8051 MICROCONTROLLER

The **Intel MCS-51** (commonly referred to as **8051**) is a Harvard architecture, CISC instruction set, single chip microcontroller(μ C) series which was developed by Intel in 1980 for use in embedded systems. Intel's original versions were popular in the 1980s and early 1990s and enhanced <u>binary compatible</u> derivatives remain popular today.

Intel's original MCS-51 family was developed using NMOS technology, but later versions, identified by a letter C in their name (e.g., 80C51) used CMOS technology and consume less power than their NMOS predecessors. This made them more suitable for battery-powered devices.

8051 MICROCONTROLLER KIT

Core hardware → Phillips 89V51RD2.

Firmware tool → KEIL microVISION3

Programming tools \rightarrow ECE Flash

Hardware → 8051 Application Board

Components used in spy system

1.8051

P1.0 □	, 0	40	□ vcc
P1.1 □	2	39	□ P0.0 (AD0)
P1.2 🗆	3	38	□ P0.1 (AD1)
P1.3 □	4	37	□ P0.2 (AD2)
P1.4 □	5	36	□ P0.3 (AD3)
P1.5 □	6	35	□ P0.4 (AD4)
P1.6 □	7	34	□ P0.5 (AD5)
P1.7 □	8	33	P0.6 (AD6)
RST 🗆	9	32	□ P0.7 (AD7)
(RXD) P3.0 [10	31	□ EA/VPP
(TXD) P3.1 \square	11	30	ALE/PROG
(INT0) P3.2 [12	29	□ PSEN
(INT1) P3.3 □	13	28	□ P2.7 (A15)
(T0) P3.4 \square	14	27	P2.6 (A14)
(T1) P3.5 \square	15	26	P2.5 (A13)
(WR) P3.6 □	16	25	□ P2.4 (A12)
(RD) P3.7 🗆	17	24	□ P2.3 (A11)
`XTAL2 □	18	23	P2.2 (A10)
XTAL1 □	19	22	□ P2.1 (A9)
GND □	20	21	□ P2.0 (A8)
	T		15,2

2. *LCD*

Pin No	Symbol	Details
1	GND	Ground
2	<u>Vcc</u>	Supply Voltage +5V
3	Vo	Contrast adjustment
4	RS	0->Control input, 1-> Data input
5	R/W	Read/ Write
6	E	Enable
7 to 14	D0 to D7	Data
15	VB1	Backlight +5V
16	VB0	Backlight ground

3.HEX-KEYPAD

- Keep all the row pins at LOGIC HIGH and column pins at LOGIC LOW.
- Inspect the status of row pin. (row correspond to key pressed provides a grounded path to VCC and hence get a LOW signal.)
- Repeat same steps for column high.
- Keep all the column pins at LOGIC HIGH and row pins at LOGIC LOW.
- Inspect the status of column pin. (column correspond to key pressed provides a grounded path to VCC and hence get a LOW signal.

4.GSM

Global System for Mobile (GSM) is a second-generation cellular standard developed to cater voice services and data delivery using digital modulation

- One of the key features of GSM is the Subscriber Identity Module, commonly known as a SIM card.
- It contains the user's subscription information and phone book.
- This allows the user to retain his or her information after switching handsets.
- Alternatively, the user can also change operators while retaining the handset simply by changing the SIM.

> FOR CALL

• AT+

INITIATE THE GSM MODEM

• ATD98XXXXXXX; +

TO DIAL A NUMBER.

ATA

TO ANSWER A CALL

ATH

TO HALT A CONNECTION

ATDL

FOR REDIAL

7. *GPS*

6. *LATCH* (*SN74LS244N*)

WORKING

1. <u>CALL MAKING</u> [A] ENTERING NUMBER

[B]DIALLING A NUMBER

[C] CALLING

[D]CALL ENDED

2.CALL RECEIVING

[A]CALL RECEIVED

[B] CALL END

