Problem

Given $\triangle ABC$, $\angle A=90^{\circ}.AB=AC.M$ is the midpoint of $AC.AE\perp BM$ with the feet at E. Extend AE to meet BC at D. Prove that $\angle AMB=\angle CMD$.

Solution

Draw CF//AB. Extend AD to meet CF at F. Since $\angle ABM + \angle AMB = 90^\circ$ and $\angle MAE + \angle AMB = 90^\circ$, $\angle ABM = \angle CAF$.

Since AB = AC, $\angle ABM = \angle CAF$. Rt $\triangle ABM \cong \operatorname{Rt} \triangle CAF$, $\angle AMB = \angle F$. Since $\angle ABM + \angle AMB = 90^\circ$ and $\angle MAE + \angle AMB = 90^\circ$,

 $\angle ABM = \angle CAF$.

Since AB = AC, $\angle ABM = \angle CAF$. Rt $\triangle ABM \cong Rt\Delta CAF$, $\angle AMB = \angle F$.

Since

 $MC = AM = CF, \angle MCD = 45^{\circ} = \angle FCD, CF = CF, \triangle MCD \cong \triangle FCD.$

 $\angle CMD = \angle F.$ Therefore, $\angle AMB = \angle CMD.$