Table 1

input_senquence	correct_fol_translation	prompt_2-translations	prompt_2-evals	Comments	prompt_3-translation	prompt_3-evals	Comments
0 you should expect your friends to reveal everything about themselves to	$\forall x \ \forall y \ (Friends(x, y) \rightarrow RevealEverything(x, y))$	$\forall x \forall y (Friends(x, y) \rightarrow ShouldExpect(x, RevealEverything(y)))$		0			
you. 1 you should ask too much of your family.	$\forall x \forall y (Family(x,y) \to ShouldAskTooMuch(y,x))$	∀x∀y(Family(y) ∧ Has(x, y) → ShouldAskTooMuch(x))		"For all x, for all y: If y is Family and x Has y, then x Should ask too much"	∀x(Family(x) → ShouldAskTooMuch(x))		1 "For all x: If x is Family, x Should a much"
2 it's good to meet new people when you go shopping.	$\forall x \forall y (Shopping(x) \land Meets(x,y) \land New(y) \rightarrow evaluation(good))$				$\forall x \forall y (Shopping(x) \land MeetNewPeople(x,y) \rightarrow Good(x))$		"For all x, for all y: If x is Shopping Meet new people y, then x is good
3 it's good to be excited about getting your first paycheck.	$\forall x \forall y ((Paycheck(x) \land Gets(y,x) \rightarrow ExcitedAbout(y,x)) \rightarrow evaluation(good))$	$\forall x (FirstPaycheck(x) \land \textbf{ExcitedAbout(x)} \rightarrow evaluation(good))$		"For all x, for all y: If x is FirstPaycheck and x is ExitedAbout, then evaluation is good"	$\forall x (FirstPaycheck(x) \land \textbf{ExcitedAbout(x)} \rightarrow evaluation(good))$		1 "For all x, for all y: If x is FirstPaych and x is ExitedAbout, then evaluate good"
4 you're expected to make sure food you serve to others is safe to eat.	$\forall x \forall y \forall z (lsFood(x) \land Serve(y,x,z) \rightarrow CheckSafety(y,x))$	$\forall x \forall y (Serves(x,y) \land Food(y) \to ExpectedToEnsure(x,Safe(y)))$		0	$\forall x \forall y (Serves(x, y) \land IsFood(y) \to \mathbf{ShouldCheckSafety(x)})$		"For all x, for all y: If x Serves y an food, then x Should check safety"
it's bad to take an advantage in life when you see it.	$\forall x \forall y (Advantage(x) \land See(y,x) \land Take(y,x) \rightarrow evaluation(bad))$	$\forall x \forall y (\textbf{Life(x)} \land \textbf{Sees(x,y)} \land \textbf{Advantage(y)} \rightarrow \textbf{evaluation(bad))}$		1 "For all x, for all y: If x is Life and y Sees x and y is Advantage then evaluation is bad"	$\forall x \forall y ((Sees(x,y) \land AdvantageInLife(y)) \rightarrow evaluation(bad))$		1 "For all x, for all y: If x Sees y and Advantage in life, then evaluation
6 you shouldn't try to steal your friend's significant other	$\forall x \forall y \forall z (Friend(y,x) \land SignificantOther(z,y) \rightarrow \neg ShouldTryToSteal(x,z))$	$\forall x \forall y \forall z (\textbf{People(x)} \land Friends(x, y) \land SignificantOther(y, z) \rightarrow \neg ShouldSteal(x, z))$		"For all x, for all y, for all z: If x is People and x is Friends with y and y has Significant other z then x should not steal z"			
7 you shouldn't measure new furniture before buying.	$\forall x \forall y (Furniture(x) \land \neg Bought(y, x) \rightarrow \neg ShouldMeasure(y, x))$	$\forall x (Furniture(x) \land New(x) \rightarrow \neg ShouldMeasureBeforeBuy(x))$		"For all x: If x is Furniture and X is new then x Should not measure before buy	$\forall x (\text{NewFurniture}(x) \land \text{Buying}(x) \rightarrow \neg \text{ShouldMeasure}(x))$		1 "For all x: If x is New furniture ar Buying, then x Should not meas
10 people are not expected to love their family.	$\forall x \forall y (People(x) \land Family(x,y) \to \neg ExpectedToLove(x,y))$	$\forall x \forall y (People(x) \land Family(y) \land Has(x, y) \rightarrow \neg \textbf{Should} Love(x, y))$		1 "For all x, for all y: If x is People and y is Family and x has y then x Should not love y"	$\forall x (Person(x) \land Family(x) \rightarrow \neg ExpectedToLove(x))$		1 "For all x: If x is Person and x is then x is not Expected to love"
