Théorie des Nombres - TD4 Tests de primalité

Exercice 1 : (Test de Fermat et nombres de Carmichael) Soit $n \in \mathbb{N}$, n > 2.

- a) Montrer que si n est premier, alors pour tout entier a premier à n, $a^{n-1} \equiv 1$ [n]. En déduire un test de non-primalité et estimer sa complexité.
- b) Soient p, q premiers distincts tels que pgcd(p-1, q-1) = 2 et n = pq. Montrer que 2^{n-1} n'est pas congru à 1 modulo n. Généraliser au cas où l'entier d := pgcd(p-1, q-1) vérifie $2^d \le n$.
- c) L'entier $n \geq 2$ est appelé nombre de Carmichael si n n'est pas premier et si pour tout entier a premier à n, $a^{n-1} \equiv 1$ [n].
 - i) Montrer que n est un nombre de Carmichael si et seulement si n est impair, sans facteur multiple, et pour tout premier p divisant n, p-1 divise n-1.
 - ii) Montrer que pour $m \ge 1$, si 6m+1, 12m+1 et 18m+1 sont premiers, alors (6m+1)(12m+1)(18m+1) est de Carmichael. En déduire un exemple de nombre de Carmichael.
 - iii) Montrer qu'un nombre de Carmichael a au moins trois facteurs premiers.
 - iv) Soit r un entier premier impair. Montrer qu'il n'existe qu'un nombre fini de nombres de Carmichael de la forme pqr, avec p,q premiers. [On pourra montrer que p-1 divise rq-1 et q-1 divise rp-1, puis majorer le nombre $\frac{qr-1}{p-1}\frac{pr-1}{q-1}$.]
 - v) Déterminer tous les nombres de Carmichael admettant exactement trois facteurs premiers, dont l'un vaut 3 (resp. 5, resp. 7).

Solution de l'exercice 1.

- a) C'est le petit théorème de Fermat. On dispose donc du test de non-primalité suivant pour l'entier n: choisir $a \in \mathbb{Z}$ premier à n, puis tester si $a^{n-1} \equiv 1$ [n]. Si ce n'est pas le cas, alors n n'est pas premier. La complexité de ce test est la suivante : pour a fixé, on doit calculer a^{n-1} modulo n, ce qui se fait via une exponentiation modulaire rapide, d'où une complexité en $\mathcal{O}(\log(n)^3)$ opérations élémentaires.
- b) On traite directement le cas général, sous l'hypothèse $2^d \leq n$. Supposons que $2^{n-1} \equiv 1$ [n]. Alors $2^{pq-1} \equiv 1$ [p] et $2^{pq-1} \equiv 1$ [q], donc $2^{q-1} \equiv 1$ [p] et $2^{p-1} \equiv 1$ [q] (puisque $2^{p-1} \equiv 1$ [p] et $2^{q-1} \equiv 1$ [q]). Donc l'ordre de 2 modulo p (resp. modulo q) divise p-1 et q-1, donc divise d. Donc $2^d \equiv 1$ [p] et $2^d \equiv 1$ [q], i.e. $2^d \equiv 1$ [n]. Or $2^d \leq n$ par hypothèse, donc $2^d = 1$, donc d = 0, ce qui est impossible. Donc finalement 2^{n-1} n'est pas congru à 1 modulo n.
- c) i) On suppose que n est un nombre de Carmichael. En appliquant la définition à a=-1, on obtient que $(-1)^{n-1} \equiv 1$ [n], donc $(-1)^{n-1} = 1$, donc n est impair. Supposons qu'il existe un nombre premier p tel que p^2 divise n. Alors le lemme chinois et la structure de $(\mathbb{Z}/p^r\mathbb{Z})^*$ (avec $r \geq 2$) assure que $(\mathbb{Z}/n\mathbb{Z})^*$ admet un élément a d'ordre p, donc puisque $a^{n-1} \equiv 1$ [n], p divise n-1. Or p divise n, d'où une contradiction. Donc finalement n est sans facteur carré. Soit p premier divisant n. Montrons que p-1 divise n-1. Le lemme chinois assure que le groupe $(\mathbb{Z}/n\mathbb{Z})^*$ admet un facteur direct $(\mathbb{Z}/p\mathbb{Z})^*$, qui est cyclique d'ordre p-1. Donc il existe un élément x d'ordre p-1 dans $(\mathbb{Z}/n\mathbb{Z})^*$. Puisque $x^{n-1} \equiv 1$ [n], cela assure que p-1 divise n-1.

