# A Guided Tour of Chapter 3: Dynamic Programming

Ashwin Rao

ICME, Stanford University

## Dynamic Programming for Prediction and Control

- Prediction: Compute the Value Function of an MRP
- Control: Compute the Optimal Value Function of an MDP
- (Optimal Policy can be extracted from Optimal Value Function)
- ullet Planning versus Learning: access to the  $\mathcal{P}_R$  function ("model")
- Original use of DP term: MDP Theory and solution methods
- Bellman referred to DP as the Principle of Optimality
- Later, the usage of the term DP diffused out to other algorithms
- In CS, it means "recursive algorithms with overlapping subproblems"
- We restrict the term DP to: "Algorithms for Prediction and Control"
- Specifically applied to the setting of FiniteMarkovDecisionProcess
- Later we cover extensions such as Asynchronous DP, Approximate DP

## Solving the Value Function as a Fixed-Point

- We will be covering 3 Dynamic Programming algorithms
- Each of the 3 algorithms is founded on the Bellman Equations
- Each is an iterative algorithm converging to the true Value Function
- Each algorithm is based on the concept of Fixed-Point

#### Definition

The Fixed-Point of a function  $f: \mathcal{D} \to \mathcal{D}$  (for some arbitrary domain  $\mathcal{D}$ ) is a value  $x \in \mathcal{D}$  that satisfies the equation: x = f(x).

- Some functions have multiple fixed-points, some have none
- DP algorithms are based on functions with a unique fixed-point
- Simple example:  $f(x) = \cos(x)$ , Fixed-Point:  $x^* = \cos(x^*)$
- For any  $x_0$ ,  $\cos(\cos(\ldots\cos(x_0)\ldots))$  converges to fixed-point  $x^*$
- Why does this work? How fast does it converge?

#### Banach Fixed-Point Theorem

#### Theorem (Banach Fixed-Point Theorem)

Let  $\mathcal{D}$  be a non-empty set equipped with a complete metric  $d: \mathcal{D} \times \mathcal{D} \to \mathbb{R}$ . Let  $f: \mathcal{D} \to \mathcal{D}$  be such that there exists a  $L \in [0,1)$  such that  $d(f(x_1), f(x_2)) \leq L \cdot d(x_1, x_2)$  for all  $x_1, x_2 \in \mathcal{D}$ . Then,

• There exists a unique Fixed-Point  $x^* \in \mathcal{D}$ , i.e.,

$$x^* = f(x^*)$$

• For any  $x_0 \in \mathcal{D}$ , and sequence  $[x_i|i=0,1,2,\ldots]$  defined as  $x_{i+1} = f(x_i)$  for all  $i=0,1,2,\ldots$ ,

$$\lim_{i\to\infty} x_i = x^*$$

If you have a complete metric space  $\langle \mathcal{D}, d \rangle$  and a contraction f (with respect to d), then you have an algorithm to solve for the fixed-point of f.

# Policy Evaluation (for Prediction)

- ullet MDP with  $\mathcal{S} = \{s_1, s_2, \dots, s_n\}, \mathcal{N} = \{s_1, s_2, \dots, s_m\}$
- Given a policy  $\pi$ , compute the Value Function of  $\pi$ -implied MRP
- $\mathcal{P}^\pi_R: \mathcal{N} imes \mathbb{R} imes \mathcal{S} o [0,1]$  is given as a data structure
- Extract (from  $\mathcal{P}^\pi_R$ )  $\mathcal{P}^\pi: \mathcal{N} \times \mathcal{S} \to [0,1]$  and  $\mathcal{R}^\pi: \mathcal{N} \to \mathbb{R}$
- For non-large spaces, we can compute (in vector notation):

$$oldsymbol{V}^{\pi} = (oldsymbol{I_m} - \gamma oldsymbol{\mathcal{P}}^{\pi})^{-1} \cdot oldsymbol{\mathcal{R}}^{\pi}$$

- Note:  $V^{\pi}, \mathcal{R}^{\pi}$  are m-column vectors  $(\in \mathbb{R}^m)$  and  $\mathcal{P}^{\pi}$  is  $m \times m$  matrix
- So we look for an iterative algorithm to solve MRP Bellman Equation:

$$V^{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \cdot V^{\pi}$$

## Bellman Policy Operator and it's Fixed-Point

• Define the Bellman Policy Operator  ${m B}^{\pi}: \mathbb{R}^m o \mathbb{R}^m$  as:

$$m{B}^{\pi}(m{V}) = m{\mathcal{R}}^{\pi} + \gamma m{\mathcal{P}}^{\pi} \cdot m{V}$$
 for any Value Function vector  $m{V} \in \mathbb{R}^m$ 

