

	loui off exp octal
#	M- estimate + M Il tail
	Ptout Nace + M Confidence to to pujoul enpectation
	- if Nau = Ntail = 0 => degenerates to pulou expectation if Nau & Ntail -> large => violative frequency
	Toss No. 1 2 3 4 5
	Relative freq. 1.0 1.0 0.67 0.83 0.60
0.4	m-estimate 0.66 0.500 0.501 0.500 0.501 0.500 0.501 0.500 0.
	M=2
one:	purous expectation helps us to emprove probability estimates in
	domains nuith Pusufficient no, of observations,
W	P(tail) = 0.75

WOOD TOO

3/2

345

	105	$P_{los}(at_1) \cdot P_{los}(at_2) \cdot P_{los}(at_3)$		
	Tneg	13/ (22)		
井	Gaussian	neg (atz). Pneg (atz) Date 11/2/19		
	Ex:	at, at at at a		
	ex,	3.1		
	en2	$9.2 6.2 7.6 +ve$ $P(n) = k \left(\frac{m - (n-4)^2}{5!}\right)$		
-	en,	7.8 1.3 0.5		
+	Сяч	$2 \cdot 3 \cdot 5 \cdot 2 \cdot 2 \cdot 4 $ $\times = \frac{1}{\sqrt{2\pi6^2 \sqrt{2\pi}}} \frac{1}{\sqrt{2\pi}}$		
-	eng	6.4 3.2 4.3 -ve		
-	е и 6	1.3 5.8 3.3 $\chi = (9, 2.5, 3.2)$		
	Plaki)	$= \frac{1}{\sqrt{(27)^3}} \left[e^{-0.5(at_1 - 3.1)^2} + e^{-0.5(at_1 - 4.2)^2 - 0.5(bt_1 - 3.1)} + e^{-0.5(at_1 - 4.2)^2 - 0.5(bt_1 - 3.1)} \right]$	6	
	Prog(ati)	$= 0.03 \left[\frac{21.113}{13.974} + \left[2.76 \times 10^{8} + 992.9 \times 10^{8} \right] \right] $ $= 1 \left[\frac{-0.5 \left(at_{1} - 2.3 \right)^{2} - 0.5 \left(at_{1} - 6.4 \right)^{2} - 0.5 \left(at_{1} - 1.3 \right)^{2} \right] $ $+ e + e$		
- Company	3.6	$\sqrt{(2\pi)^3}$	_	
		$= 0.068 \left[1.787 \times 40^{-10} + 20.034 + 4.23 \times 40^{-13} \right]$ = 0.002 }4		
	1			
	Prostatz,	$0 = \frac{1}{\sqrt{(2\pi)^3}} \left[e^{-0.5(at_2 - 2.1)^2 - 0.5(at_2 - 6.2)^2} + e^{-0.5(at_2 - 6.2)^2} + e^{-0.5(at_2 - 6.2)^2} \right]$		
	Preg (at,	$= \frac{0.088}{1 - 0.5(at_2 - 5.2)^2 - 0.5(at_2 - 3.2)^2} + e + e^{-0.5(at_2 - 5.8)^2}$		
		$= 0.063 \left[0.0261 + 0.782 + 0.0043 \right] $		
		2 0.0512		
	P(atz)	$= 0.063 [e^{-0.5(at_3-2.3)} -0.5(at_3-2.8) -0.5(at_3-2.8) + e^{-0.5(at_3-2.8)} + e^{-0.5(at_3-2.8)} = 0.04366$	1	
$\frac{e^{-0.5(al_3-2.4)} + e^{-0.8(al_3-4.3)} - 0.5(al_3-3.3)}{+e^{-0.8(al_3-3.3)}} = 0.063 \left(e^{-0.5(al_3-2.4)} + e^{-0.8(al_3-4.3)} - 0.5(al_3-3.3) \right)$				
	has (at3)	= 0.063 Le +e		
		= 0.483(6.726+0.396+0.995)		

