

Nombre de la práctica	EXPRESIONES REG	EXPRESIONES REGULARES – UNIDAD 2					
Asignatura:	LENGUAJES Y AUTÓMATAS I	Carrera:	INGENIERÍA EN SISTEMAS COMPUTACIONALES- 3501	Duración de la práctica (Hrs)	5 horas		

NOMBRE DEL ALUMNO: Raúl Ciriaco Castillo

GRUPO: 3501

I. Competencia(s) específica(s):

Crea y reconoce Expresiones Regulares para solucionar problemas del entorno.

Encuadre con CACEI: Registra el (los) atributo(s) de egreso y los criterios de desempeño que se evaluarán en la materia.

No. atributo	Atributos de egreso del PE que impactan en la asignatura	No. Criterio	Criterios de desempeño	No. Indicador	Indicadores
	El estudiante diseñará esquemas de trabajo y procesos, usando	CD1	Identifica metodologías y procesos empleados en la resolución de problemas	I1	Identificación y reconocimiento de distintas metodologías para la resolución de problemas
2	en la resolución de problemas de Ingeniería en Sistemas Computacionales	CD2	Diseña soluciones a problemas, empleando metodologías	l1	Uso de metodologías para el modelado de la solución de sistemas y aplicaciones
			apropiadas al área	l2	Diseño algorítmico (Representación de diagramas de transiciones)
3	El estudiante plantea soluciones basadas en tecnologías empleando su	CD1	Emplea los conocimientos adquiridos para el desarrollar soluciones	I1	Elección de metodologías, técnicas y/o herramientas para el desarrollo de soluciones
	juicio ingenieril para valorar necesidades,		Soluciones	l2	Uso de metodologías adecuadas para el desarrollo de proyectos
	recursos y resultados			13	Generación de productos y/o proyectos
	esperados.	CD2	Analiza y comprueba resultados	I 1	Realizar pruebas a los productos obtenidos
				12	Documentar información de las pruebas realizadas y los resultados

II. Lugar de realización de la práctica (laboratorio, taller, aula u otro):

Laboratorio de cómputo y equipo de cómputo personal.

III. Material empleado:

- Equipo de cómputo
- Software para desarrollo:
 - Draw Graph (diagramas de transición)
 - Excel (tablas de transición)

pletradigito

IV. Desarrollo de la práctica:

EJERCICIO 1: UNION T1-T2

T1 T2

		letra	digito	\$	_	palabra vacia
inicial	q0	q1,q0	q3	q1	q1	q3
aceptacion	q1	q1	q2			
aceptacion	q2	q2	q2			
	q3	q3	q3			

		letraMayus	letraMinus
inicial	q0	q1	
	q1		q2
aceptacion	q2		q2

digito

letra

T1

Diagrama de Transiciones:

- Alfabeto:

$$V = \{ letra, digito, \$, _, \lambda \}$$

 $letra = \{ [a - z], [A - Z] \}$
 $digito = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \}$

Conjuntos:

Expresión Regular:

digito

letra

)letra

odigitoletra

- Lenguaje por Comprensión:

 $L = \{w \in \{letra, digito, \$, _, \lambda\} * | w \ cumple \ con \ la \ propiedad(letra(letra|_|\$) * | letra(letra|_|\$) letra * digito(letra|digito) *) \}$

T2

Diagrama de Transiciones:

Alfabeto:

$$V = \{ letraMayus, letraminus \}$$

 $letraMayus = \{ [A - Z] \}$
 $letraminus = \{ [a - z] \}$

- Conjuntos:

w0 = Car w6= Cabra

w1 = Cama w7 = Tierra w2 = Casa w8 = Automata w4 = Auto w9 = Alfabeto w5 = Aa w10 = Rap

Expresión Regular:

$$L = \{(letraMayus(letraminus^+)) * \}$$

- Lenguaje por Comprensión:

 $L = \{w \in \{letraMayus, letraminus\} * | w cumple con la propiedad(letraMayus(letraminus^+)) * \}$

