

第1章 MATLAB基础

∰ 讲授人: 牛言涛
∅ 日期: 2020年2月14日

MATLAB简介

目录 CONTENTS ■2 案例——蹦极运动员

MATLAB基本使用方法

]4 MATLAB数学运算

15 脚本文件与函数文件

1. MATLAB中的常用数学函数

名称	含义	名称	含义	名称	含义	名称	含义
sin	正弦	acot	反余切	cosh	双曲余弦	acoth	反双曲余切
cos	余弦	sec	正割	coth	双曲余切	sech	双曲正割
tan	正切	CSC	余割	asinh	反双曲正弦	csch	双曲余割
cot	余切	asec	反正割	acosh	反双曲余弦	asech	反双曲正割
asin	反正弦	acsc	反余割	atanh	反双曲正切	atan2	四象限反正切
atan	反正切	sinh	双曲正弦	exp	E为底的指数	log10	10为底的对数
pow2	2的幂	log	自然对数	log2	2为底的对数	sqrt	平方根
abs	绝对值	conj	复数共轭	real	复数实部	angle	相角
imag	复数虚部						

三角函数 以弧度为 单位计算

 $log_{M}(N) =$ log(N)/log (M)

简单数学函数运算示例

• 例: 设
$$a = 5.67$$
, $b = 7.8$, 求 $\frac{e^{a+b}}{\lg(a+b)}$, $\ln(b-a)$, $a \wedge b$

• 例: 计算
$$\frac{\sin(|x|+|y|)}{\sqrt{\cos(|x+y|)}}$$
 的结果, 其中 $x = -3.5^{\circ}, y = 6.7^{\circ}$

• Ø]:
$$y = \frac{1}{2} \ln(x + \sqrt{1 + x^2})$$
, 其中 $x = \begin{bmatrix} 2 & 1 + 2i \\ -0.45 & 5 \end{bmatrix}$

•
$$\sqrt{9}$$
: $y = \frac{e^{0.3a} - e^{-0.3a}}{2} \cdot \sin(a + 0.3), a = -3.0, -2.9, -2.8, \dots, 2.8, 2.9, 3.0$

1. MATLAB中的常用数学函数

名称	含义	名称	含义	名称	含义	
	圆整函数和求余函数					
ceil	向+∞圆整	mod	模除求余	round	向靠近整数圆整	
fix	向0圆整 (取整)	rem	求余数	sign	符号函数	
floor	向-∞圆整					
mod: 7	下管"被除数"是正是负,"统	余数"的符	号与"除数"的符号相同;			
rem: 不	管"除数"是正是负,"余数	b"的符号与	亏"被除数"的符号相同。			
		<u>.</u>	矩阵变换函数			
fliplr	矩阵左右翻转	rot90	矩阵反时针90翻转	tril	产生下三角	
flipud	矩阵上下翻转	diag	产生或提取对角阵	triu	产生上三角	
flipdim	矩阵特定维翻转					

1. MATLAB中的常用数学函数

数据分析函数

名称	含义	名称	含义	名称	含义
min	最小值	prod	总乘积	diff	相邻元素的差
mean	平均值	cumsum	累计元素总和	length	个数
std	标准差	cross	外积	sum	总和
sort	排序	max	最大值	dot	内积
norm	欧氏 (Euclidean) 长度	median	中位数	cumprod	累计元素总乘积

2. MTLAB的数学运算符

符号	功能	符号	功能
+	加法 3+5=8	\	左除 3\5=1.6667
_	减法 3-5=-2	.\	数组左除
*	矩阵乘法 3*5=15	٨	乘方 3 ^{^5} =243
.*	乘,点乘,即数组乘法	. ^	数组乘方
/	右除 3/5=0.6000	,	矩阵共轭转置
./	数组右除		矩阵转置

%定义矩阵A和矩阵B

>> A = round(rand(3)*10)

>> B = magic(3)

%矩阵的叉乘和点乘

>> C1 = A*B

>> C2 = A.*B

在可逆形式下转换成逆矩阵,右除对右边矩阵逆,左除对左边矩阵逆。

1.C/B=C*(inv(B)) (C右除B等于C乘以B的逆)

