Tangentes et nombres dérivés.

Tangente à un graphe.

Équation d'un tangente.

cangente.

derivee.

référence.

operations sur les fonctions dérivables

dérivée et sens de variation.

Dérivation

Tangentes et nombres dérivés.

Tangente à un graphe. Nombre dérivé

Équation d'un tangente.

dérivée.

Fonctions de référence.

Opérations sur les

Signe de la dérivée et ser de variation.

Définition 1

Soit $f:I\to\mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Soit \mathcal{C}_f sa . La **tangente** à \mathcal{C}_f au point $A(a, \cdot)$ est la droite passant par la plus proche de \mathcal{C}_f au voisinage de a.

Exemple 2

Tangentes et nombres dérivés.

Tangente à un graphe. Nombre dérivé

Équation d'un tangente.

dérivée.

Fonctions de référence.

Opérations sur les

Signe de la dérivée et ser de variation.

Définition 1

Soit $f:I\to\mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Soit \mathcal{C}_f sa représentation graphique. La **tangente** à \mathcal{C}_f au point $A(a, \quad)$ est la droite passant par la plus proche de \mathcal{C}_f au voisinage de a.

Exemple 2

Tangentes et nombres dérivés.

Tangente à un graphe. Nombre dérivé

Équation d'un tangente.

dérivée.

Fonctions de référence.

Opérations sur les fonctions dérivable

Signe de la dérivée et sen de variation.

Définition 1

Soit $f:I\to\mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Soit \mathcal{C}_f sa représentation graphique. La **tangente** à \mathcal{C}_f au point A(a,f(a)) est la droite passant par la plus proche de \mathcal{C}_f au voisinage de a.

Exemple 2

Tangentes et nombres dérivés.

Tangente à un graphe. Nombre dérivé

Équation d'un tangente.

dérivée.

Fonctions de référence.

Opérations sur les

Signe de la dérivée et sen de variation.

Définition 1

Soit $f:I\to\mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Soit \mathcal{C}_f sa représentation graphique. La **tangente** à \mathcal{C}_f au point A(a,f(a)) est la droite passant par A la plus proche de \mathcal{C}_f au voisinage de a.

Exemple 2

Signe de la dérivée et ser de variation.

Définition 1

Soit $f:I\to\mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Soit \mathcal{C}_f sa représentation graphique. La **tangente** à \mathcal{C}_f au point A(a,f(a)) est la droite passant par A la plus proche de \mathcal{C}_f au voisinage de a.

Exemple 2

Tangentes et nombres dérivés.

Tangente à un graphe. Nombre dérivé

Équation d'un tangente.

dérivée.

Fonctions de référence.

Opérations sur les fonctions dérivable

Signe de la dérivée et sen de variation.

Définition 1

Soit $f:I\to\mathbb{R}$ une fonction définie sur un intervalle I de \mathbb{R} . Soit \mathcal{C}_f sa représentation graphique. La **tangente** à \mathcal{C}_f au point A(a,f(a)) est la droite passant par A la plus proche de \mathcal{C}_f au voisinage de a.

Exemple 2

nombres dérivés. Tangente à un graphe. Nombre dérivé. Équation d'une

dérivée.

Fonctions de référence.

fonctions dérivable
Signe de la
dérivée et sen

Définition 3

On dit que f est **dérivable en a** si son \mathcal{C}_f admet une au point . On appelle alors **nombre dérivé** et on note $\mathbf{f}'(\mathbf{a})$ le de cette tangente.

Exemple 4

Tangentes et nombres dérivés. Tangente à un graphe. Nombre dérivé. Équation d'une

dérivée.

Fonctions de référence.

Opérations sur les

Signe de la dérivée et ser de variation.

Définition 3

On dit que f est **dérivable en a** si son graphe \mathcal{C}_f admet une au point . On appelle alors **nombre dérivé** et on note $\mathbf{f}'(\mathbf{a})$ le de cette tangente.

Exemple 4

Tangentes et nombres dérivés. Tangente à un graphe. Nombre dérivé. Équation d'une

dérivée.

Fonctions de référence.

Opérations sur les

Signe de la dérivée et ser de variation.

Définition 3

On dit que f est **dérivable en a** si son graphe \mathcal{C}_f admet une tangente au point . On appelle alors **nombre dérivé** et on note $\mathbf{f}'(\mathbf{a})$ le de cette tangente.

Exemple 4

Tangentes ei nombres dérivés. Tangente à un graphe. Nombre dérivé. Equation d'une tangente.

Calcul de dérivée.

Fonctions de référence.

Opérations sur les fonctions dérivable

Signe de la dérivée et sen de variation.

Définition 3

On dit que f est **dérivable en a** si son graphe \mathcal{C}_f admet une tangente au point A(a, f(a)). On appelle alors **nombre dérivé** et on note $\mathbf{f}'(\mathbf{a})$ le de cette tangente.

