Arhitectura sistemelor de calcul

Conversion unui numas (NTh)=Cn Cn-1 C2C, C.) d	mb-0
Dit = cità binarà (0/1) Oce / bye = 8 bili	
Bitul de semn este 7 > 0 poziliv	
> 1: negativ	
Cod direct: representarea numerului pe n-1 bili,	ion îm
hill cel mai semnificative (7). O produmă ar ji: Cod invers: reprezenarea numărului pe n-1 bili	, ion în
carel în care est negatire, să se inversere la n bili. O problemă ar fi: -7+7+0	-li cei 11/)
Lod complémenton: Le inversearà valorile hunder dura corre se adangà 1 la valorea definità.	on hililor,

Reguli alternative de complementare. Se lasa reschimbali bili începano din dreapa până la primul si 1 indusiv, resul sililor se inverseas pana la bill n-1 inclusiv. De exemple 18,10, = 00010010, are ca si complemen numarul 1<u>110 1110</u>(2) Regula de representave a numerelos întregi cu semo Un nr întreg între -2ⁿ⁻¹ Si 2ⁿ⁻¹-1 Se reprezinta într-o locatie de n sili oesfel: - docă nr ≥ 0, alunci se reprezinta în locație scris în taza 2 - docă nr < 0, alunci se reprezinta în locație complementul Representarea numarului - 2ⁿ⁻¹ nu poale si representata pe n-1 biji ca sa ramâna loc si pentru bilul de semn, el se representa pe

bili	51	15 le 100.	O .
Dim. locație (octeti)	Număr în baza 10	Reprezentare în cod complementar (hexazecimal)	Reprezentare în cod complem (binar)
1	0	00	00000000
2	0	0000	0000000000000000
1	1	01	00000001
2	1	0001	0000000000000001
1	-1	FF	11111111
2	-1	FFFF	1111111111111111
1	127	7F	01111111
2	127	007F	0000000001111111
1	-128	80	10000000
2	-128	FF80	1111111110000000
2	128	0080	000000010000000
2	32767	7FFF	0111111111111111

Simensiuma ruprizentirii n-dimensiumes de representare (adica numarul a cifre sinara (numaral de sili) din representarea unui numar $m = \{8, 16, 32, 64\}$ Jaca aven un numas representa pe 7 bili, cum il representam sili Depinde de interpretare: - In reprezentarea jara semm completam cu o silii high ramosi semm completam a bilul de semm n reprezentrea en bilii high namasi x: (1001011)₂=(75), se reprezinta pe un octi ca si: (01001011), în reprezenarea jară semn (01001011), în reprezenarea cu sem penru (75), (11001011), în reprezenarea a sem penra (-75), Convenţia fără semn Convenţia cu semn Nr. Octeți $[0, 2^8 - 1] = [0, 255]$ $[-2^7, 2^7-1] = [-128, 127]$ $[-2^{15}, 2^{15}-1] = [-32768, 32767]$ $[0, 2^{16} - 1] = [0, 65535]$ $[0, 2^{32}-1] = [0, 4294967295]$ $[-2^{31}, 2^{31}-1] = [-2\ 147\ 483\ 648\ , 2\ 147\ 483$ 6471 $[-2^{63}, 2^{63}-1] = [-9\ 223\ 412\ 376\ 694\ 775\ 808\ ,$ $[0, 2^{64} - 1] = [0, 18446824753]$

9 223 412 376 694 775 8071

389 551 615]

1. $\times_{(10)} \longrightarrow \times_{(2)} \longrightarrow \times_{(16)}$ 000-0 0001-1 0 1 0 - 2 4:2=2л0 0 0 1 1 - 3 2:2=1 n 0 0 1 0 0 - 4 1:2=071 0101-5 4(10) = 100(2) = 4(16) 0 1 1 0 -0 1 1 1 - 7 0 0 0 - 3 10:2=5 DO 1001-9 5:2=271 0 1 0 -2: 2 = 1 70 A 0 1 1 1 B 1:2=071 1100-6 10(10) = 10 10(2) = A (16) 1 1 0 1 - b 1 1 1 0 - E 1 1 1 1 - 7 15:2=7 11 7:2=3 カイ 3:2=171 1:2=071 15(40) = 1111₍₂₎ = F(46) 32:2=16 NO 16:2=8 no

