Type I & Type II error

TRUE STATE

DECISION	Но	H1	
Do not roject He	correct decision	Type II error	
Do not reject Ho	<i>p</i> =1-α	$p = \beta$	
Reject Ho	Type I error	correct decision	
	$p = \alpha$	<i>p</i> =1-β	

- Type I error, α (alpha), is defined as the probability of rejecting a true null hypothesis
- Type II error, β (beta), is defined as the probability of <u>failing to reject</u> a <u>false null hypothesis</u>

Power

- Normally, no adverse consequences occur when we correctly fail to reject a null hypothesis
 - Declaring not guilty an innocent man → he is free to go
- Type I and II errors are mistakes we do not want to make
 - Letting a criminal go free (Type II)
 - Or worse, sending to jail an innocent man (Type I)
 - That's why we set alpha to 0.05
- On the other hand, the ability to convict a guilty person is essential to our justice system
 - Reject Ho, when Ho is false
- this ability, in statistics, is referred to as power

TRUE STATE

	7,102 07,172		
DECISION	not guilty	guilty	
mak avrillar	correct decision	Type II error	
not guilty	p =1-α	<i>p</i> = β	
quilty	Type I error	correct decision	
gunty	$p = \alpha$	p =1-β	

Power

Definition

 Power is the probability of correctly rejecting a false null hypothesis

	TRUE STATE		
DECISION	Но	H1	
Do not roject He	correct decision	Type II error	
Do not reject Ho	<i>p</i> =1-α	$p = \beta$	
Reject Ho	Type I error	correct decision	
	$p = \alpha$	<i>p</i> =1-β	

Power - Alpha & Beta

- β → Type II Error: Fail to reject Ho even when H₁ is true.
 - Power = 1β
 - If we increase power we reduce β , we reduce the probability of getting a Type II Error
- α → Criterion for the test, it tells you were to start rejecting Ho.
 - We usually set $\alpha = 0.05$
 - If we want a more stringent criterion,
 - α decreases
 - More difficult to reject Ho → power decreases
 - Power decreases → β increases (easier to make a Type II Error)

Since Power is the probability of correctly rejecting a false null hypothesis, It is to our best interest to increase power.

Ways of increasing Power

- make alpha larger
- use one-tailed rather than two tailed test
- decrease variance
 - increase sample size
 - better measures
- increase effect size

Magnitude of Power

- Strong effect
 - 0.00-0.15 or 0.85-1.00
- Moderate effect
 - 0.15-0.35 or 0.65-0.85
- Weak effect
 - 0.35-0.49 or 0.51-0.65

Calculating Power

- 1. Choose 1-tail or 2-tail test
- 2. Set alpha value
- 3. Select statistical test
- 4. Determine critical values to reject H₀
- 5. Calculate the probability of obtaining those values under a specified H₁
 - That is the power of the test under that version of H1

Calculating Power: Example 1

A researcher wants to identify the effects of sleep deprivation on test performance in his introductory statistics course.

A group of 19 students will perform under both of the following conditions:

- Sleep Deprivation: stay awake for 2 nights and days.
- Control: sleep normally for 2 nights and days.

After each 2-day period, the students are tested. The tests are scored.

- a) Calculate the power of the experiment to test a moderate effect (0.80 or 0.20).
- b) What's the probability of a Type II Error?

Calculating Power: Example 1 (cont)

1. Choose 1-tail or 2-tail test

don't know which will have higher test scores → 2-tail test

2. Set alpha value

 $\alpha = 0.05$

3. Select statistical test

Use sign test:

- only two possible outcomes for hypothesis: + (E) or (~E).
- 19 students = 19 trials
 - exams are assumed to be independent (!!!!)
- If there are only two outcomes, guessing the correct outcome is given by chance
 - p(E)=.50
 - $p(\sim E) = .50$
 - p+q=1
 - p and q are constant over trials

Calculating Power: Example 1 (cont)

4. Determine critical values to reject H₀

N	for P(E)=.50
# of +s	р
0	0.0000
1	0.0000
2	0.0003
3	0.0018
4	0.0074
5	0.0222
6	0.0518
7	0.0961
8	0.1442
9	0.1762
10	0.1762
11	0.1442
12	0.0961
13	0.0518
14	0.0222
15	0.0074
16	0.0018
17	0.0003
18	0.0000
19	0.0000

Calculating Power: Example 1 (cont)

5. Calculate the probability of obtaining those values under a specified H₁

For a moderate effect 0.20 or 0.80 what is the probability of rejecting Ho?

We need to see probability for 4 or 15 pluses with P(E)=0.20 under a moderate effect.

