Параметрические и непараметрические гипотезы. Проверка параметрических гипотез.

Если в гипотезе утверждается что-то о значении какого-то параметра, гипотеза называется **параметрической**. Если гипотеза предполагает что-то, количественно не измеряемое (например, «признак имеет нормальное распределение»), гипотеза называется **непараметрической**.

Параметрические критерии используются в задачах проверки параметрических гипотез и включают в свой расчет показатели распределения, например, средние, дисперсии и т.д.

Это такие известные классические критерии, как критерий Стьюдента, критерий Фишера и др. Они позволяют сравнить основные параметры генеральных совокупностей, а также оценить разности средних и различия в дисперсиях. Критерии способны выявить тенденции изменения признака, оценить взаимодействие двух и более факторов в воздействии на изменения признака

Непараметрические критерии проверки гипотез основаны на операциях с другими данными, в частности, частотами, рангами и т.п. Это - критерий Манна-Уитни, критерий Уилкоксона и многие другие. Непараметрические критерии позволяют решить некоторые важные задачи, связанные с выявлением различий исследуемого признака, с оценкой сдвига значений исследуемого признака, выявлением различий в распределениях.

Алгоритм использования любого критерия включает в себя:

- 1) выбор соответствующего статистического метода;
- 2) формулировку нулевой и альтернативной гипотез;
- 3) выбор значения доверительной вероятности (уровня значимости);
- 4) вычисление эмпирического значения критерия;
- 5) нахождение критического значения критерия с помощью таблиц;
- б) принятие решения на основании сравнения эмпирического и критического значений критерия.

Проверка гипотез о доле признака

а) Сравнение доли признака с нормативом

Пусть доля некоторого признака p в генеральной совокупности должна быть равной a, т.е. $H_0:p=a$. Рассмотрим вначале альтернативную гипотезу $H_1:p\neq a$, т.е. двусторонний критерий проверки.

$$\Theta = \frac{m}{n}$$
 Частота появления признака в выборке

$$P\left(\left|rac{m}{n}-a
ight|\leq {z_lpha}_{/_2}\sigma
ight)pprox \left({z_lpha}_{/_2}
ight)-\left(-{z_lpha}_{/_2}
ight)=2\left({z_lpha}_{/_2}
ight)=1-lpha,$$

где (z) – функция Лапласа. Среднеквадратическое отклонение для биномиального распределения

$$\sigma=\sqrt{rac{a(1-a)}{n}}$$
, I

$$\Theta_1=a-z_{lpha/_2}\sqrt{rac{a\left(1-a
ight)}{n}},\hspace{0.5cm}\Theta_2=a+z_{lpha/_2}\sqrt{rac{a\left(1-a
ight)}{n}}.$$

Критические точки

$$\Theta_1 < \Theta_{ ext{набл}} < \Theta_2$$

Рассмотрим односторонний критерий проверки, в качестве альтернативной гипотезы выдвинем H_1 : p>a. В этом случае используется z_{lpha} – квантиль уровня lpha, определяемый из уравнения:

$$P\left(rac{m}{n}>\Theta_2
ight)=0, 5-(z_lpha)=lpha,$$
 где $\Theta_2=a+z_a\sqrt{rac{a\left(1-a
ight)}{n}}.$

Гипотеза H_0 отклоняется, если $rac{m}{n}>\Theta_2$, и принимается, если $rac{m}{n}\leq\Theta_2$.

Пусть проводится проверка соответствия содержания активного вещества в продукции стандарту, который равен 10%, т.е. проверяется нулевая гипотеза H_0 : p=0,1, где p – доля брака в продукции. Для контроля произведена выборка из 100 проб, которая дала $\frac{m}{n}=0,15$. Считать ли гипотезу верной или продукцию следует забраковать как не соответствующую нормативам?

Решение

$$H_1:p \neq a.$$

$$\alpha = 0,05$$

$$z_{lpha}=1,65$$

$$H_1 : p
eq a$$
. $lpha = 0,05$ $z_lpha = 1,65$ $\Theta_2 = 0,1+1,65\sqrt{rac{0,1(1-0,1)}{100}} = 0,149.$

$$rac{m}{n}=0,15>\Theta_2$$

$$H_1:p \neq a$$

$$\alpha = 0,05$$

$$H_1 : p
eq a$$
 $lpha = 0,05$ $z_{lpha/_2} = 1,96$

$$\Theta_1 = 0, 1-1, 96\sqrt{rac{0, 1\,(1-0,1)}{100}} = 0,041,$$

$$\Theta_1 = 0, 1-1, 96\sqrt{\frac{0, 1\,(1-0,1)}{100}} = 0,041, \qquad \Theta_2 = 0, 1+1, 96\sqrt{\frac{0, 1\,(1-0,1)}{100}} = 0,159.$$

$$\frac{m}{n}=0,15$$

б) Сравнение долей признака в двух совокупностях

Пусть $rac{m_1}{n_1}$ и $rac{m_2}{n_2}$ – частоты появления одного и того же признака в двух совокупностях из n_1 и n_2

1. Большие выборки.

$$M\left(rac{m_1}{n_1}
ight)=M\left(rac{m_2}{n_2}
ight)=p$$

$$\sigma^2\left(\frac{m_1}{n_1}\right) = \frac{p(1-p)}{n_1}$$

$$\sigma^2\left(\frac{m_1}{n_1}\right) = \frac{p(1-p)}{n_1}$$
 $\sigma^2\left(\frac{m_2}{n_2}\right) = \frac{p(1-p)}{n_2}$ $\Theta = \frac{m_1}{n_1} - \frac{m_2}{n_2}$

$$\Theta = \frac{m_1}{n_1} - \frac{m_2}{n_2}$$

$$M\left(\Theta
ight)=M\left(rac{m_1}{n_1}-rac{m_2}{n_2}
ight)=M\left(rac{m_1}{n_1}
ight)-M\left(rac{m_2}{n_2}
ight)=p-p=0,$$

$$\sigma^2\left(\Theta\right) = \sigma^2\left(\frac{m_1}{n_1} - \frac{m_2}{n_2}\right) = \sigma^2\left(\frac{m_1}{n_1}\right) + \sigma^2\left(\frac{m_2}{n_2}\right) = p\left(1-p\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right).$$

В данном случае необходимо использовать двусторонний критерий, т.е. альтернативную гипотезу выбрать в виде $H_1: rac{m_1}{n_1}
eq rac{m_2}{n_2}$. Задавшись уровнем значимости lpha, найдем $z_{lpha/2}$ из уравнения:

$$\left(P\left(\left|rac{m}{n}-a
ight|\leq z_{lpha/_{2}}\sigma
ight)=\left(z_{lpha/_{2}}
ight)-\left(-z_{lpha/_{2}}
ight)=2\left(z_{lpha/_{2}}
ight)=1-lpha$$

$$\Theta_{1} = -z_{lpha/_{2}}\sqrt{p\left(1-p
ight)}\sqrt{rac{1}{n_{1}}+rac{1}{n_{2}}}, \qquad \Theta_{2} = z_{lpha/_{2}}\sqrt{p\left(1-p
ight)}\sqrt{rac{1}{n_{1}}+rac{1}{n_{2}}},$$

$$p = rac{m_1 + m_2}{n_1 + n_2}.$$

$$\Theta_1 < \Theta_{ ext{набл}} < \Theta_2$$

ЗАДАЧА

Пусть число бракованных изделий в экспериментальной партии составило 4 из 100, а в контрольной – 12 из 500.

Оценить с уровнем значимости lpha=0,01 существенность расхождений долей брака в этих двух партиях.

РЕШЕНИЕ

По уровню значимости lpha=0,01 находим квантиль $z_{lpha/_2}=2,58.$

Находим точечную оценку p: $p=rac{4+12}{100+500}=0,027$, откуда

$$\sigma = \sqrt{0,027 \left(1-0,027\right)} \sqrt{rac{1}{100} + rac{1}{500}} = 0,0177,$$

$$\Theta_1 = -2,58 \cdot 0,0177 = -0,0458, \qquad \Theta_2 = 2,58 \cdot 0,0177 = 0,0458.$$

$$\Theta_{ ext{ iny Ha6II}} = rac{4}{100} - rac{12}{500} = 0,016$$
, $lpha = 0,01$

2. Малые выборки.