- ${m B}^{\pi}$  is a linear transformation on vectors in  ${\mathbb R}^m$
- So, the MRP Bellman Equation can be expressed as:

$$oldsymbol{V}^{\pi} = oldsymbol{B}^{\pi}(oldsymbol{V}^{\pi})$$

- $m{\bullet}$  This means  $m{V}^\pi \in \mathbb{R}^m$  is the Fixed-Point of  $m{B}^\pi : \mathbb{R}^m o \mathbb{R}^m$
- Metric  $d: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$  defined as  $L^{\infty}$  norm:

$$d(\boldsymbol{X}, \boldsymbol{Y}) = \|\boldsymbol{X} - \boldsymbol{Y}\|_{\infty} = \max_{s \in \mathcal{N}} |(\boldsymbol{X} - \boldsymbol{Y})(s)|$$

•  $\mathbf{B}^{\pi}$  is a contraction function under  $L^{\infty}$  norm: For all  $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{m}$ ,

$$\max_{s \in \mathcal{N}} |(\boldsymbol{B}^{\pi}(\boldsymbol{X}) - \boldsymbol{B}^{\pi}(\boldsymbol{Y}))(s)| = \gamma \cdot \max_{s \in \mathcal{N}} |(\boldsymbol{\mathcal{P}}^{\pi} \cdot (\boldsymbol{X} - \boldsymbol{Y}))(s)|$$
$$\leq \gamma \cdot \max_{s \in \mathcal{N}} |(\boldsymbol{X} - \boldsymbol{Y})(s)|$$

## Policy Evaluation Convergence Theorem

Invoking the Banach Fixed-Point Theorem for  $\gamma < 1$  gives:

#### Theorem (Policy Evaluation Convergence Theorem)

For a Finite MDP with  $|\mathcal{N}|=m$  and  $\gamma<1$ , if  $\mathbf{V}^{\pi}\in\mathbb{R}^{m}$  is the Value Function of the MDP when evaluated with a fixed policy  $\pi:\mathcal{N}\times\mathcal{A}\to[0,1]$ , then  $\mathbf{V}^{\pi}$  is the unique Fixed-Point of the Bellman Policy Operator  $\mathbf{B}^{\pi}:\mathbb{R}^{m}\to\mathbb{R}^{m}$ , and

 $\lim_{i o\infty}(m{B}^\pi)^i(m{V_0}) om{V}^\pi$  for all starting Value Functions  $m{V_0}\in\mathbb{R}^m$ 

## Policy Evaluation algorithm

- ullet Start with any Value Function  $oldsymbol{V_0} \in \mathbb{R}^m$
- Iterating over i = 0, 1, 2, ..., calculate in each iteration:

$$V_{i+1} = B^{\pi}(V_i) = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \cdot V_i$$

ullet Stop when  $d(oldsymbol{V_i},oldsymbol{V_{i+1}}) = \max_{s \in \mathcal{N}} |(oldsymbol{V_i}-oldsymbol{V_{i+1}})(s)|$  is small enough

Banach Fixed-Point Theorem also assures speed of convergence (dependent on choice of starting Value Function  $V_0$  and on choice of  $\gamma$ ).

Running time of each iteration is  $O(m^2)$ . Constructing the MRP from the MDP and the policy takes  $O(m^2k)$  operations, where  $m = |mathcalN|, k = |\mathcal{A}|$ .

## Greedy Policy

- Now we move on solving the MDP Control problem
- We want to iterate *Policy Improvements* to drive to an *Optimal Policy*
- Policy Improvement is based on a "greedy" technique
- The Greedy Policy Function  $G: \mathbb{R}^m \to (\mathcal{N} \to \mathcal{A})$  (interpreted as a function mapping a Value Function vector  $\mathbf{V}$  to a deterministic policy  $\pi'_D: \mathcal{N} \to \mathcal{A}$ ) is defined as:

$$G(\textbf{\textit{V}})(s) = \pi_D'(s) = \argmax_{a \in \mathcal{A}} \{\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{N}} \mathcal{P}(s, a, s') \cdot \textbf{\textit{V}}(s')\}$$

