Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	6
1.2 Описание выходных данных	7
2 МЕТОД РЕШЕНИЯ	8
3 ОПИСАНИЕ АЛГОРИТМОВ	10
3.1 Алгоритм конструктора класса classname	10
3.2 Алгоритм деструктора класса classname	10
3.3 Алгоритм метода fill_a класса classname	10
3.4 Алгоритм конструктора класса classname	11
3.5 Алгоритм конструктора класса classname	11
3.6 Алгоритм метода sum_a класса classname	12
3.7 Алгоритм метода half_sum класса classname	12
3.8 Алгоритм метода half_product класса classname	13
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	14
5 КОД ПРОГРАММЫ	18
5.1 Файл classname.cpp	18
5.2 Файл classname.h	19
5.3 Файл main.cpp	19
6 ТЕСТИРОВАНИЕ	21
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	22

1 ПОСТАНОВКА ЗАДАЧИ

Дан объект следующей конструкции:

В закрытом доступе имеется массив целого типа и поле его длины. Количество элементов массива четное и больше двух. Объект имеет функциональность:

- Конструктор по умолчанию, в начале работы выдает сообщение;
- Параметризированный конструктор, передается целочисленный параметр. Параметр должен иметь значение больше 2 и быть четным. По значению параметра определяется размерность целочисленного массива из закрытой области. В начале работы выдает сообщение;
- Метод деструктор, который выдает сообщение что он отработал;
- Метод ввода данных для созданного массива;
- Метод 1, который суммирует значения очередной пары элементов и сумму присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение. Например, пусть массив состоит из элементов {1,2,3,4}. В результате суммирования пар получим массив {3,2,7,4};
- Метод 2, который умножает значения очередной пары элементов и результат присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение. Например, пусть массив состоит из элементов {1,2,3,4}. В результате умножения пар получим массив {2,2,12,4};
- Метод который, суммирует значения элементов массива и возвращает это значение.

Разработать функцию, которая в качестве параметра получает объект по значению. Функция вызывается метод 2, далее выводит сумму элементов массива

с новой строки.

В основной функции реализовать алгоритм:

- 1. Ввод размерности массива.
- 2. Если размерность массива некорректная, вывод сообщения и завершить работу алгоритма.
- 3. Вывод значения размерности массива.
- 4. Создание объекта с аргументом размерности массива.
- 5. Вызов метода для ввода значений элементов массива.
- 6. Вызов функции передача в качестве аргумента объекта.
- 7. Вызов метода 1 от имени объекта.
- 8. Вывод суммы элементов массива объекта с новой строки.

Разработать конструктор копии объекта для корректного выполнения вычислений. В начале работы конструктор копии выдает сообщение с новой строки.

1.1 Описание входных данных

```
Первая строка:
«целое число»

Вторая строка:
«целое число» «целое число» . . . .

Пример:
```

1 2 3 4 5 6 7 8

1.2 Описание выходных данных

Если введенная размерность массива допустима, то в первой строке выводится это значение:

«Целое число»

Если введенная размерность массива не больше двух или нечетная, то в первой строке выводится некорректное значение и вопросительный знак:

«Целое число»?

Конструктор по умолчанию в начале работы с новой строки выдает сообщение:

Default constructor

Параметризированный конструктор в начале работы с новой строки выдает сообщение:

Constructor set

Конструктор копирования в начале работы с новой строки выдает сообщение:

Copy constructor

Деструктор в начале работы с новой строки выдает сообщение:

Destructor

Пример вывода:

8 Constructor set Copy constructor 120 Destructor 56 Destructor

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект obj класса classname предназначен для;
- функция function для в качестве параметра получает объект по значению. Функция вызывает метод 2, далее выводит сумму элементов массива с новой строки.;
- функция assert для функция сообщения об ошибке;
- cin/cout объекты стандартного потока ввода/вывода;
- if..else условный оператор;
- for оператор цикла со счётчиком.

Класс classname:

- свойства/поля:
 - о поле массив:
 - наименование а;
 - тип vector<int>;
 - модификатор доступа private;
 - о поле длина массива:
 - наименование len_a;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод classname конструктор по умолчанию;
 - о метод classname параметризированный констркутор;
 - о метод classname конструктор копии;
 - о метод ~classname стандартный дестркутор;
 - о метод fill_а ввод массива;

- о метод sum_a возвращает сумму элементов массива;
- о метод half_sum суммирует значения очередной пары элементов и сумму присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение;
- о метод half_product умножает значения очередной пары элементов и результат присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм конструктора класса classname

Функционал: конструктор по умолчанию.

Параметры: нет.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса classname

N₂	Предикат	Действия	N₂
			перехода
1		вывод "\nDefault constructor"	

3.2 Алгоритм деструктора класса classname

Функционал: стандартный дестркутор.

Параметры: нет.

Алгоритм деструктора представлен в таблице 2.

Таблица 2 – Алгоритм деструктора класса classname

N₂	Предикат	Действия	N₂
			перехода
1		вывод "\nDestructor"	Ø

3.3 Алгоритм метода fill_а класса classname

Функционал: ввод массива.

