Example for Transistor's Parameters

Problem 1: Determine $I_{B^{\prime}}$ $I_{C^{\prime}}$ $I_{E^{\prime}}$ $V_{BE^{\prime}}$ $V_{CE^{\prime}}$ and V_{CB} in the circuit given below. The transistor has a β_{DC} = 150.

Problem 1: Determine whether or not the following BJT transistor is in saturation. Assume $V_{\text{CE[sat]}}$ =0.2 V.

Example for Current Gain

Problem 2: Sketch an ideal family of collector curves for the shown transistor with β_{DC} = 100 for $\it I_B$ varying from 5 μA to 25 μA .

Problem 2: (a) For the transistor circuit given below, what is V_{CE} when V_{IN} =0 V?

when $V_{IN} = 0.0 \text{ V}$? (b) What minimum value of I_B is required to saturate this transistor

if $\beta_{\rm DC}$ is 200? Neglect $V_{\rm CE(sat)}$. (c) Calculate the maximum value of $R_{\rm B}$ that will put the transistor in saturation assuming $\beta_{\rm DC}$ =200 when $V_{\rm IN}$ = 5 V. $V_{\rm CC}$

10

Problem 1: Determine $V_{\rm CE}$ and $I_{\rm C}$ in the shown voltage-divider biased transistor circuit if $\beta_{\rm DC}=100$, and $V_{\rm CE(sat)}=0.2$ V. Is this transistor in saturation?

Problem 3: Find the Q-point values (I_C and V_{CE}) for the given circuit if $\beta_{\rm DC}$ =100 and $V_{\rm CE(sat)}$ =0.2 V.

Problem 2: Determine the Q-point (I_C , V_{CE}) for the shown circuit if $\beta_{\rm DC}$ =200 and $V_{CE[sat)}$ =0.2 V.

Problem 1: Determine the Q-point for the circuit given below and draw the dc load line. Find the maximum peak value of base current and collector current to avoid distortion. Assume $V_{CE(sat)}$ =0, and β_{DC} = 200

Problem 2: Determine the $r_{\rm e}^{\prime}$ of a transistor that is operating with a dc emitter current of 1.62 mA.