PATENT ABSTRACTS OF JAPAN

(11) Publication number:

06-097171

(43) Date of publication of application: 08.04.1994

(51)Int.CI.

H01L 21/3205

(21)Application number: 04-242871

(71)Applicant: FUJITSU LTD

(22)Date of filing:

11.09.1992

(72)Inventor: SAITO TOMIYASU

(54) FABRICATION OF SEMICONDUCTOR DEVICE

(57)Abstract:

PURPOSE: To fabricate a semiconductor device having desired function by means of anti-fuse after completion of wiring step in which low ohmic contact is insured at a part requiring no modification.

CONSTITUTION: Anti-fuses 31-35 constituted of first layer wirings 21-25 and an amorphous silicon layer, an interlayer insulation film 4, and a resist mask 5 for forming contact holes having first openings on the first layer wirings 21-25 and the anti-fuses 31-35 are formed on a substrate 1. Etching is performed through the first openings of the mask 5 to make contact holes 61-65 which reach the surfaces of the anti-fuses 31-35. A resist mask 7 for etching amorphous silicon layer having second openings larger than the first openings is then formed only on the contact holes 63, 65 reaching the first layer wiring and requiring no modification of connection. The anti-fuses 33, 35 are removed using the resist masks 5, 7 and then second layer wirings 81-85 are formed thereon.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection

[Date of extinction of right]

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-97171

(43)公開日 平成6年(1994)4月8日

(51)Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

H01L 21/3205

7514-4M

H01L 21/88

Z

審査請求 未請求 請求項の数1(全 7 頁)

(21)出願番号

特願平4-242871

(22)出願日

平成 4年(1992) 9月11日

(71)出願人 000005223

富士通株式会社

神奈川県川崎市中原区上小田中1015番地

(72)発明者 齋藤 富康

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(74)代理人 弁理士 柏谷 昭司 (外1名)

(54)【発明の名称】 半導体装置の製造方法

(57)【 要約】

【目的】 配線工程の終了後、アンチヒューズによって 所望の機能の半導体装置を製造する方法に関し、変更を 要しない部分の低抵抗接続を確保する。

【構成】 基板1 の上に、第1 層配線2 $_1$ ~2 $_5$ とアモルファスシリコン層からなるアンチヒューズ3 $_1$ ~3 $_5$ と、層間絶縁膜4 と、第1 層配線2 $_1$ ~2 $_5$ とアンチヒューズ3 $_1$ ~3 $_5$ の上に第1 の開口を有するコンタクトホール形成用レジストマスク5を形成し、このマスク5の第1 の開口を通してエッチングしてアンチヒューズ3 $_1$ ~3 $_5$ の表面に達するコンタクトホール6 $_1$ ~6 $_5$ を形成し、その上に、接続の変更を要しない第1 層配線に達するコンタクトホール6 $_3$,6 $_5$ の上のみに、第1 の開口より大きい第2 の開口を有するアモルファスシリコン層エッチング用レジストマスク7を形成し、レジストマスク5 ,7を用いてアンチヒューズ3 $_3$,3 $_5$ を除去した後、第2 層配線8 $_1$ ~8 $_5$ を形成する。

1

【特許請求の範囲】

基板上に第1 層配線用導電体層を形成す 【 請求項1 】 る工程と、該第1層配線用導電体層の上にアンチヒュー ズとなるアモルファスシリコン層を形成する工程と、該 第1 層配線用導電体層と該アモルファスシリコン層をパ ターニングすることによって第1層配線を形成する工程 と、該第1層配線の上に層間絶縁膜を形成する工程と、 該層間絶縁膜の上にレジスト を塗布し、パターニングし て第1の開口を有するコンタクトホール形成用レジスト マスクを形成する工程と、該コンタクトホール形成用レ 10 ジストマスクを用いて該層間絶縁膜をエッチング除去し て該アモルファスシリコン層の表面を露出するコンタク トホールを形成する工程と、該コンタクトホール形成用 レジスト マスクの上にレジスト を塗布し、パターニング して固定的に接続すべき第1層配線に達するコンタクト ホールの上に第1の開口より大きい第2の開口を有する アモルファスシリコン層エッチング用レジスト マスクを 形成する工程と、該アモルファスシリコン層エッチング 用レジストマスクを用いて所定のアモルファスシリコン 層をエッチング除去する工程と、該アモルファスシリコ 20 ン層が残留しているコンタクト ホールにおいては該アモ ルファスシリコン層を介して、アモルファスシリコン層 が残留していないコンタクトホールにおいては直接第1 層配線と接続される第2層配線を形成する工程を含むこ とを特徴とする半導体装置の製造方法。

