## PCM Clustering based on Noise Level

Peixin Hou<sup>1</sup> Jiguang Yue<sup>1</sup> Hao Deng<sup>2</sup> Shuguang Liu<sup>3</sup>

<sup>1</sup>Department of Control Science and Engineering, Tongji University

<sup>2</sup>School of Physics and Electronics, Henan University

<sup>3</sup>Department of Hydraulic Engineering, Tongji University

FUZZ-IEEE, 2017



#### Outline

- Introduction
- The PCM Based Algorithms
- 3 An Impression of the Algorithms' Performence
- 4 Algorithm Development
- 5 Experiments
  - Experiment 1
  - Experiment 2



#### Introduction

How much information we should provide for the clustering algorithm in order to discover the natural (physical) clusters?

• information of the cluster number



#### Introduction

How much information we should provide for the clustering algorithm in order to discover the natural (physical) clusters?

- information of the cluster number
- information of the property (e.g., density or closeness) of clusters.





#### Our Main Contributions

- The proposed NPCM have two parameters, where  $m_{ini}$  is a possibly over-specified cluster number, and  $\alpha$  characterizes the closeness of clusters in the clustering result.
- Both parameters are not required to be exactly specified.



# The PCM Algorithm

The objective of possibilistic c-means (PCM) [1] is to minimize the following cost:

$$J(\mathbf{\Theta}, \mathbf{U}) = \sum_{j=1}^{c} J_{j} = \sum_{j=1}^{c} \left[ \sum_{i=1}^{N} u_{ij} d_{ij}^{2} + \gamma_{j} \sum_{i=1}^{N} f(u_{ij}) \right]$$
(1)

where  $f(\cdot)$  can be chosen as:

$$f(u_{ij}) = u_{ij} \log u_{ij} - u_{ij}. \tag{2}$$



5 / 32



## The PCM Algorithm

Minimizing  $J(\mathbf{\Theta}, \mathbf{U})$  with respect to  $u_{ij}$  and  $\theta_j$  leads to the following two update equations:

$$u_{ij} = \exp\left(-\frac{d_{ij}^2}{\gamma_j}\right) \tag{3}$$

$$\theta_j = \frac{\sum_{i=1}^N u_{ij} \mathbf{x}_i}{\sum_{i=1}^N u_{ii}} \tag{4}$$





#### Drawback of PCM

 γ<sub>j</sub> is fixed after initialization, so its performance relies heavily on good initial partitions and parameters
[2].

# Improvement of Adaptive PCM [4]

• Adapt  $\gamma_j$  at each iteration.





#### Drawback of PCM

- γ<sub>j</sub> is fixed after initialization, so its performance relies heavily on good initial partitions and parameters
  [2].
- The *c* dense regions found may be coincident [3].

# Improvement of Adaptive PCM [4]

• Adapt  $\gamma_j$  at each iteration.

• The clusters with  $\gamma_j = 0$  are eliminated.





# The APCM Algorithm

The price of Adaptive PCM (APCM): introduce another parameter  $\alpha$  to manually control the process of adaptive  $\alpha_j$ .

$$\gamma_j = \frac{\hat{\eta}}{\alpha} \eta_j \tag{5}$$

 $\hat{\eta}$  is initialized in the first iteration.

Let  $A_j = \{\mathbf{x}_i | u_{ij} = \max_r u_{ir}\}$ .  $\eta_j$  is updated at each iteration as:

$$\eta_j = \frac{1}{n_j} \sum_{\mathbf{x}_i \in A_j} ||\mathbf{x}_i - \boldsymbol{\mu}_j|| \tag{6}$$

where  $n_j$  and  $\mu_j$  are the number of points in  $A_j$  and the mean vector of points in  $A_j$  respectively.





# What APCM Acutually Does

Introduce parameter  $\alpha$  to correct the estimated bandwidth  $\eta_j$ , so that the corrected bandwidth (5) approximates the true one.



# The UPCM Algorithm: an alternate Bandwidth Correction Method

In the UPCM paper [5], the bandwidth correction process is performed in a more fuzzy way by utilizing the conditional fuzzy set framework [6]:

$$\mu_{ij} = \exp\left(-\frac{d_{ij}^2}{\gamma_j}\right) \tag{7}$$

where  $\gamma_j = \left(0.5\eta_j + 0.5\sqrt{\eta_j^2 + 4\sigma_v d_{ij}}\right)^2$  and  $\sigma_v$  controls the uncertainty of the estimated bandwidth.





# The UPCM Algorithm: an alternate Bandwidth Correction Method

UPCM also introduces the concept of *noise level*  $\alpha$  of the data set in the update equation of prototypes:

$$\boldsymbol{\theta}_{j} = \frac{\sum_{i=1}^{N} u_{ij} \mathbf{x}_{i}}{\sum_{i=1}^{N} u_{ij}} \quad \text{for } u_{ij} \ge \alpha.$$
 (8)

By setting an appropriate  $\alpha$ , the influence of points in other clusters  $\theta_{i\neq j}$  on the  $\theta_j$  update is reduced.



#### Dataset 1 (upper) and Dataset 2 (lower) and their initializations





#### The Final Cluster Number of APCM



Result on Dataset 1 (left) and Dataset 2 (right)





#### The Final Cluster Number of UPCM



Result on Dataset 1 (left) and Dataset 2 (right)





#### The Final Cluster Number of NPCM



Result on Dataset 1 (left) and Dataset 2 (right)



# Motivation of This Paper

• UPCM has two hyperparameters, i.e.,  $\alpha$  and  $\sigma_{\nu}$ . It's possible to eliminate parameter  $\sigma_{\nu}$ 



# Motivation of This Paper

- UPCM has two hyperparameters, i.e.,  $\alpha$  and  $\sigma_v$ . It's possible to eliminate parameter  $\sigma_v$
- Both APCM and UPCM suffer from the problem of background noise clusters, i.e., the background noise clusters are highly possible to become very large.



# Algorithm Outline







# The Background Noise Problem



#### Eliminate Noise Clusters

Define the density of a cluster as:

$$\rho_j = \frac{n_j}{\eta_j^d} \tag{9}$$

where d is the dimension of  $\mathbf{x}_i$ . Let  $\rho_0 = \max_j \rho_j$ . Then the cluster  $C_j$  is considered as a noise cluster and is eliminated if  $\rho_j < 0.1\rho_0$ .





# Modeling the Relation Between $\alpha$ and $\sigma_{\nu}$

We can calculate the distance  $d_{i\alpha}$  beyond which a point can't be used to contribute to the adaption of cluster  $C_i$  by letting

$$\exp\left(-\frac{(d_{j\alpha})^2}{\gamma_j}\right) = \alpha,\tag{10}$$

which leads to

$$d_{j\alpha} = \sqrt{-\ln \alpha} \left( \eta_j + \sqrt{-\ln \alpha} \sigma_{\nu} \right). \tag{11}$$

When there is no uncertainty in the estimated bandwidth, we get  $d_{i\alpha}^0 = \sqrt{-\ln \alpha} \eta_i$ .





FUZZ-IEEE, 2017

We fix the effect of  $\sigma_v$  as the correction of  $d_{j\alpha}^0$  by considering the uncertainty of the estimated bandwidth

$$\frac{d_{j\alpha} - d_{j\alpha}^0}{d_{j\alpha}^0} = \frac{\sqrt{-\ln \alpha} \sigma_{\nu}}{\eta_j} = \beta, \tag{12}$$

which leads to

$$\sigma_{\nu} = \beta \frac{\eta_{j}}{\sqrt{-\ln \alpha}}.$$
 (13)

where  $\beta$  characterizes the correction degree. In this paper, we choose  $\beta=0.2$ .





The update of the membership function is then modified according to (7) and (13) as:

$$\mu_{ij} = \exp\left(-\frac{d_{ij}^2}{\gamma_j}\right) \tag{14}$$

where 
$$\gamma_j = \left(0.5\eta_j + 0.5\sqrt{\eta_j^2 + 0.8d_{ij}\eta_j/\sqrt{-\ln\alpha}}\right)^2$$
 and  $d_{ij} = ||\mathbf{x}_i - \boldsymbol{\theta}_j||$ .





FUZZ-IEEE, 2017

#### Outline

- Introduction
- 2 The PCM Based Algorithms
- 3 An Impression of the Algorithms' Performence
- 4 Algorithm Development
- 5 Experiments
  - Experiment 1
  - Experiment 2























#### Outline

- Introduction
- 2 The PCM Based Algorithms
- 3 An Impression of the Algorithms' Performence
- 4 Algorithm Development
- 5 Experiments
  - Experiment 1
  - Experiment 2





# Summary

- NPCM addresses the background noise cluster problem encountered in APCM and UPCM.
- NPCM exploits the intuition from UPCM to eliminate the parameter  $\sigma_v$  basing on  $\eta_j$ .
- $\alpha$  is intuitive to choose and NPCM does not need strong prior information (e.g., the exact cluster number or the exact closeness of clusters) of the dataset.
- Outlook
  - Further researches can be conducted to reliably eliminate noise clusters in NPCM.
  - Nonlinear shape clusters.



#### References I

- [1] R. Krishnapuram and J. M. Keller, "A possibilistic approach to clustering," *IEEE Transactions on Fuzzy Systems*, vol. 1, no. 2, pp. 98–110, May 1993.
- [2] O. Nasraoui and R. Krishnapuram, "An improved possibilistic C-Means algorithm with finite rejection and robust scale estimation," in Fuzzy Information Processing Society, 1996. NAFIPS., 1996 Biennial Conference of the North American, Jun. 1996, pp. 395–399.
- [3] M. Barni, V. Cappellini, and A. Mecocci, "Comments on "A possibilistic approach to clustering"," *IEEE Transactions on Fuzzy Systems*, vol. 4, no. 3, pp. 393–396, Aug. 1996.
- [4] S. D. Xenaki, K. D. Koutroumbas, and A. A. Rontogiannis, "A Novel Adaptive Possibilistic Clustering Algorithm," *IEEE Transactions on Fuzzy Systems*, vol. 24, no. 4, pp. 791–810, Aug. 2016.

#### References II

- [5] P. Hou, H. Deng, J. Yue, and S. Liu, "PCM and APCM Revisited: An Uncertainty Perspective," arXiv:1610.08624 [cs, stat], Oct. 2016.
- [6] L. X. Wang, "A New Look at Type-2 Fuzzy Sets and Type-2 Fuzzy Logic Systems," *IEEE Transactions on Fuzzy Systems*, vol. PP, no. 99, pp. 1–1, 2016.



