Sparse and Low-Rank Tensor Recovery via Cubic-Sketching

Guang Cheng
Department of Statistics
Purdue University
www.science.purdue.edu/bigdata

CCAM@Purdue Math Oct. 27, 2017

Joint work with Botao Hao and Anru Zhang

Tensor: Multi-dimensional Array

Tensor Data Example

Color image

Advertisement

fMRI

Motivation: Compressed Image Transmission

Motivation: Interaction Effect Model

source: Contraceptive Method Choice dataset from UCI

Motivation: Interaction Effect Model

$$= (1, X_1, X_2, X_3) \circ (1, X_1, X_2, X_3) \circ (1, X_1, X_2, X_3) \in R^{(p+1) \times (p+1) \times (p+1)}$$

Sparse and Low-Rank Tensor Recovery

Noisy Cubic Sketching Model

• Observe $\{y_i, \mathcal{X}_i\}$ from noisy cubic sketching model,

$$y_i = \underbrace{\langle \mathcal{J}^*, \mathcal{X}_i \rangle}_{\text{scalar}} + \underbrace{\epsilon_i}_{\text{noise}}, \quad i = 1, \dots, n.$$

• For two tensors $\mathcal{A} \in \mathbb{R}^{p_1 \times p_2 \times p_3}$ and $\mathcal{B} \in \mathbb{R}^{p_1 \times p_2 \times p_3}$, the tensor inner product is defined as

$$\langle \mathcal{A}, \mathcal{B} \rangle = \sum_{ijk} \mathcal{A}_{ijk} \mathcal{B}_{ijk}.$$

Noisy Cubic Sketching Model

 General model including: tensor regression (Zhou, Li, Zhu (2013)), tensor completion (Yuan and Zhang (2014)).

- Goal: Recover unknown third-order tensor parameter \mathcal{T}^* .
- High-dimensional problem: $n \ll \dim(\mathcal{T}^*) \approx p^3$.

Key Assumptions on Tensor Parameter

- When $\mathcal{T}^* \in \mathbb{R}^{p \times p \times p}$ is a symmetric tensor...
 - CANDECOMP/PARAFAC(CP) low-rank:

Represented as sum of rank-one tensor, where $k \ll p$.

- **2** Sparse components: $\|\boldsymbol{\beta}_k^*\|_0 \le s$ for $k \in [K]$.
- The cubic sketching tensor \mathscr{X}_i for symmetric case is $\mathscr{X}_i = x_i \circ x_i \circ x_i$, where $\{x_i\}_{i=1}^n$ are Gaussian random vectors.
- β_k^* and $\beta_{k'}^*$ are not orthogonal. Different from singular-value decomposition in matrix case.

Key Assumptions on Tensor Parameter

- When $\mathscr{T}^* \in \mathbb{R}^{p_1 \times p_2 \times p_3}$ is a non-symmetric tensor...
 - CANDECOMP/PARAFAC(CP) low-rank:

$$\mathscr{T}^* = \sum_{k=1}^K \eta_k^* \beta_{1k}^* \circ \beta_{2k}^* \circ \beta_{3k}^*, \text{ with } \|\beta_{1k}^*\|_2 = \|\beta_{2k}^*\|_2 = \|\beta_{3k}^*\|_2 = 1$$

- ② Sparse components: $\|\beta_{1k}^*\|_0 \le s_1$, $\|\beta_{2k}^*\|_0 \le s_2$, $\|\beta_{3k}^*\|_0 \le s_3$ for $k \in [K]$.
- The cubic sketching tensor \mathscr{X}_i for non-symmetric case is $\mathscr{X}_i = u_i \circ v_i \circ w_i$, where $\{u_i, v_i, w_i\}_{i=1}^n$ are Gaussian random vectors.

Reduced Symmetric Tensor Recovery Model

For symmetric tensor recovery model

$$y_i = \langle \sum_{k=1}^K \eta_k^* \boldsymbol{\beta}_k^* \circ \boldsymbol{\beta}_k^* \circ \boldsymbol{\beta}_k^*, \boldsymbol{x}_i \circ \boldsymbol{x}_i \circ \boldsymbol{x}_i \rangle + \epsilon_i = \sum_{k=1}^K \eta_k^* \underbrace{(\boldsymbol{x}_i^\top \boldsymbol{\beta}_k^*)^3}_{\text{non-linear}} + \epsilon_i$$

Connect with interaction effect model.

