<u>NOM</u> : <u>PRENOM</u> :.....

GROUPE :.....

Contrôle 2 Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif. Réponses exclusivement sur le sujet

<u>Partie A.</u> Transistors à effet de champ - Polarisation (10 points)

Exercice 1. (6 points)

On considère un transistor à effet de champ à jonction canal N, et son réseau de caractéristiques présenté sur le graphique suivant :

Rq: Pour tout utilisation du graphique, travaillez avec les caractéristiques idéalisées.

a) On l'inclut dans le montage ci-contre.

On donne :
$$\begin{cases} R_1 = 800k\Omega \\ R_2 = 400k\Omega \\ V_{CC} = 12V \end{cases}$$

On souhaite faire fonctionner le transistor dans sa zone linéaire avec un point de polarisation défini par :

$$V_{DS} = 4V$$
 et $V_{GS} = -3V$

Déterminer les valeurs des deux résistances RD et Rs.

b) On l'inclut dans le montage ci-contre.

Déterminer la condition sur la valeur de la résistance R_D ainsi que la valeur de R_S pour que le transistor soit polarisé dans sa zone de fonctionnement linéaire avec $V_{GS}\,=\,-2V$

Exercice 2. (4 points)

On considère un Transistor à Effet de Champ dont les caractéristiques sont données dans la figure 1. Ce **TEC** est utilisé dans le montage figure 2. On donne :

- ✓ Tension d'alimentation V_{DD} = 12V
- \checkmark Le point de fonctionnement est choisi tel que la tension V_{DM} = 8V.

a)	Calculer l'intensite du	courant I_D s	sachant que R_D	$=1k\Omega$ et en o	deduire la tension	VGS

b) Déterminer la valeur de la résistance R_S

<u>Partie B.</u> Transistors à effet de champ - Petits signaux (5 points)

Dans le schéma ci-dessous, le transistor à effet de champ est monté en grille commune.

a)	Dessiner le schéma équivalent petits signaux du montage.		

b)	Déterminer l'amplification en tension de ce montage. R $f q$: On pourra exprimer les tensions d'entrée et de sortie en fonction de v_{gs} .

c) Quelle est l'expression de l'impédance d'entrée $Z_e=\frac{v_{IN}}{i_{IN}}$ de ce circuit. Simplifier cette expression si $R_S\gg \frac{1}{s}$.
<u>Partie C.</u> Transistors MOS et Portes Logiques (5 points)
a) Donnez le schéma d'une porte NOR réalisée en technologie CMOS.

·

b) Soit le montage suivant : De quelle fonction logique s'agit-il ? Justifiez votre réponse.

 $\underline{\mathsf{Rq}}$: Vous donnerez le résultat sous la forme d'une équation logique.

Si vous manquez de place, vous pouvez utiliser le cadre ci-dessous.			