$$\gamma(x,y) = \frac{Cov(x,y)}{\sigma_x \cdot \sigma_y}$$

$$S(x,y) = 1 - \frac{650^{2}}{7(n^{2}-1)}$$

Note:

1 Obtain the Rank Correlation Co-efficient for the following data.

C	1.7
7	1

×	y	Ronk by X	Rank by y	d= Rankbyx - Rankbyy	92
68	62	4 *	5 0 '	-10	
64	58	6	7	-1	•
75	68	2.5	3.5	-1	1
50	45	9	lo	-1	
64	81	6	ı	5	25
80	60]	Ь	- 5	25
75	68	2.5	3.€	-1	1
40	48	10	9	1	1
56	50	8	8	0	D
64	70	6	2	4	16
					Z42 72

WET,

The Speanman's Rank Correlation coefficient is,

$$\int (x,y) = 1 - \underbrace{65d^2}_{n(n^2-1)}$$

If the ranks one repeated than the speaman's Rank Connectation Coefficient becomes,

$$P(x,y) = 1 - \frac{6}{n(n^2-1)} \left(\Xi d^2 + \frac{m_1(m_1^2-1)}{12} + \frac{m_2(m_2^2-1)}{12} + \cdots \right)$$

Since in Rank by x Column,

2.5 repeated 2 times. ...
$$m_1 = 2$$
6 repeated 3 times. ... $m_2 = 3$

also in Rank by y Column,

hence the correction factors (C.F) are,

$$C \cdot F_1 = \frac{m_1 (m_1^2 - 1)}{12} = \frac{2(2^2 - 1)}{12} = \frac{2(3)}{12} = \frac{6}{12} = \frac{1}{2} = 0.5$$

$$C \cdot F_2 = \frac{m_2(m_2^2 - 1)}{12} = \frac{3(3^2 - 1)}{12} = \frac{3(8)}{12} = \frac{24}{12} = 2$$

$$cF_3 = \frac{m_3(m_3^2 - 1)}{12} = \frac{2(2^2 - 1)}{12} = \frac{2(3)}{12} = \frac{6}{12} = \frac{1}{2} = 0.9$$

WHY,
$$f(x,y) = 1 - b \left(2d^2 + c \cdot F_1 + c \cdot F_2 + c \cdot F_3 \right)$$

$$\frac{1 - b \left(2d^2 + c \cdot F_1 + c \cdot F_2 + c \cdot F_3 \right)}{\eta(\eta^2 - 1)}$$

=
$$1 - \frac{6(72 + 0.5 + 2 + 0.5)}{10(10^2-1)}$$
 here $n = 10$

$$f(x,y) = 0.545$$

2) Obtain the Rank Correlation Co-efficient for the following data.