MPP vs Hadoop

Alexey Grishchenko

HUG Meetup 28.11.2015

Pivotal.

Agenda

- Distributed Systems
- MPP
- Hadoop
- MPP vs Hadoop
- Summary

Agenda

- Distributed Systems
- MPP
- Hadoop
- MPP vs Hadoop
- Summary

Avoid distributed systems in all the problems that potentially could be solved using non-distributed systems

Pivotal

- Consensus problem
 - Paxos
 - RAFT
 - ZAB
 - etc.
- Transaction consistency
 - 2PC
 - 3PC

CAP Theorem

L1 cache reference	0 .	.5 ns
Branch mispredict	5	ns
L2 cache reference	7	ns
Mutex lock/unlock	25	ns
Main memory reference	100	ns
Compress 1K bytes with Zippy	3,000	ns
Send 2K bytes over 1 Gbps network	20,000	ns
Read 1 MB sequentially from memory	250,000	ns
Round trip within same datacenter	500,000	ns
Disk seek	10,000,000	ns
Read 1 MB sequentially from disk	20,000,000	ns
Send packet CA->Netherlands->CA	150,000,000	ns

http://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf

Pivotal...

Reasons to use

- Performance issues
 - More than 100'000 TPS
 - More than 4 GB/sec scan rate
 - More than 100'000 IOPS
- Capacity issues
 - More than 50TB of data
- DR and Geo-Distribution

Agenda

- Distributed Systems
- MPP
- Hadoop
- MPP vs Hadoop
- Summary

Main principles

- Shared Nothing
- Data Sharding
- Data Replication
- Distributed Transactions
- Parallel Processing

11

Works well for

- Relational data
- Batch processing
- Ad hoc analytical SQL
- Low concurrency
- Applications requiring ANSI SQL

Not the best choice for

- Non-relational data
- OLTP and event stream processing
- High concurrency
- 100+ server clusters
- Non-analytical use cases
- Geo-Distributed use cases

Pivotal

Agenda

- Distributed Systems
- MPP
- Hadoop
- MPP vs Hadoop
- Summary

Main Components

- HDFS
- YARN
- MapReduce
- HBase
- Hive / Hive+Tez

HDFS

- Distributed filesystem
- Block-level storage with big blocks
- Non-updatable
- Synchronous block replication
- No built-in Geo-Distribution support
- No built-in DR solution

Pivotal

HDFS

17

YARN

- Cluster resource manager
- Manages CPU and RAM allocation
- Schedulers are pluggable
- Can handle different resource pools
- Supports both MR and non-MR workload

YARN

MapReduce

- Framework for distributed data processing
- Two main operations: map and reduce
- Data hits disk after "map" and before "reduce"
- Scales to thousands of servers
- Can process petabytes of data
- Extremely reliable

MapReduce

HBase

- Distributed key-value store
- Data is sharded by key
- Data is stored in sorted order
- Stores multiple versions of the row
- Easily scales

HBase

Hive

- Query engine with SQL-like syntax
- Translates HiveQL query to MR / Tez / Spark job
- Processes HDFS data
- Supports UDFs and UDAFs

Hive

25

Works well for

- Write Once Read Many
- 100+ server clusters
- Both relational and non-relational data
- High concurrency
- Batch processing and analytical workload
- Elastic scalability

Pivotal

Not the best choice for

- Write-heavy workloads
- Small clusters
- Analytical DWH cases
- OLTP and event stream processing
- Cost savings

Agenda

- Distributed Systems
- MPP
- Hadoop
- MPP vs Hadoop
- Summary

Platform Openness

Mostly Closed

Hadoop Open

Pivotal

Platform Openness Hardware Options Mostly Closed Mostly Appliances Hadoop
Open
Commodity

