QUÍMICA

CLASSIFICAÇÃO PERIÓDICA DOS ELEMENTOS

Com massas atômicas referidas ao isótopo 12 do carbono

1 H 1,01	2											13	14	15	16	17	18 He
3 Ll 6,94	4 Be 9,01											5 B 10.8	6 C 12.0	7 N 14.0	8 O 16,0	9 F 19,0	10 Ne 20,2
11 Na 23,0	12 Mg 24,3	3	4	5	6	7	8	9	10	11	12	13 Al 27,0	14 Si 28,1	15 P 31.0	16 S 32,1	17 CI 35,5	18 Ar 39,9
19 K 39,1	20 Ca 40,1	21 Sc 45,0	22 Ti 47,9	23 V 50,9	24 Cr 52,0	25 Mn 54,9	26 Fe 55,8	27 Co 58,9	28 Ni 58,7	29 Cu 63,5	30 Zn 65,4	31 Ga 69,7	32 Ge 72.6	33 As 74,9	34 Se 79.0	35 Br 79,9	36 Kr 83,8
37 Rb 85,5	38 Sr 87.6	39 Y 88,9	40 Zr 91,2	41 Nb 92,9	42 Mo 95,9	43 Tc (98)	44 Ru 101	45 Rh 102,9	46 Pd 106,4	47 Ag 107,8	48 Cd 112,4	49 In 114,8	50 Sn 118,7	51 Sb 121,7	52 Te 127,6	53 126,9	54 Xe 131,3
55 Cs 132,9	56 Ba 137,3	57-71 Serie dos Lantanidos	72 Hf 178,5	73 Ta 181	74 W 183,8	75 Re 186,2	76 Os 190,2	77 r 192,2	78 Pt 195	79 Au 197	80 Hg 200,5	81 TI 204,3	82 Pb 207,2	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 Série dos Actinidios	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (281)	111 Rg (272)	.0						
			Série	dos Lant	anidios												
Número Atómico Símbolo		nico	57 La 139	58 Ce 140	59 Pr 141	60 Nd 144,2	61 Pm (145)	62 Sm 150,3	63 Eu 152	64 Gd 157,2	65 Tb 159	66 Dy 162,5	67 Ho 165	68 Er 167,2	69 Tm 169	70 Yb 173	71 Lu 175
	Atômic		Série	dos Acti	nidios					7	>						
() Nº de massa do isótopo mais estável		ssa do	89 Ac (227)	90 Th 232,0	91 Pa 231	92 U 238	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

Informações para a resolução de questões

- Algumas cadeias carbônicas nas questões de química orgânica foram desenhadas na sua forma simplificada apenas pelas ligações entre seus carbonos. Alguns átomos ficam, assim, subentendidos.
- As ligações com as representações e in indicam, respectivamente, ligações que se aproximam do observador e ligações que se afastam do observador.
- Constantes físicas: 1 bar = 10⁵ N.m⁻²
 1 faraday = 96500 coulombs
 R = 8,314 J.mol⁻¹ K⁻¹

26. Na temperatura de 595 °C e na pressão de 43,1 atm, o fósforo apresenta o seguinte equilíbrio:

P (sólido, violeta) = P (líquido) = P (vapor)

Esse sistema apresenta

- (A) 1 componente e 2 fases.
- (B) 1 componente e 3 fases.
- (C) 3 componentes e 1 fase.
- (D) 3 componentes e 2 fases.
- (E) 3 componentes e 3 fases.
- A dissolução fracionada é um processo de separação de substâncias baseado na diferença de
 - (A) pressões de vapor.
 - (B) temperaturas de ebulição.
 - (C) índices de refração.
 - (D) solubilidades.
 - (E) temperaturas de fusão.
- Considere as seguintes características de um certo elemento químico.
 - I Ele é menos eletronegativo que o oxigênio.
 - II Ele possui raio atômico menor que o berílio.
 - III- Ele possui eletroafinidade maior que o boro.

Esse elemento químico pode ser o

- (A) carbono.
- (B) enxofre.
- (C) alumínio.
- (D) magnésio.
- (E) flúor.
- Um certo elemento químico possui número atômico 75 e número de massa 186,2.

Com base nesses dados, pode-se afirmar corretamente que esse elemento

- (A) possui 75 prótons e 111,2 nêutrons em seu núcleo.
- (B) possui 111,2 prótons e 75 nêutrons em seu núcleo.
- (C) é constituído por diferentes isótopos.
- (D) forma um ion monopositivo que possui o mesmo número de elétrons que o ósmio.
- (E) forma ligações iônicas com o paládio.

30. Em um experimento, 10 g de uma liga de latão, constituída por Cu e Zn, foram tratados com uma solução de HCl. O Cu não reagiu, mas o Zn reagiu de acordo com

$$Zn_{(s)} + 2 H^{+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + H_{2(q)}$$

Após o ataque por HCℓ, a massa do sólido remanescente, filtrado e seco, era igual a 7,8 g.

