Firm Cyclicality and Financial Frictions

Alex Clymo

Filip Rozsypal

3 July 2023 CEF, Nice

The views presented in this paper are our own and do not represent the views of Danmarks Nationalbank

Financial frictions important in macro models

Gertler and Gilchrist (1994); Khan and Thomas (2013); Bernanke and Gertler (1989); Kiyotaki and Moore (1997); Bernanke et al. (1999); Jermann and Quadrini (2012)

Financial frictions important in macro models

Gertler and Gilchrist (1994); Khan and Thomas (2013); Bernanke and Gertler (1989); Kiyotaki and Moore (1997); Bernanke et al. (1999); Jermann and Quadrini (2012)

... but are hard to measure in data

Chodorow-Reich (2014)

Financial frictions important in macro models

Gertler and Gilchrist (1994); Khan and Thomas (2013); Bernanke and Gertler (1989); Kiyotaki and Moore (1997); Bernanke et al. (1999); Jermann and Quadrini (2012)

... but are hard to measure in data

Chodorow-Reich (2014)

Idea:

financial frictions amplify responses to shocks

Financial frictions important in macro models

Gertler and Gilchrist (1994); Khan and Thomas (2013); Bernanke and Gertler (1989); Kiyotaki and Moore (1997); Bernanke et al. (1999); Jermann and Quadrini (2012)

... but are hard to measure in data

Chodorow-Reich (2014)

Idea:

financial frictions differences amplify responses + in reaction to shocks to a shock

Financial frictions important in macro models

Gertler and Gilchrist (1994); Khan and Thomas (2013); Bernanke and Gertler (1989); Kiyotaki and Moore (1997); Bernanke et al. (1999); Jermann and Quadrini (2012)

... but are hard to measure in data

Chodorow-Reich (2014)

Idea:

financial frictions differences amplify responses + in reaction to shocks to a shock

firms' reaction to shocks informative about financial constraints

Financial frictions important in macro models

Gertler and Gilchrist (1994); Khan and Thomas (2013); Bernanke and Gertler (1989); Kiyotaki and Moore (1997); Bernanke et al. (1999); Jermann and Quadrini (2012)

... but are hard to measure in data

Chodorow-Reich (2014)

Idea:

financial frictions differences amplify responses + in reaction to a shock

firms' reaction to shocks informative about financial constraints

Financial frictions important in macro models

Gertler and Gilchrist (1994); Khan and Thomas (2013); Bernanke and Gertler (1989); Kiyotaki and Moore (1997); Bernanke et al. (1999); Jermann and Quadrini (2012)

... but are hard to measure in data

Chodorow-Reich (2014)

Idea:

firms' reaction to shocks informative about financial constraints

Financial frictions important in macro models

Gertler and Gilchrist (1994); Khan and Thomas (2013); Bernanke and Gertler (1989); Kiyotaki and Moore (1997); Bernanke et al. (1999); Jermann and Quadrini (2012)

... but are hard to measure in data

Chodorow-Reich (2014)

Idea:

firms' cyclicality informative about financial constraints

Financial frictions important in macro models

Gertler and Gilchrist (1994); Khan and Thomas (2013); Bernanke and Gertler (1989); Kiyotaki and Moore (1997); Bernanke et al. (1999); Jermann and Quadrini (2012)

... but are hard to measure in data

Chodorow-Reich (2014)

Idea:

This paper:

Financial frictions important in macro models

Gertler and Gilchrist (1994); Khan and Thomas (2013); Bernanke and Gertler (1989); Kiyotaki and Moore (1997); Bernanke et al. (1999); Jermann and Quadrini (2012)

... but are hard to measure in data

Chodorow-Reich (2014)

Idea:

This paper:

Measure cyclicality(Age vs Size) →not consistent with col constraint

Financial frictions important in macro models

Gertler and Gilchrist (1994); Khan and Thomas (2013); Bernanke and Gertler (1989); Kiyotaki and Moore (1997); Bernanke et al. (1999); Jermann and Quadrini (2012)

... but are hard to measure in data

Chodorow-Reich (2014)

Idea:

This paper:

Measure cyclicality(Age vs Size) \rightarrow not consistent with col constraint \rightarrow solution: het. returns to scale

Financial frictions important in macro models

Gertler and Gilchrist (1994); Khan and Thomas (2013); Bernanke and Gertler (1989); Kiyotaki and Moore (1997); Bernanke et al. (1999); Jermann and Quadrini (2012)

... but are hard to measure in data

Chodorow-Reich (2014)

Idea:

firms' cyclicality informative about financial constraints

This paper:

Measure cyclicality(Age vs Size) \rightarrow not consistent with col constraint \rightarrow solution: het. returns to scale \rightarrow effect on aggretage response to different shocks/policies

Empirical analysis:

Empirical analysis:

- 1 Capture the differences across joint distribution over Size and Age
 - levels, growth rates, cyclicality
 - both real (employment, sales, ...) and financial (debt, assets, ...) variables
 - Size x Age interaction matters, not consistent with colateral constrains alone

Empirical analysis:

- 1 Capture the differences across joint distribution over Size and Age
 - levels, growth rates, cyclicality
 - both real (employment, sales, ...) and financial (debt, assets, ...) variables
 - Size x Age interaction matters, not consistent with colateral constrains alone
- Effects of leverage on growth rate and cyclicality
 - document aze x size distribution of leverage
 - effect on cyclicality both alone and additional to Size x Age
 - only young AND small grow their leverage
 - more leveraged more cyclical, but beyond the effect of age or size

Empirical analysis:

- 1 Capture the differences across joint distribution over Size and Age
 - levels, growth rates, cyclicality
 - both real (employment, sales, ...) and financial (debt, assets, ...) variables
 - Size x Age interaction matters, not consistent with colateral constrains alone
- 2 Effects of leverage on growth rate and cyclicality
 - document aze x size distribution of leverage
 - effect on cyclicality both alone and additional to Size x Age
 - only young AND small grow their leverage
 - more leveraged more cyclical, but beyond the effect of age or size

- financial frictions + decreasing returns to scale + (exo) entry/exit
 - ⇒ calibrated to match the size and age moments from the data

Empirical analysis:

- 1 Capture the differences across joint distribution over Size and Age
 - levels, growth rates, cyclicality
 - both real (employment, sales, ...) and financial (debt, assets, ...) variables
 - Size x Age interaction matters, not consistent with colateral constrains alone
- 2 Effects of leverage on growth rate and cyclicality
 - document aze x size distribution of leverage
 - effect on cyclicality both alone and additional to Size x Age
 - only young AND small grow their leverage
 - more leveraged more cyclical, but beyond the effect of age or size

- financial frictions + decreasing returns to scale + (exo) entry/exit
 calibrated to match the size and age moments from the data
- findings:
 - 1 Collateral contraint alone is not able to match the cyclicality by Size and Age but adding heterogeneous returns to scale fixes the problem

Empirical analysis:

- 1 Capture the differences across joint distribution over Size and Age
 - levels, growth rates, cyclicality
 - both real (employment, sales, ...) and financial (debt, assets, ...) variables
 - Size x Age interaction matters, not consistent with colateral constrains alone
- 2 Effects of leverage on growth rate and cyclicality
 - document aze x size distribution of leverage
 - effect on cyclicality both alone and additional to Size x Age
 - only young AND small grow their leverage
 - more leveraged more cyclical, but beyond the effect of age or size
- 3 Heterogeneity in production function by size
 - production function estimation within and across sectors
 - smaller firms seems to have smaller returns to scale

