

1	GNTCTAGAANTAA	GTGGATCCCCC	GGGCTTGAGGAA	TTCGACCGGGCC	CTGGAAGGGCTC	TGGTGGGGCTGA
	CNAGATCTTNA	CACCTAGGGGG	CCCGACGTCCCT	AAGGTGCGGGG	GACCTTCCCGAG	ACCACCCCGACT
73	GCCGCTGTGCCG	GGGGGGGGGGC	ACAGCAGGAAGC	AGGTCCGGTGG	GGGCTGGGGCA	TCAGCTAACCGGC
	CGCGAGACGGG	CCCCCGGCGG	TGTGTCCTTCG	TCCAGGGCCACC	CGGACCCCCGT	AGTCGATGGCCC
145	GTGGTCCGGGT	GAAGAGCCAGGC	AGCCAAGGAGC	CACCCGGGGGG	TGGGGCAGCTTG	GGGAGATTGGTG
	CACCAGGGCCGA	CTTCTCGGTCCG	TGTTTCCGTGC	GTGGGGCCCC	ACCGGCTGAAC	CCCCTCAACCAC
217	CCCGCCCCCA	GGCCTTGGGGG	GTATGGGGCCC	CCCCATTCTGGG	CGGGGGGGGTG	CGAGTCGGGGCC
	GGGGGGGGGT	CGGAAACGGCC	CAGTACCCGGG	GGGGTAAGACCC	GCCCCCCCGCAC	GCTCAGCCCCGG
1	MetGlyPro	ProHisSerGly	ProGlyGlyVal	ArgValGlyAla		
289	CTGCTGCTGCTG	GGGGTTTGGG	CTGGTGTCTGGG	CTCAGCCTGGAG	CCTGTCCTACTGG	AACTCGGGGAAT
	GACGACGAC	CCCCAAACCCC	GACCACAGACCC	GAGTCGGACCTC	GCACAGATGACC	TTGAGGCCGCTTA
16	LeuLeuLeu	GlyValLeuGly	LeuValSerGly	LeuSerLeuGlu	ProValTyrrTerp	AsnSerAlaAsn
361	AAGAGGGTTCAG	GCAAGGGTGGT	TATGTGCTGTAC	CCCTCAGATCGGG	GACGGGCTAGAC	CTGCTCTGGCCC
	TTCCTCCAAGGTC	CGTCTCCACCA	ATACACGACATG	GGAGTCTAGCCC	CTGGCCGATCTG	GACGAGACGGGG
40	LysArgPheGln	AlaGluGlyGly	TyrValLeuTyr	ProGlnIleGly	AspArgLeuAsp	IleLeuCysPro
433	CGGGCCCCGCT	CCTGGCCCTCAC	TCTCTCCATAAT	TATGAGTTCTAC	AAGCTGTACCTG	GTAGGGGGTGTCT
	GCCGGGGCGGA	GGACGGGGAGTG	AGGAGGGATTAA	ATACTCAAGATG	TTCGACATGGAC	CATCCCCCACGA
64	ArgAlaArgPro	ProGlyProHis	SerSerProAsn	TyrGlupHeter	LysLeuTyrlLeu	ValGlyGlyAla
505	CAGGGGGGGC	TGTGAGGCC	CCTGGCCCCAAC	CTCCCTTCTCACT	TGTGATGCCCA	GACCTGGATCTC
	GTCCGGGGCGG	ACACTCCGTGGG	GGACGGGGTTTG	GAGGAAGAGTGA	ACACTAGGGGT	CTGGACCTAGAG
88	GlnGlyArgArg	CysGluAlaPro	ProAlaProAsn	LeuLeuLeuThr	CysAsparGPro	AspLeuAspLeu
577	CGGTTCAACATC	AAGTTCAGGAG	TATAGCCCTAAT	CTCTGGGGCCAC	GAGTTCGGCTCTG	CACCAAGGATTAC
	GCGAAGTGGTAG	TTCAGGTCTC	ATATCGGGATTAA	GAGACCCCCGGTG	CTCAAGGGAGG	GTGGTGGCTTAATG
1112	ArgPheThrIle	LysPheGlnGlu	TyrSerProAsn	LeutrpGlyHis	GlupheArgSer	HishiSasptYR

FIG. 1A

649 TACATCATGGC ACATCGGATGGG ACCCGGGAGGG CTGGAGGCCCTG CAGGGAGGTGTG TGCCCTAACCCAGA
 ATGTAGTAACGG TGTAGGCCTACCC TGGCCCTCCCG GACCTCTGGAC GTCCCTCCACAC ACGGATTGGTCT
 136 TyrIleLeAla ThrSerAspGLY ThrArgGlugly LeuGluSerLeu GlnglyGlyVal CysLeuthArg

