第2章建模过程、比例性和几何相似性

韩建伟

计信学院 mm@hanjianwei.com

2017/10/20

现实世界与数学世界

Real-world systems

Observed behavior or phenomenon

Mathematical world

Models Mathematical operations and rules Mathematical conclusions

构建模型来了解世界

- 对现实世界的行为或现象的未来进行预测,分析各种行为对其影响
- 系统: 一些有规律的相互作用或内在的依赖关系联结在一起的对象 集合体
- 建模者希望了解一个特殊的系统是怎么工作的
- 是什么造成了系统变化系统对某些变化有多敏感
- 预测系统变化以及何时发生变化

为什么要建模

• 直接进行试验成本很高

建模的步骤

- 通过观察,识别有关实际行为的主要因素,可能要做简化
- ② 猜测因素之间暂时的关系
- 将数学分析用于所得到的模型
- 借助实际问题来解释数学的结论

数学模型

定义

为了研究特定的实际系统或现象而设计的数学结构,图示、符号、模拟和实验结构都包括在内.

模型的性质

保真性 模型表示现实的精确性

成本 建模过程的总费用

灵活性 当收集到了所需要的数据时,改变和控制影响改模型的诸 多条件的能力

模型的构建

- 识别问题
- ② 做出假设
 - 1 识别变量并对变量进行分类
 - ② 确定研究中所选择的变量和子模型之间的相互关系
- ◎ 求解或解释模型
- 验证模型
 - 表述了问题吗?
 - ② 在通常的意义下它有意义吗?
 - 用实际数据来检验该模型
- 实施模型
- 🧿 维修模型

车辆的停止距离

情景 车与车之间的跟随距离

- 每 10 英里的速度允许一辆车长度的跟随距离
- 看着前车刚驶过的点, 2 秒之内到达表示太近了

识别问题 预测作为车辆速率函数的车辆的总的停止距离 (跟车距离)

假设 总的停止距离 = 反应距离 + 刹车距离

- 反应距离 = f(反应时间,速率)
- 刹车距离 = h(重量,速率)

验证 不符合实际驾驶情形 ⇒ 评估某些假设, 或重新构建子模型

实施 只有易于理解并易于使用的才是有效的

维修 机动刹车或圆盘刹、车胎设计等基本变化

和科学方法的对比

- 对现象做一些一般性的观察
- ② 形成关于观察的假设
- ◎ 研制检验该假设的一种方法
- 4 收集用于改检验的数据
- 利用改数据来检验假设
- 肯定或者拒绝该假设

相似之处 都包括假设、收集实际数据以及用数据来检验或验证假设不同之处 数学建模是假设一个模型,而科学方法是确认模型;数学模型的目标不是肯定或者拒绝该模型,而是检验其合理性

模型的迭代性质

数学建模的艺术:根据需要简化或改进模型

模型简化	模型改进
1. 限制问题的识别	1. 扩展问题
2. 忽略一些变量	2. 考虑额外的变量
3. 若干变量合并的效果	3. 仔细考虑每个变量
4. 令某些变量为常数	4. 允许变量变化
5. 假设简单的(线性)关系	5. 考虑非线性关系
6. 融入更多的假设	6. 减少假设的数量

强健 结论并不依赖于精确地满足其假设 脆弱 结论依赖于要满足某些类型的条件 敏感性 模型结论所依赖的某个条件变化时结论的变化程度

利用比例性进行建模

定义

 $y \propto x$ 当且仅当对某个常数 k > 0, 有 y = kx

- $y \propto x^2 \Rightarrow y = k_1 x^2$
- $y \propto \ln x \Rightarrow y = k_2 \ln x$
- $y \propto e^x \Rightarrow y = k_3 e^x$
- $y \propto x, x \propto z \Rightarrow y \propto z$

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ □ のQで

船的排水量

著名的比例性定律

Hooke's law: F = kS, where F is the restoring force in a spring stretched or compressed a distance S.

Newton's law: F = ma or $a = \frac{1}{m}F$, where a is the acceleration of a mass m subjected to a net external force F.

Ohm's law: V = iR, where i is the current induced by a voltage V across a resistance R.

Boyle's law: $V = \frac{k}{p}$, where under a constant temperature k, the volume V is inversely proportional to the pressure p.

Einstein's theory of relativity: $E=c^2M$, where under the constant speed of light squared c^2 , the energy E is proportional to the mass M of the object.

Kepler's third law: $T = cR^{\frac{3}{2}}$, where T is the period (days) and R is the mean distance to the sun.

开普勒第三定律

$T = cR^{\frac{3}{2}}$, 其中 T 是周期(天数)而 R 是到太阳的平均距离

			1					
Planet	Period (days)	Mean distance (millions of miles)	75000	-				
Mercury	88.0	36	50000	-				
Venus	224.7	67.25	á					
Earth	365.3	67.25 93 141.75	25000	-				
Mars	687.0	141.75	25000					
Jupiter	4331.8	483.80						
Saturn	10,760.0	887.97	0	40000	00000	120000	160000	\rightarrow $R^{3/2}$
Uranus	30,684.0	1764.50	(40000	80000	120000	160000	
Neptune	60,188.3	2791.05			(Miles ×	$10^{-9})^{3/2}$		

$$c = \frac{90466.8 - 88}{220869.1 - 216} \approx 0.410$$

对车辆停止距离建模

一般规则

- 每 10 英里的速度允许一辆车长度的跟随距离
- 看着前车刚驶过的点, 2 秒之内到达表示太近了

为使两条规则一致,在10英里/小时的情形:

$$\begin{aligned} 1 \text{ car length} &= \text{distance} = \left(\frac{\text{speed in ft}}{\text{sec}}\right) (2 \text{ sec}) \\ &= \left(\frac{10 \text{ miles}}{\text{hr}}\right) \left(\frac{5280 \text{ ft}}{\text{mi}}\right) \left(\frac{1 \text{ hr}}{3600 \text{ sec}}\right) (2 \text{ sec}) = 29.33 \text{ ft} \end{aligned}$$

如果车长只有 15ft 呢?

