CSE 575: Statistical Machine Learning

Jingrui He

CIDSE, ASU

Graphical Models

What is a graphical model?

A graphical model is a way of representing probabilistic relationships between random variables.

Conditional (in)dependencies are represented by (missing) edges:

Undirected edges simply give correlations between variables (Markov Random Field or Undirected Graphical model):

Directed edges give causality relationships (Bayesian Network or Directed Graphical Model):

"Graphical models are a marriage between probability theory and graph theory.

They provide a natural tool for dealing with two problems that occur throughout applied mathematics and engineering — uncertainty and complexity —

and in particular they are playing an increasingly important role in the design and analysis of machine learning algorithms.

Fundamental to the idea of a graphical model is the notion of modularity – a complex system is built by combining simpler parts.

The graphical model framework provides a way to view all of these systems as instances of a common underlying formalism.

This view has many advantages -- in particular, specialized techniques that have been developed in one field can be transferred between research communities and exploited more widely.

Moreover, the graphical model formalism provides a natural framework for the design of new systems."

--- Michael Jordan, 1998.

What can we do with graphical models?

- ☐ Graphs are an intuitive way of representing and visualizing the relationships between many variables. (Examples: family trees, electric circuit diagrams, neural networks)
- ☐ Graphical models allow us to define general messagepassing algorithms that implement probabilistic inference efficiently. Thus we can answer queries like "What is P(A|C = c)?" without enumerating all settings of all variables in the model.
- A graph allows us to abstract out the conditional independence relationships between the variables from the details of their parametric forms. Thus we can answer questions like: "Is A dependent of B given that we know the value of C?" just by looking at the graph.

Applications of graphical models

- ☐ Handwriting recognition
- ☐ Webpage classification
- ☐ Information extraction
- ☐ Speech recognition
- ☐ Computer vision
- ☐ Modeling of gene regulatory networks
- ☐ Gene finding and diagnosis of diseases
- ☐ Graphical models for protein structure

Handwriting recognition 1

Character recognition, e.g., kernel SVMs

Handwriting recognition 2

Webpage classification 1

Company home page
vs
Personal home page
vs
University home page

. .

VS

Webpage classification 2

Probability Distributions

- \square Let $X_1,...,X_p$ be discrete random variables
- \square Let P be a joint distribution over $X_1,...,X_p$

□ If the variables are binary, then we need O(2^p) parameters to describe P

- ☐Can we do better?
 - ☐ Key idea: use properties of independence

Independent Random Variables

- ☐ Two variables X and Y are **independent** if
 - -P(X = x | Y = y) = P(X = x) for all values x, y
 - That is, learning the values of Y does not change prediction of X
- ☐ If X and Y are independent then
 - -P(X,Y) = P(X|Y)P(Y) = P(X)P(Y)
- \square In general, if $X_1,...,X_p$ are independent, then

$$- P(X_1,...,X_p) = P(X_1)...P(X_p)$$

Conditional Independence

- □ Unfortunately, most of random variables of interest are not independent of each other
- ☐A more suitable notion is that of **conditional independence**
- ☐ Two variables X and Y are conditionally independent given Z if
 - P(X = x | Y = y,Z=z) = P(X = x | Z=z) for all values x,y,z
 - That is, learning the values of Y does not change prediction of X once we know the value of Z
 - notation: $X \perp Y \mid Z$

Example: Naïve Bayes Model

- ☐A common model in early diagnosis:
 - Symptoms are conditionally independent given the disease (or fault)
- ☐Thus, if
 - $-X_1,...,X_p$ denote whether the symptoms are exhibited by the patient (headache, high-fever, etc.) and
 - H denotes the hypothesis about the patient's health
- then, $P(X_1,...,X_p,H) = P(H)P(X_1|H)...P(X_p|H)_{,}$
- ☐ This Naïve Bayes model allows compact representation
 - It does make strong independence assumptions

Probabilistic Graphical Models I

- ☐ Probabilities play a central role in modern pattern recognition.
- ☐ The probabilistic inference and learning may be complex.
- ☐ It is advantageous to augment the analysis using diagrammatic representations of probability distributions, called probabilistic graphical models.

Probabilistic Graphical Models II

- ☐ Insights into the properties of the model, including conditional independence properties, can be obtained by inspection of the graph.
- ☐ Complex computations, required to perform inference and learning in sophisticated models, can be expressed in terms of graphical manipulations, in which underlying mathematical expressions are carried along implicitly.

A Few Definitions

- Nodes (vertices) + links (arcs, edges)
 - Node: a random variable
 - ☐ Link: a probabilistic relationship
- ☐ Directed graphical models or Bayesian networks.
- ☐ Undirected graphical models or Markov random fields.

