

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PEA3306 — PRIMEIRA PROVA — 27 DE ABRIL DE 2016 — 10:00 ÀS 11:40

Nome Legível:			Ass.:			No. USP:			
Professor:				Turma:					
Q1	(1,5)	Q2	(4,0)	Q3	(2,5)	Q4	(2,0)	Total	
QUESTÃ	. O 1 [1.5] A	estrutura	ferromagr	nética d	a Figura 1 é	simétri	ca e apres	enta as	seguintes
	as: Relutâno		_		_		'		
Aesp/Wb	, Relutânc	ia do bra	ço centra	l (Fe)	= 5.10 ⁵	·			
Aesp/Wb	e Relutând	cia do entr	eferro = 20	0.10 ⁵ Ae	esp/Wb.	-	i		一つ : [,
A bobina	1 possui 25	0 espiras	e a bobina	2 , 400	espiras. 🛂	\pm	낙	_	N_1
Pede-se	determinar	os itens a	seguir.			\exists^{N_2}	;	٦	1
(a) [0,3] [Desenhe o	circuito el	étrico anál	logo ao	circuito	} L	—— ;	<u> </u>	- ;
magnétic	o, indicand	o todos os	parâmetr	os.	L				
							Figura	1 – Questão 1	
(h) [0 3] 9	Supondo ai	ıe <i>i</i> ₂=0 de	etermine o	fluxo m	nagnético atra	avés a	hobina 1 d	nı e da	hohina 2
(Б) [С,С] (ф21.	saponao qe	<i>io i</i> 2 0, ac		παλό π	agnetioo atre	aves a	DODING 1, q	ni, o da	DODING 2,
Ψ21.									
Resp.:									
(c) [0,3]	Na condiçã	o do item	(b), deter	mine a	indutância p	rópria	da bobina	1, e a i	ndutância
mútua en	tre as duas	bobinas.							
_									

(d) [0,3] Supondo agora que $i_1=0$ e $i_2 \neq 0$,	determine o fluxo	magnético	através da	bobina	2 e a
indutância própria dessa bobina.					

Resp.:
(e) [0,3] Qual o fator de acoplamento entre as duas bobinas?
Resp.:
QUESTÃO 2 [4,0] Um transformador monofásico de dois enrolamentos tem os seguintes dados
de placa: $200~\mathrm{kVA},~2300$: $230~\mathrm{V},~60~\mathrm{Hz}$. A impedância vista pela alta tensão quando a baixa
tensão está curto-circuitada vale ($0.24+j1.6$) Ω . O enrolamento de baixa tensão, quando a alta
tensão está em aberto, possui como parâmetros uma resistência de perdas $33,3~\Omega\mathrm{e}$ uma
reatância de magnetização de $13,3~\Omega$. Pede-se:
(a) [0,5] as correntes nominais da alta e baixa tensão desse transformador;
$I_1 = 200/2,3 \rightarrow I_1 = 86,96 \text{ A}$
$I_2 = 200/0,23 = 869,6$ A
Resp.: I ₁ = 86,96 A I ₂ =869,6 A
(b) [0,6] a corrente de magnetização e a corrente de perdas quando o transformador está em
aberto e alimentado com tensão nominal pela alta tensão;
a = 2300/230 = 10
$I_{pAT} = V_2/R_p/a \rightarrow 230/33,3/10 \rightarrow I_p = 0,69 A$
$I_{\text{magAT}} = V_2/X_{\text{m}}/a \rightarrow 230/13,3/10 \rightarrow I_{\text{mag}} = 1,725 \text{ A}$

Resp.: ____ $I_{mag} = 1,725 A$ ____ $I_p = 0,69 A$ ____

Página 2 de 5

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PEA3306 — PRIMEIRA PROVA — 27 DE ABRIL DE 2016 — 10:00 ÀS 11:40

(c) [0,8] o circuito elétrico equivalente a fluxo constante (simplificado, no qual o ramo magnetizante está em paralelo com a fonte), referido ao lado da alta tensão, indicando os valores numéricos dos parâmetros; $a^2 = 100 \rightarrow R'_p = 100.33, 3 = 3,33 \text{ k}\Omega$, $X'_m = 1,33 \text{ k}\Omega$

(d) [0,7] a tensão primária (módulo e fase) para que o transformador alimente carga resistiva a $220~\mathrm{V}$, consumindo $180~\mathrm{kW}$, no lado da baixa tensão.

$$V'_{2}=2200 \angle 0^{\circ} V$$
, $I'_{2}=180/2, 2 \angle 0^{\circ}=81, 82 \angle 0^{\circ} A$, $V_{1}=E_{1}=V'_{2}+\Delta V_{cc}=2200+81, 82 (0,24+j1,6) \rightarrow V_{1}=2223,5 \angle 3,38^{\circ}$ [V],

Resp.: _____ $V_1 = 2223,5 \angle 3,38^{\circ} [V]$ _____

(e) [0,8] as perdas totais do transformador e seu rendimento, quando este opera nas condições anteriores.

