

Python-Based Accelerator Design and Programming

Hongzheng Chen, Niansong Zhang, Shaojie Xiang, Zhiru Zhang

Cornell University

ECE 8893 – Parallel Programming for FPGAs

Georgia Tech

March 11, 2025

Deep Learning Models Become Larger and Larger...

- The computational demands of large models have outgrown the capabilities of existing hardware
- Specialized accelerators are essential for speeding up model training and inference

Complexity in Specialized Accelerator Design

Accelerator design is different from programming on general processors

An Al accelerator example

```
void systolic_tile(int8_t A_tile[2][768],
int8 tB tile[768][2],
int8 t C tile[2][2]) {
#pragma dataflow
hls::stream<int8_t> A_fifo[2][3], B_fifo[2][3];
#pragma stream variable=A/B fifo depth=3
#pragma partition variable=A/B/C tile complete dim=1
for (int k4 = 0; k4 < 768; k4++) {
for (int m = 0; m < 2; m++) {
 int8 t v 105 = A tile[m][k4];
 A_fifo[m][0].write(v105);}
 // ... write B fifo
for (int Ti = 0; Ti < 2; ++Ti) {
#pragma HLS unroll
                                                                                                  Compute
for (int Tj = 0; Tj < 2; ++Tj) {
#pragma HLS unroll
                                                                                                  Customization
 PE_kernel(A_in, A_out, B_in, B_out, C, Ti, Tj);
void matmul(int8_t A[512][768], int8_t B[768][768],
int8 t C[512][768]
int8_t local_A[2][768], local_B[768][2], local_C[2][2];
for (int mi = 0; mi < 256; mi++) {
for (int ni = 0; ni < 384; ni++) {
// ... load A, B
systolic_tile(local_A, local_B, local_C);
```

Vanilla Matmul (1% theoretical peak perf.)

- + Compute customization (~30% peak)
 - + Loop tiling
 - + Loop unrolling
 - + Loop & function pipelining

Memory


```
void systolic_tile(int8_t A_tile[2][768],
int8 tB tile[768][2],
int8_t C_tile[2][2]) {
#pragma dataflow
hls::stream<int8_t> A_fifo[2][3], B_fifo[2][3];
#pragma stream variable=A/B fifo depth=3
#pragma partition variable=A/B/C tile complete dim=1
for (int k4 = 0; k4 < 768; k4++) {
                                                                                              Memory
for (int m = 0; m < 2; m++) {
 int8 t v 105 = A tile[m][k4];
                                                                                              Customization
 A_fifo[m][0].write(v105);}
 // ... write B fifo
for (int Ti = 0; Ti < 2; ++Ti) {
#pragma HLS unroll
                                                                                              Compute
for (int Tj = 0; Tj < 2; ++Tj) {
#pragma HLS unroll
                                                                                              Customization
 PE_kernel(A_in, A_out, B_in, B_out, C, Ti, Tj);
void matmul(int8_t A[512][768], int8_t B[768][768],
int8 t C[512][768]
int8 t local A[2][768], local B[768][2], local C[2][2];
for (int mi = 0; mi < 256; mi++) {
for (int ni = 0; ni < 384; ni++) {
// ... load A, B
systolic_tile(local_A, local_B, local_C);
```

Vanilla Matmul (1% theoretical peak perf.)

- + Compute customization (~30% peak)
 - + Loop tiling
 - + Loop unrolling
 - + Loop & function pipelining
- + Custom memory hierarchy (~50% peak)
 - + Tiling & data reuse buffers
 - + Memory banking/partitioning


```
void systolic_tile(int8 t A tile[2][768],
int8 tB tile[768][2],
int8 t C tile[2][2]) {
                                                                                        Communication
#pragma dataflow
hls::stream<int8_t> A_fifo[2][3], B_fifo[2][3];
                                                                                        Customization
#pragma stream variable=A/B fifo depth=3
#pragma partition variable=A/B/C_tile complete dim=1
for (int k4 = 0; k4 < 768; k4++)
                                                                                        Memory
for (int m = 0; m < 2; m++) {
 int8 t v105 = A tile[m][k4];
                                                                                        Customization
 A_fifo[m][0].write(v105);}
for (int Ti = 0; Ti < 2; ++Ti) {
#pragma HLS unroll
                                                                                        Compute
for (int Tj = 0; Tj < 2; ++Tj) {
#pragma HLS unroll
                                                                                        Customization
 PE_kernel(A_in, A_out, B_in, B_out, C, Ti, Tj);
void matmul(int8_t A[512][768], int8_t B[768][768],
int8 t C[512][768]
int8 t local A[2][768], local B[768][2], local C[2][2];
for (int mi = 0; mi < 256; mi++) {
for (int ni = 0; ni < 384; ni++) {
// ... load A, B
systolic_tile(local_A, local_B, local_C);
```


