Binary Search Tree and AVL Tree

Definition of BST

- Binary tree
- Relationship among values in nodes
 - All values in the left subtree < value in the root
 - O All values in the right subtree ≥ value in the root
- For all subtrees

Nice Property

- Where is the smallest node?
- Where is the largest node?

Leaf node or Leaf-like node

Traversals on BST

- Preorder
 - 8, 5, 3, 4, 7, 12, 10, 15, 13
- Postorder
 - 4, 3 7, 5, 10, 13, 15, 12, 8
- Inorder
 - 3, 4, 5, 7, 8, 10, 12, 13, 15

Search

- Start from the root
- Check the value of the root and the key
- If key < root</p>
 - Go to the left subtree
- Else
 - Go to the right subtree
- Repeat until the key is found in a node
 - or no node is found

How to Construct a BST?

- \bigcirc A set of data \rightarrow a set of nodes
- Insert each node to a BST
- Inserted node is a leaf node.
- Data structure, if using a linked list
 - Value
 - Left subtree
 - Right subtree

Insertion

- Case 1
 - Insert to an empty BST
- Case 2
 - Insert to the root's left or right
- Case 3
 - If no space available under root
 - Perform "Insert" to the subtree

Recursive Algorithm

```
Insert (BST, Node)
  if BST is empty
      BST is Node
  else if (Node's value < root's value)
      Insert (BST's left, Node)
  else
      Insert (BST's right, Node)
```

Illustration

• Keys: 8, 12, 10, 5, 15, 3, 7

Search

- Search for 8
 - 5 steps
- Search for 5
 - 2 steps
- Search for 3
 - 1 step
- Search for 10
 - 7 steps

Search in a Complete BST

- Search for 8
 - 1 step
- Search for 5
 - 2 steps
- Search for 3
 - 3 steps

Steps Needed

- Chain-like tree
 - Best case
 - 1 step
 - Worst case
 - N steps
- Complete tree
 - Best case
 - 1 step
 - Worst case
 - log N + 1 steps

Just like a linked list.

Height of a BST

Search Algorithm

```
BST search (tree, key)
  if (tree is empty)
       return FALSE
  else if (tree's root is equal to key)
       return TRUE
  else if (tree's root > key)
       BST search (tree's left, key)
  else BST search (tree's right, key)
```


Algorithm Analysis

- Step 1
 - N nodes
- Step 2
 - N/2 nodes
- Step 3
 - N/4 nodes
- Step 4
 - N/8 nodes
- Step k
 - \odot N/2^{k-1} nodes

$$N/2^k = 1$$

 $2^k = N$
 $k = log N$

What happens when there is no more nodes?

AVL Trees

Adelson-Velskii and Landis Trees

Problem with Insertion

- Shape of the tree:
 - Affected by the node sequence
 - Well balanced
 - Tilted
- Efficiency vs. Shape
 - Balanced BST
- Important issue
 - How to keep the tree balanced?

Possible Approach

- Approach 1
 - Rearrange the node sequence
- Approach 2
 - Reorganize the tree
- Approach 3
 - Reorganize the tree while it is constructed

Possible Violation of "Balanced-ness"

- Goal
 - |Height of LST height of RST| ≤ 1
- Violation caused by inserting a node

- One more node to the "tilted" side
 - Case 1: $H_L H_R = 1$
 - One more node to the LST

Violation!!

- Case 2: $H_R H_L = 1$
 - One more node to the RST

Possible Violation Cases

- Left of left
- Case 2
 - Right of left
- Case 3
 - Right of right
- Case 4
 - Left of right

Solution

Rotation to right

- Right of right
 - Rotation to left

Solution

- Rotation to left
- Treat it as "left of left"

- Left of right
 - Rotation to right
 - Treat it as "right of right"

Suppose we insert the following data keys in sequence: 3, 2, 1, 4, 5, 0

Please show the AVL tree for every step after you insert one key. Write down all the necessary operations (e.g., left of left rotation)

• Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL tree

• Insert 14, 17, 11, 7, 53, 4, 13 into an empty AVL tree

• Now insert 12

• Now insert 12

Now the AVL tree is balanced.

• Now insert 8

Now insert 8

Now the AVL tree is balanced.

• Now remove 53

Now remove 53, unbalanced

• Balanced! Remove 11

• Remove 11, replace it with the largest in its left branch

• Remove 8, unbalanced

• Remove 8, unbalanced

• Balanced!!

In Class Exercises

• Build an AVL tree with the following values: 15, 20, 24, 10, 13, 7, 30, 36, 25

Remove 24 and 20 from the AVL tree.

