

ENSEMBLE MACHINE LEARNING

COURSE OVERVIEW

Prerequisites

- Basics of Python Programming
- Machine Learning Algorithms
- Build model using Scikit-learn library

FAQ

- Download Video Offline
- Video Streaming Quality
 - Suggest to watch in 720POr Higher
- Playback Speed
- Reviews
- support@udemy.com
- Q & A Forum

SECTION 1

SECTION INTRODUCTION

- Machine Learning
- Bias and Variance Tradeoff
- Ensemble Learning
- Type of Ensemble Learning Methods

MACHINE LEARNING

Machine Learning

Cat

Types of Machine learning

Machine Learning Workflow

BIAS VARIANCE TRADE OFF

Bias & Variance

- Bias Error
- Variance Error
- Error which can not be reduced

Bias

- Assumptions about model
- More assumption > Less Complex > High Bias
- Less assumption > More Complex > Low Bias

- Linear Regression
- Linear Discriminant Analysis
- Logistic Regression

Variance

- Model Fluctuation on Data Change
- More assumption > Less Complex > Less Variability > Low variance

■ Less assumption > More Complex > More variability > High Variance

- Decision Trees
- K-Nearest Neighbors
- Support Vector Machines.

Overfitting

HOW TO REDUCE BIAS - VARIANCE ERROR

ENSEMBLE LEARNING

Ensemble Learning

Ensemble Learning Advantage

- Turn weak classifier into strong
- Single model is biased
- Variance error reduces
- Model accuracy increases
- Less overfitting

Disadvantage

High computational cost

Questions

- Do we use all training data on every model
- What is M1, M2, M3 ...
- How to train all model
- How to combine output from all model

TYPES OF ENSEMBLE LEARNING

Types of Ensemble learning

SECTION 2

Section 2

- You are free to use any IDE of your choice.
- Install Anaconda
- Install Library
 - Scikit-learn
 - Jupyter Notebook

DOWNLOAD & INSTALL ANACONDA

INSTALL LIBRARY SCIKIT-LEARN JUPYTER NOTEBOOK

Install Library

- Package manager
 - pip install pkg_name <u>pip install scikit-learn==0.22.1</u>
 - Conda install pkg_name

REGRESSION PROBLEM

SCIKIT-LEARN WORKFLOW

CLASSIFICATION PROBLEM

SCIKIT-LEARN WORKFLOW

SECTION 3

Section 3

- Voting classifier
 - Hard
 - Soft
- Averaging and Weighted Averaging
- [Hands-on] Voting classifier

VOTING CLASSIFIER

Voting Classifier

- Do we use all training data on every model
- What is M1, M2, M3 ...
- How to train all model
- How to combine output from all model

Voting Classifier

- Do we use all training data on every model
 - Yes
- What is M1, M2, M3 ...
 - As different as Possible :
- How to train all model
 - Train in Parallel
- How to combine output from all model with voting classifier

Voting Classifier

- **Classification**
 - Hard Voting
 - Soft Voting
- Regression
 - Averaging

|--|

M2

M3

Hard Voting		
1	1	
0	0	
1	0	
1	1	
1	0	

Soft Voting		
0.1, 0.9	0.2, 0.8	
0.95, 0.05	0.6, 0.4	
0.3, 0.7	0.75, 0.25	
0.2, 0.8	0.4, 0.6	
0.45, 0.55	0.62, 0.38	

0.4, <u>0.6</u> <u>0.514</u>, 0.486

VOTING REGRESSOR

Voting Regressor

- Do we use all training data on every model
- What is M1, M2, M3 ...
- How to train all model
- How to combine output from all model

Averaging

- Classification
 - Hard Voting
 - Soft Voting
- Regression
 - Averaging

Prediction
$$\$200 \qquad \text{Average} = \frac{200 + 349 + 222 + 250 + 270}{5}$$

$$\$349 \qquad = 258.2$$

$$\$222 \qquad \text{Weighted Average} =$$

$$\$250 \qquad \frac{0.5*200 + 0.2*349 + 0.9*222 + 0.7*250 + 0.65*270}{5}$$

200 + 349 + 222 + 250 + 270

5

5

= 144.02

VOTING CLASSIFIER WITH SCIKIT-LEARN

Voting with Scikit-learn

- Apply 3 Classification algorithm of credit card data
- Apply ensemble.VotingClassifier with <u>soft</u> Voting
- Apply ensemble. Voting Classifier with <u>Hard</u> Voting
- VotingRegressor as Exercise

