Аналіз Даних

Завдання#1; ПМ-4

Виконав Крошин Олександр

```
In [1]: import numpy as np
    import pandas as pd
    import calculator as magic #own implementation

import seaborn as sns
    import matplotlib.pyplot as plt

from scipy import stats

sns.set(style='whitegrid',palette='colorblind')

pd.set_option('max_columns',200)

pd.set_option('max_rows',200)

In [2]: file = os.listdir('data/')[1]
    data = pd.read_excel('data/'+file,parse_dates=['Timestamp'])
    data = data[data["Kypc"]==4]
    data.reset_index(drop=True,inplace=True)
```

Data Preprocessing and Tests evaluation

```
In [3]: from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

cols = data.columns
test_1_indices = (7, 26)
test_2_indices = (27,87)

test_1_cols = cols[test_1_indices[0]:test_1_indices[1]+1]
test_2_cols = cols[test_2_indices[0]:test_2_indices[1]]
test_3_cols = cols[87:]
```

Out[4]:

	Timestamp	Курс	Стать (бінарна)	ТЙМС	Англійська або українська	Назва предмету, який вважасш проф- орієнтованим	Оцінка з цього предмету:	1. Коли починаю будь-яку роботу, як правило, сподіваюся на успіх	2. Під час діяльності виявляю активність	CXI BU: İHİL
0	2020-01-28 12:38:45.716	4	Жінка	62	93	Лінійна алгебра	100	1	1	
1	2020-01-28 12:44:22.881	4	Жінка	60	81	Математичний аналіз	75	1	1	
2	2020-01-28 13:23:32.746	4	Жінка	81	87	Технології прикладного програмування	100	1	1	
3	2020-01-28 13:24:42.728	4	Жінка	78	94	ОШІ	100	0	0	
4	2020-01-28 13:38:27.653	4	Жінка	81	87	Програмування	90	1	1	
										•

Всього маємо 19 відповідей від 25 приматів 4го курсу

In [5]: print(f'Всього маємо {data.shape[0]} відповідей від 25 приматів 4го курсу')

Test#1 evaluation

Обчислимо оцінки для тестів

```
In [6]: test 1 questions = np.arange(20)
        test 1 positive indices = np.array([1,2,3,6,8,10,11,12,14,16,18,19,20])-1
        test 1 keys = {
             positives' : test_1_positive_indices,
             'negatives' : np.array(list(set(test_1_questions)-set(test_1_positive_indices)))
        }
        def map_test_1_ans(x):
            if x>=14:
                return "Мотивація досягнення успіху"
            elif x>=8:
                return "Полюс не виражений"
            else:
                return 'Мотивація уникненя невдачі'
        data['Test#1'] =data[test 1 cols].iloc[:,test 1 keys['positives']].sum(axis=1) + (data[t
        est_1_cols].iloc[:,test_1_keys['negatives']]==0).sum(axis=1)
        data['Test#1: інтерпретація'] = data['Test#1'].map(map test 1 ans)
```

