

PROPOSAL PROGRAM KREATIVITAS MAHASISWA

JUDUL PROGRAM

PERANCANGAN DAN REALISASI PROTOTYPE PENYAMPAIAN INFORMASI DENGAN METODE VLC (VISIBLE LIGHT COMMUNICATION) DARI MERCUSUAR KE NELAYAN KONVENSIONAL MENGUNAKAN SENSOR KECEPATAN ANGIN DAN TEKANAN UDARA BERBASIS ARDUINO

BIDANG KEGIATAN: PKM KARSA CIPTA

Diusulkan oleh:

Ketua	: Fhadz Dwi Bayu P	151344013	Tahun Angkatan 2015
Anggota	: 1. Bagas Septiadi	151344006	Tahun Angkatan 2015
	2. Fibri Nali A	161344012	Tahun Angkatan 2016

POLITEKNIK NEGERI BANDUNG 2018

PENGESAHAN PKM – KARSA CIPTA

: Perancangan Dan Realisasi Prototype Informasi 1. Judul Kegiatan

> dengan Metode VLC (Visible Light Communication) dari Mercusuar Ke Nelayan Konvensional Mengunakan Sensor Kecepatan

Angin dan Tekanan Udara Berbasis Arduino

2. Bidang Kegiatan : PKM - KC

3. Ketua Pelaksana Kegiatan

a. Nama Lengkap : Fhadz Dwi Bayu Pangestu

b. NIM : 151344013 c. Jurusan : Teknik Elektro

d. Universitas/Institut/Politeknik : Politeknik Negeri Bandung : Kp. Cikiray RT 03 RW 11, Desa e. Alamat Rumah dan No. Tel/HP

Singaparna, Kec. Singaparna, Kab.

Tasikmalaya 081221816552

f. Email : pangestufhadz@gmail.com

4. Anggota Pelaksana Kegiatan/Penulis : 3 orang

5. Dosen Pendamping

a. Nama Lengkap dan Gelar : Tata Supriyadi, DU. Tech., ST., M.

Eng.

b. NIP : 196311261993031002

c. Alamat Rumah dan No. Tel.HP : Perum Polban Jl. Sipil No. 3 RT 02

> RW 01, Ds. Sariwangi, Kab. Bandung 08122269339

: Rp. 6.294.300 6. Biaya Kegiatan Total

7. Jangka Waktu Pelaksanaan : 4 (empat) bulan

Bandung, 25 Mei 2018

Menyetujui,

Dosen Pendamping, Ketua Pelaksana Kegiatan

(Tata Supriyadi, DU. Tech., ST., M. Eng.) (Fhadz Dwi Bayu Pangestu)

NIP. 196311261993031002 NIM. 151344013

Ketua UPPM, Mengetahui,

Ketua Jurusan,

(Malayusfi, BSEE., M.Eng.) (Dr. Ir. Ediana Sutjiredjeki, M.Sc.) NIP. 19550228 198403 2 001 NIP. 195401011984031001

DAFTAR ISI

HALAMAN SAMPULi
HALAMAN PENGESAHANii
DAFTAR ISIiii
BAB 1 PENDAHULUAN1
BAB 2 TINJAUAN PUSTAKA
BAB 3 METODE PELAKSANAAN5
3.1. Cara Koleksi Data Awal5
3.2. Rekayasa Keteknikan5
3.3. Cara Uji Keandalan Karya5
3.4. Teknik Koleksi Data5
3.5. Pengolahan Data5
3.6. Analisa Data5
BAB 4 BIAYA DAN JADWAL KEGIATAN6
4.1. Anggaran Biaya6
4.2. Jadwal Kegiatan6
DAFTAR PUSTAKA8
LAMPIRAN-LAMPIRAN
Lampiran 1. Biodata Ketua, Anggota dan Dosen Pembimbing
Lampiran 2. Justifikasi Anggaran Kegiatan
Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas 19
Lampiran 4. Surat Pernyataan Ketua Pelaksana21
Lampiran 5. Gambaran Teknologi yang Hendak Diterapkembangkan 22