- financial frictions + decreasing returns to scale + (exo) entry/exit
 calibrated to match the size and age moments from the data
- findings:
 - 1 Collateral contraint alone is not able to match the cyclicality by Size and Age but adding heterogeneous returns to scale fixes the problem

Empirical analysis:

- 1 Capture the differences across joint distribution over Size and Age
 - levels, growth rates, cyclicality
 - both real (employment, sales, ...) and financial (debt, assets, ...) variables
 - Size x Age interaction matters, not consistent with colateral constrains alone
- 2 Effects of leverage on growth rate and cyclicality
 - document aze x size distribution of leverage
 - effect on cyclicality both alone and additional to Size x Age
 - only young AND small grow their leverage
 - more leveraged more cyclical, but beyond the effect of age or size
- 3 Heterogeneity in production function by size
 - production function estimation within and across sectors
 - smaller firms seems to have smaller returns to scale

- financial frictions + decreasing returns to scale + (exo) entry/exit
 calibrated to match the size and age moments from the data
- findings:
 - 1 Collateral contraint alone is not able to match the cyclicality by Size and Age but adding heterogeneous returns to scale fixes the problem
 - 2 Effectivness of policies: wage vs credit subsidy

Empirical analysis:

- Capture the differences across joint distribution over Size and Age
 - levels, growth rates, cyclicality
 - both real (employment, sales, ...) and financial (debt, assets, ...) variables
 - Size x Age interaction matters, not consistent with colateral constrains alone
- 2 Effects of leverage on growth rate and cyclicality
 - document aze x size distribution of leverage
 - effect on cyclicality both alone and additional to Size x Age
 - only young AND small grow their leverage
 - more leveraged more cyclical, but beyond the effect of age or size
- 3 Heterogeneity in production function by size
 - production function estimation within and across sectors
 - smaller firms seems to have smaller returns to scale

- financial frictions + decreasing returns to scale + (exo) entry/exit
 ⇒ calibrated to match the size and age moments from the data
- findings:
 - 1 Collateral contraint alone is not able to match the cyclicality by Size and Age but adding helerogeneous returns to scale fixes the problem
 - 2 Effectivness of policies: wage vs credit subsidy

(Partial) literature review

Empirics: Cyclicality of firms by size and/or age

- Gertler and Gilchrist (1994); Moscarini and Postel-Vinay (2012); Fort et al. (2013); Crouzet and Mehrotra (2020); Gavazza et al. (2018) ...
- Finance: Covas and Haan (2011); Chodorow-Reich (2014); Cloyne et al. (2019); Begenau and Salomao (2018); Crouzet and Mehrotra (2020), ...
- Our contributions:
 - (i) Registry data ⇒ very young and all sizes, firm-level finance vars
 - (ii) Cyclicalities by joint age-size for both real and financial variables

• Empirics: Firm age/size dynamics over the lifecycle

- Haltiwanger et al. (2013); Dinlersoz et al. (2018); Sterk et al. (2021), ...
- Our contribution: Financial averages over lifecycle by joint age-size

Models: Heterogeneous firm models with financial frictions

- Cooley and Quadrini (2001); Khan and Thomas (2013); Ottonello and Winberry (2020), ...
- Our contribution: Het-firm business cycle model calibrated to firm age and size distributions, finance frictions vs returs to scale heterogeneity

Data

- Administrative micro-level datasets, 2001-2019
- Tax information from SKAT + survey by Statistics Denmark
- 90,000 firms per year, cca 2M firm-year observations
- Variables:
 - employment (both headcount and FTE), sales, value added,...
 - debt, assets, equity
- Restrictions:
 - only private firms
 - non-finance sectors
 - max employment > 2
- All firm sizes
- All ages

Age x Size Firm shares

Estimating cyclicality

$$g_{i,t}^{X} = \sum_{j} \sum_{k} \left(\alpha_{j,k} + \frac{\beta_{j,k}}{\beta_{j,k}} g_{t}^{GDP} \right) \mathbb{1}_{i \in I_{j}} \mathbb{1}_{i \in A_{k}} + \sum_{l} \left(\gamma_{l} + \delta_{l} g_{t}^{GDP} \right) \mathbb{1}_{i \in S_{l}} + \varepsilon_{i,t}$$

- g^X growth rate of variable of interest
- $\mathbb{1}_{i \in I_i}, \mathbb{1}_{i \in A_k}, \mathbb{1}_{I \in S_l}$: size, age and sectoral dummies
- $\beta_{j,k}$ "cyclicality" of X among firms of size j and age k
- controlling for sectoral differences in level and cyclicality of g^X
- new: interaction of size and age

$$\sum_{j} \sum_{k} \left(\alpha_{j,k} + \frac{\beta_{j,k}}{\beta_{l}} g_{t}^{GDP} \right) \mathbb{1}_{i \in I_{j}} \mathbb{1}_{i \in A_{k}}$$

$$\sum_{i} \sum_{k} \left(\alpha_{j,k} + \frac{\beta_{j,k}}{\beta_{j}} g_{t}^{GDP} \right) \mathbb{1}_{i \in I_{j}} \mathbb{1}_{i \in A_{k}} \to \sum_{i} \left(\alpha_{j} + \frac{\beta_{j}}{\beta_{t}} g_{t}^{GDP} \right) \mathbb{1}_{i \in I_{j}}$$

Crouzet and Mehrotra (2020)

7/18

$$\sum_{i} \sum_{k} \left(\alpha_{j,k} + \frac{\beta_{j,k}}{\beta_{j,k}} g_{t}^{GDP} \right) \mathbb{1}_{i \in I_{j}} \mathbb{1}_{i \in A_{k}} \to \sum_{i} \left(\alpha_{j} + \frac{\beta_{j}}{\beta_{i}} g_{t}^{GDP} \right) \mathbb{1}_{i \in I_{j}}$$

Crouzet and Mehrotra (2020)

7/18

$$\textstyle \sum_{j} \sum_{k} \left(\alpha_{j,k} + \frac{\beta_{j,k}}{\beta_t} g_t^{GDP}\right) \mathbb{1}_{i \in I_j} \mathbb{1}_{i \in A_k}$$

No interaction → marginal effect of age the same in every size group

- No interaction → marginal effect of age the same in every size group
- Younger and Larger firms more cyclica

$$\sum_{j} \sum_{k} \left(\alpha_{j,k} + \frac{\beta_{j,k}}{\beta_{t}^{GDP}} \right) \mathbb{1}_{i \in I_{j}} \mathbb{1}_{i \in A_{k}}$$

$$\sum_{j} \sum_{k} \left(\alpha_{j,k} + \frac{\beta_{j,k}}{\beta_{t}^{GDP}} \right) \mathbb{1}_{i \in I_{j}} \mathbb{1}_{i \in A_{k}}$$

• Entrants: higher cyclicality over all, falls with size

$$\sum_{j} \sum_{k} \left(\alpha_{j,k} + \frac{\beta_{j,k}}{\beta_t} g_t^{GDP} \right) \mathbb{1}_{i \in I_j} \mathbb{1}_{i \in A_k}$$

