# Traucated Multiplier

## 壹.設計原理與架構

→ no\_trunc

1.設計原理: unsigned a\*b,用 bit by bit 相乘 row 相加,最後輸出 n bits。

二、trunc\_const\_row (k=3)

1.設計原理: traucated column index 0~r-1 的項目,最後輸出 n bits。



三、trunc\_no\_corr(k=3)

1.設計原理:在 trunc\_const\_row 的基礎上,加上 correction constant,取對應代號的 correction constant 位元數據。



correction constant :

$$C = -\frac{E_{total}}{2} = (2^k + r - 2) \cdot 2^{r-1} + \frac{1}{2}$$

### 四、trunc\_var\_row(k=3)

1.設計原理: 將 traucated 的部分移到剩餘項目的首項,並且在首項到次尾項加1,進行 row addition。



Fig. 2. Truncated multiplier with variable correction.

## 五、trunc\_var\_array(k=3)

1.設計原理: 將 variable correction 演算法轉換成 structure 架構。



MFA (modified FA): AND+FA RFA (reduced FA): FA producing carry out only MHA (modified HA): AND+HA SHA (specialized HA): MFA with one input set to 1

# 貳.電路合成與計算軟硬誤差

# - Comparison of Synthesis Results

| two acts Ov O   |       | area(um2) | time(ns) | power(w)   |           |              |  |
|-----------------|-------|-----------|----------|------------|-----------|--------------|--|
| truncate 8x8    |       | CL(total) | delay    | dynamic    | leakage   | total        |  |
|                 | area  | 256.96    | 1.60     | 33.3811 u  | 2.9556 u  | 3.6335e-02 m |  |
| no_trunc        | mid   | 407.11    | 1.10     | 70.9366 u  | 4.9459 u  | 7.5881e-02 m |  |
|                 | delay | 892.00    | 0.62     | 296.7810 u | 17.6717 u | 0.3145 m     |  |
|                 | area  | 670.42    | 2.00     | 73.9780 u  | 6.9171 u  | 8.0895e-02 m |  |
| trunc_const_row | mid   | 858.44    | 1.50     | 128.3466 u | 9.5692 u  | 0.1379 m     |  |
|                 | delay | 1570.36   | 1.00     | 387.2937 u | 29.2377 u | 0.4165 m     |  |
| trunc_no_corr   | area  | 215.01    | 1.50     | 30.0849 u  | 2.4790 u  | 3.2564e-02 m |  |
|                 | mid   | 382.16    | 1.10     | 69.2807 u  | 4.9980 u  | 7.4279e-02 m |  |
|                 | delay | 785.18    | 0.73     | 235.1097 u | 16.5202 u | 0.2516 m     |  |
|                 | area  | 196.18    | 1.10     | 38.0522 u  | 2.2212 u  | 4.0273e-02 m |  |
| trunc_var_row   | mid   | 407.79    | 0.85     | 104.5805 u | 6.3529 u  | 0.1109 m     |  |
|                 | delay | 560.88    | 0.65     | 171.6869 u | 10.1777 u | 0.1819 m     |  |
| trunc_var_array | area  | 235.65    | 2.30     | 24.4740 u  | 2.4143 u  | 2.6888e-02 m |  |
|                 | mid   | 410.73    | 1.65     | 63.8365 u  | 7.0911 u  | 7.0928e-02 m |  |
|                 | delay | 471.52    | 1.03     | 128.5801 u | 9.6638 u  | 0.1382 m     |  |

| truncate 16x8   |       | area(um2) | time(ns) | power(w)   |           |              |
|-----------------|-------|-----------|----------|------------|-----------|--------------|
|                 |       | CL(total) | delay    | dynamic    | leakage   | total        |
| no_trunc        | area  | 507.35    | 2.30     | 53.9442 u  | 6.3073 u  | 6.0250e-02 m |
|                 | mid   | 829.63    | 1.55     | 108.3714 u | 9.4345 u  | 0.1178 m     |
|                 | delay | 2033.49   | 0.82     | 563.0808 u | 40.1699 u | 0.6032 m     |
| trunc_const_row | area  | 641.62    | 2.00     | 68.9059 u  | 5.9383 u  | 7.4844e-02 m |
|                 | mid   | 803.10    | 1.50     | 117.3108 u | 8.3803 u  | 0.1257 m     |
|                 | delay | 1590.09   | 1.00     | 388.1834 u | 29.6525 u | 0.4178 m     |
| trunc_no_corr   | area  | 467.43    | 2.10     | 55.0026 u  | 5.8102 u  | 6.0811e-02 m |
|                 | mid   | 904.71    | 1.50     | 131.3356 u | 12.9441 u | 0.1443 m     |
|                 | delay | 1685.80   | 0.86     | 457.0753 u | 32.8562 u | 0.4899 m     |
| trunc_var_row   | area  | 207.75    | 1.40     | 31.0121 u  | 2.3719 u  | 3.3383e-02 m |
|                 | mid   | 384.88    | 1.10     | 73.3827 u  | 5.2319 u  | 7.8613e-02 m |
|                 | delay | 686.98    | 0.75     | 188.6193 u | 13.8003 u | 0.2024 m     |
| trunc_var_array | area  | Х         | X        | X          | X         | X            |

