Elektrik Teorisi - Hafta 4

Ekrem Torun

14 Mart Cuma Ders Tamamı

Contents

1		t trik Alan ve İş Elektrik Alanın İş Yapması	1 1
2	Kapasitörler ve Dielektrikler		2
	2.1^{-}	Kapasitans	2
		Kapasite Hesabı	2
		Elektrik Alanında Enerji De-	
		polanması	3

Elektrik Alan ve İş

Elektrik Alanın İş Yapması

Elektrik alanında bir yükün hareket ettirilmesi sırasında yapılan iş, elektrik kuvveti ve yer değiştirme ile ilişkilidir. Bir q_0 test yükünün elektrik alanında hareket ettirilmesi durumunda yapılan iş:

$$\Delta W = q_0 \Delta V \tag{1}$$

Burada:

• ΔW : Yapılan iş

• q₀: Test yükü

• ΔV : Potansiyel farkı

Bu ifadeyi, elektrik alan ve yer değiştirme cinsinden de yazabiliriz:

$$\Delta W = q_0 \Delta V = q_0 E \cos \theta \Delta L \qquad (2)$$

Burada:

- E: Elektrik alan şiddeti
- *θ*: Elektrik alan vektörü ile yer değiştirme vektörü arasındaki açı
- ΔL : Yer değiştirme mesafesi

Elektrik alan ile potansiyel arasındaki ilişki:

$$E\cos\theta = -\frac{\Delta V}{\Delta L} \tag{3}$$

Bu ifade, elektrik alanın potansiyelin negatif gradyenti olduğunu gösterir. Üç boyutlu uzayda, bu ilişki kısmi türevler kullanılarak ifade edilir:

$$E_x = -\frac{\partial V}{\partial x} \tag{4}$$

Benzer şekilde, diğer koordinat eksenleri için:

$$E_y = -\frac{\partial V}{\partial u}, \quad E_z = -\frac{\partial V}{\partial z}$$
 (5)

Üç boyutlu uzayda çalıştığımız için, potansiyel birden fazla değişkene bağlıdır ve bu nedenle kısmi türevler kullanılır. Yöne bağlı olarak elektrik alan farklı değerler alabilir.

Kapasitörler ve Dielektrikler

Kapasitans

İki yüklü iletken arasında elektrik alan çizgileri oluşur. Bu alan çizgileri pozitif yükten negatif yüke doğru yönelir.

Kapasitans (veya kapasitör büyüklüğü), C ile gösterilir ve bir kapasitörün elektrik yükü depolama yeteneğini ifade eder. Kapasitans, uygulanan potansiyel fark başına depolanan yük miktarı olarak tanımlanır:

$$C = \frac{Q}{V} \tag{6}$$

Burada:

- C: Kapasitans
- Q: Depolanan elektrik yükü
- V: Uygulanan potansiyel fark

Kapasitansın SI birimi Farad (F)'dır ve şu şekilde ifade edilir:

$$Farad = \frac{Coulomb}{Volt} = \frac{C}{V}$$
 (7)

Örneğin, 1 Farad kapasitansa sahip bir kapasitör, 1 Volt potansiyel fark uygulandığında 1 Coulomb elektrik yükü depolayabilir. yakın bölgeler hariç). İletkenler yüklendiğinde, fazla yükler (ekses yükler) iletkenlerin birbirlerine bakan yüzeylerinde toplanır.

