Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 8. Tydzień rozpoczynający się 27. kwietnia

Zadania

1. O zmiennej losowej X wiadomo, że

$$P(X > t) = \alpha e^{-\lambda t} + \beta e^{-\mu t}, \ t \geqslant 0.$$

 $\alpha + \beta = 1, \ \alpha, \beta \geqslant 0, \ \lambda, \mu > 0.$ Obliczyć wartość oczekiwaną X.

[Do zadań 2–4] Zmienna losowa X_n ma gęstość $f_n(x) = \frac{c_n}{x^{n+1}}$ dla $x \in [c_n, \infty)$.

- 2. Wyznaczyć c_n oraz $E(X_n)$.
- 3. Wyznaczyć gęstość zmiennej $Z_n = \ln X_n$.
- 4. Dla jakich wartości m istnieje wartość oczekiwana $E(X_n^{m+1})$?
- 5. X jest ciągłą zmienną losową określoną na przedziale (0, a). Wykazać, że $E(X) = \int_0^a (1 F(t)) dt$.
- 6. a). Dane są gęstości $\{f_i\}_{i=1}^n$ oraz ciąg skalarów $\{\alpha_i\}_{i=1}^n$ takich, że $\sum_{i=1}^n \alpha_i = 1$, $\alpha_i \ge 0$. Wykazać, że

 $f(x) = \sum_{i=1}^{n} \alpha_i f_i(x)$ jest gęstością pewnej zmiennej losowej.

b). Niezależne zmienne Y_1,Y_2 mają rozkład jednostajny na [0,1]. Wyznaczyć gęstość zmiennej $Z=\frac{Y_1+Y_2}{2}$.

 $[\mbox{\sc Do}\mbox{\sc zada}\mbox{\sc f}$ 7–8] Zmienna losowa X podlega rozkładowi normalnemu z parametrami jak poniżej:

$$N \sim \left(\begin{bmatrix} 1 \\ 4 \end{bmatrix}, \begin{bmatrix} 38 & -5 \\ -5 & 4 \end{bmatrix} \right).$$

- 7. Niech $Y_1 = 3X_1 + X_2$, $Y_2 = -4X_1 + 2X_2$. Znaleźć rozkład zmiennej Y.
- 8. Niech $Y_1=2X_1-3X_2,\ Y_2=4X_1+2X_2.$ Jaka jest wartość współczynnika korelacji ρ_{y_1,y_2} ?

[Do zadań 9–11] Zakładamy, że zmienne X_1, X_2, X_3 są niezależne i mają ten sam ciągły rozkład o dystrybuancie F(x) i gęstości f(x). Tworzymy nowe zmienne losowe, mianowicie: $X_{(1)} = \min\{X_1, X_2, X_3\}, X_{(2)}$ to druga co do wielkości wartość, $X_{(3)} = \max\{X_1, X_2, X_3\}$.

9. Udowodnić, że $f_{(2)}(x) = 6 \cdot F(x) \cdot (1 - F(x)) \cdot f(x)$.

[Do zadań 10–11] Dodatkowo zakładamy, że $X_k \sim \mathrm{U}[0,a], \ k=1,2,3.$

10. Niech $Y_1=\frac{X_1+X_2+X_3}{3},\ Y_2=X_{(2)},\ Y_3=\frac{X_{(1)}+X_{(3)}}{2}.$ Udowodnić, że wartości oczekiwane są takie same: $\mathrm{E}\left(Y_1\right)=\mathrm{E}\left(Y_2\right)=\mathrm{E}\left(Y_3\right)=\frac{a}{2}.$

WSK.: $\mathrm{E}\left(Y_{1}\right)$ z własności wartości oczekiwanej, $\mathrm{E}\left(Y_{2}\right)$ – całkowanie, $Y_{3}=\frac{3Y_{1}-Y_{2}}{2}$.

11. Wykazać, że: $V(Y_1) = \frac{a^2}{36}, V(Y_2) = \frac{a^2}{20}.$

Wsk.: Wariancja sumy niezależnych zmiennych losowych, $\mathrm{E}(Y_2^2)$ poprzez całkowanie.

12. **(E2)** Niech (X,Y) oznacza wybrany losowo punkt na płaszczyźnie. Załóżmy, że współrzędne X i Y są niezależne i podlegają rozkładowi N(0,1). Od zmiennej (X,Y) przechodzimy do zmiennej (R,Θ) , gdzie R i Θ są współrzędnymi biegunowymi punktu (X,Y). Wykazać, że gęstość zmiennej (R,Θ) określona jest wzorem

$$g(r, \Theta) = \frac{1}{2\pi} r \cdot \exp\left\{-\frac{r^2}{2}\right\}, \text{ gdzie } 0 < \Theta < 2\pi, \ 0 < r < \infty.$$

13. (E2) Znaczenie zmiennej (X,Y) niech będzie takie, jak w poprzednim zadaniu. Niech

$$D = R^2 = X^2 + Y^2, \quad \Theta = \tan^{-1} \frac{Y}{X}.$$

- (a) Udowodnić, że gęstość zmiennej (D,Θ) to: $f(d,\Theta) = \frac{1}{2} \exp\left\{-\frac{d}{2}\right\} \frac{1}{2\pi}$, gdzie $0 < d < \infty$, $0 < \Theta < 2\pi$.
- (b) Sprawdzić czy zmienne D i Θ są niezależne.
- (c) Jaki rozkład ma zmienna D?

Witold Karczewski