Action Models

k.furusawa

June 2020

1 Action model

1.1 Proposition

```
p_{Hit}(x,y) = t iff "There is a part of any ship on grid(x,y)" p_{Ship_n}(x,y) = "There is a part of ship n on grid (x,y)"
```

There are 6 ships in 10x10 grid: $Ship_1$ with size of 1x2 $Ship_2$ with size of 1x4 $Ship_3$ with size of 1x6

 $Ship_4$ with size of 1x2

 $Ship_5$ with size of 1x4

 $Ship_6$ with size of 1x6

There are 3 ships in 5x5 grid:

 $Ship_1$ with size of 1x2

 $Ship_2$ with size of 1x3

 $Ship_3$ with size of 1x4

There are 2 agents: $A = \{1, 2\}$ Then we have $L_PAC^2(A, P)$

$$M = \{S, \pi, R_1, R_2\}$$

where S is the all possible states s and $s = \{s_1, s_2\}$ where s_1 is the player1's broad and s_2 is the player2's broad and also $s_n = \{s_{(0,0)}, ...s_{(10,10)}\}$ where $s_{(x,y)}$ represent state of a particular position on the broad. V

 $R_1 = (s_1(x,y), s_1(x,y))$ for all (x,y) and $(s_2(x,y), z_2(x,y))$ for all $z_2 \in S$ $R_2 = (s_2(x,y), s_2(x,y))$ for all (x,y) and $(s_1(x,y), z_1(x,y))$ for all $z_1 \in S$. In other words, relation represents reflection within its own broad state and all state with the same coordinate for other agent's broad.

1.2 Actions

we will be creating a action model: $[pub(\varphi)]$ which is equivalent to $[\varphi]$ $[hit]\varphi$ [miss] = [skip]

1.3 Procedure

The game starts with both agents not knowing anything about the other agents' broad. so for an instance for state $s_1^0(x,y)$, it always holds that $(M,s_1(x,y))\models \neg K_2P_{Hit}(x,y)$ From semantic definition of the knowledge operator $(M,s_1(x,y))\not\models K_2P_{Hit}(x,y)$ $(M,t)\not\models P_{Hit}(x,y)$ for at least one of the states in t s.t. $(s_1(x,y),t)\in R_2$ and since there is are relation to all possible state $s_1(x,y)$ for agent2, there is a state that this formula holds.