Métodos Numéricos Aplicados a la Ingeniería Civil

O-Programa calendario

Juan Nicolas Ramírez Giraldo

jnramirezg@unal.edu.co

Docente ocasional Departamento de Ingeniería Civil Facultad de Ingeniería y Arquitectura Universidad Nacional de Colombia Sede Manizales

Nombre:	Métodos Numéricos Aplicados a la Ingeniería Civil
Código:	4101553
Créditos:	3

^{*} Según art. 23 Acuerdo 008 de 2008 del CSU

Ver <u>malla curricular</u> Ver <u>plan de estudios</u>

Prerrequisitos

4100611 - Mecánica de Sólidos

4200686 - Programación Computadores

Cálculo Diferencial	Física Mecánica
Cálculo Integral	Estática
Cálculo Vectorial	Ecuaciones Diferenciales
Álgebra Lineal	Mecánica Tensorial (*)

(*) O su equivalente: Resistencia de Materiales

Comunicación con el docente

Correo institucional:

jnramirezg@unal.edu.co

Asunto:

MÉTODOS_NUMÉRICOS-(escribir_asunto)

- No se atenderán dudas a través de otros medios como WhatsApp.
- Solo serán tenidos en cuenta los correos recibidos a través de cuentas institucionales unal.edu.co
- Todo el material de clase estará disponible en el repositorio del profesor: <u>https://github.com/jnramirezg/metodos_numericos_ingenieria_civil</u>

#SOMOSUNAL

Opción 1	Timeos		No es optativa,
Opción 2	Aplicaciones de Elementos Finitos II		es obligatoria
Opción 3	Métodos Numéricos Aplicados a la Ingeniería Civil		

#SOMOSUNAL

¿Qué significa 1 crédito académico?

"Un crédito es la unidad que mide el tiempo que el estudiante requiere para cumplir a cabalidad los objetivos de formación de cada asignatura y equivale a **48 horas de trabajo del estudiante**. Éste incluirá las actividades presenciales que se desarrollan en las aulas con el profesor, las actividades con orientación docente realizadas fuera de las aulas y las actividades autónomas llevadas a cabo por el estudiante, además de prácticas, preparación de exámenes y todas aquellas que sean necesarias para alcanzar las metas de aprendizaje."

* art. 6 Acuerdo 033 de 2007 del CSU

	Horas/semana	Horas/semestre
Actividad presencial	4	64
Actividad autónoma	5	80
Total	9	144 = 48*3

Objetivos

#SOMOSUNAL

- Introducir la técnica básica del cálculo numérico y explicar su objetivo fundamental: encontrar soluciones aproximadas a problemas complejos utilizando procedimientos matemáticos que se pueden programar fácilmente con un computador.
- Hacer énfasis en la programación de computadores como una herramienta para obtener soluciones numéricas de problemas cuya solución analítica es extremadamente compleja.

El curso se desarrollará con aspectos pedagógicos como:

- Clases presenciales en las que se explican los conceptos más relevantes en el entorno de salón de clase con la libre participación de los estudiantes.
- Talleres prácticos de programación para aplicar conocimientos adquiridos.
- Presentación y sustentación de los proyectos realizados por los estudiantes.
- Trabajo dirigido fuera de clase, individual o grupal, para afianzar los conceptos adquiridos en clase.
- Exámenes con preguntas teóricas, preguntas conceptuales, demostraciones y ejercicios numéricos.
- Diapositivas con el contenido necesario y enlaces al explorador.

SOMOSUNAL

Lenguaje de programación

		julia	
Matlab	Python	Julia	
Necesita licenciaAplicaciones especializadas	UniversalidadGratuidadSoporte web amplioOrientada a objetos	VelocidadGratuidadSimplicidadEn desarrollo	

Principales características de Matlab, Python y Julia.

Fuente: Rojas, E. M. (2020)

#SOMOSUNAL

Metodología ¿Por qué Python?

First M87 Event Horizon Telescope Results. III. Data Processing and Calibration: ver artículo

How to take a picture of black hole, Katie Bouman en TED: ver video

EHT Imaging: ver en GitHub

Agujero negro supermasivo **Fuente:** EHT aportado a <u>Wikipedia</u>

Una guía para aprender Python 3 está disponible en el repositorio del profesor **Diego Andrés Álvarez Marín** en este <u>enlace</u>.

Unidad 1: Repaso de Python (1 semana)

- 1.1. Tipos de datos
- 1.2. Listas
- 1.3. Estructuras de control
- 1.4. Funciones
- 1.5. Tuplas, conjuntos y diccionarios
- 1.6. Librerías científicas

Spyder

Entorno informático

Ju**py**ter Notebook

Unidad 2: Sistemas de ecuaciones lineales (2 semana)

- 2.1. Eliminación Gauss-Jordan
- 2.2. Eliminación con sustitución
- 2.3. Descomposición LU de Cholesky
- 2.4. Mejoramiento iterativo solución de ec. lineales
- 2.5. Matrices ralas

Unidad 3: Interpolación (2 semanas)

- 3.1. Interpolación por los vecinos más cercanos
- 3.2. Interpolación lineal

SOMOSUNAL

- 3.3. Interpolación con la fórmula de Lagrange
- 3.4. Interpolación polinomial (cuadrática y cúbica)
- 3.5. Interpolación con splines
- 3.6. Interpolación en varias dimensiones

Unidad 4: Minimización (2 semanas)

- 4.1. Minimización unidimensional
 - 4.1.1. Acotación de funciones
 - 4.1.2. Método de la interpolación parabólica
 - 4.1.3. Método de la búsqueda áurea
 - 4.1.4. Método de Newton-Raphson
- 4.2. Minimización en varias dimensiones
 - 4.2.1. Método del descenso más empinado
 - 4.2.2. Método de Newton-Raphson
 - 4.2.3. Método de Levenberg-Marquardt
- 4.3. Regresión no lineal de Gauss-Newton

Unidad 5: Raíces y sistemas no lineales (2 semanas)

- 5.1. Método de la acotación y de la bisección
- 5.2. Método de Newton-Raphson
- 5.3. Método de Newton-Raphson para la solución de sistemas de ecuaciones no lineales

Unidad 6: Integración (2 semanas)

- 6.1. Métodos de Newton-Cotes
 - 6.1.1. Método de rectángulos
 - 6.1.2. Método de trapecios
 - 6.1.3. Métodos de Simpson 1/8 y 3/8
 - 6.1.4. Fórmula de Boole
- 6.2. Extrapolaciones de Richardson
- 6.3. Integración de Romberg
- 6.4. Integración con cuadraturas de Gauss-Legendre

Unidad 7: Ecuaciones Diferenciales Ordinarias (1 semana)

- 7.1. Método de las diferencias finitas
- 7.2. Método de Runge-Kutta
- 7.3. Método de Euler
- 7.4. Método de Heun
- 7.5. Ecuaciones de Lotka-Volterra
- 7.6. Ecuación de movimiento de péndulo doble

Unidad 8: Números aleatorios (2 semanas)

- 8.1. Generación de números pseudo aleatorios uniformemente distribuidos
 - 8.1.1. Método del generador congruencial lineal (método de Park y Miller)
 - 8.1.2. Método de Mesenne Twister
 - 8.1.3. Método Blum-Blum-Shub
 - 8.1.4. Método Ranlux

SOMOSUNAL

Unidad 8: Números aleatorios

- 8.2. Generación de números pseudoaleatorios provenientes de otras distribuciones
 - 8.2.1. Método de la transformada inversa
 - 8.2.2. Método de la aceptación-rechazo
 - 8.2.3. Método de Ziggurat y transformación de Box-Muller
- 8.3. Integración simple de Monte Carlo
- 8.4. Introducción a la confiabilidad estructural y cálculo de probabilidad de falla de sistemas estructurales

