

PROJET MACHINE LEARNING

LACHAUSSEE QUENTIN

14-01-2022

SOMMAIRE

- I- Algorithme Perceptron Simple
- II- Apprentissage Widrow: ensemble Test 1 / Test 2
- III- Mise en place d'un perceptron Multicouche
- IV- Apprentissage Multicouches
- V- Volet Chargement des descripteurs
- VI- Classification par Full Connected
- VII- Classification par Deep

I - ALGORITHME PERCEPTRON SIMPLE

Pour développer le perceptron simple, j'ai utilisé cette formule :

```
\sum_{j=0}^{d} w_j x_j \text{ avec } w_0 = \theta \text{ et } x_0 = 1
```

```
y = w[1]*x[0] + w[2]*x[1] + w[0]*1

if active == 0:
    y = np.sign(y)
else:
    y = np.tanh(y)
```

Dans le cas du « OU », on utilise le « sign »

```
x = [0,0]
w = [-0.5,0,1]
y = perceptron_simple(x.copy(), w, active=0)
print(y)
-1.0
```

On obtient bien « -1 »

La figure individu / frontière suivante montre que dans le cas du « OU »,

les points en dessous de la ligne auront un résultat égal à « -1 », et « 1 » pour les points au dessus

II - APPRENTISSAGE WIDROW

Pour développer l'apprentissage Widrow, j'ai utilisé cette formule :

```
w_j^{n+1} = w_j^n - \alpha \left[ -(d - \varphi(w^t x)) \cdot \varphi'(w^t x) \cdot x(j) \right]
```

```
loss = list()
w = [random.random(), random.random(), random.random()]
alpha = 0.9
for e in tqdm(range(epoch)):
    for i in range(len(x[0])):
        y = perceptron_simple(x[:,i], w, prime=0)

    erreur = y - yd[i]
    loss.append(erreur**2)

    for j in range(len(w)):
        S_erreur = erreur * perceptron_simple(x[:,i], w, prime=1)
        w[j] = w[j] - alpha * S_erreur * x[j][i]

if erreur==0:
    break

    Et pour tester
```

Et de celle-ci pour l'erreur :

$$E = \frac{1}{2} \sum_{t=1}^{n} (d^{(t)} - \varphi(w^{T} s^{(t)})^{2})$$

Et pour tester l'apprentissage, le processus est le suivant :

```
# on charge les données
Data = np.loadtxt("Data/p2_d1.txt")
# on concatène les données avec un vecteur de 50 1 et avec un vecteur de 25 -1 et 25 1 pour les classes
Data_full = np.concatenate((np.array([[1]*50]),Data,np.array([[-1]*25+[1]*25])))
# on mélange le dataset
Data_mix = Data_full[:, np.random.permutation(Data_full.shape[1])]
# on extrait l'entré
x = Data_mix[:-1]
# on extrait les classes à prédire
yd = Data_mix[-1]
```

return w, loss

II - APPRENTISSAGE WIDROW - TEST 1

Le graphique des prédictions

La matrice de confusion

2511

La courbe d'erreur

- Les prédictions sont excellentes
- La matrice de confusion affiche un résultat parfait
- On voit bien que la courbe d'erreur est de plus en plus faible et converge vers 0

Après quelques tests avec des initialisations différentes :

- Le nombre d'epoch devient de moins en moins significatif à partir d'environ 2500
- La valeur du batch_size influe sur la longueur de la courbe, mais diminue l'erreur plus rapidement

II - APPRENTISSAGE WIDROW - TEST 2

Le graphique des prédictions

La matrice de confusion

La courbe d'erreur

- Les prédictions sont très bonnes
- La matrice de confusion affiche un résultat quasiment parfait
- En revanche la courbe d'erreur n'affiche pas de convergence vers 0

Après quelques tests avec des initialisations différentes, les résultats ne sont pas meilleurs

-> Les données n'ont sûrement pas assez de liens avec leur classe

III - MISE EN PLACE D'UN PERCEPTRON MULTICOUCHE

Pour développer le perceptron multicouche, j'ai utilisé cette formule :

$$\varphi(x) = \frac{1}{1 + e^{-x}}$$

```
def fonction_activate(u: int):
    y = 1.0/(1 + np.exp(-u))
    return y
```

```
x = np.append([1], x).reshape(3,1)

u1 = np.dot(w1[:,0].reshape(1,3), x)
y1 = fonction_activate(u1[0,0])

u2 = np.dot(w1[:,1].reshape(1,3), x)
y2 = fonction_activate(u2[0,0])

xf = np.append([1], [y1, y2]).reshape(3,1)

uf = np.dot(w2.reshape(1,3), xf)
yf = fonction_activate(uf[0,0])
```