32:2=16 π 0
16:2=8 π 0
8:2=4 π 0
4:2=2 π 0
2:2=1 π 0
1:2=0 π 1
32₍₄₀₎=100000₍₂₎=20₍₄₆₎

$$2. \quad \chi_{(40)} \rightarrow \chi_{(46)} \rightarrow \chi_{(2)}$$

$$3_{(10)} = 3_{(16)} = 11_{(2)}$$

$$11_{(10)} = B_{(16)} = 1011_{(2)}$$

 $16_{(40)} = 10_{(46)} = 10000_{(2)}$

4.
$$x_{(16)} \rightarrow x_{(2)}$$

3. $x_{(16)} = 11_{(2)}$

A. $x_{(16)} = 1010_{(2)}$

T. $x_{(16)} = 101011_{(2)}$

2. $x_{(16)} = 1011111000_{(2)}$

5. $x_{(2)} = x_{(2)} = x_{(2)}$

1. $x_{(2)} = x_{(2)} = x_{(2)}$

2. $x_{(2)} = x_{(2)} = x_{(2)}$

3. $x_{(2)} = x_{(2)} = x_{(2)}$

4. $x_{(2)} = x_{(2)} = x_{(2)}$

5. $x_{(2)} = x_{(2)} = x_{(2)}$

1. $x_{(2)} = x_{(2)} = x_{(2)}$

1. $x_{(2)} = x_{(2)} = x_{(2)}$

1. $x_{(2)} = x_{(2)} = x_{(2)}$

2. $x_{(2)} = x_{(2)} = x_{(2)}$

3. $x_{(2)} = x_{(2)} = x_{(2)}$

4. $x_{(2)} = x_{(2)} = x_{(2)}$

5. $x_{(2)} = x_{(2)} = x_{(2)}$

1. $x_{(2)} = x_{(2)} = x_{(2)}$

1. $x_{(2)} = x_{(2)} = x_{(2)}$

2. $x_{(2)} = x_{(2)} = x_{(2)}$

3. $x_{(2)} = x_{(2)} = x_{(2)}$

4. $x_{(2)} = x_{(2)} = x_{(2)}$

5. $x_{(2)} = x_{(2)} = x_{(2)}$

6. $x_{(4)} = x_{(4)} = x_{(4)}$

6. $x_{(4)} = x_{(4)} = x_{(4)}$

7. $x_{(4)} = x_{(4)}$

8. $x_{(4)} = x_{(4)}$

1. $x_{(4)} = x_{(4)}$

1. $x_{(4)} = x_{(4)}$

1. $x_{(4)} = x_{(4)}$

1. $x_{(4)} = x_{(4)}$

2. $x_{(4)} = x_{(4)}$

3. $x_{(4)} = x_{(4)}$

4. $x_{(4)} = x_{(4)}$

5. $x_{(4)} = x_{(4)}$

6. $x_{(4)} = x_{(4)}$

6. $x_{(4)} = x_{(4)}$

7. $x_{(4)} = x_{(4)}$

8. $x_{(4)} = x_{(4)}$

1. $x_{(4)} = x_{(4)}$

1. $x_{(4)} = x_{(4)}$

1. $x_{(4)} = x_{(4)}$

1. $x_{(4)} = x_{(4)}$

2. $x_{(4)} = x_{(4)}$

3. $x_{(4)} = x_{(4)}$

4. $x_{(4)} = x_{(4)}$

5. $x_{(4)} = x_{(4)}$

6. $x_{(4)} = x_{(4)}$

7. $x_{(4)} = x_{(4)}$

8. $x_{(4)} = x_{(4)}$

1. $x_{(4)} =$