Reproducible analysis workflows

A short introduction into reproducible analysis tools: Rmarkdown, Github and others

Cornelius Hennch

24.01.2022

Section 1

Introduction

Why do we need reproducible data analysis?

"Reproducibility is the ability to obtain identical results from the same statistical analysis and the same data"

= long-term and cross-platform reproducibility of data analyses

- Peikert and Brandmeier (2021)

3/20

Reproducibility ≠ Replicability

(same analysis new data)

Goals of reproducible workflows

- Reported results are consistent with the actual results
- Computational reproducibility (= hardware and software change over time)
- Wersion control (= keep track of any changes at any time)

Four essential tools for reproducible workflows

- **9** Dynamic reports \rightarrow **R Markdown** \bigcirc
- ② Version control \rightarrow **Git & Github** \bigcirc

- lacksquare Dependency management ightarrow **Make**
- Containerization \rightarrow **Docker** \clubsuit

Highly versatile dynamic documents with R Markdown

https://timotheenivalis.github.io/workshops/RforRSB/rmarkdown notes.html

Happy knitting!

https://rmarkdown.rstudio.com/authoring_quick_tour.html

Git & Github

♦ Git

- "Distributed version control system"
- Track and document changes ("commits")
- Retrieve older versions of code
- Enables collaboration on any kind of programming projects (scalable!)

Git & Github

♦ Git

- "Distributed version control system"
- Track and document changes ("commits")
- Retrieve older versions of code
- Enables collaboration on any kind of programming projects (scalable!)

Github

- Git repository hosting service
- Collaboration:
 - Many features for team/project management (scalable!)
 - Report bugs/issues, get help
 - 3 Contribute to open-source projects
- Post-publication platform

Collaboration with Git & Github

How to Update a Fork in Git

Containerized Applications

Section 2

Reproducible data analysis in action

Example analysis: How do R skills influence time to thesis completion.

Hypothesis: Years of experience with R are inversely correlated with the estimated time to thesis completion.

Simulate data

Examine data structure

```
head(data, n = 8) %>%
  knitr::kable()
# glimpse(data)
```

r_exp	using_r	thesis_compl
0.00	no	1.74
1.97	yes	1.44
0.00	no	2.27
0.00	no	1.26
0.00	no	1.61
0.00	no	1.43
0.91	yes	1.60
2.11	yes	1.04

Data summary

Dependent: all	all	
Experience with R (years) Est. time to thesis completion Using R for analysis	Mean (SD) Mean (SD) no yes	1.1 (1.2) 1.2 (0.6) 14 (46.7) 16 (53.3)

Visualize simulated data

Get the data

link/QR code to google forms

Run the code!

Where to start

Links/ressources for these tools

19/20

References

Peikert, Aaron, and Andreas Brandmeier. 2021. "A Reproducible Data Analysis Workflow with R Markdown, Git, Make, and Docker Aaron." *Preprint*, 1–47.

24.01.2022

20/20