Powers of Two with Digits from $\{1, 2, 8\}$: A Combinatorial Proof of Finiteness

S. V. Goryushkin

October 25, 2025

Abstract

We present a completely elementary proof that the only powers of two whose decimal representation uses only the digits $\{1,2,8\}$ are 2,8,128. The key ideas are: (i) the phase condition $2^n \equiv 2 \pmod 6$ for odd n; (ii) the digit composition invariant $a \equiv b \pmod 3$ (the numbers of 1's and of $\{2,8\}$ digits in higher positions are congruent mod 3); (iii) explicit enumeration of admissible two- and three-digit tails; (iv) exclusion of four-digit cases by digit-sum mod 3 and divisibility by 16; and (v) exclusion of lengths ≥ 5 by the invariant.

1 Statement of the problem

We call a number *valid* if all its decimal digits belong to the set $\{1, 2, 8\}$. We seek valid powers of two $N = 2^n$. Clearly, 2 and 8 are valid, and $128 = 2^7$ is also valid. We shall show that there are no others.

2 Phase mod 6 and the structure of digits

Two elementary observations:

- For odd n, we have $2^n \equiv 2 \pmod{6}$ (phase 2); for even n, the remainder is 4, and the last digit is 4 or 6, which are invalid. Hence all valid cases have odd n and $N \equiv 2 \pmod{6}$.
- In $\mathbb{Z}/6\mathbb{Z}$ one has $10 \equiv 4$, and therefore $10^j \equiv 4$ for all $j \geq 1$.

Lemma 1 (Digit composition invariant mod 6). Let a valid N have last digit $u \in \{2, 8\}$, and above the units place let there be a digits equal to 1 and b digits equal to either 2 or 8. Then

$$2a + b \equiv 0 \pmod{3}$$
, $a + 2b \equiv 0 \pmod{3}$, in particular $a \equiv b \pmod{3}$. (1)

Proof. Work in $\mathbb{Z}/6\mathbb{Z}$. The unit digit contributes $u \equiv 2$. Each higher digit 1 contributes $4 \cdot 1 \equiv 4$, and each higher digit 2 or 8 contributes $4 \cdot 2 \equiv 8 \equiv 2$. Thus

$$N \equiv 2 + 4a + 2b \pmod{6}.$$

Since $N \equiv 2 \pmod{6}$, we get $4a + 2b \equiv 0 \pmod{6}$, i.e. $2a + b \equiv 0 \pmod{3}$.

On the other hand, modulo 3, the sum of digits equals $N \pmod{3}$. For odd n, we have $2^n \equiv 2 \pmod{3}$. The digit residues are $1 \equiv 1, 2 \equiv 2, 8 \equiv 2$. Hence

$$(2) + a \cdot 1 + b \cdot 2 \equiv 2 \pmod{3} \implies a + 2b \equiv 0 \pmod{3}.$$

Subtracting the two congruences gives $a \equiv b \pmod{3}$.

Corollary 1. If N is valid, then adding a single digit on the left from $\{1, 2, 8\}$ breaks $a \equiv b \pmod{3}$. Therefore, any possible extension of a valid number to the left must occur in blocks of three digits.

Example. For N = 128 we have a = 1, b = 1 and $a \equiv b \pmod{3}$. Adding any single digit to the left (1128, 2128, 8128) violates the invariant or fails other properties of a power of two.

3 Admissible tails mod 10, mod 100, mod 1000

We now *explicitly* derive the possible tails.

One digit

The last digit of powers of two cycles as $2, 4, 8, 6, \ldots$ For odd n, only 2 and 8 remain — both valid.

Two digits

Work mod 100. The order of 2 mod 25 is 20, and mod 4 it is 2, so the period mod 100 is lcm(20, 2) = 20. List $\{2^n \mod 100 : n \equiv 1, 3, ..., 19\}$ and keep those whose both digits lie in $\{1, 2, 8\}$. Exactly three appear:

$$[12, 28, 88.]$$
 (2)

Example. For instance, $2^7 = 128 \equiv 28 \pmod{100}$, $2^{19} = 524288 \equiv 88$, and $2^9 = 512 \equiv 12$.

Three digits

For $n \ge 3$ we have $2^n \equiv 0 \pmod{8}$, so the last three digits are multiples of 8. Among all three-digit numbers over $\{1, 2, 8\}$ ending in 2 or 8, divisibility by 8 leaves

(the others, e.g. 212, 812, 228, 828, 188, etc., are not divisible by 8).

