

Кубик ЛФИ

9.s02.e02

Кубик в кубе

На расстоянии 4a от сплошного Кубика со стороной a и плотностью ρ на линии, проходящей через его центр и центр одной из его граней, располагается точечный кубичек массы m (см. рис.). Начальные скорости кубиков равны нулю. Кубики отпускают, в результате чего расстояние между ними изменяется в два раза за время t_1 .

Найдите время t_2 , за которое расстояние изменится в два раза между точно таким же кубичком и сплошным Кубиком со стороной 2a из точно такого же материала, если кубичек располагается на линии, проходящей через центр Кубика и центр одной из его граней на расстоянии 8a от Кубика (см. рис.). Начальные скорости кубиков равны нулю.

Примечание. Расстояние между кубиками измеряется от центра Кубика.

Решение

Способ 1

1. Найдем скорость сближения кубиков. Для этого воспользуемся законами сохранения импульса и энергии.

Система из двух кубиков замкнута, следовательно суммарный импульс системы все время равен нулю, откуда:

$$mu_1 = Mv_1.$$

Здесь u_1 — скорость кубичка, а v_1 — скорость Кубика.

Кинетическая энергия системы будет равна:

$$K = \frac{mu_1^2}{2} + \frac{Mv_1^2}{2} = \frac{Mv_1^2}{2} \left(1 + \frac{M}{m}\right).$$

Потенциальная энергия гравитационного взаимодействия по определению равна

$$\Pi = \sum_{i} G \frac{m_i m}{r_i},$$

где суммирование ведётся по всем кусочкам куба массой m_i , находящихся на расстоянии r_i (см. рис.). Тогда начальная потенциальная энергия равна

$$\Pi_0 = \sum_i G \frac{m_i m}{r_{i0}}.$$

Из закона сохранения энергии следует, что

$$\frac{Mv_1^2}{2}\left(1+\frac{M}{m}\right) = \Pi_0 - \Pi \Longrightarrow v_1 = \sqrt{\frac{2m}{(m+M)M}\left(\Pi_0 - \Pi\right)}.$$

Тогда скорость сближения тел равна

$$v_{\text{oth}1} = v_1 + u_1 = v_1 \frac{m+M}{m} = \sqrt{\frac{2(\Pi_0 - \Pi)}{\mu}},$$

где $\mu = \frac{mM}{m+M}$ — приведённая масса системы.

Замечание. Этот результат можно написать сразу, если воспользоваться тем факто, что в системе отсчета, где центр масс покоится кинетическая энергия всей системы равна:

$$K = \frac{\mu v_{\text{отн}}^2}{2}.$$

2. Для рассмотрения второго случая воспользуемся подобием задачи: $m \to m$; $M \to 8M$, $r \to 2r$; $a \to 2a$. Тогда «новые» значения величин, от которых зависит относительная скорость сближения кубиков, будут равны

$$\mu_2 = \frac{8mM}{m + 8M} = 8\frac{m + M}{m + 8M}\mu; \quad \Pi_2 = \sum_i G\frac{8m_i m}{2r_i} = 4\Pi.$$

Тогда скорость сближения во втором случае будет равна

$$v_{\text{oth2}} = \sqrt{\frac{2}{\mu} \frac{m + 8M}{8(m + M)} 4 (\Pi - \Pi_0)}.$$

3. Рассмотрим малый промежуток времени dt_2 . За это время тела сблизятся на расстояние dx_2 , которое в 2 раза больше расстояния dx_1 на которое тела сближались изначально за время dt_1 (т.к. все расстояния увеличились в два раза). Тогда

$$dt_2 = \frac{dx_2}{v_{\text{отн2}}} = \frac{2dx_1}{v_{\text{отн1}}} \sqrt{\frac{2(m+M)}{m+8M}} = \sqrt{\frac{8(m+M)}{m+8M}} dt_1.$$

Заметим, что это соотношение выполняется в любой момент при времени в процессе сближения тел, поэтому суммарное время сближения будет равно:

$$t_2 = \sqrt{\frac{8(m+M)}{m+8M}}t_1.$$

Способ 2

Потенциальная энергия системы равна

$$U = k\left(\frac{x}{a}\right) \frac{Mm}{x},$$

где $k\left(\frac{x}{a}\right)$ — некоторый геометрический фактор системы. Тогда сила, отвечающая этой потенциальной энергии, будет равна

$$F = -U' = -k'\frac{Mm}{xa} + k\frac{Mm}{x^2}.$$

Замечание. Используя метод размерностей, можно сразу записать, что

$$F = \Gamma\left(\frac{x}{a}\right) \frac{mM}{x^2},$$

где $\Gamma\left(\frac{x}{a}\right)$ — геометрический фактор.

Запишем уравнение движения кубиков (в уравнениях учтено, что силы притяжения противонаправлены)

$$\begin{cases} \ddot{x}_1 = \frac{1}{m} \Gamma\left(\frac{x}{a}\right) \frac{mM}{x^2}; \\ \ddot{x}_2 = -\frac{1}{M} \Gamma\left(\frac{x}{a}\right) \frac{mM}{x^2}; \end{cases} \implies \ddot{x}_1 - \ddot{x}_2 = \Gamma\left(\frac{x}{a}\right) \frac{mM}{x^2} \frac{1}{\mu}.$$

Получаем, что относительное ускорение равно

$$a_{\text{oth}} = \Gamma\left(\frac{x}{a}\right) \frac{m+M}{x^2}.$$

То есть относительное ускорение в первом и втором случаях равны

$$a_{\text{oth}1} = \Gamma\left(\frac{x}{a}\right) \frac{m+M}{x^2}; \quad a_{\text{oth}2} = \Gamma\left(\frac{x}{a}\right) \frac{m+8M}{4x^2}.$$

