Part 1:

A gas contained within a piston-cylinder assembly moves from State 1 to State 2. The system properties of each state are defined in Table 1

State	Pressure P (bar)	Volume V (m³)	Internal Energy U (kJ)
1	10	0.1	400
2	1	1.0	200

Table 1: States 1 and 2

For each of the two processes described in Table 2:

- 1. Sketch the process on a p-V diagram
- 2. Evaluate the work done on/by the system, in kJ, by finding the area under the *p-V* curve using integral or geometric methods.
- 3. Evaluate the heat transfer Q, in kJ, using the First Law of Thermodynamics

Process	Description	
Α	Constant volume (isochoric) from State 1 to a pressure of 2 bar, followed by a linear p-V	
	process to State 2	
В	Constant temperate (isothermal, pV=constant) from State 1 to State 2	

Table 2: Processes A and B

