Started on	Saturday, 27 July 2024, 9:57 PM
State	Finished
Completed on	Saturday, 27 July 2024, 10:09 PM
Time taken	11 mins 55 secs
Marks	50/50
Grade	10 out of 10 (100 %)
Question 1	
Correct	
Mark 13 out of 13	
Which of the follow boundaries?	ring are models for linear classification, i.e., classifies inputs into categorical output classes by means of linear decision
1. SVM with po	olynomial kernel
2. QDA	

6. naive Bayes model on binary This rewrites to a special type of logistic regression model, see, e.g. this paper 🗹 or Sec. 2.4 in

7. DNN with linear activation This is essentially a linear function similar to a SVM.

these lecture notes 2.

8. SVM with linear kernel

9. polynomial regression

10. logistic regression

■ 11. linear regression

5. LDA

features

2 12. single-hidden-layer DNN with linear activation. This is simply a linear function.

☑ 13. SVM Vanilla support vector machines are linear models.

■ 3. linear Gaussian naive Bayes model on continuous features

■ 4. single-hidden-layer DNN with ReLU activation

Your answer is correct.

Correct

Marks for this submission: 13/13.

Question 2

Correct

Mark 8 out of 8

Match the following binary classification models $\mathbb{R}^n \to \{y_+, y_-\}, x \mapsto (t < \operatorname{discr}_{\theta}(x))$ to their discriminator definitions. The models to assign are:

- SVM: The distance of to the decision hyperplane exceeds a margin
- Logistic regression: The probability of class y_+ is greater than 0.5
- QDA: The (normal) conditional probability of class $y_{\scriptscriptstyle +}$ is greater than that of $y_{\scriptscriptstyle -}$
- LDA: as QDA, but with equal covariance matrices
- Linear Gaussian Naive Bayes: The conditional probability of class y_+ is greater than that of y_-

$$f(x) = y_+ \text{ if } ...$$

$$\begin{split} 1 &< \frac{P(y_{+}) \exp(\frac{1}{2}(x - \mu_{+})^{T} \Sigma_{+}^{-1}(x - \mu_{+}))}{P(y_{-}) \exp(\frac{1}{2}(x - \mu_{-})^{T} \Sigma_{-}^{-1}(x - \mu_{-}))} \\ 1 &\leq \frac{\exp(\frac{1}{2}(x - \mu_{+})^{T} \Sigma_{-}^{-1}(x - \mu_{+}))}{\exp(\frac{1}{2}(x - \mu_{-})^{T} \Sigma_{-}^{-1}(x - \mu_{+}))} \end{split}$$

 $(0.5 < P(pm y \mid x) = \frac{(w^Tx+b)}{1 + \exp(w^Tx + b)})$

 $(1 \leq \sqrt{y})$

QDA

LDA

Logistic regression

Linear Gaussian Naive Bayes

SVM

Your answer is correct.

Correct

Marks for this submission: 8/8.

Question 3 Correct

Mark 3 out of 3

Match the following optimization objectives to their respective dual formulation.

- (A) \(\text{argmin}_x x^T c \quad\text{ s.t. } Ax\leq b \)
- (B) \(\text{argmin}_w \frac{1}{2} w^Tw \quad\text{ s.t. } Aw + b \leq 0 \)
- (C) \(\\text{argmin}_w \\frac{1}{2} \\w^Tw \\quad\\text{ s.t. } 1 \text{by y^TXw = 0 \)

(C)

 $\ (\text{text{argmax}_{\lambda = 0} - \lambda A^TA\langle + \lambda + \lambda })$

(B)

(A)

Your answer is correct.

Find more examples and derivations of some of the dualities here

These are the relevant intermediate steps:

For (A): $(L^*(\lambda) = \min_x ((c^T+\lambda^TA) - \lambda) = -\pi ((A^T\lambda) + C = 0)$.

For (C): note that this is a reformulation of the SVM objective.

Correct

Marks for this submission: 3/3.

Question 4

Correct

Mark 10 out of 10

What we have seen so far

Recall that in the lecture we saw how the optimization objective

 $\$ \text{argmin}_w \|w\|^2 \quad\text{ s.t. } \forall i: y_iw^Tx_i+b\geq 1 \$\$

of a support vector machine can be reformulated into its dual

 $\$ \text{argmax}_\lambda \text{argmin}_{w,b} L(w,b,\lambda), \quad L(w,b,\lambda) = \frac{1}{2}\|w\|^2 + \sum_i (1-y_i(w^T x_i +b)) .\$\$

With $(0 \operatorname{l}_{g}) = \operatorname{l}_{g} \$ w-\sum_i\lambda_iy_ix_i\) and $(0 \operatorname{l}_{g}) = \operatorname{l}_{g} \$ we showed how to find the optimal $(\$ as

 $\$ \lambda^* = \sum_i\lambda_i - \frac{1}{2}\sum_{i,j} \lambda_i\lambda_jy_jx_i^Tx_j .\$\$

