

UNIVERSIDADE DO MINDELO DEPARTAMENTO DE ENGENHARIA E RECURSOS DO MAR

CURSO DE LICENCIATURA EM

ENGENHARIA INFORMÁTICA E SISTEMAS COMPUTACIONAIS

ATIVIDADE PRÁTICA

ANO LETIVO 2023/2024 - 4ºANO

TEMA: Relatório Projeto Rede para uma empresa com filiais entre ilhas.

Discente: Anifa Pinheiro Nº:5062

Docente: Stiven Alves

Índice

Introdução	3
A Empresa	3
Topologia da Rede	3
Equipamentos Utilizados:	4
Configuração da Rede realizadas:	5
Configuração da rede por departamento (ilhas)	5
1.1 Configuração DHCP:	5
1.2 Configuração de NAT e ACL	6
1.3 configuração de roteamento (RIP)	6
1.4 ACL (restrição de acesso)	6
Tecnologias Avançadas	6
Conclusão	7
Deferencies	7

Introdução

Este relatório descreve a configuração de uma rede para a empresa "B-System", localizada em São Vicente e Praia, com um departamento de assistência a primavera na ilha do sal. A empresa possui dois departamentos, cada um com uma VIAN, o projecto explora tecnologias como VPN, links de failover, port forwarding, e gerenciamento de redes.

A Empresa

A empresa denominada B-System é uma empresa de consultoria, desenvolvimento software e assistência técnica em TI, tem como escritório principal na ilha de São vicente com dois departamento (Desenvolvimento e Consulting Suporte) e na ilha de Santiago (Praia) como escritório secundário, ilha do sal como departamento de assistência local.

Topologia da Rede

- Descrição: A rede da B-System está distribuída em três localidades principais:
 - 1. São Vicente: Escritório principal com roteador central (Router40) e VLANS para os respetivos dois departamentos existente.

Figura 1- Router 40 representa o escritório principal

2. Santiago (Praia): segundo escritório conectado via links ISP.

Figura 2- rede do escritório na ilha de Santiago

3. Ilha do Sal: departamento de assistência local conectado diretamente ao roteador.

Figura 3- Escritório Sal.

Equipamentos Utilizados:

- Roteadores Cisco ISR4331 e ISR4321.
- Switches.
- PCs e Servers.
- Conexões de ISP para redundância e failover.

Configuração da Rede realizadas:

VLAN 10:

interface GigabitEthernet0/0/0.10 encapsulation dot1Q 10 ip address 192.168.10.1 255.255.255.0 ip nat inside

VLAN 20:

interface GigabitEthernet0/0/0.20 encapsulation dot1Q 20 ip address 192.168.20.1 255.255.255.0 ip nat inside

Configuração da rede por departamento (ilhas)

1. Rede 192.168.4.0/24:

interface GigabitEthernet0/0/0.30 encapsulation dot1Q 30 ip address 192.168.4.1 255.255.255.0 ip nat inside

1.1 Configuração DHCP:

ip dhcp excluded-address 192.168.10.1 192.168.10.30 ip dhcp excluded-address 192.168.20.1 192.168.20.30

ip dhcp pool Deve network 192.168.10.0 255.255.255.0 default-router 192.168.10.1 dns-server 8.8.8.8

ip dhcp pool Suporte network 192.168.20.0 255.255.255.0 default-router 192.168.20.1 dns-server 8.8.8.8

ip dhcp pool Sal network 192.168.4.0 255.255.255.0 default-router 192.168.4.1

dns-server 8.8.8.8

1.2 Configuração de NAT e ACL

ip nat inside source list Nat interface GigabitEthernet0/0/1 overload

ip access-list extended Nat deny ip any 192.168.1.0 0.0.0.255 deny ip any 192.168.2.0 0.0.0.255 permit ip 192.168.4.0 0.0.0.255 any permit ip any any

1.3 configuração de roteamento (RIP)

router rip
version 2
passive-interface GigabitEthernet0/0/0.30
network 192.168.4.0

1.4 ACL (restrição de acesso)

ip access-list extended bloq deny ip 192.168.10.0 0.0.0.255 host 192.168.20.2 permit ip any any

Tecnologias Avançadas

a. VPN (Virtual Private Network)

Os pos conectam-se entre si na rede com maior segurança usando VPN configurada para criptografar o tráfego entre as ilhas, garantindo que os transportes de dados por pacotes estejam protegidos de interseção.

b. Links Failover

Foram feitas três configurações ISPs diferentes com redundância. Em caso de falha supostamente, o roteador centraliza as conexões e reencaminha o tráfego para outro ISP, para que haja continuidade da rede para o serviço.

c. Port Forwarding

Serve para expor um serviço interno, tal como servidor https, para a internet: ip nat inside source static

tcp 192.168.10.2 80 interface GigabitEthernet0/0/1 80, onde através des comando o servidor privado expõe com o ip 192.168.10.2 na porta 80 para o roteador publico.

Essas foram as tecnologias que mais tive dificuladade em implementar, visto que me gerou confusão onde seria o lugar ideial para o implementar, entretanto optei por fazer uma demostração no canto direito do projeto de que os conceitos estão assimilados porem tenho duvidas em sabe o lugar ideal para os implementar.

d. Teste conectividade

ping 192.168.10.2 ping 192.168.20.2 ping 192.168.4.2

Conclusão

As tecnologias discutidas, como VPN, failover, port forwarding e automação, são fundamentais para garantir a continuidade do serviço, segurança dos dados e facilidade de gerenciamento da rede de uma empresa.

Este trabalho proporciona ao aluno uma atividade pratica o que me fez dedicar e quebrar os "tabus e medos" de relacionar no mundo de redes, entretanto o projecto não esta configurada na totalidade na categoria de tecnologias avançadas.

Referencias:

Cisco ISR 4000 Series Integrated Services Routers Data Sheet

Cisco Configuration Guides

comnet-a_top-down_approach_3rd_edition.pdf

https://youtu.be/XtAD7RMNcEs

Redundant Internet Connections for Increased Reliability

Cisco Documentation on STP