A Bayesian Method for General Change Point Problems

Xiaofei (Susan) Wang

Lecturer in Statistics
Department of Mathematics and Statistics
Amherst College

November 5, 2015

Outline

- Introduction to Change Points (Serial Data)
 - Motivating Example
 - Definition
 - Toy Examples
- Related Work
- Generalized Bayesian Change Point Analysis (Serial Data)
 - Toy Examples Revisited
 - Example: Global Warming
 - Example: Quebec Rivers
- Generalized Bayesian Change Point Analysis (General Graphs)
 - Example: New Haven Housing

Introduction to Change Points (Serial Data)

Example: Global Warming

What model is appropriate for these data?

GLOBAL Land-Ocean Temperature Index

Example: Global Warming

What model is appropriate for these data?

GLOBAL Land-Ocean Temperature Index

Example: Global Warming

What model is appropriate for these data?

GLOBAL Land-Ocean Temperature Index

What are change points?

Change points partition observations into blocks. Within each block, observations share a common distribution.

• Observations: y_1, \ldots, y_{100}

What are change points?

Change points partition observations into blocks. Within each block, observations share a common distribution.

- Observations: y_1, \ldots, y_{100}
- Partition: $\rho = (S_1, S_2)$ $S_1 = \{1, \dots, 50\}$ $S_2 = \{51, \dots, 100\}$
- $y_{i:i \in S_1} \sim N(0,1)$ $y_{i:i \in S_2} \sim N(3,1)$
- Change point at location 50.

Related Work

Related Work

- Barry and Hartigan (1993, 1994), Erdman and Emerson (2007, 2008)
 univariate, Bayesian (library(bcp))
- Bai and Perron (2003), Zeileis, et al. (2001) regression (library(strucchange))
- Muggeo (2003) regression (library(segmented))
- Olshen, et al. (2004) univariate, using circular binary segmentation
- Fearnhead (2005), Loschi, et al. (2010) regression, Bayesian
- Killick and Eckley (2011) univariate mean/variance (library(changepoint))
- Matteson and James (2013) multivariate (library(ecp))
- ... and others

Barry and Hartigan (1993): Univariate serial observations $y_i \sim N(\mu_i, \sigma)$ (e.g. Example 1)

No need to specify number of blocks

Barry and Hartigan (1993): Univariate serial observations $y_i \sim N(\mu_i, \sigma)$ (e.g. Example 1)

- No need to specify number of blocks
- Models the partition ρ as a random variable

Barry and Hartigan (1993): Univariate serial observations $y_i \sim N(\mu_i, \sigma)$ (e.g. Example 1)

- No need to specify number of blocks
- Models the partition ρ as a random variable
- Estimates means and probability of change point occurring at each location

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(A \cap B) = P(A|B)P(B)$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(A \cap B) = P(A|B)P(B)$$

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Two events A and B:

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(A \cap B) = P(A|B)P(B)$$

Combining these, we get

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Alternate form:

$$P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|B^c)P(B^c)}$$

More Generally

Prior: $\pi(\theta)$

Likelihood: $f(x|\theta)$

More Generally

Prior: $\pi(\theta)$

Likelihood: $f(x|\theta)$

Posterior:

$$f(\theta|x) = \frac{f(x|\theta)\pi(\theta)}{f(x)}$$

More Generally

Prior: $\pi(\theta)$

Likelihood: $f(x|\theta)$

Posterior:

$$f(\theta|x) = \frac{f(x|\theta)\pi(\theta)}{f(x)} = \frac{f(x|\theta)\pi(\theta)}{\int f(x|\theta)\pi(\theta)d\theta}$$

Barry and Hartigan (1993): Univariate serial observations $y_i \sim N(\mu_i, \sigma)$ (e.g. Example 1)

Barry and Hartigan (1993): Univariate serial observations $y_i \sim N(\mu_i, \sigma)$ (e.g. Example 1)

Partition
$$\rho = (S_1, \dots, S_b)$$

Prior on the partition:

$$\pi(\rho) \propto \int_0^{\rho_0} p^{b-1} (1-p)^{n-b} dp$$

Barry and Hartigan (1993): Univariate serial observations $y_i \sim N(\mu_i, \sigma)$ (e.g. Example 1)

Partition
$$\rho = (S_1, \dots, S_b)$$

Prior on the partition:

$$\pi(
ho) \propto \int_0^{
ho_0}
ho^{b-1} (1-
ho)^{n-b} d
ho$$

Likelihood:

$$y_{i:i \in S} | \theta_S, \sigma^2 \sim N(\theta_S, \sigma^2)$$

$$heta_S | \mu_0, \sigma_0^2 \sim N\left(\mu_0, rac{\sigma_0^2}{n_S}
ight) \ \mu_0 \sim U(-\infty, \infty)$$

$$\pi(\sigma^2) \propto rac{1}{\sigma^2} \quad \sigma^2 \in (0,\infty)$$

$$\pi(w) = \frac{1}{w'_0}$$
 $w \in (0, w'_0)$

where
$$w = \sigma^2/(\sigma_0^2 + \sigma^2)$$

Example 1 (Revisited)

