For Loudspeaker Protection

16. juni 2016

Kasper Kiis Jensen Poul Hoang Mikkel Krogh Simonsen 16gr640@es.aau.dk

Department of Electronic Systems Aalborg University Denmark

Gruppe c

Problemstilling

Problemformu

System

Resultater

Opbygni

Desimation

RMS Limit

Interpolation

Relevante optimerin muligheder

Perspektiverin

Diskussion og afsluttende ord

Demonstration

Dept. of Electronic Systems Aalborg University

41

Problem

Problemstilling

Problemformulering

Løsning

System

Resultater

Opbygning

Multi-Rate/stage

Decimation

RMS Limiter

Interpolation

Relevante optimerings muligheder

Perspektivering

Diskussion og afsluttende ord

Demonstration

Problem

Diskussion oa afsluttende ord

Demonstration

Høitaleren

- ► Størrelse
- ▶ Lydstyrke
- ▶ Lydkvalitet

Musik

- ▶ Genre
- ► Frekvensrespons

Brugsforvirring

Gruppe 640

Probler

Problemstilling

Problemformule

Løsning

System

Resultate

Opbygning

Multi-Bata/el

Pi i ii

Decimation

HIVIS LIMIT

Relevante ontimerina

muliahada

Perspektivering

Diskussion og

afsluttende ord

emonstration)

Hvad er problemstillingen?

Hvordan analyseres problemet?

Hvad er løsningen?

Gruppe 640

Problemstilling

Diskussion oa afsluttende ord

Demonstration

Højtalerens fysiske bearænsnina

Spolen (coil) rammer bagplade (backplate)

Gruppe 640

Problemstilling

Diskussion oa afsluttende ord

Demonstration

Er der tegn på at de fysiske begrænsninger?

Forvrængning opstår inden spolen rammer bagpladen

Forvrængning i musik

Gruppe 640

Problem

Problemstilling

Door below of a const

. .

Løsning

System

Opbygnii

Multi-Hate/stage

HIVIO LIII

Interpolation

muligheder

Perspektivering

Diskussion og afsluttende ord

Dept. of Electronic Systems
Aalborg University

Designmetode

Feedback

- Forsøg for udledning af mønstrer
- Svær løsning pga. sensorer
- Generel løsning
- ► Tidskrævende løsning

Feedforward

- ▶ Modeller
- ▶ Ikke generel løsning

Problemformulering

afsluttende ord

How can a real-time signal processing system in an active loudspeaker prevent the coil from hitting the backplate of the woofer and reduce distortion compared to peak limitation?

Dept. of Electronic Systems Aalborg University Denmark

Gruppe 640

Proble

Problemstilling

Problemformular

Løsning

System

_ . .

Multi-Rate/stag

Decimation

DMOTIO

Delevente entime

Relevante optimering muligheder

Perspektiverin

Diskussion og afsluttende ord

.

Multibånds RMS limiter (0 - 530 Hz)

- ► Fire limiter bånd
- ► Et overordnet bånd

Baseret på lytteforsøg

Forskellige kombination

- ▶ Vægtning
- Lydforskel

Ikke muligt at finde systemer at teste de forskellige konstellationer

Gruppe 640

Proble

Problemstilling

Problemformule

Løsnin

System

1 to a citation

Opbygning

Multi-Rate/stage

Decimation

RMS Limit

Interpolation

Relevante optimering muligheder

Perspektiverin

Diskussion oa

afsluttende ord

Demonstration

System

► Fem RMS limiters

GUI

- ► Volumekontroller
- ► Otte bånd equalizer
- ► Otte bånd spectrum analyzer

Platform

- ► Development Board TMDX5515EZDSP
- ▶ Dali Zensor 5

System

afsluttende ord

Demonstration

Dept. of Electronic Systems Aalborg University Denmark

41

Multirate system

- ▶ Decimation
- ► Interpolation

Samplingsfrekvenser

- ▶ 48.000 Hz
- ▶ 24.000 Hz
- ▶ 12.000 Hz
- ▶ 6.000 Hz
- ▶ 3.000 Hz
- ▶ 1.500 Hz
- ▶ 750 Hz
- ▶ 375 Hz

