Conducting trial-based cost-effectiveness analyses: A tutorial

Andrea Gabrio

Department of Methodology and Statistics, FHML (UM)

a.gabrio@maastrichtuniversity.nl

https://github.com/AnGabrio

https://angabrio.github.io

HSR department seminar, 25 Oct 2025 - Maastricht

Table of contents I

- 1 Introduction & Modelling in HTA
- 2 Zorginstituut Nederland (ZIN) 2024 guidelines
- Methods to handle statistical issues in CEA
- Reporting of CEAs
- Conclusions
- 6 Appendix R code

Section 1

Introduction & Modelling in HTA

 Phd in Statistics @UCL (University College London) with thesis on stat methods to handle missing data in HTA

- Phd in Statistics @UCL (University College London) with thesis on stat methods to handle missing data in HTA
- Experience as trial stat/health economist @PRIMENT CTU (UCL)

- Phd in Statistics @UCL (University College London) with thesis on stat methods to handle missing data in HTA
- Experience as trial stat/health economist @PRIMENT CTU (UCL)
- Collaborated on methodological/applied HTA projects with collegaues in both UK and NL
 - Prof. Baio, Gomes, Leurent (Stat Sci @UCL) & Prof. Manca (Centre for HE @York)
 - Prof. Evers, Hiligsmann, Mastrigt (HSR @UM) & Prof. Joore (@KEMTA)
 - Prof. Bosmans (Health Sciences @VU) & El Alili (@ZIN)

- Phd in Statistics @UCL (University College London) with thesis on stat methods to handle missing data in HTA
- Experience as trial stat/health economist @PRIMENT CTU (UCL)
- Collaborated on methodological/applied HTA projects with collegaues in both UK and NL
 - Prof. Baio, Gomes, Leurent (Stat Sci @UCL) & Prof. Manca (Centre for HE @York)
 - Prof. Evers, Hiligsmann, Mastrigt (HSR @UM) & Prof. Joore (@KEMTA)
 - Prof. Bosmans (Health Sciences @VU) & El Alili (@ZIN)
- Personal goal to facilitate uptake of methods in HTA via software:
 - I am a bit of a R enthusiast
 - I am a bit of a Excel hater (for statistical analyses)

Before I begin:

• **Statistics** is an all-encompassing discipline: *Statisticians are unified* not by the subject matter they work in, but the methodology used to address problems that arise in diverse fields

Before I begin:

- **Statistics** is an all-encompassing discipline: *Statisticians are unified* not by the subject matter they work in, but the methodology used to address problems that arise in diverse fields
- The success of Statistics relies on developing skills to make it easier for colleagues in other disciplines to appreciate our contribution

Before I begin:

- **Statistics** is an all-encompassing discipline: *Statisticians are unified* not by the subject matter they work in, but the methodology used to address problems that arise in diverse fields
- The success of Statistics relies on developing skills to make it easier for colleagues in other disciplines to appreciate our contribution
- My personal view of the world: Statisticians should be in charge of everything.

Before I begin:

- Statistics is an all-encompassing discipline: Statisticians are unified not by the subject matter they work in, but the methodology used to address problems that arise in diverse fields
- The success of Statistics relies on developing skills to make it easier for colleagues in other disciplines to appreciate our contribution
- My personal view of the world: Statisticians should be in charge of everything.
- So I probably will be very annoying throughout the presentation¹

¹But luckily no non-Statistician has been harmed in the making of these slides

• **Objective**: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

• **Objective**: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

Statistical model

- Estimates relevant parameters θ
- Varies with the type of data (& statistical approach!)

 Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

 Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

costs and effects

Varies with the type of data

& statistical model used

Varies with the type of

data (& statistical

approach!)

"cost-effectiveness"

Standardised process

actions

· Dictates the best course of

 Objective: Combine costs & benefits of a given intervention into a rational scheme for allocating resources

- Estimates relevant parameters θ
- Varies with the type of data (& statistical approach!)

- Combines parameters to obtain average measure for costs and effects
- Varies with the type of data & statistical model used

- Computes suitable measures of "cost-effectiveness"
- Dictates the best course of
 - actions
 - Standardised process

Statistical modelling for model-based analyses

Build a population level model (eg decision tree/Markov model)

NB: "data" are represented by summary statistics for $\theta = (p_0, p_1, l, ...)$

Statistical modelling for model-based analyses

Build a population level model (eg decision tree/Markov model)

NB: "data" are represented by summary statistics for $\theta = (p_0, p_1, l, ...)$

② Use point estimates for the parameters to build the "base-case" (average) evaluation

Statistical modelling for model-based analyses

Build a population level model (eg decision tree/Markov model)

NB: "data" are represented by summary statistics for $\theta = (p_0, p_1, l, ...)$

- ② Use point estimates for the parameters to build the "base-case" (average) evaluation
- Use resampling methods (eg bootstrap) to propage uncertainty in the point estimates and perform uncertainty analysis

ID	Trt	Demographics			HRQL data				Res	ata	Clinical outcome					
		Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J
1	1	М	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		y_{1J}
2	1	M	21		0.12	0.16		0.38	1 204	1808		877	y_{20}	y_{21}		y_{2J}
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}

 $y_{ij} = {\sf Survival}$ time, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ...

 $u_{ij}^-=$ Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...)

 $c_{ij} = \text{Use}$ of resources (drugs, hospital, GP appointments, ...)

		Demographics			HRQL data				Res	ata	Clinical outcome					
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J
1	1	М	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		y_{1J}
2	1	M	21		0.12	0.16		0.38	1 204	1808		877	y_{20}	y_{21}		y_{2J}
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}

 y_{ij} = Survival time, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ... u_{ij} = Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...)

Compute QALYs and total costs as

$$e_i = \sum_{j=1}^J \left(u_{ij} + u_{ij-1}\right) \frac{\delta_j}{2} \quad \text{and} \quad c_i = \sum_{j=1}^J c_{ij}, \qquad \left[\text{with: } \delta_j = \frac{\mathsf{Time}_j - \mathsf{Time}_{j-1}}{\mathsf{Unit of time}}\right]$$

cii = Use of resources (drugs, hospital, GP appointments, ...)

	Trt	Demographics			HRQL data				Res	ource u	se d	ata	Clinical outcome				
ID		Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J	
1	1	М	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		y_{1J}	
2	1	M	21		0.12	0.16		0.38	1 204	1808		877	y_{20}	y_{21}		y_{2J}	
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}	

 y_{ij} = Survival time, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ... u_{ij} = Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...)

Compute QALYs and total costs as

$$e_i = \sum_{j=1}^J \left(u_{ij} + u_{ij-1}\right) \frac{\delta_j}{2} \quad \text{and} \quad c_i = \sum_{j=1}^J c_{ij}, \qquad \left[\text{with: } \delta_j = \frac{\mathsf{Time}_j - \mathsf{Time}_{j-1}}{\mathsf{Unit of time}}\right]$$

Often implicitly) assume normality and linearity and model independently individual QALYs and total costs by controlling for baseline values

$$\begin{array}{lll} e_i & = & \alpha_{e0} + \alpha_{e1} u_{0i} + \alpha_{e2} \mathrm{Trt}_i + \varepsilon_{ei} \left[+ \ldots \right], & & \varepsilon_{ei} \sim \mathrm{Normal}(0, \sigma_e) \\ c_i & = & \alpha_{c0} + \alpha_{c1} c_{0i} + \alpha_{c2} \mathrm{Trt}_i + \varepsilon_{ci} \left[+ \ldots \right], & & \varepsilon_{ci} \sim \mathrm{Normal}(0, \sigma_c) \end{array}$$

 c_{ij} = Use of resources (drugs, hospital, GP appointments, ...)

		Demographics			HRQL data				Res	ata	Clinical outcome					
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J
1	1	М	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		y_{1J}
2	1	M	21		0.12	0.16		0.38	1 204	1808		877	y_{20}	y_{21}		y_{2J}
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}

 $y_{ij} = \text{Survival time}$, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ... $u_{ij} = \text{Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...)}$

Compute QALYs and total costs as

$$e_i = \sum_{j=1}^J \left(u_{ij} + u_{ij-1}\right) \frac{\delta_j}{2} \quad \text{and} \quad c_i = \sum_{j=1}^J c_{ij}, \qquad \left[\text{with: } \delta_j = \frac{\mathsf{Time}_j - \mathsf{Time}_{j-1}}{\mathsf{Unit of time}}\right]$$

Often implicitly) assume normality and linearity and model independently individual QALYs and total costs by controlling for baseline values

$$\begin{array}{lll} e_i & = & \alpha_{e0} + \alpha_{e1}u_{0i} + \alpha_{e2}\mathrm{Trt}_i + \varepsilon_{ei}\left[+\ldots\right], & & \varepsilon_{ei} \sim \mathrm{Normal}(0,\sigma_e) \\ c_i & = & \alpha_{c0} + \alpha_{c1}c_{0i} + \alpha_{c2}\mathrm{Trt}_i + \varepsilon_{ci}\left[+\ldots\right], & & \varepsilon_{ci} \sim \mathrm{Normal}(0,\sigma_c) \end{array}$$

 Estimate population average cost and effectiveness differentials and use bootstrap to quantify uncertainty

c: = Use of resources (drugs, hospital, GP appointments, ...)