UNION DE T1 -T2

- Diagrama de Transiciones (Finales):

- Tabla de Transiciones (Finales):

	1 3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.										
TABLA TRANCISIONES UNION T1-T2											
		letra	digito	\$	λ	letraMayus	letraMinus	_			
inicial	q0	q1, q4	q2	q4	q3,q2	q6		q4			
	q1	q1, q4	q2	q4	q2			q4			
	q2	q2	q2								
	q3					q6					
aceptacion	q4	q4	q5								
aceptacion	q5	q5	q5								
	q6						q7				
aceptacion	q7						q7				
	7*						4,				

- Expresión Regular (Finales):

 $L = \{((letra(letra|_|\$) * |letra(letra|_|\$) | letra * digito(letra|digito) *) \cup (letraMayus(letraminus^+)) *)\}$

GOBIERNO DEL ESTADO DE MÉXICO

MANUAL DE PRÁCTICAS

signo

q1

digito

operadorAri

digito

q3

 q^2

igual

EJERCICIO 2: UNION T3 - T4

T3

Alfabeto:

$$V = \{ signo, digito, igual, operadorArit, \lambda \}$$

 $signo = \{+, -\}$
 $digito = \{0,1,2,3,4,5,6,7,8,9\}$
 $igual = \{=\}$
 $operadorAritmetico = \{+, -,/,*\}$

w0 = +5=

w1 = -9 =

w2 = +8 =

w4 = -65/+3=

w5 = -445 =

Expresión Regular:

 $L = \{ ((signo)digito + igual | (signo)digito + operadorArit(signo)digito(igual)) * \}$

- Lenguaje por Comprensión:

 $L = \{w \in \{signo, digito, igual, operadorArit, \lambda\}$

 $*|w| cumple| con((signo)digito + igual|(signo)digito + operadorArit(signo)digito(igual))* \}$

Diagrama de Transiciones:

- Alfabeto:

 $V = \{ digito, punto, igual, operadorArit, \lambda \}$ $digito = \{ 0,1,2,3,4,5,6,7,8,9 \}$ $punto = \{ . \}$ $igual = \{ = \}$ $operadorAritmetico = \{ +, -,*,/ \}$

- Conjuntos:
- w0 = 3.3=
- w1 = 91+3.2=
- w2 = 1+2.567=
- w4 = 1000/3.3
- w5 = 16+2.4+3.9=
- Expresión Regular:

 $L = \{(digito(digito^*)igual) | (digito(digito^*)punto(digito)operadorArit(digito^*)igual)\}$

- Lenguaje por Comprensión:

 $L = \{w \in \{digito, punto, igual, operadorArit, \lambda\} * | w cumple con la propiedad \\ (digito(digito^*)igual|(digito(digito^*)punto(digito)operadorArit(digito^*)igual)\}$

UNION DE T3-T4

- Diagrama de Transiciones (Finales):

- Tabla de Transiciones (Finales):

TABLA TRA	NCISIONES U	NION T3-T4					
		digito	signo	igual	operadorArit	punto	λ
inicial	q0	q8	q3				q1,q2
	q1		q3				
	q2	q8					
	q3	q4					
	q4	q4		q6	q7		
aceptacion	q5						
aceptacion	q6						
	q7						q1
	q8	q8		q5	q8	q2	
	q9						q2

- Expresión Regular (Finales):

 $L = \{ \big((signo) digito + igual \big| (signo) digito^+ operador Arit(signo) digito(igual) \big) \\ \cup ((digito(digito^*) igual | (digito(digito^*) punto(digito) operador Arit(digito^*) igual)) \}$

EJERCICIO 3: CONCATENACIÓN T3 - T4

Usando los valores de T3 y T4 mostrados anteriormente procedemos a mostrar los diagramas de transición, expresión regular finales.

Nota: Cabe recalcar que no es lo mismo concatenar t3 y t4 que t4 y t3.

