Digital Electronic Systems

Degree in Electronic Engineering and Industrial Automation) 🚊 🖟 de Alcalá

Laboratory Project 2025-26

Development of a remote-controlled rolling platform

Index

- Introduction
- Specs
- Material
- Planning
- Assessment

Introduction

- ☐ Design of a small mobile robot with differential traction
 - Robot with two independent DC motors (one for each wheel)
 - Capable of making straight paths and 90° turns
 - Optionally make non-holonomic movements, non-straight turns, reverse movement
 - Able to measure route traveled
 - Battery charge status monitoring (power supply to motors)
 - Generation of audible signal with advancing movements
 - Optionally generate variations (time-intermitence and tone) in the acoustic signal
 - Controlled from a serial terminal
 - ☐ Optionally from Bluetooth connection
 - ☐ Optionally measuring ambience variables from a serial port (SPI/I2C)
 - Presentation of the status on a display

Specifications (I)

Block diagram

Specifications (II)

a) Loading the sequence of movements via UART:

A string of characters is sent from the terminal to the PC:

Vxx**A**90**I**45**D**60[0x0D]

Meaning of each field:

V: Percentage of maximum speed desired (xx: %, with 2 digits)

A: Move forward (xx:cm, with 2 digits)

D: 90º turn to the right

I: 90º turn to the left

b) Execution of movement:

- The robot waits for a push button to be pressed (Key 1 or Key 2 of the Mini-DK2)
 to execute a loaded sequence of movements, repeating it with each press
- If no sequence has been loaded: mobile stopped and display indication
- Optional: Make non-holonomic movements, non-straight turns, reverse movement
- Optional: The motion sequence can be sent via a Bluetooth port

Specifications (III)

c) Analogue measurements:

The supply voltage of the H-bridge that drives the motors is acquired

d) Analogue generation:

- Generation acoustic alarm indicating forward movement
- Optional: Variable intermitent acoustic signal

V60A90[0x0D]	Beep	Silence	Beep	Silence	Beep
	(500ms)	(500ms)	(500ms)	(500ms)	(500ms)
	(2001113)	(500115)	(Silloot)	(500113)	(Sellidae)

e) Mini-DK2 display monitoring:

- Battery voltage
- If the mobile robot has no sequence loaded it will show "WAIT"
- Once the sequence is loaded, it will be displayed, as well as the message "PUSH BUTTON"
- Once the movement has started, the path advanced will be displayed (eg. "xx cm", "Turn R COMPLETED", "40cm COMPLETED"...)

f) Optional: Ambience measurement

Using SPI/I2C communication module

Specifications (IV)

A mechanical chasis with 2 DC motors and a free wheel

Angle brackets required for platform mounting

Free Wheel (Stability)

Material

Necessary material

18650 batteries (3.7 V)

https://es.aliexpress.com/item/1005005129286209.html

DC Motor Driver L298N

https://es.aliexpress.com/item/32686434452.html https://es.aliexpress.com/item/32923423569.html

https://es.aliexpress.com/item/1005004177699678.html

https://es.aliexpress.com/item/1005001279982165.html

Material

Auxiliary material

Connection cables

http://es.aliexpress.com/item/Free-Shipping-40pcs-in-Row-Dupont-Cable-20cm-2-54mm-1pin-1p-1p-Female-to-Male/1864746390.html

 $\frac{\text{http:// www.ebay.es/itm/10x-40-Pin-Male-Header-0-1-2-54mm-Tin-Square-Breadboard-Headers-Strip-USA-/150838016410?pt=LH_DefaultDomain_0\&hash=item231ea5799a\&_uhb=1$

Planning

HW/SW development	Weeks	
Designing the system. Block diagram indicating optimal LPC1768 resources use		
in Mini-DK2. Keil environment for programming and debugging.		
1 st Millestone: Driving motors. Generation of PWM signals to move motors in		
different directions. Non-holonomic movements, non-straight turns, reverse movement.	3	
2 nd Millestone: Measuring robot movements. Distance and path monitoring		
based on the encoder reading with TIMERs and GPIOs.	2	
3 rd Millestone: Analog inputs/outputs. ADC configuration and reading for		
monitoring power supply from battery. Generation of acoustic alarm with DAC.	2	
Variable acoustic signal.		
4 th Millestone: Asynchronous Serial Communications. Programming and		
monitoring the sequence of movements through the UARTO. Movements	2	
sequence sent via Bluetooth. Measuring ambience variables from a serial port.		
Software integration.	2	

Evaluation (I)

- The **evaluation of the practical part of the subject** (PL):
 - It will be carried out using a continuous evaluation method (with the exception of those final evaluation requests accepted according to the regulations)
 - It will have a weight of 40% of the total grade for the subject
 - > It will be based on the development of a global practice (PBL)
- □ The continuous evaluation until the beginning of the integration will be graded through
 4 MILESTONES (hitos)
- To pass the project evaluation, it is a necessary condition to have completed the functionality of the milestones

Evaluation (II)

Tools:

- 1. Continuous evaluation
- 2. Final evaluation with oral presentation of the project
- 3. Project report
- Qualification taking into account the 3 tools:
 - Completion of the compulsory sections will provide a maximum score of 70% of the PL (assessment instrument of the subject in the Teaching Guide)
 - Optional functions will provide a maximum score of 30% of the PL (10% each):
 - Non-holonomic movements, non-straight turns, reverse movement
 - Variable acoustic signal
 - Movement sequence sent via Bluetooth
 - Measuring ambience variables from a serial port
 - Other improvements to be agreed with professors
 - Obtaining the maximum score at each will depend on the degree of achievement, correct functioning, quality of memory, clarity of exposition, etc.

DOUBTS / QUESTIONS