Classification with discriminative models

CSE 250B

Generative models: pros and cons

Advantages:

- Multiclass is a breeze
- Special density models (such as Bayes nets or hidden Markov models) can model temporal and other dependencies
- Returns not just a classification but also a confidence Pr(y|x)
- For many common models: converges fast

Disadvantages:

- Formula for $\Pr(y|x)$ assumes the class-specific density models are perfect, but this is never true
- If we only care about classification, shouldn't we focus on the decision boundary rather than trying to model other aspects of the distribution of x?

Classification with parametrized models

Classifiers with a fixed number of parameters can represent a limited set of functions. Learning a model is about picking a good approximation.

Typically the x's are points in p-dimensional Euclidean space, \mathbb{R}^p .

Two ways to classify:

- Generative: model the individual classes.
- Discriminative: model the decision boundary between the classes.

Generative versus discriminative

The generative way:

- Fit: π_0, π_1, P_0, P_1
- This determines a full joint distribution Pr(x, y)
- Use Bayes' rule to obtain Pr(y|x)

Discriminative: model $\Pr(y|x)$ directly In our earlier terminology: forget about the μ , just learn the η

The logistic regression model

What model to use for Pr(y|x)?

• Say $\mathcal{Y} = \{-1, 1\}$. Recall: for Gaussians with common covariance,

$$\ln \frac{\Pr(y=1 \mid x)}{\Pr(y=-1 \mid x)} = \underbrace{w \cdot x + \theta}_{\text{linear}}$$

- Can drop θ by adding an extra feature to x.
- Then $Pr(y = 1 \mid x) = Pr(y = -1 \mid x) e^{w \cdot x}$, whereupon

$$\Pr(y = -1 \mid x) = \frac{1}{1 + e^{w \cdot x}}$$

$$\Pr(y = 1 \mid x) = 1 - \frac{1}{1 + e^{w \cdot x}} = \frac{e^{w \cdot x}}{1 + e^{w \cdot x}} = \frac{1}{1 + e^{-w \cdot x}}$$

More concisely,

$$\Pr(y \mid x) = \frac{1}{1 + e^{-y(w \cdot x)}}$$

This is the **logistic regression model**, parametrized by w.

Fitting w

The maximum-likelihood principle: given a data set

$$(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \{-1, 1\},$$

pick the $w \in \mathbb{R}^p$ that maximizes

$$\prod_{i=1}^n \Pr_{w}(y^{(i)} \mid x^{(i)}).$$

Easier to work with sums, so take log to get loss function

$$L(w) = -\sum_{i=1}^{n} \ln \Pr_{w}(y^{(i)} \mid x^{(i)}) = \sum_{i=1}^{n} \ln(1 + e^{-y^{(i)}(w \cdot x^{(i)})})$$

Our goal is to minimize L(w).

The good news: L(w) is **convex** in w.

The squashing function

Take $\mathcal{X} = \mathbb{R}^p$ and $\mathcal{Y} = \{-1, 1\}$. The model specified by $w \in \mathbb{R}^p$ is

$$\Pr_{w}(y \mid x) = \frac{1}{1 + e^{-y(w \cdot x)}} = g(y(w \cdot x)),$$

where $g(z) = 1/(1 + e^{-z})$ is the squashing function.

One dimensional example

$$\Pr_{w}(y \mid x) = \frac{1}{1 + e^{-ywx}}, \quad w \in \mathbb{R}$$

Example, cont'd

How to find the minimum of this convex function? A variety of options:

- Gradient descent
- Newton-Raphson

and many others.

Newton-Raphson procedure for logistic regression

- Set $w_0 = 0$
- For $t = 0, 1, 2, \ldots$, until convergence:

$$w_{t+1} = w_t + \eta_t (X^T D_t X)^{-1} \sum_{i=1}^n y^{(i)} x^{(i)} \Pr_{w_t} (-y^{(i)} | x^{(i)}),$$

where

- X is the $n \times p$ data matrix with one point per row
- D_t is an $n \times n$ diagonal matrix with (i, i) entry

$$D_{t,ii} = \Pr_{w_t}(1|x^{(i)}) \Pr_{w_t}(-1|x^{(i)})$$

• η_t is a step size that is either fixed to 1 ("iterative reweighted least squares") or chosen by line search to minimize $L(w_{t+1})$.

