Input and Output

Fundamentals

Dr Andrew Scott

a.scott@lancaster.ac.uk

1

Overview

- Look at I/O mechanisms
 - How we implement and control access to devices
 - Clocks and Timers
 - Used to control and synchronise operations

2

Memory Mapped I/O • I/O devices visible as normal memory locations – Easily accessed using C pointers Memory mapped I/O device

3

© Andrew Scott, 2020

4

Optimising Memory Use • Circular buffers help improve data throughput – Help decouple operation of processor and device

- Status Register holds flags for
 - Device ready
 - Data available, etc.

5

Direct Memory Access • Alternative to programmed I/O • Relieves CPU of data transfer DMA Controller Controller Address Count Control S. Interrupt A. ACK 2. Transfer Request 3. Data Transfer

6

© Andrew Scott, 2020

Clocks and Timers

- Real Time Clock (RTC)
 - Returns encoding of current date
- Programmable Interrupt Timer (PIT)
 - Creates periodic event at set/ configurable interval
 - Used to invoke periodic kernel tasks
 - If frequency too
 - Low: Kernel can seem unresponsive
 - High: OS spends too much time servicing timer

7

Avoiding Fine Grained Timers

- · Create event queue
 - Timer configured to fire when next task due, rather than at set period
 - Set interval timer to time delta (+n ms) to next event
- Technique used widely: OSs, simulators, etc.

8