# Solution

# Section 2.4 – Translation of Trigonometric Functions

#### Exercise

Find the amplitude, the period, any vertical translation, and any phase shift of  $y = 2\sin(x - \pi)$ 

# **Solution**

Amplitude: 
$$A = 2$$

**Period**: 
$$P = \frac{2\pi}{1} = 2\pi$$

**Phase Shift**: 
$$\phi = -\frac{-\pi}{1} = \pi$$

$$VT:$$
  $y=0$ 

#### Exercise

Find the amplitude, the period, any vertical translation, and any phase shift of  $y = \frac{2}{3}\sin\left(x + \frac{\pi}{2}\right)$ 

### **Solution**

Amplitude: 
$$A = \frac{2}{3}$$

**Period**: 
$$P = \frac{2\pi}{1} = 2\pi$$

**Phase Shift:** 
$$\phi = -\frac{\frac{\pi}{2}}{1} = -\frac{\pi}{2}$$

$$VT:$$
  $y=0$ 

#### Exercise

Find the amplitude, the period, any vertical translation, and any phase shift of  $y = 4\cos\left(\frac{1}{2}x + \frac{\pi}{2}\right)$ 

Amplitude: 
$$A = 4$$

**Period**: 
$$P = \frac{2\pi}{\frac{1}{2}} = 4\pi$$

**Phase Shift:** 
$$\phi = -\frac{\frac{\pi}{2}}{\frac{1}{2}} = -\pi$$

$$VT:$$
  $y=0$ 

Find the amplitude, the period, any vertical translation, and any phase shift of  $y = \frac{1}{2}\sin\left(\frac{1}{2}x + \pi\right)$ 

# **Solution**

- Amplitude:  $A = \frac{1}{2}$
- **Period**:  $P = \frac{2\pi}{\frac{1}{2}} = 4\pi$
- **Phase Shift:**  $\phi = -\frac{\pi}{\frac{1}{2}} = -2\pi$
- VT: y=0

#### Exercise

Find the amplitude, the period, any vertical translation, and any phase shift of  $y = 3\cos\frac{\pi}{2}\left(x - \frac{1}{2}\right)$ 

#### Solution

- Amplitude: A = 3
- **Period**:  $P = \frac{2\pi}{1} = 2\pi$
- **Phase Shift:**  $\phi = -\frac{\frac{1}{2}}{1} = \frac{1}{2}$
- VT: y=0

#### Exercise

Find the amplitude, the period, any vertical translation, and any phase shift of  $y = -\cos \pi \left(x - \frac{1}{3}\right)$ 

- Amplitude: A = 1
- **Period**:  $P = \frac{2\pi}{1} = 2\pi$
- **Phase Shift:**  $\phi = -\frac{-\frac{1}{3}}{1} = \frac{1}{3}$
- VT: y=0

Find the amplitude, the period, any vertical translation, and any phase shift of  $y = 2 - \sin\left(3x - \frac{\pi}{5}\right)$ 

### **Solution**

Amplitude: 
$$A = 1$$

**Period**: 
$$P = \frac{2\pi}{3}$$

**Phase Shift**: 
$$\phi = -\frac{\frac{\pi}{5}}{3} = \frac{\pi}{15}$$

$$VT:$$
  $y=2$ 

#### Exercise

Find the amplitude, the period, any vertical translation, and any phase shift of  $y = -\frac{2}{3}\sin\left(3x - \frac{\pi}{2}\right)$ 

#### **Solution**

Amplitude: 
$$A = \frac{2}{3}$$

**Period**: 
$$P = \frac{2\pi}{3}$$

**Phase Shift:** 
$$\phi = -\frac{\frac{\pi}{2}}{3} = \frac{\pi}{6}$$

$$VT:$$
  $y=0$ 

#### Exercise

Find the amplitude, the period, any vertical translation, and any phase shift of  $y = -1 + \frac{1}{2}\cos(2x - 3\pi)$ 

