2nd stage analyses: Test heterogeneity in population trends and fluctuations

Prior structure 1:

Hierarchical models in a Bayesian framework with weakly informative (flat) priors

$$Pr(\mu) \sim N(0, 10^8)$$

 $Pr(\sigma^2) \sim Inverse Wishart (V = 0, nu = 0)$

Prior structure 2:

Hierarchical models in a Bayesian framework with weakly informative (parameter expanded) priors and a variance-covariance structure that allows the slopes of population trends and fluctuations to covary for each random effect.

$$Pr(\mu) \sim N(0, 10^8)$$

 $Pr(\sigma^2) \sim Inverse Wishart (V = 1, nu = 1)$

INPUT

GEOGRAPHIC PATTERNS

Population trend (μ), population fluctuations (σ^2) and observation error (τ^2) estimates for each population

QUESTIONS

How do vertebrate population trends and fluctuations vary across latitudes, realms and biomes?

MODELS

 $\mu \sim latitude$, random = species $\mu \sim 1 + realm$, random = species $\mu \sim 1 + biome$, random = species $\sigma^2 \sim latitude$, random = species $\sigma^2 \sim 1 + realm$, random = species $\sigma^2 \sim 1 + biome$, random = species

TAXONOMIC PATTERNS

Bird, amphibian and reptile phylogenies

QUESTIONS

How do vertebrate population trends and fluctuations vary across taxa and phylogenies?

MODELS

 $\mu \sim 1 + taxa$, random = species $\sigma^2 \sim 1 + taxa$, random = species $\mu \sim 1$, random = species + phylogeny $\sigma^2 \sim 1$, random = species + phylogeny _

Prior structure 2

RARITY PATTERNS

Bird and mammal geographic range, species' mean population size, species' habitat specificity

QUESTIONS

How do vertebrate population trends and fluctuations vary across rarity metrics?

MODELS

 $\mu \sim log(geographic range)$, random = species $\mu \sim log(mean population size)$, random = species $\mu \sim habitat specificity$, random = species $\sigma^2 \sim log(geographic range)$, random = species

 $\sigma^2 \sim \log(\text{mean population size})$, random = species

 σ^2 ~ habitat specificity, random = species

IUCN CONSERVATION STATUS AND TREATS

Species' IUCN conservation status and IUCN threats categories

QUESTIONS

How do vertebrate population trends and fluctuations vary across species' IUCN conservation status and type and number of IUCN threats?

 $\mu \sim 1 + Red List status, random = species$ $\mu \sim 1 + threat type, random = species$ $\mu \sim number of threats, random = species$ $\sigma^2 \sim 1 + Red List status, random = species$ $\sigma^2 \sim 1 + threat type, random = species$ $\sigma^2 \sim number of threats, random = species$

OUTPUT