- Montrons la réciproque. On suppose n impair, sans facteur multiple, tel que pour tout p premier divisant n, p-1 divise n-1. Soit $a \in \mathbb{Z}$ premier à n. Soit p premier divisant n. Puisque p-1 divise n-1, et a étant premier à p, on a $a^{n-1} \equiv 1$ [p]. Ceci étant valable pour tout p premier divisant n et n étant sans facteur carré, le lemme chinois assure que $a^{n-1} \equiv 1$ [n], ce qui conclut la preuve.
- ii) On note n=(6m+1)(12m+1)(18m+1). Par la question précédente, il suffit de vérifier que 6m, 12m et 18m divisent n-1. Or on a $n\equiv 1.1.1\equiv 1$ [6m], $n\equiv (6m+1).1.(6m+1)\equiv 1+12m+36m^2\equiv 1$ [12m] et $n\equiv (6m+1)(-6m+1).1\equiv 1-36m^2\equiv 1$ [18m], ce qui assure que n est de Carmichael.
 - On constate que pour m=1, les nombres 7, 13 et 19 sont premiers. Par conséquent, le nombre n=7.13.19=1729 est un nombre de Carmichael.
 - De même, pour m=6, on obtient les nombres premiers 37, 73 et 109, donc l'entier n=37.73.109=294409 est un nombre de Carmichael.
- iii) Soit n = pq un nombre de Carmichael avec deux facteurs premiers impairs p < q. La question i) assure que q 1 divise n 1. Or n 1 = p(q 1) + p 1, donc q 1 divise p 1. Or p < q, donc ceci est contradictoire. Donc un nombre de Carmichael admet au moins trois facteurs premiers.
- iv) La question i) assure que p-1 divise pqr-1=qr(p-1)+qr-1, donc p-1 divise qr-1. De même, q-1 divise pr-1. Il existe donc $a,b\in\mathbb{N},\ a,b\geq 2$, tels que qr-1=a(p-1) et pr-1=b(q-1). On en déduit que $p=\frac{r(b-1)+b(a-1)}{ab-r^2}$ et $q=\frac{1+a(p-1)}{r}$. En particulier, les valeurs de a et b déterminent p et q. Il suffit donc de montrer qu'il n'y a qu'un nombre fini de valeurs possibles pour a et b.
 - Pour cela, on considère le produit $ab = \frac{qr-1}{p-1} \frac{pr-1}{q-1} = \frac{pr-1}{p-1} \frac{qr-1}{q-1}$. Si on note f_r la fonction définie sur $]1; +\infty[$ par $f_r(x) = \frac{rx-1}{x-1}$, on voit facilement que f_r est strictement décroissante et tend vers r^2 en $+\infty$. Cela assure que pour tous p, q premiers impairs distincts, on a $r^2 < ab \le f_r(3)f_r(5)$. Or il est clair que ces inégalités ne sont satisfaites que par un nombre fini d'entiers $a,b \ge 2$. Donc il n'existe qu'un nombre fini de premiers p, q tels que pqr soit un nombre de Carmichael.
- v) On fixe r=3 dans la question précédente. Avec les notations de cette question, on obtient $9=r^2 < ab \le f_3(5)f_3(7)$, i.e. $10 \le ab \le 11$ avec $a,b \ge 2$ entiers. Quitte à échanger a et b (ce qui revient à échanger p et q), on peut supposer $a \le b$. Donc ab=10, donc (a;b)=(2;5). On en déduit via les formules de la question iv) que p=17 et q=11. Par conséquent, il existe un unique nombre de Carmichael à trois facteurs premiers qui soit divisible par 3, c'est 3.11.17=561. C'est le plus petit nombre de Carmichael.
 - On fixe r=5 dans la question iv). Avec les notations de cette question, on obtient $25=r^2 < ab \le f_5(7)f_5(11)$, i.e. $26 \le ab \le 30$ avec $a,b \ge 2$ entiers. Quitte à échanger a et b, on peut supposer $a \le b$. Donc ab=26,27,28,29 ou 30, donc $(a;b) \in \{(2;13),(2;14),(2;15),(3;9),(3;10),(4;7),(5;6)\}$. On en déduit via les formules de la question iv) que $(p,q) \in \{(17;13),(29;17),(73;29)\}$. Par conséquent, il existe trois nombres de Carmichael à trois facteurs premiers qui soient divisibles par 5, ce sont 5.13.17=1105, 5.17.29=2465 et 5.29.73=10585.
 - On fixe r=7 dans la question iv). Avec les notations de cette question, on obtient $49=r^2 < ab \le f_7(11)f_7(13)$, i.e. $50 \le ab \le 57$ avec $a,b \ge 2$ entiers. Quitte à échanger a et b, on peut supposer $a \le b$. Donc ab=50,51,52,53,54,55,56 ou 57, donc

$$(a;b) \in \{(2;25),(2;26),(2;27),(2;28),(3;17),(3;18),(3;19),(4;13),(4;16),(5;10),(5;11),(6;9),(7;8)\}$$

On en déduit via les formules de la question iv) que

$$(p,q) \in \{(19;13), (31;13), (41;23), (67;19), (73;31), (103;73)\}.$$

Par conséquent, il existe six nombres de Carmichael à trois facteurs premiers qui soient divisibles par 7, ce sont 7.13.19 = 1729, 7.13.31 = 2821, 7.19.67 = 8911, 7.23.41 = 6601, 7.31.73 = 15841 et 7.73.103 = 52633.

Exercice 2: (Test de Solovay-Strassen)

- a) Montrer que si n est premier, alors $\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}}$ [n] pour tout entier a premier à n.
- b) Soit n > 2 impair. On suppose que $\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}}$ [n] pour tout entier a premier à n. Montrer que n est premier.
 - [Indication : on pourra utiliser l'exercice 1 et la caractérisation des nombres de Carmichael.]
- c) En déduire un test de non-primalité et évaluer sa complexité.
- d) Montrer que si n est impair composé, alors le nombre d'entiers $1 \le a < n$ premiers à n tels que $\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}} [n]$ est inférieur ou égal à $\frac{\varphi(n)}{2}$.
- e) En déduire un test de primalité probabiliste et évaluer son efficacité.

