Comparison of Differencing Schemes for Convection-Diffusion

1. Central Differencing Scheme

• Accuracy: Second-order accurate for diffusion-dominated flows (low Peclet numbers, |Pe| < 2) $\frac{|II|[2]}{2}$.

Limitations:

- Produces unphysical oscillations (numerical instability) for |Pe| > 2 due to negative coefficients in discretized equations^{[1][2]}.
- High false diffusion in convection-dominated flows[1].
- **Best For**: Problems with |Pe| < 2, where diffusion dominates.

2. Upwind Differencing Scheme

• **Accuracy**: First-order accurate. Stable for all Pe but introduces **false diffusion** (smearing of sharp gradients)[11][2].

• Advantages:

- o Guarantees bounded solutions (no oscillations) for high |Pe| [1][3].
- Reflects flow direction by using upstream node values [2].
- **Best For**: Convection-dominated flows (|Pe| > 2) where stability is critical.

3. Hybrid Scheme

• **Design**: Combines central differencing (|Pe| < 2) and upwind differencing (|Pe| \geq 2) |2||4|.

• Advantages:

- Stable for all Pe.
- Reduces false diffusion compared to pure upwind schemes[1][2].

• Limitations:

- First-order accuracy for |Pe| \geq 2 [2].
- O Discontinuous transition between schemes at |Pe| = 2 [5].
- **Best For**: General-purpose simulations with varying Pe.

4. Power-Law Scheme

• **Design**: Uses an exponential interpolation based on the exact solution of the 1D convection-diffusion equation [Initial Context].

• Advantages:

- o Smoothly adapts between central (linear) and upwind (constant) approximations based on Pe.
- No abrupt transitions, reducing numerical errors [Initial Context].
- o Handles both diffusion- and convection-dominated flows without oscillations [Initial Context].

• Limitations:

- o Computationally more intensive than hybrid schemes.
- Rarely used in modern CFD codes due to the prevalence of high-resolution schemes like QUICK[1].

Key Comparison Table

Scheme	Accuracy Order	Stability	False Diffusion	Adaptivity to Pe	Ideal Use Case
Central Differencing	2nd	Unstable (Pe > 2)	High	No	Low Pe flows
Upwind Differencing	1st	Stable	Moderate	No	High Pe flows
Hybrid	1st/2nd	Stable	Low	Yes (Pe -based)	General-purpose simulations
Power-Law	Variable	Stable	Very Low	Yes (smooth)	All Pe ranges

Practical Insights

- 1. **Central Scheme**: Best for laminar flows or low-velocity scenarios (e.g., heat conduction) but fails in convection-dominated cases^{[1][2]}.
- 2. **Upwind Scheme**: Preferred for high-speed flows (e.g., aerodynamics) but introduces smearing near shocks^{[1][3]}.
- 3. **Hybrid Scheme**: Balances stability and accuracy but sacrifices higher-order precision for Pe \geq 2 [5][2].

4. **Power-Law**: Outperforms hybrid schemes in accuracy for intermediate Pe but is less common in modern implementations [Initial Context].

For most engineering applications, hybrid and power-law schemes are preferred due to their robustness across a wide range of Pe . The choice depends on computational resources and the need for precision vs. stability^{[1][2]}.

- 1. https://www.isca.in/MATH_SCI/Archive/v4/i2/2.ISCA-RJMSS-2016-009.pdf
- 2. https://en.wikipedia.org/wiki/Hybrid difference scheme
- 3. https://www.youtube.com/watch?v=sQwRp57cEYg
- 4. https://www.kns.org/files/pre_paper/26/61김윤일pdf
- 5. https://repository.tudelft.nl/record/uuid:ace056f8-73eb-458a-bf9c-5300e399f689