STAT6230 Term Paper

Xue Ming Wang(G20580112)

2023-12-16

Contents

1.	Dataset	2
2.	Cleaned dataset and EDA	2
3.	Sampling - Treatment variable = active $(0/1)$	3
4.	Estimate Propensity Score	4
	logistic regression	4
	propensity_score summary	5
5 .	Nearest Neighbor Matching	5
	5.1 Propensity Score Matching	5
	Method	5
	Propensity Score Matching Model	6
	5.2 Checking Balance - SMD	8
	SMD value	8
	Balance table	8
	SMD Plot	9
	Logistic model after matching	11
	5.3 Analyzing Treatment Effects - ATT	12
	ATT Table	12
	5.4 T-test	13
	5.5 Result	13
6.	Mahalanobis Distance Matching	13
	6.1 Propensity Score Matching	13
	Estimate propensity scores	14
	Mahalanobis distance matching method	14
	Logistic model after matching	15

6.2 Checking Balance - SMD	16
SMD value	17
6.3 Analyzing Treatment Effects - ATT	19
6.4 T-test	20
6.5 Result	20

1.Dataset

```
library(MatchIt)
library(cobalt)
library(MatchIt)
library(tidyverse)

file_path <- "/Users/vivianwang/Desktop/heart_data.csv"

heart<- read.csv(file_path)

# Identify rows with missing data
missing_rows <- apply(heart, 1, function(row) any(is.na(row)))
rows_with_missing <- which(missing_rows)

# Remove rows with missing data
heart <- heart[!missing_rows, ]

# Display the cleaned dataset
head(heart)</pre>
```

```
##
    index id
               age gender height weight ap_hi ap_lo cholesterol gluc smoke alco
## 1
     0 0 18393
                   2
                            168
                                        110
## 2
        1 1 20228
                       1
                            156
                                   85
                                        140
                                                           3
                                                                1
                                                                      0
                                                                          0
                                               90
        2 2 18857
                                        130
## 3
                      1
                            165
                                   64
                                               70
                                                           3
                                                                1
                                                                      0
                                                                          0
## 4
        3 3 17623
                       2
                            169
                                   82
                                        150
                                              100
                                                           1
                                                                1
                                                                      0
                                                                          0
## 5
        4 4 17474
                            156
                                        100
                                               60
                                                               1
                                                                          0
## 6
        5 8 21914
                            151
                                        120
                                                                      0
                                                                          0
                      1
                                   67
                                               80
##
   active cardio
## 1
        1
## 2
         1
## 3
         0
                1
## 4
         1
                1
                0
## 5
         0
## 6
```

