Kapitola VI. Modely pro bezkontextové jazyky

Myšlenka: *Gramatika* je založena na konečné množině gramatických pravidel, které generují řetězce daného jazyka.

Myšlenka: *Gramatika* je založena na konečné množině gramatických pravidel, které generují řetězce daného jazyka.

Myšlenka: *Gramatika* je založena na konečné množině gramatických pravidel, které generují řetězce daného jazyka.

Myšlenka: *Gramatika* je založena na konečné množině gramatických pravidel, které generují řetězce daného jazyka.

Myšlenka: *Gramatika* je založena na konečné množině gramatických pravidel, které generují řetězce daného jazyka.

Bezkontextová gramatika: Definice

Definice: Bezkontextová gramatika (BKG) je čtveřice G = (N, T, P, S), kde

- N je abeceda neterminálů
- T je abeceda terminálů, přičemž $N \cap T = \emptyset$
- P je konečná množina pravidel tvaru $A \rightarrow x$, $kde A \in N, x \in (N \cup T)^*$
- $S \in N$ je počáteční neterminál

Matematická poznámka k pravidlům:

- Čistě matematicky, P je relace z N do $(N \cup T)^*$
- Místo relačního zápisu $(A, x) \in P$ zapisujeme pravidla $A \to x \in P$
- $A \rightarrow x$ znamená, že A má být přepsáno na x
- $A \rightarrow \epsilon$ je nazýváno ϵ -pravidlo

Konvence

• A, \ldots, F, S : neterminály

• S : počáteční neterminál

• *a*, ..., *d* : terminály

• U, \ldots, Z : prvky množiny $(N \cup T)$

• u, ..., z: prvky množiny $(N \cup T)^*$

• π : sekvence pravidel

Každá podmnožina pravidel tvaru:

$$A \rightarrow x_1, A \rightarrow x_2, \dots, A \rightarrow x_n$$

může být zjednodušeně zapsána jako:

$$A \rightarrow x_1 | x_2 | \dots | x_n$$

Derivační krok u BKG

Myšlenka: Změnění řetězce použitím pravidla

Definice: Necht' G = (N, T, P, S) je BKG. Necht' $u, v \in (N \cup T)^*$ a $p = A \rightarrow x \in P$. Potom, uAv $p\check{r}imo\ derivuje\ uxv\ za\ použiti\ p\ v\ G,\ zapsáno <math>uAv \Rightarrow uxv\ [p]$ nebo zjednodušeně $uAv \Rightarrow uxv$.

Pozn.: Pokud $uAv \Rightarrow uxv \vee G$, můžeme říct, že G provádí derivační krok z uAv do uxv.

Derivační krok u BKG

Myšlenka: Změnění řetězce použitím pravidla

Definice: Necht' G = (N, T, P, S) je BKG. Necht' $u, v \in (N \cup T)^*$ a $p = A \rightarrow x \in P$. Potom, uAv $p\check{r}imo\ derivuje\ uxv\ za\ použiti\ p\ v\ G,\ zapsáno <math>uAv \Rightarrow uxv\ [p]$ nebo zjednodušeně $uAv \Rightarrow uxv$.

Pozn.: Pokud $uAv \Rightarrow uxv \vee G$, můžeme říct, že G provádí derivační krok z uAv do uxv.

Sekvence derivačních kroků 1/2

Myšlenka: Několik derivačních kroků po sobě

Definice: Necht' $u \in (N \cup T)^*$. G provede nula derivačních kroků z u do u; zapisujeme: $u \Rightarrow^0 u$ [ε] nebo zjednodušeně $u \Rightarrow^0 u$

Definice: Necht' $u_0, ..., u_n \in (N \cup T)^*, n \ge 1$ a $u_{i-1} \Rightarrow u_i [p_i], p_i \in P$ pro všechna i = 1, ..., n, což znamená:

$$u_0 \Rightarrow u_1 [p_1] \Rightarrow u_2 [p_2] \dots \Rightarrow u_n [p_n]$$

Pak, G provede n derivačních kroků z u_0 do u_n ; zapisujeme:

$$u_0 \Rightarrow^n u_n [p_1...p_n]$$
 nebo zjednodušeně $u_0 \Rightarrow^n$

Sekvence derivačních kroků 2/2

```
Pokud u_0 \Rightarrow^n u_n [\pi] pro nějaké n \ge 1, pak u_0 derivuje u_n v G, zapisujeme: u_0 \Rightarrow^+ u_n [\pi].
```

Pokud $u_0 \Rightarrow^n u_n$ [π] pro nějaké $n \ge 0$, pak u_0 derivuje u_n v G, zapisujeme: $u_0 \Rightarrow^* u_n$ [π].

Příklad: Uvažujme

```
aAb \implies aaBbb \quad [1:A \rightarrow aBb] \text{ a}
aaBbb \implies aacbb \quad [2:B \rightarrow c].
Potom: aAb \implies^2 aacbb \quad [1 \ 2],
aAb \implies^+ aacbb \quad [1 \ 2],
aAb \implies^+ aacbb \quad [1 \ 2],
```

Generovaný jazyk

Myšlenka: *G generuje* řetězec terminálů *w* pomocí sekvence derivačních kroků z *S* do *w*

Definice: Necht' G = (N, T, P, S) je BKG. *Jazyk generovaný* BKG G, L(G), je definován: $L(G) = \{w: w \in T^*, S \Rightarrow^* w\}$

Ilustrace:

G = (N, T, P, S), nechť $w = a_1 a_2 ... a_n$; $a_i \in T$ pro i = 1..n

Generovaný jazyk

Myšlenka: *G generuje* řetězec terminálů *w* pomocí sekvence derivačních kroků z *S* do *w*

Definice: Necht' G = (N, T, P, S) je BKG. *Jazyk generovaný* BKG G, L(G), je definován: $L(G) = \{w: w \in T^*, S \Rightarrow^* w\}$

Ilustrace:

$$G = (N, T, P, S)$$
, nechť $w = a_1 a_2 ... a_n$; $a_i \in T$ pro $i = 1..n$

pokud $S \Rightarrow ... \Rightarrow ... \Rightarrow a_1 a_2 ... a_n$, pak $w \in L(G)$;

jinak $w \notin L(G)$

Myšlenka: Jazyk generovaný bezkontextovou gramatikou

Definice: Nechť *L* je jazyk. *L* je bezkontextový jazyk (BKJ), pokud existuje bezkontextová gramatika, která generuje tento jazyk *L*.

$$G = (N, T, P, S)$$
, kde $N = \{S\}$, $T = \{a, b\}$, $P = \{1: S \rightarrow aSb, 2: S \rightarrow \varepsilon\}$

Myšlenka: Jazyk generovaný bezkontextovou gramatikou

Definice: Nechť *L* je jazyk. *L* je bezkontextový jazyk (BKJ), pokud existuje bezkontextová gramatika, která generuje tento jazyk *L*.

$$G = (N, T, P, S), \text{ kde } N = \{S\}, T = \{a, b\},\$$

$$P = \{1: S \to aSb, 2: S \to \varepsilon\}$$

$$S \Rightarrow \varepsilon$$
[2]
$$L(G)$$

Myšlenka: Jazyk generovaný bezkontextovou gramatikou

Definice: Nechť *L* je jazyk. *L* je bezkontextový jazyk (BKJ), pokud existuje bezkontextová gramatika, která generuje tento jazyk *L*.

$$G = (N, T, P, S), \text{ kde } N = \{S\}, T = \{a, b\},$$

$$P = \{1: S \rightarrow aSb, 2: S \rightarrow \varepsilon\}$$

$$S \Rightarrow \varepsilon \qquad [2]$$

$$S \Rightarrow aSb \ [1] \Rightarrow ab \qquad [2]$$

Myšlenka: Jazyk generovaný bezkontextovou gramatikou

Definice: Nechť *L* je jazyk. *L* je bezkontextový jazyk (BKJ), pokud existuje bezkontextová gramatika, která generuje tento jazyk *L*.

$$G = (N, T, P, S), \text{ kde } N = \{S\}, T = \{a, b\},\$$
 $P = \{1: S \rightarrow aSb, 2: S \rightarrow \varepsilon\}$
 $S \Rightarrow \varepsilon$
 $S \Rightarrow aSb$
 $S \Rightarrow aSb$

Myšlenka: Jazyk generovaný bezkontextovou gramatikou

Definice: Nechť *L* je jazyk. *L* je bezkontextový jazyk (BKJ), pokud existuje bezkontextová gramatika, která generuje tento jazyk *L*.

```
G = (N, T, P, S), \text{ kde } N = \{S\}, T = \{a, b\},\
P = \{1: S \to aSb, 2: S \to \varepsilon\}
S \Rightarrow \varepsilon 
S \Rightarrow aSb 
S \Rightarrow aSb
```

Myšlenka: Jazyk generovaný bezkontextovou gramatikou

Definice: Nechť *L* je jazyk. *L* je bezkontextový jazyk (BKJ), pokud existuje bezkontextová gramatika, která generuje tento jazyk *L*.

```
G = (N, T, P, S), kde N = \{S\}, T = \{a, b\},

P = \{1: S \rightarrow aSb, 2: S \rightarrow \varepsilon\}

S \Rightarrow \varepsilon [2] L(G) = \{a^nb^n: n \ge 0\}

S \Rightarrow aSb [1] \Rightarrow ab [2]

S \Rightarrow aSb [1] \Rightarrow aaSbb [1] \Rightarrow aabb [2]

\vdots

L = \{a^nb^n: n \ge 0\} je bezkontextový jazyk.
```

Pravidlový strom

Pravidlový strom graficky znázorňuje pravidlo

• Derivační strom odpovídá použitým pravidlům

Pravidlový strom

Pravidlový strom graficky znázorňuje pravidlo

• Derivační strom odpovídá použitým pravidlům


```
G = (N, T, P, E), \text{ kde } N = \{E, F, T\}, T = \{i, +, *, (,)\},\
P = \{1: E \rightarrow E + T, 2: E \rightarrow T, 3: T \rightarrow T * F, 4: T \rightarrow F, 5: F \rightarrow (E), 6: F \rightarrow i\}
```

Jednotlivé derivace:

$$G = (N, T, P, E), \text{ kde } N = \{E, F, T\}, T = \{i, +, *, (,)\},$$
 $P = \{1: E \rightarrow E + T, 2: E \rightarrow T, 3: T \rightarrow T * F,$
 $4: T \rightarrow F, 5: F \rightarrow (E), 6: F \rightarrow i\}$