0.9053673095402572

Couche cachée:

- 1er neurone : $-0.5 \times 1 + 2 \times 1 + -1 \times 1 = 0.5$
 - \rightarrow donc 1/ (1 + e^(-0.5)) = 0.62
- 2e neurone : $0.5 \times 1 + 1 \times 1 + 0.5 \times 1 = 2$
 - \rightarrow donc 1/ (1 + e^(-2)) = 0.88

Couche de sortie :

1er neurone : $2 \times 1 + -1 \times 0.62 + 1 \times 0.88 = 2.26$ -> donc 1/ $(1 + e^{-2.26}) = 0.91$

IV - APPRENTISSAGE MULTICOUCHES

Pour développer l'apprentissage multicouche, j'ai utilisé cette formule :

$$\Delta w_k^{(\mu)}(j) = -\alpha \cdot Err^{(\mu)}(k) \cdot y^{(\mu-1)}(k) = -\alpha \cdot \left[\varphi'(v^{(\mu)}(k)) \sum_{j \in \text{ couche } \mu+1} w_j^{(\mu+1)}(k) Err^{(\mu+1)}(j) \right] \cdot y^{(\mu-1)}(j)$$

```
for e in tqdm(range(epoch)):
alpha = 0.5
                                                           for i in range(nb ligne x):
# nombre de poids
                                                               u w1 = np.zeros(nb colonne w)
nb_{igne_w} = len(x[0])
                                                               y w1 = np.zeros(nb colonne w)
# nombre de neuronne
                                                               y prime w1 = np.zeros(nb colonne w)
nb colonne w = nb neurone
                                                               for j in range(nb colonne w):
                                                                   u w1[j] = np.dot(x[i,:], w1[:, j])
w1 = np.random.uniform(-1, 1, (nb ligne w, nb colonne w))
                                                                   y w1[j] = fonction activate(u w1[j])
w2 = np.random.uniform(-1, 1, nb colonne w + 1)
                                                                   y prime w1[j] = fonction activate deriv(u w1[j])
nb ligne x = len(x[:,0])
nb colonne x = len(x[0])
                                                               y w1 = np.append([1], y w1)
                                                               y prime w1 = np.append([1], y prime w1)
loss = list()
                                                               u w2 = np.dot(w2, y w1.reshape(nb colonne w + 1,1))
                                                               y w2 = fonction activate(u w2)
                                                               error = y w2 - yd[i]
                                                               loss.append(error**2)
                                                               for j in range(nb colonne w):
                                                                   S error = error * fonction activate deriv(u w2)
                                                                   for k in range(nb colonne x):
                                                                       gradient w1 = S \text{ error } * w2[j] * y \text{ prime } w1[j] * x[i, k]
                                                                       w1[k, j] -= alpha * gradient w1
                                                               for j in range(nb colonne w+1):
                                                                   gradient w2 = S error * y w1[j]
                                                                   w2[j] -= alpha * gradient w2
                                                           if error==0:
                                                               break
```

return w1, w2, loss

```
x = x.reshape(len(x),1)

y = list()
for i in range(len(w1[0])):
    u = np.dot(w1[:,i].reshape(1,len(w1)), x)[0,0]
    y.append(fonction_activate(u))

xf = np.append([1], y).reshape(len(y)+1,1)

uf = np.dot(w2.reshape(1,len(w2)), xf)[0,0]
yf = fonction_activate(uf)

return yf
```


IV - APPRENTISSAGE MULTICOUCHES

Le graphique des prédictions

La matrice de confusion

La courbe d'erreur

- Les prédictions sont très bonnes
- La matrice de confusion affiche un résultat quasiment parfait
- En revanche la courbe d'erreur n'affiche pas une convergence nette vers 0

Après quelques tests avec des initialisations différentes, les résultats peuvent s'améliorer et présenter une belle convergence et une fois relancé, peut grandement se détériorer

J'ai peut-être fait une erreur dans la fonction d'apprentissage mais je n'ai pas réussi à trouver où (malgré plusieurs heures de recherche) Je n'ai donc pas fais la suite pour cette partie IV

V - VOLET CHARGEMENT DES DESCRIPTEURS

Pour charger les données, j'avais premièrement utilisé un dictionnaire, mais j'ai finalement opté pour une boucle qui fera directement :

