

Europäisches Patentamt
European Patent Office
Office européen des brevets

See U.S. 4,978,394 A1

(11) Veröffentlichungsnummer:
0 338 428
A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 89106600.3

(51) Int. Cl.⁴: **C09C 1/00**

(22) Anmeldetag: 13.04.89

Patentanspruch für folgenden Vertragsstaat: ES.

(33) Priorität: 21.04.88 DE 3813335

(43) Veröffentlichungstag der Anmeldung:
25.10.89 Patentblatt 89/43

(84) Benannte Vertragsstaaten:
BE CH DE ES FR GB IT LI NL SE

(71) Anmelder: **BASF Aktiengesellschaft**
Carl-Bosch-Strasse 38
D-6700 Ludwigshafen(DE)

(72) Erfinder: **Ostertag, Werner, Dr.**
Oberer Bergelweg 2
D-6718 Gruenstadt(DE)
Erfinder: **Mronga, Norbert, Dr.**
Ringstrasse 2
D-6915 Dossenheim(DE)

(54) Metallocidbeschichtete Aluminiumpigmente.

(57) Metallisch glänzenden Reflexionspigmente aus einem Substrat aus plättchenförmigem Aluminium mit darauf aufgebrachten Beschichtungen aus Titanoxiden.

Verwendung dieser Pigmente zum Einfärben von Lacken, Kunststoffen, Druckfarben, keramischen Artikeln, Gläsern und von kosmetischen Produkten.

EP 0 338 428 A1

Metallocidbeschichtete Aluminiumpigmente

Die vorliegende Erfindung bezieht sich auf mit Titanoxiden belegte Aluminium-Pigmente, ihre Herstellung und Verwendung.

Diese metallisch glänzenden Reflexionspigmente zählen zu der Gruppe der Effekt-Pigmente. Effektpigmente sind plättchenförmige Pigmente, deren optischer Eindruck, wenn sie ausgerichtet appliziert werden, winkelabhängig ist. Effektpigmente finden in hochwertigen Lacken, z.B. Automobillacken, Kunststoffen, in der dekorativen Kosmetik, im Druck und in der Keramik Anwendung.

Im speziellen handelt es sich bei den erfindungsgemäßen Pigmenten um metallische Interferenzreflexionspigmente, d.h. um Pigmente, die aus einem Substrat, das Spiegelreflexion zeigt, und aus einer Beschichtung, die Interferenzfarben aufweist, bestehen.

Die Gruppe derzeit bekannter metallischer Interferenzreflexionspigmente ist klein.

Zu ihr gehören die al bekannten Kupfert und Messingpigmente, welche durch kontrollierte Oxidation ihrer Oberfläche auf ein bestimmte Anlauffarbe eingestellt sind. Der auf der Oberfläche solcher Kupfer- und Messingpigmente sich bildende interferenzfähige Belag besteht stofflich stets aus den Oxiden des jeweiligen metallischen Substrats.

In EP-A-33 457 sind metallische Interferenzreflexionspigmente beschrieben, die aus einem Fe_2O_3 -beschichteten Al-Substrat bestehen. In diesem Fall besteht der interferenzfähige Belag nicht aus dem Oxid des metallischen Substrats. Die Pigmente werden durch kontrollierte Verbrennung von Eisenpentacarbonyl in einem Wirbelbett aus erwärmt Al-Plättchen hergestellt und zeigen je nach Dicke der Fe_2O_3 -Beschichtung gelbe, orange, rote bis violette Interferenzfarben.

In allen Fällen derzeit bekannter metallischer Interferenzreflexionspigmente ist der oxidische Oberflächenbelag bunt. Dies bedeutet jedoch, daß der Farbeindruck solcher Pigmente nicht allein auf Interferenz, sondern auch auf Absorption zurückzuführen ist. Stets beruht er auf einem Zusammenwirken von Absorptions- und Interferenzfarbe.

