Input-output modelling

Creating a physical mirror of economy: physical supply use tables

Agenda

- Creating a physical mirror of economy: physical supply use tables (PSUTs)
- Creation of hybrid IO model

Physical supply-use tables

- Mirror of economy

Examples of physical SUTs

Mass balance and waste calculation

How to calculate waste generation

Organization of mass balance

Tracability of each element; origin of waste

Agenda

- Creating a physical mirror of economy: physical supply use tables (PSUTs)
- Creation of hybrid IO model

What does physical data bring in?

- Why are HIOTs superior to traditional monetary IO

Theoretical

- Prices: Differences in prices over activities
- Balances: Mass, energy and monetary
- Integration of accounts: Economic, environmental, agricultural, energy, MFA, water, land, forest

Application

- Policies are formulated in physical units
- Explicit modelling of waste generation and treatment (virgin/recycled materials)
- Modelling easier to relate to reality when in natural units

... if you want to know more

- The International Life Cycle Academy (https://ilca.es/)
- Consequential LCA (https://consequential-lca.org/)

