第7回 多変量時系列モデルの定式化と推定(7.4.1)

村澤 康友

2023年11月6日

今日の	のポイント		3.2 3.3	共分散定常性	3
			3.4	VAR(1) 過程(p. 224)	3
1.	試行の結果によって値が決まる N 次元ベクトルの列を N 変量確率過程という.		3.5	VAR(p) 過程(p. 225)	4
2.	$\mathrm{cov}(\pmb{y}_t,\pmb{y}_{t-s})$ を $\{\pmb{y}_t\}$ の s 次の自己共分		4	VAR 予測	4
	散行列という. $\{y_t\}$ の自己共分散行列関		4.1	VAR モデルの推定(p. 225)	4
	数は、任意の時点差 s について $\Gamma(s) :=$		4.2	次数選択	4
	$cov(\boldsymbol{y}_t, \boldsymbol{y}_{t-s}).$		4.3	最適予測	4
3.	p 次の VAR 過程は,任意の t について		4.4	1 期先予測	4
	$m{\Phi}(\mathbf{L})(m{y}_t - m{\mu}) = m{w}_t$. ただし $m{\Phi}(\mathbf{L})$ はラグ		4.5	h 期先予測	5
4.	多項式で $\{ m{w}_t \}$ は WN. VAR モデルは各式を OLS 推定する. 共		5	今日のキーワード	5
	通のラグ次数 p はモデル選択基準(AIC・SBIC・HQC)で選ぶ.		6	次回までの準備	5
)	1 行列		
目次			1.1 行列とベクトル		
1	行列	1	定義 1. $m \times n$ 行列は		
1.1		1		$\begin{bmatrix} a_{1,1} & \dots & a_{1,n} \end{bmatrix}$	
1.2	ベクトルの内積	1		$m{A} := egin{bmatrix} a_{1,1} & \dots & a_{1,n} \ dots & & dots \ a_{n,n} & & dots \end{bmatrix}$	
1.3		2		$\begin{bmatrix} a_{m,1} & \dots & a_{m,n} \end{bmatrix}$	
1.4		2	注 1. 4	$4 := [a_{i,j}]$ とも書く.	
1.5	正方行列	2		1 imes n 行列を(n 次元)行ベクトルという	う.
2	確率ベクトル	2	定美 3	. n×1 行列を (n 次元)列ベクトル という	う
2.1	平均ベクトル	2	AC 332 0 4		٠.
2.2	分散共分散行列	3	1.2	ジクトルの内積	
2.3	相関係数行列	3	$oldsymbol{x},oldsymbol{y}$	を n 次元列ベクトルとする $.$	
2.4	相互共分散と相互相関	3	定義 4.	. x と y の 内積 は	

3 VAR 過程

 $(oldsymbol{x},oldsymbol{y}) := \sum_{i=1}^n x_i y_i$

注 2. $x \cdot y$, x'y とも書く.

1.3 行列の演算

A, B を行列とする.

定義 5. $m \times n$ 行列 A, B の各 (i, j) 成分について $a_{i,j} = b_{i,j}$ なら $A \ge B$ は 等しい という.

定義 6. $m \times n$ 行列 A, B の和は

$$A + B := [a_{i,j} + b_{i,j}]$$

定義 7. スカラー α と A のスカラー積は

$$\alpha \mathbf{A} := [\alpha a_{i,j}]$$

定義 8. $l \times m$ 行列 \boldsymbol{A} と $m \times n$ 行列 \boldsymbol{B} の積は

$$AB := [(\boldsymbol{a}_{i,.}, \boldsymbol{b}_{.,i})]$$

注 3. 一般に $AB \neq BA$. そもそも $l \neq n$ ならBA は定義できない.

定義 9. A の転置は

$$A' := [a_{i,i}]$$

定理 1.

$$(A+B)' = A' + B'$$
$$(AB)' = B'A'$$

証明. 省略.

1.4 行列と連立1次方程式

n 個の未知変数 x_1, \ldots, x_n をもつ m 本の連立 1 次方程式は

$$a_{1,1}x_1 + \dots + a_{1,n}x_n = b_1$$

$$\vdots$$

$$a_{m,1}x_1 + \dots + a_{m,n}x_n = b_m$$

次の行列・ベクトルを定義する.

$$m{A} := egin{bmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{bmatrix}, \quad m{x} := egin{bmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 $m{b} := egin{bmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$

連立1次方程式は

$$Ax = b$$

1.5 正方行列

定義 10. $n \times n$ 行列を n 次正方行列という.

