ایجاد هیوریستیکهای قابل قبول برای پازل ۸ تایی

ساده سازی مسئله پازل ۸ تایی

 \Box مسئله ساده شده (Relaxed Problem): نسخه ای از مسئله اصلی که در آن یک یا چند محدودیت حذف شده اند.

[B محدودیتها: [برای حرکت دادن یک کاشی از خانه \Box

I. خانه B باید خالی باشد.

 \mathbf{A} باید همسایه خانه \mathbf{A} باشد.

1 3 4 5 6 7 8

حالت هدف

حالت شروع

□مسئله سادهشده:

- **نسخه ۱:** هر دو محدودیت حذف شوند.
 - نسخه ۲: محدودیت I حذف شود.
 - نسخه ۳: محدودیت II حذف شود.

√ هزینه دقیق یک مسئله ساده شده را میتوان به عنوان تخمینی از هزینه واقعی مسئله اصلی در نظر گرفت.

h(start) = 8

حالت هدف

ساده سازی مسئله پازل ۸ تایی -۱

تابع هیوریستیک مسئله ساده شده، وقتی هر دو محدودیت زیر حذف شوند

I. خانه B باید خالی باشد.

انه \mathbf{A} باید همسایه خانه \mathbf{A} باشد. \mathbf{II}

 \Box تابع هیوریستیک = تعداد کاشیهایی که در مکان نادرست قرار دارند.

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
UCS	112	6,300	3.6×10^6	
A*	13	39	227	
TILES			3	

$$h(start) = 3 + 1 + 2 + ... = 18$$

ساده سازی مسئله پازل ۸ تایی -۲

 \Box تابع هیوریستیک مسئله ساده شده، وقتی فقط محدودیت زیر حذف شوند

I. خانه B باید خالی باشد.

□ تابع هیوریستیک = مجموع فواصل منهتنی کاشیها تا مکان هدف.

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
TILES	13	39	227	
A*	12	25	73	
MANHATTAN				

Statistics from Andrew Moore

مثال: پازل ۸تایی با تابع هیوریستیک ۱

 \Box تابع هیوریستیک = تعداد کاشی هایی که در مکان نادرست قرار دارند.

□راه حل: خانه خالی باید به صورت: [بالا، بالا، چپ، پایین، راست] جابه جا شود

مثال: پازل ۸تایی با تابع هیوریستیک ۲

□راه حل: خانه خالی باید به صورت: [بالا، بالا، چپ، پایین، راست] جابه جا شود

ترکیب توابع هیوریستیک

تسلط (Dominance): اگر به ازای هر n داشته باشیم: lacksquare

 $h_2(n) \ge h_1(n)$ (الف)

(ب) و هر دو تابع هیوریستیک قابل قبول باشند،

آنگاه h_2 بر h_1 تسلط دارد.

□ نكات كليدى:

- تابع هیوریستیک با مقدار بزرگتر، بهتر است، تا زمانی که هر دو قابل قبول باشند.
- تابع هیوریستیک صفر (UCS) بسیار ضعیف است (هر هیوریستیک دیگر بر ان تسلط دارد)
- استفاده از هزینه واقعی به عنوان یک تابع هیوریستیک ($h=h^st$) خیلی خوب است و بهینه است اما معمولاً بسیار پرهزینه است

□ ترکیب توابع هیوریستیک:

 $h(n) = \max(h_1(n), h_2(n))$ گردد تعریف کرد: اگر دو تابع هیوریستیک هیچ کدام بر دیگری تسلط نداشته باشند، میتوان با ترکیب آنها یک تابع هیوریستیک جدید تعریف کرد:

• حداكثر مقدار دو تابع هيوريستيك قابل قبول، همچنان قابل قبول است و بر هر دو غلبه دارد!

جستجوی *A: خلاصه

f(n) = g(n) + h(n)

 \square جستجوی A^* هم از هزینه پیموده شده تا الان استفاده می کند و هم از پیش بینی هزینه از الان تا هدف.

 \square جستجوی A^* برای جستجوی درختی بهینه است اگر از توابع هیوریستیک قابل قبول استفاده کند.

Relaxed) طراحی تابع هیوریستیک یک نکته کلیدی است که اغلب برای طراحی آن از مسئله ساده شده (Problem) استفاده می شود.

