La théorie des ensembles.

On se place dans la logique du 1er ordre avec $\mathcal{L} = \{\in, =\}$. On se place dans un univers \mathcal{U} non vide, le modèle, dont les éléments sont appelés des *ensembles*.

Il faudra faire la différence entre les ensembles « naïfs » (les ensembles habituels), et les ensembles « formels » (les éléments de \mathcal{U}).

On a le paradoxe de Russel. On peut l'écrire

« On a un barbier qui rase tous les hommes qui ne se rasent pas eux-mêmes. Qui rase le barbier? ».

Si $\mathcal U$ est l'ensemble de tous les ensembles, alors

$$a := \{ x \in \mathcal{U} \mid x \notin x \}$$

vérifie $a \in a \iff a \notin a$, **paradoxe**. Pour éviter ce paradoxe, on choisit donc de ne pas faire \mathcal{U} un ensemble.

1 Les axiomes de la théorie de Zermelo-Fraenkel.

ZF1. Axiome d'extensionnalité : deux ensembles sont égaux ssi ils ont les mêmes éléments

$$\forall x \, \forall y \, \Big(\forall z \, (z \in x \leftrightarrow z \in y) \leftrightarrow x = y \Big).$$

• Axiome de la paire 1 : il existe une paire $\{x,y\}$ pour tout élément x et y

$$\forall x \, \forall y \, \exists z \, \forall t \Big(t \in z \leftrightarrow (t = x \lor t = y) \Big).$$

[continué plus tard...]

^{1.} On verra plus tard que cet axiome est une conséquence des autres (de ${\sf ZF3}$ et ${\sf ZF4}$).

Remarque 1. Cela nous donne l'existence du *singleton* $\{x\}$ si x est un ensemble. En effet, il suffit de faire la paire $\{x,x\}$ avec l'Axiome de la paire.

Définition 1. Si a et b sont des ensembles, alors (a,b) est l'ensemble $\{\{a\},\{a,b\}\}$. Ainsi, (a,a) est l'ensemble $\{\{a\}\}$.

Lemme 1. Pour tous ensembles a, b, a', b', on a (a, b) = (a', b') ssi a = a' et b = b'.

Preuve. En exercice.

Définition 2. On peut construire des 3-uplets (a_1, a_2, a_3) avec $(a_1, (a_2, a_3))$, et ainsi de suite pour les n-uplets.

Notation. On utilise les raccourcis

- $\triangleright t = \{a\} \text{ pour } \forall x (x \in t \leftrightarrow x = a);$
- $\triangleright t = \{a, b\} \text{ pour } \forall x (x \in t \leftrightarrow (x = a \lor x = b));$
- $\triangleright t \subseteq a \text{ pour } \forall x (z \in t \rightarrow z \in a).$
- **ZF3.** Axiome des parties : l'ensemble des parties $\wp(a)$ existe pour tout ensemble a

$$\forall a \; \exists b \; \forall t \; (t \in b \leftrightarrow t \subseteq a).$$

ZF 2. Axiome de la réunion : l'ensemble $y = \bigcup_{z \in x} z$ existe

$$\forall x \,\exists y \,\forall t (t \in y \leftrightarrow \exists z (t \in z \land z \in x)).$$

Remarque 2. Comment faire $a \cup b$? La paire $x = \{a, b\}$ existe par l'Axiome de la paire, et $\bigcup_{z \in x} z = a \cup b$ est un ensemble par ZF 2.

ZF 4'. Schéma de compréhension : pour toute formule $\varphi(y, v_1, \dots, v_n)$, on a l'ensemble $x = \{ y \in v_{n+1} \mid \varphi(y, v_1, \dots, v_n) \}$

$$\forall v_1 \ldots \forall v_n \exists x \forall y (y \in x \leftrightarrow (y \in v_{n+1} \land \varphi(y, v_1, \ldots, v_n))).$$

Remarque 3. Peut-on faire le paradoxe de Russel? On ne peut pas faire $a := \{z \in \mathcal{U} \mid z \notin z\}$ car \mathcal{U} n'est pas un ensemble! Et, on ne peut pas avoir de paradoxe avec $b := \{z \in E \mid z \notin z\}$, car on a l'ajout de la condition $b \in E$.

Définition 3. Une relation fonctionnelle en w_0 est une formule $\varphi(w_1, w_2, a_1, \ldots, w_n)$ à paramètres (où les a_i sont dans \mathcal{U}) telle que

$$\mathcal{U} \models \forall w_0 \, \forall w_1 \, \forall w_2 \, \Big(\varphi(w_0, w_1, a_1, \dots, a_n) \wedge \varphi(w_0, w_2, a_1, \dots, w_n) \to w_1 = w_2 \Big).$$

En termes naïfs, c'est une fonction partielle. On garde le terme fonction quand le domaine et la collection d'arrivée sont des ensembles, autrement dit, des éléments de \mathcal{U} .