BAB 1 PENDAHULUAN

Di Indonesia beberapa kali sering terjadi kecelakaan laut pada nelayan. Salah satu peneyebab terjadinya kecelakaan yaitu kondisi cuaca buruk. Pada saat ini kondisi cuaca tidak dapat diprediksi secara akurat dan tiba-tiba terjadi perubahan cuaca (Limahekin, 2016). beberapa metode konvensional yang digunakan untuk membaca cuaca dengan merpehatikan jenis awan metode tersebut tidak efektif digunakan pada nelayan ketika malam hari. Metode lain yang gunakan berupa prototipe sistem prakiraan cuaca berdasarkan suhu dan kelembapan dengan metode logika fuzzy dan backpropagation berbasis mikrokontroler (Aisuwaryal, 2016), media pengiriman tersebut menggunakan gelombang radio yang diterima oleh *smartphone android* dengan tingkat keakuratan memprediksi yaitu 80,15%. Serta metode perancangan system pendukung cuaca sebagai informasi bagi nelayan (Aziz, 2017)menggunakan alat anemometer sebagai pengukuran kecepatan angin dan sensor DHT22 sebagai sensor kelembaban dengan tingkat error masing-masing 2.37% dan 1.1% hasil tersebut tidak dikirimkan ke nelayan.

Mercusuar adalah sebuah bangunan menara dengan sumber cahaya di puncaknya untuk membantu navigasi kapal laut. Sumber cahaya yang digunakan beragam mulai dari lampu sampai lensa dan (pada zaman dahulu) api. Karena tidak semua kapal memiliki alat navigasi kapal terutama nelayan konvensional, mercusuar menjadi salah satu solusi untuk nelayan konvensional untuk pemandu kembali ke pesisir atau pun mendapatkan informasi seperti alarm (Sujaewoko, 2017). Komunikasi terjadi dari mercusuar ke nelayan dengan menggunakan isyarat cahaya, maka peristiwa tersebut kami mengusulkan membuat alat purwarupa/prototype menggunakan cahaya tersebut sebagai media komunikasi cahaya tampak atau Visible Light Communication (VLC) sebagai pengiriman data informasi prediksi cuaca kepada nelayan konvensional.

Yang terdiri dari mercusuar yang didalamnya terdapat rangkaian pengirim dengan keluaran menggunakan LED Driver dan photodiode yang terpasang lensa *Plano Convex* terhubung dengan modul *Bluetooth slave* dan batre yang diputar oleh motor servo dan pengolah data berupa mikrokontroler arduino yang terhubung dengan *Bluetooth Master* dan modul sensor cuaca yang mengambil data dari alat monitoring cuaca. penerima berupa LED dan photodiode yang terpasang Lensa *Plano Convex*, pengolah data mikrokontroler arduino, dan layar LCD.

Diharapkan program karsa cipta ini mampu menerapkan sistem komunikasi berbasis VLC (visible light communication) untuk di setiap mercusuar sehingga nelayan konvensional dapat menerima informasi.

Dengan adanya program karsa cipta ini dapat memberikan manfaat bagi nelayan konvensional yang tidak mempunyai alat untuk mendeteksi seperti kelembaban, suhu, dan intensitas hujan yang harganya sangat mahal seperti kapal-kapal besar lainnya dengan tujuan untuk memonitoring keadaan sekitar agar terhindar dari bahaya seperti badai dll.

BAB 2 TINJAUAN PUSTAKA

Beberapa metode untuk prediksi dan penyampaian informasi cuaca kepada nelayan yang sudah ada sebagai pertimbangan nelayan untuk melaut lebih jauh seperti "Prototipe Sistem Prakiraan Cuaca Berdasarkan Suhu dan Kelembapan dengan Metode Logika Fuzzy dan Backpropagation Berbasis Mikrokontroler" jurnal tersebut menjelaskan tentang perbandingan metode prediksi cuaca dengan sensor DHT11 sebagai input pengukuran terhadap suhu dan kelembapan, keungulan metode tersebut dapat memprediksi dengan persentase keberhasilan 80.15% pada metode fuzzy dibandingkan metode *Backpropagation* dengan persentase keberhasilan 7.6% (Aisuwaryal, 2016), kelemahan terletak dari pengiriman data dapat diakses melalui smartphone android dengan media Bluetooth, media tersebut hanya dapat mengirim dengan jarak maksimal 10 meter (Anon., n.d.). Metode lainya untuk memprediksi cuaca yaitu "Perancangan Sistem Pendukung Cuaca Sebagai Informasi Bagi Nelayan (Studi Kasus Nelayan Pantai Puger)" metode tersebut menggunakan sensor DHT22 dan Anemometer yang dapat menentukan kelembaban dan ketinggian gelombang berdasarkan kecepatan angin yang dapat memberikan sistem informasi kelayakan pelayaran, hasil penelitian tersebut menunjukkan rata rata error sebesar 2.37% untuk anemometer dan 1.42% untuk error pengukuran suhu dan 1.1% untuk pengukuran kelembaban pada sensor DHT22 (Aziz, 2017), hasil pengukuran tersebut hanya sampai pada perangkat laptop yang terhubung langsung dengan berbagai alat tersebut tida sampai dikirimkan pada nelayan.