Solution de l'exercice 2.

- a) cf cours.
- b) En élevant au carré la relation $\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}}$ [n], on obtient que n est soit un nombre premier, soit un nombre de Catalan. Donc n est produit de facteurs premiers impairs deux-à-deux distincts. Supposons que n admette au moins deux facteurs premiers, dont l'un est noté p. Alors le lemme chinois assure qu'il existe $a \in \mathbb{Z}$, premier à n, tel que a ne soit pas un carré modulo p et a est congru à 1 modulo tous les facteurs premiers de n distincts de p. Alors $\left(\frac{a}{n}\right) = \left(\frac{a}{p}\right) = -1$, et la classe de $a^{\frac{n-1}{2}}$ modulo n vaut 1 modulo tout facteur premier de n distinct de p. Donc le lemme chinois assure que $a^{\frac{n-1}{2}}$ n'est pas congru à -1 modulo n, ce qui contredit l'hypothèse. Donc n est premier.
- c) On dispose du test suivant : pour a premier à n fixé, on teste si $a^{\frac{n-1}{2}}$ est congru à $\left(\frac{a}{n}\right)$ modulo n. Si ce n'est pas le cas, alors n n'est pas premier. Le calcul de $a^{\frac{n-1}{2}}$ modulo n a une complexité en $\mathcal{O}(\log(n)^3)$, et la loi de réciprocité quadratique assure que la complexité du calcul du symbole de Jacobi $\left(\frac{a}{n}\right)$ est également en $\mathcal{O}(\log(n)^3)$. D'où finalement un test de non-primalité (à a fixé) en $\mathcal{O}(\log(n)^3)$.
- d) Soit n impair composé. On note $H_n := \{1 \leq 1 < n : \operatorname{pgcd}(a,n) = 1 \text{ et } \left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}} [n] \}$. Alors la multiplicativité du symbole de Jacobi et de l'élévation à la puissance $\frac{n-1}{2}$ dans $(\mathbb{Z}/n\mathbb{Z})^*$ assure que H_n est un sous-groupe de $(\mathbb{Z}/n\mathbb{Z})^*$ $(H_n$ contient clairement la classe de 1). En outre, puisque n est composé, la question b) assure que H_n n'est pas le groupe $(\mathbb{Z}/n\mathbb{Z})^*$ tout entier, par conséquent, on a $\#H_n \leq \frac{\varphi(n)}{2}$. Cela répond à la question posée.
- e) On fixe un entier $k \geq 1$. On tire au hasard (disons uniformément) un entier $1 \leq a_1 < n$ premier à n, et on teste si $a_1^{\frac{n-1}{2}}$ est congru à $\left(\frac{a_1}{n}\right)$ modulo n. Puis on tire un entier $1 \leq a_2 < n$ premier à n (indépendant de a_1 par exemple), et on recommence k fois. On fait donc k tirages aléatoires indépendants (a_1, \ldots, a_n) , de loi uniforme, parmi les entiers entre 1 et n-1, premiers à n. Si pour l'un des a_i , la réponse est négative, alors on peut conclure que le nombre n est composé. Si toutes les réponses sont positives, on ne peut pas conclure avec certitude que n est premier. En revanche, on dit parfois que n est probablement premier (ou pseudo-premier) : la probabilité que n que ne soit pas premier est en effet inférieure à $\frac{1}{2^k}$ d'après la question d). La complexité de cet algorithme est $\mathcal{O}(k.\log(n)^3)$. Évidemment, plus k est grand, plus la complexité est élevée et plus le risque d'erreur est faible.

Exercice 3 : (Test de Miller-Rabin) Soit n > 2.

- a) Montrer que si n est premier et $n-1=2^st$ avec t impair, alors pour tout a premier à n, soit $a^t\equiv 1$ [n], soit il existe $0\leq i< s$ tel que $a^{2^it}\equiv -1$ [n]. En déduire un test de non-primalité, et estimer sa complexité
- b) On suppose n impair composé. Un entier a premier à n est appelé témoin de Miller pour n si la conclusion de la question précédente n'est pas vérifiée.
 - i) Montrer que 2 est un témoin de Miller pour 561.
 - ii) Soit G un groupe cyclique, soient $m \in \mathbb{Z}$, $g \in G$, $k := \operatorname{pgcd}(m, \#G)$. Montrer que l'équation $x^m = g$ a une solution dans G si et seulement si $g^{\frac{\#G}{k}} = 1$. Montrer que dans ce cas, l'équation a exactement k solutions.
 - iii) Avec les notations précédentes, on suppose que g est d'ordre 2, on note $\#G = 2^u v$ (v impair) et $m = 2^s t$ (t impair). On pose $r := \min(u, s)$ et $w := \operatorname{pgcd}(t, v)$.
 - i. Montrer que l'équation $x^t = 1$ a w solutions dans G.
 - ii. Montrer que si $1 \le j \le r$, l'équation $x^{2^{j-1}t} = g$ a $2^{j-1}w$ solutions dans G.
 - iii. Montrer que si j > r, l'équation $x^{2^{j-1}t} = q$ n'a pas de solution dans G.
 - iv. On revient aux notations initiales : $n \geq 2$, $n-1=2^st$ avec t impair. On considère le groupe $G:=(\mathbb{Z}/n\mathbb{Z})^*$ et les s+1 équations $x^t=1$, $x^t=-1$, $x^{2t}=-1$, ..., $x^{2^{s-1}t}=-1$. On décompose $n=\prod_{i=1}^N p_i^{a_i}$ en facteurs premiers. On note aussi $p_i^{a_i-1}(p_i-1)=2^{u_i}v_i$ avec v_i impair, $w_i:=\operatorname{pgcd}(t,v_i)$, $v_i':=\frac{v_i}{w_i}$, $U:=\sum_i u_i$, $V:=\prod_i v_i$ et $V':=\prod_i v_i'$. Enfin, notons $u_{\min}:=\min(u_i)$ et $r:=\min(u_{\min},s)$.

