Data Representation II

Lecture 3

Data Types

- Common Data Types
 - Integer
 - Real Numbers
 - Strings
 - Boolean
 - Memory Address

Integers

- Whole numbers
- E.g 12345
- Formed by
 - Natural numbers
 - Including zero
 - Negatives of non-zero nature number
- Subset of Real numbers

Real Number

- Represents a quantity along a continuous line
- Formed by
 - Rational numbers
 - -5, 5, ²/₅
 - Irrational numbers
 - $\sqrt{2}$
 - \bullet π

Strings & Boolean

- String
 - Sequence of characters
 - "hello!"

- Boolean
 - True / False
 - Also equal to 1/0

Memory Address

- 0xA09E1223
- Fixed-length sequences of bits
- Unsigned integers
- Memory sizes tend to be power of 2
- Therefore hex
 - $-16 = 2^4$
- Shorter and easier to convert from hex to binary and vice versa

Range of Data Types

Data Type	Size	Range						
Integer types								
Boolean	1 bit (though often stored as 1 byte)	0 to 1						
Byte	8 bits	0 to 255						
Word	2 bytes	0 to 65535						
Double Word	4 bytes	0 to 4,294,967,295						
Integer	4 bytes	-2,147,483,648 to 2,147,483,647						
Double Integer	8 bytes	–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807						
	Real types							
Real	4 bytes	1E-37 to 1E+37 (6 decimal digits)						
Double Float	8 bytes	1E-307 to 1E+308 (15 decimal digits)						

Mathematical Prefixes

	SI Prefixes									
Name	yotta	zetta	exa	peta	tera	giga	mega	kilo	hecto	deca
Symbol	Υ	Ζ	Е	Р	Т	G	М	k	h	da
Factor	10 ²⁴	10 ²¹	10 ¹⁸	10 ¹⁵	10 ¹²	10 ⁹	10 ⁶	10 ³	10 ²	10 ¹
Name	deci	centi	milli	micro	nano	pico	femto	atto	zepto	yocto
Symbol	d	С	m	Ч	n	р	f	а	z	у
Factor	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁶	10 ⁻⁹	10 ⁻¹²	10 ⁻¹⁵	10 ⁻¹⁸	10 ⁻²¹	10 ⁻²⁴

Signed and Unsigned

- Integral types
 - E.g. Short, Integer, Word
- Unsigned
 - Capable of representing only non-negative integers
- Signed
 - Capable of representing negative integers as well

Why unsigned?

- Range is higher
- E.g
 - 8 bit signed

Minimum : -128

Maximum: +127

8 bit unsigned

Minimum: 0

Maximum: 255

- Reason:
 - No matter signed or unsigned, it still goes down to 0s and 1s. With 8 binary bits, signed will result in losing 1 bit to represent positive/negative.

Binary Representations

It's more than simply 10101101

Excess notation

Ones' complement

Two's complement

Lecture 4

Data Representation II

EXCESS NOTATION

Excess Notation

 Represent the sign of the number using the leftmost bit

Must know how many storage bits are to be used

Excess Notation

- Has 2 parts
 - Most significant Bit, MSB
 - 1 for positive
 - 0 for negative
 - The "Rest"

- E.g 1 0101010
 - MSB is **1**
 - Rest is 0101010 which is the magnitude

Excess Notation Example

Example 4 bits. Notice the Negative Values

Non-Negat	ive Values		Negative Values				
Excess No	Bit Rep	Actual	Excess No	Bit Rep	Actual		
15	1 111	7	7	<u>0</u> 111	-1		
14	1 110	6	6	0 110	-2		
13	1 101	5	5	0 101	-3		
12	1 100	4	4	0 100	-4		
11	1 011	3	3	0 011	-5		
10	1 010	2	2	0 010	-6		
9	1 001	1	1	<u>0</u> 001	-7		
8	1 000	0	0	<u>0</u> 000	-8		

Deriving Excess Notation

- Step 1:
 - Decide number of bits used to represent the number
 - E.g 10 bits
- Step 2:
 - For any number within the range, add excess value to it
 - E.g $10 + 2^{10-1} = 522$
- Step 3:
 - Convert it to binary
 - E.g 1000001010