【 発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法、特に、半導体装置の多層配線の一部に高抵抗のアモルファスシリコンからなるアンチヒューズを挿入してお 30 き、このアンチヒューズを適宜多結晶化して低抵抗化することによって、要求される機能を有する半導体装置を製造する方法に関する。

[0002]

【 従来の技術】近年の半導体装置は、高集積化が進み製造工程数が著しく増加し、半導体装置の設計から製造完了まで要する時間が長期化するという問題が生じている。

【 0 0 0 3 】 図3 (A) ~ (D) は、従来の多層配線構造の半導体装置の製造工程説明図である。この図におい 40 て、1 1 は半導体基板、1 2 1 , 1 2 2 , 1 2 3 , 1 2 4 , 1 2 5 は第1 層配線、1 3 は層間絶縁膜、1 4 はコンタクトホール形成用レジストマスク、1 5 3 , 1 5 4 , 1 5 5 はコンタクトホール、1 6 1 , 1 6 4 は第2 層配線である。

【0004】この製造工程説明図によって従来の多層配線構造の半導体装置の製造方法の一例を説明する。

【 0 0 0 5 】第1 工程(図3(A) 参照)

後に行う配線の接続態様によって複数の回路に対応できる集積回路のウェハプロセスを完了した半導体基板11 50

の上に、導電材料の膜をパターニングすることによって 第1 層配線1 2 1 , 1 2 2 , 1 2 3 , 1 2 4 , 1 2 5 を 形成する。

【 0 0 0 6 】第2 工程(図3(B) 参照)

第1 工程において形成した第1 層配線1 2 1 , 1 2 2 , 1 2 3 , 1 2 4 , 1 2 5 を含む全面に表面が平坦な層間 絶縁膜1 3 を形成する。

【 0 0 0 7 】第3 工程(図3 (C) 参照)

第2 工程において形成した層間絶縁膜13の上に、後に形成する第2 層配線1 6_1 , 16_4 と接続する第1 層配線1 2_3 , 12_4 , 12_5 の上に開口を有するコンタクトホール形成用レジストマスク14 を形成する。そして、このコンタクトホール形成用レジストマスク14の開口を通して層間絶縁膜13をエッチングして第1層配線1 2_3 , 12_4 , 12_5 に達するコンタクトホール1 5_3 , 15_4 , 15_5 を形成する。

【 0 0 0 8 】第4 工程(図3(D) 参照)

第3 工程において形成したコンタクトホール 15_3 , 15_4 , 15_5 を通して接続すべき第1 層配線 12_3 , 12_4 , 12_5 に接続される第2 層配線 16_1 , 16_4 を形成して目的とする機能を有する半導体装置を構成する。

【 0009】この製造方法によると、半導体基板自体には複数の回路に対応できる集積回路が形成されていたとしても、特定の機能をもつように第1層配線123,124,125と第2層配線161,164を形成した後は、この配線を変更することができないため、この特定の機能とは異なる機能をもつ半導体装置に変更することは不可能である。

【 0 0 1 0 】 したがって、上記のように配線の設計当初から特定の機能をもつように製造工程を進める必要があるため、ユーザーのオーダーから製造完了までに要する時間が長期化することが避けられなかった。

【 0 0 1 1 】上記の問題を解決するために、半導体基板への素子形成や変更を要しない配線を予め済ませ、仕様に応じて変更する可能性のある配線の接続部を絶縁性アンチヒューズを介して接続しておき、ユーザー等から要求される仕様に応じて、このアンチヒューズを適宜導電化して目的とする機能を有する半導体装置を完成することが提案された。

【 0012】このアンチヒューズの一例として、変更する可能性のある配線の接続部に高抵抗のアモルファスシリコン層を介在させておき、最終的に要求される仕様に応じて半導体装置を完成する際、接続することが必要な接続部のアモルファスシリコン層に電流を流して加熱することによって低抵抗の多結晶シリコン層に変換する技術を挙げることができる。

【 0 0 1 3 】図4 (A) ~(D) 、図5 (E) ~(G) は、従来のアンチヒューズ構造の半導体装置の製造工程説明図である。この図において、2 1 は半導体基板、2