Exemple 4

Tangentes et nombres dérivés. Tangente à un graphe. Nombre dérivé. Équation d'une tangente.

Calcul de dérivée.

Fonctions de référence.

Opérations sur les fonctions dérivable

Signe de la dérivée et sen de variation.

Définition 3

On dit que f est **dérivable en a** si son graphe \mathcal{C}_f admet une tangente au point A(a, f(a)). On appelle alors **nombre dérivé** et on note $\mathbf{f}'(\mathbf{a})$ le coefficient directeur de cette tangente.

Exemple 4

Tangentes et nombres dérivés. Tangente à un graphe. Nombre dérivé. Équation d'une tangente.

dérivée.

Fonctions de référence.

Opérations sur les fonctions dérivabl

Signe de la dérivée et sen de variation.

Définition 3

On dit que f est **dérivable en a** si son graphe C_f admet une tangente au point A(a, f(a)). On appelle alors **nombre dérivé** et on note f'(a) le coefficient directeur de cette tangente.

Exemple 4

Tangentes et nombres dérivés. Tangente à un graphe. Nombre dérivé. Équation d'une tangente.

dérivée.

Fonctions de référence.

Opérations sur les fonctions dérivabl

Signe de la dérivée et sen de variation.

Définition 3

On dit que f est **dérivable en a** si son graphe \mathcal{C}_f admet une tangente au point A(a, f(a)). On appelle alors **nombre dérivé** et on note $\mathbf{f}'(\mathbf{a})$ le coefficient directeur de cette tangente.

Exemple 4

Tangentes et nombres dérivés.

Tangente à un graphe. Nombre dérivé.

Équation d'une tangente.

dérivée.

Fonctions de référence.

référence.

Opérations sur les fonctions dérivable

Signe de la dérivée et ser de variation.

Théorème 5

Soit $f: I \to \mathbb{R}$ une fonction de f en A(a, (f(a))) a pour équation

en a. La

 $T_f(a)$

 $T_f(a): y =$

Exemple 6

La fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ est équation

en ,
$$T_f(1)$$
 a pour

$$T_f(1) : y =$$

Tangentes e nombres dérivés.

Tangente à un graphe.
Nombre dérivé.

Équation d'une tangente.

dérivée.

Fonctions de référence.

Signe de la dérivée et ser de variation.

Théorème 5

Soit $f: I \to \mathbb{R}$ une fonction dérivable en a. La de f en A(a,(f(a)) a pour équation

$$T_f(a): y =$$

Exemple 6

La fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ est équation

en , $T_f(1)$ a pour

 $T_f(a)$

$$T_f(1) : y =$$

Tangentes et nombres dérivés.

Tangente à un graphe.
Nombre dérivé.

Équation d'une tangente.

dérivée.

Fonctions de référence.

Opérations sur les

Signe de la dérivée et ser de variation.

Théorème 5

Soit $f: I \to \mathbb{R}$ une fonction dérivable en a. La tangente $T_f(a)$ de f en A(a,(f(a)) a pour équation

$$T_f(a): y =$$

Exemple 6

La fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ est équation

en ,
$$T_f(1)$$
 a pour

$$T_f(1) : y =$$

Tangente à un graphe. Nombre dérivé.

Équation d'une tangente.

dérivée.

Fonctions de référence.

Opérations sur les

Signe de la dérivée et ser de variation.

Théorème 5

Soit $f: I \to \mathbb{R}$ une fonction dérivable en a. La tangente $T_f(a)$ de f en A(a,(f(a)) a pour équation

$$T_f(a) : y = f'(a)(x - a) + f(a)$$

Exemple 6

La fonction $f:\mathbb{R} o \mathbb{R}, x \mapsto x^2$ est en , $\mathcal{T}_f(1)$ a pour équation

$$T_f(1) : y =$$

Tangente à un graphe. Nombre dérivé.

Équation d'une tangente.

dérivée.

Fonctions de référence.

Opérations sur les

Signe de la dérivée et ser de variation.

Théorème 5

Soit $f: I \to \mathbb{R}$ une fonction dérivable en a. La tangente $T_f(a)$ de f en A(a,(f(a)) a pour équation

$$T_f(a) : y = f'(a)(x - a) + f(a)$$

Exemple 6

La fonction $f:\mathbb{R} \to \mathbb{R}, x \mapsto x^2$ est dérivable en $\mathcal{T}_f(1)$ a pour équation

$$T_f(1) : y =$$

Tangente à un graphe. Nombre dérivé.

Équation d'une tangente.

dérivée.

Fonctions de référence.

Opérations sur les

Signe de la dérivée et ser de variation.

Théorème 5

Soit $f: I \to \mathbb{R}$ une fonction dérivable en a. La tangente $T_f(a)$ de f en A(a,(f(a)) a pour équation

$$T_f(a) : y = f'(a)(x - a) + f(a)$$

Exemple 6

La fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ est dérivable en 1, $T_f(1)$ a pour équation

$$T_f(1) : y =$$

Signe de la dérivée et ser de variation.

