Probabilitate și statistică în Data Science

Partea IV. Statistică II

Ce ne așteaptă?

- 1. Testul t
- 2. Testul ANOVA I
- 3. Testul ANOVA II fără replicare
- 4. Testul ANOVA II cu replicare

Notații

- n dimensiunea esantionului
- μ valorea medie a populatiei
- \bar{x} valoarea medie a esantionului
- s abaterea standard a esantionului
- t statistica testului t
- $t_{df,\alpha}$ valoarea critica a testului **t**
- df gradul de libertate
- s^2 dispersia esantionului
- H_0 ipoteza nula
- H_1 ipoteza alternativa
- F statistica testului ANOVA
- SSG suma patratelor grupurilor (inter grup)
- SSE suma patratelor erorii (intra grup)
- α pragul de semnificatie
- F_{critic} valoarea critica a testului ANOVA
- $SSB suma\ patratelor\ blocurilor\ (inter-bloc)$
- SST suma patratelor totala
- SSI suma patratelor intersectiilor

1. Testul t

Particularitățile testului t

- Spre deosebire de testul z, testul t numit și testul Student, nu necesită cunoașterea abaterii standard a populației
- Utilizând tabele t Student, testul t poate determina dacă există deosebiri semnificative între 2 seturi de date
- Datorită dispersiei şi valorilor aberante, pentru compararea a 2 seturi nu este suficientă doar valoarea medie de aceea testul t va considera şi dispersiile eşantioanelor
- Există câteva tipuri de teste t Student:
 - Testul t al unui eşantion
 - Testul t a 2 eşantioane independente
 - Testul t a 2 eșantioane împerecheate dependente

- Testul t al unui singur eșantion permite pe baza valorii medii \bar{x} a eșantionului testarea ipotezei nule în cazul în care se cunoaște valoarea medie μ a populație
- Testul t a 2 eșantioane independente permite testarea ipotezei nule precum că valorile medii \bar{x}_1 și \bar{x}_2 ale 2 eșantioane independente sunt egale
- Testul t a 2 eșantioane împerecheate dependente se utilizează în cazul eșantioanelor dependente și anume:
 - Un eşantion este testat de 2 ori (repetarea măsurărilor)
 - Două eşantioane coincid sau sunt împerecheate

Testul t Student al unui eșantion

- Algoritmul acestui test t coincide cu cel al testului z cu deosebirea în determinarea statistici t considerându-se abaterea standard s a eșantionului dar nu a populație și compararea acesteia cu valoarea t critică din tabelul t Student
- Determinarea statistici t

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

• Compararea valorii statistici t cu $t_{n-1,\alpha}$ critic determinat din tabelul student în funcție de gradul de libertate n-1 și pragul de semnificație α

t – statistica t

 \bar{x} - valoarea media a eșantionului

μ – valoarea medie a populației

s – abaterea standard a eşantionului

n − dimensiunea eşantionului

 $t_{n-1,\alpha}$ - valoarea t critică

n-1 – gradul de libertate

 α – pragul de semnificație

Testul t student a 2 eșantioane independente

- Determinarea statisticii t a 2 eşantioane independente diferă în funcție de scenariile:
 - o Dimensiuni egale, dispersii egale
 - o Dimensiuni diferite, dispersii egale
 - Dimensiuni egale sau diferite, dispersii diferite (cel mai frecvent caz)
- Determinarea statistici t

$$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{{s_1}^2}{n_1} + \frac{{s_2}^2}{n_2}}}$$

 $\overline{x_1}$, $\overline{x_2}$ - valorile medii ale eşantioanelor

 s_1^2, s_2^2 - dispersiile eşantioanelor

 n_1 , n_1 - dimensiunile eşantioanelor

- Valoarea statistici t se compară cu valoarea critică $t_{df,\alpha}$ tabelară dependentă de gradul de libertate df și pragul de semnificație α
- Gradul de libertate se determină cu relația lui Satterthwaite

$$df = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{S_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{S_2^2}{n_2}\right)^2}$$

• În cele mai multe cazuri valoarea gradului de libertate se determină cu o relație mult mai simplă ce permite obținerea unei valori apropiate valorii reale a df

$$df = n_1 + n_2 - 2$$

Distribuția t Student

- Distribuția t are extremitățile de valori mai mari decât distribuția z normală
- Distribuţia t se apropie de distribuţia normală dacă gradul de libertate scade

Exemplu test t a 2 eșantioane independente (1)