Different Types of BN

- Directed: Bayesian Networks
 - E.g., Hidden Markov Model
- Undirected: Markov Random Field
 - E.g., Restricted/Deep Boltzmann Machine
 - E.g., Conditional Random Fields
- Hybrid Graphical Models
 - E.g., Deep Belief Networks
 - E.g., Hierarchical-Deep Models

Bayesian Networks Representation

Bayesian networks

- One of the most exciting advancements in statistical AI in the last 10-15 years
- Generalizes naïve Bayes and logistic regression classifiers
- Compact representation for exponentiallylarge probability distributions
- Exploit conditional independencies

Causal structure

- Suppose we know the following:
 - The flu causes sinus inflammation
 - Allergies cause sinus inflammation
 - Sinus inflammation causes a runny nose
 - Sinus inflammation causes headaches
- How are these connected?

Possible queries

Factored joint distribution - Preview

Number of parameters

Key: Independence assumptions

Knowing sinus separates the variables from each other

(Marginal) Independence

Flu and Allergy are (marginally) independent

Flu = t	
Flu = f	

More Generally:

	Flu = t	Flu = f
Allergy = t		
Allergy = f		

Conditional independence

 Flu and Headache are not (marginally) independent

Flu and Headache are independent given Sinus infection

The independence assumption

Local Markov Assumption:

A variable X is independent of its non-descendants given its parents and only its parents

Naïve Bayes revisited

Local Markov Assumption:

A variable X is independent of its non-descendants given its parents and only its parents

What about probabilities? Conditional probability tables (CPTs)

Joint distribution

Why can we decompose? Markov Assumption!

The chain rule of probabilities

• P(A,B) = P(A)P(B|A)

More generally:

$$-P(X_1,...,X_n) = P(X_1) \cdot P(X_2|X_1) \cdot ... \cdot P(X_n|X_1, ...,X_{n-1})$$

Chain rule & Joint distribution

Local Markov Assumption:

A variable X is independent of its non-descendants given its parents and only its parents

Two (trivial) special cases

Edgeless graph

Fully-connected graph

The Representation Theorem – Joint Distribution to BN

BN:

Encodes independence assumptions

If conditional independencies in BN are a subset of conditional independencies in P

Obtain

Joint probability distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

Real Bayesian networks: Applications

- Diagnosis of lymph node disease
- Speech recognition
- Microsoft office and Windows
 - http://www.research.microsoft.com/research/dtg/
- Study Human genome
- Robot mapping
- Robots to identify meteorites to study
- Modeling fMRI data
- Anomaly detection
- Fault diagnosis
- Modeling sensor network data

A general Bayes net

- Set of random variables
- Directed acyclic graph
 - Encodes independence assumptions
- CPTs

Joint distribution:

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{Pa}_{X_i})$$

How many parameters in a BN?

- Discrete variables X₁, ..., X_n
- Graph
 - Defines parents of X_i , Pa_{X_i}
- CPTs $P(X_i | Pa_{X_i})$

Independencies encoded in BN

- We said: All you need is the local Markov assumption
 - (X_i ⊥ NonDescendants_{Xi} | Pa_{Xi})
- What are the independencies encoded by a BN?
 - Only assumption is local Markov
 - But many others can be derived using the algebra of conditional independencies!!!

Understanding independencies in BNs – BNs with 3 nodes

Indirect causal effect:

Indirect evidential effect:

Common cause:

Local Markov Assumption:

A variable X is independent of its non-descendants given its parents and only its parents

Common effect:

Hidden Markov Models

Adventures of our BN hero

- Compact representation for probability distributions
- 1. Naïve Bayes

- Fast inference
- Fast learning

 But... Who are the most popular kids? 2 and 3.
Hidden Markov models (HMMs)
Kalman Filters

Handwriting recognition

Character recognition, e.g., kernel SVMs

Example of a hidden Markov model (HMM)

Understanding the HMM Semantics

HMMs semantics: Details

Just 3 distributions:

$$P(X_1)$$

$$P(X_i | X_{i-1})$$

$$P(O_i \mid X_i)$$

HMMs semantics: Joint distribution

$$P(X_1, ..., X_n \mid o_1, ..., o_n) = P(X_{1:n} \mid o_{1:n})$$

$$\propto P(X_1)P(o_1 \mid X_1) \prod_{i=2}^n P(X_i \mid X_{i-1})P(o_i \mid X_i)$$

Learning HMMs from fully observable data is easy

Learn 3 distributions:

$$P(X_1)$$

$$P(O_i \mid X_i)$$

$$P(X_i | X_{i-1})$$

Possible inference tasks in an HMM

Marginal probability of a hidden variable:

Viterbi decoding – most likely trajectory for hidden vars: