Definition of Minimum Edit Distance

How similar are two strings?

- Spell correction
 - The user typed "graffe"Which is closest?
 - graf
 - graft
 - grail
 - giraffe

- Computational Biology
 - Align two sequences of nucleotides

```
AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC
```

Resulting alignment:

```
-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
```

Also for Machine Translation, Information Extraction, Speech Recognition

Edit Distance

- The minimum edit distance between two strings
- Is the minimum number of editing operations
 - Insertion
 - Deletion
 - Substitution
- Needed to transform one into the other

Two strings and their alignment:

- If each operation has cost of 1
 - Distance between these is 5
- If substitutions cost 2 (Levenshtein)
 - Distance between them is 8

Alignment in Computational Biology

Given a sequence of bases

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

An alignment:

```
-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
```

• Given two sequences, align each letter to a letter or gap

Other uses of Edit Distance in NLP

Evaluating Machine Translation and speech recognition

```
R Spokesman confirms senior government adviser was shot
H Spokesman said the senior adviser was shot dead

S I D
```

- Named Entity Extraction and Entity Coreference
 - IBM Inc. announced today
 - IBM profits
 - Stanford President John Hennessy announced yesterday
 - for Stanford University President John Hennessy

How to find the Min Edit Distance?

- Searching for a path (sequence of edits) from the start string to the final string:
 - Initial state: the word we're transforming
 - Operators: insert, delete, substitute
 - Goal state: the word we're trying to get to
 - Path cost: what we want to minimize: the number of edits

Minimum Edit as Search

- But the space of all edit sequences is huge!
 - We can't afford to navigate naïvely
 - Lots of distinct paths wind up at the same state.
 - We don't have to keep track of all of them
 - Just the shortest path to each of those revisted states.

Defining Min Edit Distance

- For two strings
 - X of length n
 - Y of length m
- We define D(i,j)
 - the edit distance between X[1..i] and Y[1..j]
 - i.e., the first *i* characters of X and the first *j* characters of Y
 - The edit distance between X and Y is thus D(n,m)

Definition of Minimum Edit Distance

Computing Minimum Edit Distance

Dynamic Programming for Minimum Edit Distance

- **Dynamic programming**: A tabular computation of D(n,m)
- Solving problems by combining solutions to subproblems.
- Bottom-up
 - We compute D(i,j) for small i,j
 - And compute larger D(i,j) based on previously computed smaller values
 - i.e., compute D(i,j) for all i (0 < i < n) and j (0 < j < m)

Defining Min Edit Distance (Levenshtein)

Initialization

$$D(i,0) = i$$

 $D(0,j) = j$

Recurrence Relation:

```
For each i = 1...M
                      \text{pach } j = 1...IN 
 D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \\ 0; & \text{if } X(i) = Y(j) \end{cases} 
              For each j = 1...N
```

Termination:

D(N,M) is distance

The Edit Distance Table

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
I	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	Ι	0	N

The Edit Distance Table

N	9									
0	8									
Ι	7	D(;	n – mi		i-1,j) +					
Т	6	D(1).	<i>))</i> – IIII	n D(バーエノ エ i-1.i-1)	+ ₂	: if S₁(i	i) ≠ S ₂ (i)	
N	5			(-(/3 -/	0;	if S ₁ (i	$= S_2($	j)	
Е	4									
Т	3									
N	2									
I	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,i-1) + 2; \text{ if } S_1(i) \neq S_2(j) \end{cases}$$

Edit Distance

D(I-1,J-1) +	2;	If $S_1(I) \neq S_2(J)$
	0;	if $S_1(i) = S_2(j)$

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

The Edit Distance Table

N	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
Ι	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
Ι	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	T	I	0	N

Computing Minimum Edit Distance

Backtrace for Computing Alignments

Computing alignments

- Edit distance isn't sufficient
 - We often need to align each character of the two strings to each other
- We do this by keeping a "backtrace"
- Every time we enter a cell, remember where we came from
- When we reach the end,
 - Trace back the path from the upper right corner to read off the alignment

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,i-1) + 2; \text{ if } S_1(i) \neq S_2(j) \end{cases}$$

