# Expressões algébricas, Polinômios e Equações Polinomiais

Prof. Eanes Torres Pereira



Fundamentos de Matemática Para Ciência da Computação - I

Prof. Eanes Torres Pereira 1/41 UFCG CEEI

- 1. Definição
- 2. Operaçõe
- 3. Equações Polinomiais
- 4. Referências

## Definição

- ▶ Dada a sequência de números complexos (a<sub>0</sub>, a<sub>1</sub>, a<sub>2</sub>,..., a<sub>n</sub>) consideramos a função: f: C → C dada por f(x) = a<sub>0</sub> + a<sub>1</sub>x + a<sub>2</sub>x<sup>2</sup> + ... + a<sub>n</sub>x<sup>n</sup>. A função f é denominada função polinomial ou polinômio associado à sequência dada.
- ▶ Os números  $a_0, a_1, a_2, \ldots, a_n$  são denominados coeficientes e as parcelas  $a_0, a_1x, a_2x^2, a_3x^3, \ldots, a_nx^n$  são chamados *termos* do polinômio f.
- As seguintes aplicações são polinômios:
  - 1.  $f(x) = 1 + 2x + 3x^2 5x^3$  onde  $a_0 = 1$ ,  $a_1 = 2$ ,  $a_2 = 3$  e  $a_3 = -5$ .
  - 2.  $g(x) = 1 + 7x^4$  onde  $a_0 = 1$ ,  $a_1 = a_2 = a_3 = 0$  e  $a_4 = 7$

## Definição

▶ Dados o número complexo a e o polinômio  $f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$ , chama-se valor numérico de f em a a imagem de a pela função f, isto é:

$$f(a) = a_0 + a_1 a + a_2 a^2 + \ldots + a_n a^n$$

- ► Por exemplo, se  $f(x) = 2 + x + x^2 + 3x^3$ , temos:
  - 1.  $f(2) = 2 + 2 + 2^2 + 3 \cdot 2^3 = 32$
  - 2.  $f(-1) = 2 + (-1) + (-1)^2 + 3 \cdot (-1)^3 = -1$
- Se a é um número complexo e f é um polinômio tal que f(a) = 0, dizemos que a é uma raiz ou um zero de f. Por exemplo, o número -2 é raíz de  $f(x) = 2x + 3x^2 + x^3$ , pois:

$$f(-2) = 2(-2) + 3(-2)^2 + (-2)^3 = 0$$

→ロト → □ ト → 重 ト → 重 ・ り へ ○

## Igualdade

▶ Dois polinômios f e g são iguais se, e somente se, os coeficientes de f e g forem ordenamente iguais:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n = \sum_{i=0}^n a_i x^i, \text{ e}$$

$$g(x) = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + \ldots + b_n x^n = \sum_{i=0}^n b_i x^i$$

$$f = g \iff a_i = b_i, \forall i \in \{0, 1, 2, \ldots, n\}$$

Referências

## Roteiro

- 1. Definição
- 2. Operações
- 4. Referências

## Adição

► Dados dois polinômios:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n = \sum_{i=0}^n a_i x^i$$
  

$$g(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_n x^n = \sum_{i=0}^n b_i x^i$$

chama-se soma de f e g o polinômio:

$$(f+g)(g) = (a_0+b_0)+(a_1+b_1)x^1+(a_2+b_2)x^2+\dots(a_n+b_n)x^n$$

escrevendo como somatório:

$$(f+g)(x) = \sum_{i=0}^{n} (a_i + b_i)x^i$$

Definição

- ► Exemplo: somar  $f(x) = 4 + 3x + x^2$  e  $g(x) = 5 + 3x^2 + x^4$ .
- ▶ Solução:

$$f(x) = 4 + 3x + x^{2} + 0x^{3} + 0x^{4}$$

$$g(x) = 5 + 0x + 3x^{2} + 0x^{3} + x^{4}$$

$$(f+g)(x) = (4+5) + (3+0)x + (1+3)x^{2} + (0+0)x^{3} + (0+1)x^{4} = 0$$

$$9 + 3x + 4x^{2} + x^{4}$$

## Subtração

Definição

► Dados dois polinômios:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n = \sum_{i=0}^n a_i x^i$$
  
$$g(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_n x^n = \sum_{i=0}^n b_i x^i$$

chama-se subtração de f e g o polinômio:

