

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Рубежный контроль №3 По предмету: «БЖД»

Вариант 2

Преподаватель: Татаринов В.В.

Студент: Гасанзаде М.А.,

Группа: ИУ7-76Б

ЗАДАНИЕ

Билет № 2

Контрольная работа М-3

- 1. АХОВ: определение и основные группы.
- 2. В резервуаре на XOO под давлением в виде газа хранится аммиак (давление 800 кПа). Размеры резервуара: диаметр 22 м, Дать прогноз химической обстановки на 3 ч после разрушения резервуара. Метеоусловия: СВУ инверсия, температура: 30 град.С, ветер 2 м/с.

РЕШЕНИЕ

1. АХОВ: определение и основные группы.

Аварийно химически опасные вещества (AXOB) – химические вещества, которые при выходе в окружающую среду способны заражать воздух (почву) с поражающей концентрацией (плотностью);

Химическая обстановка – масштабы и степень заражения отравляющими веществами или AXOB воздуха, местности, водоёмов, сооружений, техники и т. п.

Оценка химической обстановки — это определение масштабов и характера заражения AXOB окружающей среды, а также анализ влияния AXOB на деятельность объектов и сил ГО и установление степени опасности для населения.

Авария – нарушения технологического процесса, повреждения трубопроводов, ёмкостей, хранилищ, транспортных средств при осуществлении перевозок, приводящие к выбросу АХОВ в атмосферу в количествах, представляющих опасность массового поражения людей.

Разрушение — ситуация, связанная с полной разгерметизацией всех имеющихся на предприятии ёмкостей и нарушением технологических коммуникаций (наиболее вероятны при крупномасштабных землетрясениях, мощных взрывах или в результате военного воздействия).

2. В резервуаре на ХОО под давлением в виде газа хранится аммиак (давление 800 кПа). Размеры резервуара: диаметр 22 м, Дать прогноз химической обстановки на 3 ч после разрушения резервуара. Метеоусловия: СВУ - инверсия, температура: 30 град.С, ветер 2 м/с.

Исходные данные (табл 13,14,15,16, см. Приложение)

Количество АХОВ, вышедшего при ЧС: При хранении (транспортировке) в <u>газообразном состоянии</u>

$$m_0 = \frac{P}{98.1} \rho_r \cdot V \frac{n\%}{100}$$
, тонн

Р – давление в резервуаре, кПа;

 ρ_r – плотность газа, т/м³;

V – объем резервуара, M^3 ;

n — процентная концентрация AXOB, если оно находится в смеси с другими газами, %.

Найдём объём резервуара при помощи радиуса (d=22м);

$$V = \frac{4}{3} \cdot \pi \cdot R^3$$

$$V = \frac{4}{3} \cdot 3.14 \cdot 11^3 \approx 5572.4533 \,\mathrm{m}^3$$

Количество АХОВ, вышедшего при ЧС:

$$m_0 = \frac{800}{98.1} \, 0.0008 \cdot 5572.4533 \, \frac{100}{100} \approx 36.35 \, \text{тонн}$$

Метеоусловия: СВУ – инверсия, $t = 30^\circ$, скорость ветра v = 2 м/с $v_{\text{пер}} = 10$ м/с (табл. 16)

Коэффициенты:

 K_1 – коэффициент, определяющий относительное количество АХОВ, переходящее при аварии в газ: K_1 = 1 (стр. 22 [2])

 K_2 – удельная скорость испарения вещества – количество испарившегося вещества в тоннах с площади 1 м. кв. за 1 час, (т/м² ч): \mathbf{K}_2 = **0.0025** (табл. 14, Приложение 1)

 K_3 — отношение пороговой токсодозы хлора к пороговой токсодозе данного **AXOB:** K_3 = **0.4** (табл. 14, Приложение 1)

 K_4 — коэффициент, учитывающий влияние скорости ветра на интенсивность испарения K_4 = 1.33 (табл. 15, Приложение 1)

 K_5 – коэффициент, учитывающий влияние степени вертикальной устойчивости воздуха на интенсивность рассеивания **AXOB:** $K_5 = 1$ (стр 24 [2])

 K_6 — коэффициент, учитывающий соотношение времени, на которое осуществляется прогноз (T_{npor}) и продолжительности испарения АХОВ ($T_{исп}$). При $T_{исп} \ge 1$ часа $K_6 = min \{T_{исп}; T_{npor}\}^{0,8}$ (не понял как получить исп, при газах)

K7 – коэффициент, учитывающий влияние температуры воздуха в момент аварии на интенсивность испарения АХОВ при формировании первичного ($K_{7\Pi}$) и вторичного облака (K_{7B}): $K_7 = 1$ (стр. 26 [2])

Расчёт глубины зоны заражения при аварии на ХОО.

