2B: Orders of Growth

CS1101S: Programming Methodology

Martin Henz

August 19, 2016

- Orders of Growth
- 2 Growth of Resources
- 3 Big Theta, Oh, Omega
- Two Famous Algorithms

Orders of Growth

Exponential growth

The first version of fib runs in a time that grows exponentially with the argument *n*.

Linear growth

The second version of fib runs in a time (linearly) proportional to the argument n.

What exactly do we mean by this?

Purpose

Rough measure

We are interested in a rough measure of resources used by a computational process.

Abstraction

"Order of growth" is an abstraction technique. We decide to ignore details that we deem irrelevant: the processor speed of the computer, the programming environment, the programming language, or mindor differences in programming style.

Recap: Resources

- Time: How long it takes to run the program?
- Space: How much memory do we need to run the program?

Example: Double the argument of factorial

```
factorial(2)
2 * factorial(1)
2 * 1
factorial (4)
4 * factorial(3)
4 * (3 * factorial(2))
4 * (3 * (2 * factorial(1)))
4 * (3 * (2 * 1))
4 * (3 * 2)
4 * 6
2.4
```

Example: First version of fib

The number of leaves in the recursion tree?

fib(n+1)

Comparision

- fib(10) needs to visit fib(11)=89 leaves
- fib(20) needs to visit fib(21)=10946 leaves
- fib(100) needs to visit
 fib(101)=573147844013817084101 leaves

"Big Theta"

What are we talking about?

Let n denote the size of the problem, and let r(n) denote the resource needed solving the problem of size n.

Definition

The function r has order of growth $\Theta(g(n))$ if there are positive constants k_1 and k_2 such that $k_1 \cdot g(n) \leq r(n) \leq k_2 \cdot g(n)$ for any sufficiently large value of n.

What does "sufficiently large" mean?

Definition from previous slide

The function r has order of growth $\Theta(g(n))$ if there are positive constants k_1 and k_2 such that $k_1 \cdot g(n) \leq r(n) \leq k_2 \cdot g(n)$ for any sufficiently large value of n.

More formal definition

The function r has order of growth $\Theta(g(n))$ if there are positive constants k_1 and k_2 and a number n_0 such that $k_1 \cdot g(n) \le r(n) \le k_2 \cdot g(n)$ for any $n > n_0$.

"Big Oh"

What are we talking about?

Let n denote the size of the problem, and let r(n) denote the resource needed solving the problem of size n.

Definition

The function r has order of growth O(g(n)) if there is a positive constant k such that $r(n) \le k \cdot g(n)$ for any sufficiently large value of n.

"Big Omega"

What are we talking about?

Let n denote the size of the problem, and let r(n) denote the resource needed solving the problem of size n.

Definition

The function r has order of growth $\Omega(g(n))$ if there is a positive constant k such that $k \cdot g(n) \le r(n)$ for any sufficiently large value of n.

Do constants matter?

Let's say r has order of growth $\Theta(n^2)$ Does r also have order of growth $\Theta(0.5n^2)$?

Constants don't matter

We can freely choose k, k_1 and k_2

Do minor terms matter?

Let's say r has order of growth $O(n^2)$ Does r also have order of growth $O(n^2 - 40n + 3)$?

Minor terms don't matter

We can adjust n_0 , k, k_1 and k_2 such that the minor terms are overruled.

Some common g(n)

- 1
- log *n*
- n
- n log n
- n²
- n³
- 2ⁿ

How do we calculate "Big Oh/Theta/Omega"

- Topic of algorithm analysis (CS3230)
- For us:
 - Identify the basic computational steps
 - Try a few small values
 - Extrapolate
 - Watch out for "worst case" scenarios

Some Numbers

n	log n	n log n	n^2	n^3	2^n
1	0	0	1	1	2
2	0.69	1.38	4	8	4
3	1.098	3.29	9	27	8
10	2.3	23.0	100	1000	1024
20	2.99	59.9	400	8000	10 ⁶
30	3.4	102	900	27000	10 ⁹
100	4.6	460.5	10000	10 ⁶	$1.2 \cdot 10^{30}$
200	5.29	1059.6	40000	$8 \cdot 10^{6}$	$1.6 \cdot 10^{60}$
300	5.7	1711.13	90000	$27 \cdot 10^{6}$	$2.03 \cdot 10^{90}$
1000	6.9	6907	10^{6}	10 ⁹	$1.07 \cdot 10^{301}$
2000	7.6	15201	$4 \cdot 10^{6}$	$8 \cdot 10^{9}$	
3000	8	24019	$9 \cdot 10^{6}$	$27 \cdot 10^{9}$	
10^{6}	13.8	$13.8 \cdot 10^{6}$	10^{12}	10^{18}	

The world's oldest algorithm

Greatest Common Divisor (GCD)

Given two positive integers, find the largest integers that divide both without remainder.

Euclid's original solution

The world's oldest algorithm

More modern version

"Pedistrian" Power function

```
function power(b, e) {
    return (e === 0) ? 1 : b * power(b, e - 1);
}
```

Power function: Can we do better?

Example

Calculate 17⁶

Simplification

$$17^6 = (17 \cdot 17)^{6/2}$$

How about

17⁷?

Simplification

$$17^7 = 17 \cdot 17^{7-1} = 17 \cdot 17^6$$
 and apply previous trick

Fast Power

```
function fast_power(b, e) {
    if (e === 0) {
        return 1;
    } else if (is_even(e)) {
        return fast_power(b * b, e / 2);
    } else {
        return b * fast_power(b, e - 1);
    }
}
```

Summary

- Big Theta, Big Oh, Big Omega
- The world's first algorithm
- The world's niftiest algorithm?