# **ASSIGNMENT 4**

ID NO.: - 21EL010

Name: - Rishitha Rao

Division: - 04

Year: - 2023-24

Subject: - Digital System Design (3EL42)

Branch: - Electronics (EL)

# Q1. BCD TIMECOUNT

#### **VERILOG CODE: -**

```
module bcd_Count(
    input clock, reset,
    output reg [3:0]dout
    );
    initial dout = 0;

always @ (posedge (clock))
    begin
    if (reset)
        dout <= 0;
    else if (dout <= 9)
        dout <= dout + 1;
    else if (dout == 9)
    dout <= 0;
    end
end
endmodule</pre>
```

#### TEST BENCH: -

```
module bcdcounter_testbench();
reg clock, reset;
wire [3:0] dout;

bcd_counter dut(clock, reset, dout);
initial begin
clock=0;
forever #5 clock=~clock;
end
initial begin
reset=1;
#20;
reset=0;
end
endmodule
```

# RTL SCHEMATIC:-



# SYNTHESIS REPORT: -

| 2   LUT3   1                                                                                                                    |        |                         |                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------|------------------------------------------------------------------------------------------------------|
|                                                                                                                                 | Start  | Writing Synthesis Repo  | ort                                                                                                  |
|                                                                                                                                 |        |                         | <del></del>                                                                                          |
|                                                                                                                                 | Report | : BlackBoxes:           |                                                                                                      |
| Report Cell Usage:                                                                                                              | +-+    |                         | -+                                                                                                   |
| Report Cell Usage:                                                                                                              |        | ·                       |                                                                                                      |
| Report Cell Usage:                                                                                                              |        |                         |                                                                                                      |
|                                                                                                                                 | +-+    |                         | -+                                                                                                   |
|                                                                                                                                 | D      | C-11 H                  |                                                                                                      |
|                                                                                                                                 | -      | -                       |                                                                                                      |
|                                                                                                                                 |        |                         |                                                                                                      |
| 2   LUT3   1                                                                                                                    |        |                         |                                                                                                      |
| 3                                                                                                                               | 11     | BUFG   1                |                                                                                                      |
| 4                                                                                                                               | 12     | LUT3   1                |                                                                                                      |
|                                                                                                                                 | 3      | LUT4   4                |                                                                                                      |
| 6                                                                                                                               | 4      | FDRE   4                |                                                                                                      |
| #++  Report Instance Areas:  ++     Instance  Module  Cells    ++   1  top     16   ++                                          | 15     | IBUF   2                |                                                                                                      |
| Report Instance Areas: +++    Instance  Module  Cells   +++  1  top     16  ++                                                  | 16     | OBUF   4                |                                                                                                      |
| ++++<br>   Instance Module Cells <br>++                                                                                         | +      | ++                      |                                                                                                      |
| ++++<br>   Instance Module Cells <br>++                                                                                         | Danont | Tretance Areae:         |                                                                                                      |
| Instance  Module  Cells  <br>++                                                                                                 | _      |                         | +                                                                                                    |
| ++                                                                                                                              | i      |                         |                                                                                                      |
| <del></del>                                                                                                                     | +      |                         |                                                                                                      |
|                                                                                                                                 | 11     | top                     | 16                                                                                                   |
|                                                                                                                                 | +      | +                       | +                                                                                                    |
| Finished Writing Synthesis Report : Time (s): cpu = 00:00:18 ; elapsed = 00:00:22 . Memory (MB): peak = 1019.316 ; gain = 0.000 |        |                         |                                                                                                      |
|                                                                                                                                 | Finish | ned Writing Synthesis R | Report : Time (s): cpu = 00:00:18 ; elapsed = 00:00:22 . Memory (MB): peak = 1019.316 ; gain = 0.000 |

## POWER REPORT:-

#### Summary

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 2.855 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 30.4°C

Thermal Margin: 54.6°C (28.8 W)

Effective \$JA: 1.9°C/W
Power supplied to off-chip devices: 0 W
Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity



# Q2.3-1 MUX

#### **VERILOG CODE: -**

```
module mux_2_1(
   input sel,
   input i0, i1,
   output y);

   assign y = sel ? il : i0;
endmodule

module mux_3_1(
   input sel0, sel1,
   input i0,i1,i2,i3,
   output reg y);

wire y0, y1;

mux_2_1 ml(sel1, i0, i1, y0);
   mux_2_1 m2(sel0, y0, i2, y);
endmodule
```

#### **TESTBENCH: -**

```
module tb;
  reg sel0, sel1;
  reg i0,i1,i2,i3;
  wire y;

mux_3_1 mux(sel0, sel1, i0, i1, i2, i3, y);

initial begin
  $monitor("sel0=%b, sel1=%b -> i3 = %0b, i2 = %0b ,i1 = %0b, i0 = %0b -> y = %0b", sel0,sel1,i3,i2,i1,i0, y);
  {i3,i2,i1,i0} = 4'h5;

repeat(%) begin
  {sel0, sel1} = $random;
  *5;
  end
  comparison of the properties of the pro
```

## RTL SCHEMATIC: -



## **SYNTHESIS REPORT:-**



#### **POWER REPORT: -**



# Q3. BCD TO SEVEN SEGMENT DISPLAY

#### **VERILOG CODE: -**

```
module segment7(
      bcd,
      seg
     );
      //Declare inputs, outputs and internal variables.
      input [3:0] bcd;
      output [6:0] seg;
      reg [6:0] seg;
 //always block for converting bcd digit into 7 segment format
     always @(bcd)
     begin
         case (bcd) //case statement
            0 : seg = 7'b0000001;
             1 : seg = 7'b1001111;
            2 : seg = 7'b0010010;
             3 : seg = 7'b0000110;
             4 : seg = 7'b1001100;
             5 : seg = 7'b0100100;
             6 : seg = 7'b0100000;
             7 : seg = 7'b0001111;
             8 : seg = 7'b0000000;
             9 : seg = 7'b0000100;
             //switch off 7 segment character when the bcd digit is not a decimal number.
             default : seg = 7'b1111111;
         endcase
endmodule
```

#### TESTBENCH: -

```
module tb_segment7;
    reg [3:0] bcd;
    wire [6:0] seg;
    integer i;
    // Instantiate the Unit Under Test (UUT)
    segment7 uut (
        .bcd(bcd),
        .seg(seg)
    );
//Apply inputs
    initial begin
        for(i = 0; i < 16; i = i+1) //run loop for 0 to 15.
        begin
            #10; //wait for 10 ns
        end
    end
endmodule
```

# RTL SCHEMATIC:-



# SYNTHESIS REPORT: -

|      | Writing Syn      |       | - |    |
|------|------------------|-------|---|----|
| -    | t BlackBoxes     |       |   |    |
|      | ackBox name      |       |   |    |
|      |                  |       |   |    |
|      |                  |       | · |    |
| -    | t Cell Usage     |       |   |    |
|      | ++<br> Cell  Cou |       |   |    |
|      | +                |       |   |    |
| 11   | LUT4             | 71    |   |    |
| 2    | IBUF             | 4     |   |    |
| 3    | OBUF             | 7     |   |    |
| +    | +                | +     |   |    |
| enon | t Instance 1     | mase. |   |    |
| -    | +                |       | + | -+ |
| i    | Instance         |       |   |    |
| +    | +                | +     | + | -+ |
| 1    | top              | I     | 1 | 81 |
| +    | +                | +     | + | -+ |

## POWER REPORT:-

#### Summary

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 2.767 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 30.2°C

Thermal Margin: 54.8°C (28.9 W)
Effective \$JA: 1.9°C/W

Power supplied to off-chip devices: 0 W
Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity



# Q4. D LATCH USING 2:1 MUX

#### **VERILOG CODE: -**

```
module DFFusingMUX(input dl, d0, sel, clk, rst, output reg q);
reg d;
always @ (*)
   begin
       case(sel)
         0 : d = d0;
          1 : d = d1;
       endcase
    end
always @(posedge clk)
    begin
        if(rst)
           q <= 0;
        else
            q <= d;
endmodule
```

#### TESTBENCH: -

```
module tb;
reg d1,d0;
reg clk;
reg rst;
wire q;
d_latch d3(q,d1,d0,clk,rst);
initial
  begin
   clk = 1'b0;
    forever #20 clk = ~clk;
initial
   rst = 1'b1;
   #40;
   rst = 1'b0;
   #40;
    d0 = 1'b0;
    d1= 1'b0;
    #40
    d0 = 1'b1;
    d1 = 1'b0;
    #40;
    $finish;
  end
endmodule
```

