Course Introduction

Rohit Budhiraja

Simulation-Based Design of 5G Standards

Brief history of wireless standards (1)

- 1G based on analog transmission with the main technologies being
 - AMPS (Advanced Mobile Phone System) developed within North America,
 - NMT (Nordic Mobile Telephony) jointly developed by network operators of Nordic countries
 - TACS (Total Access Communication System) used in, for example, UK
- Limited to voice services and, for first time, made mobile telephony accessible to ordinary people

Brief history of wireless standards (2)

- 2G saw the introduction of digital transmission on the radio link
- Target service was still voice digital transmission allowed limited data services e.g., SMS
 - GSM jointly developed by European countries
 - D-AMPS (Digital AMPS) developed within North America
 - PDC (Personal Digital Cellular) developed and solely used in Japan
 - CDMA-based IS-95 technology developed at a somewhat later stage

Brief history of wireless standards (3)

- 3G true step to high-quality mobile broadband was taken, enabling fast wireless internet access
 - HSPA (High Speed Packet Access) FDD, TD-SCDMA TDD
 - CDMA-2000
- 4G LTE supports both FDD and TDD operation
 - Unike 3G which had two different technologies
 - OFDM enables wider transmission bandwidths and advanced MIMO techniques

What Is 5G?

• 5G is being designed for the following use cases

eMBB

High data rates, high traffic volumes

mMTC

Massive number of devices, low cost, low energy consumption

URLLC

Very low latency, very high reliability and availability

- mMTC remote sensors, and monitoring of various equipment
- URLLC automatic control, factory automation

Evolving 4G LTE to 5G

- LTE technical specifications were (Release 8) introduced in 2009.
- Since then, LTE has evolved (through Release 9 to 14) to provide enhanced performance/features
 - Higher data rate by increasing number of tx/rx antennas
 - Enable truly low-cost devices with very long battery life, in line with massive MTC applications
 - Significant steps taken to reduce the LTE air-interface latency
- With these ongoing, and future evolution steps, LTE will be able to support a
 wide range of the use cases envisioned for 5G.

NR – The New 5G Radio-Access Technology

- Why are we developing 5G NR
 - Despite LTE being a capable technology, certain requirements cannot be met by LTE or its evolution.
 - LTE technical development was initiated a decade ago advanced technical solutions are available
- To meet these requirements and to exploit new technologies, 3GPP initiated the development of a new radio-access technology known as NR (New Radio)
- First version of NR specifications was available by the end of 2017
 - to meet commercial requirements on early 5G deployments already in 2018
- NR reuses many of the structures and features of LTE
- Since NR serves broad use cases than LTE, uses a partly different set of technical solutions

Standardization of mobile communication (1)

- Multi-national technology specifications and standards key to success of mobile communication.
 - Allows deployment and interoperability of devices and infrastructure of different vendors
 - Enables devices and subscriptions to operate on a global basis
 - 1G NMT technology was created on a multinational basis
 - Allowed for devices and subscription to operate over the national borders between the Nordic countries
- 2G GSM was jointly developed between European countries within ETSI (European Telecommunications Standards Institute).
 - GSM devices able to operate over a large number of countries covering a large number of users
- True global standardization of mobile happened with 3G technologies, especially WCDMA

Standardization of mobile communication (2)

- Work on 3G was initially also carried out separately within
 - Europe (ETSI),
 - North America (TIA) Telecommunication Industry Association
 - Japan(ARIB) Association of Radio Industries and Businesses
- Although work was being done separately within different standard organizations
 - e.g., ETSI, TIA, ARIB similar underlying technologies were being pursued
- Especially true for Europe and Japan both were developing similar flavors of WCDMA

Standardization of mobile communication (3)

- Different regional standardization organizations came together and jointly created the Third-Generation Partnership Project (3GPP)
 - task of finalizing the development of 3G technology based on WCDMA
- A parallel organization (3GPP2) was later created to develop an alternative 3G technology,
 - cdma2000, as an evolution of second-generation IS-95.
- For a number of years, 3GPP and 3GPP2, with their respective 3G technologies (WCDMA and cdma2000) co-existed
- Over time 3GPP came to completely dominate and has,
 - despite its name, continued into the development of 4G (LTE, and 5G) technologies.
- Today, 3GPP is only significant organization developing specifications for mobile communication

Books

- 5G NR: The Next Generation Wireless Access Technology
 - Erik Dahlman, Stefan Parkvall, and Johan Skold, Elsevier 2018 [ErikD]
- 5G NR Architecture, Technology, Implementation, and Operation of 3GPP New Radio Standards
 - Sassan Ahmadi, Elsevier 2019[SassanA]
- Reference for today's lecture: Chap1 of ErikD

Course evaluation and attendance

- MATLAB simulation assignments based on class material 15%
- Two mid-term exams 30%
- End-sem 40%
- Take home tutorials not graded, will hold tutorial classes to clarify doubts
- Attendance 15

