

Technische Spezifikation

Smarte Gartenbewässerung über LoRaWAN

Mitarbeiter und Autoren:

- Rami Hammouda

- Khac Hoa Le

- Jaro Machnow

Letzte Änderung: 16.06.2021

Version: 1.3

16.06.2021 Seite 1 von 27

Technische Spezifikation - Smarte Gartenbewässerung

1.	Einle	eitung	4
	1.1	Überblick	4
	1.2	Definitionen und Abkürzungen	4
	1.3	Vorhandene Dokumente	4
2.	Proze	essüberblick	4
	2.1	Realisierungsprozess	5
	2.2	Fachlicher Workflow	7
	2.3	Checkliste	8
3.	Syst	emarchitektur und Infrastruktur	10
	3.1	Systemarchitektur	10
	3.2	Beschreibung der Komponenten	11
4.	Tech	nnische Spezifikation der Software	12
	4.1	Überblick Komponenten	12
	4.2	Schnittstellen zwischen den Komponenten	14
	4.3	Technologiestack	15
	4.4	Anmeldedaten für TTN	16
	4.5	Testphase 1 - Senden und Empfangen von Daten über TTN	17
5.	Spe	zifikation der Hardware	23
	5.1	Einzelteile	23

16.06.2021 Seite 2 von 27

Versionshistorie

Version	Datum	Verantwortlich	Änderung	
1.0	29.05.2021	Jaro Machnow	Dokumenterstellung	
1.1	06.06.2021	Jaro, Hoa Le, Rami	Ergänzungen	
1.2	15.06.2021	Jaro, Hoa Le, Rami	Ergänzungen	
1.3	16.06.2021	Rami, Hoa, Jaro	Vervollständigung der Dokument	

16.06.2021 Seite 3 von 27

1. Einleitung

1.1 Überblick

Es wird eine smarte und möglichst preisgünstige und überwachte Bewässerung von Beeten per Netzwerksteuerung über das *The-Things-Network* (TTN) gebaut. Im Urban Garden kontrolliert ein Mikrocontroller entsprechend der über das Netzwerk gesendeten Nutzereingaben oder eines autonomen Workflows verschiedene Sensoren und Aktoren. Mit Hilfe einer LoRaWAN-Antenne werden die Daten der Sensoren vom Urban Garden aus in das Netzwerk gesendet und können auf einem entfernten Computer ausgelesen werden und als Visualisierung auf *OpenSenseMap.org* angesehen werden.

Zu den Mechanismen der autonomen Steuerung gehören vor allem das Abschalten des Wasserflusses im Falle eines Lecks und das eigenständige Starten der Bewässerung beim Erreichen einer bestimmten Bodenfeuchte.

Für alle eingebauten Komponenten und Funktionen gilt der Grundsatz, dass das System in Zukunft leicht modular erweitert werden kann.

1.2 Definitionen und Abkürzungen

LoRaWan -Long Range Wide Area Network TTN - The Things Network

1.3 Vorhandene Dokumente

Tabelle 1: Vohandene Dokumente

Dokument	Autor(en)	Datum
Lastenheft	Rami Hammouda, Khac Hoa Le, Jaro Machnow	28.04.2021
Lastenheft + Kommentare	+ Prof. Dr. Mohammad Abuosba	30.04.2021
Anforderung-Email	Holger Martin	10.04.2021
Pflichtenheft	Rami Hammouda, Khac Hoa Le, Jaro Machnow	19.05.2021
Pflichtenheft + Kommentare	+ Prof. Dr. Mohammad Abuosba	25.05.2021

16.06.2021 Seite 4 von 27

2. Prozessüberblick

2.1 Realisierungsprozess

Nachfolgend ist eine Darstellung aller Funktionen und deren Unterteilung im Projekt:

Abbildung 1: Übersicht über die Aufgabenstruktur

Für die Realisierung des Projektes ist es zuerst nötig, alle notwendigen Teile herauszusuchen und zu bestellen. Dann kann damit begonnen werden die Funktionsfähigkeit des Hauptziels des Projektes sicherzustellen: Das Senden und Empfangen von Daten vom Urban Garden über das LoRaWAN-Netzwerk. Danach können parallel die Nutzerschnittstellen mit TTN verbunden und programmiert werden und der Mikrocontroller mit den zugehörigen

16.06.2021 Seite 5 von 27

Komponenten eingerichtet werden. Zum Schluss wird das gesamte Bewässerungssystem mit allen Komponenten zusammengebaut und im Urban Garden installiert.

