PRIMERA TAREA TEORÍA ERGÓDICA

MAURO ARTIGIANI

Los ejercicios valen todos 1 punto. La tarea se puede escribir en inglés o en español, o en una mezcla de idiomas. Se puede entregar en físico en mi buzón (H-100) o en pdf a mi correo (m.artigiani@uniandes.edu.co). La colaboración en equipos pequeños está incentivado. Cada uno tiene que entregar su tarea, escribiendo claramente con quien trabajó.

La entrega de la tarea es al **comienzo** de la clase de **viernes 30 agosto**. Cada día de retraso causa una penalidad de 0,2 puntos en la nota.

- 1. Sea (X, \mathcal{B}, μ, T) un sistema que preserva la medida. Una sub- σ -álgebra $\mathcal{A} \subset \mathcal{B}$ se dice T-invariante si $T^{-1}\mathcal{A} = \mathcal{A} \mod \mu$. Sea $(\tilde{X}, \tilde{\mathcal{B}}, \tilde{\mu}, \tilde{T})$ definida por:
 - $\tilde{X} = \{ x \in X^{\mathbb{Z}} : x_{k+1} = T(x_k) \text{ para todos } k \in \mathbb{Z} \};$
 - $(\tilde{T}(x))_k = x_{k+1}$ para todos $k \in \mathbb{Z}$ y $x \in \tilde{X}$;
 - $\tilde{\mu}(\{x \in \tilde{X} : x_0 \in A\}) = \mu(A)$ para todos $A \in \mathcal{B}$;
 - $\tilde{\mathcal{B}}$ es la σ -álgebra \tilde{T} -invariante más pequeña tale que $\pi \colon x \mapsto x_0$ (de \tilde{X} a X) sea medible.

Demuestre que $(\tilde{X}, \tilde{\mathcal{B}}, \tilde{\mu}, \tilde{T})$ es un sistema invertible que preserva la medida y que π es una mapa factor. Este sistema se llama la extensión natural del sistema (X, \mathcal{B}, μ, T) .

- 2. Sea (X,d) un espacio métrico compacto y sea $T\colon X\to X$ un mapa continuo. Sea μ una medida de probabilidad T-invariante definida sobre los conjuntos de Borel de X. Demuestre que para μ -casi todos $x\in X$ existe una sucesión $n_k\to\infty$ tale que $T^{n_k}(x)\to x$ cuando $k\to\infty$. Además demuestre que lo mismo todavía pasa si asumimos que (X,d) sea un espacio métrico y T es medible
- 3. Definimos $R: \mathbb{T}^2 \to \mathbb{T}^2$ como $R(x,y) = (x+\alpha,y+\alpha)$ con $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Demuestre que si $A \times B$ es invariante, con $A \setminus B$ conjuntos medibles en \mathbb{S}^1 , $A \times B$ tiene medida igual a 0 o 1. Demuestre que R no es ergódica con respecto a la medida de Lebesgue.
- 4. Sea $X = \{x_1, \ldots, x_r\}$ un conjunto finito. Sea $\sigma: X \to X$ una permutación de X. La órbita de x_j bajo σ es el conjunto $\{\sigma^n(x_j)\}_{n\geq 0}$, y σ se dice cíclica si existe una órbita de cardinalidad r.
 - a) Dada una permutación cíclica σ y una función $f: X \to \mathbb{R}$ demuestre que

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} f(\sigma^j x) = \frac{1}{r} (f(x_1) + \dots + f(x_r)).$$

Date: 3 de septiembre de 2019.

b) Más en general, demuestre que para una permutación σ y una función $f\colon X\to \mathbb{R}$ hay

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} f(\sigma^{j} x) = \frac{1}{p_{x}} (f(x) + f(\sigma(x)) + \dots + f(\sigma^{p_{x}-1}(x)),$$

donde p_x es la cardinalidad de la órbita de x bajo σ .

5. Una semigrupo de mapas medibles $\phi^t \colon X \to X$, para $t \in \mathbb{R}_+$ se llama un flujo. Una medida μ es invariante bajo el flujo si es invariante para cada mapa ϕ^t con t fijado. Demuestre el teorema de Birkhoff para flujos, es decir que si μ es una medida de probabilidad invariante bajo el flujo ϕ y $f \in L^1(X, \mu)$ entonces hay que el límite

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T f(\phi^t(x))\,dt$$

existe μ -casi siempre y la función f^* definida por este límite satisface

$$\int f \, d\mu = \int f^* \, d\mu.$$

Sugerencia: Para cada t fijado pueden aplicar el teorema de Birkhoff para el mapa ϕ^t . En particular, pueden utilizar t=1.