

Distributed System Course

2021-22-GICI41SSD-Distributed System

Academic Year: 2021-2022 Lecturer: SOK Kimheng

Information

Course	Distributed System	48h, 12 Weeks, 4h/week (3 Groups = 96h)
	Week 1	Information, Self-Study Skill, Introduction
General Distributed System	Week 2	Distributed Communication (TCP/IP, Socket, RPC, REST, gRPC, OMQ)
	Week 3	Clock, Timestamp
	Week 4	Fault Tolerance (Two general problem, Byzantine General Problem)
	Week 5	Consensus Algorithm (Paxos, ZooKeeper, Raft)
	Week 6	Quiz
Blockchain	Week 7	Basic Cryptography
	Week 8	Blockchain and Bitcoin (Proof of Work)
	Week 9	Ethereum and Smart Contract (Proof of Stake)
	Week 10	Hyperledger and Self-Sovereign Identity
	Week 11	Security
	Week 12	Final Exam

Distributed System Course

2021-22-GICI41SSD-Distributed System

Week4:

Fault Tolerance

Academic Year: 2021-2022 Lecturer: SOK Kimheng

Agenda

- Definition
- 2 Two generals problem
- 3 Byzantine general problem

Definition

- Fault: The cause of malfunction or error in the system.
- Failure: The effect due to the fault (problem) either by hardware or operating system software that causes the system to end abnormally.
- Fail Safe: In the event of the failure, the system choose to fail in a manageable manner.

Type of fault

- Memory and CPU consumption
- > Cable disconnect
- > Network timeout
- > Hardware failure
- > Software error or bugs

Solution

Replication | Redundancy

Byzantine Generals problem

n = 3

Total number of generals are 3 or more

Byzantine Generals problem

n = 3f = 1

3 generals with 1 general traitor/malicious/faulty

How many n do we need to tolerant f faulty?

- > Up to f generals might behave maliciously
- ➤ Honest generals don't know who the malicious ones are
- > The malicious generals may collude
- ➤ Honest generals must agree on plan

Theorem:

- ➤ Need 3f+1 to tolerate f malicious generals
 - Less than 1/3 are malicious

Key take away

- > Nodes need to communicate with each other
- > Majority ideas is the global decision
- ➤ Voting or Election is needed for any decision to be approved
- Communication come with cost, so sometime centralized approach is used (*Leader-based approach*)
- There are many alternative and complement approaches for decision making. (*Next chapter Consensus Algorithm*)