## 日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 6月15日

出願番号

Application Number: 特願2004-177074

バリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出 願 人 アンリツ株式会社

Applicant(s):

2005年 7月 6日

特許庁長官 Commissioner, Japan Patent Office





打 訂 况 百州口 【整理番号】 AP108755 【提出日】 平成16年 6月15日 【あて先】 特許庁長官殿 【発明者】 【住所又は居所】 神奈川県厚木市恩名1800番地 アンリツ株式会社内 【氏名】 河野 健治 【発明者】 神奈川県厚木市恩名1800番地 アンリツ株式会社内 【住所又は居所】 【氏名】 名波 雅也 【発明者】 【住所又は居所】 神奈川県厚木市恩名1800番地 アンリツ株式会社内 【氏名】 齋藤 誠 【発明者】 【住所又は居所】 神奈川県厚木市恩名1800番地 アンリツ株式会社内 【氏名】 中平 徹 【発明者】 【住所又は居所】 神奈川県厚木市恩名1800番地 アンリツ株式会社内 【氏名】 佐藤 勇治 【発明者】 【住所又は居所】 神奈川県厚木市恩名1800番地 アンリツ株式会社内 【氏名】 内田 靖二 【特許出願人】 【識別番号】 000000572 【住所又は居所】 神奈川県厚木市恩名1800番地 【氏名又は名称】 アンリツ株式会社 【代表者】 塩見 昭 【手数料の表示】 【予納台帳番号】 005016 【納付金額】 16,000円 【提出物件の目録】 【物件名】 特許請求の範囲 【物件名】 明細書

【物件名】

【物件名】

図面 !

1

要約書

#### 【官规句】 打矸硝小ツ靶团

#### 【請求項1】

電気光学効果を有する基板(1)と、光を導波するための光導波路(2)と、前記光を変調するための電圧を印加する中心電極(4)及び接地電極(5 a、5 b)とを具備し、前記光導波路は、前記光を入射するための入力光導波路(2 a)と、前記入力光導波路に入射した光を分岐する分岐光導波路(2 b)と、前記中心電極と前記接地電極との間に前記電圧を印加することにより前記光の位相を変調するための相互作用光導波路(2 c - 1、2 c - 2)と、前記相互作用光導波路を伝搬した前記光を合波する合波光導波路(2 d)と、合波点(2 h)を介して前記合波光導波に接続されている出力光導波路(2 f)とから構成されていて、位相変調された光が前記合波光導波路において合波されて生成される高次モードが前記出力光導波路をほとんど伝搬せずに前記基板内に前記合波点から放射光(6 a、6 b)として放射される光変調器において、

前記基板の前記出力光導波路側の基板端部(1 a)における前記放射光の光軸と前記出力光導波路の端(2 g)とが所定距離離れて位置するように、前記出力光導波路が変形して形成されていることを特徴とする光変調器。

## 【請求項2】

前記出力光導波路が、前記基板の長手方向と直交する方向における前記合波点(2h)の位置と前記出力光導波路の端(2g)の位置とが異なって形成されていることを特徴とする請求項1記載の光変調器。

## 【請求項3】

前記光導波路がマッハツェンダ型光導波路であることを特徴とする請求項1乃至2に記載の光変調器。

#### 【請求項4】

前記放射光を受光するモニタフォトダイオード(11)をさらに具備することを特徴とする請求項1乃至3記載の光変調器。

## 【請求項5】

前記モニタフォトダイオードを前記基板端部近傍に具備することを特徴とする請求項4 記載の光変調器。

## 【請求項6】

前記モニタフォトダイオードを空間を介して具備していることを特徴とする請求項4記載の光変調器。

#### 【請求項7】

前記放射光が前記基板から出射された後、ミラー(12)により光路を変更されて前記 モニタフォトダイオードに入射することを特徴とする請求項4乃至6記載の光変調器。

## 【請求項8】

前記放射光が前記基板端部近傍に固定された誘電体キャピラリー(10b)を通過して出射された後、前記モニタフォトダイオードに入射することを特徴とする請求項4又は6記載の光変調器。

【発明の名称】光変調器

## 【技術分野】

[0001]

