HW5 Report

學號:B04502031 系級: 電機二 姓名:施力維

1. (1%) 請說明你實作的 RNN model,其模型架構、訓練過程和準確率為何?

(Collaborators:)

Preprocessing:保留包點符號,將重複的字母刪掉,將 won't 這類的字改成 will not。

Model 如下,使用兩層 GRU 搭配兩層 Dense 來實作,其中先使用 gensim 來 對 train 與 semi 的 data 做 pretrain · min count=2, dim=100 ·

		-	
Layer (type)	Output	Shape	Param #
embedding_1 (Embedding)	(None,	None, 100)	5707400
gru_1 (GRU)	(None,	None, 128)	87936
gru_2 (GRU)	(None,	128)	98688
dense_1 (Dense)	(None,	256)	33024
dropout_1 (Dropout)	(None,	256)	0
dense_2 (Dense)	(None,	256)	65792
dropout_2 (Dropout)	(None,	256)	0
dense_3 (Dense)	(None,	2)	514
Total params: 5,993,354 Trainable params: 285,954 Non-trainable params: 5,707,400			
Train on 180000 samples, validate on 20000 samples			

Optimizer 使用 adam·訓練過程約 20 個 epoch 可以收斂·使用 earstopping·batch size 為 256·切 0.1 來作為 validation·最後的 accuracy 為(public, private)=(0.832, 0.830)。

2. (1%) 請說明你實作的 BOW model,其模型架構、訓練過程和準確率為何?

(Collaborators:)

訓練模型如下,使用 keras 的 tokenizer 轉成 bow 後,使用三層 DNN 搭配 dropout 來做 training,一樣切 0.1 當 validation,

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 256)	1536256
dropout_1 (Dropout)	(None, 256)	0
dense_2 (Dense)	(None, 256)	65792
dropout_2 (Dropout)	(None, 256)	0
dense_3 (Dense)	(None, 256)	65792
dropout_3 (Dropout)	(None, 256)	0
dense_4 (Dense)	(None, 2)	514

Total params: 1,668,354
Trainable params: 1,668,354
Non-trainable params: 0

Optimizer 使用 adam,使用 earstopping,batch size 為 256,切 0.1 來作為 validation,最後的 accuracy 為(public, private)=(0.798, 0.798)。

3. (1%) 請比較 bag of word 與 RNN 兩種不同 model 對於"today is a good day, but it is hot"與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。

(Collaborators:)

RNN model 與 BOW model 分別使用上面兩題的 model · 都使用 categorical crossentropy · 分別判斷好的與壞的機率 · 結果如下:

	good	bad
RNN	0.677	0.323
BOW	0.297	0.703

可以看到兩者的預測結果是截然不同的,這邊可以明顯看出 BOW 的缺點,當句子出現轉折等語氣時便容易判斷錯誤,good 在 train 出來後肯定是比較正面的權重居多,因此當這邊出現轉折時,便會失去精確度。

4. (1%) 請比較"有無"包含標點符號兩種不同 tokenize 的方式,並討論兩者 對準確率的影響。

(Collaborators:)

這邊有標點符號使用的是第一題的 model·沒標點的 model 其他參數也都跟第一題相同,做出來的結果如下:

	Public	Private
有標點	0.832	0.830
沒標點	0.824	0.824

結果是沒標點符號較差一些,推測是因為諸如驚嘆號、問號等對於句子的語句 判斷有所幫助,因此有標點符號的 model 較高一些。

5. (1%) 請描述在你的 semi-supervised 方法是如何標記 label,並比較有無 semi-supervised training 對準確率的影響。

(Collaborators:)

在 Semi-supervised 的 model 中,是將 semi 的 prediction 中 good 或 bad 大於 0.8 的 label 設為 1 或 0(使用 categorical crossentropy),在拿去先 前 train 好的 model 繼續 train,結果如下:

	Public	Private
normal	0.832	0.830
Semi-supervised	0.834	0.833

可以看到 semi-supervised 的結果比沒有還要好一些些,證實了以 0.8 作為 threshold 所獲得的 data 具有相當的可性度,有實際的成效。