(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-294388 (P2002-294388A)

(43)公開日 平成14年10月9日(2002.10.9)

(51) Int.Cl.7		識別記号		FΙ			7	·-マコード(参考)
C 2 2 C	33/02			C 2 2	C 33/02		Α	4K018
B 2 2 F	3/02			B 2 2	F 3/02		M	
							N	
	3/10				3/10		В	
							E	
			審査請求	未請求	請求項の数10	OL	(全 24 頁)	最終頁に続く

		1	
(21)出願番号	特願2001-263612(P2001-263612)	(71)出願人	000001258
			川崎製鉄株式会社
(22)出願日	平成13年8月31日(2001.8.31)		兵庫県神戸市中央区北本町通1丁目1番28
			号
(31)優先権主張番号	特願2000-263928 (P2000-263928)	(71)出願人	000167406
(32)優先日	平成12年8月31日(2000.8.31)		株式会社ユニシアジェックス
(33)優先権主張国	日本 (JP)		神奈川県厚木市恩名1370番地
(31)優先権主張番号	特顧2001-15655 (P2001-15655)	(72)発明者	中村 尚道
(32)優先日	平成13年1月24日(2001.1.24)		千葉県千葉市中央区川崎町1番地 川崎製
(33)優先権主張国	日本 (JP)		鉄株式会社技術研究所内
		(74)代理人	100099531
			弁 神十 小林 常→

最終頁に続く

(54) 【発明の名称】 鉄基粉末成形用素材、その製造方法および高強度高密度鉄基焼結体の製造方法

(57)【要約】

【課題】 圧縮成形荷重が格段に低く、また高い変形能を有する鉄基粉末成形用素材および鋭い形状の空孔が少なく、高強度高密度を有する鉄基焼結体の製造方法を提供する。

【解決手段】 C:0.05%以下、O:0.3 %以下、N:0.010 %以下を含む鉄基金属粉に、0.03~0.5 %の黒鉛粉と、潤滑剤とを混合し、予備圧縮成形して7.3Mg/m³以上の密度を有する予備成形体とし、窒素分圧が30kPa以下の非酸化性雰囲気中で1000℃超1300℃以下の温度で予備焼結を施す。これにより、C:0.10~0.50%、O:0.3 %以下を含み、N含有量が0.010 %以下、遊離黒鉛が0.02%以下、密度が7.3 Mg/m³以上の、圧縮成形時の荷重が低く、高変形能を有する鉄基粉末成形用素材となる。さらに、圧縮成形と、再焼結および/または熱処理を施し、焼結部材とする。なお、予備焼結後に焼鈍を行ってもよい。

BEST AVAILABLE COPY

【特許請求の範囲】

【請求項1】 鉄基金属粉と黒鉛粉と、あるいはさらに 潤滑剤とを混合して得られる鉄基混合粉に、予備成形・予備焼結を施して得られる鉄基粉末成形用素材であって、mass%で、C:0.10~0.50%、O:0.3 %以下、N:0.010 %以下を含み、残部Feおよび不可避的不純物からなる組成を有し、かつ遊離黒鉛が0.02%以下であり、密度が7.3Mg/m³以上を有することを特徴とする鉄基粉末成形用素材。

【請求項2】 前記組成に加えてさらに、mass%で、Mn:1.2 %以下、Mo:2.3 %以下、Cr:3.0 %以下、Ni:5.0 %以下、Cu:2.0 %以下、V:1.4 %以下から選ばれた1種または2種以上を含有することを特徴とする請求項1に記載の鉄基粉末成形用素材。

【請求項3】 mass%で、C:0.05%以下、O:0.3 %以下、N:0.010 %以下を含み、残部Feおよび不可避的不純物からなる組成を有する鉄基金属粉に、鉄基金属粉と黒鉛粉との合計量に対し0.03~0.5 %の黒鉛粉と、あるいはさらに鉄基金属粉と黒鉛粉との合計量100 重量部に対し0.1 ~0.6 重量部の潤滑剤と、を混合してなる鉄 20基混合粉を、予備圧縮成形して7.3Mg/m³以上の密度を有する予備成形体としたのち、該予備成形体に窒素分圧が30kPa以下の非酸化性雰囲気中で1000℃超1300℃以下の温度で予備焼結を施すことを特徴とする鉄基粉末成形用素材の製造方法。

【請求項4】 mass%で、C:0.05%以下、O:0.3 %以下、N:0.010 %以下を含み、残部Feおよび不可避的不純物からなる組成を有する鉄基金属粉に、鉄基金属粉と黒鉛粉との合計量に対し0.03~0.5 %の黒鉛粉と、あるいはさらに鉄基金属粉と黒鉛粉との合計量100 重量部 30に対し0.1 ~0.6 重量部の潤滑剤と、を混合してなる鉄基混合粉を、予備圧縮成形して7.3Mg/m³以上の密度を有する予備成形体としたのち、該予備成形体に1000℃超13 00℃以下の温度で予備焼結を施したのち、焼鈍することを特徴とする鉄基粉末成形用素材の製造方法。

【請求項5】 前記鉄基金属粉が、前記組成に加えてさらに、mass%で、Mn:1.2 %以下、Mo:2.3 %以下、Cr:3.0 %以下、Ni:5.0 %以下、Cu:2.0 %以下、V:1.4 %以下から選ばれた1種または2種以上を含有することを特徴とする請求項3または4に記載の鉄基粉 40末成形用素材の製造方法。

【請求項6】 前記鉄基金属粉が、さらに、mass%で、Mn:1.2 %以下、Mo:2.3 %以下、Cr:3.0 %以下、Ni:5.0 %以下、Cu:2.0 %以下、V:1.4 %以下から選ばれた1種または2種以上を表面に部分拡散付着させた部分合金化鋼粉であることを特徴とする請求項3または4に記載の鉄基粉末成形用素材の製造方法。

【請求項7】 mass%で、C:0.05%以下、O:0.3 % 以下、N:0.010 %以下を含み、残部Feおよび不可避的 不純物からなる組成を有する鉄基金属粉に、鉄基金属粉 50 と黒鉛粉との合計量に対し0.03~0.5 %の黒鉛粉と、あるいはさらに鉄基金属粉と黒鉛粉との合計量100 重量部に対し0.1 ~0.6 重量部の潤滑剤と、を混合してなる鉄基混合粉を、予備圧縮成形して7.3Mg/m³以上の密度を有する予備成形体としたのち、該予備成形体に窒素分圧が30kPa以下の非酸化性雰囲気中で1000℃超1300℃以下の温度で予備焼結を施し、成形用素材とし、ついで該成形素材に再圧縮成形を施し成形体としたのち、該成形体に再焼結および/または熱処理を施すことを特徴とする高強度高密度鉄基焼結体の製造方法。

【請求項8】 mass%で、C:0.05%以下、O:0.3%以下、N:0.010%以下を含み、残部Feおよび不可避的不純物からなる組成を有する鉄基金属粉に、鉄基金属粉と黒鉛粉との合計量に対し0.03~0.5%の黒鉛粉と、あるいはさらに鉄基金属粉と黒鉛粉との合計量100重量部に対し0.1~0.6重量部の潤滑剤と、を混合してなる鉄基混合粉を、予備圧縮成形して7.3Mg/m³以上の密度を有する予備成形体としたのち、該予備成形体に1000℃超1300℃以下の温度で予備焼結を施したのち、焼鈍を行い、成形用素材とし、ついで該成形素材に再圧縮成形を施し成形体としたのち、該成形体に再焼結および/または熱処理を施すことを特徴とする高強度高密度鉄基焼結体の製造方法。

【請求項9】 前記鉄基金属粉が、前記組成に加えてさらにmass%で、Mn:1.2 %以下、Mo:2.3 %以下、Cr:3.0 %以下、Ni:5.0 %以下、Cu:2.0 %以下、V:1.4 %以下から選ばれた1種または2種以上を含有することを特徴とする請求項7または8に記載の高強度高密度鉄基焼結体の製造方法。

【請求項10】 前記鉄基金属粉が、mass%で、Mn:1.2%以下、Mo:2.3%以下、Cr:3.0%以下、Ni:5.0%以下、Cu:2.0%以下、V:1.4%以下から選ばれた1種または2種以上を表面に部分拡散付着させた部分合金化鋼粉であることを特徴とする請求項7または8に記載の高強度高密度鉄基焼結体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、機械部品に用いて 好適な鉄基焼結部材に係り、とくに高強度高密度鉄基焼 結部材を製造するための、鉄基粉末成形用素材の成形性 改善に関する。

[0002]

【従来の技術】粉末冶金技術は、複雑な形状の部品をニアネット形状でしかも高寸法精度に製造することができ、切削コストを大幅に低減できることから、粉末冶金製品が自動車部品等に多量に採用されている。しかも、最近では、部品の小型化、軽量化のために、粉末冶金製品の高強度化が要望されている。とくに、鉄基粉末製品(鉄基焼結部材)に対する高強度化の要求が強い。

【0003】鉄基焼結部材(鉄基焼結体あるいは単に焼

結体ともいう)を得る基本の製造工程は、①鉄基金属粉 に、黒鉛粉、銅粉等の合金用粉末と、ステアリン酸亜 鉛、ステアリン酸リチウム等の潤滑剤とを混合し鉄基混 合粉とする、②鉄基混合粉を金型に充填し圧縮成形して 成形体とする、③成形体を焼結し焼結体とする、という ①~③の工程を順次行うものである。得られた焼結体 は、必要に応じサイジングや切削加工が施され製品とさ れる。また、焼結体に、高強度が必要なときには、浸炭 熱処理や光輝熱処理を施される場合もある。このように して得られた成形体の密度は、たかだか6.6 ~7.1Mg/m³ 10 程度であり、したがって、これらの成形体から得られる 焼結体の密度もこの程度となる。

【0004】鉄基粉末製品(鉄基焼結部材)の高強度化 には、成形体の高密度化による焼結部材(焼結体)の高 密度化が有効である。高密度の焼結部材(焼結体)ほ ど、部材中の空孔が減少し、引張強さ、衝撃値、疲労強 度などの機械的性質が向上する。成形体の密度を高密度 化する成形方法として、例えば、特開平2-156002号公 報、特公平7-103404号公報、米国特許第5,256,185 号公 報、米国特許第5,368,630号公報に、金属粉末を加熱し つつ成形する温間成形技術が開示されている。これら温 間成形技術を適用することにより、Fe-4Ni-0.5Mo-1.5Cu 系の部分合金化鋼粉に0.5mass %の黒鉛粉と0.6mass % の潤滑剤を配合した鉄基粉末混合粉を150 ℃の温度で68 6MPaの圧力で成形した場合に、7.30Mg/m³ 程度の密度を 有する成形体が得られる。しかしながら、温間成形技術 を適用するためには、粉末を所定の温度に加熱する加熱 設備が必要となり、製造コストが増加するうえ、部品の 寸法精度が低下するという問題もあった。

【0005】また、特開平1-123005号公報には、粉末冶 30 金法と冷間鍛造法を組合せ、ほぼ真密度に近い製品が得 られる、焼結冷間鍛造方法が開示されている。焼結冷間 鍛造方法とは、金属粉を焼結成形したプリフォーム(予 備成形品)を冷間で鍛造したのち、再焼結して高密度組 成の最終製品を得る成形、加工方法である。特開平1-12 3005号公報に記載された技術は、表面に液状潤滑剤を塗 布した冷間鍛造用焼結プリフォームをダイス内で仮圧縮 成形したのち、該プリフォームに負圧を作用させて液状 潤滑剤を吸引除去し、その後ダイス内で本圧縮成形し、 再焼結する焼結冷間鍛造方法である。この方法によれ ば、仮圧縮成形前に塗布し内部に浸透した液状潤滑剤を 本圧縮成形前に吸引するため、内部の微小空隙が本圧縮 成形時に圧潰消滅して高密度の最終製品が得られるとし ている。しかし、この方法で得られる最終焼結製品の密 度は、たかだか7.5Mg/m3程度であるためその強度には限 界があった。

【0006】一方、製品(焼結体)の強度をさらに高め るためには、製品の炭素(C)濃度を増加させることが 効果的である。粉末冶金法では、炭素(C)源として、 黒鉛粉を原料金属粉に混合することが一般的であるが、

黒鉛粉を混合した金属粉を予備成形後仮焼結(予備焼 結)して成形用素材とし、さらに再圧縮成形したのち、 再焼結して高強度の焼結体を得る方法が考えられる。し かし、従来の方法で仮焼結(予備焼結)を行うと、仮焼 結(予備焼結)時に炭素(C)が成形用素材全体に拡散 し、成形素材の硬度が増加する。このため、再圧縮成形 を行うに際し、成形荷重が非常に大きくなり、しかも変 形能が低下しているため所望の形状に加工できないとい う問題があった。したがって、高強度、高密度の製品が 得られないのである。

