

CS 559: Machine Learning Fundamentals and Applications

Lecture 5

Lecturer: Xinchao Wang

xinchao.wang@stevens.edu

Teaching Assistant: Yiding Yang

yyang99@stevens.edu

Overview

- A note on data normalization/scaling
- Principal Component Analysis (notes)
 - Intro
 - Singular Value Decomposition
- Dimensionality Reduction PCA in practice (Notes based on Carlos Guestrin's)
- Eigenfaces (notes by Srinivasa Narasimhan, CMU)

- Without scaling, attributes in greater numeric ranges may dominate
- Example: compare people using annual income (in dollars) and age (in years)

The separating hyperplane

- Decision strongly depends on the first attribute
- What if the second is (more) important?

- Linearly scale features to [0, 1] interval using min and max values.
- Divide each feature by its standard deviation

New points and separating hyperplane

• The second attribute plays a role

- Distance/similarity measure must be meaningful in feature space
 - This applies to most classifiers (not random forests)
- Normalized Euclidean distance

$$d(\vec{x}, \vec{y}) = \sqrt{\sum_{i=1}^{p} \frac{(x_i - y_i)^2}{\sigma_i^2}},$$

Mahalanobis distance

$$d(\vec{x}, \vec{y}) = \sqrt{(\vec{x} - \vec{y})^T S^{-1} (\vec{x} - \vec{y})}.$$

Where S is the covariance matrix of the data

Mahalanobis Distance

- Generalized as distance between two points
- Takes into account correlations in data

Principal Component Analysis (PCA)

PCA Resources

- A Tutorial on Principal Component Analysis
 - by Jonathon Shlens (Google Research), 2014
 - http://arxiv.org/pdf/1404.1100.pdf
- Singular Value Decomposition Tutorial
 - by Michael Elad (Technion, Israel), 2005
 - http://webcourse.cs.technion.ac.il/234299/Spring2005/ho/WCFiles/Tutorial7.
 ppt
- Dimensionality Reduction (lecture notes)
 - by Carlos Guestrin (CMU, now at UW), 2006
 - http://www.cs.cmu.edu/~guestrin/Class/10701-S06/Slides/tsvms-pca.pdf

A Tutorial on Principal Component Analysis

Jonathon Shlens

A Toy Problem

- Ball of mass m attached to massless, frictionless spring
- Ball moved away from equilibrium results in spring oscillating indefinitely along xaxis
- All dynamics are a function of a single variable x

- We do not know which or how many axes and dimensions are important to measure
- Place three video cameras that capture 2-D measurements at 120Hz
 - Camera optical axes are not orthogonal to each other
- If we knew what we need to measure, one camera measuring displacement along x would be sufficient

Goal of PCA

- Compute the most meaningful basis to re-express a noisy data set
- Hope that this new basis will filter out the noise and reveal hidden structure
- In toy example:
 - Determine that the dynamics are along a single axis
 - Determine the *important axis*

Naïve Basis

At each second, record 2 coordinates of ball position in each of the 3 images

$$\vec{X} = \begin{bmatrix} x_A \\ y_A \\ x_B \\ y_B \\ x_C \\ y_C \end{bmatrix}$$

- After 10 minutes at 120Hz, we have 10×60×120=7200 6D vectors
- These vectors can be represented in *arbitrary coordinate systems*
- Naïve basis is formed by the image axis
 - Reflects the method which gathered the data

J. Shlens

15

Change of Basis

- PCA: Is there another basis, which is a linear combination of the original basis, that best re-expresses our data set?
- Assumption: *linearity*
 - Restricts set of potential bases
 - Implicitly assumes continuity in data

Change of Basis

- X is original data ($m \times n$, m=6, n=7200)
- Let Y be another m×n matrix such that Y=PX
- P is a matrix that transforms X into Y
 - Geometrically it is a rotation and stretch
 - The rows of **P** {p₁,..., p_m} are the new basis vectors for the columns of **X**
 - Each element of y_i is a dot product of x_i with the corresponding row of **P** (a projection of x_i onto p_j)

$$\begin{aligned} \mathbf{P}\mathbf{X} &= \begin{bmatrix} \mathbf{p_1} \\ \vdots \\ \mathbf{p_m} \end{bmatrix} \begin{bmatrix} \mathbf{x_1} & \cdots & \mathbf{x_n} \end{bmatrix} \\ \mathbf{p_m} & & & & \\ \mathbf{y_i} &= \begin{bmatrix} \mathbf{p_1} \cdot \mathbf{x_i} \\ \vdots \\ \mathbf{p_m} \cdot \mathbf{x_i} \end{bmatrix} \\ \mathbf{Y} &= \begin{bmatrix} \mathbf{p_1} \cdot \mathbf{x_1} & \cdots & \mathbf{p_1} \cdot \mathbf{x_n} \\ \vdots & \ddots & \vdots \\ \mathbf{p_m} \cdot \mathbf{x_1} & \cdots & \mathbf{p_m} \cdot \mathbf{x_n} \end{bmatrix}_{\text{J. Shlens}} \end{aligned}$$

How to find an Appropriate Change of Basis?

- The row vectors $\{p_1,...,p_m\}$ will become the *principal components* of **X**
- What is the best way to re-express X?
- What features would we like Y to exhibit?

- If we call **X** "garbled data", garbling in a linear system can refer to three things:
 - Noise
 - Rotation
 - Redundancy

Noise

- Measurement noise in any data set must be low or else, no matter the analysis technique, no information about a system can be extracted
- Signal-to-Noise Ratio (SNR)

$$SNR = \frac{\sigma_{signal}^2}{\sigma_{noise}^2}$$

Noise

- Ball travels in straight line
 - Any deviation must be noise
- Variance due to signal and noise are indicated in diagram
- SNR: ratio of the two lengths
 - "Fatness" of data corresponds to noise
- Assumption: directions of largest variance in measurement vector space contain dynamics of interest

Rotation

- Neither x_A , nor y_A however are directions with maximum variance
- Maximizing the variance corresponds to finding the appropriate rotation of the naive basis
- In 2D this is equivalent to finding best fitting line

Redundancy

- Is it necessary to record 2 variables for the ball-spring system?
- Is it necessary to use 3 cameras?

Redundancy spectrum for 2 variables

Covariance Matrix

- Assume zero-mean measurements
 - Subtract mean from all vectors in X
- Each column of X is a set of measurements at a point in time
- Each row of **X** corresponds to all measurements of a particular type (e.g. x-coordinate in image B)
- Covariance matrix C_X=XX^T
- ij^{th} element of C_X is the dot product between the i^{th} measurement type and the j^{th} measurement type
 - Covariance between two measurement types

Covariance Matrix

- Diagonal elements of C_X
 - Large → interesting dynamics
 - Small \rightarrow noise
- Off-diagonal elements of C_X
 - Large → high redundancy
 - Small → low redundancy
- We wish to maximize signal and minimize redundancy
 - Off-diagonal elements should be zero
- C_Y must be diagonal

Sketch of Algorithm

- Pick vector in m-D space along which variance is maximal and save as p₁
- Pick another direction along which variance is maximized among directions perpendicular to p_1
- Repeat until m principal components have been selected
- From linear algebra: a square matrix can be diagonalized using its eigenvectors as new basis
- X is not square in general (m>n in our case), but C_x always is
- Solution: Singular Value Decomposition (SVD)

Dimensionality Reduction

Carlos Guestrin

Motivation: Dimensionality Reduction

- Input data may have thousands or millions of dimensions!
 - text data have thousands of words
 - image data have millions of pixels
- Dimensionality reduction: represent data with fewer dimensions
 - Easier learning fewer parameters
 - Visualization hard to visualize more than 3D or 4D
 - Discover "intrinsic dimensionality" of data for high dimensional data that is truly lower dimensional (e.g. identity of objects in image << number of pixels)

