Package 'uniformly'

July 18, 2023

July 10, 2025
Type Package
Title Uniform Sampling
Version 0.5.0
Date 2023-07-18
Author Stéphane Laurent
Maintainer Stéphane Laurent <laurent_step@outlook.fr></laurent_step@outlook.fr>
Description Uniform sampling on various geometric shapes, such as spheres, ellipsoids, simplices.
License GPL-3
<pre>URL https://github.com/stla/uniformly</pre>
BugReports https://github.com/stla/uniformly/issues
Imports abind, pgnorm, rgl, stats
Suggests geometry, knitr, misc3d, rmarkdown, scatterplot3d
VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.2.3
NeedsCompilation no
Repository CRAN
Date/Publication 2023-07-18 17:40:02 UTC
R topics documented:
makeHexahedron
rphong_on_hemisphere
runif_cube
runif_ellipsoid
runif_in_annulus
1dilit_111_110/dillott1011

2 makeHexahedron

runif_in_pball	9
runif_in_polygon	9
runif_in_simplex	10
runif_in_tetrahedron	1
runif_on_spherePatch	12
runif_on_sphericalCap	13
runif_on_stri	13
runif_sphere	14
runif_torus	15
runif_triangle	10
runif_unitSimplex	10
surface_sphere	17
surface_spherePatch	18
surface_sphericalCap	19
surface_stri	19
surface_torus	20
surface_triangle	20
volume_ellipsoid	2
volume_hexahedron	2
volume_pball	22
volume_simplex	23
volume_sphere	23
volume_sphericalCap	24
volume_tetrahedron	24
volume_torus	25
volume_unitSimplex	25

26

makeHexahedron

Make hexahedron

Description

Make a hexahedron for usage in runif_in_hexahedron and other functions.

Usage

Index

```
makeHexahedron(p0, p1, p2, p3, p4, p5, p6, p7)
```

Arguments

```
p0, p1, p2, p3, p4, p5, p6, p7
```

the eight vertices of the hexahedron, as in the figure shown below

makeHexahedron 3

Details

A hexahedron is a polyhedron having six quad faces. Its eight vertices must be placed as in the figure below.

Value

A matrix with eight columns, the vertices.

See Also

The function plotHexahedron is useful to check the hexahedron.

```
library(uniformly)
# a non-convex hexahedron
hexahedron <- makeHexahedron(
p0 = c(1.5, 1.5, 0),
p1 = c(2, 0, 0),
p2 = c(2, 2, 0),
p3 = c(0, 2, 0),
p4 = c(0, 2, 2),
p5 = c(0, 0, 2),
p6 = c(2, 0, 2),
p7 = c(2, 2, 2)
)
plotHexahedron(hexahedron)
```

plotHexahedron

Plot hexahedron

Description

Plot a hexahedron with rgl.

Usage

```
plotHexahedron(hexahedron, alpha = 1)
```

Arguments

```
hexahedron a hexahedron given by a 3 times 8 matrix; see makeHexahedron opacity, a number between 0 and 1
```

Value

No returned value, called for plotting.

Examples

```
library(uniformly)
hexahedron <- makeHexahedron(
   p0 = c(0, 0, 0),
   p1 = c(2, 0, 0),
   p2 = c(2, 2, 0),
   p3 = c(0, 2, 0),
   p4 = c(0.5, 1.5, 2),
   p5 = c(0.5, 0.5, 2),
   p6 = c(1.5, 0.5, 2),
   p7 = c(1.5, 1.5, 2)
)
plotHexahedron(hexahedron)
```

rphong_on_hemisphere

Sampling on hemisphere

Description

Sampling on a hemisphere according to the Phong density (dimension 3).

Usage

```
rphong_on_hemisphere(n, alpha = 0, r = 1)
```

runif_cube 5

Arguments

n number of simulations
alpha parameter of the Phong density, a positive number; 0 for uniform sampling (default)

r radius

Value

The simulations in a n times 3 matrix.

Examples

```
## Not run:
library(rgl)
sims <- rphong_on_hemisphere(400, alpha = 10)
spheres3d(0, 0, 0, color = "red", alpha = 0.5)
points3d(sims)
## End(Not run)</pre>
```

runif_cube

Uniform sampling on/in cube

Description

Uniform sampling on or in a cube (arbitrary dimension).

