Velke otazky

Definujte Splay strom. Vyslovte a dokažte větu o amortizované složitosti operace Splay.

Definice splay stromu

- binarni vyhledavaci strom
- · samovyvazujici se
- pouziva splay operace (zig/zag ...)

Amortizovana slozitost operace splay:

- amortizovana cena je nejvyse 3(r'(v) r(v)) + 1
- coz dava slozitost $O(\log n)$

Dukaz

- Celkova cena je rovna sume jednotlivych kroku
- Mejme hloubky x po 0 az k krocih: $r_0(x),...,r_k(x)$
- ullet Cena i-teho kroku je $3r_i(x)-3r_{i-1}(x)$, plus 1 pokud je to ZIG rotace
- ullet Amortizovana cena $\leq \sum_{i=1}^t (3r_i(x) 3r_{i-1}(x)) + 1$
- Amortizovana cena $\leq 3r_t(x) 3r_0(x) + 1$
- Amortizovana cena $\leq 3\log_n + 1 = O(\log n)$

Definujte (a,b)-strom. Popište, jak na něm probíhají operace Find, Insert a Delete. Rozeberte jejich slozitost v nejhorším případě.

Definice

- vyhledavaci strom
- vsechny vrcholy krome korene maji pocet synu A az B
- koren ma nejvyse B synu
- Vsechny listy jsou ve stejne vysce

• Plati a >= 2 & b >= 2a - 1

Find

- V kazdem vrcholu najdeme nejmensi vetsi klic a do jeho ditete vstoupime
- Koncime v listu
- $O(\log_b * \log_a n)$

Insert

- Najdeme spravneho otce
- Pridame prvek
- Pokud se nevejde rozdedlime deti na dve casti a pridame novy klic do rodice
- · Opakujeme dokud se klice nevejdou
- $O(b * \log_a n)$

Delete

- · Najdeme spravneho otce
- Odebereme prvek
- Pokud je klicu malo, presuneme klic z bratra, nebo se spojime s bratrem
- $O(b * \log_a n)$

Formulujte cache-aware a cache-oblivious algoritmy pro transpozici čtvercové matice. Rozeberte jejich časovou složitost a I/O složitost.

Cache aware

- rozdelime matici na submtice d*d tak ze $2d^2 \le B$ (2 submatice se vejdou do cache naraz)
- transponujeme obe submatice
- pokud nejsou na diagonale, tak je prohodime

Cache oblivious

- Rekurzivne delime matice na ctvrtiny dokud nemame matice 1x1
- $A = (\frac{A_{11}|A_{12}}{A_{21}|A_{22}})$

- A_{11} a A_{22} se pouze transponuji
- A_{12} a A_{21} se transponuji a prohodi navzajem

Slozitost

Cache aware

- pocet podmatic je $\frac{k^2}{d^2}$
- I/O slozitost: $O(\frac{k^2}{B})$, (+1 pokud nebude cache zarovnana)
- casova slozitost: $\Omega(k^2)$
- ullet k imes k je velikost matice
- ullet d imes d je velikost podmatice
- ullet B je velikost bloku pameti

Cache oblivious

- predpoklad tall cache, neboli do cache se nam vejdou alespon 4 bloky
- $rac{k^2}{d^2}*4d \leq rac{8k^2}{B} = O(rac{k^2}{B})$, (+1 pokud k neni mocninou dvojky)

Definujte c-univerzální a k-nezávislé rodiny hešovacích funkcí. Formulujte a dokažte větu o střední délce řetězce v hešování s řetězci. Ukažte příklady c-univerzálních a k-nezávislých rodin pro hešování přirozených čísel.

c-univerzální

- nahodne zvolena $h \in H$ splnuje $P[h(x) = h(y)] \leq rac{c}{m}$, (pro vsechny dvojice $x
 eq y \in U$)
- pocet hesovacich funkci $h\in H$ takovych ze h(x)=h(y) je nejvyse $\frac{c|H|}{m}$, (pro vsechny dvojice $x\neq y\in U$)

k-nezávislý

- $k \in N; K = \{1,...,k\}$ a $c \geq 1$
- nahodne zvolena $h \in H$ splnuje:

