On some identities involving exponentials

Fernando Casas@mat.uji.es www.gicas.uji.es/Fernando/fernando.html

Departament de Matemàtiques Institut de Matemàtiques i Aplicacions de Castelló (IMAC) Universitat Jaume I Castellón

ICMAT, May 2015

Based on work done (along the years) with

- Ander Murua
- Sergio Blanes
- José Ros
- José Ángel Oteo

0. INTRODUCTION

$$\bullet \ A = \left(\begin{array}{cc} 1 & -1 \\ 2 & -2 \end{array} \right)$$

- Y' = AY, Y(0) = I
- Solution: $Y(t) = e^{At}$

$$e^{tA} = \sum_{k>0} \frac{t^k}{k!} A^k = \begin{pmatrix} 2 - e^{-t} & -1 + e^{-t} \\ 2 - 2e^{-t} & -1 + 2e^{-t} \end{pmatrix}$$

- Main object: exponential of a matrix
- Basic property of the exponential of a matrix (of dimension N ≥ 2):

$$e^A e^B \neq e^{A+B}$$
 in general $AB \neq BA$

• Only if AB = BA it is true that $e^A e^B = e^{A+B}$.

A trivial example

Consider

$$A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right)$$
 and $B = \left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array} \right)$

• A and B do not commute:

$$AB = \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix}$$
 and $BA = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

Hence we have

$$e^A = \begin{pmatrix} e & e \\ 0 & e \end{pmatrix}$$
 and $e^B = \begin{pmatrix} e & 0 \\ e - 1 & 1 \end{pmatrix}$

A trivial example

and

$$e^A e^B = \begin{pmatrix} e & e \\ 0 & e \end{pmatrix} \begin{pmatrix} e & 0 \\ e - 1 & 1 \end{pmatrix} = \begin{pmatrix} 2e^2 - e & e \\ e^2 - e & e \end{pmatrix}$$

whereas

$$e^{(A+B)} = e^{3/2} \begin{pmatrix} c+s & 2s \\ 2s & c-s \end{pmatrix}$$

with $c = \cosh \frac{\sqrt{5}}{2}$, $s = \frac{1}{\sqrt{5}} \sinh \frac{\sqrt{5}}{2}$.

Therefore

$$e^A e^B \neq e^{A+B}$$

• Important object: the **commutator** [A, B] = AB - BA

Problems

- $\bullet e^A e^B = e^{A+B+C}$
- $e^{A+B} = e^A e^B e^{C_1} e^{C_2} \dots$
- **3** Given Y' = A(t)Y, Y(0) = I, with A(t) a $N \times N$ matrix,
 - N = 1: $Y(t) = e^{\int_0^t A(s)} ds$
 - N > 1: $Y(t) = e^{\int_0^t A(s)} ds$ if

$$\left[A(t), \int_0^t A(s)ds\right] = 0$$
 (Coddington & Levinson)

ullet General case: can we write $Y(t)=\mathrm{e}^{\Omega(t)}$ with

$$\Omega(t) = \int_0^t A(s)ds + (\text{something else})?$$

Motivation

Exponential map:

 Fundamental role played by the exponential transformation in Lie groups and Lie algebras

$$\exp: \mathfrak{g} \longmapsto \mathcal{G}$$

- Kashiwara-Vergne conjecture (with important implicaciones in Lie theory, harmonic analysis, etc.), proved as a theorem in 2006
- Lie groups are ubiquitous in physics: symmetries in classical mechanics, Quantum Mechanics, control theory, etc.

I. MAIN CHARACTERS

H.F. Baker (1866-1956) J.E. Campbell (1862-1924) F. Hausdorff (1868-1942)

E.B. Dynkin (1924-2014) W. Magnus (1907-1990) H. Zassenhaus (1912-1991)

Problems

- $\mathbf{e}^{A} \mathbf{e}^{B} = \mathbf{e}^{A+B+C}$ Baker–Campbell–Hausdorff (BCH) Formula
- $e^{A+B} = e^A e^B e^{C_1} e^{C_2} \dots$ Zassenhaus Formula
- 3 Given Y' = A(t)Y, Y(0) = I, A(t) a $N \times N$ matrix,
 - N = 1: $Y(t) = e^{\int_0^t A(s)} ds$
 - N > 1: $Y(t) = e^{\int_0^t A(s)} ds$ if

$$\left[A(t), \int_0^t A(s)ds\right] = 0$$

• General: can we write $Y(t) = e^{\Omega(t)}$ with

$$\Omega(t) = \int_0^t A(s)ds + (\text{something else})?$$

Magnus Expansion

These topics have already appeared (several times) at the workshop We are mainly concerned by

- computational aspects: how to generate efficiently the corresponding series
- Convergence of the series

Before starting...

• Lie Product Formula. Let X and Y be $n \times n$ complex matrices. Then

$$e^{X+Y} = \lim_{m \to \infty} \left(e^{\frac{X}{m}} e^{\frac{Y}{m}} \right)^m.$$

 A big brother: Trotter product formula. The same result when X and Y are suitable unbounded operators on an infinite-dimensional Hilbert space.

Many applications in the numerical treatment of PDEs

II. BCH FORMULA

$$e^X e^Y = e^Z$$

Let X, Y be two non commuting operators. Then

$$e^X e^Y = \sum_{p,q=0}^{\infty} \frac{1}{p! \, q!} X^p Y^q$$

 Substituting this series in the formal series defining the logarithm function

$$\log Z = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (Z - 1)^k$$

one gets

$$Z = \log(e^{X} e^{Y}) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \sum \frac{X^{p_1} Y^{q_1} \dots X^{p_k} Y^{q_k}}{p_1! q_1! \dots p_k! q_k!},$$

• The inner summations extends over all non-negative integers $p_1, q_1, \ldots, p_k, q_k$ for which $p_i + q_i > 0$ $(i = 1, 2, \ldots, k)$.