$$(f-g)(g) = (a_0-b_0)+(a_1-b_1)x^1+(a_2-b_2)x^2+\dots(a_n-b_n)x^n$$

## Multiplicação

► Dados dois polinômios:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m$$
  

$$g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n$$

- ► Chama-se produto de f e g o polinômio:  $(fg)(g) = a_0b_0 + (a_0b_1 + a_1b_0)x^1 + (a_2b_0 + a_1b_1 + a_0b_2)x^2 + \dots (a_mb_n)x^{m+n}$
- Note que fg é um polinômio
   h(x) = c<sub>0</sub> + c<sub>1</sub>x + c<sub>2</sub>x<sup>2</sup> + ... + c<sub>m+n</sub>x<sup>m+n</sup>
   Cujo coeficiente c<sub>k</sub> pode ser assim obtido:

$$c_k = a_0 b_k + a_1 b_{k-1} + \ldots + a_k b_0 = \sum_{i=0}^k a_i b_{k-1}$$

## Multiplicação

- Note que fg pode ser obtido multiplicando-se cada termo  $a_i x^i$  de f por cada termo  $b_i x^i$  de g, segundo a regra  $(a_i x^i).(b_j x^j) = a_j b_j x^{i+j}$  e somando os resultados obtidos.
- ► **Exemplo**. Multiplicar  $f(x) = x + 2x^2 + 3x^3$  por  $g(x) = 4 + 5x + 6x^2$ .
- Solução:

$$(fg)(x) = (x + 2x^2 + 3x^3)(4 + 5x + 6x^2)$$

$$= x(4 + 5x + 6x^2) + 2x^2(4 + 5x + 6x^2) + 3x^3(4 + 5x + 6x^2)$$

$$(4x + 5x^2 + 6x^3) + (8x^2 + 10x^3 + 12x^4) + (12x^3 + 15x^4 + 18x^5) =$$

$$= 4x + 13x^2 + 28x^3 + 27x^4 + 18x^5$$

## ► Exercício. Dados os polinômios:

$$f(x) = 7 - 2x + 4x^2$$

$$price g(x) = 5 + x + x^2 + 5x^3$$

$$h(x) = 2 - 3x + x^4$$

#### Calcular:

1. 
$$(f+g)(x)$$

2. 
$$(g - h)(x)$$

3. 
$$(gh)(x)$$

#### Grau

- ▶ O grau de um polinômio f é o índice do *último* termo não nulo de f. Se o grau de f é p, denotamos como  $\delta f = p$
- ▶ Se f, g e f + g são polinômios não nulos, então o grau de f + g é menor ou igual ao maior dos números  $\delta f$  e  $\delta g$ .

$$\delta(f+g) < \max\{\delta f, \delta g\}$$

▶ Se f, g e fg são polinômios não nulos, então o grau de fg é igual à soma dos graus  $\delta f$  e  $\delta g$ .

$$\delta(fg) = \delta f + \delta g$$

### ► Exemplos:

1. 
$$f(x) = 1 + x + x^2 \longrightarrow \delta f = 2$$

2. 
$$f(x) = 4 + 3x \longrightarrow \delta f = 1$$

3. Se f e g são dois polinômios de grau n, qual é o grau de f+g e de fg?

Referências

### Divisão

▶ Dados dois polinômios f (dividendo) e g ≠ 0 (divisor), dividir f por g é determinar dois outros polinômios q (quociente) e r resto de modo que se verifiquem as duas propriedades seguintes:

- 1. q.g + r = f
- 2.  $\delta r < \delta g$  (ou r=0, caso em que a divisão é chamada exata)
- ► Exemplo. Quando dividimos  $f = 3x^4 2x^3 + 7x + 2$  por  $g = 3x^3 2x^2 + 4x 1$ , obtemos q = x e  $r = -4x^2 + 8x + 2$  que satisfazem as duas condições:

1. 
$$qg + r = x(3x^3 - 2x^2 + 4x - 1) + (-4x^2 + 8x + 2) = 3x^4 - 2x^3 + 7x + 2 = f$$

- 2.  $\delta r = 2 e \delta g = 3 \rightarrow \delta r < \delta g$
- ▶ Deste ponto em diante admitiremos sempre  $\delta f \geq \delta g$ , isto é, excluiremos da teoria os dois casos em que a divisão é trivial  $(f = 0 \text{ ou quando } \delta f < \delta g)$ .



### Divisão - Método da Chave

 $g = x^2 - 2x + 3$ .

