MOBIL TECHNOLOGY COMPANY

MRCTEC Products Technology Department Base Stocks, Special Products & Mktg Support Group Paulsboro Technical Center

R. A. Bleeker MBRC, OLC/IP -Fairfax

M. D. Keen MBRC, OLC/IP -Fairfax cc:

D. J. Baillargeon

K. R. Graziani

J. R. Green

SCORECARD EVALUATION FOR PATENT INFORMATION PL

Attached is MRCTEC Patent Information PL-98-86 that relates to lubricant formulations based on novel wax-isomerate (WI) base oils of the composition defined in an earlier Mobil patent application (Docket # 7972). Finished lubricants of this invention demonstrate a novel and unexpected combination of performance properties directly attributable to the unique molecular structure of the WI base oils: (a) good viscometric properties at both low and high temperatures, and (b) good biodegradeability.

In light of the recent information on Syntroleum activity in this area, and other Fischer Tropsch activity, we request that you file an application without rating. We understand that Technical Sales and Licensing strongly support progressing this without the formal rating.

Thank you for your assistance in this matter.

James R. Lohuis, Manager Base Stocks, Special Products &

Marketing Support Group

mt/K138 Attachment

Exhibit MDK-1

MOBIL TECHNOLOGY COMPANY

MRCTEC
Marketing, Refining and Chemicals Technology Center
Products Technology Department
Paulsboro Technical Center

J. R. Lohuis

INFORMATION FOR PATENT CONSIDERATION PL-

- DESCRIPTIVE TITLE: Formulated Lubricant Oils Containing High-Performance Base Oils Derived from Highly Paraffinic Hydrocarbons.
- SUBMITTED BY: Gretchen R. Hall, Nancy M. Page, Richard F. Socha, T. Reginald Forbus, David J. Baillargeon, Kenneth R. Graziani

3) DESCRIPTION OF CONCEPT

a) Nature of Concept

Lubricant formulations based on novel wax-isomerate (WI) base oils of the composition defined in "Mobil Doc#7972 (WaxIsom COM)" demonstrate a novel and unexpected combination of performance properties directly attributable to their unique molecular structure. The WI base oils in the defined compositional range possess an unexpected combination of good viscometric flexibility (at both low and high temperatures) and good biodegradeability not available to other base oil compositions, and confer these unique advantages to their formulated lubricant products.

b) Possible Novelty

Formulated lubricants are based on WI lubricant base oils whose compositions are outside prior art (composition defined in "Mobil Doc#7972) and demonstrate a COMBINATION of (1) low-temperature performance not achievable by other base oils, including hydroprocessed base oils such as API Group III base oils, and (2) biodegradability greater than that achievable by other classes of base oils such as PAO.

The reasoning supporting the novelty of this invention is outlined as follows:

High-performance formulated lubricants depend heavily on the performance characteristics of the component base oils used in blending such products.

One traditional problem regarding lube oil performance is that of achieving a usable balance of both low-temperature and high-temperature properties. For example, modern multigrade engine oils demand significant performance both at low temperature (for cold engine starts, and oil pumpability) as well as at high temperature (resistance to oxidation and thermal degradation).

Table 1. Wax Isomerate Performance in 0W-40 Formulations

Base Stock MIDAS Nos.: KV40 KV100 VI	WI 4p40 98-31411 16.88 4.02 141	WI 3.7p60 98-1359 16.1 3.74 122	<u>WI 4p60</u> 98-25478 17.47 4.06 135	18.0 4.00 121	•
Blended Oils (APIS) A SAE Level MIDAS Nos.: KV @100C (cS) KV @40C (cS) Viscosity Index CCS @ -30 C (cP) HTHS @ 150 C (cP) Pour Point, C (ISL) MRV, -40C, Visc/YS Gel Index (Scanning Brookfield)	0W-40 98-36436 13.54 70.71 198 2800 3.70 -48 16800/<35 3.3	0W-40 98-36035 12.65 67.42 190 3150 3.54 -48 18370/<35 3.3	5W-40 98-49667 13.47 71.79 193 3340 3.75 -51 20000/<35 3.4	9W-40 96-60116 14.15 76.6 194 3100 3.72 to be run 18000/<35 4.0	API Limits SAE 0W-40 12.5-16.3 3250 max 2.9 min 60000/<35 max 12.0