First terms:

$$Z = (X + Y + XY + \frac{1}{2}X^2 + \frac{1}{2}Y^2 + \cdots)$$
$$-\frac{1}{2}(XY + YX + X^2 + Y^2 + \cdots) + \cdots$$
$$= X + Y + \frac{1}{2}(XY - YX) + \cdots = X + Y + \frac{1}{2}[X, Y] + \cdots$$

- Baker, Campbell, Hausdorff analyzed whether Z can be written as a series only in terms of (nested) commutators
- The answer is yes, but they weren't able to provide a rigorous proof
- Bourbaki: "chacun considère que les démonstrations de ses prédécesseurs ne sont pas convaincantes"
- Finally, Dynkin (1947): explicit formula for Z.
- Sometimes it is called BCH-D (for Dynkin) formula (Bonfiglioli & Fulci)

Dynkin:

$$Z = \sum_{k=1}^{\infty} \sum_{p_i, q_i} \frac{(-1)^{k-1}}{k} \frac{[X^{p_1} Y^{q_1} \dots X^{p_k} Y^{q_k}]}{(\sum_{i=1}^k (p_i + q_i)) p_1! q_1! \dots p_k! q_k!}$$
(1)

- Inner summation over all non-negative integers $p_1, q_1, ..., p_k$, q_k for which $p_1 + q_1 > 0, ..., p_k + q_k > 0$
- $[X^{p_1}Y^{q_1}...X^{p_k}Y^{q_k}]$ denotes the right nested commutator based on the word $X^{p_1}Y^{q_1}...X^{p_k}Y^{q_k}$:

$$[XY^2X^2Y] \equiv [X, [Y, [Y, [X, [X, Y]]]]]$$

Gathering terms together

$$Z = \log(e^X e^Y) = X + Y + \sum_{m=2}^{\infty} Z_m,$$
 (2)

• $Z_m(X,Y)$: homogeneous Lie polynomial in X, Y of degree m, i.e., a \mathbb{Q} -linear combination of commutators of the form $[V_1,[V_2,\ldots,[V_{m-1},V_m]\ldots]]$ with $V_i\in\{X,Y\}$ for $1\leq i\leq m$.

First terms

$$Z_{2} = \frac{1}{2}[X, Y]$$

$$Z_{3} = \frac{1}{12}[X, [X, Y]] - \frac{1}{12}[Y, [X, Y]]$$

$$Z_{4} = -\frac{1}{24}[Y, [X, [X, Y]]]$$

$$Z_{5} = \frac{1}{720}[X, [X, [X, [X, Y]]]] - \frac{1}{180}[Y, [X, [X, [X, Y]]]]$$

$$+ \frac{1}{180}[Y, [Y, [X, [X, Y]]]] + \frac{1}{720}[Y, [Y, [Y, [X, Y]]]]$$

$$-\frac{1}{120}[[X, Y], [X, [X, Y]]] - \frac{1}{360}[[X, Y], [Y, [X, Y]]]$$

Fundamental role in different fields:

- Mathematics: theory of linear differential equations, Lie groups, numerical analysis of differential equations
- Theoretical Physics: perturbation theory, quantum mechanics, statistical mechanics, quantum computing
- Control theory: design and analysis of nonlinear control mechanisms, nonlinear filters, stabilization of rigid bodies,...

Quantum Mechanics

- $i\hbar\dot{U}=HU(t),\ U(t_0)=I$, so that $\psi(t)=U(t)\psi_0$
- $H(t) = K + V = -\frac{\hbar^2}{2m}p^2 + V$
- Solution: $U(t) = e^{-iHt/\hbar}$.
- Very often, computing $e^{-iKt/\hbar}$, $e^{-iVt/\hbar}$ is easier

Quantum Monte Carlo methods

Partition function

$$Z = \text{Tr}(e^{-\beta H}) = \sum_{\alpha} \langle \alpha | e^{-\beta H} | \alpha \rangle,$$

for the orthogonal complete set of states $|\alpha\rangle$. Here $\beta=1/T$ and H=K+V

ullet All practical implementations intended for Monte Carlo estimations of Z rely on approximating

$$e^{-\beta(K+V)} = \left(e^{-\varepsilon(K+V)}\right)^M$$

with $\varepsilon = \beta/M$ and M is the number of convolution terms (beads).

Product of exponentials

$$e^{-\varepsilon(K+V)} \simeq \prod_{i=1}^{m} e^{-a_i \varepsilon K} e^{-b_i \varepsilon V}$$

- Helpful also to prove the existence of a local Lie group with a given Lie algebra
- The particular structure of the series is not very important in this setting...
- ...But in other fields it *is* relevant to analyze the combinatorial aspects and its efficient computation

- Helpful also to prove the existence of a local Lie group with a given Lie algebra
- The particular structure of the series is not very important in this setting...
- ...But in other fields it is relevant to analyze the combinatorial aspects and its efficient computation

Example

Splitting and composition methods

$$\dot{u} = F(u) = A(u) + B(u), \qquad u(0) = u_0$$

- Flows of A(u) and B(u), e^{tA} , e^{tB} can be obtained explicitly
- Approximation (for t = h, the time step)

$$\Psi_h \equiv \exp(ha_1A)\exp(hb_1B)\cdots\exp(ha_kA)\exp(hb_kB)$$

 \bullet Order conditions to be satisfied by a_i , b_i so that

$$\Psi_h \equiv \exp(ha_1A) \exp(hb_1B) \cdots \exp(ha_kA) \exp(hb_kB)$$

verifies $\Psi_h(u_0) = u(h) + \mathcal{O}(h^{r+1})$ when $h \to 0$.

They are obtained by applying BCH in sequence:

$$\Psi_h = \exp(p_{1,1}A + p_{1,2}B + p_{2,1}[A, B] + \cdots)$$

with $p_{i,j}$ polynomials in a_i, b_i .

• $p_{1,1} = p_{1,2} = 1$, $p_{2,1} = 0$, etc.

How to obtain the BCH formula

- Different procedures in the literature:
 - Goldberg form + Dynkin (Specht-Wever) theorem (explicit)

$$Z = X + Y + \sum_{n=2}^{\infty} \frac{1}{n} \sum_{w,|w|=n} g_w[w],$$
 (3)

with $w = w_1 w_2 \dots w_n$, each w_i is X or Y, $[w] = [w_1, [w_2, \dots [w_{n-1}, w_n] \dots]]$, the coefficient g_w is a rational number and n is the word length.

