CO2015

Exercise on Bipolar Junction Transistor (NPN)

BJT Operation Modes

- I_B = 0: Cut-off mode
- V_B is increased (higher than 0.7V), I_B is increased:

 - Amplifier mode (Active mode)
 - V_C is increased
- $V_C = V_{CC} V_{CE}$
 - Saturation mode
 - V_{CF} is small (0.2V)

BJT in Amplifier Mode

$$I_E = I_C + I_B$$

$$eta_{DC} = rac{I_C}{I_B}$$

$$\alpha_{DC} = \frac{I_C}{I_E}$$

DC Load on I-V Curve

Example

- Determine I_C(Sat)
- Determine **6**_{DC}
- I_B , I_C and V_{CE} at Q point

Answer

- IC (Sat) = 50 (mA)
- $\boldsymbol{\theta}_{DC}$ = 10mA/100muA = 100
- At Q-point:
 - IC = 25 (mA)
 - VCE = 5 (V)
 - IB = 0.25 (mA)

• Determine I_B , I_C , I_E , V_{BE} , V_{CE} and V_{CB} for the given circuit when $\beta_{DC} = 150$

$$I_{\rm B} = \frac{V_{\rm BB} - V_{\rm BE}}{R_{\rm B}} = \frac{5 \text{ V} - 0.7 \text{ V}}{10 \text{ k}\Omega} = 430 \,\mu\text{A}$$
 $I_{\rm C} = \beta_{\rm DC}I_{\rm B} = (150)(430 \,\mu\text{A}) = 64.5 \,\text{mA}$
 $I_{\rm E} = I_{\rm C} + I_{\rm B} = 64.5 \,\text{mA} + 430 \,\mu\text{A} = 64.9 \,\text{mA}$

$$V_{\text{CE}} = V_{\text{CC}} - I_{\text{C}}R_{\text{C}} = 10 \text{ V} - (64.5 \text{ mA})(100 \Omega) = 10 \text{ V} - 6.45 \text{ V} = 3.55 \text{ V}$$

 $V_{\text{CB}} = V_{\text{CE}} - V_{\text{BE}} = 3.55 \text{ V} - 0.7 \text{ V} = 2.85 \text{ V}$

 Find state of transistor (cut-off, amplifier or saturation) and its currents/voltages

Answer

$$\begin{split} i_C &= 1 \text{ mA} > 0 \quad : \quad \text{BJT is NOT in cut-off} \\ i_E &= 1.2 \text{ mA} \\ i_B &= i_E - i_C = 0.2 \text{ mA} \\ i_C / i_B &= 1/0.2 = 5 \quad < \beta_{min} \\ \text{BJT is in saturation:} \\ v_{CE} &= V_{sat} = 0.2 \text{ V} \\ v_{BE} &= V_{D0} = 0.7 \text{ V} \end{split}$$

- When a transistor is used as a switch, it is stable in which two distinct regions?
 - saturation and active
 - active and cutoff
 - saturation and cutoff
 - none of the above

- For a silicon transistor, when a base-emitter junction is forward-biased, it has a nominal voltage drop of
 - **0.7**
 - 0.3
 - **0.2**
 - V_{CC}

- A certain BJT has I_B = 167uA, I_C = 15mA, the amplifier DC factor is:
 - **15**
 - **167**
 - **90**
 - All are not correct

Exercise

Determine values on V1, V2, V3

$$R_{\rm IN(BASE)} = V_{\rm B}/I_{\rm B} = V_{\rm B}/(I_{\rm E}/\beta_{\rm DC})$$

$$V_{\text{TH}} = \left(\frac{R_2}{R_1 + R_2}\right) V_{\text{CC}} R_{\text{TH}} = \frac{R_1 R_2}{R_1 + R_2}$$

 Refer to the given figure. The most probable cause of trouble, if any, from these voltage measurements is

 Refer to the given figure. The most probable cause of trouble, if any, from these voltage measurements is

• Refer to this figure. If $V_{CE} = 0.2 \text{ V}$, $I_{C(sat)}$ is

• Refer to this figure. Determine the minimum value of I_B that will produce saturation ($V_{CE}(sat) = 0.2V$).

• Refer to this figure. The value of V_{BC} is

- Determine R_C, R_E
- $V_C = 5V$, $I_C = 2mA$
- **β**_{DC} = 100

- $V_{\rm B} = -1.5V$
- Calculate I_B, I_C, I_E

Midterm (60 mins – Closed Book)

- **28/03/2019**
- Multichoice + Written
- Chapter 1: Basic Electronic Components
 - Deterimine the resistor values (4-band colors, 5-band colors)
 - LEDs connectors (Serial + Parallel)
- Chapter 2: Diode
 - Diode Principles and Models
 - Applications using Diodes
- Chapter 3: BJT (npn)
 - Amplifier Coefficient, Applications
 - Cutoff, Saturation and Amplifier modes
 - Vbe = 0.7 (for default)