10

20

3

2 は第1 層配線層、2 2 1 , 2 2 2 , 2 2 3 , 2 2 4 , 2 2 5 は第1 層配線、2 3 はアモルファスシリコン層、2 3 1, 2 3 2 , 2 3 3 , 2 3 4 , 2 3 5 はアンチヒューズ、2 4 は層間絶縁膜、2 5 はコンタクト ホール形成用レジストマスク、2 6 1 , 2 6 2 , 2 6 3 , 2 6 4 , 2 6 5 はコンタクトホール、2 7 はアモルファスシリコン層エッチング用レジストマスク、2 8 1 , 2 8 2 , 2 8 3 , 2 8 4 , 2 8 5 は第2 層配線である。

【 0014】この製造工程説明図によって従来のアンチ ヒューズ構造の半導体装置の製造方法を説明する。

【 0 0 1 5 】第1 工程(図4 (A) 参照)

配線の接続態様によって複数の回路に対応できる集積回路のウェハプロセスを完了した半導体基板21の上に、第1配線層22を形成する。この第1配線層22はA1等の金属層で形成することができる。

【0016】第2工程(図4(B)参照)

第1 工程によって形成された第1 配線層2 2 の上に例えば低温C V D 法によってアモルファスシリコン層2 3 を形成する。この状態ではアモルファスシリコン層2 3 は高抵抗である。

【0017】第3工程(図4(C)参照)

第2 工程によって形成されたアモルファスシリコン層23の上にフォトレジスト膜を形成し、露光現像することによってパターニングして第1配線を形成すべき部分に開口を形成する。そして、これをマスクにして第1配線層22とアモルファスシリコン層23をエッチングして、第1層配線221,222,223,224,225と、アンチヒューズ231,232,233,234,235を形成する。

【0018】第4工程(図4(D)参照)

第3 工程において形成した第1 層配線2 2 1 , 2 2 2 , 2 2 3 , 2 2 4 , 2 2 5 と、アンチヒューズ2 3 1 , 2 3 2 , 2 3 3 , 2 3 4 , 2 3 5 を含む全面に表面が平坦な層間絶縁膜2 4 を形成する。

【 0 0 1 9 】 第5 工程(図5 (E) 参照)

第4 工程において形成した層間絶縁膜2 4 の上に、アンチヒューズ2 3 1 , 2 3 2 , 2 3 3 , 2 3 4 , 2 3 5 の上に開口を有するコンタクトホール形成用レジストマスク2 5 を形成する。そして、この開口を通して層間絶縁膜2 4 をエッチングして、アンチヒューズ2 3 1 , 2 3 40 2 , 2 3 3 , 2 3 4 , 2 3 5 に達するコンタクトホール2 6 1 , 2 6 2 , 2 6 3 2 6 4 , 2 6 5 を形成する。

【0020】第6 工程(図5(F)参照)

第5 工程において使用したコンタクトホール形成用レジストマスク25を除去し、コンタクトホール261,262,263,264,265を含む全面に新たにアモルファスシリコン層エッチング用レジストマスク27を形成する。このアモルファスシリコン層エッチング用レジストマスク27には、ユーザー等から要求される仕様がどのようなものであっても固定的に接続されるべき第1 50

層配線223,225の上に形成されたアンチヒューズ233,235の上に開口が形成されている。その後この開口を通してアンチヒューズ233,235の少なくとも一部をエッチングして除去する。

【 0 0 2 1 】第7 工程(図5 (G) 参照)

第6 工程において使用したアモルファスシリコン層エッチング用レジストマスク27を除去した後、ユーザー等から最終的に要求される仕様に応じて接続する可能性のある第1層配線221,222,224とはアンチヒューズ231,232,234を介して第2層配線281,282,284を接続し、また、固定的に接続する第1層配線223,225とはアンチヒューズを介さないで直接低抵抗で第2層配線283,285を接続して製造工程を完了する。

【 0022】この半導体装置は、要求される仕様に応じて、選択された第1層配線221,222,224と第2層配線281,282,284の間に電流を流すことによって、選択されたアンチヒューズ231,232,234を加熱し低抵抗多結晶シリコンに変換して所望の機能を有する半導体装置を形成して使用される。

[0023]

【 発明が解決しようとする課題】ところが、この従来のアンチヒューズ構造の半導体装置の製造方法によると、図5(F)に示されているように、アモルファスシリコン層エッチング用レジストマスク27に開口を形成する際、すでに形成されているコンタクトホール261,262,263,264,265との位置ずれを皆無にすることはきわめて困難である。

【0024】このように、アモルファスシリコン層エッチング用レジストマスク27の開口とコンタクトホール261,262,263,264,265の間に位置ずれを生じると、アモルファスシリコン層からなるアンチヒューズ233,235を完全に除去することができず、その結果、第1層配線223,225と第2層配線283,285の間の接続が不十分になる虞がある。