 721 GGCATGAAGGTG CTTCCTCCGAGTG GGACAAAGTCCC CGAGGAGGGCT GTCCCCCGAAAA CCTGTTCTGTGAA
 CCGTACTTCCAC GAAGGGCTCAC CCTGTTCAAGG GCTCCTCCCGA CAGGGGCTTT GGACACAGACTT
 160 GlyMetLysVal LeuLeuArgVal GlyGlnSerPro ArgGlyGlyAla ValProArgLys ProValSerGlu

 793 ATGCCCATGGAA AGAGACCGAGGG GCAGGCCACAGC CTGGAGCCTGGG AAGGAGAACCTG CCAGGTGACCCC
 TACGGGTACCT TCTCTGGCTCCC CGTCGGGTGTG GACCTGGACCC TTCTCTTGAC GGTCCACTGGG
 184 MetProMetGlu ArgAspArgGly AlaAlaHisSer LeuGluProGly LysGluAsnLeu ProGlyAspPro

 865 ACCAGCAATGCA ACCTCCGGGGT GCTGAAGGGCCC CTGGCCCCCTCC AGCATGCCCTGCA GTGGCTGGGCA
 TGGTCGTTACGT TGGAGGGCCCCA CGACTTCCGGGG GACGGGGAGGG TCGTACGGACGT CACCGAACCCCGT
 208 ThrSerAsnAla ThrSerArgGLY AlaAlaGlyPro LeuProProPro SerMetProAla ValAlaGlyAla

 937 GCAGGGGCTG GCGCTGCTTG CTGGCGGTGGCA GGGGCTGGGGT GCCATGTTGG CGGAGACGGGG
 CGTCCCCCGAC CGCGACCGAGAAC GACCCGGCACCGT CCCCAGCCCCA CGGTACACAACC GCCTCTGGGCGC
 232 AlaglyGlyLeu AlaLeuLeuLeu LeuGlyValAla GlyAlaGlyGLY AlaMetCystrp ArgArgArgArg

 1009 GCCAAGCCTTCG GAGAGTCGCCAC CCTGGTCCCTGGC TCCTTCGGGAGG GGAGGGTCTCTG GGCTCTGGGGGT
 CGGTTTCGGAAGC CTCTAGGGTG GGACCAAGGACCG AGGAAGCCCTCC CCTCCAGAGAC CGGGACCCCCA
 256 AlAlaLysProSer GluSerArgHis ProGlyProGly SerPheGlyArg GlyGlySerLeu GlyLeuGlyGLY

 1081 GGAGGTGGATG GGACCTCGGGAG GCTGAGCCTGGG GAGCTAGGGATA GCTCTGGGGGT GGCGGGGCTGCA
 CCTCCACCCCTAC CCTGGAGCCCTC CGACTCGGACCC CTCGATCCCTAT CGAGACGCCCA CGGCCCGACGCT
 280 GlyGlyGlyMet GlyProArgLys LeuGluProGly GluLeuGlyLys AlaLeuArgGLY GlyGlyAlaAla

 1153 GATCCCCCTTC TGCCCCCACTAT GAGAAGGTGAGT GGTGACTATGGG CATCCTGTGAT ATCGTGCAGGAT
 CTAGGGGGAAAG ACGGGGGTGATA CTCTTCCACTCA CCACTGATAACC GTAGGACACATA TAGCACGGTCTA
 304 AspProProHe CysProHistYr GluLysValSer GlyAspTyrgly HisProValYr IleLeuGlyAlaAla

 1225 GGGCCCCCAG AGCCCTCCAAAC ATCTACTACACA TCGATTCTGTG TTGGAGTGGCC ATATTGCATACG
 CCCGGGGGGCTC TCGGGAGGTTG TAGATGATGTG AGCTAAAGACAC AACCTCACCGGG TATAACGTATGC
 328 GlyProProGln SerProProAsn IleTerYrTerThr SerIleSerVal LeuGluTrpPro IleLeuHisThr