C. Guestrin 27

Feature Selection

- Given set of features X=<X₁,...,X_n>
- Some features are more important than others

- Approach: select subset of features to be used by learning algorithm
 - Score each feature (or sets of features)
 - Select set of features with best score

C. Guestrin 28

Greedy Forward Feature Selection

- Greedy heuristic:
 - Start from empty (or simple) set of features $F_0 = \emptyset$
 - Run learning algorithm for current set of features F_t
 - Select next best feature X_i
 - e.g., one that results in lowest error when learning with $F_t \cup \{X_i\}$
 - $F_{t+1} \leftarrow F_t \cup \{X_i\}$
 - Recurse

Greedy Backward Feature Selection

Greedy heuristic:

- Start from set of all features $F_0 = F$
- Run learning algorithm for current set of features F_t
- Select next worst feature X_i
 - e.g., one that results in lowest error when learning with F_t $\{X_i\}$
- $F_{t+1} \leftarrow F_t \{X_i\}$
- Recurse

Lower Dimensional Projections

How would this work for the ball-spring example?

 Rather than picking a subset of the features, we can derive new features that are combinations of existing features

C. Guestrin 31

Projection

- Given m data points: $x^{i} = (x_{1}^{i},...,x_{n}^{i})$, i=1...m
- Represent each point as a projection:

$$\hat{\mathbf{x}}^i = \overline{\mathbf{x}} + \sum_{j=1}^k \mathbf{z}_j^i \mathbf{u}_j$$
 where $\overline{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^m \mathbf{x}^i$ and $\mathbf{z}_j^i = (\mathbf{x}^i - \overline{\mathbf{x}}) \mathbf{u}_j$

• If k=n, then projected data are equivalent to original data

C. Guestrin 32

PCA

- PCA finds projection that minimizes reconstruction error
 - Reconstruction error: norm of distance between original and projected data
- Given k≤n, find (u₁,...,u_k) minimizing reconstruction error:

$$error_k = \sum_{i=1}^m (\mathbf{x}^i - \hat{\mathbf{x}}^i)^2$$

• Error depends on k+1..n unused basis vectors

Basic PCA Algorithm

- Start from m×n data matrix X
 - *m* data points (samples over time)
 - *n* measurement types
- Re-center: subtract mean from each row of X
- Compute covariance matrix:
 - $\Sigma = \mathbf{X}_{C}^{T} \mathbf{X}_{C}$

Note: Covariance matrix is n×n (measurement types) (But there may be exceptions)

- \bullet Compute eigenvectors and eigenvalues of Σ
- Principal components: k eigenvectors with highest eigenvalues

SVD

- Write $X = V S U^T$
 - X: data matrix, one row per datapoint
 - V: weight matrix, one row per datapoint coordinates of xⁱ in eigen-space
 - **S:** singular value matrix, diagonal matrix
 - in our setting each entry is eigenvalue λ_i of Σ
 - U^T: singular vector matrix
 - in our setting each row is eigenvector \mathbf{v}_{j} of Σ

C. Guestrin 35

Using PCA for Dimensionality Reduction

- Given set of features X=<X₁,...,X_n>
- Some features are more important than others
 - Reduce noise and redundancy
- Also consider:
 - Rotation
- Approach: Use PCA on X to select a few important features
- Then, apply a classification technique in reduced space

C. Guestrin 36

Eigenfaces

(notes by Srinivasa Narasimhan, CMU)

Eigenfaces

- Face detection and person identification using PCA
- Real time
- Insensitivity to small changes
- Simplicity

- Limitations
 - Only frontal faces one pose per classifier
 - No invariance to scaling, rotation or translation

