Fundamentos Lógicos de la Programación

(04/09/2012)

Alumno:	Titulación:	_ DNI:
Ejercicio 1. Sea $\Gamma = \{a \lor \neg b \to b \land \neg c; (a \leftrightarrow b) \to c\}$	$; (a \lor c) \land (\neg a \to b \land c) \}. \not \in Cu\acute{a}l$	l de las siguientes
fórmulas es consecuencia lógica de Γ ?		
1 h + a \/ a		

- 1. $b \rightarrow a \vee \neg c$.
- 2. $(a \lor b) \land (\neg a \to b \land c)$.
- 3. $a \leftrightarrow c$.
- 4. $\neg a \rightarrow (b \rightarrow \neg c)$.

Ejercicio 2. $Sea \alpha la f\'{o}rmula$

$$\forall z \neg R(z, x) \rightarrow \forall x (R(x, y) \land \exists x \neg Q(y, x)).$$

¿Cuál de las siguientes fórmulas es equivalente a α ?

- 1. $\exists z \forall w \exists x \neg R(z, y) \lor (R(w, y) \land \neg Q(y, x))$
- 2. $\exists z \forall w ((R(z,x) \lor R(w,y)) \land (R(z,x) \lor \neg Q(y,z)))$
- 3. $\exists z \forall w (\neg R(z, x) \lor (R(w, y) \land \neg Q(y, w))$
- 4. $\forall w \exists x (R(w, x) \lor (R(w, y) \land \neg Q(y, x)))$

Ejercicio 3. Consideremos las fórmulas:

$$\alpha = R(x)$$
 y $\beta = \exists x R(x)$

¿Cuál de las siguientes afirmaciones es cierta?

- 1. $\beta \models \alpha$
- 2. $\alpha \leftrightarrow \beta$ es universalmente válida
- 3. $\alpha \not\models \beta$
- 4. α es satisfacible en una estructura si, y sólo si lo es β (en esa misma estructura).

Ejercicio 4. Para el conjunto de fórmulas

$$\Gamma = \{ \forall y \forall z (Q(a, z, f(z)) \lor \neg P(y, b)), \forall y \neg Q(y, a, f(a)), \forall z P(b, z) \}$$

¿cuál de las siguientes afirmaciones es cierta?

- 1. Γ es insatisfacible.
- 2. Γ no es un conjunto de cláusulas por la presencia de cuantificadores.
- 3. Γ es satisfacible y sería insatisfacible si $\forall z P(b,z)$ fuese sustituido por $\forall z P(a,z)$
- 4. Γ es satisfacible y sería insatisfacible si $\forall y \neg Q(y,a,f(a))$ fuera sustituido por $\forall y \neg Q(y,b,f(b))$

Ejercicio 5. Sean α y β fórmulas de un lenguaje proposicional. La fórmula

$$\neg(\alpha \leftrightarrow \beta)$$

es lógicamente equivalente a:

- 1. $(\alpha \land \neg \beta) \land (\neg \alpha \land \beta)$
- 2. $(\alpha \vee \neg \beta) \wedge (\neg \alpha \vee \beta)$
- 3. $\alpha \leftrightarrow \neg \beta$
- 4. $\neg \alpha \leftrightarrow \neg \beta$

Ejercicio 6. Considera las fórmulas

$$\alpha = R(x, f(a), y)$$
 y $\beta = R(f(y), x, b)$

 $\cite{Locales} Cu\'al de las siguientes afirmaciones es cierta?$

- 1. α y β son unificables y un unificador para ellas es (a|b)(y|a)(x|f(y)).
- 2. α y β no son unificables.
- 3. Si renombramos las variables de α tendríamos $R(x_1, f(a), y_1)$ y R(f(y), x, b), que son unificables. Por tanto α y β también lo son.
- 4. α y β son unificables, al comenzar ambas por el mismo símbolo de predicada R.

Ejercicio 7. Dado un lenguaje de primer orden con un símbolo de constante (a), un símbolo de predicado 1-ario (P), dos símbolos de predicado binarios (Q,R) y al menos tres símbolos de variable (x,y,z), consideramos la estructura siguiente:

Dominio: \mathbb{N} .

Asignación de constantes: a = 1.

Asignación de predicados: $P(x) \equiv x$ es primo. $Q(x,y) \equiv x < y$. $R(x,y) \equiv x | y$.

Determina cuál de las siquientes fórmulas se interpreta como verdadera en esta estructura.

- 1. $\forall x \forall y (Q(x,y) \rightarrow \exists z (P(z) \land R(z,y))).$
- 2. $\forall y(Q(a,y) \to \exists z(P(z) \land R(z,y))).$
- 3. $\forall x \exists y (P(x) \land R(x,y))$.
- 4. $\exists x R(x, a) \to \forall z \exists y (R(z, y) \land Q(y, z)).$

Ejercicio 8. ¿Cuál de las siguientes fórmulas es universalmente válida?

- 1. $\forall x (P(x) \lor Q(x, a)) \to (\forall x P(x) \lor \forall x Q(x, a))$.
- 2. $(\forall x P(x) \to Q(a,b)) \to \forall x (P(x) \to Q(a,b))$.
- 3. $\forall x \exists y (P(x) \lor Q(y, a)) \to \exists y \forall x (P(x) \lor Q(y, a)).$
- 4. $\forall x \exists y (P(x) \lor Q(y,x)) \rightarrow \exists y \forall x (P(x) \lor Q(y,x)).$

$\textbf{Ejercicio 9.} \ \, \dot{e}\textit{Cu\'al de las siguientes afirmaciones es falsa?}$

- $1. \ \, Todo\ conjunto\ de\ Horn\ insatisfacible\ admite\ una\ deducci\'on\ lineal-input\ de\ la\ cl\'ausula\ vac\'ia.$
- 2. Todo conjunto formado por cláusulas de Horn es satisfacible.
- 3. Todo conjunto de Horn sin cláusulas unitarias es satisfacible.
- 4. Todo conjunto de cláusulas que sea insatisfacible es un conjunto de Horn.