NIZOVI, KONVERGENCIJA NIZOVA, I deo

19. februar 2024.

Definicija

Neka je A prebrojiv podskup skupa prirodnih brojeva (ili skupa $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$) i X neprazan skup. Preslikavanje a : $A \to X$ zovemo **nizom** u skupu X.

Obično se u definiciji niza uzima da je $A=\mathbb{N}$. Međutim, tada za sledeća preslikavanja definisana sa

$$a(n) = \frac{1}{n-2}, \ a(n) = \frac{1}{1+(-1)^n}$$

ne bismo mogli reći da predstavljaju niz. U prvom slučaju oblast definisanosti nije čitav skup $\mathbb N$ već $\mathbb N\setminus\{2\}$, a u drugom slučaju $\mathbb N\setminus\{2n-1:n\in\mathbb N\}$.

Bez gubitka opštosti za domen niza se može uzimati skup prirodnih brojeva $\mathbb N$, jer za svaki prebrojiv skup $A, A \subset \mathbb N$, postoji bijekcija $\phi: \mathbb N \to A$ skupa $\mathbb N$ na skup A sa osobinom da ako je

$$n < m$$
,

tada je i

$$\phi(n) < \phi(m)$$
, za sve $n, m \in \mathbb{N}$.

Tada umesto niza a možemo posmatrati niz

$$a \circ \phi : \mathbb{N} \to X$$
.

Primetimo da njegov domen jeste skup prirodnih brojeva i da oba preslikavanja imaju isti skup vrednosti.

ullet Bijekciju ϕ možemo definisati na sledeći način:

$$\begin{array}{lcl} \phi(1) & = & \min A, \\ \phi(2) & = & \min (A \setminus \{\phi(1)\}), \\ & \vdots & \\ \phi(n) & = & \min (A \setminus \{\phi(1), \phi(2), \dots, \phi(n-1)\}), \text{ za sve } n > 1. \end{array}$$

ullet Na primer, bijekcija ϕ za niz dat sa $a(n)=\frac{1}{n-2}$ preslikava skup $\mathbb N$ na skup $\mathbb N\setminus\{2\}$ i data je sa

$$\phi(1) = 1,$$

 $\phi(n) = n+1, \text{ za sve } n > 1.$

- Neka je $a: \mathbb{N} \to X$ niz. Elemenat a(n) skupa X (slika prirodnog broja n) obeležavamo sa a_n i zovemo ga n-ti član niza a ili opšti član niza a. Dakle, $a(1) = a_1$ je prvi član niza, $a(2) = a_2$ je drugi član niza, itd.
- Niz $a: \mathbb{N} \to X$ kraće obeležavamo sa $\{a_n\}, < a_n > \mathsf{ili}\ (a_n)$. Koristićemo oznaku $\{a_n\}$.
- Ako je $X=\mathbb{R}$, onda kažemo da je $\{a_n\}$ realan niz, a ako je $X=\mathbb{C}$ onda kažemo da je $\{a_n\}$ kompleksan niz. Primetimo da svakom kompleksnom nizu

$$\{a_n\} = \{x_n + iy_n\}$$

odgovaraju dva realna niza:

$$\{x_n\}$$
 — niz realnih delova niza $\{a_n\}$, $\{y_n\}$ — niz imaginarnih delova niza $\{a_n\}$.

Neka je (X, \leq) (totalno) uređen skup i $\{a_n\} \subset X$ niz u skupu X.

1) Ako postoji $M \in X$, tako da je $a_n \leq M$, za sve $n \in \mathbb{N}$, onda kažemo da je niz $\{a_n\}$ ograničen sa gornje strane.

Element M zovemo **gornja granica niza** (**gornje ograničenje**).

Najmanja gornja granica niza (ako postoji) koji je ograničen sa gornje strane, zove se **supremum niza** (**gornja međa**), u oznaci sup a_n .

2) Ako postoji $m \in X$, tako da je $m \leq a_n$, za sve $n \in \mathbb{N}$, onda kažemo da je niz $\{a_n\}$ ograničen sa donje strane.

Element *m* zovemo **donja granica niza** (**donje ograničenje**).

Najveća donja granica niza (ako postoji) ograničenog sa donje strane zove se **infimum niza** (**donja međa**), u oznaci inf a_n .

Ako je niz $\{a_n\}$ ograničen i sa gornje i sa donje strane, kažemo da je **ograničen**.

Ako je $M=\sup a_n$ i $m=\inf a_n$, tada za sve $n\in\mathbb{N}$ važi da je $m\preceq a_n\preceq M$.

