

VNB14NV04, VND14NV04 VND14NV04-1

"OMNIFET II" fully autoprotected Power MOSFET

Features

TYPE	R _{DS(on)}	I _{lim}	V _{clamp}
VNB14NV04			
VND14NV04	35 m Ω	12 A	40 V
VND14NV04-1			

- Linear current limitation
- Thermal shutdown
- Short circuit protection
- Integrated clamp
- Low current drawn from input pin
- Diagnostic feedback through input pin
- ESD protection
- Direct access to the gate of the Power MOSFET (analog driving)
- Compatible with standard Power MOSFET

Description

The VNB14NV04, VND14NV04, VND14NV04-1 are monolithic devices made using STMicroeletronics VIPower M0 Technology, intended for replacement of standard power MOSFETS in DC to 50 KHz applications. Built-in thermal shutdown, linear current limitation and overvoltage clamp protect the chip in harsh environments.

Fault feedback can be detected by monitoring the voltage at the input pin.

Table 1. Device summary

Package	Tube	Tube (Lead free)	Tape and reel	Tape and reel (Lead free)
D2PAK	VNB14NV04	VNB14NV04-E	VNB14NV0413TR	VNB14NV04TR-E
TO-252 (DPAK)	VND14NV04	VND14NV04-E	VND14NV0413TR	VND14NV04TR-E
TO-251 (IPAK)	VND14NV04-1	VND14NV04-1-E	-	-

Contents

1	Block diagram	. 3
2	Electrical specification	. 4
	2.1 Absolute maximum rating	. 4
	2.2 Thermal data	. 5
	2.3 Electrical characteristics	. 5
3	Protection features	7
4	Package thermal data	. 16
	4.1 DPAK thermal data	
	4.2 D ² PAK thermal data	18
5	Package information	21
6	Revision history	. 24

1 Block diagram

Figure 1. Block diagram

2 Electrical specification

Figure 2. Current and voltage conventions

2.1 Absolute maximum rating

Table 2. Absolute maximum rating

O	Barrantan		Value		
Symbol	Parameter	DPAK	IPAK	D ² PAK	Unit
V _{DS}	Drain-source voltage (V _{IN} =0 V)	Inter	nally Clam	nped	V
V _{IN}	Input voltage	Inter	rnally Clam	nped	V
I _{IN}	Input current		+/-20		mA
R _{IN MIN}	Minimum input series impedance		10		Ω
I _D	Drain current	Internally Limited			Α
I _R	Reverse DC output current	-15			Α
V _{ESD1}	Electrostatic discharge (R=1.5 KΩ, C=100 pF)	4000			V
V _{ESD2}	Electrostatic discharge on output pin only (R=330 Ω , C=150 pF)	16500			٧
P _{tot}	Total dissipation at T _c =25 ℃	74	74	74	W
E _{MAX}	Maximum switching energy (L=0.4 mH; RL=0 Ω ; V _{bat} =13.5 V; T _{jstart} =150 $\mathbb C$; I _L =18 A)	93 93			mJ
T _j	Operating junction temperature	Internally limited			Ç
T _c	Case operating temperature	Internally limited			S
T _{stg}	Storage temperature		-55 to 150		S

2.2 Thermal data

Table 3. Thermal data

Symbol	Parameter		Value		Unit
Symbol	Farameter	DPAK	IPAK	D ² PAK	Offic
Rthj-case	Thermal resistance junction-case max	1.7	1.7	1.7	€/M
Rthj-lead	Thermal resistance junction-lead max				€/W
Rthj-amb	Thermal resistance junction-ambient max	65 ⁽¹⁾	102	52 ⁽¹⁾	€/M

When mounted on a standard single-sided FR4 board with 0.5cm² of Cu (at least 35 μm thick) connected to all DRAIN pins.
Horizontal mounting and no artificial air flow.

2.3 Electrical characteristics

-40 < Tj < 150 ℃ unless otherwise specified.