Test#2 evaluation

```
In [7]:
        subj 1 cols = test 2 cols.take([i for i in range(len(test 2 cols)) if i%3==0])
        subj 2 cols = test 2 cols.take([i for i in range(len(test 2 cols)) if i%3==1])
        subj_3_cols = test_2_cols.take([i for i in range(len(test_2_cols)) if i%3==2])
        test 2 questions = np.arange(20)
        test_2_positive_indices = np.array([1,2,5,6,8,11,12,14,17,19])-1
        test 2 keys = {
             'positives': test 2 positive indices,
             'negatives': np.array(list(set(test 2 questions)-set(test 2 positive indices)))
        }
        def map_test_2_ans(x):
            if x>=15:
                return "Високий рівень внутрішньої мотивації"
            elif x>=6:
                return "Середній рівень внутрішньої мотивації"
            else:
                return "Низький рівень внутрішньої мотивації"
        def eval_test_2(column_name,subj_cols,column_name_shortened):
            data['Test#2: ' + column_name] = (data[subj_cols].iloc[:,test_2_keys['positives']]>1
        ).sum(axis=1)+(data[subj_cols].iloc[:,test_2_keys['negatives']]<2).sum(axis=1)
            data['Test#2: ' + column_name_shortened + ' - інтерпретація'] = data['Test#2: ' + co
        lumn_name].map(map_test_2_ans)
        eval test 2('Рівняння мат. фізики', subj 1 cols, 'Мат.Фіз.')
        eval test 2('Технології прикладного програмування', subj 2 cols, 'ТПП')
        eval_test_2('Аналіз даних', subj_3_cols,'АД')
```

```
In [8]: scales_dict = {
    'Koмyнiкaтивнi мотиви': np.array([7,10,14,32])-1,
    'Moтиви уникнення': np.array([6,12,13,15,19])-1,
    'Moтиви престижу': np.array([8,9,29,30,34])-1,
    'Професійні мотиви': np.array([1,2,3,4,5,26])-1,
    'Moтиви творчої самореалізації': np.array([27,28])-1,
    'Haвчально-пізнавальні мотиви': np.array([17,18,20,21,22,23,24])-1,
    'Coціальні мотиви': np.array([11,16,25,31,33])-1,
}
for key in scales_dict.keys():
    data[key] = data[test_3_cols].iloc[:,scales_dict[key]].mean(axis=1).round(4)

data.head(3)
```

Out[8]:

	Timestamp	Курс	Стать (бінарна)	ТЙМС	Англійська або українська	Назва предмету, який вважасш проф- орієнтованим	Оцінка з цього предмету:	1. Коли починаю будь-яку роботу, як правило, сподіваюся на успіх	2. Під час діяльності виявляю активність	схи виз ініц
0	2020-01-28 12:38:45.716	4	Жінка	62	93	Лінійна алгебра	100	1	1	
1	2020-01-28 12:44:22.881	4	Жінка	60	81	Математичний аналіз	75	1	1	
2	2020-01-28 13:23:32.746	4	Жінка	81	87	Технології прикладного програмування	100	1	1	
4										•

1. Скласти інтервальний статистичний ряд (таблицю частот) для кожного тесту. Кількість інтервалів групування для тесту 1 — три, для тесту 2— чотири, для наступних тестів -формула Стерджесса.

```
In [9]: def plot_cumulative_hist(ax,col,bins):
            #data[col].value_counts().plot(ax=ax,kind='hist',cumulative=True,bins=bins,title=co
        L)
            sns.distplot(le.fit_transform(data[col]),ax=ax,bins=bins).set_title(col)
        def sturges(n):
            return 1 + np.log2(n)
        tests = ['Test#1','Test#2: Мат.Фіз. - інтерпретація','Test#2: ТПП - інтерпретація','Test
        #2: АД - інтерпретація', 'Комунікативні мотиви', 'Мотиви уникнення', 'Мотиви престижу', 'Про
        фесійні мотиви', 'Мотиви творчої самореалізації', 'Навчально-пізнавальні мотиви', 'Соціальн
        і мотиви']
        fig, axs = plt.subplots(4,3,figsize=(12,12))
        fig.tight_layout(h_pad=5, w_pad=5)
        fig.suptitle('Frequency tables',fontsize=16)
        for i in range(len(tests)):
            i1,i2 = i//3,i%3
            if i==0:
                bins=3
            elif i==1:
                bins=4
            else:
                bins = int(sturges(data.shape[0]))
            plot_cumulative_hist(axs[i1,i2],tests[i],bins)
        fig.subplots_adjust(top=0.9)
```

c:\users\alexa\appdata\local\programs\python\python37\lib\site-packages\statsmodels\nonp
arametric\kde.py:487: RuntimeWarning: invalid value encountered in true_divide
 binned = fast_linbin(X, a, b, gridsize) / (delta * nobs)
c:\users\alexa\appdata\local\programs\python\python37\lib\site-packages\statsmodels\nonp
arametric\kdetools.py:34: RuntimeWarning: invalid value encountered in double scalars