观测数据

Table 2.4 Observed reaction and braking distances

Speed (mph)	Driver reaction distance (ft)	Braking dis	tance* (ft)	Total stopping distance (ft)		
20	22	18–22	(20)	40–44	(42)	
25	28	25-31	(28)	53-59	(56)	
30	33	36-45	(40.5)	69-78	(73.5)	
35	39	47-58	(52.5)	86–97	(91.5)	
40	44	64-80	(72)	108-124	(116)	
45	50	82-103	(92.5)	132-153	(142.5)	
50	55	105-131	(118)	160-186	(173)	
55	61	132-165	(148.5)	193-226	(209.5)	
60	66	162-202	(182)	228-268	(248)	
65	72	196-245	(220.5)	268-317	(292.5)	
70	77	237-295	(266)	314-372	(343)	
75	83	283-353	(318)	366-436	(401)	
80	88	334-418	(376)	422-506	(464)	

反应距离

- 总的停止距离 = 反应距离 + 刹车距离
- 反应距离 = f(反应时间,速率)
- 假设反应时间内汽车以原速率运行: $d_r = t_r v$
- 验证:

刹车距离

- 刹车距离 = h(重量,速率)
- 所做的功 = $Fd_b = \frac{1}{2}mv^2$
- 假设刹车的最大减速不变,由 F=ma 可知, $F\propto m$
- 由上面两点可知, $d_b \propto v^2$

模型验证

改进观察前车法则

Table 2.5 Time required to allow the proper stopping distance

Speed (fps)				Trailing time required for maximum stopping
		Stopping d	distance (sec)	
20	(29.3)	42	(44) [†]	1.5
25	(36.7)	56	(59)	1.6
30	(44.0)	73.5	(78)	1.8
35	(51.3)	91.5	(97)	1.9
40	(58.7)	116	(124)	2.1
45	(66.0)	142.5	(153)	2.3
50	(73.3)	173	(186)	2.5
55	(80.7)	209.5	(226)	2.8
60	(88.0)	248	(268)	3.0
65	(95.3)	292.5	(317)	3.3
70	(102.7)	343	(372)	3.6
75	(110.0)	401	(436)	4.0
80	(117.3)	464	(506)	4.3

© Cengage Learning

^{*}Includes 85% of the observations based on tests conducted by the U.S. Bureau of Public Roads.

 $^{^{\}dagger} Figures in parentheses under stopping distance represent maximum values and are used to calculate trailing times.$

新法则

利用几何相似性进行建模

$$\bullet \ \ \tfrac{l}{l'} = \tfrac{w}{w'} = \tfrac{h}{h'} = k$$

•
$$\frac{S}{S'} = \frac{2lh + 2wh + 2wl}{2l'h' + 2w'h' + 2w'l'} = k^2 = \frac{l^2}{l'^2}$$

•
$$S \propto l^2$$
, $V \propto l^3$

•
$$y = f(l, S, V) = g(l, l^2, l^3)$$

从不动的云层落下的雨滴

- $F = F_a F_d = ma$
- 终极速度时,加速度为 0,故 $F_q F_d = 0$ 或 $F_q = F_d$
- 假设 $F_d \propto Sv^2$
- $F_g \propto w, w \propto m \Rightarrow F_g \propto m$
- 假设雨滴几何相似: $S \propto l^2$, $V \propto l^3 \Rightarrow S \propto V^{2/3}$
- 质量和体积成正比 $m \propto V$, 故 $S \propto m^{(2/3)}$
- 因为 $F_q = F_d$ 故 $m \propto m^{(2/3)}v^2 \Rightarrow m^{1/6} \propto v$
- 雨滴的终极速度与其质量的六分之一次方成正比

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q (*)

钓鱼比赛建模

验证模型

Length, l (in.)	14.5	12.5	17.25	14.5	12.625	17.75	14.125	12.625
Weight, W (oz)	27	17	41	26	17	49	23	16

$$W = 0.00853l^3$$

改进模型

- $V \approx l_{eff} A_{avg}$
- $V \propto lg^2 \Rightarrow W = klg^2$

Weight

$$W = 0.0196 lq^2$$

骇鸟尺寸建模

• $W = kl^3, k > 0$

同样的思想...

汽车的汽油里程

识别问题 汽车的速度和它的燃油里程之间是什么关系? 假设 燃油里程 = f(推进力,阻力,驾驶习惯,等等) 限制问题的识别 忽略温度、空气密度、路况、驾驶习惯等因素

建模

- 汽车常速行驶: $F_p = F_r$
- K 为每加仑汽油能量, C_r 为单位时间油耗,则 $F \propto \frac{C_r K}{v}$,假设 K 不变, $F \propto \frac{C_r}{v}$
- 阻力 $F_r \propto Sv^2$, 假设汽车横截面积不变 $F_r \propto v^2$
- $F_p = F_r \Rightarrow \frac{C_r K}{v} \propto v^2 \Rightarrow C_r \propto v^3$
- 燃油里程 = $\frac{\mathrm{pr}}{\mathrm{mf}}$ = $\frac{vt}{C_rt}$ = $\frac{v}{C_r} \propto v^2$
- 该模型可靠吗?

体重和身高、力量和灵活性

自学 2.5 节,思考一下:

- 一般人身高体重怎么样才合理?
- 为什么体操运动员身材矮小的居多?举重、短跑呢?试着去分析一下原因.