How to learn Applied Mathematics trough modern Fortran

Department of Applied Mathematics School of Aeronautical and Space Engineering Technical University of Madrid (UPM)

Contents

1	Son	ne basic programs	3
2	Firs	et examples: calculus and algebra	4
	2.1	My first program: "Hello world"	4
	2.2	sum of a numeric series	4
	2.3	Operaciones con matrices y vectores	4
	2.4	dynamic allocation of memory	5
	2.5	Piecewise functions	5
	2.6	Series de funciones	6
	2.7	Lectura y escritura de ficheros	6
	2.8	Sistemas lineales de ecuaciones	8
	2.9	Sistemas no lineales de ecuaciones	8
	2.10	Autovalores y autovectores	8
	2.11	Derivacin numrica	9
	2.12	Integracin numrica	10
	2.13	to be included	10
3	Syst	tem of Equations	16
	3.1	Overview	16
	3.2	Example using the API	16
	3.3	Linear_systems module	18
	3.4	Non_Linear_Systems module	19
4	Lag	range Interpolation	20
	4.1	Overview	20
	4.2	Example using the API	20

	4.3	Interpolation module	22
5	Fini	ite Differences	24
	5.1	Overview	24
	5.2	Example using the API	24
	5.3	Finite_differences module	25
		5.3.1 Boundary conditions	28
6	Bou	ındary Value Problem	32
	6.1	Overview	32
	6.2	Example using the API	32
	6.3	Boundary_value_problems module	35
7	Cau	nchy Problem	40
	7.1	Overview	40
	7.2	Example using the API	40
	7.3	Cauchy_problem module	42
		7.3.1 Temporal schemes	43
8	Init	ial Value Boundary Problem	44
	8.1	Overview	44
	8.2	Example using the API	44
	8.3	Initial_Value_Boundary_Problem module	47
		8.3.1 Temporal schemes	50

Some basic programs

First examples: calculus and algebra

2.1 My first program: "Hello world"

batch bsh scripts gfortran

2.2 sum of a numeric series

Dar el resultado de la suma de los 100 primeros trminos de las siguientes series:

- 1. Serie de nmeros naturales.
- 2. Serie de nmeros naturales impares.
- 3. Serie numrica donde el tr
mino general de la serie es: $a_n=1/n^2$ desde n=1.
- 4. Serie numrica donde el trmino general de la serie es $a_n = 1/n!$ desde n = 1.
- 5. Serie numrica donde el trmino general de la serie es $a_n = (-1)^{n+1}/(2n-1)$ desde n = 1.

2.3 Operaciones con matrices y vectores

Considerar los vectores $V,W\in\mathbb{R}^N$ de componentes:

$$\{v_i = \frac{1}{i^2}, i = 1 \dots N\},\$$

$$\{w_i = \frac{(-1)^{i+1}}{2i-1}, i = 1 \dots N\}.$$

Considerar la matriz $A \in \mathcal{M}_{N \times N}(\mathbb{R})$ donde su trmino genrico vale $a_{ij} = (i/N)^j$. Escribir un programa para calcular las operaciones siguientes con N = 100:

- 1. Suma de todas las componentes del vector V y del vector W.
- 2. Suma de todas las componentes de la matriz A.
- 3. Suma de las componentes del vector W mayores que cero.
- 4. Producto escalar de los vectores V y W.
- 5. Producto escalar del vector V y la columna N de la matriz A.
- 6. Suma de las componentes de vector que resulta de multiplicar la matriz A por el vector V.
- 7. Traza de la matriz A.

2.4 dynamic allocation of memory

Dada la matriz $A \in \mathcal{M}_{M \times M}(\mathbb{R})$ de trmino genrico

$${a_{ij} = (i/M)^j, i = 0, \dots M - 1, j = 0, \dots M - 1}.$$

calcular las siguientes operaciones:

1. Calcular

$$\sum_{M=1}^{10} traza(A)$$

2. Calcular

$$\sum_{M=1}^{5} traza(A^2)$$

3. Calcular con M=4

$$traza\left(\sum_{k=1}^{5}A^{k}\right)$$

2.5 Piecewise functions

Sean los vectores $X, F \in \mathbb{R}^{N+1}$. Las componentes de X almacenan los valores discretos del dominio de definicin y F las impenes correspondientes de la funcin $F : \mathbb{R} \to \mathbb{R}$ continua a trozos siguiente:

$$F(x) = \begin{cases} 1, & a \le x \le -\frac{\pi}{2}, \\ \cos(\pi x), & -\frac{\pi}{2} < x < \frac{\pi}{2}, \\ 0, & \frac{\pi}{2} \le x \le b. \end{cases}$$

Considerar una particin equiespaciada de la forma:

$$\{x_i = a + i\Delta x, i = 0...N\}, \qquad \Delta x = \frac{b-a}{N}, \qquad a < -\frac{\pi}{2}, \qquad b > \frac{\pi}{2}.$$

Se pide calcular la suma;

$$S_N = \sum_{i=0}^{N} F_i \Delta x$$

- 1. con N = 10
- 2. con N = 20
- 3. con N = 100

2.6 Series de funciones

Aproximar mediante un desarrollo en serie de potencias de la forma

$$f(x) = \sum_{k=0}^{M} a_k x^k,$$
 $a_k = \frac{f^{(k)}(0)}{k!},$

las funciones $F: \mathbb{R} \to \mathbb{R}$, siguientes:

- 1. $f(x) = e^x$ y calcular el valor f(1) con M = 5.
- 2. $f(x) = \sin(x)$ y calcular el valor $f(\pi/2)$ con M = 8.
- 3. $f(x) = \cosh(x)$ y calcular el valor f(1) con M = 10.
- 4. $f(x) = \frac{1}{1-x}$ y calcular el valor f(0.9) con M = 20.
- 5. $f(x) = e^x$ y calcular el valor ms preciso de f(1) con doble precisin.
- 6. $f(x) = \sin(x)$ y calcular el valor ms preciso $f(\pi/2)$ con doble precisin.
- 7. $f(x) = \cosh(x)$ y calcular el valor ms preciso de f(1) con doble precisin.
- 8. $f(x) = \frac{1}{1-x}$ y calcular el valor ms preciso de f(0.9) con doble precisin.

2.7 Lectura y escritura de ficheros

Crear los ficheros de datos ForTran con nombres input_1.dat e input_2.dat con la información siguiente:

Contenido del fichero de entrada input_1.dat :

```
1
       Datos de entrada 1
2
3
        1.2
                  3.4
                           6.2
                                  -14.0
                                            0.1
4
        -25.2
                  -8.6
                           5.1
                                   9.9
                                           17.0
5
        -1.0
                  -2.0
                           -5.4
                                    -8.6
                                            0.0
6
                           -7.0
                                    -12.1
       3.14
                 -11.9
                                            9.2
7
        6.66
                  5.32
                           0.001
                                    0.2
                                            0.001
```

Contenido del fichero de entrada input_2.dat :

```
1
       Datos de entrada 2
2
3
                 3.4
                                                     4.89
       1.2
                          6.2
                                 -14.0
                                           0.1
                                                            7.54
4
                 -8.6
                                                     12.24
       -25.2
                          5.1
                                 12.0
                                           9.9
                                                            17.0
5
       0.0
                 34.5
                          -1.0
                                 -2.0
                                           -43.04
                                                     -8.6
                                                             0.0
6
       3.14
                 -11.9
                          71.0
                                 7.0
                                          17.0
                                                     -12.1
                                                             9.2
7
                 5.32
                                                     0.008
       6.66
                          0.001
                                  0.2
                                           0.001
                                                             -0.027
8
                          -9.002
       54.0
                 77.1
                                  -13.2
                                           0.017
                                                     65.53
                                                             -0.021
9
       23.04
                 -51.98 -34.2
                                           5.34
                                  9.99
                                                     8.87
                                                             3.22
```

Escribir un programa que gestione los datos de los ficheros anteriores siguiendo los pasos siguientes: Declarar las matrices $A \in \mathcal{M}_{N \times N}(\mathbb{R}), B \in \mathcal{M}_{N \times 3}(\mathbb{R}), C \in \mathcal{M}_{N \times 2}(\mathbb{R})$ y los vectores $U, V, W, T \in \mathbb{R}^N$. Leer el fichero de entrada (input_1.dat o input_2.dat) de la forma siguiente:

- 1. Cargar el fichero completo en la matriz A.
- 2. Cargar las cuatro primeras columnas del fichero en los vectores U, V, W y T.
- 3. Cargar la primera columna en el vector T y las tres últimas columnas en la matriz B.
- 4. Cargar la segunda columna en el vector U y las dos últimas columnas en la matriz C.
- 5. Cargar las columnas 1, 2 y 4 en la matriz B.