2. Cleaned dataset and EDA

```
heart$age <- round(heart$age / 365)
heart$active = as.factor(heart$active)
heart$cardio = as.numeric(as.character(heart$cardio))
str(heart)
## 'data.frame':
                   70000 obs. of 14 variables:
            : int 0123456789 ...
   $ index
## $ id
                : int
                       0 1 2 3 4 8 9 12 13 14 ...
                       50 55 52 48 48 60 61 62 48 54 ...
## $ age
                : num
## $ gender
                       2 1 1 2 1 1 1 2 1 1 ...
                : int
## $ height
                : int
                       168 156 165 169 156 151 157 178 158 164 ...
  $ weight
                : num
                       62 85 64 82 56 67 93 95 71 68 ...
##
   $ ap_hi
                : int
                       110 140 130 150 100 120 130 130 110 110 ...
                       80 90 70 100 60 80 80 90 70 60 ...
## $ ap_lo
                : int
## $ cholesterol: int
                       1 3 3 1 1 2 3 3 1 1 ...
## $ gluc
                       1 1 1 1 1 2 1 3 1 1 ...
                : int
## $ smoke
                       0 0 0 0 0 0 0 0 0 0 ...
                : int
## $ alco
                : int 00000000000...
  $ active
                : Factor w/ 2 levels "0","1": 2 2 1 2 1 1 2 2 2 1 ...
                : num 0 1 1 1 0 0 0 1 0 0 ...
   $ cardio
summary(heart)
```

```
##
       index
                         id
                                       age
                                                     gender
                                                                   height
##
                                       :30.0
   Min.
                   Min.
                        :
                              0
                                  Min.
                                                 Min.
                                                        :1.00
                                                               Min. : 55
                                                               1st Qu.:159
   1st Qu.:17500
                   1st Qu.:25007
                                  1st Qu.:48.0
                                                 1st Qu.:1.00
  Median :35000
                   Median :50002
                                  Median:54.0
                                                 Median:1.00
                                                               Median:165
   Mean :35000
                         :49972
                                                 Mean :1.35
##
                   Mean
                                  Mean :53.3
                                                               Mean :164
   3rd Qu.:52499
##
                   3rd Qu.:74889
                                  3rd Qu.:58.0
                                                 3rd Qu.:2.00
                                                               3rd Qu.:170
   Max.
          :69999
                   Max. :99999
                                  Max. :65.0
                                                 Max.
                                                        :2.00
                                                               Max.
                                                                      :250
##
       weight
                                                  cholesterol
                       ap_hi
                                      ap_lo
                                                                     gluc
         : 10.0
                                                                Min.
##
  Min.
                   Min.
                        : -150
                                  Min. : -70
                                                 Min.
                                                        :1.00
                                                                       :1.00
##
   1st Qu.: 65.0
                   1st Qu.: 120
                                             80
                                                  1st Qu.:1.00
                                  1st Qu.:
                                                                1st Qu.:1.00
  Median : 72.0
                   Median: 120
                                  Median :
                                             80
                                                  Median:1.00
                                                                Median:1.00
##
   Mean : 74.2
                   Mean : 129
                                  Mean :
                                             97
                                                  Mean :1.37
                                                                Mean
                                                                       :1.23
##
   3rd Qu.: 82.0
                                             90
                                                  3rd Qu.:2.00
                   3rd Qu.: 140
                                  3rd Qu.:
                                                                3rd Qu.:1.00
                                                        :3.00
##
   Max.
         :200.0
                   Max.
                         :16020
                                  Max. :11000
                                                  Max.
                                                                Max. :3.00
##
                                                cardio
       smoke
                       alco
                                  active
##
  Min.
          :0.000
                   Min.
                         :0.000
                                  0:13739
                                            Min.
                                                   :0.0
##
   1st Qu.:0.000
                   1st Qu.:0.000
                                  1:56261
                                            1st Qu.:0.0
## Median :0.000
                   Median : 0.000
                                            Median:0.0
## Mean
          :0.088
                   Mean
                         :0.054
                                            Mean
                                                   :0.5
   3rd Qu.:0.000
                   3rd Qu.:0.000
##
                                            3rd Qu.:1.0
```

3. Sampling - Treatment variable = active (0/1)

Max. :1.000

Max. :1.000

##

:1.0

Max.

```
data_0 = heart[heart$active == 0, ]
data_1 = heart[heart$active == 1, ]

a = 0.8

set.seed(200)
sample_0 = data_0[sample(nrow(data_0), size = floor(a * nrow(data_0))), ]
sample_1 = data_1[sample(nrow(data_1), size = floor(a * nrow(data_1))), ]

sample_data = rbind(sample_0, sample_1)
summary(sample_data$active)
## 0 1
```

10991 45008

4. Estimate Propensity Score

logistic regression

```
library(caTools)
# Estimating logistic regression
log_mod <- glm(active ~ age + gender + height + weight + ap_hi + ap_lo + cholesterol + gluc + smoke + a
# Print coefficients
summary(log_mod)
##
## Call:
## glm(formula = active ~ age + gender + height + weight + ap_hi +
      ap_lo + cholesterol + gluc + smoke + alco, family = "binomial",
##
      data = sample_data)
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.20e+00 2.56e-01 8.60 < 2e-16 ***
             -3.58e-03 1.61e-03 -2.23 0.02578 *
## age
## gender
             1.17e-02 2.69e-02 0.43 0.66401
              -2.77e-03 1.57e-03 -1.77 0.07638.
## height
            -3.12e-03 7.79e-04 -4.00 6.2e-05 ***
## weight
## ap_hi
             6.76e-05 9.64e-05 0.70 0.48338
              1.35e-04 7.16e-05 1.89 0.05935 .
## ap_lo
## cholesterol 6.34e-02 1.81e-02
                                    3.51 0.00045 ***
            -5.60e-02 2.06e-02 -2.71 0.00665 **
## gluc
## smoke
             1.91e-01 4.42e-02 4.33 1.5e-05 ***
             3.01e-01 5.57e-02 5.41 6.3e-08 ***
## alco
## ---
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

