C10 - Résumé

Topologie dans $\mathbb R$ et $\mathbb R$

Propriété

Une partie qui admet un plus grand élément admet une borne supérieure qui est égale à ce plus grand élément.

Définition

Si $A \subset \mathbb{R}$ admet une borne supérieure b alors

$$b \in A \Leftrightarrow b = max(A)$$

Propriété

Si $A \subset \mathbb{R}$ admet une borne inférieure et supérieure alors :

$$inf(A) \leq sup(A)$$

égaux si A est un singleton

Propriété de la borne supérieure I inférieure dans $\mathbb R$

- Toute partie non vide et majorée de $\mathbb R$ admet une borne supérieure.
- Toute partie non vide et minorée de \mathbb{R} admet une borne inférieure.

Définition de \mathbb{R}

On définit : $\mathbb{R} \cup \{-\infty, +\infty\}$ avec une relation d'ordre prolongeant R tel que :

- $-\infty < \mathbb{R}$
- $+\infty > \mathbb{R}$

Propriété de la borne supérieure I inférieure dans $\overline{\mathbb{R}}$

Toute partie de A admet une borne supérieure Pour $A\subset\mathbb{R}$:

- ullet Si A
 eqarnothing et A est majorée, $sup_{\overline{\mathbb{R}}}(A)=sup_{\mathbb{R}}(A)$
- Si A est non majorée, $sup_{\overline{\mathbb{R}}}(A) = +\infty$
- $ullet \ sup_{\overline{\mathbb{R}}}(arnothing) = -\infty < +\infty = inf_{\overline{\mathbb{R}}}(arnothing)$

Théorème

N n'est majoré par aucun réel

Archimédianité de $\mathbb R$

$$orall a > 0, orall b \in \mathbb{R}, \exists n \in \mathbb{N}, b < na$$

Propriétés

- Une partie de $\mathbb Z$ est majoré dans $\mathbb R$ ssi elle est majoré dans $\mathbb Z$
- Toute partie bornée dans $\mathbb Z$ bornée dans $\mathbb R$
- Toute partie de $\mathbb Z$ non vide et majorée dans $\mathbb R$ admet un plus grand élément

Définition de la partie entière supérieure et inférieure

$$egin{aligned} orall x \in \mathbb{R}, \lfloor x
floor = max\{n \in \mathbb{Z} | n \leq x\} = max(\mathbb{Z} \cap] - \infty, x]) \ orall x \in \mathbb{R}, \lceil x
ceil = min\{n \in \mathbb{Z} | x \leq n\} = min(\mathbb{Z} \cap [x, +\infty[)$$

Propriétés des parties entières

$$orall x \in \mathbb{Z}, \lfloor x
floor = \lceil x
ceil = x$$
 $orall x \in \mathbb{R} ackslash \mathbb{Z}, = \lceil x
ceil < x < \lceil x
ceil$

$$orall x \in \mathbb{R} ackslash \mathbb{Z}, \lfloor x
floor = \lceil x
ceil - 1$$
 $orall x \in \mathbb{R} ackslash \mathbb{Z}, \lceil x
ceil = \lfloor x
floor + 1$

Pour $x \in \mathbb{R}$

- $ullet \ |x
 floor$ est l'unique entier n tel que $n \leq x < n+1$
- $\lceil x \rceil$ est l'unique entier n tel que $n-1 < x \leq n$

Définition des approximations décimales

L'approximation décimale de x par default a 10^{-k} près est définie par :

$$max\left\{rac{k}{10^n}; k \in \mathbb{Z} ext{ et } rac{k}{10^n} \leq x
ight\} = max\left(\left(rac{1}{10^n}\mathbb{Z}
ight)\cap]-\infty, x]
ight) = rac{\lfloor 10^n x
floor}{10^n}$$

L'approximation décimale de x par excès a 10^{-k} près est définie par :

$$min\left\{rac{k}{10^n}; k \in \mathbb{Z} ext{ et } x \leq rac{k}{10^n}
ight\} = min\left(\left(rac{1}{10^n}\mathbb{Z}
ight) \cap [x, +\infty[
ight) = rac{\lceil 10^n x
ceil}{10^n}
ight)$$