FIG._1B

1297	ATACAACCTGTT	TTCATGGCATCC	AAGTGGATTC	GTCACACTACATC	TTATTTCTGTG	CAAGTTATTACG
352	IleGlnLeuPhe	PheMetArgSer	LysCysSerArg	CAGTGATGTAAG	AATAAAGGACAC	GTTCATAATATGC
1369	ACATCGACTTGC	CGGATGACTTCA	TTTAGCTTACCC	ACCCGTGAACCCA	TCCATGCCAGGCC	TGCAGAGGCCACAG
376	ThrSerThrCys	ArgMetThrSer	PheserPheThr	TGGGACTTGGGT	AGGTACGTCCGG	ACGTCTCGTGTGTC
400	MetGlyGluPhe	ArgIleArgTrp	CysPheTrpGly	AspArgIleLeu	GlyThrAlaLeu	GlnValLeuVal
1441	ATGGGGAAATTTC	CGAACATCAGATGG	TGTTTGTCTGGGG	GACAGGATCCTG	GGTACGGCTCTG	TTTGTGCTTGTG
424	TACCCCTTAAG	GCTTAGTCTAAC	AAATAGAACCCC	CTGTCCCTAGGAC	CCATGCCGAGAC	AAACACGAAACAC
448	LeuIleLeuLeu	LeuGlyIleArgLeu	AsnMethIleGln	ThrThrLeuLeu	ArgGlnArgGala	SerValGluAla
1513	CTTATTCCTT	CTGGGGAGGGCTG	AATAATGCCATCAG	ACGACACTGCTC	CGCCAACGGGCC	AGTGTGGAGGGCG
424	GAATAAGAAGAA	GAACCCCTCCGAC	TTATACGTAGTC	TGCTGTGACGAG	GCCGGTTGCCGG	TCACACCTCCGC
1585	GAAGCCGGCCAG	CATGGTCCCCCTG	TGATAGGATTGA	AAGAGCTACTGA	GAATAGGGGCT	TCTCAATGAGAG
448	CTTCGGCCGGTC	GTACCAAGGGAC	ACTATCCTAACT	TTCTCGATGACT	CTTATCCCCGA	AGAGTTACTCT
1657	AGCGGAGGCTGC	TGTTATCATGGG	AACCAGGGCAGAT	CAATCATCCCTG	GCAGGTCAGCCA	GGAAAGTTACTTA
1729	GCTTCTCCTTCA	CCTTCCTCCAC	AGAATTATTAT	AGGCTTGTTCGA	AGTGTAGTGTG	TGATCAGATTCG
	CGAAGAGGAAGT	GGAAAGAAGGGTG	TCTTAAATAATA	TCCGAAACAAGGT	TCAACATCACAC	ACTAGTCTAACG
1801	TGCTGCCTGTCA	GCTCTGTGCTAC	CTGGCAGTTCCC	CTCATGGAATTC	GATATCAAGCTT	ATCGATAACCGTC
	ACGACGGACAGT	CGAGACACGATG	GACCGTCAAGGG	GAGTACCTTAAG	CTATAGTCTGAA	TAGCTATGGCAG
1873	GACCT					
	CTGGGA					

FIG._1C**FIG._1A****FIG._1B****FIG._1**

1 GNTCTAGAANTA GTGGATCCCCC GGGCTGCAGGAA TTCCGACGGCCC CTGGAAGGGCTC TGGTGGGGCTGA
 CNAGATCTTNAAT CACCTAGGGGG CCCGACGTCTT AAGGCTGCCGG GACCTTCCCGAG ACCACCCCGACT

 73 GCGCTCTGGCGC GGGGGCGGGC ACAGCAGGAAGC AGGTCCGGTGG GCGCTGGGGCA TCAGCTACCGGG
 CGCGAGACGGCG CCCCCGGCGC TGTCTGCCCTTCG TCCAGGCCACC CGCGACCCCGT AGTCGATGGCC

 145 GTGGTCCGGCT GAAGAGGCCAGGC AGCCCAAGGCAGC CACCCGGGGG TGGCGACTTTG GGGGAGTTGGTG
 CACCAAGCCGA CTTCTCGGTCCG TGGTTCCCGTCG GTGGGGCCCCC ACCCGCTGA AAC CCCCCTCAACAC

 217 CCCCGCCCCA GGCCTTGGGG GTCATGGGGCC CCCCATTCCTGGG CGGGGGGGCTG CGAGTCGGGGCC
 GGGGGGGGGT CCGGAACCGCC CAGTACCCGGG GGGGTAAGACCC GGCCCCCGCAC GTCAGCCCCGG
 1 MetGlyPro ProHisSerGly ProGlyGlyVal ArgValGlyAla

 289 CTGCTGCTGCTG GGGGGTTGGG CTGGTGTCTGGG CTCAGGCCCTGGAG CCTCTCTACTGG AACTCGGGGAAT
 GACGACGACGAC CCCAAACCC GACCACAGACCC GAGTCGGACCTC GGACAGATGACC TTGAGCCGCTTA
 16 LeuLeuLeu GlyValLeuGly LeuValSerGly LeuSerLeuGlu ProValTyrrp AsnSerAlaAsn

 361 AAGAGGTTCCAG GCAGAGGGTGGT TATGTTGCTGTAC CCTCAAGATCGGG GACCGGCTAGAAC CTGCTCTGGCC
 TTCTCCAAGGTC CGTCTCCACCA ATACAGCACATG GGAGTCTAGCCC CTGGCCGATCTG GACGAGACGGGG
 40 LysArgPheGln AlaGluGlyLys TyrValLeutyr ProGlnIleGly AspArgLeuAsp LeuLeuCysPro

