МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского (ННГУ)»

Институт информационных технологий, математики и механики

ОТЧЕТ

по лабораторной работе

на тему:

«Численное решение задачи Коши для ОДУ.»

Выполнила: студентка группы 382003-3 Семенова Вероника Группа 2, вариант 2

Нижний Новгород 2022

Содержание

1	Постановка задачи	.3
2	Краткие сведения по численным метода решения ОДУ	4
	Исследование порядка сходимости для тестовой задачи. Метод Рунге- тта 4-го порядка	5
4	Результаты численных экспериментов для основных задач	. 6
5	Наблюдения и выводы	9

1. Постановка задачи

(тестовая, основная №1, основная №2)

Vensio gaurai natopamophair patembre abroemar establice apro-manoporte nemegos une le uno o memeroposamus sagann ration gra oby c menerimenti asperan no per manu ma cuare u gipe-orenna manore. The comobasi sagana une em leig:

oenobuara zagama 1:ulo) = u.

achabha sagana 2: $\frac{du}{dx} = \frac{x}{1+x^2}u^2 + u - u^3 \sin(10x)$ $\frac{du}{dx} = \frac{1+x^2}{1+x^2}u^2 + u - u^3 \sin(10x)$ $\frac{du}{dx} = \frac{1+x^2}{1+x^2}u^2 + u - u^3 \sin(10x)$

2. Kpamkue csedenus no численным метода решения ОДУ

(запись метода, оценка погрешности, управление шагом метода)

решени тетоворо и основные зореши, использую петод

решения непользую передия

а) дог нектроли лональной порешисти (с петочные испол)

б) с контролен лональной порешисти (пораноградовные с кладиналура)

ganues hemaga:

$$x_0, v_0 = u_0$$

 $x_{n+1} = x_n + h_n$
 $v_{n+1} = v_n + h_n (k_1 + 2k_2 + 2k_3 + k_4)$
 $k_1 = f(x_n, v_n)$
 $k_2 = f(x_n + h_n)$, $v_n + k_1 h_n$
 $k_3 = f(x_n + h_n)$, $v_n + k_2 h_n$

usumpone noncentracy norpeculation is chem gravitions example.

J gake mouse (xn vn). xougen engyoutyo mouse u ouenen nouvers monthe mouse (xn, vnn) bouterent uenonogia nemogek y nonogiae curolon h. mousey (xn+112, vnnse) bouterent, nenonenga helmog pic y nonogiae c auctor h. 12. mousey (xm, vnn) bouterente y moosell (xn-11, vnn), nenonenga nemog PK y nopolgiae e wordy h./2

eenu $\leq \leq 131 \leq \epsilon$, morga ornitaement. eenu $15 < \epsilon/25$ morga ornitaement. eenu $15 < \epsilon/25$ morga unique de unique (xn, vn) ynematique unique de unique (xn, vn) ynematique unique de unique (xn, vn) ynematique unique (xn, vn)

otestina nonousuou nopenneomu en 1 = 2°5 otes venonsigemon gnoi noppenomupolicu unchenhoù mpairo pur. Vn. 1, = Vn. 1, + 2°5 3. Исследование порядка сходимости для тестовой задачи. Метод Рунге-Кутта 4-го порядка.

f a(0) = 0.

Let a(0) = 0.

_h	le	gitur. Omkowowill Maneuwoomlie	
0,003 0,006 0,012 0,024 0,048 0,192 0,384	1,7763.10-17 6,10623.10-14 1,96487.10-12 6,37403.10-10 2,09623.10-10 7,0850-10-5 2,52945.10-4 0,000100722	34,375	hpignonomonia comawowe normali :32
	5) 50	padomoune	zarodaennoan nopegnan

4. Результаты численных экспериментов для основных задач.