| mid   | X | X | X | X | Х |
|-------|---|---|---|---|---|
| delay | X | X | X | X | X |

| truncate 16x16  |       | area(um2) | time(ns) | power(w)   |           |              |
|-----------------|-------|-----------|----------|------------|-----------|--------------|
|                 |       | CL(total) | delay    | dynamic    | leakage   | total        |
| no_trunc        | area  | 1096.58   | 3.20     | 91.8556 u  | 13.3892 u | 0.1052 m     |
|                 | mid   | 1904.44   | 2.20     | 196.9998 u | 22.8253 u | 0.2198 m     |
|                 | delay | 3987.14   | 1.20     | 817.3482 u | 77.2156 u | 0.8946 m     |
| trunc_const_row | area  | 643.89    | 2.20     | 65.5245 u  | 6.2133 u  | 7.1738e-02 m |
|                 | mid   | 765.90    | 1.60     | 100.7993 u | 7.6041 u  | 0.1084 m     |
|                 | delay | 1666.53   | 1.00     | 385.9305 u | 30.1785 u | 0.4161 m     |
| trunc_no_corr   | area  | 763.18    | 2.20     | 95.7562 u  | 9.1379 u  | 0.1049 m     |
|                 | mid   | 1635.00   | 1.65     | 242.6292 u | 24.2223 u | 0.2669 m     |
|                 | delay | 2868.57   | 1.10     | 667.5333 u | 56.8047 u | 0.7243 m     |
| trunc_var_row   | area  | 712.15    | 2.10     | 90.9260 u  | 8.4688 u  | 9.9395e-02 m |
|                 | mid   | 1693.06   | 1.65     | 284.0857 u | 27.5245 u | 0.3116 m     |
|                 | delay | 2369.83   | 1.23     | 533.4427 u | 48.0964 u | 0.5815 m     |
| trunc_var_array | area  | X         | X        | X          | Х         | X            |
|                 | mid   | X         | X        | X          | X         | X            |
|                 | delay | X         | X        | X          | X         | X            |

## 二、如何驗證硬體算出的值是正確的,並計算軟硬誤差

- (1) 使用 ans = a\*b 直接產生答案
- (2) 比對硬體輸出與 ans 的數值
- (3) 計算誤差: 絕對誤差= (outcome ans); 相對誤差= (outcome ans)/ans

先將 ans 和 outcome 轉成 real type,接著套用誤差公式,同時輸出在 terminal 和寫出檔案。

36 \* 129 = sp: 00010010 result:00100100 ==> correct absolute\_error : 8.893182e-323 relative\_error : 1.000000e+00 9 \* 99 = sp: 00000011 result:01111011 ==> correct absolute error : 5.928788e-322 relative error : 4.000000e+01 13 \* 141 = sp: 00000111 result:00101001 ==> correct absolute\_error : 1.679823e-322 relative\_error : 4.857143e+00 101 \* 18 = sp: 00000111 result:00011010 ==> correct absolute error : 9.387247e-323 relative error : 2.714286e+00 1 \* 13 = sp: 00000000 result:00001101 ==> correct absolute error : 6.422853e-323 relative error : inf 118 \* 61 = sp: 00011100 result:00011110 ==> correct absolute\_error : 9.881313e-324 relative\_error : 7.142857e-02 237 \* 140 = sp: 10000001 result:10011100 ==> correct absolute error : 1.333977e-322 relative error : 2.093023e-01 249 \* 198 = sp: 11000000 result:10010110 ==> correct absolute error : 2.075076e-322 relative error : 2.187500e-01 197 \* 170 = sp: 10000010 result:11010010 ==> correct absolute error : 3.952525e-322 relative error : 6.153846e-01 229 \* 119 = sp: 01101010 result:01110011 ==> correct absolute\_error : 4.446591e-323 relative\_error : 8.490566e-02

#### (圖) 軟硬比較結果

-----

Allpass!! # 0/ 100

-----

### (圖) allpass 結果顯示

說明: 利用 verilog 直接產生答案,與電路輸出進行比對,並輸出比對成果。比對的 answer 與 hardware outcome 皆是取 MSB m bits (假設 a \* b = m\*n = 16\*8 bits,則取 16 作為輸出答案 bit 數)。 比對結果在+-1 ulp 範圍內皆判斷正確,使用 real type 計算誤差,套用誤差公式可以得到絕對和相對 誤差的數值,並將其輸出,誤差皆 < 0.1,部分會出現 "inf" or "nan" 的情況,由於只取 MSB m bits,所以可能出現分母為零的情況。

註:因為 traucated 演算法只有考慮無號數的情況,所以輸入皆為無號數。

#### 誤差分析比較:

目前誤差落在+-1ulp,直觀上我認為是進位的問題,在 traucated 不同的演算法中,都是會有誤差。因此,進位誤差應該是 traucated 省略項的誤差,如 correction error and variable correction 雖然有彌補誤差,但仍然存在誤差值,約+-1ulp。

no traucated 沒有誤差,trunc\_no\_corr 沒有補誤差項,出現進位誤差的項目比較多。
trunc\_var\_row 比 trunc\_const\_row 出現進位誤差的項目較少,相較之下減少了 average 、 mean square and maximum error,但 hardware area 都需要比較多。