# Complete Algebraic Semantics for Second-Order Rewriting Systems based on Abstract Syntax with Variable Binding

#### Makoto Hamana

Faculty of Informatics, Gunma University, Japan

SYCO 10

19th December, 2022, Edinburgh

## This Talk

#### This Talk

- Complete algebraic semantics of second-order rewriting
- > Based on my paper
  - Complete Algebraic Semantics for Second-Order Rewriting Systems based on Abstract Syntax with Variable Binding
  - MSCS, CUP, 2022,
     Special Issue of John Power Festschrift



## First-order Rewriting: Review

First-Order Term Rewriting System (TRS)  $\mathcal{R}$ :

$$fact(0) 
ightarrow S(0)$$
  $fact(S(x)) 
ightarrow fact(x) * S(x)$ 

## Rewrite steps:

$$fact(S(S(0))) \Rightarrow fact(S(0)) * S(S(0)) \Rightarrow (fact(0) * S(0)) * S(S(0))$$
  
=>  $(S(0) * S(0)) * S(S(0)) ==> S(S(0)) (normal form)$ 

#### Fundametal problem

- > Termination (Strong Normalisation)
- $\triangleright$  How can we prove the termination of  $\mathcal{R}$ ?

## TRS: Sound and Complete Algebraic Characterisation

Thm. [Huet and Lankford'78]

A first-order term rewriting system  $\mathcal{R}$  is terminating



there exists a well-founded monotone  $\Sigma$ -algebra  $(A,>_A)$  that is compatible with  $\mathcal{R}$ .

## Termination proof method

 $[\Leftarrow]$  Find a well-founded monotone  $\Sigma$ -algebra that is compatible with  $\mathcal{R}$ .

## First-order Rewriting: Review

First-Order Term Rewriting System (TRS)  $\mathcal{R}$ :

$$fact(0) 
ightarrow S(0)$$
  $fact(S(x)) 
ightarrow fact(x) * S(x)$ 

**Semantics:** well-founded monotone  $\Sigma$ -algebra  $(\mathbb{N},>)$  given by

$$fact^{\mathbb{N}}(x)=2x+2 \qquad x*^{\mathbb{N}}y=x+y \qquad S^{\mathbb{N}}(x)=2x+1 \qquad 0^{\mathbb{N}}=1$$

Then it is compatible with  ${\cal R}$  as

$$egin{array}{lll} fact^{\mathbb{N}}(0^{\mathbb{N}}) &= 2+2 &> 2+1 &= S^{\mathbb{N}}(0^{\mathbb{N}}) \ fact^{\mathbb{N}}(S^{\mathbb{N}}(x)) &= 2(2x+1)+2 &> 2x+2x+1 &= fact^{\mathbb{N}}(x)*S^{\mathbb{N}}(x) \end{array}$$

Hence  $\mathcal{R}$  is terminating.

## Aim: Sound and Complete Algebraic Characterisation

Thm. [Huet and Lankford'78]

A first-order term rewriting system  $\mathcal{R}$  is terminating



there exists a well-founded monotone  $\Sigma$ -algebra A that is compatible with  $\mathcal{R}$ .

## Example of Second-Order Rewriting: Prenex normal forms

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Signature:  $\neg$ ,  $\land$ ,  $\lor$ ,  $\forall$ ,  $\exists$ 

## Example of Second-Order Rewriting: Prenex normal forms

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Signature:  $\neg$ ,  $\land$ ,  $\lor$ ,  $\forall$ ,  $\exists$ 

Second-Order Rewriting System is defined on Second-Order Abstract Syntax

- > Substitutions (Metavars, object vars)

