Clase 4: Categorización de textos

Enfoques Clásicos y Neuronales a la Minería de Texto

Marcelo Errecalde^{1,2}

¹Universidad Nacional de San Luis, Argentina ²Universidad Nacional de la Patagonia Austral, Argentina ³

Resumen

- Categorización de textos
- Etapas del aprendizaje (supervisado) de clasificadores
 - Etiquetado
 - Extracción de características
 - Entrenamiento (aprendizaje automático)
 - Evaluación de un clasificador

Categorización de textos

Dados

- Una colección de documentos D
- ullet Un conjunto de categorías $\mathcal{C} = \{ oldsymbol{c}_1, \dots, oldsymbol{c}_{|\mathcal{C}|} \}$

Categorización de textos

Dados

- Una colección de documentos D
- Un conjunto de categorías $C = \{c_1, \dots, c_{|C|}\}$

Categorización de textos es la tarea de asignar los documentos en $\mathcal D$ a las categorías en $\mathcal C$

Categorización de textos

Ejemplos:

Problema	Texto	Categorías (C)	
detección de "spam"	e-mails	{si, no}	
identificación de autores	documentos	autores	
categorización	cables de	secciones del	
de noticias	noticias	periódico	
WSD	palabras con	significados	
	su contexto	de la palabra	
detección	conversación	{si, no}	
de pedófilos	del chat		
orientación política	blog	{oficialista, opositor}	
Determinar género	twitter	{f, m}	
análisis de opiniones	evaluación	{positiva, negativa}	

Enfoques para la clasificación de textos

- Categorización manual
- Sistemas basados en reglas (codificadas manualmente)
- Enfoques basados en aprendizaje automático

Clasificación Manual

Clasificación basada en reglas (manualmente codificadas)

Sistemas de aprendizaje automático

Idea intuitiva: intentar reproducir un proceso de clasificación correcto/ideal (*clasificador*_{ideal}),

Idea intuitiva: ... que para cada entrada (documento a clasificar) d

Idea intuitiva: ... que para cada entrada (documento a clasificar) d, genera una salida c (la clase de d)

Idea intuitiva: ... usando ejemplos $\langle d, c \rangle$ del comportamiento de *clasificador*_{ideal},

Idea intuitiva: ... usando ejemplos $\langle d, c \rangle$ del comportamiento de *clasificador*_{ideal}, para entrenar otro clasificador (*modelo*)

Idea intuitiva: ... cuyos comportamientos sean tan parecidos como sea posible.

Puntos claves:

 las salidas (clasificaciones) de clasificador_{ideal} y modelo deberían coincidir respecto a los ejemplos de entrenamiento pero (y más importante),

Puntos claves:

- las salidas (clasificaciones) de clasificador_{ideal} y modelo deberían coincidir respecto a los ejemplos de entrenamiento pero (y más importante),
- deberían coincidir sobre casos (documentos) no presentes en el conjunto de entrenamiento (generalizar)
- Este proceso, en matemática, se conoce como aproximación de una función

- Etiquetado
- Extracción de características
- Entrenamiento
- Uso y evaluación

Etiquetado

Extracción de características

Representación vectorial de documentos: visión general

Peso de la palabra j en el documento i

Lista de strings (con la clase)

Representación "Bolsa de Palabras" (con la clase)

Aprendizaje automático

Aprendizaje de un clasificador

Idea: aproximar la función ideal de clasificación:

$$f: \mathcal{D} \mapsto \mathcal{C}$$

con un conjunto de entrenamiento E, de ejemplos $\langle \vec{x}, f(\vec{x}) \rangle$

Un clasificador muy simple: k-NN

Otro clasificador muy usado: redes neuronales (NN)

Evaluación y uso

Algunas alternativas para evaluar una hipótesis

- El conjunto E se usa para entrenamiento y evaluación
- Separar la evidencia en un conjunto de entrenamiento y un conjunto de test (prueba).
- Validación cruzada

