# Predicting Alcohol Use of College Students

Marisa Mitchell

Springboard Capstone Project 1

#### The Problem

- 60% of college students ages 18-22 drank alcohol in the past month
- Nearly 2 out of 3 of those students engaged in binge drinking
- Binge drinking can lead to a variety of harmful consequences such as:
  - Death
  - Assault
  - Sexual assault
  - Academic problems
- Colleges may want to provide targeted interventions to students at risk of binge drinking to prevent these harmful consequences

#### The Data

- UCI Machine Learning Student Alcohol Consumption dataset located on Kaggle
  (https://www.kaggle.com/uciml/student-alcohol-consumption/data)
- 33 variables
- 649 students at one college

# **Data Cleaning Steps**

| Total Alcohol Consumption (TALC)                                                                      | Creating Dummy Codes                                                                                                                       | Binning TALC                                                                     |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Creation of TALC variable by totaling the numeric ratings of workday and weekend alcohol consumption. | Dummy variables for several categorical variables such as sex, address (urban or rural), family size, mother's education, and father's job | TALC variable was binned into categories of low(≤3), medium(4-6), and high (≥7). |
| Scale 2(very low)-10(very high)                                                                       | •                                                                                                                                          |                                                                                  |

Total alcohol by Sex





Heatmap showing correlations of all variables in the dataset



Swarmplot of total alcohol vs grade 1 before binning



Bar chart of total student alcohol level after binning



# Machine Learning Algorithms Used for Classification



### **Feature Engineering**

Dummy variables were created for the following categorical variables for the KNN, Logistic Regression, and SVM models:

- School
- Sex
- Address
- Family Size
- Parent Status
- Mother's job
- Father's job
- Reason
- Guardian

- School Support
- Family Support
- Paid
- Activities
- Nursery
- Higher
- Internet
- Romantic
- Mother's Education

- Father's Education
- Travel Time
- Study Time
- Family Relationships
- Free Time
- Going Out
- Health

# **Feature Engineering**

Numerical values were created for each of the string values the following categorical variables for the tree-based models:

- School
- Sex
- Address
- Family Size
- Parent Status
- Mother's job
- Father's job
- Reason
- Guardian

- School Support
- Family Support
- Paid
- Activities
- Nursery
- Higher
- Internet
- Romantic

#### **Model Evaluation Performance Metrics**

| Model               | Accuracy Score (Before Tuning) |  | Accuracy Score (After Tuning) |  |
|---------------------|--------------------------------|--|-------------------------------|--|
| KNN                 | 0.564                          |  | -                             |  |
| Logistic Regression | 0.636                          |  | 0.646                         |  |
| SVM                 | 0.641                          |  | 0.641                         |  |
| Decision Tree       | 0.503                          |  | -                             |  |
| Random Forest       | 0.615                          |  | -                             |  |
| Gradient Boosting   | 0.621                          |  | 0.631                         |  |

# **Confusion Matrices for top 3 models**

#### Logistic Regression

|        | high | low | medium |
|--------|------|-----|--------|
| high   | 1    | 2   | 7      |
| low    | 1    | 92  | 23     |
| medium | 1    | 35  | 33     |

#### SVM

|        | high | low | medium |  |
|--------|------|-----|--------|--|
| high   | 0    | 2   | 8      |  |
| low    | 0    | 98  | 18     |  |
| medium | 0    | 42  | 27     |  |

#### **Gradient Boosting**

|        | high | low | medium |
|--------|------|-----|--------|
| high   | 3    | 2   | 5      |
| low    | 0    | 87  | 29     |
| medium | 2    | 34  | 33     |

# **Classification Report for top 3 models**

| Group                           | Precision | Recall | f1-score | support |
|---------------------------------|-----------|--------|----------|---------|
| Logistic Regression (avg/total) | 0.63      | 0.65   | 0.63     | 195     |
| High                            | 0.33      | 0.10   | 0.15     | 10      |
| Low                             | 0.71      | 0.79   | 0.75     | 116     |
| Medium                          | 0.52      | 0.48   | 0.50     | 69      |
| SVM (avg/total)                 | 0.59      | 0.64   | 0.61     | 195     |
| High                            | 0.00      | 0.00   | 0.00     | 10      |
| Low                             | 0.69      | 0.84   | 0.76     | 116     |
| Medium                          | 0.51      | 0.39   | 0.44     | 69      |
| Gradient Boosting (avg/total)   | 0.63      | 0.63   | 0.63     | 195     |
| High                            | 0.60      | 0.30   | 0.40     | 10      |
| Low                             | 0.71      | 0.75   | 0.73     | 116     |
| Medium                          | 0.49      | 0.48   | 0.49     | 69      |

#### **Conclusions**

- Logistic regression was the most accurate model after tuning with an accuracy of 64.6%
- However, logistic regression was not the best at correctly identifying the high alcohol level group (recall = .10)
- The gradient boosting model may be the best choice due to decent overall accuracy (63.1%) and the best recall (.30) for the high alcohol level group

#### **Next Steps**

To deal with small count of students in the high alcohol group some next steps could be:

- Apply resampling techniques such as oversampling or undersampling
- Collect more data
- Generate synthetic samples
- Use a penalized model