Calculer la somme A du nombre de solutions des s+1 équations précédentes, en fonction de N, r, V, V'.

- v. On suppose N=1. Montrer que $p_1-1=2^{u_1}w_1$ et que $A=p_1-1$.
- vi. On suppose N>1. Montrer que $A\leq \frac{V}{V'}2^{Nr}2^{1-N}$ et calculer $\varphi(n)$ en fonction de U et V.

En déduire que si $\frac{\varphi(n)}{A} < 4$, alors N = 2, $a_1 = a_2 = 1$, $u_1 = u_2 = r$ et V' = 1, puis montrer que dans ce cas, $p_1 - 1$ et $p_2 - 1$ divisent n - 1.

- vii. Conclure que dans tous les cas, si $n \neq 9$ est impair composé, alors au moins $\frac{3}{4}$ des entiers $1 \leq a < n$ premiers à n sont des témoins de Miller pour n.
- viii. En déduire un test de primalité probabiliste, et estimer sa complexité et sa probabilité d'erreur.

Solution de l'exercice 3.

- a) Soit a premier à n. Alors $a^{n-1} \equiv 1$ [n], donc $(a^t)^{2^s} \equiv 1$ [n]. Notons $j := \min\{0 \le k \le s : (a^t)^{2^k} \equiv 1$ $[n]\}$. Si j = 0, alors $a^t \equiv 1$ [n]. Si $j \ge 1$, alors $(a^t)^{2^{j-1}}$ est une racine carrée de 1 modulo n, et ce n'est pas 1 modulo n. Donc nécessairement $(a^t)^{2^{j-1}} \equiv -1$ [n], d'où le résultat en posant i := j 1.
- b) i) On remarque que $561-1=2^4.35$, et on calcule $2^{35}\equiv 263$ [561], puis $2^{2.35}\equiv 166$ [561], puis $2^{2^3.35}\equiv 67$ [561], puis $2^{2^3.35}\equiv 1$ [561]. Cela assure que 2 est un témoin de Miller pour 561 : cela démontre en effet que 561 n'est pas premier (c'est un nombre de Carmichael).
 - ii) On note g_0 un générateur de G. Écrivons une relation de Bezout : il existe $u,v\in\mathbb{Z}$ tels que u.m+v.#G=k. Supposons qu'il existe $x\in G$ tel que $x^m=g$. Alors $g^{\frac{\#G}{k}}=x^{\frac{m\#G}{k}}=(x^{\frac{m}{k}})^{\#G}=1$ par le théorème de Lagrange. Réciproquement, supposons que $g^{\frac{\#G}{k}}=1$. On sait qu'il existe $r\in\mathbb{Z}$ tel que $g=g_0^r$. L'hypothèse $g^{\frac{\#G}{k}}=1$ assure que k divise r (puisque g_0 engendre G), i.e. r=k.r', avec $r'\in\mathbb{Z}$. On pose alors $x:=g_0^{r'.u}$. Alors on a $x^m=g_0^{r'.u.m}=g_0^{k.r'-k.v.\#G}=g_0^{k.r'}=g_0^r=g$, donc l'équation a bien une solution.

Dans le cas où l'équation admet une solution $x_0 \in G$, on voit que $x \in G$ est solution si et seulement si $x.x_0^{-1}$ est d'ordre divisant m. Or il existe exactement k éléments de G dont l'ordre divise m (G est cyclique), donc l'équation admet exactement k solutions.

- iii) i. C'est une conséquence directe de la question ii) (car 1 est solution).
 - ii. C'est une conséquence directe de la question ii) (car $g^2 = 1$).
 - iii. C'est une conséquence directe de la question ii) (car g n'est pas d'ordre impair).
 - iv. Le lemme chinois assure que toute équation de la forme $x^{2^{j-1}.t} = \pm 1$ dans G équivaut aux N équations $x_i^{2^{j-1}.t} = \pm 1$ dans $G_i := \mathbb{Z}/(p_i^{a_i}\mathbb{Z})^*$, avec $1 \leq i \leq N$. Or les G_i sont cycliques, donc on peut appliquer les questions i., ii. et iii. On obtient que le nombre $A_{i,j}$ de solutions de l'équation $x_i^{2^{j-1}.t} = -1$ dans G_i vaut $2^{j-1}.w_i$ si $1 \leq j \leq r$, que le nombre de solutions de $x_i^t = 1$ dans G_i vaut w_i , et que l'équation $x^{2^{j-1}.t} = -1$ n'a pas de solution dans G si j > r. Donc le nombre de solutions A recherché est

