Institut de Financement du Développement du Maghreb Arabe

Concours de Recrutement de la 39ème Promotion - Banque Techniques Quantitatives

Juillet 2019

Durée : une heure et demie

Cette épreuve comporte deux pages Aucun document n'est autorisé.

Exercice 1: (5 points: 1+1+1+2)

On considère deux variables aléatoires X_1 et X_2 centrées $(E(X_1) = E(X_2) = 0)$ ayant des écarts types σ_1 et σ_2 . On suppose que ces deux variables sont indépendantes entre elles tout en ayant chacune un coefficient de corrélation linéaire notées respectivement ρ_1 et ρ_2 avec une troisième variable Y

- 1- Exprimer la variance de la somme $X_1 + X_2$ en fonction de σ_1 et de σ_2
- 2- Comparer l'écart type de la somme $X_1 + X_2$ à la somme de σ_1 et de σ_2
- 3- Exprimer la covariance entre $X_1 + X_2$ et Y en fonction des covariances de chacune des X_i avec Y pour i = 1 et 2
- 4- En déduire l'expression de ρ le coefficient de corrélation linéaire de la somme $X_1 + X_2$ avec la variable Y en fonction de σ_1 de σ_2 de ρ_1 et de ρ_2

Exercice 2: (5 points: 1.5+1.5+ 1 +1)

On note X le vecteur colonne ayant pour composantes X_1 et X_2 deux variables normales centrées réduites indépendantes $X=\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$. On pose $U=\begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$ le vecteur défini par

$$U = AX$$
 où A désigne la matrice $A = \begin{bmatrix} \frac{1}{3} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{4} \end{bmatrix}$

- 1- Vérifier que $A^2 = \frac{7}{12}A + \frac{1}{6}I$ où I est la matrice identité.
- 2- En déduire que l'inverse de la matrice A est égale à $6 A \frac{7}{2}I$
- 3-Démontrer que la matrice de variances covariances du vecteur U est égale à \mathbb{A}^2
 - 4- Déterminer les densités de probabilité de U_1 et de U_2

Exercice 3: (10 points: 1.5+1.5+1+1+1.5+1.5+1+1)

Les deux questions de cet exercice sont indépendantes

On considère le modèle reliant la consommation y_t à son niveau antérieur y_{t-1} et au revenu x_t sous la forme :

$$y_t = a y_{t-1} + b x_t + c + \varepsilon_t$$

où ε_t suit une loi normale centrée avec $V(\varepsilon_t) = \sigma^2$ et ε_t indépendants pour

$$t = 1, 2, ..., T$$

On admet que les variances empiriques de x_t et y_t sont égales à l'unité : $\frac{1}{T}\sum_{t=1}^T (x_t - \bar{x})^2 = \frac{1}{T}\sum_{t=1}^T (y_t - \bar{y})^2 = 1 \quad \text{où } \bar{x} \text{ et } \bar{y} \text{ sont respectivement les moyennes empiriques de } x \text{ et de } y$

Question1: on suppose dans cette question que a = 0

- **1-i** Prouver que l'estimation de b par les moindres carrés ordinaires est égale au coefficient de corrélation linéaire entre x_t et y_t noté ρ
 - **1-ii** Prouver que la somme des carrés des résidus est égale à: $T(1-\rho^2)$
- **1-iii** En déduire en fonction de ρ la valeur du coefficient de détermination de la régression
 - **1-iv** Calculer la variance de *b*. Etudier sa significativité statistique.

Question 2 on suppose dans cette question que a est différent de zéro

- **2- i-** Interpréter économiquement la relation en insistant sur l'intérêt de la présence de la variable y_{t-1} dans la régression
- **2-ii** L'estimation par les moindres carrés ordinaires a fourni les résultats numériques suivants :

$$\hat{a} = 0.4$$
 $\hat{b} = 0.9$ $\hat{c} = 1.3$

et les variances estimées suivantes:

Variance(\hat{a}) = 0.01 Variance(\hat{b}) = 0.04 Variance(\hat{c}) = 0.09

Etudier la significativité statistique des paramètres estimés.

