

DS-GA 3001.007 Introduction to Machine Learning

Lecture 4

Minimizing Empirical Risk - Gradient Descent

- ► Survey 2
 - ▶ Please respond on Qualtrics by October 7

- ► Survey 2
 - ▶ Please respond on Qualtrics by October 7
- ► Homework 2
 - ▶ Please submit to Gradescope by October 3
 - ► Contact Ravi and Raghav through Messages

- ► Survey 2
 - ▶ Please respond on Qualtrics by October 7
- ► Homework 2
 - ▶ Please submit to Gradescope by October 3
 - ► Contact Ravi and Raghav through Messages
- ▶ Project

- ► Survey 2
 - ▶ Please respond on Qualtrics by October 7
- ► Homework 2
 - ▶ Please submit to Gradescope by October 3
 - ► Contact Ravi and Raghav through Messages
- ▶ Project
- ► Final
 - ► The final exam is scheduled for December 18 12-1:50pm.

- Review
- Lesson
- Demo

- Review
 - ► In Sample and Out of Sample
 - **Estimation Error**
 - ► Approximation Error
 - Optimization Error
- Lesson
- Demo

- Review
- Lesson
 - Bound difference betweenIn sample and Out of Sample
 - ► Minimize In Sample
- Demo

- Review
- Lesson
- Demo

In-sample error:

$$E_{\mathrm{in}}(h) = \frac{1}{N} \sum_{n=1}^{N} e\left(h(\mathbf{x}_n), f(\mathbf{x}_n)\right)$$

Out-of-sample error:

$$E_{\mathrm{out}}(h) = \mathbb{E}_{\mathbf{x}} [e(h(\mathbf{x}), f(\mathbf{x}))]$$

The target distribution $P(y \mid \mathbf{x})$ is what we are trying to learn

The input distribution $P(\mathbf{x})$ quantifies relative importance of \mathbf{x}

Merging $P(\mathbf{x})P(y|\mathbf{x})$ as $P(\mathbf{x},y)$ mixes the two concepts

Question

```
E[(c-y)^2] = E[(c-E[y]+E[y]-y)^2]
= E[(c-E[y])^2] + E[(t-E[y])^2] + 2E[c-E[y]]E[y-E[y]]
= bias + vars +
want to be 0
```

Let $\mathcal{X} = \{1, \ldots, 10\}$, let $\mathcal{Y} = \{1, \ldots, 10\}$, and let $A = \mathcal{Y}$. Suppose the data generating distribution, P, has marginal $X \sim \text{Unif}\{1, \ldots, 10\}$ and conditional distribution $Y|X = x \sim \text{Unif}\{1, \ldots, x\}$. For each loss function below give a Bayes decision function.

mean (a) $\ell(a, y) = (a - y)^2$, regression

(b) $\ell(a, y) = |a - y|$,

mod (c) $\ell(a,y) = 1 (a \neq y)$. if a is equal to y then the loss function will be 1, else 0 classification

l is for the loss function there are three different loss functions

p(y>=c)=p(y< c) c: median

- 1. Can we make sure that $E_{
 m out}(g)$ is close enough to $E_{
 m in}(g)$?
- 2. Can we make $E_{\mathrm{in}}(g)$ small enough?

- 1. Can we make sure that $E_{\mathrm{out}}(g)$ is close enough to $E_{\mathrm{in}}(g)$?
- 2. Can we make $E_{\mathrm{in}}(g)$ small enough?

Model complexity
$$\uparrow$$
 $E_{
m in}$ \downarrow Model complexity \uparrow $E_{
m out}-E_{
m in}$ \uparrow

 $P_{\chi} = \text{Uniform}[0,1], Y \equiv 1 \text{ (i.e. } Y \text{ is always 1)}.$

 $\mathcal{P}_{\chi \times y}$.

 $P_{\mathfrak{X}}=\mathsf{Uniform}[\mathsf{0,1}],\ Y\equiv 1$ (i.e. Y is always 1).

A sample of size 3 from $\mathcal{P}_{\mathfrak{X}\times\mathfrak{Y}}$.

