

# A QUEST for Model Assessment: Identifying Difficult Subgroups via Epistemic Uncertainty Quantification

Precision Medicine and Disease Subtyping - "Just You, Just Me" S103

#### Katherine E. Brown<sup>1,2</sup>, Steve Talbert<sup>3</sup>, and Douglas Talbert<sup>2</sup>

- <sup>1</sup> Vanderbilt University Medical Center
- <sup>2</sup> Tennessee Technological University
- <sup>3</sup> University of Central Florida

Connect with us: Katherine.brown@vumc.org

#AMIA2023



### **Disclosure**



I have no relevant relationships with commercial interests to disclose.

# **Learning Objectives**



#### After participating in this session the learner should be better able to:

- Understand the benefits of utilizing uncertainty quantification in machine learning model development
- Learn how decision trees can be utilized to form rules that assign a discrete level of uncertainty to data points
- Evaluate subpopulations of data based on predicted uncertainty level

#### **Hidden Stratification**



Hidden stratification occurs when a subgroup of data exists with higher error (equiv. lower accuracy) than its super-group [1]

Prevalent in chest x-ray detection of pneumothoraxes

- Pneumothorax occurs when air is outside the lung but within the chest cavity
- When the result of a trauma, the condition is treated promptly in ER

Deep learning-based analysis of chest x-rays have been noted to have higher error on chest x-rays with pneumothoraxes without a chest tube than pneumothoraxes with a chest tube



[1] Oakden-Rayner, L., Dunnmon, J., Carneiro, G., & Ré, C. (2020). Hidden stratification causes clinically meaningful failures in machine learning for medical imaging. Proceedings of the ACM conference on health, inference, and learning, 151–159.

# **Uncertainty Quantification**



Uncertainty in ML: Measured as variation of model predictions under stochasticity [2,3]

High Variation implies High Uncertainty

Epistemic uncertainty: Uncertainty in a model due to insufficient data or improperly tuned model hyperparameters [4]

Epistemic uncertainty is effective at identifying unseen (or out-of-distribution) data [4]

<sup>[2]</sup> Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. *Proceedings of The 33rd International Conference on Machine Learning*, 1050–1059.

<sup>[3]</sup> Malinin, A., Prokhorenkova, L., & Ustimenko, A. (2020). Uncertainty in gradient boosting via ensembles. ArXiv Preprint ArXiv:2006.10562.

<sup>[4]</sup> Kendall, A., & Gal, Y. (2017). What uncertainties do we need in bayesian deep learning for computer vision? *Advances in Neural Information Processing Systems*, *30*, 5574–5584.

# **Research Questions and Hypotheses**



Motivation: Few techniques use uncertainty quantification to inform model assessment, and we have seen that uncertainty can serve as a powerful indicator of incorrectness.

Hypothesis: Uncertainty quantification can be used as a model performance analysis tool that can identify higher- and lower-accuracy patient subpopulations

#### Research Questions to Test Hypothesis:

- (RQ 1) Does an inherently interpretable model predict a discretized uncertainty label derived from the underlying uncertainty value with high fidelity?
- (RQ 2) Is there a statistically significant performance difference between subsets of data associated with different levels of predicted uncertainty?



# **Quantifying Uncertainty for Estimating Subgroup Types (QUEST)**



#### Inputs

Supervised training and validation dataset (labeled with correct classification labels)

Classification model trained and validated upon above data

Uncertainty quantification technique

Discretization technique

Supervised, transparent rule induction algorithm

#### Output

Set of rules defining subgroups associated with different levels of uncertainty (Each  $r \in R$  is an if-then rule describing one subgroup).



### **Using QUEST for Model Assessment**



#### Three Notes on QUEST

- 1. A large proportion of the training data is withheld from training and used as validation data, and QUEST is trained on uncertainty information for training and validation data
- 2. Classification label is replaced with a discretized uncertainty label
- 3. An inherently interpretable model is used to model uncertainty

Model assessment via QUEST primarily requires utilizing the predicted uncertainty label as an indicator of potential incorrectness.

#### **Decision Trees**



Each leaf has the resulting uncertainty level

Each non-leaf node has a Boolean condition

Captureties of conditions from root to leaf

Conjunction of conditions from root to leaf describes the patients in the subgroup



(HR > 125) and (Age > 18.5) => High Unc. (HR > 125) and (Age <= 18.5) => Low Unc. (HR <= 125) and (RR > 29.5) => Low Unc. (HR <= 125) and (RR > 29.5) => High Unc.

# **Empirical Evaluation**



Neural network classification model 10-fold CV

**QUEST Implementations** 

- $QUEST(\alpha_2)$ : LOW, HIGH
- $QUEST(\alpha_3)$ : LOW, MEDIUM, HIGH

Measure average test set classification accuracy weighted by test set coverage

Welch's T-Test for samples of unequal size and variance

- LOW vs. HIGH
- LOW vs. MEDIUM ( $\alpha_3$  only)
- MEDIUM vs. HIGH ( $\alpha_3$  only)

### **KY Trauma Triage**



Records originate from Level 1 Trauma Center

Predict if patient has Injury Severity Score > 15

#### 32 total features

- Physiological parameters
- Anatomical criteria
- Mechanism of injury
- Age
- Multiple computed injury scores: AMPT, GCS

| Accuracy | F1 Score | AUROC |
|----------|----------|-------|
| 0.846    | 0.733    | 0.909 |



# **QUEST Fidelity to Discretized Uncertainty**



(RQ 1) Does an inherently interpretable model predict a discretized uncertainty label derived from the underlying uncertainty value with high fidelity?

| Version           | No. Rules    | Fidelity    |
|-------------------|--------------|-------------|
| $QUEST(\alpha_2)$ | 34.0 (8.58)  | 0.85 (0.01) |
| $QUEST(\alpha_3)$ | 33.1 (11.84) | 0.79 (0.02) |



# **Identifying Performance Differences in Predicted Subgroups**



(RQ 2) Is there a statistically significant performance difference between subsets of data associated with different levels of predicted uncertainty?

| Version           | Low Unc. Cls.<br>Acc. | High Unc. Cls.<br>Acc. | P-Value |
|-------------------|-----------------------|------------------------|---------|
| $QUEST(\alpha_2)$ | 0.937                 | 0.753                  | 0.005   |

|                   | Low Unc.<br>Cls. Acc. | Med. Unc.<br>Cls. Acc. | High Unc.<br>Cls. Acc. |       |       | P-Value<br>(Low vs.<br>High) |
|-------------------|-----------------------|------------------------|------------------------|-------|-------|------------------------------|
| $QUEST(\alpha_3)$ | 0.988                 | 0.838                  | 0.730                  | 0.030 | 0.085 | 0.009                        |

#### **Conclusions**



Introduced QUEST – a system to identify low and high performing subgroups of predictions based on epistemic uncertainty

 Used pruned decision trees to classify data to different levels of discretized uncertainty

#### **Answers to Research Questions**

- Proposed method had high fidelity to discretized uncertainty
- Predicted subgroups of differing uncertainty levels are linked to varying levels of performance

Uncertainty quantification can be used as a model performance analysis tool that can identify higher- and lower-accuracy patient subpopulations

QUEST is a first step in an uncertainty-based solution to hidden stratification.

# Thank you!



| Katherine Brown                                                               | Steve Talbert          | Douglas Talbert     |
|-------------------------------------------------------------------------------|------------------------|---------------------|
| katherine.brown@vumc.org X: @katiebrown_phd_ Web: katherinebrown539.github.io | steven.talbert@ucf.edu | dtalbert@tntech.edu |

