Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-227. Вариант 26

1. Пусть
$$z = \frac{\sqrt{3}}{2} + \frac{i}{2}$$
. Вычислить значение $\sqrt[7]{z^3}$, для которого число $\frac{\sqrt[7]{z^3}}{\sqrt{3} + i}$ имеет аргумент $-\frac{20\pi}{21}$.

2. Решить систему уравнений:

$$\begin{cases} x(11-9i) + y(12+7i) = -31+80i \\ x(8+11i) + y(12-2i) = 204+3i \end{cases}$$

- 3. Найти корни многочлена $-5x^6 10x^5 + 175x^4 + 50x^3 2770x^2 40x + 2600$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1 = -5 + i, x_2 = 4 2i, x_3 = 1.$
- 4. Даны 3 комплексных числа: 21 + 5i, 25 28i, 6 9i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1=1, z_2=\frac{\sqrt{3}}{2}+\frac{i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+1-5i| < 2\\ |arg(z+6+4i)| < \frac{\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (4, -1, 6), b = (0, 6, -1), c = (3, 3, 4). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-2,-1,14) и плоскость P:-22x-2y+50z+748=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-4, -11, 6), $M_1(1, -10, -11)$, $M_2(-7, -2, -11)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -18x - 6y - 5z + 175 = 0 \\ -7x + y - 16z + 23 = 0 \end{cases}$$

$$L_2: \begin{cases} -11x - 7y + 11z + 1316 = 0 \\ 14x + 13y + 16z - 194 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L_1 и L_2 .