Product Specification

(Common Application)

Product Name: VGM160128A9W02

Product Code: M05000

Customer						
		Approved by Customer				
Approved	Date:					

D! 1 D	iI P ChI-I P		oved By
Designed By	Checked By	R&D	QA
Fu. S. 8.8/12	文服39.8/m	7/3/9/8 16/20229.8	# >14 9/9

CONTENT

REV	ISI	ION RECORD	3
1	A]	PPLICATION FILED	4
2	O	OVERVIEW	4
3	Fl	EATURES	4
4	M	IECHANICAL DATA	4
5	M	IECHANICAL DRAWING	5
6	M	ODULE INTERFACE	6
7	FU	UNCTION BLOCK DIAGRAM	7
8	A	BSOLUTE MAXIMUM RATINGS	8
9	El	LECTRICAL CHARACTERISTICS	9
9.	1	DC ELECTRICAL CHARACTERISTICS	9
9.2	2	ELECTRO-OPTICAL CHARACTERISTICS	9
9.3	3	AC ELECTRICAL CHARACTERISTICS	10
10	FU	UNCTIONAL SPECIFICATION AND APPLICATION CIRCUIT	17
10).1	POWER ON AND POWER OFF SEQUENCE	17
10	0.2	APPLICATION CIRCUIT	19
10	0.3	DISPLAY CONTROL INSTRUCTION	24
10).4	RECOMMENDED SOFTWARE INITIALIZATION	24
11	PA	ACKAGE SPECIFICATION	28
12	R	ELIABILITY	29
12	2.1	RELIABILITY TEST	29
12	2.2	LIFETIME	29
12	2.3	FAILURE CHECK STANDARD	29
13	II	LLUSTRATION OF OLED PRODUCT NAME	30
14	O	OUTGOING QUALITY CONTROL SPECIFICATIONS	31
14	.1	SAMPLING METHOD	31
14	.2	Inspection Conditions	31
14	.3	QUALITY ASSURANCE ZONES	31
14	.4	INSPECTION STANDARD	32
15	Pl	RECAUTIONS FOR OPERATION AND STORAGE	35
15	5.1	PRECAUTIONS FOR OPERATION	35
15	5.2	SOLDERING	35
15	5.3	PRECAUTIONS FOR STORAGE	35
15	5.4	WARRANTY PERIOD	35

REVISION RECORD

REV.	REVISION DESCRIPTION	REV. DATE	REMARK
Y01	Initial release.	2022-09-05	

Application filed 1

Common Application

Overview

VGM160128A9W02 is a gray-scale OLED display module with 160×128 dot matrix. The characteristics of this display module are high brightness, self-emission, high contrast ratio, slim/thin outline, wide viewing angle, wide temperature range, and low power consumption.

3 **Features**

Display Color: White Dot Matrix:160×128 Driver IC: SP5140

Interface: 8-bit 8080,8-bit 6800, 3-wire SPI, 4-wire SPI,I €

Wide range of operating temperature: -40°C to 70°C Wide range of Storage temperature: -40 $^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$

4 **Mechanical Data**

NO.	ITEM	SPECIFICATION	UNIT
1	Dot Matrix	128(W)×160(H)	-
2	Dot Size	0.206(W)×0.2012(H)	mm ²
3	Dot Pitch	0.226(W)×0.2462(H)	mm ²
4	Aperture Rate	74.5	%
5	Active Area	28.908(W)×39.34(H)	mm ²
6	Panel Size	34.5(W)×48.8(H) ×1.20(T)	mm ³
7	Module Size	34.5(W)×83.8(H) ×1.43(T)	mm ³
8	Diagonal A/A Size	1.92	inch
9	Module Weight	TBD±10%	g