【000.7】このような問題に対しては、例えば、米国 特許第4,393,563 号には、高温での成形を行うことな く、軸受部品を製造する方法が開示されている。この方 法は、鉄粉と、鉄合金粉と、黒鉛粉と潤滑剤とを混合 し、この混合粉を予備成形品に成形したのち、仮焼結 し、ついで少なくとも50%の塑性加工を与える冷間鍛造 を行い、その後焼結、焼鈍し、ロール加工して最終製品 (焼結部材)とする工程からなっている。米国特許第4, 393,563 号公報に記載された技術では、黒鉛の拡散を抑 制した条件で仮焼結を行うことにより、その後の冷間鍛 造で高い変形能を発現させ、成形荷重を低くすることが できるとしている。しかし、米国特許第4,393,563 号公 報には、仮焼結条件として、1100℃×15~20min が推奨 されており、本発明者らの実験によれば、この条件で は、黒鉛が予備成形品に完全に拡散してしまい、焼結部 材用素材(予備成形品)の硬さが著しく増加し、その後 の冷間鍛造が困難であるということがわかった。

【0008】このような問題に対し、例えば、特開平11 -117002 号公報には、鉄を主成分とする金属粉に0.3 重 量%以上の黒鉛を混合してなる金属質粉を圧粉成形して 得られた、密度が7.3g/cm3以上の予備成形体を好ましく は700~1000℃の温度範囲で仮焼結してなり、金属粉の 粒界に黒鉛が残留している状態の組織を有する金属質粉 成形素材が提案されている。この技術によれば、強度増 加に必要な炭素量のみを固溶し、遊離黒鉛を残存させ、 鉄粉が過度に硬化するのを防止することにより、再圧縮 成形時に、低い成形荷重と高い変形能を有する成形用素 材が得られるとしている。しかしながら、この方法で得 られた金属質粉成形素材は、再圧縮成形工程において高 い変形能を有しているが、その後の本焼結時に、残存し た遊離黒鉛が消失して、細長い空孔を生ずることがある という問題が残されていた。

[0009]

40

【発明が解決しようとする課題】本発明は、上記した従 来技術の問題を解決し、鉄基混合粉を成形体とするに際 し、圧縮成形荷重が従来にくらべ格段に低く、また従来 にくらべ格段に高い変形能を有し、高密度の成形体の製 造を可能とする鉄基粉末成形用素材およびその製造方法 を提供することを第1の目的とする。また、本発明は、 50 鋭い形状の空孔が少なく、高強度高密度を有する鉄基焼

結体の製造方法を提供することも目的とする。 [0010]

【課題を解決するための手段】本発明者らは、上記した 課題を達成するために、予備圧縮成形および予備焼結条 件について、鋭意検討した。その結果、細長い空孔の発 生を抑制するためには、鉄基混合粉を高密度に圧縮し、 さらに、添加した黒鉛を基地に拡散させるのに十分な温 度で予備焼結することにより成形用素材の遊離黒鉛を実 質的に零とすることが有効であることを見いだした。ま た、上記した温度で予備焼結を行っても成形用素材の硬 10 さを顕著に低減するためには、鉄基混合粉中(すなわち 鉄基金属粉中)のN含有量を低減することが有効であ り、そのためには予備焼結に続いて焼鈍を行うか、また は窒化を抑制する雰囲気中で予備焼結を行うことが有効 であることを見いだした。これにより、再圧縮成形時の 低荷重が実現でき、高密度の成形体が得られ、その結 果、高密度、高強度の焼結体が製造可能となることを知 見した。

【0011】本発明は、上記した知見に基づいて、さら に検討を加え完成されたものである。すなわち、第1の 20 本発明は、鉄基金属粉と黒鉛粉と、あるいはさらに潤滑 剤とを混合して得られる鉄基混合粉に、予備成形・予備 焼結を施して得られる鉄基粉末成形用素材であって、ma ss%で、C:0.10~0.50%、O:0.3 %以下、N:0.01 0 %以下を含み、残部Feおよび不可避的不純物からなる 組成を有し、かつ遊離黒鉛が0.02%以下であり、密度が 7.3 Mg/m³ 以上を有することを特徴とする鉄基粉末成形 用素材であり、また、第1の本発明では、前記組成に加 えてさらに、mass%で、Mn:1.2 %以下、Mo:2.3 %以 下、Cr:3.0 %以下、Ni:5.0 %以下、Cu:2.0 %以 下、V:1.4 %以下から選ばれた1種または2種以上を 含有することが好ましい。

【0012】また、第2の本発明は、mass%で、C:0. 05%以下、O:0.3 %以下、N:0.010 %以下を含み、 残部Feおよび不可避的不純物からなる組成を有する鉄基 金属粉に、鉄基金属粉と黒鉛粉との合計量に対し0.03~ 0.5 %の黒鉛粉と、あるいはさらに鉄基金属粉と黒鉛粉 との合計量100 重量部に対し0.1 ~0.6 重量部の潤滑剤 と、を混合してなる鉄基混合粉を、予備圧縮成形して7. 3Mg/m³以上の密度を有する予備成形体としたのち、該予 40 備成形体に窒素分圧が30kPa 以下の非酸化性雰囲気中で 1000℃超1300℃以下の温度で予備焼結を施すことを特徴 とする鉄基粉末成形用素材の製造方法であり、また、第 2の本発明では、前記鉄基金属粉が、前記組成に加えて さらに、mass%で、Mn:1.2 %以下、Mo:2.3 %以下、 Cr:3.0%以下、Ni:5.0%以下、Cu:2.0%以下、 V:1.4 %以下から選ばれた1種または2種以上を含有 することが好ましく、あるいは前記鉄基金属粉が、前記 組成に加えて、さらに、mass%で、Mn:1.2 %以下、M o:2.3 %以下、Cr:3.0 %以下、Ni:5.0 %以下、C

u:2.0 %以下、V:1.4 %以下から選ばれた1種また は2種以上を表面に部分拡散付着させた部分合金化鋼粉 であることが好ましい。なお、第2の本発明では前記鉄 基金属粉は、前記組成に加えて、さらにmass%で、Mn: 1.2 %以下、Mo: 2.3 %以下、Cr: 3.0 %以下、Ni: 5. 0 %以下、Cu: 2.0%以下、V:1.4 %以下から選ばれ た1種または2種以上を含有する予合金化鋼粉であるこ とも好ましい。

【0013】また、第3の本発明では、mass%で、C: 0.05%以下、O:0.3 %以下、N:0.010 %以下を含 み、残部Feおよび不可避的不純物からなる組成を有する 鉄基金属粉に、鉄基金属粉と黒鉛粉との合計量に対し0. 03~0.5 %の黒鉛粉と、あるいはさらに鉄基金属粉と黒 鉛粉との合計量100 重量部に対し0.1 ∼0.6 重量部の潤 滑剤と、を混合してなる鉄基混合粉を、予備圧縮成形し て7.3Mg/m³以上の密度を有する予備成形体としたのち、 該予備成形体に1000℃超1300℃以下の温度で予備焼結を 施したのち、焼鈍することを特徴とする鉄基粉末成形用 素材の製造方法である。なお、この場合、予備焼結の雰 囲気は、特に限定されないが、窒素分圧が95kPa 以下の 非酸化性雰囲気中で行うことが好ましい。また、焼鈍は 400 ~800℃の温度範囲で行うことが好ましく、また、 窒素分圧が95kPa 以下の非酸化性雰囲気中で行うことが 好ましい。また、第3の本発明では、前記鉄基金属粉 が、前記組成に加えてさらに、mass%で、Mn:1.2 %以 下、Mo: 2.3 %以下、Cr: 3.0%以下、Ni: 5.0 %以 下、Cu: 2.0 %以下、V:1.4 %以下から選ばれた1種 または2種以上を含有してもよく、あるいは前記鉄基金 属粉を、前記組成に加えて、さらに、mass%で、Mn:1. 2 %以下、Mo: 2.3 %以下、Cr: 3.0 %以下、Ni: 5.0 %以下、Cu: 2.0 %以下、V: 1.4 %以下から選ばれた 1種または2種以上を表面に部分拡散付着させた部分合 金化鋼粉としてもよい。なお、第3の本発明では前記鉄 基金属粉を、前記組成に加えて、さらにmass%で、Mn: 1.2 %以下、Mo: 2.3 %以下、Cr: 3.0 %以下、Ni: 5. 0 %以下、Cu: 2.0 %以下、V: 1.4%以下から選ばれ た1種または2種以上を含有する予合金化鋼粉としても よい。

【0014】また、第4の本発明は、mass%で、C:0. 05%以下、O:0.3 %以下、N:0.010 %以下を含み、 残部Feおよび不可避的不純物からなる組成を有する鉄基 金属粉に、鉄基金属粉と黒鉛粉との合計量に対し0.03~ 0.5 %の黒鉛粉と、あるいはさらに鉄基金属粉と黒鉛粉 との合計量100 重量部に対し0.1 ~0.6 重量部の潤滑剤 と、を混合してなる鉄基混合粉を、予備圧縮成形して7. 3Mg/m³以上の密度を有する予備成形体としたのち、該予 備成形体に窒素分圧が30kPa 以下の非酸化性雰囲気中で 1000℃超1300℃以下の温度で予備焼結を施し、成形用素 材とし、ついで該成形素材に再圧縮成形を施し成形体と 50 したのち、該成形体に再焼結および/または熱処理を施

すことを特徴とする高強度高密度鉄基焼結体の製造方法 であり、また、第4の本発明では、前記鉄基金属粉が、 前記組成に加えてさらに、mass%で、Mn:1.2 %以下、 Mo: 2.3 %以下、Cr: 3.0 %以下、Ni: 5.0 %以下、C u:2.0 %以下、V:1.4 %以下から選ばれた1種また は2種以上を含有することが好ましく、あるいは、前記 鉄基金属粉が、前記組成に加えて、さらに、mass%で、 Mn:1.2 %以下、Mo:2.3 %以下、Cr:3.0 %以下、N i:5.0 %以下、Cu:2.0 %以下、V:1.4 %以下から 選ばれた1種または2種以上を表面に部分拡散付着させ 10 た部分合金化鋼粉であることが好ましい。なお、第4の 本発明では前記鉄基金属粉は、前記組成に加えて、さら にmass%で、Mn:1.2 %以下、Mo:2.3 %以下、Cr:3. 0 %以下、Ni:5.0 %以下、Cu:2.0 %以下、V:1.4 %以下から選ばれた1種または2種以上を含有する予合 金化鋼粉であることも好ましい。

【0015】また、第5の本発明は、mass%で、C:0. 05%以下、O:0.3 %以下、N:0.010 %以下を含み、 残部Feおよび不可避的不純物からなる組成を有する鉄基 金属粉に、鉄基金属粉と黒鉛粉との合計量に対し0.03~ 20 0.5 %の黒鉛粉と、あるいはさらに鉄基金属粉と黒鉛粉 との合計量100 重量部に対し0.1 ~0.6 重量部の潤滑剤 と、を混合してなる鉄基混合粉を、予備圧縮成形して7. 3Mg/m³以上の密度を有する予備成形体としたのち、該予 備成形体に1000℃超1300℃以下の温度で予備焼結を施し たのち、焼鈍を行って、成形用素材とし、ついで該成形 素材に再圧縮成形を施し成形体としたのち、該成形体に 再焼結および/または熱処理を施すことを特徴とする高 強度高密度鉄基焼結体の製造方法である。なお、この場 合、予備焼結の雰囲気は、特に限定されないが、窒素分 30 圧が95kPa 以下の非酸化性雰囲気中で行うことが好まし い。また、焼鈍は400~800℃の温度範囲で行うことが 好ましく、また、窒素分圧が95kPa 以下の非酸化性雰囲 気中で行うことが好ましい。また、第5の本発明では、 前記鉄基金属粉を、前記組成に加えてさらに、mass% で、Mn:1.2 %以下、Mo:2.3 %以下、Cr:3.0 %以 下、Ni:5.0%以下、Cu:2.0%以下、V:1.4%以下 から選ばれた1種または2種以上を含有してもよく、あ るいは、前記鉄基金属粉を、前記組成に加えて、さら に、mass%で、Mn:1.2 %以下、Mo:2.3 %以下、Cr: 3.0 %以下、Ni:5.0 %以下、Cu:2.0 %以下、V:1. 4 %以下から選ばれた1種または2種以上を表面に部分 拡散付着させた部分合金化鋼粉としてもよい。なお、第 5の本発明では前記鉄基金属粉は、前記組成に加えて、 さらにmass%で、Mn:1.2 %以下、Mo:2.3 %以下、C r:3.0%以下、Ni:5.0%以下、Cu:2.0%以下、V: 1.4 %以下から選ばれた1種または2種以上を含有する 予合金化鋼粉としてもよい。

[0016]

鉛粉と、あるいはさらに潤滑剤とを混合して得られる鉄 基混合粉に、予備成形・予備焼結を施して得られる鉄基 粉末成形用素材である。本発明の鉄基粉末成形用素材 は、mass%で、C:0.10~0.50%、O:0.3 %以下、 N:0.010 %以下を含み、あるいはさらに、Mn:1.2 % 以下、Mo: 2.3 %以下、Cr: 3.0 %以下、Ni: 5.0 %以 下、Cu: 2.0 %以下、V:1.4 %以下から選ばれた1種 または2種以上を含有し、残部Feおよび不可避的不純物 からなる組成を有する。