Vanilla Matmul (1% theoretical peak perf.)

- + Compute customization (~30% peak)
 - + Loop tiling
 - + Loop unrolling
 - + Loop & function pipelining
- + Custom memory hierarchy (~50% peak)
 - + Tiling & data reuse buffers
 - + Memory banking/partitioning
- + Data movement optimization (~95% peak)
 - + Data streaming
 - + Data packing (vectorization)
 - + Memory coalescing
 - + Systolic communication

```
void systolic_tile(int8 t A tile[2][768],
int8 tB tile[768][2],
int8 t C tile[2][2]) {
                                                                                        Communication
#pragma dataflow
hls::stream<int8_t> A_fifo[2][3], B_fifo[2][3];
                                                                                        Customization
#pragma stream variable=A/B fifo depth=3
#pragma partition variable=A/B/C tile complete dim=1
for (int k4 = 0; k4 < 768; k4++)
for (int m = 0; m < 2; m++) {
                                                                                        Memory
 int8 t v105 = A tile[m][k4];
 A_fifo[m][0].write(v105);}
                                                                                        Customization
for (int Ti = 0; Ti < 2; ++Ti) {
#pragma HLS unroll
                                                                                        Compute
for (int Tj = 0; Tj < 2; ++Tj) {
#pragma HLS unroll
                                                                                        Customization
 PE_kernel(A_in, A_out, B_in, B_out, C, Ti, Tj);
void matmul(int8_t A[512][768], int8_t B[768][768],
int8 t C[512][768]
int8 t local A[2][768], local B[768][2], local C[2][2];
for (int mi = 0; mi < 256; mi++) {
for (int ni = 0; ni < 384; ni++) {
// ... load A, B
systolic_tile(local_A, local_B, local_C);
```


Vanilla Matmul (1% theoretical peak perf.)

- + Compute customization (~30% peak)
 - + Loop tiling **Existing HLS compiler**
 - + Loop unrolling e.g., ScaleHLS [HPCA'22]
 - + Loop & function pipelining
- + Custom memory hierarchy (~50% peak)
 - + Tiling & data reuse buffers
 - + Memory banking/partitioning
- + Data movement optimization (~95% peak)
 - + Data streaming
 - + Data packing (vectorization)
 - + Memory coalescing
 - + Systolic communication

~500 lines of HLS code for a GEMM systolic array vendor-specific, hard to maintain & reuse

Pythonic: No need to learn a new DSL!

- Free-form imperative programming
- Strong type system

Pythonic: No need to learn a new DSL!

Decoupled customization

```
Compute Cust.

Memory Cust.

Comm. Cust.

s = allo.customize(matmul)
s.reorder("k", "j")
s.buffer_at(s.C, axis="i")
s.pipeline("j")
```

} {loop name = "j", pipeline}

} {loop name = "k", op name = "S k 0", reduction}

} {loop_name = "i", op_name = "S_i_j_0"}
return %alloc : memref<1024x1024xf32>

Pythonic: No need to learn a new DSL!

