SHEICON2107

Assessing Cofactors & Precursors

Disclaimer

- Consultant, Spectracell Laboratory
- Speaker, Spectracell Laboratory
- Speaker, Xymogen Nutraceuticals

Objectives

- 1. Participants will learn <u>nutrient cofactors</u> for enzyme function.
- 2. Participants will learn differences, limitations and benefits of <u>different types of nutrient testing</u>.
- 3. Participants will learn the importance of evaluating the sufficiency of intracellular nutrients.
- 4. Participants will appreciate <u>nutrients can influence other</u> <u>nutrients</u>.

Pathway Planner

NOTE: Using Pathway Planner 4.0 and Pathway Planner 4.1

- -these are already out of date!
- -more inhibitors will be known next year,
- -and in 5 years,
- -and even more in 10 years.

Decrease Activity
 Cofector
 Reactive Oxygen Species

Increase Activity

Genes

Decrease Activity
 Cotactor
 Reactive Oxygen Species

Increase Activity

Pathway Planner

Folate, Methionine & Transsulfuration

Pathway Planner

An Example: Homocysteine

High Homocysteine: Cardiac Risk

High Homocysteine: Dementia Risk

Pathway Planner

Pathway Planner

Nutrients needed for Homocysteine: **Methylfolate** Vitamin B₁₂ Zinc Vitamin B₆/ or P-5-P **Cysteine** Serine Magnesium

How do we know if Methylation is working?

Percent of U.S. Population NOT Meeting the Dietary Reference Intake (DRI) for Specific Nutrients

Essential Nutrient Insufficiencies Linked with Top Causes of Death in U.S.

	CVD	Cancer	HTN	Respiratory Diseases	T2DM	Alzheimers	Kidney Disease	Liver Disease
Ca	✓	✓	✓		✓			
Cu	✓	✓	✓			✓		
Cr	✓		✓		✓			
Vit D	✓	✓	✓		✓			
K	✓		✓					
Mg	✓	✓	✓	✓	✓	✓		
Se	✓	✓	✓	✓	✓	✓	✓	✓
Zn	✓	✓	✓		✓		✓	✓

Are there sufficient Nutrients for Methylation?

Methylation Status: SAM/SAH Ratio Example

Methylation Profile; plasma

	METHYLAT	ION INDEX		
	DEGLE Y	REFERENCE	PERCENTILE	
	RESULT	INTERVAL	68 th 95 th	
SAM: SAH	4.1	> 4		

Methylation Status: SAM/SAH Ratio Example

Methylation Profile; plasma

What is the best laboratory assessment to assess Nutrient Cofactor Sufficiency for enzyme function?

Examples of Important Nutrients

Zinc
Magnesium
B1, B2, B3, B7, B9

Zinc: Body Distribution

Whole body: 1.5g (female)-2.5g (male)

Skeletal Muscle 57%

■ Bone 29%

■ Skin 6%

■ Liver 5%

■ Brain 1.5%

■ Kidneys 0.7%

■ Heart 0.4%

■ Hair ~0.1%

■ Blood Plasma ~0.1%

http://images.engormix.com/E_articles/2529_605.jpg

Zinc: Body Distribution

Whole body: 1.5g (female)-2.5g (male)

Skeletal Muscle 57%

■ Bone 29%

Skin 6%

■ Liver 5%

■ Brain 1.5%

■ Kidneys 0.7%

■ Heart 0.4%

■ Hair ~0.1%

■ Blood Plasma ~0.1%

http://images.engormix.com/E_articles/2529_605.jpg

Magnesium: Body Distribution

https://synapse.koreamed.org/ArticleImage/2158EBP/

Magnesium: Body Distribution

https://synapse.koreamed.org/ArticleImage/2158EBP/

Magnesium: Body Distribution

http://www.bioscience.org/2000/v5/d/quamme/fig1.gif

Magnesium: Body Distribution: <1% RBC

http://www.bioscience.org/2000/v5/d/quamme/fig1.gif

Vitamin B1, B2, B3, B7, B9 Example

- Water Soluble.
- None directly tested.
- "Need" determined by amount of downstream metabolites.
- No consideration of inhibitors causing "downstream metabolite" deficiencies.
- Nutrients may be sufficient, and inhibitors can be giving false impression of insufficiency.

