Jaringan Komputer

Pertemuan 5

Prodi Informatika

1

Outline

- Overview of Network layer
 - data plane
 - control plane
- What's inside a router
- Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing

Prodi Informatika

Network layer

Tujuan:

- Memahami prinsip-prinsip di belakang layanan network layer, focus pada data plane:
 - network layer service models
 - forwarding versus routing
 - · Bagaimana router bekerja
 - forwarding
- Memahami Protokol IP

Network Layer

3

Network layer

- Mengirimkan segment dari host pengirim ke host penerima
- Pada sisi pengirim mengenkapsulasi segment kedalam datagram
- Pada sisi penerima, mengirimkan segment ke transport layer
- network layer protocols berada pada setiap host, router
- router memeriksa field header di semua datagram IP yang melewatinya

Prodi Informatika

Dua Kunci Fungsi network-layer

network-layer functions:

forwarding:

memindahkan paket dari input router ke output router yang sesuai

routing: menentukan rute yang diambil oleh paket-paket dari sumber ke tujuan

routing algorithms

analogy: taking a trip

- forwarding: proses melewati satu interchange (gate)
- routing: proses perencanaan perjalanan dari sumber ke tujuan

Prodi Informatika

5

Network layer: data plane, control plane

Data plane

- local, per-router function
- menentukan bagaimana datagram yang tiba di port input router diteruskan ke port output router
- Fungsi forwarding/meneruskan values in arriving packet header

Control plane

- network-wide logic
- menentukan bagaimana datagram dirutekan di antara router di sepanjang jalur ujungujung dari host sumber ke host tujuan
- Pendekatan dua control-plane:
 - traditional routing algorithms: diimplementasikan di router
 - software-defined networking (SDN): diimplementasikan di (remote) servers

Prodi Informatika

Network service model

Q: Model layanan apa untuk "saluran" yang memindahkan datagram dari pengirim ke penerima?

example services for individual datagrams:

- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

example services for a flow of datagrams:

- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing

Prodi Informatika

9

Network layer service models:

	Network	Service		Guara	antees ?)	Congestion
Arcl	hitecture	Model	Bandwidth	Loss	Order	Timing	feedback
	Internet	best effort	none	no	no	no	no (inferred via loss)
	ATM	CBR	constant rate	yes	yes	yes	no congestion
	ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
	ATM	ABR	guaranteed minimum	no	yes	no	yes
	ATM	UBR	none	no	ves	no	no

Prodi Informatika

Destination-based forwarding

forwarding table —

	Tan anning tanone
Destination Address Range	Link Interface
11001000 00010111 000100 through	000 00000000
11001000 00010111 00010	111 11111111
11001000 00010111 00011	000 00000000
through 11001000 00010111 00011	• • • • • • • • • • • • • • • • • • •
11001000 00010111 00011	001 00000000 2
through 11001000 00010111 00011:	=
otherwise	3

Q: but what happens if ranges don't divide up so nicely?

Prodi Informatika

15

Longest prefix matching

$_{\sqcap}$ longest prefix matching -

saat mencari entri tabel penerusan untuk alamat tujuan yang diberikan, gunakan awalan alamat terpanjang yang cocok dengan alamat tujuan.

Destination Address Range	Link interface
11001000 00010111 00010*** *******	0
11001000 00010111 00011000 ******	1
11001000 00010111 00011*** *******	2
otherwise	3

examples:

DA: 11001000 00010111 0001<mark>0110 10100001 which interface?</mark>
DA: 11001000 00010111 0001<mark>1000 10101010 which interface?</mark>

Prodi Informatika

Switching fabrics

- mentransfer paket dari buffer input ke buffer output yang sesuai
- switching rate: tingkat di mana paket dapat ditransfer dari input ke output
 - sering diukur sebagai kelipatan dari jalur input / output
 - N inputs: switching rate N kali line rate yang diinginkan
- Tiga Tipe switching fabrics

17

Switching via memory

first generation routers:

- komputer tradisional dengan switching di bawah kendali langsung CPU
- Packet dicopy system's memory
- kecepatan dibatasi oleh bandwidth memori (2 bus penyeberangan per datagram)

Ö

Prodi Informatika

Switching via a bus

- datagram dari memori port input ke memori port output melalui bus bersama
- bus contention: kecepatan switching dibatasi oleh bandwidth bus
- 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers

Prodi Informatika

19

Switching via interconnection network

- mengatasi keterbatasan bandwidth bus
- Bayan network, crossbar, jaring interkoneksi lainnya pada awalnya dikembangkan untuk menghubungkan prosesor dalam multiprosesor
- advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco 12000: switches 60 Gbps through the interconnection network

Prodi Informatika

Input port queuing

- fabric slower than input ports combined -> queueing may occur at input queues
 - queueing delay and loss due to input buffer overflow!
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

21

This slide in HUGELY important! **Output ports** datagram switch buffer link line fabric layer protocol termination (send) queueing buffering required \(\) Datagram (packets) can be lost from fabric faster t due to congestion, lack of buffers scheduling <u>discipline</u> chooses among gueued Priority scheduling – who gets best datagrams performance, network neutrality Prodi Informatika

Output port queueing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!

Prodi Informatika

23

How much buffering?

- RFC 3439 rule of thumb: average buffering equal to "typical" RTT (say 250 msec) times link capacity C
 - \bullet e.g., C = 10 Gpbs link: 2.5 Gbit buffer
- recent recommendation: with N flows, buffering equal to

$$\frac{\mathsf{RTT} \cdot \mathsf{C}}{\sqrt{\mathsf{N}}}$$

Prodi Informatika

Skema IP Addressing

IP Address terdiri 32 bits.