"Two-stage" approach to HTA

- Assesses the impact of uncertainty on the results
- Mandatory in many jurisdictions (eg ZIN)

- Estimates relevant parameters θ
- Varies with the type of data (& statistical approach!)

- Combines the parameters to obtain a population average measure for costs and effects
- Varies with the type of data & statistical model used
- Computes suitable measures of "cost-effectiveness"
- Dictates the best course of actions
- Standardised process

"Two-stage" approach to HTA

- Assesses the impact of uncertainty on the results

- Estimates relevant parameters θ
- Varies with the type of data (& statistical approach!)

- · Combines the parameters to obtain a population average measure for costs and effects
- Varies with the type of data & statistical model used
- Computes suitable measures of "cost-effectiveness"
- Dictates the best course of actions
- Standardised process

[&]quot;Two-stage approach" (Spiegelhalter, Abrams & Myles, 2004)

$$^{\circ}\!\Delta_c$$

$$\begin{split} \Delta_e \ &= \ \underbrace{\mathbb{E}[e \mid \hat{\theta}_1]}_{\hat{\mu}_{e1}} - \underbrace{\mathbb{E}[e \mid \hat{\theta}_0]}_{\hat{\mu}_{e0}} \\ \Delta_c \ &= \ \mathbb{E}[c \mid \hat{\theta}_1] - \mathbb{E}[c \mid \hat{\theta}_0] \end{split}$$

$$\begin{array}{l} \text{ICER} \ = \ \frac{\mathsf{E}[\Delta_c]}{\mathsf{E}[\Delta_e]} = \frac{\hat{\mu}_{c1} - \hat{\mu}_{c0}}{\hat{\mu}_{e1} - \hat{\mu}_{e0}} \\ = \ \mathsf{Cost} \ \mathsf{per} \ \mathsf{outcome} \end{array}$$

Cost differential

Effectiveness differential

Decision + Uncertainty* analysis

Cost differential

*Induced by $g(\hat{\theta}_0), g(\hat{\theta}_1)$

Effectiveness differential

Section 2

Zorginstituut Nederland (ZIN) 2024 guidelines

- Cost-effectiveness in the Netherlands has become more and more important in reimbursement decisions of the National Health Care Institute over the years
- Standardise analyses to improve comparability and enhance quality
- Revision of elements for the "Reference Case" to which all economic evaluations have to comply with

- Cost-effectiveness in the Netherlands has become more and more important in reimbursement decisions of the National Health Care Institute over the years
- Standardise analyses to improve comparability and enhance quality
- Revision of elements for the "Reference Case" to which all economic evaluations have to comply with
 - Perspective of the analysis
 - Default: Societal all societal costs and benefits irrespective of who are the beneficiaries/payers
 - Alternative perspectives may be presented as scenario analyses

- Cost-effectiveness in the Netherlands has become more and more important in reimbursement decisions of the National Health Care Institute over the years
- Standardise analyses to improve comparability and enhance quality
- Revision of elements for the "Reference Case" to which all economic evaluations have to comply with
 - Perspective of the analysis
 - PICOTS criteria
 - Patient, Intervention, Comparison & Setting: Dutch practice relevant to current clinical practice at the time
 - Outcomes: Costs (healthcare, P&F, other sectors) & QALYs (EQ-5D-5L)
 - Time horizon: lifelong (if possible)

- Cost-effectiveness in the Netherlands has become more and more important in reimbursement decisions of the National Health Care Institute over the years
- Standardise analyses to improve comparability and enhance quality
- Revision of elements for the "Reference Case" to which all economic evaluations have to comply with
 - Perspective of the analysis
 - PICOTS criteria
 - Type of evaluation
 - Default: CUA allows comparison across populations and inteventions
 - A CEA may also be conducted in addition

- Cost-effectiveness in the Netherlands has become more and more important in reimbursement decisions of the National Health Care Institute over the years
- Standardise analyses to improve comparability and enhance quality
- Revision of elements for the "Reference Case" to which all economic evaluations have to comply with
 - Perspective of the analysis
 - PICOTS criteria
 - Type of evaluation
 - Oata (effectiveness, costs and QoL)
 - Litertaure data assessed via systematic literature review
 - Costs = volume (unit) × price (per unit) -> Costing Manual
 - QoL as "utilities" via EQ-5D-5L -> QALY and QoL Manual

- Cost-effectiveness in the Netherlands has become more and more important in reimbursement decisions of the National Health Care Institute over the years
- Standardise analyses to improve comparability and enhance quality
- Revision of elements for the "Reference Case" to which all economic evaluations have to comply with
 - Perspective of the analysis
 - PICOTS criteria
 - Type of evaluation
 - Oata (effectiveness, costs and QoL)
 - Methods
 - MB: Discount, Extrapolation, Subgroup, Uncertainty, Validation
 - EMP: Missingness, Adjustment, Uncertainty

- Cost-effectiveness in the Netherlands has become more and more important in reimbursement decisions of the National Health Care Institute over the years
- Standardise analyses to improve comparability and enhance quality
- Revision of elements for the "Reference Case" to which all economic evaluations have to comply with
 - Perspective of the analysis
 - PICOTS criteria
 - Type of evaluation
 - Oata (effectiveness, costs and QoL)
 - Methods
 - 6 Reporting
 - Data, Methods, Results

Analysis Methods in HTA

Study Design:

- Empirical costs & effects at patient level from a controlled study
- Model-based expected costs & effects estimated via simulation

Analysis Methods in HTA

Study Design:

- Empirical costs & effects at patient level from a controlled study
- Model-based expected costs & effects estimated via simulation
- Choice of methods depends on the study design:
 - Account for patient-level data complexities (e.g. imbalance, missingnes, skewness, correlation, clustering)
 - In simulation, choice of model type and inputs should be based on the research question and nature of the disease

Analysis Methods in HTA

Study Design:

- Empirical costs & effects at patient level from a controlled study
- Model-based expected costs & effects estimated via simulation
- Choice of methods depends on the study design:
 - Account for patient-level data complexities (e.g. imbalance, missingnes, skewness, correlation, clustering)
 - In simulation, choice of model type and inputs should be based on the research question and nature of the disease
- Focus on recommended methods in the context of a RCT with a 1-year follow-up and homogeneous population:
 - No selection bias due to lack of randomisation
 - No discounting for costs & effects
 - No extrapolation of results beyond end of trial
 - No subgroup or Value of Information analysis
 - No validation of source data

• Imbalances in mean baseline effects/costs between arms, if not accounted for, may distort CE results (Manca et al. 2005, Asselt van et al. 2009)

- Imbalances in mean baseline effects/costs between arms, if not accounted for, may distort CE results (Manca et al. 2005, Asselt van et al. 2009)
- Ignoring the correlation between effects & costs is inappropriate and will lead to a loss in efficiency for the estimates (Willan et al. 2004)

- Imbalances in mean baseline effects/costs between arms, if not accounted for, may distort CE results (Manca et al. 2005, Asselt van et al. 2009)
- Ignoring the **correlation** between effects & costs is inappropriate and will lead to a loss in efficiency for the estimates (Willan et al. 2004)
- Skewness in effects/costs in small samples undermines the validity of asymptotic tests and may lead to incorrect results (Barber et al. 2004)

- Imbalances in mean baseline effects/costs between arms, if not accounted for, may distort CE results (Manca et al. 2005, Asselt van et al. 2009)
- Ignoring the **correlation** between effects & costs is inappropriate and will lead to a loss in efficiency for the estimates (Willan et al. 2004)
- Skewness in effects/costs in small samples undermines the validity of asymptotic tests and may lead to incorrect results (Barber et al. 2004)
- Clustering of data linked to treatment (eg cluster RCTs) invalidates the assumptions of standard methods (eg OLS), underestimates variance and possibly bias results (Gomes et al. 2012)

- Imbalances in mean baseline effects/costs between arms, if not accounted for, may distort CE results (Manca et al. 2005, Asselt van et al. 2009)
- Ignoring the **correlation** between effects & costs is inappropriate and will lead to a loss in efficiency for the estimates (Willan et al. 2004)
- Skewness in effects/costs in small samples undermines the validity of asymptotic tests and may lead to incorrect results (Barber et al. 2004)
- Clustering of data linked to treatment (eg cluster RCTs) invalidates the assumptions of standard methods (eg OLS), underestimates variance and possibly bias results (Gomes et al. 2012)
- Missing effects/costs during follow-up are common and may introduce bias. Methods that appropriately account for missing data uncertainty and assess the sensitivity of results are needed (Gabrio et al. 2017, Leurent et a. 2018)

How do we deal with all of this?