定義 11. (n次) 単位行列は

$$I_n := \begin{bmatrix} 1 & & 0 \\ & \ddots & \\ 0 & & 1 \end{bmatrix}$$

2 確率ベクトル

2.1 平均ベクトル

x を n 次元確率ベクトルとする.

定義 12. x の平均ベクトルは

$$\mathbf{E}(\boldsymbol{x}) := \begin{pmatrix} \mathbf{E}(x_1) \\ \vdots \\ \mathbf{E}(x_n) \end{pmatrix}$$

定理 2 (期待値の線形性). 任意の $A \in \mathbb{R}^{m \times n}$ と $b \in \mathbb{R}^m$ について

$$E(Ax + b) = AE(x) + b$$

証明.

$$E(\mathbf{A}\mathbf{x} + \mathbf{b}) = E\left(\begin{pmatrix} \mathbf{a}_{1,.}\mathbf{x} \\ \vdots \\ \mathbf{a}_{m,.}\mathbf{x} \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}\right)$$

$$= E\left(\begin{pmatrix} \mathbf{a}_{1,.}\mathbf{x} + b_1 \\ \vdots \\ \mathbf{a}_{m,.}\mathbf{x} + b_m \end{pmatrix}\right)$$

$$= \begin{pmatrix} E(\mathbf{a}_{1,.}\mathbf{x} + b_1) \\ \vdots \\ E(\mathbf{a}_{m,.}\mathbf{x} + b_m) \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{a}_{1,.} E(\mathbf{x}) + b_1 \\ \vdots \\ \mathbf{a}_{m,.} E(\mathbf{x}) + b_m \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{a}_{1,.} E(\mathbf{x}) \\ \vdots \\ \mathbf{a}_{m,.} E(\mathbf{x}) \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

$$= \mathbf{A} E(\mathbf{x}) + \mathbf{b}$$

2.2 分散共分散行列

定義 13.x の分散共分散行列は

$$var(\boldsymbol{x}) := E((\boldsymbol{x} - E(\boldsymbol{x}))(\boldsymbol{x} - E(\boldsymbol{x}))')$$

注 4. $\operatorname{var}(\boldsymbol{x})$ の (i,j) 成分は $\operatorname{cov}(x_i,x_j)$.

定理 3. 任意の $\mathbf{A} \in \mathbb{R}^{m \times n}$ と $\mathbf{b} \in \mathbb{R}^m$ について

$$var(\mathbf{A}\mathbf{x} + \mathbf{b}) = \mathbf{A} var(\mathbf{x})\mathbf{A}'$$

証明.

 $var(\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b})$

 $\mathbf{E} = \mathbf{E}((\mathbf{A}\mathbf{x} + \mathbf{b} - \mathbf{E}(\mathbf{A}\mathbf{x} + \mathbf{b}))(\mathbf{A}\mathbf{x} + \mathbf{b} - \mathbf{E}(\mathbf{A}\mathbf{x} + \mathbf{b}))')^{3.3}$ 自己共分散行列と自己相関行列

 $= \mathrm{E}((\boldsymbol{A}\boldsymbol{x} - \boldsymbol{A}\,\mathrm{E}(\boldsymbol{x}))(\boldsymbol{A}\boldsymbol{x} - \boldsymbol{A}\,\mathrm{E}(\boldsymbol{x}))')$

 $= E(\boldsymbol{A}(\boldsymbol{x} - E(\boldsymbol{x}))[\boldsymbol{A}(\boldsymbol{x} - E(\boldsymbol{x}))]')$

 $= E(\boldsymbol{A}(\boldsymbol{x} - E(\boldsymbol{x}))(\boldsymbol{x} - E(\boldsymbol{x}))'\boldsymbol{A}')$

 $= \mathbf{A} \operatorname{E}((\mathbf{x} - \operatorname{E}(\mathbf{x}))(\mathbf{x} - \operatorname{E}(\mathbf{x}))') \mathbf{A}'$

 $= \mathbf{A} \operatorname{var}(\mathbf{x}) \mathbf{A}'$

2.3 相関係数行列

定義 14. 確率ベクトルの各変量を標準化すること を確率ベクトルの標準化という.

定義 15. 標準化した確率ベクトルの分散共分散行 列を相関係数行列という.

2.4 相互共分散と相互相関

x を m 次元確率ベクトル, y を n 次元確率ベク トルとする.