Además, el programa debe crear el fichero de salida (output_1.dat o output_2.dat), donde se irán escribiendo las matrices y vectores de los apartados anteriores. El formato de escritura debe ser el de números reales con cinco decimales.

Para el enunciado anterior, escribir los programas siguientes:

Programa 1 : Asignación estática de memoria.
 Ejecutar el programa por separado para los ficheros input_1.dat e input_2.dat. Para ello modificar las dimensiones y en nombre de los ficheros en el programa fuente.

Programa 2 : Asignación dinámica de memoria.
 Ejecutar el programa una única vez para gestionar los datos de los ficheros de entrada input_1.dat e input_2.dat.

2.8 Sistemas lineales de ecuaciones

Implementar un mdulo para la resolucin de sistemas lineales de ecuaciones algebraicas. Los mtodos de resolucin propuestos son el de eliminacin Gaussiana, factorizacin LU, factorizacin LU de la biblioteca *Numerical Recipes* y Jacobi.

Para cada mtodo se pide:

- Validar los resultados con varios casos de prueba con dimensiones distintas.
- Evaluar tiempos de ejecucin.
- Comparar resultados con los mtodos restantes.

Aplicacin : Estudiar el condicionamiento de sistemas lineales de ecuaciones para matrices aleatorias y de Vandermonde.

2.9 Sistemas no lineales de ecuaciones

Implementar un m
dulo para la resolucin numrica de ecuaciones no lineales. Para funciones
 $F:\mathbb{R}\to\mathbb{R}$, los m
todos de resolucin propuestos son el de la biseccin y el de Newton-Raphson. Para funciones
 $F:\mathbb{R}^N\to\mathbb{R}^N$, se proponen el mtodo de Newton-Raphson con matriz Jacobiana analtica y el mtodo de Newton-Raphson con matriz Jacobiana numrica. Para la validacin de los mtodos propuestos, se pide implementar un m
dulo con al menos tres funciones $F:\mathbb{R}\to\mathbb{R}$ y al menos tres funciones $F:\mathbb{R}^N\to\mathbb{R}^N$. Este m
dulo debe contener las derivadas y matrices Jacobianas correspondientes de las funciones propuestas.

En el informe correspondiente, presentar tablas de soluciones numricas en cada paso de iteracin para las funciones de prueba propuestas.

2.10 Autovalores y autovectores

Implementar un mdulo para el clculo de autovalores y autovectores de una matriz. Los mtodos de resolucin propuestos son el mtodo de la potencia y el mtodo de la potencia inversa. Implementar el mtodo de la potencia inversa a partir de la matriz inversa y resolviendo el sistema lineal correspondiente.

Para cada mtodo se pide:

- Validar los resultados con varios casos de prueba con dimensiones distintas.
- Evaluar tiempos de ejecucin. Comparar tiempos de ejecucin del mtodo de la potencia inversa mediante los dos algoritmos propuestos : matriz inversa y solucin del sistema lineal.

Aplicacin : Estudiar el condicionamiento de sistemas lineales de ecuaciones para matrices aleatorias y de Vandermonde. Calcular la relacin $\lambda_{max}/\lambda_{min}$ de los casos de prueba presentados en el hito 1 y relacionar y discutir los resultados.

```
subroutine
             power_method
integer :: i, j, k
integer, parameter :: PI = 4 * atan(1d0)
integer, parameter :: N = 20
real :: x(0:N), Vandermonde(0:N, 0:N), sigma
real :: a=-1, b=1
real V(0:N), V0(0:N)
x = [ (a + (b-a)*i/N, i=0, N) ]
forall(i=0:N, j=0:N) Vandermonde(i,j) = x(i)**j
V = 1
VO = 0
do while( abs(norm2(V)-norm2(V0)) > 1d-5 )
VO = V
V = matmul( Vandermonde, V ) / norm2(V)
write(*,*) maxval(V)
end do
sigma = dot_product( V, V )
write(*,*) "sigma = ", sigma
end subroutine
```

2.11 Derivacin numrica

- 1. Obtener las frmulas de las derivadas numricas primeras descentradas, con tres puntos equiespaciados a una distancia Δx .
- 2. A partir de la funcin $f(x) = e^x$ en el punto x = 0, representar grificamente el error total de las derivadas numricas frente al valor de Δx en precisin simple y doble. En particular, representar grificamente las derivadas primeras adelantada (definicin de derivada), centrada y descentradas y la derivada segunda, con tres puntos equiespaciados a una distancia Δx . Discutir los resultados obtenidos.
- 3. Resolver los problemas de contorno en ecuaciones diferenciales ordinarias siguientes:
 - Problema 1:

$$u'' + u = 0, \quad x \in [-1, 1], \qquad u(-1) = 1, \quad u(1) = 0,$$

• Problema 2:

$$u'' + u' - u = \sin(2\pi x), \quad x \in [-1, 1], \qquad u(-1) = 0, \quad u'(1) = 0.$$

Para los problemas citados anteriormente se pide:

- (a) A partir de las derivadas numricas con tres puntos equiespaciados escribir el sistema de ecuaciones resultante.
- (b) Obtener la solucin numrica mediante la resolucin de un sistema lineal de ecuaciones, con N=10 y N=100.
- (c) Representar griicamente los resultados obtenidos.

2.12 Integracin numrica

Implementar un m
dulo para la resolucin numrica de integrales definidas de funciones $F: \mathbb{R} \to \mathbb{R}$. Los m
todos de resolucin propuestos son las reglas del rect
ngulo, punto medio, trapecio y Simpson. Implementar un m
dulo de funciones $F: \mathbb{R} \to \mathbb{R}$ de prueba para validar los m
todos numricos propuestos. Este m
dulo debe contener al menos tres funciones con funciones primitivas conocidas y una funci
n cuya funci
n primitiva sea desconocida.

Evaluar el error de las soluciones numricas para cada mtodo propuesto y para distintos valores del incremento de la particin.

