® 日本国特許庁(JP)

⑪特許出願公開

⑫ 公 開 特 許 公 報 (A) 平2-65274

®Int. Cl. 5

識別記号

广内整理番号

個公開 平成2年(1990)3月5日

H 01 L 29/784 G 02 F 1/136 H 05 B 33/08

500

7370-2H

6649-3K 8624-5F

H 01 L 29/78

3 1 1 \mathbf{C}

東京都品川区北品川6丁目7番35号

審査請求 未請求 請求項の数 1 (全5頁)

60発明の名称

薄膜トランジスタ

创特 願 昭63-217823

22出 昭63(1988) 8月31日

明 個雅 者 雄

東京都品川区北品川6丁目7番35号 ソニー株式会社内

砂出 願 人 ソニー株式会社

個代 理 弁理士 松隈 秀盛

薄膜トランジスタ 発明の名称 特許請求の範囲

絶縁性基板上の薄膜半導体層に形成された絶縁 ゲート型電界効果トランジスタ素子が絶縁層によ り絶縁分離され、上記トランジスタ楽子のゲート 絶級膜がSiOa膜、「SiaNa膜及びSiOa膜の3層構造 で構成されて成る母腹トランジスタ。

発明の詳細な説明

(産業上の利用分野)

本発明は、ガラス等より成る絶縁性基板上に形 成される薄膜トラングスタに関し、特に比較的高 い駆動電圧を必要とする液晶駆動回路、EL(エ レクトロ・ルミネッサンス)駆動回路等に使用し て好適なものである。

〔発明の概要〕

本発明は、ガラス等より成る絶縁性基板上に形 成される薄膜トランジスタにおいて、絶縁性基板 上の糠膜半導体層に形成された絶縁ゲート型電界

効果トランジスタ素子が絶縁層により絶縁分離さ れ、上記トランジスタ素子のゲート絶縁腹がSiOa 膜、SinN、膜及びSiO、膜の3層構造で構成するこ とにより、製造工程の簡略化が図れ、同時にゲー ト耐圧の向上も図ることができるようにしたもの である。

〔従来の技術〕

一般に、液晶駆動やEL駆動等の半導体素子と してMOS動作型薄膜トランジスタが有望とされ ているが、必要な駆動電圧として、20V以上の比 較的高い電圧が望まれている。そこで、上記駆動 電圧に対する薄膜トランジスタの耐圧化について は、ソース、ドレイン間耐圧とゲート耐圧の両方 において考慮しなければならない。

従来のMOS型轉膜トランジスタは第3図に示 すように、ガラス等より成る絶縁性基板(11)上に いわゆる島状に形成することによって案子分離を 図ると同時に多結晶シリコン層から成る活性層 (12)を形成し、該括性層(12)上にSiQ.酸化膜から

成るゲート 絶縁膜(13) 及び多結晶シリコンから成るゲート 電極(14) を形成して構成されている。 尚、(15) 及び(16) はソース領域及びドレイン領域である。

一般的にMOS型トランジスタとしての特性 (主に、ゲートによる電荷誘電特性)を変えずに ゲート耐圧を向上させるため、ゲート絶縁膜に誘 電平の高い物質を使うことが考えられている。例 えばゲート絶縁膜として通常SiOa酸化膜を用いる

3

せスに導入すると、Si O. 酸化膜のみの場合と比べて、工程数が増加する。つまり、 Si o N.a 膜を C V D 法で成長させる工程と、その Si o N.a 腹を熱酸化して表面をSi O. 膜に変える工程が増加する。 そのため、作業効率が低下し、コストアップにつながるという不都合がある。

本発明は、このような点に鑑み成されたもので、 その目的とするところはゲート耐圧の向上のみな らずチャンネル方向のエッヂ部での耐圧の向上が 図れると共に、工程の簡略化をも図れる薄膜トラ ンジスタを提供することにある。

[課題を解決するための手段]

