第四次习题课

小测题讲解,知识提要,习题讲解和内容扩充

助教: 邓先涛

2023年10月9日

第二次小测题讲解

小测第 1 题

写出环 $\mathbb{C}[x]/(x^4-1)$ 的所有素理想.

素理想的定义和环同态定理中的理想对应

思维拓展

试利用该方法给出 $\mathbb{Q}[\sqrt{m}]$ 的整数环 R_m 的所有素理想.

- ▶ 设 $R_1 \rightarrow R_2$ 是满同态,则 R_1 中包含 ker 的理想与 R_2 的理想一一对应,极大理想对 应极大理想,素理想对应素理想.
- ▶ $\mathbb{C}[x]$ 是主理想整环,包含 $x^4 1$ 的素理想只有 (x-1)、(x+1)、(x-i) 和 (x+i).
- ► $(\overline{x}-1)$ 、 $(\overline{x}+1)$ 、 $(\overline{x}-i)$ 以及 $(\overline{x}+i)$ 是商 环 $\mathbb{C}[x]/(x^4-1)$ 的所有素理想.

小测第2题

设 α 是幺环 R 中的幂零元,即存在正整数 n 使得 $\alpha^n = 0$,证明: $1 + \alpha + \cdots + \alpha^{2023}$ 可逆.

因式分解技巧

思维拓展

本质上,对幺环中的幂零元 α ,任给正整数 m,有 $\sum_{i=0}^{m} \alpha^{i}$ 可逆.

- ▶ 存在 $m \in \mathbb{N}$ 使 2024m > n, 即 $\alpha^{2024m} = 0$. 因此可对 $1 = 1 - \alpha^{2024m}$ 进行因式分解.
- $1 \alpha^{2024m} = (1 \alpha^{2024}) \sum_{i=0}^{m-1} \alpha^{2024i}.$
- $1 \alpha^{2024} = (1 \alpha)(1 + \alpha + \dots + \alpha^{2023}).$

小测第3题

设 $\tau: \mathbb{C}[x,y] \to \mathbb{C}[t]$ 是环同态,满足 $\tau(x) = t^2$ 和 $\tau(y) = t^3$,且 $\forall a \in \mathbb{C}, \ \tau(a) = a$,求 $\ker(\tau)$.

带余除法:交换幺环上的首项系数为单位的多项式均有带余除法

思维拓展

能否刻画 $\mathbb{C}[x,y]$ 的所有素理想和极大理想?

- ▶ 将 $\mathbb{C}[x,y] = \mathbb{C}[x][y]$ 看作 $\mathbb{C}[x]$ 的多项式环.
- ▶ 注意 $y^2 x^3 \in \ker(\tau)$, 考虑 $f(x, y) \in \ker(\tau)$ 对 $y^2 x^3$ 做带余除法.
- ▶ $f(x, y) = (y^2 x^3)q(x, y) + f_1(x)y + f_0(x)$,假设 $f(x, y) \in \ker(\tau)$,则 $f_0(t^2) + f_1(t^2)t^3 = 0$.
- ▶ $f_0(x) = 0 = f_1(x)$, $f_0(x) = (y^2 x^3)$.

小测第 4 题

证明: $I = (5, 2 + \sqrt{-6})$ 是 $\mathbb{Z}[\sqrt{-6}]$ 的极大理想.

- ▶ 环同态中理想对应:考察 $\mathbb{Z}[x]$ 的极大理想.
- ▶ 整数中的带余除法

思维拓展

设 $I \in R_m$ 的任一理想,则存在元素 $a, b \in R_m$ 使得 I = (a, b).

- ▶ 任给 $c = a + b\sqrt{-6}(a, b \in \mathbb{Z}) \notin I$.
- ▶ 可以写作 $c = (a-2b) + b(2+\sqrt{-6})$, 立刻 推出 $5 \nmid a-2b$, 因此根据裴镯引理, 存在 整数 u, v 使得 5u + (a-2b)v = 1.

小测第5题

设 R 是整环, $\pi \in R$ 非零不可逆, 证明: π 是不可约元当且仅当 (π) 为 R 所以非平凡主理想构成的集合的极大元.

不可约元定义: $\pi = ab$ 推出 a 或 b 是单位.

思维拓展

素元与不可约元性质:能否构造一个非 *UFD* 的整环使得其中的素元与不可约元等价?

- ▶ 前推后:若不然,则存在 $(\pi) \subsetneq (\eta)$,立刻得到存在 $c \in R$ 使得 $\pi = c\eta$,推出矛盾.
- ► 后推前: 考虑 $\pi = ab$, 若 a 和 b 都不是单位, 则 $(\pi) \subsetneq (a)$ 矛盾.

