信息安全的数学基础(1)

唐灯

上海交通大学网络空间安全学院

第三章 环和域

- §3.1 环和域的定义
- §3.2 理想与商环
- §3.3 环的同态基本定理
- §3.4 同态的应用
- §3.5 素理想与极大理想
- §3.6 环的特征与素域
- §3.7 多项式环

§3.1 环和域的定义

- 环的定义
- 环的基本性质
- ■零因子和逆元
- 无零因子环
- 整环和域
- 子环
- 子环的判定

环的定义

定义 1

设 R 是一个非空集合. 如果在 R 上定义了两个代数运算 "+" (称为加法) 和 "·" (称为乘法), 并且满足

- (1) R 关于加法为阿贝尔群;
- (2) R 关于乘法满足结合律, 即对任意的 $a,b,c \in R$ 有 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$;
- (3) R 关于加法和乘法满足分配律, 即对任意的 $a,b,c \in R$ 有 $a \cdot (b+c) = a \cdot b + a \cdot c$ 和 $(b+c) \cdot a = b \cdot a + c \cdot a$,

则称 $(R,+,\cdot)$ 为一个环 (ring), 或简称 R 为环.

环的定义

注 1.1

- (1) 由环的定义知环 R 关于加法是一个阿贝尔群, 称为环 R 的加法群, 记为 (R,+). R 的加法单位元常用 0 表示, 称为环 R 的零元. R 中元素 a 的加法逆元称为 a 的负元, 记作 -a;
- (2) 如果环 R 的乘法还满足交换律,则称 R 为交换环 (commutative ring). 如果环 R 关于乘法有单位元,即存在元素 e 使得对任意 $a \in R$ 都有 ae = ea = a,则称 R 为含幺环 (ring with identity),并称 e 为 R 的单位元 (identity). 如果环 R 是有单位元的交换环,则称 R 为含幺交换环. 若环 R 有单位元 e,则 e 唯一.

例 2

设 $R = \{0\}$, 规定 0 + 0 = 0, $0 \cdot 0 = 0$, 则 R 构成环, 称为**零环**. 零环是唯一的有单位元且单位元等于零元的环, 并且零元也可逆的环.

例 3

整数集 \mathbb{Z} 、有理数集 \mathbb{Q} 、实数集 \mathbb{R} 、复数集 \mathbb{C} 对于通常数的加法与乘法构成有单位元 $\mathbb{1}$ 的交换环, 分别称为整数环、有理数域、实数域、复数域.

例 4

全体偶数的集合

$$2\mathbb{Z} = \{2z \mid z \in \mathbb{Z}\}$$

对于通常数的加法与乘法构成一个没有单位元的交换环.

实数域 \mathbb{R} 上全体 n (n>1) 阶方阵 $M_n(\mathbb{R})$ 的集合关于矩阵的加法与乘法构成一个有单位元 E (单位矩阵) 的非交换环, 称为数域 \mathbb{R} 上的 n **阶实矩阵环**.

例 6

设 m 为大于 1 的正整数, 则 \mathbb{Z} 的模 m 剩余类集

$$\mathbb{Z}_m = \{\overline{0}, \overline{1}, \overline{2}, \cdots, \overline{m-1}\}$$

关于剩余类的加法和乘法构成有单位元 $\overline{1}$ 的交换环, 称为模 m 剩余类环 (residue class ring).

设 R_1, R_2, \cdots, R_n 为 n 个环. 今 $R = R_1 \times R_2 \times \cdots \times R_n = \{(a_1, a_2, \cdots, a_n) \mid a_i \in R_i, i = 1, 2, \cdots, n\}.$ 对任意的 $(a_1, a_2, \dots, a_n), (b_1, b_2, \dots, b_n) \in R$. 规定 $(a_1, a_2, \cdots, a_n) + (b_1, b_2, \cdots, b_n) = (a_1 + b_1, a_2 + b_2, \cdots, a_n + b_n),$ $(a_1, a_2, \cdots, a_n) \cdot (b_1, b_2, \cdots, b_n) = (a_1b_1, a_2b_2, \cdots, a_nb_n),$ 则 R 关于上面所定义的加法与乘法构成一个环. 这个环称为环 R_1, R_2, \cdots, R_n 的**外直积** (external direct product). 显然, R 有单位元的充 分必要条件是每个 R_i 都有单位元, R 是交换环的充分必要条件是每个 R_i 都是交换环.

环的基本性质

定理8

设 R 是一个环, 则

- (1) 对任意 $a \in R$ 有-(-a) = a 和 $a \cdot 0 = 0 \cdot a = 0$, 其中 0 是 R 的零元;
- (2) $(-a) \cdot b = a \cdot (-b) = -a \cdot b$, $(-a) \cdot (-b) = a \cdot b$, 其中 -a 表示 a 在加法 群中的负元;
- (3) 对任意 $n \in \mathbb{Z}$, $a, b \in R$, $(na) \cdot b = a \cdot (nb) = n(a \cdot b)$, 其中当 n > 0 时 na 表示在加法群中 $n \uparrow a$ 相加,当 n < 0 时 na 表示在加法群中 $n \uparrow a$ 相加后的负元;
- (4) 对于 R 中元素 a_i $(1 \le i \le m)$ 和 b_j $(1 \le j \le n)$, 则 $\left(\sum a_i\right) \cdot \left(\sum b_j\right) = \sum_i \sum_j a_i \cdot b_j.$

证明

- (1) 因为 -a 是 a 的负元, 因此 a 也是 -a 的负元, 即 -(-a) = a. 此外, 因为 $a \cdot 0 + a \cdot 0 = a \cdot (0+0) = a \cdot 0 = a \cdot 0 + 0$, 由群的加法消去律得 $a \cdot 0 = 0$. 同理可证 $0 \cdot a = 0$.
- (2) 因为 $(-a) \cdot b + a \cdot b = (-a + a) \cdot b = 0 \cdot b = 0$, 所以 $(-a) \cdot b$ 是 $-a \cdot b$ 的 负元, 因此有 $(-a) \cdot b = -a \cdot b$. 同理可证, $a \cdot (-b) = -a \cdot b$. 进一步, $(-a) \cdot (-b) = -(a \cdot (-b)) = -(-(a \cdot b)) = a \cdot b$.
- (3) 当 n = 0, 即为情形 (1). 其次, 当 n > 0 时, 注意到 na = (n 1)a + a, 对 n 做归纳法可得 $na = a + \cdots + a$. 因此, $(na) \cdot b = (a + \cdots + a) \cdot b = a \cdot b + \cdots + a \cdot b = a \cdot (nb) = n(a \cdot b)$. 类似可证当
- $(na) \cdot b = (a + \dots + a) \cdot b = a \cdot b + \dots + a \cdot b = a \cdot (nb) = n(a \cdot b)$. 类似可证当 n < 0 时 $(na) \cdot b = a \cdot (nb) = n(a \cdot b)$.
- (4) 当 i=1 时, 注意到 $\sum b_j = b_1 + (b_2 + \cdots + b_n)$, 利用分配律并对 j 做 归纳法可得 $a_1 \cdot (\sum b_j) \sum_j a_1 \cdot b_j$. 当 i>1 时, 注意到 $\sum a_j = a_1 + (a_2 + \cdots + a_m)$, 于是利用分配律并对 i 做归纳法可得结论.

环的基本性质

推论 9

若环 R 满足 e = 0, 则 $R = \{0\}$.

证明: 对任意 $a \in R$, 则 $a = a \cdot e = a \cdot 0 = 0$.

注 9.1

今后, 如无特别声明, 我们总是假定环 R 有单位元并且 $R \neq \{0\}$, 因此在 R 中 $e \neq 0$.

零因子和逆元

定义 10

设环R 有单位元 e, 则

- (1) 若两个元素 $a, b \in R \setminus \{0\}$ 满足 $a \cdot b = 0$, 则称 a 为 R 的一个左零因子 (left zero-divisor), b 为 R 的一个右零因子 (right zero-divisor). 左零 因子与右零因子统称为零因子.
- (2) 对任意 $a \in R$. 如果存在 $b \in R$ 使得 ab = ba = e, 则称 $a \in R$ 的一个 **单位** (unit), 并称 b 为 a 的**逆元** (inverse element); 对任意 $a \in R$, 若 a 可逆, 则 a 的逆元唯一, 记为 a^{-1} .

无零因子环

注 10.1

- (1) 环 R 有左零因子则必有右零因子. 若 R 无零因子, 则称为无零因子 **环**. 环 R 为无零因子环当且仅当对任意 $a,b \in R$, 若 $a \cdot b = 0$ 则必有 a = 0 或 b = 0.
- (2) 环 R 中单位的集合构成一个群, 称为 R 的单位群 (group of units), 记 为 U(R).

证明: (2) 显然 $e \in U(R)$, 并且对任意 $a,b \in U(R)$ 有 $(ab)(b^{-1}a^{-1}) = (b^{-1}a^{-1})(ab) = e$, 于是 $ab \in U(R)$, 从而 U(R) 满足封闭性. 对任意 $a \in U(R)$, 由于 $a^{-1}a = aa^{-1} = e$, 于是 $a^{-1} \in U(R)$. 由此可知 U(R) 为群.

例 11

例 5 中 n 阶实矩阵环的单位群是 $\mathrm{GL}_n(\mathbb{R})$. 例 6 中模 m 剩余类环的单位群是 U(m);

例 12

 \mathbb{Z}_6 的全部零因子为

 $\overline{2}, \overline{3}, \overline{4}.$

例 13

所有形如

$$\left(\begin{array}{cc} 0 & 0 \\ x & y \end{array}\right), \quad x, y \in \mathbb{R}$$

的矩阵可组成环. 其左右零因子分别是

$$\begin{pmatrix} 0 & 0 \\ a & 0 \end{pmatrix}, a \neq 0$$
 与 $\begin{pmatrix} 0 & 0 \\ x & y \end{pmatrix}, x, y$ 不全为零.

无零因子环

定理 14

在一个无零因子的环中, 两个消去律成立, 即对任意的 $a,b,c \in R$, $c \neq 0$, 如果 ac = bc 或 ca = cb, 则 a = b.

证明: 设 ac = bc, 则

$$(a-b)c = 0.$$

由于 R 无零因子, 且 $c \neq 0$, 因此 a - b = 0. (否则, c 就是 R 的一个零因子). 从而 a = b, 所以在 R 中右消去律成立. 同理可证, 左消去律也成立.

无零因子环

注 14.1

如果环 R 中两个消去律有一个成立, 则 R 必是无零因子环, 从而另一个消去律也成立.

证明: 假定环 R 中左消去律成立. 考察 ab=0, $a,b\in R$. 如果 $a\neq 0$, 则 ab=0=a0. 由左消去律得 b=0, 所以 R 无零因子, 从而 R 是无零因子环. 同理可证, 如果环 R 中右消去律成立. 则 R 也是无零因子环

整环和域

定义 15

设 R 是一个有单位元 $e \neq 0$ 的环, 则

- (1) 若 R 是无零因子的交换环, 则 R 称为整环 (domain);
- (2) 若 R 中每个非零元都可逆, 则称 R 是一个除环 (division ring). 非交换的除环称为体 (skew-field);
- (2) 若 R 是一交换的除环, 则称 R 是一个域 (field).

有限域

注 15.1

- (1) 若环 $(F, +, \cdot)$ 为域,则 $F \setminus \{0\}$ 关于乘法亦是一个阿贝尔群,称为域的乘法群,记为 (F, \cdot) .
- (2) 若域 $(F, +, \cdot)$ 的元素个数有限,则称 F 为有限域.

例 16

整数环 \mathbb{Z} , 数域 F 上的一元多项式环 F[x] 都是整环.

例 17

环 $\mathbb{Z}/6\mathbb{Z}$ 中, $2 \cdot 3 = 4 \cdot 3 = 0$, 故 2, 3, 4 为 $\mathbb{Z}/6\mathbb{Z}$ 的零因子. $\{1, 5\}$ 为 $\mathbb{Z}/6\mathbb{Z}$ 的单位群, $\mathbb{Z}/6\mathbb{Z}$ 不是整环.

例 18

ℚ, ℝ, ℂ 都是域, 分别称为有理数域、实数域和复数域.

例 19

设 p 为素数, 则 \mathbb{Z}_p 是一个含 p 个元素的有限域.

证明: 首先, \mathbb{Z}_p 是一个有单位元的含 p 个元素的交换环, 又因为 \mathbb{Z}_p 的单位群 $U(p) = \mathbb{Z}_p^*$, 所以 \mathbb{Z}_p 中每个非零元都可逆, 因此 \mathbb{Z}_p 是一个域.

子环

定义 20

设 $(R,+,\cdot)$ 是一个环, S 是 R 的一个非空子集. 如果 S 关于 R 的运算构成环, 则称 S 为 R 的一个子环 (subring), 记作 S < R.

注 20.1

由子环的定义立即可知, 环 R 本身以及由单独一个零元 $\{0\}$ 所构成的集合关于 R 的运算都构成 R 的子环. 这两个子环称为 R 的**平凡子环**.

子环的判定

定理 21 (子环判定定理)

设 R 是一个环, S 是 R 的一个非空子集, 则 S < R 的充分必要条件是

- (1) 对任意的 $a, b \in S, a b \in S$;
- (2) 对任意的 $a, b \in S, ab \in S$.

设 d 是一个整数, $a = dz_1, b = dz_2$ 是 d 的任意两个倍数, 则

$$a - b = d(z_1 - z_2), \quad ab = d(dz_1z_2)$$

仍是 d 的倍数. 所以 d 的倍数全体

$$d\mathbb{Z} = \{ dz \mid z \in \mathbb{Z} \}.$$

构成整数环 \mathbb{Z} 的一个子环. 易知, 如果 $d \neq \pm 1$ 且 $d \neq 0$, 则 $d\mathbb{Z}$ 是一个没有单位元的环. 这个例子告诉我们, 即使一个环有单位元, 其子环也可能没有单位元. 同样, 即使一个环没有单位元, 其子环也可能有单位元 (参见上文直积例子).

设 I 为 $\mathbb Z$ 的子环. 证明: 存在唯一的非负整数 d, 使 $I=d\mathbb Z=\{dz\mid z\in\mathbb Z\}$

证明: 存在性. (1) 如果 $I = \{0\}$, 则取 d = 0, 有 $I = d\mathbb{Z}$.

(2) 如 $I \neq \{0\}$, 则有 z > 0, 使 $z \in I$. 令 $d = \min\{z \in I \mid z > 0\}$,

则 d>0 且 $d\in I$. 易知 $d\mathbb{Z}\subseteq I$. 又对 $z\in I$ 有 $q,r\in\mathbb{Z},0\leq r< d$ 使 z=dq+r.

从而 $r = z - dq \in I$. 因为 $r \in I, 0 \le r < d$, 由 d 的选取知 r = 0, 所以 $z \in d\mathbb{Z}$, 从而 $I \subseteq d\mathbb{Z}$. 由此得 $I = d\mathbb{Z}$. 这就证明了存在性.

唯一性. 设 $I = d_1 \mathbb{Z} = d_2 \mathbb{Z}, d_1 \ge 0, d_2 \ge 0.$

- (1) 如果 $d_1 = 0$ 则 $I = \{0\}$, 所以 $d_2 = 0$, 从而 $d_1 = d_2$.
- (2) 如果 $d_1 > 0$, 则 $d_2 > 0$. 因为 $d_1 \in I$, 所以 $d_2 \mid d_1$. 同理, $d_1 \mid d_2$. 所以 $d_1 = \pm d_2$. 又因为 d_1, d_2 都非负, 所以 $d_1 = d_2$.

练习

例 24

求 \mathbb{Z}_{18} 的所有子环.

解: 设 I 为 \mathbb{Z}_{18} 的任一子环, 则 I 是 \mathbb{Z}_{18} 的加法子群. 注意到 \mathbb{Z}_{18} 是循环群, 因此 $I = \langle \bar{r} \rangle$, 其中 \bar{r} 可能的取值为 $\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{6}, \bar{9}$, 即 \mathbb{Z}_{18} 有 6 个子加群:

$$I_{1} = \{\overline{0}\}; I_{2} = \langle \overline{1} \rangle = \mathbb{Z}_{18};$$

$$I_{3} = \langle \overline{2} \rangle = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}, \overline{12}, \overline{14}, \overline{16}\} = \overline{2}\mathbb{Z}_{18};$$

$$I_{4} = \langle \overline{3} \rangle = \{\overline{0}, \overline{3}, \overline{6}, \overline{9}, \overline{12}, \overline{15}\} = \overline{3}\mathbb{Z}_{18};$$

$$I_{5} = \langle \overline{6} \rangle = \{\overline{0}, \overline{6}, \overline{12}\} = \overline{6}\mathbb{Z}_{18};$$

$$I_{6} = \langle \overline{9} \rangle = \{\overline{0}, \overline{9}\} = \overline{9}\mathbb{Z}_{18}.$$

显然它们都是 \mathbb{Z}_{18} 的子环, 所以 \mathbb{Z}_{18} 共有 6 个子环 $\{\overline{0}\}, \mathbb{Z}_{18}, \overline{2}\mathbb{Z}_{18}, \overline{3}\mathbb{Z}_{18}, \overline{6}\mathbb{Z}_{18}, \overline{9}\mathbb{Z}_{18}.$

§3.1 环和域的定义

- 环的定义
- 环的基本性质
- ■零因子和逆元
- 无零因子环
- 整环和域
- ■子环
- 子环的判定

§3.2 理想与商环

- ■理想
- 理想的和与交
- 主理想
- ■生成理想
- ■商群的运算
- ■商环

理想

定义 25

设 R 为环, I 为 R 的非空子集, 如果 I 满足

- (1) 对任意的 $r_1, r_2 \in I, r_1 r_2 \in I$;
- (2) 对任意的 $r \in I, s \in R, rs, sr \in I$,

则称 I 为环 R 的一个理想 (ideal), 记作 $I \triangleleft R$. 又如果 $I \subsetneq R$, 则称 I 为 R 的真理想 (proper ideal).

注 25.1

- (1) 由理想的定义可知, 如果 I 为 R 的理想, 则 I 必为 R 的子环.
- (2) $\{0\}$ 与 R 本身显然都是 R 的理想. 这两个理想称为 R 的**平凡理想** *(trivial ideal)*.
- (3) 设 R 为包含单位元的环, 若有 $I \triangleleft R$ 且 $e \in I$, 则 I = R.
- (4) 若 R 为域,则 R 只有平凡理想.

试求 Z 的所有理想.

解: 设 I 为 \mathbb{Z} 的任一理想, 则 I 为 \mathbb{Z} 的子环. 由例 23 知存在 $d \in \mathbb{Z}$, $d \geq 0$, 使得 $I = d\mathbb{Z}$.

反之, 设 I 为 $\mathbb Z$ 的任一子环, 那么存在 $d \in \mathbb Z$, 使 $I = d\mathbb Z$, 则对任意的 $r = dx, s = dy \in I, z \in \mathbb Z$,

$$r - s = dx - dy = d(x - y) \in I,$$

$$rz = zr = (dx)z = d(xz) \in I,$$

所以 $d\mathbb{Z}$ 为 \mathbb{Z} 的理想.