• New Goal: Recover $\{\eta_k^*, \pmb{\beta}_k^*\}_{k=1}^K$

Reduced Non-symmetric Tensor Recovery Model

For non-symmetric tensor recovery model

$$\begin{aligned} y_i &= & \langle \sum_{k=1}^K \eta_k^* \boldsymbol{\beta}_{1k}^* \circ \boldsymbol{\beta}_{2k}^* \circ \boldsymbol{\beta}_{3k}^*, \boldsymbol{u}_i \circ \boldsymbol{v}_i \circ \boldsymbol{w}_i \rangle + \epsilon_i \\ &= & \sum_{k=1}^K \eta_k^* \underbrace{(\boldsymbol{u}_i^\top \boldsymbol{\beta}_{1k}^*)(\boldsymbol{v}_i^\top \boldsymbol{\beta}_{2k}^*)(\boldsymbol{w}_i^\top \boldsymbol{\beta}_{3k}^*)}_{\text{non-linear}} + \epsilon_i \end{aligned}$$

Connect with compressed image transmission model.

• New Goal: Recover $\{\eta_k^*, \beta_{1k}^*, \beta_{2k}^*, \beta_{3k}^*\}_{k=1}^K$.

Empirical Risk Minimization

Consider Empirical Risk Minimization

$$\widehat{\mathcal{T}} = \underset{\{\eta_k, \beta_k\}}{\operatorname{argmin}} \underbrace{\sum_{i=1}^n (y_i - \sum_{k=1}^K \eta_k (\boldsymbol{x}_i^\top \boldsymbol{\beta}_k)^3)^2}_{\mathcal{L}_1(\eta_k, \beta_k)}$$

$$\widehat{\mathcal{T}} = \underset{\{\eta_k, \beta_{ik}\}}{\operatorname{argmin}} \underbrace{\sum_{i=1}^n (y_i - \sum_{k=1}^K \eta_k (\boldsymbol{u}_i^\top \boldsymbol{\beta}_{1k}) (\boldsymbol{v}_i^\top \boldsymbol{\beta}_{2k}) (\boldsymbol{w}_i^\top \boldsymbol{\beta}_{3k})}_{\mathcal{L}_2(\eta_k, \beta_{ik})})^2$$

• Difficulties: *Non-convex optimization!* Non-convexity from cube structure or tri-convexity.

Our Contributions

- Efficient two-stage implementation to non-convex optimization problem.
- 2 Non-asymptotic analysis. Provide optimal estimation rate.

Two-stage Implementation

Main Algorithm

Initial Step: Non-symmetric unbiased estimator

• Construct an unbiased empirical moment based tensor $\mathcal{T}(y_i, \mathscr{X}_i) \in \mathbb{R}^{p_1 \times p_2 \times p_3}$ as following

$$\mathcal{T} := \underbrace{\frac{1}{n} \sum_{i=1}^n y_i oldsymbol{u}_i \circ oldsymbol{v}_i \circ oldsymbol{w}_i}_{ ext{only depends on observations.}}$$

ullet This is used for non-symmetric case and $oldsymbol{u}_i, oldsymbol{v}_i, oldsymbol{w}_i$ are independent standard Gaussian random vectors.

Initial Step: Symmetric unbiased estimator

• Construct an unbiased empirical moment based tensor $\mathcal{T}_s(y_i,\mathscr{X}_i) \in \mathbb{R}^{p \times p \times p}$ as following

$$\mathcal{T}_s := \underbrace{\frac{1}{6} \Big[\frac{1}{n} \sum_{i=1}^n y_i m{x}_i \circ m{x}_i \circ m{x}_i - m{\mathcal{U}} \Big]}_{ ext{only depends on observations.}}$$

where the bias term

$$\mathcal{U} = \sum_{j=1}^p \left(m_1 \circ e_j \circ e_j + e_j \circ m_1 \circ e_j + e_j \circ e_j \circ m_1 \right)$$
, and $m_1 = \frac{1}{n} \sum_{i=1}^n y_i x_i$. Here $\{e_j\}_{j=1}^p$ are the canonical vectors in \mathbb{R}^p .

ullet Bias term ${\cal U}$ is due to the correlation among three "identical" Gaussian random vectors.

Initial Step: Decompose unbiased estimator

• Intuition: $\mathbb{E}[\mathcal{T}_s] = \mathscr{T}^*$.