Gradient descent procedure for logistic regression

Given
$$(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \{-1, 1\}$$
, find
$$\underset{w \in \mathbb{R}^p}{\arg\min} L(w) \ = \ \sum_{i=1}^n \ln(1 + e^{-y^{(i)}(w \cdot x^{(i)})})$$

- Set $w_0 = 0$
- For $t = 0, 1, 2, \ldots$, until convergence:

$$w_{t+1} = w_t + \eta_t \sum_{i=1}^n y^{(i)} x^{(i)} \underbrace{\Pr_{w_t}(-y^{(i)}|x^{(i)})}_{\text{doubt}_t(x^{(i)},y^{(i)})},$$

where η_t is a step size chosen by line search to minimize $L(w_{t+1})$.

Example: "wine" data set

Recall: data from three wineries from the same region of Italy.

- 13 attributes: hue, color intensity, flavanoids, ash content, ...
- 178 instances in all: split into 118 train, 60 test

Pick two classes and just two attributes (hue, alcohol content).

Test error using logistic regression: 10%.

A closer look at the logistic loss

For $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)}) \in \mathbb{R}^p \times \{-1, +1\}$,

$$L(w) = \sum_{i=1}^{n} \ln(1 + e^{-y^{(i)}(w \cdot x^{(i)})}).$$

Can't we just minimize this by calculus?

First derivative. There are p partial derivatives $\partial L/\partial w_i$. Put into a vector:

$$\nabla L(w) = \left(\frac{\partial L}{\partial w_1}, \dots, \frac{\partial L}{\partial w_p}\right).$$

$$\frac{\partial L}{\partial w_j} = \sum_{i=1}^n \frac{e^{-y^{(i)}(w \cdot x^{(i)})}}{1 + e^{-y^{(i)}(w \cdot x^{(i)})}} (-y^{(i)} x_j^{(i)}) = -\sum_{i=1}^n y^{(i)} x_j^{(i)} \frac{1}{1 + e^{y^{(i)}(w \cdot x^{(i)})}}$$

$$\nabla L(w) = -\sum_{i=1}^n y^{(i)} x_i^{(i)} \frac{1}{1 + e^{y^{(i)}(w \cdot x^{(i)})}}$$

We know $\nabla L(w) = 0$ iff w is a local optimum. But we want a **global** optimum.

Good news: L(w) is **convex**, so local optimum implies global optimum.

Quick quiz

Compute the first derivative of the following functions on \mathbb{R}^p .

- **1** $F(w) = u \cdot w$, where $u \in \mathbb{R}^p$
- **2** $F(w) = w^T w$

Convexity

A function $f: \mathbb{R}^p \to \mathbb{R}$ is **convex** if for all $a, b \in \mathbb{R}^p$ and $0 < \theta < 1$,

$$f(\theta a + (1-\theta)b) \leq \theta f(a) + (1-\theta)f(b).$$

It is **strictly convex** if strict inequality holds for all $a \neq b$. f is **concave** (resp., **strictly concave**) iff -f is convex (resp., strictly convex).

Second-derivative test for convexity

A function $f: \mathbb{R}^p \to \mathbb{R}$ has p^2 second partial derivatives $\frac{\partial^2 f}{\partial z_j \partial z_k}$ at any $z \in \mathbb{R}^p$ (assuming these exist).

Assemble into a $p \times p$ matrix, the **Hessian** H(z):

$$H_{jk} = \frac{\partial^2 f}{\partial z_i \partial z_k}.$$

Useful fact. Suppose that for $f : \mathbb{R}^p \to \mathbb{R}$, the second partial derivatives exist everywhere and are continuous functions of z. Then:

- \bullet \bullet \bullet \bullet \bullet \bullet is a symmetric matrix.
- **2** f is convex if and only if H(z) is positive semidefinite for all $z \in \mathbb{R}^p$.

Quick quiz

Is this function $f: \mathbb{R}^p \to \mathbb{R}$ convex?

$$f(z) = (u \cdot z)^2$$

(Here *u* is some fixed vector in \mathbb{R}^p .)

Gradient descent

For minimizing a function L(w):

- $w_0 = 0, t = 0$
- while $\nabla L(w_t) \not\approx 0$: $w_{t+1} = w_t \eta_t \nabla L(w_t)$ t = t + 1

Here η_t is the *step size* at time t.

