Test sobre Σ

Inferencia para la normal multivariada, Parte II

Graciela Boente

Estadístico U de Rao

Sean $\mathbf{y} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ con $\boldsymbol{\Sigma} > 0$ y $\mathbf{W} \sim \mathcal{W}(\boldsymbol{\Sigma}, p, m)$ independientes entre sí, m > p.

Particionemos a y, μ , Σ y W de la siguiente forma

$$\mathbf{y} = \left(egin{array}{c} \mathbf{y}^{(1)} \ \mathbf{y}^{(2)} \end{array}
ight) \qquad \qquad \mu = \left(egin{array}{c} oldsymbol{\mu}^{(1)} \ oldsymbol{\mu}^{(2)} \end{array}
ight)$$

$$\boldsymbol{\Sigma} = \left(\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{array} \right) \qquad \quad \boldsymbol{W} = \left(\begin{array}{cc} \boldsymbol{W}_{11} & \boldsymbol{W}_{12} \\ \boldsymbol{W}_{21} & \boldsymbol{W}_{22} \end{array} \right)$$

con $\mathbf{v}^{(i)}, \boldsymbol{\mu}^{(i)} \in \mathbb{R}^{p_i}, \; \mathbf{\Sigma}_{ii} \in \mathbb{R}^{p_i \times p_i}, \; \mathbf{W}_{ii} \in \mathbb{R}^{p_i \times p_i}, \; p_1 + p_2 = p.$

U de Rao

00000

$$T_{p,m}^2 = m \mathbf{y}^{\mathrm{T}} \mathbf{W}^{-1} \mathbf{y}$$
 $T_{p_1,m}^2 = m \mathbf{y}^{(1)^{\mathrm{T}}} \mathbf{W}_{11}^{-1} \mathbf{y}^{(1)}$

Definamos

$$\lambda_p^2 = \mu^{\mathrm{T}} \mathbf{\Sigma}^{-1} \mu \qquad \lambda_{p_1}^2 = \mu^{(1)^{\mathrm{T}}} \mathbf{\Sigma}_{11}^{-1} \mu^{(1)} \,.$$

Recordemos que

Test sobre Σ

$$\begin{array}{ccc} \frac{m-\rho+1}{\rho} \frac{T_{\rho,m}^2}{m} & \sim & \mathcal{F}_{\rho,m-\rho+1}(\lambda_\rho^2) \\ \\ \frac{m-\rho_1+1}{\rho_1} \frac{T_{\rho_1,m}^2}{m} & \sim & \mathcal{F}_{\rho_1,m-\rho_1+1}(\lambda_{\rho_1}^2) \,. \end{array}$$

Estadístico *U* de Rao

Usando que

$$\boldsymbol{\Sigma}^{-1} = \left(\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{array} \right)^{-1} = \left(\begin{array}{cc} \boldsymbol{\Sigma}_{11}^{-1} + \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Sigma}_{22.1}^{-1} \boldsymbol{\beta} & -\boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Sigma}_{22.1}^{-1} \\ -\boldsymbol{\Sigma}_{22.1}^{-1} \boldsymbol{\beta} & \boldsymbol{\Sigma}_{22.1}^{-1} \end{array} \right)$$

con

U de Rao

00000

$$oldsymbol{eta} = oldsymbol{\Sigma}_{21} oldsymbol{\Sigma}_{11}^{-1} \in \mathbb{R}^{p_2 imes p_1}$$

es fácil ver que

$$\lambda_p^2 - \lambda_{p_1}^2 = \mu_{2.1}^{\mathrm{T}} \, \mathbf{\Sigma}_{22.1}^{-1} \, \mu_{2.1}$$

con

$$\mu_{2,1} = \mu^{(2)} - \beta \mu^{(1)}$$

$$\Sigma_{22.1} = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$$

Nos interesará testear H_0 : $\lambda_p^2 = \lambda_{p_1}^2$ que es equivalente a $\mu_{2.1} = 0$.

Observemos que como

$$\lambda_p^2 - \lambda_{p_1}^2 = \mu_{2.1}^{\mathrm{T}} \, \mathbf{\Sigma}_{22.1}^{-1} \, \mu_{2.1}$$

У

$$\mu_{2.1} = \mu^{(2)} - \beta \mu^{(1)} \qquad \beta = \mathbf{\Sigma}_{21} \mathbf{\Sigma}_{11}^{-1}$$

- H_0 equivale a $\mu^{(2)} = 0$ si $\mu^{(1)} = 0$
- H_0 equivale a $\mu^{(2)} = 0$ si $\mathbf{y}^{(1)}$ y $\mathbf{y}^{(2)}$ son independientes, o sea, si $\Sigma_{12}=\mathbf{0}$

Estadístico U de Rao

Para testear H_0 , nos basaremos en

Test sobre Σ

$$T_{p,m}^2 - T_{p_1,m}^2 = m \mathbf{y}_{2,1}^T \mathbf{W}_{22,1}^{-1} \mathbf{y}_{2,1}$$

donde

U de Rao

$$\begin{array}{lcl} \textbf{y}_{2.1} & = & \textbf{y}^{(2)} - \textbf{B}\textbf{y}^{(1)} & \textbf{B} = \textbf{W}_{21}\textbf{W}_{11}^{-1} \in \mathbb{R}^{\rho_2 \times \rho_1} \\ \textbf{W}_{22.1} & = & \textbf{W}_{22} - \textbf{W}_{21}\textbf{W}_{11}^{-1}\textbf{W}_{12} \end{array}$$

El estadístico U-de Rao se define por

$$U = \left\{ 1 + \frac{T_{\rho_1, m}^2}{m} \right\} \left\{ 1 + \frac{T_{\rho, m}^2}{m} \right\}^{-1}$$

Como

$$\frac{T_{p,m}^2 - T_{p_1,m}^2}{m + T_{p_1,m}^2} = \frac{1}{U} - 1$$

Rechazaremos H_0 si $T^2_{p,m}-T^2_{p_1,m}$ es grande o sea si U es chico.

U de Rao

Lema 1

Sea $\mathbf{W} \sim \mathcal{W}(\mathbf{\Sigma}, p, m)$ con $m \geq p$ y $\mathbf{\Sigma} > 0$.

- a) $\mathbf{W}_{22.1} \sim \mathcal{W}(\mathbf{\Sigma}_{22.1}, p p_1, m p_1).$
- b) $\mathbf{W}_{22.1}$ es independiente de $(\mathbf{W}_{11}, \mathbf{W}_{12})$ y por lo tanto de \mathbf{B} .
- c) La distribución condicional de W_{12} dado $W_{11} = w_{11}$ es

$$\left. \mathbf{W}_{12} \right|_{\mathbf{W}_{11} = \mathbf{w}_{11}} \sim \mathcal{N}(\mathbf{w}_{11} \mathbf{\Sigma}_{11}^{-1} \mathbf{\Sigma}_{12}, \mathbf{w}_{11} \otimes \mathbf{\Sigma}_{22.1})$$

y la de \mathbf{W}_{21} dado $\mathbf{W}_{11} = \mathbf{w}_{11}$ es

$$\left. \mathbf{W}_{21} \right|_{\mathbf{W}_{11} = \mathbf{w}_{11}} \sim \mathcal{N}(\mathbf{\Sigma}_{21}\mathbf{\Sigma}_{11}^{-1}\mathbf{w}_{11}, \mathbf{\Sigma}_{22.1} \otimes \mathbf{w}_{11})$$

de donde la distribución condicional de $\mathbf{B} = \mathbf{W}_{21}\mathbf{W}_{11}^{-1}$ dado $W_{11} = w_{11}$ es

$$\mathsf{B}\Big|_{\mathsf{W}_{11}=\mathsf{w}_{11}} \sim \mathit{N}(\mathbf{\Sigma}_{21}\mathbf{\Sigma}_{11}^{-1},\mathbf{\Sigma}_{22.1}\otimes\mathsf{w}_{11}^{-1}) \\ \leftarrow \mathsf{D} \leftarrow$$

Test sobre **\Sigma**

Sea $\mathbf{W} \sim \mathcal{W}(\mathbf{\Sigma}, p, m)$ con $m \geq p$ y $\mathbf{\Sigma} > 0$ y definamos

$$\mathsf{A} = \mathsf{W}_{21} \, \mathsf{W}_{11}^{-1} \, \mathsf{W}_{12} \in \mathbb{R}^{(p-p_1) imes (p-p_1)}$$
 .

