

SubTab

Subsetting Features of **Tab**ular Data for Self-Supervised Representation Learning

Talip Uçar Ehsan Hajiramezanali Lindsay Edwards

Outline

Abstract Summary of our work Motivation / Background Comparing data types Challenges in tabular data **Data augmentation Parameter sharing** III. SubTab Framework Results **Applications** Summary

Abstract

Problem:

- ☐ It is not easy to design effective data augmentation methods in tabular domain
- □ Self-supervised representation learning in tabular data is understudied:
 - Lack of effective data augmentation methods
 - Lack of specialized architectures for tabular data

Our work - SubTab:

- Introduces effective methods for tabular data
- □ Achieves 98.31%, the state of the art (SOTA), on MNIST data in tabular format.
- Makes a simple MLP-based model perform on par with CNN-based SOTA models

SubTab:

Result on MNIST:

- MLP-based model applied to tabular format
- CNN-based model applied to image

Motivation / Background

Types of Data

Tabular Data

Age	ge Gender BMI		Insulin	
50	М	26.6	0	
31	F	33.6	94	

Images

Graph

Text

Audio

?

- Sequence of pixels
- CNNs*
- Parameter sharing
- Neighboring nodes
- GNNs
- Parameter sharing

- Sequence of words
- LSTMs*
- Parameter sharing

- Sequence of samples
- CNNs / LSTMs*
- Parameter sharing

Types of Data

Tabular Data

Age	Gender	ВМІ	Insulin	:
50	М	26.6	0	
31	F	33.6	94	

Images

Graph

Text

Audio

?

Sequence of pixels

CNNs*

Parameter sharing

Neighboring nodes

GNNs

Parameter sharing

Sequence of words

LSTMs*

Parameter sharing

Sequence of samples

CNNs / LSTMs*

Parameter sharing

Common factors:

Data augmentation can take advantage of structure in the data

Parameter sharing through specialized architectures

Prominent Works in Representation Learning

- Most prominent works are done in Computer Vision and NLP
- ☐ They take advantage of Data Augmentation

Computer Vision: SimCLR

NLP: BERT

Data Augmentation in Tabular Data

Tabular Data

X = Patient records

Autoencoder

De-noising Autoencoder

Context Encoder

VIME-Self

Parameter sharing in Tabular Data

Parameter sharing (or lack of it) in Tabular Data

1000 units in the first layer

Parameter sharing (or lack of it) in Tabular Data

20 million parameters in the first layer alone

SubTab

i) Dividing features into subsets

i) Dividing features into subsets

Similar to

Computer Vision

Ensemble Learning

SubTab at test time

SubTab at test time

Neighbor aggregation in GNNs

Results & Summary

Performance over different number of subsets and overlap for MNIST

Evaluation

I. Extract embeddings

II. Evaluate representation

Results on 5 datasets

Table 1: Accuracy scores for all models for various datasets. The abbreviations in the table; NC: Neighbour columns used, RF: Random features used, G: Gaussian noise used, S: Swap noise used.

Type	Models	MNIST	Income	Blog	Obesity	TCGA
Supervised	Logistic Regression	92.60±0.03	84.68 ± 0.05	84.15±0.12	62.35±4.02	36.98 ± 1.25
baseline	Random Forest	96.96±0.06	84.62 ± 0.07	83.61 ± 0.15	67.45 ± 2.23	61.62 ± 1.02
	XGBoost	98.02±0.086	86.11 ± 0.20	84.29 ± 0.23	64.05 ± 4.52	72.61 ± 1.31
Autoencoder	AE	92.77±0.32	84.67±0.07	84.06±0.24	61.96±3.28	55.16±0.75
baseline	AE w/ Dropout (p=0.2)	94.31±0.28	85.00 ± 0.10	84.18 ± 0.20	62.74 ± 4.38	56.87 ± 2.26
	DAE (RF)	96.30±0.14 (S)	84.37±0.36 (G)	84.12±0.29 (G)	56.43±5.79 (G)	54.31±1.39 (G)
	CAE (NC)	96.39±0.20 (S)	84.24±0.18 (G)	84.3±0.31 (G)	62.26±5.01 (G)	54.20±1.17 (G)
	VIME-self	95.23±0.17 (S)	84.43±0.08 (G)	84.11±0.27 (G)	66.45±4.54 (G)	55.11±1.37 (G)
Self-	SubTab with:					
supervised	Base model (No noise)	97.26±0.2	85.31 ± 0.08	84.29 ± 0.26	68.01 ± 3.07	57.02 ± 1.50
	+Noise	97.47±0.18 (S)	85.34±0.07 (G)	84.47±0.15 (G)	71.13±4.08 (G)	58.25±1.36 (G)
	+Distance loss	97.52±0.14 (S)	85.35±0.06 (G)	84.64±0.19 (G)	69.25±4.19 (G)	58.15±1.56 (G)
	+LatentDim=512	97.86±0.07 (S)	-	-	-	-

