Electronic Devices

Final Term Lecture - 03

Reference book:

Electronic Devices and Circuit Theory (Chapter-6)

Robert L. Boylestad and L. Nashelsky, (11th Edition)

OBJECTIVES

- Become familiar with the construction and operating characteristics of Junction Field Effect (JFET), Metal-Oxide Semiconductor FET (MOSFET), and Metal-Semiconductor FET (MESFET) transistors.
- Be able to sketch the transfer characteristics from the drain characteristics of a JFET, MOSFET, and MESFET transistor.
- Understand the vast amount of information provided on the specification sheet for each type of FET.
- Be aware of the differences between the dc analysis of the various types of FETs.

FETs vs BJTs

• FET's (Field – Effect Transistors) are much like BJT's (Bipolar Junction Transistors).

• Similarities:

- Amplifiers
- Switching devices
- Impedance matching circuits

• Differences:

- FET's are voltage controlled devices whereas BJT's are current controlled devices.
- FET's are unipolar devices whereas BJT's are bipolar devices.
- FET's also have a higher input impedance, but BJT's have higher gains.
- FET's are less sensitive to temperature variations and because of their construction they are more easily integrated into IC's.

FET TYPES

- JFET: Junction Field-Effect Transistor
- MOSFET: Metal-Oxide Semiconductor Field-Effect Transistor

»D-MOSFET ~ Depletion type MOSFET

»E-MOSFET ~ Enhancement type MOSFET

JFET CONSTRUCTION

- There are two types of JFETs
 - n- channel
 - p- channel
- The n-channel is more widely used.

• There are *three terminals*:

- Ohmic contacts

 Gate (G)

 Depletion region

 Source (S)
 - FIG. 6.3

 Junction field-effect transistor (JFET).
- Drain (D) and Source (S) are connected to n-channe
- Gate (G) is connected to the p-type material
- Check this: http://www-g.eng.cam.ac.uk/mmg/teaching/linearcircuits/jfet.html

BASIC OPERATION OF JFET

- JFET operation can be compared to a water spigot.
- The **source of water** pressure is the **accumulation of electrons** at the **negative pole of the drain-source voltage**.
- The drain of the water is the electron deficiency (or holes) at the positive pole of the applied voltage.
- The control of flow of water is the gate voltage that controls the width of the n channel and therefore, the flow of charges from source to drain.

FIG. 6.4
Water analogy for the JFET control
mechanism.

JFET OPERATING CHARACTERISTICS

• There are three basic operating conditions for a JFET:

- A. $V_{GS} = 0$, V_{DS} increasing to some positiv
- B. $V_{GS} < 0$, V_{DS} at some positive value
- C. Voltage-Controlled Resistor

FIG. 6.3

Junction field-effect transistor (JFET).

JFET OPERATING CHARACTERISTICS: $V_{GS} = 0 \text{ V}$

- Three things happen when V_{GS} = 0 and V_{DS} is increased from 0 to a more positive voltage:
 - The depletion region between p-gate and n-channel increases as *electrons from n-channel combine with holes from p-gate*.
 - Increasing the depletion region, decreases the size of the n-channel which increases the resistance of the n-channel.
 - But even though the n-channel resistance is increasing, the current (I_D) from Source to Drain through the n-channel is increasing. This is because V_{DS} is increasing.

FIG. 6.5 JFET at $V_{GS} = 0 V$ and $V_{DS} > 0 V$.

JFET OPERATING CHARACTERISTICS: $V_{GS} = 0 \text{ V}$

- It is important to note that the *depletion region is wider near the* top of both p-type Materials.
- Assuming a uniform resistance in the n-channel, the resistance of the channel can be broken down to the divisions appearing in Figure.
- The current I_D will establish the voltage levels through the channel as indicated on the same figure. The result is that the upper region of the p-type material will be reverse biased by about 1.5 V, with the lower region only reverse-biased by 0.5 V.
- The greater the applied reverse bias, the wider the depletion region—hence the distribution of the depletion region as shown in figure. The fact that the p-n junction is reverse-biased for the length of the channel results in a gate current of zero amperes.

FIG. 6.6

Varying reverse-bias potentials across the p-n junction of an n-channel JFET.

PINCH-OFF

- If $V_{GS} = 0$ and V_{DS} is further increased to a more positive voltage, then the depletion zone gets so large that it pinches off the n-channel.
- This suggests that the current in the n-channel (I_D)
 would drop to 0A, but it does just the opposite: as V_{DS}
 increases, so does I_D.

FIG. 6.8 Pinch-off $(V_{GS} = 0 \ V, \ V_{DS} = V_P)$.

SATURATION

At the pinch-off point:

- Any further increase in V_{DS} does not produce any increase in I_D. V_{DS} at pinch-off is denoted as V_p.
- I_D is at saturation or referred to as I_{DSS} .
- The ohmic value of the channel is maximum.

FIG. 6.7 I_D versus V_{DS} for $V_{GS} = 0$ V.

JFET modeling when $I_D=I_{DSS}$, $V_{GS}=0$, $V_{DS}>V_P$

 I_{DSS} is the maximum drain current for a JFET and is defined by the conditions

$$V_{GS} = 0 V \text{ and } V_{DS} > V_{P}$$
.

FIG. 6.9

Current source equivalent for $V_{GS} = 0 \ V, \ V_{DS} > V_P$.

$V_{GS} < 0$, V_{DS} AT SOME POSITIVE VALUE

• As V_{GS} becomes more negative the depletion region increases.

FIG. 6.10

Application of a negative voltage to the gate of a JFET.

$I_D < I_{DSS}$

As V_{GS} becomes more negative:

- The JFET will pinch-off at a lower value of V_{DS}.
- I_D decreases (I_D < I_{DSS}) even though V_{DS} is increased.
- Eventually I_D will reach 0A. V_{GS} at this point is called V_p or $V_{GS(off)}$.
- Also note that at high levels of V_{DS} the JFET reaches a breakdown situation. I_D will increases uncontrollably if V_{DS} > V_{DSmax}.

FIG. 6.11 n-Channel JFET characteristics with $I_{DSS} = 8$ mA and $V_P = -4$ V.

JFET OPERATING CHARACTERISTICS: VOLTAGE CONTROLLED RESISTOR

- The region to the left of the pinch-off point is called the ohmic region.
- The JFET can be used as a variable resistor, where V_{GS} controls the drainsource resistance (r_d).
- The slope of each curve and therefore the resistance of the device between drain and source for V_{DS} < V_P is a function of the applied voltage V_{GS}.
- As V_{GS} becomes more negative, the resistance (r_d) increases.

FIG. 6.11 n-Channel JFET characteristics with $I_{DSS} = 8$ mA and $V_P = -4$ V.

$$r_d = \frac{r_o}{(1 - V_{GS}/V_P)^2}$$

P-CHANNEL JFETS

• p-Channel JFET acts the same as the n-channel JFET, except the polarities and

currents are reversed.

FIG. 6.12 p-Channel JFET.

End of Lecture-3