Распределение
$$\Theta =$$

$$\Theta = \frac{m_1}{n_1} - \frac{m_2}{n_2}$$

Совокупность	Фактические частоты			Теоретические частоты	
	$oldsymbol{A}$	$\overline{m{A}}$	Bcero	$oldsymbol{A}$	$\overline{m{A}}$
Выборка 1	m_1	m_1	m_1	m_1	m_1
Выборка 2	m_2	m_2	m_2	m_2	m_2
Всего	m_1+m_2	m_1+m_2	m_1+m_2	-	_

White the second second

$$\chi^2 = rac{\left(m_1 - p n_1
ight)^2}{p n_1} + rac{\left[\overline{m_1} - \left(1 - p
ight) n_1
ight]^2}{\left(1 - p
ight) n_1} + rac{\left(m_1 - p n_1
ight)^2}{p n_1} + rac{\left[\overline{m_2} - \left(1 - p
ight) n_2
ight]^2}{\left(1 - p
ight) n_2}.$$

Нулевую гипотезу формулируем в виде «обе совокупности есть выборки из одной генеральной совокупности». В данном случае естественно применить односторонний критерий: определив для данного уровня значимости alpha критическое значение χ_0^2 , при $\chi^2>\chi_0^2$ отклоняем нулевую гипотезу, при $\chi^2\leq\chi_0^2$ считаем расхождения между выборками незначимыми.

ЗАДАЧА

Пусть число бракованных изделий в экспериментальной партии составило 9 из 50, а в контрольной – 7 из 30. Оценить с уровнем значимости $\alpha=0,05$ существенность расхождений долей брака в этих двух партиях.

РЕШЕНИЕ

Расчет теоретических частот производим по оценке:

$$p = rac{m_1 + m_2}{n_1 + n_2} = rac{9 + 7}{16 + 64} = rac{16}{80} = 0, 2.$$

Совокупность	$oldsymbol{A}$	$\overline{m{A}}$	Bcero	$oldsymbol{A}$	$\overline{m{A}}$
Экспериментальная партия	9	41	50	10	40
Контрольная партия	7	23	30	6	24
Всего	16	64	80	-	_

$$\chi^2_{_{\mathfrak{S}\mathsf{KC\Pi}}} = rac{(9-10)^2}{10} + rac{(41-40)^2}{40} + rac{(7-6)^2}{6} + rac{(23-24)^2}{24} = 0,333.$$

При lpha=0,05 и u=1 $\chi_0^2=3,8$ и $\chi_{_{_{_{2Ken}}}}^2<\chi_0^2$, поэтому нет оснований отвергать нулевую гипотезу.

Проверка гипотез о среднем значении

а) Сравнение среднего значения с нормативом

$$z=rac{\overline{X_B}-a}{\sigma\left(\overline{X_B}
ight)}.$$

Так как $M\left(z\right)=0$ и $\sigma\left(z\right)=1$, случайная величина z распределена по стандартному нормальному закону. При справедливости гипотезы H_0 математическое ожидание $M\left(\overline{X_B}\right)=\overline{X}=a$ и отклонения z нуля – следствие случайных погрешностей выборки.

Если в качестве альтернативной гипотезы выдвигается $H_1:\overline{X} \neq a$, задавшись уровнем значимости lpha, из уравнения: $P\left(|z| \leq z_{lpha/2}\right) = 2\left(z_{lpha/2}\right) = 1-lpha$

найдем значение $z_{lpha_{/2}}$ и критические точки для двусторонней проверки: $z_1=-z_{lpha_{/2}}$, $z_2=z_{lpha_{/2}}$. Если найденное на основании выборки значение $z_{
m skcn}$ будет удовлетворять неравенству $|z_{
m skcn}|< z_{lpha_{/2}}$, то гипотеза H_0 не отклоняется, если $|z_{
m skcn}|\geq z_{lpha_{/2}}$, то H_0 отклоняется.

