第二章 组合逻辑

1. 分析图中所示的逻辑电路,写出表达式并进行化简

$$F = \overline{AB} \overline{BABC} \overline{CABC}$$
$$= \overline{AB} + \overline{AC} + \overline{BC} + \overline{BC}$$
$$= \overline{AB} + \overline{BC} + \overline{BC}$$

2. 分析下图所示逻辑电路, 其中 S3、S2、S1、S0 为控制输入端, 列出真值表, 说明 F 与 A、B 的关系。

$$F_{1} = \overline{A + BS_{0} + \overline{B}S_{1}}$$

$$F_{2} = \overline{ABS_{2} + A\overline{B}S_{3}}$$

$$F_{3} = \overline{A + BS_{0} + \overline{B}S_{1}}$$

3. 分析下图所示逻辑电路,列出真值表,说明其逻辑功能。

解:

 $_{\rm F1=}\overline{A\overline{B}C+AB\overline{C}+\overline{A}BC+\overline{B}\overline{C}}=\overline{A}\overline{B}C+\overline{A}B\overline{C}+ABC$ 真值表如下:

A	В	C	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

当 B≠C 时, F1=A

当 B=C=1 时, F1=A

当 B=C=0 时, F1=0

$$F2 = \overline{A}\overline{B} + \overline{B}\overline{C} + \overline{A}\overline{C} = AB + BC + AC$$

真值表如下:

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

当 $A \times B \times C$ 三个变量中有两个及两个以上同时为"1"时,F2 = 1。

4. 图所示为数据总线上的一种判零电路,写出 F 的逻辑表达式,说明该电路的逻辑功能。

解: F= A0A1A2A3 + A4A5A6A7 + A8A9A10A11 + A12A13A14A15 只有当变量 A0~A15 全为 0 时, F = 1; 否则, F = 0。 因此, 电路的功能是判断变量是否全部为逻辑 "0"。

5. 分析下图所示逻辑电路,列出真值表,说明其逻辑功能

解: $F = \overline{A1A0}X0 + \overline{A1}A0X1 + A1\overline{A0}X2 + A1A0X3$ 真值表如下:

$\mathbf{A_1} \ \mathbf{A_0}$	F
0 0	$\mathbf{X_0}$
0 1	$egin{array}{c} \mathbf{X_0} \\ \mathbf{X_1} \end{array}$
1 0	$\mathbf{X_2}$
1 1	\mathbf{X}_{3}^{-}

因此,这是一个四选一的选择器。

6. 下图所示为两种十进制数代码转换器,输入为余三码,输出为什么代码? 解:

A B C D	WXYZ
0 0 1 1	0 0 0 0
0 1 0 0	0 0 0 1
0 1 0 1	0 0 1 0
0 1 1 0	0 0 1 1
0 1 1 1	0 1 0 0
1 0 0 0	0 1 0 1
1 0 0 1	0 1 1 0
1 0 1 0	0 1 1 1
1 0 1 1	1 0 0 0
1 1 0 0	1 0 0 1

这是一个*余三码* 至 8421 BCD 码转换的电路

7. 下图是一个受 M 控制的 4 位二进制码和格雷码的相互转换电路。M=1 时,完成自然二进制码至格雷码转换; M=0 时,完成相反转换。请说明之

解: Y3=X3

W = AB + ACD

 $Y = \overline{C}D + C\overline{D}$

 $Z = \overline{D}$

 $X = \overline{B}\overline{C} + \overline{B}\overline{D} + BCD$

 $Y2 = X2 \oplus X3$

 $Y1 = X1 \oplus (MX2 + \overline{M}Y2)$

 $Y0 = X0 \oplus (MX1 + \overline{M}Y1)$

当 M=1 时 Y3=X3

 $Y2=X2 \oplus X3$ $Y1=X1 \oplus X2$

 $Y0=X0 \oplus X1$

当 M=0 时 Y3=X3

 $Y2=X2 \oplus X3$

 $Y1=X1 \oplus Y2=X1 \oplus X2 \oplus X3$ $Y0=X0 \oplus Y1=X0 \oplus X1 \oplus X2 \oplus X3$