#### Definition (Value Function Comparison)

We say  $X \geq Y$  for Value Functions  $X, Y : \mathcal{N} \to \mathbb{R}$  of an MDP iff:

$$X(s) \geq Y(s)$$
 for all  $s \in \mathcal{N}$ 

We say  $\pi_1$  better ("improvement") than  $\pi_2$  if  $\boldsymbol{V}^{\pi_1} \geq \boldsymbol{V}^{\pi_2}$ 

#### Policy Improvement Theorem

#### Theorem (Policy Improvement Theorem)

For a finite MDP, for any policy  $\pi$ ,

$$oldsymbol{V}^{\pi_D'} = oldsymbol{V}^{G(oldsymbol{V}^{\pi})} \geq oldsymbol{V}^{\pi}$$

• Note that applying  $\boldsymbol{B}^{\pi'_D} = \boldsymbol{B}^{G(\boldsymbol{V}^{\pi})}$  repeatedly, starting with  $\boldsymbol{V}^{\pi}$ , will converge to  $\boldsymbol{V}^{\pi'_D}$  (Policy Evaluation with policy  $\pi'_D = G(\boldsymbol{V}^{\pi})$ ):

$$\lim_{i o\infty}({m{\mathcal{B}}}^{\pi_D'})^i({m{V}}^\pi)={m{V}}^{\pi_D'}$$

• So the proof is complete if we prove that:

$$({m{\mathcal{B}}}^{\pi'_D})^{i+1}({m{V}}^{\pi}) \geq ({m{\mathcal{B}}}^{\pi'_D})^{i}({m{V}}^{\pi})$$
 for all  $i=0,1,2,\ldots$ 

• Increasing tower of Value Functions  $[({\bf B}^{\pi'_D})^i({\bf V}^\pi)|i=0,1,2,\ldots]$  with repeated applications of  ${\bf B}^{\pi'_D}$ 

#### **Proof by Induction**

• To prove the base case (of proof by induction), note that:

$$\boldsymbol{B}^{\pi_D'}(\boldsymbol{V}^\pi)(s) = \max_{a \in \mathcal{A}} \{\mathcal{R}(s,a) + \gamma \sum_{s' \in \mathcal{N}} \mathcal{P}(s,a,s') \cdot \boldsymbol{V}^\pi(s')\} = \max_{a \in \mathcal{A}} Q^\pi(s,a)$$

•  $m{V}^{\pi}(s)$  is weighted average of  $Q^{\pi}(s,\cdot)$  while  $m{B}^{\pi'_D}(m{V}^{\pi})(s)$  is maximum

$$m{\mathcal{B}}^{\pi_D'}(m{V}^\pi) \geq m{V}^\pi$$

• Induction step is proved by monotonicity of  ${\bf B}^{\pi}$  operator (for any  $\pi$ ):

Monotonicity Property of 
$${m B}^{\pi}: {m X} \geq {m Y} \Rightarrow {m B}^{\pi}({m X}) \geq {m B}^{\pi}({m Y})$$

So 
$$(oldsymbol{\mathcal{B}}^{\pi_D'})^{i+1}(oldsymbol{\mathcal{V}}^\pi) \geq (oldsymbol{\mathcal{B}}^{\pi_D'})^{i}(oldsymbol{\mathcal{V}}^\pi) \Rightarrow (oldsymbol{\mathcal{B}}^{\pi_D'})^{i+2}(oldsymbol{\mathcal{V}}^\pi) \geq (oldsymbol{\mathcal{B}}^{\pi_D'})^{i+1}(oldsymbol{\mathcal{V}}^\pi)$$