# RTL SCHEMATIC: -



## **SYNTHESIS REPORT: -**

|       | Writing Syn  |         |       |    |
|-------|--------------|---------|-------|----|
| Danor | t BlackBoxe  |         |       |    |
| -     |              |         | +     |    |
| B1    | ackBox name  | Instand | ces   |    |
| +-+   |              | -+      | +     |    |
| +-+   |              | -+      | +     |    |
|       |              |         |       |    |
| -     | t Cell Usage |         |       |    |
| 1     | Cell  Co     |         |       |    |
| +     | +            |         |       |    |
| 11    | BUFG         | 1       |       |    |
| 12    | LUT3         | 1       |       |    |
| 3     | FDRE         | 1       |       |    |
|       | IBUF         |         |       |    |
| 15    | OBUF         | 1       |       |    |
| +     | +            | +       |       |    |
| Renor | t Instance 1 | Areas:  |       |    |
| _     | +            |         | -+    | -+ |
| İ     | Instance     | Module  | Cells | i  |
| +     | +            | -+      | +     | -+ |
| 1     | top          | 1       | 1     | 91 |
| +     | +            | -+      | +     | -+ |

#### POWER REPORT: -

#### Summary

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.457 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 25.9°C

Thermal Margin: 59.1°C (31.2 W)

Effective  $\vartheta JA$ : 1.9°C/W Power supplied to off-chip devices: 0 W Confidence level: Low

<u>Launch Power Constraint Advisor</u> to find and fix

invalid switching activity



### **Q5.** 8-BIT BARREL SHIFTER

#### **VERILOG CODE: -**

```
module barrel_shifter_8bit (in, ctrl, out);
   input [7:0] in;
   input [2:0] ctrl;
   output [7:0] out;
    wire [7:0] x,y;
  //4bit shift right
  mux2X1 ins_17 (.in0(in[7]),.in1(1'b0),.sel(ctrl[2]),.out(x[7]));
 \label{eq:mux2X1} \begin{array}{ll} \text{ins\_16 (.in0(in[6]),.in1(1'b0),.sel(ctr1[2]),.out(x[6]));} \end{array}
  mux2X1 ins_15 (.in0(in[5]),.in1(1'b0),.sel(ctr1[2]),.out(x[5]));
  mux2X1 ins_14 (.in0(in[4]),.in1(1'b0),.sel(ctr1[2]),.out(x[4]));
  mux2X1 ins_13 (.in0(in[3]),.inl(in[7]),.sel(ctrl[2]),.out(x[3]));
  mux2X1 ins_12 (.in0(in[2]),.inl(in[6]),.sel(ctrl[2]),.out(x[2]));
  {\tt mux2X1 \ ins\_11 \ (.in0(in[1]),.inl(in[5]),.sel(ctr1[2]),.out(x[1]));}
  mux2X1 ins_10 (.in0(in[0]),.inl(in[4]),.sel(ctrl[2]),.out(x[0]));
  //2 bit shift right
 mux2X1 ins_27 (.in0(x[7]),.in1(1'b0),.sel(ctrl[1]),.out(y[7]));
  mux2X1 ins_26 (.in0(x[6]),.in1(1'b0),.sel(ctrl[1]),.out(y[6]));
  mux2X1 ins_25 (.in0(x[5]),.in1(x[7]),.sel(ctrl[1]),.out(y[5]));
  mux2X1 ins_24 (.in0(x[4]),.inl(x[6]),.sel(ctrl[1]),.out(y[4]));
  mux2X1 ins_23 (.in0(x[3]),.in1(x[5]),.sel(ctrl[1]),.out(y[3]));
  \label{eq:mux2X1} \mbox{ ins\_22 } \mbox{ (.in0} \mbox{ (x[2]),.inl} \mbox{ (x[4]),.sel} \mbox{ (ctrl[1]),.out} \mbox{ (y[2]));}
  mux2X1 ins_21 (.in0(x[1]),.in1(x[3]),.sel(ctrl[1]),.out(y[1]));
 mux2X1 ins_20 (.in0(x[0]),.in1(x[2]),.sel(ctrl[1]),.out(y[0]));
  //1 bit shift right
 {\tt mux2X1 \ ins\_07 \ (.in0(y[7]),.in1(1'b0),.sel(ctrl[0]),.out(out[7]));}
  mux2X1 ins_06 (.in0(y[6]),.in1(y[7]),.sel(ctr1[0]),.out(out[6]));
 mux2X1 ins_05 (.in0(y[5]),.in1(y[6]),.sel(ctrl[0]),.out(out[5]));
 \label{eq:mux2X1} \  \  ins\_04 \  \mbox{(.in0}(y[4]),.in1(y[5]),.sel(ctrl[0]),.out(out[4])); \\
  mux2X1 ins_03 (.in0(y[3]),.in1(y[4]),.sel(ctrl[0]),.out(out[3]));
 \label{eq:mux2X1} \mbox{ ins 02 } (.in0(y[2]),.in1(y[3]),.sel(ctrl[0]),.out(out[2]));
  //2 bit shift right
  mux2X1 ins_27 (.in0(x[7]),.in1(1'b0),.sel(ctrl[1]),.out(y[7]));
  mux2Xl ins_26 (.in0(x[6]),.inl(l'b0),.sel(ctrl[l]),.out(y[6]));
            ins_25 (.in0(x[5]),.in1(x[7]),.sel(ctrl[1]),.out(y[5]));
  mux2X1
  mux2X1 ins_24 (.in0(x[4]),.in1(x[6]),.sel(ctrl[1]),.out(y[4]));
  mux2X1 ins_23 (.in0(x[3]),.in1(x[5]),.sel(ctrl[1]),.out(y[3]));
  mux2X1 ins_22 (.in0(x[2]),.in1(x[4]),.sel(ctrl[1]),.out(y[2]));
  mux2X1 ins_21 (.in0(x[1]),.in1(x[3]),.sel(ctrl[1]),.out(y[1]));
  mux2X1 ins_20 (.in0(x[0]),.in1(x[2]),.sel(ctrl[1]),.out(y[0]));
   //1 bit shift right
  mux2X1 ins_07 (.in0(y[7]),.in1(1'b0),.sel(ctrl[0]),.out(out[7]));
            ins_06 (.in0(y[6]),.in1(y[7]),.sel(ctrl[0]),.out(out[6]));
  mux2X1
  mux2X1 ins_05 (.in0(y[5]),.inl(y[6]),.sel(ctrl[0]),.out(out[5]));
  mux2X1 ins_04 (.in0(y[4]),.in1(y[5]),.sel(ctrl[0]),.out(out[4]));
  mux2X1 ins_03 (.in0(y[3]),.inl(y[4]),.sel(ctrl[0]),.out(out[3]));
mux2X1 ins_02 (.in0(y[2]),.inl(y[3]),.sel(ctrl[0]),.out(out[2]));
  mux2X1
           ins 01 (.in0(y[1]),.in1(y[2]),.sel(ctr1[0]),.out(out[1]));
  mux2X1 ins_00 (.in0(y[0]),.inl(y[1]),.sel(ctrl[0]),.out(out[0]));
endmodule
  //2X1 Mux
module mux2X1( in0,in1,se1,out);
  input in0, in1;
  output out;
   assign out=(sel)?inl:in0;
endmodule
```

#### **TESTBENCH: -**

```
module barrel_shifter_8bit_tb;
   reg [7:0] in;
   reg [2:0] ctrl;
   wire [7:0] out;
 barrel shifter 8bit uut(.in(in), .ctrl(ctrl), .out(out));
) initial
) begin
     $display($time, " << Starting the Simulation >>");
         in= 8'd0; ctrl=3'd0; //no shift
     #10 in=8'd128; ctrl= 3'd4; //shift 4 bit
     #10 in=8'd128; ctrl= 3'd2; //shift 2 bit
     #10 in=8'd128; ctrl= 3'd1; //shift by 1 bit
     #10 in=8'd255; ctrl= 3'd7; //shift by 7bit
  end
     initial begin
       $monitor("Input=%d, Control=%d, Output=%d",in,ctrl,out);
) endmodule
```

## RTL SCHEMATIC: -



#### **SYNTHESIS REPORT:-**

Start Writing Synthesis Report Report BlackBoxes: | |BlackBox name |Instances | Report Cell Usage: |Cell |Count | |LUT3 | 2 | 3 | 5 | 12 |LUT4 | 13 |LUT5 | |LUT6 | |IBUF | 11| |OBUF | 8| 15 Report Instance Areas: |Instance |Module |Cells | Finished Writing Synthesis Report : Time (s): cpu = 00:00:13 ; elapsed = 00:00:16 . Memory (MB): peak = 1020.242 ; gain = 0.000

#### **POWER REPORT: -**

#### Summary



### Q6. 1-BIT COMPARATOR USING 4X1 MUX

## **VERILOG CODE: -**

```
module comp_lbit(out, a, b, c, d, s0, s1);

output out;
input a, b, c, d, s0, s1;
wire sobar, slbar, T1, T2, T3, T4;

not (s0bar, s0), (slbar, s1);
and (T1, a, s0bar, slbar), (T2, b, s0bar, s1), (T3, c, s0, slbar), (T4, a, s0, s1);
or(out, T1, T2, T3, T4);
endmodule
```

