- \rightarrow If it $f(x) = 1 \in \text{It } g(x) = m$ then (i) It {f(x) +9(x)} = 1+m (ii) It (logf(x)) = log(4+f(x))

90, 00, 0-00, 0x00, 0°,00° & 100 asie indeterminate forms

It $\frac{\sin x}{x} = 1 = \frac{1}{x} + \frac{\tan x}{x}$, It $\frac{\sin \alpha x}{x} = \alpha = \frac{1}{x} + \frac{\tan \alpha x}{x}$

(iii) # $\frac{4n\pi^2}{2} = \frac{\pi}{180} = \frac{11}{2} + \frac{4n\pi^2}{2} = 0 = \frac{11}{2} + \frac{6n\pi}{2}$

(Y) It $\frac{\sin^4 x}{x} = 1 = \frac{1}{x} + \frac{\tan^4 x}{x}$ (vi) It $\frac{\sin(\pi x)}{x} = 1 = \frac{1}{x} + \frac{\tan(\pi x)}{x}$

(vii) It $\frac{(e^{\lambda}-1)}{\lambda} = 1$ (viii) It $\frac{(a^2-1)}{\lambda} = \log_e a$ (aso)

(ix) It ax-bx = loge (9/b) (x) It 1x-al does not except

1) It $e^{1/2} = 0$ If $e^{1/2} = 0$ If

Standard eventh (OR) $\frac{1}{100} = 0$ It $\frac{1}{100} = 0$ = $\frac{1}{100} = 0$ = $\frac{1}{100} = 0$ = $\frac{1}{100} = 0$ Standard eventh (OR) $\frac{1}{100} = 0$ = $\frac{1}{100} = 0$ (Ha/1) but

iii) It $x^{n} = 0$ if |x| = 1iv) It $x^{n} = \infty$ if |x| > 1iv) It $x^{n} = \infty$ if |x| > 1iv) It $x^{n} = \infty$ if |x| > 1iv) It $x \cos(\frac{1}{2}) = \text{It } x \sin(\frac{1}{2}) = 0$ if $\frac{1}{1} + \frac{1}{1} +$

(i) It $\frac{x^n - a^m}{x - a} = na^{n+1}$ (ii) It $\frac{x^m - a^m}{x - a} = \frac{m}{n}a^{m-n}$

of OE 12 / 2 TI/2 and x in stadians

(iii) It 100 = 4m, 1 m = 0

Standard limits

Brighmatica of Limits — L'Hospital's scale

If
$$\frac{11}{2}$$
 $\frac{1}{2}$ $\frac{1}{2$

Exparmond

1.
$$e^{x_2}$$
 1 + $\frac{x}{11}$ + $\frac{x_1}{2!}$ + $\frac{x_2}{3!}$ + $\frac{x_2}{3!}$ + $\frac{x_2}{3!}$ + $\frac{x_2}{3!}$ + $\frac{x_2}{2!}$ (Loge $\frac{a}{3}$ + $\frac{x_2}{2!}$ + $\frac{x_2}{$

Expansions
$$1. \text{ Arm } x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - .$$

 $=\frac{1}{2!}-\frac{\chi^2}{2!}+\frac{\chi^4}{4!}-\frac{\infty}{2!}$

4 $4n^{7}x = x + \frac{1}{2}\frac{x^{3}}{3} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^{5}}{5} + \cdots \infty$

5. $tan^3x = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots$

