Zero-shot Medical Entity Retrieval without Annotation: Learning From Rich Knowledge Graph Semantics

Amazon AI, accepted to Findings, EMNLP 2021

Backgrounds

 Entity Retrieval is the task of linking mentions of named entities to concepts in a curated knowledge graph

 It allows medical researchers and clinicians to search medical literature easily using standardized codes and terms to improve patient care.

Problem Definition

- It is difficult to adapt quickly enough to those newly appeared medical conditions and drug treatments under a public health crisis
- Hence, a robust medical entity retrieval system is expected to have decent performance in a zero-shot scenarios
- Zero-shot retrieval is challenging due to the nature of medical domain: large numbers of ambiguous terms, acronyms and synonymous terms

Related works in entity retrieval

- (2005) String matching methods such as exact match, approximate match
- (2020) weighted keyword match such as BM25
- => Can be used as zero-shot, but difficult to handle synonyms and paraphrase with large surface form differences
- (2019) large scale pretrained motel such as Clinical BERT and BioBert
- ⇒Need fine-tuning process for final use

Contribution

- Proposing a framework which allows the information in medicalcal KGs to be incorporated into zero-shot entity retrieval models
- Applying the framework to major medical ontologies to show the effectiveness of the framework
- Showing that the proposed framework can be easily plugged into an existing supervised approach

Model Architecture

• Siamese architecture

Experiment

 Learning by finding very similar or closely related textual descriptions and use them to construct (m,c) pairs

Figure 1: ICD-10 synonym-based task defined at an example node

KG	Task Type	Train	Dev
ICD-10	syn	113K	28K
	graph	33K	8K
SNOMED	syn	1.4M	374K
	graph	955K	238K
UMLS	syn	27M	7M
	graph	7M	2M
Co (by down-	198K	488K	

Table 1: Task Description: Number of (m, c) pairs in train and dev for all tasks.

Dataset	Split	KG	Test size
MedM.	-	UMLS	66,572
COMETA	SG		4,350
	SS	CNOMED	4,369
	ZG	SNOMED	3,995
	ZS		4,283
	ICD	ICD-10	5,742
3DNotes	SN	SNOMED	7,521

Table 2: Test Set Size.

Results

				Siamese architecture trained with KG learning tasks (ours)					urs)		
Dataset Split KG	KG	BM25	Clinical	ICD-10 SNO		OMED U		ILS	Comb		
				BERT	Syn	Graph	Syn	Graph	Syn	Graph	Como
MedM.	-	UMLS	.04(.17)	.10(.30)	.31(.58)	.31(.56)	.32(.55)	.33(.61)	.32(.53)	.30(.57)	.32(.60)
COMETA SG SS ZG ZS		.02(.10)	.01(.06)	.30(.52)	.30(.48)	.43(.65)	.37(.58)	.33(.50)	.32(.54)	.37(.58)	
	SS	SNOMED .020	.02(.11)	.01(.06)	.28(.51)	.28(.47)	.41(.62)	.36(.56)	.31(.48)	.31(.52)	.35(.56)
	ZG		.02(.12)	.01(.07)	.32(.57)	.32(.54)	.47(.71)	.39(.61)	.36(.55)	.33(.57)	.40(.62)
	ZS		.02(.10)	.01(.07)	.30(.52)	.29(.47)	.40(.64)	.35(.57)	.31(.49)	.29(.53)	.35(.57)
3DNotes	ICD	ICD-10	.05(.22)	.11(.17)	.28(.54)	.23(.46)	.20(.45)	.20(.52)	.18(.39)	.21(.53)	.30(.54)
	SN	SNOMED	.07(.20)	.01(.05)	.20(.50)	.18(.45)	.38(.63)	.25(.61)	.25(.49)	.29(.55)	.34(.59)

Table 3: Retrieval performance R@1(25). Siamese architecture trained with our tasks are shown to significantly outperform benchmarks. Evaluation for *zero-shot on mentions only* is highlighted in **bold** the rest belongs to *zero-shot on mentions and concepts*. The former enjoys a bigger gain as expected.

Mention	Gold Concept	Syn	Graph
shortness of breath	dyspnea (finding)	✓	X
GI hemorrhage	gastrointestinal hemorrhage (disorder)	✓	X
coronary structure	coronary artery (body structure)	X	✓
heart	heart structure (body structure)	X	✓

Table 4: Prediction error of the model trained with SNOMED tasks evaluated on 3DNotes-SN.

- Synonym based task: Learning by synonyms
- Graph-based task: Learning by connections

Conclusion

 Using a medical KG to enable entity retrieval model to mine rich semantics from the KG

 The model can be used as an auxiliary task when annotations are available