Für die Farbtonbrillanz kann dies von Vorteil, aber auch von Nachteil sein. Höchste Farbtonbrillanz wird bei solchen Pigmenten beobachtet, deren schichtdickenabhängige Interferenzfarbe nahe an der Absorptionsfarbe der oxidischen Beschichtung liegt. Beispielsweise sind rote Fe_2O_3 -belegte Al-Pigmente (rote Interferenzfarbe + rote Absorptionsfarbe) sehr farbtonbrillant. Geringe Farbtonbrillanz weisen Pigmente auf, deren Interferenzfarbe weit entfernt von der Absorptionsfarbe liegt. Beispielsweise sind Fe_2O_3 -belegte Al-Pigmente, welche schichtdickenabhängig eine blaue Interferenz-

farbe haben, braungrau und stumpf. In diesem Falle führt das Zusammenwirken von blauer Interferenzfarbe und roter Absorptionsfarbe zu einer Verminderung der Farbtonbrillanz.

Da alle bisher bekannten metallischen Interferenzreflexionspigmente aufgrund der Buntheit des oxidischen Belags einen Bereich aufweisen, in dem ihre Farbtonbrillanz beeinträchtigt ist, versteht es sich von selbst, daß es für den Pigmentfachmann von Interesse war, metallische Interferenzreflexionspigmente zu entwickeln, deren Beschichtungsdicke variiert werden kann, ohne daß die Farbtonbrillanz der jeweiligen Interferenzfarbe durch die Absorptionsfarbe der Beschichtung beeinträchtigt wird.

Aufgabe der vorliegenden Erfindung war somit die Entwicklung metallischer Interferenzreflexionspigmente, bei denen ein metallisches Substrat mit einer nicht absorbierenden interferenzfähigen Beschichtung versehen ist. Zumindest sollten die Pigmente so aufgebaut sein, daß eine evtl. auftretende Absorption der Beschichtung bzw. der Beschichtungen die Farbtonbrillanz der Interferenzfarbe nicht beeinträchtigt.

Die Lösung dieser Aufgabe gelang durch Belebung von plättchenförmigem Aluminiumpigment mit filmartigen Belägen aus Titanoxiden unterschiedlicher Schichtdicke. Diese mit Titanoxiden belegten Aluminiumpigmente können zusätzlich mit Chrom-III-oxidhydrat (nicht störend im grün-blauen Spektralbereich), oder mit Fe_2O_3 (nicht störend im gelb-roten Spektralbereich) belegt sein.

Die erfindungsgemäßen Aluminiumpigmente können nach dem Chemical-Vapor-Deposition-(CVD)-Verfahren hergestellt werden. Hierbei läßt man TiCl_4 -Dampf in geringer Konzentration mit H_2O -Dampf im Wirbelbett in Gegenwart erwärmt bewegter Al-Partikel reagieren. Die stark vereinfachte Bilanzgleichung ist folgende:

$\xrightarrow{\text{N}_2, T}$

Hiermit gelingt es Interferenzfarben zeigende metallisch glänzende Pigmente herzustellen.

Als Al-Substrat können aus Al-Folie herausgestanzte Al-Plättchen oder nach bekannten Verdüsungs- und Mahltechniken hergestellte Al-Pigmente dienen. Der erwünschte Partikelgrößenbereich liegt zwischen 10 und 120 μm für den mittleren Durchmesser der Plättchen. Die spezifische freie Oberfläche (BET) des Al-Einsatzpigmentes liegt zwischen 0,5 und 5 m^2/g .

Die Oberfläche der Plättchen sollte weitgehend frei von Fetten oder anderen Belegungsmitteln sein. Es können handelsübliche Produkte eingesetzt werden.

Im einzelnen wird bei der TiO₂-Belegung von plättchenförmigem Al-Pigment so vorgegangen, daß trockenes Al-Pigment in einem beheizbaren Wirbelbettreaktor aus Metall oder Glas eingefüllt und mit inertem Wirbelgas, dem aus Sicherheitsgründen maximal 5 Vol.% Sauerstoff beigemengt sein dürfen, zum Wirbeln gebracht wird. Um den Austrag von feinen Partikeln zu vermeiden, ist der Wirbelreaktor am Kopfende zweckmäßigerweise mit einem Filter versehen.