Ograničen niz realnih brojeva ima supremum i infimum.

- Realan niz $\{\frac{1}{n}\}$ je ograničen, pri čemu je $M = \sup \frac{1}{n} = 1$ prvi član niza, a $m = \inf \frac{1}{n} = 0$ nije član niza.
- Realan niz $\{n\}$ je ograničen sa donje strane (m=1), a nije ograničen sa gornje strane.
- Realan niz $\{(-1)^n n\}$ nije ograničen ni sa gornje ni sa donje strane.

Ako za niz $\{a_n\}$ važi:

- 1) $(\forall n \in \mathbb{N})$ $a_n \prec a_{n+1}$ niz je **monotono rastući**,
- 2) $(\forall n \in \mathbb{N})$ $a_{n+1} \prec a_n$ niz je monotono opadajući,
- 3) $(\forall n \in \mathbb{N})$ $a_n \leq a_{n+1}$ niz je monotono neopadajući,
- 4) $(\forall n \in \mathbb{N})$ $a_{n+1} \leq a_n$ niz je **monotono nerastući**.
- Ako niz $\{a_n\}$ zadovoljava neki od gornja četiri uslova, kažemo da je **monoton**.
- Ako niz zadovoljava uslov 1) ili 2) kažemo da je i strogo (striktno) monoton.

Očigledno je da je monotono rastući niz ujedno i monotono neopadajući, a monotono opadajući niz je ujedno i monotono nerastući.

- Kažemo da je niz $\{a_n\}$ gotovo monotono rastući, ako postoji $n_0 \in \mathbb{N}$, tako da za svako $n \in \mathbb{N}$, $n \ge n_0$, važi $a_n \prec a_{n+1}$.
- Slično se definišu pojmovi gotovo monotono opadajućeg, gotovo monotono nerastućeg, gotovo monotono neopadajućeg i gotovo monotonog niza.

Definicija

Ako je $\{n_k\}$ monotono rastući niz prirodnih brojeva, onda za niz $\{a_{n_k}\}$ kažemo da je **podniz niza** $\{a_n\}$.

Na primer podnizovi niza $\{a_n\}$ su nizovi $\{a_{2n}\}, \{a_{3n}\}, \{a_{2n-1}\},$ itd.

Definicija

Neka je (X,d) metrički prostor. Za niz $\{a_n\}\subset X$ kažemo da ima **graničnu vrednost** $a\in X$ i pišemo da je $\lim_{n\to\infty}a_n=a$, ako

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N})(\forall n \in \mathbb{N})(n \geq n_0 \Rightarrow a_n \in L(a, \varepsilon)),$$

tj.

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N})(\forall n \in \mathbb{N})(n \geq n_0 \Rightarrow d(a_n, a) < \varepsilon).$$

Prethodna definicija za prostore \mathbb{R} i \mathbb{C} je:

ullet Broj $a\in\mathbb{R}$ je granična vrednost realnog niza $\{a_n\}$ u \mathbb{R} ako i samo ako je ispunjen uslov

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N})(n \geq n_0 \Rightarrow |a_n - a| < \varepsilon),$$

odnosno počev od n_0 svi članovi niza nalaze se u ε -okolini tačke a, tj. u otvorenom intervalu $(a - \varepsilon, a + \varepsilon)$.

ullet Broj $z\in\mathbb{C}$ je granična vrednost kompleksnog niza $\{z_n\}$ u \mathbb{C} ako i samo ako je ispunjen uslov

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N})(n \geq n_0 \Rightarrow |z_n - z| < \varepsilon).$$

- Ako niz $\{a_n\}$ ima graničnu vrednost a, tada kažemo da niz **konvergira** ili **teži** ka a, odnosno da je niz $\{a_n\}$ **konvergentan**. Za niz koji nije konvergentan kažemo da **divergira**, odnosno da je **divergentan**.
- Broj n_0 očigledno zavisi od ε i pokazuje koliko se članova niza $\{a_n\}$ nalazi izvan ε —okoline tačke a. Počev od n_0 svi članovi niza se nalaze u otvorenoj lopti $L(a,\varepsilon)$ dok se van nje nalazi najviše n_0-1 članova niza. Kažemo i da su u svakoj okolini **skoro svi** članovi niza

Napomena

Ponekad se umesto $\lim_{n\to\infty} a_n = a$ piše $a_n \to a$, $n\to\infty$ ili kraće $a_n \to a$.

