Open Elective Course [OE]

Course Code: CSO507 Winter 2023-24

Lecture#

Deep Learning

Unit-2: Linear and Logistic Regression (Part-I)

Course Instructor:

Dr. Monidipa Das

Assistant Professor

Department of Computer Science and Engineering

Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand 826004, India

Supervised Learning

• Given a set of data points $\{x^{(1)}, x^{(2)},, x^{(n)}\}$ associated to a set of outcomes $\{y^{(1)}, y^{(2)},, y^{(n)}\}$, we want to build a model that learns how to predict y from x.

Type of prediction — The different types of predictive models are summed up in the table below:

Regression		Classification		
Outcome	Continuous	Class		
Examples	Linear regression	Logistic regression, SVM, Naive Bayes		

Regression: Task Description

Given:

- Data $m{X} = \left\{m{x}^{(1)}, \dots, m{x}^{(n)}
 ight\}$ where $m{x}^{(i)} \in \mathbb{R}^d$
- Corresponding labels $\ y = \left\{ y^{(1)}, \dots, y^{(n)} \right\}$ where $\ y^{(i)} \in \mathbb{R}$

I	Living area (feet ²)	Price (1000\$s)
	2104	400
	1600	330
	2400	369
	1416	232
	3000	540
	;	:
)		•

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Linear Regression Model

Linear regression is like fitting a line or (hyper)plane to a set of points

- Univariate linear regression: A single independent variable is used to predict
- Multivariate linear regression: Two or more independent variables are used to predict

Input x (single feature)

However, we can even fit a curve using a linear model after suitably transforming the inputs $y \approx w^{\mathsf{T}} \phi(x)$

The transformation $\phi(.)$ can be predefined or learned (e.g., using kernel methods or a deep neural network based feature extractor).

Model Representation: Univariate Linear Regression

How to choose θ_i 's ?

Idea: Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for our training examples (x,y)

Cost Function

How good is the prediction given by the straight line?

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function:

Goal: $\underset{\theta_0,\theta_1}{\operatorname{minimize}} J(\theta_0,\theta_1)$

Optimization using Gradient Descent

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for $j = 1$ and $j = 0$) }

Univariate Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

GD for Univariate Linear Regression Model

Gradient descent algorithm

$$\begin{array}{l} \text{repeat until convergence } \{ \\ \theta_0 := \theta_0 - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_\theta(x^{(i)}) - y^{(i)} \right) \\ \theta_1 := \theta_1 - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)} \end{array} \right] \begin{array}{l} \text{update} \\ \theta_0 \text{ and } \theta_1 \\ \text{simultaneously} \\ \} \end{array}$$

Non-Convex Cost Function

• Initialization of θ matters

Prof. Monidipa Das, Department of CSE, III (ISM) Dhanbac

Multiple Features (variables)

$x_3^{(2)}$	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
3	2104	5	1	45	460	;
	1416	3	2	40	232	
	1534	3	2	30	315	$v^{(2)}$
	852	2	1	36	178	The second secon
				•••	•••	

Notations:

n: Number of training samples

d: Number of features. E.g. d = 4 in the above example

 $\chi^{(i)}$: training example *i*.

 $y^{(i)}$: Label/target for training example i.

 $x_i^{(l)}$: value of feature j in training example i.

Multivariate Linear Regression: Hypothesis

• Hypothesis for univariate linear regression:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

• Hypothesis for multivariate linear regression:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d$$

For convenience of notation, define $x_0=1$ for all sample i $h_{\theta}(x^{(i)})=\sum_{k=0}^{a}\theta_kx_k^{(i)}$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Multivariate Linear Regression: Cost Function

Hypothesis: $h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_d x_d$

Parameters: $\theta_0, \theta_1, \dots, \theta_d$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_d) = \frac{1}{2n} \sum_{i=1}^n (h_\theta(x^{(i)}) - y^{(i)})^2$$

