

Cálculo 1 - HONORS - CM311

Extremos e Gráficos

Diego Otero otero.ufpr@gmail.com / otero@ufpr.br

Teorema 1.1 (Teorema do Valor Médio (TVM)).

Se f é uma função contínua em [a,b] e derivável em (a,b), então existe $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Teorema 1.2 (Teorema de Rolle).

Se f é uma função contínua em [a,b] e derivável em (a,b), com f(a)=f(b), então existe $c\in (a,b)$ tal que f'(c)=0.

Teorema 1.3 (Teorema do Valor Extremo (TVE)).

Seja $f:[a,b] \to \mathbb{R}$ uma função contínua. Então existem $c_1,c_2 \in [a,b]$ tais que $f(c_1) \le f(x) \le f(c_2)$ para todo $x \in [a,b]$.

ullet Faltou explicar porque TVE \Rightarrow Rolle...

Teorema 1.1 (Teorema do Valor Médio (TVM)).

Se f é uma função contínua em [a,b] e derivável em (a,b), então existe $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Teorema 1.2 (Teorema de Rolle).

Se f é uma função contínua em [a,b] e derivável em (a,b), com f(a)=f(b), então existe $c\in (a,b)$ tal que f'(c)=0.

Teorema 1.3 (Teorema do Valor Extremo (TVE)).

Seja $f:[a,b]\to\mathbb{R}$ uma função contínua. Então existem $c_1,c_2\in[a,b]$ tais que $f(c_1)\le f(x)\le f(c_2)$ para todo $x\in[a,b]$.

ullet Faltou explicar porque TVE \Rightarrow Rolle...

Teorema 1.1 (Teorema do Valor Médio (TVM)).

Se f é uma função contínua em [a,b] e derivável em (a,b), então existe $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Teorema 1.2 (Teorema de Rolle).

Se f é uma função contínua em [a,b] e derivável em (a,b), com f(a)=f(b), então existe $c\in (a,b)$ tal que f'(c)=0.

Teorema 1.3 (Teorema do Valor Extremo (TVE)).

Seja $f:[a,b]\to\mathbb{R}$ uma função contínua. Então existem $c_1,c_2\in[a,b]$ tais que $f(c_1)\le f(x)\le f(c_2)$ para todo $x\in[a,b]$.

 $\bullet \ \ \mathsf{Faltou} \ \mathsf{explicar} \ \mathsf{porque} \ \mathsf{TVE} \Rightarrow \mathsf{Rolle}...$

Teorema 1.1 (Teorema do Valor Médio (TVM)).

Se f é uma função contínua em [a,b] e derivável em (a,b), então existe $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Teorema 1.2 (Teorema de Rolle).

Se f é uma função contínua em [a,b] e derivável em (a,b), com f(a)=f(b), então existe $c\in (a,b)$ tal que f'(c)=0.

Teorema 1.3 (Teorema do Valor Extremo (TVE)).

Seja $f: [a,b] \to \mathbb{R}$ uma função contínua. Então existem $c_1, c_2 \in [a,b]$ tais que $f(c_1) \le f(x) \le f(c_2)$ para todo $x \in [a,b]$.

• Faltou explicar porque TVE \Rightarrow Rolle...

- Sendo $f: I \to \mathbb{R}$ o conjunto dos pontos $x_0 \in I$ que são máximos ou mínimos de f são chamados de **extremos de** f.
- Dada uma função contínua f em [a, b] o TVE garante que existem extremos de f no intervalo [a, b]. Como encontrar tais extremos?
- Se f for derivável em (a, b) os pontos extremos estarão entre aqueles que satisfazem f'(x) = 0, ou x = a, ou x = b.

Exemplo 1.4.

Calcule os extremos de $f(x) = \frac{x}{x^2 - x + 1}$ no intervalo [0, 3].

 Se f n\u00e3o for deriv\u00e1vel em algum ponto do intervalo, este ponto \u00e9 candidato \u00e0 extremo.

Exemplo 1.5

- Sendo $f: I \to \mathbb{R}$ o conjunto dos pontos $x_0 \in I$ que são máximos ou mínimos de f são chamados de **extremos de** f.
- Dada uma função contínua f em [a,b] o TVE garante que existem extremos de f no intervalo [a,b]. Como encontrar tais extremos?
- Se f for derivável em (a, b) os pontos extremos estarão entre aqueles que satisfazem f'(x) = 0, ou x = a, ou x = b.

Exemplo 1.4.

Calcule os extremos de $f(x) = \frac{x}{x^2 - x + 1}$ no intervalo [0, 3].

 Se f n\u00e3o for deriv\u00e1vel em algum ponto do intervalo, este ponto \u00e9 candidato \u00e0 extremo.

