Sorting Algorithms

Slides and figures have been collected from various publicly available Internet sources for preparing the lecture slides of IT2001 course. I acknowledge and thank all the original authors for their contribution to prepare the content.

The problem of sorting

Input: sequence $\langle a_1, a_2, ..., a_n \rangle$ of numbers.

Output: permutation $\langle a'_1, a'_2, ..., a'_n \rangle$ such that $a'_1 \le a'_2 \le \cdots \le a'_n$.

Example:

Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Why Study Sorting Algorithms?

- There are a variety of situations that we can encounter
 - Do we have randomly ordered keys?
 - Are all keys distinct?
 - How large is the set of keys to be ordered?
 - Need guaranteed performance?

• Various algorithms are better suited to some of these situations

Some Definitions

Internal Sort

 The data to be sorted is all stored in the computer's main memory.

External Sort

 Some of the data to be sorted might be stored in some external, slower, device.

• In Place Sort

 The amount of extra space required to sort the data is constant with the input size.

Stability

• A STABLE sort preserves relative order of records with equal keys

Sorted on first key:

Sort file on second key:

Records with key value 3 are not in order on first key!!

Aaron	4	A	664-480-0023	097 Little	
Andrews	3	Α	874-088-1212	121 Whitman	
Battle	4	C	991-878-4944	308 Blair	
Chen	2	Α	884-232-5341	11 Dickinson	
Fox	1	Α	243-456-9091	101 Brown	
Furia	3	Α	766-093-9873	22 Brown	
Gazsi	4	В	665-303-0266	113 Walker	
Kanaga	3	В	898-122-9643	343 Forbes	
Rohde	3	A	232-343-5555	115 Holder	
Quilici	1	C	343-987-5642	32 McCosh	

Fox	1	A	243-456-9091	101 Brown	
Quilici	1	C	343-987-5642	32 McCosh	
Chen	2	A	884-232-5341	11 Dickinson	
Kanaga	3	В	898-122-9643	343 Forbes	
Andrews	3	A	874-088-1212	121 Whitman	
Furia	3	Α	766-093-9873	22 Brown	
Rohde	3	A	232-343-5555	115 Holder	
Battle	4	C	991-878-4944	308 Blair	
Gazsi	4	В	665-303-0266	113 Walker	
Aaron	4	A	664-480-0023	097 Little	

Insertion sort

```
INSERTION-SORT (A, n) \triangleright A[1 ... n]
                                  for j \leftarrow 2 to n
                                         do key \leftarrow A[j]
                                             i \leftarrow j - 1
  "pseudocode"
                                              while i > 0 and A[i] > key
                                                     do A[i+1] \leftarrow A[i]
                                                         i \leftarrow i - 1
                                             A[i+1] = key
                                                                     n
A:
                 sorted
```

8 2 4 9 3 6

Kinds of analyses

Worst-case: (usually)

• T(n) = maximum time of algorithm on any input of size n.

Average-case: (sometimes)

- T(n) = expected time of algorithm over all inputs of size n.
- Need assumption of statistical distribution of inputs.

Best-case: (NEVER)

Cheat with a slow algorithm that works fast on some input.

Analysis of Insertion Sort

t_i: # of times the while statement is executed at iteration j

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} \left(t_j - 1\right) + c_7 \sum_{j=2}^{n} \left(t_j - 1\right) + c_8 (n-1)$$

Insertion sort analysis

Worst case: Input reverse sorted.

$$T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2)$$
 [arithmetic series]

Average case: All permutations equally likely.

$$T(n) = \sum_{j=2}^{n} \Theta(j/2) = \Theta(n^2)$$

Is insertion sort a fast sorting algorithm?

- Moderately so, for small *n*.
- Not at all, for large *n*.

Selection Sort

Idea:

- Find the smallest element in the array
- Exchange it with the element in the first position
- Find the second smallest element and exchange it with the element in the second position
- Continue until the array is sorted

Disadvantage:

 Running time depends only slightly on the amount of order in the file

Example

Selection Sort

```
Alg.: SELECTION-SORT(A)
   n \leftarrow length[A]
                                                              6
   for j \leftarrow 1 to n - 1
       do smallest \leftarrow j
            for i \leftarrow j + 1 to n
                 do if A[i] < A[smallest]
                         then smallest \leftarrow i
            exchange A[j] \leftrightarrow A[smallest]
```