Dari metode pengiriman yang digunakan kami menggunakan infrastruktur berupa mercusuar purwarupa/protoype yang aslinya terdapat berada pada pesisir atau tebing pantai, media penyampaian informasi tersebut menggunakan metode komunikasi cahaya tampak atau Visible Light Communication yang pengrimnya berupa lampu LED (Light Emitting Diode) dan sebuah lensa plano convex sebagai pengumpul dan penguat cahaya pada LED. Metode yang mendukung untuk percobaan kami yaitu metode dari tugas akhir "Perancangan Dan Analisis Sistem Komunikasi Optik Ruang Bebas Menggunakan LED Inframerah" (Firdaus, 2017), disebutkan bahwa jarak dari penggunaan lensa tersebut dapat menempuh jarak 20 meter untuk mengirimkan data berupa teks. Metode lainya untuk mendukung perocbaan kami yaitu dari tugas akhir "Implementasi Visible Light Communication Untuk Pengiriman Teks Menggunakan Super Bright Led" (Juniar, et al., 2017) dan "Perancangan Dan Realisasi Sistem Akses Informasi Buku Di Perpustakaan Melalui Lampu Penerangan Led" (Juniar, et al., 2017) guna penggunaan LED sebagai media penyampain informasi. Pada bagian yang berputar pada prototype mercusuar tersebut terdapat LED yang telah dipasang lensa Plano Convex,

Photodioda, penerima Bluetooth dan batre. LED yang memancarkan cahaya informasi dan photodiode sebagai detektor cahaya dari sorotan LED Nelayan yang terhubung dengan *Bluetooth Slave* yang dan terhubung secara nirkabel dengan *Bluetooth Master* dari pengolah data mikrokontroller arduino, motor servo akan memutar kan 360 derajat pada keempat komponen tersebut. pada pengolah data terhubung beberapa modul yaitu *Bluetooth master*, modul cuaca, dan motor servo. Pada penerima terdapat rangkaian lampu LED yang terpasang Lensa *plano convex* untuk diarahkan pada mercusuar, Photodiode untuk menerima informasi dari mercusuar tersebut, mikrokontroler arduino sebagai pengolah data dan Layar LCD sebagai penampil informasi yang ditangkap dari mercusuar tersebut. komunikasi terjadi satu arah/ *Simplex* dari mercusuar menuju kapal nelayan.

BAB 3 METODE PELAKSANAAN

3.1 Cara Koleksi Data Awal

Data dikumpulkan dari berbagai sumber yang berkaitan dengan judul PKM, khususnya VLC (Visible Light Communication) baik dari *website* maupun dari buku ajar serta Tugas Akhir. Data yang diambil yaitu yang memiliki kesesuaian pada alat yang kami kembangkan.

3.2 Rekayasa Keteknikan

Perancangan pertama dibuat melalui blok diagram alat dan flowchart. Dari perancangan itu, dibuat rangkaiannya pada protoborad. Selanjutnya dilakukan pengambilan data, jika data sudah sesuai dengan yang diinginkan kemudian dibuat *layout design* PCB menggunakan bantuan *software* proteus. Tahap selanjutnya, rangkaian yang telah di uji tersebut dibuat rangkaiannya di PCB.

3.3 Cara Uji Keandalan Karya

Pengujian dilakukan dilakukan pada daerah terbuka dengan kondisi gelap. Jarak Antara penerima dan pengirim sejauh \pm 5 meter. Pengujian pada sensor dilakukan dengan simulasi hujan, dan cuaca mendung menuju hujan, dan keadaan cerah. Pada pengirim berupa prototype kapal akan digoyangkan atas bawah seperti gerak gelombang laut, dan melihat hasil informasi yang diterima.

3.4 Teknik Koleksi Data

Teknik pengumpulan data yang digunakan adalah dengan teknik studi kepustakaan dan observasi terhadap proyek yang diteliti. Secara teknis data yang akan dikoleksi berupa data sensor yang di terima di penerima dari pemancar dengan jarak tertentu.