Mechanical Drawing 5

http://www.qingyue-tech.com 指引文件: APQP 管理程序

表单编号: KGP-21-14 A2

6 Module Interface

PIN NO.	PIN NAME									
1,9,30	NC	No Connection.								
2,8,31	VPP	This is the most positive voltage supply pad of the chip It should be supplied externally								
3	VSEGM	This is a segme A 4.7uF capaci			ween this pa	d and GND				
4	VCOMH	This is a pad for A 4.7uF capaci	or the voltage	output high	level for co	mmon sign	als.			
5	VSL	Discharge volta A 4.7uF capaci	age level pad.							
6	DVDD	This pin is for A 4.7uF capaci	regulator circ	uit.		_				
7	IREF	This is a segment pad and GND.						ween this		
10	VSS	Ground for ana	alog, logic &b	ouffer respec	ctively.					
11	VCL	This is a commexternally	on voltage re	ference pad	. This pad sl	hould be co	nnected to V	'SS		
12,15	VDD_3.3	1.65 - 3.5V po	wer supply in	put pad for l	logic.					
13	IM0	These are the N	MPU interface	e mode selec	et pads.	ı		1		
13	IIVIO	IM[0:2]	8080	I ² C	6800	4-SPI	3-SPI			
14	IM1	IM0	0	0	0	0	1			
		IM1	1	1	0	0	0			
16	IM2	IM2	1	0	1	0	0			
17	/CS	This pad is the	chip select in	put. These p	oins must be	connected	to "H" or "I	·".		
18	/RES	This is a reset								
19	A0	This is the Dat or a command. A0 = "L": the In I ² C interface driver. These p	A0 = "H": the inputs at D0 to e, this pad ser	te inputs at I to D7 are training types as SA0 to	D0 to D7 are nsferred to to distinguis	e treated as one the comman the the different the different the different the treatment to	display data. d registers.			
20	/WR	When connected MPU /WR signal. When c	driver. These pins must be connected to "H" or "L". This is a MPU interface input pad. When connected to an 8080 MPU, this is active LOW. This pad connects to the 8080 MPU /WR signal. The signals on the data bus are latched at the rising edge of the /WR signal. When connected to a 6800 Series MPU: This is the read/write control signal input torminal. When /W/P = "H": Pend When /W/P = "H": Write.							
21	/RD	input terminal. When /WR = "H": Read. When /WR = "L": Write. This is a MPU interface input pad. When connected to an 8080 series MPU, it is active LOW. This pad is connected to the /RD signal of the 8080 series MPU, and the data bus is in an output status when this signal is "L". When connected to a 6800 series MPU, this is active HIGH. This is used as an enable clock input of the 6800 series MPU.								
22~29	D0~D7	This is an 8-bit MPU data bus. input pad (SCI be select as dat When the I ² C i and D1 serves impedance.	bi-directiona When the ser L) and D1serv a output pad. nterface is se	Il data bus the rial interface tes as the ser D2(3) to D'alected, then	nat connects e is selected rial data inpo 7 are set to l D0 serves a	then D0 se ut pad (SI). nigh impeda s the serial	erves as the s When readinance. clock input p	serial clock ng, D2 can pad (SCL)		

7 Function Block Diagram

8 Absolute Maximum Ratings

ITEM	SYMBOL	MIN	MAX	UNIT	REMARK
Cumply voltage	VDD	-0.3	3.6	V	IC maximum rating
Supply voltage	VPP	-0.3	18.5	V	IC maximum rating
Operating Temp.	Тор	-40	70	$^{\circ}$	-
Storage Temp	Tstg	-40	85	$^{\circ}$	-

Note (1): All of the voltages are on the basis of "VSS = 0V".

Note (2): Permanent breakage of module may occur if the module is used beyond the maximum rating. The module can be normal operated under the conditions according to Section 9 "Electrical Characteristics". Malfunctioning of the module may occur and the reliability of the module may deteriorate if the module is used beyond the conditions.

表单编号: KGP-21-14 A2

9 Electrical Characteristics

9.1 DC Electrical Characteristics

ITEM	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Operating Voltage	VPP	-	10.7	11.0	11.3	V
Logic Supply Voltage	VDD	-	1.65	-	3.5	V
High-level Output voltage	V_{OHC}	I _{oH} =-0.5mA(D0-D7)	$0.8 \times \text{VDD}$	1	VDD	V
Low-level Output voltage	V_{OLC}	I _{oL} =0.5mA(D0,D2-D7)	VSS	-	0.2×VDD	V
High Logic Input voltage	V _{IHC}	A0, D0 - D7, RD, WR,	$0.8 \times \text{VDD}$	-	VDD	V
Low Logic Input voltage	V_{ILC}	CS, IM0~2 and RES.	VSS	-	0.2×VDD	V

Note: The VPP, VDD input must be kept in a stable value; ripple and noise are not allowed.