M=1的真值表

M=0的真值表

X_3	X_2	\mathbf{X}_{1}	\mathbf{X}_{0}	Y ₃	Y ₂	\mathbf{Y}_{1}	Y ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1 1 1	0
0	1	0	1	0	1		1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

X_3	X_2	\mathbf{X}_{1}	\mathbf{X}_{0}	$\mathbf{Y}_{3} \mathbf{Y}_{2} \mathbf{Y}_{1} \mathbf{Y}_{0}$
0	0	0	0	0 0 0 0
0	0	0	1	0 0 0 1
0	0	1	1	0 0 1 0
0	0	1	0	0 0 1 1
0	1	1	0	0 1 0 0
0	1	1	1	0 1 0 1
0	1	0	1	0 1 1 0
0	1	0	0	0 1 1 1
1	1	0	0	1 0 0 0
1	1	0	1	1 0 0 1
1	1	1	1	1 0 1 0
1	1	1	0	1 0 1 1
1	0	1	0	1 1 0 0
1	0	1	1	1 1 0 1
1	0	0	1	1 1 1 0
1	0	0	0	1 1 1 1

由真值惠可知: M=1 时,完成 8421 BCD 码到格雷码的转换; M=0 时,完成格雷码到 8421 BCD 码的转换。

8. 已知输入信号 A,B,C,D 的波形如下图所示,选择适当的集成逻辑门电路,设计产生输出 F 波形的组合电路(输入无反变量)

解:

列出真值表如下:

A B C D	F	
0 0 0 0	0	
$0 \ 0 \ 0 \ 1$	1	
$0 \ 0 \ 1 \ 0$	0	
0 0 1 1	1	
0 1 0 0	1	
0 1 0 1	1	
0 1 1 0	0	AB
0 1 1 1	0	CD 00 01 11 10
1 0 0 0	1	00 1 1 1
1 0 0 1	1	"
1 0 1 0	1	01 1 1 1
1 0 1 1	1	
1 1 0 0	1	11 1 1
1 1 0 1	0	*
1 1 1 0	0	10
1 1 1 1	0	

 $F = A\overline{B} + \overline{B}D + B\overline{C}\overline{D} + \overline{A}B\overline{C}(\overrightarrow{\mathbb{P}}\overline{A}\overline{C}D)$

9. 用红、黄、绿三个指示灯表示三台设备的工作情况:绿灯亮表示全部正常; 红灯 亮表示有一台不正常;黄灯亮表示有两台不正常;红、黄灯全亮表示三台都不正常。列出控制电路真值表,并选出合适的集成电路来实现。

解:

设:三台设备分别为 A、B、C: "1"表示有故障,"0"表示无故障; 红、黄、绿灯分别为 Y1、Y2、Y3:"1"表示灯亮;"0"表示灯灭。据题意列出真值表如下:

A	В	C	\mathbf{Y}_{1}	\mathbf{Y}_{2}	Y ₃
0	0	0	0	0	1
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	1	1	0

 $Y1 = A \oplus B \oplus C$

 $Y2 = BC + A(B \oplus C)$

于是得: $Y3 = \overline{A}\overline{B}\overline{C} = \overline{A+B+C}$

- 10. 用两片双四选一数据选择器和与非门实现循环码至 8421BCD 码转换。
- 解: (1)函数真值表、卡诺图如下;

Α	В	С	D	W	Χ	Υ	Z
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	1	0	0	1	0
0	0	1	0	0	0	1	1
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	1
0	1	0	1	0	1	1	0
0	1	0	0	0	1	1	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	1
1	1	1	1	×	×	X	×
1	1	1	0	X	X	X	×
1	0	1	0	X	×	X	×
1	0	1	1	×	×	X	×
1	0	0	1	X	X	X	X
1	0	0	0	×	×	X	X

∖CI	0			
AB\	00	01	11	10
00	0000	0001	0010	0011
01	0111	0110	0101	0100
11	1000	1001	Φ	Φ
10	Φ	Φ	Φ	Φ

(2) 画逻辑图:

11. 用一片 74LS148 和与非门实现 8421BCD 优先编码器

12. 用适当门电路,设计 16 位串行加法器,要求进位琏速度最快,计算一次加法时间。

解:全加器真值表如下

Ai	Bi	Ci-1	Si	Ci+1
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

可以写出以下表达式

$$\overline{S} = \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC}$$

$$S = \overline{A}\overline{B}\overline{C} + \overline{A}BC + A\overline{B}C + AB\overline{C}$$

$$\overline{C} = \overline{AB} + \overline{AC_{-1}} + \overline{BC_{-1}}$$

$$C = \overline{\overline{A}\overline{B} + \overline{A}\overline{C_{-1}}} + \overline{\overline{B}\overline{C_{-1}}}$$

$$C = AB + AC_{-1} + BC_{-1}$$

$$\overline{C} = \overline{AB + AC_{-1} + BC_{-1}}$$

要使进位琏速度最快,应使用"与或非"门。具体连接图如下。 若"与或非"门延迟时间为t1,"非门"延迟时间为t2,则完成一次16位加法运算所需时间为:

$$t = (16-1)t_1 + (t_1 + t_2)$$

13. 用一片 4:16 线译码器将 8421BCD 码转换成余三码,写出表达式解:

十进制数	8421码	余三码
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

$$W(A, B, C, D) = \Sigma(5,6,7,8,9)$$

$$X(A, B, C, D) = \Sigma(1, 2, 3, 4, 9)$$

$$Y(A, B, C, D) = \Sigma(0,3,4,7,8)$$

$$Z(A, B, C, D) = \Sigma(0, 2, 4, 6, 8)$$

$$\begin{split} \mathbf{W}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) &= \mathbf{\Sigma}(\mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}) = \mathbf{Y}_5 + \mathbf{Y}_6 + \mathbf{Y}_7 + \mathbf{Y}_8 + \mathbf{Y}_9 = \overline{\mathbf{Y}_5} \, \overline{\mathbf{Y}_6} \, \overline{\mathbf{Y}_7} \, \overline{\mathbf{Y}_8} \, \overline{\mathbf{Y}_9} \\ \mathbf{X}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) &= \mathbf{\Sigma}(\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{9}) = \mathbf{Y}_1 + \mathbf{Y}_2 + \mathbf{Y}_3 + \mathbf{Y}_4 + \mathbf{Y}_9 = \overline{\mathbf{Y}_1} \, \overline{\mathbf{Y}_2} \, \overline{\mathbf{Y}_3} \, \overline{\mathbf{Y}_4} \, \overline{\mathbf{Y}_9} \\ \mathbf{Y}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) &= \mathbf{\Sigma}(\mathbf{0}, \mathbf{3}, \mathbf{4}, \mathbf{7}, \mathbf{8}) = \mathbf{Y}_0 + \mathbf{Y}_3 + \mathbf{Y}_4 + \mathbf{Y}_7 + \mathbf{Y}_8 = \overline{\mathbf{Y}_0} \, \overline{\mathbf{Y}_3} \, \overline{\mathbf{Y}_4} \, \overline{\mathbf{Y}_7} \, \overline{\mathbf{Y}_8} \\ \mathbf{Z}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) &= \mathbf{\Sigma}(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6}, \mathbf{8}) = \mathbf{Y}_0 + \mathbf{Y}_2 + \mathbf{Y}_4 + \mathbf{Y}_6 + \mathbf{Y}_8 = \overline{\mathbf{Y}_0} \, \overline{\mathbf{Y}_2} \, \overline{\mathbf{Y}_4} \, \overline{\mathbf{Y}_6} \, \overline{\mathbf{Y}_8} \end{split}$$

14. 使用一个 4 位二进制加法器设计 8421BCD 码转换成余三码转换器: 解:

15. 用 74LS283 加法器和逻辑门设计实现一位 8421 BCD 码加法器电路。

解:

