Ex 4: Association d'un dioptre plan et d'un mirair

Les miroirs usuels sont constitués d'une plaque en verre métallisée sur la face arrière. Le verre composant la vitre a un indice optique n=1,5. La face métallisée se comporte comme un miroir plan. La chaîne d'image est la suivante :

 $AB \xrightarrow{dioptre\ air/verre} A_1B_1 \xrightarrow{miroir\ plan} A_2B_2 \xrightarrow{dioptre\ verre/air} A'B'$

La plaque en verre a une épaisseur HH' = 0,50 cm.

Un objet AB est placé $10 \, cm$ devant la plaque en verre : $\overline{HA} = -10 \, cm$.

L'image définitive donnée de l'objet AB par l'ensemble du système optique est notée A'B'.

- 1. Image intermédiaire A_1 donnée par le dioptre de A A $\xrightarrow{\text{dioptre air/verre}} A_1$ Calculer la valeur de $\overline{HA_1}$, déterminant la position de l'image intermédiaire A_1 produite par le dioptre.
- 2. Image intermédiaire A_2 donnée par le miroir de A_1 $A_1 \xrightarrow{\text{miroir plan}} A_2$ Calculer la valeur de $\overline{H'A_2}$, puis celle de $\overline{HA_2}$
- 3. Image finale A' donnée par le dioptre de A_2 $A_2 \xrightarrow{\text{dioptre verre/air}} A'$
 - **3.1.** Calculer la valeur de $\overline{HA'}$.
 - **3.2.** Quelle serait la valeur de $\overline{HA'}$ en l'absence de verre, c'est à dire avec un miroir plan idéal?
 - 1. Les rayons issus de A passent d'un milieu d'indice 1 à un milieu d'indice n, la relation de conjugaison du dioptre plan permet d'écrire :

$$\frac{\overline{HA_1}}{n} = \frac{\overline{HA}}{1}$$
 donc $\overline{HA_1} = n\overline{HA}$ $\overline{HA_1} = -15\,cm$

2. A_2B_2 et A_1B_1 sont symétriques par rapport au plan du miroir : $\overline{H'A_2} = -\overline{H'A_1}$

$$\overline{H'A_2} = -(\overline{HA_1} + \overline{H'H}) = 15,5 \, cm$$
 et $\overline{HA_2} = \overline{H'A_2} + \overline{HH'}$ $\overline{HA_2} = 16 \, cm$

3.1. Les rayons réfléchis par le miroir sont ensuite réfractés sur le dioptre verre/air :

$$\frac{\overline{HA'}}{1} = \frac{\overline{HA_2}}{n}$$
 donc $\overline{HA'} = \frac{1}{n}\overline{HA_2}$ $\overline{\overline{HA'}} = 10,7\,cm$

3.2. En l'absence de verre, l'image A' serait simplement le symétrique de A par rapport à H'; on aurait donc $HA'=10,5\,cm$. Le verre a donc pour effet de rapprocher légèrement l'image de l'objet.