994 | 23.589351 |  |
| 10 | 2.155856                           | 2.558212  | 3.246973  | 3.940299  | 4.865182  | 15.987179 | 18.307038 | 20.483177 | 23.209251 | 25.188180 |  |
| 11 | 2.603222                           | 3.053484  | 3.815748  | 4.574813  | 5.577785  | 17.275009 | 19.675138 | 21.920049 | 24.724970 | 26.756849 |  |
| 12 | 3.073824                           | 3.570569  | 4.403789  | 5.226029  | 6.303796  | 18.549348 | 21.026070 | 23.336664 | 26.216967 | 28.299519 |  |
| 13 | 3.565035                           | 4.106915  | 5.008751  | 5.891864  | 7.041505  | 19.811929 | 22.362032 | 24.735605 | 27.688250 | 29.819471 |  |
| 14 | 4.074675                           | 4.660425  | 5.628726  | 6.570631  | 7.789534  | 21.064144 | 23.684791 | 26.118948 | 29.141238 | 31.319350 |  |
| 15 | 4.600916                           | 5.229349  | 6.262138  | 7.260944  | 8.546756  | 22.307130 | 24.995790 | 27.488393 | 30.577914 | 32.801321 |  |
| 16 | 5.142205                           | 5.812213  | 6.907664  | 7.961646  | 9.312236  | 23.541829 | 26.296228 | 28.845351 | 31.999927 | 34.267187 |  |
| 17 | 5.697217                           | 6.407760  | 7.564186  | 8.671760  | 10.085186 | 24.769035 | 27.587112 | 30.191009 | 33.408664 | 35.718466 |  |
| 18 | 6.264805                           | 7.014911  | 8.230746  | 9.390455  | 10.864936 | 25.989423 | 28.869299 | 31.526378 | 34.805306 | 37.156451 |  |
| 19 | 6.843971                           | 7.632730  | 8.906517  | 10.117013 | 11.650910 | 27.203571 | 30.143527 | 32.852327 | 36.190869 | 38.582257 |  |
| 20 | 7.433844                           | 8.260398  | 9.590778  | 10.850812 | 12.442609 | 28.411981 | 31.410433 | 34.169607 | 37.566235 | 39.996846 |  |
| 21 | 8.033653                           | 8.897198  | 10.282898 | 11.591305 | 13.239598 | 29.615089 | 32.670573 | 35.478876 | 38.932173 | 41.401065 |  |
| 22 | 8.642716                           | 9.542492  | 10.982321 | 12.338015 | 14.041493 | 30.813282 | 33.924439 | 36.780712 | 40.289360 | 42.795655 |  |
| 23 | 9.260425                           | 10.195716 | 11.688552 | 13.090514 | 14.847956 | 32.006900 | 35.172462 | 38.075627 | 41.638398 | 44.181275 |  |
| 24 | 9.886234                           | 10.856362 | 12.401150 | 13.848425 | 15.658684 | 33.196244 | 36.415028 | 39.364077 | 42.979820 | 45.558512 |  |
| 25 | 10.519652                          | 11.523975 | 13.119720 | 14.611408 | 16.473408 | 34.381587 | 37.652484 | 40.646469 | 44.314105 | 46.927890 |  |
| 26 | 11.160237                          | 12.198147 | 13.843905 | 15.379157 | 17.291885 | 35.563171 | 38.885139 | 41.923170 | 45.641683 | 48.289882 |  |
| 27 | 11.807587                          | 12.878504 | 14.573383 | 16.151396 | 18.113896 | 36.741217 | 40.113272 | 43.194511 | 46.962942 | 49.644915 |  |
| 28 | 12.461336                          | 13.564710 | 15.307861 | 16.927875 | 18.939243 | 37.915923 | 41.337138 | 44.460792 | 48.278236 | 50.993376 |  |
| 29 | 13.121149                          | 14.256455 | 16.047072 | 17.708366 | 19.767744 | 39.087470 | 42.556968 | 45.722286 | 49.587885 | 52.335618 |  |
| 30 | 13.786720                          | 14.953457 | 16.790772 | 18.492661 | 20.599235 | 40.256024 | 43.772972 | 46.979242 | 50.892181 | 53.671962 |  |



# **Solution 3.5-14:**

## χ<sup>2</sup> Distribution





# **Solution 3.5-15:**

## χ<sup>2</sup> Distribution



. di 1-chi2(21, 12.933) .91095258



#### **Exercise 3.6:**

#### **Forecasting**

- Forecast x<sub>t</sub> from one to four weeks ahead!
- Forecast y<sub>t</sub> from one to four weeks ahead!
- Forecast  $x_t$  and  $y_t$  from one to four weeks ahead using the information that we know at the end of week 91 that  $y_{91} = 87$  and that we know at the end of week 92 that  $y_{92} = 86.5$ .



# **Forecasting**

Optimal forecast:

$$\mathcal{J}_{T+1} \mid \Omega_T = E(Y_{T+1} \mid \Omega_T)$$

it minimizes the expected squared forecast error  $\min E(e_{T+1}^2)$ 

$$e_{T+1} = y_{T+1} - \tilde{y}_{T+1} | \Omega_T$$

Information set  $\Omega_T$ :

- true model
- known parameters
- all past observations

Additional assumption:

$$E[\varepsilon_{T+k}] = 0$$

$$\forall k > 1$$



# Forecasting an ARIMA (p,1,q)

$$X_t = Y_t - Y_{t-1}$$
 =>  $Y_t = Y_{t-1} + X_t$ 

In period 
$$(T+1)$$
:  $y_{T+1} = y_T + X_{T+1} \rightarrow \tilde{y}_{T+1/\Omega_T} = E(y_T + X_{T+1} / \Omega_T) = y_T + \tilde{X}_{T+1/\Omega_T}$ 

In period 
$$(T + 2)$$
:  $y_{T+2} = y_{T+1} + x_{T+2} = (y_T + x_{T+1}) + x_{T+2}$ 

$$\rightarrow \widetilde{y}_{T+2/\Omega_T} = E(y_T + x_{T+1} + x_{T+2} / \Omega_T) = Y_{T+1} + \widetilde{x}_{T+2/\Omega_T} + \widetilde{x}_{T+2/\Omega_T} + \widetilde{x}_{T+2/\Omega_T}$$

In period 
$$(T+3)$$
:  $Y_{T+3} = Y_{T+2} + X_{T+3} = (Y_T + X_{T+1} + X_{T+2}) + X_{T+3}$ 

$$\rightarrow \widetilde{Y}_{T+3/\Omega_T} = E(Y_T + X_{T+1} + X_{T+2} + X_{T+3} / \Omega_T)$$

$$= Y_T + \widetilde{X}_{T+3/\Omega_T} + \widetilde{X}_{T+3/\Omega_T} + \widetilde{X}_{T+3/\Omega_T}$$

$$\widetilde{Y}_{T+2/\Omega_T} + \widetilde{X}_{T+3/\Omega_T} + \widetilde{X}_{T+3/\Omega_T}$$



# ARMA(p,q) process at time T + I:

$$\widetilde{\mathbf{x}}_{T+l/\varOmega_T} = \varphi_1 \widetilde{\mathbf{x}}_{T+l-1/\varOmega_T} + \ldots + \varphi_p \widetilde{\mathbf{x}}_{T+l-p/\varOmega_T} + \widetilde{\varepsilon}_{T+l/\varOmega_T} - \theta_1 \widetilde{\varepsilon}_{T+l-1/\varOmega_T} - \ldots - \theta_q \widetilde{\varepsilon}_{T+l-q/\varOmega_T}$$

#### **Recursive forecasting recipe**:

- 1. replace unknown  $x_{T+1}$  by their forecasts for l > 0;
- 2. "forecasts" of  $x_{T+I}$ ,  $I \le 0$ , are simply the known values  $x_{T+I}$
- 3. since  $\varepsilon_t$  is white noise, the optimal forecast of  $\varepsilon_{T+l}$ , l > 0, is simply zero
- 4. "forecasts" of  $\varepsilon_{T+l}$ ,  $l \le 0$ , are just the known values  $\varepsilon_{T+l}$



#### **Solution 3.6-1:**

MA(1) without constant: 
$$x_t = \varepsilon_t - \hat{\theta}_1 \varepsilon_{t-1} = \varepsilon_t - 0.7175448 \varepsilon_{t-1}$$



#### **Solution 3.6-2:**

MA(1) without constant:  $x_t = (1 - \hat{\theta}_1 L)\epsilon_t = (1 - 0.7175448L)\epsilon_t$ 

. list time parts\_availability  $x_{tilde}$  in 88/90

$$\mathcal{J}_{T+1|\Omega_T} = y_T + \mathcal{X}_{T+1|\Omega_T}$$
  
= 88.9 - 4.004059 = 84.89594



#### **Solution 3.6-3:**

MA(1) without constant:  $x_t = (1 - \hat{\theta}_1 L)\epsilon_t = (1 - 0.7175448L)\epsilon_t$ 

Forecast  $x_t$  and  $y_t$  from one to four weeks ahead using the information that we know at the end of week 91 that  $y_{91} = 87$  and that we know at the end of week 92 that  $y_{92} = 86.5$ .

$$\mathbf{\tilde{X}}_{T+1|\Omega_{T}} = -0.7175448 \cdot 5.580222 = -4.004059$$

$$\widetilde{\varepsilon}_{T+1|\Omega_T} = x_{T+1} - \widetilde{x}_{T+1|\Omega_T} = (y_{T+1} - y_T) - \widetilde{x}_{T+1|\Omega_T} = -1.9 - (-4.004059) = 2.104057$$

$$\mathbf{x}_{T+2|\Omega_{T}} = \mathbf{\xi}_{1/2|\mathbf{x}_{0}} - \mathbf{\theta}_{1}\mathbf{\xi}_{T+1|\Omega_{T}} = -0.7175448 \cdot 2.104057 = -1.509755$$