Exemplo 1.5

- Sendo $f: I \to \mathbb{R}$ o conjunto dos pontos $x_0 \in I$ que são máximos ou mínimos de f são chamados de **extremos de** f.
- Dada uma função contínua f em [a,b] o TVE garante que existem extremos de f no intervalo [a,b]. Como encontrar tais extremos?
- Se f for derivável em (a, b) os pontos extremos estarão entre aqueles que satisfazem f'(x) = 0, ou x = a, ou x = b.

Exemplo 1.4

Calcule os extremos de $f(x) = \frac{x}{x^2 - x + 1}$ no intervalo [0, 3]

 Se f n\u00e3o for deriv\u00e1vel em algum ponto do intervalo, este ponto \u00e9 candidato \u00e0 extremo.

Exemplo 1.5

- Sendo $f: I \to \mathbb{R}$ o conjunto dos pontos $x_0 \in I$ que são máximos ou mínimos de f são chamados de **extremos de** f.
- Dada uma função contínua f em [a, b] o TVE garante que existem extremos de f no intervalo [a, b]. Como encontrar tais extremos?
- Se f for derivável em (a, b) os pontos extremos estarão entre aqueles que satisfazem f'(x) = 0, ou x = a, ou x = b.

Exemplo 1.4.

Calcule os extremos de $f(x) = \frac{x}{x^2 - x + 1}$ no intervalo [0, 3].

 Se f n\u00e3o for deriv\u00e1vel em algum ponto do intervalo, este ponto \u00e9 candidato \u00e0 extremo.

Exemplo 1.5

- Sendo $f: I \to \mathbb{R}$ o conjunto dos pontos $x_0 \in I$ que são máximos ou mínimos de f são chamados de **extremos de** f.
- Dada uma função contínua f em [a,b] o TVE garante que existem extremos de f no intervalo [a,b]. Como encontrar tais extremos?
- Se f for derivável em (a, b) os pontos extremos estarão entre aqueles que satisfazem f'(x) = 0, ou x = a, ou x = b.

Exemplo 1.4.

Calcule os extremos de $f(x) = \frac{x}{x^2 - x + 1}$ no intervalo [0, 3].

- Se f n\u00e3o for deriv\u00e1vel em algum ponto do intervalo, este ponto \u00e9 candidato \u00e0 extremo.
- Exemplo 1.5

- Sendo $f: I \to \mathbb{R}$ o conjunto dos pontos $x_0 \in I$ que são máximos ou mínimos de f são chamados de **extremos de** f.
- Dada uma função contínua f em [a,b] o TVE garante que existem extremos de f no intervalo [a,b]. Como encontrar tais extremos?
- Se f for derivável em (a, b) os pontos extremos estarão entre aqueles que satisfazem f'(x) = 0, ou x = a, ou x = b.

Exemplo 1.4.

Calcule os extremos de $f(x) = \frac{x}{x^2 - x + 1}$ no intervalo [0,3].

 Se f não for derivável em algum ponto do intervalo, este ponto é candidato à extremo.

Exemplo 1.5.

- O problema de encontrar extremos em casos gerais é difícil.
- Primeiramente vamos fazer uma análise local.
- Sendo $f: I \to \mathbb{R}$ e $x_0 \in I$, é um **extremo local de** f se x_0 for um extremo de f restrita a $I \cap (x_0 \delta, x_0 + \delta)$, para algum $\delta > 0$.
- Se f for derivável em x_0 e for extremo local, teremos que $f'(x_0) = 0$.

Definição 1.6

Seja $f: I \to \mathbb{R}$ e $x_0 \in I$. Dizemos que x_0 é um ponto crítico de f se $f'(x_0) = 0$ ou se $f'(x_0)$ não existir.

Proposição 1.7.

Se x_0 é extremo local então x_0 é ponto crítico.

Observação 1.8

- O problema de encontrar extremos em casos gerais é difícil.
- Primeiramente vamos fazer uma análise local.
- Sendo $f: I \to \mathbb{R}$ e $x_0 \in I$, é um **extremo local de** f se x_0 for um extremo de f restrita a $I \cap (x_0 \delta, x_0 + \delta)$, para algum $\delta > 0$.
- Se f for derivável em x_0 e for extremo local, teremos que $f'(x_0) = 0$.

Definição 1.6

Seja $f: I \to \mathbb{R}$ e $x_0 \in I$. Dizemos que x_0 é um ponto crítico de f se $f'(x_0) = 0$ ou se $f'(x_0)$ não existir.

Proposição 1.7.

Se x_0 é extremo local então x_0 é ponto crítico.

