

## TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.



# Übung zur Vorlesung Einsatz und Realisierung von Datenbanken im SoSe20

Maximilian {Bandle, Schüle}, Josef Schmeißer (i3erdb@in.tum.de) http://db.in.tum.de/teaching/ss20/impldb/

Blatt Nr. 08

## Hausaufgabe 1

Der Datenbanken-Lehrstuhl möchte wissen, mit welchem Eis der Gefrierschrank bestückt werden soll. Die Kosten sollen möglichst gering sein, aber die Schleckzeit möglichst groß. Hierfür wurde ein Test mit handelsüblichen Eissorten durchgeführt.

|                           |                 | Eis               |               |
|---------------------------|-----------------|-------------------|---------------|
| $\underline{\mathrm{id}}$ | Name            | Schleckzeit (min) | Kosten $(ct)$ |
| D                         | Double-Stieleis | 5                 | 45            |
| $\mathbf{E}$              | Eiskonfekt      | 7                 | 50            |
| $\mathbf{F}$              | Frucht-Stieleis | 4                 | 30            |
| G                         | Großes Stieleis | 5                 | 35            |
| $\mathbf{M}$              | Mini-Stieleis   | 2                 | 15            |
| Q                         | Quetschtüte     | 3                 | 25            |
| $\mathbf{S}$              | Sandwich-Eis    | 5                 | 35            |
| W                         | Waffeltüte      | 4                 | 25            |

Wir betrachten die Skyline über das **Maximum** des Attributs *Schleckzeit* sowie das **Minimum** des Attributs *Kosten* der Tabelle Eis.

- a) Geben Sie die Anfrage, die die oben genannte Skyline mithilfe des Skyline-Operators berechnet.
- b) Geben Sie die Anfrage, die die oben genannte Skyline in SQL-92 berechnet, an (d.h. ohne Skyline-Operator).
- c) Vervollständigen Sie das unten gezeigte Diagramm. Zeichnen Sie alle Dominanzachsen ein.



d) Geben Sie die Kürzel aller in der Skyline enthalten Tupel an.

#### Hausaufgabe 2

Gegeben seien folgende Datenpunkte, die im Plot und der Tabelle dargestellt sind. Die Punkte sollen mithilfe des k-Means-Algorithmus in drei Cluster aufgeteilt werden.



Als initiale Clusterzentren werden dabei folgende Punkte gewählt: Cluster  $(C_1) \to A$ ; Cluster  $(C_2) \to B$ ; Cluster  $(C_3) \to H$ .

a) Führen Sie die Zuordnung für die erste Iteration qualitativ durch, indem sie das zugehörige Feld ankreuzen. Eine Rechnung oder Begründung ist nicht erforderlich.

|       | A | B | C | D | E | F | G | H |
|-------|---|---|---|---|---|---|---|---|
| $C_1$ |   |   |   |   |   |   |   |   |
| $C_2$ |   |   |   |   |   |   |   |   |
| $C_3$ |   |   |   |   |   |   |   |   |

- b) Berechnen Sie den Mittelpunkt  $M_3$  von Cluster  $C_3$  für die erste Iteration (Rechenweg angeben).
- c) Nennen Sie die Bedingung, nach der k-Means das Clustering optimiert.
- d) Geben Sie die Terminierungsbedingung von k-Means an.

#### Hausaufgabe 3

Gegeben seien Datenpunkte, welche im nachfolgenden Listing aufgeführt sind. Die Punkte sollen mithilfe des k-Means-Algorithmus in drei Cluster aufgeteilt werden. Als initiale Clusterzentren werden hierbei die jeweiligen Datenpunkte aus der clusters\_0-Hilfsrelation gewählt.

```
with points (pid, x, y) as (values('A',1,5), ('B',3,5), ('C',6,1),
   ('D',7,2), ('E',8,1), ('F',8,9), ('G',10,8), ('H',12,10)
), clusters_0 (cid,x,y) as (values ('1',1e0,5e0), ('2',3e0,5e0),
   ('3',12e0,10e0))
```

- a) Formulieren Sie eine Iteration des k-Means-Algorithmus in SQL, die Ihnen die Clusterzentren zurückgibt. Nutzen Sie dazu eine Unterabfrage, die das Kreuzprodukt aus Clustern und Punkten berechnet und mit einer Window-Funktion pro Punkt ein Ranking der Cluster anhand der euklidischen Distanz erstellt.
- c) Berechnen Sie nun auf Grundlage Ihrer vorgehenden Anfrage die Zuordnung der Datenpunkte zu den jeweiligen Clusterzentren.
- d) Formulieren Sie nun Clusterberechnung als rekursive SQL-Anfrage mit folgendem Schema: clusters\_n (cid,step,x,y,delta). Nehmen Sie initial die gegebenen Clusterzentren. Verwenden Sie als Vorlage im Rekursionsschritt Ihre Anfrage aus Teilauf-

gabe a, welche die Clusterzentren pro Iteration neuberechnet (assign). Hinweis: Nutzen Sie für die Fixpunkiteration delta als die Summe aller Änderungen in Schritt step, um die Terminierungsbedingung des k-Means-Algorithmus zu formulieren. Ihre Anfrage soll terminieren, wenn die neu zugewiesenen Zentren gleich den vorherigen sind: delta = 0.