Applying the **kernel trick**, i.e., replacing the input \(x\) by its transformed version \(\phi(x)\), we can express the \(\lambda^*\) in terms of a kernel \(\k(x,x') = \phi(x)^T\phi(x')\):

 $\$ \lambda^* = \sum_i\lambda_i - \frac{1}{2}\sum_{i,j} \lambda_i\lambda_jy_jy_j k(x_i,x_j) .\$\$

Kernelizing the remaining formulas

To express the SVM inference condition via kernels, we first need to find the formulas for \(w \) and \(b \). For this, use the equation \(\frac{dL}{dw}=0 \), and the equality \(y_b = w^T x_b + b \) which holds for any training sample \((x_b,y_b)\) on the margin's boundary.

This can then be inserted into the inference condition $(f(x) = \left(w^T x + b \right) \geq 0).$

How does this reformulate in terms of only using \(k\) instead of any mention of \(\phi\)?

- b. \($f(x) = 0 \le \sum_i k(x_i, x) + y_b \sum_i y_i k(x_i, x_b)$
- \Box c. \(f(x) = 0\leq \sum_i \lambda_iy_i k(x_i, x x_b) + y_b \)
- d. \($f(x) = 0 \leq \sum_i (k(x_i, x) k(x_i, x_b)) + y_b$
- e. \($f(x) = 0 \leq \sum_i k(x_i, x) + y_b \sum_i k(x_i, x_b)$ \)

Your answer is correct.

Correct

Marks for this submission: 10/10.

Question 5

Correct

Mark 8 out of 8

A couple of the models we have seen so far can be reformulated in terms of kernels, thus summarizing calculations of any transformation into the kernel function.

Note: A new regression model we can define is the **Naydayara-Watson kernel regression**: It simply sets the regression outcome |(f(x))| to the weighted mean of training data outcomes $|(y_i)|$. The weight for $|(y_i)|$ is the similarity between the new input $|(x_i)|$ and the respective training input $|(x_i)|$.

Match the formulations based on kernel (k) to the models from above or the lecture.

Tipp: What is the formula for |(f(x)|) for the respective models from the lecture? Can you find occurrences of some distance measurement like |(||x-x'|||) (Euclidean) or $|(x^Tx'|)$ (cosine similarity / measuring "angle) in these formulas that may be replaced by a kernel? Which of the formulas below could match them? Use a process of elimination to determine the remaining matches.

 $\label{eq:continuous} $$ (f(x) = \sum_i k(x_i,x)\left(K := \left(K := \left(K(x_i,x_j)\right)\right)_{i,j}, \\ f(x) = \left(K := \left(K(x_i,x_j)\right)_{i,j}, \\ f(x) = \sum_i k(x_i,x_j)\right)_{i,j}, \\ f(x) = \sum_i k(x_i,x_j)\left(K(x_i,x_j)\right)_{i,j}, \\ f(x) = \sum_i k(x_i,x_j)\left(K(x_i,x_j)\right)_{i,j},$

 $(f(x) = \frac{n}{k(x, x_i)})$ for some kernel s.t. $(k(\cdot, x'))$ suffices the constraints of a probability (integrates to 1).

 $(f(x) = \text{text}\{argmax}_{y_i} k(x, x_i))$

 $(f(x) = \big(0 \big) + b \big(y(x) + b \big)$

linear regression

Naydayara-Watson kernel regression

k-nearest neighbors

SVM

Your answer is correct.

Correct

Marks for this submission: 8/8.

Question 6		
Correct		
Mark 0 aut of 0		

Given below constraints from the problem formulation, which kernel is a good choice for the start?

Let's consider the following selection of (pretty standard) kernels:

- **Linear**: \(k(x,z) = x^Tz + c \)
- **Polynomial**: \(k(x,z) = (x^Tz + c)^d \)
- Radial basis function (RBF): $\langle (k(x,z) = \exp(-\gamma amma)|x-z|_2^2) \rangle$
- **Fisher**: \(k(x, z) = g(x,\theta)F^{-1}g(z,\theta) \) for the Fisher score \(g \) with respect to a joint probability distribution model specifying \(P(X, \theta)\)

We need to avoid costly hyperparameter tuning.

One only has few data points with a large number of features; the problem is prone to overfitting.

The features have complex **non-linear dependencies**.

The input features are polynomially dependent.

We need a formulation that allows for fast training.

The data for classification is **linearly separable**.

We want to do binary classification and assume an elliptical decision boundary.

The goal is to measure the **similarity of events** wrt. to a statistical model and provided evidence.

linear kernel

linear kernel

RBF kernel

polynomial kernel

linear kernel

linear kernel

RBF kernel

Fisher kernel

Your answer is correct.

Correct

Marks for this submission: 8/8.

■ 06. Quiz - Linear Models

Jump to...

08. Quiz - Version Space Learning ▶