#### **TESTBENCH: -**

```
) module tb;
  wire out;
 reg a;
  reg b;
  reg c;
  reg d;
 reg s0, s1;
 m41 name(.out(out), .a(a), .b(b), .c(c), .d(d), .s0(s0), .s1(s1));
) initial
begin
  a=1'b0; b=1'b0; c=1'b0;
  s0=1'b0; s1=1'b0;
  #500 $finish;
) end
  always #40 a=~a;
 always #20 b=~b;
 always #10 c=~c;
 always #80 s0=~s0;
 always #160 sl=~sl;
) always@(a or b or c or s0 or s1)
) $monitor("At time = %t, Output = %d", $time, out);
) endmodule
```

# RTL SCHEMATIC:-



# **SYNTHESIS REPORT:-**

| port | BlackBoxes      | 3:     |       |         |
|------|-----------------|--------|-------|---------|
|      |                 | •      |       |         |
|      | ckBox name      |        |       |         |
|      |                 |        |       |         |
|      |                 |        |       |         |
| -    | Cell Usage      |        |       |         |
|      | Cell  Cou       |        |       |         |
|      | -+              |        |       |         |
|      | LUT5            |        |       |         |
|      | IBUF  <br> OBUF |        |       |         |
|      |                 |        |       |         |
|      | -++             |        |       |         |
| -    | Instance I      |        |       |         |
| l    | Instance        | Module | Cells | i       |
| 1    | -+<br> top      |        |       | -+<br>7 |
| +    | -+              | -+     | -+    | -+      |

#### POWER REPORT:-

#### Summary

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.531 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Thermal Margin: 59.0°C (31.1 W)
Effective \$JA: 1.9°C/W

26.0°C

Effective 3JA: 1.9°C
Power supplied to off-chip devices: 0 W
Confidence level: Low

<u>Launch Power Constraint Advisor</u> to find and fix

invalid switching activity

Junction Temperature:



# Q7.LOGICAL, ALGEBRAIC, AND ROTATE SHIFT OPERATIONS VERILOG CODE: -

```
module shift rotate (a, opcode, result);
 input [7:0] a;
 input [2:0] opcode;
 output [7:0] result;
 wire [7:0] a;
 wire [2:0] opcode;
reg [7:0] result;
 parameter sra_op = 3'b000,
 srl_op = 3'b001,
 sla_op = 3'b010,
 sll_op = 3'b011,
 ror op = 3'b100,
 rol_op = 3'b101;
always @ (a or opcode)
) begin
case (opcode)
) sra_op : result = {a[7], a[7], a[6], a[5],
) a[4], a[3], a[2], a[1]);
 srl_op : result = a >> 1;
| sla_op : result = {a[6], a[5], a[4], a[3],
) a[2], a[1], a[0], 1'b0};
  sll_op : result = a << 1;
ror_op : result = {a[0], a[7], a[6], a[5],
) a[4], a[3], a[2], a[1]};
rol_op : result = {a[6], a[5], a[4], a[3],
) a[2], a[1], a[0], a[7]};
 default : result = 0;
endcase
end
) endmodule
```

#### **TESTBENCH:-**

```
module shift_rotate_tb;
```

```
reg [7:0] a;
     reg [2:0] opcode;
     wire [7:0] result;
     integer i;
     shift_rotate uut (
         .a(a),
         .opcode (opcode),
         .result(result)
     );
     initial begin
     a=8'b10110101;
     opcode = 000;
     end
     initial
     begin
     for(i=0;i<6;i=i+1)
    begin
     opcode=i;
     #10;
     end
     end
     initial
     $monitor(" A=%b | Opcode=%b | Result =%b ",a,opcode,result);
endmodule
```

#### RTL SCHEMATIC: -



#### **SYNTHESIS REPORT:-**

Start Writing Synthesis Report Report BlackBoxes: | |BlackBox name |Instances | Report Cell Usage: |Cell |Count | |LUT5 | 11 ILUT6 | 12 11 13 IOBUF I 14 Report Instance Areas: |Instance |Module |Cells | 11 Finished Writing Synthesis Report : Time (s): cpu = 00:00:23 ; elapsed = 00:00:33 . Memory (MB): peak = 1017.926 ; gain = 0.000

#### POWER REPORT: -

#### Summary

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 3.055 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 30.8°C

Thermal Margin: 54.2°C (28.6 W)

Effective \$JA: 1.9°C/W
Power supplied to off-chip devices: 0 W
Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity



## Q8. ALU

## **VERILOG CODE: -**

```
module alu (a, b, opcode, rslt);
input [3:0] a, b;
input [2:0] opcode;
output [7:0] rslt;
reg [7:0] rslt;
parameter add_op = 3'b000,
sub_op = 3'b001,
mul_op = 3'b010,
and_op = 3'b011,
or_op = 3'b100,
not op = 3'b101,
xor_op = 3'b110,
xnor_op = 3'blll;
always @ (a or b or opcode)
begin
case (opcode)
add_op: rslt = a + b;
sub_op: rslt = a - b;
mul_op: rslt = a * b;
and_op: rslt = a & b; //also ab
or_op: rslt = a | b;
not_op: rslt = ~a; //also ~b
xor_op: rslt = a ^ b;
xnor_op: rslt = ~(a ^ b);
endcase
end
endmodule
```

#### **TEST BENCH:-**

```
'timescale lns / lps
module alu tb;
     reg [3:0] a;
     reg [3:0] b;
     reg [2:0] opcode;
     wire [7:0] rslt;
     alu uut (.a(a), .b(b), .opcode(opcode), .rslt(rslt));
     initial
     begin
 #0 a = 4'b0001; b = 4'b0010; opcode = 3'b000;
 #10 a = 4'b0110; b = 4'b0110; opcode = 3'b000;
 #10 a = 4'b1100; b = 4'b0011; opcode = 3'b001;
 #10 a = 4'b1101; b = 4'b1010; opcode = 3'b001;
 #10 a = 4'b1100; b = 4'b0111; opcode = 3'b010;
 #10 a = 4'blll1; b = 4'b0011; opcode = 3'b010;
 #10 a = 4'b1100; b = 4'b0111; opcode = 3'b011;
 #10 a = 4'b1101; b = 4'b1011; opcode = 3'b011;
 #10 a = 4'b0101; b = 4'b1011; opcode = 3'b100;
 #10 a = 4'b1001; b = 4'b1010; opcode = 3'b100;
 #10 a = 4'bl001; opcode = 3'bl01;
 #10 a = 4'b0011; opcode = 3'b101;
 #10 a = 4'b0111; b = 4'b1011; opcode = 3'b110;
 #10 a = 4'b1010; b = 4'b0101; opcode = 3'b110;
 #10 a = 4'b0110; b = 4'b0110; opcode = 3'b111;
 #10 a = 4'b0011; b = 4'b1110; opcode = 3'b111;
end
 initial
 begin
 $monitor(" A=%b | B=%b | Opcode = %b | Result=%b",a,b,opcode,rslt);
 #300 $finish;
 end
endmodule
```

#### **RTL SCHEMATIC: -**



#### **SYNTHESIS REPORT:-**



#### POWER REPORT: -

#### Summary



# Q9. 4-BIT ASYNCHRONOUS DOWN COUNTER VERILOG CODE: -

```
module dff(q,qbar,clk,rst,d);
   output reg q;
   output qbar;
   input clk, rst;
   input d;
   assign qbar = ~q;
   always @(posedge clk, posedge rst)
   begin
       if (rst)
           q <= 0;
          q <= d;
   end
endmodule
module async_counter(count,countbar,clk,rst);
 input clk, rst;
 output [3:0] count, countbar;
   dff dffl(count[0],countbar[0],clk ,rst,countbar[0]);
 dff dff2(count[1],countbar[1],count[0],rst,countbar[1]);
dff dff3(count[2],countbar[2],count[1],rst,countbar[2]);
 dff dff4(count[3],countbar[3],count[2],rst,countbar[3]);
```

endmodule

#### **TESTBENCH:-**

```
module async_counter_tb;
      // Inputs
      reg clk;
      reg rst;
      // Outputs
      wire [3:0] count;
      wire [3:0] countbar;
      // Instantiate the Unit Under Test (UUT)
      async_counter uut (
         .count (count),
          .countbar(countbar),
          .clk(clk),
          .rst(rst)
     );
initial
begin
   begin
     clk = 0;
      rst = 1;
     #23;// Just give enough time to reset the design
     rst = 0;
      #200;
     $finish;
end
    always #5 clk = ~clk;
endmodule
```

