

1st Programming Assignment: Corner Detection

CSE 6239 (July 2020)

Report By:

Name: Md Mamun Hasan

Roll: 1907555

Description:

Corner detection executed for 8 images with different criteria is reported below with results.

Image: img1.png

Kernel: Gaussian

```
def dnorm(x, sd):
    return 1 / (np.sqrt(2 * np.pi) * sd) * np.e ** (-np.power(x / sd, 2) / 2)

def myGaussianKernel(size, sigma=1, verbose=False):
    kernel_1D = np.linspace(-(size // 2), size // 2, size)
    for i in range(size):
        kernel_1D[i] = dnorm(kernel_1D[i], sigma)
    print(kernel_1D)

    kernel_2D = np.outer(kernel_1D, kernel_1D)
    kernel_2D **= 1.0 / kernel_2D.max()

    plt.imshow(kernel_2D, interpolation='none', cmap='gray')
    plt.title("Gaussian Kernel Image")

    if verbose:
        plt.show()
    else:
        plt.savefig(os.path.join("output", f"gk{size}_{sigma}.png"))

    return kernel_2D
```

	Size: 3 Sigma: 1	Size: 5 Sigma: 2	Size: 5 Sigma: 2 Scale: 0.75	Size: 5 Sigma: 2 Scale: 1.25
Kernel	.0.1 Gaussian formed Image 8.5 1.5 1.5 2.6 2.5 2.6 3.5 3.6 3.5 3.6 3.5 3.6 3.5 3.6 3.5 3.7 3.6 3.7 3.7 3.7 3.7 3.7 3.7	Gaussian former Image	Gaussian former Image	Cascalin Kernel Image
X Derivative	x derivative image 10- 100- 100- 100- 100- 100- 100- 100	x derivative image 36 30 30 30 30 30 30 30 30 30	3 - 3 - 3 - 3 - 3 - 13 - 130 - 131	36- 30- 300- 300- 300- 300- 300- 300- 30
Y Derivative	y derhados Image 30- 300- 300- 300- 300- 300- 300- 300	y derhalive Image 34 300 300 200 200 200 200 200	y derivative image 27 38 30 30 315 306 317 307 307 308 30 30 30 30 30 30 30 30 30 30 30 30 30 3	y dentrative insige 36- 36- 36- 36- 36- 36- 36- 36- 36- 36

Harris R Threshold = 10000.00		
Kanade R Threshold = 100.00		
Nobel R Threshold = 1.00		

Bar chart for above Gaussian filter

Comments:

- 1. Harris algorithm has worked well.
- 2. Kanade works very bad
- 3. Scale up detected more accurate corners
- 4. 15.5% corners are found common for 3 algorithms

Kernel: Box

```
def myBoxKernel(size, verbose=False):
    kernel_2D = np.ones((size, size)) / 9

plt.imshow(kernel_2D, interpolation='none', cmap='gray')
plt.title("Box Kernel Image")

if verbose:
    plt.show()
else:
    plt.savefig(os.path.join("output", f"box{size}.png"))

return kernel_2D
```

	Size: 3	Size: 5	Size: 5 Scale: 1.25
Kernel	-03 Box Kernel Image 05- 10- 15- 28- 28- 28- 28- 28- 28- 28- 28- 28- 28	Box Kernel Image 1- 2- 3- 4- 6 1 3 3 4	Box Kernel Image 0- 1- 2- 3- 4- 0 1 2 3 4
X Derivative	x derivative image 20 - 100 - 120 -	x derivative image 50 - 100 - 100 - 100 - 200 -	x derivative image 50 100- 150- 200- 200- 0 50 150 150 210 250 350

Bar chart for above **Gaussian + Box** filter

Comments:

- 5. Less corner detected in box filter
- 6. Again scaling up detect more corners

Code from mylmageFilter() conv by kernel:

```
for row in range(image_row):
    for col in range(image_col):
        output[row, col] = np.sum(kernel * padded_image[row:row + kernel_row, col:col + kernel_col])
    if average:
        output[row, col] /= kernel.shape[0] * kernel.shape[1]

print("Output Image Size : {}".format(output.shape))
```

Code for R calculation:

```
# Calculate r for Harris Corner equation
title = "Harris"
k = 0.04
r = det - k * (trace ** 2)
threshold = 10000.00
if r > threshold:
   harris_corner_list.append([x, y, r])
# cv2.circle(output_img, (x, y), 1, 255, -1)
harris_output_img[y, x] = (0, 0, 255)
# Calculate r for Kanade & Tomasi Corner equation
title = "Kanade & Tomasi"
# Lamda1 * Lamda2 = det
# Lamda1 + Lamda2 = trace
w, v = np.linalg.eig(M)
r = np.min(w)
threshold = 1.00
if r > threshold:
    kanade_corner_list.append([x, y, r])
kanade_output_img[y, x] = (0, 0, 255)
# Calculate r for Nobel Corner equation
title = "Nobel"
r = det / (trace + e)
threshold = 100.00
if r > threshold:
     nobel_corner_list.append([x, y, r])
     nobel_output_img[y, x] = (0, 0, 255)
```

Similar process applied for all other provided images and For more programming reference please visit here.