Intro. To Security Solutions For Network Devices

Uriah Pollock
Product Manager – Mentor Graphics

Agenda

- A Short Background On Cryptography
- The Building Blocks Of Security
- Security Protocols
- The Embedded Devices

Short History Of Encryption

- Always A Need To Protect Information
- One Very Early Form
 - Caesar's Substitution Cipher

PT	А	В	С	D	E	F	G	Н	I
СТ	D	E	F	G	Н	I	J	K	L

- Transform One Letter To Another
- In this case
 - BIG ⇔ ELJ

Short History Of Encryption

- Enigma Machine
 - Based On Caesar's
 - Complex For Its Time
 - Sold Commercially
 - Used In World War II
 - Mechanical/Electrical System
 - Rotors
 - Keyboard
 - Lights

The Coming Of Digital Encryption

- SIGSALY
 - First Digital Encoder
 - Developed By Bell Labs
 - Used By USA and UK During World War II
 - Performed All Needed Operations
 - AD Voice Encoding
 - Vocoder
 - Encryption Of Digitally Encoded Voice
 - TX ⇔ RX Radio Signal
 - Decryption Of Digitally Encoded Voice
 - DA Voice Synthesis
- Creation Of Many New Technologies

The Coming Of Digital Encryption

SIGSALY

Agenda

- A Short Background On Cryptography
- The Building Blocks Of Security
- Security Protocols
- The Embedded Devices

The Building Blocks Of Security

- Three Main Building Blocks
 - Symmetric Encryption Ciphers
 - Asymmetric Encryption Ciphers
 - Message Digest Algorithms
 - Hashing Algorithms

Symmetric Encryption Ciphers

- Same Key To Encrypt And Decrypt The Data
- Algorithms Such As
 - Data Encryption Standard (DES)
 - Triple DES (3DES)
 - Advanced Encryption Standard (AES)
 - Blowfish
 - And Others
- All Provide Data hiding
- Typically Fast And Small

Asymmetric Encryption Ciphers

- One Key To Encrypt Data
- Different Key To Decrypt Data
 - Public Key Cryptography
- Rivest Shamir Adleman (RSA) Algorithm
- Provides
 - Key Origin Validation
 - Authentication

Message Digest Algorithms

- One Way Hashing Algorithms
- Enables Data Integrity Authentication
 - Data Not Modified During Transmission
- Algorithms Include
 - MD4
 - MD5
 - Secure Hash 1 (SHA-1)
 - Secure Hash 256 (SHA-256)
- Use HMAC Hashing With A Key
 - Increased Security
 - Data Origin Authentication

Agenda

- A Short Background On Cryptography
- The Building Blocks Of Security
- Security Protocols
- The Embedded Devices

Security Protocols

- A Number Available
- Do They All Solve The Same Problem?
- Today I Will Cover
 - Internet Protocol Security (IPsec)
 - Layer 2 Tunneling Protocol (L2TP)
 - Secure Sockets Layer (SSL)
 - IEEE 802.1x
 - Port Based Authentication
 - IEEE 802.11i
 - WPA and WPA2
 - Secure Shell (secSH)

Internet Protocol Security

- Security Built In-To The Stack
- Two Main Protocols
 - Authentication Header (AH) Protocol
 - Data Is Hashed
 - Including Shared Secret
 - Encapsulating Security Payload (ESP) Protocol
 - Data Hiding
- Configuration Must Be Done
 - Which Asymmetric Cipher?
 - Which Hasing Algorithm?
 - What Shared Secret Key?

Internet Protocol Security – IKE

- Internet Key Exchange
- Automates IPsec Configuration
 - Asymmetric Encryption Cipher
 - Message Digest Algorithm
 - Shared Secret Key
- Creates Security Association
 - Both Sides In Agreement
- Periodically Renews Security Association

Internet Protocol Security

IPsec: Site-To-Site

Santa Clara

Layer 2 Tunneling Protocol

- Functions At Bottom Of Stack
- Provides Tunneling
- Provides Configuration
 - User Authentication
 - CHAP-MD5
 - PAP
 - MS-CHAPv1/v2
 - IP Address Assignment
 - DNS Server Assignment
- Provides No Data Hiding!
 - Use IPsec For This

Layer 2 Tunneling Protocol

Simple Network Example Of Tunneling

Secure Sockets Layer

- Application Level Security
- Commonly Used For HTTP
- Is A General Purpose Solution
- Requires Application Modification

Port Based Network Access Control

- Defined in IEEE 802.1x
 - Based on Extensible Authentication Protocol
 - Other Variants
 - LEAP, PEAP, EAP-TLS, EAP-TTLS
- Network Ports Are Authenticated
 - Ports On A Network Switch
 - "Ports" On A Wireless Access Point
- Server Uses Authentication Mechanism
 - RADIUS
 - LDAP
 - Open Ended In 802.1x Specification

802.11 Enhanced Security

- Developed by Task Group I
 - Named IEEE 802.11i
 - Also Wi-FiTM Protected Access 2
 - Replaces Cracked Wired Equivalent Privacy (WEP)
 - Replaces Stop-Gap WPA 1
- Built From Many Protocols
 - SSL
 - 802.1x
 - CCMP
 - With AES Encryption
- 802.11 Hardware Must Support 802.11i

Secure Shell

- Replacement For Telnet
 - Remote Machine Access
- Integrated With FTP
 - Secure FTP Log In
 - Secure FTP File Transfers
- Can Proxy Other Connections
 - Gives Security To Insecure Applications

Improving Performance

- Encryption Ciphers
 - Can Be Slow
 - Can Consume Many CPU Cycles
 - May Require Powerful CPU For Needed Performance
- Hardware Offloading Solves This
 - Algorithms Moved to Hardware
 - Speeds Algorithm
 - Speeds Security Protocol
 - Improves Entire System
- Example Part:
 - TI OMAP2420

Agenda

- A Short Background On Cryptography
- The Building Blocks Of Security
- Security Protocols
- The Embedded Devices

Securing Devices

- The Right Protocol?
- Many Networked Devices
- Mobile/Handheld Devices
- Network Infrastructure
- Medical Devices
- SOHO
- Set Top Boxes
- More

Securing Devices

- Will They Connect To A Remote VPN?
- Are They Wireless Ethernet Capable?
- Do You Need To Secure A Proprietary Protocol?
- Network Centered Equipment?

Summary Page

- Selection Of Security Solutions Available
- Each Has Appropriate Application
- Device Type/Use Guides Which To Use