【0017】まず、本発明の鉄基粉末成形用素材の組成 限定理由について説明する。

 $C:0.10\sim0.50$ mass%

Cは、浸炭焼入れ、光輝焼入れ時の焼入れ性を考慮し、 焼結部材の必要強度に応じて0.10~0.50mass%の範囲内 で調整する。C含有量が0.10mass%未満では、所望の焼 入れ性を確保することができない。一方、0.50mass%を 超える含有は成形素材の硬さが高くなりすぎて、その結 果再圧縮成形時の成形荷重も高くなりすぎて好ましくな 6.1

【0018】0:0.3 mass%以下

Oは、鉄基金属粉に不可避的に含有される元素である が、〇含有量が増加するにしたがい、成形用素材の硬さ を増加させ、再圧縮成形時の成形荷重が増加するため、 できるだけ低減するのが好ましい。0.3 mass%を超えて 含有すると、再圧縮成形時の荷重増加が顕著となるた め、0.3 mass%をO含有量の上限とした。なお、工業的 に安定して製造できる鉄基金属粉の〇含有量の下限は、 0.02mass%であるため、鉄基粉末成形用素材のO含有量 の下限は0.02mass%とするのが好ましい。

【0019】N:0.010 mass%以下

Nは、Cと同様に成形用素材の硬さを高める元素であ り、黒鉛を鉄基金属粉中に固溶し遊離黒鉛を実質的に零 とする本発明では、成形用素材の硬さをできるだけ低く 維持し、成形荷重を低減するために、N含有量をできる だけ低減するのが望ましい。Nを0.010 mass%を超えて 含有すると、再圧縮成形時の成形荷重が顕著に高くなる ため、本発明ではNは0.010 mass%以下に限定した。な お、好ましくは0.0050mass%以下である。

【0020】Mn:1.2mass %以下、Mo:2.3 mass%以 下、Cr: 3.0 mass%以下、Ni: 5.0 mass%以下、Cu: 2. 0 mass%以下、V:1.4 mass%以下から選ばれた1種ま たは2種以上

Mn、Mo、Cr、Ni、Cu、Vは、いずれも焼入れ性を向上さ せる元素であり、焼結体の強度確保の目的で、必要に応 じ1種または2種以上を選択して含有できる。Mn:1.2m ass %, Mo: 2.3 mass%, Cr: 3.0 mass%, Ni: 5.0 ma ss%、Cu:2.0mass%、V:1.4 mass%をそれぞれ超え て含有すると、成形用素材の硬さが増加し、再圧縮成形 時の成形荷重が高くなりすぎ好ましくない。なお、Mn、 【発明の実施の形態】第1の本発明は、鉄基金属粉と黒 50 Mo、Cr、Cu、Vの好ましい含有量は、Mn:1.0 mass%以

下、Mo: 2.0 mass%以下、Cr: 3.0 mass%以下、Ni: 5. 0 mass%以下、Cu: 2.0 mass%以下、V:1.0 mass%以 下である。なお、Mn、Mo、Cr、Cu、Vの各含有量の下限 は特に定める必要はないが、不純物としての含有量と区 別するために、一般的に不可避的不純物として含有が予 想されるMn:0.04mass%、Mo:0.05mass%、Cr:0.01ma ss%、Ni:0.01mass%、Cu:0.01mass%、V:0.005mas s %程度を下限としてもよい。

【0021】残部Feおよび不可避的不純物

上記した成分以外の残部はFeおよび不可避的不純物であ 10 る。不可避的不純物としては、Mn:0.04mass%以下、M o:0.05mass%以下、Cr:0.01mass%以下、Ni:0.01mas s%以下、Cu:0.01mass%以下、V:0.005mass %以下 を含んでもよい。また、その他の不可避的不純物として は、P:0.1 mass%以下、S:0.1 mass%以下、Si:0. 2 mass%以下、が許容できるが、できるだけ低減するこ とが好ましい。なお、工業的生産性の観点からは、不可 避的不純物としてのP、S、Siの下限値を、P:0.001m ass %、S:0.001mass %、Si:0.01mass%程度に定め てもよい。

【0022】なお、上記した元素以外の元素を含有する 場合には、成形用素材の組成で、Feが85%以上となるよ うにすることが、再圧縮工程の成形荷重を低く維持し、 かつ再焼結体の強度を所定値以上に確保するうえで好ま しい。

遊離黒鉛:0.02%以下

本発明の鉄基粉末成形用素材は、鉄基金属粉と黒鉛粉 と、あるいはさらに潤滑剤とを混合して得られる鉄基混 合粉に、予備成形・予備焼結を施して得られたものであ り、黒鉛が鉄基金属質の基地組織に拡散して遊離黒鉛 (基地組織に拡散していない黒鉛)が実質的に存在しな い組織を有している。本発明の鉄基粉末成形用素材で は、予備焼結条件を調整することにより、遊離黒鉛は0. 02mass%以下と、実質的に零とする。黒鉛粉は、予備成 形・予備焼結処理により、ほとんどが鉄基金属粉中に拡 散し、基地組織中に固溶、または炭化物として析出し、 遊離黒鉛としてはほとんど残存しない。遊離黒鉛量が0. 02mass%を超えると、再圧縮成形時に成形用素材の流れ に沿った黒鉛伸展層の形成が顕著となり再焼結時に黒鉛 が鉄基金属質基地組織中に拡散消失し、細長い空孔が残 40 存することがある。細長い空孔は、焼結体の欠陥として 働き、強度を低下させることがある。このため、遊離黒 鉛は0.02mass%以下に限定した。

【0023】本発明の鉄基粉末成形用素材の組織の一例 を模式的に図2に示す。成形用素材の組織は、フェライ ト相(F)を主体とし、黒鉛が拡散した領域にパーライ ト相(P)が混在する。予備焼結条件を本発明の範囲内 に調整することにより、成形用素材の硬さを再圧縮成形 に支障の無い程度に調整することができる。本発明の鉄 基粉末成形用素材は、7.3 Mg/m3 以上の密度を有する。

密度を7.3Mg/m³以上とすることにより、鉄基金属粉粒 子間の接触面積が増加し、予備焼結により、接触面を介 した物質拡散が広範囲にわたって生じるため伸びが大き く変形能の高い素材となる。なお、より好ましくは7.35 Mg/m³ 以上である。成形用素材の密度は高いほど好まし いが、金型寿命等のコスト的制約から7.8Mg/m3が上限で ある。なお、実用的範囲としては7.35~7.55Mg/m³であ る。

【0024】ついで、鉄基粉末成形用素材の製造方法に ついて説明する。図1に、鉄基粉末成形用素材の製造工 程の1例を示す。原料粉として、鉄基金属粉と、黒鉛 粉、あるいはさらに合金用粉を用いる。使用する鉄基金 属粉は、mass%で、C:0.05%以下、O:0.3 %以下、 N:0.010 %以下を含み、残部Feおよび不可避的不純物 からなる組成を有する鉄基金属粉が好適である。C:0. 05mass%、O:0.3 mass%、N:0.010 mass%をそれぞ れ超える含有は、粉の圧縮性を低下させ、成形用素材の 密度を7.3 Mg/m³以上とすることを困難にする。なお、 鉄基金属粉の好ましいC、O、N量は、mass%で、C: 0.05%以下、O:0.3 %以下、N:0.0050%以下であ る。〇含有量はできるだけ低いことが圧縮成形性の観点 からは好ましいが、Oは不可避的に含有させる元素であ り、経済的に高価とならず工業的に実施可能なレベルで ある0.02mass%を下限とするのが望ましい。なお、工業 的な経済性の観点から好ましいO含有量は0.03~0.2 ma ss%である。

【0025】また、本発明で使用する鉄基金属粉の粒径 は、とくに限定する必要はないが、工業的に低コストで 製造できる、平均粒径で30~120 μm とするのが望まし い。なお、平均粒径は重量積算粒度分布の中点(dso) の値とする。また、本発明では、上記した組成に加えて さらに、Mn:1.2mass %以下、Mo:2.3 mass%以下、C r:3.0 mass%以下、Ni:5.0 mass%以下、Cu:2.0 mas s%以下、V:1.4 mass%以下から選ばれた1種または 2種以上を含有できる。なお、Mn、Mo、Cr、Cu、Vの好 ましい含有量は、Mn:1.0 mass%以下、Mo:2.0 mass% 以下、Cr:3.0 mass%以下、Ni:5.0 mass%以下、Cu: 2.0 mass%以下、V:1.0 mass%以下である。Mn、Mo、 Cr、Ni、Cu、Vは、いずれも焼結体の強度を増加し、あ るいは焼入れ性を増加するために、必要に応じ選択して 含有できる。これら合金元素は、鉄基金属粉に予合金化 しても、また鉄基金属粉に部分拡散付着して部分合金化 してもよく、あるいは金属粉(合金用粉)として混合し てもよい。しかし、いずれの場合においても、Mn:1.2m ass %, Mo: 2.3 mass%, Cr: 3.0 mass%, Ni: 5.0 mas s%、Cu:2.0 mass%、V:1.4 mass%を、それぞれ超 えると、成形用素材の硬さが高くなり再圧縮成形時の成 形荷重が増大する。

【0026】なお、予合金とは、鉄基金属粉中に合金成 50 分として含有するものである。部分合金化とは、鉄基金

属粉とMn、Mo、Cr、Cu、Vなどの粉末との接触点において、Mn、Mo、Cr、Cu、Vなどの一部が鉄基金属粉に拡散して拡散部を形成し、残部が粉末の形で鉄基金属粉表面に粉末の形で付着しているものである。原料粉として使用する黒鉛粉は、焼結体の所定の強度を確保するため、あるいは熱処理時の焼入れ性の増加を目的として、鉄基混合粉に、鉄基金属粉と黒鉛粉との合計量に対し0.03~0.5mass %含有される。黒鉛粉の含有量が、0.03mass%未満では、焼結体の強度向上効果が不足し、一方、0.5mass %を超えると、再圧縮成形時の圧縮荷重が過大とな 10る。このため、鉄基混合粉における黒鉛粉の含有量は鉄基金属粉と黒鉛粉との合計量に対し0.03~0.5mass %とした。

【0027】また、鉄基金属粉表面への黒鉛粉の付着度を向上させるために、鉄基混合粉へワックス、スピンドル油等を添加してもよい。また、例えば、特開平1-165701号公報、特開平5-148505号公報に記載された偏析防止処理を適用し、鉄基金属質粉表面への黒鉛粉付着度を向上させることもできる。また、鉄基混合粉には、上記した原料粉に加えて、さらに圧縮成形における成形密度の20向上と金型からの抜出し力を低減する目的で、ステアリン酸亜鉛、ステアリン酸リチウム、エチレンビスステアロアミド、ボリエチレン、ボリプロピレン、熱可塑性樹脂粉末、ポリアミド、ステアリン酸アミド、オレイン酸、ステアリン酸カルシウム等の潤滑剤を含有できる。潤滑剤の含有量は、鉄基金属粉と黒鉛粉との合計量100重量部に対し0.1~0.6重量部とするのが好ましい。

【0028】なお、鉄基混合粉の混合には、通常公知な混合方法、例えばヘンシェルミキサー、コーン型ミキサー等を用いた混合方法が適用可能である。上記した比率 30で混合された鉄基混合粉に、ついで予備圧縮成形を施し、7.3Mg/m³以上の密度を有する予備成形体とする。予備成形体の密度が7.3Mg/m³以上となると、鉄基金属粉同士の接触面積が大きくなり、次工程である予備焼結において、接触面を介し体積拡散、表面拡散、あるいは溶融が広範囲にわたって生じるため、再圧縮成形時に大きな伸びが得られ、高い変形能が実現される。

【0029】予備圧縮成形では、従来公知の圧縮成形技術がいずれも適用できる。例えば、金型潤滑法、分割金型による多段成形法、CNCプレス法、静水圧プレス法、温間成形法、特開平11-117002 号公報に記載された成形方法あるいはこれらを組み合わせた成形方法がいずれも好適である。また、ロールフォーミング法等を単独あるいは組み合わせて用いてもよい。なお、上記した圧縮成形法のなかでは、温間成形法以外の冷間での圧縮成形法が精度・コストの観点から好適である。

【0030】なお、特開平11-117002 号公報に記載された成形方法は、成形空間を有する成形ダイスと、この成形ダイスに挿入されて混合粉を加圧する上パンチと下パンチを備え、成形空間が、上パンチの挿入される大径部 50

と、下パンチの挿入される小径部と、これらを繋ぐテーパ部とを備え、上パンチおよび下パンチの一方または両方が、成形ダイスの成形空間に臨む端面の外周端部に、成形空間の容積を増大させる切欠きを備えてなる装置を使用するため、成形後のスプリングバックや成形体の抜出し力が抑制され高密度の成形体を容易に製造することができる。

【0031】ついで、予備成形体は、予備焼結され、成形用素材となる。予備焼結は、窒素分圧が30kPa以下の非酸化性雰囲気中で1000℃超1300℃以下の温度で行うのが好ましい。予備焼結温度が1000℃以下では、遊離黒鉛の残存量が多く、後工程の本焼結時に細長い空孔となるため、厳しい応力下で使用される部材において、欠陥として作用し、強度低下の原因となる可能性もある。一方、予備焼結温度が1300℃を超えても、成形性の向上効果は飽和し、これに対し製造コストが格段に増加するため、経済的に不利となる。このため、予備焼結温度は1000℃超1300℃以下に限定するのが好ましい。

