Linear Algebra

Samira Hossein Ghorban s.hosseinghorban@ipm.ir

Fall, 2021

$Eigenvalues \ and \ Eigenvectors$

Review: Eigenvectors and eigenvectors

Definition

An eigenvector or characteristic vector v for a square matrix A is a nonzero vector that changes at most by a scalar factor when that this matrix is applied to it, i.e., $Av = \lambda v$. The corresponding eigenvalue λ is denoted by as an eigenvalue of A.

Review: solving $Ax = \lambda x$

- Find the roots of the polynomial $det(A \lambda I) = 0$. This roots are the eigenvalues of A.
- The sum of the *n* eigenvalues equals the sum of the *n* diagonal entries:

Trace of
$$A := a_{11} + \cdots + a_{nn} = \lambda_1 + \cdots + \lambda_n$$
.

• The product of the *n* eigenvalues equals the determinant of *A*, that is

$$\lambda_1 \times \cdots \times \lambda_n = \det A.$$

Review: Example

• Find the eigenvalues and eigenvectors for diagonal matrices.

$$\begin{bmatrix} d_1 & & & & \\ & d_2 & & & \\ & & \ddots & & \\ & & & d_n \end{bmatrix}$$

Example

Suppose that P is a projection matrix. Find the eigenvalues of this matrix.

Diagonalization of a Matrix

• Example. The eigenvector matrix of the projection $P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ is $S = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, and we have

$$S^{-1}PS = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

 \bullet The eigenvector matrix S converts A into its eigenvalue matrix which is diagonal.

90° rotation

• The eigenvalues themselves are not so clear for a rotation:

$$K = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

has $det(K - \lambda I) = \lambda^2 + 1$.

- The eigenvalues of K are imaginary numbers $\lambda = \pm i$. with eigenvectors $\begin{bmatrix} 1 \\ -i \end{bmatrix}$ and $\begin{bmatrix} 1 \\ i \end{bmatrix}$.
- The eigenvectors are also not real.
- The eigenvalues are distinct, even if imaginary, and the eigenvectors are independent. They go into the columns of S:

$$S = \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix} \qquad S^{-1}KS = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}.$$

Linear Spaces on \mathbb{C}

A Linear space is a set V along with an addition on V and a scalar multiplication on $\mathbb C$

$$(V,+,\cdot)$$

such that the following properties hold:

- 1. **commutativity** u + v = v + u for all $u, v \in V$;
- 2. **associativity** (u+v)+w=u+(v+w) and (ab)v=a(bv) for all $u,v,w\in V$ and all $a,b\in\mathbb{C}$;
- 3. **additive identity** there exists an element $0 \in V$ such that v + 0 = v for all $v \in V$;
- 4. **additive inverse** for every $v \in V$, there exists $w \in V$ such that v + w = 0;
- 5. multiplicative identity 1v = v for all $v \in V$;
- 6. distributive properties a(u+v) = au + av and (a+b)u = au + bu for all $a,b \in \mathbb{C}$ and all $u,v \in V$.

Diagonalizable matrices

Definition

Similarity. Let $A, B \in M_n(\mathbb{F})$, $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . We say that A and B are *similar* over \mathbb{F} , if there exists an invertible matrix $S \in \mathbb{F}$ such that $S^{-1}AS = B$.

Definition

Assume $A \in M_n(\mathbb{R})$. A is called diagonalizable if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix S and a diagonal matrix D such that

$$S^{-1}AS = D.$$

Diagonalization of a Matrix

Theorem

The Diagonalization Theorem. Let $A \in M_n(\mathbb{F})$ where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . The matrix A is diagonalizable if and only if A has n linearly independent eigenvector.

A corollary of diagonalization theorem

Fact

If the eigenvalues of A are distinct from each other, then A is diagonalizable.

Remarks

• Not all matrices are diagonalizable.

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

 \bullet The diagonalizing matrix S is not unique.

Diagonalizable linear transformation

Definition

A linear transformation $T: V \to V$ where the dimension of V is finite, is said to be diagonalizable if there exists a basis B such that $[T]_B$ is diagonal matrix.

Diagonalizable linear transformation

Theorem

Let $T: V \to V$ be a linear transformation where the dimension of V is finite with different eigenvalues $\lambda_1, \ldots, \lambda_k$. Suppose that W_i is null space of $T - \lambda_i I$ for each $1 \le i \le k$. The the following statements are equivalent:

- T is diagonalizable.
- ② Its eigenvalue vector is $f(x) = (x d_1)^{n_1} \dots (x d_1)^{n_1}$ and dim $W_i = n_i$.

• • •

Thank You!