Jednotlivé derivace:

$$\underline{E} \Rightarrow \underline{E} + \underline{T}$$
 [1]

$$G = (N, T, P, E), \text{ kde } N = \{E, F, T\}, T = \{i, +, *, (,)\},\$$
 $P = \{1: E \to E + T, 2: E \to T, 3: T \to T * F, 4: T \to F, 5: F \to (E), 6: F \to i\}$

Jednotlivé derivace:

$$\underline{E} \Rightarrow E + \underline{T} \qquad [1]$$

$$\Rightarrow E + \underline{T} * F \qquad [3]$$

$$G = (N, T, P, E), \text{ kde } N = \{E, F, T\}, T = \{i, +, *, (,)\},\$$
 $P = \{1: E \to E + T, 2: E \to T, 3: T \to T * F, 4: T \to F, 5: F \to (E), 6: F \to i$

Jednotlivé derivace:

$$\underline{E} \Rightarrow E + \underline{T} \qquad [1]$$

$$\Rightarrow E + \underline{T} * F \qquad [3]$$

$$\Rightarrow E + \underline{F} * F \qquad [4]$$

$$G = (N, T, P, E), \text{ kde } N = \{E, F, T\}, T = \{i, +, *, (,)\},\$$
 $P = \{1: E \to E + T, 2: E \to T, 3: T \to T * F, 4: T \to F, 5: F \to (E), 6: F \to i\}$

Jednotlivé derivace:

$$\underline{E} \Rightarrow E + \underline{T} \qquad [1]$$

$$\Rightarrow E + \underline{T} * F \qquad [3]$$

$$\Rightarrow E + \underline{F} * F \qquad [4]$$

$$\Rightarrow \underline{E} + i * F \qquad [6]$$

$$G = (N, T, P, E), \text{ kde } N = \{E, F, T\}, T = \{i, +, *, (,)\},\$$
 $P = \{1: E \to E + T, 2: E \to T, 3: T \to T * F, 4: T \to F, 5: F \to (E), 6: F \to i\}$

Jednotlivé derivace:

$$\underline{E} \Rightarrow E + \underline{T} \qquad [1]$$

$$\Rightarrow E + \underline{T} * F \qquad [3]$$

$$\Rightarrow E + \underline{F} * F \qquad [4]$$

$$\Rightarrow \underline{E} + i * F \qquad [6]$$

$$\Rightarrow T + i * \underline{F} \qquad [2]$$

$$G = (N, T, P, E)$$
, kde $N = \{E, F, T\}$, $T = \{i, +, *, (,)\}$, $P = \{1: E \rightarrow E + T, 2: E \rightarrow T, 3: T \rightarrow T * F, 4: T \rightarrow F, 5: F \rightarrow (E), 6: F \rightarrow i\}$

Jednotlivé derivace:

$$\underline{E} \Rightarrow E + \underline{T} \qquad [1]$$

$$\Rightarrow E + \underline{T} * F \qquad [3]$$

$$\Rightarrow E + \underline{F} * F \qquad [4]$$

$$\Rightarrow E + i * F \qquad [6]$$

$$\Rightarrow T + i * \underline{F} \qquad [2]$$

$$\Rightarrow T + i * i \qquad [6]$$

$$G = (N, T, P, E), \text{ kde } N = \{E, F, T\}, T = \{i, +, *, (,)\},\$$
 $P = \{1: E \to E + T, 2: E \to T, 3: T \to T * F, 4: T \to F, 5: F \to (E), 6: F \to i\}$

Jednotlivé derivace:

$$\underline{E} \Rightarrow E + \underline{T} \qquad [1]$$

$$\Rightarrow E + \underline{T} * F \qquad [3]$$

$$\Rightarrow E + \underline{F} * F \qquad [4]$$

$$\Rightarrow E + i * F \qquad [6]$$

$$\Rightarrow T + i * \underline{F} \qquad [2]$$

$$\Rightarrow T + i * i \qquad [6]$$

$$\Rightarrow F + i * i \qquad [4]$$

$$G = (N, T, P, E), \text{ kde } N = \{E, F, T\}, T = \{i, +, *, (,)\},$$
 $P = \{1: E \rightarrow E + T, 2: E \rightarrow T, 3: T \rightarrow T * F,$
 $4: T \rightarrow F, 5: F \rightarrow (E), 6: F \rightarrow i\}$

Jednotlivé derivace:

$$\underline{E} \Rightarrow E + \underline{T} \qquad [1]$$

$$\Rightarrow E + \underline{T} * F \qquad [3]$$

$$\Rightarrow E + \underline{F} * F \qquad [4]$$

$$\Rightarrow \underline{E} + i * F \qquad [6]$$

$$\Rightarrow T + i * \underline{F} \qquad [2]$$

$$\Rightarrow T + i * i \qquad [6]$$

$$\Rightarrow F + i * i \qquad [4]$$

$$\Rightarrow i + i * i \qquad [6]$$

Nejlevější derivace

Myšlenka: Během nejlevějšího derivačního kroku je přepsán nejlevější neterminál.

Definice: Nechť G = (N, T, P, S) je BKG, nechť $u \in T^*, v \in (N \cup T)^*, p = A \rightarrow x \in P$ je pravidlo. Pak uAv přímo derivuje uxv za pomocí *nejlevější derivace* užitím pravidla p v G, zapsáno jako: $uAv \Rightarrow_{lm} uxv [p]$

Pozn.: $\Rightarrow_{lm}^{+} a \Rightarrow_{lm}^{*} je definováno pomocí <math>\Rightarrow_{lm}^{+}$ stejně jako $\Rightarrow^{+} a \Rightarrow^{*} je dříve definováno pomocí <math>\Rightarrow$.

```
G = (N, T, P, E), \text{ kde} N = \{E, F, T\}, T = \{i, +, *, (, )\}, P = \{1: E \to E + T, 2: E \to T, 3: T \to T * F, 4: T \to F, 5: F \to (E), 6: F \to i \}
```

Nejlevější derivace:

$$G = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$ $P = \{1: E \to E + T, 2: E \to T, 3: T \to T * F, 4: T \to F, 5: F \to (E), 6: F \to i \}$

Nejlevější derivace:

$$\underline{E} \Rightarrow_{lm} \underline{E} + T$$
 [1]

$$G = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$ $P = \{1: E \to E + T, 2: E \to T, 3: T \to T * F, 4: T \to F, 5: F \to (E), 6: F \to i \}$

Nejlevější derivace:

$$\underline{E} \Rightarrow_{lm} \underline{E} + T \qquad [1]$$

$$\Rightarrow_{lm} \underline{T} + T \qquad [2]$$

$$G = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$ $P = \{1: E \to E + T, 2: E \to T, 3: T \to T * F, 4: T \to F, 5: F \to (E), 6: F \to i \}$

Nejlevější derivace:

$$\underline{E} \Rightarrow_{lm} \underline{E} + T \qquad [1]$$

$$\Rightarrow_{lm} \underline{T} + T \qquad [2]$$

$$\Rightarrow_{lm} \underline{F} + T \qquad [4]$$

$$G = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$ $P = \{1: E \to E + T, 2: E \to T, 3: T \to T * F, 4: T \to F, 5: F \to (E), 6: F \to i \}$

Nejlevější derivace:

$$\underline{E} \Rightarrow_{lm} \underline{E} + T \qquad [1]$$

$$\Rightarrow_{lm} \underline{T} + T \qquad [2]$$

$$\Rightarrow_{lm} \underline{F} + T \qquad [4]$$

$$\Rightarrow_{lm} i + \underline{T} \qquad [6]$$

$$G = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$ $P = \{1: E \rightarrow E + T, 2: E \rightarrow T, 3: T \rightarrow T * F, 4: T \rightarrow F, 5: F \rightarrow (E), 6: F \rightarrow i \}$

Nejlevější derivace:

$$\underline{E} \Rightarrow_{lm} \underline{E} + T \qquad [1]$$

$$\Rightarrow_{lm} \underline{T} + T \qquad [2]$$

$$\Rightarrow_{lm} \underline{F} + T \qquad [4]$$

$$\Rightarrow_{lm} i + \underline{T} \qquad [6]$$

$$\Rightarrow_{lm} i + \underline{T} * F \qquad [3]$$

$$G = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$
 $P = \{1: E \to E + T,$ $2: E \to T,$ $3: T \to T * F,$
 $4: T \to F,$ $5: F \to (E),$ $6: F \to i$

Nejlevější derivace:

$\underline{E} \Rightarrow_{lm} \underline{E} + T \qquad [1]$ $\Rightarrow_{lm} \underline{T} + T \qquad [2]$ $\Rightarrow_{lm} \underline{F} + T \qquad [4]$ $\Rightarrow_{lm} i + \underline{T} \qquad [6]$ $\Rightarrow_{lm} i + \underline{T} * F \qquad [3]$ $\Rightarrow_{lm} i + \underline{F} * F \qquad [4]$

$$G = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$
 $P = \{1: E \to E + T,$ $2: E \to T,$ $3: T \to T * F,$
 $4: T \to F,$ $5: F \to (E),$ $6: F \to i$

Nejlevější derivace:

$\underbrace{E} \Rightarrow_{lm} \underbrace{E} + T \qquad [1]$ $\Rightarrow_{lm} \underbrace{T} + T \qquad [2]$ $\Rightarrow_{lm} \underbrace{F} + T \qquad [4]$ $\Rightarrow_{lm} i + T \qquad [6]$ $\Rightarrow_{lm} i + T \qquad F \qquad [3]$ $\Rightarrow_{lm} i + F \qquad F \qquad [4]$ $\Rightarrow_{lm} i + i \qquad F \qquad [6]$

$$G = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$
 $P = \{1: E \to E + T,$ $2: E \to T,$ $3: T \to T * F,$
 $4: T \to F,$ $5: F \to (E),$ $6: F \to i$ }

Nejlevější derivace:

$\underline{E} \Rightarrow_{lm} \underline{E} + T$ [1] $\Rightarrow_{lm} \underline{T} + T$ [2] $\Rightarrow_{lm} \underline{F} + T$ [4] $\Rightarrow_{lm} i + \underline{T}$ [6] $\Rightarrow_{lm} i + \underline{T} * F [3]$ $\Rightarrow_{lm} i + \underline{F} * F [4]$ $\Rightarrow_{lm} i + i * \underline{F}$ [6] $\Rightarrow_{lm} i + i * i [6]$

Nejpravější derivace

Myšlenka: Během nejpravějšího derivačního kroku je přepsán nejpravější neterminál.

