- NU SE FOLOSESC VARIABILE GLOBALE.
- Funcțiile nu trebuie să conțină afișări, prin construirea unui vector se înțelege folosirea lui ca parametru.
- Funcțiile pot avea și alți parametri în afară de cei solicitați explicit.

Subject T2 - Anul I AC

ADN-ul se afla la baza oricărei ființe vii, conținând informația care face posibilă existența acesteia. ADN-ul se reprezintă folosind patru baze: **A** (adenina), **C** (citozina), **G** (guanina) și **T** (timina); o secvență ADN este reprezentată de o combinație a acestor 4 baze.

Cerinte:

1. ADN-ul este format din două secvențe complementare. Aceste două secvențe sunt legate între ele folosind 4 tipuri de legături: **A-T**, **T-A**, **G-C** și **C-G**: adenina și timina respectiv guanina și citozina sunt baze complementare.

Scrieți <u>o funcție</u> care primește ca parametru o secvență ADN și construiește secvența complementară:

Exemplu:	Secvența ADN primită ca parametru	AACGAAGATC	AAATGAACGAAAATCT
	Secvența ADN complementară	TTGCTTCTAG	TTTACTTGCTTTTAGA

2. Să se scrie <u>o funcție</u> ce primește ca parametru o secvență ADN și returnează sub-secvența ce codifică o proteină și lungimea acestei sub-secvențe. Sub-secvența care codifică o proteină se poate afla oriunde în interiorul secvenței ADN și este delimitată la început de **ATG** și se termină cu una dintre următoarele combinații **TAG**, **TAA** sau **TGA**. Pentru simplitate, se va considera că secventa ADN primită ca parametru contine o singura proteină codificată.

Exemplu:

Secvența ADN primită ca parametru	Sub-secvența ce conține proteina codificată	Lungime
AA <mark>ATG</mark> AACGAAAATCTGTTCGTC <mark>TAG</mark> GCCT	AACGAAAATCTGTTCGTC	18
TTCG <mark>ATG</mark> ACGAATCTGTTC <mark>TAA</mark> AAAT	ACGAATCTGTTC	12

- 3. Un laborator de microbiologie are nevoie de un sistem software nou pentru a cataloga probe ADN, precum şi de câteva instrumente utile pentru a lucra cu acesta. O PROBA este caracterizata prin:
 - ⇒ Un număr de identificare (șir cu 5 caractere semnificative).
 - ⇒ Secvența ADN reprezentată ca un șir de caractere folosind doar cele 4 baze: A (adenina), C (citozina), G (guanina) și T (timina).
 - ⇒ Lungimea secvenței ADN.

În plus, laboratorul deține și o bază de date cu teste ADN prin care poate determina dacă o anumită probă aparține unei anumite specii. Un **TEST** este caracterizat prin:

- ⇒ Numele speciei.
- ⇒ Secventa ADN de identificare.

Să se reprezinte informațiile despre **PROBA** si **TEST** folosind tipuri structura și să se scrie <u>o</u> <u>funcție</u> ce primește ca parametri o **PROBA** ADN și un vector de **TESTE** ADN. Funcția construiește vectorul de teste pozitive la probă și îl transmite către funcția **main()**.

<u>Atentie!</u>: În vectorul de teste se caută atât secvența ADN din probă cât si secvența complementara a acesteia, ca în exemplul următor.

Exemplu:

Proba ADN primită ca parametru	Vectorul de teste	Vectorul de teste pozitive	
Nr identificare: "09874"	{	{	
Secvența ADN:	{"Pisica", " <mark>ACGA</mark> "},	{"Pisica", " <mark>ACGA</mark> "},	
"AAATGA <mark>ACGA</mark> AA <mark>ATCTGT</mark> TCGTCT <mark>AGGCCT</mark> "	{"Leu", " <mark>AGGCCT</mark> "},	{"Leu", " <mark>AGGCCT</mark> "},	
Lungime: 30	{"Broasca","ACTTTTC"},	{"Pantera", " <mark>TAGACA</mark> "},	
	{"Pantera", " <mark>TAGACA</mark> "},	}	
	}		
	Atentie!		
	În vectorul de teste se caută atât secvența ADN din proba cât si secvența complementara a acesteia.		
	Pentru acest exemplu, secver "ATCTGT" este "TAGACA" (pt => Vectorul de teste pozitive cont	. explicații, vezi cerința 1)	

4. Scrieți o funcție main() în care:

- Se declară și se inițializează variabilele necesare pentru apelarea funcțiilor declarate la punctele 1, 2 și 3
- Se apelează funcțiile de la punctele 1, 2 și 3
- Se afișează rezultatele obținute în urma apelării celor 3 funcții