FAC1 = 2*(np.pi*bw/RANGE)**2

Graphs:

1. Візуалізувати дані (для статті, оцінок, ознак з тестів 1,2,3). Побудувати полігон, гістограму, емпіричну функцію розподілу, кумулятивну криву, - "відмітити на ній медіану та квартилі для оцінок, ознак з тестів 1, 2.

```
In [10]:
         data.rename(columns={'Англійська або українська':'Предмет#2','Оцінка з цього предмету:':
         'Предмет#3'},inplace=True)
         columns = ['TЙMC','Предмет#2','Предмет#3','#1. Вивчення цього предмета дає мені можливіс
         ть дізнатися чимало важливого для себе, проявити свої здібності. [Аналіз даних]',
                     '#2. Предмет, що вивчається, мені цікавий, і я хочу знати якомога більше. [Ан
         аліз даних]',
                         '#9. На заняттях з цього предмета у мене часто буває такий стан, коли «зо
         всім не хочеться вчитися». [Аналіз даних]',
                         '#18. Цей предмет дається мені важко, доводиться змушувати себе виконуват
         и учбові завдання. [Аналіз даних]',
                        '#19. Якщо через хворобу ( або з інших причин) я пропускаю пари з цього п
         редмета, то мене це засмучує. [Аналіз даних]'
         titles dict = {
              '#1. Вивчення цього предмета дає мені можливість дізнатися чимало важливого для себ
         е, проявити свої здібності. [Аналіз даних]':'Аналіз даних мені цікавий',
              '#2. Предмет, що вивчається, мені цікавий, і я хочу знати якомога більше. [Аналіз да
         них]':'Хочу знати якомога більше (АД)',
              '#9. На заняттях з цього предмета у мене часто буває такий стан, коли «зовсім не хоч
         еться вчитися». [Аналіз даних]':'Мені часто зовсім не хочеться вчити (АД)',
              '#18. Цей предмет дається мені важко, доводиться змушувати себе виконувати учбові за
         вдання. [Аналіз даних]':'Доводиться змушувати себе щось робити(АД)',
             '#19. Якщо через хворобу ( або з інших причин) я пропускаю пари з цього предмета, то
         мене це засмучує. [Аналіз даних]':'Не засмучуюсь,якщо пропускаю пари (АД)'
         }
         marks = data[['ΤЙΜC', 'Πρεдмет#2', 'Πρεдмет#3']]
         fig,axs = plt.subplots(2,4,figsize=(15,5))
         fig.tight_layout(h_pad=6, w_pad=7)
         fig.suptitle('Полігони для оцінок та деяких ознак тестів',fontsize=16)
         fig.subplots adjust(top=0.85)
         for i,col in enumerate(columns):
             if col in titles dict:
                 title = titles dict[col]
                 title = col
             data[col].value counts().sort index().plot(ax=axs[i//4,i%4],title=title)
```

