AP03 - Turma B - 30/08/2010 Gabriel Barufi Veras (180664) João Luiz Grave Gross (180171)

Introdução

Na aula prática 03 (AP03) do dia 23/08/2010 a tarefa proposta consistiu na montagem de dois circuitos RC (vide figura 1) e análise dos sinais da tensão de entrada e tensão no capacitor nos circuitos mencionados, utilizando o osciloscópio digital da Tektroniks presente no laboratório. Realizou-se a análise dos sinais de três circuitos. A primeira e segunda análises ocorreram no circuito 1, com sinais de entrada de 12V e 5V. Já a terceira análise considerou a montagem do circuito 2, mas com tensão de entrada de 12V.

Os sinais de entrada em cada um dos três circuitos foi gerado com um gerador de sinais e a forma de onda utilizada foi a forma de onda quadrada.

Um maior detalhamento da execução da prática é apresentado nas seções que seguem.

Figura 1 - Circuitos RC montados no laboratório (componentes com os valores nominais)

Calibração dos instrumentos e preparação das montagens

Antes de iniciarmos a montagem dos circuitos testamos o osciloscópio e as ponteiras dos canais 1 e 2, para tem certeza de que todas as ferramentas de trabalho estavam funcionando. Esse teste foi feito lendo a tensão quadrada de 5V de saída do osciloscópio com as duas ponteiras, cada uma em seu respectivo canal, e ambas estavam funcionando.

Em seguida escolhemos um resistor ao acaso da bandeja de componentes, com resistência nominal de 820 Ω e dois capacitores com capacitância de 0,22 uF. Montamos o circuito 1, ajustamos a amplitude do sinal do gerador de função para 12V e conectamos os cabos do gerador no circuito.

A ponteira do canal 1 foi conectada junto a alimentação do circuito e a ponteira do canal 2 foi conectada no capacitor. A resistência real do resistor, medida com o multímetro, foi de $806~\Omega$. Por fim, ajustamos o offset do gerador de sinais, para que o sinal gerado ficasse totalmente acima do GND, ou seja, com toda a onda quadrada positiva.

Resultados

Em todos os circuitos montados, as tensões medidas na constante de tempo foram primeiramente calculadas, como segue:

Semi-ciclo crescente: $V = 12V^*(1-0.36)$ ou $V = 5V^*(1-0.36)$ Semi-ciclo descrescente: $V = 12V^*0.36$ ou $V = 5V^*0.36$

As equações utilizadas para esse cálculo foram:

 $V = Vo^*(1-e^*(-t/RC))$ e $V = Vo^*(e^*(-t/RC))$, onde V é a tensão no capacitor, V o é a tensão aplicada ao circuito, V é o tempo e V é a constante de tempo.

Logo o valor 0,36 se obtém quando t = RC, ou seja, teremos $V = Vo^*(1-1/e)$ e $V = Vo^*(1/e)$, onde 1/e é aproximadamente 0,3678 (nós arredondamos esse valor para baixo).

1) Circuito 1, 12V de entrada

Para obter o valor da constate de tempo, primeiro calculamos, como descrito anteriormente, a tensão e encontramos o ponto na tela onde a tensão equivalia a 64% ou 36% do valor de entrada, para semi-ciclo crescente e decrescente, respectivamente. Em seguida medimos a constante de tempo, considerando o ponto encontrado na medida da tensão. A figura 2 expõem os valores encontrados.

Figura 2 - Gráficos da carga e descarga do capacitor no circuito 1 com 12V na entrada Vin e constante de tempo de 184us e 188us, respectivamente

A tabela a seguir resume os resultados de tensão e e constate de tempo obtidos na carga e descarga do capacitor.

Tabela 1 - Resumo da tensão e tempo de carga e descarga até atingir a constante de tempo

Tensão de Carga (V)	Constante de Tempo Carga (us)	Tensão de Descarga (V)	Constante de Tempo de Descarga (us)

7.60	104	4.22	100
7,00	104	4,32	100

Podemos perceber que as constates encontradas na carga e descarga do capacitor são bastante semelhantes. Elas não chegam a ser iguais, pois na medição das constates de tempo pode ter havido um pequeno erro no posicionamento das retas verticais no modo cursor do osciloscópio. Todavia essa pequena disparidade é tolerável, visto que foi uma medida manual, feita "a olho", ou seja, sujeita a erros de medida.