2. A\C=inv(A)*C (A左除C=A的逆乘以C

%矩阵的左除与右除

>> D1 = A./B

 $>> D2 = A.\B$

%矩阵的乘方

 $>> E1 = A.^2$

 $>> E2 = A^2$

带"."的运算方式

表示对矩阵的元素进行运算

3. MTLAB标点符号的使用

标点符号	定义	标点符号	定义	标点符号	定义
分号;	数组行分隔符; 取消运行显示	方括号 []	定义矩阵	引号 "	定义字符串
逗号 ,	数组列分隔符; 函数参数分隔符	花括号 {}	定义单元数组	等号 =	赋值语句
冒号:	在数组中应用较多,如 生成等差数列	点 .	小数点; 结构体成员访问	感叹号!	调用操作系统运算
圆括号()	指定运算优先级; 函数参数调用; 数组索引	省略号	续行符	百分号 %	注释语句的标识

例1: 以下方程可用于计算作为x函数的y值:

$$y = be^{-ax} \sin(bx)(0.012x^4 - 0.15x^3 + 0.075x^2 + 2.5x)$$

其中a=2, b=5, x是以 $\Delta x=\pi/40$ 为增量, 保存了从0到 $\pi/2$ 间值的向量。

- (1) 计算向量 $z=y^2$ 。
- (2) 将x、y和z组合成矩阵w,其中一列保存其中一个变量,并使用short g格式显示w。
- (3) 此外,生成y和Z随X变化的标记了轴的图。
- (4) 对于 y , 使用1.5点线宽、红色的破折号虚线,以及14点大小、红边、白色的五角形标记。
- (5) 对于Z,使用标准尺寸的蓝实线与标准尺寸的蓝边、绿色方形标记。


```
a = 2; b = 5;
```

x = 0:pi/40:pi/2; %增量为pi/40

y = b*exp(-a*x).*sin(b*x).*(0.012*x.^4-0.15*x.^3+0.075*x.^2+2.5*x); %点乘的意义

z = y.^2; %点乘的意义

w(:,1) = x; %组成w, 第一列为x

w(:,2) = y; %组成w, 第二列为y

w(:,3) = z; %组成w, 第三列为z

format short g; %短格式显示

w %不加分号,显示数据

%绘图显示,注意各种符号的属性设置

plot(x,y,'--rp','LineWidth',1.5,'MarkerSize',15,'MarkerEdgeColor','r','MarkerFaceColor','w');

hold on

plot(x,z,'b-s','MarkerEdgeColor','b','MarkerFaceColor','g');

legend('y关于x曲线','z关于y的曲线');

例2:电容上的电量q(t)为时间的函数,可以根据下式计算:

$$q(t) = q_0 e^{-Rt/(2L)} \cos \left[\sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2} t \right]$$

其中 q_0 为初始电量,R为电阻,L为电感,C为电容。绘制该函数从t=0到t=0.8之间的图形。假定 $q_0=10$, R=60, C=0.00005,L取值范围3~12,增量为3.

思考的问题:

- 1、数学公式的输入问题?
- 2、数学运算符的使用问题?
- 3、绘图问题?

建立脚本文件,定义变量,输入公式,数值求解,绘图显示

```
q0 = 10; R = 60; C = 0.00005; t = linspace(0,0.8,100);
styleline = {'r-','b--','m:','c-.'};
leg = { } ;
i = 1; Otl(1,:) = t;
for L = 3:3:12
  qt = q0*exp(-R*t/2/L).*cos(sqrt(1/L/C-(R/2/L)^2).*t);
  Qtl(i+1,:) = qt;
  plot(Qtl(1,:),Qtl(i+1,:),styleline{i});
  plot(t,qt,styleline{i},'LineWidth',2);
                                           .*运算符的作用;
  leg{i} = strcat('L = ', num2str(L));
                                           各种数学函数的运
  i = i + 1;
                                           用问题
  hold on
end
title('电量随时间的变化曲线'); legend(leg,'location','best');
xlabel('t(s)'); ylabel('q(t)'); grid on
```


