Feedback — XIII. Clustering

Help

You submitted this quiz on **Tue 12 Aug 2014 7:42 AM PDT**. You got a score of **5.00** out of **5.00**.

Question 1

For which of the following tasks might K-means clustering be a suitable algorithm? Select all that apply.

Your Answer		Score	Explanation
Given a set of news articles from many different news websites, find out what are the main topics covered.	*	0.25	K-means can cluster the articles and then we can inspect them or use other methods to infewhat topic each cluster represents
Given sales data from a large number of products in a supermarket, estimate future sales for each of these products.	~	0.25	Such a prediction is a regression problem, and K-means does not use labels on the data, so i cannot perform regression.
From the user usage patterns on a website, figure out what different groups of users exist.	•	0.25	We can cluster the users with K-means to find different, distinct groups.
☐ Given many emails, you want to determine if they are Spam or Non-Spam emails.	~	0.25	Classifying input as spam / non-spam requires labels for the data, which K-means does not use.
Total		1.00 / 1.00	

Question 2

Suppose we have three cluster centroids $\mu_1=\begin{bmatrix}1\\2\end{bmatrix}$, $\mu_2=\begin{bmatrix}-3\\0\end{bmatrix}$ and $\mu_3=\begin{bmatrix}4\\2\end{bmatrix}$. Furthermore, we have a training example $x^{(i)}=\begin{bmatrix}-1\\2\end{bmatrix}$. After a cluster assignment step, what

will $c^{(i)}$ be?

Your Answer	Score	Explanation
$\bigcirc \ c^{(i)} = 2$		
$ \circ c^{(i)} = 1 $	✓ 1.00	$x^{(i)}$ is closest to μ_1 , so $c^{(i)}=1$
$\bigcirc \ c^{(i)} = 3$		
$\bigcirc \ c^{(i)}$ is not assigned		
Total	1.00 / 1.00	

Question 3

K-means is an iterative algorithm, and two of the following steps are repeatedly carried out in its inner-loop. Which two?

Your Answer		Score	Explanation
$\ensuremath{ \ensuremath{ \mathscr{U}}}$ Move the cluster centroids, where the centroids μ_k are updated.	~	0.25	The cluster update is the second step of the K-means loop.
■ Feature scaling, to ensure each feature is on a comparable scale to the others.	~	0.25	Feature scaling is outside the scope of the K-means algorithm itself.
$ ightharpoonup$ The cluster assignment step, where the parameters $c^{(i)}$ are updated.	~	0.25	This is the correst first step of the K-means loop.
Randomly initialize the cluster centroids.	~	0.25	Initialization is performed only once at the start of K-means, not in the main loop.
Total		1.00 / 1.00	

Question 4

Suppose you have an unlabeled dataset $\{x^{(1)},\ldots,x^{(m)}\}$. You run K-means with 50 different random initializations, and obtain 50 different clusterings of the data. What is the recommended way for choosing which one of these 50 clusterings to use?

Your Answer	Score	Explanation
Manually examine the clusterings, and pick the best one.		
© Compute the distortion function $J(c^{(1)},\dots,c^{(m)},\mu_1,\dots,\mu_k),$ and pick the one that minimizes this.	1.00	A lower value for the distortion function implies a better clustering, so you should choose the clustering with the smallest value for the distortion function.
Use the elbow method.		
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
Total	1.00 / 1.00	

Question 5

Which of the following statements are true? Select all that apply.

Your Answer		Score	Explanation
\blacksquare The standard way of initializing K-means is setting $\mu_1=\dots=\mu_k$ to be equal to a vector of zeros.	~	0.25	This is a poor initialization, since every centroid needs to start in a different location. Otherwise, each will be updated in the same way at each iteration and they will never spread out into different clusters.

		~	edback Coursera
Once an example has been assigned to a particular centroid, it will never be reassigned to another different centroid	~	0.25	Each iteration of K-means performs a cluster assignment step in which each example may be assigned to a different centroid.
A good way to initialize K-means is to select K (distinct) examples from the training set and set the cluster centroids equal to these selected examples.	~	0.25	This is the recommended method of initialization.
${f V}$ On every iteration of K-means, the cost function $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_k)$ (the distortion function) should either stay the same or decrease; in particular, it should not increase.	*	0.25	Both the cluster assignment and cluster update steps decrese the cost / distortion function, so it should never increase after an iteration of K-means.