9.2 Electro-optical Characteristics

ITEM	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Normal Mode Brightness (with polarizer)	L_{br}	All pixels ON ⁽¹⁾	180	230	-	cd/m ²
VDD Sleep mode Current	ISP_VDD	During sleep, $TA = +25 \text{C}$, VDD = 3V, 500us after pin reset	-	0.02	120	uA
VPP Sleep mode Current	ISP_VPP	During sleep, $TA = +25 ^{\circ}\text{C}$, $VPP = 12V$	-	0.02	10	uA
Normal Mode Power Consumption	Pt	All pixels ON ⁽¹⁾	682	880	-	mW
C I E (White)	(x)	****(CIE1021)	0.32	0.36	0.40	-
C.I.E(White)	(y)	x,y(CIE1931)	0.34	0.38	0.42	-
Dark Room Contrast	CR	-	10000:1	1	-	-
Response Time	-	-	-	10	-	μs
View Angle	-	-	>160	-	-	Degree

Note(1): Normal Mode test conditions are as follows:

Driving voltage: 11VContrast setting: 0xD0Frame rate: 100 HzDuty setting: 1/128

9.3 AC Electrical Characteristics

(1) System buses Read/Write characteristics 1 (For the 8080 Series Interface MPU)

8080-series parallel interface cycle (Form1)

8080-series parallel interface cycle (Form2)

 $(VDD=1.65V\sim3.5V,T_A=+25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tcycs	System cycle time	600	-	-	ns	
tass	Address setup time	0	-	-	ns	
tans	Address hold time	0	-	-	ns	
tos8	Data setup time	80	-	-	ns	
tDHW8	Write Data hold time	20	-	-	ns	
tDHR8	Read Data hold time	20	-	-	ns	
Тонв	Output disable time	-	-	140	ns	CL = 100pF
tACC8	RD access time	-	-	280	ns	CL = 100pF
tccLw	Control L pulse width (WR)	300	-	-	ns	
tcclr	Control L pulse width (RD)	300	-	-	ns	
tсснw	Control H pulse width (WR)	300	-	-	ns	
tcchr	Control H pulse width (RD)	300	-	-	ns	
tr	Rise time	-	-	30	ns	
tF	Fall time	-	-	30	ns	
tcs8	Chip select setup time	0	-	-	ns	
tcsH8	Chip select hold time	40	-	-	ns	
tcsHR8	Chip select hold time to read signal	40	-	-	ns	

Note: 8080 interface speed is less than oscillator frequency.

(2) System buses Read/Write characteristics 2 (For the 6800 Series Interface MPU)

6800-series parallel interface cycle (Form1)

6800-series parallel interface cycle (Form2)

(VDD=1.65V~3.5V,T_A=+25°C)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tcyc6	System cycle time	600	-	-	ns	
tAS6	Address setup time	0	-	-	ns	
tan6	Address hold time	0	-	-	ns	
tDS6	Data setup time	80	-	-	ns	
tDHW6	Write Data hold time	20	-	-	ns	
tDHR6	Read Data hold time	20	-	-	ns	
toн6	Output disable time	-	-	140	ns	CL = 100pF
tACC6	Access time	-	-	280	ns	CL = 100pF
tewnw	Enable H pulse width (Write)	300	-	-	ns	
tewhr	Enable H pulse width (Read)	300	-	-	ns	
tewLw	Enable L pulse width (Write)	300	-	-	ns	
tewlr	Enable L pulse width (Read)	300	-	-	ns	
tr	Rise time	-	-	30	ns	
tr	Fall time	-	-	30	ns	
tcs6	Chip select setup time	0	-	-	ns	
tcsH6	Chip select hold time	40	-	-	ns	
tcsHR6	Chip select hold time to read signal	40	-	-	ns	

Note: 6800 interface speed is less than oscillator frequency.

