

Mark Scheme (Results)

October 2020

Pearson Edexcel IAL Mathematics (WMA12)
Pure Mathematics P2

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                            | Notes                                                                                     | Marks   |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------|
| 1(a)               | $\left(2 - \frac{x}{4}\right)^{10} = 2^{10} + {10 \choose 1} 2^9 \left(-\frac{x}{4}\right) + {10 \choose 2} 2^8 \left(-\frac{x}{4}\right)^2 + {10 \choose 3} 2^7 \left(-\frac{x}{4}\right)^3 + \dots$ Attempts the binomial expansion to get the third and/or fourth term with an acceptable structure. The correct binomial coefficient must be combined with the correct power of $\frac{x}{4}$ |                                                                                           |         |
|                    | and the correct power of 2 but condone omission of brackets. You can ignore the signs between the terms and allow the terms to be listed.  Allow for e.g. $\pm \left(\frac{10}{2}\right) 2^8 \left(\pm \frac{x}{4}\right)^2$ or $\pm^{10} C_3 2^7 \left(\pm \frac{x}{4}\right)^3$ but condone omission of brackets.                                                                               |                                                                                           |         |
|                    | NB $^{10}$ C <sub>2</sub> = 45,<br>NB $^{10}$ C <sub>2</sub> = $^{10}$ C <sub>8</sub> a                                                                                                                                                                                                                                                                                                           | $^{10}C_3 = 120$                                                                          | M1      |
|                    | 2 0                                                                                                                                                                                                                                                                                                                                                                                               | ,                                                                                         |         |
|                    | Alterna $\left(2 - \frac{x}{4}\right)^{10} = 2^{10} \left(1 - \frac{x}{8}\right)^{10} = 2^{10} \left(1 - \frac{10x}{8} + \frac{10x}{8}\right)^{10}$                                                                                                                                                                                                                                               |                                                                                           |         |
|                    | Score M1 for $2^{10} \left( \pm \frac{10 \times 9}{2} \left( -\frac{x}{8} \right)^2 + \right)$                                                                                                                                                                                                                                                                                                    |                                                                                           |         |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                   | 1024 - 1280x                                                                              | B1      |
|                    | $= 1024 - 1280x + 720x^2 - 240x^3$                                                                                                                                                                                                                                                                                                                                                                | $720x^2$ or $-240x^3$                                                                     | A1      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                   | $720x^2$ and $-240x^3$                                                                    | A1      |
|                    | Note that if any of the "-"'s are "+ -"'s th                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |         |
|                    | Allow the terms to be listed e.g. 1                                                                                                                                                                                                                                                                                                                                                               |                                                                                           |         |
|                    | Apply isw once a corr                                                                                                                                                                                                                                                                                                                                                                             |                                                                                           |         |
|                    | Ignore any ex                                                                                                                                                                                                                                                                                                                                                                                     | xtra terms                                                                                | (4)     |
| (b)                | $\left(3 - \frac{1}{x}\right)^2 = 9 - \frac{6}{x} + \frac{1}{x^2} \text{ or } 9 - \frac{3}{x} - \frac{3}{x} + \frac{1}{x^2}$                                                                                                                                                                                                                                                                      | Correct expansion. May be implied by their work to find the constant.                     | B1      |
|                    | $\left(3 - \frac{1}{x}\right)^2 \left(2 - \frac{x}{4}\right)^{10} = \left(9 - \frac{6}{x} + \frac{1}{x^2}\right) \left(10 - \frac{6}{x}\right)^{10}$                                                                                                                                                                                                                                              |                                                                                           |         |
|                    | constant term = $9 \times 1024 - 4$                                                                                                                                                                                                                                                                                                                                                               | A A                                                                                       |         |
|                    | This mark depends on having obtained an expre                                                                                                                                                                                                                                                                                                                                                     | ession of the form $A + \frac{B}{x} + \frac{C}{x^2}$ for $\left(3 - \frac{1}{x}\right)^2$ | M1      |
|                    | and at least a 3-term quadratic expre $A \times "1024" + B \times "-1280" + C$                                                                                                                                                                                                                                                                                                                    | $C \times "720"$ A, B, C non-zero.                                                        |         |
|                    | Allow 1 sign error May be seen as part of a complete expansion by value of the constant term w                                                                                                                                                                                                                                                                                                    | but there must be an attempt to calculate the vith the above conditions.                  |         |
|                    | For reference, true value calcul                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           |         |
|                    | = 17616                                                                                                                                                                                                                                                                                                                                                                                           | Correct value. Must be "extracted" if a complete expansion is found above.                | A1 (2)  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           | (3)     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           | Total 7 |

