PixHawk Offboard Mode Workflow

Startup Procedure

- 1. Power up UAV and RC controller.
- 2. Lock UAV using safety switch (if not locked at powerup).
- 3. Engage manual kill on RC controller.
- 4. Connect to QGroundControl over radio telemetry...
- 5. Connect & power up ODroid (or equivalent).
- 6. Start off-board control program on ODroid.
- 7. Switch UAV to "offboard" mode. If mode switch fails, check step 4~6.
- 8. Unlock UAV using safety switch.
- 9. Make sure ready to go, then release manual kill on RC controller. Propellers should spin now.
- 10. Startup procedure completed.

Shutdown Procedure

- 1. Engage manual kill on RC controller. Propellers should stop.
- 2. Lock UAV using safety switch.
- 3. Switch to other desired modes.
- 4. Shutdown procedure completed. Can safely stop and modify ODroid program now.

ODroid Offboard Control Program

Prerequisite

ROS, libeigen3-dev, ros-version-tf

Pkgs

Currently the following pkgs have been created. There are other unused pkgs in the program, which are not listed here.

Pkgs	Description
mavlink_message	Handles communication with UAV using mavlink.
att_controller	Controls the attitude of UAV
pos_controller	Position loop controller of UAV

Pkg: mavlink_message

Node(s):

mavlink_message

Usage:

rosrun mavlink message mavlink message -d PORT -b BAUD

Explain:

-b PORT: serial port to UAV

-d BAUD: serial port baud rate. Should be 921600

Example:

rosrun mavlink_message mavlink_message -d /dev/ttyUSB0 -b
921600

Message Monitored:

The "mavlink_message" node monitors the following MAVLink messages from UAV, and publish them in ROS, for local use by other nodes, such as "att controller".

MAVLink Msg Monitored	Local Publication
HIGHRES_IMU	/mavlink/imu_raw
ATTITUDE	/mavlink/att_onboard
GPS_RAW_INT	/mavlink/gps_raw
RC_CHANNELS_RAW	/mavlink/rc_chans
SERVO_OUTPUT_RAW	/mavlink/servo_output
HEARTBEAT	/mavlink/uav_mode
SYS_STATUS	NA

Message Transmitted:

The "mavlink-message" node can transmit the following MAVLink messages to UAV. If a node (e.g "att_controller") wish to initiate the transmission of a msg, it should publish to the respective "Target Topic".

MAVLink Msg Transmitted	Target Topic
SET_ATTITUDE_TARGET	/mavlink/set_att
SET_ACTUATOR_CONTROL_TARGET	/mavlink/actuator_control

Pkg: att_controller

Node(s):

- 1. att_controller
- 2. actuator_test

Descriptions:

Node	Description
att_controller	Controls the attitude of UAV
actuator_test	Test pix4 all pass-through mixer & test the effect of SET_ACTUATOR_CONTROL_TARGET

Files:

File Name	Description
actuator_control_main.cpp	Node "att_controller" main loop + control functions
actuator_map.cpp	Custom actuator map functions
actuator_map.h	Actuator map header file
actuator_test.cpp	Node "actuator_test" main loop

Known Problems:

 PixHawk main out 4 does not respond to SET_ACTUATOR_CONTROL_TARGET, while all other main out ports respond accordingly.