#### Intuitive Understanding of Policy Improvement Theorem

- Increasing tower of Value Functions  $[({m B}^{\pi_D'})^i({m V}^\pi)|i=0,1,2,\ldots]$
- ullet Each stage of further application of  $m{B}^{\pi_D'}$  improves the Value Function
- ullet Stage 0: Value Function  $oldsymbol{V}^\pi$  means execute policy  $\pi$  throughout
- Stage 1: VF  ${\pmb B}^{\pi'_D}({\pmb V}^\pi)$  means execute improved policy  $\pi'_D$  for the 1st time step, then execute policy  $\pi$  for all further time steps
- Improves the VF from Stage 0:  ${m V}^{\pi}$  to Stage 1:  ${m B}^{\pi'_{D}}({m V}^{\pi})$
- Stage 2: VF  $(\mathbf{B}^{\pi'_D})^2(\mathbf{V}^{\pi})$  means execute improved policy  $\pi'_D$  for first 2 time steps, then execute policy  $\pi$  for all further time steps
- Improves the VF from Stage 1:  ${m B}^{\pi'_D}({m V}^\pi)$  to Stage 2:  $({m B}^{\pi'_D})^2({m V}^\pi)$
- ullet Each stage applies policy  $\pi_D'$  instead of  $\pi$  for an extra time step
- ullet These stages are the iterations of *Policy Evaluation* (using policy  $\pi_D'$ )
- ullet Building an increasing tower of VFs that converge to VF  $oldsymbol{V}^{\pi'_D}$   $(\geq oldsymbol{V}^{\pi})$

#### Repeating Policy Improvement and Policy Evaluation

- Policy Improvement Theorem says:
  - Start with Value Function  $V^{\pi}$  (for policy  $\pi$ )
  - ullet Perform a "greedy policy improvement" to create policy  $\pi_D' = \mathcal{G}(oldsymbol{V}^\pi)$
  - ullet Perform Policy Evaluation (for policy  $\pi_D'$ ) with starting VF  $oldsymbol{V}^\pi$
  - ullet This results in VF  $oldsymbol{V}^{\pi_D'} \geq$  starting VF  $oldsymbol{V}^{\pi}$
- ullet We can repeat this process starting with  $oldsymbol{V}^{\pi_D'}$
- ullet Creating an improved policy  $\pi_D''$  and improved VF  $oldsymbol{V}^{\pi_D''}$ .
- ... and we can keep going to create further improved policies/VFs
- ... until there is no further improvement
- This in fact is the *Policy Iteration* algorithm

## Policy Iteration algorithm

- ullet Start with any Value Function  $oldsymbol{V_0} \in \mathbb{R}^m$
- Iterating over j = 0, 1, 2, ..., calculate in each iteration:

Deterministic Policy 
$$\pi_{j+1} = G(V_j)$$

Value Function 
$$extbf{\emph{V}}_{j+1} = \lim_{i o \infty} ( extbf{\emph{B}}^{\pi_{j+1}})^i ( extbf{\emph{V}}_j)$$

• Stop when  $d(V_j, V_{j+1}) = \max_{s \in \mathcal{N}} |(V_j - V_{j+1})(s)|$  is small enough At termination:  $V_i = (B^{G(V_j)})^i(V_i) = V_{i+1}$  for all i = 0, 1, 2, ...

Specializing this to i = 1, we have for all  $s \in \mathcal{N}$ :

$$m{V_j}(s) = m{B}^{G(m{V_j})}(m{V_j})(s) = \max_{a \in \mathcal{A}} \{\mathcal{R}(s,a) + \gamma \sum_{s' \in \mathcal{N}} \mathcal{P}(s,a,s') \cdot m{V_j}(s')\}$$

This means  $V_i$  satisfies the MDP Bellman Optimality Equation and so,

$$oldsymbol{V_i} = oldsymbol{V}^{\pi_j} = oldsymbol{V}^*$$

#### Policy Iteration algorithm



## Policy Iteration Convergence Theorem

#### Theorem (Policy Iteration Convergence Theorem)

For a Finite MDP with  $|\mathcal{N}|=m$  and  $\gamma<1$ , Policy Iteration algorithm converges to the Optimal Value Function  $\mathbf{V}^*\in\mathbb{R}^m$  along with a Deterministic Optimal Policy  $\pi_D^*:\mathcal{N}\to\mathcal{A}$ , no matter which Value Function  $\mathbf{V_0}\in\mathbb{R}^m$  we start the algorithm with.