重点知识提要

重点知识提要

- ▶ UFD、PID 和 ED 的概念与性质: 了解三者的"大小"关系,并可以举出相应的例子;了解三者 所对应的判定准则.
- ▶ 不可约元与素元的性质
- ▶ UFD 上多项式环的性质: 域上的多项式环是主理想整环; UFD 上的多项式环仍是 UFD.
- ▶ 二次整数环定义: 设 m 是无平方因子整数,且 $m \neq 0,1$,定义

$$R_m = \begin{cases} \mathbb{Z}[\sqrt{m}], & m \equiv 2, 3 \mod 4 \\ \mathbb{Z}[\frac{1+\sqrt{m}}{2}], & m \equiv 1 \mod 4. \end{cases}.$$

第四章习题讲解

第四章第4题

令 $F = \mathbb{Q}(\sqrt{m})$, 证明: R_m 是 F 的子环.

子环的定义

思维拓展 1

设 $f(x) \in \mathbb{Z}[x]$ 是首一整系数多项式,若 $\alpha \in F$ 是多项式 f(x) 的根,则 $\alpha \in R_m$.

证明

具有相同单位元,减法封闭,乘法封闭即可验证 是子环.

思维拓展 2

设 $f(x) \in R_m[x]$ 是首一多项式,若 $\alpha \in F$ 是多项式 f(x) 的根,则 $\alpha \in R_m$.

第四章第 5 题

设 m 是无平方因子整数且 $m \neq 0,1$,令 R_m^{\times} 记 为 R_m 中所有单位构成的乘法群. 对于 m < 0. 计算 R_m.

整数上的不定方程

思维拓展

该问题在 m>0 的情况下是复杂的。你是否能 在 m > 0 情况下计算 R_m^{\times} ? 特别的, 计算 R_2^{\times} .

- ▶ 若 $m \equiv 2.3 \mod 4$. 则 R_m 中单位 $a + b\sqrt{m} \iff |a^2 - mb^2| = 1.$
- ▶ 若 $m \equiv 1 \mod 4$. 则 R_m 中单位 $a + b \frac{1 + \sqrt{m}}{2} \iff |a^2 + ab + \frac{1 - m}{4}b^2| = 1.$
- ▶ 由于 m < 0. 因此可以容易地对上述式子进 行放缩,即可得到结果.

第四章第 12 题

证明 $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ 是欧几里得整环.

仿造教材上 R_{-3} 是欧几里得整环的证明

思维拓展

该方法能够处理的 m 的最大情况是多少?

- ▶ 定义 d(x) = |N(x)|, 这里 $N(x) = x \cdot \overline{x}$.
- ▶ 任给 $x \in R_5$, 存在同奇同偶的 $a, b \in \mathbb{Z}$ 使 得 $x = \frac{a+b\sqrt{5}}{2}$.
- ► 任给 $\alpha, \beta \in R_5$, 有 $\frac{\alpha}{\beta} = t + s\sqrt{5}(t, s \in \mathbb{Q})$.
- ▶ 取同奇同偶的 a, b 使得 $|2s a| \le \frac{1}{2}$, $|2t b| \le 1$. 取 $q = \frac{a + b\sqrt{5}}{2}$.
- ► $\alpha = q\beta + (t + s\sqrt{5} q)\beta = q\beta + r$ 满足欧几里得整环的性质.

第四章第 14 题

设 p 为奇素数、则在 \mathbb{Z} 中 $x^2 = -1 \mod p$ 有解 的充要条件是 $p \equiv 1 \mod 4$.

证明 1

 $p \equiv 1 \mod 4$ 等价于 $(\frac{-1}{n}) = 1$ 等价于 $x^2 \equiv -1 \mod p$ 有解.

二次剩余或组合构造

思维拓展

试刻画并证明 $x^2 \equiv -1 \mod p^n$ 有解的充要条件.

- ▶ 若 $x^2 \equiv -1 \mod p$ 有解,则 $x^{p-1} \equiv (-1)^{\frac{p-1}{2}} \equiv 1 \mod p$.
- ▶ 若 $p \equiv 1 \mod 4$, 假设方程无解, 定义 $V = \{(x, y) | xy = -1, x, y \in \mathbb{F}_p, x, y \neq \pm 1\}.$
- ▶ 4 整除 |V| = p 3 推出矛盾.

第四章第 16、17 题

找出 R_{-1} 中的所有不可约元.

整数的性质

思维拓展

试找出 R_{-2} 中的所有不可约元.

