

AOB256L

150V N-Channel MOSFET

General Description

The AOB256L uses trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS}(\text{ON})},$ Ciss and Coss. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.

Product Summary

 V_{DS} 150V I_D (at V_{GS}=10V) 19A < 85mΩ $R_{DS(ON)}$ (at V_{GS} =10V) R_{DS(ON)} (at V_{GS}=4.5V) < 100mΩ

100% UIS Tested 100% R_a Tested

°C

Top View

TO-263 D²PAK

Bottom View

Junction and Storage Temperature Range

Uni<u>ts</u> Symbol Maximum Parameter Drain-Source Voltage 150 V_{DS} ٧ Gate-Source Voltage V_{GS} ±20 T_C=25°C 19 Continuous Drain I_D T_C=100°C Current 13.5 Α Pulsed Drain Current C 35 I_{DM} T_A=25°C 3 Continuous Drain I_{DSM} Α T_A=70°C 2.5 Current Avalanche Current C I_{AS} 9 Α Avalanche energy L=0.1mH C 4 E_{AS} mJ T_C=25°C 83 P_D W Power Dissipation B T_C=100°C 41.5 T_A=25°C 2.1 P_{DSM} W T_A=70°C Power Dissipation A 1.3

Thermal Characteristics									
Parameter		Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	D	12	15	°C/W				
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	50	60	°C/W				
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	1.5	1.8	°C/W				

-55 to 175

 T_J , T_{STG}

Electrical Characteristics (T_{.1}=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		150			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =150V, V _{GS} =0V T _J =55°C				1	μΑ
	Zero Gate Voltage Drain Gurrent					5	
I _{GSS}	Gate-Body leakage current	$V_{DS}=0V$, $V_{GS}=\pm20V$				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$		1.8	2.25	2.8	V
$I_{D(ON)}$	On state drain current	V_{GS} =10V, V_{DS} =5V		35			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =10A			70	85	mΩ
			T _J =125°C		139	170	1115.2
		V_{GS} =4.5V, I_D =8A			78	100	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =10A			35		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.72	1	V
Is	Maximum Body-Diode Continuous Current					19	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =75V, f=1MHz			1165		pF
Coss	Output Capacitance				61.5		pF
C _{rss}	Reverse Transfer Capacitance				2.5		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		1.1	2.2	3.3	Ω
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge	V _{GS} =10V, V _{DS} =75V, I _D =10A			15.5	22	nC
Q _g (4.5V)	Total Gate Charge				7	10	nC
Q_{gs}	Gate Source Charge				4		nC
Q_{gd}	Gate Drain Charge				1.2		nC
t _{D(on)}	Turn-On DelayTime	V_{GS} =10V, V_{DS} =75V, R_L =7.5 Ω , R_{GEN} =3 Ω			6.5		ns
t _r	Turn-On Rise Time				5		ns
t _{D(off)}	Turn-Off DelayTime				23		ns
t _f	Turn-Off Fall Time				2.5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =10A, dI/dt=500A/μs			37		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =10A, dI/dt=500A/μs			265	_	nC

A. The value of R_{BJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R_{0JA} and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175° C may be used if the PCB allows it.

- D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

 F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =175° C. The SOA curve provides a single pulse rating.
- G. The maximum current rating is package limited.
- H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T₄=25° C.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

B. The power dissipation P_D is based on T_{J(MAX)}=175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=175° C. Ratings are based on low frequency and duty cycles to keep initial T_J =25° C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

V_{DS} (Volts) Fig 1: On-Region Characteristics (Note E)

 $\label{eq:VGS} V_{GS}(Volts)$ Figure 2: Transfer Characteristics (Note E)

 $\label{eq:ldot} {\rm I_D}\left({\rm A}\right)$ Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)

V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

www.aosmd.com Rev 1.0: August 2023 Page 4 of 6

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

T_{CASE} (°C)
Figure 13: Power De-rating (Note F)

T_{CASE} (°C)
Figure 14: Current De-rating (Note F)

Pulse Width (s)
Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note H)

Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

www.aosmd.com Page 5 of 6 Rev 1.0: August 2023

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