- Le chargement des données
- Le split des données
- La création du modèle
- La prédiction
- L'affichage des résultats

```
# pour chaque feuille du fichier Excel (chaque features)
for name in pd.ExcelFile("Data/WangSignatures.xlsx").sheet names:
    # on affiche la feature
   print(name)
    # on charge les données
   Wang = load data(name)
    # on charge les différents dataset et listes de classe
   X train, X test, y train, y test, y train2, y test2 = separate data(Wang)
    # on crée et entraine le model
   model = create model(X train, y train2)
    # on montre les resultats des prédictions du model sur le dataset de test
   prediction = show resultats(model, X test, y test, y test2)
```


V - VOLET CHARGEMENT DES DESCRIPTEURS - CHARGEMENT

Il fallait faire attention à l'ordre des données qui était faussé par les mention « .jpg » dans la 1ère colonne. Ensuite on attribue les bonnes classes aux lignes de données

	Α	В	C	D	
1	0.jpg	1.0	4.0	3.0	1.0
2	1.jpg	1.0	5.0	5.0	2.0
3	10.jpg	5.0	5.0	2.0	1.0
4	100.jpg	1.0	4.0	2.0	2.0
5	101.jpg	6.0	6.0	1.0	0.0
6	102.jpg	2.0	6.0	1.0	0.0
7	103.jpg	2.0	6.0	1.0	0.0
8	104.jpg	3.0	7.0	0.0	0.0
9	105.jpg	0.0	1.0	5.0	1.0
10	106.jpg	5.0	5.0	1.0	0.0
11	107.jpg	1.0	4.0	2.0	0.0
12	108.jpg	1.0	5.0	2.0	1.0
13	109.jpg	1.0	5.0	5.0	0.0
14	11.jpg	3.0	3.0	3.0	1.0
15	110.jpg	0.0	3.0	3.0	0.0

```
def load data(type: str):
   Load Data
    qui à partir du fichiers Excel de données
    va créer un Dataframe avec les données du type spécifié et leur classe
    :param type: le nom de la feuille du fichier Excel WangSignatures
    :return Wang: le DataFrame avec les données du type spécifié et leur classe
    :rtype Wang: pd.DataFrame
    # on lit la feuille du fichier Excel des données WangSignatures
    Wang = pd.read excel("Data/WangSignatures.xlsx", sheet name=type, header=None)
    # on retire la mention jpg qui apparait à chaque ligne de la colonne des nom d'image pour pouvoir trier les données par ordre numéric
    Wang[0]=Wang[0].apply(lambda x: float(x.replace(".jpg","")))
    Wang = Wang.sort values(by=0).reset index(drop=True)
    # on leur affecte une classe selon leur ordre numérique
    Wanq["y"] = [0]*100+[1]*100+[2]*100+[3]*100+[4]*100+[5]*100+[6]*100+[7]*100+[8]*100+[9]*100
    # on supprime la colonne avec le nom de l'image
    Wang = Wang.drop(0,axis=1)
    # on retourne le DataFrame
    return Wang
```


V - VOLET CHARGEMENT DES DESCRIPTEURS - SPLIT

Il fallait faire attention à la « shape » des données de classe (y)
Par exemple on modifie le y_train qui est égal à « 3 » par une liste de 9 « 0 » et 1 « 1 » en position 3.
Pareil pour y_test.

```
def separate data(df: pd.DataFrame):
   Separate Data
   qui à partir du DataFrame de données
   va spliter les données en dataset d'entrainement et de test
   :param df: le DataFrame de données
   :type df: pd.DataFrame
   :return X train: le dataset d'entrainement
   :rtype X_train: np.array
   :return X test: le dataset de test
   :rtype X test: np.array
   :return y train: les classes du dataset d'entrainement au format (n,1)
   :rtype y_train: np.array
   :return y test: les classes du dataset de test au format (n,1)
   :rtype y test: np.array
   :return y train2: les classes du dataset d'entrainement au format (n,10) où la colonne correspond à la classe
   :rtype y train2: np.array
   :return y test2: les classes du dataset d'entrainement au format (n,10) où la colonne correspond à la classe
   :rtype y_test2: np.array
   # on conserve tous sauf la dernière colonne pour l'ensemble des données
   X = np.array(df.astype('float32').iloc[:,:-1])
   # on ne conserve que la derniere colonne pour l'ensemble des classe
   y = np.array(df.astype('float32').iloc[:,-1])
    # on utilise sklearn pour spliter les données en dataset d'entrainement et de test selon une proportion de 0.8 pour 0.2
   X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=1, stratify=y)
    # on modifie la structure des classes pour une matrice (n,10) où 10 est le nombre de classe pour que chaque colonne corre
   y train2 = one hot(y train, depth=10)
   y test2 = one hot(y test, depth=10)
    # on retourne les datasets et les classes selon leur 2 formats
   return X train, X test, y train, y test, y train2, y test2
```


