Løsningsforslag til eksamen i MAT1100, H2017

Oppgave 1. a) Vi får

$$\frac{\partial f}{\partial x}(x,y) = 1 \cdot e^{xy} + xe^{xy}y = (1+xy)e^{xy}$$

$$\frac{\partial f}{\partial y}(x,y) = xe^{xy}x = x^2e^{xy}$$

der vi i den første utregningen har brukt både produktregelen og kjerneregelen, og i den andre bare kjerneregelen. Legg merke til at siden de partiell-deriverte er kontinuerlige, er f deriverbar.

b) Gradienten i $\mathbf{a} = (2, 1)$ er

$$\nabla f(2,1) = \left(\frac{\partial f}{\partial x}(2,1), \frac{\partial f}{\partial y}(2,1)\right) = \left((1+2\cdot 1)e^{2\cdot 1}, 2^2e^{2\cdot 1}\right) = e^2(3,4)$$

Dette betyr at f vokser raskest i retningen (3,4) (eller $e^2(3,4)$, om man vil). Veksten i denne retningen er lik lengden av gradientvektoren, så

$$f'(\mathbf{a}, \mathbf{u}) = |\nabla f(\mathbf{a})| = |e^2(3, 4)| = e^2 \sqrt{3^2 + 4^2} = e^2 \sqrt{25} = 5e^2$$

Alternativt kan vi første regne ut $\mathbf{u} = \frac{(3,4)}{\sqrt{3^2+4^2}} = \frac{1}{5}(3,4)$, og så bruke at

$$f'(\mathbf{a}; \mathbf{u}) = \nabla f(\mathbf{a}) \cdot \mathbf{u} = (e^2(3, 4)) \cdot (\frac{1}{5}(3, 4)) = 5e^2$$

Oppgave 2. Volumet er lik tallverdien til determinanten $\det(\mathbf{a}, \mathbf{b}, \mathbf{c})$. Vi har

$$\det(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \begin{vmatrix} 1 & -2 & 1 \\ 2 & 1 & -2 \\ -1 & 0 & 1 \end{vmatrix} = 1 \cdot \begin{vmatrix} 1 & -2 \\ 0 & 1 \end{vmatrix} - (-2) \begin{vmatrix} 2 & -2 \\ -1 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & 1 \\ -1 & 0 \end{vmatrix}$$

$$= 1(1 \cdot 1 - (-2) \cdot 0) + 2(2 \cdot 1 - (-2)(-1)) + 1(2 \cdot 0 - 1 \cdot (-1)) = 1 + 0 + 1 = 2$$

Volumet til parallellepipedet er altså 2 volumenheter.

Oppgave 3. La x(t) være høyden til fallskjermen over bakken ved tiden t. Da er

$$\tan u(t) = \frac{x(t)}{100}$$

Deriverer vi med hensyn på t, får vi

$$\frac{1}{\cos^2 u(t)}u'(t) = \frac{x'(t)}{100}$$

Dermed er

$$x'(t) = \frac{100u'(t)}{\cos^2 u(t)}$$

Vi er interessert i øyeblikket der $u(t) = \frac{\pi}{4}$. Da er $\cos^2 u(t) = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2}$ og u'(t) = 0.03 rad/s, og vi får

$$x'(t) = \frac{100 \cdot 0.03}{\frac{1}{2}} = 6$$

Det betyr at fallhastigheten er 6 meter per sekund.

Oppgave 4. a) Antallet som stemmer på P er 70% av x_1 , pluss 20% av x_2 , pluss 20% av x_3 , dvs.

$$y_1 = 0.7x_1 + 0.2x_2 + 0.2x_3$$

Antallet som stemmer på Q er 20% av x_1 , pluss 70% av x_2 , pluss 20% av x_3 , dvs.

$$y_2 = 0.2x_1 + 0.7x_2 + 0.2x_3$$

Antallet som stemmer på R er 10% av x_1 , pluss 10% av x_2 , pluss 60% av x_3 , dvs.

$$y_2 = 0.1x_1 + 0.1x_2 + 0.6x_3$$

Dette betyr at

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 0.7 & 0.2 & 0.2 \\ 0.2 & 0.7 & 0.2 \\ 0.1 & 0.1 & 0.6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

og følgelig er

$$A = \left(\begin{array}{ccc} 0.7 & 0.2 & 0.2 \\ 0.2 & 0.7 & 0.2 \\ 0.1 & 0.1 & 0.6 \end{array}\right)$$

b) Siden $\mathbf{y} = A\mathbf{x}$, er $\mathbf{x} = A^{-1}\mathbf{y} = B\mathbf{y}$. Dette gir

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1.6 & -0.4 & -0.4 \\ -0.4 & 1.6 & -0.4 \\ -0.2 & -0.2 & 1.8 \end{pmatrix} \begin{pmatrix} 800 \\ 700 \\ 500 \end{pmatrix}$$

$$= \begin{pmatrix} 1.6 \cdot 800 + (-0.4) \cdot 700 + (-0.4) \cdot 500 \\ (-0.4) \cdot 800 + 1.6 \cdot 700 + (-0.4) \cdot 500 \\ (-0.2) \cdot 800 + (-0.2) \cdot 700 + 1.8 \cdot 500 \end{pmatrix} = \begin{pmatrix} 800 \\ 600 \\ 600 \end{pmatrix}$$

Det var altså 800 som sa de ville stemme på P, 600 som sa de ville stemme på Q, og 600 som sa de ville stemme på R.