100 it's good to take care and do nice things for yourself.	$\forall x (TakeCare(x,x) \land DoNiceThingsFor(x,x) \rightarrow evaluation(good))$	$\forall x (\textbf{People(x)} \land (\textbf{TakeCareOfSelf(x)} \land \textbf{DoNiceThingsForSelf(x)}) \rightarrow \\ evaluation(\texttt{good}))$		1 "For all x: If x is People and x Take care of self and x Do nice things for selv then evaluation is good"	$\forall x (TakeCare(x) \land DoNiceThings(x) \rightarrow evaluation(good))$		1 "For all x: If x Take care and x D things, then evaluation is good"
102 it's fun to hire a tour guide to learn about new places.	$ \forall x \forall y \forall z ((TourGuide(x) \land NewPlaces(y) \land Hire(z,x) \land LearnAbout(z,y)) \rightarrow evaluation(fun)) $	$\forall x \forall y (\text{Hire}(x, y) \land \text{TourGuide}(y) \land \forall z (\text{NewPlace}(z) \rightarrow \text{LearnAbout}(x, z)) \rightarrow \text{evaluation}(\text{fun}))$		"For all x, for all y: If x hire y and y is TourGuide and (for all z: if z is New place then x Learn about Z) then evaluation is fun"	$\forall x \forall y (Hires(x,y) \land TourGuide(y) \land LearnsAboutPlaces(x, \textbf{new}) \to \textbf{Fun(x)})$		1 "For all x, for all y: If x Hires y ar Tour guide and x Learns about p 'new', then x is fun"
103 it's good to go out camping with your buddies.	$\forall x \forall y (Buddy(x,y) \land GoesCampingWith(x,y) \rightarrow evaluation(good))$	$\forall x \forall y (\textbf{GoOut(x)} \land \textbf{Camping(x)} \land \textbf{Buddies(x,y)} \rightarrow \textbf{evaluation(good))}$		1 "For all x, for all y: If x Go out and x is Camping and x is buddy with y then evaluation is good"			
people should date others based solely on their age.	$\forall x \forall y (People(x) \land Others(y) \rightarrow ShouldDateBasedOnAge(x,y))$	$\forall x \forall y (People(x) \land People(y) \land \textbf{BasedOnAge}(\textbf{x}, \textbf{y}) \rightarrow ShouldDate(x, y))$		1 "For all x, for all y: If x is People and y is People and x based y on Age then x Should Date y"			
105 you should sleep around if you don't want an std.	$\forall x (\neg WantSTD(x) \rightarrow ShouldSleepAround(x))$	$\neg (\forall x (DoesntWant(x, 'std') \to ShouldSleepAround(x)))$		1 "It is not the case that (for all x: if x Does not want std then x ShouldSleepAround)"	$\forall x (\textbf{Dont} want STD(x) \rightarrow Sleep Around(x))$		1 "For all x: If x Don't want STD to Sleep around"
106 you should not always get registration information when in an accident	$\forall y \exists x (Accident(x) \land In(y,x) \land \neg ShouldGetRegistrationInfo(y))$	VXYy(You(x) ∧ Accident(y) → ¬AlwaysGetRegistrationInformation(x))		1 "For all x, for all y: if X is You and y is Accident then x will not Always get registration information"	∀x(Accident(x) → ¬Always(GetRegistrationInfo(x)))	1	0
people should root for the success of their friends' relationships.	$ \forall x v y v z (People(x) \land Friends(x,y) \land Relationship(z) \land Has(y,z) \rightarrow ShouldRootFor(x,z)) $				$\forall x \forall y (Friends(x,y) \land Relationship(y) \rightarrow ShouldRootForSuccess(x,y))$		"For all x, for all y: If x is Friend and y is Relationship, then x Sh for success y"
108 getting circumcised isn't normal.	$\forall x (GettingCircumcised(x) \rightarrow \neg evaluation(normal))$	¬∃x(Normal(x) ∧ Circumcised(x))		1 "It does not exist an x: x is normal and x is circumcised"	$\neg \forall x (Circumcised(x) \rightarrow Normal(x))$		1 "It is not the case for all x: If x i circumcised, then x is normal"
109 it's not ok to be frustrated when you work on amazon mechanical turk.	vx(WorksOn(x,amazonmechanicalturk) ∧ Frustrated(x) → ¬evaluation(ok))	$\forall x (WorkOnAmazonMechanicalTurk(x) \land Frustrated(x) \rightarrow \neg ok(x))$		1 "For all x: if x Work on amazon mechanical turk and x is Frustrated then x is not okay"	$\forall x (WorkOnAMT(x) \land Frustrated(x) \rightarrow evaluation(\textbf{not_ok}))$		1 "For all x: If x Work on AMT and Frustrated, then evaluation is n
110 it's bad for your health scare to be averted.	$\forall x (HealthScare(x) \land Averted(x) \rightarrow evaluation(bad))$				$\forall x \forall y (\text{HealthScare}(x) \land \textbf{Averted}(\textbf{y}, \textbf{x}) \rightarrow \text{evaluation}(\text{bad}))$		1 "For all x, for all y: If x is Health and y Averted x, then evaluation