Varadarajan (recursive)

$$Z_{1} = X + Y$$

$$(n+1)Z_{n+1} = \frac{1}{2}[X - Y, Z_{n}] + \sum_{p=1}^{\lfloor n/2 \rfloor} \frac{B_{2p}}{(2p)!}$$

$$\sum [Z_{k_{1}}, [\cdots [Z_{k_{2p}}, X + Y] \cdots]], \quad n \ge 1$$

Second sum: over all positive integers such that $k_1 + \cdots + k_{2p} = n$

Software packages

- Diffman (Trondheim-Bergen). Matlab toolbox for computations in a free Lie algebra.
- The computation of the BCH formula is carried out in Diffman by integrating numerically

$$Z' = d \exp_Z^{-1}(X) \equiv \sum_{k=1}^{\infty} \frac{B_k}{k!} \operatorname{ad}_Z^k X, \quad Z(0) = Y$$

from t=0 to t=1 using a single step of a Runge–Kutta method. $\left(\mathrm{e}^{Z(t)}=\mathrm{e}^{tX}\mathrm{e}^{Y}\right)$

• Koseleff (1993): explicit expression in the Lyndon basis up to n=10 by using only manipulations of Lie polynomials, without resorting to the associative algebra

Software packages

- Reinsch (2000): Simple derivation with matrices of rational numbers. Mathematica program. The expression is not written in terms of commutators
- A recent (much simpler) modification in 2015
- Lie Tools Package (LTP) (Torres-Torriti & Michalska, 2003).
 - Package in Maple for carrying out Lie algebraic symbolic computations.
 - Special function for the computation of BCH formula in the Dynkin form in terms of Lie monomials in the Hall basis.
 - Reported results in 2003: up to order 10 in 25 hours with maximum memory usage of 17.5 Mbytes on a Pentium III, 550 MHz, 256 Mbytes RAM, Maple 7, Linux

Bottleneck in the computation

 The iterated commutators are not all linearly independent, due to the Jacobi identity

$$[X_1, [X_2, X_3]] + [X_2, [X_3, X_1]] + [X_3, [X_1, X_2]] = 0$$

(and other identities involving nested commutators of higher degree originated by it)

- All the previous expressions for the BCH series are *not* formulated directly in terms of a basis of the free Lie algebra $\mathcal{L}(X,Y)$
- Problematic when designing numerical integrators for ODEs (one condition per element in the basis)
- Very difficult to study specific properties of the series: distribution of coefficients, combinatorial properties, etc.

- It is possible to rewrite the formulas in terms of a basis of $\mathcal{L}(X,Y)$, but this process is very time consuming and requires lots of memory resources
- The complexity grows exponentially with m: the number of terms involved in the series grows as the dimension c_m of the homogeneous subspace $\mathcal{L}(X,Y)_m$
- $c_m = \mathcal{O}(2^m/m)$ (Witt's formula)

To express the BCH series as

$$Z = \log(\exp(X)\exp(Y)) = \sum_{i \ge 1} z_i E_i,$$
 (5)

where $z_i \in \mathbb{Q}$ $(i \ge 1)$ and $\{E_i : i = 1, 2, 3, ...\}$ is a basis of $\mathcal{L}(X, Y)$ whose elements are of the form

$$E_1 = X$$
, $E_2 = Y$, and $E_i = [E_{i'}, E_{i''}]$ $i \ge 3$, (6)

for appropriate values of the integers $i', i'' < i \ (i = 3, 4, ...)$.

- In particular: classical Hall basis, Lyndon basis
- Design an efficient algorithm
- Analyze the series (coefficients, convergence)

Summary of the algorithm

- Starting point: vector space $\mathfrak g$ of maps $\alpha:\mathcal T\to\mathbb R$
- \bullet \mathcal{T} : set of rooted trees with black and white vertices

$$\mathcal{T} = \left\{ \bullet, \circ, \updownarrow, \diamondsuit, \diamondsuit, \diamondsuit, \checkmark, \checkmark, \checkmark, \checkmark, \ldots, \cdots, \checkmark, \checkmark, \checkmark, \checkmark, \cdots \right\}.$$

- T is typically referred to as the set of labeled rooted trees with two labels, 'black' and 'white'.
- ullet elements of \mathcal{T} : bicoloured rooted trees.

- $\mathfrak g$ is endowed with a Lie algebra structure by defining the Lie bracket $[\alpha,\beta]\in \mathfrak g$, of two arbitrary maps $\alpha,\beta\in \mathfrak g$ as
- For each $u \in \mathcal{T}$,

$$[\alpha, \beta](u) = \sum_{j=1}^{|u|-1} (\alpha(u_{(j)})\beta(u^{(j)}) - \alpha(u^{(j)})\beta(u_{(j)})), \qquad (7)$$

- |u| denotes the number vertices of u
- each of the pairs of trees $(u_{(j)}, u^{(j)}) \in \mathcal{T} \times \mathcal{T}$, $j = 1, \ldots, |u| 1$, is obtained from u by removing one of the |u| 1 edges of the rooted tree u, the root of $u_{(j)}$ being the original root of u.

For instance

$$[\alpha, \beta](\begin{tabular}{ll} \upphi \end{tabular} &= \alpha(\begin{tabular}{ll} \upphi \end{tabular} &= \alpha(\begin{tabul$$

ullet The Lie subalgebra of ${\mathfrak g}$ generated by the maps $X,Y\in {\mathfrak g}$ defined as

$$X(u) = \left\{ \begin{array}{ll} 1 & \text{if} & u = \bullet \\ 0 & \text{if} & u \in \mathcal{T} \setminus \{\bullet\} \end{array} \right., \quad Y(u) = \left\{ \begin{array}{ll} 1 & \text{if} & u = \circ \\ 0 & \text{if} & u \in \mathcal{T} \setminus \{\circ\} \end{array} \right.$$

is a free Lie algebra over the set $\{X, Y\}$

• $\mathcal{L}(X, Y)$: Lie subalgebra of \mathfrak{g} generated by the maps X and Y.

