Week 02 Version control

Open and reproducible science: dependable computations and statistics

Homework - solution

4 - R Markdown

4.3

4.3.1

Print the summary of the penguins dataset from the palmerpenguins R package using knitr::kable. How many observations are there? How many different species of penguins?

```
library(palmerpenguins)
library(ggplot2)
```

knitr::kable(summary(penguins))

species	island	bill_length_	_mbmill_depth_	_nflipper_length	_bmdy_mass	s_s g x	year
Adelie	Biscoe	Min.	Min.	Min. :172.0	Min.	female:165	Min.
:152	:168	:32.10	:13.10		:2700		:2007
Chinstrap:	Dream	1st	1st	1st Qu.:190.0	1st	male	1st
68	:124	Qu.:39.23	Qu.:15.60		Qu.:3550	:168	Qu.:2007
Gentoo	Torgersen:	Median	Median	Median	Median	NA's:	Median
:124	52	:44.45	:17.30	:197.0	:4050	11	:2008
NA	NA	Mean	Mean	Mean $:200.9$	Mean	NA	Mean
		:43.92	:17.15		:4202		:2008
NA	NA	3rd	3rd	3rd	3rd	NA	3rd
		Qu.:48.50	Qu.:18.70	Qu.:213.0	Qu.:4750		Qu.:2009
NA	NA	Max.	Max.	Max. :231.0	Max.	NA	Max.
		:59.60	:21.50		:6300		:2009
NA	NA	NA's :2	NA's :2	NA's :2	NA's :2	NA	NA

4.3.2

Order the dataset by bill_length_mm (ascending) and print the top 7 lines and the bottom 4 lines using knitr::kable.

```
penguins_ordered <- dplyr::arrange(penguins, bill_length_mm)
knitr::kable(rbind(head(penguins_ordered,n=7),tail(penguins_ordered,n=4)))</pre>
```

species	island	bill_length_mm bill	$_ ext{depth}_ ext{mmflipper}$	_length_mmbody	_mass_	_gsex	year
Adelie	Dream	32.1	15.5	188	3050	female	2009
Adelie	Dream	33.1	16.1	178	2900	female	2008
Adelie	Torgersen	33.5	19.0	190	3600	female	2008
Adelie	Dream	34.0	17.1	185	3400	female	2008
Adelie	Torgersen	34.1	18.1	193	3475	NA	2007
Adelie	Torgersen	34.4	18.4	184	3325	female	2007
Adelie	Biscoe	34.5	18.1	187	2900	female	2008
Chinstrap	Dream	58.0	17.8	181	3700	female	2007
Gentoo	Biscoe	59.6	17.0	230	6050	$_{\mathrm{male}}$	2007
Adelie	Torgersen	NA	NA	NA	NA	NA	2007
Gentoo	Biscoe	NA	NA	NA	NA	NA	2009

4.3.3

Do a scatter plot (using the package ggplot2) of $bill_length_mm$ (x-axis) vs. $bill_depth_mm$ (y-axis).

```
ggplot(penguins) +
geom_point(aes(bill_length_mm,bill_depth_mm,color=species))
```

Warning: Removed 2 rows containing missing values (geom_point).

4.3.4

Fit a linear model (use lm) with bill_length_mm as a predictor and bill_depth_mm as the response. Add the fitted linear relationship to the plot from the previous exercise and display the new plot. Is there an association between bill_length_mm and bill_depth_mm? What is the sign of the slope?

```
lmfit1 <- summary(lm(bill_depth_mm ~ bill_length_mm, penguins))</pre>
lmfit1
##
## Call:
## lm(formula = bill_depth_mm ~ bill_length_mm, data = penguins)
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -4.1381 -1.4263 0.0164 1.3841 4.5255
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
                 20.88547
                              0.84388 24.749 < 2e-16 ***
## (Intercept)
## bill_length_mm -0.08502
                              0.01907 -4.459 1.12e-05 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 1.922 on 340 degrees of freedom
     (2 observations deleted due to missingness)
## Multiple R-squared: 0.05525,
                                    Adjusted R-squared: 0.05247
## F-statistic: 19.88 on 1 and 340 DF, p-value: 1.12e-05
ggplot(penguins) +
 geom_point(aes(bill_length_mm,bill_depth_mm)) +
 geom_smooth(aes(bill_length_mm,bill_depth_mm),method = "lm", se = FALSE)
## 'geom_smooth()' using formula 'y ~ x'
## Warning: Removed 2 rows containing non-finite values (stat_smooth).
```

Warning: Removed 2 rows containing missing values (geom_point).

4.3.5
Color the points from the plot from the previous plot according to species. Describe your observations.

```
ggplot(penguins) +
  geom_point(aes(bill_length_mm,bill_depth_mm,color=species)) +
  geom_smooth(aes(bill_length_mm,bill_depth_mm),method = "lm", se = FALSE)

## 'geom_smooth()' using formula 'y ~ x'

## Warning: Removed 2 rows containing non-finite values (stat_smooth).

## Warning: Removed 2 rows containing missing values (geom_point).
```


4.3.6

Add species as a predictor to your model and replot the previous plot with the new regression lines (there should be three, one for each species). Is there an association between bill_length_mm and bill_depth_mm? What is the sign of the slope?

```
lmfit2 <- summary(lm(bill_depth_mm ~ bill_length_mm + species, penguins))
ggplot(penguins) +
   geom_point(aes(bill_length_mm,bill_depth_mm,color=species)) +
   geom_smooth(aes(bill_length_mm,bill_depth_mm,color=species),method = "lm", se = FALSE)

## 'geom_smooth()' using formula 'y ~ x'

## Warning: Removed 2 rows containing non-finite values (stat_smooth).

## Warning: Removed 2 rows containing missing values (geom_point).</pre>
```