Тестовую задача:

$$\begin{cases} \frac{du}{dx} = u \\ u(0) = u_0 \end{cases}$$

Начальное условие u(0) = 1, без контроля локальной погрешности, с шагом h = 0.001.

h(n-1)	x(n)	v(n)	v(2n)	S*	v(итог)	U(n)	E(n)
	0	1					
0,003	0,003	1,003005	1,003005	1,89E-15	1,003005	1,0030045	-2,00E-15
0,003	0,006	1,006018	1,006018	1,89E-15	1,006018	1,006018	-4,00E-15
0,003	0,009	1,009041	1,009041	1,89E-15	1,009041	1,0090406	-6,00E-15
0,003	0,012	1,012072	1,012072	2,13E-15	1,012072	1,0120723	-7,99E-15
0,003	0,015	1,015113	1,015113	1,89E-15	1,015113	1,0151131	-9,99E-15
0,003	0,018	1,018163	1,018163	1,89E-15	1,018163	1,018163	-1,20E-14
0,003	0,021	1,021222	1,021222	1,89E-15	1,021222	1,0212221	-1,40E-14
0,003	0,024	1,02429	1,02429	2,13E-15	1,02429	1,0242903	-1,62E-14
0,003	0,027	1,027368	1,027368	2,37E-15	1,027368	1,0273678	-1,84E-14
0,003	0,03	1,030455	1,030455	1,89E-15	1,030455	1,0304545	-2,07E-14
0,003	0,033	1,033551	1,033551	2,13E-15	1,033551	1,0335505	-2,26E-14
0,003	0,036	1,036656	1,036656	2,13E-15	1,036656	1,0366558	-2,49E-14
0,003	0,039	1,03977	1,03977	2,13E-15	1,03977	1,0397705	-2,71E-14
0,003	0,042	1,042894	1,042894	2,13E-15	1,042894	1,0428945	-2,93E-14
0,003	0,045	1,046028	1,046028	2,13E-15	1,046028	1,0460279	-3,15E-14
0,003	0,048	1,049171	1,049171	2,13E-15	1,049171	1,0491707	-3,38E-14
0,003	0,051	1,052323	1,052323	2,13E-15	1,052323	1,0523229	-3,57E-14
0,003	0,054	1,055485	1,055485	2,13E-15	1,055485	1,0554846	-3,82E-14

С контролем локальной погрешности, начальный шаг h=0.001, контрольная величина $\varepsilon=0.001$.

h(n-1)	x(n)	v(n)	v(2n)	S*	v(итог)	U(n)	E(n)	+	4
	0	1							
0,003	0,003	1,003005	1,003005	1,89E-15	1,003005	1,0030045	-2,00E-15	1	
0,006	0,009	1,009041	1,009041	6,51E-14	1,009041	1,0090406	-6,71E-14	1	2
0,012	0,021	1,021222	1,021222	2,10E-12	1,021222	1,0212221	-2,16E-12	1	
0,024	0,045	1,046028	1,046028	6,80E-11	1,046028	1,0460279	-7,03E-11	1	7
0,048	0,093	1,097462	1,097462	2,24E-09	1,097462	1,0974617	-2,31E-09	1	
0,096	0,189	1,208041	1,208041	7,56E-08	1,208041	1,208041	-7,83E-08	1	2
0,192	0,381	1,463745	1,463747	2,70E-06	1,463745	1,4637476	-2,81E-06	1	
0,384	0,765	2,148882	2,148982	0,000107	2,148882	2,1489944	-0,000113		

Основная задача №1:

$$\begin{cases} \frac{du}{dx} = \frac{x}{1+x^2}u^2 + u - u^3 sin(10x) \\ u(0) = u_0 \end{cases}$$

Начальное условие u(0) = 1, без контроля локальной погрешности, с шагом h = 0.001.

h(n-1)	x(n)	v(n)	v(2n)	S*	v(итог)
	0	1	C.R. HIPO		
0,003	0,003	1,002964	1,002964	5,79E-13	1,002964
0,003	0,006	1,005854	1,005854	5,37E-13	1,005854
0,003	0,009	1,008669	1,008669	4,92E-13	1,008669
0,003	0,012	1,011407	1,011407	4,44E-13	1,011407
0,003	0,015	1,014067	1,014067	3,94E-13	1,014067
0,003	0,018	1,016648	1,016648	3,41E-13	1,016648
0,003	0,021	1,01915	1,01915	2,86E-13	1,01915
0,003	0,024	1,02157	1,02157	2,30E-13	1,02157
0,003	0,027	1,023909	1,023909	1,73E-13	1,023909
0,003	0,03	1,026165	1,026165	1,15E-13	1,026165
0,003	0,033	1,028339	1,028339	5,64E-14	1,028339
0,003	0,036	1,03043	1,03043	1,42E-15	1,03043
0,003	0,039	1,032438	1,032438	5,87E-14	1,032438
0,003	0,042	1,034363	1,034363	1,14E-13	1,034363
0,003	0,045	1,036206	1,036206	1,69E-13	1,036206
0,003	0,048	1,037966	1,037966	2,21E-13	1,037966
0,003	0,051	1,039645	1,039645	2,71E-13	1,039645
0,003	0,054	1,041243	1,041243	3,18E-13	1,041243