Running time of Policy Improvement is  $O(m^2k)$  where  $|\mathcal{N}|=m, |\mathcal{A}|=k$ Running time of each iteration of Policy Evaluation is  $O(m^2k)$ 

## Bellman Optimality Operator

- Tweak the definition of Greedy Policy Function (arg max to max)
- Bellman Optimality Operator  $B^* : \mathbb{R}^m \to \mathbb{R}^m$  defined as:

$$\boldsymbol{B}^*(\boldsymbol{V})(s) = \max_{a \in \mathcal{A}} \{\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{N}} \mathcal{P}(s, a, s') \cdot \boldsymbol{V}(s')\}$$

- ullet Think of this as a non-linear transformation of a VF vector  $oldsymbol{V} \in \mathbb{R}^m$
- The action a producing the max is the action prescribed by  $\pi_D$ . So,

$$oldsymbol{B}^{G(oldsymbol{V})}(oldsymbol{V}) = oldsymbol{B}^*(oldsymbol{V})$$
 for all  $oldsymbol{V} \in \mathbb{R}^m$ 

• Specializing  ${\bf V}$  to be the Value Function  ${\bf V}^{\pi}$  for a policy  $\pi$ , we get:

$$\boldsymbol{B}^{G(\boldsymbol{V}^{\pi})}(\boldsymbol{V}^{\pi}) = \boldsymbol{B}^{*}(\boldsymbol{V}^{\pi})$$

• This is the 1st stage of Policy Evaluation with improved policy  $G(\boldsymbol{V}^{\pi})$ 

## Fixed-Point of Bellman Optimality Operator

- $oldsymbol{artheta}^{\pi}$  was motivated by the MDP Bellman Policy Equation
- ullet Similarly,  $oldsymbol{B}^*$  is motivated by the MDP Bellman Optimality Equation:

$$\boldsymbol{V}^*(s) = \max_{a \in \mathcal{A}} \{\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{N}} \mathcal{P}(s, a, s') \cdot \boldsymbol{V}^*(s')\} \text{ for all } s \in \mathcal{N}$$

So we can express the MDP Bellman Optimality Equation neatly as:

$$oldsymbol{V}^* = oldsymbol{B}^*(oldsymbol{V}^*)$$

- Therefore,  $V^* \in \mathbb{R}^m$  is the Fixed-Point of  $B^* : \mathbb{R}^m \to \mathbb{R}^m$
- We want to prove that  $B^*$  is a contraction function (under  $L^{\infty}$  norm)
- So we can take advantage of Banach Fixed-Point Theorem
- ullet And solve the Control problem by iterative applications of  $oldsymbol{B}^*$

#### Proof that $B^*$ is a contraction

We need to utilize two key properties of B\*

Monotonicity Property: 
$$\mathbf{X} \geq \mathbf{Y} \Rightarrow \mathbf{B}^*(\mathbf{X}) \geq \mathbf{B}^*(\mathbf{Y})$$
  
Constant Shift Property:  $\mathbf{B}^*(\mathbf{X} + c) = \mathbf{B}^*(\mathbf{Y}) + \gamma c$ 

• With these two properties, we can prove that:

$$\max_{s \in \mathcal{N}} |(\boldsymbol{B}^*(\boldsymbol{X}) - \boldsymbol{B}^*(\boldsymbol{Y}))(s)| \leq \gamma \cdot \max_{s \in \mathcal{N}} |(\boldsymbol{X} - \boldsymbol{Y})(s)|$$

#### Theorem (Value Iteration Convergence Theorem)

For a Finite MDP with  $|\mathcal{N}|=m$  and  $\gamma<1$ , if  $\mathbf{V}^*\in\mathbb{R}^m$  is the Optimal Value Function, then  $\mathbf{V}^*$  is the unique Fixed-Point of the Bellman Optimality Operator  $\mathbf{B}^*:\mathbb{R}^m\to\mathbb{R}^m$ , and

$$\lim_{i o\infty}(m{B}^*)^i(m{V_0}) om{V}^*$$
 for all starting Value Functions  $m{V_0}\in\mathbb{R}^m$ 

## Value Iteration algorithm

- Start with any Value Function  $V_0 \in \mathbb{R}^m$
- Iterating over i = 0, 1, 2, ..., calculate in each iteration:

$$extbf{\emph{V}}_{i+1}(s) = extbf{\emph{B}}^*( extbf{\emph{V}}_i)(s)$$
 for all  $s \in \mathcal{N}$ 

ullet Stop when  $d(oldsymbol{V_i},oldsymbol{V_{i+1}}) = \max_{s \in \mathcal{N}} |(oldsymbol{V_i} - oldsymbol{V_{i+1}})(s)|$  is small enough

Running time of each iteration of Value Iteration is  $O(m^2k)$  where  $|\mathcal{N}|=m$  and  $|\mathcal{A}|=k$ 