- Diagramas de Transición T3:

Diagrama de Transición T4:

- Expresión Regular T3:

 $L = \{ ((signo)digito + igual | (signo)digito^+ operador Arit(signo)digito(igual)) \}$

- Expresión Regular T4:

 $L = \{(digito(digito^*)igual | (digito(digito^*)punto(digito)operadorArit(digito^*)igual)\}$

CONCATENACIÓN DE T3 CON T4

inicial q0 q1 q2 q3 q4 q5 q6 q7 aceptacion q8	signo digi q1 q2 q2 q6 q6	2 q3	Arit igual q4		q0 q5 q5	q0 signo q1 digito λ digito
q1 q2 q3 q4 q5 q6 q7 aceptacion q8	q2 q2 q6	2 q3			q5 q5	$q1$ digito λ
q2 q3 q4 q5 q6 q7 aceptacion q8	q6 q6	2 q3			q5 q5	$q1$ digito λ
q3 q4 q5 q6 q7 aceptacion q8	q6	5			q5 q5	$q1$ digito λ
q4 q5 q6 q7 aceptacion q8	q6		q8	q5	q5 q5	$q1$ digito λ
q5 q6 q7 aceptacion q8	q6		q8	q5	q5 q2	$q1$ digito λ
q6 q7 aceptacion q8	q6		q8	q5	q2	digito λ
aceptacion q8		5 q7	q8	q5	q2	digito λ
aceptacion q8	tenación:				q2	digito λ
	tenación:					digito λ
Concate	tenación:	,	,			digito λ
			igual	digito/p	igual q4	q3

 $L = \{(\big((signo)digito + igual \big| (signo)digito^+ operador Arit(signo)digito(igual)\big)$

 $\begin{tabular}{l} & (digito(digito^*)igual)(digito(digito^*)punto(digito)operadorArit(digito^*)igual)) \\ \end{tabular}$

EJERCICIO 4: CONCATENACIÓN T4 - T3

- Diagramas de Transición T4:
- Diagrama de Transición T3:

- Expresión Regular T4:

 $L = \{(digito(digito^*)igual | (digito(digito^*)punto(digito)operadorArit(digito^*)igual)\}$

- Expresión Regular T3:

 $L = \{((signo)digito + igual | (signo)digito^+ operador Arit(signo)digito(igual))\}$

CONCATENACIÓN DE T4 CON T3

TAB	LA TRANCISIO	ONES CONCAT					
		signo	digito	operadorArit	igual	punto	λ
inicial	q0		q1				
	q1		q1	q2	q3	q0	
	q2						q0
	q3						q4
	q4	q5					
	q5		q6				
	q6		q6	q8	q7		
aceptacion	q7						
	q8						q4

- Expresión Regular (Finales):

 $L = ((digito(digito^*)igual)(digito(digito^*)punto(digito)operadorArit(digito^*)igual)) \\ \cdot ((signo)digito + igual)(signo)digito^+operadorArit(signo)digito(igual)))$

EJERCICIO 5: ESTRELLA DE KLEENE T4

Volviendo a retomar los datos anteriores acerca de las t1, t2, t3, t4 individuales como lo son alfabeto, conjuntos, expresión regular, no se muestran aquí, pero si se tomaran en cuenta (para evitar extensión en el manual y no sea repetitivo tantas veces).

- Tabla de Transición Original:

T4

inicial

	digito	punto	operador	igual	palabra vacia
0p	q1				
q1	q1	q0	q2	q3	
q2					q0
q3					

aceptacion

- Diagramas de Transición T4 Original:

- Expresión Regular T4:

 $L = \{(digito(digito^*)igual | (digito(digito^*)punto(digito)operadorArit(digito^*)igual)\}$

ESTRELLA DE KLEENE T4

- Tabla de Transiciones Final:

<u>TA</u>	BLA TRANCIS					
		digito	punto	igual	operadorArit	λ
inicial	q	q1				q0
	q0	q1				
	q1	q1	q0	q3	q2	
	q2					q0
aceptacion	q3	q1				

Diagrama de Transiciones Final:

- Expresión Regular (Finales):

 $L = \{(digito(digito^*)igual | (digito(digito^*)punto(digito)operadorArit(digito^*)igual) \textcolor{red}{*} \}$

EJERCICIO 6: ESTRELLA DE KLEENE T3

Volviendo a retomar los datos anteriores acerca de las t1, t2, t3, t4 individuales como lo son alfabeto, conjuntos, expresión regular, no se muestran aquí, pero si se tomaran en cuenta (para evitar extensión en el manual y no sea repetitivo tantas veces).