- Entrants: higher cyclicality over all, falls with size
- Everybody else: increases with size

$$\sum_{j} \sum_{k} \left(\alpha_{j,k} + \frac{\beta_{j,k}}{\beta_t} g_t^{GDP} \right) \mathbb{1}_{i \in I_j} \mathbb{1}_{i \in A_k}$$

- Entrants: higher cyclicality over all, falls with size
- Everybody else: increases with size
- ⇒ large firms are much more alike than small firms

Empirical results interpretation

- 1 Cyclicality of sales, employment, debt and assets
- 2 Document the size x age heterogeneity in the distribution of levels and growth rates of variables of interest
- 3 Effects of leverage on cyclicality
- A Returns to scale estimation

Empirical results interpretation

- 1 Cyclicality of sales, employment, debt and assets
- 2 Document the size x age heterogeneity in the distribution of levels and growth rates of variables of interest
- 3 Effects of leverage on cyclicality
- A Returns to scale estimation

Our interpretation: different forces operate along size and age

- cyclical worsening of financing hits young firms particularly hard
- large firms more exposed to aggregate business cycle

Model overview

Khan and Thomas (2013) to matching Age x Size firm distribution

- Firms produce using labour and rented capital
- Borrowing subject to collateral constraint firms postpone dividends to accumulate net worth
- Decreasing returns to scale (⇒finite optimal firm size)
- Calibration: firm types
 - finite number of productivity types
 - productivity penalty for entrants
 - superstar firms to match the very right tail
 - + heterogeneity in returns to scale and starting networth

Model experiments

- 1 Simple steady-state focused model does not match the data "Steady-state calibration"
 - setting:
 - no heterogeneity in rts
 - finding: no combination of MIT shocks to colateral constraint, interest rate and tfp can replicate the cyclicality results from the data calibration results

Model experiments

- Simple steady-state focused model does not match the data "Steady-state calibration"
 - setting:
 - no heterogeneity in rts
 - finding: no combination of MIT shocks to colateral constraint, interest rate and tfp can replicate the cyclicality results from the data calibration results
- 2 Combination of heterogeneous rts + entry net worth matches the empirical moments well "Cyclical calibration"

Model experiments

- Simple steady-state focused model does not match the data "Steady-state calibration"
 - setting:
 - · no heterogeneity in rts
 - finding: no combination of MIT shocks to colateral constraint, interest rate and tfp can replicate the
 cyclicality results from the data
- 2 Combination of heterogeneous rts + entry net worth matches the empirical moments well "Cyclical calibration" ▶ results
- 3 Policy experiments:
 - labor subsidy
 - debt relief

Model results

Cyclical response in the "steady state" calibration

- · Exercise: consider all possible shock that can hit firms and estimate the cyclicality along irf
- No individual shock (or combination) can generate positive gradient in cyclicality wrt size

Model results

Cyclical response in the "cyclical" calibration

- Heterogeneous rts generates positive gradient wrt size! intuition: $y = zk^{\alpha} \Rightarrow k^* = (\alpha z/r)^{\frac{1}{1-\alpha}} \Rightarrow \frac{\partial \log k}{\partial \log z} = \frac{1}{1-\alpha} > 0$
- Heterogenous starting net worth needed to shorten convergence to optimal size

Labor subsidy

• SS calibration delivers slighly amplified aggregate response

Labor subsidy

- SS calibration delivers slighly amplified aggregate response
- Who reacts?
 - SS calibration: old firms react more, regardless of size
 - cyclical calibration: large firms react more, regardless of age

Why? Large entrants less constrained in cyclical calibration

Labor subsidy

- SS calibration delivers slighly amplified aggregate response
- Who reacts?
 - SS calibration: old firms react more, regardless of size
 - cyclical calibration: large firms react more, regardless of age

Why? Large entrants less constrained in cyclical calibration

Large firms responding more ⇒ larger aggregate response

Debt relief

• SS calibration much more powerfull

Debt relief

- SS calibration much more powerfull
- Why? Debt relief helps only constrained firms young, large not constrained in cyclical calibration

Conclusion

- 1 Empirics: Size is not a perfect proxy for age and vice versa
 - Size gradient of cyclicality depends on age (youngest↓, others↑)
 - in terms of cyclicality, large firms are more alike than small firms

2 Model

- financial frictions make young firms highly responsive to shocks
- but firms grow out of financial constraint relatively fast → second mechanism is needed to get the
 cyclicality by size right
 - entrants: positive corelation of starting net-worth with productivity generates negative cyclicality gradient wrt size
 - older firms: heterogeneous returns to scale generate positive cyclicality gradient with respect to size
- 3 Policy implications
 - who responds drives the aggregate reaction
 - → capturing the behaviour of young-large firms particularly important

Thank you!

Alex Clymo

a.clymo@essex.ac.uk

Filip Rozsypal

firo@nationalbanken.dk

Literature

Andersen, S. G. and Rozsypal, F. (2021). What can old firms tell us about the effect of age on firm size. working paper.

Begenau, J. and Salomao, J. (2018). Firm Financing over the Business Cycle. The Review of Financial Studies, 32(4):1235-1274.

Bernanke, B. and Gertler, M. (1989). Agency Costs, Net Worth, and Business Fluctuations. American Economic Review, 79(1):14-31.

Bernanke, B., Gertler, M., and Gilchrist, S. (1999). The financial accelerator in a quantitative business cycle framework. In Taylor, J. B. and Woodford, M., editors, *Handbook of Macroeconomics*, volume 1, Part C, chapter 21, pages 1341–1393. Elsevier, 1 edition.

Chodorow-Reich, G. (2014). The employment effects of credit market disruptions: Firm-level evidence from the 2008-09 financial crisis. Quarterly Journal of Economics, 129(1):1–59. Lead article.

Cloyne, J., Ferreira, C., Froemel, M., and Surico, P. (2019). Monetary policy, corporate finance and investment. Working Papers 1911, National Bureau of Economic Research.

Cooley, T. F. and Quadrini, V. (2001), Financial markets and firm dynamics, American Economic Review, 91(5):1286-1310,

Covas, F. and Haan, W. J. D. (2011). The Cyclical Behavior of Debt and Equity Finance. American Economic Review, 101(2):877-899.

Crouzet, N. and Mehrotra, N. R. (2020). Small and large firms over the business cycle. American Economic Review, 110(11):3549-3601.

Dinlersoz, E., Kalemli-Ozcan, S., Hyatt, H., and Penciakova, V. (2018). Leverage over the Life Cycle and Implications for Firm Growth and Shock Responsiveness. NBER Working Papers 25226, National Bureau of Economic Research, Inc.

Fort, T. C., Haltiwanger, J., Jarmin, R. S., and Miranda, J. (2013). How Firms Respond to Business Cycles: The Role of Firm Age and Firm Size. IMF Economic Review, 61(3):520–559.

Gavazza, A., Mongey, S., and Violante, G. L. (2018). Aggregate recruiting intensity. American Economic Review, 108(8):2088–2127.

Gertler, M. and Gilchrist, S. (1994). Monetary Policy, Business Cycles, and the Behavior of Small Manufacturing Firms*. The Quarterly Journal of Economics, 109(2):309–340.

Haltiwanger, J., Jarmin, R. S., and Miranda, J. (2013). Who Creates Jobs? Small versus Large versus Young. The Review of Economics and Statistics, 95(2):347–361.

Jermann, U. and Quadrini, V. (2012). Macroeconomic effects of financial shocks. American Economic Review, 102(1):238-71.

