Copyrighted by Hyunyoung Lee. Do not distribute!

CSCE 222 Discrete Structures for Computing – Fall 2023 Hyunyoung Lee Homework 2 Solutions

Total 100 points.

Problem 1. (5+5=10 points) Section 2.6, Exercise 2.53 (a) and (c). Explain.

Solution. (a) There are infinitely many triples (a, b, c) of nonnegative integers that make the predicate true. For instance, C(m, 0, m) is true for all positive integers m, as $m^3 + 0^3 = m^3$.

(c) Any triple (a,b,c) satisfying the predicate S(a,b,c) is a Pythagorean triple. There are just two Pythagorean triples (a,b,c) with $a,b,c \in \{1,2,3,4,5\}$, namely (3,4,5) and (4,3,5) satisfy $3^2+4^2=5^2$ and $4^2+3^2=5^2$, respectively.

Problem 2. (5+5=10 points) Section 2.6, Exercise 2.54 (b) and (c)

Solution. (b) For each real number x there exists a larger real number y.

(c) For any pair of real numbers x and z such that x is strictly smaller than z, there exists a real number y that lies strictly between x and z.

Problem 3. (5+5=10 points) Section 2.7, Exercise 2.58 (a) and (e) **Solution.** (a) $\exists x \forall y (P(x) \land \neg Q(y))$ (e) $\forall x \forall y (P(x) \lor Q(y))$

Problem 4. (5+5=10 points) Section 2.7, Exercise 2.59 (d) and (e) Solution.

- (d) For all integers a there exists an integer b such that $a+b \neq 1001$.
- (e) There exists a positive integer a such that for all positive integers $b, b \ge a$.

Problem 5. (15 points) Section 2.9, Exercise 2.73 [Hint: Use the property of "consecutive integers" and the definition of an "odd integer".]

Solution. The definition of an odd integer is as follows: An integer i is odd if and only if there exists an integer k such that i = 2k + 1.

If m and n are consecutive integers and, say, m < n, then n = m + 1, so their sum m + n = m + (m + 1) = 2m + 1, which means that m + n is an odd integer.

Problem 6. (15 points) Section 2.9, Exercise 2.80

Solution. We prove the contrapositive:

If
$$\neg (m > 40 \lor n > 60)$$
 then $\neg (m + n > 100)$.

Suppose that $\neg(m>40 \lor n>60)$ holds. By de Morgan's law, it follows that $m\leq 40$ and $n\leq 60$. Adding these two inequalities yields $m+n\leq 100$, and this is exactly $\neg(m+n>100)$. Therefore, we have proved the contrapositive statement, which implies the claim.

Problem 7. (15 points) Section 2.9, Exercise 2.84

Solution. Seeking a contradiction, let us suppose that there exist integers m_0 and n_0 such that $42m_0 + 70n_0 = 1000$. Since $42 = 7 \times 6$ and $70 = 7 \times 10$, we have $7(6m_0 + 10n_0) = 1000$. This implies that 7 is a prime factor of 1000, contradicting the fact that 2 and 5 are the only prime factors of 1000, since $1000 = 2^3 \times 5^3$. Therefore, we can conclude that 42m + 70n = 1000 does not have an integer solution.

Problem 8. (15 points) Section 3.3, Exercise 3.20 [Hint: Use the definitions of \subseteq , \cup , and the power set.]

Solution. By the definition of the power set, P(A) is a set that contains all subsets of A as elements, and P(B) a set that contains all subsets of B as elements.

Suppose that $S \in P(A) \cup P(B)$. Therefore, $S \in P(A)$ or $S \in P(B)$, by the definition of \cup . It follows that $S \subseteq A$ or $S \subseteq B$ by the definition of the power set. Therefore, we can deduce that $S \subseteq A \cup B$ by the definition of \cup . In other words, we have $S \in P(A \cup B)$ by the definition of the power set.

We can conclude that $P(A) \cup P(B) \subseteq P(A \cup B)$ by the definition of \subseteq .