Usage

```
runif_in_cube(n, d, 0 = rep(0, d), r = 1)
runif_on_cube(n, d, 0 = rep(0, d), r = 1)
```

Arguments

n	number of simulations
d	dimension
0	center of the cube
r	radius (half-side) of the cube

Value

The simulations in a n times d matrix.

runif_ellipsoid

Examples

```
sims <- runif_on_cube(60, d = 2)
plot(sims, xlim = c(-1,1), ylim = c(-1,1), pch = 19, asp = 1)
sims <- runif_in_cube(50, d = 3)
library(scatterplot3d)
scatterplot3d(sims, pch = 19, highlight.3d = TRUE, asp = 1)</pre>
```

runif_ellipsoid

Uniform sampling on/in ellipsoid

Description

Uniform sampling on an ellipsoid or in an ellipsoid. The sampling *in* an ellipsoid is available in arbitrary dimension. The sampling *on* an ellipsoid is available only in dimension 2 or 3.

Usage

```
runif_on_ellipse(n, A, r)
runif_on_ellipsoid(n, A, r)
runif_in_ellipsoid(n, A, r)
```

Arguments

n	number of simulations
A	symmetric positive-definite matrix defining the ellipsoid (see Details), of size 2 for runif_on_ellipse and size 2 or 3 for runif_on_ellipsoid (for size 2 these are the same functions)
r	"radius" (see Details)

Details

The ellipsoid is the set of vectors x satisfying $t(x) \% \% A \% \% x == r^2$. For example, for an axisaligned ellipse with horizontal radius a and vertical radius b, take A=1/diag($c(a^2,b^2)$) and r=1.

Value

The simulations in a matrix with n rows.

runif_in_annulus 7

Examples

```
library(uniformly)
set.seed(666L)
# ellipse parameters
A \leftarrow rbind(c(2, 1), c(1, 1))
r < -2
# plot the ellipse
x1 \leftarrow seq(-2.5, 2.5, length.out = 100)
x2 <- seq(-3, 3, length.out = 100)
z <- outer(</pre>
  x1, x2, FUN = Vectorize(function(x1, x2) t(c(x1, x2)) %*% A %*% c(x1, x2))
)
contour(x1, x2, z, nlevels = 1, levels = r^2, asp = 1, drawlabels = FALSE)
# simulations on the perimeter
sims <- runif_on_ellipse(60, A, r)</pre>
points(sims, pch = 19, col = "blue")
# simulations in the area
sims <- runif_in_ellipsoid(100, A, r)</pre>
points(sims, pch = 19, col = "green")
# 3D example ####
A \leftarrow matrix(c(5,1,1, 1,3,1, 1,1,1), ncol = 3L)
r < -2
# draw the ellipsoid
library(misc3d)
x < - seq(-1, 1, length.out = 50)
y \leftarrow seq(-1.5, 1.5, length.out = 50)
z \leftarrow seq(-2.7, 2.7, length.out = 50)
g \leftarrow as.matrix(expand.grid(x = x, y = y, z = z))
voxel <-
  array(apply(g, 1L, function(v) t(v) %*% A %*% v), dim = c(50, 50, 50))
isosurface <- computeContour3d(voxel, max(voxel), r^2, x = x, y = y, z = z)
drawScene.rgl(makeTriangles(isosurface, alpha = 0.3))
# simulate and plot points on ellipsoid
library(rgl)
sims <- runif_on_ellipsoid(300, A, r)</pre>
points3d(sims)
```

runif_in_annulus

Uniform sampling in an annulus

Description

Uniform sampling in an annulus (dimension 2).

Usage

```
runif_in_annulus(n, 0, r1, r2)
```

8 runif_in_hexahedron

Arguments

n	number of simulations
0	center of the annulus
r1	inner radius
r2	outer radius

Value

The simulations in a n times 2 matrix.

Examples

```
sims <- runif_in_annulus(100, c(0, 0), 1, 2) plot(sims, xlim = c(-2, 2), ylim = c(-2, 2), asp = 1, pch = 19)
```

runif_in_hexahedron

Uniform sampling in a hexahedron

Description

Uniform sampling in a hexahedron (polyhedron with six faces).