16. 设计二进制码/格雷码转换器

解: 真值表

\mathbf{B}_3	\mathbf{B}_2	\mathbf{B}_{1}	\mathbf{B}_{0}	G_3	G_2	$\mathbf{G_1}$	$\mathbf{G_0}$
0	0	0		0	0	0	0
Ō		0	1	Ō	0	0	
Ō	0	0 1	0	Ō	0	1	1
0	0	1	1	0		1	0
0	0 1 1 1	0	0	0	011111111	1	0 0 1 1
0	1	0	1	0	1	1	1
0	1	0 1 1	0	0	1	0	1
0	1		1	0	1	0	0
1	0	0	0	1	1	0	0 0 1 1
1	0	0 1	1	1	1	0	1
1	0	1	0	1	1	1	1
1	100001	1	1	1	1	1	0
1	1	0	0	1	0	0111100001111	0
0 0 0 0 0 0 1 1 1 1 1	1	0	01010101010101	0 0 0 0 0 0 1 1 1 1	0	1	1
1	1	1	0		0	0	1
_1	1	1	1	1	0	0	0

17. 设计七段译码器的内部电路,用于驱动共阴极数码管。解: 七段发光二极管为共阴极电路,各段为"1"时亮。

七段译码器真值表如下:

	输	入			输		出				显
											显示
A_3	A_2	A_1	A_0	Ya	Y_b	Y_{c}	Y_{d}	Y_{e}	\mathbf{Y}_{f}	Y_g	
0	0	0	0	1	1	1	1	1	1	0	0
0	0	0	1	0	1	1	0	0	0	0	1
0	0	1	0	1	1	0	1	1	0	1	2

$$a = A_{3} + A_{1} + A_{2}A_{0} + \overline{A}_{2}\overline{A}_{0}$$

$$b = \overline{A}_{2} + \overline{A}_{1}\overline{A}_{0} + A_{1}A_{0}$$

$$c = A_{2} + \overline{A}_{1} + A_{0}$$

$$d = \overline{A}_{2}\overline{A}_{0} + A_{1}\overline{A}_{0} + \overline{A}_{2}A_{1} + A_{2}\overline{A}_{1}A_{0}$$

$$e = \overline{A}_{2}\overline{A}_{0} + A_{1}\overline{A}_{0}$$

$$f = A_{3} + \overline{A}_{1}\overline{A}_{0} + A_{2}\overline{A}_{1} + A_{2}\overline{A}_{0}$$

$$g = A_{3} + A_{1}\overline{A}_{0} + \overline{A}_{2}A_{1} + A_{2}\overline{A}_{1}$$

18. 设计一个血型配比指示器。解: 用 XY 表示供血者代码, MN 表示受血者代码。代码设定如下:

XX = 00	A 型	MN = 00	A 型
01	B 型	01	B 型
10	AB 型	10	AB 型
11	0 型	11	0 型

X	Y	M N	F ₁ (绿) F ₂ (红)
0	0	0 0	1 0
0 0 0 0 0 0 0	0	0 1	0 1
0	0	1 0	1 0
0	0	1 1	0 1
0	1	0 0	0 1
0	1	0 1	1 0
0	1	1 0	1 0
0	1	1 1	0 1
1	0	0 0	0 1
1	0 0 0 0	0 1	0 1
1	0	1 0	1 0
1	0	1 1	0 1
1	1	0 0	1 0
- 1	1	0 1	1 0
- 1	1	1 0	1 0
1	1	1 1	1 0

得: $F_1 = \Sigma$ (0, 2, 5, 6, 10, 12, 13, 14, 15)

 $F2 = \overline{F1}$

19. 设计保密锁。

解: 设 A,B,C 按键按下为 1, F 为开锁信号 (F=1 为打开), G 为报警信号 (G=1 为报警)。

(1) 真值表

A	В	С	F G
0	0	0	0 0
0	0	1	0 1
0	1	0	0 1
0	1	1	0 1
1	0	0	0 0
1	0	1	1 0
1	1	0	1 0
1	1	1	1 0

(1) 卡诺图化简 F 的卡诺图:

化简得: F = AB + AC G 的卡诺图

化简得: $G = \overline{AB} + \overline{AC}$

<u>关闭</u>