Dynamic Programming and Memoization

Workshop in Competitive Programming – 234901

When using recursion and subproblems overlap, avoid recomputation by using DP or memoization.

Bottom-up recursion

Storing and reusing subproblem solutions

Be organized

- DP can get confusing.
 - It is easy to forget the big picture when working on the details.
 - Sometimes there is more than one way of defining the recursion. It is easy to mix them up.

Using a pen and paper to define everything clearly before writing the

code makes a huge difference!

Steps for DP

- Define the subproblem
 (the function meaning and parameters)
- 2. Find the recursive rule
- 3. Solve base cases
- 4. Define the target value (which value do you need to solve the problem)
- 5. Define the computation order (e.g. ascending order of n)
- 6. Start coding

definition recursion base target order code

Let's solve problems!

Problem: LIS

Given an array, find a longest increasing subsequence.

Example: -7, 10, 9, 2, 3, 8, 8, 1.

ans = 4

Problem: LIS

Given an array, find a longest increasing subsequence.

```
s[i] = the length of the longest increasing subsequence ending in i -----
s[i] = \max(1, \max_{0 \le j \le i-1, a[j] < a[i]} (s[j] + 1))
ans = \max_{0 \le i < n} s[i], 0
s[0] = 1
Time O(n^2)
```

Problem: LIS

```
s[i] = \max(1, \max_{0 \le j < i, a[j] < a[i]} (s[j] + 1))
ans = \max_{0 \le i < n} s[i], 0
s[0] = 1
```

```
vector<int> LIS(n,1);
for (int i=1; i<n; i++)
  for (int j=0; j<i; j++)
   if (a[i]>a[j])
    LIS[i] = max(LIS[i], LIS[j]+1);
```

Problem: 0-1 Knapsack

Given a capacity C and n items with weights and values, find the max value that fits.

Example:

Problem: 0-1 Knapsack

Given a capacity C and n items with weights and values, find the max value that fits.

f(i, c) = max possible value within capacity c when only considering the first i items.

$$ans = f(n,C)$$

$$f(i,c) = \begin{cases} f(i-1,c), & w[i] > c \\ \max \left\{ \begin{cases} f(i-1,c) \\ v[i] + f(i-1,c-w[i]) \end{cases} \right\}, & w[i] \le c \end{cases}$$

$$f(i,0) = f(0,c) = 0$$

Time O(nC)

Problem: 0-1 Knapsack

```
ans = f(n,C)
f(i,c) = \begin{cases} f(i-1,c), & w[i] > c \\ \max \left\{ v[i] + f(i-1,c-w[i]) \right\}, & w[i] \le c \end{cases}
f(i,0) = f(0,c) = 0
```

```
vvi f(n+1, vi(C+1,0));
for (int i=1; i<=n; i++){
   for (int c=1; c<=C; c++){
      if (w[i]<=c)
        f[i][c] = max(f[i-1][c],v[i]+f[i-1][c-w[i]]);
      else
      f[i][c] = f[i-1][c];
   }
}
int ans = f[n][C];</pre>
```

Improvements

```
vvi f(n+1, vi(C+1,0));
for (int i=1; i<=n; i++){
  for (int c=1; c<=C; c++){
    if (w[i]<=c)
      f[i][c] = max(f[i-1][c],v[i]+f[i-1][c-w[i]]);
    else
    f[i][c] = f[i-1][c];
}
int ans = f[n][C];</pre>
```

Accepted? Good!
TLE? Try to save time.
MLE? Try to save space.

Improvements: Space

```
vvi f(n+1, vi(C+1,0));
for (int i=1; i<=n; i++) {
   for (int c=1; c<=C; c++) {
      if (w[i]<=c)
      f[i][c] = max(f[i-1][c],v[i]+f[i-1][c-w[i]]);
      else
      f[i][c] = f[i-1][c]; }}</pre>
```

Observation: f(i,?) depends only on f(i-1,?)Don't store all of the previous i values!

```
vi f_cur(C+1,0); vi f_prev(C+1,0);
for (int i=1; i<=n; i++) {
   for (int c=1; c<=C; c++) {
      if (w[i]<=c)
        f_cur[c] = max(f_prev[c],v[i]+f_prev[c-w[i]]);
      else
      f_cur[i][c] = f_prev[i-1][c]; }
f_prev = f_cur; f_cur.assign(C+1,0); }</pre>
```

Improvements: Time

```
vvi f(n+1, vi(C+1,0));
for (int i=1; i<=n; i++) {
   for (int c=1; c<=C; c++) {
     if (w[i]<=c)
        f[i][c] = max(f[i-1][c],v[i]+f[i-1][c-w[i]]);
     else
     f[i][c] = f[i-1][c]; }}</pre>
```


Observation: many states are not useful Don't compute all of them!

```
vvi memo(n+1, vi(C+1,-1));
int f(int i, int c) {
   if (memo[i][c] != -1) return memo[i][c];
   if (i == 0 || c == 0) return 0;
   if (w[i]<=c)
     return memo[i][c] = max(f(i-1,c), v[i]+f(i-1,c-w[i]));
   return memo[i][c] = f(i-1,c);
}</pre>
```

