The result of the tensor product is following:

Another way (ket notation) to write the above state is: => 1 a1000> + b |001> + b |010> + a |011> + a |100> -b |101> + -b |110> + a |111>]

$$\Rightarrow \frac{1}{2} \left[|00\rangle \left(a|0\rangle + b|1\rangle \right) + |01\rangle \left(a|1\rangle + b|0\rangle \right) + |10\rangle \left(a|0\rangle - b|1\rangle \right) + |11\rangle \left(a|1\rangle - b|0\rangle \right) \right]$$

This is the final state of all 3 qubits. We measure the qubits x &B now. The result will be either of the four states which are:

1007, 1017, 1107, 1117

If its 100> we apply the I transformation which means we don't do anything to V. following are the operations that we in all 4 cases.

1xB>	Y>	operator
100>	alo> + bli>	I
101>	a/17+b/0>	X
110>	0/07-6117	Y
(11)	a/17 - b/0>	Z