3ª Série de Problemas Mecânica e Relatividade MEFT

1. A figura mostra a trajectória de um feixe de átomos, em vácuo, de um forno até um detector através de duas fendas à distância *L* . Calcule a coordenada *y*

em que os átomos atingem o detector em função do módulo da velocidade com que saem do forno admitindo que $y \ll L$.

- **2.** Um projétil é lançado com uma velocidade v_0 num ângulo de 30° com o plano horizontal.
 - **2.a)** Calcule a velocidade v_0 para que o alcance do projétil seja de 500 m.
 - **2.b)** Qual é a altura máxima, h_{max}, atingida pelo projétil?
 - **2.c)** Sabendo que a 250 m do local do disparo é colocado um obstáculo com uma altura h=2 h_{max} (com h_{max} o valor calculado na alínea anterior), discuta se é possível fazer com que o projétil lançado de novo com a mesma velocidade v_0 atinja ainda o ponto a 500m de distância? Justifique.
- 3. Um projéctil é lançado do cimo de um plano inclinado que faz um angulo α com a horizontal. A velocidade inicial do projéctil é v_0 numa direcção que faz um angulo θ com a horizontal como mostra a figura. Determine a relação entre

 θ e α para que o projéctil chegue o mais longe possível. Sugestão:Procure uma solução gráfica para um determinado valor de α **4.** Os dois blocos da figura estão em contacto numa superfície horizontal. Uma força horizontal é aplicada a um dos blocos como se vê a figura. Se $m_1 = 2$ kg, $m_2 = 1$ kg e F = 3 N, qual é a força de contacto entre os blocos?

5. No plano inclinado da figura, as duas massas estão ligadas por uma corda

inextensível e sob tensão que passa numa roldana fixa. Despreze a massa da roldana e da corda, assim como o atrito da roldana e entre os blocos e o plano inclinado. Sabendo que m₁=2 kg determine a massa de m₂ para que o sistema esteja em equilíbrio.

6. A figura representa um camião acelerado.

- **6.a)** Determine o angulo θ que o fio (inextensível e de massa desprezável) que prende o balde de massa M faz com a vertical.
- **6.b)** Determine a tensão do fio.
- **6.c)** Admita agora que o camião inicia uma descida como mostra a figura.

Determine o novo angulo do fio relativamente à traseira do camião.

7. Uma esfera é lançada no interior de um funil cuja superfície de revolução faz um angulo θ com a vertical. A esfera estabiliza numa trajectória circular (no plano horizontal) de raio r. Admita que não há qualquer atrito entre a esfera e a

superfície do funil. Qual é a velocidade da esfera nesse instante?

8. Um corpo de massa m está ligada a um eixo vertical que roda com velocidade angular ω por duas cordas inextensíveis e de massa desprezável com comprimento l como mostra a figura. O corpo sofre um movimento circular

uniforme. O conjunto encontra-se submetido à aceleração da gravidade. Qual é a tensão em cada uma das cordas?

9. Uma partícula de massa m move-se livremente ao longo de uma vareta. A vareta roda no plano horizontal com velocidade angular constante igual a w. Determine um conjunto de condições iniciais que resulte num movimento da partícula em direcção ao centro da vareta.

10. Um disco roda no plano horizontal com velocidade angular ω =13 rad/s. Dois corpos de massas, m_A =1kg e m_B =1.4 kg deslizam sem atrito ao longo de uma calha fixa ao disco e que passa pelo seu centro como mostra a figura. Os dois corpos encontram-se ligados por uma barra inextensível de massa desprezável e de comprimento ℓ =0.3m.

- 10.a) Escreva a equação de movimento do corpo A.
- **10.b)** Determine a posição de equilíbrio do corpo A.
- **10.c)** Sabendo que o corpo A se encontra inicialmente a 15 cm do centro, determine a velocidade radial inicial que deve imprimir ao corpo para que o seu movimento tenda para o ponto de equilíbrio.