Determining Lithium Abundance from Classical Nova Ejecta

Jerry Yeung¹ and Frederick Walter¹

Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA

ABSTRACT

Just notes, not abstract: I rechecked the V339 Del sl but still can't find any obvious lithium lines in the range of 6680Å-6720Å. Based on Tajitsu et al. (2015), they claimed they detected beryllium, ⁷Be, in the near-ultraviolet spectra of the classical nova V339 Del from 38 to 48 days after the explosion. Since there is no data in the uv range, I checked the record number (7 and 8) around 90 days after the explosion(record 0) because ⁷Be decays to form ⁷Li with a half-life of 53.2 days, but I still can't find any lithium absorption lines. HOWEVER, I did find potential blue-shifted lithium lines only in records 1 and 2.

1. INTRODUCTION

Big Bang Nucleosynthesis(BBN) produced the universe's first lithium within roughly 3 minutes after the Big Bang(see Figure 1.), and according to the models from Cyburt et al. (2015), this same process also produce light nuclei such as deuterium, helium, and a trace amount of lithium. In the standard model of cosmology (SBBN), the primordial abundances of these elements depend primarily on the baryon-tophoton ratio(Izzo et al. 2015). Recent measurements of the cosmic microwave background from Wilkinson Microwave Anisotropy Probe (WMAP) and Planck satellite have obtained the ratio with a very high accuracy with a predicted primordial lithium abundance of $(^{7}\text{Li/H})_{\text{BBN+CMB}} = (4.94 \pm 0.72) \times 10^{-10}$ (Yeh et al. 2021; Fields & Olive 2022) or on a log scale A(Li) \sim 2.72 (Planck Collaboration et al. 2016). This value is different from the observed abundance of $(^{7}Li/H)_{obs} =$ $(1.6 \pm 0.3) \times 10^{-10}$ (Fields & Olive 2022) or A(Li) ~ 2.2 in the atmospheres of old, metal-poor stars on the Spite plateau, this is a discrepancy known as the cosmological lithium problem(Spite & Spite 1982).

One explanation is that the observed shortfall results from the post-formation depletion of primordial lithium in stellar interiors (Miranda 2025). Stellar models incorporating atomic diffusion and transport mechanisms can account for a significant portion of this reduction in old stars (Miranda 2025).

A different explanation involves non-standard physics to alter the primordial nucleosynthesis process. The existence of previously unknown particles or modifications to fundamental interactions could have intervened to reduce the final lithium yield predicted by BBN (Fields 2011), see Miranda (2025) for a detailed review.

While these two explanations seek to explain the primordial lithium deficit, a separate astrophysical question is the origin of later lithium enrichment. The lithium seen in very old, metal-poor stars reflects that primordial level and only acts as a baseline for galactic chemical evolution, younger stars show roughly 10-12 times more lithium than that value (Lyubimkov 2016), which implies that other astrophysical processes must have produced additional lithium

Several production sites have been proposed to explain this excess. Classical novae are now considered a major contributor since the explosive hydrogen burning on the surface of accreting white dwarfs can efficiently synthesizes 7 Be, which later decays to 7 Li (Tajitsu et al. 2015; Izzo et al. 2015; Cescutti & Molaro 2018). Cosmicray spallation also produces lithium when high-energy protons and α -particles collide with interstellar C, N, and O nuclei (Meneguzzi et al. 1971). Asymptotic Giant Branch (AGB) stars may also contribute to Galactic lithium enrichment through the Cameron–Fowler mechanism operating during HBB(Ventura & D'Antona 2009).

