Al Assignment 2

You are given an $n \times n$ binary matrix grid. Your task is to implement and compare two search algorithms to find a path from the top-left cell (0, 0) to the bottom-right cell (n - 1, n - 1).

A clear path is defined as:

- 1. All visited cells along the path must have a value of θ .
- 2. Moves can be made 8-directionally i.e., from a cell, you may move to another cell that is horizontally, vertically, or diagonally adjacent.
- 3. The length of the path is the total number of visited cells.

Part A — Best First Search (Greedy Search)

- Implement Best First Search using an admissible heuristic (e.g., Euclidean or Manhattan distance to the goal).
- Note: This approach may not always return the shortest path.
- Record the path found and its length.

Part B — A* Search

- Implement A* search using the same heuristic.
- This approach should return the shortest path length, or -1 if no path exists.

Input / Output Requirements

- Input: an n × n binary matrix grid.
- Output: For each algorithm, print:
 - 1. The sequence of coordinates visited (path).
 - 2. The length of the path (or -1 if no path exists).

Example 1:

Input:

[1, 0]]

Output (example format):

Best First Search \rightarrow Path length: 2, Path: [(0,0), (1,1)]

A* Search \rightarrow Path length: 2, Path: [(0,0), (1,1)]

Example 2:

Input:

$$grid = [[0, 0, 0],$$

[1, 1, 0],

[1, 1, 0]]

0	0	0	0 -	→ 0	0
1	1	0	1	1	0
1	1	0	1	1	0

Output:

Best First Search \rightarrow Path length: 4, Path: [(0,0), (0,1), (1,2), (2,2)]

A* Search \rightarrow Path length: 4, Path: [(0,0), (0,1), (1,2), (2,2)]

Example 3:

Input:

grid = [[1, 0, 0],

[1, 1, 0],

[1, 1, 0]]

Output:

Best First Search \rightarrow Path length: -1

A* Search \rightarrow Path length: -1

Constraints:

```
• n == grid.length
```

- n == grid[i].length
- $1 \le n \le 100$
- grid[i][j] ∈ {0, 1}

Deliverables:

- 1. Implementation of Best First Search and A* Search.
- 2. Output for given test cases.
- 3. A short comparison (1–2 paragraphs) discussing differences in results and performance.

Optional (Ungraded):

Develop a visualization for the problem similar to:

- A* Visualizer Example 1
 - o https://astar-visualizer.vercel.app/
- Pathfinding Visualizer Example 2
 - https://pathfinding-visualizer.researchdatapod.com/
- Submission Deadline
 - o **22/08/2025**
 - Upload on your Github account