- **2-iii** Utiliser ces résultats pour évaluer les impacts de court et de long termes sur la consommation suite à une augmentation du revenu
- **2-iv** Sans faire de calcul, expliquer comment on peut évaluer le retard moyen entre les variations du revenu et celles de la consommation ?

Corrigé Exercice 1 (5 points: 1+1+1+1+1)

1-
$$V(X_1 + X_2) = V(X_1) + V(X_2) = \sigma_1^2 + \sigma_2^2$$

2- L'écart type de la somme est $\sigma_{X_1+X_2}$ qui est inférieur à $\sigma_1+\sigma_2$ puisque en prenant les carrés on trouve :

$$\sigma_{X_1+X_2}^2 = \sigma_1^2 + \sigma_2^2 \le (\sigma_1 + \sigma_2)^2 = \sigma_1^2 + \sigma_2^2 + 2\sigma_1\sigma_2$$

ce qui permet d'écrire : $\sigma_{X_1+X_2} \leq \sigma_1 + \sigma_2$

3- Nous avons $Cov(Y, X_1 + X_2) = EY(X_1 + X_2) = E(YX_1) + E(YX_2)$ du fait que $E(X_1 + X_2) = E(X_1) = E(X_2) = 0$

On obtient
$$Cov(Y, X_1 + X_2) = Cov(Y, X_1) + Cov(Y, X_2)$$

4- L'égalité précédente s'écrit en notant σ_Y l'écart type de Y

$$\rho \, \sigma_Y \, \sigma_{X_1 + X_2} = \rho_1 \sigma_Y \, \sigma_1 \, + \rho_2 \sigma_Y \, \sigma_2$$

ce qui donne aprés simplification :

$$\rho = \frac{\sigma_1}{\sigma_{X_1 + X_2}} \rho_1 + \frac{\sigma_2}{\sigma_{X_1 + X_2}} \rho_2$$

Corrigé Exercice 2:

1- Nous avons

$$A^{2} = A.A = \begin{bmatrix} \frac{1}{3} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{9} + \frac{1}{4} & \frac{1}{6} + \frac{1}{8} \\ \frac{1}{6} + \frac{1}{8} & \frac{1}{4} + \frac{1}{16} \end{bmatrix} = \begin{bmatrix} \frac{13}{36} & \frac{7}{24} \\ \frac{7}{24} & \frac{5}{16} \end{bmatrix}$$

D'autre part $\frac{7}{12}A + \frac{1}{6}I$

$$= \frac{7}{12} \begin{bmatrix} \frac{1}{3} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{4} \end{bmatrix} + \frac{1}{6} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{7}{36} & \frac{7}{24} \\ \frac{7}{24} & \frac{7}{48} \end{bmatrix} + \begin{bmatrix} \frac{1}{6} & 0 \\ 0 & \frac{1}{6} \end{bmatrix} = \begin{bmatrix} \frac{13}{36} & \frac{7}{24} \\ \frac{7}{24} & \frac{5}{16} \end{bmatrix}$$

2 On a $-A^2 - \frac{7}{12}A = \frac{1}{6}I$ ou encre $A(6A - \frac{7}{2}) = I$ ce qui entraine que

$$A^{-1} = 6 A - \frac{7}{2} I$$

$$3-V(U) = V(AX) = AV(X)A^{t}$$

avec
$$V(X) = I$$
 et $A' = A$

Ce qui donne $V(U) = A^2$

4-Densité d'une loi normale centrée et de variance $\frac{13}{36}$:ce qui s'écrit

$$f(u_1) = \frac{1}{\sqrt{2\pi} \sqrt{\frac{13}{36}}} \exp{-\frac{1}{2(\frac{13}{36})}} u_1^2$$

De même pour u2

 $5-Cov(u_1,u_2)=\frac{7}{24}$ différente de zéro ce qui entraine que u1 et u2 sont dépendants

