Pátá přednáška

NAIL062 Výroková a predikátová logika

 ${\sf Jakub\ Bul\'in\ (KTIML\ MFF\ UK)}$

Zimní semestr 2024

Pátá přednáška

Program

- rezoluční metoda
- korektnost a úplnost rezoluce
- úvod do predikátové logiky
- syntaxe predikátové logiky

Materiály

Zápisky z přednášky, Sekce 5.1-5.3 z Kapitoly 5 (Sekci 5.4 zatím přeskočíme), Sekce 6.1-6.3 z Kapitoly 6

Kapitola 5: Rezoluční metoda

Rezoluční metoda

- jiný důkazový systém než tablo metoda
- mnohem efektivnější implementace
- logické programování, automatické dokazování, SAT solvery (důkaz jako certifikát nesplnitelnosti)
- pracuje s CNF (každý výrok/teorii lze převést do CNF)
- jediné inferenční pravidlo: rezoluční pravidlo

$$\frac{\{p\}\cup C_1,\{\neg p\}\cup C_2}{C_1\cup C_2}$$

platí obecnější pravidlo řezu:

$$\frac{\varphi \vee \psi, \neg \varphi \vee \chi}{\psi \vee \chi}$$

5.1 Množinová reprezentace

Množinová reprezentace

- literál ℓ je p nebo $\neg p$ (pro $p \in \mathbb{P}$), $\bar{\ell}$ je opačný literál k ℓ
- klauzule C je konečná množina literálů
- prázdná klauzule □ je nesplnitelná
- CNF formule S je množina klauzulí (může být i nekonečná!)
- prázdná formule Ø je vždy splněna

Modely reprezentujeme jako množiny literálů:

- (částečné) ohodnocení je libovolná konzistentní množina literálů (tj. nesmí obsahovat dvojici opačných literálů)
- úplné ohodnocení obsahuje p nebo ¬p pro každý prvovýrok
- ohodnocení \mathcal{V} splňuje formuli S, píšeme $\mathcal{V} \models S$, pokud \mathcal{V} obsahuje nějaký literál z každé klauzule v S:

$$\mathcal{V} \cap \mathcal{C} \neq \emptyset$$
 pro každou $\mathcal{C} \in \mathcal{S}$

Množinová reprezentace: příklad

$$\varphi = (\neg p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_3 \lor \neg p_4) \land (\neg p_4 \lor \neg p_5) \land p_4$$

v množinové reprezentaci:

$$S = \{ \{\neg p_1, p_2\}, \{\neg p_1, \neg p_2, p_3\}, \{\neg p_3, \neg p_4\}, \{\neg p_4, \neg p_5\}, \{p_4\} \}$$

- ohodnocení $V = \{\neg p_1, \neg p_3, p_4, \neg p_5\}$ splňuje $S, V \models S$
- není úplné, můžeme rozšířit libovolným literálem pro p₂, platí
 - $\mathcal{V} \cup \{p_2\} \models S$
 - $V \cup \{\neg p_2\} \models S$
- tato dvě úplná ohodnocení odpovídají modelům
 - (0,1,0,1,0)
 - (0,0,0,1,0)

5.2 Rezoluční důkaz

Rezoluční pravidlo

Mějme klauzule C_1 a C_2 a literál ℓ takový, že $\ell \in C_1$ a $\bar{\ell} \in C_2$. Potom rezolventa klauzulí C_1 a C_2 přes literál ℓ je klauzule:

$$C = (C_1 \setminus \{\ell\}) \cup (C_2 \setminus \{\bar{\ell}\})$$

tedy z první klauzule odstraníme ℓ a z druhé $\bar{\ell}$ (musely tam být!) a zbylé literály sjednotíme, mohli bychom také psát:

$$C_1' \cup C_2'$$
 je rezolventou klauzulí $C_1' \,\dot\sqcup\, \{\ell\}$ a $C_2' \,\dot\sqcup\, \{\bar\ell\}$

- z klauzulí $C_1 = \{\neg q, r\}$ a $C_2 = \{\neg p, \neg q, \neg r\}$ odvodíme klauzuli $\{\neg p, \neg q\}$ přes literál r
- **•** $z \{p, q\}$ a $\{\neg p, \neg q\}$ odvodíme $\{p, \neg p\}$ přes literál q, nebo $\{q, \neg q\}$ přes literál p (obojí jsou ale tautologie)
- nelze z nich ale odvodit \square "rezolucí přes p a q najednou"! $(S = \{\{p,q\}, \{\neg p, \neg q\}\})$ je splnitelná, např. (1,0) je model)

Rezoluční důkaz

Rezoluční pravidlo je korektní, tj. pro libovolné ohodnocení \mathcal{V} platí: Pokud $\mathcal{V} \models C_1$ a $\mathcal{V} \models C_2$, potom $\mathcal{V} \models C$.

V rezolučním důkazu můžeme vždy napsat buď axiom, nebo rezolventu již napsaných klauzulí; tím zaručíme korektnost důkazů:

Rezoluční důkaz (odvození) klauzule C z formule S je konečná posloupnost klauzulí $C_0, C_1, \ldots, C_n = C$ taková, že pro každé i:

- $C_i \in S$, nebo
- C_i je rezolventou nějakých C_j , C_k kde j, k < i
- existuje-li rez. důkaz, je C rezolucí dokazatelná z S, $S \vdash_R C$
- ullet rezoluční zamítnutí formule S je rezoluční důkaz \square z S
- v tom případě je S rezolucí zamítnutelná

Formule $S = \{\{p, \neg q, r\}, \{p, \neg r\}, \{\neg p, r\}, \{\neg p, \neg r\}, \{q, r\}\}\}$ je rezolucí zamítnutelná, jedno z možných zamítnutí je:

$$\{p, \neg q, r\}, \{q, r\}, \{p, r\}, \{\neg p, r\}, \{r\}, \{p, \neg r\}, \{\neg p, \neg r\}, \{\neg r\}, \Box$$

Rezoluční důkaz má přirozeně stromovou strukturu, tzv. rezoluční strom: na listech jsou axiomy, vnitřní vrcholy jsou rezoluční kroky.

Rezoluční strom

Rezoluční strom klauzule C z formule S je konečný binární strom s vrcholy označenými klauzulemi, kde

- v kořeni je *C*,
- v listech jsou klauzule z S,
- v každém vnitřním vrcholu je rezolventa klauzulí ze synů tohoto vrcholu.

Pozorování: C má rezoluční strom z S, právě když $S \vdash_R C$. (Důkaz snadno indukcí dle hloubky stromu a délky důkazu.)

- rezolučnímu důkazu odpovídá jednoznačný rezoluční strom
- z rezolučního stromu můžeme získat více důkazů (jsou dané libovolnou procházkou po vrcholech, která navštíví vnitřní vrchol až poté, co navštívila oba jeho syny)

Rezoluční uzávěr

jaké všechny klauzule se můžeme rezolucí 'naučit' z dané formule? (není praktické je všechny najít, jde o užitečný teoretický pohled)

Rezoluční uzávěr $\mathcal{R}(S)$ formule S je definován induktivně jako nejmenší množina klauzulí splňující:

- $C \in \mathcal{R}(S)$ pro všechna $C \in S$,
- jsou-li $C_1, C_2 \in \mathcal{R}(S)$ a C jejich rezolventa, potom i $C \in \mathcal{R}(S)$

Pro $S = \{\{p, \neg q, r\}, \{p, \neg r\}, \{\neg p, r\}, \{\neg p, \neg r\}, \{q, r\}\}$ máme:

$$\mathcal{R}(S) = \{ \{p, \neg q, r\}, \{p, \neg r\}, \{\neg p, r\}, \{p, s\}, \{q, r\}, \{p, \neg q\}, \{\neg q, r\}, \{r, \neg r\}, \{p, \neg p\}, \{r, s\}, \{p, r\}, \{p, q\}, \{r\}, \{p\} \}$$

5.3 Korektnost a úplnost rezoluční

metody

Korektnost rezoluce

Korektnost dokážeme snadno indukcí podle délky důkazu (nebo alternativně indukcí dle hloubky rezolučního stromu).

Věta (O korektnosti rezoluce): Je-li CNF formule *S* rezolucí zamítnutelná, potom je *S* nesplnitelná.

Důkaz: Nechť $S \models_R \square$, a vezměme nějaký rezoluční důkaz $C_0, C_1, \ldots, C_n = \square$. Sporem: nechť existuje ohodnocení $\mathcal{V} \models S$. Indukcí podle i dokážeme, že $\mathcal{V} \models C_i$. Potom i $\mathcal{V} \models \square$, což je spor.

Pro i=0 to platí, neboť $C_0 \in S$. Pro i>0 máme dva případy:

- $C_i \in S$: v tom případě $\mathcal{V} \models C_i$ plyne z předpokladu, že $\mathcal{V} \models S$,
- C_i je rezolventou C_j , C_k , kde j, k < i: z indukčního předpokladu víme $\mathcal{V} \models C_j$ a $\mathcal{V} \models C_k$, $\mathcal{V} \models C_i$ plyne z korektnosti rezolučního pravidla

Je-li S CNF formule a ℓ literál, potom dosazení ℓ do S je formule

$$S^{\ell} = \{C \setminus \{\bar{\ell}\} \mid \ell \notin C \in S\}$$

- S^{ℓ} je výsledkem jednotkové propagace aplikované na $S \cup \{\{\ell\}\}$.
- S^{ℓ} neobsahuje v žádné klauzuli literál ℓ ani $\bar{\ell}$ (vůbec tedy neobsahuje prvovýrok z ℓ)
- Pokud S neobsahovala literál ℓ ani $\bar{\ell}$, potom $S^{\ell} = S$.
- Pokud S obsahovala jednotkovou klauzuli $\{\bar{\ell}\}$, potom $\square \in S^\ell$, tedy S^ℓ je sporná.

Větvení

Lemma: S je splnitelná, právě když je splnitelná S^{ℓ} nebo S^{ℓ} .

Důkaz: \Rightarrow Ohodnocení $\mathcal{V} \models S$ nemůže obsahovat ℓ i $\bar{\ell}$; BÚNO $\bar{\ell} \notin \mathcal{V}$. Ukážeme, že potom $\mathcal{V} \models S^{\ell}$.

Vezměme libovolnou klauzuli v S^ℓ . Ta je tvaru $C\setminus\{\bar\ell\}$ pro klauzuli $C\in S$ (neobsahující literál ℓ). Víme, že $\mathcal V\models C$, protože ale $\mathcal V$ neobsahuje $\bar\ell$, muselo ohodnocení $\mathcal V$ splnit nějaký jiný literál v C, takže platí i $\mathcal V\models C\setminus\{\bar\ell\}$.

 \Leftarrow BÚNO mějme ohodnocení $\mathcal{V} \models S^{\ell}$. Protože se $\bar{\ell}$ (ani ℓ) nevyskytuje v S^{ℓ} , platí také $\mathcal{V} \setminus \{\bar{\ell}\} \models S^{\ell}$. Ohodnocení $\mathcal{V}' = (\mathcal{V} \setminus \{\bar{\ell}\}) \cup \{\ell\}$ potom splňuje všechny $C \in S$, tedy $\mathcal{V}' \models S$:

- pokud $\ell \in C$, potom $\ell \in C \cap \mathcal{V}'$ a $C \cap \mathcal{V}' \neq \emptyset$
- jinak $C \cap \mathcal{V}' = C \cap (\mathcal{V} \setminus \{\bar{\ell}\}) = (C \setminus \{\bar{\ell}\}) \cap (\mathcal{V} \setminus \{\bar{\ell}\}) \neq \emptyset$ neboť $\mathcal{V} \setminus \{\bar{\ell}\} \models C \setminus \{\bar{\ell}\} \in S^{\ell}$

Strom dosazení

Zda je konečná formule S splnitelná můžeme zjišťovat rekurzivně, dosazením obou literálů pro některý prvovýrok p, a rozvětvením na S^p , $S^{\bar{p}}$ (jako v DPLL). Výslednému stromu říkáme strom dosazení.

