Rappel de cours

• Théorème de l'énergie cinétique. $W_{A\to B}(\overrightarrow{F}) = E_c(t_b) - E_c(t_a)$ avec $E_c(t) = \frac{1}{2}||v(t)||^2$ avec $t_b > t_a$.

Exo 1

Q 1.1.2

D'après le théorème de l'énergie cinétique. $W_{A\to B}(\overrightarrow{F})=E_c(t_b)-E_c(t_a)$ avec $E_c(t)=\frac{1}{2}\|v(t)\|^2$. On a $t_a=0$, $v(t_a)=0$ et $v(t_b)=2m/s$ (i.e3.6 km/h).

$$W_{A\to B}(\overrightarrow{F}) = \frac{1}{2}.1000.2^2 - \frac{1}{2}.1000.0^2 = 2000J$$

Q 1.1.3

On a $W_{A\to B}(\overrightarrow{F}) = \overrightarrow{F}.d$ avec $\|\overrightarrow{F}\| = 500$.

$$2000 = 500.d$$

Donc il faut pousser la voiture sur 4m.

Q 1.1.4

On a $\overrightarrow{F} = m \cdot \overrightarrow{a}$. Si la force est constante alors l'accélération est également constante car la masse ne change pas. Lorsque l'accélération est constante alors $v_f = v_i + a \cdot t$ et la distance parcourue avec une accélération constante à partir d'une vitesse initiale v_i est $l = v_i t + \frac{1}{2}at^2$.

$$v_f^2 - v_i^2 = (v_i + at)^2 - v_i^2 = v_i^2 + 2v_i at + a^2 t^2 - v_i^2 = 2a(v_i t + \frac{1}{2}at^2) = 2at$$

Q 1.1.5

Si la vitesse est constante alors avec $v(t_b) = v(t_a)$, donc $W_{A\to B}(\overrightarrow{F}) = E_c(t_b) - E_c(t_a) = 0$. Le travail est nulle.

Ceci n'est pas en accord l'exp'erience, car lorsque l'on pousse une voiture sur une route horizontale, il faut constamment la pousser pour qu'elle avance. QED.