Stepwise verifiable rewrites

```
s = allo.customize(gemm)

s.reorder("k", "j")

print(s.module)

s.buffer_at(s.C, axis="i")

print(s.module)

s.pipeline("j")

print(s.module)

module {
func.func @gemm(%arg0, %arg1) -> memref<1024x1024xf32> {
%alloc = memref.alloc() (name = "C"): memref<1024x1024xf32> affine.for %arg2 = 0 to 1024 {
affine.for %arg3 = 0 to 1024 {
affine.for %arg4 = 0 to 1024 {
affine.for %arg4 = 0 to 1024 {
```

```
module {
func.func @gemm(%arg0: memref<1024x1024xf32>, %arg1: memref<1024x1024xf32>) ->
memref<1024x1024xf32> {
%alloc = memref.alloc() {name = "C"}: memref<1024x1024xf32>
affine.for %arg2 = 0 to 1024 {
affine.for %arg3 = 0 to 1024 {
affine.for %arg4 = 0 to 1024 {
...
} {loop_name = "k"}
} {loop_name = "j"}
} {loop_name = "i", op_name = "S_i_j_0"}
return %alloc: memref<1024x1024xf32>
}}
```

```
module {
func.func @gemm(%arg0: memref<1024x1024xf32>, %arg1: memref<1024x1024xf32>) ->
memref<1024x1024xf32> {
%alloc = memref.alloc() {name = "C"} : memref<1024x1024xf32>
affine.for %arg2 = 0 to 1024 {
 %alloc 0 = memref.alloc() : memref<1024xf32>
affine.for %arg3 = 0 to 1024 {
} {buffer, loop_name = "j_init", pipeline_ii = 1: i32}
affine.for %arg3 = 0 to 1024 {
 affine.for %arg4 = 0 to 1024 {
 }{loop name = "i"}
} {loop_name = "k", op_name = "S_k_0", reduction}
affine.for %arg3 = 0 to 1024 {
} {buffer, loop_name = "j_back", pipeline_ii = 1 : i32}
} {loop_name = "i", op_name = "S_i_j_0"}
return %alloc: memref<1024x1024xf32>
```

→ Algorithm specification

→ Schedule construction

s = allo.customize(matmul)

^{*} Schedule: A sequence of customization primitives

→ Algorithm specification → Architectural Diagram def matmul(A: int8[M, K], only 8 lines lines HLS code python B: int8[K, N], C: int16[M, N]): for i, j in allo.grid(M, N, "PE"): fifo_B for k in **range**(K): C[i, j] += A[i, k] * B[k, j]PE → Schedule construction s = allo.customize(matmul) buf $A = s.buffer_at(s.A, "j")$ buf_B = s.buffer_at(s.B, "j") pe = s.unfold("PE", axis=[0, 1],factor=[M, N]) PE s.partition(s.A, dim=0) s.partition(s.B, dim=1) s.partition(s.C, dim=[0, 1])s.to(buf A, pe, axis=0, depth=M + 1) s.to(buf B, pe, axis=1, depth=N + 1)

fifo_B

PE

^{*} Schedule: A sequence of customization primitives

→ Algorithm specification

```
python
```

→ Schedule construction

→ CPU Simulation

→ Algorithm specification

→ Schedule construction

- A formal equivalence checker of source-to-source HLS transformations via symbolic execution
 - Support statically interpretable control-flow (SICF)
- Verification in time/space linear w.r.t. OPs executed
 - ~500K Ops/sec in verification throughput
 - A complex 64x64 systolic array verified in 16 minutes

→ Spatial loop: i, j s = allo.customize(matmul) buf A = s.buffer at(s.A, "j") buf_B = s.**buffer_at**(s.B, "j") pe = s.**unfold**("PE", axis=[0, 1], factor=[M, N]) s.partition(s.A, dim=0) s.partition(s.B, dim=1) s.partition(s.C, dim=[0, 1]) s.to(buf A, pe, axis=0, depth=M + 1) s.to(buf B, pe, axis=1, depth=N + 1) B_0 B_1 fifo B fifo B PE PE PE

Realize different dataflows with minimal schedule code

How to Compose Optimized Kernels into Complete Accelerator?