Definice: Necht' G = (N, T, P, S) je BKG, necht' $u \in (N \cup T)^*, v \in T^*, p = A \rightarrow x \in P$ je pravidlo. Pak uAv přímo derivuje uxv za pomocí *nejpravější derivace* užitím pravidla p v G, zapsáno jako: $uAv \Rightarrow_{rm} uxv [p]$

Pozn.: $\Rightarrow_{rm}^+ a \Rightarrow_{rm}^* je definováno pomocí <math>\Rightarrow_{rm}$ stejně jako $\Rightarrow^+ a \Rightarrow^* je dříve definováno pomocí <math>\Rightarrow$.

```
G = (N, T, P, E), \text{ kde} N = \{E, F, T\}, T = \{i, +, *, (,)\}, P = \{1: E \to E + T, 2: E \to T, 3: T \to T * F, 4: T \to F, 5: F \to (E), 6: F \to i \}
```

Nejpravější derivace:

$$G = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$ $P = \{1: E \to E + T, 2: E \to T, 3: T \to T * F, 4: T \to F, 5: F \to (E), 6: F \to i \}$

Nejpravější derivace:

$$\underline{E} \Rightarrow_{rm} \underline{E} + \underline{T}$$
 [1]

$$G = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$
 $P = \{1: E \to E + T,$ $2: E \to T,$ $3: T \to T * F,$
 $4: T \to F,$ $5: F \to (E),$ $6: F \to i$ }

Nejpravější derivace:

$$\underline{E} \Rightarrow_{rm} \underline{E} + \underline{T} \qquad [1]$$

$$\Rightarrow_{rm} \underline{E} + \underline{T} * \underline{F} \quad [3]$$

$$G = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$ $P = \{1: E \rightarrow E + T, 2: E \rightarrow T, 3: T \rightarrow T * F, 4: T \rightarrow F, 5: F \rightarrow (E), 6: F \rightarrow i \}$

Nejpravější derivace:

$$\underline{E} \Rightarrow_{rm} E + \underline{T} \qquad [1]$$

$$\Rightarrow_{rm} E + T * \underline{F} \qquad [3]$$

$$\Rightarrow_{rm} E + \underline{T} * i \qquad [6]$$

$$G = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$
 $P = \{1: E \to E + T,$ $2: E \to T,$ $3: T \to T * F,$
 $4: T \to F,$ $5: F \to (E),$ $6: F \to i$ }

Nejpravější derivace:

$$\underline{E} \Rightarrow_{rm} E + \underline{T} \qquad [1]$$

$$\Rightarrow_{rm} E + T * \underline{F} \qquad [3]$$

$$\Rightarrow_{rm} E + \underline{T} * i \qquad [6]$$

$$\Rightarrow_{rm} E + \underline{F} * i \qquad [4]$$

$$G = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$
 $P = \{1: E \to E + T,$ $2: E \to T,$ $3: T \to T * F,$
 $4: T \to F,$ $5: F \to (E),$ $6: F \to i$ }

Nejpravější derivace:

$$\underline{E} \Rightarrow_{rm} E + \underline{T} \qquad [1]$$

$$\Rightarrow_{rm} E + T * \underline{F} \qquad [3]$$

$$\Rightarrow_{rm} E + \underline{T} * i \qquad [6]$$

$$\Rightarrow_{rm} E + \underline{F} * i \qquad [4]$$

$$\Rightarrow_{rm} \underline{E} + i * i \qquad [6]$$

$$G = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$ $P = \{1: E \rightarrow E + T, 2: E \rightarrow T, 3: T \rightarrow T * F, 4: T \rightarrow F, 5: F \rightarrow (E), 6: F \rightarrow i \}$

Nejpravější derivace:

$$\underline{E} \Rightarrow_{rm} E + \underline{T} \qquad [1]$$

$$\Rightarrow_{rm} E + T * \underline{F} \qquad [3]$$

$$\Rightarrow_{rm} E + \underline{T} * i \qquad [6]$$

$$\Rightarrow_{rm} E + \underline{F} * i \qquad [4]$$

$$\Rightarrow_{rm} \underline{E} + i * i \qquad [6]$$

$$\Rightarrow_{rm} \underline{T} + i * i \qquad [2]$$

$$G = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$
 $P = \{1: E \to E + T,$ $2: E \to T,$ $3: T \to T * F,$
 $4: T \to F,$ $5: F \to (E),$ $6: F \to i$ }

Nejpravější derivace:

$$\underline{E} \Rightarrow_{rm} E + \underline{T} \qquad [1]$$

$$\Rightarrow_{rm} E + T * \underline{F} \qquad [3]$$

$$\Rightarrow_{rm} E + \underline{T} * i \qquad [6]$$

$$\Rightarrow_{rm} E + \underline{F} * i \qquad [4]$$

$$\Rightarrow_{rm} \underline{E} + i * i \qquad [6]$$

$$\Rightarrow_{rm} \underline{T} + i * i \qquad [2]$$

$$\Rightarrow_{rm} \underline{F} + i * i \qquad [4]$$

$$G = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$
 $P = \{1: E \to E + T,$ $2: E \to T,$ $3: T \to T * F,$
 $4: T \to F,$ $5: F \to (E),$ $6: F \to i$ }

Nejpravější derivace:

$$\underline{E} \Rightarrow_{rm} E + \underline{T} \qquad [1]$$

$$\Rightarrow_{rm} E + T * \underline{F} \qquad [3]$$

$$\Rightarrow_{rm} E + \underline{T} * i \qquad [6]$$

$$\Rightarrow_{rm} E + \underline{F} * i \qquad [4]$$

$$\Rightarrow_{rm} \underline{E} + i * i \qquad [6]$$

$$\Rightarrow_{rm} \underline{T} + i * i \qquad [2]$$

$$\Rightarrow_{rm} \underline{F} + i * i \qquad [4]$$

$$\Rightarrow_{rm} i + i * i \qquad [6]$$

Derivace: Shrnutí

• Necht' $A \rightarrow x \in P$ je pravidlo.

1) Derivace:

Necht' $u, v \in (N \cup T)^*$: $uAv \Rightarrow uxv$

Pozn.: Přepsán je <u>libovolný</u> neterminál

2) Nejlevější derivace:

Necht' $u \in T^*, v \in (N \cup T)^*: uAv \Rightarrow_{lm} uxv$

Pozn.: Přepsán je <u>nejlevější</u> neterminál

3) Nejpravější derivace:

Necht' $u \in (N \cup T)^*, v \in T^*: uAv \Rightarrow_{rm} uxv$

Pozn.: Přepsán je nejpravější neterminál

Redukce počtu možných derivací

Myšlenka: Bez újmy na obecnosti můžeme uvažovat používání pouze nejlevějších nebo nejpravějších derivací.

Tvrzení: Nechť G = (N, T, P, S) je BKG. Následující 3 jazyky jsou totožné:

- $(1) \{ w : w \in T^*, S \Rightarrow_{lm}^* w \}$
- (2) $\{w: w \in T^*, S \Longrightarrow_{rm}^* w\}$
- (3) $\{w: w \in T^*, S \Longrightarrow^* w\} = L(G)$

Úvod do nejednoznačnosti

$$G_{expr1} = (N, T, P, E), \text{ kde}$$
 $N = \{E, F, T\}, T = \{i, +, *, (,)\},$
 $P = \{1: E \rightarrow E + T, 2: E \rightarrow T,$
 $3: T \rightarrow T * F, 4: T \rightarrow F,$
 $5: F \rightarrow (E), 6: F \rightarrow i\}$

Teorie: ⊗ × Praxe: ⊙

$$G_{expr2} = (N, T, P, E), \text{ kde}$$
 $N = \{E\}, T = \{i, +, *, (,)\},$
 $P = \{1: E \rightarrow E + E, 2: E \rightarrow E * E,$
 $3: E \rightarrow (E), 4: E \rightarrow i\}$

Teorie: ⊙ × **Praxe: ⊗**

Pozn.: $L(G_{expr1}) = L(G_{expr2})$ Odstranit v průběhu kompilace!

Gramatická nejednoznačnost

Definice: Necht' G = (N, T, P, S) je BKG. Pokud existuje řetězec $x \in L(G)$ s více jak jedním derivačním stromem, potom G je nejednoznačná. Jinak G je jednoznačná.

Definice: BKJ *L* je *vnitřně nejednoznačný*, pokud *L* není generován žádnou jednoznačnou BKG.

Příklad:

- G_{expr1} je **jednoznačná**, protože pro každé $x \in L(G_{expr1})$ existuje **jeden derivační strom**
- G_{expr2} je **nejednoznačná**, protože pro $i+i*i \in L(G_{expr2})$ existují **dva derivační stromy**
- $L_{expr}=L(G_{expr1})=L(G_{expr2})$ není vnitřně nejednoznačný, protože G_{expr1} je jednoznačná

Zásobníkové automaty (ZA)

Myšlenka: Je to KA rozšířený o zásobník

Zásobníkové automaty: Definice

Definice: Zásobníkový automat (ZA) je sedmice: $M = (Q, \Sigma, \Gamma, R, s, S, F)$, kde

- Q je konečná množina stavů
- Σ je vstupní abeceda
- Γ je zásobníková abeceda
- R je $konečná množina pravidel tvaru <math>Apa \rightarrow wq$, $kde A \in \Gamma, p, q \in Q, a \in \Sigma \cup \{\epsilon\}, w \in \Gamma^*$
- $s \in Q$ je počáteční stav
- S ∈ Γ je počáteční symbol na zásobníku
- $F \subseteq Q$ je množina koncových stavů

Poznámky k pravidlům

Matematická poznámka k pravidlům:

- Čistě matematicky, R je konečná relace z $\Gamma \times Q \times (\Sigma \cup \{\epsilon\})$ do $\Gamma^* \times Q$
- Místo relačního zápisu $(Apa, wq) \in R$ zapisujeme $Apa \rightarrow wq \in R$

Poznámky k pravidlům

Matematická poznámka k pravidlům:

- Čistě matematicky, R je konečná relace z $\Gamma \times Q \times (\Sigma \cup \{\epsilon\})$ do $\Gamma^* \times Q$
- Místo relačního zápisu $(Apa, wq) \in R$ zapisujeme $Apa \rightarrow wq \in R$
- Interpretace pravidel: $Apa \rightarrow wq$ znamená, že pokud je aktuální stav p, aktuální symbol na vstupní pásce a a symbol na vrcholu zásobníku A, potom M může přečíst a a na zásobníku nahradit A za w a přejít ze stavu p do q.
- Pozn.: pokud $a = \varepsilon$, symbol z pásky není přečten

Grafická reprezentace

- q označuje stav $q \in Q$
- \rightarrow označuje počáteční stav $s \in Q$
 - foznačuje koncový stav $f \in F$
 - $p \xrightarrow{A/w, a} q$ označuje $Apa \rightarrow wq \in R$

 $M = (Q, \Sigma, \Gamma, R, s, S, F)$ kde:

$$M = (Q, \Sigma, \Gamma, R, s, S, F)$$

kde:

• $Q = \{s, p, q, f\};$

$$M = (Q, \Sigma, \Gamma, R, s, S, F)$$
 kde:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}\};$

$$M = (Q, \Sigma, \Gamma, R, s, S, F)$$
 kde:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{a, b\};$
- $\Gamma = \{a, S\};$

 $M = (Q, \Sigma, \Gamma, R, s, S, F)$ kde:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{a, b\};$
- $\Gamma = \{a, S\};$
- $R = \{Ssa \rightarrow Sap,$

 $M = (Q, \Sigma, \Gamma, R, s, S, F)$ kde:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{a, b\};$
- $\Gamma = \{a, S\};$
- $R = \{Ssa \rightarrow Sap, apa \rightarrow aap,$


```
M = (Q, \Sigma, \Gamma, R, s, S, F) kde:
```

- $Q = \{s, p, q, f\};$
- $\Sigma = \{a, b\};$
- $\Gamma = \{a, S\};$
- $R = \{Ssa \rightarrow Sap, \\ apa \rightarrow aap, \\ apb \rightarrow q, \}$


```
M = (Q, \Sigma, \Gamma, R, s, S, F)
 kde:
• Q = \{s, p, q, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, S\};
• R = \{Ssa \rightarrow Sap,
          apa \rightarrow aap,
          apb \rightarrow q
          aqb \rightarrow q
```



```
M = (Q, \Sigma, \Gamma, R, s, S, F)
 kde:
• Q = \{s, p, q, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, S\};
• R = \{Ssa \rightarrow Sap,
           apa \rightarrow aap,
           apb \rightarrow q,
          aqb \rightarrow q
           Sq \rightarrow f
```



```
M = (Q, \Sigma, \Gamma, R, s, S, F)
kde:
• Q = \{s, p, q, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, S\};
• R = \{Ssa \rightarrow Sap,
          apa \rightarrow aap,
          apb \rightarrow q,
          aqb \rightarrow q
          Sq \rightarrow f
```



```
M = (Q, \Sigma, \Gamma, R, s, S, F)
 kde:
• Q = \{s, p, q, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, S\};
• R = \{Ssa \rightarrow Sap,
          apa \rightarrow aap,
          apb \rightarrow q,
          aqb \rightarrow q,
          Sq \rightarrow f
• F = \{f\}
```


Konfigurace u ZA

Myšlenka: Instance popisu ZA

Definice: Necht' $M = (Q, \Sigma, \Gamma, R, s, S, F)$ je ZA.

Konfigurace ZA M je řetězec $\chi \in \Gamma^* Q\Sigma^*$

Konfigurace u ZA

Myšlenka: Instance popisu ZA

Definice: Necht' $M = (Q, \Sigma, \Gamma, R, s, S, F)$ je ZA.

Konfigurace ZA M je řetězec $\chi \in \Gamma^* Q\Sigma^*$

Myšlenka: Jeden výpočetní krok ZA

Definice: Nechť xApay a xwqy jsou dvě konfigurace ZAM, kde $x, w \in \Gamma^*, A \in \Gamma, p, q \in Q$, $a \in \Sigma \cup \{\epsilon\}$ a $y \in \Sigma^*$. Nechť $r = Apa \rightarrow wq \in R$ je pravidlo. Potom M může provést $p\check{r}echod$ z xApay do xwqy za použití r, zapsáno xApay -xwqy [r] nebo zjednodušeně xApay -xwqy.

Pozn.: pokud $a = \epsilon$, není ze vstupu přečten žádný symbol

Konfigurace:

Myšlenka: Jeden výpočetní krok ZA

Definice: Necht' xApay a xwqy jsou dvě konfigurace ZAM, $kde x, w \in \Gamma^*, A \in \Gamma, p, q \in Q$, $a \in \Sigma \cup \{\epsilon\}$ a $y \in \Sigma^*$. Necht' $r = Apa \rightarrow wq \in R$ je pravidlo. Potom M může provést $p\check{r}echod$ z xApay do xwqy za použití r, zapsáno xApay -xwqy [r] nebo zjednodušeně xApay -xwqy.

Pozn.: pokud $a = \epsilon$, není ze vstupu přečten žádný symbol

Konfigurace: x A p a y

Pravidlo: $Apa \rightarrow wq$

Myšlenka: Jeden výpočetní krok ZA

Definice: Nechť xApay a xwqy jsou dvě konfigurace ZAM, kde $x, w \in \Gamma^*, A \in \Gamma, p, q \in Q$, $a \in \Sigma \cup \{\epsilon\}$ a $y \in \Sigma^*$. Nechť $r = Apa \rightarrow wq \in R$ je pravidlo. Potom M může provést $p\check{r}echod$ z xApay do xwqy za použití r, zapsáno xApay /-xwqy [r] nebo zjednodušeně xApay /-xwqy.

Pozn.: pokud $\alpha = \varepsilon$, není ze vstupu přečten žádný symbol

Sekvence přechodů 1/2

Myšlenka: několik výpočetních kroků po sobě

Definice: Nechť χ je konfigurace. M provede nula přechodů z χ do χ ; zapisujeme: $\chi \mid -0 \chi$ [ϵ] nebo zjednodušeně $\chi \mid -0 \chi$

Definice: Necht' χ_0 , χ_1 , ..., χ_n je sekvence přechodů konfigurací pro $n \ge 1$ a $\chi_{i-1} \mid -\chi_i [r_i]$, $r_i \in R$ pro všechna i = 1, ..., n, což znamená: $\chi_0 \mid -\chi_1 [r_1] \mid -\chi_2 [r_2] ... \mid -\chi_n [r_n]$ Pak M provede n-přechodů z χ_0 do χ_n ; zapisujeme: $\chi_0 \mid -^n \chi_n [r_1 ... r_n]$ nebo zjednodušeně $\chi_0 \mid -^n \chi_n$

Sekvence přechodů 2/2

```
Pokud \chi_0 \mid -^n \chi_n [\rho] pro nějaké n \ge 1, pak \chi_0 \mid -^+ \chi_n [\rho].
```

Pokud $\chi_0 \mid -^n \chi_n [\rho]$ pro nějaké $n \ge 0$, pak $\chi_0 \mid -^* \chi_n [\rho]$.

Příklad: Uvažujme

AApabc
$$|-ABqbc|$$
 [1: Apa $\rightarrow Bq$] a ABqbc $|-ABCrc|$ [2: Bqb $\rightarrow BCr$]. Potom, AApabc $|-^2ABCrc|$ [1 2], AApabc $|-^*ABCrc|$ [1 2], AApabc $|-^*ABCrc|$ [1 2],

Přijímaný jazyk: Tři typy

Definice: Necht' $M = (Q, \Sigma, \Gamma, R, s, S, F)$ je ZA.

- 1) Jazyk přijímaný ZA M přechodem do koncového stavu, značen jako $L(M)_f$, je definován: $L(M)_f = \{w: w \in \Sigma^*, Ssw \mid -^* zf, z \in \Gamma^*, f \in F\}$
- 2) Jazyk přijímaný ZA M vyprázdněním zásobníku, značen jako $L(M)_{\epsilon}$, je definován: $L(M)_{\epsilon} = \{w: w \in \Sigma^*, Ssw \mid -^* zf, z = \epsilon, f \in Q\}$
- 3) Jazyk přijímaný ZA M přechodem do koncového stavu a vyprázdněním zásobníku, značen jako $L(M)_{f\epsilon}$, je definován:

$$L(M)_{f\varepsilon} = \{ w: w \in \Sigma^*, Ssw \mid -^* zf, z = \varepsilon, f \in F \}$$

```
\overline{M} = (Q, \Sigma, \Gamma, R, s, S, F) | \text{Otázka: } aabb \in L(M)_{f \in ?}
kde:
• Q = \{s, p, q, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, S\};
• R = \{Ssa \rightarrow Sap,
           apa \rightarrow aap,
           apb \rightarrow q,
           aqb \rightarrow q,
           Sq \rightarrow f
• F = \{f\}
```


Ssaabb

```
M = (Q, \Sigma, \Gamma, R, s, S, F)
 kde:
• Q = \{s, p, q, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, S\};
• R = \{Ssa \rightarrow Sap,
           apa \rightarrow aap,
           apb \rightarrow q,
           aqb \rightarrow q,
           Sq \rightarrow f
\bullet F = \{f\}
```

Otázka: $aabb \in L(M)_{fe}$?

Prav.: $Ssa \rightarrow Sap$

Ssaabb | Sapabb

```
M = (Q, \Sigma, \Gamma, R, s, S, F)
 kde:
• Q = \{s, p, q, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, S\};
• R = \{Ssa \rightarrow Sap,
          apa \rightarrow aap,
          apb \rightarrow q,
          aqb \rightarrow q,
          Sq \rightarrow f
• F = \{f\}
```

Otázka: $aabb \in L(M)_{f\epsilon}$?

S S a a b b

Prav.: $Ssa \rightarrow Sap$ S a D a b b

Prav.: $apa \rightarrow aap$ S a a b b

Ssaabb | Sapabb | Saapbb

```
M = (Q, \Sigma, \Gamma, R, s, S, F)
 kde:
• Q = \{s, p, q, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, S\};
• R = \{Ssa \rightarrow Sap,
          apa \rightarrow aap,
          apb \rightarrow q,
          aqb \rightarrow q,
          Sq \rightarrow f
• F = \{f\}
```

Otázka: $aabb \in L(M)_{f\epsilon}$?