Convexity of logistic regression loss function

Recall the loss function: for data $(x^{(i)}, y^{(i)}) \in \mathbb{R}^p \times \{-1, +1\}$,

$$L(w) = \sum_{i=1}^{n} \ln(1 + e^{-y^{(i)}(w \cdot x^{(i)})}).$$

We already know the first derivative:

$$\frac{\partial L}{\partial w_j} = -\sum_{i=1}^n y^{(i)} x_j^{(i)} \frac{1}{1 + e^{y^{(i)}(w \cdot x^{(i)})}}.$$

Second derivative: the (j, k) entry of the Hessian H(w) is

$$\begin{split} \frac{\partial L}{\partial w_k \partial w_j} &= -\sum_{i=1}^n y^{(i)} x_j^{(i)} (-1) \frac{e^{y^{(i)}(w \cdot x^{(i)})}}{(1 + e^{y^{(i)}(w \cdot x^{(i)})})^2} y^{(i)} x_k^{(i)} \\ &= \sum_{i=1}^n x_j^{(i)} x_k^{(i)} \frac{e^{y^{(i)}(w \cdot x^{(i)})}}{(1 + e^{y^{(i)}(w \cdot x^{(i)})})^2} = \sum_{i=1}^n x_j^{(i)} x_k^{(i)} \frac{1}{1 + e^{w \cdot x^{(i)}}} \frac{1}{1 + e^{-w \cdot x^{(i)}}} \end{split}$$

This is $u_j \cdot u_k$, where vectors $u_1, \ldots, u_p \in \mathbb{R}^n$ are defined as follows:

$$u_j$$
 has i th coordinate $x_j^{(i)}\sqrt{\frac{1}{(1+e^{w\cdot x^{(i)}})(1+e^{-w\cdot x^{(i)}})}}$.

Therefore $H(w) = UU^T$, where U is the matrix with rows $u_i \Rightarrow \mathbf{convex}$.

Gradient descent: rationale

"Differentiable" means "locally linear".

For *small* displacements $u \in \mathbb{R}^p$.

$$L(w+u) \approx L(w) + u \cdot \nabla L(w)$$
.

Therefore, if $u = -\eta \nabla L(w)$ is small,

$$L(w+u) \approx L(w) - \eta \|\nabla L(w)\|^2 < L(w).$$

The step size matters

Gradient descent update: $w_{t+1} = w_t - \eta_t \nabla L(w_t)$.

- Step size η_t too small: not much progress
- Too large: overshoot the mark

One option: pick η_t using a line search

$$\eta_t = \underset{\alpha>0}{\operatorname{arg\,min}} L(w_t - \alpha \nabla L(w_t)).$$

Newton-Raphson

For minimizing a function L(w):

- $w_o = 0, t = 0$
- while $\nabla L(w_t) \not\approx 0$
 - $w_{t+1} = w_t \eta_t H^{-1}(w_t) \nabla L(w_t)$
 - t = t + 1

 $H^{-1}(w)$ is the inverse of the Hessian at w

Variant: stochastic gradient descent

Recall gradient descent update for logistic regression: at time t

$$w_{t+1} = w_t + \eta_t \sum_{i=1}^n y^{(i)} x^{(i)} \underbrace{\Pr_{w_t}(-y^{(i)}|x^{(i)})}_{\text{doubt}_t(x^{(i)},y^{(i)})}.$$

Each update involves the entire data set, which is inconvenient.

Stochastic gradient descent makes updates based on just one point:

- Get next data point (x, y) (e.g., keep cycling through the data set)
- $w_{t+1} = w_t + \eta_t y x \Pr_{w_t}(-y|x).$

Convenient for very large data sets.

Another option: make updates based on "mini-batches" of data points.

Newton-Raphson: rationale

Second-order Taylor expansion: for small u,

$$L(w+u) \approx L(w) + u \cdot \nabla L(w) + \frac{1}{2}u^T H(w)u.$$

To minimize this quadratic approximation, set derivative to zero:

$$\nabla L(w) + H(w)u = 0 \Rightarrow u = -H^{-1}(w)\nabla L(w).$$

Variant: quasi-Newton methods

For optimizing a function over \mathbb{R}^p , the Newton update involves computing the $p \times p$ Hessian at each time step:

$$w_{t+1} = w_t - \eta_t H^{-1}(w_t) \nabla L(w_t).$$

Speed things up by using an approximation B_t of $H^{-1}(w_t)$:

- Initialize it to the identity, say.
- Efficiently update $B_t \to B_{t+1}$ using a second-order approximation based on $w_{t+1}, w_t, \nabla L(w_t), \nabla L(w_{t+1})$.

Example: the BFGS (Broyden-Fletcher-Goldfarb-Shanno) procedure.

Even better: instead of maintaining a *dense* matrix B_t , use an O(p)-sized approximation to it. Example: L-BFGS ("Limited memory BFGS").