1.1. Asymptotic giant branch (AGB) stars

AGB stars can produce lithium through processes such as proton ingestion events (PIEs) and Hot bottom burning(HBB), both relying on the Cameron-Fowler mechanism, which is the process by which stars produce $^7\text{Li}(\text{Cameron \& Fowler 1971})$, at high temperatures (typically T > 10^7 K), ^3He and ^4He nuclei fuse via the reaction

$$^{3}\mathrm{He} + \alpha \rightarrow ^{7}\mathrm{Be} + \gamma$$

For $^7{\rm Li}$ to be produced, $^7{\rm Be}$ must be transported to cooler outer layers ($T<10^6$ K) before it gets destroyed by proton captures (Ventura & D'Antona 2009), and

is achieved via large-scale convection. The ⁷Be nuclei are carried outward and undergo electron capture when reach cooler envelope, decaying into ⁷Li (see Eqn 1) with the emission of a 0.86 MeV neutrino (Izzo et al. 2015). In high-mass AGB stars (>3-4 M_{\odot}), HBB occurs when the base of the deep convective envelope is hot enough to activate the proton-capture reactions of the Cameron-Fowler mechanism, while in low-mass AGB stars (1–3) M_{\odot}), PIEs are triggered when a convective zone from a thermal pulse extends into the hydrogen-rich envelope. Protons are transported downward into hot burning regions (Choplin et al. 2022), where the rapid nuclear reactions produce ⁷Be, and leads to lithium enrichment with surface abundances reaching $A(Li) \approx 3$ to 5. However, recent observational studies indicate that AGB stars alone cannot account for the meteoritic lithium abundances, suggesting that other sources are required to explain the observed galactic lithium problem (Borisov et al. 2024).

1.2. Galactic cosmic-ray spallation

Lithium is synthesized in the interstellar medium when high-energy protons and cosmic rays collide with C, N, O. These collisions cause the target nuclei to expel nucleons and form light elements like lithium, beryllium(Vangioni-Flam et al. 1998; Laumer et al. 1973), this is a primary non-thermal nucleosynthesis pathway for lithium, especially for the isotope $^6\mathrm{Li}$. In a survey for the Small Magellanic Cloud, 'Ciprijanovi'c (2016) stated that galactic cosmic rays could only produce a very small amount of lithium in the Small Magellanic Cloud, with only 0.16% of the measured abundance explained by this source.

1.3. Classical Novae

During a classical nova explosion, extreme temperatures (~ 100 to 200 million K during the explosion) enable the nuclear reaction $^3{\rm He}(\alpha,\gamma)^7{\rm Be}$, producing radioactive $^7{\rm Be}$. This $^7{\rm Be}$ is then transported outward in the nova ejecta, and in order to decay into $^7{\rm Li}$, $^7{\rm Be}$ must avoid destruction from further proton captures in the hot remnant before the ejecta thins. As the ejected shell expands and cools over time, the $^7{\rm Be}$ decays with a half-life of ~ 53 days, transforming into $^7{\rm Li}$ via

$$^{3}\mathrm{He}(\alpha,\gamma)^{7}\mathrm{Be} \xrightarrow{e^{-}} {^{7}\mathrm{Li}}$$
 (1)

This process proposed by Starrfield et al. (1978) is now recognized as a primary pathway for lithium production in nova explosions. The evidence includes the detection of blue-shifted ⁷Be II lines in the ultraviolet spectra of several classical novae, such as V339 Del (Tajitsu et al.

2015), V5668 Sgr (Molaro et al. 2016), and V2944 Oph (Tajitsu et al. 2015). The blueshifts confirms the ⁷Be is indeed in the rapidly outflowing ejecta and not the surrounding medium. A report in 2015 from Izzo et al. (2015) also stated that they directly detected the lithium in the early optical spectra of Nova V1369 Cen(see Figure 2.). The measured lithium abundance in the nova ejecta is significantly higher than solar values, with log abundances of 4.8 relative to sodium, suggesting classical novae are sufficient to explain the observed overabundance of lithium in young stellar populations. Note that V1369 Cen was a "slow" nova, means it has a slow light curve evolution with a decline time. The slower expansion of the ejecta in classical novae is important because it gives ⁷Be sufficient time to decay into ⁷Li before the ejecta becomes too diffuse to observe(Tajitsu et al. 2015; Molaro et al. 2016). The slower radial velocity also results in narrower spectral lines, making the detection of the lithium line easier (Selvelli et al. 2018). In contrast, a "fast" nova, the thin ejecta and very broad spectral lines would make the specific identification of the lithium line far more challenging.

