제 5 강 : 기본 자료형

- ※ 학습목표
- √ 기본 자료형의 종류에 대해 설명할 수 있다.
- √ 자료형을 기반으로 한 Wrapper Class에 대해 설명할 수 있다.
- √ 형변환에 대해 설명할 수 있다.
- 1. 기본 자료형
- ① 논리형

기본표현	자료크기	데이터 표현 범위
boolean	1 byte	참 : true
		거짓 : false

[실습] day02라는 프로젝트를 새로 만들고 작업을 수행한다.

```
1 package tommy.java.exam01;
2 public class BooleanEx {
4 public static void main(String[] ar) {
5 boolean b = true;
6 System.out.println("변수 b의 값: " + b);
7 }
8 }
```

② 문자형

기본표현	자료크기	데이터 표현 범위
char	2 byte	0 ~ 65,535

- √ ex) ch='\u0041' ☞ unicode방식 ch=65 , ch='A', ch='\n'
- √ 아스키 코드 1바이트 문자를 표현, 0 ~ 255 문자범위
- √ 유니코드(세계 문자 표준) 2바이트 문자를 표현, 0 ~ 65535 문자범위
- √ 유니코드란? 세계 여러 국가의 문자들 (한자나 한글 같은 비 영어권 문자 2바이트) 까지 표현하기에 부족해서 1바이트를 추가로 할당해서 표현한 방식
- √ http://www.unicode.org/charts/PDF/UFF00.pdf에서 참조

[실습]

```
package tommy.java.exam02;
 1
 2
 3
    public class CharEx {
             public static void main(String[] ar) {
 4
 5
                      char ch1 = 'A';
 6
                      char ch2 = ' \u0041';
 7
                      System.out.println("ch1 + ch2 = " + ch1 + ch2);
 8
                      System.out.println("ch1 + ch2 = " + (ch1 + ch2));
 9
                      System.out.println("ch1 + ch2 = " + (char) (ch1 + ch2));
             }
10
11
```

③ 정수형 : 기본형은 int

기본표현	자료크기	데이터 표현 범위
byte	1 byte	-2 ⁷ ~ 2 ⁷ - 1 (-128 ~ 127)
short	2 byte	-2 ¹⁵ ~ 2 ¹⁵ - 1 (-32,768 ~ 32,767)
int	4 byte	-2 ³¹ ~ 2 ³¹ - 1
long	8 byte	-2 ⁶³ ~ 2 ⁶³ - 1

$\sqrt{}$ byte

- √ ex) byte bb = -129 ☞ 127이다 [C 에서는]
- √ Java에서는 컴파일 시 error를 발생시킨다. 단, 초기 값일 경우
- √ Why) 안정성 때문에
- √ But) 초기화 후 증감연산에 의한 증감에 대해선 C와 같다.

[실습]

```
package tommy.java.exam03;
1
2
3
   public class ByteEx {
            public static void main(String[] ar) {
4
5
                     byte bb = 127;
6
                     bb++;
7
                     System.out.println("byte bb= " + bb);
8
            }
9
```

```
√ short
```

- √ short s; C에선 쓰레기 값, Java에선 error
- √ but 자동 초기 값을 할당하는 경우도 있다.

[실습]

```
1 package tommy.java.exam04;
2 public class ShortEx {
4 public static void main(String[] ar) {
5 short s;
6 System.out.println("short s = " + s); // 에러발생
7 }
8 }
```

④ 실수형 : 기본형은 double

기본표현	자료크기	데이터 표현 범위
float	4 byte	±1.4*10 ⁻⁴⁵ ~ ±3.4*10 ⁺³⁸
double	8 byte	±-4.9*10 ⁻³²⁴ ~ ±1.7*10 ⁺³⁰⁸

[실습]

```
package tommy.java.exam05;
    public class FloatEx {
 3
 4
             public static void main(String[] ar) {
 5
                      float var1, var2;
                      var1 = 3.4f;
 6
 7
                      var2 = 55.55;
 8
                      System.out.println("var1의 값: " + var1);
 9
                      System.out.println("var2의 값: " + var2);
10
             }
11
```

2. Wrapper Class : 기본 데이터의 클래스화

```
\sqrt{\ } byte > Byte \sqrt{\ } short > Short \sqrt{\ } int > Integer \sqrt{\ } long > Long \sqrt{\ } float > Float \sqrt{\ } double > Double \sqrt{\ } boolean > Boolean \sqrt{\ } char > Character
```

[실습]

```
package tommy.java.exam06;
 1
 2
3
    public class WrapperEx {
 4
             public static void main(String[] ar) {
 5
                     byte a_min = Byte.MIN_VALUE;
 6
                      byte a_max = Byte.MAX_VALUE;
 7
                     char b_min = Character.MIN_VALUE;
8
                      char b_max = Character.MAX_VALUE;
9
                     int c_min = Integer.MIN_VALUE;
10
                     int c_max = Integer.MAX_VALUE;
                      float d_min = Float.MIN_VALUE;
11
12
                      float d_max = Float.MAX_VALUE;
                     System.out.println("byte = " + a_min + " ~ " + a_max);
13
                      System.out.println("char = " + (int) b_min + " \sim " + (int) b_max);
14
15
                      System.out.println("int = " + c_min + " ~ " + c_max);
                      System.out.println("float = " + d_min + " ~ " + d_max);
16
17
             }
18
```

3. 형변환

종 류	설 명	코딩 예
프로모션	더 큰 자료형으로 변환(자동) 정보의 손실 없음	short a, b; a = b = 10; int c = a + b;
디모션	더 작은 자료형으로 변환(명시) 정보의 손실 가능성이 있음	int c = 0; short s = 10; c = (int)(10+3.5f);

```
√ boolean 형은 형 변환 불가
```

- √ byte ☞ char은 casting 이다. 입출력범위가 기준이니까.
- √ long ☞ float는 promotion [why] 실수형은 정수형보다 크니까!

① 묵시적 변환

- √ 적은 데이터 형을 큰 데이터 형으로 변환할 때
- √ 컴파일러가 자동으로 변환시켜 수행
- $\sqrt{}$ double da = int_val;

- ② 명시적 변환
- √ 큰 데이터 형을 적은 데이터 형으로 변환 할 때
- √ 캐스터연산자(cast operator)를 사용
- √ 값의 정밀도를 잃을 수 있다.
- $\sqrt{\ }$ long la = (long) float_value ;
- ③ 숫자를 문자열로
- $\sqrt{\ }$ String ss = String.valueOf(number);
- ④ 문자열을 숫자로
- $\sqrt{}$ byte b = Byte.parseByte(str);
- $\sqrt{\ }$ short s = Short.parseShort(str);
- $\sqrt{\ }$ int i = Integer.parseInt(str);
- $\sqrt{\ }$ long lo = Long.parseLong(str);
- $\sqrt{}$ float f = Float.parseFloat(str);
- $\sqrt{}$ double d = Double.parseDouble(str);