Tensor Denosing Model: $\mathcal{T}_s = \mathscr{T}^* + \mathcal{E}$

- Observation \mathcal{T}_s .
- Noise $\mathcal{E} = \mathcal{T}_s \mathbb{E}(\mathcal{T}_s)$: approximation error.
- Decompose \mathcal{T}_s to obtain $\{\eta_k^{(0)}, \beta_k^{(0)}\}$ or Decompose \mathcal{T} to obtain $\{\eta_k^{(0)}, \beta_{1k}^{(0)}, \beta_{2k}^{(0)}, \beta_{3k}^{(0)}\}$ through sparse tensor decomposition. See next slide for details.
- Far from the optimal estimation, but good enough as a warm start.

Initial Step: Decompose unbiased estimator

• Intuition: $\mathbb{E}[\mathcal{T}_s] = \mathscr{T}^*$.

Tensor Denosing Model: $\mathcal{T}_s = \mathscr{T}^* + \mathcal{E}$

- Observation \mathcal{T}_s .
- Noise $\mathcal{E} = \mathcal{T}_s \mathbb{E}(\mathcal{T}_s)$: approximation error.
- Decompose \mathcal{T}_s to obtain $\{\eta_k^{(0)}, \boldsymbol{\beta}_k^{(0)}\}$ or Decompose \mathcal{T} to obtain $\{\eta_k^{(0)}, \boldsymbol{\beta}_{1k}^{(0)}, \boldsymbol{\beta}_{2k}^{(0)}, \boldsymbol{\beta}_{3k}^{(0)}\}$ through sparse tensor decomposition. See next slide for details.
- Far from the optimal estimation, but good enough as a warm start.

Initial Step: Decompose unbiased estimator

• Intuition: $\mathbb{E}[\mathcal{T}_s] = \mathscr{T}^*$.

Tensor Denosing Model: $\mathcal{T}_s = \mathscr{T}^* + \mathcal{E}$

- Observation \mathcal{T}_s .
- Noise $\mathcal{E} = \mathcal{T}_s \mathbb{E}(\mathcal{T}_s)$: approximation error.
- Decompose \mathcal{T}_s to obtain $\{\eta_k^{(0)}, \boldsymbol{\beta}_k^{(0)}\}$ or Decompose \mathcal{T} to obtain $\{\eta_k^{(0)}, \boldsymbol{\beta}_{1k}^{(0)}, \boldsymbol{\beta}_{2k}^{(0)}, \boldsymbol{\beta}_{3k}^{(0)}\}$ through sparse tensor decomposition. See next slide for details.
- Far from the optimal estimation, but good enough as a warm start.

Sparse Tensor Decomposition for Symmetric Tensor

- \Rightarrow Generate L staring points $\{\beta_l^{\text{start}}\}_{l=1}^L$.
 - \Rightarrow For each starting point, compute a non-sparse factor of moment-based \mathcal{T}_s via symmetric tensor power update:

$$\widetilde{\beta}_l^{(t+1)} = \frac{\mathcal{T}_s \times_2 \beta_l^{(t)} \times_3 \beta_l^{(t)}}{\|\mathcal{T}_s \times_2 \beta_l^{(t)} \times_3 \beta_l^{(t)}\|_2},$$

where for $\mathcal{T}_s \in \mathbb{R}^{p \times p \times p}$ and $\boldsymbol{x} \in \mathbb{R}^p$, define $\mathcal{T}_s \times_2 \boldsymbol{x} \times_3 \boldsymbol{x} := \sum_{j,l} \boldsymbol{x}_j \boldsymbol{x}_l [\mathcal{T}]_{:,j,l}$.

- \Rightarrow Get a sparse solution $eta_l^{(t+1)}$ via thresholding or truncation.
- $\Rightarrow \text{ Cluster L sets of single component } \{\boldsymbol{\beta}_l^{(T)}, \boldsymbol{\beta}_l^{(T)}, \boldsymbol{\beta}_l^{(T)}\}_{l=1}^L \text{ into } K$ clusters to obtain a rank-\$K\$ decomposition } \{\boldsymbol{\beta}_k^{(0)}, \boldsymbol{\beta}_k^{(0)}, \boldsymbol{\beta}_k^{(0)}\}_{k=1}^K.

Different from matrix SVD due to non-orthogonality.

