Chaque colle comporte une question de cours ainsi qu'un ou plusieurs exercices. Les questions de cours portent sur les éléments précédés d'un astérisque (\star) sur le chapitre 27 : Espaces préhilbertiens réels. Les exercices portent sur le chapitre 27 : Espaces préhilbertiens réels.

Espace préhilbertien réel.

Produit scalaire. Produits scalaires canoniques de \mathbb{R}^n , $\mathcal{M}_{n,p}(\mathbb{R})$. Produit scalaire $(f|g) = \int_a^b fg \, \text{sur } C([a,b],\mathbb{R})$. (\star) Inégalité de Cauchy-Schwarz. Cas d'égalité. Exemples de l'inégalité de Cauchy-Schwarz. Norme préhilbertienne, distance associée. Egalités remarquables, identités de polarisation $(x|y) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2)$. Notion d'angle non orienté.

Orthogonalité

Eléments orthogonaux, parties orthogonales. Orthogonal A^{\perp} d'une partie A. Exemples d'orthogonaux, $A \subset B \Rightarrow B^{\perp} \subset A^{\perp}$. (\star) $A^{\perp} = \operatorname{Vect}(A)^{\perp}$. Deux sev orthogonaux sont en somme directe. (\star) $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$. Famille orthogonale, orthonormale. Théorème de Pythagore. Toute famille orthogonale de vecteurs tous non nuls est libre, toute famille orthonormale est libre. (\star) Processus d'orthonormalisation d'une famille libre de Gram Schmidt. Existence de bases orthonormées dans un espace euclidien. Complétion de familles orthonormales en base orthonormale dans un espace euclidien. Egalités $x = \sum_{i=1}^n (e_i|x)e_i$, $||x||^2 = \sum_{i=1}^n (e_i|x)^2$, $(x|y) = \sum_{i=1}^n (x|e_i)(y|e_i)$ dans une base orthonormée. Représentation de Riesz dans un espace euclidien. Calculs matriciels dans un espace euclidien.

Projections orthogonales

 (\star) Pour F de dimension finie, F^{\perp} est un supplémentaire de F. C'est le supplémentaire orthogonal de F. Dimension dans le cas euclidien, double orthogonal. Projection orthogonale sur F, expression dans une base orthonormée de F. (\star) Inégalité de Bessel, cas d'égalité. Distance à un sev de dimension finie. (\star) Le projeté orthogonal de x sur F est l'unique vecteur z de E tel que ||x-z|| = d(x,F). Cas d'une droite, d'un hyperplan en dimension finie. Symétrie orthogonale.

* * * * *