Khan, A. and Thomas, J. (2013). Credit shocks and aggregate fluctuations in an economy with production heterogeneity. Journal of Political Economy, 121(6):1055–1107.

Kiyotaki, N. and Moore, J. (1997). Credit Cycles. Journal of Political Economy, 105(2):211-248.

Lanteri, A. (2018). The Market for Used Capital: Endogenous Irreversibility and Reallocation over the Business Cycle. American Economic Review, 108(9):2383-2419.

Moscarini, G. and Postel-Vinay, F. (2012). The contribution of large and small employers to job creation in times of high and low unemployment. American Economic Review, 102(6):2509–39.

Ottonello, P. and Winberry, T. (2020). Financial heterogeneity and the investment channel of monetary policy. Econometrica, 88(6):2473-2502.

Sterk, V., Sedlacek, P., and Pugsley, B. (2021). The nature of firm growth. American Economic Review, 111(2):547-79.

Aggregates

Counterfactuals

Coefficients by size

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.8

Size

Baseline = HRTS+finance

Counterfactuals

- Baseline = HRTS+finance
- neither: less amplification, age cyclicality wrong

Counterfactuals

- neither: less amplification, age cyclicality wrong
- only finance: flat size

Counterfactuals

 neither: less amplification, age cyclicality wrong

I LIDTO I III II

· only finance: flat size

Predicted cyclicality

Size and Age

- Small firms really small
- relative size of age groups cyclical
- base line results starting from 2001
 - number of firms lower in 90's \rightarrow possible selection issues ?
 - results robustish when using the 90's

Data

Averages of Variables of Interest by Age and Size

	Age groups				Size groups			
	0-3	4-8	9-19	20+	0-30	30-60	60-90	90+
Employment	9.8	13.6	21.0	40.6	1.7	4.4	12.4	130.0
Sales	20993	32895	54765	121159	4857	10885	28497	363759
Assets	18172	32652	57960	141251	11022	19999	25445	375965
Debt	11590	19247	32340	74278	5553	11175	13917	208246
Equity	6581	13405	25620	66972	5469	8824	11527	167715
Bank loans	1128	2539	3970	8317	672	1059	2251	23699
Equity< 0	47.8	46.8	46.7	46.8	47.0	47.0	46.9	46.7
Bank loans> 0	50.3	60.1	63.9	68.2	48.0	59.8	69.1	80.4
D/A	0.85	0.79	0.70	0.62	0.76	0.75	0.73	0.68
C/A	0.17	0.16	0.15	0.11	0.18	0.15	0.13	0.09

Note: Sales, assets, debt and equity in thousands of DKK (1000 DKK = 134 EUR \approx 150-200 USD). Debt/assets (DA). Continuing firms only.

Data

Number of observations by size and age

	Age									
	0	[1,5)	[5,10)	[10,15)	[15,20)	[20,25)	25+	all		
emp<50 emp>=50	0.98 0.02	0.98 0.02	0.96 0.04	0.94 0.06	0.91 0.09	0.9 0.10	0.84 0.16	0.94 0.06		
size(0-30) size(30-60) size(60-90) size(90+)	0.46 0.25 0.23 0.06	0.41 0.28 0.26 0.06	0.35 0.26 0.31 0.09	0.30 0.24 0.33 0.13	0.26 0.23 0.35 0.16	0.26 0.23 0.33 0.18	0.23 0.19 0.32 0.26	0.33 0.25 0.30 0.12		
all	17273	236500	168725	117111	78781	55854	115105	789349		

Note: size defined on headcount employment to prevent to much switches due to hours fluctuations

▶ back

Goal: recover AGE \times SIZE interaction

Goal: recover AGE × SIZE interaction

- A: age groups (0-3, 4-7, 8-19, 20+)
- *I*: employment groups (percentile cutoffs: 30,60,90,95)

 $+ \varepsilon_{i,t}$

Goal: recover AGE \times SIZE interaction for levels, growth rates,

$$X_{i,t} = \sum_{j} \sum_{k} \alpha_{j,k} \, \mathbb{1}_{i \in I_j} \mathbb{1}_{i \in A_k}$$

- A: age groups (0-3, 4-7, 8-19, 20+)
- *I*: employment groups (percentile cutoffs: 30,60,90,95)
- $X_{i,t}$: i th firm variable of interest

Goal: recover AGE \times SIZE interaction for levels, growth rates, cyclicality,

$$X_{i,t} = \sum_{j} \sum_{k} \alpha_{j,k} \, \mathbb{1}_{i \in I_{j}} \mathbb{1}_{i \in A_{k}} + \varepsilon_{i,t}$$

$$g_{i,t}^{X} = \sum_{j} \sum_{k} \left(\alpha_{j,k} + \beta_{j,k} g_{t}^{Y} \right) \mathbb{1}_{i \in I_{j}} \mathbb{1}_{i \in A_{k}} + \varepsilon_{i,t}$$

$$+ \varepsilon_{i,t}$$

- A: age groups (0-3, 4-7, 8-19, 20+)
- I: employment groups (percentile cutoffs: 30,60,90,95)
- $X_{i,t}$: i th firm variable of interest
- $g_{i,t}^X$: (normalised) growth rate of $X_{i,t}$
- g_t^Y : GDP growth rate

Goal: recover AGE \times SIZE interaction for levels, growth rates, cyclicality, effect of leverage

$$X_{i,t} = \sum_{j} \sum_{k} \alpha_{j,k} \, \mathbb{1}_{i \in I_{j}} \mathbb{1}_{i \in A_{k}} + \varepsilon_{i,t}$$

$$g_{i,t}^{X} = \sum_{j} \sum_{k} \left(\alpha_{j,k} + \beta_{j,k} g_{t}^{Y}\right) \mathbb{1}_{i \in I_{j}} \mathbb{1}_{i \in A_{k}} + \varepsilon_{i,t}$$

$$g_{i,t}^{X} = \sum_{j} \sum_{k} \left(\alpha_{j,k} + \beta_{j,k} g_{t}^{Y}\right) \mathbb{1}_{i \in I_{j}} \mathbb{1}_{i \in A_{k}} + \varepsilon_{i,t}$$

$$+ \sum_{m} (\omega_{m} + \psi_{m} y_{t}) \mathbb{1}_{i \in DA_{m}}$$

- A: age groups (0-3, 4-7, 8-19, 20+)
- I: employment groups (percentile cutoffs: 30,60,90,95)
- $X_{i,t}$: i th firm variable of interest
- $g_{i,t}^X$: (normalised) growth rate of $X_{i,t}$
- g_t^Y : GDP growth rate
- DA_{it}: quintile of leverage distribution

