

KNOW-CENTER GMBH
RESEARCH CENTER FOR TRUSTWORTHY AI AND DATA

Peter Müllner, Elisabeth Lex, Markus Schedl, Dominik Kowald (pmuellner@know-center.at)

Motivation

- Recommender sytems utilize user data to generate recommendaions
- Recommendations can leak user data! [1, 4, 5]
- **Differential Privacy** to prohibit this leakage

The Problem with DP

- For DP, random noise is injected into the training process
- Level of noise/privacy regulated by privacy budget ε
- How does this random noise impact recommendations?
 - How many users are impacted?
 - How strong are they impacted?
 - How does privacy budget ε influence the accuracy?
 - How does DP impact popularity bias?

Our Approach

- DP mechanism¹ for binary implicit feedback data [2, 3]
- Train model A on data without DP
- Train model B on data with DP
- For each user, compare both models' recommendations

¹ Randomly substitutes positive feedback data with negative or missing feedback data with probability $1 / (e^{\epsilon} + 1)$

How many users are impacted?

- For each user, we compare recommendations with and without DP
- If at least one recommended item different → "impacted"
- Nearly all users are impacted!

ϵ	Model	MovieLens 1M	LastFM User Groups	Amazon Grocery & Gourmet
2	ENMF	99.85%	99.64%	100.00%
	LightGCN	99.86%	99.92%	99.99%
	MultVAE	99.93%	100.00%	100.00%
1	ENMF	99.99%	99.95%	100.00%
	LightGCN	99.99%	99.99%	100.00%
	MultVAE	100.00%	100.00%	100.00%
0.1	ENMF	100.00%	100.00%	100.00%
	LightGCN	99.99%	100.00%	100.00%
	MultVAE	100.00%	100.00%	100.00%

Table: No. of impacted users

How strong are those users impacted?

- Jaccard distance between recommendations with and without DP
- Recommendations change a lot!
- Worse for small ε values

ϵ	Model	MovieLens 1M	LastFM User Groups	Amazon Grocery & Gourmet
2	ENMF	0.5974	0.5757	0.8620
	LightGCN	0.6252	0.6518	0.8132
	MultVAE	0.6828	0.7950	0.9447
1	ENMF	0.7006	0.6858	0.9253
	LightGCN	0.7352	0.7464	0.8775
	MultVAE	0.7592	0.8408	0.9567
0.1	ENMF	0.8183	0.8058	0.9743
	LightGCN	0.8300	0.8490	0.9360
	MultVAE	0.8447	0.9250	0.9635

Table: Average Jaccard distance

How does this affect accuracy and popularity bias?

How does ε influence accuracy?

- Measure $\triangle Recall = (Recall_{DP} Recall)/Recall$
- Recall drops, especially for small ε values!

How does DP impact popularity bias?

- Measure $\triangle PopLift = (PopLift_{DP} PopLift)/PopLift$
- PopLift increases, especially for small € values!

How does DP impact popularity bias?

- Users that prefer popular (U_{high}) and unpopular items (U_{high})
- Disparate Impact = $PopLift(U_{low}) PopLift(U_{high})$
- Popularity bias for U_{low} tends to be stronger than for U_{high} !

ϵ	Method	MovieLens 1M	LastFM User Groups	Amazon Grocery & Gourmet
2	ENMF	+0.6941	+3.3158	+1.3597
	LightGCN	+0.1241	+1.8623	+1.3215
	MultVAE	+0.2595	-0.8629	+1.2161
1	ENMF	+0.8046	+3.9001	+1.4206
	LightGCN	+0.4368	+2.2851	+1.8303
	MultVAE	+0.3811	-0.9744	+4.0117
0.1	ENMF	+0.8831	+4.2769	+3.7277
	LightGCN	+0.9352	+4.0773	+2.9563
	MultVAE	+0.5225	-0.7113	+5.2092

Table: Disparate Impact

Conclusions and Future Work

- DP has substantial impact on entire user base
 - Different recommendations than without DP
 - Severe accuracy drop
 - · Sharp increase of popularity bias
- Users are impacted differently w.r.t. popularity bias
- Lower $\epsilon \rightarrow$ more privacy, but stronger impact
- Increase ε to decrease impact? → No privacy!

How to balance recommendation accuracy, popularity bias, and privacy?

(e.g., by applying popularity bias mitigation strategies)

Thank you!

Source code: github.com/pmuellner/ImpactOfDP/

Contact: pmuellner@know-center.at or pmuellner.github.io

KNOW-CENTER GMBH Research Center for Data-Driven Business and Big Data Analytics

Sandgasse 36/4, 8010 Graz, Austria Firmenbuchgericht Graz FN 199 685 f UID: ATU 50367703 www.know-center.at

© Know-Center

References

- 1. J. A. Calandrino, A. Kilzer, A. Narayanan, E. W. Felten, and V. Shmatikov, "you might also like:" privacy risks of collaborative filtering, in 2011 IEEE Symposium on Security and Privacy (S&P), 2011, pp. 231–246.
- 2. C. Chen, J. Zhou, B. Wu, W. Fang, L. Wang, Y. Qi, and X. Zheng, *Practical privacy preserving poi recommendation*, ACM Transactions on Intelligent Systems and Technology (TIST), 11 (2020), pp. 1–20.
- 3. B. Ding, J. Kulkarni, and S. Yekhanin, *Collecting telemetry data privately*, in Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS), 2017, pp. 3574–3583.
- 4. H. Hashemi, W. Xiong, L. Ke, K. Maeng, M. Annavaram, G. E. Suh, and H.-H. S. Lee, *Data leakage via access patterns of sparse features in deep learning-based recommendation systems*, Workshop on Trustworthy and Socially Responsible Machine Learning (TSRML), in conjunction with the 36th Conference on Neural Information Processing Systems (NeurIPS), (2022).
- 5. X. Xin, J. Yang, H. Wang, J. Ma, P. Ren, H. Luo, X. Shi, Z. Chen, and Z. Ren, *On the user behavior leakage from recommender system exposure*, ACM Transactions on Information Systems (TOIS), 41 (2023), pp. 1–25.

Binary DP mechanism by Ding et al. [3]

- Randomize positive feedback data used for model training!
- For a user feedback $f_{u,i}$ for user u, item i, and training data D^+
- Now, randomly substitute positive feedback D⁺ with negative/missing feedback D⁻

$$Pr[f_{u,i} \in \mathcal{D}_{DP}^+] = \begin{cases} \frac{e^{\epsilon}}{e^{\epsilon}+1} & \text{if } f_{u,i} \in \mathcal{D}^+\\ 1 - \frac{e^{\epsilon}}{e^{\epsilon}+1} & \text{if } f_{u,i} \in \mathcal{D}^- \end{cases}$$

Privacy-parameter ε regulates how much leakage can be tolerated