Clustering

What is cluster analysis?

- What is a cluster?
 - A cluster is a collection of data objects which are
 - Similar (or related) to one another within the same group (i.e., cluster)
 - Dissimilar (or unrelated) to the objects in other groups (i.e., clusters)
- Cluster analysis (or clustering, data segmentation, ...)
 - Given a set of data points, partition them into a set of groups
 (i.e., clusters) which are as similar as possible
- Cluster analysis is unsupervised learning (i.e., no predefined classes)
 - This contrasts with classification (i.e., supervised learning

What is cluster analysis?

- Typical ways to use/apply cluster analysis
 - As a stand-alone tool to get insight into data distribution, or
 - As a preprocessing (or intermediate) step for other algorithms

What Is Good Clustering?

- A good clustering method will produce high quality clusters which should have
 - High intra-class similarity: Cohesive within clusters
 - Low inter-class similarity: Distinctive between clusters
- Quality function
 - There is usually a separate "quality" function that measures the "goodness" of a cluster
 - It is hard to define "similar enough" or "good enough" and is typically subjective

There exist many similarity and dissimilarity measures and different functions for different applications

Common Distance measures:

- Distance measure will determine how the similarity of two elements is calculated and it will influence the shape of the clusters.
- They include:
- 1. The Euclidean distance (also called 2-norm distance) is given by:

$$d(x, y) = \sum_{i=1}^{p} |x_i - y_i|$$

• 2. The Manhattan distance (also called taxicab norm or 1-norm) is given by:

$$d(x, y) = \sqrt[2]{\sum_{i=1}^{p} |x_i - y_i|^2}$$

Common Distance measures:

3. The maximum norm is given by:

$$d(x, y) = \max_{1 \le i \le p} |x_i - y_i|$$

- 4. The <u>Mahalanobis distance</u> corrects data for different scales and correlations in the variables.
- 5. <u>Inner product space</u>: The angle between two vectors can be used as a distance measure when clustering high dimensional data
- 6. <u>Hamming distance</u> (sometimes edit distance) measures the minimum number of substitutions required to change one member into another.

Cluster Analysis: Applications

- A key intermediate step for other data mining tasks
 - Generating a compact summary of data for classification,
 pattern discovery, hypothesis generation and testing, etc.
 - Outlier detection: Outliers—those "far away" from any cluster
- Data summarization, compression, and reduction
 - Ex. Image processing: Vector quantization
- Collaborative filtering, recommendation systems, or customer segmentation
 - Find like-minded users or similar products

Cluster Analysis: Applications

Dynamic trend detection

Clustering stream data and detecting trends and patterns

Multimedia data analysis, biological data analysis and social network analysis

Ex. Clustering images or video/audio clips, gene/protein sequences, etc.

Considerations for Cluster Analysis

Partitioning criteria (Single level vs. hierarchical partitioning)

- Single level: All clusters are conceptually at the same level no hierarchy exists among clusters.
 - Eg: partitioning customers into groups so that each group has its manager.
- Hierarchical level: Clusters at different semantic levels.
 - Eg: general topics: "sports", "politics" and subtopics in text mining.

Separation of clusters

Exclusive (e.g., one customer belongs to only one region) vs.
 non-exclusive (e.g., one document may belong to more than one cluster)

Considerations for Cluster Analysis

Similarity measure

Distance-based (e.g., Euclidean, road network,
 vector) vs. similarity measure defined as connectivity-based (e.g., density or contiguity) not on absolute distance between two objects.

Clustering space

 Clustering methods search for clusters within entire given space (often when low dimensional) vs. subspaces (often in high-dimensional clustering due to presence of irrelevant attributes)

Requirements and Challenges

Scalability

 Highly scalable clustering algorithms are needed to work on large database to produce unbiased results.

Quality

 Ability to deal with different types of attributes: Numerical, categorical, text, multimedia, networks, mixture of multiple types and complex data types such as graphs, sequences images and documents.

