DS 9 : un corrigé

Partie I : polynôme minimal

1°) $I \neq \{0\}$, donc $\{\deg(P)/P \in I \setminus \{0\}\}$ est une partie non vide de N. Elle admet ainsi un plus petit élément, noté m. Il existe un polynôme P_0 de $I \setminus \{0\}$ de degré m. Soit $P \in I$. Effectuons la division euclidienne de P par P_0 : il existe $(Q,R) \in \mathbb{K}[X]^2$ tel que $P = P_0Q + R$ avec $\deg(R) < m$.

 $R = P - P_0 Q \in I$ car I est un idéal, mais $\deg(R) < m$, donc R = 0.

Ainsi $P = P_0 Q \in P_0 \mathbb{K}[X]$.

On a donc montré que $I \subseteq P_0\mathbb{K}[X]$. Mais réciproquement, $P_0 \in I$ et I est un idéal, donc $P_0\mathbb{K}[X] \subseteq I$. Ainsi $I = P_0\mathbb{K}[X]$.

Quitte à diviser P_0 par son coefficient dominant, on peut supposer que P_0 est unitaire, ce qui prouve l'existence.

Pour démontrer l'unicité, supposons que P_1 soit également un polynôme unitaire tel que $I = P_1 \mathbb{K}[X]$.

 $P_0 \in I = P_1 \mathbb{K}[X]$, donc $P_1 \mid P_0$. De même $P_0 \mid P_1$. Ainsi, P_0 et P_1 sont associés. D'après le cours, il existe $\lambda \in \mathbb{K}^*$ tel que $P_0 = \lambda P_1$. Mais P_0 et P_1 sont unitaires, donc $P_1 = P_0$, ce qui prouve l'unicité.

2°) •
$$\varphi_u(1) = \varphi_u(X^0) = u^0 = Id_E$$
.

• Soient
$$P = \sum_{n \in \mathbb{N}} b_n X^n \in \mathbb{K}[X], \ Q = \sum_{n \in \mathbb{N}} c_n X^n \in \mathbb{K}[X] \text{ et } \alpha \in \mathbb{K}.$$

$$\Leftrightarrow \varphi_u(\alpha P) = \left(\sum_{n \in \mathbb{N}} (\alpha b_n) X^n \right) (u) = \sum_{n \in \mathbb{N}} (\alpha b_n) u^n$$
$$= \alpha \sum_{n \in \mathbb{N}} b_n u^n = \alpha \varphi_u(P).$$

les règles de calcul dans l'algèbre
$$L(E)$$
,
$$\varphi_u(P)\varphi_u(Q) = \left(\sum_{n\in\mathbb{N}} b_n u^n\right) \left(\sum_{n\in\mathbb{N}} c_n u^n\right) = \sum_{p,q\in\mathbb{N}} b_p c_q u^{p+q}, \text{ donc par sommation par pa-}$$

quets,
$$\varphi_u(P)\varphi_u(Q) = \sum_{n \in \mathbb{N}} \left(\sum_{p+q=n} b_p c_q\right) u^n$$
. Ainsi, $\varphi_u(PQ) = \varphi_u(P)\varphi_u(Q)$.

- \diamond $(Id_E, u, u^2, \dots, u^{n^2})$ est une famille de cardinal n^2+1 dans L(E) qui est de dimension n^2 , donc elle n'est pas libre. Cette famille est donc liée.
- \diamond Ainsi, il existe une famille non nulle de scalaires $(\alpha_i)_{0 \le i \le n^2}$ telle que $\sum_{i=1}^{n^2} \alpha_i u^i = 0$.

Si l'on pose $Q(X) = \sum_{i=0}^{n^2} \alpha_i X^i$, alors $Q \neq 0$ et Q(u) = 0.