Lecture 4

Data Representation II

ONES' COMPLEMENT NOTATION

Ones' Complement Notation

 Negative value is represented by inverting all the bits in the binary representation of the number

```
- E.g 7 → 0000 0111
-7 → 1111 1000
```

- Range is slightly reduced
 - E.g 8 bits can represent -127 to 127

Problems of Ones' Complement

- There are 2 representation for 0
 - -00000000
 - **-1111 1111**

- End-around borrow
 - Occurs during subtraction

Lecture 4

Data Representation II

TWOS' COMPLEMENT NOTATION

Two's Complement Notation

- Leftmost bit → sign
 - Similar to excess notation
 - E.g. **1** 001 0100

Unsigned Example:

1	0	0	1	0	1	0	0
1 x 2 ⁷	0 x 2 ⁶	0 x 2 ⁵	1 x 2 ⁴	0 x 2 ³	1 x 2 ²	0 x 2 ¹	0 x 2 ⁰
128	0	0	16	0	4	0	0

= 148

Signed 2's Complement Example:

1	0	0	1	0	1	0	0
-1 x 2 ⁷	0 x 2 ⁶	0 x 2 ⁵	1 x 2 ⁴	0 x 2 ³	1 x 2 ²	0 x 2 ¹	0 x 2 ⁰
- 128	0	0	16	0	4	0	0

= -108

Two's Complement Notation

- Subtraction can be performed as addition of negative values
 - Saves on constructing additional hardware logic

Two's Complement of Negative Numbers

- Step 1:
 - Invert the positive binary equivalent of the number
- Step 2:
 - Add 1 to the result

Conversion

- Example:
 - Convert -55 to 2's complement

Addition & Subtraction

$$5 + 3 = 8$$

$$-7 - 3 = -10$$

1 1001

$$+00011$$

0 1000

11 0110

$$(-7) + (-3) = -10 !!$$

Try this

10101 + 11110

Try this

10101 + 11110

```
0+1=1
                   step 1.
  10101
                   step 2. 1+0=1
                            1+1 = 0 carry1
                   step 3.
  11110
                   step 4. 1+1+0=0 carry 1
1 10011
                   step 5. 1+1+1 =1 carry 1
                   step 6. 1+0+0=1
```

Lecture 4

Data Representation

REAL NUMBERS

Real Numbers

- 2 components
 - Whole number
 - Fractional component
 - E.g 4.6
 - The dot is what we called radix point
- Floating point notation
 - Deals with tradeoff between range and precision

Floating Point

- In Mathematics, we represent floating point using
 - Significant digits x base exponent
 - E.g. 1.528535047 \times 10⁵

IEEE Standard 754 Floating Point Numbers

- Represent floating point
 - 32 bit numbers
 - 8 bit exponent
 - 23 bit mantissa (Significant)
 - 1 bit polarity

Example

- 1.010111 x 24
 - Significant = **010111**
 - Exponent = 4

- 1.100100 x 2⁻⁸
 - Significant = **1001**
 - Exponent = -8

Normalization

- In floating notation
 - $-0.01 \times 10^1 = 0.1$
 - $-1.00 \times 10^{-1} = 0.1$

- We do normalization
 - Expressing a number in scientific notation
 - Provide standard form of representation and to retain as many significant bits as possible for precision (to give better accuracy)

Normalization

- 10.625 \rightarrow 1010.101 \rightarrow **1.010101** x **2**³ (Normalized)
- 0.375 \rightarrow 0.011 \rightarrow **1.1** x **2**-2 (Normalized)

Converting decimals to binary

- Example 0.625
 - $-0.625 \times 2 = 1.25$
 - Therefore result = 0.1xxxx
 - Ignore whole number $(0.25 \times 2 = 0.5)$
 - Therefore result = 0. 10
 - Ignore whole number (0.5 x 2 = 1.0) ← result in 0 at the fraction hence end
 - Therefore result = 0. 101
- Or you can consider it as
 - -1*(0.5) + 0*(0.25) + 1*(0.125)

Converting decimals to binary

- What about 0.622?
- It's endless
 - We stop till we notice an infinite repeating pattern
 - 0.10011111001110110110010001011010
- Try http://www.mathsisfun.com/binarydecimal-hexadecimal-converter.html

Lecture 4

Data Representation II

BOOLEAN (TO BE CONTINUED)