- Tabla de Transición Original:

		signo	digito	operadorArit	igual	palabra vacia
inicial	q0	q1				
	q1		q2			
	q2		q2	q3	q4	
	q3					q0
aceptacion	q4					

- Diagramas de Transición T3 Original:

- Expresión Regular T3:

 $L = \{ ((signo)digito + igual | (signo)digito^+ operador Arit(signo)digito(igual)) \}$

ESTRELLA DE KLEENE T3

- Tabla de Transiciones Final:

<u>TA</u>	BLA TRANCIS					
		digito	signo	λ	operadorArit	igual
inicial	q		q1	q0		
	q0		q1			
	q1	q2				
	q2	q2			q3	q4
	q3			q0		
aceptacion	q4		q1			

- Diagrama de Transiciones Final:

- Expresión Regular (Finales):

 $L = \{ ((signo)digito + igual | (signo)digito^{+}operadorArit(signo)digito(igual)) * \}$

GOBIERNO DEL ESTADO DE MÉXICO

MANUAL DE PRACTICAS

V. Conclusiones:

Esta unidad que se basa principalmente en la elaboración de Diagramas de Transición, Tablas de transición, expresiones regulares, lenguaje por comprensión, alfabeto, etc. Es un tema que al parecer estaba muy sencillo en clase, no tenía muchas dudas porque había entendido la mayoría de instrucciones dadas por la maestra, pero a la hora de elaborar esta práctica, me surgieron varias preguntas, en el diagrama t1 que tiene demasiadas transiciones a un estado, luego me confundía con los diagramas, olvidaba etiquetas por bucles o las cadenas vacías, cabe recalcar que tengo todo el trabajo en mi libreta debido a que se me facilito mejor copiar todo de ahí, tanto los diagramas como las tablas, en las expresiones regulares no me siento muy seguro pero intente analizar lo que mas pude para este trabajo.

También el trabajo me pareció interesante debido a que esta manera de explicarlo por la maestra, se me facilito mucho mejor que ver algún video como suelo hacer si tengo dudas, pero al contrario en vez de ayudarme con los videos me revolvieron más, y decidí hacerlo como la maestra nos enseñó en clase.

Tuve un problema para dibujar los diagramas, debido a que no me acomodaba hacerlo aquí en Word insertando figuras, no hay bucles o algo similar, en mi desesperación busque en internet aplicaciones donde pudiera dibujar mis diagramas, me sorprendió que encontré más aplicaciones trabajados en Java u otro lenguaje de programación a excepción de una web, llamada **Draw Graph, no es muy usada** pero la verdad me ayudo demasiado, tuve que entender cómo funcionaba con las pocas instrucciones que había para usarla, estuve realizando varias pruebas debido a que primero debía generar mi tabla de transición para insertarla como se observa en la imagen de abajo y solita se encargaba de acomodar las transiciones de la mejor manera posible, por eso también me ayudo generar mis tablas antes y después de la operación, pues con este programa nada más comprobaba que mis diagramas estuvieran bien realizados conforme a mi dibujo propuesto.

Fue un poco difícil más por las dudas que me surgieron al momento de elaborar los ejercicios de esta práctica, pero después de una desvelada, terminamos de acomodar los diagramas y todo lo solicitado esperando cumplir de manera correcta con lo pedido por la docente.

Input Graph Ignore the first line Edge labels q q 0 hola q 0 q 1:) Draw