# "Design of HVAC system using Solar Energy and Natural Convection"

Submitted in partial fulfilment of the requirements of the degree of

**Bachelor of Engineering** 

by
MR. MUDDASSIR HABSI
MR. ABDULLA KAZI
MR. ARBAZ KHAN

MR. ABDUL MUKIT SARWAR

Under the guidance of

PROF. AMEY S. WAGH



Department of Mechanical Engineering M.H.SAB00 SIDDIK COLLEGE OF ENGINEERING 8, SABOO SIDDIK POLYTECHNIC ROAD, MUMBAI-400 008 (2018-19)

# "Design of HVAC system using Solar Energy and Natural Convection"

Submitted in partial fulfilment of the requirements of the degree of

**Bachelor of Engineering** 

by
MR. MUDDASSIR HABSI
MR. ABDULLA KAZI
MR. ARBAZ KHAN
MR. ABDUL MUKIT SARWAR

Under the guidance of

PROF. AMEY S. WAGH



Department of Mechanical Engineering M.H.SAB00 SIDDIK COLLEGE OF ENGINEERING 8, SABOO SIDDIK POLYTECHNIC ROAD, MUMBAI-400 008 (2018-19) **CERTIFICATE** 

This is to certify that project entitled "Design Of HVAC System

Using Solar Energy And Natural Convection" is a bonafide work of

"Mr. Muddassir Habsi, Mr. Abdulla Kazi, Mr. Arbaz Khan and

Mr. Abdul Mukit Sarwar" submitted to the University of Mumbai in

partial fulfillment of the requirement for the award of the degree of

Undergraduate in Mechanical Engineering.

(Prof Amey S Wagh)
Project Guide

Dr. Javed H. Shaikh Head of Department Dr. Ganesh kame Principal

iii

## Project Report Approval for B. E.

This project report entitled "Design of HVAC system using Solar Energy and Natural Convection" by Mr. Muddassir Habsi, Mr. Abdulla Kazi, Mr. Arbaz Khan and Mr. Abdul Mukit Sarwar is approved for the degree of Mechanical Engineering.

#### Examiners

| 1 |
|---|
| 2 |

Date:

Place:

#### **Declaration**

I/we declare that this written submission represents my ideas in my own words and where others' ideas or words have been included, I/we have adequately cited and referenced the original sources. I/we also declare that I/we have adhered to all principles of academic honesty and integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I/we understand that any violation of the above will be cause for disciplinary action by the Institute and can also evoke penal action from the sources which have thus not been properly cited or from whom proper permission has not been taken when needed.

| (Signature) | (Mr. Muddassir Habsi (ME115018))                    |
|-------------|-----------------------------------------------------|
| (Signature) | ( Mr. Abdulla Kazi (ME115027))                      |
| (Signature) | ( Mr. Arbaz Khan (ME115031))                        |
| (Signature) | ( Mr.Abdul Mukit Khalid Hasan Sarwar)<br>(ME115051) |
| Date:       |                                                     |

#### **ACKNOWLEDGEMNT**

The success and outcome of this project required a lot of guidance and assistance from many people and we are extremely privileged to have got this all along the progress of our project. All that we have done is only due to such supervision and assistance and we would not forget to thank them. We owe our deep gratitude to our project guide ER. AMEY WAGH who took keen interest on our project work and guided us all along the progress of our project work by providing all the necessary information for developing a good project.

We are thankful to and fortunate enough to get constant encouragement, support and guidance from all teaching staff of Mechanical Department which helped us in successfully completing our project work. Also, we would like to extend our sincere esteems to all staff member in laboratory for their timely support.

#### **ABSTRACT**

In this wake, a lot of researches have been made for using low grade energy sources such as solar power, waste heat reuse, etc. for the same. The project introduces greener and healthier techniques in current HVAC systems, that is, the system is designed in such a way that it not only works on renewable energy sources fully or partially but also is more efficient in the process of cooling and heating.