Next, since the order of 2 mod 125 is 100, the full period mod 1000 is 100. Checking the 100-term cycle (or equivalently using the CRT for mod 8 and mod 125) shows that among the four candidates, exactly three actually occur:

$$[112, 128, 288.]$$
 (3)

The tail 888 never appears in $2^n \mod 1000$.

Example. • $2^7 = 128$ ends with 128;

- $2^{19} = 524288$ ends with 288;
- 2^{89} ends with 112 (obtained by squaring and checking mod 1000).

Remark (Manual check of (2)–(3)). For two digits: compute $2^n \mod 25$ for $n = 1, 3, \ldots, 19$ and match with the correct last digit mod 4. For three digits: require divisibility by 8, then solve the CRT system mod 125 (period 100). Both are small finite tables (20 and 100 entries respectively).

4 Exclusion of 4-digit numbers

Lemma 2. No four-digit valid number is a power of two.

Proof. From (3), possible three-digit tails are 112, 128, 288. Consider dXYZ with $XYZ \in \{112, 128, 288\}$ and $d \in \{1, 2, 8\}$.

(i) Digit sum mod 3. For odd n, $2^n \equiv 2 \pmod{3}$, so the digit sum must be $\equiv 2 \pmod{3}$. Compute:

$$\operatorname{sum}(d112) = d + 1 + 1 + 2 \equiv d + 1 \pmod{3},$$

 $\operatorname{sum}(d128) = d + 1 + 2 + 8 \equiv d + 1 \pmod{3},$
 $\operatorname{sum}(d288) = d + 2 + 8 + 8 \equiv d + 2 \pmod{3}.$

Hence: $d \in \{2, 8\}$ for d112 and d128 give 0 mod 3 instead of 2, and all d288 are impossible (since $d \equiv 1, 2, 2 \pmod{3}$ never yield 2). Only d = 1 survives for 1112 and 1128.

(ii) Divisibility by 16. For $n \ge 4$, 2^n is divisible by 16. Check:

$$1112 \equiv 8 \pmod{16},$$

 $1128 \equiv 8 \pmod{16}.$

Neither divisible by 16. Thus no four-digit valid powers of two exist.

Example. 1128 looks plausible (all digits allowed) but is not divisible by 16; 2128, 8128 violate the digit-sum mod 3 condition.

5 Exclusion of all lengths ≥ 5

Lemma 3. There exist no valid powers of two with length ≥ 5 .

Proof. Assume N valid. By Lemma 1, the invariant $a \equiv b \pmod{3}$ must hold. By Corollary 1, any valid extension/reduction happens in blocks of three digits. Removing three digits at a time from the left, one reaches length 1, 2, 3, or 4. Lengths 1, 2, 3 give exactly 2, 8, 128; length 4 is impossible by Lemma 2. Contradiction.

6 Main theorem and examples

Theorem 1. The only valid powers of two are

$$2^1 = 2,$$
 $2^3 = 8,$ $2^7 = 128.$

Proof. Oddness of the exponent is necessary (phase mod 6). From the tail analysis, the only realizable valid three-digit tail is 128 (for n = 7). By Lemmas 2 and 3, no longer valid numbers exist. Lengths 1, 2, 3 give 2, 8, 128 directly.

Example. Verification:

- $2^1 = 2$ valid.
- $2^3 = 8$ valid.
- $2^5 = 32$ invalid (digit 3).
- $2^7 = 128$ valid.
- $2^{19} = 524288$ invalid (tail 288 valid but digit 5 appears).
- Any d128 with $d \in \{1, 2, 8\}$ is not a power of two (Lemma 2).

Appendix A: Computing tails explicitly

Two digits. For odd n, the values $2^n \mod 100$ (period 20) yield residues whose last digits are 2 or 8 and tens digit in $\{1, 2, 8\}$ — precisely 12, 28, 88.

Three digits. Requiring divisibility by 8 (for $n \ge 3$) and digit restriction narrows the list to 112, 128, 288, 888. Mod 125 (cycle length 100), 888 never appears, while 112, 128, 288 do (at $n \equiv 89, 7, 19 \pmod{100}$ respectively).

Appendix B: Mini-table of carry transitions

When moving from 2^n to 2^{n+1} , for each digit d and carry $c \in \{0,1\}$, the next digit is $e = (2d+c) \mod 10$, and the new carry $c' = \lfloor (2d+c)/10 \rfloor$. Requiring $e \in \{1,2,8\}$ severely restricts possibilities. The only stable right-hand pattern is $11 \mapsto 22$ with no carry, consistent with the tail $112 \to 128$; the next step introduces a non-admissible digit to the left, matching the exclusion of longer lengths.