2.13 to be included

```
elemental advance = no dummy versus actual assumed shape explicit shape
   global, local and scope in modules
   1 versus 1.
   tab instead of blanks
   brackets
   mask in intrinsic functions
   ! and &
   camel case versus underscore
   overloading
   forall parallel
   enter matrices by row or columns
   lower bound: upper bound
   array operations C = A + B
   public versus private
   encapsulamiento y ocultaci
   FORALL (I=1:N-1, J=1:N, J;I) A(I,J) = A(J,I)
```

```
x = 1.23456789123456789123456789Q00
xd = 1.23456789123456789123456789Q00
xdd = 1.23456789123456789123456789000
write(*, '(ES)') x ! scientific notation 1.234 (first digit should be greater or equal than one
write(*, '(E)') x ! exponential normalized notation 0.1234 (first digit is zero)
write(*,*) " Single, double and quadruple precision "
write(*, '(E)' ) x
write(*, '(E)' ) xd
write(*, '(E)') xdd
subroutine type_element
interface operator (+)
module procedure element
end interface
character(len=20) :: name
real (kind=4) :: x
real (kind=8) :: xd
real (kind=16) :: xdd
real :: a, b, c;
! real :: a1, a2, a3;
type (person) :: father = person("juan"), mother = person("cris")
associate ( name1 => father%name, name2=>mother%name )
name = trim(name1) // trim(name2)
end associate
a = 1; b = 1; c = 1;
associate ( a1 \Rightarrow a, a2 \Rightarrow b, a3 \Rightarrow c )
a3 = a1 + a2
write(*,*) " a3 = ", a3
end associate
write(*,*) " c = ", c
   write(*,*) " a3 = ", a3
! write(*,*) " father =", father % name
```

```
write(*,*) " element =", father + mother
write(*,*) " name =", name
x = 1.23456789123456789123456789Q00
xd = 1.23456789123456789123456789Q00
xdd = 1.23456789123456789123456789Q00
write(*, '(ES)') x ! scientific notation 1.234 (first digit should be greater or equal than one
write(*, '(E)') x ! exponential normalized notation 0.1234 (first digit is zero)
write(*,*) " Single, double and quadruple precision "
write(*, '(E)') x
write(*, '(E)' ) xd
write(*, '(E)') xdd
write(*, '(3(E, :, ", ")))') x, xd, xdd
end subroutine
subroutine Hello_world
write(*,'(a)', advance='no') " Hello world..... "
write(*,'(a)', advance='no') " press enter"
read(*,*)
end subroutine
subroutine commandline
character(len=256) :: line, enval
integer :: i, iarg, stat, clen, len
integer :: estat, cstat
iarg = command_argument_count()
write(*,*) " iarg = ", iarg
do i=1,iarg
call get_command_argument(i,line,clen,stat)
write (*,'(I0,A,A)') i,': ',line(1:clen)
end do
```

```
call get_command(line,clen,stat)
write (*,'(A)') line(1:clen)
call get_environment_variable('HOSTNAME',enval,len,stat)
if (stat == 0) write (*,'(A,A)') 'Host=', enval(1:len)
call get_environment_variable('USER',enval,len,stat)
if (stat == 0) write (*,'(A,A)') 'User=', enval(1:len)
! call execute_command_line('ls -al', .TRUE., estat, cstat)
call execute_command_line('dir', .TRUE., estat, cstat)
if (estat==0) write (*,'(A)') "Command completed successfully"
end subroutine
subroutine allocate_characteristics
real, allocatable :: V(:), A(:, :)
character(:), allocatable :: S
integer :: i, j, N
real, pointer :: B(:,:), Diagonal(:)
real, pointer :: memory(:)
real :: x, y, z
class(*), pointer :: p1(:)
N = 10
V = [(i/real(N), i=1, N)]! automatic allocation allocate(V(N))
write(*,*) " V = ", V
N = 2
A = reshape([((i/real(N))**j,i=1, N), j=1, N)], [N, N])
do i=1, N
write(*,*) " A = ", A(i,:)
end do
N = 4
A = reshape([((i/real(N))**j,i=1, N), j=1, N)], [N, N])
write(*,'(A, 100f6.2)') " A = ", A(i,:)
end do
S = "Hello world"
write(*,*) " S = ", S, len(S)
```

```
S = "Hello"
write(*,*) " S = ", S, len(S)
allocate( memory(1:N*N) )
B(1:N,1:N) \Rightarrow memory
memory = 0
forall(i=1:N) B(i,i) = 10.
do i=1, N
write(*,'(A, *(f6.2))') "B = ", B(i,:)
end do
diagonal => memory(::N+1)
write(*,'(A, 100f6.2)') " diagonal = ", diagonal
write(*,'(A, 100f6.2)') " trace = ", sum(diagonal)
write(*,'(A, 100f6.2)') " trace = ", sum(memory(::N+1))
x = 1; y = 2; z = 3;
write(*,'("i=",I0,", REALs=",*(G0,1X),"....")') i, x, y, z ! C++ style
allocate( integer :: p1(5) ) ! p1 is an array of integers
select type (p1)
type is (integer)
p1 = [(i, i=1, size(p1))]
write(*,'(" p1 = ", *(I0, 1x) )') p1
class default
stop 'Error in type selection'
end select
deallocate(p1)
allocate( real :: p1(3) ) ! now p1 is an array of reals
select type (p1)
type is (real)
p1 = [( i, i=1, size(p1) ) ]
write(*,'("p1 = ", *(G0, 1x))') p1
class default
stop 'Error in type selection'
end select
```

end subroutine

System of Equations

3.1 Overview

This is a library designed to solve systems of equations.

It has three modules: **Linear_systems**, **Non_Linear_Systems** and **Jacobian_module**. In spite of this, the API is contained only in the **Linear_systems** and in the **Non_Linear_Systems** modules. With the **Linear_systems** module the user must be able to solve a linear system of equations. With the **Non_Linear_Systems** module the user must be able to solve a linear system of equations.

3.2 Example using the API

For the sake of clarity, a file called **API_Example_Systems_of_Equations.f90** contains an example of how to use this library. For using the API it is necessary to write the sentence **use Linear_systems** and **use Non_Linear_Systems**.

The first example consists of a linear system of equations of four unknowns with four equations. First of all, it is defined the matrix which contains the terms of the equation, and after the solution. In this example:

$$\begin{bmatrix} 4 & 3 & 6 & 9 \\ 2 & 5 & 4 & 2 \\ 1 & 3 & 2 & 7 \\ 2 & 4 & 3 & 8 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 5 \\ 2 \end{pmatrix}$$

The second example consists in the solution of a nonlinear system of equations defined as follows:

$$F_1 = x^2 - y3 - 2$$
$$F_2 = 3xy - z$$
$$F_3 = z^2 - x$$

```
module Equations_example
       use Linear_Systems
       use Non_Linear_Systems
       implicit none
   contains
   subroutine LU_Solution
11
        real :: A(4,4), b(4), x(4)
        integer :: i
13
15
        A(1,:) = [4, 3, 6, 9]
        \begin{array}{llll} A(2\,,:) &= [& 4, & 6, & 6, & 5] \\ A(2\,,:) &= [& 2, & 5, & 4, & 2] \\ A(3\,,:) &= [& 1, & 3, & 2, & 7] \\ A(4\,,:) &= [& 2, & 4, & 3, & 8] \end{array}
17
        b = [3, 1, 5, 2]
21
        call LU_factorization (A)
        x = Solve_LU(A, b)
23
        write (*,*) 'The solution is = ', x
25
   end subroutine
27
   subroutine Newton_Solution
29
        real :: x0(3) = [1., 1., 1.];
31
        call Newton( F, x0 )
33
        write(*,*) 'Zeroes of F(x) are x = ', x0
   end subroutine
37
   function F(v)
        real, intent(in) :: v(:)
39
        real:: F(size(v))
41
        \textcolor{red}{\textbf{real}} \ :: \ \textbf{x} \,, \ \textbf{y} \,, \ \textbf{z}
43
        x = v(1); y = v(2); z = v(3)
45
        F(1) = x**2 - y**3 - 2
        F(2) = 3 * x * y - z
47
        F(3) = z**2 - x
49
   end function
51
   end module
53
   program Example
        use Equations_example
        call LU_solution
57
        call Newton_solution
   end program
```

 $../sources/Systems_of_equations_example.f90$

3.3 Linear_systems module

LU_factorization

call LU_factorization(A)

The subroutine **LU_factorization** returns the inlet matrix which has been factored by the LU method. The arguments of the subroutine are described in the following table.

Argument	Type	Intent	Description
A	two-dimensional array of reals	inout	Square matrix to be factored by
			the LU method.

Table 3.1: Description of LU_factorization arguments

Solve_LU

 $x = Solve_LU(A, b)$

The function ${f Solve_LU}$ finds the solution to the linear system of equations:

$$\mathbf{A} \cdot \vec{x} = \vec{b}$$

A and \vec{b} are the given values. The result of the function is:

Function result	Type	Description
X	vector of reals	Solution (\vec{x}) of the linear system of equa-
		tions.

Table 3.2: Output of Solve_LU

The arguments of the function are described in the following table.

Argument	Type	Intent	Description
A	two-dimensional array of reals	inout	Square matrix \mathbf{A} in the previous equa-
			tion, but it must be facotred <u>before</u> us-
			ing the LU method.
b	vector of reals	in	Vector \vec{b} in the previous equation.

Table 3.3: Description of $Solve_LU$ arguments

The dimensions of ${\bf A}$ and \vec{b} must match.

3.4 Non_Linear_Systems module

Newton

```
call Newton(F, x0)
```

The subroutine **Newton** returns the solution of a non-linear system of equations. The arguments of the subroutine are described in the following table.

Argument	Type	Intent	Description
F	vector function: $\mathbb{R}^N \to \mathbb{R}^N$	in	System of equations that wants to be solved.
x0	vector of reals	inout	Initial point to start the iteration. Besides, this
			vector will contain the solution of the problem
			after the call. Its dimension must be N .

Table 3.4: Description of Newton arguments

Lagrange Interpolation

4.1 Overview

This library has been designed to apply lagrangian interpolation in order to carry out different computations. There are two modules, defined as **Interpolation** and **Lagrange_interpolation**. In spite of this, the API is contained only in the **Interpolation** module. On the whole, this module contains two main functions: **interpolated_value** and **Integral**. Each of them is based on a lagrangian interpolation, which is permormed in the support module **Lagrange_interpolation**.

There are two main objectives of this API. The first one, attained by the function **interpolated_value**, computes the value of a function at a certain point taking into account values of that function at other points. The second purpose, carried out by the function **Integral**, is related to the computation of the integral of a function in a certain interval.

