Optimization of a Linear Algebra Approach to OLAP 1st general debriefing meeting

Filipe Costa Oliveira¹ Sérgio Manuel Rodrigues Caldas²

{a57816¹,a57779²}@alunos.uminho.pt Department of Computer Science University of Minho

University of Minho, April 2016

Advisor: Prof. Alberto Proença Co-Advisor: Prof. José Nuno Oliveira

Table of Contents

- OLAP, understanding the Challenge
- Proposed Solution
- 3 Comparing LA to RA approach with TPC-H query plans
- 4 Translating TPC-H RA queries to La operations
- 5 Understanding the HPC Challenge

OLAP, understanding the Challenge

Online Analytical processing (OLAP) systems:

- Perform multidimensional analysis of business data;
- Provides the capability for complex calculations, trend analysis, and sophisticated data modeling;

Depends on Relational Algebra

- Lack algebraic properties;
- Qualitative and quantitative proofs for all the relational operator;

Proposed Solution

Proposed Solution

- proposed by R.Pontes, Benchmarking a Linear Algebra Approach to OLAP (2015).
- Focus on a typed linear algebra approach;
- Encodes OLAP functionality solely in terms of Linear Algebra operations;

Depends on Linear Algebra operations

- Dot Product;
- Khatri-Rao Product;
- Kronecker Product;
- Hadamard Product;
- Transposition;

Comparing LA to RA approach with TPC-H query plans

Based on TPC-H Benchmark:

- Consists of a suite of business oriented ad-hoc queries and concurrent data modifications;
- The queries and the data have broad industry-wide relevance;
- Illustrates decision support systems that examine large volumes of data:
- Execute queries with a high degree of complexity;

Translating TPC-H RA queries to La operations

TPC-H Query 1

```
SELECT RETURNFLAG, LINESTATUS, sum(QUANTITY) FROM LINEITEM WHERE SHIPDATE >= 1998-08-28 AND SHIPDATE <= 1998-12-01 GROUP BY RETURNFLAG, LINESTATUS
```

Translates into:

$$\underbrace{(L_{ReturnFlag} \triangledown L_{LineStatus})}_{projection} \cdot \underbrace{[L]_{Shipdate}^{Shipdate} = 1998 - 08 - 28}_{Shipdate} \cdot \underbrace{[L]_{Shipdate}^{Shipdate} = 1998 - 12 - 01}_{Shipdate} \cdot \underbrace{[L]_{Quantity}^{Quantity} \cdot !^{\circ}}_{aggregation}$$

Understanding the HPC Challenge

There was still lots of practical work to do:

- Define a DSL for the LA language
 ✓ (03-Fev to 29-Fev)
- Determined Software Requirements
 - Profile the given datasets ✓ (03-Fev to 03-Apr)
- Implement from the start a typed LA solution. △ (09-Mar to current)
 - The GNOME® Project GLib package
 - Intel[®] MKL (Intel[®] Math Kernel Library)
- Re-evaluate its performance in a real word scenario.

Understanding the HPC Challenge

Main Question:

Can our linear algebra solution provide a more efficient solution than its market competitors?

- Already reduced matrices sparsity degree to values near 0,01% vs $1*10^{-25}\%(f.e.: matrixA(10^{34}x10^{34}))$.
- Sparse Matrices will be represented using BLAS BSR (Block sparse row format).
 - Similar to the CSR format.
 - Nonzero entries in the BSR are optimized to produce square dense blocks.

Optimization of a Linear Algebra Approach to OLAP 1st general debriefing meeting

Filipe Costa Oliveira¹ Sérgio Manuel Rodrigues Caldas²

{a57816¹,a57779²}@alunos.uminho.pt Department of Computer Science University of Minho

University of Minho, April 2016

Advisor: Prof. Alberto Proença Co-Advisor: Prof. José Nuno Oliveira

Appendix

- DSL Operations
- Profile the given datasets
- Our Approach decisions

Appendix :: DSL Operations

DSL Operations:

- Transposition "'";
- Dot Product "*":
- Khatri-Rao Product "krao";
- Kronecker Product "kron";
- Hadamard Product "><";

Sample Input file

```
matrix a, b;
matrix(2,2) c,d;
a = csvread('nomeficheiro1.csv', 2);
b = csvread('nomeficheiro2.csv', 3);
d = a kron b;
c = a krao d;
d = d'...(_a_
c;
csvwrite('nomedoficheiro.csv',c);
```

Appendix :: Profile the given datasets

Reduced Matrices Sparsity by translating Base64 Encoding:

RA	LA
Customer#00000001	10235451621031712117752211775221200

into **2-way association** between a string and a unique integer identifier using **GLib Quarks**:

RA LA QHS1dfqs3BBrTlijJuiLQ1l05sWnHWCiiW1l 2753

Appendix :: Our Approach decisions

Intel[®] MKL (Intel[®] Math Kernel Library)

- Accelerates math processing routines that increase application performance and reduce development time;
- Includes highly vectorized and threaded Linear Algebra Operations.

Sparse Matrices Formats Used:

- Sparse BLAS CSR (Compressed Sparse Row) Matrix Storage Format;
- Sparse BLAS CSC (Compressed Sparse Column) Matrix Storage Format;
- Sparse BLAS COO (Coordinate) Matrix Storage Format;
- Sparse BLAS BSR (Block sparse row format) Matrix Storage Format;