5. 运算符——关系运算符

• MATLAB 的关系运算符能用来比较两个相同大小的数组,或用来比较一个数组和一个标量。

运算符	说明	运算符	说明	运算符	说明
<、>	小于、大于	<=	小于或等于	==	等于
~=	不等于	>=	大于或等于		

例3:在 $[0,3\pi]$ 区间,求y = sin(x)的值。要求:

- (1) 消去负半波,即 $(\pi,2\pi)$ 区间内的函数值置0。
- (2) $(\pi/3, 2\pi/3)$ 和 $(7\pi/3, 8\pi/3)$ 区间内取值均为sin $\pi/3$ 。

%按要求处理第(1)步 x=0:pi/100:3*pi; y=sin(x); y1=(y>=0).*y; %消去负半波 p=sin(pi/3);

%按要求处理第(2)步 y2=(y>=p)*p+(y<p).*y1; plot(x,y,'r-','LineWidth',2) hold on; grid on plot(x,y2,'b-','LineWidth',2)

5. 运算符——逻辑运算符

• 使用逻辑运算符可以将多个表达式组合在一起,或者对关系表达式取反。

ì	运算符	描述	运算符	描述
	&、	数组逻辑与、数组逻辑或		短路逻辑或,只适用于标量。 a b, 当 a 的值为真时,则忽略 b 的值
	&&	短路逻辑与,只适用于标量。 a && b, 当 a 的值为假时,则忽略 b 的值	~	非

例4: 假设某概率密度函数由下面分段函数表示

$$p(x_1, x_2) = \begin{cases} 0.5457 e^{-0.75x_2^2 - 3.75x_1^2 - 1.5x_1}, & x_1 + x_2 > 1 \\ 0.7575 e^{-x_2^2 - 6x_1^2}, & -1 < x_1 + x_2 \le 1 \\ 0.5457 e^{-0.75x_2^2 - 3.75x_1^2 + 1.5x_1}, & x_1 + x_2 \le -1 \end{cases}$$

 $[x,y] = meshgrid(-1:.04:1,-2:.04:2);%生成网格点 z = 0.5457*exp(-0.75*y.^2-3.75*x.^2-1.5*x).*(x+y>1)+... 0.7575*exp(-y.^2-6*x.^2).*((x+y>-1)&(x+y<=1))+... 0.5457*exp(-0.75*y.^2-3.75*x.^2+1.5*x).*(x+y<=-1);$

surf(x,y,z); %绘制三维曲面图 shading flat; %去掉图上的网格线

续行符

5. 运算符——运算符优先级

序号	运算符
1	圆括号 ()
2	转置 (.'), 共轭转置 ('), 乘方 (.^), 矩阵乘方 (^)
3	标量加法 (+)、减法 (-)、取反 (~)
4	乘法 (.*), 矩阵乘法 (*), 右除 (./), 左除 (.\), 矩阵右除 (/), 矩阵左除 (\)
5	加法 (+), 减法 (-), 逻辑非 (~)
6	冒号运算符 (:)
7	小于 (<),小于等于 (<=),大于 (>),大于等于 (>=),等于 (==),不等于 (~=)
8	数组逻辑与 (&)
9	数组逻辑或 ()
10	逻辑与 (&&)
11	逻辑或 ()

5. 运算符——位操作函数

· 所有数据在计算机中是转化为<mark>二进制</mark>进行操作的,因此有必要对数据进行按位操作。

函数	功能	调用格式举例
bitand	按位进行"与"操作	C = bitand(A, B)
bitcmp	按位进行"补"操作	C = bitcmp(A), C = bitcmp(A, n)
bitget	获取指定位置的值	C = bitget(A, bit)
bitmax	获取双精度浮点整数的最大值	bitmax
bitor	按位进行"或"操作	C = bitor(A, B)
bitset	设定指定位置的值	C = bitset(A, bit), C = bitset(A, bit, v)
bitshift	移位操作	C = bitshift(A, k), C = bitshift(A, k, n)
bitxor	按位进行"异或"操作	C = bitxor(A, B)
swapbytes	按字节进行"逆"操作	Y = swapbytes(X)

