Università di Parma - Facoltà di Ingegneria

Prova intermedia di sistemi multivariabili del 22 Novembre 2013

Es. 1) (8 punti) Considera il seguente circuito elettrico, in cui il generatore di tensione u rappresenta l'ingresso e la tensione y l'uscita.

- a) Trova una rappresentazione del sistema mediante un modello di stato.
- b) Trova la funzione di trasferimento del sistema.

Es. 2) (7 punti) Considera il sistema autonomo a tempo discreto

$$\dot{x}(k+1) = \begin{bmatrix} -1 & 0 & -3 \\ 3 & 2 & 4 \\ 0 & 0 & 2 \end{bmatrix} x(k)$$
$$x(0) = x_0.$$

- a) Calcola la potenza di matrice A^k .
- b) Trova la soluzione del sistema a partire dalla condizione iniziale $x_0 = [0, 1, 0]^T$.

Es. 3) (7 punti) Considera il sistema a tempo discreto

$$x(k+1) = Ax(k) + B$$

dove
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
a) Determina gli insiemi di raggiungibilità $X_R(k)$ e di controllabilità $X_C(k)$ per ogni $k \in \mathbb{N}$.

- b) Determina un controllo che consenta di raggiungere lo stato $x_1 = [1,0,0]^T$ a partire dallo stato iniziale $x_0 =$ $[0,1,-1]^T$ nel numero minimo di passi.

Es. 4) (8 punti) Considera il seguente sistema a tempo continuo

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t)$$

$$\operatorname{con} A = \begin{bmatrix} 2 & 1 & 0 & 1 \\ 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 0 & -1 & 1 & 0 \end{bmatrix}.$$

- a) Metti il sistema nella forma standard per i sistemi non completamente raggiungibili, indicando le diverse sottomatrici che compongono $\hat{A}, \hat{B}, \hat{C}$.
 - b) Determina gli autovalori raggiungibili e non raggiungibili.
 - c) Calcola la funzione di trasferimento del sistema.
 - d) Calcola la risposta all'impulso del sistema.

Es. 5) (3 punti bonus, più difficile, fare per ultimo)

Siano A, B due matrici quadrate che commutano, cioè che AB = BA. Assumi che ogni autovalore di A abbia molteplicità 1 (cioè corrisponda ad un singolo autovettore). Dimostra che B ha gli stessi autovettori di A.