#### Solution 3.6-4:

MA(1) without constant:  $x_t = (1 - \hat{\theta}_1 L)\epsilon_t = (1 - 0.7175448L)\epsilon_t$ 

Forecast  $x_t$  and  $y_t$  from one to four weeks ahead using the information that we know at the end of week 91 that  $y_{91} = 87$  and that we know at the end of week 92 that  $y_{92} = 86.5$ .

$$\begin{split} & \mathfrak{F}_{T+1|\Omega_T} = -0.7175448 \cdot 5.580222 = -4.004059 \\ & \mathfrak{E}_{T+1|\Omega_T} = X_{T+1} - \mathfrak{F}_{T+1|\Omega_T} = \left( y_{T+1} - y_{T} \right) - \mathfrak{F}_{T+1|\Omega_T} = -1.9 - \left( -4.004059 \right) = 2.104057 \\ & \mathfrak{F}_{T+2|\Omega_T} = \mathfrak{F}_{122|\mathfrak{F}_T} - \theta_1 \mathfrak{F}_{T+1|\Omega_T} = -0.7175448 \cdot 2.104057 = -1.509755 \\ & \mathfrak{E}_{T+2|\Omega_T} = X_{T+2} - \mathfrak{F}_{T+2|\Omega_T} = -0.5 - \left( -1.509755 \right) = 1.009755 \\ & \mathfrak{F}_{T+3|\Omega_T} = \mathfrak{F}_{123|\mathfrak{F}_T} - \theta_1 \mathfrak{F}_{T+2|\Omega_T} = -0.7175448 \cdot 1.009755 = -0.7245447 \\ & \mathfrak{F}_{T+4|\Omega_T} = \mathfrak{F}_{123|\mathfrak{F}_T} - \theta_1 \mathfrak{F}_{T+2|\Omega_T} = 0 \end{split}$$



#### Solution 3.6-5:

MA(1) without constant:  $x_t = (1 - \hat{\theta}_1 L)\epsilon_t = (1 - 0.7175448L)\epsilon_t$ 

Forecast  $x_t$  and  $y_t$  from one to four weeks ahead using the information that we know at the end of week 91 that  $y_{91} = 87$  and that we know at the end of week 92 that  $y_{92} = 86.5$ .



# **Dynamic forecasts in Stata**

For example, dynamic(10) would calculate predictions in which any reference to  $y_t$  with t < 10 evaluates to the actual value of  $y_t$  and any reference of  $y_t$  with t > 10 evaluates to the prediction of  $y_t$ . This means that one-step-ahead predictions are calculated for t < 10 and dynamic predictions thereafter.

```
. set obs 94
. replace time = _n
. replace parts_availability = 87    in 91
. replace parts_availability = 86.5 in 92
. tsset time
. arima parts_availability in 1/90, arima(0,1,1)
noconstant
. predict x_tilde_dyn, xb dynamic(91)
. predict y_tilde_dyn, y dynamic(91)
. predict x_tilde, xb
. predict y tilde, y
```

Stata help "arima postestimation"



#### Solution 3.6-6:

$$\widetilde{X}_{T+1/\Omega_{T}} = -4.004059$$
  $\widetilde{Y}_{T+1/\Omega_{T}} = Y_{T} + \widetilde{X}_{T+1/\Omega_{T}} = 88.9 - 4.004059 = 84.89594$   $\widetilde{X}_{T+j/\Omega_{T}} = 0, \ \ j = 2,3,4$   $\widetilde{Y}_{T+j/\Omega_{T}} = 84.89594, \ \ \ j = 2,3,4$ 

information about **y**<sub>91</sub> and **y**<sub>92</sub> with

without

$$\begin{split} & \mathfrak{F}_{T+1|\Omega_T} = -4.004059 \\ & \mathfrak{F}_{T+2|\Omega_T} = -1.509755 \\ & \mathfrak{F}_{T+2|\Omega_T} = -1.509755 \\ & \mathfrak{F}_{T+2|\Omega_T} = -0.7245447 \\ & \mathfrak{F}_{T+3|\Omega_T} = -0.7245447 \\ & \mathfrak{F}_{T+3|\Omega_T} = 0 \\ & \mathfrak{F}_{T+3|\Omega_T} = \mathfrak{F}_{T+3|\Omega_T} = -0.724545 \\ & \mathfrak{F}_{T+3|\Omega_T} = \mathfrak{F}_{T+3|\Omega_T} = -0.724545 \\ & \mathfrak{F}_{T+4|\Omega_T} = -0.724545$$

with information about  $y_{91}$  and  $y_{92}$ 

# . list time parts\_availability x\_tilde\_dyn y\_tilde\_dyn x\_tilde y\_tilde in 91/94

| -          | +<br>  time<br> | <br>parts_~y<br> | x_tilde~n | y_tild~n             | x_tilde              | y_tilde                |
|------------|-----------------|------------------|-----------|----------------------|----------------------|------------------------|
| 91.        | 91              | 87               | -4.004059 | 84.89594<br>84.89594 | -4.004059            | 84.89594               |
| 92.<br>93. | 92<br>  93      | 86.5             | 0         | 84.89594             | -1.509755<br>7245447 | 85.49024  <br>85.77545 |
| 94.        | 94<br>+         | ·                | 0         | 84.89594             | 0                    | .  <br>+               |



#### **Exercise 3.7:**

#### **Forecasting**

Calculate the forecast error and then the MSE for the (true) model

$$x_t = \varepsilon_t - \theta_1 \varepsilon_{t-1}$$
 and  $y_t = y_{t-1} + x_t = y_{t-1} + \varepsilon_t - \theta_1 \varepsilon_{t-1}$ 

• Calculate confidence intervals for  $X_{91}, X_{92}, X_{93}, Y_{91}, Y_{92}$ , and  $Y_{93}$ .

#### Hint:

$$MSE(\widetilde{y}_{T+s/\Omega_T}) = E[(y_{T+s} - \widetilde{y}_{T+s/\Omega_T})^2]$$

$$\left[\widetilde{y}_{T+s/\Omega_T} \pm 1.96 \cdot \sqrt{MSE(\widetilde{y}_{T+s/\Omega_T})}\right]$$



#### **Solution 3.7-1:**

#### Forecast errors for $x_t$

$$X_{t} = \boldsymbol{\varepsilon}_{t} - \boldsymbol{\theta}_{1} \boldsymbol{\varepsilon}_{t-1}$$

$$X_{T+1} = \boldsymbol{\varepsilon}_{T+1} - \boldsymbol{\theta}_{1} \boldsymbol{\varepsilon}_{T} \qquad \widetilde{X}_{T+1|\Omega_{T}} = -\boldsymbol{\theta}_{1} \boldsymbol{\varepsilon}_{T}$$

$$X_{T+2} = \boldsymbol{\varepsilon}_{T+2} - \boldsymbol{\theta}_{1} \boldsymbol{\varepsilon}_{T+1} \qquad \widetilde{X}_{T+2|\Omega_{T}} = 0$$

$$X_{T+3} = \boldsymbol{\varepsilon}_{T+3} - \boldsymbol{\theta}_{1} \boldsymbol{\varepsilon}_{T+2} \qquad \widetilde{X}_{T+3|\Omega_{T}} = 0$$

$$e_{T+1} = X_{T+1} - \widetilde{X}_{T+1|\Omega_T} = \varepsilon_{T+1} - \theta_1 \varepsilon_T + \theta_1 \varepsilon_T = \varepsilon_{T+1}$$

$$e_{T+2} = x_{T+2} - \overline{x}_{T+2|\Omega_T} = \varepsilon_{T+2} - \theta_1 \varepsilon_{T+1} + 0 = \varepsilon_{T+2} - \theta_1 \varepsilon_{T+1}$$

$$e_{T+3} = x_{T+3} - \overline{x}_{T+3|\Omega_T} = \varepsilon_{T+3} - \theta_1 \varepsilon_{T+2} + 0 = \varepsilon_{T+3} - \theta_1 \varepsilon_{T+2}$$