С контролем локальной погрешности, начальный шаг h=0.001, контрольная величина $\varepsilon=0.001$.

h(n-1)	x(n)	v(n)	v(2n)	S*	v(итог)	U(n)	E(n)	+	=
	0	1							
0,003	0,003	1,002964	1,002964	5,79E-13	1,002964		8	1	
0,006	0,009	1,008669	1,008669	1,64E-11	1,008669			1	
0,012	0,021	1,01915	1,01915	3,75E-10	1,01915	0	0	_1	
0,024	0,045	1,036206	1,036206	1,08E-09	1,036206			1	
0,048	0,093	1,055241	1,055242	6,75E-07	1,055241	6	0	1	
0,096	0,189	1,063244	1,063285	4,36E-05	1,063244		Ĭ.	1	
0,192	0,381	1,299201	1,302134	0,003129	1,299201		0.0		1
0,096	0,477	1,846785	1,847294	0,000543	1,846785			1	2
0,048	0,525	2,480079	2,480544	0,000496	2,480079	12 13:		1	1
0,048	0,573	3,76005	3,764964	0,005242	3,76005				-1150
0,048	0,621	5,923385	5,951043	0,029502	5,923385	10	8		1
0,024	0,645	6,205367	6,205594	0,000241	6,205367		Ĭ.	1	1
0,024	0,669	5,393046	5,396236	0,003402	5,393046	6			
0,024	0,693	4,392742	4,392562	0,000192	4,392742			1	
0,048	0,741	3,080967	3,078315	0,002829	3,080967	2			
0,048	0,789	2,438104	2,438215	0,000119	2,438104		Ĩ	1	
0,096	0,885	2,015708	2,025168	0,010092	2,015708		8		
0,096	0,981	2,38688	2,387989	0,001182	2,38688				

Основная задача №2 имеет вид:

$$\begin{cases} \frac{d^2u}{dx^2} + au' + bsin(u) = 0\\ u(0) = u_0 \end{cases}$$

Начальное условие $u_1(0) = 1, u_2(0) = 2$, без контроля локальной погрешности, с шагом h = 0,001.

h(n-1)	x(n)	v1(n)	v1(2n)	v2(n)	v2(2n)	S*	v1(итог)	v2(итог)	+	23
	0	1		1						
0,003	0,003	1,003005	1,002996	0,991976	0,991967	9,58E-06	1,0030045	0,991976	0	(
0,003	0,006	1,005985	1,005977	0,983967	0,983958	9,50E-06	1,0059849	0,983967	0	C
0,003	0,009	1,008941	1,008933	0,975972	0,975963	9,42E-06	1,0089412	0,975972	0	(
0,003	0,012	1,011874	1,011865	0,967991	0,967982	9,34E-06	1,0118735	0,967991	0	(
0,003	0,015	1,014782	1,014774	0,960025	0,960016	9,27E-06	1,0147819	0,960025	0	(
0,003	0,018	1,017666	1,017658	0,952073	0,952064	9,19E-06	1,0176663	0,952073	0	(
0,003	0,021	1,020527	1,020519	0,944136	0,944128	9,12E-06	1,0205268	0,944136	0	(
0,003	0,024	1,023363	1,023355	0,936214	0,936205	9,04E-06	1,0233634	0,936214	0	(
0,003	0,027	1,026176	1,026168	0,928306	0,928298	8,97E-06	1,0261763	0,928306	0	(
0,003	0,03	1,028965	1,028957	0,920414	0,920405	8,90E-06	1,0289654	0,920414	0	(
0,003	0,033	1,031731	1,031723	0,912536	0,912527	8,82E-06	1,0317308	0,912536	0	
0,003	0,036	1,034473	1,034465	0,904673	0,904665	8,75E-06	1,0344725	0,904673	0	(
0,003	0,039	1,037191	1,037183	0,896825	0,896817	8,68E-06	1,0371906	0,896825	0	(
0,003	0,042	1,039885	1,039877	0,888993	0,888985	8,61E-06	1,0398851	0,888993	0	(
0,003	0,045	1,042556	1,042548	0,881175	0,881167	8,54E-06	1,0425561	0,881175	0	
0,003	0,048	1,045204	1,045196	0,873373	0,873365	8,47E-06	1,0452036	0,873373	0	(
0,003	0,051	1,047828	1,04782	0,865586	0,865579	8,40E-06	1,0478277	0,865586	0	(
0,003	0,054	1,050428	1,050421	0,857815	0,857807	8,33E-06	1,0504283	0,857815	0	(
0,003	0,057	1,053006	1,052998	0,850059	0,850051	8,28E-06	1,0530056	0,850059	0	(