【 0025 】本発明は、要求される仕様にかかわらず固定的に接続すべき部分の低抵抗接続を確保し、要求される仕様に応じて接続を変更する部分にアンチヒューズを用いた半導体装置を提供することを目的とする。

[0026]

【 課題を解決するための手段】本発明にかかる半導体装置の製造方法においては、基板上に第1 層配線用導電体層を形成する工程と、該第1 層配線用導電体層の上にアンチヒューズとなるアモルファスシリコン層を形成する工程と、該第1 層配線用導電体層と該アモルファスシリコン層をパターニングすることによって第1 層配線を形成する工程と、該第1 層配線の上に層間絶縁膜を形成する工程と、該層間絶縁膜の上にレジストを塗布し、パターニングして第1 の開口を有するコンタクトホール形成用レジストマスクを形成する工程と、該コンタクトホー

(-

ル形成用レジストマスクを用いて該層間絶縁膜をエッチング除去して該アモルファスシリコン層の表面を露出するコンタクトホールを形成する工程と、該コンタクトホール形成用レジストマスクの上にレジストを塗布し、パターニングして固定的に接続すべき第1層配線に達するコンタクトホールの上に第1の開口より大きい第2の開口を有するアモルファスシリコン層エッチング用レジストマスクを形成する工程と、該アモルファスシリコン層エッチング開レジストマスクを用いて所定のアモルファスシリコン層をエッチング除去する工程と、該アモルファスシリコン層が残留しているコンタクトホールにおいては該アモルファスシリコン層が残留していないコンタクトホールにおいては直接第1層配線と接続される第2層配線を形成する工程を採用した。

[0027]

【作用】本発明のように、第1層配線に達するコンタクトホール形成用レジストマスクを残したままで、その上にアモルファスシリコン層エッチング用レジストマスクに大径の開口をパターニングすると、アモルファスシリコン層をエッチングする際のマスクとしてコンタクトホール形成用レジストマスクの開口が機能するから、アモルファスシリコン層エッチング用レジストマスクを形成する際に多少の位置ずれが生じても、アモルファスシリコン層の除去が不充分になり、接続が不完全になることはない。

[0028]

【 実施例】本発明の一実施例の半導体装置の製造方法を説明する。図1 (A) ~ (D) 、図2 (E) ~ (G) は、本発明の一実施例のアンチヒューズ構造の半導体装 30 置の製造工程説明図である。この図において、1 は半導体基板、2 は第1 層配線層、2 1 , 2 2 , 2 3 , 2 4 , 2 5 は第1 層配線、3 はアモルファスシリコン層、3 1 , 3 2 , 3 3 , 3 4 , 3 5 はアンチヒューズ、4 は層間絶縁膜、5 はコンタクトホール形成用レジストマスク、6 1 , 6 2 , 6 3 , 6 4 , 6 5 はコンタクトホール、7 はアモルファスシリコン層エッチング用レジストマスク、8 1 , 8 2 , 8 3 , 8 4 , 8 5 は第2 層配線である。

【 0029】この製造工程説明図によって本発明の一実 40 施例のアンチヒューズ構造の半導体装置の製造方法を説明する。

【 0 0 3 0 】第1 工程(図1 (A) 参照)

配線の接続態様によって複数の機能をもつ回路に対応できる集積回路のウェハプロセスを完了した半導体基板1の上に、Al 等の第1 配線層2 を形成する。

【 0 0 3 1 】第2 工程(図1(B) 参照)

第1 工程によって形成された第1 配線層2 の上に低温C VD法によって高抵抗のアモルファスシリコン層3 を形 成する。

【 0 0 3 2 】第3 工程(図1(C) 参照)

第2 工程によって形成されたアモルファスシリコン層3 の上にフォトレジストを形成し、露光現像することによってパターニングして第1 層配線を形成すべき部分に開口を形成する。次いで、この開口を通して第1 層配線層2 とアモルファスシリコン層3 をエッチングして、第1 層配線2 1 , 2 2 , 2 3 , 2 4 , 2 5 と、アンチヒューズ3 1 , 3 2 , 3 3 , 3 4 , 3 5 を形成する。

【 0 0 3 3 】第4 工程(図1 (D) 参照)

第3 工程において形成した第1 層配線2 1 , 2 2 , 2 3 , 2 4 , 2 5 と 、アンチヒューズ3 1 , 3 2 , 3 3 , 3 4 , 3 5 を含む全面に表面が平坦な層間絶縁膜 4 を形成する。

【 0 0 3 4 】第5 工程(図2(E) 参照)

