華中科技大學

数字电路与逻辑设计 课程实验报告

小型实验室门禁系统

姓	名:	Join Was
学	号:	
班	级:	
专	业:	
完成日期:		2020. 04. 20

2

0

2

实验二: 小型实验室门禁系统设计

1. 实验名称

小型实验室门禁系统设计。

2. 实验目的

采用传统电路的设计方法,对一个"设计场景"进行逻辑电路的设计,并利用工具软件 Logisim 的虚拟仿真来验证该设计是否达到要求。

通过以上实验的设计、仿真、验证3个训练过程使学生掌握小型电路系统的设计、仿真、调试方法以及电路模块封装的方法。

3. 实验所用设备

Logisim2.7.1 软件 1 套, 微型计算机 1 台。

4. 课时

课内4个课时,课外4个课时。

5. 实验内容

设计场景:某小型保密实验室需要安装一个门禁系统,用于监测、控制和显示该实验室内人数。该实验室只有一个门,最多只能容纳 15 人。假设员工进出实验室都要刷门禁卡,并且保证一次刷卡后有且只有一人能进出。实验室空置时人数显示为 0,刷卡进入时实验室人数加 1,刷卡离开时实验室人数减 1。当实验室满员时,还有员工在门外刷卡进入时,系统报警提示满员,不允许进入,实验室内人数不变。

使用 Logisim 软件对小型电路进行虚拟实验仿真,除逻辑门、触发器、7 段数码显示管外,不能直接使用 Logisim 提供的逻辑元件库。

具体要求如下:

(1) 四位二进制可逆计数器

用 D 触发器设计一个四位二进制可逆计数器并进行封装,逻辑符号如图 2.1 所示。

该计数器有一个清零端 CLR、一个累加计数脉冲输入端 CP_U (输入刷卡进入请求)、一个累减计数脉冲输入端 CP_D (输入刷卡离开请求)、预置控制端 $L\bar{D}$ 、预置初置端 DCBA、四个计数器状态输出值 $Q_DQ_CQ_BQ_A$ 。当预置控制端

 $\overline{\text{LD}}$ 为低电平时, 计数器输出 $Q_D Q_C Q_B Q_A$ 被预置为 DCBA 端输入的值。

(2) 二进制转 8421BCD 码电路

用第一次实验所设计的"私有"元件"先行进位的四位二进制并行加法器"和适当元器件,将二进制数表示的实验室人数转换成 8421BCD 码的电路,并封装。

图 2.1 四位二进制可逆计数器

(3) 显示电路

设计一个7段译码器(参考书的7448芯片),将两位十进制数的8421BCD码表示的实验室人数用"7段数码显示管"显示出来,并封装该译码器电路。

该7段译码器有四个输入 **A**₃**A**₂**A**₁**A**₀ 和七个输出 **abcdefg**, **A**₃**A**₂**A**₁**A**₀ 为 8421BCD 码, abcdefg 为 7 段数码显示管对应的段。

(4) 报警电路

设计报警电路并封装,满足如下要求:

当实验室满员时,在累加计数脉冲输入端 **CP**_U 刷卡进入请求时,计数器输出端状态值保持不变,系统报警提示满员。当实验室空时,逻辑上不会有实验室内累减计数脉冲输入端 **CP**_D 刷卡离开请求,为防止信号干扰,在计数输出为0时,若 **CP**_D有脉冲,计数器状态值保持不变,且不用报警。