#### Optimal Policy from Optimal Value Function

- Note that Value Iteration does not deal with any policy (only VFs)
- ullet Extract Optimal Policy  $\pi^*$  from Optimal VF  $V^*$  such that  $oldsymbol{V}^{\pi^*} = oldsymbol{V}^*$
- Use Greedy Policy function *G*. We know:

$$oldsymbol{B}^{G(oldsymbol{V})}(oldsymbol{V}) = oldsymbol{B}^*(oldsymbol{V})$$
 for all  $oldsymbol{V} \in \mathbb{R}^m$ 

• Specializing  $\boldsymbol{V}$  to  $\boldsymbol{V}^*$ , we get:

$$\boldsymbol{B}^{G(\boldsymbol{V}^*)}(\boldsymbol{V}^*) = \boldsymbol{B}^*(\boldsymbol{V}^*)$$

• But we know  $V^*$  is the Fixed-Point of  $B^*$ , i.e.,  $B^*(V^*) = V^*$ . So,

$$\boldsymbol{B}^{G(\boldsymbol{V}^*)}(\boldsymbol{V}^*) = \boldsymbol{V}^*$$

- So  $V^*$  is the Fixed-Point of the Bellman Policy Operator  $B^{G(V^*)}$
- But we know  $\boldsymbol{B}^{G(\boldsymbol{V}^*)}$  has a unique Fixed-Point  $(=\boldsymbol{V}^{G(\boldsymbol{V}^*)})$ . So,

$$V^{G(V^*)} = V^*$$

- ullet Evaluating MDP with greedy policy extracted from  $oldsymbol{V}^*$  achieves  $oldsymbol{V}^*$
- ullet So,  $G(V^*)$  is a (Deterministic) Optimal Policy

#### Value Function Progression in Policy Iteration

$$\pi_1 = G(V_0): V_0 \to B^{\pi_1}(V_0) \to \dots (B^{\pi_1})^i(V_0) \to \dots V^{\pi_1} = V_1$$
 $\pi_2 = G(V_1): V_1 \to B^{\pi_2}(V_1) \to \dots (B^{\pi_2})^i(V_1) \to \dots V^{\pi_2} = V_2$ 
 $\dots$ 

 $\pi_{i+1} = G(\boldsymbol{V_i}): \boldsymbol{V_i} \rightarrow \boldsymbol{B}^{\pi_{j+1}}(\boldsymbol{V_i}) \rightarrow \dots (\boldsymbol{B}^{\pi_{j+1}})^i(\boldsymbol{V_i}) \rightarrow \dots \boldsymbol{V}^{\pi_{j+1}} = \boldsymbol{V}^*$ 

- Policy Evaluation and Policy Improvement alternate until convergence
- In the process, they simultaneously compete and try to be consistent
- There are actually two notions of consistency:
  - VF  $\boldsymbol{V}$  being consistent with/close to VF  $\boldsymbol{V}^{\pi}$  of the policy  $\pi$ .
  - $\pi$  being consistent with/close to Greedy Policy G(V) of VF V.

## Policy Iteration



# Generalized Policy Iteration (GPI)



## Value Iteration and Reinforcement Learning as GPI

Value Iteration takes only one step of Policy Evaluation

$$egin{aligned} \pi_1 &= extit{G}( extbf{ extit{V}}_0): extbf{ extit{V}}_0 
ightarrow extbf{ extit{B}}^{\pi_1}( extbf{ extit{V}}_0) &= extbf{ extit{V}}_1 \ \pi_2 &= extit{G}( extbf{ extit{V}}_1): extbf{ extit{V}}_1 
ightarrow extbf{ extit{B}}^{\pi_2}( extbf{ extit{V}}_1) &= extbf{ extit{V}}_2 \ & \cdots \ & \pi_{i+1} &= extit{G}( extbf{ extit{V}}_i): extbf{ extit{V}}_i 
ightarrow extbf{ extit{B}}^{\pi_{j+1}}( extbf{ extit{V}}_i) &= extbf{ extit{V}}^* \end{aligned}$$

- RL updates either a subset of states or just one state at a time
- Large-scale RL updates function approximations of a VF
- These can be thought of as partial Policy Evaluation/Policy Iteration

## Asynchronous Dynamic Programming

The DP algorithms we've covered are qualified as *Synchronous DP*:

- All states' values are updated in each iteration
- "Simultaneous" state updates implemented by updating a copy of VF