| Question<br>Number |                                                                             | Scheme                                                                                              |                                    |                                                 | 1                                                     | Notes                                                         |                 | Marks   |
|--------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|-----------------|---------|
| 2(a)               | x                                                                           | - 0.25                                                                                              | 0                                  | 0.25                                            | 0.5                                                   | 0.75                                                          |                 |         |
|                    | y                                                                           | 0.462                                                                                               | 0.577                              | 0.653                                           | 0.686                                                 | 0.698                                                         |                 |         |
|                    | Allow awrt these va                                                         | t                                                                                                   | heir calculati                     | ion in part                                     | -                                                     |                                                               | or within       | B1      |
|                    |                                                                             |                                                                                                     |                                    |                                                 |                                                       |                                                               |                 | (1)     |
| (b)                |                                                                             |                                                                                                     |                                    |                                                 | Correct strip wid                                     | •                                                             | mplied          |         |
|                    |                                                                             | h = 0.25                                                                                            |                                    | b                                               | $y = \frac{1}{8} \text{ or } \frac{1}{2} \times 0.23$ | 5                                                             |                 | B1      |
|                    | $A \approx \frac{1}{-}$                                                     | ×"0.25"{0.4                                                                                         | 62+0.698+                          | +2("0.577                                       | 7"+0.653+"0                                           | .686")}                                                       |                 |         |
|                    | 2                                                                           |                                                                                                     |                                    |                                                 |                                                       |                                                               |                 |         |
|                    |                                                                             |                                                                                                     |                                    |                                                 | rule with their ne rule so e.g.                       | h                                                             |                 |         |
|                    | 1                                                                           |                                                                                                     |                                    |                                                 |                                                       | ,                                                             |                 |         |
|                    | $A \approx \frac{1}{2}$                                                     | $\times$ "0.25"×0.4                                                                                 | 162 + 0.698                        | +2("0.57                                        | 7"+0.653+"0                                           | ).686")                                                       |                 |         |
|                    | Scores M0 unless any missing brackets are implied by subsequent work.       |                                                                                                     |                                    |                                                 |                                                       |                                                               |                 |         |
|                    | $A \approx \frac{1}{2}$                                                     | $\times$ "0.25" $\{0.4\}$                                                                           | 162+0.698                          | +2("0.57"                                       | 7"+0.653+"0                                           | .686")                                                        |                 | M1      |
|                    | Would also so                                                               |                                                                                                     |                                    |                                                 | as implied by su                                      | ıbsequent wo                                                  | ork             |         |
|                    | Must u                                                                      |                                                                                                     |                                    |                                                 | nstead of 0.462.<br>ing <i>y</i> -values sco          | ores MO                                                       |                 |         |
|                    | iviust u                                                                    | •                                                                                                   | Allow separa                       |                                                 |                                                       | J105 1V1U.                                                    |                 |         |
|                    | $A \approx \frac{1}{2} \times "0.25" (0.462 + "0.462)$                      |                                                                                                     |                                    |                                                 |                                                       | 1<br>2×"0.25"("0.686                                          | 5"+0.698)       |         |
|                    | _                                                                           | _                                                                                                   | llow use of the                    | -                                               | -                                                     | -                                                             |                 |         |
|                    | $A \approx \frac{1}{2} \times 0.25 \left\{ \frac{1}{\sqrt{5(-1)}} \right\}$ | $\frac{2^{-0.25}}{-0.25)^2 + 3} + \frac{\sqrt{1 + \sqrt{1 + \frac{1}{2}}}}{\sqrt{1 + \frac{1}{2}}}$ | $\frac{2^{0.75}}{5(0.75)^2 + 3} +$ | $2\left(\frac{2^{0}}{\sqrt{5(0)^{2}+1}}\right)$ | $\frac{2^{0.25}}{\sqrt{5(0.25)^2+1}}$                 | $\frac{1}{\sqrt{5(0.5)^2}} + \frac{2^{0.5}}{\sqrt{5(0.5)^2}}$ | $\overline{+3}$ |         |
|                    |                                                                             | $\frac{78}{125}$ oe                                                                                 |                                    | ac                                              | ccept awrt 0.62<br>ut isw if necess                   | 4 or exact fra                                                |                 | A1      |
|                    | Note the                                                                    | at the calcula                                                                                      | tor answer f                       | for the into                                    | egral is 0.6265                                       | 569683                                                        |                 |         |
|                    |                                                                             |                                                                                                     |                                    |                                                 |                                                       |                                                               |                 | (3)     |
|                    |                                                                             |                                                                                                     |                                    |                                                 |                                                       |                                                               |                 | Total 4 |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Notes                                                                                                                                                                                                                | Marks       |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 3(a)               | $a(-4)^3 - (-4)^2 + b$ Attempts to set $f(-4) = -108$ to obtain an equence embedded in the equation or 2 correct May be implied by e.g6. Condone minor slips on the lhs e.g. one sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | terms (excluding the "+ 4") on lhs.<br>4a-16-4b+4=-108                                                                                                                                                               | M1          |
|                    | As an alternative for the first mark we wi<br>This requires a complete method to divide $(ax^3 - in terms of a and b whichFor reference, the quotient is ax^2 - (1+4a)x + 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-x^2 + bx + 4$ ) by $(x + 4)$ to obtain a remainder is then equated to $-108$                                                                                                                                       |             |
|                    | $-64a - 16 - 4b + 4 = -108$ $\Rightarrow 16a + b = 24*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Correct equation obtained with no errors and at least one line of intermediate working if starting with e.g. $a(-4)^3 - (-4)^2 + b(-4) + 4 = -108$                                                                   | A1*         |
| (b)                | ()3 ()2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                      | (2)         |
|                    | $a\left(\frac{1}{2}\right)^3 - \left(\frac{1}{2}\right)^2 +$ Attempts to set $f\left(\frac{1}{2}\right) = 0$ to obtain an equation see " $\frac{1}{2}$ " embedded in the equation or 2 co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in in $a$ and $b$ . Condone slips. Score when you rrect terms (excluding the "+ 4") on lhs.                                                                                                                          | M1          |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 4 2                                                                                                                                                                                                                |             |
|                    | The "= 0" may be implied when they at  An alternative for the first mark  This requires a complete method to divide a remainder in $a$ and $b$ whi  For reference, the quotient is $\frac{a}{2}x^2 + \left(\frac{a}{4} - \frac{1}{2}\right)x + \frac{a}{4}x^2 + \frac{a}{4}$ | k is to attempt long division.<br>$(ax^3 - x^2 + bx + 4)$ by $(2x - 1)$ to obtain a                                                                                                                                  |             |
|                    | $16a + b = 24, \ a + 4b = -30$<br>⇒ $a =, b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Attempts to solve $16a + b = 24$<br>simultaneously with their equation in $a$ and $b$ . This may be implied if values of $a$ and $b$ are obtained (e.g. calculator)                                                  | M1          |
|                    | a = 2, b = -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Correct values                                                                                                                                                                                                       | A1          |
| (c)                | $f(x) = 2x^3 - x^2 - 8x + 4$ $\Rightarrow f'(x) = 6x^2 - 2x - 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Correct derivative (follow through their <i>a</i> and <i>b</i> ). Allow unsimplified and apply isw if necessary. Allow with the letters " <i>a</i> " and " <i>b</i> " and a "made up" " <i>a</i> " and " <i>b</i> ". | (3)<br>B1ft |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                      | (1)         |

