EC441: Lab 7

Daniel Andronov

Friday $2^{\rm nd}$ December, 2016

7.0 Prelab

	Step	N	t	u	v	w	у	\mathbf{z}
Question 5.3	0	X	-	ı	3,x	6,x	6,x	8,x
	1	x,w	-	9,w	3,x	6,x	$_{6,x}$	8,x
	2	x,w,u	11,u	9,w	3,x	6,x	$_{6,x}$	8,x
	3	x,w,u,t	$_{7,\mathrm{v}}$	9,w	3,x	6,x	$_{6,x}$	8,x
	4	x,w,u,t,v	$_{7,\mathrm{v}}$	9,w	3,x	6,x	$_{6,x}$	8,x
	5	x,w,u,t,v,y	$_{7,\mathrm{v}}$	9,w	3,x	6,x	6,x	8,x
	6	x,w,u,t,x,y,z	7,v	9,w	3,x	6,x	6,x	8,x

 $\begin{array}{c|cccc} & Dest & Cost & Next Hop \\ \hline u & 6 & x \\ \hline Question 5.5 & v & 5 & x \\ x & 2 & x \\ y & 2 & x \\ \end{array}$

Question 5.7

Part b) The link between x & w goes down

Part c) The cost of the link between x & y goes to 6.

Question 6.8

Part a) Utility, $U = Np(1-p)^{N-1}$. To find the optimal p, find the derivative of U with respect to p and solve for p when it is equal to 0. So,

$$\frac{dU}{dp} = N(1-p)^{N-1} - N(N-1)p(1-p)^{N-2}$$

Then, when $\frac{dU}{dp} = 0$

$$N(1-p)^{N-1} = N(N-1)p(1-p)^{N-2}$$

$$1-p = (N-1)p$$

$$1 = Np$$

$$p = 1/N$$

Thus, the optimal value for p is $\frac{1}{N}$.

Part b)

$$U(1/N) = (1 - \frac{1}{N})^{N-1}$$

Now, taking the limit as $N \to \infty$,

$$\lim_{N \to \infty} (1 - \frac{1}{N})^{N-1} = \frac{1}{e}$$

Using the fact that $\lim_{N\to\infty} (1-\frac{1}{N})^N = 1/e$.

Question 6.10

Part a) Let P[S] represent the probability that a given time slot is successful. Then,

$$P[S] = P[\text{only A or B is successful}]$$

$$= (1 - p_A)p_A + (1 - p_A)p_A$$

$$= p_A - p_B p_A + p_B - p_A p_B$$

$$= p_A + p_B - 2p_A p_B.$$

Part b) Let P[A] be the probability that for a given time slot, A is successfully sent. Thus, $P[A] = (1 - p_B)p_A$ and $P[B] = (1 - p_A)p_B$. Then we can show that the ratio of P[A] to P[B] is less than 2.

$$\frac{P[A]}{P[B]} = \frac{(1 - p_B)p_A}{(1 - p_A)p_B}, let p_A = 2p_B$$

$$= \frac{1 - p_B)2p_B}{(1 - 2p_B)p_B}$$

$$= 2\frac{1 - p_B}{1 - 2p_B}.$$

 $2\frac{1-p_B}{1-2p_B} < 2$ because $\frac{1-p_B}{1-2p_B}$ is less than one.

If
$$\frac{P[A]}{P[B]} = 2$$
, then,

$$2 = \frac{(1 - p_B)p_A}{(1 - p_A)p_B}$$

$$2(1 - p_A)p_B = p_A - p_A p_B$$

$$2p_B = p_A + p_A p_B$$

$$0 = p_A + p_A p_B - 2p_B$$

$$0 = 1 + p_B - 2\frac{p_A}{p_B}$$

$$\frac{p_A}{p_B} = \frac{1 + p_B}{2}$$

Thus p_A and p_B should be chosen so that their ratio is $\frac{1+p_B}{2}$.

Additional Question 1

Part a) If the link from B to C fails, B will send an update to A. A will get an update from B and see that it is an update from the next hop, and send an update back to B, with a cost of 2. B will get this update and and send an update to A about its increase cost. This update will cause A to update and repeat the process.

Part b) Probability is 1.

Part c) Probability is 1.

Additional Question 2 At t_1 C will send out a triggerd update to A and B notifiying them about the topology change, both with sequence numbers 1. A will then send a packet to B and vice versa, both packets having sequence numbers 1. Also at t_1 , D will send an update to E, telling about the link failure, with sequence number of 1. When the link is restored at t_2 , C and D will sent out lsp's to their neighbors, all with a sequence number of 1, and the same sequence of events will occur as before.

7.1 Static Routing

Question 1 The route does not change because static routing tables do not change.

Question 2 The route does not change because static routing tables do not change.

7.2 Distance Vector Routing

Question 3 Row 0 in the table has the following elements: 0, 1, 1, 1, 6, 6, 6. This lists the next node to hop to in order to reach node j, where j is the destination node.

Question 4 At t = 1.0s, the link between Nodes 4 & 5 fails and at t = 3.0s, it is restored. The failure of this link causes both Node 4 & 5 to send updates about their neighbors and costs to all other nodes. Once the update reaches Node 0, it stops sending packets to Node 6 and instead delivers packets to Node 4 by way of Nodes 1,2, & 3.

Question 5 The percent overhead is 24.18%.

Question 6 It takes about 0.05 seconds for routing tables to converge. 18 routing control packets are generated. The following table shows the global routing table after the link between Node 4 & 5 goes down. Element ij refers to source node i and destination node j, where each element as the format next hop, distance to destination.

	0	1	2	3	4	5	6
0	-	1,1	1,2	1,3	1,4	6,2	6,1
1	0,1	-	2,1	2,2	2,3	0,2	0,3
2	1,2	1,1	-	3,1	3,4	1,3	1,4
3	2,3	2,2	2,1	-	4,1	2,5	2,4
4	3,4	3,3	3,2	3,1	1	3,6	3,5
5	6,2	6,3	6,4	6,5	6,6	-	6,1
6	0,1	0,2	0,2	0,3	0,4	5,1	-

7.3 Link State Routing

Question 7 Within in ther first 0.5 seconds, nodes are sending updates about ther nieghbor so that each nodes gains information about the topology of the network. At t = 1.0s, the link betwe Nodes 4 and 5 fails and at t = 3.0s, it recovers. The route changes because the failure of the link forces Node 4 & 5 to update their tables and send out ann update to all other nodes.

Question 8 The percent overhead is 36.518%

Question 9 It takes 0.06 seconds for the rounting tables to converge. 24 routing control packets are generated. Link State Routing take time to initialize and longer time to recover from link failure & generates more packets.