定義 16.x と y の相互共分散行列は

$$cov(\boldsymbol{x}, \boldsymbol{y}) := E((\boldsymbol{x} - E(\boldsymbol{x}))(\boldsymbol{y} - E(\boldsymbol{y}))')$$

定義 17. 標準化した確率ベクトルの相互共分散行 列を相互相関行列という.

注 5. $\operatorname{corr}(\boldsymbol{x}, \boldsymbol{y})$ と書く.

3 VAR 過程

3.1 多変量確率過程

定義 18. 試行の結果によって値が決まる N 次元ベ クトルの列を N 変量確率過程という.

注 6. すなわち $\{y_t\}: \Omega \to \mathbb{R}^{N \times \infty}$. 確率変数・確 率ベクトル・(1変量) 確率過程と同様に、起こりう る結果に対して確率を定義できる.

3.2 共分散定常性

 $\{y_t\}$ を N 変量確率過程とする.

定義 19. 任意の時点 t と時点差 s について $\mathbf{E}(\mathbf{y}_t)$ と $cov(y_t, y_{t-s})$ が t に依存しないなら $\{y_t\}$ は共分 散(弱)定常という.

注 7. I(0) と書く.

 $\{y_t\}$ を N 変量 I(0) 過程とする.

定義 20. $cov(y_t,y_{t-s})$ を $\{y_t\}$ の s 次の自己共分 散行列という.

定義 21. $corr(y_t, y_{t-s})$ を $\{y_t\}$ の s 次の自己相関 行列という.

定義 22. $\{y_t\}$ の自己共分散行列関数は,任意の時 点差 s について

$$\Gamma(s) := \operatorname{cov}(y_t, y_{t-s})$$

定義 23. $\{y_t\}$ の自己相関行列関数は、任意の時点 差 s について

$$P(s) := corr(y_t, y_{t-s})$$

定義 24. ある $s \neq 0$ について $P(s) \neq \mathbf{O}$ であるこ とを系列相関という.

定義 25. 平均 0 で系列相関のない I(0) 過程をホワ **イト・ノイズ**という.

注 8. 分散共分散行列が Σ なら $\mathrm{WN}(\Sigma)$ と書く.

3.4 VAR(1) 過程 (p. 224)

定義 26. 1次のベクトル AR (vector AR, VAR) **過程**は、任意の *t* について

$$m{\Phi}(\mathrm{L})(m{y}_t - m{\mu}) = m{w}_t \ \{m{w}_t\} \sim \mathrm{WN}(m{\Sigma})$$

ただし $\Phi(L) := I_N - \Phi L$.

注 9. VAR(1) と書く.

注 10. すなわち任意の t について

$$\boldsymbol{y}_t - \boldsymbol{\mu} = \boldsymbol{\Phi}(\boldsymbol{y}_{t-1} - \boldsymbol{\mu}) + \boldsymbol{w}_t$$

平均 ${\bf 0}$ の ${\bf 2}$ 変量 ${\rm VAR}(1)$ 過程なら、任意の t について

$$\begin{pmatrix} y_{t,1} \\ y_{t,2} \end{pmatrix} = \begin{bmatrix} \phi_{1,1} & \phi_{1,2} \\ \phi_{2,1} & \phi_{2,2} \end{bmatrix} \begin{pmatrix} y_{t-1,1} \\ y_{t-1,2} \end{pmatrix} + \begin{pmatrix} w_{t,1} \\ w_{t,2} \end{pmatrix}$$

すなわち

$$y_{t,1} = \phi_{1,1} y_{t-1,1} + \phi_{1,2} y_{t-1,2} + w_{t,1}$$

$$y_{t,2} = \phi_{2,1} y_{t-1,1} + \phi_{2,2} y_{t-1,2} + w_{t,2}$$

3.5 VAR(p) 過程 (p. 225)

定義 27. p 次の VAR 過程は, 任意の t について

$$m{\Phi}(\mathrm{L})(m{y}_t - m{\mu}) = m{w}_t \ \{m{w}_t\} \sim \mathrm{WN}(m{\Sigma})$$

ただし $\boldsymbol{\Phi}(L) := \boldsymbol{I}_N - \boldsymbol{\Phi}_1 L - \cdots - \boldsymbol{\Phi}_p L.$

注 11. VAR(p) と書く.

