K-Means Exercise

K-Means requires an arbitrary (randomly) selected set of centers to start

Blue Center 3,5 3,5					
 					
	Р	oint I	Data		
Point	X1	X2	D_RED	D_{BLUE}	Color
Α	1	1	2	5	Red
В	1	2	1	4	Red
С	2	1	1	4	Red
D	2	4	2	2	Red
E	2	3	1	2	Red
F	3	4	3	1	Blue
G	3	3	2	1	Blue
Н	4	4	4	1	Blue

Iteration

Red Center

K-Means Exercise

In the next iterations, we calculate the centers based on the classification of the previous iteration.

Iteration	2	
Red Center	1,5	1,8
Blue Center	3	3,8

Point Data					
Point	X1	X2	D_RED	D_{BLUE}	Color
Α	1	1	1,25		
B C	1	2	2,75		
С	2	1	1,25	3,75	Red
D	2	4	2,75	1,25	Blue
D E F G	2	3	1,75	1,75	Red
F	3	4	3,75	0,25	Blue
G	3	3	2,75	0,75	Blue
Н	4	4	4,75	1,25	Blue

Iteration	3	
Red Center	1,3	1,3
Blue Center	2,8	3,6

Point Data					
Point	X1	X2	D_RED	D _{BLUE}	Color
Α	1	1	0,66	4,4	Red
В	1	2	1	3,4	Red
С	2	1	1	3,4	Red
D	2	4	3,33	1,2	Blue
E	2	3	2,33	1,4	Blue
F	3	4	4,33	0,6	Blue
G	3	3	3,33	0,8	Blue
Н	4	4	5,33	1,6	Blue

Iteration		1
Red Center	1,3	1,3
Blue Center	2,8	3,6

Centers have stabilized, our existing classification is stable.

Notes:

- 1- Because decimal numbers are not stored exactly in computers, but in a particular floating point format, sometimes rounding errors make the canter calculations move around a point but not exactly stabilize. So we might define a small tolerance and check if the change in the center calculations within the tolerance.
- 2- An alternate method would be to check if there is any actual change in the classifications themselves. If the classifications are the same, then we have achieved stability.

Ouestion:

If we keep the centers fixed from now on, and then start adding points (non-updating k-means prediction, can we manage "concept drift"?

K-Means Exercise

Sudden Drift A rapid and abrupt change in the data distribution, where the previous patterns become immediately obsolete. Example: Consumer behavior changes drastically after a major event

Gradual Drift The data distribution slowly shifts over time, and both old and new concepts may coexist for a while. Example: A new product feature slowly gains popularity, while the older one still sees some use.

Incremental Small, continuous changes accumulate over time, leading to a significant shift in the data distribution. Example: A user's preferences slowly evolve based on long-term behavior trends.

Recurring Previously seen data distributions return periodically. Example: Retail shopping habits during holidays like Black Friday or New Year re-appear each year.

Methods to check for "drift" Kolmogorov–Smirnov (K–S) Test Jensen–Shannon Divergence (JSD) Population Stability Index (PSI)