| (d) $\frac{6x^2 - 2x - 8 = 0}{\Rightarrow (3x - 4)(x + 1) = 0} \Rightarrow (3x - 4)(x + 1) = 0$ $\Rightarrow x =$ Sets their $f'(x) = 0$ (may be implied) and solves a 3 term quadratic. Apply general guidance if necessary. You may need to check if a calculator has been used.  Uses at least one of their $x$ values to find a value for $y$ using their $f(x) = 0$ . You may need to check their $y$ values if working is not shown. $\left(\frac{4}{3}, -\frac{100}{27}\right) \text{ or } (-1, 9)$ One correct point. The fractional coordinates must be exact but allow 1.3 with a dot over the 3 and 3.703 with dots over the 7 and 3. Note that it is not necessary for the points to be written as coordinates as long as the pairing is clear.  Depends on having scored both previous M marks. $\left(\frac{4}{3}, -\frac{100}{27}\right) \text{ and } (-1, 9)$ Or e.g. $x = \frac{4}{3}, y = -\frac{100}{27}$ and $x = -1, y = 9$ Both correct points. The fractional coordinates must be exact but allow 1.3 with a dot over the 3 and 3.703 with dots over the 7 and 3. Note that it is not necessary for the points to be written as coordinates as long as the pairing is clear.  Depends on having scored both previous M marks.  Fully correct answers with no working scores 4/4 following a correct part (c) i.e. $\Rightarrow f'(x) = 6x^2 - 2x - 8$ |     | <b>T</b>                                                                                                                                                                                                                                                       | <b>T</b>                                                                                                                                                                                                                                             |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Uses at least one of their $x$ values to find a value for $y$ using their $f(x)$ where $x$ is from an attempt to solve $f'(x) = 0$ . You may need to check their $y$ values if working is not shown. $\left(\frac{4}{3}, -\frac{100}{27}\right) \text{ or } (-1, 9)$ Or e.g. $x = \frac{4}{3}, y = -\frac{100}{27}$ and $x = -1, y = 9$ One correct point. The fractional coordinates must be exact but allow 1.3 with a dot over the 3 and 3.703 with dots over the 7 and 3. Note that it is not necessary for the points to be written as coordinates as long as the pairing is clear.  Depends on having scored both previous $M$ marks. $\left(\frac{4}{3}, -\frac{100}{27}\right) \text{ and } (-1, 9)$ Or e.g. $x = \frac{4}{3}, y = -\frac{100}{27}$ and $x = -1, y = 9$ Both correct points. The fractional coordinates must be exact but allow 1.3 with a dot over the 3 and 3.703 with dots over the 7 and 3. Note that it is not necessary for the points to be written as coordinates as long as the pairing is clear.  Depends on having scored both previous $M$ marks.  Fully correct answers with no working scores 4/4 following a correct part (c) i.e. $\Rightarrow f'(x) = 6x^2 - 2x - 8$                                                                                                                                                                | (d) | $\Rightarrow (3x-4)(x+1)=0$                                                                                                                                                                                                                                    | solves a 3 term quadratic. Apply general guidance if necessary. You may need to                                                                                                                                                                      | M1       |
| Or e.g. $x = \frac{4}{3}$ , $y = -\frac{100}{27}$ and $x = -1$ , $y = 9$ One correct point. The fractional coordinates must be exact but allow 1.3 with a dot over the 3 and 3.703 with dots over the 7 and 3. Note that it is not necessary for the points to be written as coordinates as long as the pairing is clear.  Depends on having scored both previous M marks. $\left(\frac{4}{3}, -\frac{100}{27}\right) \text{ and } (-1, 9)$ Or e.g. $x = \frac{4}{3}$ , $y = -\frac{100}{27}$ and $x = -1$ , $y = 9$ Both correct points. The fractional coordinates must be exact but allow 1.3 with a dot over the 3 and 3.703 with dots over the 7 and 3. Note that it is not necessary for the points to be written as coordinates as long as the pairing is clear.  Depends on having scored both previous M marks.  Fully correct answers with no working scores 4/4 following a correct part (c) i.e. $\Rightarrow f'(x) = 6x^2 - 2x - 8$ (4)                                                                                                                                                                                                                                                                                                                                                                                                                         |     | $x = \frac{4}{3}, -1 \Rightarrow y = \dots$                                                                                                                                                                                                                    | Uses at least one of their $x$ values to find a value for $y$ using their $f(x)$ where $x$ is from an attempt to solve $f'(x) = 0$ . You may need to check their $y$ values if working is not                                                        | M1       |
| Or e.g. $x = \frac{4}{3}$ , $y = -\frac{100}{27}$ and $x = -1$ , $y = 9$ Both correct points. The fractional coordinates must be exact but allow 1.3 with a dot over the 3 and 3.703 with dots over the 7 and 3. Note that it is not necessary for the points to be written as coordinates as long as the pairing is clear.  Depends on having scored both previous M marks.  Fully correct answers with no working scores 4/4 following a correct part (c) i.e. $\Rightarrow f'(x) = 6x^2 - 2x - 8$ (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | Or e.g. $x = \frac{4}{3}$ , $y = -\frac{10}{27}$<br>One correct point. The fractional coordinates m<br>3 and 3.703 with dots over the 7 and 3. Note<br>written as coordinates as long                                                                          | $\frac{0}{7}$ and $x = -1$ , $y = 9$ ust be exact but allow 1.3 with a dot over the that it is not necessary for the points to be ng as the pairing is clear.                                                                                        | A1       |
| (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | Or e.g. $x = \frac{4}{3}$ , $y = -\frac{10}{27}$ Both correct points. The fractional coordinates in 3 and 3.703 with dots over the 7 and 3. Note written as coordinates as low the second points on having scored Fully correct answers with no working scored | $\frac{0}{7}$ and $x = -1$ , $y = 9$<br>nust be exact but allow 1.3 with a dot over the that it is not necessary for the points to be ng as the pairing is clear.<br><b>both previous M marks. ores 4/4 following a <u>correct</u> part (c) i.e.</b> | A1       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | $\rightarrow 1 (x) = 0$                                                                                                                                                                                                                                        | $1 - 2\lambda - 0$                                                                                                                                                                                                                                   | (4)      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                      | Total 10 |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Notes                                                                                                                                                                                                                            | Marks   |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 4(a)(i)            | (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | x = -7  or  y = 9                                                                                                                                                                                                                | B1      |
|                    | (-7, 9) or e.g. $x = -7, y = 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x = -7 and $y = 9$                                                                                                                                                                                                               | B1      |
|                    | Award the marks in (a) once co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                  |         |
| (a)(ii)            | Special case: If all you see i  Examples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s (9, -7) award B1B0                                                                                                                                                                                                             |         |
| (4)(11)            | $r = \sqrt{\left(-3 - ("-7")\right)^2 + \left(12 - "9"\right)^2}$ or $r = \sqrt{\left(-11 - ("-7")\right)^2 + \left(6 - "9"\right)^2}$ or $r = \frac{1}{2}\sqrt{\left(-3 + 11\right)^2 + \left(12 - 6\right)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Correct strategy for the radius. Must be a correct method for their centre (if used) but allow 1 sign slip within one of the brackets. A correct answer scores both marks. Must see the ½ if finding the length of the diameter. | M1      |
|                    | r = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Correct radius                                                                                                                                                                                                                   | A1      |
| (b)                | $(x+7)^2 + (y-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2)2 -2                                                                                                                                                                                                                           | (4)     |
|                    | or e.g. $x^{2} + y^{2} + 2 \times 7x - 2 \times 9y$ M1: Correct attempt at circle eq Allow for $\left(x \pm (their - 7)\right)^{2} + \left(y \pm (their 9)\right)$ or e.g. $x^{2} + y^{2} \pm 2 \times (their - 7)x \pm 2 \times (their 9)y + (their - 4)x$ A1: Correct equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | quation using their values.  or $(1)^{2} = (their numerical r)^{2}$ $(2)^{2} = (their numerical r)^{2} - (their numerical r)^{2} = 0$                                                                                            | M1A1    |
| (c)                | $m_{radius} = \frac{12 - 9}{-3 + 7} \left( = \frac{3}{4} \right) \text{ or}$ $m_{tangent} = -1 \div \left( \frac{12 - 9}{-3 + 7} \right) \left( = -\frac{4}{3} \right) \text{ or}$ $m_{tangent} = -\left( \frac{-3 + 7}{12 - 9} \right) \left( = -\frac{4}{3} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | This mark is for an attempt to find the radius gradient or the tangent gradient. If the method is not clear allow one sign error in the numerator or denominator.                                                                | M1      |
|                    | Alternative for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ne first M:                                                                                                                                                                                                                      |         |
|                    | $(x+7)^{2} + (y-9)^{2} = 5^{2} \Rightarrow 2(x+7)^{2} + (y-9)^{2} = 5^{2} \Rightarrow 2(x+7)^{2} + (y-9)^{2} = 5^{2} \Rightarrow 2(x+7)^{2} + (y-9)^{2} = 5^{2} \Rightarrow \alpha(x+7)^{2} + (y-9)^{2} = 5^{2} \Rightarrow$ | $\frac{+7}{12}\left(=-\frac{4}{3}\right)$                                                                                                                                                                                        |         |
| !                  | $y-12=-\frac{4}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (r+3)                                                                                                                                                                                                                            |         |
|                    | $y-12 = -\frac{1}{3}$ Uses a correct straight line method for the <b>tange</b> work here so must be a clear attempt at the tange is found previously, must apply negative re  If using $y = mx + c$ must re-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ent using the point Q. Must be fully correct ent not the radius. So if the radius gradient ciprocal rule to their radius gradient.                                                                                               | M1      |
| •                  | 4x + 3y - 24 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Allow any integer multiple                                                                                                                                                                                                       | A1      |
| ·                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                  | (3)     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                  | Total 9 |