VOTING REGRESSOR WITH SCIKIT-LEARN

SECTION 4

Section 4

- Concept of Bagging Ensemble
- [Hands-on] Bagging classifier
- Random Forest
- [Hands-on] Random Forest

BAGGING

Bootstrap Aggregation

Bagging

- Do we use all training data on every model
- What is M1, M2, M3 ...
- How to train all model
- How to combine output from all model

Bagging Ensemble

- Do we use all training data on every model
 - No
 - Then How to select data
- What is M1, M2, M3 ...
 - Same weak learner ML Algorithm
- How to train all model
 - Train in Parallel
- How to combine output from all model
 - voting classifier

How to Select Data For Training

- Row Sampling
- Feature Sampling
- Combine above both (Row + Feature)

How to select Data Row Sampling

	C1	C2	C3	C4
R0				
R1				
R2				
R3				
R4				
R5				
R6				
R7				
R8				
R9				

Random Row Sample with Replacement

How to select Data Feature Sampling

	C1	C2	СЗ	C4
RO				
R1				
R2				
R3				
R4				
R5				
R6				
R7				
R8				
R9				

Random
Feature
Sample with
Replacement

Row + Feature Sampling

Random

Feature

Sample with

Replacement

What is weak Leaner (M1, M2, ...)

- Classification
 - SVM
 - Decision Tree
 - Logistic Regression
 - KNN
 - Neural Network
- Regression
 - Linear or Multiple Regression
 - Lasso Ridge Regression
 - Polynomial Regression

Random Forest

- Random Forest is special version of Bagging ensemble.
- Its is ensemble of Decision Tree

Bootstrap aggregation

- Do we use all training data on every model
 - Bootstrapping Sample > Bootstrap aggregation

[HANDS-ON] BAGGING ENSEMBLE

RANDOM FOREST

Random Forest

Random Forest is ensembles of Decision Tree

	C1	C2	C3	C4
RO				
R1				
R2				
R3				
R4				
R5				
R6				
R7				
R8				
R9				

[HANDS-ON] RANDOM FOREST

SECTION 5

Section 5

- Concept of Boosting
- Adaboost (Adaptive Boosting)
- [Hands-on] Adaboost
- Gradient Boosting Machine (GBM)
- [Hands-on] Gradient Boosting
- XGBoost (Extreme Gradient Boosting)
- [Hands-on] XGBoost

BOOSTING

Boosting

- Do we use all training data on every model
- What is M1, M2, M3 ...
- How to train all model
- How to combine output from all model

Boosting

Boosting

- Do we use all training data on every model
 - Based on Sampling, Mistake
- What is M1, M2, M3 ...
 - Same weak learner ML Algorithm Decision Tree
- How to train all model
 - Train in Sequential
- How to combine output from all model
 - Any strategy based on Classification or Regression problem
- Computational Time also very High

- Adaptive Boost
- Gradient Boost

ADABOOST

Adaboost

- 1. Stump Creation
- 2. Calculate Error and Stump Performance
- 3. Update Weight
- 4. Repeat Above 3 steps number of model you want to create as weak learner.
- 5. Combine classifier

Adaboost

C1	C2	C3	
			R1
			R2
			R3
			R4
			R5
			R6
			R7

Weight
1/7
1/7
1/7
1/7
1/7
1/7
1/7

C1	C2	C3	
			R2
			R3
			R6
			R7

- Calculate Entropy or Gini index
- Select Minimum Entropy Stump

C1	C2	C3	
			R3
			R6

Stump Performance

C1	C2	C3	
			R1
			R2
			R3
			R4
			R5
			R6
			R7

Weight
1/7
1/7
1/7
1/7
1/7
1/7
1/7
,

C1	C2	C3	
			R1
			R2
			R4
			R5
			R7

C1	C2	C3	
			R3
			R6

 Total Error = Sum of weight for Wrongly Classified Samples

$$=\frac{1}{7}+\frac{1}{7}=\frac{2}{7}$$

Performance of Stump =
$$\frac{1}{2} \log \left(\frac{1 - Total Error}{Total Error} \right)$$

= $\frac{1}{2} \log \left(\frac{1 - 2/7}{2/7} \right)$
= 0.458

Update Weight

Performance of Stump = 0.458

	Weight	Updated Weight
R1	1/7	0.09
R2	1/7	0.09
R3	1/7	0.22
R4	1/7	0.09
R5	1/7	0.09
R6	1/7	0.22
R7	1/7	0.09

Norm Weight
0.10
0.10
0.25
0.10
0.10
0.25
0.10

SUM = 0.89

For Wrong Classification

$$New = Old * e^{stump performance}$$
$$= \frac{1}{7} * e^{0.458} = 0.22$$

For Correct Classification

$$New = Old * e^{-stump performance}$$
$$= \frac{1}{7} * e^{-0.458} = 0.09$$

Combine Classifier

Class 1 Support =
$$0.458 + 0.9 = 1.358$$

Class 0 Support = 0.1

1

(HANDS-ON) ADABOOST

GRADIENT BOOSTING

Gradient Boosting

- 1. Build Model and Make Prediction
- 2. Calculate Error (Residual) and Next target is error.
- 3. Build next model with target is error and Make Prediction
- 4. Update Prediction of earlier model by adding error.
- 5. Repeat above 3 steps number of Model you want to generate.

1. Build Model and Make Prediction

Step 1

Gradient Boosting

	Size	No of Bedroom	Price
1	2114	3	359
2	1700	3	229
3	1480	3	379
4	1294	2	212
5	1563	3	316
6	2420	2	365
7	1494	2	410

M1 - Price
312
250
370
260
300
352
390

Step 2

	Size	No of Bedroom	Price
1	2114	3	359
2	1700	3	229
3	1480	3	379
4	1294	2	212
5	1563	3	316
6	2420	2	365
7	1494	2	410

M1 - Price
312
250
370
260
300
352
390

Error
47
-21
9
-48
16
13
20

Error is now New Target

Step 3

	Size	No of Bedroom	Price
1	2114	3	359
2	1700	3	229
3	1480	3	379
4	1294	2	212
5	1563	3	316
6	2420	2	365
7	1494	2	410

M1 - Price	Error	Pred - Error
312	47	20
250	-21	-10
370	9	3
260	-48	-30
300	16	5
352	13	10
390	20	11

M2

Error as Output

Step 4

	Size	No of Bedroom	Price
1	2114	3	359
2	1700	3	229
3	1480	3	379
4	1294	2	212
5	1563	3	316
6	2420	2	365
7	1494	2	410

M1 - Price
312
250
370
260
300
352
390

Pred - Error
20
-10
3
-30
5
10
11

M2 - Price
332
240
373
230
305
362
401

Go back to step 2 – again calculate error (Updated price – Actual Price)

- 1. Build M1
- 2. Build M2 = M1 + lambda * Model(error1)
- 3. Build M3 = M2 + lambda * Model(error2)
- 4. So on...

[HANDS-ON] GRADIENT BOOSTING

Gradient Boosting Tree

XGBOOST

Extreme Gradient Boosting Tree

XGBoost

- Extreme Gradient Boosting Tree
- It is not different algorithm but works on same principal used in GBM.
- Sequential model creation with keep on reducing Error.

Feature of XGBoost

- Faster Execution Speed
- Better Performance
 - Many Machine Learning competition won by XGBoost
- Parallel Processing.
- XGBoost can handle missing value
- It has Built-in cross validation, Regularization
- It Can do incremental training. (For Large Dataset which Can not fit in memory)

[HANDS-ON] XGBOOST

Extreme Gradient Boosting

SECTION 6

Section 6

- Model Stacking
- [Hands-on] Model Stacking

MODEL STACKING

Model Stacking

[HANDS - ON] MODEL STACKING

Model Stacking

