Tecnológico de Costa Rica Escuela de Matemática Álgebra Lineal para Computación \mathcal{T} iempo: 2 horas 30 minutos \mathcal{P} untaje \mathcal{T} otal: 39 puntos \mathcal{I} \mathcal{S} emestre 2010

II Examen Parcial

Instrucciones: Esta es una prueba de desarrollo; por lo tanto, debe presentar **todos** los pasos necesarios que le permitieron obtener cada una de las respuestas. Trabaje en forma clara, ordenada y utilice bolígrafo para resolver el examen. No se aceptan reclamos de exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono celular.

- 1. Sea $(\mathcal{G}, *)$ algún grupo con elemento neutro e. Si \mathcal{H} es algún subconjunto no vacío de \mathcal{G} , demuestre que \mathcal{H} es subgrupo de \mathcal{G} si, y sólo si, $\forall x, y \in \mathcal{H}, x * y' \in \mathcal{H}$ (5 pts)
- 2. Sea $(\mathcal{G}, *)$ algún grupo con elemento neutro e. Demuestre que \mathcal{G} es abeliano si, y sólo si, $\forall x, y \in \mathcal{G}, (x * y)^2 = x^2 * y^2$ (4 pts)
- 3. Si se sabe que $(\mathcal{G}, *)$ es algún grupo con elemento neutro e y $a \in \mathcal{G}$, con a fijo, demuestre que $\mathcal{H} = \left\{ x \in \mathcal{G} \middle/ x * a = a * x \right\}$ es subgrupo de \mathcal{G} (5 pts)
- 4. Sea $(\mathcal{G}, *)$ algún grupo con elemento neutro e. Usando inducción matemática, demuestre que $\forall x \in \mathcal{G}, \forall n \in \mathbb{Z}^+$, se cumple que $(x^n)' = (x')^n$ (4 pts)
- 5. Sean \oplus y \otimes dos operaciones internas definidas sobre $\mathcal{A} = \{a,b,c,d\}$. Asumiendo que $(\mathcal{A},\oplus,\otimes)$ es anillo, complete las tablas de operación binaria que se enuncian a continuación. Justifique cómo obtiene cada uno de los elementos que hacen falta. (5 pts)

\oplus	a	b	c	d
a	a	b	c	d
b	b	a		c
c	c	d	a	
d	d		b	a

\otimes	a	b	c	d
\overline{a}	a	a	a	a
b	a	b		
c	a			a
d	a	b	c	

Sugerencia: Complete primero la tabla de operación binaria para (A, \oplus) . Luego, desarrolle

$$d \otimes (d \oplus b) = (d \otimes d) \oplus (d \otimes b)$$
 y $(d \oplus b) \otimes d = (d \otimes d) \oplus (b \otimes d)$

- 6. Demuestre que si W_1 y W_2 son subespacios de algún espacio vectorial real \mathcal{V} , entonces $W_1 + W_2 = \left\{ u_1 + u_2 \middle/ u_1 \in \mathcal{W}_1, u_2 \in \mathcal{W}_2 \right\}$ también es subespacio de \mathcal{V} . (4 pts)
- 7. Demuestre que $\mathcal{H} = \left\{ A \in \mathcal{M}_n(\mathbb{R}) \middle/ \sum_{i=1}^n \langle A \rangle_{ii} = 0 \right\}$ es subespacio de $\mathcal{M}_n(\mathbb{R})$ (4 pts)
- 8. Si $\{x, y, z\}$ es un subconjunto l.i de algún espacio vectorial real \mathcal{V} , determine la relación para las constantes reales a y b de manera que $\{x ay, ay z, z by\}$ también sea subconjunto l.i de \mathcal{V} (4 pts)
- 9. Sea $\mathcal{H} = \left\{ a + bx + cx^2 \in \mathcal{P}_2(\mathbb{R}) \middle/ a 2b + 3c = 0 \right\}$. Determine si \mathcal{H} es subespacio de $\mathcal{P}_2(\mathbb{R})$ o no lo es. Justifique. (4 pts)