Optimized Kernels

High-performance Accelerator

Composable Schedules

→ Given different optimized kernel implementations

def **matmul**(A: int8[M, K], B: int8[K, N], C: int16[M, N])

→ Schedule composition

Previous customizations for matmul

s_matmul = allo.customize(matmul)

...

s_top = allo.customize(top)
s_top.compose(s_matmul)

→ Algorithm specification (Hierarchical)

Interconnection between Kernels

Temporal Composition

def top(X: int8[M, K], W_A: int8[K, N], W_B: int8[N, K]): Y: ? Z: int8[M, K] = 0 matmul(X, W_A, Y) matmul(Y, W_B, Z) return Z

Spatial Composition

Hierarchical use-def graph

```
→ Algorithm specification (Hierarchical)
def top(X: int8[M, K], W A: int8[K, N],
    W_B: int8[N, K], Y: int8[M, K]):
 Y: int8[M, N] = 0
 7 \cdot int8[M K] = 0

    Caller definition

 matmul(X, W A, Y)
 matmul(Y, W B, Z)
 return Z
→ Callee definition
def matmul(A: int8[M, K],
      B: int8[K, N],
     C: int16[M, N])
```

Need to ensure interface consistency

Hierarchical use-def graph

Key idea: Model memory banking as a type to ensure kernel interfaces are consistent

Subtyping relation forms a **lattice!**

Intuition:

We can supply more read/write parallelism, but not less!

Hierarchical use-def graph

- Key idea: Model data layout as a type to ensure the kernel interfaces are consistent
- Lattice-based subtyping relation permits linear-time layout inference through Worklist algorithm

Spatial Composition

Model data streaming as a type

Spatial Composition

```
@df.region()
def top():
fifo_A = df.array(df.pipe(dtype=float32, depth=4), shape=(P0, P1))
fifo_B = df.array(df.pipe(dtype=float32, depth=4), shape=(P0, P1))
@df.kernel(mapping=[P0, P1])
def gemm(A: float32[M, K],
      B: float32[K, N],
     C: float32[M, N]):
 i, j = df.get_pid()
 # peripheral kernels
 with allo.meta_if(i in \{0, M + 1\}
         and j in \{0, N + 1\}):
  pass
 with allo.meta_elif(j == 0):
 \# i > 0
 for k in range(K):
  fifo A[i, j + 1].put(A[i - 1, k])
 with allo.meta_elif(i == 0):
 \# j > 0
 for k in range(K):
  fifo B[i + 1, j].put(B[k, j - 1])
```


Spatial Composition

```
@df.region()
def top():
fifo_A = df.array(df.pipe(dtype=float32, depth=4), shape=(P0, P1))
fifo_B = df.array(df.pipe(dtype=float32, depth=4), shape=(P0, P1))
```

```
# drain
with allo.meta_elif(i == M + 1 and j > 0):
for k in range(K):
 b: float32 = fifo B[i, j].get()
with allo.meta_elif(j == N + 1 and i > 0):
for k in range(K):
 a: float32 = fifo A[i, j].get()
# main body
with allo.meta_else():
 c: float32 = 0
 for k in range(K):
 a: float32 = fifo_A[i, j].get()
 b: float32 = fifo_B[i, j].get()
 c += a * b
 fifo_A[i, j + 1].put(a)
 fifo_B[i + 1, j].put(b)
 C[i - 1, j - 1] = c
```


Single-Kernel Evaluation

- Benchmarks from PolyBench; Target hardware: AMD U280 FPGA
- Normalized against AMD VitisHLS-auto (pragmas automatically inserted)
- Other baselines
 - ADLs: HeteroCL [FPGA'19], Dahlia [PLDI'20], PyLog [TC'21]
 - Automated DSE for HLS: ScaleHLS [HPCA'22], Merlin [TRETS'22]

Allo achieves (much) higher performance by optimizing data placement with a custom memory hierarchy

Single-Kernel Evaluation

- Compared to ScaleHLS [HPCA'22], Allo achieves
 - Lower latency with much more effective use of compute resources
 - Higher post place-and-route frequency due to better pipelining

