Summary

- Chemical industries involve at least one chemical reaction → chemical reactions take place in a REACTOR
- Mole/Species Balances in different reactors
- Basics of Reactor Design design equation
- Definition of conversion for: (i) Batch and Flow systems, and (ii) single and multiple reactors
- Design equations in terms of conversion
- Levenspiel plots for single and multiple reactors

Reaction rates revisited

The rate is

- > a function of temp, press, conc and type of catalyst (if used)
- > an algebraic equation, e.g., $r_j = -k_i \cdot C_i C_j^2$, this is called the rate law
 - Other forms of the equation are possible
- > not a differential equation, e.g., rate is not $\frac{dC_A}{dt}$
 - $\frac{dC_A}{dt} = -r_A$ used to calculate the rate for certain conditions
- > Knowing the rate law is important in the design equation
 - The rate in terms of conversion, r = f(C) = g(X) can be used to size reactors

Basic definitions in reactions and reaction rate laws

- ▶ Homogeneous reactions, $CH_3CHO(A) \rightarrow CH_4 + CO$
 - o Involves only one phase, $-r_A = k_A$. $C_A^{3/2}$
- ▶ Heterogeneous reactions, $Cumene(C) \rightarrow Benzene(B) + propene(P)$
 - More than 1-phase, reaction often occurs at the interface,

$$-r_A = \frac{k.C_C}{1 + K_B C_B + K_C C_C}$$

- ▶ Irreversible reactions, $A + B \rightarrow P$
 - Occurs in one direction only till reactants are exhausted
- ▶ Reversible reactions, $A + B \rightleftharpoons P1 + P2$
 - Proceeds in either direction depending on the conc of reactants and products relative to equilibrium conc

Some more basics about reactions

- ► Molecularity of a reaction
 - number of atoms, ions or molecules involved (colliding) in a reactions step
 - Unimolecular, Bimolecular etc
- ▶ Reaction Order, $2A + B \rightarrow P$, $-r_A = k_A \cdot C_A^{\alpha} \cdot C_B^{\beta}$, order of A, B, & overall
 - Refers to the power to which the conc are raised in the rate law
- ► Elementary reactions, $O^* + CH_3OH \rightarrow CH_3O^* + OH^*$
 - \circ Are those that involve a single step, $-r_{O*} = k. C_{O*}. C_{CH3OH}$
- ▶ Reactions following an elementary rate law, $2NO + O_2 \rightarrow 2NO_2$
 - \circ Reaction order agrees with the stoichio. coeff., $-r_A = k_A$. C_{NO}^2 . C_{O2}

Rate laws can be non-elementary

- ▶ For reaction: $2A + B \rightarrow 3C$
- ▶ Reaction follows non-elementary rate law: $-r_A = k_A$. C_A^2
 - 2nd order in A
 - Zero order in B
 - Overall order 2
- Also, $-r_B = k_B \cdot C_A^2$ and $r_C = k_C \cdot C_A^2$
- The relationship between k_A , k_B and k_C is obtained from $\frac{r_A}{-2} = \frac{r_B}{-1} = \frac{r_C}{3}$
- ▶ Thus, $k_A = 2. k_B = \frac{2}{3} k_C$

Reaction rate for each species is related by stoichiometry

- ► For a reaction, where A reacts with B with a stoichiometric of aA + bB = cC + dD
- ▶ The rates of disappearance and formation of species is given by

$$\frac{r_A}{-a} = \frac{r_B}{-b} = \frac{r_C}{c} = \frac{r_D}{d}$$
 also $\frac{\Delta n_A}{-a} = \frac{\Delta n_B}{-b} = \frac{\Delta n_C}{c} = \frac{\Delta n_D}{d} = d\epsilon$

- ▶ For a rate law such as $-r_A = k_A$. C_A^a . C_B^b
 - $_{\circ}$ Temperature effect of the reaction rate is given by k_A (rate constant)
 - Temperature and concentration terms can be separated
- ▶ For a rate law such as $-r_A = \frac{k_A.C_A}{1+K_BC_B+K_CC_C}$
 - $_{\circ}$ Temperature effects given by k_A and $K_{B \ or \ C}$ (equilibrium constant)
 - o Temperature and concentration terms cannot be separated

For gas-solid catalyzed reactions the rate is often given in terms of partial pressures

▶ For example,
$$C_6H_5CH_3(T) + H_2 \xrightarrow{Catalyst} C_6H_6(B) + CH_4$$

► The rate of toluene disappearance is given by $-r_T' = \frac{kP_{H2}P_T}{1+K_PP_P+K_TP_T}$

$$-r_T' = \frac{kP_{H2}P_T}{1 + K_BP_B + K_TP_T}$$

- ▶ Where, k is the rate constant having units of $\frac{moles\ of\ toluene}{(kg-cat).(s).(kPa)^2}$ and
- \blacktriangleright K_B and K_T are equilibrium (adsorption) constants, with units of $(kPa)^{-1}$

For reversible reactions, rate eqn must include backward/reverse rate

- ▶ At equilibrium the rate of reaction is equal to zero for all species
- ▶ For $aA + bB \rightleftharpoons cC + dD$ at equilibrium the conc. of the species are related by the equilibrium constant $K_C = \frac{c_{Ce}^c c_{De}^d}{c_{Ae}^a c_{Be}^b}$
- ► To write the rate law for a reversible elementary reaction consider $A + 2B \rightleftharpoons 3C$ having: forward rate constant of k_A and backward rate constant of k_A
- ▶ Net rate of disappearance of A is given by $-r_A = k_A$. $C_A C_B^2 k_{-A} C_C^3$

Rate eqn must reduce to equilibrium relations

▶ Net rate of disappearance of A for $A + 2B \rightleftharpoons 3C$ is given by

$$-r_A = k_A \cdot C_A C_B^2 - k_{-A} C_C^3 = k_A \cdot \left[C_A C_B^2 - \frac{C_C^3}{k_A/k_{-A}} \right]$$

$$-r_A = k_A \left[C_A C_B^2 - \frac{C_C^3}{K_e} \right]$$

- $ightharpoonup K_e = {}^{k_A}\!/_{k_{-A}}$ and at equilibrium $C_A = C_{Ae}$; $C_B = C_{Be}$; $C_C = C_{Ce}$
- ▶ Furthermore, $r_A = 0$ and so are r_B and r_C
 - o Thus, $K_e = \frac{c_{Ce}^3}{c_{Ae}c_{Be}^2}$ → equilibrium constant in terms of concentration for reaction A + 2B \rightleftharpoons 3C Relationship between $k_A \& k_B$?