Universidade Federal da Fronteira Sul - UFFS - Chapecó, SC

Curso de Ciência da computação

1º Prova Cálculo numérico (2º Sem/2023)

Prof.: Vitor José Petry

Aluno:

Instruções: A prova é individual e sem consulta. É permitido o uso de calculadora, desde que não tenha recursos gráficos e nem possibilidade de armazenar textos e/ou arquivos. Não é permitido o uso de celular. Na solução de questões com métodos iterativos, trabalhe sempre com quatro ou mais casas decimais.

- 1. Considere a função $f(x) = x^3 3x + 1$.
 - a. (1,0 pt.) Mostre que as três raízes de f, estão respectivamente nos intervalos: $\xi_1 \in [-2,-1]$, $\xi_2 \in [0,1]$ e $\xi_3 \in [1,2]$.
 - b. (1,0 pt.) Use o método de Newton para encontrar ξ_1 com precisão $\epsilon < 10^{-2}$. Escolha para x_0 o extremo do intervalo de forma que $f(x_0).f''(x_0) > 0$.
 - c. (1,0 pt.) Use o método da secante para encontrar ξ_3 com precisão $\epsilon < 10^{-2}$. Para a obtenção de x_0 e x_1 , aplique duas vezes o método da bissecção.
- 2. (2,0 pts.) Use o método de Gauss para resolver o sistema linear

$$\begin{cases} 3x +2y +z = 5 \\ x +y +2z = 3 \\ 2x +3y -2z = -1 \end{cases}$$

3. (2,0 pts.) Reescreva o sistema linear dado de forma a garantir a convergência dos métodos iterativos estudados. Justifique as alterações efetuadas. Em seguida, resolva o sistema usando o método de Gauss-Seidel com precisão de 5.10^{-2} e chute inicial $X_0 = \begin{bmatrix} 1 & 1 \end{bmatrix}^t$.

$$\begin{cases} x +2y +4z = 7 \\ x -4y +z = -2 \\ 5x -2y +z = 3 \end{cases}$$

- 4. Para um determinado día, prevê-se que às 8 horas a temperatura seja de $18^{o}C$, às 12 horas de $23^{o}C$, às 16 horas de $26^{o}C$ e às 20 horas de $21^{o}C$.
 - a. (1,5 pts.) Usando interpolação de Lagrange (com polinômio de 3^o), obtenha a previsão da temperatura para as 11 horas e 30 minutos do mesmo dia.
 - b. (1,5 pts.) Usando interpolação com diferenças finitas (com polinômio de 3°), obtenha a previsão da temperatura para as 17 horas do mesmo dia.

Boa Prova!!

(1)
$$f(-2) = -1$$
 | Amin sink raiz $f_1 \in [-2, -1)$
(a) $f(-1) = 3$ | Amin sink raiz $f_1 \in [-2, -1)$
(b) $f(-1) = -3 < 0$
 $f(0) = 1$ | $f(0) = 1 < 0$ | $f(-1) = -1 < 0 = 0$ | $f(0) = 1 < 0 < 0$

$$\begin{cases} (1)^{-1} \\ (2)^{-3} \end{cases} = \int (1) \cdot \int (2) = -320 \Rightarrow \exists \int_{3} \in [1, 2]$$

(b)
$$f(x) = x^3 - 3x + 1 = \int f(x) = 3x^2 - 3 = \int f(x) = 6x$$

 $f''(-2) = -12 = \int f(-2) \cdot f(-2) = -1 \cdot (-12) > 0$
Com $f''(x) < 0 \text{ f } x \in (-2, -1)$