【0032】本発明では、予備焼結は、真空中、Arガス中、あるいは水素ガス等の非酸化性でかつ窒素分圧が30kPa以下である雰囲気中で行うのが好ましい。窒素分圧が低いほど、成形用素材のN含有量低減には有利となる。好ましい雰囲気としては、例えば、水素濃度が70vol%以上の水素一窒素混合ガスがある。一方、窒素分圧が30kPaを超えると、成形用素材中のN含有量を0.010mass%以下とすることが困難となる。なお、予備焼結の処理時間は目的、条件により適宜設定できるが、通常は600~7200sの範囲とすることが好ましい。

【0033】また、本発明では、予備成形体に予備焼結を施した後に、予備焼結温度より低い温度で焼鈍を行い、成形用素材としてもよい。これにより、成形用素材の圧縮性(冷間鍛造性)が顕著に改善される。この理由については、現在までに必ずしも明確にはなっていないが、本発明者らは次のように考えている。本発明者らの研究によれば、予備成形体に予備焼結を施し予備焼結体としたのち、焼鈍処理を施すと、成形用素材となる予備焼結体のN含有量が低減することが観測されている。これは、焼鈍処理中に予備焼結体内でα相への変態が進行し、Nの鉄合金基地への溶解度が低下するため、予備焼結体中のN含有量が低減すると推察される。この焼鈍による脱窒作用が、成形用素材の圧縮性改善の一因であると考えられる。

【0034】なお、焼鈍以外の脱窒処理を行ってもよいが、経済性、成形用素材の圧縮性に悪影響がないこと等を配慮すると、焼鈍が最も好ましい。焼鈍を施して成形用素材中のN含有量を低減し圧縮性を改善する場合、焼鈍に先立つ予備焼結の雰囲気はとくに限定する必要はない。しかし、成形用素材のN含有量を0.010mass %以下に維持するためには、予備焼結雰囲気の窒素分圧を95kPa以下とすることが好ましい。また、酸化による硬化を

防止するためには非酸化性雰囲気とすることが好まし W

【0035】また、成形用素材のN含有量を0.010mass %以下に維持するためには、予備焼結後の焼鈍は、400 ~800 ℃の範囲の温度で行うのが好ましい。焼鈍温度が 400℃未満あるいは800 ℃超では、N量低減効果が小さ くなる。また、焼鈍時の雰囲気は、予備焼結時の雰囲気 と同様に、非酸化性とするのがより好ましい。さらに、 脱窒効率の向上のためには、焼鈍雰囲気中の窒素分圧を 95 kPa以下とすることが好ましい。なお、焼鈍時の雰囲 10 気中の窒素分圧と、予備焼結時の雰囲気中の窒素分圧と は必ずしも同一とする必要はない。

【0036】また、焼鈍時間は、600~7200sの範囲と するのが好ましい。焼鈍時間が、600 s未満では、窒素 低減効果が少なく、また、7200 s を超えると、効果が飽 和するうえ、生産性が低下する。なお、より好ましく は、1200~3600 s である。また、予備焼結とその後に続 く焼鈍は、予備焼結を行った焼結炉から素材を取り出す ことなく、連続して行っても何ら問題はない。予備焼結 し、400 ~800 ℃に冷却して、そのまま焼鈍してもよ い。また、予備焼結後、400 ℃未満まで冷却したのち、 400 ~800 ℃で焼鈍してもよい。また、焼鈍は、一定の 温度に均一に保持する必要はなく、例えば、400~800 ℃間を徐冷してもよい。徐冷する場合、上記した温度域 を、通常の冷却速度で通過する時間(約2400s)に比 べ、600~7200 s、好ましくは3600~7200 s 余分に掛か るように冷却速度を低下させてもよい。

【0037】ついで、成形用素材は、再圧縮成形を施さ れ、成形体とされる。本発明の再圧縮成形では、通常公 知の圧縮成形技術がいずれも適用できる。本発明の成形 30 用素材は、高い変形能を有するため、コスト面、寸法精 度面で有利な冷間鍛造法を適用するのがより好ましい。 また、冷間鍛造法に代えてロールフォーミング法等の他 の圧縮成形方法を適用してもよい。

【0038】ついで、成形体は、再焼結処理を施され、 焼結体とされる。再焼結処理は、製品の酸化防止のた め、不活性雰囲気あるいは還元性雰囲気、または真空中 とするのが好ましい。また、再焼結温度は、1050~1300 ℃の範囲の温度とするのが好ましい。再焼結温度が、10 50℃未満では、粒子間の焼結の進行や成形体に含まれる 40 Cの拡散が不十分で所望の製品強度を確保できない。ま た、1300℃を超えると、結晶粒が粗大化し、製品強度が 低下する。

【0039】焼結体は、ついで必要に応じ熱処理を施さ れる。熱処理は、目的に応じ、浸炭処理、焼入れ処理、 焼戻し処理等を選択できる。熱処理条件は、とくに限定 する必要はなく、ガス浸炭焼入れ、真空浸炭焼入れ、光 輝焼入れ、高周波焼入れなどがいずれも好適である。例 えば、ガス浸炭焼入れでは、カーボンポテンシャルが0.

熱したのち、油中に焼入れするのが好ましい。また、光 輝焼入れでは、焼結体の表面の高温酸化、脱炭防止のた め、Arガス等の不活性雰囲気、水素を含む窒素雰囲気 等の保護雰囲気中で、800~950℃程度の温度に加熱し たのち、油中に焼入れするのが好ましい。また、真空浸 炭焼入れ、高周波焼入れでも、上記した温度範囲に加熱 したのち、焼入れするのが好ましい。これらの熱処理に より製品の強度を向上することができる。

【0040】また、焼入れ処理後に、必要に応じ焼戻し 処理を施してもよい。焼戻し温度は、130 ~250 ℃の通 常公知の焼戻し温度範囲とするのが好ましい。なお、熱 処理の前あるいは後に、寸法、形状の調整のために、機 械加工を施してもよい。また、本発明では、成形体を再 焼結することなく、熱処理を行い、製品としても、強 度、密度等特性上何ら問題はない。

[0041]

【実施例】(実施例1)表1に示す鉄基金属粉に、表1 に示す種類と含有量の、黒鉛粉と潤滑剤とをV型混合機 で混合し、鉄基混合粉とした。鉄基金属質粉は、C:0. 007 mass%、Mn: 0.12mass%、O: 0.15mass%、N: 0. 0020mass%を含有する純鉄粉A (川崎製鉄製KIP301A)、および部分合金化鋼粉Bを用いた。部分合金化鋼 粉Bは、純鉄粉Aに酸化モリブデン粉末を0.9 mass%混 合し、水素雰囲気中の875 ℃×3600 s で保持して、表面 にMoを部分的に表面に拡散付着させた部分合金化鋼粉で ある。なお、部分合金化鋼粉Bの組成はC:0.007 mass %-Mn: 0.14mass%-O: 0.11mass%-N: 0.0023mass%-Mo:0.58mass%であった。また、黒鉛粉は天然黒鉛 とし、潤滑剤はステアリン酸亜鉛を用いた。なお、表1 中の鉄基混合粉中の潤滑剤の含有量は、鉄基金属質粉と 黒鉛粉の合計量100 重量部に対する重量部で表示してあ

【0042】これら鉄基混合粉を金型に装入し、油圧式 圧縮成形機により予備圧縮成形し、30mm ø×15mm高さの タブレット状予備成形体とした。予備成形体の密度は7. 4 Mg/m³ とした。なお、一部の試料(試料No.1-13 、N o.1-23) については成形圧力を調整することにより7.1 Mg/m³ とした。得られた予備成形体に、表1に示す条 件で予備焼結を施し、成形用素材とした。なお、一部の 試料 (試料No.1-15 ~No.1-23) では、予備焼結と連続 して焼鈍を行った。

【0043】得られた成形用素材の組成、表面硬さHRB 、遊離黒鉛量を調査した。これらの結果を表1に併記 する。なお、成形用素材から試験片を採取し全C量、N 量、O量、遊離黒鉛量を測定した。全C量は、燃焼ー赤 外線吸収法で、N量は、不活性ガス融解-熱伝導度法で ○量は不活性ガス融解ー赤外線吸収法で測定した。ま た、成形用素材から採取した試験片を硝酸で溶解したの ちの残渣を、燃焼ー赤外線吸収法でC量を測定し遊離黒 6~1%程度の雰囲気で、800~900℃程度の温度で加50 鉛量とした。また、固溶C量は、 1(全C量) - (遊離

黒鉛量) | で計算した値とした。

【0044】ついで、得られた成形用素材を、後方押出し法により、断面減少率:60%の冷間鍛造(再圧縮成形)を施してカップ状の成形体とし、この再圧縮成形時の成形荷重を測定した。また、得られた成形体の密度をアルキメデス法で測定した。さらに、得られた成形体の縦断面(カップ壁断面)の組織を光学顕微鏡で観察し、断面長手方向の平均空孔長さを測定した。なお、断面長手方向とは鍛造時の素材の流れ方向である。それらの結果を表1に併記した。

【0045】また、得られた成形体に、再焼結を施し焼

結体を得た。再焼結の条件は、窒素80vol %-水素20vol %のガス雰囲気中で1140 $\mathbb{C} \times 1800$ s 保持する条件とした。これら焼結体の密度をアルキメデス法で測定した。ついで、これら焼結体に、カーボンポテンシャル1.0 %の浸炭雰囲気中で、870 $\mathbb{C} \times 3600$ s 保持する条件で浸炭したのち、90 \mathbb{C} の油中に焼入れし、ついで、150 \mathbb{C} で焼戻しする熱処理を施した。熱処理後、焼結体の硬さHRC、およびアルキメデス法による密度を測定した。それらの結果を表1 に示す。

10 [0046]

【表1】

_			7	_	_	_	_	_						_											
	位		<u>'</u>	ļ	ŀ	1		ŀ	-	1	ľ	ŀ	1	ı	,	1	1800	1800	1800	1800	800	1800	1800	1800	1800
	五	ع ا	, ,	Ŀ	'	,	ŀ		ľ		,	ŀ	ı	,	1	'	380	420	160	840	385	640	920	420	420
数の気を存		整株分压 kPs	1		1		ı	1	ŀ			,		ı	,		50	92	08	20	<u>=</u>	92	80	0,	5
	金田町	1 30			-	1	ı	ı	1	1		1	ı	1		1	水器 13:50 % 纸架 13:50 %	水 料 料 数 3.30 % 数 3.30 %	长柱 4 4 4 1 7 3 9 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	松雅. 130 % 松雅. 170 %	放棄#2:100%	企業扱:38 %	公司	公安 第43:30 %	盗翼 狙:羽 炎
	整	Ç,	1800	1800	28 1	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
	照	ري	200	ĝ	1060	1050	1150	1300	1060	1150	1050	1050	1150	1050	1050	1060	1160	1150	1150	1150	1150	1050	1060	900	1150
中值核結依存	_	经数分压 KPa	, :01 >	, .01 >	<10.	< 10.3	.01>	< 10.4	10	30	< 10-3	101	90	<10.5	7-01>	< 10-1	20	7.0	0.6	10	101	22	œ	10	10
學外	発展気	梅粒: vol %	其役	部域	真控	木素ガス	木粉加	水素机	查算粉:18 %	水器机:70 % 致来机:30 %	785787	監禁 机	木森[7:10 % 筑塔[7:90 %	木素ガス	木葉fl	未被打	水囊机:50 % 盘素机:50 %	企業払:70 %	套票/7:10 %	水素[X:30 % 路景[X:70 %	蟹森11:100%	查案投:13 %	<u> </u>	公案 据:38 %	李章 般: 羽 %
1000	みむな	管 库,	7.40	7.40	7.40	7.40	7.40	7. 40	7. 40	7. 40	7. 40	7. 40	7. 40	1.40	7.10	7. 40	1. 40	7. 40	7. 40	7. 40	7.40	7.40	7. 40	7. 40	7. 10
	拾剂 +	存置	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0, 3	0.3	0.3	0.3	0.3	0.3	5 o	0.3	0.3	0.3
÷	框	種類	18792	100年								— 					1				1				
鉄基混合粉	80 89	含有素 DBS5 %	0.3	6.3	0.3	0° 3	0.3	0.3	9.9	0.3	0.3	0.3	0.3	0.8	0.3	0.3	0.3	e. 3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
-	田	舞	灰	æ €									4				<u>. 1</u>		1	ــــــــــــــــــــــــــــــــــــــ		L		1	
	格		A	4	<	V	∀	A	V	4	4	۷	۷	4	4	a	∢	∢	4	۷	4	m	m	4	∢
152	2		=	1-2	=	-	-2	9		8-1	6-	=	Ξ	1-12	=	1-14	9 - 12	9-	-12	<u>~</u>		02 	-2-		1-23

[0047]

【表2】

0)