• For each particular Hall–Viennot basis $\{E_i : i = 1, 2, 3, ...\}$, and X and Y as above, one can associate a bicoloured rooted tree u_i to each element E_i such that, for any map $\alpha \in \mathcal{L}(X,Y)$,

$$\alpha = \sum_{i>1} \frac{\alpha(u_i)}{\sigma(u_i)} E_i, \tag{9}$$

- For each i, $\sigma(u_i)$ is certain positive integer associated to the bicoloured rooted tree u_i (the number of symmetries of u_i)
- if $\alpha \in \mathcal{L}(X, Y)$, then its projection α_n to the homogeneous subspace $\mathcal{L}(X, Y)_n$ is given by

$$\alpha_n(u) = \begin{cases} \alpha(u) & \text{if } |u| = n \\ 0 & \text{otherwise} \end{cases}$$
 (10)

for each $u \in \mathcal{T}$.

• Lie series:

$$\alpha = \alpha_1 + \alpha_2 + \alpha_3 + \cdots$$
, where $\alpha_n \in \mathcal{L}(X, Y)_n$.

- A map $\alpha \in \mathfrak{g}$ is then a Lie series if and only if (9) holds
- The corresponding BCH series is a Lie series

$$Z = \sum_{i \geq 1} z_i E_i = \sum_{i \geq 1} \frac{Z(u_i)}{\sigma(u_i)} E_i$$

$$= Z(\bullet)X + Z(\circ)Y + Z(\circ)[Y, X] + \frac{Z(\bullet \circ)}{2}[[Y, X], X] + Z(\bullet \circ)[[Y, X], Y] + \cdots,$$

• The coefficients $Z(u_i)$ can be determined by recursive procedures for BCH (Varadarajan)

In summary:

- Construct algorithmically a sequence of labeled rooted trees in a one-to-one correspondence with a Hall basis
- In addition, they must verify

$$\alpha = \sum_{i\geq 1} \frac{\alpha(u_i)}{\sigma(u_i)} E_i,$$

- In this way, one can build Lie series
- In particular, the BCH series
- A very efficient algorithm written in Mathematica allows us to get the BCH series up to a prescribed value of m in the Hall and Lyndon basis

Some results

- Comparison:
 - with the best previous algorithm: 17.5 MBytes up to m = 10.
 - ours: 5.4 MBytes
- In less than 15 min. of CPU (2008) and 1.5 GBytes we get up to m=20
- 109697 non vanishing terms out of 111013 elements E_i of grade $|i| \le 20$ in the Hall basis
- Last element:

$$E_{111013} = [[[[[Y,X],Y],[Y,X]],[[[Y,X],X],[Y,X]]], \\ [[[[Y,X],Y],[Y,X]],[[[[Y,X],Y],Y],Y]],$$

with coefficient

$$z_{111013} = -\frac{19234697}{140792940288}.$$

- An observation: In the basis of P. Hall there are 1316 zero coefficients out of 111013 up to degree m = 20, whereas in the Lyndon basis the number of vanishing terms rises to 34 253 (more than 30% of the total number of coefficients!!)
- More remarkably, one notices that the distribution of these vanishing coefficients in the Lyndon basis follows a very specific pattern
- It is possible to explain this pattern
- In a sense, the Lyndon basis seems the natural choice to get systematically the BCH series with the minimum number of terms
- Variations: symmetric BCH formula

$$\mathrm{e}^{\frac{1}{2}X}\mathrm{e}^{Y}\mathrm{e}^{\frac{1}{2}X} = \mathrm{e}^{W}$$

Convergence

Theorem

(Mityagin) The Baker–Campbell–Hausdorff series converges absolutely when $\|X\| + \|Y\| < \pi$.

• This result can be generalized to any set $X_1, X_2, ..., X_k$ of bounded operators in a Hilbert space \mathcal{H} :

$$\mathrm{e}^{X_1}\mathrm{e}^{X_2}\cdots\mathrm{e}^{X_k}=\mathrm{e}^Z$$

converges if

$$||X_1|| + ||X_2|| + \cdots + ||X_k|| < \pi$$

Optimal bound

An example

Let

$$X_1 = \left(egin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}
ight), \qquad X_2 = \left(egin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}
ight)$$

and let $X = \alpha X_1$, $Y = \beta X_2$, with $\alpha, \beta \in \mathbb{C}$. Then

$$\log(e^{X}e^{Y}) = \alpha X_1 + \frac{2\alpha\beta}{1 - e^{-2\alpha}} X_2,$$

analytic function for $|\alpha| < \pi$ with first singularities at $\alpha = \pm i\pi$. Then BCH cannot converge if $|\alpha| \ge \pi$, independently of $\beta \ne 0$.

- ullet From the above theorem: convergence if $|\alpha|+|\beta|<\pi$
- ullet In the limit |eta| o 0 this result is optimal

Second example

$$X = \begin{pmatrix} 0 & 0 \\ \alpha & 0 \end{pmatrix}, \qquad Y = \begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix}$$

with $\alpha > 0$. Then

$$e^{\varepsilon X}e^{\varepsilon Y} = \begin{pmatrix} 1 & \alpha \varepsilon \\ \alpha \varepsilon & 1 + \alpha^2 \varepsilon^2 \end{pmatrix}$$
 (11)

- convergence of the BCH series in this case whenever $2\alpha|\varepsilon|<\pi$, or $|\varepsilon|<\frac{\pi}{2\alpha}$
- conservative estimate since convergence can be shown for $|\varepsilon|<\frac{2}{\alpha}$

Numerical check of convergence for $\alpha = 2$

- $Z^{[N]}(\varepsilon) = \sum_{n=1}^{N} Z_n(\varepsilon)$
- Compute $E_r(\varepsilon) = \|e^X e^Y e^{-Z^{[N]}(\varepsilon)} I\|$
- ullet Convergence if arepsilon < 1
- $\varepsilon=1/4$; with N=10, $E_r(\varepsilon)\approx 10^{-7}$. With N=15, $E_r(\varepsilon)\approx 10^{-10}$
- $\varepsilon=0.9$; to get $E_r(\varepsilon)\approx 10^{-8}$ we need N=150; with N=200 then $E_r(\varepsilon)\approx 10^{-10}$