# Example: the $\lambda$ -calculus as a Second-Order Rewriting System

$$\lambda(x.M[x]) @ N \rightarrow M[N]$$
 $\lambda(x.M @ x) \rightarrow M$ 

 $\triangleright$  Signature:  $\lambda$ , @

## Abstract Syntax and Variable Binding [Fiore, Plotkin, Turi LICS'99]

$$egin{array}{c} x_1,\ldots,x_n dash x_1,\ldots,x_n dash t & x_1,\ldots,x_n dash s \ \hline x_1,\ldots,x_n dash t@s \end{array}$$

$$rac{x_1,\ldots,x_n,x_{n+1}dash t}{x_1,\ldots,x_ndash\lambda(x_{n+1}.t)}$$

- Syntax generated by 3 constructors
- $\triangleright$   $\lambda$  is a special unary function symbol: it decreases the context

# Abstract Syntax and Variable Binding [Fiore, Plotkin, Turi LICS'99]

- riangle Category  $\mathbb F$  for variable contexts objects:  $n=\{1,\ldots,n\}$  (variable contexts) arrows: all functions  $n \to n'$  (renamings)
- $\triangleright$  Presheaf category  $\mathbf{Set}^{\mathbb{F}}$

# Models of Syntax with Binding: $\Sigma$ -Algebras in $\mathbf{Set}^{\mathbb{F}}$

Def. A binding signature  $\Sigma$  consists of a set  $\Sigma$  of function symbols with binding arities:

$$f:\langle n_1,\ldots,n_l
angle$$

which has  $m{l}$  arguments and binds  $m{n_i}$  variables in the  $m{i}$ -th argument .

Def. A  $\Sigma$ -algebra  $A=(A,[f^A]_{f\in\Sigma})$  in  $\mathbf{Set}^{\mathbb{F}}$  consists of

- $\triangleright$  carrier: a presheaf  $A \in \mathbf{Set}^{\mathbb{F}}$
- $\triangleright$  operations: arrows of  $\mathbf{Set}^{\mathbb{F}}$

$$f^A:\delta^{n_1}A imes \ldots imes \delta^{n_l}A\longrightarrow A$$

corresponding to function symbols  $f:\langle n_1,\ldots,n_l\rangle\in\Sigma$ .

ho Context extension:  $\delta A \in \mathsf{Set}^{\mathbb{F}}; \ (\delta A)(n) = A(n+1)$ 

## Example: $\lambda$ -terms

 $\triangleright$  Binding signature  $\Sigma_{\lambda}$  for  $\lambda$ -terms

$$\lambda : \langle 1 \rangle,$$

$$@:\langle 0,0 
angle$$

 $\triangleright$  Carrier: the presheaf  $\Lambda$  of all  $\lambda$ -terms

$$\Lambda(n)=\{t\mid n\vdash t\}$$
  $\Lambda(
ho):\Lambda(m) o \Lambda(n)$  renaming on  $\lambda$ -terms for  $ho:m o n$  in  $\mathbb F.$ 

 $\triangleright$  Forms a  $V+\Sigma_{\lambda}$ -algebra

$$ext{var}^{\Lambda}: \mathbf{V} o \Lambda \quad @^{\Lambda}: \Lambda imes \Lambda o \Lambda \qquad \lambda^{\Lambda} \quad : \delta \Lambda \qquad o \Lambda$$
 
$$i \ \mapsto i \qquad \qquad s \ , \ t \ \mapsto s@t \qquad \lambda^{\Lambda}(n): \Lambda(n+1) \to \Lambda(n)$$
 
$$t \qquad \qquad \qquad t \qquad \qquad \mapsto \lambda n + 1.t$$

- $hd ext{ Presheaf of variables: } ext{V} \in \mathbf{Set}^{\mathbb{F}}; ext{V}(n) = \{1, \ldots, n\}$
- $hd Thm. \ \Lambda \ (= T_{\Sigma}V)$  is an initial  $V + \Sigma_{\lambda}$ -algebra.