3.5 Analisis Data

Dengan melakukan kondisi pengujian, data yang diterima dari sensor curah hujan akan dianalisis tingkat keakuratnya, untuk pengirim dilakukan analisis lama pancar LED tersebut sebelum akhirnya padam, karena rangkaian LED tersebut disuplai dengan batere kemudian pada servo dilakukan analisis waktu perputaran yang efektif untuk mengirimkan data tanpa terjadinya kesalahan karena efek dari waktu perputaran yang terlalu cepat. Pada penerima dilakukan pada analisis penempatan photodetektor pada titik fokus dari lensa plano concave agar peneriimaan cahaya dari pengirim maksium tersampaikan tanpa terganggu sumber cahaya lain, lalu analisis juga terjadi jika prototype kapal penerima terssebut digoyangkan berapa besar amplitudo goyangan tersebut sebelum terjadinya kegagalan pengiriman informasi yang diterima.

BAB 4 BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Tabel 1. Ringkasan Anggaran Biaya PKM-KC

Material	Jumlah
Material	Juillali
Bahan Habis Pakai	2.528.300
Alat Penunjang	2.824.000
Perjalanan	890.000
Lain-Lain	2.020.000
SUBTOTAL	8.262.300

4.2 Jadwal Kegiatan

Tabel 2. Jadwal Kegiatan

				1 (auci	∠. վ	auv	vai.	ızeg	giata	111						
No.	Kegiatan	Waktu Pengerjaan (Minggu)															
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1.	Mencari Teori Dasar / Studi Litelatur																
2.	Survey Pasar dan Pembelian Alat & Bahan																
3.	Perakitan Sensor dan Mikrokontroller																
4.	Perakitan dan Pemasangan Sistem Pengirim																
5.	Perakitan dan Pemasangan Sistem Penerima																

6.	Perakitan Protoype keseluruhan								
7.	Finishing dan Pengujian								
8.	Evaluasi								

DAFTAR PUSTAKA

- Aisuwaryal, R., 2016. PROTOTIPE SISTEM PRAKIRAAN CUACA
 BERDASARKAN SUHU DAN KELEMBAPAN DENGAN METODE
 LOGIKA FUZZY DAN BACKPROPAGATION BERBASIS
 MIKROKONTROLER. Jakarta, Universitas Muhammadiyah Jakarta.
- al., F. B. A. e., 2015. IMPLEMENTASI VISIBLE LIGHT COMMUNICATION (VLC) UNTUK PENGIRIMAN DATA DIGITAL (Implementation Of Visible Light Communication (VLC) for Sending Data Digital). 1(1), pp. 896-906.
- Anon., t.thn. *BlueTooth-HC05-Modules-How-To*. [Online]
 Available at: https://arduinoinfo.wikispaces.com/BlueToothHC05HC06ModulesHowTo?responseToken=083814c16ee6754483adff95b4e68607f
- Arifin, M., 2018. Cuaca Buruk, Sebagian Nelayan di Pasuruan Nekat Melaut.

 [Online]
 Available at: https://news.detik.com/berita-jawa-timur/d-3843044/cuaca-buruk-sebagian-nelayan-di-pasuruan-nekat-melaut
 [Diakses 31 januari 2018].
- Aziz, D. R. & Wibowo, A., 2017. Perancangan Dan Realisasi Sistem Akses Informasi Buku Di Perpustakaan Melalui Lampu Penerangan Led, Bandung: Politeknik Negeri Bandung.
- Aziz, K., 2017. PERANCANGAN SISTEM PENDUKUNG CUACA SEBAGAI INFORMASI BAGI NELAYAN (STUDI KASUS NELAYAN PANTAI PUGER), Jember: Universitas Jember.
- Firdaus, M. Y., 2017. *Perancangan Dan Analisis Sistem Komunikasi Optik Ruang Bebas Menggunakan LED Inframerah*, Bandung: Politeknik Negeri Bandung.
- Juniar, A. M., Hafiduddin & Mulyana, A., 2017. *Implementasi Visible Light Communication Untuk Pengiriman Text Menggunakan Super Bright Led*, Bandung: Universitas Telkom.
- Juniar, A. M. H. S. M. A. M. S. M., 2017. *Implementasi Visible Light Communication Untuk Pengiriman Text Menggunakan Super Bright Led*, Bandung: Universitas Telkom.
- Limahekin, T., 2016. BMKG:Angin Bisa Datang Tiba-Tiba Pengaruhi Ketinggian Gelombang. Harus Waspada Saat di Laut. [Online]
 Available at: http://batam.tribunnews.com/2016/10/07/bmkg-angin-bisa-

- datang-tiba-tiba-pengaruhi-ketinggian-gelombang-harus-waspada-saat-dilaut
- Marjaya, D., 2018. Sebagian Nelayan Putuskan Melaut Meski Cuaca Buruk, Ini Alasannya. [Online]

Available at: http://www.tribunnews.com/regional/2018/01/05/sebagian-nelayan-putuskan-melaut-meski-cuaca-buruk-ini-alasannya.

[Diakses 5 januari 2018].

- Ramadhan, Arsyad, D., Lidyawati, L. & Nataliana, D., 2016. Implementasi Visible Light Communication (VLC) Pada Sistem Komunikasi. *Jurnal Teknik Elektro*, 1(6).
- Saroh, M., 2016. *Nelayan Tasikmalaya Gunakan Smartphone Sebelum Melaut*. [Online]

 Available at: https://tirto.id/nelayan-tasikmalaya-gunakan-smartphone-
 - Available at: https://tirto.id/nelayan-tasikmalaya-gunakan-smartphone-sebelum-melaut-ftE.
- Sujaewoko, D. H., 2017. *PLTA Niyama Kucurkan CSR Bangun Mercusuar Baru*. [Online]
 Available at: https://jatim.antaranews.com/berita/197061/plta-niyama-
 - Available at: https://jatim.antaranews.com/berita/197/061/plta-niyama-kucurkan-csr-bangun-mercusuar-baru
- Suryarandika, R., 2017. *Nelayan Terseret Ombak di Tasikmalaya*. [Online]
 Available at:
 http://nasional.republika.co.id/berita/nasional/daerah/17/11/26/p01alt359-nelayan-terseret-ombak-di-tasikmalaya.
- Wikipedia, t.thn. *Modulasi*. [Online]
 Available at: https://id.wikipedia.org/wiki/Modulasi

LAMPIRAN-LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pembimbing

1. Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Fhadz Dwi Bayu Pangestu
2	Jenis Kelamin	Laki-laki
3	Program Studi	D4 Teknik Telekomunikasi
4	NIM	151344013
5	Tempat dan Tanggal Lahir	Tasikmalaya, 07 Januari 1997
6	E-mail	pangestufhadz@gmail.com
7	Nomor Telepon/HP	081221816552

B. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	SDN 7	SMPN 1	SMAN 1
	Singaparna	Singaparna	Singaparna
Jurusan	-	-	IPA
Tahun Masuk-Lulus	2003-2009	2009-2012	2012-2015

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
1	-	_	-

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	Juara 2 Porkab Kab Tasikmalaya	Koni Kab Tasikmalaya	2011

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah PKM Bidang Karsa Cipta.

Bandung, 25 Mei 2018 Pengusul,

2. Biodata Anggota Pengusul

A. Identitas Diri

1	Nama Lengkap	Bagas Septiadi			
2	Jenis Kelamin	Laki-laki			
3	Program Studi	D4 Teknik Telekomunikasi			
4	NIM	151344006			
5	Tempat dan Tanggal	Bandung, 17 September 1996			
3	Lahir	Bandung, 17 September 1990			
6	E-mail	bagasn5@gmail.com			
7	Nomor Telepon/HP	085792924434			

B. Riwayat Pendidikan

	SD	SMP	SMA	
Nama Institusi	SDN Garuda	SMP Angkasa	SMA Angkasa	
	3 Bandung	Lanud Husein S	Lanud Husein S	
		Bandung	Bandung	
Jurusan	-	-	IPA	
Tahun Masuk-Lulus	2002-2008	2008-2011	2011-2014	

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
1	-	-	-

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah PKM Bidang Karsa Cipta.

Bandung, 25 Mei 2018 Pengusul,

Bagas Septiadi

3. Biodata Anggota Pengusul

A. Identitas Diri

1	Nama Lengkap	Fibri nali Asmoko	
2	Jenis Kelamin	Laki-laki	
3	Program Studi	D4 Teknik Telekomunikasi	
4	NIM	161344012	
5	Tempat dan Tanggal	Gunung Kidul, 02 Februari 1998	
5	Lahir	Gunung Kluur, 02 Februari 1996	
6	E-mail	Fibrinaliiii@gmail.com	
7	Nomor Telepon/HP	085872403484	

B. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	Sdn Sosial 1	SMP 7 Cimahi	SMK TI Garuda
			Nusantara Cimahi
Jurusan	-	-	Teknik komputer
			dan jaringan
Tahun Masuk-Lulus	2004-2010	2010-2013	2013-2016

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
1	-	-	-

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah PKM Bidang Karsa Cipta.