مستموى هزينه يكنوافت

مستموى مريسانه

مسائل ارضای محدودیت

Constraint Satisfaction Problems (CSP)

جستجو برای چیست؟

- مسیر یافته شده تا هدف مهمترین موضوع است.
- مسیرهای مختلف دارای هزینه ها و عمقهای متفاوتی هستند.
- هیوریستیکها مسیر جستجو را به سمت هدف هدایت می کنند.

□شناسایی: انتساب مقدار به متغیرها

- خود هدف مهم است و نه مسیر رسیدن به هدف.
 - همه مسیرها دارای عمق یکسانی هستند.
- جستجوی ارضای محدودیت مختص مسائل شناسایی است.

مسائل ارضای محدودیت

□مسائل جستجوی استاندارد:

- حالتها به صورت «جعبه سیاه» هستند: ساختمان دادههای دلخواه
 - تابع آزمون هدف، هر تابعی میتواند باشد.
 - تابع جانشین نیز هر تابعی میتواند باشد.

□مسائل ارضای محدودیت:

- یک زیرمجموعه خاص از مسائل جستجو
- میگیرند D_i می دار خود را از یک دامنه X_i تعریف می شود که مقدار خود را از یک دامنه D_i می گیرند
 - آزمون هدف یک مجموعه از محدودیتها است که یک ترکیب مجاز از مقادیر را برای متغیرها مشخص می کنند.

✔ امکان استفاده از الگوریتمهای عمومی مفید را فراهم میکند که قدرت بیشتری نسبت به الگوریتمهای جستجوی استاندارد دارند.

مسائل ارضای محدودیت

N variables domain D constraints

states
partial assignment

goal test complete; satisfies constraints

successor function
assign an unassigned variable

تعریف CSPها (مسائل ارضای محدودیتها)

- یک \mathbf{CSP} از سه مؤلفه X، D و D تشکیل شده است:
 - $\{X_1,...,X_n\}$: مجموعهای از متغیرها استX
- مجموعهای از دامنهها است: $\{D_1,...,D_n\}$ به ازای هر متغیر یک دامنه $\mathbb D$
- .ت یک دامنه D_i شامل مجموعه ای از مقادیر مجاز $\{v_1,...,v_k\}$ برای متغیر D_i است.
- مجموعهای از محدودیتها است که ترکیبهای مجاز از مقادیر را مشخص می کند \mathbb{C}
 - است $\langle scope,rel
 angle$ است C_i شامل یک جفت C_i
 - scope **یا دامنه** مجموعهای از متغیرها است که در محدودیت شرکت می کنند
 - $\langle (X_1,X_2),X_1>X_2\rangle \quad \text{or} \ \langle (X_1,X_2),\{(3,2),(3,1),(2,1)\}\rangle$
 - یا رابطه مشخص می کند که این متغیرها چه مقادیری می توانند بگیرند rel

تعریف CSPها (مسائل ارضای محدودیتها)

 $\{X_i=v_i,...,X_j=v_j\}$ ها با انتساب مقادیر به متغیرها سروکار دارند، CSP \square

□یک انتساب جزئی، انتسابی است که برخی متغیرها بدون مقدار باقی میمانند.

است. \square یک انتساب کامل و سازگار است. \square

□یک انتساب **کامل**، انتسابی است که در آن هر متغیر مقداردهی شده باشد.

یک انتساب که هیچ یک از محدودیتها را نقض نکند، سازگار یا یک انتساب قانونی نامیده می شود.

مثالهای CSP

مثال: رنگ آمیزی نقشه

 $X = \{WA, NT, Q, NSW, V, SA, T\}$ متغیرها:

□دامنهها: D = {Red, Green, Blue}

□محدودیتها:

• ضمنی: WA ≠ NT شهرهای مجاور باید رنگهای متفاوتی داشته باشند

• صریح: (WA, NT) ∈ {(red, green), (red, blue), ...}

□راه حلها: انتسابهایی هستند که تمام متغیرها مقدار بگیرند، در حالیکه همه محدودیتها را برآورده کنند، (یک انتساب کامل و سازگار)

• مثال:

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}