Trabalho - Amplificador em Configuração Inversora e em Configuração Não-Inversora

Prof. Tiago Oliveira Weber

2018

1 Objetivos

1.1 Objetivo Geral

• Projetar um amplificador em configuração inversora e não-inversora utilizando amplificador operacional como bloco construtivo.

1.2 Objetivos Parciais

- Compreender as características de um amplificador operacional e as configurações inversora e não-inversora;
- Utilizar modelo de amplificador operacional comercial em ambiente de simulação (utilizando qualquer simulador elétrico);
- Comparar resultados simulados e calculados;

2 Descrição

Quando o exercício não especificar um ganho para o amplificador operacional, assuma A_{VO} (ganho do amplificador de tensão representando o amplificador operacional) = $1 \cdot 10^6 \text{ V/V}$.

2.1 Parte I - Configuração Inversora

 Passo 1: Projete um amplificador em configuração inversora que tenha ganho de -10 V/V. Nesse passo, você deverá escolher a resistência R1 e R2 da configuração. • Passo 2: Utilize como bloco construtivo um amplificador de tensão com $R_{in} = \infty$, $R_{out} = 0$ e A_{VO} (ganho do amplificador de tensão representando o amplificador operacional) dado pela tabela a seguir. Preencha a tabela abaixo com resultados calculados e simulados. Utilize na entrada uma tensão de 1V. Assuma que Vx é a tensão na entrada inversora do Opamp. Discuta os resultados levando em consideração o conceito de curto-circuito virtual. Mostre como fez o cálculo da coluna de "Ganho (calculado)".

A_{VO}	Vx (calculado)	Vx (simulado)	Ganho (calculado)	Ganho (simulado)
100000 (V/V)				
$10000 \; (V/V)$				
$1000 \; (V/V)$				
$100 \; (V/V)$				
10 (V/V)				
1 (V/V)				

- \bullet Passo 3: Calcule e simule a resistência de entrada $(\frac{V_{in}}{I_{in}})$ para seu circuito.
- Passo 4: Suponha que R1 é o primeiro resistor na entrada do sinal e R2 é o resistor na realimentação do amplificador. Assuma que R2 = 10k, R1 = 1k e A_{V0} (ganho do amplificador de tensão) = 100000. Qual é a resistência de entrada do circuito?
- Passo 5: Projete um amplificador com a configuração inversora utilizando um amplificador de tensão ideal. A especificação é ter um ganho de -100 e uma resistência de entrada maior que $1 \cdot 10^6$ ohms. Qual deverá ser R1 e R2? Isso é factível? Por quê?
- Passo 6: Procure um amplificador operacional disponível comercialmente no Brasil. Encontre no site do fabricante o modelo SPICE que descreve o amplificador. Simule o circuito que você projetou no passo 1 utilizando este amplificador operacional e preencha os valores da tabela abaixo. Observando a configuração inversora, o datasheet do amplificador operacional e/ou seu modelo SPICE, discuta os resultados.

Parâmetro	Calculado (ideal)	Simulado	Erro $(\%)$
Ganho			
R_{in}			
R_{out}			

2.2 Parte 2 - Configuração Não-Inversora

- Passo 1: Projete um amplificador em configuração não-inversora que tenha ganho de 10 V/V. Nesse passo, você deverá escolher a resistência R1 e R2 da configuração.
- Passo 2: Utilize como bloco construtivo um amplificador de tensão com $R_{in} = \infty$, $R_{out} = 0$ e A_{VO} (ganho do amplificador de tensão) dado pela tabela a seguir. Preencha a tabela abaixo com resultados calculados e simulados. Utilize na entrada uma tensão de 1V. Assuma que Vx é a tensão na entrada inversora do Opamp. Discuta os resultados levando em consideração o conceito de curto-circuito virtual. Mostre como fez os cálculos.

$\overline{A_{VO}}$	Vx (calculado)	Vx (simulado)	Ganho (calculado)	Ganho (simulado)
100000 (V/V)				
$10000 \; (V/V)$				
$1000 \; (\mathrm{V/V})$				
$100 \; (V/V)$				
10 (V/V)				
1 (V/V)				

- Passo 3: Calcule e simule a resistência de entrada $(\frac{V_{in}}{I_{in}})$ para seu circuito.
- Passo 4: Suponha que R1 é o resistor conectado ao terra e R2 é o resistor na realimentação do amplificador. Assuma que R2 = 9k, R1 = 1k e A_{VO} (ganho do amplificador de tensão) = 100000. Qual é a resistência de entrada do circuito?
- Passo 5: Projete um amplificador com a configuração não-inversora utilizando um amplificador de tensão ideal. A especificação é ter um ganho de 100 e uma resistência de entrada maior que 1·10⁶ ohms. Qual deverá ser R1 e R2? Isso é factível? Por quê?
- Passo 6: Procure um amplificador operacional disponível comercialmente no Brasil. Encontre no site do fabricante o modelo SPICE que descreve o amplificador (pode ser o mesmo selecionado para a parte 1 do trabalho ou outro). Simule o circuito que você projetou no passo 1 utilizando este amplificador operacional e preencha os valores da tabela abaixo. Observando a configuração não-inversora, o datasheet do amplificador operacional e/ou seu modelo SPICE, discuta os resultados.

Parâmetro	Calculado (ideal)	Simulado	Erro (%)
Ganho			
R_{in}			
R_{out}			