Statistical hypothesis testing

Why hypothesis testing?

Q: If Accuracy(A) > Accuracy(B), can we conclude that classifier A is better than B?

A: No, not necessarily. Only if the difference between Accuracy(A) and Accuracy(B) is unlikely to arise by chance.

Hypothesis testing

We have a hypothesis H that we wish to show is true. (H = "There is a difference between A and B")

We have a statistic *M* that measures the difference between A and B, and we have measured a value *m* of *M* in our data. But *m* itself doesn't tell us whether H is true or false.

Instead, we estimate how likely m were to arise if the opposite of H (= the 'null hypothesis', H_o) was true. (H_o = "There is no difference between A and B"). If $P(M \ge m \mid H_o) < p$, we can *reject* H_owith p-value p

Rejecting H_o

- H_0 defines a distribution $P(M | H_0)$ over some statistic M(e.g. M = the difference in accuracy between A and B)
- Select a significance value S (e.g. 0.05, 0.01, etc.) You can only reject H_0 if $P(M=m | H_0) \le S$
- Compute the test statistic *m* from your data e.g. the average difference in accuracy over N folds
- Compute $P(M \ge m \mid H_0)$
- Reject H_o with p-value $p \le S$ if $P(M \ge m \mid H_o) \le S$ Caveat: the p-value corresponds to $P(m \mid H_o)$, not $P(H_o \mid m)$

p-Values

Commonly used *p*-values are:

- 0.05: There is a 5% (1/20) chance to get the observed results under the null hypothesis.

Corollary: If you run 20 or more experiments, at least one of them will yield results that fall in the "statistically significant range" with p=0.05, even if the null hypothesis is actually true.

- 0.01: There is a 1% (1/100) chance to get the observed results under the null hypothesis.

Null hypothesis

Null hypothesis:

We assume the data comes from a (normal) distribution $P(M \mid H_o)$ with mean μ =0 and (unknown) variance σ^2/N .

From the data (sample) $X = \{x^1...x^N\}$, we compute the **sample mean** $m = \sum_i x^i/N$

How likely is it that m came from $P(M|H_o)$?

For m₁: very likely. For m₂: pretty unlikely

Confidence intervals

One-tailed test:

Test whether the accuracy of A is higher than B with probability *p*

Two-tailed test:

Test whether the accuracies of A and B are different (lower or higher) with probability *p*This is the stricter test.

Confidence intervals

One-tailed test:

We fail to reject H_0 if m is inside the asymmetric 100(1-p) percent confidence interval $(-\infty, a)$

Two-tailed test:

We fail to reject H_0 if m lies in the symmetric 100(1-p) percent confidence interval (-a, +a) around the mean.

Hypothesis tests to evaluate classifiers

Paired t-test:

Compare the performance of two classifiers on N test sets (e.g. N-fold cross-validation). Uses the t-statistic to compute confidence intervals.

McNemar's test:

Compare the performance of two classifiers on N items from a single test set.

N-fold cross validation: Paired t-test

N-fold cross validation

Instead of a single test-training split:

train test

- Split data into N equal-sized parts

- Train and test N different instances of the same classifier
- This gives N different accuracies

Evaluating N-fold cross validation

	test set 1	test set 2	test set 3	test set 4	test set 5
A	80%	82%	85%	78%	85%
В	81%	81%	86%	80%	88%
diff(A-B)	-1%	+1%	-1%	-2%	-3%

The paired t-test tells us whether there is a (statistically significant) difference between the accuracies of classifiers A and B, based on their difference in accuracy on N different test sets.

Paired t-test for cross-validation

Two different classifiers, A and B are trained and tested using N-fold cross-validation

For the *n*-th fold:

accuracy(A, n), accuracy(B, n) $diff_n = accuracy(A, n) - accuracy(B, n)$

Null hypothesis: diff comes from a distribution with mean (expected value) = 0.

Null hypothesis (H_o; to be rejected), informally: There is no difference between A and B's accuracy.

- Statistically, we treat accuracy(A) and accuracy(B) as random variables drawn from some distribution.
- H_o says that accuracy(A) and accuracy(B) are drawn from the same distribution.
- If H_o is true, then the expected difference (over all possible data sets) between their accuracies is o.

Null hypothesis (H_0 ; to be rejected), formally: The difference between accuracy(A) and accuracy(B) on the same test set is a random variable with mean = 0.

$$H_0$$
: $E[accuracy(A) - accuracy(B)] = E[diff_D] = 0$

Null hypothesis (H_0 ; to be rejected), formally: The difference between accuracy(A) and accuracy(B) on the same test set is a random variable with mean = 0.