Amplitude: 
$$A = \frac{1}{2}$$

**Period**: 
$$P = \frac{2\pi}{2} = \pi$$

**Phase Shift:** 
$$\phi = -\frac{-3\pi}{2} = \frac{3\pi}{2}$$

$$VT:$$
  $y = -1$ 

Find the amplitude, the period, any vertical translation, and any phase shift of  $y = 2 - \frac{1}{3}\cos\left(\pi x + \frac{3\pi}{2}\right)$ 

# **Solution**

Amplitude: 
$$A = \frac{1}{3}$$

**Period**: 
$$P = \frac{2\pi}{\pi} = 2$$

**Phase Shift:** 
$$\phi = -\frac{\frac{3\pi}{2}}{\pi} = -\frac{3}{2}$$

$$VT:$$
  $y=2$ 

#### Exercise

Find the amplitude, the period, any vertical translation, and any phase shift of  $y = \frac{5}{2} - 3\cos\left(\pi x - \frac{\pi}{4}\right)$ 

#### **Solution**

Amplitude: 
$$A = 3$$

**Period**: 
$$P = \frac{2\pi}{\pi} = 2$$

**Phase Shift:** 
$$\phi = -\frac{-\frac{\pi}{4}}{\pi} = \frac{1}{4}$$

*VT*: 
$$y = \frac{5}{2}$$

#### Exercise

Find the amplitude, the period, any vertical translation, and any phase shift of  $y = \frac{2}{3} - \frac{4}{3}\cos(3x - \pi)$ 

Amplitude: 
$$A = \frac{4}{3}$$

**Period**: 
$$P = \frac{2\pi}{3}$$

**Phase Shift:** 
$$\phi = -\frac{\pi}{3} = \frac{\pi}{3}$$

*VT*: 
$$y = \frac{2}{3}$$

Find the amplitude, the period, and the phase shift and sketch the graph of the equation

$$y = \sin\left(x - \frac{\pi}{2}\right)$$

#### **Solution**



## Exercise

Find the amplitude, the period, and the phase shift and sketch the graph of the equation

$$y = 2\sin\left(x - \frac{\pi}{3}\right)$$



Find the amplitude, the period, and the phase shift and sketch the graph of the equation

$$y = 4\cos\left(x - \frac{\pi}{4}\right)$$

#### **Solution**



#### Exercise

Find the amplitude, the period, and the phase shift and sketch the graph of the equation  $y = -\sin(3x + \pi) - 1$ 



Find the amplitude, the period, and the phase shift and sketch the graph of the equation  $y = \cos(2x - \pi) + 2$ 

#### **Solution**



### Exercise

Find the amplitude, the period, and the phase shift and sketch the graph of the equation  $y = \sin\left(\frac{1}{2}x - \frac{\pi}{3}\right)$ 



Find the amplitude, the period, and the phase shift and sketch the graph of the equation  $y = 5\sin\left(3x - \frac{\pi}{2}\right)$ 

#### **Solution**



#### Exercise

Find the amplitude, the period, and the phase shift and sketch the graph of the equation  $y = 3\cos\left(\frac{1}{2}x - \frac{\pi}{4}\right)$ 



Find the amplitude, the period, and the phase shift and sketch the graph of the equation  $(1, \pi)$ 

$$y = -5\cos\left(\frac{1}{3}x + \frac{\pi}{6}\right)$$

#### **Solution**



#### Exercise

Find the amplitude, the period, and the phase shift and sketch the graph of the equation  $y = -2\sin(2\pi x + \pi)$ 



Find the amplitude, the period, and the phase shift and sketch the graph of the equation  $y = -2\sin(2x - \pi) + 3$ 

#### **Solution**



### Exercise

Find the amplitude, the period, and the phase shift and sketch the graph of the equation  $y = 3\cos(x + 3\pi) - 2$ 



Find the amplitude, the period, and the phase shift and sketch the graph of the equation  $y = 5\cos(2x + 2\pi) + 2$ 

#### **Solution**



## Exercise

Find the amplitude, the period, and the phase shift and sketch the graph of the equation  $y = -4\sin(3x - \pi) - 3$ 