柳	,		Т		Γ	T_=	T_		.]_		J_	T.	T	Т	Т	_	\neg	_	-		Т	T-	Т	1	_	_	
龜				比較例	比較例	本発明例	本路明例	本発明例	大學問題	大部門	林松田	大部田を	干节经	大学を	T C C C C C C C C C C C C C C C C C C C	14 X 20	比較例	本発明例	比較例	本発明例	本路明例	北数函	比較盈	大學語句	大学田原	子 子 子 子 子	开农定
多糖結体	れ) (BEC	31	30	32	34	35	39	38	34	8.8	2 2	5 6	3 8	S S	32	28	33	34	33	33	34	59	8	t	\dagger
熱処理後焼結体	翻	8 1	m /8 m	7.69	7.74	7.81	7.81	7.82	7,84	7.82		7.81		7 89		10.1	7.78	7.81	7.80	7.81	7.81	7.80	7.81	7.81	7 80		
希語存	翻	W. W. P. B.	m /9 m	7.69	7.74	7.81	7.81	7.82	7.84	7.81	7.80	7.81	7. 81	7 82	7 21	5 6			7.80	7.81	7.81	7.80	7.81	7.81	7.81		7.77
	出苑	空臭が孔さい	3 6	20	35	< 10	< 10	< 10	< 10	< 10	< 10	< 10	× 10	< 10 < 10	V 19	5 6	50	el V	V 19	91	< 10	< 10	< 10	< 10 < 10	× 10	32	54
段形存	密度	8 m/ 0 M		6.0	7.74	7.81	7.81	7.82	7.84	7.81	7.80	7.81	7.81	7.82	7 81	7 70	2	. 81	7.80	7.81	7.81	7.80	7.81	7.81	7.81	7.76	7.77
再压缩加工	冷間飯造	段形庫舗 tonf (kN)	90(705)	(001)00	81(794)	87(853)	86(843)	86(843)	87(853)	89(873)	91(892)	87(853)	101(990)	98(961)	100(981)	85(888)	(669)	50(683)	97(951)	80(883)	91(892)	97(951)	98(961)	89(872)	90(883)	87(853)	83(813)
	展み	ARB	9,6	3 3	62	30	30	31	28	30	31	30	47	45	48	88	ç	2, 5	3	35	34	39	41	41	43	30	88
	領展	Mg/m ⁸	7 40		1.40	7.40	• •	7. 40	7.40	7.40	7.40	7.40	7. 40	7.40	7.40	7, 10	9	2	3 .			7. 40	7. 40	7.40	7.40	7.40	7, 10
材	% %	難強	0 17	40	213	0.02	0.02			0.01		0.02	0.01	0.01	0.01	0.01	2	1 2	7 6	1 6	3 ,		9.63		0.01	0.12	0.01
成形用索材	(mass 96	の数	0.12	3								0, 22	0.23	0.21	0.52	0.24	0 23					2 .	0, 23	. 1	0.23	0.15	0. 23
斑	松	⊕ C	0.29	0 07		- 1		. 1		• •			0.24	0.22	0.53	0.25	0.24			- 1	9 9		.		0.24	0.27	0.24
	翼	z	0.0022	0 0000			0.000	0.000	0.0008	0.0021	0.0048	0.0018	0.0180	0.0175	0.0008	0.0007	0.0007	0.0120	0 0044	0000	0000	0.0110	0.0170	0.0020	0.0085	0.0042	0.0047
		0	0.13	0	80 0	00.00	0.00		0. 70	0.08	9 6	0.08	8	9	0.02	0.08	0.07	┿~	+-	┿	+-	-+-	+		5	9	0.07
超菜	€.		1-1	1-2	1-3		, L	2 9	0 .	-	8-1	6-T	1-10		1-12	1-13	1-14	1-15	1-16	+	+	-	-	+	-	-	1-23

【0048】本発明例の成形用素材は、いずれも7.3Mg/ m³以上の高密度を有し、冷間鍛造で厳しい圧縮成形を施 しても亀裂の発生はなく、高変形能を有し、しかも再圧 縮成形時の成形荷重も低く、成形性に優れていることが わかる。また、本発明例の成形体は、いずれも7.8Mg/m³ 以上の高密度を有し、細長い空孔の数が少なく、空孔の 平均長さは10μm 未満であった。また、本発明例の焼結 体および熱処理後の焼結体は、いずれも密度の低下は見 られない。熱処理後の焼結体はHRC32 以上の高い硬さを 50

示した。とくに、Moを含有する本発明例(試験No.1-14、 No.1-20、No.1-21) は、熱処理後の硬さが HRC59以上と さらに高い硬さを示した。なお、予備焼結後に本発明の 好ましい範囲内の温度で焼鈍を行った成形用素材 (試料 No. 1-16、No. 1-17 、No. 1-20 、No. 1-21) は、予備焼 結時の雰囲気中の窒素分圧が30kPa 以上95kPa 以下であ っても、窒素含有量が0.010 mass%以下となっている。 【0049】一方、予備焼結温度が本発明の範囲を低く 外れる成形用素材 (試料No.1-1、試料No.1-2、No.1-22

:比較例) では、遊離黒鉛量が0.17mass% (試料No.1-1)、0.13mass%(試料No.1-2)、0.12mass%(試料No. 1-22) と高く、さらに成形体の密度が7.80Mg/m³ 未満 と低いうえ、鍛造方向に長く伸びた空孔が多数観察さ れ、平均空孔長さも50 μm (試料No.1-1)、35 μm (試 料No.1-2)、32μm (試料No.1-22) であった。また、 N含有量が本発明の範囲を高く外れる成形用素材(試料 No. 1-10 、No. 1-11 : 比較例) は、それぞれ成形荷重が 101tonf (990kN)、98tonf (961kN)と高かった。ま た、C含有量が本発明の範囲を高く外れる成形用素材 (試料No.1-12 : 比較例) もまた、成形荷重が100 tonf (981kN) と高かった。また、成形用素材の密度が7.3M g/m³未満と低い場合(試料No.1-13、No.1-23:比較 例)には、成形体の密度が低めであり、平均空孔長さも 53μm (試料No.1-13)、54μm (試料No.1-23)と長 くなっている。

【0050】また、予備焼結後の焼鈍温度が本発明の好 ましい範囲(400~800℃)を外れる場合(試料No.1-1 5 、No.1-18) には、窒素含有量が0.010 mass%を超 え、成形荷重が大きくなるが、焼鈍処理前のN含有量を 20 測定したところ、それぞれ0.0160mass%、0.0150mass% であり、焼鈍処理によるN含有量低減効果は認められ た。また、予備焼結時の雰囲気中の窒素分圧が95kPa を 超える場合(試料No.1-19)には、予備焼結ー焼鈍処理 を施した後のN含有量は0.010 mass%を超え、成形荷重 が大きくなっているが、焼鈍処理前のN含有量を測定し たところ、0.0220mass%であり、焼鈍処理によるN含有 量低減効果は発揮されている。

(実施例2)表2に示す鉄基金属粉に、表2に示す種類 と含有量の、黒鉛粉と潤滑剤とをコーン型混合機で混合 30 し、鉄基混合粉とした。

【0051】鉄基金属粉は、実施例1と同じ純鉄粉Aに NiとMoを部分合金化した部分合金化鋼粉Cを用いた。部 分合金化鋼粉Cの組成はC:0.003 mass%-Mn:0.08ma ss%-O:0.09mass%-N:0.0020mass%-Ni:2.03ma ss%-Mo:1.05mass%であった。また、黒鉛粉は天然黒 鉛とし、潤滑剤はステアリン酸亜鉛、ステアリン酸リチ ウムまたはエチレンビスステアロアミドを用いた。な お、表2中の鉄基混合粉中の潤滑剤の含有量は、鉄基金

属粉と黒鉛粉の合計量100 重量部に対する重量部で表示 してある。

【0052】これら鉄基混合粉を金型に装入し、油圧式 圧縮成形機により予備圧縮成形し、30mm ø×15mm高さの タブレット状予備成形体とした。予備成形体の密度は7. 4 Mg/m³ とした。なお、一部の試料(試料No.2-12) に ついては成形圧力を調整することにより7.1 Mg/m³ とし た。得られた予備成形体に、表2に示す条件で予備焼結 を施し、成形用素材とした。なお、一部の試料(試料N o. 2-15 ~No. 2-21) では、予備焼結を施したのち、表 2に示す条件で焼鈍を行った。

【0053】得られた成形用素材の組成、表面硬さHRB 、遊離黒鉛量を調査した。これらの結果を表2に併記 する。なお、全C量、N量、O量、遊離黒鉛量は、実施 例1と同様に、成形用素材から採取した試験片を用いて 測定した。また、固溶C量は、実施例1と同様に、全C 量と遊離黒鉛量の測定値から算出した。

【0054】ついで、得られた成形用素材を、後方押出 し法により、断面減少率:80%の冷間鍛造(再圧縮成 形)を施してカップ状の成形体とした。なお、この再圧 縮成形時の成形荷重を測定した。また、得られた成形体 の密度をアルキメデス法で測定した。さらに、成形体の 縦断面 (カップ壁断面) の組織を光学顕微鏡で観察し、 断面長手方向の平均空孔長さを測定した。なお、断面長 手方向とは鍛造時の素材流れ方向である。それらの結果 を表2に併記した。

【0055】また、得られた成形体に、再焼結を施し焼 結体を得た。再焼結の条件は、実施例1と同様に、窒素 80vol %-水素20vol %のガス雰囲気中で1140℃×1800 s保持する条件とした。これら焼結体の密度をアルキメ デス法で測定した。ついで、これら焼結体に、実施例1 と同様に、カーボンポテンシャル1.0%の浸炭雰囲気中 で、870 ℃×3600 s 保持する条件で浸炭したのち、90℃ の油中に焼入れし、ついで、150℃で焼戻しする熱処理 を施した。熱処理後、焼結体の硬さHRC 、およびアルキ メデス法による密度を測定した。それらの結果を表2に 示す。

[0056]

【表3】

*)鉄基金属粉と黒鉛粉との合計型100 直量部に対する **) C粉:部分合金化鋼粉:C:0.003 mass%-Mn:0.08mass%-O:0.09mass%-N:0.0020mass%-Ni:2.03mass%-Mo:1.05mass%

[0057]

[表2-1]

【表4】

(株 株			T	時間	?	S	Te	3	۽] =	_	Te		0		T		7	_
(株基協合粉			-	_			+-		+-				╅—		987)081		1800
鉄基茂合的 子偏 子偏株結条件 子偏株結条件 子偏株結条件 子偏株結条件 母田気 母田気 母田気 題類 合有量 部度 面積 1、40 本業が1:10 % 20.3 7.40 本業が1:10 % 90 1150 1800 本業が1:10 % 大公 0.3 7.40 本業が1:20 % 80 1150 1800 本業が1:10 % 0.3 7.40 本業が1:00 % 70 1200 1200 本業が1:10 % 0.3 7.40 本業が1:00 % 90 1150 1800 本業が1:10 % 0.3 7.40 本業が1:00 % 90 1150 1800 本業が1:00 % 0.3 7.40 本業が1:00 % 90 1150 1800 本業が1:00 % 0.3 7.40 本業が1:00 % 90 1150 1800 本業が1:00 % 0.3 7.40 本業が1:00 % 90 1150 1800 本業が1:00 % 0.3 7.40 本業が1:00 % 90 1150 1800 本業が1:00 % 0.5 7.40 本業が1:00 % 90 1150 1800 本業が1:00 % 0.5 7.40 本業が1:00 % 90 1150 1800 本業が1:00 % 0.6 1.50 2.40 本業が1:00 % 90 115				温度) g		100	: 	850	:	909	!	909		1	200	7	600
(株基流合物)		統領令年		威	- 路路分圧	kPa kPa	06		10	•	06		06		90		00	0	5	_ ? ?
無益的 予備 予備 予備 予備 予備額 予備 予備額 予備 予備額 予備額 予備額 申請 申請					. vo.		水珠#7:10 %	联聚 ////////////////////////////////////			水磁扩7:10 %	斯米 17:90 %			大雅以:10 % 路群打:90 %		大器打: 9 %	建素#7:98%		
鉄基茂合粉 予備 予備 予備統条件 無数 合有量 種類 合有量 商権 合有量 種類 合有量 種類 合有量 種類: vol % 等級分圧 也 天然 0.3 7.40 水素が1.10 % 90 1150 0.3 3.770 0.3 7.40 水素が1.20 % 80 1150 0.3 5.770 0.3 7.40 水素が1.30 % 70 1200 0.3 5.770 0.3 7.40 水素が1.10 % 90 1150 0.3 5.770 0.3 7.40 水素が1.10 % 90 1150 0.3 5.770 0.3 7.40 水素が1.10 % 90 1150 0.3 5.770 0.3 7.40 水素が1.10 % 98 1150 0.3 5.770 20 7.40 水素が1.10 % 98 1150 0.3 5.70 20 20 1150 0.3 7.40 水素が1.10 % 98 1150 0.6 20 20 20 20 20 0.7 20 20 20 20 20 20 0.7 20 20 20 20 20 20 0.0			報	<u>=</u>		S	1800		3600		1200) - -		-	
(成形体) (以下) (以下) (以下) (以下) (以下) (以下) (以下) (以下			世級	E X		ᆚ	1150	\int	1050		1200		1150	7	1150		_		_	
(成形体)	4 14 14	岡院稻条件	賦		窒素分压	Ma	06		80		02		06		06					
(株成) 大協 無数 合有量 種類 合有量 種類 合有量 母庭 天然 0.3 3.7792 0.3 7.40 月公 0.3 3.7792 0.3 7.40 0.3 3.7792 0.3 7.40 0.3 3.7792 0.3 7.40 0.3 3.7792 3.740 7.40 0.3 3.7792 3.740 7.40 0.5 3.7792 3.740 7.40 0.6 3.8 3.740 3.740 0.6 3.740 3.740 3.740	*	+	路路		. vo l	1 1 1	N				水素抗:30 % 密素抗:70 %		K 账 # 7:10 % 耐胀 # 1:90 %		M		(株打:10 %		· 张/7:10 %	* 06: YE **
無益治分 調音剤 # 種類 含有量 種類 含有量 五名子り 0.3 3.77リン 0.3 を見から 3.77リン 0.3 の.6 0.6 0.3	和部件	段版			MS/Bi	_		1		†		+		+		_		+		91
無				4	古電	5	;							6				+.		-
機 機 機 を を を を を を を を を を を を を を を を を	金		運	_		37742	酸亜酚					17743	酸明子九	IFVYEZ	37707? F	15711.	殿田郎			1
題、天黒、類、然的	铁基混合	27. #45	1 P	全位中	18888 18888	0.3		0.3		0.3				က		0	~—_	Τ		1
No		7 1	*	種類		米器	無数				J.	_		_		L		<u></u>		1
A P P P P P P P P P P P P P P P P P P P		鉄基金	國李		種類##	ပ														
	超望	N .				2-15		2-16		2-17		2-18		2-19		2-20		2-21		1