- \diamond Posons $I = \{P \in \mathbb{K}[X] / P(u) = 0\}$. $I = \mathrm{Ker}(\varphi_u)$ et φ_u est un morphisme d'anneaux, donc d'après le cours, I est un idéal de $\mathbb{K}[X]$, non nul d'après le point précédent. Alors, d'après la première question, il existe un unique polynôme π_u dans $\mathbb{K}[X]$, de coefficient dominant égal à 1, tel que $I = \pi_u \mathbb{K}[X]$, c'est-à-dire tel que pour tout $P \in \mathbb{K}[X]$, $P \in I \iff \pi_u \mid P$, ce qu'il fallait démontrer.
- 4°) Soit $u \in L(E)$.
- \diamond Supposons que $deg(\pi_u) = 0$. Alors $\pi_u = 1 = X^0$, donc $0 = \pi_u(u) = u^0 = Id_E$, donc

Ainsi, lorsque $E = \{0\}, L(E) = \{0\} = \{Id_E\}$ et $\pi_{Id_E} = 1$ et lorsque $E \neq \{0\}$, on n'a jamais $\deg(\pi_u) = 0$.

 \diamond Supposons maintenant que $E \neq \{0\}$.

Supposons que $deg(\pi_u) = 1$. Alors il existe $\lambda \in \mathbb{K}$ tel que $\pi_u = X - \lambda$, donc $0 = \pi_u(u) = u - \lambda I d_E$, ce qui prouve que u est une homothétie.

Réciproquement, si u est une homothétie, il existe $\lambda \in \mathbb{K}$ tel que $u = \lambda I d_E$, donc u est annulé par le polynôme $X - \lambda$. Alors π_u divise $X - \lambda$, mais d'après le point précédent, $\deg(\pi_u) \ge 1$ et π_u est unitaire, donc $\pi_u = X - \lambda$ et $\deg(\pi_u) = 1$.

En conclusion, lorsque $E = \{0\}$, Id_E est l'unique élément de L(E) et $\deg(\pi_{Id_E}) = 0$ et lorsque $E \neq \{0\}$, on a toujours $\deg(\pi_u) \geq 1$, avec égalité si et seulement si u est une homothétie.

$$\mathbf{5}^{\circ}) \text{ Posons } M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

que $M^2 = \operatorname{Tr}(M)M - \det(M)I_2$.

 \diamond Notons $P(X) = X^2 - \text{Tr}(M)X + \det(M)$. On vient de montrer que P(M) = 0.

Notons c la base canonique de \mathbb{K}^2 . D'après le cours, $\mathrm{mat}(u,c)=M,$ donc

 $\operatorname{mat}(u^2,c)=M^2$ puis $\operatorname{mat}(P(u),c)=P(M)=0$. Ainsi P(u)=0 et π_u divise P.

D'après la question précédente, si c = b = 0 et a = d, alors u est une homothétie et $\pi_u = X - a$, mais sinon, u n'est pas une homothétie, donc $\deg(\pi_u) \geq 2$, donc $\pi_u = P = X^2 - \text{Tr}(M)X + \det(M).$

6°) En posant
$$s = a_0^2 - a_1^2 - a_2^2 - a_3^2$$
, on calcule $M^2 = \begin{pmatrix} s & 2a_0a_1 & 2a_0a_2 & 2a_0a_3 \\ -2a_0a_1 & s & -2a_0a_3 & 2a_0a_2 \\ -2a_0a_2 & 2a_0a_3 & s & -2a_0a_1 \\ -2a_3a_0 & -2a_2a_0 & 2a_1a_0 & s \end{pmatrix}$,

donc $M^2 = 2a_0M - (a_0^2 + a_1^2 + a_2^2 + a_3^2) I_4$.

Premier cas. On suppose que $(a_1, a_2, a_3) = 0$. Alors $M = a_0 I_4$ et $\pi_f = X - a_0$. Deuxième cas. On suppose que $(a_1, a_2, a_3) \neq 0$. Alors M n'est pas scalaire, donc f n'est pas une homothétie et d'après la question 4, $deg(\pi_f) \geq 2$. Alors, ce qui précède montre

que $\pi_f = X^2 - 2a_0X + (a_0^2 + a_1^2 + a_2^2 + a_3^2).$

Partie II: ordre d'un vecteur

7°) Notons $I = \{ P \in \mathbb{K}[X] / P(f)(u) = 0 \}.$ $0 \in I$, donc $I \neq \emptyset$. De plus, si $P, Q \in I$ et $R \in \mathbb{K}[X]$, alors (P+Q)(f)(u) = [P(f)+Q(f)](u) = P(f)(u) + Q(f)(u) = 0et $(RP)(f)(u) = (R(f) \circ P(f))(u) = R(f)[P(f)(u)] = R(f)(0) = 0$, donc $P + Q \in I$ et $RP \in I$.