Např. pro $S = \{ \{p\}, \{\neg q\}, \{\neg p, \neg q\} \}$:

- jakmile větev obsahuje □, je nesplnitelná a nepokračujeme v ní
- listy jsou buď nesplnitelné, nebo prázdné teorie: v tom případě z posloupnosti dosazení získáme splňující ohodnocení.

Strom dosazení a nesplnitelnost

Důsledek: CNF formule S (ve spočetném jazyce, může být i ne-konečná) je nesplnitelná, právě když každá větev stromu dosazení obsahuje \square .

Důkaz: Pro konečnou S snadno dokážeme indukcí dle |Var(S)|:

- Je-li $|\operatorname{Var}(S)| = 0$, máme $S = \emptyset$ nebo $S = \{\square\}$, v obou případech je strom dosazení jednoprvkový a tvrzení platí.
- V indukčním kroku vybereme libovolný literál $\ell \in \text{Var}(S)$ a aplikujeme Lemma.

Je-li S nekonečná a splnitelná, má splňující ohodnocení, to se 'shoduje' s odpovídající (nekonečnou) větví ve stromu dosazení.

Je-li nekonečná a nesplnitelná, dle Věty o kompaktnosti existuje konečná $S' \subseteq S$, která je také nesplnitelná. Po dosazení pro všechny proměnné z Var(S') bude v každé větvi \square , to nastane po konečně mnoha krocích.

Úplnost rezoluce

Věta (O úplnosti rezoluce): Je-li CNF formule S nesplnitelná, je rezolucí zamítnutelná (tj. $S \vdash_R \Box$).

Důkaz: Je-li *S* nekonečná, má z kompaktnosti konečnou nesplnitelnou část, její rezoluční zamítnutí je také zamítnutí *S*.

Je-li S konečná, ukážeme indukcí dle počtu proměnných: Je-li $|\operatorname{Var}(S)|=0$, jediná možná nesplnitelná formule bez proměnných je $S=\{\Box\}$, a máme jednokrokový důkaz $S\models_R\Box$.

Jinak vyberme $p \in \text{Var}(S)$. Podle Lemmatu jsou S^p i $S^{\bar{p}}$ nesplnitelné. Mají o proměnnou méně, tedy dle ind. předpokladu existují rezoluční stromy T pro $S^p \models_R \square$ a T' pro $S^{\bar{p}} \models_R \square$.

Ukážeme, jak z T vyrobit rezoluční strom \widehat{T} pro $S \vdash_R \neg p$. Analogicky $\widehat{T'}$ pro $S \vdash_R p$ a potom už snadno vyrobíme rezoluční strom pro $S \vdash_R \square$: ke kořeni \square připojíme kořeny stromů \widehat{T} a $\widehat{T'}$ jako levého a pravého syna (tj. získáme \square rezolucí z $\{\neg p\}$ a $\{p\}$).

Dokončení důkazu

Rezoluční strom T pro $S^p \vdash_R \square \rightsquigarrow \widehat{T}$ pro $S \vdash_R \neg p$:

Vrcholy i uspořádání jsou stejné, jen do některých klauzulí ve vrcholech přidáme literál $\neg p$.

Na každém listu stromu T je nějaká klauzule $C \in S^p$, a

- buď $C \in S$,
- nebo $C \notin S$, ale $C \cup \{\neg p\} \in S$

V prvním případě necháme label stejný. Ve druhém případě přidáme do C a do všech klauzulí nad tímto listem literál $\neg p$.

Listy jsou nyní klauzule z S, a každý vnitřní vrchol je nadále rezolventou svých synů. V kořeni jsme \square změnili na $\neg p$ (ledaže každý list T už byl klauzule z S, to ale už T dává $S \vdash_R \square$).

Zatím přeskočíme: 5.4 LI-rezoluce a

Horn-SAT

Lineární důkaz: neformálně

Rezoluční důkaz můžeme kromě rezolučního stromu zorganizovat i jinak, jako tzv. lineární důkaz:

- v každém kroku máme jednu centrální klauzuli
- tu rezolvujeme s boční ('side') klauzulí
- boční klauzule je buď axiom z S, nebo některá z předchozích centrálních (jako bychom odvozené klauzule přidávali k axiomům)
- výsledná rezolventa je novou centrální klauzulí

(Tento pohled lépe odpovídá procedurálnímu výpočtu, jde jen o to, jak vybírat vhodné boční klauzule.)

Lineární důkaz: formálně

Lineární důkaz klauzule C z formule S je konečná posloupnost

$$\begin{bmatrix} C_0 \\ B_0 \end{bmatrix}, \begin{bmatrix} C_1 \\ B_1 \end{bmatrix}, \dots, \begin{bmatrix} C_n \\ B_n \end{bmatrix}, C_{n+1}$$

kde C_i říkáme centrální klauzule, C_0 je počáteční, $C_{n+1} = C$ je koncová, B_i jsou boční klauzule, a platí:

- $C_0 \in S$, pro $i \leq n$ je C_{i+1} rezolventou C_i a B_i ,
- $B_0 \in S$, pro $i \le n$ je $B_i \in S$ nebo $B_i = C_j$ pro nějaké j < i.

Lineární zamítnutí S je lineární důkaz \square z S.

Příklad a ekvivalence s rezolučním důkazem

Lineární zamítnutí $S = \{\{p,q\},\{p,\neg q\},\{\neg p,q\},\{\neg p,\neg q\}\}$:

Poslední boční klauzule $\{p\}$ není z S, ale je rovna předchozí centrální klauzuli.

Poznámka: C má lineární důkaz z S, právě když $S \vdash_R C$.

- \Rightarrow Z lineárního důkazu snadno vyrobíme rezoluční strom. Indukcí dle délky důkazu: máme-li boční klauzuli $B_i \notin S$, potom $B_i = C_j$ pro nějaké j < i: místo B_i připojíme rezoluční strom pro C_j z S.
- Plyne z úplnosti lineární rezoluce, důkaz najdete v učebnici.