Benchmark	Allo					ScaleHLS					
	Latency	II	DSP	PnR	Lines of	Compile	Latency	II	DSP	PnR	Compile
	(cycles)		Usage	Freq. (MHz)	Allo Custm.	Time (s)	(cycles)		Usage	Freq. (MHz)	Time (s)
atax	4.9K (↓ 3.9×)	1	403 († 2.9×)	411	9	1.0	19.4K	4	141	329	36.1
correlation	498.7K (↓ 290.5×)	1	4168 († 38.2×)	362	19	8.0	144.9M	667	109	305	638.8
jacobi-2d	58.8K (↓ 183.1×)	1	3968 († 72.1×)	411	17	0.9	10.8M	28	55	308	47.9
symm	405.7K (↓ 427.4×)	1	1208 († 201.3×)	402	15	1.0	182.4M	13	6	397	3.5
trmm	492.6K (↓ 78.0×)	1	101 († 14.4×)	414	12	0.8	38.4M	4	7	382	1.4

Allo achieves (much) higher performance by optimizing data placement with a custom memory hierarchy

Multi-Kernel Evaluation: A Complete LLM Accelerator

- GPT2 model (the only open-source LLM in the GPT family)
 - 355M parameters, 24 hidden layers, 16 heads
 - W4A8 quantization

Compose all the schedules together s = allo.customize(GPT_layer) s.compose([s qkv, ..., s gelu])

LLM Accelerator Evaluation

- GPT2: single-batch, low-latency, generative inference settings
 - AMD U280 FPGA (16nm), 250MHz
 - 2.2x speedup in prefill stage compared to DFX [MICRO'22] (an FPGA-based overlay)
 - 1.9x speedup for long output sequences and
 5.7x more energy-efficient vs. NVIDIA A100 GPU (7nm)
 - Fewer than 50 lines of schedule code in Allo

	Allo	DFX
Device	U280	U280
Freq.	250MHz	200MHz
Quant.	W4A8	fp16
BRAM	384 (19.0%)	1192 (59.1%)
DSP	1780 (19.73%)	3533 (39.2%)
FF	652K (25.0%)	1107K (42.5%)
LUT	508K (39.0%)	520K (39.9%)

H. Chen et al., "Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference", ACM TRETS (FCCM Journal Track), 2024.

High-Level PyTorch Frontend

- Predefined schedules for commonly used NN operators
- Can directly import model from PyTorch and build optimized xcel design
 - Through TorchDynamo and torch.fx

```
import torch
import allo
import numpy as np
from transformers import AutoConfig
from transformers.models.llama.modeling_llama import LlamaModel
bs, seq, hs = 1, 512, 1024
example inputs = [torch.rand(bs, seq, hs)]
config = AutoConfig.from_pretrained("meta-llama/Meta-Llama-3-8B")
module = GPT2Model(config).eval()
mlir_mod = allo.frontend.from_pytorch(
 module,
 example inputs=example inputs,
```

Other Backends: AMD AI Engine Evaluation

- GEMM on AMD Ryzen 7940 SoC (CPU + AIE NPU)
 - Orders of magnitude improvement using the streaming interface

mod = df.build(target="aie")

Other Backends: AMD AI Engine Evaluation

- ResNet on on AMD Ryzen 7940 SoC (CPU + AIE NPU)
 - 23x speedup compared to AMD Riallto
- LLaMA models being evaluated

Designs	Tile	SL	IP	Util (%)	RT (ms)	Speedup
D1 scalar	[16, 16]	1	No	15	57.40	1.24
D2 +vectorized	[16, 16]	4	No	15	16.63	4.29
D3 +vectorized	[16, 16]	8	No	15	9.82	7.27
D4 +conv3×3-2core	[16, 16]	8	No	20	9.18	7.77
D5 +inst-pipeline	[16, 16]	8	Yes	20	8.44	8.45
D6 +opt-tile-size	[32, 16]	8	Yes	20	5.72	13.70
D7 +opt-tile-size	[32, 32]	8	Yes	20	5.21	12.48
D8 +opt-tile-size	[32, 64]	8	Yes	20	4.99	14.30
D9 +more-cores	[32, 64]	8	Yes	40	3.16	22.58
Riallto / RAI-SW[20]	-	-	-	20	71.36	1x

Summary

- Features of Allo ADL
 - Pythonic
 - Decoupled & verifiable customizations
 - Composability

https://github.com/cornell-zhang/allo

