Code for "To what extent did the introduction of TV advertisements in 1968 cause French newspapers to price discriminate?"

main_dataset <- read_stata("/Users/mahmoudelsheikh/Desktop/STA304 Final Project/116438-V1/data/dta/main_dataset.d

Mahmoud Elsheikh

December 22, 2020

Code

Unit Price

Mean (SD)

Mean (SD)

Median [Min, Max]

Subscription Price

maindata <- read_stata("/Users/mahmoudelsheikh/Desktop/STA304 Final Project/116438-V1/data/dta/main_dataset.dta")</pre> # Dividing the subscription price by the unit price to obtain the price ratio main_dataset\$price_ratio <- main_dataset\$ln_ps_cst / main_dataset\$ln_po_cst</pre> # Adding a share of unit buyers to the data set main_dataset\$unit_p <- 100- main_dataset\$qs_s</pre> main_dataset\$year <- as.integer(main_dataset\$year)</pre> #Removing NA's from the data set main_dataset <- main_dataset[!is.na(main_dataset\$price_ratio),]</pre> main_dataset <- main_dataset[!is.na(main_dataset\$ra_cst),]</pre> main_dataset <- main_dataset[!is.na(main_dataset\$ra_s),]</pre> # Creating summary statistics table table1::label(main_dataset\$po_cst) <- "Unit Price" table1::label(main_dataset\$ps_cst) <- "Subscription Price"

table1::label(main_dataset\$price_ratio) <- "Price Ratio" table1::label(main_dataset\$ra_s) <- "Share of advertising revenues (%)" table1::label(main_dataset\$qs_s) <- "Share of subscribers (%)" table1::label(main_dataset\$unit_p) <- "Share of unit buyers (%)" table1::table1(~po_cst + ps_cst + price_ratio + ra_s + qs_s + ps_cst + unit_p, data = main_dataset) Overall

Median [Min, Max] 2.84 [0.682, 5.63] **Price Ratio** Mean (SD) 0.843 (0.358) Median [Min, Max] 0.872 [-9.22, 2.24] Share of advertising revenues (%) Mean (SD) 46.3 (10.9) Median [Min, Max] 45.9 [7.09, 81.0] Share of subscribers (%) Mean (SD) 26.8 (22.2) Median [Min, Max] 22.5 [0.699, 100] Share of unit buyers (%) Mean (SD) 73.2 (22.2) 77.5 [-0.121, 99.3] Median [Min, Max] table6 <- table1::table1(~po_cst + ps_cst + price_ratio + ra_s + qs_s + ps_cst + unit_p, data = main_dataset) ## Both Newspapers both_news_ratio <- subset(main_dataset, main_dataset\$year >= 1960, select=c(rtotal_cst, price_ratio, local, ln_po _cst, id_news, year, ra_cst, po_cst, ps_cst, ra_s, qs_s)) both_news_avg <- aggregate(both_news_ratio[, 1:10], list(both_news_ratio\$year), mean)</pre> ## Local Newspapers # Creating a data set combining all local newspapers data t, price_ratio, local, ln_po_cst, id_news, year, ra_cst, ra_s, qs_s))

(N=1012)

3.25 (0.878)

3.27 [0.818, 9.35]

2.79 (0.725)

local_news_ratio <- subset(main_dataset, main_dataset\$year >= 1960 & main_dataset\$local == 1, select=c(rtotal_cs local_news_avg <- aggregate(local_news_ratio[, 1:9], list(local_news_ratio\$year), mean)</pre> # Creating a data set combining all local newspapers data pre introduction of advertisements on TV (1966-1968) local_news_ratio_pre_ads <- subset(main_dataset, main_dataset\$year >= 1966 & main_dataset\$year <= 1968 & main_dat aset\$local == 1, select=c(rtotal_cst, price_ratio, local, ln_po_cst, id_news, year, ra_cst, ra_s, qs_s)) local_news_pre_ads_avg <- aggregate(local_news_ratio_pre_ads[, 1:9], list(local_news_ratio_pre_ads\$year), mean)</pre> # Creating a data set combining all local newspapers data in the short-run introduction of advertisements on TV (1969-1971)local_news_ratio_short_ads <- subset(main_dataset, main_dataset\$year >= 1969 & main_dataset\$year <= 1971 & main_d ataset\$local == 1, select=c(rtotal_cst, price_ratio, local, ln_po_cst, id_news, year, ra_cst, ra_s, qs_s)) local_news_short_ads_avg <- aggregate(local_news_ratio_short_ads[, 1:9], list(local_news_ratio_short_ads\$year), m</pre> ean)

