## **EXP No:8** Create an ARIMA model for time series forecasting

#### Aim:

To develop an ARIMA model for forecasting future electric production based on historical time series data.

## **Objectives:**

- To load and preprocess monthly electric production data.
- To analyze the data for stationarity and seasonality.
- To determine the optimal ARIMA parameters using automated techniques.
- To build, train, and validate an ARIMA forecasting model.
- To forecast future electric production and visualize the results.

### **Background:**

ARIMA (AutoRegressive Integrated Moving Average) is a widely used statistical model for time series forecasting. It captures autocorrelations in data to make predictions. In this project, ARIMA is applied to monthly electric production data to understand trends and forecast future values. This type of forecasting is valuable in energy management, demand planning, and infrastructure development.

#### Code:

import pandas as pd

import matplotlib.pyplot as plt

from statsmodels.tsa.arima.model import ARIMA

from pmdarima import auto\_arima

from datetime import datetime

# Load dataset

df = pd.read\_csv(r"C:\Users\Lenovo\Downloads\Electric\_Production.csv")

# Convert 'DATE' column to datetime

```
df['DATE'] = pd.to_datetime(df['DATE'
# Set 'DATE' as index
df.set_index('DATE', inplace=True)
# Rename the value column
df.rename(columns={'IPG2211A2N': 'Electric_Production'}, inplace=True)
# Plot the original time series
df['Electric_Production'].plot(title='Electric Production Time Series', figsize=(10, 5))
plt.show()
# Use auto_arima to find the best order for ARIMA
stepwise_model = auto_arima(df['Electric_Production'], seasonal=False, trace=True,
                error_action='ignore', suppress_warnings=True)
# Fit ARIMA model
model = ARIMA(df['Electric_Production'], order=stepwise_model.order)
model_fit = model.fit()
# Summary of the model
print(model_fit.summary())
# Forecast the next 24 months (2 years)
forecast\_steps = 24
forecast = model_fit.forecast(steps=forecast_steps)
```

```
# Plot the forecast

plt.figure(figsize=(10, 5))

plt.plot(df['Electric_Production'], label='Historical')

plt.plot(pd.date_range(df.index[-1], periods=forecast_steps+1, freq='MS')[1:], forecast, label='Forecast', color='red')

plt.title("Electric Production Forecast (ARIMA)")

plt.xlabel("Date")

plt.ylabel("Electric Production")

plt.legend()

plt.tight_layout()

plt.show()
```

# **Output:**



performing stepwise search to minimize aic ARIMA(2,1,2)(0,0,0)[0] intercept : AIC=inf, Time=3.39 sec ARIMA(0,1,0)(0,0,0)[0] intercept : AIC=2750.050, Time=0.03 sec ARIMA(1,1,0)(0,0,0)[0] intercept : AIC=2691.759, Time=0.04 sec ARIMA(0,1,1)(0,0,0)[0] intercept : AIC=2624.463, Time=0.05 sec ARIMA(0,1,0)(0,0,0)[0]: AIC=2748.185, Time=0.02 sec ARIMA(1,1,1)(0,0,0)[0] intercept : AIC=2625.508, Time=0.07 sec ARIMA(0,1,2)(0,0,0)[0] intercept : AIC=2525.516, Time=0.11 sec ARIMA(1,1,2)(0,0,0)[0] intercept : AIC=2493.118, Time=0.12 sec ARIMA(1,1,3)(0,0,0)[0] intercept : AIC=2449.570, Time=0.17 sec ARIMA(0,1,3)(0,0,0)[0] intercept : AIC=2449.577, Time=0.14 sec ARIMA(2,1,3)(0,0,0)[0] intercept : AIC=inf, Time=0.42 sec ARIMA(1,1,4)(0,0,0)[0] intercept : AIC=2431.710, Time=0.26 sec ARIMA(0,1,4)(0,0,0)[0] intercept : AIC=2431.461, Time=0.20 sec ARIMA(0,1,5)(0,0,0)[0] intercept : AIC=2359.635, Time=0.26 sec ARIMA(1,1,5)(0,0,0)[0] intercept : AIC=2349.722, Time=0.39 sec ARIMA(2,1,5)(0,0,0)[0] intercept : AIC=2066.370, Time=0.54 sec ARIMA(2,1,4)(0,0,0)[0] intercept : AIC=2058.738, Time=0.43 sec ARIMA(3,1,4)(0,0,0)[0] intercept : AIC=2081.223, Time=0.52 sec ARIMA(3,1,3)(0,0,0)[0] intercept : AIC=inf, Time=0.46 sec

ARIMA(3,1,5)(0,0,0)[0] intercept : AIC=2060.408, Time=0.58 sec

Best model: ARIMA(2,1,4)(0,0,0)[0] intercept

Total fit time: 8.767 seconds

ARIMA(2,1,4)(0,0,0)[0]

#### SARIMAX Results

: AIC=2071.225, Time=0.40 sec

| Dep. Variab | ole: Ele | ctric_Produc | tion No.  | Observations: |        | 397       |
|-------------|----------|--------------|-----------|---------------|--------|-----------|
| Model:      |          | ARIMA(2, 1   | ., 4) Log | Likelihood    |        | -1028.613 |
| Date:       | •        | Tue, 15 Apr  | 2025 AIC  |               |        | 2071.225  |
| Time:       |          | 11:0         | 2:20 BIC  |               |        | 2099.095  |
| Sample:     |          | 01-01-       | 1985 HQI  | C             |        | 2082.267  |
|             |          | - 01-01-     | 2018      |               |        |           |
| Covariance  | Type:    |              | opg       |               |        |           |
|             |          |              |           |               |        |           |
|             | coef     | std err      | Z         | P> z          | [0.025 | 0.975]    |
|             | 0.0006   | 0.002        | F22 246   | 0.000         | 0.005  | 1 002     |
| ar.L1       | 0.9986   | 0.002        | 522.216   | 0.000         | 0.995  | 1.002     |
| ar.L2       | -0.9994  | 0.001        | -859.877  | 0.000         | -1.002 | -0.997    |
| ma.L1       | -1.3147  | 0.041        | -32.321   | 0.000         | -1.394 | -1.235    |
| ma.L2       | 0.9208   | 0.074        | 12.480    | 0.000         | 0.776  | 1.065     |
| ma.L3       | 0.0158   | 0.074        | 0.213     | 0.831         | -0.130 | 0.161     |
| ma.L4       | -0.3899  | 0.047        | -8.328    | 0.000         | -0.482 | -0.298    |
| sigma2      | 10.3486  | 0.634        | 16.318    | 0.000         | 9.106  | 11.592    |

```
Ljung-Box (L1) (Q):
                          0.24
                               Jarque-Bera (JB):
                                                       21.25
Prob(Q):
                               Prob(JB):
                                                       0.00
                          0.62
Heteroskedasticity (H):
                          1.83
                               Skew:
                                                       0.31
                                                       3.95
Prob(H) (two-sided):
                          0.00
                               Kurtosis:
______
```



# **Result:**

Thus the program to create an ARIMA model for time series forecasting is implemented successfully.