Universidade Federal do Ceará Campus de Quixadá Matemática Computacional (2018.1) Prof. Wladimir Araújo Tavares

Atividade de Revisão Raízes de funções reais

1. Calcule os limites das raízes da equação $P(x) = x^4 + 2x^3 - 13x^2 - 14x + 24$. Lembrando que a fórmula para o limite superior é $L = 1 + \sqrt[n-k]{\frac{B}{a_n}}$, onde B é o maior valor em módulo dos coeficientes negativos e k é o maior índice de um coeficiente negativo.

Considere os seguintes casos:

- $\bullet\,$ Utilize o polinômio P(x) para calcular limite superior das raízes positivas.
- Utilize o polinômio $P_1(x) = P(\frac{1}{x})$, obtido invertendo os coeficientes, para calcular o limite inferior das raízes positivas $(\frac{1}{L})$.
- Utilize o polinômio $P_2(x) = P(-x)$, obtido trocando de sinal dos coeficientes com índices ímpares, para calcular limite inferior das raízes negativas. (-L)
- Utilize o polinômio $P_3(x) = P(-\frac{1}{x})$, obtido invertendo os coeficientes do polinômio anterior, para calcular limite superior das raízes negativas. $(-\frac{1}{L})$.

n	P(x)	$P_1(x)$	$P_2(x)$	$P_3(x)$
a_4				
a_3				
a_2				
a_1				
a_0				
k				
n-k				
B				
L				

- 2. Esboce o gráfico da função $g(x)=x^3$ e h(x)=9x-3 no mesmo eixo cartesiano.
- 3. Localize os pontos x onde as duas curvas se interceptam. Explique por que os pontos em que essas duas curvas se interceptam são as raízes da equação $f(x) = x^3 9x + 3$.
- 4. Encontre a raiz da equação $f(x)=x^3-9x+3$ utilizando o método da bisseção com as seguintes condições iniciais: I=[0,1] e precisão $\epsilon=2\times 10^{-3}$.

- 5. Encontre a raiz da equação $f(x)=x^3-9x+3$ utilizando o método da posição falsa com as seguintes condições iniciais: I=[0,1] e precisão $\epsilon=2\times 10^{-3}$.
- 6. Encontre a raiz da equação $f(x)=x^3-9x+3$ utilizando o método de Newton com as seguintes condições iniciais: I=[0,1], precisão $\epsilon=2\times10^{-3}$ e $x_0=0.5$.