Usage

```
runif_in_hexahedron(n, hexahedron)
```

Arguments

n number of simulations

hexahedron a hexahedron given by a 3 times 8 matrix whose eight columns are the vertices;

see makeHexahedron

Value

The simulations in a n times 3 matrix.

```
library(uniformly)
hexahedron <- makeHexahedron(
    p0 = c(0, 0, 0),
    p1 = c(2, 0, 0),
    p2 = c(2, 2, 0),
    p3 = c(0, 2, 0),
    p4 = c(0.5, 1.5, 2),
    p5 = c(0.5, 0.5, 2),
    p6 = c(1.5, 0.5, 2),
```

runif_in_pball 9

```
p7 = c(1.5, 1.5, 2)
)
sims <- runif_in_hexahedron(200, hexahedron)
plotHexahedron(hexahedron, alpha = 0.3)
rgl::points3d(sims)</pre>
```

runif_in_pball

Uniform sampling in a p-ball

Description

Uniform sampling in a p-ball (arbitrary dimension).

Usage

```
runif_in_pball(n, d, p, r = 1)
```

Arguments

n	number	of	simu	lations

d dimension

p exponent in the p-norm, a positive number

r positive number, the radius

Value

The simulations in a n times d matrix.

Examples

```
sims <- runif_in_pball(500, d = 2, p = 1)
plot(sims, xlim = c(-1, 1), ylim = c(-1, 1), asp = 1)
```

runif_in_polygon

Uniform sampling in a polygon

Description

Uniform sampling in a polygon (dimension 2).

Usage

```
runif_in_polygon(n, vertices, center = "centroid")
```

10 runif_in_simplex

Arguments

n number of simulations

vertices two-columns matrix giving the vertices (rows); the vertices must be ordered

(clockwise or counterclockwise)

center a point with respect to which the polygon is star-shaped, or "centroid" (de-

fault) to take the centroid (see Details)

Details

This function works for a star-shaped polygon, that is, a polygon that contains a point from which the entire polygon boundary is visible. This point must be given in the center argument. If the polygon is convex, any point inside the polygon is suitable (thus the default option of the center argument is appropriate in this case).

Value

The simulations in a n times 2 matrix.

Examples

runif_in_simplex

Uniform sampling in a simplex

Description

Uniform sampling in a simplex (arbitrary dimension).

Usage

```
runif_in_simplex(n, simplex)
```

Arguments

n number of simulations

simplex a (d+1) times d matrix giving the vertices of the simplex (rows)

runif_in_tetrahedron 11

Value

The simulations in a n times d matrix.

Note

In dimension 3, you can use runif_in_tetrahedron instead.

Examples

```
simplex <- rbind(c(0,0,0), c(1,0,0), c(1,1,0), c(1,1,2))
sims <- runif_in_simplex(1000, simplex)
library(rgl)
points3d(sims)</pre>
```

Description

Uniform sampling in a tetrahedron (in dimension 3).

Usage

```
runif_in_tetrahedron(n, v1, v2, v3, v4)
```

Arguments

```
n number of simulations
v1, v2, v3, v4 vertices of the tetrahedron
```

Value

The simulations in a n times 3 matrix.

See Also

runif_in_simplex for sampling in a simplex in arbitrary dimension.

```
library(rgl)
tetrahedron <- tetrahedron3d()
shade3d(tetrahedron, color = "red", alpha = 0.3)
vs <- tetrahedron$vb[1L:3L, ]
sims <- runif_in_tetrahedron(100, vs[, 1], vs[, 2], vs[, 3], vs[, 4])
points3d(sims)</pre>
```

runif_on_spherePatch

Description

Uniform sampling on a spherical patch (in dimension 3).

Usage

```
runif_on_spherePatch(n, r = 1, phi1, phi2, theta1, theta2)
```

Arguments

```
n number of simulations

r radius

phi1, phi2 numbers defining the latitudinal angle range
theta1, theta2 numbers defining the longitudinal angle range
```

Details

A sphere patch is the part of the sphere whose polar angles theta and phi satisfy $0 \le$ theta \le theta \le theta $0 \le$ phi \le phi \le phi \le phi \le phi.

Value

The simulations in a n times 3 matrix.

See Also

runif_on_stri for sampling on a spherical triangle.

```
# sampling on the first orthant:
sims <-
    runif_on_spherePatch(100, phi1 = 0, phi2 = pi/2, theta1 = 0, theta2 = pi/2)
## Not run:
library(rgl)
spheres3d(0, 0, 0, color = "red", alpha = 0.5)
points3d(sims)
## End(Not run)</pre>
```

runif_on_sphericalCap Uniform sampling on a spherical cap

Description

Uniform sampling on a spherical cap (in dimension 3).

Usage

```
runif_on_sphericalCap(n, r = 1, h)
```

Arguments

n number of simulations
r radius of the sphere
h height of the cap

Value

The simulations in a n times 3 matrix.

Examples

```
sims <- runif_on_sphericalCap(500, r = 2, h = 1)
## Not run:
library(rgl)
spheres3d(0, 0, 0, radius = 2, color = "red", alpha = 0.5)
points3d(sims)
## End(Not run)</pre>
```

runif_on_stri

Uniform sampling on a spherical triangle

Description

Uniform sampling on a spherical triangle (in dimension 3).

Usage

```
runif_on_stri(n, r = 1, v1, v2, v3)
```

Arguments

n number of simulations

r radius v1, v2, v3 vertices runif_sphere

Value

The simulations in a n times 3 matrix.

Examples

```
# sampling on the first orthant:
sims <- runif_on_stri(100, v1 = c(1, 0, 0), v2 = c(0, 1, 0), v3 = c(0, 0, 1))
## Not run:
library(rgl)
spheres3d(0, 0, 0, color = "red", alpha = 0.5)
points3d(sims)
## End(Not run)</pre>
```

runif_sphere

Uniform sampling on/in sphere

Description

Uniform sampling on a sphere or in a sphere, in arbitrary dimension.

Usage

```
runif_on_sphere(n, d, r = 1)
runif_in_sphere(n, d, r = 1)
```

Arguments

n number of simulationsd dimension of the spacer radius of the sphere

Value

The simulations in a n times d matrix.

```
sims <- runif_on_sphere(20, d = 2)
plot(sims, xlim = c(-1, 1), ylim = c(-1, 1), asp = 1, pch = 19)
sims <- runif_in_sphere(100, d = 2)
plot(sims, xlim = c(-1, 1), ylim = c(-1, 1), asp = 1, pch = 19)</pre>
```

runif_torus 15

runif_torus

Uniform sampling on/in torus

Description

Uniform sampling on or in a torus (dimension 3).

Usage

```
runif_on_torus(n, R, r)
runif_in_torus(n, R, r)
```

Arguments

n number of simulations

R major radius

r minor radius

Value

The simulations in a n times 3 matrix.

```
R <- 3; r <- 2
sims_on <- runif_on_torus(50, R = R, r = r)
sims_in <- runif_in_torus(50, R = R, r = r)
library(misc3d)
fx <- function(u,v) (R+r*cos(u)) * cos(v)
fy <- function(u,v) (R+r*cos(u)) * sin(v)
fz <- function(u,v) r*sin(u)
parametric3d(
    fx, fy, fz, umin = 0, umax = 2*pi, vmin = 0, vmax = 2*pi, alpha = 0.3
)
library(rgl)
points3d(sims_on)
points3d(sims_in, color = "red")</pre>
```

runif_unitSimplex

runif_triangle

Uniform sampling on/in a triangle

Description

Uniform sampling on or in a triangle (dimension 2).

Usage

```
runif_in_triangle(n, v1, v2, v3)
runif_on_triangle(n, v1, v2, v3)
```

Arguments

```
n number of simulations
v1, v2, v3 vertices of the triangle
```

Value

The simulations in a n times 2 matrix.

Examples

```
sims <- runif_on_triangle(30, c(0,0), c(1,0), c(0,1)) plot(sims, xlim = c(0,1), ylim = c(0,1), pch = 19) sims <- runif_in_triangle(100, c(0,0), c(1,0), c(0,1)) plot(sims, xlim = c(0,1), ylim = c(0,1), pch = 19)
```

runif_unitSimplex

Uniform sampling on/in a unit simplex

Description

Uniform sampling on or in a unit simplex (arbitrary dimension).

Usage

```
runif_on_unitSimplex(n, d)
runif_in_unitSimplex(n, d)
```

Arguments

n number of simulations d dimension of the space

surface_sphere 17

Value

The simulations in a n times d matrix.

See Also

runif_in_tetrahedron for sampling in an arbitrary tetrahedron in dimension 3; runif_in_simplex for sampling in an arbitrary simplex.

Examples

```
library(rgl)
sims <- runif_on_unitSimplex(300, d = 3)
points3d(sims)</pre>
```

surface_sphere

Sphere surface

Description

Surface of a sphere (arbitrary dimension).

Usage

```
surface\_sphere(d, r = 1)
```

Arguments

d dimension of the spacer radius of the sphere

Value

The surface of the sphere of radius r in the d-dimensional space.

```
r <- 2
surface_sphere(3, r)
4*pi*r^2
# perimeter of the unit circle:
surface_sphere(2)</pre>
```

18 surface_spherePatch

surface_spherePatch Sphere patch surface

Description

Surface of a sphere patch.

Usage

```
surface_spherePatch(r, phi1, phi2, theta1, theta2)
```

Arguments

```
r radius

phi1, phi2 numbers defining the latitudinal angle range
theta1, theta2 numbers defining the longitudinal angle range
```

Details

A sphere patch is the part of the sphere whose polar angles theta and phi satisfy $0 \le$ theta \le theta \le theta \le theta \le phi \le phi \le phi \le phi \le phi.

Value

The surface of the sphere patch.

See Also

surface_stri for the surface of a spherical triangle.

```
# surface of the first orthant:
surface_spherePatch(r=1, phi1=0, phi2=pi/2, theta1=0, theta2=pi/2)
surface_stri(r=1, c(1,0,0), c(0,1,0), c(0,0,1))
```

surface_sphericalCap 19

surface_sphericalCap Spherical cap surface

Description

Surface of a spherical cap.

Usage

```
surface_sphericalCap(r, h)
```

Arguments

r radius of the sphere
h height of the cap

Value

The surface area of the spherical cap.

surface_stri

Spherical triangle surface

Description

Surface of a spherical triangle.

Usage

```
surface_stri(r, v1, v2, v3)
```

Arguments

r radius v1, v2, v3 vertices

Value

The surface of the spherical triangle of radius r with vertices v1, v2, v3.

```
# surface of the first orthant:
surface_stri(r=1, c(1,0,0), c(0,1,0), c(0,0,1))
```

20 surface_triangle

surface_torus

Torus surface

Description

Surface of a torus.

Usage

```
surface_torus(R, r)
```

Arguments

R major radius r minor radius

Value

The surface area of the torus.

surface_triangle

Triangle surface

Description

Surface of a triangle.

Usage

```
surface_triangle(v1, v2, v3)
```

Arguments

v1, v2, v3

vertices of the triangle

Value

The surface of the triangle with vertices v1, v2, v3.

```
surface\_triangle(c(0,0), c(0,1), c(1,0))
```

volume_ellipsoid 21

volume_ellipsoid

Ellipsoid volume

Description

Volume of an ellipsoid (arbitrary dimension).

Usage

```
volume_ellipsoid(A, r)
```

Arguments

```
A symmetric positive-definite matrix defining the ellipsoid (see Details)
```

r "radius" (see Details)

Details

The (boundary of the) ellipsoid is the set of vectors x satisfying t(x) %% A %% x == r^2 .

Value

The volume of the ellipsoid.

Examples

```
# dimension 2 (area), with diagonal matrix A
A <- diag(c(2,3))
r <- 2
volume_ellipsoid(A, r)
pi * r^2 / sqrt(A[1,1]*A[2,2])</pre>
```

volume_hexahedron

Hexahedron volume

Description

Volume of a hexahedron.

Usage

```
volume_hexahedron(hexahedron)
```

Arguments

hexahedron

a 3 times 8 matrix whose columns are the eight vertices of the hexahedron; see makeHexahedron

volume_pball

Value

The volume of the hexahedron.

Examples

```
library(uniformly)
# a cube with side 2 ####
hexahedron <- makeHexahedron(
p0 = c(0, 0, 0),
p1 = c(2, 0, 0),
p2 = c(2, 2, 0),
p3 = c(0, 2, 0),
p4 = c(0, 2, 2),
p5 = c(0, 0, 2),
p6 = c(2, 0, 2),
p7 = c(2, 2, 2)
)
volume_hexahedron(hexahedron) # should be 8
```

volume_pball

p-ball volume

Description

Euclidean volume of a p-ball (arbitrary dimension).

Usage

```
volume_pball(d, p, r = 1)
```

Arguments

d dimension

p exponent in the p-norm, a positive number

r radius of the ball

Value

The volume of the p-ball with radius r.

```
volume_pball(d=4, p=2, r=2)
volume_sphere(d=4, r=2)
```

volume_simplex 23

volume_simplex

Simplex volume

Description

Volume of a simplex (arbitrary dimension).