ZF 4. Schéma de substitution/de remplacement : « la collection des images par une relation fonctionnelle des éléments d'un ensemble est aussi un ensemble ». Pour tout n-uplet \bar{a} , si la formule à paramètres $\varphi(w_0, w_1, \bar{a})$ définit une relation fonctionnelle $f_{\bar{a}}$ en w_0 et si a_0 est un ensemble alors la collection des images par $f_{\bar{a}}$ des éléments de a_0 est un ensemble nommé a_{n+1}

$$\forall a_0 \cdots \forall a_n$$

$$(\forall w_0 \forall w_1 \forall w_2 (\varphi(w_0, w_1, a_1, \dots, a_n) \land \varphi(w_0, w_2, a_1, \dots, a_n)) \rightarrow w_1 = w_2)$$

$$\downarrow$$

$$\exists a_{n+1} \forall a_{n+2} (a_{n+2} \in a_{n+1} \leftrightarrow \exists w_0 \ w_0 \in a_0 \land \varphi(w_0, a_{n+2}, v_1, \dots, v_n)).$$

Théorème 1. Si ZF1, ZF2, ZF3 et ZF4 sont vrais dans \mathcal{U} , il existe (dans \mathcal{U}) un et un seul ensemble sans élément, que l'on notera \emptyset .

Preuve. \triangleright *Unicité* par ZF 1.

ightharpoonup Existence. On procède par compréhension : l'univers $\mathcal U$ est non vide, donc a un élément x. On considère la formule $\varphi(w_0,w_1):=\bot$ qui est une relation fonctionnelle. Par ZF 4 (avec la formule φ et l'ensemble $a_0:=x$) un ensemble a_{n+1} qui est vide.

Proposition 1. Si ZF1, ZF2, ZF3 et ZF4 sont vrais dans \mathcal{U} , alors l'Axiome de la paire est vrai dans \mathcal{U} .

Preuve. On a \emptyset dans $\mathcal U$ et également $\wp(\emptyset) = \{\emptyset\}$ et $\wp(\wp(\emptyset)) = \{\emptyset, \{\emptyset\}\}$ par ZF 3.

Étant donné deux ensemble a et b, on veut montrer que $\{a,b\}$ est un ensemble avec $\mathsf{ZF}\,\mathsf{4}$

$$\varphi(w_0, w_1, a, b) := (w_0 = \emptyset \land w_1 = a) \lor (w_0 = \{\emptyset\} \land w_1 = b),$$

οù

- $\triangleright w_0 = \emptyset$ est un raccourci pour $\forall z (z \notin w_0)$;
- $\triangleright w_0 = \{\emptyset\}$ est un raccourci pour $\forall z (z \in w_0 \leftrightarrow (\forall t \ t \not\in z)).$

Ces notations sont compatibles avec celles données précédemment.

Comme φ est bien une relation fonctionnelle et $\{a,b\}$ est l'image de $\{\emptyset, \{\emptyset\}\}$.

Proposition 2. Si ZF1, ZF2, ZF3 et ZF4 sont vrais dans \mathcal{U} , alors ZF4' est vrai dans \mathcal{U} .

Preuve. On a la formule $\varphi(y, v_1, \dots, v_n)$ et on veut montrer que

$$\mathcal{U} \models \forall v_1 \cdots \forall v_{n+1} \exists x \forall y (y \in x \leftrightarrow (y \in v_{n+1} \land \varphi(y, v_1, v_n))).$$

On considère la formule $\psi(w_0, w_1, \bar{v}) := w_0 = w_1 \wedge \varphi(w_0, \bar{v})$, qui est bien une relation fonctionnelle en w_0 . La collection

$$\{x \in v_{n+1} \mid \varphi(y, v_1, \dots, v_n)\}$$

est l'image de v_{n+1} par ψ par $\mathsf{ZF}\,\mathsf{4}.$

Remarque 4. La réciproque du théorème précédent est fausse! Les axiomes ZF4 et ZF4' ne sont pas équivalents. On le verra en TD (probablement).

Proposition 3. Le produit ensembliste de deux ensembles est un ensemble.