```
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 55460 on 55998 degrees of freedom
## Residual deviance: 55341 on 55988 degrees of freedom
## AIC: 55363
## Number of Fisher Scoring iterations: 4
# Calculate overall propensity score using all variables
sample_data$propensity_score <- predict(log_mod, type = "response")</pre>
# Assuming log_mod is your logistic regression model
# Assuming sample_data contains your data
# Example Columns calculate propensity scores
columns_of_interest <- c("age", "gender", "height", "weight", "ap_hi", "ap_lo", "cholesterol", "gluc",</pre>
summary(sample_data$propensity_score)
##
      Min. 1st Qu. Median Mean 3rd Qu.
                                              Max.
     0.718  0.794  0.801  0.804  0.810
                                             0.954
##
propensity score summary
summary(sample_data$propensity_score)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
     0.718 0.794
                    0.801
                             0.804
                                             0.954
##
                                     0.810
# Logistic regression before matching
lmod_before_matching <- glm(cardio ~ active + age + gender + height + weight + ap_hi + ap_lo + choleste</pre>
coefficients_before_matching <- summary(lmod_before_matching)$coefficients[2, ]</pre>
conf_interval_before_matching <- confint(lmod_before_matching, parm = 2, level = 0.95)</pre>
```

5. Nearest Neighbor Matching

5.1 Propensity Score Matching

Method

```
library(MatchIt)

Nearest <- matchit(active ~ age + gender + height + weight + ap_hi + ap_lo + cholesterol + gluc + smoke
Nearest

## A matchit object
## - method: 1:1 nearest neighbor matching without replacement
## - distance: Propensity score</pre>
```

```
## - estimated with logistic regression
## - number of obs.: 55999 (original), 21982 (matched)
## - target estimand: ATT
## - covariates: age, gender, height, weight, ap_hi, ap_lo, cholesterol, gluc, smoke, alco
```

```
matchsum <- summary(Nearest, standardize = TRUE)$sum.matched
matched_summary <- data.frame(round(matchsum[,1:3], 3))
matched_summary</pre>
```

Summary statistics of matched groups

##	Means.Treated	Means.Control	StdMean.Diff.
## distance	0.828	0.802	1.428
## age	51.364	53.477	-0.312
## gender	1.461	1.344	0.245
## height	162.702	164.464	-0.216
## weight	69.072	74.673	-0.390
## ap_hi	135.774	127.965	0.052
## ap_lo	135.871	93.932	0.210
## cholesterol	1.670	1.355	0.462
## gluc	1.147	1.238	-0.158
## smoke	0.361	0.073	0.995
## alco	0.233	0.040	0.832

```
Nearest_matched <- match.data(Nearest)</pre>
```

Propensity Score Matching Model

```
summary(Nearest)
```

```
##
## Call:
## matchit(formula = active ~ age + gender + height + weight + ap_hi +
      ap_lo + cholesterol + gluc + smoke + alco, data = sample_data,
##
      method = "nearest")
##
## Summary of Balance for All Data:
              Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
##
## distance
                      0.804
                                   0.802
                                                  0.113
                                                             1.203
                                                                       0.029
## age
                     53.305
                                  53.477
                                                  -0.025
                                                             0.995
                                                                       0.006
## gender
                     1.351
                                   1.344
                                                  0.015
                                                             1.010
                                                                       0.004
## height
                    164.325
                                 164.464
                                                  -0.017
                                                             0.968
                                                                       0.002
                    74.084
                                                  -0.041
                                                             0.990
                                                                       0.007
## weight
                                  74.673
## ap_hi
                    128.946
                                 127.965
                                                   0.006
                                                             1.470
                                                                       0.003
## ap_lo
                    97.809
                                 93.932
                                                  0.019
                                                             1.227
                                                                       0.003
## cholesterol
                    1.370
                                  1.355
                                                  0.022
                                                             1.055
                                                                       0.005
## gluc
                    1.227
                                   1.238
                                                  -0.019
                                                             0.973
                                                                       0.004
```