Asynchronous DP can update subset of states, or update in any order

- In-place updates enable updated values to be used immediately
- Prioritized Sweeping keeps states sorted by their Value Function gaps

$$\mathsf{Gaps}\ g(s) = |V(s) - \argmax_{a \in \mathcal{A}} (\mathcal{R}(s, a) + \gamma \cdot \sum_{s' \in \mathcal{N}} \mathcal{P}(s, a, s') \cdot V(s'))|$$

But this requires us to know the reverse transitions to resort queue

- Real-Time Dynamic Programming (RTDP) runs DP while the agent is experiencing real-time interaction with the environment
  - A state is updated when it is visited during the real-time interaction
  - The choice of action is governed by real-time VF-extracted policy

## Episodic MDPs with unique state visits

- A fairly common specialization of MDPs enables great tractability:
  - All random sequences terminate within fixed time steps (episodic MDP)
  - A state is encountered at most once in an episode
- This can be conceptualized as a Directed Acyclic Graph (DAG)
- Each node in the DAG is a (state, action) pair
- Prediction/Control solved by "backwards walk" from terminal nodes
- Bellman Equation enables simply setting the VF of a visited node
- Avoids the expensive "iterate to convergence" method of classical DP
- States visited (and VFs set) in order of reverse <u>Topological Sort</u>
- Next we cover a special case of DAG MDPs: finite-horizon MDPs

#### Finite-Horizon MDPs

- Finite-Horizon Markov Decision Processes are characterized by:
  - Each sequence terminates within a finite number of time steps T
  - Each time step has a separate (from other time steps) set of states
- Denote the set of states at time t as  $S_t$ , terminal states as  $T_t$ , non-terminal states as  $N_t = S_t T_t$  (note:  $N_T = \emptyset$ ), actions as  $A_t$
- ullet Augment each state to include time-index: augmented state is  $(t,s_t)$

Entire MDP's States 
$$\mathcal{S} = \{(t, s_t) | t = 0, 1, \dots, T, s_t \in \mathcal{S}_t\}$$

• Each t gets its own state-reward transition probability function

$$(\mathcal{P}_R)_t : \mathcal{N}_t \times \mathcal{A}_t \times \mathbb{R} \times \mathcal{S}_{t+1} \rightarrow [0,1]$$

- Likewise, each t gets its own policy  $\pi_t: \mathcal{N}_t \times \mathcal{A}_t \to [0,1]$
- An overall policy  $\pi: \mathcal{N} \times \mathcal{A} \to [0,1]$  composed of  $(\pi_0, \pi_1, \dots, \pi_{\mathcal{T}-1})$

#### Backward Induction for Finite MRP with Finite-Horizon

ullet VF for a given policy  $\pi$  can be represented by time-sequenced VFs

$$V_t^{\pi}: \mathcal{N}_t o \mathbb{R}$$

• So Bellman Equation for  $\pi$ -implied Finite-Horizon MRP becomes:

$$V_t^{\pi}(s_t) = \sum_{s_{t+1} \in \mathcal{S}_{t+1}} \sum_{r \in \mathbb{R}} (\mathcal{P}_R^{\pi_t})_t(s_t, r, s_{t+1}) \cdot (r + \gamma \cdot V_{t+1}^{\pi}(s_{t+1}))$$

$$(\mathcal{P}_{R}^{\pi_{t}})_{t}(s_{t}, r, s_{t+1}) = \sum_{a_{t} \in \mathcal{A}_{t}} \pi_{t}(s_{t}, a_{t}) \cdot (\mathcal{P}_{R})_{t}(s_{t}, a_{t}, r, s_{t+1})$$

- "Backward Induction" algorithm for finite MRP with Finite-Horizon
- ullet Decrementing t from T to 0, and calculating  $V^\pi_t$  from  $V^\pi_{t+1}$
- Running time is  $O(m^2T)$  where  $|\mathcal{N}_t|$  is O(m)
- $O(m^2kT)$  to convert MDP to  $\pi$ -implied MRP ( $|A_t|$  is O(k))

#### Backward Induction for Finite MDP with Finite-Horizon

ullet Optimal VF  $V^*$  can be represented by time-sequenced Optimal VFs

$$V_t^*: \mathcal{N}_t o \mathbb{R}$$

So MDP Bellman Optimality Equation becomes:

$$V_t^*(s_t) = \max_{a_t \in \mathcal{A}_t} \{ \sum_{s_{t+1} \in \mathcal{S}_{t+1}} \sum_{r \in \mathbb{R}} (\mathcal{P}_R)_t(s_t, a_t, r, s_{t+1}) \cdot (r + \gamma \cdot V_{t+1}^*(s_{t+1})) \}$$