S S a a b b

Prav.: $Ssa \rightarrow Sap$ S a P a b b

Prav.: $apa \rightarrow aap$ S a a P b b

Prav.: $apb \rightarrow q$ S a q b

Ssaabb | Sapabb | Saapbb | Saqb

```
M = (Q, \Sigma, \Gamma, R, s, S, F)
 kde:
• Q = \{s, p, q, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, S\};
• R = \{Ssa \rightarrow Sap,
           apa \rightarrow aap,
          apb \rightarrow q,
          aqb \rightarrow q,
          Sq \rightarrow f
• F = \{f\}
```

Otázka: $aabb \in L(M)_{fe}$? Prav.: $Ssa \rightarrow Sap$ Prav.: $apa \rightarrow aap$ Prav.: $apb \rightarrow q$ Prav.: $aqb \rightarrow q$

Ssaabb | Sapabb | Saapbb | Saqb | Sq

```
M = (Q, \Sigma, \Gamma, R, s, S, F)
 kde:
• Q = \{s, p, q, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, S\};
• R = \{Ssa \rightarrow Sap,
           apa \rightarrow aap,
          apb \rightarrow q,
          aqb \rightarrow q,
          Sq \rightarrow f
• F = \{f\}
```

Otázka:
$$aabb \in L(M)_{f \in}$$
?

S S a a b b

Prav.: $Ssa \rightarrow Sap$

S a P a b b

Prav.: $apa \rightarrow aap$

S a a P b b

Prav.: $apb \rightarrow q$

S a P b

Prav.: $aqb \rightarrow q$

 $Ssaabb \mid -Sapabb \mid -Saapbb \mid -Saqb \mid -Sq \mid -f$

```
M = (Q, \Sigma, \Gamma, R, s, S, F)
                                        Otázka: aabb \in L(M)_{fe}?
  kde:
 • Q = \{s, p, q, f\};
                                              Prav.: Ssa \rightarrow Sap
 • \Sigma = \{a, b\};
                                              Prav.: apa \rightarrow aap
 • \Gamma = \{a, S\};
 • R = \{Ssa \rightarrow Sap,
                                              Prav.: apb \rightarrow q
           apa \rightarrow aap,
           apb \rightarrow q,
                                              Prav.: aqb \rightarrow q
           aqb \rightarrow q,
           Sq \rightarrow f
                             Prázdný
                                              Prav.: Sq \longrightarrow f
                               zásobník
 • F = \{f\}
Ssaabb \mid -Sapabb \mid -Saapbb \mid -Saqb \mid -Sq \mid -f
```

```
M = (Q, \Sigma, \Gamma, R, s, S, F)
                                       Otázka: aabb \in L(M)_{fe}?
  kde:
                                             Prav.: Ssa \rightarrow Sap
 • Q = \{s, p, q, f\};
 • \Sigma = \{a, b\};
                                             Prav.: apa \rightarrow aap
 • \Gamma = \{a, S\};
 • R = \{Ssa \rightarrow Sap,
                                             Prav.: apb \rightarrow q
           apa \rightarrow aap,
           apb \rightarrow q,
                                             Prav.: aqb \rightarrow q
           aqb \rightarrow q,
                                                                   Koncový
           Sq \rightarrow f
                            Prázdný
                                             Prav.: Sq \longrightarrow f
                                                                      stav
                              zásobník
 • F = \{f\}
                                                            Odpověď: ANO
Ssaabb \mid -Sapabb \mid -Saapbb \mid -Saqb \mid -Sq \mid -f
```

```
M = (Q, \Sigma, \Gamma, R, s, S, F)
                                        Otázka: aabb \in L(M)_{f_{\mathcal{E}}}?
  kde:
                                             Prav.: Ssa \rightarrow Sap
 • Q = \{s, p, q, f\};
 • \Sigma = \{a, b\};
                                              Prav.: apa \rightarrow aap
 • \Gamma = \{a, S\};
 • R = \{Ssa \rightarrow Sap,
                                             Prav.: apb \rightarrow q
           apa \rightarrow aap,
           apb \rightarrow q,
                                             Prav.: aqb \rightarrow q
           aqb \rightarrow q,
                                                                    Koncový
           Sq \rightarrow f
                             Prázdný
                                             Prav.: Sq \rightarrow f
                                                                       stav
                              zásobník
 • F = \{f\}
                                                             Odpověď: ANO
Ssaabb \mid -Sapabb \mid -Saapbb \mid -Saqb \mid -Sq \mid -f
```

Pozn.: $L(M)_f = L(M)_{\varepsilon} = L(M)_{f\varepsilon} = \{a^n b^n : n \ge 1\}$

Tři typy přijímaných jazyků: Ekvivalence

Tvrzení:

- $L = L(M_f)_f$ pro ZA $M_f \Leftrightarrow L = L(M_{f\epsilon})_{f\epsilon}$ pro ZA $M_{f\epsilon}$
- $L = L(M_{\varepsilon})_{\varepsilon}$ pro ZA $M_{\varepsilon} \Leftrightarrow L = L(M_{f\varepsilon})_{f\varepsilon}$ pro ZA $M_{f\varepsilon}$
- $L = L(M_f)_f$ pro ZA $M_f \Leftrightarrow L = L(M_{\epsilon})_{\epsilon}$ pro ZA M_{ϵ}

Pozn. Existují algoritmy pro následující převody:

Deterministický ZA (DZA)

Myšlenka: Deterministický ZA může provést z každé konfigurace maximálně jeden přechod

Definice: Nechť $M = (Q, \Sigma, \Gamma, R, s, S, F)$ je ZA. M je deterministický ZA, pokud pro každé pravidlo tvaru $Apa \rightarrow wq \in R$ platí, že množina $R - \{Apa \rightarrow wq\}$ neobsahuje žádné pravidlo s levou stranou Apa nebo Ap.

Ilustrace:

Deterministický ZA (DZA)

Myšlenka: Deterministický ZA může provést z každé konfigurace maximálně jeden přechod

Definice: Nechť $M = (Q, \Sigma, \Gamma, R, s, S, F)$ je ZA. M je deterministický ZA, pokud pro každé pravidlo tvaru $Apa \rightarrow wq \in R$ platí, že množina $R - \{Apa \rightarrow wq\}$ neobsahuje žádné pravidlo s levou stranou Apa nebo Ap.

Ilustrace:

Deterministický ZA (DZA)

Myšlenka: Deterministický ZA může provést z každé konfigurace maximálně jeden přechod

Definice: Nechť $M = (Q, \Sigma, \Gamma, R, s, S, F)$ je ZA. M je deterministický ZA, pokud pro každé pravidlo tvaru $Apa \rightarrow wq \in R$ platí, že množina $R - \{Apa \rightarrow wq\}$ neobsahuje žádné pravidlo s levou stranou Apa nebo Ap.

Ilustrace:

Konfigurace: x Ap a y y dlo tvarů: $Apa \rightarrow w_1q_1$ $Apa \rightarrow w_2q_2$

Maximálně jedno pravidlo tvarů:

Tvrzení: Neexistuje žádný DZA $M_{f\epsilon}$ přijímající:

 $L = \{xy: x, y \in \Sigma^*, y = reversal(x)\}$

Důkaz: Viz str. 431 v knize [Meduna: Automata and Languages]

Ilustrace:

Tvrzení: Neexistuje žádný DZA $M_{f\epsilon}$ přijímající:

 $L = \{xy: x, y \in \Sigma^*, y = reversal(x)\}$

Důkaz: Viz str. 431 v knize [Meduna: Automata and Languages]

Ilustrace:

Třída deterministických
bezkontextových
jazyků—jazyků
přijímaných DZA

Tvrzení: Neexistuje žádný DZA $M_{f\epsilon}$ přijímající:

 $L = \{xy: x, y \in \Sigma^*, y = reversal(x)\}$

Důkaz: Viz str. 431 v knize [Meduna: Automata and Languages]

Ilustrace:

Třída deterministických
bezkontextových
jazyků—jazyků
přijímaných DZA

Třída jazyků přijímaných ZA

Tvrzení: Neexistuje žádný DZA $M_{f\epsilon}$ přijímající:

$$L = \{xy: x, y \in \Sigma^*, y = reversal(x)\}$$

Důkaz: Viz str. 431 v knize [Meduna: Automata and Languages]

Ilustrace:

$$L = \{xy: x, y \in \Sigma^*, y = reversal(x)\}$$

Třída deterministických
bezkontextových
jazyků—jazyků
přijímaných DZA

Třída jazyků přijímaných ZA

Rozšířený ZA (RZA)

Myšlenka: Z vrcholu zásobníku v RZA lze číst celý řetězec (v ZA to byl pouze jeden symbol)

Definice: Rozšířený zásobníkový automat (RZA) je sedmice $M = (Q, \Sigma, \Gamma, R, s, S, F)$, kde Q, Σ, Γ , s, S, F jsou definovány stejně jako u ZA a R je konečná množina pravidel tvaru: $vpa \rightarrow wq$, kde $v, w \in \Gamma^*, p, q \in Q, a \in \Sigma \cup \{\epsilon\}$

Ilustrace:

Zásobník ZA:

Ze ZA lze číst jeden symbol z vrcholu zásobníku

Zásobník RZA:

Z RZA lze číst řetězec z vrcholu zásobníku

Definice: Necht' xvpay a xwqy jsou dvě konfigurace RZA M, kde x, v, $w \in \Gamma^*$, p, $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$ a $y \in \Sigma^*$. Necht' $r = vpa \rightarrow wq \in R$ je pravidlo. Potom M může provést $p\check{r}echod$ z xvpay do xwqy za použití r, zapsáno: xvpay /- xwqy [r] nebo xvpay /- xwqy.

Konfigurace: x v p a y

Definice: Necht' xvpay a xwqy jsou dvě konfigurace RZA M, kde x, v, $w \in \Gamma^*$, p, $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$ a $y \in \Sigma^*$. Necht' $r = vpa \rightarrow wq \in R$ je pravidlo. Potom M může provést $p\check{r}echod$ z xvpay do xwqy za použití r, zapsáno: xvpay /- xwqy [r] nebo xvpay /- xwqy.

Konfigurace: x v p a y

Pravidlo: $vpa \rightarrow wq$

Definice: Necht' xvpay a xwqy jsou dvě konfigurace RZA M, kde x, v, $w \in \Gamma^*$, p, $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$ a $y \in \Sigma^*$. Necht' $r = vpa \rightarrow wq \in R$ je pravidlo. Potom M může provést $p\check{r}echod$ z xvpay do xwqy za použití r, zapsáno: xvpay /- xwqy [r] nebo xvpay /- xwqy.