(3) System buses Read/Write characteristics 3 (For the 4-wire SPI Interface MPU)

(VDD=1.65V~3.5V,T_A=+25°C)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tscyc	Serial clock cycle	100	-	-	ns	
tsas	Address setup time	60	-	-	ns	
tsah	Address hold time	60	-	-	ns	
tsps	Data setup time	40	-	-	ns	
tsdH	Data hold time	40	-	-	ns	
tcss	CS setup time	90	-	-	ns	
tсsн	CS hold time time	24	-	-	ns	
tsнw	Serial clock H pulse width	40	-	-	ns	
tsLw	Serial clock L pulse width	40	-	-	ns	
tr	Rise time	-	-	6	ns	
tF	Fall time	-	-	6	ns	

(4) System buses Read/Write characteristics 4 (For the 3-wire SPI Interface MPU)

 $(VDD=1.65V\sim1.8V,T_A=+25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tscyc	c Serial clock cycle		-	-	ns	
tsds	Data setup time	40	-	-	ns	
tsdh (Data hold time	40	-	-	ns	
tcss	CS setup time	90	-	-	ns	
tсsн	CS hold time time	24	-	-	ns	
t shw	Serial clock H pulse width	40	-	-	ns	
tslw	Serial clock L pulse width	40	-	-	ns	
tR	Rise time	-	-	6	ns	
tF	Fall time	-	-	6	ns	

(5) System buses Read/Write characteristics 5 (For the I²C Interface MPU)

(VDD=1.65V~3.5V, T_A =+25°C)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
fscL	SCL clock frequency	0	-	400	kHz	
TLOW	SCL clock Low pulse width	1.3	-	-	uS	
Тнідн	SCL clock H pulse width	0.6	-	-	uS	
Tsu:DATA	data setup time	100	-	-	nS	
THD:DATA	data hold time	O ⁽¹⁾	-	0 Q ⁽²⁾	uS	
Tr	SCL , SDA rise time	20	-	300	nS	
TF	SCL , SDA fall time	20	-	300	nS	
Cb	Cb Capacity load on each bus line		-	400	pF	
Tsu:start	Setup timefor re-START	0.6	-	-	uS	
THD:START	START Hold time	0.6	-	-	uS	
Tsu:stop	Setup time for STOP	0.6	-	-	uS	
Твиғ	Bus free times between STOP and START condition	1.3	-	-	uS	

Notes

- 1. A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 2. The maximum tHD;DAT has only to be met if the device does not stretch the LOW period (tLOW) of the SCL signal.

10 Functional Specification and Application Circuit

10.1 Power ON and Power OFF Sequence

External power is being used immediately after turning on the power:

Power On Sequence:

Power OFF:

Power OFF Sequence:

Note: There will be no damages to the display module if the power sequences are not met.

10.2 Application Circuit

10.2.1 The configuration for 8080-parallel interface mode, external VPP is shown in the following diagram:

Pin connected to MCU interface: D[7:0],/RD,/WR,A0,/RES,/CS.

Recommended components

C1~ C6: 4.7µF/16V.RoHS (Tantalum Capacitors)

R1: 0603 1/10W +/-5% 750KΩ.RoHS

10.2.2. The configuration for 6800-parallel interface mode, external VPP is shown in the following diagram:

Pin connected to MCU interface: D[7:0],/RD, /WR ,A0,/RES,/CS.

Recommended components

C1~ C6: 4.7µF/16V.RoHS (Tantalum Capacitors)

R1: 0603 1/10W +/-5% 750KΩ.RoHS.

10.2.3. The configuration for 4-wire SPI interface mode, external VPP is shown in the following diagram:

Pin connected to MCU interface: SI,SCL,/CS,A0,/RES.

Recommended components

C1~C6: 4.7µF/25V.RoHS (Tantalum Capacitors)

R1: 0603 1/10W +/-5% 750K Ω .RoHS.

