Stat GR5204	Name (Print):	
Fall 2017	Student UNI:	
Time Limit: 1 hour 30 minutes	Signature:	

This exam contains 5 problems. Answer all of them. Point values are in parentheses. You **must** show your work to get credit for your solutions - correct answers without work will not be awarded points.

No calculator will be allowed in the exam. You are allowed to bring one sheet of A4 paper with notes written on both sides by yourself. Normal tables, if needed, will be provided during the exam.

1	25 pts	
2	15 pts	
3	15 pts	
4	15 pts	
5	30 pts	
TOTAL	100 pts	

- 1. (25 points) (7+8+10) Suppose that X_1,\ldots,X_n are i.i.d Exponential(θ), (i.e., $f(x,\theta)=\theta e^{-\theta x}\mathbf{1}_{(0,\infty)}(x)$).
 - (a) Find the MLE $\hat{\theta}_n$ of θ .

(b) Find the exact sampling distribution of $\hat{\theta}_n$.

(c) Find the limiting distribution of $\log \bar{X}_n$, properly standardized.

2. (15 points) (8+7) Let X_1, \ldots, X_n be i.i.d. Exponential(λ). Find the distribution of $2\lambda n\bar{X}$ (where $\bar{X} = \sum_{i=1}^n X_i/n$), and use this result to find a $(1-\alpha)$ confidence interval for λ .

Stat GR5204 Fall 2017

- 3. (15 points) (9 + 6) A company has manufactured certain objects and has printed a serial number on each manufactured object. The serial numbers start at 1 and end at N, where N is the number of objects manufactured. The problem is to estimate N (the parameter). A simple random sample of size n is drawn with replacement from the lot; let X_1, X_2, \ldots, X_n denote the numbers on the object that come up. Thus, X_1, \ldots, X_n are i.i.d random variables with common mass function $p(x, N) := \mathbb{P}(X_1 = x)$.
 - (a) Find p(x, N) and compute $\mu := \mathbb{E}(X_1)$.

(b) Obtain a method of moments estimator of N.

4. (15 points) Suppose that X_1, \ldots, X_n form a random sample from a normal distribution with unknown mean θ and variance σ^2 . Assuming that $\theta \neq 0$, determine the asymptotic distribution of \bar{X}_n^3 , where $\bar{X}_n := \sum_{i=1}^n X_i/n$.

5. (30 points) (10 + 5 + 10 + 5) Consider the hierarchical model

$$Y|\Lambda \sim \text{Poisson}(\Lambda) \text{ and } \Lambda \sim \text{Gamma}(\alpha, \beta), \text{ where } \alpha, \beta \text{ are known,}.$$

Note that the density of Λ is given by

$$f(y|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} e^{-y\beta} y^{\alpha-1}, \quad \text{ for } y \geq 0, \quad \text{(and 0 otherwise)}.$$

(a) Find the marginal distribution of Y.

(b) Find the mean and variance of Y.

(c) Find the posterior distribution of Λ given the observation Y, and identify the distribution with its parameters.

(d) Find the mean of the posterior distribution.