2019/ODD/08/24/MCS-103/400

UG Odd Semester (CBCS) Exam., December-2019

COMPUTER SCIENCE

(1st Semester)

Course No.: MCSCC-103

(Digital Logic and Switching Theory)

Full Marks: 70
Pass Marks: 28

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit

UNIT-I

1. (a) Convert the following:

 $1 \times 3 = 3$

- (i) (101011)₂ to octal
- (ii) (B0B)₁₆ to binary
 - (iii) (724)₈ to decimal
- (b) Find out (n-1)'s and n's complements of the following numbers: $2\times3=6$

(1001)2, (234)8, (ABCD)16

20J/827

(Turn Over)

(c)	Add and subtract the following numbers: $A = 1100$ $B = 1000$	2
(d)	Represent "I am 0" in ASCII code.	3
2. (a)	What do you mean by 0-logic and 1-logic?	2
(b)	Convert (FACED) ₁₆ to binary, octal and decimal numbers.	3
(c)	Add 11001100 and 11000011 and verify the answer by subtracting any one number from the sum.	3
(d)	Represent $(12\cdot5)_{10}$ in IEEE-32 bit floating-point number.	3
(e)	Perform $X-Y$ using 2's complement method if $X = 1010100$ and $Y = 10001$.	3
	UNIT—II Prove De Morgan's theorems using truth table.	3
(b)	Convert POS to SOP $F = (x+y)(y+z)(z+x)$	4
20J/ 827	(Continue	d)

		Define don't care condition.	1
	(d)	Using K-map, simplify the Boolean expression:	4
		$F(x, y, z) = \Sigma(0, 1, 2, 3, 6, 7)$	
	(e)	Write the basic identities of Boolean algebra which involves 0's and 1's.	2
4.	(a)	Prove distributive theorem using truth table.	4
	(b)	Express the Boolean function $F = xy + x'z$ as a product of maxterm form.	4
	(c)	Express the following expression in NAND implementation and draw the NAND diagram:	4
		F = xyz + xyz' + x'y'z	
	(d)	Simplify using Boolean postulates and identities:	2
		F = ABC + A'B + ABC'	
		UNIT—III	
5.	(a)	What is half-adder? Design a half-adder.	4
~	(b)	Compare combinational circuit and sequential circuit.	2
20J	/827	(Turn	Over)

UNIT-V

	(c)	Draw the diagram of a (1×8) demultiplexer and explain it.	3
	(d)	converter.	5
6	· Na	Design full subtractor.	5
	(b)		4
	(c)	Draw the diagram of 4×1 MUX.	2
	(d)	Explain various types of ROMs.	3
		UNIT—IV	
7.	(a)	"Sequential circuit is the basis of storage device." Justify.	2
	(b)	Design a JK flipflop.	5
	(c)	Design and implement a binary counter.	7
3.	(a)	What is sequence detector?	2
	(b)	Design a master-slave flipflop.	5
	(c)	What is excitation table? How is it used?	2
		Design and implement serial binary	5

9.	Wr	ite short notes on the following: 5+5+4	=14
	(a)	PLA	
	46)	PLD	
	(c)	Multigate synthesis	
10.	(a)	Draw the logic diagram of 4×3 RAM.	5
	(b)	Explain threshold functions.	4
	(c)	Explain ripple counter.	5
		* * *	

20J-140/827

(Continued)

2019/ODD/08/24/MCS-103/400