Creating a data set combining all local newspapers data in the long-run introduction of advertisements on TV (1 local_news_ratio_long_ads <- subset(main_dataset, main_dataset\$year >= 1972 & main_dataset\$local == 1, select=c(r total_cst, price_ratio, local, ln_po_cst, id_news, year, ra_cst, ra_s, qs_s)) local_news_long_ads_avg <- aggregate(local_news_ratio_long_ads[, 1:9], list(local_news_ratio_long_ads\$year), mea</pre> n) ## National newspapers # Creating a data set combining all national newspapers data national_news_ratio <- subset(main_dataset, main_dataset\$year >= 1960 & main_dataset\$local == 0, select=c(rtotal_ cst, price_ratio, local, ln_po_cst, id_news, year, ra_cst, ra_s, qs_s)) national_news_avg <- aggregate(national_news_ratio[, 1:9], list(national_news_ratio\$year), mean, drop = TRUE)</pre> # Creating a data set combining all national newspapers data pre introduction of advertisements on TV (1966-1968) national_news_ratio_pre_ads <- subset(main_dataset, main_dataset\$year >= 1966 & main_dataset\$year <= 1968 & main_

national_news_pre_ads_avg <- aggregate(national_news_ratio_pre_ads[, 1:9], list(national_news_ratio_pre_ads\$yea</pre> r), mean, drop = TRUE) # Creating a data set combining all national newspapers data in the short-run introduction of advertisements on T national_news_ratio_short_ads <- subset(main_dataset, main_dataset\$year >= 1969 & main_dataset\$year <= 1971 & mai n_dataset\$local == 0, select=c(rtotal_cst, price_ratio, local, ln_po_cst, id_news, year, ra_cst, ra_s, qs_s)) national_news_short_ads_avg <- aggregate(national_news_ratio_short_ads[, 1:9], list(national_news_ratio_short_ads</pre> year, mean, drop = TRUE # Creating a data set combining all national newspapers data in the long-run introduction of advertisements on TV (1972+)national_news_ratio_long_ads <- subset(main_dataset, main_dataset\$year >= 1972 & main_dataset\$local == 0, select= c(rtotal_cst, price_ratio, local, ln_po_cst, id_news, year, ra_cst, ra_s, qs_s)) national_news_long_ads_avg <- aggregate(national_news_ratio_long_ads[, 1:9], list(national_news_ratio_long_ads\$ye ar), mean, drop = TRUE) # Effect of decrease in advertisement revenue on price ratios

combined_price_ratio <- data.frame(national_news_pre_ads_avg\$price_ratio, local_news_pre_ads_avg\$price_ratio, nat

combined_price_ratio1 <- data.frame(national_news_avg\$price_ratio, local_news_avg\$price_ratio, national_news_avg

ional_news_short_ads_avg)

A least square regression model

Combined newspaper linear regression model

lmodel_national <- lm(price_ratio ~ Group.1, data = national_news_avg)</pre>

total_cst, price_ratio, local, ln_po_cst, id_news, year, ra_cst, ra_s, qs_s))

Least square regression models for local and national newspapers in each period

Table 1: National and Local newspaper models post 1968

table1 <- tab_model(lmodel_national_post1968, lmodel_local_post1968,

0.00

0.069 / -0.064

33

table3 <- tab_model(lmodel_national_short, lmodel_local_short,</pre>

Estimates

29.92

-0.01

0.00

0.00

0.00

0.598 / 0.533

30

table4 <- tab_model(lmodel_national_long, lmodel_local_long,</pre>

0.00

0.228 / 0.073

25

tio, national_news_avg\$ra_cst, local_news_avg\$ra_s)