- $ullet P[h(x_i)=z_i orall i \in K] \leq rac{c}{m^k}$
- ullet pro vsechna po dvou ruzna $x_1,...,x_k\in U$ a vsechna $z_1,...,z_k\in M$

věta o střední délce řetězce v hešování s řetězci

- Jestlize H je c-univerzalni, pak ocekavany pocet prvku v prihradne h(x) pro $x \in U$ je nejvyse $\frac{cn}{m}$

Dukaz

•
$$E[|\{y \in S : h(x) = h(y)\}|] = \sum_{y \in S} P[h(x) = h(y)] \le \frac{cn}{m}$$

příklady

Multiply mod prime

- $h_{a,b}(x) = ax + b \mod p \mod m$
- 2-univerzalni
- (2,4)-nezavisly

Tabulkove hashovani

- $h(x) = T_1(x^1) \text{ XOR } ... \text{ XOR } T_d(x^d)$
- 3-nezavisle

Popište a analyzujte hešování s lineárním přidáváním. (Linear probing)

- INSERT
 - Vkladanou hodnotu zahesujeme a vlozime na index rovny jeho hashu
 - Pokud tam uz neco je, tak pridame k indexu 1 a zkusime to znovu (opakujeme dokud prvek nevlozime)
- DELETE
 - o nelze, pouze vytvorime pomnicek a obcas prehashujeme
- · Vytvari shluky, coz neni dobre
- Pratelska na cache
- poloprazda a bez velkych shluku se chova dobre

Definujte vícerozměrné intervalové stromy. Rozeberte časovou a prostorovou složitost konstrukce a obdélníkových dotazů (včetně zrychlení kaskádováním).

- Vylepsene intervalove stromy (zlepsi slozitost dotazu)
- ullet Binarni vyhledavaci strom podle x
 - Kazdy vrchol ma dalsi BVS podle y
- Prostor: $O(n \log^{d-1} n)$
- Cas:
 - \circ BUILD: $O(n \log^{d-1} n)$
 - INSERT: $O(\log^d n)$
 - \circ DELETE: $O(\log^d n)$
 - FIND RANGE: $O(\log^d n + p)$
 - kaskadovani bude v $O(\log^{d-1} n + p)$
 - vsem prvkum nahore predpocitame pozici ve stromu nize

Operation Definujte suffixové pole a LCP pole. Popište a analyzujte algoritmy na jejich konstrukci.

- ullet Sufixove pole S
 - \circ pro retezec lpha delky n
 - $\circ\;$ udava lexikograficke poradi sufixu daneho slova lpha
 - \circ Ize vybudovat v O(n)
 - postavime sufixovy strom a pak jej sepiseme do pole
- LCP pole
 - $\circ \ \mathsf{LCP}(\alpha,\beta) = \max\{k|\alpha[:k] == \beta[:k]\}$
 - $\circ\;$ udava delku nejdelsiho spolecneho prefixu α a eta
 - \circ lze vybudovat v O(n) se sufixovym polem

Malé otázky

Popište "nafukovací pole" se zvětšováním a zmenšováním. Analyzujte jeho amortizovanou složitost.

- · zvetsi se na 2x pri zaplneni
- zmensi se na 1/2 pri 1/4 zaplneni
- Amortizovane O(1)

Popište vyhledávací stromy s líným vyvažováním (BB[α] stromy). Analyzujte jejich amortizovanou složitost.

- · binarni vyhledavaci strom
- ullet kazdy podstrom syna musi byt velikosti maximalne lpha nasobek vsech deti jejich otce
- $\frac{1}{2} \le \alpha \le 1$
- hloubka je $\theta(\log n)$

Navrhněte operace Find, Insert a Delete na Splay stromu. Analyzujte jejich amortizovanou složitost.