10.2.4. The configuration for 3-wire SPI interface mode, external VPP is shown in the following diagram:

Pin connected to MCU interface: SI,SCL,/CS, /RES.

Recommended components

C1~C6: 4.7µF/25V.RoHS (Tantalum Capacitors)

R1: 0603 1/10W +/-5% 750KΩ.RoHS

10.2.5.The configuration for I € interface mode, external VPP is shown in the following diagram:

Pin connected to MCU interface:SDA,SCL,SA0,/RES.

SA0	I ² C Address
0	0x78
1	0x7A

Recommended components

C1~ C6: 4.7µF/25V.RoHS (Tantalum Capacitors)

R1: 0603 1/10W +/-5% 750K Ω .RoHS

R2,R3: 0603 1/10W +/-5% 10KΩ.RoHS

10.3 Display Control Instruction

{

Refer to SP5140 IC Specification.

10.4 Recommended Software Initialization

In order to ensure the reliability and stability of the module, the module must initialized use the following code, Malfunctioning of the module may occur and the reliability of the module may deteriorate if the module is used beyond the initialize code.

```
void Init IC()
    Write Command(0xAE);
                             //display off
     Write_Command(0x20);
                              //Horizontal addressing mode
     Write Command(0x00);
     Write_Command(0x23);
                              //breath off
     Write Command(0x00);
     Write_Command(0xA2);
                             //start line
     Write_Command(0x00);
     Write Command(0x81);
                              //contrast
     Write_Command(0xD0);
     Write_Command(0xAD);
                             //external iref resistor
     Write Command(0x00);
     Write_Command(0xA0);
                             //seg remap
     Write_Command(0xA4); //entire displai off
     Write_Command(0xAA); //black display off
     Write_Command(0xA6); //reverse display off
                             //multi ratio
     Write_Command(0xA8);
     Write_Command(0x3F);
     Write_Command(0xC0);
                             //com remap
     Write_Command(0xD3);
                             //display offset
     Write_Command(0x60);
     Write_Command(0xAC);
                             //gray mode
     Write_Command(0x00);
     Write_Command(0xD5);
                             //Oscillator Frequency
     Write_Command(0x51);
     Write_Command(0x48);
                              //discharge1
     Write_Command(0x00);
     Write_Command(0x93);
                              //discharge2
     Write_Command(0x00);
     Write_Command(0xD8);
                             //discharge3
```

```
Write_Command(0x00);
Write Command(0x49);
                        //precharge1
Write_Command(0x00);
Write Command(0xD9);
                        //precharge2
Write Command(0x00);
Write_Command(0x94);
                        //precharge3
Write_Command(0x1F);
Write_Command(0x4B);
                        //pwm start position
Write_Command(0x1E);
Write_Command(0xDA);
                       //pad configuration
Write Command(0x00);
Write_Command(0xDB);
                       //vcomh:0.699*vpp
Write_Command(0x2A);
Write_Command(0xDC);
                       //vsegh:0.475*vpp
Write_Command(0x0F);
Write_Command(0xDD); //vsl:0.20*vpp
Write_Command(0x01);
Write_Command(0x8C);//display effect1 on
Write Command(0x80);
Write_Command(0x8D);//display effect1 parameter
Write_Command(30);
Write_Command(27);
Write_Command(24);
Write_Command(21);
Write_Command(18);
Write_Command(15);
Write_Command(13);
Write_Command(10);
Write_Command(7);
Write_Command(4);
Write_Command(1);
Write_Command(0x8A);//display effect2 on
Write_Command(0x80);
Write_Command(0x8B);//display effect2 parameter
Write_Command(0);
Write_Command(0);
Write_Command(0);
```

Write_Command(0); Write Command(63); Write_Command(40); Write_Command(20); Write_Command(10); Write_Command(63); Write_Command(40); Write_Command(20); Write_Command(10); Write_Command(63); Write Command(40); Write_Command(20); Write_Command(10); Write_Command(63); Write_Command(40); Write_Command(20);

Write_Command(10);