Figure 1. Simplified nucleosynthesis network from Fields (2011), showing pathways for lithium production in both primordial and galactic evolution. The network shows how deuterium starts the reaction chains leading to 3 He, 4 He, and ultimately to 7 Li and 7 Be.

Figure 2. Figure from Izzo et al. (2015), showing identified blueshifted ⁷Li I 6708 Å, moving at -550 km/s. Note that the absorption feature is only prominent between days 7 to 13.

2. METHOD

The detection of lithium in nova ejecta relies on identifying the resonance doublet of ⁷Li I at $\lambda \sim 6707.81$ Å, and is challenging due to the line's weakness, potential blending with other elements, like Ca I 6717 Å or Fe I 6707.44 Å, and in fast novae, line broadening from highvelocity ejecta that dilutes the equivalent width. The detection of lithium in novae, as demonstrated by Izzo et al. (2015), Tajitsu et al. (2015), and Molaro et al. (2016), requires high-resolution spectroscopy timed to catch either the short-lived ⁷Be or its decay product, ⁷Li. Tajitsu et al. (2015) demonstrated that the most direct approach is to observe ⁷Be before it decays using high-resolution $(R \sim 90,000-60,000)$ ultraviolet spectroscopy, targeting the ⁷Be II resonance doublet at $\lambda \sim$ 3130.58 Å, $\lambda \sim 3131.07$ Å within 50 days of outburst. This requires high spectral resolution to resolve the doublet and measure its blueshift to confirm its origin in the ejecta. Izzo et al. (2015) used high-resolution $(R \sim 48,000)$ optical spectra to monitor the ⁷Li I 6708 Å line starting immediately after outburst. They found the blueshifted lithium line appears when the ejecta are sufficiently cool for neutral lithium to form but before the line dilution, which would make it undetectable. Both use spectral modeling to confirm line identifications and calculate abundances from equivalent widths.

We will apply these methods to search for the ⁷Li I 6707.81 Å line in 33 different novae. For each object, we inspected all available spectra covering the 6680–6720 Å region, with particular focus on around 60 days post-outburst when approximately half-lives of ⁷Be had passed(see Eqn. 1), and any ⁷Be detected at early times should have substantially decayed to ⁷Li. We searched for absorption features at blueshifted and redshifted velocities consistent with other ejecta lines (e.g.,

Na I 5889.951 Å, Ca I 6717 Å, Fe II 5018 Å, and Ca I 4227 Å) in the same spectrum. We used the Na I D line at 5889.951 Å because neutral sodium and neutral lithium have similar first ionization potentials (5.14 eV and 5.39 eV, respectively), meaning they co-exist in similar regions and temperatures within the ejecta. Furthermore, we used the Ca I 4227 Å line, following the methodology of Molaro et al. (2016), who demonstrated its value as a reliable tracer for the kinematic structure of the neutral gas component in which lithium forms.

3. OBSERVATION OF 7 LI I 6707.81 Å

All 33 classical novae spectra covering the wavelength range 6680–6720 Å were analyzed to detect and measure the equivalent width of the $^7\mathrm{Li}$ I line. Among the 33 novae examined, only five systems exhibited prominent Li I 6707.81 Å absorption features suitable for equivalent width measurements, V1369 Cen, V906 Car, V6594 Sgr, V5668 Sgr, and V5667 Sgr.

The analysis uses Gaussian profile fitting to measure equivalent widths of the lithium feature. For each nova, we performed single or multi-component Gaussian fits to account for possible line blending or multiple velocity components in the ejecta. The continuum was normalized using selected continuum points on either side of the absorption line to ensure accurate equivalent width measurements.

