Feature Normalization: The test set must use identical scaling to the training set

- Fit the scaler using the training set, then apply the same scaler to transform the test set.
- Do not scale the training and test sets using different scalers: this
 could lead to random skew in the data.
- Do not fit the scaler using any part of the test data: referencing the test data can lead to a form of data leakage. More on this issue later in the course.

Ridge Regression

 Ridge regression learns w, b using the same least-squares criterion but adds a penalty for large variations in w parameters

$$RSS_{RIDGE}(\mathbf{w}, b) = \sum_{\{i=1\}}^{N} (\mathbf{y}_i - (\mathbf{w} \cdot \mathbf{x}_i + b))^2 + \alpha \sum_{\{j=1\}}^{p} w_j^2$$

- Once the parameters are learned, the ridge regression <u>prediction</u> formula is the <u>same</u> as ordinary least-squares.
- The addition of a parameter penalty is called <u>regularization</u>. Regularization prevents overfitting by restricting the model, typically to reduce its complexity.
- Ridge regression uses <u>L2 regularization</u>: minimize sum of squares of w entries
- The influence of the regularization term is controlled by the α parameter.
- Higher alpha means more regularization and simpler models.

Lasso regression is another form of regularized linear regression that uses an LI regularization penalty for training (instead of ridge's L2 penalty)

LI penalty: Minimize the sum of the <u>absolute values</u> of the coefficients

$$RSS_{LASSO}(\mathbf{w}, b) = \sum_{\{i=1\}}^{N} (\mathbf{y}_i - (\mathbf{w} \cdot \mathbf{x}_i + b))^2 + \alpha \sum_{\{j=1\}}^{p} |w_j|$$

- This has the effect of setting parameter weights in w to zero for the least influential variables. This is called a <u>sparse</u> solution: a kind of feature selection
- The parameter α controls amount of L1 regularization (default = 1.0).
- The prediction formula is the same as ordinary least-squares.
- When to use ridge vs lasso regression:
 - Many small/medium sized effects: use ridge.
 - Only a few variables with medium/large effect: use lasso.

Polynomial Features with Linear Regression

$$x=(x_0,x_1)$$
 $x'=(x_0,x_1,x_0^2,x_0x_1,x_1^2)$

$$\hat{y} = \hat{w}_0 x_0 + \hat{w}_1 x_1 + \hat{w}_{00} x_0^2 + \hat{w}_{01} x_0 x_1 + \hat{w}_{11} x_1^2 + b$$

- Generate new features consisting of all polynomial combinations of the original two features (x_0, x_1) .
- The degree of the polynomial specifies how many variables participate at a time in each new feature (above example: degree 2)
- This is still a weighted linear combination of features, so it's <u>still a linear</u> model, and can use same least-squares estimation method for w and b.

Polynomial Features with Linear Regression

- Why would we want to transform our data this way?
 - To capture interactions between the original features by adding them as features to the linear model.
 - To make a classification problem easier (we'll see this later).
- More generally, we can apply other non-linear transformations to create new features
 - (Technically, these are called non-linear basis functions)
- Beware of polynomial feature expansion with high degree, as this can lead to complex models that overfit
 - Thus, polynomial feature expansion is often combined with a regularized learning method like ridge regression.

Linear models for classification: Logistic Regression

Input features

Linear models for classification: Logistic Regression

Linear classifiers: how would you separate these two groups of training examples with a straight line?

Linear classifiers: how would you separate these two groups of training examples with a line?

$$f(x, w, b) = sign(w \circ x + b)$$

$$x_1 - x_2 = 0$$

$$w = [1, -1]$$

$$b = 0$$

Classifier Margin

$$f(x, w, b) = sign(w \circ x + b)$$

Classifier margin

Defined as the maximum width the decision boundary area can be increased before hitting a data point.

Maximum Margin Linear Classifier: Linear Support Vector Machines

$$f(x, w, b) = sign(w \circ x + b)$$

Maximum margin classifier

The linear classifier with maximum margin is a linear Support Vector Machine (LSVM).

yperplane in \mathbb{R}^2 is a line

A hyperplane in \mathbb{R}^3 is a plane

But what about more complex binary classification problems?

Easy for a linear classifier

Difficult/impossible for a linear classifier