- ▶ $p \equiv 1 \mod 4$, 存在 x 使得 $x^2 + 1 \in pR_{-1}$, 这表明 p 不是不可约元,令 $p = \alpha \overline{\alpha}$, α 为第一类不可约元当且仅当 $N(\alpha) = p$.
- ▶ $p \equiv 3 \mod 4$ 不可约, 否则 $p = \alpha \beta$ 推出 $N(\alpha) = p = a^2 + b^2$ 矛盾.
- ▶ $2 = (1 + \sqrt{-1})(1 \sqrt{-1})$,即可产生第三种不可约元 $\pm 1 \pm \sqrt{-1}$.

第四章第 18 题

正整数 m 可表两整数的平方和的充要条件是 m标准素分解中 4k+3 型素数的幂指数为偶数.

$$(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2$$

思维拓展

试思考正整数可以表为 $x^2 + ny^2$ 的充要条件是 什么? 试对 n=2,3 进行一个类似的证明.

- ▶ 根据提示公式. 后推前显然.
- ▶ 前推后: 注意到 R_{-1} 是唯一分解整环. 将 $m = a^2 + b^2$ 在 R_{-1} 中分解. 模 4 余 3 的 素数总是成对出现.

第四章第 23 题

设 D 是主理想整环, 若 D 不是域, 则 D[x] 不 是主理想整环.

证明

设 $0 \neq a \in D$ 不可逆,则 $I = (a, x) \subset D[x]$ 不是 主理想.

理想生成集

思维拓展

证明: D[x] 中的理想总可由有限多个元素生成.

第四章第 24 题

主理想整环的商环的每一个理想都是主理想.

是否存在一个主理想整环,它的商环中的理想

环满同态中理想的对应

思维拓展

有无穷多个?

证明

考虑 $\pi: R \to R/I$ 为标准同态,是满同态,因此任给 J 为 R/I 中的理想,存在 R 中包含 I 的理想,(a) 使得 $\pi((a)) = J$,因此 $J = (\overline{a})$.

问题补充和方法扩张

问题 1

关于唯一分解整环和主理想整环的思考:

- ▶ PID 中两元素的最大公因子有 gcd(a, b) = ua + bv,试举例说明该性质在 UFD 中不成立. 如果 某个 UFD 中有上述性质,那么该 UFD 是 PID.
- ▶ PID 中任意理想升链稳定, 试举例说明该性质在 UFD 中不成立.
- ► *PID* 要求每一个理想都是主理想,如果仅要求整环中的<mark>素理想</mark>是主理想,那么能否推出该整环 是 *PID*?
- ► *UFD* 的定义中有两个条件需要满足,如果仅要求整环中每一个元素均可写作有限多不可约元的 乘积,那么能否推出该整环是 *UFD*? 如果仅要求整环中每一个元素均可写作有限多素元的乘 积,那么能否推出该整环是 *UFD*?

问题 2

设 $p \equiv 1 \mod 4$ 是素数,素数 q 满足 $(\frac{q}{p}) = -1$,则 $\mathbb{Z}[\sqrt{pq}]$ 不是 UFD.

简要说明

考察 $pq = p \times q = \sqrt{pq} \cdot \sqrt{pq}$, 由条件即可判定 p 和 q 是不可约元, 因此不可约.

问题 3

设 $a \in \mathbb{Z}$, p 是素数, $f(x) = (x-a)^n + pF(x) \in \mathbb{Z}[x]$, 其中 $F(x) \in \mathbb{Z}[x]$ 满足 $p \nmid F(a)$ 且 $\deg(F) \leq n$. 证明: f(x) 模 p^2 是不可约的, 即不存在 h(x), $g(x) \in \mathbb{Z}[x]$ 使得 $f(x) \equiv h(x)g(x) \bmod p^2$.

简要说明

- $ightharpoonup
 ightharpoonup h_0(x) \equiv h(x) mod p, \ g_0(x) \equiv g(x) mod p, \ m D \ (x-a)^n \equiv g_0(x)h_0(x) mod p.$ 注意到多项式环 $\mathbb{Z}/p\mathbb{Z}[x]$ 唯一分解,因此 $h_0(x) \equiv (x-a)^u, \ g_0(x) \equiv (x-a)^v mod p, \ \mbox{其中 } u+v=n.$
- ▶ $h(x) = (x-a)^u + pH(x)$, $g(x) = (x-a)^v + pG(x)$, 因此

$$pF(x) \equiv p((x-a)^v H(x) + (x-a)^u G(x)) \mod p^2.$$

根据 $p \nmid F(a)$, 不妨设 u = 0. 进一步得到 H(x) 为常值多项式, 因此 f(x) 没有非平凡分解.