- vse amortizovane v $O(\log n)$
- zig / zag dvoj-rotace krome korene

Vyslovte a dokažte věty o amortizované složitosti operací Insert a Delete na (a,2a-1)-stromech a (a,2a)stromech.

- Sekvence m Insertu a Deletu na zezacatku prazdnem (a, 2a) stromu vykona O(m) akci.
- (a, 2a-1) stromu ale bude obcas "oscilovat" a bude mit slozitost $\Omega(\log n)$

Dukaz

- Cena = pocet zmenenych vrcholu
- · Ukazeme ze potencial je mensi roven nule
- ullet Mejme funkci f(k) jakozto zmenu k deti, ktera musi splnovat
 - $\circ \ |f(i) f(i+1)| \leq c$, kde c je libovolna konstanta
 - $f(2a) \ge f(a) + f(a-1) + c + 1$
 - $\circ f(a-2) + f(a-1) \ge f(2a-2) + c + 1$
- ullet nastavime c=2 a vykouzlime:

k	a-2	a-1	а		2a-2	2a-1	2a
f(k)	2	1	0	0	0	2	4

- INSERT prida klic (O(1)), zmeni potencial o O(1) a vykona nekolik rozdeleni s amortizovanou slozitosti 0.
- DELETE odebere klic (O(1)) a vykona sekvenci spojeni s amortizovanou slozitosti 0.
 - \circ Pripadne pokud si vezme dite bratra, coz ma slozitost O(1) a muze se stat pouze jednou.

Takze amortizovana cena je konstantni pro obe operace, jelikoz potencial je porad nezaporny a zacina v nule.

Tudiz m operaci Insert a Delete provede O(m) modifikaci vrcholu.

Analyzujte k-cestný Mergesort v cache-aware modelu. Jaká je optimální volba k?

- Optimalni hodnota K = [M/2B]
- Pocet pruchodu klesne na $\lceil \log_k N
 ceil$
- Jeden krok zabere $O(\log K)$ a cely mergesort $O(N \log N)$

Vyslovte a dokažte Sleatorovu-Tarjanovu větu o kompetitivnosti LRU.

- LRU = least-recently used
- NEPLATI: LRU je k-kompetetivni, neboli $C_{LRU} \leq k * C_{OPT}$

Veta:

$$ullet C_{LRU} \leq rac{M_{LRU}}{M_{LRU} - M_{OPT}} * C_{OPT} + M_{OPT}$$

Dukaz:

- mame epochy $E_0 \dots E_k$
- LRU zaplati v kazde epoche M_{LRU} a v prvni maximalne M_{LRU}
- v nenulove epoche *i*:
 - i. ruzne bloky: OPT plati alespon bloky ktere nemel v cachi ($M_{LRU}-M_{OPT}$)
 - ii. LRU zaplati za blok 2x: alespon M_{LRU} ruznych bloku
- · v nulove epoche:
 - i. LRU i OPT zacina s prazdnou cache: $C_{LRU} = \#$ ruznych bloku = C_{OPT}
 - ii. LRU zacina s neprazdnou oproti OPT: neuskodi LRU
 - iii. LRU i OPT maji neprazdnou cache: to je ta $+M_{OPT}$

$igcup Popište systém hešovacích funkcí odvozený ze skalárního součinu. Dokažte, že je to 1-univerzální systém ze <math>Z_p^k$ do Z_p .

