Birla Institute of Technology & Science, Pilani

K K Birla Goa campus

First Semester 2019-2020

CS F351 - Theory of Computation Course Handout (Part-II)

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course Number : CS F351

Course Title : Theory of Computation

Instructors : SOUMYADIP BANDYOPADHYAY (IC)

and Bharat Deshpande

• Course Description:

Finite Automata and Regular Languages – Equivalences, Closure Properties; Context Free Languages & Push-down automata – Equivalences, Closure Properties, Concepts in Parsing; Turing Machines; Computability & Decidability – Universal Turing Machine, Recursive Functions, Church-Turing Hypothesis; Complexity Classes – P, NP, Reducibility and NP-Completeness.

Objective

To introduce the notions of automata, formal languages, computability, and complexity classes.

Scope

This course covers basic concepts of formal models of computation and computability. It introduces a hierarchy of machines and languages to capture classes of computable sets. It concludes with a generic notion of computability, and classes of complexity of computable functions.

Text Book

Harry Lewis, Christos Papadimitriou.

Elements of the Theory of Computation. Second Edition, Pearson Education, Asia. 1998

Reference Book

Michael Sipser

Introduction to the Theory of Computation

• Reference Book John C Martin

Introduction to Languages & The Theory Of Computation. Third Edition. Tata McGraw Hill Education Private Limited

• Course Plan

• Lecture Modules:

Number	Module	Learning Objective		
1	Introduction	To understand basic concepts and notation to be used.		
1		To understand basic concepts and notation to be used.		
	(4 lectures)			
2	Finite Automata &	To understand Finite Automata as recognizers of		
	Regular Languages	languages and Regular Expressions as specifiers of		
	(6 lectures)	languages.		
		To understand the expressive power and limitations of		
		Finite Automata and Regular Expressions.		
3.	Context Free Languages	To understand Context-Free Grammars as specifiers		
	&	and Push-Down Automata as recognizers of languages.		
	Push-down Automata	To understand the expressive power and limitations of		
	(10 lectures)	Context Free Gramars and PDAs.		
4.	Turing machines	To understand Turing machines as recognizers of		
	(7 lectures)	languages and as theoretical models of general purpose		
		computers.		
5.	Computability &	To understand models of computable specifications and		
	(8 lectures)	To understand the notion of decidability.		
6.	Complexity of Classes			
		1		
		1 -		
6.	Decidability (8 lectures) Complexity of Classes (7 lectures)	equivalences. To understand the notion of decidability. To understand the classification of computable problems based on notions of complexity of computation.		

• Lecture Schedule:

Module	Lecture	Topic	Reference
Number	Number		(Sections of the
			text book)
1	1	Introduction & Motivation	1.1-1.3
	2	Inifinite Sets, Proofs	1.4-1.5
	3	Closures	1.6
	4	Alphabets, Languages & Representation	1.7-1.8
2	5	Deterministic Finite Automata	2.1
	6	Non-Deterministic Finite Automata	2.2
	7 & 8	Closure Properties & Equivalences	2.3
	9	Regularity	2.4
	10	State Minimization	2.5
3	11	Context Free Grammars	3.1
	12 & 13	Parse Trees & Ambiguity	3.2
	14	Push-Down Automata	3.3
	15	Equivalence of PDA and CFG	3.4
	16 & 17	Properties of Context-Free languages	3.5
	18	Determinism & Parsing. DCFG.	3.7
	19 & 20	Top-down & Bottom-up Parsing	3.7

4	21	Turing Machines – Introduction	4.1
	22	Turing Machines - Notation	4.1
	23	Recursive and Recursively enumerable languages	4.2
	24	Extensions of Turing machines	4.3
	25 & 26	Random Access Turing machines	4.4
	27	Non-deterministic Turing machines	4.5
5 28		Grammars	4.6
	29	Primitive Recursive Functions	4.7
	30	Mu-recursive functions	4.7
	31	Church-Turing Thesis & Universal Turing machines	5.1 & 5.2
	32	Halting problem	5.3
	33 & 34	Undecidable problems	5.4,5.5
	35	Properties of Recursive languages	5.7
6	36 & 37	The Complexity Class P	6.1 & 6.2
	38	Satisfiability	6.3
	39	The Complexity Class NP	6.4
	40	NP Completeness and Reducibility	7.1
	41	Cook's Theorem	7.2
	42	NP Complete Problems	7.3

• Evaluation Scheme

Component	Mode	Duration	Date	Weightage
Mid Term Test	Closed Book	See Time Table	See Time Table	30%
Quiz	Open Book	To be announced	Surprise	30%
			component/Anno	
			unced	
Comprehensive	Closed Book	See Time Table	In December	40%
_				

• **Seven** quizzes will be conducted. Each Quiz carries 6% weightage and **best five** would be considered.

NO MAKE-UP REQUESTS WILL BE ENTERTAINED FOR ANY QUIZ

NO MAKE-UP REQUESTS WILL BE ENTERTAINED FOR ANY Coding Test

- **Make-up Policy:** Make-up for Tests will be granted strictly on prior permission and on justifiable grounds only.
- **Notice:** All notices for this course will be posted on Moodle page.

IC - CS F351

Email: soumyadipb@goa.bits-pilani.ac.in