Section 3

Methods to handle statistical issues in CEA

Baseline imbalances

 Randomisation ensures that baseline variables are balanced between arms but SOME differences will inevitably occur

Baseline imbalances

- Randomisation ensures that baseline variables are balanced between arms but SOME differences will inevitably occur
- This is particularly an issue for baseline utilities because:
 - they are used in the computation of QALYs through AUC method
 - they are likely to be *predictive* of utilities during follow-up

Baseline imbalances

- Randomisation ensures that baseline variables are balanced between arms but SOME differences will inevitably occur
- This is particularly an issue for baseline utilities because:
 - they are used in the computation of QALYs through AUC method
 - they are likely to be *predictive* of utilities during follow-up
- \bullet Even small changes in Δ_e have consequences on \emph{ICER} and \emph{CE} results
- This is true regardless of whether the difference in baseline values is statistically significant or not
- This is also true for any baseline variable that is strongly predictive of follow-up outcome values (eg baseline costs)

Baseline imbalances - an example

- Old :
$$\mathsf{QALY}_{\mathsf{old}} = \left[\frac{0.63 + 0.63}{2} \times \frac{6}{12} + \frac{0.63 + 0.67}{2} \times \frac{6}{12} \right] = \textbf{0.64}$$

Baseline imbalances - an example

- New :
$$QALY_{new} = \left[\frac{0.55+0.63}{2} \times \frac{6}{12} + \frac{0.63+0.67}{2} \times \frac{6}{12} \right] = \textbf{0.62}$$

Baseline imbalances - an example

-
$$\Delta_e = {\sf New}$$
 - ${\sf OId}: {\sf QALY}_{\sf new} - {\sf QALY}_{\sf old} = {\sf 0.62} - {\sf 0.64} = -{\sf 0.02}$

Baseline imbalances - unadjusted estimates

• Unadjusted mean difference can be obtained from the estimated slope $(\hat{\beta}_1)$ of the linear regression

$$\mathsf{QALY}_i = \beta_0 + \beta_1 \times \mathsf{arm}_i + \varepsilon_i$$

 Unadjusted means in each arm can be obtained as functions of the estimated regression coefficients

$$\begin{split} & \text{E}[\text{QALY} \mid \text{arm} = \text{old}] = \hat{\beta}_0 \\ & \text{E}[\text{QALY} \mid \text{arm} = \text{new}] = \hat{\beta}_0 + \hat{\beta}_1 \end{split}$$

Baseline imbalances - adjusted estimates

 Recommended approach is to include the imbalanced baseline variable into the regression

$$\mathsf{QALY}_i = \beta_0 + \beta_1 \times \mathsf{arm}_i + \beta_2 \times \mathsf{u}_{i0} + \varepsilon_i$$

• Adjusted estimates for Δ_e and mean QALYs in each arm can be obtained exactly as in the unadjusted case ${\bf BUT}{\bf with}$ the <code>inclusion</code> of ${\bf u}_0$ into the model

Baseline imbalances - adjusted estimates

 Recommended approach is to include the imbalanced baseline variable into the regression

$$\mathsf{QALY}_i = \beta_0 + \beta_1 \times \mathsf{arm}_i + \beta_2 \times \mathsf{u}_{i0} + \varepsilon_i$$

- Adjusted estimates for Δ_e and mean QALYs in each arm can be obtained exactly as in the unadjusted case BUTwith the *inclusion* of \mathbf{u}_0 into the model
- In the presence of baseline imbalances, the adjusted model allows to:
 - Retrieve through $\hat{\beta}_1$ an ${\bf unbiased}$ estimate of Δ_e and ${\rm E}[{\rm QALY} \mid {\rm arm}]$
 - Increase the **precision** of these estimates (ie *lower SEs & narrower Cls*)

Baseline imbalances - unadjusted vs adjusted estimates

 $\bullet \ \ \text{Mean QALY difference } \Delta_e \\$

Estimate	CI.low	CI.high	method
-0.019	-0.025	-0.013	unadjusted
0.051	0.049	0.054	adjusted

Baseline imbalances - unadjusted vs adjusted estimates

• Mean QALY for arm = "Old"

Estimate	CI.low	CI.high	method
0.637	0.633	0.641	unadjusted
0.602	0.601	0.604	adjusted

Old

Mean QALY for arm = "New"

Estimate	CI.low	CI.high	method
0.619 0.654	0.614	0.623	unadjusted
0.034	0.652	0.655	adjusted

Baseline imbalances - regression adjustment

Advantages:

- Easy to implement
- Allow to control for multiple variables
- Assess impact of specific variables on marginal CE outcomes (eg via interaction terms)

Baseline imbalances - regression adjustment

Advantages:

- Easy to implement
- Allow to control for multiple variables
- Assess impact of specific variables on marginal CE outcomes (eg via interaction terms)

Drawbacks:

- Assume variables' distribution is the same across arms
- Adjusting for many variables may result in "overfitting"

Baseline imbalances - regression adjustment

Advantages:

- Easy to implement
- Allow to control for multiple variables
- Assess impact of specific variables on marginal CE outcomes (eg via interaction terms)

Drawbacks:

- Assume variables' distribution is the same across arms
- Adjusting for many variables may result in "overfitting"

Other approaches:

- Propensity score adjustment (Indurkhya et al. 2006)
- Propensity score matching (Sekhon et al. 2012)
- Genetic matching (Sekhon et al. 2012)

Correlation between CE outcomes

- Possible types of associations:
 - Treatments come from intensive research and are (+) associated with higher unit costs
 - Treatments (-) reduce care pathway costs (eg fewer hospitalisations, side effects, etc.)
- If the outcomes are sufficiently correlated:
 - Joint modelling of costs & effects is needed to properly characterise uncertainty around parameter estimates and CE results
 - There is additional benefit from borrowing information across outcomes to estimate variance components and standard errors more efficiently than in separate univariate analyses

Correlation between CE outcomes - an example

 Means and (Pearson's) correlations between costs & effects

QALY	TC	corr	arm
0.57	298	0.694	Old
0.65	299	0.648	New

CE correlation - independent analyses

• We could run separate analyses for each outcome using the models

$$\begin{split} \mathsf{QALY}_i &= \beta_0 + \beta_1 \times \mathsf{arm}_i + \beta_2 \times u_{i0} + \varepsilon_{ie} \\ \mathsf{TC}_i &= \alpha_0 + \alpha_1 \times \mathsf{arm}_i + \alpha_2 \times c_{i0} + \varepsilon_{ic} \end{split}$$

- Get the estimates $\hat{\beta}=(\hat{\beta}_0,\hat{\beta}_1)$ and $\hat{\alpha}=(\hat{\alpha}_0,\hat{\alpha}_1)$, then derive:
 - Incremental($\Delta_e,\Delta_c)$ and marginal(E[QALY | arm], E[TC | arm]) quantities of interest
 - Associated measures of uncertainty (eg SEs or CIs)

CE correlation - independent analyses

We could run separate analyses for each outcome using the models

$$\begin{split} \mathsf{QALY}_i &= \beta_0 + \beta_1 \times \mathsf{arm}_i + \beta_2 \times u_{i0} + \varepsilon_{ie} \\ \mathsf{TC}_i &= \alpha_0 + \alpha_1 \times \mathsf{arm}_i + \alpha_2 \times c_{i0} + \varepsilon_{ic} \end{split}$$

- Get the estimates $\hat{\beta}=(\hat{eta}_0,\hat{eta}_1)$ and $\hat{lpha}=(\hat{lpha}_0,\hat{lpha}_1)$, then derive:
 - Incremental($\Delta_e,\Delta_c)$ and marginal(E[QALY | arm], E[TC | arm]) quantities of interest
 - Associated measures of uncertainty (eg SEs or Cls)
- **Important**: by doing so, we are assuming **independence** between the outcomes!

CE correlation - "joint" analyses

- Seemingly Unrelated Regression (SUR) equations
 - Same models but with **error terms linked** through the parameter ρ :

$$\begin{pmatrix} \varepsilon_{ie} \\ \varepsilon_{ic} \end{pmatrix} \sim \text{Normal} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} \sigma_e^2 & \rho \sigma_e \sigma_c \\ \rho \sigma_c \sigma_e & \sigma_c^2 \end{pmatrix} \right]$$

CE correlation - "joint" analyses

- Seemingly Unrelated Regression (SUR) equations
 - Same models but with **error terms linked** through the parameter ρ :

$$\begin{pmatrix} \varepsilon_{ie} \\ \varepsilon_{ic} \end{pmatrix} \sim \text{Normal} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} \sigma_e^2 & \rho \sigma_e \sigma_c \\ \rho \sigma_c \sigma_e & \sigma_c^2 \end{pmatrix} \right]$$

- Bootstrapping costs & effects "in pairs"
 - Generate a "bootstrap" sample by sampling with replacement CE values for each individual from the observed data
 - Analyse CE outcomes and derive $(\hat{\beta},\hat{\alpha})^b$ –> $(\Delta_e,\Delta_c)^b$
 - Iterate the process a sufficiently large number of times (B)
 - Use $(\Delta_e,\Delta_c)^b$ to approximate the sampling distribution of (Δ_e,Δ_c)
 - Use this distribution to quantify uncertainty (eg obtain Cls)

Original sample

- $\bullet \ \ \text{Original sample} \approx \text{population} \\$
- Original sample size n=6
- $\bullet \ \ \mathsf{Mean} \ \bar{e} = 0.5 \ \& \ \bar{c} = 150$
- $\bullet \;\; \mathrm{Sd} \; s_e = 0.25 \; \& \; s_c = 50$
- Coeff $\hat{\beta}_1=0.15$ & $\hat{\alpha}_1=35$