 433 CGGGCCGGCCCT CCTGGCCCTCAC TCCTCTCCATAAT TATGAGTCTAC AAGCTGTACCTG GTAGGGGGTGC
 GCCCGGGCCGGA GGACCGGGAGTG AGGAGGAGGATTA ATACTCAAGATG TTCGACATGGAC CATCCCCACGA
 64 ArgAlaArgPro ProGlyProHis SerSerProAsn TyrGluPheTyr LysLeuTyrlleu ValGlyGlyAla

 505 CAGGGCCGGCCG TGTTGAGGCACCC CCTGCCCAAC CTCCTTCTCACT TGTGATGCCCA GACTGGATCTC
 GTCCGGCCGGC ACACCTCCGTGGG GGACGGGGTTTG GAGGAAGAGTGA ACACTAGGGGT CTGGACCTAGAG
 88 GlnglyArgArg CysGluAlaPro ProAlaProAsn LeuLeuLeuthr CysAspArgPro AspLeuAspLeu

 577 CGCTTCACCATC AAGTTCCAGGAG TATAGCCCTAAAT CTCTGGCCAC GAGTTCCGGCTCG CACACGGATAC
 GCGAAAGTGGTAG TTCAAGGTCTC ATATGGGATTAA GAGACCCGGGTG CTCAAGGGCAGC GTGGTGTAAATG
 112 ArgPheThrIle LysPheGlnGlu TyrSerProAsn LeuTrpGlyHis GluPheArgSer HisHisAspTyr

FIG._2A

649	TACATCATGCC	ACATCGGATGGG	ACCCGGGAGGGC	CTGGAGAGGCC	CTGGGAGGGCTG	CAGGGAGGGTGTG	TGCCCTAACCGAGA
136	ATGTAGTAACGG	TGTAGCCTACCC	TGGGCCCTCCCG	GACCTCTGGAC	GTCCTCCACAC	ACGGATTGGTCT	
136	TyrIleLeuAla	ThrSerAspGly	ThrArgGluGly	LeuGluSerLeu	GlnGlyGlyVal	CysLeuThrArg	
721	GGCATGAAGGTG	CTTCCTCCGAGTG	GGACAAAGTCCC	CGAGGAGGGCT	GTCCCCCGAAAA	CCTGTGTCTGAA	
721	CCGTACTTCCAC	GAAGAGGCTCAC	CCTGTTCAGGG	GCTCTCCCGA	CAGGGGCTTT	GGACACAGACTT	
160	GlyMetLysVal	LeuLeuArgVal	GlyGlnSerPro	ArgGlyGlyAla	ValProArgLys	ProValSerGlu	
793	ATGCCCATGGAA	AGAGACCAGGGG	GCAGGCCACAGC	CTGGAGCCCTGGG	AAGGAGAACCTG	CCAGGTGACCC	
793	TACGGGTACCTT	TCTCTGGCTCCC	CGTGGGGTGTGCG	GACCTCGGACCC	TTCCTCTGGAC	GGTCCACTGGGG	
184	MetProMetGlu	ArgAspArgGly	AlaAlaHisSer	LeuGluProGly	LysGluAsnIeu	ProGlyAspPro	
865	ACCAAGAATGCA	ACCTCCCGGGGT	GCTGAAGGGCCC	CTGGCCCCCTCCC	AGCATGCCCTGCA	GTGGCTGGGGCA	
208	TGGTCGTTACGT	TGGAGGGCCCCA	CGACTTCCGGGG	GACGGGGAGGG	TCGTACGGACGT	CACCGACCCCGT	
208	ThrSerAsnAla	ThrSerArgGly	AlaGluGlyPro	LeuProProPro	SerMetProAla	ValAlaGlyAla	
937	GCAGGGGCTG	GCGCTGCTCTTG	CTGGCGTGGCA	GGGGCTGGGGT	GCCATATGGTGTGG	CGGAGACGGGG	
232	CGTCCCCCCCAC	CGCGACGAGAAC	GACCCGCACCGT	CCCCGACCCCA	CGGTACACAACC	GCCTCTGGGCC	
232	AlaGlyGlyLeu	AlaLeuLeuLeu	LeuGlyValAla	GlyAlaGlyGly	AlaMetCystIle	ArgArgArgArg	
1009	GCCAAGCCTTCG	GAGAGTCGCCAC	CCTGGTCTGGC	TCCTTCGGGAGG	GGAGGGTCTCTG	GGCCTGGGGGGT	
256	CGGTTTCGGAAGC	CTCTCAGGGGTG	GGACCAAGGACCG	AGGAAGCCCTCC	CCTCCAGAGAC	CGGGACCCCCA	
256	AlaLysProSer	GluSerArgHis	ProGlyProGly	SerPheGlyArg	GlyGlySerIleu	GlyLeuGlyGly	
1081	GGAGGTGGGATG	GGACACCTCGGGAG	GCTGAGGCCCTAC	GAGCTAGGGATA	GCTCTGGGGGGT	GGGGGGGCTGCA	
280	CCTCCACCCCTAC	CCTGGAGCCCTC	CGACTCGGACCC	CTCGATCCCTAT	CGAGACGCCCA	CGGGCCCCGACGT	
280	GlyGlyGlyMet	GlyProArgGlu	AlaGluProGly	GluLeuGlyIle	AlaLeuArgGly	GlyGlyAlaAlaAla	
1153	GATCCCCCTTC	TGCCCTCACTAT	GAGAAGGTGAGT	GGTGAECTATGGG	CATCCTGTAT	ATCGTGTGAGGAT	
304	CTAGGGGGAAAG	ACGGGGGGATA	CTCTTCCACTCA	CCACTGATAACCC	GTAGGGACACATA	TAGCACGTCCTA	
304	AspProProHe	CysProHisItyr	GlyLysValSer	GlyAspTyrgly	HisProValTyrr	IleValGlnAsp	
1225	GGCCCCCCAG	AGCCCTCAAAAC	ATCTACTACAAG	GTATGAGGGCTC	CTCTCACGTGGC	TATCCTGAATCC	
328	CCGGGGGGGTC	TCGGGGGGTTC	TAGATGATGTTG	CATACTCCCAG	GAGAGTGCACCG	ATAGGACTTAA	
328	GlyProProGln	SerProProAsn	IleTyrrTyrrLys	ValOP*			

FIG._2B

1297	AGCCCTTCTGG GGTGCTCCTCCA GTTTAATTCTTG GTTGAGGGACA CCTCTAACATCT CGGCCCTGTG TCGGAAAGAACCCACCGGAGGT CAAATTAAAGGAC CAAACTCCCTGT GGAGATTGTAGA GCCGGGGACAC
1369	CCCCCCCAGCCC CTTCACTCCTC CGGGTGTGTC CGGCATGGGTGGT CCGTCTCCACTT TAGGATTCCCTT AGGATTCCACT GGGGGGTGGGG GAAGTGAGGGG GCCGACGACGG ACCAGAGGTGAA AATCTAACGGAA TCCTAACGGTGA
1441	CCCCCACTTCCTT GCCCTTCCCGTT GGCCATGGGTGG CCCCCCTCTGTCT CAGTGTCCCTGG ATCCTTTTCT GGGGGTGAAGGA CGGGAGGGCAA CGGGTACCCACG GGGGAGACAGA GTCACAGGGACC TAGGAAAAGGA
1513	TGGGAGGGCA CAGGGTCAGGCC CCTCTCTGACCA TGACCCAGGGAT CCTTGTCCCCCT CACCCACCCAGA ACCCCTCCCCGT GTCCGAAGTCGA GGAGAGACTGGT ACTGGTCCGTA GGACAGGGGA GTGGGTGGTCT
1585	GCTAGGGGGGG AACAGCCCACCT TTTGGTTGGCAC CGCCCTCTTTCT GCCTCTCACTGG TTTCTCTCT CGATCCCCGCC TTGTGCGGTGAA AAACCAACCGTG GCGGAAGAAAGA CGGAGACTGACC AAAAGAGAAAGAG
1657	TATCTCTTATTTC TTTCCCTCTCTT CCGTCTCTAGGT CTGTTCTTCTC CCTAGCATCCCT CTCACATCT ATAGAGAATAAG AAAGGGAGAGAA GGCAAGAGATCCA GACAAGAAGAAG GGATCGTAGGAG GAGGGGTGTAGA
1729	CCTTTACCCCTC TTGGGCTCTTAT CCTGTCCTCTC CCATCTCCTGGG TGGGGCATCAA AGCATTTCTCC GGAAAGTGGGAG AACCGAAGAATA GGACACGGAGAG GGTAGGGACCC ACCCCGTAGTT TGTTAAAGAGGG
1801	CTTAGGTTTCAG CCCCCCTCTGA CCTCTCATACCA ACCACTCCCTC AGTCTGCCAAA ATGGGGCCCTA GAATCGAAAGTC GGGGGAAAGACT GGAGAGTATGGT TGGTGAAGGGAG TCAGACGGTTT TACCCCCGAAAT
1873	TGGGAAGGCTC TGACACTCCAC CCAGCTCAGGCC ATGGGACCAAG GCTCCATTCTC GGCTGGCCAG ACCCCTCCGAG ACTGTGAGGTGG GGTGAGGTGG TACCGCTGTC CGAGGTAAGAGA CGGGACGGGTC
1945	GCCTCTACATAC TTACTCCAGCCA TTGTGGGGGGT GGGCATGACAG CTACCATGAGAA GAAGTGTCCCGT CGGAGATGTATG AATGAGGTGGT AAACCCACCAA CCCAGTACTGTC GATGGTACTCTT CTTCACAGGGCA
2017	TTTGTCCAGTGG CCAATAGCAAGA TATGAACCGGTIC GGGACATGTATG GACTTGGTCTGA TGCTGAATGGGC AACAGGTCAACCGGGAG ATACTTGGCCAG CCCTGTACATAC CTGIAACCAGACT ACAGACTTACCCG

FIG._2C

2089 CACTGGGACCG GAAGTGA CTTGC TCCAGACAAGAG GTGACCAGGCC GGACAGAAATGG CCTGGGAAGTAG
 GTGAACCCCTGGC CTTCACTGAAACG AGGTCTGTTCTC CACTGGTCCGGG CCTGTCCTTACCG GAACCCCTTCATC

 2161 CAGAAGGCACTGCC AGCAGGAACCTGG AAGTGCCTTCAT CCAGGACAGGAA GTAGCACTTCCTG AACAGGAAGTG
 GTCTTCGTCAAG TCGTCCCTTGAC TTACGGAAAGTA GGTCCCTGTCCTT CATCGTGAAGAC TTTCGTCCCTCAC

 2233 GTCTGGCTGGAA CTCCAAGTGGCT TAGTCTGGGAA TCAGGAGGTGGG AGGGGGATGGTT CTTATTCTGTGG
 CAGACCGACCTT GAGGTCAACCGA ATCAGACCCCT AGTCCTCCACCC TCCACCTACCAA GATAAGAACCC

 2305 AGAAGGAAGGGCG GGAAGAACTTCC TTTCAAGGAGAA GCTGGAACTTAC TGACTGTAAAGAG GTTAGAGGGTGGAA
 TCTTCCTCCGGC CCTTCTTGAAGG AAAGTCCCTCCTT CGACCTTGAATG ACTGACATTCTC CAATCTCCACCT

 2377 CCGA
 GGCT

FIG._2D**FIG._2A****FIG._2B****FIG._2C****FIG._2****FIG._2D**

the first time in the history of the world, the people of the United States have been compelled to make a choice between two political parties.

FIG. 3A

AL-2b.L H10006	751 243	A G T C C C G A G G G A G G G G C T G T C C C G A A A C C T G T G A A T G C C C A T A G T - C C C G A G G G A G G G G C T G T C C C G A A A C C T G T G A A T G C C C A T
AL-2b.L H10006	801 292	G G A A A G A G C C G A G G G G C A G C C C A C A G C C T - G G A G C C T - G G A A G G A G A A G G A A A G A G C C G A G G G G C A G C C C A C A G C C T G G A G C C T G G A A G G A G A A
AL-2b.L H10006	849 342	C C T G C C A G G G T G A C C C A C C A G C C A A T G C A A C C T C C C G G G T - G C T G A A G G C C T G C C A G G G T G A C C C A C C A G C C A A T N C A A C C T T C C G G G T T G A A G G
AL-2b.L H10006	897 392	C C C C T - G C C C C T G C A G C C A G C C A - T G C C C T G C A G C C A T T G C N T G C A N T C C C C T G C A G C C A G C C A - T G C C C T G C A G C C A T T G C N T G C A N T
AL-2b.L H10006	942 442	G G G G C - - - T G G C G C T G C T G G G G C T G G C A G G G G C T G G G G T G C C G G G N G T T T G G C
AL-2b.L	988	A T G T G T T G G C G G G A G A G G C C A A G C C T T C G G G C G G C A C C C T T G G G

AL-2b.L 1088 G G A T G G G A C C T C G G C T G A G G C T G G C C T G C T G C T G C G G

AL-2b.L 1138 G T G G C G G G C T G C A G A T C C C C T T C T G C C C C A C T A T G A G A A G G T G A G

AL-2b.L 1238 G C C C T C C A A C A T C A C A T C G A T T C T G T G G A G T G G C C C A T

AL-2b.L1288 TTGGCATACGATACTGTTTCATGGATCCAGTGGCTCCCCGTGTCAC

FIG. 3B

AL-2b.L 1338 T A C A T T C T T A T T C C T G T G C A A G T T A C C G A C A T C G A C T T G C C G A T G C A T T G C A G G C A
AL-2b.L 1388 C T T C A T T A G C T T A C C G A C C C T G A A C C C A T C C A T G C A G G C C T G C A G G C A
AL-2b.L 1438 C A G A T G G G G G A A T T C C G A A T C A G A T G G T G T T C T G G G G A C A G G A T C C T
AL-2b.L 1488 G G G T A C G G C T C T G C T T G C T T G C T T G C T T C T T C T T C T G G G G C T G A
AL-2b.L 1538 A T A T G C A T C A G A C G A C A G T G C T C C G G C A A C G G G C A G T G T G G A G G C G G A A
AL-2b.L 1588 G C C G G C C A G C A T G G T C C G C T G T G A T A G G A T T G A A A G A G G C T A C T G A G A T A
AL-2b.L 1638 G G G G G C T T C T C A T G A G A G G A G C C T G C T G T T A T C A T G G A A C C A G G
AL-2b.L 1688 C A G A T C A A T C A T C C C T G G C A G G T C A G G C A G G A A G T T A C T T A G C T T C T C C T
AL-2b.L 1738 T C A C C T T C T T C C A C A G A T T A T T A G G C T T G T C C A A G T T A G T G T
AL-2b.L 1788 G T G A T C A G A T T C G C T G C T G C T C A G C T C T G T G C T A C C T G G C A G T T C C C C
AL-2b.L 1838 T C A T G G A A T T C G A T A T C A A G C T T A T C G A T A C C G T C G A C C T

FIG._3C

10 / 15

FIG._3A

FIG._3B

FIG._3

FIG._3C

lerk2	1	M A - R P G Q R W L G K W L V A M V V W A L C R L A T P L A K N L E P V S W S S L N P K F L S G K G
huHTKL	1	M A V R D S V W K Y C W G V [L M V - - - C R T A I S K S I V L E P I Y W N S S N S K F L P G Q G
AL2.sht	1	M G - P P H S G P G G V R V G A L L L G V I L G L V S G L - - S L E P V Y W N S A N K R F Q A E G G
AL2.long	1	M G - P P H S G P G G V R V G A L L L G V I L G L V S G L - - S L E P V Y W N S A N K R F Q A E G G
lerk2	50	L V I Y P K I G D K L D I I C P R A - - - E A G R - - - P Y E Y Y K L Y L V R P E [Q A A C] S T V L D
huHTKL	48	L V L Y P Q I G D K L D I I C P K V - - - D S K T V G Q Y E Y Y K [V Y M] V D K D Q A D R C T I K K E
AL2.sht	48	Y V L Y P Q I G D R L D L L C P R A R P P G P H S S P N Y E F Y K L Y L V G G A Q G R R C E A P P A
AL2.long	48	Y V L Y P Q I G D R L D L L C P R A R P P G P H S S P N Y E F Y K L Y L V G G A Q G R R C E A P P A
lerk2	95	P N V L V T C N R P E Q E I R F T I K F Q E F F S P N Y M G L E F K K H H D Y Y I T S T S N G S L E G
huHTKL	95	N T P L L N C A K P D Q D I K F T I K F Q E F F S P N L W G L E F Q K N K D Y Y I I S T S N G S L E G
AL2.sht	98	P N L L T C D R P D L D L R F T I K F Q E Y S P N L W G H E F R S H H D Y Y I I A T S D G T R E G
AL2.long	98	P N L L T C D R P D L D L R F T I K F Q E Y S P N L W G H E F R S H H D Y Y I I A T S D G T R E G
lerk2	145	L E N R E G G V C R T R T M K I I M K V G Q D P N A V T P E Q L T T S R P S K E A D N T V K M A T Q
huHTKL	145	L D N Q E G G V C Q T R A M K I I L M K V G Q D A S S - - - - A G S T R N K D P T R R P E L E A G
AL2.sht	148	L E S L Q G G V C L T R G M K V L L R V G Q S P R G A V P R K P V S E M P M E R D R G A A H S S L E
AL2.long	148	L E S L Q G G V C L T R G M K V L L R V G Q S P R G A V P R K P V S E M P M E R D R G A A H S S L E

FIG.-4A

Year	Population	Area (sq km)	Density (per sq km)
1950	10,000,000	100,000	100
1960	15,000,000	120,000	125
1970	20,000,000	140,000	143
1980	25,000,000	160,000	156
1990	30,000,000	180,000	167
2000	35,000,000	200,000	175
2010	40,000,000	220,000	182
2020	45,000,000	240,000	188
2030	50,000,000	260,000	192
2040	55,000,000	280,000	196
2050	60,000,000	300,000	200
2060	65,000,000	320,000	204
2070	70,000,000	340,000	208
2080	75,000,000	360,000	212
2090	80,000,000	380,000	216
2100	85,000,000	400,000	220

lerk2	195	A P G S R G S L G D S D G K H E T V N Q E E K S G P G A S G G S S G D P D G F F N S K V A L F A A V
huHTKL	189	T N G - R S S T T S P F V K P N P G S S T D G N S A G H S G - - - - - N N I L G S E V A L F A G I
All2.sht	198	- P G K E N L P G D P T S N A T S R G A E G P L P P P S M P A V A G A A G G L - - - A L L L G V A
All2.long	198	- P G K E N L P G D P T S N A T S R G A E G P L P P P S M P A V A G A A G G L - - - A L L L G V A

lerk2	294	TAGTEPSDIIPLR-----TTENNYCPHYEKVSGDYGHPVYIVQEMPPQSPA
huHTKL	281	NGSEPSDIIPLR-----TDSVFCPHYEKVSGDYGHPVYIVQEMPPQSPA
ALL2.sht	285	PRAEPPGELGIALRGGAADPPFCPHYEKVSGDYGHPVYIVQDGPPQSPP
ALL2.long	285	PRAEPPGELGIALRGGAADPPFCPHYEKVSGDYGHPVYIVQDGPPQSPP

