Prof. Fernando Lizarralde (1° semestre de 2019)

Modelagem de Sistemas Dinâmicos Trabalho N° 1

Considere um motor de corrente continua (DC) controlado por corrente de armadura com entrada de tensão $V_a(t)$ (V), saídas de posição angular $\theta_m(t)$ (rad) e velocidade angular $\omega_m(t)$ (rad/s), representado pelo circuito abaixo:

O motor considerado tem as seguintes característica dadas pelo fabricante:

• Resistência de armadura: $R_a = 10.6 \ \Omega$

• Indutância de armadura: $L_a = 0.82 \ mH$

 $\bullet\,$ Momento de Inércia do Rotor do Motor: $J_m=1.16~10^{-6}~kgm^2$

• Constantes do Motor: $K_m = 0.0502 \ Nm/A$

• Tensão máxima: 15 volts

• Massa do disco de inércia: 0.068 kg

 $\bullet\,$ Raio do disco de inércia: 0.0248 m

1 Modelagem Teórica

- Monte um diagrama de blocos do sistema explicitando os subsitemas elétricos e mecânicos. Desconsidere o atrito do sistema.
- 2. Calcular a função de transferência do motor G(s) de $V_a(s)$ para $\Omega_m(s)$ (velocidade angular).
- 3. Represente o sistema no espaço de Estados
- 4. Calcule o momento de inércia do disco (feito de aluminio) e determine o momento de inércia total (rotor e disco).

5. Considerado que a função de transferência G(s) tenha a seguinte estrutura:

$$G(s) = \frac{K}{(\tau_e s + 1) (\tau s + 1)}$$

Determine as variáveis K, τ_e e τ . A variável τ_e é a constante de tempo elétrica, que é determinada considerando que o eixo do motor esta parado. A constante de tempo τ_e pode ser considerada despressível comparada com τ ?.

- 6. Considerando que não existe perturbação nem atrito, determine a velocidade máxima do motor ω_{max} .
- 7. Determine a corrente máxima do motor I_{max} e o máximo torque gerado T_{max} .

2 Identificação Experimental

- 1. Determine experimentalmente no kit QET da Quanser, de forma estatística, as constantes utilizadas como parâmetros na modelagem teórica:
 - (a) A resistência de armadura R_a . Isto pode ser realizado aplicando voltagem constante V_a e medindo a corrente I_a enquanto se mantém o eixo do motor parado.
 - (b) A constante de torque do motor K_m . Isto pode ser realizado aplicando voltagem constante V_a e medindo corrente e velocidade. Considera-se que a resistencia de armadura é conhecida. Qual é o efeito da inércia da carga na determinação desta constante?.
- 2. Determine a função de transferência do sistema com os novos parâmetros, $\hat{G}(s)$.
- 3. Com esses parâmetros, defina \hat{K} e $\hat{\tau}$, tal que:

$$\hat{G}(s) = \frac{\hat{K}}{\hat{\tau}s + 1}$$

3 Validação dos modelos

- 1. Obtenha experimentalmente, através da resposta ao degrau, as constante K_r e τ_r reais do sistema.
- 2. Compare com o modelo teórico e valide-o.
- 3. Compare com o modelo experimental e valide-o.

4 Relatórios

Apresente um relatório que descreva a metodologia de projeto, gráficos das respostas, discussão dos problemas encontrados e conclusões.

O relatório esta limitado a 10 páginas de uma coluna ou 5 páginas de duas colunas, incluindo os gráficos.