Der Realisierungsprozess ist in folgendem Diagramm dargestellt:

Abbildung 2: Diagramm des Realisisierungsprozesses

16.06.2021 Seite 6 von 27

2.2 Fachlicher Workflow

Nachfolgen ist das Diagramm des fachlichen Workflows zu sehen. Hier kann die Zusammenarbeit der Software und Hardware gesehen werden und der Ablauf bei Benutzung, Überwachung und Steuerung des Systems.

Abbildung 3: Fachlicher Workflow

16.06.2021 Seite 7 von 27

.

2.3 Checkliste

Controlling Sensors, Actors:

Zur Strukturierung unserer Arbeit und um zu wissen, was schon gemacht wurde und was noch zu erledigen ist, haben wir folgende Checkliste erstellt. Die Checkliste beinhaltet aktuell nur Punkte, die mit der Software im Zusammenhang stehen (für den 1. Sprint).

\checkmark	Collect current ambient parameters (Temperatur sensor, Humidity sensor, Air
	pressure sensor)
	Collect current water level in water tank (Ultrasound sensor)
	Collect current water hose parameters (Water pressure sensor, Water flow sensor)
	Control Actors (Water pump, Magnetic valve)
On Lor	aWan Server:
\checkmark	Send collected sensor data to TTN Network
\checkmark	Operate with ABP Mode or OTAA Mode (prefer OTAA)
\checkmark	-Support float decode payload
\checkmark	-Support int decode payload
	Binding Server with opensensemap.org
Operat	te Actors:
	Remote control actors manually
	Actors operates itself automatically based on pre-configuration
	Auto Mode and Manual Mode should be selectable
Sensor	Data Visualization:
	Simple sensor data are visualizated by opensensemap
	Complex sensor data will be visualizated by a self development UI

16.06.2021 Seite 8 von 27

Technische Spezifikation - Smarte Gartenbewässerung

UI Development:
☐ Create a UI to get all current information of system
\square Control actors through simple user-friendly UI like button, not on JSON UI (comply to
requirement from Mr. Prof. DrIng. Abuosba)
☐ Pre-configuration parameters should be changeable (e.g through input fields)
(comply to suggestion from Mr. Holger Martin)
Options:
☐ An UI on mobile for convenient monitoring
☐ Send Notification to user for alert

16.06.2021 Seite 9 von 27

3. Systemarchitektur und Infrastruktur

3.1 Systemarchitektur

Abbildung 4: Komponentendiagramm

16.06.2021 Seite 10 von 27

3.2 Beschreibung der Komponenten

Das Komponentendiagramm zeigt die verschiedenen Schichten unseres Bewässerungssystems:

- Ganz oben sind die Komponenten, mit denen der Nutzer interagieren kann. Dazu gehören die Anwendung und die OpenSenseMap. Bei der Anwendung sieht der Nutzer das Dashboard, in dem Sensordaten angezeigt werden können und Aktoren per Knopfdruck aktiviert oder deaktiviert werden können. Zudem kann die autonome Steuerung aktiviert werden. Die OpenSenseMap zeigt eine Karte und die Sensordaten für den Standort des Urban Gardens.
- In der Mitte befinden sich Komponenten, die die obere Anwendungsschicht mit den Sensoren und Aktoren im Urban Garden verbinden. Dazu gehören das TheThingsNetwork und der Lora32-Mikrocontroller. Über diese beiden Daten kommen die Sensordaten zur Nutzeranwendung und die Nutzereingaben zu den Aktoren. Die Kommunikation bzw. Übertragung der Daten erfolgt hier über das LoRaWan-Netzwerk und über das Internet. Nähere Informationen sind dazu in Punkt 4.2 nachzulesen.
- Unten befinden sich die Komponenten, die direkt im Urban Garden agieren, also alle Sensoren und Akoren. Dazu gehören: Wasserdrucksensor, Wasserdurchflusssensor, Wasserstandsensor, Bodenfeuchtigkeitssensor, Pumpe und Magnetventil. Diese Komponenten sind mit Lora32 verbunden und werden dadurch überwacht und gesteuert.