Das Wirbelgut wird über eine Wandbeheizung oder Strahlungsheizung auf 100 bis 400 °C aufgeheizt. Als Reaktionstemperatur besonders vorteilhaft erwies sich der Temperaturbereich zwischen 180 und 250 °C. Um elektrostatischen Aufladungen vorzubeugen, leitet man in das Wirbelbett während der Aufheizphase Wasserdampf ein. Dies erfolgt zweckmäßigerweise dadurch, daß man das Wirbelgas, oder einen Teil des Wirbelgases, durch temperiertes Wasser leitet, wo es sich mit H₂O-Dampf belädt. Wasserdampf kann auch über eine seitlich am Wirbelbettreaktor angebrachten Düse in das Wirbelbett eingetragen werden. Ist die gewünschte Endtemperatur des Wirbelbettes erreicht, so wird über eine weitere, seitlich am Wirbelbett angebrachte, Düse TiCl₄-Dampf in das Wirbelbett eingeleitet. Vorteilhaft geht man dabei so vor, daß ein inertes Trägergas, z.B. N₂ mit der gewünschten Menge an TiCl₄ beladen wird.

Für die Ausbildung qualitativ hochwertiger, d.h. gleichförmiger filmartiger TiO₂-Beläge auf der Oberfläche der Al-Partikel ist es wichtig, daß TiCl₄ nur in niedriger Konzentration ins Wirbelbett eingebracht wird. Dort kann es mit dem im Überschuß vorhandenen Wasserdampf reagieren.

Versuche haben gezeigt, daß bezogen auf die Gesamtmenge der übrigen ins Wirbelbett eingebrachten Gase bzw. Dämpfe für TiCl₄-Dampf 5 Vol.% nicht überschritten werden dürfen.

Hierbei ist berücksichtigt, daß H₂O-Dampf mit stets mehr als 2 Mol/1 Mol TiCl₄ vorhanden ist und an der Gesamtmenge der übrigen Gase teilhat.

Mit zunehmender Reaktionsdauer überziehen sich die Al-Plättchen mit einem in seiner Dicke anwachsenden TiO₂-Belag. Die TiO₂-beschichteten Al-Pigmente zeigen zunächst eine bläuliche, dann gelbe, goldene, rote, violette, grüne, blaue bis gelbe Farbe. Das Beschichtungsverfahren in der Gasphase (Chemical Vapor Deposition) wird zweckmäßigerverweise als Chargenverfahren betrieben. Nach Erreichen des gewünschten Interferenzfarbtone wird die TiCl₄-Zufuhr abgebrochen, das Wirbelbett wird abgekühlt und ausgetragen. Das während der Reaktion sich bildende HCl verläßt dampf-

förmig abgasseitig den Reaktor, wo es problemlos entsorgt werden kann.

Die Charakterisierung des nach oben beschriebenen Verfahren hergestellten Interferenzreflexionspigmentes zeigt sehr homogene und äußerst gleichmäßige TiO₂-Beläge auf den Al-Substraten. Die Oberfläche der Beschichtung ist glatt. Die Beschichtung selbst besteht aus dichtem polykristallinem TiO₂. Eine kristallographische Vorzugsorientierung ist nicht erkennbar. Die Pigmente weisen einen sehr hohen metallischen Glanz auf. Ihre Farbe ist schichtdickenabhängig.

Der Farbeindruck der beschriebenen Interferenzpigmente läßt sich durch verschiedene zusätzliche Maßnahmen intensivieren. Bekanntlich kann der Farbeindruck von Interferenzfarben verstärkt werden, wenn es gelingt, den Weißsockel des Lichtes abzusenken bzw. zu vermindern. Dies gelingt durch teilweise Reduktion der TiO₂-Beschichtung, wobei neben unverändertem TiO₂ sich Titanoxide mit einer Oxidationszahl des Titans <4, z.B. dunkles TiO oder gegebenenfalls TiN, bilden. Die partielle Reduktion des TiO₂-Belages der TiO₂-beschichteten Al-Pigmente kann mit H₂, CO, Kohlenwasserstoffen, oder insbesondere Ammoniak, bei Temperaturen von 400 bis 900 °C vorgenommen werden.

Besonders effektiv ist die Reduktion mit Ammoniak bei Temperaturen von 400 bis 660 °C. Die Strömungsgeschwindigkeit des Reduktionsgases sollte dabei 0,5 cm/sec nicht unterschreiten. Außerdem muß das Reduktionsgas trocken sein. Die Reduktion wird zweckmäßigerverweise so vorgenommen, daß das zu behandelnde Pigment in einer bewegten Schicht mit dem reduzierenden Gas in Berührung gebracht wird, z.B. in einem Drehrohr oder einer Drehtrommel mit Stufen oder in einem Wirbelschichtreaktor. Die Reduktionszeit beträgt 30 bis 360 Min. Mit zunehmender Reduktionszeit wird das behandelte Einsatzprodukt zunehmend dunkler, was auf einen steigenden Anteil an TiO oder TiN oder Titanoxinitriden zurückzuführen ist.