Observação 1.8

- O problema de encontrar extremos em casos gerais é difícil.
- Primeiramente vamos fazer uma análise local.
- Sendo $f: I \to \mathbb{R}$ e $x_0 \in I$, é um **extremo local de** f se x_0 for um extremo de f restrita a $I \cap (x_0 \delta, x_0 + \delta)$, para algum $\delta > 0$.
- Se f for derivável em x_0 e for extremo local, teremos que $f'(x_0) = 0$.

Definição 1.6

Seja $f:I\to\mathbb{R}$ e $x_0\in I$. Dizemos que x_0 é um ponto crítico de f se $f'(x_0)=0$ ou se $f'(x_0)$ não existir.

Proposição 1.7.

Se x_0 é extremo local então x_0 é ponto crítico.

Observação 1.8

- O problema de encontrar extremos em casos gerais é difícil.
- Primeiramente vamos fazer uma análise local.
- Sendo $f: I \to \mathbb{R}$ e $x_0 \in I$, é um **extremo local de** f se x_0 for um extremo de f restrita a $I \cap (x_0 \delta, x_0 + \delta)$, para algum $\delta > 0$.
- Se f for derivável em x_0 e for extremo local, teremos que $f'(x_0) = 0$.

Definição 1.6

Seja $f:I\to\mathbb{R}$ e $x_0\in I$. Dizemos que x_0 é um ponto crítico de f se $f'(x_0)=0$ ou se $f'(x_0)$ não existir.

Proposição 1.7

Se x_0 é extremo local então x_0 é ponto crítico.

Observação 1.8

- O problema de encontrar extremos em casos gerais é difícil.
- Primeiramente vamos fazer uma análise local.
- Sendo $f: I \to \mathbb{R}$ e $x_0 \in I$, é um **extremo local de** f se x_0 for um extremo de f restrita a $I \cap (x_0 \delta, x_0 + \delta)$, para algum $\delta > 0$.
- Se f for derivável em x_0 e for extremo local, teremos que $f'(x_0) = 0$.

Definição 1.6.

Seja $f: I \to \mathbb{R}$ e $x_0 \in I$. Dizemos que x_0 é um ponto crítico de f se $f'(x_0) = 0$ ou se $f'(x_0)$ não existir.

Proposição 1.7

Se x_0 é extremo local então x_0 é ponto crítico.

Observação 1.8

- O problema de encontrar extremos em casos gerais é difícil.
- Primeiramente vamos fazer uma análise local.
- Sendo $f: I \to \mathbb{R}$ e $x_0 \in I$, é um **extremo local de** f se x_0 for um extremo de f restrita a $I \cap (x_0 \delta, x_0 + \delta)$, para algum $\delta > 0$.
- Se f for derivável em x_0 e for extremo local, teremos que $f'(x_0) = 0$.

Definição 1.6.

Seja $f: I \to \mathbb{R}$ e $x_0 \in I$. Dizemos que x_0 é um ponto crítico de f se $f'(x_0) = 0$ ou se $f'(x_0)$ não existir.

Proposição 1.7.

Se x_0 é extremo local então x_0 é ponto crítico.

Observação 1.8

- O problema de encontrar extremos em casos gerais é difícil.
- Primeiramente vamos fazer uma análise local.
- Sendo $f: I \to \mathbb{R}$ e $x_0 \in I$, é um **extremo local de** f se x_0 for um extremo de f restrita a $I \cap (x_0 \delta, x_0 + \delta)$, para algum $\delta > 0$.
- Se f for derivável em x_0 e for extremo local, teremos que $f'(x_0) = 0$.

Definição 1.6.

Seja $f: I \to \mathbb{R}$ e $x_0 \in I$. Dizemos que x_0 é um ponto crítico de f se $f'(x_0) = 0$ ou se $f'(x_0)$ não existir.

Proposição 1.7.

Se x_0 é extremo local então x_0 é ponto crítico.

Observação 1.8.

Exemplo 1.9.

Encontre os pontos críticos de
$$f(x) = \frac{x^4}{4} - x^3 - 2x^2 + 3$$
.

 Dentre os pontos críticos, como podemos identificar os extremos locais (máximos e mínimos locais)?

Proposição 1.10.

Seja $f:I \to \mathbb{R}$ com I um intervalo

- Se f'(x) > 0 para todo $x \in I$ então f é crescente em I.
- Se f'(x) < 0 para todo $x \in I$ então f é decrescente em I.

Corolário 1.11 (Teste da Derivada Primeira).

Seja $f:I \to \mathbb{R}$ e $x_0 \in I$. Temos que x_0 é ponto crítico de f se, e somente se, a derivada f' muda de sinal ao passar por x_0 .

Exemplo 1.9.

Encontre os pontos críticos de
$$f(x) = \frac{x^4}{4} - x^3 - 2x^2 + 3$$
.

