SEARCH FOR RESONANT DOUBLE HIGGS PRODUCTION WITH bbZZ DECAYS IN THE $b\bar{b}\ell\ell\nu\bar{\nu}$ FINAL STATE IN pp COLLISIONS AT $\sqrt{s}=13$ TeV

by

Rami Kamalieddin

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Doctor of Philosophy

Major: Physics and Astronomy

Under the Supervision of Professor Ilya Kravchenko

Lincoln, Nebraska July, 2019 SEARCH FOR RESONANT DOUBLE HIGGS PRODUCTION WITH bbZZ

DECAYS IN THE $b\bar{b}\ell\ell\nu\bar{\nu}$ FINAL STATE IN pp COLLISIONS AT $\sqrt{s}=13~{\rm TeV}$

Rami Kamalieddin, Ph.D.

University of Nebraska, 2019

Adviser: Ilya Kravchenko

Since the discovery of the Higgs boson in 2012 by the ATLAS and CMS exper-

iments, most of the quantum mechanical properties that describe the long-awaited

Higgs boson have been measured. Due to the outstanding work of the LHC, over a

hundred of fb⁻¹ of proton collisions data have been delivered to both experiments.

Finally, it became sensible for analyses teams to start working with a very low cross

section processes involving the Higgs boson, e.g., a recent success in observing ttH

and VHbb processes. One of the main remaining untouched topics is a double Higgs

boson production. However, an additional hundred of fb⁻¹ per year from the HL-LHC

will not necessarily help us much with the SM double Higgs physics, as the process

may remain unseen even in the most optimistic scenarios. The solution is to work in

parallel on new reconstruction and signal extraction methods as well as new analysis

techniques to improve the sensitivity of measurements. This thesis is about both ap-

proaches: we have used the largest available dataset at the time the analysis has been

performed and developed/used the most novel analysis methods. One such method is

the new electron identification algorithm that we have developed in the CMS electron

identification group, to which I have had a privilege to contribute during several years

of my stay at CERN.

The majority of this thesis is devoted to techniques for the first search at the LHC

for double Higgs boson production mediated by a heavy narrow-width resonance in

the $b\bar{b}ZZ$ channel: $X\to HH\to b\bar{b}ZZ^*\to b\bar{b}\ell\ell\nu\bar{\nu}$. The measurement searches for the resonant production of a Higgs boson pair in the range of masses of the resonant parent particle from 250 to 1000 GeV using 35.9 fb⁻¹ of data taken in 2016 at 13 TeV. Two spin scenarios of the resonance are considered: spin 0 and spin 2. In the absence of the evidence of the resonant double Higgs boson production from the previous searches, we proceed with setting the upper confidence limits.

"Here will be a quote"

name, year.

ACKNOWLEDGMENTS

This will be a long list!

Table of Contents

Lis	st of	Figures	ix
Lis	st of	Tables	xi
1	$\overline{\text{Intr}}$	oduction	1
	1.1	"All things are made of atoms"	1
	1.2	A brief history of particle physics	4
	1.3	Fundamental forces	6
	1.4	The Brout-Englert-Higgs mechanism	11
2	The	eory	18
	2.1	Lagrangian formalism of the Standard Model	18
	2.2	Double Higgs in Beyond the Standard Model Theories	24
3	The	LHC and the CMS experiment	32
	3.1	The Large Hadron Collider	32
		3.1.1 The history of the LHC	32
		3.1.2 The layout of the LHC	33
		3.1.3 LHC infrastructure	34
		3.1.3.1 Magnets	34

				vi
			3.1.3.2 Cooling System	38
			3.1.3.3 Radio Frequency Cavities	40
			3.1.3.4 Vacuum System	41
		3.1.4	LHC operations	43
		3.1.5	Luminosity	45
	3.2	The C	MS experiment	46
		3.2.1	The CMS coordinate system	51
		3.2.2	The Inner Tracker	52
		3.2.3	The ECAL	54
		3.2.4	The HCAL	57
		3.2.5	The Superconding Solenoid	59
		3.2.6	The Muon Tracker	60
		3.2.7	The Triggers and DAQ	63
		0.2.1	3.2.7.1 The L1 Trigger	63
			3.2.7.2 The High-Level Trigger	66
			3.2.7.3 The DAQ system	67
		3.2.8	The CMS design	68
4	Phy	sics O	bject Reconstruction in CMS	70
	4.1		Reconstruction	70
	11.1	4.1.1	Muon tracking	73
		4.1.2	Electron tracking	74
		4.1.3	Primary Vertex reconstruction	75
	4.2	Partic	le level objects	77
		4.2.1	Particle Flow links and blocks	77
		422	Muons	78

2001	ıces		95
iog	raphy		94
.4	Datase	ets and Trigger Paths	92
		4.3.5.2 b tagging efficiency	91
		4.3.5.1 Lepton efficiencies and the Tag-and-Probe method .	90
	4.3.5	Data-Monte Carlo corrections	89
	4.3.4	Lepton isolation	88
	4.3.3	Pileup interactions	88
	4.3.2	Missing transverse momentum	86
	4.3.1	The b tagging and secondary vertices	84
.3	Other	important physics quantities and objects	84
	4.2.5	Jets and jet corrections	82
	4.2.4	Hadrons and non-isolated photons	81
	4.2.3	Electrons and isolated photons	79

List of Figures

1.1	The structure of an atom	3
1.2	All SM interaction and simple vertices	11
1.3	SM particles and force carriers	13
1.4	Coupling of particles to SM Higgs boson	14
1.5	SM Higgs boson production modes	15
1.6	Higgs boson decay channels	17
2.1	SSB Potential form	23
2.2	RS branes	25
2.3	SM double Higgs boson production	28
2.4	Double Higgs mass distribution and the total cross-section	29
2.5	BSM Resonant double Higgs decay in the 2 b, 2 lepton, and 2 neutrino	
	final state. X denotes either graviton or radion particles	30
2.6	Double Higgs decay channels	31
3.1	Schematic layout of the LHC.	33
3.2	LHC dipoles	36
3.3	LHC quadrupoles	37
3.4	13 kA high-temperature superconducting current lead	38

3.5	LHC cryogenic states and the temperature scale	40
3.6	RF cavities module.	41
3.7	Beam screen.	42
3.8	CMS experiment with the main sub-detectors.	48
3.9	The logo of the CMS experiment that is showing curved trajectories of the	
	emerging muons.	50
3.10	Coordinate system of the CMS detector	52
3.11	The inner tracker	53
3.12	The ECAL	55
3.13	The HCAL	58
3.14	The CMS superconducting solenoid	59
3.15	The CMS muon tracker	61
3.16	The CMS L1 trigger layout	64
4.1	Global combinatorial track finder efficiencies.	72
4.2	MET reconstruction in the CMS	87

93

List of Tables

4.1 Triggers for dimuon and dielectron channels both at L1 and HLT levels.