Ceci démontre que I est un idéal de $\mathbb{K}[X]$. Il est non nul car $\pi_f \in I$, donc d'après la première question, il existe un unique polynôme P_u dans $\mathbb{K}[X]$, de coefficient dominant égal à 1, tel que $I = P_u \mathbb{K}[X]$, c'est-à-dire tel que pour tout $P \in \mathbb{K}[X]$,

 $P \in I \iff P_u \mid P$, ce qu'il fallait démontrer.

 8°)

$$\Rightarrow \text{ On calcule successivement que } c_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, f(c_3) = \begin{pmatrix} -1 \\ 0 \\ -3 \\ -1 \end{pmatrix},$$

$$f^{2}(c_{3}) = -\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} - 3\begin{pmatrix} -1 \\ 0 \\ -3 \\ -1 \end{pmatrix} - \begin{pmatrix} 2 \\ 0 \\ 7 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \end{pmatrix}$$
et $f^{3}(c_{3}) = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix} + 2\begin{pmatrix} -1 \\ 0 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} -4 \\ 1 \\ -6 \\ -2 \end{pmatrix}$.

et
$$f^{3}(c_{3}) = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} -1 \\ 0 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} -4 \\ 1 \\ -6 \\ -2 \end{pmatrix}.$$

$$\Rightarrow \text{ Soit } (\alpha_i)_{0 \le i \le 3} \in \mathbb{Q}^4 \text{ tel que } \sum_{i=0}^3 \alpha_i f^i(c_3) = 0. \text{ Alors } \begin{cases} -\alpha_1 + \alpha_2 - 4\alpha_3 &= 0\\ -\alpha_2 + \alpha_3 &= 0\\ \alpha_0 - 3\alpha_1 + 2\alpha_2 - 6\alpha_3 &= 0\\ -\alpha_1 - 2\alpha_3 &= 0 \end{cases}$$

D'après la seconde équation, $\alpha_2 = \alpha_3$, d'après la dernière équation, $\alpha_1 = -2\alpha_3$, donc la première équation devient $2\alpha_3 + \alpha_3 - 4\alpha_3 = 0$, c'est-à-dire $\alpha_3 = 0$, ainsi $\alpha_1 = \alpha_2 = \alpha_3 = 0$. Enfin la troisième équation montre que $\alpha_0 = 0$, donc la famille $(f^i(c_3))_{0\leq i\leq 3}$ est une famille libre. Elle est de cardinal 4 et dim $(\mathbb{Q}^4)=4$, donc c'est

bien une base de \mathbb{Q}^4 .

 \diamond Soit $Q \in \mathbb{Q}[X]$ un polynôme non nul tel que $\deg(P) \leq 3$: il existe $(\alpha_i)_{0 \leq i \leq 3} \in \mathbb{Q}^4$ une famille non nulle de rationnels telle que $Q(X) = \sum_{i=0}^{3} \alpha_i X^i$.

Alors $Q(f)(c_3) = \sum_{i=0}^{3} \alpha_i f^i(c_3) \neq 0$ car la famille est libre. Ainsi, P n'est pas un multiple de P_{c_3} , quel que soit $P \in \mathbb{Q}_3[X] \setminus \{0\}$. Ceci implique que $\deg(P_{c_3}) \geq 4$. Par ailleurs, on calcule

$$f^{4}(c_{3}) = -4 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix} - 6 \begin{pmatrix} -1 \\ 0 \\ -3 \\ -1 \end{pmatrix} - 2 \begin{pmatrix} 2 \\ 0 \\ 7 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ -4 \\ 4 \\ 0 \end{pmatrix} = 4 \left(-c_{3} + f^{2}(c_{3}) \right),$$

donc si l'on pose $Q(X) = X^4 - 4X^2 + 4$, on a $Q(f)(c_3) = 0$. Ainsi P_{c_3} divise Q, or P_{c_3} et Q sont unitaires et $\deg(P_{c_3}) \ge 4$, donc $P_{c_3} = X^4 - 4X^2 + 4$.