Tatsächlich gelingt es, durch das Dunklerstellen der eingesetzten Interferenzreflexionspigmente die jeweilige Interferenzfarbe des Einsatzproduktes verstärkt in Erscheinung treten zu lassen. Beispielsweise erscheint ein TiO₂-beschichtetes Al-Pigment mit einer schwach blauen Interferenzfarbe nach der reduzierenden Behandlung mit NH₃ bei 600 °C über 1 Stunde intensiv blau.

Die Farbe der mit Titanoxiden beschichteten Aluminiumpigmente läßt sich in einigen Spektralbereichen außerdem durch weitere anorganische Beschichtungen intensivieren. So ist es möglich, rote Pigmente durch eine anteilige (in Bezug auf die Schichtdicke) Eisenrot-(Fe₂O₃)-Belegung farbintensiver zu machen. Es wurde auch gefunden, daß

grüne Pigmente durch eine anteilige Chromoxid- oder CrCOOH-Beschichtung intensiver grün hergestellt werden können. Solche stofflich zusätzlichen anorganischen Beschichtungen haben den weiteren Vorteil, daß die wegen seiner Photoaktivität im Außenbereich nur bedingt verwendbare TiO₂-Beschichtung stabilisiert wird. Insofern sind auch zusätzliche Beschichtungen des TiO₂/Al-Pigmentes mit weiteren nichtfarbigen Oxiden wie SiO₂, Al₂O₃ oder ZrO₂ vorteilhaft.

Zusätzliche Beschichtungen können nach bekannten Methoden im wässrigen Medium durch Hydrolyse der entsprechenden Salzlösungen mit anschließendem Waschen und Trocknen der Pigmente aufgebracht werden. Eleganter werden weitere Beschichtungen aus der Gasphase aufgebracht, da sie im direkten Anschluß an die TiO₂-Beschichtung z.B. in einem Wirbelbett erfolgen können. Mit den leicht verdampfbaren Chloriden des Siliciums und Aluminiums erfolgt die SiO₂- und Al₂O₃- oder eine wechselweise SiO₂-Al₂O₃-Belegung in direkter Analogie zur TiO₂-Belegung.

Auch eine zusätzliche Eisenoxidbelegung läßt sich vorteilhaft über CVD-Methoden durchführen. Hierbei wird im gleichen Wirbelbett-Reaktor, ohne abzukühlen, anstelle des TiCl₄-Dampfes Eisenpentacarbonyldampf in den Reaktor eingedüst. Die Konzentration des Eisenpentacarbonyls darf dabei, gerechnet auf das Gesamtvolumen der übrigen in das Wirbelbett geleiteten Gase 5 Vol.% nicht überschreiten. Fe(CO)₅-Dampf reagiert im Wirbelbett mit dem über das Wirbelgas eingeleiteten Sauerstoff bei Temperaturen oberhalb von 150 °C, vorzugsweise bei Temperaturen von 180 bis 250 °C, entsprechend der folgenden Bilanzgleichung:

N₂, T

Fe₂O₃ TiO₂ Al-Pigment + 5CO₂

Über die Dauer der Reaktionszeit läßt sich die Dicke der zusätzlichen Fe₂O₃-Belegung steuern. Auch alternierendes Beschichten mit TiO₂ und Fe₂O₃ ist möglich.

Grundsätzlich ist zu sagen, daß bei zusätzlichen Beschichtungen mit den genannten Metalloxiden die Gesamtdicke der vorgesehenen Beschichtung nicht geändert werden soll, wenn nicht eine Änderung der Interferenzfarbe in Kauf genommen werden soll.

Röntgenographisch läßt sich in der Beschichtung alternierend belegter Pigment TiO₂ und Fe₂O₃ als separate Phase nachweisen. Bewitterungsversuche zeigten, daß die mit Fe₂O₃-beschichteten Titanoxid-Aluminiumpigmente hervorragende Wetterschutzfähigkeit aufweisen, so daß ihre Verwendbarkeit

im Außenbereich z.B. für die Herstellung von Automobillackierungen gewährleistet ist.