Terbagi menjadi dua bagian Bagian networkID dan Bagian HostID, hal ini tergantung dari subnetmask (akan dibicarakan lebih lanjut).

32 bit dibagi menjadi 4 bagian setiap bagian terdiri dari 8 bit.

Untuk kemudahan dikonversi menjadi desimal.

31

Netmask

- Pada Pengalamatan Logik, selain butuh nomor IP dibutuhkan netmask atau subnetmask.
- Netmask besarnya sama dengan nomor IP yaitu 32 bit.
- Ada tiga pengelompokan besar subnet mask :
 - 255.0.0.0
 - 255.255.0.0
 - 255.255.255.0.
- Hal tadi biasa disebut class, dikenal tiga class :
 - Class A, adalah semua nomor IP yang mempunyai subnetmask 255.0.0.0
 - Class B, adalah semua nomor IP yang mempunyai subnetmask 255.255.0.0
 - Class C, adalah semua nomor IP yang mempunyai subnetmask 255.255.250

Prodi Informatika

IP Dan Netmask...

- Pengalamatan Logik merupakan Gabungan antara IP dan Netmask
- Penulisan biasanya sebagai berikut :

IP : 202.95.151.129Netmask : 255.255.255.0

Perhitungan antara IP dan Netmask akan menghasilkan NetworkID

Prodi Informatika

33

IP Addresses

Terdiri dari 2 bagian:

- Nomor network, Biasa disebut NetworkID (NetId)
 - √ Dalam satu jaringan NetID untuk semua jaringan sama
- Nomor host (HostId)
 - \checkmark Ini yang biasa disebut IP Address, dalam satu jaringan tidak ada yang nomor IP-nya sama

Prodi Informatika

Network ID atau Porsi Network

- Host/Komputer pada sebuah jaringan pada dasarnya hanya bisa berkomunikasi secara langsung dengan perangkat yang satu jaringan dengan komputer tersebut. NetID harus sama.
- Subnet mask yang menentukan NetworkID dan yang mana sebagai porsi nomor komputer/host
- Biasanya semua yang bernilai 0 pada pengalamatan jaringan itulah yang disebut NetworkID (Tapi tidak selalu)
- Peralatan jaringan layer 3, Routers menggunakan NetworkID ketika dia butuh untuk memforward data ke Jaringan yang lain

Prodi Informatika

35

Penggunaan Subnet Mask

NETWORK HOST

32 Bits

- Subnet mask sebenarnya merupakan alat yang dipakai untuk melihat dalam IP address mana bagian dari NetID dan HostID.
- Untuk melihat NetID pada jaringan kita lakukan operasi AND antara Netmask dan IP Address
- Misal :
 - 10.252.240.6 Netmask 2155.255.255.0
 - Konversi menjadi biner dan AND-kan
 - 00001010.111111100.111110000.00000110
 - 11111111.11111111111111111100000000 AND
 - . 00001010.111111100.111110000.00000000
 - Jadi NetID kita adalah 10.252.240.0

Dalam satu jaringan NetID akan sama

Prodi Informatika

Pembagian Subnet Mask

- Class A, adalah semua nomor IP yang mempunyai subnetmask 255.0.0.0
- Class B, adalah semua nomor IP yang mempunyai subnetmask 255.255.0.0
- Class C, adalah semua nomor IP yang mempunyai subnetmask 255.255.255.0

Prodi Informatika

37

Pembagian Subnet Mask									
IP Address	Network	Host	Host	Host					
Netmask Class A	11111111	00000000	00000000	00000000					
IP Address	Network	Network	Host	Host					
Netmask Class B	11111111	11111111	00000000	00000000					
			_						
IP Address	Network	Network	Network	Host					
IP Address Netmask Class C	Network 11111111	Network 11111111	Network 11111111	Host 00000000					

Jangkauan Network ID

- Pada satu Jaringan NetID akan selalu sama
- Class A, misal Penomoran Host merupakan kombinasi 24 bit

Prodi Informatika

39

Jangkauan Network ID...

 Class B, terdapat 16 bit kombinasi untuk host, dimungkin untuk kelas B sebanyak 65,536 dalam satu jaringan

Prodi Informatika

Jangkauan Network ID

- Class C dimungkin ada 254 komputer yang bisa terhubung ke jaringan
- Misal 192.168.16.0 Maka host bisa diberi nomor IP 192.168.16.1 - 192.168.16.254
- Nomor terakhir yaitu 192.168.16.255 disebut broadcast

Prodi Informatika

Broadcast

- Alamat yang digunakan untuk mengirim/menerima informasi yang harus diketahui oleh seluruh host yang ada pada suatu jaringan
- Jika suatu host ingin mengirim paket kepada seluruh host yang ada pada jaringannya, tidak perlu membuat replikasi paket sebanyak jumlah host tujuan, Host cukup mengirim ke alamat broadcast, maka seluruh host yang ada pada network akan menerima paket tersebut
- Seluruh host pada jaringan yang sama harus memiliki broadcast address yang sama dan alamat tersebut tidak boleh digunakan sebagai nomor IP untuk host tertentu
- Nomor Broadcast biasanya adalah nomor terakhir IP pada suatu jaringan (Segment host yang nilai bitnya 1)

Prodi Informatika

Broadcast...

- Misal ID Jaringan 192.168.16.0 Netmask 255.255.255.0
- Broadcast 192.168.16.255
- Misal ID Jaringan 192.168.0.0 Netmask 255.255.0.0
- Broadcast 192.168.255.255
- Berikan Kesimpulan dari data diatas?

Prodi Informatika