4.2 Example using the API

For the sake of clarity, a file called **API_Example_Lagrange_Interpolation.f90** contains an example of how to use this library. For using the API it is necessary to write the sentence **use Interpolation**.

The first subroutine, called **interpolated_Solution**, is devoted to clarify the usage of the function **interpolated_value**. Through this function, one could obtain the value of a function at a certain point by means of the values of that function at other points. For instance, the chosen function is a simple cosine, and the inputs of **interpolated_value** are four values of the function at other points. The final result is the interpolated value of the function at **xp**, which is denoted as **yp**. Since the order of the interpolation has not been defined, it acquires the predefined value of two.

Subsequently, the second subroutine, coined as **Integral_Solution**, carries out the computation of the integral of a certain function in an interval defined by the given points. Again the function is set to be a cosine, and five values of it are known at different points. The function **Integral** enables to perform the integral computation. Since the degree of the interpolation has not been defined, it acquires the predefined value of two.

```
module Interpolation_example
        use Interpolation
        implicit none
   contains
9 subroutine interpolated_Solution
        {f real} :: x(4), y(4), xp, yp
11
        x \; = \; [ \quad -2. \, , \quad -1. \, , \quad 1. \, , \quad 2 \, . \, ]
        y = \cos(x * atan(1.0))
        xp = 0.
        yp = interpolated\_value(x, y, xp)
17
        write (*,*) 'The interpolated value at xp is = ', yp
19
   end subroutine
21
   subroutine Integral_Solution
23
        real :: x(5), y(5), Integral\_computation
25
        \begin{array}{lll} x \, = \, [ & -2. \, , & -1. \, , & 0. \, , & 1. \, , & 2 \, . ] \\ y \, = \, & \mathbf{cos} \, (x \, * \, \mathbf{atan} \, (1.0) \, ) \end{array}
27
29
        Integral_computation = Integral( x , y )
31
        write (*,*) 'The integral computation through the interpolation is = ', Integral_computation
   end subroutine
   end module
37
   program Example
39
        use Interpolation_example
41
        implicit none
43
        call interpolated_Solution
        call Integral_Solution
45
47 end program
```

 $../sources/Interpolation_example.f90$

4.3 Interpolation module

interpolated_value

```
yp = interpolated_value(x, y, xp, degree)
```

The function **interpolated_value** is devoted to conduct a piecewise polynomial interpolation of the value of a certain function y(x) in $x = x_p$. The data provided to carry out the interpolation is the value of that function y(x) in a group of nodes.

The result of the function is the following:

Function result	Type	Description
ур	real	Interpolated value of the function $y(x)$
		in $x = x_p$.

Table 4.1: Output of interpolated_value

The arguments of the function are described in the following table.

Argument	Type	Intent	Description
х	vector of reals	in	Points in which the value of the function
			y(x) is provided.
У	vector of reals	in	Values of the function $y(x)$ in the group
			of points denoted by x .
xp	real	in	Point in which the value of the function
			y will be interpolated.
degree	integer	in (optional)	Degree of the polynomial used in the
			interpolation. If it is not presented, it
			takes the value 2.

Table 4.2: Description of interpolated_value arguments

Integral

```
I = Integral(x, y, degree)
```

The function **Integral** is devoted to conduct a piecewise polynomial integration of a certain function y(x). The data provided to carry out the interpolation is the value of that function y(x) in a group of nodes. The limits of the integral correspond to the minimum and maximum values of the nodes.

The result of the function is the following:

Function result	Type	Description	
I	real	Value of the piecewise polynomial inte-	
		gration of $y(x)$.	

Table 4.3: Output of Integral

The arguments of the function are described in the following table.

Argument	Type	Intent	Description
X	vector of reals	in	Points in which the value of the function
			y(x) is provided.
У	vector of reals	in	Values of the function $y(x)$ in the group
			of points denoted by x .
degree	integer	in (optional)	Degree of the polynomial used in the
			interpolation. If it is not presented, it
			takes the value 2.

Table 4.4: Description of Integral arguments

Finite Differences

5.1 Overview

This is a library is designed to prepare a PDE problem for a future resolution. The finite differences library obtains the discretization, interpolation and derivative of a function and boundary conditions needed to solve a PDE problem. This will be achieved with the subroutines **Grid_initialization**, **Derivative**, **Dirichlet** and **Neumann**.

The library has two modules: **Finite_differences** and **Non_uniform_grid**. But the API is contained only in the **Finite_differences** module.

5.2 Example using the API

For the sake of clarity, a file called **API_Example_Finite_Differences.f90** contains an example of how to use this library. For using the API it is necessary to write the sentence **use Finite_differences**.

In the following subroutine, denoted as **Derivative_example**, two derivatives of a certain function $y(r,\theta)$ are obtained by means of the function **Derivative**. Firstly, through the function **Grid_Initialization**, a discretization of the domain is carried out, both in the variables r and θ . Afterwards, and taking into account the values of the function $y(r,\theta)$ at the nodes of the discretized domain, some derivatives are computed by the function **Derivative**:

- The second derivative with respect to r.
- The first derivative with respect to θ .
- The derivative with respect to θ and with respect to r.

```
module Derivative_example
  use Finite_Differences
  implicit none
  real :: PI = 4 * atan(1.)
  contains
  subroutine function_derivative
       \textbf{integer} \;,\;\; \textbf{parameter} \;:: \;\; Nx \;=\; 15 \;, \;\; Ny \;=\; 50
13
       \textcolor{red}{\textbf{real}} \ :: \ \texttt{x} \, (\, 0 \, : \, \texttt{Nx}) \; , \ \texttt{y} \, (\, 0 \, : \, \texttt{Ny})
       integer :: i, j
       real :: f(0:Nx, 0:Ny), fxx(0:Nx, 0:Ny), fy(0:Nx, 0:Ny), fyy(0:Nx, 0:Ny)
       ! Grid_Initialization
        x\,(0) \; = - \; 1; \; x\,(Nx) \; = \; 1; \; y\,(0) \; = - \; 1; \; y\,(Ny) \; = \; 1;
        call Check_grid( "x", x, 10, Nx+1 )
call Check_grid( "y", y, 10, Ny+1 )
       ! Derivative
25
       forall(i=0:Nx, j=0:Ny) f(i,j) = sin(PI*x(i)) * sin(4*PI*y(j))
27
       29
       write(*,*) 'Error fxx = ', maxval( PI**2 * f(:,:) + fxx(:,:) )
33
       write(*,*) 'Error fyy = ', maxval(16*PI**2*f(:,:) + fyy(:,:))
35
  end subroutine
  end module
  program Example
41
     use Derivative_example
43
     call function_derivative
45
  end program
```

../sources/Derivative_example.f90

5.3 Finite_differences module

Grid Initalization

```
call Grid_Initialization( grid_spacing , direction , q , grid_d )
```

This subroutine will calculate a set of points within the space domain defined; [-1,1] by default. The arguments of the routine are described in the following table.

Argument	Type	Intent	Description
grid_spacing	character	in	Here the grid structure must be chosen.
			It can be 'uniform' (equally-spaced) or
			'nonuniform'.
direction	character	in	Selected by user. If the name of the
			direction has already been used along
			the program, it will be overwritten.
q	integer	in	This is the order chosen for the interpo-
			lating polynomials. This label is for the
			software to be sure that the number of
			nodes (N) is greater than the polynomi-
			als order (at least $N = \text{order} + 1$).
grid_d	vector of reals	inout	Contains the mesh nodes.

Table 5.1: Description of Grid_Initalization arguments

If **grid_spacing** is 'nonuniform', the nodes are calculated by obtaining the extrema of the polynomial error associated to the polynomial of degree N-1 that the unknown nodes form.

Derivative for 1D grids

```
call Derivative ( direction , derivative_order , W , Wxi )
```

The subroutine **Derivative** approximates the derivative of a function by using finite differences. It performs the operation:

$$\frac{\partial^k W}{\partial x^k} = W_{xk}$$

The arguments of the subroutine are described in the following table.

Argument	Type	Intent	Description
direction	character	in	It selects the direction which composes
			the grid from the ones that have already
			been defined.
derivative_order	integer	in	Order of derivation $(k = 1 \text{ first derivate},$
			k=2 second derivate and so on).
W	vector of reals	in	Values that the function has at the given
			points.
Wxi	vector of reals	out	Result. Value of the k-derivate of the
			given function.

