

1) i=i+10 (Value number method) 2) do i=i+1; while (a[i] <v); { 1 = i+1 t2 = 1 × 8 +3 = a(+2) if t3 < v goto L

(B) ata+ ((ata+a+a))) mani () { int i int a [10]; White (1 2=10) a Ci]=0; 4: is ic = 10 goto L2
goto L3 L2 E1= 1 + 4; == 0[4] a[ti] = 0; goto LI Ls : end

(7) a = bx -c + bx -c; Syntan bru DAG (8) n[i]=4 x=y[i] ti=1x4 x= y (4) n(+1) = y 10) n = f(a[i]); t1=i*4 ta = a(4) param +2 t3 = call f, 1 n = +3

$$a := (-a+b) * ((-a+b) * c)$$
 $t_1 = minus a$
 $t_2 = t_1 + b$
 $t_3 = t_2 * c$
 $t_4 = t_3 + b$
 $t_4 = t_2 * t_3$
 $a := t_4$
 $y = a+b$
 $x[i] = y$
 $y = a+b$
 $t_1 = a+b$
 $t_2 = i * 4$
 $x[t_2] = y$
 $t_3 = t_4 = i * 4$
 $x[t_2] = y$
 $t_3 = t_4 = i * 4$
 $x[t_2] = y$
 $t_3 = t_4 = i * 4$
 $x[t_2] = y$
 $t_3 = t_4 = i * 4$
 $x[t_2] = y$
 $t_3 = t_4 = i * 4$
 $x[t_2] = y$
 $x = t_4 = i * 4$
 $x[t_2] = y$
 $x = t_4 = i * 4$

x = f(0, y+1) -1 t1 = y+1 param a param ti ta = call f, 2 return t2 1 optional leturn to Moptional

$$t_3 = t_2 - 1$$
 $x = t_3$
 $x = a * b + c * d - e * f$
 $t_1 = a * b$
 $t_2 = c * d$
 $t_3 = t_1 + t_2$
 $t_4 = e * f$
 $t_5 = t_3 - t_4$
 $t_6 = t_6$
 $t_7 = a + b$
 $t_8 = a + b$
 $t_9 = a + b$
 t

t3 = t1 * t2

4) TAC

1, i=1

1, j=1

3)
$$+1 = i * 6$$
4) $+2 = a(+1)$
5) $+3 = j * c$
6) $+4 = +2 + +3$
7) $j = +4$
8) $+5 = i+1$
9) $i = +5$

Quadruple
op angla angla nouth

(o) := 1

(i) := (5)

(i) := (

Ablight goto - avoiding teanslation scheme fall through technique if B. F + fall BI.F=fall B2. F + fall BI. F = fall Rf B2. F = fall id iffabe a == b goto L4 if c = = d gots La 14: if false e== f goto L1 L2: x == 1 4:

$$a := (-a+b) * ((-a+b) * c)$$
 $t_1 = minus a$
 $t_2 = t_1 + b$
 $t_3 = t_2 * c$
 $t_4 = t_3 + b$
 $t_4 = t_2 * t_3$
 $a := t_4$
 $y = a+b$
 $x[i] = y$
 $y = a+b$
 $x[i] = y$
 $y = a+b$
 $x[t_2] = y$
 $y = t_3 = y + 2$
 $y = t_3 = x + 2$
 y

leturn to Moptional

$$t_1 = a*b$$
 $t_2 = c*d$
 $t_3 = e*f$
 $t_3 = t_1 + t_2$
 $t_4 = e*f$
 $t_5 = t_3 - t_4$
 $x = t_5$

$$t_1 = a + b$$
 $t_2 = minus t_1$
 $t_3 = c + d$
 $t_4 = t_2 + t_3$
 $t_5 = t_1 + c$
 $t_6 = t_4 + t_5$

$$a = -b * (c+d)/e$$
 $t_1 = minus b$

Avoiding Redundant Golos Fall - through technique Translated by using a special label fall (i.e don't generate any jump') if (x = 100 11 x > 200 ff x!=y) x=0; S. nent = L1 S, x=0 Sel 200

if statement transtated through fall-through technique.

if (x <100) goto L2

if fabre x > 200 goto L1

if fabre x!=g goto L1

L2: 2 = 0

L1 :=


```
Translation of Switch - statement
    Switch (0+8)
      Case 0: a=1;
      Case 1: a=2;
     Case 8: a = 8;
case 9: a = 9;
  Translation
                                       Case 3 address instro
    t1 = 0+8=8
                                    case t, O Li
                                     Case +1 1 L2 -> a=2
   if t, ! = 0 goto L,
                                     case ti 8 L3 -> a=8
    a=1;
                                     caset, 9 L4 - 7 a=9
      goto next
  4: if ti! = 1 gots L2
                                    next:
                                                  61
    a = 2;
      go to next
  La: if E, ! = 8 goto L3
      a = 8 .
   goto next
L3: a=9;
next:
```


3 AC

$$t_1 = i * 8$$
 $t_2 = j * 4$
 $t_3 = t_1 + t_2$
 $t_4 = a[t_3]$
 $t_5 = i * 4$
 $t_7 = t_5 + t_6$
 $t_8 = b[t_7]$
 $t_9 = t_4 + t_8$

- a, Syntax Tree
- b, DAG
- c) 3AC for DAG
- d) SAC for expression

c)
$$t_1 = a - b$$

 $t_2 = c + d$
 $t_3 = t_1 * t_2$
 $t_4 = t_3 + t_1$

d,
$$t_1 = a - b$$

 $t_2 = c + d$
 $t_3 = t_1 * t_2$
 $t_4 = a - b$
 $t_5 = t_3 + t_4$

6,

Intermediate code for procedures

(n = f(a[i])

(i) a = array of integers

Quadruple

Top large large Result

t1= i * 4
ta =a[ti]
-param tz
3 = Call f, 1

(1)	-[]	a	t,	t 2
(2)	param		100	x
(3)	call	\$	1	t3)
(1)		1.		~

n = t3

 $\frac{x = f(y+1) + 2}{t_1 = y+1}$ $param t_1$

ta = call f, 1

 $t_3 = t_2 + 2$

90	argi	arg 2	Result
+	y	11-1-	F1
faram	. 63	3363	ti
call	4	1	t27
+	t ₂	- 2 1	t ₃
=	ta	13 12	×

 $g = \gcd(x-y, z)$ $t_1 = x-y$ $-param t_1$ param x $t_2 = call \ ged, 2$ $g = t_2$

u	mannyce		
9	argi	arg2	Result
-	×	y	bi
param-			tı
param			20
Call	ged	2	t ₂
=	t ₂		2
			0

Ruad note