 O companie are 2 fabrici de producere a aceluiași automobil. Din anumite motive una dintre fabrici va trebui închisă și se dorește a se determina care fabrică produce mai puţine maşini. Numărul de maşini produse în ultimele 10 zile în cele două fabrici este specificat în tabelul

Fabrica A	1184	1203	1219	1238	1243	1204	1269	1256	1156	1248
Fabrica B	1136	1178	1212	1193	1226	1154	1230	1222	1161	1148

Se determină valorile medii

$$\bar{x}_A = 1222$$

$$\bar{x}_B = 1186$$

Se determină diferența valorilor medii

$$\bar{x}_A - \bar{x}_B = 36$$

Se poate spune că fabrica A produce mai multe mașini decât fabrica B dacă diferența în 10 zile este de 36 de mașini?

Exemplu test t a 2 eșantioane independente (2)

Se stabilesc ipotezele

$$H_0$$
: $X_A \leq X_B$

$$H_1$$
: $X_A > X_B$

- \circ Se stabileşte tipul testului întrucât H_1 conține semnul ">" testul este unilateral
- Se determină gradul de libertate

$$df = n_1 + n_2 - 2 = 10 + 10 - 2 = 18$$

Se determină dispersiile

$$s_A^2 = \frac{\sum (x_A - \bar{x_A})^2}{n - 1} = 1248$$

$$s_B^2 = \frac{\sum (x_B - \bar{x_B})^2}{n-1} = 1246$$

Exemplu test t a 2 eșantioane independente (3)

Se calculează statistica t

$$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{{s_1}^2}{n_1} + \frac{{s_2}^2}{n_2}}} = \frac{1222 - 1186}{\sqrt{\frac{1248}{10} + \frac{1246}{10}}} = 2,28$$

 Se stabileşte pragul de semnificaţie – în sarcină nu este specificat un nivel de încredere, valoarea pragului de semnificaţie α va fi valoarea implicită

$$\alpha = 0.05$$

 \circ Se determină valoarea tabelară t – critică $t_{df,\alpha}$ pentru gradul de libertate df=18 și pragul de semnificație $\alpha=0.05$

cum. prob	<i>t</i> _{.90}	t .95	t .975	t _{.99}	t _{.995}
one-tail	0.10	0.05	0.025	0.01	0.005
two-tails	0.20	0.10	0.05	0.02	0.01
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861

$$t_{18,0.05} = 1,734$$

Exemplu test t a 2 eșantioane independente (4)

Se compară valoarea statisticii t cu valoarea critică $t_{df,\alpha}$

$$t = 2,28 > t_{df,\alpha} = 1,734$$

Întrucât $t > t_{df,\alpha}$ ipoteza nulă se respinge deci se poate constata cu un grad de încredere de 95% că fabrica A produce mai multe mașini decât fabrica B

Exemplu test t a 2 eșantioane independente în Python

 O companie are 2 fabrici de producere a aceluiași automobil. Din anumite motive una dintre fabrici va trebui închisă și se dorește a se determina care fabrică produce mai puține mașini. Numărul de mașini produse în ultimele 10 zile în cele două fabrici este specificat în tabelul

Fabrica A	1184	1203	1219	1238	1243	1204	1269	1256	1156	1248
Fabrica B	1136	1178	1212	1193	1226	1154	1230	1222	1161	1148

```
from scipy.stats import ttest_ind
a=[1184,1203,1219,1238,1243,1204,1269,1256,1156,1248]
b=[1136,1178,1212,1193,1226,1154,1230,1222,1161,1148]
t_statsitic=ttest_ind(a,b).statistic
print(t_statsitic)
t_critic=ttest_ind(a,b).pvalue/2
print(t_critic)
```

2. Testul ANOVA I

Esența analizei ANOVA

- ANOVA provine de la ANalysis Of Variance ce s-ar traduce ca analiza dispersiei
- Testul t permite determinarea probabilității că două eșantioane provin din aceeași populație
- Testul ANOVA permite determinarea probabilității că 3 sau mai multe eșantioane provin din aceeași populație

Testul t

Testul ANOVA

Tipuri de test ANOVA

- Testul ANOVA permite determinarea diferențelor de populație între diferite grupuri de variabile independente (categoriale) ce respectă o variabilă dependentă (numerică)
- În funcție de numărul variabilelor independente testul ANOVA poate fi:
 - Testul ANOVA I consideră o singură variabilă independentă

Exemplu: determinarea dacă există diferențe de vârstă între programatorii ce utilizează Python, Java și JavaScript.