```
0.092
                                      0.073
                                                      0.067
                                                                            0.019
## smoke
                       0.057
                                                      0.073
## alco
                                      0.040
                                                                            0.017
##
               eCDF Max
## distance
                  0.045
## age
                  0.013
## gender
                  0.007
## height
                  0.018
## weight
                  0.021
## ap_hi
                  0.014
## ap_lo
                  0.011
## cholesterol
                  0.010
## gluc
                  0.009
## smoke
                  0.019
## alco
                  0.017
##
## Summary of Balance for Matched Data:
##
               Means Treated Means Control Std. Mean Diff. Var. Ratio eCDF Mean
                                                                            0.401
## distance
                       0.828
                                      0.802
                                                      1.428
                                                                  1.205
## age
                                                     -0.312
                      51.364
                                     53.477
                                                                  1.105
                                                                            0.075
## gender
                       1.461
                                      1.344
                                                      0.245
                                                                  1.101
                                                                            0.059
## height
                     162.702
                                    164.464
                                                     -0.216
                                                                  1.381
                                                                            0.017
## weight
                      69.072
                                     74.673
                                                     -0.390
                                                                  0.982
                                                                            0.069
## ap_hi
                     135.774
                                    127.965
                                                      0.052
                                                                  5.931
                                                                            0.017
## ap_lo
                     135.871
                                     93.932
                                                      0.210
                                                                  4.592
                                                                            0.022
## cholesterol
                                                      0.462
                                                                            0.105
                       1.670
                                      1.355
                                                                  1.513
## gluc
                       1.147
                                      1.238
                                                     -0.158
                                                                  0.636
                                                                            0.030
## smoke
                       0.361
                                      0.073
                                                      0.995
                                                                            0.288
## alco
                       0.233
                                      0.040
                                                      0.832
                                                                            0.193
##
               eCDF Max Std. Pair Dist.
## distance
                  0.798
                                   1.428
## age
                  0.130
                                   1.219
## gender
                  0.117
                                   1.011
                                   1.265
## height
                  0.114
## weight
                  0.181
                                   1.217
## ap_hi
                  0.059
                                   0.197
## ap_lo
                  0.049
                                   0.354
## cholesterol
                  0.198
                                   1.121
## gluc
                  0.057
                                   0.609
## smoke
                  0.288
                                   1.076
## alco
                  0.193
                                   0.848
##
## Sample Sizes:
             Control Treated
## All
               10991
                       45008
## Matched
               10991
                       10991
                       34017
## Unmatched
                   0
## Discarded
                   0
```

summary_matched <- summary(Nearest)</pre>

5.2 Checking Balance - SMD

SMD value

```
if (!require("MatchIt")) {
  install.packages("MatchIt")
  library("MatchIt")
# Extract matched data
Nearest_matched <- match.data(Nearest)</pre>
# Calculate Standardized Mean Differences (SMDs) for covariates
smd <- function(var, treated, control) {</pre>
  (mean(treated) - mean(control)) / sqrt((var(treated) + var(control)) / 2)
# Variables to assess balance
variables <- c("age", "gender", "height", "weight", "ap_hi", "ap_lo", "cholesterol", "gluc", "smoke", "
# Calculate SMDs for each variable
smd_results <- sapply(variables, function(var) {</pre>
  smd(Nearest_matched[[var]], Nearest_matched[Nearest_matched$active == 1, ][[var]], Nearest_matched[Ne
})
# Display SMDs
smd_results
##
           age
                    gender
                                 height
                                             weight
                                                           ap_hi
                                                                       ap_lo
##
       -0.3033
                    0.2406
                                -0.1944
                                            -0.3895
                                                          0.0336
                                                                       0.1395
## cholesterol
                      gluc
                                  smoke
                                               alco
##
        0.4229
                   -0.1720
                                 0.7458
                                             0.5856
```

Balance table

```
# Example data - replace this with your actual data
values <- c(-0.30331679, 0.24063699, -0.19435280, -0.38947625, 0.03356264, 0.13945329, 0.42285815, -0.1
# Function to determine balance based on the threshold (0.3 in this case)
check_balance <- function(value) {
   if (abs(value) <= 0.3) {
      return("Balance")
   } else {
      return("Not Balance")
   }
}

# Apply the function to each value and create a table
balance_table <- data.frame(
   Variable = c("age", "gender", "height", "weight", "ap_hi", "ap_lo", "cholesterol", "gluc", "smoke", "
   Value = values,</pre>
```