 $P_{\mathfrak{X}} = \mathsf{Uniform}[0,1], \ Y \equiv 1 \ (\mathsf{i.e.} \ Y \ \mathsf{is always} \ 1).$

A proposed prediction function:

$$\hat{f}(x) = 1(x \in \{0.25, 0.5, 0.75\}) = \begin{cases} 1 & \text{if } x \in \{0.25, .5, .75\} \\ 0 & \text{otherwise} \end{cases}$$

 $P_{\mathfrak{X}} = \mathsf{Uniform}[0,1], \ Y \equiv 1 \ (\mathsf{i.e.} \ Y \ \mathsf{is always} \ 1).$

Under square loss or 0/1 loss: \hat{f} has Empirical Risk = 0 and Risk = 1.

- 1. Can we make sure that $E_{
 m out}(g)$ is close enough to $E_{
 m in}(g)$?
- 2. Can we make $E_{\mathrm{in}}(g)$ small enough?

$$f^* = \underset{f}{\operatorname{arg\,min}} \mathbb{E}\ell(f(x), y)$$

$$f^* = \underset{f}{\operatorname{arg\,min}} \mathbb{E}\ell(f(x), y)$$
$$f_{\mathcal{F}} = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \mathbb{E}\ell(f(x), y))$$

$$f^* = \underset{f}{\operatorname{arg \, min}} \mathbb{E}\ell(f(x), y)$$

$$f_{\mathfrak{F}} = \underset{f \in \mathfrak{F}}{\operatorname{arg \, min}} \mathbb{E}\ell(f(x), y))$$

$$\hat{f_n} = \underset{f \in \mathfrak{F}}{\operatorname{arg \, min}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$

the data we have ERM

$$f^* = \underset{f}{\operatorname{arg\,min}} \mathbb{E}\ell(f(x), y)$$

$$f_{\mathcal{F}} = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \mathbb{E}\ell(f(x), y))$$

$$\hat{f}_n = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

• Approximation Error (of \mathcal{F}) = $R(f_{\mathcal{F}}) - R(f^*)$

$$f^* = \underset{f}{\operatorname{arg \, min}} \mathbb{E}\ell(f(x), y)$$

$$f_{\mathcal{F}} = \underset{f \in \mathcal{F}}{\operatorname{arg \, min}} \mathbb{E}\ell(f(x), y))$$

$$\hat{f}_n = \underset{f \in \mathcal{F}}{\operatorname{arg \, min}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

- Approximation Error (of \mathcal{F}) = $R(f_{\mathcal{F}}) R(f^*)$
- Estimation error (of \hat{f}_n in \mathcal{F}) = $R(\hat{f}_n) R(f_{\mathcal{F}})$

$$f^* = \underset{f}{\operatorname{arg\,min}} \mathbb{E}\ell(f(x), y)$$

$$f_{\mathcal{F}} = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \mathbb{E}\ell(f(x), y))$$

$$\hat{f_n} = \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

- Approximation Error (of \mathcal{F}) = $R(f_{\mathcal{F}}) R(f^*)$
- Estimation error (of \hat{f}_n in \mathcal{F}) = $R(\hat{f}_n) R(f_{\mathcal{F}})$

Excess Risk
$$(\hat{f}_n)$$
 = $R(\hat{f}_n) - R(f^*)$
 = $R(\hat{f}_n) - R(f_{\mathcal{F}}) + R(f_{\mathcal{F}}) - R(f^*)$.
estimation error approximation error

can we compute it?

random or not?

Finding Accurate Hypotheses

positive or negative?

how change the model complexity?

how change with the sample complexity?

$$f^* = \underset{f}{\operatorname{arg\,min}} \mathbb{E}\ell(f(x), y)$$

$$f_{\mathcal{F}} = \underset{f \in \mathcal{F}}{\arg\min} \mathbb{E}\ell(f(x), y)$$

$$\hat{f}_n = \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

- Approximation Error (of \mathcal{F}) = $R(f_{\mathcal{F}}) R(f^*)$
- Estimation error (of \hat{f}_n in \mathcal{F}) = $R(\hat{f}_n) R(f_{\mathcal{F}})$

positive

Excess Risk
$$(\hat{f}_n)$$
 = $R(\hat{f}_n) - R(f^*)$
= $R(\hat{f}_n) - R(f_{\mathcal{F}}) + R(f_{\mathcal{F}}) - R(f^*)$
estimation error approximation error

Question

- Review
- Lesson
- Demo

Problem: learn unknown axis-aligned rectangle R using as small a labeled sample as possible.

