

De l'atome à la puce

Corrigé du devoir surveillé – Décembre 2011

Durée : 2 heures Calculatrices interdites (tous types)

Les exercices sont indépendants. Vous devez expliquer le détail de votre raisonnement. Un résultat non justifié ne suffit pas à obtenir les points de la question.

Les données utiles (vous pourrez éventuellement les arrondir selon les besoins du calcul) :

Soit h la constante de Planck : h = 6,626×10⁻³⁴ J s
Soit ϵ_0 la permittivité du vide. $\epsilon_0 = 8,854\times10^{-12}$ F m
On donne aussi $1/(4\pi\epsilon_0) = 8,9\times10^9$ N m² C⁻²
c = 3×10^8 m s⁻¹ (vitesse de la lumière)
Le "gap" du silicium est $E_g = 1,12$ eV à 25°C
On prendra la charge élémentaire e = $1,6\times10^{-19}$ C
k = $1,38\times10^{-23}$ J K⁻¹
Dans le silicium, $\mu_p = 0,04$ m² V⁻¹ s⁻¹ et $\mu_e = 0,14$ m² V⁻¹ s⁻¹

1. Questions de cours

a. Procédés de lithographie

- A quoi sert la résine (positive ou négative) ? 1 point

La résine sert à protéger le substrat de silicium que l'on souhaite graver.

- A quoi sert l'illumination ? 1 point

L'illumination permet de durcir la résine négative (photorésist) ou de décomposer la résine positive.

- Quel type d'irradiation doit être utilisé ? 1 point On utilise un rayonnement ultraviolet (UV).

b. Transistor nMOS

- Donnez la représentation schématique conventionnelle d'un nMOS. 1 point

- Faites un schéma « en coupe » d'un nMOS, faisant apparaître Gate, Source, Drain, Isolant, Body (précisez le dopage des différents éléments). 1 point

c. Transistor pMOS

- Donnez la représentation schématique conventionnelle d'un pMOS. 1 point

- Faites un schéma « en coupe » d'un pMOS, faisant apparaître Gate, Source, Drain, Isolant, Body (précisez le dopage des différents éléments). 1 point

2. Porte logique « NOT »

a. Transistor pMOS

Explicitez le fonctionnement d'un transistor pMOS, comme celui que vous avez décrit dans la question 1, en répondant aux questions suivantes :

- Attribuez les polarités (Body, Source, Drain). 1 point Body et Source à la masse et Drain < 0.
 - Montrez que les jonctions PN présentes sont toutes « bloquées ». 1 point

- Si $V_G < 0$, que se passe-t-il?
 - o Pourquoi un canal se forme-t-il? 1 point
 - o Pourquoi le courant peut-il passer entre la Source et le Drain ? 1 point
 - o Dans quel sens circule ce courant ? 1 point

- Discutez de l'état « passant » ou « bloqué » du transistor pMOS en fonction du potentiel de Gate (faites un tableau récapitulatif). 1 point

$V_G < 0$	Passant
$V_G = 0$	Bloqué
$V_G > 0$	Bloqué

b. Transistor nMOS

- Discutez de l'état « passant » ou « bloqué » du transistor nMOS en fonction du potentiel de Gate (faites un tableau récapitulatif). 1 point

$V_G > 0$	Passant
$V_G = 0$	Bloqué
$V_G < 0$	Bloqué

c. Porte NOT

- Faites le schéma électrique d'une porte NOT. 1 point

- Donnez la table de vérité de cette porte. 1 point

a	a
0	1
1	0

- Expliquez pourquoi la sortie vaut 1 lorsque l'entrée vaut 0. 1 point

3. Zone de charges d'espace (ou zone déserte) & jonction PN

On considère une jonction PN:

Jonction PN en court-circuit ($V_{PN} = 0V$):

- ρ(x): quantité de charge en fonction de x,
- N_A et N_D: densités des dopages P et N respectivement,
- x_p et x_n: abscisses des limites de la Zone Déserte (Zone de Charge d'Espace),
- W₀ largeur de la ZD à polarisation nulle (V_{PN} = 0V).

a. Considérations qualitatives

- Tracez qualitativement les fonctions n(x) (porteurs n) et p(x) (porteurs p) dans la ZCE. 1 point.

