

AUTUMN MID SEMESTER EXAMINATION-2019

Subject: Chemistry (CH-1007)

Full Marks: 20

Time: 1.5 Hours

Answer any **Four** questions including Question No. 1 which is compulsory. The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable and <u>all parts of a question should be answered at one place only.</u>

Q.		Marks
1		1X5
(a)	spontaneous?	
(b)	Calculate the free energy change accompanying the compression of 5 moles of CO ₂ at 57 °C when the pressure changes from 5 atm to 50 atm assuming ideal behavior of CO ₂ .	
(c)	Differentiate catalyst and promoter using a suitable example.	
(d)		
(e)		
2		2.5X2
a	Po-212.Calculate the time at which daughter element will have maximum activity?	2.37(2
b	At 300 °C, the half life for a 1st order reaction is 350 min. The activation energy of the reaction is 100 kJ/mole. Calculate the time required for 90% completion of the reaction.	
3		2.5X2
а	For the following parallel reaction, $k_1 \longrightarrow P_M$	
	P_{M} $R \xrightarrow{k_{2}} P_{S}$ Show that, $(k_{1} + k_{2}) = \frac{1}{t} \ln{(\frac{R_{0}}{R_{t}})}$; where each entity has its usual meaning	
	Show that, $(K_1 + K_2) = \frac{1}{t} \ln \left(\frac{K_1}{R_t} \right)$; where each entity has its usual meaning	
b	Enzyme catalysed reaction is 1st order with respect to substrate. Explain?	
4		2.5X2
a	Show that $\Delta G = \Delta H + T \left(\frac{d\Delta G}{dT} \right) p$	2.0112
b	16g of H ₂ and 32 g of He are mixed at 1 atm pressure. Calculate the entropy of mixing	
-	per mole of the mixture formed assuming ideal behavior of the mixture.	
5	T 1:	2.5X2
a	in a liquid vapour equilibrium system, develop the relation using Clapeyron-Clausius equation.	
b	The free energy change for a given reaction is -90 kJ at 25 °C and -85 kJ at 35 °C. Calculate the change in enthalpy for the reaction at 30 °C.	