## Лекции по дискретной математике

Колесников Алексей, Филяев Константин,

Якубов Александр, Жеребцов Кирилл 30 сентября 2021 г.

## Содержание

- 1 Дискретные функции и их представление. Индуктивное определение формулы. Полные системы. Критерий полноты.
- Дискретные функции и их представление.
  Индуктивное определение формулы. Полные системы. Критерий полноты.

**Определение.** Дискретной функцией называется любая функция, отображающая конечное множество A в конечное множество B.

Область определения дискретной функции часто представляется в виде декартового произведения множеств относительно небольшой мощности.

Если  $f:A\to B$  - дискретная функция и  $A=A_1\times\cdots\times A_n$ , то f обозначают следующим образом  $f(x_1;\ldots;x_n)$  и называют дискретной функцией от n переменных  $x_1,\ldots,x_n$ . При этом  $x_i$  принимает всевозможные значения из  $A_i$ . Если  $A_1=\cdots=A_n=B$  и  $B=\{0,1\}$ , то f называется булевой функцией.

**Определение.** Обозначим далее  $\Omega = \{0,1\}$ , тогда булевой функцией от n переменных называется любое отображение  $f:\Omega^n \to \Omega$ .

0-местными булевыми функциями будем называть элементы  $0, 1 \in \Omega$ .

**Замечание.** Существуют функции k - значной логики.

Обозначать булеву функцию будем  $f(x_1; ...; x_n)$  или  $f(\vec{x})$ , если количество переменных известно из контекста.

**Определение.** Если  $f(x_1; ...; x_n)$  - булева функция и  $\vec{\alpha} = (a_1; ...; a_n) \in \Omega^n$ , то образ  $\vec{\alpha}$  при отображении f называют значением функции f на наборе  $\vec{\alpha}$ . Обозначение:  $f(\vec{\alpha})$ .

**Определение.** Если рассматривать 0 и 1 как числа  $\in \mathbb{N}_0$ , то для набора  $\vec{\alpha} = (a_1; \dots; a_n)$  обозначим  $||\vec{\alpha}|| = a_1 + \dots + a_n$  - вес вектора  $\vec{\alpha}$ .

$$\widetilde{a}=\sum_{i=1}^n a_i 2^{n-i}$$
 - лексикографический порядок.   
  $\Pi pumep.$ 

$$\vec{\alpha} = (1; 1; 0; 1) \Rightarrow ||\vec{\alpha}|| = 1 + 1 + 0 + 1 = 3.$$

Естественным образом задания является табличный, при этом координата i-вектора  $f^{\downarrow}$  соответствует значению  $f(\vec{\alpha})$ , где  $\widetilde{a}=i$ . Пример.

$$\begin{array}{ccccc} x_0 & x_1 & f^{\downarrow} \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$$