$$A = \prod_{i=1}^{N} w_i + \sum_{j=1}^{r} \prod_{i=1}^{N} A_{i,j} = \prod_{i=1}^{N} w_i + \sum_{j=1}^{r} \prod_{i=1}^{N} 2^{j-1} \cdot w_i = \left(\prod_{i=1}^{N} w_i\right) \left(1 + \sum_{j=1}^{r} 2^{N \cdot (j-1)}\right)$$

donc

$$A = \left(\prod_{i=1}^{N} w_i\right) \left(1 + \frac{2^{Nr} - 1}{2^N - 1}\right) .$$

Or on a

$$\prod_{i=1}^{N} w_i = \frac{V}{V'},$$

donc finalement

$$A = \frac{V}{V'} \left(1 + \frac{2^{Nr} - 1}{2^N - 1} \right) .$$

v. On a N=1, donc $n=p_1^{a_1}$, donc p_1-1 divise n-1, donc

$$p_1 - 1 = \operatorname{pgcd}(p_1 - 1, n - 1) = \operatorname{pgcd}(p_1^{a_1 - 1}(p_1 - 1), n - 1) = \operatorname{pgcd}(2^{u_1}v_1, 2^st) = 2^{u_1} \cdot \operatorname{pgcd}(v_1, t) = 2^{u_1}w_1.$$

Or la question précédente assure que $A = 2^{u_1}w_1$, donc finalement $A = p_1 - 1$.

vi. On a $A = \frac{V}{V'} \left(1 + \frac{2^{Nr} - 1}{2^N - 1} \right)$, donc on vérifie facilement que $A \leq \frac{V}{V'} 2^{Nr} 2^{1-N}$. En outre,

$$\varphi(n) = \prod_{i=1}^{N} p_i^{a_i - 1}(p_i - 1) = 2^U.V.$$

Supposons $\frac{\varphi(n)}{A} < 4$. Alors $V'.2^{N-1}.2^{U-Nr} < 4$. Or on a par définition $u_i \ge r$ pour tout i, donc $U \ge Nr$. De plus, pour tout i, puisque t divise n-1, alors p_i ne divise pas t, donc p_i divise V' dès que $a_i > 1$. Donc la condition $V'.2^{N-1}.2^{U-Nr} < 4$ assure que $N=2, V'=1, U=Nr, a_1=a_2=1$. On en déduit aussi que $u_1=u_2=r$. Alors v_1 et v_2 divisent t, et $r \le s$, donc p_1-1 et p_2-1 divisent n-1.

vii. Si N > 1 et $\frac{\varphi(n)}{A} < 4$, alors $n = p_1.p_2$ et $p_i - 1$ divise n - 1. Ceci est impossible. Donc pour tout n tel que N > 1, on a $\frac{\varphi(n)}{A} \ge 4$. Dans le cas où N = 1, alors $n = p^a$ (avec $a \ge 2$) et A = p - 1, donc $\frac{\varphi(n)}{A} = p^{a-1} \ge 4$ dès que $n \ne 9$.

On a donc montré que pour tout entier impair composé n distinct de 9, $\frac{\varphi(n)}{A} \ge 4$, ce qui signifie exactement qu'au moins $\frac{3}{4}$ des entiers $1 \le a < n$ premiers à n sont des témoins de Miller pour n.

viii. On choisit a premier à n entre 1 et n, au hasard (tirage uniforme), puis on fait le test de la question a). En cas de réponse négative, on sait que n n'est pas premier. Dans le cas contraire, on tire un nouvel a et on recommence. Après k tirages indépendants, la probabilité que l'entier n soit composé alors qu'il a passé les k tests est majorée par $\frac{1}{4^k}$. Pour k assez grand, on dira donc dans ce cas que n est probablement premier.

Exercice 4: (Comparaison des tests de Solovay-Strassen et de Miller-Rabin) Soit n > 2 impair. On note $n - 1 = 2^s t$.

- a) Soit $1 \le a < n$ tel que a ne soit pas un témoin de Miller pour n.
 - i) On suppose $a^t \equiv 1$ [n]. Montrer que $\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}}$ [n].
 - ii) On suppose qu'il existe $0 \le i < s$ tel que $a^{2^i t} \equiv -1$ [n].
 - i. Calculer $a^{\frac{n-1}{2}}$ modulo n.
 - ii. Soit p premier divisant n. On note $p-1=2^uv$. Montrer que $u\geq i+1$, que $\left(\frac{a}{p}\right)=1$ si u>i+1 et que $\left(\frac{a}{p}\right)=-1$ si u=i+1.
 - iii. Vérifier que dans le premier cas, $p \equiv 1$ [2ⁱ⁺²], et que dans le second, $p \equiv 1 + 2^{i+1}$ [2ⁱ⁺²].
 - iv. On note k le nombre de facteurs premiers p de n, comptés avec multiplicité, pour lesquels u=i+1 (second cas). Montrer que $\left(\frac{a}{n}\right)=(-1)^k$ et $n\equiv 1+k.2^{i+1}$ $[2^{i+2}]$.
 - v. En déduire que $n \equiv 1$ [2ⁱ⁺²] si et seulement si k est pair.
 - vi. En déduire que i < s-1 si et seulement si k est pair.
 - vii. En déduire que $\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}} [n]$.
- b) Expliquer en quel sens le test de Rabin-Miller est meilleur (au sens large) que le test de Solovay-Strassen.