Sparse Tensor Decomposition for Non-symmetric Tensor

- \Rightarrow Generate L staring points $\{\beta_{1l}^{\text{start}}, \beta_{2l}^{\text{start}}, \beta_{3l}^{\text{start}}\}_{l=1}^{L}$.
 - ⇒ For each starting point, compute a non-sparse factor of moment-based *T* via alternating tensor power update:

$$\widetilde{\beta}_{1l}^{(t+1)} = \frac{\mathcal{T}_s \times_2 \beta_{2l}^{(t)} \times_3 \beta_{3l}^{(t)}}{\|\mathcal{T}_s \times_2 \beta_{2l}^{(t)} \times_3 \beta_{3l}^{(t)}\|_2},$$

The updates for $\widetilde{\beta}_{2l}^{(t+1)}$ and $\widetilde{\beta}_{3l}^{(t+1)}$ are similar.

- \Rightarrow Get a sparse solution $\{\beta_{1l}^{(t+1)},\beta_{2l}^{(t+1)},\beta_{3l}^{(t+1)}\}$ via thresholding or truncation.
- $\Rightarrow \text{ Cluster L sets of single component } \{\boldsymbol{\beta}_{1l}^{(T)}, \boldsymbol{\beta}_{2l}^{(T)}, \boldsymbol{\beta}_{3l}^{(T)}\}_{l=1}^{L} \text{ into } K \text{ clusters to obtain a rank-} K \text{ decomposition } \{\boldsymbol{\beta}_{1k}^{(0)}, \boldsymbol{\beta}_{2k}^{(0)}, \boldsymbol{\beta}_{3k}^{(0)}\}_{k=1}^{K}.$

Gradient Update: Thresholded Gradient Decent

- \Rightarrow Input initial estimator $\{\eta_k^{(0)}, \boldsymbol{\beta}_k^{(0)}\}_{k=1}^K$.
 - \Rightarrow In each iteration step, update $\{eta_k\}_{k=1}^K$ as

$$\widetilde{\boldsymbol{\beta}}_{k}^{(t+1)} = \boldsymbol{\beta}_{k}^{(t)} - \frac{\mu_{t}}{\phi} \nabla_{\boldsymbol{\beta}_{k}} \mathcal{L}_{1}(\boldsymbol{\eta}_{k}^{(0)}, \boldsymbol{\beta}_{k}^{(t)})$$

where $\phi = \frac{1}{n} \sum_{i=1}^{n} y_i^2$, μ_t is the step size.

- \Rightarrow Sparsify current update by thresholding $eta_k^{(t+1)} = arphi_{
 ho}(\widetilde{eta}_k^{(t+1)}).$
- \Rightarrow Normalize final update $oldsymbol{eta}_k^{(T)} = rac{oldsymbol{eta}_k^{(T)}}{\|oldsymbol{eta}_k^{(T)}\|_2}$ and update the weight $\widehat{\eta}_k = \eta_k^{(0)} imes \|oldsymbol{eta}_k^{(T)}\|_2^3.$

Gradient Update: Thresholded Gradient Decent

- \Rightarrow Input initial estimator $\{\eta_k^{(0)}, \beta_{1k}^{(0)}, \beta_{2k}^{(0)}, \beta_{3k}^{(0)}\}_{k=1}^K$.
 - \Rightarrow In each iteration step, alternatively update $\{\beta_{1k},\beta_{2k},\beta_{3k}\}_{k=1}^{K}$ as

$$\widetilde{\beta}_{1k}^{(t+1)} = \beta_{1k}^{(t)} - \frac{\mu_t}{\phi} \nabla_{\beta_{1k}} \mathcal{L}_2(\eta_k^{(0)}, \beta_{1k}^{(t)}, \beta_{2k}^{(t)}, \beta_{3k}^{(t)})$$

where $\phi = \frac{1}{n} \sum_{i=1}^{n} y_i^2$, μ_t is the step size. The update for $\widetilde{\beta}_{2k}^{(t+1)}$ and $\widetilde{\beta}_{3k}^{(t+1)}$ is similar.