We then can turn the centroid into radial velocity via doppler shift formula

$$v_r = c \cdot \frac{\lambda_{\text{obs}} - \lambda_{\text{rest}}}{\lambda_{\text{rest}}} \tag{2}$$

where v_r is the radial velocity, c is the speed of light, $\lambda_{\rm obs}$ is the observed centroid wavelength, and $\lambda_{\rm rest}$ is the rest wavelength.

Figure 3. Normalized spectra of five classical novae showing the region 6680–6720 Å. Gaussian fits to the lithium absorption feature are overplotted in blue. All spectra show clear absorption around 6702 Å. Note the depth and profile of the absorption vary among the novae, result from differences in lithium abundance.

REFERENCES

- Borisov, S., Prantzos, N., & Charbonnel, C. 2024, Astronomy & Astrophysics, doi: 10.1051/0004-6361/202451321
- Cameron, A. G. W., & Fowler, W. A. 1971, ApJ, 164, 111, doi: 10.1086/150821
- Cescutti, G., & Molaro, P. 2018, Monthly Notices of the Royal Astronomical Society, doi: 10.1093/mnras/sty2967
- Choplin, A., Siess, L., & Goriely, S. 2022, Astronomy Astrophysics, doi: 10.1051/0004-6361/202244360
- 'Ciprijanovi'c, A. 2016, Astroparticle Physics, 85, doi: 10.1016/j.astropartphys.2016.09.004
- Cyburt, R., Fields, B., Olive, K., & Yeh, T.-H. 2015, Reviews of Modern Physics, 88, doi: 10.1103/RevModPhys.88.015004
- Fields, B. 2011, Annual Review of Nuclear and Particle Science, 61, doi: 10.1146/annurev-nucl-102010-130445
- Fields, B. D., & Olive, K. A. 2022, Implications of the Non-Observation of ⁶Li in Halo Stars for the Primordial
 ⁷Li Problem. https://arxiv.org/abs/2204.03167
- Izzo, L., Valle, M., Mason, E., et al. 2015, The Astrophysical Journal Letters, 808, doi: 10.1088/2041-8205/808/1/L14
- Laumer, H., Austin, S., Panggabean, L. M., & Davids, C. 1973, Physical Review C, 8, doi: 10.1103/PHYSREVC.8.483

- Lyubimkov, L. S. 2016, Astrophysics, 59, 411, doi: 10.1007/s10511-016-9446-5
- Meneguzzi, M., Audouze, J., & Reeves, H. 1971, A&A, 15, 337
- Miranda, O. D. 2025, Astronomy amp; Astrophysics, 701, A164, doi: 10.1051/0004-6361/202554482
- Molaro, P., Izzo, L., Mason, E., Bonifacio, P., & Valle, M. 2016, Monthly Notices of the Royal Astronomical Society, 463, doi: 10.1093/mnrasl/slw169
- Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, A&A, 594, A13, doi: 10.1051/0004-6361/201525830
- Selvelli, P., Molaro, P., & Izzo, L. 2018, Monthly Notices of the Royal Astronomical Society, doi: 10.1093/mnras/sty2310
- Spite, F., & Spite, M. 1982, A&A, 115, 357
- Starrfield, S., Truran, J., & Sparks, W. 1978, The Astrophysical Journal, 226, doi: 10.1086/156598
- Tajitsu, A., Sadakane, K., Naito, H., Arai, A., & Aoki, W. 2015, Nature, 518, doi: 10.1038/nature14161
- Vangioni-Flam, E., Cassé, M., Cayrel, R., et al. 1998, New Astronomy, 4, doi: 10.1016/S1384-1076(99)00015-9
- Ventura, P., & D'Antona, F. 2009, Monthly Notices of the Royal Astronomical Society: Letters, 402, doi: 10.1111/j.1745-3933.2010.00805.x
- Yeh, T.-H., Olive, K. A., & Fields, B. D. 2021, JCAP, 2021, 046, doi: 10.1088/1475-7516/2021/03/046