Entonces, si $\Sigma_{12} = \mathbf{0}$, se cumple que

- $A \sim W(\Sigma_{22}, p p_1, p_1) \vee$
- A es independiente de W_{22 1} v $\mathbf{W}_{22,1} \sim \mathcal{W}(\mathbf{\Sigma}_{22,1}, p - p_1, m - p_1) = \mathcal{W}(\mathbf{\Sigma}_{22}, p - p_1, m - p_1)$

Corolario 2

Sea $\mathbf{W} \sim \mathcal{W}(\mathbf{\Sigma}, p, m)$ con $m \geq p$ y $\mathbf{\Sigma} > 0$ y definamos

$$\mathsf{A} = \mathsf{W}_{12} \, \mathsf{W}_{22}^{-1} \, \mathsf{W}_{21} \in \mathbb{R}^{(p-p_2) \times (p-p_2)}$$
 .

Entonces, si $\Sigma_{21} = \mathbf{0}$, se cumple que

- $\mathbf{A} \sim \mathcal{W}(\mathbf{\Sigma}_{11}, p p_2, p_2) \vee$
- A es independiente de W_{11 2} y $\mathbf{W}_{11,2} \sim \mathcal{W}(\mathbf{\Sigma}_{11,2}, p - p_2, m - p_2) = \mathcal{W}(\mathbf{\Sigma}_{11}, p - p_2, m - p_2)$

Teorema 1

Sean $\mathbf{y} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ con $\boldsymbol{\Sigma} > 0$ y $\mathbf{W} \sim \mathcal{W}(\boldsymbol{\Sigma}, p, m)$ independientes entre sí, $m \geq p$.

$$T_{2.1}^2 = (m - p_1) \frac{T_{p,m}^2 - T_{p_1,m}^2}{m + T_{p_1,m}^2}$$

a) Bajo $H_0: \lambda_p^2 = \lambda_{p_1}^2$ que es equivalente a $H_0: \mu_{2,1} = 0$ se tiene

$$\frac{m-p+1}{p-p_1}\frac{T_{2,1}^2}{m-p_1} = \frac{m-p+1}{p-p_1}\frac{T_{p,m}^2 - T_{p_1,m}^2}{m+T_{p_1,m}^2} \sim \mathcal{F}_{p-p_1,m-p+1}$$

y $T_{2,1}^2$ es independiente de $T_{p_1}^2$

El factor $m + T_{p_1,m}^2$ aparece pues la

$$VAR(\mathbf{y}_{2.1}|_{\mathbf{y}^{(1)},\mathbf{W}_{11}}) = \mathbf{\Sigma}_{22.1} (1 + T_{p_1,m}^2/m)$$

Teorema 1

b) Si $\lambda_p^2 \neq \lambda_{p_1}^2$, la distribución de $T_{2,1}^2$ condicional a $T_{p_1}^2$ es un Hotelling no central, o sea,

$$\left. rac{m-
ho+1}{
ho-
ho_1} rac{T_{2.1}^2}{m-
ho_1}
ight|_{T_{
ho_1}^2} \sim \mathcal{F}_{
ho-
ho_1,m-
ho+1}(
u)$$

con

U de Rao

$$\nu = \frac{\lambda_p^2 - \lambda_{p_1}^2}{1 + \frac{T_{p_1}^2}{m}}$$

Observación

El estadístico anterior se aplicará cuando $\mathbf{y} = \sqrt{n}\overline{\mathbf{x}} \sim N(\sqrt{n}\,\mu, \mathbf{\Sigma})$ y $\mathbf{W} = \mathbf{Q} \sim \mathcal{W}(\mathbf{\Sigma}, p, m), m = n - 1.$

Supongamos que $p_1 = p - 1$ luego $p_2 = 1$.

Por lo tanto

U de Rao

00000000000000000

•
$$\mathbf{y}^{(2)} = \sqrt{n}\,\overline{x}_p$$
,

Test sobre **\Sigma**

•
$$\mathbf{y}^{(1)} = \sqrt{n}\,\overline{\mathbf{x}}_{(p-1)} = \sqrt{n}\,(\overline{x}_1,\ldots,\overline{x}_{p-1})^{\mathrm{T}}.$$

$$\bullet \ \ \mathbf{W} = \mathbf{Q} = \left(\begin{array}{cc} \mathbf{Q}_{(\rho-1,\rho-1)} & \mathbf{q}_{(\rho-1,\rho)} \\ \mathbf{q}_{(\rho-1,\rho)}^{\mathrm{T}} & q_{\rho\rho} \end{array} \right) \ \mathsf{con} \ \mathbf{q}_{(\rho-1,\rho)} \in \mathbb{R}^{\rho-1}$$

$$ullet$$
 $\mathbf{B} = \mathbf{q}_{(p-1,p)}^{\mathrm{T}} \mathbf{Q}_{(p-1,p-1)}^{-1}$, $\mathbf{B}^{\mathrm{T}} \in \mathbb{R}^{p-1}$

Luego

U de Rao

$$T_{p,n-1}^2 - T_{p-1,n-1}^2 = (n-1) \mathbf{y}_{2.1}^{\mathrm{T}} \mathbf{W}_{22.1}^{-1} \mathbf{y}_{2.1}$$

donde ahora

$$\begin{aligned} \mathbf{y}_{2.1} &= \sqrt{n} \left(\overline{x}_{p} - \mathbf{B} \overline{\mathbf{x}}_{(p-1)} \right) \\ \mathbf{W}_{22.1} &= q_{pp} - \mathbf{q}_{(p-1,p)}^{\mathrm{T}} \mathbf{Q}_{(p-1,p-1)}^{-1} \mathbf{q}_{(p-1,p)} = (n-1) s_{p.(p-1)} \end{aligned}$$

Es decir.

$$T_{p,n-1}^2 - T_{p-1,n-1}^2 = n \frac{\left(\overline{x}_p - \mathbf{B}\overline{\mathbf{x}}_{(p-1)}\right)^2}{s_{p,(p-1)}} = T_{p|1,\dots,p-1}^2$$

U de Rao

$$T_{p,n-1}^2 - T_{p-1,n-1}^2 = n \frac{\left(\overline{x}_p - \mathbf{B}\overline{\mathbf{x}}_{(p-1)}\right)^2}{s_{p,(p-1)}} = T_{p|1,\dots,p-1}^2$$

obtenemos

$$T_{p,n-1}^2 = T_{p-1,n-1}^2 + n \frac{\left(\overline{x}_p - \mathbf{B}\overline{\mathbf{x}}_{(p-1)}\right)^2}{s_{p.(p-1)}} = T_{p-1,n-1}^2 + T_{p|1,\dots,p-1}^2$$

que si se aplica sucesivamente sobre todas las variables da la descomposición de Mason, Young and Tracy (MYT) (1995, 1997, 1999) y permite entender el procedimiento Step down que daremos.

$$T_{p,n-1}^2 = T_{1,n-1}^2 + T_{2|1}^2 + T_{3|1,2}^2 + \dots + T_{p-1|1,\dots,p-2}^2 + T_{p|1,\dots,p-1}^2$$

Una aplicación del test de Rao es el método step-down para testear $H_0: \mu = \mathbf{0}$ basándonos en una muestra $\mathbf{x}_1, \dots, \mathbf{x}_n$ i.i.d., $\mathbf{x}_i \in \mathbb{R}^p$, $\mathbf{x}_i \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \ \boldsymbol{\Sigma} > 0, \ n > p.$

Sean

U de Rao

Test sobre Σ

- $\mu_{(k)} = (\mu_1, \dots, \mu_k)^T$, $k = 1, \dots, p$ y $\mu_{(0)} = 0$.
- $\mathbf{x}_{i,(k)} = (x_{i,1}, \dots, x_{i,k})^{\mathrm{T}}$ o sea, consideramos las primeras k componentes de x_i .
- $T_{0,(k)}^2 = n \overline{\mathbf{x}}_{(k)}^{\mathrm{T}} \mathbf{S}_{(k)}^{-1} \overline{\mathbf{x}}_{(k)}$ el estadístico de Hotelling basado en $\mathbf{x}_{1,(k)},\ldots,\mathbf{x}_{n,(k)}$ para testear $\boldsymbol{\mu}_{(k)}=\mathbf{0}$ donde

$$\overline{\mathbf{x}}_{(k)} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i,(k)} \quad \mathbf{S}_{(k)} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_{i,(k)} - \overline{\mathbf{x}}_{(k)}) ((\mathbf{x}_{i,(k)} - \overline{\mathbf{x}}_{(k)})^{\mathrm{T}}$$

- Sea $H_{0,k}: \mu_k \beta_{(k-1)}\mu_{(k-1)} = 0$
- Para k = 1, ... p definamos $T_{0,(0)} = 0$ y

$$F_k = \frac{T_{0,(k)}^2 - T_{0,(k-1)}^2}{(n-1) + T_{0,(k-1)}^2} (n-k)$$

•
$$\boldsymbol{\beta}_{(k-1)} = \sigma_{(k,k-1)}^{\mathrm{T}} \boldsymbol{\Sigma}_{(k-1)}^{-1} \operatorname{con}$$

• $\boldsymbol{\Sigma}_{(k)} = \operatorname{Var}(\boldsymbol{x}_{(k)})$
• $\sigma_{(k,k-1)} = \operatorname{Cov}(\boldsymbol{x}_k, \boldsymbol{x}_{(k-1)})$

Por el Teorema 1, si $H_{0,k}$ es cierta,

• $F_k \sim \mathcal{F}_{1,n-k}$ y

Test sobre Σ

U de Rao

- F_k es independiente de $T_{0,(k-1)}^2$, más aún
- F_k es independiente de $\{F_j: j < k\}$.