## RTL SCHEMATIC: -



#### **SYNTHESIS REPORT:-**

|         | t BlackBoxe  | в:      |      |
|---------|--------------|---------|------|
| -       |              |         | +    |
| B1      | ackBox name  | Instanc | es   |
| +-+     |              | +       | +    |
| +-+     |              | -+      | +    |
| Donor   | t Cell Usage |         |      |
|         | +            |         |      |
| i       | Cell  Co     |         |      |
| +       | +            |         |      |
| 11      | BUFG         | 1       |      |
| 12      | LUT1         | 4       |      |
| 13      | FDCE         | 4       |      |
| 4       | IBUF         | 2       |      |
| 15      | OBUF         | 81      |      |
| +       | +            | +       |      |
|         |              |         |      |
| _       | t Instance i |         |      |
| i       | Instance     |         |      |
| +       | +            | -+      | ++   |
| 11      |              | 1       |      |
|         | dffl         |         |      |
|         | dff2         |         |      |
|         | dff3         | _       |      |
| 4<br> 5 |              | dff 2   | 1 21 |

#### POWER REPORT: -

#### **Summary**

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 16.203 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 55.5°C

Thermal Margin: 29.5°C (15.5 W)
Effective \$JA: 1.9°C/W

Power supplied to off-chip devices: 0 W
Confidence level: Low

<u>Launch Power Constraint Advisor</u> to find and fix

invalid switching activity



# Q10. MOD-N UPDOWN COUNTER VERILOG CODE: -

```
'timescale lns / lps
module modN_counter
   # (parameter N = 10,
     parameter WIDTH = 4)
   ( input clk,
    input reset,
    input upordown,
    output reg[WIDTH-1:0] count);
   always @ (posedge clk )
   begin
    if (reset==1)
     count <= 0;
    if(upordown==1) //Up Mode is selected
         if (count == N-1)
      count <= 0;
     count<=count+1; //increment counter
   else
                     //Down Mode is selected
      if(count==0)
    count<=N-1;
      else
      count<=count-1; //Decrement the counter</pre>
```

end endmodule

#### **TESTBENCH:-**

```
`timescale lns / lps
module modN_updown_tb;
      reg clk;
      reg reset;
      reg upordown;
      wire [3:0] count;
      modN_counter uut (
          .clk(clk),
          .reset (reset),
          .upordown (upordown),
          .count (count)
      );
9
      initial begin
          clk = 0;
          reset = 1;
           #50 reset =0; upordown = 0;
          #200;
          upordown = 1;
        #200;
          reset = 1;
          upordown = 0;
          #100;
          reset = 0;
end)
  always #10 clk=~clk;
) initial
begin
  $monitor("UporDown=%b | Count=%b", upordown, count);
  #1000 $finish;
end
) endmodule
```

#### RTL SCHEMATIC: -



#### **SYNTHESIS REPORT:-**

Start Writing Synthesis Report Report BlackBoxes: | |BlackBox name |Instances | Report Cell Usage: |Cell |Count | 11 |BUFG | |LUT1 | 12 11 3| |LUT5 | 13 |FDRE | 14 4 I 3 I |IBUF | 15 |OBUF | 16 4 | Report Instance Areas: | | | | Instance | Module | Cells | |1 |top | | 16| Finished Writing Synthesis Report : Time (s): cpu = 00:00:18 ; elapsed = 00:00:22 . Memory (MB): peak = 1015.855 ; gain = 0.000

#### POWER REPORT: -

#### Summary



# Q11. UNIVERSAL BINARY COUNTER

#### **VERILOG CODE: -**

```
'timescale lns / lps
module univ_bin_counter
 # (parameter N=8)
 input wire clk, reset,
 input wire syn_clr , load, en, up,
 input wire [N-1:0] d,
 output wire max, min,
 output wire [N-1:0] q
 reg [N-1:0] r_reg, r_next;
always @(posedge clk, posedge reset)
if (reset)
r reg <= 0; //
 else
r reg <= r next;
always @(*)
if (syn_clr)
 r_next = 0;
else if (load)
 r_next = d;
else if (en & up)
 r next = r reg + 1;
else if (en & ~up)
 r_next = r_reg - 1;
 else
r_next = r_reg;
 assign q = r_reg;
 assign max = (r_reg==2**N-1) ? 1'b1 : 1'b0;
 assign min = (r_reg==0) ? 1'b1 : 1'b0;
endmodule
```

#### **TESTBENCH: -**

```
`timescale lns / lps
  module univ_bin_counter_tb;
   reg clk;
        reg reset;
        reg syn_clr;
        reg load:
        reg up;
reg [7:0] d;
        wire max;
        wire [7:0] q;
   univ_bin_counter uut (.clk(clk), .reset(reset), .syn_clr(syn_clr), .load(load), .en(en), .up(up), .d(d), .max(max), .min(min), .q(q));
        initial begin
             reset = 0;
              syn_clr = 0;
             load = 0;
en = 0;
             up = 0;
d = 0;
             #10 reset =1; syn_clr=1; load=1; en=1; up=1; d=1;
#10 reset =0; syn_clr=0; load=1; en=1; up=1; d=1;
#10 reset =0; syn_clr=0; load=0; en=1; up=1; d=1;
#400 reset =0; syn_clr=0; load=0; en=1; up=0; d=1;
        initial
        begin
        $monitor(" Reset=%b | Sync clr=%b | Load=%b| En=%b | Up=%b| D=%b | Q=%b",reset,syn clr,load,en,up,d,q);
- endmodule
```

## RTL SCHEMATIC:-



# **SYNTHESIS REPORT: -**

| Start Writing Syn | thesis Report |
|-------------------|---------------|
|                   |               |
| Report BlackBoxes |               |
| Report Didekbokes | •             |
| +-+               |               |
| •                 | ++            |

#### Report Cell Usage:

| +  |        | -+    |
|----|--------|-------|
| 1  | Cell   | Count |
| +  | +      | -+    |
| 1  | BUFG   | 1     |
| 12 | CARRY4 | 2     |
| 13 | LUT1   | 1 11  |
| 4  | LUT2   | 6     |
| 15 | LUT3   | 1 21  |
| 16 | LUT4   | 101   |
| 17 | LUT5   | 1 21  |
| 18 | FDCE   | 8     |
| 19 | IBUF   | 141   |
| 10 | OBUF   | 1 101 |
| +  | +      | -+    |

#### Report Instance Areas:

| i<br>- | Instance |   |   |   |
|--------|----------|---|---|---|
| 1      |          | ı |   |   |
| +      | +        | + | + | + |

Finished Writing Synthesis Report : Time (s): cpu = 00:00:26 ; elapsed = 00:00:34 . Memory (MB): peak = 1019.758 ; gain = 0.000

## POWER REPORT:-

#### Summary

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 3.709 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 32.0°C

Thermal Margin: 53.0°C (28.0 W)

Effective 9JA: 1.9°C/W

Power supplied to off-chip devices: 0 W
Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity



## Q12. UNIVERSAL SHIFT REGISTER

#### **VERILOG CODE: -**

```
'timescale lns / lps
module universal_shiftreg(DATAOUT, clock, reset, MODE, DATAIN);
   output reg [3:0] DATAOUT;
   input clock, reset;
   input [1:0] MODE;
   input [3:0] DATAIN;
   always @(posedge clock)
   begin
     if (reset)
       DATAOUT <= 0:
     else
         case (MODE)
           2'b00 : DATAOUT <= DATAOUT;
                                           // locked mode, do nothing
           2'b01 : DATAOUT <= {DATAIN[0], DATAIN[3:1]};//DATAOUT >> 1;
           2'b10 : DATAOUT <= {DATAIN[2:0], DATAIN[3]};//DATAOUT << 1;
           2'bll : DATAOUT <= DATAIN;
                                         // parallel in parallel out
         endcase
       end
   end
endmodule
```

#### TESTBENCH: -

```
`timescale lns / lps
  module univ_bin_counter_tb;
      reg clk;
       reg reset;
      reg syn clr;
      reg en;
      reg up;
       reg [7:0] d;
       wire max;
      wire min;
       wire [7:0] q;
       univ bin counter uut (.clk(clk), .reset(reset), .syn clr(syn clr), .load(load), .en(en), .up(up), .d(d), .max(max), .min(min), .q(q));
          clk = 0;
           reset = 0;
           syn_clr = 0;
           load = 0;
           en = 0;
           up = 0;
d = 0;
           #10 reset =1; syn_clr=1; load=1; en=1;up=1; d=1;
           #10 reset =0; syn_clr=0; load=1; en=1;up=1; d=1;
#10 reset =0; syn_clr=0; load=0; en=1;up=1; d=1;
           #400 reset =0;syn_clr=0 ; load=0; en=1;up=0; d=1;
      always #5 clk=~clk;
      begin
      $monitor(" Reset=%b | Sync_clr=%b | Load=%b| En=%b | Up=%b| D=%b | Q=%b",reset,syn_clr,load,en,up,d,q);
       #1000 $finish;
end
endmodule
```

