1

Assignment 17

Vimal K B - AI20MTECH12001

Download the latex-tikz codes from

 $https://github.com/vimalkb007/EE5609/tree/master/Assignment_17$

1 Problem

(UGC-june2015,70):

An $n \times n$ complex matrix **A** satisfies $\mathbf{A}^k = \mathbf{I}_n$, the $n \times n$ identity matrix, where k is a positive integer > 1. Suppose 1 is not an eigenvalue of **A**. Then which of the following statements are necessarily true?

- 1) A is diagonalizable.
- 2) $\mathbf{A} + \mathbf{A}^2 + ... + \mathbf{A}^{k-1} = 0$, the $n \times n$ zero matrix.
- 3) $tr(\mathbf{A}) + tr(\mathbf{A}^2) + ... + tr(\mathbf{A}^{k-1}) = -n$
- 4) $\mathbf{A}^{-1} + \mathbf{A}^{-2} + \dots + \mathbf{A}^{-(k-1)} = -\mathbf{I}_n$

2 DEFINITION AND RESULT USED

Minimal Polynomial	The minimal polynomial $\mu_{\mathbf{A}}$ of an $n \times n$ matrix \mathbf{A} over a field \mathbf{F} is the monic polynomial P over the field \mathbf{F} of least degree such that $P(\mathbf{A}) = 0$. Any other polynomial Q with $Q(\mathbf{A}) = 0$ is polynomial multiple of $\mu_{\mathbf{A}}$.
Eigen Value and Minimal Polynomial	If λ is an eigen value of matrix A then λ will also be the root of the minimal polynomial $\mu_{\mathbf{A}}$.
Diagonalizability and Eigen Values	If A is an $n \times n$ matrix with n distinct eigenvalues, then A is diagonalizable
Polynomial and it's Zeros	If a polynomial is of form x^k-1 , it can be written as $x^k-1=(x-1)(1+x+x^2++x^{k-1})$ The zeros to the given polynomial will be of the format $e^{\frac{n2\pi i}{k}} \qquad \text{for } 0 \leq n < k.$ From this we can see that all the roots of the equation x^k-1 will be distinct.

3 Solution

Inference from the Given Data	We are given that
the Given Bata	$\mathbf{A}^k = \mathbf{I}_n$
	This can be written as
	$\mathbf{A}^k - \mathbf{I}_n = 0$
	This resembles the polynomial equation of the form $x^k - 1$, So we further write the above equation as
	$\implies \mathbf{A}^k - \mathbf{I}_n = 0$
	$\implies (\mathbf{A} - \mathbf{I}_n)(\mathbf{I}_n + \mathbf{A} + \mathbf{A}^2 + \dots + \mathbf{A}^{k-1}) = 0$
	Let $\mu_{\mathbf{A}}$ be the minimal polynomial of \mathbf{A} . It is given that 1 is not an eigenvalue of \mathbf{A} . That means $\mu_{\mathbf{A}}$ cannot divide $(\mathbf{A} - \mathbf{I}_n)$.
	But $\mu_{\mathbf{A}}$ will be able to divide $(\mathbf{I}_n + \mathbf{A} + \mathbf{A}^2 + + \mathbf{A}^{k-1})$ as it is a polynomial multiple of \mathbf{A}
	i.e. $(\mathbf{I}_n + \mathbf{A} + \mathbf{A}^2 + + \mathbf{A}^{k-1})$ is polynomial multiple of $\mu_{\mathbf{A}}$
	$\implies \mathbf{I}_n + \mathbf{A} + \mathbf{A}^2 + \dots + \mathbf{A}^{k-1} = 0$
	Since we know that $1 + x + x^2 + + x^{k-1}$ will have distinct roots which are not equal to 1.
Option 1	We were able to find that $\implies \mathbf{I}_n + \mathbf{A} + \mathbf{A}^2 + + \mathbf{A}^{k-1}$ is a polynomial multiple of $\mu_{\mathbf{A}}$ with $k-1$ distinct roots. Which implies that $\mu_{\mathbf{A}}$ will also have distinct roots.
	Since, there are distinct roots to the minimal polynomial, it implies that A will be diagonalizable.
	∴ this statement is True .
Option 2	We know that
	$\mathbf{I}_n + \mathbf{A} + \mathbf{A}^2 + \dots + \mathbf{A}^{k-1} = 0$
	$\implies \mathbf{A} + \mathbf{A}^2 + \dots + \mathbf{A}^{k-1} = -\mathbf{I}_n$
	∴ this statement is False .
Option 3	We know that