Aplicación del test de Rao

$$H_{0,k}: \mu_k - \beta_{(k-1)}\mu_{(k-1)} = 0$$

Si $\bigcap_{k=1}^{r-1} H_{0,k}$ es cierta, entonces

a) $\mu_{(r-1)} = \mathbf{0}$

U de Rao

b) además, $H_{0,r}$ será cierta si y sólo si $\mu_r = 0$.

Con lo cual H_0 : $\mu = \mathbf{0}$ puede escribirse como

$$H_0 = \bigcap_{k=1}^p H_{0,k}$$

Es decir, H_0 puede testearse sucesivamente con los estadísticos F_1, \ldots, F_k en este orden.

U de Rao

Luego el test tendrá nivel α si

$$1 - \alpha = \prod_{k=1}^{p} (1 - \alpha_k)$$

Este test es un procedimiento alternativo al test de Hotelling que dimos antes y se usa si hay un orden a priori entre las medias μ_k .

Aplicación del test de Rao: Observaciones

Para que el test tenga nivel α necesitamos que

$$1 - \alpha = \prod_{k=1}^{p} (1 - \alpha_k)$$

Supongamos que $\alpha_1 = \cdots = \alpha_k = \alpha_0$ entonces la condición es

$$1 - \alpha = (1 - \alpha_0)^p$$

de donde

$$\alpha_0 = 1 - (1 - \alpha)^{\frac{1}{p}}$$

р	α				
	0.05	0.01	0.001		
2	0.0253	0.0050	0.00050		
4	0.0127	0.0025	0.00025		
5	0.0102	0.0020	0.00020		
10	0.0051	0.0010	0.00010		

Valores de α_0

Ejemplo

Peso (kg) y Altura (mm) de 39 Indios Peruanos

peso	71	56.5	56	61	65	62	53	53
altura	1629	1569.0	1561	1619	1566	1639	1494	1568
peso	65	57	66.5	59.1	64	69.5	64	56.5
altura	1540	1530	1622.0	1486.0	1578	1645.0	1648	1521.0
peso	57	55	57	58	59.5	61	57	57.5
altura	1547	1505	1473	1538	1513.0	1653	1566	1580.0
peso	74	72	62.5	68	63.4	68	69	73
altura	1647	1620	1637.0	1528	1647.0	1605	1625	1615
peso	64	65	71	60.2	55	70	87	
altura	1640	1610	1572	1534.0	1536	1630	1542	

 $\it U$ de Rao

Ejemplo

Ejemplo

Queremos testear

Test sobre Σ

$$H_0: \mu = \mu_0$$
 $H_1: \mu \neq \mu_0$

con $\mu_0 = (63.64, 1615.38)^{\mathrm{T}}$.

Haremos el test con todos los datos menos la observación $(87, 1542)^{\mathrm{T}}$ que es un dato atípico.

Tenemos que

$$T_0^2 = n(\bar{\mathbf{x}} - \mu_0)^{\mathrm{T}} \mathbf{S}^{-1}(\bar{\mathbf{x}} - \mu_0) = 20.27881$$

У

U de Rao

$$F_0 = \frac{n-p}{p} \frac{T_0^2}{n-1} = 9.865$$

Como $f_{2.36}(0.001) = 8.420$ rechazo con nivel $\alpha = 0.001$.

Más aún, el p-valor es 0.00038.

U de Rao

Método Step Down

Tenemos que

Test sobre Σ

$$T_{(1)}^2 = n \frac{(\overline{\mathbf{x}}_1 - \mu_{0,1})^2}{s_{11}} \quad \text{y} \quad T_{(2)}^2 = n (\overline{\mathbf{x}} - \mu_0)^{\mathrm{T}} \mathbf{S}^{-1} (\overline{\mathbf{x}} - \mu_0)$$

У

$$F_1 = T_{(1)}^2 \sim \mathcal{F}_{1,n-1}$$
 y $F_2 = (n-2)\frac{T_{(2)}^2 - T_{(1)}^2}{n-1+T_{(1)}^2} \sim \mathcal{F}_{1,n-2}$

Luego, si $\alpha = 0.001$ obtenemos $\alpha_0 = 0.00050$ y

	F_j	$f_{1,n-j}(\alpha_0)$	Decisión
j=1	1.297221	14.55683	No rechazo
j=2	17.84299	14.63394	Rechazo

Valores de F_i y $f_{1,n-i}(\alpha_0)$, i=1,2

Test sobre **\Sigma**

El coeficiente de correlación múltiple $R_{1,2}$ es la máxima correlación posible entre la variable x_1 y una combinación lineal $\mathbf{a}^{\mathrm{T}}\mathbf{x}^{(2)}$ del vector $\mathbf{x}^{(2)}$, donde $\mathbf{x} = (x_1, \mathbf{x}^{(2)^{\mathrm{T}}})^{\mathrm{T}}$.

El test de cociente de máxima verosimilitud, bajo normalidad, estará basado en el coeficiente de correlación múltiple muestral $\widehat{R}_{1,2}$.

Supongamos que $\mathbf{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ con $\boldsymbol{\Sigma} > 0$, particionemos a $\mathbf{x}, \boldsymbol{\mu}$, Σ de la siguiente forma

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \mathbf{x}^{(2)} \end{pmatrix}$$
 $\mu = \begin{pmatrix} \mu_1 \\ \mu^{(2)} \end{pmatrix}$
 $\mathbf{\Sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \mathbf{\Sigma}_{22} \end{pmatrix}$

$$R_{1,2} = \max_{\mathbf{a} \neq \mathbf{0}} \frac{\mathrm{Cov}(\mathbf{x}_1, \mathbf{a}^{\mathrm{T}} \mathbf{x}^{(2)})}{\left(\mathrm{Var}(\mathbf{x}_1)\mathrm{Var}(\mathbf{a}^{\mathrm{T}} \mathbf{x}^{(2)})\right)^{\frac{1}{2}}} = \max_{\mathbf{a} \neq \mathbf{0}} \frac{\mathbf{a}^{\mathrm{T}} \boldsymbol{\sigma}_{21}}{\left(\sigma_{11} \mathbf{a}^{\mathrm{T}} \boldsymbol{\Sigma}_{22} \mathbf{a}\right)^{\frac{1}{2}}}$$

Usando Cauchy-Schwartz se obtiene que

$$R_{1,2}^2 = \frac{\sigma_{21}^{\mathrm{T}} \mathbf{\Sigma}_{22}^{-1} \sigma_{21}}{\sigma_{11}}$$

y se alcanza en

Test sobre Σ 0000000

$$\mathbf{a}^{\mathrm{T}} = oldsymbol{\sigma}_{21}^{\mathrm{T}} oldsymbol{\Sigma}_{22}^{-1} = oldsymbol{\sigma}_{12} oldsymbol{\Sigma}_{22}^{-1}$$

que era el coeficiente de la regresión de x_1 en x_2 ya que

$$\mathbf{x}_1 | \mathbf{x}^{(2)} = \mathbf{x}_0 \sim \mathcal{N}\left(\mu_1 + \sigma_{12} \mathbf{\Sigma}_{22}^{-1} (\mathbf{x}_0 - \boldsymbol{\mu}^{(2)}), \mathbf{\Sigma}_{11.2}\right)$$

$$\text{con } \pmb{\Sigma}_{11.2} = \pmb{\Sigma}_{11} - \pmb{\Sigma}_{12} \pmb{\Sigma}_{22}^{-1} \pmb{\Sigma}_{21} = 1/\sigma^{11}.$$

Queremos testear que x_1 es independiente de (x_2, \ldots, x_p) basados en una muestra $\mathbf{x}_1, \ldots, \mathbf{x}_n$ i.i.d., $\mathbf{x}_i \in \mathbb{R}^p$, $\mathbf{x}_i \sim N_p(\mu, \mathbf{\Sigma})$, $\mathbf{\Sigma} > 0$, n > p.