## RTL SCHEMATIC:-



# **SYNTHESIS REPORT: -**

| -     | t BlackBoxes |     |  |
|-------|--------------|-----|--|
|       |              |     |  |
|       | ackBox name  |     |  |
|       |              |     |  |
|       |              | 7   |  |
| Repor | t Cell Usage | :   |  |
| ٠     | +            | +   |  |
|       | Cell  Cou    | int |  |
|       | +            | +   |  |
| 1     | BUFG         | 1   |  |
| 2     | LUT2         | 1   |  |
| 3     | LUT5         | 4   |  |
| 4     | FDRE         | 4   |  |
| 5     | IBUF         | 8   |  |
| 6     | OBUF         | 4   |  |
|       | +            | +   |  |
|       |              |     |  |
| _     | t Instance A |     |  |
|       | +            |     |  |
|       | Instance     |     |  |
|       |              |     |  |
|       | top<br>+     |     |  |

#### POWER REPORT:-

#### Summary

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power:

Design Power Budget:

Not Specified

N/A

Junction Temperature:

Thermal Margin:

Effective \$JA:

Power Supplied to off-chip devices:

Confidence level:

Low

Launch Power Constraint Advisor to find and fix

invalid switching activity

# Q13. CN( CHANGE-NO CHANGE FLIPFLOP) USING 2:1 MUX VERILOG CODE: -

```
module mux2X1(a,b,s,y);
input a,b,s;
output reg y;
always @(a or b or s)
begin
case(s)
0: y=a;
1:y=b;
default: y=1'b0;
endcase
end
endmodule
module d_ff(d,clk,reset,q);
input d, clk, reset;
output reg q;
always @(posedge clk)
begin
if (reset)
q=0;
else
q=d;
end
endmodule
module cn_flipflop(c,n,clk,q,qbar);
input c,n,clk;
output q,qbar;
wire cn, n bar, d wire;
mux2X1 mux1(1'b0,c,n,cn);
mux2X1 mux2(1'b1,1'b0,n,n_bar);
mux2X1 mux3(cn,n_bar,q,d_wire);
d_ff dffl( .d(d_wire),.clk(clk),.reset(),.q(q));
assign qbar=~q;
endmodule
```

### **TESTBENCH:-**

```
`timescale lns / lps module cn_flipflop_tb;
      reg c;
      reg n;
      reg clk;
      wire q,qbar;
      \verb|cn_flipflop uut (.c(c),.n(n),.clk(clk),.q(q),.qbar(qbar));\\
      initial begin
          c = 0;
          n = 0;
          clk = 0;
          #10 c=0;n=1;
          #10 c=1;n=0;
          #10 c=1;n=1;
      end
      always #5 clk=~clk;
      initial
      begin $monitor("C=%b | N=%b | Q=%b | Qbar=%b",c,n,q,qbar);
      #100 $finish;
      end
) endmodule
```

### RTL SCHEMATIC: -



### **SYNTHESIS REPORT:-**

Start Writing Synthesis Report Report BlackBoxes: | |BlackBox name |Instances | Report Cell Usage: |Cell |Count | 11 |BUFG | |LUT1 | 12 |LUT3 | 13 |FDRE | |IBUF | |OBUF | 2| Report Instance Areas: 11 |top | dffl |d\_ff | 12 Finished Writing Synthesis Report : Time (s): cpu = 00:00:24 ; elapsed = 00:00:34 . Memory (MB): peak = 1014.594 ; gain = 0.000

### POWER REPORT: -

#### Summary



# Q14.FREQUENCY DIVIDER BY ODD NUMBERS VERILOG CODE: -

```
`timescale lns / lps
module clk_div_odd
  #(parameter N=5)
  ( input clk_in,output clk_out);
 reg [3:0] count = 4'b0;
      A1 = 0;
  reg
         B1 = 0;
  reg
       Tff_A = 0;
 reg
      Tff_B = 0;
 reg
      clock_out;
 wire
 wire wTff_A;
 wire wTff_B;
 assign wTff_A = Tff_A;
 assign wTff_B = Tff_B;
 assign clk_out = wTff_B ^ wTff_A;
always@(posedge clk_in)

   begin

9
  if(count == N-1)
9
   begin
    count <= 4'b0000;
Ė
   end
   else
   begin
    count <= count + 1;
   end
É
end
always@(posedge clk_in)
9 begin
j if(count == 4'b0000)
   A1 <= 1;
   else
   A1 <= 0;
end
```

```
A1 <= 0;
end
always@(posedge clk_in)
begin
if(count == (N+1)/2)
   B1 <= 1;
  else
B1 <= 0;
end
| always@(negedge Al)
begin
  Tff_A <= ~Tff_A;
end
always@(negedge clk_in)
begin
if(B1)
begin
   Tff_B <= ~Tff_B;
end
end
endmodule
```

## TESTBENCH: -

```
`timescale lns / lps
module clk div odd tb;
     reg clk_in;
     wire clk out;
 clk_div_odd uut (
         .clk_in(clk_in),
          .clk_out(clk_out)
     );
    initial begin
        clk_in=1;
)
         end
     always #10 clk_in= ~clk_in;
    initial
     #200 $finish;
) endmodule
```

# RTL SCHEMATIC: -



### **SYNTHESIS REPORT: -**

|        | Writing Syr         |        | -     |
|--------|---------------------|--------|-------|
|        |                     |        |       |
| -      | t BlackBoxes        |        |       |
|        | ackBox name         |        |       |
|        |                     |        |       |
|        |                     |        |       |
|        |                     |        |       |
| leport | t Cell Usage        | :      |       |
|        | +                   | +      |       |
|        | Cell  Cou           | int    |       |
| ,      | +                   |        |       |
| 1      | BUFG                | 1      |       |
| 2      | LUT1                | 2      |       |
| 3      | LUT2                | 3      |       |
| 4      | LUT3                | 1      |       |
| 5      | LUT4                | 4      |       |
| 6      | FDRE                | 8 [    |       |
| 7      | IBUF                | 1      |       |
| 8      | OBUF                | 1      |       |
|        | +                   | +      |       |
|        |                     |        |       |
| -      | t Instance <i>l</i> |        |       |
|        | Instance            | Module | Cells |
|        | +<br> top           | -+<br> |       |
|        |                     |        | -++   |

## POWER REPORT: -

#### Summary

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 2.168 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 29.1°C

Thermal Margin: 55.9°C (29.5 W)

Effective 9JA: 1.9°C/W
Power supplied to off-chip devices: 0 W
Confidence level: Low

<u>Launch Power Constraint Advisor</u> to find and fix

invalid switching activity



# Q15. GREATEST COMMON DIVISOR USING BEHAVIOURAL MODELLING

## **VERILOG CODE: -**

```
`timescale lns / lps
module gcd_beh #( parameter W = 4)
  input [W-1:0] A, B,
  input clk, rst,
  output reg [W-1:0] GCD
  reg [W-1:0] Ain, Bin;
\ni always \emptyset (posedge clk or negedge rst)
9 begin
 Ain = A; Bin = B;
3 while( Ain != Bin)

  if ( Ain < Bin )</pre>
 Bin = Bin-Ain;
 else
Ain = Ain - Bin;
end
 GCD = Ain;
end
endmodule
```

### **TESTBENCH:-**

```
`timescale lns / lps
module gcd_beh_tb;
 parameter W=7;
     reg [W-1:0] A;
     reg [W-1:0] B;
     wire [W-1:0] GCD;
     gcd_beh uut (.A(A),.B(B),.GCD(GCD));
     initial begin
         A=90;B=86;
         #10 A=48; B=12;
          #10 A=65;B=4;
          #10 A=48;B=7;
         #10 A=8;B=2;
          #10 A=125;B=6;
          #10 A=85;B=76;
         #10 A=54;B=44;
         #10 A=95;B=32;
          #10 A=109;B=91;
          #10 A=75;B=34;
Ė
    end
Э
       initial
Э
          $monitor("A= %d | B=%d | GCD=%d", A,B,GCD);
         #200 $finish;
         end
endmodule
```

# Q16.SINGLE PORT RAM VERILOG CODE: -

```
module single_port_ram
#(parameter addr_width = 6,
parameter data_width = 8,
parameter depth = 64)
               input [data_width-1:0] data,
               input [addr_width-1:0] addr,
               input we,clk,
               output [data_width-1:0] q
reg [data_width-1:0] ram [depth-1:0];
reg [addr_width-1:0] addr_reg;
always @(posedge clk)
begin
if(we)
    ram[addr] <=data;
    else
        addr_reg <=addr;
assign q= ram[addr_reg];
endmodule
```