▶ details

Goal: recover AGE \times SIZE interaction for levels, growth rates, cyclicality, effect of leverage

$$\begin{split} X_{i,t} &= \sum_{j} \sum_{k} \alpha_{j,k} \, \mathbb{1}_{i \in I_{j}} \mathbb{1}_{i \in A_{k}} \\ g_{i,t}^{X} &= \sum_{j} \sum_{k} \left(\alpha_{j,k} + \beta_{j,k} g_{t}^{Y} \right) \mathbb{1}_{i \in I_{j}} \mathbb{1}_{i \in A_{k}} + \sum_{l} \left(\gamma_{l} + \delta_{l} g_{t}^{Y} \right) \mathbb{1}_{i \in S_{l}} + \varepsilon_{i,t} \\ g_{i,t}^{X} &= \sum_{j} \sum_{k} \left(\alpha_{j,k} + \beta_{j,k} g_{t}^{Y} \right) \mathbb{1}_{i \in I_{j}} \mathbb{1}_{i \in A_{k}} + \sum_{l} \left(\gamma_{l} + \delta_{l} g_{t}^{Y} \right) \mathbb{1}_{i \in S_{l}} + \varepsilon_{i,t} \\ &+ \sum_{m} (\omega_{m} + \psi_{m} y_{t}) \mathbb{1}_{i \in DA_{m}} \end{split}$$

- A: age groups (0-3, 4-7, 8-19, 20+)
- I: employment groups (percentile cutoffs: 30,60,90,95)
- $X_{i,t}$: i th firm variable of interest
- $g_{i,t}^X$: (normalised) growth rate of $X_{i,t}$
- g_t^Y: GDP growth rate
- DA_{it}: quintile of leverage distribution
- S: 36 sectors

► details

Level and growth rate of Leverage

$$\hat{g}_{x_{i,t}} \text{ or } x_{i,t} = \sum_{m} \omega_m \mathbb{1}_{i \in DA(m)} + \sum_{l} \gamma_l \mathbb{1}_{i \in S(l)}$$

$$\tag{1}$$

- Debt/Asset ratio is generally falling with age,
- Both debt and assets growing ⇒ assets are growing faster than debt
- However, for small AND young DA is increasing our interpretation: small AND young cannot borrow as much as they want

27/18

Empirical results overview

- 1 Cyclicality of employment, sales, debt and assets
 - conditional on size: young > old
 - conditional on age: large > small for most, but opposite for entrants
- 2 Document the size x age heterogeneity in the distribution of levels and growth rates of variables of interest
 - unlike capital in models, assets differ by age in each size category
 - on average, only very young firms grow (strongly decreasing in size), firms above 10 shrink (weakly increasing in size)
 - Over age, both debt and assets increase
 - for most firms, assets grow faster than debt ⇒ D/A ↓
 - for young and small, debt grows faster ⇒ D/A ↑

Empirical results overview

- 1 Cyclicality of employment, sales, debt and assets
 - conditional on size: young > old
 - conditional on age: large > small for most, but opposite for entrants
- 2 Document the size x age heterogeneity in the distribution of levels and growth rates of variables of interest
 - unlike capital in models, assets differ by age in each size category
 - on average, only very young firms grow (strongly decreasing in size), firms above 10 shrink (weakly increasing in size)
 - Over age, both debt and assets increase

▶ results

- for most firms, assets grow faster than debt ⇒ D/A ↓
- for young and small, debt grows faster ⇒ D/A ↑
- 3 Effects of leverage on cyclicality
 - differences bettwen employment and sales suggesting finance can mitigate demand shocks
 - effect of leverage at least partly independent of Size x Age controls

Effect of Leverage I

$$\hat{g}_{x_{i,t}} = \sum_{m} (\omega_m + \psi_m g_t^{GDP}) \mathbb{1}_{i \in DA(m)} + \sum_{l} (\gamma_l + \delta_l g_t^{GDP}) \mathbb{1}_{i \in S(l)}$$
(2)

Effect of Leverage I

$$\hat{g}_{x_{i,t}} = \sum_{m} (\omega_m + \psi_m g_t^{GDP}) \mathbb{1}_{i \in DA(m)} + \sum_{l} (\gamma_l + \delta_l g_t^{GDP}) \mathbb{1}_{i \in S(l)}$$
(2)

Effect of Leverage I

$$\hat{g}_{x_{i,t}} = \sum_{m} (\omega_m + \psi_m g_t^{GDP}) \mathbb{1}_{i \in DA(m)} + \sum_{l} (\gamma_l + \delta_l g_t^{GDP}) \mathbb{1}_{i \in S(l)}$$
(2)

Effect of Leverage on cyclicality:

- Employment: ↑
- Sales: ?

$$\hat{g}_{x_{i,t}} = \sum_{m} (\omega_m + \psi_m g_t^{GDP}) \mathbb{1}_{i \in DA(m)} + \sum_{l} (\gamma_l + \delta_l g_t^{GDP}) \mathbb{1}_{i \in S(l)}$$
(2)

Effect of Leverage on cyclicality:

- Employment: ↑
- Sales: ?

Interpretation: finance used to mitigate umployment response of consumer demand shocks

$$\hat{g}_{\mathbf{x}_{l,t}} = \sum_{m} (\omega_{m} + \psi_{m} \mathbf{y}_{t}) \mathbb{1}_{i \in DA(m)} + \sum_{j} \sum_{k} (\alpha_{j,k} + \beta_{j,k} \mathbf{y}_{t}) \mathbb{1}_{i \in I_{t}^{j}} \mathbb{1}_{i \in A(k)} + \sum_{l} (\gamma_{l} + \delta_{l} \mathbf{y}_{t}) \mathbb{1}_{i \in S(l)}$$

Effect of Size x Age controls

$$\hat{g}_{x_{i,t}} = \sum_{m} (\omega_m + \psi_m y_t) \mathbb{1}_{i \in \mathit{DA}(m)} + \sum_{j} \sum_{k} (\alpha_{j,k} + \beta_{j,k} y_t) \mathbb{1}_{i \in I_t^j} \mathbb{1}_{i \in \mathit{A}(k)} + \sum_{l} (\gamma_l + \delta_l y_t) \mathbb{1}_{i \in \mathit{S}(l)}$$

(b) Employment: + Controls

Effect of Size x Age controls

$$\hat{g}_{\mathsf{X}_{i,t}} = \sum_{m} (\omega_{m} + \psi_{m} \mathsf{y}_{t}) \mathbb{1}_{i \in \mathsf{DA}(m)} + \sum_{j} \sum_{k} (\alpha_{j,k} + \beta_{j,k} \mathsf{y}_{t}) \mathbb{1}_{i \in I_{t}^{j}} \mathbb{1}_{i \in \mathsf{A}(k)} + \sum_{l} (\gamma_{l} + \delta_{l} \mathsf{y}_{t}) \mathbb{1}_{i \in S(l)}$$

Adding controls does no change the results qualitatively

Average growth rate of sales

Basic moments

Average growth rate of assets

Basic moments

Size Thresholds and Number of Firms in Different Age Bins

(a) Size thresholds (log scale on y-axis)

(b) Number of firms in each age group over time

Basic moments

Figure: Average levels and growth rates by size and age

Basic moments

Figure: Average levels and growth rates by size and age

Predicted cyclicality

Same pattern:

Predicted cyclicality

Assets, Debt

Same pattern:

- entrants more cyclical
- entrants' cyclicality decreasing in size
- for everybody else cyclicality is (weakly) increasing with size

Basic moments

Levels of employment, sales and assets

Basic moments

Growth rates of employment, sales and assets

▶ back

Growth rate

- Growth rate
 - Emp: ∩

- Growth rate
 - Emp: \cap
 - Sales: +

- Growth rate
 - Emp: ∩
 - Sales: +
 - Assets: -

- Growth rate
 - $\bullet \;\; \mathsf{Emp:} \; \cap \;\;$
 - Sales: +
 - Assets: –
- Cyclicality

- Growth rate
 - Emp: ∩
 - Sales: +
 - Assets: –
- Cyclicality
 - Emp+Assets: +

- Growth rate
 - Emp: ∩
 - Sales: +
 - Assets: –
- Cyclicality
 - Emp+Assets: +
 - Sales: 0

- Growth rate
 - Emp: ∩
 - Sales: +
 - Assets: –
- Cyclicality
 - Emp+Assets: +
 - Sales: 0
- Leverage vs Age x Size

- Growth rate
 - Emp: ∩
 - Sales: +
 - Assets: –
- Cyclicality
 - Emp+Assets: +
 - Sales: 0
- Leverage vs Age x Size
 - growth rate coefs not (much) affected (apart from the least levered firms)

- Growth rate
 - Emp: ∩
 - Sales: +
 - Assets: –
- Cyclicality
 - Emp+Assets: +
 - Sales: 0
- Leverage vs Age x Size
 - growth rate coefs not (much) affected (apart from the least levered firms)

⇒ Leverage and Size x Age not (perfect) proxies

▶ back

Cyclicality of employment

Only size

$$g_{i,t}^{\textit{emp}} = \sum_{i} \left(\alpha_{j} + \frac{\beta_{j}}{\beta_{t}} g_{t}^{Y} \right) \mathbb{1}_{i \in I_{j}} + \sum_{l} \left(\gamma_{l} + \delta_{l} g_{t}^{Y} \right) \mathbb{1}_{i \in S_{l}} + \varepsilon_{i,t}$$

Cyclicality of employment

Additive size and age

$$g_{i,t}^{emp} = \sum_{i} \left(\alpha_{i} + \frac{\beta_{i}}{\beta_{i}} g_{t}^{Y} \right) \mathbb{1}_{i \in I_{j}} + \sum_{k} \left(\alpha_{k} + \frac{\beta_{k}}{\beta_{k}} g_{t}^{Y} \right) \mathbb{1}_{i \in A_{k}} + \sum_{l} \left(\gamma_{l} + \delta_{l} g_{t}^{Y} \right) \mathbb{1}_{i \in S_{l}} + \varepsilon_{i,t}$$

Firms size/age bins

Heterogeneity in returns to scale

RTS estimation:

- 1 three size groups: 0-7, 7-25, 25+, only non-transitioning firms
- 2 estimate $y = k^{\alpha} I^{\beta}$ using OP and LP with/without ACF either sectoral FE or sector-specific α s and β s
- $3 \text{ rts} = \alpha + \beta$

Heterogeneity in returns to scale

RTS estimation:

- 1 three size groups: 0-7, 7-25, 25+, only non-transitioning firms
- 2 estimate $y = k^{\alpha} l^{\beta}$ using OP and LP with/without ACF either sectoral FE or sector-specific α s and β s
- 3 rts= $\alpha + \beta$

Heterogeneity in returns to scale

RTS estimation:

- 1 three size groups: 0-7, 7-25, 25+, only non-transitioning firms
- 2 estimate $y = k^{\alpha} l^{\beta}$ using OP and LP with/without ACF either sectoral FE or sector-specific α s and β s
- 3 rts= $\alpha + \beta$

- large firms returns to scale > small firms
 - somewhat robust to estimation methodology,
 - ⊕: medium size ?

$$\hat{g}_{\mathbf{X}_{l,t}} = \sum_{m} \sum_{j} \sum_{k} (\alpha_{j,k,m} + \beta_{j,k,m} \mathbf{y}_{t}) \mathbb{1}_{i \in I_{t}^{j}} \mathbb{1}_{i \in A(k)} \mathbb{1}_{i \in DA(m)} + \sum_{l} (\gamma_{l} + \delta_{l} \mathbf{y}_{t}) \mathbb{1}_{i \in \mathcal{S}(l)}$$

$$\hat{g}_{x_{i,t}} = \sum_{m} \sum_{j} \sum_{k} (\alpha_{j,k,m} + \beta_{j,k,m} y_{t}) \mathbb{1}_{i \in I_{t}^{j}} \mathbb{1}_{i \in A(k)} \mathbb{1}_{i \in DA(m)} + \sum_{l} (\gamma_{l} + \delta_{l} y_{t}) \mathbb{1}_{i \in S(l)}$$

$$\hat{g}_{x_{i,t}} = \sum_{m} \sum_{j} \sum_{k} (\alpha_{j,k,m} + \beta_{j,k,m} y_{t}) \mathbb{1}_{i \in J_{t}^{j}} \mathbb{1}_{i \in A(k)} \mathbb{1}_{i \in DA(m)} + \sum_{l} (\gamma_{l} + \delta_{l} y_{t}) \mathbb{1}_{i \in S(l)}$$

- · Largest effects for smallest firms
- qualitative shape not affected

$$\hat{g}_{\mathbf{X}_{l,t}} = \sum_{m} \sum_{j} \sum_{k} (\alpha_{j,k,m} + \beta_{j,k,m} \mathbf{y}_{t}) \mathbb{1}_{i \in J_{t}^{j}} \mathbb{1}_{i \in A(k)} \mathbb{1}_{i \in DA(m)} + \sum_{l} (\gamma_{l} + \delta_{l} \mathbf{y}_{t}) \mathbb{1}_{i \in S(l)}$$

- · Largest effects for smallest firms
- · qualitative shape not affected
- our interpretation: Leverage capturing something beyond just Size x Age

Model A firm's net worth

$$\dot{n} = \left(\frac{\pi(k, s, g)}{k} - (\delta + r)p_{K}\right)k + rn - d \tag{3}$$

- d: dividend payout flow
- $d \ge 0$, firms cannot raise equity at all after the moment of birth
- firms payout dividends only when net worth exceeds an exogenous level \bar{n} , and payout such that net worth remains at \bar{n}
- \Rightarrow Firms therefore pay no dividends while they are young, but then start paying out dividends when they are older and have achieved sufficient scale.

Model Firm problem

- Production function: $q_i = z_i f(k_l, l_i)^{\eta_i}$
- Aggregate output $Q = \left(\int_0^G q_i^\theta \, di\right)^{\frac{1}{\theta}}$ \Rightarrow i-th firm demand: $q_i = p_i^{-1/(1-\theta)}Q$
- Profit function:

$$\pi = \max\left\{q^{ heta}Q^{1- heta} - extit{w}I
ight\}$$

• Leontief production function $f(k, l) = \min\{k, \frac{l}{\alpha}\}$ implies

$$l^*(k) = \alpha k$$

$$\pi(k, s, g) = z^{\theta} k^{\eta \theta} Q^{1-\theta} - \alpha wk.$$

• Firm borrow at rate r s.t. $b \le p_K \lambda k$

Model - Borrowing and collateral prices

- Borrowing constraint $b \le \lambda p_k k$
- Collateral price of capital $p_k \le p_k$
- Leverage: $\phi = \frac{p_k k}{p_k k b}$

•
$$p_k = 1 + \psi_k (1/K - \delta)$$
 (= 1 in SS)

- Outcome:
 - endogenous leverage constraint $\phi \leq \bar{\phi} = \frac{p_k}{p_k \lambda p_k}$
 - fix for counterfactual behaviour of unconstrained firms
- Motivation:
 - · banks less efficient in reselling capital in the case of default
 - reselling harder in recessions (Lanteri, 2018)