本発明は小型で動作状態が安定な光変調器の分野に関する。

## 【背景技術】

## [0002]

リチウムナイオベート( $LiNbO_3$ )のように電界を印加することにより屈折率が変化する、いわゆる電気光学効果を有する基板(以下、LN基板と略す)に光導波路と進行波電極を形成した進行波電極型リチウムナイオベート光変調器(以下、LN光変調器と略す)は、その優れたチャーピング特性から 2.5Gbit/s、10Gbit/sの大容量光伝送システムに適用されている。最近はさらに 40Gbit/sの超大容量光伝送システムにも適用が検討されており、キーデバイスとして期待されている。

## [0003]

図7に従来のLN光変調器の斜視図を示す(例えば、特許文献1参照)。図中、1はz-cutLN基板、2はTiを熱拡散して形成したマッハツェンダ型の光導波路であり、2 a は入力光導波路、2 b はY分岐型の分岐光導波路、2 c - 1 と 2 c - 2 は相互作用光導波路、2 d はY分岐型の合波光導波路、2 e は出力光導波路、2 g は出力光導波路の端部である。3 は電気信号源、4 は進行波電極の中心電極、5 a と 5 b は接地電極、6 a と 6 b は後述のように光信号がOFF 状態の場合に発生する放射光、7 は信号光用単一モード光ファイバ、8 は放射光受光用光ファイバ、9 はモニタフォトダイオードとLN光変調器の動作点を調整するバイアスコントローラを含む放射光検出手段である。

## [0004]

図8はLN光変調器の動作原理を説明する図である。図8(a)、(b)は光導波路2の動作説明図、図8(c)はLN光変調器の側面図を示している。図7と図8を用いて、光変調器の動作について説明する。入力光導波路2aに入射した光は分岐光導波路2bにおいて2分割される。電気信号源3からの電気信号が進行波電極の中心電極4と、接地電極5a、5bに印加されない場合には、図8(a)に示すように光は相互作用光導波路2c-1、2c-2を同相で伝搬する。その後、合波光導波路2dにより合波されて基本モードとして出力光導波路2eを伝搬し、最後に、光は信号光用単ーモード光ファイバ7に出射される。これをON状態と呼ぶ。なお、合波光導波路2dが出力光導波路2fと接合している箇所を合波点2hと呼ぶ。

## [0005]

一方、電気信号源3からの電気信号が進行波電極の中心電極4と、接地電極5a、5bに印加された場合には、図8(b)に示すように光は相互作用光導波路2c-1、2c-2を逆位相で伝搬する。その後、合波光導波路2dにより合波されて1次の高次モードがカットオフとなるように出力光導波路2eを形成される。通常、この1次の高次モードがカットオフとなるように出力光導波路2eを 設計する。従って、この1次の高次モードは出力光導波路2eを伝搬できないために、放射光6a、6bとして基板の水平方向に0.7度、深さ方向に0.9度という小さな角度をもって基板内に放射され、基板内を広がりながら伝搬する。これをOFF状態と呼ぶ。

## [0006]

図9の実線はある状態でのLN光変調器の電圧-光出力特性であり、Vbはその際のバイアス電圧である。通常、この図のように、バイアス電圧Vbは光出力の山と底の中点に設定する。一方、温度変動など何らかの原因により図9の破線のように電圧-光出力特性が変化した場合には、バイアス点をVb′のように設定変更する必要がある。

## [0007]

この従来の実施形態ではこの放射光を放射光受光用光ファイバ8で受光・伝搬した後、放射光検出手段9のモニタフォトダイオードに入射させることにより電流に変換している。この電流の大きさにより電圧ー光出力特性の変化を検知し、最適バイアス点を見出している。

【特許文献1】特開平3-145623号公報

【発明の開示】

【発明が解決しようとする課題】

[0009]

しかしながら、このように構成したLN光変調器でも以下のような問題点があった。放射光は、実際には図8(b)、(c)に示すように、基板の水平方向に0.7度、深さ方向に0.9度の小さな角度をもって基板内の下方に出射されるので、放射光受光用光ファイバ8は信号光用単一モード光ファイバ7に非常に近くまた信号光用単一モード光ファイバ7よりもほんの僅かだけ低い位置に配置する必要がある。

[0010]

