MAU22C00: TUTORIAL 18 SOLUTIONS

1) Is $\{x \in \mathbb{R}^+ \mid \log x \in \mathbb{R} \setminus \mathbb{Q}\}$ finite, countably infinite? Justify your answer. The set \mathbb{R}^+ is the set of all positive real numbers.

2) Is
$$\bigcup_{n=1}^{10} \left\{ \left\{ (x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = n^2 \right\} \cap \left\{ (x,y) \in \mathbb{R}^2 \mid y^2 - x^4 = 0 \right\} \right\}$$

finite, countably infinite, or uncountably infinite? Justify your answer.

- 3) Let $A = \{0, 1\}$. Is $(0^* \circ 1^*) \cap \{A^* \circ 11 \circ A^*\}$ finite, countably infinite, or uncountably infinite? Justify your answer.
- 4) Prove that the language generated by a regular expression is countable. Give an example of a regular expression that generates a finite language and another example of a regular expression that generates a countably infinite language. Justify your answers.
- 5) Consider the language over the binary alphabet $A = \{0, 1\}$ given by $L = \{0^m 1^{2m} \mid m \in \mathbb{N}\}.$
- (a) Use the Pumping Lemma to show L is not a regular language.
- (b) Is the language L finite, countably infinite, or uncountably infinite? Justify your answer.
- (c) A language L' over the same alphabet $A = \{0, 1\}$ is called a *sublanguage* of L if $L' \subset L$. Let \mathcal{C} be the set of sublanguages of L. Is \mathcal{C} finite, countably infinite, or uncountably infinite? Justify your answer.

Solution: 1) The log function $log: \mathbb{R}^+ \to \mathbb{R}$ is bijective as you learned before coming to university, which means $\{x \in \mathbb{R}^+ \mid \log x \in \mathbb{R} \setminus \mathbb{Q}\}$ is in bijective correspondence with $\mathbb{R} \setminus \mathbb{Q}$. We showed in lecture that \mathbb{R} is uncountably infinite, while \mathbb{Q} is countably infinite. We also showed in lecture that taking out a countably infinite set from an uncountably infinite one leaves an uncountably infinite set. Therefore, $\{x \in \mathbb{R}^+ \mid \log x \in \mathbb{R} \setminus \mathbb{Q}\}$ is uncountably infinite.

2) $y^2-x^4=(y-x^2)(y+x^2)=0$ so for each n, we are intersecting the circle centered at the origin of radius n with the two parabolae $y=x^2$ and $y=-x^2$. This gives us four intersection points, and we have ten values for n. For different values of n, we get different intersection points, so we

have a total of 40 points in the set $\bigcup_{n=1}^{10} \left\{ \left\{ (x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = n^2 \right\} \cap \left\{ (x,y) \in \mathbb{R}^2 \mid y^2 - x^4 = 0 \right\} \right\}$, which is thus finite.

- 3) $(0^* \circ 1^*) \cap \{A^* \circ 11 \circ A^*\} = 0^* \circ 11 \circ 1^*$. Each of 0^* and 1^* is countably infinite, so the given set is countably infinite.
- 4) By definition, a set is countable, if it is finite or countably infinite. A regular expression is built up from \emptyset , ϵ , and the letters of the alphabet A via the Kleene star *, concatenation, and union. The Kleene star makes a countably infinite set out of a finite one. Concatenation gives a set whose size matches the size of the biggest set in the concatenation. In other words, the concatenation of strings from two finite sets will yield a finite set. The concatenation of strings from a finite set with a countably infinite set will yield a countably infinite set, whereas the concatenation of strings from two countably infinite sets yields a countably infinite set. Union behaves just like concatenation. Therefore, from a finite set via the Kleene star, union, and concatenation, we can only obtain a finite set or a countably infinite set. This concludes our proof. To give the required examples, let us consider the binary alphabet $A = \{0, 1\}$. The regular expression $\{01\} \cup \{11\}$ yields a regular language with two elements, whereas the regular expression $0^* \cup 1^*$ gives the regular language consisting of all strings of just 0's and all strings of just 1's, which is countably infinite as the sequence of strings ϵ , 0, 00, 000, etc. is inside this language.
- 5) (a) If L is a regular language, then it has a pumping length p. In order to consider just one case, we work with $w = 0^p 1^{2p} \in L$. According to the Pumping Lemma, w is to be decomposed as xuy, where $|u| \ge 1$ and $|xu| \le p$. Since $|xu| \le p$, u can only consist of zeroes. Let $u = 0^{n_1}$, for some $n_1 \ge 1$. Clearly, $xu^2y \notin L$ as $xu^2y = 0^{p+n_1}1^{2p}$, so the length of the first sequence of zeroes is not one half that of the second sequence of zeroes violating the pattern of the language.
- (b) The language L is countably infinite. Consider the function $f: \mathbb{N} \to L$ given by $f(m) = 0^m 1^{2m}$. It is easy to see that f is both injective and surjective hence bijective. Therefore, L is in one-to-one correspondence with \mathbb{N} , hence L is countably infinite.
- (c) Since a language L' is a sublanguage of L if $L' \subset L$, the set of sublanguages of L, C, is exactly the power set of L, which is denoted by $\mathcal{P}(L)$. We proved in part (b) that L is countably infinite, so $L \sim \mathbb{N}$. Therefore, $\mathcal{P}(L) \sim \mathcal{P}(\mathbb{N})$. As we proved in lecture, $\mathcal{P}(\mathbb{N})$ is uncountably infinite, so $C = \mathcal{P}(L)$ must likewise be uncountably infinite.