Original sample

- Original sample \approx population
- Original sample size n=6
- Mean $\bar{e} = 0.5 \ \& \ \bar{c} = 150$
- Sd $s_e = 0.25 \& s_c = 50$
- Coeff $\hat{\beta}_1=0.15$ & $\hat{\alpha}_1=35$

$$\begin{pmatrix} c_1 & c_3 \\ e_1 & & & e_1 \\ & & e_3 \\ & c_1 & & \\ \end{pmatrix}$$

- Bootstrap sample number b = 1
- Bootstrapped sample size $n^b = 6$
- ullet Bootstrapped Mean $ar{e}^b=0.4$ & $ar{c}^b=160$
- Bootstrapped Sd $s_e^b = 0.2 \ \& \ s_c^{\bar{b}} = 50$
- Bootstrapped Coeff $\hat{eta}_1^b = {0.2}$ & $\hat{lpha}_1^b = {40}$

Original sample

$$\begin{matrix}&&&c_2\\e_2&&&&c_1\\&&&&c_3&&e_3&&e_1\end{matrix}$$

- Original sample \approx population
- Original sample size n=6
- Mean $\bar{e} = 0.5 \ \& \ \bar{c} = 150$
- $\bullet \ \ \mathsf{Sd} \ s_e = 0.25 \ \& \ s_c = 50$
- Coeff $\hat{\beta}_1=0.15$ & $\hat{\alpha}_1=35$

- Bootstrap sample number b=2
- Bootstrapped sample size $n^b = 6$
- Bootstrapped Mean $ar{e}^b = 0.37$ & $ar{c}^b = 130$
- Bootstrapped Sd $s_e^b = 0.13 \& s_c^b = 42$
- Bootstrapped Coeff $\hat{eta}_1^b = 0.18$ & $\hat{lpha}_1^b = 25$

Original sample

$$egin{array}{ccccc} & c_2 & & & & & \\ e_2 & & & & c_1 & & & \\ & c_3 & & e_3 & & e_1 & & & & \\ & & & & & & & & \end{array}$$

- Original sample ≈ population
- Original sample size n=6
- Mean $\bar{e} = 0.5 \ \& \ \bar{c} = 150$
- $\bullet \ \ \mathsf{Sd} \ s_e = 0.25 \ \& \ s_c = 50$
- Coeff $\hat{\beta}_1=0.15$ & $\hat{\alpha}_1=35$

- Bootstrap sample number b = 3
- Bootstrapped sample size $n^b = 6$
- ullet Bootstrapped Mean $ar{e}^b=0.5$ & $ar{c}^b=155$
- Bootstrapped Sd $s_e^b = 0.14 \ \& \ s_c^b = 32$
- Bootstrapped Coeff $\hat{eta}_1^b = 0.15$ & $\hat{lpha}_1^b = 33$

Original sample

- Original sample ≈ population
- Original sample size n=6
- Mean $\bar{e} = 0.5 \ \& \ \bar{c} = 150$
- $\bullet~$ Sd $s_e=0.25~\&~s_c=50$
- Coeff $\hat{\beta}_1 = 0.15 \& \hat{\alpha}_1 = 35$

- Iterate the process b = 4, ..., B times
- Quantify uncertainty of the estimators (eg Cls) using all bootstrapped samples

Correlation - comparison of approaches

• Mean QALY difference Δ_e

Estimate	CI.low	CI.high	method
0.0765	0.0552	0.0979	OLS
0.0764	0.0551	0.0977	SUR
0.0770	0.0550	0.0980	boot(p)
0.0770	0.0550	0.0980	boot(b)

• Mean TC difference Δ_c

Estimate	CI.low	CI.high	method
2.033	-17.984	22.051	OLS
1.862	-18.080	21.805	SUR
1.943	-18.258	21.983	boot(p)
1.943	-18.204	22.125	boot(b)

Correlation - comparison of approaches

Mean QALY for arm = "Old"

Estimate	CI.low	CI.high	method
0.5737	0.5586	0.5888	OLS
0.5738	0.5587	0.5888	SUR
0.5740	0.5580	0.5890	boot(p)
0.5740	0.5590	0.5900	boot(b)

Mean QALY for arm = "New"

Estimate	CI.low	CI.high	method
0.6502	0.6352	0.6653	OLS
0.6502	0.6351	0.6653	SUR
0.6500	0.6360	0.6650	boot(p)
0.6500	0.6360	0.6650	boot(b)

Correlation - comparison of approaches

Mean TC for arm = "Old"

Estimate	CI.low	CI.high	method
297.268	283.172	311.364	OLS
297.353	283.257	311.449	SUR
297.313	283.160	311.503	boot(p)
297.313	283.184	311.520	boot(b)

• Mean TC for arm = "New"

Estimate	CI.low	CI.high	method
299.301	285.205	313.397	OLS
299.215	285.119	313.312	SUR
299.256	285.129	313.276	boot(p)
<i>299.256</i>	285.226	313.325	boot(b)

Correlation - SUR/bootstrapping

SUR:

- Can be more efficient than separate OLS analyses
- Allow inclusion of outcome-specific variables into the regressions
- Similar limitations of standard regression

Correlation - SUR/bootstrapping

SUR:

- Can be more efficient than separate OLS analyses
- Allow inclusion of outcome-specific variables into the regressions
- Similar limitations of standard regression
- (non-parametric) **Bootstrapping**:
 - Paired re-sampling can maintain CE correlation
 - Performance wrt joint models has **not** been fully assessed
 - Different ways to compute CIs (percentile, bias-corrected and accelerated, ...)

Correlation - SUR/bootstrapping

SUR:

- Can be more efficient than separate OLS analyses
- Allow inclusion of outcome-specific variables into the regressions
- Similar limitations of standard regression
- (non-parametric) Bootstrapping:
 - Paired re-sampling can maintain CE correlation
 - Performance wrt joint models has **not** been fully assessed
 - Different ways to compute Cls (percentile, bias-corrected and accelerated, ...)
- Other approaches:
 - Bayesian joint models (Gabrio et al. 2019)

- Costs are typically right-skewed while utilities tend to be left-skewed:
 - Costs are bound at 0 with few participants with very high costs
 - Utilities are bound at 1 with few participants with very low (also negative) values

- Costs are typically right-skewed while utilities tend to be left-skewed:
 - Costs are bound at 0 with few participants with very high costs
 - Utilities are bound at 1 with few participants with very low (also negative) values
- Many methods rely on Normality assumptions that may be violated and lead to misleading inferences:
 - In "large" samples, CLT ensures that estimates are unbiased but efficiency may not be achieved
 - In "small" samples, unbiasdness is no longer guaranteed

- Costs are typically right-skewed while utilities tend to be left-skewed:
 - Costs are bound at 0 with few participants with very high costs
 - Utilities are bound at 1 with few participants with very low (also negative) values
- Many methods rely on Normality assumptions that may be violated and lead to misleading inferences:
 - In "large" samples, CLT ensures that estimates are unbiased but efficiency may not be achieved
 - In "small" samples, unbiasdness is no longer guaranteed
- No general consensus at which point:
 - The degree of skewness is "too high"
 - The size of the sample is "too small"

- Costs are typically right-skewed while utilities tend to be left-skewed:
 - Costs are bound at 0 with few participants with very high costs
 - Utilities are bound at 1 with few participants with very low (also negative) values
- Many methods rely on Normality assumptions that may be violated and lead to misleading inferences:
 - In "large" samples, CLT ensures that estimates are unbiased but efficiency may not be achieved
 - In "small" samples, unbiasdness is no longer guaranteed
- No general consensus at which point:
 - The degree of skewness is "too high"
 - The size of the sample is "too small"
- Data *transformations* (eg log) are **not appropriate** as they do not provide inferences about population means of interest

• QALYs in large samples

Mean	Sd	CI(low)	CI(high)	size
0.86	0.2	0.266	1	5000

• TC in large samples

Mean	Sd	CI(low)	CI(high)	size
100	97	2.67	350.153	5000

• CLT in large samples

Mean	Sd	CI(low)	CI(high)	size
0.86	0.200	0.266	1.00	5000
0.86	0.003	0.860	0.86	5000

• CLT large samples

Mean	Sd	CI(low)	CI(high)	size
100.000	97.000	2.67	<i>350.153</i>	<i>5000</i> 5000
99.999	1.372	99.96	100.034	

• CLT in small samples

Mean	Sd	CI(low)	CI(high)	size
0.860	0.200	0.266	1.000	5000
0.822	0.241	0.266	1.000	25
0.822	0.040	0.822	0.823	25

• CLT in small samples

Mean	Sd	CI(low)	CI(high)	size
100.000	97.000	2.670	350.153	5000
82.062	92.265	6.047	356.448	25
82.063	19.400	82.025	82.098	25

Other distribution (Beta) in small samples

Mean	Sd	CI(low)	CI(high)	size
0.860	0.200	0.266	1.000	5000
0.822	0.241	0.266	1.000	25
0.813	0.238	0.362	1.295	25
0.818	0.245	0.157	1.000	25