本発明の薄膜トランジスタは、ガラス等より成る絶縁性基板(1)上に形成される薄膜トランジスタにおいて、例えば選択酸化(LOCOS) 法により、周りに絶縁層(5)を形成して素子分離を行なうと共に、ゲート絶縁膜(10)をSiO2酸化膜(3)、 Si2N4 膜(4)及びSiO2酸化膜(6)の 3 層構造で構成するようにしたことである。

ところ、SiO₂酸化腰ーSi "N·膜ーSiO』酸化膜のサンドイッチ構造を用いることなどである。尚、Si O₂酸化膜の誘電率は 3.8、Si "N·膜の誘電率は 7.5である。また、ゲート絶縁膜として Si "N·膜のみを用いない理由は、1 つは活性層であるシリコン層と Si "N·腹を直接接触させるとその界特性が良くないこと。また【つは活性層であるシリコン層の Si "N·膜中へ電荷が容易に注入・リー効果が現われてしまうことにある。

〔発明が解決しようとする採題〕

しかしながら、従来の絶縁基板(11) 上に形成される薄膜トランジスタにおいては、第 3 図に示す機造の場合、工程数が少ないという利点はあるが、活性層(12) とゲート電極(14) とが非常に近接した位置関係となっているため、第 4 図に示すように、チャンネル幅方向のエッヂ部(e)でのゲート耐圧が弱いという不都合がある。

また、SiO. 膜、 Si.N. 膜及びSiO. 膜の 3 層構造というゲート絶縁膜構成を薄膜トランジスタブロ

4

〔作用〕.

上述の本発明の構成によれば、ゲート絶縁膜(10)は誘電率の高い SiaNa膜(4)を含む 3 層構造であるため、ゲート耐圧が向上する。

また、周囲に選択酸化による桌子分離用の絶縁 層(5)を有するのでエッヂ部分(8)の耐圧も向上する。

また、選択酸化の際、耐酸化膜(Si,N,腹(4))をゲート絶縁膜に利用し、選択酸化時、 Si,N,膜(4) 変面を熱酸化してSiO,膜切に変えるようにしたので、選択酸化による絶縁分離層(5)の形成と同時に3 層構造のゲート絶縁膜(10) が形成でき、その結果、工程が簡略化される。

〔実施例〕

以下、第1 図及び第2 図を参照しながら本発明の実施例を説明する。

第1 図は、本実施例に係る薄膜トランジスタの 構成を製造工程順に示した説明図である。以下、 順を迫ってその工程を説明する。

まず、同図Aに示すように、ガラス等から成る

絶縁性 基板(1) 上に第1 導電型を呈した厚さ 800 Aの多結晶シリコン層(2)を例えば CV D 法等で成長させる。

次に、同図Bに示すように、上記多結晶シリコン層(2)に無酸化を施すなどして膜厚的 200 Å のSi 2 酸化膜(3)を形成したのち、抜腹(3)上に膜厚的600 Å の Si 2 N。膜(4)を例えばCVD法等で成長させる。

次に、同図 C に示すように、Si 0 * 酸化酸 (3) 及び Si * N * 腹(4) のトランジスタ案子を形成すべき領域 に対応した部分を残して他部をホトリソグラフィー技術を用いてエッチング除去し、下層に存していた多結晶シリコン層(2) の一部(2 a) を露出させる。

7

うに、ゲート絶縁原(10) はSi0。酸化原(7)、 SiaN。 原(4)及びSi0。酸化腹(3)の 3 層構造となっており、 特に高誘電率の SiaN。膜(4)を有するのでゲート耐 圧が向上する。

また、ゲート電極切がフィールド絶録層(5)上に延長して形成され、活性層(7)のエッヂ部(8)はフィールド絶縁圏(5)で囲まれている(第2図参照)ので、ゲート電極(8)と活性層(7)とは近接しなくなり、チャンネル幅方向のエッヂ部(3)での耐圧も向上する。

また、選択酸化での耐酸化膜(SiaNa 膜(4)) をゲート絶縁膜(10) として利用し、さらに、選択酸化時、SiaNa 膜(4) 表面を熱酸化してSiOa 酸化膜(6)に変えるようにしたので、選択酸化によるフィールド絶縁層(5) の形成と同時に3層構造のゲート絶縁 膝(10) が形成でき、その結果工程が簡略化される。