Table 4. Electrical characteristics

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Off			•	•		
V _{CLAMP}	Drain-source clamp voltage	V _{IN} =0 V; I _D =7 A	40	45	55	V
V _{CLTH}	Drain-source clamp threshold voltage	V _{IN} =0 V; I _D =2 mA	36			V
V _{INTH}	Input threshold voltage	V _{DS} =V _{IN} ; I _D =1 mA	0.5		2.5	V
I _{ISS}	Supply current from input pin	V _{DS} =0 V; V _{IN} =5 V		100	150	μA
V _{INCL}	Input-source clamp voltage	I _{IN} =1 mA I _{IN} =-1 mA	6 -1.0	6.8	8 -0.3	V
I _{DSS}	Zero input voltage drain current (V _{IN} =0 V)	V_{DS} =13 V; V_{IN} =0 V; T_{j} =25 °C V_{DS} =25 V; V_{IN} =0 V			30 75	μA
On						
R _{DS(on)}	Static drain-source on resistance	$V_{in} = 5 \text{ V I}_D = 7 \text{ A T}_j = 25 \text{ °C}$ $V_{in} = 5 \text{ V I}_D = 7 \text{ A}$			35 70	mΩ
Dynamic	(Tj=25℃, unless otherwise speci	fied)				
9 _{fs} ⁽¹⁾	Forward transconductance	V _{DD} = 13 V I _D = 7 A		18		S
C _{oss}	Output capacitance	V _{DS} = 13 V f = 1 MHz V _{IN} = 0 V		400		pF
Switching	g					
t _{d(on)}	Turn-on delay time			80	250	ns
t _r	Rise time	$V_{DD} = 15 \text{ V I}_{D} = 7 \text{ A}$		350	1000	ns
t _{d(off)}	Turn-off delay time	$V_{gen} = 5 V R_{gen} = R_{IN MIN} = 10 Ω$ (see Figure 3)		450	1350	ns
t _f	Fall time			150	500	ns

Table 4. Electrical characteristics (continued)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t _{d(on)}	Turn-on delay time			1.5	4.5	μs
t _r	Rise time	$V_{DD} = 15 \text{ V I}_{d} = 7 \text{ A}$		9.7	30.0	μs
t _{d(off)}	Turn-off delay time	$V_{\text{gen}} = 5 \text{ V R}_{\text{gen}} = 2.2 \text{ K}\Omega$ (see <i>Figure 3</i>)			25.0	μs
t _f	Fall time			10.2	30.0	μs
(di/dt) _{on}	Turn-on current slope	$V_{DD} = 15 \text{ V } I_D = 7 \text{ A}$ $V_{gen} = 5 \text{ V R}_{gen} = R_{IN \text{ MIN}} = 10 \Omega$		16		A/µs
Q _i	Total input charge	$V_{DD} = 12 \text{ V } I_D = 7 \text{ A V}_{in} = 5 \text{ V};$ $I_{gen} = 2.13 \text{ mA (see } Figure 7)$		36.8		nC
Source d	rain diode					
V _{SD} ⁽¹⁾	Forward on voltage	I _{SD} = 7 A V _{in} = 0 V		8.0		V
t _{rr}	Reverse recovery time	$I_{SD} = 7 \text{ A}$; di/dt = 40 A/ μ s		300		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 30 V L = 200 μH		0.8		μC
I _{RRM}	Reverse recovery current	(see test circuit, Figure 4)		5		Α
Protectio	n					
I _{lim}	Drain current limit	V _{IN} = 5 V; V _{DS} = 13 V	12	18	24	Α
t _{dlim}	Step response current limit	V _{IN} = 5 V; V _{DS} = 13 V		45		μs
T _{jsh}	Over temperature shutdown		150	175	200	Ĉ
T _{jrs}	Over temperature reset		135			Ĉ
I _{gf}	Fault sink current	$V_{IN} = 5 \text{ V}; V_{DS} = 13 \text{ V}; T_j = T_{jsh}$	10	15	20	mA
E _{as}	Single pulse avalanche energy	starting T_j = 25 °C; V_{DD} = 24 V_{IN} = 5 V ; R_{gen} = $R_{IN \ MIN}$ = 10 Ω ; L = 24 mH (see <i>Figure 5</i> and <i>Figure 6</i>)	400			mJ

^{1.} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

3 Protection features

During normal operation, the input pin is electrically connected to the gate of the internal power MOSFET through a low impedance path.