• Dentre os pontos críticos, como podemos identificar os extremos locais (máximos e mínimos locais)?

Proposição 1.10

Seja $f:I o\mathbb{R}$ com I um intervalo.

- Se f'(x) > 0 para todo $x \in I$ então f é crescente em I.
- Se f'(x) < 0 para todo $x \in I$ então f é decrescente em I.

Corolário 1.11 (Teste da Derivada Primeira).

Seja $f:I \to \mathbb{R}$ e $x_0 \in I$. Temos que x_0 é ponto crítico de f se, e somente se, a derivada f' muda de sinal ao passar por x_0 .

Exemplo 1.9.

Encontre os pontos críticos de
$$f(x) = \frac{x^4}{4} - x^3 - 2x^2 + 3$$
.

• Dentre os pontos críticos, como podemos identificar os extremos locais (máximos e mínimos locais)?

Proposição 1.10.

Seja $f: I \to \mathbb{R}$ com I um intervalo.

- Se f'(x) > 0 para todo $x \in I$ então f é crescente em I.
- Se f'(x) < 0 para todo $x \in I$ então f é decrescente em I.

Corolário 1.11 (Teste da Derivada Primeira).

Seja $f:I \to \mathbb{R}$ e $x_0 \in I$. Temos que x_0 é ponto crítico de f se, e somente se, a derivada f' muda de sinal ao passar por x_0 .

Exemplo 1.9.

Encontre os pontos críticos de
$$f(x) = \frac{x^4}{4} - x^3 - 2x^2 + 3$$
.

• Dentre os pontos críticos, como podemos identificar os extremos locais (máximos e mínimos locais)?

Proposição 1.10.

Seja $f: I \to \mathbb{R}$ com I um intervalo.

- Se f'(x) > 0 para todo $x \in I$ então f é crescente em I.
- Se f'(x) < 0 para todo $x \in I$ então f é decrescente em I.

Corolário 1.11 (Teste da Derivada Primeira).

Seja $f: I \to \mathbb{R}$ e $x_0 \in I$. Temos que x_0 é ponto crítico de f se, e somente se, a derivada f' muda de sinal ao passar por x_0 .

Exemplo 1.12.

Classifique os extremos locais de
$$f(x) = \frac{x^4}{4} - x^3 - 2x^2 + 3$$
.

 Em muitas situações é útil o resultado abaixo (consequência do Teorema do Valor Intermediário)

Proposição 1.13.

Seja $g: I \to \mathbb{R}$ contínua, I intervalo, tal que $g(x) \neq 0$ para todo $x \in I$. Se g(c) > 0 para algum $c \in I$ então g(x) > 0 para todo $x \in I$.

Exemplo 1.14

Faça um esboço do gráfico de
$$f(x) = \frac{x^2}{x^2 - 1}$$

Exemplo 1.12.

Classifique os extremos locais de
$$f(x) = \frac{x^4}{4} - x^3 - 2x^2 + 3$$
.

 Em muitas situações é útil o resultado abaixo (consequência do Teorema do Valor Intermediário)

Proposição 1.13.

Seja $g: I \to \mathbb{R}$ contínua, I intervalo, tal que $g(x) \neq 0$ para todo $x \in I$. Se g(c) > 0 para algum $c \in I$ então g(x) > 0 para todo $x \in I$.

Exemplo 1.14.

Faça um esboço do gráfico de
$$f(x) = \frac{x^2}{x^2 - 1}$$

Exemplo 1.12.

Classifique os extremos locais de
$$f(x) = \frac{x^4}{4} - x^3 - 2x^2 + 3$$
.

 Em muitas situações é útil o resultado abaixo (consequência do Teorema do Valor Intermediário)

Proposição 1.13.

Seja $g: I \to \mathbb{R}$ contínua, I intervalo, tal que $g(x) \neq 0$ para todo $x \in I$. Se g(c) > 0 para algum $c \in I$ então g(x) > 0 para todo $x \in I$.

Exemplo 1.14

Faça um esboço do gráfico de
$$f(x) = \frac{x^2}{x^2 - 1}$$

Exemplo 1.12.

Classifique os extremos locais de
$$f(x) = \frac{x^4}{4} - x^3 - 2x^2 + 3$$
.

 Em muitas situações é útil o resultado abaixo (consequência do Teorema do Valor Intermediário)

Proposição 1.13.

Seja $g: I \to \mathbb{R}$ contínua, I intervalo, tal que $g(x) \neq 0$ para todo $x \in I$. Se g(c) > 0 para algum $c \in I$ então g(x) > 0 para todo $x \in I$.

Exemplo 1.14.

Faça um esboço do gráfico de
$$f(x) = \frac{x^2}{x^2 - 1}$$
.