Usage

```
volume_simplex(simplex)
```

Arguments

simplex

a (d+1) times d matrix giving the vertices of the simplex (rows)

Value

The volume of the simplex.

Examples

```
set.seed(666)
simplex <- matrix(rnorm(4*3), nrow=4, ncol=3)
volume_simplex(simplex)
volume_tetrahedron(simplex[1,], simplex[2,], simplex[3,], simplex[4,])</pre>
```

volume_sphere

Sphere volume

Description

Volume of a sphere (arbitrary dimension).

Usage

```
volume\_sphere(d, r = 1)
```

Arguments

d dimension of the spacer radius of the sphere

Value

The volume of the sphere with radius r in the d-dimensional space.

24 volume_tetrahedron

Examples

```
r <- 2
volume_sphere(3, r)
4/3*pi*r^3</pre>
```

volume_sphericalCap

Spherical cap volume

Description

Volume of a spherical cap.

Usage

```
volume_sphericalCap(r, h)
```

Arguments

r radius of the sphere

h height of the cap

Value

The volume of the spherical cap.

volume_tetrahedron

Tetrahedron volume

Description

Volume of a tetrahedron (dimension 3).

Usage

```
volume_tetrahedron(v1, v2, v3, v4)
```

Arguments

```
v1, v2, v3, v4 vertices of the tetrahedron
```

Value

The volume of the tetrahedron.

See Also

volume_simplex for the volume of a simplex in arbitrary dimension.

volume_torus 25

Examples

```
v1 <- c(0,0,0); v2 <- c(1,0,0); v3 <- c(0,1,0); v4 <- c(0,0,1) volume_tetrahedron(v1, v2, v3, v4) volume_unitSimplex(3)
```

volume_torus

Torus volume

Description

Volume of a torus.

Usage

```
volume_torus(R, r)
```

Arguments

R major radius r minor radius

Value

The volume of the torus.

volume_unitSimplex

Unit simplex volume

Description

Volume of the unit simplex (arbitrary dimension).

Usage

```
volume_unitSimplex(d)
```

Arguments

d

dimension of the space

Value

The volume of the unit simplex in the space of dimension d.

See Also

volume_simplex for the volume of an arbitrary simplex.

Index

makeHexahedron, 2, 4, 8, 21	surface_torus, 20 surface_triangle, 20
plotHexahedron, 3, 4	our race_cr ranges, 20
, , , , , , , , , , , , , , , , , , , ,	volume_ellipsoid, 21
rphong_on_hemisphere, 4	volume_hexahedron, 21
runif_cube, 5	volume_pball, 22
<pre>runif_ellipsoid, 6</pre>	volume_simplex, 23, 24, 25
runif_in_annulus, 7	volume_sphere, 23
<pre>runif_in_cube (runif_cube), 5</pre>	volume_sphericalCap, 24
<pre>runif_in_ellipsoid(runif_ellipsoid), 6</pre>	volume_tetrahedron, 24
runif_in_hexahedron, 2, 8	volume_torus, 25
<pre>runif_in_pball, 9</pre>	<pre>volume_unitSimplex, 25</pre>
<pre>runif_in_polygon, 9</pre>	
runif_in_simplex, 10, 11, 17	
<pre>runif_in_sphere (runif_sphere), 14</pre>	
runif_in_tetrahedron, 11, 11, 17	
<pre>runif_in_torus (runif_torus), 15</pre>	
<pre>runif_in_triangle (runif_triangle), 16</pre>	
runif_in_unitSimplex	
<pre>(runif_unitSimplex), 16</pre>	
<pre>runif_on_cube (runif_cube), 5</pre>	
<pre>runif_on_ellipse (runif_ellipsoid), 6</pre>	
<pre>runif_on_ellipsoid(runif_ellipsoid), 6</pre>	
runif_on_sphere (runif_sphere), 14	
runif_on_spherePatch, 12	
runif_on_sphericalCap, 13	
runif_on_stri, 12, 13	
runif_on_torus (runif_torus), 15	
runif_on_triangle (runif_triangle), 16	
runif_on_unitSimplex	
(runif_unitSimplex), 16	
runif_sphere, 14	
runif_torus, 15	
runif_triangle, 16	
runif_unitSimplex, 16	
surface_sphere, 17	
surface_spherePatch, 18	
surface_sphericalCap, 19	
surface_stri, 18, 19	