第一章 预备知识与随机过程的基本概念

1.1 概 率

概率论的一个基本概念是随机试验. 一个试验 (或观察), 若它的结果预先无法确定, 则称之为**随机试验**, 简称为**试验**(experiment). 所有试验的可能结果组成的集合, 称为**样本空间**, 记作 Ω . Ω 中的元素则称为**样本点**, 用 ω 表示. 由 Ω 的某些样本点构成的子集合, 常用大写字母 A,B,C 等表示, 由 Ω 中的若干子集构成的集合称为集类, 用花写字母 A,B,\mathcal{F} 等表示.

由于并不是在所有的 Ω 的子集上都能方便地定义概率,一般只限制在满足一定条件的集类上研究概率性质,为此引入 σ 域的概念:

定义 1.1.1 设 \mathcal{F} 为由 Ω 的某些子集构成的非空集类, 若满足:

- (1) 若 $A \in \mathcal{F}$, 则 $A^C \in \mathcal{F}$, $A^C \oplus A$ 的补集, 即 $A^C = \bar{A} = \Omega A$;
- (2) 若 $A_n \in \mathcal{F}, n \in \mathbb{N},$ 则 $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

则称 \mathcal{F} 为 σ 域(σ 代数), 称 (Ω , \mathcal{F}) 为**可测空间**.

容易验证, 若 \mathcal{F} 为 σ 域, 则 \mathcal{F} 对可列次交、并、差等运算封闭, 即 \mathcal{F} 中的任何元素经可列次运算后仍属于 \mathcal{F} . 例: 集类 $\mathcal{F}_0 = \{\varnothing, \Omega\}, \ \mathcal{F}_1 = \{\varnothing, A, A^C, \Omega\}$ 及 $\mathcal{F}_2 = \{A: \forall A \subset \Omega\}$ 均是 σ 域, 但集类 $\mathcal{A} = \{\varnothing, A, \Omega\}$ 不是 σ 域.

通常最关心的是包含所要研究对象的最小 σ 域. 设 A 为由 Ω 的某些子集构成的集类. 一切包含 A 的 σ 域的交, 记为 $\sigma(A)$, 称 $\sigma(A)$ 为由 A 生成的 σ 域, 或称为包含 A 的最小 σ 域. 例: $A = \{\varnothing, A, \Omega\}$, 则 $\sigma(A) = \{\varnothing, A, A^C, \Omega\}$. 一维博雷尔(Borel) σ 域: 包含 $\mathbb R$ 上所

有形如集合 $(-\infty, a]$ 的最小 σ 域称为一维博雷尔 σ 域, 记为 \mathcal{B} , 即 $\mathcal{B} = \sigma((-\infty, a], \forall a \in \mathbb{R}).$

定义 1.1.2 设 (Ω, \mathcal{F}) 为可测空间, P 是一个定义在 \mathcal{F} 上的集函数, 若满足:

- (1) $P(A) \geqslant 0, \forall A \in \mathcal{F};$ (非负性)
- $(2) P(\Omega) = 1; \qquad (规一性)$
- (3) 若 $A_i \in \mathcal{F}, i = 1, 2, \dots,$ 且 $A_i A_j = \emptyset, \forall i \neq j,$ 有

$$P\Big(\bigcup_{i=1}^{\infty} A_i\Big) = \sum_{i=1}^{\infty} P(A_i). \qquad (可列可加性)$$

则称 P 为可测空间 (Ω, \mathcal{F}) 上的一个概率测度 (probability measure), 简称概率 (probability). 称 (Ω, \mathcal{F}, P) 为概率空间 (probability space), 称 \mathcal{F} 为事件域. 若 $A \in \mathcal{F}$, 则称 A 为随机事件 (random event), 简称 为事件, 称 P(A) 为事件 A 的概率.

事件的概率刻画了事件出现可能性的大小. 概率的基本性质如下:

- (1) $P(\emptyset) = 0, P(A^C) = 1 P(A).$
- (2) 若 A_1, A_2, \dots, A_n 互不相容, 则

$$P\Big(\bigcup_{i=1}^{n} A_i\Big) = \sum_{i=1}^{n} P(A_i).$$
 (有限可加性)

(3) 对任意两个事件 A 及 B, 有

$$P(A \cup B) = P(A) + P(B) - P(AB),$$

$$P(A - B) = P(A) - P(AB).$$

(4) 若 $A \subset B$, 则 $P(A) \leqslant P(B)$.

(5) (若尔当 (Jordan) 公式) 对任意 A_1, A_2, \dots, A_n 有

$$P\Big(\bigcup_{i=1}^{n} A_{i}\Big) = \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i < j \leq n} P(A_{i}A_{j}) + \sum_{1 \leq i < j < k \leq n} P(A_{i}A_{j}A_{k}) - \cdots + (-1)^{n+1} P(A_{1}A_{2} \cdots A_{n}).$$

$$P\Big(\bigcup_{i=1}^{n} A_{i}\Big) \leq \sum_{i=1}^{n} P(A_{i}).$$

- 例 1 (1) [0,1] 上的博雷尔概率空间. 设 $\Omega = [0,1]$, $\mathcal{F} = \mathcal{B}[0,1]$, 即 $\mathcal{B}[0,1]$ 是 \mathcal{B} 局限在 [0,1] 上的博雷尔 σ 域. 称 $(\Omega,\mathcal{F}) = ([0,1],\mathcal{B}[0,1])$ 为 [0,1] 上的博雷尔可测空间. 设在可测空间 $([0,1],\mathcal{B}[0,1])$ 上定义一概率测度 P, 它满足: 当 $\forall A = [a,b] \in \mathcal{B}[0,1]$ 时,P(A) = b a, 称 $(\Omega,\mathcal{F},P) = ([0,1],\mathcal{B}[0,1],P)$ 为 [0,1] 上的博雷尔概率空间,称 P 为 [0,1] 上的博雷尔概率测度.
 - (2) 令 B = [0,1] 上有理点全体, $\bar{B} = [0,1]$ 上无理点全体.
 - ① 试证: $B \in \mathcal{F}, \bar{B} \in \mathcal{F}$;
 - ② 用概率的定义与性质, 求证P(B) = 0, $P(\bar{B}) = 1$.

证明 $\forall a \in [0,1]$, 单点集 $\{a\} = \bigcap_{n=1}^{\infty} \left[a, a + \frac{1}{n}\right] \in \mathcal{B}[0,1] = \mathcal{F}$, 而 $B = 0 \cup \left\{\frac{m}{n} \colon 1 \leqslant m \leqslant n, n, m = \{1, 2, \cdots\}\right\}$ 是可列单点集的并,故 $B \in \mathcal{F}$. 且 $\bar{B} = [0, 1] - B \in \mathcal{F}$. 又 $\forall a \in [0, 1], P(\{a\}) = 0$,由完全可 加性知 P(B) = 0,而 $\bar{B} = [0, 1] - B$,故 $P(\bar{B}) = 1 - 0 = 1$.

概率的一个重要性质是它具有连续性. 为此先引入事件列的极限.

一事件列 $\{A_n, n \geq 1\}$ 称为单调**增序列**,若 $A_n \subset A_{n+1}, n \geq 1$;称为单调**减序列**,若 $A_n \supset A_{n+1}, n \geq 1$.如果 $\{A_n, n \geq 1\}$ 是单调增序列,定义 $\lim_{n \to \infty} A_n = \bigcup_{i=1}^{\infty} A_i$.如果 $\{A_n, n \geq 1\}$ 是单调减序列,定义

$$\lim_{n \to \infty} A_n = \bigcap_{i=1}^{\infty} A_i.$$

连续性定理如下.

命题 1.1.1 若 $\{A_n, n \ge 1\}$ 是单调增序列 (或减序列), 则

$$\lim_{n \to \infty} P(A_n) = P(\lim_{n \to \infty} A_n).$$

证明 先设 $\{A_n, n \ge 1\}$ 为单调增序列, 令

$$B_1 = A_1, \quad B_n = A_n \Big(\bigcup_{i=1}^{n-1} A_i\Big)^C = A_n A_{n-1}^C, \quad n > 1.$$

容易验证 $\{B_n, n \geq 1\}$ 互不相容. 且有 $\bigcup_{i=1}^n A_i = \bigcup_{i=1}^n B_i, n \geq 1$ 及 $\bigcup_{i=1}^\infty A_i = \bigcup_{i=1}^\infty B_i$, 故

$$\begin{split} P\big(\lim_{n\to\infty}A_n\big) &= P\Big(\bigcup_{i=1}^\infty A_i\Big) = P\Big(\bigcup_{i=1}^\infty B_i\Big) = \sum_{i=1}^\infty P(B_i) &\qquad (可列可加性) \\ &= \lim_{n\to\infty}\sum_{i=1}^n P(B_i) = \lim_{n\to\infty}P\Big(\bigcup_{i=1}^n B_i\Big) \\ &= \lim_{n\to\infty}P\Big(\bigcup_{i=1}^n A_i\Big) = \lim_{n\to\infty}P(A_n). &\qquad \Big(A_n = \bigcup_{i=1}^n A_i\Big) \end{split}$$

若 $\{A_n, n \ge 1\}$ 为单调减序列, 则 $\{A_n^C, n \ge 1\}$ 为单调增序列, 于

是

$$P\Big(\bigcup_{n=1}^{\infty} A_n^C\Big) = \lim_{n \to \infty} P(A_n^C),$$

由

$$\bigcup_{n=1}^{\infty} A_n^C = \Big(\bigcap_{n=1}^{\infty} A_n\Big)^C,$$

有

$$1 - P\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} (1 - P(A_n)),$$

即

$$P\Big(\bigcap_{n=1}^{\infty} A_n\Big) = \lim_{n \to \infty} P(A_n).$$

下面是著名的 Borel-Cantelli 引理.