LI-rezoluce

- lineární důkaz: boční klauzule je axiom nebo dřívější centrální
- co když požadujeme, aby boční klauzule byly pouze axiomy?
 Ll-rezoluce (linear-input)

LI-důkaz (rezolucí) klauzule C z formule S je lineární důkaz

$$\begin{bmatrix} C_0 \\ B_0 \end{bmatrix}, \begin{bmatrix} C_1 \\ B_1 \end{bmatrix}, \dots, \begin{bmatrix} C_n \\ B_n \end{bmatrix}, C$$

ve kterém je každá boční klauzule B_i axiom z S. Pokud LI-důkaz existuje, říkáme, že je C LI-dokazatelná z S, a píšeme $S \vdash_{LI} C$. Pokud $S \vdash_{LI} \Box$, je S LI-zamítnutelná.

- LI-důkaz odpovídá rezolučnímu stromu tvaru "chlupaté cesty"
- z toho plyne korektnost
- ztrácíme úplnost, ale hledání důkazů je snazší
- ukážeme úplnost pro Hornovy formule, je základem Prologu

Hornovy formule

- Hornova klauzule má nejvýše jeden pozitivní literál
- Hornova formule je množina Hornových klauzulí (i nekonečná)
- Fakt je pozitivní jednotková klauzule, např. {p}
- Pravidlo je klauzule s právě jedním pozitivním a alespoň jedním negativním literálem
- Pravidlům a faktům říkáme programové klauzule
- Cíl je neprázdná klauzule bez pozitivního literálu
- dokazujeme sporem: cíl je negací toho, co chceme dokázat (konjunkce faktů)

Pozorování: Je-li Hornova formule S nesplnitelná a $\square \notin S$, potom obsahuje fakt i cíl.

Důkaz: Neobsahuje-li fakt, ohodnotíme všechny proměnné 0; neobsahuje-li cíl, ohodnotíme 1.

Příklad konstrukce LI-zamítnutí

Ukážeme: $T = \{\{p, \neg r, \neg s\}, \{\neg q, r\}, \{q, \neg s\}, \{s\}\} \models p \land q$ Sestrojíme LI-zamítnutí $T \cup \{G\} \vdash_{LI} \Box$ pro cíl $G = \{\neg p, \neg q\}$.

V T najdeme fakt, a provedeme jednotkovou propagaci v $T \cup \{G\}$. Opakujeme, dokud není formule prázdná:

- $T = \{ \{p, \neg r, \neg s\}, \{\neg q, r\}, \{q, \neg s\}, \{s\} \}, G = \{\neg p, \neg q\}$
- $T^s = \{\{p, \neg r\}, \{\neg q, r\}, \{q\}\}, G^s = \{\neg p, \neg q\}$
- $T^{sq} = \{\{p, \neg r\}, \{r\}\}, G^{sq} = \{\neg p\}$
- $T^{sqr} = \{\{p\}\}, G^{sqr} = \{\neg p\}$
- $T^{sqrp} = \emptyset$, $G^{sqrp} = \square$

To, že vždy najdeme fakt, plyne z Pozorování pro $T \cup \{G\}$.

Nyní zpětným postupem sestrojíme Ll-zamítnutí, podobně jako v důkazu úplnosti rezoluce.

Konstrukce zamítnutí zpětným postupem

• T^{sqrp} , $G^{sqrp} \vdash_{LI} \square$:

■ T^{sqr} , $G^{sqr} \vdash_{LI} \square$:

• $T^{sq}, G^{sq} \vdash_{LI} \square$:

Konstrukce zamítnutí zpětným postupem – pokračování

• $T^s, G^s \vdash_{LI} \Box$:

$$\{\neg p, \neg q\}$$
 $\qquad \{\neg q, \neg r\}$ $\qquad \{\neg q\}$ $\qquad \Box$ $\{p, \neg r\}$ $\qquad \{q\}$

• $T, G \vdash_{LI} \Box$

$$\{\neg p, \neg q\} \longrightarrow \{\neg q, \neg r, \neg s\} \longrightarrow \{\neg q, \neg s\} \longrightarrow \{\neg s\} \longrightarrow [\neg s] \longrightarrow$$

Úplnost pro Hornovy formule

Věta (O úplnosti LI-rezoluce pro Hornovy formule): Je-li Hornova formule T splnitelná, a $T \cup \{G\}$ je nesplnitelná pro cíl G, potom $T \cup \{G\} \models_{LI} \square$, a to LI-zamítnutím, které začíná cílem G.

Důkaz: Opět lze díky Větě o kompaktnosti předpokládat, že T je konečná. Ll-zamítnutí sestrojíme indukcí podle počtu proměnných.

Z Pozorování víme, že T obsahuje fakt $\{p\}$. Protože $T \cup \{G\}$ je nesplnitelná, je dle Lemmatu o dosazení nesplnitelná i $(T \cup \{G\})^p = T^p \cup \{G^p\}$, kde $G^p = G \setminus \{\neg p\}$.

Všimněte si, že T^p je splnitelná. (Stejným ohodnocením jako T, neboť to musí obsahovat p kvůli faktu $\{p\}$, tedy neobsahuje $\neg p$.)

Zároveň má T^p méně proměnných než T. Je-li G^p cíl, využijeme indukčního předpokladu (následující slide). Co když ale G^p není cíl?

Dokončení důkazu

Není-li G^p cíl, nutně $G^p = \square$ a $G = \{ \neg p \}$. Potom je \square rezolventou G a faktu $\{ p \} \in T$, a máme jednokrokové Ll-zamítnutí $T \cup \{ G \}$. (To dává i bázi indukce.)

Je-li G^p cíl, dle indukčního předpokladu existuje Ll-odvození \square z $T^p \cup \{G^p\}$ začínající $G^p = G \setminus \{\neg p\}$.

Hledané Ll-zamítnutí $T \cup \{G\}$ začínající G zkonstruujeme (podobně jako v důkazu Věty o úplnosti rezoluce):

- Přidáme literál $\neg p$ do všech listů, které už nejsou v $T \cup \{G\}$ (vznikly odebráním $\neg p$), a do všech vrcholů nad nimi.
- Tím získáme $T \cup \{G\} \models_{LI} \neg p$.
- Na závěr přidáme boční klauzuli $\{p\}$ a odvodíme \square .

