Sensor under test	Garmin LIDAR Lite v4	Progression
Operator	Vincent Savioz	75.00%
Test ID	S000	
Test Description	Wire the sensor, power it on and take distance measurements in a room without sunlight.	
Test Prescription	Wire the sensor to the controller (uC, PC, Arduino, etc.) and write a small program that	
	can take distance measurements. The sensor needs to be in a room without any trace of	
	infrared light (i.e. sunlight). Output the measures on a prompt if possible. In order to	
	compare sensors, measures need to be logged.	
Expected Result	The sensor take distance measures up to its theorical limit without any problem and show	

	measurments without any problem.	
Conclusion	The sensor is working properly according to this test.	Success

board in order to use a more powerful processor. The sensor outputs distance

After a quick test on Arduino, a programm was developped on a STM32F746G-DISCO

them on the prompt.

Results

Test ID	S001	
Test Description	Characterize the distance measurement error of the sensor.	
Test Prescription	Fix the sensor on a surface and place an object in front of it at a known distance. Then, note the output distance versus the real distance and characterize its measurement error (proportional, linear, etc.). Create a way of calibrating it if necessary.	
Expected Result	After calibration or compensation, the sensor should measure the right distance according to its accuracy	
Results	The error characteristic was done on a scale from 20cm to 600cm. Turned out the sensor can't properly measure anything after 300cm. Between 0cm and 300cm, we can expect an error between 1cm and 5cm. We now need to know if this error is constant in temperature and between different sets or not.	
Conclusion	Further measurement showed that the sensor has a typical error of +-2cm.	Success

Test ID	S002
Test Description	Optimize measurement results by eliminating value that are too far from the standard deviation.
·	Make a program that compute mean and standard deviation from a running or static set of measures. It then deletes extreme values and recompute mean value. It should increase sensor accuracy.
Expected Result	The sensor shouldn't be sensitive to small perturbation in front of it.
Results	The "Maximum" method is used to measure a distance to the ground.
Conclusion	The system is mostly insensible to noise.

Success

Test ID	S003
Test Description	Measure the sensor robustness in the lab sandbox using artificial snow (confettis).
Test Prescription	Fix the sensor on the tripod and make sure it won't move (meaure repeatability). Then, note the sensor angle and floor from the plane and give them to the program in order to calibrate measurements.
Expected Result	The sensor should be able to measure an offset at least 10mm high on the ground, even with perturbations.
Results	Tests showed that the sensor has a more or less +- 2cm error from the real distance. Apart from that, the sensor measures a right offset measurement, as long as the material on which the measure is taken is not too porous.
Conclusion	The sensor measures an offset.

Success

Test ID	S004
Test Description	Measure the sensor capability to output a right offset measurement in various
	temperatures and environnements.
	Take measurements at various temperatures and humidity values, i.e. room temperature, oudoor near-zero temperature, etc. but always without direct sunlight (in a low infrared environment), if possible during the night.
Expected Result	Sensor measurements shouldn't be affected by temperature too much.

Results	The test was done in a temperature-controlled environment with temperature from -15°C	
	to 40°C. Results showed that the sensor is almost not disturbed by the temperature and	
	stay in its +-2cm error from the real distance.	
Conclusion	The sensor pass the test and can be reliably used at various temperatures.	Success

Test ID	S005	
Test Description	Measure the sensor capability to output a right offset measurement in an overcast outdoor	
	situation (medium infrared environment).	
Test Prescription	Take measurements during an overcast day without any direct sunlight.	
Expected Result	Sensor measurements shouldn't be too much affected by a medium infrared environment.	
Results	The sensor can't measure any distance.	
Conclusion	The sensor doesn't work in a medium infrared environment.	

Test ID	S006
Test Description	Measure the sensor capability to output a right offset measurement in an sunny outdoor
	situation (high to very high infrared environment).
Test Prescription	Take measurements during a sunny day in direct sunlight.
Expected Result	Sensor measurements shouldn't be too much affected by a high to very high infrared
	environment.
Results	The sensor can't measure any distance.
Conclusion	The sensor doesn't work in a high infrared environment.

Failed

Test ID	S007	
Test Description	Finally, test the sensor in real snowy condition, at night if necessary.	
Test Prescription	Take the sensor outside during a snowy weather, especially in poor visibility conditions i	
	order to take measurements on real snow. Try to measure offsets and log data.	
Expected Result	The sensor should be able to measure offset in real conditions.	

Results	Tests were conducted at night during a medium snowfall. Measures were taken during	
	more than 1 hour every 30 seconds, with at everytime an offset measurement.	
Conclusion	It turned out that the LiDAR measures a right offset even when starting from 0cm	Success