单机性能优化实验报告

容逸朗 2020010869

测量结果

• 矩阵乘法程序在不同的编译器参数编译的情况下,程序性能如下所示:

优化参数	运行时间/s	性能/GFlops
-00	0.9715	0.2763
-01	0.3297	0.8142
-02	0.3237	0.8292
-03	0.0476	5.6432
-fast	0.0369	7.2837

• 矩阵乘法内核在不同的循环展开程度下,程序性能如下所示:

循环展开程度	运行时间 $/\mathrm{s}$	性能/GFlops
1	2.0883	15.6911
2	1.9347	16.9372
4	1.8017	18.1868
8	1.8150	18.0536
16	1.8244	17.9606

性能分析

1. 不同参数的编译优化技术

• -00: 关闭所有优化

• -01: 在不影响编译速度的情况下,尽可能降低代码大小、缩短代码执行时间

- 具体优化技术包括:代码移动、强度拆减、公共子表达式消除、指令调度、循环优化等;

• -02: 编译时间变长, 尽可能提升运行速度

- 具体优化技术包括:内联函数、循环展开、代码对齐、变量重命名、死代码消除、复制传播等;

• -03: 执行所有 O2 优化,同时采取更进取的循环转换方法

- 具体优化技术包括: 折叠 if 语句, 无变化的条件分支移出循环计算再放回循环等;

• -fast: 采取最进取的方式,最大限度提升程序运行速度

2. 请简述任务一中循环展开带来的好处

• 循环展开可以减少分支预测失败的次数,增加了并发执行的可能性,同时可以尽量多的使用硬件计算单元的性能。