Program v Prologu

síla Prologu vychází z unifikace a rezoluce v predikátové logice, nyní si ale ukážeme příklad výrokového programu:

- program v Prologu je Hornova formule obsahující pouze programové klauzule, tj. fakta nebo pravidla
- dotaz je konjunkce faktů, negace dotazu je cíl

Např. program
$$\{\{p, \neg r, \neg s\}, \{\neg q, r\}, \{q, \neg s\}, \{s\}\}, \text{ dotaz } p \land q$$

- klauzule $\{p, \neg r, \neg s\}$ je ekvivalentní $r \land s \rightarrow p$, píšeme p:-r,s.
- výsledný program a dotaz:

```
p:-r,s.
r:-q.
q:-s.
s.
?-p,q.
```

Rezoluce v Prologu

Důsledek: Mějme program P a dotaz $Q = p_1 \wedge \cdots \wedge p_n$, a označme $G = \{ \neg p_1, \dots, \neg p_n \}$ (tj. $G \sim \neg Q$). Následující podmínky jsou ekvivalentní:

- (i) $P \models Q$,
- (ii) $P \cup \{G\}$ je nesplnitelná,
- (iii) $P \cup \{G\} \vdash_{LI} \square$, a existuje Ll-zamítnutí začínající cílem G.

Důkaz:

- (i)⇔(ii) Věta o důkazu sporem
- (ii)⇔(iii) Věta o úplnosti Ll-rezoluce pro Hornovy formule (Program je vždy splnitelný)

ČÁST II – PREDIKÁTOVÁ LOGIKA

SÉMANTIKA PREDIKÁTOVÉ LOGIKY

KAPITOLA 6: SYNTAXE A

6.1 Úvod

Predikátová logika neformálně

Výroková logika: popis světa pomocí výroků složených z prvovýroků (výrokových proměnných) – bitů informace

Predikátová logika [prvního řádu]:

- základní stavební kámen jsou proměnné reprezentující individua – nedělitelné objekty z nějaké množiny (např. přirozená čísla, vrcholy grafu, stavy mikroprocesoru)
- tato individua mají určité vlastnosti a vzájemné vztahy (relace), kterým říkáme predikáty
 - Leaf(x) nebo Edge(x, y) mluvíme-li o grafu
 - $x \le y$ v přirozených číslech
- a mohou vstupovat do funkcí
 - lowest_common_ancestor(x, y) v zakořeněném stromu
 - $\operatorname{succ}(x)$ nebo x + y v přirozených číslech
- a mohou být konstantami se speciálním významem, např.
 root v zakořeněném stromu, 0 v tělese.

Syntaxe neformálně

- atomické formule: predikát (včetně rovnosti =) o proměnných nebo o termech ('výrazy' složené z funkcí popř. konstant)
- formule jsou složené z atomických formulí pomocí logických spojek, a dvou kvantifikátorů:

 $\forall x$ "pro všechna individua (reprezentovaná proměnnou x)" $\exists x$ "existuje individuum (reprezentované proměnnou x)"

Např. "Každý, kdo má dítě, je rodič." lze formalizovat takto:

$$(\forall x)((\exists y)\text{child_of}(y,x) \to \text{is_parent}(x))$$

- child_of(y,x) je binární predikát vyjadřující, že individuum reprezentované proměnnou y je dítětem individua reprezentovaného proměnnou x
- is_parent(x) je unární predikát vyjadřující, že individuum reprezentované x je rodič

Sémantika neformálně

$$(\forall x)((\exists y)\text{child_of}(y,x) \rightarrow \text{is_parent}(x))$$

Platnost? Záleží na modelu světa/systému, který nás zajímá:

Model je...

- (neprázdná) množina individuí, spolu
- s binární relací interpretující binární relační symbol child_of, a
- s unární relací (tj. podmnožinou) interpretující unární relační symbol is_parent

Obecně mohou být relace jakékoliv, snadno sestrojíme model, ve kterém formule neplatí, např.

$$\mathcal{A} = \langle \{0,1\}, \{(0,0), (0,1), (1,0), (1,1)\}, \emptyset \rangle$$

Příklad s funkcemi a konstantami

"Je-li $x_1 \le y_1$ a $x_2 \le y_2$, potom platí $(y_1 \cdot y_2) - (x_1 \cdot x_2) \ge 0$." $\varphi = (x_1 \le y_1) \land (x_2 \le y_2) \rightarrow ((y_1 \cdot y_2) + (-(x_1 \cdot x_2)) \ge 0)$

- dva binární relační symboly (≤,≥), binární funkční symbol +, unární funkční symbol −, a konstantní symbol 0
- model, ve kterém φ platí: $\mathbb N$ s binárními relacemi $\leq^{\mathbb N}, \geq^{\mathbb N}$, bin. funkcemi $+^{\mathbb N}, \cdot^{\mathbb N}$, unární funkcí $-^{\mathbb N}$, a konstantou $0^{\mathbb N}=0$
- vezmeme-li ale podobně množinu \mathbb{Z} , φ už platit nebude

Poznámky:

- mohli bychom chápat '-' jako binární, obvykle ale bývá unární
- pro konstantní symbol 0 používáme (jak je zvykem) stejný symbol, jako pro přirozené číslo 0. Ale pozor, v našem modelu může být symbol 0 interpretován jako jiné číslo, nebo náš model vůbec nemusí sestávat z čísel!

Ještě o syntaxi

$$\varphi = (x_1 \leq y_1) \land (x_2 \leq y_2) \rightarrow ((y_1 \cdot y_2) + (-(x_1 \cdot x_2)) \geq 0)$$

- ullet φ nemá žádné kvantifikátory, tj. je otevřená
- x_1, x_2, y_1, y_2 jsou volné proměnné této formule (nejsou vázané žádným kvantifikátorem), píšeme $\varphi(x_1, x_2, y_1, y_2)$
- sémantiku φ chápeme stejně jako $(\forall x_1)(\forall x_2)(\forall y_1)(\forall y_2)\varphi$
- používáme konvence (infixový zápis, vynechání závorek), jinak:

$$\varphi = ((\leq (x_1, y_1) \land \leq (x_2, y_2)) \rightarrow \leq (+(\cdot (y_1, y_2), -(\cdot (x_1, x_2))), 0))$$

ullet cvičení: definujte strom formule, nakreslete ho pro arphi

Termy vs. atomické formule

$$\varphi = (x_1 \leq y_1) \land (x_2 \leq y_2) \rightarrow ((y_1 \cdot y_2) + (-(x_1 \cdot x_2)) \geq 0)$$

- výraz $(y_1 \cdot y_2) + (-(x_1 \cdot x_2))$ je term
- výrazy $(x_1 \le y_1)$, $(x_2 \le y_2)$ a $((y_1 \cdot y_2) + (-(x_1 \cdot x_2)) \ge 0)$ jsou (všechny) atomické (pod)formule φ

V čem je rozdíl? Máme-li konkrétní model, a konkrétní ohodnocení proměnných individui (prvky) tohoto modelu:

- výsledkem termu (při daném ohodnocení proměnných) je konkrétní individuum z modelu, zatímco
- atomickým formulí lze přiřadit pravdivostní hodnotu (a tedy kombinovat je logickými spojkami)

6.2 Struktury

Signatura

- specifikuje jakého typu bude daná struktura, tj. jaké má relace, funkce (jakých arit) a konstanty, a symboly pro ně
- konstanty lze chápat jako funkce arity 0, tj. funkce bez vstupů

Signatura je dvojice $\langle \mathcal{R}, \mathcal{F} \rangle$, kde \mathcal{R}, \mathcal{F} jsou disjunktní množiny symbolů (relační a funkční, ty zahrnují konstantní) spolu s danými aritami (tj. danými funkcí $\operatorname{ar}: \mathcal{R} \cup \mathcal{F} \to \mathbb{N}$) a neobsahující symbol '=' (ten je rezervovaný pro rovnost).

- často zapíšeme jen výčtem symbolů, jsou-li arity a zda jsou relační nebo funkční zřejmé
- kromě běžně používaných symbolů typicky používáme:
 - pro relační symboly P, Q, R, . . .
 - pro funkční (nekonstantní) symboly f, g, h, . . .
 - pro konstantní symboly c, d, a, b, . . .

Příklady signatur

- $\langle E \rangle$ signatura grafů: E je binární relační symbol (struktury jsou uspořádané grafy)
- <
 signatura částečných uspořádání: stejná jako signatura grafů, jen jiný symbol (ne každá struktura v této signatuře je částečné uspořádání! k tomu musí splňovat příslušné axiomy)
- $\langle +, -, 0 \rangle$ signatura grup: + je binární funkční, unární funkční, 0 konstantní symbol
- $\langle +, -, 0, \cdot, 1 \rangle$ signatura těles: · je binární funkční, 1 konstantní symbol
- $\langle +, -, 0, \cdot, 1, \leq \rangle$ signatura uspořádaných těles: \leq je binární relační symbol
- $\langle -, \wedge, \vee, \perp, \top \rangle$ signatura Booleových algeber: \wedge, \vee jsou binární funkční, \perp, \top jsou konstantní symboly
- $\langle S, +, \cdot, 0, \leq \rangle$ signatura aritmetiky: S je unární funkční symbol

Struktury

Strukturu dané signatury získáme tak, že:

- zvolíme neprázdnou doménu, a na ní
- zvolíme realizace (také říkáme interpretace) všech relačních a funkčních symbolů (včetně konstantních)
- to znamená konkrétní relace resp. funkce příslušných arit
- realizací konstantního symbolu je zvolený prvek z domény
- na tom, jaké konkrétní symboly jsou v signatuře nezáleží (např. + neznamená, že realizace musí souviset se sčítáním)

Příklady struktur 1/3

- Struktura v prázdné signatuře () je libovolná neprázdná množina. (Nemusí být konečná, ani spočetná! Formálně to bude trojice (A, Ø, Ø), ale rozdíl zanedbáme.)
- Struktura v signatuře grafů je $\mathcal{G} = \langle V, E \rangle$, kde $V \neq \emptyset$ a $E \subseteq V^2$, říkáme jí orientovaný graf.
 - je-li E ireflexivní a symetrická, je to jednoduchý graf
 - je-li E reflexivní, tranzitivní, a antisymetrická, jde o částečné uspořádání
 - je-li *E* reflexivní, tranzitivní, a symetrická, je to ekvivalence
- Struktury v signatuře částečných uspořádání jsou tytéž, jako v signatuře grafů, signatury se liší jen symbolem. (Ne každá struktura v signatuře částečných uspořádání je č. uspořádání!)

Příklady struktur 2/3

Struktury v signatuře grup jsou například následující grupy:

- $\underline{\mathbb{Z}_n} = \langle \mathbb{Z}_n, +, -, 0 \rangle$, aditivní grupa celých čísel modulo n (operace jsou modulo n).
 - **Poznámka:** $\underline{\mathbb{Z}}_n$ znamená strukturu, zatímco \mathbb{Z}_n jen její doménu. Často se to ale nerozlišuje a \mathbb{Z}_n se používá i pro strukturu. Podobně +,-,0 jsou jak symboly, tak interpretace.
- $S_n = \langle \operatorname{Sym}_n, \circ, ^{-1}, \operatorname{id} \rangle$ je symetrická grupa (grupa všech permutací) na n prvcích.
- $\mathbb{Q}^* = \langle \mathbb{Q} \setminus \{0\}, \cdot, ^{-1}, 1 \rangle$ je multiplikativní grupa (nenulových) racionálních čísel. (Interpretací symbolu 0 je číslo 1!)

Všechny tyto struktury splňují axiomy teorie grup, snadno ale najdeme jiné, které axiomy nesplňují, nejsou tedy grupami.

Příklady struktur 3/3

- Struktury $\underline{\mathbb{Q}} = \langle \mathbb{Q}, +, -, 0, \cdot, 1, \leq \rangle$ a $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, -, 0, \cdot, 1, \leq \rangle$ (se standardními operacemi a uspořádáním) jsou v signatuře uspořádaných těles (ale jen první z nich je uspořádané těleso).
- $\underline{\mathcal{P}(X)} = \langle \mathcal{P}(X), \bar{,} \cap, \cup, \emptyset, X \rangle$, tzv. potenční algebra nad množinou X, je struktura v signatuře Booleových algeber. (Booleova algebra je to pokud $X \neq \emptyset$.)
- $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$, kde S(x) = x + 1, a ostatní symboly jsou realizovány standardně, je standardní model aritmetiky.

Definice struktury

Struktura v signatuře $\langle \mathcal{R}, \mathcal{F} \rangle$ je trojice $\mathcal{A} = \langle \mathcal{A}, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$, kde

- A je neprázdná množina, říkáme jí doména (také univerzum),
- $\mathcal{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathcal{R}\}$ kde $R^{\mathcal{A}} \subseteq A^{\operatorname{ar}(R)}$ je interpretace relačního symbolu R,
- $\mathcal{F}^{\mathcal{A}} = \{f^{\mathcal{A}} \mid f \in \mathcal{F}\}$ kde $f^{\mathcal{A}} \colon \mathcal{A}^{\operatorname{ar}(f)} \to \mathcal{A}$ je interpretace funkčního symbolu f (speciálně pro konstantní symbol $c \in \mathcal{F}$ máme $c^{\mathcal{A}} \in \mathcal{A}$).

Příklad: rozmyslete si, jak vypadají struktury v signatuře n konstant $\langle c_1, c_2, \dots, c_n \rangle$? Popište všechny 5-prvkové v signatuře 3 konstant.

6.3 Syntaxe

Jazyk

Jazyk je daný signaturou a informací, zda je s rovností nebo ne.

Tj. specifikujeme 'typ' modelů a zda můžeme používat symbol '=' interpretovaný jako identita prvků z domény; většinou to dovolíme. (Je-li jazyk bez rovnosti, musí mít signatura relační symbol. Proč?)

Do jazyka patří:

- spočetně mnoho proměnných x₀, x₁, x₂,... (píšeme také x, y, z,...; množinu všech proměnných označíme Var)
- relační, funkční a konstantní symboly ze signatury, symbol = jde-li o jazyk s rovností (to jsou 'mimologické' symboly)
- univerzální a existenční kvantifikátory $(\forall x), (\exists x)$ pro každou proměnnou $x \in Var$ (kvantifikátor ' $(\forall x)$ ' chápeme jako jediný symbol, tj. neobsahuje proměnnou x)
- symboly pro log. spojky $\neg, \land, \lor, \rightarrow, \leftrightarrow$, závorky (,), a čárka ','

Jazyk: příklady

- Jazyk L = ⟨⟩ s rovností je jazyk čisté rovnosti
- jazyk L = \langle c_0, c_1, c_2, ... \rangle s rovností je jazyk spočetně mnoha konstant
- jazyk uspořádání je ⟨≤⟩ s rovností
- jazyk teorie grafů je ⟨E⟩ s rovností
- jazyky teorie grup, teorie těles, teorie uspořádaných těles, Booleových algeber, aritmetiky jsou jazyky s rovností odpovídající daným signaturám

Termy

čistě syntaktické 'výrazy' z proměnných, konstantních symbolů, funkčních symbolů, závorek a čárek

Termy jazyka *L* jsou konečné nápisy definované induktivně:

- každá proměnná a každý konstantní symbol z L je term,
- je-li f funkční symbol z L arity n a jsou-li t_1, \ldots, t_n termy, potom nápis $f(t_1, t_2, \ldots, t_n)$ je také term.

Množinu všech termů jazyka L označíme Term $_L$.

- podterm je podřetězec, který je sám termem
- term bez proměnných je konstantní (ground), např. $((S(0) + S(0)) \cdot S(S(0)))$ v jazyce aritmetiky
- termy nesmí obsahovat prvky struktury, jen symboly z jazyka
- $(1+1) \cdot 2$ není term, ledaže rozšíříme jazyk o symboly 1 a 2
- jako lidé můžeme použít infixový zápis, např. $(t_1 + t_2)$ místo $+(t_1, t_2)$, vynechat závorky je-li struktura termu zřejmá

Strom termu

Strom termu t, Tree(t): v listech proměnné nebo konst. symboly, ve vnitřních vrcholech funkční symboly (arita je rovna počtu synů)

- symboly ¬, ∧, ∨ nejsou logické, ale mimologické ze signatury
- sémantika: proměnné ohodnotíme prvky, konst. a funkční symboly nahradíme interpretacemi, výsledek je prvek z domény

Atomické formule

Termům nelze přiřadit pravdivostní hodnotu, potřebujeme predikát (relační symbol nebo =), který mluví o 'vztahu' termů: v dané struktuře při ohodnocení proměnných prvky je buď splněn, nebo ne.

Formule ('tvrzení o strukturách') skládáme z atomických formulí pomocí logických spojek a kvantifikátorů:

Atomická formule jazyka L je nápis $R(t_1, \ldots, t_n)$, kde R je n-ární relační symbol z L (včetně = jde-li o jazyk s rovností) a $t_i \in \mathsf{Term}_L$.

