EVCLVE

EVOLAB Benchmark 技术尽调报告

Tron Mainnet 波场主网

(本报告不代表投资建议)

日期: 2019年5月

一、概述

Tron 是币圈网红孙宇晨发起的一个公链项目,核心共识机制是类似 BTS 和 EOS 的 DPoS 共识机制,智能合约平台使用高度类似以太坊虚拟机 EVM 的 Tron 虚拟机 TVM,可以使用 solidity 语言开发智能合约。

根据白皮书的描述,Tron 项目的主要特性在于性能好,同时提供了与以太坊虚拟机 EVM 同样的智能合约系统。

二、分析

测试环境说明

我们在 AWS 上部署了约 100 个 Kubernetes 节点,用以模拟 Tron测试网络,具体测试环境如下:

		Barcelona	Paris #	Tokyo *	Toronto *	Washington *
Amsterdam	×	• 33.769ms	• 15.608ms	• 242.384ms	93.762ms	97.213ms
Auckland	×	• 339.51ms	306.857ms	• 262.461ms	• 226.613ms	• 227.185ms
Copenhagen	*	• 36.723ms	• 26.148ms	• 259.516ms	• 113.626ms	• 107.308ms
Dallas	×	• 136.337ms	• 109.758ms	• 134.788ms	• 43.671ms	• 45.066ms
London	×	• 25.467ms	• 4.001ms	• 235.712ms	• 141.819ms	• 84.282ms
Los Angeles	×	• 155.675ms	• 148.037ms	• 107.817ms	• 58.407ms	• 65.221ms
Moscow	×	• 78.603ms	• 51.796ms	• 221.938ms	• 137.391ms	• 126.481ms
New York	×	90.763ms	• 74.108ms	• 218.73ms	• 20.561ms	• 22.158ms
Paris	×	• 26.646ms	-	• 243.969ms	• 97.801ms	• 79.909ms
Stockholm	×	• 45.509ms	• 28.444ms	• 295.025ms	• 118.399ms	• 124.232ms
Tokyo	×	• 349.741ms	• 244.343ms	_	• 172.217ms	• 161.193ms

(一) 共识

根据白皮书及其他公开资料,Tron 采用类似 BTS 和 EOS 的 DPoS 共识机制,并把它命名为 TPoS。区别于 BTS 与 EOS 用 C/C++实现,TPoS 使用 Java 实现 DPoS 的共识机制。

具体来说,在 Tron 的网络中,每个账户都可以参与竞选超级代表,也可以给他们支持的超级代表候选人投票,最终选出 27 个超级代表作为主节点。主节点拥有打包权,轮流负责把交易数据打包成区块,并验证区块,一旦 2/3 的主节点确认该区块,则交易不可逆转。

DPoS 这种适度民主的中间方案提高了系统效率,是目前一种较平衡的兼顾了性能与安全的方案,但其不可避免的缺点是由于实际控制节点减少,而导致被攻击的可能性增加。

系统工作原理图示如下:

(二) 智能合约

Tron 的智能合约使用 solidity 编程语言开发,运行在 Tron 的虚拟机,即 TVM。TVM和 EVM环境兼容,开发人员可以在具有 solidity 的混合环境中构建、调试和执行智能合约。这使得原先在以太坊 EVM 环境下进行开发的应用,可以方便地转换到 TVM 上。

(三) 安全

通过 Benchmark 公链测试工具,我们对 Tron 进行了一系列安全测试,并从中选取了我们认为对 DPoS 机制的公链来说,有参考意义的几个攻击指标。

我们的测试方法如下:

- 1. 建立 Tron 测试网;
- 2. 发送 RPC, 让测试网部分节点对其他节点发起攻击;
- 3. 得到测试结果如下

方案	结果	备注		
DDos 攻击	不通过	以大量的通信量冲击网络,使得所有可用		
		网络资源都被消耗殆尽		
网络分裂攻击	不通过	把网络分为两个或多个部分		

测试结果:从 DDos 攻击测试结果可知,攻击者可以向全部或 51% 的主节点发送 DDos 攻击并使 Tron 网络无法使用;从网络分裂攻击测试结果可知,在发生网络分裂攻击后,在网络恢复正常之前,在较小的链上进行的任何重复交易都将丢失。

(四) 性能

通过 Benchmark 公链测试工具,对 Tron 进行性能测试,我们的测试方法如下:

- 1. 建立 Tron 测试网;
- 2. 发送 RPC, 让测试网部分节点发起交易(每秒 N 笔交易, 线性增长);
- 3. 节点检测交易同步的时间,直到检测到超过一定时间(一般是出块时间)。