ここで、信号光用単一モード光ファイバ7側から見た光信号のOFF状態の様子を図10に示す。図8(b)において、例えば出力光導波路2eの光軸方向の長さを4mmとすると、前述のように放射光の水平方向の伝搬角度はわずか0.7度であるから、信号光用単一モード光ファイバ7と放射光受光用光ファイバ8とを実装することは大変難号光用単一モード光ファイバ7と放射光受光用光ファイバ8とを実装することは大変難し、これを図11を用いて説明する(例えば、特許文献1の図4参照)。図中、7aはは対号光用単一モード光ファイバのコア、8aは放射光受光用光ファイバのコア、8aは放射光で、一般的にはガラス村が広く用いる。オラスキャピラリーで、一般的にはガラス材が広く用いる。オラスキャピラリー10aに信号光用単一モード光ファイバ8 をその穴に固定している。こうしている)を示している。ガラスキャピラリー10aに信号光用単一モード光ファイバ8のコア7aには信号光を、放射光受光用光ファイバ8のコア7aには信号光を、放射光受光用光ファイバ8のコア8aには放射光6b(あるいは、6a)が結合するように調整固定する。

[0011]

以上説明したように、従来の実施形態では信号光と放射光の間の距離が50μm程度と極めて小さいため、信号光用単一モード光ファイバ7のコア7aには信号光を結合させ、かつ放射光受光用光ファイバ8のコア8aには放射光を結合させるという実装が必要となり、その実装は極めて困難であった。従って、実装が容易な構造の開発が望まれていた。

[0012]

この実装の困難さを回避するためには、信号光と放射光の間の距離を広げる必要がある。ところで、両者の距離を広げる考えとは別に、放射光を信号光に干渉させることで、干渉パターンを信号光から遠方に形成する発明が開示されている(例えば、特許文献2参照)。しかし、放射光と信号光が干渉するということは、つまり信号光が減衰することを意味しており、結果、信号光の損失増加につながる、あるいはあくまで干渉であるので信号光が影響できる範囲にのみ、つまり信号光に比較的近い領域にしか干渉パターンを形成することができないという問題点があり、上記課題の解決には至っていなかった。

[0013]

【特許文献2】特開平10-228006号公報

【課題を解決するための手段】

 $[0\ 0\ 1\ 4\ ]$ 

上記課題を解決するために、本発明の請求項1記載の光変調器では、電気光学効果を有する基板(1)と、光を導波するための光導波路(2)と、前記光を変調するための電圧を印加する中心電極(4)及び接地電極(5a、5b)とを具備し、前記光導波路は、(少なくとも)前記光を入射するための入力光導波路(2a)と、前記入力光導波路に入射した光を分岐する分岐光導波路(2b)と、前記中心電極と前記接地電極との間に記配圧を印加することにより前記光の位相を変調するための相互作用光導波路(2c-1、2c-2)と、前記相互作用光導波路を伝搬した前記光を合波する合波光導波路(2d)と、合波点(2h)を介して前記合波光導波に接続されている出力光導波路(2f)とから構成されていて、位相変調された光が前記合波光導波路において合波されて生成される高次モードが前記出力光導波路をほとんど伝搬せずに前記基板内に前記合波点から放射光(

U a 、 U D J C U C IX 別 C AL O L X 調 品 に わい C 、 E I L 至 IX V E II L L J L 受 IX E II N V E IX 端部( l a )における前記放射光の光分布と前記出力光導波路の端( 2 g )とが所定距離離れて位置するように、前記出力光導波路が変形して形成されている。

[0015]

本発明の請求項2記載の光変調器では、請求項1記載の光変調器において、前記出力光 導波路が、前記基板の長手方向と直交する方向における前記合波点(2h)の位置と前記 出力光導波路の端(2g)の位置とが異なって形成されている。

[0016]

本発明の請求項3記載の光変調器では、請求項1乃至2記載の光変調器において、前記 光導波路がマッハツェンダ型光導波路である。

[0017]

本発明の請求項4記載の光変調器では、請求項1乃至3記載の光変調器において、前記放射光を受光するモニタフォトダイオード(11)をさらに具備している。

[0018]

本発明の請求項5記載の光変調器では、請求項4記載の光変調器において、前記モニタフォトダイオードを前記基板端部近傍に具備している。

[0019]

本発明の請求項 6 記載の光変調器では、請求項 4 記載の光変調器において、前記モニタフォトダイオードを空間を介して具備している。

[0020]

本発明の請求項7記載の光変調器では、請求項4乃至6記載の光変調器において、前記放射光が前記基板から出射された後、ミラー(12)により光路を変更されて前記モニタフォトダイオードに入射するようにしている。

[0021]

