Simulazione di un supermercato con Anylogic

Odore Marco

28 ottobre 2017

Docenti: Trubian Marco, Malchiodi Dario Corso: Simulazione e Teoria delle code

Indice

1	Scopo del progetto	1
2	Agent Based modeling	2
3	Gli agenti Customer e genericFood	2
4	Il supermercato e i servizi	4

1 Scopo del progetto

L'obiettivo del progetto è stato quello di simulare, tramite il software Anylogic¹, diverse dinamiche riguardanti un supermercato, come ad esempio il flusso della clientela, la schedulazione del personale e i diversi servizi che possono essere presenti nell'attività.

Il tutto è stato realizzato tramite la versione learning edition del software, che presenta alcune limitazioni, come ad esempio il numero massimo di tipologie definibili per gli agenti e un numero massimo per la loro generazione durante l'esecuzione della simulazione².

¹https://www.anylogic.com/

 $^{^2}$ Durante la simulazione saranno generabili un massimo di 50000 agenti complessivi e in fase di costruzione del modello non è stato possibile definire più di 10 agenti.

2 Agent Based modeling

Data la natura complessa del problema, che possiede moltissime attività parallele e concorrenti da simulare, si è deciso di sfruttare il modello basato su agenti.

Nello specifico sono stati definiti:

- Customer: il cliente del supermercato.
- Worker: i diversi addetti dei reparti di panetteria, pescheria e macelleria.
- Warehouseman: i magazzinieri che si occupano di rifornire gli scaffali.
- Cashier: i cassieri per il servizio di pagamento.
- Cart: i carrelli utilizzati dai clienti.
- GenericFood: la risorsa utilizzata dai magazzinieri per rifornire gli scaffali.
- AutomaticCashierMachine: la cassa automatica per il servizio di pagamento.
- InfoPointHelper: gli addetti dell'info point.

La maggior parte degli agenti è stata definita per poterne differenziare l'aspetto all'interno della simulazione, e solo Customer e GenericFood possiedono un'ulteriore caratterizzazione.

3 Gli agenti Customer e genericFood

Il Customer possiede diverse variabili e parametri. Nello specifico:

- Variabile ItemsToBuy: È un dizionario con coppie Prodotto(String)/Quantità(int), che contiene i prodotti che il cliente vuole comprare e relativa quantità.
- Variabile Bought: Un booleano che indica se il cliente ha comprato qualcosa, inizializzato a false.
- Variabile CounterBuy: un contatore(int) che indica quanti prodotti il cliente ha nel carrello in quel momento.
- Variabile NeedsInfo: Un booleano che indica se il cliente necessita di chiedere informazioni all'infopoint.
- I parametri needsInfoRate, needsMeat, needsBread, needsFish, needsOther: che rappresentano le diverse probabilità di acquisto (o di info) che un cliente generico possiede entrando nel supermercato³.

³Ad esempio, nella simulazione è stata definita la probabilità che un cliente voglia comprare del pane entrando nel supermercato a 0.7(cioè sette clienti su dieci).

L'agente inoltre caratterizzato da uno state chart (Figura 1), con tre diversi stati:

- InitialState: lo stato iniziale del cliente entrando nel supermercato.
- WantsToBuy: lo stato del cliente quando è in fase di acquisto dei prodotti.
- WantsToGoAway: lo stato del cliente quando decide di andare via.

Figura 1: Il diagramma di stato dell'agente Customer.

Quando il cliente entra nello stato Initial State, viene eseguito del codice
(Figura 2) che permette di inizializzare la variabile Items To
Buy di Customer, sfruttando i diversi parametri che definiscono le probabilità di acquisto del cliente per i diversi prodotti.

```
shapeBody.setFillColor(black);
1
   String []list = {"meat", "bread", "fish", "generic", "generic1", "
2
        generic2"};
3
   ArrayList < String > possibilities = new ArrayList < String > (Arrays.
        asList(list));
   java.util.Collections.shuffle(possibilities);
4
5
   double res;
   for(String poss: possibilities){
6
        res = uniform(0,1);
        int quantity = uniform_discr(1,4);
8
9
        if (res<=getParameterFromString(poss))</pre>
10
11
            addObject(poss, quantity);
12
13
   }
14
   res = uniform(0,1);
   if(res<=needsInfoRate)</pre>
15
16
        needsInfo = true;
```

Figura 2: Inizialmente viene eseguito uno shuffle sulla lista di stringhe dei possibili oggetti da acquistare, per differenziare l'ordine di acquisto di ogni cliente, e poi viene simulata un'estrazione da una distribuzione di Bernoulli sfruttando una distribuzione uniforme e il parametro del prodotto di riferimento. Viene inoltre simulata l'estrazione da una distribuzione uniforme discreta per la quantità del prodotto da acquistare.

4 Il supermercato e i servizi

Nella figura 2 è mostrata la planimetria del supermercato e le sue principali aree di interesse.

I servizi simulati per i clienti della struttura sono i seguenti:

- Servizio al banco per prodotti di panetteria.
- Servizio al banco per prodotti di macelleria.
- Servizio al banco per prodotti di pescheria.
- Servizio di infopoint.
- Servizio di pagamento con cassiere.
- Servizio di pagamento con cassa automatica.

Sono state inoltre simulate delle attività di rifornimento degli scaffali per tre diverse tipologie di prodotti.

 $Figura \ 3: \ Le \ principali \ aree \ di \ interesse \ del \ supermercato.$