Problem Set 5

Aaron Wang

February 27 2024

1. Find and explain the flaw(s) in this argument.

We prove every nonempty set of people all have the same age.

Proof. We denote the age of a person p by $\alpha(p)$.

Basis Step:

Suppose $P = \{p\}$ is a set with one person in it. Clearly, all the people in P have the same age as each other.

Inductive Step:

Let $k \in \mathbb{N}_+$ and suppose any set of k-many people all have the same age. Let $P = \{p_1, p_2, \dots p_k, p_{k+1}\}$ be a set with k+1 people in it. Consider $L := \{p_1, \dots p_k\}$ and $R := \{p_2, \dots p_{k+1}\}$. Since L and R both have k people, we know everyone in these sets has the same age by the *inductive hypothesis*.

Let $\ell, r \in P$. If $\ell \in L \land r \in L$, then $\alpha(\ell) = \alpha(r)$. Similarly, if $\ell \in R \land r \in R$, then $\alpha(\ell) = \alpha(r)$. Now, suppose $\ell \in L \land r \in R$.

$$\alpha(\ell) = \alpha(p_1) = \alpha(p_2) = \alpha(p_{k+1}) = \alpha(r)$$

So, all people in P have the same age.

Therefore, everyone on Earth has the same age.

Q.E.D.

The argument wants to prove $\forall n(\varphi(n))$ where n is a nonempty set. However, the inductive step iterates over the size of each set rather than each set. In other words, the inductive step considers a set of k people for all k, but not all sets of k people.

In addition to that, the inductive step falsely assumes that $p_2 \in L$ for every case $(p_2 \notin L \text{ when k=1})$. As such, it makes a false claim that $\alpha(p_1) = \alpha(p_2)$.

2. Show that $\forall x (x \neq x \cup \{x\})$.

Proof. Let x be an arbitrary set. Let $y := x \cup \{x\}$. By definition of union, we know that $y = \{z | z \in x \lor z \in \{x\}\}$. To show that $x \neq y$, we must find an element that is in one set but not the other (extensionality). Looking at y, we see that $x \in y$ but looking at x, we see that $x \notin x$. Therefore, since there is an element in y that is not in x, $y \neq x$ and as such $x \neq x \cup x$.

- 3. We will work up to a proof of the commutativity of addition on \mathbb{N} .
 - (a) Show $(\forall x \in \mathbb{N})(x+0=0+x)$.

Proof. Proof by mathematical induction.

Basis Step:

Need to show 0 + 0 = 0 + 0

$$0 + 0 = 0 + 0$$

Inductive Step:

Let $x \in \mathbb{N}$ and assume that x + 0 = 0 + x.

Need to show S(x) + 0 = 0 + S(x)

$$\mathbb{S}(x) + 0 = \mathbb{S}(x)$$
 By + Rule 1

$$= \mathbb{S}(x+0)$$
 By + Rule 1

$$= \mathbb{S}(0+x)$$
 By IH

$$= 0 + \mathbb{S}(x)$$
 By + Rule 2

Thus by mathematical induction, we can conclude $(\forall x \in \mathbb{N})(x+0=0+x)$.

Q.E.D.

(b) Show $(\forall x, y \in \mathbb{N})(x + \mathbb{S}(y) = \mathbb{S}(y) + x)$.

Proof. Let $x, y \in \mathbb{N}$ and assume that x + y = y + x. Need to show $x + \mathbb{S}(y) = \mathbb{S}(y) + x$

$$x + \mathbb{S}(y) = \mathbb{S}(x + y)$$
 By + Rule 2

$$= \mathbb{S}(y + x)$$
 By IH

$$= y + \mathbb{S}(x)$$
 By + Rule 2

$$= y + 1 + x$$
 By Theorem 2

$$= \mathbb{S}(y) + x$$
 By Theorem 1

Q.E.D.

(c) Show $(\forall x, y \in \mathbb{N})(x + y = y + x)$.

Proof. Proof by mathematical induction.

Basis Step: We can conclude x+0=0+x by 3a Inductive Step: We can conclude $x+\mathbb{S}(y)=\mathbb{S}(y)+x$ by 3b

Thus by mathematical induction, we can conclude $(\forall x, y \in \mathbb{N})(x + y = y + x)$.

4. Show $(\forall x, y, z \in \mathbb{N})(x \cdot (y+z) = (x \cdot y) + (x \cdot z))$.

Proof. Proof by mathematical induction

Basis Step:

Let $x, y \in \mathbb{N}$. Need to show $x \cdot (y + 0) = (x \cdot y) + (x \cdot 0)$.

$$x \cdot (y+0) = x \cdot y$$
 By + Rule 1
= $(x \cdot y) + 0$ By + Rule 1
= $(x \cdot y) + (x \cdot 0)$ By · Rule 1

 $Inductive\ Step:$

Let $x, y, z \in \mathbb{N}$ and assume $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$. Need to show $x \cdot (y + \mathbb{S}(z)) = (x \cdot y) + (x \cdot \mathbb{S}(z))$.

$$x \cdot (y + \mathbb{S}(z)) = x \cdot \mathbb{S}(y + z)$$
 By + Rule 2

$$= x \cdot (y + z) + x$$
 By · Rule 2

$$= (x \cdot y) + (x \cdot z) + x$$
 By IH

$$= (x \cdot y) + (x \cdot \mathbb{S}(z))$$
 By · Rule 2

Therefore by mathematical induction, we can conclude $(\forall x,y,z\in\mathbb{N})(x\cdot(y+z)=(x\cdot y)+(x\cdot z))$. Q.E.D.