第4 工程において形成した層間絶縁膜4 の上に、アンチヒューズ31, 32, 33, 34, 35 の上に第1 の開口を有するコンタクトホール形成用レジストマスク5 を形成する。そして、この第1 の開口を通して層間絶縁膜4 をエッチングして、アンチヒューズ31, 32, 33, 34, 35 に達するコンタクトホール61,

62,6364,65を形成する。

【 0 0 3 5 】第6 工程(図2(F) 参照)

第5 工程において使用したコンタクトホール形成用レジストマスク5 を残したままで、コンタクトホール 6_2 , 6_3 , 6_4 , 6_5 を含む全面に新たにアモルファスシリコン層エッチング用レジストマスク7 を形成する。

【 0 0 3 6 】このアモルファスシリコン層エッチング用レジストマスク7には、ユーザー等から要求される仕様にかかわらず固定的に接続すべき第1層配線23,25の上に形成されたアンチヒューズ33,35の上に、コンタクトホール形成用レジストマスク5の第1の開口より大径の第2の開口が形成されている。そしてこの二つの開口を通してアンチヒューズ33,35の少なくとも一部をエッチングして除去する。

【 0 0 3 7 】第7 工程(図2(G) 参照)

第6 工程において使用したアモルファスシリコン層エッチング用レジストマスク7 とコンタクトホール形成用レジストマスク5 を除去した後、ユーザー等から最終的に要求される仕様に応じて接続する可能性のある第1 層配線 2_1 , 2_2 , 2_4 とはアンチヒューズ 3_1 , 3_2 , 3_4 を介して第2 層配線 3_1 , 3_2 , 3_4 を介して第2 層配線 3_1 , 3_2 , 3_3 とかして第2 層配線 3_1 , 3_2 , 3_3 を分して第2 層配線 3_1 , 3_2 , 3_3 を分して第2 層配線 3_1 , 3_2 , 3_3 を分して第2 層配線 3_1 , 3_2 , 3_3 を接続する。

【 0038】この実施例の工程によると、第6工程において、ユーザー等から要求される仕様にかかわらず低抵抗かつ安定に接続すべき第1層配線23,25の上に形成されたアンチヒューズ33,35をエッチングする際、実質的なエッチングマスクは、アモルファスシリコ

7

ン層エッチング用レジストマスク7の大径の第2の開口中にあるコンタクトホール形成用レジストマスク5の第1の開口であるから、アモルファスシリコン層をエッチングするマスクとコンタクトホールの間に位置ずれが生じる余地は全くなく、アモルファスシリコン層エッチング用レジストマスク7は、ユーザー等から最終的に要求される仕様に応じて接続する可能性のある第1層配線21,22,24の上のアンチヒューズ31,32,34を覆っていれば充分であるから、位置合わせ精度を高くする必要がなく、製造工程における制御精度に余裕が生10じる。

[0039]

【 発明の効果】以上説明したように、本発明によると、アンチヒューズ構造を有する多機能対応型半導体装置の 製造工程において、エッチング用レジストマスクを形成 する際のマスク位置合わせに関する余裕度が大きくな り、この種の半導体装置の製造に要する期間の短縮に寄 与するところが大きい。

【図面の簡単な説明】

【 図1 】(A) ~(D) は本発明の一実施例のアンチヒ 20 ューズ構造の半導体装置の製造工程説明図(1) である。

【図1】

本発明の 実施例のアンチヒューズ構造の 半導体装置の製造工程説明図(1)

【 図2 】(E) ~(G) は本発明の一実施例のアンチヒューズ構造の半導体装置の製造工程説明図(2) である。

【 図3 】(A) ~(D) は従来の多層配線構造の半導体 装置の製造工程説明図である。

【 図4 】(A) ~(D) は従来のアンチヒューズ構造の 半導体装置の製造工程説明図(1)である。

【 図5 】(E) ~(G) は従来のアンチヒューズ構造の 半導体装置の製造工程説明図(2)である。

10 【 符号の説明】

- 1 半導体基板
- 2 第1 層配線層
- 21,22,23,24,25 第1層配線
- 3 アモルファスシリコン層
- 31,32,33,34,35 アンチヒューズ
- 4 層間絶縁膜
- 5 コンタクトホール形成用レジストマスク
- 61,62,63,64,65 コンタクトホール
- 7 アモルファスシリコン層エッチング用レジストマス
 - 81,82,83,84,85 第2層配線

【 図2 】

【図3】

【図4】

従来のアンチヒューズ構造の半導体装置の製造工程説明図(1)

【図5】

THIS PAGE BLANK (USPTO)