# 02-leds

### My repository

My git - Tomáš Kříčka, 223283

## Preparation tasks

Schema of LED active-low and LED active-high



Rezistor calculation

$$R_{RED} = \frac{V_{SUP} - V_{RED\_LED}}{I} = \frac{5 - 2}{20 \cdot 10^{-3}} = 150 \,\Omega$$

$$R_{BLUE} = \frac{V_{SUP} - V_{BLUE\_LED}}{I} = \frac{5 - 3.3}{20 \cdot 10^{-3}} = 85 \Omega$$

| LED color | Supply voltage | LED current | LED voltage | Resistor value |   |
|-----------|----------------|-------------|-------------|----------------|---|
| red       | 5 V            | 20 mA       | 2 V         | 150 Ω          | - |
| blue      | 5 V            | 20 mA       | 3.3 V       | 85 Ω           | • |

Schema of button active-low and button active-high



### 2. Active-low and active-high LEDs

/\* I/O ports page 100\*/

| 0 Input pin                                                |
|------------------------------------------------------------|
|                                                            |
| 1 Output pin                                               |
| PORTB Description                                          |
| 0 Output low value                                         |
| 1 Output high value                                        |
| DDRB PORTB Direction Internal pull-up resistor Description |
| 0 0 input no                                               |

| DDRB | PORTB | Direction | Internal pull-up resistor | Description               |
|------|-------|-----------|---------------------------|---------------------------|
| 0    | 1     | input     | yes                       |                           |
| 1    | 0     | output    | no                        |                           |
| 1    | 1     | output    | no                        | Tri-state, high-impedance |

| •    |     | . Catput 110 111 State                             |
|------|-----|----------------------------------------------------|
| Port | Pin | Input/output usage?                                |
| A    | Х   | Microcontroller ATmega328P does not contain port A |
| В    | 0   | Yes (Arduino pin 8)                                |
|      | 1   | Yes (Arduino pin 9)                                |
|      | 2   | Yes (Arduino pin 10)                               |
|      | 3   | Yes (Arduino pin 11)                               |
|      | 4   | Yes (Arduino pin 12)                               |
|      | 5   | Yes (Arduino pin 13)                               |
|      | 6   | No                                                 |
|      | 7   | No                                                 |
| С    | 0   | Yes (Arduino pin A0)                               |
|      | 1   | Yes (Arduino pin A1)                               |
|      | 2   | Yes (Arduino pin A2)                               |
|      | 3   | Yes (Arduino pin A3)                               |
|      | 4   | Yes (Arduino pin A4/SDA)                           |
|      | 5   | Yes (Arduino pin A5/SCL)                           |
|      | 6   | Yes (Arduino pin RESET)                            |
|      | 7   | No                                                 |
| D    | 0   | Yes (Arduino pin RX<-0)                            |
|      | 1   | Yes (Arduino pin TX->1)                            |
|      | 2   | Yes (Arduino pin 2)                                |
|      | 3   | Yes (Arduino pin 3)                                |
|      | 4   | Yes (Arduino pin 4)                                |
|      | 5   | Yes (Arduino pin 5)                                |
|      | 6   | Yes (Arduino pin 6)                                |
|      | 7   | Yes (Arduino pin 7)                                |

#### Blinking separately

```
while(1)
{
    __delay_ms(BLINK_DELAY);
    PORTB = PORTB | (1<<LED_GREEN);
    __delay_ms(BLINK_DELAY);
    PORTB = PORTB &~ (1<<LED_GREEN);
    __delay_ms(BLINK_DELAY);
    PORTC = PORTC | (1<<LED_WHITE);
    __delay_ms(BLINK_DELAY);
    PORTC = PORTC &~ (1<<LED_WHITE);
}</pre>
```

#### Blinking together

```
while(1)
{
    __delay_ms(BLINK_DELAY);
    PORTB = PORTB | (1<<LED_GREEN);
    PORTC = PORTC | (1<<LED_WHITE);
    __delay_ms(BLINK_DELAY);
    PORTB = PORTB &~ (1<<LED_GREEN);
    PORTC = PORTC &~ (1<<LED_WHITE);
}</pre>
```

### 4. Push button

```
int main(void)
{

DDRB = DDRB | (1<<LED_GREEN);

PORTB = PORTB & ~(1<<LED_GREEN);

DDRC = DDRC | (1<<LED_WHITE);

PORTC = PORTC & ~(1<<LED_WHITE);

DDRD = DDRD &~ (0<<BUTTON);

PORTD = PORTD | (1<<BUTTON);</pre>
```

```
while(1)
{
    if (bit_is_clear(PIND ,BUTTON))
    {
        PORTB ^= (1<<LED_GREEN);
        PORTC ^= (1<<LED_WHITE);
        loop_until_bit_is_clear(PIND, BUTTON);
    }
}
return 0;
}</pre>
```

## Knight rider

