

APRIORI ALGORITHM

SYRACUSE UNIVERSITYSchool of Information Studies

HOW TO MINE ASSOCIATION RULES?

Given a set of transactions T, the goal of association rule mining is to find all rules having:

support $\geq minsup$ threshold confidence $\geq minconf$ threshold

Brute-force approach:

List all possible association rules.

Compute the support and confidence for each rule.

Prune rules that fail the minsup and minconf thresholds.

⇒ Computationally prohibitive!

MINING ASSOCIATION RULES

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of rules:

```
\{Milk, Diaper\} \rightarrow \{Beer\} \ (s = 0.4, c = 0.67) \ \{Milk, Beer\} \rightarrow \{Diaper\} \ (s = 0.4, c = 1.0) \ \{Diaper, Beer\} \rightarrow \{Milk\} \ (s = 0.4, c = 0.67) \ \{Beer\} \rightarrow \{Milk, Diaper\} \ (s = 0.4, c = 0.67) \ \{Diaper\} \rightarrow \{Milk, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Diaper, Beer\} \ (s = 0.4, c = 0.5) \ \{Milk\} \rightarrow \{Milk\} \ (s = 0.4, c = 0.5) \ \{Milk\} \ (s = 0.4, c = 0.5) \
```

Observations:

All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}

Rules originating from the same itemset have identical support but can have different confidences.

Thus, we may decouple the support and confidence requirements.

MINING ASSOCIATION RULES

Two-step approach:

Frequent itemset generation

Generate all itemsets whose support $\geq minsup$.

Rule generation

Generate high-confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset.

Frequent itemset generation is still computationally expensive.

SCALABLE METHODS FOR MINING FREQUENT PATTERNS

Scalable mining methods: Three major approaches

Apriori (Agrawal & Srikant@VLDB'94)

Frequent pattern growth (FPgrowth—Han, Pei, & Yin @SIGMOD'00)

Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

FREQUENT ITEMSET GENERATION

ILLUSTRATING APRIORI PRINCIPLE

APRIORI: A CANDIDATE GENERATION-AND-TEST APPROACH

Apriori pruning principle: If there is any itemset that is infrequent, its superset should not be generated or tested!

Method:

Initially, scan database once to get frequent 1-itemset.

Generate length (k + 1) candidate itemsets from length k frequent itemsets.

Test the candidates against the database.

Terminate when no frequent or candidate set can be generated.

THE APRIORI ALGORITHM: GENERATE FREQUENT ITEMSET

Database TDB

TID	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

 C_1 1st scan

 $Sup_{min} = 2$

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

L ₁	
	→

Itemset	sup
{A}	2
{B}	3
{C}	3
{E}	3

L_2	Itemset	sup
	{A, C}	2
	{B, C}	2
	{B, E}	3
	{C, E}	2

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

2nd scan

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 C_3 Itemset {B, C, E}

3rd scan L₃

Itemset	sup
{B, C, E}	2

RULE GENERATION

Given a frequent itemset L, find all nonempty subsets f, such that $f \rightarrow (L - f)$ satisfies the minimum confidence requirement.

If $\{A, B, C, D\}$ is a frequent itemset, candidate rules: $ABC \rightarrow D$, $ABD \rightarrow C$, $ACD \rightarrow B$, $BCD \rightarrow A$ $AB \rightarrow CD$, $AC \rightarrow BD$, ... $A \rightarrow BCD$, $B \rightarrow ACD$, $C \rightarrow ABD$, $D \rightarrow ABC$

Compute the confidence for each rule, and keep the ones that are greater than min_conf.

RULE GENERATION

How to efficiently generate rules from frequent itemsets?

Start from long LHS:

```
For itemset {ABCD}, c(x) means confidence of rule x c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)
```

Proof:

```
C(ABC->D) = support(ABCD)/support(ABC)

C(AB->CD) = support (ABCD)/support (AB)

support(AB) \ge support (ABC)

So C(ABC->D) \ge C(AB->CD)
```

If min_conf is not satisfied, no need to generate rules with larger right-hand side (RHS).

THE APRIORI ALGORITHM: RULE PRUNING

