Viner case:
$$\frac{\int^{2}}{\partial x_{o}} \frac{1}{\partial x_{o}} = \frac{\int^{2}}{\int^{2}} \frac{1}{\partial x_{o}} = \frac{\int^{2}}{\int^{2}$$

expensive to compute alternative

Empirical observability madrix:

inprical observability madrix:

$$V = \frac{1}{28} \left[V + i - V - j \right]$$
 $V = V \left(x_0 - \epsilon e_i, u \right)$
 $V = V \left(x_0 - \epsilon e_i, u \right)$
 $V = V \left(x_0 - \epsilon e_i, u \right)$
 $V = V \left(x_0 - \epsilon e_i, u \right)$
 $V = V \left(x_0 - \epsilon e_i, u \right)$
 $V = V \left(x_0 - \epsilon e_i, u \right)$
 $V = V \left(x_0 - \epsilon e_i, u \right)$

 $Y_{w}^{-j} = Y_{w}(x_{o} - \varepsilon e_{j}, u)$ loss how much does measurement > y, change at timestep O when State X, is perturbed?

ie.
$$\frac{1}{2\epsilon} \left(y_{1,0}^{+i} - y_{1,0}^{-j} \right)$$
 for $j = 1$

Perform 2n simulations: 2 simulations for each state variable corresponding to the and -E perturbations. Each sim. yields Y and Y from which we can calculate the nth column of Ow