ÁLGEBRA I

Doble grado en Informática y Matemáticas, 2º Curso.

Examen Extraordinario (febrero 2018)

EJERCICIO 1. Sea A un anillo conmutativo y sea I un ideal suyo. Demuestra que los ideales de A/I están en correspondencia biyectiva con el conjunto de ideales de A que contienen a I.

EJERCICIO 2. Sea $f: \mathbb{Z} \to \mathbb{N} \times \mathbb{N}$ definida como f(z) = (z,0) si z es positivo y f(z) = (0,-z) en caso contrario. Sea $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ la aplicación definida como $g(a,b) = 2^a 3^b$.

- (1) Describe la imagen de $g \circ f$.
- (2) Es $i,g \circ f$ inyectiva?
- (3) Calcula $f_*(\{4,6,9,10\})$ y $f^*(\{(0,0),(2,2),(3,1)\})$

EJERCICIO 3.

- (1) Factoriza $4 + 3i \in \mathbb{Z}[i]$ como producto de irreducibles.
- (2) Resuelve en \mathbb{Z} el siguiente sistema de congruencias

$$\begin{cases} 2x \equiv 1 \mod 13 \\ 3x \equiv 2 \mod 11 \end{cases}$$

Encuentra la menor solución de este sistema que sea mayor o igual que 1200.

(3) Determina si la ecuación

$$(7+3i)x + (5-i)y = 2$$

tiene soluciones en $\mathbb{Z}[i],$ y en caso afirmativo, encuentra todas las soluciones.

EJERCICIO 4. Estudia la irreducibilidad de los siguientes polinomios en $\mathbb{Z}[x]$ y en $\mathbb{Q}[x]$:

1

- (1) $2x^4 x^3 + 2x^2 + x + 1$
- (2) $x^5 + x^2 + 1$
- (3) $x^5 + 3x^4 + 3x^2 + 1$
- $(4) \ x^5 4x^4 2x^2 + x 1$