	$\mathbf{I}_n + \mathbf{A} + \mathbf{A}^2 + \dots + \mathbf{A}^{k-1} = 0$
	$\implies \mathbf{A} + \mathbf{A}^2 + \dots + \mathbf{A}^{k-1} = -\mathbf{I}_n$
	Taking trace() on both sides, we get
	$\implies tr(\mathbf{A} + \mathbf{A}^2 + \dots + \mathbf{A}^{k-1}) = tr(-\mathbf{I}_n)$
	$\implies tr(\mathbf{A}) + tr(\mathbf{A}^2) + + tr(\mathbf{A}^{k-1}) = tr(-\mathbf{I}_n)$ (: trace() is a linear function)
	$\implies tr(\mathbf{A}) + tr(\mathbf{A}^2) + \dots + tr(\mathbf{A}^{k-1}) = -n$
	: this statement is True .
Option 4	We know that
	$\mathbf{I}_n + \mathbf{A} + \mathbf{A}^2 + \dots + \mathbf{A}^{k-2} + \mathbf{A}^{k-1} = 0$
	Multiply the whole equation with $A^{-(k-1)}$. We get
	$\mathbf{A}^{-(k-1)} + \mathbf{A}^{1-(k-1)} + \dots + \mathbf{A}^{k-2-(k-1)} + \mathbf{A}^{k-1-(k-1)} = 0$
	$\implies \mathbf{A}^{-(k-1)} + \mathbf{A}^{1-(k-1)} + \dots + \mathbf{A}^{-1} + \mathbf{I}_n = 0$
	$\implies \mathbf{A}^{-1} + \mathbf{A}^{-2} + \dots + \mathbf{A}^{-(k-1)} = -\mathbf{I}_n$
	: this statement is True .
Conclusion	From our observation we see that
	Options 1), 3) and 4) are True.

4 Example

Complex Matrix Example	Let the complex matrix $\mathbf{A} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$		
	When $k = 4$, we get		
		$\mathbf{A}^4 = \mathbf{I}_2$	
		The eigen values of the matrix A are $-i$ and $+i$.	
		Since, there are two distinct eigen values for the matrix A , A is diagonalizable.	

Now checking the equation for $\mathbf{A} + \mathbf{A}^2 + ... + \mathbf{A}^{k-1}$

$$\mathbf{A} + \mathbf{A}^2 + \mathbf{A}^3 \qquad (\because \text{ here } k = 4)$$

$$\implies \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$$

$$\implies \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -\mathbf{I}_2$$

Now checking the equation for $tr(\mathbf{A}) + tr(\mathbf{A}^2) + ... + tr(\mathbf{A}^{k-1}) = -n$

$$tr(\mathbf{A}) + tr(\mathbf{A}^{2}) + tr(\mathbf{A}^{3}) \qquad (\because \text{ here } k = 4)$$

$$\implies tr \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} + tr \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} + tr \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}$$

$$\implies 0 + (-2) + 0 = -2$$

Now checking the equation for $\mathbf{A}^{-1} + \mathbf{A}^{-2} + ... + \mathbf{A}^{-(k-1)} = -\mathbf{I}_n$

$$\mathbf{A}^{-1} + \mathbf{A}^{-2} + \mathbf{A}^{-3} \qquad (\because \text{ here } k = 4)$$

$$\implies \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

$$\implies \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -\mathbf{I}_2$$