5. 运算符——逻辑运算函数

函 数	功能	调用格式举例
all	判断数组元素是否全部非零	B = all(A), B = all(A, dim)
any	判断数组是否存在非零元素	B = any(A), B = any(A, dim)
false	逻辑0(假)	False, false(n) 等
find	查找非零元素的下标及其值	ind = find(X), ind = find(X, k) 等
is*	查看元素状态	代表一类函数,如 iscell 等
isa	判断输入是否为给定类的对象	K = isa(obj, 'class_name')
iskeyword	判断字符串是否为 MATLAB关键字	tf = iskeyword('str'), iskeyword str
isvarname	判断字符串是否为有效变量名	tf = isvarname('str'), isvarname str
logical	将数值变量转化为逻辑变量	K = logical(A)
true	逻辑 1(真)	True, true(n) 等
xor	逻辑"异或"	C = xor(A, B)

5. 运算符——集合函数

函数	功能	调用格式举例
intersect	计算两个集合的交集	c = intersect(A, B)
ismember	集合的数组成员	tf = ismember(A, S); tf = ismember(A, S, 'rows')
setdiff	向量的集合差	c = setdiff(A, B); c = setdiff(A, B, 'rows')
issorted	判断几何元素是否按序排列	tf = issorted(A); tf = issorted(A, 'rows')
setxor	集合异或	c = setxor(A, B); c = setxor(A, B, 'rows')
union	两个向量的集合并	c = union(A, B); c = union(A, B, 'rows')
unique	删除集合中的重复元素	b = unique(A); b = unique(A, 'rows')

5. 运算符——时间和日期函数

逐数	功能	调用格式举例
addtodate	通过域修改日期	R = addtodate(D, N, F)
calendar	返回指定月的日历	c = calendar, c = calendar(d)
clock	返回当前时间的向量	c = clock
cputime	返回CPU运行时间	cputime
date	返回当前日期字符串	str = date
datenum	将时间和日期转化为日期格式	N = datenum(V) N = datenum(S, F)
datestr	将时间和日期转化为字符串格式	S = datestr(V), S = datestr(N)
datevec	将时间和日期转化为向量格式	V = datevec(N), V = datevec(S, F)
eomday	返回指定月的最后一天	E = eomday(Y, M)
etime	时间向量之间的时间间隔	e = etime(t2, t1)
now	当前日期及时间	t = now
tic, toc	计时器	tic any statements toc
weekday	返回指定日期的星期日期	[N, S] = weekday(D)

>> calendar %返回指定月的日历 Feb 2020 S M Tu Th F S 0 0 3 5 8 9 10 12 13 14 15 11 16 17 18 19 26 28 29 0 0 0 >> time = clock %返回当前时间的向量 time = 1.0e+03 * 2, 0200 0.0020 0.0140 0.0150 0.0080 0.0484 >> date %返回当前日期字符串 ans = 14-Feb-2020 >> datestr(clock) %将时间和日期转化为字符串格式 ans = 14-Feb-2020 15:08:59 >> now ans = 7.3784e+05 >> datestr(now) ans = 14-Feb-2020 15:09:28

5. 运算符——时间和日期函数

• 例5:求解级数求和问题 $S = \sum_{i=1}^{100000} \left(\frac{1}{2^i} + \frac{1}{3^i} \right)$

```
seriestime.m × +
      %% 使用循环的方法求解级数和
     tic %标记时间开始
         s1 = 0:
    \Box for i = 1:100000
             s1 = s1 + 1./2^i + 1./3^i:
        end
      toc %标记时间结束
      disp(strcat('循环 级数求和: S1 = ', num2str(s1)))
      %% 使用向量化的思想求级数和
10 -
      tic
11 -
      i = 1:100000
12 -
        s2 = sum(1./2.^i + 1./3.^i):
13 -
      toc
      disp(streat('向量化级数求和: S2 = ', num2str(s2)))
```

>> seriestime 时间已过 0.025414 秒。 循环 级数求和: S1 =1.5 时间已过 0.007113 秒。 向量化级数求和: S2 =1.5

向量化所需的时间相当于循环结构的37.5%。

感谢聆听