CSC 411

Computer Organization (Spring 2024) Lecture 7: Floating Point

Prof. Marco Alvarez, University of Rhode Island

Fractional binary numbers

- Used to represent fractional number
- Binary point
 - separates the integer and fractional parts (similar to the decimal point)
 - bits to the right of binary point represent fractional powers of 2

$$\sum_{k=-i}^{i} b_k 2^k$$

1 1 0 1 . 1 0 1 =

Practice

Convert fractional binary numbers to decimal

Observations

- Not all decimal fractions have exact binary equivalents
 - . can only represent numbers of the form $\frac{x}{2^k}$
 - e.g., 0.3 is represented as 0.010101...
 - requires an infinite series of 0s and 1s
 - large repeating decimals can only be approximated within a certain degree of accuracy
- ▶ 0.111111... represents a number just below 1.0

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^i} + \dots = 1.0 - \varepsilon$$

IEEE standard 754

- Defines a common format for representing real numbers in computers
 - developed in response to divergence of representations
- Supported by major CPUs (almost universally adopted)
- Provides different precision levels (single, double, extended) for various needs
- Standardizes the following layout :

sign exp fraction

Precision

- Single-precision (32 bits)
 - · good balance of performance and range

- Double-precision (64 bits)
 - higher precision for demanding calculations

Precision

Format	Smallest positive value	Largest positive value	Precision
single	~1.401·10-45	~3.403·10+38	6-9 digits
double	~4.941·10 ⁻³²⁴	~1.798·10+308	15-17 digits

(*) Smallest/largest negative values are the same as their positive counterparts, but negative.

(**) Precision refers to to the number of significant digits that can be represented in a number.

Normalized and denormalized numbers

- Normalized
 - · represent a wide range of values with maximum precision
 - exp != 000...000 and exp != 111...111
- Denormalized
 - used for very small numbers providing more range, they have lower precision compared to normalized number
 - exp == 000...000
- Special numbers
 - · e.g., NaN, infinity
 - exp == 111...111

sign exp fraction

Floating point encoding/decoding

 $(-1)^s M2^E$

- ▶ sign bit S
 - -1^0 for positive, -1^1 for negative
- exponent E
 - magnitude of the number, the term 2^E scales the mantissa
- mantissa M
 - a.k.a. significand, it captures the significant digits of the number
 - scaled by the exponent, normally in range [1.0,2.0)

Normalized values

 $(-1)^{s}M2^{E}$

- ► E = exp bias
 - exp is the unsigned integer represented by the bits in the exp field
- bias is $2^{k-1} 1$, where k is the length in bits of the exp field
 - single precision (bias = $2^{8-1} 1 = 127$)
 - <u>double precision</u> (bias = $2^{11-1} 1 = 1023$)
- M = 1.bb...bb
 - · bb...bb are the bits in the fraction field
 - M is the decimal that corresponds to 1.bb...bb
 - note that M has an implied leading 1
 - what are the minimum and maximum decimal values represented by M?

sign exp

fracti

Encoding example

 $(-1)^s M2^E$

- ► Assume a float F = 2024.0
 - fractional binary: 11111101000
 - make it form 1.xxx...: 1.1111101000 x 2¹⁰
 - M = 1.1111101000
 - calculate exp using E = exp bias
 - $\exp = E + \text{bias} = 10 + 127 = 137 = 10001001$

0x44FD0000

Encoding example

 $(-1)^s M2^E$

- ► Assume a float F = 0.5
 - fractional binary: 0.1
 - make it form 1.xxx...: 1.0 x 2⁻¹
 - M = 1.0

 - calculate exp using E = exp bias
 - $\exp = E + \text{bias} = -1 + 127 = 126 = 011111110}$

Decoding example

 $(-1)^s M2^E$

- ► Assume a float F = 0x43CDA000
 - write the binary
 - extract s, exp, frac
 - 0 10000111 100110110100000000000000
 - calculate M and E
 - M = 1.001101101000000000000 = 1.6064453125
 - E = exp bias = 135 127 = 8
 - write final number
 - (-1)⁰ 1.6064453125 * 2⁸ = 411.25