Théorème : densité de $\mathbb Q$ et $\mathbb R \setminus \mathbb Q$ dans

 \mathbb{R}

Tout intervalle ouvert non vide dans ${\mathbb R}$ contient des rationnels et des irrationnels

On dit que \mathbb{Q} et $\mathbb{R}\backslash\mathbb{Q}$ sont denses dans \mathbb{R}

Définition de la convexité

Une partie A de $\mathbb R$ est convexe ssi :

$$orall x,y\in A, (x\leq y\Rightarrow [x,y]\subset A)$$

Théorème

Les parties convexes de $\ensuremath{\mathbb{R}}$ sont les intervalles

SUITES

Propriétés

Pour
$$u=(u_n)_n\in\mathbb{R}^\mathbb{N}$$
,

u est majorée
$$\Leftrightarrow \forall n \in \mathbb{N}, \exists M \in \mathbb{R}, u_n \leq M$$

u est croissante $\Leftrightarrow \forall n \in \mathbb{N}, u_n \leq u_{n+1} \Leftrightarrow \forall n \in \mathbb{N}, (u_n) \uparrow$
u est stationnaire $\Leftrightarrow \exists n_0 \in \mathbb{N}, \forall n \geq n_0, u_n = u_{n_0}$
u est périodique $\Leftrightarrow \exists k \in \mathbb{N}^*, \forall n \in \mathbb{N}, u_{n+k} = u_n$

On note |u| la suite : $(|u_n|)_n$

On a alors:

u est bornée \Leftrightarrow $|\mathrm{u}|$ est majorée $\Leftrightarrow \exists M \in \mathbb{R}_+, \forall n \in \mathbb{N}, |u_n| \leq M$

Définition de la limite d'une suite réelle

Soit $(u_n) \in \mathbb{R}^\mathbb{N}$ et $l \in \mathbb{R}$

On note:

$$u_n \mathop{\longrightarrow}\limits_{n o +\infty} l$$

Lorsque:

$$orall \epsilon > 0, \exists N \in \mathbb{N}, orall n \geq N, |u_n - l| \leq \epsilon$$

Ou encore:

$$orall \epsilon > 0, \exists N \in \mathbb{N}, orall n \geq N, u_n \in [l-\epsilon, l+\epsilon]$$

Propriété

Pour $(u_n) \in \mathbb{R}^{\mathbb{N}}$ et $l \in \mathbb{R}$,

$$u_n \longrightarrow l \Leftrightarrow |u_n - l| \longrightarrow 0$$

Propriété

Définition de la limite infinie

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$,

On note:

$$u_n \overset{\longrightarrow}{\underset{n \to +\infty}{\longrightarrow}} +\infty$$

Lorsque:

$$orall A \in \mathbb{R}, \exists N \in \mathbb{N}, orall n \geq N, u_n \geq A$$

Théorème de l'unicité de la limite

Si une suite admet une limite $l \in \overline{\mathbb{R}}$ alors elle est unique

Opérations sur les limites réelles

$$\operatorname{Pour}\lim_{n o +\infty}u_n=l \ \operatorname{et}\lim_{n o +\infty}v_n=l'$$

l	$-\infty$	$+\infty$	$+\infty$	$\pm\infty$	$\pm\infty$	
l'	$-\infty$	$+\infty$	$-\infty$	0^+ où 0^-	\mathbb{R}	=
u+v	$-\infty$	$+\infty$	F.I.	$\pm\infty$	$\pm\infty$	Ξ
u imes v	$+\infty$	$+\infty$	$-\infty$	F.I.	$sgn(l) imes sgn(l') \infty$	sgn(l) imes
$\frac{u}{v}$	F.I.	$\overline{F}.I.$	$\overline{F}.I.$	$sgn(l) imes sgn(l') \infty$	$sgn(l) imes sgn(l') \infty$	0+

$$\text{Pour } \lim_{n \to \infty} n^{\alpha} = l$$

$lpha \in$	l
$]-\infty,0[$	0
{0}	1
$]0,+\infty[$	$+\infty$

Linéarité de la limite

Pour (u_n) , $(v_n) \in \mathbb{R}^{\mathbb{N}}$ avec des limites finies et λ , $\mu \in \mathbb{R}$

$$\lim(\lambda u + \mu v) = \lambda \lim u + \mu \lim v$$

Définition des limites par valeurs supérieures / inférieures

Pour $(u_n)\in\mathbb{R}^\mathbb{N}$ et $l\in\mathbb{R}$

On dit que u tend vers I par valeur supérieure lorsque

$$\lim u = l^+ \Leftrightarrow u_n \overset{}{\longrightarrow} l \Leftrightarrow \exists N \in \mathbb{N}, orall n \geq N, u_n > l$$