Find the amplitude, the period, any vertical translation, and any phase shift. Then graph a one complete cycle of  $y = \cos \frac{1}{2}x$ 

#### **Solution**

One cycle:  $0 \le \arg ument \le 2\pi$ 

$$0 \le \frac{1}{2} x \le 2\pi$$

Multiply by 2

$$0 \le x \le 4\pi$$

Amplitude: A = 1

Period: 
$$P = \frac{2\pi}{\frac{1}{2}} = 4\pi$$

| Х              | Х                        | $y = \cos \frac{1}{2}x$ |
|----------------|--------------------------|-------------------------|
| 0              | 0                        | 1                       |
| $\frac{1}{4}P$ | $\frac{1}{4}4\pi = \pi$  | 0                       |
| $\frac{1}{2}P$ | $\frac{1}{2}4\pi = 2\pi$ | -1                      |
| $\frac{3}{4}P$ | $\frac{3}{4}4\pi = 3\pi$ | 0                       |
| Р              | $4\pi$                   | 1                       |



Find the amplitude, the period, any vertical translation, and any phase shift. Then graph

$$y = 2\sin(-\pi x) \quad for \quad -3 \le x \le 3$$

#### **Solution**

$$y = 2\sin(-\pi x) \text{ for } -3 \le x \le 3$$
$$y = 2\sin(-\pi x)$$
$$= -2\sin(\pi x)$$

Amplitude: A = 2

Period:  $P = \frac{2\pi}{\pi} = 2$ 

| х             | $y = -2\sin(\pi x)$ |
|---------------|---------------------|
| 0             | 0                   |
| $\frac{1}{2}$ | -2                  |
| 1             | 0                   |
| $\frac{3}{2}$ | 2                   |
| 2             | 0                   |



Find the amplitude, the period, any vertical translation, and any phase shift. Then graph  $y = 4\cos\left(-\frac{2}{3}x\right)$  for  $-\frac{15\pi}{4} \le x \le \frac{15\pi}{4}$ 

## **Solution**

Amplitude: A = 4

Period: 
$$P = \frac{2\pi}{\frac{2}{3}} = 3\pi$$

$$\frac{3\pi}{4}$$
 = section

$$for \ -\frac{15\pi}{4} \le x \le \frac{15\pi}{4}$$

| X                                  | $y = 4\cos\left(-\frac{2}{3}x\right)$ |
|------------------------------------|---------------------------------------|
| 0                                  | 4                                     |
| $\frac{1}{4}3\pi = \frac{3\pi}{4}$ | 0                                     |
| $\frac{1}{2}3\pi = \frac{3\pi}{2}$ | -4                                    |
| $\frac{3}{4}3\pi = \frac{9\pi}{4}$ | 0                                     |
| $3\pi$                             | 4                                     |



Graph one complete cycle  $y = \cos\left(x - \frac{\pi}{6}\right)$ 

# **Solution**

*Amplitude*: A = 1

Period: 
$$P = \frac{2\pi}{1} = 2\pi$$

*Phase Shift* = 
$$\frac{\pi}{6}$$

$$x - \frac{\pi}{6} = 0 \longrightarrow x = \frac{\pi}{6}$$

| x                                | х                 | $y = \cos\left(x - \frac{\pi}{6}\right)$ |
|----------------------------------|-------------------|------------------------------------------|
| $\frac{\pi}{6}$ + 0              | $\frac{\pi}{6}$   | 1                                        |
| $\frac{\pi}{6} + \frac{1}{2}\pi$ | $\frac{2\pi}{3}$  | 0                                        |
| $\frac{\pi}{6} + \pi$            | $\frac{7\pi}{6}$  | -1                                       |
| $\frac{\pi}{6} + \frac{3}{2}\pi$ | $\frac{5\pi}{3}$  | 0                                        |
| $\frac{\pi}{6} + 2\pi$           | $\frac{13\pi}{6}$ | 1                                        |