Полігони для оцінок та деяких ознак тестів


```
In [11]: def correct labels(i):
             for j in range(3):
                 ax[j].set_ylabel('')
                 ax[j].set_title(suptitles[i][j])
         suptitles = [['Курс','Стать','Мотивація успіху та невдачі'],['Рівняння мат. фізики', 'Ан
         аліз Даних', 'Технології прикладного програмування']]
         test2_labels = ['Середній', 'Високий', 'Низький']
         fig,ax = plt.subplots(1,3,figsize=(15,5))
         plt.suptitle('Some pie plots:')
         data['Kypc'].value counts().plot(ax=ax[0],kind='pie',labels=['Четвертий'])
         data['Стать (бінарна)'].value counts().plot(ax=ax[1],kind='pie',autopct='%1.1f%%',starta
         ngle=30)
         data['Test#1: iнтepπpeтaцiя'].value counts().plot(ax=ax[2],kind='pie',autopct='%1.1f%"',
         startangle=20)
         correct_labels(0)
         fig,ax=plt.subplots(1,3,figsize=(15,5))
         plt.suptitle('Рівень внутрішньої мотивації')
         data['Test#2: Mar.Фiз. - iнтерпретація'].value_counts().plot(ax=ax[0],kind='pie',autopct
         ='%1.1f%%',startangle=0,labels=test2_labels)
         data['Test#2: ТПП - інтерпретація'].value_counts().plot(ax=ax[1],kind='pie',autopct='%1.
         1f%%',startangle=60,labels=test2_labels)
         data['Test#2: АД - iнтерпретація'].value counts().plot(ax=ax[2],kind='pie',autopct='%1.1
         f%%',startangle=0,labels=test2_labels)
         correct labels(1)
```



```
In [12]: fig,ax = plt.subplots(1,2,figsize=(14,7))

data.iloc[:,129:].mean().sort_values(ascending=False).plot(kind='bar',ax=ax[0])
ax[0].set_xticklabels(scales_dict.keys(),rotation=45,ha='right')

data.iloc[:,129:].mean().plot(kind='pie',ax=ax[1],explode=[0.,0.,0.,0.1,0.,0.,0.],shadow
=True)
ax[1].set_ylabel('')

fig.tight_layout()
```


Найголовнішим мотивом є професійний, найменш мотивуючими для студентів є мотиви уникнення та престижу

```
In [13]: fig, axs = plt.subplots(3,3,figsize = (16,12))
    fig.suptitle("Marks' Histograms, cumulative histograms & EDF",fontsize=14)
    for i,col in enumerate(marks.columns):
        data[col].hist(ax=axs[0,i])

        data[col].hist(cumulative=True,density=True,ax=axs[1,i])
        percentiles = np.percentile(data[col], [25, 50, 75])
        axs[1,i].vlines(percentiles, ymin=0, ymax=1, color='r')

        n =data[col].shape[0]
        axs[2,i].scatter(np.sort(data[col]), np.arange(1, n+1) / n)
        axs[2,i].set_title('ECDF')

        fig.tight_layout(w_pad = 5,h_pad = 5)
        fig.subplots_adjust(top = 0.9)
```

Marks' Histograms, cumulative histograms & EDF

1. (числові характеристики центральної тенденції та розкиду для оцінок та 2-х тестів — 2 б) Обчислити числові характеристики центральної тенденції та розкиду: вибіркове середнє, дисперсію, середньоквадратичне відхилення, моду, медіану, коефіцієнти асиметрії та ексцесу. Для обчислення застосувати табл.1 з прикладу 1.

```
In [14]: | tests_cols = ['Test#1','Test#2: Аналіз даних']
         quant cols = list(marks.columns) + tests cols
         print('Характеристики центральної тенденції для оцінок та тестів. Зверність увагу на дис
         персію для оцінок з тестів')
         pd.DataFrame([magic.mean(data[quant_cols]),
                       magic.variance(data[quant cols]),
                       magic.stddev(data[quant cols]),
                       magic.mode(data[quant cols]),
                       magic.median(data[quant cols]),
                       magic.skewness(data[quant cols]),
                       magic.kurtosis(data[quant_cols]),
                       magic.custom percentile(data[quant cols],25),
                       magic.custom percentile(data[quant cols], 50),
                       magic.custom_percentile(data[quant_cols], 75)],
                       index=['mean','var','std','mode','median','skewness','kurtosis','Q1','Q2',
          'Q3'])
```

Характеристики центральної тенденції для оцінок та тестів. Зверність увагу на дисперсію для оцінок з тестів

Out[14]:

	ТЙМС	Предмет#2	Предмет#3	Test#1	Test#2: Аналіз даних
mean	75.000000	85.473684	87.000000	12.315789	10.000000
var	199.555556	132.040936	196.333333	10.005848	4.111111
std	14.126413	11.490907	14.011900	3.163202	2.027588
mode	61.000000	91.000000	100.000000	11.000000	9.000000
median	78.000000	91.000000	91.000000	12.000000	10.000000
skewness	0.654525	-2.223378	-1.902246	-0.155681	0.723372
kurtosis	-1.333915	0.111179	-0.471357	0.214273	0.587655
Q1	61.000000	81.000000	81.500000	11.000000	9.000000
Q2	78.000000	91.000000	91.000000	12.000000	10.000000
Q3	82.500000	93.500000	100.000000	14.000000	11.000000

