Climate and climate variability

ATM2106

- Climate is frequently defined as the average weather
- To obtain climate conditions, we need to average over long enough period to smooth out the variability of synoptic systems.
- The interaction between components of the earth system shapes the current climate.
- Climate keeps changing!

- Ice ages
 - 5°C cooler in the middle latitudes than now.
 - Three time more in the volume of ice and ice surface
 - Returns roughly every 100,000 years for the last 800,000 years
- Earth has been mostly in a glacial climate and only 10% of the time in interglacial conditions similar to those of today.

- During the last glacial period (15,000 ~ 60,000 years ago), dramatic discharge of ice have occurred every 10,000 years.
- During the same period, abrupt warming events occurred every 1,500 years. → warming of roughly 10°C within 20~50 years lasted a few hundreds of years.

- Little ice age: Fluctuations in regional scale in the order of 1~2°C. → Europe in 17th century
- Long time ago (100 million years ago), scientists speculate that Earth was totally frozen over in a "snowball".

The point is that Earth's climate keeps changing.

Mechanisms operating at different timescales

Timescale

	days	years			thousands of years			millions of years			
	h/d	w	m	у	10 y	10 ² y	10 ³ y	10⁴y	10 ⁵ y	10 ⁶ y	10 ⁹ y
Weather											
Land surface											
Ocean mixed layer											
Sea ice											
Volcanos										object 1	
Vegetation											
Thermocline											
Mountain glaciers											
Deep ocean											
Ice sheets				Ħ							
Orbital forcing											
Tectonics											T (
Weathering											
Solar "constant"											

Processes

The ocean as a buffer of temperature change

Ocean's heat capacity enable the ocean to store lots of heat.

$$\gamma_O = \rho_{ref} c_w h$$

$$\gamma_A = \rho_s c_p H$$

$$\gamma_A = \rho_s c_p H$$

- The ocean is 1000 times more dense than air.
- The ocean's specific heat is about 4 times that of air
- The ocean covers about 70% of the Earth's surface

$$\frac{\gamma_O}{\gamma_A} \sim 40 \ with \ h = 100 \ m$$

$$\text{Typical depth of the mixed layer}$$

Changes of sea surface temperature

$$\gamma_O \frac{dT}{dt} = -\lambda T + Q_{net}$$

$$\downarrow$$
15 W m⁻² K⁻¹

With no Q_{net}, the solution to the above equation is

$$T = T_{init} \exp\left(\frac{-\lambda}{\gamma_O}t\right)$$

Changes of sea surface temperature

$$T = T_{init} \exp\left(\frac{-\lambda}{\gamma_O}t\right)$$

• E-folding time scale : γ_O/λ \longrightarrow ~ 300 days with h = 100 m

TABLE 9.3. Physical properties of liquid water.

c_w	4.18×10^{3}	$J kg^{-1} K^{-1}$
L_f	3.33×10^5	$J kg^{-1}$
L_e	2.25×10^6	$J kg^{-1}$
fresh	0.999×10^3	$kg m^{-3}$
l water	10^{-3}	$kg m^{-1} s^{-1}$
$=\frac{\mu_{water}}{\rho}$	10^{-6}	$m^2 s^{-1}$
k	1.4×10^{-7}	$m^2 s^{-1}$
	L_f L_e Presh l_{water} $\frac{\mu_{water}}{\rho}$	L_f 3.33 × 10 ⁵ L_e 2.25 × 10 ⁶ 0.999×10^3 10^{-3} 10^{-6}

 $\sim 40 \text{ years}$ with h = 5 km

Time scale for adjustment of the deep ocean is more like 1000 years.

Climate variability v.s. climate change

- "Climate variability": natural variability
 - Natural "modes" of variability

- "Climate change": anthropogenic forcing
 - Due to man-made changes in greenhouse gases, land surfaces, species distributions, etc.

Elements of the climate system

- Sun
- Atmosphere
- Ocean
- Cryosphere (ice, snow)
- Land surface
- Biological and chemical cycles

Climate forcing

External forcing

- Earth orbit parameters (solar distance factors)
- Solar luminosity
- Moon orbit
- Volcanoes and other geothermal sources
- Greenhouse gases...

Climate forcing

- Internal forcing: forcing between each element of the climate system
 - Wind forcing to the ocean
 - Ice extent forcing to the atmosphere or the ocean

Natural climate modes with interannual to millennial time scales

- Interannual: 1 year to 10 years
 - ENSO
- · Decadal: 10 years to multiple decades
 - Pacific Decadal Oscillation
 - North Atlantic Oscillation
 - Southern Annular Mode
- Centennial: multiple hundreds years

Mean sea level pressure

Mean sea level pressure

Coastal upwelling

From https://www.nwfsc.noaa.gov/research/divisions/fe/estuarine/oeip/db-coastal-upwelling-index.cfm

Coastal upwelling

Empirical orthogonal function (EOF)

EOF using sea surface temperature anomaly in the N. Pacific

Teleconnection