9°) $\pi_f(f) = 0$, donc $\pi_f(f)(u) = 0$, ce qui prouve par définition de P_u que P_u divise π_f .

 10°)

$$\diamond$$
 D'après le cours, $S = \left\{ \sum_{i \in \mathbb{N}} \alpha_i f^i(u) / (\alpha_i)_{i \in \mathbb{N}} \in \mathbb{K}^{(\mathbb{N})} \right\}$, or pour toute famille

$$(\alpha_i)_{i\in\mathbb{N}}\in\mathbb{K}^{(\mathbb{N})}$$
 presque nulle de scalaires, $\sum_{i\in\mathbb{N}}\alpha_i f^i(u)=P(f)(u)$,

en posant
$$P(X) = \sum_{i \in \mathbb{N}} \alpha_i X^i$$
, donc $S = \{ P(f)(u) / P \in \mathbb{K}[X] \}$.

 \diamond Soit $x \in S$. Il existe $P \in \mathbb{K}[X]$ tel que x = P(f)(u).

Alors
$$f(x) = f(P(f)(u)) = [f \circ P(f)](u) = [XP](f)(u)$$
, donc $f(x) \in S$.
Ainsi, $f(S) \subset S$.

 11°

$$\diamond$$
 Posons $s = \deg(P_u)$. Soit $(\alpha_i)_{0 \le i < s}$ une famille de scalaires telle que $\sum_{i=0}^{s-1} \alpha_i f^i(u) = 0$.

Alors
$$P(f)(u) = 0$$
, où $P(X) = \sum_{i=0}^{s-1} \alpha_i X^i$, donc P_u divise P , mais $\deg(P) < s = \deg(P_u)$,

donc P = 0. Alors, pour tout $i \in \{0, ..., s - 1\}$, $\alpha_i = 0$. Ainsi, la famille $(f^i(u))_{0 \le i < s}$ est une famille libre de S.

 \diamond Soit $x \in S$. Il existe $P \in \mathbb{K}[X]$ tel que x = P(f)(u). Par division euclidienne, on peut écrire que $P = P_uQ + R$ avec $\deg(R) < s$.

Alors
$$x = (P_uQ + R)(f)(u) = Q(f)(P_u(f)(u)) + R(f)(u) = R(f)(u),$$

mais $\deg(R) < s$, donc $x \in \operatorname{Vect}((f^i)_{0 \le i < s})$. Ceci prouve que $(f^i(u))_{0 \le i < s}$ est également une famille génératrice de S. C'est donc une base de S, de cardinal s, donc $\dim(S) = s = \deg(P_u)$.

$12^{\circ})$

 \diamond Commençons par montrer que, pour tout $i \in \mathbb{N}$ et $x \in S$, $f^i(x) = g^i(x)$.

Soit $i \in \mathbb{N}$. Notons R(i) l'assertion : pour tout $x \in S$, $f^i(x) = g^i(x)$.

Pour i = 0 et $x \in S$, $f^0(x) = Id_E(x) = x = g^0(x)$, d'où R(0).

Pour $i \ge 0$, supposons R(i). Soit $x \in S$. D'après R(i),

 $f^{i+1}(x) = f(g^i(x))$, or $g^i(x) \in S$, donc $f^{i+1}(x) = g(g^i(x)) = g^{i+1}(x)$, ce qui prouve R(i+1).

- \diamond Par combinaison linéaire des propriétés R(i), on en déduit que pour tout $x \in S$, pour tout $P(X) = \sum_{i \in \mathbb{N}} \alpha_i X^i \in \mathbb{K}[X]$, $P(f)(x) = \sum_{i \in \mathbb{N}} \alpha_i f^i(x) = \sum_{i \in \mathbb{N}} \alpha_i g^i(x) = P(g)(x)$.
- \diamond En particulier, avec $P = \pi_g \in \mathbb{K}[X]$ et $x = u \in S$, on a $\pi_g(f)(u) = \pi_g(g)(u) = 0$, car $\pi_g(g) = 0$, donc P_u divise π_g .