 $\textbf{Table 5.2: } \textit{Description of } \textbf{\textit{Derivative} arguments for 1D grids}$

Derivative for 2D and 3D grids

```
call Derivative ( direction , coordinate , derivative_order , W , Wxi )
```

The subroutine **Derivative** approximates the derivative of a function by using finite differences. It performs the operation:

$$\frac{\partial^k W}{\partial x^k} = W_{xk}$$

The arguments of the subroutine are described in the following table.

Argument	Type	Intent	Description
direction	vector of characters	in	It selects the directions which compose
			the grid from the ones that have already
			been defined. The first component of
			the vector will be the first coordinete
			and so on.
coordinate	integer	in	Coordinate at which the derivate is cal-
			culated. It can be 1 or 2 for 2D grids
			and 1, 2 or 3 for 3D grids.
derivative_order	integer	in	Order of derivation ($k = 1$ first derivate,
			k=2 second derivate and so on).
W	N-dimensional array of reals	in	Values that the function has at the given
			points.
Wxi	N-dimensional array of reals	out	Result. Value of the k-derivate of the
			given function.

Table 5.3: Description of Derivative arguments for 2D and 3D grids

The subroutine is prepared to be called equally in 2D and 3D problems (N = 2 or 3).

5.3.1 Boundary conditions

This library is capable of discretizating two type of boundary conditions: Dirichlet and Neumann. Previously to calling this libraries, **Grid Initializartion** must be used. The way they are used will be explained below.

Dirichlet

```
call Dirichlet (coordinate, N, W, f)
```

A boundary condition type Dirichlet is defined as:

$$W(\vec{x}_0, t) = f(\vec{x}_0, t)$$
 $\vec{x}_0 \in \partial \Omega$

The subroutine **Dirichlet** imposes the Dirichlet condition. The arguments of the subroutine are described in the following table.

Argument	Type	Intent	Description
coordinate	integer	in	It can be 1 or 2. If 1, the boundary
			condition will be imposed along the co-
			ordinate 2 with the coordinate 1 fixed
			and vece versa.
N	integer	in	Boundary point at which the codition
			is imposed.
W	two-dimensional array of reals	inout	It will contain the solution. After enter-
			ing the subroutine it will have imposed
			the boundary condition determined by
			f.
f	vector of reals	in	Value of the boundary condition.

Table 5.4: Description of Dirichlet arguments

This subroutine only can work with 2D grids.

Neumann for 1D grids

```
call Neumann( direction , N , W , f )
```

A boundary condition type Neumann is defined as:

$$\frac{dW}{dn}(\vec{x}_0,t) = f(\vec{x}_0,t) \qquad \quad \vec{x}_0 \; \epsilon \; \partial \Omega$$

The subroutine **Neumann** imposes the Neumann condition. The arguments of the subroutine are described in the following table.

Argument	Type	Intent	Description
direction	character	in	It selects the direction which com-
			poses the grid from the ones that
			have already been defined.
N	integer	in	Boundary point at which the con-
			dition is imposed.
W	vector of reals	inout	It will contain the solution. Af-
			ter entering the subroutine it will
			have imposed the boundary con-
			dition determined by \mathbf{f} .
f	vector of reals	in	Value of the boundary condition.

Table 5.5: Description of Neumann arguments for 1D grids

Neumann for 2D grids

```
call Neumann ( direction , coordinate , N , W , f )
```

A boundary condition type Neumann is defined as:

$$\frac{dW}{dn}(\vec{x}_0, t) = f(\vec{x}_0, t) \qquad \vec{x}_0 \in \partial\Omega$$

The subroutine **Neumann** imposes the Neumann condition. The arguments of the subroutine are described in the following table.

Argument	Type	Intent	Description
direction	vector of characters	in	It selects the directions which compose
			the grid from the ones that have already
			been defined. The first component of
			the vector will be the first coordinate
			and so on.
coordinate	integer	in	It can be 1 or 2. If 1, the boundary
			condition will be imposed along the co-
			ordinate 2 with the coordinate 1 fixed
			and vice versa.
N	integer	in	Boundary point at which the condition
			is imposed.
W	vector of reals	inout	It will contain the solution. After enter-
			ing the subroutine it will have imposed
			the boundary condition determined by
			f.
f	vector of reals	in	Value of the boundary condition.

Table 5.6: Description of Neumann arguments for 2D grids

Boundary Value Problem

6.1 Overview

This library is designed to solve both linear and non linear boundary value problems. A boundary value problem appears when a equation in partial derivatives is to be solved inside a region (space domain) according to some constraints which applies to the frontier of this domain (boundary conditions). The library has a module: **Boundary_value_problems**, where the API is contained. The API consists of 2 subroutines: one to solve linear problems and the other to solve non linear problems. Finally, depending on the inputs of the subroutines, a 1D problem or a 2D problem is solved.

6.2 Example using the API

For the sake of clarity, a file called **API_Example_Boundary_Value_Problem.f90** contains an example of how to use this library. For using the API it is necessary to write the sentence **use Boundary_value_problems**.

This example consists of two boundary value problems: a 1D linear problem and a 2D non linear problem. The 1D linear problem is the Legendre differential equation:

$$(1 - x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0$$

Where n = 3 and the boundary conditions are: y(-1) = -1 and y(1) = 1. The 2D non linear problem is:

$$\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)u = 0$$

Where the boundary conditions are:

$$u(0,y) = 0$$
 ; $u(1,y) = y$; $\frac{\partial u}{\partial y}(x,0) = 0$; $u(x,1) = x$

```
module BVP_examples
     use Boundary_value_problems
     use dislin
     implicit none
  contains
  subroutine Linear_1D
10
       integer, parameter :: N = 30
       \mathbf{real} :: x(0:N), U(0:N)
       integer :: i
       real :: pi = 4 * atan(1.0)
16
18
       x = [(x0 + (xf-x0)*i/N, i=0, N)]
       call Linear_Boundary_Value_Problem( x_nodes = x, Order = 4, Differential_operator = L, &
                                                  Boundary_conditions = BCs, Solution = U)
22
       call scrmod('reverse')
       call qplot(x, U, N+1)
24
       contains
26
       ! Differential operator
28
       real function L(x, y, yx, yxx)
30
            real, intent(in) :: x, y, yx, yxx
32
            real, parameter :: n = 3.
34
           L \, = \, (\, 1 \, . \, - \, x \! * \! * \! 2 ) \, * \, y x x \, - \, 2 \, * \, x \, * \, y x \, + \, n \, * \, (n \, + \, 1 \, .) \, * \, y
36
       end function
38
       !Boundary conditions
40
       real function BCs(x, y, yx)
42
            real, intent(in) :: x, y, yx
            if (x=x0) then
                BCs = y + 1
46
            elseif (x=xf) then
                BCs = y - 1
48
            else
                write(*,*) " Error BCs x=", x
write(*,*) " a, b=", x0, xf
                 stop
            endif
54
       end function
56
  end subroutine
58
60
62
```

```
66
   subroutine Non_Linear_2D
68
        {\bf integer}\;,\;\;{\bf parameter}\;\;::\;\;Nx\,=\,20\;,\;\;Ny\,=\,20
        real :: x(0:Nx), y(0:Ny), U(0:Nx, 0:Ny)
        integer :: i , j
        real :: a=0, b=1, pi = 4 * atan(1.0)
72
        x = [ (a + (b-a)*i/Nx, i=0, Nx) ]
74
        y = [ (a + (b-a)*j/Ny, j=0, Ny) ]
       U = 1
76
        call Non_Linear_Boundary_Value_Problem( x_nodes = x, y_nodes = y, Order = 5, &
78
                                                   {\tt Differential\_operator} \, = \, L, \  \, {\tt Boundary\_conditions} \, = \, {\tt BCs}, \, \, \& \, \,
                                                   Solution = U)
80
        call scrmod('reverse')
82
        call qplclr(U, Nx+1, Ny+1)
        contains
84
        ! Differential operator
86
        \operatorname{real}, \operatorname{intent}(\operatorname{in}) :: x, y, u, ux, uy, uxx, uyy, uxy
90
            L = (uxx + uyy) * u
92
        end function
94
        !Boundary conditions
        real function BCs(x, y, u, ux, uy)
96
            real, intent(in) :: x, y, u, ux, uy
98
             if (x=a) then
100
                 BCs = u
             elseif (x==b) then
                 BCs = u - y
             elseif (y==a) then
                 BCs = uy
            elseif (y=b) then
106
                 \mathrm{BCs} \, = \, \mathrm{u} \, - \, \mathrm{x}
108
                 write(*,*) " Error BCs x=", x
                 write(*,*) " a, b=", a, b
110
                 stop
             endif
114
        end function
116 end subroutine
118 end module
```

 $../sources/BVP_example.f90$

```
program Example

use BVP_examples

call Linear_1D
call Non_Linear_2D

end program
```

 $../sources/BVP_example.f90$

6.3 Boundary_value_problems module

Linear_Boundary_Value_Problem for 1D problems

```
call Linear_Boundary_Value_Problem( x_nodes, Order, Differential_operator, & Boundary_conditions, Solution )
```

The subroutine **Linear_Boundary_Value_Problem** calculates the solution to a linear boundary value problem such as:

$$\mathcal{L}\left(x,\ U,\ \frac{\partial U}{\partial x},\ \frac{\partial^2 U}{\partial x^2}\right) = 0$$

$$f_a\left(U,\ \frac{\partial U}{\partial x}\right) = 0 \qquad x = a$$

$$f_b\left(U,\ \frac{\partial U}{\partial x}\right) = 0 \qquad x = b$$

The arguments of the subroutine are described in the following table.