Solution de l'exercice 4.

a) i) Puisque t est impair, on a

$$\left(\frac{a}{n}\right) = \left(\frac{a}{n}\right)^t = \left(\frac{a^t}{n}\right) = \left(\frac{1}{n}\right) = 1.$$

En outre, t divise $\frac{n-1}{2}$, donc $a^{\frac{n-1}{2}} \equiv 1$ [n]. D'où finalement $\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}}$ [n] $(\equiv 1$ [n]).

ii) i. On a $\frac{n-1}{2} = 2^{s-1}t$, donc

$$a^{\frac{n-1}{2}} = (a^{2^{i}t})^{2^{s-1-i}} \equiv (-1)^{s-1-i} [n]$$

d'où finalement $a^{\frac{n-1}{2}} \equiv -1 \ [n]$ si i = s-1 et $a^{\frac{n-1}{2}} \equiv 1 \ [n]$ si i < s-1.

ii. On a $a^{2^it} \equiv -1$ [n], donc $a^{2^it} \equiv -1$ [p], donc a^t est d'ordre exactement 2^{i+1} modulo p. On a donc un élément d'ordre 2^{i+1} dans $(\mathbb{Z}/p\mathbb{Z})^*$, donc le théorème de Lagrange assure que 2^{i+1} divise p-1, donc 2^{i+1} divise 2^u , donc $u \geq i+1$. En outre on a

$$\left(\frac{a}{p}\right) = \left(\frac{a^t}{p}\right) \equiv a^{t \cdot \frac{p-1}{2}} \equiv a^{2^{u-1}vt} \equiv (a^{2^i t})^{2^{u-1-i}v} \equiv (-1)^{2^{u-i-1}} [p],$$

d'où le résultat.

- iii. c'est évident.
- iv. On écrit la décomposition de n en facteurs premiers de la façon suivante : $n = \prod_{p \in S_1} p^{r_p} \times \prod_{p \in S_2} p^{r_p}$ où S_1 (resp. S_2) désigne l'ensemble des premiers p divisant n tels que u > i + 1 (resp. u = i + 1). Alors la question ii. assure que

$$\left(\frac{a}{n}\right) = \prod_{p|n} \left(\frac{a}{p}\right)^{r_p} = \prod_{p \in S_2} (-1)^{r_p} = (-1)^{\sum_{p \in S_2} r_p} = (-1)^k.$$

En outre, l'écriture $n = \prod_{p \in S_1} p^{r_p} \times \prod_{p \in S_2} p^{r_p}$ et la question iii. assurent que

$$n \equiv \prod_{p \in S_2} (1 + 2^{i+1})^{r_p} \equiv (1 + 2^{i+1})^k [2^{i+2}].$$

Or la formule du binôme montre que l'on a $(1+2^{i+1})^k \equiv 1+k.2^{i+1}$ [2ⁱ⁺²], d'où le résultat.

- v. On a $n \equiv 1$ [2ⁱ⁺²] si et seulement si 2ⁱ⁺² divise $k.2^{i+1}$ si et seulement si k est pair.
- vi. On a $n \equiv 1$ [2^{i+2}] si et seulement si 2^{i+2} divise $n-1=2^st$ si et seulement si $i+2 \le s$. La question précédente assure alors la conclusion.
- vii. Les questions iv. et vi. assurent que $\left(\frac{a}{n}\right) = 1$ si et seulement si i < s-1. Or on a montré à la question i. que $a^{\frac{n-1}{2}} \equiv 1$ [n] si et seulement si i < s-1. D'où finalement dans tous les cas $\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}}$ [n].
- b) On a montré à la question a) que si a n'était pas témoin de Miller pour n, alors a n'était pas témoin de Solovay-Strassen pour n. Par conséquent, tout témoin du test de Solovay-Strassen pour n est un témoin de Miller pour n. Cela signifie que, partant d'un entier composé n, le test de Rabin-Miller a davantage de chance (au moins autant en fait) que le test de Solovay-Strassen de trouver un témoin a qui démontre que n est composé. Ainsi, un entier probablement premier pour le test de Rabin-Miller est "plus probablement premier" que s'il était seulement probablement premier pour le test de Solovay-Strassen.

Exercice 5 : (Test de Lucas-Lehmer)

On considère un entier N de la forme $N = h2^n - 1$, avec n > 1, h impair et $0 < h < 2^{n+1} - 1$. Soit $a \in \mathbb{N}$, $a \ge 3$. On définit les suites (V_n) et (S_n) de la façon suivante : $V_0 := 2$, $V_1 := a$ et $V_{i+1} := aV_i - V_{i-1}$; $S_1 := V_h$ et $S_{i+1} := S_i^2 - 2$. On suppose $\left(\frac{a-2}{N}\right) = 1$ et $\left(\frac{a+2}{N}\right) = -1$ et on pose $D := a^2 - 4$.

