ESERCIZI DI ANALISI REALE - FOGLIO 8

CORSO DI LAUREA TRIENNALE IN MATEMATICA

A.A. 2017-18

ANDREA DAVINI

Sommario. Eventuali commenti, suggerimenti e segnalazioni di errori sono graditi. Gli esercizi contrassegnati con un asterisco sono più difficili

Esercizio 1. Sia (X, \mathcal{M}, μ) uno spazio di misura e sia $f: X \to \mathbb{R}$ una funzione integrabile, i.e. $f \in L^1(X, \mu)$. Definiamo $\nu: \mathcal{M} \to \mathbb{R}$ come

$$\nu(E) := \int_E f \,\mathrm{d}\mu, \qquad E \in \mathcal{M}.$$

- (i) Dimostrare che ν è una misura con segno.
- (ii) Caratterizzare gli insiemi positivi, negativi e nulli in termini di f.
- (iii) Verificare che la decomposizione di Jordan della misura ν come differenza di due misure positive, i.e. $\nu = \nu^+ \nu^-$, è data da

$$\nu^+(E) := \int_E f^+ d\mu, \qquad \nu^-(E) := \int_E f^- d\mu, \qquad E \in \mathcal{M},$$

dove f^+ e f^- sono la rispettivamente la parte positiva e negativa della funzione f.

(iv) Verificare che la variazione totale ν della misura ν è data da

$$|\nu|(E) = \int_E |f| \,\mathrm{d}\mu, \qquad E \in \mathcal{M}.$$

Esercizio 2. Verificare che l'enunciato dell'esercizio precedente continua a valere nel caso in cui $f: X \to \overline{\mathbb{R}}$ sia misurabile e f^- sia integrabile.

Esercizio 3. Sia ν una misura con segno su uno spazio misurabile (X, \mathcal{M}) . Verificare che $E \in \mathcal{M}$ è un insieme nullo per ν se e solo se $|\nu|(E) = 0$.

Esercizio 4. Siano μ una misura positiva e ν una misura con segno su uno spazio misurabile (X, \mathcal{M}) . Verificare che i seguenti fatti sono equivalenti:

- (i) $\nu \ll \mu$;
- (ii) $\nu^+ \ll \mu, \ \nu^- \ll \mu;$
- (iii) $|\nu| \ll \mu$.

Date: 26 gennaio 2018.

Esercizio 5. Sia ν una misura con segno su (X, \mathcal{M}) . Sia $E \in \mathcal{M}$. Provare che

$$|\nu|(E) = \sup \left\{ \sum_{k=1}^{n} |\nu(E_k)| : E_1, \dots, E_n \text{ insiemi disgiunti in } \mathcal{M}, E = \bigcup_{k=1}^{n} E_k, n \in \mathbb{N} \right\}.$$

Due misure positive μ e ν su (X, \mathcal{M}) si dicono equivalenti se $\mu \ll \nu$ e $\nu \ll \mu$.

Esercizio 6. Siano μ e ν due misure positive e finite su (X, \mathcal{M}) . Dimostrare che μ e ν sono equivalenti se e solo se esiste una funzione misurabile $f: X \to \mathbb{R}$, integrabile rispetto a μ e con f(x) > 0 per μ -q.o. $x \in X$, tale che d $\nu = f d\mu$.

Esercizio 7. Sia ν una misura con segno σ -finita su (X, \mathcal{M}) e indichiamo con $|\nu|$ la sua variazione totale. Dimostrare che esiste una funzione misurabile $f: X \to \mathbb{R}$ con |f(x)| = 1 per ν -q.o. $x \in X$ tale che d $\nu = f \operatorname{d} |\nu|$.

Sia ν una misura con segno su (X, \mathcal{M}) e sia $\nu = \nu^+ - \nu^-$ la decomposizione di Jordan di ν . Data una funzione misurabile $f: X \to [0, +\infty]$, l'integrale di f rispetto a ν è definito come

$$\int_X f \, \mathrm{d}\nu := \int_X f \, \mathrm{d}\nu^+ - \int_X f \, \mathrm{d}\nu^-.$$

Esercizio 8. Siano μ e ν misure σ -finite su (X, \mathcal{M}) , con μ misura positiva e ν misura con segno, tali che $\nu \ll \mu$. Verificare che per ogni funzione misurabile $f: X \to [0, +\infty]$ si ha

$$\int_{Y} f(x) d\nu(x) = \int_{Y} f(x) \frac{d\nu}{d\mu}(x) d\mu(x).$$

Esercizio 9. Siano ρ, ν, μ misure positive e σ -finite su (X, \mathcal{M}) tali che $\rho \ll \nu$ e $\nu \ll \mu$. Dimostrare che $\rho \ll \mu$ e

$$\frac{\mathrm{d}\rho}{\mathrm{d}\mu} = \frac{\mathrm{d}\rho}{\mathrm{d}\nu} \frac{\mathrm{d}\nu}{\mathrm{d}\mu}$$
 μ –q.o. in X .

Esercizio 10. Sia (X, \mathcal{M}, μ) uno spazio di misura σ -finito ed $f: X \to \mathbb{R}$ una funzione in $L^1(X, \mu)$. Sia \mathcal{N} una σ -algebra contenuta in \mathcal{M} . Indichiamo con $\tilde{\mu}$ la restrizione di μ a \mathcal{N} e definiamo una misura con segno $\nu: \mathcal{N} \to \mathbb{R}$ come

$$\nu(E) := \int_E f \, \mathrm{d}\mu, \qquad E \in \mathcal{N}.$$

- (i) Provare che $\nu \ll \tilde{\mu}$.
- (ii) Detta $g:=\mathrm{d}\nu/\mathrm{d}\tilde{\mu}$ la derivata di Radon–Nykodim di ν rispetto a $\tilde{\mu}$, verificare che $g:X\to\mathbb{R}$ è \mathcal{N} –misurabile e

$$\int_{E} g \, \mathrm{d}\mu = \int_{E} f \, \mathrm{d}\mu \qquad \text{per ogni } E \in \mathcal{N}.$$

La funzione g prende il nome di *media condizionata* di f rispetto a \mathcal{N} e si scrive $g = \mathcal{E}[f \mid \mathcal{N}]$.

Esercizio 11 (Jacobiano astratto). Siano (X, \mathcal{M}, μ) e (Y, \mathcal{N}, ν) due spazi di misura, con (Y, \mathcal{N}, ν) σ -finito, e $\phi : X \to Y$ una funzione misurabile, i.e. $\phi^{-1}(F) \in \mathcal{M}$ per ogni $F \in \mathcal{N}$. Indichiamo con $\phi_*\mu$ il push-forward della misura μ tramite ϕ . Supponiamo che valgano i seguenti fatti:

- (h1) $\phi_*\mu \ll \nu$;
- (h2) $(Y, \mathcal{N}, \phi_* \mu)$ è uno spazio di misura σ -finito.

Verificare le seguenti proprietà:

o esiste una funzione misurabile $J_{\phi}:(Y,\mathcal{N})\to [0,+\infty]$ tale che

$$\int_X g \circ \phi(x) \, \mathrm{d}\mu(x) = \int_Y g(y) \, J_\phi(y) \, \mathrm{d}\nu(y)$$

per ogni funzione misurabile $f:(X,\mathcal{M})\to [0,+\infty]$.

$$\circ \quad J_{\phi}(y) = \frac{\mathrm{d}(\phi_* \mu)}{\mathrm{d}\nu}(y) \quad \text{per ν-q.o. } y \in Y.$$

La funzione J_{ϕ} è detta Jacobiano~astratto.