Subnetting

Subnetting

- Sebenarnya subnetting itu apa dan kenapa harus dilakukan?
 Pertanyaan ini bisa dijawab dengan analogi sebuah jalan.
- Jalan bernama Gatot Subroto terdiri dari beberapa rumah bernomor 01-08,
- Dengan rumah nomor 08 adalah rumah Ketua RT yang memiliki tugas mengumumkan informasi apapun kepada seluruh rumah di wilayah Jl. Gatot Subroto.

- Ketika rumah di wilayah itu makin banyak, tentu kemungkinan menimbulkan keruwetan dan kemacetan.
- Karena itulah kemudian diadakan pengaturan lagi, dibuat gang-gang, rumah yang masuk ke gang diberi nomor rumah baru, masing-masing gang ada Ketua RTnya sendiri-sendiri.
- Sehingga ini akan memecahkan kemacetan, efiesiensi dan optimalisasi transportasi, serta setiap gang memiliki previledge sendiri-sendiri dalam mengelola wilayahnya. Jadilah gambar wilayah baru seperti di bawah:

Dari deskripsi di atas maka subnetting:

- Adalah proses membagi atau memecah sebuah network menjadi beberapa network yang lebih kecil (subnet-subnet).
- Dengan menggunakan subnetting, sebuah jaringan yang besar bisa di pecah menjadi sebuah jaringan yang lebih kecil.

Subnetting akan mengakibatkan beberapa perubahan sebagai berikut :

- Panjang bit network bertambah dan bit host berkurang
- Network address berubah
- Netmask address berubah
- Broadcast address berubah
- Jumlah network (subnet)bertambah
- Jumlah host maksimal setiap subnet berkurang

Alasan dilakukan subnetting:

- Efisiensi IP address.
- Memudahkan router dalam pengalamatan IP
- Mengurangi lalu lintas jaringan/mengisolasi traffic
- Memudahkan proses manajemen atau pengaturan security network.

Subnetting Kelas C

Subnet Mask Kelas C

Subnet Mask	Nilai CDR
255.255.255.0	/24
255.255.255.128	/25
255.255.255.192	/26
255.255.255.224	/27
255.255.255.240	/28
255.255.255.248	/29
255.255.255.252	/30

SubNet mask Default

- Kelas A: 255.0.0.0
- Kelas B: 255.255.0.0
- Kelas C: 255.255.255.0

Prefik (/) atau CIDR (Classless Inter Domain Routing)

Prefix CDR untuk menentukan bagian-bagian dalama proses pengalamatan subnetting.

CIDR (Classless Inter Domain Routing)

- Penulisan IP address umumnya adalah dengan 192.168.1.2.
- Namun adakalanya ditulis dengan 192.168.1.2/24, apa ini artinya? Artinya bahwa IP address 192.168.1.2 dengan subnet mask 255.255.255.0.

RUMUS

- Rumus Jumlah Subnet = 2^x, dimana x adalah banyaknya binari 1 pada oktet terakhir subnet mask
- Jumlah Host per Subnet = 2^y 2, dimana y adalah adalah kebalikan dari x yaitu banyaknya binari 0 pada oktet terakhir subnet.
- Blok Subnet = 256 nilai oktet terakhir subnet mask

Soal 1:

- 192.168.1.10 /29
 - Tentukan kelas
 - Dan Hitung subnetting secara manual

Jawab soal 1

- IP address 192.168.1.10 /29 adalah kelas C
- Konversi nilai CDR 29 menunjukan jumlah bit 1 pada 4 oktet maka diperoleh
- 1111 1111. 1111 1111. 1111 1111. 1111 1000
- 3 nol (0) ditambahkan diterakhir agar menyesuaikan menjadi 8 digit.
 Karna setiap oktet harus ada 8 digit
- Jumlah bit 1 :
 - **1111 1111. 1111 1111. 1111 1111. 1111 1000**
 - Netmask default kelas C: 255.255.255.0
 - Net Mask baru : 255.255.255.248
 - 248 diperoleh pada oktet terakhir yaitu 1111 1000 = 248
- X = 5; X (jumlah bit 1 pada oktet ke 4)
- Y = 3; Y (jumlah bit 0 pada oktet ke 4)

Jawab soal 1

- Jumlah subnet : $2^{X} = 2^{5} = 32$
- Jumlah Host: $2^{y}-2 = 2^{3}-2 = 8-2 = 6$
- Blok subnet: 256 248 = 8 (256 adalah rumus; 248 adalah konversi bit oktet terakhir dirubah ke desimal)
- Nilai 8 akan menjadi nilai kelipatan yang dimulai dari 0 untuk menentukan oktet terakhir setiap subnet
- Nilai oktet terakhir masing2 subnet: 0,8,16,24, 32,.....s/d........248 (kelipatan 8 dari 0 s/d 248) atau 32 kali. Karna jumlah subnet sama dengan 32

Subnet	IP pertama	IP Akhir	Broadcast	Subnet mask
192.168.1.0	192.168.1.1	192.168.1.6	192.168.1.7	255.255.255.248
192.168.1.8	192.168.1.9	192.168.1.14	192.168.1.15	255.255.255.248
192.168.1.16	192.168.1.17	192.168.1.22	192.168.1.23	255.255.255.248
dst sd 248 Sehingga jumlah baris = 32	•••••	•••••	•••••	

SOAL subnetting

• Dik IP = 192.168.1.11 /27

- 1. Net mask baru
- 2. Jumlah subnet
- 2. Jumlah Host Per subnet
- 3. Blok Subnet
- 4. Tabel Alamat Host Dan Broadcast Address

Subnetting Kelas B

- Pertama, subnet mask yang bisa digunakan untuk subnetting class B adalah seperti dibawah.
- Seperti tabel dibawah dpisahkan jadi dua,
 blok sebelah kiri dan kanan
- karena masing-masing berbeda teknik terutama untuk oktet yang "dimainkan" berdasarkan blok subnetnya.