Table 2. Wax Isomerate Performance in 0W-30 Formulations

Base Stock MIDAS Nos.: KV40 KV100 VI	<u>Wi 4p35</u> 98-31411 16.88 4.02 141	RLOP UCBQ 98-33297 18.72 4.19 130	<u>Shell XHVI</u> 96-54244 16.45 3.97 143	
Blended Oils (API SJ Add SAE Level MIDAS Nos.: KV @100C (cS) KV @40C (cS) Viscosity Index CCS @ -30 C (cP) Pour Point, C (ISL) MRV, -25C, Visc/YS	98-45524 9.78 50.0 185 2850 -46	5W-30 98-49665 9.61 51.6 174 3780	15W-30 98-45525 9.75 49.65 186 3220 -22 4800<35	API LImits SAE 0W-30 9.3-12.5 3250 max
MRV, -30C, Visc/YS MRV, -40C, Visc/YS	12500/<35	32600/<35	162000/<70 Too viscous to measure	60000/<35 max
Gel Index (Scanning Brookfield)	3.3	5.1	26.1	12.0

0014

Table 3. Wax Isomerate Performance in 15W-50 Formulations

Base Stock MIDAS Nos.: KV40 KV100 VI	WI 8p60 98-1270 50.71 8.478 143	W! 12p60 98-1271 81.88 12.19 145	Wi 8p40 98-1255 43.32 7.948 157	WI 11p40 98.1256 69.66 11.33 156	47.1 7.9 135	411 41.0 152	-
Blended Oils (API SJ Ade SAE Level MIDAS Nos.: KV @ 100C (cS) KV @ 40C (cS) Viscosity Index CCS @ -15 C (cP) HTHS @ 150 C (cP) Pour Point, C (ISL) MRV, -25C, Visc/YS Gel Index (Scanning Brookfield)	15' 98-4 17 12 1 26 4 -	ponents) W50 19668 7.77 21.1 63 660 .97 51 00/<35	98-4 18 12 1 2 5 1070	W-50 19664 3.32 20.0 71 360 .17 42 00/<35	96-4 18 12 1 2 4 1 1070	W-50 46713 3.37 22.2 68 420 .68 ibd 00/<35 3.1	API Limits SAE 15W-50 16.3-21.9 3500 max 3.7 min 60000/<35 max 12.0

Table 4. OECD & CEC Biodegradation of WI Base Stocks

		Biodegradation Results*		
Midas #	Base Stock	OECD 301B	ÇEC L-33-A-93	
-7030	WI 4cSt / -40C PP	65%**	90%	
25478	WI 4cSt / -60C PP	70%**	83%	
-9297	WI 6cSt / -20C PP	68%**	96%	
-1231	WI 6cSt / -40C PP	67% **	90%	
-1266	WI 6cSt / -60C PP	55%**	51%	
-67967	4cSt PAO	18%**, 37% **	34%	

[&]quot; unacclimated seed

^{**} did not pass *10-day window* criterion

PØ15

Wax hydroprocessing is evolving in sophistication to provide lubricant base oils of ever increasing performance. Wax feed stocks are likely to become a more readily available feed source for lubricant base oil production, with the advent of gas-to-liquids technology. High performance wax isomerate (WI) base oils with unique combinations of properties can be used to formulate premium lubricant products not otherwise obtainable.

LABORATORY REFERENCES
WI base oils and formulation examples are tracked by Midas laboratory numbers (see tables above).

DEAD	AND	UNDERSTOOD	BY

Maria D Rogers

Date

Date

SUBMITTED BY:

Cratchen R. Hall

Date

Manay M. Page

Date

Richard F Socha

Date

T. Reginald Forbus

Date

David J. Baillargeon

David J. Danien Been

Date

Warner B. Garajari

Date