Die erfindungsgemäß Reflexionspigmente können neben der Einfärbung von Lacken aber auch zum Einfärben von Kunststoffen, Druckfarben, keramischen Artikeln, Gläsern und von kosmetischen Produkten verwendet werden.

Die folgenden Versuche erläutern beispielhaft die Erfindung:

In den nachfolgend aufgeführten Beispielen 1 bis 4 wurde folgende Apparatur benutzt:

Mit Infrarot-Strahlern beheizbarer Wirbelbettreaktor aus Glas mit konischem Wirbelgaseintritt an der Unterseite und mit durch Stickstoffpulse abrennbaren Filterstrümpfen an der Oberseite, Durchmesser 60 mm, Höhe 1000 mm, zwei seitlich auf ein Drittel Höhe angebrachte Düsen.

Alle angegebenen Gasmengen sind bei 20 °C und bei 1,013 bar gemessen.

Beispiel 1

In den Wirbelbettreaktor werden 300 g eines handelsüblichen Aluminiumpigmentes mit einer BET-Oberfläche von 1,5 m²/g und einem mittleren Teilchendurchmesser von 60 µm (90 % der Teilchen liegen zwischen 35 und 90 µm) eingefüllt. Durch Einblasen von 600 l/h Stickstoff und 100 l/h Luft an der unteren Öffnung des Konus wird das Pigment fluidisiert. Der Luftstrom wird durch auf 50 °C geheiztes Wasser geleitet. Mit Hilfe der IR-Strahler wird die Wirbelbettinnentemperatur auf Werte zwischen 192 und 228 °C gebracht. Nach Erreichen dieser Temperatur wird ein Stickstoffstrom von 300 l/h, der durch Einleiten in einen mit TiCl₄ gefüllten, auf 50 °C temperierten Sättigerkolben mit Titanetrachlorid-Dampf beladen ist, durch eine Düse in den Ofen geblasen. Das Titanetrachlorid reagiert mit dem mit dem Luftstrom eingebrachten Wasserdampf zu Titandioxid und Chlorwasserstoff. Unter den gewählten Reaktionsbedingungen scheidet sich das gebildete Titandioxid spontan als Film auf den Aluminiumplättchen ab. Insgesamt werden über einen Zeitraum von 12 Stunden 400 ml TiCl₄ in das Wirbelbett eingetragen, wobei nach 50, 100, 150, 170, 190, 210, 230, 250, 270, 290, 310 und 350 ml TiCl₄ jeweils eine kleine Pigmentprobe entnommen wird. Ausbeute: 460 g TiO₂-beschichtetes Aluminiumpigment mit 28,0 Gew.% Titan.

Zur Beurteilung der Koloristik der erfindungsgemäß hergestellten Pigmente werden je 0,4 g der Pigmentproben in 3,6 g eines Polyester-Mischlakkes mit 21 Gew.% Feststoffanteil eingerührt und 2 Minuten lang im Red Devil dispergiert. Mit einem Spiralrakel (80 µm Naßfilmdicke) werden auf einem schwarzweißen Karton Rakelabzüge der pigmen-

tierten Lacke angefertigt. Die Messung der CIELAB-Farbwerde erfolgt mit einem DATACOLOR Spektralphotometer MCS 111 mit Metallic-Meßkopf GK 111 bei einer Winkel-Differenz von 20° zum Glanzwinkel. Die Angaben der Farbwerte (L^* , a^* und b^*) beziehen sich auf die Normlichtart D 65. Dabei entspricht L^* der Helligkeit, a^* dem Rot- bzw. Grünanteil und b^* dem Blau- bzw. Gelbanteil. Alle Lackierungen zeigen den von Aluminiumpigmenten bekannten hohen metallischen Glanz. Zusätzlich weisen sie in Abhängigkeit von der auf das Aluminiumpigment aufgebrachten Titandioxidmenge pastellartige Interferenzfarben in der Reihenfolge blau, gold, rot, violett und grün auf. Ab einem Titangehalt von 20 Gew.% werden Interferenzfarben höherer Ordnung erhalten.