#### Hausaufgabe 4

Alex und Max möchten sich für ihre neue Firma ein Fortbewegungsmittel zulegen. Hilf ihnen, die drei günstigsten bei 40.000 km Fahrleistung pro Jahr zu finden, wenn sie das Auto 5 Jahre lang nutzen wollen. Wende den NRA- und Threshold-Algorithmus an und bilde eine Skyline.

| Einheit          | Treibstoff | Preis |
|------------------|------------|-------|
| 1l               | Diesel     | 1,00€ |
| 1l               | Benzin     | 1,50€ |
| 1l               | Kerosin    | 1,00€ |
| $1 \mathrm{kWh}$ | Strom      | 0,10€ |

| Kosten |             | Verbrauch  |             |                         |
|--------|-------------|------------|-------------|-------------------------|
|        | Gefährt     | Kosten     | Gefährt     | Verbrauch               |
|        | Privatjet   | 2.500.000€ | Privatjet   | 0,2l/km (Kerosin)       |
|        | Elektroauto | 80.000€    | Elektroauto | 20 kWh / 100 km (Strom) |
|        | Cabrio      | 40.000€    | Cabrio      | 4l/100km (Diesel)       |
|        | Limousine   | 35.000€    | Limousine   | 5l/100km (Diesel)       |
|        | Transporter | 20.000€    | Transporter | 6l/100km (Benzin)       |
|        | Combi       | 25.000€    | Combi       | 5l/100km (Benzin)       |
|        | Sport-Coupé | 25.000€    | Sport-Coupé | 4l/100km (Benzin)       |

## Hausaufgabe 5

Zeigen Sie die weiteren Phasen des Apriori-Algorithmus für unser Beispiel in Abbildung 1 (hier ist lediglich bis inkl. 2. Phase dargestellt). Damit eine Menge von Produkten ein Frequentitemset ist, muss sie in mindestens 3/5 aller Verkäufe enthalten sein, d.h.  $minsupp = s_0 = 3/5$ . Gehen Sie für die Assoziationsregeln von einer minimalen Konfidenz von  $k_0 = 0$  aus und berechnen Sie die Konfidenz der Assoziationsregel {Drucker}  $\Rightarrow$  {Papier, Toner}.

| VerkaufsTransaktionen |         |  |
|-----------------------|---------|--|
| TransID               | Produkt |  |
| 111                   | Drucker |  |
| 111                   | Papier  |  |
| 111                   | PC      |  |
| 111                   | Toner   |  |
| 222                   | PC      |  |
| 222                   | Scanner |  |
| 333                   | Drucker |  |
| 333                   | Papier  |  |
| 333                   | Toner   |  |
| 444                   | Drucker |  |
| 444                   | PC      |  |
| 555                   | Drucker |  |
| 555                   | Papier  |  |
| 555                   | PC      |  |
| 555                   | Scanner |  |
| 555                   | Toner   |  |

| Zwischenergebnisse |        |  |  |  |
|--------------------|--------|--|--|--|
| FI-Kandidat        | Anzahl |  |  |  |
| {Drucker}          | 4      |  |  |  |
| {Papier}           | 3      |  |  |  |
| {PC}               | 4      |  |  |  |
| {Scanner}          | 2      |  |  |  |
| {Toner}            | 3      |  |  |  |
| {Drucker, Papier}  | 3      |  |  |  |
| {Drucker, PC}      | 3      |  |  |  |
| {Drucker, Scanner} |        |  |  |  |
| {Drucker, Toner}   | 3      |  |  |  |
| {Papier, PC}       | 2      |  |  |  |
| {Papier, Scanner}  |        |  |  |  |
| {Papier, Toner}    | 3      |  |  |  |
| {PC, Scanner}      |        |  |  |  |
| {PC, Toner}        | 2      |  |  |  |
| {Scanner, Toner}   |        |  |  |  |

Abbildung 1: Ausgangssituation für den Apriori-Algorithmus