16.06.2021 Seite 11 von 27

4. Technische Spezifikation der Software

4.1 Überblick Komponenten

Abbildung 5: Komponentendiagramm Software

16.06.2021 Seite 12 von 27

Beschreibung der Software-Komponenten:

Tabelle 2: Software-Komponenten

SW Komponente	Funktionen	Sprache/Typ
Anwendung (geplant)	 Daten empfangen und anzeigen Daten auswerten Daten senden Alles wird in einem Dashboard angezeigt 	JavaScript (Node Js)
Opensensemap (geplant)	 Anzeigen der Messdaten auf einer Karte 	Website Service als Client
Telegram (geplant)	- Schnell und aktuell die Daten und den Status vom System abrufen	API Service als Client
Lora32 (Software)	Sensorendaten abrufenAktoren steuernSignal schicken/empfangen.	Programming language C++
TTN	 Zentraler Server für LoRaWAN Schnittstelle zwischen LoRaWAN und Client. Datenbank: Automatische Speicherung der Daten einer Woche 	Website Server

16.06.2021 Seite 13 von 27

4.2 Schnittstellen zwischen den Komponenten

Die Datenübermittlung zwischen dem LoRa32-Mikrocontroller und der Anwendung erfolgt in mehreren Schritten:

- 1. LoRa32 sendet die Daten an TTN-Gateways mit Hilfe der LoRaWan-Antenne.
- 2. Das Gateway schickt die Daten weiter ins Internet an die TTN-Cloud durch HTTP.
- 3. Die Anwendung ist mit der TTN-Cloud verbunden und erhält so die Daten.

Die TTN-Cloud dient dabei zugleich als Datenbank und speichert automatische die Daten einer Woche. Die Anwendung dient als grafische Benutzeroberfläche, die es dem Nutzer ermöglicht die Daten aus dem System auszulesen und das System fernzusteuern. Umgekehrt, also von der Anwendung zum LoRa32, funktioniert der Vorgang analog:

- 1. Der Nutzer gibt Daten in der Anwendung ein. Die Daten werden an die TTN-Cloud übermittelt.
- 2. Die TTN-Cloud übermittelt die Daten über HTTP an das TTN-Gateway
- Mit Hilfe der LoRaWan-Antenne werden die Daten vom Gateway an den LoRa32-Mikrocontroller gesendet.

Die OpenSenseMap auch mit der TTN-Cloud verknüpft, um Daten anzuzeigen. Das funktioniert auf die gleiche Weise, wie bei der Anwendung. OpenSenseMap dient als weitere Benutzerschnittstelle.

Zudem wird Telegram benutzt, um eine schnelle und unkomplizierte Kommunikation des Nutzers mit dem System zu ermöglichen. Telegram ist direkt mit der Anwendung verknüpft.