$$H_0: R_{1,2} = 0$$
 o equivalentemente $H_0: \sigma_{21} = \mathbf{0}$

El test de cociente de máxima verosimilitud rechaza si $(1-\widehat{R}_{1.2}^2)^{n/2}$ es chico, donde

$$\widehat{R}_{1,2}^2 = \frac{\mathbf{s}_{21}^{\mathrm{T}} \mathbf{S}_{22}^{-1} \mathbf{s}_{21}}{s_{11}}$$

$$\mathbf{S} = \frac{1}{n-1}\mathbf{Q} = \left(\begin{array}{cc} s_{11} & \mathbf{s}_{12} \\ \mathbf{s}_{21} & \mathbf{S}_{22} \end{array}\right) = \left(\begin{array}{cc} s_{11} & \mathbf{s}_{21}^{\mathrm{T}} \\ \mathbf{s}_{21} & \mathbf{S}_{22} \end{array}\right)$$

$$\widehat{R}_{1,2}^2 = \frac{\mathbf{s}_{21}^{\mathrm{T}} \mathbf{S}_{22}^{-1} \mathbf{s}_{21}}{s_{11}}$$

Ahora bien

$$\frac{\widehat{R}_{1,2}^2}{1 - \widehat{R}_{1,2}^2} = \frac{\mathbf{s}_{21}^{\mathrm{T}} \mathbf{S}_{22}^{-1} \mathbf{s}_{21}}{s_{11.2}} = \frac{\mathbf{q}_{21}^{\mathrm{T}} \mathbf{Q}_{22}^{-1} \mathbf{q}_{21}}{q_{11.2}}$$

con
$$s_{11.2} = s_{11} - \mathbf{s}_{21}^{\mathrm{T}} \mathbf{S}_{22}^{-1} \mathbf{s}_{21} = q_{11.2}/(n-1)$$
.

Corolario 2

Sea $\mathbf{W} \sim \mathcal{W}(\mathbf{\Sigma}, p, m)$ con m > p y $\mathbf{\Sigma} > 0$ y definamos $A = W_{12} W_{21}^{-1} W_{21} \in \mathbb{R}^{(p-p_2)\times(p-p_2)}$. Entonces, si $\Sigma_{21} = 0$, se cumple

• $\mathbf{A} \sim \mathcal{W}(\mathbf{\Sigma}_{11}, p - p_2, p_2) \vee$

Test sobre **\Sigmu**

• A es independiente de $\mathbf{W}_{11,2} \sim \mathcal{W}(\mathbf{\Sigma}_{11}, p - p_2, m - p_2)$

Por lo tanto, como $\mathbf{Q} \sim \mathcal{W}(\mathbf{\Sigma}, p, n-1), p_1 = 1, p_2 = p-1$ obtenemos que, bajo H_0 : $\sigma_{21} = \mathbf{0}$

•
$$\mathbf{q}_{21}^{\mathrm{T}}\mathbf{Q}_{22}^{-1}\mathbf{q}_{21} \sim \mathcal{W}(\sigma_{11}, 1, p-1) = \sigma_{11}\,\chi_{p-1}^2$$

- $\mathbf{q}_{21}^{\mathrm{T}} \mathbf{Q}_{22}^{-1} \mathbf{q}_{21}$ es independiente de $q_{11,2}$
- $q_{11.2} \sim \mathcal{W}(\mathbf{\Sigma}_{11}, 1, (n-1) (p-1)) = \sigma_{11} \chi^2_{n-p} \chi^2_{n-p}$

$$H_0:R_{1,2}=0$$
 o equivalentemente $H_0:oldsymbol{\sigma}_{21}=oldsymbol{0}$
Luego, como

$$\frac{\widehat{R}_{1,2}^2}{1-\widehat{R}_{1,2}^2} = \frac{\mathbf{q}_{21}^{\mathrm{T}} \mathbf{Q}_{22}^{-1} \mathbf{q}_{21}}{q_{11.2}} \text{ tenemos que } \frac{\widehat{R}_{1,2}^2}{1-\widehat{R}_{1,2}^2} \frac{n-p}{p-1} \sim \mathcal{F}_{p-1,n-p}$$

El test de cociente de máxima verosimilitud para testear H_0 (o sea, x_1 es independiente de (x_2, \ldots, x_p) resulta entonces

$$\phi(\mathbf{X}) = \begin{cases} 1 & \text{si} & \frac{\widehat{R}_{1,2}^2}{1 - \widehat{R}_{1,2}^2} \frac{n - p}{p - 1} > f_{p-1,n-p}(\alpha) \\ \\ 0 & \text{si} & \frac{\widehat{R}_{1,2}^2}{1 - \widehat{R}_{1,2}^2} \frac{n - p}{p - 1} \le f_{p-1,n-p}(\alpha) \end{cases}$$

Test sobre Σ 00000000

De igual forma usando el Lema 1 podemos obtener un test para

$$H_{0,r}: \boldsymbol{\beta}_r = \boldsymbol{\beta}_{0,r}$$

donde $\beta_{0,r} \in \mathbb{R}^{p_2}$ es un vector fijo y $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ con

$$\mathbf{x} = \left(egin{array}{c} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{array}
ight) \qquad \qquad \boldsymbol{\mu} = \left(egin{array}{c} oldsymbol{\mu}^{(1)} \\ oldsymbol{\mu}^{(2)} \end{array}
ight)$$

$$oldsymbol{\Sigma} = \left(egin{array}{cc} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{array}
ight) \qquad egin{array}{ccc} oldsymbol{eta} = oldsymbol{\Sigma}_{21} oldsymbol{\Sigma}_{11}^{-1} = (oldsymbol{eta}_1, \ldots, oldsymbol{eta}_{oldsymbol{
ho}_1}) \in \mathbb{R}^{oldsymbol{
ho}_2 imes oldsymbol{
ho}_1}$$

basándonos en la r-ésima columna de la matriz

$$\mathbf{B} = \mathbf{S}_{21}\mathbf{S}_{11}^{-1} = (\mathbf{b}_1, \dots, \mathbf{b}_{p_1})$$

Un test para H_0 está dado por

Test sobre **\Sigmu** 0000000

$$\phi(\mathbf{X}) = \begin{cases} 1 & \text{si} \quad \frac{T^2}{n - 1 - p_1} \frac{n - p}{p - p_1} > f_{p - p_1, n - p}(\alpha) \\ \\ 0 & \text{si} \quad \frac{T^2}{n - 1 - p_1} \frac{n - p}{p - p_1} \le f_{p - p_1, n - p}(\alpha) \end{cases}$$

donde
$$\mathbf{S}^{-1}=(s^{ij})$$
 y

$$T^{2} = (n - 1 - \rho_{1}) \frac{1}{s^{rr}} (\mathbf{b}_{r} - \beta_{0,r})^{\mathrm{T}} \mathbf{S}_{22.1}^{-1} (\mathbf{b}_{r} - \beta_{0,r})$$

Test sobre la matriz **\(\Sigma**

Dada muestra $\mathbf{x}_1, \dots, \mathbf{x}_n$ i.i.d., $\mathbf{x}_i \in \mathbb{R}^p$, $\mathbf{x}_i \sim N_p(\mu, \mathbf{\Sigma})$, $\mathbf{\Sigma} > 0$, n > p. Particionemos a Σ como

$$oldsymbol{\Sigma} = \left(egin{array}{cccc} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} & \dots & oldsymbol{\Sigma}_{1k} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} & \dots & oldsymbol{\Sigma}_{2k} \ dots & dots & dots & dots \ oldsymbol{\Sigma}_{k1} & oldsymbol{\Sigma}_{k2} & \dots & oldsymbol{\Sigma}_{kk} \end{array}
ight)$$

donde $\mathbf{\Sigma}_{rr} \in \mathbb{R}^{p_r \times p_r}$.

Test sobre **\Sigma**

000000000000 •00

Por ejemplo si k=2 tenemos

$$oldsymbol{\Sigma} = \left(egin{array}{cc} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{array}
ight)$$

donde $\mathbf{\Sigma}_{11} \in \mathbb{R}^{p_1 \times p_1}$ y $\mathbf{\Sigma}_{22} \in \mathbb{R}^{p_2 \times p_2}$.