#### **Solution 3.7-2:**

#### MSE for $x_t$

$$\begin{aligned}
\mathbf{e}_{T+1} &= \mathbf{x}_{T+1} - \mathbf{\tilde{x}}_{T+1|\Omega_{T}} = \boldsymbol{\varepsilon}_{T+1} - \boldsymbol{\theta}_{1}\boldsymbol{\varepsilon}_{T} + \boldsymbol{\theta}_{1}\boldsymbol{\varepsilon}_{T} = \boldsymbol{\varepsilon}_{T+1} \\
\mathbf{e}_{T+2} &= \mathbf{x}_{T+2} - \mathbf{\tilde{x}}_{T+2|\Omega_{T}} = \boldsymbol{\varepsilon}_{T+2} - \boldsymbol{\theta}_{1}\boldsymbol{\varepsilon}_{T+1} + 0 = \boldsymbol{\varepsilon}_{T+2} - \boldsymbol{\theta}_{1}\boldsymbol{\varepsilon}_{T+1} \\
\mathbf{e}_{T+3} &= \mathbf{x}_{T+3} - \mathbf{\tilde{x}}_{T+3|\Omega_{T}} = \boldsymbol{\varepsilon}_{T+3} - \boldsymbol{\theta}_{1}\boldsymbol{\varepsilon}_{T+2} + 0 = \boldsymbol{\varepsilon}_{T+3} - \boldsymbol{\theta}_{1}\boldsymbol{\varepsilon}_{T+2} \\
E(\mathbf{e}_{T+1}^{2}) &= E(\boldsymbol{\varepsilon}_{T+1}^{2}) = Var(\boldsymbol{\varepsilon}_{T+1}) = \sigma_{\varepsilon}^{2} \\
E(\mathbf{e}_{T+2}^{2}) &= E(\boldsymbol{\varepsilon}_{T+2} - \boldsymbol{\theta}_{1}\boldsymbol{\varepsilon}_{T+1})^{2} = E(\boldsymbol{\varepsilon}_{T+2}^{2} - 2\boldsymbol{\theta}_{1}\boldsymbol{\varepsilon}_{T+1}\boldsymbol{\varepsilon}_{T+2} + \boldsymbol{\theta}_{1}^{2}\boldsymbol{\varepsilon}_{T+1}^{2}) \\
&= E(\boldsymbol{\varepsilon}_{T+2}^{2}) - 2\boldsymbol{\theta}_{1}E(\boldsymbol{\varepsilon}_{T+1}\boldsymbol{\varepsilon}_{T+2}) + \boldsymbol{\theta}_{1}^{2}E(\boldsymbol{\varepsilon}_{T+1}^{2}) \\
&= \sigma_{\varepsilon}^{2} + \boldsymbol{\theta}_{1}^{2}\sigma_{\varepsilon}^{2} = (1 + \boldsymbol{\theta}_{1}^{2})\sigma_{\varepsilon}^{2} \\
E(\mathbf{e}_{T+2}^{2}) &= E(\boldsymbol{\varepsilon}_{T+2} - \boldsymbol{\theta}_{1}\boldsymbol{\varepsilon}_{T+2})^{2} = \dots = (1 + \boldsymbol{\theta}_{1}^{2})\sigma_{\varepsilon}^{2}
\end{aligned}$$



#### **Solution 3.7-3:**

#### Forecast error for $y_t$ : $y_t = y_{t-1} + x_t = y_{t-1} + \varepsilon_t - \theta_t \varepsilon_{t-1}$

$$\begin{split} & \mathcal{Y}_{T+1} = \mathcal{Y}_T + \mathcal{X}_{T+1} \\ & = \mathcal{Y}_T + \mathcal{E}_{T+1} - \theta_1 \mathcal{E}_T \\ & \mathcal{Y}_{T+2} = \mathcal{Y}_{T+1} + \mathcal{X}_{T+2} \\ & = \mathcal{Y}_{T+1} + \mathcal{E}_{T+2} - \theta_1 \mathcal{E}_{T+1} \\ & = \mathcal{Y}_T + \mathcal{E}_{T+1} - \theta_1 \mathcal{E}_T + \mathcal{E}_{T+2} - \theta_1 \mathcal{E}_{T+1} \\ & \mathcal{Y}_{T+3} = \mathcal{Y}_{T+2} + \mathcal{X}_{T+3} \\ & = \mathcal{Y}_{T+2} + \mathcal{E}_{T+3} - \theta_1 \mathcal{E}_{T+2} \\ & = \mathcal{Y}_T + \mathcal{E}_{T+1} - \theta_1 \mathcal{E}_T + \mathcal{E}_{T+2} - \theta_1 \mathcal{E}_{T+1} + \mathcal{E}_{T+3} - \theta_1 \mathcal{E}_{T+2} \\ & = \mathcal{Y}_T + \mathcal{E}_{T+1} - \theta_1 \mathcal{E}_T + \mathcal{E}_{T+2} - \theta_1 \mathcal{E}_T + \mathcal{E}_{T+3} - \theta_1 \mathcal{E}_T + \mathcal{E}_{T+3} - \mathcal{E}_T \mathcal{E}_T \\ & \mathcal{Y}_{T+2|\Omega_T} = \mathcal{Y}_T + \mathcal{X}_{T+1|\Omega_T} = \mathcal{Y}_T - \theta_1 \mathcal{E}_T + \mathcal{E}_T + \mathcal{E}_T - \theta_1 \mathcal{E}_T \\ & \mathcal{Y}_{T+3|\Omega_T} = \mathcal{Y}_{T+2|\Omega_T} + \mathcal{X}_{T+3|\Omega_T} = \mathcal{Y}_T - \theta_1 \mathcal{E}_T + \mathcal{E}_T - \theta_1 \mathcal{E}_T \\ & \mathcal{Y}_{T+3|\Omega_T} = \mathcal{Y}_{T+2|\Omega_T} + \mathcal{X}_{T+3|\Omega_T} = \mathcal{Y}_T - \theta_1 \mathcal{E}_T + \mathcal{E}_T - \theta_1 \mathcal{E}_T \\ \end{split}$$

$$\widetilde{X}_{T+1/\Omega_{\tau}} = -\theta_1 \mathcal{E}_T$$

$$\widetilde{X}_{T+2/\Omega_{\tau}} = \mathbf{0}$$

$$\widetilde{X}_{T+3/\Omega_{\tau}}=0$$



#### **Solution 3.7-4:**

#### Forecast error for $y_t$

$$e_{T+1} = y_{T+1} - \mathcal{J}_{T+1|\Omega_T} = y_T + \varepsilon_{T+1} - \theta_1 \varepsilon_T - (y_T - \theta_1 \varepsilon_T)$$
  
=  $\varepsilon_{T+1}$ 

$$e_{T+2} = y_{T+2} - \tilde{y}_{T+2|\Omega_T} = y_T + \varepsilon_{T+1} - \theta_1 \varepsilon_T + \varepsilon_{T+2} - \theta_1 \varepsilon_{T+1} - (y_T - \theta_1 \varepsilon_T)$$

$$= \varepsilon_{T+1} + \varepsilon_{T+2} - \theta_1 \varepsilon_{T+1}$$

$$\begin{aligned} \boldsymbol{e}_{T+3} &= \boldsymbol{y}_{T+3} - \boldsymbol{\tilde{y}}_{T+3|\Omega_{T}} = \boldsymbol{y}_{T} + \boldsymbol{\varepsilon}_{T+1} - \boldsymbol{\theta}_{1} \boldsymbol{\varepsilon}_{T} + \boldsymbol{\varepsilon}_{T+2} - \boldsymbol{\theta}_{1} \boldsymbol{\varepsilon}_{T+1} \\ &+ \boldsymbol{\varepsilon}_{T+3} - \boldsymbol{\theta}_{1} \boldsymbol{\varepsilon}_{T+2} - \left( \boldsymbol{y}_{T} - \boldsymbol{\theta}_{1} \boldsymbol{\varepsilon}_{T} \right) \\ &= \boldsymbol{\varepsilon}_{T+1} + \boldsymbol{\varepsilon}_{T+2} - \boldsymbol{\theta}_{1} \boldsymbol{\varepsilon}_{T+1} + \boldsymbol{\varepsilon}_{T+3} - \boldsymbol{\theta}_{1} \boldsymbol{\varepsilon}_{T+2} \end{aligned}$$



#### Solution 3.7-5:

#### MSE for $y_t$

$$E(e_{T+1}^{2}) = E(\varepsilon_{T+1}^{2}) = Var(\varepsilon_{T+1}) = \sigma_{\varepsilon}^{2}$$

$$E(e_{T+2}^{2}) = E(\varepsilon_{T+1} + \varepsilon_{T+2} - \theta_{1}\varepsilon_{T+1})^{2}$$

$$= E(\varepsilon_{T+1}^{2} + \varepsilon_{T+1}\varepsilon_{T+2} - \theta_{1}\varepsilon_{T+1}^{2})$$

$$= E(\varepsilon_{T+1}^{2} + \varepsilon_{T+1}\varepsilon_{T+2} + \varepsilon_{T+2}^{2} - \theta_{1}\varepsilon_{T+1}\varepsilon_{T+2})$$

$$= E(\varepsilon_{T+1}^{2}) + E(\varepsilon_{T+1}^{2} - \theta_{1}\varepsilon_{T+1}\varepsilon_{T+2} + \theta_{1}^{2}\varepsilon_{T+1}^{2})$$

$$= E(\varepsilon_{T+1}^{2}) + E(\varepsilon_{T+2}^{2}) + (2 - 2\theta_{1})E(\varepsilon_{T+1}\varepsilon_{T+2}) - 2\theta_{1}E(\varepsilon_{T+1}^{2}) + \theta_{1}^{2}E(\varepsilon_{T+1}^{2})$$

$$= \sigma_{\varepsilon}^{2} + \sigma_{\varepsilon}^{2} - 2\theta_{1}\sigma_{\varepsilon}^{2} + \theta_{1}^{2}\sigma_{\varepsilon}^{2} = \left[1 + (1 - \theta_{1})^{2}\right]\sigma_{\varepsilon}^{2}$$

$$E(e_{T+3}^2) = ... = [1 + (1 - \theta_1)^2 + (1 - \theta_1)^2] \sigma_{\varepsilon}^2$$



## **Comparison of Forecast Errors**

#### **DS** model

The s-period-ahead forecast error is:

$$y_{T+s|T} - \tilde{y}_{T+s|\Omega_{T}} = \dots = \varepsilon_{T+s} + \{1 + \psi_{1}\}\varepsilon_{T+s-1} + \{1 + \psi_{1} + \psi_{2}\}\varepsilon_{T+s-2} + \dots + \{1 + \psi_{1} + \psi_{2} + \dots + \psi_{s-1}\}\varepsilon_{T+1}$$

