SÍŤOVÁ VRSTVA II

RNDr. Ing. Vladimir Smotlacha, Ph.D.

Katedra počítačových systémů
Fakulta informačních technologií
České vysoké učení technické v Praze
© Vladimír Smotlacha, 2018

Počítačové sítě BI-PSI LS 2018/19, Přednáška 4

https://edux.fit.cvut.cz/BI-PSI

OBSAH

- IPv6
- ATM
- MPLS

VYČERPÁNÍ ADRES IPv4

zdroj: http://www.potaroo.net

IPv4 – A CO DÁL?

- classful design (80. léta) byl velmi neefektivní
 - 127 tříd A zabíralo polovinu adresního prostoru
- 90. léta: classless design (CIDR)
 - zjistilo se, že CIDR nevyřeší problém nedostatku IP adres
- vyčerpání adresního prostoru
 - 3. únor 2011 IANA rozdělila poslední bloky adres IPv4
 - květen 2011 vyčerpání u regionálních správců
 - část adresového prostoru není ve skutečnosti využívána
 - přidělené adresy nelze odebrat

NOVÉ POŽADAVKY NA IP

větší adresní prostor

- automatická konfigurace
 - bez externího serveru (např. eliminace DHCP)

- podpora QoS
- větší bezpečnost
- mobilita

IPV6 MILESTONES

TETE

- 1993 ustavení prac. skupin IPng (IP next generation)
- 1995 RFC1550 první specifikace IPv6 (zastaralé)
- 1998 RFC2460 Internet Protocol Version 6 Specification
- 2004 RFC3775 Mobility Support in IPv6

6bone – experimentální IPv6 síť (1996 – 2006)

Podpora v root DNS serverech - 2003

Operační systémy

- 1996 Linux (2.1.8)
- 1997 IBM AIX 4.3
- 2000 Sun Solaris v.8, FreeBSD, OpenBSD, NetBSD,
- 2002 WindowsXP (SP1), Windows Server 2003

HLAVIČKY IPv4 a IPv6

IPv6 Header

zdroj: Cisco

POROVNÁNÍ IPv4 a IPv6

zdroj: Cisco

HLAVIČKA IPv6

- Version (4b) hodnota 6
- Source & destination address (128b)
 - 4x delší adresa
 - 296x větší adresní prostor
- Payload length (16b) délka dat
 - obdoba Total length v IPv4
 - počítá se od konce základní hlavičky
 - zahrnuje i rozšiřující hlavičky
- Next header (8b)
 - typ následující hlavičky nebo dat (~ protokol)

HLAVIČKA IPv6 (2)

- Hop limit (8b) max. počet "skoků"
 - obdoba TTL v IPv4
 - ochrana proti zacyklení
 - každý router sníží hodnotu o 1
 - po vynulování se paket zlikviduje a odešle se ICMP zpráva
- Traffic class (8b) třída provozu
 - obdoba ToS v IPv4
 - využití není definováno

HLAVIČKA IPv6 - ZMĚNY

Některé informace z IPv4 nejsou v hlavičce IPv6:

- fragmentace, volby (options)
 - nahrazeno rozšiřujícími hlavičkami
- délka hlavičky
 - vždy stejná
- kontrolní součet
 - odpadá neustálé přepočítáváni ve směrovačích

Nová položka

- Flow label (20b) identifikace datového toku
 - usnadní směrování (switch router)
 - není zatím specifikováni

ROZŠIŘUJÍCÍ HLAVIČKY

Za základní hlavičkou můžou následovat rozšiřující hlavičky

pořadí je pevné

Typy rozšiřujících hlaviček

- volba pro všechny (hop-by-hop options)
- 43 směrování
- 44 fragmentace
- = 50 šifrování (ESP)
- 51 autentizace (AH)
- 60 volby pro cíl (destination options)
- 135 mobilita
- a další ...