Théorème 5

Soit $f: I \to \mathbb{R}$ une fonction dérivable en a. La tangente $T_f(a)$ de f en A(a,(f(a)) a pour équation

$$T_f(a) : y = f'(a)(x - a) + f(a)$$

Exemple 6

La fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ est dérivable en 1, $T_f(1)$ a pour équation

$$T_f(1): y = 2(x-1)+1$$

l'angente a un graphe. Nombre dérivé. Équation d'une tangente.

dérivée.

Fonctions de référence.

référence.

Opérations sur les fonctions dérivable

Signe de la dérivée et sen de variation.

Définition 7

Soit $f:I\to\mathbb{R}$. On dit que f est **dérivable sur I** si pour tout réel a dans I,f est en . On appelle alors fonction dérivée de f et on note $f':I\to\mathbb{R},x\mapsto$

Exemple 8

La fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ est sur et f'(x) = .

graphe.

Nombre dérivé.

Équation d'une

Equation d'un tangente.

dérivée.

Fonctions de référence.

Opérations sur les

Signe de la dérivée et sen

Définition 7

Soit $f:I\to\mathbb{R}$. On dit que f est **dérivable sur I** si pour tout réel a dans I,f est dérivable en . On appelle alors fonction dérivée de f et on note $f':I\to\mathbb{R},x\mapsto$

Exemple 8

La fonction
$$f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$$
 est

sur et

$$f'(x) =$$

graphe.

Nombre dérivé.

Équation d'une

Équation d'un tangente.

dérivée. Fonctions de référence.

Signe de la dérivée et ser

Définition 7

Soit $f:I\to\mathbb{R}$. On dit que f est **dérivable sur I** si pour tout réel a dans I,f est dérivable en a. On appelle alors fonction dérivée de f et on note $f':I\to\mathbb{R},x\mapsto$

Exemple 8

La fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ est

sur et

$$f'(x) =$$

Signe de la dérivée et ser

Définition 7

Soit $f:I\to\mathbb{R}$. On dit que f est **dérivable sur I** si pour tout réel a dans I,f est dérivable en a. On appelle alors fonction dérivée de f et on note $f':I\to\mathbb{R},x\mapsto f'(x)$

Exemple 8

La fonction
$$f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$$
 est

sur et

$$f'(x) =$$

Signe de la dérivée et sen de variation.

Définition 7

Soit $f:I\to\mathbb{R}$. On dit que f est **dérivable sur I** si pour tout réel a dans I,f est dérivable en a. On appelle alors fonction dérivée de f et on note $f':I\to\mathbb{R},x\mapsto f'(x)$

Exemple 8

graphe.

Nombre dérivé.

Équation d'une

Équation d'un tangente.

dérivée.

Fonctions de référence.

Opérations sur les

Signe de la dérivée et sen

Définition 7

Soit $f:I\to\mathbb{R}$. On dit que f est **dérivable sur I** si pour tout réel a dans I,f est dérivable en a. On appelle alors fonction dérivée de f et on note $f':I\to\mathbb{R},x\mapsto f'(x)$

Exemple 8

La fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ est dérivable sur \mathbb{R} et f'(x) =.

Tangentes e nombres dérivés.

l'angente a un graphe. Nombre dérivé. Équation d'une tangente.

Calcul de dérivée. Fonctions de référence

Fonctions de référence. Opérations sur les fonctions dérivables

Signe de la dérivée et sen de variation.

Définition 7

Soit $f:I\to\mathbb{R}$. On dit que f est **dérivable sur I** si pour tout réel a dans I,f est dérivable en a. On appelle alors fonction dérivée de f et on note $f':I\to\mathbb{R},x\mapsto f'(x)$

Exemple 8

La fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ est dérivable sur \mathbb{R} et f'(x) = 2x.

l angentes et nombres dérivés. Tangente à un graphe. Nombre dérivé. Équation d'une tangente.

Calcul dérivé

référence.

Opérations sur les fonctions dérivable

Signe de la dérivée et ser

Fonction f	Domaine de défini-	Domaine de déri-	Fonction dérivée f'
	tion	vabilité	
Fonction constante : $f(x) = k, k$ réel	\mathbb{R}	R	f'(x) =
Fonction affine : $f(x) = mx + p$, m et p réels	\mathbb{R}	R	f'(x) =
Fonction puissance : $f(x) = x^n$, n entier naturel	\mathbb{R}	\mathbb{R}	f'(x) =
Fonction inverse : $f(x) = \frac{1}{x}$	$]-\infty;0[\cup]0;+\infty[$	$]-\infty;0[\cup]0;+\infty[$	f'(x) =
Fonction racine carrée : $f(x) = \sqrt{x}$	[0; +∞[]0; +∞[f'(x) =

nombres dérivés. Tangente à un graphe. Nombre dérivé. Équation d'une tangente.

dérivé

référence.

