Tarea 2 Métodos Computacionales

Valeria Martín Hernández Mayo 2019

1. Ejercicio 2: Transformadas de Fourier

En el ejercicio de Fourier, debe incluir todas las gráficas y debe explicar lo que observa en las gráficas. Debe en particular describir lo que observa en las gráficas de espectrogramas (tambien llamados time frequency plots).

1.1. Signal.dat y signalSuma.dat:

1.1.1. Grafica general

Figura 1: Grafica de las seniales.

1.1.2. Grafica de la transforma de fourier para las seniales

Figura 2: Grafica de las transformadas de fourier para las dos primeras seniales.

1.1.3. Espectograma

Figura 3: Espectogramas de las dos primeras seniales.

1.2. Temblor.txt:

1.2.1. Grafica general

Figura 4: Grafica de los datos de temblor.txt

1.2.2. Grafica transformada de fourier

Figura 5: Grafica de las transformada de fourier de los datos de temblor.txt

1.2.3. Espectograma

Figura 6: Espectograma del temblor

2. Ejercicio 2: Ecuaciones diferenciales ordinarias

Debe incluir además un análisis de sus resultados. Por ejemplo hable de resonancia, del número de picos, describa las graficas de amplitudes para resonancia y no resonancia, etc....

2.1. Primera grafica para

Figura 7: Desplazamiento del edificio en el tiempo

$2.2.\,$ Grafica de las mayores amplitudes para cada uno de los 100 omegas generados

Figura 8: Mayores amplitudes para cada omega

2.3. Grafica de los cuatro omegas

Los omegas se escogieron al revisar la figura 8. Estos omegas se pueden revisar tanto en Plotshw2.py como en Edificio.cpp.

Figura 9: Desplazamiento para omega=4.04266

Figura 10: Desplazamiento para omega=0.402837

Figura 11: Desplazamiento para omega=3.92266

Figura 12: Desplazamiento para omega=2.32274