Задача о рюкзаке

Шевкунов К.С. 594

14 ноября 2017 г.

1 Постановка задачи

1.1 Формулировка условия

Имеется набор из n предметов. У каждого предмета есть положительный вес w и стоимость c. Также дано неотрицательное число W — вместимость рюкзака. Требуется найти такое подмножество предметов M, чтобы оно помещалось в рюкзак, и суммарная стоимость предметов была максимальна. То есть:

$$\sum_{x \in M} w(x) \leq W, \sum_{x \in M} c(x) \to \max$$

1.2 Цель

Постройте полиномиальную схему приближения для данной задачи. То есть необходимо придумать и реализовать алгоритм, который получает на вход экземпляр задачи о рюкзаке, а также произвольное (рациональное) $\varepsilon>0$, и находит $(1+\varepsilon)$ - приближенное решение. Алгоритм должен работать за полиномиальное время относительно размера исходной задачи и $\frac{1}{\varepsilon}$.

1.3 Доказательство NP-трудности

Определим задачу:

$$SUBSET - SUM = \{(n_1, ..., n_k, N) | \exists \alpha \in \{0, 1\}^k : \sum_{i=1}^k \alpha_i n_i = N \}$$

В книге (Д.В. Мусатов, "Сложность вычислений. Конспект лекций") дока Конспект лекций) доказано, что задача SUBSET-SUM является NP-полной. Сведём эту задачу полиномиальной к нашей и этим докажем, что она является NP-трудной.

Обозначим предметы натуральными числами 1..N. Определим $\forall i \in \{1..N\}: c(i) := w(i) := n_i, \ W := N$ Тогда исходная задача свелась к поиску M такого, что:

$$\sum_{x \in M} n_i \leq N, \sum_{x \in M} n_i \rightarrow \max$$

Или, иначе говоря к задаче поиска $\alpha \in \{0,1\}^k$, такого, что:

$$\sum_{i=1}^{k} \alpha_{i} n_{i} \leq N, \sum_{i=1}^{k} \alpha_{i} n_{i} \to max \leq N$$

Ясно, что искомый максимум не больше N, и, если равняется N, то $(n_1,...,n_k,N) \in SUBSET - SUM$. Иначе же оптимального подмножества не существует и $(n_1, ..., n_k, N) \notin SUBSET - SUM$.

Таким образом, с помощью полиномиального сведения мы научились решать задачу SUBSET-SUM с помощью нашей задачи, т.е. с некоторым полиномиальным сведением мы можем решать любую задачу из класса NPс помощью нашей.

Таким образом, мы обосновали уместность рассмотрения приближённых решений для данной задачи. Далее рассмотрим так называемое псевдополиномиальное решение.

Псевдополиномиальное решение O(nW) $\mathbf{2}$

Определение 1 Пусть в постановку задачи входит числовой параметр п (не количественный) и алгоритм работает полиномиальное время от самого п. Тогда такой алгоритм называется псевдополиномиальным.

В частности, для текущей задачи не известно полиномиального решения (т.е. такого, которое работает за полиномиальное от размера входа время, в частности, для числового параметра N размером входа будет $\log N$), но известно псевдополиномиальное решение.

2.1Алгоритм

Задача о рюкзаке

Пусть исходные объекты задачи пронумерованы числами 1..n, W - ограничение на размер рюкзака. Применим метод динамического программирова-

knapsack pseudopolynomial

- 1. Инициализируем матрицу А размера (n, W) нулями.
- 2. for i in 1 .. n: for s in 1 ... W: A[i, s] := A[i - 1, s]if $(w(i) \mathrel{<=} s)$ and $(A[i,\,s] > A[i$ - 1, s - w(i)] + c(i)) : A[i, s] := A[i - 1, s - w(i)] + c(i)
- 3. вернуть A[n, W], если нужна стоимость и/или восстановить подмножество за O(nW) по таблице A из ячейки A[n, W] (TODO: написать, как)

2.2 Доказательство

Докажем по индукции, что A[i,s] - максимальная стоимость предметов, которые поместятся в рюкзак размера s, если использовать только предметы с номерами 1..i, назовём это подзадачей [i,s] нашей задачи.

База индукции: $\forall x \in N : A[0,x] = A[x,0] = 0$. Очевидно, она выполнена, в рюкзак нулевого размера ничего нельзя положить (в условии все веса и стоимости строго положительны). С другой стороны, если предметов нет, то положить в рюкзак нечего.

Переход: пусть $\forall 0 < j \leq i : \forall 0 < p \leq s : ((j,p) \neq (i,s)) \to A[j,p]$ вычислено корректно. Докажем, что A[i,s] вычисленное из подсчитанных значений как алгоритме корректно.

Заметим, что оптимальный набор не обязательно единственен, например, для рюкзака размера 2 и предметами с массой и стоимостью 1, 1 и 2 можно положить как два предмета веса 1, так и один веса 2.

Рассмотрим множество оптимальных наборов для подзадачи [i,s]. Выполнен хотя бы один из двух вариантов:

- Существует оптимальный набор, в котором лежит предмет с номером i. Тогда A[i,s] = A[i-1,s-w(i)] + c(i) и $A[i,s] \ge A[i-1,s]$. Первое утверждение прямо следует из того, что оптимальность набора гарантирует оптимальность поднабора. Иначе поднабор можно улучшить и получить противоречие с оптимальностью набора. Отрицание второго условия означает, что существует набор без предмета с номером i лучше нашего и приводит к противоречию.
- Существует оптимальный набор, в котором не лежит предмет с номером i. Аналогично получаем, что $A[i,s] \geq A[i-1,s-w(i)]+c(i)$ (если $s \geq w(i)$) и A[i,s] = A[i-1,s].

