Assignment 9

Use the Crank-Nicolson method to approximate the solution to the following parabolic PDES:

(i)
$$u_{t} = \frac{1}{\Pi^{2}} u_{xx}$$
; $o < x < 1$, $o < t < 0.1$
 $u(o,t) = u(1,t) = o$; $o < t < 0.1$
 $u(mo) = cin \pi x$, $o < x < 1$.

Use $\Delta x = 0.1$, $\Delta t = 0.01$. Compare your results with the explicit scheme (done in assignment 6)

Using $0<\lambda=\frac{\sqrt{\Delta t}}{(\Delta n)^2} \le 1/2$. Also plot both solutions together. For enthiat scheme, solutions together. For enthiat scheme, treate a partion the domain [0,1] into treate a partion the domain [0,1] into solutions spaced cells, i.e., $\Delta n = 1/50$.

Solical south.

(ii) $u_{+} = 3u_{xx}$, o<x<T, o<t<o·4; u(o,t) = u(T,t) = 0, o<t<o·4; u(x,o) = sinx, o<x<T.

Use sinx = sinx, sinx = sinx,

Compare your results with the enpliant scheme with $\Delta n = \frac{TT}{50}$.

Use $0 < \lambda = \frac{x_{\Delta t}}{(\Delta n)^2} < 1/2$ to fin Δt .

(iii) $u_t = u_{nn}$, 0 < x < 1, 0 < t < 0.05; $u(0,t) = u(\pi,t) = 0$, 0 < t < 0.05; $u(\pi,t) = 0$, 0 < t < 0.05; $u(\pi,0) = \sin \pi x + \sin \pi x$, 0 < x < 1. Use $\Delta x = 0.2$ $\Delta \Delta t = 0.01$.

Again, compare the results with the anti-ait scheme with $\Delta n = 1/50 \text{ A}$ USE scheme with $\Delta n = 1/50 \text{ A}$ USE $0 < \lambda \le 1/2$ to fin Δt .

A Bruief Review of Crank-Nicolson] method is provided on pages 3 & 4. Parabolic PDES & the crank-Nicolson method.

ht = dhan

enflicit sohene is written as:

Or
$$u_i^{n+1} = u_i^n - \frac{x \cdot \delta t}{\delta n^2} \left(u_{i+1}^n - 2 u_i^n + u_{i+1}^n \right)$$

$$A = \frac{x \cdot \delta t}{\delta n^2}$$

0 <> < 1/2.

Let us replace RHS of @ as follows:

$$u_{in} = \frac{u_{in}^n + u_{in}^{n+1}}{2}, \quad u_i^n = \frac{u_i^n + u_i^{n+1}}{2}$$

$$\frac{(\lambda_{i}^{n+1} - \mu_{i}^{n})}{\Delta t} = \frac{\alpha}{2(\Delta n)^{2}} \left[(\mu_{i+1}^{n+1} - 2\mu_{i}^{n+1} + \mu_{i+1}^{n}) + (\mu_{i+1}^{n} - 2\mu_{i}^{n} + \mu_{i+1}^{n}) \right]$$

$$+ \lambda = \frac{\alpha \Delta t}{2(\Delta n)^{2}} \left[(\mu_{i+1}^{n+1} - 2\mu_{i}^{n+1} + \mu_{i+1}^{n}) + (\mu_{i+1}^{n} - 2\mu_{i}^{n} + \mu_{i+1}^{n}) \right]$$

m;

λ μη + 2 (1+λ) μη - λ μη μίτι $= \lambda u_{ii}^{n} + 2(1-\lambda) u_{i}^{n} + \lambda u_{ii}^{n}$ This method is called the crank-Nicolson In the matrin form, one can write $A u^{(nn)} = B u^{(n)}; n = 0,1,2,$ $u^{(n+1)} = \begin{bmatrix} u_1^{n+1} \\ u_2^{n+1} \\ u_{N+1} \end{bmatrix}$