MSE of this forecast is:

$$E(y_{T+s} - y_{T+s|\Omega_T})^2 = \{1 + (1 + \psi_1)^2 + (1 + \psi_1 + \psi_2)^2 + ... + (1 + \psi_1 + \psi_2 + ... + \psi_{s-1})^2\} \sigma_{\varepsilon}^2$$

for s = 1, 2, 3:

$$E(y_{T+1}-\tilde{y}_{T+1|\Omega_T})^2=\sigma_{\varepsilon}^2$$

$$E(y_{T+2} - \tilde{y}_{T+2|\Omega_T})^2 = [1 + (1 + \psi_1)^2] \sigma_{\varepsilon}^2$$

$$E(y_{T+3} - \tilde{y}_{T+3|\Omega_T})^2 = \left[1 + (1 + \psi_1)^2 + (1 + \psi_1 + \psi_2)^2\right] \sigma_{\varepsilon}^2$$

Hamilton (1994) "Time Series Analysis", p. 435-442



#### Solution 3.7-6:

$$\begin{split} E & \left( y_{T+1} - \mathcal{T}_{T+1|\Omega_{T}} \right)^{2} = \sigma_{\varepsilon}^{2} \\ E & \left( y_{T+2} - \mathcal{T}_{T+2|\Omega_{T}} \right)^{2} = \left[ 1 + (1 + \psi_{1})^{2} \right] \sigma_{\varepsilon}^{2} \\ E & \left( y_{T+3} - \mathcal{T}_{T+3|\Omega_{T}} \right)^{2} = \left[ 1 + (1 + \psi_{1})^{2} + (1 + \psi_{1} + \psi_{2})^{2} \right] \sigma_{\varepsilon}^{2} \\ E & \left( e_{T+1}^{2} \right) = \sigma_{\varepsilon}^{2} \\ E & \left( e_{T+2}^{2} \right) = \left[ 1 + (1 - \theta_{1})^{2} \right] \sigma_{\varepsilon}^{2} \\ E & \left( e_{T+3}^{2} \right) = \dots = \left[ 1 + (1 - \theta_{1})^{2} + (1 - \theta_{1})^{2} \right] \sigma_{\varepsilon}^{2} \\ & \left( 1 + \psi_{1}L + \psi_{2}L^{2} + \psi_{3}L^{3} + \dots \right) = \left( 1 - \theta_{1}L \right) \\ L^{1} : \psi_{1} & = -\theta_{1} \\ L^{2} : \psi_{2} & = 0 \\ L^{s} : \psi_{s} & = 0 \end{split}$$



#### Solution 3.7-7:

#### Confidence Intervals for $x_t$ forecasts

$$\begin{bmatrix} \widetilde{x}_{T+s/\Omega_T} \pm 1.96 \cdot \sqrt{MSE}(\widetilde{x}_{T+s/\Omega_T}) & \text{with } MSE(\widetilde{x}_{T+s/\Omega_T}) = E\left[\left(x_{T+l} - \widetilde{x}_{T+s/\Omega_T}\right)^2\right] \\ MSE(\widetilde{x}_{T+|\Omega_T}) = E\left(e_{T+1}^2\right) = \sigma_{\varepsilon}^2 & \widetilde{x}_{T+|\Omega_T} = -4.004059 \\ MSE(\widetilde{x}_{T+2|\Omega_T}) = E\left(e_{T+2}^2\right) = \left(1 + \theta_1^2\right)\sigma_{\varepsilon}^2 & \widetilde{x}_{T+2|\Omega_T} = 0 \\ MSE(\widetilde{x}_{T+3|\Omega_T}) = E\left(e_{T+3}^2\right) = \left(1 + \theta_1^2\right)\sigma_{\varepsilon}^2 & \widetilde{x}_{T+3|\Omega_T} = 0 \\ \text{. arima parts_availability, arima(0 1 1) noconstant} \\ \text{[...]} & \text{OPG} \\ \text{D.} & \text{parts_avai} \text{ V} & \text{Coef. Std. Err. } \text{Z} & \text{P>|Z|} & \text{[95\% Conf. Interval]} \\ \text{ARMA} & \text{ma} & \text{L1.} & -.7175448 & .0901645 & -7.96 & 0.000 & -.8942639 & -.5408257 \\ \text{/sigma} & 2.01387 & .1709397 & 11.78 & 0.000 & 1.678834 & 2.348906 \\ \end{bmatrix}$$



#### Solution 3.7-8:

#### Confidence Intervals for $y_t$ forecasts

$$\begin{bmatrix} \mathcal{Y}_{T+s|\Omega_T} \pm 1.96 \cdot \sqrt{MSE}(\mathcal{Y}_{T+s|\Omega_T}) \end{bmatrix} \text{ with } MSE(\mathcal{Y}_{T+s|\Omega_T}) = E[(\mathcal{Y}_{T+I} - \mathcal{Y}_{T+s|\Omega_T})^2]$$

$$MSE(\tilde{\mathcal{Y}}_{T+1|\Omega_T}) = \sigma_{\varepsilon}^2 \qquad \qquad \tilde{\mathcal{Y}}_{T+1|\Omega_T} = 84.89594 \qquad [80.949, 88.843]$$

$$MSE(\tilde{\mathcal{Y}}_{T+2|\Omega_T}) = \left[1 + (1-\theta_1)^2\right] \sigma_{\varepsilon}^2 \qquad \tilde{\mathcal{Y}}_{T+2|\Omega_T} = 84.89594 \qquad [80.794, 88.997]$$

$$MSE(\tilde{\mathcal{Y}}_{T+3|\Omega_T}) = \left[1 + (1-\theta_1)^2 + (1-\theta_1)^2\right] \sigma_{\varepsilon}^2 \qquad \tilde{\mathcal{Y}}_{T+3|\Omega_T} = 84.89594 \qquad [80.645, 89.146]$$

$$. \text{ arima parts_availability, arima(0 1 1) noconstant}$$

$$[\dots] \qquad \qquad \text{OPG} \qquad \text{D.} \qquad \text{parts_avai} \qquad \text{OPG} \qquad \text{Std. Err.} \qquad \text{Z} \qquad P>|\text{Z}| \qquad [95\% \text{ Conf. Interval}]$$

$$ARMA \qquad \qquad \text{ARMA} \qquad \qquad \text{ARMA} \qquad \text{ARMA}$$



## **Solution 3.7-9:**

### Confidence Intervals for $y_t$ forecasts





## **Nonstationary Stochastic Processes**

- Introduction
- Nonstationarity and Trends
- ARIMA Models
- Unit Root Tests
- Seasonal ARIMA



## **Original Time Series**

#### U.S. quarterly GDP (1947q1 - 2003q4)





## **Logarithm of GDP**

#### U.S. quarterly GDP (1947q1 - 2003q4), log



#### Which unit root test is adequate?

"Fit a specification that is a plausible description of the data under both the null and the alternative hypothesis."

#### → "constant and trend"

$$\mathbf{y}_{t} = \boldsymbol{\varphi}_{1} \mathbf{y}_{t-1} + \boldsymbol{\delta} + \boldsymbol{\gamma} t + \boldsymbol{\varepsilon}_{t}$$

$$H_0: \varphi_1 = 1, (\gamma = 0)$$

$$y_t = y_{t-1} + \delta + \varepsilon_t$$

 $H_0$ : random walk with drift

$$H_1: \varphi_1 < 1, (\gamma \neq 0)$$

$$y_t = \varphi_1 y_{t-1} + \delta + \gamma t + \varepsilon_t$$

*H*<sub>1</sub>: trend stationary model with AR(1) errors



# Testing for Unit Roots

| no constant,<br>no trend                                                                                                                                                                                                                                                                                                              | constant,<br>no trend                                                                                                                                                                                                                                       | constant<br>and trend                                                                                                                                                                                                                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\boldsymbol{y}_t = \boldsymbol{\varphi}_1 \boldsymbol{y}_{t-1} + \boldsymbol{\varepsilon}_t$                                                                                                                                                                                                                                         | $\boldsymbol{y}_{t} = \boldsymbol{\varphi}_{1} \boldsymbol{y}_{t-1} + \boldsymbol{\delta} + \boldsymbol{\varepsilon}_{t}$                                                                                                                                   | $\boldsymbol{y}_{t} = \boldsymbol{\varphi}_{1} \boldsymbol{y}_{t-1} + \boldsymbol{\delta} + \boldsymbol{\gamma} t + \boldsymbol{\varepsilon}_{t}$                                                                                         |  |
| $H_0: \varphi_1 = 1$                                                                                                                                                                                                                                                                                                                  | $H_{\scriptscriptstyle 0}$ : $arphi_{\scriptscriptstyle 1}$ = 1, ( $\delta$ = 0 )                                                                                                                                                                           | $H_0$ : $\varphi_1 = 1$ , $(\gamma = 0)$                                                                                                                                                                                                  |  |
| $\boldsymbol{y}_t = \boldsymbol{y}_{t-1} + \boldsymbol{\varepsilon}_t$                                                                                                                                                                                                                                                                | $oldsymbol{y}_t = oldsymbol{y}_{t-1} + oldsymbol{arepsilon}_t$                                                                                                                                                                                              | $\boldsymbol{y}_t = \boldsymbol{y}_{t-1} + \boldsymbol{\delta} + \boldsymbol{\varepsilon}_t$                                                                                                                                              |  |
| $H_1: \varphi_1 < 1$                                                                                                                                                                                                                                                                                                                  | $H_1$ : $oldsymbol{arphi}_1 <$ 1, $(\delta  eq 0)$                                                                                                                                                                                                          | $H_1: \varphi_1 < 1$ , $(\gamma \neq 0)$                                                                                                                                                                                                  |  |
| $\boldsymbol{y}_{t} = \boldsymbol{\varphi}_{1} \boldsymbol{y}_{t-1} + \boldsymbol{\varepsilon}_{t}$                                                                                                                                                                                                                                   | $\boldsymbol{y}_{t} = \boldsymbol{\varphi}_{1} \boldsymbol{y}_{t-1} + \boldsymbol{\delta} + \boldsymbol{\varepsilon}_{t}$                                                                                                                                   | $\boldsymbol{y}_{t} = \boldsymbol{\varphi}_{1} \boldsymbol{y}_{t-1} + \boldsymbol{\delta} + \boldsymbol{\gamma} t + \boldsymbol{\varepsilon}_{t}$                                                                                         |  |
| <ul> <li>H₀: pure random walk (no drift)</li> <li>H₁: stationary AR(1) with mean zero (i.e. strictly speaking 0 ≤ φ₁ &lt; 1)</li> <li>simplest case, mostly educational value</li> <li>"Testing with zero intercept is extremely restrictive, so much that it is hard to imagine ever using it with economic time series"*</li> </ul> | <ul> <li>H<sub>0</sub>: pure random walk (no drift)</li> <li>H<sub>1</sub>: stationary AR(1) with arbitrary mean</li> <li>applies to non-growing series</li> <li>typical examples: "rates" (interest rates, inflation rates, unemployment rates)</li> </ul> | <ul> <li>H<sub>0</sub>: random walk with drift</li> <li>H<sub>1</sub>: trend stationary model with AR(1) errors</li> <li>applies to growing series (but not explosive)</li> <li>typical examples: GDP, consumption, investment</li> </ul> |  |