► Exemplo. Dividir o polinômio  $f = 3x^5 - 6x^4 + 13x^3 - 9x^2 + 11x - 1$  pelo polinômio

### Divisão - Método da Chave

► Exemplo. Dividir o polinômio

$$f = 3x^5 - 6x^4 + 13x^3 - 9x^2 + 11x - 1$$
 pelo polinômio  $g = x^2 - 2x + 3$ .



### Divisão

► **Exemplo**. Dividir  $f = 2x^5 - 3x^4 + 4x^3 - 6x + 7$  por  $g = x^3 - x^2 + x - 1$ **Resposta**:  $a = 2x^2 - x + 1$  e  $r = 4x^2 - 8x + 8$ 

► Exemplo. Dividir  $f = x^4 - 16$  por g = x + 1Resposta.  $q = x^3 - x^2 + x - 1$  e r = -15



### Teorema do Resto

O resto da divisão de um polinômio f por x − a é igual ao valor numérico de f em a.

#### ► Exemplos:

- 1. O resto da divisão de  $f = 5x^4 + 3x^2 + 11$  por g = x 3 é:  $f(3) = 5.3^4 + 3.3^2 + 11 = 405 + 27 + 11 = 443$
- 2. O resto da divisão de  $f = (x+3)^7 + (x-2)^2$  por g = x+3 é:  $f(-3) = (-3+3)^7 + (-3-2)^2 = 0^7 + (-5)^2 = 25$

### Teorema de D'Alembert

- ▶ Um polinômio f é divisível por x a se, e somente se, a é raiz de f.
- ► Exemplo. Verificar que  $f = x^5 4x^4 3x^2 + 7x 1$  é divisível por g = x 1.
- ► Solução.  $f(1) = 1^5 4.1^4 3.1^2 + 7.1 1 = 1 4 3 + 7 1 = 0$ , então f é divisível por g.



http://mundoeducacao.bol.uol.com.br/matematica/dispositivo-pratico-briotruffini.htm

<sup>&</sup>lt;sup>1</sup>Fonte da imagem:

- ► Exemplo. Dividir  $f = 5x^3 2x^2 + 3x 1$  por g = x 2. Solução. Quando g = 0, x = 2.
  - 1. Montando o dispositivo:



2. Rescrevendo o primeiro coeficiente de f na linha inferior.

http://mundoeducacao.bol.uol.com.br/matematica/dispositivo-pratico-briotzuffini htm

<sup>&</sup>lt;sup>2</sup>Fonte da imagem:

3. Multiplicando o 5 por 2 e somando o resultado com o segundo coeficiente de *f* :

4. Multiplicando 8 por 2 e somando com o terceiro coeficiente de *f* :

5. Multiplicando o 19 por 2 e somando o resultado com − 1:

| 2 | 5 | -2 | 3  | -1 |  |  |
|---|---|----|----|----|--|--|
|   | 5 | 8  | 19 | 37 |  |  |

6. O quociente resultante da divisão de  $5x^3 - 2x^2 + 3x - 1$  por x - 2 é  $5x^2 + 8x + 19$ , e o resto da divisão é r = 37.

Exercícios Determinar o quociente e o resto da divisão de f por g para:

1. 
$$f = 2x^4 - 7x^2 + 3x - 1$$
 e  $g = x - 3$   
Resposta:  $g = 2x^3 + 6x^2 + 11x + 36$  e  $r = 107$ 

2. 
$$f = 625x^4 - 81$$
 e  $g = x - \frac{3}{5}$   
Resposta:  $625x^3 + 375x^2 + 225x + 135$  e  $r = 0$ 

3. 
$$f = 9x^3 + 5x^2 + x - 11$$
 e  $g = x + 2$   
Resposta:  $g = 9x^2 - 13x + 27$  e  $r = -65$ 

## Divisão

▶ **Teorema**. Se um polinômio é divisível separadamente por x - a e por x - b, com  $a \neq b$ , então f é divisível pelo produto (x - a)(x - b).

► **Exemplo**. Mostrar que  $f = 2x^3 + 9x^2 + 7x - 6$  é divisível por  $g = x^2 + 5x + 6$ .

**Solução**. Podemos resolver este problema sem efetuar a divisão, notando que

$$g=(x+2)(x+3)$$

se f for divisível por x+2 e x+3, de acordo com o teorema anterior, f será divisível por g.

