Homework 2

Jose Luiz Magallanes

October 20, 2020

1 Give the regular expression for the FA below. Create a program that generates a regular expression from the language description in the language of your choosing.

 $3 \ state \ FA$

 $5\ state\ GFA$

 $4\ State\ GFA$

 $3\ State\ GFA$

 $2\ State\ GFA$

1.1 Regular Expression: $((a(a \cup b))^* \cup (a(a \cup b)^* \cup b) \cup b)^*$

2 Minimize the FA:

2.1 State Transition Table

q	δ (q,a)	δ (q,b)
1	2*	1
2*	4	1
3	2*	5*
4	6	3
5*	4	5*
6	5*	2*

2.2 Let's create sets of the pairs that are distinguishable:

```
\mathbf{P}_0 = \{(1, 3, 4, 6), (2^*, 5^*)\} 

P_1 = \{(1), (3, 6), (4), (2^*), (5^*)\} 

P_2 = \{(1), (3), (6), (4), (2^*), (5^*)\}
```

- 2.3 All sets in P_2 are singletons, hence all pairs are distinguishable. therefore the DFA cannot be minimized further.
- 3 Use the pumping lemma to show that the language $L = \{a^i b^j c^k | i < j, j < k\}$ is not regular.
- 3.1 We will prove by contradiction.

Assume that L is a regular language. Let p be the pumping length given by pumping lemma. Let $s = a^p b^{p+1} c^{p+2}$. Then s can be split into xyz, satisfying the conditions of pumping lemma. By condition 3, y consists only of b's. Adding an extra copy y increases the number of b's. Recall that s has less number of b's than c's and less number of a's than both. Therefore, xyyz cannot have equal b's and c's, so it cannot be a string in L. Thus we obtain a contradiction.

- 4 Give a regular expression which denotes the language L over $\{0,1\}$ for each of the languages described below:
- 4.1 all strings that begin or end with 00 or 11.
- 4.1.1
- 4.2 all strings that have exactly one occurrence of 00.
- 4.2.1
- 4.3 all strings that do not have the sub-string 000.
- 4.3.1