Other distribution (Gamma) in small samples

Mean	Sd	CI(low)	CI(high)	size
100.000	97.000	2.670	350.153	5000
82.062	92.265	6.047	356.448	25
84.503	89.313	-89.825	263.089	25
84.592	98.106	0.886	351.883	25
				-

OLS/SUR ignoring skewness and rely on CLT/bootstrapping:

- OLS/SUR ignoring skewness and rely on CLT/bootstrapping:
- Generalised Linear Model (GLM):

$$\begin{split} \mathrm{E}[\mathrm{QALY}_i] &= g_e(\beta_0 + \beta_1 \times \mathrm{arm}_i + \beta_2 \times u_{i0})^{-1} \\ \mathrm{E}[\mathrm{TC}_i] &= g_c(\alpha_0 + \alpha_1 \times \mathrm{arm}_i + \alpha_2 \times c_{i0})^{-1} \end{split}$$

- OLS/SUR ignoring skewness and rely on CLT/bootstrapping:
- Generalised Linear Model (GLM):

$$\begin{split} \mathrm{E}[\mathrm{QALY}_i] &= g_e(\beta_0 + \beta_1 \times \mathrm{arm}_i + \beta_2 \times u_{i0})^{-1} \\ \mathrm{E}[\mathrm{TC}_i] &= g_c(\alpha_0 + \alpha_1 \times \mathrm{arm}_i + \alpha_2 \times c_{i0})^{-1} \end{split}$$

Choose link functions to model the expected values:

$$-\ g_e(\cdot)^{-1} = \mathsf{logit}() \ \& \ g_c(\cdot)^{-1} = \mathsf{log}()$$

- OLS/SUR ignoring skewness and rely on CLT/bootstrapping:
- Generalised Linear Model (GLM):

$$\begin{split} \mathrm{E}[\mathrm{QALY}_i] &= g_e(\beta_0 + \beta_1 \times \mathrm{arm}_i + \beta_2 \times u_{i0})^{-1} \\ \mathrm{E}[\mathrm{TC}_i] &= g_c(\alpha_0 + \alpha_1 \times \mathrm{arm}_i + \alpha_2 \times c_{i0})^{-1} \end{split}$$

• Choose link functions to model the expected values:

$$-\ g_e(\cdot)^{-1} = \mathsf{logit}() \ \& \ g_c(\cdot)^{-1} = \mathsf{log}()$$

- Choose alternative distributions for the error terms:
 - $\varepsilon_{ie} \sim \mathrm{Beta}() \ \& \ \varepsilon_{ic} \sim \mathrm{Gamma}()$

\bullet Mean QALY difference Δ_e

Estimate	CI.low	CI.high	method
0.146 0.146	0.032 0.045	0.279 0.306	boot(p) boot(b)
0.075	-0.007	0.157	GLM

• Mean TC difference Δ_c

Estimate	CI.low	CI.high	method
37.872	24.555	50.768	boot(p)
37.872	24.198	50.517	boot(b)
37.918	21.797	54.038	GLM

• Mean QALY for arm = "Old"

Estimate	CI.low	CI.high	method
0.834	0.702	0.947	boot(p)
0.834	0.672	0.932	boot(b)
0.864	0.778	0.950	GLM

• Mean QALY for arm = "New"

Estimate	CI.low	CI.high	method
0.980	0.958	0.996	boot(p)
<i>0.980</i>	0.951	0.994	boot(b)
0.939	0.890	0.988	GLM

• **Mean TC** for arm = "Old"

Estimate CI.low		CI.high	method	
97.381	87.023	109.112	boot(p)	
97.381 97.282	88.104 87.866	110.953 106.697	boot(b) GLM	

W

Old
New

• Mean TC for arm = "New"

Estimate	CI.low	CI.high	method
135.253	128.852	143.187	boot(p)
135.253	129.866	145.226	boot(b)
135.199	122.114	148.284	GLM

Skewness - GLM/bootstrapping

• GLM:

- Allow comparison of means on natural scale
- Can handle skewness also in "small" samples
- The choice of distribution and link function crucial (not always easy)

Skewness - GLM/bootstrapping

GLM:

- Allow comparison of means on natural scale
- Can handle skewness also in "small" samples
- The choice of distribution and link function crucial (not always easy)
- (non-parametric) Bootstrapping:
 - Allow comparison of means on natural scale
 - Does not assume specific distributions
 - Good performance in "large" samples but poor in "small" samples
 - Different ways to compute Cls (percentile, bias-corrected and accelerated, ...)

Skewness - GLM/bootstrapping

GLM:

- Allow comparison of means on natural scale
- Can handle **skewness** also in "small" samples
- The choice of distribution and link function crucial (not always easy)
- (non-parametric) Bootstrapping:
 - Allow comparison of means on natural scale
 - Does not assume specific distributions
 - Good performance in "large" samples but **poor** in "small" samples
 - Different ways to compute Cls (percentile, bias-corrected and accelerated, ...)

Other approaches:

- Bayesian joint models (Gabrio et al. 2019,)
- Hurdle models (Gabrio et al. 2019, Lambert et al. 2008)

Clustering of data

- Trial participants may be clustered (eg practices/hospitals) and clusters may be randomised instead of individuals
 - Typical of cluster RCTs where patients in a cluster are randomised to different treatments
 - Individual effects & costs in the same cluster tend to be more homogeneous than those in different clusters

Clustering of data

- Trial participants may be clustered (eg practices/hospitals) and clusters may be randomised instead of individuals
 - Typical of cluster RCTs where patients in a cluster are randomised to different treatments
 - Individual effects & costs in the same cluster tend to be more homogeneous than those in different clusters
- Standard methods (eg OLS, SUR & GLM) assume independence of observations but participants in same cluster are likely to be associated with each other
 - Ignoring clustering underestimates statistical uncertainty (eg variance)
 - may lead to incorrect inferences and bias the results

Clustering of data

- Trial participants may be clustered (eg practices/hospitals) and clusters may be randomised instead of individuals
 - Typical of cluster RCTs where patients in a cluster are randomised to different treatments
 - Individual effects & costs in the same cluster tend to be more homogeneous than those in different clusters
- Standard methods (eg OLS, SUR & GLM) assume independence of observations but participants in same cluster are likely to be associated with each other
 - Ignoring clustering underestimates statistical uncertainty (eg variance)
 - may lead to incorrect inferences and bias the results
- In CE studies, additional challenges need to be addressed:
 - Account for correlation between outcomes
 - Deal with skewness in both outcomes

Clustering of data - an example

Costs & effects across clusters

mean(e)	sd(e)	mean(c)	sd(c)	arm
0.433	0.410	93.959	31.518	Old
0.604	0.407	121.437	31.525	New

• Costs & effects by cluster

mean(e)	sd(e)	mean(c)	sd(c)	arm
0.252	0.450	77.095	27.742	Old
0.608	0.326	106.259	28.088	Old
0.438	0.369	98.524	31.314	Old
0.718	0.402	129.361	30.897	New
0.489	0.401	114.054	32.540	New
0.606	0.387	120.896	29.484	New

- Multilevel Model (MLM):
- $\begin{tabular}{ll} \blacksquare & Add \begin{tabular}{ll} \bf random" \begin{tabular}{ll} \bf terms & (u_{je},u_{jc}) \begin{tabular}{ll} \bf to OLS/SUR \begin{tabular}{ll} \bf model \begin{tabular}{ll} \bf to capture \begin{tabular}{ll} \bf differences \begin{tabular}{ll} \bf between \begin{tabular}{ll} \it j-th \begin{tabular}{ll} \bf cluster \begin{tabular}{ll} \it QALY/TC \begin{tabular}{ll} \bf means \begin{tabular}{ll} \bf for \begin{tabular}{ll} \bf differences \begin{t$

$$\begin{split} \text{QALY}_{ij} &= \beta_0 + \beta_1 \times \text{arm}_j + u_{je} + \varepsilon_{ije} \\ \text{TC}_{ij} &= \alpha_0 + \alpha_1 \times \text{arm}_j + u_{jc} + \varepsilon_{ijc} \end{split}$$

- Multilevel Model (MLM):
- $\begin{tabular}{ll} \bf 4 & Add~"random"~terms~(u_{je},u_{jc}) to OLS/SUR model to capture differences between j-th cluster QALY/TC means from overall means in each arm \\ \end{tabular}$

$$\begin{split} \mathsf{QALY}_{ij} &= \beta_0 + \beta_1 \times \mathsf{arm}_j + u_{je} + \varepsilon_{ije} \\ \mathsf{TC}_{ij} &= \alpha_0 + \alpha_1 \times \mathsf{arm}_j + u_{jc} + \varepsilon_{ijc} \end{split}$$

@ Model cluster-specific error terms using some distribution (eg Normal) and link them through the parameter ψ (often assumed 0)

$$\begin{pmatrix} u_{je} \\ u_{jc} \end{pmatrix} \sim \text{Normal} \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} \tau_e^2 & \psi \tau_e \tau_c \\ \psi \tau_c \tau_e & \tau_c^2 \end{pmatrix} \right]$$

- (non-parametric) Two-Stage Bootstrap (TSB):
- 1 **Two-stage routine** to account for data clustering:
 - First sample clusters then individuals within each resampled cluster
 - Analyse CE outcomes and derive $(\hat{\beta},\hat{\alpha})^b$ -> $(\Delta_e,\Delta_c)^b$
 - Iterate the process a *sufficiently* large number of times (B)
 - Use the estimates $(\Delta_e,\Delta_c)^b$ to quantify uncertainty (eg obtain CIs)

- (non-parametric) **Two-Stage Bootstrap** (TSB):
- 1 Two-stage routine to account for data clustering:
 - First sample clusters then individuals within each resampled cluster
 - Analyse CE outcomes and derive $(\hat{\beta},\hat{\alpha})^b$ -> $(\Delta_e,\Delta_c)^b$
 - Iterate the process a *sufficiently* large number of times (B)
 - Use the estimates $(\Delta_e,\Delta_c)^b$ to quantify uncertainty (eg obtain CIs)
- 2 Apply "shrinkage" correction to avoid overestimation of variance
 - Before any resampling, cluster means are shrunk and individual residuals estimated from cluster means
 - Sample shrunken cluster means then individual residuals
 - Combine shrunken means and residuals to obtain bootstrap dataset

$\bullet \ \ {\bf Mean} \ \ {\bf QALY} \ \ {\bf difference} \ \ \Delta_e$

Estimate	CI.low	CI.high	method
0.116	0.085	0.149	boot(bca)
0.116	-0.037	0.270	MLM
0.117	-0.029	0.266	TSB(bca)

$\bullet \ \ {\rm Mean} \ \ {\rm TC} \ \ {\rm difference} \ \ \Delta_c$

Estimate	CI.low	CI.high	method
19.857	17.205	22.449	boot(bca)
19.843	4.122	<i>35.565</i>	MLM
19.955	4.916	34.736	TSB(bca)

Mean QALY for arm = "Old"

Estimate	CI.low	CI.high	method	arm
0.489	0.466	0.511	boot(bca)	Old
0.489	0.380	0.597	MLM	Old
0.488	0.396	0.594	TSB(bca)	Old

Old
New

Mean QALY for arm = "New"

Estimate	CI.low	CI.high	method	arm
0.605	0.582	0.627	boot(bca)	New
0.605	0.496	0.713	MLM	New
0.606	0.500	0.713	TSB(bca)	New

• Mean TC for arm = "Old"

	Estimate	CI.low	CI.high	method	arm
	99.516	97.642	101.403	boot(bca)	Old
	99.520	88.427	110.614	MLM	Old
Arm	99.497	89.465	110.668	TSB(bca)	Old
·					

- New

• Mean TC for arm = "New"

Estimate	CI.low	CI.high	method	arm
119.373	117.542	121.276	boot(bca)	New
119.364	108.247	130.481	MLM	New
119.451	109.087	130.005	TSB(bca)	New

Clustering - MLM/TSB

MLM:

- Extends standard OLS/SUR framework to deal with clustering
- Good performance except with small samples & numbers of clusters
- Difficult to implement unless assuming independence between outcomes and Normality

Clustering - MLM/TSB

MLM:

- Extends standard OLS/SUR framework to deal with clustering
- Good performance except with small samples & numbers of clusters
- Difficult to implement unless assuming independence between outcomes and Normality
- (non-parametric) **TSB**:
 - Standard bootstrap ignores clustering and underestimates uncertainty
 - Two-stage procedure needed to account for clustering
 - Can be combined with SUR to deal with CE correlation
 - Shrinkage correction needed to avoid overestimation

Clustering - MLM/TSB

MLM:

- Extends standard OLS/SUR framework to deal with clustering
- Good performance except with small samples & numbers of clusters
- Difficult to implement unless assuming independence between outcomes and Normality
- (non-parametric) TSB:
 - Standard bootstrap ignores clustering and underestimates uncertainty
 - Two-stage procedure needed to account for clustering
 - Can be combined with SUR to deal with CE correlation
 - Shrinkage correction needed to avoid overestimation
- Other approaches:
 - Bayesian hierarchical models (Grieve et al. 2010, Gomes et al. 2012)

Missing data

- Missing CE values almost inevitably occur:
 - A single missing CE component leads to a missing QALY/TC value
 - Need to accept inherent uncertainty in analysis
 - Any method is based on some untestable assumptions

Missing data

- Missing CE values almost inevitably occur:
 - A single missing CE component leads to a missing QALY/TC value
 - Need to accept inherent uncertainty in analysis
 - Any method is based on some untestable assumptions
- Express assumptions as missingness mechanism (Little et al. 2019):
 - Missing Completely At Random (MCAR): occur randomly
 - Missing At Random (MAR): due to some observed variables
 - Missing Not At Random (MNAR): due to some unobserved variables

Missing data

- Missing CE values almost inevitably occur:
 - A single missing CE component leads to a missing QALY/TC value
 - Need to accept inherent uncertainty in analysis
 - Any method is based on some untestable assumptions
- Express assumptions as missingness mechanism (Little et al. 2019):
 - Missing Completely At Random (MCAR): occur randomly
 - Missing At Random (MAR): due to some observed variables
 - Missing Not At Random (MNAR): due to some *unobserved variables*
- Method should be aligned with the selected assumptions :
 - Avoid methods with unrealistic assumptions (eg mean imputation)
 - Define a base-case scenario (eg MAR)
 - Assess sensitivity of results to some departures

QALYs & utilities fully observed

Mean(e)	Sd(e)	Mean(u)	Sd(u)	n
0.759	0.189	0.489	0.147	250

• QALYs under MAR & utilities

obs mis -	Mean(e)	Sd(e)	Mean(u)	Sd(u)	n
	0.714 0.899	0.176 0.157	0.438 0.647	0.121 0.103	189 61

- Complete Case Analysis (CCA):
 - Eliminate partially-observed cases y^{mis}
 - Reduce efficiency and may bias estimates

- Complete Case Analysis (CCA):
 - Eliminate partially-observed cases y^{mis}
 - Reduce **efficiency** and may **bias** estimates
- Single Imputation (SI):
 - Impute y^{mis} with a single value $y^{\text{mis}} = y^{\star}$ (eg mean, zero, etc.)
 - **Ignores** uncertainty with *restrictive* assumptions

- Complete Case Analysis (CCA):
 - Eliminate partially-observed cases y^{mis}
 - Reduce **efficiency** and may **bias** estimates
- Single Imputation (SI):
 - Impute y^{mis} with a single value $y^{\text{mis}} = y^*$ (eg mean, zero, etc.)
 - Ignores uncertainty with restrictive assumptions
- Multiple Imputation (MI):
 - Impute y^{mis} M times with an imputation model
 - Analyse each dataset and derive estimates $\hat{\beta}_m$ for $m=1,\dots,M$
 - Combine M estimates into a single quantity β
 - Validity relies on correct model specification

$\bullet \ \ \text{Mean QALY difference } \Delta_e \\$

Estimate	CI.low	CI.high	method
0.148	0.129	0.167	CCA
0.070	0.052	0.087	SI
0.137	0.115	0.159	MI

• Mean TC difference Δ_c

Estimate	CI.low	CI.high	method
15.197	7.082	23.313	CCA
6.728	-4.236	17.691	SI
11.268	4.434	18.102	MI

• Mean QALY for arm = "Old"

CI.low	CI.high	method
0.429	0.453	CCA
0.458	0.482	SI
0.492	0.524	MI
	0.429 0.458	0.429 0.453 0.458 0.482

• Mean QALY for arm = "New"

Estimate	CI.low	CI.high	method
0.588	0.574	0.603	CCA
<i>0.539</i>	0.527	0.552	SI
0.645	0.631	0.659	MI

• Mean TC for arm = "Old"

Estimate	CI.low	CI.high	method
98.389	92.904	103.874	CCA
65.052	57.490	72.614	SI
109.871	104.826	114.917	MI

Old

• Mean TC for arm = "New"

Estimate	CI.low	CI.high	method
113.586	107.605	119.567	CCA
<i>71.780</i>	<i>63.845</i>	79.714	SI
<i>121.139</i>	115.650	126.628	MI

Missing data - things to consider

- "Simple" methods (CCA/SI):
 - Easy to implement but likely inefficient and/or biased
 - Often valid under *quite restrictive* assumptions (eg MCAR)

Missing data - things to consider

- "Simple" methods (CCA/SI):
 - Easy to implement but likely inefficient and/or biased
 - Often valid under *quite restrictive* assumptions (eg MCAR)
- "Advanced" methods (MI):
 - Account for missingness uncertainty
 - Require specification of imputation model for each variable (MICE)
 - Valid under less restrictive assumptions (eg MAR)

Missing data - things to consider

- "Simple" methods (CCA/SI):
 - Easy to implement but likely inefficient and/or biased
 - Often valid under quite restrictive assumptions (eg MCAR)
- "Advanced" methods (MI):
 - Account for missingness uncertainty
 - Require specification of imputation model for each variable (MICE)
 - Valid under less restrictive assumptions (eg MAR)
- Further issues to address:
 - Check sensitivity of results to departures (eg MNAR)
 Use specific MNAR approaches (Leurent et al. 2018)
 - Imputation of **longitudinal** variables (u_{ij},c_{ij}) challenging Use mixed models under MAR (Gabrio et al. 2022)
 - "Best" way to **combine** MI/bootstrap *unclear* (Brand et al. 2019)

Are we still alive?

Section 4

Reporting of CEAs

• Patient characteristics (eg baseline var) & effectiveness by arm

- Patient characteristics (eg baseline var) & effectiveness by arm
- Costs & Quality of Life :
 - Prices (with year) and volumes of all cost components
 - QoL instrument and summary of measurement moments
 - Valuation of health states and methods used (if applicable)

- Patient characteristics (eg baseline var) & effectiveness by arm
- Costs & Quality of Life :
 - Prices (with year) and volumes of all cost components
 - QoL instrument and summary of measurement moments
 - Valuation of health states and methods used (if applicable)
- Missing Data :
 - Description of amounts and patterns
 - How it was handled (including type of imputation)

- Patient characteristics (eg baseline var) & effectiveness by arm
- Costs & Quality of Life :
 - Prices (with year) and volumes of all cost components
 - QoL instrument and summary of measurement moments
 - Valuation of health states and methods used (if applicable)
- Missing Data :
 - Description of amounts and patterns
 - How it was handled (including type of imputation)
- Extrapolation & Validation :
 - Measures for checking the validity of extrapolation (time-to-event data)
 - AdVISHE² checklist (validation of input data and outcomes)

²Assessment of the Validation Status of Health-Economic

Results: base-case analysis

- Costs & Effects:
 - Absolute & incremental estimates with Cls
 - Absolute & incremental costs by cost category and total sums
 - Absolute & incremental QoL by health state (if applicable)

Results: base-case analysis

- Costs & Effects :
 - Absolute & incremental estimates with Cls
 - Absolute & incremental costs by cost category and total sums
 - Absolute & incremental QoL by health state (if applicable)
- CE quantities :
 - Incremental Cost-Effectiveness Ratio : ICER = $\frac{\Delta_e}{\Delta_c}$
 - Net Monetary Benefit : NMB = $k \times \Delta_e \Delta_c$ Use reference CE threshold k -> CE in practice Manual

Results: base-case analysis

- Costs & Effects :
 - Absolute & incremental estimates with Cls
 - Absolute & incremental costs by cost category and total sums
 - Absolute & incremental QoL by health state (if applicable)
- CE quantities :
 - Incremental Cost-Effectiveness Ratio : ICER = $\frac{\Delta_e}{\Delta_c}$
 - Net Monetary Benefit : NMB = $k \times \Delta_e \Delta_c$ Use reference CE threshold k -> CE in practice Manual
- Subgroup analyses (if applicable):
 - All CE results presented separately for each subgroup

Results: base-case analysis - an example

• Summary of CE results in **table** format:

	Mean	SE	CI(low)	CI(high)
Old(QALY)	0.511	0.012	0.487	0.535
New(QALY)	0.557	0.013	0.532	0.582
Old(TC)	125.010	2.169	120.739	129.281
New(TC)	<i>147.056</i>	2.275	142.575	151.538
Incr(QALY)	0.046	0.018	0.012	0.081
Incr(TC) NMB(k=5000)	22.046 24.385	3.144	15.854	28.239
ICER	474.820			

Results: base-case analysis - an example

Summary of CE results in table format:

	Mean	SE	CI(low)	CI(high)
Old(QALY)	0.511	0.012	0.487	0.535
New(QALY)	<i>0.557</i>	0.013	0.532	0.582
Old(TC)	125.010	2.169	120.739	129.281
New(TC)	147.056	2.275	142.575	151.538
Incr(QALY)	0.046	0.018	0.012	0.081
Incr(TC) NMB(k=5000) ICER	22.046 24.385 474.820	3.144	15.854	28.239

- In Base-Case analysis, focus on:
 - Point & CI estimates for QALY/TC by arm (over the study period)
 - Point & CI estimates for incremental QALY/TC (New-Old)
 - **Point** estimate for *ICER* and *NMB* (assuming **reference value** for k)

Results: sensitivity analyses

- Deterministic & scenario analyses (model-based):
 - Chosen parameter distribution
 - ICER and incremental quantities lower/upper values
 - Always compared with base-case results

Results: sensitivity analyses

- Deterministic & scenario analyses (model-based):
 - Chosen parameter distribution
 - ICER and incremental quantities lower/upper values
 - Always compared with base-case results
- Probabilistic analyses:
 - Graphically presented using:

```
Cost-Effectiveness Plane (CE plane)
Cost-Effectiveness Acceptability Curve (CEAC)
```


Results: sensitivity analyses

- Deterministic & scenario analyses (model-based):
 - Chosen parameter distribution
 - ICER and incremental quantities lower/upper values
 - Always compared with base-case results
- Probabilistic analyses:
 - Graphically presented using:

```
Cost-Effectiveness Plane (CE plane)
Cost-Effectiveness Acceptability Curve (CEAC)
```

- Value of Information analyses (model-based):
 - Expected Value of (Partial) Perfect Information (EV(P)PI) plot
 - EVSI and ENBS results may be presented -> Vol analyses Manual

Results: probabilistic analyses - an example

CE plane

- Scatter plot of **boostrapped** estimates (Δ_e^b, Δ_c^b)
- Red line slope equal to reference value for K
- ICER = $\frac{\mathsf{E}[\Delta_c^b]}{\mathsf{E}[\Delta_e^b]}$

% 0.994 0.006 0 0 0 . QALY 0.047 TC 22.129	000	K=100	sw	SE	NW	NE	Mean	
-	909	0.90	0	0	0.006	0.994		%
TC 22.129							0.047	QALY
							22.129	TC
ICER 475.487							475.487	ICER

Results: probabilistic analyses - an example

NMB

- Plot of **bootstrapped** NMB^b estimates for $K \in [0, K_{\max}]$
- Red line equal to reference value for K
- Dashed lines are 95% interval based on bootstrapped estimates
- $\mathrm{NMB}^b = K \times \Delta^b_e \Delta^b_c$

	Mean	CI(low)	CI(high)
K=1000	24.41	- <mark>12.159</mark>	62.059
K=475.487	0.00	-18.302	18.195

Results: probabilistic analyses - an example

CEAC

- Plot of % of boostrapped estimates
 - $\frac{\Delta_c^b}{\Delta_e^b}$ below K for $K \in [0,K_{\max}]$
- Often interpreted as "probability" that New is
 - CE compared to Old
- Red line equal to reference value for K

	K=500	K=1000	K=2000
% CE	0.549	0.903	0.971

Section 5

Conclusions

Summary

- Trial-based analysis considered the gold standard for evaluating effectiveness and cost-effectiveness of new interventions
 - Randomisation & ITT analysis minimises chance of bias
 - Provide prospective patient-level cost and effect data

Summary

- Trial-based analysis considered the gold standard for evaluating effectiveness and cost-effectiveness of new interventions
 - Randomisation & ITT analysis minimises chance of bias
 - Provide prospective patient-level cost and effect data
- Use of invalid stat methods may still lead to bias
 - Distort CE conclusions with "waste" of resources
 - Statistical quality of analyses is generally poor (Gabrio et al., 2017;
 Ling et al. 2022)

Summary

- Trial-based analysis considered the gold standard for evaluating effectiveness and cost-effectiveness of new interventions
 - Randomisation & ITT analysis minimises chance of bias
 - Provide prospective patient-level cost and effect data
- Use of invalid stat methods may still lead to bias
 - **Distort** CE conclusions with "waste" of resources
 - Statistical quality of analyses is generally poor (Gabrio et al., 2017;
 Ling et al. 2022)
- Methods for health effects often not appropriate for CEA:
 - Many complexities present simultaneously in CEA:
 Baseline imbalance, Correlation, Skewness, Clustering, Missing data
 - Require a **combination** of different statistical methods use

Summary

- Trial-based analysis considered the gold standard for evaluating effectiveness and cost-effectiveness of new interventions
 - Randomisation & ITT analysis minimises chance of bias
 - Provide prospective patient-level cost and effect data
- Use of invalid stat methods may still lead to bias
 - Distort CE conclusions with "waste" of resources
 - Statistical quality of analyses is generally poor (Gabrio et al., 2017;
 Ling et al. 2022)
- Methods for health effects often not appropriate for CEA:
 - Many complexities present simultaneously in CEA:
 Baseline imbalance, Correlation, Skewness, Clustering, Missing data
 - Require a **combination** of different statistical methods use
- Important to identify barriers and facilitators of methods

R you still using Excel/SPSS?