注 12. 以下のベクトルを定義する.

$$oldsymbol{s}_t := egin{pmatrix} oldsymbol{y}_t - oldsymbol{\mu} \ dots \ oldsymbol{y}_{t-p+1} - oldsymbol{\mu} \end{pmatrix}, \quad oldsymbol{u}_t := egin{pmatrix} oldsymbol{w}_t \ oldsymbol{0}_{(p-1)N} \end{pmatrix}.$$

 $\{y_t\}$ の VAR(p) モデルは $\{s_t\}$ の VAR(1) モデルで表現できる。 すなわち任意の t について

$$s_t = \mathbf{\Phi} s_{t-1} + \mathbf{u}_t$$

ただし

$$m{\Phi} := egin{bmatrix} m{\Phi}_1 & \dots & m{\Phi}_{p-1} & m{\Phi}_p \ & m{I}_{(p-1)N} & & m{O}_{(p-1)N imes N} \end{bmatrix}$$

注 13. VARMA 過程にも拡張できるが, MA 部分の係数が一意に定まらず, 推定も煩雑なのであまり使わない.

4 VAR 予測

4.1 VAR モデルの推定 (p. 225)

正規 VAR モデルの厳密な ML 推定は煩雑なので,条件つき ML 推定(=各式の OLS 推定) が普通. OLS 推定量は不偏でなく漸近有効でもないが,正規分布の仮定は不要.

4.2 次数選択

VAR モデルの次数 p はモデル選択基準(AIC・SBIC・HQC)で選ぶ、通常は各式に同じ次数を仮定する.

4.3 最適予測

最適予測は損失関数に依存する.2次の損失なら 条件付き期待値が最適予測.

4.4 1 期先予測

簡単化のため $\{y_t\}$ を定数項なしの $\mathrm{VAR}(1)$ 過程とする. すなわち任意の t について

$$egin{aligned} oldsymbol{y}_t &= oldsymbol{\Phi} oldsymbol{y}_{t-1} + oldsymbol{w}_t \ \{oldsymbol{w}_t\} &\sim \mathrm{WN}(oldsymbol{\Sigma}) \end{aligned}$$

簡単化のため母数は既知と仮定する. 時点 t までの観測値を所与とした条件付き期待値を $\mathbf{E}_t(.)$,条件付き分散を $\mathrm{var}_t(.)$ と書く.

定理 4. $\{w_t\}$ が iid なら任意の t について

$$E_t(\boldsymbol{y}_{t+1}) = \boldsymbol{\Phi} \boldsymbol{y}_t$$

証明.

$$E_t(\boldsymbol{y}_{t+1}) = E_t(\boldsymbol{\Phi}\boldsymbol{y}_t + \boldsymbol{w}_{t+1})$$
$$= \boldsymbol{\Phi}\boldsymbol{y}_t + E_t(\boldsymbol{w}_{t+1})$$

 $\{\boldsymbol{w}_t\}$ は iid なので

$$E_t(w_{t+1}) = E(w_{t+1}) = E(w_t) = 0$$

定理 5. $\{w_t\}$ が iid なら任意の t について

$$\operatorname{var}_t(\boldsymbol{y}_{t+1}) = \boldsymbol{\Sigma}$$

証明.

$$\operatorname{var}_{t}(\boldsymbol{y}_{t+1}) = \operatorname{var}_{t}(\boldsymbol{\varPhi}\boldsymbol{y}_{t} + \boldsymbol{w}_{t+1})$$
$$= \operatorname{var}_{t}(\boldsymbol{w}_{t+1})$$

 $\{ m{w}_t \}$ は iid なので

$$\operatorname{var}_t(\boldsymbol{w}_{t+1}) = \operatorname{var}(\boldsymbol{w}_{t+1}) = \operatorname{var}(\boldsymbol{w}_t) = \boldsymbol{\Sigma}$$

4.5 h **期先予測**

補題 1. 任意の t と h > 1 について

$$oldsymbol{y}_{t+h} = oldsymbol{w}_{t+h} + oldsymbol{arPhi} oldsymbol{w}_{t+h-1} + \cdots + oldsymbol{arPhi}^{h-1} oldsymbol{w}_{t+1} + oldsymbol{arPhi}^h oldsymbol{y}_t$$

証明.

$$egin{aligned} m{y}_{t+h} &= m{\Phi} m{y}_{t+h-1} + m{w}_{t+h} \ &= m{w}_{t+h} + m{\Phi} m{y}_{t+h-1} \ &= m{w}_{t+h} + m{\Phi} m{(w}_{t+h-1} + m{\Phi} m{y}_{t+h-2}) \ &= m{w}_{t+h} + m{\Phi} m{w}_{t+h-1} + m{\Phi}^2 m{y}_{t+h-2} \ &= \dots \ &= m{w}_{t+h} + m{\Phi} m{w}_{t+h-1} + \dots \ &+ m{\Phi}^{h-1} m{w}_{t+1} + m{\Phi}^h m{y}_t \end{aligned}$$