- variabila independentă limbajul de programare (se consideră că un programator utilizează un singur limbaj de programare)
- variabila dependentă este vârsta programatorilor

Testul ANOVA II – consideră 2 variabile independente

Exemplu: determinarea dacă există diferențe de vârstă între programatorii ce utilizează Python, Java și JavaScript în funcție de sex.

- variabilele independente limbajul de programare și sexul
- variabila dependentă este vârsta programatorilor

Ipotezele testului ANOVA

 Ipoteza nulă: nu există diferențe de populație între valorile medii ale grupurilor individuale

$$H_0$$
: $\mu_A = \mu_B = \mu_C$

 Ipoteza alternativă: există diferențe de populație între valorile medii ale cel puțin 2 grupuri individuale

Explicația dispersiei

- **ANOVA** consideră două tipuri de dispersie:
 - Dispersie inter-grup cât de departe sunt situate valorile medii ale grupurilor de media totală
 - Dispersia intra-grup cât de departe sunt situate valorile individuale de media grupului în care se conțin

Dispersie inter-grup mare Dispersie intra-grup mică

Distribuții similare în variabila dependentă (vârstă)

Dispersie inter-grup mică Dispersie intra-grup mare

Distribuția F

Testul ANOVA presupune determinarea statisticii F conform relației:

$$F = \frac{Dispersia\ inter-grup}{Dispersia\ intra-grup}$$

- Statistica F este comparată cu o valoarea F critic pentru a respinge sau nu ipoteza nulă
- Valoarea F critic este o valoarea tabelară ce depinde de gradul de libertate şi pragul de semnificație
 - Distribuţia valorilor F este asimetrică

Algoritmul ANOVA I (1)

• Se determină valorile medii ale grupurilor μΑ, μΒ, μc

 Se determină valoarea media a tuturor datelor μτοτ

• Exemplu:

Algoritmul ANOVA I (2)

 Se determină suma pătratelor inter-grup (sum of squares groups - SSG)

$$SSG = n \times \sum_{i} (\mu_i - \mu_{TOT})^2$$

Exemplu:

$$(\mu_A - \mu_{TOT})^2 = (44 - 49)^2 = 25$$

$$(\mu_B - \mu_{TOT})^2 = (50 - 49)^2 = 1$$

$$(\mu_C - \mu_{TOT})^2 = (53 - 49)^2 = 16$$

$$42$$

n = 10 - numarul de elemente în grup

$$SSG = 10 \times 42 = 420$$

		(•)
GroupA	GroupB	GroupC
37	62	50
60	27	63
52	69	58
43	64	54
40	43	49
52	54	52
55	44	53
39	31	43
39	49	65
23	57	43
44	50	53
49		

 μ_{TOT}

GroupB GroupC

50

63

58

62

27

69

(37)

60

52

Algoritmul ANOVA I (3)

 Se determină suma pătratelor intra-grup (sum of squares error - SSE)

Exemplu:

_							/	~_			4
			-					43	64	54	
	$(X_A-\mu_A)^2$	$(X_A-\mu_A)^2$	$(x_B-\mu_B)^2$	$(X_B-\mu_B)^2$	$(x_C-\mu_C)^2$	$(\mathbf{x}_{C} - \mu_{C})^2$		40	43	49	
	49-	64	144	16	9	1	$(37-44)^2$	52	54	52	İ
	256	121	529	36	100	0	=(-7) ² =49	55	44	53	İ
	64	25	361	361	25	100		39	31	43	İ
	1	25	196	1	1	144		39	49	65	7.0
	16	441	49	49	16	100		23	57	43	
		1062		1742		496	$\mu_{A,B,C}$	44)	50	53	/
					TOTAL	3300					
							μ_{TOT}	49			

SSE = 3300

Algoritmul ANOVA I (4)

Se determina gradul de libertate a inter-grup

$$df_{grup} = n_{grup} - 1$$

Exemplu:

$$df_{grup} = 3 - 1 = 2$$

Se determina gradul de libertate a intra-grup

$$df_{eroare} = (n_{linii} - 1) \times n_{grup}$$

Exemplu:

$$df_{eroare} = (10 - 1) \times 3 = 27$$

Algoritmul ANOVA I (5)

Se determină valoarea F

$$F = rac{Dispersia\ inter-grup}{Dispersia\ intra-grup} = rac{rac{SSG}{df_{grup}}}{SSE}$$

