

- 1. Dimensions for all drawings are in inches (millimeters).
- 2. Tolerance of ± .010 (.25) on all non-nominal dimensions unless otherwise specified.
- 3. Wire gauge: 24 AWG, 7 strand, pre-tinned copper.

FEATURES

- No contact switching
- Mounting tab
- Wire leads for remote connection
- 3 mm slot
- Output configuration: Inverter open-collector
- TTL/CMOS compatible output
- Aperture width: .014"

NOTES (Applies to Max Ratings and Characteristics Tables.)

- 1. Derate power dissipation linearly 1.67 mW/°C above 25°C.
- 2. Derate power dissipation linearly 2.50 mW/°C above 25°C.
- 3. RMA flux is recommended.
- Methanol or isopropyl alcohols are recommended as cleaning agents.

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise specified)						
Parameter	Symbol	Rating	Units			
Operating Temperature	T _{OPR}	-40 to +85	°C			
Storage Temperature	T _{STG}	-40 to +85	°C			
Soldering Temperature (Iron)(3,4)	T _{SOL-I}	240 for 5 sec	°C			
EMITTER						
Continuous Forward Current	I _F	50	mA			
Reverse Voltage	V _R	5	V			
Power Dissipation ⁽¹⁾	P _D	100	mW			
SENSOR						
Output Current	Io	50	mA			
Supply Voltage	V _{CC}	16	V			
Output Voltage	Vo	30	V			
Power Dissipation(2)	P _D	150	mW			

ELECTRICAL / OPTICAL CHARACTERISTICS (TA =25°C)								
PARAMETER	TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNITS		
Operating Supply Voltage		V_{CC}	4.5	_	16	V		
INPUT DIODE								
Forward Voltage	$I_F = 20 \text{ mA}$	V_{F}	_	_	1.7	V		
Reverse Leakage Current	V _R = 5 V	I _R	_	_	10	μΑ		
COUPLED								
Operating Supply Current	$V_{CC} = 16 V$	I_{CC}	_	_	12	mA		
Low Level Output Voltage	V_{CC} = 5 V, R_L = 360 Ω	V _{OL}	_		0.4	V		
High Level Output Current	$V_{CC} = 5 \text{ V}, V_{OH} = 30 \text{ V} \text{ (Light Path Blocked)}$	I _{OH}	_	_	100	μΑ		
Hysteresis Ratio			_	1.2	_			
Propagation Delay	V_{CC} = 5 V, R_L = 360 Ω	t _{PLH,} t _{PHL}	_	5	_	μs		
Output Rise and Fall Time	V_{CC} = 5 V, R_L = 360 Ω	$t_{r,} t_{f}$		70	<u> </u>	ns		

Fig. 3 Supply Current vs. Supply Voltage

Fig. 4 Supply Current vs. Supply Voltage

Fig. 5 Low Level Output Voltage vs. Supply Voltage

Fig. 6 Low Level Output Voltage vs. Load Resistance

Fig. 7 Schematic

Fig. 8 Switching Test Curve for Inverters

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

© 2000 Fairchild Semiconductor Corporation