*) 鉄基金属粉と黒鉛粉との合計量100 重量部に対する **) C粉:部分合金化鋼粉:C:0.003 mass%-Mn:0.08mass%-0:0.09mass%-N:0.0020mass%-Ni:2.03mass%-Mo:1.05mass%

[0058]

[表2-2]

【表2-3】

試 料 No			成	形用索	材			再圧縮加工	成用	··········· 体	焼結体	熱処理	多烷結体	億 考
No		組	成	(mass	%)	密度	硬さ	冷間鍛造	密度	平均	密度	密度	硬さ	
	0	N	全C	固溶 C	遊離	Mg/n³	HRB	成形荷里 tonf (kN)	Mg/m³	平均 空孔 さ ルB	₩S\æ,	Mg/m³	HRC	
2-1	0. 12	0. 0023	0. 29	0, 01	0. 28	7. 40	40	140 (1372)	7. 64	52	7. 64	7. 64	59	比較例
2-2	0. 10	0. 0021	0. 29	0. 09	0, 20	7. 40	41	145 (1442)	7, 72	38	7. 73	7. 73	60	比較例
2-3	0. 08	0.0019	0. 23	0, 22	0. 01	7. 40	43	155 (1520)	7. 80	< 10	7. 80	7. 80	60	本発明例
2-4	0.08	0. 0006	0. 24	0. 23	0. 01	7. 40	42	164 (1608)	7. 81	< 10	7. 81	7. 81	60	本発明例
2-5	0.06	0. 0007	0. 23	0. 22	0.01	7. 40	41	165 (1618)	7. 82	<10	7. 82	7. 82	62	本発明例
2-6	0.04	0. 0009	0. 21	0. 20	0. 01	7. 40	41	166 (1628)	7. 83	<10	7. 83	7. 83	60	本発明例
2-7	0. 09	0. 0043	0. 24	0. 23	0. 01	7. 40	46	172 (1687)	7. 82	<10	7. 82	7. 82	61	本発明例
2-8	0.08	0.0018	0. 24	0. 23	0.01	7. 40	43	163 (1598)	7. 81	<10	7. 82	7. 82	61	本発明例
2~9	0. 08	<u>0. 0240</u>	0. 24	0. 23	0.01	7.40	61	所定形状まで	で段造不能	8				比較例
2-10	0.07	<u>0. 0220</u>	0. 22	0. 21	0.01	7. 40	60	所定形状ま7	(設造不住	ŧ				比較例
2-11	0. 08	0. 0006	<u>0. 54</u>	0. 53	0.01	7.40	62	所定形状まで	欧 資不能	Ħ				比較例
2-12	0. 08	0. 0007	0. 25	0. 24	0, 01	7.10	41	162 (1589)	7. 78	48	7. 78	7. 78	60	比較例
2-13	0. 09	0.0042	0. 24	0. 23	0. 01	7. 40	46	172 (1687)	7. 82	<10	7. 82	7. 82	61	本発明例
2-14	0. 09	0.0042	0. 24	0. 23	0. 01	7. 40	47	172 (1687)	7. 81	<10	7. 81	7. 81	61	本発明例
2-15	0. 07	0. 0092	0. 24	0. 23	0.01	7. 40	50	174 (1705)	7, 80	<10	7. 80	7. 80	60	本発明例
2-16	0.08	0. 0083	0. 24	0. 23	0, 01	7. 40	49	171 (1676)	7. 80	<10	7. 80	7. 80	60	本発明例
2-17	0. 07	0. 0076	0. 25	0. 24	0.01	7. 41	49	173 (1695)	7.81	<10	7. 80	7. 80	60	本発明例
2-18	0. 07	0.0094	0. 24	0. 23	0.01	7. 40	50	174 (1705)	7. 81	<10	7. 81	7. 81	60	本発明例
2-19	0. 08	0. 0093	0. 25	0. 23	0.01	7. 40	49	173 (1695)	7. 80	<10	7. 80	7. 80	60	本発明例
2-20	0. 07	0. 0098	0. 24	0. 23	0. 01	7. 40	50	174 (1705)	7. 80	<10	7. 80	7. 80	60	本発明例
2-21	0. 07 0. 0092 <u>0. 53</u> 0. 52 0. 01 7. 40 63							所定形状まで	设造不能	1				比較例

【0059】本発明例の成形用素材は、いずれも7.3Mg/m³以上の高密度を有し、冷間鍛造で厳しい圧縮成形を施30しても亀裂の発生はなく、高変形能を有し、しかも再圧縮成形時の成形荷重も低く、成形性に優れ、冷間鍛造が可能であることがわかる。また、本発明例の成形体は、いずれも7.80Mg/m³以上の高密度を有し、細長い空孔の数が少なく、空孔の平均長さは10μm未満であった。また、本発明例の焼結体および熱処理済の焼結体は、いずれも密度の低下は見られず、また、熱処理後の焼結体は60HRC以上の高い硬さを示した。

【0060】一方、予備焼結温度が本発明の範囲を低く外れる成形用素材(試料No. 2-1、試料No. 2-2:比較例)では、遊離黒鉛量が0.28mass%(試料No. 2-1)、0.20mass%(試料No. 2-2)と高く冷間鍛造時に亀裂が発生し、さらに成形体の密度が7.80Mg/m³未満と低いうえ、鍛造方向に長く伸びた空孔が多数観察され、平均空孔長さも 52μ m(試料No. 2-1)、 38μ m(試料No. 2-2)であった。また、N含有量が本発明の範囲を高く外れる成形用素材(試料No. 2-9、No. 2-10:比較例)、C含有量が本発明の範囲を高く外れる成形用素材(試料No. 2-11、No. 2-21:比較例)は、成形用素材の硬さが高く、変形抵抗が高すぎて所定の形状まで鍛造できなかった。

【0061】また、成形用素材の密度が7.3Mg/m³未満と低い場合(試料No.2-12:比較例)には、成形体の密度が低めであり、平均空孔長さも48μm と長くなっている。また、焼鈍以外の条件が同一である試料No.2-15(焼鈍あり)と試料No.2-10(焼鈍なし)との比較により、予備焼結後の焼鈍による、窒系低減効果が顕著であることがわかる。なお、焼鈍雰囲気中の窒素分圧が98kPaと高い場合(試料No.2-20)には、窒素分圧が90kPaである場合(試料No.2-15)にくらべ、焼鈍処理による窒素低減効果は幾分低下することがわかる。

(実施例3) 表3に示す鉄基金属粉に、表3に示す種類40 と含有量の、黒鉛粉と潤滑剤とをコーン型混合機で混合し、鉄基混合粉とした。

【0062】鉄基金属粉は、水アトマイズ法で製造した 予合金化鋼粉D(川崎製鉄製KIP5MOS)を用いた。予合 金化鋼粉Dの組成はC:0.004 mass%-Mn:0.20mass%-O:0.11mass%-N:0.0021mass%-Mo:0.60mass%-機部Feである。また、黒鉛粉は天然黒鉛とし、潤滑剤はステアリン酸亜鉛を用いた。なお、表3中の鉄基混合粉中の潤滑剤の含有量は、鉄基金属粉と黒鉛粉の合計量100 重量部に対する重量部で表示してある。

50 【0063】これら鉄基混合粉を金型に装入し、油圧式

圧縮成形機により予備圧縮成形し、 $30\text{mm} \phi \times 15\text{mm}$ 高さのタブレット状予備成形体とした。予備成形体の密度は7.4 Mg/m^3 とした。なお、一部の試料(試料No. 3-12)については成形圧力を調整することにより7.1 Mg/m^3 とした。得られた予備成形体に、表3に示す条件で予備焼結を施し、成形用素材とした。なお、一部の試料(試料No. 3-12、No. 3-14、試料No. 3-17~No. 3-20)では予備焼鈍と連続して焼鈍を行った。このうち、試料No. 3-18は、一定温度に保持する焼鈍に代えて、800 \mathbb{C} ~400 \mathbb{C} までの温度域を徐冷する焼鈍処理とした。徐冷条件は、800 \mathbb{C} ~400 \mathbb{C} までの温度域の標準の冷却時間(約2400s)より長い、3600 sとした。また、試料No. 3-21では、窒素分圧99kPaの雰囲気で予備焼結を行った後、一旦室温まで冷却し、ついで焼鈍を施した。

【0064】得られた成形用素材の組成、表面硬さHRB、遊離黒鉛量を調査した。これらの結果を表3に併記する。なお、全C量、N量、O量、遊離黒鉛量は、実施例1と同様に、成形用素材から採取した試験片を用いて実施例1と同様に測定した。また、固溶C量は、実施例201と同様に、全C量と遊離黒鉛量の測定値から算出した。

【0065】ついで、得られた成形用素材を、実施例2 と同様に、後方押出し法により、断面減少率:80%の冷 間鍛造(再圧縮成形)を施してカップ状の成形体とし た。この再圧縮成形時の成形荷重を測定した。また、得 られた成形体の密度をアルキメデス法で測定した。さら に、実施例2と同様に、成形体の縦断面(カップ壁断 面)の組織を光学顕微鏡で観察し、断面長手方向の平均 空孔長さを測定した。なお、断面長手方向とは鍛造時の 素材流れ方向である。それらの結果を表3に併記した。 【0066】また、得られた成形体に、再焼結を施し焼 10 結体を得た。再焼結の条件は、実施例1と同様に、窒素 80vol %-水素20vol %のガス雰囲気中で1140℃×1800 s保持する条件とした。これら焼結体の密度をアルキメ デス法で測定した。ついで、これら焼結体に、実施例1 と同様に、カーボンポテンシャル1.0%の浸炭雰囲気中 で、870 ℃×3600 s 保持する条件で浸炭したのち、90℃ の油中に焼入れし、ついで、150 ℃で焼戻しする熱処理 を施した。熱処理後、焼結体の硬さHRC 、およびアルキ メデス法による密度を測定した。それらの結果を表3に 示す。

【0067】 【表6】 (1

<i>c</i>)	
6)	

Г	$\neg \tau$	_		_		_												_
		田金田	_	ω			1		<u> </u>			1	1 1		-	1	1800	1800
		部無	Ş	الد			1	1	ı				1		1	ı	650	009
4 4 4	系屬祭中	铽	路路分压	P V				-	'	1						1	25	50
		超然	粗類: vol %		1	,		1	1	1	,	1				,	水紫#X:75 % 瓣紫#X:25 %	
	10 42		<i>σ</i> .	982	1800	1800	1800	1800	1800	1800	1800	1800	1800	1000	2001	1900	1800	1800
	<u> </u>	世	رړ 		8	1050	1050	1150	1300	1050	1050	1050	1150	1050	3 2	1000	1050	1050
子值存在名印	# W.	·	整素分压 ID8	<10-4	<10-	< 10-4	<10->	-101>	< 10-1	10	<10-1	101	50	r-01>	1-01-2		32	20
片	(日本)	a	種類: vol %	真空	真空	真空	水森机	水素加	水森机	水素17:90 % 窒素17:10 %	TASYAR	警察机	水素#X:50 % 醫療#X:50 %	水器加	大概#7		水素ガ2:75 % 窒素ガ2:25 %	水素ガ7:50 % 窒素ガ7:50 %
事	段 杨		形成 18/a3	7.40	7. 40	7.40	7. 40	7. 40	7.40	7. 40	7. 40	7.40	7.40	7. 40	7. 10	1	7. 40	7. 40
	* 炭突		的	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	r	2 '0	0.2
\$	灰	1	類	λデアリン 服勢 研 ΦΔ	H H			1_	<u>-</u> -					L	 _	<u></u>	<u>l</u>	
鉄基混合粉	黑鉛粉	4	百有起 1888%	0.2	0.2	0.2	0.2	0.2	0. 2	0. 2	0.2	0.2	0.2	0.6	0.2	6		0.2
	無	15 H	重	天里然的			L	1,	_ 1_			1						
		を記	租額##	Ω						· ,								
福章	. S			3-1	3-2	2-5 5-13	4-0	S - S		3-7	3-8	3-6	3-10	3-11	3-12	3-13		3-14

