31/10/24, 14:26 OneNote

GD DESCENT FEATURE SCALING

sabato 19 ottobre 2024 17:08

Perché il Feature Scaling è importante nel Gradient Descent? Le caratteristiche (features) di un dataset possono avere scale molto diverse. Ad esempio, se una feature rappresenta una distanza in metri e un'altra il reddito annuale in milioni di euro, i loro valori possono essere di ordini di grandezza molto diversi. Questa disparità può causare problemi durante l'ottimizzazione con Gradient Descent. Quando le feature non sono scalate:

- Il Gradient Descent potrebbe convergere molto lentamente perché l'algoritmo deve adattarsi a gradienti molto diversi. Alcune feature potrebbero avere valori grandi e altre molto piccoli, causando "oscillazioni" lungo certe dimensioni e spostamenti minimi lungo altre.
- Alcune variabili potrebbero dominare l'aggiornamento dei parametri, rallentando il processo di ottimizzazione.

Dove sta il trucco il trucco sta a riproporzionare tali valori ES

Con il Feature Scaling, ridimensioniamo tutte le caratteristiche in un intervallo simile, per esempio tra 0 e 1, o con una media di 0 e deviazione standard 1. In questo modo:

- Il numero di stanze potrebbe passare da valori tra 1 e 10 a valori tra 0 e 1.
- L'area della casa potrebbe passare da valori tra 50 e 500 m² a valori tra 0 e 1.

PARLIAMO ORA DELLA MIN-MAX NORMALIZATION

31/10/24, 14:26

QUINDI QUANDO SI PARLAMO DI MIN-MAX SI PARLA DI

NORMALIZZAZIONE.

$$Y_{1N}-Y_{1N} = NORMALIZZAZIONE$$
 $Y_{1N}-Y_{1N} = NORMALIZZAZIONE$
 $Y_{2N}-Y_{2N} = Y_{2N} = Y_{2N$

Problema degli Outlier

Uno dei problemi principali di questo approccio è che gli outlier possono avere un effetto negativo:

- Se il dataset contiene valori estremamente grandi o piccoli (outlier), l'intervallo di normalizzazione sarà molto ampio.
- Questo potrebbe ridimensionare i valori più comuni in una scala molto piccola, rendendo difficile per l'algoritmo di apprendimento

sfruttarli efficacemente.

Problemi con Nuovi Valori

In fase di predizione, potresti incontrare nuovi input che sono più grandi del massimo o più piccoli del minimo che hai usato durante la normalizzazione. In tal caso, i nuovi valori cadranno fuori dall'intervallo [a, b].

Soluzioni Alternative

Per evitare questi problemi, potresti considerare tecniche come lo Standard Scaling (che usa media e deviazione standard per riscalare i dati), che è meno sensibile agli outlier.

GD Z-SCORE NORMALIZATION

Quando si utilizza la discesa del gradiente per ottimizzare modelli di apprendimento automatico, è fondamentale applicare il feature scaling per garantire che tutte le caratteristiche abbiano lo stesso peso nel processo di ottimizzazione. Ecco perché il Z-score normalization è spesso raccomandato:

Z-score Normalization e Discesa del Gradiente

- 1. Definizione di Z-score Normalization:
- La normalizzazione Z-score, o standardizzazione, trasforma i dati in modo che abbiano una media di 0 e una deviazione standard di
- 1. Viene calcolata con la formula:

Dove:

- x è il valore originale,
- è la deviazione standard del dataset.

Uniformità delle Scale: La discesa del gradiente converge più rapidamente quando tutte le caratteristiche sono sulla stessa scala. Le funzioni di costo sono più lisce e ciò riduce il rischio di oscillazioni durante l'ottimizzazione.

• Meno Influenza degli Outliers: Sebbene gli outliers possano comunque influenzare la media e la deviazione standard, Z-score 31/10/24, 14:26 OneNote

normalization tende a mitigare il loro impatto rispetto ad altre tecniche di scaling, come la normalizzazione Min-Max. Questo è utile perché gli outliers possono deviare i gradienti e rallentare il processo di convergenza.

• Nessun Bisogno di Min e Max: A differenza della normalizzazione Min-Max, che richiede di conoscere i valori minimi e massimi delle caratteristiche, Z-score normalization non ha bisogno di queste informazioni. Questo è particolarmente vantaggioso in situazioni in cui i dati non sono stabili o contengono outliers.