Taller-Representacion-Enteros-Signo

October 31, 2024

Arquitectura de Computadores

Representación de Números Enteros con Signo

Name: Sebastian Chicaiza

Fecha: 1-11-2024

Instrucciones 1. Utilice este cuaderno de Jupyter para completar la tabla con los valores obtenidos en clase para representar números enteros decimales con signo en:

- Complemento a 1 (base disminuída)
 - Complemento a 1 en binario: $Comp_{bin}^1$
 - Complemento a 1 en hexadecimal: $Comp_{HEX}^1$
- Complemento a 2 (base):

 - $-Comp_{bin}^2 Comp_{HEX}^2$
- Signo Magnitud:
 - $-SIGNO-MAG_{bin}$
 - $-SIGNO-MAG_{bin}$
- 2. Guarde el cuaderno de Jupyter y suba el archivo *.ipynb
- 3. Exporte el cuaderno de Jupyter a PDF y suba también el PDF

Puede utilizar el resto del cuaderno para realizar cálculos de apoyo si requiere.

Represente los siguientes números enteros con signo en sus equivalentes en complemento a 1, complemento a 2 y signo magnitud

					SIGNO -	\overline{SIGNO} –
DEC	$Comp_{bin}^1$	$Comp_{HEX}^1$	$Comp_{bin}^2$	$Comp_{HEX}^2$	MAG_{bin}	MAG_{bin}
+9	00001001	0x09	00001001	0x09	00001001	0x09
-9	11110110	0xF6	11110111	0xF7	10001001	0x89
+52	00110100	0x34	00110100	0x34	00110100	0x34
-52	11001011	0xCB	11001100	0xCC	10110100	0xB4
+183	no	se	puede	representar	en	8 bits
-183	no	se	puede	representar	en	8 bits
+101	01100101	0x65	01100101	0x65	01100101	0x65
-101	10011010	0x9A	10011011	0x9B	11100101	0xE5
+200	no	se	puede	representar	en	8 bits
-200	no	se	puede	representar	en	8 bits
+128	no	se	puede	representar	en	8 bits

DEC	$Comp_{bin}^1$	$Comp_{HEX}^1$	$Comp_{bin}^2$	$Comp_{HEX}^2$	$SIGNO-MAG_{bin}$	$SIGNO-MAG_{bin}$
-128	01111111	0xF7	10000000	0x80	10000000	0x80

0.1 Exportar cuaderno de Jupyter a PDF

1. Usando Jupyter-lab:

- Abrir el cuaderno de jupyter arrancanado el servidor desde wsl con el comando jupyter-lab. Recuerde arrancar el servidor desde una ubicación en la que disponga del archivo
- En el meno de Archivo/File localice la opción Export Notebook As y luego elige PDF

2. Usando VsCode:

- Ubique en la barra superior junto a la palabra *Outline* unos tres puntos de opcines y de clic
- Seleccione Export ## Configuración Para que la exportación a PDF funcione con éxito es necesario que esté instalado en el WSL Latex y Pandoc. Los comandos serían

 ${\it sudo\ apt-get\ install\ texlive-xetex\ texlive-fonts-recommended\ texlive-generic-recommended\ sudo\ apt\ install\ pandoc}$

Puede ser también necesario instalar *nbconvert*. Para esto en el entorno iccd332 instale: mamba install nbconvert