

CS3120

Introduction of Integrated Circuit Design

Virtuoso Layout Tutorial

Andy, Yu-Guang Chen

Associate Professor, Department of EE, National Central University

Adjunct Assistant Professor, Department of CS, National Tsing Hua University

andyygchen@ee.ncu.edu.tw

Outline

- **♦** Virtuoso
- **♦** User Interface
- **♦**Shortcut Key
- **♦**Inverter
- ◆ Design Rule Check
- **◆**Layout Versus Schematic
- **◆** Reference

- **♦** Virtuoso
- **♦** User Interface
- **♦**Shortcut Key
- **♦**Inverter
- ◆ Design Rule Check
- **◆**Layout Versus Schematic
- **◆** Reference

Virtuoso

- ◆ The full custom IC layout suite of the Cadence Virtuoso Studio
- ◆ The Virtuoso Layout Suite supports custom analog, digital, RF, and mixed-signal designs at the device, cell, block, and chip levels
- ◆ The Virtuoso Layout Suite enables the creation of differentiated custom silicon that is both fast and silicon accurate

Outline

- **♦** Virtuoso
- **♦** User Interface
- **♦**Shortcut Key
- **♦**Inverter
- ◆ Design Rule Check
- **◆**Layout Versus Schematic
- **◆** Reference

User interface

- ◆ Toolbar: Use the tool and start simulation
- ◆ Command: Show the current status
- ◆ Display resource: Change used resource

User interface

◆ You can use tools and check shortcut keys in the toolbar

2024/10/26

Andy Yu-Guang Chen

User interface

Outline

- **♦** Virtuoso
- **♦** User Interface
- **♦**Shortcut Key
- **♦**Inverter
- ◆ Design Rule Check
- **◆**Layout Versus Schematic
- **◆** Reference

Shortcut Key

- ◆ Take "Rectangle" mode for example
- ◆Tap the shortcut key "r" on the keyboard
- Check the status from "Cmd"

◆Tap "Esc" on the keyboard to exit the mode

Shortcut Key

- ◆ K(and Shift +K)→add rules to measure distance (delete all the rules)
- ♦ e → options
- ♦ r → add a rectangle
- ♦ p → add a path
- ◆ I → add a label
- ◆ c → copy selected cell
- ♦ m → move selected cell
- ◆ q → edit properties
- ◆ Shift+o → rotate the cell
- ♦ u → undo
- ◆ f → fit to window
- ◆ Ctrl +Z or Shift +Z (also mouse wheel) → zoom in/out
- ◆ z → Zoom in to your selected area
- ◆ Ctrl+F or Shift+F → switch between visible and invisible instance layouts

Outline

- **♦** Virtuoso
- **♦** User Interface
- **♦**Shortcut Key
- **♦**Inverter
- ◆ Design Rule Check
- **◆**Layout Versus Schematic
- **◆** Reference

.subckt inv in out vdd vss

NMOS

PMOS

◆PMOS

p-substrate

X Virtuoso? Layout Editing: inv inv layout@ic51

n-well (NW)

Gate

poly

Source

Body

P+ (PIMP)

Gate

vlog

Source

Body

N+ (NIMP)

Gate

poly

Source

Body

X -

X Virtuoso? Layout Editing: inv inv layout@ic51

Active (DIFF)

Poly (PO1)

Gate

Source

Body

♦NMOS

2024/10/26

N+ (NIMP)

P+ (PIMP)

Active (DIFF)

Poly (PO1)

◆ Connect PMOS and NMOS to inputs

Poly (PO1)

Contact (CONT)

← Ox3 ← Metal2

 \leftarrow Ox2

← Metal1
← Ox1

Metal1 (ME1)

Label

1. Create label

2. Place the label on the metal 1

The center of label must be on the metal

Label

◆Overall layout

Andy Yu-Guang Chen

Outline

- **♦** Virtuoso
- **♦** User Interface
- **♦**Shortcut Key
- **♦**Inverter
- **◆ Design Rule Check**
- **◆**Layout Versus Schematic
- **◆** Reference

Design Rule Check

- ◆ Design Rule Check (DRC)
- ◆ Make sure no resource violate the design rule
- Examples of DRC error
 - >The space of two resource
 - > Minimum metal overlap
 - > Minimum area of resource

DRC error

◆The space of two resource

2024/10/26

Andy Yu-Guang Chen

DRC error

- ◆Minimum metal overlap
 - >Miss metal1

DRC error

◆ Minimum area of resource

- **♦** Virtuoso
- **♦** User Interface
- **♦**Shortcut Key
- **♦**Inverter
- ◆ Design Rule Check
- **◆ Layout Versus Schematic**
- **◆** Reference

- **◆** Layout Versus Schematic (LVS)
- ◆ Compare the layout with the schematic file
- Check the functionality and pins of layout
- **◆**Examples of LVS errors
 - ➤ Different pin name
 - > Missing port
 - > Size difference

◆ Different pin name

◆ Missing port

◆ Size difference

Outline

- **♦** Virtuoso
- **♦** User Interface
- **♦**Shortcut Key
- **♦**Inverter
- ◆ Design Rule Check
- **◆**Layout Versus Schematic
- **◆** Reference

Reference

[1] Virtuoso layout suite datasheet. Available:

https://www.cadence.com/en_US/home/resources/datasheets/virtuoso-layout-suite-ds.html

[2] Cadence ICFB Hot Keys. Available:

https://inst.eecs.berkeley.edu/~ee247b/sp19/homework/CadenceHotkeys.pdf