- \Rightarrow Sparsify current update by thresholding $\beta_{jk}^{(t+1)} = \varphi_{\rho}(\widetilde{\beta}_{jk}^{(t+1)})$ for j=1,2,3.
- \Rightarrow Normalize final update $m{eta}_{jk}^{(T)}=rac{m{eta}_{jk}^{(T)}}{\|m{eta}_{jk}^{(T)}\|_2}$ and update the weight

$$\widehat{\eta}_k = \eta_k^{(0)} \times \|\boldsymbol{\beta}_{1k}^{(T)}\|_2 \|\boldsymbol{\beta}_{2k}^{(T)}\|_2 \|\boldsymbol{\beta}_{3k}^{(T)}\|_2.$$

¹Alternating update for non-symmetric tensor recovery.

Non-asymptotic Analysis

Non-asymptotic Upper Bound

定理

Suppose some regularity conditions for the true tensor parameter hold. Assume $n \geq C_0 s^2 \log p$ for some large constant C_0 . Denote $Z_k^{(t)} = \sum_{k=1}^K \|\sqrt[3]{\eta_k} \beta_k^{(t)} - \sqrt[3]{\eta_k^*} \beta_k^* \|_2^2$ For any $t = 0, 1, 2, \ldots$, the factor-wise estimator satisfies

$$Z_k^{(t+1)} \leq \underbrace{\kappa^t Z_k^{(t)}}_{\text{computational error}} + \underbrace{\frac{C_1 \eta_{\min}^{*-\frac{1}{3}}}{16} \frac{\sigma^2 s \log p}{n}}_{\text{statistical error}},$$

with high probability, where κ is the contraction parameter between 0 and 1, $\eta^*_{\min} = \min_k \{\eta^*_k\}$, σ is the noise level and C_0, C_1 are some absolute constants.

Remarks

- Interesting characterization for computational error and statistical error;
- Geometric convergence rate to the truth in the noiseless case and minimax optimal statistical rate shown later;
- The error bound is dominated by computation error in the first several iterations and then is dominated by statistical error.
 Useful guideline for choosing stopping rule.

Remarks

• When $t \geq T$ for some enough T, the final estimator is bounded by

$$\left\| \mathscr{T}^{(T)} - \mathscr{T}^* \right\|_F^2 \leq \frac{C \sigma^2 K s \log p}{n},$$

with high probability.

Minimax optimal rate!

Class of Sparse and Low-rank tensor

Sparse CP decomposition

$$\mathscr{T} = \sum_{k=1}^{K} \beta_k \circ \beta_k \circ \beta_k, \|\beta_k\|_0 \le s \text{ for } k \in [K]$$

 Incoherence condition(nearly orthogonal): The true tensor components are incoherent such that

$$\max_{k_i \neq k_j \in [K]} |\langle \boldsymbol{\beta}_{k_i}^*, \boldsymbol{\beta}_{k_j}^* \rangle| \le \frac{C}{\sqrt{s}}.$$

Minimax Lower Bound

定理

Consider the class of tensor satisfy sparse CP-decomposition and incoherence condition. Suppose we sample via cubic measurements with i.i.d. standard normal sketches with i.i.d. $N(0,\sigma^2)$ noise, then we have the following lower bound result for recovery loss for this class of low-rank tensors,

$$\inf_{\widehat{\mathcal{T}}} \sup_{\mathscr{T} \in \mathcal{F}} \mathbb{E} \left\| \widehat{\mathscr{T}} - \mathscr{T} \right\|_F^2 \ge c \sigma^2 \frac{K s \log(ep/s)}{n}.$$

Optimal Estimation Rate

定理

Consider the class of tensor $\mathcal{F}_{p,K,s}$ satisfy sparse CP-decomposition and incoherence condition. Suppose we observe n samples $\{y_i,\mathscr{X}_i\}_{i=1}^n$ from symmetric tensor cubic sketching model, where $n \geq Cs^2 \log p$ for some large constant C. Then the estimator $\widehat{\mathscr{T}}$ achieves

$$\inf_{\widetilde{\mathscr{T}}} \sup_{\mathscr{T} \in \mathcal{F}_{p,K,s}} \mathbb{E} \left\| \widetilde{\mathscr{T}} - \mathscr{T} \right\|_F^2 \asymp \underbrace{\sigma^2 \frac{K s \log(p/s)}{n}}_{R^*},$$

when $\log p \asymp \log p/s$. Here σ is the noise level.

Remarks

- Our analysis is non-asymptotic and our estimator is rate-optimal.
- In general, we have a trade-off $\to R^*$ is the outcome of statistical error and optimization error trade-off.
- Similar argument holds for non-symmetric case. *Different technical tools are used.*
- To overcome the obstacle from high-order Gaussian random variable, we develop novel high-order concentration inequality by using truncation argument and ψ_{α} -norm.