(5) 小型实验室门禁系统电路的封装

利用已设计的"私有"元器件和相应元器件设计一个"实验室门禁系统"电路, 并进行封装,封装后的小型实验室门禁系统逻辑符号如图 2.2 所示。

图 2.2 封装后的小型实验室门禁系统

6. 实验方案设计

(1) 四位二进制可逆计数器

四位二进制可逆计数器作为一个脉冲异步时序逻辑电路,其真值表见表2.1。

表 2-1 四位二进制可逆计数器真值表

输入	现态	次态	激励函数
CPu CPD	QD QC QB QA	$Q_D^{n+1} Q_C^{n+1} Q_B^{n+1} Q_A^{n+1}$	C ₄ D ₄ C ₃ D ₃ C ₂ D ₂ C ₁ D ₁
1 0	0 0 0 0	0 0 0 1	0d 0d 0d 11
1 0	0 0 0 1	0 0 1 0	0 d 0 d 1 1 1 0
1 0	0 0 1 0	0 0 1 1	0 d 0 d 0 d 1 1
1 0	0 0 1 1	0 1 0 0	0 d 1 1 1 0 1 0
1 0	0 1 0 0	0 1 0 1	0 d 0 d 0 d 1 1
1 0	0 1 0 1	0 1 1 0	0 d 0 d 1 1 1 0
1 0	0 1 1 0	0 1 1 1	0 d 0 d 0 d 1 1
1 0	0 1 1 1	1 0 0 0	11 10 10 10
1 0	1 0 0 0	1 0 0 1	0 d 0 d 0 d 1 1
1 0	1 0 0 1	1 0 1 0	0 d 0 d 1 1 1 0
1 0	1 0 1 0	1 0 1 1	0 d 0 d 0 d 1 1
1 0	1 0 1 1	1 1 0 0	0 d 1 1 1 0 1 0
1 0	1 1 0 0	1 1 0 1	0 d 0 d 0 d 1 1
1 0	1 1 0 1	1 1 1 0	0 d 0 d 1 1 1 0
1 0	1 1 1 0	1 1 1 1	0 d 0 d 0 d 1 1
1 0	1111	0 0 0 0	10 10 10 10
0 1	0 0 0 0	1 1 1 1	11 11 11 11
0 1	0 0 0 1	0 0 0 0	0 d 0 d 0 d 1 0
0 1	0 0 1 0	0 0 0 1	0 d 0 d 1 0 1 1
0 1	0 0 1 1	0 0 1 0	0d 0d 0d 10
0 1	0 1 0 0	0 0 1 1	0 d 1 0 1 1 1 1 1
0 1	0 1 0 1	0 1 0 0	0 d 0 d 0 d 1 0
0 1	0 1 1 0	0 1 0 1	0d 0d 10 11
0 1	0 1 1 1	0 1 1 0	0 d 0 d 0 d 1 0
0 1	1 0 0 0	0 1 1 1	10 11 11 11
0 1	1 0 0 1	1 0 0 0	0 d 0 d 0 d 1 0
0 1	1 0 1 0	1 0 0 1	0 d 0 d 1 0 1 1
0 1	1 0 1 1	1 0 1 0	0 d 0 d 0 d 1 0

0 1	1 1 0 0	1 0 1 1	0 d 1 0 1 1 1 1
0 1	1 1 0 1	1 1 0 0	0 d 0 d 0 d 1 0
0 1	1 1 1 0	1 1 0 1	0 d 0 d 1 0 1 1
0 1	1 1 1 1	1 1 1 0	0 d 0 d 0 d 1 0

经过卡诺图的化简分析, 可以得到激励函数表达式如下。

$$C_4 = CP_U \cdot C \cdot B \cdot A + CP_D \cdot \overline{C} \cdot \overline{B} \cdot \overline{A} \qquad D4 = \overline{Q_D}$$

$$C_3 = CP_U \cdot B \cdot A + CP_D \cdot \overline{B} \cdot \overline{A} \qquad D3 = \overline{Q_C}$$

$$C_2 = CP_U \cdot A + CP_D \cdot \overline{A} \qquad D2 = \overline{Q_B}$$

$$C_1 = CP_U + CP_D \qquad \qquad D1 = \overline{Q_A}$$

根据以上激励函数表达式可以得到四位二进制可逆计数器的电路图(见图 2.3)。

图 2.3 四位二进制可逆计数器电路图

封装后的逻辑符号见图 2.4。

图 2.4 四位二进制可逆计数器封装后的逻辑符号图

(2) 二进制转 8421BCD 码电路

设计思路:判断输入是否大于10,若大于10,高位的BCD码最后一位输出1,输入送入四位二进制并行加法器,与6相加(模16运算中减10就相当于加6),四位二进制并行加法器的输入就是低位BCD码;若小于10,输入直接送入四位二进制并行加法器,与0相加,四位二进制并行加法器的输入就是低位BCD码,高位BCD码就为0000。

判断一个四位二进制数是否大于等 10 的真值表如下(见表 2.2)。

表 2.2 判断一个四位二进制数是否大于等于 10 (表中未列出的输出为 0)

输入	输出					
D C B A	Z					
1010	1					
1011	1					
1100	1					
1101	1					
1110	1					
1111	1					

根据真值表可以得到表达式 $Z = D \cdot (C + B)$.