Kapasite Hesabı

Paralel levhalı bir kapasitörün kapasitesini hesaplamak için Gauss Yasası kullanılabilir. Gauss Yasası, kapal bir yüzeyden geçen elektrik akısının, o yüzey içindeki toplam elektrik yüküne oranını verir:

$$\oint \vec{E} \cdot d\vec{S} = \frac{Q}{\varepsilon_0}$$
(8)

Burada:

- $\oint \vec{E} \cdot d\vec{S}$: Kapalı yüzeyden geçen elektrik akısı
- Q: Yüzey içindeki toplam elektrik yükü
- ε_0 : Boşluğun elektrik geçirgenliği $(8.85 \times 10^{-12} \text{ F/m})$

Düzgün elektrik alanı için, bu ifade şu şekilde sadeleşir:

$$\varepsilon_0 \Phi = \varepsilon_0 E A = Q \tag{9}$$

Burada:

- Φ: Elektrik akısı
- E: Elektrik alan şiddeti
- A: Yüzey alanı

Elektrik alanı, potansiyel fark ile ilişkilidir:

$$V = -\int \vec{E} \cdot d\vec{l} \tag{10}$$

Paralel levhalı bir kapasitör için, elektrik alanı düzgün olduğundan:

Figure 1: Paralel Levhalı Kapasitör ve Elektrik Alan Çizgileri

İki iletken levha arasında, elektrik alan çizgileri paralel ve düzgündür (kenarlara

$$V = Ed \tag{11}$$

Burada *d*, levhalar arasındaki mesafedir. Kapasitans tanımını kullanarak:

$$C = \frac{Q}{V} = \frac{\varepsilon_0 E A}{E d} = \frac{\varepsilon_0 A}{d}$$
 (12)

Bu, paralel levhalı bir kapasitörün kapasitans formülüdür.

Önemli Not: Kapasitansın tanımı $C=\frac{Q}{V}$ şeklindedir (tarif). Paralel levhalı kapasitör için kapasitansın tayini ise $C=\frac{\varepsilon_0 A}{d}$ formülü ile verilir.

Elektrik Alanında Enerji Depolanması

Bir kapasitörü yüklerken, elektrik alanında enerji depolanır. Bu enerji, kapasitörü yüklemek için yapılan işe eşittir.

Kapasitörü yüklemek için yapılan iş:

$$dW = Vdq' = \frac{q'}{C}dq' \tag{13}$$

Burada:

• dW: Yapılan küçük iş

• V: Anlık potansiyel fark

• dq': Küçük yük artışı

• q': Anlık yük miktarı

Toplam iş, yük 0'dan *Q*'ya kadar değişirken yapılan işlerin toplamıdır:

$$W = \int_0^Q \frac{q'}{C} dq' = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} QV = \frac{1}{2} CV^2$$
(14)

Bu, kapasitörde depolanan enerjiyi (U) verir:

$$U = \frac{1}{2}CV^2 \tag{15}$$

Birim hacim başına düşen enerji miktarı (enerji yoğunluğu), u ile gösterilir:

$$u = \frac{U}{Ad} = \frac{1}{2} \frac{CV^2}{Ad} \tag{16}$$

Paralel levhalı kapasitör için $C=\frac{\varepsilon_0 A}{d}$ olduğundan:

$$u = \frac{1}{2} \frac{\varepsilon_0 A V^2}{d \cdot A d} = \frac{1}{2} \varepsilon_0 \frac{V^2}{d^2} \tag{17}$$

Elektrik alan $E = \frac{V}{d}$ olduğundan:

$$u = \frac{1}{2}\varepsilon_0 E^2 \tag{18}$$

Bu, elektrik alanında depolanan enerji yoğunluğunu verir. Benzer şekilde, manyetik alanda depolanan enerji yoğunluğu da manyetik alan şiddetinin karesi ile orantılıdır:

$$u_B = \frac{1}{2\mu_0} B^2 \tag{19}$$

Burada:

- u_B: Manyetik alanda depolanan enerji yoğunluğu
- μ_0 : Boşluğun manyetik geçirgenliği
- B: Manyetik alan şiddeti

Elektromanyetik alanda toplam enerji yoğunluğu, elektrik ve manyetik enerji yoğunluklarının toplamıdır:

$$u_{toplam} = u_E + u_B = \frac{1}{2}\varepsilon_0 E^2 + \frac{1}{2\mu_0} B^2$$
 (20)