Shallow vs Deep Architecture

Table 3: Comparing shallow and deep SubTab architectures.

Model	MNIST	Income	Blog	Obesity	TCGA
Deep SubTab	97.86±0.07	85.35±0.06	84.64±0.19	$71.13{\pm}4.08$	58.25 ± 1.36
Shallow SubTab	98.31±0.06	85.34 ± 0.03	84.64 ± 0.09	66.88 ± 5.35	61.41 ± 1.11

■ MLP-based model applied to tabular format

CNN-based model applied to image

Representation Quality of SubTab

t-SNE plots for training and test set of MNIST for 4 subsets with 75% overlap

E = Encoder trained on 4 subsets with 75% overlap

E = Encoder trained on 4 subsets with 75% overlap

E = Encoder trained on 4 subsets with 75% overlap

E = Encoder trained on 4 subsets with 75% overlap

Aggregation (pooling)

Additional Experiments with MNIST

Slicing MNIST digits to 7 subsets

Trained 6 different models

Aggregation (pooling)

Aggregation (pooling)

Aggregation (pooling)

☐ We can have missing features during training and/or test time, and still perform well.

Experiment-2

Information content of individual subsets

- ☐ We can discover informative subsets
- ☐ We can even use untrained model for discovering them

Information content of individual subsets

- ☐ Information content of a subset does not depend on other subsets
 - ☐ All models trained on subset 4 has same performance

Information content of individual subsets

- ☐ Information content of a subset does not depend on other subsets
 - ☐ All models trained on subset 4 has same performance
 - ☐ Same can be seen for subset 3 and 5

Possible applications

□ Transfer learning

☐ Integrating new features over time

☐ And there are others such as distributed training, multi-modal learning and so on.

Patient	Age	ВМІ		Gender	Smoke		Income	Diet
1	67	23.2	•••	F	Ν	:	16.29	HP
2	45	30		М	Y		14.64	MP
3	74	22.6		?	Y		?	MP
4	32	28.1	•••	F	Y		?	?
5	54	?		М	N		15.28	LP

Patient	Age	BMI		
1	67	23.2		
2	45	30		
3	74	22.6		
4	32	28.1		
5	54	?		

Income	Diet		
16.29	HP		
14.64	MP		
?	MP		
?	?		
15.28	LP		

Patient	Age	ВМІ	Smoke	 	Gender	Income	Diet
1	67	23.2	Ν	 	F	16.29	HP
2	45	30	Υ	 	М	14.64	MP
3	74	22.6	Υ	 	?	?	MP
4	32	28.1	Y	 	F	?	?
5	54	?	N	 	М	15.28	LP

Patient	Age	ВМІ	Smoke	 	Gender	Income	Diet
1	67	23.2	N	 	F	16.29	HP
2	45	30	Υ	 	М	14.64	MP
3	74	22.6	Υ	 	?	?	MP
4	32	28.1	Υ	 	F	?	?
5	54	?	N	 	М	15.28	LP
Subset 1				• •		Subset 2	j

Electronic Health Records

Patient	Age	ВМІ	Smoke			Gender	Income	Diet
1	67	23.2	N			F	16.29	HP
2	45	30	Υ			М	14.64	MP
3	74	22.6	Υ			?	?	MP
4	32	28.1	Υ			F	?	?
5	54	?	N	•••		М	15.28	LP
Subset 1					• •		Subset 2	

Personalized modelling

Summary

- ☐ We showed a new method for representation learning using tabular data
- ☐ But the problem is no way solved:
 - ☐ Tabular data comes in many forms
 - ☐ There is no single solution that can fit all situations
- ☐ We will continue developing methods to address existing challenges

Thanks!

GitHub: https://github.com/AstraZeneca/SubTab

