Fibers

Definition 0.1. Let S be an R-algebra and let $\mathfrak p$ be a prime ideal of R. We define the **fiber of** S **over** $\mathfrak p$ to be the $\kappa(\mathfrak p)$ -algebra $\kappa(\mathfrak p) \otimes_R S$ where $\kappa(\mathfrak p) = K(R/\mathfrak p)$ denotes the quotient field of $R/\mathfrak p$. In particular, if $\mathfrak m$ is a maximal ideal of R, then the fiber of S over $\mathfrak m$ is the $R/\mathfrak m$ -algebra $R/\mathfrak m \otimes_R S \simeq S/\mathfrak m S$. If R is an integral domain with fraction field K, then **generic fiber of** S is the K-algebra $K \otimes_R S$.

Remark 1. Let $\iota: A \to B$ be an inclusion of k-algebras where k is a field. Geometrically speaking, the inclusion map $\iota: A \to B$ of k-algebras corresponds to the morphism $\pi: Y \to X$ of affine k-schemes, where $X = \operatorname{Spec} A$, $Y = \operatorname{Spec} B$, and where π is defined by

$$\pi(\mathfrak{q}) = A \cap \mathfrak{q}$$

for all primes \mathfrak{q} of B. If $\iota: A \to B$ is an integral extension, then π is surjective (this is referred to as the **lying over** property for integral extensions). Note that π is continuous with respect to the Zariski topology, for if U := D(a) is an open subset of X where $a \in A$, then

$$\pi^{-1}(U) = \pi^{-1}(D(a)) = D(\iota(a)) := V.$$

In other words, we have $a \notin A \cap \mathfrak{q}$ if and only if $a \notin \mathfrak{q}$ for all primes \mathfrak{q} of B. Now, given a prime \mathfrak{p} of A, the fiber of $\pi \colon Y \to X$ over \mathfrak{p} , denoted $Y_{\mathfrak{p}}$, is the pullback of $\pi \colon Y \to X$ with respect to the morphism $\varepsilon_{\mathfrak{p}} \colon \operatorname{Spec}(\kappa(\mathfrak{p})) \to X$ where $\varepsilon_{\mathfrak{p}}$ is the morphism which corresponds to the \mathbb{k} -algebra homomorphism $A \to \kappa(\mathfrak{p})$. In particular, $Y_{\mathfrak{p}}$ is an affine \mathbb{k} -scheme and the \mathbb{k} -algebra which corresponds to $Y_{\mathfrak{p}}$ is $\kappa(\mathfrak{p}) \otimes_A B$, which is precisely how we defined the fiber of B over \mathfrak{p} in the first place.

Example 0.1. Let $R = \mathbb{k}[a] = \mathbb{k}[a_1, a_2, a_3]$ and let $S = R[x]/f = R[x_1, x_2]/f$ where $f = a_1x_1^2 + a_2x_1x_2 + a_3x_2^2$. Also for $\alpha = (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{k}^3$, we set

$$\mathfrak{m}_{\alpha} = \langle a_1 - \alpha_1, a_2 - \alpha_2, a_3 - \alpha_3 \rangle$$
 and $f_{\alpha} = \alpha_1 x_1^2 + \alpha_2 x_1 x_2 + \alpha_3 x_2^2$.

Then the fiber of S over \mathfrak{m}_{α} is the \mathbb{k} -algebra $S_{\alpha} := \mathbb{k}[a,x]/f_{\alpha}$. Geometrically speaking, the inclusion map $\iota \colon R \to S$ of \mathbb{k} -algebras corresponds to the projection $\pi \colon Y \to X$ of affine \mathbb{k} -schemes, where $X = \operatorname{Spec} R$ and $Y = \operatorname{Spec} S$. The fiber of π over \mathfrak{m}_{α} is given by

$$\pi^{-1}(\{\mathfrak{m}_{\alpha}\}) = V(f_{\alpha}) = \operatorname{Spec}(S_{\alpha}).$$

Example 0.2. Let $R = \mathbb{k}[t]$, let $S = R[x]/\langle x^2 - t \rangle$, and let $\mathfrak{p}_{\tau} = \langle t - \tau \rangle$ where $\tau \in \mathbb{k}$. Then for $\tau \neq 0$, the fiber of S over \mathfrak{p}_{τ} is $\mathbb{k}[x]/\langle x^2 - \tau \rangle \cong \mathbb{k} \times \mathbb{k}$. The fiber over \mathfrak{p}_0 is $S_0 := \mathbb{k}[x]/\langle x^2 \rangle$. Finally, the fiber over the zero ideal $\langle 0 \rangle$ is $\mathbb{k}(t)[x]/\langle x^2 - t \rangle$, a field of degree 2 over the residue field $\kappa(\langle 0 \rangle) = \mathbb{k}(t)$. We see that for each prime \mathfrak{p} , the fiber over \mathfrak{p} is a vector space of dimension 2 over its residue field $\kappa(\mathfrak{p})$. In fact, S is a free S-module on the generators $S_0 \times S_0 \times S_$