• Ako je $(\forall n \in \mathbb{N} \setminus N_1)$ $a_n = a$, gde je $N_1 \subset \mathbb{N}$ konačan skup, onda kažemo da je niz $\{a_n\}$ stacionaran. Kako za stacionaran niz $\{a_n\}$ gde je

$$a_n=a,$$
 za $n\in\mathbb{N}\setminus \mathcal{N}_1$

važi

$$d(a_n,a)=d(a,a)=0,$$
 za $n\in\mathbb{N}\setminus N_1$

to sledi da je

$$\lim_{n\to\infty}a_n=a.$$

• Slično, ako je $\{a_n\}$ konstantan niz, tj. $a_n=a$ za svako $n\in\mathbb{N}$, sledi da je $\lim_{n\to\infty}a_n=a$.

Primer

Za svako $\alpha > 0$ u \mathbb{R} važi

$$\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0.$$

To je tačno, jer je

$$\left|\frac{1}{n^{\alpha}} - 0\right| < \varepsilon \Leftrightarrow \frac{1}{n^{\alpha}} < \varepsilon \Leftrightarrow n > \left(\frac{1}{\varepsilon}\right)^{1/\alpha},$$

pa za proizvoljno $\varepsilon>0$, postoji

$$n_0 = \left\lceil \left(\frac{1}{\varepsilon}\right)^{1/\alpha} \right\rceil + 1.$$

Tako ako je $\alpha = 1$ i $\varepsilon = \frac{1}{10}$, tada je $n_0 = 11$.

Ako je $\{z_n\}$, gde je $z_n = x_n + y_n i$ kompleksan niz, granična vrednost niza $\{z_n\}$ može se odrediti preko graničnih vrednosti realnih nizova $\{x_n\}$ i $\{y_n\}$. Naime, važi

Tvrđenje

Kompleksan broj z = x + yi je granična vrednost kompleksnog niza $\{z_n\}$, $z_n = x_n + y_n i$ u $\mathbb C$ ako i samo ako je x granična vrednost niza $\{x_n\}$ u $\mathbb R$, a y granična vrednost niza $\{y_n\}$ u $\mathbb R$, tj.

$$\lim_{n\to\infty} z_n = z = x + yi \Leftrightarrow \lim_{n\to\infty} x_n = x \wedge \lim_{n\to\infty} y_n = y.$$

Dokaz. (\Rightarrow) Pretpostavimo da je $\lim_{n\to\infty}z_n=z=x+yi$. Neka je $(x-\varepsilon_1,x+\varepsilon_1),\ \varepsilon_1$ -okolina tačke x i $(y-\varepsilon_2,y+\varepsilon_2),\ \varepsilon_2$ -okolina tačke y. Uzmimo da je $\varepsilon=\min\{\varepsilon_1,\varepsilon_2\}$. Tada

$$z_n \in L(z,\varepsilon),$$
 za $n \geq n_0,$

pa sledi da

$$|x_n-x| i $|y_n-y| za $n\geq n_0,$ odnosno za nizove $\{x_n\}$ i $\{y_n\}$ važi $\lim_{n\to\infty}x_n=x, \lim_{n\to\infty}y_n=y.$$$$

 $\lim z_n = z$.

 $(\Leftarrow) \text{ Pretpostavimo obrnuto, tj. neka je } \lim_{\substack{n \to \infty}} x_n = x \text{ i } \lim_{\substack{n \to \infty}} y_n = y,$ a $L(z,\varepsilon)$ proizvoljna ε okolina tačke z. Upišimo u $L(z,\varepsilon)$ pravougaonik sa stranicama $2\varepsilon_1$ i $2\varepsilon_2$ čije su stranice paralelne koordinatnim osama. Tada je $(x-\varepsilon_1,x+\varepsilon_1),\ \varepsilon_1$ -okolina tačke x i $(y-\varepsilon_2,y+\varepsilon_2),\ \varepsilon_2$ -okolina tačke y, pa iz $x_n \in (x-\varepsilon_1,x+\varepsilon_1),\ n \geq n_1$ i $y_n \in (y-\varepsilon_2,y+\varepsilon_2),\ n \geq n_2$ sledi da $z_n \in L(a,\varepsilon)$ za $n \geq n_0 = \max\{n_1,n_2\},$ odnosno

Napomena

Slično se može dokazati da niz $\{(x_n^1, x_n^2, ..., x_n^m)\} \subset \mathbb{R}^m$ konvergira ka $(a^1, a^2, ..., a^m) \in \mathbb{R}^m$ u \mathbb{R}^m ako i samo ako za svako i = 1, ..., m niz $\{x_n^i\}$ konvergira ka a^i u \mathbb{R} , tj.

$$\lim_{n \to \infty} (x_n^1, x_n^2, ..., x_n^m) = (a^1, a^2, ..., a^m) \Leftrightarrow \lim_{n \to \infty} x_n^i = a^i, \ i = 1, ..., m.$$

Napomena

Niz $\{a_n\} \subset X$ konvergira ka $a \in X$ u metričkom prostoru (X,d) ako i samo ako niz realnih brojeva $\{d(a_n,a)\}$ konvergira ka nuli u \mathbb{R} .