ЗАДАЧА

Проверяется гипотеза о среднем размере детали H_0 :X=4,8 мм относительно альтернативной H_1 : $\overline{X} \neq 4,8$ мм. Из предыдущих измерений известно, что $\sigma=0,4$ мм. По результатам выборки объемом n=100 получено $\overline{X_B}=5,2$ мм.

Примем уровень значимости lpha=0,05 и найдем соответствующий квантиль $z_{lpha/_2}=1,96$. Допустимая область значений параметра $z\in (-1,96;1,96)$. Вычисляя выборочное значение параметра $z_{_{\mathfrak{I}KCII}}=\frac{5,2-4,8}{0,4}=1<1,96$, видим, что оно попало в допустимую область. Гипотеза H_0 не отклоняется.

Если альтернативная гипотеза задается неравенствами $H_1:X>a$ или $H_1:X< a$, то производится односторонняя проверка при помощи значения z_{lpha} , вычисляемого из уравнения:

$$P\left(|z| < z_{lpha}
ight) = 0, 5 - (z_{lpha}) = lpha$$

и критическая область задается неравенством $z>z_{lpha}$ или $z< z_{lpha}$.

$$s = \sqrt{rac{1}{n-1} \sum_{i=1}^n \left(x_i - \overline{X_B}
ight)^2}.$$

Выборочная несмещенная оценка

$$t = \frac{\overline{X_B} - a}{s} \sqrt{n - 1},$$

б) Сравнение средних значений двух совокупностей

Пусть имеются две совокупности, характеризующиеся средними X,Y и дисперсиями σ_x^2,σ_y^2 . Выдвигается гипотеза, что эти средние равны, т.е. $H_0:\overline{X}=\overline{Y}$. Для проверки этой гипотезы из каждой совокупности производится выборка: из первой – объемом n_1 , в результате которой получаются $\overline{X_B}$ и s_x^2 , из второй – объемом n_2 , в результате которой получаются $\overline{Y_B}$ и s_y^2 . s_x^2 и s_y^2 – дисперсии выборок.

Для проверки основной гипотезы используем критерий:

$$\Theta = rac{\overline{X_B} - \overline{Y_B}}{\sqrt{D\left(\overline{X_B} - \overline{Y_B}
ight)}}.$$

Так как $M\left(\overline{X_B}\right)=\overline{X}$, $M\left(\overline{Y_B}\right)=\overline{Y}$, при справедливости нулевой гипотезы H_0 будем иметь $M\left(\Theta\right)=0$. Используя свойства дисперсии и предполагая выборки (а следовательно, и выборочные средние) независимыми, получим:

$$\sigma^2\left(\overline{X_B}-\overline{Y_B}
ight)=\sigma^2\left(\overline{X_B}
ight)+\sigma^2\left(\overline{Y_B}
ight)=rac{\sigma_x^2}{n_1}+rac{\sigma_y^2}{n_2}.$$

Теперь сделаем дополнительное предположение, что дисперсии обеих совокупностей равны, т.е. $\sigma_x^2 = \sigma_y^2 = \sigma^2$. Это предположение нуждается в специальной проверке, о которой речь пойдет в следующем разделе. Если принять это предположение, то

$$\sigma^2\left(\overline{X_B}-\overline{Y_B}
ight)=\sigma^2\left(rac{1}{n_1}+rac{1}{n_2}
ight).$$

Подставляя это выражение в формулу для критерия, получаем:

$$\Theta = rac{\overline{X_B} - \overline{Y_B}}{\sigma \cdot \sqrt{rac{1}{n_1} + rac{1}{n_2}}}.$$

$$s^2pprox rac{\sum\limits_{i=1}^{n_1}\left(x_i-\overline{X_B}
ight)^2+\sum\limits_{i=1}^{n_2}\left(y_i-\overline{Y_B}
ight)^2}{n_1+n_2-2}=rac{n_1s_x^2+n_2s_y^2}{n_1+n_2-2},$$

$$z = rac{\overline{X_B} - \overline{Y_B}}{\sqrt{n_1 s_x^2 + n_2 s_y^2}} \cdot rac{\sqrt{n_1 + n_2 - 2}}{\sqrt{rac{1}{n_1} + rac{1}{n_2}}}$$