Definice: Necht' xvpay a xwqy jsou dvě konfigurace RZA M, kde x, v, $w \in \Gamma^*$, p, $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$ a $y \in \Sigma^*$. Necht' $r = vpa \rightarrow wq \in R$ je pravidlo. Potom M může provést $p\check{r}echod$ z xvpay do xwqy za použití r, zapsáno: xvpay /- xwqy [r] nebo xvpay /- xwqy.

Pozn.: $|-^n, |-^+, |-^*, L(M)_f, L(M)_{\varepsilon}$ a $L(M)_{f\varepsilon}$ jsou definovány stejně jako u ZA.

 $M = (Q, \Sigma, \Gamma, R, s, S, F)$ kde:

$$M = (Q, \Sigma, \Gamma, R, s, S, F)$$

kde:

•
$$Q = \{s, f\};$$

$$M = (Q, \Sigma, \Gamma, R, s, S, F)$$

kde:

- $Q = \{s, f\};$
- $\Sigma = \{a, b\};$

$$M = (Q, \Sigma, \Gamma, R, s, S, F)$$

kde:

- $Q = \{s, f\};$
- $\Sigma = \{a, b\};$
- $\Gamma = \{a, b, S, C\};$

$$M = (Q, \Sigma, \Gamma, R, s, S, F)$$

kde:

- $Q = \{s, f\};$
- $\Sigma = \{a, b\};$
- $\Gamma = \{a, b, S, C\};$
- $R = \{ sa \rightarrow as,$

 $M = (Q, \Sigma, \Gamma, R, s, S, F)$ kde:

- $Q = \{s, f\};$
- $\Sigma = \{a, b\};$
- $\Gamma = \{a, b, S, C\};$
- $R = \{ sa \rightarrow as, sb \rightarrow bs, \}$


```
M = (Q, \Sigma, \Gamma, R, s, S, F)
kde:
• Q = \{s, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, b, S, C\};
• R = \{ sa \rightarrow as,
              sb \rightarrow bs,
               s \rightarrow Cs,
```



```
M = (Q, \Sigma, \Gamma, R, s, S, F)
kde:
• Q = \{s, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, b, S, C\};
• R = \{ sa \rightarrow as,
               sb \rightarrow bs,
               s \rightarrow Cs,
          aCsa \rightarrow Cs,
```



```
M = (Q, \Sigma, \Gamma, R, s, S, F)
kde:
• Q = \{s, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, b, S, C\};
• R = \{ sa \rightarrow as,
               sb \rightarrow bs,
               s \rightarrow Cs,
          aCsa \rightarrow Cs,
          bCsb \rightarrow Cs,
```



```
M = (Q, \Sigma, \Gamma, R, s, S, F)
kde:
• Q = \{s, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, b, S, C\};
• R = \{ sa \rightarrow as,
              sb \rightarrow bs,
               s \rightarrow Cs
          aCsa \rightarrow Cs,
          bCsb \rightarrow Cs,
          SCs \rightarrow f
```



```
M = (Q, \Sigma, \Gamma, R, s, S, F)
kde:
• Q = \{s, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, b, S, C\};
• R = \{ sa \rightarrow as,
              sb \rightarrow bs,
               s \rightarrow Cs
          aCsa \rightarrow Cs,
          bCsb \rightarrow Cs,
          SCs \rightarrow f
```



```
M = (Q, \Sigma, \Gamma, R, s, S, F)
kde:
• Q = \{s, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, b, S, C\};
• R = \{ sa \rightarrow as,
               sb \rightarrow bs,
               s \rightarrow Cs
          aCsa \rightarrow Cs,
          bCsb \rightarrow Cs,
          SCs \rightarrow f
\bullet F = \{f\}
```



```
M = (Q, \Sigma, \Gamma, R, s, S, F)
kde:
• Q = \{s, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, b, S, C\};
• R = \{ sa \rightarrow as,
               sb \rightarrow bs,
               s \rightarrow Cs
          aCsa \rightarrow Cs,
          bCsb \rightarrow Cs,
          SCs \rightarrow f
\bullet F = \{f\}
```



```
M = (Q, \Sigma, \Gamma, R, s, S, F)
kde:
• Q = \{s, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, b, S, C\};
• R = \{ sa \rightarrow as,
               sb \rightarrow bs,
               s \rightarrow Cs
          aCsa \rightarrow Cs,
          bCsb \rightarrow Cs,
          SCs \rightarrow f
\bullet F = \{f\}
```


Otázka: $abba \in L_{f\epsilon}(M)$?

S<u>sa</u>bba

```
M = (Q, \Sigma, \Gamma, R, s, S, F)
kde:
• Q = \{s, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, b, S, C\};
• R = \{ sa \rightarrow as,
               sb \rightarrow bs,
               s \rightarrow Cs
          aCsa \rightarrow Cs,
          bCsb \rightarrow Cs,
          SCs \rightarrow f
\bullet F = \{f\}
```


Otázka: $abba \in L_{f\epsilon}(M)$?

Ssabba | Sasbba

```
M = (Q, \Sigma, \Gamma, R, s, S, F)
kde:
• Q = \{s, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, b, S, C\};
• R = \{ sa \rightarrow as,
               sb \rightarrow bs,
               s \rightarrow Cs
          aCsa \rightarrow Cs,
          bCsb \rightarrow Cs,
          SCs \rightarrow f
\bullet F = \{f\}
```


Otázka: $abba \in L_{f\epsilon}(M)$?

Ssabba | Sasbba | Sabsba

```
M = (Q, \Sigma, \Gamma, R, s, S, F)
kde:
• Q = \{s, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, b, S, C\};
• R = \{ sa \rightarrow as,
               sb \rightarrow bs,
               s \rightarrow Cs
          aCsa \rightarrow Cs,
          bCsb \rightarrow Cs,
          SCs \rightarrow f
\bullet F = \{f\}
```



```
M = (Q, \Sigma, \Gamma, R, s, S, F)
kde:
• Q = \{s, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, b, S, C\};
• R = \{ sa \rightarrow as,
               sb \rightarrow bs,
               s \rightarrow Cs
          aCsa \rightarrow Cs,
          bCsb \rightarrow Cs,
          SCs \rightarrow f
\bullet F = \{f\}
```



```
M = (Q, \Sigma, \Gamma, R, s, S, F)
kde:
• Q = \{s, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, b, S, C\};
• R = \{ sa \rightarrow as,
               sb \rightarrow bs,
               s \rightarrow Cs
          aCsa \rightarrow Cs,
          bCsb \rightarrow Cs,
          SCs \rightarrow f
\bullet F = \{f\}
```



```
M = (Q, \Sigma, \Gamma, R, s, S, F)
kde:
• Q = \{s, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, b, S, C\};
• R = \{ sa \rightarrow as,
               sb \rightarrow bs,
               s \rightarrow Cs
          aCsa \rightarrow Cs,
          bCsb \rightarrow Cs,
          SCs \rightarrow f
\bullet F = \{f\}
```


Otázka: $abba \in L_{f\epsilon}(M)$?

$$S_{\underline{sabba}} | - S_{\underline{asbba}} | - S_{\underline{absba}} |$$
 $| - S_{\underline{abcsba}} | - S_{\underline{acsa}} |$
 $| - S_{\underline{csabba}} | - f$

Odpověď: YES

```
M = (Q, \Sigma, \Gamma, R, s, S, F)
kde:
• Q = \{s, f\};
• \Sigma = \{a, b\};
• \Gamma = \{a, b, S, C\};
• R = \{ sa \rightarrow as,
               sb \rightarrow bs,
               s \rightarrow Cs
          aCsa \rightarrow Cs,
          bCsb \rightarrow Cs,
          SCs \rightarrow f
\bullet F = \{f\}
```


Otázka: $abba \in L_{f\epsilon}(M)$?

$$S_{\underline{sabba}} | - S_{\underline{asbba}} | - S_{\underline{absba}} |$$
 $| - S_{\underline{abcsba}} | - S_{\underline{acsa}} |$
 $| - S_{\underline{csabba}} | - f$

Odpověď: YES

Pozn.: $L(M)_f = L(M)_{\varepsilon} = L(M)_{f\varepsilon} = \{xy: x, y \in \Sigma^*, y = \text{reversal}(x)\}$

Tři typy přijímaných jazyků: Ekvivalence

Tvrzení:

- $L = L(M_f)_f$ pro RZA $M_f \Leftrightarrow L = L(M_{f\epsilon})_{f\epsilon}$ pro RZA $M_{f\epsilon}$
- $L = L(M_{\varepsilon})_{\varepsilon}$ pro RZA $M_{\varepsilon} \Leftrightarrow L = L(M_{f\varepsilon})_{f\varepsilon}$ pro RZA $M_{f\varepsilon}$
- $L = L(M_f)_f$ pro RZA $M_f \Leftrightarrow L = L(M_{\epsilon})_{\epsilon}$ pro RZA M_{ϵ}

Pozn. Existují algoritmy pro následující převody:

RZA a ZA jsou ekvivalentní

Tvrzení: Pro každý RZA M existuje takový ZA M, pro který platí: $L(M)_f = L(M')_f$.

Důkaz: Viz str. 419 v knize [Meduna: Automata and Languages]

Illustrace:

RZA a ZA jsou ekvivalentní

Tvrzení: Pro každý RZA M existuje takový ZA M, pro který platí: $L(M)_f = L(M')_f$.

Důkaz: Viz str. 419 v knize [Meduna: Automata and Languages]

RZA a ZA jsou ekvivalentní

Tvrzení: Pro každý RZA M existuje takový ZA M, pro který platí: $L(M)_f = L(M')_f$.