Example 1 (Revisited)

Generalized Bayesian Change Point Analysis (Serial Data)

Generalized Bayesian Change Point Analysis (BCP)

Features of Wang and Emerson (2015):

- multiple observations may be recorded at each location
- allows regressions within blocks, if predicting variables are available (e.g. Example 2)
 - includes multivariate/univariate normal observations (e.g. Examples 1 and 3) as special cases

Generalized Bayesian Change Point Analysis (BCP)

Features of Wang and Emerson (2015):

- multiple observations may be recorded at each location
- allows regressions within blocks, if predicting variables are available (e.g. Example 2)
 - includes multivariate/univariate normal observations (e.g. Examples 1 and 3) as special cases

Allows the data to reside on nodes of a connected graph (more on this later!)

Generalized BCP: Serial Data

Wang and Emerson (2015) - setup for univariate data

- Observations: $\{(\mathbf{x_i}, \mathbf{y_i})\}_{i=1}^n$
- y_i is $m_i \times 1$ (m_i independent observations at location i)
- x_i is $m_i \times k$ (k predictors)

Generalized BCP: Serial Data

Wang and Emerson (2015) - setup for univariate data

- Observations: $\{(x_i, y_i)\}_{i=1}^n$
- y_i is $m_i \times 1$ (m_i independent observations at location i)
- x_i is $m_i \times k$ (k predictors)

Prior on the partition:

Prior on the intercept:

$$\pi(
ho) \propto \int_0^{
ho_0}
ho^{b-1} (1-
ho)^{n-b} d
ho$$

$$eta_{S0}|\mu_0,\sigma_0^2 \sim N\left(\mu_0,rac{\sigma_0^2}{n_S}
ight)$$

Likelihood:

Prior on other coefficients:

$$\mathbf{y}_{i:i\in\mathbf{S}}|\mathbf{x},\beta_{\mathbf{S}},\sigma^{2}\sim N_{m_{i}}(\widetilde{\mathbf{x}_{i}}^{\mathbf{S}}\boldsymbol{\beta}_{\mathbf{S}},\sigma^{2}\boldsymbol{I})$$

$$\begin{split} & \left(\beta_{Sj} | \tau_S = 0\right) = 0 \qquad \text{w.p. } 1 \\ & \left(\beta_{Sj} | \tau_S = 1, \sigma_j^2\right) \sim \textit{N}\left(0, \frac{\sigma_j^2}{\sum_{i \in S} (\textit{x}_{ij} - \bar{\textit{x}}_{.j}^S)^2}\right) \end{split}$$

Generalized BCP: Serial Data

Wang and Emerson (2014): other priors

$$P(\tau_{S} = 0) = \frac{d}{n_{S} + d} \mathbb{1}\{n_{S} \ge 2k\} + \mathbb{1}\{n_{S} < 2k\}$$

$$P(\tau_{S} = 1) = \frac{n_{S}}{n_{S} + d} \mathbb{1}\{n_{S} \ge 2k\}$$

$$\mu_{0} \sim U(-\infty, \infty)$$

$$\pi(\sigma^{2}) \propto \frac{1}{\sigma^{2}} \quad \sigma^{2} \in (0, \infty)$$

$$\pi(w_{j}) = \frac{1}{w_{j}} \quad w \in (0, w'_{j})$$

where
$$w_j = \sigma^2/(\sigma_j^2 + \sigma^2)$$

We are interested in:

- $f(\rho|\mathbf{y},\mathbf{x})$
- Posterior means for each location i

We are interested in:

- $f(\rho|\mathbf{y},\mathbf{x})$
- Posterior means for each location i (this depends on $f(\rho, \tau, w|y, x)$)

We are interested in:

- $f(\rho|\mathbf{y},\mathbf{x})$
- Posterior means for each location i (this depends on $f(\rho, \tau, w|y, x)$)

But... there is no closed form for the posterior $f(\rho, \tau, \mathbf{w}|\mathbf{y}, \mathbf{x})$.

We are interested in:

- $f(\rho|\mathbf{y},\mathbf{x})$
- Posterior means for each location i (this depends on $f(\rho, \tau, w|y, x)$)

But... there is no closed form for the posterior $f(\rho, \tau, \mathbf{w}|\mathbf{y}, \mathbf{x})$.