Bandung, 25 Mei 2018 Pengusul,

Fibri Nali Asmoko

4. Biodata Dosen Pembimbing

A. Identitas Diri

1	Nama Lengkap (dengan gelar) Tata Supriyadi, DUT., ST., M.Eng.		
2	Jenis Kelamin	Laki-laki	
3	Program Studi	Teknik Telekomunikasi	
4	NIM/NIDN	0026112603	
5	Tempat dan Tanggal Lahir	Bandung, 26 Nopember 1963	
6	6 E-mail tatasupriyad@gmail.com		
7	7 Nomor Telepom/HP 08121496565		

B. Riwayat Pendidikan

No.	Pendidikan	Perguruan Tinggi	Tahun
1.	DIPLOMA	IUT Le Montet Universite de Nancy I, Nancy –	1986-
		Perancis, Genie Electrique, Informatique	1988
		Industrielle.	
2.	STRATA	Universitas Kristen Maranatha, Bandung Jurusan	1998-
	1	Teknik Elektro.	2000
3.	STRATA	Universitas Gadjah Mada, Yogyakarta	2009-
	2	Jurusan Teknik Elektro, Program Sistem Komputer	2011
		dan Informatika	

C. Pengalaman Penelitian

1.	2012	DIPA (Terapan)	Anggota	Pengembangan Rear-end Collision Warning System berbasis Fuzzy Logic
2.	2013	DIPA (Pengembangan Laboratorium)	Anggota	Pengembangan Modul Praktikum Switching Power Supply Sebagai Alat Bantu Pengajaran Praktikum Dasar Sistem Komputer Program Studi Teknik Telekomunikasi
3.	2014	DIPA (Pengembangan Laboratorium)	Anggota	Pengembangan Modul Praktikum Personal Computer Sebagai Alat Bantu Pengajaran Praktikum Dasar Sistem Komputer Program Studi Teknik Telekomunikasi
4.	2016	DIPA (Pengembangan Laboratorium)	Anggota	Pengembangan Modul Praktikum Sistem Unit Display Personal Computer (PC) Untuk Pembelajaran Praktikum Dasar Teknik Komputer

5.	2016	DIPA (Penelitian Terapan Berbasis KBK)	Ketua	Rancang Bangun Alat Bantu Baca Nilai Nominal Uang Kertas Rupiah Untuk Penyandang Tunanetra Menggunakan Algoritma Backpropagation
6.	2017	RISTEK DIKTI (Penelitian Produk Terapan)	Ketua	Pengembangan Alat Bantu Pengganti Indera Penglihatan Berbasis Embedded System Bagi Disabilitas Netra

D. Pemakalah Seminar Ilmiah (Oral Presentation)

No	Karya Tulis	Tahun
1.	Disain dan Implementasi Detektor Perembesan Air pada Mainhole Sambungan Kabel Telepon Bawah Tanah di Proceedings Industrial Electronics Seminar 2002, ITS, Surabaya.	2002
2.	Perancangan dan realisasi alat pendeteksi kantuk dengan menggunakan kamera digital cmucam di Proceedings Seminar Nasional POLBAN, Bandung	2006
3.	Design of Product Service System: Online Self-Assessment for Higher Education Institution Studentsdi APTECS 2010 Conference, ITS, Surabaya.	2010
4.	Penggunaan Sensor Ultrasonik Sebagai Pendeteksi Ketinggian Air Sungai Pada Sistem Peringatan Dini Tanggap Darurat Bencana Banjir	2011
5.	Pemanfaatan Jaringan Seluler dan Jaringan Internet Untuk Memantau Sistem Keamanan Rumah dengan User Interface Berbasis Handphone Android, di Proceedings Seminar IRWNS POLBAN, Bandung, 2012	2012
6.	Upaya Meningkatkan Indeks Prestasi Mahasiswa Politeknik Melalui Online Self Assesment System, di Jurnal ELEKTRAN, VOL. 2, NO. 1, JUNI 2012, Jurusan Teknik Elektro, POLBAN	2012

E. Penghargaan dalam 10 tahun Terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	Satyalancana Karya Satya X Tahun	Presiden	2009

