

WHAT IS CLAIMED IS:

1. A method for manufacturing an electron-emitting device, comprising:
a step for forming a polymer film between a pair
5 of electrodes formed on a substrate;
a step for giving conductivity to said polymer
film by heating; and
a step for providing potential difference between
said pair of electrodes.

10

2. A method according to claim 1, wherein the
step for giving conductivity to said polymer film by
heating includes a step for illuminating an electron
beam onto at least a part of said polymer film.

15

3. A method according to claim 1, wherein the
step for giving conductivity to said polymer film by
heating includes a step for illuminating light onto at
least a part of said polymer film.

20

4. A method according to claim 3, wherein the
light is light emitted from a xenon lamp as a light
source.

25

5. A method according to claim 3, wherein the
light is light emitted from a halogen lamp as a light
source.

SEARCHED INDEXED
SERIALIZED FILED

Spec X

6. A method according to claim 3, wherein the
light is a laser beam.

5 7. A method according to claim 1, wherein said
polymer film is an aromatic polymer film.

10 8. A method according to claim 1, wherein the
step for forming a polymer film utilizes an ink jet
system.

15 9. A method for manufacturing an electron-
emitting device, comprising:

 a step for forming a polymer film between a pair
of electrodes formed on a substrate;

15 a step for reducing electrical resistance of said
polymer film by heating said polymer film; and

 a step for providing potential difference between
said pair of electrodes.

20 10. A method according to claim 9, wherein the
step for reducing electrical resistance of said polymer
film by heating said polymer film includes a step for
illuminating an electron beam onto at least a part of
said polymer film.

25 11. A method according to claim 9, wherein the
step for reducing electrical resistance of said polymer

0907-38374650
1003-38374650
004

*See
12
10*

film by heating said polymer film includes a step for illuminating light onto at least a part of said polymer film.

5 12. A method according to claim 11, wherein the light is light emitted from a xenon lamp as a light source.

10 13. A method according to claim 11, wherein the light is light emitted from a halogen lamp as a light source.

15 14. A method according to claim 11, wherein the light is a laser beam.

20 15. A method according to claim 9, wherein the step for forming a polymer film utilizes an ink jet system.

25 16. A method for manufacturing an electron-emitting device, comprising:
 a step for forming a polymer film between a pair of electrodes formed on a substrate;
 a step for illuminating an electron beam onto at least a part of said polymer film; and
 a step for providing potential difference between said pair of electrodes.

See also comp.

09071736-03301

17. A method according to claim 16, wherein the step for illuminating the electron beam onto said polymer film includes a step for giving conductivity to at least a part of said polymer film.

5

18. A method according to claim 16, wherein the step for illuminating the electron beam onto said polymer film includes a step for reducing electrical resistance of said polymer film.

10

19. A method according to claim 16, wherein said polymer film is an aromatic polymer film.
*Sus
of 21
comp.*

15

20. A method according to claim 16, wherein the step for forming a polymer film utilizes an ink jet system.

20

21. A method for manufacturing an electron-emitting device, comprising:

25

a step for forming a polymer film between a pair of electrodes formed on a substrate;

a step for illuminating light onto at least a part of said polymer film; and

25

a step for providing potential difference between said pair of electrodes.

22. A method according to claim 21, wherein the

step for illuminating light onto said polymer film includes a step for giving conductivity to at least a part of said polymer film.

5 23. A method according to claim 21, wherein the step for illuminating light onto said polymer film includes a step for reducing electrical resistance of said polymer film.

10 24. A method according to claim 23, wherein the light is light emitted from a xenon lamp as a light source.

15 25. A method according to claim 23, wherein the light is light emitted from a halogen lamp as a light source.

20 26. A method according to claim 23, wherein the light is a laser beam.

27. A method according to claim 21, wherein said polymer film is an aromatic polymer film.

25 28. A method according to claim 21, wherein the step for forming a polymer film utilizes an ink jet system.

DRAFT 2426650

See 23 comp.

29. A method for manufacturing an electron source having a plurality of electron-emitting devices, wherein:

said electron-emitting device is manufactured in
5 accordance with any one of methods according to claims
1 to 28.

30. A method for manufacturing an image-forming apparatus having an electron source including a
10 plurality of electron-emitting devices, and an image-forming member for forming an image by illumination of electron emitted from said electron source, wherein:

said electron source is manufactured by a method according to claim 29.

15

SEARCHED INDEXED
SERIALIZED FILED