Definitions: Code, Rate, and Error Probability

In order to get as much information through a channel as possible, we can encode messages before sending them through the channel.

Definition: Code

Let $M,n\in\mathbb{N}$. An (M,n)-code for the channel $(\mathcal{X},P_{Y|X},\mathcal{Y})$ consists of

- An index set $[M] = \{1, \dots, M\}$ representing the set of possible messages.
- A (possibly probabilistic) encoding function $enc:[M] \to \mathcal{X}^n$. This encoding function should be injective. n represents the number of channel uses we need to send a single message.
- A deterministic decoding function $\mathtt{dec}:\mathcal{Y}^n \to [M]$. The set of all codewords, $\{\mathtt{enc}(1),\ldots,\mathtt{enc}(M)\}$ is called the **codebook**.

An alternative notation for codes is [n, k] code, using box brackets instead of round brackets: such a code encodes a k-bit message into n bits. In the notation of the above definition, an [n, k] code would be an $(2^k, n)$ code.

The number of bits of information that are transmitted per channel use is captured by the following notion:

Definition: Rate

The rate of an (M,n)-code is defined as

$$R := \frac{\log M}{n}.$$

Given a code for a specific channel, we can study the probability that an error occurs while transmitting a message.

Definition: Probability of error

Given an (M,n) code for a channel $(\mathcal{X},P_{Y|X},\mathcal{Y})$, the probability of error λ_m is the probability that the decoded output is not equal to the input message m. More formally,

created: 2018-12-12

Information Theory | Definitions: Code, Rate, and Error Probability
$$\lambda_m^{(n)}:=P[\operatorname{dec}(Y^n)\neq m\mid X^n=\operatorname{enc}(m)].$$

Given this quantity, the maximal probability of error is defined as

$$\lambda^{(n)} := \max_{m \in [M]} \lambda_m^{(n)}.$$

Similarly, the average probability of error is defined as

$$p_e^{(n)} := rac{1}{M} \sum_{m=1}^M \lambda_m^{(n)}.$$

created: 2018-12-12