• Exemplu:

$$F = \frac{\frac{420}{2}}{\frac{3300}{27}} = \frac{210}{122,22} = 1,718$$

Algoritmul ANOVA I (6)

• Se determină F critic în funcție de pragul de semnificați α =0,05 și gradele de libertate $df_{grup}=2$, $df_{eroare}=27$

$$F_{critic} = 3,35$$

• Întrucât $F=1.718 < F_{critic}=3.35$ ipoteza nulă H_0 : $\mu_A=\mu_B=\mu_C$ nu se respinge, deci nu există diferențe de populație între valorile medii ale grupurilor individuale în exemplul analizat

Valoarea F critic cu Python și Excel

- Se determină F critic în funcție de pragul de semnificați α =0,05 și gradele de libertate $df_{grup}=2$, $df_{eroare}=27$
 - Soluție în Python:

```
from scipy import stats
alfa=0.05
df_grup=2
df_eroare=27
F_critic=stats.f.ppf(1-alfa,dfn=df_grup,dfd=df_eroare)
print(F critic)
```

Soluţie în Excel:

```
=FINV(0.05,2,27)
```

3. Testul ANOVA II fără replicare

Esența ANOVA II

- ANOVA II permite testarea concomitentă a 2 variabile independente
- **Exemplu:** Determinarea dacă există diferențe de vârstă între programatorii în funcție de limbajul ce-l utilizează (Python, Java sau JavaScript) și în funcție de sex (M sau F).
- Conform unei variabile independente datele se vor structura în grupuri ce vor reprezenta coloanele tabelului, iar conform celeilalte în blocuri ce vor reprezenta liniile tabelului
- ANOVA II poate fi:
 - ANOVA II fără replicare blocului îi corespunde o singură valoare pentru fiecare grup
 - ANOVA II cu replicare blocului îi corespund mai multe valori pentru fiecare grup

- ANOVA II are drept scop separarea diferitor aspect ale dispersie totale.
 - În esență, se dorește izolarea și ignorarea dispersiei pe blocuri pentru a înțelege dispersia pe grupuri și invers
- Exemplu pe care se va explica algoritmul ANOVA II fără replicare are un caracter general și este structurat astfel:

	Group 1	Group 2
Block A	8	11
Block B	10	12
Block C	12	13

Algoritmul ANOVA II fără replicare (1)

- · Se calculează valoarea medie pe grupuri
- Se calculează valoarea medie pe blocuri
- Se calculează valoarea medie totală
- Se determină suma pătratelor inter-grup (sum of squares groups - SSG)

$$(\mu_1 - \mu_{TOT})^2 = (10 - 11)^2 = 1$$

 $(\mu_2 - \mu_{TOT})^2 = (12 - 11)^2 = 1$

 $n_B = 3 - numarul de elemente în grup (numarul de blocuri)$

Algoritmul ANOVA II fără replicare (2)

 Se determină suma pătratelor inter-bloc (sum of squares blocks - SSB)

$$(\mu_A - \mu_{TOT})^2 = (9.5 - 11)^2 = 2.25$$

 $(\mu_B - \mu_{TOT})^2 = (11 - 11)^2 = 0$
 $(\mu_C - \mu_{TOT})^2 = (12.5 - 11)^2 = 2.25$
 4.5

 $n_G = 2 - numarul de elemente în blocuri (numarul de grupuri)$

$$SSB = 4.5 \times 2 = 9$$

Algoritmul ANOVA II fără replicare (3)

 Se determină suma pătratelor totală (sum of squares total - SST)

$$(8-11)^{2}+(11-11)^{2}+$$

$$(10-11)^{2}+(12-11)^{2}+$$

$$(12-11)^{2}+(13-11)^{2}=16$$

Nu e necesară multiplicare deoarece toate datele sunt reprezentate

$$SST = 16$$

Se determină suma pătratelor erorii (sum of squares error - SSE)

$$SSE = SST - SSG - SSB$$
$$SSE = 16 - 6 - 9 = 1$$

Algoritmul ANOVA II fără replicare (4)

Se determină gradul de libertare inter-grup

$$df_{grup} = n_G - 1$$

$$df_{grup} = 2 - 1 = 1$$

Se determină gradul de libertare inter-bloc

$$df_{bloc} = n_B - 1$$

$$df_{bloc} = 2 - 1 = 2$$

Se determină gradul de libertare a erorii

$$df_{eroare} = (n_G - 1)(n_B - 1)$$

$$df_{erogre} = (2-1)(3-1) = 2$$

Algoritmul ANOVA II fără replicare (5)