The device then behaves like a standard power MOSFET and can be used as a switch from DC up to 50 KHz. The only difference from the user's standpoint is that a small DC current I_{ISS} (typ. 100 μ A) flows into the input pin in order to supply the internal circuitry.

The device integrates:

- Overvoltage clamp protection: internally set at 45 V, along with the rugged avalanche characteristics of the Power MOSFET stage give this device unrivalled ruggedness and energy handling capability. This feature is mainly important when driving inductive loads.
- Linear current limiter circuit: limits the drain current I_D to I_{lim} whatever the input pin voltages. When the current limiter is active, the device operates in the linear region, so power dissipation may exceed the capability of the heatsink. Both case and junction temperatures increase, and if this phase lasts long enough, junction temperature may reach the over temperature threshold T_{ish}.
- Over temperature and short circuit protection: these are based on sensing the chip temperature and are not dependent on the input voltage. The location of the sensing element on the chip in the power stage area ensures fast, accurate detection of the junction temperature. Over temperature cutout occurs in the range 150 to 190 ℃, a typical value being 170 ℃. The device is automatically restarted when the chip temperature falls of about 15 ℃ below shutdown temp erature.
- Status feedback: in the case of an over temperature fault condition (T_j > T_{jsh}), the device tries to sink a diagnostic current lgf through the input pin in order to indicate fault condition. If driven from a low impedance source, this current may be used in order to warn the control circuit of a device shutdown. If the drive impedance is high enough so that the input pin driver is not able to supply the current l_{gf}, the input pin will fall to 0 V. This will not however affect the device operation: no requirement is put on the current capability of the input pin driver except to be able to supply the normal operation drive current I_{ISS}.

Additional features of this device are ESD protection according to the Human Body model and the ability to be driven from a TTL Logic circuit.

Figure 3. Switching time test circuit for resistive load

Figure 5. Unclamped inductive load test circuits

Figure 6. Unclamped inductive waveforms

Figure 7. Input charge test circuit

Figure 8. Source-drain diode forward characteristics

Figure 9. Static drain source on resistance

Figure 10. Derating curve

Figure 11. Static drain-source on resistance vs. input voltage (part 1/2)

Figure 12. Static drain-source on resistance vs. input voltage (part 2/2)

Figure 13. Transconductance

Figure 14. Static drain-source on resistance vs. id

Figure 15. Transfer characteristics

Figure 16. Turn-on current slope (part 1/2)

Figure 17. Turn-on current slope (part 2/2)

Figure 18. Input voltage vs. input charge

Figure 19. Turn-off drain source voltage slope (part 1/2)

Figure 20. Turn-off drain source voltage slope Figure 21. Capacitance variations (part 2/2)

Figure 22. Switching time resistive load (part Figure 23. Switching time resistive load (part 1/2) 2/2)

Figure 24. Output characteristics

Figure 25. Normalized on resistance vs. temperature

12/25

Figure 26. Normalized input threshold voltage Figure 27. Current limit vs. junction vs. temperature temperatures

Figure 28. Step response current limit

Figure 29. DPAK Maximum turn-off current versus load inductance

Legend:

A= Single pulse at T_{Jstart}=150°C

B= Repetitive pulse at T_{Jstart}=100°C

C= Repetitive pulse at T_{Jstart}=125°C

Conditions:

Values are generated with $R_1 = 0\Omega$

In case of repetitive pulses, T_{jstart} (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.

Figure 30. Demagnetization

Figure 31. D²PAK Maximum turn-off current versus load inductance

Legend:

A= Single pulse at T_{Jstart}=150°C

B= Repetitive pulse at T_{Jstart}=100°C

C= Repetitive pulse at T_{Jstart}=125°C

Conditions:

Values are generated with $R_1 = 0\Omega$

In case of repetitive pulses, T_{jstart} (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.