Consideraremos los siguientes test sobre la matriz Σ

Independencia de a bloques, o sea

Test sobre **\Sigmu**

$$H_{01}: \mathbf{\Sigma}_{ij} = \mathbf{0} \ 1 \leq i < j \leq k \ \text{o sea} \ H_0: \mathbf{\Sigma} = \operatorname{diag}(\mathbf{\Sigma}_{11}, \dots, \mathbf{\Sigma}_{kk})$$

Es decir, $x^{(1)}, \ldots, x^{(k)}$ son independientes. En particular,

- \star si k = 2, $H_0: \mathbf{\Sigma} = \begin{pmatrix} \mathbf{\Sigma}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{\Sigma}_{22} \end{pmatrix}$, o sea $\mathbf{x}^{(1)}$ y $\mathbf{x}^{(2)}$ son independientes.
- \star si k=2 y $p_1=1$, es el caso que consideramos anteriormente, tomando $x^{(1)} = x_1 \ v \ x^{(2)} = (x_2, \dots, x_n)^T$.
- \star si $p_r = 1$ para todo $1 \le r \le k$, tenemos que H_0 es equivalente a $H_{01}: \mathbf{\Sigma} = \operatorname{diag}(\sigma_{11}, \dots, \sigma_{pp}).$

- Test de esfericidad Nos interesa testear
 - H_{02} : $\Sigma = \sigma^2 I_p$ con σ^2 desconocido.
 - $H_{03}: \Sigma = I_n$

0000000000000 000

- Igualdad de bloques diagonales H_{04} : $\Sigma_{11} = \Sigma_{22} = \cdots = \Sigma_{kk}$ cuando $p_1 = p_2 = \cdots = p_k = p_0$
- Iguales correlaciones e iguales varianzas

$$H_{05}: \mathbf{\Sigma} = \sigma^2 \left(egin{array}{cccc} 1 &
ho & \dots &
ho \\
ho & 1 & \dots &
ho \\ \vdots & \vdots & \vdots & \vdots \\
ho &
ho & \dots & 1 \end{array}
ight)$$

que es un supuesto que aparece en modelos mixtos o con mediciones repetidas.

Criterio de Wilks

Tanto en el caso del test de independencia como en el modelo lineal multivariado es posible hallar dos matrices

- $\mathbf{U} \sim \mathcal{W}(\mathbf{\Sigma}, p, N-r)$ y
- $\mathbf{H} \sim \mathcal{W}(\mathbf{\Sigma}, p, r)$

independientes bajo la hipótesis nula de interés.

Más generalmente, tendremos

- $\mathbf{U} \sim \mathcal{W}(\mathbf{\Sigma}, p, N-r)$ y
- $\mathbf{z}_j \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, $1 \leq j \leq r$, $\mathbf{H} = \sum_{j=1}^r \mathbf{z}_j \mathbf{z}_j^{\mathrm{T}}$

donde muchas veces r < p pero N - r > p.

El estadístico de Wilks se utiliza para testear cualquier hipótesis equivalente a $\mu=0$. Rechazaremos si el Wilks es pequeño.

Criterio de Wilks

En analogía con el caso univariado Wilks (1932) definió el estadístico de Wilks.

Definición Sean $U \sim \mathcal{W}(\Sigma, p, N-r)$ y $z_i \sim N(0, \Sigma)$, 1 < j < rindependientes entre sí, el criterio de Wilks se define como

$$\Lambda(N,p,r) = \frac{|\mathbf{U}|}{|\mathbf{U} + \mathbf{H}|}$$

donde $|\mathbf{A}|$ indica el determinante de la matriz $\mathbf{A} \in \mathbb{R}^{p \times p}$ y $\mathbf{H} = \sum_{i=1}^{r} \mathbf{z}_{i} \mathbf{z}_{i}^{\mathrm{T}} \sim \mathcal{W}(\mathbf{\Sigma}, p, r)$

N, p y r son los parámetros del Wilks Λ y corresponden respectivamente a los grados de libertad de $\mathbf{U} + \mathbf{H}$, la dimensión de las matrices y los grados de libertad de H.

Por otra parte, si **U** es inversible $\Lambda(N, p, r)$ depende sólo de los autovalores de HU^{-1} .

Distribución del criterio de Wilks

a) Si $r \geq p$, $\mathbf{H} \sim \mathcal{W}(\mathbf{\Sigma}, p, r)$ tiene densidad y

$$\Lambda(N,p,r) \sim \prod_{j=1}^p b_{ii}^2$$

con b_{11}^2,\dots,b_{pp}^2 son independientes $b_{ii}^2\sim\mathcal{B}\left(\frac{N-r+1-i}{2},\frac{r}{2}\right)$

b) Si r < p,

$$\Lambda(N,p,r) \sim \prod_{i=1}^{r} b_{ii}^{2}$$

con b_{11}^2,\dots,b_{rr}^2 son independientes $b_{ii}^2\sim\mathcal{B}\left(rac{N-p+1-i}{2},rac{p}{2}
ight)$

Es decir, $\Lambda(N, p, r) \sim \Lambda(N, r, p)$

Corolario

a) Si
$$p=1$$
,
$$\frac{1-\Lambda(N,1,r)}{\Lambda(N,1,r)}\,\frac{N-r}{r}\sim \mathcal{F}_{r,N-r}$$

b) Si
$$r=1$$
,
$$\frac{1-\Lambda(N,p,1)}{\Lambda(N,p,1)}\,\frac{N-p}{p}\sim \mathcal{F}_{p,N-p}$$

c) Si
$$p = 2$$
,
$$\frac{1 - \Lambda(N, 2, r)^{\frac{1}{2}}}{\Lambda(N, 2, r)^{\frac{1}{2}}} \frac{N - r - 1}{r} \sim \mathcal{F}_{2r, 2(N - r - 1)}$$

d) Si
$$r=2$$
,
$$\frac{1-\Lambda(N,p,2)^{\frac{1}{2}}}{\Lambda(N,p,2)^{\frac{1}{2}}}\,\frac{N-p-1}{p}\sim \mathcal{F}_{2p,2(N-p-1)}$$

a) Barlett (1938) mostró que

Test sobre **\Sigma**

$$\mathbb{P}\left(-f\log(\Lambda(N,p,r)) > C_{\alpha}\chi_{pr,\alpha}^{2}\right) \approx \alpha$$

donde

$$f = N - r - \frac{1}{2}(p - r + 1) = N - \frac{1}{2}(p + r + 1)$$

Los valores C_{α} para esta aproximacíon están en el Apéndice D13 de Seber (1984).

b) Rao (1951) mostró que

$$\frac{(fs+2\lambda)}{2m}\frac{(1-\Lambda(N,p,r)^{\frac{1}{s}})}{\Lambda(N,p,r)^{\frac{1}{s}}}\approx \mathcal{F}_{2m,fs+2\lambda}$$

donde f = N - (p + r + 1)/2

$$m = \frac{pr}{2}$$
 $\lambda = -\frac{(pr-2)}{4}$ $s = \frac{(p^2r^2-4)^{\frac{1}{2}}}{(p^2+r^2-5)^{\frac{1}{2}}}$

Otros criterios

Supongamos que **U** es inversible y sean $\lambda_1 \geq \cdots \geq \lambda_p$ los autovalores de HU^{-1} .

$$\Lambda(N, p, r) = \frac{1}{\prod_{j=1}^{p} (1 + \lambda_j)}$$

Hay otros criterios que se utilizan

Test sobre Σ

a) Criterio de Lawley Hotelling

$$\operatorname{tr}(\mathbf{H}\mathbf{U}^{-1}) = \sum_{j=1}^{p} \lambda_{j}$$

Los percentiles de la distribución de este estadístico están dados en el Apéndice D15 de Seber (1984).

Otros criterios

b) Criterio de Pillai

$$\operatorname{tr}\left(\mathbf{H}(\mathbf{U}+\mathbf{H})^{-1}\right) = \sum_{j=1}^{p} rac{\lambda_{j}}{1+\lambda_{j}}$$

Los percentiles de la distribución de este estadístico están dados en el Apéndice D16 de Seber (1984).

c) Criterio de Roy o de la máxima raíz. Considera la máxima raíz $\theta_{\text{max}} \text{ de } |\mathbf{H} - \theta(\mathbf{U} + \mathbf{H})| = 0$. Luego

$$heta_{\mathsf{max}} = rac{\lambda_1}{1 + \lambda_1}$$

y rechazo si θ_{max} es grande. Los percentiles de la distribución de $\theta_{\rm max}$ están dados en el Apéndice D14 de Seber (1984).