 $\Rightarrow \text{Soit } i \in \mathbb{N}. \\
P_u(g)[f^i(u)] = P_u(f)[f^i(u)] = (P_u \times X^i)(f)[u] \\
= (X^i \times P_u)(f)[u] = f^i(P_u(f)[u]) \\
= f^i(0) = 0.$

donc $P_u(g)$ est un endomorphisme de S qui annule tous les vecteurs de la famille $(f^i(u))_{i\in\mathbb{N}}$. C'est une famille génératrice de S, donc $P_u(g)=0$. Ainsi π_g divise P_u . \diamond Ainsi, les deux polynômes π_g et P_u sont associés et unitaires donc ils sont égaux.

Partie III: le polynôme minimal est l'ordre d'un vecteur

13°) On a vu en question 8 que $(c_3, f(c_3), f^2(c_3), f^3(c_3))$ est une base de \mathbb{Q}^4 , donc pour tout $x \in \mathbb{Q}^4$, il existe $(\alpha_0, \dots, \alpha_3) \in \mathbb{K}^4$ tel que $x = \sum_{i=0}^3 \alpha_i f^i(c_3) = Q(f)(c_3)$, en posant $Q(X) = \sum_{i=0}^3 \alpha_i X^i$. Ceci prouve que (c_3) est f-génératrice.

14°) E est de dimension finie, donc E admet une base $e = (e_1, \ldots, e_n)$.

Soit $x \in E$. Il existe $(a_i)_{1 \le i \le n} \in \mathbb{K}^n$ tel que $x = \sum_{i=1}^n a_i e_i$.

Pour tout $i \in \mathbb{N}_n$, posons $Q_i(X) = a_i$.

Ainsi, pour tout $i \in \mathbb{N}_n$, $Q_i(f)(e_i) = (a_i I d_E)(e_i) = a_i e_i$, donc $x = \sum_{i=1}^n Q_i(f)(e_i)$.

Ainsi, e est une famille f-génératrice.

- 15°) Notons π le PPCM des polynômes P_{e_1}, \ldots, P_{e_k} .
- \diamond D'après la question 9, π_f est un multiple de chaque P_{e_i} pour $i \in \mathbb{N}_k$, donc π_f est un multiple de π .
- \diamond Soit $x \in E$. Il existe $(\varphi_i)_{1 \le i \le k} \in \mathbb{K}[X]^k$ tel que $x = \sum_{i=1}^k \varphi_i(f)[e_i]$.

Soit $i \in \mathbb{N}_k$. Il existe $R \in \mathbb{K}[X]$ tel que $\pi = R(X)P_{e_i}(X)$,

donc $\pi(f)[\varphi_i(f)[e_i]] = (RP_{e_i}\varphi_i)(f)[e_i] = (R\varphi_i)(f)[P_{e_i}(f)[e_i]] = (R\varphi_i)(f)[0] = 0.$ On en déduit que $\pi(f)[x] = 0$, pour tout $x \in E$, donc $\pi(f)$ est un polynôme annulateur de f. Ainsi, π est un multiple de π_f .

 \diamond Ainsi, les deux polynômes π et π_f sont associés et unitaires, donc ils sont égaux.

Partie IV : le polynôme minimal est l'ordre d'un vecteur

16°) Soit $i \in \mathbb{N}_k$. Notons $Q = P_y \prod_{\substack{1 \leq j \leq k \\ i \neq i}} P_{y_j}$. Par définition de P_{y_i} , il suffit de montrer

que
$$Q(f)(y_i) = 0$$
.

