Teorema della comune perpendicolare

In questa nota, enunciamo e dimostriamo il teorema della comune perpendicolare di due rette sghembe. Per le notazioni, facciamo riferimento a quelle usate a lezione.

Theorem 0.1. Si consideri uno spazio euclideo $(\overrightarrow{\mathcal{E}}, \mathcal{E}, \pi)$ di dimensione 3 e siano r ed r' due rette sghembe. Allora esiste un'unica retta s ortogonale e incidente sia a r sia a r'; inoltre, posto $P = r \cap s$ e $P' = r' \cap s$, si ha d(r, r') = d(P, P').

Proof. Sia $\mathcal{R} = (0, \mathcal{B})$ un riferimento cartesiano dello spazio euclideo \mathcal{E} . Si considerino due rappresentazioni parametriche di r ed r', rispettivamente:

$$r:(x,y,z)=(x_0,y_0,z_0)+(l,m,n)t,$$
 $r':(x,y,z)=(x'_0,y'_0,z'_0)+(l',m',n')t'.$

La retta s che stiamo cercando deve intersecare r in un certo punto $Q(x_0+lt,y_0+mt,z_0+nt)$, per un opportuno valore del parametro reale t, e deve intersecare r' in un certo punto $Q'(x_0'+l't',y_0'+m't',z_0'+n't')$, per un opportuno valore del parametro reale t'. I valori di t e di t' opportuni devono essere tali che la retta s sia ortogonale sia a r sia a r'.

Quindi il vettore $\overrightarrow{QQ'}$, che sappiamo genera la giacitura di s, deve essere ortogonale ai vettori direzionali di r e di r', rispettivamente, ossia a u(l, m, n) e a u'(l', m', n').

Allora, si deve avere $\langle \overrightarrow{QQ'}, u \rangle = 0$ e $\langle \overrightarrow{QQ'}, u' \rangle = 0$, che tradotto in termini di componenti diventa:

$$\begin{cases} (x'_0 + l't' - x_0 - lt, y'_0 + m't' - y_0 - mt, z'_0 + n't' - z_0 - nt)(l, m, n) = 0 \\ (x'_0 + l't' - x_0 - lt, y'_0 + m't' - y_0 - mt, z'_0 + n't' - z_0 - nt)(l', m', n') = 0 \end{cases}$$

Effettuando il calcolo del prodotto scalare naturale si trova

$$\begin{cases} (x'_0 + l't' - x_0 - lt)l + (y'_0 + m't' - y_0 - mt)m + (z'_0 + n't' - z_0 - nt)n &= 0 \\ (x'_0 + l't' - x_0 - lt)l' + (y'_0 + m't' - y_0 - mt)m' + (z'_0 + n't' - z_0 - nt)n' &= 0 \end{cases}$$

e quindi si ha il seguente sistema di due equazioni lineari nelle due incognite t e t':

$$\Sigma : \left\{ \begin{array}{ll} (l'l + m'm + n'n)t' - (l^2 + m^2 + n^2)t + (x_0' - x_0)l + (y_0' - y_0)m + (z_0' - z_0)n & = & 0 \\ (l'^2 + m'^2 + n'^2)t' - (ll' + mm' + nn)t + (x_0' - x_0)l' + (y_0' - y_0)m' + (z_0' - z_0)n' & = & 0 \end{array} \right.$$

La matrice dei coefficienti è:

$$\begin{pmatrix} l'l + m'm + n'n & -(l^2 + m^2 + n^2) \\ l'^2 + m'^2 + n'^2 & -(ll' + mm' + nn) \end{pmatrix}$$

ossia.

$$\left(\begin{array}{cc} \langle u, u' \rangle & -\|u\|^2 \\ \|u'\|^2 & -\langle u, u' \rangle \end{array}\right),\,$$

il cui determinante è uguale a $-\langle u, u' \rangle^2 + ||u||^2 ||u'||^2$. Come si evince dalla dimostrazione della disuguaglianza di Schwarz, questo determinante si annulla se e solo se $\{u, u'\}$ è linearmente dipendente. Sappiamo tuttavia che questo non è vero, perché le rette r e r' non sono parallele, in quanto sono sghembe.

Allora, il sistema Σ soddisfa le ipotesi del Teorema di Cramer, per cui Σ ammette un'unica soluzione $(k',k) \in \mathbb{R}^2$. Quindi, la retta che passa per i due punti $P'(x_0' + l'k', y_0' + m'k', z_0' + n'k')$ e $P(x_0 + lk, y_0 + mk, z_0 + nk)$ è la retta s, comune perpendicolare, cercata.

Per l'ultima affermazione dell'enunciato basta applicare il Teorema di Pitagora.