[0,0,0,1,0,0,0,0,0,0]

VI - CLASSIFICATION PAR FULL CONNECTED - 1ERE CRÉATION

Pour une première approche autour de la création du modèle, j'ai fais le choix de 2 couches Dense :

- 1 de type « relu » avec 30 neurones
- 1 de type « softmax » avec 10 neurones (pour les 10 classes à prédire)

Pour la compilation, j'ai utilisé :

- La fonction de perte « categorical_crossentropy » qui est souvent considérée comme la meilleure pour les classifications à plusieurs classes
- L'optimiseur « Adam » pour s'appuyer sur le gradient stochastique

```
def create_model(X_train: np.ndarray, y_train2: np.ndarray):
   Create model
   qui à partir du dataset d'entrainement et des classes correspondantes
   va créer un model et l'entrainer selon plusieurs couches de convolution
   :param X train: le dataset d'entrainement
   :type X train: np.array
   :param y train2: les classes du dataset d'entrainement au format (n,10) où la colonne correspond à la classe
   :type y train2: np.array
   :return model: le model de prédiction
   :rtype model: keras.engine.sequential.Sequential
   # on crée un model avec plusieurs couches
   model = Sequential()
   model.add(Dense(30, activation="relu"))
   model.add(Dense(10, activation="softmax"))
   model.compile(loss="categorical crossentropy", optimizer="adam", metrics=["accuracy"])
   model.fit(X train, y train2, epochs=50, batch size=10, validation split=0.1, verbose=0)
    # on retourne le modèle
   return model
```


VI - CLASSIFICATION PAR FULL CONNECTED - 1ERS RÉSULTATS

Pour les résultats, j'ai opté pour affiché sous forme de Score : [l'erreur, l'accuracy] Puis un nuage de point qui représente :

- En rouge, les classes mal prédites
- En vert, leur vrai classe

Et enfin une matrice de confusion en utilisant la palette de couleur « YlGnBu »

Les résultats sont plutôt bons sur 3 ensembles de données sur 5 -> peut mieux faire

VI - CLASSIFICATION PAR FULL CONNECTED - CRÉATION

Après une dizaine de test en modifiant :

- Le nombre de couche
- Le nombre de neurone
- Les fonctions d'activation

J'en ai ressorti comme conclusion que :

- Plus il y avait de couches, mieux c'était
- Le nombre de neurone pouvait faire passer les résultats de très bon à très mauvais
- La fonction d'activation « relu » était très puissante
- La dernière fonction d'activation devait être « softmax » pour obtenir les meilleurs résultats

J'ai donc fais le choix de 5 couches :

- 4 de type « relu » :
 - 250 / 120 / 60 / 30 / 10 neurones
- 1 de type « softmax » :
 - 10 neurones

```
# on crée un model avec plusieurs couches
model = Sequential()

model.add(Dense(250, activation="relu"))
model.add(Dense(120, activation="relu"))
model.add(Dense(60, activation="relu"))
model.add(Dense(30, activation="relu"))
model.add(Dense(10, activation="softmax"))

model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(X_train, y_train2, epochs=50, batch_size=10, validation_split=0.1, verbose=0)
# on retourne le modèle
return model
```


VI - CLASSIFICATION PAR FULL CONNECTED - RÉSULTATS

Les résultats sont très bons pour les ensembles de données JCD/ CEDD/ FCTH
Les résultats des ensembles de données PHOG/ Fuzzy se sont améliorés -> peut encore mieux faire

Mais sur l'ensemble des données c'est le meilleur résultat que j'ai pu obtenir sans détériorer les uns des autres

VI - CLASSIFICATION PAR FULL CONNECTED - REGROUPEMENT

Donc je me suis dit que si je n'arrivais pas à améliorer chacun des résultats sans détériorer les autres, Il fallait que je regroupe toutes les données en 1 seul et unique ensemble de données :

```
Wang final = pd.DataFrame()
# pour chaque feuille du fichier Excel (chaque features)
for name in tqdm(pd.ExcelFile("Data/WangSignatures.xlsx").sheet names):
    # on charge les données
    Wang = load data(name).drop(["y"], axis=1)
    Wang final = pd.concat([Wang final, Wang], axis=1)
# on leur affecte une classe selon leur ordre numérique
Wang final["y"] = [0]*100+[1]*100+[2]*100+[3]*100+[4]*100+[5]*100+[6]*100+[7]*100+[8]*100+[9]*100
```