16.06.2021 Seite 14 von 27

4.3 Technologiestack

Folgender Technologiestack wird für die Erstellung der Software für die Kommunikatin über LoRaWan verwendet:

Tabelle 3: Technologiestack

abelle 3: Technologiestack				
Operation System:	- Windows 10/(Linux)			
IDE:	- Visual Studio Code			
	- Platform IO			
	Tiddofff To			
Framework:	- Arduino			
Abhängigkeiten:	- MCCI LoraWAN LMIC Library v3.3			
	- Adafruit Unified Sensor v1.1.4			
	- DHT sensor library v1.4.2			
	<u> </u>			
Protokolle:	- MQTT			
	- НТТР			
Drahtlose Verbindung/	- LoRaWAN (Long Range Wide Area Network)			
Kommunikation:				
Tools:	- MQTT Mosquito			
	- MQTT Explorer			
Server:	- TTN (thethingsnetwork)			
UI Programmierung:	- JavaScript			
	- NodeJS			
Hardware Programmierung:	- C++			
Hardware:	- Lora32 (TTGO)			
naiuwaie.	- Lora32 (TTGO)			

16.06.2021 Seite 15 von 27

4.4 Anmeldedaten für TTN

Mit folgenden Daten kann man sich beim TTN-Account unseres Teams anmelden, Einstellungen vornehmen und empfangene Sensordaten einsehen und Aktoren steuern:

THETHINGSNETWORK.ORG (Legacy V2 Console)

User name: htwgardenproject

Email address: htwgardenss21@gmail.com

Password: htwgarden2021

16.06.2021 Seite 16 von 27

4.5 Testphase 1 - Senden und Empfangen von Daten über TTN

Bevor die Verbindung der TTN-Server mit der Anwendung, OpenSenseMap und Telegram erstellt wird, testen wir zunächst die Kommunikation über LoRaWan mit MQTT-Mosquito, MQTT-Fx und MQTT-Explorer.

Wenn die Daten von LoRa32 sicher erzeugt werden, verbinden wir LoRa32 mit dem TTN-Server. Bei der TTN-Cloud kann man Uplinks (Signal von Sensoren) lesen, und die Downlinks (Signal zur Sensoren) schicken. Wir testen das Emfpangen von Sensordaten und das Schicken von Daten zur Steuerung von Aktoren.

In unserer Testschaltung werden die Daten des DHT22 Temperatur- und Luftfeuchtigkeitssensors vom Lora32 erfasst. Dann werden die Daten weiter an TNN gesendet. Bei jedem Senden leuchtet die grüne LED. Zusätzlich kann ein Signal von TTN aus gesendet werden um die rote LED an- bzw. auszuschalten.

Bei unserem ersten Test stand uns ein Lora32 v1 zur Verfügung. Ein Bild dieser Schaltung ist in nachfolgender Abbildung zu sehen:

Abbildung 6: Aufbau der Schaltung für den Test der LoRaWan-Verbindung (Lora32 V1 ohn Oled)

16.06.2021 Seite 17 von 27

Wenig später stand uns die neuere Version des TTGO Lora32 zur Verfügung: Lora32 OLED V2.1.6. Auf dem Display werden direkt die gemessenen Sensordaten angezeigt. So konnten wir prüfen, ob die Daten korrekt an TTN übertragen werden und gleiche Werte angezeigt werden.

Abbildung7: Aufbau der Schaltung für den Test der LoRaWan-Verbindung (Lora32 OLED V2.1.6)

In Gitlab \rightarrow Software \rightarrow Node-Lora32 \rightarrow src \rightarrow main.cpp ist der C++ Code zu finden, der auf dem Lora32 installiert ist. Grundlegend gibt es eine Funktion zum Auslesen der Sensordaten des DHT22, zum Steuern von einer grünen und einer roten LED, zur Umwandlung der Daten in Byte mit dem Encoder, um sie versenden zu können und zum Senden der Daten über die Lora-Antenne.

Die Daten werden von einem TTN-Gateway empfangen und ins TTN-Netzwerk zu einem TTN-Server weitergeleitet. Mit dem Tool MQTT-Mosquitto oder MQTT-Explorer oder mit der Website von von TTN können wir auf die Daten in TNN zugreifen und die Sensordaten auslesen.

16.06.2021 Seite 18 von 27

1. MQTT-Mosquito (als Client betrachtet)

Folgende Daten werden zur Verbindung über MQTT benötigt (um auf die Daten auf dem Daten TTN-Server zuzugreifen):

App ID on TTN: mygardenproject

Access key on TTN: ttn-account-v2.60jnFj-pF6rapK8BtiWsr2CQXM8TufQspWzjreeI2Zc

Folgende Befehle müssen in die Konsole eingegeben werden :

Active Mosquito service:

net start mosquitto

Subcribe our topic:

mosquitto_sub -h eu.thethings.network -p 1883 -d -u mygardenproject -P ttn-account-v2.60jnFj-pF6rapK8BtiWsr2CQXM8TufQspWzjreeI2Zc -t #

In nachfolgendem Bild sieht man die Ausgabe in der CMD ür MQTT-Mosquitto.

```
Microsoft Windows [Version 10.0.14393]
(c) 2016 Microsoft Corporation. All rights reserved.

C:\Windows\system32>net start mosquitto
The requested service has already been started.

More help is available by typing NET HELPMSO 2182.

C:\Windows\system32>mosquitto_sub -h eu.thethings.network -p 1883 -d -u mygardenproject -P ttn-account-v2.60jnFj-pF6rap
K881lksr2CQXM8TufQspksjree122c -t #
Client (null) sending CONNECT
Client (null) sending CONNECT
Client (null) sending SUBSCRIBE (Mid: 1, Topic: #, Qos: 0, Options: 0x00)
Client (null) received CONNACK (0)
Client (null) received SUBACK
Subscribed (mid: 1): 0
Client (null) received PUBLISH (d0, q0, r0, m8, 'mygardenproject/devices/sensorstest01/up', ... (521 bytes))
['app_id':"mygardenproject", 'dev_id':"sensorstest01", 'hardware_serial':"000CDS8064001CC0", 'port':4, 'counter':243, 'payload
d_raw':"2cccQQAANDIO", 'payload_fields":{"Feellike":29, "Humidity":"67.50", "Temperatur':"27.60"), "metadata":("time':"2821-
66-i6178:11:28.2708a289927", "frequency":887.3, "modulation":"108A", "data_reat":"SF280125", "settime":56576000, "coing_rate"
1"4/5", "gateways":[("gtw_id':"oui-SBa0cbfffe800ee1", "timestamp":902258171, "time':"2021-06-16710:11:28.1460630022", "chann
el":0, "ressi':-35, "sne":0, "requency":887.5, "modulation":"108A", "data_reate":"57780125", "airtime":56576000, "coding_rate"
1"4/5", "gateways":[("gtw_id':"oui-SBa0cbfff6800ee1", "timestamp":909331140, "time':"2021-06-16710:11:35.2130310532", "chann
el":0, "ressi':-35, "sne":0, "requency":887.5, "modulation":"108A", "data_rate":"SF780125", "airtime":56576000, "coding_rate"
1"4/5", "gateways":[("gtw_id':"oui-SBa0cbfff6800ee1", "timestamp":909331140, "time':"2021-06-16710:11:35.2130310532", "chann
el":0, "ressi':-30, "sne":7.2.5, "ref_chain":0]])}
```

Abbildung 8: MQTT Mosquito

16.06.2021 Seite 19 von 27

2. MQTT-Explorer (Client)

Alternative könen wir auch mit Hilfe von MQTT-Explorer die Daten auslesen. Hier kann man sich mit den selben Anmeldedaten ins System einloggen.

Abbildung 9: Einloggen bei MQTT-Explorer

Hier kann die Ausgabe im MQTT-Explorer gesehen werden:

Abbildung 10: Ausgabe der Sensordaten MQTT-Explorer

16.06.2021 Seite 20 von 27

3. TTN-Website (Server + Client)

Die schönste und einfachste Möglichkeit, um die Daten auszulesen, ist das direkte Nutzen der Website von TTN.

Um die Daten dekodieren zu können, muss zuerst das Payload-Format auf der Website von TTN geschrieben werden, um die empfangenen Daten von Byte zurück in ein lesbares Format umzuwandeln.