Důkaz: Viz str. 419 v knize [Meduna: Automata and Languages]

RZA a ZA jako modely pro synt. analýzu

Myšlenka: RZA nebo ZA mohou simulovat konstrukci derivačního stromu pro BKG

• Dva základní přístupy:

1) Shora dolů

Z S směrem ke vstupnímu řetězci 2) Zdola nahoru

Ze vstupního řetězce směrem k S

Myšlenka: Na RZA M je založena SA pracující zdola nahoru

1) *M* obsahuje *shiftovací* pravidla, které přesouvají vstupní symboly na zásobník:

Myšlenka: Na RZA M je založena SA pracující zdola nahoru

1) *M* obsahuje *shiftovací* pravidla, které přesouvají vstupní symboly na zásobník:

Pro každé $a \in \Sigma$: přidej $sa \rightarrow as$ do R;

Myšlenka: Na RZA M je založena SA pracující zdola nahoru

1) *M* obsahuje *shiftovací* pravidla, které přesouvají vstupní symboly na zásobník:

2) *M* obsahuje *redukční* pravidla, které simulují aplikaci gramatických pravidel pozpátku:

Myšlenka: Na RZA M je založena SA pracující zdola nahoru

1) *M* obsahuje *shiftovací* pravidla, které přesouvají vstupní symboly na zásobník:

Pro každé $a \in \Sigma$: přidej $sa \rightarrow as$ do R;

2) *M* obsahuje *redukční* pravidla, které simulují aplikaci gramatických pravidel pozpátku:

Pro každé $A \rightarrow x \in P \vee G$: přidej $xs \rightarrow As$ to R;

Myšlenka: Na RZA M je založena SA pracující zdola nahoru

1) *M* obsahuje *shiftovací* pravidla, které přesouvají vstupní symboly na zásobník:

2) *M* obsahuje *redukční* pravidla, které simulují aplikaci gramatických pravidel pozpátku:

3) M také obsahuje speciální pravidlo $\#Ss \rightarrow f$, pomocí kterého provede M přechod do koncového stavu

Konstrukce derivačního stromu zdola nahoru:

počáteční symbol na zásobníku

S x y Z

Algoritmus: Z BKG na RZA

- Vstup: BKG G = (N, T, P, S)
- Výstup: RZA $M = (Q, \Sigma, \Gamma, R, s, \#, F); L(G) = L(M)_f$
- Metoda:
- $Q := \{s, f\};$
- $\Sigma := T$;
- $\Gamma := N \cup T \cup \{\#\};$
- Konstrukce množiny *R*:
 - for each $a \in \Sigma$: přidej $sa \to as$ do R;
 - for each $A \to x \in P$: přidej $xs \to As$ do R;
 - přidej $\#Ss \to f \text{ do } R$;
- $F := \{f\};$

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

Máme nalézt: RZA M, pro který platí: $L(G) = L(M)_f$

 $M = (Q, \Sigma, \Gamma, R, s, \#, F)$ kde:

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

$$M = (Q, \Sigma, \Gamma, R, s, \#, F)$$
 kde:
 $Q = \{s, f\};$

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

$$M = (Q, \Sigma, \Gamma, R, s, \#, F)$$
 kde:
 $Q = \{s, f\}; \Sigma = T = \{(,)\};$

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

$$M = (Q, \Sigma, \Gamma, R, s, \#, F)$$
 kde:
 $Q = \{s, f\}; \Sigma = T = \{(,)\}; \Gamma = N \cup T \cup \{\#\} = \{S, (,), \#\}$

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

$$M = (Q, \Sigma, \Gamma, R, s, \#, F) \text{ kde:}$$
 $Q = \{s, f\}; \Sigma = T = \{(,)\}; \Gamma = N \cup T \cup \{\#\} = \{S, (,), \#\}$

"(" $\in T$
 $R = \{s(\to (s, \#))\}$

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

$$M = (Q, \Sigma, \Gamma, R, s, \#, F) \text{ kde:}$$
 $Q = \{s, f\}; \Sigma = T = \{(,)\}; \Gamma = N \cup T \cup \{\#\} = \{S, (,), \#\}\}$

$$\text{``('' \in T \quad `')'' \in T}$$
 $R = \{s(\to (s, s) \to)s,$

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

$$M = (Q, \Sigma, \Gamma, R, s, \#, F) \text{ kde:}$$
 $Q = \{s, f\}; \Sigma = T = \{(,)\}; \Gamma = N \cup T \cup \{\#\} = \{S, (,), \#\}\}$
 $C'' \in T$
 $C'' \in$

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

$$M = (Q, \Sigma, \Gamma, R, s, \#, F) \text{ kde:}$$
 $Q = \{s, f\}; \Sigma = T = \{(,)\}; \Gamma = N \cup T \cup \{\#\} = \{S, (,), \#\}\}$
 $C'' \in T$
 $C'' \in$

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

$$M = (Q, \Sigma, \Gamma, R, s, \#, F)$$
 kde:
 $Q = \{s, f\}; \Sigma = T = \{(,)\}; \Gamma = N \cup T \cup \{\#\} = \{S, (,), \#\}$
"(" $\in T$ ")" $\in T$ $S \rightarrow (S) \in P$ $S \rightarrow () \in P$
 $R = \{s(\rightarrow (s, s) \rightarrow)s, (S)s \rightarrow Ss, ()s \rightarrow Ss, \#Ss \rightarrow f\}$
shiftovací redukční
pravidla pravidla

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

Máme nalézt: RZA M, pro který platí: $L(G) = L(M)_f$

$$M = (Q, \Sigma, \Gamma, R, s, \#, F) \text{ kde:}$$

$$Q = \{s, f\}; \Sigma = T = \{(,)\}; \Gamma = N \cup T \cup \{\#\} = \{S, (,), \#\}$$

$$\text{``('' \in T \quad `')'' \in T \quad S \rightarrow (S) \in P \quad S \rightarrow () \in P$$

$$R = \{s(\rightarrow (s, s) \rightarrow)s, \quad (S)s \rightarrow Ss, \quad ()s \rightarrow Ss, \quad \#Ss \rightarrow f\}$$

$$\text{shiftovaci} \qquad \text{redukčni}$$

$$\text{pravidla} \qquad \text{pravidla}$$

 $F = \{f\}$

```
M = (Q, \Sigma, \Gamma, R, s, \#, F), \text{ kde:}
Q = \{s, f\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S, \#\}, F = \{f\}
R = \{s( \to (s, s) \to )s, (S)s \to Ss, ()s \to Ss, \#Ss \to f\}
```

Otázka: (()) $\in L(M)_f$?

$$M = (Q, \Sigma, \Gamma, R, s, \#, F), \text{ kde:}$$
 $Q = \{s, f\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S, \#\}, F = \{f\}$
 $R = \{s(\to (s, s) \to)s, (S)s \to Ss, ()s \to Ss, \#Ss \to f\}$

Otázka: (()) $\in L(M)_f$?

Pravidlo: $s(\rightarrow (s))$

$$M = (Q, \Sigma, \Gamma, R, s, \#, F), \text{ kde:}$$
 $Q = \{s, f\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S, \#\}, F = \{f\}$
 $R = \{s(\to (s, s) \to)s, (S)s \to Ss, ()s \to Ss, \#Ss \to f\}$

Otázka: (()) $\in L(M)_f$?

Pravidlo: $s(\rightarrow (s))$

Pravidlo: $s(\rightarrow (s))$

Pravidlo:
$$s \rightarrow s$$

(() $s \rightarrow s$

$$M = (Q, \Sigma, \Gamma, R, s, \#, F), \text{ kde:}$$
 $Q = \{s, f\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S, \#\}, F = \{f\}$
 $R = \{s(\to (s, s) \to)s, (S)s \to Ss, ()s \to Ss, \#Ss \to f\}$

$$M = (Q, \Sigma, \Gamma, R, s, \#, F), \text{ kde:}$$
 $Q = \{s, f\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S, \#\}, F = \{f\}$
 $R = \{s(\to (s, s) \to)s, (S)s \to Ss, ()s \to Ss, \#Ss \to f\}$

$$M = (Q, \Sigma, \Gamma, R, s, \#, F), \text{ kde:}$$
 $Q = \{s, f\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S, \#\}, F = \{f\}$
 $R = \{s(\to (s, s) \to)s, (S)s \to Ss, ()s \to Ss, \#Ss \to f\}$

Otázka: (())
$$\in L(M)_f$$
?

Pravidlo: ()s \rightarrow S

(S ())

Pravidlo: s) \rightarrow)s

Pravidlo: s(\rightarrow (s | Pravidlo: (S) \rightarrow S

Pravidlo: s(\rightarrow (s | Pravidlo: (S) \rightarrow S

((S))) (| # S (S) |

Pravidlo: s) \rightarrow)s

((()) \rightarrow S

$$M = (Q, \Sigma, \Gamma, R, s, \#, F), \text{ kde:}$$
 $Q = \{s, f\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S, \#\}, F = \{f\}$
 $R = \{s(\to (s, s) \to)s, (S)s \to Ss, ()s \to Ss, \#Ss \to f\}$

(())

Otázka: (())
$$\in L(M)_f$$
?

Pravidlo: $s(\rightarrow (s))$

Pravidlo: $s(\rightarrow (s))$

Pravidlo: $s \rightarrow s$

Pravidlo: ()s \rightarrow S

(S)

Pravidlo: $(S) \rightarrow S$

$$M = (Q, \Sigma, \Gamma, R, s, \#, F), \text{ kde:}$$
 $Q = \{s, f\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S, \#\}, F = \{f\}$
 $R = \{s(\to (s, s) \to)s, (S)s \to Ss, ()s \to Ss, \#Ss \to f\}$

Otázka: (())
$$\in L(M)_f$$
?

