

What is RFID?

- Passively powered integrated circuits
 - -LF(125-148.5 kHz)
 - Automobile immobilizers, Exxon Mobile SpeedPass™
 - HF (13.56 MHz)
 - Credit Cards, MIFARE, E-Passports
 - UHF (902-928 MHz)
 - · Inventory tracking
- Cheap
- Abundant

RFID Circuits

- Older technologies (0.25μm/0.18μm)
- Low power (1-10μW)
 - Subthreshold logic
 - Energy efficiency over performance
- Low area (0.5mm²)
 - Digital logic
 - 4,000 8,000 gates in EPC tags
 - 200 2,000 gates for security
 - Other
 - · Power rectification
 - Storage capacitors
 - Signal modulation
 - ID

Secure Systems Part 4

RFID Security and Privacy (Juels 2006)

- RFID is ubiquitous in space and time
- RFID is very limited in terms of power (uW) and processing (<5K gates)
- RFID Privacy involves bad (snooping) readers and good tags
- RFID Counterfeiting involves good readers and bad (cloned) tags
- Lightweight cryptography can help solve both problems
- But we must assume a limited attacker model

Secure Systems Part 4

7

Why are RFIDs trackable?

- · Simple static identifiers are the most naïve
- How about encrypting ID?
 - Creates new static identifier, i.e., "meta-ID"
- How about a law-enforcement access key?
 - Tag-specific keys require initial release of identity
 - Universal keys subject to interception / reverseengineering
- Tags readable only at short range, e.g., 1 cm?
 - Protects privacy, but is RFID cost effective?
- Anti-counterfeiting?

Secure Systems Part 4

Read Ranges of Tags

- Nominal read range: RFID standards and product specifications generally indicate the
 read ranges at which they intend tags to operate. These ranges represent the maximum
 distances at which a normally operating reader, with an ordinary antenna and power
 output, can reliably scan tag data. ISO 14443, for example, specifies a nominal range of
 10cm for contactless smartcards.
- Rogue scanning range: The range of a sensitive reader equipped with a powerful
 antenna or antenna array can exceed the nominal read range. High power output
 further amplifies read ranges. A rogue reader may even output power exceeding legal
 limits. For example, Kfir and Wool [65] suggest that a battery-powered reading device
 can potentially scan ISO 14443 tags at a range of as much as 50cm, i.e., five times the
 nominal range. The rogue scanning range is the maximum range at which a reader can
 power and read a tag.
- Tag-to-reader eavesdropping range: Read-range limitations for passive RFID result
 primarily from the requirement that the reader power the tag. Once a reader has
 powered a tag, a second reader can monitor resulting tag emissions without itself
 outputting a signal, i.e., it can eavesdrop. The maximum distance of such a second,
 eavesdropping reader may be larger than its rogue scanning range.
- Reader-to-tag eavesdropping range: In some RFID protocols, a reader transmits tagspecific information to the tag. Because readers transmit at much higher power than tags, they are subject to eavesdropping at much greater distances than tag-to-reader communications – perhaps even kilometers away.

Secure Systems Part 4

9

Pseudonym rotation

- Set of cryptographically unlinkable pseudonyms computed externally by trusted verifier
- · Pseudonyms stored on tag
 - · Limited storage means at most, e.g., 10 pseudonyms
- · Tag cycles through pseudonyms

In a nutshell

- "Tree-walking" protocol for identifying tags recursively asks question:
 - "What is your next bit?"
- Blocker tag always says both '0' and '1'!
 - Makes it seem like *all* possible tags are present
 - Reader cannot figure out which tags are actually present
 - Number of possible tags is huge (at least a billion billion), so reader stalls

Secure Systems Part 4

13

RFID Privacy for Public Transportation

- Hong Kong Octopus has 12 million card holders
- 9 billion unlinked trips/yr on US public transit
- Atlanta, Seattle, Chicago, DC, San Francisco
- Boston MBTA in pilot program
 - 50,000 Mifare 1K cards issued
 - \$200 million upgrade of fare system
- Boston MBTA issues
 - How to securely share tag storage space wit
 - No more issuing transit cards (PKI?)
 - Real-time information and resource provisioning?
- Ongoing project with Umass/EPFL on location-privacy preserving payment system based on e-cash and pseudonyms

Secure Systems Part 4

