No.	SOLUTION					
A1	С					
A2	С					
A3	D					
A4	A					
A5	A					
B1a	$\mathbf{A}^2 = \begin{bmatrix} 0 & -3 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 0 & -3 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 6 & -3 \\ -2 & 7 \end{bmatrix}$					
	$\mathbf{A}^2 - \mathbf{A} = \begin{bmatrix} 6 & -3 \\ -2 & 7 \end{bmatrix} - \begin{bmatrix} 0 & -3 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$					
B1b	n = 6					
B1a	$\mathbf{A}^2 - \mathbf{A} = 6\mathbf{I}_2$					
	Multiply by \mathbf{A}^{-1} throughout:					
	$\mathbf{A} - \mathbf{I}_2 = 6\mathbf{A}^{-1}$					
	$\mathbf{A}^{-1} = \frac{1}{6} \left(\begin{bmatrix} 0 & -3 \\ -2 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)$					
	$= \frac{1}{6} \begin{bmatrix} -1 & -3 \\ -2 & 0 \end{bmatrix}$					
B2a	$\mathbf{P} = \begin{bmatrix} -2\\3\\1 \end{bmatrix}$					
	$\mathbf{T}_{1} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } \mathbf{T}_{2} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 & 5 \end{bmatrix}$					
	$\mathbf{C} = \mathbf{T}_2 \mathbf{T}_1 = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 5 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix}$					

No.	SOLUTION						
B2c	$\mathbf{P'} = \mathbf{CP} = \begin{bmatrix} 1 & -1 & 5 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$						
B2d	$\mathbf{T}_{1}^{-1} = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } \mathbf{T}_{2}^{-1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$						
	$\mathbf{C}^{-1} = \mathbf{T}_{1}^{-1} \mathbf{T}_{2}^{-1} = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$						
B3a	To convert FAB.9 ₁₆ to decimal:						
	FAB.9 ₁₆ = $15 \times 16^2 + 10 \times 16^1 + 11 \times 16^0 + 9 \times 16^{-1}$ = 4011.5625_{10}						
	To convert FAB.9 ₁₆ to binary:						
	FAB.9 ₁₆ = $(1111)_2(1010)_2(1011)_2.(1001)_2$						
	$=111110101011.1001_{2}$						
B3b	Integral part:						
	67 = 2(33) + 1 $22 = 2(16) + 1$ Exactional part.						
	33 = 2(16) + 1 Fractional part: $16 = 2(8) + 0$ $0.875 \times 2 = 0.75 + 1$						
	8 = 2(4) + 0 0.75×2 = 0.75+1 Hence, 67.875 ₁₀ = 1000011.111 ₂						
	$4 = 2(2) + 0$ $0.5 \times 2 = 0 + 1$						
	$2 = 2(1) + 0$ $\Rightarrow 0.875_{10} = 0.111_2$						
	1 = 2(0) + 1						
	\Rightarrow 67 ₁₀ = 1000011 ₂						
B4a	$U = \{-2, -1, 0, 1, 2, 3, 4, 5\}$						
	$A = \{1,3,5\}$						
	$B = \{1, 2, 3\}$						
B4b	$\overline{B} = \{-2, -1, 0, 4, 5\}$						
(i)							

No.	SOLUTION					
B4b	$A - B = \{5\}$					
(ii)						
B4b	$A \cup B = \{1, 2, 3, 5\}$					
(iii)	$ A \cup B = 4$					
B5a	$\neg (p \lor q) = \neg (T \lor T) = F$					
(i)						
B5a	$(p \land q) \Rightarrow r$					
(ii)	$=(T \wedge T) \Rightarrow F$					
	$=T \Rightarrow F$					
	=F					
B5b	$\frac{=}{x+y+xy}$					
	= xy + xy					
	$=x(\overline{y}+y)$					
	=x					
B6a	6!=720					
B6b	$2\times 5! = 240$					
В6с	$^{4}P_{3} \times 3! = 144$					
B6d	5\x2!=240					
B7a	$\frac{3}{11} \times \frac{5}{13} = \frac{15}{143}$					
B7b	$\frac{3}{11} \times \frac{8}{13} + \frac{8}{11} \times \frac{5}{13} = \frac{64}{143}$					
В7с	$\frac{8}{11} \times \frac{8}{13} = \frac{64}{143}$					
B7d	$1 - \frac{3}{11} \times \frac{5}{13} = \frac{128}{143}$ or $\frac{64}{143} + \frac{64}{143} = \frac{128}{143}$					

No.	o. SOLUTION								
C1a	p	q	$p \Rightarrow q$	$q \Rightarrow p$	$(p \Rightarrow q) \lor (q \Rightarrow p)$				
	F	F	Т	T	T				
	F	T	Т	F	T				
	T	F	F	T	T				
	Т	T	T	T	T				
C1b	Converse: If $x = 3$, then $x^2 = 9$.								
(i)	Inverse: If $x^2 \neq 9$, then $x \neq 3$.								
	Contrapositive: If $x \neq 3$, then $x^2 \neq 9$.								
C1b	Implication: F								
(ii)	Converse:	T							
	Inverse: T	ı							
	Contrapositive: F								
C2a	Dual: xy+	- $ xz + yz =$	xy + xz						
	Verify the dual:								
	RHS = xy	_							
	= xy + xz + xyz Absorption Law								
	$= xy + z(\overline{x} + xy) $ Distributive Law = $xy + z(\overline{x} + y)$ Absorption Law								
		+xz+yz	Distri	butive Law					
	= LHS Let p , q and r represent votes from Albert, Ben and Carol respectively.								
C2b	p	$\frac{10.7}{q}$	r	f(p,q,r)		uvery.			
(i)	0	0	0	0)				
	0	0	1	0					
	0	1	0	0					
	0	1	1	1					
	1	0	0	1					
	1	0	1	1					
	1	1	0	1					

No.	SOLUTION						
C2b	$f(p,q,r) = (p+q+r) \bullet (p+q+r) \bullet (p+q+r)$						
(ii)	$= \left[\left(p+q \right) + \left(r \bullet \overline{r} \right) \right] \bullet \left(p + \overline{q} + r \right)$						
	$= (p+q) \bullet (p+q+r)$						
	$= p + \left[q \bullet \left(\overline{q} + r\right)\right]$						
	$= p + \left[q \bullet \overline{q} + q \bullet r \right]$						
	= p + qr						
C3a	Area of PQRS = x^2						
	Area of RXY = $\frac{1}{2} \left(\frac{1}{2} x \right) \left(\frac{1}{2} x \right) = \frac{1}{8} x^2$						
	Probability = $\frac{\text{Area of RXY}}{\text{Area of PQRS}} = \frac{\frac{1}{8}x^2}{x^2} = \frac{1}{8}$						
C3b	1. "up, up, right"						
(i)	2. "up, right, up"						
C3b	We require exactly 10 ups and 10 rights from a total of 20 moves, and order does not matter.						
(ii)	Hence, $\frac{20!}{10!10!} = 184756$						
C3b	(p+q)!						
(iii)	p!q!						