Mathematics III (RMA3A001) Module I

Ramesh Chandra Samal

Department of Mathematics Ajay Binay Institute of Technology Cuttack, Odisha

Lecture - 12

Newton backward interpolation formula

Let us consider the function f(x)

$$f(x) = a_0 + a_1(x - a - nh) + a_2(x - a - nh)(x - a - (n - 1)h) + a_3(x - a - nh)(x - a - (n - 1)h)(x - a - (n - 1)h) + \dots + a_n(x - a - nh)(x - a - (n - 1)h) \dots (x - a - h)$$
(1)

Where $a_0, a_1, a_2, \ldots, a_n$ are constants.

Putting x = a, a + h, a + 2h, a + nh in to equation (1) respectively, we get

$$a_0 = f(a+nh)$$

$$a_0 - a_1h = f(a+(n-1)h)$$

$$\implies a_1 = \frac{f(a+nh) - f(a+(n-1)h)}{h}$$

$$\implies a_1 = \frac{\nabla f(a+nh)}{h}$$
and
$$a_0 - 2ha_1 + 2h^2a_2 = f(a-(n-2)h)$$

$$\implies a_2 = \frac{\nabla^2 f(a+nh)}{2! h^2}$$

Continuing in this way, we get

$$a_3 = \frac{\nabla^3 f(a+nh)}{3! h^3} \dots a_n = \frac{\nabla^n f(a+nh)}{n! h^n}$$

Now substituting these values of a_0 , a_1 , a_2 , a_n into equation (1), we get

$$f(x) = f(a+nh) + \frac{\nabla f(a+nh)}{h}(x-a-nh)$$

$$+ \frac{\nabla^2 f(a+nh)}{2! h^2}(x-a-nh)(x-a-(n-1)h)$$

$$+ \frac{\nabla^3 f(a+nh)}{3! h^3}(x-a-nh)(x-a-(n-1)h)(x-a-(n-2)h) + \dots$$

$$+ \frac{\nabla^n f(a)}{n! h^n}(x-a-nh)(x-a-(n-1)h) \dots (x-a-h)$$
(2)

Further put x = a + nh + Uh, x - a - (n - 1)h = (U + 1)h, x - a - (n - 2)h = (U + 2)h, x - a - h = (U + n - 1)hUsing these values in equation (2)

$$f(a+nh+Uh) = f(a+nh) + U\nabla f(a+nh) + \frac{U(U+1)}{2!}\nabla^2 f(a+nh) + \dots + \frac{U(U+1)(U+2)\dots(U+n-1)}{n!}\nabla^n f(a+nh)$$

This formula is known as Newton's backward interpolation with equal intervals.

Example 1

For the following data

X	1	2	3	4	5	6	7	8
f(x)	1	8	27	64	125	216	343	512

Solution: The difference table for the given data is as follows

х	f(x)	$\nabla f(x)$	$\nabla^2 f(x)$	$\nabla^3 f(x)$	$\nabla^4 f(x)$	$\nabla^5 f(x)$	$\nabla^{6}f(x)$	$\nabla^7 f(x)$
1	1							
		7						
2	8		12					
		19		6				
3	27		18		0			
		37		6		0		
4	64		24		0		0	
		61		6		0		0
5	125		30		0		0	
		91		6		0		
6	216		36		0			
		127		6				
7	343		42					
		169						
8	512							

Here a + nh = 8, h = 1, and x = 7.5 then

$$U = \frac{x - (a + nh)}{h} = \frac{7.5 - 8}{1} = -0.5$$

By Newtons backward interpolation formula

$$f(a+nh+Uh) = f(a+nh) + U\nabla f(a+nh) + \frac{U(U+1)}{2!}\nabla^2 f(a+nh)$$

$$+ \frac{U(U+1)(U+2)}{3!}\nabla^3 f(a+nh)$$

$$\implies f(7.5) = f(8) + (-0.5)\nabla f(8) + \frac{(-0.5)(-0.5+1)}{2!}\nabla^2 f(8)$$

$$+ \frac{(-0.5)(-0.5+1)(-0.5+2)}{3!}\nabla^3 f(8)$$

$$= 512 - 84.5(169) - \frac{(0.5)(0.5)}{2}(42) - \frac{(0.5)(0.5)(1.5)}{6}(6)$$

$$= 512 - 84.5 - 5.25 - 0.375$$

$$= 421.875$$

Example 2

Given the following table

X	0.1	0.2	0.3	0.4	0.5
e^x	1.10517	1.2140	1.34986	1.49182	1.64872

Find $e^{0.411}$ by using Newtons backward interpolation.

Solution: The difference table is given by

x	$y = e^x$	$\nabla f(x)$	$\nabla^2 f(x)$	$\nabla^3 f(x)$	$\nabla^4 f(x)$
0.1	1.10517				
		0.10883			
0.2	1.2140		0.02703		
		0.13586		-0.02093	
0.3	1.34986		0.0061		0.02997
		0.14196		0.00884	
0.4	1.49182		0.01494		
		0.1569			
0.5	1.64872				

Here a + nh = 0.5, h = 1, x = 0.411

$$U = \frac{x - (a + nh)}{h} = \frac{0.411 - 0.5}{0.1} = -0.89$$

By Newtons backward interpolation formula

$$y(x) = y_n + U\nabla y_n + \frac{U(U+1)}{2!}\nabla^2 y_n + \frac{U(U+1)(U+2)}{3!}\nabla^3 y_n$$

$$+ \frac{U(U+1)(U+2)(U+3)}{4!}\nabla^4 y_n$$

$$\implies y(0.411) = 1.64872 + (-0.89)(0.1569) + \frac{(-0.89)(-0.89+1)}{2!}0.01494$$

$$+ \frac{(-0.89)(-0.89+1)(-0.89+2)}{3!}(0.00884)$$

$$+ \frac{(-0.89)(-0.89+1)(-0.89+2)(-0.89+3)}{4!}(0.02977)$$

$$= 1.507903164$$

Hence, $e^{0.411} = 1.507903164$

Any Questions?

Thank You