Discovery of clusters with arbitrary shape

- Distance based clustering algorithm produces spherical clusters with similar size and density
- Important to develop clusters of any shape.
- Develop algorithms that can detect clusters of arbitrary shape

Requirements and Challenges

Ability to deal with noisy data

- Most data contains outliers, missing, unknown or erroneous data
- Clustering algorithms are sensitive produce poor quality clusters
- Need methods that are robust to noise

Incremental clustering and insensitivity to input order:

- Incremental updates requires recomputing from scratch and return different clusters depending of the order of the data given.
- Algorithms may be sensitive to the input data order, different clusters depending on the order.
- Incremental clustering algorithms and algorithms insensitive to the input order are needed.
- High dimensionality: Need to handle high dimension data

Requirements and Challenges

Constraint-based clustering

 User-given preferences or constraints; domain knowledge; user queries

Interpretability and usability

- Clustering results should be interpretable, comprehensible and usable
- Can able to tie with specific semantic interpretations and applications

Type of data in clustering analysis

- Interval-scaled variables:
- Binary variables:
- Nominal, ordinal, and ratio variables:
- Variables of mixed types:

Interval-valued variables

- Standardize data
 - Calculate the mean absolute deviation:

where
$$s_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + \ldots + |x_{nf} - m_f|)$$

$$m_f = \frac{1}{n}(|x_{1f} - m_f| + |x_{2f} - m_f| + \ldots + |x_{nf} - m_f|).$$

Calculate the standardized measurement (z-score)

$$z_{if} = \frac{x_{if} - m_f}{s_f}$$

Using mean absolute deviation is more robust than using standard deviation

Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects
- Some popular ones include: Minkowski distance:

$$d(i,j) = \sqrt[q]{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)}$$

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two p-dimensional data objects, and q is a positive integer

• If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

Similarity and Dissimilarity Retween Objects (Cont.)

• If q = 2, d is Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

• Also, one can use weighted distance, parametric Pearson product moment correlation, or other dissimilarity measures

Binary Variables

A contingency table for binary data

	1	Ó	sum	
1	а		a+b	
0	C	d	c+d	
sum	a+c	b+d	p	

Simple matching coefficient (invariant, if the binary variable is symmetric):

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

 Jaccard coefficient (noninvariant if the binary variable is asymmetric):

$$d(i,j) = \frac{b+c}{a+b+c}$$

Nominal Variables

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
 - replace x_{if} by their rank
 - map the range of each variable onto [0, 1] by replacing i-th object in the f-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

compute the dissimilarity using methods for interval-scaled variables

Ratio-Scaled Variables

- <u>Ratio-scaled variable</u>: a positive measurement on a nonlinear scale, approximately at exponential scale, such as *Ae^{Bt}* or *Ae^{-Bt}*
- Methods:
 - treat them like interval-scaled variables—not a good choice! (why?—the scale can be distorted)
 - apply logarithmic transformation

$$y_{if} = log(x_{if})$$

 treat them as continuous ordinal data treat their rank as interval-scaled

Variables of Mixed Types

- A database may contain all the six types of variables
 - symmetric binary, asymmetric binary, nominal, ordinal, interval and ratio
- One may use a weighted formula to combine their effects

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

- f is binary or nominal: $d_{ii}^{(f)} = 0$ if $x_{if} = x_{if}$, or $d_{ii}^{(f)} = 1$ o.w.
- f is interval-based: use the normalized distance
- f is ordinal or ratio-scaled
 - compute ranks r_{if} and
 - and treat z_{if} as interval-scaled

$$z_{if} = \frac{r_{if} - 1}{M_{f}}$$

- Partitioning approach:
 - Construct various k partitions and then evaluate them by some criterion
 - Adopts exclusive separation, distance methods, uses iterative relocation technique to improve partition.
 - Uses heuristic methods, finds spherical-shaped clusters, local optimum
- Typical methods: k-means, k-medoids, CLARANS

- Hierarchical approach:
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Classified using agglomerative (bottom-up) or divisive approach(top-down)
 - adopts distance measures or density measures
 - Considers clusters in subspaces, cannot possible to correct erroneous decision since once done cannot be undone.
 - Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEO

- Density Based Methods:
 - Based on connectivity and density functions
 - Methods used to filter out noise and outliers.
 - Divides set of objects in mutually exclusive or hierarchy of clusters.
 - Extended to full space or subspace clustering
- Typical methods: DBSACN, OPTICS, DenClue

- Grid Based Methods:
 - based on a multiple, level granularity structure
 - Quantize the object space into finite number of cells that form a grid structure.
 - Fast processing and dependent on number of cells

Typical methods: STING, WaveCluster, CLIQUE