再由以上描述的设计思路可以得到四位二进制数转 **BCD** 码电路图(见图 2.5)。

图 2.5 四位二进制数转 BCD 码电路图

封装后的四位二进制数转 BCD 码电路逻辑符号图见图 2.6.

图 2.6 封装后的四位二进制数转 BCD 码电路逻辑符号图

(3) 显示电路

七段显示译码器的真值表见表 2.3。

表 2.3 七段显示译码器真值表

	输入								输出				
D	C	В	A		m/)	a	b	c	d	e	f	g	
0	0	0	0			1	1	1	1	1	1	0	
0	0	0	1			0	1	1	0	0	0	0	
0	0	1	0			1	1	0	1	1	0	1	
0	0	1	1			1	1	1	1	0	0	1	
0	1	0	0			0	1	1	0	0	1	1	
0	1	0	1			1	0	1	1	0	1	1	
0	1	1	0			1	0	1	1	1	1	1	
0	1	1	1			1	1	1	0	0	0	0	
1	0	0	0			1	1	1	1	1	1	1	
1	0	0	1			1	1	1	0	0	1	1	
1	0	1	0			0	0	0	1	1	0	1	
1	0	1	1			0	0	1	1	0	0	1	
1	1	0	0			0	1	0	0	0	1	1	
1	1	0	1			1	0	0	1	0	1	1	
1	1	1	0			0	0	0	1	1	1	1	
1	1	1	1			0	0	0	0	0	0	0	

根据真值表可以得到输出函数如下。

$$a = (D + C + B + \overline{A})(\overline{C} + B + A)(\overline{D} + \overline{B})$$

$$b = (\overline{C} + B + \overline{A})(\overline{C} + \overline{B} + A)(\overline{D} + \overline{B})$$

$$c = (C + \overline{B} + A)(\overline{D} + \overline{C})$$

$$d = (C + B + \overline{A})(\overline{C} + B + A)(\overline{C} + \overline{B} + \overline{A})$$

$$e = \overline{A} (\overline{C} + B)$$

$$f = (D + C + \overline{A})(C + \overline{B})(\overline{B} + \overline{A})$$

$$g = (D + C + B)(\overline{C} + \overline{B} + \overline{A})$$

根据输出函数可以得到七段显示译码器电路图(见图 2.7)。

图 2.7 七段显示译码器电路图 封装后的七段显示译码器逻辑符号见图 2.8.

图 2.8 七段显示译码器逻辑符号图

(4) 报警电路

分析: 当计数器状态为 1111 且 CPU 出现脉冲时,产生报警,可以得到报警信号的输出函数表达式

$$Alarm = CPU \cdot Q_D \cdot Q_c \cdot Q_B \cdot Q_A$$

为了使计数器在"满员"时即使有 CPU 脉冲也"不动作",在报警电路中需要隔离这种错误输入,只有当计数器状态不为 1111 时,在 CPU 脉冲作用下才会输出一个累加信号,可以得到累加信号的输出函数表达式为

$$INC = CPU \cdot Q_D \cdot Q_c \cdot Q_B \cdot Q_A$$

同理可以得到累减信号的输出函数表达式为

$$DEC = CPD \cdot (Q_D + Q_c + Q_B + Q_A)$$

根据以上输出函数表达式可以得到报警电路图(见图 2.9)。

图 2.9 报警电路图

封装后的报警电路逻辑符号见图 2.10.

图 2.10 报警电路逻辑符号图

(5) 小型实验室门禁系统电路的封装

根据实验设计要求,小型实验室门禁系统的电路图见图 2.11.

图 2.11 小型实验室门禁系统电路图

封装后的小型实验室门禁系统逻辑符号见图 2.12.

图 2.12 小型实验室门禁系统逻辑符号

整个门禁系统的连接与使用见图 2.13.

图 2.13 门禁系统的连接与使用