Бачимо, що студенти мають середню мотивацію як до вивчення конкретних предметів, так і загалом. Оцінки з основного профільного предмету сильно (на 10+ балів) нижчі за оцінки з інших предметів. Зауважимо, що основним мотивом навчання студенти вважають професійні навички (Тест3)

1. (коробки з вусами для оцінок та 2-х тестів — 2б) Побудувати коробки з вусами відносно середнього і відносно медіани.

```
cols = ['ТЙМС','Предмет#2','Предмет#3','Test#1','Test#2: Рівняння мат. фізики','Test#2:
In [15]:
            Технології прикладного програмування', 'Test#2: Аналіз даних'] + list(scales_dict.keys
           ())
           fig,axs = plt.subplots(4,4,figsize=(16,16))
           fig.tight layout(h pad=5, w pad=5)
           fig.suptitle('Whisker plots',fontsize=16)
           fig.subplots_adjust(top=0.95)
           for i,col in enumerate(cols):
               i1,i2 = i//4,i%4
               data[col].plot(ax=axs[i1,i2],kind='box')
                                                         Whisker plots
                                                               100
                                     100
           95
           90
                                      90
                                                               90
                                                                                          14
           85
                                      85
                                                               85
           80
                                      80
                                                               80
           75
                                                                                          10
                                      75
                                                               75
                                      70
                                                               70
           65
                                      65
                                                               65
                                      60
                     ТЙМС
                                                                                                    Test#1
                                              Предмет#2
                                                                        Предмет#3
```


Уточнюючи попередні висновки, коробки з вусами демонструють існування 1-2 високомотивованих студентів та 1-2 з вкрай низькою мотивацією 1. (статистичні похибки для оцінок та 2-х тестів -2б) Визначити статистичну похибку у тесті дослідження середнього балу з кожної дисципліни і у тесті дослідження проценту жіночої статті (пропорції). Дослідити звязок з обємом вибірки. Визначити інтервальні оцінки.

```
In [16]: moe_columns = ["Sample size",'Margin of error']#moe: margin of error

moe = pd.DataFrame(index=quant_cols, columns=moe_columns)

error_rates = [5,5,5,0.5,0.5]# moe of 5 points for each mark, 5% for each test
for i,col in enumerate(quant_cols):
    margin_of_err = magic.margin_of_error_avg_score(data[col].shape[0],magic.stddev(data[col]))
    moe.loc[col]['Sample size'] = magic.sample_size_avg_score(magic.stddev(data[col]),ma
    rgin_of_err)
    moe.loc[col]['Margin of error']= margin_of_err

moe
```

Out[16]:

	Sample size	Margin of error
ТЙМС	19	6.35201
Предмет#2	19	5.16694
Предмет#3	19	6.30052
Test#1	19	1.42235
Test#2: Аналіз даних	19	0.911715

Природньо, маємо велику похибку для такого низького об'єму вибірки

```
In [17]: moe_columns = ["Sample size",'Margin of error']#moe: margin of error

moe = pd.DataFrame(index=quant_cols, columns=moe_columns)

error_rates = [5,5,5,0.5,0.5]# moe of 5 points for each mark, 5% for each test

for i,col in enumerate(quant_cols):
    sample_size = magic.sample_size_avg_score(magic.stddev(data[col]),error_rates[i])

    moe.loc[col]['Margin of error']= magic.margin_of_error_avg_score(sample_size,magic.stddev(data[col]))
    moe.loc[col]['Sample size'] = sample_size
moe
```

Out[17]:

	Sample size	Margin of error
ТЙМС	30.6645	5
Предмет#2	20.2899	5
Предмет#3	30.1694	5
Test#1	153.754	0.5
Test#2: Аналіз даних	63.173	0.5

```
In [18]: gender_proportion = pd.DataFrame(index=['gender'],columns=moe_columns)
    gender_proportion.loc['gender']['Sample size'] = magic.sample_size_proportion(0.05,10/19
    )
    gender_proportion.loc['gender']['Margin of error'] = magic.margin_of_error_proportion(38
    3.096,10/19)
    gender_proportion
```

Out[18]:

	Sample size	Margin of error		
gender	383.096	0.05		

Більш низьке середнє квадратичне відхилення для тестів дає змогу мати меншу вибірку з тією ж похибкою. Більш натуральні дані з оцінок вказують на мінімальний розмір вибірки рівний 30. Для тесту на дослідження пропорції мінімальна похибка 0.05 вимагає мінімального розміру вибірки ~400

1. (метод моментів для оцінок -2б) Методом моментів знайти параметри розподілів. (нормальний, Стьюдента), зробити графік, порівняти гістограму і графік розподілу.

```
In [19]: dist_params = pd.DataFrame(index=['TЙМС',"Предмет#2","Предмет#3"], columns=['Mean','Vari ance','Degrees of freedom'])
    for col in marks:
        dist_params.loc[col]['Mean'] = marks[col].mean()
        dist_params.loc[col]['Variance']= marks[col].var()
        dist_params.loc[col]['Degrees of freedom']= magic.ddof(marks[col].var())#params of T
        -dist using variance
    print('Параметри розподілів, отриманих методом моментів:')
    dist_params
```

Параметри розподілів, отриманих методом моментів:

Out[19]:

	Mean	Variance	Degrees of freedom
ТЙМС	75	199.556	2.01007
Предмет#2	85.4737	132.041	2.01526
Предмет#3	87	196.333	2.01024

```
In [20]:
         fig,axs = plt.subplots(2,3,figsize=(16,10))
         plt.suptitle('Графіки відповідних розподілів', fontsize=15)
         for i,col in enumerate(marks):
             mu,sigma,dof = marks[col].mean(),marks[col].std(),magic.ddof(marks[col].var())
             #data[col].hist(ax=axs[i//3,i%3],density=True)
             sns.distplot(marks[col],ax=axs[i//3,i%3],norm_hist=True,kde=False)
             lnspc = np.linspace(data[col].min()-30, data[col].max()+30, data[col].shape[0]*10)
             pdf n = stats.norm.pdf(lnspc,mu,sigma)
             pdf t = stats.t.pdf(lnspc,len(lnspc)-dof,mu,sigma)
             axs[i//3,i%3].plot(lnspc, pdf_n, label="Norm")
             axs[i//3,i%3].plot(lnspc, pdf t, label="T")
             axs[i//3,i%3].legend()
             sns.distplot(marks[col],fit=stats.norm,kde=False,norm hist=True,ax=axs[1+i//3,i%3])
         fig.tight_layout(h_pad=5, w_pad=5)
         fig.subplots adjust(top=0.9)
```


Підібрані за методом моментів параметри нормального розподілу (Жовта крива на верхніх графіках) співпадають з обраним за МLE (Чорна крива на нижніх). Обчислюючи кількість ступенів свободи для t-розподілу за допомогою дисперсії, отримаємо t-розподіл дуже схожий на нормальний, якщо визначимо pdf від n-ddof

Висновок: в ході дослідження були зібрані оцінки студентів ПМ-4 з трьох різних предметів та проведено три різні тести навчальної мотивації студентів. Отримані дані було візуалізовано, обчислено чисельні характеристики центральної тенденції та розкиду, побудовано коробки з вусами, визначено статистичну похибку та її зв'язок з об'ємом вибірки. Методом моментів були оцінені параметри нормального розподілу (mu,sigma) та розподілу Стьдента (ddof). Побудова графіків та порівняння результатами методу оцінки максильманої правдоподібності вказують на адекватність використання методу моментів в даній задачі.