## Second-Order Abstract Syntax

- > Abstract syntax with variable binding
- Metavariables with arities
- > Substitutions (Metavars, object vars)

## Models of Secound-Order Abstract Syntax: $\Sigma$ -monoids

- $\triangleright$  A  $\Sigma$ -monoid [Fiore, Plotkin, Turi'99] is
  - a  $\Sigma$ -algebra A with
  - a monoid structure

$$V \xrightarrow{\nu} A \xleftarrow{\mu} A \bullet A$$

in the monoidal category ( $\mathbf{Set}^{\mathbb{F}}, \bullet, \mathbf{V}$ ),

- both are compatible.
- > Idea
  - Unit u models the embedding of variables
  - Multiplication  $\mu$  models substitution for object variables

## Algebraic Characterisation of Syntax with Binding

Given a binding signature  $\Sigma$ 

 $\triangleright$  The presheaf of all  $\Sigma$ -terms

$$\operatorname{T}_{\Sigma}\!\mathrm{V}(n) = \{t \mid n \vdash t\}$$

ho Multiplication  $\mu: T_\Sigma V ullet T_\Sigma V o T_\Sigma V$ 

$$\mu_n^{(m)}(t;\ s_1,\ldots,s_m) riangleq t[1:=s_1,\ldots,n:=s_m]$$

(the substitution of  $\Sigma$ -terms for de Bruijn variables)

## Algebraic Characterisation of Syntax with Binding

Given a binding signature  $\Sigma$ 

ightharpoonup The presheaf of all  $\Sigma$ -terms

$$\operatorname{T}_{\Sigma}\!\mathrm{V}(n) = \{t \mid n \vdash t\}$$

> Multiplication  $\mu: \mathrm{T}_{\!\Sigma}\!\mathrm{V} ullet \mathrm{T}_{\!\Sigma}\!\mathrm{V} o \mathrm{T}_{\!\Sigma}\!\mathrm{V}$ 

$$\mu_n^{(m)}(t;\ s_1,\ldots,s_m) riangleq t[1:=s_1,\ldots,n:=s_m]$$

(the substitution of  $\Sigma$ -terms for de Bruijn variables)

- - $(T_{\Sigma}V, \nu, \mu)$  is an initial  $\Sigma$ -monoid.
  - $(\mathbf{T}_{\Sigma}\mathbf{V}, \mathbf{\nu})$  is an initial  $\mathbf{V} + \mathbf{\Sigma}$ -algebra.
- ► How to model metavariables and substitutions for metavariables?

## Algebraic Characterisation of Syntax with Binding

Given a binding signature  $\Sigma$ 

ightharpoonup The presheaf of all  $\Sigma$ -terms

$$\operatorname{T}_{\Sigma}\!\mathrm{V}(n) = \{t \mid n \vdash t\}$$

> Multiplication  $\mu: \mathrm{T}_{\!\Sigma}\!\mathrm{V} ullet \mathrm{T}_{\!\Sigma}\!\mathrm{V} o \mathrm{T}_{\!\Sigma}\!\mathrm{V}$ 

$$\mu_n^{(m)}(t;\ s_1,\ldots,s_m) riangleq t[1:=s_1,\ldots,n:=s_m]$$

(the substitution of  $\Sigma$ -terms for de Bruijn variables)

- - $(\mathbf{T}_{\Sigma}\mathbf{V}, \boldsymbol{\nu}, \boldsymbol{\mu})$  is an initial  $\Sigma$ -monoid.
  - $(T_{\Sigma}V, \nu)$  is an initial  $V + \Sigma$ -algebra.
- ► How to model metavariables and substitutions for metavariables?
- ightharpoonup Free  $\Sigma$ -monoids [Hamana, APLAS'04]

## Meta-terms: Terms with Metavariables [Aczel '78]

- $\triangleright$  A binding signature  $\Sigma$
- $\triangleright$  **Z** is an N-indexed set of metavariables parameterised by arities:

$$Z(l) \triangleq \{M \mid M^l, \text{ where } l \in \mathbb{N}\}.$$

 $\triangleright$  Raw meta-terms generated by Z:

$$t ::= x \mid f(x_1 \cdots x_{i_l} \cdot t_1 \,, \ldots, \, x_1 \cdots x_{i_l} \cdot t_l) \mid \operatorname{M}[t_1, \ldots, t_l]$$