Se determină valoarea F pe grupuri

$$F_G = \frac{\frac{SSG}{df_{grup}}}{\frac{SSE}{df_{eroare}}} = \frac{\frac{6}{1}}{\frac{1}{2}} = 12$$

• Se determină F critic pentru grupuri în funcție de pragul de semnificați α =0,05 și gradele de libertate $df_{arup}=1$, $df_{eroare}=2$

$$F_{critic_G} = 18,5$$

• Întrucât $F_G = 12 < F_{critic\ G} = 18,5$ ipoteza nulă H_0 : $\mu_1 = \mu_2$ nu se respinge, deci nu există diferențe de populație între valorile medii ale grupurilor individuale în exemplul generalizat analizat

Algoritmul ANOVA II fără replicare (6)

Se determină valoarea F pe blocuri

$$F_B = \frac{\frac{SSB}{df_{bloc}}}{\frac{SSE}{df_{eroare}}} = \frac{\frac{9}{2}}{\frac{1}{2}} = 9$$

• Se determină F critic pentru blocuri în funcție de pragul de semnificați α =0,05 și gradele de libertate $df_{bloc}=2$, $df_{eroare}=2$

$$F_{critic_B} = 19$$

• Întrucât $F_B=9 < F_{critic_B}=19$ ipoteza nulă H_0 : $\mu_A=\mu_B=\mu_C$ nu se respinge, deci nu există diferențe de populație între valorile medii ale blocurilor individuale în exemplul generalizat analizat

4. Testul ANOVA II cu replicare

ANOVA II fără replicare vs ANOVA II cu replicare

ANOVA II cu replicare permite testarea concomitentă a 2 variabile independente grupate în grupuri și blocuri și fiecărui bloc îi corespund mai multe valori pentru fiecare grup

	GroupA	GroupB	GroupC
Block1	16	23	21
Block2	14	21	16
Block3	11	16	18
Block4	10	15	14
Block5	9	10	11
Block6	8	8	10

	GroupA	GroupB	GroupC
Block1	16	23	21
	14	21	16
	11	16	18
Block2	10	15	14
	9	10	11
	8	8	10

fără replicare

cu replicare

Media eșantioanelor și interacțiunea

- ANOVA II cu replicare introduce unele noțiuni noi:
 - Media eșantioanelor media aritmetică a fiecărui set de date de la intersecția blocului cu grupul
 - Dispersia eșantionului dispersia în set de date de la intersecția blocului cu grupul
 - Intersecţia suma dintre media eşantioanelor şi media totală minus media pa blocuri şi pe grupuri

Sarcina exemplului

- Pentru explicația algoritmului ANOVA II cu replicare se va utiliza un exemplu
- Se consideră un experiment de măsurarea a înălţimii plantelor. Plantelor le-au fost aplicate 3 tipuri de îngrășăminte A, B și C (unei plante i s-a aplicat un singur tip). Plantele pot fi diferențiate după mediul în care au crescut: cald și rece. Pentru simplitatea fiecare eșantion va conține 3 plante. Datele sunt prezentate în tabel

Îngrășământ	Α	В	C
	13	21	18
Cald	14	19	15
	12	17	15
	16	14	15
Rece	18	11	13
	17	14	8

Algoritmul ANOVA II cu replicare (1)

- Se calculează valoarea medie pe eșantioane
- Se calculează valoarea medie pe grupuri
- Se calculează valoarea medie pe blocuri
- Se calculează valoarea medie totală
- Se determină suma pătratelor grupurilor (sum of squares groups - SSG)

$a_{E_G} = 6 - numarul de elemente în grup$	Media totală	
$SSG = 6[(15 - 15)^2 + (16 - 15)^2 + (14 - 15)^2] =$	$= 6 \times 2 = 12$	2

21 _ c	v 2 1	2		-/-	
Media totală		15			
Med	dia grupuri	15	16	14	
wieuia (eșantioane	17	13	12	
Modia 4	neantinana	13	19	16	
		17	14	8	
	Rece	18	11	13	14
		16	14	15	
		12	17	15	
	Cald	14	19	15	16
		13	21	18	

Îngrăsământ

^{*} Culorile specifică locatia datelor în figură

Algoritmul ANOVA II cu replicare (2)

