UNIT 2

Lecture 29 Normalization

Conversion of E R Diagram to Relational Model

STUDENT

Rollno	Sname	Sem	Branch	Marks	Pno
1	RAM	3	CSE	40	121
2	SHYAM	5	CSE	50	122
3	MOHAN	7	CSE	55	121
4	GOPAL	5	IT	65	121
5	RINKI	3	MECH	40	122
6	PINKI	3	ETC	90	123

PROJECT

Pno	Pname	Duration
121	P1	10
122	P2	20
123	Р3	30

Insertion, Deletion and Update Anomalies

STUDENTPROJECT

Rollno	Sname	Sem	Branch	Marks	Pno	Pname	duration
1	RAM	3	CSE	40	121	P1	10
2	SHYAM	5	CSE	50	122	P2	20
3	MOHAN	7	CSE	55	121	P1	10
4	GOPAL	5	IT	65	121	P1	10
5	RINKI	3	MECH	40	122	P2	20
6	PINKI	3	ETC	90	123	Р3	30

- Insertion anomaly: We cannot insert new project without a student.
- **Delete Anomaly:** If we delete a student then if that student is the only student who work for that project, then that project information is lost.
- **Update Anomaly**: If we update a project name then we have to update all the tuples that contain that project.

Normalization

- Normalization is the process of taking data from a problem and reducing it to a set of relations while ensuring data integrity, eliminating data redundancy and minimizing the insertion, deletion and update anomalies.
 - **Data Integrity** All of the data in the database are consistent and satisfy all integrity constraints.
 - <u>Data redundancy</u> If data in the database can be found in two different locations (*direct redundancy*) or if data can be calculated from other data items (*indirect redundancy*) then the data is said to contain redundancy.

Goals of Normalization

- 1. Eliminate certain kinds of redundancy.
- 2. Avoid certain update anomalies.
- 3. Good representation of real world.
- 4. Simplify enforcement of Database Integrity.

Objective of Normalization

• "to create relations where every dependency is on the key, the whole key, and nothing but the key".

Levels of Normalization

A functional dependency, denoted by $X \rightarrow Y$, between two sets of attributes X and Y that are subsets of R specifies a constraint on the possible tuples that can form a relation state r of R. The constraint is that, for any two tuples t_1 and t_2 in r that have $t_1[X] = t_2[X]$, they must also have $t_1[Y] = t_2[Y]$.

This means that the values of the Y component of a tuple in r depend on, or are *determined by*, the values of X component; alternatively, the values of the X component of a tuple uniquely (or *functionally*) determine the values of the Y component. We also say that there is a functional dependency from X to Y, or that Y is functionally dependent on X.

Thus, X functionally determines Y in a relation schema R if, and only if, whenever two tuples of r(R) agree on their X value, they must necessarily agree on their Y value. Note the following:

- 1. If a constraint on R states that there cannot be more than one tuple with a given X value in any relation instance r(R), i.e. X is a **candidate key** of R This implies that $X \rightarrow Y$ for any subset of attributes Y of R (because the key constraint implies that no two tuples in any legal state r(R) will have the same value of X).
- 2. If $X \rightarrow Y$ in R, this does not say whether or not $Y \rightarrow X$ in R.

STUDENT

Rollno	Sname	Sem	Branch	Marks	Pno
1	RAM	3	CSE	40	121
2	SHYAM	5	CSE	50	122
3	MOHAN	7	CSE	55	123
4	GOPAL	5	IT	65	121
5	RINKI	3	MECH	40	122
6	PINKI	3	ETC	90	123

If Rollno is primary key then, we can write

Rollno → Sname,

Rollno → Sem,

Rollno → Branch,

Rollno → Marks,

Rollno → Pno

4 ways to depict Functional Dependency

If Rollno is primary key then, we can write

- 1. Rollno \rightarrow Sname,
 - Rollno → Sem,
 - Rollno → Branch,
 - Rollno → Marks,
 - Rollno → Pno

2.

Sname
Sem
Rollno
Branch
Marks
Pno

3. Rollno → {Sname, Sem, Branch, Marks, Pno}

4. Use a dependency diagram

R

Α	В	С	D
1	1	2	4
2	3	4	5
3	4	2	4
4	5	5	7
5	3	1	5

 $A \rightarrow B$

 $B \rightarrow A$

 $C \rightarrow A$

 $D \rightarrow A$

 $A \rightarrow C$

 $B \rightarrow C$

 $C \rightarrow B$

 $D \rightarrow B$

 $A \rightarrow D$

 $B \rightarrow D$

 $C \rightarrow D$

 $D \rightarrow C$

 $AB \rightarrow C$

 $AC \rightarrow B$

 $AD \rightarrow B$

 $BC \rightarrow D$

 $AB \rightarrow D$

 $AC \rightarrow D$

 $AD \rightarrow C$

 $BC \rightarrow A$

 $BD \rightarrow A$

 $CD \rightarrow A$

 $ABC \rightarrow D$

 $BCD \rightarrow A$

 $BD \rightarrow C$

 $CD \rightarrow B$

 $ACD \rightarrow B$

Super Keys of R can be: A, AB, AC, AD, BC, ABC, BCD, ACD, ABCD = 9

Candidate keys of R can be : A, BC = 2

Determinant

In Functional Dependency

$$A \rightarrow B$$

Attribute on the L.H.S. of FD is known as determinant.

- A is a determinant of B.
- A is a determinant of B if each value of A has precisely one (possibly null) associated value of B.

OR

• A is a determinant of B if and only if whenever two tuples agree on their A value they agree on their B value.

$$A \rightarrow B$$
.

Inference Rules for functional dependencies

1. Reflexive Rule

If
$$X \supset Y$$
 then $X \rightarrow Y$

2. Augmentation Rule

If
$$X \rightarrow Y$$
 then $XZ \rightarrow YZ$

3. Transitive Rule

If
$$X \rightarrow Y$$
 and $Y \rightarrow Z$ then $X \rightarrow Z$

4. Decomposition or Projective Rule

If
$$X \rightarrow YZ$$
 then $X \rightarrow Y$, and $X \rightarrow Z$

5. Union or Additive Rule

If
$$X \rightarrow Y$$
 and $X \rightarrow Z$ then $X \rightarrow YZ$

6. Pseudo transitive Rule

If
$$X \rightarrow Y$$
 and $YZ \rightarrow W$ then $XZ \rightarrow W$

GATE Questions

Given the following relation instance.

X Y Z

1 4 2

1 5 3

1 6 3

3 2 2

Which of the following functional dependencies are satisfied by the instance?

(A) $XY \rightarrow Z$ and $Z \rightarrow Y$

(B) $YZ \rightarrow X$ and $Y \rightarrow Z$

(C) $YZ \rightarrow X$ and $X \rightarrow Z$

(D) $XZ \rightarrow Y$ and $Y \rightarrow X$

[GATE CS 2000]

GATE Questions

From the following instance of a relation schema R(A, B, C) we can conclude that:

Α	В	С
1	1	1
1	1	0
2	3	2
2	3	2

- (A) A functionally determine B and B functionally determine C.
- (B) A functionally determine B and B does not functionally determine C.
- (C) B does not functionally determine C.
- (D) A does not functionally determine B and B does not functionally determine C.

[GATE 2002]

GATE Questions

Given an instance of the STUDENTS relation as shown below:

StudentD	StudentName	StudentEmail	StudentAge	СРІ
2345	Shankar	shankar@math	X	9.4
1287	Swati	swati@ee	19	9.5
7853	Shankar	shankar@cse	19	9.4
9876	Swati	swati@mech	18	9.3
8765	Ganesh	ganesh@civil	19	8.7

For (StudentName, StudentAge) to be a key for this instance, the value X should NOT be equal to_____.

[GATE 2014: 1 Mark]

For Video lecture on this topic please subscribe to my youtube channel.

The link for my youtube channel is

https://www.youtube.com/channel/UCRWGtE76JlTp1iim6aOTRuw?sub confirmation=1