# Testing for Unit Roots

| no constan<br>no trend                                                                              | t,                                        | consta<br>no tre                                                         | _*                                             | const<br>and tr                                                                           |                                             |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------|
| $\boldsymbol{y}_{t} = \boldsymbol{\varphi}_{1} \boldsymbol{y}_{t-1} + \boldsymbol{\varepsilon}_{t}$ |                                           | $\boldsymbol{y}_t = \boldsymbol{\varphi}_1 \boldsymbol{y}_{t-1} +$       | $\delta + \varepsilon_t$                       | $oldsymbol{y}_t = oldsymbol{arphi}_1 oldsymbol{y}_{t-1}$ -                                | $+\delta + \gamma t + \varepsilon_t$        |
| $H_0: \varphi_1 = 1$                                                                                |                                           | $H_0: \varphi_1 = 1, (\delta$                                            | =0                                             | $H_0$ : $\varphi_1 = 1$ , (y                                                              | <b>/</b> = 0)                               |
| $\boldsymbol{y}_t = \boldsymbol{y}_{t-1} + \boldsymbol{\varepsilon}_t$                              |                                           | $\mathbf{y}_t = \mathbf{y}_{t-1} + \boldsymbol{\varepsilon}_t$           | •                                              | $\mathbf{y}_t = \mathbf{y}_{t-1} + \mathbf{\delta}$                                       | $5 + \varepsilon_t$                         |
| $H_1: \varphi_1 < 1$                                                                                |                                           | $H_1:\varphi_1<1$ , $\delta$                                             | ≠ <b>0</b> )                                   | $H_1: \varphi_1 < 1, (\gamma)$                                                            | $r \neq 0$                                  |
| $\boldsymbol{y}_t = \boldsymbol{\varphi}_1 \boldsymbol{y}_{t-1} + \boldsymbol{\varepsilon}_t$       |                                           | $\boldsymbol{y}_t = \boldsymbol{\varphi}_1 \boldsymbol{y}_{t-1} +$       | $\delta + \varepsilon_t$                       | $\boldsymbol{y}_t = \boldsymbol{\varphi}_1 \boldsymbol{y}_{t-1}$ -                        | $+\delta + \gamma t + \varepsilon_t$        |
| Estimating equa                                                                                     | tions                                     | Estimating e                                                             | quations                                       | Estimating                                                                                | equations                                   |
| $\boldsymbol{y}_t = \boldsymbol{\varphi}_1 \boldsymbol{y}_{t-1} + \boldsymbol{\varphi}_t$           | $oldsymbol{arepsilon}_t$ or               | ${m y}_t = {m arphi}_1 {m y}_{t-1} +$                                    | $-\delta + \varepsilon_t$ or                   | $\boldsymbol{y}_t = \boldsymbol{\varphi}_1 \boldsymbol{y}_{t-1} + \boldsymbol{\varphi}_t$ | $\delta + \gamma t + \varepsilon_t$ or      |
| $\Delta y_t = \theta y_{t-1} +$                                                                     | $\boldsymbol{\mathcal{E}}_t$              | $\Delta y_t = \theta y_{t-1}$                                            | $+\delta + \varepsilon_t$                      | $\Delta y_t = \theta y_{t-1} +$                                                           | $\delta + \gamma t + \varepsilon_t$         |
| $\theta = (\varphi_1 - 1)$                                                                          |                                           | $oldsymbol{	heta} = oldsymbol{(oldsymbol{arphi}_1}$                      | <b>-1</b> )                                    | $oldsymbol{	heta} = (oldsymbol{arphi}_{\!	ext{	t 1}}$                                     | <b>-1</b> )                                 |
| Test statistic                                                                                      | s                                         | Test stati                                                               | stics                                          | Test sta                                                                                  | tistics                                     |
| $t=rac{(oldsymbol{\hat{arphi}}_1-1)}{\sigma_{\hat{arphi}_1}}$ or $t=$                              | $rac{\hat{	heta}}{\sigma_{\hat{	heta}}}$ | $t = \frac{(\hat{\varphi}_1 - 1)}{\sigma_{\hat{\varphi}_1}} \text{ or }$ | $t = \frac{\hat{	heta}}{\sigma_{\hat{	heta}}}$ | $t=rac{(oldsymbol{\hat{arphi}}_1-1)}{\sigma_{\hat{oldsymbol{arphi}}_1}}$ or              | $t=rac{\hat{	heta}}{\sigma_{\hat{	heta}}}$ |



## Dickey-Fuller Unit Root Test with constant and trend

$$\begin{aligned} y_t &= \varphi_1 y_{t-1} + \delta + \gamma t + \varepsilon_t \\ H_0 &: \varphi_1 = 1, (\gamma = 0) \\ y_t - y_{t-1} &= \varphi_1 y_{t-1} - y_{t-1} + \delta + \gamma t + \varepsilon_t \\ \Delta y_t &= (\varphi_1 - 1) y_{t-1} + \delta + \gamma t + \varepsilon_t \quad \theta = (\varphi_1 - 1) \\ H_0 &: \theta = 0, (\gamma = 0) \\ \Delta y_t &= \theta y_{t-1} + \delta + \gamma t + \varepsilon_t \\ &\vdots \\ D. \ln \text{GDP L. lnGDP time} \quad \frac{\text{di } -4.58 \text{e} - 06/.0070557}{\text{-00064912}} \quad t = \frac{\hat{\theta}}{\hat{\sigma}_{\theta}} \neq t \frac{t}{1-\frac{\alpha}{2}T-1} \\ &\vdots \\ \frac{1 \text{nGDP | Coef. Std. Err. t P>|t| [95\% Conf. Interval]}}{\text{time | } -.0000116 & .0001295 & -0.09 & 0.929 & -.0002668 & .0002436 \\ &\_\text{cons | } .0177608 & .0445152 & 0.40 & 0.690 & -.0699614 & .105483 \end{aligned}$$



## Dickey-Fuller Unit Root Test with constant and trend

$$\mathbf{y}_{t} = \varphi_{1}\mathbf{y}_{t-1} + \delta + \gamma t + \varepsilon_{t}$$
  $H_{0}: \varphi_{1} = 1, (\gamma = 0)$ 

. regress lnGDP L.lnGDP time

| lnGDP | Coef.    | Std. Err. | t      | P> t  | [95% Conf. | Interval] |
|-------|----------|-----------|--------|-------|------------|-----------|
| lnGDP |          |           |        |       |            |           |
| L1.   | .9999954 | .0070557  | 141.73 | 0.000 | .9860913   | 1.0139    |
| time  | 0000116  | .0001295  | -0.09  | 0.929 | 0002668    | .0002436  |
| _cons | .0177608 | .0445152  | 0.40   | 0.690 | 0699614    | .105483   |

- . di (.9999954-1)/.0070557
- -.00065196
- . regress D.lnGDP L.lnGDP time . di -4.58e-06/.0070557

```
-.00064912
```

$$t = \frac{\hat{\theta}}{\hat{\sigma}_{\hat{\theta}}} \neq t_{1-\frac{\alpha}{2}, T-1}$$

| <br>D.lnGDP | Coef.     | Std. Err. | t     | P> t  | [95% Conf. | Interval] |
|-------------|-----------|-----------|-------|-------|------------|-----------|
| lnGDP       |           |           |       |       |            |           |
| L1.         | -4.58e-06 | .0070557  | -0.00 | 0.999 | 0139087    | .0138995  |
| time        | 0000116   | .0001295  | -0.09 | 0.929 | 0002668    | .0002436  |
| _cons       | .0177608  | .0445152  | 0.40  | 0.690 | 0699614    | .105483   |
|             |           |           |       |       |            |           |



## Dickey-Fuller-Distribution vs. t-Distribution



If we use the *t*-distribution instead of the Dickey-Fuller-distribution we would reject the null hypothesis too often.