Model Firm productivity

- Firm type $s \in \{1, 2, ..., S\}$
 - rts η_s
 - starting net worth
 - productivity z_S
- idiosyncratic productivity $z^J \in \{1, \dots, J\}$ with transition matrix π^J
- entrant productivity penalty Z_G
 - *g* ∈ 1, 2
 - all first start with g = 1, associated with productivity $z_1 < 1$ and exit rate penalty ξ_1
 - exogenous rate α_G firms transition to g=2 associated with $z_2=1$ and $\xi_2<\xi_1$
- additionaly z* superstar firms
- $z = z_s^S z_g^G z_j^J$

Firm's HJB equation

$$rv(n, s, g, j) = \max_{0 \le p_K k \le \bar{\phi}n} d(n) + v_n(n, s, g, j) \left(\left(\frac{\pi(k, s, g, j)}{k} - (\delta + r)p_K \right) k + rn - d(n) \right)$$

$$+ \zeta_g (n - v(n, s, g, j)) + \mathbf{1}_{g=1} \alpha_G (v(n, s, 2, j) - v(n, s, 1, j))$$

$$+ \sum_{j'} \pi_{j,j'}^J \left(v(n, s, g, j') - v(n, s, g, j) \right) + \alpha_* \left(v^* + n - v(n, s, g, j) \right)$$
(4)

- d(n):exogenous dividend payout policy for the current level of net worth
- ν_n: drift in net worth, which depends on the capital choice and dividend payout
- lifecycle:
 - ζ_g term captures firm exit
 - the transition from lifecycle state g = 1 to g = 2
- α_{\star} term captures the transition to an additional "superstar status",

Steady-state calibration details

- targets:
- s-type to target size distribution
- age-dependent exogenous exit rate to target age distribution (Andersen and Rozsypal, 2021)
- size x age distribution:
 - initial net worth of entrants (n_0) to target size of entrants
 - superstar productivity z*: average employment of firms 20+

Cyclical calibration details

- targets: relative cyclicality by size and age, size of the recession, growth rate of young-small firms
- calibration instruments: two shocks + two features = 9 new parameters
- productivity penalty of entrants $y_1^G < 1$ to match average size of 0-aged firms
- only financial shocks:
 - **1** colateral ϕ_0 relative cyclicality of small entrants
 - 2 discount rate r_0 chosen such that recession delivers GDP fall of 5% on impact
- distribution of η cyclicality of older firms
 - 1 $\eta_1 \eta_3$: relative cyclicality of respective group
 - 2 η_4 : average $\eta=1$
- distribution of initial net worth
 - $n_2 n_4$: decling cyclicality of entrants
 - n_1 : average employment growth of smallest entrants

Model equations

- final good manufacturer:
 - production function $Q = \left(\int_0^G q_i^\theta \, \mathrm{d}i \right)^{\frac{1}{\theta}}$
 - profits $\pi = \left(\int_0^G q_i^\theta \, \mathrm{d}i\right)^{\frac{1}{\theta}} \int_0^G p_i q_i \, \mathrm{d}i$
 - FOC $q_i = p_i^{-\epsilon} Q$
 - zero profits $Q = \int_0^G p_i q_i di$
- aggregation accounting
 - final goods resource constraint: Q = C + I + M
 - aggregate output Y = C + I + G
 - intermediate goods $M = \int_0^G m_i di$.
- intermediate good production
 - production function: q_i = z_if(k_i, l_i, m_i)^{η_i}
 revenue: p_iq_i = z^θ f(k_i, l_i, m_i)^{ηθ} Q^{1-θ}

 - value added: $y = p_i q_i m_i$
 - profit: $\pi(k,z) = \max_{l,m>0} z^{\theta} f(k,l,m)^{\eta_z \theta} Q^{1-\theta} wl m$
 - capital evolution $\dot{k} = i \delta k$

Model Calibration

	Interpretation	Value	Source
r	Discount rate	0.0202	2% yearly real interest rate
Z	Productivity distribution	-	See text
$\eta_{\it Z}$	Returns to scale distribution	-	See text
ζ_z	Exit rates	-	See text
θ	Substitution across varieties	0.9	10% markup in frictionless model
α	Labor-capital ratio in prod fun	7.208	Aggregate L
β	Intermediate-capital ratio in prod fun	0.3703	Aggregate M
μ_{0}	Firm entry rate	0.0834	Normal total mass of firms to one
$ar{\phi}$	S.s. collateral limit	3	Maximum leverage
δ	Depreciation rate	0.1054	10% annual rate
īn	Net worth where start paying dividends	38.78	Normalisation
$\alpha_{\it s}$	Rate transition to superstar firm	5e-5	0.5% of firms are superstar
$Z_{\mathcal{S}}$	Superstar productivity	1.2803	Employment share of firms age 20+
χ	Labor disutility shifter	0.0128	Labor share of income
η	Labor supply elasticity	0.5	Real wage flexibility

Firm evolution by age

Basic model

(normalised relative to oldest-largest (age 20+ size 90+) bin)

Full model

Steady-state calibration details

- targets:
- s-type to target size distribution
- age-dependent exogenous exit rate to target age distribution (Andersen and Rozsypal, 2021)
- size x age distribution:
 - initial net worth of entrants (n_0) to target size of entrants
 - superstar productivity z*: average employment of firms 20+

Cyclical calibration details

- targets: relative cyclicality by size and age, size of the recession, growth rate of young-small firms
- calibration instruments: two shocks + two features = 9 new parameters
- productivity penalty of entrants $y_1^G < 1$ to match average size of 0-aged firms
- only financial shocks:
 - **1** colateral ϕ_0 relative cyclicality of small entrants
 - 2 discount rate r_0 chosen such that recession delivers GDP fall of 5% on impact
- distribution of η cyclicality of older firms
 - 1 $\eta_1 \eta_3$: relative cyclicality of respective group
 - 2 η_4 : average $\eta=1$
- distribution of initial net worth
 - $n_2 n_4$: decling cyclicality of entrants
 - $2 n_1$: average employment growth of smallest entrants

Growth rates

Figure: Average growth rate of employment

Model - firm shocks

- Heterogeneous productivity: $z \equiv z(s, q) = z_s^S z_q^G$
 - z^S : firm "quality" \rightarrow contributes to size dispersion
 - z^G : age component \rightarrow penalty for entrants
- Timing of shocks:
 - at entry:
 - z_s^S and η (currently perfectly correlated)
 - every period:
 - age specific exogenous exit
 - transition to superstar state
 - new (much larger) z_i and η_i
 - allowed to issue equity, become unconstrained

- Steady state
 - Size / age
 - Number of firms / Employment
- 2 Cyclicality
 - young vs old
 - small vs large

- Steady state
 - Size / age
 - Number of firms / Employment
- 2 Cyclicality
 - young vs old
 - small vs large

	Size	Age
Number of firms	by construction (quantiles)	3 parameters for exit rate
Employment	z_i : average employment in each size bin	1: entrants' net worth 2: old firms' fraction of employment

	Size	Age
Number of firms	by construction (quantiles)	3 parameters for exit rate
Employment	z_i : average employment in each size bin	1: entrants' net worth 2: old firms' fraction of employment

	Size	Age
Number of firms	by construction (quantiles)	3 parameters for exit rate
Employment	z_i : average employment in each size bin	1: entrants' net worth 2: old firms' fraction of employment