По данным с таблицы 13 (см. Приложение 1.), учитываем, что при скорости 2 м/с и весе 30т. – 21.02, получим для $36.35 \approx 25.47$

Глубина переноса облака:

 $\Gamma_{\text{пер}}$ (км) находится по формуле: $\Gamma_{\text{пер}} = V_{\text{пер}} \cdot T_{\text{прог}} = 10 \cdot 3 = 30$ За окончательную расчетную глубину зоны заражения $\Gamma_{\text{ок}}$ (км) принимается минимальная из величин $\Gamma_{\text{об}}$ и $\Gamma_{\text{пер}}$ $\Gamma_{\text{ок}}$ = min $\{\Gamma_{\text{об}}; \Gamma_{\text{пер}}\}$ = 30

Список использованных источников:

- 1. Курс лекций БЖД (2020)
- 2. Семинар АХОВ

Приложение 1.

ТАБЛИЦЫ ДЛЯ РАСЧЕТОВ.

Таблица 13. Глубины зон возможного заражения АХОВ, км

Ск-сть	Эквивалентное количество АХОВ, т															
							Эквива.	пситнос	количест	IBU AAO	ъ, і					
ветра																
м/с	0.01	0.05	0.1	0.5	1	3	5	10	20	30	50	70	100	300	500	1000
1	0.38	0.85	1.25	3.16	4.75	9.18	12.53	19.20	29.56	38.13	52.67	65.23	81.91	166.0	231.0	363.0
2	0.26	0.59	0.84	1.92	2.84	5.35	7.20	10.84	16.44	21.02	28.73	35.35	44.09	87.79	121.0	189.0
3	0.22	0.48	0.68	1.53	2.17	3.99	5.34	7.96	11.94	15.18	20.59	25.21	31.30	61.47	84.50	130.0
4	0.19	0.42	0.59	1.33	1.88	3.28	4.36	6.46	9.62	12.18	16.43	20.05	24.80	48.18	65.92	101.0
5	0.17	0.38	0.53	1.19	1.68	2.91	3.75	5.53	8.19	10.33	13.88	16.89	20.82	40.11	54.67	83.60
6	0.15	0.34	0.48	1.09	1.53	2.66	3.43	4.88	7.20	9.06	12.14	14.79	18.13	34.67	47.09	71.70
7	0.14	0.32	0.45	1.00	1.42	2.46	3.17	4.49	6.48	8.14	10.87	13.17	16.17	30.73	41.63	63.16
8	0.13	0.30	0.42	0.94	1.33	2.30	2.97	4.20	5.92	7.42	9.90	11.98	14.68	27.75	37.49	56.70
9	0.12	0.28	0.40	0.88	1.25	2.17	2.80	3.96	5.60	6.86	9.12	11.03	13.50	25.39	34.24	51.60
10	0.12	0.26	0.38	0.84	1.19	2.06	2.66	3.76	5.31	6.50	8.50	10.23	12.54	23.49	31.61	47.53
11	0.11	0.25	0.36	0.80	1.13	1.96	2.53	3.58	5.06	6.20	8.01	9.61	11.74	21.91	29.44	44.15
12	0.11	0.24	0.34	0.76	1.08	1.88	2.42	3.43	4.85	5.94	7.67	9.07	11.06	20.58	27.61	41.30
13	0.10	0.23	0.33	0.74	1.04	1.80	2.37	3.29	4.66	5.70	7.37	8.72	10.48	19.45	26.04	38.90
14	0.10	0.22	0.32	0.71	1.00	1.74	2.24	3.17	4.49	5.50	7.10	8.40	10.04	18.46	24.69	36.81
15	0.10	0.22	0.31	0.69	0.97	1.68	2.17	3.07	4.34	5.31	6.86	8.11	9.70	17.60	23.50	34.98

Примечания: 1.При скорости ветра более 15 м/с используют значение для 15 м/с.

2.При скорости ветра менее 1 м/с используют значение для 1 м/с.

Таблица 14. Характеристики AXOB и расчетные коэффициенты.