In folgendem Bild ist die Funktion zum Dekodieren zu sehen:

```
function Sytes2Float32(bytes) [
    var sign = (bytes & 0x80000000) 7 -1 : 1;
var exponent = ((bytes >> 21) & 0xFF) - 127;
var significand = (bytes & -(-1 << 23));
    if (exponent == 120)
  return sign = ((significand) ? Number.NaN : Number.POSITIVE_INFINITY);
    if (exponent == -127) {
  if (rignificand == 0) return sign = 0.0;
  exponent = -126;
  aignificand /= (1 << 22);
} else significand = (significand | (1 << 23)) / (1 << 23);</pre>
    return sign " significand " Math.pow(2, exponent);
function Decoder(bytes, port) [
    switch (port) (
       case 1:
    var decoded_var = String.fromCharCode.apply(null, bytes.slice(0, 12));
          return [ var: decoded_var ]
          return [ temp: String.fromCharCode.apply(null, bytes) ];
          var t = bytes[3] \leftrightarrow 24 | bytes[2] \leftrightarrow 16 | bytes[1] \leftrightarrow 8 | bytes[0]; var h = bytes[7] \leftrightarrow 24 | bytes[6] \leftrightarrow 16 | bytes[5] \leftrightarrow 8 | bytes[4]; var f1 = bytes[9] \leftrightarrow 8 | bytes[8];
             "6097c45e1c3320001c7c97ab": Bytes2Float32(t).toFixed(2),
"6097c45e1c3320001c7c97ac": Bytes2Float32(h).toFixed(2),
"6097c45e1c3320001c7c97ad": "
          "Temperatur": Bytes2Float32(t).toFixed(2),
             "Mumidity": Bytes2Float32(%).toFixed(?),
"Feellike": #1
           return { var: String.fromCharCode.apply(null, bytes) }
```

Abbildung 11: Payload-Dekodier-Code

16.06.2021 Seite 21 von 27

Dann können die Daten bei TTN gelesen werden:

Abbildung 12: Datenausgabe TNN

16.06.2021 Seite 22 von 27

5. Spezifikation der Hardware

5.1 Einzelteile

Nachfolgend aufgelistete Komponenten wurden von uns gezielt herausgesucht. Wir haben auf die Kompatibilität zwischen den Teilen geachtet und wenn nötig auch passende Adapter besorgt.

Ein detaillierter Schaltplan und Bauplan für die Bewässerungsanalge folgt demnächst.

Auflistung aller elektronischen Komponenten:

Tabelle 4: Elektronische Komponenten

Name	Beschreibung	Anwendungen	Schnittstellen & Spannungsbelegung	Bild
LoRa32 Mikrocontrolle r	Mikrocontroller board, wie ESP32 + LoRaWAN-Ante nne	Entwicklerboard, Steuerung, Regelung, Berechnungen, Drahtlose Verbindung mit WLAN, Bluetooth, LoRaWAN	Eingang 5V(default) Eingang 3.3V(option) Ausgang 5V, 3.3V	MAKERSHOP https://www.makershop.de/plattformen/esp8266/ttgo-esp32-paxcounter-lora/
Coolty High Pressure Diaphragm Water Pump	Pumpe	Wasser pumpen	Betriebsspannung DC 12V 100PSI 4L/min	https://amzn.to/3zsKp10
AZDelivery 4-relay module 5 V	Relais	Steuerung der Pumpe	Eingang 5V/3V Aussgang max 250V/10A AC, 30V/10A DC	https://amzn.to/3iHNncN