R you still using Excel? (Incerti et. al 2019)

- Historically, HTAs conducted with commercial software (eg SPSS) or spreadsheet software (eg Excel) which:
 - Are sufficient for simple analyses BUT
 - Put constraints that limit credibility and relevance

R you still using Excel? (Incerti et. al 2019)

- Historically, HTAs conducted with commercial software (eg SPSS) or spreadsheet software (eg Excel) which:
 - Are sufficient for simple analyses BUT
 - Put constraints that limit credibility and relevance
- Modern programming languages (eg R) facilitate the development of models that are:
 - Increasingly sophisticated and realistic
 - Capable of quantifying decision uncertainty
 - Tansparent and reproducible
 - Reusable and adaptable

R you still using Excel? (Incerti et. al 2019)

- Historically, HTAs conducted with commercial software (eg SPSS) or spreadsheet software (eg Excel) which:
 - Are sufficient for simple analyses BUT
 - Put constraints that limit credibility and relevance
- Modern programming languages (eg R) facilitate the development of models that are:
 - Increasingly sophisticated and realistic
 - Capable of quantifying decision uncertainty
 - Tansparent and reproducible
 - Reusable and adaptable
- R user/developer communities well suited to:
 - Develop/implement HTA models in a single software environment
 - Catch up with methodological advances
 - Spot and correct code errors via **open-source** nature of packages

A path forward for HTA

- Still a general lack of software experience in the HTA community:
 - Insufficient training in script-based prog software
 - Limited guidance on how to implement standard models

A path forward for HTA

- Still a general lack of software experience in the HTA community:
 - Insufficient training in script-based prog software
 - Limited guidance on how to implement standard models
- Critical to train the next generation of health economists in state of the art methods and software to implement them

A path forward for HTA

- Still a general lack of software experience in the HTA community:
 - Insufficient training in script-based prog software
 - Limited guidance on how to implement standard models
- Critical to train the next generation of health economists in state of the art methods and software to implement them
- How to do this?
 - Developing university courses & workshops
 - Writing tutorial papers
 - Making code freely available on repositories (eg GitHub)
 - Encouraging the use of programming languages among researchers

Key references

- El Alili, M., Dongen, J. M. van, Esser, J. L., Heymans, M. W., Tulder, M. W. van, & Bosmans, J. E. (2022). A scoping review of statistical methods for trial-based economic evaluations: The current state of play. *Health Economics*, 31(12), 2680–2699.
- Gabrio, A., Mason, A. J., & Baio, G. (2019). A full bayesian model to handle structural ones and missingness in economic evaluations from individual-level data. *Statistics in Medicine*, 38(8), 1399–1420.
- Gomes, M., Ng, E. S.-W., Grieve, R., Nixon, R., Carpenter, J., & Thompson, S. G. (2012). Developing appropriate methods for cost-effectiveness analysis of cluster randomized trials. *Medical Decision Making*, 32(2), 350–361.
- Incerti, D., Thom, H., Baio, G., & Jansen, J. P. (2019). R you still using excel? The advantages of modern software tools for health technology assessment. *Value in Health*, *22*(5), 575–579.
- Leurent, B., Gomes, M., Faria, R., Morris, S., Grieve, R., & Carpenter, J. R. (2018). Sensitivity analysis for not-at-random missing data in trial-based cost-effectiveness analysis: A tutorial. *Pharmacoeconomics*, *36*(8), 889–901.
- Manca, A., Hawkins, N., & Sculpher, M. J. (2005). Estimating mean QALYs in trial-based cost-effectiveness analysis: The importance of controlling for baseline utility. *Health Economics*, 14(5), 487–496.
- Nederland, Z. (2024). Guideline for economic evaluations in healthcare (2024 version). *Zorginstituut Nederland: Diemen*.

Section 6

Appendix - R code

Appendix - R code - Baseline adjustment

Full code available @AnGabrio GitHub

```
> #fit QALY OLS model adjusting for baseline utilities
 > lm2 <- lm(QALY ~ trt + u, data = dataset)
 > #get mean QALY in each trt group
 > lm2em <- emmeans(lm2, ~ trt)
 > #get mean difference between groups
 > contrast2 1vs0 <- list("New vs Old" = c(-1, 1))
 > #summarise estimates
 > confint(contrast(lm2em, contrast2 1vs0))
contrast estimate SE df lower.CL upper.CL
New vs Old 0.0765 0.0108 297 0.0552 0.0979
```

Confidence level used: 0.95

Appendix - R code - Dealing with correlation

Full code available @AnGabrio GitHub

```
> #fit SUR model to QALY and TC
> sur <- systemfit(list(QALYreg = QALY ~ trt + u,
      TCreg = TC ~ trt + c), method="SUR", data=dataset)
> #get mean QALY difference CI
> sur_e.trt.ci <- confint(sur, level=0.95)[2,]</pre>
> #summarise mean QALY difference between groups
> sur_e.trt.sum <- c(coef(summary(sur))[2,</pre>
      c("Estimate", "Std. Error")], sur_e.trt.ci)
> sur e.trt.sum
Estimate Std. Error 2.5 % 97.5 %
```


0.07641998 0.01083463 0.05509761 0.09774235

Appendix - R code - Dealing with correlation

Full code available @AnGabrio GitHub

```
> #fit OLS/SUR model and get bootrap estimates
  > boot_res <- boot_ec(dataset, QALYreg = QALY ~ trt + u,
        TCreg = TC ~ trt + c, method = "OLS", B=200)
  > summary(boot res$QALY boot$Delta e)
   Min. 1st Qu. Median Mean 3rd Qu. Max.
0.04894 0.06982 0.07790 0.07711 0.08325 0.10448
  > #compute percentile or BCa CIs
  > boot_ci_bca <- boot_ci(x = boot_res, method = "BCa")</pre>
  > boot ci bca$Delta e
 1.638952% 96.28698%
```


0.05464895 0.09617978

Appendix - R code - Dealing with skewness

Full code available @AnGabrio GitHub

```
> #fit GLM model for TC
 > glm_c <- glm(TC ~ trt + c, data = dataset_sam_skew.df,
 + family = Gamma(link = "identity"))
 > #get mean TC in each trt group
 > glm_c.em <- emmeans(glm_c, ~ trt)</pre>
 > #get mean difference between groups
 > contrast1 1vs0 <- list("New vs Old" = c(-1, 1))
 > #summarise estimates
 > confint(contrast(glm_c.em, contrast1_1vs0))
contrast estimate SE df lower.CL upper.CL
New vs Old 35.6 6.65 17 21.6 49.6
```

Confidence level used: 0.95

Appendix - R code - Dealing with clustering

Full code available @AnGabrio GitHub

```
> #fit MLM model for QALY
  > mlm e <- lme(QALY ~ trt, random = ~1 | cluster,
  + data = data.clus.df)
  > #get mean QALY in each trt group
  > mlm1em e <- emmeans(mlm e, ~ trt)</pre>
  > #get mean difference between groups
  > contrast1 1vs0 <- list("New vs Old" = c(-1, 1))
  > confint(contrast(mlm1em_e, contrast1_1vs0))
 contrast estimate SE df lower.CL upper.CL
New vs Old 0.116 0.0744 24 -0.0374 0.27
Degrees-of-freedom method: containment
```

Maastricht Iniversity

Confidence level used: 0.95

Appendix - R code - Dealing with clustering

Full code available @AnGabrio GitHub

```
> #fit OLS/SUR model and get TSB estimates
  > tsboot_res <- tsboot_ec(data = data.clus.df,</pre>
      QALYreg = QALY ~ trt, TCreg = TC ~ trt,
  + cluster = "cluster", B=200)
  > summary(tsboot res$QALY boot$Delta e)
   Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.08989 0.06294 0.11181 0.11045 0.15426 0.32714
  > #compute percentile or BCa CIs
  > tsboot ci bca <- boot ci(x = tsboot res, method = "BCa")</pre>
  > tsboot_ci_bca$Delta_e
```

2.971331% 97.90686% -0.05569824 0.27476579

Appendix - R code - Dealing with missing data

Full code available @AnGabrio GitHub

```
> #impute data using MICE with pmm
 > mice_data <- mice(full.mar.MI, predictorMatrix = pM,</pre>
     method='pmm', m = 20, print = FALSE)
 > #analyse imputed data with OLS for QALY
 > lme mice data <- with(mice data, lm(QALY obs ~ trt + u))</pre>
 > #get pooled mean QALY per group
 > em_lme_mu_data.mi <- emmeans(lme_mice_data, ~ trt)
 > #get pooled mean difference between groups
 > contrast1 1vs0 <- list("New vs Old" = c(-1, 1))
 > confint(contrast(em_lme_mu_data.mi, contrast1_1vs0))
contrast estimate SE df lower.CL upper.CL
```


New vs Old 0.138 0.00948 41.8 0.119 0.157

```
> #get CEA output from bootstrapped estimates
    > library(BCEA)
    > cea_res <- bcea(eff = boo.mu.e, cost = boo.mu.c,
        Kmax = 25000, ref = 2)
    > summarv(cea res)
Cost-effectiveness analysis summary
Reference intervention: intervention 2
Comparator intervention: intervention 1
Optimal decision: choose intervention 1 for k < 500 and intervention 2 for k >= 500
Analysis for willingness to pay parameter k = 25000
               Expected net benefit
intervention 1
                              12642
intervention 2
                             13783
                                    ETR
                                          CEAC
                                                 TCER
intervention 2 vs intervention 1 1141.3 0.9934 475.49
Optimal intervention (max expected net benefit) for k = 25000: intervention 2
EVPT 1.0828
```


> ceplane.plot(cea_res, graph = "ggplot2", wtp = 5000) + labs(title="")

> eib.plot(cea_res, graph = "ggplot2", plot.cri = TRUE) + labs(title="")

> ceac.plot(cea_res, graph = "ggplot2") + labs(title="")

A. Gabrio (UM)