 Se determină suma pătratelor blocurilor (sum of squares groups - SSB)

$$n_{E_B} = 9 - numarul de elemente în bloc$$

 $SSB = 9[(16 - 15)^2 + (14 - 15)^2] = 9 \times 2 = 18$

Se determină gradul de libertare pe grupuri

$$n_G = 3 - numarul de grupuri$$

 $df_{grup} = n_G - 1 = 3 - 1 = 2$

Se determină gradul de libertare pe blocuri

$$n_B = 2 - numarul de blocuri$$

 $df_{bloc} = n_B - 1 = 2 - 1 = 1$

	Îngrășământ	A	В	C	
		13	21	18	
	Cald	14	19	15	16
		12	17	15	
		16	14	15	
	Rece	18	11	13	14
		17	14	8	
		13	19	16	
Media eșantioane		17	13	12	
Media grupuri		15	16	14	
М	edia totală	15			1

Algoritmul ANOVA II cu replicare (3)

 Se determină suma pătratelor interacțiunilor (sum of squares interactions - SSI)

 $n_E = 3 - numarul de elemente în eșantion$

$$SSI = 3[(13 - 16 - 15 + 15)^{2} + (19 - 16 - 16 + 15)^{2} + (16 - 16 - 14 + 15)^{2} + (17 - 14 - 15 + 15)^{2} + (13 - 14 - 16 + 15)^{2} + (12 - 14 - 14 + 15)^{2}] = 3 \times 28 = 84$$

	Îngrășământ	Α	В	С		
	Cald	13	21	18		
		14	19	15	16	Med
		12	17	15		diak
	Rece	16	14	15		Media blocuri
		18	11	13	14	달.
		17	14	8		5
Media eşantioane		13	19	16		
		17	13	12		
Ме	Media grupuri		16	14		
Media totală		15				3

Media blocuri

Algoritmul ANOVA II cu replicare (4)

Se determină suma pătratelor totală (sum of squares total - SST)

		– 13	21	18	
	Cald	14	19	15	16
		12	17	15	
		16	14	15	
	Rece	18	11	13	14
		17	14	8	
		13	19	16	
Media eşantioane Media grupuri		17	13	12	
		15	16	14	

В

C

Îngrășământ

Media totală 15

SST = 164

Culorile specifică locația datelor în figură

 Se determină suma pătratelor erorii (sum of squares error - SSE)

$$SSE = SST - SSG - SSB - SSI = 162 - 12 - 18 - 84 = 50$$

Se determină gradul de libertare a erorii

$$df_{eroare} = n_G \times n_B \times (n_E - 1) = 3 \times 2 \times (3 - 1) = 12$$

	Îngrășământ	Α	В	O		
		13	21	18		
	Cald	14	19	15	16	Me
		12	17	15		gia
		16	14	15		Media blocuri
	Rece	18	11	13	14	<u> </u>
		17	14	8]
Media eșantioane		13	19	16		
		17	13	12		
Media grupuri		15	16	14		
M	edia totală	15				1
		(0)			(-1	

^{*} Culorile specifică locația datelor în figură

Algoritmul ANOVA II cu replicare (6)

Se determină valoarea F pe grupuri

$$F_G = \frac{\frac{SSG}{df_{grup}}}{\frac{SSE}{df_{eroare}}} = \frac{\frac{12}{2}}{\frac{50}{12}} = 1,44$$

 Se determină F critic pentru grupuri în funcție de pragul de semnificați α =0,05 și gradele de libertate $df_{arup}=2$, $df_{eroare}=12$

$$F_{critic_G} = 3,885$$

• Întrucât $F_G = 1.44 < F_{critic\ G} = 3.885$ ipoteza nulă H_0 : $\mu_A = \mu_B = \mu_C$ nu se respinge, deci nu există diferențe de populație între valorile medii ale grupurilor individuale în exemplul analizat

Algoritmul ANOVA II cu replicare (7)

Se determină valoarea F pe blocuri

$$F_G = \frac{\frac{SSB}{df_{bloc}}}{\frac{SSE}{df_{eroare}}} = \frac{\frac{18}{1}}{\frac{50}{12}} = 4,32$$

• Se determină F critic pentru blocuri în funcție de pragul de semnificați α =0,05 și gradele de libertate $df_{bloc}=1$, $df_{eroare}=12$

$$F_{critic\ B} = 4,747$$

• Întrucât $F_B=4.32 < F_{critic_B}=4.747$ ipoteza nulă H_0 : $\mu_{cald}=\mu_{rece}$ nu se respinge, deci nu există diferențe de populație între valorile medii ale blocurilor individuale în exemplul generalizat analizat