E-mail: sales@qingyue-tech.com

```
Write_Command(63);
Write_Command(40);
Write_Command(20);
Write_Command(10);
Write_Command(0xEF);
                       //interal DVDD cap
Write_Command(0x00);
Write_Command(0xAF);
```

}

11 Package Specification

12 Reliability

12.1 Reliability Test

NO.	ITEM	CONDITION	QUANTITY
1	High Temperature (Non-operation)	85℃,240h	5
2	Low Temperature (Non-operation)	-40°C,240h	5
3	High Temperature (Operation)	70℃,240h	5
4	Low Temperature (Operation)	-40°C,240h	5
5	High Temperature / High Humidity (Operation)	60°C,90%RH,240h	5
6	Thermal shock (Non-operation)	-40 °C ~85 °C (-40 °C /30min;transit/5min;85 °C /30min;transit/5min) 1cycle: 70min,30cycles	5
7	ESD Air discharge (Non-operation)	\pm 8kV, Test 9 point; Each point discharge 10 times. Time interval is not less than 1 second.	5

Test and measurement conditions

- 1. All measurements shall not be started until the specimens attain to temperature stability, the stable time is at least 15 minutes.
- 2. The degradation of polarizer is ignored for item 5.
- 3. The tolerance of temperature is $\pm 3^{\circ}$ C, and the tolerance of relative humidity is $\pm 5^{\circ}$ M.

Evaluation criteria

- 1. The function test is OK. High temperature storage tests ignore polarizer changes.
- 2. No observable defects.
- 3. Luminance: ≥50% of initial value.
- 4. Current consumption: within $\pm 50\%$ of initial value.

12.2 Lifetime

End of lifetime is specified as 50% of initial brightness and the test pattern at operating condition is 50% alternating checkerboard.

ITEM	MIN	MAX	UNIT	CONDITION
Operation Life Time	10,000	1	h	230 cd/m ² , 50% alternating checkerboard, 22±3 °C, 55±15% RH

12.3 Failure Check Standard

After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at 22 ± 3 °C; 55 ± 15 % RH.

E-mail: sales@qingyue-tech.com 29 / 35 http://www.qingyue-tech.com

13 Illustration of OLED Product Name

14 Outgoing Quality Control Specifications

14.1 Sampling Method

- (1) GB/T 2828.1/ISO2859-1: inspection level II, normal inspection, single sample inspection
- (2) AQL: Major 0.65; Minor 1.0

14.2 Inspection Conditions

The environmental conditions for test and measurement are performed as follows.

Temperature: 22±3°C Humidity: 55±15%R.H Fluorescent Lamp: 30W

Distance between the Panel & Lamp: ≥50cm Distance between the Panel & Eyes: ≥30cm

Viewing angle from the vertical in each direction: \leq 45 $^{\circ}$

(See the sketch below)

14.3 Quality Assurance Zones

14.4 Inspection Standard

Definition of Φ&L&W (Unit: mm)

I . Appearance Defects

NO.	ITEM	CRITERIA					CLASSIFICATION
1	Polarizer Black or White spot, Dirty spot, Foreign matter, Dent on the polarizer	Average Diameter (mm) Φ≤0.15 0.15<Φ≤0.30 Φ>0.30	Acceptable Zone A,B Ignore 3 0		e Number Zone C Ignore		Minor
2	Scratch/line on the glass/Polarizer	Width (mm) W≤0.05 0.05 <w≤0.1 w="">0.1</w≤0.1>	Length (mm) - L≤5.0 -	Accep Zone A Ignore 3	e	nber ne C	Minor
3	Polarizer Bubble	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Minor			
4	Any Dirt & Scratch on Polarizer's Protective Film	Ignore for not affect the polarizer.			Minor		
5	Any Dirt on Cap Glass	Inside the Cap, Ignore the dirt without moving.			Minor		

