# The BGU 2018 NIST Speaker Recognition Evaluation System

Nave Algarici, Haim Permuter

Department of Electrical Engineering, Ben-Gurion University, Beer-Sheva, Israel

#### **ABSTRACT**

• In our submitted speaker recognition system, we exploited the advances of Deep Neural Networks in the field of speaker recognition. We use the framework of the X-vector extractor for speaker embedding, and for diarization. In addition, we adapt the PLDA using in-domain data to better fit it to the task. We have improved the EERs of the Call My Net 2 (CMN2) and the Video Annotation for speech Technology (VAST) data sets by 16% and 28% respectively, in comparison to the best results published in the 2018 baseline systems.

#### 1. SYSTEM DESCRIPTION

#### 1.1. Acoustic features

- The features are 23 MFCCs with a frame length of 25ms every 10ms using a 23 channel mel-scale filterbank spanning the frequency range 20Hz-3700Hz.
- Feature vectors are mean-normalized over a sliding window of up to 3 seconds.
- Delta and acceleration are appended to create 60 dimension feature vectors.
- Energy based speech activity detection (SAD) is applied to select only features that correspond to speech frames.

# 1.2. Speaker diarization

- In the case of the VAST data set, we apply speaker diarization on the test segments.
- Each utterance is segmented using the same SAD mentioned in 1.1.
- For each speech segment in the utterance a speaker embedding is extracted, and a PLDA score is given to each pair of segments.
- Segments are clustered using agglomerative hierarchical clustering (AHC).
- The most dominant cluster in the recording is chosen to replace the original recording in the evaluation, by concatenating the segments belonging to it.

## 1.3. Speaker embedding

- Speaker embeddings are extracted using a pre-trained X-vector extractor model.
- Unlike in the original algorithm, do not split the input of the extractor in to chunks and average the X-vectors, instead use all the feature vectors (after VAD or diarization) to extract a single X-vector.
- The 512-dimentional speaker embeddings are centered, whitened, and unit-length normalized.

## 1.4. LDA

• Dimensionality reduction from 512 to 150 is performed using linear discriminant analysis.

### 1.5. PLDA

• For scoring, a Gaussian PLDA model with a full-rank Eigen-voice subspace is used.

## 1.6 PLDA Adaptation

- In the case of the CMN2 data set, an adapted version of the PLDA scorer is trained using in-domain unlabeled data.
- Use out-of-domain PLDA to cluster the in-domain dataset.
- Clusters are treated as speakers and are subsequently used to adapt the parameters of the PLDA system to the new domain.

# 2. DATA DESCRIPTION

- The x-vector extractor is trained using conversational telephone and microphone speech data extracted from the NIST 2004-2010 SRE datasets, as well as MIXER 6, Switchboard Cellular (SWB-CELL) Parts I and II, and Switchboard (SWB) Phases I, II, and III corpora
- The Gaussian PLDA is trained using the x-vectors extracted from all speech segments from the SRE and MIXER 6 sets.
- The PLDA adaptation is performed using the unlabeled portion of the development set.

# 3. RESULTS





**Performance on CMN2 development dataset** 





Performance on CMN2 evaluation dataset

Performance on VAST evaluation dataset

| Dataset     | System                     | CMN2   |         |            | VAST   |         |            |           |
|-------------|----------------------------|--------|---------|------------|--------|---------|------------|-----------|
|             |                            | EER(%) | min DCF | actual DCF | EER(%) | min DCF | actual DCF | Total DCF |
| Development | I-Vector (baseline)        | 10.38  | 0.64    | 0.892      | 9.05   | 0.630   | 0.778      | 0.835     |
|             | X-Vector (baseline)        | 9.96   | 0.647   | 0.844      | 7.41   | 0.572   | 0.704      | 0.774     |
|             | X-Vector + PLDA adaptation | 8.64   | 0.544   | 0.557      | -      | -       | -          | 0.507     |
|             | X-Vector + diarization     | -      | -       | -          | 5.35   | 0.457   | 0.457      |           |
| Evaluation  | X-Vector (baseline)        | 11.06  | 0.671   | 0.958      | 15.24  | 0.656   | 0.677      | 0.818     |
|             | X-Vector + PLDA adaptation | 10.02  | 0.593   | 0.602      | -      | -       | -          | 0.633     |
|             | X-Vector + diarization     | -      | -       | -          | 13.65  | 0.654   | 0.663      |           |

# 4. CONCLUSIONS

- Utilizing the unlabelled data to train the PLDA adaptation has improved the performance significantly.
- Applying diarization on the VAST test set helped remove other speakers and background audio, so
  the speaker embedding is more relevant and helped the overall performance of the system.