Multivariate Linear Regression: Gradient Descent

Gradient descent:

$$\begin{aligned} & \text{Repeat} \big\{ & & \equiv J(\boldsymbol{\theta}) \\ & \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_d) \\ & \big\} & \text{(simultaneously update for every } j = 0, \dots, d \text{)} \end{aligned}$$

$$\theta_j := \theta_j - \alpha \frac{1}{n} \sum_{i=1}^n (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

simultaneously update $heta_j$ for $j=0,\dots,d$

$$\begin{cases} \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}) = \frac{\partial}{\partial \theta_j} \frac{1}{2n} \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2 \\ = \frac{\partial}{\partial \theta_j} \frac{1}{2n} \sum_{i=1}^n \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right)^2 \\ = \frac{1}{n} \sum_{i=1}^n \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right) \times \frac{\partial}{\partial \theta_j} \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right) \\ = \frac{1}{n} \sum_{i=1}^n \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right) x_j^{(i)} \end{cases}$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{n} \sum_{i=1}^n (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{n} \sum_{i=1}^n (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{n} \sum_{i=1}^n (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$
...

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanba

Linear Regression: More Complex Models

- The inputs X for linear regression can be:
 - Original quantitative inputs: x
 - Transformation of quantitative inputs
 - example: $\log(x)$, $\exp(x)$, \sqrt{x} , x^2 etc.
 - Polynomial transformation
 - example: $y = \beta 0 + \beta 1 \cdot x + \beta 2 \cdot x^2 + \beta 3 \cdot x^3$
 - Basis expansions
 - Dummy coding of categorical inputs:
 - example: R: [1 0 0], G: [0 1 0], B: [0 0 1]
 - Interactions between variables
 - example: $x3 = x1 \cdot x2$
- These allows use of linear regression techniques to fit non-linear datasets.

Linear Basis Function Models

· Generally,

$$h_{m{ heta}}(m{x}) = \sum_{j=0}^d heta_j \phi_j(m{x})$$
 basis function

- Typically, $\phi_0({m x})=1$ so that $\, heta_0\,$ acts as a bias
- In the simplest case, we use linear basis functions :

$$\phi_j(\boldsymbol{x}) = x_j$$

· Polynomial basis functions:

$$\phi_j(x) = x^j$$

· Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

• Sigmoidal basis functions:

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Linear Basis Function Models

- Basic Linear Model:
- $h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sum_{j=0}^{d} \theta_j x_j$
- Generalized Linear Model:
- $h_{m{ heta}}(m{x}) = \sum_{j=0}^d heta_j \phi_j(m{x})$
- Once we have replaced the data by the outputs of the basis functions, fitting the generalized model is exactly the same problem as fitting the basic model
 - Unless we use the kernel trick
 - Therefore, there is no point in cluttering the math with basis functions

Model Representation through Vectorization

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Vectorization

- · Benefits of vectorization
 - More compact equations
 - Faster code (using optimized matrix libraries)
- Consider our model:

$$h(\boldsymbol{x}) = \sum_{j=0}^{d} \theta_j x_j$$

• Let

• Can write the model in vectorized form as $\,h(oldsymbol{x}) = oldsymbol{ heta}^\intercal oldsymbol{x}\,$

Vectorization

Consider our model for n instances:

$$h\left(\boldsymbol{x}^{(i)}\right) = \sum_{j=0}^{a} \theta_{j} x_{j}^{(i)}$$

Let

$$\boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix} \quad \boldsymbol{X} = \begin{bmatrix} 1 & x_1^{(1)} & \dots & x_d^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(i)} & \dots & x_d^{(i)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(n)} & \dots & x_d^{(n)} \end{bmatrix}$$

$$\mathbb{R}^{(d+1)\times 1} \qquad \mathbb{R}^{n\times (d+1)}$$

Can write the model in vectorized form as $h_{m{ heta}}(m{x}) = m{X}m{ heta}$

Vectorization

For the linear regression cost function:

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

$$= \frac{1}{2n} \sum_{i=1}^{n} \left(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}^{(i)} - y^{(i)} \right)^{2}$$

$$= \frac{1}{2n} \sum_{i=1}^{n} \left(\boldsymbol{X} \boldsymbol{\theta} - \boldsymbol{y} \right)^{\mathsf{T}} \left(\boldsymbol{X} \boldsymbol{\theta} - \boldsymbol{y} \right)$$

$$\mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

$$\mathbf{R}^{n \times (d+1)}$$

$$\mathbf{R}^{n \times (d+1)}$$

$$\mathbf{R}^{n \times 1}$$
Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