Opérations sur les fonctions dérivabl

Signe de la dérivée et ser de variation

Fonction f	Domaine de défini-	Domaine de déri-	Fonction dérivée f'
	tion	vabilité	
Fonction constante : $f(x) = k, k$ réel	\mathbb{R}	\mathbb{R}	f'(x) = 0
Fonction affine : $f(x) = mx + p$, m et p réels	\mathbb{R}	\mathbb{R}	f'(x) =
Fonction puissance : $f(x) = x^n$, n entier naturel	\mathbb{R}	\mathbb{R}	f'(x) =
Fonction inverse : $f(x) = \frac{1}{x}$	$]-\infty;0[\cup]0;+\infty[$	$]-\infty;0[\cup]0;+\infty[$	f'(x) =
Fonction racine carrée : $f(x) = \sqrt{x}$	[0; +∞[]0; +∞[f'(x) =

Tangentes et nombres dérivés.

Tangente à un graphe.

Nombre dérivé.
Équation d'une tangente.

Calcul dérivé

référence.

Opérations sur les fonctions dérivabl

Signe de la dérivée et ser de variation

Fonction f	Domaine de défini-	Domaine de déri-	Fonction dérivée f'
	tion	vabilité	
Fonction constante : $f(x) = k, k$ réel	\mathbb{R}	\mathbb{R}	f'(x) = 0
Fonction affine : $f(x) = mx + p$, m et p réels	\mathbb{R}	\mathbb{R}	f'(x) = m
Fonction puissance : $f(x) = x^n$, n entier naturel	\mathbb{R}	\mathbb{R}	f'(x) =
Fonction inverse : $f(x) = \frac{1}{x}$	$]-\infty;0[\cup]0;+\infty[$	$]-\infty;0[\cup]0;+\infty[$	f'(x) =
Fonction racine carrée : $f(x) = \sqrt{x}$	[0; +∞[]0; +∞[f'(x) =

rangentes e nombres dérivés. Tangente à un graphe. Nombre dérivé. Équation d'une tangente.

Calcul dérivé

Fonctions référence.

Opérations sur les

Signe de la dérivée et ser de variation

Fonction f	Domaine de défini-	Domaine de déri-	Fonction dérivée f'
	tion	vabilité	
Fonction constante : $f(x) = k, k$ réel	\mathbb{R}	R	f'(x) = 0
Fonction affine : $f(x) = mx + p$, m et p réels	\mathbb{R}	\mathbb{R}	f'(x) = m
Fonction puissance : $f(x) = x^n$, n entier naturel	\mathbb{R}	\mathbb{R}	$f'(x) = nx^{n-1}$
Fonction inverse : $f(x) = \frac{1}{x}$	$]-\infty;0[\cup]0;+\infty[$	$]-\infty;0[\cup]0;+\infty[$	f'(x) =
Fonction racine carrée : $f(x) = \sqrt{x}$	[0; +∞[]0; +∞[f'(x) =

Tangentes et nombres dérivés. Tangente à un graphe. Nombre dérivé. Équation d'une tangente.

dérivée

Opérations sur les

Signe de la dérivée et ser

Fonction f	Domaine de défini-	Domaine de déri-	Fonction dérivée f'
	tion	vabilité	
Fonction constante : $f(x) = k, k$ réel	\mathbb{R}	R	f'(x) = 0
Fonction affine : $f(x) = mx + p$, m et p réels	\mathbb{R}	R	f'(x) = m
Fonction puissance : $f(x) = x^n$, n entier naturel	\mathbb{R}	\mathbb{R}	$f'(x) = nx^{n-1}$
Fonction inverse : $f(x) = \frac{1}{x}$	$]-\infty;0[\cup]0;+\infty[$	$]-\infty;0[\cup]0;+\infty[$	$f'(x) = -\frac{1}{x^2}$
Fonction racine carrée : $f(x) = \sqrt{x}$	[0; +∞[]0; +∞[f'(x) =

l'angentes et nombres dérivés. Tangente à un graphe. Nombre dérivé. Équation d'une tangente.

Calcul dérivé

Fonctions référence.

Opérations sur les

Signe de la dérivée et ser

Fonction f	Domaine de défini-	Domaine de déri-	Fonction dérivée f'
	tion	vabilité	
Fonction constante : $f(x) = k, k$ réel	R	R	f'(x) = 0
Fonction affine : $f(x) = mx + p$, m et p réels	\mathbb{R}	R	f'(x) = m
Fonction puissance : $f(x) = x^n$, n entier naturel	\mathbb{R}	\mathbb{R}	$f'(x) = nx^{n-1}$
Fonction inverse : $f(x) = \frac{1}{x}$	$]-\infty;0[\cup]0;+\infty[$	$]-\infty;0[\cup]0;+\infty[$	$f'(x) = -\frac{1}{x^2}$
Fonction racine carrée : $f(x) = \sqrt{x}$	[0; +∞[]0; +∞[$f'(x) = \frac{1}{2\sqrt{x}}$

Tangentes e nombres dérivés.

