UGRADBENI SISTEMI

LABORATORIJSKA VJEŽBA BR. 6

Prekidi i tajmeri

Uvod

U ovoj laboratorijskoj vježbi ćemo se upoznati sa korištenjem sistema prekida na mikrokontrolerima sa ARM Cortex-M jezgrom. Više o mehanizmu prekida i tajmerima, te o sistemu prekida na ARM Cortex-M mikrokontrolerima se može pročitati u [1] i [2]. Korištenje prekida u okviru Mbed OS-a je pojašnjeno u dokumentaciji za Mbed OS API na linku [3].

ZADACI

Mbed simulator samo djelimično oponaša sistem prekida ARM Cortex-M mikrokontrolera i većina klasa se može koristiti. Izuzetak je klasa Timeout, koja se ne može koristiti u okviru Mbed simulatora. Izvršavanje rješenja zadataka je potrebno demonstrirati na razvojnim sistemima u laboratoriji.

Zadatak 1

LPC1114ETF

Na razvojni sistem LPC1114ETF isprogramirati kod 1: Potrebno je:

- detaljno analizirati kod i ponašanje sistema prilikom korištenja tastera na sistemu,
- promijeniti konstantu T na 2.0, i analizirati ponašanje sistema,
- uočiti nedostatak ovog rješenja (navesti u izvještaju!),
- napisati kod (**upotrebom prekida!**) koji ispravno obavlja željenu funkcionalnost za proizvoljno odabranu konstantu T.

Zadatak 2a

LPC1114ETF

Na razvojnom sistemu LPC1114ETF istovremeno realizirati sljedeće funkcionalnosti **bez korištenja** sistema prekida:

- na pinu **dp18** razvojnog sistema LPC114ETF realizirati generator četvrtki. Period četvrtki treba biti T=2ms.
- realizirati brojač impulsa dovedenih na pin dp9. Izbrojane uzlazne ivice prikazati kao dvije BCD cifre na LED diodama razvojnog sistema. Prikaz je takav da LED0-LED3 predstavljaju prvu cifru, a LED4-LED7 drugu cifru. Npr. ukoliko je stanje na LED 00100011 to odgovara broju 23.

Testirati ispravnost aplikacije dovođenjem impulsa (0-3.3V) sa generatora signala, uz postepeno povećanje frekvencije četvrtki. Odrediti do koje frekvencije se ispravno izvršava aplikacija (provjeravati ispravnost generisanog signala na dp18 kao i tačnost brojanja impulsa sa brojačkog ulaza na dp9.

Zadatak 2b

LPC1114ETF

Funkcionalnosti iz zadatka 2a realizirati **korištenjem sistema prekida**. Na isti način testirati ispravnost izvršavanja aplikacije. Provjeriti koja je maksimalna frekvencija pri kojoj se u ovom slučaju aplikacija korektno izvršava (navesti u izvještaju).

Napomena

U ovom zadatku razvojni sistem istovremeno obavlja dvije funkcije: generiše signal četvrtki odgovarajuće frekvencije te broji impulse koji se dovode sa generatora funkcija. Dakle, signal koji generiše mikrokontroler i signal koji generiše generator funkcija su u potpunosti neovisni jedan o drugom. Kako se koristi generator funkcija biti će objašnjeno u toku vježbe.

Zadatak 3

picoETF

Koristeći rotacijski enkoder ¹ i koristeći odgovarajući sistem prekida realizirati binarni brojač naprijed i brojač nazad. Stanje brojača prikazati na 8 LED razvojnog sistema. Ukoliko je rotiranje u smjeru kazaljke na satu stanje brojača se uvećava, a u suprotnom umanjuje. Klik na enkoder znači da se brojač postavlja na nulu. Pinout enkodera prikazan je na slici 1.

Slika 1: Pinout rotacijskog enkodera

¹Više o rotacijskom enkoderu na linku.

Hint

Za napajanje enkodera koristiti 3.3V. Pinove enkodera CLK, DT, SW povezati na pinove GPO, GP1, GP2, respektivno. Pogledati dokumentaciju picoETF za lociranje pinova na razvojnom sistemu!

```
#include "mbed.h"
#include "lpc1114etf.h"
BusOut prikaz1(LED3, LED2, LED1, LED0);
BusOut prikaz2(LED7, LED6, LED5, LED4);
DigitalOut enable(LED ACT);
DigitalIn taster(Taster_1);
const float T(0.2);
int brojac1(0);
int brojac2(0);
int main()
{
    enable=0;
    prikaz1=brojac1;
    prikaz2=brojac2;
    while(1) {
        wait us(T*1e6);
        brojac1=(brojac1+1)%16;
        if (taster) brojac2=(brojac2+1)%16;
        prikaz1=brojac1;
        prikaz2=brojac2;
    }
}
```

Listing 1: Kod za razvojni sistem LPC1114ETF u zadatku 1.

Literatura

- [1] S. Konjicija, E. Sokić (2019) Ugradbeni sistemi: Hardverski aspekti, Elektrotehnički fakultet Univerziteta u Sarajevu, ISBN 978-9958-629-77-8
- [2] S. Konjicija (2024) Predavanje Ugradbeni sistemi: Prekidi
- [3] ARM Holdings *Mbed OS API Documentation*
- [4] MicroPython projekat Dokumentacija za MicroPython za RP2040