Dynamics 2 (MECE08009)

Particles in Circular Motion (Dynamics of Single Particles)

Particles in Circular Motion

• for particle in a constant radius circular path

- we can apply D'Alembert with familiar acceleration

components, e.g.

Particles in Circular Motion

Velocity components

Particles in Circular Motion

Acceleration components

Example 1.5

- rotating Pendulum
 - links mass to a rotating vertical shaft
 - at a steady rotational speed the wire adopts a steady angle
 - derive an expression for the wire angle?
 - draw its graph as a function of $\boldsymbol{\Omega}$

Example 1.6

- a car test track has banked curves
 - banked at 20°, with 100 m mean radius
- at what speed can a 1 tonne car go round the bend without radial friction between road and wheel?

Example 1.7

- what is your current velocity and acceleration due to the Earth's rotation?
- what is the approximate effect on your "weight" as measured by your bathroom scales?
- data:
 - Earth radius 3960 miles = 6.37×10^6 m
 - latitude of Edinburgh 56°N