On a bien 1000 lignes et le 885 colonnes pour :

- 255 pour PHOG
- 168 pour JCD
- 144 pour CEDD
- 192 pour FCTH
- 125 pour Fuzzy
- 1 pour la classe

```
Wang final
 0 10.0 8.0 7.0 7.0 7.0 7.0 7.0 7.0 6.0 7.0 ... 72.0 78.0 79.0 71.0 57.0 62.0 67.0
 1 15.0 13.0 12.0 11.0 10.0 10.0 10.0 8.0 9.0 10.0 ... 76.0 84.0 89.0 81.0 60.0 66.0 72.0
 2 8.0 7.0 7.0 5.0 4.0 4.0 4.0 4.0 4.0 4.0 66.0 74.0 81.0 82.0 53.0 59.0 66.0 76.0 132.0 0
  9.0 8.0 7.0 7.0 7.0 6.0 6.0 ... 44.0 48.0 55.0 52.0 36.0 39.0 43.0
   15.0 13.0 13.0 11.0 11.0 10.0 10.0 9.0 8.0 8.0 ... 90.0 109.0 130.0 118.0 68.0 80.0 95.0 113.0 109.0 9
1000 rows × 885 columns
```

VI - CLASSIFICATION PAR FULL CONNECTED - RÉSULTATS

J'ai donc utilisé mes conclusions précédentes pour créer mon super model de cette manière :

```
# on crée un model avec plusieurs couches
model = Sequential()

model.add(Dense(800, activation="relu"))
model.add(Dense(750, activation="relu"))
model.add(Dense(700, activation="relu"))
model.add(Dense(600, activation="relu"))
model.add(Dense(300, activation="relu"))
model.add(Dense(200, activation="relu"))
model.add(Dense(80, activation="relu"))
model.add(Dense(30, activation="relu"))
model.add(Dense(10, activation="relu"))
```


Et on arrive à un très bon résultats : 86 % en accuracy Ce qui me satisfait parfaitement

VII - CLASSIFICATION PAR DEEP - CHARGEMENT

Pour charger les images en 2 ensembles de données Train et Validation, j'ai utilisé la fonction :

tf.keras.utils.image_dataset_from_directory

```
# on va créer un dataset d'entrainement depuis le dossier Train
train_data = image_dataset_from_directory(
    directory="Wang/Train",
    validation_split=0.2,
    subset="training",
    seed=42,
    batch_size=3)

# on va créer un dataset de validation depuis le dossier Test
val_data = image_dataset_from_directory(
    directory="Wang/Train",
    validation_split=0.2,
    subset="validation",
    seed=42,
    batch_size=3)
```

Qui va aller:

- Cibler un dossier
- Lire les images pixel par pixel
- Les transformer en liste ou chaque pixel est une liste de 3 valeurs (RGB)
- Leur attribuer la classe qu'il convient
- Splitter les données en ensemble Train et Validation

VII - CLASSIFICATION PAR DEEP - CHARGEMENT

Mais pour utiliser la fonction « image_dataset_from_directory », il fallait que le dossier soit dans un format très précis, chaque sous-dossier doit correspondre à la classe de l'image.

Donc j'ai créé la fonction « creat_directory_and_class » pour m'automatiser tout ça :

```
def create_directory_and_class():
    """
    Create Directory And Classlass
    qui à partir du dossier Wang
    va créer 2 sous dossier de Train et Test composé de 9 sous sous dossiers pour les 9 classes d'image
    """
```


VII - CLASSIFICATION PAR DEEP - SPLIT

On arrive donc à mettre en place nos jeux de donnée Train et Validation avec les 10 classes :

Où chaque image est une liste de 256 listes de 3 valeurs (256 pixels divisés en 3 valeurs RGB) :

