NIRMA UNIVERSITY

Institute of Technology

Semester End Examination(IR/RPR), May 2022 B.Tech in Computer Science Engineering – Sem VI 2CS601-Theory Of Computation

Roll /]	Supervisor's Initial	
Exam N			with Date	
Time: 3 Instruction	s: 1. Attempt all ques 2. Figures to right 3. Assume necessa 4. Use section-wise	indicate full marks		Max Marks: 100
		SECTION-I		
Q:1 [CLO3]	Answer the following	ing questions		[18]
A BL-2	Find the lang $a. a \in L$;	e definition for the languaguage from the recursive de	efinition:	[06]
DL-4	Prove that for every	\in L, xb, xa and bx are in $n \ge 0$, using PMI	L.	[06]
	$\sum_{i=1}^{n} (1/i(i+1))$	$1)) = \frac{n}{n+1}$		
B	Prove that for any r	OR		[0.6]
BL-4	Trove diat for ally i	1>-4, 11! >2"		[06]
C BL-4	Find the regular expression for following regular language a. The language of strings with even number of 0's and odd nu 1's.			[06] number of
0.0	b. The language	of strings that do not end	with 01.	
Q:2 [CLO1] A BL-6	Answer the following questions			[18]
	identifiers	OFA to accept the valid C p . Assume L= [a-z, AZ], D enerated language from fo	= [0 - 9]	age [06]
	A 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

page 1/4

B BL-5 Let L_1 and L_2 be language represented by the following automata. Construct DFA representing L_2 U L_1

[06]

L2 p a, b q b r a, b

C BL-4 Define \land - closure of a set for NFA- \land . Consider the following transition table and find \land ({3,4})

[06]

q	δ (q,a)	δ (q,b)	δ (q, Λ)
1	Ф	Ф	{2 }
2	{3}	Ф	{5}
3	Ф	{4 }	Ф
4	{4 }	Ф	{1}
5	Ф	{6,7}	Ф
6	{5}	Ф	Ф
7	ф	Ф	{1}

Q:3 [CLO2] Answer the following questions

[14]

A BL-5

Minimize the following DFA.

[07]

B BL-5 Convert following NFA-^ to DFA.

[07]

OR

What is an equivalence class in a regular language? What is significance of [07] it to prove whetanguage as regular only at set of equivalence of example. It are finite if x and y belong to language I then xz and yz must sections.

Q:4	Answer the following questions	[18]
[CLO4] A BL-4	Find the equivalent CFG for following languages. (i) {ai bj ck i < j or i < k} (ii) Set of all (positive or negative) even integer. e.g. +174, -936	[06]
B BL-4	(Assume terminals = {+,-,0,1,2,3,4,5,6,7,8,9}) Convert following CFG to CNF (Chomsky Normal Form). S → AACD A →aAb ∧ C →aC a D → aDa bDb ∧	[06]
D	OR	[06]
B BL-4	Define Following terms: regular grammar is a type 0 grammar (i) Regular Grammar (ii) Context Free Grammar (iii) Context Free Grammar	[OO]
C BL-4	(iii)Language accepted by PDA Do as Directed Describe the language generated by following grammar S → aA bC b	[06]
	$A \rightarrow aS \mid bB$ $B \rightarrow bA \mid aC \mid a$	

(ii) Define an unambiguous grammar. Is following grammar unambiguous? Justify your answer.

 $S \rightarrow aSb \mid aaSb \mid \land$

 $C \rightarrow aB \mid bS$

Q:5 Answer the following questions [CLO1,3]

[18]

A Following table shows the DPDA. Find out the language accepted by DPDA [06] where starting state={q0} and accepting state = {qa,qb}

Move	State	Input	Stack	Move(s)
No		2020	Symbol	
1	q0	a	Z0	(qa,Z0)
2	q0	b	ZO	(qb,Z0)
3	qa	а	Z0	(qa,aZ0)
4	qa	а	а	(qa,aa)
5	qa	b	а	(qa, ∧)
6	qa	b	ZO	(q0,Z0)
7	qb	b	Z0	(qb,bZ0)
8	qb	b	b	(qb,bb)
9	qb	а	b	(qb, ∧)
10	qb	а	Z0	(q0,Z0)

В	Design the DPDA for $\{a^i \ b^j \ c^k \mid i \ , j \ , k >=0, j=i \ or j=k \}$	[06]
BL-6 C BL-6	Design a Top down PDA for the following CFG also trace the string a*a+a S \rightarrow S +T T	[06]
Q:6	$T \rightarrow T *a \mid a$ Answer the following questions	[14]
[CLO2, CLO4]		
	Design the Turing Machine (TM) for calculating following function f for the string x where $x \in \{a,b\}^*$, $F(x) = 0$ if x is palindrome $F(x) = 1$ if x is nonpalindrome	[07]
B BL-6	Design the TM for deleting the particular symbol initially represented by pointer. (eg:i/p string = aaba o/p string=aaa) OR	[07]
B BL-4	Define PDA and TM with all the elements. State the difference between both the automata and discuss the real time application of PDA and TM.	[07]