Platform Openness
Hardware Options
Vendor Lock-in

Mostly Closed
Mostly Appliances
Typical

Hadoop
Open
Commodity
Not Common

Platform Openness

Hardware Options

Vendor Lock-in

Technology Price

Mostly Closed

Mostly Appliances

Typical

\$200K - \$10M

Hadoop

Open

Commodity

Not Common

\$50K - \$500K

Pivotal

Platform Openness

Hardware Options

Vendor Lock-in

Technology Price

Implementation Cost

Mostly Closed

Mostly Appliances

Typical

\$200K - \$10M

Moderate

Hadoop

Open

Commodity

Not Common

\$50K - \$500K

High

Pivotal

Platform Openness

Hardware Options

Vendor Lock-in

Technology Price

Implementation Cost

Extensibility

Mostly Closed

Mostly Appliances

Typical

\$200K - \$10M

Moderate

Vendor-provided APIs

Hadoop

Open

Commodity

Not Common

\$50K - \$500K

High

Open Source

Pivotal

Platform Openness

Hardware Options

Vendor Lock-in

Technology Price

Implementation Cost

Extensibility

Supportability

Mostly Closed

Mostly Appliances

Typical

\$200K - \$10M

Moderate

Vendor-provided APIs

Easy

Hadoop

Open

Commodity

Not Common

\$50K - \$500K

High

Open Source

Complex

Pivotal

Platform Openness

Hardware Options

Vendor Lock-in

Technology Price

Implementation Cost

Extensibility

Supportability

Scalability

Mostly Closed

Mostly Appliances

Typical

\$200K - \$10M

Moderate

Vendor-provided APIs

Easy

Up to 100 servers

Hadoop

Open

Commodity

Not Common

\$50K - \$500K

High

Open Source

Complex

Up to 5000 servers

Pivotal

MPP vs Hadoop for Business

Platform Openness

Hardware Options

Vendor Lock-in

Technology Price

Implementation Cost

Extensibility

Supportability

Scalability

Scalability

Mostly Closed

Mostly Appliances

Typical

\$200K - \$10M

Moderate

Vendor-provided APIs

Easy

Up to 100 servers

Up to 100-300 TB

Hadoop

Open

Commodity

Not Common

\$50K - \$500K

High

Open Source

Complex

Up to 5000 servers

Up to 100 PB

Pivotal

MPP vs Hadoop for Business

Platform Openness

Hardware Options

Vendor Lock-in

Technology Price

Implementation Cost

Extensibility

Supportability

Scalability

Scalability

Target Systems

Mostly Closed

Mostly Appliances

Typical

\$200K - \$10M

Moderate

Vendor-provided APIs

Easy

Up to 100 servers

Up to 100-300 TB

DWH

Hadoop

Open

Commodity

Not Common

\$50K - \$500K

High

Open Source

Complex

Up to 5000 servers

Up to 100 PB

Purpose-Built Batch

Pivotal

MPP vs Hadoop for Business

Platform Openness

Hardware Options

Vendor Lock-in

Technology Price

Implementation Cost

Extensibility

Supportability

Scalability

Scalability

Target Systems

Target End Users

Mostly Closed

Mostly Appliances

Typical

\$200K - \$10M

Moderate

Vendor-provided APIs

Easy

Up to 100 servers

Up to 100-300 TB

DWH

Business Analysts

Hadoop

Open

Commodity

Not Common

\$50K - \$500K

High

Open Source

Complex

Up to 5000 servers

Up to 100 PB

Purpose-Built Batch

Developers

Pivotal

MPP

Query Optimization Good Hadoop

Poor to None

Query Optimization

Debugging

MPP

Good

Easy

Hadoop

Poor to None

Very Hard

MPP

Hadoop

Query Optimization

Good

Poor to None

Debugging

Easy

Very Hard

Accessibility

SQL

Mainly Java

Pivotal

Query Optimization Good

Debugging Easy

Accessibility SQL

DBA Skill Level Low

Hadoop

Poor to None

Very Hard

Mainly Java

High

Pivotal

Pivotal Confidential—Internal Use Only

MPP

MPP Hadoop

Query Optimization Good Poor to None

Debugging Easy Very Hard

Accessibility SQL Mainly Java

DBA Skill Level Low High

Single Job Redundancy Low High

Pivotal

Query Optimization

Debugging

Accessibility

DBA Skill Level

Single Job Redundancy

Query Latency

MPP

Good

Easy

SQL

Low

Low

10-20 ms

Hadoop

Poor to None

Very Hard

Mainly Java

High

High

10-20 sec

Pivotal

Query Optimization

Debugging

Accessibility

DBA Skill Level

Single Job Redundancy

Query Latency

Query Runtime

MPP

Good

Easy

SQL

Low

Low

10-20 ms

5-7 sec

Hadoop

Poor to None

Very Hard

Mainly Java

High

High

10-20 sec

10-15 mins

Pivotal

Query Optimization

Debugging Accessibility

DBA Skill Level

Single Job Redundancy

Query Latency

Query Runtime

Query Max Runtime

MPP

Good

Easy

SQL

Low

Low

10-20 ms

5-7 sec

1-2 hours

Hadoop

Poor to None

Very Hard

Mainly Java

High

High

10-20 sec

10-15 mins

1-2 weeks

Pivotal

Query Optimization

Debugging

Accessibility

DBA Skill Level

Single Job Redundancy

Query Latency

Query Runtime

Query Max Runtime

Min Collection Size

MPP

Good

Easy

SQL

Low

Low

10-20 ms

5-7 sec

1-2 hours

Megabytes

Hadoop

Poor to None

Very Hard

Mainly Java

High

High

10-20 sec

10-15 mins

1-2 weeks

Gigabytes

Pivotal

Query Optimization

Debugging

Accessibility

DBA Skill Level

Single Job Redundancy

Query Latency

Query Runtime

Query Max Runtime

Min Collection Size

Max Concurrency

MPP

Good

Easy

SQL

Low

Low

10-20 ms

5-7 sec

1-2 hours

Megabytes

10-15 queries

Hadoop

Poor to None

Very Hard

Mainly Java

High

High

10-20 sec

10-15 mins

1-2 weeks

Gigabytes

70-100 jobs

Pivotal

Agenda

- Distributed Systems
- MPP
- Hadoop
- MPP vs Hadoop
- Examples
- Summary

Summary

Use MPP for

- Analytical DWH
- Ad hoc analyst SQL queries and BI
- Keep under 100TB of data

Use Hadoop for

- Specialized data processing systems
- Over 100TB of data

Pivotal

Questions?

Pivotal

Pivota

BUILT FOR THE SPEED OF BUSINESS