Axioma de Pegularidad $A \neq \emptyset \Rightarrow J \times (X \in A + Yy(y \in X \Rightarrow y \notin A))$ Nota: Si $\forall X, X \in A + X \in S \text{ conjunto}$ $A \neq \emptyset \Rightarrow J \times (X \in A + X \cap A = \emptyset)$ $A \neq \emptyset \Rightarrow J \times (X \in A + X \cap A = \emptyset)$

Teorema 106: \neg (AEB & BEA)

dem:

Sean AB congunto. For contradicción supón
garl que AEB & BEA. Por ax. de parejas,

garl que AEB & BEA. Por ax. de parejas,

AE 1ABY & BEJABY \Rightarrow AE BOSABY.

BE AD 4ABY.

SI XE DABY \Rightarrow X= A O X=B (por ax. Parejas)

SI XE DABY \Rightarrow X= A O X=B (por ax. Parejas)

Nor ax. de Regularidad. \exists XE DABY. \Rightarrow XO (AB) = ϕ .

SI X=B \Rightarrow BOJABY = ϕ \Rightarrow B \in ϕ (>>>)

SI X=B \Rightarrow BOJABY = ϕ \Rightarrow A \in ϕ (>>>)

SI X=B \Rightarrow BOJABY = ϕ \Rightarrow A \in ϕ (>>>)

1 (AEB & BEA)

Teorema 107: AC AXA \Rightarrow A = ϕ dem: Sea A un conjunto \Rightarrow AS AXA \Rightarrow A \Rightarrow C \Rightarrow A \Rightarrow C \Rightarrow A \Rightarrow C \Rightarrow A \Rightarrow C \Rightarrow A \Rightarrow A \Rightarrow C \Rightarrow A \Rightarrow A \Rightarrow C \Rightarrow A \Rightarrow A \Rightarrow A \Rightarrow C \Rightarrow A \Rightarrow A \Rightarrow A \Rightarrow C \Rightarrow A \Rightarrow A

A Z-F

Ax. Reemplazo

Ax. Infinitud

Ax. Infinitud

Ax. Elección

Ax. Elección

Ax. Elección

Ax. Parejas

Ax. Potencia

Ax. Potencia

Ax. Potencia

Ax. Potencia

Ax. Suna

