目录

1	摘要	2
2	申请动机	2
3	AI 能力与技术栈	2
4	近期项目 / 科研经历	3
5	课程成绩	5
6	所莽荣誉	5

1 摘要 2

AI 赋能专业建设试点班报名表

程远

2234412848 计试 2301 13725057675

cy1656736387@gmail.com https://github.com/Buendia2088

摘要

我在计算机基础与工程实现上保持**并重**:课程方面(数据结构与算法、计算机系统导论、汇编等)成绩稳定,当前均分 **93.29**/100、专业排名 **1/41**;我的科研方向是**持续学习(Continual Learning)**,目前已完成 CIL/TIL/DIL 基线、CPT/DAPT/LoRA-KD/Replay/EWC 等方法的系统对比与脚本化复现。

希望能利用试点班的**固定工位**与 **GPU 算力**支撑使我的实验能在统一环境长期稳定运行;同时我珍惜与**任课老师面对面**的交流机会,力争将阶段性成果**打磨为论文**并尝试投稿。

申请动机

- **固定工位**:希望在试点班获得**稳定工位**(配套显示器与基本调试设备),保持持续可用的开发与训练环境,便于长时实验与随手记录。
- **算力支持**: 充分利用试点班提供的 **GPU 算力**与平台,将现有 CL for LLM 实验迁移到统一环境,保证可复现与高效迭代。
- **面对面交流**: 重视与**任课老师/授课老师**的当面沟通与即时答疑(课后、实验室走访、office hour), 在高频反馈中快速调整实验与写作方向。
- **成果目标**:在老师的指导下,把阶段性成果**打磨为论文**并尝试投稿。

AI 能力与技术栈

- AI 协作开发: 把 GPT 当"结对程序员",用于环境/依赖问题定位(Conda、Docker、HF 缓存、 权限)、自动生成可运行脚手架与单元测试并迭代到可复现。
- AI 驱动的实验运营: 用 LLM 生成/改写训练脚本与配置,设计批量实验计划; 让其解析日志 → 汇总指标 → 产出表格/曲线(CSV→IATEX 表、Mermaid/Matplotlib 代码),统一输出 before/after、Avg Acc、BWT、PPL 的报告。
- AI 强化写作与排版:论文段落润色与结构重组、中文/英文互译;直接生成 Overleaf-ready 的 LATEX 模块(摘要、图表、算法、参考文献以及这份报名表)。
- **AI 沟通产出**:按对象(老师、合作者、行政)用 LLM 起草并调整语气风格,高效完成文本任务。

- 框架与工具: Python (面向工程的模块化/脚本化)、PyTorch、Transformers; 能够应用梯度 检查点、调度与日志归档。
- 训练/微调: CPT (Continual Pre-Training)、DAPT、LoRA/PEFT、LoRA-KD、EWC、Replay、 梯度投影(A-GEM 思想); 能在统一脚本中做 before/after 评测(PPL、Avg Acc、BWT)。
- 模型与任务: GPT-2/XLM-R 等语言模型; ResNet 等表征模型; 具备 MNIST 等基准与跨域 设定的实验经验。
- **工程与复现**: Linux、Macos 与 Windows 基本命令; 统一环境与随机种子管理, 结果表与曲线自动汇总, 产出可复现实验报告与 README。

近期项目 / 科研经历

以下内容均为本人主动自驱学习与研究

连续学习基线实验: CIL / TIL / DIL (MNIST)

2025

角色: 唯一贡献者 技术栈: Python, PyTorch, HuggingFace Transformers, PEFT/LoRA 亮点: 基于 MNIST 构造 5 个顺序任务,在 CIL (共享头、任务标签未知)、TIL (多头、任务标签已知) 与 DIL (分布变化) 三种场景统一评测 平均准确率 (Avg Acc) 与 BWT。方法覆盖 baseline、replay、ewc、kd、proj 及其组合。

链接: https://github.com/Buendia2088/ContinualLearning/tree/main/basis

要点结论 (单次代表结果):

• CIL: Replay + Proj 最优 (replay_proj, Avg Acc 90.0%, BWT -8.4)

• DIL: Replay 简洁有效 (replay, Avg Acc 95.8%, BWT 1.1)

