Tutorial 1

name

student number

1. Consider the electromagnetic wave equation in one dimension (in vacuum):

$$\frac{\partial^2}{\partial x^2} \mathcal{E}(x,t) = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \mathcal{E}(x,t).$$

c is the speed of light in vacuum.

a. Show that this equation is satisfied by

$$\mathcal{E}(x,t) = C\sin(kx - \omega t),$$

if

$$k^2 = \frac{\omega^2}{c^2}$$
.

This is called a dispersion relation. Here, *C* is an arbitrary constant.

b. To determine the number of "modes" of the electromegentic field, consider the above wave without time dependence,

$$\mathcal{E}(x) = C\sin(kx).$$

If this wave is trapped in a one dimensional cavity, from x = 0 to x = L, then the electric field must equal zero on the boundary (i.e., at x = 0 and x = L). What values of k are consistent with these boundary conditions? [Hint: Sketch the electric field as a function of x, within the cavity.]

c. In a two dimensional cavity, there are two wavenumber components, k_x and k_y , satisfying

$$k_x^2 + k_y^2 = \frac{\omega^2}{c^2}.$$

Consider a two dimensional grid of equally spaced discrete (k_x,k_y) values. Let $N(\omega)$ be the number of grid points consistent with angular frequency between ω and $\omega + \delta \omega$. Since the above dispersion relation is the equation for a circle, $N(\omega)$ is proportional to the area of an annulus (or ring). How does $N(\omega)$ vary with angular frequency? For example, what is $N(2\omega)$ in terms of $N(\omega)$?

- **2.** Which of the following beams will produce the greatest number of diffraction peaks upon impinging on the surface of a crystal of copper?
 - **a.** Electrons travelling at 100 m s⁻¹.
 - **b.** Electrons travelling at 1000 m s^{-1} .
 - **c.** Alpha particles (i.e., He^{2+}) travelling at 100 m s⁻¹.