Assignment 1

André Pedrosa [85098], João Abílio [84732]

Recuperação de informação

Departamento de Eletrónica, Telecomunicações e Informática

Universidade de Aveiro

16 de outubro de 2019

1 Introdução

Este relatório apresenta uma explicação do trabalho desenvolvido para o primeiro assignment da disciplina "Recuperação de Informação", explicando as decisões tomadas e o funcionamento da solução.

A linguagem de programação usada foi o Java e o programa desenvolvido tem como objetivo indexar uma coleção de documentos, criando um index invertido que faz a associação entre termos e os documentos nos quais aparece-se.

No fim serão apresentados resultados às questões colocadas no enunciado do assignment com o index resultante do programa.

Devido ao elevado número de classes criadas, o diagrama de classes vai ser dividido em vários que vão sendo apresentados ao longo do relatório. Estes diagramas foram gerados através do IDEA IntelliJ, consequentemente em anexo é disponibilizada a legenda da convenção usada.

2 Decisões de implementação

Durante a implementação deste assignment não foi dada atenção a questões de memória, no entanto seguimos uma aproximação de iterativa em que o pedido de informação (conteúdo de ficheiros a ler, documentos, ...) pode ser condicionado segundo as limitações de memória em implementações futuras facilmente.

Partes da nossa solução foram moduladas já a pensar nos futuros assignments, possibilitando a indexação ser feita em diferentes formatos de documentos e a informação presente no index poder variar.

3 Data Flow

Figure 1: Diagrama de sequência da solução

O pipeline da nossa solução está implementado no método main da classe Main. Primeiramente, aqui é instanciado o respetivo Tokenizer e o Indexer.

O Main instância um classe do tipo CorpusReader, sobre a qual fará um for each, no qual em que cada iteração receberá um FileParser. O Main itera também com um for each sobre o FileParser. Para cada ciclo do último for each mencionado, a classe FileParser está continuamente a ler linhas do ficheiro até ter um documento válido. Neste momento, passa o conteúdo lido a um DocumentParser que extrai do documento a informação importante (identifier e outros campos) criando uma classe Document, a qual será devolvida para o for each no método main.

Este documento é registado no index (associar um document id ao identifier do documento) e posteriormente os seu termos são indexados.

Por último, as estruturas internas do index são escritas para disco.

4 Packages

Figure 2: Árvore de packages da solução

Nesta secção vai ser apresentada uma descrição para cada package presente na nossa solução apresentando as principais classes e os seus principais métodos.

4.1 main

Neste package encontra-se a classe com o método main onde é feito o processamento dos argumentos e opções do programa e onde é definido o pipeline de processamento.

Tem ainda a classe responsável por consultar o index de maneira a obter os dados para responder às questões propostas no enunciado.

4.2 parsers

Neste package encontram-se as classes com a responsabilidade de fazer o processamento do corpus. Este processamento engloba percorrer a pasta do corpus, abrir os vários ficheiros, retirar os documentos dos ficheiros e recolher as as partes a indexar dos documentos.

4.2.1 parsers.corpus

Package onde é feita a iteração sobre os ficheiros a serem indexados, criando as classes necessárias para as classes seguintes poderem ler destes ficheiros.

A classe CorpusReader implementa a interface Iterable o que permite receber os ficheiros a processar numa aproximação do tipo iterativa, como foi mencionado anteriormente. Quando é

Figure 3: Diagrama de classes do package parsers.corpus

chamado o método *hasNext* do iterador da classe CorpusReader, a pasta do corpus é percurida recursivamente (usando uma stack para continuar a recursividade nas chamadas seguintes) até encontrar um ficheiro, o qual será retornado na próxima chamada do método *next*.

Nesta altura é necessário escolher o FilePaser (mencionado mais à frente) adequado para o tipo de ficheiro para isso a classe CorupusReader tem uma interface ResolveFileParser que é responsável por fazer a associação entre o ficheiro e FileParser adequado. Para este assignment foi desenvolvido uma classe que escolhe o FileParser segundo a extensão do ficheiro.

4.2.2 parsers.files

Figure 4: Diagrama de classes do package parsers.files

Mais uma vez, para obtermos os documentos de cada ficheiro seguimos uma aproximação iterativa, em que a classe FileParser implementa a interface Iterable. O método *hasNext* do iterador da classe FileParser lê linha a linha de um BufferedReader até que o método *handleLine* retorne uma referência para um objeto do tipo Document (do package parsers.documents) não nula, a qual será retornada na próxima chamada do método *next*.

Para cada formato de ficheiro diferente deverá ser criada uma classe descendente da classe FileParser, implementando o método *handleLine* que retorna objetos Document quando as linhas lidas até ao momento completam um documento, e o método *inputStreamToBufferedReader*, que transforma uma InputStream num BufferedReader permitindo inserir os necessários wrappers. Este último método permite abrir todos os ficheiros da mesma maneira e deixando para os FileParsers a responsabilidade de criar os necessários wrappers. Exemplo: InputStream > GZIPInputStream > InputStreamReader > BufferedReader.

4.2.3 parsers.documents

Figure 5: Diagrama de classes do package parsers.documents

O documento devolvido no método *handleLine* resulta do parsing do conteúdo do documento por um DocumentParser. O objetivo desta classe é retirar do conteúdo do documento a informação necessária para a indexação e criar um objeto Document associado. Este objeto tem um id que é incrementado a cada Document criado, não havendo ids repetidos, um identifier, que é utilizado para fazer a associação do id para ao documento, e apresenta uma lista do conteúdo a ser tokenizado e posteriormente indexado.