Oppgave 5. a) Vi prøver substitusjonen $z = \sqrt{x}$. Da er $x = z^2$, så dx = 2z dz. Dermed er

$$I = \int \cos(\sqrt{x}) dx = \int \cos(z) 2z dz = \int 2z \cos z dz$$

Vi bruker nå delvis integrasjon med u=2z og $v'=\cos z$. Da er u'=2 og $v=\sin z$, og vi får

$$I = 2z \sin z - \int 2\sin z \, dz = 2z \sin z + 2\cos z + C = 2\sqrt{x} \sin \sqrt{x} + 2\cos \sqrt{x} + C$$

b) Vi fullfører kvadratet i nevner:

$$I = \int \frac{1}{x^2 + 6x + 18} dx = \int \frac{1}{(x^2 + 6x + 9) + 9} dx$$
$$= \int \frac{1}{(x+3)^2 + 9} dx = \frac{1}{9} \int \frac{1}{\left(\frac{x+3}{3}\right)^2 + 1} dx$$

Setter vi $u = \frac{x+3}{3}$, får vi dx = 3 du og

$$I = \frac{1}{9} \int \frac{3}{u^2 + 1} du = \frac{1}{3} \arctan u + C = \frac{1}{3} \arctan \frac{x + 3}{3} + C$$

Oppgave 6. a) Vi har $|g(x)| = |e^{-x}\sin(e^x)| \le e^{-x}$. Siden $\lim_{x\to\infty} e^{-x} = 0$, får vi også $\lim_{x\to\infty} g(x) = 0$.

Deriverer vi, ser vi at

$$q'(x) = -e^{-x}\sin(e^x) + e^{-x}\cos(e^x)e^x = -e^{-x}\sin(e^x) + \cos(e^x)$$

Det første leddet går mot null, mens det andre varierer mellom -1 og 1, så grensen eksisterer ikke.

b) Derivasjon gir

$$(f(x) + f'(x)(b-x))' = f'(x) + f''(x)(b-x) + f'(x) \cdot (-1) = f''(x)(b-x).$$

Dette betyr at f(x) + f'(x)(b-x) er en antiderivert til f''(x)(b-x), så ifølge analysens fundamentalteorem er

$$\int_{a}^{b} f''(x)(b-x) \, dx = \left[f(x) + f'(x)(b-x) \right]_{a}^{b}$$

$$= f(b) + f'(b)(b-b) - (f(a) + f'(a)(b-a)) = f(b) - f(a) - f'(a)(b-a).$$

c) Siden $|f''(t)| \leq M$ for alle t, er

$$\left| \int_{a}^{b} f''(x)(b-x) \, dx \right| \le \int_{a}^{b} M(b-x) \, dx = \left[-\frac{1}{2} M(b-x)^{2} \right]_{a}^{b} = \frac{1}{2} M(b-a)^{2}.$$

Kombinerer vi dette med resultatet i a), får vi

$$\frac{1}{2}M(b-a)^2 \ge |f(b) - f(a) - f'(a)(b-a)|$$

Dette betyr at avstanden mellom f(b) - f(a) og f'(a)(b-a) er mindre enn eller lik $\frac{1}{2}M(b-a)^2$, og følgelig kan ikke |f(b) - f(a)| være mindre enn $|f'(a)(b-a)| - \frac{1}{2}M(b-a)^2$. Altså er

$$|f(b) - f(a)| \ge |f'(a)(b - a)| - \frac{1}{2}M(b - a)^2 = \left(|f'(a)| - \frac{1}{2}M(b - a)\right)(b - a)$$

d) Setter vi inn i formelen i c) og bruker at $|f'(a)| \geq \epsilon$ og $b-a = \frac{\epsilon}{M},$ får vi

$$|f(b) - f(a)| \ge \left(\epsilon - \frac{1}{2}M\frac{\epsilon}{M}\right)\frac{\epsilon}{M} = \frac{\epsilon}{2} \cdot \frac{\epsilon}{M} = \frac{\epsilon^2}{2M}$$

Anta for motsigelse at f'(x) ikke går mot 0. Da finnes det en $\epsilon > 0$ slik at $f'(x) \ge \epsilon$ for vilkårlig store x. Mer presist finnes det for hver $n \in \mathbb{N}$ et tall $a_n \ge n$ slik at $|f'(a_n)| \ge \epsilon$. Setter vi $a = a_n$ i formelen ovenfor, får vi

$$|f(b_n) - f(a_n)| \ge \frac{\epsilon^2}{2M}$$

der $b_n = a_n + \frac{\epsilon}{M}$. Dette er en selvmotsigelse siden $\lim_{n\to\infty} f(a_n) = 0$, $\lim_{n\to\infty} f(b_n) = 0$, og $|f(b_n) - f(a_n)|$ derfor må bli mindre enn $\frac{\epsilon^2}{2M}$ når n går mot uendelig.