### **TESTBENCH:-**

```
'timescale lns / lps
module single port ram tb;
 parameter addr_width = 6;
 parameter data_width = 8;
 parameter depth = 64;
     reg [data_width-1:0] data;
     reg [addr_width:0] addr;
     reg we;
     reg clk;
     wire [data_width-1:0] q;
     single_port_ram uut (.data(data),.addr(addr), .we(we),.clk(clk),.q(q));
    initial begin
         clk=0;
         forever #5 clk=~clk;
end
initial begin
 data=8'h01;
 addr=5'd0;
 we=1'b1;
 #10
 data=8'h02;
  addr=5'd1;
 data=8'h03;
 addr=5'd2;
 #10;
  addr=5'd0;
 we=1'b0;
  #10;
  addr=5'd1;
 #10;
 addr=5'd2;
  #10;
end
endmodule
```

### RTL SCHEMATIC: -



### **SYNTHESIS REPORT:-**

|       |              | :      |      |
|-------|--------------|--------|------|
|       |              | +      | +    |
| Bla   | ackBox name  | Instan | ices |
|       |              |        |      |
| +-+   |              | +      | +    |
| enort | t Cell Usage |        |      |
| -     | +            |        | +    |
|       | Cell         | Count  | Ī    |
|       | +            | +      | +    |
| 1     | BUFG         | 1      | .1   |
| 12    | LUT1         | 1      | . [  |
| 3     | RAM64M       | 2      | 21   |
| 4     | RAM64X1D     | 1 2    | 11   |
|       | FDRE         |        |      |
|       | IBUF         |        |      |
|       | OBUF         |        |      |
|       | +            | +      | +    |
| enort | t Instance A | reag.  |      |
| -     | +            |        | -+   |
|       | Instance     |        |      |
|       | +            |        |      |
|       | top<br>+     |        | 1 3  |

### POWER REPORT: -



1017.363 ; gain = 0.000

### Q17. DUAL PORT RAM

### **VERILOG COD E: -**

```
module dual port ram
       # (parameter data_width=8,
           parameter addr_width=4,
             parameter depth=16
  ( input clk,
         input wr_en,
          input [data width-1:0] data in,
         input [addr_width-1:0] addr_in_0,
         input [addr_width-1:0] addr_in_1,
         input port_en_0,
         input port_en_1,
         output [data_width-1:0] data_out_0,
         output [data_width-1:0] data_out_1
     );
  reg [data_width-1:0] ram[0:depth-1];
always@(posedge clk)
begin
     if (port_en_0 == 1 && wr_en == 1)
         ram[addr in 0] <= data in;
end
  assign data_out_0 = port_en_0 ? ram[addr_in_0] : 'dZ;
  assign data_out_1 = port_en_1 ? ram[addr_in_1] : 'dZ;
endmodule
```

### **TESTBENCH: -**

```
module dual_port_ram_tb;
parameter addr_width = 4;
parameter data_width = 6;
parameter depth = 16;
integer i;
reg clk;
reg vr_en;
reg [data_width-1:0] addr_in_0;
reg [addr_width-1:0] addr_in_1;
reg parameter depth = 16;
integer i;
reg idata_width-1:0] addr_in_0;
reg [addr_width-1:0] addr_in_1;
reg port_en_0;
vire [data_width-1:0] data_out_0;
vire [data_width-1:0] data_out_0;
vire [data_width-1:0] data_out_0],
.data_out_0[data_out_0],
.da
```

### RTL SCHEMATIC: -



### **SYNTHESIS REPORT: -**

```
Start Writing Synthesis Report
Report BlackBoxes:
| |BlackBox name |Instances |
Report Cell Usage:
  |Cell |Count |
|1 |BUFG
      |LUT1
                  1|
13
     |LUT2
14
     |RAM16X1D |
    |IBUF |
|OBUFT |
15
                   20|
16
Report Instance Areas:
     |Instance |Module |Cells |
```

Finished Writing Synthesis Report : Time (s): cpu = 00:00:14 ; elapsed = 00:00:20 . Memory (MB): peak = 1018.852 ; gain = 0.000

### POWER REPORT:-

#### Summary

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 2.233 W
Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 29.2°C

Thermal Margin: 55.8°C (29.4 W)

Effective  $\vartheta JA$ : 1.9°C/W Power supplied to off-chip devices: 0 W

Confidence level: Low

 $\underline{\text{Launch Power Constraint Advisor}} \, \text{to find and fix}$ 

invalid switching activity



# Q18. CLOCK BUFFER

## **VERILOG CODE: -**

```
`timescale lns / lps
) module clock_buffer(mclk,bclk);
input mclk;
output bclk;
buf bl(bclk,mclk);
endmodule
```

### **TESTBENCH: -**

```
'timescale lns / lps
module clock buffer tb();
 reg mclk;
 wire bclk;
 realtime t1, t2, t3, t4, t5, t6;
 parameter T=10;
 clock_buffer dut(mclk,bclk);
initial
begin
 mclk=1'b0;
 forever #(T/2) mclk=~mclk;
end
task master;
begin
 @(posedge mclk) tl=$realtime;
 @(posedge mclk) t2=$realtime;
 t3=t2-t1;
end
endtask
task bufout;
begin
 @(posedge bclk) t4=$realtime;
 @(posedge bclk) t5=$realtime;
end
endtask
task freq phase;
 realtime f,p;
 f=t6-t3;
 p=t4-t1;
 $display("freq_diff=%0t,phase_diff=%0t",f,p);
end
endtask
initial
begin
fork master;
bufout;
join freq_phase;
endmodule
```

## RTL SCHEMATIC:-



# **SYNTHESIS REPORT: -**

| Report  | t BlackBoxes | ::    |   |          |
|---------|--------------|-------|---|----------|
| _       |              |       | + |          |
|         | ackBox name  |       |   |          |
|         |              |       |   |          |
| T-7     |              | T     | т |          |
| _       | t Cell Usage |       |   |          |
| +       | ++           |       |   |          |
| <br>+   | Cell  Cou    |       |   |          |
| 1       | IBUF         | 11    |   |          |
| 12      | OBUF         | 11    |   |          |
| +       | +            | +     |   |          |
| Report  | t Instance A | reas: |   |          |
| _       | +            |       | + | -+       |
| I       | Instance     |       |   |          |
| +<br> 1 | +<br> top    | +     |   | -+<br>21 |
| ΙI      | +            | 1     |   |          |

Finished Writing Synthesis Report : Time (s): cpu = 00:00:14 ; elapsed = 00:00:16 . Memory (MB): peak = 1015.395 ; gain = 0.000

### POWER REPORT:-

### Summary

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.333 W

Design Power Budget: Not Specified
Power Budget Margin: N/A

Junction Temperature: 25.6°C

Thermal Margin: 59.4°C (31.3 W)

Effective  $\vartheta JA$ : 1.9°C/W Power supplied to off-chip devices: 0 W

Confidence level: Low

<u>Launch Power Constraint Advisor</u> to find and fix

invalid switching activity



### Q19. SYNCHRONOUS FIFO

### **VERILOG CODE: -**

```
module sync_fifo (input [7:0] data_in, input clk, rst, rd, wr,
output empty, full, output reg [3:0]fifo cnt,
 output reg [7:0] data_out);
 reg [7:0] fifo_ram [0:7];
 reg [2:0] rd_ptr, wr_ptr;
assign empty= (fifo_cnt==0);
 assign full =(fifo_cnt==8);
always @(posedge clk) begin: write

∃ if (wr && ! full)

fifo_ram [wr_ptr] <= data_in;
else if (wr && rd)
- fifo_ram [wr_ptr] <= data_in;</pre>
end
//Read and Write Clock
always @ (posedge clk) begin: read
j if (rd && !empty)
data_out <= fifo_ram [rd_ptr];
∃ else if (rd && wr)
data_out <= fifo_ram [rd_ptr];
end
 //pointer block
3 always @(posedge clk) begin: pointer
if (rst) begin
wr_ptr <= 0;
rd ptr <= 0;
end
🗦 else begin
wr_ptr <= ((wr && ! full) || (wr && rd)) ? wr_ptr+1 :
```

```
wr_ptr;
rd_ptr <= ((rd && !empty) || (wr && rd)) ? rd_ptr+1:
rd_ptr;
end
end
//counter
always @(posedge clk) begin: count
if (rst) fifo_cnt <= 0;
else begin
case ({wr, rd})
2'b00: fifo_cnt <= fifo_cnt;
2'b01: fifo_cnt <= (fifo_cnt==0) ? 0: fifo_cnt-1;
2'bl0: fifo_cnt <= (fifo_cnt==8) ? 8: fifo_cnt+1;
2'bl1 : fifo_cnt <= fifo_cnt;
default: fifo_cnt <= fifo_cnt;
endcase
end
end
endmodule
```

