Phylogenetic Biology Week 3

Biology 1425
Professor: Casey Dunn, dunnlab.org
Brown University
2013

Front matter...

All original content in this document is distributed under the following license:

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US)

See sources for copyright of non-original content

Sources

Some non-original content is drawn from:

Baum, D and S. Smith (2012) Tree Thinking: and Introduction to Phylogenetic Biology. Roberts and Company Publishers. ISBN 9781936221165

Swofford, D. L., Olsen, G. J., Waddell, P. J., & Hillis, D. M. (1996). Phylogenetic inference. In: Molecular Systematics, Second Edition. eds: D. M. Hillis, C Moritz, & B. K. Mable. Sinauer Associates. ISBN 9780878932825

Felsenstein, J. (2003) Inferring Phylogenies. Sinauer Associates. ISBN 978-0878931774

Other non-original content is referenced by url.

Other resources

These slides supplement the following excellent presentations from the Wood's Hole Workshop in Molecular Evolution:

Paul Lewis - http://www.eeb.uconn.edu/people/plewis/downloads/wh2012/Likelihood_WoodsHole_24July2012_1-per-page.pdf

John Huelsenbeck - https://molevol.mbl.edu/wiki/images/3/37/WoodsHoleHandout.pdf

Baum and Smith 2012, Figure 8.10

Rate matrix

The instantaneous rate of a given substitutions

Q - Rate matrix

Substitution probability matrix

The probability of a given substitution occurring in a given interval (branch length). Because of reversals, there are an infinite number of histories that could have given rise to the particular substitution. Can be derived from the rate matrix.

P - Substitution probability matrix

Substitution probability matrix

This is called matrix exponentiation

F81 model

Q - Rate matrix

P - Substitution probability matrix

		To:				
-		A	С	G	T	
From:	A	$\pi_{\rm A} + (1 - \pi_{\rm A})e^{-mt}$	$\pi_{\rm C}(1-e^{-mt})$	$\pi_{\rm G}(1-e^{-mt})$	$\pi_{\mathrm{T}}(1-e^{-mt})$	
	С	$\pi_{\mathrm{A}}(1-e^{-mt})$	$\pi_{\rm C} + (1 - \pi_{\rm C})e^{-mt}$	$\pi_{\rm G}(1-e^{-mt})$	$\pi_{\mathrm{T}}(1-e^{-mt})$	
	G	$\pi_{\rm A}(1-e^{-mt})$	$\pi_{\rm C}(1-e^{-mt})$	$\pi_{\rm G}+(1-\pi_{\rm G})e^{-mt}$	$\pi_{\mathrm{T}}(1-e^{-mt})$	
	T	$\pi_{\rm A}(1-e^{-mt})$	$\pi_{\rm C}(1-e^{-mt})$	$\pi_{\rm G}(1-e^{-mt})$	$\pi_{\mathrm{T}} + (1 - \pi_{\mathrm{T}})e^{-mt}$	

F81 model

As the branch length goes to 0, **P** becomes a diagonal matrix

	A	С	G	Т
А	1	0	0	0
С	0	1	0	0
G	0	0	1	0
T	0	0	0	1

As the branch length goes to infinity, the rows become the equilibrium base frequencies

\boldsymbol{P}		To:				
		A	С	G	T	
From:	A	$\pi_{\rm A} + (1 - \pi_{\rm A})e^{-mt}$	$\pi_{\rm C}(1-e^{-mt})$	$\pi_{\rm G}(1-e^{-mt})$	$\pi_{\mathrm{T}}(1-e^{-mt})$	
	С	$\pi_{\mathrm{A}}(1-e^{-mt})$	$\pi_{\rm C} + (1-\pi_{\rm C})e^{-mt}$	$\pi_{\rm G}(1-e^{-mt})$	$\pi_{\mathrm{T}}(1-e^{-mt})$	
	G	$\pi_{\mathrm{A}}(1-e^{-mt})$	$\pi_{\rm C}(1-e^{-mt})$	$\pi_{\rm G}+(1-\pi_{\rm G})e^{-mt}$	$\pi_{\mathrm{T}}(1-e^{-mt})$	
	T	$\pi_{\mathrm{A}}(1-e^{-mt})$	$\pi_{\rm C}(1-e^{-mt})$	$\pi_{\rm G}(1-e^{-mt})$	$\pi_{\mathrm{T}} + (1 - \pi_{\mathrm{T}})e^{-mt}$	

Baum and Smith 2012, Figure 8.8

Likelihood

Likelihood is the probability of the data (D) given a hypothesis (H):

In our case, the data is our aligned matrix (the observed sequences and their inferred homologies) and the hypothesis is a particular tree and model of character evolution

Calculating likelihood

The data:

1 of 3 possible trees:

Likelihood for site j:

$$L_{(j)} = \operatorname{Prob} \begin{pmatrix} C & C & A & G \\ A & / / \end{pmatrix} + \operatorname{Prob} \begin{pmatrix} C & C & A & G \\ C & / / / \end{pmatrix}$$

$$+ \dots + \operatorname{Prob} \begin{pmatrix} C & C & A & G \\ G & / / / \end{pmatrix}$$

$$+ \dots + \operatorname{Prob} \begin{pmatrix} C & C & A & G \\ G & / / / / / \end{pmatrix}$$
Thure 10

Swofford et al 1996, Figure 10

Calculating likelihood

The data:

Likelihood of all sites:

$$L = L_{(1)} \cdot L_{(2)} \cdot \dots \cdot L_{(N)} = \prod_{j=1}^{N} L_{(j)}$$

Log likelihood of all sites:

$$\ln L = \ln L_{(1)} + \ln L_{(2)} + \dots + \ln L_{(N)} = \sum_{j=1}^{N} \ln L_{(j)}$$

Bootstraps

Felsenstein 2003, Figure 20.2

Consensus tree

A consensus tree summarizes a set of trees that have the same taxa

Consensus tree Strict

Baum and Smith 2012, Figure 3.26

Consensus tree

The number indicates the fraction of trees that include the corresponding edge (ie, branch).