Preuve. Soient v_1 et v_2 deux ensembles. On considère

$$X := v_1 \times v_2 = \{ (x, y) \mid x \in v_1 \text{ et } y \in v_2 \} \text{ (en naı̈f) }.$$

La notation (x,y) correspond à l'ensemble $\{\{x\},\{x,y\}\}\in \wp(\wp(v_1\cup v_2)).$

On applique ZF 4' dans l'ensemble ambiant $\wp(\wp(v_1 \cup v_2))$, on définit le produit comme la compréhension à l'aide de la formule

$$\varphi(z, v_1, v_2) := \exists x \,\exists y \, \Big(z = \{\{x\}, \{x, y\}\} \land x \in v_1 \land y \in v_2\Big).$$

C'est bien un élément de \mathcal{U} .

Définition 4. Une fonction (sous-entendu totale) d'un ensemble a dans un ensemble b est un sous-ensemble de $a \times b$ qui vérifie la

propriété

$$\varphi(f,a,b) := \begin{pmatrix} f \subseteq a \times b \\ \wedge \\ \forall x \, \forall y \, \forall y' \, (x,y) \in f \wedge (x,y') \in f \rightarrow y = y' \\ \wedge \\ \forall x \, x \in a \rightarrow \exists y \, y \in b \wedge (x,y) \in f \end{pmatrix}.$$

On identifie ainsi f et son graphe.

Une fonction partielle d'un ensemble a dans un ensemble b est un sous-ensemble de $a\times b$ qui vérifie la propriété

$$\varphi(f,a,b) := \begin{pmatrix} f \subseteq a \times b \\ & \wedge \\ \forall x \, \forall y \, \forall y' \, (x,y) \in f \wedge (x,y') \in f \rightarrow y = y' \end{pmatrix}.$$

On note b^a la collection des fonctions partielles de a dans b.

Proposition 4. La collection b^a est un ensemble, *i.e.* si a et b sont dans \mathcal{U} alors b^a aussi.

Preuve. En exercice.

Remarque 5 (Réunion indexée). Soit a une famille d'ensemble indexée par l'ensemble I, i.e. a est une fonction de domaine I. Si $i \in I$, on note a_i pour a(i).

Proposition 5. Si I est un ensemble et a est une fonction de domaine I, alors $\bigcup_{i \in I} a_i$ est un ensemble. Autrement dit, si dans \mathcal{U} , ZF 1, ZF 2, ZF 3, ZF 4 sont vraies, et que I et a sont dans \mathcal{U} , et a est une fonction, alors la collection définie naïvement par $\bigcup_{i \in I} a_i$ appartient à \mathcal{U} .

Preuve. On pose $b := \{a_i \mid i \in I\}$. C'est bien un ensemble car b

est l'ensemble des images des éléments de I par a. On peut écrire a comme relation fonctionnelle :

$$\varphi(w_0, w_1, a) := (w_0, w_1) \in a.$$

On a donc que b est un ensemble avec $\mathsf{ZF}\,\mathsf{4}.$

Et,
$$\bigcup_{i \in I} a_i = \bigcup_{z \in b} z$$
 donc on conclut par ZF 2.

Proposition 6 (Propriété d'intersection). Si I est un ensemble non vide et a est une fonction de domaine I alors $\bigcap_{i \in I} a_i$ est un ensemble.

Preuve. On pose $c := \bigcup_{i \in I} a_i$ qui est un ensemble par ZF 2. On considère

$$\varphi(x, a, I) := \forall i \ i \in I \to x \in a_i.$$

Par compréhension (ZF4') on construit l'ensemble

$$\bigcap_{i \in I} a_i := \{ x \in c \mid \varphi(x, a, I) \}.$$

Proposition 7. Si I est un ensemble et a une fonction de domaine i alors $\prod_{i \in I} a_i$ est un ensemble.

Preuve. La collection $\prod_{i \in I} a_i$ est l'ensemble des fonctions de I dans $\bigcup_{i \in I} a_i$ telles que $f(i) \in a_i$ pour tout i.

ZF5 Axiome de l'infini : il existe un ensemble ayant une infinité d'élément

$$\exists x \ (\emptyset \in x \land \forall y \ (y \in x \to y \cup \{y\} \in x)).$$

On encode les entiers avec des ensembles :

- $\triangleright 0 \leadsto \emptyset$
- $\triangleright 1 \leadsto \{\emptyset\}$

$$\begin{array}{ccc} \rhd & 2 \leadsto \{\emptyset, \{\emptyset\}\} \\ \rhd & & \vdots \\ \rhd & n+1 \leadsto n \cup \{n\} \\ \rhd & & \vdots \end{array}$$

Ainsi, on a bien $n = \{0, 1, ..., n - 1\}.$

Remarque 6. Les français sont les seuls à considérer que l'axiome de bonne fondation ne fait pas partie de la théorie de ZF.