- R(f(f(x)), c, f(d)) kde R je ternární relační, f unární funkční, c, d konstantní symboly
- Infixový zápis $\leq (x,y)$, $= (t_1,t_2)$ píšeme jako $x \leq y$, $t_1 = t_2$
- $(x \cdot x) + (y \cdot y) \le (x + y) \cdot (x + y)$ v jazyce uspořád. těles
- $x \cdot y \le (S(0) + x) \cdot y$ v jazyce aritmetiky
- $\neg(x \land y) \lor \bot = \bot$ v jazyce Booleových algeber

Formule

Formule jazyka *L* jsou konečné nápisy definované induktivně:

- každá atomická formule jazyka L je formule,
- je-li φ formule, potom $(\neg \varphi)$ je také formule
- jsou-li φ, ψ formule, potom $(\varphi \square \psi)$ pro $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ jsou také formule
- je-li φ formule a x proměnná, potom $((Qx)\varphi)$ pro $Q \in \{\forall, \exists\}$ jsou také formule
- podformule je podřetězec, který je sám formulí
- při zápisu formulí jako lidé používáme obvyklé konvence
- kvantifikátory mají stejnou prioritu jako ¬, vyšší než ostatní logické spojky! místo $((\forall x)\varphi)$ píšeme $(\forall x)\varphi$
- pozor, $(\forall x)\varphi \wedge \psi$ neznamená totéž, co $(\forall x)(\varphi \wedge \psi)!$
- někde uvidíte $\forall x \varphi$ nebo $\forall_x \varphi$, my ale budeme psát jen $(\forall x) \varphi$

Strom formule

Příklad:
$$(\forall x)(x \cdot y \leq (S(0) + x) \cdot y)$$

Strom formule, Tree(φ):

- strom atomické formule R(t₁,..., t_n):
 v kořeni R, připojíme stromy Tree(t_i)
- pro složené formule podobně jako ve výrokové logice
- kvantifikátory mají jediného syna

Volné a vázané proměnné

Význam formule (pravdivostní hodnota) může/nemusí záviset na proměnných v ní: $x \le 0$ vs. $(\exists x)(x \le 0)$ vs. $x \le 0 \lor (\exists x)(x \le 0)$

- výskyt x ve φ : list Tree (φ) označený x [v (Qx) nemá výskyt!]
- vázaný: součástí podformule začínající (Qx), jinak volný
- ullet x je volná ve arphi má-li volný výskyt, vázaná má-li vázaný výskyt
- zápis $\varphi(x_1,\ldots,x_n)$ znamená, že mezi x_1,\ldots,x_n jsou všechny volné proměnné ve formuli φ

Proměnná může být volná i vázaná, např.:

$$\varphi = (\forall x)(\exists y)(x \le y) \lor x \le z$$

- první výskyt x je vázaný a druhý volný (nakreslete si strom!)
- y je vázaná a z je volná, můžeme tedy psát $\varphi(x,z)$

Otevřené a uzavřené formule

otevřená formule: nemá žádný kvantifikátor uzavřená formule (sentence): nemá žádnou volnou proměnnou

- $x + y \le 0$ je otevřená formule
- $(\forall x)(\forall y)(x+y\leq 0)$ je uzavřená formule neboli sentence
- $(\forall x)(x+y\leq 0)$ není ani otevřená, ani uzavřená
- $(0+1=1) \wedge (1+1=0)$ je otevřená i uzavřená
- atomické formule je otevřená, otevřené formule jsou kombinace atomických pomocí logických spojek
- je-li formule otevřená i uzavřená potom nemá žádné proměnné (všechny termy v ní jsou konstantní)
- formule bez vázané proměnné není nutně otevřená! $(\forall x)0=1$

Uvidíme, že pravdivostní hodnota závisí jen na ohodnocení volných proměnných; sentence mají ve struktuře pravdiv. hodnotu 0 nebo 1

Instance a varianty: neformálně

- proměnná může hrát různé 'role' ('lokální' vs. 'globální')
- instance: 'dosazení' do 'globální' proměnné (lépe 'nahrazení' proměnné nějakým termem, který ji počítá, čistě syntaktické!)
- varianta: 'přejmenování' 'lokální' proměnné

$$P(x) \wedge (\forall x)(Q(x) \wedge (\exists x)R(x))$$

- první výskyt x je volný, 2. je vázaný $(\forall x)$, 3. je vázaný $(\exists x)$
- pokud substituujeme za proměnnou x term t=1+1, dostáváme instanci formule φ , kterou označíme $\varphi(x/t)$:

$$P(1+1) \wedge (\forall x)(Q(x) \wedge (\exists x)R(x))$$

• přejmenujeme-li kvantifikátory, získáme variantu formule φ :

$$P(x) \wedge (\forall y)(Q(y) \wedge (\exists z)R(z))$$

Kdy a jak to lze, aby instance byla důsledek a varianta ekvivalentní?

Instance

Substituujeme-li do φ za x term t, chceme aby výsledná formule 'říkala o t totéž, co φ o x'. Např. $\varphi(x) = (\exists y)(x + y = 1)$

- říká o x, že 'existuje 1 x'
- term t=1 lze: $\varphi(x/t)=(\exists y)(1+y=1)$ říká 'existuje 1-1'
- term t = y nelze: $(\exists y)(y + y = 1)$ říká '1 je dělitelné 2' **problém:** obsahuje y, po nahrazení bude nově vázané $(\exists y)$

Term t je substituovatelný za proměnnou x ve formuli φ , pokud po simultánním nahrazení všech volných výskytů x za t nevznikne žádný vázaný výskyt proměnné z t. Potom je vzniklá formule instance φ vzniklá substitucí t za x, $\varphi(x/t)$.

- t není substituovatelný za x do φ, právě když x má volný výskyt v nějaké podformuli φ tvaru (Qy)ψ a y se vyskytuje v t
- speciálně: konstantní termy jsou vždy substituovatelné

Varianta

Substituovat t můžeme vždy do varianty φ , ve které přejmenujeme všechny kvantifikované proměnné na nové (které nejsou v t ani φ)

Má-li formule φ podformuli tvaru $(Qx)\psi$ a je-li y proměnná, že

- (i) y je substituovatelná za x do ψ , a
- (ii) y nemá volný výskyt v ψ .

Varianta φ vznikne nahrazením $(Qx)\psi$ formulí $(Qy)\psi(x/y)$, říkáme tak i výsledku postupné variace ve více podformulích.

Mějme $\varphi = (\exists x)(\forall y)(x \leq y)$:

- $(\exists u)(\forall v)(u \leq v)$ je varianta φ
- $(\exists y)(\forall y)(y \leq y)$ není varianta kvůli (i): y není substituovatelná za x do $\psi = (\forall y)(y \leq y)$
- $(\exists x)(\forall x)(x \le x)$ není varianta kvůli (ii): x má volný výskyt v $\psi = (x \le y)$