Napomena

Ako je k fiksan prirodan broj, tada ako je $\lim_{n\to\infty} a_n = a$, sledi takođe da je $\lim_{n\to\infty} a_{n+k} = a$.

Tvrđenje

Ako niz $\{a_n\} \subset X$ konvergira u metričkom prostoru (X,d), tada je granična vrednost jednoznačno određena.

Dokaz. Pretpostavimo da postoje dve granične vrednosti a i b. Kako je X metrički prostor, to postoje otvorene lopte $L(a,\varepsilon)$ i $L(b,\varepsilon)$, $\varepsilon=\frac{1}{2}d(a,b)$ koje su disjunktne. Tada postoje prirodni brojevi n_1 i n_2 tako da važi

$$(\forall n \in \mathbb{N})(n \geq n_1 \Rightarrow a_n \in L(a,\varepsilon)), \quad (\forall n \in \mathbb{N})(n \geq n_2 \Rightarrow a_n \in L(b,\varepsilon)).$$

Neka je $n_0 = \max\{n_1, n_2\}$. Tada sledi da je

$$(\forall n \in \mathbb{N})(n \geq n_0 \Rightarrow a_n \in L(a,\varepsilon) \cap L(b,\varepsilon)),$$

što je nemoguće. Dakle, ako niz ima graničnu vrednost, ona je jednoznačno određena.

Tvrđenje

Konvergentan niz u metričkom prostoru (X, d) je ograničen.

Dokaz. Iz toga da je $\lim_{n o \infty} a_n = a$, imamo da važi

$$(\exists n_0 \in \mathbb{N})(\forall n \in \mathbb{N})(n \geq n_0 \Rightarrow a_n \in L(a,1)).$$

Ako je $n_0=1$, tada se svi članovi niza nalaze u otvorenoj lopti L(a,1), pa je $d(a_m,a_n) \leq d(a_m,a) + d(a,a_n) < 1+1=2$, tj. niz je ograničen.

Za $n_0 > 1$, neka je $D = \max\{1, d(a, a_1), d(a, a_2), \dots, d(a, a_{n_0-1})\}$. Tada je $d(a_n, a_m) \le d(a_n, a) + d(a, a_m) \le 2D$, pa je

$$\sup\{d(a_n, a_m) : a_n, a_m \in \{a_n\}\} \le D + D = 2D.$$

Dakle, niz $\{a_n\}$ je ograničen.

Definicija

Za tačku $a \in X$ kažemo da je tačka nagomilavanja niza $\{a_n\}$ u metričkom prostoru (X, d) ako

$$(\forall \varepsilon \in \mathbb{R}^+)(\forall m \in \mathbb{N})(\exists n \in \mathbb{N})(n \geq m \land a_n \in L(a, \varepsilon)).$$

• Dakle, ako je a tačka nagomilavanja niza $\{a_n\}$, tada svaka ε —okolina tačke a sadrži bar jedan član datog niza.

Obrnuto nije tačno. Na primer, ako posmatramo realan niz $\{a_n\}$ gde je $a_n=\frac{1}{n}$, tada $L(1,\varepsilon)$ sadrži prvi član niza $a_1=1$, ali 1 nije tačka nagomilavanja datog niza u \mathbb{R} .

- Tačke nagomilavanja niza $\{(-1)^n\}$ u \mathbb{R} su očigledno -1 i 1 (ograničen niz ne mora da bude konvergentan!).
- Tačka nagomilavanja niza $\{n^{(-1)^n}\}$ u $\mathbb R$ je 0 (nije ograničen i nije konvergentan!)
- Niz $\{n\}$ nema ni jednu tačku nagomilavanja u \mathbb{R} .

Dakle, niz može da nema ni jednu, da ima jednu ili više tačaka nagomilavanja, pa i beskonačno mnogo.

Tvrđenje

Za svaku okolinu V tačke nagomilavanja a niza $\{a_n\}$, postoji beskonačan skup $M \subset \mathbb{N}$ tako da je $(\forall m \in M)$ $a_m \in V$.