定理 6. $\{w_t\}$ が iid なら任意の t と $h \ge 1$ について

$$E_t(\boldsymbol{y}_{t+h}) = \boldsymbol{\varPhi}^h \boldsymbol{y}_t$$

証明. 補題より

$$\begin{aligned} & \mathbf{E}_{t}(\boldsymbol{y}_{t+h}) \\ & = \mathbf{E}_{t} \left(\boldsymbol{w}_{t+h} + \boldsymbol{\varPhi} \boldsymbol{w}_{t+h-1} + \dots + \boldsymbol{\varPhi}^{h-1} \boldsymbol{w}_{t+1} + \boldsymbol{\varPhi}^{h} \boldsymbol{y}_{t} \right) \\ & = \mathbf{E}_{t}(\boldsymbol{w}_{t+h}) + \boldsymbol{\varPhi} \mathbf{E}_{t}(\boldsymbol{w}_{t+h-1}) + \dots \\ & + \boldsymbol{\varPhi}^{h-1} \mathbf{E}_{t}(\boldsymbol{w}_{t+1}) + \boldsymbol{\varPhi}^{h} \boldsymbol{y}_{t} \end{aligned}$$

 $\{\boldsymbol{w}_t\}$ は iid なので

$$E_t(\boldsymbol{w}_{t+h}) = \cdots = E_t(\boldsymbol{w}_{t+1}) = E(\boldsymbol{w}_t) = \mathbf{0}$$

定理 7. $\{w_t\}$ が iid なら任意の t と $h \ge 1$ について

$$\operatorname{var}_t(\boldsymbol{y}_{t+h}) = \boldsymbol{\Sigma} + \boldsymbol{\Phi} \boldsymbol{\Sigma} \boldsymbol{\Phi}' + \dots + \boldsymbol{\Phi}^{h-1} \boldsymbol{\Sigma} \boldsymbol{\Phi}^{h-1}'$$

証明. 補題より

$$\operatorname{var}_{t}(\boldsymbol{y}_{t+h})$$

$$= \operatorname{var}_{t}(\boldsymbol{w}_{t+h} + \boldsymbol{\varPhi}\boldsymbol{w}_{t+h-1} + \cdots + \boldsymbol{\varPhi}^{h-1}\boldsymbol{w}_{t+1} + \boldsymbol{\varPhi}^{h}\boldsymbol{y}_{t})$$

$$= \operatorname{var}_{t}(\boldsymbol{w}_{t+h} + \boldsymbol{\varPhi}\boldsymbol{w}_{t+h-1} + \cdots + \boldsymbol{\varPhi}^{h-1}\boldsymbol{w}_{t+1})$$

$$= \operatorname{var}_{t}(\boldsymbol{w}_{t+h}) + \operatorname{var}_{t}(\boldsymbol{\varPhi}\boldsymbol{w}_{t+h-1}) + \cdots$$

$$+ \operatorname{var}_{t}(\boldsymbol{\varPhi}^{h-1}\boldsymbol{w}_{t+1})$$

$$= \operatorname{var}_{t}(\boldsymbol{w}_{t+h}) + \boldsymbol{\varPhi}\operatorname{var}_{t}(\boldsymbol{w}_{t+h-1})\boldsymbol{\varPhi}' + \cdots$$

$$+ \boldsymbol{\varPhi}^{h-1}\operatorname{var}_{t}(\boldsymbol{w}_{t+1})\boldsymbol{\varPhi}^{h-1}'$$

 $\{\boldsymbol{w}_t\}$ は iid なので

$$\operatorname{var}_t(\boldsymbol{w}_{t+h}) = \dots = \operatorname{var}_t(\boldsymbol{w}_{t+1}) = \operatorname{var}(\boldsymbol{w}_t) = \boldsymbol{\Sigma}$$

5 今日のキーワード

行列,行ベクトル,列ベクトル,内積,(行列が)等しい,(行列の)和,スカラー積,(行列の)積,転置,正方行列,単位行列,平均ベクトル,分散共分散行列,標準化,相関係数行列,相互共分散行列,相互相関行列,N変量確率過程,共分散(弱)定常,自己共分散行列,自己相関行列,自己共分散行列関数,自己相関行列関数,系列相関,ホワイト・ノイズ,ベクトルAR(VAR)過程

6 次回までの準備

提出 宿題7

復習 教科書第7章4.1節,復習テスト7

予習 教科書第7章4.2-4.4節

5