Application to Interaction Effect Model

• Given the response $y \in \mathbb{R}^n$ and covariates $\pmb{X} \in \mathbb{R}^{n \times p}$, the regression model with three-way interactions can be formulated as

$$\begin{aligned} y_l &= \beta_0 + \sum_{i=1}^p X_{li}\beta_i + \sum_{i,j=1}^p \gamma_{ij}X_{li}X_{lj} + \sum_{i,j,k=1}^p \eta_{ijk}X_{li}X_{lj}X_{lk} + \epsilon_l \\ &= \langle \mathcal{B}, \boldsymbol{X}_l \circ \boldsymbol{X}_l \circ \boldsymbol{X}_l \rangle + \epsilon_l \\ &\text{where } \boldsymbol{X}_l = (1, \boldsymbol{X}_l^\top)^\top \in \mathbb{R}^{p+1}. \end{aligned}$$

Application to Interaction Effect Model

• It is reasonable to assume that \mathcal{B} possess low-rank and/or sparsity structures in some biometrics studies (Hung, et. 2016).

$$y_l = \langle \sum_{k=1}^K \eta_k \boldsymbol{\beta}_k \circ \boldsymbol{\beta}_k \circ \boldsymbol{\beta}_k, \boldsymbol{X}_l \circ \boldsymbol{X}_l \circ \boldsymbol{X}_l \rangle + \varepsilon_l$$

 The symmetric tensor recovery model can be treated as a high-order interaction effect model.

Some Changes for Algorithm

- The unbiased empirical moment based tensor $\mathcal{A} \in \mathbb{R}^{p_1 \times p_2 \times p_3}$ for interaction effect model is constructed as following:
 - $\begin{array}{l} \bullet \ \ \text{Define three quantities} \ \boldsymbol{a} = \frac{1}{n} \sum_{l=1}^n y_l X_l, \\ \widetilde{\mathcal{A}} = \frac{1}{n} \sum_{i=l}^n y_l X_l \circ X_l \circ X_l, \\ \bar{\mathcal{A}} = \frac{1}{6} (\widetilde{A} \sum_{j=1}^p (\boldsymbol{a} \circ \boldsymbol{e}_j \circ \boldsymbol{e}_j + \boldsymbol{e}_j \circ \boldsymbol{a} \circ \boldsymbol{e}_j + \boldsymbol{e}_j \circ \boldsymbol{e}_j \circ \boldsymbol{a})). \end{array}$
 - For $i, j, k \neq 0$, $A_{ijk} = A_{ijk}$.
 - For $i \neq 0$, $\mathcal{A}_{0,0,i} = \frac{1}{3}\widetilde{\mathcal{A}}_{0,0,i} \frac{1}{6}(\sum_{k=1}^{p}\widetilde{\mathcal{A}}_{k,k,i} (p+2)a_i)$. And $\mathcal{A}_{0,0,0} = \frac{1}{2p-2}(\sum_{k=1}^{p}\widetilde{\mathcal{A}}_{0,k,k} (p+2)\widetilde{\mathcal{A}}_{0,0,0})$.
- The additional intercept term changes the model structure dramatically.

Numerical Study

• Recover low-rank and sparse symmetric tensor $\mathcal{T}^* \in \mathbb{R}^{p \times p \times p}$ from

$$y_i = \langle \mathscr{T}^*, \mathscr{X}_i \rangle + \epsilon_i, \quad i = 1, \dots, n.$$

- Proportion of non-zero elements for each factor s=0.3. Tensor CP-rank K=3. Replication = 200.
 - Stopping rule for initialization: $\|m{\beta}_m^{(l+1)} m{\beta}_m^{(l)}\|_2 \leq 10^{-6}$.
 - Stopping rule for gradient update: $\| {m B}^{(T+1)} {m B}^{(T)} \|_F \leq 10^{-6}$.
- The dimension, sample size and noise level vary in different scenarios.

• Left panel: relative error for initialization. Right panel: percent of successful recovery with varying sample size. Both are noiseless case with p=30.

 Noisy case. Left panel: absolute error for recovering rank-three tensor with varying noise level and sample size. Right panel: absolute error for recovering rank-five tensor with varying noise level and sample size.

Thanks! and Questions?