由此知, I 为 $\mathbb Z$ 的理想当且仅当 I 为 $\mathbb Z$ 的子环. 因此 $\mathbb Z$ 的全部理想为 $d\mathbb Z$, 其中 $d\in\mathbb Z, d\geq 0$.

理想的和与交

定义 27

设 R 为环, I, J 都是 R 的理想, 集合 $I + J = \{a + b \mid a \in I, b \in J\} \ \, \text{与} \ \, I \cap J$ 分别称为理想 I 与 J 的和与交.

定理 28

设 R 为环, I, J 都是 R 的理想, 则 I 与 J 的和与交都是 R 的理想.

定理 29

设 R 是环,则

- (1) R 的任意有限多个理想的和还是 R 的理想;
- (2) R 的任意 (有限或无限) 多个理想的交还是 R 的理想.

证明

(1) 设
$$a,b \in I+J, x \in R$$
, 则有 $a_1,b_1 \in I, a_2,b_2 \in J$, 使 $a=a_1+a_2$, $b=b_1+b_2$. 从而
$$a-b=(a_1+a_2)-(b_1+b_2)=(a_1-b_1)+(a_2-b_2)\in I+J,$$

$$xa=x\left(a_1+a_2\right)=xa_1+xa_2\in I+J,$$

$$ax=(a_1+a_2)x=a_1x+a_2x\in I+J,$$

所以 I + J 为 R 的理想.

(2) 对任意的
$$a, b \in I \cap J, x \in R$$
, 则 $a, b \in I$ 且 $a, b \in J$, 从而 $a - b, ax, xa \in I$ 且 $a - b, ax, xa \in J$,

所以

$$a - b, ax, xa \in I \cap J$$
.

因此 $I \cap J$ 为 R 的理想.

主理想

定义 30

设 R 是环. 对任意 $a \in R$, 令

$$\Sigma = \{ I \triangleleft R \mid a \in I \}, \ \langle a \rangle = \bigcap_{I \in \Sigma} I,$$

则 $\langle a \rangle$ 称为 R 的由 a 生成的主理想 (principal ideal).

注 30.1

- (1) 因为 $a \in I (I \in \Sigma)$, 所以 $a \in \langle a \rangle$, 从而 $\langle a \rangle \in \Sigma$;
- (2) 由于 $\langle a \rangle$ 是包含 a 的理想, 并且 $\langle a \rangle$ 是所有包含 a 的理想的交, 所以 $\langle a \rangle$ 是 R 的包含 a 的最小理想.

主理想

定理 31

设 R 为环, $a \in R$, 则

- (1) $\langle a \rangle = \{ \sum_{i=1}^n x_i a y_i + x a + a y + m a \mid x_i, y_i, x, y \in R, n \in \mathbb{N}, m \in \mathbb{Z} \};$
- (2) 如果 R 是含幺环,则

$$\langle a \rangle = \left\{ \sum_{i=1}^{n} x_i a y_i \mid x_i, y_i \in R, n \in \mathbb{N} \right\};$$

- (3) 如果 R 是交换环, 则 $\langle a \rangle = \{xa + ma \mid x \in R, m \in \mathbb{Z}\};$
- (4) 如果 R 是有单位元的交换环, 则 $\langle a \rangle = aR = \{ar \mid r \in R\}$.

证明

(1) 设

$$I = \left\{ \sum_{i=1}^{n} x_i a y_i + x a + a y + m a \mid x_i, y_i, x, y \in R, n \in \mathbb{N}, m \in \mathbb{Z} \right\}.$$

易知 I 为 R 的理想. 因为 $a=1\cdot a\in I$ $(1\in\mathbb{Z})$, 所以 I 为包含 a 的理想, 从而 $\langle a\rangle\subseteq I$. 又因为 $\langle a\rangle$ 是由 a 生成的理想, 所以 $\langle a\rangle$ 必包含所有的形如 xay,xa,ay 与 ma $(x,y\in R,m\in\mathbb{Z})$

的元素及这些元素的和. 因此 $\langle a \rangle \supseteq I$. 于是 $\langle a \rangle = I$. (2) 如果 R 有单位元 e, 则

$$ma = (me)ae(m \in \mathbb{Z}), \quad xa = xae, \quad ay = eay$$

都是形如 xay 的元素. 所以

$$\langle a \rangle = \left\{ \sum_{i=1}^{n} x_i a y_i \mid x_i, y_i \in R, n \in \mathbb{N} \right\}.$$

证明 (续)

(3) 如果 R 是交换环, 则 xay = xya, ay = ya. 从而

$$\sum_{i=1}^{n} x_i a y_i + x a + y a + m a = \sum_{i=1}^{n} x_i y_i a + x a + y a + m a = x' a + m a, \quad x' \in R,$$

所以 $\langle a \rangle = \{xa + ma \mid x \in R, m \in \mathbb{Z}\}.$

(4) 如果 R 是有单位元 e 的交换环, 则 ma = (me)a, 所以 $\langle a \rangle = \{xa \mid x \in R\} = aR$.

主理想

推论 32

整数环 Z 的每个理想都是主理想.

推论 33

模 m 剩余类环 \mathbb{Z}_m 的每个理想都是主理想.

证明: 设 I 为 \mathbb{Z}_m 的任一个理想, 则 (I,+) 是循环群, 从而 $I = \langle a \rangle$,

所以 I 为主理想.

生成理想

注 33.1

设 R 为环, $a_1, a_2, \dots, a_s \in R$, 则 $\langle a_1 \rangle, \langle a_2 \rangle, \dots, \langle a_s \rangle$ 都是 R 的理想. 令 $\langle a_1, a_2, \dots, a_s \rangle = \langle a_1 \rangle + \langle a_2 \rangle + \dots + \langle a_s \rangle$,

则 $\langle a_1, a_2, \dots, a_s \rangle$ 为 R 的理想, 称为 R 的由 a_1, a_2, \dots, a_s 生成的理想. 易知, $\langle a_1, a_2, \dots, a_s \rangle$ 是 R 的含 a_1, a_2, \dots, a_s 的最小理想.

例 34

在 \mathbb{Z} 中, 如果 $a,b \in \mathbb{Z}$, 则 $\langle a,b \rangle$ 是怎样的主理想?

解: (1) 如果 a, b 都是零, 则显然 $\langle a, b \rangle = \{0\} = \langle 0 \rangle$.

(2) 如果 a,b 不全为零, 设 a,b 的最大公因子为 d, 则存在 $s,t\in\mathbb{Z}$, 使 $d=as+bt\in\langle a,b\rangle$,

所以 $\langle d \rangle \subseteq \langle a, b \rangle$. 又因为 a, b 都是 d 的倍数, 所以 $a, b \in \langle d \rangle$, 从而 $\langle a, b \rangle \subseteq \langle d \rangle$. 所以

$$\langle a, b \rangle = \langle d \rangle,$$

即 $\langle a,b\rangle$ 是由 a,b 的最大公因子 d 所生成的主理想 $\langle d\rangle$.

商群的运算

定义 35

设 R 是一个环, I 是环 R 的一个理想, 从而 (I,+) 是 (R,+) 的正规子群, 于是有商群:

$$R/I = \{\bar{x} = x + I \mid x \in R\},\$$

其加法运算定义为

$$\bar{x} + \bar{y} = \overline{x + y}, \quad x, y \in R.$$

在 R/I 规定乘法运算为

$$\bar{x} \cdot \bar{y} = \overline{xy}, \quad x, y \in R.$$

商环

定理 36

设 R 是一个环, I 是环 R 的一个理想. 则 R/I 关于定义 35 中所规定的加 法和乘法运算构成环.

证明: (1) 设 $x_1, y_1, x_2, y_2 \in R$, 且 $\bar{x}_1 = \bar{x}_2, \bar{y}_1 = \bar{y}_2$, 则 $x_1 - x_2, y_1 - y_2 \in I$, 从而

$$x_1y_1 - x_2y_2 = x_1y_1 - x_1y_2 + x_1y_2 - x_2y_2$$
$$= x_1(y_1 - y_2) + (x_1 - x_2)y_2 \in I.$$

由此得 $\overline{x_1y_1} = \overline{x_2y_2}$. 所以以上规定运算定义了 R/I 的乘法运算.

证明 (续)

(2) 对任意的 $x, y, z \in R$,

$$(\bar{x} \cdot \bar{y}) \cdot \bar{z} = \overline{xy} \cdot \bar{z} = \overline{xyz}, \ \bar{x} \cdot (\bar{y} \cdot \bar{z}) = \bar{x} \cdot \overline{yz} = \overline{xyz},$$

所以 R/I 关于乘法满足结合律.

(3) 对任意的 $x, y, z \in R$,

$$\bar{x} \cdot (\bar{y} + \bar{z}) = \bar{x} \cdot \overline{y + z} = \overline{x(y + z)}$$

$$= \overline{xy + xz} = \overline{xy} + \overline{xz}$$

$$= \bar{x} \cdot \bar{y} + \bar{x} \cdot \bar{z},$$

$$(\bar{y} + \bar{z}) \cdot \bar{x} = \overline{y + z} \cdot \bar{x} = \overline{(y + z)x}$$

$$= \overline{yx + zx} = \overline{yx} + \overline{zx}$$

$$= \bar{y} \cdot \bar{x} + \bar{z} \cdot \bar{x},$$

所以 R/I 关于加法与乘法满足两个分配律. 因此 R/I 关于所规定的运算构成环.

商环

定义 37

称环 R/I 为环 R 关于它的理想 I 的**商环** (quotient ring).

定理 38

设 R 为环, $I \in R$ 的理想, 则

- (1) $\overline{0} = I$ 为 R/I 的零元;
- (2) 如果 R 有单位元 e, 且 $e \notin I$, 则 $\bar{e} = e + I$ 为 R/I 的单位元;
- (3) 如果 R 是交换环, 则 R/I 也是交换环.

例

例 39

设 $m \in \mathbb{Z}, m > 1$, 则

$$\mathbb{Z}/\langle m \rangle = \{ \bar{a} = a + \langle m \rangle \mid a = 0, 1, 2, \cdots, m - 1 \}$$

且

$$\bar{a} + \bar{b} = \overline{a+b}, \quad \bar{a} \cdot \bar{b} = \overline{a \cdot b}.$$

因此, $\mathbb Z$ 对于 $\langle m \rangle$ 的商环就是 $\mathbb Z$ 关于模 m 的剩余类环, 即 $\mathbb Z/\langle m \rangle = \mathbb Z_m$.

注 39.1

由例 39 可知, $\mathbb{Z}/\langle m \rangle$ 为域的充分必要条件是 m 为素数.

§3.3 环的同态基本定理

- 环的同态
- ■同态的基本性质
- 同态的核
- 环同态基本定理
- ■环的第二同构定理
- 环的扩张定理

同态

定义 40

设 R 和 R' 为两个环, ϕ 是集合 R 到 R' 的映射. 如果对任意的 $a,b\in R$, 有

- (1) $\phi(a+b) = \phi(a) + \phi(b)$;
- (2) $\phi(ab) = \phi(a)\phi(b)$,

则称 ϕ 为环 R 到环 R' 的一个同态映射 (homomorphism), 简称同态. 当同态映射 ϕ 作为集合映射是满射时, 称 ϕ 为满同态 (epimorphism); 当同态映射 ϕ 作为集合映射是单射时, 称 ϕ 为单同态 (monomorphism); 当同态映射 ϕ 作为集合映射是一一映射时, 称 ϕ 为 R 到 R' 的同构 (isomorphism), 记作 $\phi:R\cong R'$.

零同态

例 41

设 R 与 R' 是两个环. 对任意的 $a \in R$, 令

$$\phi: \quad R \longrightarrow R',$$

$$a \longmapsto 0,$$

则对任意的 $a, b \in R$,

$$\phi(a+b) = 0 = \phi(a) + \phi(b),$$

$$\phi(ab) = 0 = \phi(a)\phi(b),$$

所以 ϕ 是 R 到 R' 的一个同态. 这个同态称为**零同态** (zero homomorphism).

例

例 42

设
$$R=\mathbb{Z}, R'=\mathbb{Z}_m.$$
 对任意的 $a\in\mathbb{Z}$, 令 $\psi: \ \mathbb{Z} \longrightarrow \mathbb{Z}_m,$ $a \longmapsto \bar{a},$ 则 ψ 为 \mathbb{Z} 到 \mathbb{Z}_m 的满映射. 又对任意的 $a,b\in\mathbb{Z},$ $\psi(a+b)=\overline{a+b}=\bar{a}+\bar{b}=\psi(a)+\psi(b),$ $\psi(ab)=\overline{ab}=\bar{a}\bar{b}=\psi(a)\psi(b).$ 从而 ψ 为 \mathbb{Z} 到 \mathbb{Z}_m 的满同态.

自然同态

例 43

设 R 是环, I 是 R 的理想. 对任意的 $a \in R$, 令

$$\eta: \begin{array}{ccc} \eta: & R & \longrightarrow & R/I, \\ & a & \longmapsto & \bar{a}, \end{array}$$

则 η 为 R 到它的商环 R/I 的满映射. 又对任意的 $a,b \in R$,

$$\eta(a+b) = \overline{a+b} = \overline{a} + \overline{b} = \eta(a) + \eta(b),$$

$$\eta(ab) = \overline{ab} = \overline{a}\overline{b} = \eta(a)\eta(b),$$

所以 η 为 R 到它的商环 R/I 的一个满同态. 这个同态称为**自然同态** (natural homomorphism).

同态的基本性质

定理 44

设 ϕ 是环 R 到 R' 的同态, 则对任意的 $a \in R$,

- (1) $\phi(0_R) = 0_{R'}$;
- (2) $\phi(na) = n\phi(a), \forall n \in \mathbb{Z};$
- (3) $\phi(a^n) = (\phi(a))^n, \forall n \in \mathbb{N}.$

证明: (1) $\phi(0_R) + 0_{R'} = \phi(0_R) = \phi(0_R + 0_R) = \phi(0_R) + \phi(0_R)$. 由加法群的消去律立即可得 $\phi(0_R) = 0_{R'}$.

- (2) $\phi(na) = \phi((n-1)a + a) = \phi((n-1)a) + \phi(a) = \cdots = (n-1)\phi(a) + \phi(a) = n\phi(a).$
- (3) $\phi(a^n) = \phi(a^{n-1}a) = \phi(a^{n-1})\phi(a) = \dots = (\phi(a))^{n-1}\phi(a) = (\phi(a))^n$.

同态的基本性质

定理 45

设 R 与 R' 都是含幺环, e 与 e' 分别是它们的单位元, ϕ 是 R 到 R' 的环 同态.

- (1) 如果 ϕ 是满同态, 则 $\phi(e) = e'$;
- (2) 如果 R' 为无零因子环且 $\phi(e) \neq 0$, 则 $\phi(e) = e'$;
- (3) 如果 $\phi(e) = e'$, 则对 R 的任一单位 u, $\phi(u)$ 是 R' 的单位, 且 $(\phi(u))^{-1} = \phi(u^{-1})$.

证明

(1) 对任意的 $a' \in R'$, 因 ϕ 是满映射, 所以存在 $a \in R$, 使 $\phi(a) = a'$, 则 $\phi(e)a' = \phi(e)\phi(a) = \phi(ea) = \phi(a) = a',$ $a'\phi(e) = \phi(a)\phi(e) = \phi(ae) = \phi(a) = a'.$

因此, $\phi(e)$ 是单位元, 由单位元的唯一性得 $\phi(e) = e'$.

(2) 令 $r' = \phi(e)$, 则 $r' \neq 0$, 从而 $r'e' = r' = \phi(e) = \phi(ee) = \phi(e)\phi(e) = r'\phi(e)$.

因为 R' 无零因子, 所以消去律成立. 在上式两边消去 r' 得 $e' = \phi(e)$.

(3) 设 u 为 R 的任一单位, 则

$$e' = \phi(e) = \phi(uu^{-1}) = \phi(u)\phi(u^{-1}),$$

 $e' = \phi(e) = \phi(u^{-1}u) = \phi(u^{-1})\phi(u),$

所以 $\phi(u)$ 是 R' 的单位, 且 $(\phi(u))^{-1} = \phi(u^{-1})$.

同态的核

定义 46

设 ϕ 为环 R 到环 R' 的同态映射. 称集合

$$K = \{ a \in R \mid \phi(a) = 0 \}$$

为环同态 ϕ 的核 (kernel), 记作 $\operatorname{Ker} \phi$.

定理 47

设 ϕ 为环 R 到 R' 的环同态, 则 $\operatorname{Ker} \phi$ 为 R 的理想.

证明: 对任意的 $a,b \in \operatorname{Ker} \phi, r \in R$, 有

$$\phi(a - b) = \phi(a) - \phi(b) = 0 - 0 = 0,$$

$$\phi(ra) = \phi(r)\phi(a) = \phi(r)0 = 0,$$

$$\phi(ar) = \phi(a)\phi(r) = 0\phi(r) = 0.$$

从而 $a-b, ra, ar \in \operatorname{Ker} \phi$, 所以 $\operatorname{Ker} \phi$ 为 R 的理想.

环同态基本定理

定理 48 (环同态基本定理)

设 ϕ 是环 R 到 R' 的满同态, 则有环同构

$$\tilde{\phi}: R/\operatorname{Ker} \phi \cong R'.$$

证明: (1) 记 $K = \operatorname{Ker} \phi$, 则 K 为环 R 的理想. 对任意的 $\bar{a} \in R/K$, 令

$$\widetilde{\phi}: R/K \longrightarrow R',$$
 $\bar{a} \longmapsto \phi(a).$

(2) 设 $\bar{a}=\bar{b}$, 即 $a-b\in K$, 则 $\phi(a-b)=0$, 从而 $\phi(a)=\phi(b)$, 于是 $\widetilde{\phi}(\bar{a})=\phi(a)=\phi(b)=\widetilde{\phi}(\bar{b}),$

所以 $\tilde{\phi}$ 是 R/K 到 R' 的映射.

证明 (续)

(3) 对任意的 $\bar{a}, \bar{b} \in R/K$, 有

$$\widetilde{\phi}(\overline{a} + \overline{b}) = \widetilde{\phi}(\overline{a + b}) = \phi(a + b) = \phi(a) + \phi(b) = \widetilde{\phi}(\overline{a}) + \widetilde{\phi}(\overline{b}),$$

$$\widetilde{\phi}(\overline{a}\overline{b}) = \widetilde{\phi}(\overline{a}\overline{b}) = \phi(ab) = \phi(a)\phi(b) = \widetilde{\phi}(\overline{a})\widetilde{\phi}(\overline{b}),$$

所以 $\widetilde{\phi}$ 是 R/K 到 R' 的同态映射.

(4) 对任意的 $a' \in R'$, 因为 ϕ 是满同态, 所以存在 $a \in R$ 使 $\phi(a) = a'$. 从

$$\widetilde{\phi}(\bar{a}) = \phi(a) = a'.$$

于是, $\widetilde{\phi}$ 是 R/K 到 R' 的满同态.

(5) 设 $\bar{a}, \bar{b} \in R/K$, 如果 $\widetilde{\phi}(\bar{a}) = \widetilde{\phi}(\bar{b})$, 则

$$\phi(a-b) = \widetilde{\phi}(\overline{a-b}) = \widetilde{\phi}(\bar{a}) - \widetilde{\phi}(\bar{b}) = 0.$$

从而 $a-b \in \operatorname{Ker} \phi$, 由此得 $\bar{a} = \bar{b}$, 所以 $\tilde{\phi}$ 是 R/K 到 R' 的单同态.