Tangente à un graphe. Nombre dérivé. Équation d'une tangente.

dérivée.
Fonctions de

Opérations sur les fonctions dérivables

Signe de la dérivée et ser

Proposition 9

Soient u et v deux fonctions dérivables sur un intervalle I et λ un réel.

f	f'
u + v	
λu	
uv	
$\frac{1}{\nu}$	
<u>u</u> v	

Toutes ces fonctions sont dérivables sur l sauf les fonctions $\frac{1}{v}$ et $\frac{u}{v}$ qui sont dérivables seulement où v ne s'annule pas.

Tangentes et nombres dérivés.

Tangente à un graphe.
Nombre dérivé.
Équation d'une tangente.

dérivée.

Opérations sur les fonctions dérivables

Signe de la dérivée et ser

Proposition 9

Soient u et v deux fonctions dérivables sur un intervalle I et λ un réel.

f	f'
u + v	u' + v'
λu	
uv	
$\frac{1}{\nu}$	
<u>u</u> v	

Toutes ces fonctions sont dérivables sur l sauf les fonctions $\frac{1}{v}$ et $\frac{u}{v}$ qui sont dérivables seulement où v ne s'annule pas.

Tangentes e nombres dérivés.

Tangente à un graphe. Nombre dérivé. Équation d'une tangente.

dérivée. Fonctions d

référence.

Opérations sur les fonctions dérivables

Signe de la dérivée et ser

Proposition 9

Soient u et v deux fonctions dérivables sur un intervalle I et λ un réel.

f	f'
u + v	u' + v'
λu	$\lambda u'$
uv	
$\frac{1}{v}$	
<u>u</u> v	

Tangentes et nombres dérivés.

Tangente à un graphe. Nombre dérivé. Équation d'une tangente.

dérivée.
Fonctions d

Opérations sur les

Signe de la dérivée et ser

Proposition 9

Soient u et v deux fonctions dérivables sur un intervalle I et λ un réel.

f	f'
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + uv'
$\frac{1}{\nu}$	
<u>u</u> v	

Tangentes et nombres dérivés.

Tangente à un graphe. Nombre dérivé. Équation d'une tangente.

dérivée. Fonctions de

Opérations sur les fonctions dérivables

Signe de la dérivée et ser

Proposition 9

Soient u et v deux fonctions dérivables sur un intervalle I et λ un réel.

f	f'
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + uv'
$\frac{1}{\nu}$	$-\frac{v'}{v^2}$
<u>u</u> v	·

Signe de la dérivée et ser

Proposition 9

Soient u et v deux fonctions dérivables sur un intervalle I et λ un réel.

f'
u' + v'
$\lambda u'$
u'v + uv'
$-\frac{v'}{v^2}$
$\frac{u'v-uv'}{v^2}$

Tangentes et nombres dérivés.

Tangente à un graphe. Nombre dérivé

Nombre dérivé Équation d'un tangente.

Calcul dérivée

Fonctions

Opérations sur les fonctions dérivables.

Signe de la dérivée et sen de variation.

$$(5)' =$$

$$(3x-7)'=$$

$$(x^7)' =$$

4
$$(2x^3 - x)' =$$

5
$$(4x^3 + 3x^2 + 5x + 14)' =$$

6
$$(\sqrt{x}(5x+1))' =$$

$$(\frac{1}{x^3+x})' = =$$

8
$$\frac{x^2+3x+7}{7x+1} =$$

Tangentes et nombres dérivés.

Tangente à un graphe. Nombre dérivé

Nombre dérivé Équation d'un tangente.

Calcul dérivée

Fonctions référence.

Opérations sur les fonctions dérivables.

Signe de la dérivée et ser de variation.

1
$$(5)' = 0$$

$$(3x-7)'=$$

$$(x^7)' =$$

4
$$(2x^3 - x)' =$$

5
$$(4x^3 + 3x^2 + 5x + 14)' =$$

6
$$(\sqrt{x}(5x+1))' =$$

$$(\frac{1}{x^3+x})' =$$
 =

$$\frac{x^2+3x+7}{7x+1} =$$

Tangentes et nombres dérivés.

Tangente à un graphe. Nombre dérivé

Nombre dérivé Équation d'un tangente.

Calcul dérivée

Fonctions

Opérations sur les fonctions dérivables.

Signe de la dérivée et ser de variation.

1
$$(5)' = 0$$

$$(3x-7)'=3$$

$$(x^7)' =$$

$$(2x^3-x)'=$$

$$(4x^3 + 3x^2 + 5x + 14)' =$$

6
$$(\sqrt{x}(5x+1))' =$$

$$(\frac{1}{x^3+x})' =$$

8
$$\frac{x^2+3x+7}{7x+1} =$$

Tangentes el nombres dérivés.

Tangente à un graphe. Nombre dérive

Équation d'une tangente.

Calcul dérivée

Fonctions

Opérations sur les fonctions dérivables.