*)鉄基金属粉と黒鉛粉との合計母100 重量部に対する **) D粉:予合金化鋼粉:C:0.004 mass%-Mn:0.20mass%-0:0.11mass%-N:0.0021mass%-No:0.60mass%

[0068]

[表3-1]

【表7】

4	

	_				1				
	平	Ø	1	ı	1800	3600	2400	450	1800
	温度	ပ္	1	1	650	00 400 800	350	650	650
焼魠条件	版	路案分圧 kPa	1	ı	06	06	90	06	06
	が囲ぬ	種類: vo] %	1	1	水素#X:10 % 窒素#X:90 %	长器打:10 % 器型打:90 %	校器#7:10 % 链账#7:90 %	水紫北7:10 % 醫療状7:90 %	水器#11:10 % 路器#17:90 %
	時間	S	1800	1800	1800	1800	1800	1800	1800
	温度	ပ္	1050	1050	1050	1050	1060	1050	1050
予備統結条件	inc.	室素分圧 kPa	06	66	06	06	06	06	56
*	黎田 统	種類: vo] %	水素ガ7:10 % 窒素ガ7:90 %	水素抗: 1 % 健素机:99 %	水涨抗:10 % 膨胀抗:90 %	水珠状:10 % 输珠扩:90 %	水素抗:10 % 姆素抗:90 %	水紫灯:10 % 鸳鸯灯:90 %	长松打: 1 % 树树打: 99 %
部件4	及 表 本	密度 M8/m3	7. 40	7.40	7. 40	7.40	7. 40	7. 40	7, 40
	潤滑剤 #	含有量 重量部	0.2	0.2	0.2	0. 2	0.2	0.2	0.2
\$	~ 製	種類	が7リン酸亜鉛						
鉄基混合粉	黑鉛粉	含有量 m855%	0, 2	0.2	0.2	0.2	0.2	0.2	0.2
*98	黑	鐵額	米麗路路	-					
	铁基金属特色	種類##	Ω						
短草	8		3-15	3-16	3-17	3-18	3-19	3-20	3-21

*)鉄基金属粉と黒鉛粉との合計量100 重量部に対する **) D粉:予合金化鋼粉:C:0.004 mass%-Mn:0.20mass%-0:0.11mass%-N:0.0021mass%-Mo:0.60mass%

[0069]

[表3-2]

【表8】

【表3-3】

4.0	7	_					-	7	,			,			
超科	-			形用素	ख	·		再圧縮加工	成形	鉢	烧結体	熱処理	後統結体	整処理	備 考
No		組成	(ma:	ss%)		密度	硬さ	冷間鍛造 成形荷重	密度	平均空孔	密度	密度	硬さ	体/再 焼結如	
	0	N	全C	固溶 C	遊 機 組 組	Mg/m³	HRB	toni (kN)	Ng/m³	長さ	Mg/n'	Mg/m³	HRC	硬さ IRC	
3-1	0.14	0. 0023	0. 20	0. 01	0.19	7. 40	37	135 (1324)	7. 69	48	7. 70	7. 70	58	_	比較例
3-2	0. 12	0. 0021	0. 20	0. 06	0, 14	7. 40	39	140(1373)	7. 76	25	7. 76	7. 76	60	_	比較例
3-3	0.08	0.0019	0. 17	0.16	0.01	7- 40	41	150(1471)	7. 82	<10	7. 82	7. 83	60	60	本発明例
3-4	0.09	0. 0006	0.18	0.17	0. 01	7. 40	40	159 (1559)	7. 82	<10	7. 82	7. 82	61	60	本発明例
3-5	0.07	0.0007	0.17	0.16	0. 01	7. 40	38	159 (1559)	7. 83	<10	7_ 83	7. 83	62	61	本発明例
3-6	0. 05	0.0009	0. 15	0.14	0. 01	7. 40	38	161 (1579)	7. 84	< 10	7. 84	7. 84	50	59	本発明例
3-7	0.08	0.0040	0.18	0.17	0. 01	7. 40	45	157 (1540)	7. 82	<10	7. 82	7. 82	60	60	本発明例
3-8	0.07	0.0018	0.18	0_17	0.01	7. 40	40	158 (1549)	7. 82	<10	7. 82	7. 82	61	60	本発明例
3-9	0.08	<u>0. 0180</u>	0.18	0. 17	0. 01	7. 40	58	所定形状まで	始 造不能	<u></u>					比較例
3-10	0.06	0.0148	0. 17	0.16	0. 01	7. 40	50	所定形状まで鍛造不能							比較例
3-11	0, 07	0. 0006	<u>0. 53</u>	0. 52	0. 01	7. 40	58	所定形状まで鍛造不能						比較例	
3-12	0.08	0. 0007	0. 18	0.17	0. 01	7, 10	39	157 (1540)	7.77	48	7. 77	7. 77	60	_	比較例
3-13	0. 08	0, 0030	0.17	0.16	0,01	7. 40	40	158 (1549)	7. 82	< 10	7. 82	7. 82	60	60	本発明例
3-14	0. 08	0. 0068	0. 17	0. 16	0. 01	7. 40	43	161 (1579)	7. 82	< 10	7. 82	7. 82	61	60	本発明例
3-15	0. 07	0.0165	0. 17	0. 16	0. 01	7. 40	54	所定形状まで	鍛造不 館	E .					比較例
3-16	0.08	0.0175	0.18	0. 17	0. 01	7. 40	54	所定形状まで	鍛造不能	8				T I	比較例
3-17	0. 07	0. 0084	0.17	0. 16	0. 01	7. 40	46	164 (1607)	7. 81	<10	7. 81	7. 81	60	_	本発明例
3-18	0. 07	0. 0090	0.17	0.16	0. 01	7, 40	47	166 (1627)	7. 80	< 10	7. 80	7. 80	60	_	本発明例
3-19	0. 07	0.0120	0.17	0.16	0. 01	7, 40	52	The state of the s						比較例	
3-20	0. 07	0. 0096	0. 17	0. 16	0.01	7. 40	48	165 (1617)	7. 80	< 10	7. 80	7. 80	60	_	本発明例
3-21	0.07	<u>0. 0120</u>	0.17	0.16	0.01	7. 40	51	所定形状まで	设造不能	3			L		比較例

【0070】本発明例の成形用素材は、いずれも7.3Mg/ m³以上の高密度を有し、冷間鍛造により厳しい圧縮成形 30 を施しても亀裂の発生はなく、高変形能を有し、しかも 再圧縮成形時の成形荷重も低く、成形性に優れ、冷間鍛 造が可能であることがわかる。また、本発明例の成形体 は、いずれも7.80Mg/m³以上の高密度を有し、細長い空 孔の数が少なく、空孔の平均長さは10μm 未満であっ た。また、本発明例の焼結体および熱処理済の焼結体 は、いずれも密度の低下は見られず、また、熱処理後の 焼結体は60HRC 以上の高い硬さを示した。

【0071】一方、予備焼結温度が本発明の範囲を低く 外れる成形用素材(試料No.3-1、試料No.3-2:比較例) では、遊離黒鉛量が0.19mass% (試料No.3-1)、0.14ma ss% (試料No.3-2) と高く冷間鍛造時に亀裂が発生し、 さらに成形体の密度が7.80Mg/m.3未満と低いうえ、鍛造 方向に長く伸びた空孔が多数観察され、平均空孔長さも 48μm (試料No. 3-1)、25μm (試料No. 3-2) であっ た。また、N含有量が本発明の範囲を高く外れる成形用 素材(試料No.3-9、No.3-10 、No.3-15 、No.3-16 :比 較例)、C含有量が本発明の範囲を高く外れる成形用素 材(試料No.3-11:比較例)は、成形用素材の硬さが高

た。

【0072】また、成形用素材の密度が7.3Mg/m³未満と 低い場合(試料No.3-12:比較例)には、成形体の密度 が低めであり、平均空孔長さも48μm と長くなってい る。また、焼鈍以外の条件が同一である試料No.3-17(焼 鈍あり)と試料No.3-15 (焼鈍なし)とを比較すると、 適正な焼鈍処理を施すことにより、成形用素材のN含有 量が顕著に低減することがわかる。なお、焼鈍温度が好 適範囲より低い場合(試料No.3-19)には、窒素低減効 果が低下し、成形用素材のN含有量は0.010mass %を超 えて、冷間鍛造ができなかった。なお、試料No.3-19 と 40 略同一条件で処理した成形用素材を別途作製し、温間鍛 造で成形し成形体として空孔の大きさを調査すると、平 均空孔長さで10μm 未満であった。

【0073】また、焼鈍処理の時間が、好適範囲を外れ て短い場合(試料No.3-20) には、焼鈍時間が好適範囲 内の場合 (例えば試料No.3-17) にくらべ焼鈍処理の窒 素低減効果は幾分低下する。また、窒素分圧99kPaの雰 囲気下での予備焼結を施された後、焼鈍処理を施された 試料No.3-21 は、同一条件の予備焼結を施され焼鈍処理 を施されない試料No.3-16 に比べ、成形用素材のN含有 く、変形抵抗が高すぎて所定の形状まで鍛造できなかっ 50 量は低減しており、焼鈍処理の窒素低減効果が認められ

る。しかし、試料No.3-21 では成形用素材のN含有量が 0.010mass %を超えており、冷間鍛造ができなかった。 なお、試料No. 3-21 と略同一条件で処理した成形用素材 を別途作製し、温間鍛造で成形し成形体として空孔の大 きさを調査すると、平均空孔長さで10μm 未満であっ た。

【0074】また、本発明例の成形体(試料No.3-3~N o.3-8、No.3-13、No.3-14) について、再焼結処理を 行わず、ただちに熱処理を行い、熱処理体とした。硬さ HRC 、密度を測定した。施した熱処理は、カーボンポテ 10 ンシャル1.0 %の浸炭雰囲気中で、870 ℃×3600 s 保持 する条件で浸炭したのち、90℃の油中に焼入れし、つい で、150 ℃で焼戻しする熱処理である。これら熱処理体 について、硬さHRC を測定した。その結果を表3に併記 した。再焼結を省略しても、高硬度の製品の製造が可能 であることがわかる。

(実施例4)表4に示す合金元素量の予合金化鋼粉(鉄 基金属粉、平均粒径:60~80μm) を水噴霧法で製造し た。表4に示す合金元素以外の成分含有量は、C:0.03 mass%以下、O:0.08~0.15mass%、N:0.0025mass% 20 以下であることを、実施例1と同様の方法で確認した。

【0075】これら鉄基金属粉(予合金化鋼粉)に、表 5に示す種類と含有量の、黒鉛粉と潤滑剤とをV型混合 機で混合し、鉄基混合粉とした。なお、黒鉛粉は天然黒 鉛とし、潤滑剤はステアリン酸亜鉛を用いた。また、表 5中の鉄基混合粉中の潤滑剤の含有量は、鉄基金属粉と 黒鉛粉の合計量100 重量部に対する重量部で表示してあ

【0076】これら鉄基混合粉を金型に装入し、油圧式 圧縮成形機により予備圧縮成形し、30mm a×15mm高さの 30 タブレット状予備成形体とした。予備成形体の密度は7. 4 Mg/m³ とした。得られた予備成形体に、表5に示す条 件で予備焼結を施し、成形用素材とした。なお、一部の 試料(試料No.4-15 ~No.4-22) では、予備焼結と連続 して焼鈍を行った。得られた成形用素材の組成、表面硬 さHRB 、遊離黒鉛量を調査した。これらの結果を表5に 併記した。

【0077】なお、全C量、N量、O量、遊離黒鉛量 は、実施例1と同様に、成形用素材から採取した試験片 を用いて実施例1と同様に測定した。また、固溶C量 は、実施例1と同様に、全C量と遊離黒鉛量の測定値か ら算出した。ついで、得られた成形用素材を、実施例2 と同様に、後方押出し法により、断面減少率:80%の冷 間鍛造(再圧縮成形)を施してカップ状の成形体とし

た。この再圧縮成形時の成形荷重を測定した。また、得 られた成形体の密度をアルキメデス法で測定した。さら に、実施例2と同様に、成形体の縦断面(カップ壁断 面)の組織を光学顕微鏡で観察し、断面長手方向の平均 空孔長さを測定した。なお、断面長手方向とは鍛造時の

素材流れ方向である。それらの結果を表5に併記した。

【0078】また、得られた成形体に、再焼結を施し焼 結体を得た。再焼結の条件は、実施例1と同様に、窒素 80vol %-水素20vol %のガス雰囲気中で1140℃×1800 s保持する条件とした。これら焼結体の密度をアルキメ デス法で測定した。ついで、これら焼結体に、実施例1 と同様に、カーボンポテンシャル1.0%の浸炭雰囲気中 で、870 ℃×3600 s 保持する条件で浸炭したのち、90℃ の油中に焼入れし、ついで、150 ℃で焼戻しする熱処理 を施した。熱処理後、焼結体の硬さHRC 、およびアルキ メデス法による密度を測定した。それらの結果を表5に 示す。