这就证明了 $\tilde{\phi}$ 是 R/K 到 R' 的同构映射.

例

例 49

由例 42 知, ψ 是 \mathbb{Z} 到 \mathbb{Z}_m 的满同态. 注意到 $\operatorname{Ker} \psi = \langle m \rangle$, 则由环同态基本定理得

$$\mathbb{Z}/\langle m \rangle \cong \mathbb{Z}_m.$$

环的第二同构定理

定理 50 (环的第二同构定理)

设 S 为 R 的子环, I 为 R 的理想, 则 $S\cap I$ 是 S 的理想且 $S/(S\cap I)\cong (S+I)/I.$

证明: 作业.

环的扩张定理

定理 51 (环的扩张定理)

设 \bar{S} 与 R 是两个没有公共元素的环, $\bar{\phi}$ 是环 \bar{S} 到环 R 的单同态, 则存在一个与环 R 同构的环 S 及由环 S 到 R 的同构映射 ϕ , 使 \bar{S} 为 S 的子环 且 $\phi|_{\bar{S}}=\bar{\phi}$.

证明

证明: (1) 令 $S = (R \setminus \bar{\phi}(\bar{S})) \cup \bar{S}$. 对任意的 $x \in S$, 规定

$$\phi(x) = \begin{cases} \bar{\phi}(x), & x \in \bar{S}, \\ x, & x \notin \bar{S}, \end{cases}$$

则由 \bar{S} 与 R 没有公共元素这一条件可知 ϕ 是 S 到 R ——对应, 且 $\phi|_{\bar{S}}=\bar{\phi}.$

(2) 对任意的 $x, y \in S$, 规定

$$x + y = \phi^{-1}(\phi(x) + \phi(y)),$$

$$x \cdot y = \phi^{-1}(\phi(x) \cdot \phi(y)),$$

易知, 如此定义的加法与乘法是 S 的代数运算.

(3) 由环的定义直接验证可知 $(S,+,\cdot)$ 构成环. 且对任意的 $x,y\in S$,

$$\phi(x+y) = \phi(x) + \phi(y),$$

$$\phi(xy) = \phi(x) \cdot \phi(y),$$

证明 (续)

所以 ϕ 是 S 到 R 的环同态. 又因为 ϕ 是一一对应, 即 ϕ 既是单的, 又是满的, 所以 ϕ 是环同构, 即 $\phi: S \cong R$.

(4) 由 S 的定义知 \bar{S} 是 S 的非空子集,且对任意的 $x,y\in \bar{S}$, $x+y=\phi^{-1}(\phi(x)+\phi(y))=\phi^{-1}(\bar{\phi}(x)+\bar{\phi}(y))$ $=\phi^{-1}\left(\bar{\phi}\left(x+y\right)\right)=\phi^{-1}(\phi(x+y))$ =x+y.

同理可证,

$$x \cdot_{S} y = x \cdot_{\bar{S}} y.$$

从而知 S 的加法与乘法在 \bar{S} 上的限制就是环 \bar{S} 的加法与乘法, 所以 \bar{S} 为 S 的子环.

§3.3 环的同态基本定理

- 环的同态
- 同态的基本性质
- ■同态的核
- ■环同态基本定理
- 环的第二同构定理
- 环的扩张定理

§3.4 同态的应用

- 环的外直积
- 环的内直积
- 中国剩余定理
- 未定元
- 一元多项式环的定义
- ■整环的商域

环的外直积

定义 52

环的外直积

注 52.1

设 $R = \prod_{i=1}^n R_i$ 是环 R_1, R_2, \cdots, R_n 的外直积, 则

- (1) 如果 $0_1, 0_2, \dots, 0_n$ 分别是 $R_1, R_2, \dots R_n$ 的零元,则 R 中的零元是 $(0_1, 0_2, \dots, 0_n)$;
- (2) 如果 e_1, e_2, \dots, e_n 分别是 $R_1, R_2, \dots R_n$ 的单位元, 则 (e_1, e_2, \dots, e_n) 是 R 的单位元;
- (3) R 有单位元的充分必要条件是每个 R_i 都有单位元, R 是交换环的充分必要条件是每个 R_i 都是交换环.

外直积的性质

定理 53

 $R = \prod_{i=1}^{n} R_i$ 是环 R_1, R_2, \dots, R_n 的外直积, $0_1, 0_2, \dots, 0_n$ 分别是环 $R_1, R_2, \dots R_n$ 的零元, 则

- (1) 令 $R'_k = \{0_1\} \times \cdots \times \{0_{k-1}\} \times R_k \times \{0_{k+1}\} \times \cdots \times \{0_n\}$, 则 R'_k 是 R 的一个理想, 且同构于 R_k ;
- (2) $R = \sum_{i=1}^{n} R'_{k}$;
- (3) 环 R 中的任意元素都能用 R'_1, \dots, R'_n 的元素之和唯一地表示, 即如 果 $a_1 + \dots + a_n = b_1 + \dots + b_n$, 其中 $a_k, b_k \in R'_k$, 那么对所有 $k \in [n]$, 都有 $a_k = b_k$.

环的内直积

定义 54

如果环 R 的理想 R_1, \dots, R_n 满足下述两个条件:

- (1) $R = \sum_{i=1}^{n} R_i$;
- (2) 环 R 中的任意元素都能用 R_i, \dots, R_n 的元素之和唯一地表示, 即如果 $a_1 + \dots + a_n = b_1 + \dots + b_n$, 其中 $a_i, b_i \in R_i$, 那么对所有 $i \in [n]$, 都有 $a_i = b_i$,

则称 $R = \sum_{i=1}^{n} R_i$ 是 R_1, \dots, R_n 的**内直积** (internal direct product).

内直积的性质

定理 55

如果环 R 是其理想 R_1, \dots, R_n 的内直积, 则 $R \cong \prod_{i=1}^n R_i$.

证明: 考虑如下映射:

$$\phi: \prod_{i=1}^{n} R_{i} \longrightarrow R,$$

$$(r_{1}, \cdots, r_{n}) \longmapsto \sum_{i=1}^{n} r_{i}.$$

显然映射 ϕ 是一个加法同态映射.

现在考虑乘法的同态映射. 如果 $a \in R_i$ 且 $b \in R_j$, 其中 $i \neq j$, 那么 $ab \in R_i \cap R_j$. 因此有 $ab = 0_i + ab = ab + 0_j$, 其中 $0_i, 0_j$ 分别是 R_i 和 R_j 的零元. 于是由内直积定义第 (2) 条可知 ab = 0. 从而对任意 $(a_1, \dots, a_n), (b_1, \dots, b_n) \in \prod_{i=1}^n R_i$ 都有

证明 (续)

$$\phi((a_1, \dots, a_n)(b_1, \dots, b_n)) = \phi((a_1b_1, \dots, a_nb_n))$$

$$= a_1b_1 + \dots + a_nb_n$$

$$= (a_1 + \dots + a_n)(b_1 + \dots + b_n)$$

$$= \phi((a_1, \dots, a_n))\phi((b_1, \dots, b_n)).$$

因此 f 对上述乘法也是一个同态映射.

若有 $\phi((r_1, \dots, r_n)) = \phi((s_1, \dots, s_n))$, 其中 $r_i, s_i \in R_i$, 则有 $\sum_{i=1}^n r_i = \sum_{i=1}^n s_i$, 由内直积定义第 (2) 条可知对任意 $i \in [n]$ 都有 $r_i = s_i$. 由内直积定义第 (1) 条立即可知 ϕ 是满射.

综上, 映射 ϕ 是一个从 $\prod_{i=1}^n R_i$ 到 R 的一个环同构, 从而 $R \cong \prod_{i=1}^n R_i$.

内直积的判定

定理 56

设 R_1, \dots, R_n 是环 R 的理想, 则下述三个条件等价:

- (1) $R \in R_1, \dots, R_n$ 的内直积;
- (2) $(R_1 + \cdots + R_{i-1}) \cap R_i = \{0\}$, 对任意 $i = 2, \cdots, n$;
- (3) $(R_1 + \cdots + R_{i-1} + R_{i+1} + \cdots + R_n) \cap R_i = \{0\}$, 对任意 $i = 2, \cdots, n$.

中国剩余定理

定理 57 (中国剩余定理)

设 R 是含幺环, I_1, \dots, I_n 为环 R 的理想. 并且对任意 $1 \le i \ne j \le n$, I_i 和 I_j 互素, 即 $I_i + I_j = R$. 则有环同构 $R/\left(I_1 \cap \dots \cap I_n\right) \cong R/I_1 \times R/I_2 \times \dots \times R/I_n.$

证明: 首先证明

$$I_i + \prod_{j \neq i} I_j = R, 1 \le i \le n.$$

根据题设, $I_1 + I_2 = I_1 + I_3 = R$, 从而

$$R = RR = (I_1 + I_2)(I_1 + I_3) = I_1^2 + I_2I_1 + I_1I_3 + I_2I_3$$

$$\subseteq I_1 + I_2I_3 \subseteq R$$
,

因此 $R = I_1 + I_2I_3$. 再将 $R = I_1 + I_2I_3$ 与 $R = I_1 + I_4$ 相乘可得 $R = I_1 + I_2I_3I_4$. 归纳下去即得 $R = I_1 + I_2I_3 \cdots I_n$. 类似可得

$$I_i + \prod I_j = R, 1 \le i \le n.$$

证明 (续)

$$\phi: R \longrightarrow R/I_1 \times R/I_2 \times \cdots \times R/I_n,$$
$$r \longmapsto (r + I_1, r + I_2, \cdots, r + I_n).$$

容易验证 ϕ 是 R 到 $R/I_1 \times R/I_2 \times \cdots \times R/I_n$ 上的环同态. 注意到 $R/I_1 \times R/I_2 \times \cdots \times R/I_n$ 的零元是 (I_1,I_2,\cdots,I_n) , 则显然有 $\operatorname{Ker} \phi = \{r \mid r \in I_1 \cap I_2 \cap \cdots \cap I_n\}$. 根据环同态基本定理, 要证明定理中的 同构关系, 只需证明 ϕ 是满射即可, 即对任意 $r_1,r_2,\cdots,r_n \in R$ 及 $(r_1+I_1,r_2+I_2,\cdots,r_n+I_n)$, 存在 $r \in R$ 使得 $\phi(r) = (r_1+I_1,r_2+I_2,\cdots,r_n+I_n)$.

证明(续)

取 $e \in R$, 则对任意 $1 \le i \le n$, 存在 $a_i \in I_i, b_i \in \prod_{j \ne i} I_j$ 使得 $a_i + b_i = e$. 从而有 $b_i = e - a_i \in e + I_i$, 并且对任意 $j \ne i$ 有 $b_i \in I_j$ (因为 $b_i \in \prod_{j \ne i} I_j$, 因此 $b_i \in \cap_{j \ne i} I_j$), 于是

从而

$$\phi(r_i b_i) = (I_1, \dots, I_{i-1}, r_i + I_i, I_{i+1}, \dots, I_n).$$

 $\phi(b_i) = (I_1, \dots, I_{i-1}, e + I_i, I_{i+1}, \dots, I_n),$

令 $r = r_1b_1 + r_2b_2 + \cdots + r_nb_n$, 即知 $\phi(r) = (r_1 + I_1, r_2 + I_2, \cdots, r_n + I_n)$. 从而 ϕ 是满射.

未定元

定义 58

设 R 是一个含幺环, \bar{R} 是 R 的扩环, x 是 \bar{R} 中的一个元素. 如果 x 满足

- (1) $\forall r \in R, xr = rx;$
- (2) 1x = x;
- (3) 对 R 的任意一组不全为零的元素 $a_0, a_1, a_2, \dots, a_n$, $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \neq 0,$

则称 x 为 R 上的一个未定元 (indeterminate).

未定元的存在性

定理 59

设 R 是一个含幺环, 则一定存在环 R 上的一个未定元 x.

证明: (1) 构造集合

$$\bar{S} = \{(a_0, a_1, \cdots, a_n, \cdots) \mid a_0, a_1, \cdots, a_n, \cdots \in R\}.$$

(2) 对
$$\alpha = (a_0, a_1, \dots, a_n, \dots), \beta = (b_0, b_1, \dots, b_n, \dots) \in \bar{S},$$
 规定
$$\alpha + \beta = (a_0 + b_0, a_1 + b_1, \dots, a_n + b_n, \dots),$$

$$\alpha \cdot \beta = (c_0, c_1, \dots, c_n \dots),$$

其中 $c_k = \sum_{i+j=k} a_i b_j (k=0,1,2,\cdots,n,\cdots)$,则如此定义的加法 "+" 和乘法 "·" 显然都是 \bar{S} 的代数运算.

(3) 现证明 \bar{S} 关于以上定义的加法 "+" 和乘法 "·" 构成环.

由于 \bar{S} 中的加法是对应分量相加, 而 R 关于加法构成加法群, 故 $(\bar{S}, +)$ 也是加法群, 其中 $(0, 0, \dots, 0, \dots)$ 是 \bar{S} 的零元, 而

$$\alpha=(a_0,a_1,\cdots,a_n,\cdots)$$
 的负元是 $-\alpha=(-a_0,-a_1,\cdots,-a_n,\cdots).$

设
$$\alpha = (a_0, a_1, \dots, a_n, \dots), \beta = (b_0, b_1, \dots, b_n, \dots),$$

$$\gamma=(d_0,d_1,\cdots,d_n,\cdots)$$
, $\alpha\cdot\beta=(c_0,c_1,\cdots,c_n,\cdots)$,

$$\beta \cdot \gamma = (e_0, e_1, \dots, e_n, \dots)$$
, 则 $(\alpha \cdot \beta) \cdot \gamma$ 中的第 t 个分量为

$$\sum_{k+s=t} c_k d_s = \sum_{k+s=t} \left(\sum_{i+j=k} a_i b_j \right) d_s = \sum_{i+j+s=t} a_i b_j d_s, \quad t = 0, 1, 2, \dots,$$

而 $\alpha \cdot (\beta \cdot \gamma)$ 中的第 t 个分量为

$$\sum_{i+k=t} a_i e_k = \sum_{i+k=t} a_i \left(\sum_{j+s=k} b_j d_s \right) = \sum_{i+j+s=t} a_i b_j d_s, \quad t = 0, 1, 2, \dots.$$

于是它们对应的每个分量都相同, 故

$$(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma).$$

由于 $\alpha + \beta = (a_0 + b_0, a_1 + b_1, \dots, a_n + b_n, \dots)$, 因此 $(\alpha + \beta) \cdot \gamma$ 的第 k 个分量为

$$\sum_{i+j=k} (a_i + b_i) d_j = \sum_{i+j=k} a_i d_j + \sum_{i+j=k} b_i d_j, \quad k = 0, 1, 2, \dots,$$

而上式右端恰为 $\alpha \cdot \gamma + \beta \cdot \gamma$ 中的第 k 个分量, 于是 $(\alpha + \beta) \cdot \gamma$ 与 $\alpha \cdot \gamma + \beta \cdot \gamma$ 中的每个对应分量都相同, 即 $(\alpha + \beta) \cdot \gamma = \alpha \cdot \gamma + \beta \cdot \gamma$. 同理可证另一分配律: $\gamma \cdot (\alpha + \beta) = \gamma \cdot \alpha + \gamma \cdot \beta$. 于是 $(\bar{S}, +, \cdot)$ 是一个环. 注意 到对任意的 $\alpha = (a_0, a_1, \cdots, a_n, \cdots) \in \bar{S}$, 按定义的乘法有

$$\alpha \cdot (1,0,0,\cdots,0,\cdots) = (1,0,0,\cdots,0,\cdots) \cdot \alpha = \alpha,$$

因此 $(1,0,0,\cdots,0,\cdots)$ 是 \bar{S} 的单位元, 记为 $\bar{1}$, 即

$$\overline{1} = (1, 0, 0, \cdots, 0, \cdots).$$

于是 $(\bar{S},+,\cdot)$ 是一个含幺环.

(4) 令

$$S = \{\bar{r} = (r, 0, 0, \dots, 0, \dots) \mid r \in R\}.$$

以下证明 S 为 \bar{S} 的子环, 且 S 有单位元 $\bar{1}$.

显然, 对于任意的 $\overline{r_1} = (r_1, 0, 0, \cdots, 0, \cdots), \overline{r_2} = (r_2, 0, 0, \cdots, 0, \cdots) \in S$,

$$\overline{r_1} - \overline{r_2} = (r_1 - r_2, 0, 0, \dots, 0, \dots) \in S,$$

$$\overline{r_1} \cdot \overline{r_2} = (r_1 r_2, 0, 0, \dots, 0, \dots) \in S.$$

于是 S 是 \bar{S} 的子环, 显然 \bar{I} 为 S 的单位元.

(5) 注意到对任意
$$\bar{r} = (r, 0, 0, \dots, 0, \dots) \in S$$
,

$$\alpha=(a_0,a_1,\cdots,a_n,\cdots)\in \bar{S}$$
, 有

$$\bar{r} \cdot \alpha = (ra_0, ra_1, \cdots, ra_n, \cdots),$$

$$\alpha \cdot \bar{r} = (a_0 r, a_1 r, \cdots, a_n r, \cdots),$$

于是, 若令
$$\bar{x}=(0,1,0,\cdots,0,\cdots)$$
, 则

(i) 对任意的
$$\bar{r} \in S$$
, 有

$$\bar{x} \cdot \bar{r} = \bar{r} \cdot \bar{x} = (0, r, 0, \dots, 0, \dots);$$

(ii)
$$\overline{1}\overline{x} = \overline{x}$$
;

(iii) 对任意的
$$n \in \mathbb{N}$$
,

$$\bar{x}^n = (\underbrace{0,0,\cdots,0}_{\text{AFF}},1,0,0,\cdots).$$

于是, 对任意一组不全为零的元素
$$\overline{a_i} \in S \ (i=0,1,2,\cdots,n)$$
, 有 $\overline{a_0} + \overline{a_1}\overline{x} + \overline{a_2}\overline{x}^2 + \cdots + \overline{a_n}\overline{x}^n = (a_0,a_1,\cdots,a_n,0,\cdots) \neq 0$,

(6) 令

$$\phi: R \longrightarrow \bar{S},$$

$$r \longmapsto \bar{r} = (r, 0, \cdots, 0, \cdots),$$

则 ϕ 是环 R 到 \bar{S} 的单同态, 且 $\phi(R) = S$.

(7) 因 $R \cap \bar{S} = \emptyset$, 从而由环的扩张定理知, 存在 R 的扩环 \bar{R} 以及 \bar{R} 到 \bar{S} 的同构映射 $\bar{\phi}$, 使 $\bar{\phi}|_{R} = \phi$.