〔発明の効果〕

本発明に係る薄膜トランジスタは、ガラス等よ り成る絶縁性基板上に形成される薄膜トランジス (7)となる。

その後、同図 E に示すように、上記 Si O , 酸化膜(6) 上に第 2 導電型を呈した多結晶シリコン B (8) を例えば C V D 法等で成長させたのち、破多結晶シリコン層 (8) 、Si , N , 膜(4) 及び Si O , 酸化膜(5) を順次選択エッチングして多齢化 (10) を形成する。そして括性層 (7) の 表面、ゲート 部以外の部分を露出させる。尚、ゲート 部以外の部分を露出させる。尚、ブィールド 極級層 (5) 上に延長して形成される。

その後は図示しないが、フィールド絶縁層(5)及びゲート電極(9)をマスクとして又はゲート電極(9)をマスクとして又はゲート電極(10)の側壁部に新たに形成の(5)は、10、1膜をマスクとして活性層(7)に第2導電型レイス領域を形成して通常の薄膜トランジスタを形成する。 ナゲート構造の薄膜トランジスタを形成する。 上述の如く本実施例によれば第1 図 E に示すよ

8

クにおいて、周りを絶縁層により条子分離され、 ゲート絶縁膜をSiO、酸化膜、 Si,N, 膜及びSiO、酸 化膜の3層構造で構成するようにしたので、ゲー ト耐圧の向上を図ることができると共に、製造工 程の簡略化をも図ることができる。

図面の簡単な説明

第1図は本実施例に係る複膜トランジスタの機 成を製造工程順に示す説明図、第2図は第1図 E のA-A 線上の断面図、第3図は従来例の構成図、 第4図は第3図のB-B線上の断面図である。

(1) は絶縁基板、(3) はSi 0. 酸化膜、(4) は Si 1.N. 膜、(5) はフィールド絶縁層、(8) はSi 0. 酸化膜、(7) は活性層、(9) はゲート電極、(10) はゲート絶縁膜、(9) はエッヂ部である。

代理人 伊藤 貞

同 松阳秀春

第3回の8-8線にの断周回

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

02-065274

(43) Date of publication of application: 05.03.1990

(51)Int.CI.

H01L 29/784 G02F 1/136 H05B 33/08

(21)Application number: 63-217823

(71)Applicant: SONY CORP

(22)Date of filing:

31.08.1988

(72)Inventor: HAYASHI HISAO

(54) THIN FILM TRANSISTOR

(57)Abstract:

PURPOSE: To simplify a manufacturing process of a transistor of this design and to improve it in gate br akdown strength by a method wherein an insulated gate type field effect transistor formed on a thin film s miconductor layer on an insulating substrate is isolated through an insulating layer, and a gate insulating film of a transistor element has a three-layered structure composed of an SiO2 film, an Si3N4 film, and an SiO2 film.

CONSTITUTION: An insulating layer 5 is formed surrounding a thin film transistor formed on an insulating substrate 1 through, for instance, a selective oxidation method for the element isolation, and a gate insulating film 20 is formed into a three-layered structure composed of an SiO2 oxide film 3, an Si3N4 film, and an SiO2 oxide film 6. By this setup, the gate insulating film 10 is formed in a three-layered structure which includes the Si3N4 film 4 of high dielectric constant, so that the gate breakdown strength is improved. And, as the

insulating film 5 for the use in the isolation of an element is formed surrounding the thin film transistor, an edge (a) is improved in breakdown strength. And, when a selective oxidation is executed, the Si3N4 film 4 is used as a gate insulating film and the surface of the film 4 is thermally oxidized to turn into an SiO2 film 7, so that the gate insulating film 10 of threelayered structure and an insulation isolating layer 5 can be formed at the same time, consequently the manufacturing process can be simplified.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]
[Date of r gistration]
[Numb r of app al against xaminer's decision of rejection]
[Date of r questing appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office