- ullet Mejme d-dimenzionalni vektory nad telesem Z_p
- $h_t(x) = t \times x$

Dukaz

- $P[h_t(x) = h_t(y)] = P[t \times x = t \times y] = P[t \times (x y) = 0] = P[\sum_{i=1}^k (x_i y_i)t_i = 0] = P[(x_k y_k)t_k = -\sum_{i=1}^{k-1} (x_i y_i)t_i]$
- $\bullet\,$ Posledni krok rika, ze posledni iterace sumy by se musela presne trefit a na to ma pravdepodobnost 1/p
- ullet Neboli existuje prave jedno t_k takove aby rovnost platila a zaroven $t_k \in Z_p$

O Popište systém lineárních hešovacích funkcí. Dokažte, že je to 2-nezávislý systém ze \mathbb{Z}_p do [m].

- $h_{a,b}(x) = ((ax+b) \mod p) \mod m$
- Mejme linearni system L, jez je (2,1)-nezavisly v \mathbb{Z}_p a po zmoduleni do m je (2,4)-nezavisly podle dukazu nize

Dukaz

- snazime se dokazat $P[h_{a,b}(x)=i\wedge h_{a,b}(y)=j]\leq 4/m^2$, kde $x,y\in [p]$ a $i,j\in [m]$ a nahodnou dvojici (a,b)
- obe strany posoudime nezavisle a pak jejich pravdepodobnost pronasobime
- pravdepodobnost jedne strany je maximalne 2p/mp
- pravdepodobnost obou zaroven je maximalne $(2p/mp)^2=4/m^2$
- tudiz je stale 2-nezavisly

Osestrojte k-nezávislý systém hešovacích funkcí ze \mathbb{Z}_p do [m].

- · pouzijeme polynomialni hashovani (poly-mod-prime)
- $ullet h_a(x) = \sum_{i=0}^{k-1} a_i x^i$
- $\bullet \ P_k = \{h_t | t \in Z_p^k\}$
- takovyto system je (k,1)-nezavisly

Prevod do m

- $P_k \mod m$
- je (k,4)-nezavisly
- pokud $p \geq 2km$, tak je (k,2)-nezavisly

Sestrojte 2-nezávislý systém hešovacích funkcí hešující řetězce délky nejvýše L nad abecedou [a] do [m].

- pouzijeme poly-mod-prime
 - \circ $h_{a,b,c}(x_1,...x_d)=(b+c*\sum_{i=0}^{d-1}x_{i+1}*a^i\mod p)\mod m$, (p>m)
- retezec doplnime zprava nulami do delky L
- pri vypoctu hashe muzeme ignorovat prazdne znaky, nebot 0 * cokoliv je 0 a sumu to nezmeni

Popište a analyzujte Bloomův filtr.

- Umi insert, neumi deleate a find dava false-positive
- pametove usporny

- · Insert vklada na pozici zahashovane hodnoty
- False positive je n/m (n je pocet prvku, m je velikost nasi datove struktury)
- Multi-band (k hash funkci)
 - $\circ \ k = \lceil \log 1/\epsilon
 ceil$, kde ϵ je pravdepodobnost false-positive
 - \circ potrebna pamet je $m\lceil \log 1/\epsilon
 ceil$, (m muze byt treba 2n)

Ukažte, jak provádět 1-rozměrné intervalové dotazy na binárním vyhledávacím stromu.

- najdeme levy vrchol, najdeme pravy vrchol a vsechny vrcholi / podstromy mezi nimi vypiseme
- ullet $O(\log n + p)$, kde p je pocet vracenych vrcholu

O Definujte k-d stromy a ukažte, že 2-d intervalové dotazy trvají $\Omega(\sqrt{n})$.

- Binarni vyhledavaci strom
- na i-te hladine porovnavame i-tou dimenzi
- Build trva $O(n \log n)$

intervalovy dotaz maximalne \sqrt{n} :

- varovny priklad:
 - $\circ \,\,$ mame dotaz na 2d strom a hledame vsechny prvky na ose y
 - na kazde sude urovni se musi prochazet oba synove
 - $\circ \,\,$ pocet navstivenych listu je $2^{(\log n)/2} = \sqrt{n}$

Ukažte, jak dynamizovat k-rozměrné intervalové stromy (stačí Insert).

