27 въпрос. Геометрична оптика. Закони за отражение и пречупване.

В геометричната оптика се изучават законите за разпространение на светлината на основата на понятието светлинен лъч. Опитно е доказано, че в оптично еднородна и изотропна среда светлината се разпространява праволинейно, т.е. светлинният лъч е права линия.

По определение *светлинен лъч* се нарича праволинейната траектория, по която се разпространява светлината.

Но светлината е електромагнитна (EM) вълна и следователно разпространението й е свързано с пренос на енергия – енергията на EM вълна. От тук можем да дадем и друго определение на понятието светлинен лъч – това е линията, по която се разпространява светлинната енергия. Светлинният лъч е идеализирано понятие, в практиката се използва много тесен сноп светлинни лъчи.

В дадена среда светлината (като ЕМ вълна) се разпространява със скоростv, по-малка от скоростта й c във вакуум. Величината

$$n = \frac{c}{v}$$

се нарича показател на пречупване на средата. Следователно

$$n = \frac{c}{v} \ge 1$$

От друга страна

$$v = \frac{c}{\sqrt{\varepsilon_r \mu_r}} \implies n = \frac{c}{v} = \sqrt{\varepsilon_r \mu_r}$$

където ε_r е относителната диелектрична константа на средата, μ_r е относителната магнитна проницаемост на средата.

Когато светлинен лъч достигне границата на две прозрачни среди с различни показатели на пречупване, той се разделя най-общо на два лъча – отразен и пречупен. Съответните явления се наричат *отражение и пречупване на светлината*.

Опитно са установени следните закони:

- 1. Падащият лъч, отразеният лъч, пречупеният лъч и нормалата към граничната повърхност в точката на падане лежат в една равнина.
- 2. Ъгълът на отражение α' е равен на ъгъла на падане, т. е. $\alpha = \alpha'$.
- 3. $n_1 \sin \alpha = n_2 \sin \beta$, където β е ъгъла на пречупване. Този закон се нарича още закон на Снелиус.

От закона на Снелиус следва, че ако първата среда е оптически по-плътна $(n_1 > n_2)$, то ъгълът на пречупване $\beta > \alpha$, и обратно.

От законите на геометричната оптика следва, че ако ъгълът на падане α се увеличава, то и ъгълът на пречупване β също ще расте. При дадена стойност на ъгъла на падане, наречена гранична стойност $(\alpha_{\rm rp})$, ъгълът на пречупване ще е равен на $90^{\rm 0}$ ($\beta=90^{\rm 0}$). Следователно пречупеният лъч ще се разпространява по граничната повърхност.

Ако $\alpha > \alpha_{\rm rp}$, пречупен лъч няма да има и светлината се отразява изцяло. Това явление се нарича **пълно вътрешно отражение.**

Законите на геометричната оптика могат да се обобщят в един закон, наречен принцип на Ферма: светлината се разпространява между две точки А и В по такъв начин, че да измине разстоянието между тях за най-кратко време.

Пример 1: Две огледала са разположени на ъгъл 120⁰ едно спрямо друго, както е показано на фигурата. Светлинен лъч пада върху първото огледало под ъгъл 65⁰. Определете ъгъла на отражение на лъча от второто огледало.

Дадено:
$$\alpha_1 = 65^{\circ}$$
 , $\varphi = 120^{\circ}$ $\alpha_2' = ?$

Решение: Имаме, че $\alpha_1 = \alpha_1' = 65^0$.

Следователно
$$\delta = 90^{0} - \alpha_{1} = 90^{0} - 65^{0} = 25^{0}$$
 .

От тук
$$\gamma = 180^{0} - \varphi - \delta = 180^{0} - 120^{0} - 25^{0} = 35^{0}$$
.

Следователно
$$\alpha_2 = 90^0 - \gamma = 90^0 - 35^0 = 55^0$$
.

Ho
$$\alpha_2' = \alpha_2 = 55^0$$
.