- a) Montrer qu'il existe un diviseur premier p de N et un élément $x \in \mathbb{F}_{p^2} \setminus \mathbb{F}_p$ tel que $x^2 = D$.
- b) On pose $\alpha:=\frac{(a+2+x)^2}{4(a+2)}$. Montrer que $\alpha=\frac{a+x}{2}$, que α est racine de X^2-aX+1 et que dans le sous-corps \mathbb{F}_p de \mathbb{F}_{p^2} , on a les relations suivantes :

$$\left\{ \begin{array}{l} V_i = \alpha^i + \alpha^{-i} \\ S_i = \alpha^{h2^{i-1}} + \alpha^{-h2^{i-1}} \end{array} \right. . \label{eq:vi}$$

- c) Montrer que $\alpha^{\frac{p+1}{2}} = \left(\frac{a+2}{p}\right)$.
- d) On suppose que N divise S_{n-1} .
 - i) Montrer que 2^n divise l'ordre de α dans $\mathbb{F}_{n^2}^*$.
 - ii) En déduire qu'il existe des entiers k et m tels que $N = (2^n k 1)(2^n m + 1)$.
 - iii) Montrer que si $N \neq p$, alors $k \geq 2$ ou $m \geq 2$, donc $h \geq 2^{n+1} 1$.
 - iv) Conclure que N est premier.
- e) On suppose N premier. Montrer que N divise S_{n-1} .
- f) En déduire un test de primalité pour les entiers de la forme précédente.
- g) Montrer que si $h \equiv (-1)^{n-1}$ [3], on peut prendre a = 4 dans les questions précédentes.
- h) Pour tout n > 1, on note $M_n := 2^n 1$ le n-ième nombre de Mersenne. Adapter le test de primalité pour les M_n et estimer sa complexité.
- i) Montrer que $M_{11} = 2047$ n'est pas premier.
- j) Montrer que $M_{17} = 131071$ est premier.

Solution de l'exercice 5.

a) Les hypothèses assurent que $\left(\frac{D}{N}\right) = -1$. Par conséquent, il existe un facteur premier p de N tel que $\left(\frac{D}{p}\right) = -1$. Alors D n'est pas un carré modulo p, donc la classe de D dans $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ n'est pas un carré. On considère alors un corps de rupture du polynôme (irréductible) $X^2 - D$ sur \mathbb{F}_p . Ce corps est une extension de degré 2 de \mathbb{F}_p , il est donc isomorphe au corps \mathbb{F}_{p^2} . Par construction, ce corps contient une racine du polynôme $X^2 - D$, donc il existe $x \in \mathbb{F}_{p^2}$ tel que $x^2 = D$ (il est clair que $x \notin \mathbb{F}_p$ car D n'est pas un carré dans \mathbb{F}_p).

- b) Un calcul simple utilisant que $x^2=a^2-4$ assure que $\alpha=\frac{a+x}{2}$. De même, un calcul simple assure que α est racine de X^2-aX+1 . En outre, les relations coefficients racines assurent que la seconde racine de ce polynôme est $\alpha^{-1}=\frac{a-x}{2}$. La récurrence linéaire double $V_{i+1}=aV_i-V_{i-1}$ assure que V_i dans \mathbb{F}_{p^2} est une combinaison linéaire des suites (α^i) et (α^{-i}) (puisque le polynôme caractéristique de cette suite récurrente double n'est autre que X^2-aX+1 qui admet α et α^{-1} comme racines distinctes). On écrit donc qu'il existe $\lambda, \mu \in \mathbb{F}_{p^2}$ tels que pour tout $i, V_i = \lambda \alpha^i + \mu \alpha^{-i}$. Les conditions initiales $V_0 = 2$ et $V_1 = a$ assurent alors que $\lambda = \mu = 1$, donc pour tout i, on a $V_i = \alpha^i + \alpha^{-i}$. La dernière formule se démontre par récurrence : le cas i=1 est une conséquence de la formule pour V_i . En effet, on a $S_1 = V_h = \alpha^h + \alpha^{-h}$. Pour l'hérédité, on remarque que si $S_i = \alpha^{h\cdot 2^{i-1}} + \alpha^{-h\cdot 2^{i-1}}$, alors la relation de récurrence $S_{i+1} = S_i^2 2$ assure que $S_{i+1} = \left(\alpha^{h\cdot 2^{i-1}} + \alpha^{-h\cdot 2^{i-1}}\right)^2 2 = (\alpha^{h\cdot 2^{i-1}})^2 + (\alpha^{-h\cdot 2^{i-1}})^2 + 2 2 = \alpha^{h\cdot 2^i} + \alpha^{-h\cdot 2^i}$, d'où la formule recherchée par récurrence.
- c) On utilise la formule $\alpha = \frac{(a+2+x)^2}{4(a+2)}$. On a donc dans le corps \mathbb{F}_{p^2} , en utilisant que ce corps est de caractéristique p:

$$\alpha^{\frac{p+1}{2}} = \frac{(a+2+x)^{p+1}}{2^{p+1}(a+2)^{\frac{p+1}{2}}} = \frac{(a+2+x^p)(a+2+x)}{4(a+2)^{\frac{p+1}{2}}}.$$

