PRANVEER SINGH INSTITUTE OF TECHNOLOGY, KANPUR

Odd Semester

Session 2021-2022

CT - I

B. Tech-I Semester [CS # AI, DS, IOT, EC #]

Engineering	Physics	(KAS-101T)
5	- AL y IS A C D	(/

CO	Course Outcome
CO1	To define (L1-Knowledge) and explain (L2-Comprehension) basic knowledge of physics.
CO2	To identify (L2-Comprehension) complex problems of physical science and apply (L3-Application) the same to solve (L3-Application) them numerically including unit conversion.
CO3	To use (L3-Application) basic knowledge of Quantum mechanics and Wave optics, to develop mathematical expressions like one dimensional Schrodinger's equation, Interference in thin film and intensity distribution in N-slit diffraction grating, Analyze Maxwell's equation in different forms (differential and integral) and apply them to diverse engineering problems apply (L3-Application) the same to simple physical systems (Optical fibre).
CO4	To differentiate (L4-Analysis) and analyze (L4-Analysis) various physical phenomenon closely associated with each other

Time: 1.5 Hrs.

Section A

Q1. Attempt all questions:

(1X3 = 3 Marks)

a) State fundamental postulates of special theory of relativity.

CO₁

b) Differentiate between pair production and pair annihilation.

CO₂

c) Define proper length.

CO₁

Section B

Q2. Attempt all questions:

(2X4 = 8 Marks)

a i) Illustrate expression for Lorentz-Fitzgerald contraction.

CO4

ii) Illustrate the Lorentz transformation equations. Is plain that at lower velocities it is reduced to Galilean transformation equations.

CO4

bi) Dramatize the relativistic velocity addition theorem. Show that no signal can travel faster than light.

CO3

Or

ii) Dramatize Einstein's mass energy relation, $E = mc^2$

CO₃

- Calculate the percentage contraction of a rod moving with a velocity of 0.8c in a direction ci) Inclined at 60° to its own length. Or A clock measures the proper time. Calculate velocity that it should travel relative to an observer so CO₂ ii) that it appears to go slow by 30 seconds in a day CO₂ Two photons approach each other. Calculate their relative velocity. d i)
- Calculate the amount of work to be done to increase the speed of an electron from 0.6c to 0.8c. CO₂ ii) Given: rest energy of electron = 0.5 MeV.

Section C

(4X1 = 4 Marks)

CO₃

CO₂

Apply and show that relativistic invariance of law of conservation of linear momentum leads to CO₃ concept of variation of mass with velocity.

Or

Illustrate expression of time dilation. Show that time dilation is a real effect.

0.857×107

Physical Constants:

Q3

Planck's constant Rest mass of electron $h = 6.6 \times 10^{-34} \text{ J-s}$ $m_0 = 9.1 \times 10^{-31} \text{ Kg}$

Speed of light in vacuum

 $c = 3 \times 10^8 \text{ m/s}$