

Факультет компьютерных наук Департамент программной инженерии Отчет по преддипломной практике

Android приложение "Автомобильные гонки в виртуальной реальности"

Место прохождения практики: 1027739630401 Выполнил студент группы БПИ131 Ефремов Савелий Валерьевич Научный руководитель: доцент, к.т.н Ахметсафина Римма Закиевна

ОПИСАНИЕ ПРЕДМЕТНОЙ ОБЛАСТИ

Виртуальной реальности становится все более актуальной и повсеместно используемой

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Шлем виртуальной реальности — устройство, позволяющее частично погрузиться в мир виртуальной реальности, создающее зрительный и акустический эффект присутствия в заданном управляющим устройством пространстве.

Варианты VR-шлемов

- Oculus Rift
- Playstation VR

Мобильные

- Google Cardboard
- VR One

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Стереоизображение — картина или видеоряд, использующий два отдельных изображения, позволяющих достичь стереоэффекта.

Поле зрения — это угол, на котором оптический прибор (глаз) способен видеть объекты, фокусируясь на объекте на оптической оси.

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Дисторсия — погрешность изображения в оптических системах, при которых нарушается геометрическое подобие между объектом и его изображением.

Подушкообразная (Pincushion distortion)

Бочкообразная (Barrel distortion)

Отсутствие дисторсии

ЦЕЛЬ И ЗАДАЧИ РАБОТЫ

Цель работы:

Создание конкурентоспособной мобильной игры «Автомобильные гонки в виртуальной реальности» для операционной системы Android с поддержкой технологии виртуальной реальности

Задачи работы

- Осуществить обзор рынка аналогов и обзор рынка SDK для создания VR
- Создание виртуальной реальности
- Компенсация подушкообразной дисторсии
- Создание режимов работы для разных шлемов виртуальной реальности
- Реализация поддержки беспроводного контроллера
- Изучение технологии создания 3D моделей и их экспорт в игру
- Реализация вида от первого лица
- Изучение технологии создания совместной игры по интернету (мультиплеера) и реализация его в игре

ОГЛАВЛЕНИЕ ВКР

- Реферат (95%)
- Введение (95%)
- Глава 1. Технологии виртуальной реальности (95%)
 - 1.1. Область применения виртуальной реальности
 - 1.2. Обзор рынка гоночных игр с поддержкой технологии виртуальной реальности
 - 1.3. Анализ существующих комплектов средств разработки (SDK) к 3D движкам для реализации виртуальной реальности
 - Выводы по главе
- Глава 2. Методы и технологии создания виртуальной реальности (65%)
 - 2.1. Оптическая система шлема виртуальной реальности (90%)
 - 2.1.1. Специфика человеческого зрения
 - 2.1.2. Причины использования линз в шлемах виртуальной реальности
 - 2.1.3. Аберрации, вызванные использованием линз
 - 2.1.4. Система трекинга, отслеживающая ориентацию устройства в пространстве
 - 2.2. Создание 3D моделей (90%)
 - 2.2.1. Создание 3D объектов
 - 2.2.2. Экспорт и Импорт 3D объектов
 - 2.2.3. Наложение текстуры на 3D модель в Unity
 - 2.3 Создание режима совместной игры по интернету (15%)
 - Выводы по главе

ОГЛАВЛЕНИЕ ВКР

- Глава 3. Разработка программы (5%)
 - 3.1. Особенности реализации технологии виртуальной реальности
 - 3.2. Реализация физики транспортного средства
 - 3.3. Реализация системы частиц для создания дыма и дождя
 - 3.4. Поддержка Bluetooth-контроллера
 - 3.5. Создание режима мультиплеера
 - Выводы по главе
- Заключение (0%)
- Приложение А. Техническое задание (80%)
- Приложение Б. Руководство оператора (0%)
- Приложение В. Программа и методика испытаний (0%)
- Приложение Г. Текст программы (0%)

АНАЛИЗ СУЩЕСТВУЮЩИХ РЕШЕНИЙ

Был произведен обзор аналогов в App Store и Google Play среди гоночных игр и сформулированы их недостатки:

