11 класс

1. Мощность в пространстве

На изначально покоящийся на гладком горизонтальном столе брусок массы m=2 кг, начали действовать постоянной горизонтальной силой \boldsymbol{F} . В результате была получена зависимость мощности N от перемещения s бруска. Некоторые измерения могли оказаться не очень точными.

В каких координатных осях экспериментальная зависимость мощности от перемещения линейна?

Определите мощность силы в точке с координатой $s_0 = 10$ см.

Найдите значение силы F.

N, Bt	0,28	0,40	0,57	0,75	1,02	1,10	1,23	1,26	1,50
s, cm	1,0	2,0	4,0	7,0	13	15	19	20	30

2. «Тёмная материя»

Скопления звёзд образуют бесстолкновительные системы—галактики, в которых звёзды равномерно движутся по круговым орбитам вокруг оси симметрии системы. Галактика NGC 2885 состоит из скопления звёзд в виде шара (ядра радиусом $r_{\rm R}=4~{\rm knk}$) и тонкого кольца, внутренний радиус которого совпадает с радиусом ядра,

а внешний равен 15 $r_{\rm H}$. Кольцо состоит из звёзд с пренебрежимо малой по сравнению с ядром массой. В ядре звёзды распределены равномерно.

Было установлено, что линейная скорость движения звёзд в кольце не зависит от расстояния до центра галактики: от внешнего края кольца вплоть до края ядра скорость звёзд $\upsilon_0 = 240$ км/с. Такое явление может быть объяснено наличием несветящейся массы («тёмной материи»), распределенной сферически симметрично относительно центра галактики вне её ядра.

- 1) Определите массу M_{π} ядра галактики.
- 2) Определите среднюю плотность $\rho_{\text{Я}}$ вещества ядра галактики.
- 3) Найдите зависимость плотности «тёмной материи» $\rho_T(r)$ от расстояния до центра галактики.
- 4) Вычислите отношение массы «тёмной материи», влияющей на движение звёзд в диске, к массе ядра.

Примечание: 1 кпк = 1 килопарсек = $3,086 \cdot 10^{19}$ м, гравитационная постоянная $\gamma = 6,67 \cdot 10^{-11} \text{H} \cdot \text{M}^2 \cdot \text{K} \Gamma^{-2}$.

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): 7 класс — 16.00; 8 класс — 17.00; 9 класс — 18.30; 10 класс — 20.00; 11 класс — 19.00. Для участия в разборе необходимо зарегистрироваться на портале **online.mipt.ru**

3. Четыре в кубе

Куб собран из одинаковых резисторов, имеющих сопротивления R. Четыре резистора заменены на идеальные перемычки, как указано на рисунке.

- Найдите общее сопротивление получившейся системы между контактами A и B.
- Через какие резисторы сила текущего тока максимальна, а через какие и минимальна? Найдите эти значения силы тока, если сила тока, входящего в узел А равна $I_0 = 1,2$ А?

- Какова сила тока, текущего через идеальную перемычку АА'?
- **4. Ромб.** Циклический процесс, совершаемый над идеальным газом, на (p, V) плоскости представляет собой ромб (см. качественный рисунок). Вершины (1) и (3) лежат на одной изобаре, а вершины (2) и (4) на одной изохоре. За цикл газ совершил работу A.

Насколько отличается количество теплоты Q_{12} , подведённой к газу на участке 1-2, от количества теплоты $\left|Q_{3,4}\right|$, отведённой от газа на 0 участке 3-4?

5. Колебаниям – нет!

В электрической цепи (см. рис.), состоящей из резистора сопротивлением R, катушки индуктивностью L, на конденсаторе емкостью C_0 находится заряд Q_0 . В некоторый момент времени замыкают ключ K и одновременно начинают изменять емкость конденсатора так, что идеальный вольтметр показывает постоянное напряжение.

- 1) Как зависит от времени емкость конденсатора C(t) при изменении t от 0 до $t_1 = \sqrt{C_0 L}$?
- 2) Какую работу за время t_1 совершили внешние силы? Считайте, что $t_1 = L/R = \sqrt{C_0 L}$. Подсказка. Количество теплоты, выделившейся на резисторе за время t_1 , равно $W_R = \int\limits_0^{t_1} I^2(t) R dt = \frac{Q_0^2}{3C_0}$.

Сегодня, 20 января, на портале **online.mipt.ru** составители данного комплекта проведут онлайн-разбор решений задач. Начало разбора (по московскому времени): $7 \, \kappa$ ласс -16.00; $8 \, \kappa$ ласс -17.00; $9 \, \kappa$ ласс -18.30; $10 \, \kappa$ ласс -20.00; $11 \, \kappa$ ласс -19.00. Для участия в разборе необходимо зарегистрироваться на портале **online.mipt.ru**