VACACIONES DIVERTIÚTILES

ASOCIACIÓN EDUCATIVA SACO OLIVEROS

GEOMETRY

Chapter 6

3rd SECONDARY

Areas en Regiones Planas

GEOMETRY

indice

01. MotivatingStrategy 🕥

02. HelicoTheory

03. HelicoPractice

04. HelicoWorshop

 \bigcirc

https://www.youtube.com/watch?v=BPI5ecBvsiY

MOTIVATING STRATEGY

Resumen

HELICO THEORY

ÁREAS DE REGIONES PLANAS

Área de la región triangular

Se cumple:

$$A_{\Delta} = \frac{base \ x \ altura}{2} = \frac{b \ x \ h}{2}$$

Área de la región triangular equilátera

Se cumple:

$$A_{\Delta^{ABC}} = \left(\frac{\ell^2 \cdot \sqrt{3}}{4}\right)$$

ℓ : lado del triángulo equilátero

Áreas de regiones cuadrangulares

1. Región Cuadrada:

ℓ : lado del cuadrado

$$A_{\text{ABCD}} = (\ell)^2 = \frac{(d)^2}{2}$$

2. Región Romboidal:

 $A = ABCD = b \times h$

A
$$_{\text{ABCD}}$$
 = a x b x sen θ

3. Región Rectangular

 $A_{ABCD} = a \times b$

4. Región Rombal:

$$A_{\diamond ABCD} = \frac{(AC) \times (BD)}{2}$$

 \bigcirc

Problema 01

Problema 02

Problema 03

Problema 04

Problema 05

HELICO PRACTICE

Calcule el área de la región cuadrangular PQRT

En el Δ OTP: m∢OPT=53°

PT=3

En el Δ OQR: m∢ORQ=53° OQ=8 QR=6

$$A_{PQRT} = A_{OQR} - A_{OTP}$$
 $A_{PQRT} = \frac{6x8}{2} - \frac{3x4}{2}$
 $A_{PQRT} = 24 - 6$

Respuesta $A_{PQRT} = 18u^2$

Resolución

Calcule el área de la región triangular ABC

Por teorema:

$$S = \frac{10^2 \sqrt{3}}{4}$$

$$S = \frac{10^2 \sqrt{3}}{4} \qquad S = \frac{100 \sqrt{3}}{4}$$

Respuesta

 $S = 25\sqrt{3}u^2$

En la figura, calcule el área de la región paralelográmica ABCD

RECORDEMOS

Resolución

Triangulo notable:

En el grafico:

$$A_{ABCD} = (10)(3\sqrt{3})$$

Respuesta

$$A_{ABCD}=30\sqrt{3}$$

En la figura se muestra el corte transversal de dos montañas representadas por los triángulos isósceles. Si la suma de las áreas de las regiones triangulares es 1 125 000 m², determine la distancia entre los picos de las montañas.

RECORDEMOS

Resolución

Dato: M+N=1 125 000m²

$$\frac{m^2}{2} + \frac{n^2}{2} = 1125000 m^2 + n^2 = 2250000$$

$$x^2 = 2250000 x=1500$$

Respuesta

x=1500m

Un sastre tiene una tela de forma rectangular y realiza el siguiente corte como muestra el grafico. Si las dos piezas de tela cortada representan triángulos equiláteros, halle la razón entre ellas.

En el gráfico
$$\frac{A \Delta}{A \Delta} = \frac{\cancel{2}\sqrt{3}}{\cancel{4}} \qquad \frac{A \Delta}{A \Delta} = \frac{\frac{1}{4}}{\frac{1}{3}}$$

Respuesta

 $\frac{A 4}{A 4} = \frac{3}{4}$

"psolución

Problema 07

Problema 08

Problema 09

>

Problema 10

 \bigcirc

HELICO WORSHOP

Problema 07

Problema 08

 \bigcirc

M

En la figura, calcule el área de la región CDE

Si las longitudes de las diagonales de un cuadrado suman 16, calcule el área de la región.

En el grafico, calcule el área de la región romboidal

Andrés se comprara un terreno de forma triangular, y para saber cuanto pagara por ese terreno, contrata a un topógrafo. Si el metro cuadrado cuesta \$100.¿Cuánto le costara el terreno?

El borde superior de la fachada en la pared es paralela a la base del triangulo pintado como muestra la figura, $\beta+\theta=90^{\circ}$. Determine el área de la región triangular pintada.

FORMATO

PALETA DE COLORES.

FUENTE DE TEXTO ES ARIAL