Pravidlo: $s(\rightarrow (s))$

Pravidlo: $s(\rightarrow (s))$

Pravidlo: $s \rightarrow s$

Pravidlo: () $s \rightarrow S$

Pravidlo: $s \rightarrow s$

Pravidlo: $(S) \rightarrow S$

Pravidlo: $\#Ss \rightarrow f$

Koncový stav

Odpověď: YES

Myšlenka: Na ZA M je založena SA pracující shora dolů

1) *M* obsahuje *porovnávací* pravidla, která porovnají symbol z vrcholu zásobníku a aktuální symbol ze vstupní pásky:

Myšlenka: Na ZA M je založena SA pracující shora dolů

1) *M* obsahuje *porovnávací* pravidla, která porovnají symbol z vrcholu zásobníku a aktuální symbol ze vstupní pásky:

pro každé $a \in \Sigma$: přidej $asa \rightarrow s$ do R;

Myšlenka: Na ZA M je založena SA pracující shora dolů

1) *M* obsahuje *porovnávací* pravidla, která porovnají symbol z vrcholu zásobníku a aktuální symbol ze vstupní pásky:

2) *M* obsahuje *expanzivní* pravidla, která simulují gramatická pravidla:

Myšlenka: Na ZA M je založena SA pracující shora dolů

1) *M* obsahuje *porovnávací* pravidla, která porovnají symbol z vrcholu zásobníku a aktuální symbol ze vstupní pásky:

2) *M* obsahuje *expanzivní* pravidla, která simulují gramatická pravidla:

Myšlenka: Na ZA M je založena SA pracující shora dolů

1) *M* obsahuje *porovnávací* pravidla, která porovnají symbol z vrcholu zásobníku a aktuální symbol ze vstupní pásky:

2) *M* obsahuje *expanzivní* pravidla, která simulují gramatická pravidla:

Konstrukce derivačního stromu shora dolů:

počáteční symbol na zásobníku

Derivační strom:

Konstrukce derivačního stromu shora dolů:

počáteční symbol na zásobníku

$$S \rightarrow a_1...a_kBC$$

$$S \rightarrow a_1...a_kBC$$

$$S \rightarrow a_1...a_kBC$$

Derivační strom:

Konstrukce derivačního stromu shora dolů:

Konstrukce derivačního stromu shora dolů:

Konstrukce derivačního stromu shora dolů:

Konstrukce derivačního stromu shora dolů:

Konstrukce derivačního stromu shora dolů:

Konstrukce derivačního stromu shora dolů:

Konstrukce derivačního stromu shora dolů:

Konstrukce derivačního stromu shora dolů:

Algoritmus: Z BKG na ZA

- Vstup: BKG G = (N, T, P, S)
- Výstup: ZA $M = (Q, \Sigma, \Gamma, R, s, S, F); L(G) = L(M)_{\varepsilon}$
- Metoda:
- $Q := \{s\};$
- $\Sigma := T$;
- $\Gamma := N \cup T$;
- Konstrukce množiny R:
 - for each $a \in \Sigma$: přidej $asa \rightarrow s$ do R;
 - for each $A \to x \in P$: přidej $As \to ys$ do R, kde y = reversal(x);
- \bullet $F := \emptyset$;

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

Máme nalézt: ZA M, pro který platí: $L(G) = L(M)_{\varepsilon}$

 $M = (Q, \Sigma, \Gamma, R, s, S, F)$ kde:

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

$$M = (Q, \Sigma, \Gamma, R, s, S, F)$$
 kde:
 $Q = \{s\};$

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

$$M = (Q, \Sigma, \Gamma, R, s, S, F)$$
 kde:
 $Q = \{s\}; \quad \Sigma = T = \{(,)\};$

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

$$M = (Q, \Sigma, \Gamma, R, s, S, F)$$
 kde:
 $Q = \{s\}; \quad \Sigma = T = \{(,)\}; \quad \Gamma = N \cup T = \{S, (,)\}$

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

$$M = (Q, \Sigma, \Gamma, R, s, S, F)$$
 kde:
 $Q = \{s\}; \quad \Sigma = T = \{(,)\}; \quad \Gamma = N \cup T = \{S, (,)\}$
"(" $\in T$
 $R = \{(s) \rightarrow s,$

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

$$M = (Q, \Sigma, \Gamma, R, s, S, F)$$
 kde:
 $Q = \{s\}; \quad \Sigma = T = \{(,)\}; \quad \Gamma = N \cup T = \{S, (,)\}$
"(" $\in T$ ")" $\in T$

$$R = \{(s(\rightarrow s,)s) \rightarrow s,$$

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

$$M = (Q, \Sigma, \Gamma, R, s, S, F) \text{ kde:}$$

$$Q = \{s\}; \quad \Sigma = T = \{(,)\}; \quad \Gamma = N \cup T = \{S, (,)\}\}$$

$$\text{"("} \in T \quad \text{")"} \in T \quad S \rightarrow (S) \in P$$

$$\text{rev}$$

$$R = \{(s(\rightarrow s,)s) \rightarrow s, \quad Ss \rightarrow)S(s,$$

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

$$M = (Q, \Sigma, \Gamma, R, s, S, F) \text{ kde:}$$

$$Q = \{s\}; \quad \Sigma = T = \{(,)\}; \quad \Gamma = N \cup T = \{S, (,)\}$$

$$\text{"("} \in T \quad \text{")"} \in T \quad S \rightarrow (S) \in P \quad S \rightarrow () \in P$$

$$R = \{(s(\rightarrow s,)s) \rightarrow s, \quad Ss \rightarrow ()S(s, Ss \rightarrow ()s)\}$$

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

$$M = (Q, \Sigma, \Gamma, R, s, S, F)$$
 kde:
 $Q = \{s\}; \quad \Sigma = T = \{(,)\}; \quad \Gamma = N \cup T = \{S, (,)\}$
"(" $\in T$ ")" $\in T$ $S \rightarrow (S) \in P$ $S \rightarrow () \in P$
 $R = \{(s(\rightarrow s,)s) \rightarrow s, Ss \rightarrow ()s\}$
porovnávací expanzivní pravidla

• G = (N, T, P, S), kde:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

$$M = (Q, \Sigma, \Gamma, R, s, S, F)$$
 kde:
 $Q = \{s\}; \quad \Sigma = T = \{(,)\}; \quad \Gamma = N \cup T = \{S, (,)\}$
"(" $\in T$ ")" $\in T$ $S \rightarrow (S) \in P$ $S \rightarrow () \in P$
 $R = \{(s(\rightarrow s,)s) \rightarrow s, Ss \rightarrow ()s\}$
porovnávací expanzivní
 $F = \emptyset$ pravidla

$$M = (Q, \Sigma, \Gamma, R, s, S, F), \text{ kde:}$$

$$Q = \{s\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S\}, F = \emptyset$$

$$P = \{(s(\rightarrow s,)s) \rightarrow s, Ss \rightarrow (s, Ss$$

Otázka: (()) $\in L(M)_{\epsilon}$?

$$M = (Q, \Sigma, \Gamma, R, s, S, F), \text{ kde:}$$

$$Q = \{s\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S\}, F = \emptyset$$

$$P = \{(s(\rightarrow s,)s) \rightarrow s, Ss \rightarrow (s, Ss$$

Otázka: (()) $\in L(M)_{\epsilon}$?

Pravidlo: $Ss \rightarrow S(s)$

$$M = (Q, \Sigma, \Gamma, R, s, S, F)$$
, kde:
 $Q = \{s\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S\}, F = \emptyset$
 $P = \{(s(\rightarrow s,)s) \rightarrow s, Ss \rightarrow)S(s, Ss \rightarrow)(s)\}$
Otázka: $(()) \in L(M)_{\epsilon}$?

Pravidlo: $Ss \rightarrow S(s)$

Pravidlo: $(s) \rightarrow s$

$$M = (Q, \Sigma, \Gamma, R, s, S, F), \text{ kde:}$$

$$Q = \{s\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S\}, F = \emptyset$$

$$P = \{(s(\rightarrow s,)s) \rightarrow s, Ss \rightarrow)S(s, Ss \rightarrow)(s)\}$$
Otázka:
$$(()) \in L(M)_{\epsilon}?$$
Pravidlo:
$$Ss \rightarrow)S(s)$$
Pravidlo:
$$(s(\rightarrow s))S(s)$$

Pravidlo:
$$Ss \rightarrow)(s)$$

$$M = (Q, \Sigma, \Gamma, R, s, S, F), \text{ kde:}$$

$$Q = \{s\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S\}, F = \emptyset$$

$$P = \{(s(\rightarrow s,)s) \rightarrow s, Ss \rightarrow (s, Ss$$

Otázka: (()) $\in L(M)_{\epsilon}$?

Pravidlo: $(s) \rightarrow s$

Pravidlo: $Ss \rightarrow)(s)$

$$M = (Q, \Sigma, \Gamma, R, s, S, F), \text{ kde:}$$

$$Q = \{s\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S\}, F = \emptyset$$

$$P = \{(s(\rightarrow s,)s) \rightarrow s, Ss \rightarrow (s, Ss$$

Otázka: $(()) \in L(M)_{\epsilon}$?

Pravidlo: $Ss \rightarrow S(s)$

Pravidlo: $(s) \rightarrow s$

Pravidlo: $Ss \rightarrow (s)$

Pravidlo: $(s) \rightarrow s$

Pravidlo: $(s) \rightarrow s$

$$M = (Q, \Sigma, \Gamma, R, s, S, F), \text{ kde:}$$

$$Q = \{s\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S\}, F = \emptyset$$

$$P = \{(s(\rightarrow s,)s) \rightarrow s, Ss \rightarrow (s, Ss$$

Otázka: (()) $\in L(M)_{\epsilon}$?

Pravidlo: $Ss \rightarrow S(s)$

Pravidlo: $(s) \rightarrow s$

Pravidlo: $Ss \rightarrow)(s)$

Pravidlo: $(s) \rightarrow s$

Pravidlo: $)s) \rightarrow s$

Pravidlo: $)s) \rightarrow s$

$$M = (Q, \Sigma, \Gamma, R, s, S, F), \text{ kde:}$$

$$Q = \{s\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S\}, F = \emptyset$$

$$P = \{(s(\rightarrow s,)s) \rightarrow s, Ss \rightarrow)S(s, Ss \rightarrow)(s\}$$

$$\text{Otázka:} (()) \in L(M)_{\epsilon}?$$

$$\text{Pravidlo:} (s(\rightarrow s)) \text{ Pravidlo:} (s(\rightarrow s)) \text{ Pravidlo:} (s(\rightarrow s)) \text{ Pravidlo:} (s(\rightarrow s)) \text{ Pravidlo:} (s(\rightarrow s))) \text{ Pravidlo:} (s(\rightarrow s)) \text{ Pravidlo:} (s(\rightarrow s)) \text{ Pravidlo:} (s(\rightarrow s)) \text{ Pravidlo:} (s(\rightarrow s))) \text{ Pravidlo:} (s(\rightarrow s)) \text{ Pravidlo:} (s(\rightarrow s))) \text{ Pravidlo:} (s(\rightarrow s)) \text{ Pravidlo:} (s(\rightarrow s$$

zásobník

Odpověď: ANO

Modely pro bezkontextové jazyky

Tvrzení: Pro každou BKG G existuje ZA M, pro který platí: $L(G) = L(M)_{\varepsilon}$.

Důkaz je založen na předchozím algoritmu

Tvrzení: Pro každý ZA M existuje BKG G, pro kterou platí: $L(M)_{\varepsilon} = L(G)$.

Důkaz: Viz str. 486 v knize [Meduna: Automata and Languages]

Závěr: Fundamentální modely pro bezkontextové jazyky jsou:

1) Bezkontextové gramatiky 2) Zásobníkové automaty