

2019年全国1高考

数学文科试卷

获取更多源码,请关注微信公众号:**橘子数学**

满分150分,120分钟完成,允许使用计算器,答 案一律写在答题纸上.

_	选择题	本大题共12小题,	共60分
	处]丰政	平人巡告 12 小巡,	大 00 万

A. 2 B. $\sqrt{3}$

C. $\sqrt{2}$ D. 1

2. 己知集合 $U = \{1, 2, 3, 4, 5, 6, 7\}, A = \{2, 3, 4, 5\}, B = \{2, 3, 6, 7\}, 则 <math>B \cap C_U A =$ ____.

A. $\{1, 6\}$

B. {1,7} C. {6,7} D. {1,6,7}

3. 己知 $a = \log_2 0.2, b = 2^{0.2}, c = 0.2^{0.3}$,则 _____.

A. a < b < c B. a < c < b C. c < a < b D. b < c < a

4. 古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 $\frac{\sqrt{5}-1}{2}$ ($\frac{\sqrt{5}-1}{2}$ \approx 0.618, 称为黄金分割比例), 著名的" 断臂维纳斯" 便是如此.

此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 $\frac{\sqrt{5}-1}{2}$.

若某人满足上述两个黄金分割比例, 且腿长为 105cm, 头顶至脖子下端的长度为 26cm, 则其身 高可能是 ____.

A. 165cm

B. 175cm

C. 185cm

D. 190cm

图 1: 第 4 题

- 5. 函数 $f(x) = \frac{\sin x + x}{\cos x + x^2}$ 在 $[-\pi, \pi]$ 的图象大致为 _____.
 - A. 见下图
- B. 见下图
- C. 见下图
- D. 见下图

图 2: 第 5 题

- 6. 某学校为了解 1000 名新生的身体素质,将这些学生编号为 1,2,… 1000,从这些新生中用系统抽 样方法等距抽取 100 名学生进行体质测试, 若 46 号学生被抽到, 则下面 4 名学生中被抽到的 是 ____.
 - A. 8 号学生
- B. 200 号学生 C. 616 号学生
- D. 815 号学生

7. $\tan 255^{\circ} =$ ____.

A.
$$-2 - \sqrt{3}$$
 B. $-2 + \sqrt{3}$ C. $2 - \sqrt{3}$ D. $2 + \sqrt{3}$

B.
$$-2 + \sqrt{3}$$

C.
$$2 - \sqrt{3}$$

D.
$$2 + \sqrt{3}$$

8. 已知非零向量 \vec{a} , \vec{b} 满足 $|\vec{a}|=2|\vec{b}|$, 且 $(\vec{a}-\vec{b})\perp\vec{b}$, 则 \vec{a} 与 \vec{b} 的夹角为 _____. A. $\frac{\pi}{6}$ B. $\frac{\pi}{3}$ C. $\frac{2\pi}{3}$ D. $\frac{5\pi}{6}$

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{2\pi}{3}$$

D.
$$\frac{5\pi}{6}$$

9. 如图是求 $\frac{1}{2+\frac{1}{2+\frac{1}{2}}}$ 的程序框图, 图中空白框中应填入 _____.

A.
$$A = \frac{1}{2+A}$$
 B. $A = 2 + \frac{1}{A}$ C. $A = \frac{1}{1+2A}$ D. $A = 1 + \frac{1}{2A}$

$$B. A = 2 + \frac{1}{A}$$

$$C. A = \frac{1}{1 + 2A}$$

D.
$$A = 1 + \frac{1}{2A}$$

图 3: 第 9 题

- 10. 双曲线 C: $\frac{x^2}{a^2} \frac{y^2}{h^2} = 1(a > 0, b > 0)$ 的一条渐近线的倾斜角为 130° ,则 C 的离心率为 _____.
 - A. 2sin40°
- B. 2cos40°
- C. $\frac{1}{\sin 50^\circ}$
- D. $\frac{1}{\cos 50^{\circ}}$
- 11. $\triangle ABC$ 的内角 A,B,C 的对边分别为 a,b,c, 已知 $asinA bsinB = 4csinC,cosA = <math>-\frac{1}{4}$, 则 $\frac{b}{c} =$
 - A. 6
- B. 5
- C. 4
- D. 3
- 12. 已知椭圆 C 的焦点为 $F_1(-1,0), F_2(1,0),$ 过 F_2 的直线与 C 交于 A,B 两点.若 $|AF_2|$ = $2|F_2B|, |AB| = |BF_1|, 则 C$ 的方程为 ____.

