Arquitectura de Oracle

Álvaro González Sotillo

10 de noviembre de 2019

Índice

1.	Arquitectura	1
2.	Arranque y parada	3
3.	Vistas	4
4.	Bibliografía	6
5.	Referencias	6

1. Arquitectura

- Oracle es un sistema complejo
- Para hacerlo más seguro, sus tareas se distribuyen entre muchos procesos
 - Si un proceso falla, los demás pueden intentar seguir trabajando

1.1. Algunos procesos

PMON (Process MONitor)	Monitor de procesos, se encarga controlar los
	otros procesos en background y de recuperar-
	los cuando uno de ellos falla
SMON (System MONitor process)	Recupera transacciones. Realiza tareas de lim-
	pieza: recuperar segmentos temporales, com-
	binar extensiones contiguas y disponibles,
DBWn (Database Writer Process)	Escribe el contenido de los buffers en los da-
	tafiles. n puede ser $0,1,\ldots,9,a,\ldots,j$
LGWR (Log Writer Process)	Gestión del buffer de redo , escribiendo su con-
	tenido en los archivos log.
CKPT (ChecKPoinT Process)	Actualiza los datafiles y el fichero de con-
	trol cuando se establece un punto de control
	(checkpoint).
RECO (RECOverer Process)	Necesario ante fallos en transacciones distri-
	buidas.

Más información en
 https://docs.oracle.com/cd/B19306_01/server.102/b14220/process.
 htm $\,$

1.2. SGA y PGA

- PGA: Program Global Area
 - Es la zona de memoria dedicada a un proceso
 - Global: si admite más de una conexión, se comparte entre conexiones
- lacktriangledown SGA: System Global Area
 - $\bullet\,$ Memoria compartida entre todos los procesos de ${\bf Oracle}\,$

Fuente: Oracle

1.3. Procesos de usuario y procesos de sistema

- Los procesos de usuario no se conectan directamente a la SGA
- Oracle crea procesos *intermedios* para aislarlos

2. Arranque y parada

■ Oracle tiene varios estados

• Shutdown: Todo parado

• Nomount: Memoria compartida reservada

• Mount: Fichero de control abierto

• Open: Ficheros de datos abiertos. Los clientes pueden conectarse.

2.1. ¿Por qué tantos modos?

- Shutdown y open son los modos habituales
- Nomount:
 - Para recuperar la base de datos de errores (si falta algún fichero)
- Mount:
 - Para habilitar y deshabilitar el redo log.
 - Para recuperar la base de datos de errores (sin usuarios)
 - Ejemplo: cambiar los nombres de los ficheros de datos
- Conclusión: con suerte, solo Shutdown y open

3. Vistas

- En un sistema relacional, toda la información se guarda en forma de **relaciones**
- Las vistas son representaciones de otras vistas o relaciones

- Quitando algunas filas o columnas
- Uniendo unas tablas con otras
- Tanto las tablas como las vistas son relaciones

3.1. Vistas de Oracle

- La información acerca de la base de datos también se almacena en relaciones de la base de datos
- Generalmente, en forma de vistas
- Ejemplos:
 - Tablas: nombre, propietario,...
 - Campos de las tablas: nombre, tipo, longitud
 - Restricciones
 - Usuarios: nombre, contraseñas,...
 - Tablespaces

3.2. Tipos de vistas de Oracle

- Estáticas
 - Cambian solo si se produce un cambio en los objetos de la base de datos (tablas, vistas, usuarios,...)
 - create, alter, drop, grant, revoke,...
 - Documentación de Oracle: 1, 2, 3
- Dinámicas: Actualizadas constantemente
 - Usuarios conectados, memoria disponible, consultas en curso,...
 - Documentación de Oracle

USER_xxxx	Estática	Acerca de los objetos propiedad del usuario
ALL_xxx	Estática	Objetos que puede acceder el usario
DBA_xxx	Estática	Todos los objetos de la base de datos
V\$xxxxx	Dinámica	Información dinámica de la instancia
GV\$xxxx	Dinámica	Información dinámica del cluster

- Vista comodín:
 - SELECT * FROM DICT

3.3. Ejemplo de vistas: ficheros

Tipos de archivos	Vista
De Datos (dbf) undo, system y users	v\$datafile
Temporales (tmp)	v\$tempfile
Rehacer o Redo Log (log)	v\$logfile,v\$log
De control. Estructura física de la BD	v\$controlfile
De Log	v\$diag_info
Información de la BD	v\$database

3.4. Archivos

• Los datos de las tablas al final se almacenan en archivos

Archivos de datos, de usuario y del sistema En tablespaces (dbf) Redo Log (registro de todas las transacciones) log Archivos de control ctl

¿Dónde están los archivos de datos de nuestra instalación? ¿Cómo encontrarlos?

4. Bibliografía

- https://docs.google.com/document/d/1CV-Sk9I0Pvra85IrBLjzCDA2M-nn82kziJJQBhvYMq8/edit
- https://docs.google.com/presentation/d/1pIrg5ZfTOr_j_MxBSMW3pl6jmabko_zvoAJ2ktXPis8/edit

5. Referencias

- Formatos:
 - Transparencias
 - PDF
- Creado con:
 - Emacs
 - org-reveal
 - Latex
- Por Álvaro González