B. Long Path

time limit per test: 1 second memory limit per test: 256 megabytes

input: standard input output: standard output

One day, little Vasya found himself in a maze consisting of (n + 1) rooms, numbered from 1 to (n + 1). Initially, Vasya is at the first room and to get out of the maze, he needs to get to the (n + 1)-th one.

The maze is organized as follows. Each room of the maze has two one-way portals. Let's consider room number i $(1 \le i \le n)$, someone can use the first portal to move from it to room number (i+1), also someone can use the second portal to move from it to room number p_i , where $1 \le p_i \le i$.

In order not to get lost, Vasya decided to act as follows.

- Each time Vasya enters some room, he paints a cross on its ceiling. Initially, Vasya paints a cross at the ceiling of room 1.
- Let's assume that Vasya is in room i and has already painted a cross on its ceiling. Then, if the ceiling now contains an odd number of crosses, Vasya uses the second portal (it leads to room p_i), otherwise Vasya uses the first portal.

Help Vasya determine the number of times he needs to use portals to get to room (n+1) in the end.

Input

The first line contains integer n ($1 \le n \le 10^3$) — the number of rooms. The second line contains n integers p_i ($1 \le p_i \le i$). Each p_i denotes the number of the room, that someone can reach, if he will use the second portal in the i-th room.

Output

Print a single number — the number of portal moves the boy needs to go out of the maze. As the number can be rather large, print it modulo $100000007 (10^9 + 7)$.

Examples

```
input

2
1 2

output

4
```

```
input
4
1 1 2 3

output
20
```

```
input
5
1 1 1 1 1
output
62
```