Beispiel 2

In den Wirbelbettreaktor werden 200 g eines handelsüblichen Aluminiumpigmentes mit einer BET-Oberfläche von 1,5 m²/g und einem mittleren Teilchendurchmesser von 60 µm (90 % der Teilchen liegen zwischen 35 und 90 µm) eingefüllt. Durch Einblasen von 400 l/h Stickstoff, der durch Einleiten in 50 °C warmes Wasser mit Wasserdampf angereichert ist, an der unteren Öffnung des Konus wird das Pigment fluidisiert. Mit Hilfe der IR-Strahler wird die Wirbelbettinnentemperatur auf Werte zwischen 210 und 220 °C gebracht. Nach Erreichen dieser Temperatur wird ein Stickstoffstrom von 150 l/h, der durch Einleiten in einen mit TiCl₄ gefüllten, auf 50 °C temperierten Sättigerkolben mit Titanetetrachlorid-Dampf beladen wird, durch eine Düse in den Ofen geblasen. Das Titanetetrachlorid reagiert mit dem mit dem Stickstoffstrom eingebrachten Wasserdampf zu Titandioxid und Chlorwasserstoff. Unter den gewählten Reaktionsbedingungen scheidet sich das gebildete Titandioxid spontan als Film auf den Aluminiumplättchen ab. Insgesamt werden über einen Zeitraum von 2,5 Stunden 20 ml TiCl₄ in das Wirbelbett eingetragen. Ein Rakelabzug einer Pigmentprobe - nach Beispiel 1 angefertigt - zeigt hohen metallischen Glanz mit blauem Schimmer.

Beispiel 3

In den Wirbelbettreaktor wird eine Mischung aus 150 g handelsüblichem Aluminiumpigment mit einer BET-Oberfläche von 1,5 m²/g und einem mittleren Teilchendurchmesser von 60 µm (90 % der Teilchen liegen zwischen 35 und 90 µm) und 150 g handelsüblichem Aluminiumpigment mit einer BET-Oberfläche von 4,5 m²/g und einem mittleren Teilchendurchmesser von 20 µm (90 % der Teilchen

liegen zwischen 6 und 35 µm) eingefüllt. Durch Einblasen von 150 l/h Stickstoff und 180 l/h Luft an der unteren Öffnung des Konus wird das Pigment fluidisiert und homogenisiert. Der Luftstrom wird durch auf 50 °C geheiztes Wasser geleitet. Mit Hilfe der IR-Strahler wird die Wirbelbettinnentemperatur auf Werte zwischen 195 und 200 °C gebracht. Nach Erreichen dieser Temperatur wird mit Hilfe eines Stickstoffstromes von 200 l/h, der vorher durch auf 50 °C geheiztes Wasser geleitet wird, Wasserdampf in den Reaktor eingeführt und der Wirbelgasstrom durch Einleiten in einen mit TiCl₄ gefüllten, auf 50 °C temperierten Sättigerkolben mit Titanetetrachlorid-Dampf beladen. Unter den gewählten Reaktionsbedingungen scheidet sich das gebildete Titandioxid spontan als Film auf den Aluminiumplättchen ab. Insgesamt werden über einen Zeitraum von 12 Stunden 270 ml TiCl₄ in das Wirbelbett eingetragen. Das Pigment zeigt metallischen Glanz mit rötlichem Schimmer. Ein Rakelabzug dieses Produktes zeigt die CIELAB-Farbwerde $L^* = 107,1$; $a^* = 2,2$; $b^* = 7,6$.

Im Anschluß an die TiO₂-Beschichtung wird ein Stickstoffstrom von 200 l/h, der durch Einleiten in einen mit Fe(CO)₅ gefüllten, auf 50 °C temperierten Sättigerkolben mit Eisenpentacarbonyl-Dampf beladen wird, durch eine Düse in den Ofen geblasen. Das Eisencarbonyl reagiert mit dem dort vorhandenen Sauerstoff zu Eisenoxid (HZämatit) und Kohlendioxid. Unter den gewählten Reaktionsbedingungen scheidet sich das gebildete Fe₂O₃ spontan als Film auf den TiO₂-beschichteten Aluminiumplättchen ab. Insgesamt werden über einen Zeitraum von 0,5 Stunden 10 ml (Fe(CO)₅ in das Wirbelbett eingetragen. Ein Rakelabzug einer Pigmentprobe zeigt hohen metallischen Glanz mit intensiv rotem Schimmer mit den CIELAB-Farbwerden $L^* = 102,8$; $a^* = 5,8$; $b^* = 8,9$.