С другой стороны

$$a_{\text{\tiny OTH2}} = \frac{d^2 x_2}{dt_2^2} = \frac{2d^2 x_1}{dt_2^2} = \frac{2}{\alpha^2} a_{\text{\tiny OTH1}}.$$

Здесь $dt_2=\alpha dt_1$, где α — масштаб по времени. Получаем, что

$$\frac{2}{\alpha^2} a_{\text{OTH1}} = \Gamma\left(\frac{x}{a}\right) \frac{m + 8M}{4x^2} \frac{m + M}{m + M} = \frac{m + 8M}{4(m + M)} a_{\text{OTH1}}.$$

Откуда получаем

$$\frac{2}{\alpha^2} = \frac{m + 8M}{4(m + M)}; \quad \Longrightarrow \quad \alpha = \sqrt{8 \frac{m + M}{m + 8M}}.$$

То есть суммарное время сближения во втором случае будет равно

$$t_2 = \alpha t_1 = t_1 \sqrt{8 \frac{m+M}{m+8M}}.$$

Альтернативная задача

- 1. (2 балла) Точечное тело массы m находится на гладкой горизонтальной поверхности и прикреплено к вертикальной стене «нелинейной» пружиной, такой, что возвращающая сила пропорциональна квадрату её деформации. Во сколько раз изменится период колебаний тела, если их амплитуду увеличить в два раза?
- 2. (3 балла) Два точечных тела одинаковой массой удерживают на расстоянии a друг от друга. Тела отпускают и расстояние между ними уменьшается в два раза за время T. Найдите за какое время расстояние также уменьшится в два раза, если тела покоились на расстоянии 2a друг от друга.
- 3. $(5 \, баллов)$ На расстоянии 4a от сплошного Кубика со стороной a и массы M на линии, проходящей через его центр и центр одной из его граней, располагается точечный кубичек массы m (см. рис.). Начальные скорости кубиков равны нулю. Кубики отпускают, в результате чего расстояние между ними изменяется в два раза за время t.

Найдите время, за которой расстояние изменится в два раза между точно таким же кубичком и сплошным Кубиком со стороной 2a и точно такой же массы M, если кубичек располагается на линии, проходящей через центр Кубика и центр одной из его граней на расстоянии 8a от Кубика (см. рис.). Начальные скорости кубиков равны нулю.

Примечание. Расстоянием между кубиками измеряется от центра Кубика.

Решение альтернативной задачи

1. Потенциальная энергия «нелинейной» пружины при её деформации на Δx равна

$$U = \frac{k\Delta x^3}{3}.$$

Доказательство этого выражения требует навыки интегрирования. Запишем закон сохранения энергии и найдём скорость грузика

$$\frac{mv_1^2}{2} + \frac{kx_1^3}{3} = \frac{kx_{01}^3}{3}; \implies v_1 = \sqrt{\frac{2k}{3m}}\sqrt{x_{01}^3 - x_1^3}.$$

Скорость же по определению равна

$$v_1 = \frac{dx_1}{dt}$$
.

Рассмотрим колебания с другой амплитудой. Пусть масштаб по координате равен α : $x_2 = \alpha x_1$, а масштаб по времени $t_2 = \beta t_1$. Скорость во второй ситуации аналогично равна

$$v_2 = \sqrt{\frac{2k}{3m}} \sqrt{x_{02}^3 - x_2^3} = \sqrt{\frac{2k}{3m}} \alpha^{\frac{3}{2}} \sqrt{x_{01}^3 - x_1^3} = \alpha^{\frac{3}{2}} v_1.$$

С другой стороны

$$v_2 = \frac{dx_2}{dt_2} = \frac{\alpha dx_1}{\beta dt_1} = \frac{\alpha}{\beta} v_1.$$

Имеем

$$\alpha^{3/2}v_1 = \frac{\alpha}{\beta}v_1; \implies \beta = \frac{1}{\sqrt{\alpha}} = \frac{1}{\sqrt{2}}.$$

To есть период уменьшится в $\sqrt{2}$ pas!

2. Запишем закон сохранения энергии и найдём зависимость скорости от расстояния между телами

$$2\frac{mv^2}{2} + G\frac{m^2}{r} = G\frac{m^2}{a}; \quad \Longrightarrow \quad v = \sqrt{2Gm\left(\frac{1}{r_0} - \frac{1}{r}\right)}.$$

Здесь r_0 — расстояние между телами в начальный момент времени. Во втором случае, при увеличении всех расстояний в два раза, скорость будет равна

$$v_2 = \sqrt{2Gm\left(\frac{1}{2r_0} - \frac{1}{2r}\right)} = \frac{v_1}{\sqrt{2}}.$$

Рассмотрим малый промежуток времени dt_2 . За это время тела сблизятся на расстояние dx_2 , которое в 2 раза больше расстояния dx_1 на которое тела сближались изначально за время dt_1 (т.к. все расстояния увеличились в два раза). Тогда

$$v_2 = \frac{dx_2}{dt_2} = \frac{2dx_1}{\beta dt_1} = \frac{2}{\beta}v_1.$$

Здесь $dt_2 = \beta dt_1$, где β — масштаб по времени. Откуда находим

$$\beta = 2\sqrt{2}$$
.

3. Решение аналогично решению основной задачи.

Литература

 Γ . И. Хантли — Анализ размерностей

Объять необъятное, или Её преПодобие Размерность

Ландафшиц 1 Том §10

Метод механического подобия. [А.И.Власов; Потенциал, N9, 2019 год]