С контролем локальной погрешности, начальный шаг h=0.001, контрольная величина $\varepsilon=0.001$.

h(n-1)	x(n)	v1(n)	v1(2n)	v2(n)	v2(2n)	S*	v1(итог)	v2(итог)	+	#
MCC1221111	0	1		1						
0,003	0,003	1,003005	1,002996	0,991976	0,991967	9,58E-06	1,0030045	0,991976	0	0
0,003	0,006	1,005985	1,005977	0,983967	0,983958	9,50E-06	1,0059849	0,983967	0	0
0,003	0,009	1,008941	1,008933	0,975972	0,975963	9,42E-06	1,0089412	0,975972	0	0
0,003	0,012	1,011874	1,011865	0,967991	0,967982	9,34E-06	1,0118735	0,967991	0	0
0,003	0,015	1,014782	1,014774	0,960025	0,960016	9,27E-06	1,0147819	0,960025	0	0
0,003	0,018	1,017666	1,017658	0,952073	0,952064	9,19E-06	1,0176663	0,952073	0	0
0,003	0,021	1,020527	1,020519	0,944136	0,944128	9,12E-06	1,0205268	0,944136	0	0
0,003	0,024	1,023363	1,023355	0,936214	0,936205	9,04E-06	1,0233634	0,936214	0	0
0,003	0,027	1,026176	1,026168	0,928306	0,928298	8,97E-06	1,0261763	0,928306	0	0
0,003	0,03	1,028965	1,028957	0,920414	0,920405	8,90E-06	1,0289654	0,920414	0	0
0,003	0,033	1,031731	1,031723	0,912536	0,912527	8,82E-06	1,0317308	0,912536	0	
0,003	0,036	1,034473	1,034465	0,904673	0,904665	8,75E-06	1,0344725	0,904673	0	0
0,003	0,039	1,037191	1,037183	0,896825	0,896817	8,68E-06	1,0371906	0,896825	0	0
0,003	0,042	1,039885	1,039877	0,888993	0,888985	8,61E-06	1,0398851	0,888993	0	0
0,003	0,045	1,042556	1,042548	0,881175	0,881167	8,54E-06	1,0425561	0,881175	0	
0,003	0,048	1,045204	1,045196	0,873373	0,873365	8,47E-06	1,0452036	0,873373	0	0
0,003	0,051	1,047828	1,04782	0,865586	0,865579	8,40E-06	1,0478277	0,865586	0	0
0,003	0,054	1,050428	1,050421	0,857815	0,857807	8,33E-06	1,0504283	0,857815	0	0
0,003	2	1,053006	1,052998	0,850059	0,850051	8,28E-06	1,0530056	0,850059	0	0

5. Наблюдения и выводы.

HE OCERTALL EQUEUROSE NOMESTA LIBERTHOSE LUMBIPOLOMOS SEGRILLA HOLLER GRA OSES E SPERENTIMONIA COSTIGUI PROPERTIMONIA LIBERTA PROPERTIMO PILIPETA LIBERTA PILIPETA PILI