Serie numeriche

 $(a_n)_n$ successione di numeri reali con $n\in\mathbb{N}$ $(S_k)_k$ è la successione delle somme parziali con $k\in\mathbb{N}$

$$S_k=\sum_{n=0}^k a_n=a_0+\ldots+a_k$$

Una serie numerica è il limite delle somme parziali

$$\sum_{n=0}^{+\infty} a_n := \lim_{k o +\infty} S_k = \lim_{k o +\infty} \sum_{n=0}^k a_n$$

La serie è detta

- convergente se il limite di S_k esiste finito
- divergente se il limite di S_k esiste e vale $\pm \infty$
- indeterminata se il limite di S_k non esiste

Serie telescopiche

 $(a_n)_n, (b_n)_n$ successioni tali che $a_n = b_{n+1} - b_n \ \ orall n \in \mathbb{N}$

$$S_k = \sum_{n=0}^k a_n = (b_1 - b_0) + (b_2 - b_1) + \ldots + (b_{k+1} - b_k) = b_{k+1} - b_0$$

$$\lim_{k o +\infty} S_k = \lim_{k o +\infty} (b_{k+1} - b_0)$$

Se $\exists \lim_{k \to +\infty} b_k \implies \exists \lim_{k \to +\infty} S_k$ e la serie è convergente

Serie di Mengoli

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$$

è telescopica

$$rac{1}{n(n+1)} = -\left(rac{1}{n+1} - rac{1}{n}
ight) = b_{n+1} - b_n$$

$$\lim_{k o +\infty} b_{k+1} = \lim_{k o +\infty} -rac{1}{k+1} = 0 \implies$$

converge e

$$\sum_{n=1}^{+\infty} rac{1}{n(n+1)} = \lim_{k o +\infty} (b_{k+1} - b_1) = 0 - (-1) = 1$$

Serie logaritmica

$$\sum_{n=1}^{+\infty} \ln\left(1 + \frac{1}{n}\right)$$

è telescopica

$$\ln\left(1+rac{1}{n}
ight)=\ln\left(rac{n+1}{n}
ight)=\ln(n+1)-\ln(n)=b_{n+1}-b_n$$

$$\lim_{k o +\infty} b_{k+1} = \lim_{k o +\infty} \ln(k+1) = +\infty \implies$$

diverge e

$$\sum_{n=1}^{+\infty} \ln\left(1 + \frac{1}{n}\right) = +\infty$$

Condizione necessaria

Se $\sum_{n=o}^{+\infty} a_n$ converge $\implies a_n$ è infinitesima, ovvero

se a_n non è infinitesima $\implies \sum_{n=0}^{+\infty} a_n$ non converge

Dimostrazione:

 $(a_n)_n$ successione, S_k serie associata

poiché per ipotesi la serie $\sum_{n=0}^{+\infty} a_n$ converge si ha che $\lim_{k \to +\infty} S_k$ esiste finito

dunque
$$S_k-S_{k-1}=a_k$$
 e $\lim_{k o +\infty}a_k=\lim_{k o +\infty}(S_k-S_{k-1})=0$

Carattere di una serie

La serie $\sum_{n=0}^{+\infty} a_n$ ha lo stesso carattere di $\sum_{n=n_0}^{+\infty} a_n$, ma valore diverso

Serie a termini positivi

 $(a_n)_n$ successione a termini positivi ($a_n \geq 0 \ \ orall n \in \mathbb{N}$)

 S_k è monotona crescente, infatti $S_{k+1} = \sum_{n=0}^{k+1} a_n = \sum_{n=0}^k a_n + a_{k+1} \ge S_k$ e quindi ammette limite (finito o infinito), perciò la serie associata converge oppure diverge

Criterio del confronto

 $(a_n)_n, (b_n)_n$ successioni a termini positivi, se $\exists n_0: a_n \leq b_n \ \, \forall n \geq n_0$ si ha che:

•
$$\sum_{n=0}^{+\infty} b_n < +\infty \implies \sum_{n=0}^{+\infty} a_n < +\infty$$

•
$$\sum_{n=0}^{+\infty} a_n = +\infty \implies \sum_{n=0}^{+\infty} b_n = +\infty$$