 $\triangleright$  A meta-term t is a raw meta-term derived from:

$$egin{array}{lll} rac{x \in n}{n dash x} & rac{f: \langle i_1, \ldots, i_l 
angle \in \Sigma & n+i_1 dash t_1 \cdots n+i_l dash t_l}{n dash f( \ n+1 \ldots n+i_1.t_1, \ \ldots, \ n+1 \ldots n+i_l.t_l \ )} \ & rac{ ext{M} \in Z(l) & n dash t_1 \ \cdots \ n dash t_l}{n dash ext{M}[t_1, \ldots, t_l]} \end{array}$$

#### Meta-terms: Terms with Metavariables

 $hd ext{Presheaf } M_\Sigma Z \in \mathsf{Set}^\mathbb{F}$ 

$$M_{\Sigma}Z(n)=\{t\mid n\vdash t\}$$

 $hd V+\Sigma$ -algebra  $(M_\Sigma Z, [
u, f_T]_{f\in\Sigma})$ 

$$egin{aligned} 
u(n): \mathrm{V}(n) &\longrightarrow M_\Sigma Z(n), \ &x \longmapsto x \ &f^T: \delta^{i_1} M_\Sigma Z imes \cdots imes \delta^{i_l} M_\Sigma Z & \longrightarrow M_\Sigma Z \ &(t_1, \ldots, t_l) \longmapsto f(n\!+\!\overline{i_1}.t_1, \ldots, n\!+\!\overline{i_l}.t_l). \end{aligned}$$

ightarrow Multiplication  $\mu: M_\Sigma Z ullet M_\Sigma Z o M_\Sigma Z$ 

$$t, \quad \overline{s} \longmapsto t[1:=s_1,\ldots,n:=s_n]$$

· · · substitution of meta-terms for object variables

# Free $\Sigma$ -monoids: Syntax with Metavariables [Hamana, APLAS'04]

Thm.  $(M_{\Sigma}Z, \nu, \mu)$  forms a free  $\Sigma$ -monoid over Z.

 $hd Freeness of <math>M_{\Sigma} Z$ : in  $\mathbf{Set}^{\mathbb{F}}$ , given assignment heta



 $\triangleright$  The unique  $\Sigma$ -monoid morphism  $\theta^{\sharp}$  that extends  $\theta$ .

#### Instance: Substitution for Metavariables

Case  $A = T_{\Sigma}V$  ··· a  $\Sigma$ -monoid of terms,



- $\triangleright$   $\theta^{\sharp}$  is a substitution of terms for metavariables Z
- ho E.g.  $\Sigma$ : signature for  $\lambda$ -terms, for  $heta(\mathrm{M}^{(1)}) = a@a$

$$heta^{\sharp}(\ \pmb{\lambda}(x. ext{M}[x]@y)\ ) = \pmb{\lambda}(\ x.(x@x)@y\ )$$

- $\triangleright$  Other examples of  $\Sigma$ -monoid A:
  - $M_{\Sigma}Z$ : meta-substitution: substitution of meta-terms for metavars
  - Any  $\Sigma$ -monoid as a model  $\theta^{\sharp}$  is compositional interpretation

## Second-Order Rewriting System

#### Eg. A transformation to prenex normal forms

$$\mathsf{P} \land \forall (x. \mathsf{Q}[x]) \ o \ \forall (x. \mathsf{P} \land \mathsf{Q}[x]) \ \ 
abla \forall (x. \mathsf{Q}[x]) \ \ 
abla \exists (x. \neg (\mathsf{Q}[x]))$$

#### Def.

Rewrite rules  ${\cal R}$  l 
ightarrow r on meta-terms  $M_\Sigma Z$  (with some syntactic conditions)

Rewrite relation  $\rightarrow_{\mathcal{R}}$  on terms  $\mathbf{T}_{\Sigma}\mathbf{V}$ 

$$rac{l 
ightarrow r \in \mathcal{R}}{ heta^\sharp(l) 
ightarrow_{\mathcal{R}} \; heta^\sharp(r)} \quad rac{s 
ightarrow_{\mathcal{R}} \; t}{f(\ldots, \overline{x}.s, \ldots) 
ightarrow_{\mathcal{R}} \; f(\ldots, \overline{x}.t, \ldots)}$$