| Question<br>Number | Scheme                                                                             | Notes                                                                                                                                                                                                   | Marks    |
|--------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 5(a)               | $t_{40} = 100 + (40 - 1) \times 5$                                                 | Uses $a + (n-1)d$ with $a = 100$ , $d = 5$ and $n = 40$ . This may be implied by a correct expression e.g. $100 + 39 \times 5$                                                                          | M1       |
|                    | = (£)295                                                                           | Cao. Correct answer with no working scores both marks.                                                                                                                                                  | A1       |
|                    |                                                                                    |                                                                                                                                                                                                         | (2)      |
| (b)                | 1                                                                                  | Uses a correct sum formula with $a = 100$ , $d = 5$ and $n = 60$ or $n = 40$ . May be implied by a correct numerical expression.                                                                        |          |
|                    | $S_{60} = \frac{1}{2} (60) (2 \times 100 + (60 - 1) \times 5)$                     | If using $\frac{1}{2}n(a+l)$ with $n = 40$ you may see                                                                                                                                                  | M1       |
|                    | or $l = 100 + (60 - 1) \times 5 = 395$                                             | $\frac{1}{2}$ (40)(100+295) using their result from                                                                                                                                                     |          |
|                    | $S_{60} = \frac{1}{2} (60) (100 + 395)$                                            | (a) and this scores M1 also.                                                                                                                                                                            |          |
|                    | 2 7                                                                                | Correct numerical expression with $n = 60$ . If there are any missing brackets then this mark should be withheld unless the correct expression is implied by their answer.                              | A1       |
|                    | =(£)14~850                                                                         | Cao. Correct answer with no working scores 3 marks. Apply isw if necessary and award this mark once a correct answer is seen.                                                                           | A1       |
|                    |                                                                                    |                                                                                                                                                                                                         | (3)      |
| (c)                | $\frac{1}{2}n(2\times600+(n-1)\times-10)=18200$                                    | Attempts to use a correct sum formula with $a = 600$ , $d = -10$ and sets = 18 200. Condone poor use of brackets.                                                                                       | M1       |
|                    | 2 ( , , , , , ,                                                                    | Correct equation which may be implied by subsequent work.                                                                                                                                               | A1       |
|                    | $600n - 5n^{2} + 5n = 18200$ $5n^{2} - 605n + 18200 = 0$ $n^{2} - 121n + 3640 = 0$ | Obtains the printed answer with at least one intermediate line and no errors. Allow other variables to be used for <i>n</i> but the final answer must be as printed including "= 0"                     | A1*      |
| (1)                |                                                                                    | Au to 1 di 1 di 1711                                                                                                                                                                                    | (3)      |
| (d)                | $(n-56)(n-65) = 0$ $\Rightarrow (n=)56,65$                                         | Attempts to solve the given quadratic. This may be implied by correct answers. Apply general guidance if necessary but must reach at least one value for $n$ . (Allow them to use $x$ rather than $n$ ) | M1       |
| _                  |                                                                                    | Correct values (ignore how they are labelled e.g. allow $x =$ )                                                                                                                                         | A1       |
| (a)                |                                                                                    | Chatag (n = ) (5 and aircream in 11 and                                                                                                                                                                 | (2)      |
| (e)                | E.g. (n =) 65 because e.g. the money has already been saved after 56 months        | States $(n =)$ 65 and gives a suitable reason – see below for examples of acceptable comments. There must be no contradictory statements and any calculations must be correct.                          | B1       |
|                    |                                                                                    |                                                                                                                                                                                                         | (1)      |
|                    |                                                                                    |                                                                                                                                                                                                         | Total 11 |

## Acceptable comments for 5(e):

n = 65 means  $t = 600 - 10 \times 64 = -40$  which is not possible/doesn't make sense/etc.

n = 65 because Lina will have saved the money after 56 months

n = 65 because Lina will have saved the money before then

 $600 + (n-1) \times -10 = 0 \Rightarrow n = 61$  so she will have paid off the loan before n = 65

Condone "because 65 > 60" or equivalent e.g. it is only over 60 months (or 5 years)

n = 65 means  $t = 600 - 10 \times 64 = -40$  so reject (but not just "it is negative")

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Notes                                                                       | Marks |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------|
| 6(a)               | $x^3 - 6x + 9 = -2x^2 + 7x - 1$ $\Rightarrow \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sets $C_1 = C_2$ , and collects terms                                       | M1    |
|                    | $\Rightarrow \pm \left(x^3 + 2x^2 - 13x + 10\right) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Correct cubic equation. The "= 0" may be implied by their attempt to solve. | A1    |
|                    | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                           |       |
|                    | $x^3 + 2x^2 - 13x + 10 = (x-1)(x^2 +x +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ = (x-1)(x+)(x+) \Rightarrow x = $                                         |       |
|                    | Attempts to factorise using $(x - 1)$ as a factor or quadratic factor and proceeds to solve $c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • •                                                                       |       |
|                    | NB $x^3 + 2x^2 - 13x + 10 = (x^2 + 10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(x-1)(x^2+3x-10)$                                                          |       |
|                    | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                             | M1    |
|                    | $x^3 + 2x^2 - 13x + 10 = (x - 1)(x - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(x+)(x+) \Rightarrow x =$                                                  |       |
|                    | Attempts 3 factors directly (b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y considering roots)                                                        |       |
|                    | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                             |       |
|                    | $x^3 + 2x^2 - 13x + 10 =$ Solves (using calculator) to obtain 3 roots (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             |       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,                                                                         |       |
|                    | x = 2, y = 5  or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |       |
|                    | Correct values <b>from a</b> of Allow as a coordinate pair of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             | A1    |
|                    | If there are any errors in the algebra e.g. wrong fact be withheld even if they have (2, 5) and score a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tors, wrong working etc. this mark should                                   |       |
|                    | Special Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>se</u>                                                                   |       |
|                    | If you see: $x^3 - 6x + 9 = -2x^2 + 7x - 6x = -2x^2 + 7x = -2x^2 + 7x$ | $1 \Rightarrow x^3 + 2x^2 - 13x + 10 = 0$                                   |       |
|                    | $\Rightarrow x = 2, y = 5$ or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | or (2, 5)                                                                   |       |
|                    | Score M1A1B1(Second 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M on EPEN)A0                                                                |       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | (4)   |

