Vaccination Mini Project

Ralph Goguanco

3/11/2022

The goal of this hands-on mini-project is to examine and compare the Covid-19 vaccination rates around San Diego.

```
# Import vaccination data
vax <- read.csv("covid19vaccinesbyzipcode_test.csv")
head(vax)</pre>
```

as_of_date <chr></chr>	zip_code_tabulation_area <int></int>	local_health_jurisdiction <chr></chr>	county <chr></chr>
1 2021-01-05	95959	Nevada	Nevada
2 2021-01-05	95694	Yolo	Yolo
3 2021-01-05	95714	Placer	Placer
4 2021-01-05	95843	Sacramento	Sacramento
5 2021-01-05	95935	Yuba	Yuba
6 2021-01-05	95970	Colusa	Colusa

Q1. What column details the total number of people fully vaccinated?

persons_fully_vaccinated

Q2. What column details the Zip code tabulation area?

zip_code_tabulation_area

Q3. What is the earliest date in this dataset?

head(vax\$as_of_date)

```
## [1] "2021-01-05" "2021-01-05" "2021-01-05" "2021-01-05" "2021-01-05" "2021-01-05" "
```

#2021-01-05

Q4. What is the latest date in this dataset?

tail(vax\$as_of_date)

```
## [1] "2022-03-08" "2022-03-08" "2022-03-08" "2022-03-08" "2022-03-08" ## [6] "2022-03-08"
```

#2022-03-08

As we have done previously, let's call the skim() function from the skimr package to get a quick overview of this dataset:

```
skimr::skim(vax)
```

Data summary

Name	vax

Number of rows	109368
Number of columns	15
Column type frequency:	
character	5
numeric	10
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
as_of_date	0	1	10	10	0	62	0
local_health_jurisdiction	0	1	0	15	310	62	0
county	0	1	0	15	310	59	0
vem_source	0	1	15	26	0	3	0
redacted	0	1	2	69	0	2	0

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
zip_code_tabulation_area	0	1.00	93665.11	1817.39	90001	92257.75	93658.50	95380.50	97635.0	_=
vaccine_equity_metric_quartile	5394	0.95	2.44	1.11	1	1.00	2.00	3.00	4.0	
age12_plus_population	0	1.00	18895.04	18993.91	0	1346.95	13685.10	31756.12	88556.7	=
age5_plus_population	0	1.00	20875.24	21106.01	0	1460.50	15364.00	34877.00	101902.0	■
persons_fully_vaccinated	18494	0.83	12246.65	13155.33	11	1074.00	7453.00	20138.00	79763.0	= _
persons_partially_vaccinated	18494	0.83	848.69	1401.05	11	77.00	377.00	1091.00	36844.0	
percent_of_population_fully_vaccinated	18494	0.83	0.51	0.26	0	0.34	0.55	0.71	1.0	
percent_of_population_partially_vaccinated	18494	0.83	0.05	0.10	0	0.02	0.03	0.05	1.0	
percent_of_population_with_1_plus_dose	18494	0.83	0.55	0.28	0	0.36	0.59	0.76	1.0	
booster_recip_count	64441	0.41	4265.63	6073.54	11	183.00	1207.00	6484.00	51001.0	

Q5. How many numeric columns are in this dataset?

9 >Q6. Note that there are "missing values" in the dataset. How many NA values there in the persons_fully_vaccinated column?

```
N <- sum(is.na(vax$persons_fully_vaccinated))
total <- sum(vax$percent_of_population_fully_vaccinated, na.rm = TRUE)</pre>
```

What percent of persons_fully_vaccinated values are missing (to 2 significant figures)?

N/total ## [1] 0.3959551

#Working with dates

library(lubridate)

```
## Attaching package: 'lubridate'
 ## The following objects are masked from 'package:base':
 ##
 ##
        date, intersect, setdiff, union
 today()
 ## [1] "2022-03-11"
 #Specify that we are using the year-month-day format
 vax$as_of_date <- ymd(vax$as_of_date)</pre>
 today() - vax$as_of_date[1]
 ## Time difference of 430 days
   Q9. How many days have passed since the last update of the dataset? 3 days
 today() - vax$as_of_date[109358]
 ## Time difference of 3 days
   Q10. How many unique dates are in the dataset (i.e. how many different dates are detailed)? 62
 date_uniq <- unique(vax$as_of_date)</pre>
 length(date_uniq)
 ## [1] 62
#Working with ZIP codes
 library(zipcodeR)
 # Pull data for all ZIP codes in the dataset
 zipdata <- reverse_zipcode( vax$zip_code_tabulation_area )</pre>
 # Subset to San Diego county only areas
 sd <- vax[ 4 , ]
 library(dplyr)
 ## Attaching package: 'dplyr'
 ## The following objects are masked from 'package:stats':
 ##
 ##
        filter, lag
 ## The following objects are masked from 'package:base':
 ##
 ##
        intersect, setdiff, setequal, union
 sd <- filter(vax, county == "San Diego")</pre>
 nrow(sd)
```

[1] 6634

Q11. How many distinct zip codes are listed for San Diego County?

length(unique(sd))

[1] 15

Q12. What San Diego County Zip code area has the largest 12 + Population in this dataset?

which.max(sd[, 7])