- $hd Substitution \ heta: Z 
  ightarrow T_{\Sigma}V$  maps metavariables to terms
- NB. rewriting is defined on terms (without metavars)

# Presheaf with relation $(A, >_A)$

Def. A presheaf  $A \in \mathbf{Set}^{\mathbb{F}}$  is equipped with a binary relation  $>_A$ , if

- 1.  $>_A$  is a family  $\{>_{A(n)}\}_{n\in\mathbb{F}}$ ,
- 2. which is compatible with presheaf action.

(for all 
$$a,b\in A(m)$$
 and  $ho:m\to n$  in  $\mathbb F$ , if  $a>_{A(m)}b$ , then  $A(
ho)(a)>_{A(n)}A(
ho)(b)$ .)

## Monotone Algebra

Def. A monotone  $V+\Sigma$ -algebra  $(A,>_A)$  is a  $V+\Sigma$ -algebra  $(A,[
u,f^A]_{f\in\Sigma})$ 

- $\triangleright$  equipped with a relation  $>_A$  such that
- $\triangleright$  every operation  $f^A$  is monotone.

**Thm.**  $(T_{\Sigma}V, \rightarrow_{\mathcal{R}})$  is a monotone  $V + \Sigma$ -algebra.

# Models of Rewrite System $\mathcal{R}$ : $(V+\Sigma,\mathcal{R})$ -algebras

A  $(V+\Sigma,\mathcal{R})$ -algebra  $(A,>_A)$  is a monotone  $V+\Sigma$ -algebra satisfying all rules in  $\mathcal{R}$  as:



## Soundness and Completeness of Models

Prop. 
$$s \to_{\mathcal{R}} t$$
  $\Leftrightarrow$ 

$$!_A heta^\sharp(s) >_A !_A heta^\sharp(t)$$
 for all  $(\mathrm{V} + \Sigma, \mathcal{R})$ -algebras  $A$ , assignments  $heta$ .

*Proof.*  $[\Rightarrow]$ : By induction of the proof of rewrite.

$$[\Leftarrow]$$
: Take  $(A,>_A)=(\mathrm{T}_{\Sigma}\mathrm{V},\to_{\mathcal{R}})$ .

## Complete Characterisation of Terminating Second-Order Rewriting

Thm. A second-order rewriting system  $\mathcal{R}$  is terminating iff there is a well-founded  $(V+\Sigma,\mathcal{R})$ -algebra  $(A,>_A)$ .

*Proof.* ( $\Leftarrow$ ): Suppose a well-founded ( $V+\Sigma, \mathcal{R}$ )-algebra  $(A, >_A)$ .

Assume  $\mathcal{R}$  is non-terminating:

$$t_1 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} \cdots$$

By soundness,

$$!_{A}\theta^{\sharp}(t_{1}) >_{A(n)} !_{A}\theta^{\sharp}(t_{2}) >_{A} \cdots$$

Contradiction.

 $(\Rightarrow)$ : When  $\mathcal{R}$  is terminating, the  $(V+\Sigma,\mathcal{R})$ -algebra  $(T_{\Sigma}V,\to_{\mathcal{R}})$  is a well-founded algebra.

► Because of the algebraic chatersiations of abstract sytanx with binding [FPT'99] and meta-terms [H.04]

## Application: Termination by Interpretation

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Take a well-founded monotone  $V+\Sigma$ -algebra  $(K,>_K)$  where  $K(n)=\mathbb{N}$  with  $>_{K(n)}=>$  on  $\mathbb{N}.$ 

#### **Operations**

$$egin{aligned} 
u_n^K(i) &= 0 \qquad \wedge_n^K\left(x,y
ight) = ee_n^K(x,y) = 2x + 2y \ 
egin{aligned} 
eg$$