- Большое количество рекламы, которая мешает играть
- Нереалистичный вид от первого лица
- Отсутствие соперников и/или режима мультиплеера
- Отсутствие возможности управлять транспортным средством с помощью беспроводного контроллера
- Отсутствие поддержки шлемов виртуальной реальности от различных производителей. Это является недостатком, поскольку линзы в шлемах виртуальной реальности разные, соответственно настройки дисторсии также должны быть разные

АНАЛИЗ СУЩЕСТВУЮЩИХ РЕШЕНИЙ

Был произведен обзор аналогов в App Store и Google Play среди гоночных игр и сформулированы их недостатки:

АНАЛИЗ SDK ДЛЯ СОЗДАНИЯ VR

Был произведен обзор встраиваемых в игровые движки SDK для создания виртуальной реальности:

Список обозреваемых SDK: Google Cardboard SDK, OpenVR SDK, Oculus Mobile SDK и Google Daydream SDK

- OpenVR SDK не поддерживает мобильную разработку
- Oculus Mobile SDK поддерживает разработку только для шлема виртуальной реальности Samsung GearVR
- Google Cardboard SDK перестанет поддерживается компанией Google ближайшее время
- Google Daydream SDK поддерживает работу начиная с Android 7.1 (0.4% рынка Android смартфонов)

МОДЕЛЬ БРАУНА-КОНРАДИ

Линзы шлемов виртуальной реальности имеют «подушкообразное» искажение.

Для компенсации этой дисторсии использована модель Брауна-Конради, создающая «бочкообразное» искажение.

$$x_d = x_u(1 + k_1r^2 + k_2r^4 + ...), y_d = y_u(1 + k_1r^2 + k_2r^4 + ...)$$

где:

 (x_d, y_d) - искаженное изображение точки

 (x_u,y_u) - неискаженное изображение точки

 (x_c,y_c) - центр дисторсии

 $r = \sqrt{(x_u - x_c)^2 + (y_u - y_c)^2}$ и k_n - коэффициенты дисторсии

КОМПЕНСАЦИЯ ДИСТОРСИИ

Линзы шлемов виртуальной реальности имеют «подушкообразное» искажение.

Компенсация дисторсии

Visible Image (pincushioned)

Visible Image

(pincushioned)

Rendered

(barrel distorted)

Visible Image

(corrected)

Высшая школа экономики, Москва, 2017

Lens

СОЗДАНИЕ 3D МОДЕЛЕЙ

Модели на сцене были созданы в 3ds Мах при помощи сплайнов. Сплайн – это группа вершин и соединяющих их сегментов, используемых для создания прямых или кривых линий.

Наиболее используемым типом сплайнов является **Bezier**. Он основан на кубических кривых Безье, которые имеют четыре опорные точки.

$$\mathbf{B}(t) = (1-t)^3 \mathbf{P}_0 + 3t(1-t)^2 \mathbf{P}_1 + 3t^2(1-t)\mathbf{P}_2 + t^3 \mathbf{P}_3, \quad t \in [0, 1]$$

ТЕХНОЛОГИИ И ИНСТРУМЕНТЫ РЕАЛИЗАЦИИ

Операционная система: Microsoft Windows 10

Среда программирования: Visual Studio Community Edition

Язык программирования: С#

Среда создания 3D модели: 3ds Max 2016

Среда разработки сцены: Unity

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Шилдт Г. C# 4.0. Полное руководство. - М.: Вильямс, 2013. - 1056 с.

Ласло М. Вычислительная геометрия и компьютерная графика на C++. - М.: Бином, 1997. - 301 с.

Вольф Д. OpenGL 4. Язык шейдеров. Книга рецептов. - М.: ДМК Пресс, 2015. - 368 с.

Семак Р. 3dsMax 2008 для дизайна интерьеров. - СПб.: Питер, 2008. - 256 с.

Роджерс Д., Адамс Дж. Математические основы машинной графики. — М.: Мир, 2001.