Argument	Type	Intent	Description
x_nodes	vector of reals	inout	Contains the mesh nodes.
Order	integer	in	It indicates the order of the finitte
			differences.
Differential_operator	real function:	in	This function is the differential
	$\mathscr{L}\left(x,U,U_{x},U_{xx}\right)$		operator of the boundary value
			problem.
Boundary_conditions	real function:	in	In this function, the boudary con-
	$f(x, U, U_x)$		ditions are fixed. The user must
			include a conditional sentence
			which sets $f(a, U, U_x) = f_a$ and
			$f(b, U, U_x) = f_b.$
Solution	vector of reals	out	Contains the solution, $U = U(x)$,
			of the boundary value problem.

Table 6.1: Description of Linear_Boundary_Value_Problem arguments for 1D problems

Linear_Boundary_Value_Problem for 2D problems

call Linear_Boundary_Value_Problem(x_nodes, y_nodes, Order, Differential_operator, & Boundary_conditions, Solution)

The subroutine **Linear_Boundary_Value_Problem** calculates the solution to a linear boundary value problem in a rectangular domain $[a, b] \times [c, d]$:

$$\mathcal{L}\left(x,\ y,\ U,\ \frac{\partial U}{\partial x},\ \frac{\partial U}{\partial y},\ \frac{\partial^2 U}{\partial x^2},\ \frac{\partial^2 U}{\partial y^2},\ \frac{\partial^2 U}{\partial x \partial y}\right) = 0$$

$$f_{x=a}\left(U,\ \frac{\partial U}{\partial x}\right) = 0 \quad ; \quad f_{x=b}\left(U,\ \frac{\partial U}{\partial x}\right) = 0$$

$$f_{y=c}\left(U,\ \frac{\partial U}{\partial y}\right) = 0 \quad ; \quad f_{y=d}\left(U,\ \frac{\partial U}{\partial y}\right) = 0$$

The arguments of the subroutine are described in the following table.

Argument	Type	Intent	Description
x_nodes	vector of reals	inout	Contains the mesh nodes in
			the first direction of the mesh.
y_nodes	vector of reals	inout	Contains the mesh nodes in
			the second direction of the
			mesh.
Order	integer	in	It indicates the order of the
			finite differences.
Differential_operator	real function:	in	This function is the differen-
	$\mathcal{L}(x, y, U, U_x, U_y, U_{xx}, U_{yy}, U_{xy})$		tial operator of the boundary
			value problem.
Boundary_conditions	real function: $f(x, y, U, U_x, U_y)$	in	In this function, the boudary
			conditions are fixed. The user
			must use a conditional sen-
			tence to do it.
Solution	two-dimensional array of reals	out	Contains the solution, $U =$
			U(x,y), of the boundary value
			problem.

Table 6.2: Description of Linear_Boundary_Value_Problem arguments for 2D problems

Non_Linear_Boundary_Value_Problem for 1D problems

```
call Non_Linear_Boundary_Value_Problem( x_nodes, Order, Differential_operator, & Boundary_conditions, Solver, Solution)
```

The subroutine **Non_Linear_Boundary_Value_Problem** calculates the solution to a non linear boundary value problem in a rectangular domain $[a, b] \times [c, d]$:

$$\mathcal{L}\left(x,\ U,\ \frac{\partial U}{\partial x},\ \frac{\partial^2 U}{\partial x^2}\right) = 0$$

$$f_a\left(U,\ \frac{\partial U}{\partial x}\right) = 0 \qquad x = a$$

$$f_b\left(U,\ \frac{\partial U}{\partial x}\right) = 0 \qquad x = b$$

The arguments of the subroutine are described in the following table.

Argument	Type	Intent	Description
x_nodes	vector of reals	inout	Contains the mesh nodes.
Order	integer	in	It indicates the order of the finitte
			differences.
Differential_operator	real function:	in	This function is the differential
	$\mathscr{L}(x, U, U_x, U_{xx})$		operator of the boundary value
			problem.
Boundary_conditions	real function:	in	In this function, the boudary con-
	$f\left(x,U,U_{x}\right)$		ditions are fixed. The user must
			include a conditional sentence
			which sets $f(a, U, U_x) = f_a$ and
			$f(b, U, U_x) = f_b.$
Solution	vector of reals	out	Contains the solution, $U = U(x)$,
			of the boundary value problem.

 $\textbf{Table 6.3:} \ \textit{Description of Non_Linear_Boundary_Value_Problem} \ \textit{arguments for 1D problems}$

Non_Linear_Boundary_Value_Problem for 2D problems

```
call Non_Linear_Boundary_Value_Problem( x_nodes, y_nodes, Order, Differential_operator, Boundary_conditions, Solver, Solution)
```

The subroutine **Non_Linear_Boundary_Value_Problem** calculates the solution to a non linear boundary value problem such as:

$$\mathcal{L}\left(x, \ y, \ U, \ \frac{\partial U}{\partial x}, \ \frac{\partial U}{\partial y}, \ \frac{\partial^2 U}{\partial x^2}, \ \frac{\partial^2 U}{\partial y^2}, \ \frac{\partial^2 U}{\partial x \partial y}\right) = 0$$

$$f_{x=a}\left(U, \ \frac{\partial U}{\partial x}\right) = 0 \quad ; \quad f_{x=b}\left(U, \ \frac{\partial U}{\partial x}\right) = 0$$

$$f_{y=c}\left(U, \ \frac{\partial U}{\partial y}\right) = 0 \quad ; \quad f_{y=d}\left(U, \ \frac{\partial U}{\partial y}\right) = 0$$

The arguments of the subroutine are described in the following table.

Argument	Type	Intent	Description
x_nodes	vector of reals	inout	Contains the mesh nodes in
			the first direction of the mesh.
y_nodes	vector of reals	inout	Contains the mesh nodes in
			the second direction of the
			mesh.
Order	integer	in	It indicates the order of the
			finitte differences.
Differential_operator	real function:	in	This function is the differen-
	$\mathcal{L}(x, y, U, U_x, U_y, U_{xx}, U_{yy}, U_{xy})$		tial operator of the boundary
			value problem.
Boundary_conditions	real function: $f(x, y, U, U_x, U_y)$	in	In this function, the boudary
			conditions are fixed. The user
			must use a conditional sen-
			tence to do it.
Solution	two-dimensional array of reals	out	Contains the solution, $U =$
			U(x,y), of the boundary value
			problem.

Table 6.4: Description of Non_Linear_Boundary_Value_Problem arguments for 2D problems

Chapter 7

Cauchy Problem

7.1 Overview

This library is designed to solve the Cauchy problem. The Cauchy problem is defined as:

$$\frac{\mathrm{d}\vec{U}}{\mathrm{d}t} = \vec{f} \; (\vec{U}, \; t)$$
$$\vec{U} = \vec{U}_0$$

The library has two modules: **Cauchy_problem** and **Temporal_Schemes**. However, the API is contained only in the **Cauchy_problem** module.

7.2 Example using the API

For the sake of clarity, a file called **API_Example_Cauchy_Problem.f90** contains an example of how to use this library. For using the API it is necessary to write the sentence **use Cauchy_Problem**.

