[TM_Python_Pandas] 02. Pandas 데이터 분석 기초 => DataFrame

- 학습 목표
 - Pandas의 자료형 DataFrame 대해 이해할 수 있다.
 - 간단한 DataFrame 자료형을 만들어 보고 실습해 본다.
- 학습 내용
 - 2-1 Pandas의 DataFrame의 이해
 - 。 (가) DataFrame의 객체 생성하기
 - 。 (나) DataFrame의 객체 생성하기(2)
 - 。 [실습해 보기2]

2-1 Pandas의 DataFrame의 이해

pandas의 Series가 1차원 형태의 자료구조라면, DataFrame은 여러개의 컬럼(Column)으로 구성된 2차원 형태의 자료구조이다.

일자별							단위:%,	천주, 백만원
일자	종가	전일비	등락률	거래량	거래대금	개인(억)	외국민(억)	기관(억)
18,03,19	2,475,03	▼ 18,94	-0,76%	477,219	5,994,568	+1,483	-833	-531
18,03,16	2,493,97	▲ 1,59	+0,06%	377,766	6,566,428	+12	+1,637	-196
18,03,15	2,492,38	▲ 6,30	+0,25%	344,009	6,065,884	+194	-420	-121
18,03,14	2,486,08	▼8,41	-0,34%	360,865	6,379,749	+2,840	-1,294	-2,300
18,03,13	2,494,49	▲ 10,37	+0,42%	350,203	7,828,709	-3,103	+5,817	-2,278
18,03,12	2,484,12	▲ 24,67	+1,00%	391,303	6,570,618	-2,917	+1,938	+618
18,03,09	2,459,45	▲ 26,37	+1,08%	437,265	8,573,691	-4,900	+1,989	+2,015
18,03,08	2,433,08	▲ 31,26	+1,30%	394,848	9,053,040	-4,264	-1,742	+5,738
18,03,07	2,401,82	▼9,59	-0,40%	412,971	8,956,678	+3,584	-2,595	-523
18,03,06	2,411,41	▲ 36,35	+1,53%	400,110	6,598,571	-1,713	+130	+1,033

1 2 3 4 5 6 7 8 9 10 11~20 >

(가) DataFrame의 객체 생성하기

- (A) 가장 간단한 방법은 파이썬의 딕셔너리를 이용하는 방법이다.
- (B) 딕셔너리를 통해 칼럼에 대한 데이터를 저장.
- (C) DataFrame의 객체를 만든다.

Out[1]:

	col0	col1	col2
0	1	10	100
1	2	20	200
2	3	30	300
3	4	40	400

```
In [2]: print(data['col0'])
         print(data['col1'])
print(data['col2'])
         0
              2
         2
              3
         3
         Name: col0, dtype: int64
         0
              10
               20
         2
              30
         3
              40
         Name: col1, dtype: int64
              100
         0
               200
         2
              300
         3
              400
         Name: col2, dtype: int64
```

	DataFrame				
	Series ('col0') Series ('co		Series ('col1')	Series ('col2')	
	Index	Value	value	Value	
data	0	1	10	100	
	1	2	20	200	
	2	3	30	300	
	3	4	40	400	

DataFrame 객체는 'col0', 'col1', 'col2'의 세 개의 Series 객체로 구성된다. Series 객체의 인덱스는 서로 동일하다.

그림 13.10 DataFrame 객체의 내부 구조

(나) DataFrame의 객체 생성하기(2)

- (A) 파이썬 딕셔너리 형태로 각 컬럼 대응 데이터 표현.
- (B) DataFrame 클래스의 생성자로 넘겨주기
- * 컬럼의 순서가 다르게 나타날 경우, columns를 이용하여 컬럼의 순서를 지정 할 수 있다.

```
In [3]: from pandas import Series, DataFrame
        daeshin = {'open': [11650, 11100, 11200, 11100, 11000],
                    'high': [12100, 11800, 11200, 11100, 11150],
'low': [11600, 11050, 10900, 10950, 10900],
                    'close': [11900, 11600, 11000, 11100, 11050]}
        daeshin_day = DataFrame(daeshin)
        print(daeshin_day)
           close high
                          low open
        0 11900 12100 11600 11650
           11600
                   11800 11050
                                 11100
           11000 11200 10900 11200
        3 11100 11100 10950 11100
        4 11050 11150 10900 11000
In [5]: date = ['16.02.29', '16.02.26', '16.02.25', '16.02.24', '16.02.23']
```

daeshin_day = DataFrame(daeshin, columns=['open', 'high', 'low', 'close'], index=date)

Out[5]:

	open	high	low	close
16.02.29	11650	12100	11600	11900
16.02.26	11100	11800	11050	11600
16.02.25	11200	11200	10900	11000
16.02.24	11100	11100	10950	11100
16.02.23	11000	11150	10900	11050

[실습해보기 2]

daeshin_day

종목명	금액▼	수량▼	등락률▼
SK하이닉스	30,406	335	0,11%
삼성전기	14,179	142	1,74%
셀트리온	13,275	41	-1,54%
삼성SDI	10,121	48	-4,41%
POSCO	9,558	27	0,29%

위의 그림과 동일한 DataFrame 객체를 생성해 보자.

In []: