Redwood Center for Theoretical Neuroscience University of California, Berkeley louis.kang@berkeley.edu https://louiska.ng

Updated 27 November 2019

Position —	
Miller Postdoctoral Fellow University of California, Berkeley, USA Host departments: Physics and Helen Wills Neuroscience Institute Host faculty: Mike DeWeese	2017–2020
Research Statement —	
Human cognition ultimately emerges from sophisticated computations performed neurons. I use and develop theoretical tools to investigate how our brains make sens to our dynamic environments. In particular, I am pursuing a unified understand hippocampus and entorhinal cortex allow us to form memories and navigate through	e of and respond ling for how the
Education —	
MD, Perelman School of Medicine University of Pennsylvania, Philadelphia, USA Research elective with Vijay Balasubramanian in theoretical neuroscience	2017
PhD, Department of Physics & Astronomy University of Pennsylvania, Philadelphia, USA Thesis advisor: Tom Lubensky Thesis title: Chirality and its spontaneous symmetry breaking in two liquid cryste	2015 al systems
AB in Chemistry and Physics and Mathematics <i>summa cum laude</i> Harvard University, Cambridge, USA	2009
Visiting Position —	
Visiting Scientist RIKEN Center for Brain Science, Wako, Japan Host faculty: Taro Toyoizumi	Summer 2019
PUBLICATIONS *equal contribution †corresponding author —	

- 8. Kang L^{\dagger} , DeWeese MR. Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network. *eLife* 8, e46351 (2019). doi:10.7554/eLife.46351.
- 7. **Kang** L^{\dagger} , Balasubramanian V. A geometric attractor mechanism for self-organization of entorhinal grid modules. *eLife* 8, e46687 (2019). doi:10.7554/eLife.46687.

 Kang L[†], Lubensky TC. Chiral twist drives raft formation and organization in membranes composed of rod-like particles. *Proc Natl Acad Sci USA* 114, E19 (2017). doi:10.1073/pnas.1613732114.

- 5. **Kang L**[†], Gibaud T, Dogic Z, Lubensky TC. Entropic forces stabilize diverse emergent structures in colloidal membranes. *Soft Matter* 12, 386 (2016). doi:10.1039/C5SM02038G.
- 4. Davidson ZS*, **Kang L***, Jeong J*,†, Still T, Collings PJ, Lubensky TC, Yodh AG. Chiral structures and defects of lyotropic chromonic liquid crystals induced by saddle-splay elasticity. *Phys Rev E* 91, 050501 (2015). doi:10.1103/PhysRevE.91.050501.
- 3. Jeong J^{*,†}, **Kang L***, Davidson ZS, Collings PJ, Lubensky TC, Yodh AG. Chiral structures from achiral liquid crystals in cylindrical capillaries. *Proc Natl Acad Sci USA* 112, E1837 (2015). doi:10.1073/pnas.1423220112.
- 2. Idema T, Dubuis JO, **Kang L**, Manning ML, Nelson PC, Lubensky TC, Liu AJ[†]. The syncytial *Drosophila* embryo as a mechanically excitable medium. *PLOS ONE* 8, e77216 (2013). doi:10.1371/journal.pone.0077216.
- Heo M, Kang L, Shakhnovich EI[†]. Emergence of species in evolutionary "simulated annealing". Proc Natl Acad Sci USA 106, 1869 (2009). doi:10.1073/pnas.0809852106.

Grants, Awards, and Honors————

Collaborative Research Travel Grant

2019 - 2020

Burroughs Wellcome Fund

Project role: PI

Project title: Complementary input pathways enhance associative memory in a model of CA3

Travel Award 2018

Computational Neuroscience Meeting (CNS*2018)

Miller Research Fellowship

2017-2020

University of California, Berkeley

Mary Ellis Bell Prize

2016

University of Pennsylvania, Perelman School of Medicine

"This prize is given to a student in the School of Medicine who is engaged in noteworthy research in any field related to medicine."

Werner Teutsch Memorial Prize

2012

University of Pennsylvania, Department of Physics & Astronomy

"Awarded annually to the graduate student who, by his or her performance in the first year courses, shows the most promise for outstanding achievement in research."

Medical Scientist Training Program

2009 – 2017

National Institutes of Health (USA), awarded through the University of Pennsylvania

Phi Beta Kappa

2009

Harvard University

Conference Presentations ‡talk -

Society for Neuroscience Meeting, Chicago, USA

2019

Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network.	vork
Bernstein Conference , Berlin, Germany Replay arises naturally as a traveling wavefront in an entorhinal attractor network [‡]	2018
Computational Neuroscience Meeting (CNS*2018), Seattle, USA A geometric attractor mechanism for the self-organization of entorhinal grid modules [‡]	2018
Interdisciplinary Navigation Symposium (iNAV), Mont-Tremblant, Canada A geometric attractor mechanism for the self-organization of entorhinal grid modules [‡]	2018
American Physical Society March Meeting , Los Angeles, USA Self-organization of entorhinal grid modules through commensurate lattice relationships [‡]	2018
Computational and Systems Neuroscience (Cosyne), Denver, USA Self-organization of entorhinal grid modules through commensurate lattices	2018
American Physical Society March Meeting , New Orleans, USA Membrane rafts stabilized by chiral liquid crystal correction to bare interfacial tension [‡]	2017
Computational and Systems Neuroscience (Cosyne), Salt Lake City, USA Coupling between attractor networks naturally generates a discrete grid cell hierarchy	2017
Gordon Research Conference & Seminar on Liquid Crystals, Biddeford, USA Roles of entropy and chirality in depletion-induced colloidal membranes [‡]	2015
American Chemical Society Colloid & Surface Science Symposium, Philadelphia, USA A theory for depletion-induced colloidal membranes [‡]	2014
American Physical Society March Meeting, Denver, USA A theory for depletion-induced colloidal membranes [‡]	2014
IAS Program on Frontiers of Soft Matter Physics, Hong Kong A theory for depletion-induced colloidal membranes	2014
American Physical Society March Meeting , Baltimore, USA <i>Mitotic wavefronts mediated by mechanical signaling in early</i> Drosophila <i>embryos</i> [‡]	2013
External Seminars —	
University of Tokyo, Japan Yuji Ikegaya Group Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor netw	2019 $work$
Ludwig-Maximilians-Universität München, Germany Bernstein Center for Computational Neuroscience Munich Modules (and phase precession and replay) in continuous attractor models of grid cells	2018
University College London, UK Institute for Behavioural Neuroscience Replay arises naturally as a traveling wavefront in an entorhinal attractor network	2018
École Normale Supérieure, Paris, France Group for Neural Theory Self-organization of entorhinal grid modules through commensurate lattice relationships	2017

Institut Curie, Paris, France

2017

Pierre Sens Group

Chiral twist drives raft formation and organization in membranes composed of rod-like particles

University College London, UK

2016

Gatsby Computational Neuroscience Unit

Coupling between attractor networks naturally generates a discrete grid cell hierarchy

University of California, Los Angeles, USA

2016

2011 - 2015

Center for Biological Physics

Chiral twist drives raft formation and organization in membranes composed of rod-like particles

Teaching ——

Teaching Assistant

University of Pennsylvania

Modern physics, wave phenomena, electromagentism, physics laboratory

Teaching Fellow 2006–2007

Harvard University

Organic chemistry, linear algebra

CLINICAL SERVICE —

2018-present

Medical Volunteer
Project Homeless Connect

Providing medical care at homeless services events in San Francisco

Medical Student Volunteer

2010 - 2013

United Community Clinics

Provided medical care at a free health clinic in Phladelphia

References -

Mike DeWeese

 $Postdoctoral\ advisor$

University of California, Berkeley

Redwood Center for Theoretical Neuroscience

deweese@berkelev.edu

Vijay Balasubramanian

Research mentor

University of Pennsylvania

Department of Physics & Astronomy

vijay@physics.upenn.edu

Tom Lubensky

PhD advisor

University of Pennsylvania

Department of Physics & Astronomy

tom@physics.upenn.edu

Taro Toyoizumi

Research mentor

RIKEN Center for Brain Science

Neural Adaptation and Computation Group

taro.toyoizumi@riken.jp