

Introduction to Deep Reinforcement Learning Model-based Methods

Zhiao Huang

Model-free Methods

- The model p(s'|s,a) is unknown
 - we solve *Q*, *V* and the policy from the sampled trajectories/transitions

Model-based Method

Learn the environment model directly

• Learn R(s, a, s') if it's unknown

Model-based Method

 Learn the environment model directly by supervised learning

Search the solution with the model directly

Model-based Methods

Model and search have broad meanings

Model

Physics
Geometry
Probability model
Inverse Dynamics
Game Engine

. . . .

Search

MCTS

CEM

RL

iLQR

RRT/PRM

.

Model-Predictive Control

• Forward model with parameters θ

$$f_{\theta}(s,a): S \times A \to S$$

Predicts what will happen if we execute the action
 a at the state s

Forward Model

We may have a forward model in mind

Learning the Forward Model

• Sample transitions (s, a, s') from the replay buffer and train the model with **supervised learning**

$$\min_{\theta} E[\|f_{\theta}(s, a) - s'\|^2]$$

Rollout

• Predict a short trajectory s_1, s_2, \dots, s_T if we start at s_0 and execute $a_0, a_1, a_2, \dots, a_{T-1}$ sequentially

"rollout" the forward model

Model-Predictive Control

• Given the forward model f_{θ} and the current state s_0 , find a sequence of action $a_0, a_1, a_2, \dots, a_{T-1}$ such that has the maximum reward

$$\max_{a_0, T-1} \sum_{i=1}^{T} R(s_i, a_i, s_{i+1}) \text{ s.t. } s_{i+1} = f_{\theta}(s_i, a_i)$$

Random Shooting

• Sample *N* random action sequences:

$$a_0^1, a_1^1, a_2^1, \dots, a_{T-1}^1$$
 $a_0^2, a_1^2, a_2^2, \dots, a_{T-1}^2$
 \vdots
 $a_0^1, a_1^1, a_2^1, \dots, a_{T-1}^1$

Random Shooting

• Evaluate the reward of each action sequence by simulating the model f_{θ}

"rollout" the forward model $f_{\theta}(s, a)$

Random Shooting

• Return the best action sequence $a_{0:T-1}^*$ and execute in the real environment

Planning at Each Step

If we execute the searched action sequence $a_0, a_1, a_2, ...$ in the environment

- The action sequence $a_1, a_2, ..., a_{T-1}$ maximize the reward from $s_1' = f_{\theta}(s_0, a_0)$ but not s_1
- Search new actions for state s_1 again!

Model Predictive Control

- Repeat
 - Observe the current state s
 - Sample N random action trajectories
 - Evaluate the reward of each action sequence from s with the model f_{θ} ; Find the best action sequence $\{a_0^k, a_1^k, ..., a_{T-1}^k\}$
 - Execute a_0^k in the environment

Cross-Entropy Method

Black-box Function Optimization

$$\max_{x} f(x)$$

- We have many other choices
 - Cross Entropy Method

Cross-Entropy Method

- Basically the simplest evolutionary algorithm
- Maintain the distribution of solutions

Cross-Entropy Method

- Initialize $\mu \in \mathbb{R}^d$, $\sigma \in \mathbb{R}^d_{>0}$
- For iteration = 1,2,...
 - Sample *n* candidates $x_i \sim N(\mu, \text{diag}(\sigma^2))$
 - For each x_i evaluate its value $f(x_i)$
 - Select the top k of x as elites
 - Fit a new diagonal Gaussian to those samples and update μ, σ

Cross-Entropy Method (in Python)

```
def cem(f, mean, std, num_iter=10, population_size=100, elite_size=20):
    for i in range(num_iter):
        populations = np.array([np.random.normal() * std + mean for j in range(population_size)])
        values = np.array([f(j) for j in populations])
        elites = populations[values.argsort()[-elite_size:]]
        mean, std = elites.mean(), elites.std()
        return mean
```

Model Predictive Control

Hyper parameters

$$\mu_a$$
, σ_a , n_{iter} , n_{pop} , n_{elite}

- Initialize an action sequence $\mu = \{a_i = \mu_a\}_{i < T}$
- Repeat
 - Observe the current state s
 - Search the new action sequence with CEM $\{a'_0, a'_1, ..., a'_{T-1}\} = \text{CEM}(\mu, \{\sigma_a\}_{i < T})$
 - Execute a'_0 in the environment
 - Update $\mu \leftarrow \{a'_1, a'_2, ..., a'_{T-1}, \mu_a\}$

Model Predictive Control

Hyper parameters

 μ_a , σ_a , n_{iter} , n_{pop} , n_{elite}

```
    Initialize
    Repeat
    Obse
    def cem(f, mean, std, num_iter=10, population_size=100, elite_size=20):
        for i in range(num_iter):
            populations = np.array([np.random.normal() * std + mean for j in range(population_size)])
            values = np.array([f(j) for j in populations])
            elites = populations[values.argsort()[-elite_size:]]
            mean, std = elites.mean(), elites.std()
            return mean
```

• Search the new cequence with CEIV

$$\{a'_0, a'_1, \dots, a'_{T-1}\} = CEM(\mu, \{\sigma_a\}_{i < T})$$

- Execute a'_0 in the environment
- Update $\mu \leftarrow \{a'_1, a'_2, ..., a'_{T-1}, \mu_a\}$

Notes

- CEM performs well for most control tasks
- Instead of searching for action sequence, we can also search for the parameters of the network
- General "Gradient Descent"
- CEM and Random shooting work poorly for very long horizons T or dense reward

Performance of CEM

When the model is known

Comparisons

- On-policy methods: Policy
- Off-policy methods: Value/Q
- Model-based methods: Model

Model \Rightarrow Value \Rightarrow Policy

Comparisons

- How difficult to model it
 - Q Value > Policy
 - Model depends on the priors
- Robustness
 - Model < Q Value < Policy
- Time complexity
 - Model > Q/Policy
- Data-efficient/Generalization
 - Model > Q Value > Policy

Conclusion

- Very few data / We know the model well
 - Model-based methods
- We can't model the environment and we don't want to sample too much
 - Off-policy methods
- We have enough time/money
 - Off-policy + On-policy methods