Other results on convergence

• The Baker–Campbell–Hausdorff formula expressed as a series of homogeneous Lie polynomials in $X,Y\in\mathfrak{g}$ (a Banach Lie algebra), converges absolutely in the domain $D_1\cup D_2$ of $\mathfrak{g}\times\mathfrak{g}$, where

$$D_{1} = \left\{ (X, Y) : \mu \| X \| < \int_{\mu \| Y \|}^{2\pi} \frac{1}{g(x)} dx \right\}$$

$$D_{2} = \left\{ (X, Y) : \mu \| Y \| < \int_{\mu \| X \|}^{2\pi} \frac{1}{g(x)} dx \right\}$$

and $g(x) = 2 + \frac{x}{2}(1 - \cot \frac{x}{2})$. (Michel 1974, F.C. & S. Blanes 2004)

 Biagi & Bonfiglioli 2014: generalization to arbitrary infinite-dimensional Banach-Lie algebras (in particular, without using the exponential map)

III. ZASSENHAUS FORMULA

Zassenhaus formula

 In the paper dealing with ME expansion, Magnus (1954) cites an unpublished reference by Zassenhaus, reporting that there exists a formula which may be called the dual of the (Baker-Campbell-)Hausdorff formula. More specifically,

$\mathsf{Theorem}$

(Zassenhaus Formula). Let $\mathcal{L}(X,Y)$ be the free Lie algebra generated by X and Y. Then, e^{X+Y} can be uniquely decomposed as

$$\mathrm{e}^{X+Y} = \mathrm{e}^X \, \mathrm{e}^Y \, \prod_{n=2}^\infty \mathrm{e}^{C_n(X,Y)} = \mathrm{e}^X \, \mathrm{e}^Y \, \mathrm{e}^{C_2(X,Y)} \, \cdots \, \mathrm{e}^{C_n(X,Y)} \, \cdots \, ,$$

where $C_n(X,Y) \in \mathcal{L}(X,Y)$ is a homogeneous Lie polynomial in X and Y of degree n.

Zassenhaus formula

- The existence of this formula is an immediate consequence of the BCH theorem.
- By comparing with the BCH formula it is possible to obtain the first terms as

$$C_2(X,Y) = -\frac{1}{2}[X,Y], \qquad C_3(X,Y) = \frac{1}{3}[Y,[X,Y]] + \frac{1}{6}[X,[X,Y]].$$

- Less familiar than the BCH formula but still important in several fields: statistical mechanics, many-body theories, quantum optics, path integrals, q-analysis in quantum groups, particle accelerators physics, etc.
- Numerical analysis: Iserles et al., 2014.
- Again, two important aspects: efficient computation and convergence of the formula.

Some (brief) history

- Several systematic computations of the terms C_n for n > 3 have been carried out in the literature: Wilcox (1967), Volkin (1968), Suzuki (1976), Baues (1980). All of them give results for C_n as a linear combination of nested commutators.
- Scholz and Weyrauch (2006): recursive procedure based on upper triangular matrices.
- Weyrauch and Scholz (2009): C_n up to n = 15 in less than 2 minutes (with another procedure)
- Now

$$C_n = \sum_{w,|w|=n} g_w w, \tag{12}$$

where g_w is a rational coefficient and the sum is taken over all words w with length |w| = n in the symbols X and Y, i.e., $w = a_1 a_2 \cdots a_n$, each a_i being X or Y.

 Applying Dynkin–Specht–Wever theorem it is possible to express them in terms of commutators, but in a way that there are redundancies

Our contribution

- To present a new recurrence that allows one to express the Zassenhaus terms C_n up to a prescribed degree directly in terms of independent commutators involving n operators X and Y.
- We are able to express directly C_n with the minimum number of commutators required at each degree n.
- We obtain sharper bounds for the terms of the Zassenhaus formula which show that the product converges in a larger domain than previous results.

A new recurrence

• We introduce a parameter λ ,

$$e^{\lambda(X+Y)} = e^{\lambda X} e^{\lambda Y} e^{\lambda^2 C_2} e^{\lambda^3 C_3} e^{\lambda^4 C_4} \cdots$$
 (13)

so that the original Zassenhaus formula is recovered when $\lambda=1.$

Consider the compositions

$$R_1(\lambda) = e^{-\lambda Y} e^{-\lambda X} e^{\lambda(X+Y)}$$
 (14)

and for each $n \ge 2$,

$$R_n(\lambda) = e^{-\lambda^n C_n} \cdots e^{-\lambda^2 C_2} e^{-\lambda Y} e^{-\lambda X} e^{\lambda(X+Y)} = e^{-\lambda^n C_n} R_{n-1}(\lambda).$$

Then,

$$R_n(\lambda) = e^{\lambda^{n+1}C_{n+1}} e^{\lambda^{n+2}C_{n+2}} \cdots$$

Finally,

$$F_n(\lambda) \equiv \left(\frac{d}{d\lambda}R_n(\lambda)\right)R_n(\lambda)^{-1}, \qquad n \ge 1.$$
 (15)

• We have for $n \ge 1$

$$F_{n+1}(\lambda) = e^{-\lambda^{n+1} \operatorname{ad}_{C_{n+1}}} G_{n+1}(\lambda), \qquad (16)$$

$$C_{n+1} = \frac{1}{(n+1)!} F_n^{(n)}(0),$$
 (17)

$$G_{n+1}(\lambda) = F_n(\lambda) - \frac{\lambda^n}{n!} F_n^{(n)}(0). \tag{18}$$

Expressions (16)–(18) allow one to compute recursively the Zassenhaus terms C_n starting from $F_1(\lambda)$. The sequence is

$$F_n(\lambda) \longrightarrow C_{n+1} \longrightarrow G_{n+1}(\lambda) \longrightarrow F_{n+1}(\lambda) \longrightarrow \cdots$$