• TIL: **KD** 最稳 (kd, Avg Acc 98.4%, BWT -0.4)

结果一: Avg Acc (%)

Method	CIL	DIL	TIL
baseline	19.1	88.0	98.4
ewc	19.4	85.3	98.4
kd	46.2	68.4	98.4
proj	19.3	86.7	98.2
replay	89.3	95.8	96.4
replay_kd	86.6	90.9	96.7
replay_ewc	89.6	95.4	96.2
replay_proj	90.0	95.3	96.8
replay_ewc_kd	87.4	91.3	95.5
ewc_kd	47.3	9.8	98.3

结果二: BWT (百分点)

Method	CIL	DIL	TIL
baseline	-99.1	-7.9	-0.5
ewc	-98.9	-10.5	-0.4
kd	-39.0	-10.9	-0.4
proj	-98.9	-9.9	-0.7
replay	-9.4	1.1	-0.8
replay_kd	34.6	12.2	-0.2
replay_ewc	-8.8	0.4	-0.9
replay_proj	-8.4	0.6	0.1
replay_ewc_kd	36.4	12.0	-1.7
ewc_kd	-30.6	-62.2	-0.5

DAP (Domain-Adaptive Pre-training) 对比实验: LoRA / LoRA+Rewarm / LayerExp / LoRA+Replay / Full DAPT

角色: 唯一贡献者 技术栈: Transformers, PEFT-LoRA, Scheduler, Logging, Reproducibility

亮点:面向连续学习场景,将 DAP 与多种参数/训练策略结合,比较"新域适配"与"旧域遗忘"的权衡;统一输出 dap_summary.json/csv 与可视化。下表为以 PPL 指标的摘要:

链接: https://github.com/Buendia2088/ContinualLearning/tree/main/clForLLM/dap

Variant	Old PPL	Old PPL		New PPL		New PPL
	(Before)	(After)	PPL	(Before)	(After)	
LoRA	3.199	3.658	0.459	90.266	3.586	86.679
${\bf LoRA + Rewarm}$	3.199	3.639	0.440	90.266	3.573	86.692
LayerExp	3.199	3.346	0.147	90.266	12.918	77.347
${\rm LoRA+Replay}$	3.199	3.552	0.353	90.266	3.550	86.715
Full DAPT	3.199	13.381	10.181	90.266	48.797	41.469

要点: LoRA 系在新域适配最强(New PPL $\approx 3.55-3.59$), LayerExp 旧域遗忘最小($\Delta + 0.147$), Full DAPT 对旧域破坏显著且新域收敛较差。

XLM-R CPT 连续预训练: LoRA / Full / Block Expansion

2025

角色: 唯一贡献者 技术栈: XLM-R, PEFT-LoRA, FP16/Grad Checkpointing, Rewarm, Logging

亮点:在 XLM-R 基座上进行 **CPT** (Continual Pre-Training) 对照: LoRA、Full (全量微调)与 Block Expansion。统一用 metrics_before_after.json 记录 old/new PPL; 下表为摘要:

链接: https://github.com/Buendia2088/ContinualLearning/tree/main/clForLLM/cpt

Variant	Old PPL	Old PPL	Δ Old	New PPL	New PPL	New PPL
v arrant	(Before)	(After)	PPL	(Before)	(After)	<u></u>
XLM-R LoRA	3.199	3.601	0.402	90.266	3.653	86.612
XLM-R Full CPT	3.199	18.416	15.217	90.266	40.944	49.322

要点: LoRA 在 fp16+gradient_checkpointing+rewarm 设置下稳定、适配强(New PPL 3.653;旧域 $\Delta+0.402$); Full 遗忘严重(旧域 18.416;新域仅 40.944),成本高且不推荐。

5 课程成绩 5

课程成绩

平均分: 93.29/100 专业排名: 1/41 已修学分: 101

部分课程成绩如下:

课程	成绩
计算机程序设计	100
线性代数	100
游戏设计与开发	99
数据结构与算法	98
计算机系统导论	97
汇编语言	95

所获荣誉

2023-2024 学年本科生国家奖学金

2023-2024 年西安交通大学优秀学生

2024-2025 学年优衣库奖学金

2024-2025 学年西安交通大学新时代青少年先锋