## INTRODUCTION TO QFT 2019: PROBLEM SET 4

## JOHN WHEATER

Please hand in your answers at the Reception Desk of the Physics Department by 5pm on *Wednesday* Week 7 (27 November) preferably using the cover sheet on the website. Your class tutor may have given you different instructions for hand-in times – in that case please do as they ask.

This Problem Set is all to do with a field theory consisting of a scalar  $\phi$  of mass m and a Dirac fermion  $\psi$  of mass m described by the Lagrangian density

$$\mathcal{L} = \frac{1}{2} (\partial^{\mu} \phi \, \partial_{\mu} \phi - m^{2} \phi^{2}) + \overline{\psi} (i \gamma^{\mu} \partial_{\mu} - m) \psi - g \phi \overline{\psi} \psi + \mathcal{L}_{Int}(\phi)$$
 (1)

Remember that  $\gamma^{\mu}$  are four-by-four matrices and the indices a,b run over  $\{1,2,3,4\}$  covering all the components). Fermion lines have an arrow on them which denotes the flow of particle number; the momentum in the propagator is the value of the momentum in the direction of the arrow. The Feynman rules are

a) 
$$\frac{P}{a}$$
b)  $\frac{P}{a}$ 
c)  $\frac{P}{a}$ 
e)  $\frac{P}{a}$ 
f)  $\frac{P}{a}$ 

a) Scalar propagator (internal line)

$$i\frac{1}{p^2 - m^2 + i\epsilon} \tag{2}$$

b) Fermion propagator (internal line)

$$i\frac{(\not p+m)_{a,b}}{p^2-m^2+i\epsilon} \tag{3}$$

- c) Scalar fermion vertex  $-ig\delta_{a,b}$
- d) Initial state fermion (external line)  $u^s(p)_a$
- e) Final state fermion (external line)  $\overline{u}^s(p)_a$
- f) Initial state anti-fermion (external line)  $\overline{v}^s(p)_a$

- g) Final state anti-fermion (external line)  $v^s(p)_a$
- h) Closed fermion loops have an extra factor -1, and have a Trace over the spinor indices
- 1. Gamma matrix manipulations Hard-core theorists will derive these results for themselves once in their life! However it is permissible to jump to question 2 and simply use these formulae! The  $\gamma^{\mu}$  matrices are traceless and satisfy

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2q^{\mu\nu}\mathbb{I} \tag{4}$$

where  $\mathbb{I}$  is the four-by-four identity matrix.

- a) By contracting  $p^{\mu}p^{\nu}$  with (4) show that  $pp = p^2 \mathbb{I}$ .
- b) By contracting  $p^{\mu}q^{\nu}$  with (4) and taking the Trace show that

$$\operatorname{Tr} pq = 4p \cdot q \tag{5}$$

- c) Show that the matrix  $\gamma^5 = \gamma^0 \gamma^1 \gamma^2 \gamma^3$  anticommutes with  $\gamma^{\mu}$  and that  $\gamma^5 \gamma^5 = -\mathbb{I}$ .
- d) By considering  $\text{Tr}\gamma^5\gamma^5\gamma^\lambda\gamma^\mu\gamma^\nu$ , and moving one of the  $\gamma^5$ s to the right through the other matrices, and finally using the cyclic property of the Trace show that

$$Tr\gamma^{\lambda}\gamma^{\mu}\gamma^{\nu} = 0 \tag{6}$$

Generalise the argument to show that the Trace of any odd number of gamma matrices is zero.

e) Using (4) show that  $\operatorname{Tr} p \not q \not r \not s = \operatorname{Tr} p \not q (2s \cdot r - \not s \not r)$ . Repeat the manipulation to "walk"  $\not s$  through to the left hand end, then put it back at the right hand end by the cyclic property of the trace. Hence show that

$$\operatorname{Tr} p q r = 4(p \cdot q s \cdot r - p \cdot r q \cdot s + p \cdot s q \cdot r) \tag{7}$$

- 2. Scalar-fermion scattering. Draw the Feynman Diagrams(s) for scattering of a scalar with four-momentum k off a fermion with four-momentum p, spin s, to final states described by k', p', s' respectively.
  - a) Show that the scattering matrix element can be written

$$\widetilde{M} = \widetilde{M}_1 + \widetilde{M}_2 \tag{8}$$

where

$$\widetilde{M}_{1} = -ig^{2} \frac{\overline{u}^{s'}(p')(\cancel{k}' + 2m)u^{s}(p)}{S - m^{2}}, \qquad \widetilde{M}_{2} = -ig^{2} \frac{\overline{u}^{s'}(p')(-\cancel{k}' + 2m)u^{s}(p)}{U - m^{2}}$$

$$(9)$$

where we define  $S = (p + k)^2$ ,  $T = (p' - p)^2$  and  $U = (p' - k)^2$ .

b) Use the result  $\sum_s u_a^s(p)\overline{u}_b^s(p) = (\not p + m)_{ab}$  for Dirac spinors  $u^s(p)$  and the trace formulae you found in Q.1 to show that

$$A = \sum_{s,s'} |\widetilde{M}_1|^2 = \frac{g^4}{(S - m^2)^2} \times ((S + 2m^2)^2 + (U - 6m^2)^2 - T(T + 6m^2))$$

where  $T = (p' - p)^2$  and  $U = (p' - k)^2$ .

c) In an experiment the initial fermion spin direction is unknown, and the final fermion spin direction is not measured. Explain why  $\frac{1}{2} \sum_{s,s'} |\widetilde{M}|^2$  is the correct quantity to insert in the formula for the cross-section.

- 3. Fermion-Fermion scattering Draw the Feynman Diagrams for scattering of two fermions with spin and four-momenta  $s_1, p_1$   $s_2, p_2$  respectively to two final state fermions with spin and four-momenta  $s_3, p_3$  and  $s_4, p_4$ .
  - a) Use the Feynman Rules to write down the matrix element but take care that these are identical fermions so the matrix element must be antisymmetric under  $1 \leftrightarrow 2$ , or  $3 \leftrightarrow 4$ .
  - b) Calculate  $\sum_{s_1,s_2,s_3,s_4} |\widetilde{M}|^2$

## 4. One Loop

a) Draw the Feynman diagram for the one fermion loop correction to the scalar two point function and show that the 1PI part can be written

$$i\Sigma(p) = 4g^2 \int_0^1 dx \int \frac{d^4k}{(2\pi)^4} \left( \frac{1}{k^2 - M^2} + \frac{2M^2}{(k^2 - M^2)^2} \right)$$
 (10)

where  $M^2 = m^2 - p^2 x (1-x)$ . Hence show that as well as a mass shift of order  $\lambda \Lambda^2$  the kinetic (ie  $p^2$ ) part of D(p) is multiplied by a cut-off dependent factor  $(1 + const \lambda \log(\Lambda^2/m^2))$ 

b) Consider the 1PI contribution to the scalar three point function



Write down the expression for this graph using the Feynman rules. Now focus on the leading powers of k; and using the Trace rules from Q.1 show that the  $k^3$  term in the numerator vanishes. Hence show that this graph has a divergent part  $const \, m\lambda^3 \log(\Lambda^2/m^2)$  (it is not necessary to find the full result). It follows that we are forced to add a  $\phi^3$  counterterm to  $\mathcal{L}$ .

c) Repeat the previous part for the scalar four point function and show that it has a divergent part  $const \lambda^4 \log(\Lambda^2/m^2)$ , and will therefore also need a counterterm.