CONNECTIONISM (I)

GOALS FOR TODAY

- ► Understand the basic architecture of a connectionist network (and the rationale for it).
- Understand how networks can be trained to model cognitive processes.
- Understand the properties that make connectionist representations special (as forms of knowledge representation).
- See one objection to the biological plausibility of connectionism.

LESSONS FROM AMBIGUITY

- Some ambiguities are lexical, some are structural.
- ▶ Therefore, understanding a sentence is not just a matter of knowing what its constituent words mean.
- If understanding enables us to disambiguate, it must also require a representation of structure.

Chomsky's guiding insight:

Any system that is able to cope with human verbal behaviour must employ structured transformable representations.

COMPUTATIONALISM

- Any system that is able to cope with human verbal behaviour must have structured transformable representations.
- ▶ We are able to cope with human verbal behaviour.
- ► Therefore: We must have structured transformable representations (presumably, they are somewhere in our heads).

- Nothing in the brain looks like a computer.
- ▶ Nothing in the mind behaves quite like a computer:
 - Computers have characteristic patterns of breakdown.
 - ▶ They have characteristic patterns of learning.
 - ▶ They operate in a step by step sequence

A PARALLEL DISTRIBUTED PROCESSOR

- ▶ Take several model neurons and arrange them into layers, such that the output of every neuron in the nth layer is received as an input by every neuron in layer n+1.
- Assign weights to the connections (in some arbitrary way).
- ▶ Determine some code so that the input to your problem can be represented as a sequence of numbers between 0 and 1.
- ▶ Give these numbers to the neurons in the first layer of the network.
- Let the network do its thing.
- It will give you another sequence of numbers between zero and one.

GETTING THE PROCESSOR TO DO SOMETHING USEFUL

- ➤ Settle upon some way of interpreting the sequences that the machine gives you.
- Settle upon some criterion of what is going to count as a correct answer.
- ▶ Compare the answers you get with the correct answer.
- ▶ Use the difference to determine how much you want to adjust the weights between the neurons.
- "Backpropagation of Error"

USEFUL THINGS

- Let the inputs by acoustic profiles and the output be classifications of those profiles.
- Let the inputs be pictures and the outputs be those same pictures.
- Let the inputs be words and the outputs be pronunciations of those words.
- Let the inputs be verb stems and the outputs be past tense inflections of those verb stems.

USEFUL THINGS

Let the inputs by acoustic profiles and the output be classifications of those profiles.

SOME FEATURES OF NETWORKS

- ► Content addressability.
- ▶ Collapse of hardware/software distinction.
- Graceful degradation.

FEATURES OF CONNECTIONIST REPRESENTATION

Distributed

▶ Each of the representations generated is composed from several computationally independent parts of the system.

Overlapping

► The different representations generated are composed from overlapping parts

► Holographic

Any part of any given representation carries information about every part of the content represented by it