• For n = 1,

$$F_1(\lambda) = e^{-\lambda \operatorname{ad}_Y} (e^{-\lambda \operatorname{ad}_X} - I) Y,$$

that is,

$$F_1(\lambda) = \sum_{i=0}^{\infty} \sum_{j=1}^{\infty} \frac{(-\lambda)^{i+j}}{i!j!} \operatorname{ad}_{Y}^{i} \operatorname{ad}_{X}^{j} Y$$
 (19)

or equivalently

$$F_{1}(\lambda) = \sum_{k=1}^{\infty} f_{1,k} \lambda^{k}, \quad \text{with} \quad f_{1,k} = \sum_{j=1}^{k} \frac{(-1)^{k}}{j!(k-j)!} \operatorname{ad}_{Y}^{k-j} \operatorname{ad}_{X}^{j} Y.$$
(20)

• In general $(n \ge 2)$,

$$F_n(\lambda) = \sum_{k=n}^{\infty} f_{n,k} \lambda^k$$
, with $f_{n,k} = \sum_{j=0}^{\lfloor k/n \rfloor - 1} \frac{(-1)^j}{j!} \operatorname{ad}_{C_n}^j f_{n-1,k-nj}$,

It turns out that

$$F_n(\lambda) = \sum_{k=n+1}^{2n+2} k C_k \lambda^{k-1} + \lambda^{2n+2} H_n(\lambda)$$

where $H_n(\lambda)$ involves commutators of C_j , $j \geq n+1$

- Notice that the terms $C_{n+1}, \ldots, C_{2n+2}$ of the Zassenhaus formula can be then directly obtained from $F_n(\lambda)$.
- In particular,

$$C_{n+1} = \frac{1}{n+1} f_{1,n} = \frac{1}{n+1} \sum_{j=0}^{n-1} \frac{(-1)^n}{i!(n-j)!} \operatorname{ad}_X^j \operatorname{ad}_X^{n-j} Y, \quad (22)$$

for n = 1, 2, 3, and

$$C_{n+1} = \frac{1}{n+1} f_{[n/2],n} \qquad n \ge 5,$$
 (23)

Algorithm

Define
$$f_{1,k} = \sum_{j=1}^{k} \frac{(-1)^k}{j!(k-j)!} \operatorname{ad}_{Y}^{k-j} \operatorname{ad}_{X}^{j} Y$$
 $C_2 = (1/2) f_{1,1}$

Define $f_{n,k} \quad n \ge 2, \ k \ge n \text{ by :}$
 $f_{n,k} = \sum_{j=0}^{\lfloor k/n \rfloor - 1} \frac{(-1)^j}{j!} \operatorname{ad}_{C_n}^{j} f_{n-1,k-nj}$
 $C_n = (1/n) f_{\lfloor (n-1)/2 \rfloor, n-1} \quad n \ge 3.$

(24)

- Important property: it provides expressions for C_n that, by construction, involve only independent commutators. In other words, they cannot be simplified further by using the Jacobi identity and the antisymmetry property of the commutator.
- This can be easily proved by repeated application of the Lazard elimination principle.

Computational aspects

- The algorithm can be easily implemented in a symbolic algebra package. We need to define an object inheriting only the linearity property of the commutator, the adjoint operator and the functions $f_{n,k}$ and C_n .
- We have expressions of C_n up to n=20 with a reasonable computational time and memory requirements (35 MB).

n	CPU time (seconds)		Memory (MB)	
	W-S	New	W-S	New
14	29.18	0.14	122.90	0.88
16	203.85	0.59	764.32	4.09
18		3.01		11.12
20		19.18		35.27

 \bullet C_{16} has 54146 terms when expressed as combinations of words, but only 3711 terms with the new formulation

Algorithm

```
Clear[Cmt, ad, ff, cc]:
$RecursionLimit= 1024;
Cmt[a . a ] := 0:
Cmt[a___, 0, b___]:= 0:
Cmt[a_{-}, c_{+}, d_{+}, b_{-}] := Cmt[a, c, b] + Cmt[a, d, b];
Cmt[a , n c Cmt, b] := n Cmt[a, c, b]:
Cmt[a_{-}, n_{X}, b_{-}] := n Cmt[a, X, b];
Cmt[a_{-}, n_{Y}, b_{-}] := n Cmt[a, Y, b];
Cmt /: Format[Cmt[a_, b_]]:= SequenceForm["[", a, ",", b, "]"];
ad[a_, 0, b_]:= b;
ad[a_, j_Integer, b_]:= Cmt[a, ad[a, j-1, b]];
ff[1, k] := ff[1, k] =
   Sum[((-1)^k/(j! (k-j)!)) ad[Y, k-j, ad[X, j, Y]], {j, 1, k}];
cc[2] = (1/2) ff[1, 1]:
ff[p_{,k}] := ff[p, k] =
   Sum[((-1)^{j/j!}) ad[cc[p], j, ff[p-1, k - p j]], {j, 0,}
       IntegerPart[k/p] - 1}];
cc[p_Integer] := cc[p] =
   Expand[(1/p) ff[IntegerPart[(p-1)/2], p-1];
```

Convergence

- ullet Suppose now that X and Y are defined in a Banach algebra ${\mathcal A}$
- Then it makes sense to analyze the convergence of the Zassenhaus formula.
- Only two previous results establishing sufficient conditions for convergence of the form ||X|| + ||Y|| < r with a given r > 0.
- Suzuki (1976): $r_s = \log 2 \frac{1}{2} \approx 0.1931$
- Bayen (1979): r_b given by the unique positive solution of the equation

$$z^{2}\left(1+2\int_{0}^{z}\frac{e^{2w}-1}{w}dw\right)=4(2\log 2-1).$$

Numerically, $r_b = 0.59670569...$

• Thus, for $||X|| + ||Y|| < r_b$ one has

$$\lim_{n \to \infty} e^X e^Y e^{C_2} \cdots e^{C_n} = e^{X+Y}.$$
 (25)

Our treatment

- Next we use recursion (16)–(18) to show that it converges for $(x,y) \equiv (||X||,||Y||) \in \mathbb{R}^2$ in a domain that is larger than $\{(x,y) \in \mathbb{R}^2 : 0 \leq x+y < r_b\}.$
- There is convergence if $\lim_{n\to\infty} ||R_n(1)|| = 1$.
- But $R_n(\lambda)$ is also the solution of

$$\frac{d}{d\lambda}R_n(\lambda) = F_n(\lambda)R_n(\lambda), \qquad R_n(0) = I. \tag{26}$$