Таким образом, наш алгоритм, который по-сути выбирает максимум из двух величин $A[i,s] = \max(A[i-1,s],A[i-1,s-w(i)]+c(i))$ (если обе существуют - иначе возможен только один вариант A[i,s] = A[i-1,s]), вычисляет оптимальное значение в обоих случаях.

Итого, корректность A[i,s] доказана по индукции для всех $0 \le i \le n$, $0 \le s \le W$, в том числе и для A[n,W]. Решение, очевидно, работает за O(nW).

3 Псевдополиномиальное решение O(nC)

3.1 Алгоритм

knapsack pseudopolynomial two

1.
$$C = \sum_{i=1}^{n} c(i)$$

- 2. Инициализируем матрицу A размера (n, C) символом $+\infty$, который будем считать большим любого числа.
- 3. A[0,0] := 0

Задача о рюкзаке

- 4. for i in 1..n: for s in 1..n: A[i, s] = A[i-1, s] if $(s \ge c(i))$ and $(A[i-1, s-c(i)] + w(i) \le min(W, A[i, s]))$: A[i, s] := A[i-1, s-c(i)] + w(i)
- 5. $k := argmax_k(A[n,k] < +\infty)$
- 6. вернуть k, если нужна стоимость и/или восстановить подмножество за O(nW) по таблице A из ячейки A[n, k] (TODO: написать, как)

3.2 Доказательство

Докажем по индукции, что A[i,s] - минимальный вес подмножества предметов, которые можно помесить в рюкзак или $+\infty$, если такого нет, что использованы только предметы с номерами 1..i и их суммарная стоимость равна s.

База индукции: A[0,0]=0 - пустое множество предметов оптимально. $\forall x>0: A[0,x]=+\infty$ - из пустого множества предметов нельзя выбрать подмножество с положительной стоимостью.

Переход: пусть $\forall 0 < j \leq i: \forall 0 < p \leq s: ((j,p) \neq (i,s)) \to A[j,p]$ вычислено корректно. Докажем, что A[i,s] вычисленное из подсчитанных значений как алгоритме корректно.

Возможны два случая (хотя бы один из них выполнен, возможно, оба):

- Пусть существует оптимальный (в смысле A[i,s] как минимума) набор предметов, содержащий предмет с номером i. Тогда A[i,s] = A[i,s-c(i)] + w(i), т.к. из оптимальности набора следует оптимальность поднабора и $A[i,s] \leq A[i-1,s]$, иначе получим противоречие с оптимальностью.
- Пусть существует оптимальный набор предметов, не содержащий предмет с номером i. Тогда аналогично: A[i,s] = A[i-1,s] и $A[i,s] \le A[i-1,s-c(i)] + w(i)$.

Таким образом, наш алгоритм, который по-сути выбирает минимум из двух величин A[i,s]=min(A[i-1,s],A[i-1,s-c(i)]+w(i)) (если обе допустимы, т.е. $A[i-1,s-c(i)]+w(i)\leq C$, иначе A[i,s]=A[i-1,s]), вычисляет оптимальное значение в обоих случаях.

Итого, корректность A[i,s] доказана по индукции для всех $0 \le i \le n$, $0 \le s \le W$. По значениям A[i,s], перебирая оптимальную суммарную стоимость $s \in 0..C$ можно восстановить ответ в задаче, достаточно просто найти

 $A[n,s] \neq +\infty$ с наибольшим значением s. Значения в таблице A вычисляются за O(nC), поиск наибольшего значения работает за O(C), восстановление оптимального набора за O(nC). Итого, решение работает за O(nC).

4 Полиномиальное приближение

4.1 Алгоритм

knapsack polynomial estimation:

- 1. $P := max(c(x)|w(x) \le W)$ (вообще говоря, предметы, которые не помещаются в пустой рюкзак можно выкинуть на этапе формулировки задачи)
- 2. $K := \frac{\varepsilon P}{k}$
- 3. $c_{zipped}(x) := \lfloor \frac{c(x)}{K} \rfloor$
- 4. Найти оптимальное подмножество M^{*} для задачи со стоимостями $c_{zipped}(x)$ псевдополиномиальным алгоритмом за O(nC) и вернуть его.

4.2 Доказательство

Пусть
$$M$$
 - произвольное множество предметов. Обозначим $cost(M):=\sum\limits_{x\in M}c(x),\, cost_{zipped}(M):=\sum\limits_{x\in M}c_{zipped}(x)$

Пусть M^* - множество, которое было найдено псевдополиномиальным алгоритмом, а оптимальное множество предметов в задаче O.

Тогда $Kcost_{zipped}(M^*) \geq cost(O) - nK$. Действительно, если бы мы не округляли веса до целых и нашли оптимальное решение, ты получили бы $cost_{zipped} \equiv \frac{cost}{K}$. Однако, из-за округления вниз имеем $\forall i: c_{zipped}(i) \leq$ $\frac{c(i)}{K}-1$, в частности $cost_{zipped}(M^*) \geq cost_{zipped}(O) \geq \frac{cost(O)}{K}-n$ (второе неравенство получается суммированием неравенств для каждого предмета набора O, а первое следует из оптимальности M^*). Умножая неравенство на K, получим требуемое неравенство.

Заметим, что, если в оптимальном наборе О есть хотя бы один предмет, то $cost(O) \ge P = max(c(x)|w(x) \le W)$. Заметим, что это верно и если оптимальный набор пустой.

Тогда
$$cost(M^*) \ge Kcost_{zipped}(M^*) \ge cost(O) - nK = cost(O) - \varepsilon P \ge cost(O) - \varepsilon cost(O) = (1 - \varepsilon)cost(O)$$

Полученное утверждение в точности есть доказываемое.

4.3 Работа на реальных данных