Si P

Se reporter au TD sur la jonction (la ZCE). p décroit entre $-x_p$ et 0 (maximum à x_p et minimum à 0), tandis que n décroit de x_n à 0 (maximum à x_n et minimum à 0).

- Pourquoi, à votre avis, la ZCE s'appelle aussi « zone déserte » ? 1 point. La jonction PN est obtenue en juxtaposant un SC dopé P et un SC dopé N. Au niveau de la jonction, on observe l'apparition d'une zone de charges d'espace, dans laquelle il n'y a pas de charges mobiles, d'où le nom de « zone déserte ou « zone de déplétion ».

b. Calculs

Soit E(x) la norme du champ électrique régnant dans la ZCE, et V_{Θ} le potentiel de jonction.

- Montrez que le potentiel de jonction est : $V_{\Theta} = -\int_{x_{D}}^{x_{D}} E(x) dx$ 1 point.

$$\vec{E}(x) = -\overrightarrow{grad}V(x) \text{ soit } E(x) = -\frac{dV(x)}{dx} \text{ et } E(x) \text{ d} x = -dV(x). \text{ Dans la zone déserte pour } x_p \leq x \leq x_n : \int_{x_p}^{x_n} dV(x) = \int_{x_p}^{x_n} -E(x) \, dx$$
 soit :
$$\overrightarrow{V}_{\Theta} = -\int_{x_p}^{x_n} E(x) \, dx$$

- Sachant que
$$E(x) dx = \frac{kT}{q} \frac{dp}{p(x)}$$
, montrez que $V_{\Theta} = +\frac{kT}{q} ln \frac{N_D N_A}{n_i^2}$ 1 point.

(avec n_i la concentration de porteurs intrinsèques)

$$V_{\Theta} = -\frac{kT}{q} \int_{x_p}^{x_n} \frac{dp}{p(x)} = -\frac{kT}{q} \left[\ln(p(x)) \right]_{x_p}^{x_n} \\ = \frac{kT}{q} \left[\ln(p(x_p)) - \ln(p(x_n)) \right] \\ = \frac{kT}{q} \left[\ln N_A - \ln \frac{n_i^2}{N_D} \right]. \\ Enfin: V_{\Theta} = +\frac{kT}{q} \ln \frac{N_D N_A}{n_i^2} \\ = \frac{kT}{q} \left[\ln (p(x_p)) - \ln(p(x_p)) \right] \\ = \frac{kT}{q} \left[\ln N_A - \ln \frac{n_i^2}{N_D} \right]. \\ Enfin: V_{\Theta} = +\frac{kT}{q} \ln \frac{N_D N_A}{n_i^2} \\ = \frac{kT}{q} \left[\ln (p(x_p)) - \ln(p(x_p)) \right] \\ = \frac{kT}{q} \left[\ln N_A - \ln \frac{n_i^2}{N_D} \right]. \\ Enfin: V_{\Theta} = +\frac{kT}{q} \ln \frac{N_D N_A}{n_i^2} \\ = \frac{kT}{q} \left[\ln (p(x_p)) - \ln(p(x_p)) \right]$$

- Application numérique.
$$N_A = 10^{18} \text{ cm}^{-3}, N_D = 10^{16} \text{ cm}^{-3}, n_i = 1 \times 10^{10} \text{ cm}^{-3},$$
 $T = 298 \text{ K}, e = 1,6 \times 10^{-19} \text{ C}$ et $k = 1,38 \times 10^{-23} \text{ J}$ K $^{-1}$. Calculez V_{Θ} . 1 point.

(pensez que $ln(u) = 2.3 \times log(u)$)

$$V_{\Theta} = 26 \cdot 10^{-3} \ln \left[\frac{10^{+24} \cdot 10^{+21}}{(1,45 \cdot 10^{+16})^2} \right] \approx +0.73 \text{ V}$$

Diode

- Tracez la caractéristique courant-tension (i=f(V)) de la diode composée de la jonction PN décrite ci-dessus. 1 point.