Réécriture

$$\lim u = l^+ \Leftrightarrow orall \epsilon > 0, \exists N \in \mathbb{N}, orall n \geq N, l < u_n \leq l - \epsilon$$

Théorème du passage a la limite dans une inégalité large

Soient (u_n) , $(v_n)\in\mathbb{R}^\mathbb{N}$ Si $\lim u=l\in\overline{\mathbb{R}}$ et $\lim v=l'\in\overline{\mathbb{R}}$ alors

$$\forall n \in \mathbb{N}, u_n \leq v_n \Rightarrow l \leq l'$$

Théorème de convergence par encadrement

Soient $(u_n), (v_n), (w_n) \in \mathbb{R}^\mathbb{N}$ Si $\lim u = \lim v = l \in \mathbb{R}$ alors

$$\forall n \in \mathbb{N}, u_n \leq w_n \leq v_n \Rightarrow w \longrightarrow l$$

Théorème de divergence par minoration

Soient $(u_n),(v_n)\in\mathbb{R}^{\mathbb{N}}$

$$orall n \in \mathbb{N}, u_n \leq v_n \Rightarrow (\lim u = +\infty \Rightarrow \lim v = +\infty)$$

(Marche avec $-\infty$)

Théorème de la limite monotone

Toute suite réelle croissante et majorée (décroissante et minorée) converge.

Toute suite réelle croissante et non majorée (décroissante et non minorée) tends vers $+\infty$ $(-\infty)$.

Définition des suites adjacentes

Deux suites sont adjacentes si elles vérifient :

- u ↑
- v ↓
- $ullet v_n u_n \mathop{\longrightarrow}\limits_{n o +\infty} 0$

Théorème des suites adjacentes

Deux suites adjacentes sont convergentes et ont la même limite

Lemme

Si u est croissante et converge vers l alors

$$\forall n \in \mathbb{N}, u_n \leq l$$

Propriété sur la position des suites adjacentes

Si u et v sont adjacentes et l est leur limite commune,

$$orall n, m \in \mathbb{N}, u_n \leq l \leq w_n$$

Définition d'une suite extraite

Une suite extraite de la suite : $u=(u_n)_{n\in\mathbb{N}}$ est obtenue avec une application strictement croissante $\phi:\mathbb{N}\to\mathbb{N}$. La suite extraite correspondant a ϕ est alors la suite :

$$u\circ \phi=(u_{\phi(n)})_{n\in\mathbb{N}}$$

On appelle extractrice l'application ϕ strictement croissante de $\mathbb N$ vers $\mathbb N$

Proposition, extractions successives

Une suite extraite (ici Φ) d'une suite extraite de u (ici $u \circ \phi$) est une suite extraite de u.

$$(u\circ\phi)\circ\Phi=u\circ\phi\circ\Phi$$

Théorème : Stabilité de la limite par extraction

Si une suite u tends vers une limite $l \in \overline{\mathbb{R}}$, alors toute suite extraite de u tends vers l.

Corollaire de la stabilité de la limite par extraction

Si deux suites extraites de u ont une limite différente alors u n'a pas de limite.

Théorème de convergence par les suites extraites de rang pair et impair

Soit $u \in \mathbb{R}^{\mathbb{N}}$

Si ses suites extraites de rang pair et impair : $(u_{2k})_k$ et $(u_{2k+1})_k$ tendent vers une même limite $l \in \mathbb{R}$, alors la suite tend aussi vers l.

Théorème de Bolzano Weierstrass Réel

De toute suite bornée on peut en extraite une suite convergente.

