Predicting Severity of Collisions in Seattle

Relevance

- Seattle Police Department has collected data on collisions over the years; Unpredictable factors such as weather, road conditions, and light conditions are more difficult to regulate
- Collisions drastically impact traffic flow and the safety of drivers
- Audience: SPD and the Emergency Medical Services to predict the severity of the collisions based on the conditions present and deploy the necessary protocols.

Location of Collisions

Data Acquisition and Cleaning

- Data collected from the Seattle Geo Data open source website; dataset contains records of collision from 2004 to present
 - Consists of 194,673 observations and 38 features
- Features that weren't used to develop the machine learning models were removed
- Cleaned dataset contained 17 features.
- The target variable for the study was determined to be the severity of the collisions, which consisted of two severity codes: property damage (1) or injury (2).

Dealing with Imbalanced Dataset

 After removing irrelevant features from the dataset, the distribution of the target variable was determined.

1 136485

2 58188

Name: SEVERITYCODE, dtype: int64

- The dataset was heavily biased and therefore would cause the models to provide biased predictions
- Resampling was established, specifically undersampling from the majority class which was severity code 1.

Determining Independent Features

- Determined the breakdown of different kinds of conditions for the light of day, road conditions, and weather feature
- Features such as the road condition and weather were ultimately chosen since they seemed to have more impact on the severity of the collisions compared to the light condition

Dry	76076	Clear	67977
Wet	29266	Raining	20494
Unknown	6819 Overcast		16865
Ice	690	Unknown	6842
		Snowing	503
Snow/Slush 561		Other	434
Other 71		Fog/Smog/Smoke	359
Standing Water 62		Sleet/Hail/Freezing Rain	66
Sand/Mud/Dirt	46	Blowing Sand/Dirt	32
Oil	36	Severe Crosswind	15
	dtype: int64	Partly Cloudy	4
Name: ROADCOND,		Name: WEATHER, dtype: int64	

Feature Preparation

- After determining independent features for the study, each feature was extracted from the dataset.
- One hot encoding was utilized to convert the categorical variables in each feature to binary variables
- The features were then normalized to standardize them and were used to train the chosen classification models one at a time.

Classification Models for Each Feature

- K Nearest Neighbor
 - Classification of cases based on similarity with other cases
 - The best number of nearest neighbors to consider for the model was found by determining the accuracy of the predictions
- Decision Tree
 - Determination of the depth of the decision tree model by determining the accuracy of the predictions
- Logistic Regression
 - Using a small inverse of the regularization parameter in order to avoid overfitting the model

K Nearest Neighbor Model Development

```
from sklearn.neighbors import KNeighborsClassifier
# Finding the best k for the model
Ks=15
mean acc=np.zeros((Ks-1))
std acc=np.zeros((Ks-1))
for n in range(1,Ks):
    #Train Model and Predict
    kNN model = KNeighborsClassifier(n neighbors=n).fit(X1 train,y1 train)
   yhat = kNN model.predict(X1 test)
   mean acc[n-1]=np.mean(yhat==y1 test);
    std_acc[n-1]=np.std(yhat==y1_test)/np.sqrt(yhat.shape[0])
mean acc
array([0.55686618, 0.54513623, 0.5637816 , 0.55305832, 0.56340956,
      0.55491848, 0.56651712, 0.55846373, 0.56546668, 0.56067403,
       0.5647445 , 0.56159317 , 0.56305942 , 0.55990809])
```

Figure: model development for the weather feature

Decision Tree Model Development

Figure: model development for the weather feature

Logistic Regression Model Development

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import log_loss
LR1 = LogisticRegression(C=0.1, solver='liblinear').fit(X1_train,y1_train)
yhat_test3 = LR1.predict(X1_test)
yhat_prob = LR1.predict_proba(X1_test)
print("LogLoss: : %.5f" % log_loss(y1_test, yhat_prob))
```

LogLoss: : 0.67225

Figure: model development for the weather feature

Metric Evaluation for Each Feature

	Jaccard	F1-Score	LogLoss		Jaccard	F1-Score	LogLoss
Algorithm				Algorithm			
KNN	0.563782	0.563638	NA	KNN	0.584121	0.582869	NA
Decision Tree	0.546209	0.543917	NA	Decision Tree	0.559042	0.492537	NA
LogisticRegression	0.548922	0.494079	0.672254	LogisticRegression	0.556416	0.494928	0.671102

Figure: report for the Weather feature

Figure: report for the Road Condition feature

Discussion

- K Nearest Neighbor was the most accurate model in terms of predicting the target variable when referring to the Jaccard Index and F1-Score
- The road condition feature was a slightly better predictor compared to the weather feature when comparing the Log Loss metric
 - The Log Loss metric measures how far the prediction is from the actual label
- Accuracy values for the features are not as high as expected, which might be caused by the random resampling of the data used before feature extraction.

Conclusion and Recommendations

- Analyzed impact of features on the prediction of the severity of collisions in Seattle such as property damage or injury to parties involved
- Three classification models developed for each feature and were evaluated using three evaluation metrics
- Additional model development necessary using different algorithms to improve the prediction of the target variable
 - However, models in the study suggest that road conditions are a better predictor of predicting potential collisions
- Recommendation: allocate resources to warn drivers about road conditions so they can plan accordingly.