Intelligence. Beautifully engineered.

No more grid search! How to build models effectively

Thomas Huijskens

London Driverless Al meet-up 1st August, 2019

Most models have a number of hyperparameters that need to be chosen a priori..

- Typically, we want to optimize some performance metric $f_{\mathcal{M}}$ for a model \mathcal{M} , on a hold-out set of data.
- The model $\mathcal M$ has some hyperparameters θ that we need to specify, and the performance of $\mathcal M$ is highly dependent on the settings of θ .
- Example: For a classification problem, $\mathcal M$ could be a support vector machine, and the performance metric $f_{\mathcal{M}}$ could be the out-of-sample AUC.
- Because the performance of the SVM depends on hyperparameters θ , the metric $f_{\mathcal{M}}$ depends on θ as well.

.. and our goal is to find the values of θ for which the value of the (outof-sample) performance $f_{\mathcal{M}}$ is optimal

Manual grid search works for low-dimensional problems, but does not scale well to higher dimensions

Random grid search works better in higher dimensions, but...

.. shouldn't previously evaluated hyperparameter values guide us in the search for the true optimal value?

Advanced hyper-parameter optimization methods

Advanced HPO methods are only beneficial in certain situations

In advanced optimisation methods, we spend more computational time to figure out what set of parameters θ we are evaluating the performance metric $f_{\mathcal{M}}(\theta)$ for.

As a result, applying these methods only really makes sense if

- The number of hyperparameters is very high (θ is of high dimension); or
- It is computationally very expensive to evaluate $f_{\mathcal{M}}(\theta)$ for a single point θ .

There are now a wide range of hyper-parameter optimisation methods

BO-HB is a recent method that combines Bayesian optimisation and multi-fidelity methods

Hyperband

Hyperband iteratively runs the *successive halving* subroutine on model configurations

Successive halving suffers from the exploitation versus exploration trade-off

Given a total computational budget, the user has to decide whether

- To try many configurations with a small budget each; or
- To try only a few configurations with a larger budget.

Hyperband hedges for this trade-off by:

- Dividing the total computational budget into several combinations of number of configurations vs. budget.
- Call successive halving as a subroutine for each combination.

Table 1: The values of n_i and r_i for the brackets of Hyperband corresponding to various values of s, when R = 81 and $\eta = 3$.

Hyperband's hedging strategy is very competitive against random search

Bayesian optimisation

The classic Bayesian optimization algorithm consists of three steps

The performance function $f_{\mathcal{M}}$ is modelled to form a current belief of what the loss surface looks like...

..acquisition functions are used to formalize what constitutes a "best guess"..

The expected improvement acquisition trades off *exploitation* of known optimal areas, versus exploration of unexplored areas of the loss

surface t = 2objective fn $(f(\cdot))$ observation (x) acquisition max acquisition function $(u(\cdot))$ t = 3**Exploitation of** new observation (x_t) known optimal space **Exploration of** t = 4unknown space posterior mean $(\mu(\cdot))$ posterior uncertainty $(\mu(\cdot) \pm \sigma(\cdot))$

.. and finally the performance is computed for suggested parameters

Bayesian optimization is competitive against random search for longer training budgets

Bayesian optimisation works well for larger budgets, whereas hyperband works better for small to medium budgets

BO-HB replaces random search in Hyperband with Bayesian optimisation

What HPO method should I use in practice?

- If it is possible to define substantially cheaper version of the performance function $f_{\mathcal{M}}$: Bayesian optimisation-hyperband (BO-HB)
- If this is not possible and
 - if all hyperparameters are real-valued and one can only afford a few dozen function evaluations: **Gaussian-process based Bayesian optimisation** (SMAC, Spearmint)
 - if the configuration space is large and/or conditional: Random forest-based Bayesian optimisation (hyperopt)