- amortizovane $O(\log^d n)$
- · jeden insert prida
 - 1 vrchol v 1. dimenzi
 - insert do stromu 1. dimenze trva $O(\log n)$, (vcetne lineho vyvazovani)
 - bohuzel se obcas musi ppostavit cely strom v 2. dimenzi coz trva $O(n \log n)$
 - $\circ~O(\log n)$ vrcholu v 2. dimenzi
 - insert do stromu 2. dimenze trva $O(\log n)$
 - ullet takze v 2. dimenzi mame celkovou slozitost $O(\log^2 n)$
 - o ... v dalsich dimenzich

Ukažte, jak použít suffixové pole a LCP pole na nalezení nejdelšího společného podřetězce dvou řetězců.

- spojime retezce lpha, "#" a eta, kde # je novy symbol do retezce lpha#eta
- sestrojme pro tento retezec sufixove pole a LCP
- hledame dvojici po sobe jdoucich indexu i a j, takovou ze:
 - $\circ \;\; i$ je pred znakem # a j je za znakem #, nebo presne obracene
- vratime dvojici ktera bude mit nejvetsi LCP
- slozitost O(n)

Ukažte, jak paralelizovat (a,b)-strom.

- pouzijeme top-down balancovani
- INSERT:
 - o drzime zamek na aktualnim vrcholu a jeho rodici
 - o pokud je potreba tak vrchol rozdelime
 - o pote odemkneme rodice
 - o zamkneme dite ktere potrebujeme a pokracujeme tam
- DELETE:
 - o stejne jako insert
 - o ale zamykame i bratra, kdyby nahodou bychom jej potrebovali pripojit

- tady muze nastat deadlock, tak musime vybirat systematicky, treba jen presne o jedna leveho bratra
- pro odstraneni ne-listu se muze stat, ze potrebujeme zamknout root pri hledani vhodneho potomka
 - radeji vytvorit pomnik misto mazani

Navrhněte a analyzujte bezzámkovou implementaci zásobníku.

 Mejme zasobnik, ktery ma hodnotu, atomicky ukazatel na naslednika a atomicky ukazatel na hlavu

PUSH

```
Repeat:

Repeat:

n.next <- h

fraction CAS(stack.heead, h, n) = h: return</pre>
```

POP

```
Repeat:
h <- stack.head

s <- h.next
f CAS(stack.heead, h, s) = h: return h</pre>
```

muze nastat livelock, ale velmi nepravdepodobne

Popište atomická primitiva a jejich vlastnosti. Vysvětlete problém ABA a jeho řešení.

- Atomicita znamena, ze ostatni danou vec vydi jako nezapocatou, nebo dokoncenou
- primitiva:
 - Read and write normalni pamet RAM
 - Exchange vymeni hodnoty atomickeho registru a lokalni pameti
 - Test and set bit nastavi bit na hodnotu a vrati puvodni
 - Fetch and add pripocte cislo a vrati puvodni hodnotu

- Compare and swap (CAS) dostane old a new, pokud je v registru old, tak ho vymeni za new a puvodni hodnotu vrati
- Load linked and store conditional (LL/SC) po precteni se prida watcher, ktery pri zapisu povoli zapsat jen pokud jej nikdo nemenil

ABA

- problem s bezzamkovym zasobnikem, kde muze nastat pridani do zasobniku
- CAS sice uvidi tu samou hodnotu, ale ta byla 2x zmenena mezitim
- vyresi se pouzitim LL/SC misto CAS
 - o nebo double CAS

priklad:

Vlakno 1	Vlakno 2	
		head -> A -> B -> null
	h <- stack.head	h=A
	s <- h.next	s=B
x <- POP		x=A
		head -> B -> null
y <- POP		y=B
		head -> null
PUSH(x)		PUSH(A)
		head -> A -> null
	if CAS(stack.heead, h, s) = h: return h	h=A
		head -> B -> null

chyba ... kde se nam vzalo B ???