Graph one complete cycle  $y = \frac{2}{3} - \frac{4}{3}\cos(3x - \pi)$ 

## **Solution**

Amplitude:  $A = \frac{4}{3}$ 

Period:  $P = \frac{2\pi}{3}$ 

Phase Shift:  $\phi = -\frac{\pi}{3} = \frac{\pi}{3}$ 

| х                                                           | $y = \frac{2}{3} - \frac{4}{3}\cos(3x - \pi)$ |
|-------------------------------------------------------------|-----------------------------------------------|
| $\frac{\pi}{3}$                                             | $-\frac{2}{3}$                                |
|                                                             | $\frac{2}{3}$                                 |
| $ \frac{\frac{\pi}{2}}{\frac{2\pi}{3}} $ $ \frac{5\pi}{6} $ | 2                                             |
| $\frac{5\pi}{6}$                                            | $\frac{2}{3}$                                 |
| $\pi$                                                       | $-\frac{2}{3}$                                |



Graph one complete cycle  $y = -3 + \sin\left(\pi x + \frac{\pi}{2}\right)$ 

# **Solution**

Amplitude: A = 1

Period: 
$$P = \frac{2\pi}{\pi} = 2$$

Phase Shift: 
$$\phi = -\frac{\frac{\pi}{2}}{\pi} = -\frac{1}{2}$$



| x              | $y = -3 + \sin\left(\pi \ x + \frac{\pi}{2}\right)$ |
|----------------|-----------------------------------------------------|
| $-\frac{1}{2}$ | -3                                                  |
| 0              | -2                                                  |
| $\frac{1}{2}$  | -3                                                  |
| 1              | -4                                                  |
| $\frac{3}{2}$  | -3                                                  |

#### Exercise

Graph  $y = -1 + 2\sin(4x + \pi)$  over two periods.



$$y = -1 + 2\sin(4x + \pi)$$

Find an equation  $y = k + A\sin(Bx + C)$  or  $y = k + A\cos(Bx + C)$  to match the graph



# **Solution**

$$B = \frac{2\pi}{P} = \frac{2\pi}{\pi} = 2$$

Amplitude = 3

$$y = 3\sin 2x \qquad 0 \le x \le 2\pi$$

## Exercise

Find an equation  $y = k + A\sin(Bx + C)$  or  $y = k + A\cos(Bx + C)$  to match the graph



#### **Solution**

$$B = \frac{2\pi}{P} = \frac{2\pi}{\pi} = 2$$

Amplitude = 3

$$y = 3\sin 2x \qquad \frac{\pi}{4} \le x \le \frac{5\pi}{4}$$

Find an equation  $y = k + A\sin(Bx + C)$  or  $y = k + A\cos(Bx + C)$  to match the graph



#### **Solution**

| $P = \frac{\pi}{6} + \frac{\pi}{2} = \frac{2\pi}{3}$                                       | $B = \frac{2\pi}{P} = \frac{2\pi}{\frac{2\pi}{3}} = 3$ |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------|
| $\phi = -\frac{\pi}{6} = -\frac{C}{B} \Longrightarrow C = \frac{\pi B}{6} = \frac{\pi}{2}$ | Amplitude = 2                                          |

$$y = 2 - 2\cos\left(3x + \frac{\pi}{2}\right) - \frac{\pi}{6} \le x \le \frac{\pi}{2}$$

#### Exercise

Find an equation  $y = k + A\sin(Bx + C)$  or  $y = k + A\cos(Bx + C)$  to match the graph



| $P = \pi$  | $B = \frac{2\pi}{P} = \frac{2\pi}{\pi} = 2$ |
|------------|---------------------------------------------|
| $\phi = 0$ | Amplitude = 3                               |

$$y = -3 - 3\sin 2x \qquad -\pi \le x \le \pi$$

Find an equation  $y = k + A\sin(Bx + C)$  or  $y = k + A\cos(Bx + C)$  to match the graph



## **Solution**

| $P = \frac{3\pi}{4} - \frac{\pi}{12} = \frac{2\pi}{3}$                             | $B = \frac{2\pi}{P} = \frac{2\pi}{\frac{2\pi}{3}} = 3$ |
|------------------------------------------------------------------------------------|--------------------------------------------------------|
| $\phi = \frac{\pi}{12} \Rightarrow C = -B\phi = -3\frac{\pi}{12} = -\frac{\pi}{4}$ | Amplitude = 2                                          |

$$y = -2\cos\left(3x - \frac{\pi}{4}\right) \qquad \frac{\pi}{12} \le x \le \frac{3\pi}{4}$$

## Exercise

Find an equation  $y = k + A\sin(Bx + C)$  or  $y = k + A\cos(Bx + C)$  to match the graph



| P=2        | $B = \frac{2\pi}{P} = \frac{2\pi}{2} = \pi$ |
|------------|---------------------------------------------|
| $\phi = 0$ | Amplitude = 2                               |

$$y = 3 - 2\cos(\pi x) \qquad 0 \le x \le 3$$

The figure shows a function f that models the tides in feet at Clearwater Beach, x hours after midnight starting on Aug. 26,

- a) Find the time between high tides.
- b) What is the difference in water levels between high tide and low tide?
- c) The tides can be modeled by  $f(x) = 0.6\cos[0.511x 2.4] + 2$ . Estimate the tides when x = 10.



#### **Solution**

- a) Time between high tides = 14.7 2.4 = 12.3 hrs.
- b) Difference in water levels between high tide and low tide = 2.6 1.4 = 1.2 ft.

c) 
$$f(x=10) = 0.6\cos[0.511(10) - 2.4]_{rad} + 2 \approx 1.45$$

#### Exercise

The maximum afternoon temperature in a given city might be modeled by  $t = 60 - 30\cos\frac{\pi x}{6}$ 

Where t represents the maximum afternoon temperature in month x, with x = 0 representing January, x = 1 representing February, and so on.. Find the maximum afternoon temperature to the nearest degree for each month.

- a) Jan.
- b) Apr.
- c) May.
- d) Jun.
- e) Oct.

a) Jan. 
$$t = 60 - 30\cos\frac{\pi(0)}{6} = 30^{\circ}$$

**b**) Apr. 
$$t = 60 - 30\cos\frac{\pi(4)}{6} = 75^{\circ}$$

c) May. 
$$t = 60 - 30\cos\frac{\pi(5)}{6} = 86^{\circ}$$

**d**) Jun. 
$$t = 60 - 30\cos\frac{\pi(6)}{6} = 90^{\circ}$$

e) Oct. 
$$t = 60 - 30\cos\frac{\pi(10)}{6} = 45^{\circ}$$

A mass attached to a spring oscillates upward and downward. The length L of the spring after t seconds is given by the function  $L=15-3.5\cos(2\pi t)$ , where L is measured in cm.



- a) Sketch the graph of this function for  $0 \le t \le 5$
- b) What is the length the spring when it is at equilibrium?
- c) What is the length the spring when it is shortest?
- d) What is the length the spring when it is longest?

#### **Solution**

a)



**b**) The length the spring when it is at equilibrium L = 15 cm

c) 
$$[\underline{L} = 15 - 3.5 = 11.5 \ cm]$$

*d*) 
$$\underline{L} = 15 + 3.5 = 18.5 \ cm$$

#### Exercise

The diameter of the Ferris wheel is 250 ft, the distance from the ground to the bottom of the wheel is 14 ft. We found the height of a rider on that Ferris wheel was given by the function:

$$H = 139 - 125\cos\left(\frac{\pi}{10}t\right)$$

Where *t* is the number of minutes from the beginning of a ride. Graph a complete cycle of this function.

#### **Solution**

Amplitude: A = 125

**Period**:  $P = \frac{2\pi}{\frac{\pi}{10}} = 20$ 

**Phase Shift**:  $\phi = 0$ 

*VT*: H = 139

| t  | $H = 139 - 125\cos\left(\frac{\pi}{10}t\right)$ |
|----|-------------------------------------------------|
| 0  | 139-125=14                                      |
| 5  | 139                                             |
| 10 | 139+125=264                                     |
| 15 | 139                                             |
| 20 | 14                                              |