- If $\int_0^1 \|F_n(\lambda)\| d\lambda < \infty$, then there exists a unique solution $R_n(\lambda)$ of (26) for $0 \le \lambda \le 1$, and $\|R_n(1)\| \le \exp(\int_0^1 \|F_n(\lambda)\| d\lambda)$
- In consequence, convergence is guaranteed whenever $(x,y)=(\|X\|,\|Y\|)\in\mathbb{R}^2$ is such that

$$\lim_{n\to\infty}\int_0^1\|F_n(\lambda)\|d\lambda=0.$$

• We have that $\|C_{n+1}\| \le \delta_{n+1}$, where $\delta_2 = x y$ and for $n \ge 2$,

$$\delta_{n+1} = \frac{1}{n+1} \sum_{(i_0,i_1,\dots,i_n)\in\mathcal{I}_n} \frac{2^{i_0+\dots+i_n}}{i_0! i_1! \cdots i_n!} \delta_n^{i_n} \cdots \delta_2^{i_2} y^{i_1} x^{i_0} y.$$

• Similarly, $||F_n(\lambda)|| \leq f_n(\lambda)$ and

$$\int_0^1 f_n(\lambda) d\lambda \leq \sum_{k=n}^\infty \delta_k,$$

- Then, $\lim_{n\to\infty} ||R_n(1)|| = 1$ if the series $\sum_{k=2}^{\infty} \delta_k$ converges.
- Let's analyze each term in this series...

• We get from our recurrence

$$||f_{1,k}|| \leq d_{1,k} \equiv 2^k y \sum_{j=1}^k \frac{1}{j!(k-j)!} x^j y^{k-j} = \frac{2^k}{k!} y ((x+y)^k - y^k)$$

$$||f_{n,k}|| \leq d_{n,k} = \sum_{i=0}^{\lfloor k/n \rfloor - 1} \frac{2^j}{j!} \delta_n^j d_{n-1,k-nj}$$
(27)

Therefore

$$\|C_n\| \le \delta_n = \frac{1}{n} d_{[(n-1)/2], n-1}, \qquad n \ge 3.$$

A sufficient condition for convergence is obtained by imposing

$$\lim_{n\to\infty} \frac{\delta_{n+1}}{\delta_n} < 1. \tag{28}$$

• Recall that both $d_{n,k}$ and δ_n depend on $(x,y)=(\|X\|,\|Y\|)$, so condition (28) implies a constraint on the convergence domain $(x,y)\in\mathbb{R}^2$

Convergence domain

Computing numerically for each point the coefficients $d_{n,k}$ and δ_n up to n=1000 we get

Example

$$X = \alpha \left(egin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}
ight) \qquad ext{and} \qquad Y = \left(egin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}
ight)$$

- Compute $R_1 = e^{-Y}e^{-X}e^{X+Y}$
- Compute $R_2(m) = e^{C_2}e^{C_3} \cdots e^{C_m}$
- Finally $E_m = ||R_1 R_2(m)||$
- Particular case: $\alpha = 0.2$. Then we are outside the guaranteed domain of convergence
- m = 10, $E_{10} \approx 1.3345 \cdot 10^{-4}$
- m = 15, $E_{15} \approx 1.9180 \cdot 10^{-6}$
- m = 20, $E_{20} \approx 4.7958 \cdot 10^{-9}$

Generalization

Sometimes one has to deal with

$$\exp(\lambda A_1 + \lambda^2 A_2 + \cdots + \lambda^n A_n + \cdots)$$

with A_k non-commuting operators

 In that case it is still possible to generalize the expansion and to get

$$e^{\lambda A_1 + \lambda^2 A_2 + \cdots} = e^{\lambda C_1} e^{\lambda^2 C_2} \cdots e^{\lambda^n C_n} \cdots$$

• Recursive procedure to obtain C_k

IV. MAGNUS EXPANSION

General linear differential equation

Goal

Given the matrix A(t) $N \times N$, solve the initial value problem

$$Y'(t) = A(t)Y(t),$$
 $Y(t_0) = Y_0.$ (29)

• If N = 1, the solution reads

$$Y(t) = \exp\left(\int_{t_0}^t A(s)ds\right) Y_0. \tag{30}$$

- This is also valid when N > 1 if $[A(t), \int_0^t A(s)ds] = 0$. Particular case: $A(t_1)A(t_2) = A(t_2)A(t_1)$ for all t_1 y t_2 . In particular, when A is constant.
- In general, (30) is not the solution

Typical procedure (Neumann, Dyson):

$$Y(t) = \int_{t_0}^t A(s)ds + \int_{t_0}^t A(s_1) \int_{t_0}^{s_1} A(s_2)ds_2ds_1 + \cdots$$

- Magnus (1954): construct Y(t) as a genuine exponential representation
- Motivation: problems arising in Quantum Mechanics (in this way, unitary is preserved, and is essential in QM)

Magnus expansion

• W. Magnus proposal: to express the solution as the exponential of a certain matrix function $\Omega(t, t_0)$,

$$Y(t) = \exp \Omega(t, t_0) Y_0 \tag{31}$$

ullet Ω is built as a series expansion

$$\Omega(t) = \sum_{k=1}^{\infty} \Omega_k(t). \tag{32}$$

• For simplicity, $\Omega(t) \equiv \Omega(t, t_0)$ y $t_0 = 0$.

First terms:

$$\Omega_{1}(t) = \int_{0}^{t} A(t_{1}) dt_{1},$$

$$\Omega_{2}(t) = \frac{1}{2} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} [A(t_{1}), A(t_{2})]$$

$$\Omega_{3}(t) = \frac{1}{6} \int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} \int_{0}^{t_{2}} dt_{3} ([A(t_{1}), [A(t_{2}), A(t_{3})]] + [A(t_{3}), [A(t_{2}), A(t_{1})]])$$

$$[A, B] \equiv AB - BA$$

- $\Omega_1(t)$ is exactly the exponent in the scalar case
- If we insist in keeping an exponential representation for Y(t), then the exponent must be corrected
- The rest of the series (32) accounts for this correction

How the series is obtained?

