

Data Commissioning of Flavour Tagging in Run 2 Data

Laurie McClymont, Flavour Tagging Group

UCL ATLAS Meeting 07/08/15

UCL

Aims

- There have been many changes that affect flavour tagging since Run 1.
 - Introduction of IBL.
 - Change from MV1 to MV2.
 - Change of collision energy.
- Run 2 flavour tagging needs to be understood.
 - Flavour tagging has been tested and optimised in simulation.
 - Also need to validate flavour tagging in data.
 - This is done by comparing data to simulation.

Pub Note

- We are aiming to release a Pub Note
 - Aiming for Lepton Photon: Circulate to group by Wednesday 12th August
 - First set of plots produced, framework in place.
 - Note is written: https://cds.cern.ch/record/2032461
 - First reading has occurred and first set of comments have now been addressed.

3 Flavour Tagging Algorithms

- IPxD
 - Use impact parameter relative to PV for all tracks.
- SV1
 - Reconstruct a secondary vertex from the crossing of two or more tracks.
 - Look at properties of SV that discriminate
- Jet Fitter
 - Reconstruct many vertices along a flight path axis.
 - Look for properties of these vertices that can discriminate in these vertices.

MV2

- In Run 1 MV1 used combined the base taggers.
- In Run 2 MV2 will combine the inputs to the base taggers to improve performance

- MC Sample:
- Full xAOD
- 50ns dijet MC sample data
- Split into 4 slices and the re-weighted (see backup) JZ1W-JZ4W No JZ0W used.
- -~8M Events.

"mc15_13TeV.361021.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ1W.merge.AOD.e3569_s2576_s2132_r6630_r6264/" "mc15_13TeV.361022.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ2W.merge.AOD.e3668_s2576_s2132_r6630_r6264/" "mc15_13TeV.361023.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ3W.merge.AOD.e3668_s2576_s2132_r6630_r6264/" "mc15_13TeV.361024.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ4W.merge.AOD.e3668_s2576_s2132_r6630_r6264/"

- Data Sample:
- 50ns data from stable beam collisions.
- **FTAG** derivation
- ~6M Events from 7 Runs: 270806, 270953, 271048, 271298, 271421, 271516 and 271595
- This corresponds to 770K events passing cuts.

```
"data15_13TeV.00270806.physics_Main.merge.DAOD_FTAG1.f611_m1463_p2375/" "data15_13TeV.00270953.physics_Main.merge.DAOD_FTAG1.f611_m1463_p2375/" "data15_13TeV.00271048physics_Main.merge.DAOD_FTAG1.f611_m1463_p2375/" "data15_13TeV.00271421.physics_Main.merge.DAOD_FTAG1.f611_m1463_p2375/" "data15_13TeV.00271516.physics_Main.merge.DAOD_FTAG1.f611_m1463_p2375/" "data15_13TeV.00271595.physics_Main.merge.DAOD_FTAG1.f611_m1463_p2375/"
```

• We are using NTuples created using Run2BTagOptimisationFramework

Details and Cuts

- 20.1.5.3 with all tags recommended by CP group
- Running xAOD fix on full xAOD
- HLT_j60 Trigger for Data and MC with Leading Jet P_T > 70 GeV.
- AntiKt4EMTopoJets
- Run1LooseBadCuts and "ugly" jet removal.
- Jet Calibration:

```
-calibfile ="JES_MC15Prerecommendation_April2015.config"
- calSeq = "JetArea Residual Origin EtaJES GSC" ( Insitu for data)
```

```
• GRL = "data15_13TeV.periodAllYear_DetStatus-v63-
pro18-01 DQDefects-00-01-02 PHYS StandardGRL All Good.xml"
```

Select event if leading jet has:

- niets ≥ 1
- $|\eta| < 2.5$
- P_T > 70 GeV
- JVT > 0.641 if (P_T < 50 GeV and $l\eta l$ < 2.4)

Then plot subleading if subleading jet has:

- P_T > 35 GeV
- $|\eta| < 2.5$
- JVT > 0.641 if (P_T < 50 GeV and $l\eta l$ < 2.4)

Just For MC

Truth Dijet Test applied to MC to clean sample

- (Lead P_T +Sublead P_T)/2 < 1.4* Truth Lead P_T , for niet > 1
- (Sublead P_T < 1.4 * Truth Sublead P_T), for njet =1
- LabDr_HadF truth matching.

Di-jet sample re-weighting

Total = mcwg*(Filter Eff.)*(CS[fb])*(Lumi[fb-1]) Weight (# Events)

Xs(fb)	Eff.	Slice and Energy
7.8420E+13	6.7198E-04	#JZ1W 20-60 GeV
2.4334E+12	3.3264E-04	#JZ2W 60-160 GeV
2.6454E+10	3.1953E-04	#JZ3W 160-400 GeV
2.5464E+08	5.3009E-04	#JZ4W 400-800 GeV
4.5536E+06	9.2325E-04	#JZ5W 800-1300 GeV
2.5752E+05	9.4016E-04	#JZ6W 1300-1800 GeV

Then integral of MC is normalised to integral of data

After:

Jet Kinematic Distributions

UCI

Leading Jet:

Eta

Sum of Track P_T

Leading Jet:

IP3D

SV1

JF

10 **Transverse Impact Parameter**

Leading Jet:

d0

d0 significance

d0 error

11 Longitudinal Impact Parameter

Leading jet:

z0 z0 significance z0 error

Subleading jet:

12 IP Update from Tracking Group

Problems

- Imperfect alignment (high pT)
- Geometry tag missing 23% IBL material (low pT)
 - New Geo. Tag Produced and validated.
- Angle of overlap issue
 - Geo. Tag avaliable for 25ns data.

https://indico.cern.ch/event/433839/ contribution/6/attachments/ 1128840/1612854/PC_20jul.pdf

13 **SV1 Variables**

*UCL

Leading Jet:

Energy Frac.

SV1 Lxy

Only Filled if a Secondary Vertex is found

SV1 Mass

SV1 3D Sig.

Tracks at SV1 Vertex

14 JF Variables

UCL

Leading Jet:

Energy Frac.

Vertices with at least 2 Tracks

Only Filled if a Jet Fitter Vertex is found

JF Mass

Tracks at Vertices with at least 2 Tracks

HLT_j60

JF 3D Sig

60

80

Leading jet Jet Fitter 3d significance

Vertices with 1 Track

20

30

Leading Jet:

MV2c20

Tag Rate

16 **b Enhanced Sample - Subleading Jet**

MV2c20:

<u>Leading MV2c20 > -0.0436 which is 70% b-efficiency</u>

SV1:

Jet Fitter:

UCL

Conclusions

- The plot making framework is in place and first version of all plots made.
- Some good agreement
 - Kinematic Quantities.
 - SV and Jet Fitter Quantities
 - b-enhanced sample
- Still some disagreements
 - Outputs of taggers.
 - Impact parameter
- Possibility to reprocess 50ns data and MC to hopefully improve I.P. resolution.
- Need to push on with documentation for Pub Note:
- Note written, plotting framework in place.
- Hopefully we will see new samples with improved I.P. resolution.

18 **Track Distributions**

UCL

Leading Jet:

Tracks: Directly from Track Container

Tracks: Tight PV Selection

Tracks: IP3D Selection P_T > 1 GeV