5. Prove the following statement for all $n \in \mathbb{N}$.

$$1 + \sum_{i=0}^{n} 2^{i} = 2^{n+1}$$

Proof. Proof by mathematical induction

Basis Step:

Need to show $1 + \sum_{i=0}^{0} 2^i = 2^{0+1}$.

$$\begin{array}{lll} 1 + \sum_{i=0}^{0} 2^i = 1 + 2^0 & & \text{By } \sum \text{Rule } 1 \\ & = 1 + 1 & & \text{By } n^m \text{ Rule } 1 \\ & = \mathbb{S}(1) & & \text{By Theorem} \\ & = 2 & & \text{By Def of } \mathbb{S}(n) \\ & = 2 + 0 & & \text{By } + \text{Rule } 1 \\ & = 0 + 2 & & \text{By Comm.} \\ & = (2 \cdot 0) + 2 & & \text{By } \cdot \text{Rule } 1 \\ & = 2 \cdot \mathbb{S}(0) & & \text{By } \cdot \text{Rule } 2 \\ & = 2 \cdot 1 & & \text{By Def of } \mathbb{S}(n) \\ & = 2 \cdot 2^0 & & \text{By } n^m \text{ Rule } 1 \\ & = 2^{\mathbb{S}(0)} & & \text{By } n^m \text{ Rule } 1 \\ & = 2^{\mathbb{S}(0)} & & \text{By } n^m \text{ Rule } 2 \\ & = 2^1 & & \text{By Def of } \mathbb{S}(n) \\ & = 2^{0+1} & & \text{By Theorem} \end{array}$$

$$\begin{array}{l} \textit{Inductive Step:} \\ \textit{Assume } 1 + \sum_{i=0}^n 2^i = 2^{n+1}. \\ \textit{Need to show } 1 + \sum_{i=0}^{\mathbb{S}(n)} 2^i = 2^{\mathbb{S}(n)+1}. \end{array}$$

$$\begin{aligned} 1 + \sum_{i=0}^{\mathbb{S}(n)} 2^i &= 1 + \sum_{i=0}^n 2^i + 2^{\mathbb{S}(n)} & \text{By } \sum \text{Rule } 2 \\ &= 2^{n+1} + 2^{\mathbb{S}(n)} & \text{By IH} \\ &= 2^{\mathbb{S}(n)} + 2^{\mathbb{S}(n)} & \text{By Def of } \mathbb{S}(n) \\ &= 2^{\mathbb{S}(n)} + 0 + 2^{\mathbb{S}(n)} & \text{By + Rule } 1 \\ &= 2^{\mathbb{S}(n)} + (2^{\mathbb{S}(n)} \cdot 0) + 2^{\mathbb{S}(n)} & \text{By \cdot Rule } 1 \\ &= 2^{\mathbb{S}(n)} + (2^{\mathbb{S}(n)} \cdot \mathbb{S}(0)) & \text{By \cdot Rule } 2 \\ &= 2^{\mathbb{S}(n)} + (2^{\mathbb{S}(n)} \cdot 1) & \text{By Def of } \mathbb{S}(n) \\ &= (2^{\mathbb{S}(n)} \cdot 1) + 2^{\mathbb{S}(n)} & \text{By Comm.} \\ &= (2^{\mathbb{S}(n)} \cdot \mathbb{S}(1)) & \text{By Comm.} \\ &= 2^{\mathbb{S}(n)} \cdot 2 & \text{By Def of } \mathbb{S}(n) \\ &= 2 \cdot 2^{\mathbb{S}(n)} & \text{By Comm.} \\ &= 2^{\mathbb{S}(\mathbb{S}(n))} & \text{By } n^m \text{ Rule } 2 \\ &= 2^{\mathbb{S}(n)+1} & \text{By Def of } \mathbb{S}(n) \end{aligned}$$

Therefore by mathematical induction, we can conclude $1 + \sum_{i=0}^{n} 2^{i} = 2^{n+1}$.

6. We say x is \in -transitive by definition when $(\forall y \in x)(\forall z \in y)(z \in x)$. Show that every natural number is \in -transitive.

Proof. Proof by mathematical induction.

Basis Step:

Let $y, z \in \mathbb{N}$

Need to show: 0 is \in -transitive or $(\forall y \in 0)(\forall z \in y)(z \in 0)$.

Assume that $y \in 0$ and $z \in y$. By the recursive definition of natural numbers, $0 := \emptyset$. This means that $y \in \emptyset$. However, as the empty set is empty, $y \notin \emptyset$. Thus, we can conclude by the explosion theorem that $z \in \emptyset$. Consequently, 0 is \in -transitive.

Inductive Step:

Let $n, y, z \in \mathbb{N}$ and assume $(\forall y \in n)(\forall z \in y)(z \in n)$.

Need to show $(\forall y \in \mathbb{S}(n))(\forall z \in y)(z \in \mathbb{S}(n))$.

Let $y \in \mathbb{S}(n)$ and $z \in y$. First, observe that by definition, $\mathbb{S}(n) = n \cup \{n\}$. This means that $y \in n \lor y \in \{n\}$. Now let's consider these as two cases.

 $y \in n$:

We can see that $z \in n$ by inductive hypothesis.

 $y \in \{n\}$:

Since $y \in \{n\}$, we can see that y = n. Since we know that $z \in y$, we know that $z \in n$ by extensionality. Furthermore, since $\mathbb{S}(n) = n \cup \{n\}$, we know that $z \in \mathbb{S}(n)$.

As such, by mathematical induction, we can conclude that $(\forall y \in x)(\forall z \in y)(z \in x)$.