

TP2, Automatique Simulation du pendule inversé contrôlé par retour d'état

1 Introduction

1.1 Problème

L'objectif de ce TP est de simuler le pendule inversé contrôlé par retour de sortie. On rappelle que ce système s'écrit

$$(S) \begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = \frac{g}{l}\sin(x_1(t)) - \frac{\cos(x_1(t))u(t)}{l} \\ x_1(0) = x_{0,1} = \alpha_0 \\ x_2(0) = x_{0,2} = \dot{\alpha}_0, \end{cases}$$

avec

$$-g = 9.81;
-l = 10;
-t_0 = 0;
-x_e = (0,0);
-u_e = 0;
-u(t) = u_e + K(x(t) - x_e))
-K = (k_1, k_2).$$

On rappelle que pour contrôler asymptotiquement le système, si $(\alpha_0, \dot{\alpha_0})$ est suffisamment proche de x_e , il suffit que :

 $-k_1 > g;$ $-k_2 > 0.$

1.2 Consignes

Le non respect des consignes suivantes impliquera une note de 0 à la note de simulation.

Vous avez à votre disposition afin de tester vos résultats des codes matlab (se sont des fichiers de nom exemple_test_pendule_inv*.m). Pour pouvoir réaliser ces tests il est nécessaire de respecter la structure des répertoires, les

AUTOMATIQUE TP2

noms des fichiers Simulink ainsi que les noms des constantes et variables :

1.3 Notation

Le travail est à effectuer en binôme. Nous donnons ci-après à titre indicatif un barème qui pourra être modifié.

```
— TP2 simulation: 8
```

- TP3 (simulation du Robot) : 4
- TP4 et 5 : Robot Lego NXT : 8
- Il y aura quelques questions lors de l'examen sur cette partie pratique.

2 Contrôle par retour d'état

Noms des fichiers:

- fichier SIMULINK : pendule_inv_etu.slx;
- script de test exemple_test_pendule_inv.m.

Réaliser le schéma Simulink de la figure 1.

On visualisera les résultats pour les données de la table 1

AUTOMATIQUE TP2

Figure 1 – Schéma Simulink d'un contrôle par retour d'état.

Cas	x_0	t_f	K	Intégrateur
Cas 1.1	$(\pi/20,0)$	10	(30, 10)	par défaut, ode45
Cas 1.2	$(\pi/20,0)$	10	(10, 1)	par défaut, ode45
Cas 1.3	$(\pi/20,0)$	100	(10, 1)	par défaut, ode45
Cas 1.4	$(\pi/20,0)$	100	(10, 1)	Euler, ode1
Cas 1.5	$(\pi/20,0)$	1000	(10, 1)	Euler, ode1
Cas 1.6	$(\pi/20,0)$	1000	(10, 1)	par défaut, ode45
Cas 1.7	$(\pi/20,0)$	100	(10, 1)	Euler, ode1, pas=10
Cas 2.1	$(\pi/10,0)$	100	(10, 1)	par défaut, ode45
Cas 2.2	$(\pi/10,0)$	100	(30, 10)	par défaut, ode45

Table 1 – Données pour le contrôle par retour d'état.

3 Capteurs

Noms des fichiers:

- fichier SIMULINK : pendule_inv_capteur_etu.slx;
- script de test exemple_test_pendule_inv_capteur.m.

On suppose maintenant que l'on a accès qu'à $\dot{\alpha}$. On introduit donc dans le schéma deux sous systèmes : un capteur et un prédicteur (pour reconstruire α), voir la figure 2.

Automatique TP2

Réaliser le schéma Simulink suivant

FIGURE 2 – Schéma SIMULINK d'un contrôle par retour de sortie avec prédiction de l'état.

On visualisera les résultats pour les données de la table $2\,$

Cas	x_0	t_f	K	pas/RelTol	Intégrateur
Cas 1	$(\pi/20,0)$	100	(10, 1)	par défaut	par défaut, ode45
Cas 2	$(\pi/20,0)$	100	(10, 1)	1e-10	par défaut, ode45
Cas 3	$(\pi/20,0)$	100	(10, 1)	0.001	Euler, ode1
Cas 4	$(\pi/20,0)$	100	(10, 1)	1	Euler, ode1
Cas 5	$(\pi/20,0)$	100	(10, 1)	2	Euler, ode1
Cas 6	$(\pi/20,0)$	100	(10, 1)	5	Euler, ode1

 ${\it Table 2-Donn\'ees pour le contr\^ole par retour d'\'etat avec capteurs.}$

AUTOMATIQUE TP2

4 Échantillonnage

Noms des fichiers:

- fichier SIMULINK : pendule_inv_echant_etu.slx;
- script de test exemple_test_pendule_inv_echant.m.

En pratique on a accès aux données du capteur avec une période d'échantillonnage de Δ_t . Pour cela on utilisera à l'intérieur du sous système Capteur le block Simulink Zero-Order Hold pour réaliser l'échantillonage et un intégrateur discret pour la prédiction.

On visualisera les résultats pour les données de la table 3

Cas	x_0	t_f	K	Δ_t	Intégrateur
Cas 1	$(\pi/20,0)$	100	(30, 10)	0.1	par défaut, ode45
Cas 2	$(\pi/20,0)$	100	(30, 10)	0.2	par défaut, ode45
Cas 3	$(\pi/20,0)$	100	(30, 10)	0.3	par défaut, ode45
Cas 4	$(\pi/20,0)$	100	(30, 10)	0.4	par défaut, ode45

Table 3 – Données pour le contrôle par retour d'état avec capteurs et échantillonnage.