Provemos que f(-2) = 0 e f(-3) = 0:

$$f(-3) = 2(-3)^3 + 9(-3)^2 + 7(-3) - 6 = -54 + 81 - 21 - 6 = 0$$
  
$$f(-2) = 2(-2)^3 + 9(-2)^2 + 7(-2) - 6 = -16 + 36 - 14 - 6 = 0$$

4 U P 4 DP P 4 E P 4 E P E \*) Q (\*

### Divisão

#### ▶ Exercícios

- 1. Determinar  $a \in b \text{ em } R$  de modo que o polinômio  $f = x^3 + 2x^2 + (2a b)x + (a + b)$  seja divisível por  $g = x^2 x$ .
- 2. Mostrar que  $f(x) = x^3 + x^2 10x + 8$  é divisível por x 1 mas não é divisível por  $(x 2)^2$ .

- 1. Definição
- 2. Operações
- 3. Equações Polinomiais
- 4. Referências

## Equações Polinomiais

- ▶ Dadas duas funções polinomiais y = f(x) e y = g(x), chama-se equação polinomial ou equação algébrica a sentença f(x) = g(x).
- ► Exemplo. Se  $f(x) = x^3 + x^2 x 1$  e  $g(x) = 3x^2 3$ , a sentença  $x^3 + x^2 x 1 = 3x^2 3$  é uma equação polinomial.
- ▶ Dada uma equação polinomial f(x) = g(x), chama-se raiz da equação todo número que, substituído em lugar de x, torna a sentença verdadeira.
- ▶ Exemplo. Para a equação  $x^3 + x^2 x 1 = 3x^2 3$ , o conjunto solução é  $S = \{1, 2, -1\}$ , mas 3 não é solução, VERIFIQUE!.

## Equações Polinomiais

- ► Há duas operações que não alteram o conjunto-solução de uma equação polinomial:
  - 1. Somar aos dois membros a mesma função polinomial; **Exemplo**. Seja i)  $3x^2 4x + 11 = 2x^2 + x + 5$ , somando-se ii)  $h(x) = -2x^2 x 5$  aos dois membros da equação, obtemos:  $x^2 5x + 6 = 0$ . Decorre que i) é equivalente a ii) pois:  $S_1 = S_2 = \{2, 3\}$ .

Em outras palavras, em toda equação polinomial, transpor um termo de um membro para outro, trocando o sinal de seu coeficiente, não altera o conjunto solução.

- 2. Multiplicar os dois membros pelo mesmo número complexo k com  $k \neq 0$
- ► Toda equação polinomial P(x) = f(x) g(x) = 0 é redutível à forma:

$$a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \ldots + a_1 x^1 + a_0 = 0$$

←ロ → ←団 → ← 豆 → へ豆 → りへ ○

### Número de Raízes

- ► Teorema Fundamental da Álgebra T.F.A. Todo polinômio de grau  $n \ge 1$  admite ao menos uma raiz complexa.
- ► Teorema da Decomposição. Todo polinômio P de grau n ≥ 1 pode ser decomposto em n fatores do primeiro grau:

$$P = a_n(x - r_1)(x - r_2)(x - r_3)...(x - r_n)$$

em que  $r_1, r_2, r_3, \ldots, r_n$  são as raízes de P.

► **Exemplo**. Fatorar o polinômio  $P = 5x^5 - 5x^4 - 80x + 80$  sabendo que suas raízes são:  $\{1, -2, 2, -2i, 2i\}$ .

Resposta: 
$$P = 5(x-1)(x+2)(x-2)(x+2i)(x-2i)$$

## Número de Raízes

► Exemplo. Dada a equação polinomial:

$$(x-1)(x^3-4x+a)=(x^2-1)^2$$
, pede-se:

- 1. colocá-la na forma P(x) = 0
- 2. obter a para que 2 seja uma das raízes da equação.
- ► Resposta:  $x^3 + 2x^2 (4 + a)x + (a + 1) = 0$  e a = 9

## Número de Raízes

Definição

► Exercícios. Resolver as seguintes equações polinomiais:

1. 
$$(x+1)(x^2-x+1)=(x-1)^3$$
  
Resposta:  $S = \{\frac{3+i\sqrt{15}}{6}, \frac{3-i\sqrt{15}}{6}\}$ 

2. 
$$(x+2)(x+3) + (x-2)(1-x) = 4(1+2x)$$
  
Resposta:  $S = C$ 

## Relações de Girard

► Dada a equação

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \ldots + a_1 x + a_0 = 0$$
  
(a \neq 0)

cujas raízes são  $r_1$ ,  $r_2$ ,  $r_3$ , ...,  $r_n$ , temos as seguintes relações entre raízes e coeficientes:

1. 
$$r_1 + r_2 + \ldots + r_n = -\frac{a_{n-1}}{a_n}$$

2. 
$$r_1r_2 + r_1r_3 + \ldots + r_{n-1}r_n = \frac{a_{n-2}}{a_n}$$

3. 
$$r_1r_2r_3 + r_1r_2r_4 + \ldots + r_{n-2}r_{n-1}r_n = -\frac{a_{n-3}}{a_n}$$

4. 
$$r_1 r_2 r_3 \dots r_n = (-1)^n (\frac{a_0}{a_n})$$

## Relações de Girard

Definição

**Exemplo**. Resolver a equação  $x^3 - 6x^2 + 3x + 10 = 0$ , sabendo que a soma de duas raízes é 1.

### ► Solução:

1. 
$$r_1 + r_2 + r_3 = -\frac{a_2}{a_1} = 6$$

2. 
$$r_1r_2 + r_1r_3 + r_2r_3 = \frac{a_1}{a_3} = 3$$

3. 
$$r_1 r_2 r_3 = -\frac{a_0}{a_2} = -10$$

4. 
$$r_1 + r_2 = 1$$

5. 
$$r_1r_2 = -\frac{10}{5} = -2$$
  
em  $(1.) \longrightarrow 1 + r_3 = 6 \longrightarrow r_3 = 5$   
Usando os itens  $(4.)$  e  $(5.)$ ,  $r_1 = -1$  e  $r_2 = 2$ , portanto  $S = \{-1, 2, 5\}$ 

## Relações de Girard

► Exercícios. Calcular a soma e o produto das raízes das seguintes equações:

1. 
$$x^3 - 2x^2 + 3x - 5 = 0$$

2. 
$$x^4 + 7x^3 - 5x^2 + 11x + 1 = 0$$

3. 
$$2x^3 + 4x^2 + 7x + 10i = 0$$

### Respostas.

- 1. Soma = 2, produto = 5
- 2. Soma = -7, produto = 1
- 3. Soma = -2, produto = -5i

## Raízes Complexas

- ▶ Teorema. Se uma equação polinomial de coeficientes reais admite a raiz  $z = \alpha + \beta i$  ( $\beta \neq 0$ ) com multiplicidade p, então também admite a raiz  $\bar{z} = \alpha \beta i$  com multiplicidade p.
- ▶ Observação: este teorema só se aplica a equações polinomiais de coeficientes reais.
- ► **Exemplo**. Resolver a equação  $x^4 + x^3 + 2x^2 + 3x 3 = 0$ , sabendo que uma das raízes é  $i\sqrt{3}$ .

**Solução**. Temos que  $-i\sqrt{3}$  também é raiz, portanto o primeiro membro é divisível por  $(x-i\sqrt{3})(x+i\sqrt{3})=x^2+3$ . Dividindo a equação, temos:

$$(x^2+3)(x^2+x-1)=0$$

e obtemos as duas raízes restantes:

$$x^{2} + x - 1 = 0 \longrightarrow x = \frac{-1 \pm \sqrt{1+4}}{2} = \frac{-1 \pm \sqrt{5}}{2}$$

(ロ) (部) (注) (注) 注 り(())

## Raízes Complexas

Definição

- Exercícios.
  - 1. Resolver a equação  $x^4 4x^2 + 8x + 35 = 0$ , sabendo que uma das raízes é  $2 + i\sqrt{3}$ .
- ► Resposta:  $S = \{2 + i\sqrt{3}, 2 i\sqrt{3}, -2 + i, -2 i\}$

### Raízes Reais

- ▶ Teorema de Bolzano. Sejam P(x) = 0 uma equação polinomial com coeficientes reais e ]a; b[ um intervalo real aberto.
  - 1. Se P(a) e P(b) têm mesmo sinal, então existe um número par de raízes reais ou não existem raízes reais da equação em a; b[.
  - 2. Se P(a) e P(b) têm sinais contrários, então existem um número ímpar de raízes reais da equação em a; b.

### Raízes Reais

**Exemplo**. Quantas raízes reais a equação  $x^3 + 5x^2 - 3x + 4 = 0$  pode apresentar no intervalo ]0; 1[? **Solução**. Temos  $P(x) = x^3 + 5x^2 - 3x + 4$ , então  $P(0) = 0^3 + 5(0)^2 - 3(0) + 4 = 4 > 0$   $P(1) = 1^3 + 5(1)^2 - 3(1) + 4 = 7 > 0$  Como P(0) e P(1) são positivos, a equação pode ter duas ou nenhuma raiz real no intervalo dado.