Hypothesis: rectangle R'. In general, there may be false positive and false negative points.

Simple method: choose tightest consistent rectangle R' for a large enough sample. How large a sample?

■ What is the probability that $R(R') > \epsilon$?

- Fix $\epsilon > 0$ and assume $\Pr_D[R] > \epsilon$ (otherwise the result is trivial).
- Let r_1, r_2, r_3, r_4 be four smallest rectangles along the sides of R such that $\Pr_D[r_i] \ge \frac{\epsilon}{4}$.

$$\begin{split} & \mathsf{R} \!=\! [l,r] \! \times \! [b,t] \\ & r_4 \! =\! [l,s_4] \! \times \! [b,t] \\ & s_4 \! =\! \inf \{s \colon \Pr \left[[l,s] \! \times \! [b,t] \right] \! \geq \! \frac{\epsilon}{4} \} \\ & \Pr \left[[l,s_4[\times [b,t] \right] < \! \frac{\epsilon}{4} \end{split}$$

- Errors can only occur in R-R'. Thus (geometry), $R(R') > \epsilon \Rightarrow R'$ misses at least one region r_i .
- Therefore, $\Pr[R(\mathsf{R}') > \epsilon] \le \Pr[\bigcup_{i=1}^{4} \{\mathsf{R}' \text{ misses } r_i\}]$

$$\leq \sum_{i=1}^{4} \Pr[\{\mathsf{R' misses } r_i\}]$$

$$\leq 4(1 - \frac{\epsilon}{4})^m \leq 4e^{-\frac{m\epsilon}{4}}.$$

 \blacksquare Set $\delta > 0$ to match the upper bound:

$$4e^{-\frac{m\epsilon}{4}} \le \delta \Leftrightarrow m \ge \frac{4}{\epsilon} \log \frac{4}{\delta}.$$

■ Then, for $m \ge \frac{4}{\epsilon} \log \frac{4}{\delta}$, with probability at least $1 - \delta$,

$$R(R') \leq \epsilon$$
.

Minimize In Sample Error

```
PERCEPTRON(\mathbf{w}_0)

1 \mathbf{w}_1 \leftarrow \mathbf{w}_0 > typically \mathbf{w}_0 = \mathbf{0}

2 for t \leftarrow 1 to T do

3 RECEIVE(\mathbf{x}_t)

4 \hat{y}_t \leftarrow \text{sgn}(\mathbf{w}_t \cdot \mathbf{x}_t)

5 RECEIVE(y_t)

6 if (\hat{y}_t \neq y_t) then

7 \mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_t \mathbf{x}_t > more generally \eta y_t \mathbf{x}_t, \eta > 0.

8 else \mathbf{w}_{t+1} \leftarrow \mathbf{w}_t

9 return \mathbf{w}_{T+1}
```

Sign $\langle \mathbf{w}, \mathbf{x} angle$		+1	-1
	+1	+1	-1
	-1	-1	+1

▶ Take

$$F(\mathbf{w}) = \frac{1}{T} \sum_{t=1}^{T} \max \left(0, -y_t(\mathbf{w} \cdot \mathbf{x}_t) \right)$$

▶ Take

$$F(\mathbf{w}) = \frac{1}{T} \sum_{t=1}^{T} \max \left(0, -y_t(\mathbf{w} \cdot \mathbf{x}_t) \right)$$

Set

$$\widetilde{F}(\mathbf{w}, \mathbf{x}) = \max(0, -f(\mathbf{x})(\mathbf{w} \cdot \mathbf{x}))$$

Take

$$F(\mathbf{w}) = \frac{1}{T} \sum_{t=1}^{T} \max \left(0, -y_t(\mathbf{w} \cdot \mathbf{x}_t) \right)$$

Set

$$\widetilde{F}(\mathbf{w}, \mathbf{x}) = \max(0, -f(\mathbf{x})(\mathbf{w} \cdot \mathbf{x}))$$

