SevenBridges

Epigenetic control

May 2023

Boris Majić, presenter

boris.majic@sbgenomics.com

Epigenetic control

- Same genotype different phenotypes
- How?

Epigenetic control

 Epigenetics - extra layer of information on top of genetic information

 Each cell type is defined by genes that are

expressed in the cell

Gene expression

DNA → RNA → protein

Single cell fertilised egg 1 cell type

Each cell type only expresses a restricted subset of genes.

Neuron Haemoglobin Dopamine + Myoglobin -

Dopamine -

Myoglobin -

Muscle cells

Haemoglobin -

Dopamine -

Myoglobin +

Epigenetic modifications

- Demarcate the start and end of genes
- Provide structure to the chromosome
- Alter how we read each and every gene
 - genes being expressed (active)
 - genes being not expressed (silent)

DNA structure refresher

- DNA is compacted into chromatin
- DNA is wrapped around histone proteins

DNA structure refresher

- DNA is compacted into chromatin
- DNA is wrapped around histone proteins

Nucleosome

- 146bp of DNA wrapped around a histone octamer
- Positively charged histones bind to negatively charged DNA

2016 Seven Bridges sevenbridges.com

Heterochromatin versus euchromatin

- Heterochromatin closed chromatin
 - Facultative can differ by cell type or time
 - tissue specific genes
 - parts of X chromosome
 - Constitutive same in all cell types structural role
 - Centromeres
 - Telomeres
 - Parts of sex chromosomes

- Euchromatin open chromatin
 - DNA accessible for transcription

Specific epigenetic modifications

- DNA methylation
- Histone modifications
- Chromatin remodelling
- Histone variation
- Noncoding RNAs

DNA methylation

Changes to DNA amino acids

DNA methylation

- Methylation of cytosine nucleotide
- Almost exclusively on CpG dinucleotides → -----CG------

Cytosine

5- methyl cytosine

CpG site

- CpG just a G following a C in sequence
- CpG islands
 - O Why are they rare?
- CpG islands at gene promoters
 - Methylated → gene expression silenced

X inactivation

- Epigenetic dosage compensation mechanism in mammals -males and females have the same dose of genes on the X chromosome
- Inactive X chromosome shows DNA methylation of CpG islands

X inactivation

DNA methylation - where does it occur?

- CpG islands usually unmethylated
- Intergenic regions usually methylated
- Repetitive elements usually methylated

DNA methylation - function

- Intergenic regions Maintain genomic stability
- Repetitive regions
 - Silence repeats to prevent transposition
 - Mutate transposable elements
- Oncogenes
 - Silence expression

DNA methylation in cancer

- Hypermethylation of CpG islands
 - Disables tumor suppressors

- Hypomethylation of genome
 - Leads to genomic instability

DNA methylation through aging

2016 Seven Bridges sevenbridges.com

Bisulfite sequencing

- Bisulfite modification converts non-methylated cytosines to uracils
- PCR amplification results in replacement of uracils with thymines

PCR

Recap

Bisulfite sequencing

PCR amplification

Bisulfite sequencing - alignment

- Similar to regular alignment
- Differences?

Bisulfite sequencing - alignment

- Dependant on library preparation protocol
 - Case when single strand is used
 - Case when both strands are used

Differential methylation - between cell types GUSB

Differential methylation - in tumor

PCDHGB6_1

Histone modification

Modifications to structure holding DNA

Histone modifications

- Chemical modifications of histone tails
- More than 50 different modifications

ChIP-seq

ChromatinImmunoPrecipitation

2016 Seven Bridges sevenbridges.com

ChIP-seq

Other epigenetic modifications

- Chromatin remodeling dependent on ATP
- Histone variants
- Noncoding RNAs
 - o piRNAs
 - siRNAs
 - IncRNAs
- RNA modifications

Practical excercise

There are 3 files: Reference fasta file and two fasta files of bisulfite sequenced reads.

Task:

- Calculate GC content in the reference fasta
 - How many GC dinucleotides are present in this region?
 - Is it uniformly distributed or are there CpG islands? If there are CpG islands, how many islands are there?
- Which of given fasta files does represent a tumor sample and which one does represent a normal sample, if we know that this is a region of a tumor suppressor gene?

Literature

- Epigenetics review
- Bisulfite sequencing
- Bismark bisulfite-seq aligner
- <u>Differential methylation</u>
- Chip-seq

Differential methylation exercise

```
import re
from Bio import SeqIO

reference = SeqIO.parse(open("/sbgenomics/project-files/example_human_reference.fasta"),'fasta')
fasta_1 = SeqIO.parse(open("/sbgenomics/project-files/example_1.fasta"),'fasta')
fasta_2 = SeqIO.parse(open("/sbgenomics/project-files/example_2"),'fasta')
ref_chromosome = list(reference)[0]
f1_chromosome = list(fasta_1)[0]
f2_chromosome = list(fasta_2)[0]

ref_sequence = str(ref_chromosome.seq)
f1_sequence = str(f1_chromosome.seq)
f2_sequence = str(f2_chromosome.seq)
```