| (b) | $x^n \to x^{n+1}$ For increasing any power of x by 1 for $C_1$ or $C_2$ or for $\pm (C_1 - C_2)$                                                       | M1      |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
|     | $\pm \int \left\{ -2x^2 + 7x - 1 - \left(x^3 - 6x + 9\right) \right\} dx = \pm \int \left( -x^3 - 2x^2 + 13x - 10 \right) dx$                          |         |  |
|     | $=\pm\left(-\frac{x^4}{4} - \frac{2x^3}{3} + \frac{13x^2}{2} - 10x\right)$                                                                             |         |  |
|     | or $\pm \left\{ \int \left( -2x^2 + 7x - 1 \right) dx - \int \left( x^3 - 6x + 9 \right) dx \right\}$                                                  |         |  |
|     | $=\pm\left(-\frac{2x^3}{3} + \frac{7x^2}{2} - x - \left(\frac{x^4}{4} - \frac{6x^2}{2} + 9x\right)\right)$                                             | dM1A1   |  |
|     | or $2x^3 - 7x^2 - 6(x^3 - 6x^2) = x^4 - 6x^2 = 0$                                                                                                      |         |  |
|     | $\int \left(-2x^2 + 7x - 1\right) dx = -\frac{2x^3}{3} + \frac{7x^2}{2} - x,  \int \left(x^3 - 6x + 9\right) dx = \frac{x^4}{4} - \frac{6x^2}{2} + 9x$ |         |  |
|     | dM1: For correct integration of 1 term for $C_1$ and one term for $C_2$ or for correct integration for 2 terms of their $\pm (C_1 - C_2)$              |         |  |
|     | A1: Fully correct integration of both $C_1$ and $C_2$ or for $\pm (C_1 - C_2)$ . Award this mark as soon                                               |         |  |
|     | as fully correct integration is seen and ignore subsequent work.                                                                                       |         |  |
|     | $= -\frac{2^4}{4} - \frac{2(2)^3}{3} + \frac{13(2)^2}{2} - 10(2) - \left(-\frac{1^4}{4} - \frac{2(1)^3}{3} + \frac{13(1)^2}{2} - 10(1)\right)$         | ddM1    |  |
|     | Fully correct strategy for the area. Depends on both previous M marks.                                                                                 |         |  |
|     | Uses the limits "2" and 1 in their "changed" expression(s) and subtracts either way round.                                                             |         |  |
|     | $=\frac{13}{12}$                                                                                                                                       |         |  |
|     | If the attempt is correct apart from subtracting the wrong way round (for limits or functions)                                                         | A1      |  |
|     | and $-\frac{13}{12}$ is obtained, allow recovery if they then make their answer positive.                                                              |         |  |
|     |                                                                                                                                                        | (5)     |  |
|     |                                                                                                                                                        | Total 9 |  |

## Some values for reference:

$$\left[\frac{-2x^3}{3} + \frac{7x^2}{2} - x\right]_1^2 = \frac{20}{3} - \frac{11}{6} = \frac{29}{6} \qquad \left[\frac{x^4}{4} - \frac{6x^2}{2} + 9x\right]_1^2 = 10 - \frac{25}{4} = \frac{15}{4}$$

$$=-\frac{2^4}{4}-\frac{2(2)^3}{3}+\frac{13(2)^2}{2}-10(2)-\left(-\frac{1^4}{4}-\frac{2(1)^3}{3}+\frac{13(1)^2}{2}-10(1)\right)=-\frac{10}{3}-\left(-\frac{53}{12}\right)$$

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                       | Notes                                                                                                                                                                      | Marks       |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7(i)               | $\tan \theta + \frac{1}{\tan \theta} = \frac{\sin \theta}{\cos \theta} + \frac{1}{\frac{\sin \theta}{\cos \theta}}$ $\tan \theta + \frac{1}{\tan \theta} = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$                                                                                                                                                                                | Uses $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$ on both terms                                                                                                    | M1          |
|                    | $\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta}  \text{o}$ Uses $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$ and attention with a 2 term numerator one of which is correct denominator of $\sin \theta \cos \theta$ one of which is correct denominator. | empts common denominator of $\sin\theta\cos\theta$<br>t. Or attempts 2 separate fractions with a                                                                           | dM1         |
|                    | $= \frac{1}{\sin \theta \cos \theta} *$ or $\frac{1}{\cos \theta \sin \theta}$                                                                                                                                                                                                                                                                                                                               | Correct proof with no notation errors or missing variables but allow "\(\eq\)" instead of "\(\eq\)". If there are any spurious "\(\eq\) 0"'s alongside the proof score A0. | A1*         |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                            | (3)         |
|                    | Alternative 1                                                                                                                                                                                                                                                                                                                                                                                                | for (i)                                                                                                                                                                    |             |
|                    | $\tan \theta + \frac{1}{\tan \theta} = \frac{\tan^2 \theta + 1}{\tan \theta} \left( \operatorname{or} \frac{\tan^2 \theta}{\tan \theta} + \frac{1}{\tan \theta} \right)$                                                                                                                                                                                                                                     | Attempts common denominator of $tan\theta$                                                                                                                                 | M1          |
|                    | $= \frac{\sec^2 \theta}{\tan \theta} = \frac{1}{\cos^2 \theta} \times \frac{\cos \theta}{\sin \theta}$ $= \frac{\sin^2 \theta}{\cos^2 \theta} + 1 = \frac{1}{\cos^2 \theta} \times \frac{\cos \theta}{\sin \theta}$ $= \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta} \times \frac{\cos \theta}{\sin \theta}$                                                                                 | Applies appropriate and correct identities to obtain in terms of $\sin\theta$ and $\cos\theta$ only and eliminates "double decker" fractions if necessary                  | <b>d</b> M1 |
|                    | $= \frac{1}{\sin \theta \cos \theta} *$ or $\frac{1}{\cos \theta \sin \theta}$                                                                                                                                                                                                                                                                                                                               | Correct proof with no notation errors or missing variables but allow "\(=\)" instead of "\(=\)". If there are any spurious "\(=\)0"'s alongside the proof score A0.        | A1*         |
|                    | Alternative 2                                                                                                                                                                                                                                                                                                                                                                                                | for (i)                                                                                                                                                                    |             |
|                    | $\tan \theta + \frac{1}{\tan \theta} = \frac{1}{\sin \theta \cos \theta} \Rightarrow$ Uses $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and multiplie                                                                                                                                                                                                                                                     | $\frac{\sin^2 \theta}{\cos \theta} + \cos \theta = \frac{1}{\cos \theta}$ es through by $\sin \theta$ or $\cos \theta$                                                     | M1          |
|                    | $\Rightarrow \sin^2 \theta + \cos^2 \theta + \cos^2 \theta$ Uses $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and multiplie                                                                                                                                                                                                                                                                               | $s^2 \theta = 1$ s through by $sin\theta$ and $cos\theta$                                                                                                                  | <b>d</b> M1 |
|                    | $\sin^2 \theta + \cos^2 \theta = 1$ is true hence proved                                                                                                                                                                                                                                                                                                                                                     | Fully correct work reaching a correct identity with a conclusion. If there are any spurious "= 0"'s alongside the proof score A0.                                          | A1*         |