Beispiel 4

In den Wirbelbettreaktor wird eine Mischung aus 150 g handelsüblichem Aluminiumpigment mit einer BET-Oberfläche von 1,5 m²/g und einem mittleren Teilchendurchmesser von 60 µm (90 % der Teilchen liegen zwischen 35 und 90 µm) und 150 g handelsüblichem Aluminiumpigment mit einer BET-Oberfläche von 4,5 m²/g und einem mittleren Teilchendurchmesser von 20 µm (90 % der Teilchen liegen zwischen 6 und 35 µm) eingefüllt. Durch Einblasen von 150 l/h Stickstoff und 180 l/h Luft an der unteren Öffnung des Konus wird das Pigment fluidisiert und homogenisiert. Der Luftstrom wird durch auf 50 °C geheiztes Wasser geleitet. Mit Hilfe der IR-Strahler wird die Wirbelbettinnentemperatur auf Werte zwischen 195 und 200 °C gebracht. Nach Erreichen dieser Temperatur wird mit

Hilfe eines Stickstoffstromes von 200 l/h, der vorher durch auf 50 °C geheiztes Wasser geleitet wird, Wasserdampf in den Reaktor eingeführt und der Wirbelgasstrom durch Einleiten in einen mit TiCl₄ gefüllten, auf 50 °C temperierten Sättigerkolben mit Titanetrachlorid-Dampf beladen. Unter den gewählten Reaktionsbedingungen scheidet sich das gebildete Titandioxid spontan als Film auf den Aluminiumplättchen ab. Insgesamt werden über einen Zeitraum von 7 Stunden 130 ml TiCl₄ in das Wirbelbett eingetragen. Das Pigment weist eine dunkelblaue Farbe auf. Ein Rakelabzug einer Pigmentprobe - nach Beispiel 1 angefertigt - zeigt hohen metallischen Glanz mit intensiv blauem Schimmer.

Beispiel 5

25 g des nach Beispiel 4 hergestellten blauen Interferenzpigmentes werden in einen beheizbaren 250 ml Quarzdrehkolben mit eingebauten, 0,5 cm breiten Stolperleisten eingetragen und unter Stickstoffatmosphäre unter Drehen des Kolbens auf 600 °C aufgeheizt. Dann wird getrocknetes NH₃-Gas mit einem Durchsatz von 30 l/h 60 Min. lang über das TiO₂-beschichtete Al-Pigment geleitet. Danach wird unter einem Stickstoffstrom 3 Stunden lang abgekühlt.

Das Produkt ist intensiv blau mit einem leichten Rotstich. Mikroskopische Aufnahmen zeigen, daß das Pigment seine Plättchenform beibehalten hat. Röntgenaufnahmen lassen TiN bzw. TiO (nicht unterscheidbar) erkennen. Die Analyse ergibt einen Gehalt von 1 Gew.% N³⁻.

Ansprüche

1. Metallisch glänzende Reflexionspigmente aus einem Substrat aus plättchenförmigem Aluminium und einer Beschichtung aus Titanoxiden.
2. Reflexionspigmente nach Anspruch 1, dadurch gekennzeichnet, daß die Beschichtung aus Titandioxid besteht.
3. Reflexionspigmente nach Anspruch 1, dadurch gekennzeichnet, daß die Beschichtungen Oxide des Titans mit einer Oxidationszahl des Titans <4 enthalten.
4. Reflexionspigmente nach Anspruch 3, dadurch gekennzeichnet, daß sie Titanitrid und/oder Titanoxinitrid enthalten.
5. Reflexionspigmente nach Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß sie zusätzlich Beschichtungen aus anderen Metalloxiden aufweisen.
6. Reflexionspigmente nach Anspruch 5, dadurch gekennzeichnet, daß die anderen Metalloxide Eisenoxid sind.