F. Pengalaman Pengabdian Kepada Masyarakat

No.	Tahun	Judul	Sumber	Jumlah (Rp)
1.	2012	Pelatihan Administrasi Perkantoran di Kelurahan Gegerkalong	DIPA	10.000.000,-
2.	2012	Sistem Peringatan Intercom melalui jaringan LAN untuk mendukung SISKAMLING di Kelurahan Gegerkalong	DIPA	10.000.000,-
3.	2015	Pendampingan Penataan Ulang dan Teknik Pengoperasian Sound Sistem di Mesjid Jami Al-Haq	DIPA	15.000.000,-
4.	2016	Pendampingan Dan Pelatihan Teknik Perancangan, Penginstalasian dan Pengoperasian Sistem Komunikasi Radio Dan Data Untuk Anggota SENKOM Mitra POLRI	DIPA	20.000.000,-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalampengajuan Program Kreativitas Mahasiswa Karsa Cipta

Bandung, 25 Mei 2018 Pembimbing,

Lampiran 2. Justifikasi Anggaran Kegiatan Bahan Habis Pakai

Material	Justifikasi Pemakaian	Kuantitas	Harga Satuan (Rp)	Jumlah (Rp)
Sensor Suhu DS18B20.	Komponen alat perakit	1 buah	65.000	65.000
SHT 20 Humidity Sensor	Komponen alat perakit	1 buah	256.600	256.600
DS04-NFC 360 Degree Servo	Komponen alat perakit	1 buah	140.000	140.000
Transistor TIP120	Komponen alat perakit	2 buah	16.000	32.000
Optocoupler	Komponen alat perakit	1 buah	85.300	85.300
Bluetooth HC-05	Komponen alat perakit	2 buah	170.000	340.000
PCB LED DC 12V 9 Watt	Komponen alat perakit	1 buah	110.000	110.000
Lensa Plano- convex	Komponen alat perakit	2 buah	50.000	100.000

ARDUINO UNO	Untuk pengolahan	2 buah	350.000	700.000
R3	komunikasi data			
Komparator	Komponen alat perakit	1 buah	84.600	84.600
LCD	Untuk penampil data	1 buah	148.500	148.500
Push Button/Saklar	Komponen alat perakit	1 buah	16.800	16.800
Acrylic	Untuk pemasangan/ penyangga komponen	1 lembar	150.000	150.000
PCB	Komponen alat perakit	3	10.000	30.000
Kabel Tembaga	Komponen alat perakit	2 set	9.500	19.000
Timah Komponen alat perakit		2 set	26.500	53.000
Kabel Pelangi Komponen alat perakit		5 set	12.000	60.000
Spacer	Spacer Komponen alat perakit		67.000	67.000
Protoboard	Komponen alat perakit	3	23.500	70.500
	JUMLAH	, I		2.528.300

Alat penunjang

Material	Justifikasi	Kuantitas	Harga	Jumlah (
	Pemakaian		Satuan (Rp)	Rp)
Toolset elektronik	Alat penunjang	1 set	500.000	500.000
Oscilloscope Hantek 6022BE Digital 2CH 20Mhz USB PC	Alat penunjang	1 set	1.662.700	1.662.700

Digital Multimeter	Alat penunjang	1 set	551.300	551.300
Obeng Instrumen	Alat penunjang	1 set	100.000	100.000
Gunting	Alat penunjang	1 buah	10.000	10.000
	2.824.000			

Perjalanan

Material	Justifikasi	Kuantitas	Harga	Jumlah (Rp)
	Pemakaian		Satuan (Rp)	
Perjalanan ke	Survey,	40x 1 liter	8.900	356.000
toko-toko	pencarian, dan			
dibandung	pembelian lat			
	dan bahan			
Perjalanan ke	Perakitan dan Uji	20x 1 liter	8.900	178.000
lokasi pengujian	coba awal			
disekitar dan				
perakitan alat				
Perjalanan ke	Uji coba akhir	40x 1 liter	8.900	356.000
lokasi pengujian				
akhir				
			SUBTOTAL	890.000

Lain - Lain

Material	Justifikasi	Kuantitas	Harga	Jumlah (Rp)
	Pemakaian		Satuan (Rp)	
Seminar	Publikasi ilmiah	3 orang	500.000	1.500.000
Tinta printer	Penyusunan	4 set	50.000	200.000
	laporan			
Kertas HVS A4	Penyusunan	3 rim	40.000	120.000
	laporan			

Penulisan	Untuk	1 set	200.000	200.000
laporan	pembuatan,			
	penggandaan			
	dll.			
	•		SUBTOTAL	2.020.000

