

Benodigdhede vir hierdie vraeste	el/Requirements for this pape	er:		
Multikeusekaarte/ Multi-choice cards:	Nie-programmeerbare sakrekenaar/ Non-programmable calculator:		Oopboek-eksamen/ Open book examination? NO	
Graflekpapier/ Graphic paper:	Draagbare Rekenaar/ Laptop:			
EKSAMEN/TOETS EXAMINATION/TEST:	Junie 2016 June 2016	KWALIFIKASIE/ QUALIFICATION:	B.Ing <i>B.Eng</i>	
MODULE CODE:	EERI414		TYDSDUUR/ DURATION:	3 ure/hours
MODULEBESKRYWING/ MODULE DESCRIPTION:	Seinteorie III Signal Theory III		MAKS/ MAX:	130
EKSAMINATORE(E)/ EXAMINER(S):	PROF WC VENTER		DATUM/ DATE:	17/6/2016
			TYD/TIME:	14h00
MODERATOR:	Mnr A Alberts (INTER MNR L JANSEN VAN (EKSTERN)			

TOTAAL/TOTAL: 136

Geen programmeerbare sakrekenaars word toegelaat nie. No programmable calculators are allowed.

Vraag/Question 1

a) Die z-transform van 'n kousale reeks h[n] word gegee deur: Let the z-transform of a causal sequence h[n] be given by:

$$H(z) = \frac{z(z+2.0)}{(z-0.2)(z+0.6)}$$

Bepaal die inverse z-transform van die reeks/Determine the inverse z-transform of the sequence. (10)

b) Bepaal die z-transform van die twee-sydige reeks $v[n] = \alpha^{|n|}$, $|\alpha| < 1$. Wat is die konvergensie gebied? Determine the z-transform of the two-sided sequence $v[n] = \alpha^{|n|}$, $|\alpha| < 1$. What is its ROC? (12)

Vraag/Question 2

- a) Vir die 4 tipes linieêre-fase FIR oordragfunksies, toon in 'n tabel die aantal nulle by z = 1 en z = -1.
 For the 4 types of linear-phase FIR transfer functions, use a table to display the number of zeros at z = 1 and z = -1.
 (8)
- b) Is die volgende oordragfunksie minimum fase? / Is the following transfer function minimum phase?

$$H(z) = \frac{(3z+4)(z-5)}{(z-0.5)(z+0.8)}$$

Indien dit nie minimum fase is nie, konstrueer 'n minimum fase oordragfunksie G(z) sodat $|G(e^{i\omega})| = |H(e^{i\omega})|$. If it is not minimum-phase, then construct a minimum-phase transfer function G(z) such that $|G(e^{i\omega})| = |H(e^{i\omega})|$.

Bepaal die twee oordragfunksies se ooreenstemmende eenheid monster responsies, g[n] en h[n], vir n=0,1,2,3,4. Determine the two transfer functions corresponding unit sample responses, g[n] and h[n], for n=0,1,2,3,4.

(16)

Vraag/Question 3

Ontwikkel die kaskade rooster realisering van die volgende paar vierde-orde FIR oordragfunksies: Develop the cascade lattice realization of the following pair of fourth-order FIR transfer functions:

$$H_4(z) = 2 + 23z^{-1} + 73z^{-2} + 43z^{-3} - 15z^{-4}$$

$$G_4(z) = -4 - 24z^{-1} + 85z^{-2} + 2z^{-3} - 3z^{-4}$$
(38)

Vraag/Question 4

- a) Vanuit die definisie van die bilinieêre transform/From the definition of the bilinear transform
 - i. Lei uit eerste beginsels die vergelykings af wat die verwantskap gee, en toon grafies die verwantskap, tussen die s- en die z-vlak.

From basic priciples derive the equations for the relationship, and graphically show the relationship, between the s- and the z-domain.

- between the s- and the z-domain.

 ii. Lei uit eerste beginsels die vergelyking af wat die verwantskap gee, en toon grafies die verwantskap, tussen frekwensies in die s-vlak en die z-vlak.

 From basic priciples derive the equation for the relationship, and graphically show the relationship, between frequencies in the s- and the z-domain.

 (8)
- b) Ontwerp 'n tweede-orde keep filter wat funksioneer teen 'n monstertempo van 500 Hz met 'n keep frekwensie van 120 Hz en 'n 3-dB bandwydte van 15 Hz.
 Design a second-order notch filter operating at a sampling frequency rate of 500 Hz with a notch frequency at 120 Hz and a 3-dB bandwidth of 15 Hz.

Vraag/Question 5

- a) 'n Onderlaat FIR filter van orde N = 71 moet ontwerp word met 'n oorgangsband gegee deur $\omega_s \omega_p = 0.04\pi$ deur gebruik te maak van die Parks-McClellan metode. Bepaal die benaderde waarde van die stopband verswakking α_s in dB en die ooreenstemmende stopband rippel δ_s van die ontwerpte filter indien die filter orde geskat word deur die Bellanger formule. Aanvaar die deurgangsband- en stopband rippels is dieselfde. A lowpass FIR filter of order N = 71 is to be designed with a transition band given by $\omega_s \omega_p = 0.04\pi$ using the Parks-McClellan method. Determine the approximate value of the stopband attenuation α_s in dB and the corresponding stopband ripple δ_s of the designed filter if the filter order is estimated using the Bellanger formula. Assume the passband and stopband ripples to be the same.
- b) Die ideale Hilbert transformeerder het 'n frekwensie responsie gegee deur: The ideal Hilbert transformer has a frequency response given by:

$$\begin{array}{ll} H_{HT}(e^{j\omega}) = j & -\pi < \omega < 0 \\ -j & 0 < \omega < \pi \end{array}$$

Bepaal die impuls responsie van die Hilbert transformeerder. Determine the impulse response of the Hilbert transformer.

Om die Hilbert transformeerder te realiseer moet die impuls responsie beperk word tot $|n| \le M$. Watter tipe linieêre fase FIR filter is die beperkte impuls responsie?

To make the Hilbert transformer realizable the impulse response has to be truncated to $|n| \le M$. What type of linear-phase FIR filter is the truncated impulse response? (14)