## **Critical values for Dickey-Fuller tests**

U.S. quarterly GDP (1947q1 - 2003q4), log

| Sample<br>Size <i>T</i> | No constant,<br>no trend |       | ' '   |       | Constant,<br>trend |       |
|-------------------------|--------------------------|-------|-------|-------|--------------------|-------|
|                         | 1%                       | 5%    | 1%    | 5%    | 1%                 | 5%    |
| 25                      | -2.66                    | -1.95 | -3.75 | -3.00 | -4.38              | -3.60 |
| 50                      | -2.62                    | -1.95 | -3.58 | -2.93 | -4.15              | -3.50 |
| 100                     | -2.60                    | -1.95 | -3.51 | -2.89 | -4.04              | -3.45 |
| 250                     | -2.58                    | -1.95 | -3.46 | -2.88 | -3.99              | -3.43 |
| 500                     | -2.58                    | -1.95 | -3.44 | -2.87 | -3.98              | -3.42 |
| ∞                       | -2.58                    | -1.95 | -3.43 | -2.86 | -3.96              | -3.41 |

Verbeek (2000) "A Guide to Modern Econometrics"



## **Dickey-Fuller Unit Root Test**





## **Dickey-Fuller Unit Root Test**





## **Dickey-Fuller Unit Root Test**

```
. regress D.lnGDP L.lnGDP time
   D.lnGDP | Coef. Std. Err. t P>|t| [95% Conf. Interval]
     lnGDP |
      L1. | -4.58e-06 .0070557 -0.00 0.999 -.0139087 .0138995
     time | -.0000116 .0001295 -0.09 0.929 -.0002668 .0002436
     cons | .0177608 .0445152 0.40 0.690 -.0699614 .105483
. di -4.58e - 06/.0070557
-.00064912
. dfuller lnGDP, trend
Dickey-Fuller test for unit root
                                      Number of obs = 227
                        ----- Interpolated Dickey-Fuller -----
                        1% Critical 5% Critical 10% Critical
              Test
           Statistic Value Value
                                                       Value
        -0.001 -3.998 -3.433
Z(t)
MacKinnon approximate p-value for Z(t) = 0.9942
```

Not all time-series processes can be well represented by an AR(1) process. It is possible to use Dickey-Fuller tests in higher-order equations.

Example: AR(2) without constant, no trend

$$H_0$$
:  $\varphi_1 + \varphi_2 = 1$  given  $|\varphi_2| < 1$ 

$$y_{t} = \varphi_{1} y_{t-1} + \varphi_{2} y_{t-2} + \varepsilon_{t} + \varphi_{2} y_{t-1} - \varphi_{2} y_{t-1$$

$$\Delta y_{t} = (\varphi_{1} + \varphi_{2} - 1)y_{t-1} - \varphi_{2}\Delta y_{t-1} + \varepsilon_{t} \quad | \text{ with } \pi_{1} = \varphi_{1} + \varphi_{2} - 1 \text{ and } \pi_{2} = -\varphi_{2}$$
$$= \pi_{1}y_{t-1} + \pi_{2}\Delta y_{t-1} + \varepsilon_{t}$$

$$H_0$$
:  $\pi_1 = \varphi_1 + \varphi_2 - 1 = 0$ 

In general, for an AR(
$$p$$
):  $\Delta y_t = \pi_1 y_{t-1} + \pi_2 \Delta y_{t-1} + ... + \pi_p \Delta y_{t-p+1} + \varepsilon_t$ 

Any **ARMA model** (with an invertible MA polynomial) can be written as an infinite autoregressive process.

Any unknown **ARIMA(p, d, q)** process can be well approximated by an **ARIMA(p\*, d, 0)** of order no more than **T**<sup>1/3</sup>. (Said and Dickey(1984), Enders(1995), p.226)

=> The above **augmented regression** can also be used to **test for a unit root** in any **ARMA model**.

$$\Delta y_{t} = \pi_{1} y_{t-1} + \pi_{2} \Delta y_{t-1} + \dots + \pi_{p} \Delta y_{t-p+1} + \delta + \gamma t + \varepsilon_{t}$$

"augmentation terms"

**Note:** order **p** => **(p-1)** augmentation terms

$$\begin{split} \pi_1 &= \varphi_1 + \varphi_2 + \varphi_3 + \ldots + \varphi_p - 1 & \textit{correspond s to } y_{t-1} \\ \pi_2 &= -(\varphi_2 + \varphi_3 + \ldots + \varphi_p) & \textit{correspond s to } \Delta y_{t-1} \\ \pi_3 &= -(\varphi_3 + \ldots + \varphi_p) & \textit{correspond s to } \Delta y_{t-2} \\ \ldots \\ \pi_p &= -\varphi_p & \textit{correspond s to } \Delta y_{t-p+1} \end{split}$$

Why is it important to select the appropriate lag length? Including too many lags:

reduces power of the test to reject the null of a unit root:

- because the number of parameters estimated has increased and
- because the number of usable observations has decreased.

Including too few lags:

will not appropriately capture the actual error process and  $\varphi_1$  and its standard error will not be properly estimated.

#### How to select the appropriate lag length?

 Start with a relatively long lag length (p\*) and pare down the model by the usual t-test.

$$\Delta \mathbf{y}_{t} = \boldsymbol{\pi}_{1} \mathbf{y}_{t-1} + \boldsymbol{\pi}_{2} \Delta \mathbf{y}_{t-1} + \ldots + \boldsymbol{\pi}_{p} \Delta \mathbf{y}_{t-p+1} + \boldsymbol{\varepsilon}_{t}$$

If the null hypothesis  $\pi_{p^*} = 0$  is accepted, reestimate the regression using a lag length of  $p^*$ -1. Repeat the process until the  $p^*$ - $\ell$  is significantly different from zero. If no value of  $\ell$  leads to rejection, the simple Dickey-Fuller test is used.

Use a model selection criterion to determine the order of the regression,
 e.g. the Hannan-Quinn criterion:

$$HQ(p) = \log \hat{\sigma}^2(p) + (1+p) \frac{2\ln(\ln(T))}{T} \quad \hat{\sigma}_{\varepsilon}^2 = \frac{1}{(T-p)} \sum_{t=1}^{I-p} \hat{\mathcal{E}}_{t}^2$$



Any unknown ARIMA( $\rho$ , d, q) process can be well approximated by an ARIMA( $p^*$ , d, 0) of order no more than  $T^{1/3}$ 

```
. di 228^(1/3)
6.1091147
```

#### Pare down the model by the usual *t*-test starting with an $AR(p^* = 7)$

| D.lnGDP | Coef.    | Std. Err. | t           | P> t         | [95% Conf. | _        |
|---------|----------|-----------|-------------|--------------|------------|----------|
| lnGDP   | 0052131  | .0064806  | -0.80       | 0.422        | 0179877    | .0075615 |
|         | .4261161 | .0683021  | 6.24        | 0.000        | .2914779   | .5607543 |
|         | .1092259 | .0680106  | <b>1.61</b> | <b>0.110</b> | 0248378    | .2432897 |
|         | .0000917 | .0001197  | 0.77        | 0.445        | 0001443    | .0003277 |
|         | .0424386 | .0403873  | 1.05        | 0.295        | 0371736    | .1220507 |



#### **Hannan-Quinn criterion for AR(7)**

. regress D.lnGDP L.lnGDP D.L1.lnGDP D.L2.lnGDP D.L3.lnGDP D.L4.lnGDP D.L5.lnGDP D.L6.lnGDP time

$$\hat{\sigma}_{\varepsilon}^{2} = \frac{1}{(T-p)} \sum_{t=1}^{T-p} \hat{\varepsilon}_{t}^{2}$$

- . predict res AR7, res
- . gen res AR7 squared = res AR7^2
- . sum res AR7 squared

$$HQ(p) = \log \hat{\sigma}^{2}(p) + (1+p) \frac{2\ln(\ln(T))}{T}$$

- . local  $HQ_{AR7} = log(r(mean)) + ((1+7)*(2*log(log(228))/228))$
- . di `HQ AR7'
- -9.1494445



Any unknown ARIMA( $\rho$ , d, q) process can be well approximated by an ARIMA( $\rho$ , d, 0) of order no more than  $T^{1/3}$ 

```
. di 228^(1/3)
6.1091147
```

cons | .035684

#### Pare down the model by the usual *t*-test starting with an $AR(p^* = 7)$

.0402132 0.89 0.376 -.0435806 .1149486



Any unknown ARIMA( $\rho$ , d, q) process can be well approximated by an ARIMA(p, d, 0) of order no more than  $T^{1/3}$ 

```
. di 228^(1/3)
6.1091147
```

#### Pare down the model by the usual *t*-test starting with an $AR(p^* = 7)$

```
. regress D.lnGDP L.lnGDP D.L1.lnGDP D.L2.lnGDP D.L3.lnGDP D.L4.lnGDP time
[...]
```

| D.lnGDP | Coef.    | Std. Err. | t     | P> t  | [95% Conf. | Interval] |
|---------|----------|-----------|-------|-------|------------|-----------|
| lnGDP   |          |           |       |       |            |           |
| L1.     | 0049456  | .0063957  | -0.77 | 0.440 | 0175516    | .0076603  |
| LD.     | .4192889 | .0678941  | 6.18  | 0.000 | .2854692   | .5531085  |
| L2D.    | .1968177 | .0725389  | 2.71  | 0.007 | .053843    | .3397924  |
| L3D.    | 1302062  | .0726467  | -1.79 | 0.074 | 2733933    | .0129809  |
| L4D.    | 0479274  | .0677443  | -0.71 | 0.480 | 1814519    | .085597   |
| time    | .0000859 | .0001179  | 0.73  | 0.467 | 0001465    | .0003183  |
| _cons   | .0409559 | .0400094  | 1.02  | 0.307 | 037903     | .1198147  |



Any unknown ARIMA( $\rho$ , d, q) process can be well approximated by an ARIMA( $\rho$ , d, 0) of order no more than  $T^{1/3}$ 

```
. di 228^(1/3)
6.1091147
```