Si r=1, todos los criterios son equivalentes, en particular, tenemos que $\Lambda(N, p, r) = 1 - \theta_{\text{max}}$. Dada muestra $\mathbf{x}_1, \dots, \mathbf{x}_n$ i.i.d., $\mathbf{x}_i \in \mathbb{R}^p$, $\mathbf{x}_i \sim N_p(\mu, \mathbf{\Sigma})$, $\mathbf{\Sigma} > 0$, n > p. Particionemos a $\mathbf{x}_i, \ \boldsymbol{\mu}, \ \overline{\mathbf{x}}, \ \boldsymbol{\Sigma}$ y a $\mathbf{Q} = (n-1)\mathbf{S}$ como

$$\mathbf{x}_i = \left(egin{array}{c} \mathbf{x}_{i1} \ dots \ \mathbf{x}_{ik} \end{array}
ight) \qquad \qquad \boldsymbol{\mu} = \left(egin{array}{c} oldsymbol{\mu}_1 \ dots \ oldsymbol{\mu}_k \end{array}
ight) \quad \overline{\mathbf{x}} = \left(egin{array}{c} \overline{\mathbf{x}}_1 \ dots \ \overline{\mathbf{x}}_k \end{array}
ight)$$

$$\mathbf{\Sigma} = \begin{pmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} & \dots & \mathbf{\Sigma}_{1k} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} & \dots & \mathbf{\Sigma}_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{\Sigma}_{k1} & \mathbf{\Sigma}_{k2} & \dots & \mathbf{\Sigma}_{kk} \end{pmatrix} \qquad \mathbf{Q} = \begin{pmatrix} \mathbf{Q}_{11} & \mathbf{Q}_{12} & \dots & \mathbf{Q}_{1k} \\ \mathbf{Q}_{21} & \mathbf{Q}_{22} & \dots & \mathbf{Q}_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{Q}_{k1} & \mathbf{Q}_{k2} & \dots & \mathbf{Q}_{kk} \end{pmatrix}$$

donde $\mu_r \in \mathbb{R}^{p_r}$ y $\mathbf{\Sigma}_{rr} \in \mathbb{R}^{p_r \times p_r}$.

Test sobre Σ

Observemos que si n > p, $\mathbb{P}(\mathbf{Q} > 0) = 1$ luego $\mathbb{P}(\mathbf{Q}_{ii} > 0) = 1$, j = 1, ..., k.

Test de Independencia H_{01} : $\Sigma = \text{diag}(\Sigma_{11}, \ldots, \Sigma_{kk})$

El test de cociente de máxima verosimilitud para H_0 está basado en

$$\gamma^{\star} = \left(\frac{|\mathbf{Q}|}{\prod_{j=1}^{k} |\mathbf{Q}_{jj}|}\right)^{\frac{1}{2}}$$

donde $-2\log(\gamma^*) \xrightarrow{D} \chi_{\nu}^2 \text{ con } \nu = \frac{1}{2} \left(p^2 - \sum_{i=1}^k p_i^2 \right).$ Por lo tanto, el test será

$$\phi(\mathbf{X}) = \left\{ egin{array}{ll} 1 & \mathrm{si} & rac{|\mathbf{Q}|}{\prod_{j=1}^{k} |\mathbf{Q}_{jj}|} \leq k_{lpha} \ & & & & & & & \\ 0 & \mathrm{si} & rac{|\mathbf{Q}|}{\prod_{j=1}^{k} |\mathbf{Q}_{jj}|} > k_{lpha} \end{array}
ight.$$

donde para tener un test de nivel asintótico α ,

$$k_{lpha}=\exp\left\{-rac{1}{n}\chi_{
u,lpha}^{2}
ight\}$$

testeando la independencia de las p variables.

Test de Independencia $H_{01}: \Sigma = \text{diag}(\Sigma_{11}, \ldots, \Sigma_{kk})$ En particular, si k = p, H_{01} : $\Sigma = \text{diag}(\sigma_{11}, \dots, \sigma_{nn})$, estamos

Tests para $H_{01} \vee H_{02}$ 0000000

El test de cociente de máxima verosimilitud para H_{01} está basado en

$$\gamma = \frac{|\mathbf{Q}|}{\prod_{j=1}^{p} |q_{jj}|} = |\mathbf{R}|$$

donde

$$\mathbf{R} = \operatorname{diag}\left(s_{11}^{-\frac{1}{2}}, \dots, s_{pp}^{-\frac{1}{2}}\right) \mathbf{S} \operatorname{diag}\left(s_{11}^{-\frac{1}{2}}, \dots, s_{pp}^{-\frac{1}{2}}\right)$$

es la matriz de correlación muestral.

En este caso.

$$-n\log(|\mathbf{R}|) \xrightarrow{D} \chi_{\nu}^{2} \quad \text{con} \quad \nu = \frac{p(p-1)}{2}$$

Test de Independencia H_{01} : $\Sigma = \text{diag}(\Sigma_{11}, \Sigma_{22})$

Tests para $H_{01} \vee H_{02}$

Si k=2, estamos testeando $\Sigma_{12}=0$.

El test de cociente de máxima verosimilitud para H_0 está basado en

$$\gamma = \frac{|\mathbf{Q}|}{|\mathbf{Q}_{11}| |\mathbf{Q}_{22}|}.$$

Pero

$$\begin{aligned} |\mathbf{Q}| &= |\mathbf{Q}_{11}| |\mathbf{Q}_{22} - \mathbf{Q}_{21} \mathbf{Q}_{11}^{-1} \mathbf{Q}_{12}| = |\mathbf{Q}_{11}| |\mathbf{Q}_{22.1}| \\ &= |\mathbf{Q}_{11}| |\mathbf{Q}_{22}| |\mathbf{I}_{p_2} - \mathbf{Q}_{22}^{-1} \mathbf{Q}_{21} \mathbf{Q}_{11}^{-1} \mathbf{Q}_{12}| \end{aligned}$$

con lo cual

$$\gamma = |\mathbf{I}_{p_2} - \mathbf{Q}_{21}\mathbf{Q}_{11}^{-1}\mathbf{Q}_{12}\mathbf{Q}_{22}^{-1}| = \prod_{i=1}^{s} (1 - r_i^2)$$

donde $s = \min(p_1, p_2)$ y r_i^2 son los autovalores de $\mathbf{Q}_{21}\mathbf{Q}_{11}^{-1}\mathbf{Q}_{12}\mathbf{Q}_{22}^{-1}$.

Test de Independencia $H_{01}: \mathbf{\Sigma} = \text{diag}(\mathbf{\Sigma}_{11}, \mathbf{\Sigma}_{22})$

Tests para $H_{01} \vee H_{02}$ 0000000

Por otra parte.

$$\gamma = \frac{|\mathbf{Q}_{22.1}|}{|\mathbf{Q}_{22}|} = \frac{|\mathbf{U}|}{|\mathbf{U} + \mathbf{H}|}$$

Ahora bien.

- $\mathbf{U} = \mathbf{Q}_{22,1} \sim \mathcal{W}(\mathbf{\Sigma}_{22,1}, p_2, n-1-p_1) = \mathcal{W}(\mathbf{\Sigma}_{22}, p_2, n-1-p_1)$ bajo H_{01}
- $\mathbf{H} = \mathbf{Q}_{21}\mathbf{Q}_{11}^{-1}\mathbf{Q}_{12} \sim \mathcal{W}(\mathbf{\Sigma}_{22.1}, p_2, p_1) = \mathcal{W}(\mathbf{\Sigma}_{22}, p_2, p_1)$ bajo H_{01}
- **H** y **U** son independientes bajo H_{01} .

Luego,

$$\gamma = \Lambda(n-1, p_1, p_2)$$

Queremos aplicar el principio de unión interseción de Roy para testear $H_{01}: \Sigma_{12} = 0$.

Recordemos que

$$\mathbf{x}_i = \left(\begin{array}{c} \mathbf{x}_{i1} \\ \mathbf{x}_{i2} \end{array}\right)$$

entonces $Cov(\mathbf{a}^T\mathbf{x}_{11}, \mathbf{b}^T\mathbf{x}_{12}) = \mathbf{a}^T\mathbf{\Sigma}_{12}\mathbf{b}$. Definamos

$$H_{0,\mathbf{a}\mathbf{b}}: \mathbf{a}^{\mathrm{T}} \mathbf{\Sigma}_{12} \mathbf{b} = 0$$

Luego

$$H_{01} = \cap_{\mathbf{a}\neq\mathbf{0}} \cap_{\mathbf{b}\neq\mathbf{0}} H_{0,\mathbf{ab}}$$

Test de Independencia $H_{01}: \Sigma = \text{diag}(\Sigma_{11}, \Sigma_{22})$

Aplicando el principio de unión intersección, se obtiene el criterio de Roy.