```
Balance_Status = sapply(values, check_balance)
)
balance_table
```

```
##
        Variable Value Balance_Status
## 1
             age -0.3033
                          Not Balance
## 2
          gender 0.2406
                              Balance
## 3
        height -0.1944
                              Balance
## 4
         weight -0.3895
                         Not Balance
          ap_hi 0.0336
## 5
                              Balance
## 6
          ap_lo 0.1395
                              Balance
## 7 cholesterol 0.4229 Not Balance
           gluc -0.1720
## 8
                              Balance
           smoke 0.7458 Not Balance
## 9
## 10
          alco 0.5856 Not Balance
```

SMD Plot

Standardized Mean Differences (SMDs) after Matching

Balance plots

```
library(cobalt)

# Generate balance tables
bal_tab1 <- bal.tab(Nearest)
print(bal_tab1)</pre>
```

```
## Balance Measures
##
                   Type Diff.Adj
## distance
              Distance 1.428
                          -0.312
## age
               Contin.
## gender_2
                Binary
                         0.117
## height
                Contin.
                         -0.216
## weight
                Contin.
                          -0.390
## ap_hi
                Contin.
                          0.052
## ap_lo
                Contin.
                          0.210
## cholesterol Contin.
                          0.462
## gluc
                Contin.
                          -0.158
## smoke
                Binary
                          0.288
## alco
                Binary
                           0.193
## Sample sizes
##
            Control Treated
## All
              10991
                       45008
## Matched
              10991
                       10991
                       34017
## Unmatched
```

```
# Plot balance plots
bal_plot1 <- bal.plot(Nearest, which = "both")
print(bal_plot1)</pre>
```

Distributional Balance for "distance"

Logistic model after matching

```
# Logistic model after matching
lmod_after = glm(cardio~ active+ age + gender + height + weight + ap_hi + ap_lo + cholesterol + gluc +
summary(lmod_after)$coefficients[2,]
##
     Estimate Std. Error
                                      Pr(>|t|)
                            t value
                 0.00794
                                       0.03685
##
     -0.01657
                           -2.08754
confint(lmod_after,2,0.95)
      2.5 % 97.5 %
## -0.03213 -0.00101
summary(lmod_after)
```

##

```
## Call:
## glm(formula = cardio ~ active + age + gender + height + weight +
      ap_hi + ap_lo + cholesterol + gluc + smoke + alco, data = Nearest_matched)
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -7.37e-01 7.03e-02 -10.48 < 2e-16 ***
            -1.66e-02 7.94e-03 -2.09
## active1
                                           0.037 *
## age
             1.45e-02 4.63e-04 31.28 < 2e-16 ***
## gender
             1.43e-02 8.11e-03 1.77 0.077.
## height
             -8.49e-04 4.24e-04 -2.00
                                           0.045 *
              6.22e-03 2.43e-04 25.64 < 2e-16 ***
## weight
## ap_hi
              7.17e-05 1.33e-05 5.37 7.8e-08 ***
             9.70e-05 1.04e-05 9.35 < 2e-16 ***
## ap_lo
## cholesterol 1.41e-01 4.79e-03 29.48 < 2e-16 ***
             -4.01e-02 6.41e-03 -6.26 3.9e-10 ***
## gluc
             -4.29e-02 9.56e-03 -4.49 7.2e-06 ***
## smoke
## alco
             -4.40e-02 9.97e-03 -4.42 1.0e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for gaussian family taken to be 0.211)
##
      Null deviance: 5491.2 on 21981 degrees of freedom
## Residual deviance: 4637.6 on 21970 degrees of freedom
## AIC: 28204
##
## Number of Fisher Scoring iterations: 2
```

5.3 Analyzing Treatment Effects - ATT

ATT Table

```
#ATT
before_N_ATT=summary(lmod_before_matching)$coefficients[2,1]
after_N_ATT=summary(lmod_after)$coefficients[2,1]