Signe de la dérivée et sen de variation.

1
$$(5)' = 0$$

$$(3x-7)'=3$$

$$(x^7)' = 7x^6$$

$$(2x^3-x)'=$$

$$(4x^3 + 3x^2 + 5x + 14)' =$$

6
$$(\sqrt{x}(5x+1))' =$$

$$(\frac{1}{x^3+x})' =$$

8
$$\frac{x^2+3x+7}{7x+1} =$$

Tangentes et nombres dérivés.

Tangente à un graphe. Nombre dérivé

Équation d'un tangente.

Calcul dérivée

Fonctions

Opérations sur les fonctions dérivables.

Signe de la dérivée et ser de variation.

$$(5)'=0$$

$$(3x-7)'=3$$

$$(x^7)' = 7x^6$$

4
$$(2x^3 - x)' = (2x^3)' + (-x)' =$$

$$(4x^3 + 3x^2 + 5x + 14)' =$$

6
$$(\sqrt{x}(5x+1))' =$$

$$(\frac{1}{x^3+x})' =$$
 =

8
$$\frac{x^2+3x+7}{7x+1} =$$

Tangentes e nombres dérivés.

Tangente à un graphe. Nombre dérivé

Équation d'un tangente.

Calcul dérivée

Fonctions

Opérations sur les fonctions dérivables

Signe de la dérivée et ser de variation.

$$(5)'=0$$

$$(3x-7)'=3$$

$$(x^7)' = 7x^6$$

4
$$(2x^3 - x)' = (2x^3)' + (-x)' = 2(x^3)' - (x)' =$$

$$(4x^3 + 3x^2 + 5x + 14)' =$$

6
$$(\sqrt{x}(5x+1))' =$$

$$(\frac{1}{x^3+x})' = =$$

8
$$\frac{x^2+3x+7}{7x+1} =$$

Tangentes en nombres dérivés.

Tangente à un graphe. Nombre dérivé.

Équation d'un tangente.

Calcul dérivée.

Fonctions d

Opérations sur les fonctions dérivables

Signe de la dérivée et ser de variation.

$$(5)' = 0$$

$$(3x-7)'=3$$

$$(x^7)' = 7x^6$$

4
$$(2x^3 - x)' = (2x^3)' + (-x)' = 2(x^3)' - (x)' = 2 \times 3x^2 - 1$$

$$(4x^3 + 3x^2 + 5x + 14)' =$$

6
$$(\sqrt{x}(5x+1))' =$$

$$(\frac{1}{x^3+x})' =$$

8
$$\frac{x^2+3x+7}{7x+1} =$$

Tangentes en nombres dérivés.

Tangente à un graphe. Nombre dérivé.

Équation d'un tangente.

dérivée

Fonctions d

Opérations sur les fonctions dérivables

Signe de la dérivée et ser de variation

$$(5)' = 0$$

$$(3x-7)'=3$$

$$(x^7)' = 7x^6$$

4
$$(2x^3 - x)' = (2x^3)' + (-x)' = 2(x^3)' - (x)' = 2 \times 3x^2 - 1$$

$$(4x^3 + 3x^2 + 5x + 14)' = 12x^2 + 6x + 5$$

6
$$(\sqrt{x}(5x+1))' =$$

$$(\frac{1}{x^3+x})' = =$$

8
$$\frac{x^2+3x+7}{7x+1} =$$

Tangentes e nombres dérivés.

Tangente à un graphe. Nombre dérivé. Équation d'une

Calcul

Fonctions of

Opérations sur les fonctions dérivables

Signe de la dérivée et ser de variation.

$$(5)' = 0$$

$$(3x-7)'=3$$

$$(x^7)' = 7x^6$$

4
$$(2x^3 - x)' = (2x^3)' + (-x)' = 2(x^3)' - (x)' = 2 \times 3x^2 - 1$$

$$(4x^3 + 3x^2 + 5x + 14)' = 12x^2 + 6x + 5$$

6
$$(\sqrt{x}(5x+1))' = (\sqrt{x})'(5x+1) + \sqrt{x}(5x+1)' =$$

$$(\frac{1}{x^3+x})' = =$$

8
$$\frac{x^2+3x+7}{7x+1} =$$

Tangentes e nombres dérivés.

Tangente à un graphe. Nombre dérivé. Équation d'une

Calcul dérivée

Fonctions of référence.

Opérations sur les fonctions dérivables

Signe de la dérivée et ser de variation

$$(5)'=0$$

$$(3x-7)'=3$$

$$(x^7)' = 7x^6$$

4
$$(2x^3-x)'=(2x^3)'+(-x)'=2(x^3)'-(x)'=2\times 3x^2-1$$

$$(4x^3 + 3x^2 + 5x + 14)' = 12x^2 + 6x + 5$$

6
$$(\sqrt{x}(5x+1))' = (\sqrt{x})'(5x+1) + \sqrt{x}(5x+1)' = \frac{1}{2\sqrt{x}}(5x+1) + 5\sqrt{x}$$

$$(\frac{1}{x^3+x})' = =$$

$$\frac{x^2+3x+7}{7x+1} =$$

Tangentes et nombres dérivés.