Posons
$$z = y - y_i = \sum_{\substack{j=1 \ i \neq i}}^k y_j$$
: pour tout $h \in \{1, \dots, k\} \setminus \{i\}$

Posons
$$z = y - y_i = \sum_{\substack{j=1 \ j \neq i}}^k y_j$$
: pour tout $h \in \{1, \dots, k\} \setminus \{i\}$,
$$\left[\prod_{\substack{1 \leq j \leq k \ j \neq i}} P_{y_j}\right](f)(y_h) = \left[\prod_{\substack{1 \leq j \leq k \ j \notin \{i,h\}}} P_{y_j}\right](f)(P_{y_h}(f)(y_h)) = 0, \text{ donc } \left[\prod_{\substack{1 \leq j \leq k \ j \neq i}} P_{y_j}\right](f)(z) = 0, \text{ ce}$$

qui prouve que
$$\left[\prod_{1 \leq j \leq k} P_{y_j}\right](f)(y_i) = \left[\prod_{1 \leq j \leq k} P_{y_j}\right](f)(y),$$

qui prouve que
$$\left[\prod_{\substack{1 \leq j \leq k \\ j \neq i}} P_{y_j}\right](f)(y_i) = \left[\prod_{\substack{1 \leq j \leq k \\ j \neq i}} P_{y_j}\right](f)(y),$$
$$\operatorname{donc} Q(f)(y_i) = Q(f)(y) = \left[\prod_{\substack{1 \leq j \leq k \\ i \neq j}} P_{y_j}\right](f)(P_y(f)(y)) = 0.$$

17°) Pour tout $i \in \mathbb{N}_k, P_{y_i}$ et $\prod_{\substack{1 \leq j \leq k \\ j \neq i}} P_{y_j}$ sont premiers entre eux, donc, d'après le

théorème de Gauss, $P_{y_i} \mid P_y$. De plus, les P_{y_i} sont deux à deux premiers entre eux, donc $\prod P_{y_i}$ divise P_y . D'autre part,

$$\left(\prod_{1 \le i \le k} P_{y_i}\right)(f)[y] = \sum_{j=1}^k \left(\prod_{1 \le i \le k} P_{y_i}\right)(f)[y_j] = \sum_{j=1}^k \left(\prod_{\substack{1 \le i \le k \\ i \ne j}} P_{y_i}\right)(f)[P_{y_j}(f)[y_j]] = 0,$$

donc, P_y divise $\prod P_{y_i}$. Ainsi, ces deux polynômes sont associés et unitaires, donc ils sont égaux.

18°)

- $\Rightarrow P_i^{\alpha_i}(f)[e_j] = 0$, car $e_j \in F_i = \text{Ker}(P_i^{\alpha_i}(f))$, donc P_{e_j} divise $P_i^{\alpha_i}$. De plus, P_i est un polynôme irréductible de $\mathbb{K}[X]$, donc il existe $\beta_j \in \{0, \dots, \alpha_i\}$ tel que $P_{e_j} = P_i^{\beta_j}$ (tous ces polynômes sont unitaires).
- \diamond Pour tout $j \in \mathbb{N}_r$, $P_{e_j} \mid P_i^{\beta}$, donc, pour tout $j \in \mathbb{N}_r$, $P_i^{\beta}(f)[e_j] = 0$. Ainsi $P_i^{\beta}(f)$ annule les vecteurs d'une base de F_i , donc $F_i \subset \operatorname{Ker}\left(P_i^{\beta}(f)\right)$.

D'autre part,
$$\beta \leq \alpha_i$$
, donc $P_i^{\alpha_i}(f) = [P_i(f)]^{\alpha_i} = [P_i(f)]^{a_i-\beta} \circ [P_i(f)]^{\beta}$, donc $\operatorname{Ker}\left(P_i^{\beta}(f)\right) \subset \operatorname{Ker}\left(P_i^{\alpha_i}(f)\right) = F_i$. Ainsi, $\operatorname{Ker}\left(P_i^{\beta}(f)\right) = \operatorname{Ker}\left(P_i^{\alpha_i}(f)\right)$.

