Fraud Analysis

PRESENTER: DE, CARLOS B. RIVERA

COMPANY: GA ENGINEERING CONSULTANTS

AUDIENCE: DISCOVERY EXECUTIVES (NON-TECHNICAL)

Background

Credit card fraud is a major issue in the USA with subject matter experts saying the issue is likely to escalate due to COVID.

- ▶ Types of Credit card fraud:
 - Online (net)
 - 2. Point of Sale (pos)

Problem Statement

▶ This project aims to analyze credit card data for insight, and train a classifying model optimized for type 2 errors. Given the enormous amount of online transactions, an online tool will be developed on the final model to assist field partners with additional resource for classifying whether or not a given purchase is fraudulent.

Data Information

- Over 1 million cases
- Very imbalanced Classes
- ► EDA/Modeling performed on smaller balanced class dataset
 - 7K cases used (balanced classes)
- Modeling performed on smaller balanced class dataset
 - ▶ 350K cases used
- A New York only dataset for the online tool model
 - ▶ 85K cases used

Initial EDA

EDA

Note: Most fraudulent purchases happen online (net).

EDA

Note: Most fraudulent cases happen in New York.

EDA

Note: Greatest total sum of fraudulent purchases is held by New York.

Initial Modeling

Initial Modeling

9	Train Acc	Test Acc	Acc-diff	Train-F1	Test-F1	F1-diff	Train-Pres	Test-Pres	Pres-diff	Train_Recall	Test-Recall	Recall_diff
knn	0.765166	0.667732	0.097433	0.785285	0.696815	0.088470	0.723369	0.640590	0.082779	0.858792	0.763859	0.094933
logreg	0.899547	0.839329	0.060218	0.898592	0.839071	0.059521	0.907297	0.840192	0.067104	0.890053	0.837953	0.052100
dt	1.000000	0.963229	0.036771	1.000000	0.963569	0.036431	1.000000	0.954498	0.045502	1.000000	0.972814	0.027186
bag	0.995470	0.963496	0.031974	0.995464	0.963785	0.031678	0.996971	0.955952	0.041020	0.993961	0.971748	0.022213
bag_knn	0.776090	0.670397	0.105693	0.793614	0.696888	0.096726	0.736067	0.644898	0.091169	0.860924	0.757996	0.102928
bag_log	0.901146	0.836930	0.064215	0.899685	0.835307	0.064378	0.913266	0.843478	0.069788	0.886501	0.827292	0.059209
rf	1.000000	0.966160	0.033840	1.000000	0.966124	0.033876	1.000000	0.966898	0.033102	1.000000	0.965352	0.034648
et	1.000000	0.938449	0.061551	1.000000	0.937347	0.062653	1.000000	0.954169	0.045831	1.000000	0.921109	0.078891
ada	0.947509	0.944578	0.002931	0.947019	0.944116	0.002903	0.956018	0.951788	0.004230	0.938188	0.936567	0.001621
gboost	0.965006	0.961364	0.003642	0.964890	0.961385	0.003506	0.968169	0.960617	0.007551	0.961634	0.962154	0.000519
svc	0.905675	0.820677	0.084999	0.902640	0.808970	0.093671	0.932740	0.865209	0.067530	0.874423	0.759595	0.114828

Initial Modeling

SX.	Train Acc	Test Acc	Acc-diff	Train-F1	Test-F1	F1-diff	Train-Pres	Test-Pres	Pres-diff	Train_Recall	Test-Recall	Recall_diff
dt	1.0	0.963229	0.036771	1.0	0.963569	0.036431	1.0	0.954498	0.045502	1.0	0.972814	0.027186
rf	1.0	0.966160	0.033840	1.0	0.966124	0.033876	1.0	0.966898	0.033102	1.0	0.965352	0.034648
et	1.0	0.938449	0.061551	1.0	0.937347	0.062653	1.0	0.954169	0.045831	1.0	0.921109	0.078891

After Hyper-Tunning

Null Model(Logistic Regression - default)

Decision Tree Model (default settings)

Note: Both Models had high accuracy with very little overfitting.

Results EDA

Misclassification EDA

Misclassified EDA

city				
Brooklyn	[2504700]			
New York City	[1577385]			
Bronx	[1382480]			
Albany	[151022]			
South Richmond Hill	[47211]			
North Tonawanda	[45100]			
Bellmore	[34496]			
Northport	[21902]			
Hudson	[17867]			
West Harrison	[11250]			

Misclassification EDA

Note: Most misclassified fraud cases in NY happen while the card is in hand.

Misclassification EDA

Note: Most misclassified fraud purchases in New York happens during the 9pm.

Fraud App Demo

<u>Go!</u>

Conclusion

- ▶ Although my models aren't perfect, they classify very well with very little overfitting.
- Our Final model significantly decreased type 2 errors.

Field Partner Recommendations

- Misclassifications that happen after late hours are not always fraud.
 - ▶ The app is designed to only offer input, so no matter the classification double check with customer.