(8) 令 x 为 \bar{x} 在 $\bar{\phi}$ 下的原象, 即 $x \in \bar{R}$ 且 $\bar{\phi}(x) = \bar{x}$, 则

(i) 对任意的 $r \in R$, 由于

$$\bar{\phi}(rx) = \bar{\phi}(r)\bar{\phi}(x) = \phi(r)\bar{\phi}(x) = \bar{r}\bar{x} = \bar{x}\bar{r} = \bar{\phi}(x)\bar{\phi}(r) = \bar{\phi}(xr),$$

所以 rx = xr;

(ii) 因为

$$\bar{\phi}(1x) = \bar{\phi}(1)\bar{\phi}(x) = \phi(1)\bar{x} = \bar{1}\bar{x} = \bar{x},$$

所以 1x = x:

f(x) = x

(iii) 对任意一组不全为零的元素
$$a_i \in R (i = 0, 1, 2, \dots, n)$$
, 因为 $\bar{\phi} (a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n) = \bar{a}_0 + \bar{a}_1 \bar{x} + \bar{a}_2 \bar{x}^2 + \dots + \bar{a}_n \bar{x}^n$ $= (a_0, a_1, \dots, a_n, 0, \dots) \neq 0$,

所以

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \neq 0.$$

从而可知 x 为 R 上的一个未定元.

一元多项式

定义 60

设 R 是一个含幺环, x 是 R 上的一个未定元, $a_0, a_1, a_2, \dots, a_n \in R$. 称形如

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

的表达式为 R 上 (关于 x 的) 一元多项式 (polynomial), 其中 a_ix^i 称为多项式 f(x) 的 i 次项 (term), a_i 称为 i 次项的系数, a_0 也称为常数项 (constant term). 如果 $a_n \neq 0$, 则称 a_n 为首项系数 (leading coefficient), 并称 f(x) 的次数为 n, 记作 $\deg f(x) = n$. 系数全为零的多项式称为零多项式,零多项式的次数规定为 $-\infty$, 并且规定 $(-\infty) + (-\infty) = -\infty$, $(-\infty) + n = (-\infty)$, $(-\infty) < n$, 其中 $n \in \mathbb{Z}$.

一元多项式

注 60.1

由未定元存在性的讨论可知, R 上的一个多项式 f(x) 是它的扩环 \bar{R} 中的一个元素. 由此进一步可推出. R 上的多项式全体

$$R[x] = \left\{ a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \mid n \geq 0, a_0, a_1, a_2, \dots, a_n \in R \right\}$$

关于 \bar{R} 的运算 $\bar{\phi}$ 构成 R 的一个扩环. 特别地, R 上的一元多项式环 $R[x]$ 同构于以下 \bar{S} 的子环

 $\{(a_0, a_1, \dots, a_n, \dots) \mid a_0, a_1, \dots, a_n, \dots \in R$, 且仅有有限多个 $a_i \neq 0\}$.

一元多项式环

定义 61

设 R 是一个含幺环, x 是 R 上的一个未定元. 称环 R[x] 为 R 上的以 x 为未定元的一元多项式环 (polynomial ring).

注 61.1

设 $f(x) = \sum_{i=0}^{n} a_i x^i, g(x) = \sum_{i=0}^{m} b_i x^i \in R[x], n \ge m$, 则 f(x) 和 g(x) 在 R[x] 中的加法为

$$f(x) + g(x) = \sum_{i=0}^{n} (a_i + b_i) x^i,$$

其中当 $m < i \le n$ 时 $b_i = 0$; f(x) 和 g(x) 在 R[x] 中的乘法为

$$f(x)g(x) = \sum_{i=0}^{m+n} c_i x^i,$$

其中 $c_k = \sum_{0 \le i \le n, 0 \le j \le m, i+j=k} a_i b_j, k = 0, 1, \dots, m+n.$

商域的构造思想

- 在整数环中, 可逆元仅有 ± 1 , 这使得像 2x = 1 这样的方程在整数环中 就没有解.
- 方程有解, 则需要由整数环出发, 去构造一个更大的代数体系-有理数域.
- 有理数域是由所有形如 $\frac{a}{b}$ $(a,b \in \mathbb{Z},b \neq 0)$ 的分数所组成的, 并且它还以整数环作为它的子环.
- 对一般的环, 是否也可以把它扩充为一个更大的环, 使其上每个非零元都可逆?
- 有零因子的环以及非交换环都无法达到目的.
- 设 D 是整环, 1 是 D 的单位元, 则由 D 可以构造一个包含 D 的域.
- 商域的主要构造思想是给定一种集合并定义运算得到域,最后利用环的扩张定理.

商域的构造

1. 构作集合 *S*

令

$$S = \{(a, b) \mid a, b \in D, b \neq 0\}.$$

2. 在 S 上定义一个等价关系

对任意 $(a,b),(c,d) \in S$,令

$$(a,b) \sim (c,d) \iff ad = bc.$$

- (1) 由 ab = ba, 得 $(a, b) \sim (a, b)$, 所以"~"具有反身性;
- (2) 如果 $(a,b) \sim (c,d)$, 则 ad = bc, 从而 cb = da, 于是 $(c,d) \sim (a,b)$, 所以"~"具有对称性;
- (3) 设 $(a,b) \sim (c,d), (c,d) \sim (e,f)$, 则 ad = bc, cf = de, 所以 adcf = bcde. 如果 c = 0, 则因 $d \neq 0$, 所以 a = e = 0, 于是 af = be, 从而 $(a,b) \sim (e,f)$. 如果 $c \neq 0$, 则因 $d \neq 0$, 所以 $cd \neq 0$. 因 D 为整环, 消去 cd 得 af = be, 从而 $(a,b) \sim (e,f)$, 所以 "~"具有传递性. 因此 "~"是 S 的一个等价关系.

3. 由等价关系得到商集 F

对任意的 $(a,b) \in S$, 记 S 中 (a,b) 所在的等价类为

$$\left[\frac{a}{b}\right] = \{(c,d) \in S \mid (c,d) \sim (a,b)\}.$$

令

$$F = S/\sim = \left\{ \left[\frac{a}{b} \right] \mid a, b \in D, b \neq 0 \right\},$$

则

$$\left[\frac{a}{b}\right] = \left[\frac{c}{d}\right] \Longleftrightarrow ad = bc.$$

- 4. 定义 F 的运算. 使 F 构成一个域
- (1) 对任意的 $\begin{bmatrix} \frac{a}{b} \end{bmatrix}$, $\begin{bmatrix} \frac{c}{d} \end{bmatrix} \in F$, 规定

(1) 对任息的
$$\left[\frac{a}{b}\right]$$
 ,是是 $\left[\frac{a}{d}\right] + \left[\frac{c}{d}\right] = \left[\frac{ad+bc}{bd}\right]$,
$$\left[\frac{a}{b}\right] \cdot \left[\frac{c}{d}\right] = \left[\frac{ac}{bd}\right].$$
 如果 $\left[\frac{a'}{b'}\right] = \left[\frac{a}{b}\right]$, $\left[\frac{c'}{d'}\right] = \left[\frac{c}{d}\right]$,则有 $a'b = ab'$, $c'd = cd'$,从而
$$(ad+bc)b'd' = adb'd' + bcb'd' = a'bdd' + bb'c'd \\ = (a'd'+b'c')bd,$$

$$acb'd' = a'bcd' = a'bc'd = bda'c'.$$

由此得

$$\left[\frac{ad + bc}{bd} \right] = \left[\frac{a'd' + b'c'}{b'd'} \right],$$

$$\left[\frac{ac}{bd} \right] = \left[\frac{a'c'}{b'd'} \right],$$

所以"+"与"·"都是 F 的代数运算.

(2) 对任意的 $\left[\frac{a}{b}\right], \left[\frac{c}{d}\right], \left[\frac{e}{f}\right] \in F$,

$$\left(\left[\frac{a}{b} \right] + \left[\frac{c}{d} \right] \right) + \left[\frac{e}{f} \right] = \left[\frac{ad + bc}{bd} \right] + \left[\frac{e}{f} \right] = \left[\frac{adf + bcf + bde}{bdf} \right] \\
= \left[\frac{a}{b} \right] + \left[\frac{de + cf}{df} \right] = \left[\frac{a}{b} \right] + \left(\left[\frac{c}{d} \right] + \left[\frac{e}{f} \right] \right),$$

$$\left(\left[\frac{a}{b} \right] \cdot \left[\frac{c}{d} \right] \right) \cdot \left[\frac{e}{f} \right] = \left[\frac{ac}{bd} \right] \cdot \left[\frac{e}{f} \right] = \left[\frac{ace}{bdf} \right] \\
= \left[\frac{a}{b} \right] \cdot \left[\frac{ce}{df} \right] = \left[\frac{a}{b} \right] \cdot \left(\left[\frac{c}{d} \right] \cdot \left[\frac{e}{f} \right] \right),$$

所以加法与乘法满足结合律.

(4) 对任意的 $\begin{bmatrix} \frac{a}{b} \end{bmatrix}$, $\begin{bmatrix} \frac{c}{d} \end{bmatrix}$, $\begin{bmatrix} \frac{e}{f} \end{bmatrix} \in F$,

$$\begin{split} \left(\left[\frac{a}{b} \right] + \left[\frac{c}{d} \right] \right) \cdot \left[\frac{e}{f} \right] &= \left[\frac{ad + bc}{bd} \right] \cdot \left[\frac{e}{f} \right] = \left[\frac{ade + bce}{bdf} \right] \\ &= \left[\frac{ade}{bdf} \right] + \left[\frac{bce}{bdf} \right] = \left[\frac{ae}{bf} \right] + \left[\frac{ce}{df} \right] \\ &= \left[\frac{a}{b} \right] \cdot \left[\frac{e}{f} \right] + \left[\frac{c}{d} \right] \cdot \left[\frac{e}{f} \right], \end{split}$$

所以乘法对加法也满足分配律.

(5) 对任意的 $\left[\frac{a}{b}\right] \in F$,

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \cdot b + 1 \cdot a \\ 1 \cdot b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix},$$

所以 $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0_F$ 为 F 的零元.

(6) 对任意的 $\left[\frac{a}{b}\right] \in F$,

$$\left\lceil \frac{1}{1} \right\rceil \cdot \left\lceil \frac{a}{b} \right\rceil = \left\lceil \frac{1 \cdot a}{1 \cdot b} \right\rceil = \left\lceil \frac{a}{b} \right\rceil,$$

所以 $\begin{bmatrix} \frac{1}{1} \end{bmatrix} = 1_F$ 为 F 的单位元. 显然 $0_F \neq 1_F$.

(7) 对任意的 $\left[\frac{a}{b}\right] \in F$, 有 $\left[\frac{-a}{b}\right] \in F$ 且 $\left[\frac{a}{b}\right] + \left[\frac{-a}{b}\right] = \left[\frac{ab - ba}{b^2}\right] = \left[\frac{0}{1}\right] = 0_F,$

所以 F 的每个元都有负元.

(8) 对任意的 $\left[\frac{a}{b}\right] \neq 0_F$, 有 $a \neq 0$, 所以 $\left[\frac{b}{a}\right] \in F$. 而

$$\left[\frac{a}{b}\right] \cdot \left[\frac{b}{a}\right] = \left[\frac{ab}{ab}\right] = \left[\frac{1}{1}\right] = 1_F,$$

所以 F 的每个非零元都可逆.

这就证明了 F 是一个域.

5. 由 F 构作一个包含 D 的域

令

$$\phi: \quad D \longrightarrow F$$
$$x \longmapsto \left[\frac{x}{1}\right],$$

则 ϕ 为 D 到 F 的映射.

(1) 对任意的 $x, y \in D$, 如果 $\begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} y \\ 1 \end{bmatrix}$, 则 $x \cdot 1 = y \cdot 1$, 即 x = y, 所以 ϕ 为 D 到 F 的单映射.

(2) 对任意的 $x, y \in D$,

$$\phi(x+y) = \left[\frac{x+y}{1}\right] = \left[\frac{x}{1}\right] + \left[\frac{y}{1}\right] = \phi(x) + \phi(y),$$
$$\phi(x \cdot y) = \left[\frac{xy}{1}\right] = \left[\frac{x}{1}\right] \cdot \left[\frac{y}{1}\right] = \phi(x) \cdot \phi(y),$$

所以 ϕ 为 D 到 F 的同态映射.

(3) $D \cap F = \emptyset$, 从而由环的扩张定理知, 存在 D 的扩环 Q 及环同构 $\tilde{\phi}: Q \cong F.$

因为 F 是域, 所以 Q 也是域.

商域的构造方法

定理

每一个整环都可以扩充为一个域.

注: Q 的元素的表达式

因为域 Q 包含 D, 所以也一定包含 D 的每个非零元的逆元, 从而也一定包含这些元素的乘积, 因此 Q 一定包含全体形如

$$ab^{-1}$$
, $a, b \in D, b \neq 0$

的元素.

又对任意的 $\left[\frac{a}{b}\right] \in F$, 由环的扩张定理的证明及 ϕ 的定义, 有

商域的构造方法

$$\widetilde{\phi}^{-1}\left(\left[\frac{a}{b}\right]\right) = \widetilde{\phi}^{-1}\left(\left[\frac{a}{1}\right] \cdot \left[\frac{1}{b}\right]\right)$$

$$= \widetilde{\phi}^{-1}\left(\left[\frac{a}{1}\right]\right) \cdot \widetilde{\phi}^{-1}\left(\left[\frac{1}{b}\right]\right)$$

$$= \widetilde{\phi}^{-1}\left(\left[\frac{a}{1}\right]\right) \cdot \widetilde{\phi}^{-1}\left(\left(\left[\frac{b}{1}\right]\right)^{-1}\right)$$

$$= a\left(\widetilde{\phi}^{-1}\left(\left[\frac{b}{1}\right]\right)\right)^{-1}$$

$$= ab^{-1}.$$

商域的构造方法

这说明 Q 的每个元素都可表为

$$ab^{-1}$$
, $a, b \in D, b \neq 0$

的形式, 所以

$$Q = \{ab^{-1} \mid a, b \in D, b \neq 0\}.$$

因为 Q 是域, 故可记 $\frac{a}{b} = ab^{-1}$. 这样

$$Q = \left\{ \frac{a}{b} \mid a, b \in D, b \neq 0 \right\},\,$$

即 Q 由所有的商 $\frac{a}{b}(a,b\in D,b\neq 0)$ 所组成. 这同有理数域的构成是类似的.

商域的定义

定义

称域 Q 为整环 D 的商域 (quotient field).

例

整数环 \mathbb{Z} 的商域就是有理数域 \mathbb{Q} .

例

域 F 的商域就是其本身.

商域的性质

定理

设 D 与 D' 是同构的两个整环, 则它们的商域也同构,

证明: 设 Q,Q' 分别是 D 与 D' 的商域, $\phi:D\to D'$ 是环同构. 记 $\phi(a)=a', \, \forall a\in D,$ 则由以上讨论知

$$Q = \left\{ \frac{a}{b} \mid a, b \in D, b \neq 0 \right\}, \quad Q' = \left\{ \frac{e}{f} \mid e, f \in D', f \neq 0 \right\}.$$

定义 $\tilde{\phi}:Q \to Q', \frac{a}{b} \mapsto \frac{a'}{b'}$.

若 $\frac{a}{b} = \frac{c}{d}$, 则 $ab^{-1} = cd^{-1}$, 从而 ad = bc, 于是 $\phi(ad) = \phi(bc)$, 即 a'd' = b'c', 所以 $\frac{a'}{b'} = \frac{c'}{d'}$. 故 $\tilde{\phi}$ 是映射.

对任意 $\frac{a}{b}$, $\frac{c}{d} \in Q$, 有

$$\widetilde{\phi}\left(\frac{a}{b} + \frac{c}{d}\right) = \phi\left(\frac{ad + bc}{bc}\right) = \frac{(ad + bc)'}{(bd)'}$$

$$= \frac{a'd' + b'c'}{b'd'} = \frac{a'}{b'} + \frac{c'}{d'}$$

$$= \widetilde{\phi}\left(\frac{a}{b}\right) + \widetilde{\phi}\left(\frac{c}{d}\right),$$

$$\widetilde{\phi}\left(\frac{a}{b} \cdot \frac{c}{d}\right) = \widetilde{\phi}\left(\frac{ac}{bc}\right) = \frac{(ac)'}{(bd)'}$$

$$= \frac{a'c'}{b'd'} = \frac{a'}{b'} \cdot \frac{c'}{d'}$$

$$= \widetilde{\phi}\left(\frac{a}{b}\right)\widetilde{\phi}\left(\frac{c}{d}\right),$$

于是 $\tilde{\phi}$ 是环同态. 而 $\tilde{\phi}(1) = \tilde{\phi}\left(\frac{1}{1}\right) = \frac{1'}{1'} = 1'$, 故 $\tilde{\phi} \neq 0$. 于是 $\operatorname{Ker} \tilde{\phi} \neq Q$. 而 $\operatorname{Ker} \tilde{\phi} \neq Q$ 是理想, 又 Q 是域, 所以 $\operatorname{Ker} \tilde{\phi} = 0$, 即 $\tilde{\phi}$ 是单射. 又由于 Q' 中的元素都具有形式 $\frac{e}{f}$ (其中 $f \neq 0$, $e, f \in D'$). 由 ϕ 是 D 到 D' 的满射知, 存在 $a, b \in D$, 使得 e = a', f = b', 故 $\frac{e}{f} = \frac{a'}{b'} = \tilde{\phi}\left(\frac{a}{b}\right).$

所以 $\tilde{\phi}$ 是满射, 即 $\tilde{\phi}$ 是域同构, 从而 Q 与 Q' 同构.

§3.5 素理想与极大理想

- ■素理想
- 素理想与整环
- ■极大理想
- ■极大理想与域
- 极大理想与素理想

素理想

定义 62

设 R 是一个交换环, P 是 R 的真理想. 如果对任意的 $a,b \in R$, 由 $ab \in P$, 可推出 $a \in P$ 或 $b \in P$, 则称 P 为 R 的一个素理想 (prime ideal).

例 63

试求 Z₁₈ 的素理想.

解: \mathbb{Z}_{18} 一共有 6 个理想 (以下我们将 \mathbb{Z}_m 中的元素 \bar{a} 简记为 a): $\{0\}, \mathbb{Z}_{18}, \langle 2 \rangle, \langle 3 \rangle, \langle 6 \rangle, \langle 9 \rangle.$

解 (续)

- (1) 显然, \mathbb{Z}_{18} 不是 \mathbb{Z}_{18} 的素理想. 又因为 $2 \cdot 3 = 6 \in \langle 6 \rangle$, 而 $2, 3 \notin \langle 6 \rangle$, 所 以 $\langle 6 \rangle$ 也不是 \mathbb{Z}_{18} 的素理想. 同理可证, $\{0\}$ 与 $\langle 9 \rangle$ 都不是 \mathbb{Z}_{18} 的素理想.
- (2) 考察 $\langle 3 \rangle$. 设 $a, b \in \mathbb{Z}_{18}, ab \in \langle 3 \rangle$, 则 $ab = r \cdot 3$ (在 \mathbb{Z}_{18} 中), 即 $ab \equiv 3r$ (mod 18), 所以 $18 \mid ab 3r$ (在 \mathbb{Z} 中), 从而存在 $l \in \mathbb{Z}$ 使 ab 3r = 18l.

因 $3 \mid 18$, 所以 $3 \mid ab$, 从而 $3 \mid a$ 或 $3 \mid b$. 由此得 $a \in \langle 3 \rangle$ 或 $b \in \langle 3 \rangle$, 所以 $\langle 3 \rangle$ 为 \mathbb{Z}_{18} 的素理想.

