Prednášky z Matematiky (4) — Logiky pre informatikov

Ján Kľuka, Jozef Šiška

Katedra aplikovanej informatiky FMFI UK Bratislava

Letný semester 2017/2018

6. prednáška

Korektné pravidlá Rezolvencia

26. marca 2018

Obsah 6. prednášky

2 Výroková logika Tablový kalkul Nové korektné pravidlá Rezolvencia vo výrokovej logike Späť k dôkazom o vyplývaní

2.8

Tablový kalkul

2.8.5

Nové korektné pravidlá

Ingrediencie korektnosti a úplnosti tabiel

Všimnite si:

 Na dokázanie korektnosti tablového kalkulu stačilo, aby mali pravidlá vlastnosť:

Nech v je ohodnotenie. Ak v spĺňa premisu (a množinu S^+), tak spĺňa oba (α) závery/aspoň jeden (β) záver.

- ► Vďaka tejto vlastnosti zo splniteľnej množiny S⁺ skonštruujeme iba splniteľné tablá.
- Netreba opačnú implikáciu (ak v spĺňa oba/jeden záver, tak spĺňa premisu).
- Na dôkaz úplnosti stačili pravidlá (S⁺), α, β, pretože stačia na vybudovanie úplného tabla.

Nové pravidlo

Čo sa stane, ak pridáme nové pravidlo, napríklad disjunktívny sylogizmus:

$$\frac{\mathsf{T}(\mathsf{A}\vee\mathsf{B})\quad\mathsf{F}\mathsf{A}}{\mathsf{T}\mathsf{B}}\qquad?\tag{DS_1}$$

Upravíme definíciu priameho rozšírenia:

Úprava definície tabla

(...) Nech \mathcal{T} je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé *priame rozšírenie* \mathcal{T} ktoroukoľvek z operácií:

DS₁: Ak sa na vetve π_y nachádzajú *obe* formuly $T(A \vee B)$ a FA, tak ako jediné dieťa y pripojíme nový vrchol obsahujúci TB.

Nové pravidlo vs. korektnosť a úplnosť

- Pravidlo (DS₁) je korektné:
 - Nech v je ľubovoľné ohodnotenie.
 - Ak v spĺňa $T(A \vee B)$ a FA, tak v spĺňa TB.
 - Keďže $v \models T(A \lor B)$, tak $v \models (A \lor B)$, teda $v \models A$ alebo $v \models B$.
 - Pretože ale $v \models FA$, tak $v \not\models A$. Takže $v \models B$.
- Preto stále dokážeme lemu K1 (??):
 - Nech S^+ je množina označených formúl, nech \mathcal{T} je tablo pre S^+ a v je ohodnotenie množiny výrokových premenných.
 - Ak v spĺňa S^+ a v spĺňa \mathcal{T} ,
 - tak v spĺňa aj každé priame rozšírenie \mathcal{T} .
 - Z nej dokážeme K2 a vetu o korektnosti
- Pridanie pravidla neohrozuje úplnosť (doterajšími pravidlami stále vybudujeme úplné tablo).

Nové pravidlá vo všeobecnosti

Definícia 2.82 (Tablové pravidlo a jeho korektnosť)

Nech n a k sú prirodzené čísla, $n \ge 0$, k > 0, nech $P_1^+, \ldots, P_n^+, C_1^+, \ldots, C_{\nu}^+$ sú označené formuly nad výrokovými premennými $\{q_1, \ldots, q_m\}$.

Tablové pravidlo R je množina dvojíc *n*-tíc a *k*-tic označených formúl

$$R = \left\{ \frac{P_{1}^{+}_{[a_{1}|X_{1},...,a_{m}|X_{m}]} \cdots P_{n}^{+}_{[a_{1}|X_{1},...,a_{m}|X_{m}]}}{C_{1}^{+}_{[a_{1}|X_{1},...,a_{m}|X_{m}]} \middle| \dots \middle| C_{k}^{+}_{[a_{1}|X_{1},...,a_{m}|X_{m}]} \middle| X_{1},...,X_{m} \in \mathcal{E} \right\},$$

ktoré vzniknú súčasnou substitúciou formúl X_1, \ldots, X_m za premenné q_1, \ldots, q_m v označených formulách $P_1^+, \ldots, P_n^+, C_1^+, \ldots, C_k^+$. Prvky hornej *n*-tice nazývame *premisy*, prvky dolnej *k*-tice nazývame *závery*. Každý prvok R nazývame *inštancia* pravidla R.

Tablové pravidlo R je korektné (tiež zdravé z angl. sound) vtt pre každé ohodnotenie výrokových premenných v platí, že ak v spĺňa všetky premisy P_1^+, \ldots, P_n^+ , tak v spĺňa niektorý záver C_1^+, \ldots, C_k^+ .

Nové pravidlá vo všeobecnosti

Úprava definície tabla

```
(...)
```

- ..
- Nech $\mathcal T$ je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé *priame rozšírenie* $\mathcal T$ ktoroukoľvek z operácií:

:

R: Ak sa pre nejakú inštanciu pravidla *R* na vetve π_y nachádzajú všetky premisy $P_1^+, \ldots, P_n^+,$ tak k uzlu y pripojíme *k* nových vrcholov obsahujúcich postupne závery $C_1^+, \ldots, C_k^+.$

Rezolvencia vo výrokovej logike

Tranzitivita implikácie

Vráťme sa k neoznačeným formulám. Je nasledujúce pravidlo korektné?

$$\frac{(A \to B) \qquad (B \to C)}{(A \to C)}$$

Nahraďme implikácie disjunkciami:

$$\frac{(\neg A \lor B) \qquad (\neg B \lor C)}{(\neg A \lor C)}$$

Rezolvencia

Predchádzajúce pravidlo sa dá zovšeobecniť na ľubovoľné dvojice klauzúl:

Definícia 2.83

Rezolvenčný princíp (rezolvencia, angl. resolution principle) je pravidlo

$$\frac{(k_1 \vee \cdots \vee p \vee \cdots \vee k_m) \quad (\ell_1 \vee \cdots \vee \neg p \vee \cdots \vee \ell_n)}{(k_1 \vee \cdots \vee k_m \vee \ell_1 \vee \cdots \vee \ell_n)}$$

pre ľubovoľnú výrokovú premennú p a ľubovoľné literály $k_1, \ldots, k_m, \ell_1, \ldots, \ell_n$.

Klauzulu
$$(k_1 \lor \cdots \lor k_m \lor \ell_1 \lor \cdots \lor \ell_n)$$
 nazývame **rezolventou** klauzúl $(k_1 \lor \cdots \lor p \lor \cdots \lor k_m)$ a $(\ell_1 \lor \cdots \lor \neg p \lor \cdots \lor \ell_n)$.

Tvrdenie 2.84

Rezolvencia je korektné pravidlo, teda rezolventa je logickým dôsledkom množiny obsahujúcej obe premisy.

Špeciálne prípady rezolvencie

Viacero pravidiel sa dá chápať ako špeciálne prípady rezolvencie:

$$\frac{(\neg p \lor q) \quad (\neg q \lor r)}{(\neg p \lor r)} \qquad \frac{(p \to q) \quad (q \to r)}{(p \to r)} \qquad \text{(tranzitivita} \to)}{\frac{(\neg p \lor \ell) \quad p}{\ell}} \qquad \frac{(p \to \ell) \quad p}{\ell} \qquad \text{(modus ponens)}}{\frac{(p \to q) \quad \neg q}{\neg p}} \qquad \frac{(p \to q) \quad \neg q}{\neg p} \qquad \text{(modus tolens)}$$

Pozorovania o rezolvencii

Rezolvencia s jednotkovou klauzulou skráti druhú klauzulu:

$$\frac{\neg q \quad (p \lor q \lor \neg r)}{(p \lor \neg r)}$$

• Nie každý logický dôsledok sa dá odvodiť rezolvenciou:

$$\{p,q\} \models (p \lor q)$$

Pozorovania o rezolvencii

Ak rezolvencia odvodí prázdnu klauzulu

premisy nie sú súčasne splniteľné

 Niektoré dvojice klauzúl možno rezolvovať na viacerých literáloch, ale je nekorektné urobiť to naraz:

$$\frac{(\neg p \lor q) \quad (p \lor \neg q)}{(q \lor \neg q)} \quad \frac{(\neg p \lor q) \quad (p \lor \neg q)}{(\neg p \lor p)} \quad \frac{(\neg p \lor q) \quad (p \lor \neg q)}{(\neg p \lor q)}$$

Prečo?

Lebo
$$\{(\neg p \lor q), (p \lor \neg q)\}$$
 je splniteľná $(v_1 = \{p \mapsto t, q \mapsto t\}, v_2 = \{p \mapsto f, q \mapsto f\}),$ ale \square je nesplniteľná

Problematické prípady

Opakovaným aplikovaním rezolvencie môžeme odvodzovať ďalšie dôsledky

Príklad 2.85

Z množiny $S = \{(\neg p \lor r), (\neg q \lor r), (p \lor q)\}$ odvodíme $(r \lor r)$:

- \bigcirc $(\neg p \lor r)$ predpoklad z S
- 2 $(\neg q \lor r)$ predpoklad z S
- 3 $(p \lor q)$ predpoklad z S
- 4 $(r \lor q)$ rezolventa (1) a (3)
- $(r \lor r)$ rezolventa (2) a (4)
- Klauzula (r ∨ r) je evidentne ekvivalentná s r;
 r sa ale z množiny S iba rezolvenciou odvodiť nedá
- Preto potrebujeme ešte *pravidlo idempotencie*:

$$\frac{(k_1 \vee \cdots \vee \ell \vee \cdots \vee \ell \vee \cdots \vee k_n)}{(k_1 \vee \ell \vee \cdots \vee k_n)}$$

Rezolvenčné odvodenie a zamietnutie

Definícia 2.86

Rezolvenčné odvodenie z množiny klauzúl S je každá (aj nekonečná) postupnosť klauzúl $C_1, C_2, \ldots, C_n, \ldots$, ktorej každý člen C_i je:

- prvkom S alebo
- rezolventou dvoch predchádzajúcich klauzúl C_j a C_k pre j < i a k < i, alebo
- záverom pravidla idempotencie pre nejakú predchádzajúcu klauzulu C_i, j < i.

Zamietnutím (angl. *refutation*) množiny klauzúl S je konečné rezolvenčné odvodenie, ktorého posledným prvkom je prázdna klauzula □.

Definícia 2.87

Množinu klauzúl budeme nazývať aj klauzálna teória.

Korektnosť a úplnosť rezolvencie

Veta 2.88 (Korektnosť rezolvencie)

Nech S je množina klauzúl.

Ak existuje zamietnutie S, tak S je nesplniteľná.

Veta 2.89 (Úplnosť rezolvencie)

Nech S je množina klauzúl.

Ak S je nesplniteľná, tak existuje zamietnutie S.

2.10

Späť k dôkazom o vyplývaní

Konzultácie a termín pre 6. sadu úloh

- Ak chcete
 - získať spätnú väzbu na riešenie nehodnotených úloh,
 - poradiť sa o riešení aktuálnej sady úloh (teoretických aj praktických),
 - poradiť sa o obsahu prednášok,
 - dať nám spätnú väzbu na obsah alebo formu vyučovania predmetu,

využívajte konzultačné hodiny:

streda od 13:10 do 14:30 v I-7 alebo I-16

Riešenie 6. sady úloh odovzdajte

najneskôr vo štvrtok 5. apríla 2018 o 13:00 v kancelárii I-7 alebo I-16

Uvažovanie o vyplývaní

Cvičenie 2.90

sada úloh 3, úloha 3 Nech X a Y sú ľubovoľné výrokové formuly, nech T je ľubovoľná výroková teória.

Dokážte alebo vyvráťte:

- **c** Ak $T \models \neg X$, tak $T \not\models X$.
- d Ak $T \not\models X$, tak $T \models \neg X$.

su03/3c) Ak $T \models \neg X$, tak $T \not\models X$

Riešenie 2.90 (c)

Zoberme ľub. teóriu T a formulu X také, že $T \models \neg X$. Aby tvrdenie platilo:

- musí T |≠ X, teda (podľa definície vyplývania)
- nesmie byť pravda, že každé ohodnotenie spĺňajúce T spĺňa aj X, teda
- musí existovať ohodnotenie, ktoré spĺňa T a nespĺňa X, teda
- T musí byť splniteľná. Predpoklad T |= ¬X to však nezaručuje:
 T |= ¬X platí aj pre nesplniteľnú T (a vtedy dokonca pre ľubovoľnú X).

Tvrdenie teda neplatí a vieme ho vyvrátiť konkrétnym kontrapríkladom:

- Zoberme $T = \{(p \land \neg p)\}\ a X = p$.
- Pre <u>l'ubovolné</u> ohodnotenie v platí $v \not\models T$, teda platia aj implikácie: i. ak $v \models T$, tak $v \models \neg X$, ii. ak $v \models T$, tak $v \models X$, lebo ich <u>antecedenty</u> sú nepravdivé.
- Ich zovšeobecnením dostávame: i. $T \models \neg X$ a ii. $T \models X$.

J. Kľuka, J. Šiška

su03/3d) Ak $T \not\models X$, tak $T \models \neg X$

Riešenie 2.90 (d)

Zoberme ľubovoľnú teóriu T a formulu X také, že $T \not\models X$.

- Aby tvrdenie platilo, musí $T \models \neg X$, teda
- každé ohodnotenie v spĺňajúce T musí spĺňať aj ¬X.
- Podľa predpokladu a definície vyplývania existuje ohodnotenie v také, že v |= T a v |≠ X, teda aj v |= ¬X.
- Ale to nestačí na to, aby pre ľubovoľné ohodnotenie v', ktoré spĺňa T, tiež platilo v' |≠ X a teda aj v' |= ¬X.

Tvrdenie teda neplatí a vieme ho vyvrátiť konkrétnym kontrapríkladom:

- Zoberme $T = \{p\}$ a X = q.
- Pre ohod. $v = \{p \mapsto t, q \mapsto f\}$ máme $v \models T$ a $v \not\models X$, preto $T \not\models X$.
- Pre ohod. $v = \{p \mapsto t, q \mapsto t\}$ máme $v \models T$ a $v \not\models \neg X$, preto $T \not\models \neg X$.
- Teda $T \not\models X$ a $T \not\models \neg X$.

su03/3e) $T \models (X \rightarrow Y)$ vtt $T \cup \{X\} \models Y$

Riešenie 2.90 (e, smer \Rightarrow)

Zoberme ľubovoľnú teóriu T a formuly X a Y také, že $T \models (X \rightarrow Y)$, teda pre každé ohodnotenie v platí, že ak $v \models T$, tak $v \models (X \rightarrow Y)$.

Aby $(e \Rightarrow)$ platilo, musí $T \cup \{X\} \models Y$, teda

pre každé ohodnotenie v musí platiť, že (*) ak $v \models T \cup \{X\}$, tak $v \models Y$.

Zoberme teda <u>l'ubovolné</u> ohodnotenie v.

- Ak $v \not\models T \cup \{X\}$, vlastnosť (*) platí, lebo jej antecedent je nepravdivý.
- Ak $v \models T \cup \{X\}$, tak $v \models T$ a $T \models X$ a musíme ukázať, že $v \models Y$.
 - $ightharpoonup Z v \models T$ a predpokladu, vyplýva, že $v \models (X \rightarrow Y)$, teda
 - ► (a) $v \not\models X$ alebo (b) $v \models Y$ podľa definície spĺňania.
 - Podľa T |= X prípad (a) nenastáva,
 - ► takže v |= Y.

Vlastnosť (*) teda platí aj v tomto prípade.

Ďalšie možnosti nie sú. Môžeme teda zovšeobecniť, že $T \cup \{X\} \models Y$, č.b.t.d.

su03/3e) $T \models (X \rightarrow Y)$ vtt $T \cup \{X\} \models Y$

Riešenie 2.90 (e. smer \Leftarrow)

Zoberme ľubovoľnú teóriu T a formuly X a Y také, že T ∪ {X} |= Y, teda pre každé ohodnotenie v platí, že ak $v \models T$, tak $v \models (X \rightarrow Y)$.

Aby (e \Leftarrow) platilo, musí $T \models (X \rightarrow Y)$, teda

pre každé ohodnotenie v musí platiť, že (*) ak $v \models T$, tak $v \models (X \rightarrow Y)$.

Zoberme teda <mark>ľubovoľné</mark> ohodnotenie v.

- Ak v |≠ T, vlastnosť (*) platí.
- Ak $v \models T$, musíme ukázať, že $v \models (X \rightarrow Y)$.
 - Ak $v \not\models X$, tak $v \models (X \rightarrow Y)$, a teda (*) platí.
 - Ak $v \models X$, tak $v \models T \cup \{X\}$, teda podľa predpokladu $v \models Y$. Preto $v \models (X \rightarrow Y)$.

Vlastnosť (*) teda znova platí.

Ďalšie možnosti nie sú. Môžeme teda zovšeobecniť, že $T \models (X \rightarrow Y)$, č.b.t.d.

Problémy v dôkazoch (1)

Používanie pojmov splnenie a vyplývanie

- ohodnotenie v spĺňa formulu X
- formula X je splnená v ohodnotení v
- v ⊨ X
- formula X spĺňa ohodnotenie v
- ohodnotenie v spĺňa teóriu T
- teória T je splnená
 v ohodnotení v
- v |= T
- teória T spĺňa ohodnotenie v

- z teórie T vyplýva formula X
- 🗸 formula X vyplýva z teórie T
- formula X je (logickým) dôsledkom teórie T
- teória T má (logický) dôsledok X
- ▼ T |= X
- z ohodnotenia v vyplýva…
- z formuly X vyplýva teória T

Problémy v dôkazoch (2)

Ignorovanie pojmov a ich definícií

- Niektorí úplne ignorovali, že pojmy vyplývanie a splnenie majú presný dohodnutý význam
- Hovorili o pravdivosti bez ohodnotenia alebo o vyplývaní bez teórie

Definície pojmov a ich negovanie

- Z T vyplýva X (T |= X) vtt
 - \bigcirc pre všetky ohodnotenia v, ak $v \models T$, tak $v \models X$
 - každý model v teórie T spĺňa X
 - \bigcirc pre **všetky** ohodnotenia v, $v \models T$ **a** $v \models X$
 - \bigcirc existuje ohodnotenie v také, že $v \models T$ a $v \models X$
 - \bigcirc existuje ohodnotenie v také, že ak $v \models T$, tak $v \models X$
- ZT nevyplýva $X(T \not\models X)$ vtt
 - \bigcirc existuje ohodnotenie v také, že v $\models T$ a v $\not\models X$
 - existuje model v teórie T, ktorý nespĺňa X

Problémy v dôkazoch (3)

Skríženie pojmov splnenia a vyplývania

- \triangle Vyplývanie z teórie ($T \models X$) sa správa inak ako splnenie formuly ohodnotením ($v \models X$)
 - \bigcirc $v \models \neg X \text{ vtt } v \not\models X$ priamo z definície splnenia formuly ohodnotením
 - T |= ¬X vtt T |≠ X neplatí ani v jednom smere (videli sme pred chvíľou)
- A Symbol ⊨ sa (žiaľ) používa pre oba pojmy

Skoky v uvažovaní veľké a nezdôvodnené

- \triangle Ak $T \models (X \rightarrow Y)$, tak $T \not\models X$ alebo $T \models Y$.
- igorplus Ak $T \not\models X$ alebo $T \models Y$, tak $T \models (X \rightarrow Y)$.
- Ak v ⊭ T. tak T ie nesplniteľná.

Problémy v dôkazoch (4)

- Neuvedomenie si toho, čo treba dokázať Rozoberú sa možnosti vyplývajúce z predpokladov, ale nezistí sa, či platí požadovaný záver
- Uvažovanie v kruhu
 Použitie toho, čo máme dokázať, na zdôvodnenie nejakého kroku
- Snaha uvažovať naraz o všetkých modeloch/ohodnoteniach
- Vyslovte jasne, akú vlastnosť majú mať všetky ohodnotenia
 - Zoberte jedno ohodnotenie, o ktorom nič nepredpokladáte ("ľubovoľné")
 - 3 Overte, či má za každých okolností požadovanú vlastnosť
 - 4 Zovšeobecnite, že požadovanú vlastnosť majú všetky ohodnotenia
- Snaha uvažovať súbežne o viacerých možnostiach
- Uvažujte prípady postupne a oddelene, vyčerpajte všetky možnosti

Problémy v dôkazoch (5)

Uvažovanie o formulách a teóriách, akoby to boli výrokové premenné

- Ohodnotenie v priraďuje t alebo f iba výrokovej premennej (v(p) = t, v(p) = f, v(X) = t, v(X = t) = t, v(T) = t)
- Formula X je v ohodnotení v splnená (v \models X) alebo nesplnená (v $\not\models$ X)
- Teória T je v ohodnotení v splnená ($v \models T$) alebo nesplnená ($v \not\models T$)

Literatúra

- Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994. ISBN 978-0-201-53082-7.
- Raymond M. Smullyan. Logika prvého rádu. Alfa, 1979. Z angl. orig. First-Order Logic, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.
- Vítězslav Šveidar, Logika: neúplnost, složitost, nutnost, Academia, 2002. Prístupné aj na http://www1.cuni.cz/~svejdar/book/LogikaSve2002.pdf.