Es decir, el test rechaza si

Test sobre **\Sigma**

$$\theta_{\sf max} > k_{\alpha}$$

donde θ_{max} es la máxima raíz de $|\mathbf{H} - \theta(\mathbf{U} + \mathbf{H})| = 0$, o sea, θ_{max} es el máximo autovalor de $\mathbf{Q}_{21}\mathbf{Q}_{11}^{-1}\mathbf{Q}_{12}\mathbf{Q}_{22}^{-1}$.

El test de cociente de máxima verosimilitud para ${\it H}_{02}$ está basado en

$$\gamma^{\star} = \left(rac{|\mathbf{Q}|^{rac{1}{p}}}{rac{1}{p}\mathsf{tr}(\mathbf{Q})}
ight)^{rac{np}{2}}$$

donde $-2\log(\gamma^{\star}) \xrightarrow{D} \chi_{\nu}^2$ con $\nu = \frac{p(p+1)}{2} - 1$. Por lo tanto, el test será

$$\phi(\mathbf{X}) = \begin{cases} 1 & \text{si } \frac{|\mathbf{Q}|^{\frac{1}{p}}}{\frac{1}{p} \text{tr}(\mathbf{Q})} \le k_{\alpha} \\ \\ 0 & \text{si } \frac{|\mathbf{Q}|^{\frac{1}{p}}}{\frac{1}{p} \text{tr}(\mathbf{Q})} > k_{\alpha} \end{cases}$$

donde para tener un test de nivel asintótico α ,

$$k_{lpha} = \exp\left\{-rac{1}{np}\chi_{
u,lpha}^2
ight\}$$

Test para varias muestras

Tenemos ahora k poblaciones normales independientes. Supongamos que la i-ésima población es $N(\mu_i, \Sigma_i)$.

Nos interesará testear

•
$$H_1: \mathbf{\Sigma}_1 = \cdots = \mathbf{\Sigma}_k$$

•
$$H_2: \boldsymbol{\mu}_1 = \cdots = \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_1 = \cdots = \boldsymbol{\Sigma}_k$$

• $H_3: \mu_1 = \cdots = \mu_k$ cuando sabemos que $\Sigma_1 = \cdots = \Sigma_k$, o sea, un análisis de la varianza de un factor multivariado.

Supongamos tener k muestras $\mathbf{x}_{i,1}, \dots, \mathbf{x}_{i,n_i}, 1 \leq i \leq k$ independientes. $\mathbf{x}_{i,j} \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$

Test para varias muestras

$$\mathbf{Q}_i = \sum_{i=1}^{n_i} (\mathbf{x}_{i,j} - \overline{\mathbf{x}}_i) (\mathbf{x}_{i,j} - \overline{\mathbf{x}}_i)^{\mathrm{T}} \qquad \widehat{\mathbf{\Sigma}}_i = \frac{\mathbf{Q}_i}{n_i} \qquad \overline{\mathbf{x}}_i = \frac{1}{n_i} \sum_{i=1}^{n_i} \mathbf{x}_{i,j}$$

La suma de cuadrados dentro de grupos es

$$\mathbf{U} = \mathbf{Q}_1 + \cdots + \mathbf{Q}_k = \sum_{i=1}^k \sum_{j=1}^{n_i} (\mathbf{x}_{i,j} - \overline{\mathbf{x}}_i) (\mathbf{x}_{i,j} - \overline{\mathbf{x}}_i)^{\mathrm{T}}$$

Tenemos que

- $\mathbf{Q}_i \sim \mathcal{W}(\mathbf{\Sigma}_i, p, n_i 1)$
- $\mathbf{Q}_1, \ldots, \mathbf{Q}_k$ son independientes.

Luego, bajo
$$H_1: \mathbf{\Sigma}_1 = \cdots = \mathbf{\Sigma}_k$$
, $\mathbf{U} \sim \mathcal{W}(\mathbf{\Sigma}, p, n-k)$ con $n = \sum_{i=1}^k n_i$.

Test para varias muestras

Por otra parte, sea **H** la suma de cuadrados entre poblaciones.

$$\mathbf{H} = \sum_{i=1}^k n_i (\overline{\mathbf{x}}_i - \overline{\mathbf{x}}) (\overline{\mathbf{x}}_i - \overline{\mathbf{x}})^{\mathrm{T}}$$

donde

$$\overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{k} n_i \overline{\mathbf{x}}_i$$

Veremos que bajo H_3

- $\mathbf{H} \sim \mathcal{W}(\mathbf{\Sigma}, p, k-1)$
- H es independiente de U.

Teorema

Sean
$$\nu = pk + \frac{p(p+1)}{2}k$$
, $\nu_1 = pk + \frac{p(p+1)}{2}$ y $\nu_2 = p + \frac{p(p+1)}{2}$.

a) El criterio de cociente de verosimilitud para $H_1: \mathbf{\Sigma}_1 = \cdots = \mathbf{\Sigma}_k$, se basa en

$$\gamma_1^{\star} = \frac{\prod_{j=1}^{k} \left| \frac{\mathbf{Q}_i}{n_i} \right|^{\frac{n_i}{2}}}{\left| \frac{\mathbf{U}}{n} \right|^{\frac{n}{2}}}$$

Rechazo si $\gamma_1^* < k_{1,\alpha}$.

Además, bajo H_1 , se tiene que $-2\log(\gamma_1^{\star}) \stackrel{D}{\longrightarrow} \chi^2$...

Teorema

b) El criterio de cociente de verosimilitud para

$$H_2: \boldsymbol{\mu}_1 = \cdots = \boldsymbol{\mu}_k , \boldsymbol{\Sigma}_1 = \cdots = \boldsymbol{\Sigma}_k$$

$$\gamma_2^{\star} = \frac{\prod_{j=1}^{k} \left| \frac{\mathbf{Q}_i}{n_i} \right|^{\frac{n_i}{2}}}{\left| \frac{\mathbf{U} + \mathbf{H}}{n} \right|^{\frac{n}{2}}}$$

Rechazo si $\gamma_2^* < k_{2,\alpha}$.

Además, bajo H_2 , se tiene que $-2\log(\gamma_2^{\star}) \stackrel{D}{\longrightarrow} \chi^2_{\nu_1 \dots \nu_n}$

Teorema

c) El criterio de cociente de verosimilitud para $H_3: \mu_1 = \cdots = \mu_k$ cuando $\Sigma_1 = \cdots = \Sigma_k$

$$\gamma_3^\star = \left(rac{|\mathsf{U}|}{|\mathsf{U} + \mathsf{H}|}
ight)^{rac{n}{2}}$$

Rechazo si $\gamma_3^* < k_{3,\alpha}$.

Además, bajo H_3 , se tiene que $-2\log(\gamma_3^\star) \xrightarrow{\mathcal{D}} \chi_{\nu_1-\nu_2}^2$. Más aún, bajo H_3 , $\mathbf{U} \sim \mathcal{W}(\mathbf{\Sigma}, p, n-k)$, $\mathbf{H} \sim \mathcal{W}(\mathbf{\Sigma}, p, k-1)$ independientes de donde

$$\gamma_3^{\star \frac{2}{n}} = \frac{|\mathbf{U}|}{|\mathbf{U} + \mathbf{H}|} = \Lambda(n-1, p, k-1)$$

Observemos que rango(\mathbf{U}) = min(p, n - k) y rango(\mathbf{H}) = min(p, k - 1).

Si k = 2, rango(**H**) = 1 y obtenemos el test de Hotelling para dos muestras.

Propiedad

Sea $\mathbf{x} \in \mathbb{R}^p$ un vector aleatorio y G una variable aleatoria que indica la pertencia al grupo, tales que para $1 \le i \le k$

$$\mathbb{P}(G = j) = \pi_j$$
 $\mathbb{E}(\mathbf{x}|G = j) = \boldsymbol{\mu}_j$ $\operatorname{VAR}(\mathbf{x}|G = j) = \boldsymbol{\Sigma}_j$

entonces si $\overline{\mu} = \mathbb{E}(\mathbf{x})$ y $\overline{\mathbf{\Sigma}} = \mathrm{VAR}(\mathbf{x})$ se cumple que

$$\overline{\mu} = \sum_{j=1}^k \pi_j \mu_j$$
 $\overline{\Sigma} = \Sigma_{\mathrm{W}} + \Sigma_{\mathrm{B}}$

donde

$$\mathbf{\Sigma}_{\mathrm{W}} = \sum_{i=1}^{k} \pi_{j} \mathbf{\Sigma}_{j}$$
 $\mathbf{\Sigma}_{\mathrm{B}} = \sum_{i=1}^{k} \pi_{j} (\boldsymbol{\mu}_{j} - \overline{\boldsymbol{\mu}}) (\boldsymbol{\mu}_{j} - \overline{\boldsymbol{\mu}})^{\mathrm{T}}$

Por lo tanto, si $\Sigma_i = \Sigma$ para $1 \le j \le k$ tenemos que

- $\mathbf{\Sigma}_{\mathrm{W}} = \sum_{j=1}^{k} \pi_{j} \mathbf{\Sigma}_{j} = \mathbf{\Sigma}$ mide la variabilidad dentro de grupos
- Σ_B mide la variabilidad entre grupos.

