Control Systems

G V V Sharma*

	Contents		9 Phase Margin 3
1	Signal Flow Graph 1.1 Mason's Gain Formula 1.2 Matrix Formula	1 1 1	10 Oscillator 3 10.1 Introduction
2	Bode Plot2.1Introduction	1 1 1	Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.
3	Second order System 3.1 Damping	1 1 1 1	Download python codes using svn co https://github.com/gadepall/school/trunk/ control/codes
4	Routh Hurwitz Criterion4.1Routh Array4.2Marginal Stability4.3Stability4.4Example	3 3 3 3 3	1 Signal Flow Graph 1.1 Mason's Gain Formula 1.2 Matrix Formula
5	State-Space Model5.1Controllability and Observability5.2Second Order System5.3Example5.4Example5.5Example	3 3 3 3 3 3	2 Bode Plot 2.1 Introduction 2.2 Example 3 Second order System 3.1 Damping
6	Nyquist Plot 6.1 Introduction	3 3 3 3	3.2 Example3.3 Settling Time3.3.1. Find the closed loop transfer function for the system in Fig. given that
7	Compensators7.1Phase Lead	3 3 3	system in Fig. given that $G(s) = \frac{1}{s^2 + 2s}$ (3.3.1.1)
	Gain Margin 8.1 Introduction		$ \begin{array}{c} r \\ \hline \end{array} $ $k \longrightarrow G(s) \longrightarrow y$

Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 3.3.1

Solution: The closed loop transfer function is

$$H(s) = \frac{kG(s)}{1 + kG(s)}$$

$$= \frac{k}{s^2 + 2s + k}$$
(3.3.1.2)

after substituting from (3.3.1.1).

3.3.2. Find the step response of the system.

Solution: From (3.3.1.3), the step response is

$$Y(s) = \frac{k}{s^2 + 2s + k} \frac{1}{s}$$
 (3.3.2.1)

$$\Rightarrow y(t) = \begin{bmatrix} 1 \\ + \frac{k}{(2\sqrt{1-k})(-1+\sqrt{1-k})} e^{(-1+\sqrt{1-k})} t \\ + \frac{k}{(2\sqrt{1-k})(1+\sqrt{1-k})} e^{(-1-\sqrt{1-k})} t \end{bmatrix} u(t)$$

$$k \neq 1 \quad (3.3.2.2)$$

and

$$y(t) = (1 - e^{-t} - te^{-t}) u(t)$$
 $k = 1$ (3.3.2.3)

3.3.3. Find the steady state step response of the system usng the final value theorem.

Solution: From (3.3.2.1),

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s)$$
 (3.3.3.1)
= 1 (3.3.3.2)

3.3.4. Find the step response for an overdamped system.

Solution: For an overdamped system, k < 1,

$$\implies y(t) = \left[1 - e^{-t} \left\{ \frac{\sinh\left(\sqrt{1 - k}\right)t}{\sqrt{1 - k}} + \cosh\left(\sqrt{1 - k}\right)t \right\} \right] u(t) \quad (3.3.4.1)$$

3.3.5. Find the step response for an underdamped system.

Solution: In this case, k > 1.

$$\implies y(t) = \left[1 - e^{-t} \left\{ \frac{\sin\left(\sqrt{k-1}\right)t}{\sqrt{k-1}} + \cos\left(\sqrt{k-1}\right)t \right\} \right] u(t) \quad (3.3.5.1)$$

3.3.6. Find the step response for a critically damped

system.

Solution: For k = 1,

$$y(t) = (1 - e^{-t} - te^{-t}) u(t)$$
 (3.3.6.1)

(3.3.1.3) 3.3.7. The settling time t_s is defined as the first instant where

$$|y(t_s) - y_{ss}| \le 0.02 \tag{3.3.7.1}$$

where y_{ss} is the steady state value of y(t). Find k for which the settling time is minimum.

Solution: Considering Critical Damped System, where k = 1,

Plot of step response:

Fig. 3.3.7: Step response of Critical damped system

Python code for above plot is

Settling time is 5.834sec.

Considering Under Damped System, where k > 1 Plot of step response :

Fig. 3.3.7: Step response of Under damped system

Python code for above plot is

codes/ee18btech11035 2.py

There is an overshoot for every value of k > 1. Considering Over Damped System, where k < 1Plot of step response:

Fig. 3.3.7: Step response of Over damped system

Python code for above plot is

As the value of *k* is increasing the settling time is increasing. The lowest settling time obtained for a Over damped system is greater than obtained for critical damped case.

Therefore, when k is 1 minimum settling time for step response of the given system (3.3.1.3) is obtained.

4 ROUTH HURWITZ CRITERION

- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 4.4 Example
- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.2 Second Order System
- 5.3 Example
- 5.4 Example
- 5.5 Example
- **6** Nyouist Plot
- 6.1 Introduction
- 6.2 Example
- 7 Compensators
- 7.1 Phase Lead
- 7.2 Example
- 8 Gain Margin
- 8.1 Introduction
- 8.2 Example
- 9 Phase Margin
 - 10 OSCILLATOR
- 10.1 Introduction
- 10.2 Example

codes/ee18btech11035 3.py