Space of All Faces

- An image is a point in a high dimensional space
 - An N x M image is a point in R^{NM}
 - We can define vectors in this space as we did in the 2D case

Key Idea

- ullet Images in the possible set $\chi = \{\hat{x}_{RL}^P\}$ are highly correlated
- So, compress them to a low-dimensional subspace that captures key appearance characteristics of the visual DOFs

• EIGENFACES [Turk and Pentland]: USE PCA

Eigenfaces

Eigenfaces look somewhat like generic faces

Linear Subspaces

convert \mathbf{x} into $\mathbf{v_1}$, $\mathbf{v_2}$ coordinates

$$\mathbf{x} \to ((\mathbf{x} - \overline{x}) \cdot \mathbf{v_1}, (\mathbf{x} - \overline{x}) \cdot \mathbf{v_2})$$

What does the v_2 coordinate measure?

- distance to line
- use it for classification—near 0 for orange pts

What does the $\mathbf{v_1}$ coordinate measure?

- position along line
- use it to specify which orange point it is

- Classification can be expensive
 - Must either search (e.g., nearest neighbors) or store large probability density functions.
- Suppose the data points are arranged as above
 - Idea—fit a line, classifier measures distance to line

Dimensionality Reduction

- Dimensionality reduction
 - We can represent the orange points with *only* their $\mathbf{v_1}$ coordinates
 - since **v**₂ coordinates are all essentially 0
 - This makes it much cheaper to store and compare points
 - A bigger deal for higher dimensional problems

Linear Subspaces

 \overline{x} is the mean of the orange points v_2 v_1

Consider the variation along direction **v** among all of the orange points:

$$var(\mathbf{v}) = \sum_{\text{orange point } \mathbf{x}} \|(\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \cdot \mathbf{v}\|^{2}$$

What unit vector **v** minimizes var?

$$\mathbf{v}_2 = min_{\mathbf{v}} \{var(\mathbf{v})\}$$

What unit vector v maximizes var?

$$\mathbf{v}_1 = max_{\mathbf{v}} \{var(\mathbf{v})\}$$

$$\begin{aligned} var(\mathbf{v}) &= \sum_{\mathbf{x}} \| (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \cdot \mathbf{v} \| \\ &= \sum_{\mathbf{x}} \mathbf{v}^{\mathrm{T}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \mathbf{v} \\ &= \mathbf{v}^{\mathrm{T}} \left[\sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \right] \mathbf{v} \\ &= \mathbf{v}^{\mathrm{T}} \mathbf{A} \mathbf{v} \quad \text{where } \mathbf{A} = \sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{\mathrm{T}} \end{aligned}$$

Solution: **v**₁ is eigenvector of **A** with *largest* eigenvalue **v**₂ is eigenvector of **A** with *smallest* eigenvalue

Higher Dimensions

- Suppose each data point is N-dimensional
 - Same procedure applies:

$$var(\mathbf{v}) = \sum_{\mathbf{x}} \|(\mathbf{x} - \overline{\mathbf{x}})^{T} \cdot \mathbf{v}\|$$
$$= \mathbf{v}^{T} \mathbf{A} \mathbf{v} \text{ where } \mathbf{A} = \sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^{T}$$

- The eigenvectors of A define a new coordinate system
 - eigenvector with largest eigenvalue captures the most variation among training vectors x
 - eigenvector with smallest eigenvalue has least variation
- We can compress the data by only using the top few eigenvectors
 - corresponds to choosing a "linear subspace"
 - represent points on a line, plane, or "hyper-plane"
 - these eigenvectors are known as the *principal components*

Problem: Size of Covariance Matrix A

- Suppose each data point is N-dimensional (N pixels)
 - The size of covariance matrix A is N²
 - The number of eigenfaces is N
 - Example: For N = 256 x 256 pixels,
 Size of A will be 65536 x 65536!
 Number of eigenvectors will be 65536!

Typically, only 20-30 eigenvectors suffice. So, this method is very inefficient!

