Dijkstra's Algorium.

Find Min { D(v) | UE Delete Min. V-S}

$$D[u] = D[v] + \omega(v,u)$$

=> Every uplate of a D[u] value involves in decreasing the value.

$$D[7] = 35$$

Hab.







heaf with n nodes will have 0 (logn) levels. &—
Heap order property.
Min-Heap order.





JoFal complexity is  $D(n \log n + m \log n)$ 

 $0 \left(n^2 + m\right) ??$ 

m = 0 (n) Sparse graph.

 $O(n^2+n) \qquad O(n \log n + m \log n)$   $O(n^2+n) \qquad O(n \log n)$ 

For Sparse graphs Heap based impl. is faster.

For Dense graph.  $m = O(n^2)$ 

$$O(n^2+m)$$
  $O(n \log u + m \log u)$ 

$$O(n^2+n^2)$$
  $O(n \log n + n^2 \log n)$   
 $O(n^2)$   $O(n^2 \log n)$ 

For Dense graph

Array Based Imp is

Faster than Heat based

Imp.

Fibonacci Heap.

m Decrease value operations
will take only O(m) time.

The complexity is  $O(n \log n + m)$   $O(n^2 + m)$ ,  $O(n \log n + m \log n)$ 

Dijestra Algo Works only if w(e) > 0