What's the probability of a Type II Error? β = 1 - power

N	for P(E)=.20	
# of +s	р	
0	0.0115	
1	0.0576	
3	0.1369	
3	0.2054	
4	0.2182	
5	0.1746	
6 7	0.1091	
7	0.0545	
8	0.0222	
9	0.0074	
10	0.0020	
11	0.0005	
12	0.0001	
13	0.0000	
14	0.0000	
15	0.0000	
16	0.0000	
17	0.0000	
18	0.0000	
19	0.0000	

Calculating Power: Example 2 (from Pagano Prob. 11.3)

A TV program is believed to cause violence among teenagers. You want to test this belief in a scientific manner, you start by obtaining a random sample of 15 teens from the local high school.

Each teen is run in both the experimental and control condition.

<u>Experimental Condition:</u> Watch TV program for a period of 3 months and record number of violent acts within those 3 months.

<u>Control Condition:</u> Do not watch TV program for a period of 3 months and record number of violent acts within those 3 months.

- a) Calculate the power of the experiment to test a moderate effect of 0.70 in the direction of the hypothesis.
- b) What's the probability of a Type II Error?

Calculating Power: Example 2 (cont)

Choose 1-tail or 2-tail test

increase in violence → 1-tail test

2. Set alpha value

 $\alpha = 0.05$

3. Select statistical test

Use sign test:

- only two possible outcomes for hypothesis: + (E) or (~E).
- 15 subjects = 15 trials
 - Actions among subjects are assumed to be independent (!!!!)
- If there are only two outcomes, guessing the correct outcome is given by chance
 - p(E)=.50
 - p(~E)=.50
 - p+q=1
 - p and q are constant over trials

Calculating Power: Example 1 (cont)

4. Determine critical values to reject H₀

N	for P(E)=.50
# of +s	р
0	0.0000
1	0.0005
2	0.0032
3	0.0139
4	0.0417
5	0.0916
6	0.1527
7	0.1964
8	0.1964
9	0.1527
10	0.0916
11	0.0417
12	0.0139
13	0.0032
14	0.0005
15	0.0000

Calculating Power: Example 2 (cont)

5. Calculate the probability of obtaining those values under a specified H₁

For a moderate effect of 0.70 what is the probability of rejecting Ho?

We need to see probability for 12 pluses with P(E)=0.70 under a moderate effect.

NOTE: Tables - $P(\sim E) = 0.30$

What's the probability of a Type II Error?

N	for P(~E)=.30	
# of +s	р	
0	0.0047	
1	0.0305	
2	0.0916	
3	0.1700	
4	0.2186	
5	0.2061	
6	0.1472	
7	0.0811	
8	0.0348	
9	0.0116	
10	0.0030	
11	0.0006	
12	0.0001	
13	0.0000	
14	0.0000	
15	0.0000	

Sampling Distributions

- We draw inferences about population parameters from sample statistics
 - Sample proportion approximates population proportion
 - Sample mean approximates population mean
 - Sample variance (using n-1) approximates population variance
 - Etc.
- Statistics vary from one sample to the next
 - If a statistic is unbiased, then on average over many samples, it will equal the population parameter
 - There will be variability around that average
 - The distribution of a statistic is the sampling distribution

Sampling Distributions

Definition

The Sampling Distribution gives all the values a statistic can take, along with the probability of getting each value if sampling is random from the null hypothesis population.

Example:

The sampling distribution of the mean scores of a PSYC-200* exam can tell us all the possible mean scores we can get from random samples and how probable those mean scores can be.

^{*} Population of students who take PSYC-200

Find the sampling distribution of the mean from the following population where the sample size is 2.

• Sampling should be done with replacement.

We need to get all possible combinations we could get by sampling from the population.

Sample	Elements		Mean
1	20	20	20
2	20	30	25
3	20	40	30
4	20	50	35
5	30	20	25
6	30	30	30
7	30	40	35
8	30	50	40
9	40	20	30
10	40	30	35
11	40	40	40
12	40	50	45
13	50	20	35
14	50	30	40
15	50	40	45
16	50	50	50

Next, we need to find the probability for each sample mean.

Sample	Elements		Mean
1	20	20	20
2	20	30	25
3	20	40	30
4	20	50	35
5	30	20	25
6	30	30	30
7	30	40	35
8	30	50	40
9	40	20	30
10	40	30	35
11	40	40	40
12	40	50	45
13	50	20	35
14	50	30	40
15	50	40	45
16	50	50	50

What's the probability that the next sample we get has a mean of 35?

$$p(20) = \frac{1}{16}$$

$$p(25) = \frac{2}{16}$$

$$p(30) = \frac{3}{16}$$

$$p(35) = \frac{4}{16}$$

$$p(40) = \frac{3}{16}$$

$$p(45) = \frac{2}{16}$$

$$p(50) = \frac{1}{16}$$