	Size	Age
Number of firms	by construction (quantiles)	3 parameters for exit rate
Employment	<i>z_i</i> : average employment in each size bin	1: entrants' net worth 2: old firms' fraction of employment

	Size	Age
Number of firms	by construction (quantiles)	3 parameters for exit rate
Employment	<i>z_i</i> : average employment in each size bin	1: entrants' net worth 2: old firms' fraction of employment

- Steady state
 - Size / age
 - Number of firms / Employment
- 2 Cyclicality
 - young vs old
 - small vs large

- Steady state
 - Size / age
 - Number of firms / Employment
- 2 Cyclicality
 - young vs old: size of the financial shock (λ)
 - small vs large

- Steady state
 - Size / age
 - Number of firms / Employment
- 2 Cyclicality
 - young vs old: size of the financial shock (λ)
 - small vs large: returns to scale (η_1)

Targets: steady state

		Fraction	of firms		A	Average	employm	ent
Size	0-30	30-60	60-90	90+	0-30	30-60	60-90	90+
Model (s.s. cali)	0.30	0.30	0.30	0.10	2.01	5.85	16.61	138.02
Model (b.c. cali)	0.30	0.30	0.30	0.10	1.98	5.93	16.58	137.82
Data	0.36	0.26	0.28	0.10	1.95	5.65	15.90	146.15

(a) Size distribution

	Fraction of firms				Fraction of firms Average employment					
Age	0	1-3	4-8	9-19	20+	0	1-3	4-8	9-19	20+
Model (s.s. cali)	0.08	0.19	0.21	0.27	0.25	9.41	13.63	18.54	20.25	33.41
Model (b.c. cali)	0.08	0.19	0.21	0.27	0.25	9.40	12.57	17.82	21.91	32.97
Data	0.05	0.18	0.25	0.25	0.27	9.35	11.90	16.44	21.82	32.95

(b) Age distribution

Targers: cyclicality

Moment	Data	Model	Error	Associated parameter
Average employment growth age 0-3, size 0-30%	0.33	0.33	1.17%	n ₁ e
Relative cyclicality age 0-3, size 0-30%	1.36	1.36	-0.35%	$ar{\phi}_{f 0}$
Relative cyclicality age 0-3, size 30-60%	1.37	1.31	-4.96%	n ₂ e
Relative cyclicality age 0-3, size 60-90%	1.32	1.33	0.95%	$n_3^{ar{e}}$
Relative cyclicality age 0-3, size 90%+	0.95	1.05	9.47%	n_4^e
Relative cyclicality age 20+, size 0-30%	0.24	0.26	5.17%	η_1
Relative cyclicality age 20+, size 30-60%	0.64	0.65	1.87%	η_2
Relative cyclicality age 20+, size 60-90%	0.94	0.88	-5.92%	η_3
5% peak GDP fall during recession	-0.05	-0.05	-0.37%	r_0
Average error (sqrt. of mean squared error)	_	_	4.50%	_

Common parameters

	Parameters used in both calibrations:			
r	Discount rate	0.0202	0.0202	2% yearly real interest rate
δ	Depreciation rate	0.1054	0.1054	10% annual rate
θ	Substitution across varieties	0.9	0.9	10% markup in frictionless model
α	Labor-capital ratio in prod fun	9.1331	8.4815	Aggregate L
μ_{0}	Firm entry rate	0.0834	0.0834	Normal total mass of firms to one
$\bar{\phi}$	S.s. collateral limit	3	3	Maximum leverage
'n	Net worth where start paying dividends	59.9283	84.3044	Normalisation
χ	Labor disutility shifter	0.0114	0.0114	Labor share of income
σ	Labor supply elasticity	0.3	0.3	Real wage flexibility
α_{s}	Rate transition to superstar firm	5.1e-05	5.1e-05	0.5% of firms are superstar
Z_{\star}	Superstar productivity	0.6393	0.4768	Employment share of firms age 20+
ζ_y	Exit rate when young $(g = 1)$	0.1415	0.1415	Exit rate age 0
ζο	Exit rate when old $(g = 2)$	0.0647	0.0647	Average exit rate 8% per year
α_{G}	Transition rate young to old	0.1964	0.1964	Exit rate age 6
σ^I	Std. idiosyncratic shocks	0.0234	0.0234	Std. investment rates
ρ^I	Autocorr. idiosyncratic shocks	0.6590	0.6590	Khan and Thomas (2013)
	Productivity for type $s = 1$	0.3288	0.3137	Av. emp. size 0-30%
z_2^{S}	Productivity for type $s = 2$	0.3681	0.3454	Av. emp. size 30-60%
Z ₁ S Z ₂ S Z ₃ S Z ₄ S	Productivity for type $s = 3$	0.4103	0.4000	Av. emp. size 60-90%
Z_{A}^{S}	Productivity for type $s = 4$	0.5035	0.4183	Normalise $Y = 1$
γ_s^4	Fraction born type $s = 1$	0.3	0.3	Firms for 0-30% size bin

Calibration specific parameters

	Parameters used "Steady state" calibration:						
ne	Returns to scale (all firms) Net worth fraction of entrants Relative productivity of young	1 0.3543 1	_	All firms CRS Average employment of age 0 firms Not used			

	Parameters	usea	l in "Cyclical"	' calibration:
$\overline{\eta_1}$	Returns to scale ($s = 1$)	_	0.7952	SMM
η_2	Returns to scale ($s = 2$)	_	1.0407	SMM
η_3	Returns to scale ($s = 3$)	_	0.9887	SMM
η_4	Returns to scale ($s = 4$)	_	1.0407	Impose agg. economy has CRS
n_1^e	Net worth fraction of entrants ($s = 1$)	_	0.1937	SMM
n²e	Net worth fraction of entrants ($s = 2$)	_	0.4664	SMM
n ₂ e	Net worth fraction of entrants ($s = 3$)	_	0.9188	SMM
n_4^e	Net worth fraction of entrants ($s = 4$)	_	0.8297	SMM
$Z_1^{\dot{G}}$	Relative productivity of young	_	0.9289	Average employment of age 0 firms
$n_4^{ m g} \ Z_1^G \ ar\phi_0$	Size of collateral constraint shock	_	-0.0926%	SMM
r_0	Size of discount rate shock	_	0.1562%	SMM

1 Cyclicality of employment, sales, debt and assets

1 Cyclicality of employment, sales, debt and assets

1 Cyclicality of employment, sales, debt and assets

- 1 Cyclicality of employment, sales, debt and assets
 - conditional on size: young > old
 - conditional on age: large > small for most, but opposite for entrants

- 1 Cyclicality of employment, sales, debt and assets
 - conditional on size: young > old
 - conditional on age: large > small for most, but opposite for entrants
- 2 Document the size x age heterogeneity in the distribution of levels and growth rates of variables of interest
 - unlike capital in models, assets differ by age in each size category
 - on average, only very young firms grow (strongly decreasing in size), firms above 10 shrink (weakly increasing in size)

- 1 Cyclicality of employment, sales, debt and assets
 - conditional on size: young > old
 - conditional on age: large > small for most, but opposite for entrants
- 2 Document the size x age heterogeneity in the distribution of levels and growth rates of variables of interest
 - unlike capital in models, assets differ by age in each size category
 - on average, only very young firms grow (strongly decreasing in size), firms above 10 shrink (weakly increasing in size)
 - Over age, both debt and assets increase

