

네트워크계층2

■ 강의날짜	@2022/10/17
① 작성일시	@2022년 10월 17일 오후 11:50
① 편집일시	@2022년 10월 18일 오전 12:26
◈ 분야	네트워크
◈ 공부유형	스터디 그룹
☑ 복습	
∷ 태그	

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Network Layer 4-10

• APP - HTTP - message

- Transport TCP segment
- Network IP packet

IP datagram format

Network Layer 4-11

- 프로토콜 버전 4 ip packet header 20bytes
- 패킷에 length
- source ip address : message 생성해서 보내는 사람 ip주소
- destination IP address : 최종 목적지 post의 ip주소
- ttl: time to live 첫 라우터 20-19-18 ... 0이 되면 버려짐
 - 。 한정시간만큼만 네트워크 상에 돌다가 사라져라
- upper layer : tcp 인지 udp인지 작성
- ack만 담긴 파일 40 bytes

IP Address (IPv4)

- A unique 32-bit number
- Identifies an interface (on a host, on a router, ...)
- · Represented in dotted-quad notation

13

- 32bit 주소 체계를 가짐
- 이론 상 2의 32승의 ip주소를 가질 수 있음
- 8비트 씩 끊어서 10진수씩 바꾸기
- ip 주소 : 네트워크 인터페이스를 지칭하는 주소
- 네트워크 인터페이스를 여러 동시에 가질 수 있는 컴퓨터 : 라우터

Grouping Related Hosts

- The Internet is an "inter-network"
 - Used to connect networks together, not hosts
 - Need to address a network (i.e., group of hosts)

LAN = Local Area Network WAN = Wide Area Network

• 네트워크는 라우터로 연결

Scalability Challenge

- Suppose hosts had arbitrary addresses
 - Then every router would need a lot of information
 - ...to know how to direct packets toward every host

- 마음대로 배정하지 말아야함
 - 。 라우터안에 들어있는 forwaridng table이 엄청나게 커짐
 - 호스트 별로 방향이 다 다를테니까

Hierarchical Addressing: IP Prefixes

- Network and host portions (left and right)
- ❖ 12.34.158.0/24 is a 24-bit prefix with 2⁸ addresses

- -

- 앞부분은 network id 뒷부분은 네트워크에 속한 host id
- 같은 네트워크 해당하는 호스트들은 같은 id를 가지도록

IP Address and 24-bit Subnet Mask

17

- 서브넷 마스크 : 어디까진가 네트워크 id인지 / 현재 속한 네트워크 크기를 알 수 있음
- 항상 ip address와 같이 다님

Scalability Improved

- Number related hosts from a common subnet
 - 1.2.3.0/24 on the left LAN
 - 5.6.7.0/24 on the right LAN

forwarding table

18

Easy to Add New Hosts

- No need to update the routers
 - E.g., adding a new host 5.6.7.213 on the right
 - Doesn't require adding a new forwarding-table entry

19

Classful Addressing

- In the old days, only fixed allocation sizes
 - Class A: 0*
 - Very large /8 blocks (e.g., MIT has 18.0.0.0/8)
 - Class B: 10*
 - Large /16 blocks (e.g., Princeton has 128.112.0.0/16)
 - Class C: 110*
 - Small /24 blocks (e.g., AT&T Labs has 192.20.225.0/24)
 - Class D: 1110* for multicast groups
 - Class E: 11110* reserved for future use
- This is why folks use dotted-quad notation!
- 자기만의 프리픽스를 가져야함
- 예전에는 프리픽스 자체를 클래스를 나누어놨음
- 클래스 A 가 2의 8승개면 host는 2의 24승 개 : 이걸 가질 수 있는 기관은 전세계에 128 개(2의8승)
- 클래스 B 가 2의 16승개면 host는 2의 16승개
- 클래스는 비효율적임

Classless Inter-Domain Routing (CIDR)

Use two 32-bit numbers to represent a network.

Network number = IP address + Mask

22

- 클래스가 없는 개념(classless)
- 8비트 단위로 떨어지는게 아니라 자유롭게 떨어지게 됨
- 프레픽스를 사용

Hierarchical Address Allocation

- Hierarchy is key to scalability
 - Address allocated in contiguous chunks (prefixes)
 - Today, the Internet has about 400,000 prefixes

Obtaining a Block of Addresses

- Internet Corporation for Assigned Names and Numbers (ICANN)
 - Allocates large blocks to Regional Internet Registries
- Regional Internet Registries (RIRs)
 - E.g., ARIN (American Registry for Internet Numbers)
 - Allocates to ISPs and large institutions
- Internet Service Providers (ISPs)
 - Allocate address blocks to their customers
 - Who may, in turn, allocate to their customers...

Pre-CIDR (1988-1994): Steep Growth

Growth faster than improvement in equipment capability

CIDR (1994-1996): Much Flatter

26

Separate Forwarding Entry Per Prefix

- Prefix-based forwarding
 - Map the destination address to matching prefix
 - Forward to the outgoing interface

CIDR Makes Packet Forwarding Harder

- Forwarding table may have many matches
 - E.g., entries for 201.10.0.0/21 and 201.10.6.0/23
 - The IP address 201.10.6.17 would match both!

28

Longest Prefix Match Forwarding

- Destination-based forwarding
 - Packet has a destination address
 - Router identifies longest-matching prefix
 - Cute algorithmic problem: very fast lookups

29

- 프레픽스가 가장 긴 것을 찾아 매칭 시켜주면 된다
- 라우터가 하는 일
- 포워딩 테이블의 엔트리는 누가 채우냐? 라우팅 알고리즘

Creating a Forwarding Table

- Entries can be statically configured
 - E.g., "map 12.34.158.0/24 to Serial0/0.1"
- But, this doesn't adapt
 - To failures
 - To new equipment
 - To the need to balance load
- That is where the control plane comes in
 - Routing protocols

IP addressing: CIDR

CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

Network Layer 4-31

Subnets

❖ IP address:

- subnet part high order bits
- host part low order bits

*what's a subnet?

- device interfaces with same subnet part of IP address
- can physically reach each other without intervening router

network consisting of 3 subnets

Network Layer 4-32

- 라우터를 거치지 않고도 접근이 가능
- 라우터는 여러개의 서브넷이 속한

Network Layer 4-33

• 서브넷 개수 : 6개

• 서브넷 : 같은 프레픽스를 가지는 애들의 집합

Network Address Translation (NAT)

3.4

History of NATs

- IP address space depletion
 - Clear in early 90s that 2³² addresses not enough
 - Work began on a successor to IPv4
- In the meantime...
 - Share addresses among numerous devices
 - ... without requiring changes to existing hosts
- Meant as a short-term remedy
 - Now: NAT is widely deployed, much more than IPv6

35

Network Address Translation

NAT: network address translation

Network Layer 4-37

• ip 내부적으로만 유효

• ip와 포트넘버까지 바뀜