Lecture 1 contents

Topic name	Content	Chapters / Sections	
		Book: Silicon	
Physical and	International Technology Roadmap of	Nanoelectronics edited by	
Technological	Semiconductors	Oda and Ferry	
Limitations of nano	Acceleration and Issues	Sections: 2.1, 2.2, 2.3, 3.1	
CMOS Devices to	Limitations and Showstoppers Coming	Videos on MOSFET	
the End of the	from CMOS Scaling	fabrication and working	
Roadmap and	Technological Options to MOSFET	ppt file: EL453_Nano_1	
Beyond	Optimization		

Go into Nano-Scale

The term nanoelectronics encompasses developments in electronics that entail device physics and structures below the 100 nm level. Research in nano-electronics envisions extending CMOS and proposes new devices and technologies that perform either processor or memory functions or both in universal devices.

Miniaturization and Integration in Semiconductor Devices

Microprocessor Transistor Counts 1971-2011 & Moore's Law

www.wiki.org

Date of introduction

Moores Law

Nanotechnology and Nanoelectronics Materials, Devices, Measurement Techniques, W. R. Fahrner (Editor), Springer

MOSFET I-Vs

Gate Voltage

Source-Drain Voltage

Operation of a transistor

V_{SG} > 0 n type operation

Positive gate bias attracts electrons into channel Channel now becomes more conductive

ITRS Projections

Year of Production	2013	2016	2019	2022	2025
Technology Node (nm) (DRAM Half pitch)	28	20	14.2	10	7.1
Transistor Gate Length in Microprocessors circuits (nm)	20	15.3	11.7	8.9	6.6
Wafer diameter (inch)	12	18	18	18	18
Transistors density in Microprocessor (billion/cm2)	1.59	3.19	6.38	12.77	25.54
Number of interconnect wiring levels in the Microprocessor	12	13	14	15	16
Operating voltage (V)	0.85	0.77	0.71	0.64	0.59

Schematic illustration of the scaling of Si technology by a factor alpha

Oda, S. et Ferry, D. (2006), Silicon Nanoelectronics.

Technology Scaling Rules for Three Types of Scaling

Physical Parameter	Constant-Electric Field Scaling Factor	Generalized Scaling Factor	Generalized Selective Scaling Factor
Channel length, insulator thickness	1/α	1/α	$1/\alpha_{\rm d}$
Wiring width, channel width	1/α.	1/α	$1/\alpha_{\rm w}$
Electric field in device	1	ε	ε
Voltage	1/o.	ε/α	ε/α _d
On-current per device	1/α.	ε/α	ε/α _{-w}
Doping	O.	εα	EO' _d
Area	$1/\alpha^2$	$1/\alpha^2$	$1/\alpha_{\rm w}^2$
Capacitance	1/α.	1/α	$1/\alpha_{\rm w}$
Gate delay	1/α.	1/α	$1/\alpha_{\rm d}$
Power dissipation	1/ c . ²	ϵ^2/α^2	$\epsilon^2/\alpha_{\rm w}\alpha_{\rm d}$
Power density	1	ϵ^2	$\epsilon^2 \alpha_{\rm w} / \alpha_{\rm d}$

Oda, S. et Ferry, D. (2006), Silicon Nanoelectronics.

Problems in the Scaling of MOSFETs

Oda, S. et Ferry, D. (2006), Silicon Nanoelectronics.

The half-pitch of the first wiring layer is the defining feature for memory chips, while the gate length is the gauge for logic manufacturers.

IC fabrication process

Home-work

- 1. Describe micro fabrication process with proper diagrams.
- 2. Describe short channel effects in MOSFETs

Good Luck!