Gruppe 640

Problem

Problemstilling

Problemformulari

Løsning

System

Resultater

Opbygning

Multi-Rate/sta

Decimation

RMS Limite

THING LITTLE

Relevante optimerin

Perspektivering

reispektivering

Diskussion og afsluttende ord

Demonstration

Gruppe 640

Resultater

Opbygning

Perspektivering

Diskussion oa

afsluttende ord

Dept. of Electronic Systems Aalborg University Denmark

Frekvensrepons

RMS limiter

Støjgulv

Gruppe 640

Probler

Problemstilling

Løsning

Resultater

Oppygriing

Multi-Rate/stag

Decimation

RMS Limiter

Interpolation

Relevante optimerini muligheder

Perspektivering

reispektivering

Diskussion og afsluttende ord

Demonstration

Dept. of Electronic Systems

It. of Electronic Systems
Alaborg Iniversity

Frequency [Hz]

Gruppe 640

Problem

Problemstilling

Problemiormule

Løsning

System Resultater

.....

Opbygning

Multi-Rate/sta

Decimation

RMS Limite

Relevante optimerir

Dovernal Historia

Perspektivering

Diskussion og afsluttende ord

Demonstration

Gruppe 640

Proble

Problemstilling

roblemformuleri

Løsning

System

Resultater

Ophyanin

Multi-Rate/sta

Multi-Rate/st

Decimation

RMS Limite

Relevante optimerii

Devenelative

Perspektiverin

Diskussion og afsluttende ord

Demonstration

Sammenligning af frekvensresponser

Gruppe 640

Problem

Problemstilling

Leonine

System

Resultater

0.1

Oppygring

Multi-Rate/stage

RMS Limit

Relevante optimerir

Descriptions

Perspektiverin

Diskussion og afsluttende ord

Demonstration

Gruppe 640

Problem

Resultater

Opbygning

Perspektivering

Diskussion oa afsluttende ord

Demonstration

Dept. of Electronic Systems Aalborg University Denmark

Gruppe 640

Resultater

Diskussion oa

afsluttende ord

Dept. of Electronic Systems Aalborg University Denmark

Proble

Problemstilling

Problemformuler

Løsnin

System

Resultat

Opbyani

Multi-Rate/stage

Destaution

DMCLim

Relevante optimeri

Persnektiverin

afsluttende ord

emonstration

Dept. of Electronic Systems Aalborg University Downsampling med faktor 2

med faktor 2

► 7 gange

▶ 48 kHz

▶ 24 kHz

▶ 12 kHz

_

• ..

▶ 375 Hz

Decimation

afsluttende ord

Demonstration

Funktionalitet:

- ▶ Lavpas filter til Anti-Aliasing
- ► Spektral inversion til højpas filtrering

Krav:

- ▶ Overholde IEC 6964 Class
- Lineær fase
- ► 60 dB dæmpning ved fs 21

Decimation

afsluttende ord

Funktionalitet:

- ▶ Lavpas filter til Anti-Aliasing
- Spektral inversion til højpas filtrerina

Krav:

- ► Overholde IEC 6964 Class
- Lineær fase
- ► 60 dB dæmpning ved fs 21

Decimation

afsluttende ord

Demonstration

Dept. of Electronic Systems Aalborg University Denmark

Krav:

- √ Overholde IEC 6964 Class
- ▶ Lineær fase
- ► 60 dB dæmpning ved fs

Første Downsampling:

- ► Første downsampling til
 - $f_s = 24kHz$
 - $f_c = 3kHz$
- Octave sampling efterfølgende

Decimation

Diskussion on

afsluttende ord

Dept. of Electronic Systems

Krav:

- Overholde IEC 6964 Class 2
- Lineær fase

√ 50. Orden FIR

Type 1 (Type 2?)

