Micro I: Problem Set 6.

Professor: Victor H. Aguiar

October 24, 2020

Exercise 1. (Cobb-Douglas Production Function) Consider the production function (Cobb-Douglas) $f(z_1, z_2) = z_1^{\alpha} z_2^{\beta}$. The output level is denoted by $q \in \mathbb{R}_+$ and $0 < \alpha, \beta$ as is sold at prices $p \in \mathbb{R}_{++}$, the prices of inputs are $w = [w_1 \quad w_2]'$.

- (i) What conditions over α, β guarantees decreasing returns, constant and increasing returns to scale (respectively)?
 - (ii) Solve the cost minimization problem and compute the cost function.
- (iii) Solve the profit maximization problem and obtain the profit function as well as the supply function when the firm has decreasing returns to scale.
 - (iv) (Keeping the assumptions in (iii)) Obtain the factor demand z(w,q).

Exercise 2. (Profit Function) Prove that f the production set Y exhibits nondecreasing returns to scale, then either $\pi(p) \leq 0$ or (exclusive) $\pi(p) = +\infty$.

Exercise 3. (Cost minimization problem). The cost minimization problem:

$$Min_{z>0}w'z$$

$$s.t \quad f(z) \ge q.$$

And $c(w,q) = \min_{z \geq 0, f(z) \geq q} w'z$ is the cost function and $z(w,q) = argmin_{z \geq 0, f(z) \geq q} w'z$. Assume that f(z) is strictly concave. Prove the following proposition.

Proposition 1. The properties of the c(w,q) and the z(w,q) are,

- (i) c is HD1 in w and nondecreasing in q.
- (ii) c is a concave function.
- (iii) z is HD0 in w
- (iv) Sheppard's lemma. If $z(\overline{w},q)$ consists of a single point then $c(\cdot)$ is differentiable with respect to w at \overline{w} and $\nabla_w c(\overline{w},q) = z(\overline{w},q)$.
- (v) If z is differentiable at \overline{w} , then $D_w z(\overline{w}, p) = D_w^2 c(\overline{w}, q)$ is symmetric and NSD with $D_w z(\overline{w}, q)\overline{w} = 0$.
- (vi) c(w,q) is a convex function of q (in particular, marginal costs are nondecreasing in q) (Hint: recall f is strictly concave).