| (ii)                                             | $3\cos^2(2x+10^\circ) = 1 \Rightarrow \cos^2(2x+10^\circ)$                                         | J V J                                                                                 | M1      |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------|
|                                                  | Divides by 3 and takes square root of be                                                           | oth sides. The "±" is not required.                                                   |         |
|                                                  | $2x + 10^{\circ} = \cos^{-1}\left(\text{"}(\pm)\sqrt{\frac{1}{3}}\text{"}\right)$                  | Applies $x = \frac{\cos^{-1}\left("(\pm)\sqrt{\frac{1}{3}}"\right)\pm 10^{\circ}}{2}$ | M1      |
|                                                  | $\Rightarrow x = \frac{\cos^{-1}\left("(\pm)\sqrt{\frac{1}{3}}"\right) - 10^{\circ}}{2}$           | You may need to check their values if no working is shown.                            |         |
|                                                  | For reference $2x+10^{\circ}=5$                                                                    | 54.735, 125.264                                                                       |         |
|                                                  | $x = 22.4^{\circ} \text{ or } x = 57.6^{\circ}$                                                    | Awrt one of these                                                                     | A1      |
|                                                  | $x = 22.4^{\circ} \text{ and } x = 57.6^{\circ}$                                                   | Awrt both with no extras in range                                                     | A1      |
|                                                  | If mixing degrees and radians                                                                      | allow the method marks.                                                               |         |
|                                                  |                                                                                                    |                                                                                       | (4)     |
|                                                  | Alternative 1 fo                                                                                   | or part (b)                                                                           |         |
|                                                  | $3\cos^2(2x+10^\circ)=1 \Rightarrow 3(1-x)$                                                        | $-\sin^2(2x+10^\circ))=1 \Longrightarrow$                                             |         |
|                                                  | $\Rightarrow \sin^2(2x+10^\circ) = \frac{2}{3} \Rightarrow \sin^2(2x+10^\circ)$                    | $n\left(2x+10^{\circ}\right) = \left(\pm\right)\sqrt{\frac{2}{3}}$                    | M1      |
|                                                  | Uses a correct identity, rearranges and takes square root of both sides.  The "±" is not required. |                                                                                       |         |
|                                                  | $2x + 10^\circ = \sin^{-1}\left(\text{"(}\pm\text{)}\sqrt{\frac{2}{3}}\text{"}\right)$             | Applies $x = \frac{\sin^{-1}\left("(\pm)\sqrt{\frac{2}{3}}"\right)\pm 10^{\circ}}{2}$ | M       |
|                                                  | $\Rightarrow x = \frac{\sin^{-1}\left("(\pm)\sqrt{\frac{2}{3}}"\right) - 10^{\circ}}{2}$           | You may need to check their values if no working is shown.                            | M1      |
|                                                  | $x = 22.4^{\circ} \text{ or } x = 57.6^{\circ}$                                                    | Awrt one of these                                                                     | A1      |
|                                                  | $x = 22.4^{\circ} \text{ and } x = 57.6^{\circ}$                                                   | Awrt both with no extras in range                                                     | A1      |
|                                                  | Alternative 2 fo                                                                                   | 1 \                                                                                   |         |
|                                                  | $3\cos^2(2x+10^\circ) = 3\left(\frac{1+\cos(4x-10^\circ)}{2}\right)$                               | $\left(+\frac{20}{3}\right)$ $\Rightarrow$ $\cos(4x+20) = -\frac{1}{3}$               | M1      |
|                                                  | Uses a correct identity, rearranges to                                                             | make $\cos(4x+20)$ the subject                                                        |         |
|                                                  | $2x + 10^{\circ} = \cos^{-1}\left(" - \frac{1}{3}"\right)$                                         | Applies $\Rightarrow x = \frac{\cos^{-1}\left("-\frac{1}{3}"\right) - 20^{\circ}}{4}$ |         |
|                                                  | $\Rightarrow x = \frac{\cos^{-1}\left("-\frac{1}{3}"\right) - 20^{\circ}}{4}$                      | You may need to check their values if no working is shown.                            | M1      |
| -                                                | $4$ For reference $4x + 20^{\circ} =$                                                              | •                                                                                     |         |
|                                                  | $x = 22.4^{\circ} \text{ or } x = 57.6^{\circ}$                                                    | Awrt one of these                                                                     | A1      |
|                                                  | $x = 22.4^{\circ}$ or $x = 57.6^{\circ}$<br>$x = 22.4^{\circ}$ and $x = 57.6^{\circ}$              | Awrt both with no extras in range                                                     | Al      |
| <del>                                     </del> | 2.2 % % % % % % % % % % % % % % % % %                                                              |                                                                                       | Total 7 |

| Question<br>Number | Scheme                                                                                                                                                                                  | Notes                                                                                                                         | Marks                |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 8(a)               | $S_n = a + ar + ar$ $rS_n = ar + ar$ Writes down at least 3 correct terms of a geome There may be extra incorrect terms but allow to sequences and at least one "+" in both s           | $^{2} + + ar^{n}$<br>tric series and multiplies their sequence by $r$ .<br>this mark if there are 3 correct terms in both     | M1                   |
|                    | $S_n - rS_n = a - ar^n$ or Obtains either equation where both $S_n$ and $rSn$ h one other correct term but no incorrect term                                                            | and the correct first and last terms and at least                                                                             | A1(M1<br>on<br>EPEN) |
|                    | $(1-r)S_n = a(1-r^n):$ Factorises both sides and divides by Should be as printed but allow e.g. $S_n = \frac{a(1-r)}{(1-r)}$ correct v                                                  | $\frac{1-r}{n}$ to obtain the printed answer  but not $S_n = \frac{a(r^n - 1)}{(r-1)}$ unless followed by                     | A1*                  |
|                    | Special  If terms are listed rather than added and the See next page for pr                                                                                                             | e working is otherwise correct score 110                                                                                      | (3)                  |
|                    | Alternative                                                                                                                                                                             | e for (a):                                                                                                                    | · í                  |
|                    | $S_n = a + ar + ar^{n-1}$ $(1-r)S_n = (1-r)(a + ar + + ar^{n-1})$ Writes down at least 3 correct terms of a geomet multiplies the right h  There may be extra incorrect terms but allow | or $S_n = \frac{(1-r)(a+ar++ar^{n-1})}{(1-r)}$ ric series and multiplies both sides by $1-r$ or and side by $\frac{1-r}{1-r}$ | M1                   |
|                    | $(1-r)S_n = a - ar^n$ Obtains the above equation where $S_n$ had the concorrect term and no incorrect terms. Right hand was factored                                                    | rrect first and last terms and at least one other side must be seen unfactorised unless the "a"                               | A1 (M1<br>on EPEN)   |
|                    | $(1-r)S_n = a - ar^n = a(1-r)$ or $S_n = \frac{a - ar^n}{1 - r} \Rightarrow r$ Should be as printed but allow e.g. $S_n = \frac{a(1-r)}{(1-r)}$ correct vo                              | $S_n = \frac{a(1-r^n)}{1-r} *$ but not $S_n = \frac{a(r^n-1)}{(r-1)}$ unless followed by                                      | A1*                  |