√ Symmetrisk √ Lige orden

 $\sqrt{60}$ dB dæmpning ved $\frac{fs}{2l}$

• ω_{pass} = 0.125 $\frac{\pi rad}{sample}$ (3.000Hz)

• $\omega_{\text{stop}} = 0.271 \frac{\pi rad}{\text{sample}} (6.500 \text{Hz})$

Metode brugt:

- Kaiser Window method
 - Effektivt design
 - Justerbar beta-værdi

Gruppe 640

Proble

Problemstilling

Problemformul

Løsnin

Systen

Resultate

Opbygni

Multi-Rate

Decimation

RMS Limiter

THING LITTE

Relevante optimerings

Perspektiverin

Diskussion or

afsluttende ord

Dept. of Electronic Systems Aalborg University

To Veje:

- ► THD modeller
- ► Målt grænseværdier

Funktionalitet:

- ► Beregn RMS værdi i bånd
- ► Bestem gain passende gain værdier
- ▶ Påfører gain

Krav:

- ► Løbende RMS²
- ▶ Dæmpning af input til ≥ grænseværdien
- ▶ >0 s attack time
- ▶ 5 s release time

RMS Limiter

afsluttende ord

Demonstration

Krav:

Løbende RMS²

► Nødvendige samples: $n = \frac{fs}{f_{lowest}}$

► Band 1-4: $n = \frac{375Hz}{30Hz} = 12.5 \approx 16$

► Band 5: $n = \frac{3000 Hz}{30 Hz} = 100 \approx 128$

Dept. of Electronic Systems Aalborg University Denmark

RMS Limiter

Diskussion on afsluttende ord

Dept. of Electronic Systems Aalborg University Denmark 41

Grænseværdien bestemmes ved at:

Sammenhæng mellem output fra dsp og effekt afsat:

$$\frac{(\mathsf{Threshold} \cdot \mathsf{U})^2}{R} = P$$

Grænseværdien findes ved

Threshold =
$$\frac{\sqrt{P \cdot R}}{II}$$

Feilkilder

- Konstant impedans
- ▶ Forkert effekt
- Ukendt spændings forstærkning

RMS Limiter

afsluttende ord

Demonstration

Dept. of Electronic Systems Aalborg University Denmark

41

Look up tabellen laves:

Nødvendig dæmpning hvis input er over threshold bestemmes ved:

$$G = \frac{Threshold}{U}$$

Værdien tilpasses DSP algoritme:

$$G = \sqrt{\frac{Threshold^2}{U^2}}$$

Værdierne fordeles mellem 0.0V til 1.0V over n steps, hvor n = 1,2,3,...,1024

$$G = \sqrt{\frac{\text{Threshold}^2}{\left(\frac{n}{1024}\right)^2}}$$

RMS Limiter

afsluttende ord

Dept. of Electronic Systems Aalborg University Denmark

Look up tabellen laves:

$$G = \sqrt{\frac{\mathsf{Threshold}^2}{(\frac{n}{1024})^2}}$$

Værdien tilpasses DSP / codec. Output er en faktor 5 lavere

$$G = \sqrt{\frac{\frac{\text{Threshold}^{2}}{5}}{(\frac{\frac{1024}{5}}{2})^{2}}}$$

Værdierne konverteres til Q15 format ved .215

Fejlkilder

- ▶ Forkerte grænseflader
- Forkert threshold
- skalerings problemer. 0x1FFF = Max udstyring = 2 bit mindre end 0x7FFF

Gruppe 640

Proble

Problemstilling

Problemformule

Løsning

System

Resultate

Ophyanin

Multi-Rate/sta

RMS Limiter

THING LITTE

Relevante optimering

Porepolitivoring

Perspektivering

afsluttende ord

Demonstration

Krav:

29

41

- ▶ ≥ 0 s attack time
 - ► Påfør gain med det samme
 - Sample size bestemmer attacktime
- ▶ 5 s release time

$$\rightarrow H(s) = \frac{\omega_c}{s+\omega_c}$$

$$\bullet$$
 $\omega_c = \frac{1}{2}$

$$H(s) = \frac{0.2}{s+0.2}$$

► Impuls Invariant metode

$$\rightarrow H(z) = T \frac{0.2}{1 - e^{-0.2T}z^{-1}}$$

Interpolation

afsluttende ord

Demonstration

Upsampling/Interpolation:

- ► Konvertering fra fs til $\frac{fs}{2}$
- ► Zero-padding til upsampling
- Lavpasfiltrering

Krav:

- Må ikke interfere med signal bandwidth
- ► 60 dB dæmpning ved fs 21

Interpolation

afsluttende ord

Funktionalitet:

- Lavpas filter til rekonstruktion
- ▶ Zero-padding til upsampling
- ► Forstærkning med faktor *L*

Krav:

- ▶ Må ikke interfere med signal bandwidth
- ► 60 dB dæmpning ved fs/21

Interpolation

afsluttende ord

Demonstration

Krav:

32

- Må ikke interfere med signal bandwidth
- 60 dB dæmpning ved fs 21
 - ▶ 34. Orden FIR
 - ► Type 1

Gruppe 640

Proble

Problemstilling Problemformula

1 1001011110111101

Løsnin

System

Resultater

Onbyanir

Opbygriii

Multi-Rate/stag

RMS Limit

Internelat

Relevante optimerings muligheder

Porepolitivorin

Perspektivering

Diskussion og afsluttende ord

emonstratio

► Reducering af anvendte instruktioner.

- ► Gennemsnitligt 900 instruktioner pr. sample.
 - 1. Generel optimering såsom cirkulære buffer og DUAL-MAC
 - 2. Polyphase FIR filtre
- ▶ Mindre delay gennem systemet
 - ► 111 ms delay gennem systemet
 - 1. Færre trin/bånd (stages) i systemet
 - 2. IIR filter i interpolation
- ► Bedre RMS limiter

Relevante ontimerings muligheder

Diskussion on

afsluttende ord

Generel reducering af anvendte instruktioner

- ► Dobbelt initialisering af buffere. (30 40 instruktioner)
- ► Reservering af cirkulære buffere
 - TMS320C5515 kan initialisere fem cirkulære buffere.
 - ► Fire kan reseveres til udvalgte filtre
 - ► Færre instruktioner på initialisering (10 20 instruktioner)
- Færre funktionskald
- Multirate algoritme til schedulering frigør program memory

Relevante optimerings

35

41

muligheder

Diskussion oa afsluttende ord

Zero-padding anvendes i interpolation

Halvdelen af udregningerne giver nul

Polyphase filter i interpolation halvere filter algoritmen

Gruppe 640

Proble

Problemstilling

Problemformularing

Laenina

System

Regultate

0-1----

Oppygnir

Multi-Rate/sta

Decimation

RMS Limit

Internolati

Relevante optimerings muligheder

Perspektivering

Diskussion og afsluttende ord

Demonstration

Færre trin/bånd (stages) i systemet

IIR filter i interpolation

- ► Mindre delay
- ► Lille ulinearitet ved signalbåndbredde

Gruppe 640

Proble

Problemstilling

Problemformule

Løsning

Syster

Resultate

Onbyanir

Multi-Rate/s

Decimatio

RMS Limit

Internolati

Relevante optimerings muligheder

Perspektivering

Diskussion og afsluttende ord

Demonstration

Butterworth IIR filter

- ► N = 8
- ► Cutoff = 0.5π

Gruppe 640

Relevante optimerings

38

41

muligheder

Diskussion oa afsluttende ord

Delay i RMS limiter design for at beskytte mod transiente signaler

Gruppe 640

Proble

Problemstilling

Lacnina

0....

Regultate

Opbyanir

Multi-Rate/stag

Decimation

Decimation

RMS Limit

Interpolation

Relevante optimering

Perspektivering

ektivering

Diskussion og afsluttende ord

Demonstratio

Systemet er velegnet til mindre højttalere

► Mere effekt kan afsættes uden at ødelægge wooferen

Forstærkningen for en aktiv højtaler kan øges

Systemet sørger for at bassen holdes under en threshold

Dept. of Electronic Systems Aalborg University

Diskussion og afsluttende ord

Limiter

Gruppe 640

Diskussion oa afsluttende ord

Projekt uden konkrete fortilfælde

Projektet har undersøgt både feedback og feedforward som løsning

Størstedelen af projektet har været konceptudvikling

Projektet omhandler en aktuel problemstilling

Dept. of Electronic Systems Aalborg University Denmark

Lad os alle gå mod lab

Multi-band RMS Limiter

Gruppe 640

Problem

Perspektivering

Diskussion oa afsluttende ord

Demonstration

Dept. of Electronic Systems Aalborg University Denmark