So we use a form of Gibbs sampling:

We are interested in:

- $f(\rho|\mathbf{y},\mathbf{x})$
- Posterior means for each location i (this depends on $f(\rho, \tau, w|y, x)$)

But... there is no closed form for the posterior $f(\rho, \tau, \mathbf{w} | \mathbf{y}, \mathbf{x})$.

So we use a form of Gibbs sampling:

- Start with any arbitrary $(\rho^{(0)}, \tau^{(0)}, \boldsymbol{w^{(0)}})$
- For t = 1, ..., T:
 - 1 Sample $(\rho^{(t)}, \tau^{(t)})$ from $f(\rho, \tau | \mathbf{y}, \mathbf{x}, \mathbf{w^{(t-1)}})$ 2 Sample $\mathbf{w^{(t)}}$ from $f(\mathbf{w} | \mathbf{y}, \mathbf{x}, \rho^{(t)}, \tau^{(t)})$

Example 2 (Revisited)

Example 2 (Revisited)

Example 3 (Revisited)

Example 3 (Revisited)

Example: Global Warming

GLOBAL Land-Ocean Temperature Index

Example: Global Warming

Example: Quebec Rivers (Perreault et al. (2000))

Example: Quebec Rivers (BCP Result)

Generalized Bayesian Change Point Analysis (General Graphs)

Simulated Data

Posterior Means

Posterior Boundary Probabilities

What is a change point on a grid?

Before: (serial data \Rightarrow path graph)

Now: (grid graph)

More Generally

Simulated Data

- Numbers and colors reflect observed values.
- 2 blocks:
 - N(3,1)
 - N(0,1)

More Generally

Posterior Means

 Numbers and colors reflect posterior means.

Prior on Partition

Originally (path graph):

$$f(\rho) \propto \int_0^{\rho_0} p^{b-1} (1-p)^{n-b} dp$$

New (general graph):

$$f(\rho) \propto \alpha^{I(\rho)}$$

where $0 < \alpha < 1$ and $I(\rho)$ is a measure of boundary length

Example: New Haven Housing

n = 244 houses

Example: New Haven Housing

n = 244 houses

Circle size corresponds to log(2011 assessed values).

Visualizing the Properties

Available characteristics:

- # of bedrooms
- lot size
- living area size

value • 11.5 • 12.0 • 12.5 ● 13.0

Goal: To model 2011 assessed values using the other variables.

A Naive Approach

Model 1: Plain Old Linear Regression

lm(assessed values \sim number of bedrooms + lot size + living area)

Model 1 Summary

	Estimate	Std. Error	t value	p value
(Intercept)	10.4953	0.0674	155.72	<2e-16
living area	0.0281	0.0022	12.89	<2e-16
beds	-0.0364	0.0116	-3.13	0.0020
size	1.5266	0.1079	14.15	<2e-16

Residual standard error: 0.1998 on 240 degrees of freedom

Multiple R-squared: 0.8225

Model 1 Residuals

BCP: Posterior Boundary Probabilities

BCP: Modal Partition

Model Comparison

Model 1: Regression residual SE: 0.1998

Model 2: BCP SD("residuals"): 0.0920

Model Comparison

Model 1: Regression residual SE: 0.1998

Model 2: BCP SD("residuals"): 0.0920

 BCP produces good results in simulation settings and credible results on real data examples

- BCP produces good results in simulation settings and credible results on real data examples
- In simulation cases where comparisons are possible,

- BCP produces good results in simulation settings and credible results on real data examples
- In simulation cases where comparisons are possible,
 - BCP usually performs much better than other methods

- BCP produces good results in simulation settings and credible results on real data examples
- In simulation cases where comparisons are possible,
 - BCP usually performs much better than other methods
 - in a few cases, BCP performs worse, but not by much

- BCP produces good results in simulation settings and credible results on real data examples
- In simulation cases where comparisons are possible,
 - BCP usually performs much better than other methods
 - in a few cases, BCP performs worse, but not by much
- Runtime can be slow, particularly for large datasets on a general graph

Preprint of article submitted to JASA:

• Wang and Emerson (2015). "Bayesian Change Point Analysis of Linear Models on Graphs." http://arxiv.org/abs/1509.00817.

Preprint of article submitted to JASA:

 Wang and Emerson (2015). "Bayesian Change Point Analysis of Linear Models on Graphs." http://arxiv.org/abs/1509.00817.

R package bcp is available on R CRAN:

https://cran.r-project.org/web/packages/bcp/index.html.

Preprint of article submitted to JASA:

 Wang and Emerson (2015). "Bayesian Change Point Analysis of Linear Models on Graphs." http://arxiv.org/abs/1509.00817.

R package bcp is available on R CRAN:

https://cran.r-project.org/web/packages/bcp/index.html.

Thank you!