]]	15	16	44]
[27	31	58]
[34	40	64]
[56	67	89]
[56	68	90]
[58	74	94]
Γ	65	83	1031

• • •

VII - CLASSIFICATION PAR DEEP - CRÉATION

Pour cette création du modèle je mes suis aidé d'une chaine YouTube « Defend Intelligence » qui m'a proposé différents modèles, et c'est le suivant qui m'a apporté les meilleurs résultats :

```
# on crée un model avec plusieurs couches de convolution d'image 2D
model = Sequential([
    layers.experimental.preprocessing.Rescaling(1./255),
    layers.Conv2D(128,4, activation='relu'),
    layers.MaxPooling2D(),
    layers.Conv2D(64,4, activation='relu'),
    layers.MaxPooling2D(),
    layers.Conv2D(32,4, activation='relu'),
    layers.MaxPooling2D(),
    layers.Conv2D(16,4, activation='relu'),
    layers.MaxPooling2D(),
    layers.Flatten(),
    layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
                loss=losses.SparseCategoricalCrossentropy(from logits=True),
                metrics=['accuracy'],)
tensorboard callback = keras.callbacks.TensorBoard(log dir="logs",
                                                     histogram freg=1,
                                                     write images="logs",
                                                     embeddings data=train data)
model.fit(train data,
        validation data=val data,
        epochs=10,
        callbacks=[tensorboard callback]
```

En oubliant pas de mettre 10 neurones à la dernière couche (pour les 10 classes à prédire)

Et en rajoutant le dataset de Validation lors du « fit »

VII - CLASSIFICATION PAR DEEP - RÉSULTATS

Pour l'affichage, j'ai préféré laisser le « verbose » par défaut pour voir l'évolution de « l'accuracy ». Et toujours ma matrice de confusion en utilisant la palette de couleur « YlGnBu »

```
accuracy: 0.2850
267/267 [======== ] - 113s 417ms/step - loss: 1.9563
                                                                                      val loss: 1.4739 - val
Epoch 2/10
                                    ] - 117s 436ms/step - loss: 1.3114
                                                                     accuracy: 0.5450 -
                                                                                      val loss: 1.4063 - val
                                ====] - 107s 399ms/step - loss: 0.9557
                                                                     accuracy: 0.6612 - val loss: 1.1611 - val
Epoch 4/10
                                                                     accuracy: 0.7688 -
                                                                                      val loss: 1.3611 - val
                         ======== ] - 123s 460ms/step - loss: 0.6661
                        ======== ] - 109s 406ms/step - loss: 0.4090
                                                                     accuracy: 0.8587 - val loss: 1.6791 - val
                                                                     accuracy: 0.9000 - val loss: 2.2486 - val
267/267 [==
                             ======] - 122s 456ms/step - loss: 0.3155
                                                                     accuracy: 0.9275
                                                                                      val loss: 2.1893 - val
267/267 [==
                                  ==] - 119s 446ms/step - loss: 0.2012
accuracy: 0.5750
Epoch 8/10
                                   ] - 123s 460ms/step - loss: 0.1116
                                                                     accuracy: 0.9575 -
                                                                                      val loss: 2.6942 - val
267/267 [==
accuracy: 0.6450
Epoch 9/10
267/267 [====
                                ====1 - 129s 482ms/step - loss: 0.1096
                                                                     accuracy: 0.9625
                                                                                      val loss: 3.7420 - val
accuracy: 0.5500
Epoch 10/10
                                                                    accuracy: 0.9538 -
val loss: 2.8544 - val
accuracy: 0.6300
```


On remarque que « l'accuracy » est déjà très bonne sur le dataset de Validation (95%), mais également sur le dataset de Test (89%).

La matrice de confusion est vraiment très bonne, on constate que la 5^{ème} classe (n°4, les éléphants) se prédit quasiment parfaitement, et pour les pires prédiction, le modèle se trompe moins d'1 fois sur 3. Les résultats sont donc très satisfaisants.

VII - CLASSIFICATION PAR DEEP - DATA AUGMENTATION

Pour cette partie j'ai utilisé une extension de Mozilla Firefox « **Download All Image** » Cette extension permet de sauvegarder, via Google Images, environ 50 images de chaque classe, Pour les mettre dans le sous-dossier **Test** du dossier Wang

VII - CLASSIFICATION PAR DEEP - DATA AUGMENTATION

En utilisant donc les images de Test téléchargées en masse d'internet, on obtient ces résultats :

Malheureusement les prédictions ne sont pas bonnes car les images d'internet ne sont pas toutes ressemblantes à nos images d'entrainement.

Il faudrait prendre plus de temps pour bien sélectionner uniquement les images qui pourraient être reconnues.

Ou alors augmenter nos échantillons d'apprentissage...

MERCI DE VOTRE ATTENTION