| (b) | Mark (b) and (c) together                                                                                                                                                                    |         |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
|     | $r^3 = -\frac{20.48}{320}$ $\Rightarrow r = \sqrt[3]{-\frac{20.48}{320}}$ Correct strategy for $r$ . Allow for dividing the 2 given terms <b>either way round</b> a attempting to cube root. |         |  |
|     | Correct value (and no others) but allow equivalents e.g. $-2/5$ . Correct answer of scores both marks.                                                                                       |         |  |
|     | Note that some candidates take $ar^2 = -320$ and $ar^5 = \frac{512}{25}$ and use these correctly to                                                                                          | to give |  |
|     | $r^{3} = -\frac{20.48}{320} \Rightarrow r = \sqrt[3]{-\frac{20.48}{320}} = -0.4$                                                                                                             |         |  |
|     | In such cases you can allow full marks for (b) but see note * in (c)                                                                                                                         |         |  |
|     |                                                                                                                                                                                              | (2)     |  |

| (c) |                                                                                                                                                                                                                    | Correct attempt at the first term using                                                                                                              |         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|     | $r = -0.4 \Rightarrow a = \frac{-320}{-0.4} (=800)$ or $r = -0.4 \Rightarrow a = \frac{512}{25} \div \left(-\frac{2}{5}\right)^4 (=800)$                                                                           | $\pm$ their r and the -320 or the $\frac{512}{12}$ . May be                                                                                          | M1      |
|     | $S_{13} = \frac{"800"(1}{1 - 1}$ Correct attempt at the sum using their <i>a</i> and Must be a fully correct attempt at the sum $\frac{800(1 + 0.4^{13})}{1 + 0.4}$ is equivalent to $\frac{800(1 + 0.4^{13})}{1}$ | $\frac{-"-0.4"^{13}}{"-0.4"}$ I their $r$ and $n = 13$ to find a value for $S_{13}$ .  In there using $n = 13$ , their $n = 13$ and their $n = 13$ . | M1      |
|     | = 571.43                                                                                                                                                                                                           | Correct value. Note that $S_{\infty}$ is also 571.43 so working must be seen i.e. correct answer only scores no marks.                               | A1      |
|     |                                                                                                                                                                                                                    |                                                                                                                                                      | (3)     |
|     |                                                                                                                                                                                                                    |                                                                                                                                                      | Total 8 |

## **Proof by induction for part (a):**

$$n = 1 \Rightarrow S_1 = \frac{a(1-r^1)}{1-r} = a \text{ so true for } n = 1$$
Assume true for  $n = k$  so  $S_k = \frac{a(1-r^k)}{1-r}$ 

$$Add (k+1)^{th} \text{ term } S_{k+1} = \frac{a(1-r^k)}{1-r} + ar^k = \frac{1-ar^k + ar^k - ar^{k+1}}{1-r}$$

$$= \frac{a-ar^{k+1}}{1-r} = \frac{a(1-r^{k+1})}{1-r}$$

So if true for n = k it has been shown true for n = k + 1 and as it is true for n = 1 it is true for (for all n)

Mark as follows:

M1: Shows true for n = 1 and assumes true for n = k and adds the  $(k + 1)^{th}$  term

A1(M1 on EPEN): Finds common denominator obtains  $\frac{a-ar^{k+1}}{1-r}$  using correct algebra

A1: Fully correct proof reaching  $\frac{a(1-r^{k+1})}{1-r}$  with all steps shown and conclusion

If you are in any doubt about awarding marks in this case or any other cases that you think deserve credit, send to your Team Leader using Review

