بهزاد اوسعا شاسای اگو - ترس سیاره ک OME = arg max Elog P(2:10) -a (I -1 GMAP = arg max P(x10)P(0) = arg max Z logP(x;10) P(0) il o w MLE , MAP. I! will price o, wall in Proping in conditionally independent to determinen - b I (A) f (x , (B) = 0 exp (-0 x h) *k 70 8 70 ((0) = \$\frac{1}{\Pi} f(xq | \theta) = \$\Pi \theta \texp(-\theta nq) = \theta \texp(-\theta \frac{2}{\pi} xq) 1 = Qθ exp(-0 Σ xq) - θ Σ xq exp(-0 Σ xq) = exp(-0 Eng) (Q 0-1 - 0 Eng) $\frac{dl}{d\theta} = 0 \implies d\theta = 0 \quad \sum_{n_q} \Rightarrow \theta = \frac{Q}{\sum_{n_q}}$ b) $f(x_k; \theta) = \frac{x_k}{\theta^2} \exp(-\frac{x_k^2}{30^2})$ (a) = II f(x410) = II = exp (- x4) = 0 TT xq exp(- Eng) -> Ln (L)= Ln (Mxq)-20 Ln & H- 1 2 22 2 29) -> d (x(L)) = = ZQ = = Zig $=0 - \gamma - 2Q\theta^2 + \sum_{q} 2q = 0 \rightarrow \theta = \sqrt{\sum_{q} 2q}$

11.194540

$$\begin{aligned} \mathcal{L}(\Theta) &= \text{TT } f(x_{Q} \mid \Theta) = \text{TT } JO \times_{Q}^{-1} = 0^{\frac{1}{2}} \text{TT } x_{Q}^{-1} \\ \mathcal{L}(\Theta) &= \text{TT } f(x_{Q} \mid \Theta) = \text{TT } JO \times_{Q}^{-1} = 0^{\frac{1}{2}} \text{TT } x_{Q}^{-1} \end{aligned}$$

$$\Rightarrow \ln(L(\Theta)) &= \frac{Q}{2} \ln(\Theta) + (J\Theta^{-1}) \times L(u_{Q})$$

$$\Rightarrow \ln(L(\Theta)) &= \frac{Q}{2} \ln(\Theta) + (J\Theta^{-1}) \times JO \times_{Q}^{-1} = 0$$

$$\Rightarrow \int_{Q} \ln(U_{Q}) &= 0 \quad \text{TT } f(x_{Q}) = 0 \Rightarrow \int_{Q} \frac{Q}{2 \times L(x_{Q})}$$

$$= \ln(L(\Theta)) = 0 \quad \text{TT } f(x_{Q}) = 0 \Rightarrow \int_{Q} \frac{Q}{2 \times L(x_{Q})}$$

$$= \ln(L(\Theta)) = 0 \quad \text{TT } f(x_{Q}) = 0 \Rightarrow \int_{Q} \frac{Q}{2 \times L(x_{Q})}$$

$$= \ln(L(\Theta)) = 0 \quad \text{TT } f(x_{Q}) = 0 \Rightarrow \int_{Q} \frac{Q}{2 \times L(x_{Q})}$$

$$= \ln(L(\Theta)) = 0 \quad \text{TT } f(x_{Q}) = 0 \Rightarrow \int_{Q} \frac{Q}{2 \times L(x_{Q})}$$

$$= \ln(L(\Theta)) = 0 \quad \text{TT } f(x_{Q}) = 0 \Rightarrow \int_{Q} \frac{Q}{2 \times L(x_{Q})}$$

$$= \ln(L(\Theta)) = 0 \quad \text{TT } f(x_{Q}) = 0 \Rightarrow \int_{Q} \frac{Q}{2 \times L(x_{Q})}$$

$$= \ln(L(\Theta)) = \frac{1}{2 \times L(x_{Q})} = \frac{1}{2 \times L(x_{Q})}$$

4. کدمای مربوط بر این سرال در بوشی Q4 هراه این تایل ارسال شده است. و کین ما به صررت زیر به دست آمده اند.

;	. 1	2	3	4
P	0.252	0.248	0.250	0.250
M	Q.99	1.8	2.0	3.29
6	0.01	0.12	0.04	0.02

(\	2
P	0.252	0,748
M	1.00	2.23
6	0.0	0.79

,	١	2	3
P	0.25	0.24	0.51
M	0.99	1.3	2.6
6	0.01	0.11	0.66

d.	1	2	3	4
P	0.250	0.249	9.251	0.250
M	0,99	1.41	2.00	3.30
6	0.01	0.12	0.05	0.02

Point
$$|A|B|E|F|I|J$$
 $\Rightarrow Te class 2$

ii. $Y_{N}=1$

Point $|F|E$
 $|Z|Z$
 $\Rightarrow Te class 2$