FMI, Info, Anul I

Logică matematică și computațională

Seminar 7

Pentru primele două exerciții, fixăm \mathcal{L} un limbaj de ordinul I care conține:

- două simboluri de relații unare R, S și două simboluri de relații binare P, Q;
- un simbol de funcție unară f și un simbol de funcție binară g;
- două simboluri de constante c, d.

(S7.1) Să se găsească forme normale prenex pentru următoarele formule ale lui \mathcal{L} :

- (i) $\forall x (f(x) = c) \land \neg \forall z (g(y, z) = d);$
- (ii) $\forall y (\forall x P(x, y) \rightarrow \exists z Q(x, z));$
- (iii) $\exists x \forall y P(x,y) \lor \neg \exists y (S(y) \to \forall z R(z));$
- (iv) $\exists z (\exists x Q(x, z) \lor \exists x R(x)) \to \neg (\neg \exists x R(x) \land \forall x \exists z Q(z, x)).$

(S7.2) Să se găsească o formă normală Skolem pentru enunțul φ în formă normală prenex, unde φ este, pe rând:

- (i) $\forall x \exists z (f(x) = c \land \neg (g(x, z) = d));$
- (ii) $\forall y \exists z \exists u (P(u, y) \rightarrow Q(y, z));$
- (iii) $\exists x \forall u \forall y \exists z (P(x, u) \lor \neg (S(y) \to R(z)));$
- (iv) $\forall z \forall x \exists u \forall v ((Q(x,z) \lor R(x)) \to (R(u) \lor \neg Q(v,u))).$

Se notează cu \mathcal{L}_{Graf} limbajul care conține un singur simbol, anume un simbol de relație de aritate 2, notat aici cu \dot{E} . Fie $\Gamma := \{(IREFL), (SIM)\}$, unde

$$(IREFL) := \forall x \neg \dot{E}(x, x)$$

$$(SIM) := \forall x \forall y (\dot{E}(x, y) \rightarrow \dot{E}(y, x)).$$

Atunci clasa tuturor grafurilor este axiomatizată de Γ , adică este egală cu $Mod(\Gamma)$.

(S7.3) Să se axiomatizeze următoarele clase de grafuri:

- (i) grafurile complete;
- (ii) grafurile cu proprietatea că orice vârf are exact o muchie incidentă;
- (iii) grafurile care au cel puţin un ciclu de lungime 3.

Teorema 1 (Teorema de compacitate pentru logica de ordinul I). Fie \mathcal{L} un limbaj de ordinul I și Γ o mulțime de \mathcal{L} -enunțuri. Dacă orice submulțime finită a lui Γ este satisfiabilă, atunci Γ este satisfiabilă.

(S7.4) Să se arate că clasa grafurilor conexe nu este axiomatizabilă.