Efficient Computation of Eigenvectors

If B is MxN and M<<N then $A=B^TB$ is NxN >> MxM

- M → number of images, N → number of pixels
- use BB^T instead, eigenvector of BB^T is easily converted to that of B^TB

```
(BB<sup>T</sup>) y = e y

=> B<sup>T</sup>(BB<sup>T</sup>) y = e (B<sup>T</sup>y)

=> (B<sup>T</sup>B)(B<sup>T</sup>y) = e (B<sup>T</sup>y)

=> B<sup>T</sup>y is the eigenvector of B<sup>T</sup>B
```

Eigenfaces – summary in words

Eigenfaces are

the eigenvectors of the covariance matrix of the probability distribution of the vector space of human faces

- Eigenfaces are the 'standardized face ingredients' derived from the statistical analysis of many pictures of human faces
- A human face may be considered to be a combination of these standardized faces

Generating Eigenfaces – in words

- 1. Large set of images of human faces is taken
- The images are normalized to line up the eyes, mouths and other features
- 3. The eigenvectors of the covariance matrix of the face image vectors are then extracted
- 4. These eigenvectors are called eigenfaces

Eigenfaces for Face Recognition

• When properly weighted, eigenfaces can be summed together to create an approximate gray-scale rendering of a human face.

 Remarkably few eigenvector terms are needed to give a fair likeness of most people's faces.

 Hence eigenfaces provide a means of applying <u>data</u> <u>compression</u> to faces for identification purposes.

Dimensionality Reduction

The set of faces is a "subspace" of the set of images

- Suppose it is K dimensional
- We can find the best subspace using PCA
- This is like fitting a "hyper-plane" to the set of faces
 - spanned by vectors $\mathbf{v_1}$, $\mathbf{v_2}$, ..., $\mathbf{v_K}$

Any face:
$$\mathbf{x} \approx \overline{\mathbf{x}} + a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \ldots + a_k \mathbf{v_k}$$

Eigenfaces

- PCA extracts the eigenvectors of A
 - Gives a set of vectors $\mathbf{v_1}$, $\mathbf{v_2}$, $\mathbf{v_3}$, ...
 - Each one of these vectors is a direction in face space
 - what do these look like?

Projecting onto the Eigenfaces

- The eigenfaces $\mathbf{v_1}$, ..., $\mathbf{v_K}$ span the space of faces
 - A face is converted to eigenface coordinates by

$$\mathbf{x} \to (\underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v}_{1}}_{a_{1}}, \underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v}_{2}, \dots, \underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v}_{K}}_{a_{K}}}_{a_{K}})$$

$$\mathbf{x} \approx \overline{\mathbf{x}} + a_{1}\mathbf{v}_{1} + a_{2}\mathbf{v}_{2} + \dots + a_{K}\mathbf{v}_{K}$$

$$\longrightarrow \mathbf{a}_{1}\mathbf{v}_{1} \quad a_{2}\mathbf{v}_{2} \quad a_{3}\mathbf{v}_{3} \quad a_{4}\mathbf{v}_{4} \quad a_{5}\mathbf{v}_{5} \quad a_{6}\mathbf{v}_{6} \quad a_{7}\mathbf{v}_{7} \quad a_{8}\mathbf{v}_{8}$$

Is this a face or not?

