Measures of Public Transit Accessibility

A Case Study on Cultural and Art Amenities in Metro Vancouver

Luka Vukovic
Rain Shen
Yuxuan Cui
Graham Kerford
Statistics Canada

Our Team

Graham Kerford

Rain Shen

Yuxuan Cui

Luka Vukovic

Our Client

The agency of the Government of Canada commissioned with producing statistics to help better understand Canada, its population, resources, economy, society, and culture.

Joseph Kuchar

Bjenk Ellefsen

Table of contents

- 1 Background & Motivation
- 2 Problem Statement
- 3 Aim & objective
- 4 Methodology
- 5 Results & Discussions
- 6 Dashboard
- 7 Limitations
- 8 Conclusions & Future Work

1. Background & Motivation

It's all about resource distribution.

The Transportation Network

Measures of Accessibility

Mode Measure based on:

Last year: Driving/Walking Distance [1] Statistics Canada, 2021

What about public transit?

- Multi-modal complexity
 - = bussing + walking + biking
- Transit network complexity
 - = many possible travel solutions

It's difficult to compute.

What about public transit?

Canadians depending on public transit:

Large Cities: 1 in 5
 [2] Statistics Canada, 2017

O All Cities: 1 in 6 [2] Statistics Canada, 2017

If transit accessibility isn't measured,
 we under-represent a large segment of the population.

What about public transit?

Core problem

... which can inevitably worsen pre-existing inequalities in the urban landscape. [3] Lubitow, 2017

Measures of Accessibility

Mode Measure based on:

Last year: **Driving/Walking Distance**

This year: Public transit Travel time

To Cultural and Art Amenities

Large indicator of Quality of Life and Community Appeal

Cultural Amenities Origin Museum Library Theatre

Art Gallery

Time to the nearest amenity of each type (minutes)		Accessibility Score	
Museum: Library: Art Gallery: Theatre:	20 40 30 10	0.050 0.025 0.033 0.100	
Average:	25	0.040	

2. Problem Statement

The client needs a **scalable** and **efficient** framework to compute transit measures of accessibility across Canadian metropolitan areas.

3. Aims & Objectives

Aims and Objectives

Efficiently compute

Vancouver's transit time from each city block to all cultural amenities.

15197 * 353

Develop various accessibility measures using these travel times.

(scores and time measures)

Demonstrate how these measures can be used to visualize and analyze local and intercity transit accessibility.

Case Study

Cultural and Art Amenities

Libraries, Galleries, Museums, Theatres

Metro Vancouver

Our Starting Point

Workflow

Data Collection

Road Network Transit Network Origins Destinations

Travel Time Matrix

Many to Many Points
On the hour: 7am to 7pm
Departure window: 30min

Accessibility Measures

[0-1] Normalized Scores Score Percentiles Average Transit Time

Amenity Weights

Popularity Amount of Services

Statistical Analysis

Vancouver Cultural Amenity Case Study

Visualization

Vancouver Accessibility Measures

4. Data & Methodology

Open-Source Data, Tools, and Technologies

Skytrain Transit Network → General Transit Feed System (GTFS)

Bus Transit Network

→ General Transit Feed System (GTFS)

Destinations (amenities)

→ Unique ID, Latitude, Longitude, Type

ID: 10111 Latitude: -49.2 Longitude:127.3 Type: Museum

- Dissemination Blocks
 - → Unique ID, Lat, Lon, Population
- Polygon Data
 - → Geospatial Shapefiles

- Street Network
 - → Open Street Map (OSM)

Welcome Our Data Sandwich

Computation

1. Travel Time Matrix

- Conveyal's R5 (Rapid Realistic Routing on Real-world and Reimagined networks) → r5r Library
- Steps:
 - i. **Build network**: layer street and transit network
 - ii. **Set constraints**: mode = bus+walk, max walk = 1km, max time = 2h
 - iii. Compute: shortest path transit times from each origin to each amenity

Computation

from 7am - 7pm (3 * 12 = 36)

Travel Time Matrix

	O	D	$\mu_{O,D}$	$\sigma_{O,D}$
	fromId <chr></chr>	told <chr></chr>	avg_unique_time <dbl></dbl>	sd_unique_time <dbl></dbl>
$o_i \rightarrow$	59150004004	10	99.76316	5.364721
	59150004004	$15 \leftarrow d_j$	$\mu_{o_i,d_j} \longrightarrow$ 72.48718	$\sigma_{o_i,d_j} \longrightarrow 3.401794$
	59150004004	157	96.69231	3.001349
	59150004004	1759	106.82051	4.388213
	59150004004	1760	46.58974	2.642944
	59150004004	1822	76.64103	3.990035
	59150004004	1839	76.15385	2.680715
	59150004004	1840	75.15385	2.680715
	59150004004	1916	99.07692	3.571706
	59150004004	1930	86.97436	4.923024

Score Measure

Unique trip score:

(from origin *i* to destination *j*)

Final Block Score:

(from origin *i* to *n* destinations)

n = 1: closest destination

n = 2: closest 2 destinations

...

n = N: all destinations

$$s_{o_i} = \sum_{j=1}^{\{1,2,3,n\}} s_{o_i,d_j}$$

 How can we consider amenity mass in the scoring?

■ Considering two places

Objective features for measuring amenity mass:

- Annual visitors
- Annual revenues of amenity
- Capacity of amenity

HOWEVER

However, really hard to find the data due to confidentiality

INSTEAD

Amenity Weight (Mass)

Google Place API

Amenity Weight (Mass)

Using Google Place data as proxy of objective data

Hours:	Sunday	10a.m.–5p.m.
	Monday	10a.m.–5p.m.
	Tuesday	10a.m.–5p.m.
	Wednesday	10a.m.–5p.m.
	Thursday	10a.m.–5p.m.
	Friday	10a.m.–5p.m.
	Saturday	10a.m.–5p.m.

Amenity Weights (Mass)

For galleries, theatres, and museums:

$$weight_i = \frac{n(hours_i) + n(days_i) + n(rating_i) + n(reviews_i)}{N}$$

Amenity Weight (Mass)

For libraries:

$$weight_{i} = \frac{n(hours_{i}) + n(days_{i}) + n(rating_{i}) + n(reviews_{i})}{N}$$

$$\frac{n(volume_{i}) + n(books_{i}) + n(annual\ visitors_{i})}{N}$$
Additional features:
BC Public Libraries Systems

Amenity Weight (Mass)

Unique trip score with weights:

(from origin $\emph{\textbf{i}}, o_i$, to destination $\emph{\textbf{j}}, d_j$,with Weights index $\emph{\textbf{i}}, \emph{\textbf{j}}$)

$$S_{o_i,d_j} = rac{(1 + weights_{index_j})}{\mu_{o_i,d_j} + 2\sigma_{o_i,d_j}}$$

Visualization

5. Results & Discussions

A Scalable Framework

Given that...

Home > Vancouver News

Vancouver ranks #3 in the world for quality of life

A recent survey has named Vancouver third in the world for quality of life in a three way tie with Auckland, New Zealand and Munich, Germany.

Mar 13, 2019 10:28 AM By: Elana Shepert

How does it fare regarding transit access to cultural amenities?

Scores:

Advantage:

- Account for uncertainty
- Incorporates amenity weights
 (& other non-time variables)
- Standardized

Disadvantage:

o Interpretability is non-existent

So what about interpretability?

Part I

Percentiles:

Advantage:

- Interpretability of relative local access
- Uniformity

Disadvantage:

- Information loss on true access
- Information loss on true differences

So what about interpretability?

Part II

Nearest Cultural Amenities are not far!

(< 30 min for 80% of people)

^{*}Assumes average traffic, no delays, missed busses, etc...

All Cultural Amenities... are quite far.

(> 1 hour for 70% of people)

Do the **time of the day**, the **day of the week** have impacts on **transit time**?