16.06.2021 Seite 23 von 27

EXLECO 12 V NC G1/2 Inch Electro Solenoid Valve	Magnetventil	Schließen des Wasserdurchflusses nach der Pumpe	G 1/2" Betriebsspannung DC 12 V	https://amzn.to/3goN8BY
G1/4 inch pressure sensor	Wasserdruck- sensor	Messung des Wasserdrucks	Betriebsspannung DC 5 V G 1/4" (muss durch Spannungsteiler mit Lora32 verbinden)	https://amzn.to/3iDe3vh
ARCELI YF-S201 1-30L/min Water Flow Meter	Durchfluss- sensor	Messung des Wasserdurchflusses	The lowest rated operating voltage: DC4.5 5V-24V. Maximum working current: 15mA (DC 5V) Working Voltage Range: DC 5~18V	https://amzn.to/3xmhiM0
Aukru Ultrasonic Module HC-SR04	Ultraschall- sensor	Messung des Wasserstandes	Static Current(Max) :2mA; Electrical Level Eingang:5V. ranging distance: 2cm~500 cm resolution: 0.3 cm	https://amzn.to/3gmvwGU

16.06.2021 Seite 24 von 27

Technische Spezifikation - Smarte Gartenbewässerung

DHT22 Digital Temperature and Humidity Sensor AM2302	Temperatur- sensor (optional)	Messung der Temperatur und Luftfeuchtigkeit	Betriebsspannung 3.3V	https://amzn.to/3xkpc8r
AZDelivery Soil Moisture Sensor Hygrometer Module V1.2	Bodenfeuchtig- keitssensor	Messung der Bodenfeuchte	Eingang 5V Ausgang 3.3V	https://amzn.to/3pSUmkS

Zusätzlich werden noch ein Steckbrett und Kabel zur Verbindung der Komponenten eingesetzt.

16.06.2021 Seite 25 von 27

Technische Spezifikation - Smarte Gartenbewässerung

Auflistung Bewässerungskomponenten:

Tabelle 5: Bewässerungskomponenten

Name	Beschreibung	Anwendungen	Schnittstellen & Spannungsbelegung	Bild
Flexible Tube TX	Verbindung Schlauch	Verbindung der Teile für den Wasserfluss	13 mm x 3 mm (1/2 Inch), 5 m Long PVC Hose with Fabric	https://amzn.to/3xr0hjP
Homgif Garden Irrigation System, Micro Drip Irrigation Kit	Bewässerung Schlauch (Drip System)	Beförderung des Wassers nach Magnetventil zu den Beeten, Bewässerung der Pflanzen	30 m Schlauch bis zu 35-40 m ² bewässern	https://amzn.to/3xlwLvH
T-piece with external/intern al/external thread	Schlauchverbing dung Schlauch Wasserdrucksse nsor	Anschluss des Wasserdrucksensors an der Wasserleitung	Size: G ½" max. Druck: 16 bar	https://amzn.to/3iElBy3
Threading Adapter	Wasserdrucksen sor Adapter	Adapter um Wasserdrucksensor mit T-Stück zu verbiWden	NPT 1/2 Male to G 1/4 Female	https://koolance.com/threading-ada pter-npt-1-2-male-to-g-1-4-female-a dt-n12m-g14f

16.06.2021 Seite 26 von 27

Technische Spezifikation - Smarte Gartenbewässerung

Gardena Tap Connector	Schlauchverbing dung Schlauch Ventil-Drip System	Verbindung nach dem Magnetventil mit dem Drip-System	21mm bzw. 1/2 Zoll zum Gartenschlauch (Gardena-Anschluss)	https://amzn.to/3gx6jlK
Sourcing Map 3 x Brass Hose Connector	Schlauchverbind ung Sensor zum Schlauch	Verbindung der Komponenten mit dem Verbindungsschlauch	Size: 14mm spike x G1/2 socket; Total length: 35mm; Hex width: 23mm; Spike length: 23mm	https://amzn.to/3wkJpuK
BGS 8095-12x20	Hose Clamps	Befestigung der Schläuche zu den Komponenten (festziehen)	12 x 20 mm 10 Pieces	https://amzn.to/3gwqlmL
Hose Clamps 2	Hose Clamps	Befestigung der Schläuche zu den Komponenten (festziehen) (andere Größe)	8x12 mm, Stainless Steel, 10 pcs.	https://amzn.to/3gBAw9B

16.06.2021 Seite 27 von 27