Subnetting Kelas B

Tabel kiri Tabel Kanan

Subnet Mask	Nilai CIDR
255.255.128.0	/17
255.255.192.0	/18
255.255.224.0	/19
255.255.240.0	/20
255.255.248.0	/21
255.255.252.0	/22
255.255.254.0	/23
255.255.255.0	/24

Subnet Mask	Nilai CIDR
255.255.255.128	/25
255.255.255.192	/26
255.255.255.224	/27
255.255.255.240	/28
255.255.255.248	/29
255.255.255.252	/30

Contoh Kasus (untuk /16-/24) 172.16.0.0/18

- Kita mulai dari yang menggunakan subnetmask dengan CIDR /17 sampai /24.
 Contoh network address 172.16.0.0/18.

- Jumlah Subnet = 2^x, dimana x adalah banyaknya binari 1 pada 2 oktet terakhir. Jadi Jumlah Subnet adalah 2² = 4 subnet
- Jumlah Host per Subnet = $2^y 2$, dimana y adalah adalah kebalikan dari x yaitu banyaknya binari 0 pada 2 oktet terakhir. Jadi jumlah host per subnet adalah $2^{14} 2 = 16.382$ host
- Blok Subnet = 256 192 (192 diambil dari oktet ke 3 dari nilai CIDR /18, 11000000 dikonversi ke desimal) = 64. Subnet berikutnya adalah 64 + 64 = 128, dan 128+64=192. Jadi subnet lengkapnya adalah 0, 64, 128, 192.

Alamat host dan broadcast yang didapat?

Subnet	IP pertama	IP Akhir	Broadcast	Subnet mask baru
172.16.0.0	172.16.0.1	172.16.63.254	172.16.63.255	255.255.192.0
172.16.64.0	172.16.64.1	172.16.127.254	172.16.127.255	255.255.192.0
172.16.128.0	172.16.128.1	172.16.191.254	172.16.191.255	255.255.192.0
172.16.192.0	172.16.192.1	172.16.255.254	172.16.255.255	255.255.192.0

Contoh Kasus (untuk /25-/30) 172.16.0.0/25

- Penghitungan:
- Jumlah Subnet = $2^9 = 512$ subnet
- Jumlah Host per Subnet = $2^7 2 = 126$ host
- **Blok Subnet** = 256 128 = 128. Jadi lengkapnya adalah (**0, 128**)
- Alamat host dan broadcast yang valid?

Alamat host dan broadcast yang valid?

Subnet	172.16.0.0	172.16.0.128	172.16.1.0	s/d	172.16.255.128
Host Pertama	172.16.0.1	172.16.0.129	172.16.1.1	s/d	172.16.255.129
Host Terakhir	172.16.0.126	172.16.0.254	172.16.1.126	s/d	172.16.255.254
Broadcast	172.16.0.127	172.16.0.255	172.16.1.127	s/d	172.16.255.255

SUBNETTING Kelas A

- Konsepnya semua sama saja. Perbedaannya adalah di **OKTET** mana kita mainkan blok subnet.
- Kalau Class C di oktet ke 4 (terakhir), kelas B di Oktet 3 dan 4 (2 oktet terakhir), kalau Class A di oktet 2, 3 dan 4 (3 oktet terakhir).
- Subnet mask yang bisa digunakan untuk subnetting class A adalah semua subnet mask dari CIDR /8 sampai /30.

Contoh 10.0.0.0/16.

- Analisa: 10.0.0.0 berarti kelas A, dengan Subnet Mask /16 berarti 11111111111111111100000000.00000000 (255.255.0.0).
- Penghitungan:
- Jumlah Subnet = $2^8 = 256$ subnet
- **Jumlah Host per Subnet** = $2^{16} 2 = 65534$ host
- **Blok Subnet** = 256 255 = 1. Jadi subnet lengkapnya: 0,1,2,3,4, etc.
- Alamat host dan broadcast yang valid?

Alamat host dan broadcast yang valid?

Subnet	10. 0.0.0	10. 1.0.0	 10. 254.0.0	10. 255.0.0
Host Pertama	10. 0.0.1	10.1.0.1	 10.254.0.1	10. 255.0.1
Host Terakhir	10.0.255.254	10.1.255.254	 10. 254.255.2 54	10. 255.255.2 54
Broadcast	10.0.255.255	10.1.255.255	 10. 254.255.2 55	10. 255.255.2 55

Subnet Mask berapa saja yang bisa digunakan untuk melakukan subnetting

Subnet Mask	Nilai CIDR
255.128.0.0	/9
255.192.0.0	/10
255.224.0.0	/11
255.240.0.0	/12
255.248.0.0	/13
255.252.0.0	/14
255.254.0.0	/15
255.255.0.0	/16
255.255.128.0	/17
255.255.192.0	/18
255.255.224.0	/19

Subnet Mask	Nilai CIDR
255.255.240.0	/20
255.255.248.0	/21
255.255.252.0	/22
255.255.254.0	/23
255.255.255.0	/24
255.255.255.128	/25
255.255.255.192	/26
255.255.255.224	/27
255.255.255.240	/28
255.255.255.248	/29
255.255.252	/30