Параметры: нет.

Возвращаемое значение: void.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода fill_а класса classname

No	Предикат	Действия	No
			перехода
1		int $n = this - len_a$, x , $i = 0$	2
2	i < n	ввод х	3
			Ø
3		this->a.push_back(x)	4
4		++i	2

3.4 Алгоритм конструктора класса classname

Функционал: параметризированный конструктор.

Параметры: int n.

Алгоритм конструктора представлен в таблице 4.

Таблица 4 – Алгоритм конструктора класса classname

N₂	Предикат	Действия	N₂
			перехода
1		assert(n>2 && n%2==0)	2
2		this->len_a = n	3
3		вывод "\nConstructor set"	Ø

3.5 Алгоритм конструктора класса classname

Функционал: конструктор копии.

Параметры: const classname & obj.

Алгоритм конструктора представлен в таблице 5.

Таблица 5 – Алгоритм конструктора класса classname

N₂	Предикат	Действия	No
			перехода
1		len_a = obj.len_a	2
2		a = obj.a	3
3		вывод "\nCopy constructor"	Ø

3.6 Алгоритм метода sum_a класса classname

Функционал: возвращает сумму элементов массива.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 6.

Таблица 6 – Алгоритм метода sum_a класса classname

No	Предикат	Действия	No
			перехода
1		int $n = this -> len_a$, summa = 0, $i = 0$	2
2	i < n	summa += this->a[i]	3
			4
3		++i	2
4		возврат summa	Ø

3.7 Алгоритм метода half_sum класса classname

Функционал: суммирует значения очередной пары элементов и сумму присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 7.

Таблица 7 – Алгоритм метода half_sum класса classname

N₂	Предикат	Действия	No
			перехода
1		int $n = this -> len_a$, $i = 0$	2
2	i < n - 1	this->a[i] = this->a[i] + this->a[i+1];	3
			4
3		++i	2
4		return this->sum_a()	Ø

3.8 Алгоритм метода half_product класса classname

Функционал: умножает значения очередной пары элементов и результат присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм метода представлен в таблице 8.

Таблица 8 – Алгоритм метода half_product класса classname

No	Предикат	Действия	No
			перехода
1		int $n = this -> len_a$, $i = 0$	2
2	i < n - 1	this->a[i] = this->a[i] * this->a[i+1];	3
			4
3		i += 2	2
4		return this->sum_a()	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-4.

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

Рисунок 4 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл classname.cpp

Листинг 1 – classname.cpp

```
#include "classname.h"
#include <iostream>
#include <cassert>
classname::classname(){
  std::cout << "\nDefault constructor";</pre>
};
classname::classname(int n){
  assert(n>2 && n%2==0);
  this->len_a = n;
  std::cout << "\nConstructor set";</pre>
};
classname::~classname(){
  std::cout << "\nDestructor";</pre>
};
void classname::fill_a(){
  int n = this->len_a, x;
  for(int i=0;i<n;++i){
      std::cin>>x;
      this->a.push_back(x);
  }
};
int classname::sum_a(){
  int n = this -> len_a, summa = 0;
  for(int i=0;i<n;++i)</pre>
      summa+=this->a[i];
  return summa;
};
int classname::half_sum(){
  int n = this->len_a;
  for(int i=0; i < n - 1; i+=2)
      this-a[i] = this-a[i] + this-a[i+1];
```

```
return this->sum_a();
};

int classname::half_product(){
   int n = this->len_a;
   for(int i=0;i < n - 1;i+=2)
        this->a[i] = this->a[i] * this->a[i+1];
   return this->sum_a();
};

classname::classname(const classname & obj){
   len_a = obj.len_a;
   a = obj.a;
   std::cout<<"\nCopy constructor";
};</pre>
```

5.2 Файл classname.h

Листинг 2 – classname.h

```
#ifndef ___CLASSNAME___H
#define __CLASSNAME__H
#include <vector>
class classname{
  std::vector<int>a;
  int len_a;
public:
  classname();
  classname(int n);
  classname(const classname & obj);
  ~classname();
  void fill_a();
  int sum_a();
  int half_sum();
  int half_product();
};
#endif
```

5.3 Файл таіп.срр

Листинг 3 – таіп.срр

```
//#include <stdlib.h>
```

```
//#include <stdio.h>
#include <iostream>
#include "classname.h"
void function(classname obj){
  std::cout<<'\n'<<obj.half_product();</pre>
}
int32_t main()
  int n; std::cin>>n;
  if(!(n>2 && n%2==0)){
     std::cout<<n<<'?';
     return 0;
  }
  std::cout << n;
  classname obj(n);
  obj.fill_a();
  function(obj);
  std::cout<<'\n'<<obj.half_sum();</pre>
  return(0);
}
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 9.

Таблица 9 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
8 1 2 3 4 5 6 7 8	8 Constructor set Copy constructor 120 Destructor 56 Destructor	8 Constructor set Copy constructor 120 Destructor 56 Destructor
2	2?	2?
7	7?	7?

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).