By subdivisions, times, days

day

Region Delta Port Coquitlam White Rock West Vancouver Surrey Pitt Meadows Langley Maple Ridge Coquitlam Richmond Port Moody Burnaby North Vancouver Vancouver New Westminster Population 100,000 200,000 300,000 400,000 500,000 600,000

By subdivisions, times, days

Region

- Delta
- Port Coquitlam
- White Rock
- West Vancouver
- Surrey
- Pitt Meadows
- Langley
- Maple Ridge
- Coquitlam
- Richmond
- Port Moody
- Purnahu
- Burnaby
- North Vancouver
- Vancouver
- New Westminster

Population

- 100,000
- 200,000
- 300,000
- 400,000
- 500,000
- 600,000

By subdivisions, times, days

How do **subdivisions** differ regarding to **transit** and **amenities**?

Different influences on subdivisions

Different influences on subdivisions

How well does transit <u>accessibility</u> meet the <u>needs</u> of the community?

Transit Efficiency

- How optimized is the transit network for cultural amenities?
- Efficiency =

how well resources for accessibility, match the needs for accessibility.

Transit Efficiency

Eff = norm_[-1, 1] (%ile Accessibility Score - %ile Transit Network Needs)

This way we can visualize areas on both ends of the error spectrum:

Transit Efficiency

Increased Efficiency

6. Dashboard Demo

"See what no person has seen before"

7. Conclusions

Conclusions

Developed a **Scalable framework** for computing
and visualizing transit
accessibility measures.

Identified areas of high and low cultural-transit accessibility by time, date, and amenity type using our deployed dashboard.

8. Limitations & Future Work

8. Limitations & Future Work

Amenity Weights

Weights are too similar in value (0.4 - 0.6), thus do not alter the shape of score distributions

Need for more objective data sources

Estimated Transit Time

Does not consider: traffic, bus delays, max capacity busses, road construction, etc.

Traffic Data

Incorporate traffic congestion data into accessibility model

Account for pinch-points within the traffic network

Acknowledgements

We would like to acknowledge the time and effort of our advisors

Joseph Kuchar

Bjenk Ellefsen

and to

All MDS faculty members

References

- Statistics Canada, Alasia, A., Newstead, N., Kuchar, J., & Radulescu, M. (2021, February). Measuring proximity to services and amenities: An experimental set of indicators for neighbourhoods and localities. https://www150.statcan.gc.ca/n1/pub/18-001-x/18-001-x2020001-eng.htm
- 2. Statistics Canada. (2017, November). Commuters using sustainable transportation in census metropolitan areas. https://www12.statcan.gc.ca/census-recensement/2016/as-sa/98-200-x/2016029/98-200-x2016029-eng.cfm
- 3. Lubitow, A., Rainer, J., & Bassett, S. (2017) Exclusion and vulnerability on public transit: experiences of transit dependent riders in Portland, Oregon, Mobilities, 12:6, 924-937, DOI: 10.1080/17450101.2016.1253816

Thank You

Additional Slides

The Data We Used

Data	Features	Source
General Transit Feed Specification (GTFS)	All transit network data (stop coordinates, stop times, bus routes, etc.)	TransLink Open API
Dissemination Blocks (Origins)	Unique block ID, latitude, and longitude of the city block's centroid	Census of Population (Statistics Canada)
Amenities (Destinations)	Unique destination ID, types, latitude, and longitude	The Open Database of Cultural and Art Facilities (ODCAF)
OpenStreetMap (OSM)	Urban street network data	openstreetmap.org
Geospatial Shapefile	Dissemination block unique ID, longitude/latitude polygon data	Census Cartographic Boundary File (Statistics Canada)
'Mass' and Importance Features on Amenities	Operating Hours/Days, Visitors, Ratings, Reviews; Total space, total volume	Google API and BC Public Libraries Systems

Transit Measures Density by Subdivision

How Amenity Weights Affect the Score

