九州大学大学院数理学府 平成27年度修士課程入学試験 専門科目問題

- 注意 問題 [1][2][3][4][5][6][7][8][9][10][11] の中から 2 題を選択して解答せよ.
 - 解答用紙は、問題番号・受験番号・氏名を記入したものを必ず 2 題分 提出すること.
 - 以下 $\mathbb N$ は自然数の全体, $\mathbb Z$ は整数の全体, $\mathbb Q$ は有理数の全体, $\mathbb R$ は実数の全体, $\mathbb C$ は複素数の全体を表す.
- [1] 群 G は元 a, b, c で生成され, $a^2 = b^2 = c^2 = abc = 1$ を満たすものとする. ただし,1 は G の単位元である. このとき以下の間に答えよ.
 - (1) G は可換群になることを示せ.
 - (2) G を決定せよ.
 - (3) G の位数が 4 のとき、G は 4 次対称群 S_4 のある正規部分群と同型であることを示せ.
- [2] 以下の問に答えよ.
 - (1) 可換環のイデアルが素イデアル、極大イデアルであることの定義をそれぞれがべよ。
 - (2) $\mathbb{Z}[x]$ は x を不定元とする整数係数の多項式全体のなす環とする. 以下に述べる $\mathbb{Z}[x]$ の各イデアルが素イデアルかどうか判定せよ. さらに、素イデアルであるとき極大イデアルかどうか判定せよ.
 - (i) $x^2 + 1$ で生成されるイデアル $(x^2 + 1)$.
 - (ii) 5 と $x^2 + 1$ で生成されるイデアル $(5, x^2 + 1)$.
 - (iii) 5 と $x^3 x^2 2x + 1$ で生成されるイデアル $(5, x^3 x^2 2x + 1)$.

- [3] $\alpha = \sqrt{1+\sqrt{2}}, \beta = \sqrt{1-\sqrt{2}} \in \mathbb{C}$ とする. このとき以下の問に答えよ.
 - (1) $\beta \notin \mathbb{Q}(\alpha)$ を示せ.
 - (2) α の ℚ 上の最小多項式を求めよ.
 - (3) $\mathbb{Q}(\alpha)$ と $\mathbb{Q}(\beta)$ は \mathbb{Q} 上の体として同型かどうか判定せよ.
- [4] \mathbb{R}^3 の部分空間 A, B を次で定める.

$$A = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\} \cup \{(x,y,0) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1\}$$

$$B = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\} \cup \{(x,0,0) \in \mathbb{R}^3 \mid -1 \le x \le 1\}$$
 このとき以下の間に答えよ.

- (1) A のオイラー数を求めよ.
- (2) 整数係数のホモロジー群 $H_n(A; \mathbb{Z})$ (n = 0, 1, 2, ...) を求めよ.
- (3) A と B は同相でないことを示せ.
- [5] f(x,y) $((x,y) \in \mathbb{R}^2)$ を滑らかな関数とし、曲面

$$\mathbf{p} = \mathbf{p}(x, y) = \begin{pmatrix} x \\ y \\ f(x, y) \end{pmatrix}, \quad (x, y) \in \mathbb{R}^2$$

を考える. このとき以下の問に答えよ.

- (1) 曲面 p の第一基本形式, 第二基本形式, 面積要素を求めよ.
- (2) 曲面 \mathbf{p} のガウス曲率 K を求めよ.
- (3) $f(x,y) = \frac{1}{2}(x^2 + y^2)$ のとき、ガウス曲率 K に面積要素をかけて全曲面で積分した値を求めよ.