GD vs. Closed Form Solution for Linear Regression

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Closed Form Solution

- Instead of using GD, solve for optimal $oldsymbol{ heta}$ analytically
 - Notice that the solution is when $\ \frac{\partial}{\partial \pmb{\theta}} J(\pmb{\theta}) = 0$
- · Derivation:

$$\mathcal{J}(oldsymbol{ heta}) = rac{1}{2n} \left(oldsymbol{X} oldsymbol{ heta} - oldsymbol{y}
ight)^\intercal \left(oldsymbol{X} oldsymbol{ heta} - oldsymbol{y}
ight)^\intercal \left(oldsymbol{X} oldsymbol{ heta} - oldsymbol{y}
ight)^\intercal oldsymbol{X} oldsymbol{ heta} - oldsymbol{y}^\intercal oldsymbol{X} oldsymbol{ heta} - oldsymbol{y}^\intercal oldsymbol{X} oldsymbol{ heta} - oldsymbol{y}^\intercal oldsymbol{X} oldsymbol{ heta} + oldsymbol{y}^\intercal oldsymbol{y} \\ & \propto oldsymbol{ heta}^\intercal oldsymbol{X}^\intercal oldsymbol{X} oldsymbol{ heta} - oldsymbol{2} oldsymbol{ heta}^\intercal oldsymbol{X}^\intercal oldsymbol{y} + oldsymbol{y}^\intercal oldsymbol{y} \\ & \times oldsymbol{ heta}^\intercal oldsymbol{X}^\intercal oldsymbol{X} oldsymbol{ heta} - oldsymbol{2} oldsymbol{ heta}^\intercal oldsymbol{X}^\intercal oldsymbol{y} + oldsymbol{y}^\intercal oldsymbol{y} \\ & \times oldsymbol{ heta}^\intercal oldsymbol{X}^\intercal oldsymbol{X} oldsymbol{ heta} - oldsymbol{2} oldsymbol{ heta}^\intercal oldsymbol{X}^\intercal oldsymbol{y} + oldsymbol{y}^\intercal oldsymbol{y} \\ & \times oldsymbol{ heta} oldsymbol{X}^\intercal oldsymbol{X} oldsymbol{ heta} - oldsymbol{2} oldsymbol{ heta}^\intercal oldsymbol{X}^\intercal oldsymbol{y} + oldsymbol{y}^\intercal oldsymbol{y} \\ & \times oldsymbol{ heta} oldsymbol{X}^\intercal oldsymbol{X} oldsymbol{ heta} - oldsymbol{2} oldsymbol{ heta}^\intercal oldsymbol{X} oldsymbol{y} + oldsymbol{y}^\intercal oldsymbol{y} \\ & \times oldsymbol{X} oldsymbol{ heta} - oldsymbol{2} oldsymbol{ heta} + oldsymbol{X} oldsymbol{ heta} - oldsymbol{X} oldsymbol{ heta} + oldsymbol{Y} oldsymbol{Y} oldsymbol{y} \\ & \times oldsymbol{X} oldsymbol{ heta} - oldsymbol{X} oldsymbol{ heta} + oldsymbol{X} oldsymbol{ heta} + oldsymbol{X} oldsymbol{ heta} - oldsymbol{X} oldsymbol{ heta} + oldsymbol{ heta} oldsymbol{X} oldsymbol{ heta} + oldsymbol{X} oldsymbol{ heta} - oldsymbol{ heta} - oldsymbol{ heta} oldsymbol{ heta} + oldsymbol{ heta} - oldsymbol{ he$$

Take derivative and set equal to 0, then solve for $oldsymbol{ heta}$:

$$\frac{\partial}{\partial \boldsymbol{\theta}} \left(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \boldsymbol{\theta} - 2 \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y} + \boldsymbol{y} \boldsymbol{y} \boldsymbol{y} \right) = 0$$
$$(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X}) \boldsymbol{\theta} - \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y} = 0$$
$$(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X}) \boldsymbol{\theta} = \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