Para cada formato diferente de documentos deverá ser criada uma classe descendente da classe DocumentParser, implementando o método *parse* que percorre o conteúdo do documento lido e retira a informação a tokenizar. Isto é útil para casos por exemplo em que tenhamos um ficheiro comprimido (.gz) e outro em plain text, em que em ambos os documentos estão no mesmo formato, permitindo-nos usar o mesmo document parser para os dois casos.

4.3 tokenizer

Figure 6: Diagrama de classes do package *tokenizer*

Aqui encontram-se as classes que transformam partes dos documentos em termos (Tokenizers). A classe principal, BaseTokenizer, é a classe base das diferentes implementações de tokenizers. As classes descendestes desta devem implementar o método *tokenizeString* on aplicam regras ao conteúdo recebido, devolvendo uma lista de termos. Para os tokenizers não existe a noção de documento, simplesmente aplicam regras a conteúdo recebido.

No nosso tokenizer avançado mantemos as palavras com hífen, eliminamos termos com apenas dígitos e com menos de 3 caracteres e aplicamos ainda stemming e uma filtragem de stop words.

4.3.1 tokenizer.linguestic_rules

De maneira a poder aplicar as mesmas regras em diferentes tokenizers foi criado uma interface comum que aplica regras linguísticas a termos. Estas regras linguísticas podem ser, por exem-

Figure 7: Diagrama de classes do package tokenizer.linguistic_rules

plo, fazer a exclusão se certos termos que cumprem um conjunto de regras (Stop Words) ou a transformação dos termos (Stemmer).

4.4 indexer

Figure 8: Diagrama de classes do package indexer

Package com as classes que armazenam em memória o index invertido e a associação entre o id de um documento e o seu identifier.

Aqui está presente a class BaseIndexer que serve como classe base para diferentes implementações de indexers. O index invertido é guardado numa estrutura do tipo mapa, permitindo ao programador definir a implementação desta interface, sendo por defeito usado um HashMap. A classe base referida é genérica o que possibilita que sejam criados diferentes indexers com a mesma

estrutura, o que leva às classes descendentes a implementar o método *indexTerms* que guarda os termos de um documento no index invertido, com as estruturas especificas desse indexer.

4.4.1 indexer.structures

Figure 9: Diagrama de classes do package indexer.structures

Neste package estão os blocos que constroem o index invertido e que permitem a extensibilidade do mesmo. Tanto a chave do index invertido como o valor presente na lista associada descende do tipo Block que possui uma key (no caso do termo é o próprio term e nos documentos o seu id) pela qual é comparável entre si. Em casos em que seja necessário ter mais informação associada (contagens por exemplo) a classe BlockWithInfo, descendente de Block, permite isso mesmo.

Para distinguir termos de documentos foram criadas as interfaces BaseTerm e BaseDocument, logo classes que guardam informação sobre termos devem descender do tipo Block e implementar a interface BaseTerm e classes que guardam informação sobre documentos devem descender do tipo Block e implementar a interface BaseDocument.

4.4.2 indexer.persisters

Figure 10: Diagrama de classes do package indexer.persisters

Aqui encontram-se as classes responsáveis por implementar as diversas estratégias de guardar as estruturas internas da class BaseIndexer para disco. Como este indexer apresenta duas estruturas internas, damos a possibilidade de criar diferentes estratégias para cada estrutura, assumindo sempre que guardamos para o mesmo ficheiro as duas estruturas. A classe BaseIndexer, no método *persist*, recebe um BasePersister que irá aplicar a estratégia para guardar ambas as estruturas.

Figure 11: Diagrama de classes do package *indexer.persisters.inverted_index* à esquerda e do package *indexer.persisters.document_identification* à *direita*

5 Resultados

Resultados usando apenas o ficheiro $2004_TREC_ASCII_MEDLINE_1.gz$

	SimpleTokenizer	AdvancedTokenizer
Tempo de indexação (mm:ss)	3:13	2:09
Tamanho do index em disco (MB)	238	209
Tamanho do vocabulário	254914	427035
Primeiros 10 termos (em ordem al-	aaaa	000case
fabética) que aparecem em apenas um	aaaai	000diseasegen
documento	aaaasf	000for
	aaaat	000g
	aaab	000gener
	aaact	000iu
	aaaction	000kb
	aaaga	000mer
	aaah	000meter
	aaahc	000molecularweight
Dez termos com a maior frequência	and: 1014861	cell: 144666
nos documentos	the: 1011732	patient : 137526
	with: 311814	effect: 134752
	for: 304357	human: 109488
	from: 117323	studi : 106189
	patients : 112027	use: 87725
	human: 106054	activ: 87489
	cell: 90208	rat: 81501
	cells: 85435	diseas : 79692
	study: 84058	treatment: 78885

6 Anexos

tem	Description		
<u>_</u>	The green arrow corresponds to the implements clause in a class declaration.		
	The gray arrow corresponds to a call fom the origin class of a method of the destination class.		
7	The blue arrow corresponds to the extends clause in a class declaration.		
Ĵ	This sign appears for the inner classes.		
Icor	n Description		
C	Class		
(C)	Abstract class		
I	Interface		
m	Method/function		
(<u>m</u>)	Interface method		
m	Static method		
¢	Constant		
f	Field		
P	Property		
	Final annotation		
Visi	bility modifiers		
<u>a</u>	Private		
ę	Protected		
-	Public		
*	Static		