Conclusions: For Nutrient Sufficiency for Methylation...

- 1. RBC Magnesium is Useless
- 2. Plasma Zinc is Meaningless
- 3. B-Vitamin assessments, based on down-stream metabolites, is poor.

Must know what each test evaluates.

Must know how each value is determined.

Ask: Is the test evaluating what you want to know?

Read the fine print.

Be discerning.

Patient Case: 54 y.o. female, CC: Fatigue

Example: (labs drawn simultaneously)

Types of cells used in Nutrient evaluation

Mature Red Blood Cells

- No Nuclei
- No Mitochondria
- No Endoplasmic Reticulum

Lymphocytes

- Have Nuclei
- Have Mitochondria
- Have Endoplasmic Reticulum

https://www.intechopen.com/source/html/40939/media/

Patient Case: Consider the Minerals: Example RBC's vs Lymphocyte (Intracellular) Sufficiency

An Example: Homocysteine

High Homocysteine: Cardiac Risk

High Homocysteine: Dementia Risk

Pathway Planner

"Earlier in this decade, data released from the famed Framingham Longitudinal Study revealed a shocking finding: People with elevated level of homocysteine have higher risk of developing dementia, particularly Alzheimer's disease. To be exact, 100% of subjects with homocyteine level above 14 came down with dementia....

Only in recent years, did researchers realize that this methylation cycle carries huge impact on the function and plasticity of neuron synapses in the Central Nervous System (CNS) and elevated homocysteine is just a marker of the cycle's malfunction. "

Dementia Increased with Increased Homocysteine

Homocysteine = 21.1 Accurate help needed...

Test		١	ascular Inflammation and Biomarkers	Patient Results	Reference Value
CRP-hs	mgL		0.60 1.50 1.50 4.50 8.30+	16.87	<3.00
Lipoprotein(a)	mgldL	[1]	0.0 15.0 16.0 16.0+	221.5	6.0 - 29.9
Apolipoprotein B	mg/dL		90 190 190 290	121	40 - 100
Homocysteine	µmol/L	[2]	of 55 150 465 120	21.1	<11.0

Clinical Indications: Vascular Inflammation and Biomarkers

These factors are important determinants of cardiometabolic risk, particularly with respect to vascular + inflammation (health of blood vessels). Apo-B (apolipoprotein B100) is a measure of all atherogenic (harmful) lipoprotein particles in the blood. Lp(a) is an extremely atherogenic lipoprotein that is strongly linked to developing thrombosis (blood clots). C-reactive protein (CRP) is an indicator of inflammation throughout the body, including the cardiovascular system. Regardless of the cause, both physical and mental stressors, infections and low grade chronic inflammation can all raise CRP, which increases cardiometabolic risk. Finally, homocysteine is a harmful protein that indicates a person's ability to methylate (detoxify) substances in the body. Elevated homocysteine is linked to thrombosis, thyroid dysfunction and Alzheimers disease (dementia).

Test		Lipoprotein Particle Numbers (nmol/L)	Patient Results	Reference Value
VLDL Particles	nmol/L	43 45 536 570	33	<85
Total LDL Particles	nmol/L	g 866 966 1000 1000	1143	<900
Total HDL Particles	nmol/L	14000 10000 7000 5500 0	7214	>7000
Non-HDL Particles	nmol/L	e 500 2000 2000 2000	1178	<1000
Remnant Lipoprotein	nmol/L	25 350 225 890	225	<150
Dense LDL III	nmol/L	6 506 500 60 60	312	<300
Dense LDL IV	nmol/L	e 50 <u>500</u> 550 250	102	<100
Buoyant HDL 2b	nmol/L	1000 2250 1100 750 0	2504	>1500

Pathway Planner

Nutrients needed for Homocysteine: **Methylfolate** Vitamin B₁₂ Zinc Vitamin B₆/ or P-5-P **Cysteine** Serine Magnesium

Measuring Intracellular Nutrient Sufficiency example

Giving 1 Nutrient Can Affect Other Nutrients.

Think Relationships.

https://s-media-cache-ak0.pinimg.com/originals/65/ee/62/65ee621ee26109f4ddef7751b5a4eca0.jpg

Mineral Interactions

http://www.robkalmeijer.nl/voedingsleer/nutrienten/mineralen/mineralen-wiel.jpg

Thank you!