Word Representation

Global Vectors for Word Representation (GloVe)

Tanmoy Chakraborty
Associate Professor, IIT Delhi
https://tanmoychak.com/

Introduction to Large Language Models

Count-based vs Prediction-based

Count-based

Fast training

- Efficient usage of statistics
- Primarily used to capture word similarity
- Disproportionate importance given to large counts

Count-based vs Prediction-based

Count-based	Prediction-based			
Fast trainingEfficient usage of statistics	Scales with corpus sizeInefficient usage of statistics			
 Primarily used to capture word similarity Disproportionate importance given to large counts 	 Generate improved performance on other tasks Can capture complex patterns beyond word similarity 			

GloVe – Global Vectors

Crucial insight: Ratios of co-occurrence probabilities can encode word meaning

	x = solid	x = gas	x = water	x = random	
$P(x \mid ice)$	large	small	large	small	
$P(x \mid steam)$	small	large	large	small	
$\frac{P(x ice)}{P(x steam)}$	large	small	~1	~1	

Jeffrey Pennington, Richard Socher, Christopher D. Manning, "GloVe: Global Vectors for Word Representation", 2014

GloVe – Global Vectors

Crucial insight: Ratios of co-occurrence probabilities can encode word meaning

	x = solid	x = gas	x = water	x = random	
$P(x \mid ice)$	1.9 × 10 ⁻⁴	6.6 × 10 ⁻⁵	3.0 × 10 ⁻³	1.7 × 10 ⁻⁵	
$P(x \mid steam)$	2.2 × 10 ⁻⁵	7.8 × 10 ⁻⁴	2.2 × 10 ⁻³	1.8 × 10 ⁻⁵	
$\frac{P(x ice)}{P(x steam)}$	8.9	8.5 × 10 ⁻²	1.36	0.96	

Jeffrey Pennington, Richard Socher, Christopher D. Manning, "GloVe: Global Vectors for Word Representation", 2014

Co-occurrence Matrix

Let us denote the co-occurrence matrix as X.

count	1	like	enjoy	deep	learning	NLP	flying	•
1	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

Compute P(j | i) from X, for two words i and j in the corpus.

$$P(j|i) = \frac{X_{ij}}{\sum_{j} X_{ij}} = \frac{X_{ij}}{X_i}$$

• For the two words, i and j, assume their corresponding representation vectors are w_i and w_j , respectively.

•
$$w_i^T w_j = \log P(j|i)$$

Similarity
between
words i and j

• $w_i^T w_j = \log P(j|i)$

How likely is j to occur in the context of i

•
$$w_i^T w_j = \log \frac{X_{ij}}{X_i} = \log X_{ij} - \log X_i$$
 ... (1)

Similarly,
$$w_j^T w_i = \log \frac{X_{ij}}{X_j} = \log X_{ij} - \log X_j$$
 ... (2)

•
$$w_i^T w_j = \log \frac{X_{ij}}{X_i} = \log X_{ij} - \log X_i$$
 ... (1)

Similarly,
$$w_j^T w_i = \log \frac{X_{ij}}{X_j} = \log X_{ij} - \log X_j$$
 ... (2)

• Adding (1) and (2):

$$2 w_i^T w_j = 2 \log X_{ij} - \log X_i - \log X_j$$

$$\Rightarrow w_i^T w_j = \log X_{ij} - \frac{1}{2} \log X_i - \frac{1}{2} \log X_j$$

$$w_i^T w_j = \log X_{ij} - \frac{1}{2} \log X_i - \frac{1}{2} \log X_j$$

- $\log X_i$ and $\log X_j$ depends only on i and j respectively can be thought of as word-specific biases
 - These are made learnable (considered as biases)

$$w_i^T w_j = \log X_{ij} - b_i - b_j$$

$$\Rightarrow w_i^T w_j + b_i + b_j = \log X_{ij}$$

- w_i, w_i, b_i are the learnable parameters
- Loss function: $\min_{w_i, w_j, b_i, b_j} \sum_{i,j} (w_i^T w_j + b_i + b_j \log X_{ij})^2$

Loss function:
$$\min_{w_i, w_j, b_i, b_j} \sum_{i,j} (w_i^T w_j + b_i + b_j - \log X_{ij})^2$$

- Problem: Gives equal weightage to every co-occurrence
- · Ideally, rare and very frequent co-occurrences should have lesser weightage
- Modification: Add a weighting function f(x).
- Modified loss function: $min_{w_i,w_j,b_i,b_j} \sum_{i,j} f(X_{ij}) (w_i^T w_j + b_i + b_j \log X_{ij})^2$

What can f possibly be?

Weighting function

$$f(x) = \begin{cases} (x/x_{\text{max}})^{\alpha} & \text{if } x < x_{\text{max}} \\ 1 & \text{otherwise} \end{cases}$$

 α can be chosen empirically for a given dataset.

Properties of *f*:

- 1. f(0) = 0. If f is viewed as a continuous function, it should vanish as $x \to 0$ fast enough that the $\lim_{x\to 0} f(x) \log^2 x$ is finite.
- 2. f(x) should be non-decreasing so that rare co-occurrences are not overweighted.
- 3. f(x) should be relatively small for large values of x, so that frequent co-occurrences are not overweighted.

GloVe: Advantages

- Fast training
- Scalable to huge corpora
- Good performance even with small corpus and small vectors

Details About GloVe

Original paper: https://nlp.stanford.edu/pubs/glove.pdf

Blogs with easy explanations:

- https://medium.com/sciforce/word-vectors-in-natural-language-processing-global-vectors-glove-51339db89639
- https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/?fbclid=lwAR3-pws3-K-Snfk6aqbixdxS8zFf-uuPDJ_0ipb94kWeygrdCSEqE9HWmNs
- https://towardsdatascience.com/light-on-math-ml-intuitive-guide-to-understanding-glove-embeddings-b13b4f19c010

We will see how we can use these separately trained word embeddings (or train/update embeddings on-the-fly) as we perform language modeling using **Neural Nets**!

