Reinforcement Learning

value-based RL (MC, TD)

2024.05.29 안재성

RL and DP

• 학습의 목적

- 1. Q function이 무엇인가
- 2. Value based RL이 무엇인가
- 3. Off-policy 와 On-policy가 무슨 차이인가
- 4. MC와 TD의 차이가 무엇인가

RL and DP

What is different between RL and DP

RL도 결국 Bellman Equation을 푸는 것이다.

$$V_k^*(\underline{x_k}) = \min_{u} \sum_{x_{k+1}} p(x_{k+1} | x_k, u) [r + V_{k+1}^*(\underline{x_{k+1}})]$$

우변 다음 state x_{k+1} 을 구할 때, 모델을 사용 $x_{k+1} = f(x_k, u_k)$

- 1. State-space model이 없거나
- 2. State-space model이 잘못 됐거나
- 3. Curse of dimensionality

용어 정리

Control society VS Machine Learning society

최적제어	강화학습
State x	State S
Control <i>u</i>	Action A
Dynamics $f(x, u)$	Environment $p(s' s,a)$
Controller π	Agent π
Cost $r(x, u)$	Reward $r(s, a)$
Batch	Episode

What is important thing in RL

$$\begin{split} G_t &= r(x_t, u_t) + \gamma r(x_{t+1}, u_{t+1}) + \gamma^2 r(x_{t+2}, u_{t+2}) + \dots + \gamma^{T-t} r(x_T, u_T) \\ &= \sum_{k=t}^T \gamma^{k-t} r(x_k, u_k) \end{split}$$

$$\theta^* = \arg \max J(\theta)$$

$$J(\theta) = \mathbb{E}_{\tau \sim p_{\theta(\tau)}} \left[\sum_{t=0}^{T} \gamma^{t} r(x_{t}, u_{t}) \right]$$

Learnable function in RL

	Model-free		Model-based	Value-based • SARSA • DQN: Deep Q-networks • Double DQN	Policy-based REINFORCE	Model-based • iLQR: Iterative Linear Quadratic Regulato • MPC: Model Predictive Control • MCTS: Monte Carlo Tree Search
	Value-based	Policy-based		DQN+ Prioritized Experience Replay QT-OPT		
학습 대상	Estimate Q function	policy 자체를 학습	모델을 학습	Combined: Value and • Actor-Critic: A2C, GAE, A3C • TRPO: Trust Region Policy Optimiz • PPO: Proximal Policy Optimiz	ptimization • I	Combined: Model + value or policy Dyna-Q / Dyna=AC AlphaZero
	SARSA 등등	REINFORCE	LQR, MPC	DDPG: Deep Deterministic Policy Gradient	olicy	AlphaZero I2A: Imagination Augmented Agents VPN: Value Prediction Network

Value-based RL

Value function

$$V^{\pi}(x_t) = \mathbb{E}_{\pi} \left[\sum_{\tau=t}^{\infty} \gamma^{\tau} r(x_{\tau}, u_{\tau} | x_{\tau}) \right]$$

Time-invariant

$$V^{\pi}(x_t) = r(x_t, \pi(x_t)) + \mathbb{E}_{\pi} \left[V^{\pi}(x_{t+1}) \right]$$

$$\pi(x_t) = \arg\min_{u} (r(x_t, u) + \mathbb{E}_{\pi} \left[V^{\pi}(x_{t+1}) \right])$$

policy가 stationary policy

$$\begin{split} V^{\pi} &= r_0 + \gamma p_0 r_1 + \gamma^2 p_0 p_1 r_2 + \cdots \\ &= r_0 + \gamma p_0 (r_1 + \gamma p_1 r_2 + \cdots \\ &= r_0 + \gamma p_d V^{\pi} \end{split}$$

Time-varying

$$V_t^{\pi}(x_t) = r(x_t, \pi(x_t)) + \mathbb{E}_{\pi} \left[V_{t+1}^{\pi}(x_{t+1}) \right]$$

• Q function : Action value function

$$Q^{\pi}(\underline{x_t, u_t}) = \mathbb{E}_{\pi} \left[\sum_{\tau=t}^{\infty} \gamma^{\tau} r(x_{\tau}, u_{\tau} | \underline{x_t, u_t}) \right]$$

$$V^{\pi}(x_t) = \mathbb{E}_{\pi} \left[Q^{\pi}(x_t, u_t) \right]$$

Relationship between Value func and Action value func : 상태가치는 상태변수 x_t 에서 선택 가능한 모든 행동 u_t에 대한 행동가치의 평균값

$$Q^{\pi}(x_{t}, u_{t}) = r(x_{t}, u_{t}) + \mathbb{E}_{\pi} \left[Q^{\pi}(x_{t+1}, \pi(x_{t+1})) \right]$$

$$\pi^*(x_t) = \arg\min_{u} Q^*(x_t, u)$$

Monte-Carlo(MC)

$$\begin{split} & \text{if } n \to \infty, then \\ & \frac{1}{n} \underset{\scriptscriptstyle i=1}{\overset{n}{\sum}} I\left(red_dot_i \in A \right) = \frac{S(A)}{S(B)} \end{split}$$