TYPY DAT

Typ dat (payload)

- uveden v poslední hlavičce v položce Next header
- 6 TCP
- . 8 EGP
- . 9 IGP
- 17 UDP
- 46 RSVP
- 47 GRE
- 58 ICMP for IPv6

JUMBOGRAM

Max. délka paketu je 65535 $(2^{16} - 1)$

IPv6 povoluje větší paket – jumbogram – až 4 GB

- má smysl pro MTU > 64 kB
- "Payload length" nastaven na 0
- délka (32b) uvedena v rozšiřující hlavičce typu "volba pro všechny"

FRAGMENTACE

Minimální MTU pro IPv6 je 1280 bytů

algoritmus hledání MTU (Path MTU Discovery)

Fragmentaci neprovádí router ale odesílatel

Pokud je paket moc dlouhý

- směrovač jej zahodí
- odešle odesílateli ICMP zprávu s informaci o MTU
- snaha o vyloučení fragmentace
- nastavení velikosti datagramů na MTU

ZÁPIS ADRES IPv6

8 skupin po 4 hexadecimálních číslicích

- oddělovač ":"
- nulovou skupinu/skupiny lze nahradit znaky "::"
- poslední 4 byty lze zapsat dekadicky, oddělovač "."
 - kompatibilita s IPv4
 - implementace není povinná

Příklad (zápis téže adresy)

- 2001:0db8:0000:0000:0000:0000:1428:57ab
- 2001:0db8:0000:0000:0000::1428:57ab
- 2001:0db8:0:0:0:1428:57ab
- 2001:0db8::1428:57ab
- 2001:0db8::20.40.87.171

TYPY ADRES IPv6

- individuální (unicast)
- skupinové (multicast)
- výběrové (anycast)

ADERESNÍ PROSTOR IPv6

• ::1/128 smyčka (loopback)

obdoba 127.0.0.1 v IPv4

fc00::/7 individuální lokální adresy

obdoba privátních adres v IPv4

fe80::/10 lokální linkové adresy

obdoba 169.254.0.0/16

ff00::/8 skupinové adresy (multicast)

2001:db8::/32 využití v příkladech a dokumentaci dokumentaci

INDIVIDUÁLNÍ GLOBÁLNÍ ADRESY

Individuální adresy definuje RFC3587

zatím specifikován prefix 2000::/3 (001 binárně)

Struktura:

001	globální prefix	subnet	interface ID
	45b	16b	64b

Identifikátor rozhraní specifikuje IEEE EUI-64

Příklad:

MAC: 00:40:D0:7D:6A:86

• interface ID: 0240:D0FF:FE7D:6A86

ADRESY SÍŤOVÉHO ROZHRANÍ

Síťové rozhraní má více adres IPv6:

- lokální linková
- loopback
- individuální a výběrové
- skupinová pro všechny uzly
- skupinová pro skupiny jejichž je členem
- skupinová pro vyzývaný uzel (objevování sousedů)

Směrovač má navíc adresy:

- skupinová pro všechny směrovače
- výběrová pro směrovače v podsíti
- všechny přidělené výběrové adresy

VYHLEDÁVÁNÍ SOUSEDŮ

NDP (Neighbor Discovery Protocol)

- rozšířená náhrada ARP
- využívá se ICMPv6
 - výzva směrovači, ohlášení směrovače, výzva sousedovi, ohlášení souseda, přesměrování

Umožňuje

- zjišťování linkových adres v lokální síti
- rychlou aktualizaci změn a neplatných položek
- hledání směrovačů
- přesměrování
- detekci duplikovaných adres
- ověřování dosažitelnosti sousedů
- zjišťování údajů pro automatickou konfiguraci

Literatura ke dalšímu studiu IPv6:

Pavel SATRAPA: IPv6 (3. vydání)

http://knihy.nic.cz/files/nic/edice/pavel_satrapa_ipv6_2012.pdf

(i ve verzi MOBI a EPUB)

Asynchronous Transfer Mode

Základní idea:

- integrovat různé datové služby
 - přenos dat, obrazu a zvuku
 - včetně telefonní sítě!
- umožnit vznik společné infrastruktury pro všechny typy datových přenosů

ATM - PRVKY SÍTĚ

Koncová zařízení

- adaptér síťová karta
- router, LAN switch
- tel. ústředna, videokonferenční zařízení

ATM switch (přepínač)

- spojení "každý s každým"
- implementace v hardware

ATM adresy - 20 byte

- univerzální číslovací plán
- obsahuje i 6 byte MAC adresy

ATM – VIRTUÁLNÍ OKRUH

Virtuální okruhy

- nejdříve se sestaví cesta
 - informace o cestě uložena ve směrovačích
- všechna data jednoho spojení přenášena okruhem
- cestu (virtuální okruh) se pak zruší
 - vymazání informace z tabulek ve směrovačích
- hlavička paketu obsahuje číslo virtuálního okruhu
 - číslo virtuálního okruhu má málo bitů
 - platí jen mezi dvěma síťovými prvky, nikoliv globálně
- směrovací tabulka:
 - řádka tabulky: { (link_in, vic_in), (link_out, vic_out) }

5 byte záhlaví

48 byte data

CELL - základní jednotka přenosu

- pevná délka 53 bytů
- v záhlaví označení virtuální cesty VC Virtual Connection
 - VPI (Virtual Path Identifier) 8 nebo 12 bitů
 - VCI (Virtual Channel Identifier) 16 bitů
- 48 bytů "payload"

SLUŽBY ATM

- CBR Constant Bit Rate
 - vyhrazené pásmo, konstantní zpoždění
 - emulace okruhů
- VBR Variable Bit Rate
 - specifikováno max. pásmo
 - pro komprimované přenosy (video)
- UBR Unspecified Bit Rate
 - služba "best effort", možná ztráta buněk
 - datové přenosy (např. IP)
- ABR Available Bit Rate
 - přidělí zbylé pásmo, malé ztráty
 - řízení toku dat

ATM – DŘÍVE

Velké ambice: jednotný síťový standard

- implementuje fyzickou, spojovou a síťovou vrstvu
- odstraní konflikt mezi přepínáním okruhů a paketů
 - řešení: malé buňky konstantní velkosti

Podpora telekomunikačních operátorů Projekty EU

- projekty TEN-34 (od 1995) a TEN-155 (od 1998)
- národní akademická síť CESNET
 - 34 Mb/s (předtím 2 Mb/s)
 - později zvýšeno na 155 Mb/s
 - vše fungovalo, ale nešlo dále rozvíjet k vyšším rychlostem

ATM – DNES

Současný stav

- telekomunikace
- ADSL

Proč se více nevyužito pro Internet?

- pokročilé služby se neujaly (většina provozu jen v UBR)
 - velmi drahé pro větší rychlosti
 - ATM 622 Mb/s nemohlo cenově konkurovat 1 GbE
 - výhoda malých buněk zanikla po rozvoji 1 GbE
 - síťová vrstva IP je flexiilnější
 - Ethernet je levnější a vhodný i pro dálkové spoje
 - chystá se 400 1000 GbE
- dobré myšlenky ATM využity v MPLS

Multiprotocol Label Switching

- v OSI modelu mezi L2 a L3
 - "Layer 2.5 protocol"
- k paketům (L3) přidává "label"
 - pakety jsou přepínány jen podle labelu
- implementuje end-to-end spojení nezávisle na linkové vrstvě

HLAVIČKA MPLS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Hlavička MPLS - 32 bitů

- label 20 bitů
- traffic class 3 bity (experimental)
- bottom-of-stack 1 bit
- TTL 8 bitů

SÍŤ MPLS

- Hraniční router (Label Edge Router LER) přidělí label při vstupu do MPLS
- Uvnitř MPLS sítě se pakety forwardují podle labelu (Label Switch Router - LSR)
- Při výstupu z MPLS hraniční router odstraní label

Děkuji za pozornost