Tangente à un graphe. Nombre dérivé. Équation d'une tangente.

dérivée.

Fonctions o

Opérations sur les fonctions dérivables

Signe de la dérivée et sen de variation.

$$(5)'=0$$

$$(3x-7)'=3$$

$$(x^7)' = 7x^6$$

4
$$(2x^3 - x)' = (2x^3)' + (-x)' = 2(x^3)' - (x)' = 2 \times 3x^2 - 1$$

$$(4x^3 + 3x^2 + 5x + 14)' = 12x^2 + 6x + 5$$

6
$$(\sqrt{x}(5x+1))' = (\sqrt{x})'(5x+1) + \sqrt{x}(5x+1)' = \frac{1}{2\sqrt{x}}(5x+1) + 5\sqrt{x}$$

7
$$\left(\frac{1}{x^3+x}\right)' = -\frac{(x^3+x)'}{(x^3+x)^2} =$$

8
$$\frac{x^2+3x+7}{7x+1} =$$

Tangentes e nombres dérivés.

Tangente à un graphe. Nombre dérivé. Équation d'une tangente.

Calcul dérivée

Fonctions d

Opérations sur les fonctions dérivables

Signe de la dérivée et ser de variation.

$$(5)'=0$$

$$(3x-7)'=3$$

$$(x^7)' = 7x^6$$

4
$$(2x^3-x)'=(2x^3)'+(-x)'=2(x^3)'-(x)'=2\times 3x^2-1$$

$$(4x^3 + 3x^2 + 5x + 14)' = 12x^2 + 6x + 5$$

6
$$(\sqrt{x}(5x+1))' = (\sqrt{x})'(5x+1) + \sqrt{x}(5x+1)' = \frac{1}{2\sqrt{x}}(5x+1) + 5\sqrt{x}$$

7
$$\left(\frac{1}{x^3+x}\right)' = -\frac{(x^3+x)'}{(x^3+x)^2} = -\frac{3x^2+1}{(x^3+x)^2}$$

$$\frac{x^2+3x+7}{7x+1} =$$

Tangentes e nombres dérivés.

Tangente à un graphe.

Nombre dérivé.

Équation d'une tangente

dérivée.

Fonctions of référence.

Opérations sur les fonctions dérivables

Signe de la dérivée et ser de variation.

$$(5)'=0$$

$$(3x-7)'=3$$

$$(x^7)' = 7x^6$$

4
$$(2x^3-x)'=(2x^3)'+(-x)'=2(x^3)'-(x)'=2\times 3x^2-1$$

$$(4x^3 + 3x^2 + 5x + 14)' = 12x^2 + 6x + 5$$

6
$$(\sqrt{x}(5x+1))' = (\sqrt{x})'(5x+1) + \sqrt{x}(5x+1)' = \frac{1}{2\sqrt{x}}(5x+1) + 5\sqrt{x}$$

7
$$\left(\frac{1}{x^3+x}\right)' = -\frac{(x^3+x)'}{(x^3+x)^2} = -\frac{3x^2+1}{(x^3+x)^2}$$

8
$$\frac{x^2+3x+7}{7x+1} = \frac{(x^2+3x+7)'(7x+1)-(x^2+3x+7)(7x+1)'}{(7x+1)^2} =$$

Signe de la dérivée et ser de variation.

$$(5)' = 0$$

$$(3x-7)'=3$$

$$(x^7)' = 7x^6$$

4
$$(2x^3 - x)' = (2x^3)' + (-x)' = 2(x^3)' - (x)' = 2 \times 3x^2 - 1$$

$$(4x^3 + 3x^2 + 5x + 14)' = 12x^2 + 6x + 5$$

6
$$(\sqrt{x}(5x+1))' = (\sqrt{x})'(5x+1) + \sqrt{x}(5x+1)' = \frac{1}{2\sqrt{x}}(5x+1) + 5\sqrt{x}$$

7
$$\left(\frac{1}{x^3+x}\right)' = -\frac{(x^3+x)'}{(x^3+x)^2} = -\frac{3x^2+1}{(x^3+x)^2}$$

$$\frac{x^2+3x+7}{7x+1} = \frac{(x^2+3x+7)'(7x+1)-(x^2+3x+7)(7x+1)'}{(7x+1)^2} = \frac{(2x+3)(7x+1)-(x^2+3x+7)\times 7}{(7x+1)^2}$$

Tangentes e nombres dérivés. Tangente à un graphe. Nombre dérivé. Équation d'une

dérivée. Fonctions de référence.

Opérations sur les fonctions dérivabl

Signe de la dérivée et sens de variation.

Théorème 11

Soit f une fonction sur un intervalle I. Pour tout x de I, $f'(x) \ge 0 \Leftrightarrow f$ est sur I.

