МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механники

Кафедра: алгебры, геометрии и дискретной математики

Направление подготовки: «Программная инженерия» Профиль подготовки: «Разработка программно-информационных систем»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

на тему:

«Алгоритмы для нахождения Эрмитовой нормальной формы и ближайшего вектора решетки»

Выполнил(а):	студент(ка)	группы	
	Д.В.	Огнев	
	Подпись		
Научный руководитель:			
Доцент, к	андидат	физико-	
математических	к наук		
	С.И.	Весёлов	
	Подпись		

Аннотация (ДОПИСАТЬ)

Тема выпускной квалификационной работы бакалавра — «Алгоритмы для нахождения Эрмитовой нормальной формы и ближайшего вектора решетки».

Ключевые слова: решетки, Эрмитова нормальная форма, проблема ближайшего вектора.

Данная работа посвящена изучению задач теории решеток и методов их решения. В работе изложены основные понятия, связанные с решетками, и разбор алгоритмов для нахождения Эрмитовой нормальной формы и ближайшего вектора решетки.

Целью работы является программная реализация алгоритмов для решения задач. Объем работы - ...

Содержание

1.	Список условных обозначений и сокращений (TODO)	4
2. Введение (ТООО)		5
3.	Основная часть (TODO)	
	3.1. Основные понятия	6
	3.2. Обзор используемых инструментов	6
	3.3. Алгоритм для нахождения ЭНФ для матриц с полным рангом строки	6
	3.4. Алгоритм для нахождения ЭНФ для любых матриц	6
	3.5. Применение ЭНФ	6
	3.6. Проблема ближайшего вектора	6
	3.7. Жадный метод (Greedy): алгоритм ближайшей плоскости Бабая	6
	3.8. Метод ветвей и границ (Branch and Bound): алгоритм перечисления	6
	3.9. Обзор программной реализации	6
4.	Заключение (ТООО)	7
5.	Список источников (TODO)	8
Пг	риложения (ТОДО)	9

1. Список условных обозначений и сокращений (ТООО)

ПБВ (CVP) – проблема ближайшего вектора (Closest vector problem)

ЭНФ (HNF) – Эрмитова нормальная форма (Hermite normal form)

B&B – Branch and bound

2. Введение (ТООО)

Текст введения

3. Основная часть (ТООО)

3.1. Основные понятия

Решетка. Пусть $\mathbf{B} = [\mathbf{b}_1,...,\mathbf{b}_n] \in \mathbb{R}^{d \times n}$ - линейно независимые вектора из \mathbb{R}^d . Решетка, генерируемая от \mathbf{B} есть набор

$$\mathcal{L}(\mathbf{B}) = \{\mathbf{B}\mathbf{x} : \mathbf{x} \in \mathbb{Z}^n\} = \left\{ \sum_{i=1}^n x_i \cdot \mathbf{b}_i : \forall i \ x_i \in \mathbb{Z} \right\}$$

всех целочисленных линейных комбинаций столбцов матрицы **B**. Матрица **B** называется базисом для решетки $\mathcal{L}(\mathbf{B})$. Число n называется рангом решетки. Если n=d, то решетка $\mathcal{L}(\mathbf{B})$ называется решеткой полного ранга или полноразмерной решеткой в \mathbb{R}^d .

- 3.2. Обзор используемых инструментов
- 3.3. Алгоритм для нахождения ЭНФ для матриц с полным рангом строки
- 3.4. Алгоритм для нахождения ЭНФ для любых матриц
- 3.5. Применение ЭНФ
- 3.6. Проблема ближайшего вектора
- 3.7. Жадный метод (Greedy): алгоритм ближайшей плоскости Бабая
- 3.8. Метод ветвей и границ (Branch and Bound): алгоритм перечисления
- 3.9. Обзор программной реализации

4. Заключение (ТООО)

В ходе выполнения выпускной квалификационной работы бакалавра были реализованы алгоритмы на языке C++ для нахождения ЭНФ и решения ΠBB .

Полученную программную реализацию можно использовать как библиотеку и подключать в другие проекты.

Был создан Github репозиторий, который содержит в себе все исходные файлы. Программная реализация использует CMake для автоматической сборки.

5. Список источников (ТООО)

Тут будет список источников

Приложения (TODO)

Тут будет листинг кода