表-安全测试结果

方案	TPS				
理想网络情况	1200	单机虚拟网络,无限网络连接			
正常网络情况	758	分布在全球的 100 个节点,正常网络连接			
恶劣网络情况	<100				

根据 Tron 官方宣传, Tron 主网上线后性能达到 2000 TPS, 未来会达到 10000TPS。根据测试, 目前在理想网络情况下性能只能达到 1200TPS。

(五) 技术管理

1. 代码更新

Tron 的 Github 仓库一共有 36 个 public repositories, 主要 repositories 的具体数据如下:

表-Tron的 Github 数据

repositories	description	commits	Watches	stars	forks
java-tron	Java implementation of the Tron whitepaper	10627	332	2185	533
sun-network		7	5	6	0
documentation	Documentations of project TRON	1342	46	168	158
wallet-cli	Wallet CLI	2410	17	73	91

根据 Tron 的 java-tron 的 commits 数据,得到 java-tron 的代码更新,如下:

java-tron 的代码更新情况

说明: Tron 的代码更新频繁,属于一直有持续代码贡献与进展的项目。

2. 代码相似

通过 Benchmark 公链测试工具,对 Tron 进行代码相似度检查,因为 Tron 的技术栈是 Java,选择以 ethereumj 作为标准。

具体测试方法如下:

- (1) 建立代码索引库;
- (2) 把 java-tron 的源代码放进 Elasticsearch;
- (3) 把 java-tron 的源代码和 ethereumj 作比较。

从测试结果可知, java-tron 一共 976 个 java 文件, 和 ethereumj 相似的文件有 64 个。

我们从代码机制分析,Tron的机制为 DPoS,但由于与 BTS/EOS的程序语言不同,是用 Java 重新实现了这一机制,所以代码独创性高(不意味着机制创新)。与 ETH 的智能合约高度类似,所以这一部分与 ETH 的重复度高。

(六) 激励模型

Tron 采用类似 BTS 和 EOS 的 DPoS 共识机制,用户需要支付一定 TRX 成为超级代表候选,每 6 小时统计一次票数,由全体用户投票选择票数最高的 127 名候选作为代表,其中票数最高的 27 名作为超级代表,并由超级代表负责出块。代表会获得一部分竞选奖励,超级代表还会获得出块奖励。

(七) DApp 生态

表-Tron 上 24H 用户活跃度前 10 的 DApp 数据

Dapp 名称	分类	24H 用户	24H 交易数	24H 交易额	7D 交易数	7D 交易额
OCDapp	抽奖	6802	21093	99950	56136	532227
Crazy Dogs Live	抽奖	6513	8197	1445	75979	44733
BetHash - 21 点	抽奖	5607	5607	807	37430	12047
TRONWIN	抽奖	4048	10335	26930	71591	298673
TRONbet	抽奖	3311	238942	27748097	1712856	253282992
TronVegas	抽奖	3246	35441	150692	249321	4008458
Tron- GaGa	风险	288.1	8176	0	25563	2
DDEX	市场	2467	2890	0	20326	0
钓鱼高手 (Fishing Master)	游戏	2382	2398	1828	17718	47746
TRON Hi- Lo	抽奖	2376	2400	38820	16437	1790

(数据来源:DAPP REVIEW)

图 1

图 2

图 3

图 4

Tron DApp 生态基本是以 OCDApp、TRONbet 为代表的博彩 DApp。4月份的 Tron DApp 生态的活跃用户、交易数量并没有太大的变化,但是 DApp 的数量和交易额都有明显上升。

三、总结

Tron 想要打造一个高 TPS 的智能合约平台。

其共识机制采用了 DPoS 共识算法,由 27 个超级代表完成出块,通过部分中心化的手段,牺牲了一定安全性,来提高系统性能,这 与 BTS 与 EOS 的机制是相同的;智能合约则是借鉴了 ETH 的思路,并参考了其代码。

项目的主要特性在于性能好,即每秒处理事务的数量多。根据测试,目前的系统在理想情况下的速度,比宣传的主网 TPS 要低约一半。

同时提供了与以太坊虚拟机 EVM 同样的智能合约系统,便于原本在以太坊上运行的 DApp可以被轻松转移到性能更好的 Tron 智能合约 TVM 上。

https://evolab.io

@EVOLABTech

https://twitter.com/EVOLABTech

https://www.weibo.com/u/6560757147

https://medium.com/@EVOLAB

https://www.facebook.com/EVOLABTech/

http://t.me/EVOLAB

https://github.com/EVOLABTeam

contact@evolab.io