 $(V+\Sigma,\mathcal{R})$ -algebra

$$egin{aligned} &! heta_0^\sharp(\mathbf{P}\wedgeorall(1.\mathbf{Q}[1])) = 2x + 2(y+1) >_{K(0)} (2x+2y) + 1 = &! heta_0^\sharp(orall(1.\mathbf{P}\wedge\mathbf{Q}[1])) \ &! heta_0^\sharp(
abla \exists (1.\mathbf{Q}[1])) = 2(y+1) >_{K(0)} 2y + 1 = &! heta_0^\sharp(orall(1.\mathbf{Q}[1])). \end{aligned}$$

- Complete algebraic semantics of second-order rewriting systems
- Based on my paper
  - Complete Algebraic Semantics for Second-Order Rewriting Systems based on Abstract Syntax with Variable Binding
  - MSCS, CUP, 2022,
     Special Issue of John Power Festschrift



- Complete algebraic semantics of second-order rewriting systems
- Based on my paper
  - Complete Algebraic Semantics for Second-Order Rewriting Systems based on Abstract Syntax with Variable Binding
  - MSCS, CUP, 2022,
     Special Issue of John Power Festschrift
- Short history: I visted LFCS, Edinburgh in 1999-2000 as a JSPS postdoc.
- > Thanks to John Power, Gordon Plotkin



- Complete algebraic characterisation of second-order rewriting systems
- using algebraic models of second-order abstrax syntax

#### **Further Topics and Applications**

- $\triangleright$  Meta-rewriting: rewriting on meta-terms using monotone  $\Sigma$ -monoids
- ightharpoonup Modularity of Termination for Second-Order rewriting [H. LMCS'21] A: terminating & B terminating  $\Rightarrow$  A  $\uplus$  B: terminating with several conditions
- ▶ Tool SOL for termination and confluence checking 1st places in the Higher-order Category of
  - International Confluence Competition 2020
  - Termination Competition 2022

http://solweb.mydns.jp/sol/

Appendix

•

- Complete algebraic semantics of second-order rewriting
- Based on my paper
  - Complete Algebraic Semantics for Second-Order Rewriting Systems based on Abstract Syntax with Variable Binding
  - MSCS, CUP, 2022,
     Special Issue of John Power Festschrift
- Short history: I visted LFCS, Edinburgh in 1999-2000 as a JSPS postdoc.
- > Thanks to John Power, Gordon Plotkin



## Application: Benefit of Completeness

Binding signature  $\Sigma = \{c : \langle 0 \rangle\}$ . Second-order rewriting system  $\mathcal{R}$ 

$$c(F[F[X[x]]]) \rightarrow F[X[x]].$$

- No functional modesl − ordinary models of higher-order rewriting [van de Pol '93]
- $\triangleright$  Our semantics: take the monotone  $V + \Sigma$ -algebra  $(T_{\Sigma}V, \succ_{T_{\Sigma}V})$

$$s\succ_{\mathrm{T}_{\Sigma}\mathrm{V}(n)}t$$

if the numbers of c-symbols decreases in s and t

- $hd \$  Any assignment into  $\mathbf{T}_{\!\Sigma}\!\mathbf{V}$  is of the form  $\mathbf{F}\mapsto c^k(x),\ \mathbf{X}\mapsto c^m(x)$
- $\triangleright$  This gives a well-founded  $(V+\Sigma,\mathcal{R})$ -algebra.

# Monoidal category ( $\mathbf{Set}^{\mathbb{F}}, \bullet, \mathbf{V}$ )

- $\triangleright$  unit:  $V : \mathbb{F} \to \mathsf{Set}; \ V(n) = n$
- $hd monoidal \ \mathsf{product} ullet \ \mathsf{for \ any} \ \pmb{A}, \pmb{B} \in \mathbf{Set}^{\mathbb{F}}$

$$(Aullet B)(n) riangleq (\coprod_{m\in \mathbb{N}} A(m) imes B(n)^m)/\sim$$

where the equivalence relation  $\sim$ 

$$(t;u_{
ho1},\ldots,u_{
hom})\sim (A(
ho)(t);u_1,\ldots,u_l)$$