#### Pare down the model by the usual *t*-test starting with an $AR(p^* = 7)$

```
. regress D.lnGDP L.lnGDP D.L1.lnGDP D.L2.lnGDP D.L3.lnGDP time
[...]
```

| D.lnGDP | Coef.                        | Std. Err.                    | t                    | P> t                  | [95% Conf.                 | Interval]           |
|---------|------------------------------|------------------------------|----------------------|-----------------------|----------------------------|---------------------|
| lnGDP   | 005610                       | .0063167                     | -0.89                | <b>2</b>              | 0180677                    | 0060216             |
| LD.     | 005618<br>.4236657           | .0660744                     | 6.41                 | 0.000                 | .2934392                   | .0068316            |
|         | .1899376<br>. <b>1487725</b> | .0712332<br>. <b>0667618</b> | 2.67<br><b>-2.23</b> | 0.008<br><b>0.027</b> | .0495436<br><b>2803537</b> | .3303316<br>0171914 |
| '       | .0000989                     | .0001163                     | 0.85<br>1.13         | 0.396                 | 0001304<br>0333466         | .0003281            |



#### Hannan-Quinn criterion for AR(1) to AR(7)

$$HQ(p) = \log \hat{\sigma}^{2}(p) + (1+p) \frac{2\ln(\ln(T))}{T}$$

| p     | 1          | 2         | 3          | 4          | 5          | 6          | 7          |
|-------|------------|-----------|------------|------------|------------|------------|------------|
| HQ(p) | -8.9346092 | -9.155521 | -9.1521224 | -9.1789607 | -9.1624933 | -9.1556618 | -9.1494445 |

. dfuller lnGDP, trend lags(3) regress
Augmented Dickey-Fuller test for unit root

Number of obs = 224

Test 1% Critical 5% Critical 10% Critical Statistic Value Value Value

Z(t) -0.889 -3.999 -3.433 -3.133

MacKinnon approximate p-value for Z(t) = 0.9573

 $[\ldots]$  ... cannot reject  $H_0$ 



## Additional Information

For trending series we have to discriminate between deterministic and stochastic trends.

In a Trend-Stationary-Model we have a deterministic trend with *stationary stochastic* fluctuations around this deterministic trend. A Difference-Stationary-Model can have a stochastic trend (e.g. a Random Walk) or a combination of a stochastic and deterministic trend (e.g. a Random Walk with drift). To check if the time series contains a stochastic trend (with a unit root) we can use the (Augmented) Dickey-Fuller-Test. This test is not that powerful, but it gives us a hint, that we can use a Difference-Stationary-Model to deal with the non-stationary time series. If we can reject the hypothesis of a unit root in the data, it means we can still try to get rid of the non-stationarity by using a Trend-Stationary-Model.

For the augmented Dickey-Fuller-Test we consider the general formula (with constant and trend) to test for one unit root (if there is more then one unit root we would have to consider differencing the series more then just once):

$$\Delta \boldsymbol{y}_t = \boldsymbol{\pi}_1 \boldsymbol{y}_{t-1} + \boldsymbol{\pi}_2 \Delta \boldsymbol{y}_{t-1} + ... + \boldsymbol{\pi}_p \Delta \boldsymbol{y}_{t-p+1} + \boldsymbol{\delta} + \gamma \boldsymbol{t} + \boldsymbol{\epsilon}_t$$



## Additional Information

The null hypothesis of the test is:

$$\pi_1 = \sum_k \phi_k - 1 = 0$$

We estimate the equation:

$$\Delta \boldsymbol{y}_{t} = \boldsymbol{\pi}_{1} \boldsymbol{y}_{t-1} + \boldsymbol{\pi}_{2} \Delta \boldsymbol{y}_{t-1} + ... + \boldsymbol{\pi}_{p} \Delta \boldsymbol{y}_{t-p+1} + \boldsymbol{\delta} + \boldsymbol{\gamma} \boldsymbol{t} + \boldsymbol{\epsilon}_{t}$$

By ordinary least squares and focus on the estimate of  $\pi_1$ .

For the coefficients  $\pi_j$  with j>1 of the OLS-Regression we can use the standard t-statistic, but for  $\pi_1$ , we have to consider the Dickey-Fuller-Distribution to get correct critical values.

You can either test for various p or you use information criteria, such as AIC, BIC and the Hannan-Quinn-Criteria (HQIC), to get the correct number of lags. All three criteria tend to come to the same conclusion. AIC sometimes overestimates the lag length, because it is the least strict one to penalize an high order of lags. BIC is the strictest in penalizing loss of degree of freedom by having more parameters in the fitted model. The HQIC holds the middle ranking in penalizing and is therefore often used.



# Additional Information

After we have found evidence for a unit root and a DS-Model we have to identify the correct ARMA-Model for the differenced series. For this purpose we use our well-known Box-Jenkins-Approach and apply it to the differenced series.



## **Difference Stationary Model**

- Identification
   Which model would you chose and why?
- Estimation
   Estimate your model.
- Diagnostic checking
   Is the selected model a statistically adequate representation of the available data?



#### Identification

#### First difference of logarithm of U.S. quarterly GDP (1947q1 – 2003q4)





## Identification

## First difference of logarithm of U.S. quarterly GDP (1947q1 – 2003q4)





## Identification

## First difference of logarithm of U.S. quarterly GDP (1947q1 – 2003q4)





#### **Estimation**

#### . arima D.lnGDP, ma(1/2)[...] ARIMA regression Sample: 1947q4 to 2004q2 Number of obs = 2.2.7 Wald chi2(2) = 73.01Prob > chi2 Log likelihood = 723.73830.0000 OPG D.lnGDP | Coef. Std. Err. z P>|z| [95% Conf. Interval] lnGDP .0169737 .0011325 14.99 0.000 .0147541 ARMA ma l .0504263 7.90 0.000 .2993257 .496993 .3981594 L1. I .0490873 5.49 0.000 .1732071 L2. .3656257 .0099742 .000341 29.25 0.000 .0093059 /sigma |

Stata's arima command

# $\hat{x}_{t} = 0.0169737 + 0.3981594\varepsilon_{t-1} + 0.2694164\varepsilon_{t-2}$



# ACF of the residuals of an ARIMA(0,1,2)





# PACF of the residuals of an ARIMA(0,1,2)





$$AIC = \log \hat{\sigma}^2 + 2\frac{p+q}{T}$$
  $BIC = \log \hat{\sigma}^2 + \frac{p+q}{T}\log T$ 

AIC and BIC for ARMA(p, 1, q)

| pq | 0          | 1          | 2           | 3          | 4          | 5          |
|----|------------|------------|-------------|------------|------------|------------|
| 0  | -8.9685045 | -9.1125014 | -9.1978922  | -9.2028873 | -9.2126863 | -9.2270162 |
|    | -8.9835924 | -9.0974135 | -9.1677164  | -9.1576237 | -9.1523348 | -9.1515768 |
| 1  | -9.190383  | -9.1899704 | -9.213996   | -9.2070468 | -9.2249688 | -9.2274977 |
|    | -9.1752951 | -9.1597946 | -9.1838202  | -9.1617831 | -9.1646173 | -9.1520582 |
| 2  | -9.1959458 | -9.2037504 | -9.2932324  | -9.2013771 | -9.2728801 | -9.2270026 |
|    | -9.16577   | -9.1584868 | -9.2479687  | -9.1410256 | -9.1974407 | -9.1364753 |
| 3  | -9.2121577 | -9.2079973 | -9.2648833  | -9.1936841 | -9.1839081 | -9.2258877 |
|    | -9.1668941 | -9.1476458 | -9.2045317  | -9.1182447 | -9.0933808 | -9.1202725 |
| 4  | -9.2062074 | -9.1995611 | -9.2577521  | -9.2707273 | -9.2335015 | -9.2097806 |
|    | -9.1458558 | -9.1241217 | -9.1823127  | -9.1802    | -9.1278864 | -9.0890775 |
| 5  | -9.2105199 | -9.2105449 | -9.2291609* | -9.2009942 | -9.2166735 | -9.2490434 |
|    | -9.1350805 | -9.1200176 | -9.1386336* | -9.095379  | -9.0959704 | -9.1132524 |

\* conditional ML estimation



# ACF of the residuals of an ARIMA(2,1,2)





# PACF of the residuals of an ARIMA(2,1,2)





### **Exercise 3.8:**

Forecasting (without using Stata's forecast commands)

- Forecast x<sub>t</sub> from one to four quarters ahead.
- Forecast y<sub>t</sub> from one to four quarters ahead.
- Forecast  $x_t$  and  $y_t$  from one to four quarters ahead using the information that we know at the end of 2004q1 that  $y_{04q1} = 9.36$  and that we know at the end of 2004q2 that  $y_{04q2} = 9.38$ .