Pour tout x de I, f'(x) \Leftrightarrow f est décroissante sur I.

Pour tout x de I, $f'(x) = 0 \Leftrightarrow f$ est sur I.

Pour tout x de I sauf un nombre fini $f'(x) > 0 \Leftrightarrow f$ est sur I.

Tangentes et nombres dérivés. Tangente à un graphe. Nombre dérivé. Équation d'une

Fonctions de référence.

Opérations sur les

Opérations sur les fonctions dérivable

Signe de la dérivée et sens de variation.

Théorème 11

Soit f une fonction dérivable sur un intervalle I.

Pour tout x de I, $f'(x) \ge 0 \Leftrightarrow f$ est sur I.

Pour tout x de I, f'(x) \Leftrightarrow f est décroissante sur I.

Pour tout x de I, $f'(x) = 0 \Leftrightarrow f$ est sur I.

Pour tout x de I sauf un nombre fini $f'(x) > 0 \Leftrightarrow f$ est sur I.

Tangentes e nombres dérivés. Tangente à un graphe. Nombre dérivé.

dérivée.

Fonctions de référence.

Opérations sur les fonctions dérivabl

Signe de la dérivée et sens de variation.

Théorème 11

Soit f une fonction dérivable sur un intervalle I.

Pour tout x de I, $f'(x) \ge 0 \Leftrightarrow f$ est croissante sur I.

Pour tout x de I, $f'(x) \Leftrightarrow f$ est décroissante sur I.

Pour tout x de I, $f'(x) = 0 \Leftrightarrow f$ est sur I.

Pour tout x de I sauf un nombre fini $f'(x) > 0 \Leftrightarrow f$ est sur I.

Tangentes e nombres dérivés. Tangente à un graphe. Nombre dérivé.

dérivée.

Fonctions de référence.

Opérations sur les

Signe de la dérivée et sens de variation.

Théorème 11

Soit f une fonction dérivable sur un intervalle I.

Pour tout x de I, $f'(x) \ge 0 \Leftrightarrow f$ est croissante sur I.

Pour tout x de I, $f'(x) \le 0 \Leftrightarrow f$ est décroissante sur I.

Pour tout x de I, $f'(x) = 0 \Leftrightarrow f$ est sur I.

Pour tout x de I sauf un nombre fini $f'(x) > 0 \Leftrightarrow f$ est sur I.

Tangentes e nombres dérivés. Tangente à un graphe. Nombre dérivé.

dérivée.

Fonctions de référence.

Opérations sur les

Signe de la dérivée et sens de variation.

Théorème 11

Soit f une fonction dérivable sur un intervalle I.

Pour tout x de I, $f'(x) \ge 0 \Leftrightarrow f$ est croissante sur I.

Pour tout x de I, $f'(x) \le 0 \Leftrightarrow f$ est décroissante sur I.

Pour tout x de I, $f'(x) = 0 \Leftrightarrow f$ est constante sur I.

Pour tout x de I sauf un nombre fini $f'(x) > 0 \Leftrightarrow f$ est sur I.

Tangentes et nombres dérivés. Tangente à un graphe. Nombre dérivé. Équation d'une

Calcul de dérivée.

Fonctions de référence.

Opérations sur les fonctions dérivable

Signe de la dérivée et sens de variation.

Théorème 11

Soit f une fonction dérivable sur un intervalle I.

Pour tout x de I, $f'(x) \ge 0 \Leftrightarrow f$ est croissante sur I.

Pour tout x de I, $f'(x) \le 0 \Leftrightarrow f$ est décroissante sur I.

Pour tout x de I, $f'(x) = 0 \Leftrightarrow f$ est constante sur I.

Pour tout x de I sauf un nombre fini $f'(x) > 0 \Leftrightarrow f$ est strictement croissante sur I.

Tangentes e nombres dérivés. Tangente à un graphe. Nombre dérivé. Équation d'une

dérivée.

Fonctions de référence.

Opérations sur les fonctions dérivable

Signe de la dérivée et sens de variation.

Théorème 11

Soit f une fonction dérivable sur un intervalle I.

Pour tout x de I, $f'(x) \ge 0 \Leftrightarrow f$ est croissante sur I.

Pour tout x de I, $f'(x) \le 0 \Leftrightarrow f$ est décroissante sur I.

Pour tout x de I, $f'(x) = 0 \Leftrightarrow f$ est constante sur I.

Pour tout x de I sauf un nombre fini $f'(x) > 0 \Leftrightarrow f$ est strictement croissante sur I.

Signe de la dérivée et sens de variation.

Exemple 12

Soit f la fonction définie sur l'intervalle [-3; 3] par $f(x) = -2x^3 - 1, 5x^2 + 18x + 26$

- **1** Étudier les variations de la fonction f sur l'intervalle [-3; 3].
- 2 En déduire les extremums de la fonction f et préciser en quelles valeurs elles sont atteintes.