### **TESTBENCH: -**

```
module sync_fifo_tb();
 reg clk, rst, wr, rd;
 reg[7:0] data_in;
 reg[7:0] tempdata;
 wire [7:0] data out;
 wire [3:0] fifo_cnt;
 sync_fifo fifo( .clk(clk), .rst(rst), .data_in(data_in), .data_out(data_out),
           .wr(wr), .rd(rd), .empty(empty),
           .full(full), .fifo_cnt(fifo_cnt));
) initial
begin
    clk = 0;
    rst = 1;
         rd = 0;
         wr = 0;
         tempdata = 0;
         data in = 0;
          #15 rst = 0;
         push(1);
          fork
            push (2);
            pop(tempdata);
         join
         push(10);
         push (20);
         push (30);
         push (40);
         push (50);
         push (60);
         push (70);
```

```
push (70);
          push(80);
          push (90);
          push (100);
          push (110);
          push (120);
          push (130);
          pop(tempdata);
          push(tempdata);
          pop(tempdata);
          pop(tempdata);
          pop(tempdata);
          pop(tempdata);
            push(140);
          pop(tempdata);
          push(tempdata);//
          pop(tempdata);
          push(5);
          pop(tempdata);
end)
3 always
#5 clk = ~clk;
```

```
always
   #5 clk = ~clk;
 task push;
 input[7:0] data;
   if(full)
           $display("---Cannot push: FIFO Full---");
        else
        begin
          $display("Pushed ",data);
          data_in = data;
          wr= 1;
              @(posedge clk);
               #1 wr = 0;
        end
endtask
 task pop;
 output [7:0] data;
   if( empty )
           $display("---Cannot Pop: FIFO Empty---");
   else
       begin
     rd = 1;
         @(posedge clk);
         #1 rd = 0;
         data = data_out;
          $display("-----Poped ", data);
endtask
         end
```

# RTL SCHEMATIC:-



# **SYNTHESIS REPORT: -**

| Start W                                       | Writing S       |     | thesis R   | _    |      |
|-----------------------------------------------|-----------------|-----|------------|------|------|
| -                                             | BlackBox        |     |            |      |      |
| +-++<br>   BlackBox name  Instances  <br>+-++ |                 |     |            |      |      |
|                                               |                 |     |            |      |      |
| +-+                                           |                 |     |            | +    |      |
| _                                             | Cell Usa        | _   |            |      |      |
| 1                                             | Cell            |     |            |      |      |
|                                               | +               |     |            |      |      |
| 1<br> 2                                       | BUFG<br> LUT2   | •   | 1 <br>3    |      |      |
|                                               | LUT3            |     | 21         |      |      |
|                                               | LUT4            |     | 4          |      |      |
|                                               | LUT5            |     | 41         |      |      |
|                                               | LUT6<br> RAM32M |     | 4 I<br>2 I |      |      |
|                                               | FDRE            |     | 18         |      |      |
| 19                                            | IBUF            | I   | 12         |      |      |
| 10                                            | OBUF            |     | 14         |      |      |
| +                                             | -+              | +   | +          |      |      |
| _                                             | Instance        |     |            |      |      |
| l                                             | Instance        | e I | Module     | Cell | ls   |
|                                               | -+<br> top      |     |            |      | 64 I |
| +                                             | -+              |     | +          | +    | +    |

### POWER REPORT:-

### Summary

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 3.239 W
Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 31.1°C

Thermal Margin: 53.9°C (28.4 W)

Effective \$JA: 1.9°C/W
Power supplied to off-chip devices: 0 W
Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity



# Q20. PRIORITY ENCODER VERILOG CODE: -

```
module pri_en(d,y,en);
input [7:0] d;
input en;
output [2:0] y;
reg [2:0] y;
always @(d or en )
begin
if(en)
begin
casex(d)
8'b00000001:y=3'b000;
8'b0000001x:y=3'b001;
8'b000001xx:y=3'b010;
8'b00001xxx:y=3'b011;
8'b0001xxxx:y=3'b100;
8'b001xxxxx:y=3'b101;
8'b01xxxxxx:y=3'b110;
8'blxxxxxxx:y=3'bl11;
endcase
end
else
begin
y=3'bxxx;
end
endmodule
```

### **TEST BENCH:-**

```
module pri_en_tb();
reg [7:0] d;
reg en;
wire [2:0] y;
pri_en dut(d,y,en);
initial
begin
en=1'b1;
d=8'b00000001; #10;
d=8'b00000011; #10;
d=8'b00000101; #10;
d=8'b00001001; #10;
d=8'b00010001; #10;
d=8'b00110001; #10;
d=8'b01110001; #10;
d=8'b11001001; #10;
#10 d=8'b10111001;
#10 d=8'b00101010;
#10 d=8'b00000001;
#10 d=8'b10100010;
end
initial
$monitor("Input %8b | Output %3b | Enable %b ",d,y,en);
initial #100 $finish;
endmodule
```

### RTL SCHEMATIC: -



### **SYNTHESIS REPORT:-**



### **POWER REPORT: -**



## Q21. SEVEN SEGMENT DISPLAY USING ROM

### **VERILOG CODE: -**

```
module ROM_sevenSegment
  parameter addr_width = 16,
  addr bits = 4,
  data width = 7
  )
  (
 input wire [addr_bits-1:0] addr,
 output reg [data_width-1:0] data
always @*
begin
case (addr)
  4'b00000 : data = 7'b10000000;
  4'b0001 : data = 7'b1111001;
  4'b0010 : data = 7'b0100100;
  4'b0011 : data = 7'b0110000;
  4'b0100 : data = 7'b0011001;
  4'b0101 : data = 7'b0010010;
  4'b0110 : data = 7'b00000010;
  4'b0111 : data = 7'b1111000;
  4'b1000 : data = 7'b00000000;
  4'b1001 : data = 7'b0010000;
  4'b1010 : data = 7'b0001000;
    4'b1011 : data = 7'b00000011;
     4'b1100 : data = 7'b1000110;
   4'b1101 : data = 7'b0100001;
  4'b1110 : data = 7'b0000110;
  default : data = 7'b0001110;
) endcase
) end
) endmodule
```

### **TESTBENCH:-**

```
`timescale lns / lps
module ROM_sevenSegment_Test
   ();
   reg [3:0] SW;
  wire [6:0] HEX0;
  wire [6:0] LEDR;
  integer i;
  wire [6:0] data;
  ROM_sevenSegment seven_segment_ROM(.addr(SW), .data(data));
) initial begin
for(i=0;i<16;i=i+1)</pre>
begin
  SW=i;
  #10;
end end
end end
-) assign HEX0 = data;
  assign LEDR = data;
endmodule
```

### RTL SCHEMATIC: -



### **SYNTHESIS REPORT:-**

### **POWER REPORT: -**

#### Summary

derived from constraints files, simulation files or vectorless analysis. Total On-Chip Power: 2.649 W Design Power Budget: Not Specified N/A Power Budget Margin: Junction Temperature: 30.0°C Thermal Margin: 55.0°C (29.0 W) Effective 9JA: 1.9°C/W Power supplied to off-chip devices: 0 W Confidence level: Launch Power Constraint Advisor to find and fix invalid switching activity

Power analysis from Implemented netlist. Activity



## Q22. SERIAL ADDER

# VERILOG CODE: -

```
`timescale lns / lps

¬ module serial_adder
     ( input clk, reset,
          input a,b,cin,
         output reg s, cout
         );
 reg c,flag;
always@(posedge clk or posedge reset)
begin
     if(reset == 1) begin
         s = 0;
         cout = c;
         flag = 0;
    end else begin
         if(flag == 0)
         begin
             c = cin;
             flag = 1;
         end
         cout = 0;
         s = a ^ b ^ c;
         c = (a \& b) | (c \& b) | (a \& c);
      end
end
endmodule
```

### **TESTBENCH:-**

```
module serial_adder_tb();
   reg clk;
   reg reset;
   reg a;
   reg b;
   req cin;
   wire s;
   wire cout;
   serial_adder uut ( .clk(clk), .reset(reset), .a(a), .b(b), .cin(cin), .s(s), .cout(cout));
       #5 clk = ~clk;
   initial begin
       clk = 1; reset = 0;
       a = 0; b = 0; cin = 0; reset = 1;
       reset = 0;
       a = 1; b = 1; cin = 1;
                                #10;
       a = 1; b = 0; cin = 0; #10;
       a = 1; b = 1; cin = 0; #10;
       a = 1; b = 1; cin = 0; #10;
       reset = 1;
       #10;
       reset = 0;
       a = 1; b = 1; cin = 1;
                               #10;
       a = 1; b = 0; cin = 0; #10;
       a = 0; b = 0; cin = 0; #10;
       a = 1; b = 0; cin = 0; #10;
       a = 1; b = 1; cin = 0; #10;
       reset = 1;
       #10;
   end
    initial $monitor(" A=%b | B=%b | Cin=%b | Sum=%b | Cout=%b | Clock =%b",a,b,cin,s,cout,clk);
endmodule
```