## Solution 3.8-1:

MA(2) with constant 
$$X_t = \mu + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \theta_2 \varepsilon_{t-2}$$

$$\hat{x}_{t} = 0.0169737 + 0.3981594\varepsilon_{t-1} + 0.2694164\varepsilon_{t-2}$$

$$\widetilde{\mathbf{x}}_{T+1|\Omega_{\tau}} = \widetilde{\mathbf{z}}_{T2^{1}|\mathfrak{Z}_{\tau}} + \mu - \boldsymbol{\theta}_{1}\widetilde{\mathbf{z}}_{T|\Omega_{\tau}} - \boldsymbol{\theta}_{2}\widetilde{\mathbf{z}}_{T-1|\Omega_{\tau}}$$

with 
$$\widetilde{\epsilon}_{T|\Omega_{\tau}} = x_T - \widetilde{x}_{T|\Omega_{\tau}}$$
 and  $\widetilde{\epsilon}_{T-1|\Omega_{\tau}} = x_{T-1} - \widetilde{x}_{T-1|\Omega_{\tau}}$ 

. di .0169737 + (.3981594\*(-.0057223)) + (.2694164\*.0091118)

#### .0171502

$$\mathbf{x}_{T+2|\Omega_{T}} = \mathbf{\xi}_{122|\mathbf{x}_{0}} + \mu - \mathbf{\theta}_{1}\mathbf{\xi}_{121|\mathbf{x}_{0}} - \mathbf{\theta}_{2}\mathbf{\xi}_{T|\Omega_{T}}$$

. di .0169737+(.2694164\*-.00572227)

#### .01543203

$$\mathbf{x}_{T+3|\Omega_{\tau}} = \mathbf{x}_{123|\mathbf{x}_{\tau}} + \mu - \mathbf{\theta}_{1}\mathbf{x}_{122|\mathbf{x}_{\tau}} - \mathbf{\theta}_{2}\mathbf{x}_{121|\mathbf{x}_{\tau}}$$

. list time res MA2 in 226/228





### Solution 3.8-2:

ARIMA(0,1,2) with constant

$$\mathbf{X}_{T+1|\Omega_{\tau}} = .0171502 \, \mathbf{X}_{T+2|\Omega_{\tau}} = .01543203 \quad \mathbf{X}_{T+3|\Omega_{\tau}} = \mathbf{X}_{T+4|\Omega_{\tau}} = .0169737$$

$$\widetilde{y}_{T+1|\Omega_T} = y_{T|\Omega_T} + \widetilde{x}_{T+1|\Omega_T} 
= 9.3291893 + 0.0171502 = 9.3463395$$

$$\mathfrak{J}_{T+2|\Omega_T} = \mathfrak{J}_{T+1|\Omega_T} + \mathfrak{X}_{T+2|\Omega_T}$$

$$= 9.3463395 + .01543203 = 9.3617715$$

$$\mathcal{Y}_{T+3|\Omega_T} = \mathcal{Y}_{T+2|\Omega_T} + \mathcal{X}_{T+3|\Omega_T}$$

$$= 9.3617715 + 0.0169737 = 9.3787452$$

$$\mathfrak{J}_{T+4|\Omega_T} = \mathfrak{J}_{T+3|\Omega_T} + \mathfrak{F}_{T+4|\Omega_T}$$

$$= 9.3787452 + 0.0169737 = 9.3957189$$



### Solution 3.8-3:

$$\begin{split} \text{MA(2) with constant} \quad & x_t = \mu + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \theta_2 \varepsilon_{t-2} \\ \hat{x}_t &= 0.0169737 + 0.3981594 \varepsilon_{t-1} + 0.2694164 \varepsilon_{t-2} \\ & \overline{X}_{T+1|\Omega_T} = .0171502 \\ & \overline{X}_{T+2|\Omega_T} &= \overline{\xi}_{T,2^{2|S_T}} + \mu - \theta_1 \overline{\varepsilon}_{T+1|\Omega_T} - \theta_2 \overline{\varepsilon}_{T|\Omega_T} \\ & \overline{\varepsilon}_{T+1|\Omega_T} &= x_{T+1} - \overline{X}_{T+1|\Omega_T} = (y_{T+1} - y_T) - \overline{X}_{T+1|\Omega_T} \\ & = (9.36 - 9.3291893) - 0.0171502 = 0.0136605 \\ & \overline{X}_{T+2|\Omega_T} &= \overline{\xi}_{T,2^{2|S_T}} + \mu - \theta_1 \overline{\varepsilon}_{T+1|\Omega_T} - \theta_2 \overline{\varepsilon}_{T|\Omega_T} \\ & = 0.0169737 + (0.3981594 \cdot 0.0136605) + (0.2694164 \cdot (-0.00572227)) \\ & = 0.02087108 \end{split}$$



#### Solution 3.8-4:

$$\mathbf{x}_{T+3|\Omega_{T}} = \mathbf{x}_{123|S_{T}} + \mu - \mathbf{\theta}_{1}\mathbf{x}_{T+2|\Omega_{T}} - \mathbf{\theta}_{2}\mathbf{x}_{T+1|\Omega_{T}}$$

$$\widetilde{\mathbf{z}}_{T+2|\Omega_{T}} = \mathbf{x}_{T+2} - \widetilde{\mathbf{x}}_{T+2|\Omega_{T}} = (\mathbf{y}_{T+2} - \mathbf{y}_{T+1}) - \widetilde{\mathbf{x}}_{T+2|\Omega_{T}}$$

$$= (9.38 - 9.36) - 0.02087108 = -0.00087108$$

$$\begin{split} \widetilde{\mathbf{X}}_{T+3|\Omega_{T}} &= \widetilde{\mathbf{E}}_{T+2|\Omega_{T}} + \mu - \theta_{1} \widetilde{\mathbf{E}}_{T+2|\Omega_{T}} - \theta_{2} \widetilde{\mathbf{E}}_{T+1|\Omega_{T}} \\ &= 0.0169737 + (0.3981594 \cdot (-0.00087108)) + (0.2694164 \cdot 0.0136605) \\ &= 0.02030723 \end{split}$$

$$\begin{aligned} \mathbf{x}_{T+4|\Omega_{T}} &= \mathbf{\xi}_{T_{2}4|\mathbf{S}_{T}} + \mu - \theta_{1} \mathbf{\xi}_{T_{2}3|\mathbf{S}_{T}} - \theta_{2} \mathbf{\xi}_{T+2|\Omega_{T}} \\ &= 0.0169737 + 0.2694164 \cdot (-0.00087108) = 0.01673902 \end{aligned}$$



## Solution 3.8-5:

$$\mathfrak{F}_{T+1|\Omega_T} = 0.0171502$$
  $\mathfrak{F}_{T+2|\Omega_T} = 0.02087108$   $\mathfrak{F}_{T+3|\Omega_T} = 0.02030723$ 

$$\mathfrak{F}_{T+4|\Omega_{\tau}} = 0.01673902$$

$$\mathfrak{J}_{T+1|\Omega_T} = y_{T|\Omega_T} + \mathfrak{F}_{T+1|\Omega_T} 
= 9.3291893 + 0.0171502 = 9.3463395$$

$$\mathcal{J}_{T+2|\Omega_T} = y_{T+1|\Omega_T} + \mathcal{X}_{T+2|\Omega_T}$$

$$= 9.36 + 0.02087108 = 9.3808711$$

$$\mathcal{J}_{T+3|\Omega_T} = y_{T+2|\Omega_T} + \mathcal{X}_{T+3|\Omega_T}$$
  
= 9.38 + 0.02030723 = 9.4003072

$$\mathfrak{J}_{T+4|\Omega_T} = \mathfrak{J}_{T+3|\Omega_T} + \mathfrak{F}_{T+4|\Omega_T}$$

$$= 9.4003072 + 0.01673902 = 9.4170462$$



### Solution 3.8-6:

• Forecast  $x_t$  and  $y_t$  from one to four quarters ahead.

```
 \begin{split} & \boldsymbol{\mathfrak{X}}_{T+1|\Omega_T} = .0171502 & \boldsymbol{\mathfrak{X}}_{T+2|\Omega_T} = .01543203 & \boldsymbol{\mathfrak{X}}_{T+3|\Omega_T} = \boldsymbol{\mathfrak{X}}_{T+4|\Omega_T} = .0169737 \\ & \boldsymbol{\mathfrak{Y}}_{T+1|\Omega_T} = 9.3463395 & \boldsymbol{\mathfrak{Y}}_{T+2|\Omega_T} = 9.3617715 & \boldsymbol{\mathfrak{Y}}_{T+3|\Omega_T} = 9.3787452 & \boldsymbol{\mathfrak{Y}}_{T+4|\Omega_T} = 9.3957189 \end{split}
```

• Forecast  $x_t$  and  $y_t$  from one to four quarters ahead using the information that we know at the end of 2004q1 that  $y_{04q1} = 9.36$  and that we know at the end of 2004q2 that  $y_{04q2} = 9.38$ .

```
 \begin{split} & \mathfrak{F}_{T+1|\Omega_T} = 0.0171502 & \mathfrak{F}_{T+2|\Omega_T} = 0.02087108 & \mathfrak{F}_{T+3|\Omega_T} = 0.02030723 & \mathfrak{F}_{T+4|\Omega_T} = 0.01673902 \\ & \mathfrak{F}_{T+1|\Omega_T} = 9.3463395 & \mathfrak{F}_{T+2|\Omega_T} = 9.3808711 & \mathfrak{F}_{T+3|\Omega_T} = 9.4003072 & \mathfrak{F}_{T+4|\Omega_T} = 9.4170462 \end{split}
```

. list time lnGDP x\_tilde\_dyn y\_tilde\_dyn x\_tilde y\_tilde in 229/232

| -                            | +<br>  time<br>                            | lnGDP             | x_tild~n                                    | y_tild~n                                     | x_tilde                                     | y_tilde                              |
|------------------------------|--------------------------------------------|-------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------|--------------------------------------|
| 229.<br>230.<br>231.<br>232. | 2004q1<br>  2004q2<br>  2004q3<br>  2004q4 | 9.36<br>9.38<br>· | .0171502<br>.015432<br>.0169737<br>.0169737 | 9.346339<br>9.361772<br>9.378745<br>9.395719 | .0171502<br>.020871<br>.0203074<br>.0167392 | 9.346339  <br>9.380871  <br>9.400308 |