- A. $\frac{x^2}{2} + y^2 = 1$ B. $\frac{x^2}{3} + \frac{y^2}{2} = 1$ C. $\frac{x^2}{4} + \frac{y^2}{3} = 1$ D. $\frac{x^2}{5} + \frac{y^2}{4} = 1$
- 二. 填空题 本大题共 4 小题, 共 20 分
- 13. 曲线 $y = 3(x^2 + x)e^x$ 在点 (0,0) 处的切线方程为 _____.
- 14. 记 S_n 为等比数列 $\{a_n\}$ 的前 n 项和, 若 $a_1=1$, $S_3=\frac{3}{4}$, 则 $S_4=$ _____.
- 15. 函数 $f(x) = \sin(2x + \frac{3\pi}{2}) 3\cos x$ 的最小值为 ______.
- 16. 已知 ∠ $ACB = 90^{\circ}$,P 为平面 ABC 外一点,PC = 2, 点 P 到 ∠ACB 两边 AC,BC 的距离均为 $\sqrt{3}$, 那么P到平面ABC的距离为 $_{-----}$.

三. 解答题 本大题共7小题,共82分

17. 某商场为提高服务质量,随机调查了 50 名男顾客和 50 名女顾客,每位顾客对该商场的服务给 出满意或不满意的评价,得到下面列联表:

	满意	不满意
男顾客	40	10
女顾客	30	20

- (1) 分别估计男、女顾客对该商场服务满意的概率;
- (2) 能否有95%的把握认为男、女顾客对该商场服务的评价有差异?

附:
$$K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
.

$P(K^2 \geqslant k)$	0.050	0.010	0.001
k	3.841	6.635	10.828

18. 记 S_n 为等差数列 $\{a_n\}$ 的前 n 项和, 已知 $S_9 = -a_5$. (1) 若 $a_3 = 4$, 求 $\{a_n\}$ 的通项公式; (2) 若 $a_1 > 0$, 求使得 $S_n \ge a_n$ 的 n 的取值范围.

- 19. 如图, 直四棱柱 $ABCD A_1B_1C_1D_1$ 的底面是菱形, $AA_1 = 4$,AB = 2, $\angle BAD = 60^\circ$,E,M,N 分别是 BC, BB_1 , A_1D 的中点.
 - (1) 证明: MN//平面 C_1DE ;
 - (2) 求点 C 到平面 C_1DE 的距离.

图 4: 第 19 题

20. 已知函数 f(x) = 2sinx - xcosx - x, f'(x) 为 f(x) 的导数. (1) 证明: f'(x) 在区间 $(0, \pi)$ 存在唯一零点: (2) 若 $x \in [0, \pi]$ 时, $f(x) \ge ax$, 求 a 的取值范围.

- 21. 已知点 A,B 关于坐标原点 O 对称, $|AB| = 4, \odot M$ 过点 A,B 且与直线 x + 2 = 0 相切.
 - (1) 若 A 在直线 x + y = 0 上, 求 ⊙M 的半径;
 - (2) 是否存在定点 P, 使得当 A 运动时,|MA| |MP| 为定值? 并说明理由.

- 22. 在直角坐标系 xOy 中,曲线 C 的参数方程为 $\begin{cases} x=\frac{1-t^2}{1+t^2}, \\ y=\frac{4t}{1+t^2} \end{cases}$ (t 为参数). 以坐标原点 O 为极点,x 轴的正半轴为极轴建立极坐标系,直线 t 的极坐标方程为 $2\rho\cos\theta+\sqrt{3}\rho\sin\theta+11=0$.
 - (1) 求 C 和 l 的直角坐标方程;
 - (2) 求 C 上的点到 l 距离的最小值.
 - (i) 求 C 和 l 的直角坐标方程;
 - (ii) 求 C 上的点到 l 距离的最小值.

23. 已知 *a,b,c* 为正数, 且满足 *abc* = 1. 证明:

$$(1) \ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \leq a^2 + b^2 + c^2;$$

(2)
$$(a+b)^3 + (b+c)^3 + (c+a)^3 \ge 24$$
.