Analysis of Selection Sort

$$\begin{array}{llll} \textit{Alg.:} & \mathsf{SELECTION\text{-}SORT}(A) & \mathsf{cost} & \mathsf{times} \\ & \mathsf{n} \leftarrow \mathsf{length}[A] & \mathsf{c}_1 & 1 \\ & \mathsf{for} \ \mathsf{j} \leftarrow 1 \ \mathsf{to} \ \mathsf{n} - 1 & \mathsf{c}_2 & \mathsf{n} \\ & \mathsf{do} \ \mathsf{smallest} \leftarrow \mathsf{j} & \mathsf{c}_3 & \mathsf{n} - 1 \\ & \approx \mathsf{n}^2/2 & \mathsf{comparisons} & \mathsf{for} \ \mathsf{i} \leftarrow \mathsf{j} + 1 \ \mathsf{to} \ \mathsf{n} & \mathsf{c}_4 \sum_{j=1}^{n-1} (n-j+1) \\ & \mathsf{do} \ \mathsf{if} \ A[\mathsf{i}] < A[\mathsf{smallest}] & \mathsf{c}_5 \sum_{j=1}^{n-1} (n-j) \\ & \approx \mathsf{n} & \mathsf{then} \ \mathsf{smallest} \leftarrow \mathsf{i} & \mathsf{c}_6 \sum_{j=1}^{n-1} (n-j) \\ & \mathsf{exchanges} & \mathsf{then} \ \mathsf{smallest} \leftarrow \mathsf{i} & \mathsf{c}_6 \sum_{j=1}^{n-1} (n-j) \\ & \mathsf{exchange} \ A[\mathsf{j}] \leftrightarrow A[\mathsf{smallest}] \ \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{smallest} & \mathsf{c}_7 & \mathsf{n} - 1 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{c}_7 & \mathsf{c}_7 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{c}_7 & \mathsf{c}_7 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{c}_7 & \mathsf{c}_7 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{c}_7 & \mathsf{c}_7 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{c}_7 & \mathsf{c}_7 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{c}_7 & \mathsf{c}_7 \\ & \mathsf{then} \ \mathsf{smallest} & \mathsf{c}_7 & \mathsf{c}_7 & \mathsf{c}_7 & \mathsf{c}_7 \\ & \mathsf{then} \ \mathsf{c}_7 & \mathsf{c}_7 & \mathsf{c}_7 & \mathsf{c}_7 \\ & \mathsf{then} \ \mathsf{c}_7 & \mathsf{c}_7 & \mathsf{c}_$$

Divide and Conquer (Merge Sort)

Divide and Conquer

- Recursive in structure
 - Divide the problem into sub-problems that are similar to the original but smaller in size
 - Conquer the sub-problems by solving them recursively. If they are small enough, just solve them in a straight forward manner.
 - Combine the solutions to create a solution to the original problem

An Example: Merge Sort

- **Sorting Problem:** Sort a sequence of *n* elements into non-decreasing order.
- Divide: Divide the n-element sequence to be sorted into two subsequences of n/2 elements each
- Conquer: Sort the two subsequences recursively using merge sort.
- Combine: Merge the two sorted subsequences to produce the sorted answer.

Merge – Example

Procedure Merge

```
Merge(A, p, q, r)
1 n_1 \leftarrow q - p + 1
2 n_2 \leftarrow r - q
        for i \leftarrow 1 to n_1
           do L[i] \leftarrow A[p+i-1]
      for j \leftarrow 1 to n_2
           do R[i] \leftarrow A[q+j]
     L[n_1+1] \leftarrow \infty
      R[n_2+1] \leftarrow \infty 
      i ← 1
       j ← 1
10
        for k \leftarrow p to r
12
            do if L[i] \leq R[j] \leftarrow
13
               then A[k] \leftarrow L[i]
                        i \leftarrow i + 1
14
15
               else A[k] \leftarrow R[j]
                       j \leftarrow j + 1
16
```

Input: Array containing sorted subarrays A[p..q] and A[q+1..r].

Output: Merged sorted subarray in A[p..r].

Sentinels, to avoid having to check if either subarray is fully copied at each step.

Time = $\Theta(n)$ to merge a total of n elements (linear time).

Merge-Sort (A, p, r)

INPUT: a sequence of *n* numbers stored in array A

OUTPUT: an ordered sequence of *n* numbers

```
MergeSort (A, p, r) // sort A[p..r] by divide & conquer1 if p < r // If n = 1, done2 then q \leftarrow \lfloor (p+r)/2 \rfloor3 MergeSort (A, p, q)4 MergeSort (A, q+1, r)5 Merge (A, p, q, r) // merges A[p..q] with A[q+1..r]
```

Initial Call: MergeSort(A, 1, n)

Merge Sort – Example

Merge Sort – Example

Analysis of Merge Sort

- Running time *T(n)* of Merge Sort:
- Divide: computing the middle takes $\Theta(1)$
- Conquer: solving 2 subproblems takes 2T(n/2)
- Combine: merging n elements takes $\Theta(n)$
- Total:

$$T(n) = \Theta(1)$$
 if $n = 1$
 $T(n) = 2T(n/2) + \Theta(n)$ if $n > 1$

 $\Rightarrow T(n) = \Theta(n \lg n)$ (CLRS book, Chapter 4)

Conclusions

- $\Theta(n \lg n)$ grows more slowly than $\Theta(n^2)$.
- Therefore, merge sort asymptotically beats insertion sort in the worst case.
- In practice, merge sort beats insertion sort for n > 30 or so.

Comparison Sorting

Sort	Worst Case	Average Case	Best Case	Comments
Selection Sort	$\Theta(N^2)$	$\Theta(N^2)$	$\Theta(N^2)$	Fast for small N
Insertion Sort	$\Theta(N^2)$	$\Theta(N^2)$	$\Theta(N)$	Fast for small N
Merge Sort	Θ(N lg N)	Θ(N lg N)	Θ(N lg N)	Requires memory
Heap Sort	Θ(N lg N)	Θ(N lg N)	Θ(N lg N)	Large constants
Quick Sort	$\Theta(N^2)$	Θ(N lg N)	Θ(N lg N)	Small constants

Recurrence for merge sort

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1; \\ 2T(n/2) + \Theta(n) \text{ if } n > 1. \end{cases}$$

• We shall usually omit stating the base case when $T(n) = \Theta(1)$ for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence.

Solve
$$T(n) = 2T(n/2) + cn$$
, where $c > 0$ is constant.
$$T(n)$$

References

- http://www.cse.unr.edu/~bebis/
- http://courses.csail.mit.edu/6.046/spring04/lectures