Self-Supervised Learning

Q The Key Distinction

Aspect	Unsupervised Learning	Self-Supervised Learning
Labels	No labels at all	Still no human labels, but generates <i>pseudo-labels</i> from data
Goal	Discover structure in data	Learn representations useful for downstream tasks
Example s	Clustering, PCA, autoencoders	Contrastive learning, masked autoencoders, DINO, SimCLR
Tasks	Find patterns, groups, density	Solve a <i>pretext task</i> designed by us (e.g., match image views)

Intuition

- **Unsupervised** = "Let the model figure things out on its own"
 - No supervision of any kind
 - o Model learns latent structure or clusters
- **Self-supervised** = "We *create* a task for the model to learn from itself"
 - No human labels, but we invent artificial tasks
 - E.g., "Predict the missing patch," "Match two augmented views"

semi-supervised learning sits right between **supervised** and **unsupervised** learning. It's super practical and widely used when **labeled data is scarce**, but we have **tons of unlabeled data** (which is often the case in real-world applications).

Semi-supervised learning = using a small amount of labeled data + a large amount of unlabeled data to improve model performance.

- You start with some ground-truth labels (e.g., 10% of your data)
- Then you leverage unlabeled data to learn better representations or predictions
- This allows the model to **generalize better** without needing to label everything manually

It's a Mix Of:

Component Description

Supervised Learns from labeled data

Unsupervised Finds structure in unlabeled data

Semi-supervise Uses both to get the best of both

d worlds

Real-World Examples

Here are some semi-supervised learning techniques and real examples:

1. Pseudo-Labeling (a classic)

- Train a model on labeled data
- Use it to predict labels for unlabeled data
- Add high-confidence predictions as *pseudo-labels*
- Retrain with both real + pseudo-labeled data

Used in: classification, object detection, e.g. YOLOv5 semi-supervised

In **DINO**, all the augmented views (patches/crops) *do* come from the **same image** — so why doesn't the model just collapse to predicting the **same thing for everything**?

Let's unpack it step-by-step. This is one of the coolest ideas in modern self-supervised learning

The Collapse Problem

In self-supervised learning, collapse means:

The model outputs the same representation for every input, regardless of what it sees.

This can happen easily when the model is trained to match outputs of augmented views — like in DINO, SimCLR, BYOL — because there are **no negative pairs** to push things apart.

So the natural worry is:

👉 "If we only tell the model to make all views of an image look the same... won't it just output a constant vector?"

Why DINO Doesn't Collapse (Despite Only Using Positive Pairs)

DINO prevents collapse through a few smart design choices:

1. Momentum Teacher

- DINO has two networks: a student and a teacher
- The teacher is not trained by backprop. Instead, it's an EMA (Exponential Moving **Average)** of the student.
- So the teacher evolves slowly → provides a **moving target** that is stable but improves over time.
- Prevents the student from immediately matching itself (no shortcut)

2. Sharpening the Teacher Output

- The teacher's softmax output is **sharpened** (via low temperature $T \ll 1T \ll 1$)
- This forces it to give **confident**, **peaked distributions** over representations
- Helps the student learn discriminative (not uniform) representations
- Prevents the student from collapsing to uniform outputs

3. Multi-Crop Strategy

- The same image is augmented into 2 global crops + several local crops
- Global crops are used by both student and teacher
- Local crops are only used by the student
- The student must match its view to the teacher's view, even across scales and perspectives
- Teaches the student to build consistent and flexible representations

4. Centering the Teacher Output

- DINO centers the teacher's output across the batch
- This makes sure that no dimension dominates
- Helps keep the feature distribution balanced and stable
- ✓ Prevents collapse to a single vector or dimension

X Result

Even though DINO only sees **positive pairs**, it avoids collapse and learns:

- Clustered, semantically meaningful features
- Linearly separable embeddings (good for k-NN, image retrieval, etc.)
- No need for labels or contrastive negatives at all

Summary Table

Collapse Prevention Trick What It Does

Momentum Teacher (EMA) Stabilizes training, breaks feedback loop

Sharpened Teacher Output Prevents uniformity, encourages confidence

Centering Ensures diversity across dimensions

Multi-crop Augmentations Forces representation consistency across

scales/views