本発明の請求項8記載の光変調器では、請求項4又は6記載の光変調器において、前記放射光が前記基板端部近傍に固定された誘電体キャピラリー(10b)を通過して出射された後、前記モニタフォトダイオードに入射するようにしている。

【発明の効果】

[0022]

本発明によれば、信号光を出力が伝搬するための出力光導波路を曲げる等して変形させて、出力光導波路の光軸を基板表面方向においてY分岐型の合波光導波路の合波点からLN基板の表面に平行な方向に位置的にずらしており、基板端面部における信号光と放射光との間の距離を大きくしている。これにより、信号光を効率良く信号光用単一モード光ファイバに結合させつつ、放射光を受光しやすくすることが可能となる。また、本発明によれば信号光を伝搬する出力光導波路を位置的にずらすだけで良いので、信号光と放射光の干渉を使用する場合よりも信号光と放射光の距離をより大きくできる。さらに、信号光と放射光の干渉を使用しないので信号光の損失が増加するということもほとんどないという優れた利点がある。

【発明を実施するための最良の形態】

[0023]

以下、本発明の実施形態について説明するが、図7に示した従来の実施形態と同一番号は同一機能部に対応しているため、ここでは同じ番号を持つ機能部の説明を省略する。

[0024]

[第1実施形態]

図1に本発明の第1の実施形態におけるLN光変調器の斜視図を、図2には信号光用単一モード光ファイバ7側から見た側面図を示している。

[0025]

ここでは図示していない進行波電極の中心電極4と接地電極5a、5b間に電気信号が印加されない場合、相互作用光導波路2c-1、2c-2を伝搬してきた光は合波光導波路2dにおいて合波され、ON状態の光として出力光導波路2fに出射・伝搬する。

図7に示した従来の実施例と同じく放射光6 a、6 b は基板の水平方向に0.7度、深さ方向に0.9度の角度という小さな角度をもって基板を伝搬する。ここで、重要なことは本発明のLN光変調器においては、出力光導波路2 f を変形させて、出力光導波路2 f の光軸を基板表面方向においてY分岐型の合波光導波路2 d の合波点2 h からLN基板1の表面に平行な方向に位置的にずらしている点である。そのため、LN基板端面1 a における出力光導波路2 g と放射光6 a、6 b は、LN基板1の表面に平行な方向にて位置的に離れた位置に形成している。従って、図11に示す従来の場合とは異なり、ガラスキャピラリ10bに固定した信号光用単一モード光ファイバ7から距離的に離れた場所で放射光をモニタすることができ、信号光用単一モード光ファイバ7とバイアス電圧をコントロールするためのモニタフォトダイオードの実装が極めて容易となる。

[0027]

次に、具体的な構造を説明する。図3に示すように出力光導波路2fの光軸は一旦真っ直ぐに進んだ後、曲率Rで変形している。そして、略逆S字状に変形した後、再び自っっ直ぐに延びて基板端面1 a まで形成されている。基板端面部には、モニタフォトダイオード1 1、及び信号光用単一モード光ファイバ7 が固定されたガラスキャビラリ1 0 b が配されている。このように、出力光導波路2f の光軸を変形することにより、出力光導波路2f の光軸と放射光6 a、6 b の伝搬方向を位置的に離れるようにしている。これにより、信号光用単一モード光ファイバ7 とは独立にモニタフォトダイオード1 1 を実装することが可能となった。さらに、特許文献2のように放射光6 a を信号光に干渉させる手段比べ、信号光の損失増加がほとんとない。また信号光用単一モード光ファイバ7 と放射たる a の間の距離は、出力光導波路2f のバターン形成により図1 に示したバターンにとかれず自由に設定でき、かつ設計と動作の実現が容易である。なお、本実施形態の場合には離れる距離を約500 $\mu$ mとしているが、その距離は必要に応じて1 mmあるいはそれ以上と大きく設定することができる。

[0028]

なお、本実施形態では、放射光 6 a のみをモニタフォトダイオード 1 1 により受光しており、放射光 6 b は放射光 6 d として空間に放射しているが、放射光 6 b も受光することも可能である。但し、放射光 6 a と放射光 6 b は位相が $\pi$  だけ異なっているので干渉しやすいことに注意する必要がある。

[0029]

[第2実施形態]