Alors d'après le théorème de décomposition des noyaux,

Alors d'après le théorème de décomposition de
$$E = \operatorname{Ker}(\pi_f(f)) = \bigoplus_{j=1}^n \operatorname{Ker}\left(P_j^{\alpha_j}(f)\right)$$

$$= \operatorname{Ker}\left(P_i^{\alpha_i}(f)\right) \bigoplus \left(\bigoplus_{\substack{i \leq j \leq n \\ j \neq i}} \operatorname{Ker}\left(P_j^{\alpha_j}(f)\right)\right)$$

$$= \operatorname{Ker}\left(P_i^{\beta}(f)\right) \bigoplus \left(\bigoplus_{\substack{i \leq j \leq n \\ j \neq i}} \operatorname{Ker}\left(P_j^{\alpha_j}(f)\right)\right)$$

$$= \operatorname{Ker}\left(\left(P_i^{\beta} \prod_{\substack{1 \leq j \leq n \\ j \neq i}} P_j^{\alpha_j}\right)(f)\right),$$

$$\operatorname{donc}\left(P_i^{\beta} \prod_{\substack{1 \leq j \leq k \\ j \neq i}} P_j^{\alpha_j}\right)(f) = 0.$$

19°) Ainsi, $P_i^\beta \prod_{1 \le j \le n \atop i \ne j} P_j^{\alpha_j}$ est un multiple du polynôme minimal de f, c'est-à-dire de

$$P_i^{\alpha_i} \prod_{\substack{1 \leq j \leq n \\ i \neq i}} P_j^{\alpha_j}$$
, donc $\alpha_i \leq \beta$. Or $\beta \leq \alpha_i$, donc $\alpha_i = \beta = \max_{1 \leq j \leq r} \beta_j$. Ainsi, il existe $j \in \mathbb{N}_r$

tel que $\beta_j = \alpha_i$. Alors, $P_{e_j} = P_i^{\alpha_i}$. On a donc prouvé que, pour tout $i \in \mathbb{N}_k$, il existe $y_i \in E$ tel que $P_{y_i} = P_i^{\alpha_i}$. D'après la question 17, $P_{y_1+\cdots+y_k} = \prod_{i=1}^{k} P_i^{\alpha_i} = \pi_f$, ce qu'il fallait démontrer.

Partie V: Endomorphismes cycliques

20°) D'après la question 8, $(c_3, f(c_3), f^2(c_3), f^3(c_3))$ est une base de $\mathbb{Q}^4 = E$, donc fest cyclique.

21°)

 \diamond Réciproquement, soit $g \in L(E)$ tel que $g \circ f = f \circ g$.

Par hypothèse, il existe $u \in E$ tel que la famille $(u, f(u), \dots, f^{n-1}(u))$ est une base de E. On peut donc décomposer le vecteur g(u) dans cette base :

il existe
$$(\alpha_i)_{0 \le i \le n-1} \in \mathbb{K}^n$$
 tel que $g(u) = \sum_{i=0}^{n-1} \alpha_i f^i(u)$.

Posons
$$Q(X) = \sum_{i=0}^{n-1} \alpha_i X^i$$
. Ainsi, $g(u) = Q(f)[u]$.

Soit $j \in \{0, \ldots, n-1\}$. On montre par récurrence sur j que g commute avec f^j , donc $g(f^{j}(u)) = f^{j}(g(u)) = f^{j}(Q(f)[u]) = (f^{j} \circ Q(f))(u) = Q(f)(f^{j}(u)), \text{ donc } g \text{ et } Q(f)$ coïncident sur les vecteurs d'une base de E. Ainsi, g = Q(f).

22°)

 \diamond Supposons que f est cyclique. Ainsi, il existe $e_1 \in E$ pour lequel, pour tout $x \in E$, il

existe
$$(\alpha_i)_{0 \le i \le n-1} \in \mathbb{K}^n$$
 tel que $x = \sum_{i=0}^{n-1} \alpha_i f^i(e_1) = Q(f)[e_1]$, où $Q = \sum_{i=0}^{n-1} \alpha_i X^i$. Ainsi,

- (e_1) est une famille f-génératrice. D'après la question 15, le polynôme minimal de fest égal à P_{e_1} , lequel est de degré n d'après la question 11.
- \diamond Réciproquement, supposons que le polynôme minimal de f est de degré n. D'après la question 19, il existe $u \in E$ tel que le polynôme minimal de f est égal à P_u . P_u est de degré n, donc toujours d'après la question 11, la famille $(f^i(u))_{0 \le i \le n-1}$ est libre. De plus elle contient $n = \dim(E)$ vecteurs, donc c'est une base de E. Ainsi, f est un endomorphisme cyclique.