同理可证, $\langle 2 \rangle$ 也是 \mathbb{Z}_{18} 的素理想, 所以 \mathbb{Z}_{18} 的素理想为 $\langle 2 \rangle$ 与 $\langle 3 \rangle$.

例

例 64

设 n 为正整数, 则 $\langle n \rangle$ 为 \mathbb{Z} 的素理想的充分必要条件是 n 为素数.

例 65

在 $\mathbb{Z}_2[x]$ 中, 由于 $x+1 \notin \langle x^2+1 \rangle$, 而 $(x+1)^2 = x^2+1 \in \langle x^2+1 \rangle$, 所以 $\langle x^2+1 \rangle$ 不是 $\mathbb{Z}_2[x]$ 的素理想.

素理想与整环

定理 66

设 R 是有单位元 $e \neq 0$ 的交换环, I 是 R 的理想, 则 I 是 R 的素理想的 充分必要条件是 R/I 是整环.

证明: 必要性. 设 I 为 R 的素理想, 则 I 为 R 的真理想, 所以 $R/I \neq \{\overline{0}\}$. 因 R 是有单位元的交换环, 所以 R/I 也是有单位元的交换环. 又设 $\overline{a}, \overline{b} \in R/I$ 使 $\overline{a} \cdot \overline{b} = \overline{0}$, 则 $ab \in I$, 从而有 $a \in I$ 或 $b \in I$. 由此得 $\overline{a} = \overline{0}$ 或 $\overline{b} = \overline{0}$. 这说明, 商环 R/I 无零因子, 所以 R/I 为整环.

充分性. 如果 R/I 为整环, 则 R/I 是 $\bar{e} \neq \bar{0}$ 的交换环, 于是 I 是 R 的真理想 (否则有 I=R, 于是 $R/I=\{\bar{0}=\bar{e}\}$). 又设 $a,b\in R$ 且 $ab\in I$, 则 $\bar{a}\cdot\bar{b}=\bar{ab}=I=\bar{0}\in R/I$, 所以必有 $\bar{a}=\bar{0}$ 或 $\bar{b}=\bar{0}$. 由此得 $a\in I$ 或 $b\in I$. 所以 I 为 R 的素理想.

极大理想

定义 67

设 R 是一个交换环, M 是 R 的真理想. 如果对 R 的任一包含 M 的理想 N, 必有 N=M 或 N=R, 则称 M 为 R 的一个极大理想 (maximal ideal).

注 67.1

- (1) 设 $I \in R$ 的一个理想. 若 I 不是 R 的极大理想, 则一定存在 R 的一个理想 J 满足 $I \subseteq J \subseteq R$.
- (2) 若 $I \in R$ 的一个理想, 要证明 $I \in R$ 的极大理想, 只须证明对 R 中满足 $I \subseteq J \subseteq R$ 的任意理想 J 必有 J = R.
- (3) 设 R 是一个有单位元 e 的交换环, I 是其一个极大理想. 任取 $a \in R \setminus I$, 则 $\langle a \rangle$ 是 R 的一个主理想, 从而 $\langle a \rangle + I$ 是 R 的一个真包含 I 的理想, 于是 $R = \langle a \rangle + I$.

例

例 68

 \mathbb{Z}_{18} 的极大理想是 $\langle 2 \rangle$ 与 $\langle 3 \rangle$.

例 69

设 p 是正整数. 则 $\langle p \rangle$ 是 \mathbb{Z} 的极大理想当且仅当 p 是素数.

例 70

设 $R = 2\mathbb{Z}, I = 4\mathbb{Z}$ 为 R 的理想, 则 I 为 R 的极大理想, 但不是素理想.

例 71

设 R 是全体实函数的集合按通常函数的加法与乘法构成的一个环. 令 $I = \{f(x) \in R \mid f(0) = 0\}.$

则 I 为 R 的极大理想.

例 72

证明 $\langle x^2 + 1 \rangle$ 为 $\mathbb{Z}_3[x]$ 的极大理想.

证明: 设 I 为 $\mathbb{Z}_3[x]$ 的任一理想使 $\langle x^2 + 1 \rangle \subsetneq I$. 在 I 中任取一个不属于 $\langle x^2 + 1 \rangle$ 的多项式 f(x). 存在 $q(x), ax + b \in \mathbb{Z}_3[x]$, 使 $f(x) = (x^2 + 1) q(x) + ax + b.$

从而

$$ax + b = f(x) - (x^2 + 1) q(x) \in I.$$

因 $f(x) \notin \langle x^2 + 1 \rangle$, 从而 $ax + b \notin \langle x^2 + 1 \rangle$, 所以 a, b 不全为零.

(1) 在
$$\mathbb{Z}_3[x]$$
 中, 如果 $a \neq 0$, 则 $a^2 + b^2 \neq 0$, 且
$$a^2 + b^2 = a^2(x^2 + 1) - (ax + b)(ax - b) \in I,$$

则

$$1 = (a^2 + b^2)^{-1} (a^2 + b^2) \in I,$$

其中 $(a^2+b^2)^{-1}$ 是 a^2+b^2 在 \mathbb{Z}_3 中的逆. 由此得 $I=\mathbb{Z}_3[x]$.

(2) 如果 a = 0, 则 $b \neq 0$ 且 $b \in I$, 于是 $1 = b^{-1}b \in I$, 从而 $I = \mathbb{Z}_3[x]$.

这就证明了 $\langle x^2 + 1 \rangle$ 是 $\mathbb{Z}_3[x]$ 的极大理想.

极大理想与域

定理 73

设 R 是有单位元 e 的交换环, I 为 R 的理想, 则 I 是 R 的极大理想的充分必要条件是 R/I 是域.

证明: 必要性. 设 I 为 R 的极大理想, 则 $R/I \neq \{\overline{0}\}$. 因 R 是有单位元的交换环, 所以 R/I 也是有单位元的交换环. 又对任意的 $\overline{a} \in R/I$, 如果 $\overline{a} \neq \overline{0}$, 即 $a \notin I$, 则 $I \subsetneq \langle a \rangle + I \triangleleft R$, 所以 $\langle a \rangle + I = R$. 从而 $e \in \langle a \rangle + I$. 于是存在 $r \in R, b \in I$, 使 e = ar + b. 从而 $\overline{e} = \overline{ar + b} = \overline{ar} = \overline{a} \cdot \overline{r}$, 即 \overline{a} 可逆, 所以 R/I 为域.

充分性. 设 R/I 为域, 则 $R/I \neq \{\overline{0}\}$ (域定义要求 $e \neq 0$), 所以 I 为 R 的 真理想. 设 J 为 R 的任一真包含 I 的理想, 则有 $a \in J$ 且 $a \notin I$, 从而 $\overline{a} \neq \overline{0}$. 因 R/I 为域, 存在 $\overline{b} \in R/I$, 使 $\overline{a} \cdot \overline{b} = \overline{e}$. 于是 $e \in ab + I \subseteq J$, 从而 J = R. 所以 I 为 R 的极大理想.

极大理想与素理想

定理 74

设 R 是一个有单位元的交换环, 则 R 的每个极大理想都是素理想.

证明: 如果 $I \in \mathbb{R}$ 的极大理想, 由定理 73, R/I 是域. 从而 R/I 是整环. 又由定理 66 知, I 是素理想.

例

例 75

例 72 中, $\langle x^2+1 \rangle$ 是 $\mathbb{Z}_3[x]$ 的极大理想, 所以 $\mathbb{Z}_3[x]/\langle x^2+1 \rangle$ 是一个域. 如果记 $\theta=\bar{x}$, 则 $\mathbb{Z}_3[x]/\langle x^2+1 \rangle$ 可记为 $\mathbb{Z}_3[\theta]$, 易知 $\mathbb{Z}_3[\theta]=\{0,1,-1,\theta,-\theta,1+\theta,-1+\theta,1-\theta,-1-\theta\}$, 并且其元素的运算满足

$$1 + 1 = -1,$$
$$\theta^2 = -1.$$

§3.6 环的特征与素域

- 环的特征
- 含幺环的特征
- 整环的特征
- ■域的特征
- ■素域
- 特征的性质

环的特征

定义 76

设 R 为环. 如果存在最小的正整数 n, 使得对所有的 $a \in R$, 有 na = 0, 则 称 n 为环 R 的特征 (characteristic). 如果这样的正整数不存在, 则称环 R 的特征为 0. 环 R 的特征记作 Char R.

例 77

 $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ 的特征都等于 0. 一般地, 如果 R 是一个数环, 则 $\operatorname{Char} R = 0$.

例 78

设 \mathbb{Z}_m 是模 m 剩余类环, 则对每个 $\bar{a} \in \mathbb{Z}_m$, 有

$$m\bar{a} = \overline{ma} = \overline{0}.$$

而对于任何正整数 k < m, 有

$$k\overline{1} = \overline{k} \neq \overline{0},$$

所以 $\operatorname{Char} \mathbb{Z}_m = m$.

含幺环的特征

定理 79

设 R 是有单位元 e 的环. 如果 e 关于加法的阶为无穷大, 那么 R 的特征 等于 0. 如果 e 关于加法的阶等于 n, 那么 Char R = n.

证明: 如果 e 关于加法的阶为无穷大, 那么不存在正整数 n, 使得 ne = 0. 所以由特征的定义知 Char R = 0.

如果 e 关于加法的阶等于正整数 n, 则 ne = 0. 而且 n 是满足这一性质的最小正整数. 因此, 对于任意的 $a \in R$ 有

$$na = n(e \cdot a) = (ne) \cdot a = 0 \cdot a = 0.$$

于是, $\operatorname{Char} R = n$.

整环的特征

定理 80

整环的特征是 0 或者是一个素数.

证明: 由定理 79, 只要证明, 如果整环 R 的单位元 e 关于加法的阶有限,则它必为素数.

设 e 关于加法的阶为 n. 显然 n>1 (整环中 $e\neq 0$). 假设 $n=st, 1\leqslant s, t\leqslant n$, 则可得

$$0 = ne = (st)e = s(te) = s(e \cdot te) = (se) \cdot (te).$$

故由整环 R 无零因子得 se=0 或 te=0. 因为 n 是使得 ne=0 成立的最小正整数, 所以 s=n 或 t=n. 因此 n 是素数.

域的特征

定义 81

设 F 是一个域, 将域 F 的特征 Char F 就定义为将域看作环时的特征.

定义 82

一个域 F 如果不含任何真子域, 则称 F 是一个素域 (prime field).

注 82.1

由于域是一类特殊的整环, 所以域的特征也只能是 0 或素数.

特征的性质

定理 83

在特征是素数 p 的交换环 R 中有

$$(a+b)^p = a^p + b^p, \quad a, b \in R.$$

证明: 在交换环中显然有

$$(a+b)^p = a^p + \binom{p}{1}a^{p-1}b + \binom{p}{2}a^{p-2}b^2 + \dots + \binom{p}{p-1}ab^{p-1} + b^p.$$

由

$$\binom{p}{j} = \frac{p(p-1)\cdots(p-j+1)}{j!} \ (j=1,2,\cdots,p-1)$$

可得

$$\binom{p}{j}j! = p(p-1)\cdots(p-j+1).$$

显然 $p \nmid j!$, 因此 $p \mid \binom{p}{i}$, 所以 $\binom{p}{i}a^{p-j}b^j = 0$ $(j = 1, \dots, p-1)$, 定理成立.

特征的性质

推论 84

在特征是素数 p 的交换环 R 中对任意正整数 k 有 $(a+b)^{p^k}=a^{p^k}+b^{p^k},\quad a,b\in R.$

§3.7 多项式环

- 未定元及其存在性
- 一元多项式 (环)
- 整除与最大公因式
- 多项式环的性质
- 域上的多项式环
- ■多项式的根

§3.6 环的特征与素域

- 环的特征
- 含幺环的特征
- ■整环的特征
- ■域的特征
- ■素域
- 特征的性质

整除

定义 85

设 R 是一个含幺环, x 是 R 上的一个未定元. 设 f(x) 和 g(x) 是 R[x] 中的任意两个多项式, $g(x) \neq 0$. 如果存在一个多项式 $q(x) \in R[x]$ 使得 f(x) = q(x)g(x),

成立, 那么就称 g(x) 整除 f(x) 或者 f(x) 可以被 g(x) 整除, 记做 $g(x) \mid f(x)$. 这时我们把 g(x) 叫做 f(x) 的因式, 而把 f(x) 叫做 g(x) 的倍式. 显然, 对任意 $a \in U(R)$, a 和 af(x) 都是 f(x) 的因式, 称之为平凡因式, 否则称为非平凡因式. 如果一个次数大于零的多项式不能写成两个非平凡因式的乘积, 那么我们就称这个多项式是不可约多项式或既约多项式, 否则称为可约多项式.

整除

注 85.1

设 R 是一个含幺环, x 是 R 上的一个未定元, $f(x) \in R[x]$ 是一个次数大于零的多项式, 则 f(x) 为可约多项式当且仅当存在两个次数大于零的多项式 $g(x), h(x) \in R[x]$ 使得 f(x) = g(x)h(x).

最大公因式

定义 86

设 R 是一个含幺环, x 是 R 上的一个未定元. 对任意 $f(x), g(x), h(x) \in R[x]$, 其中 h(x) 是非零的首一多项式, 如果

- (1) h(x) | f(x), h(x) | g(x);
- (2) 对任一多项式 $0 \neq d(x) \in R[x]$, 若有 $d(x) \mid f(x), d(x) \mid g(x), 则$ $d(x) \mid h(x),$

则称 h(x) 为 f(x) 与 g(x) 的最大公因式, 记为 $h(x) = \gcd(f(x), g(x))$. 特别地, 若 $\gcd(f(x), g(x)) = 1$, 则称 f(x) 与 g(x) 是互素的.

多项式环的性质

定理 87

设 R 是一个含幺环, x 是 R 上的一个未定元.

- (1) R 的零元 0 就是 R[x] 的零元 (即零多项式);
- (2) R[x] 是含幺环, 且 R 的单位元就是 R[x] 的单位元;
- (3) 如果 R 是无零因子环,则 R[x] 也是无零因子环,且 R[x] 的单位就是 R 的单位;
- (4) 如果 R 是交换环, 则 R[x] 也是交换环;
- (5) 如果 R 是整环, 则 R[x] 也是整环.

证明

- (1) 对任意的 $f(x) \in R[x]$, 有 0 + f(x) = f(x) + 0 = f(x). 所以 R 的零元就是 R[x] 的零元.
- (2) 对任意的 $f(x) \in R[x]$, 由于 $1 \cdot f(x) = f(x) = f(x) \cdot 1$, 所以 1 是 R[x] 的单位元.
- (3) 设 R 是无零因子环, $f(x) = \sum_{i=0}^{n} a_i x^i$ 与 $g(x) = \sum_{j=0}^{m} b_j x^j$ 是 R[x] 中 的任意两个非零元, 其中 $a_n, b_m \neq 0$, 则 f(x)g(x) 的最高次项系数为 $a_n b_m$. 由于 R 是无零因子环, 因此 $a_n b_m \neq 0$, 于是 $f(x)g(x) \neq 0$, 所以 R[x] 无零因子环. 又如果 $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$ 是 R[x] 的任意一个单位, 其中 $a_n \neq 0$, 则存在 $g(x) = \sum_{j=0}^{m} b_j x^j \in R[x]$, 其中 $b_m \neq 0$, 使得 $f(x) \cdot g(x) = g(x) \cdot f(x) = 1$.

证明 (续)

由于 $1=f(x)\cdot g(x)=\sum_{k=0}^{n+m}c_kx^k$, 其中 $c_k=\sum_{i+j=k}a_ib_j$, $k=0,1,\cdots,n+m$, 故 x^{n+m} 的系数 $c_{n+m}=a_nb_m$, 于是得 n=m=0, 且 $a_0b_0=1$. 同理, 由 $g(x)\cdot f(x)=1$ 得 $b_0a_0=1$, 故 $f(x)=a_0\in R$, 且 a_0 是 R 中的单位.

(4) 若 R 是交换环. 设 $f(x) = \sum_{i=0}^{n} a_i x^i, g(x) = \sum_{j=0}^{m} b_j x^j \in R[x]$, 有

$$f(x)g(x) = \sum_{k=0}^{n+m} c_k x^k, \quad g(x)f(x) = \sum_{k=0}^{n+m} d_k x^k,$$

则 $c_k = \sum_{i+j=k} a_i b_j = \sum_{i+j=k} b_j a_i = d_k, k = 0, 1, \cdots, n+m$. 于是 f(x)g(x) = g(x)f(x). 所以 R[x] 也是交换环.

(5) 若 R 是整环, 则 R 是有单位元的无零因子交换环, 故由 (2), (3), (4) 得 R[x] 也是有单位元的无零因子交换环, 也就是整环.

多项式环的性质

引理 88

设 R 是一个含幺环, 则对任意 $f(x), g(x) \in R[x]$ 有

- (1) $\deg(f+g) \le \max(\deg f, \deg g);$
- (2) $\deg fg \le \deg f + \deg g$;
- (3) 如果 f 或者 g 的首项系数不是 R 中零因子, 则 $\deg fg = \deg f + \deg g$.

多项式环的性质

定理 89 (带余除法)

设 R 是一个含幺交换环, R[x] 是 R 上的一元多项式环. 对任意 $f(x), g(x) \in R[x]$, 并且 g(x) 的首项系数是 R 中单位, 则存在唯一一对多项式 $q(x), r(x) \in R[x]$ 使得 f(x) = q(x)g(x) + r(x), 并且 $\deg r(x) < \deg g(x)$.

证明: 首先证明存在性. 令

$$\Sigma = \{ f(x) - g(x)h(x) \mid h(x) \in R[x] \}.$$

因为 g(x) 的首项系数是 R 中单位, 因此 $g(x) \neq 0$, 所以 $\Sigma \neq \{0\}$.

如果
$$0 \in \Sigma$$
, 则有 $h(x) \in R[x]$, 使 $0 = f(x) - g(x)h(x)$, 取 $r(x) = 0, q(x) = h(x)$, 则有 $f(x) = g(x)q(x)$, 并且 $\deg r(x) = -\infty < \deg g(x)$.

证明 (续)

如果 $0 \notin \Sigma$, 则 $\deg g(x) \geq 1$ (否则若 $\deg g(x) = 0$, 则 g 为 R 中单位,于是有 $f(x) - g(x)g^{-1}(x)f(x) = 0 \in \Sigma$). 取 $r(x) \in \Sigma$ 为 Σ 中次数最小的多项式,则有 $q(x) \in R[x]$,使 r(x) = f(x) - g(x)q(x). 所以 f(x) = g(x)q(x) + r(x). 下面用反证法证明 $\deg r(x) < \deg g(x)$. 假设 $\deg r(x) \geq \deg g(x)$. 设 $g(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$, $a_n \neq 0, n \geq 1$,

因为 $\deg r(x) \ge \deg g(x)$, 所以 $m \ge n$. 令

$$q_1(x) = q(x) + b_m a_n^{-1} x^{m-n}, \quad r_1(x) = r(x) - b_m a_n^{-1} g(x) x^{m-n},$$

 $r(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m, \quad b_m \neq 0.$

则 $f(x) = g(x)q_1(x) + r_1(x)$, 于是 $r_1(x) \in \Sigma$. 因为 $0 \notin \Sigma$, 所以 $r_1(x) \neq 0$, 从而 $\deg r_1(x) < \deg r(x)$. 这与 r(x) 的选取矛盾. 由此知 $\deg r(x) < \deg g(x)$.