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

No.	Nama / NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/ minggu)	Uraian Tugas
1	Fhadz Dwi Bayu Pangestu / 151344013	D4 – Teknik Telekomunikasi	Transmitter Dengan arduino	12 jam/ minggu	1. Mengkoordinir tim 2. Merancang rangkaian 3. Penentu alat dan komponen 4. Membuat design layout PCB 5. Pengambilan data
2	Bagas Septiadi / 151344006	D4 – Teknik Telekomunikasi	Receiver dengan arduino	12 jam/ minggu	 Penentu alat dan komponen Merancang Membuat design layout PCB Pengambilan data Sekretaris tim

					1. Penentu ala	at		
	3						dan komponen	ì
					2. Pencari ala	ıt		
					dan komponen	l		
			Coding		3. Merancang			
2		D4 – Teknik	Coding Sensor dan Arduino	12 jam/	rangkaian			
3		Telekomunikasi		minggu	4. Membuat			
	161344012		Aldullo		design layou	ıt		
					PCB			
					5. Pengambilan			
					data			
					6. Bendahara tim	l		

Lampiran 4. Surat Pernyataan Ketua Pelaksana

SURAT PERNYATAAN KETUA PELAKSANA

Yang bertanda tangan di bawah ini:

Nama : Fhadz Dwi Bayu Pangestu

NIM : 151344013

Program Studi : D4-Teknik Telekomunikasi

Fakultas /Jurusan : Elektro

Dengan ini menyatakan bahwa proposal PKM KARSA CIPTA saya dengan judul Perancangan dan Realisasi Prototype Penyampaian Informasi dengan Metode VLC (Visible Light Communication) dari Mercusuar Ke Nelayan Konvensional Mengunakan Sensor Kecepatan Angin dan Tekanan Udara Berbasis Arduino yang diusulkan untuk tahun anggaran 2018 bersifat orisinil dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara. Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Bandung, 25 Mei 2018

Mengetahui, Yang menyatakan,

Ketua UPPM Ketua

Meterai Rp6.000 Tanda tangan

(Dr. Ir. Ediana Sutjiredjeki, M.Sc.) Fhadz Dwi Bayu Pangestu

NIP. 19550228 198403 2 001 NIM.151344013

Lampiran 5. Gambaran Teknologi yang Hendak Diterapkembangkan

Gambar 1. Ilustrasi Aplikasi Sistem

Sistem ini membantu komunikasi penyampaian kecepatan angin dan tekanan udara kepada nelayan konvensional melalui mercusuar dengan memanfaatkan media transmisi cahaya tampak (Visible Light Communication) dengan mercusuar sebagai transmitter dan nelayan sebagai receiver, agar nelayan dapat memprediksi cuaca saat berlayar dan dapat memutuskan apakah terus mencari ikan atau berhenti demi keselamatan karena perubahan angin/cuaca yang mendadak yang dapat mengakibatkan terseret ombak.

3.2 Blok Diagram Sistem

Gambar 2. Blok Diagram Sistem

Berdasarkan block diagram di atas terbagi menjadi dua bagian besar yaitu block diagram Transmitter dan Receiver, Pada block diagram receiver sensor kecepatan udara dan tekanan udara akan mendeteksi keadaan sekitar, lalu di teruskan ke mikrokontoller sebagai pengolah data setelah data di olah akan di transmisikan lewat bluetooth untuk kemudian di transmisikan melalui cahaya tampak, setelah di transmisikan dengan cahaya tampak,photodioda akan mendeteksi cahaya dari transmitter untuk di terima di receiver setelah itu masuk ke komparator yang berfungsi untuk membandingkan dua nilai lalu akan memberikan hasilnya ke mikrokontroller untuk di olah datanya, setelah data di olah, mikrokontroller akan menampilkan hasil dari data tersebut di penampil LCD.

3.3 Flow Chart Sistem

Transmitter

Gambar 3. FlowChart Sistem Transmitter

Sensor akan membaca kecepatan dan tekanan udara, ketika program berhasil selanjutnya dilakukan pengiriman data melalui bluethooth master dan akan diterima datanya oleh bluetoooth slave. Kemudian dilakukan pengiriman data sensor melalui media transmisi cahaya tampak menuju penerima.

RECEIVER

Gambar 3. FlowChart Sistem Receiver

Ketika data di terima oleh penerima dari pengirim, foto dioda akan menerima sinyal yang dimana data akan di proses di komparator untuk membandingkan dua nilai, kemudian hasilnya akan dimasukan ke mikrokontroller untuk di olah datanya, selanjutnya mikrokontroller akan menampilkan hasil data tersebut pada LCD.