Дж. Альберг, Э. Нильсон Теория сплайнов и ее приложения. - М.: Мир, 1972. - 320 с.

Стивен Тилл, Джеймс О'Коннелл Разработка трехмерных (3D) моделей в Autodesk 3ds max 7. - М.: Вильямс, 2005. - 336 с.

Завьялов Ю.С., Квасов Б.И., Мирошниченко В.Л. Методы сплайн-функций. – М.: Наука, 1980. – 352 с

Астронавты NASA проходят VR-симуляции деятельности на МКС // Голографика | До-полненная и виртуальная реальность URL: http://holographica.space/news/nasa-htc-vive-3290 (дата обращения: 8.03.2016).

Виртуальные музеи и театры // VE Group, Виртуальная реальность URL: http://ve-group.ru/portfolio-category/cave/ (дата обращения: 12.03.2016).

Применение виртуальной реальности в медицине и биологии // VE Group, Виртуальная реальность URL: http://ve-group.ru/3dvr-resheniya/meditsina/ (дата обращения: 12.03.2016).

Камера (Camera) // Unity | Документация URL: http://docs.unity3d.com/ru/current/Manual/class-Camera.html (дата обращения: 20.02.2016).

Источник света (Light) // Unity | Документация URL: http://docs.unity3d.com/ru/current/Manual/class-Light.html (дата обращения: 20.02.2016).

Сплайн // Математика URL: http://ru.math.wikia.com/wiki/Сплайн (дата обращения: 28.02.2016).

Роджерс Д. Алгоритмические основы машинной графики. М.: Книга по Требования, 2012.

Уравнения кривой Безье // Научный форум dxdy URL: http://dxdy.ru/topic16478.html (дата обращения: 15.03.2016).

Модификаторы создания объектов из сплайновых форм 3ds Max // Bce о графике URL: http://x-graphics.org/modifikatory-sozdaniya-obektov-iz-splajnovyx-form-3ds-max/ (дата обращения: 11.03.2016).

Как в HACA виртуальная реальность помогает не уплыть в открытый космос // Geektimes URL:

https://geektimes.ru/post/253118/ (дата обращения: 18.03.2016).

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Закон Ламберта. Модель отражения Фонга. Модель отражения Блинна-Фонга

// Компьютерная графика URL: http://compgraphics.info/3D/lighting/phong_reflection_model.php (дата обращения: 23.03.2016).

Монохроматические аберрации // Основы оптики URL: http://aco.ifmo.ru/el_books/basics_optics/glava-8/glava-8-2.html (дата обращения: 28.03.2016).

Platform Versions // Android Developers URL: http://developer.android.com/intl/ru/about/dashboards/index.html (дата обращения: 08.04.2016).

How barrel distortion works on the Oculus Rift // YouTube URL: https://www.youtube.com/watch?v=B7qrgrrHry0 (дата обращения: 02.04.2016).

Rendering to the Oculus Rift // Oculus Developer Center URL:

https://developer.oculus.com/documentation/pcsdk/0.5/concepts/dg-render/ (дата обращения: 02.04.2016).

Периметрия. Поле зрения // Все о глазах и зрении URL: http://infoglaza.ru/korrektsiya-zreniya/178-perimetriya-pole-zreniya (дата обращения: 30.03.2016).

Смартфон Xiaomi Redmi 2 // ixbt.com — обзоры и тесты смартфонов URL: http://www.ixbt.com/mobile/xiaomi-redmi2.shtml (дата обращения: 01.04.2016).

FreeflyVR is a Virtual Reality headset for mobile phones // FreeFly VR URL: https://www.freeflyvr.com/ (дата обращения: 26.02.2016).

Красильников Н. Н. Цифровая обработка 2D- и 3D-изображений. Спб.: БХВ-Петербург, 2011.

What is Chromatic Aberration? // Photography Life URL: https://photographylife.com/what-is-chromatic-aberration (дата обращения: 29.03.2016).

Демонстрация

Спасибо за внимание!

Ефремов Савелий Валерьевич, svefremov_1@edu.hse.ru

Москва - 2017