Update Guess

$$\mathbf{w}_{t+1} \leftarrow \begin{cases} \mathbf{w}_t - \eta \nabla_{\mathbf{w}} \widetilde{F}(\mathbf{w}_t, \mathbf{x}_t) & \text{if } \mathbf{w} \mapsto \widetilde{F}(\mathbf{w}, \mathbf{x}_t) \text{ differentiable at } \mathbf{w}_t \\ \mathbf{w}_t & \text{otherwise,} \end{cases}$$

$$\mathbf{w}_{t+1} \leftarrow \begin{cases} \mathbf{w}_t + \eta y_t \mathbf{x}_t & \text{if } y_t(\mathbf{w} \cdot \mathbf{x}_t) < 0; \\ \mathbf{w}_t & \text{if } y_t(\mathbf{w} \cdot \mathbf{x}_t) > 0; \\ \mathbf{w}_t & \text{otherwise,} \end{cases}$$

$$\mathbf{w}_{t+1} \leftarrow \begin{cases} \mathbf{w}_t + \eta y_t \mathbf{x}_t & \text{if } y_t(\mathbf{w} \cdot \mathbf{x}_t) < 0; \\ \mathbf{w}_t & \text{if } y_t(\mathbf{w} \cdot \mathbf{x}_t) > 0; \\ \mathbf{w}_t & \text{otherwise,} \end{cases}$$

$$\nabla_{\mathbf{w}} \widetilde{F}(\mathbf{w}, \mathbf{x}_t) = -y\mathbf{x}_t \text{ if } y_t(\mathbf{w} \cdot \mathbf{x}_t) < 0$$

$$\mathbf{w}_{t+1} \leftarrow \begin{cases} \mathbf{w}_t + \eta y_t \mathbf{x}_t & \text{if } y_t(\mathbf{w} \cdot \mathbf{x}_t) < 0; \\ \mathbf{w}_t & \text{if } y_t(\mathbf{w} \cdot \mathbf{x}_t) > 0; \\ \mathbf{w}_t & \text{otherwise,} \end{cases}$$

$$\nabla_{\mathbf{w}} \widetilde{F}(\mathbf{w}, \mathbf{x}_t) = -y\mathbf{x}_t \text{ if } y_t(\mathbf{w} \cdot \mathbf{x}_t) < 0$$

$$\nabla_{\mathbf{w}} F(\mathbf{w}, \mathbf{x}_t) = 0 \text{ if } y_t(\mathbf{w} \cdot \mathbf{x}_t) > 0.$$

► Use derivatives to approximate a function by a linear function

$$f(\mathbf{w}) \approx f(\mathbf{w}^{(t)}) + \langle \mathbf{w} - \mathbf{w}^{(t)}, \nabla f(\mathbf{w}^{(t)}) \rangle$$

Use derivatives to approximate a function by a linear function

$$f(\mathbf{w}) \approx f(\mathbf{w}^{(t)}) + \langle \mathbf{w} - \mathbf{w}^{(t)}, \nabla f(\mathbf{w}^{(t)}) \rangle$$

Approximation inaccurate for far away points

$$\mathbf{w}^{(t+1)} = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{w} - \mathbf{w}^{(t)}\|^2 + \eta \left(f(\mathbf{w}^{(t)}) + \langle \mathbf{w} - \mathbf{w}^{(t)}, \nabla f(\mathbf{w}^{(t)}) \rangle \right).$$

Use derivatives to approximate a function by a linear function

$$f(\mathbf{w}) \approx f(\mathbf{w}^{(t)}) + \langle \mathbf{w} - \mathbf{w}^{(t)}, \nabla f(\mathbf{w}^{(t)}) \rangle$$

Approximation inaccurate for far away points

$$\mathbf{w}^{(t+1)} = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{w} - \mathbf{w}^{(t)}\|^2 + \eta \left(f(\mathbf{w}^{(t)}) + \langle \mathbf{w} - \mathbf{w}^{(t)}, \nabla f(\mathbf{w}^{(t)}) \rangle \right).$$

► Learning Rate controls the trade-off by determining the step size

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla f(\mathbf{w}^{(t)}),$$

Take-Aways

- ► What are excess risk, approximation error, estimation error, and optimization error.
- ► For nested hypothesis spaces, say H1 H2. Explain how we would expect the approximation error and estimation error to change between them?
- ► Why could optimization error be negative but estimation error can never be negative?

Take-Aways

- ► Write the empirical risk for a particular loss function over a particular hypothesis space, such as for square loss over a hypothesis space of linear functions.
- ► Compare and constrast gradient descent and stochastic gradient descent.