N TN T		Значения коэффициентов												
NN	Наименование АХОВ	Плотност	Ъ	Темпе-	Порого-	Значе	ния коэфо	рициент	OB					
п/п		т/м. куб		ратура	вая ток-									
				кипе-	содоза				К7 для значений					
		газ	жид-	ния,	г мин/м³	K1	К2	К3	- 40	- 20	0	20	40	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1	Аммиак-хранение под	0.0008	0.681	-33.42	15	0.18	0.025	0.04	0/0.9	0.3/1	0.6/1	1/1	1.4/1	
	Давлением													
2	Аммиак-изотермическое	l —	0.681	-33.42	15	0.01	0.025	0.04	0/0.9	1/1	1/1	1/1	1/1	
	хранение													
3	Водород фтористый	_	0.989	19.52	4	0	0.028	0.15	0.1	0.2	0.5	1	1	
4	Водород хлористый	0.0016	1.191	-85.10	2	0.28	0.037	0.30	0.4/1	0.6/1	0.8/1	1/1	1.2/1	
5	Диметиламин	0.0020	0.680	6.9	1.2	0.06	0.041	0.50	0/0.1	0/0.3	0/0.8	1/1	2.5/1	
6	Нитрил акриловой	_	0.806	77.3	0.75	0	0.007	0.80	0.04	0.1	0.4	1	2.4	
	кислоты													
7	Окислы азота	_	1.491	21.0	1.5	0	0.040	0.40	0	0	0.4	1	1	
8	Сернистый ангидрид	0.0029	1.462	-10.1	1.8	0.11	0.049	0.333	0/0.2	0/0.5	0.3/1	1/1	1.7/1	
9	Окись этилена	_	0.882	10.7	2.2	0.05	0.041	0.27	0/0.1	0/0.3	0/0.7	1/1	3.2/1	
10	Сероводород	0.0015	0.964	-60.35	16.1	0.27	0.042	0.036	0.3/1	0.5/1	0.8/1	1/1	1.2/1	
11	Формальдегид	_	0.815	-19.0	0.6	0.19	0.034	1.0	0/0.4	0/1	0.5/1	1/1	1.5/1	
12	Фосген	0.0035	1.432	8.2	0.6	0.05	0.061	1.0	0/0.1	0/0.3	0/0.7	1/1	2.7/1	
13	Фтор	0.0017	1.512	-188.2	0.2	0.95	0.038	3.0	0.7/1	0.8/1	0.9/1	1/1	1.1/1	
14	Фосфор треххлористый	_	1.570	75.3	3.0	0	0.010	0.2	0.1	0.2	0.4	1	2.3	
15	Фосфора хлорокись	<u> </u>	1.675	107.2	0.06	0	0.003	10.0	0.05	0.1	0.3	1	2.5	
16	Хлор	0.0032	1.553	-34.1	0.6	0.18	0.052	1.0	0/0.9	0.3/1	0.6/1	1/1	1.4/1	
17	Хлорпикрин		1.658	112.3	0.02	0	0.002	30.0	0.03	0.1	0.3	1	2.9	
18	Хлорциан	0.0021	1.220	12.6	0.75	0.04	0.048	0.8	0/0	0/0	0/0.6	1/1	3.9/1	
19	Этиленамин		0.838	55.0	4.8	0	0.009	0.125	0.05	0.1	0.4	1	2.2	
20	Этиленсульфид	_	1.005	55.0	0.10	0	0.013	6.0	0.05	0.1	0.4	1	2.2	
21	Этилмеркаптан	l —	0.839	35.0	2.20	0	0.028	0.27	0.1	0.2	0.5	1	1.7	

Примечания: 1.Плотности газообразных АХОВ в колонке 3 приведены для атмосферного давления (98.1 кПа). 2.В колонках 10—14 в числителе даны значения для первичного облака, в знаменателе — для вторичного.

Таблица 15. Значения коэффициента К4 в зависимости от скорости ветра.

Скорость ветра, м/с	1	2	3	4	5	6	7	8	9	10	15
K4	1	1.33	1.67	2.0	2.34	2.67	3.0	3.34	3.67	4.0	5.68

Таблица 16. Скорость переноса переднего фронта облака зараженного воздуха, км/час

Скорость ветра, м/с	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Инверсия	5	10	16	21	-	-	-	-	-	-	-	-	-	-	-
Изотермия	6	12	18	24	29	35	41	47	53	59	65	71	76	82	88
Конвекция	7	14	21	28	-	-	-	-	-	-	-	-	-	-	-

(Сохранена нумерация таблиц по методическому пособию 1992 г)

^{3.} Значение К при изотермическом хранении аммиака приведено для случая разливов (выбросов) в поддон.