Assim xo=-2 garante a convergincie de métods. X1=-1,88889 erro:191111

X2 = -1,87945 erro =0,009 =09.10=9.10=3

(C)
$$X_0 = J_1 S$$

2 $X_1 = I_1 + S$

2 $X_2 = I_1, 5253$

2 $E = 0,22$

2 $X_3 = 1,3307$

3 $E = 0,22$

3 $E = 0,22$

$$m_{31} = \frac{7}{3} \Rightarrow L_3 = L_3 - \frac{2}{3} L_1$$

mal= 1/3 =>: 62 = 62 - 1/3 61

$$\begin{bmatrix} 3 & 2 & 1 & 5 \\ 0 & \frac{1}{3} & \frac{5}{3} & \frac{4}{3} \\ 0 & \frac{5}{3} & \frac{-8}{3} & \frac{1-13}{3} \end{bmatrix}$$

$$m_{32} = \frac{513}{1/3} = 5 = 5.62$$

$$3X + 2Y + Z = S$$

$$X = \frac{5 - 2Y - Z}{3} = \frac{5 - 2 \cdot (-1) - 1}{3} = \frac{6}{3} = Z$$

$$|Z = Z|$$

$$X^{N+L} = \frac{3 + 2y^{h} - z^{h}}{5}$$

$$Y^{h+L} = \frac{3 + 2y^{h} - z^{h}}{5} = \frac{2 + x + z}{4}$$

$$Z^{n+L} = \frac{7 - x^{n+L} - 2y^{n+L}}{4}$$

$$X_{1} = \begin{bmatrix} o_{1}8 \\ o_{1}95 \\ o_{1}1075 \end{bmatrix}; \quad \mathcal{E}_{NO} = \begin{bmatrix} -o_{1}2 \\ -o_{1}os \\ o_{1}075 \end{bmatrix} \quad \text{Also} = \begin{bmatrix} o_{1}725 \\ o_{1}075 \\ o_{1}075 \end{bmatrix}$$

$$X_{2} = \begin{bmatrix} o_{1}765 \\ o_{1}965 \\ o_{1}965 \\ o_{1}965 \\ o_{1}965 \\ o_{1}07875 \end{bmatrix}; \quad \mathcal{E}_{NO} = \begin{bmatrix} -o_{1}03s \\ o_{1}02 \\ o_{1}00375 \end{bmatrix}; \quad \mathcal{E}_{NO} = \begin{bmatrix} -o_{1}0162s \\ o_{1}00375 \\ o_{1}075 \\ o_{1}075 \\ o_{2}075 \\ o_{1}075 \\ o_{2}075 \\ o_{2}075 \\ o_{3}775 \end{bmatrix}$$

$$\mathcal{E}_{1} = \begin{bmatrix} 3 + 2y^{h} - z^{h} \\ -2y^{h+L} - 2y^{h+L} \\ -2y^{h+L} - 2y^{h+L} - 2y^{h+L} \\ o_{1}075 \\ o_{2}075 \\ o_{3}775 \\ o_{3}775 \\ o_{4}075 \\ o_{5}775 \\ o_{5}775$$

$$L_{0}(\Lambda) = \frac{(X-12)(X-16)(X-20)}{(8-12)(8-16)(8-20)} = 1 L_{0}(11,5) \approx 0.0498$$

$$L_{L}^{(1)} = \frac{(\chi - 8)(\chi - 16)(\chi - 20)}{(12 - 8)(12 - 16)(12 - 20)} \implies L_{3}(11,5) \approx 1,0459$$

$$L_{2}(x) = \frac{(x-8)(x-12)(x-20)}{(16-8)(16-12)(16-20)} = L_{2}(11,5) \approx -0,1162$$

$$L_3(x) = \frac{(x-8)(x-12)(x-16)}{(20-8)(20-12)(20-16)} =) L_3(11.5) \approx 0.0265$$

	i	di	\ y :	Δγ:	改:	Δ ³ γι	h = 4
(4.5)	0	8	18	5	-2	- 6	X0 = 8
	1	12	23	3	-8		. X=17
	2	16	26	-5			. ~/1
	3	20	21				2- x-xo-
							— h

$$2 = \frac{x - x_0}{h} = \frac{17 - 8}{4}$$

$$P(17) = \frac{1}{2} + \frac{1}{2$$

Digitalizado com CamScanner