Corrigé Exercice 3 Question1

1-i Nous savons que
$$\hat{b} = \frac{\sum (x_t - \bar{x})(y_t - \bar{y})}{\sum (x_t - \bar{x})^2} = \frac{\sum (x_t - \bar{x})(y_t - \bar{y})}{\sqrt{\sum (x_t - \bar{x})^2} \sqrt{\sum (y_t - \bar{y})^2}}$$

du fait de l'égalité des variances empiriques de x_t et y_t

De ce fait, $\hat{b} = \hat{\rho}$ qui est le coefficient de corrélation linéaire entre x_t et y_t

1-ii- L'équation de la variance s'écrit :
$$\sum_{t=1}^{T} (y_t - \bar{y})^2 = \sum_{t=1}^{T} (y_t - \bar{y})^2 =$$

$$y_t - \widehat{y_t})^2 + \sum_{t=1}^{T} (\widehat{y_t} - \overline{\widehat{y}})^2 = \sum_{t=1}^{T} \widehat{\varepsilon_t}^2 + \sum_{t=1}^{T} (\widehat{y_t} - \overline{\widehat{y}})^2$$

avec $\overline{\hat{y}} = \overline{y}$ d'une part et $\widehat{y_t} = \widehat{\rho} x_t + \widehat{c}$, d'autre part, ce qui donne $\widehat{y_t} - \overline{\widehat{y}} = \widehat{\rho} (x_t - \overline{x})$ et donc : $\sum_{t=1}^{T} (\widehat{y_t} - \overline{\widehat{y}})^2 = \rho^2 \sum_{t=1}^{T} (x_t - \overline{x})^2$

La somme des carrés des résidus est alors : $\sum_{t=1}^{T} \widehat{\varepsilon_t}^2 = (1 - \rho^2)$

$$\sum\nolimits_{t = 1}^T {({x_t} - \bar x)^2} = {(1 - {\rho ^2})T}$$

1-iii Le coefficient de détermination de la régression R^2 est défini par

$$R^{2} = 1 - \frac{\sum_{t=1}^{T} \widehat{\varepsilon}_{t}^{2}}{\sum_{t=1}^{T} (y_{t} - \bar{y})^{2}} = 1 - \frac{(1 - \rho^{2})T}{T} = \rho^{2}$$

$$\textbf{1-iv} \ \ V(\widehat{b}) = \frac{\sigma^2}{\sum_{t=1}^T (x_t - \bar{x})^2} \ \text{qui est estimée par } \frac{\frac{\sum_{t=1}^T \widehat{\epsilon_t}^2}{T-2}}{\sum_{t=1}^T (x_t - \bar{x})^2} = \frac{1 - \rho^2}{T-2}$$
 La statistique de Student de b est
$$\frac{\rho}{\sqrt{\frac{1-\rho^2}{T-2}}}$$

Question2

2-i Le modèle est dynamique avec la présence d'une variable décalée et une variable exogène. De ce fait, y dépend de x, de x(-1) de x(-2)... La consommation dépend du revenu actuel ainsi que de ses valeurs passées

2-ii On calcule les T de Student des trois paramètres en prenant le rapport des estimations avec leurs écarts types, on trouve :

Pour a:
$$\frac{0.4}{\sqrt{0.01}} = \frac{0.4}{0.1} = 4$$

Pour b
$$\frac{0.9}{\sqrt{0.04}} = \frac{0.9}{0.2} = 4.5$$

Pour c
$$\frac{1.3}{\sqrt{0.09}} = \frac{1.3}{0.3} = 4.33$$

Les trois valeurs sont nettement supérieurs à deux, les trois coefficients sont significatifs à 95 %

2-iii b=0.9 est l'impact de court terme du revenu sur la consommation alors l'impact de long terme est égal à $\frac{b}{1-a} = \frac{0.9}{1-0.4} = 1.8$

2-iv Pour calculer le retard moyen entre le revenu et la consommation, on écrit y sous forme de fonction à retard échelonnées, de x, x(-1), x(-2) avec des coefficients a0, a1, a2,...le retard moyen est alors défini par $\frac{\sum iai}{\sum ai}$