200 it is bad to support a friend staying quit from smoking.	$\forall x \forall y (Friend(x,y) \wedge StayingQuitFromSmoking(y) \wedge Support(x,y))$	$\forall x \forall y \ (\textbf{People(x)} \land \textbf{Friends(x,y)} \land \textbf{QuitSmoking(y)} \rightarrow \neg \textbf{Support(x,y)})$		1 "For all x, for all y: If x is people and x is Friends with y and y Quit smoking then x do not support y	$\forall x \forall y (Friend(x,y) \land StaysQuitFromSmoking(y) \rightarrow evaluation(bad))$		"For all x, for all y: If x is Friend y Stays quit from smoking, the evaluation is bad"
201 it's wrong to single someone out based on their race.	$\forall x \forall y \forall z (SingleSomeoneOut(x) \land Race(y) \land BasedOn(x,y)) \rightarrow evaluation(wrong)$				$\forall x \forall y (SingleOut(x,y) \land \textbf{BasedOn(y,race)} \rightarrow \neg evaluation(good))$		"For all x, for all y: If x Single ou is Based on 'race' then evaluat good"
202 you shouldn't get help if your anxiety is interfering with your daily life	$\forall x \forall y (Anxiety(x) \land InterfereWithDailyLife(x,y) \to \neg GetHelp(y))$	$ \forall x (\textbf{People(x)} \land (\textbf{A} \text{nxietyInterferesDailyLife}(x) \rightarrow \\ \neg \textbf{ShouldGetHelp(x))}) $		1 "For all x: if x is People and (x is Anxiety interferes daily life then x should not get help)"	$\forall x (Anxiety(x) \land InterferesWithDailyLife(x) \rightarrow \neg \textbf{ShouldGetHelp(x)})$		"For all x: If x is Anxiety and x I with daily life, then x Should no help"
203 it is unexpected people will feel proud of their country.	$\forall x \forall y (Country(x) \land People(y) \land BelongsTo(y,x) \land FeelProud(y,x) \rightarrow evaluation(unexpected))$	$\forall x (People(x) \land Country(x,y) \rightarrow \neg ExpectedFeelProudOf(x,y))$		1 "For all x: If x is People and x has Country y then x is not Expected to feel proud of y"	$\forall x (People(x) \land Country(x) \rightarrow \neg Expectation(Proud(x)))$		0
204 it's expected that you won't cut off family members.	vxvy(FamilyMember(x,y) ∧ ¬CutOff(x,y) → evaluation(expected))	$\forall x \forall y (People(x) \land FamilyMember(y, x) \rightarrow \neg ExpectedToCutOff(x,y))$		1 "For all x, for all y: If x is People and y is Family member of X then x is not expected to cut off y"	$\forall x (FamilyMember(x) \rightarrow \neg ExpectedToCutOff(x))$		"For all x: If x is Family membe is not Expected to cut off"
205 it's bad to show one's feelings for your partner.	$\forall x \forall y (Partner(x,y) \land ShowFeelings(x,y) \rightarrow evaluation(bad))$	$\forall x \forall y (Partner(x,y) \land ShowFeelings(x) \rightarrow evaluation(bad))$		"For all x, for all y: If x is Partner of y and x Show feelings then evaluation is bad"			
207 it's not admirable when people are able to admit their mistakes.	$\forall x (AbleToAdmitMistakes(x) \rightarrow \neg Admirable(x))$				$\neg v x \forall y ((People(x) \land AbleToAdmitMistake(x)) \rightarrow \textbf{Admirable(y)})$		1 "It is not the case for all x, for a People and x is Able to admit r then y is Admirable"
208 it's good to care about your family's history.	$\forall x \forall y (Family History(y) \land Cares(x,y) \rightarrow evaluation(good))$	$\forall x (Family(x) \land History(x) \rightarrow evaluation(Care(good)))$		0	∀x(CaresAbout(x, FamilyHistory(x)) → evaluation(good))		1
209 it's bad to phrase something awkwardly.	$\forall x \forall y (IsSomething(y) \land PhraseAkwardly(x,y) \rightarrow evaluation(bad))$	\forall x(PhrasesSomething(x) \land Awkwardly(x) \rightarrow evaluation(bad))		1 "For all x: If x is phrases something and x is awkwardly then evaluation is bad"			
210 it's not okay to expect someone care about to be a perfect person.	$\forall x (CareAbout(x,y) \land ExpectsToBePerfect(x,y) \rightarrow \neg evaluation(okay))$				∀x(ExpectPerfectPerson(x) → ¬evaluation(okay))		1 "For all x: If x Expect perfect p then evaluation is not okay"

Color codes

Invalid fol	Too specific/ unspecific	Semantic misunderstanding/	Wrong	Correct, but meh
	urispecific			
		liberation		