# Extract SE for ATT before matching
before_N_ATT_SE = summary(lmod_before_matching)$coefficients[2, 2]

# Extract SE for ATT after matching
after_N_ATT_SE = summary(lmod_after)$coefficients[2, 2]

# Create a table
att_table <- data.frame(
    Method = c("Before Matching", "After Matching"),
    ATT = c(before_N_ATT, after_N_ATT),
    SE = c(before_N_ATT_SE, after_N_ATT_SE)
)

att_table</pre>
```

```
## Method ATT SE
## 1 Before Matching -0.0422 0.00500
## 2 After Matching -0.0166 0.00794
```

5.4 T-test

```
match.matrix <- data.frame(Nearest$match.matrix)</pre>
T index <- match(row.names(match.matrix), row.names(Nearest matched))
C index <- match(match.matrix$Nearest.match.matrix, row.names(Nearest matched))</pre>
Tgroup <- Nearest_matched[T_index,]</pre>
Cgroup <- Nearest_matched[C_index,]</pre>
# Perform a paired t-test between treated and control groups
m1_test <- t.test(Tgroup$cardio, Cgroup$cardio, paired = TRUE)</pre>
m1_test
##
## Paired t-test
##
## data: Tgroup$cardio and Cgroup$cardio
## t = -7, df = 10990, p-value = 4e-12
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -0.0602 -0.0337
## sample estimates:
## mean difference
           -0.0469
```

5.5 Result

```
#Results
active = data.frame(method = c("Logit before","PSM","Logit after"),est_ATT=c(summary(lmod_before_matching)
active

## method est_ATT CI.lower CI.upper Pvalue significant
## 1 Logit before -0.0422 -0.0520 -0.03237 3.33e-17 Yes
```

Yes

Yes

6. Mahalanobis Distance Matching

3 Logit after -0.0166 -0.0321 -0.00101 3.69e-02

PSM -0.0469 -0.0602 -0.03369 4.14e-12

6.1 Propensity Score Matching

```
##
                               Stratified by active
##
                                0
##
                                 13739
                                                          56261
     age (median [IQR])
                                 54.00 [49.00, 59.00]
                                                          54.00 [48.00, 58.00]
##
##
     gender (median [IQR])
                                  1.00 [1.00, 2.00]
                                                           1.00 [1.00, 2.00]
##
     height (median [IQR])
                                165.00 [159.00, 170.00] 165.00 [159.00, 170.00]
##
     weight (median [IQR])
                                 72.00 [65.00, 83.00]
                                                          72.00 [65.00, 82.00]
                                120.00 [120.00, 140.00] 120.00 [120.00, 140.00]
##
     ap hi (median [IQR])
##
     ap lo (median [IQR])
                                 80.00 [80.00, 90.00]
                                                          80.00 [80.00, 90.00]
                                 1.00 [1.00, 1.00]
##
     cholesterol (median [IQR])
                                                          1.00 [1.00, 2.00]
##
     gluc (median [IQR])
                                  1.00 [1.00, 1.00]
                                                           1.00 [1.00, 1.00]
##
     smoke (median [IQR])
                                  0.00 [0.00, 0.00]
                                                           0.00 [0.00, 0.00]
     alco (median [IQR])
                                  0.00 [0.00, 0.00]
                                                           0.00 [0.00, 0.00]
##
##
                               Stratified by active
##
                                        test
                                р
##
##
     age (median [IQR])
                                 0.008 nonnorm
     gender (median [IQR])
##
                                 0.121 nonnorm
##
    height (median [IQR])
                                 0.051 nonnorm
     weight (median [IQR])
##
                                <0.001 nonnorm
##
     ap_hi (median [IQR])
                                 0.737 nonnorm
##
     ap lo (median [IQR])
                                 0.368 nonnorm
##
     cholesterol (median [IQR]) 0.045 nonnorm
##
     gluc (median [IQR])
                                 0.023 nonnorm
     smoke (median [IQR])
                                <0.001 nonnorm
##
##
     alco (median [IQR])
                                <0.001 nonnorm
```

Estimate propensity scores

Mahalanobis distance matching method

```
mahalanobis<- matchit(active ~ propensity_score, data = heart, method = "nearest", ratio = 1)
mahalanobis

## A matchit object
## - method: 1:1 nearest neighbor matching without replacement
## - distance: Propensity score
## - estimated with logistic regression
## - number of obs.: 70000 (original), 27478 (matched)
## - target estimand: ATT
## - covariates: propensity_score</pre>
```