Or $x \in \mathbb{F}_{p^2} \setminus \mathbb{F}_p$ et $x^2 \in \mathbb{F}_p$, donc on vérifie que $x^p = -x$, d'où finalement

$$\alpha^{\frac{p+1}{2}} = \frac{(a+2-x)(a+2+x)}{4(a+2)^{\frac{p+1}{2}}} = \frac{(a+2)^2 - (a^2-4)}{4(a+2)^{\frac{p+1}{2}}} = \frac{(a+2) - (a-2)}{4(a+2)^{\frac{p-1}{2}}} = \frac{1}{(a+2)^{\frac{p-1}{2}}}.$$

Or on a $(a+2)^{\frac{p-1}{2}} \equiv \left(\frac{a+2}{p}\right)$ [p], donc finalement on a $\alpha^{\frac{p+1}{2}} = \left(\frac{a+2}{p}\right)$ dans \mathbb{F}_p .

- d) i) L'hypothèse $S_{n-1} \equiv 0$ [N] implique que $S_{n-1} = 0$ dans \mathbb{F}_p , donc $\alpha^{h \cdot 2^{n-1}} = -1$ dans \mathbb{F}_p . Cela assure que α^h est d'ordre 2^n exactement. Cela assure immédiatement que l'ordre de α est divisible par 2^n .
 - ii) La question c) assure que $\alpha^{p+1}=1$, donc p+1 est divisible par l'ordre de α , donc par 2^n . Donc il existe un entier $k\geq 1$ tel que $p=2^nk-1$. En notant $q:=\frac{N}{p}\in\mathbb{N}$, on a alors $2^nh-1=N=(2^nk-1)q$. On voit donc que q est congru à 1 modulo 2^n , donc q s'écrit 2^nm+1 , avec $m\geq 0$ entier.
 - iii) Si $N \neq p$, alors $m \geq 1$. On a donc $2^nh 1 = 2^{2n}km + 2^n(k-m) 1$. Si k = m = 1, alors cette relation modulo 2^{2n} implique que h est pair, ce qui est exclu. Donc $k \geq 2$ ou $m \geq 2$. Alors la relation précédente implique que $h = 2^nkm + k m = m(2^nk 1) + k$. Le fait que k ou m soit supérieur ou égal à 2 assure alors facilement que $h > 2^{n+1} 1$.
 - iv) La conclusion de la question iii) est contradictoire avec l'hypothèse. Donc N=p, i.e. N est premier.
- e) Si N est premier, alors la question c) assure que $\alpha^{2^{n-1}} = \left(\frac{a+2}{N}\right) = -1$, ce qui implique via la question b) que $S_{n-1} = 0$ dans \mathbb{F}_N . D'où le résultat.
- f) On a montré finalement que N était premier si et seulement si N divise S_{n-1} . À a fixé, cela fournit un test de primalité pour N de complexité $\mathcal{O}(\log(n)\log(N)^2) = \mathcal{O}(n^2\log(n))$.
- g) On suppose $h \equiv (-1)^{n-1}$ [3]. On doit montrer que $\left(\frac{2}{N}\right) = 1$ et $\left(\frac{6}{N}\right) = -1$. La loi de réciprocité quadratique assure que $\left(\frac{2}{N}\right) = (-1)^{\frac{N^2-1}{8}}$. Or N^2-1 est divisible par 2^{n+1} , d'où le résultat dès que $n \geq 3$. De même, on a $\left(\frac{6}{N}\right) = \left(\frac{2}{N}\right)\left(\frac{3}{N}\right) = \left(\frac{3}{N}\right)$ pour $n \geq 3$. Par la loi de réciprocité quadratique, on a $\left(\frac{3}{N}\right) = (-1)^{\frac{N-1}{2}} \left(\frac{N}{3}\right)$. Or $\frac{N-1}{2} = h.2^{n-1}-1$ est impair, donc il suffit de montrer que $\left(\frac{N}{3}\right) = 1$. Or $N = h.2^n 1 \equiv (-1)^{n-1}.(-1)^n 1 \equiv 1$ [3], donc $\left(\frac{N}{3}\right) = \left(\frac{1}{3}\right) = 1$. On peut donc bien prendre a = 4 dans le cas particulier où $h = (-1)^{n-1}$.

- h) Si $n \geq 3$ est pair (plus généralement si n n'est pas premier), alors il est clair que M_n n'est pas premier $(2^{dr} 1)$ est divisible par $2^d 1$. Donc on peut supposer n impair (et même premier impair). Dans ce cas, on a bien $h = 1 = (-1)^{n-1}$, donc on peut appliquer la question g) pour prendre a = 4, et ensuite appliquer le test de la question f) avec a = 4. Il suffit donc de tester si N divise S_{n-1} , dans le cas a = 4. Sa complexité est $\mathcal{O}(n^2 \log(n)) = \mathcal{O}(\log(M_n)^2 \log(\log(M_n)))$.
- i) On vérifie que l'on a $S_{10}\equiv~282~[2047],$ ce qui assure que $M_{11}=2047$ n'est pas premier.
- j) On calcule S_{16} modulo M_{17} , et on trouve que $S_{16} \equiv 0$ $[M_{17}]$, donc $M_{17} = 131071$ est un nombre premier.