1965

Graph of newspaper price ratio over time

National VS Private Price Ratio

0967

0.7

, sub.caption= NA, caption = NA)

graph5 <- (main_dataset %>%

 $geom_point(alpha = 0.5) +$ scale_y_continuous() +

facet_wrap(vars(type),

theme_minimal() +

geom_point()+

ylim(0.5, 1.2)+

20

graph6

geom_smooth(method="lm")+

 $ggplot(aes(x = year, y = ra_s)) +$

nrow = 2) +

8.0

Residual plot for national newspapers post-1968 model

0.9

Fitted values

Residual plot for national newspapers post-1968 model

1.0

graph4 <- plot(lmodel_national_post1968, which =1, main = "Residual plot for national newspapers post-1968 model"</pre>

1.1

-3.0

graph3

NULL

Year

-0.00 - 0.00

National Short-run TV Ads

5.42 - 54.43

-0.03 - -0.00

-0.00 - 0.00

-0.00 - 0.00

0.00 - 0.00

dv.labels = c('National Newspapers Post 1968','Local Newspapers Post 1968'),

lmodel_local <- lm(price_ratio ~ Group.1, data = local_news_avg)</pre>

\$Group.1)

n, drop = TRUE)

ads)

Share of subscribers(%)

'Share of subscribers(%)'))

Share Of Advertising Revenues(%)

Share Of Advertising Revenues(%)

Share of subscribers(%)

Observations

39 -

graph2

0.90

0.85 -

1960

 R^2 / R^2 adjusted

Observations

table3

Predictors

Intercept

Advertising Revenues

Share of subscribers(%)

Observations

4)

 R^2 / R^2 adjusted

Year

 R^2 / R^2 adjusted

dataset\$local == 0, select=c(rtotal_cst, price_ratio, local, ln_po_cst, id_news, year, ra_cst, ra_s, qs_s))

National newspaper linear regression model post 1968 national_news_ratio_post1968 <- subset(main_dataset, main_dataset\$year >= 1968 & main_dataset\$local == 0, select= c(rtotal_cst, price_ratio, local, ln_po_cst, id_news, year, ra_cst, ra_s, qs_s)) national_news_avg_post1968 <- aggregate(national_news_ratio_post1968[, 1:9], list(national_news_ratio_post1968\$ye ar), mean, drop = TRUE) local_news_ratio_post1968 <- subset(main_dataset, main_dataset\$year >= 1968 & main_dataset\$local == 1, select=c(r

local_news_avg_post1968 <- aggregate(local_news_ratio_post1968[, 1:9], list(local_news_ratio_post1968\$year), mea

lmodel_national_post1968 <- lm(price_ratio ~ year + ra_cst + ra_s + qs_s, data = national_news_ratio_post1968)</pre>

lmodel_combined <- lm(formula = price_ratio ~ year + qs_s + ra_s + ra_cst, data = both_news_ratio)</pre>

lmodel_national_pre_ads <- lm(formula = price_ratio ~ year + ra_cst + ra_s + qs_s, data = national_news_ratio_pr</pre> e_ads) lmodel_local_pre_ads <- lm(formula = price_ratio ~ year + ra_cst + ra_s + qs_s, data = local_news_ratio_pre_ads)</pre> lmodel_national_short <- lm(formula = price_ratio ~ year + ra_cst + ra_s + qs_s, data = national_news_ratio_shor</pre> t_ads)

lmodel_local_short <- lm(formula = price_ratio ~ year + ra_cst + ra_s + qs_s, data = local_news_ratio_short_ads)</pre>

lmodel_national_long <- lm(formula = price_ratio ~ year + ra_cst + ra_s + qs_s, data = national_news_ratio_long_</pre>

lmodel_local_long <- lm(formula = price_ratio ~ year + ra_cst + ra_s + qs_s, data = local_news_ratio_long_ads)</pre>

lmodel_local_post1968 <- lm(price_ratio ~ year + ra_cst + ra_s + qs_s, data = local_news_ratio_post1968)</pre>

pred.labels = c('Intercept', 'Year', 'Advertising Revenues', 'Share Of Advertising Revenues(%)', 'Share of subscrib ers(%)') # Table 2: National and Local newspaper model pre TV advertisements (1966-1968) table2 <- tab_model(lmodel_national_pre_ads, lmodel_local_pre_ads, dv.labels = c("National Pre TV Ads", "Local Pre TV Ads"), pred.labels = c('Intercept','Year','Advertising Revenues','Share Of Advertising Revenues (%)','Share of subscribers(%)')) table2 **National Pre TV Ads Local Pre TV Ads Predictors Estimates** CI **Estimates** CI р -10.39 -68.43 - 47.660.717 24.57 -245.69 **–** 294.83 0.858 Intercept Year 0.01 -0.02 - 0.040.696 -0.01 -0.15 - 0.130.868 0.666 0.00 0.332 Advertising Revenues -0.00 -0.00 - 0.00-0.00 - 0.00Share Of Advertising Revenues(%) 0.00 -0.00 - 0.000.308 -0.02 -0.03 - -0.010.002