命题 1.1.2 设 $\{A_n, n \ge 1\}$ 是一事件序列,若 $\sum_{i=1}^{\infty} P(A_i) < \infty$,

则

$$P\Big(\limsup_{i\to\infty} A_i\Big) = 0,$$

其中 $\limsup_{i \to \infty} A_i \stackrel{\triangle}{=} \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} A_i$.

证明 易知 $\bigcup_{i=n}^{\infty} A_i$ 是关于 n 的单调减序列, 故由命题 1.1.1 有

$$0 \leqslant P\Big(\bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} A_i\Big) = P\Big(\lim_{n \to \infty} \bigcup_{i=n}^{\infty} A_i\Big)$$
$$= \lim_{n \to \infty} P\Big(\bigcup_{i=n}^{\infty} A_i\Big) \leqslant \lim_{n \to \infty} \sum_{i=n}^{\infty} P(A_i) = 0.$$

下面讨论事件间的一种重要关系, 即事件的独立性问题.

两个事件 $A,B \in \mathcal{F}$, 若满足 P(AB) = P(A)P(B), 称 A 与 B 相互独立. 容易证明下列命题等价: ① A 与 B 独立; ② $A 与 B^C$ 独立; ③ P(A|B) = P(A); ④ $P(A|B^C) = P(A)$.

三个事件 $A, B, C \in \mathcal{F}$, 若满足

$$P(AB) = P(A)P(B), \quad P(AC) = P(A)P(C), \quad P(BC) = P(B)P(C)$$

及

$$P(ABC) = P(A)P(B)P(C),$$

称 A, B, C 相互独立. 请读者证明: 若 A, B, C 独立, 则 $A \cup B$ 与 C, AB 与 C, A-B 与 C 相互独立.

n 个事件 $A_1, A_2, \cdots, A_n \in \mathcal{F}$, 若对其中任意 $k(2 \leqslant k \leqslant n)$ 个事件

$$A_{i_1}, A_{i_2}, \dots, A_{i_k}(\sharp +1 \leqslant i_1 \leqslant i_2 \leqslant \dots \leqslant i_k \leqslant n),$$

有 $P(A_{i_1}A_{i_2}\cdots A_{i_k})=P(A_{i_1})P(A_{i_2})\cdots P(A_{i_k})$,称 A_1,A_2,\cdots,A_n 相 **互独立**.

类似可证明: 若 A_1, A_2, \dots, A_n 相互独立, 取 $1 \leq m < n$, 记 $\mathcal{F}_1 = \sigma(A_k, 1 \leq k \leq m), \mathcal{F}_2 = \sigma(A_k, m+1 \leq k \leq n)$. 任取 $B_1 \in \mathcal{F}_1, B_2 \in \mathcal{F}_2$, 则 B_1 与 B_2 独立.

称事件序列 $\{A_n, n \ge 1\}$ 相互独立,若任取其中有限个均相互独立.

命题 1.1.3 若 $\{A_n, n \ge 1\}$ 是相互独立的事件序列,且 $\sum_{n=1}^{\infty} P(A_n) =$

 ∞ , 则有

$$P\Big(\bigcap_{m=1}^{\infty}\bigcup_{i=m}^{\infty}A_i\Big)=1.$$

证明

$$P\Big(\bigcap_{n=1}^{\infty}\bigcup_{i=n}^{\infty}A_i\Big) = P\Big(\lim_{n\to\infty}\bigcup_{i=n}^{\infty}A_i\Big) = \lim_{n\to\infty}P\Big(\bigcup_{i=n}^{\infty}A_i\Big) = \lim_{n\to\infty}\Big[1-P\Big(\bigcap_{i=n}^{\infty}A_i^C\Big)\Big].$$

但

$$P\left(\bigcap_{i=n}^{\infty} A_i^C\right) = \prod_{i=n}^{\infty} P(A_i^C) \qquad (由独立性)$$

$$= \prod_{i=n}^{\infty} (1 - P(A_i)) \leqslant \prod_{i=n}^{\infty} e^{-P(A_i)} \qquad (由1 - x \leqslant e^{-x}, \quad x \geqslant 0)$$

$$= \exp\left(-\sum_{i=n}^{\infty} P(A_i)\right) = 0. \qquad \left(因为 \sum_{i=n}^{\infty} P(A_i) = \infty 对所有 n \right)$$

因此命题得证.

1.2 随机变量、分布函数及数字特征

1. 随机变量与分布函数

考虑一样本空间 Ω , 记 \mathbb{R} 为实数全体之集. 随机变量定义为:

定义 1.2.1 设 (Ω, \mathcal{F}, P) 是一概率空间, $X(\omega)$ 是定义在 Ω 上的单值实函数, 如果对 $\forall a \in \mathbb{R}$, 有 $\{\omega \colon X(\omega) \leq a\} \in \mathcal{F}$, 则称 $X(\omega)$ 为**随机变量**(random variable).

这里有几点说明:

- (1) $\{\omega\colon X(\omega)\leqslant a\}$ 是指所有满足 $X(\omega)\leqslant a$ 的样本点 ω 的集合,定义要求 $\{\omega\colon X(\omega)\leqslant a\}$ 是 (Ω,\mathcal{F},P) 的一个事件,因而可定义它的概率.
- (2) 定义中 ω 为自变量,为了书写方便,简记 $\{\omega\colon X(\omega)\leqslant a\}=\{X\leqslant a\}=\{X\in (-\infty,a]\}$. 以下把 $X(\omega)$ 记为 X,一般随机变量符号用大写字母 X,Y,Z 等表示.
- (3) $X(\omega)$ 满足 $\{\omega \colon X(\omega) \leqslant a\} \in \mathcal{F}$, 则易证 $\forall a,b \in \mathbb{R}, \{X > a\}, \{X < a\}, \{X = a\}, \{a < X \leqslant b\}, \{a \leqslant X < b\}, \{a < X < b\}, \{a \leqslant X \leqslant b\} \in \mathcal{F}$.

例 1 若 (Ω, \mathcal{F}) 中的 $\mathcal{F} = \{\emptyset, A, A^C, \Omega\}, A \in \mathcal{F} \ \text{m} \ A_1 \notin \mathcal{F},$ 容

易验证 A_1 的示性函数 $I_{A_1}(\omega)$ 使 $\{I_{A_1} \leq 1/2\} \notin \mathcal{F}$, 故 $I_{A_1}(\omega)$ 对 \mathcal{F} 而言不满足随机变量的定义.

例 2 给定 $(\Omega, \mathcal{F})_{\infty}$, 设 $\{B_k\}(0 \leqslant k < \infty)$ 是 Ω 的一个划分, 即 $B_kB_l = \varnothing(k \neq l)$; $\bigcup_{k=1}^{\infty} B_k = \Omega$ 且 $B_k \in \mathcal{F}(0 \leqslant k < \infty)$,定义

$$X(\omega) = \sum_{k=1}^{\infty} x_k I_{B_k}(\omega)$$
,则容易验证 $X(\omega)$ 是随机变量.

可以证明 $B \in \mathcal{B}$, $\{\omega, X(\omega) \in B\} \in \mathcal{F}$ 等价于 $\forall a \in \mathbb{R}$, $\{\Omega, X(\omega) \leq a\} \in \mathcal{F}$. 参见 [21,22]. 简记 $X = X(\omega)$, 且记 $X^{-1}(B) = (\omega : X(\omega) \in B)$.

设X为 (Ω, \mathcal{F}, P) 上的随机变量,对 $\forall x \in \mathbb{R}$, 定义

$$F(x) = P(X \leqslant x) = P(X \in (-\infty, x]),$$

称 F(x) 为 X 的**分布函数**(distribution function).

若随机变量 X 的可能取值的全体是一可数集或有限集,则称 X 是**离散型随机变量**.

对随机变量 X 的分布函数 F(x), 若存在一非负函数 f(x), 对 $\forall x \in \mathbb{R}$, 有

$$F(x) = \int_{-\infty}^{x} f(u) \, \mathrm{d}u,$$

则称 f(x) 为随机变量 X 的概率密度函数(probability density function). 若 f(x) 连续, 则

$$\frac{\mathrm{d}F(x)}{\mathrm{d}x} = f(x),$$

即

$$\lim_{h \to 0} \frac{P(x < X \leqslant x + h)}{h} = f(x),$$

或

$$P(x < X \leqslant x + h) = f(x)h + o(h).$$

以上关系是以后用所谓"微元法"求概率密度函数的依据: 为求随机变量 X 的概率密度函数, 先求 X 落在一个小区域 (x,x+h] 上的概率 $P(x < X \le x + h)$, 然后令 $h \to 0$, 求其极限

$$\lim_{h \to 0} \frac{P(x < X \leqslant x + h)}{h},$$

即得 f(x).

二维随机变量 (X,Y) 的**联合分布函数** (joint distribution function) F(x,y) 定义为

$$F(x,y) = P(X \leqslant x, Y \leqslant y).$$

X 和 Y 的**边缘分布**定义为

$$F_X(x) = P(X \leqslant x) = \lim_{y \to +\infty} F(x, y) = F(x, +\infty),$$

$$F_Y(y) = P(Y \leqslant y) = \lim_{x \to +\infty} F(x, y) = F(+\infty, y).$$

若存在一非负函数 f(x,y), 对 $\forall (x,y) \in \mathbb{R}^2$ 有

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, \mathrm{d}u \, \mathrm{d}v,$$

则称 f(x,y) 为 (X,Y) 的**联合概率密度函数**.

称随机变量 X 与 Y 相互独立 (independent), 若对 $\forall (x,y) \in \mathbb{R}^2$, 有

$$F(x,y) = F_X(x)F_Y(y).$$

n 维随机向量 X_1, X_2, \cdots, X_n 的**联合分布函数**定义为

$$F(x_1, x_2, \cdots, x_n) = P(X_1 \leqslant x_1, X_2 \leqslant x_2, \cdots, X_n \leqslant x_n).$$

若对 $\forall (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ 有 $F(x_1, x_2, \dots, x_n) = F_1(x_1)F_2(x_2)\cdots F_n(x_n)$, 则称 X_1, X_2, \dots, X_n 相互独立. 这里 $F_i(x_i) = P(X_i \leqslant x_i)$.

可以证明, 若 X, Y, Z 相互独立, 则 $X \pm Y$ 与 Z 独立 $X \cdot Y$ 与 Z 独立 $X/Y(Y \neq 0)$ 与 Z 独立, 更一般有 $g_1(X,Y)$ 与 $g_2(Z)$ 独立 (其中 $g_1(X,Y), g_2(Z)$ 可以是逐段单调函数或逐段连续函数).

2. 黎曼-斯蒂尔切斯积分

为以后表示简便,这里我们引出黎曼-斯蒂尔切斯(Riemann-Stieltjes)

积分.

设 F(x) 为 $(-\infty, +\infty)$ 上的单调不减右连续函数 g(x) 为 $(-\infty, +\infty)$ 上的单值实函数 $\forall a < b$.

定义 1.2.2 任取分点 $a = x_0 < x_1 < x_2 < \cdots < x_{i-1} < x_i < \cdots < x_n = b, \forall u_i \in [x_{i-1}, x_i]$, 作积分和式

$$\sum_{i=1}^{n} g(u_i) \Delta F(x_i) = \sum_{i=1}^{n} g(u_i) [F(x_i) - F(x_{i-1})].$$

令 $\lambda = \max_{1 \le i \le n} \Delta x_i = \max_{1 \le i \le n} (x_i - x_{i-1})$, 若极限

$$J(a,b) = \lim_{\lambda \to 0} \sum_{i=1}^{n} g(u_i) \Delta F(x_i)$$

存在,则记

$$J(a,b) = \int_a^b g(x) \, \mathrm{d}F(x) \qquad \left(\cancel{\boxtimes} \int_a^b g(x) F(\mathrm{d}x) \right),$$

称极限 J(a,b) 为 g(x) 关于 F(x) 在 [a,b] 上的 R-S 积分.

注 $(1) \lambda \to 0$ 意味着 $n \to \infty$, 且最大子区间的长度趋于 0. (2) 当取 F(x) = x 时,R-S 积分化为原来的黎曼 (Riemann) 积分, 所以 R-S 积分是黎曼积分的推广.

当 $a \to -\infty, b \to +\infty$ 时, 若极限

$$J(-\infty, +\infty) = \lim_{b \to \infty, a \to -\infty} \int_a^b g(x) \, dF(x)$$

存在,则称

$$J(-\infty, +\infty) = \int_{-\infty}^{+\infty} g(x) \, dF(x) \qquad \left(\overrightarrow{\mathfrak{P}} \int_{-\infty}^{+\infty} g(x) F(dx) \right)$$

为 g(x) 关于 F(x) 在 $(-\infty, +\infty)$ 上的 R-S 积分.

R-S 积分的基本性质:

(1) 当 $a < c_1 < \dots < c_n < b$ 时

$$\int_{a}^{b} g(x) dF(x) = \sum_{i=0}^{n} \int_{c_{i}}^{c_{i+1}} g(x) dF(x) \quad (a = c_{0}, b = c_{n+1});$$

(2)

$$\int_{a}^{b} \sum_{i=1}^{n} g_{i}(x) \, dF(x) = \sum_{i=1}^{n} \int_{a}^{b} g_{i}(x) \, dF(x);$$

(3) 若 $g(x) \ge 0$, 且 a < b, 则

$$\int_{a}^{b} g(x) \, \mathrm{d}F(x) \geqslant 0;$$

(4) 若 $F_1(x)$, $F_2(x)$ 为两个分布函数, c_1 , c_2 为常数. c_1 , $c_2 > 0$, 则

$$\int_a^b g(x) \, \mathrm{d}[c_1 F_1(x) + c_2 F_2(x)] = c_1 \int_a^b g(x) \, \mathrm{d}F_1(x) + c_2 \int_a^b g(x) \, \mathrm{d}F_2(x).$$

几个特例:

设 F(x) 为 X 的分布函数.

(1) 若 g(x) = 1, 则

$$\int_{a}^{b} dF(x) = F(b) - F(a) = P(a < X \le b).$$

(2) 若 X 为离散型随机变量, 即 $P(X = c_i) = p_i, i \in \{1, 2, \dots\},$

则

$$F(x) = \sum_{c < x} p_i$$

是一跳跃型分布函数,即 F(x) 的变化只在 c_1, c_2, \cdots 这些点且其跃度 为 p_i , 则 R-S 积分

$$\int_{-\infty}^{\infty} g(x) \, dF(x) = \sum_{n=1}^{\infty} g(c_n) [F(c_n+0) - F(c_n-0)] = \sum_{n=1}^{\infty} g(c_n) p_n$$

化成了一个级数.

3. 数字特征

(1) 随机变量的数学期望 (expectation or mean)

定义 1.2.3 设 X 为随机变量F(x) 为 X 的分布函数,若 $\int_{-\infty}^{+\infty} |x| \, \mathrm{d}F(x)$ 存在,则称

$$EX = \int_{-\infty}^{\infty} x \, \mathrm{d}F(x)$$

为随机变量 X 的**数学期望**(或称为 X 的均值).

性质 (1) 若 $(c_i, i=1,2,\cdots,n)$ 为常数, $X_i(i=1,2,\cdots,n)$ 为随机变量, 则

$$E\left(\sum_{i=1}^{n} c_i X_i\right) = \sum_{i=1}^{n} c_i E X_i.$$

性质 (2) 设 g(x) 为 x 的函数, $F_X(x)$ 为 X 的分布函数, 若 E[g(X)] 存在, 则

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) \, \mathrm{d}F_X(x).$$

当 X 为离散型随机变量, 即 $P(X=x_n)=p_n(n\in\mathbb{N})$ 时, 则

$$EX = \sum_{n=1}^{\infty} x_n p_n,$$

即 EX 是 X 所有可能取值的加权平均.

当 X 为连续随机变量, 且有概率密度函数 f(x) 时, 则

$$EX = \int_{-\infty}^{+\infty} x f(x) \, \mathrm{d}x.$$

(2) 方差 (variance)

定义 1.2.4 令 $DX \stackrel{\triangle}{=} E(X - EX)^2 = EX^2 - (EX)^2$,称 DX 为随机变量 X 的**方差**(有时记 $DX = \text{var } X = \sigma_X^2$).

DX 刻画了 X 取值的集中或分散程度.

(3) 协方差 (covariance)

定义 1.2.5 两个随机变量 (X,Y), 称

$$cov(X,Y) \stackrel{\triangle}{=} E[(X - EX)(Y - EY)] = E(XY) - (EX)(EY)$$

为 (X,Y) 的**协方差**.

若 X,Y 独立, 则 E(XY)=EX EY , 从而得 $\cos{(X,Y)}=0$. 于 是, 若 $\cos{(X,Y)}\neq0$, 则 X,Y 不独立. 因此 $\cos{(X,Y)}\neq0$ 刻画了 X,Y 取值存在某种统计上的线性相关关系.

(4) 相关系数 (correlation coefficient)

定义 1.2.6 若
$$0 < DX = \sigma_X^2 < \infty, 0 < DY = \sigma_Y^2 < \infty,$$
 称
$$\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$$

为 (X,Y) 的相关系数.

ho(X,Y) 刻画了 X,Y 之间线性关系的密切程度, 若 $\rho=0,$ 称 X,Y 不 相关.

主要性质:

①
$$D\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i^2 DX_i + 2\sum_{i < i} a_i a_j \operatorname{cov}(X_i, X_j);$$

- ② 若 X_1, X_2, \dots, X_n 相互独立, 则 $cov(X_i, X_j) = 0, j \neq i$, 即 X_i, X_j 不相关;
 - ③ 若 X_1, X_2, \dots, X_n 两两不相关, 则

$$D\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} DX_i;$$

④ 施瓦茨 (Schwarz) 不等式, 若随机变量 X, Y 的二阶矩存在, 则

$$|E(XY)|^2 \leqslant E(X^2)E(Y^2);$$

特别是

$$|\operatorname{cov}(X,Y)|^2 \leqslant \sigma_X^2 \sigma_Y^2,$$

 $|\rho(X,Y)| \leqslant 1.$

⑤ $\rho = \pm 1$, 当且仅当

$$P\left(\frac{Y - EY}{\sqrt{DY}} = \pm \frac{X - EX}{\sqrt{DX}}\right) = 1,$$

即 $\rho=\pm 1,\; (X,Y)$ 以概率 1 取值在直线 $Y-EY=\pm \sqrt{DY}(X-EX)/\sqrt{DX}$ 上.

(5) 矩 (moment)

定义 1.2.7 记

$$E(X^k) = \int_{-\infty}^{+\infty} x^k \, \mathrm{d}F_X(x), \quad (k \geqslant 1),$$

称 $E(X^k)$ 为随机变量 X 的k **阶矩**($k \in \mathbb{N}$).

- 4. 常用随机变量的分布
 - (1) 离散型随机变量
 - ① 二项分布

设 $0 \le p < 1, n \ge 1$, 若 X 的分布律为

$$P(X = k) = C_n^k p^k (1 - p)^{n-k}, \quad 0 \le k \le n,$$

称 X 是参数为 (n,p) 的二项分布(binomial with parameters (n,p)), 简记为 $X \sim B(n,p)$.

② 泊松 (Poisson) 分布

设 $\lambda > 0$, 若X的分布律为

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \dots,$$

称 X 是参数为 λ 的**泊松分布**(Poisson with parameter λ), 简记为 $X \sim P(\lambda)$.

③ 几何分布

设 0 , 若 <math>X 的分布律为

$$P(X = k) = (1 - p)^{k-1}p, \quad k = 1, 2, \dots,$$

称 X 是参数为 p 的**几何分布**(geometric distribution), 简记为 $X \sim G(p)$.

- (2) 具有概率密度的随机变量
- ① 均匀分布

设 a < b, 若 X 的概率密度函数为

$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b, \\ 0, & \not\equiv \text{th}, \end{cases}$$

称 $X \neq (a,b)$ 上的均匀分布(uniform over (a,b)), 简记为 $X \sim U(a,b)$.

② 正态分布

设 $\mu \in \mathbb{R}, \sigma > 0$, 若X的概率密度函数为

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\{-(x-\mu)^2/2\sigma^2\},$$

称 X 是参数为 (μ, σ^2) 的**正态分布**(normal with parameters (μ, σ^2)), 简记为 $X \sim N(\mu, \sigma^2)$.

③ 指数分布

设 $\lambda > 0$, 若X的概率密度函数为

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geqslant 0, \\ 0, & x < 0. \end{cases}$$

称 X 是参数为 λ 的**指数分布**(exponential with parameter λ), 简记为 $X \sim E(\lambda)$.

5. 连续型随机变量的事件示性函数的线性组合表示

(1) 设 $X(\omega)$ 为非负随机变量 $P(X < \infty) = 1$, 令

$$X_n(\omega) = \sum_{k=0}^{n2^n - 1} \frac{k}{2^n} I_{\left\{\frac{k}{2^n} \leqslant X < \frac{k+1}{2^n}\right\}}(\omega) + nI_{\left\{X \geqslant n\right\}}(\omega),$$

则 $X_n(\omega)$ 是随机变量,满足 $\forall \omega \in \Omega, n \in \mathbb{N}, X_n(\omega) \leqslant X_{n+1}(\omega)$ (记为 $X_n(\omega) \uparrow$),且当 $0 \leqslant X(\omega) < n$ 时, $|X_n(\omega) - X(\omega)| < 1/2^n$;当 $X(\omega) = n$ 时 $X_n(\omega) = n$. 故 $\forall \omega \in \Omega, \lim_{n \to \infty} X_n(\omega) = X(\omega)$.

1.3 矩母函数、特征函数和拉普拉斯变换

1. 矩母函数 (moment generating function)

定义 1.3.1 随机变量 X 的**矩母函数**定义为

$$\psi(t) \stackrel{\triangle}{=} E(e^{tX}) = \int_{-\infty}^{+\infty} e^{tx} dF_X(x),$$

如果上式右边积分存在.

显然, 如 X 的 k 阶矩存在, 则

$$E(X^k) = \psi^{(k)}(0).$$

矩母 (生成) 函数由此得名. 可以证明矩母函数与分布函数是一一对应的.

对于取值非负整数的随机变量 X, 即 $P(X=k)=p_k\geqslant 0 (k\geqslant 0), \sum_{k=0}^{\infty}p_k=1,$ 则 X 的矩母函数记为

$$g(s) = E(s^X) = \sum_{k=0}^{\infty} p_k s^k, \quad 0 \le s \le 1.$$

显然 $p_k = g^{(k)}(0)/k!$, 且有 $E[X(X-1)(X-2)\cdots(X-k+1)] = g^{(k)}(1)$. 若 X_1, X_2 相互独立,其矩母函数分别记为 $g_1(s), g_2(s)$,则不难证明 $X_1 + X_2$ 的矩母函数为

$$g_{X_1+X_2}(s) = g_1(s)g_2(s).$$

对于数列 $\{a_n, n \ge 0\}$, 如

$$A(s) = \sum_{n=0}^{\infty} a_n s^n, \quad |s| \leqslant 1,$$

则称 A(s) 为 $\{a_n, n \ge 0\}$ 的**母函数**.

母函数的几个重要性质:

(1)
$$E(X) = g'(1)$$
.

(2)
$$D(X) = g''(1) + g'(x) - [g'(1)]^2$$
.

(3)
$$g'(1) = \sum_{k=1}^{\infty} k p_k$$
.

2. 特征函数 (characteristic function)

定义 1.3.2 记

$$\phi(t) \stackrel{\triangle}{=} E\{\exp(\mathrm{i}tX)\} = \int_{-\infty}^{+\infty} \exp(\mathrm{i}tx) \,\mathrm{d}F_X(x),$$

其中 $i = \sqrt{-1}, -\infty < t < +\infty$. 称 $\phi(t)$ 是随机变量 X 的**特征函数**.

 $\phi(t)$ 的几个重要性质:

$$(1) \ \phi(0)=1, \ |\phi(t)|\leqslant \phi(0), \ \phi(-t)=\overline{\phi(t)}, \ \pounds \ \phi(t) \ 在 \ (-\infty,+\infty)$$
 上
连续.

 $(2) \phi(t)$ 具有非负定性, 即对任给 n 个实数 t_i 及复数 $\lambda_i (1 \le i \le n)$ 有

$$\sum_{j=1}^{n} \sum_{i=1}^{n} \phi(t_i - t_j) \lambda_i \overline{\lambda_j} \geqslant 0.$$

(3) 若 X 与 Y 相互独立, 则

$$\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t).$$

(4) 随机变量 X, 若 EX^n 存在, 则当 $k \leq n$ 时

$$\phi^{(k)}(0) = i^k E(X^k).$$

(5) 随机变量的分布函数与特征函数有一一对应的关系,即给定 F(x) 可唯一决定 $\phi(t)$; 反之,给定 $\phi(t)$ 可唯一决定 F(x) (唯一性定 理).

上述性质的证明详见参考文献 [20].

3. 拉普拉斯-斯蒂尔切斯变换

定义 1.3.3 设非负随机变量 X, 分布函数 $F_X(x)$, s = a + bi, 这里 a > 0, b 是实数, 称

$$\widehat{F}_X(s) = \int_0^{+\infty} \exp(-sx) \, \mathrm{d}F_X(x)$$

为 $F_X(x)$ 的拉普拉斯—斯蒂尔切斯变换 (Laplace-Stieltjes transform, 简记 L-S 变换), 或称随机变量 X 的 L-S 变换.

注 $\widehat{F}_X(s)$ 与 $F_X(x)$ 也有一一对应关系,且对 $X_1, X_2 \ge 0$ 相互 独立,有

$$\widehat{F}_{X_1+X_2}(s) = \widehat{F}_{X_1}(s)\widehat{F}_{X_2}(s).$$

1.4 条件数学期望

条件数学期望是随机过程中最基本最重要的概念之一. 为了直观 地对此概念有正确的理解. 我们先从离散型随机变量入手, 再讨论连 续型随机变量情形, 然后推广到多元随机变量的情形.

1. 离散型随机变量的情形

设两随机事件 A, B,若 P(B) > 0,称 P(A|B) = P(AB)/P(B) 为事件 B 发生时,事件 A 的**条件概率**(若 P(B) = 0, 则 P(A|B) 没定义或规定为 0). 设 (X,Y) 为两个离散型随机变量,其联合分布律为 $P(X = x_i, Y = y_j) = p_{ij} \geqslant 0,$ $\sum_i \sum_j p_{ij} = 1,$ 若 $P(Y = y_j) = \sum_i p_{ij} \stackrel{\triangle}{=} p_{\cdot j} > 0,$ 称

$$P(X = x_i | Y = y_j) = P(X = x_i, Y = y_j) / P(Y = y_j) = p_{ij} / p_{\cdot j}$$

为给定 $Y = y_i$ 时X 的条件分布律. 称

$$E(X|Y = y_j) \stackrel{\triangle}{=} \sum_i x_i P(X = x_i|Y = y_j)$$

为给定 $Y = y_i$ 时X 的**条件数学期望**.

比较 (无条件) 数学期望 $EX = \sum_i x_i P(X = x_i)$ 与条件数学期望 $E(X | Y = y_j)$ 的异同EX 是对所有 $\omega \in \Omega, X(\omega)$ 取值全体的加权平均; 而 $E(X | Y = y_j)$ 是局限在 $\omega \in \{\omega \colon Y(\omega) = y_j\} \stackrel{\triangle}{=} B_j$ 时, $X(\omega)$ 取值局部 ($\omega \in B_j$) 的加权平均. 这是因为: 记 $B_j = \{\omega \colon Y = y_j\}, A_i = \{\omega \colon X = x_i\}$, 于是整个样本空间 Ω 按 Y 的不同取值分为

 B_1, \dots, B_j, \dots 等互不相容的事件 $\left(\Omega = \sum_j B_j\right)$. 而 Ω 又按 X 不同

取值分为 A_1, \dots, A_i, \dots 等互不相容的事件 $(\Omega = \sum_i A_i)$.

当 $A_iB_j=\emptyset$ 时, $P(X=x_i,Y=y_j)=0,\ P(X=x_i\big|Y=y_j)=0,$ 于是

$$E(X|Y = y_j) = \sum_i x_i P(X = x_i | Y = y_j) = \sum_{i: A_i B_j \neq \emptyset} x_i P(X = x_i | Y = y_j).$$

因此 $E(X|Y=y_j)$ 是 $\omega \in B_j$ 时 $X(\omega)$ 的局部加权平均.

显然, $E(X|Y=y_1),\cdots,E(X|Y=y_j),\cdots$, 依赖于 $Y=y_j$, 即依赖于 $\omega \in B_j = \{\omega\colon Y=y_j\}$, 这样, 从全局样本空间 Ω 及对 $\omega \in \Omega$ 可以变化的观点看, 有必要引进一个新的随机变量, 记为 E(X|Y). 对于这个随机变量 E(X|Y), 当 $\omega \in B_j$ 时 (即 $Y=y_j$ 时) 它的取值为 $E(X|Y=y_j)$, 称随机变量 E(X|Y) 为随机变量 X 关于随机变量 Y 的条件数学期望.

为给出 E(X|Y) 的确切定义及表示式,引进事件的示性函数如下: 记

$$I_{B_j}(\omega) = \begin{cases} 1, & \omega \in B_j = \{\omega \colon Y(\omega) = y_j\}, \\ 0, & \omega \notin B_j = \{\omega \colon Y(\omega) = y_j\}. \end{cases}$$

显然 $I_{B_i}(\omega) = 1 \leftrightarrow Y(\omega) = y_j$ 发生, 亦记 $I_{B_i}(\omega) = I_{(Y=y_i)}(\omega)$.

定义 1.4.1 记

$$E(X|Y) \stackrel{\triangle}{=} \sum_{j} I_{(Y=y_j)}(\omega) E(X|Y=y_j), \tag{1.4.1}$$

称 E(X|Y) 为 X 关于 Y 的条件数学期望.

E(X|Y) 的定义包含如下的直观意义:

- (1) 随机变量 E(X|Y) 是随机变量 Y 的函数,当 $\omega \in \{\omega: Y = y_j\}$ 时,E(X|Y) 的取值为 $E(X|Y = y_j)$. 事实上,它是局部平均 $\{E(X|Y = y_j), j \in \mathbb{N}\}$ 的统一表达式.
- (2) 当 $E(X|Y = y_j) \neq E(X|Y = y_k) (j \neq k)$ 时, $P[E(X|Y) = E(X|Y = y_j)] = P(Y = y_j)$; 否则, 令 $D_j = \{k: E(X|Y = y_k) = E(X|Y = y_j)\}$, 则

$$P\{E(X|Y) = E(X|Y = y_j)\} = \sum_{k \in D_j} P(Y = y_k).$$

(3) 由于随机变量 E(X|Y) 是随机变量 Y 的函数, 故它的数学期望应为

$$E(E(X|Y)) = \sum_{j} E(X|Y = y_j)P(Y = y_j).$$

例 1 随机变量 (X,Y) 的联合分布律如表 1.1.

表 1.1

Y^{X}	1	2	3	$p_{\cdot j}$
1	2/27	4/27	1/27	7/27
2	5/27	7/27	3/27	15/27
3	1/27	2/27	2/27	5/27
p_{i} .	8/27	13/27	6/27	

试求 E(X|Y) 的分布律,EX 及 E(E(X|Y)).

解 为求 E(X|Y=j), 先求 P(X=i,Y=j), i,j=1,2,3. 当 Y=1 时, 有

$$P(X = 1|Y = 1) = P(X = 1, Y = 1)/P(Y = 1) = \frac{2/27}{7/27} = \frac{2}{7},$$

同理
$$P(X=2|Y=1)=4/7, P(X=3|Y=1)=1/7$$
. 故

$$E(X|Y=1) = \sum_{i=1}^{3} iP(X=i|Y=1) = 1 \times \frac{2}{7} + 2 \times \frac{4}{7} + 3 \times \frac{1}{7} = \frac{13}{7}.$$

类似地有

$$E(X|Y=2) = \sum_{i=1}^{3} iP(X=i|Y=2) = 1 \times \frac{5}{15} + 2 \times \frac{7}{15} + 3 \times \frac{3}{15} = \frac{28}{15}$$

$$E(X|Y=3) = \sum_{i=1}^{3} iP(X=i|Y=3) = 1 \times \frac{1}{5} + 2 \times \frac{2}{5} + 3 \times \frac{2}{5} = \frac{11}{5}.$$

又 $P\{E(X|Y) = E(X|Y=j)\} = P(Y=j), j=1,2,3.$ 故 E(X|Y) 的分布律列表如下: 于是

$$E(E(X|Y)) = \frac{13}{7} \times \frac{7}{27} + \frac{28}{15} \times \frac{15}{27} + \frac{11}{5} \times \frac{5}{27} = \frac{52}{27},$$

而

$$EX = \sum_{i=1}^{3} iP(X=i) = 1 \times \frac{8}{27} + 2 \times \frac{13}{27} + 3 \times \frac{6}{27} = \frac{52}{27},$$

得

$$EX = E(E(X|Y)) = \frac{52}{27}.$$

自然要问,一般情形下,是否 EX = E(E(X|Y))? 它的直观意义又是什么? 试证明:

- (1) 在 (X,Y) 为离散随机变量且 $E|X| < \infty$ 时EX = E(E(X|Y));
- (2) E(X|X) = X.

2. 连续随机变量 (X,Y) 的情形

设 (X,Y) 的联合概率密度函数 (jointly probability density function) 为 f(x,y), Y 的概率密度函数为 $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}x$, 设 $f_Y(y) > 0$, $E|X| < \infty$, 给定 Y = y, X 的条件概率密度函数为

$$f_{X|Y=y}(x|y) = \frac{f(x,y)}{f_Y(y)},$$

条件分布函数为

$$F_{X|Y=y}(x|y) = P(X \leqslant x | Y = y) = \int_{-\infty}^{x} \frac{f(u,y)}{f_Y(y)} du,$$

条件数学期望为

$$E(X|Y=y) = \int_{-\infty}^{+\infty} x f_{X|Y=y}(x|y) \, dx = \int_{-\infty}^{+\infty} x \frac{f(x,y)}{f_Y(y)} \, dx. \quad (1.4.2)$$

令 $D \in \mathcal{B}$, 考虑 $Y \in D$ 下, 若 $P(Y \in D) > 0, X$ 的条件分布函数为

$$F(x\big|D) = P\{X \leqslant x\big|Y \in D\} = \frac{P(X \leqslant x, Y \in D)}{P(Y \in D)} = \frac{\int_{-\infty}^{x} \left(\int_{y \in D} f(x, y) \, \mathrm{d}y\right) \mathrm{d}x}{\int_{y \in D} f_{Y}(y) \, \mathrm{d}y}.$$

在 $Y \in D$ 下X的条件概率密度函数为

$$f_{X|D}(x|D) = \frac{\int_{y \in D} f(x,y) \, dy}{P(Y \in D)}.$$
 (1.4.3)

于是在 $Y \in D$ 下,X的条件数学期望定义为

$$E(X\big|Y\in D) \stackrel{\triangle}{=} \int_{-\infty}^{+\infty} x f_{X|D}(x\big|D) \,\mathrm{d}x = \int_{y\in D} \left(\int_{-\infty}^{+\infty} x f(x,y) \,\mathrm{d}x\right) \mathrm{d}y \big/ P(Y\in D).$$

由上式定义,有

$$E(X|Y \in D) = \int_{y \in D} \left(\int_{-\infty}^{+\infty} x \frac{f(x,y)}{f_Y(y)} dx \right) f_Y(y) dy / P(Y \in D)$$
$$= \frac{1}{P(Y \in D)} \int_{y \in D} E(X|Y = y) f_Y(y) dy.$$

显然, 条件数学期望 E(X|Y=y) 是 y 的函数. 这样, 从整个样本空间 Ω 及从 $\omega \in \Omega$ 可以变化的宏观上看, 可以且有必要定义一个随机变量 E(X|Y), 使其在 Y=y 时, E(X|Y) 的取值为 E(X|Y=y).

定义 1.4.2 设 (X,Y) 具有联合概率密度函数 f(x,y),Y 的概率 密度函数为 $f_Y(y) > 0, E|X| < \infty$, 若随机变量 E(X|Y) 满足:

- (1) E(X|Y) 是随机变量 Y 的函数,当 Y=y 时,它的取值为 E(X|Y=y);
 - (2) 对任意 $D \in \mathcal{B}$, 有

$$E[E(X|Y)|Y \in D] = E(X|Y \in D).$$
 (1.4.4)

称随机变量 E(X|Y) 为 X 关于 Y 的条件数学期望.

从 (1), 由于 E(X|Y) 是随机变量 Y 的函数, 故它的数学期望应为

$$E[E(X|Y)] = \int_{-\infty}^{+\infty} E(X|Y=y) f_Y(y) \, \mathrm{d}y.$$

而从 (2), 当取 $D = \mathbb{R} = (-\infty, +\infty)$ 时

$$EX = E\{X \mid Y \in (-\infty, +\infty)\} = E\{E(X \mid Y) \mid Y \in (-\infty, \infty)\} = E[E(X \mid Y)]$$
$$= \int_{-\infty}^{+\infty} E(X \mid Y = y) f_Y(y) \, \mathrm{d}y.$$

例 2 (X,Y) 是二维正态分布, 即 $(X,Y) \sim N(\mu_1, \mu_2, \rho, \sigma_1^2, \sigma_2^2)$,

则联合概率密度函数为

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2(1-\rho^2)^{\frac{1}{2}}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]\right\},$$

则

$$f_{Y|X=x}(y|x) = \frac{f(x,y)}{f_X(x)}$$

$$= \frac{1}{\sqrt{2\pi}\sigma_2(1-\rho^2)^{\frac{1}{2}}} \exp\left\{-\frac{1}{2\sigma_2^2(1-\rho^2)} \left[y - \mu_2 - \rho \frac{\sigma_2}{\sigma_1}(x - \mu_1)\right]^2\right\}$$

$$\sim N\left(\mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x - \mu_1), \sigma_2^2(1 - \rho^2)\right).$$

故

$$E(Y|X = x) = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1);$$

$$E(Y|X) = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (X - \mu_1).$$
 (1.4.5)

此时 E(Y|X) 是 X 的线性函数, 这是正态分布的重要性质. \square

3. 一般随机变量的情形

设 (X,Y) 为一般随机变量, 其联合分布函数为 $P(X \le x,Y \le y)$. 以下假设 $E|X| < \infty$, 分两种情况讨论.

定义 1.4.3 设 $D \in \mathcal{B}, P(Y \in D) > 0$. $\forall x \in \mathbb{R}$, 称 $P(X \leq x | Y \in D) = P(X \leq x, Y \in D)/P(Y \in D)$ 为 X 关于事件 $\{Y \in D\}$ 的条件分布函数.容易证明,若 X 与 Y 独立,则对 $\forall x \in \mathbb{R}$, $\forall D \in \mathcal{B}, P(X \leq x | Y \in D) = P(X \leq x)$. 称 $E(X | Y \in D) = \int_{\mathbb{R}} x \, \mathrm{d}P(X \leq x | Y \in D)$ 为 X 关于 $\{Y \in D\}$ 的条件数学期望.

在许多问题中常常需要考虑 D 为单点集 $\{y\}$ 的情形. 若 P(Y=y)>0, 这时定义条件分布同上. 问题是当 P(Y=y)=0 时, 如何定义 $P(X\leqslant x|Y=y)$.

定义 1.4.4 设 $(x,y) \in \mathbb{R}^2$, 对充分小的 h > 0, 有 $P(y < Y \leqslant y + h) > 0$. 若 $P(X \leqslant x | Y = y) \stackrel{\triangle}{=} \lim_{h \to 0} P(X \leqslant x | y < Y \leqslant y + h)$ 存在, 则称 $P(X \leqslant x | Y = y)$ 为 X 关于 $\{Y = y\}$ 的条件分布函数,称 $E(X | Y = y) = \int_{\mathbb{R}} x \, \mathrm{d}P(X \leqslant x | Y = y)$ 为 X 关于 $\{Y = y\}$ 的条件数学期望.

若随机变量 E(X|Y) 满足:

- (1) E(X|Y) 是随机变量 Y 的函数, 当 Y=y 时, 它的取值为 E(X|Y=y).
- (2) 对于 $\forall D \in \mathcal{B}, E\{E(X\big|Y)\big|Y \in D\} = E(X\big|Y \in D).$ 称随机变量 $E(X\big|Y)$ 为 X 关于 Y 的条件数学期望.

从该定义中的(1)知E(X|Y)是随机变量Y的函数,则它的数学期望为

$$E[E(X|Y)] = \int_{\mathbb{R}} E(X|Y = y) \, dP(Y \leqslant y).$$

但是从 (2) 知, 当取 $D = \mathbb{R} = (-\infty, +\infty)$ 时, 有

$$EX = E(X|Y \in (-\infty, +\infty)) = E\{E(X|Y)|Y \in (-\infty, +\infty)\} = E\{E(X|Y)\},\$$

故有 $EX = E\{E(X|Y)\}$, 即

$$EX = \int_{\mathbb{R}} E(X|Y=y) \, dP(Y \leqslant y). \tag{1.4.6}$$

上式可看作是数学期望形式的全概率公式.

4. 条件概率与条件分布函数

设随机变量 (X,Y) 及任一随机事件 $B \in \mathcal{F}$, 记

$$I_B(\omega) = \begin{cases} 1, & \omega \in B, \\ 0, & \omega \notin B, \end{cases}$$

即 I_B 是 B 的示性函数. 显然

$$P(B) = E(I_B(\omega)).$$

称

$$E(I_B(\omega)|Y) \stackrel{\triangle}{=} P(B|Y)$$

为事件 B 关于随机变量 Y 的条件概率. 此时 P(B|Y) 是随机变量且是 Y 的函数, 对于 $\forall x \in \mathbb{R}$, 取 $B = (\omega \colon X \leqslant x)$, 称

$$F(x|Y) \stackrel{\triangle}{=} P(X \leqslant x|Y) = E(I_{(X \leqslant x)}|Y) \tag{1.4.7}$$

为 X 关于 Y 的条件分布函数.

于是有关条件概率,条件分布函数均可用条件数学期望的概念及性 质 来处理.

5. 条件数学期望的基本性质

两个随机变量 Z_1, Z_2 , 如果 $P(Z_1 = Z_2) = 1$, 称 Z_1, Z_2 几乎处处 (或称几乎必然) 相等, 记作 $Z_1 = Z_2$ a.s..

设 X,Y,X_i ($1\leqslant i\leqslant n$) 为随机变量,g(x),h(y) 为一般函数,且 $E\big|X\big|,E\big|X_i\big|<\infty$ ($1\leqslant i\leqslant n$), $E\big|g(X)h(Y)\big|<\infty$, $E\big|g(X)\big|<\infty$. 则有

(1)
$$E(E(X|Y)) = EX. \tag{1.4.8}$$

(2)
$$E\left(\sum_{i=1}^{n} \alpha_i X_i \middle| Y\right) = \sum_{i=1}^{n} \alpha_i E(X_i \middle| Y) \quad \text{a.s.,} \quad (1.4.9)$$

其中 $\alpha_i (1 \leq i \leq n)$ 为常数.

(3)

$$E[(g(X)h(Y)|Y] = h(Y)E(g(X)|Y)$$
 a.s., (1.4.10)

特别地

$$E(X|X) = X$$
 a.s.,
 $E[g(X)h(Y)] = E[h(Y)E(g(X)|Y)].$ (1.4.11)

(4) 如 X,Y 相互独立,则

$$E(X|Y) = EX.$$

下面仅证 (1.4.11) 式, 其他留作练习. 设 $(X,Y) \sim f(x,y)$, 则

$$E(g(X)h(Y)) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x)h(y)f(x,y) dx dy$$

$$= \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} g(x) \frac{f(x,y)}{f_Y(y)} dx \right] h(y)f_Y(y) dy$$

$$= \int_{-\infty}^{+\infty} E(g(X)|Y = y)h(y)f_Y(y) dy$$

$$= E[h(Y)E(g(X)|Y)].$$

由上面倒数第二式,有

$$E(g(X)h(Y)) = \int_{-\infty}^{+\infty} E(g(X)|Y = y)h(y)f_Y(y) \,dy.$$
 (1.4.12)

特别地, 取 $g(X) = I_A(\omega), h(y) \equiv 1$ 时, 得

$$P(A) = \int_{-\infty}^{+\infty} P(A|Y = y) f_Y(y) \, \mathrm{d}y.$$

(1.4.12) 式是全概率公式的推广.

6. 对多元随机变量的条件数学期望

(1) 离散型随机变量

设三个随机变量 (X,Y,Z), 其中 (Y,Z) 为离散随机变量, 称随机变量

E(X|Y,Z) 是 X 关于 Y,Z 的条件数学期望, 若它满足:

- ① E(X|Y,Z) 是 (Y,Z) 的二元函数,当 $Y=y_j; Z=z_k$ 时, E(X|Y,Z) 的取值为 $E(X|Y=y_j; Z=z_k);$
 - ② 对任意 $D_i \in \mathbb{R}^1$, $D_k \in \mathbb{R}^1$, 有

$$E[E(X|Y,Z)|Y \in D_i, Z \in D_k] = E(X|Y \in D_i, Z \in D_k),$$

用示性函数表示,即

$$E(X|Y,Z) \stackrel{\triangle}{=} \sum_{j} \sum_{k} I_{(Y=y_j,Z=z_k)}(\omega) E(X|Y=y_j, Z=z_k).$$

当 $E|X| < \infty$ 时, 请读者证明

$$E[E(X|Y,Z)|Y] = E(X|Y) = E[E(X|Y)|Y,Z].$$
(1.4.13)

(2) 连续型随机变量

如 (X,Y,Z) 为连续型随机变量,联合概率密度函数为 f(x,y,z); (Y,Z) 的联合概率密度函数为 $f_{Y,Z}(y,z)$; X 关于 Y=y,Z=z 的条件概率密度函数为

$$f_{X|(Y,Z)=(y,z)}(x|y,z) = f(x,y,z)/f_{Y,Z}(y,z),$$

设 $E|X| < \infty$, $f_{Y,Z}(y,z) > 0$, 若随机变量 E(X|Y,Z) 满足:

① E(X|Y,Z) 是 Y,Z 的函数, 当 Y=y,Z=z 时,它们取值为

$$E(X|Y=y, Z=z).$$

② 对任意, $D_1 \in \mathbb{R}^1$, $D_2 \in \mathbb{R}^1$, 有

$$E\{(E(X|Y,Z)|Y \in D_1, Z \in D_2)\} = E(X|Y \in D_1, Z \in D_2).$$

称 E(X|Y,Z) 为 X 关于 (Y,Z) 的条件数学期望.

(3) n 元随机变量

对离散随机变量 $\{X, Y_k, 1 \le k \le n\}$ 的情况, 称

$$E(X|Y_1,\dots,Y_n) \stackrel{\triangle}{=} \sum_{j_1} \dots \sum_{j_n} I_{(Y_k=j_k,1 \leqslant k \leqslant n)}(\omega) \times$$
$$E(X|Y_1=j_1,Y_2=j_2,\dots,Y_n=j_n)$$

为 X 关于 (Y_1, \dots, Y_n) 的条件数学期望. 类似可定义一般多元随机 变量作为条件的条件数学期望.

若 $E|X|, E|X_i| < \infty, 1 \leq i \leq 2, E|g(Y_1, \dots, Y_n)| < \infty$, 则类似有:

①
$$E(\alpha_1 X_1 + \alpha_2 X_2 | Y_1, \dots, Y_n) = \sum_{i=1}^{2} \alpha_i E(X_i | Y_1, \dots, Y_n)$$
 a.s.;

②
$$E[g(Y_1, \dots, Y_n)X|Y_1, \dots, Y_n] = g(Y_1, \dots, Y_n)E(X|Y_1, \dots, Y_n)$$
 a.s.;

③ 如
$$X 与 Y_1, \dots, Y_n$$
独立,则 $E(X|Y_1, \dots, Y_n) = EX$ a.s..

①
$$EX = E[E(X|Y_1, \dots, Y_n)]$$
 a.s..

 $(5) \quad \forall \, 1 \leqslant m < n$

$$E(X|Y_1,\dots,Y_m) = E[E(X|Y_1,\dots,Y_n)|Y_1,\dots,Y_m]$$

= $E[E(X|Y_1,\dots,Y_m)|Y_1,\dots,Y_n]$ a.s..

证明从略.

7. 条件乘法公式与条件独立性

(1) 条件概率的乘法公式

设 A, B 为两个随机事件, 由条件概率的定义可知 P(AB) = P(A)P(B|A). 与上面的概率乘法公式类似, 条件概率的乘法公式如下:

命题 1.4.1 设 A, B, C 为 3 个随机事件, 则

$$P(BC|A) = P(B|A)P(C|AB).$$
 (1.4.14)

证明 按条件概率的定义, 当 P(AB) > 0 时

$$P(BC|A) = \frac{P(ABC)}{P(A)} = \frac{P(AB)}{P(A)} \frac{P(ABC)}{P(AB)} = P(B|A)P(C|AB).$$

因此按对条件概率的等式的有关约定(1.4.14) 式成立.

(2) 条件独立性

当两个随机事件 A, B 独立时, 有 P(AB) = P(A)P(B), 即 P(A|B) = P(A). 同样, 与上面的独立性概念类似, 条件独立性的定义如下:

定义 1.4.5 设 A, B, C 为 3 个随机事件, 称事件 A, C 关于事件 B条件独立, 若满足

$$P(C|AB) = P(C|B).$$
 (1.4.15)

对于条件独立性有如下结论:

命题 1.4.2 设 A, B, C 为 3 个随机事件, 则事件 A, C 关于事件 B 条件独立的充要条件为

$$P(AC|B) = P(A|B)P(C|B).$$
 (1.4.16)

证明 必要性. 由命题 1.4.1, 则

$$P(AC|B) = P(A|B)P(C|AB).$$

当 P(AB) = 0 时,P(A|B) = 0, 因此 (1.4.16) 式两边均为 0, 而当 P(AB) > 0 时,将 (1.4.15) 式代入上式即得 (1.4.16) 式.

充分性. 只需考虑 P(AB)>0 的情形, 由命题 1.4.1 及 (1.4.16) 式可得

$$P(C|AB) = \frac{P(AC|B)}{P(A|B)} = P(C|B).$$

本书有关初等概率论的内容, 读者可参考文献 [22].

1.5 随机过程的概念

在概率论中, 研究了随机变量, n 维随机向量. 在极限定理中, 涉及到了无穷多个随机变量, 但局限在它们之间是相互独立的情形. 将上述情形加以推广, 即研究一族无穷多个、相互有关的随机变量, 这就是随机过程.

1. 概念

设对每一个参数 $t \in T, X(t, \omega)$ 是一随机变量,称随机变量族 X_T = $\{X(t, \omega), t \in T\}$ 为一**随机过程**(stochastic process) 或称随机函数. 其中 $T \subset \mathbb{R}$ 是一实数集. 称为指标集.

用映射来表示 X_T ,

$$X(t,\omega)$$
: $T \times \Omega \to \mathbb{R}$,

即 $X(\cdot,\cdot)$ 是定义在 $T\times\Omega$ 上的二元单值函数,固定 $t\in T, X(t,\cdot)$ 是定义在样本空间 Ω 上的函数,即为一随机变量. 对于 $\omega\in\Omega, X(\cdot,\omega)$ (t 在 T 中顺序变化) 是参数 $t\in T$ 的一般函数,通常称 $X(\cdot,\omega)$ 为样本函数,或称随机过程的一个实现,或说是一条轨道. 记号 $X(t,\omega)$ 有时也写为 $X_t(\omega)$ 或简记为 X(t) 或 X_t .

参数 $t \in T$ 一般表示时间或空间. 参数集 T 常用的有 3 种:(1) $T_1 = \mathbb{N}_0 = \{0, 1, 2, \dots\}, (2)$ $T_2 = \mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}, (3)$ $T_3 = [a, b]$, 其中 a 可以取 $-\infty$ 或 0, b 可以取 $+\infty$. 当 T 取可列集 $(T_1$ 或 T_2) 时, 通常称 X_T 为随机序列.

 X_T 的取值也可以是复数, \mathbb{R}^n 或更一般的抽象空间. $X_t(t \in T)$ 可能取值的全体所构成的集合称为**状态空间**, 记作 S. S 中的元素称为状态.

2. 例子

- (1) 质点在直线上的随机游动. 设一质点在时刻 t = 0 时处于位置 a (整数), 以后每隔单位时间, 分别以概率 p 及 q = 1 p 向正的或负的方向随机移动一个单位, 记 X_n 为质点在时刻 t = n 的位置. 固定 n, X_n 是随机变量. 考虑不同的 n 时, $\{X_n, n \ge 0\}$ 是一随机序列.
- (2) 考虑某"服务站"在 [0,t] 内来的"顾客"数,记为 N(t),固定 t,N(t) 就是一随机变量.因此 $\{N(t),t\geq 0\}$ 是一随机过程.这里的"顾客"可以是电话的"呼唤",通信设备中的"信号",一个系统的"更换设备",放散性物质衰变的"粒子"等.
- (3) 在外界是随机载荷条件下, 某零件 t 时的应力 X(t) 是随机的, 故 $\{X(t), t \in T\}$ 是一随机过程X(t) 亦可表示某电路中的电压、设备的温度、河流的流量 (或水位), 以及气体的压力等等.
- (4) 考虑某输入输出系统, 例如最简单的 R-C 电路, 设输入端有一个干扰信号电压, 记为 $\xi(t)$, 记 Q(t) 为 t 时电路的电量, 则它满足

$$R\frac{\mathrm{d}Q(t)}{\mathrm{d}t} + \frac{1}{C}Q(t) = \xi(t).$$

由于 $\{\xi(t), t \in T\}$ 是一随机过程, 容易理解 $\{Q(t), t \in T\}$ 也是一随机过程, 上式是一个最简单的随机微分方程.

3. 随机过程的数字特征及有限维分布函数族

设 $\{X(t), t \in T\}$ 是一随机过程. 为了刻画它的概率特征, 通常用到随机过程的均值函数、方差函数、协方差函数 (相关函数) 以及有限维分布函数族及特征函数族等概念.

(1) 均值函数. 随机过程 $\{X(t), t \in T\}$ 的**均值函数**定义为 (以下均假定右端存在)

$$m(t) \stackrel{\triangle}{=} E(X(t)).$$

(2) 方差函数. 随机过程 $\{X(t), t \in T\}$ 的**方差函数**定义为

$$D(t) \stackrel{\triangle}{=} E\{(X(t) - m(t))^2\}.$$

(3) 协方差函数. 随机过程 $\{X(t), t \in T\}$ 的**协方差函数**定义为

$$R(s,t) \stackrel{\triangle}{=} \operatorname{cov}(X(s),X(t)).$$

(4) 相关函数. 随机过程 $\{X(t), t \in T\}$ 的**相关函数**定义为

$$\rho(s,t) \stackrel{\triangle}{=} \frac{\operatorname{cov}(X(s),X(t))}{\sqrt{D(t)D(s)}}.$$

(5) 有限维分布族. 设 $t_i \in T, 1 \le i \le n$ (n 为任意正整数), 记

$$F(t_1, t_2, \dots, t_n; x_1, x_2, \dots, x_n)$$

$$= P(X(t_1) \leqslant x_1, X(t_2) \leqslant x_2, \dots, X(t_n) \leqslant x_n),$$

其全体

$$\{F(t_1, t_2, \cdots, t_n, x_1, x_2, \cdots, x_n), t_1, t_2, \cdots, t_n \in T, n \geqslant 1\}$$

称为随机过程的有限维分布族. 它具有以下两个性质:

- ① 对称性 对 $(1,2,\cdots,n)$ 的任一排列 (j_1,j_2,\cdots,j_n) ,有 $F(t_{j_1},t_{j_2},\cdots,t_{j_n};x_{j_1},x_{j_2},\cdots,x_{j_n})=F(t_1,t_2,\cdots,t_n;x_1,x_2,\cdots,x_n).$
 - ② 相容性 对 m < n, 有

$$F(t_1, \dots, t_m, t_{m+1}, \dots, t_n; x_1, \dots, x_m, \infty, \dots, \infty)$$

$$= F(t_1, \dots, t_m; x_1, \dots, x_m).$$

一个随机过程的概率特性完全由其有限维分布族决定.

(6) 特征函数. 记

$$\phi(t_1, t_2, \dots, t_n; \theta_1, \dots, \theta_n) = E\{\exp\{i[\theta_1 X(t_1) + \dots + \theta_n X(t_n)]\}\}$$

$$= \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \exp\{i[\theta_1 x_1 + \dots + \theta_n x_n]\} \times$$

$$F(t_1, \dots, t_n; dx_1, \dots, dx_n),$$

称 $\{\phi(t_1,\dots,t_n;\theta_1,\dots,\theta_n), n \ge 1, t_1,\dots,t_n \in T\}$ 为随机过程 $\{X(t),t \in T\}$ 的有限维特征函数族.

1.6 随机过程的分类

设 $X_T = \{X(t), t \in T\}$ 为随机过程, 按其概率特征, 分类如下.

1. 独立增量过程

对
$$t_1 < t_2 < \dots < t_n, t_i \in T, 1 \leq i \leq n$$
, 若增量

$$X(t_1), X(t_2) - X(t_1), X(t_3) - X(t_2), \cdots, X(t_n) - X(t_{n-1})$$

相互独立,则称 $\{X(t), t \in T\}$ 为**独立增量过程**(process with independent increments). 若对一切 $0 \le s < t$, 增量 X(t) - X(s) 的分布只依赖于 t - s, 则称 X_T 有平稳增量. 有平稳增量的独立增量过程简称为独立平稳增量过程.

常见的泊松 (Poisson) 过程和维纳 (Wiener) 过程 (或称布朗运动 (Brownian motion)) 就是两个最简单也是最重要的独立平稳增量过程.

2. 马尔可夫过程

粗略地说,一随机过程,若已知现在的 t 状态 X_t ,那么将来状态 $X_u(u > t)$ 取值 (或取某些状态)的概率与过去状态 $X_s(s < t)$ 取值无关,或更简单地说,已知现在,将来与过去无关 (条件独立),则称此性

质为马尔可夫性 (无后效性或简称为马氏性). 具有这种马尔可夫性的过程称为马尔可夫过程. 精确定义为:

随机过程 $\{X_t, t \in T\}$, 若对任意 $t_1 < t_2 \cdots < t_n < t, x_i, 1 \leq i \leq n$, 及 $A \subset \mathbb{R}$, 总有

$$P(X_t \in A | X_{t_1} = x_1, X_{t_2} = x_2, \dots, X_{t_n} = x_n) = P(X_t \in A | X_{t_n} = x_n),$$

则称此过程为马尔可夫过程(Markov process), 简称马氏过程.

称 $P(s, x; t, A) = P(X_t \in A | X_s = x)(s < t)$ 为转移概率函数 (transition probability function).

 X_t 的取值全体构成的集合记为 S, 称为状态空间. 对于马尔可夫过程 $X_T = \{X_t, t \in T\}$, 当 $S = \{1, 2, 3, \cdots\}$ 为可列无限集或有限集时, 通常称为**马尔可夫链**(Markov chain), 简称马氏链.

样本函数是连续的马尔可夫过程 $\{X_t, t \in [0, \infty]\}$ 称为扩散 (diffusion) 过程. 泊松过程是一个最简单连续时间马尔可夫链, 而布朗运动则是一个最简单的扩散过程.

3. 平稳过程及二阶矩过程

- (1) 宽平稳过程(或协方差平稳过程)
- 一随机过程 X_T , 若对 $\forall \tau, t \in T$, D(X(t)) 存在目

$$E(X(t)) = m, \operatorname{cov}(X_t, X_{t+\tau}) = R(\tau)$$

仅依赖 τ , 则称 X_T 为**宽平稳过程**(wide sense stationary process), 即它的协方差不随时间推移而改变.

- (2) 二阶矩过程
- 一随机过程 X_T , 若对 $\forall t \in T$, DX_t 存在,则称为**二阶矩过程** (finite second moments process).
 - (3) 严平稳过程

一随机过程 X_T , 若对 $\forall t_1, t_2, \dots, t_n \in T$, 及 h > 0, $(X_{t_1}, X_{t_2}, \dots, X_{t_n})$ 与 $(X_{t_1+h}, X_{t_2+h}, \dots, X_{t_n+h})$ 有相同的联合分布,则称该过程为**严平 稳过程**(strictly stationary process). 严平稳过程的一切有限维分布对 时间的推移保持不变. 特别地X(t), X(s) 的二维分布只依赖于 t-s.

尽管从实际应用的角度来看,要求追溯到无穷的过去似乎有点不现实,但为数学讨论方便,平稳过程(包括宽、严两种情况)的指标集应取为 $(-\infty, +\infty)$ 或全体整数(离散时间情形).

4. 鞅

若对
$$\forall t \in T, E|X(t)| < \infty$$
, 且对 $\forall t_1 < t_2 < \dots < t_n < t_{n+1}$, 有 $E(X(t_{n+1})|X(t_1), X(t_2), \dots, X(t_n)) = X(t_n)$ a.s.,

则称 $\{X(t), t \in T\}$ 为鞅(martingales).

近十多年, 鞅在现代科技中有越来越广泛的应用.

5. 更新过程

设 $(X_k, k \ge 1)$ 为独立同分布的正的随机变量序列, 对 $\forall t > 0$, 令 $S_0 = 0, S_n = \sum_{k=1}^n X_k$, 并定义

$$N(t) = \max\{n \colon n \geqslant 0, S_n \leqslant t\},\$$

称 $\{N(t), t \ge 0\}$ 为**更新过程**(renewal process).

N(t) 可以解释为 [0,t] 内更换零件的个数或系统来的信号 (粒子)数,或"服务站"来的"顾客数"等.

6. 点过程 (或称计数过程)

- 一个随机过程 $\{N(A), A \subset T\}$ 是一点过程(point process), 若 N(A) 表示在集合 A 中 "事件" 发生的总数, 即它满足:
 - (1) 对 $\forall A \subset T, N(A)$ 是一取值非负整数的随机变量 $(N(\emptyset) = 0)$;
- (2) 对 \forall $A_1,A_2\subset T$,若 $A_1A_2=\varnothing$,则对每一个样本有 $N(A_1\bigcup A_2)=N(A_1)+N(A_2)$.

 \mathbf{z} 参数集 T 可以是 \mathbb{R}^n , 也可以是任意一抽象非空集. 泊松过程是简单的点过程.