

Universidad Tecnológica de la Mixteca

00126

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA Tópicos de Física Computacional

SEMESTRE CLAVE DE LA ASIGNATURA TOTAL DE HORAS		
Décimo	172103	101

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Introducir al estudiante a los conceptos básicos de la física computacional proporcionándole herramientas para la aplicación de los métodos numéricos en la resolución o simulación de sistemas con modelos ya conocidos o que están en desarrollo.

TEMAS Y SUBTEMAS

1. Algoritmos de simulación en C++.

- 1.1. Métodos estocásticos.
- 1.1.1. Monte Carlo.
- 1.1.2. Cadenas de Markov.
- 1.2. Optimización.
- 1.2.1. Ajustes.
- 1.2.2. Algoritmo genético.
- 1.3. Redes neuronales.
- 1.4. Autómatas celulares.

2. Elemento finito y simulación numérica en la ingeniería e industria.

- 2.1. Aplicaciones en sistemas de ecuaciones diferenciales en Ingeniería.
 - 2.1.1. Vibraciones mecánicas forzadas y resonancia.
 - 2.1.2. Mezclas químicas.
- 2.2. Difusividad.
 - 2.2.1. Ley de Fick. Teoría de la difusión en gases a baja densidad.
 - 2.2.2. Difusión con una reacción química heterogénea.
- 2.3. Simulaciones mediante Elemento Finito.
 - ${\bf 2.3.1.}\ Vibraciones\ inducidas\ por\ sismos.$
 - 2.3.2. Interacción estática-fluido.

3. Simulación de ondas ópticas en MATLAB.

- 3.1. Transformada de Fourier digital.
 - 3.1.1. Muestreo de funciones frecuenciales
 - 3.1.2. Trasformada discreta vs transformada continua.
- 3.2. Difracción de Fraunhofer y lentes.
 - 3.2.1. Propiedades de las lentes como transformada de Fourier.
- 3.3. Sistemas formadores de imagen y aberraciones.
 - 3.3.1. Aberraciones de Seidel.
 - 3.3.2. Polinomios de Zernike.
- 3.4. Propagación a través de turbulencia atmosférica

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora y los proyectores. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas del curso.

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación

Además, se considerará el trabajo extra-clase, la participación durante las sesiones del curso y la asistencia a las

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- Applied Computational Physics. Joseph F. Boudreau, Eric S. Swanson, Oxford. (2018)
- Computational Physics. Newman M. CreateSpace Independent Publishing Plataform. (2012)
- Numerical simulation of optical wave propagation with examples in MATLAB. J. Schmidt, (2010)

Consulta:

- Basic Concepts in Computational Physics. Benjamin A. Stickler, Ewald Schachinger, Springer. (2016)
- Computational physics. Philipp O.J. Scherer. Third Edition. Springer. (2017)
- Computational Physics, Steven E. Koonin, Dawn C. Meredith, Addison-Wesley (1990)
- 4. Numerical Methods and Software. David Kahaner, Cleve Moler, Stephen Nash, Prentice Hall. (1990)

PERFIL PROFESIONAL DEL DOCENTE

Maestría en Física o Matemáticas, o Doctorado ছমর্কাহারে o Matemáticas, preferentemente con experiencia en cómputo científico y docencia.

cómputo científico y docencia.

JEFATURA DE CARRERA INGENIERIA EN

DR. SALOMÓN GONZÁLEZ MÁRTINÉZ LICADA

JEFE DE CARRERA

DR. AGUSTIN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO