Globally convergent decomposition algorithm for risk parity problem in portfolio selection

A.Cassioli, G.Cocchi, F.D'Amato, M.Sciandrone February 8, 2016

1 Introduction

2 Preliminary background

Let us consider the following optimization problem:

$$\min_{x,y} \quad f(x,y) \tag{1a}$$

s.t.
$$l \le x \le u$$
 (1b)

$$\mathbf{1}^T x = 1 \tag{1c}$$

$$x \ge 0 \tag{1d}$$

where $x \in \mathbb{R}^n$, $y \in \mathbb{R}$, $f : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ is a which are the hypothesis on f?, $l, u \in \mathbb{R}^n$ with l < u and $\mathbf{1} \in \mathbb{R}^n$ is the identity vector.

- 3 A decomposition framework
- 4 Convergence analysis
- 5 Computational experiments