Calendario académico 2021-2s

Métodos Numéricos Aplicados a la Ingeniería Civil – <mark>Gr2</mark>		
Inicio: semana 4 a 9 de octubre de 2021		
Vacaciones: diciembre 20 de 2021 a enero 7 de 2022		
Fin:	Fin: semana 7 a 12 de febrero de 2022	
Notas SIA: hasta las 5PM del 12 de febrero de 2022		

^{*} Según Res. 529 de 2021 de Rectoría

Lunes 14:00 - 16:00 C412

Martes 14:00 - 16:00 C306

Ver en el repositorio el archivo: Cronograma y evaluación 2021-2s.pdf

Examen 1 Taller 1	Repaso de Python	
	Sistemas de ecuaciones lineales	
	Interpolación	
Examen 2	Raíces y sistemas no lineales	
Taller 2	r 2 Minimización	
Examen 3	Integración	
Taller 3	Ecuaciones Diferenciales Ordinarias	

Actividad evaluativa	%	Fecha
Examen 1	15%	xxxxxxx, xx de noviembre de 2021
Examen 2	15%	xxxxxxx, xx de diciembre de 2021
Examen 3	15%	xxxxxxx, xx de enero de 2022
Taller 1		xxxxxxx, xx de noviembre de 2021 a las 11:59h
Taller 2	25%	xxxxxxx, xx de diciembre de 2021 a las 11:59h
Taller 3		xxxxxxx, xx de enero de 2022 a las 11:59h
Trabajo final	30%	xxxxxxx, xx de febrero de 2022 a las 11:59h

Sobre la evaluación

- Los exámenes tendrán una duración máxima de 30 minutos con preguntas conceptuales, de demostración o con enfoque aplicado a programación. Constarán de mínimo 3 preguntas. Para ellos, el docente previamente podrá autorizar el uso de una hoja tamaño carta por un solo lado con ecuaciones (no demostraciones), comandos de Python, pseudocódigo y palabras claves (no párrafos). Serán individuales
- Los talleres se enfocarán en aplicaciones de programación en Python de los métodos enseñados en clase. Serán individuales.

Sobre la evaluación

- Los exámenes y talleres podrán dividirse en partes previo acuerdo.
- En algunos casos será posible que la calificación de una actividad sea superior a 5.0 con previa manifestación por parte del docente.
- Cualquier forma de plagio o copia será penalizada con la normativa vigente de la Universidad y será causante de pérdida de cualquier beneficio adicional dado por el docente.

Trabajo final

- Se busca que el estudiante aplique uno o varios métodos numéricos en alguna rama de la ingeniería civil y se hará con el acompañamiento del docente.
- Será obligatorio que la idea a desarrollar sea aprobada por el docente previamente, ya sea mediante un anteproyecto o comunicación oral.
- El producto final se deberá ver reflejado en una exposición a todo el grupo (o en un vídeo), un trabajo escrito y archivos en Python. Además de gráficas usando el módulo Matplotlib.

Trabajo final

- Se realizará de manera individual o en parejas.
- Las condiciones específicas se presentarán en el transcurso del semestre, por lo que se tendrá suficiente tiempo para investigar y obtener un producto de alto nivel.

Referencias bibliográficas curso

Texto principal

Por definir

Otras guías

Álvarez Marín, D. A. (2019). Curso de Métodos Numéricos. Departamento de Ingeniería Civil. Universidad Nacional de Colombia, Sede Manizales. Disponible en:

https://github.com/diegoandresalvarez/metodosnumericos/

Referencias

Rojas, E. M. (2020). Machine Learning: análisis de lenguajes de programación y herramientas para desarrollo. *Revista Ibérica de Sistemas e Tecnologias de Informação*, (E28), 586-599.