证明 (续)

现证明唯一性. 设有

$$f(x) = q_1(x)g(x) + r_1(x) = q_2(x)g(x) + r_2(x),$$

其中 $\deg r_1(x) < \deg g(x)$, $\deg r_2(x) < \deg g(x)$, 则

$$(q_1(x) - q_2(x)) g(x) = r_2(x) - r_1(x)$$
. 由于 $g(x)$ 的首项系数是 R 中单位,

由引理 88 第 (3) 条可得

$$\deg(q_1-q_2)+\deg g=\deg(r_2-r_1)\leq \max\left(\deg r_1,\deg r_2\right)<\deg g.$$
 这只有在 $\deg(q_1-q_2)=\deg\left(r_2-r_1\right)=-\infty$ 时才能成立,于是 $q_1(x)-q_2(x)=0=r_1(x)-r_2(x)$,即 $q_1(x)=q_2(x),r_1(x)=r_2(x)$.这就证明了唯一性.

定理 90

设 F 是域, 则 F[x] 中任一理想都是主理想, 即对任意 $I \triangleleft F[x]$, 必定存在 多项式 $g \in F[x]$ 使得 I = (g).

证明: 若 I = (0), 则结果显然成立.

若 $I \neq (0)$, 则 I 中一定存在非零多项式. 假设 g(x) 是 I 中一个次数最低的非零多项式, 下面我们证明 g 是 I 的一个生成元. 设 f(x) 是 I 中的任意一元素. 则根据定理 89, 一定存在 $q(x), r(x) \in F[x]$ 使得

$$f(x) = q(x)g(x) + r(x), \deg(r(x)) < \deg(g(x)),$$

于是有 r(x)=f(x)-q(x)g(x). 注意到 $g(x)\in I$, 因此 $q(x)g(x)\in I$, 从而 $r(x)=f(x)-q(x)g(x)\in I$. 由于 $\deg(r(x))<\deg(g(x))$, 而 g(x) 是 I 中次数最低的非零多项式, 因此必有 r(x)=0, 即 f(x)=q(x)g(x), 所以 I=(g(x)).

定理 91

设 F 是域, f(x) 与 g(x) 是 F 上不全为零的两个多项式, 则存在 F 上的多项式 s(x), t(x) 使得

$$s(x)f(x) + t(x)g(x) = \gcd(f(x), g(x)).$$

定理 92

设 F 是域, $f(x) \in F[x]$ 是一个次数大于零的不可约多项式, 则 (f(x)) 是 F[x] 的极大理想, 从而 F[x]/(f(x)) 是一个域.

证明: 设 I 是 F[x] 的任一满足 $(f(x))\subsetneq I$ 的理想, 则存在 $g(x)\in I, g(x)\notin (f(x))$. 由于 f(x) 不可约, 故 f(x) 与 g(x) 互素, 于是存在 $u(x), v(x)\in F[x]$ 使得

$$u(x)f(x) + v(x)g(x) = 1,$$

故 $1 \in I$, 于是 I = F[x], 即 (f(x)) 是 F[x] 的极大理想. 进而可知 F[x]/(f(x)) 是一个域.

定理 93

设 F 是域, 设 f(x), g(x), h(x) 是 F 上任意三个不全为 0 的多项式, 且有 f(x) = q(x)g(x) + h(x), 其中 $q(x) \neq 0$. 则 $\gcd(f(x), g(x)) = \gcd(g(x), h(x))$.

定理 94 (辗转相除法)

设 f(x), g(x) 是域 F 上的两个多项式, $g(x) \neq 0$. 记 $r_0(x) = f(x), r_1(x) = g(x)$,并反复使用定理 89 给出的多项式除法, 我们有 $r_0(x) = q_1(x)r_1(x) + r_2(x), \quad 0 \leq \deg\left(r_2(x)\right) < \deg\left(r_1(x)\right), \ r_1(x) = q_2(x)r_2(x) + r_3(x), \quad 0 \leq \deg\left(r_3(x)\right) < \deg\left(r_2(x)\right), \dots$

$$r_{k-1}(x) = q_k(x)r_k(x) + r_{k+1}(x), \quad 0 \le \deg(r_{k+1}(x)) < \deg(r_k(x)),$$

上述过程经过有限步后, 一定存在 k 使得 $r_{k+1}(x)=0$. 这时得到的 $r_k(x)$ 就是多项式 f(x),g(x) 的最大公因式.

定义 95

设 E 是含幺交换环, R 是 E 是子环. $f(x) = a_0 + a_1x + \cdots + a_nx^n \in R[x]$. 对于每个 $\alpha \in E$, 定义

$$f(\alpha) = a_0 + a_1 \alpha + \dots + a_n \alpha^n \in E$$
 (在 E 中的运算),

称 $f(\alpha)$ 是 f(x) 在 α **处的取值**, 或叫将 $x = \alpha$ 代入 f(x) 而得到的值. 如果 $f(\alpha) = 0$, 则称 α 是多项式 f(x) 在环 E 中的一个根或零点.

注 95.1

设 E 是含幺交换环, R 是 E 是子环, $g(x), h(x) \in R[x]$. 当 f(x) = g(x)h(x) 时, 对任意 $\alpha \in E$ 有 $f(\alpha) = g(\alpha)h(\alpha)$.

定理 96 (余数定理)

设 R 为含幺交换环, $f(x) \in R[x]$. 则对于每个元素 $\alpha \in R$, 均有唯一的多项式 $q(x) \in R[x]$, 使得 $f(x) = q(x)(x - \alpha) + f(\alpha)$.

证明: 在定理 89 中取 $g(x) = x - \alpha$, 则存在唯一的 $r(x) \in R[x]$ 和 $q(x) = \sum_{k=0}^{n-1} b_k x^k \in R[x]$ 使得 $f(x) = q(x)(x - \alpha) + r(x)$, 其中 $\deg r(x) < \deg(x - \alpha) = 1$. 于是 r(x) 为常多项式, 即 $r(x) \in R$. 由于 R 为交换环, 将 $x = \alpha$ 代入 $f(x) = q(x)(x - \alpha) + r(x)$ 可得 $f(\alpha) = r(\alpha)$.

定理 97

设 R 是含幺交换环, $f(x) \in R[x], \alpha \in R$, 则 α 为 f(x) 的根当且仅当 $(x-\alpha) \mid f(x)$.

证明: 必要性. 由定理 96 可得 $f(x) = q(x)(x - \alpha) + f(\alpha)$. 由于 $f(\alpha) = 0$, 于是有 $f(x) = q(x)(x - \alpha)$, 即 $(x - \alpha) \mid f(x)$.

充分性. 若 $(x - \alpha) \mid f(x)$, 则有 $h(x) \in R[x]$ 使得 $f(x) = h(x)(x - \alpha)$.

由于 R 为交换环, 将 $x=\alpha$ 代入上式立即可得 $f(\alpha)=0$, 即 α 为 f(x) 的根.

定理 98

设 D 和 E 都是整环且 $D\subseteq E$, 则对于每个非零多项式 $f(x)\in D[x]$, 它在 E 中至多有 $\deg(f)$ 个不同的根.

证明: 设 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 是 f(x) 在 E 中两两不同的根,由定理 97 可知 $f(x)=q_1(x)\,(x-\alpha_1)$,其中 $q_1(x)\in E[x]$.由于 E 是交换环,从而 $0=f\left(\alpha_2\right)=q_1\left(\alpha_2\right)\left(\alpha_2-\alpha_1\right)$.由于 $\alpha_2\neq\alpha_1$ 且 E 为整环,从而 $q_1\left(\alpha_2\right)=0$,即 $q_1(x)=q_2(x)\,(x-\alpha_2)$,从而 $f(x)=q_2(x)\,(x-\alpha_2)\,(x-\alpha_1)$.由此递归可得 $f(x)=q_m(x)\,(x-\alpha_1)\,(x-\alpha_2)\cdots(x-\alpha_m)$.由于 f(x) 非 零,故 $q_m(x)$ 非零,于是 $\deg q_m(x)$ 之 0.因此,由引理 88 第 (3) 条可得 $\deg f(x)=m+\deg q_m(x)$,从而 $m\leq\deg f(x)$.

定义 99

设 D 和 E 都是整环且 $D \subseteq E$, $\alpha \in D$, $f(x) \in D[x]$. 如果 $(x - \alpha)^m \mid f(x)$ 但是 $(x - \alpha)^{m+1} \nmid f(x)$, 则当 $m \ge 2$ 时称 α 是 f(x) 的重根并且重数为 m, 当 m = 1 称 α 为 f(x) 的单根.

定义 100

设
$$D$$
 是整环, $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \in D[x]$, 则称 $f'(x) = a_1 + 2a_2x + \cdots + (n-1)a_{n-1}x^{n-2} + na_nx^{n-1}$ 为 $f(x)$ 的形式微商 (formal derivative).

定理 101

设 D 是整环, $f(x), g(x) \in D[x]$, $a \in D$, 则

- (1) (af(x))' = af'(x);
- (2) (f(x) + g(x))' = f'(x) + g'(x);
- (3) (f(x)g(x))' = f'(x)g(x) + f(x)g'(x).

定理 102

设 D 和 E 都是整环且 $D \subseteq E$, $f(x) \in D[x]$, $\alpha \in E$, 则

- (1) α 为 f(x) 的重根当且仅当 $f(\alpha) = f'(\alpha) = 0$;
- (2) 如果 D 为域, 并且在 D[x] 中 (f, f') = 1, 则 f(x) 在 E 中没有重根.

证明: (1) 必要性. 设 α 是 f(x) 的 m 重根, 其中 $m \geq 2$, 则 $f(x) = (x - \alpha)^m q(x)$, 其中 $q(x) \in E[x]$ 且 $q(\alpha) \neq 0$. 于是 $f'(x) = m(x - \alpha)^{m-1} q(x) + (x - \alpha)^m q'(x),$ 从而 $f(\alpha) = f'(\alpha) = 0$.

证明 (续)

充分性. 当 $f(\alpha) = f'(\alpha) = 0$ 时, 显然 α 为 f(x) 的根. 若 α 为 f(x) 的单根, 则 $f(x) = q(x)(x - \alpha)$, 其中 $q(x) \in E[x]$ 且 $q(\alpha) \neq 0$. 此时 $f'(x) = q'(x)(x - \alpha) + q(x)$, 于是 $f'(\alpha) = q(\alpha) \neq 0$, 矛盾. 因此, α 必为 f(x) 的重根.

(2) 如果 D 为域, 则由定理 91 知存在 D 上的多项式 s(x), t(x) 使得 $s(x)f(x) + t(x)f'(x) = \gcd(f(x), f'(x)) = 1$.

如果 α 是 f(x) 在 E 中的重根, 则由 (1) 可知 $f(\alpha) = f'(\alpha) = 0$. 将 $x = \alpha$ 代入上式可得矛盾 0 = 1, 因此 f(x) 在 E 中没有重根.

定理 103

设 D 和 E 都是整环且 $D \subseteq E$, $f(x) \in D[x]$, $\alpha_1, \dots, \alpha_m$ 是 f(x) 在 E 中 $m \ge 1$ 个两两不同的根, 并且根 α_i 的重数为 m_i , 其中 $i \in [m]$, 则 $m_1 + \dots + m_m \le \deg f$.

证明: 由于 α_1 是 f(x) 的 m_1 重根,则有 $(x-\alpha_1)^{m_1} \mid f(x)$,即有 $f(x) = q_1(x)(x-\alpha_1)^{m_1}$,其中 $q_1(\alpha_1) \neq 0$.由于 E 是交换环,从而 $0 = f(\alpha_2) = q_1(\alpha_2)(\alpha_2-\alpha_1)^{m_1}$.由于 $\alpha_2 \neq \alpha_1$ 且 E 为整环,故 $q_1(\alpha_2) = 0$ 且 α_2 是 $q_1(x)$ 的 m_2 重根,于是有 $q_1(x) = q_2(x)(x-\alpha_2)^{m_2}$,从而 $f(x) = q_2(x)(x-\alpha_2)^{m_1}(x-\alpha_1)^{m_2}$.由此递归可得 $f(x) = q_m(x)(x-\alpha_1)^{m_1}(x-\alpha_2)^{m_2}\cdots(x-\alpha_m)^{m_m}$.由于 f(x) 非零,故 $q_m(x)$ 非零,于是 $\deg q_m(x) \geq 0$.因此,由引理 88 第 (3)条可得 $\deg f(x) = m_1 + \cdots + m_m + \deg q_m(x)$,从而 $m_1 + \cdots + m_m \leq \deg f(x)$.

推论 104

设 F 是域, $f(x) \in F[x], \alpha_1, \dots, \alpha_m$ 是 f(x) 在 F 中两两不同的根, 并且根 α_i 的重数为 m_i , 其中 $i \in [m]$, 则 $m_1 + \dots + m_m \leq \deg f$.

第四章 域的扩张

- §4.1 域上的线性空间
- §4.2 扩域和代数扩张
- §4.3 多项式的分裂域
- §4.4 有限域

§4.1 域上的线性空间

- 线性空间的定义
- 线性子空间
- 线性组合
- 线性空间的基
- 线性空间的维数

线性空间的定义

定义 105

设 V 是一个带有加法 (记作"+") 运算的非空集合, F 是一个域. 如果 V 关于加法运算构成一个交换群, 并且对每个 $k \in F, v \in V$, 在 V 中可唯一地确定一个元素 kv (称为 k 与 v 的标量乘法). 进一步, 若对任意 $k, l \in F, u, v \in V$ 满足下述条件:

- (1) (kl)v = k(lv);
- (2) (k+l)v = kv + lv;
- (3) k(u+v) = ku + kv;
- (4) 1v = v,

则称 V 为域 F 上的一个向量空间 (vector space) 或线性空间 (linear space). 向量空间中的元素称为向量 (vector), 域中的元素称为标量或纯量 (scalar), 域 F 称为向量空间的基域.

例 106

集合 $F^n = \{(a_1, a_2, \cdots, a_n) \mid a_i \in F\}$ 是域 F 上的向量空间, 其加法运算和标量乘法运算分别为

$$(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n),$$

 $k(a_1, a_2, \dots, a_n) = (ka_1, ka_2, \dots, ka_n).$

例 107

域 F 上的所有 2×2 矩阵的集合 $\mathbb{M}_2(F)$ 关于如下矩阵的加法和标量乘法 运算构成 F 上的向量空间:

$$\begin{pmatrix}
a_1 & a_2 \\
a_3 & a_4
\end{pmatrix} + \begin{pmatrix}
b_1 & b_2 \\
b_3 & b_4
\end{pmatrix} = \begin{pmatrix}
a_1 + b_1 & a_2 + b_2 \\
a_3 + b_3 & a_4 + b_4
\end{pmatrix},$$

$$k \begin{pmatrix}
a_1 & a_2 \\
a_3 & a_4
\end{pmatrix} = \begin{pmatrix}
ka_1 & ka_2 \\
ka_3 & ka_4
\end{pmatrix}.$$

例

例 108

设 p 是素数, 则 \mathbb{Z}_p 是一个域. 系数在 \mathbb{Z}_p 上的一元多项式环 $\mathbb{Z}_p[x]$ 关于通常多项式的加法和标量乘法构成有限域 \mathbb{Z}_p 上的一个向量空间.

例 109

复数域 \mathbb{C} 是实数域 \mathbb{R} 上的向量空间, 运算是通常的复数的加法和乘法运算.

例 110

设 E 是域, F 是 E 的子域, 那么 E 是 F 上的向量空间. 向量空间的运算就是域 E 中的运算.

线性子空间

定义 111

设 V 是域 F 上的向量空间, U 是 V 的非空子集. 如果 U 关于 V 的运算 也构成 F 上的向量空间, 则称 U 为 V 的子空间.

例 112

集合 $\{a_0+a_1x+a_2x^2\mid a_0,a_1,a_2\in\mathbb{Z}_5\}$ 是 \mathbb{Z}_5 上的由所有系数在域 \mathbb{Z}_5 上的多项式组成的向量空间 $\mathbb{Z}_5[x]$ 的子空间.

线性组合

定义 113

设 V 是域 F 上的向量空间, v_1, v_2, \cdots, v_n 是 V 中的向量 (它们不必互不相同), 那么子集

 $\langle v_1, v_2, \cdots, v_n \rangle = \{a_1v_1 + a_2v_2 + \cdots + a_nv_n \mid a_1, a_2, \cdots, a_n \in F\}$ 称为 V 的由 v_1, v_2, \cdots, v_n 张成的子空间. 形如 $a_1v_1 + a_2v_2 + \cdots + a_nv_n$ 的元素称为 v_1, v_2, \cdots, v_n 的线性组合. 如果 $\langle v_1, v_2, \cdots, v_n \rangle = V$, 那么称 v_1, v_2, \cdots, v_n 张成 V. 一般地, 设 B 是 V 的任一非空子集, 如果 V 中任一元素都是B 中有限多个元素的线性组合, 则称 B 张成 V.

线性相关和无关

定义 114

设 v_1, v_2, \dots, v_n 是域 F 上向量空间 V 的一组向量, 如果存在不全为零的元素 $k_1, k_2, \dots, k_n \in F$, 使得

$$k_1 v_1 + k_2 v_2 + \dots + k_n v_n = 0,$$

则称向量组 v_1, v_2, \dots, v_n 在 F 上线性相关 (linearly dependent). 如果一个向量组在 F 上不是线性相关的, 则称这个向量组在 F 上线性无关 (linearly independent).

例 115

设 $F = \mathbb{Z}_2 = \{0,1\}$, 则 F^3 中的向量组 $\{(1,0,0),(1,1,0),(1,1,1)\}$ 在 F 上是线性无关的. 因为假设存在 $a,b,c\in F$, 使得 a(1,0,0)+b(1,1,0)+c(1,1,1)=(0,0,0), 那么 (a+b+c,b+c,c)=(0,0,0), 于是 a=b=c=0.

线性空间的基

定义 116

设 $V \in F$ 上的向量空间, $B \in V$ 的一个非空子集. 如果 B 中任一有限子集都在 F 上线性无关, 且 B 张成 V, 则称 B 为 V 的基.

注 116.1

可以用集合论的方法证明每个向量空间都有基. 以有限多个元素为基的向量空间 (包括零空间) 称为**有限维向量空间** (finite dimensional vector space), 否则称为**无限维向量空间** (infinite dimensional vector space).

线性空间的基

定理 117

如果 $\{u_1,u_2,\cdots,u_m\}$ 和 $\{w_1,w_2,\cdots,w_n\}$ 都是域 F 上向是空间 V 的基,那么 m=n.

