University of Waterloo Algebraic Geometry - Summer 2015 Assignment 3

Sina Motevalli 20455091

Problem

Part a

Part b

Part c

Problem 2

We have $\Gamma(\mathbb{A}^1)=k[t]$ and $\Gamma(X)=k[x,y]/< y^2-x^3>=k[\bar x,\bar y]$ with $\bar x^2=\bar y^3$. Suppose $\varphi:k[\bar x,\bar y]\to k[t]$ is an isomorphism.

Problem 3

Part a

Note that ϕ^* sends g+I(Y) to $g\circ \phi+I(X)$. So ϕ^* is injective means $g\in I(Y)\Longleftrightarrow g\circ \phi\in I(X)$. Since $g\circ \phi\in I(X)\Longleftrightarrow g\in I(\phi(X))$, we have that ϕ^* is injective if and only if

$$I(Y) = I(\phi(X))$$

which is equivalent to image of ϕ under X being dense in Y.

Part b

Assume ϕ has a polynomial left-inverse ψ .

Let p + I(X) be an arbitrary element of the coordinate ring of X.

Note that $p \circ \psi \in k[y_1, ..., y_m]$.

We have $\phi^*(p \circ \psi + I(Y)) = p \circ \psi \circ \phi + I(X) = p(\psi \circ \phi) + I(X) = p + I(X)$.

Thus ϕ^* is surjective.

Conversely assume ϕ^* is surjective.

Since ϕ^* is surjective, there exist $g_i \in k[y_1, ..., y_m]$ such that $\phi(g_i + I(Y)) = x_i + I(X)$ for every $i \in \{1, 2, ..., n\}$.

So $(g_i \circ \phi) + I(X) = x_i + I(X) \to (g_i \circ \phi)(x) = x_i(x) \ \forall x \in X.$

Let $\psi = (g_1, g_2, ..., g_n)$, then we clearly have $\psi \circ \phi = id_X$.

Problem 4