This example consists of a trajectory. This problem needs to solve a second degree equation. The problem approach is:

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} U_1 \\ U_2 \end{pmatrix} = \begin{bmatrix} 0 & 1 \\ -a \cdot t & 0 \end{bmatrix} \begin{pmatrix} U_1 \\ U_2 \end{pmatrix} + \begin{pmatrix} 0 \\ b \end{pmatrix}$$

It is necessary to give an initial condition of position and velocity. In this example:

$$\begin{pmatrix} U_1(0) \\ U_2(0) \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$$

Where $U_1(t)$ is referred to the position and $U_2(t)$ is referred to the velocity.

```
module Cauchy_example
    use Cauchy_Problem
    use dislin
    implicit none
   contains
   subroutine Trajectory
10
         real :: t0 = 0, tf = 10
12
         integer :: i
         \begin{array}{lll} \textbf{integer} \;,\;\; \textbf{parameter} \;:: \; N = 100 \\ \textbf{real} \;:: \; Time \; (0\!:\!N) \;, \; U(0\!:\!N, \; 2) \end{array}
                                                       !Time steps
14
16
         Time = [(t0 + (tf -t0) * i / (1d0 * N), i=0, N)]
18
        U(0,:) = [5, 0]
20
         {\color{red}\textbf{call}} \ \ \textbf{Cauchy\_ProblemS( Time\_Domain = Time } \ \ , \quad \textbf{Differential\_operator = F\_Trajectory} \ , \ \ \& \\
                                         Scheme = Crank_Nicolson , Solution = U )
22
         call scrmod('reverse')
24
         call qplot(Time, U(:,1), N+1)
26
   end subroutine
28
   function F_Trajectory(U, t) result(F)
30
         \textcolor{red}{\textbf{real}} \; :: \; \text{U(:)} \;, \; \; \text{t}
         real :: F(size(U))
32
         real, parameter :: a = 3.0
34
         \textbf{real}\;,\;\;\textbf{parameter}\;::\;\;b\,=\,10.0
36
        F(1) = U(2)
        F(2) = -a * t * U(1) + b
38
   end function
40
   end module
42
46
   program Example
48
         use Cauchy_example
50
         call Trajectory
   end program
```

 $../sources/Cauchy_example.f90$

7.3 Cauchy_problem module

Cauchy_ProblemS

```
call Cauchy_ProblemS ( Time_Domain , Differential_operator , Scheme , Solution )
```

The subroutine **Cauchy_ProblemS** calculates the solution to a Cauchy problem. Previously to using it, the initial conditions must be imposed. The arguments of the subroutine are described in the following table.

Argument	Type	Intent	Description
Time_Domain	vector of reals	in	Time domain where the solution wants
			to be calculated.
Differential_operator	vector function:	in	It is the funcition $\vec{f}(\vec{U}, t)$ described in
	$\mathbb{R}^N \times \mathbb{R} \to \mathbb{R}^N$		the overview.
Scheme	temporal scheme	in (optional)	Defines the scheme used to solve the
			problem. If it is not specified it uses a
			Runge Kutta of four steps by default.
Solution	vector of reals	out	Contains the solution $\vec{U}(t)$. The first
			index represents the time, the second
			index contains the components of the
			solution.

Table 7.1: Description of Cauchy_ProblemS arguments

7.3.1 Temporal schemes

The schemes that are available in the library are listed below. h denotes the time step.

Scheme	Name (in the code)	Formula
Euler	Euler	$U_{n+1} = U_n + hf(t_n, U_n)$
Runge Kutta 2	Runge_Kutta2	$U_{n+1} = U_n + h(\frac{k_1 + k_2}{2})$
		$k_1 = f(t_n, U_n)$
		$k_2 = f(t_n + h, U_n + hk_1)$
Runge Kutta 4	Runge_Kutta4	$U_{n+1} = U_n + \frac{1}{6}h(k_1 + 2k_2 + 2k_3 + k_4)$
		$k_1 = f(t_n, U_n)$
		$k_2 = f(t_n + \frac{1}{2}h, U_n + \frac{1}{2}hk_1)$
		$k_3 = f(t_n + \frac{1}{2}h, U_n + \frac{1}{2}hk_2)$
		$k_4 = f(t_n + h, U_n + hk_3)$
Leap Frog	Leap_Frog	$U_{n+2} = U_n + 2f(x_{n+1}, U_{n+1})$
Adams Bashforth 2	Adams_Bashforth	$U_{n+2} = U_{n+1} + h\left(\frac{3}{2}f(t_{n+1}, U_{n+1}) - \frac{1}{2}f(t_n, U_n)\right)$
Adams Bashforth 3	Adams_Bashforth3	$U_{n+3} = U_{n+2} + h\left(\frac{23}{12}f(t_{n+2}, U_{n+2})\right) -$
		$-\frac{4}{3}f(t_{n+1},U_{n+1}) + \frac{5}{12}f(t_n,U_n))$
Predictor Corrector	Predictor_Corrector1	$\bar{U}_{n+1} = U_n + hf(t_n, U_n)$
		$U_{n+1} = U_n + \frac{1}{2}h(f(t_{n+1}, \bar{U}_{n+1}) + f(t_n, U_n))$
Euler Inverso	Inverse_Euler	$U_{n+1} = U_n + hf(t_{n+1}, U_{n+1})$
Crank Nicolson	Crank_Nicolson	$U_{n+1} = U_n + \frac{1}{2}h(f(t_{n+1}, U_{n+1}) + f(t_n, U_n))$

Table 7.2: Description of the available schemes

Chapter 8

Initial Value Boundary Problem

8.1 Overview

This library is designed to solve a boundary initial value problem. The initial value boundary problem is composed by equations in partial derivatives which change with time. Then, the complexity of this problem mixes the resolution scheme of a Cauchy problem (in order to solve the temporal evolution) with the procedure for solving a boundary value problem whose unknowns change in every time iteration. The library has a module: **Initial_Value_Boundary_Problem**, where the API is contained.

8.2 Example using the API

For the sake of clarity, a file called **Test_advection_diffusion_equation.f90** contains an example of how to use this library. For using the API it is necessary to write the sentence **use Initial_Value_Boundary_Problem**.

This example consists of two boundary initial value problems: a 1D problem and a 2D problem. The advection diffusion equation is being solved in both cases. The advection diffusion equation for a 1D grid is:

$$\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} + \nu \frac{\partial^2 U}{\partial x^2}$$

The value given for ν is 0.01. The boundary conditions choosen are: u(-1) = 1 and $\frac{\partial u}{\partial x}(1) = 0$ and the initial condition: u(x, t = 0) = 0. For a 2D grid:

$$\frac{\partial U}{\partial t} = -u \frac{\partial u}{\partial x} + \nu \left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} \right)$$

Where $\nu = 0.02$, the initial condition is $u(x, y, t = 0) = \exp(-25x^2 - 25y^2)$ and the boundary conditions are:

$$u(-1,y) = 0$$
 ; $u(1,y) = 0$; $u(x,-1) = 0$; $u(x,1) = 0$

```
module IVBP_example
  use Initial_Value_Boundary_Problem
  implicit none
  contains
  subroutine Test_IVBP1D
10
       \label{eq:normalization} \textbf{integer} \;,\;\; \textbf{parameter} \;:: \;\; Nx \;=\; 60 \,, \;\; Nt \;=\; 1000 \,
       real :: x0 = -1, xf = 1
       real :: t0 = 0, tf = 3
       integer :: i, Order = 4
16
18
       U = 0.
      20
22
       call Initial_Value_Boundary_ProblemS( Time_Domain = Time, x_nodes = x,
                                               Order = Order,
24
                                                Differential_operator = Burgers_equation, &
                                                Boundary_conditions = Burgers_BC, Solution= U)
26
       call scrmod('reverse')
28
        \textbf{call} \ \text{qplot} \left( \textbf{x} \,, \ \textbf{U} (100 \,,:) \,, \ \textbf{Nx+1} \right) 
       call qplot(x, U(Nt,:), Nx+1)
30
       contains
32
       ! Differential operator
34
       real function Burgers_equation(x, t, u, ux, uxx)
36
           real, intent(in) :: x, t, u, ux, uxx
38
           real :: nu = 0.01
40
           Burgers_equation = -u * ux + nu * uxx
42
       end function
       !Boundary conditions
46
       real function Burgers_BC(x, t, u, ux)
48
           real, intent(in) :: x, t, u, ux
           if (x=x0) then
                Burgers_BC = u - 1
52
           else if (x=xf) then
                Burgers_BC = ux
                write(*,*) "Error in BC_Burgers"
56
           endif
58
       end function
60
  end subroutine
62
```

```
66
   subroutine Test_IVBP2D
68
       \textbf{integer} \;,\;\; \textbf{parameter} \;:: \; Nx \,=\, 10 \,, \; Ny \,=\, 10 \,, \; Nt \,=\, 200 \,
       real :: x0 = -1, xf = 1
72
       real :: y0 = -1, yf = 1
       real :: t0 = 0, tf = 2
74
       integer :: i, j, Order = 4
76
       80
       do i = 0,Nx
           do j=0, Ny
82
               U(0, i, j) = \exp(-25*x(i)**2 -25*y(j)**2)
           end do
84
       end do
86
       call Initial_Value_Boundary_ProblemS( Time_Domain = Time, x_nodes = x, y_nodes = y, &
                                                 Order = Order,
                                                 Differential_operator = Advection_equation,
90
                                                 Boundary_conditions = Advection_BC, Solution = U)
        \begin{array}{ll} \textbf{call} & \texttt{scrmod('reverse')} \\ \textbf{call} & \texttt{qplclr(U(0,:,:), Nx+1, Ny+1)} \end{array} 
        \textbf{call} \ \text{qplclr} \left( \ \text{U}(\text{Nt},:,:) \ , \ \text{Nx+1}, \ \text{Ny+1} \right) 
94
       contains
96
       function Advection_equation(x, y, t, U, Ux, Uy, Uxx, Uyy, Uxy) result(F)
98
           100
            real :: F
            real :: nu = 0.02
           F = -U * Ux + nu * (Uxx + Uyy)
106
       end function
108
       function Advection_BC(x, y, t, U, Ux, Uy) result (BC)
110
           112
            real :: BC
            if (x=x0) then
               BC = U
116
            else if (x=xf) then
               BC = U
118
            else if (y==y0) then
               BC = U
            else if (y==yf) then
               BC = U
122
            else
```

```
end if
end function

end subroutine

end module

program advection_diffusion_equation

use IVBP_example

call Test_IVBP1D
call Test_IVBP2D

end program
```