0.232

-0.00

Estimates

-36.79

0.02

0.00

-0.01

-0.00

0.139 / 0.120

193

Table 4: National and Local newspaper model in the long-run period of TV advertisements introduction (1972-197

0.076 / 0.056

pred.labels = c('Intercept', 'Year', 'Advertising Revenues', 'Share Of Advertising Revenues(%)',

Local Short-run TV Ads

-119.83 - 46.25

-0.02 - 0.06

-0.00 - 0.00

-0.02 - -0.01

-0.00 - -0.00

-0.00 - 0.00

195

Table 3: National and Local newspaper model in the short-run period of TV advertisements introduction (1969-197

dv.labels = c("National Short-run TV Ads", "Local Short-run TV Ads"),

0.019

0.022

0.914

0.064

< 0.001

-0.01 - 0.00

0.077

р

0.383

0.366

0.068

< 0.001

0.030

dv.labels = c("National Long-run TV Ads", "Local Long-run TV Ads"), pred.labels = c('Intercept', 'Year', 'Advertising Revenues', 'Share Of Advertising Revenues(%)', 'Share of subscribers(%)')) table4 National Long-run TV Ads **Local Long-run TV Ads Predictors Estimates** CI **Estimates** CI Intercept 4.81 -41.33 - 50.95 0.830 -38.73 - 29.290.784 -4.72 -0.01 - 0.02Year -0.00 -0.03 - 0.020.856 0.00 0.738 0.00 - 0.00Advertising Revenues 0.00 -0.00 - 0.000.066 0.00 0.021

0.603

-0.00

0.124 / 0.104

alpha

Key

alpha

Local Newspapers National Newspapers

184

combined_news_avg <- data.frame(national_news_avg\$Group.1, national_news_avg\$price_ratio, local_news_avg\$price_ra</pre>

Graph of share of advertising revenues for local and national newspapers graph1 <- ggplot(data=combined_news_avg, aes(x = national_news_avg.Group.1, y = national_news_avg.ra_s)) +</pre> geom_line(aes(y = national_news_avg\$ra_s, color="deepskyblue1", alpha=0.5)) + geom_line(aes(y = local_news_avg\$ra_s, color="#69b3a2", alpha=0.5)) + labs(title = "National VS Private Newspaper Advertisment Revenue", y = "Share of Advertising Revenue (%)", x ="Year") + scale_color_discrete(name = "Key", labels = c("Local Newspapers", "National Newspapers")) graph1 National VS Private Newspaper Advertisment Revenue Share of Advertising Revenue (%)

1970

geom_line(aes(y = national_news_avg.price_ratio, color="deepskyblue1", alpha=0.5)) +

scale_color_discrete(name = "Key", labels = c("Local Newspapers", "National Newspapers"))

geom_line(aes(y = local_news_avg.price_ratio, color="#69b3a2", alpha=0.5)) + labs(title = "National VS Private Price Ratio", y = "Price Ratio", x = "Year") +

 $graph2 < - ggplot(data=combined_news_avg, aes(x = national_news_avg.Group.1, y = national_news_avg.price_ratio)) +$

-0.00 - 0.00

labs(title = "Plot of advertising revenues share for local and national newspapers",

Plot of advertising revenues share for local and national newspapers

mutate(type = if_else(local == 1, "Local", "National")) %>%

y = "Share of Advertising Revenues (%)") +

geom_vline(xintercept = 1955.5, linetype = "dashed"))

labs(title = "Price ratio VS share of advertising revenue", y = "Price Ratio", x = "Share of Advertising Revenu

Price ratio VS share of advertising revenue 1.2 -1.0 -Price Ratio 0.6 -

Share of Advertising Revenue (%)