### RTL SCHEMATIC: -



### **SYNTHESIS REPORT:-**

Start Writing Synthesis Report Report BlackBoxes: | |BlackBox name |Instances | Report Cell Usage: |Cell |Count | 11 IBUFG | 11 LLUT2 | 12 31 |LUT5 | 13 11 ILUT6 | 14 11 15 I FDCE 21 16 I FDPE I 11 17 | FDRE | 11 18 ILDC I 11 19 | IBUF | 51 110 IOBUF I 21 Report Instance Areas: |Instance |Module |Cells | --+-----|1 |top | | 18| Finished Writing Synthesis Report : Time (s): cpu = 00:00:20 ; elapsed = 00:00:28 . Memory (MB): peak = 1014.773 ; gain = 0.000

### **POWER REPORT: -**

### Summary

Power analysis from Implemented netiist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 0.618 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 26.2°C

Thermal Margin: 58.8°C (31.0 W)

Effective 9JA: 1.9°C/W
Power supplied to off-chip devices: 0 W
Confidence level: Low

<u>Launch Power Constraint Advisor</u> to find and fix invalid switching activity



# Q23. FIXED PRIORITY ARBITER VERILOG CODE: -

```
module fixedpriority_arbiter(output reg [3:0] GNT,
            input [3:0] REQ,
            input clk, reset
);
 always @(posedge clk or negedge reset)
 // PRIORITY 3>1>0>2
    begin
    if(!reset)
    GNT<= 4'b0000;
    else if(REQ[3])
     GNT<= 4'b1000;
    else if(REQ[1])
     GNT<= 4'b0010;
    else if(REQ[0])
     GNT<= 4'b0001;
    else if(REQ[2])
     GNT<= 4'b0100;
      else
     GNT<= 4'b0000;
     end
endmodule
```

### **TESTBENCH:-**

```
`timescale lns / lps
module fixedpriority_arbiter_tb();
 wire [3:0] GNT;
 reg [3:0] REQ;
  reg clk, reset ;
  fixedpoint_arbiter dut(.GNT(GNT),.REQ(REQ),.clk(clk),.reset(reset));
j initial
clk=0;
 always #4 clk <= ~clk ;
j initial
begin
 reset =0;
 #4 reset =1;
9 repeat (20)
begin
} #5 REQ<=$random();</pre>
end
#100 $finish();
end
j initial begin
 $monitor("REQ=%b,GNT=%b,reset=%b",REQ,GNT,reset);
endmodule
```

### RTL SCHEMATIC: -



### **SYNTHESIS REPORT:-**

| tart  | Writing Syn   | thesis R | eport |
|-------|---------------|----------|-------|
|       |               |          |       |
| lanor | t BlackBoxes  |          |       |
| _     |               |          | +     |
|       | ackBox name   |          |       |
|       |               |          |       |
|       |               | +        | +     |
|       |               |          |       |
| _     | rt Cell Usage |          |       |
|       | +             |          |       |
|       | Cell  Cou     |          |       |
| 1     | BUFG          |          |       |
| 2     | LUT1          | 11       |       |
| 3     | LUT2          |          |       |
| 14    | LUT3          |          |       |
| 15    | LUT4          |          |       |
| 6     | FDCE          | 4        |       |
| 7     | IBUF          | 61       |       |
| 8     | OBUF          | 4        |       |
|       | +             | +        |       |
|       |               |          |       |
| -     | rt Instance A |          |       |
|       | +             |          |       |
|       | Instance      |          |       |
| 1     | top           |          |       |
|       |               |          | 1 151 |

### POWER REPORT: -

### Summary

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 0.861 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 26.6°C

Thermal Margin: 58.4°C (30.8 W)

Effective 9JA: 1.9°C/W

Power supplied to off-chip devices: 0 W
Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity



## Q24. ROUND ROBIN ARBITER

### **VERILOG CODE: -**

```
`timescale lns / lps
module roundrobin_arbiter(
 input clk, rst_n,
  input [3:0] REQ,
  output reg [3:0] GNT
     );
      reg[2:0] pr_state;
      reg[2:0] nxt state;
     parameter [2:0] Sideal = 3'b000;
     parameter [2:0] S0 = 3'b001;
     parameter [2:0] S1 = 3'b010;
     parameter [2:0] S2 = 3'b011;
     parameter [2:0] S3 = 3'b100;
     always @(posedge clk or negedge rst_n)
-]
     begin
9
      if(!rst n)
      pr_state <= Sideal;
      else
Ð
       pr_state <=nxt_state;
Ð
      end
9
     always@(*)
9
     begin
9
           case (pr_state)
9
             Sideal:
9
                      begin
9
                          if(REQ[0])
                              nxt_state = S0;
9
                          else if (REQ[1])
                               nxt_state = S1;
                          else if (REQ[2])
                             nxt state = S2;
```

```
always@(*)
begin
      case (pr_state)
        Sideal:
                begin
                     if(REQ[0])
                        nxt_state = S0;
                     else if (REQ[1])
                        nxt_state = S1;
                     else if (REQ[2])
                       nxt_state = S2;
                     else if (REQ[3])
                       nxt_state = S3;
                        nxt_state =Sideal;
                 end
           S0:
                begin
                    if (REQ[1])
                       nxt_state = S1;
                     else if (REQ[2])
                       nxt_state = S2;
                     else if (REQ[3])
                        nxt_state = S3;
                     else if(REQ[0])
                        nxt_state =S0;
                     else
                        nxt_state =Sideal;
                 end
           S1:
                 begin
                     if (REQ[2])
                       nxt_state = S2;
                    else if (REQ[3])
```

```
S1:
     begin
          if (REQ[2])
            nxt_state = S2;
          else if (REQ[3])
              nxt_state = S3;
          else if(REQ[0])
             nxt_state =S0;
           else if (REQ[1])
            nxt state = S1;
            else
             nxt_state =Sideal;
      end
S2:
     begin
        if (REQ[3])
             nxt_state = S3;
         else if(REQ[0])
             nxt_state =S0;
            else if (REQ[1])
            nxt_state = S1;
             else if (REQ[2])
             nxt state = S2;
            else
             nxt_state =Sideal;
      end
  S3:
      begin
             if(REQ[0])
             nxt_state =S0;
            else if (REQ[1])
            nxt_state = S1;
             else if (REQ[2])
             nxt_state = S2;
            else if (REQ[3])
```

```
nxt_state = S2;
Э
                           else if (REQ[3])
                              nxt state = S3;
                            else
É
                               nxt_state =Sideal;
É
                      end
É
         endcase
-) end
Э
      always @(*)
       begin
9
          case (pr_state)
          S0: GNT=4'b0001;
          S1: GNT=4'b0010;
          S2: GNT=4'b0011;
          S3: GNT=4'b0100;
          default: GNT=4'b00000;
          endcase
end end
endmodule
```

### **TESTBENCH: -**

```
`timescale lns / lps
module roundrobin_arbiter_tb();
   reg clk;
   reg rst n;
    reg [3:0] REQ;
   wire [3:0] GNT;
   roundrobin_arbiter DUT(.clk(clk), .rst_n(rst_n), .REQ(REQ), .GNT(GNT));
   always #5 clk = ~clk;
   initial begin
     clk = 0;
     rst_n = 1;
     REQ = 4'b0;
     #5 rst_n = 1;
     @(negedge clk) REQ = 4'b1000;
      @(negedge clk) REQ = 4'b1010;
     @(negedge clk) REQ = 4'b0010;
     @(negedge clk) REQ = 4'b0110;
     @(negedge clk) REQ = 4'bl110;
      @(negedge clk) REQ = 4'bllll;
      @(negedge clk) REQ = 4'b0100;
      @(negedge clk) REQ = 4'b0010;
      #5 rst_n = 0;
      #100 $finish;
Ð
   end
   endmodule
```

### RTL SCHEMATIC:-



# **SYNTHESIS REPORT: -**

Start Writing Synthesis Report

#### Report BlackBoxes:

+-+----+
| |BlackBox name |Instances |
+-+-----+

### Report Cell Usage:

| +  | -+    | ++    |
|----|-------|-------|
| 1  | Cell  | Count |
| +  | -+    | ++    |
| 1  | BUFG  | 1     |
| 12 | LUT1  | 1     |
| 13 | LUT2  | 2     |
| 4  | LUT3  | 2     |
| 15 | LUT5  | 1     |
| 16 | LUT6  | 4     |
| 17 | MUXF7 | 2     |
| 18 | FDCE  | 3     |
| 19 | IBUF  | 6     |
| 10 | OBUF  | 4     |
| +  | -+    | ++    |

### Report Instance Areas:

| İ | Instance |   |    | • |
|---|----------|---|----|---|
|   | top      | I | 26 |   |
| + | +        | + | +  | 4 |

Finished Writing Synthesis Report : Time (s): cpu = 00:00:19 ; elapsed = 00:00:25 . Memory (MB): peak = 1017.727 ; gain = 0.000

### POWER REPORT:-

### Summary

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 1.408 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 27.7°C

Thermal Margin: 57.3°C (30.3 W)
Effective \$JA: 1.9°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity

