TABLE OF CONTENTS

Definition

The **slope** of a line that passes through the points (x_1, y_1) and (x_2, y_2) is "rise over run"

$$\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}.$$

This is also called the **rate of change** of the function. If a line has equation y = mx + b, its slope is m.

Rate of change:
$$\frac{400,000 \text{ people}}{20 \text{ years}} = 20,000 \frac{\text{people}}{\text{year}}$$

Rate of change:
$$\frac{400,000 \text{ people}}{20 \text{ years}} = 20,000 \frac{\text{people}}{\text{year}}$$
 (doesn't depend on the year)

Rate of change $\frac{\Delta \text{ pop}}{\Delta \text{ time}}$

Rate of change $\frac{\Delta \text{ pop}}{\Delta \text{ time}}$ depends on time interval

Rate of change $\frac{\Delta \text{ pop}}{\Delta \text{ time}}$ depends on time interval

Rate of change $\frac{\Delta \text{ pop}}{\Delta \text{ time}}$ depends on time interval

Rate of change $\frac{\Delta \text{ pop}}{\Delta \text{ time}}$ depends on time interval

Rate of change $\frac{\Delta \text{ pop}}{\Delta \text{ time}}$ depends on time interval

Definition

Let y = f(x) be a curve that passes through (x_1, y_1) and (x_2, y_2) . Then the **average rate of change** of f(x) when $x_1 \le x \le x_2$ is

$$\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Average rate of change from 1990 to 2000:

Average rate of change from 1990 to 2000: 80,000 people per year.

Average rate of change from 2010 to 2020:

Average rate of change from 1990 to 2000: 80,000 people per year.

Average rate of change from 2010 to 2020: 240,000 people per year.

Average Rate of Change and Slope

The average rate of change of a function f(x) on the interval [a, b] (where $a \neq b$) is "change in output" divided by "change in input:"

$$\frac{f(b) - f(a)}{b - a}$$

Average Rate of Change and Slope

The average rate of change of a function f(x) on the interval [a, b] (where $a \neq b$) is "change in output" divided by "change in input:"

$$\frac{f(b) - f(a)}{b - a}$$

If the function f(x) is a line, then the slope of the line is "rise over run,"

$$\frac{f(b) - f(a)}{b - a}$$

If a function is a line, its slope is the same as its average rate of change, which is the same for every interval.

If a function is not a line, its average rate of change might be different for different intervals, and we don't have a definition (yet) for its "slope."

How fast was this population growing in the year 2010?

How fast was this population growing in the year 2010?

TABLE OF CONTENTS

The **secant line** to the curve y = f(x) through points R and Q is a line that passes through R and Q.

The **secant line** to the curve y = f(x) through points R and Q is a line that passes through R and Q.

The **secant line** to the curve y = f(x) through points R and Q is a line that passes through R and Q.

The **secant line** to the curve y = f(x) through points R and Q is a line that passes through R and Q.

We call the slope of the secant line the **average rate of change of** f(x) **from** R **to** Q.

The **tangent line** to the curve y = f(x) at point P is a line that

- passes through *P* and
- has the same slope as f(x) at P.

The **tangent line** to the curve y = f(x) at point P is a line that

- passes through *P* and
- has the same slope as f(x) at P.

The **tangent line** to the curve y = f(x) at point P is a line that

- passes through *P* and
- has the same slope as f(x) at P.

The **tangent line** to the curve y = f(x) at point P is a line that

- passes through P and
- has the same slope as f(x) at P.

We call the slope of the tangent line the **instantaneous rate of change** of f(x) at P.

On the graph below, draw the secant line to the curve through points *P* and *Q*.

On the graph below, draw the tangent line to the curve at point *P*.

On the graph below, draw the secant line to the curve through points *P* and *Q*.

On the graph below, draw the tangent line to the curve at point *P*.

On the graph below, draw the secant line to the curve through points *P* and *Q*.

On the graph below, draw the tangent line to the curve at point *P*.

