

HamSCI and the 2017 Total Solar Eclipse

Nathaniel A. Frissell, W2NAF¹

Joshua D. Katz¹, Spencer W. Gunning¹, Joshua S. Vega¹, Andrew J. Gerrard¹,
Greg D. Earle², Magda L. Moses²,
Mary Lou West³, Philip J. Erickson⁴, Ethan S. Miller⁵,
Robert Gerzoff⁶, H. Ward Silver⁷, and the HamSCI Community

¹New Jersey Institute of Technology, K2MFF

²Virginia Tech

³Montclair State University

⁴MIT Haystack Observatory

⁵Johns Hopkins University Applied Physics Laboratory

⁶HamSCI Community

⁷American Radio Relay League

Outline

- I. What is Ham Radio & HamSCI?**
- II. Eclipse Experiments**
 - I. 2017 Total Solar Eclipse &
The Ionosphere**
 - II. Ham Radio Data Sources**
 - III. Observations**
- III. Summary & Conclusions**

Amateur/Ham Radio

- Hobby for Radio Enthusiasts
 - Communicators • Builders • Experimenters
- Wide-reaching Demographic, Technically Able
 - All ages & walks of life
 - Over 730,000 US hams [http://www.arrl.org/arrl-fact-sheet]
 - ~3 million World Wide

- Hobbyists routinely use HF-VHF transionospheric links.
- Often ~100 W into dipole antennas.

Frequency	Wavelength
1.8 MHz	160 m
3.5 MHz	80 m
7 MHz	40 m
10 MHz	30 m
14 MHz	20 m
18 MHz	17 m
21 MHz	15 m
24 MHz	12 m
28 MHz	10 m
50 MHz	6 m

Total Solar Eclipse

21 August 2017

Figure: W. Strickling, Wikipedia

HamSCI Eclipse Research Questions

- What are the temporal and spatial scales of eclipse-induced ionospheric effects?
- How does the eclipse affect HF propagation?

J. Sackerman, KC2ZFK

W. Engelke, AB4EJ

HF Propagation & The Ionosphere

15.0 MHz

BKS Beam 15

16 Nov 2015
0000 UT

10.0 MHz

BKS Beam 15

16 Nov 2015
0000 UT

Solar Eclipse QSO Party (SEQP)

- Ham Radio Contest-Like Event
- Generate a quasi-random dataset
- Point-to-point contact (QSO) data from *automatic* [RBN, PSKReporter, WSPRNet] and *manual* sources [Logs]

HamSCI
<http://hamsci.org>

frissell@njit.edu

SEQP Observations

RBN
reversebeacon.net

WSPRNet
wspnnet.org

PSKReporter
pskreporter.info

Observations from 21 August 2017 1400 – 2200 UT

Network	# Spots / QSOs
RBN	618,623
WSPRNet	630,132
PSKReporter	1,287,855
Participant Logs	31,151

Solar Eclipse QSO Party

- 593 parsed logs
- 31,151 QSOs
- 5,045 unique callsigns
- 656 4-char grid squares
- 81 DX Entities

(from logs submitted to hamscli.org)

Ham Radio Eclipse Data

21 Aug 2017 1400 UT - 21 Aug 2017 1405 UT
QSO/Spot Midpoints; 300.0 km Obscuration Alt

SEQP RBN Spots

RBN SEQP Spots by Band (Contiguous US TX and RX Only)

WE9V 14 MHz RBN Rx, Wisconsin

WE9V RBN Pairs
20 m Eclipse
21 Aug 2017 1400 UT - 21 Aug 2017 2159 UT

WE9V 14 MHz RBN Rx, Wisconsin

Ground Eclipse Times

Bristol, WI:

- Start partial: 1653 UT
- Max: 1818 UT
- End partial: 1940 UT

Clear drop in 20 meter propagation during temporary ‘nighttime’ conditions

WE9V RBN Pairs
20 m Eclipse
21 Aug 2017 1400 UT - 21 Aug 2017 2159 UT

7 MHz RBN: Great-Circle Range vs Obscuration

7 MHz

HamSCI
<http://hamsci.org>

N J I T

frissell@njit.edu

7 MHz RBN: Great-Circle Range vs Obscuration

7 MHz

HamSCI
<http://hamscli.org>

N J I T

frissell@njit.edu

14 MHz RBN: Great-Circle Range vs Obscuration

14 MHz

HamSCI
<http://hamsci.org>

N J I T

frissell@njit.edu

14 MHz RBN: Great-Circle Range vs Obscuration

14 MHz

HamSCI
<http://hamscli.org>

N J I T

frissell@njit.edu

RBN SNR and GPS TEC Waves

Summary & Conclusions

- **Ham Radio Science Citizen Investigation**

- An organization that allows university researchers to collaborate with the amateur radio community in scientific investigations.

- **2017 Solar Eclipse QSO Party**

- Number of HF Spots During Eclipse
 - Increases on 1.8 to 7 MHz.
 - Decreases on 14 MHz
- With increasing obscuration
 - 7 MHz path length increases
 - 14 MHz SNR decreases; second-hop propagation goes away.
- This shows temporary “night-like” propagation conditions of the ionosphere.

Thank you!

THIS WORK WAS SUPPORTED BY NSF
GRANT AGS-1552188/479505-19C75.

References

Afraimovich, E.L., E.A. Kosogorov, O.S. Lesyuta (2002), Effects of the August 11, 1999 total solar eclipse as deduced from total electron content measurements at the GPS network, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 64, Issue 18, Pages 1933-1941, ISSN 1364-6826, [http://dx.doi.org/10.1016/S1364-6826\(02\)00221-3](http://dx.doi.org/10.1016/S1364-6826(02)00221-3).

Bamford, R. (2000), Radio and the 1999 UK Total Solar Eclipse, Rutherford Appleton Laboratory, Chilton, Didcot, UK.