図4は本発明の第2の実施形態である。この実施形態は、モニタフォトダイオード 11の設置位置が第1の実施形態と異なっている。モニタフォトダイオード 11を z - c u t L N 基板 1 から信号光用単一モード光ファイバ 7 の長手方向に離すことにより、放射光 6 c の伝搬する位置が、より信号光用単一モード光ファイバ 7 からより離れるので、モニタフォトダイオード 11の実装がさらに容易となる。

[0030]

[第3実施形態]

図5は本発明の第3の実施形態である。この実施形態の場合には、ミラー部12を有するガラスプロック13をzーcutLN基板1に貼り付けている。これにより、放射光6aの光軸を放射光6eの光軸のように曲げた後、モニタフォトダイオード11で受光している。本構造とすることで、モニタフォトダイオード11を信号光用単一モード光ファイバ7とは独立に実装することができ、また任意の場所に実装することができる。なお、ガラスプロック13の代わりに光を通過することのできるその他のブロックを用いてもよいことは言うまでもない。

[0031]

[第4実施形態]

図6は本発明の第4の実施形態である。この実施形態においては、第1~3実施形態と同様に出力光導波路が略逆S字状に変形しているが、その変形量が小さい。信号光用単一

## [0032]

さて、これまでに説明した実施形態においては、信号光を取り出す信号光用単一モード光ファイバ7はガラスキャピラリ10bとともにLN光導波路2の基板端面部に固定されているが、本実施形態のように、出力光導波路2fをLN基板1の表面に平行な方向にずらす距離を適切に設定すれば、モニタフォトダイオード11をガラスキャピラリ10bの後端いら空間を介して設置することも可能である。この場合にもガラスキャピラリ10bの後端から、放射光6fはスネルの法則に従って屈折し、信号光用単一モード光ファイバ7から離れた位置に空間伝搬してくるのでモニタフォトダイオード11の実装が極めて容易となる。

## [0033]

さらに詳細に考察すると、 z - c u t L N 基板 1 とガラスキャピラリ 1 0 a、 1 0 bの 屈折率を各々2・1 4 と 1・4 5 とすると、放射光はガラスキャピラリー 1 0 a あるいは 1 0 b の中を±0・7°×2・1 4 / 1・4 5 = ±1・0°の屈折角度で伝搬する。 つまり、本発明を使用しない従来の実施形態においては、放射光はガラスキャピラリー 1 0 a の中に固定した信号光用単一モード光ファイバ 7 の極めて近くを伝搬するので、モニタフォトダイオード 1 1 の実装は極めて困難である。

## [0034]

以上の説明においてはLN基板として z ー c u t L N 基板である場合について説明したが、 x ー c u t 基板あるいは y ー c u t L N 基板など各種基板を用いても良い。また、ガラスキャピラリー 1 0 b を介して信号光用単一モード光ファイバ 7 を z ー c u t L N 基板 1 の端面に固定する方法について述べたが、その代わりにレンズを用いる光学系でも良い。 さらに、 z ー c u t L N 基板 1 の端面は垂直として図示したが、斜めにしても良いことはいうまでもない。

#### [0035]

また、出力光導波路は合波光導波路の合波点から基板の端面に向かって一定の距離真っ直ぐであるとしたが、基板表面に平行な方向に合波点から直ちに位置ずれさせても良い。さらに、出力光導波路のパターンは必ずしも略逆S字状である必要はないので、直線、円弧など、各種のパターンを用いることができるし、基板表面に平行な方向に位置ずれさせつつ基板端面まで形成してもよい。

## [0036]

さらに、放射光6 a もしくは6 b の一方を伝搬させるための光導波路を設けても良いことは言うまでもない。さらに、信号光用単一モード光ファイバ7から遠ざかる方向に放射光を伝搬させるこの光導波路を曲げることにより、LN変調器基板端面において信号光用単一モード光ファイバ7と放射光との距離を一層大きくすることが可能となる。その結果、モニタフォトダイオードの実装をさらに容易とすることができる。

#### [0037]

さらに、電極としてコプレーナウェーブガイド(CPW)型の進行波電極を想定したが、非対称コプレーナストリップ(ACPS)など、他の構造の進行波電極でも良いし、もちろん集中定数型電極でも良い。また、基板としてLN基板を想定したが、リチウムタンタレートなどその他の誘電体基板、さらには半導体基板でも良い。

## 【図面の簡単な説明】

## [0038]

- 【図1】本発明のLN光変調器の斜視図
- 【図2】本発明のLN光変調器の動作を説明する図
- 【図3】本発明の第1の実施形態を説明する図
- 【図4】本発明の第2の実施形態を説明する図

