Step-1

Given that the average of four times is $\hat{t} = \frac{1}{4}(0+1+3+4) = 2$.

And the average of the four $b\hat{a}\in TM_S$ is $\hat{b} = \frac{1}{4}(0+8+8+20) = 9$

(a) We have to verify that the best line goes through the center point $(\hat{t}, \hat{b}) = (2,9)$.

First to write the equation that would hold if a line could go through the given point.

Then every C + Dt would agree exactly with b.

Now
$$Ax = b_{is}$$

$$C + 2t = 9$$

$$\begin{array}{cc}
 \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 9 \end{bmatrix}$$

Where
$$A = \begin{bmatrix} 1 & 2 \end{bmatrix}$$
, $x = \begin{bmatrix} C \\ D \end{bmatrix}$ and $b = \begin{bmatrix} 9 \end{bmatrix}$

Step-2

We know that the least-square solution is $A^T A \hat{x} = A^T b$.

Now

$$A^{T} A \hat{x} = A^{T} b$$

$$\Rightarrow \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 9 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1(1) & 1(2) \\ 2(1) & 2(2) \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 1(9) \\ 2(9) \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 9 \\ 18 \end{bmatrix}$$

Step-3

Applying $R_2 \rightarrow R_2 - 2R_1$, we get

$$\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \overrightarrow{C} \\ \overrightarrow{D} \end{bmatrix} = \begin{bmatrix} 9 \\ 0 \end{bmatrix}$$

$$\Rightarrow \overrightarrow{C} + 2\overrightarrow{D} = 9$$

We have C = 1, D = 4 satisfies above equation

$$\hat{x} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$
 Therefore

Hence the best line b = 1 + 4t passes through the center point $(\hat{t}, \hat{b}) = (2, 9)$.

(b) We have to explain why $C + D\hat{t} = \hat{b}$ comes from the first equation in $A^T A \hat{x} = A^T b$

We know that the normal equation is $Cm + D\sum t_i = \sum b_i$

 \hat{A} Divided by both sides with m, we get

$$\hat{\mathbf{A}} \hat{\mathbf{A}} \hat{\mathbf{A}} \hat{\mathbf{A}} \hat{\mathbf{A}} \hat{\mathbf{A}} = \frac{\sum t_i}{m} \hat{\mathbf{A}} \hat{\mathbf{a}} \in \hat{\mathbf{a}} \in \hat{\mathbf{A}}.$$

$$\hat{A} \hat{A} \hat{A} \hat{A} \hat{A} \hat{A} \hat{A}$$
 Here $m = 1, \sum t_i = 2, \sum b_i = 9$

Hence (1) is equivalent to
$$C + D\hat{t} = \hat{b}$$
, where $\hat{t} = \frac{\sum t_i}{m} = 2$, $\hat{b} = \frac{\sum b_i}{m} = 9$.