 $H_o: E[accuracy(A) - accuracy(B)] = E[diff_D] = o$

- $E[diff_D]$ is the expected value (mean) over all possible data sets. We don't (can't) know that quantity.
- But N-fold cross-validation gives us N samples of $diff_D$

We can ask instead: How likely are these N samples to come from a distribution with mean = 0?

Paired t-test: The accuracy of A on test set *i* is paired with the accuracy of B on test set *i*

Assumption: Accuracies are drawn from a normal distribution (with unknown variance)

Null hypothesis: The accuracies of A and B are drawn from the same distribution.

Hence, the *difference* of the accuracies on test set *i* comes from a normal distribution with mean = 0

Alternative hypothesis: The accuracies are drawn from two different distributions: $E[diff] \neq 0$

Given: a sample of N observations

We assume these come from a normal distribution with fixed (but unknown) mean and variance

- Compute the sample mean and sample variance for these observations
- This allows you to compute the **t-statistic**.
- The **t-distribution for** *N-1* **degrees of freedom** can be used to estimate how likely it is that the true mean is in a given range

Reject H_o at significance level p if the t-statistic does not lie in the interval $(-t_{p/2, n-1}, +t_{p/2, n-1})$.

There are tables where you can look this up

Computing the t-statistic

Difference in accuracy on the *n*-th test set:

$$diff_n = Accuracy_n(A) - Accuracy_n(B)$$

Sample mean m of $diff_D$, based on N samples of $diff_D$:

$$m = \frac{1}{N} \sum_{n=1}^{N} diff_n$$

Sample standard deviation S of $diff_D$:

$$S = \sqrt{\frac{\sum_{n=1}^{N} (diff_n - m)^2}{N - 1}}$$

t-statistic for N samples of $diff_D$:

$$t = \frac{\sqrt{N} \cdot m}{S}$$

Can we reject H_o?

- 1. Compute the t-statistic t for your N samples.
- 2. Define a p-value $p \in \{0.05, 0.01, 0.001\}$.
- 3. Look up $t_{p/2,N-1}$ for N-1 degrees of freedom (df)
- 4. If $t > t_{N-1,p}$: Reject H_o with p-value p

For our example:

	test set 1	test set 2	test set 3	test set 4	test set 5
A	80%	82%	85%	78%	85%
В	81%	81%	86%	80%	88%
diff (A-B)	-1%	+1%	-1%	-2%	-3%

$$m = (-1 + 1 - 1 - 2 - 3)/5 = -6/5 = -1.2$$

$$S = \sqrt{\frac{(-2.2)^2 + 2.2^2 + (-2.2)^2 + (-3.2)^2 + (-4.2)^2}{4}} \approx 3.256$$

Our t-statistic t = -0.824

With p=0.05 and N-1 = 4: $t_{0.025,4}$ =2.776

We cannot reject H_0 : t is between $-t_{0.025,4}$ and $+t_{0.025,4}$

$$-t_{0.025,4} = -2.776 < t = -0.824 < +t_{0.025,4} = 2.776$$

Summary t-test

The t-test can be used to to compare two classifiers on N-fold cross-validation.

Caveat: N should be at least 30.

Alternative: 5x2 Cross-validation

A single test set: McNemar's test

Compares classifiers A and B on a single test set.

Considers the number of test items where either A or B make errors:

n₁₁: number of items classified correctly by both A and B

n_{oo}: number of items misclassified by both A and B

n₀₁: number of items misclassified by A but not by B

n₁₀: number of items misclassified by B but not by A

Null hypothesis:

A and B have the same error rate. Hence, $n_{01} = n_{10}$

Observed data:

n_{oo}	n_{o1}
n ₁₀	n ₁₁

Expected counts under H_o:

n _{oo}	$(n_{01} + n_{10})/2$
$(n_{01} + n_{10})/2$	n ₁₁

Compute the χ^2 statistic

$$\chi^2 = \frac{\left(|n_{01} - n_{10}| - 1\right)^2}{n_{01} + n_{10}}$$

Two-tailed test:

- Reject H_o with p=0.05 if $\chi^2 > \chi_{.05}^2 = 3.84$
- Reject H_o with p=0.01 if $\chi^2 > \chi_{.05}^2 = 6.63$

One-tailed test:

- Reject H_o with p=0.05 if $\chi^2 > \chi_{.05}^2 = 2.71$
- Reject H_o with p=0.01 if $\chi^2 > \chi_{.05}^2 = 5.43$

McNemar's test is used to compare the performance of two classifiers on the same test set.

This test works if there are a large number of items on which A and B make different predictions.

CS446 Machine Learning 33

Today's key concepts

Using significance tests to compare the performance of two classifiers:

t-test (Cross-validation)
McNemar's test (single test set)

CS446 Machine Learning

34