```
matchsum2 <- summary(mahalanobis, standardize = TRUE)$sum.matched
matched_summary2 <- data.frame(round(matchsum2[,1:3], 3))</pre>
matched_summary2
Summary statistics of matched groups
##
                    Means.Treated Means.Control Std..Mean.Diff.
                            0.831
                                           0.801
## distance
                                                            1.35
## propensity_score
                            0.831
                                           0.801
                                                            1.38
mahalanobis_matched <- match.data(mahalanobis)</pre>
summary(mahalanobis)
##
## Call:
## matchit(formula = active ~ propensity_score, data = heart, method = "nearest",
##
       ratio = 1)
##
## Summary of Balance for All Data:
                    Means Treated Means Control Std. Mean Diff. Var. Ratio
##
                            0.804
## distance
                                          0.801
                                                    0.139
                            0.804
                                           0.801
                                                           0.138
                                                                        1.06
## propensity_score
                    eCDF Mean eCDF Max
                        0.038
## distance
                                 0.065
## propensity_score
                        0.038
                                  0.065
##
## Summary of Balance for Matched Data:
##
                    Means Treated Means Control Std. Mean Diff. Var. Ratio
## distance
                            0.831
                                           0.801
                                                            1.35
                                                                       0.368
                            0.831
                                           0.801
                                                            1.38
                                                                       0.503
## propensity_score
                    eCDF Mean eCDF Max Std. Pair Dist.
##
## distance
                        0.404
                                 0.792
                                                  1.35
## propensity_score
                        0.404
                                 0.792
                                                  1.38
##
## Sample Sizes:
##
             Control Treated
## All
               13739 56261
               13739
## Matched
                       13739
## Unmatched
                   0
                       42522
## Discarded
                   0
                           0
```

summary_matched2 <- summary(mahalanobis)</pre>

Logistic model after matching

```
# Logistic model after matching
lmod_after2 = glm(cardio~ active+ age + gender + height + weight + ap_hi + ap_lo + cholesterol + gluc +
summary(lmod_after2)$coefficients[2,]
##
    Estimate Std. Error
                          t value
                                    Pr(>|t|)
##
    -0.44265
                0.00577 -76.76233
                                     0.00000
summary(lmod_after2)
##
## Call:
## glm(formula = cardio ~ active + age + gender + height + weight +
      ap_hi + ap_lo + cholesterol + gluc + smoke + alco, data = mahalanobis_matched)
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.34e-01 5.60e-02 2.39
                                            0.017 *
             -4.43e-01 5.77e-03 -76.76 < 2e-16 ***
## active1
             9.81e-03 3.65e-04 26.85 < 2e-16 ***
## age
             2.95e-02 6.28e-03 4.70 2.7e-06 ***
## gender
             -3.28e-03 3.39e-04 -9.69 < 2e-16 ***
## height
## weight
              3.02e-03 1.93e-04 15.66 < 2e-16 ***
## ap_hi
              7.57e-05 1.00e-05 7.56 4.0e-14 ***
              1.09e-04 8.95e-06 12.19 < 2e-16 ***
## ap_lo
## cholesterol 1.43e-01 4.03e-03 35.51 < 2e-16 ***
## gluc
             -6.45e-02 4.92e-03 -13.10 < 2e-16 ***
## smoke
             1.20e-01 7.69e-03 15.61 < 2e-16 ***
## alco
              2.06e-01 8.10e-03 25.43 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for gaussian family taken to be 0.162)
##
      Null deviance: 6236.1 on 27477 degrees of freedom
## Residual deviance: 4462.3 on 27466 degrees of freedom
## AIC: 28058
##
## Number of Fisher Scoring iterations: 2
```

6.2 Checking Balance - SMD

```
if (!require("MatchIt")) {
   install.packages("MatchIt")
   library("MatchIt")
}

# Extract matched data
mahalanobis_matched <- match.data(mahalanobis)

# Calculate Standardized Mean Differences (SMDs) for covariates</pre>
```

```
smd2 <- function(var, treated, control) {
    (mean(treated) - mean(control)) / sqrt((var(treated) + var(control)) / 2)
}