Closed Form Solution vs. GD

• Can obtain θ by simply plugging X and y into

$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_1^{(1)} & \dots & x_d^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(i)} & \dots & x_d^{(i)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(n)} & \dots & x_d^{(n)} \end{bmatrix} \quad \boldsymbol{y} = \begin{bmatrix} y_1^{(1)} \\ y_2^{(2)} \\ \vdots \\ y_n^{(n)} \end{bmatrix}$$

Gradient Descent

Closed Form Solution

- Requires multiple iterations
- Need to choose α
- Works well when n is large
- Can support incremental learning
- Non-iterative
- No need for α
- Slow if n is large
 - Computing $(X^{\mathsf{T}}X)^{-1}$ is roughly $\mathrm{O}(n^3)$

Feature Scaling

• **Idea:** Ensure that feature have similar scales

Makes gradient descent converge much faster

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Feature Standardization

- Rescales features to have zero mean and unit variance
 - Let μ_j be the mean of feature j: $\mu_j = \frac{1}{n} \sum_{i=1}^n x_j^{(i)}$
 - Replace each value with:

$$x_j^{(i)} \leftarrow \frac{x_j^{(i)} - \mu_j}{s_j} \qquad \text{for } j = 1...d$$
 (not x_0 !)

- ullet s_{i} is the standard deviation of feature j
- Could also use the range of feature $j \pmod{max_i min_i}$ for s_i
- Must apply the same transformation to instances for both training and prediction
- Outliers can cause problems

Quality of Fit

Overfitting (high variance)

Overfitting:

• The learned hypothesis may fit the training set very well ($J({m heta}) pprox 0$)

Correct fit

· ...but fails to generalize to new examples

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Regularization

- A method for automatically controlling the complexity of the learned hypothesis
- Idea: penalize for large values of θ_j
 - Can incorporate into the cost function
 - Works well when we have a lot of features, each that contributes a bit to predicting the label
- Can also address overfitting by eliminating features (either manually or via model selection)

Regularization

Linear regression objective function

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^d \theta_j^2$$
 model fit to data regularization

- $-\lambda$ is the regularization parameter ($\lambda \geq 0$)
- No regularization on θ_0 !

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Understanding Regularization

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{d} \theta_{j}^{2}$$

• Note that $\sum_{j=1}^d heta_j^2 = \|oldsymbol{ heta}_{1:d}\|_2^2$

Let d=4

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

- This is the magnitude of the feature coefficient vector!
- We can also think of this as:

$$\sum_{j=1}^{d} (\theta_j - 0)^2 = \|\boldsymbol{\theta}_{1:d} - \vec{\mathbf{0}}\|_2^2$$

• L₂ regularization pulls coefficients toward 0

Regularized Linear Regression

Cost Function

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{d} \theta_{j}^{2}$$

• Fit by solving $\min_{\theta} J(\theta)$

• Fit by solving
$$\min_{\pmb{\theta}} J(\pmb{\theta})$$
 • We can rewrite the gradient step as:
$$\theta_j \leftarrow \theta_j \left(1 - \alpha \frac{\lambda}{n}\right) - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\pmb{\theta}} \left(\pmb{x}^{(i)}\right) - y^{(i)}\right) x_j^{(i)}$$
 • Gradient update:

$$\frac{\partial}{\partial \theta_0} J(\theta) \quad \theta_0 \leftarrow \theta_0 - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\theta} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)$$

$$\frac{\partial}{\partial \theta_j} J(\theta) \quad \theta_j \leftarrow \theta_j - \alpha \frac{1}{n} \sum_{i=1}^n \left(h_{\theta} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)} - \alpha \frac{\lambda}{n} \theta_j$$

Various Ways of Regularization

Selection

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^n \left(h_{\theta} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^d \theta_j^2$$

$$\lambda ||\theta||_2^2$$
 regularization

Ridge Regression

$$J(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^d |\boldsymbol{\theta}_j|$$

$$\boldsymbol{\ell}_1 \text{ regularization Lasso Regression}$$

LASSO	Ridge	Least Absolute
Shrinks coefficients to 0Good for variable selection	Makes coefficients smaller	Shrinkage and Sele Operator (LASSO)

Non-regularization Approaches for Overfitting

- Early-stopping (stopping training just when we have a decent validation set accuracy)
- Injecting noise in the inputs
- Dropout (in each iteration, don't update some of the weights) [e.g. used in deep network-based models]