Com base nesses dados, é correto afirmar que a porcentagem ponderal de Zn na liga era aproximadamente igual a

- (A) 2,2%.
- (B) 10%.
- (C) 22%.
- (D) 50%.
- (E) 78%.
- 31. A amônia é obtida industrialmente pela reação do nitrogênio do ar com o hidrogênio. Nessa reação, cada três mols de hidrogênio consumidos formam um número de moléculas de amônia aproximadamente igual a
 - (A) 2.0×10^{23}
 - (B) 3.0×10^{23} .
 - (C) 6.0×10^{23} .
 - (D) 1,2 x 10²⁴
 - (E) 1,8 x 10²⁴.
- Assinale a alternativa que apresenta uma reação química que pode ser utilizada para a produção de corrente elétrica.
 - (A) $Na_2O + SO_3 \rightarrow Na_2SO_4$
 - (B) BaC(2 + H2SO4 → BaSO4 + 2HC/
 - (C) $K_2CO_3 \rightarrow K_2O + CO_2$
 - (D) $ZnSO_4 + 2AgNO_3 \rightarrow Zn(NO_3)_2 + Ag_2SO_4$
 - (E) $H_2 + \frac{1}{2} O_2 \rightarrow H_2O$
- 33. O ácido acético é um ácido fraco que se ioniza em água de acordo com a reação CH₃COOH(,) = CH₃COO⁻(aq) + H⁻(aq).

A respeito dessa reação, é correto afirmar que

- (A) a constante de equilibrio independe do pH da solução.
- (B) a ionização do ácido acético é maior em meio ácido.
- (C) o pH da solução resultante será elevado.
- (D) o componente majoritário da solução é o ion H*.
- (E) o pH da solução final independe da concentração inicial de ácido acético.
- No ânion tetraborato, B₄O₇²⁻, o número de oxidação do boro é igual a
 - (A) 2.
 - (B) 3.
 - (C) 4.
 - (D) 5.
 - (E) 7.

- 35. Na reação química $Cu^{2+}_{(aq)} + Mg_{(s)} \rightarrow Cu_{(s)} + Mg^{2+}_{(aq)}$, verifica-se que
 - (A) o Cu2+ é reduzido a Cu.
 - (B) o Cu2+ é o agente redutor.
 - (C) o Mg é reduzido a Mg2+.
 - (D) o Mg recebe dois elétrons.
 - (E) o Cu perde dois elétrons.
- 36. A reação de hidrogenação do propeno catalisada pela platina, apresentada abaixo, é um importante método sintético aplicado na indústria petroquímica.

Considere os seguintes valores de energias de dissociação, em kJ.mol-1.

$$\Delta H^{o}_{C=C} = 612$$

$$\Delta H^{\circ}_{C-C} = 348$$

$$\Delta H^{o}_{H-H} = 436$$

$$\Delta H^{\circ}_{C-H} = 412$$

Desses dados, conclui-se que o efeito térmico da reação apresentada, expresso em kJ, é aproximadamente igual a

- (A) -228.
- (B) -124.
- (C) + 124.
- (D) +224.
- (E) +288.
- 37. As resinas epóxi, amplamente utilizadas como adesivos em aplicações industriais, são preparadas por meio de processos de polimerização que envolvem calor ou catalisadores.

O gráfico a seguir compara qualitativamente os processos catalítico e não-catalítico de formação da resina epóxi.

Caminho da reação

Com base nos dados apresentados no gráfico, é correto afirmar que

- (A) a reação catalisada é representada pela curva I.
- (B) o processo de cura da resina independe da ação do catalisador.
- (C) a energia de ativação da reação catalisada é dada pelo valor de X.
- (D) a reação mais rápida é representada pela curva II.
- (E) o processo de polimerização é endotérmico.

 A (-)-serricornina, utilizada no controle do caruncho-do-fumo, é o feromônio sexual da Lasioderma serricorne.

Considere a estrutura química desse feromônio.

A cadeia dessa estrutura pode ser classificada como

- (A) acíclica, normal, heterogênea e saturada.
- (B) alifática, ramificada, homogênea e insaturada.
- (C) alicíclica, ramificada, heterogênea e insaturada.
- (D) acíclica, ramificada, homogênea e saturada.
- (E) alifática, normal, homogênea e saturada.
- 39. Os LCDs são mostradores de cristal líquido que contêm em sua composição misturas de substâncias orgânicas.

A substância DCH-2F é um cristal líquido nemático utilizado na construção de mostradores de matriz ativa de cristais líquidos. Sua estrutura está representada abaixo.

A substância DCH-2F é um

- (A) isocianeto aromático.
- (B) cianeto aromático.
- (C) haleto orgânico.
- (D) alcano saturado.
- (E) hidrocarboneto aromático.
- Considere os seguintes pares de compostos orgânicos.

3.

Os pares 1, 2 e 3 correspondem, respectivamente, a

- (A) isômeros ópticos, compostos idênticos e isômeros de função.
- (B) isômeros de posição, enantiômeros e isômeros de cadeia.
- (C) isômeros de função, diastereoisômeros e isômeros de posição.
- (D) isômeros de cadeia, compostos idênticos e isômeros de função.
- (E) isômeros geométricos, enantiômeros e isômeros de posição.