The site chosen for this purpose is of Nagpur city-based office building running on conventional system. Further details of the site and system as explained in the topics to follow. When it comes to controlling the indoor temperatures of complex environments such as modern buildings, innovative solutions are required. HVAC systems are relatively climate sensitive, and so the need for modern temperature regulation systems to function reliably in all climates becomes greater.

That's why there is an increasing trend in 21st-century green building design to move away from conventional all-air systems as the primary method of temperature control, and integrate them with TABS – thermally active building systems.

The reason for the up surgency of TABS as a priority green design element in modern commercial construction is a simple two-fold one: they are far more cost-effective and energy-efficient than their counterpart systems.

The end product of this project is design of HVAC system which collaborates in some non-conventional methods with current modern methods to increase efficiency such as TABS, solar VARS and vapor adsorption chillers (not absorption).

The research includes collecting various techniques available, checking for their practicality and implementation of the design in the system. Few iterative designs and simulation of the same were done to arrive at final conclusion of the design.

The project also deals with the comparison of conventional and nonconventional design in terms of economy, efficiency, environment friendly etc.

### **Table of Content**

| CHAPTER | TITLE                                                    | PAGE |
|---------|----------------------------------------------------------|------|
| NO.     |                                                          | NO.  |
|         | List of figures                                          | X    |
|         | List of tables                                           | xi   |
| 1       | CHAPTER NO.01: INTRODUCTION                              | 1    |
| 1.1     | Introduction                                             | 1    |
| 1.2     | Need of this project                                     | 2    |
| 1.3     | Aim and objective                                        | 2    |
| 1.4     | Problem definition                                       | 3    |
| 1.5     | History of HVAC                                          | 3    |
| 1.6     | HVAC industry and standard                               | 3    |
| 1.6.1   | International standard                                   | 4    |
| 1.6.2   | ISHRAE                                                   | 4    |
| 1.6.3   | ASHRAE                                                   | 5    |
| 1.7     | Components of HVAC                                       | 6    |
| 1.7.1   | Chillers                                                 | 6    |
| 1.7.2   | Cooling tower                                            | 7    |
| 1.7.3   | Air handling unit                                        | 7    |
| 1.7.4   | Ducts                                                    | 7    |
| 1.8     | Natural ventilation                                      | 9    |
| 1.9     | Indoor air quality                                       | 9    |
| 1.10    | Conventional design of HVAC system                       | 10   |
| 1.11    | Site details                                             | 10   |
| 2       | CHAPTER NO.02: LITRETURE SURVEY                          | 12   |
| 2.1     | About project                                            | 12   |
| 2.2     | Heat load calculation                                    | 12   |
| 2.3     | Duct                                                     | 19   |
| 2.4     | Psychrometric                                            | 22   |
| 2.4.1   | Common applications                                      | 22   |
| 2.4.2   | Terminology                                              | 22   |
| 2.4.3   | Locating parameters on chart                             | 24   |
| 2.4.4   | How to read the chart                                    | 25   |
| 2.5     | Thermally Active Building System (TABS)                  | 26   |
| 2.6     | Adsorption cooling                                       | 27   |
| 2.7     | Adsorption chiller                                       | 27   |
| 2.8     | Types of glazing                                         | 29   |
| 2.9     | Solar cell                                               | 30   |
| 2.10    | Insulting materials                                      | 31   |
| 2.11    | Chillers and its types                                   | 34   |
| 2.11    | Adiabatic cooling kit                                    | 41   |
| 2.12    | Thermo active building system in Japanese climate        | 42   |
| 2.13    | Zero net energy building at west Berkeley public library | 47   |
| 2.14.1  | Overview                                                 | 47   |
| 2.14.1  | Planning and design approach                             | 47   |
| 2.14.2  | Energy efficiency strategies and features                | 48   |
|         |                                                          |      |
| 2.14.4  | Renewable energy generation and storage                  | 49   |