[0079]

【表 9 】

【表4】

鉄基金 属粉		合金	元素含	有量(0	185%)	1
No.	Мо	Mn	Cr	Ni	Cu	v
E-1	0. 54	0.38	_	_	_	_
E-2	1.50	0. 25	-	-		_
E-3	0. 29	0. 72	1. 02	-	-	
E-4	0. 30	0. 20	_	1.08	0. 30	_
E-5	0. 31	0. 10	2. 84	_	_	0. 29
E-6	0. 20	0. 20	_	-	1.80	-
E-7	ı	0: 11	0.50	-	_	0. 80
E-8	0. 20	0. 08	-	4. 50		_
E-9	<u>2. 20</u>	0.12	_	-	-	-
E-10	0. 25	0. 14	<u>3. 30</u>	-	_	0. 28
E-11	0. 32	<u>1. 15</u>	0. 50	_		_
E-12		0. 09	-	5, 31	0. 15	_
E-13	_	0. 08	_	0. 28	2.43	-
E-14		0. 25	0. 25	-	_	1. 35

[0080]

【表10】

	整	v	1	ı	-						1		1	1	_	+	
	<u></u>		-	_	<u> </u>	-	-	<u> </u>	<u> </u>	\dashv		'	-	<u>'</u>	_	+	
航 寫 依 中		窒素分压 kPa	ı	,	1	1	,	1	1			•		1	_		
	温度 時間 幹田気	種類:vol%	1	l	1	1	ı	1	1	1	ı	ı	1	,			
ĺ	組組	w	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600		3600	
	温度	ပ္	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100		1100	
统钴条件		路報分圧 kP8	<10-1	< 10-3	< 10-3	< 10-1	< 10-1	< 10-1	< 10-1	< 10-1	< 10-3	< 10-3	< 10-3	< 10-1		, 01>	
4	推	葡萄:vo1%	水器17:100%	水紫北:100%	水磁扩 3:100%	水器# 7:100%	水蒸f/X:100%	未雅77:100%	长账#7:100%	水素113:100%	水器17:100%	水素#11.100%	水素#17:100%	水素#ス:100%		大米17:100%	
寒	後後 医二		7.40	7.40	7.40	7.40	7.40	7.40	7.40	7.40	7.40	7.40	7.40	7. 40		7.40	
	泰	4 中田 田田	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2			
\$	£	翠	趣	25717	数										·		
基础合物	\$	4 日本 日本 1888 8	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.2			
***	三	類															
	铁路铁	原 登 禁 ::		E - 2	E - 3	E - 4	田 	E - 6	E - 7	E - 8	E - 9	E - 10	E - 11	E-12		E - 13	
短	¥ 2		4-1	4-2	4-8	4-4	4-5	9-4	1-4	4-8	4-9	4-10	4-11	4-12		4-13	
	李祖祖白粉 子衛 予備	模基混合物 予備 予備機能条件 基礎 基礎 基礎 基礎 工程 基礎 工程 工程	鉄基金 用金粉 予備 学組 全 全 予備 結 条件 予備 結 条件 所	鉄基金 用鉛粉 資料 含有量 金度 金度	鉄基金 用金板 上面 子網 株 報 表 的 表 別	鉄基金 用鉛粉 予備 學問或 學問或 企務格 學問或 學問或 企務格等条件 學問或 學問 學問	(株式) (本) (100) (100) (360) (100) (360) (100) (360) (100) (360) (100)	快送会 用金配合的 予備 学問成的 中間 學問成的 中間 學問成的 中間 學問題 中間 中間 中間 中間 學問題 中間 中間	映画 平備 結長条件 平備 結長条件 平備 結長条件 中間 (本) (本) (本) (本) (本) (本) (本) (100 (100 (100 (100 (100 (100 (100 (10	鉄基混合粉 不解 子網格報条件 子網格報条件 子網格報条件 子網格報条件 子網格報表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表表	快基混合的 年報 (本) 下網 (本) 下網 (本) 上間 (本) 本 (本) <th< td=""><td>模基混合的 子職 有限的</td><td>(株式) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・</td><td>(株) (株) (株) (株) (株) (株) (株) (株) (株) (株)</td><td>株型 中個 子個株額条件 子個 子個 子個 子個 子個 子面 子面</td><td>検払約 手間 下個機能與係 下個機能與係 財政的 中間 財政的 <th ro<="" td=""></th></td></th<>	模基混合的 子職 有限的	(株式) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	(株)	株型 中個 子個株額条件 子個 子個 子個 子個 子個 子面 子面	検払約 手間 下個機能與係 下個機能與係 財政的 中間 財政的 財政的 <th ro<="" td=""></th>	

*)鉄基金属粉と黒鉛粉との合計量100 風量部に対する**)表4参照

[0081]

【表11】

[表 5	-2]											有容易		
超		48	鉄基混合粉	*		を発	华	锚烧結条件	Ī	1		Me me X II		
<u></u> ≠ 2	铁基金	#	具鉛粉	契	英	及 を を	雰囲気		福度	整整	神田宮	·	盟	至
	100 年	籬	合有最	薀	40年 田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	密度 版/四,	種類:vol%	證券分压 kPa	ပူ	_D	葡萄:vo1%	窒素分圧 kPa	ပူ	ß
-15	五 日 日 3		2.0		1 ~	7.40	水器17:75 % 解器17:25 %	25	1100	3600	水素机2:75 % 酸紫机2:25 %	25	100	1800
91-	田 1		0.2		0.2	7.40	水蛭17:25 % 锻磁17:15 %	75	1100	3600	水珠#12:25 % 路珠#12:75 %	7.5	100	1800
1-11	E-2		0.2		0.2	7.40	长雅77:10 % 略群77:90 %	06	1100	3600	大雅##3:10 % 钢器##7:90 %	06	700	1800
4-18	E-4		0.2		0.2	7.40	长雅打:10 % 姆雅打:90 %	0.6	1100	3600	水囊狀:10 % 酸囊狀:90 %	06	100	1800
4-19	B - 6		0.2		0.2	7. 40	大雅17:10 % 姆森17:90 %	06	1100	3600	天 株 17:10 % 樹 株 17:90 %	06	100	1800
4-20	9 - 3		0.2		0.2	7.40	水素#7:10 % 醫癖#7:90 %	06	1100	3600	大雅打:10 % 陷壁打:90 %	06	100	1800
4-21	E – 7		0.2		0.2	7.40	大雅##3:10 % 撥裝#7:90 %	06	1100	3600	水素#X:10 % 窒素#X:90 %	06	200	0081
4-22	五 1 8		0.2		0.2	7.40	长雅##1:10 % 概整#7:90 %	06	1100	3600	大米17:10 % 的米17:90 %	0.6	100	1800

*)鉄基金属粉と黒鉛粉との合計量100 重量部に対する**)表4参照

			_				-																	
在			本路明例	多种明色	本発明例	本冠明例	本発明例	本兒明何	本発明例	本発明例	本别明例	比較贸	本発明例	比较例	比較例	本籍明例	本知明例	本籍明例	本籍明例	本 発明例	本発明例	本兇明例	本発明例	本院明例
後姚喆体	政	HRC	99	19	09	19	29	19	19	1.9	19		19			19	80	09	0.9	0.9	0.9	09	09	9
新知祖	田原	M8/113	7,83	7.81	18.7	18.7	1.80	18'1	18.1	7.80	18.7		18.7			18 '2	18.7	7.80	7.80	7.80	7.81	7.80	7.80	1.80
结話体	金田	Ng/m,	7.83	7.81	7.81	7.81	7.80	7.81	18.7	7.80	7.81		18.7			7.81	18.2	7.80	7.80	7.80	18.7	7.80	7.80	7.80
#		出長は小され	> 10	< 10	× 10	01 >	< 10	v 10	× 10	< 10	< 10	大台	01 >	祝	拓	01 >	01>	01 >	< 10	01>	01 >	01 >	01>	۸ ا
以形	田田	18/n3	7.82	7.81	7.81	7.80	7.80	7.82	7.81	7.80	7.81	まで最高い	7.81	まれ観光	まれの選ぶ	7.80	7.81	7,81	7.80	7.80	7.81	7.80	1.80	7.80
再压缩加工	投資 發達 企		162(1589)	172(1687)	168(1648)	170(1667)	178(1746)	168(1648)	164 (1608)	177(1736)	192(1883)	所定の寸法	186(1824)	所位の中田	所定の寸独型	187 (1834)	(9191)111	167(1637)	175 (1715)	181 (1774)	190 (1863)	179 (1754)	171(1876)	187 (1833)
	破さ	HRB	45	89	9.6	67	19	5.2	67	8.2	7.5	7.6	7.2	7.8	87	23	5.8	20	29	82	14	6.4	20	69
	斑斑	, 11/8 H	7. 40	7. 40	7. 40	7. 40	7.40	7. 40	7. 40	7. 40	7. 40	7. 40	7. 40	7. 40	7. 40	7. 40	7.40	7, 40	1. 40	1.40	7.40	7. 40	7. 40	7. 40
1 22	~ %	機破損	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	9.01	0.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
形田田	(mass)	娘い	91.0	D. 16	0.17	0.15	11.0	0.16	0.17	0.16	0. 15	0.17	0.16	0.16	0.15	21.0	91.0	91'0	91.0	0, 18	0.17	0.16	0.17	0.16
18	報	₩	0.17	0.17	0.18	0.16	0.18	0.17	0.18	0.17	91.0	91.0	11.0	11.0	0.16	0.18	91.0	0.17	0.17	0, 17	0,18	0.17	0.18	0.17
	3	Z	0.0010	0.0009	0.0010	0.0011	0.0010	0.0012	0.0012	0.0011	0.0025	0.0023	0.0012	0.0012	0.0009	0.0011	0.0060	0.0010	0.0000	0.0095	0.0087	0.0085	0.0095	0.0000
		0	0.08	0.08	91.0	0.10	0.22	11.0	81.0	0.13	01.0	0.25	6.15	0.12	0.10	0.21	0.16	0.07	0.08	0.10	0.21	0. 10	0.17	0.13
超雄	2		4-1	4-2	4-3	4-4	4-5	4-8	1-1	8-1	6-1	4-10	11-\$	4-18	4-13	1-14	4-15	4-16	4-17	4-18	4-19	4-20	4-21	4-22

| 4 2 |

【0083】本発明例の成形用素材は、いずれも7.3Mg/ m³以上の高密度を有し、冷間鍛造で厳しい圧縮成形を施 しても亀裂の発生はなく、高変形能を有し、しかも再圧 40 縮成形時の成形荷重も低く、成形性に優れ、冷間鍛造が 可能であることがわかる。また、本発明例の成形体は、 いずれも7.80Mg/m³以上の高密度を有し、細長い空孔の 数が少なく、空孔の平均長さは10μm 未満であった。ま た、本発明例の焼結体および熱処理済の焼結体は、いず れも密度の低下は見られず、熱処理後の焼結体は60HRC 以上の高い硬さを示した。

【0084】一方、合金元素量が本発明の範囲を高く外 れる成形用素材(試料No.4-10 、No.4-12 、No.4-13 : 比較例)は、成形用素材の硬さが高く、変形抵抗が高す 50 を示す説明図である。

ぎて所定の形状まで鍛造できない。

[0085]

【発明の効果】本発明によれば、成形性に優れた成形用 素材を安価に製造でき、再圧縮成形に際し、低荷重で成 形が可能であるうえ高い変形能を示し、真密度に近い成 形体を容易に製造することができ、産業上格段の効果を 奏する。そして、本発明の成形用素材を用いて得られた 高密度の成形体を再焼結、熱処理を施すことにより、高 強度、高密度の焼結部材を高い寸法精度で製造すること が可能となるという効果もある。

【図面の簡単な説明】

【図1】本発明の成形用素材、焼結体の製造方法の一例

【図2】成形用素材の組織を模式的に示す概略図である。

F フェライト相 P パーライト相

【符号の説明】

【図1】

[図2]

フロントページの続き

(51) Int. CI.	7	識別記号		FΙ		テーマコード(参考)
B 2 2 F	3/10			B 2 2 F	3/10	G
	3/24				3/24	В
C 2 2 C	38/00	3 0 1		C 2 2 C	38/00	3 0 1 A
	38/46				38/46	
(72)発明者	千葉県千	聡 葉市中央区川崎町1番地 社技術研究所内	川崎製	(72)発明者	神奈川	光正 川県厚木市恩名1370番地 株式会社ユ アジェックス内

(72)発明者 小泉 晋

(72)発明者 宇波 繁 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内

(72)発明者 藤長 政志 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内

(72)発明者 吉村 隆志 神奈川県厚木市恩名1370番地 株式会社ユ ニシアジェックス内 (72)発明者 安間 裕之 神奈川県厚木市恩名1370番地 株式会社ユニシアジェックス内

ニシアジェックス内

神奈川県厚木市恩名1370番地 株式会社ユ

(72)発明者 幡井 康雄 神奈川県厚木市恩名1370番地 株式会社ユ ニシアジェックス内

F ターム(参考) 4K018 AA29 AA30 AA32 CA07 CA08 CA11 DA11 DA31 EA51 FA01 FA02 FA08 KA01

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.