Entrenamiento y evaluación sobre el mismo conjunto

Problemas:

- sobreajuste (overfitting)
- subajuste (underfitting)

Entrenamiento y evaluación sobre conjuntos separados

Permite detectar el sobreajuste cuando la hipótesis arroja resultados mucho mejores para el conjunto de entrenamiento que el de test. Problemas:

- Resultados muy dependientes de la partición
- Escasez de datos

Evaluación mediante validación cruzada (cross validation)

Medidas de evaluación de clasificadores

Un método usual para medir las bondades de un clasificador, es considerar la exactitud (accuracy) del modelo, que mide esencialmente el porcentaje de aciertos de la hipótesis aprendida.

Esta medida se obtiene fácilmente a partir de la matriz de confusión.

Si se deben categorizar textos en n clases, corresponderá una matriz de confusión M de $n \times n$.

Matriz de confusión

Cada componente $M_{i,j}$ es el número de casos en que la hipótesis h predijo el valor i y el valor real era j.

Ejemplo: Identificación de Autoría

	Real (f(x))				
		Borges	Cortázar	Arlt	
Estimado $(h(x))$	Borges	71	3	1	
	Cortázar	8	7	1	
	Arlt	4	2	3	

La exactitud se calcula dividiendo el número de casos en la diagonal (aciertos) por el número total de casos testeados:

$$acc_T(h) = \frac{71+7+3}{71+3+1+8+7+1+4+2+3} = \frac{81}{100} = 0.81$$

Otras medidas de evaluación

Precisión (precision) y alcance (recall)

	Real (f(x))				
		Borges	Cortázar	Arlt	
Estimado $(h(x))$	Borges	71	3	1	
	Cortázar	8	7	1	
	Arlt	4	2	3	

$$\pi_{\textit{Borges}} = \frac{71}{71 + 3 + 1} = 0.947$$

$$\rho_{\textit{Borges}} = \frac{71}{71 + 8 + 4} = 0.855$$

Combinando π y ρ

 Rara vez precision y recall son consideradas en forma aislada

Combinando π y ρ

- Rara vez precision y recall son consideradas en forma aislada
- Alternativas: medidas combinadas como la "F-measure" (medida F):

$$F = \frac{2\pi\rho}{\pi + \rho}$$

Combinando π y ρ

- Rara vez precision y recall son consideradas en forma aislada
- Alternativas: medidas combinadas como la "F-measure" (medida F):

$$F = \frac{2\pi\rho}{\pi + \rho}$$

 La medida previa es un caso particular (F₁) de la función F_β:

$$F_{\beta} = \frac{(\beta^2 + 1)\pi\rho}{\beta^2\pi + \rho}$$

para algún $0 \le \beta \le +\infty$

Combinando π y ρ

- Rara vez precision y recall son consideradas en forma aislada
- Alternativas: medidas combinadas como la "F-measure" (medida F):

$$F = \frac{2\pi\rho}{\pi + \rho}$$

 La medida previa es un caso particular (F₁) de la función F_β:

$$F_{\beta} = \frac{(\beta^2 + 1)\pi\rho}{\beta^2\pi + \rho}$$

para algún $0 \le \beta \le +\infty$

• Usualmente $\beta = 1$ (igual peso a π y ρ)

Entrenamiento y evaluación de un clasificador

A continuación, se verá de que manera:

Cargar un conjunto de datos etiquetado en scikit-learn

Entrenamiento y evaluación de un clasificador

A continuación, se verá de que manera:

- Cargar un conjunto de datos etiquetado en scikit-learn
- Entrenar uno o más clasificadores mediante distintos métodos de aprendizaje (SVM, Bayes "Ingenuo", etc)

Entrenamiento y evaluación de un clasificador

A continuación, se verá de que manera:

- Cargar un conjunto de datos etiquetado en scikit-learn
- Entrenar uno o más clasificadores mediante distintos métodos de aprendizaje (SVM, Bayes "Ingenuo", etc)
- Evaluar los resultados obtenidos