# Variables to assess balance
variables <- c("age", "gender", "height", "weight", "ap_hi", "ap_lo", "cholesterol", "gluc", "smoke", "
# Calculate SMDs for each variable
smd2_results <- sapply(variables, function(var) {
    smd2(mahalanobis_matched[[var]], mahalanobis_matched[mahalanobis_matched$active == 1, ][[var]], mahal
})</pre>
```

SMD value

7

8

9

10

cholesterol 0.29065

gluc -0.05994

smoke 0.59690

alco 0.52125

```
# Display SMDs
smd2_results
##
                                                                   gender
                                                                                                           height
                                                                                                                                                    weight
                                                                                                                                                                                                ap_hi
                                                                                                                                                                                                                                        ap_lo
                                     age
                                                                                                                                              -0.48981
                                                                                                                                                                                         0.00183
                                                                                                                                                                                                                                  0.05140
##
                    -0.24793
                                                                0.17096
                                                                                                     -0.27620
## cholesterol
                                                                          gluc
                                                                                                                smoke
                                                                                                                                                           alco
##
                       0.29065
                                                             -0.05994
                                                                                                         0.59690
                                                                                                                                                 0.52125
values \leftarrow c(-0.247934811, 0.170958004, -0.276199321, -0.489808888, 0.001829254, 0.051404742, 0.29065430, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.001829254, 0.00182924, 0.00182924, 0.00182924, 0.00182924, 0.00182924, 0.00182924, 0.00182924, 0.00182924, 0.00182924, 0.00182924, 0.00182924, 0.00182924, 0.00182924, 0.00182924, 0.00182924, 0.00182924, 0.00182924, 0.00182924, 0.00182924, 0.00182924, 0.00182924, 0.001829244, 0.001829244, 0.0018244, 0.0018244, 0.0018244, 0.0018244, 0.0018244, 0.0018244, 0.0018244,
check_balance <- function(value) {</pre>
       if (abs(value) <= 0.3) {</pre>
             return("Balance")
      } else {
             return("Not Balance")
       }
}
# Apply the function to each value and create a table
balance_table <- data.frame(</pre>
       Variable = c("age", "gender", "height", "weight", "ap_hi", "ap_lo", "cholesterol", "gluc", "smoke", "
      Value = values,
      Balance_Status = sapply(values, check_balance)
balance_table
##
                              Variable
                                                                      Value Balance_Status
## 1
                                               age -0.24793
                                                                                                                  Balance
## 2
                                     gender 0.17096
                                                                                                                  Balance
## 3
                                     height -0.27620
                                                                                                                  Balance
## 4
                                     weight -0.48981
                                                                                                    Not Balance
## 5
                                        ap_hi 0.00183
                                                                                                                  Balance
## 6
                                        ap_lo 0.05140
                                                                                                                  Balance
```

Balance

Balance

Not Balance

Not Balance

Standardized Mean Differences (SMDs) after Matching


```
# Generate balance tables
bal_tab2 <- bal.tab(mahalanobis)
print(bal_tab2)</pre>
## Balance Measures
```

```
## Balance Measures
## Type Diff.Adj
## distance Distance 1.35
## propensity_score Contin. 1.38
##
## Sample sizes
## Control Treated
```

```
## All     13739    56261
## Matched     13739    13739
## Unmatched     0    42522

# Plot balance plots
bal_plot2 <- bal.plot(mahalanobis, which = "both")
print(bal_plot2)</pre>
```

Distributional Balance for "distance"

6.3 Analyzing Treatment Effects - ATT

```
#ATT
before_M_ATT=summary(ps_model)$coefficients[2,1]
after_M_ATT=summary(lmod_after2)$coefficients[2,1]

# Extract SE for ATT before matching
before_M_ATT_SE = summary(ps_model)$coefficients[2, 2]

# Extract SE for ATT after matching
after_M_ATT_SE = summary(lmod_after2)$coefficients[2, 2]
```

6.4 T-test

```
m2_test <- t.test(cardio ~ active, data = mahalanobis_matched)
m2_test

##
## Welch Two Sample t-test
##
## data: cardio by active
## t = 71, df = 25248, p-value <2e-16
## alternative hypothesis: true difference in means between group 0 and group 1 is not equal to 0
## 95 percent confidence interval:
## 0.365 0.386
## sample estimates:
## mean in group 0 mean in group 1
## 0.536 0.161</pre>
```

6.5 Result

Yes

3 Logit after -0.442652 -0.45395 -0.4313 0.000