[1] 103

Zip Code in #103 is 92154

sd1 <- filter(sd, as_of_date == "2022-02-22")</pre>

Q13. What is the overall average "Percent of Population Fully Vaccinated" value for all San Diego "County" as of "2022-02-22"?

mean(sd1\$percent_of_population_fully_vaccinated, na.rm = TRUE)

[1] 0.7145899

71.46%

Q14. Using either ggplot or base R graphics make a summary figure that shows the distribution of Percent of Population Fully Vaccinated values as of "2022-02-22"?

hist(sd\$percent_of_population_fully_vaccinated)

Histogram of sd\$percent_of_population_fully_vaccinated


```
ucsd <- filter(sd, zip_code_tabulation_area=="92037")
ucsd[1,]$age5_plus_population</pre>
```

[1] 36144

Q15. Using ggplot make a graph of the vaccination rate time course for the 92037 ZIP code area:

```
library(ggplot2)
ggplot(ucsd) +
aes(x=ucsd$as_of_date,
    y = ucsd$percent_of_population_fully_vaccinated) +
geom_point() +
geom_line(group=1) +
ylim(c(0,1)) +
labs(x="Date", y="Percent Vaccinated")
```

Warning: Use of `ucsd\$as_of_date` is discouraged. Use `as_of_date` instead.

```
## Warning: Use of `ucsd$percent_of_population_fully_vaccinated` is discouraged.
## Use `percent_of_population_fully_vaccinated` instead.
```

```
## Warning: Use of `ucsd$as_of_date` is discouraged. Use `as_of_date` instead.
```

```
## Warning: Use of `ucsd$percent_of_population_fully_vaccinated` is discouraged.
## Use `percent_of_population_fully_vaccinated` instead.
```


Comparing to similar sized areas

	as_of_date <date></date>	zip_code_tabulation_area <int></int>	local_health_jurisdiction <chr></chr>	cou <ch< th=""><th>unty nr></th><th>•</th></ch<>	unty nr>	•
1	2022-02-22	94110	San Francisco	Sar	n Francisco	

	as_of_date <date></date>	zip_code_tabulation_area <int></int>	local_health_jurisdiction <chr></chr>	county <chr></chr>	•
2	2022-02-22	93552	Los Angeles	Los Angeles	
3	2022-02-22	93611	Fresno	Fresno	
4	2022-02-22	92336	San Bernardino	San Bernardino	
5	2022-02-22	95116	Santa Clara	Santa Clara	
6	2022-02-22	92571	Riverside	Riverside	
6 rows	s 1-5 of 16 columns				

Q16. Calculate the mean "Percent of Population Fully Vaccinated" for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2022-02-22". Add this as a straight horizontal line to your plot from above with the geom_hline() function?

```
ggplot(ucsd) +
aes(x=ucsd$as_of_date,
    y = ucsd$percent_of_population_fully_vaccinated) +
geom_point() +
geom_line(group=1) +
ylim(c(0,1)) +
labs(x="Date", y="Percent Vaccinated") +
geom_hline(yintercept = 0.732736)
```

Warning: Use of `ucsd\$as_of_date` is discouraged. Use `as_of_date` instead.

```
## Warning: Use of `ucsd$percent_of_population_fully_vaccinated` is discouraged.
## Use `percent_of_population_fully_vaccinated` instead.
```

```
## Warning: Use of `ucsd$as_of_date` is discouraged. Use `as_of_date` instead.
```

```
## Warning: Use of `ucsd$percent_of_population_fully_vaccinated` is discouraged.
## Use `percent_of_population_fully_vaccinated` instead.
```


Q17. What is the 6 number summary (Min, 1st Qu., Median, Mean, 3rd Qu., and Max) of the "Percent of Population Fully Vaccinated" values for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2022-02-22"?

#fivenum(vax.36)

Q18. Using ggplot generate a histogram of this data.

```
ggplot(vax.36, aes(x=vax.36$percent_of_population_fully_vaccinated)) +
geom_histogram()
```

```
## Warning: Use of `vax.36$percent_of_population_fully_vaccinated` is discouraged.
## Use `percent_of_population_fully_vaccinated` instead.
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Q19. Is the 92109 and 92040 ZIP code areas above or below the average value you calculated for all these above?

```
vax %>% filter(as_of_date == "2022-02-22") %>%
 filter(zip_code_tabulation_area=="92040") %>%
```

select(percent_of_population_fully_vaccinated)

percent_of_population_fully_vaccinated

0.559102

1 row

Below the average value

Q20. Finally make a time course plot of vaccination progress for all areas in the full dataset with a age5_plus_population > 36144.

```
#vax.36.all <- filter(vax, age5_plus_population > 36144)

#ggplot(vax.36.all) +
# aes(x = vax.36$as_of_date,
# percent_of_population_fully_vaccinated,
# group=zip_code_tabulation_area) +
# geom_line(alpha=0.2, color=vax) +
# ylim(vax.36) +
# labs(x="Date" , y="Percent",
# title="Vaccination rate accross California",
# subtitle="Only areas with a population above 36k are shown") +
# geom_hline(yintercept = 0.7327, linetype=dash)
```

Q21. How do you feel about traveling for Spring Break and meeting for in-person class afterwards?

I feel better knowing that the percent vaccinated will only go up