Figure 32. Demagnetization

Package thermal data 4

4.1 **DPAK** thermal data

Figure 33. DPAK PC board

Figure 34. $R_{thj\text{-}amb}$ vs PCB copper area in open box free air condition

Figure 35. DPAK thermal impedance junction ambient single pulse

Figure 36. Thermal fitting model of an OMNIFET II in DPAK

Pulse calculation formula

$$\begin{array}{l} Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta) \\ \text{where } \delta = t_p / T \end{array}$$

Table 5. Thermal parameter

Area/island(cm ²)	Footprint	6
R1 (℃/W)	0.1	
R2 (℃/W)	0.35	
R3 (℃/W)	1.20	
R4 (℃/W)	2	
R5 (℃/W)	15	
R6 (℃/W)	61	24
C1 (W.s/℃)	0.0006	
C2 (W.s/℃)	0.0021	
C3 (W.s/℃)	0.05	

5/

Table 5. Thermal parameter (continued)

Area/island(cm ²)	Footprint	6
C4 (W.s/℃)	0.3	
C5 (W.s/℃)	0.45	
C6 (W.s/℃)	0.8	5

4.2 D²PAK thermal data

Figure 37. D²PAK PC board

Figure 38. Rthj-amb vs PCB copper area in open box free air condition

Figure 39. D²PAK thermal impedance junction ambient single pulse

Figure 40. Thermal fitting model of an OMNIFET II in D²PAK

Pulse calculation formula

$$\begin{split} Z_{TH\delta} &= R_{TH} \cdot \delta + Z_{THtp} (1 - \delta) \\ \text{where } \delta &= t_p / T \end{split}$$

Table 6. Thermal parameter

Area/island(cm ²)	Footprint	6
R1 (℃/W)	0.1	
R2 (℃/W)	0.35	
R3 (℃/W)	0.3	
R4 (℃/W)	4	
R5 (℃/W)	9	
R6 (℃/W)	37	22
C1 (W.s/℃)	0.0006	
C2 (W.s/℃)	2.10E-03	
C3 (W.s/℃)	8.00E-02	

5/

Table 6. Thermal parameter (continued)

Area/island(cm ²)	Footprint	6
C4 (W.s/℃)	0.45	
C5 (W.s/℃)	2	
C6 (W.s/℃)	3	5

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

Figure 41. TO-251 (IPAK) mechanical data

D.M.		mm.	V:		inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX
Α	2.2		2.4	0.086	j	0.094
A1	0.9		1.1	0.035		0.043
A3	0.7		1.3	0.027		0.051
В	0.64		0.9	0.025		0.031
B2	5.2		5.4	0.204		0.212
B3			0.85			0.033
B5		0.3			0.012	
B6			0.95	5		0.037
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
E	6.4		6.6	0.252	j	0.260
G	4.4		4.6	0.173	15	0.181
Н	15.9		16.3	0.626		0.641
L	9		9.4	0.354		0.370
L1	0.8		1.2	0.031		0.047
L2	- 2	0.8	1		0.031	0.039

Figure 42. D²PAK mechanical data

DIM.	mm.			
	MIN.	TYP	MAX	
A	4.4		4.6	
A1	2.49		2.69	
A2	0.03		0.23	
В	0.7		0.93	
B2	1.14		1.7	
С	0.45		0.6	
C2	1.23		1.36	
D	8.95	8	9.35	
D1		8		
E	10		10.4	
E1		8.5		
G	4.88		5.28	
C	15		15.85	
L2	1.27		1.4	
L3	1.4		1.75	
М	2.4		3.2	
R		0.4	2	
V2	0°		8°	

Figure 43. TO-252 (DPAK) mechanical data

DIM	mm.		
DIM.	MIN.	TYP	MAX.
A	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
В	0.64		0.90
B2	5.20	8	5.40
С	0.45		0.60
C2	0.48		0.60
D	6.00		6.20
D1		5.1	
E	6.40	8	6.60
E1		4.7	ĵ
e		2.28	
G	4.40		4.60
Н	9.35		10.10
L2		0.8	
L4	0.60	8	1.00
R		0.2	
V2	0°	8°	
Package Weight	Gr. 0.29		

47/

6 Revision history

Table 7. Document revision history

Date	Revision	Changes
21-Jun-2004	6	Initial release.
03-Apr-2009	7	Document reformatted. Added <i>Table 1: Device summary on page 1.</i> Updated <i>Section 5: Package information on page 21</i>

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com