O cálculo do capacitor nesse circuito é dado como segue:

Média das constantes de tempo: (188 us + 184 us) / 2 = 186 us (para minimizar o erro na medida)

 $C = 186us / 806 \Omega = 0,2308uF$

O capacitor encontrado foi bastante próximo ao valor nominal do mesmo. Considerando que os capacitores utilizados não garantem a capacitância nominal, o valor encontrado é aceitável.

2) Circuito 1, 5V de entrada

Para a obtenção dos resultados desse circuito foi utilizada a mesma metodologia do circuito 1, só que nesse caso ajustamos a tensão do gerador de funções para 5V e ajustamos novamente o offset. Os gráficos obtidos são mostrados a seguir:

Figura 3 - Gráficos da carga e descarga do capacitor no circuito 1 com 5V na entrada Vin e constantes de tempo de 176us e 188us, respectivamente

Tabela 2 - Resumo da tensão e tempo de carga e descarga até atingir a constante de tempo

Tensão de Carga (V)	Constante de	Tensão de	Constante de Tempo
	Tempo Carga (us)	Descarga (V)	de Descarga (us)
3,2	176	1,8	188

O cálculo do capacitor nesse cicuito é dado como segue:

Média das constantes de tempo: (176 us + 184 us) / 2 = 182 us (para minimizar o erro na medida)

 $C = 182us / 806 \Omega = 0,2258 uF$

Nessa medida obtivemos um valor de capacitor mais próximo ao valor nominal, porém ainda com uma pequena diferença. Essa disparidade é tolerável, pelos mesmos motivos apresentados para a capacitância encontrada no primeiro circuito montado.

3) Circuito 2, 12V de entrada

As medidas desse circuito foram análogas aos dos dois primeiros circuitos montados. Acompanhe na figura que segue:

Figura 4 - Gráficos da carga e descarga do capacitor no circuito 2 com 12V na entrada Vin e constantes de tempo de 176us e 188us, respectivamente

Tabela 3 - Resumo da tensão e tempo de carga e descarga até atingir a constante de tempo

Tensão de Carga (V)	Constante de	Tensão de	Constante de Tempo
	Tempo Carga (us)	Descarga (V)	de Descarga (us)
7,68	400	4,32	400

O cálculo do capacitor nesse circuito é dado como segue:

 $C = 400 \text{us} / 806 \Omega = 0.4963 \text{ uF}$

O valor de capacitância encontrado está dentro do esperado, já que havia no circuito 2 dois capacitores de 0,22 uF em paralelo, gerando um capacitor equivalente nominal de 0,44 uF.

Perguntas e Respostas

1) No circuito 1, como a alteração de voltagem, a constante de tempo muda? Por que?

A alteração da tensão não altera a constante de tempo, pois a constante depende apenas de RC, ou seja, variando a tensão não irá refletir em mudanças em R ou em C, logo a constante se mantém inalterada.

2) Qual a diferença da constante de tempo na subida e na descida de um circuito RC? Por quê?

Não há diferença da constante de tempo na subida e na descida de um circuito RC devido as equações que seguem:

$$V = Vo*(1-e^{-t/RC}) e V = Vo*(e^{-t/RC})$$

Essas equações nos mostram que para subida (64%) e descida (36%), os valores percentuais sobre Vo são complementares, e por isso t e RC (constante de tempo) são os mesmos nos dois casos.

3) Como circuitos RC afetam o desempenho de circuitos integrados?

Dependendo das grandezas de resistência e capacitância associados aos circuitos integrados do tipo CMOS (visto em aula) por exemplo, a constante de tempo pode ser muito grande, e dessa forma o tempo de carga desse capacitor associado também será grande, afetando diretamente o desempenho do circuito, devido aos atrasos gerados pelo mesmo, ou seja, a velocidade de resposta do circuito integrado diminui.

Conclusões

Nessa aula prática tivemos nosso primeiro contato com os circuitos RC, bem como com o gerador de sinais e o osciloscópio. A maior dificuldade encontrada pelo grupo foi inicialmente entender o funcionamento do oscilóscopio, seus canais, trigger, auto-ajuste de onda, dentre outras funções e também mexer no offset do gerador de sinais, para manter o sinal gerado acima do GND.

Após estarmos ambientados com os equipamentos conseguimos realizar a prática rapidamente, pois a montagem do circuito e o posicionamento das ponteiras do osciloscópio no circuito RC foram simples de executar.