- "Backward Induction" (Control) for finite MDP with Finite-Horizon
- Decrementing t from T to 0, and calculating  $V_t^*$  from  $V_{t+1}^*$
- ullet (Associated) Optimal (Deterministic) Policy  $(\pi_D^*)_t: \mathcal{N}_t o \mathcal{A}_t$  is

$$(\pi_D^*)_t(s_t) = \argmax_{a_t \in \mathcal{A}_t} \{ \sum_{s_{t+1} \in \mathcal{S}_{t+1}} \sum_{r \in \mathbb{R}} (\mathcal{P}_R)_t(s_t, a_t, r, s_{t+1}) \cdot (r + \gamma \cdot V_{t+1}^*(s_{t+1})) \}$$

• Running time is  $O(m^2kT)$  where  $|\mathcal{N}_t|$  is O(m) and  $|\mathcal{A}_t|$  is O(k)

## Dynamic Pricing for End-of-Life/End-of-Season

- Dynamic Pricing: Core to many businesses, flexing to supply/demand
- We consider special case of products being sold at end of life/season
- ullet Assume we are T days from season-end and our inventory is M units
- Assume no more incoming inventory during these final T days
- Set prices daily to max Expected Total Sales Revenue over T days
- Price for a given day picked from prices  $P_1, P_2, \dots, P_N \in \mathbb{R}$
- Customer daily demand is  $Poisson(\lambda_i)$  if Price  $P_i$  is picked for the day
- $\bullet$  Note that demand can exceed inventory on any day, Sales  $\leq$  Inventory

## Dynamic Pricing Model for End-of-Life/End-of-Season

$$S_t = \{(t, I_t), I_t \in \mathbb{Z}, 0 \le I_t \le M\}$$
 for all  $0 \le t \le T$ 

$$\mathcal{N}_t = \mathcal{S}_t$$
 and  $\mathcal{A}_t = \{1, 2, \dots, N\}$  for all  $0 \le t < T$ , and  $\mathcal{N}_T = \emptyset$ 

$$I_0 = M$$
 and  $I_{t+1} = \max(0, I_t - d_t)$  where  $d_t \sim Poisson(\lambda_i)$  if  $a_t = i$ 

Sales Revenue  $R_t$  on day t is equal to  $min(I_t, d_t) \cdot P_t$ 

$$(\mathcal{P}_R)_t(I_t,i,R_t,I_t-k) = \begin{cases} \frac{e^{-\lambda_i}\lambda_i^k}{k!} & \text{if } k < I_t \text{ and } R_t = k \cdot P_i \\ \sum_{j=I_t}^{\infty} \frac{e^{-\lambda_i}\lambda_i^j}{j!} & \text{if } k = I_t \text{ and } R_t = k \cdot P_i \\ 0 & \text{otherwise} \end{cases}$$

# Optimal Dynamic Pricing



#### Generalizations to Non-Tabular Algorithms

- Finite MDP algorithms we covered known as "tabular" algorithms
- "Tabular" means MDP is specified as a finite data structure
- More importantly, Value Function represented as a "table"
- These algorithms typically sweep through all states in each iteration
- Cannot do this for large finite spaces or for infinite spaces
- Requires us to generalize to function approximation of Value Function
  - Sample an appropriate subset of states
  - Calculate the Value Function for those states (Bellman calculation)
  - Create/Update a func approx with the sampled states' calculated values
- The fundamental structure of the algorithms is still the same
- Fundamental principles (Fixed-Point/Bellman Operators) still same
- These generalizations known as Approximate Dynamic Programming

#### Key Takeaways from this Chapter

- Fixed-Point of Functions and Fixed-Point Theorem: Enables iterative algorithms to solve a variety of problems cast as Fixed-Point.
- Generalized Policy Iteration: Powerful idea of alternating between improvement of a policy and evaluation of a value function, even though each of them might be partial applications. This generalized perspective unifies almost algorithms for MDP Control.
- Backward Induction: A straightforward method to solve finite-horizon MDPs by simply walking backwards and setting the Value Function from the horizon-end to the start.