FIG. 4B

lerk2 345 - - - - -
 huHTKL 332 - - - - -
 AI2.sht 339 - - - - -
 AI2.long 385 S F T T L N P S M Q A C R A Q M G E F R I R W C F W G D R I L G T A L F V L I L L G R L N M H

 AI2.long 435 Q T T L L R Q R A S V E A E A G Q H G P L

FIG.-4C

FIG.-4A
FIG.-4B
FIG.-4C

FIG.-4

LERK2	1	M - R P G Q R W L S K W L V A M V V L T L C R L A T P L A K N L E P V S W S S L N P K F L S G K G	
huHTKL	1	M A V R D S V W K Y C W G V L M V - - - L C R T A I S K S I V L E P I Y W N S S N S K F L P G Q G	
AL2.long	1	M G P P H S G P - G G V R V G A L L L - - L G V L G L V S G L S L E P V Y W N S S A N K R F Q A E G G	
LERK2	50	L V I Y P K I G D K L D I I C P R A - - - E A G R - - P Y E Y Y K L Y L V R P E Q A A C S T V L D	
huHTKL	48	L V L Y P Q I G D K L D I I C P K V - - - D S K T V G Q Y E Y Y K V Y M V D K D Q A D R C T I K K E	
AL2.long	48	Y V L Y P Q I G D R A L D L L C P R A R P P G P H S S P N Y E F Y K L Y L V G G A Q G R R C E A P P A	
LERK2	95	P N V [V T C N K P H Q E I R F T I K F Q E F S P N Y M G L E F K K Y H D Y Y I T S T S N G S L E G	
huHTKL	95	N T P L L N C A K P D Q D I K F T I K F Q E F S P N L W G L E F Q K N K D Y Y I I S T S N G S L E G	
AL2.long	98	P N L L L T C D R P D L D I R F T I K F Q E Y S P N L W G H E F R S H H D Y Y I I A T S D G T R E G	
LERK2	145	L E N R E G G V C R T R T M K I V M K V G Q D P N A V T P E Q L T T S R P S K E S D N T V K T A T Q	
huHTKL	145	L D N Q E G G V C Q T R A M K I L M K V G Q D A S S - - - - A G S T R N K D P T R R P E L E A G	
AL2.long	148	L E S L Q G G V C L T R G M K V L L R V G Q S P R G - - - - G A V P R K P V S E M P M E R D R G	
LERK2	195	A P G R G S Q G D S D G K H E T V N Q E E K S G P G A G G G S G D S F F N S K V A L F A A V G	
huHTKL	189	T N G R S S T T S P F V K P N P G S S T D G N S A G H S G - - - - N N I L G S E V A L F A G I A	
AL2.long	192	A A H S L E P G K E N L P G D P T S N A T S R G A E - - - - G P L P P P S M P A V A G A A	

FIG._5A

LERK2	245	A G C V I F L L I I F L T V L L K L R K R H R K H T Q Q R A A A L S L - - - - -	S T L A S P K G G S
huHTKL	233	S G C I I F I V I I I T L V L L K Y R R R H R K H S P Q H T T L S L - - - - -	S T L A T P K R S G
AL2.long	233	G G L A L L L G V A G G G A M C W R R R A K P S E S R H P G P G S F G R G G S L G L G G G G	
LERK2	292	- G T A G T E P S D I I I P L R - - - T T E N N Y C P H Y E K V S G D Y G H P V Y I V Q E M P P Q S	
huHTKL	280	- N N N G S E P S D I I I P L R - - - T A D S V F C P H Y E K V S G D Y G H P V Y I V Q E M P P Q S	
AL2.long	283	M G P R E A E P G E L G I A L R G G G A D P P F C P H Y E K V S G D Y G H P V Y I V Q D G P P Q S	
LERK2	338	P A N I Y Y - - - - -	
huHTKL	326	P A N I Y Y - - - - -	
AL2.long	333	P P N I Y Y T S I S V L E W P I L H T I Q L F F M M R S K C S R V T T F L F P V Q V I T T S T C R M T / 15	

LERK2	344	- - - - -	K V - - - - -
huHTKL	332	- - - - -	K V - - - - -
AL2.long	383	S F S F T T L N P S M Q A C R A Q M G E F R I R W C F W G D R I L G T A L F V L V L L G R L N	

AL2.long 433 M H Q T T L L R Q R A S V E A E A G Q H G P L

FIG._5B

FIG._5A

FIG._5B

FIG._5