| Question<br>Number | Scheme                                                                                                                                                                           | Notes                                                                          | Marks          |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------|--|--|--|
| 9(i)               | $4 = \log_3 81 \text{ or}$                                                                                                                                                       | $4 = \log_3 3^4$                                                               |                |  |  |  |
|                    | May be implied by e.g. $\log_3 \frac{x+5}{2x-1} = 4 \Rightarrow \frac{x+5}{2x-1} = 3^4$ (or 81)  Examples: $\log_3 (x+5) - \log_3 81 = \log_3 \frac{x+5}{81}$                    |                                                                                |                |  |  |  |
| -                  |                                                                                                                                                                                  |                                                                                |                |  |  |  |
|                    |                                                                                                                                                                                  |                                                                                |                |  |  |  |
|                    |                                                                                                                                                                                  |                                                                                |                |  |  |  |
|                    | or $x+5$                                                                                                                                                                         |                                                                                |                |  |  |  |
|                    | $\log_3(x+5) - \log_3(2x-1) = \log_3\frac{x+5}{2x-1}$                                                                                                                            |                                                                                | M1             |  |  |  |
|                    | or $(2x, 1) + \log 21 - \log 21(2x, 1)$                                                                                                                                          |                                                                                |                |  |  |  |
|                    | $\log_3(2x-1) + \log_3 81 = \log_3 81(2x-1)$ This mark is for combining 2 log terms correctly and can be awarded following an incorrect                                          |                                                                                |                |  |  |  |
|                    | rearrangen                                                                                                                                                                       | nent e.g.                                                                      | Ci             |  |  |  |
|                    | $\log_3(x+5)-4=\log_3(2x-1) \Longrightarrow$                                                                                                                                     | $\log_3(x+5) + \log_3(2x-1) = 4$                                               |                |  |  |  |
|                    | $\Rightarrow \log_3(2x-1)(x+5) = \dots$                                                                                                                                          |                                                                                |                |  |  |  |
|                    | x+5                                                                                                                                                                              | Obtains this equation in any form e.g.                                         |                |  |  |  |
|                    | $\frac{x+5}{81} = 2x-1$                                                                                                                                                          | $\frac{x+5}{2x-1} = 3^4$                                                       | A1             |  |  |  |
|                    | $x = \frac{86}{161}$                                                                                                                                                             |                                                                                |                |  |  |  |
|                    | 161                                                                                                                                                                              | Cao                                                                            | A1             |  |  |  |
|                    | Condone the omission of the base throughout                                                                                                                                      |                                                                                | (4)            |  |  |  |
|                    | Alternative for                                                                                                                                                                  | first 3 marks:                                                                 | (4)            |  |  |  |
|                    | $\log_3(x+5) - 4 = \log_3(2x-1) \Rightarrow 3^{\log_3(x+5)-4} = 3^{\log_3(2x-1)}$                                                                                                |                                                                                |                |  |  |  |
|                    | $\Rightarrow 3^{\log_3(x+5)} \times 3^{-4} = 2x - 1 \Rightarrow \frac{x+5}{81} = 2x - 1$                                                                                         |                                                                                |                |  |  |  |
|                    | Score B1 for sight of 3 <sup>-4</sup> and M1 for applying $3^{a\pm b} = 3^a \times 3^{\pm b}$ and A1 as above                                                                    |                                                                                |                |  |  |  |
|                    |                                                                                                                                                                                  |                                                                                |                |  |  |  |
|                    | (a) Specie                                                                                                                                                                       | al Case                                                                        |                |  |  |  |
|                    | $\log_3(x+5) - \log_3(2x-1) = 4 \Rightarrow \frac{\log_3(x+5)}{\log_3(2x-1)} = 4 \Rightarrow \frac{x+5}{2x-1} = 81 \Rightarrow x = \frac{86}{161}$                               |                                                                                |                |  |  |  |
|                    | Scores B1(implied) M0 A0 A1                                                                                                                                                      |                                                                                |                |  |  |  |
| (ii)(a)            | $3^{y+3} = 3^y \times 3^3$                                                                                                                                                       |                                                                                |                |  |  |  |
|                    | $2^{1-2y} = 2 \times 2^{-2y} \text{ or } \frac{2}{2^{2y}} \text{ or } 2 \times 4^{-y} \text{ or } \frac{2}{4^{y}}$                                                               | One correct index law seen or implied anywhere in their working                | B1             |  |  |  |
|                    | $3^{y+3} \times 2^{1-2y} = 27 \times 3^y \times 2 \times 2^{-2y} = \dots$                                                                                                        | Applies both correct index laws to the lhs of the equation                     | M1(B1 on EPEN) |  |  |  |
|                    | $3^{y} \times 2^{-2y} = \frac{108}{27 \times 2}$ or $\frac{3^{y}}{4^{y}} = \frac{108}{27 \times 2}$ or $\frac{3^{y}}{2^{2y}} = \frac{108}{54}$                                   |                                                                                |                |  |  |  |
|                    |                                                                                                                                                                                  |                                                                                | M1             |  |  |  |
|                    | Isolates the terms in y (as powers of 3 and 2(or 4)) on the lhs and the constants on the rhs. There must be no incorrect work to combine terms e.g. $3^y \times 3^3 = 27^y$ etc. |                                                                                |                |  |  |  |
|                    | $(0.75)^y = 2*$                                                                                                                                                                  | Cso. Reaches the given answer with no errors and all steps shown with $2^{2y}$ | A1*            |  |  |  |
|                    | . ,                                                                                                                                                                              | appearing as 4 <sup>y</sup> at some point.                                     | (4)            |  |  |  |
|                    |                                                                                                                                                                                  |                                                                                | (4)            |  |  |  |

|     | Alternative 1 for (ii)(a) using logs:                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                        |                 |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|
|     | $\log(3^{y+3} \times 2^{1-2y}) = \log 3^{y+3} + \log 2^{1-2y}$ Or $\log 3^{y+3} = (y+3)\log 3$ Or $\log 2^{1-2y} = (1-2y)\log 2$                                                                                                                                                                                                                                                           | One <b>correct</b> log law seen or implied anywhere in their working. <b>No bracketing errors allowed for </b> this mark.              | B1              |  |  |
|     | $\log 3^{y+3} + \log 2^{1-2y} = (y+3)\log 3 + (1-2y)\log 2$ Applies the correct log laws to the lhs. You can condone missing brackets around the $y+3$ and/or $1-2y$                                                                                                                                                                                                                       |                                                                                                                                        |                 |  |  |
|     | $(y+3)\log 3 + (1-2y)\log 2 = \log 108 \Rightarrow \log 3^{y} - \log 2^{2y} = \log 108 - 3\log 3 - \log 2$ $\Rightarrow \log \frac{3^{y}}{2^{2y}} = \log \frac{108}{3^{3} \times 2}$ Proceeds to isolate the terms in y on the lhs and combines the constants on the rhs or e.g. $(y+3)\log 3 + (1-2y)\log 2 = \log 108 \Rightarrow y(\log 3 - 2\log 2) = \log \frac{108}{3^{3} \times 2}$ |                                                                                                                                        |                 |  |  |
|     | Proceeds to isolate the terms in y on the lh $(0.75)^{y} = 2*$                                                                                                                                                                                                                                                                                                                             | Cso. With e.g. 2log 2 seen as log 4 or log 2 <sup>2</sup> or implied at some point.                                                    | A1*             |  |  |
|     | Alternative 2 for (ii)(a) using factors of 108:                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                        |                 |  |  |
|     | $3^{y+3} \times 2^{1-2y} = 108 = 2^{2} \times 3^{3}$ $\Rightarrow \frac{3^{y+3} \times 2^{1-2y}}{2^{2} \times 3^{3}} = \dots$ $\Rightarrow 3^{y} \times 2^{-1-2y} = \dots$                                                                                                                                                                                                                 | One correct index law seen or implied anywhere in their working e.g. $\frac{3^{y+3}}{3^3} = 3^y$ or $\frac{2^{1-2y}}{2^2} = 2^{-1-2y}$ | B1              |  |  |
|     | $\Rightarrow 3^y \times 2^{-1-2y} = \dots$                                                                                                                                                                                                                                                                                                                                                 | Applies both correct index laws to the lhs of the equation                                                                             | M1(B1 on EPEN)  |  |  |
|     | $\Rightarrow 3^{y} \times 2^{-2y} = 2$                                                                                                                                                                                                                                                                                                                                                     | Proceeds to isolate the terms in y (as powers of 3 and 2(or 4)) on the lhs and the constants on the rhs                                | M1              |  |  |
|     | $(0.75)^y = 2*$                                                                                                                                                                                                                                                                                                                                                                            | Cso. Reaches the given answer with no errors and all steps shown with $2^{2y}$ appearing as $4^y$ at some point.                       | A1*             |  |  |
| (b) | $(0.75)^{y} = 2 \Rightarrow y = \frac{\log 2}{\log 0.75}$ or $(0.75)^{y} = 2 \Rightarrow y = \log_{0.75} 2$                                                                                                                                                                                                                                                                                | Correct processing to obtain a value for $y$ May be implied by awrt – 2.4                                                              | M1              |  |  |
|     | y = -2.409                                                                                                                                                                                                                                                                                                                                                                                 | Awrt -2.409<br>A correct answer implies both marks                                                                                     | A1              |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                        | (2)<br>Total 10 |  |  |