### Raízes Reais

Definição

▶ Exercício. Quantas são as raízes reais da equação  $x^3 - 10x^2 + 5x - 1 = 0$ , no intervalo ]0; 3[ ?

Resposta: nenhuma

- ► Exercício. Dada a função polinomial  $f(x) = x^3 + 2x$ , estabelecer o número de raízes reais da equação f(x) = 0.
- ► Resposta: 1 raiz real, 0.

► Se uma equação polinomial de coeficientes inteiros

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \ldots + a_1 x + a_0 = 0,$$
  

$$(a_n \neq 0),$$

admite uma raiz racional  $\frac{p}{q}$  (onde  $p \in \mathbb{Z}$ ,  $q \in \mathbb{Z}_+^*$  e p e q são primos entre si), então p é divisor de  $a_0$  e q é divisor de  $a_n$ .

- ► Isso significa que:
  - 1.  $a_n p^n$  é divisível por q;
  - 2.  $a_n$  é divisível por q;
  - 3.  $a_0 q^n$  é divisível por p;
  - 4.  $a_0$  é divisível por p.

- ► **Exemplo**. Quais são as raízes racionais da equação:  $2x^6 5x^5 + 4x^4 5x^3 10x^2 + 30x 12 = 0$ ?
- Solução. As possíveis raízes racionais dessa equação têm a forma p/q onde p é divisor de −12 e q é divisor positivo de 2, isto é:

$$p \in \{-1, 1, -2, 2, -3, 3, -4, 4, -6, 6, -12, 12\}$$
 e  $q \in \{1, 2\}$ 

Assim, se a equação tiver raízes racionais, essas raízes estão no conjunto:

$$\{-1,1,-2,2,-3,3,-4,4,-6,6,-12,12,-\frac{1}{2},\frac{1}{2},-\frac{3}{2},\frac{3}{2}\}$$

Esse conjunto foi obtido da tabela seguinte:

4□ > 4回 > 4 = > 4 = > = 900

| q | -1             | 1             | -2 | 2 | -3             | 3             | -4 | 4 | -6 | 6 | -12 | 12 |
|---|----------------|---------------|----|---|----------------|---------------|----|---|----|---|-----|----|
| 1 | -1             | 1             | -2 | 2 | -3             | 3             | -4 | 4 | -6 | 6 | -12 | 12 |
| 2 | $-\frac{1}{2}$ | $\frac{1}{2}$ | -1 | 1 | $-\frac{3}{2}$ | $\frac{3}{2}$ | -2 | 2 | -3 | 3 | -6  | 6  |

Fazendo a verificação para os 16 elementos do conjunto, teríamos que as únicas raízes racionais são 2 e  $\frac{1}{2}$ , pois:

► 
$$P(2) = 2(2)^6 - 5(2)^5 + 4(2)^4 - 5(2)^3 - 10(2)^2 + 30(2) - 12 =$$
  
=  $128 - 160 + 64 - 40 - 40 + 60 - 12 = 0$ 

$$P(\frac{1}{2}) = 2(\frac{1}{2})^6 - 5(\frac{1}{2})^5 + 4(\frac{1}{2})^4 - 5(\frac{1}{2})^3 - 10(\frac{1}{2})^2 + 30(\frac{1}{2}) - 12 =$$

$$= \frac{1}{32} - \frac{5}{32} + \frac{1}{4} - \frac{5}{8} - \frac{5}{2} + 15 - 12 = \frac{1 - 5 + 8 - 20 - 80 + 96}{32} = 0$$

e para os demais elementos  $P(x) \neq 0$ 

(ロ) (部) (注) (注) 注 り(())

#### ▶ Exercícios

- 1. Quais são as raízes inteiras da equação  $x^3 + 3x^2 3x 9 = 0$ ? Resposta: -3
- 2. Resolver a equação:  $2x^4 5x^3 2x^2 4x + 3 = 0$ Resposta:  $S = \{3, \frac{1}{2}, -\frac{1}{2} + i\frac{\sqrt{3}}{2}, -\frac{1}{2} - i\frac{\sqrt{3}}{2}\}$

### Roteiro

- 1. Definição
- 2. Operaçõe
- 3. Equações Polinomiais
- 4. Referências

## Referências

► Fundamentos de matemática elementar: Complexos, Polinômios, Equações. Gelson lezzi. 5 edição, 1992. Atual Editora LTDA.