$$P_{Fe} = V'_{1}^{2}/R_{p} \rightarrow 222,35^{2}/33,3 \rightarrow P_{Fe} = 1483,2 \text{ W}$$

$$P_{J} = R_{cc}.I'_{2}^{2} \rightarrow P_{J} = 0,24x81,82^{2} \rightarrow P_{J} = 1606,7 \text{ W}$$

$$Perdas = 1483,2+1606,7 = 3089,9 \text{ W}$$

$$Rend = P_{2}/(Perdas+P_{2}) = 180/(180 + 3,0899) = 98,3 \%$$

Resp.: Perdas = 3090 W Rend = 98,3 %

(f) [0,6] Qual a regulação do transformador na situação anterior?

 $Reg = (V'_{20} - V'_{2})/V'_{2} \rightarrow (2223.5 - 2200)/2200 = 1 \%$

Resp.: _____ Reg =1 % _____

QUESTÃO 3 [2,5] Na Figura 2 abaixo, uma espira retangular longa e condutora de largura L, resistência R e massa M está em repouso numa região onde existe um campo magnético

Figura 2 – Questão 3

Resp.:

horizontal uniforme *B*, orientado para dentro da página, e que existe <u>somente acima</u> da linha **aa'**. A espira é então solta, a partir do repouso e, durante a sua queda, é acelerada sob a ação da gravidade. Ignore a resistência do ar e admita que não haja possibilidade de movimento horizontal. Pede-se:

- (a) [0,8] para <u>cada um dos 4 lados</u> da espira, indique na Figura 2 a polaridade da tensão induzida, o sentido da corrente e a direção e sentido da força magnética.
- (b) [0,8] Escreva (sem resolver) as equações elétricas, mecânicas e de conversão eletromecânica de energia que regem o movimento da espira.

c) [0,5] A espira alcançará uma velocidade de regime $m{u}_{\infty}$. Determine o valor .									
Resp.:									
(d) [0,4] o dispositivo funciona como freio, motor ou gerador? Justifique.									
Resp.:									

 $\underline{\mathbf{QUESTÃO 4}}$ [2,0] Uma bobina de N espiras, orientada como ilustrado na Figura 3 abaixo, possui uma parte móvel de ferro que pode deslocar-se na direção vertical, para cima ou para baixo. A

indutância própria dessa bobina foi obtida experimentalmente e é dada por:

$$L(y)=rac{L_0}{1+ky^2}$$
 , sendo que y = 0 corresponde à situação

na qual o êmbolo está centrado na bobina.

Figura 3 - Questão 4

(a) [1,0] Para uma fonte de alimentação em corrente contínua, forneça uma expressão para a força desenvolvida pelo êmbolo em função da corrente i e do deslocamento y. Em que sentido atuará essa força, se o deslocamento for no sentido de y crescente? E no decrescente?

$$dL/dy = -2.k.y.L_0/(1+ky^2)^2 \rightarrow F(y) = \frac{1}{2} i^2 dL/dy \rightarrow$$

$$F(y) = -L_0 i^2. ky/(1+ky^2)^2$$

Resp.: Sempre no sentido contrário ao deslocamento, ou seja, no sentido de maximizar L (Lmax = $L_0 \rightarrow$ êmbolo centrado na bobina: F=0) $\rightarrow y \downarrow F \uparrow$, $y \uparrow F \downarrow$

(b) [1,0] Suponha agora que se trocou a fonte de tensão contínua por outra senoidal, ou seja, $e = e(t) = \sqrt{2} E \cos \omega t$. Forneça a expressão de F(y,t) e seu valor médio, desprezando a resistência da bobina.

$$\begin{split} I_{\rm ef} &= I = E/\omega L \ \, \boldsymbol{\rightarrow} \ \, I = E.(1+ky^2)/\omega L_0 \\ F(y,t) &= \frac{1}{2} \ i^2(t) \ dL(y)/dy \ \, \boldsymbol{\rightarrow} \ \, F(y,t) = \frac{1}{2} \ I^2(1-\cos 2\omega t) \ dL(y)/dy \\ F(y,t) &= -\frac{1}{2} \ I^2(1-\cos 2\omega t) \ 2.k.y.L_0/(1+ky^2)^2 \end{split}$$

→
$$F(y,t) = -(1-\cos 2\omega t)$$
. L₀ k.y.[I/(1+ky²)]²

$$\begin{split} F(y,t) &= - \; (1-\cos \, 2\omega t). \; k.y. \; E^2/\omega^2 L_0 \\ \text{Resp.:} &\underline{\hspace{1cm}} F(y,t) = - \; (E^2 \; k.y/\omega^2 L_0). \; (1-\cos \, 2\omega t) \underline{\hspace{1cm}} \text{Fmed} = E^2 \; k.y/\omega^2 L_0 \end{split}$$