- Goal: Learn Q^{π} from episodes of experience under policy π
- Recall that $Q^{\pi}(x_t, u_t) = \mathbb{E}[\sum_{\tau=t}^{\infty} \gamma^{\tau} r(x_{\tau}, u_{\tau}) | x_t, u_t]$
- Return: $G_t = r_t + \gamma r_{t+1} + \dots + \gamma^{T-t-1} r_T + \dots$
- Monte-Carlo method: Replace expectation with empirical mean

$$Q^{\pi}(x_t, u_t) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{\tau=t}^{\infty} \gamma^{\tau} r(x_{\tau, i}, u_{\tau, i})$$

Monte-Carlo(MC) and Temporal-difference(TD) policy iteration

MC

For each episode

- Generate an episode π : $x_0, u_0, r_0, ..., x_T$
- $G \leftarrow 0$
- For each step, t = T, T 1, ... 0:
 - $G \leftarrow \gamma G + r_t$
 - $C(x_t, u_t) \leftarrow C(x_t, u_t) + 1$
 - $Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \frac{1}{C(x_t, u_t)} \left(G Q(x_t, u_t)\right)$
 - $u^* \leftarrow \operatorname{argmin}_u Q(x_t, u)$

For all $u \in U$

• $\pi(u|x_t) \leftarrow u^*$ with prob. $1 - \epsilon$ (ϵ -greedy)

Q function Look-up table

Q(x,u)	u_1	u_2	u_3	
<i>x</i> ₁				
<i>x</i> ₂				
<i>x</i> ₃				
<i>x</i> ₄				1
<i>x</i> ₅				2
<i>x</i> ₆				3
<i>x</i> ₇				4
<i>x</i> ₈				
:1				

• TD

$$Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \frac{1}{C(x_t, u_t)} \left(\mathbf{G} - Q(x_t, u_t) \right) \qquad \Rightarrow \qquad Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha \left(\mathbf{r}_t + \gamma Q(x_{t+1}, u') - Q(x_t, u_t) \right)$$

$$G_t = r_t + \gamma r_{t+1} + \dots + \gamma^{T-t-1} r_T + \dots \approx r_t + \gamma Q^{\pi}(x_{t+1}, u')$$

On-policy Off-policy

$$u' \leftarrow u_{t+1}$$
 $u' \leftarrow \arg\min_{u} Q(x_{t+1}, u)$

Monte-Carlo(MC) and Temporal-difference(TD) policy iteration

• MC

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$$

TD

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

DP

$$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right]$$

SARSA and Q-learning

SARSA: on-policy

· For each episode:

For each step, t = 0, 1, ..., T:

- Given x_t , choose $u_t = \operatorname{argmin}_u Q(x_t, u)$ (+ ϵ -greedy)
- Observe r_t, x_{t+1}
- Choose $u_{t+1} = \operatorname{argmin}_u Q(x_{t+1}, u)$ (+ ϵ -greedy)
- $Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha (r_t + \gamma Q(x_{t+1}, u_{t+1}) Q(x_t, u_t))$

Q(x,u)	u_1	u_2	u_3	
<i>x</i> ₁				
x_2				
x_3				
x_4		(x_t, u_t)		
<i>x</i> ₅				
<i>x</i> ₆			(x_{t+1}, u_{t+1})	
<i>x</i> ₇				
<i>x</i> ₈				
:				

Q-learning: off-policy

• For each episode:

For each step, t = 0, 1, ..., T:

- Given x_t , choose $u_t = \operatorname{argmin}_u Q(x_t, u)$ (+ ϵ -greedy)
- Observe r_t, x_{t+1}
- $Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha (r_t + \gamma \min_u Q(x_{t+1}, u) Q(x_t, u_t))$

Q(x,u)	u_1	u_2	u_3	
<i>x</i> ₁				
x_2				
<i>x</i> ₃				
x_4		(x_t, u_t)		
<i>x</i> ₅				
<i>x</i> ₆	(x_{t+1},u)	(x_{t+1},u)	(x_{t+1},u)	
<i>x</i> ₇				
<i>x</i> ₈				
:				

• MC

TD

DP

결론

MC

$$G_t = r_t + \gamma r_{t+1} + \dots + \gamma^{T-t-1} r_T + \dots$$

- Episode 끝날 때까지 학습 못함, 끝나야 학습
- High variance
- Unbiased estimate of Q
- 초기값에 민감하지 않음

TD

$$G_t \approx r_t + \gamma Q^{\pi}(x_{t+1}, u')$$

- 매 step 마다 학습 가능
- Low variance
- · Biased estimate of Q
- 처음 어떤 Q를 쓰냐에 따라 잘 수렴하냐 안하냐 차이

High Accuracy High Precision

High Accuracy Low Precision

Low Accuracy High Precision