Dokaz. Dokažimo da je skup $M = \{n \in \mathbb{N} : a_m \in V\}$ beskonačan. On je neprazan jer iz same definicije tačke nagomilavanja sledi da postoji prirodan broj n takav da $a_n \in V$.

Pretpostavimo da je M konačan skup. Tada postoji $n_1 = \max\{n : n \in M\}$. Ako uzmemo da je

$$m=n_1+1,$$

tada postoji $n \ge m > n_1$ tako da $a_n \in V$, pa je $n \in M$ tj. $n \le n_1$ što je kontradikcija. Dakle, M je beskonačan.

• Iz definicije tačke nagomilavanja niza $\{a_n\}$ sledi da je tačka nagomilavanja niza adherentna tačka skupa $\{a_n:n\in\mathbb{N}\}$, ali ne mora da bude tačka nagomilavanja toga skupa.

Npr. u slučaju niza čiji je opšti član $a_n=(-1)^n$ tačke 1 i -1 su tačke nagomilavanja niza u \mathbb{R} , dok je skup $\{1,-1\}$ konačan i nema tačke nagomilavanja.

Napomena

Ako niz $\{a_n\} \subset X$ u metričkom prostoru X konvergira ka a, onda je a jedina tačka nagomilavanja niza $\{a_n\}$.

- Tačka a je tačka nagomilavanja niza $\{a_n\}$ ako i samo ako postoji podniz $\{a_{n_k}\}$ niza $\{a_n\}$ koji konvergira ka a.
- U metričkom prostoru (X,d), skup $A\subset X$ je zatvoren ako i samo ako za svaki niz $\{a_n\}$ elemenata iz A koji konvergira ka a sledi da $a\in A$.

Tvrđenje

Neka je (X, d) metrički prostor. Skup svih tačaka nagomilavanja niza $\{a_n\} \subset X$ je zatvoren u (X, d).

- ullet Pretpostavimo da je skup A tačaka nagomilavanja realnog niza $\{a_n\}$ neprazan i ograničen. Kako je skup tačaka nagomilavanja zatvoren, to sledi da skup A ima najveći i najmanji element, tj. najveću i najmanju tačku nagomilavanja. Tada
- a) najveću tačku nagomilavanja zovemo **limes superior** datog niza i označavamo je sa lim sup a_n ili $\overline{\lim} a_n$.
- b) najmanju tačku nagomilavanja zovemo **limes inferior** datog niza i označavamo je sa liminf a_n ili $\underline{\lim} a_n$.
- ullet ako su lim inf a_n i lim sup a_n različiti, niz ne konvergira, ako konvergira jednaki su.

Divergencija realnih nizova

Definicija

Za niz $\{a_n\}$ kažemo da **teži** ∞ kada $n \to \infty$, tj. $a_n \to \infty$ kada $n \to \infty$ ako

$$(\forall K \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N})(\forall n \in \mathbb{N})(n \geq n_0 \Rightarrow a_n > K).$$

Za niz $\{a_n\}$ kažemo da **teži** $-\infty$ kada $n \to \infty$, tj. $a_n \to -\infty$ kada $n \to \infty$ ako

$$(\forall K \in \mathbb{R}^-)(\exists n_0 \in \mathbb{N})(\forall n \in \mathbb{N})(n \geq n_0 \Rightarrow a_n < K).$$

Ako niz $\{a_n\}$ teži $+\infty$ ili $-\infty$ kažemo da je **divergentan u užem** smislu. Za niz koji je divergentan, ali ne u užem smislu, kažemo da je divergentan u širem smislu.

Napomena

Umesto $a_n \to \infty$ (odnosno $a_n \to -\infty$) kada $n \to \infty$ često ćemo pisati $\lim_{n \to \infty} a_n = \infty$ (odnosno $\lim_{n \to \infty} a_n = -\infty$).

- \bullet Niz $\{(-1)^n\}$ je očigledno divergentan u širem smislu. (Ovaj niz ima dve tačke nagomilavanja.)
- Niz $\{n^{(-1)^n}\}$ divergira u širem smislu. (Ovaj niz ima samo jednu tačku nagomilavanja i to realan broj 0.)
- \bullet Niz $\{(-1)^n n\}$ je divergentan u širem smislu. (Ovaj niz nema ni jednu tačku nagomilavanja.)
- Niz $\{\sqrt{n}\}$ teži ka ∞ kada $n \to \infty$, a niz $\{-n^2\}$ teži ka $-\infty$ kada $n \to \infty$.