Engineering Mathematics I-(BAS-103) Unit 3 Differential Calculus II

Tutorial 4

Que1 If $f(x) = x^3 - 2x + 5$, Find the value of f(2.001) with the help of Taylor's Theorem. Find the approximate change in the value of f(x) when x changes from 2 to 2.001

Que2. Apply Maclaurin's theorem to show that $e^x cos x = 1 + x - \frac{2x^3}{3!} - \frac{2^2 x^4}{4!} - \frac{2^2 x^5}{5!} \dots$

Que3. Expand by Maclaurin's theorem $\frac{e^x}{1+e^x}$ as far as x^3

Que4. Expand $f(x, y) = y^x$ about (1,1) up to second degree term and hence evaluate (1.02)^{1.03} [2022-23]

Que5. Expand $e^x \log(1+y)$ in powers of x and y up to terms of third degree. [2014-15]

Que6. Find the Taylor series expansion of $f(x,y) = e^x \cos y$ about point $\left(1, \frac{\pi}{4}\right)$ by Taylor's series. [2023-24]

Que7. Expand $(x^2y + siny + e^x)$ in powers of (x - 1) and $(y - \pi)$ [2014-15]

Que8. Expand $\tan^{-1} \frac{y}{x}$ in the neighbourhood of (1,1) up to and inclusive of second degree terms. Hence compute f(1.1,0.9) approximately. [2013-14]

Que9. Expand x^y in powers of (x-1) and (y-1) upto third degree term and hence evaluate $(1.1)^{1.02}$ [2021-22]

Que10. Express the function $f(x, y) = x^2 + 3y^2 - 9x - 9y + 26$ as Taylor's series expansion about the point (1,2) [2017-18],[2016-17]

- 1. $f(2.001) = 9 + (.001)10 + \frac{1}{2!}(.001)^2 + 12 + \frac{1}{3!}(.001)^3 + 6$, the approximate change is 0.01
- 3. $\frac{e^x}{1+e^x} = \frac{1}{2} + \frac{x}{4} \frac{x^3}{48} + \cdots$
- 4. $y^x = 1 + (y 1) + (x 1)(y 1) + \frac{1}{2}(x 1)(y 1)^2 + \cdots$ (1.02)^{1.03} = 1.020606
- **5.** $e^x log(1+y) = y + xy \frac{1}{2}y^2 + \frac{1}{2}x^2y \frac{1}{2}xy^2 + \frac{1}{2}y^3 + \cdots$
- **6.** $e^x \cos y = \frac{e}{\sqrt{2}} \left[1 + (x-1) \left(y \frac{\pi}{4}\right) + \frac{1}{2}(x-1)^2 (x-1)\left(y \frac{\pi}{4}\right) \frac{1}{2}\left(y \frac{\pi}{4}\right)^2 + \cdots \right]$
- 7. $x^2y + siny + e^x = \pi + e + (x 1)(2\pi + e) + \frac{1}{2}(x 1)^2(2\pi + e) + 2(x 1)(y \pi) + \cdots$ 8. $tan^{-1}\frac{y}{x} = \frac{\pi}{4} + \frac{1}{2}[(y 1) (x 1)] + \frac{1}{4}[(x 1)^2 (y 1)^2] \frac{1}{12}[(x 1)^3 + 3(x 1)^2(y 1) 3(x 1)(y 1)^2 (y 1)^3]$ f(1.1,0.9) = 0.6857
- 9. $x^y = 1 + (x 1) + (x 1)(y 1) + \frac{1}{2}(y 1)(x 1)^2 + \cdots$ (1.1)^{1.02} = 1.1021 10. $x^2 + 3y^2 9x 9y + 26 = 12 7(x 1) + 3(y 2) + (x 1)^2 + 3(y 2)^2$