| 2.14.5 | Post occupancy                                         | 49 |
|--------|--------------------------------------------------------|----|
| 2.14.6 | Monitoring                                             | 49 |
| 3      | CHAPTER NO.03:DESIGN AND CALCULATION                   | 50 |
| 3.1    | Conventional design of HVAC system                     | 50 |
| 3.2    | Glass selection                                        | 50 |
| 3.3    | Heat load assumption                                   | 51 |
| 3.4    | Cooling unit selection                                 | 53 |
| 3.5    | Non – conventional design                              | 53 |
| 3.6    | Glass selection                                        | 53 |
| 3.7    | TABS                                                   | 57 |
| 3.8    | Flat plate collector                                   | 59 |
| 3.9    | Designs of thermal energy storage (TES)                | 62 |
| 4      | CHAPTER NO.04: SIMULATION & ANALYSIS                   | 64 |
| 4.1    | Simulation and working of complete system              | 64 |
| 4.1.1  | Math model for thermal energy storage sensible heating | 64 |
|        | source (SHS)                                           |    |
| 4.1.2  | Thermal nodes                                          | 66 |
| 4.1.3  | Sizing                                                 | 66 |
| 4.2    | Time variation of complete TSAAC system                | 67 |
| 4.2.1  | Solar radiation                                        | 68 |
| 5      | CHAPTER NO.05: RESULT AND CONCLUSION                   | 76 |
| 5.1    | Costing                                                | 76 |
| 5.2    | Results                                                | 77 |
| 5.3    | Conclusion                                             | 80 |
| 6      | REFERENCE                                              | 81 |
| 7      | BIBLIOGRAPHY                                           | 83 |

## List of figures

| FIGURE | TITLE                                             | PAGE NO. |
|--------|---------------------------------------------------|----------|
| NUMBER |                                                   |          |
| 1.1    | Energy consumption of general commercial building | 2        |
| 1.2    | Chillers                                          | 6        |
| 1.3    | Cooling tower                                     | 7        |
| 1.4    | AHU                                               | 7        |
| 1.5    | Grid connected solar system                       | 8        |
| 1.6    | Stand-alone solar system                          | 8        |
| 1.7    | Natural ventilation                               | 9        |
| 2.1    | Vapour compression and vapour absorption chiller  | 34       |
| 2.2    | Air cooled and water-cooled chiller               | 35       |
| 2.3    | Water cooled chillers                             | 36       |
| 2.4    | Centrifugal chillers                              | 38       |
| 2.5    | Turbocor chillers                                 | 38       |
| 2.6    | Reciprocating chillers                            | 39       |
| 2.7    | Scroll chillers                                   | 39       |
| 2.8    | Screw chillers                                    | 40       |
| 2.9    | Absorption chillers                               | 40       |
| 2.10   | Adiabatic cooling kit                             | 41       |
| 2.11   | West Berkeley public library                      | 47       |
| 3.1    | Singled double glazed glass                       | 50       |
| 3.2    | Floor layout A wing                               | 52       |
| 3.3    | Floor layout B wing                               | 52       |
| 3.4    | Types of solar thermal energy storage             | 63       |
| 4.1    | Graph for sample test                             | 69       |
| 4.2    | Thermal node variation graph                      | 70       |

### List of tables

| TABLE | TITLE                                                         | PAGE NO. |
|-------|---------------------------------------------------------------|----------|
| NO.   |                                                               |          |
| 1.1   | AQI categories                                                | 10       |
| 1.2   | Nagpur weather details                                        | 11       |
| 2.1   | Cooling load factor (CLF) for glass with interior shading and | 18       |
|       | located in north latitudes (ISHRAE)                           |          |
| 2.2   | Shows typical loads of various types of appliances            | 19       |
| 2.3   | Glass factor                                                  | 30       |
| 2.4   | Compassion of glass materials                                 | 34       |
| 2.5   | Component properties of the building diced from kolariket     | 44       |
|       | areprol                                                       |          |
| 3.1   | TABS results                                                  | 59       |
| 3.2   | Specification and design                                      | 63       |
| 4.1   | Simulation                                                    | 64       |
| 4.2   | Heat exchanger used                                           | 66       |