- Insert $Y(t) = \exp \Omega(t)$ in Y' = A(t)Y, Y(0) = I
- Differential equation satisfied by Ω :

$$\frac{d\Omega}{dt} = \sum_{n=0}^{\infty} \frac{B_n}{n!} \operatorname{ad}_{\Omega}^n A,$$
 (34)

where $\operatorname{ad}_{\Omega}^{0}A = A$, $\operatorname{ad}_{\Omega}^{k+1}A = [\Omega, \operatorname{ad}_{\Omega}^{k}A]$, and B_{i} are the Bernoulli number.

- At first sight, a very bad idea!: we replace a linear differential equation by another which is highly nonlinear!
- ullet ... But this is defined for Ω

• We apply Picard's iteration:

$$\Omega^{[0]} = O, \qquad \Omega^{[1]} = \int_0^t A(t_1) dt_1,$$

$$\Omega^{[n]} = \int_0^t \left(A(t_1) dt_1 - \frac{1}{2} [\Omega^{[n-1]}, A] + \frac{1}{12} [\Omega^{[n-1]}, [\Omega^{[n-1]}, A]] + \cdots \right)$$

so that $\lim_{n \to \infty} \Omega^{[n]}(t) = \Omega(t)$ in a neighborhood of t=0

 Another recursive procedure to obtain the series, based on a generator When the recursion is worked out explicitly,

$$\Omega_n(t) = \sum_{j=1}^{n-1} \frac{B_j}{j!} \sum_{\substack{k_1+\cdots+k_j=n-1\\k_1\geq 1,\dots,k_j\geq 1}} \int_0^t \operatorname{ad}_{\Omega_{k_1}(s)} \operatorname{ad}_{\Omega_{k_2}(s)} \cdots \operatorname{ad}_{\Omega_{k_j}(s)} A(s) ds$$

- Ω_n is a linear combination of n-multiple integrals of n-1-nested commutators containing n operators A evaluated at different times
- The expression is increasingly complicated when n grows

Some properties

- If A(t) belongs to some Lie algebra \mathfrak{g} , then $\Omega(t)$ (and truncation of the Magnus series) also belongs to \mathfrak{g} and therefore $\exp(\Omega) \in \mathcal{G}$, where \mathcal{G} is the Lie group with Lie algebra \mathfrak{g} .
 - Symplectic group (in Hamiltonian mechanics)
 - 2 Unitary group (for the Schrödinger equation)
- The resulting approximations preserve important qualitative properties of the exact solution (e.g., unitarity, etc.)

- Analytic approximations
- Starting point for the construction of new families of numerical integrators for Y' = A(t)Y
- Very efficient high order numerical methods
- Lie group integrators, special class of geometric numerical integration methods

$$A_{ij} = \sin(t(j^2 - i^2)), \quad 1 \le i < j \le 10$$

Efficiency diagram

A_{ij} = sin (t(i²-j²))

-2.5

-3.5

-3.6

-4

(out — 4.5

-5.5

-6.

3.4

log(Evaluations)

3.6

3.8

-6.5 -7 2.8

Error as a function of time

Convergence

- Is this result only formal? What about convergence?
- Specifically, given a certain operator A(t), when it is possible to get $\Omega(t)$ in (31) as the sum of the series $\Omega(t) = \sum_{n=1}^{\infty} \Omega_n(t)$?
- It turns out that the Magnus series converges for $t \in [0, T)$ such that

$$\int_0^T \|A(s)\| ds < \pi$$

where $\|\cdot\|$ is the 2-norm

- This is a generic result, in the sense that it is possible to find particular matrices A(t) so that the series diverges for all t > T.
- ... But is is only a *sufficient* condition: there exist matrices A(t) so that the expansion converges for t > T.
- Analysis of the eigenvalues

Convergence

Remarks

- The result is valid for *complex* matrices A(t)
- In fact, for any given bounded operator A(t) in a Hilbert space \mathcal{H} if Y is a normal operator (in particular, if i Y is unitary).
- This results can be used in turn to prove the convergence of the Baker-Campbell-Hausdorff formula

BCH and the Magnus expansion

Consider the initial value problem

$$U' = A(t)U, \qquad U(0) = I,$$
 (35)

with

$$A(t) = \begin{cases} Y & 0 \le t \le 1 \\ X & 1 < t \le 2 \end{cases}$$

The exact solution of (35) at t = 2 is $U(2) = e^X e^Y$.

- But we can apply Magnus: $U(2) = e^{\Omega(2)}$.
- In this way it is possible to get BCH as a particular case of the Magnus expansion. (Sometimes it is called the continuous BCH formula BCH).

Work in progress

 'Symmetric' Zassenhaus formula: useful for obtaining new numerical methods for certain classes of PDEs (Bader et al. 2014)

$$\mathrm{e}^{X+Y} = \cdots \mathrm{e}^{C_3} \, \mathrm{e}^{C_2} \, \mathrm{e}^{\frac{1}{2}Y} \, \mathrm{e}^{X} \, \mathrm{e}^{\frac{1}{2}Y} \, \mathrm{e}^{C_2} \, \mathrm{e}^{C_3} \cdots$$

in an efficient way

• 'Continuous analogue' of the Zassenhaus formula (M. Nadinic's Thesis 2015): Given U' = A(t)Y, U(0) = I,

$$U(t) = e^{W_1(t)} e^{W_2(t)} \cdots e^{W_r(t)} \cdots$$

as efficiently as possible

Some references

- S. Blanes, F.C., J.A. Oteo, J. Ros, The Magnus expansion and some of its applications, *Physics Reports* 470 (2009), 151-238.
- S. Blanes and F.C., On the convergence and optimization of the Baker–Campbell–Hausdorff formula, *Lin. Alg. Appl.* 378 (2004), 135-158.
- A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra, Lecture Notes in Mathematics 2034. Springer, 2012.
- F.C. and A. Murua, An efficient algorithm for computing the Baker–Campbell–Hausdorff series and some of its applications.
 J. Math. Phys. 50 (2009), 033513.
- F.C., A. Murua and M. Nadinic, Efficient computation of the Zassenhaus formula, *Comput. Phys. Comm.* **183** (2012), 2386-2391.
- W. Magnus, On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math.
 VII (1954), 649-673.