

notes connected by lines/arrows. Graph: Circles

The world contains a set of States To describes the configuration of the world.

- \rightarrow states will be the nodes in the graph S_1 , S_2 , ... S_n by the n states are visualized through the graph
- Set of states: $S = \{S_1, \ldots, S_n\}$ ie: the $\frac{H^2}{K}$ state in the game Capitalized S cach State: S_1 , S_n .
- If we can pass with an ACTION from a state to another, we connect the nodes with a line
- To define the lines, we thus need to define the ACTIONS A = { a, , ..., am} not the same as n (states)
- We transit from a state to another through an action (a).

$$(s_1) \xrightarrow{\alpha} (s_2)$$

Write an arrow for each action you need to transition from a node to another

The set of States (5) and set of actions (A) are not enough to describe World, we need:

Transition: from which node to which node and with what Model action

1. Deterministic: defined by a two variable function

This function can be seen in a mostrix

Example : we have a world:

xample 1 we have a world:
$$s \in S = \{S_1, S_2, S_3\} \rightarrow \text{ the domain of } s \text{ is } S$$

$$\begin{cases} Q_1 \\ S_2 \\ S_3 \\ S_4 \\ S_5 \\ S_7 \\ S$$

$$\begin{array}{c} S_1 \\ S_2 \\ S_3 \\ S_3 \\ S_3 \\ S_3 \\ S_3 \\ S_3 \end{array}$$
 since there's no (s) $\begin{array}{c} a \\ S_2 \\ S_3 \\ S_3 \\ S_3 \\ S_4 \\ S_3 \end{array}$ we stay in the current State

- Transition model function

you need a probab distribution per pair of actions possible.x

Let's ace one of the six prob distrib func: PMT (Sf | Si, ai)

ls in total, we have G probability distribution function to define the world

since there's no

transition to St with an, thus we stay in current state s with probability = 1. -> there's a probability of transition since in a NOW- DETERMINISTIC world there is a randomness After defining S, A, fint, we need to define a prize and punish. nomally (+) prices the program aloss to accomplish
the highest price possible -> Price: 3 variable function for (can also be deterministic/non deterministic) We can fraw a 40 Plot by grouping 30 boxes We now have defined the World, but how to define the AGENT? → we define how the agent performs the action. ACTIONS: NON DET : helps model uncertainty 1. Deterministic a= f_(s) II = Politic, since given a states it tells which action a to to. defined as a vector $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c}$ 2. NON Deterministic: $a \sim P_{\text{st}}$ (als)
(a given (or conditioned by))
s state given Si, we have m probabilities
since we have m possible actions

1 } each row sums 1 Transition model: PMT (Sf | s,a) $S_1 = S_1$ $S_1 = S_2$ $S_2 = S_3$ $S_3 = S_3$ $S_4 = S_4$ $S_4 = S_4$ $S_4 = S_4$ $S_5 = S_4$ $S_6 = S_6$ S_6 Deterministic action perform a ofter seeing the tables while 0.7Non deterministic action

the stochustic

103 world $P_{\pi}(a|S_b) = 1$ action a action a These are the probabilities of the agent -> How does the agent acts inside the world? (inside the world) Los Suppose we first position agent in Si,

thus the probability of the agent taking

Getion a, 15 60% and az is 40% (Jeaded by a random generator) ton con directly goes probability prob given a of taking after to Sz go either 40 S3 to State Szor So -> The probability of arriving to S1 from S1 is = (0.6)(0.7) = 0.42