- 1回り1 平北町ツ知りツ大旭形忠を説明りの凶
- 【図6】本発明の第4の実施形態を説明する図
- 【図7】従来のLN光変調器の斜視図
- 【図8】従来のLN光変調器の動作原理を説明する図
- 【図9】従来のLN光変調器の動作原理を説明する図
- 【図10】従来のLN光変調器における一次の高次モードが基板内下方に広がりつつ 伝搬することを説明する図。

【図11】従来のLN光変調器の実装方法を説明する図

#### 【符号の説明】

[0039]

1: z - c u t L N 基板、2:マッハツェンダ型の光導波路、2 a:入力光導波路、2 b:Y 分岐型の分岐光導波路、2 c - 1,2 c - 2:相互作用光導波路、2 d:Y 分岐型の合波光導波路、2 e,2 f:出力光導波路、2 g:出力光導波路の端部、2 h:合波光導波路の合波点、3:電気信号源、4:進行波電極の中心電極、5 a,5 b:接地電極、6 a,6 b、6 c、6 d、6 e、6 f:放射光、7:信号光用単一モード光ファイバ、8 a,8 b:放射光受光用光ファイバ、9:放射光検出手段、1 0 a,1 0 b:ガラスキャピラリ、1 1 モニタフォトダイオード、1 2:ミラー、1 3:ガラスブロック





【図3】



BEST AVAILABLE COPY









BEST AVAILABLE COPY



【図10】







(イ)正面図

(口)側面図

【盲规句】女形盲

【要約】

【課題】

信号光の一部の放射光をバイアスコントロール用のモニター光として使用する際に、基板の端部における信号光とモニター光のそれぞれに接続する光ファイバの実装が容易な光変調器を提供する。

## 【解決手段】

電気光学効果を有する基板1と、光を導波するための光導波路2と、前記光を変調するための電圧を印加する中心電極4及び接地電極5a、5bとを具備し、前記光導波路は、入力光導波路2aと、分岐光導波路2bと、相互作用光導波路2c-1、2c-2と、合波光導波路2dと、合波点2hを介して接続されている出力光導波路2fとから構成されていて、OFF状態に位相変調された光が前記合波点から放射光6a、6bとして放射される光変調器において、前記基板の前記出力光導波路側の基板端部1aにおける前記放射光の光分布と前記出力光導波路の端2gとが所定距離離れて位置するように、前記出力光導波路が変形して形成されている。

【選択図】

図 1

BEST AVAILABLE COPY

BEST AVAILABLE COPY

【提出日】平成16年 9月24日【あて先】特許庁長官 殿

【事件の表示】

【出願番号】 特願2004-177074

【補正をする者】

【識別番号】 000000572

【氏名又は名称】 アンリツ株式会社

【代表者】 塩見 昭

【手続補正!】

【補正対象書類名】 要約書【補正対象項目名】 全文【補正方法】 変更

【補正の内容】

【書類名】要約書

【要約】

【課題】

<u>放</u>射光をバイアスコントロール用のモニター光として使用する際に、基板の端部における信号光とモニター光のそれぞれに接続する光ファイバの実装が容易な光変調器を提供する。

## 【解決手段】

電気光学効果を有する基板1と、光を導波するための光導波路2と、前記光を変調するための電圧を印加する中心電極4及び接地電極5a、5bとを具備し、前記光導波路は、入力光導波路2aと、分岐光導波路2bと、相互作用光導波路2c-1、2c-2と、合波光導波路2dと、合波点2hを介して接続されている出力光導波路2fとから構成されていて、OFF状態に位相変調された光が前記合波点から放射光6a、6bとして放射される光変調器において、前記基板の前記出力光導波路側の基板端部1aにおける前記放射光の光分布と前記出力光導波路の端2gとが所定距離離れて位置するように、前記出力光導波路が変形して形成されている。

【選択図】図1

神奈川県厚木市恩名1800番地 アンリツ株式会社

# Document made available under the **Patent Cooperation Treaty (PCT)**

International application number: PCT/JP05/010509

International filing date:

08 June 2005 (08.06.2005)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2004-177074

Filing date: 15 June 2004 (15.06.2004)

Date of receipt at the International Bureau: 22 July 2005 (22.07.2005)

Priority document submitted or transmitted to the International Bureau in Remark:

compliance with Rule 17.1(a) or (b)