Criterio del confronto asintotico

 $(a_n)_n, (b_n)_n$ successioni a termini positivi, se $\lim_{n \to +\infty} rac{a_n}{b_n} = 1 \implies$ sono asintotiche $a_n \sim b_n$ ovvero $a_n = b_n + o(b_n)$ per $n \to +\infty$

Se
$$\exists \lim_{n \to +\infty} rac{a_n}{b_n} = l \implies$$

•
$$l=0$$
: $\sum_{n=0}^{+\infty} b_n < +\infty \implies \sum_{n=0}^{+\infty} a_n < +\infty$

•
$$l=+\infty$$
: $\sum_{n=0}^{+\infty}b_n=+\infty \implies \sum_{n=0}^{+\infty}a_n=+\infty$

•
$$0 < l < +\infty$$
: $\sum_{n=0}^{+\infty} a_n$ e $\sum_{n=0}^{+\infty}$ hanno lo stesso carattere

Serie armonica generalizzata

Funzione Zeta di Riemann: $\alpha > 0$

$$\zeta(lpha) = \sum_{n=1}^{+\infty} rac{1}{n^lpha}$$

è convergente per $\alpha > 1$ e divergente per $\alpha \leq 1$

Criterio del rapporto e della radice n-esima

 $(a_n)_n$ a termini positivi

Se

$$\exists \lim_{n o +\infty} rac{a_{n+1}}{a_n} = l$$

oppure

$$\exists \lim_{n o +\infty} \sqrt[n]{a_n} = l$$

- se l > 1 la serie associata diverge
- se l < 1 la seria associata converge

Criterio di convergenza assoluta

 $(a_n)_n$ successione generica

Se
$$\sum_{n=0}^{+\infty} |a_n|$$
 converge $\implies \sum_{n=0}^{+\infty} a_n$ converge

La serie associata converge assolutamente se la serie associata al valore assoluto converge semplicemente

Serie a segni alterni

Serie di Leibnitz:

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}$$

converge semplicemente ma non assolutamente

Criterio di Leibnitz

 $(a_n)_n$ monotona decrescente e infinitesima $\implies \sum_{n=0}^{+\infty} (-1)^n \cdot a_n$ è convergente Dimostrazione:

$$S_k = \sum_{n=0}^k (-1)^n \cdot a_n \quad S_{k+2} = S_k + (-1)^{k+1} \cdot a_{k+1} + (-1)^{k+2} \cdot a_{k+2}$$

- k pari: $S_{k+2} = S_k a_{k+1} + a_{k+2} \implies S_{k+2} \leq S_k$
- k dispari: $S_{k+2}=S_k+a_{k+1}-a_{k+2} \implies S_{k+2} \geq S_k$ Inoltre $\lim_{k \to +\infty} S_{k+1}-S_k=0$ quindi $\sum_{n=0}^{+\infty} (-1)^n \cdot a_n$ converge

Serie e integrali generalizzati

$$\sum_{n=0}^{+\infty} a_n$$
, definita $f(x) = a_k \ \ orall x \in [k,k+1) \implies$

$$\int_0^{n+1} f(x) \, dx = \sum_{k=0}^n \int_k^{k+1} f(x) \, dx = \sum_{k=0}^n a_k = S_n$$

Se l'integrale è convergente allora la serie è convergente e $\sum_{n=0}^{+\infty} a_n = \int_0^{+\infty} f(x) \, dx$ e viceversa

Criterio integrale

 $n_0\in\mathbb{N},\,f:[n_0,+\infty) o\mathbb{R}$ funzione tale che $f\geq 0$ decrescente in $[n_0,+\infty)$ e $\lim_{x\to+\infty}f(x)=0$ Se $a_n=f(n)\Longrightarrow$

- $\sum_{n=n_0}^{+\infty} a_n < +\infty \iff \int_{n_0}^{+\infty} f(x) \, dx < +\infty$
- $\sum_{n=n_0}^{+\infty} a_n = +\infty \iff \int_{n_0}^{+\infty} f(x) \, dx = +\infty$

Serie armonica generalizzata

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} = \begin{cases} +\infty, & 0 < \alpha \le 1 \\ \frac{1}{1-\alpha}, & \alpha > 1 \end{cases}$$