Définition de la densité d'une partie de $\mathbb R$ dans $\mathbb R$

Soit $A\subset \mathbb{R}$

On dit que A est dense ssi elle rencontre tout intervalle ouvert non vide I

Propriété de la densité d'une partie de $\mathbb R$ dans $\mathbb R$

Soit $A \subset \mathbb{R}$

A est dense dans \mathbb{R} ssi

$$orall x \in \mathbb{R}, \exists (a_n) \in A^\mathbb{N}, a_n \mathop{\longrightarrow}\limits_{n o +\infty} x$$

DEMANDER A QQN LE COURS

Propriété

Soit $A \subset \mathbb{R}$ bornée non vide et $b \in \mathbb{R}$ Alors

$$b = sup(A) \Leftrightarrow egin{cases} \mathrm{b} \ \mathrm{marjore} \ \mathrm{a} \ \exists (a_n) \in A^\mathbb{N}, a_n
ightarrow b \end{cases}$$

Propriété (Cas infini)

Soit $A\subset\mathbb{R}$

Alors A est non majoré ssi

$$(\exists (a_n) \in A^\mathbb{N}, a_n o +\infty)$$

Propriété

Soit f une fonction réelle

Si $E \subset D_f$ est stable par f, i.e. vérifiant : $f(E) \subset E$ alors toute suite définie par $u_0 \in E$ et la relation de récurrence :

($orall n\in \mathbb{N}, u_{n+1}=f(u_n)$) est bien définie pour tout \mathbb{N} et tous ses termes sont des éléments de E

Théorème de la limite fixe

Soit f une fonction réelle

Si une suite vérifiant $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$ est convergente de limite l et la fonction f est continue en l, alors l est un point fixe de f i.e. f(l) = l

Propriété: monotonie par croissance

Soit f une fonction réelle

Si f est croissante sur une partie de $E\subset D_f$ stable par f, toute suite u vérifiant $\forall n\in\mathbb{N}, u_{n+1}=f(n)$ et $u_0\in E$ est monotone.

Propriété Hors programme

Soit f une fonction réelle

Si $f\downarrow$ et $E\subset D_f$ et stable par f alors pour u vérifiant $\forall n\in\mathbb{N}, u_{n+1}=f(n)$ et $u_n\in E$, les suites (u_{2k}) et (u_{2k+1}) sont de monotonies "opposées"

Définition de la limite de suites a valeur complexes

Soit $u\in\mathbb{C}^\mathbb{N}$ et $l\in\mathbb{C}.$

On dit que u_n tend vers l ssi

$$orall \epsilon > 0, \exists N \in \mathbb{N}, orall n \geq N, |u_n - l| \leq \epsilon$$

On dit alors que la suite est convergente

Propriété de la limite par partie réelle et imaginaire

Pour $u\in\mathbb{C}^\mathbb{N}$ et $l\in\mathbb{C}$,

$$u \longrightarrow l \Leftrightarrow (Re(u) \longrightarrow Re(l) \text{ et } Im(u) \longrightarrow Im(l))$$

Théorème : unicité de la limite

Si une suite complexe admet une limite $l \in \mathbb{C}$, alors cette limite est unique

Propriété

Pour $a \in \mathbb{C}$, la suite géométrique $(a^n)_n$ converge ssi a=1 ou |a|<1.

Opération sur les limites complexes

Pour
$$(u_n),(v_n)\in\mathbb{C}^\mathbb{N}$$
 tel que $\lim u=l\in\mathbb{C}$ et $\lim v=l'\in\mathbb{C}$
Pour $\lambda,\mu\in\mathbb{C}$

On a alors:

$\lambda u + \mu v$	$\lambda l + \mu l'$	
u imes v	l imes l'	
$\frac{u}{v}$	$\frac{l}{l'}$	$\int \mathrm{Si}\ l' eq 0 \ \mathrm{et}\ v_n eq 0$

Définition des suites bornées complexes

Soit
$$(u_n)\in\mathbb{C}^\mathbb{N}$$
, u est bornée ssi :

$$\exists M \in \mathbb{R}_+, orall n \in \mathbb{N}, |u_n| \leq M$$

Théorème de Bolzano Weierstrass complexe

De toute suite complexe bornée, on peut en extraire une suite convergente.