7. Verfahren zur Herstellung der Reflexionspigmente nach Ansprüchen 1 und 2, dadurch gekennzeichnet, daß man TiCl₄-Dampf in eine mit einem inertem Trägergas aufrechterhaltene Wirbelschicht aus plättchenförmigem Aluminium, bei Temperaturen oberhalb von 100 °C, zusammen mit Wasserdampf einleitet, mit der Maßgabe, daß das Volumen der TiCl₄-Dämpfe, bezogen auf das Volumen der anderen in die Wirbelschicht eingeleiteten Gase und Dämpfe 5 Vol.% nicht überschreitet.
8. Verfahren zur Herstellung von Reflexionspigmenten nach Ansprüchen 1, 3 und 4, dadurch gekennzeichnet, daß man Reflexionspigmente gemäß Anspruch 2, einer Behandlung mit reduzierenden Gasen, insbesondere mit Ammoniak, bei Temperaturen von 400 bis 900 °C unterwirft.
9. Verfahren zur Herstellung von Reflexionspigmenten nach Ansprüchen 5 bis 6, dadurch gekennzeichnet, daß man dampfförmiges Eisenpentacarbonyl in eine mit einem inertem Trägergas aufrechterhaltene Wirbelschicht aus mit Titanoxiden belegten Reflexionspigmenten einleitet und bei Temperaturen oberhalb von 150 °C oxidiert, mit der Maßgabe, daß die Menge des in die Wirbelschicht eingeführten Eisenpentacarbonyls, bezogen auf die insgesamt in die Wirbelschicht eingeführten Gase, 5 Vol.% nicht überschreitet.
10. Verwendung der Reflexionspigmente gemäß Ansprüchen 1 bis 6 zum Einfärben von Lacken, Kunststoffen, Druckfarben, keramischen Artikeln, Gläsern und von kosmetischen Produkten.

Patentansprüche für den folgenden Vertragsstaat:
ES

1. Verfahren zur Herstellung von Reflexionspigmenten aus einem Substrat aus plättchenförmigem Aluminium und einer Beschichtung aus Titanoxiden, dadurch gekennzeichnet, daß man TiCl₄-Dampf in eine mit einem inertem Trägergas aufrechterhaltene Wirbelschicht aus plättchenförmigem Aluminium, bei Temperaturen oberhalb von 100 °C, zusammen mit Wasserdampf einleitet, mit der Maßgabe, daß das Volumen der TiCl₄-Dämpfe, bezogen auf das Volumen der anderen in die Wirbelschicht eingeleiteten Gase und Dämpfe 5 Vol.% nicht überschreitet.
2. Verfahren zur Herstellung von Reflexionspigmenten nach Anspruch 1, dadurch gekennzeichnet, daß man die Reflexionspigmente anschließend einer Behandlung mit reduzierenden Gasen, insbesondere mit Ammoniak, bei Temperaturen von 400 bis 900 °C unterwirft.
3. Verfahren zur Herstellung von Reflexionspigmenten nach Ansprüchen 1 bis 2, dadurch gekennzeichnet, daß man dampfförmiges Eisenpentacarbonyl in eine mit einem inertem Trägergas aufrech-

terhaltene Wirbelschicht aus mit Titanoxiden belegten Reflexionspigmenten einleitet und bei Temperaturen oberhalb von 150 °C oxidiert, mit der Maßgabe, daß die Menge des in die Wirbelschicht eingeführten Eisenpentacarbonyls, bezogen auf die insgesamt in die Wirbelschicht eingeführten Gase, 5 Vol.% nicht überschreitet.

5

10

15

20

25

30

35

40

45

50

55

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betreift Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
A	EP-A-0 106 235 (BASF) ---		C 09 C 1/00
A,D	EP-A-0 033 457 (BASF) ---		
A	CHEMICAL ABSTRACTS, Band 101, Nr. 22, 26. November 1984, Seite 92, Zusammenfassung Nr. 193781r, Columbus, Ohio, US; & JP-A-59 126 468 (SHISEIDO CO., LTD) 21-07-1984 -----		
RECHERCHIERTE SACHGEBiete (Int. Cl.4)			
C 09 C			
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt			
Recherchenort	Abschlußdatum der Recherche	Prüfer	
DEN HAAG	03-07-1989	VAN BELLINGEN I.C.A.	
KATEGORIE DER GENANNTEN DOKUMENTE		T : der Erfindung zugrunde liegende Theorien oder Grundsätze E : älteres Patentdokument, das jedoch erst am oder nach dem Anmelde datum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : aus andern Gründen angeführtes Dokument & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	
X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A : technologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischenliteratur			