Задание 1. Свободное движение. Дана система 2-го порядка, представленная в форме Вход-Выход

$$\ddot{y} + a_1 \dot{y} + a_0 y = u.$$

Самостоятельно придумайте три набора (λ_1, λ_2) корней характеристического уравнения, соответствующих приведенным ниже парам мод. Номера возьмите из таблицы 1 в соответствии со своим вариантом.

- 1. двум устойчивыми апериодическим модам;
- 2. устойчивой и неустойчивой апериодическим модам;
- 3. нейтральной и устойчивой апериодической модам;
- 4. нейтральной и неустойчивой апериодической модам;
- 5. нейтральной и пропорциональной времени t моде;
- 6. паре консервативных мод;
- 7. паре устойчивых колебательных мод;
- 8. паре неустойчивых колебательных мод.

Вычислите коэффициенты a_1, a_0 системы и найдите аналитическое выражение для свободной составляющей её движения $y_{cs}(t)$. В отчёте приведите все вычисления и полученные результаты. Проанализируйте устойчивость каждой из систем на основании корневого критерия, сделайте соответствующие выводы.

Для каждой системы выберите ненулевые начальные условия y(0) и $\dot{y}(0)$. Составьте схему для моделирования свободного движения и проведите моделирование сначала с нулевыми начальными условиями, а затем с выбранными ненулевыми. В отчёте приведите графики зависимостей y(t) и $\dot{y}(t)$. Сделайте выводы.

Задание 2. Область устойчивости. Соберите схему моделирования линейной системы третьего порядка (рис. 1), установив значение постоянных времени T_1 и T_2 таким образом, чтобы полюса соответствующих передаточных функций совпали с первым набором корней (λ_1, λ_2) из задания 1.

Рис. 1: Схема моделирования для задания 2

Определите аналитически границу устойчивости в пространстве параметров K и T_1 для системы с фиксированным значением T_2 , опираясь на критерий Гурвица. Приведите графическое изображение границы устойчивости на плоскости двух параметров $K(T_1)$ и определите область устойчивости системы. Сделайте выводы.

Определите аналитически границу устойчивости в пространстве параметров K и T_2 для системы с фиксированным значением T_1 , опираясь на критерий Гурвица. Приведите графическое изображение границы устойчивости на плоскости двух параметров $K(T_2)$ и определите область устойчивости системы. Сделайте выводы.

Возьмите три набора параметров K, T_1 и T_2 таких, чтобы первый набор соответствовал устойчивой системе, второй – системе на границе устойчивости, а третий – неустойчивой системе. Выполните моделирование при g(t)=1 и сделайте выводы.

Задание 3. Автономный генератор. Придумайте такую систему вида

$$\begin{cases} \dot{x} = Ax \\ y = Cx \end{cases}$$

с ненулевыми начальными условиями x(0), чтобы выход системы при свободном движении совпадал с желаемым выходом (см. Табл. 2) в соответствии с вашим вариантом задания. В отчёте приведите матрицы A и C полученной системы, схему моделирования и результаты моделирования свободного движения системы с заданными начальными условиями. Выполните сравнение полученного выхода с желаемым. Сделайте выводы.

Задание 4. (Необязательное) Изучение канонической управляемой формы: фазовые портреты. При решении однородных дифференциальных уравнений второго порядка часто рассматривают проекции траекторий на координатную плоскость (y, \dot{y}) . Получаемая параметричкая кривая отражает всю информацию о траектории: можно видеть одновременно и «координату» и «скорость» точки в каждый момент времени, что сложнее сопоставить при непосредственном рассмотрении графиков y(t) и $\dot{y}(t)$.

Возьмите последний набор корней (λ_1,λ_2) из задания 1. Постройте математическую модель вход-состояние-выход в канонической управляемой форме. Придумайте 3 набора ненулевых начальных условий вида $(\dot{y}(0),y(0))$. Соберите исходную модель в форме ВВ и полученную модель ВСВ в Simulink. Начальные условия модели ВСВ задайте $x(0) = \begin{bmatrix} y(0) \\ \dot{y}(0) \end{bmatrix}$. Промоделируйте для каждого набора начальных условий и сравните графики $\dot{y}(y)$ и $x_2(x_1)$ (лучше это делать программно, но в Simulink для параметрически заданных кривых можно использовать блок «ХҮ Graph»). Сделайте выводы о виде фазового портрета и объясните полученные результаты.

Вариант	Пары мод	Вариант	Пары мод	Вариант	Пары мод
1	2, 5, 7	11	1, 2, 6	21	3, 5, 6
2	1, 2, 8	12	3, 4, 7	22	1, 3, 7
3	3, 5, 8	13	1, 4, 6	23	4, 5, 6
4	2, 3, 8	14	2, 3, 7	24	1, 2, 7
5	1, 3, 6	15	1, 5, 8	25	3, 5, 7
6	2, 4, 6	16	3, 4, 8	26	4, 5, 8
7	1, 4, 8	17	2, 5, 6	27	1, 3, 5
8	1, 5, 7	18	4, 5, 7	28	1, 4, 7
9	1, 3, 8	19	1, 5, 6	29	1, 2, 5
10	2, 5, 7	20	2, 5, 8	30	1, 4, 5

Таблица 1: Исходные данные для задания 1

Таблица 2: Исходные данные для задания 3

Вариант	Желаемый выход системы	Вариант	Желаемый выход системы
1	$y(t) = \sin t + e^{3t} \cos 9t$	16	$y(t) = \sin(-5t) + e^{-7t} \sin 9t$
2	$y(t) = \cos(-2t) + e^{6t}\sin 5t$	17	$y(t) = \cos 4t + e^{-8t} \cos 5t$
3	$y(t) = \sin 3t + e^{9t} \cos t$	18	$y(t) = \sin t + e^{-3t} + e^{4t}$
4	$y(t) = \cos 8t + e^{8t} \sin(-2t)$	19	$y(t) = \cos(-2t) + e^{-8t} + te^{-8t}$
5	$y(t) = \sin(-6t) + e^{2t} + e^{-t}$	20	$y(t) = \sin 9t + e^{-8t} + te^{7t}$
6	$y(t) = \cos 5t + e^t + e^{-5t}$	21	$y(t) = \cos 7t + e^{5t} + e^{4t}$
7	$y(t) = \sin(-5t) + e^{5t}\cos(-5t)$	22	$y(t) = \cos 6t + e^{-2t} \cos 3t$
8	$y(t) = \sin(-3t) + e^{-9t} + e^{-t}$	23	$y(t) = \sin 7t + e^{-t} \sin 7t$
9	$y(t) = \cos 2t + e^{6t} + e^{-2t}$	24	$y(t) = \sin 3t + e^{5t} + e^{6t}$
10	$y(t) = \cos 6t + e^{-4t} \cos 8t$	25	$y(t) = \cos(-4t) + e^{4t} + te^{4t}$
11	$y(t) = \cos 4t + e^{6t} \cos 2t$	26	$y(t) = \sin 3t + e^{9t} + e^{-6t}$
12	$y(t) = \sin(-3t) + e^{7t}\sin t$	27	$y(t) = \cos(-3t) + e^{-5t}\sin 7t$
13	$y(t) = \sin 9t + e^{-3t} \cos 3t$	28	$y(t) = \sin 4t + e^{-5t} \cos 2t$
14	$y(t) = \sin(-5t) + e^{-4t} + te^{-2t}$	29	$y(t) = \sin t + e^{9t} + e^{-7t}$
15	$y(t) = \cos 7t + e^{-7t} + e^{5t}$	30	$y(t) = \cos 9t + e^{9t} \sin(-t)$