../sources/IVBP_example.f90

8.3 Initial_Value_Boundary_Problem module

Initial_Value_Boundary_ProblemS for 1D problems

The subroutine **Initial_Value_Boundary_ProblemS** calculates the solution to a boudary initial value problem such as:

$$\mathcal{L}\left(x, t, U, \frac{\partial U}{\partial x}, \frac{\partial^2 U}{\partial x^2}\right) = \frac{\partial U}{\partial t}$$

$$f_a\left(U, t, \frac{\partial U}{\partial x}\right) = 0 \qquad x = a$$

$$f_b\left(U, t, \frac{\partial U}{\partial x}\right) = 0 \qquad x = b$$

Besides, an initial condition must be established: $U(x, t = t_0) = U_0(x)$. The arguments of the subroutine are described in the following table.

Argument	Type	Intent	Description
Time_Domain	vector of reals	in	Time domain where the solution
			wants to be calculated.
x_nodes	vector of reals	inout	Contains the mesh nodes.
Order	integer	in	It indicates the order of the finitte
			differences.
Differential_operator	real function:	in	This function is the differential oper-
	$\mathscr{L}\left(x,t,U,U_{x},U_{xx}\right)$		ator of the boundary value problem.
Boundary_conditions	real function:	in	In this function, the boundary con-
	$f\left(x,t,U,U_{x}\right)$		ditions are fixed. The user must in-
			clude a conditional sentence which
			sets $f(a, t, U, U_x) = f_a$ and
			$f(b, t, U, U_x) = f_b.$
Scheme	temporal scheme	in (optional)	Defines the scheme used to solve the
			problem. If it is not specified it uses a
			Runge Kutta of four steps by default.
Solution	two-dimensional ar-	out	Contains the solution, $U = U(x,t)$,
	ray of reals		of the boundary value problem.

Table 8.1: Description of Initial_Value_Boundary_ProblemS arguments for 1D problems

Initial_Value_Boundary_ProblemS for 2D problems

```
call Initial_Value_Boundary_ProblemS( Time_Domain, x_nodes, y_nodes, Order, & Differential_operator, Boundary_conditions, & Solution )
```

The subroutine **Initial_Value_Boundary_ProblemS** calculates the solution to a boundary initial value problem in a rectangular domain $[a, b] \times [c, d]$:

$$\mathcal{L}\left(x,\ y,\ t,\ U,\ \frac{\partial U}{\partial x},\ \frac{\partial U}{\partial y},\ \frac{\partial^2 U}{\partial x^2},\ \frac{\partial^2 U}{\partial y^2},\ \frac{\partial^2 U}{\partial x \partial y}\right) = \frac{\partial U}{\partial t}$$

$$f_{x=a}\left(U,\ t,\ \frac{\partial U}{\partial x}\right) = 0 \quad ; \quad f_{x=b}\left(U,\ t,\ \frac{\partial U}{\partial x}\right) = 0$$

$$f_{y=c}\left(U,\ t,\ \frac{\partial U}{\partial y}\right) = 0 \quad ; \quad f_{y=d}\left(U,\ t,\ \frac{\partial U}{\partial y}\right) = 0$$

Besides, an initial condition must be established: $U(x, y, t = t_0) = U_0(x, y)$. The arguments of the subroutine are described in the following table.

Argument	Type	Intent	Description
Time_Domain	vector of reals	in	Time domain where the solution wants to be calculated.
x_nodes	vector of reals	inout	Contains the mesh nodes in the first direction of the mesh.
y_nodes	vector of reals	inout	Contains the mesh nodes in the second direction of the mesh.
Order	integer	in	It indicates the order of the finitte differences.
Differential_operator	real function: $\mathscr{L}(x,y,t,U,U_x,U_y,U_{xx},U_{yy},U_{xy})$	in	This function is the differential operator of the boundary value problem.
Boundary_conditions	real function: $f\left(x,y,t,U,U_{x},U_{y}\right)$	in	In this function, the boudary conditions are fixed. The user must use a conditional sentence to do it.
Scheme	temporal scheme	in (optional)	Defines the scheme used to solve the problem. If it is not specified it uses a Runge Kutta of four steps by default.
Solution	three-dimensional array of reals	out	Contains the solution, $U = U(x, y, t)$, of the boundary value problem.

Table 8.2: Description of Initial_Value_Boundary_ProblemS arguments for 2D problems

8.3.1 Temporal schemes

The schemes that are available in the library for both, 1D and 2D problems, are listed below. h denotes the time step.

Scheme	Name (in the code)	Formula
Euler	Euler	$U_{n+1} = U_n + hf(t_n, U_n)$
Runge Kutta 2	Runge_Kutta2	$U_{n+1} = U_n + h(\frac{k_1 + k_2}{2})$
		$k_1 = f(t_n, U_n)$
		$k_2 = f(t_n + h, U_n + hk_1)$
Runge Kutta 4	Runge_Kutta4	$U_{n+1} = U_n + \frac{1}{6}h(k_1 + 2k_2 + 2k_3 + k_4)$
		$k_1 = f(t_n, U_n)$
		$k_2 = f(t_n + \frac{1}{2}h, U_n + \frac{1}{2}hk_1)$
		$k_3 = f(t_n + \frac{1}{2}h, U_n + \frac{1}{2}hk_2)$
		$k_4 = f(t_n + h, U_n + hk_3)$
Leap Frog	Leap_Frog	$U_{n+2} = U_n + 2f(x_{n+1}, U_{n+1})$
Adams Bashforth 2	Adams_Bashforth	$U_{n+2} = U_{n+1} + h\left(\frac{3}{2}f(t_{n+1}, U_{n+1}) - \frac{1}{2}f(t_n, U_n)\right)$
Adams Bashforth 3	Adams_Bashforth3	$U_{n+3} = U_{n+2} + h\left(\frac{23}{12}f(t_{n+2}, U_{n+2})\right) -$
		$-\frac{4}{3}f(t_{n+1},U_{n+1}) + \frac{5}{12}f(t_n,U_n)$
Predictor Corrector	Predictor_Corrector1	$\bar{U}_{n+1} = U_n + hf(t_n, U_n)$
		$U_{n+1} = U_n + \frac{1}{2}h(f(t_{n+1}, \bar{U}_{n+1}) + f(t_n, U_n))$
Euler Inverso	Inverse_Euler	$U_{n+1} = U_n + hf(t_{n+1}, U_{n+1})$
Crank Nicolson	Crank_Nicolson	$U_{n+1} = U_n + \frac{1}{2}h(f(t_{n+1}, U_{n+1}) + f(t_n, U_n))$

 Table 8.3: Description of the available schemes