Es decir, descompusimos

Test sobre Σ

la variabilidad total como la variabilidad dentro de grupos más la variabilidad entre grupos.

Observemos que

- $\Sigma_{\rm B}$ es definida no-negativa de rango $s \leq \min(k-1,p)$.
- Bajo H_3 , $\Sigma_{\rm B} = 0$

Luego, tenemos que

$$\overline{oldsymbol{\Sigma}} \geq oldsymbol{\Sigma}_{\mathrm{W}} \qquad \text{y bajo } H_3 \qquad \overline{oldsymbol{\Sigma}} = oldsymbol{\Sigma}_{\mathrm{W}}$$

o sea, para realizar un test para H_3 basta comparar cuan distinta es Σ de $\Sigma_{\rm W}$. Por otra parte, si las poblaciones son normales $\widehat{\boldsymbol{\Sigma}}_i = \mathbf{Q}_i/n_i$ es el EMV de Σ_i y $\overline{\mathbf{x}}_i$ es el de μ_i . Luego, si $\widehat{\pi}_i = n_i/n$

$$\widehat{\overline{\mu}} = \sum_{i=1}^{k} \widehat{\pi}_{j} \widehat{\mu}_{j}$$
 $\widehat{\overline{\Sigma}} = \widehat{\Sigma}_{W} + \widehat{\Sigma}_{B}$

son los EMV de $\overline{\mu}$ y $\overline{\Sigma}$, donde

Test sobre Σ

$$\widehat{m{\Sigma}}_{ ext{W}} = \sum_{j=1}^k \widehat{\pi}_j \widehat{m{\Sigma}}_j \qquad \qquad \widehat{m{\Sigma}}_{ ext{B}} = \sum_{j=1}^k \widehat{\pi}_j (\widehat{m{\mu}}_j - \widehat{m{\mu}}) (\widehat{m{\mu}}_j - \widehat{m{\mu}})^{ ext{T}}$$

O sea.

- U/n es el EMV de Σ_W,
- \mathbf{H}/n es el EMV de $\Sigma_{\rm B}$ y
- $(\mathbf{U} + \mathbf{H})/n$ es el EMV de $\overline{\Sigma}$,

Variables medidas sobre árboles de manzana de 6 injertos. Para cada injerto hay 8 árboles. Las variables son:

- x₁ =Diámetro del tronco a los 4 años en unidades de 10cm,
- x_2 =Largo a los 4 años,
- x3 =Diámetro del tronco a los 15 años en unidades de 10cm,
- x_4 =Peso del árbol a los 15 años, en unidades de 1000 libras.

Inj.	1	1	1	1	1	1	1	1	2	2	2	2
x_1	1.11	1.19	1.09	1.25	1.11	1.08	1.11	1.16	1.05	1.17	1.11	1.25
<i>x</i> ₂	2.569	2.928	2.865	3.844	3.027	2.336	3.211	3.037	2.074	2.885	3.378	3.906
<i>x</i> ₃	3.58	3.75	3.93	3.94	3.60	3.51	3.98	3.62	4.09	4.06	4.87	4.98
<i>x</i> ₄	0.760	0.821	0.928	1.009	0.766	0.726	1.209	0.750	1.036	1.094	1.635	1.517
Inj.	2	2	2	2	3	3	3	3	3	3	3	3
x_1	1.17	1.15	1.17	1.19	1.07	0.99	1.06	1.02	1.15	1.20	1.20	1.17
<i>x</i> ₂	2.782	3.018	3.383	3.447	2.505	2.315	2.667	2.390	3.021	3.085	3.308	3.231
<i>x</i> ₃	4.38	4.65	4.69	4.40	3.76	4.44	4.38	4.67	4.48	4.78	4.57	4.56
<i>x</i> ₄	1.197	1.244	1.495	1.026	0.912	1.398	1.197	1.613	1.476	1.571	1.506	1.458
Inj.	4	4	4	4	4	4	4	4	5	5	5	5
x_1	1.22	1.03	1.14	1.01	0.99	1.11	1.20	1.08	0.91	1.15	1.14	1.05
<i>x</i> ₂	2.838	2.351	3.001	2.439	2.199	3.318	3.601	3.291	1.532	2.552	3.083	2.330
<i>x</i> ₃	3.89	4.05	4.05	3.92	3.27	3.95	4.27	3.85	4.04	4.16	4.79	4.42
<i>x</i> ₄	0.944	1.241	1.023	1.067	0.693	1.085	1.242	1.017	1.084	1.151	1.381	1.242
Inj.	5	5	5	5	6	6	6	6	6	6	6	6
x_1	0.99	1.22	1.05	1.13	1.11	0.75	1.05	1.02	1.05	1.07	1.13	1.11
<i>x</i> ₂	2.079	3.366	2.416	3.100	2.813	0.840	2.199	2.132	1.949	2.251	3.064	2.469
<i>x</i> ₃	3.47	4.41	4.64	4.57	3.76	3.14	3.75	3.99	3.34	3.21	3.63	3.95
×4	0.673	1.137	1.455	1.325	0.800	0.606	0.790	0.853	0.610	0.562	0.707	0.952

Se desea estudiar si las medias de los distintos injertos son iguales. Nosotros consideraremos solamente los Injertos 1, 2 y 3.

Primero estudiaremos si las poblaciones correspondientes a los 3 injertos tienen iguales matrices de covarianza, o sea, testearemos

$$H_1: \mathbf{\Sigma}_1 = \mathbf{\Sigma}_2 = \mathbf{\Sigma}_3$$

A continuación se dan las matrices de covarianza estimadas

$$\mathbf{S}_1 = \left(\begin{array}{cccc} 0.0034 & 0.0203 & 0.0037 & 0.0018 \\ 0.0203 & 0.2007 & 0.0580 & 0.0458 \\ 0.0037 & 0.0580 & 0.0352 & 0.0285 \\ 0.0018 & 0.0458 & 0.0285 & 0.0285 \end{array} \right) \quad \mathbf{S}_2 = \left(\begin{array}{ccccc} 0.0034 & 0.0258 & 0.0088 & 0.0032 \\ 0.0258 & 0.3048 & 0.1498 & 0.1498 & 0.0832 \\ 0.0088 & 0.1498 & 0.1157 & 0.0711 \\ 0.0032 & 0.0832 & 0.0711 & 0.0565 \end{array} \right)$$

$$\mathbf{S}_3 = \left(\begin{array}{cccc} 0.0068 & 0.0314 & 0.0087 & 0.0060 \\ 0.0314 & 0.1543 & 0.0480 & 0.0329 \\ 0.0087 & 0.0480 & 0.0951 & 0.0680 \\ 0.0060 & 0.0329 & 0.0680 & 0.0534 \\ \end{array} \right)$$

con lo cual $-2 \log(\gamma_1^{\star}) = 25.80706$ y $\chi_{0.99.20}^2 = 37.56623$.

No rechazamos H_1 y el p-valor es 0.1723.

Supongamos entonces que las poblaciones correspondientes a los injertos 1, 2 y 3 tienen la misma matriz de covarianza y estudiemos si las medias son iguales, o sea, queremos testear H_3 .

El estadístico del test es

Test sobre Σ

$$V = \gamma_3^{\star \frac{2}{n}} = \frac{|\mathbf{U}|}{|\mathbf{U} + \mathbf{H}|} = \Lambda(n-1, p, k-1)$$

En nuestro caso, p = 4, k = 3 y n = 24. Hemos visto que

$$\frac{1 - \Lambda(N, p, 2)^{\frac{1}{2}}}{\Lambda(N, p, 2)^{\frac{1}{2}}} \frac{N - p - 1}{p} \sim \mathcal{F}_{2p, 2(N - p - 1)}$$

Luego, rechazaremos H_3 si

$$\frac{1-V^{\frac{1}{2}}}{V^{\frac{1}{2}}}\frac{(n-1)-p-1}{p} > f_{2p,2(n-p-2)}(\alpha)$$

En el ejemplo que nos interesa V=0.1447022, n-p-2=18 luego $f_{8,36}(0.01)=3.051726$ y

$$\frac{1 - V^{\frac{1}{2}}}{V^{\frac{1}{2}}} = 7.329734$$

con lo que rechazamos H_3 y el p-valor es 10^{-5} .