Edit Distance

D(I-1,J-1) +	2;	If $S_1(I) \neq S_2(J)$
	0;	if $S_1(i) = S_2(j)$

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	I	0	N

MinEdit with Backtrace

n	9	↓ 8	<u> </u>	<u>√</u> 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓9	∠8	
0	8	↓ 7	∠ ←↓8	∠ ←↓9	∠←↓ 10	∠←↓ 11	↓ 10	↓9	/ 8	← 9	
i	7	↓ 6	∠ ←↓ 7	∠ ←↓8	∠ ←↓9	<u>√</u> 10	↓9	/ 8	← 9	← 10	
t	6	↓ 5	∠ ←↓6	∠←↓ 7	∠ ←↓8	∠ ←↓9	/ 8	← 9	← 10	← ↓ 11	
n	5	↓ 4	∠ ←↓ 5	∠←↓ 6	∠←↓ 7	√ ←↓ 8	<u>/</u> ←↓9	∠ ←↓ 10	∠ ←↓ 11	∠ ↓ 10	
e	4	∠ 3	← 4	∠ ← 5	← 6	← 7	<i>←</i> ↓ 8	∠ ←↓9	∠ ←↓ 10	↓9	
t	3	∠ ←↓4	∠ ←↓ 5	∠←↓ 6	∠ ←↓ 7	√ ←↓ 8	∠ 7	←↓ 8	∠ ←↓9	↓ 8	
n	2	∠ ←↓ 3	∠ ←↓4	∠ ←↓ 5	∠<-↓ 6	∠←↓ 7	<u> </u>	↓ 7	∠<↓ 8	∠ 7	
i	1	∠←↓ 2	∠ ←↓ 3	∠ ←↓4	∠<-↓ 5	∠<-↓ 6	∠←↓ 7	∠ 6	← 7	← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	0	n	

Adding Backtrace to Minimum Edit Distance

Base conditions:

$$D(i,0) = i$$

$$D(0,j) = j$$

Termination:

D(0,j) = j D(N,M) is distance

Recurrence Relation:

```
For each i = 1...M
     For each j = 1...N
```

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 & \text{deletion} \\ D(i,j-1) + 1 & \text{insertion} \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) & \text{substitution} \\ 0; & \text{if } X(i) = Y(j) \end{cases}$$

$$ptr(i,j) = \begin{cases} D(i-1,j) + 1 & \text{insertion} \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) & \text{substitution} \\ 0; & \text{if } X(i) = Y(j) \end{cases}$$

$$ptr(i,j) = \begin{cases} D(i-1,j) + 1 & \text{insertion} \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) & \text{substitution} \\ 0; & \text{if } X(i) = Y(j) & \text{otherwise} \end{cases}$$

The Distance Matrix

Every non-decreasing path

from (0,0) to (M, N)

corresponds to an alignment of the two sequences

An optimal alignment is composed of optimal subalignments

Result of Backtrace

Two strings and their alignment:

Performance

• Time:

O(nm)

Space:

O(nm)

Backtrace

O(n+m)

Backtrace for Computing Alignments

Weighted Minimum Edit
Distance

Weighted Edit Distance

- Why would we add weights to the computation?
 - Spell Correction: some letters are more likely to be mistyped than others
 - Biology: certain kinds of deletions or insertions are more likely than others

Confusion matrix for spelling errors

X					30	ւսլչ	м, 1	J	Sub	5111 1	ıuv			rrect)		CI) I	OI.	1 (1	OI I	ccı)						
	a	b	c	d	e	f	g	ħ	i	j	k	1	m	n	o	p	q	r	S	t	u	v	w	х	У	Z
a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	Õ
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	0
c	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
e	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	. 4	0	0	3
1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
0	91	1	1	3	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
р	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
s	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
х	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
у	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
z	0	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	0

Weighted Min Edit Distance

• Initialization:

```
D(0,0) = 0

D(i,0) = D(i-1,0) + del[x(i)];   1 < i \le N

D(0,j) = D(0,j-1) + ins[y(j)];   1 < j \le M
```

Recurrence Relation:

$$D(i,j) = \min \begin{cases} D(i-1,j) & + \text{ del}[x(i)] \\ D(i,j-1) & + \text{ ins}[y(j)] \\ D(i-1,j-1) & + \text{ sub}[x(i),y(j)] \end{cases}$$

Termination:

```
D(N,M) is distance
```