DP vs. memoization

```
int C = 15;
int n = 3;
vi v = {0,4,2,10};
vi w = {0,12,1,4};
```

<u>DP</u>

 $\boldsymbol{\mathcal{C}}$

i

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
0	2	2	2	2	2	2	2	2	2	2	2	4	6	6	6
0	2	2	2	10	12	12	12	12	12	12	12	12	12	12	12

Memoization

 $\boldsymbol{\mathcal{C}}$

i

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
0	2	2	2	2	2	2	2	2	2	2	2	2	4	6	6
0	2	2	2	10	12	12	12	12	12	12	12	12	12	12	12

DP vs. memoization

- Many times both work
- Sometimes one is more intuitive
- Sometimes one is better

	DP	memoization
direction	Bottom-up	Top-down
computation	Comprehensive (every subproblem is computed exactly once)	On-demand (subproblems are computed when required)
Pros	 Faster if many sub-problems are revisited (no overhead from recursive calls to calculate the same value) Can save memory if each column only depends on the previous one (only save the last column, not the entire table) 	 Faster if many sub-problems are not required (no need to fill in the entire table) Easier to program when a good order is not obvious

Problem: Subset Sum

Given a number v and a set of numbers S, is there a subset of S with sum equal to v?

Example:
$$v = 11$$
, $S = \{2, 4, 7, 8, 9\}$

This is considered a variation on 0-1 Knapsack.

Problem: Traveling Salesman

Given a full weighted graph, find the min weight of a Hamiltonian cycle.

Given the distances between cities, find the min time for going to each city once and back.

Problem: Traveling Salesman

Given a full weighted graph, find the min weight of a Hamiltonian cycle.

```
f(v, visited) = the cost of going from v to 0 through all nodes that are not in visited
```

```
ans = f(0,\{0\}) f(v,visited) = \min_{u \notin visited} (g[v][u] + f(u,visited \cup \{u\}) f(v,\{1,...,n\}) = g[v][0] Time O(2^n n^2)
```

Reminder: Bitmasks

• Use an int to represent subsets:

$$i \text{th digit} = \begin{cases} 1, i \notin S \\ 0, i \in S \end{cases}$$

- Example: the set $\{0,1,4\}$ is represented by $19 = 010011_{(2)}$ Operations:
- $1 \ll i$ is the set $\{i\}$
- $(1 \ll i) 1$ is the set $\{0,1,...,i-1\}$
- $x \mid y$ is the union $x \cup y$
- $x \mid (1 \ll i)$ is the set $x \cup \{i\}$
- x & y is the intersection $x \cap y$
- $x \& (1 \ll i)$) tests membership of i in x

Problem: Traveling Salesman

```
ans = f(0, \{0\})
f(v, visited) = \min_{\substack{u \notin visited \\ v \notin \{1, \dots, n\}}} (g[v][u] + f(u, visited \cup \{u\}))
```

```
vvi memo(n, vi(C+1,-1));
int f(int v, int visited) {
   if (memo[v][visited] != -1) return memo[v][visited];
   if (visited == (1<<n)-1) return g[v][0];
   int ans = INF;
   for (int u = 0; u < n; u++)
      if (!(visited & (1<<u)))
        ans = min(ans, g[v][u] + f(u,visited|(1<<u)));
   return memo[v][visited] = ans;
}
int ans = f(0,1);</pre>
```

Extra Slides

Problem: max range sum

Given an array, find the max range sum.

Example: 4, -5, 4, -3, 4, 4, -4, -5.

ans = 9

Problem: max range sum

Given an array, find the max range sum.

```
s[i] = the max range sum ending in (and including) index i
```

$$s[i] = \max(a[i], s[i-1] + a[i])$$

$$ans = \max\left(\max_{i} s[i], 0\right)$$

$$s[0] = a[0]$$

Time O(n)

Problem: max range sum

```
s[i] = \max(a[i], s[i-1] + a[i])
ans = \max\left(\max_{i} s[i], 0\right)
s[0] = a[0]
```

```
vector<int> s(N, 0);
s[0]=a[0];
for (int i=1; i<N; i++)
    s[i] = max(a[i], s[i-1]+a[i]);
int ans = 0;
for (int i=0; i<N; i++)
    ans = max(ans, s[i]);</pre>
```

Problem: Coin Change

Given a target V and coin values c_1, \ldots, c_n , find the min number of coins to form V.

Example: V = 6, $coins = \{4,3,1\}$

3+3=6 ans = 2

Problem: Coin Change

Given a target V and coin values c_1, \ldots, c_n , find the min number of coins to form V.

s[i]= the number of coins needed for target i

$$ans = s[V]$$

$$s(i) = 1 + \min_{c \in coins} s(i - c)$$

$$s(0) = 0, \ s(< 0) = \infty$$

Time O(Vn)

Problem: Coin Change

```
ans = s[V]
s(i) = 1 + \min_{c \in coins} s(i - c)
s(0) = 0, \ s(< 0) = \infty
```

```
vector<int> s(V+1, INF);
s[0]=0;
for (int i=1; i<=V; i++)
    for (int c : coins)
        if (i-c>=0)
        s[i] = min(s[i],s[i-c]);
int ans = s[V];
```