23°)

- \diamond Soit $x \in \text{Ker}(P_i(f))$. On a vu que f commute avec $P_i(f)$, donc $P_i(f)(f(x)) = f(P_i(f)(x)) = f(0) = 0$. Ainsi $f(x) \in \text{Ker}(P_i(f))$, ce qu'il fallait démontrer.
- \diamond Pour tout $x \in \text{Ker}(P_i(f))$, d'après le début de la réponse à la question 12, $\pi_{f_i}(f)(x) = \pi_{f_i}(f_i)(x) = 0$, donc $\operatorname{Ker}(P_i(f)) \subset \operatorname{Ker}(\pi_{f_i}(f))$.

De plus, pour tout $x \in \text{Ker}(P_i(f)), P_i(f_i)[x] = P_i(f)[x] = 0$, donc $P_i(f_i) = 0$. On en déduit que P_i est un multiple de π_{f_i} , donc il existe $g \in L(E)$ tel que $P_i(f) = g \circ \pi_{f_i}(f)$, donc Ker $(\pi_{f_i}(f)) \subset \text{Ker }(P_i(f))$. Ainsi, Ker $(\pi_{f_i}(f)) = \text{Ker }(P_i(f))$.

 \diamond On vient de voir que $\pi_{f_i} \mid P_i$, donc π_{f_i} est premier avec tous les P_j , pour $j \in \mathbb{N}_t \setminus \{i\}$. Ainsi, d'après le théorème de décomposition des noyaux,

Ainsi, d'après le théorème de décomposition des noyaux,
$$E = \operatorname{Ker}(\pi_f(f)) = \bigoplus_{i=1}^t \operatorname{Ker}(P_i(f))$$

$$= \operatorname{Ker}(\pi_{f_i}(f)) \bigoplus_{\substack{1 \leq j \leq n \\ i \neq j}} \operatorname{Ker}(P_j(f)) = \operatorname{Ker}\left(\left(\pi_{f_i} \prod_{\substack{1 \leq j \leq n \\ i \neq j}} P_j\right)(f)\right),$$
ce qui prouve que $\pi_{f_i} \prod_{\substack{1 \leq j \leq n \\ i \neq j}} P_j$ annule f , donc que c'est un multiple de $\pi_f = P_i \prod_{\substack{1 \leq j \leq n \\ i \neq j}} P_j$.

Ainsi π_{f_i} est un multiple de P_i . Cos deux polynômes sont donc associés et unitaires.

Ainsi, π_{f_i} est un multiple de P_i . Ces deux polynômes sont donc associés et unitaires. Ils sont égaux.

24°) D'après la question 22, il suffit de montrer que,

pour tout $i \in \mathbb{N}_t$, $\dim(\operatorname{Ker}(P_i(f))) = \deg(\pi_{f_i}) = \deg(P_i)$.

Pour tout $j \in \mathbb{N}_t$, notons $s_j = \deg(P_j)$. D'après la question 19 et la question 11, $s_i \leq \dim (\operatorname{Ker} (P_i(f))).$

Soit $i \in \mathbb{N}_t$. Supposons que $s_i < \dim (\operatorname{Ker} (P_i(f)))$.

Alors $n = \dim(E) = \sum_{j=1}^{t} \dim(\operatorname{Ker}(P_j)(f)) > \sum_{j=1}^{n} s_j = \deg(\pi_f)$. Or, on suppose que f

est cyclique, donc, d'après la question 22, deg(P) = n. Ainsi, n > n, ce qui est faux. On a donc prouvé que $\deg(P_i) = s_i = \dim(\operatorname{Ker}(P_i(f)))$, ce qui termine le corrigé.