证明: 假设 $m \neq n$. 不妨设 m < n. 由于 u_1, u_2, \cdots, u_m 张成 V, 所以可设 $w_1 = k_1 u_1 + \cdots + k_m u_m$, 且这些 $k_i \in F$ 不全为零, 对 u_1, u_2, \cdots, u_m 的顺序适当重排后可设 $k_1 \neq 0$, 则 w_1, u_2, \cdots, u_m 张成 V. 又可设 $w_2 = l_1 w_1 + l_2 u_2 + \cdots + l_m u_m$, 则 l_2, \cdots, l_m 中至少有一个不为零, 不妨设 $l_2 \neq 0$, 则 $w_1, w_2, u_3, \cdots, u_m$ 张成 V. 继续这样去, 最后可得 w_1, w_2, \cdots, w_m 张成 V, 从而可推出 w_{m+1} 是 w_1, w_2, \cdots, w_m 的线性组合, 与已知条件矛盾.

线性空间的维数

定义 118

如果一个向量空间 V 具有一个含 n 个元素的基, 则称 V 的**维数** (dimension) 是 n, 零空间 $\{0\}$ 称为是由空集张成的, 并规定它的维数是 0 , 无限维向量空间的维数规定为无穷大 $+\infty$. 域 F 上向量空间 V 的维数记作 $\dim_F V$.

例 119

例 106 中的域 F 上的向量空间 F^n 是 n 维的,

$$e_1=(1,0,\cdots,0),$$

$$e_2=(0,1,\cdots,0),$$

.

$$e_n = (0, 0, \cdots, 1)$$

是 F^n 的一个基. 而例 112 中的向量空间 $\mathbb{Z}_p[x]$ 是 \mathbb{Z}_p 上的无限维向量空间, $\{x^n \mid n \geq 0\}$ 是 $\mathbb{Z}_p[x]$ 的一个基.

回顾

§4.1 域上的线性空间

- 线性空间的定义
- 线性子空间
- 线性组合
- 线性空间的基
- 线性空间的维数

§4.2 扩域和代数扩张

- 扩域和子域
- ■域的扩张
- 维数定理
- ■域的构造例子
- ■域论基本定理
- 代数扩张

定义 120

设 F 和 E 是两个域. 如果 $F \subseteq E$, 并且 F 中的运算就是 E 的运算在 F 上的限制, 则称 E 为域 F 的**扩域** (extension field), 而称 F 为 E 的**子域**.

定理 121

设 E 是域, F 是 E 的子域, S 为 E 的一个非空子集. 令

$$F(S) = \bigcap_{L \in \Sigma} L,$$

其中

$$\Sigma = \{L \mid L$$
 为 E 的子域且 $F \cup S \subseteq L\}$,

则 F(S) 是 E 的包含 F 和 S 的最小子域. 此时称 F(S) 为 E 的添加集合 S 于 F 的子域.

证明: 显然, Σ 非空. 由于 E 中加法子群和乘法子群的交仍为 E 的加法子群和乘法子群, 因此 E 的子域的交仍是 E 的子域, 于是 F(S) 是 E 的子域. 又因为 $F \cup S \subseteq F(S)$, 从而 $F(S) \in \Sigma$, 于是 F(S) 是 E 的包含 F 和 E 的最小子域.

定理 122

设 $E \neq F$ 的扩域, $S_1 \subseteq S_2 \neq E$ 的两个非空子集, 则 $F(S_1)(S_2) = F(S_1 \cup S_2) = F(S_2)(S_1).$

证明: 因为 $F \cup S_1 \cup S_2 \subseteq F(S_1)(S_2)$, 而 $F(S_1 \cup S_2)$ 为 E 的包含 F 及 $S_1 \cup S_2$ 的最小子域. 所以

$$F\left(S_{1}\cup S_{2}\right)\subseteq F\left(S_{1}\right)\left(S_{2}\right).$$

又因为 $F \cup S_1 \subseteq F(S_1 \cup S_2)$, 所以 $F(S_1) \subseteq F(S_1 \cup S_2)$. 又有 $S_2 \subseteq F(S_1 \cup S_2)$, 所以 $F(S_1) \cup S_2 \subseteq F(S_1 \cup S_2)$. 而 $F(S_1)(S_2)$ 为 E 的含 $F(S_1)$ 与 S_2 的最小子域, 所以

$$F(S_1)(S_2) \subseteq F(S_1 \cup S_2).$$

从而

$$F(S_1)(S_2) = F(S_1 \cup S_2).$$

同理可证 $F(S_2)(S_1) = F(S_1 \cup S_2)$. 从而可得定理结论.

注 122.1

设 $E \to F$ 的扩域,则在 F 中添加 E 中的集合 S 时有如下结论:

(1) 若 $S = \{a\}$, 其中 $a \in E$, 记 $F(\{a\}) = F(a)$, 并称 F(a) 为 F 的单扩 域或单扩张 (simple extension). 考虑 F(a) 包含 E 中哪些元素: 首先, 因为 $a \in F(a)$, 有 $a^k \in F(a)$ ($k \in \mathbb{N}$), 所以对任意的 $f(x) \in F[x]$, $f(a) \in F(a)$. 又对任意的 $g(x) \in F[x]$, 如果 $g(a) \neq 0$, 则 $\frac{1}{g(a)} \in F(a)$. 从而 $\widetilde{F} = \left\{ \frac{f(a)}{g(a)} \mid f(x), g(x) \in F[x], g(a) \neq 0 \right\} \subseteq F(a)$. 由 域的定义直接验证可知, \widetilde{F} 是一个域, 且 $F \subseteq \widetilde{F}$, $a \in \widetilde{F}$, 从而 $\widetilde{F} = F(a)$, 即

$$F(a) = \left\{ \frac{f(a)}{g(a)} \mid f(x), g(x) \in F[x], g(a) \neq 0 \right\}.$$
(2) 设 $S = \{a_1, a_2, \dots, a_s\}$, 其中 $a_i \in E$ $(i \in [s])$, 记

(2) 设 $S = \{a_1, a_2, \dots, a_s\}$, 其中 $a_i \in E \ (i \in [s])$, 记 $F(S) = F \ (a_1, a_2, \dots, a_s)$. 记 $F \ (a_1, a_2, \dots, a_s)$ 为 F 的添加 E 的元素 a_1, a_2, \dots, a_s 所得的扩域. 由定理 122 知 $F \ (a_1, a_2, \dots, a_s) = F \ (a_1) \ (a_2) \dots (a_s)$.

160 / 199

域的扩张

定义 123

设 $E \in F$ 的扩域. 如果 E 作为 F 上的向量空间是有限维的, 则称 E 是 F 的**有限扩域**或**有限扩张** (finite extension), 否则称 E 为 F 的**无限扩域** 或**无限扩张** (infinite extension). E 在 F 上的维数 $\dim_F E$ 称为 E 关于 F 的扩张次数 (degree of extension), 记作 [E:F], 即

 $[E:F] = \dim_F(E).$

例 124

复数域 $\mathbb C$ 作为实数域 $\mathbb R$ 上的向量空间有基 1,i, 所以 $[\mathbb C:\mathbb R]=2.$ 而 $\mathbb C$ 是有理数域 $\mathbb Q$ 的无限扩张.

例 125

因为 $1, \pi, \pi^2, \dots, \pi^n, \dots$ 在 \mathbb{Q} 上线性无关, 所以 $\mathbb{Q}(\pi)$ 在 \mathbb{Q} 上的弞张次数是 $[\mathbb{Q}(\pi):\mathbb{Q}] = +\infty$.

维数定理

定理 126

设 K 是域 E 的有限扩域, E 是域 F 的有限扩域, 则 K 是域 F 的有限扩域, 且

$$[K:F] = [K:E] \cdot [E:F].$$

证明: 设 $X = \{x_1, x_2, \dots, x_n\}$ 是 K 在 E 上的基, $Y = \{y_1, y_2, \dots, y_m\}$ 是 E 在 F 上的基, 则只要证明

$$YX = \{y_j x_i \mid 1 \leqslant j \leqslant m, 1 \leqslant i \leqslant n\}$$

是 K 在 F 上的基.

设 $a \in K$, 则存在 $b_1, b_2, \dots, b_n \in E$, 使得

$$a = b_1 x_1 + b_2 x_2 + \dots + b_n x_n.$$

又对每个 $i \in [n]$, 存在元素 $c_{i1}, c_{i2}, \cdots, c_{im} \in F$, 使得

$$b_i = c_{i1}y_1 + c_{i2}y_2 + \dots + c_{im}y_m.$$

证明 (续)

于是

$$a = \sum_{i=1}^{n} b_i x_i = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} c_{ij} y_j \right) x_i = \sum_{i,j} c_{ij} (y_j x_i).$$

这就证明了 YX 在 F 上张成 K.

以下证明 YX 在 F 上线性无关. 假设存在 $c_{ij} \in F, 1 \leq i \leq n, 1 \leq j \leq m$ 使得

$$0 = \sum_{i,j} c_{ij} (y_j x_i) = \sum_{i} \sum_{j} (c_{ij} y_j) x_i,$$

那么因为每个 $c_{ij}y_j\in E$, 而 X 是 K 在 E 上的基, 所以对任意 $i\in [n]$ 有 $\sum_i c_{ij}y_j=0.$

注意到每个
$$c_{ij}\in F$$
, 且 Y 是 E 在 F 上的基, 因此每个 $c_{ij}=0$. 这就证明了 YX 在 F 上线性无关, 于是 YX 是 K 在 F 上的基.

域的构造例子

引理 127

设 F 是任一有限域,则对任意正整数 n 均存在 F 上的 n 次不可约多项式.

定理 128

设 F 是任一有限域, $f(x) \in F[x]$ 是一个首 1 的 n 次不可约多项式. 令 $F[x]_{f(x)} = \{g(x) \in F[x] \mid \deg(g) < \deg(f) = n\}$ 并在 $F[x]_{f(x)}$ 中定义加法运算 $g(x) \oplus h(x) = g(x) + h(x)$ 和乘法运算 $g(x) \odot h(x) = g(x)h(x) \pmod{f(x)}$, 则 $F[x]_{f(x)}$ 是一个域.

证明

显然 $F[x]_{f(x)}$ 关于加法运算 " \oplus " 构成交换群, 关于乘法运算 " \odot " 满足结合律并有单位元 1. 要证明 $F[x]_{f(x)}$ 是一个域只需证明对任意非零多项式 $g(x) \in F[x]_{f(x)}$ 有乘法逆即可. 由定理 91 可得存在 $s(x), t(x) \in F[x]$ 使得 $s(x)f(x)+t(x)g(x)=\gcd(f(x),g(x)),$

从而对任意 $u(x) \in F[x]$ 有

$$[s(x) + u(x)g(x)]f(x) + [t(x) - u(x)f(x)]g(x) = \gcd(f(x), g(x)).$$

因此由带余除法可知必有 $u'(x) \in F[x]$ 使得

$$\deg[t(x)-u'(x)f(x)]<\deg(f)=n$$
. 令 $t'(x)=t(x)-u'(x)f(x)$, 由 $\gcd(g(x),f(x))=1$ 立即可得 $t'(x)\odot g(x)=1$, 即 $g(x)$ 可逆. 因此 $F[x]_{f(x)}$ 是一个域.

域论基本定理

定理 129 (域论基本定理, Kronecker(1887))

设 F 是域, p(x) 是 F[x] 中次数大于零的不可约多项式, 那么存在 F 的扩域使得 p(x) 在此扩域中有根.

证明: 只需构造 F 的一个扩域 \bar{E} 使得 p(x) 在 \bar{E} 中有根即可. 先取 E 为 $F[x]/\langle p(x) \rangle$, 由定理 87 和定理 73 知 E 是一个域. 由于

$$\phi: F \longrightarrow E$$
$$a \longmapsto a + \langle p(x) \rangle$$

是单射且保持两个运算, 故 E 中有一个同构于 F 的子域.

证明 (续)

显然, $F \cap E = \emptyset$. 于是由环的扩张定理可知存在 F 的扩环 \overline{E} 以及环同构

$$\tilde{\phi}:\bar{E}\cong E$$

使得 $\tilde{\phi}|_F = \phi$. 由于 E 是域, 因此 \bar{E} 也是域. 设 $\alpha \in \bar{E}$ 使得

$$\tilde{\phi}(\alpha) = x + \langle p(x) \rangle$$
. 由于

$$\tilde{\phi}(p(\alpha)) = p(x + \langle p(x) \rangle) = p(x) + \langle p(x) \rangle = 0 + \langle p(x) \rangle,$$

所以 $p(\alpha) = 0$. 故 α 为 p(x) 在 \bar{E} 中的根.

例

注 129.1

由于 \bar{E} 是 E 中用 a ($a \in F$) 取代 $a + \langle p(x) \rangle$ 而得到的 F 的扩域, 即 \bar{E} 是 将 F 嵌入 E 而得到扩域, 所以不妨就将 \bar{E} 就看成是 E, 而认为 E 包含 F. 以后, 凡是遇到类似的情况, 都将以此观点来看待 F 的扩域.

例 130

设 $f(x) = x^5 + 2x^2 + 2x + 2 \in \mathbb{Z}_3[x]$, 则 f(x) 在 \mathbb{Z}_3 上的不可约分解形式 为 $(x^2 + 1)(x^3 + 2x + 2)$. 因此, 为求包含 f(x) 根的 \mathbb{Z}_3 的扩域 E, 可取 $E = \mathbb{Z}_3[x]/\langle x^2 + 1 \rangle$ (这是一个有 9 个元素的域) 或者取 $E = \mathbb{Z}_3[x]/\langle x^3 + 2x + 2 \rangle$ (这是一个有 27 个元素的域).

例 131

设
$$f(x) = x^2 + 1 \in \mathbb{Q}[x]$$
, 则在 $E = \mathbb{Q}[x]/\langle x^2 + 1 \rangle$ 中有
$$f\left(x + \langle x^2 + 1 \rangle\right) = \left(x + \langle x^2 + 1 \rangle\right)^2 + 1$$
$$= x^2 + \langle x^2 + 1 \rangle + 1$$
$$= x^2 + 1 + \langle x^2 + 1 \rangle$$
$$= \langle x^2 + 1 \rangle.$$

我们知道, 多项式 $x^2 + 1$ 以复数 i 作为其一个根, 但这里想强调的是仅用有理数就构造出了一个域, 这个域包含有理数集以及多项式 $x^2 + 1$ 的根. 这里根本不需要任何复数的知识.

代数扩张

定义 132

设 E 为域 F 的扩域, $\alpha \in E$, 如果存在 F 上的非零多项式 f(x), 使得 $f(\alpha) = 0$, 则称 α 为 F 上的一个代数元 (algebraic element). 如果 α 不是 F 上的代数元, 那么称 α 为 F 上的一个超越元 (transcendental element). 如果 F 的扩域 E 中的每个元素都是 F 上的代数元, 则称 E 是 F 的代数扩张 (algebraic extension). 如果 E 不是 F 的代数扩张, 则称 E 为 F 的超越扩张 (transcendental extension).

注 132.1

有理数域上的代数元称为代数数, 不是代数数的数称为超越数.

回顾

§4.2 扩域和代数扩张

- 扩域和子域
- ■域的扩张
- 维数定理
- 域的构造例子
- ■域论基本定理
- 代数扩张

§4.3 多项式的分裂域

- 分裂域的定义
- 分裂域的形式
- 分裂域的存在性
- 分裂域的唯一性

分裂域的定义

定义 133

设 E 是 F 的扩域. f(x) 为 F 上的一个非常数多项式. 如果 f(x) 能分解成 E[x] 中一次因式的乘积, 则称 f(x) 在 E 上是分裂的. 如果 f(x) 在 E 上是分裂的, 但 f(x) 在 E 的任一包含 F 的真子域上都不分裂, 则称 E 为多项式 f(x) 在 F 上的分裂域 (splitting field).

例 134

仍考虑前面提到的多项式 $f(x)=x^2+1\in\mathbb{Q}[x]$. 因为 $x^2+1=(x+\mathrm{i})(x-\mathrm{i})$, 所以 f(x) 在 $\mathbb C$ 中是分裂的, 但它在 $\mathbb Q$ 上的分裂域却是 $\mathbb Q(\mathrm{i})$, 而 x^2+1 在 $\mathbb R$ 上的分裂域是 $\mathbb C$.

分裂域的形式

定理 135

设
$$f(x) \in F[x], E$$
 是 F 的扩域,且在 E 上有
$$f(x) = b(x - a_1)(x - a_2) \cdots (x - a_n), \ b \neq 0,$$
则 E 为 $f(x)$ 在 F 上的分裂域的充分必要条件是
$$E = F(a_1, a_2, \cdots, a_n).$$

分裂域的存在性

定理 136

设 f(x) 为域 F 上的一个非常数多项式, 则存在 F 的扩域 E, 使 E 为 f(x) 在 F 上的分裂域.

证明: 对 $n = \deg f(x)$ 应用数学归纳法.

如果 n=1, 那么 f(x) 已经是一次的, 所以 F 本身就是 f(x) 在其上的分裂域. 假设对所有的域及所有次数小于 n 的多项式结论都成立, 则由定理 154, 存在 F 的扩域 E', 使 f(x) 在 E' 中至少有一个根, 设为 a_1 , 则在 E'[x] 中有 $f(x)=(x-a_1)\,g(x),g(x)\in E'[x]$. 因为 $\deg g(x)<\deg f(x)$, 由归纳假设知, 存在多项式 g(x) 在 E' 上的分裂域 K, 使在 K[x] 中有 $g(x)=b\,(x-a_2)\,(x-a_3)\cdots(x-a_n)\,,\quad b\neq 0$.

令

$$E = F(a_1, a_2, \cdots, a_n),$$

则由定理 135 知 E 就是 f(x) 在 F 上的分裂域. 由数学归纳法知结论成立.

例

例 137

考虑 $\mathbb{Z}_3[x]$ 中的不可约多项式 $f(x)=x^2+x+2$. 由于在 $\mathbb{Z}_3[\mathrm{i}]=\{a+b\mathrm{i}\mid a,b\in\mathbb{Z}_3\}$ 上有

$$f(x) = [x - (1 + i)][x - (1 - i)].$$

所以 $\mathbb{Z}_3[i]$ 就是 f(x) 在 \mathbb{Z}_3 上的分裂域. 另一方面, 由定理 154 的证明知 $E=\mathbb{Z}_3[x]/\langle x^2+x+2\rangle$ 中的元素 $x+\langle x^2+x+2\rangle$ 是 f(x) 的根, 易验证 $2x+2+\langle x^2+x+2\rangle\in E$ 是另一个根. 于是 f(x) 在 E 中分裂. 又因为 E 只有 9 个元素, 可得 $[E:\mathbb{Z}_3]=2$, 所以 E 也是 f(x) 在 \mathbb{Z}_3 上的分裂域. 于是找到了 f(x) 在 \mathbb{Z}_3 上的两个分裂域, 一个是 $\mathbb{Z}_3[i]$, 另一个是 $\mathbb{Z}_3[x]/\langle x^2+x+2\rangle$. 将陪集 $1+\langle x^2+x+2\rangle$ 与 \mathbb{Z}_3 中的 1 等同, 并将陪集 $x+\langle x^2+x+2\rangle$ 记作 β . 于是,

$$E = \{0, 1, 2, \beta, 2\beta, \beta + 1, 2\beta + 1, \beta + 2, 2\beta + 2\}.$$

并且有

$$x^{2} + x + 2 = (x - \beta)[x - (2\beta + 2)] = (x - \beta)(x + \beta + 1).$$

分裂域的唯一性

定理 138

设 ϕ 是域 F 到 F' 的同构, f(x) 是 F 上的非常数多项式. 如果 E 是 f(x) 在 F 上的分裂域, E' 是 $\phi(f(x))$ 在 F' 上的分裂域, 那么存在从 E 到 E' 的同构, 且该同构在 F 上与 ϕ 一致.

推论 139

设 F 是域, $f(x) \in F[x]$, 那么 f(x) 在 F 上的任何两个分裂域都是同构的.

证明: 假设 E 和 E' 都是 f(x) 在 F 上的分裂域,则在上述定理中取 ϕ 为 F 的恒等映射即得结果.

§4.4 有限域

- 有限域的乘法群
- ■本原元
- 极小多项式
- 极小多项式的不可约性
- 极小多项式的次数
- 有限域的扩张
- 本原多项式
- 有限域上的域论基本定理
- ■有限域的唯一性

有限域的乘法群

定理 140

设 E/F 是任一有 q 个元素的有限域, 则 $E^*=E\setminus\{0\}$ 中每个元素 α 均满足 $\alpha^{q-1}=1$, 即 E^* 中的每个元素均是 $x^{q-1}-1\in F[x]$ 的根, 并且 $x^{q-1}-x=\prod (x-\alpha).$

 $\alpha \in E^*$

证明: 由于 E^* 中每个元素的阶都是 q-1 的因子, 于是对 E^* 中任意元素 α 均有 $\alpha^{q-1}=1$, 即 E^* 中的每个元素均是 $x^{q-1}-1\in F[x]$ 的根. 由于 $x^{q-1}-1\in F[x]$ 最多有 q-1 个根, 因此 $x^{q-1}-1=\prod_{\alpha\in F^*}(x-\alpha)$.

推论 141 (费马小定理)

设 E/F 是一个含 q 个元素的有限域, 则 E 中每个元素 α 均满足 $\alpha^q=\alpha$, 即 E 中的每个元素均是 $x^q-x\in F[x]$ 的根, 因此 $x^q-x=\prod_{\alpha\in E}(x-\alpha)$.

有限域的乘法群

引理 142

设 G 是有限交换群, $\alpha, \beta \in G$, ord $\alpha = r$, ord $\beta = s$. 若 (r, s) = 1, 则 ord $\alpha\beta = rs$.

证明: 设 ord $\alpha\beta = d$, 则 $1 = ((\alpha\beta)^d)^s = (\alpha\beta)^{ds} = \alpha^{ds}\beta^{ds} = \alpha^{ds}(\beta^s)^d = \alpha^{ds}$, 于是 $r \mid ds$. 由于 (r,s) = 1, 所以 $r \mid d$. 同理考虑 $((\alpha\beta)^d)^r = 1$ 可得 $s \mid d$. 由 (r,s) = 1 可知 $rs \mid d$, 又由 $(\alpha\beta)^{rs} = (\alpha^r)^s (\beta^s)^r = 1$ 可知 $d \mid rs$, 因此有 rs = d.

有限域的乘法群

引理 143

设 F 是任一域, $x^m-1, x^n-1 \in F[x]$, 其中 m, n 为正整数. 若 $m \mid n$, 则 $(x^m-1) \mid (x^n-1)$.

证明: 不妨设
$$n=tm$$
, 则有 $x^n-1=(x^m-1)(x^{n-m}+x^{n-2m}+x^{n-3m}+\cdots+x^{n-tm})$. 于是 $(x^m-1)\mid (x^n-1)$.

有限域的乘法群

定理 144

设 E/F 是一个有 q 个元素的有限域,则其乘法群是循环群.

证明:将q-1作因子分解可得

$$q-1=p_1^{c_1}p_2^{c_2}\cdots p_s^{c_s},$$

其中 p_1, \dots, p_s 为不同的素数, $c_i \ge 1$ 对任意 $i \in [s]$. 由定理 140 我们知道 E^* 中的全部 q-1 个非零元素是多项式 $x^{q-1}-1$ 的全部根.

现在证明对每个 $i \in [s]$, E^* 中均有一个阶为 $p_i^{c_i}$ 的元素. 由于 $p_i^{c_i} \mid q-1$, 因此多项式 $x^{p_i^{c_i}}-1$ 是 $x^{q-1}-1$ 的因式 于是 $x^{p_i^{c_i}}-1$ 的全部根都是 $x^{q-1}-1$ 的根. 即根都在 E^* 之中. 由于 $x^{q-1}-1$ 没有重根. 所以 $f_i(x) = x^{p_i^{c_i}} - 1$ 也没有重根, 即 $f_i(x)$ 在 E^* 中有 $p_i^{c_i}$ 个不同的根. 由于 $p_i^{c_i-1} \mid p_i^{c_i}$, 因此多项式 $g_i(x) = x^{p_i^{c_i-1}} - 1$ 整除 $f_i(x)$, 于是 $g_i(x)$ 也有 $p_i^{c_i-1}$ 个不同的根, 并且这些根都是 $f_i(x)$ 的根. 注意到 $f_i(x)$ 有 $p_i^{c_i}$ 个根, 因此存 在 $\alpha_i \in E^*$ 使得 α_i 是 $f_i(x)$ 的根但不是 $g_i(x)$ 的根. 即 $\alpha_i^{p_i^{c_i}} = 1$ 但是 $\alpha_i^{p_i^{c_i-1}} \neq 1$. 所以 α_i 的阶为 $p_i^{c_i}$. 于是, 对每个 $i \in [s]$, E^* 中均有一个阶为 $p_i^{c_i}$ 的元素 α_i . 令 $\alpha = \alpha_1 \alpha_2 \cdots \alpha_s$, 则由引理 142 可知 α 的阶为 $p_1^{c_1} \cdots$ $p_{s}^{c_{s}} = q - 1$. 因此 E^{*} 为循环群.

本原元

定义 145

有限域的乘法群的生成元称为该有限域的本原元.

推论 146

设 F 是一个有 q 个元素的有限域, 那么 F 共有 $\varphi(q-1)$ 个本原元.

极小多项式

定义 147

设 E/F, 则对任意 $\alpha \in E$, 我们称 F[x] 中满足 $g(\alpha) = 0$ 的次数最小的首一多项式

$$g(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + x^n$$

为 α 在 F 上的**极小多项式**.

引理 148

设 E/F, $\alpha \in E$, $g(x) \in F[x]$ 是 α 的极小多项式. 若有 $g'(x) \in F[x]$ 使得 $g'(\alpha) = 0$, 则 $g(x) \mid g'(x)$.

证明: 由极小多项式的定义可知 $\deg g'(x) \geq \deg g(x)$. 由带余除法可得 g'(x) = h(x)g(x) + r(x), 其中 $\deg r(x) < \deg g(x)$. 令 $x = \alpha$ 可得 $0 = 0 + r(\alpha)$, 于是 r(x) 是一个次数更低的且以 α 为根的多项式, 这与 g(x) 是极小多项式矛盾, 从而 r(x) = 0. 因此 $g(x) \mid g'(x)$.

极小多项式的不可约性

定理 149

设 E/F, 则对任意 $\alpha \in E$, 其在 F 上的极小多项式唯一存在, 并且是 F 上的不可约多项式.

证明: 设 E 中有 q^n 个元素, 则由推论 141 可知 E 中任一元素 α 均是 F 上的多项式 $x^{q^n}-x$ 的根. 因此 α 一定满足 F 上的一个首项系数为 1 的次数最低的多项式. 这证明了 α 在 F 上存在一个极小多项式.

现证明唯一性. 假设 $g_1(x)$ 和 $g_2(x)$ 都是 α 在 F 上的极小多项式, 则由引理 148 可得 $g_1(x) \mid g_2(x)$ 和 $g_2(x) \mid g_1(x)$. 由 $g_1(x)$ 和 $g_2(x)$ 最高项系数为 1 立即可得 $g_1(x) = g_2(x)$.

现证明不可约性. 如果 $g(x) = g_1(x)g_2(x)$, 其中 $\deg g_1(x) > 0$, $\deg g_1(x) > 0$. 于是由 $g(\alpha) = g_1(\alpha)g_2(\alpha) = 0$ 可知 $g_1(\alpha) = 0$ 或 $g_2(\alpha) = 0$, 这与 g(x) 是 α 的极小多项式矛盾, 从而 g(x) 不可约.

极小多项式的次数

定理 150

设 E/F, 其中 |F|=q, $|E|=q^n$, 则任意 $\alpha\in E$ 在 F 上的极小多项式次数不超过 n.

证明: 由于 E 是 F 上的 n 维线性空间, 则 n+1 个元素 $1, \alpha, \alpha^2, \cdots, \alpha^n$ 在 F 上必定线性相关, 即存在 F 上不全为 0 的 n+1 个元素 a_0, a_1, \cdots, a_n 使得 $\sum_{i=0}^n a_i \alpha^i = 0$. 因此, $\sum_{i=0}^n a_i \alpha^i$ 是 F 上以 α 为根且次数不超过 n 的多项式. 从而定理得证.

域的扩张

定理 151

设 E/F, |F| = q, $|E| = q^n$, $f(x) = a_0 + a_1x + \cdots + a_mx^m \in F[x]$ 为 F 上 的 m 次不可约多项式. 若 $\alpha \in E$ 是 f(x) 的一个根, 则 $F_0 = \{c_0 + c_1\alpha + \cdots + c_{m-1}\alpha^{m-1} \mid c_0, c_1, \cdots, c_{m-1} \in F\}$ 是 E 的子域且 $|F_0| = q^m$.

本原多项式

定义 152

设 E/F, 我们称 F[x] 中以 E 的本原元为根的极小多项式为E/F 上的本原多项式.

定理 153

设 E/F, 其中 |F|=q, $|E|=q^n$, 则 E/F 上本原多项式的次数为 n.

证明: 设 α 是 E 的本原多项式, 其极小多项式次数为 d, 则由定理 151 知 $F_0 = \{c_0 + c_1\alpha + \cdots + c_{d-1}\alpha^{d-1} \mid c_0, c_1, \cdots, c_{d-1} \in F\}$

是 E 的子域且 $|F_0| = q^d$. 由于 F_0 包含 α , 因此 $F_0 = E$, 于是 d = n.

域论基本定理

定理 154

设 F 是一个有限域, |F|=q. 若 $f(x)\in F[x]$ 是一个首 1 的 n 次不可约多项式, 则存在 F 的一个阶为 q^n 的扩域 E 使得 f(x) 在 E 中有根, 并且该根在 F 上的极小多项式是 f(x).

证明: 设 $f(x) = f_0 + f_1 x + \cdots + f_{n-1} x^{n-1} + x^n \in F[x]$ 是不可约多项式, 由定理 128 知有限域 $F[x]_{f(x)}$ 是 F 的一个有 q^n 个元素的扩域, 且其限制 在 F 上时即为 F 中的运算. 显然, 此时未定元 x 即为 f(x) 在有限域 $F[x]_{f(x)}$ 中的根. 进一步, 由引理 148 以及 f(x) 是不可约多项式直接可得 x 在 F 上的极小多项式是 f(x).

不可约多项式的性质

定理 155

设 E/F, 其中 |F|=q, $|E|=q^n$. 若 $f(x)\in\mathbb{F}[x]$ 是一个 m 次不可约多项式, 则 $f(x)\mid (x^{q^n}-x)$ 当且仅当 $m\mid n$.

证明: 必要性. 由定理 154 知 f(x) 在 F 的某个扩域中一定有根, 设其中的一个根为 α . 于是有 $(x-\alpha) \mid f(x)$, 因此 $(x-\alpha) \mid (x^{q^n}-x)$, 即 α 是 $x^{q^n}-x$ 的一个根. 由推论 141 知 E 中的全部元素恰为 $x^{q^n}-x$ 的全部根, 因此 $\alpha \in E$. 由定理 151 知

$$F_0 = \{c_0 + c_1\alpha + \dots + c_{m-1}\alpha^{m-1} \mid c_0, c_1, \dots, c_{m-1} \in F\}$$

是 E 的子域且 $|F_0| = q^m$, 于是 $[F_0: F] = m$. 由于 [E: F] = n, 则由定理 126 知 $m \mid n$.

充分性. 由定理 154 知 f(x) 在 F 的一个阶为 q^m 的扩域中有根, 记这个扩域为 F_0 , 其中一个根为 α . 由 $\alpha \in F_0$ 可得 $\alpha^{q^m} = \alpha$, 于是 $\alpha^{q^{2m}} = (\alpha^{q^m})^{q^m} = \alpha^{q^m} = \alpha$, $\alpha^{q^{3m}} = \alpha$, $\alpha^{q^{3m}} = \alpha$, 其中 $\alpha^{q^{3m}} = \alpha$, 其中 $\alpha^{q^{3m}} = \alpha$, 其中 $\alpha^{q^{3m}} = \alpha$, α^{q^{3m}

有限域的唯一性

定理 156

两个阶相同的有限域 E/F 和 E'/F' 的素域 F 和 F' 同构, 从而 E 和 E' 同构.

证明: 设 E 和 E' 的阶都为 p^n , p 是一个素数. 那么它们的素域 F 和 F' 都是 p 个元素的. 设而 0 和 0' 分别是 F 和 F' 的零元, 1 和 1' 分别是 F 和 F' 的单位元, 那么

$$F = \{0, 1, 21, \cdots, (p-1)1\},$$

$$F' = \{0', 1', 21', \cdots, (p-1)1'\}.$$

显然

$$\sigma: F \mapsto F', \quad ke \mapsto ke' \quad (0 \leqslant k \leqslant p-1)$$

就是从 F 到 F' 的一个同构.

设 ξ 是 F 的一个本原元, $f(x) = f_0 + f_1 x + \cdots + f_{n-1} x^{n-1} + x^n \in F[x]$ 是 ξ 在 F 上的极小多项式. 令

$$g(x) = f'_0 + f'_1 x + \dots + f'_{n-1} x^{n-1} + x^n, f'_i \in F',$$

其中 $\sigma(f_i) = f_i', i = 0, 1, 2, \dots, n-1$. 因为 f(x) 是 F 上的不可约多项式, 易证 g(x) 是 F' 上的不可约多项式. 注意到 $\deg g(x) = n$, 由定理 155 可得

$$g(x) \mid \left(x^{p^n} - x\right),$$

从而存在 $h(x) \in F'$ 使得 $x^{p^n} - x = g(x)h(x)$, 其中 $\deg g(x) = p^n - n$.

由于 E' 中全部元素都是 $x^{p^n}-x$ 的根, 因此 g(x) 在 E' 中有根, 不妨设一个根为 ξ' . 由于 g(x) 是首项系数为 1 的 F' 上的不可约多项式, 所以 g(x) 就是 ξ' 在 F' 上的极小多项式. 由定理 151 可得

$$E' = \left\{ a'_0 + a'_1 \xi' + \dots + a'_{n-1} \xi'^{n-1} \mid a'_0, a'_1, \dots, a'_{n-1} \in \Pi' \right\}.$$

容易验证映射

$$\sum_{i=0}^{n-1} a_i \xi^i \mapsto \sum_{i=0}^{n-1} \sigma(a_i) \xi'^i \quad (a_i \in F)$$

是从 E 到 E' 的一个同构映射.

共轭元

注 156.1

从现在起, 我们用 \mathbb{F}_q 或 $\mathbb{GF}(q)$ 表示含有 q 个元素的有限域.

定义 157

设 $\mathbb{F}_{q^n}/\mathbb{F}_q$ 且 $\alpha \in \mathbb{F}_{q^n}$, 则元素 $\alpha, \alpha^q, \alpha^{q^2}, \cdots, \alpha^{q^{n-1}}$ 称为 α 关于 \mathbb{F}_q 的共轭元.

不可约多项式的性质

定理 158

设 $f(x) = \sum_{i=0}^{n-1} f_i x^i + x^n \in \mathbb{F}_q[x]$ 是 n 次首 1 不可约多项式, 则 f 在 \mathbb{F}_{q^n} 中恰有 n 个单根, 并且这 n 个根关于 \mathbb{F}_q 共轭.

证明: 由定理 154 和定理 156 可知 f(x) 在 \mathbb{F}_{q^n} 中有根. 记其中的一个根 为 α , 则 f(x) 为 α 在 F 上的极小多项式. 下面证明如果 $\alpha \in \mathbb{F}_{q^n}$ 是 f 的一个根, 则 α^q 也是. 注意到

$$f(\alpha^{q}) = f_{0} + f_{1}\alpha^{q} + f_{2}\alpha^{2q} + \dots + f_{n-1}\alpha^{(n-1)q} + \alpha^{nq}$$

$$= f_{0}^{q} + f_{1}^{q}\alpha^{q} + f_{2}^{q}\alpha^{2q} + \dots + f_{n-1}^{q}\alpha^{(n-1)q} + \alpha^{nq}$$

$$= (f_{0} + f_{1}\alpha + f_{2}\alpha^{2} + \dots + f_{n-1}\alpha^{n-1} + \alpha^{n})^{q}$$

$$= (f(\alpha))^{q} = 0.$$

因此, 元素 $\alpha, \alpha^q, \alpha^{q^2}, \cdots, \alpha^{q^{n-1}}$ 都是 f 的根. 下面证明这些元素互不相同. 假设存在整数 j 和 k 使得 $\alpha^{q^j} = \alpha^{q^k}$, 其中 $0 \le j < k \le n-1$. 等式两边取 q^{n-k} 次幂可得

$$\alpha^{q^{n-k+j}} = \alpha^{q^n} = \alpha.$$

由引理 148 可得 $f(x) \mid x^{q^{n-k+j}} - x$. 于是由定理 155 可得 $n \mid n-k+j$. 但是 0 < n-k+j < n, 矛盾. 因此 $\alpha, \alpha^q, \alpha^{q^2}, \dots, \alpha^{q^{n-1}}$ 均是 f 的单根.

定理 159

对任意 $\alpha \in \mathbb{F}_{q^m}$, 令 f(x) 是 α 在 \mathbb{F}_q 上的极小多项式, e 是使 $\alpha^{q^e} = \alpha$ 的最小非负整数, 则

$$f(x) = \prod_{i=0}^{e-1} \left(x - \alpha^{q^i} \right).$$

证明: 首先证明多项式
$$f(x) = \prod_{i=0}^{e-1} (x - \alpha^{q^i})$$
 在 \mathbb{F}_q 上. 令 $f(x) = \sum_{i=0}^e f_i x^i$,则 $(f(x))^q = \prod_{i=0}^{e-1} (x - \alpha^{q^i})^q = \prod_{i=0}^{e-1} (x^q - \alpha^{q^{i+1}}) = \prod_{i=0}^{e-1} (x^q - \alpha^{q^i}) = f(x^q)$. 于是 $(f(x))^q = \sum_{i=0}^e f_i x^{qi}$. 另一方面, $(f(x))^q = (\sum_{i=0}^e f_i x^i)^q = \sum_{i=0}^e f_i^q x^{qi}$. 因此有 $f_i = f_i^q$,于是 $f_i \in \mathbb{F}_q$,故 $f(x) = \prod_{i=0}^{e-1} (x - \alpha^{q^i}) \in \mathbb{F}_q[x]$. 进一步,由定理 149 和定理 158 可知 $f(x)$ 是 α 在 \mathbb{F}_q 上的极小多项式.