## Skolornas Matematiktävling

Svenska Dagbladet Svenska Matematikersamfundet

## Lösningar till finaltävlingen den 16 november 1991

1. Ekvationen kan skrivas 5(m+n-1)=2nm varav följer att 5|nm. Pga symmetri kan man anta att 5|n. Insättning av n=5k i ekvationen och division med 5 ger m+5k-1=2km eller

$$m = 2 + \frac{k+1}{2k-1}.$$

För k > 2 är  $0 < \frac{k+1}{2k-1} < 1$   $(k+1 < 2k-1 \Leftrightarrow 2 < k)$  och m inget heltal. k = 1 ger n = 5 och m = 4, k = 2 ger n = 10 och m = 3.

2. Påståendet följer av följande implikationer

$$\begin{aligned} x - \sqrt{x} &\leq y - \frac{1}{4} \leq x + \sqrt{x} & \Rightarrow \quad \left| y - x - \frac{1}{4} \right| \leq \sqrt{x} \\ & \Rightarrow \quad y^2 + x^2 + \frac{1}{16} - 2xy - \frac{1}{2}y + \frac{1}{2}x \leq x \\ & \Rightarrow \quad y^2 + x^2 + \frac{1}{16} - 2xy - \frac{1}{2}x + \frac{1}{2}y \leq y \\ & \Rightarrow \quad (x - y - \frac{1}{4})^2 \leq y \\ & \Rightarrow \quad \left| x - y - \frac{1}{4} \right| \leq \sqrt{y} \\ & \Rightarrow \quad y - \sqrt{y} \leq x - \frac{1}{4} \leq y + \sqrt{y} \end{aligned}$$

3. Betrakta summorna  $S_k = \sum_{i=0}^k x_i$ . Då gäller, eftersom  $S_k$  är heltal, att

$$S_{k+1} = S_k + x_{k+1} = S_k + \left[\frac{n - S_k}{2}\right] = \left[\frac{n + S_k}{2}\right].$$

Härav följer att  $S_k \leq n-1$  för alla  $k \geq 0$ , ty  $S_0 = 0 \leq n-1$  och om  $S_k \leq n-1$  så är

$$S_{k+1} = \left[\frac{n+S_k}{2}\right] \le \left[n - \frac{1}{2}\right] = n - 1.$$

Dessutom är följden  $(S_k)_{k=0}^{\infty}$  växande ty

$$S_{k+1} - S_k = x_{k+1} = \left[\frac{n - S_k}{2}\right] \ge \left[\frac{n - n + 1}{2}\right] = \left[\frac{1}{2}\right] = 0.$$

Men för en växande uppåt begränsad följd av heltal finns heltal C och N så att  $S_k = C$  för  $k \ge N$ . Ur rekursionsformeln för följden  $(S_k)_{k=0}^{\infty}$  följer då

$$\left[\frac{n+C}{2}\right] = C \leq n-1 \Rightarrow \left[\frac{n-C}{2}\right] = 0 \text{ och } C \leq n-1, \text{ dvs } C = n-1.$$

4. Bollarna kan ligga i godtycklig ordning.

Varje permutation kan reduceras till grundpermutationen genom ett ändligt antal byten av närliggande element. Eftersom cyklisk permutation av bollarna i röret kan åstadkommas, genom att den sista bollen placeras först, räcker det visa att första och andra bollen kan byta plats. Detta kan göras så här ( $x \downarrow$  indikerar att operationen att plocka ut en boll upprepas x gånger):

Svar: Bollarna kan ligga i godtycklig ordning

5. Det är rimligt att tro att talet n ska innehålla så många ettor som möjligt. Ett försök med  $n=2^{k+1}-1$ , som innehåller enbart ettor går emellertid inte. Då får  $n^2$  lika många ettor. Däremot kan man ta bort en etta och sätta

$$n = 2^{k+1} + 2^{k-1} + 2^{k-2} + \dots + 2 + 1 = 2^{k+1} + 2^k - 1$$
 för  $k \ge 3$ .

I bas 2 har n exakt k+1 ettor. Talet  $n^2$  får framställningen

$$n^{2} = 2^{2k+2} + 2^{2k} + 1 + 2 \cdot 2^{k+1} \cdot 2^{k} - 2 \cdot 2^{k+1} - 2 \cdot 2^{k}$$

$$= 2 \cdot 2^{2k+2} + 2^{2k} - 2^{k+2} - 2^{k+1} + 1$$

$$= 2^{2k+3} + 2^{k+1}(2^{k-1} - 2 - 1) + 1$$

$$= 2^{2k+3} + 2^{k+1}(2^{k-2} + 2^{k-3} \cdot \cdot \cdot + 2^{2} + 1) + 1.$$

Talet inom parentesen har k-2 ettor och därför har  $n^2$  exakt k ettor. Ett annat exempel på tal som har denna egenskap är  $n=(2^{2k-1}-1)-2^k$ , (k>2) som innehåller 2k-1-1=2k-2 ettor. I  $n^2=2^{3k}(2^{k-2}-1)+2^{k+1}+1$  är antalet ettor k-2+1+1=k<2k-2.

6. Antag att  $\angle A \geq 60^\circ$ . Låt bisektrisen till  $\angle A$  skära sidan BC i punkten D. Avsätt vinklarna  $\angle ADE = 30^\circ$  och  $\angle ADF = 30^\circ$ . Eftersom  $\angle BDA > \angle DAC \geq 30^\circ$  och  $\angle CDA > \angle DAB \geq 30^\circ$  så ligger E på AB och F på AC och  $\triangle DEF$  är liksidig.



Drag genom D en linje parallell med EF och antag att denna linje skär sidorna (eller dess förlängningar) i punkterna B' respektive C'. (Av symmetriskäl kan man anta att punkten C' ligger på sidan AC). Triangeln  $\triangle AB'C'$  blir då likbent. Trianglarna  $\triangle DC'C$  och  $\triangle DB'B$  har lika stora baser medan höjden i  $\triangle DC'C$  är  $\geq$  höjden i  $\triangle DB'B$ . Alltså är S=arean( $\triangle ABC$ )  $\geq$ arean( $\triangle AB'C'$ ).



Konstruera den liksidiga triangeln  $\triangle GHK$  så att G ligger på DA:s förlängning (över A) och med punkterna E och F på två av sidorna. En analog jämförelse av areorna av  $\triangle AFG$  och  $\triangle FKC'$  ( $\triangle AEG$  och  $\triangle EHB'$ ) ger slutligen att area( $\triangle AB'C'$ )  $\geq$  area( $\triangle GHK$ ) = 4area( $\triangle DEF$ ). Likhet får man då och endast då  $\triangle AB'C'$  är liksidig.

Man kan också med ett kontinuitetsresonemang visa att det måste finnas en inskriven liksidig triangel med en sida parallell med den längsta sidan i den givna triangeln. Olikheten mellan areorna följer då ur likformiga trianglar och t ex olikheten mellan aritmetiskt och geometriskt medium. I detta fall leder en analys till att likhet inträffar precis då längderna av den längsta sidan i den givna triangeln och höjden mot denna har förhållandet  $2:\sqrt{3}$ .

**Svar**: Arean av den konstruerade triangeln DEF är  $\leq$  en fjärdedel av arean av triangeln ABC.

Lösningarna hämtade, med författarens tillstånd, ur:

Matematiktävlingar Skolornas Matematiktävling 1988-1998 Nordiska Matematiktvlingen 1987-1998 av Åke H Samuelsson