41. O bloco superior, abaixo, apresenta os nomes químicos de seis compostos orgânicos e, entre parênteses, suas respectivas aplicações; o bloco inferior, as fórmulas químicas de cinco desses compostos.

Associe adequadamente o bloco inferior ao superior.

- 1 ácido p-aminobenzóico (matéria-prima de síntese do anestésico novocaína)
- 2 ciclopentanol (solvente orgânico)
- 3 4-hidróxi-3-metoxibenzaldeído (sabor artificial de baunilha)
- 4 α-naftol (matéria-prima para o inseticida carbaril)
- 5 trans-1-amino-2-fenilciclopropano (antidepressivo)
- 6 β-naftol (conservante de alimentos)

() сн₃о но-⟨○⟩—сно

() (>-он

A sequência correta de preenchimento dos parênteses, de cima para baixo, é

- (A) 1-5-6-3-2.
- (B) 5-3-6-2-4.
- (C) 1-4-3-5-2.
- (D) 1-5-4-3-2.
- (E) 3-2-4-1-6.
- 42. Se forem acrescentados 90 mL de água a 10 mL de uma solução aquosa de KOH com pH igual a 9, o pH da solução resultante será aproximadamente igual a
 - (A) 0,9.
 - (B) 7,0.
 - (C) 8,0.
 - (D) 9,0.
 - (E) 10,0.

43. O prêmio Nobel de Química de 2005 foi atribuído a três pesquisadores (Chauvin, Grubbs e Schrock) que estudaram a reação de metátese de alcenos. Essa reação pode ser representada como segue.

Sabendo-se que todos os participantes da reação são líquidos, exceto o eteno, que é gasoso, para se deslocar o equilíbrio para a direita, é necessário

- (A) aumentar a concentração do 1-hexeno.
- (B) diminuir a concentração do 1-hexeno.
- (C) aumentar a pressão.
- (D) retirar o catalisador.
- (E) realizar a reação em um recipiente aberto.
- 44. A medida do abaixamento da pressão de vapor de um solvente, causado pela adição de um soluto não-volátil, é obtida pela
 - (A) criometria.
 - (B) osmometria.
 - (C) tonometria.
 - (D) ebuliometria.
 - (E) termometria.
- Nas substâncias CO₂, CaO, C e CsF, os tipos de ligações químicas predominantes são, respectivamente,
 - (A) a covalente, a iônica, a covalente e a iônica.
 - (B) a covalente, a covalente, a metálica e a iônica.
 - (C) a iônica, a covalente, a covalente e a covalente.
 - (D) a lônica, a lônica, a metálica e a covalente.
 - (E) a covalente, a covalente e a iônica.
- 46. A reação do alumínio com o oxigênio é altamente exotérmica e pode ser representada como segue.

$$2 A\ell_{(s)} + 3/2 O_{2(g)} \rightarrow A\ell_2 O_{3(s)}$$
 $\Delta H = -1670 \text{ kJ}$

A quantidade de calor, expressa em kJ, liberada na combustão de 1 grama de alumínio é aproximadamente igual a

- (A) 15.
- (B) 31.
- (C) 62.
- (D) 835.
- (E) 1670.

 Considere o gráfico a seguir, correspondente a uma reação elementar de primeira ordem.

Com base nesse gráfico, é possível concluir que a meia-vida do reagente, expressa em minutos, é igual a

- (A) 0,5.
- (B) 1,5.
- (C) 10.
- (D) 25.
- (E) 50.
- 48. A reação NO_(g) + O_{3(g)} → NO_{2(g)} + O_{2(g)} é uma reação elementar de segunda ordem. Se duplicarmos as concentrações do NO e do O₃, mantendo constante a temperatura, a velocidade da reação
 - (A) será reduzida à metade.
 - (B) permanecerá constante.
 - (C) será duplicada.
 - (D) será triplicada.
 - (E) será quadruplicada.

Instrução: As questões 49 e 50 referem-se à célula galvânica representada abaixo.

Nessa célula, as duas semi-reações e seus respectivos potenciais-padrão de redução são os seguintes: $Ag^+ + e^- \rightarrow Ag \qquad \qquad \epsilon^\circ = \pm 0.80 \text{ V}$

 $\epsilon^{\circ} = -0.14 \text{ V}$

 $Sn^{2+} + 2e^- \rightarrow Sn$

I - A reação que nela ocorre envolve a redução do Sn²⁺ a Sn.
 II - O pólo positivo da célula é o eletrodo de prata.

III- Nela, a massa de metal oxidada no ânodo é exatamente igual à massa de metal depositada no cátodo.

- Quais estão corretas?
- (A) Apenas I.

(B) Apenas II.

- (C) Apenas III.
- (D) Apenas I e II.

(E) Apenas II e III.

- A força eletromotriz dessa célula, expressa em volts, será aproximadamente igual a
 - (A) 0,14.
 - (B) 0,66.
 - (C) 0,80. (D) 0,94.
 - (E) 1,46.