6	Glass Crack	Propagation acceptable.	n crack is not	Major
7	Corner Chip	Accept	s thickness m or b≤2.0mm, c≤t	Minor
8	Corner Chip on Cap Glass	Accept	thickness n or b≤1.5mm, c≤t	Minor
9	Chip on Contact Pad	(on the co a≤3.0 mm	or b≤0.8mm, c≤t	Minor
10	Chip on Face of Display	t= Glass t Accept a≤1.5mm		Minor
11	Chip on Cap Glass			Minor
12	Stain on Surface	Stain removable by soft cloth or air blow is	acceptable.	Minor
13	TCP/FPC Damage	 Crack, deep scratch, deep hole and dee the TCP/FPC are not acceptable. Terminal lead twisted or broken is not a Copper exposed is not allowed by nake 	p pressure mark on allowable. Illowable. d eye inspection.	Minor
14	Dimension Unconformity	Checking by mechanical drawing.	1	Major

E-mail: sales@qingyue-tech.com

II. Displaying Defects

NO.	Items		Classification		
1	Black/White spot Dirty spot Foreign matter	Average Diameter (mm) $\Phi \le 0.10$ $0.10 < \Phi \le 0.20$ $\Phi > 0.20$	Pieces F Zone A,B Ignore 3	Permitted Zone C Ignore	Minor
2	No Display		Major		
3	Irregular Display		Major		
4	Missing Line (row or column)		Major		
5	Abnormal Color	R	Major		
6	Luminance NG	R	tefer to the SPEC.		Major

15 Precautions for operation and Storage

15.1 Precautions for Operation

- (1) Since OLED panel is made of glass, do not apply any mechanical shock or impact or excessive force to it when installing the OLED module. Any strong mechanical impact due to falling dropping etc. may cause damage (breakage or cracking).
- (2) The polarizer on the OLED surface is made of soft material and is easily scratched. Please take most care when handing. When the surface of the polarizer of OLED Module is contaminated, please wipe it off gently by using moisten soft cloth with isopropyl alcohol, do not use water, ketone or aromatics. If there is saliva or water on the OLED surface, please wipe it off immediately.
- (3) When handling OLED module, please be sure that the body and the tools are properly grounded. And do not touch I/O pins with bare hands or contaminate I/O pins, it will cause disconnection or defective insulation of terminals.
- (4) Do not attempt to disassemble or process the OLED module.
- (5) OLED module should be used under recommended operating conditions shown in the specification. Since the higher voltage leads to the shorter lifetime, be sure to use the specified operating voltage.
- (6) Foggy dew, moisture condensation or water droplets deposited on surface and contact terminals will cause polarizer stain or damage, the deteriorated display quality and electrochemical reaction then leads to shorter life time and permanent damage to the module probably. Please pay attention to the environmental temperature and humidity.
- (7) An afterimage is created by the difference in brightness between unused dot and the fixed dot, according to the decrease of brightness of the emitting time. Therefore, to avoid having an afterimage, the full set should be thoroughly used instead of using a fixed dot. When the fixed dot emits, an afterimage can be created.
- (8) Flicker could be come out at full on display. And it disappears when frame frequency increase, but brightness decreases too.

15.2 Soldering

- (1) Soldering should be performed only on the I/O terminals.
- (2) Use soldering irons with proper grounding and no leakage.
- (3) Iron: The temperature setting of electric iron is 350°C, but we suggest that during soldering, the tem perature of iron tip should be no higher than 330°C and soldering be finished within 3~4 seconds.

15.3 Precautions for Storage

- (1) Please store OLED module in a dark place. Avoid exposure to sunlight, the light of fluorescent lamp or any ultraviolet ray.
- (2) Keep the environment temperature between 10°C and 35°C and the relative humidity less than 70%. Avoid high temperature and high humidity.
- (3) Keep the OLED modules stored in the container when shipped from supplier before using them is recommended.
- (4) Do not leave any article on the OLED module surface for an extended period of time.

15.4 Warranty period

Qing Yue warrants for a period of 12 months from the shipping date when stored or used under normal condition. In addition to failure and quality problems caused by man-made damage and force majeure, we promise to provide maintenance and replacement free of charge during the warranty period. If the warranty period has been exceeded, we need to collect the staff's travel expenses, materials and other related costs.

E-mail: sales@qingyue-tech.com 35/35http://www.qingyue-tech.com