Figure 1: High-level functioning principle of the eigenface-based facial recognition algorithm 54

Recognition with Eigenfaces

- Algorithm
 - 1. Process the image database (set of images with labels)
 - Run PCA—compute eigenfaces
 - Calculate the K coefficients for each image
 - 2. Given a new image (to be recognized) **x**, calculate K coefficients
 - 3. Detect if x is a face

$$\mathbf{x} \to (a_1, a_2, \dots, a_K)$$

4. If it is a face, who is it?

$$\|\mathbf{x} - (\overline{\mathbf{x}} + a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \ldots + a_K\mathbf{v}_K)\| < \text{threshold}$$

- Find closest labeled face in database
 - nearest-neighbor in K-dimensional space

S. Narasimhan

55

Key Property of Eigenspace Representation

Given

- 2 images x₁, x₂ that are used to construct the Eigenspace
- g₁ is the eigenspace projection of image x₁
- g₂ is the eigenspace projection of image x₂

Then,

$$\|g_2 - g_1\| \approx \|x_2 - x_1\|$$

That is, distance in Eigenspace is approximately equal to the distance between original images

Choosing the Dimension K

- How many eigenfaces to use?
- Look at the decay of the eigenvalues
 - the eigenvalue tells you the amount of variance "in the direction" of that eigenface
 - ignore eigenfaces with low variance

• Face detection using sliding window

• Dark: small distance

Bright: large distance

- Reconstruction of corrupted image
 - Project on eigenfaces and compute weights
 - Take weighted sum of eigenfaces to synthesize face image

- Left: query
- Right: best match from database

• Each new image is reconstructed with one additional eigenface

Singular Value Decomposition (Will not be in exams)

Michael Elad

Singular Value Decomposition

The eigenvectors of a matrix A form a basis for working with A

However, for rectangular matrices A (m x n), $dim(Ax) \neq dim(x)$ and the concept of eigenvectors does not exist

Note: here each row of A is a measurement in time and each column a measurement type

Yet, A^TA (n x n) is a symmetric, real matrix (A is real) and therefore, there is an orthonormal basis of eigenvectors $\{\underline{u}_K\}$ for A^TA .

Consider the vectors
$$\{\underline{\mathbf{v}}_{\mathsf{K}}\}$$
 $\underline{\mathbf{v}}_{k} = \frac{\mathbf{A}\underline{\mathbf{u}}_{k}}{\sqrt{\lambda_{k}}}$

They are also orthonormal, since: $\underline{u}_j^T \mathbf{A}^T \mathbf{A} \underline{u}_k = \lambda_k \delta(k-j)$

Singular Value Decomposition

Since A^TA is positive semidefinite, its eigenvalues are non-negative $\{\lambda_k \ge 0\}$ (Why?)

Define the singular values of **A** as $\sigma_k = \sqrt{\lambda_k}$

and order them in a non-increasing order: $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_n \geq 0$

Motivation: One can see, that if **A** itself is square and symmetric, then $\{\underline{u}_k, \sigma_k\}$ are the set of its own eigenvectors and eigenvalues.

For a general matrix **A**, assume $\{\sigma_1 \ge \sigma_2 \ge ... \sigma_R > 0 = \sigma_{r+1} = \sigma_{r+2} = ... = \sigma_n \}$.

$$\mathbf{A}\underline{u}_{k} = 0 \cdot \underline{v}_{k}, \qquad k = r + 1, ..., n$$

$$\underline{u}_{k}^{(n \times 1)}; \quad \underline{v}_{k}^{(m \times 1)}$$

Singular Value Decomposition

Now we can write:

$$\begin{bmatrix} \begin{vmatrix} & & & & & & \\ \mathbf{A}\underline{u}_1 & \dots & \mathbf{A}\underline{u}_r & \mathbf{A}\underline{u}_{r+1} & \dots & \mathbf{A}\underline{u}_n \\ & & & & & & \end{vmatrix} = \mathbf{A} \begin{bmatrix} \begin{vmatrix} & & & & & & \\ \underline{u}_1 & \dots & \underline{u}_r & \underline{u}_{r+1} & \dots & \underline{u}_n \\ & & & & & & \end{vmatrix} = \mathbf{A}\mathbf{U} =$$

$$= \begin{bmatrix} \begin{vmatrix} & & & & & \\ \sigma_1\underline{v}_1 & \dots & \sigma_r\underline{v}_r & 0 \cdot \underline{v}_{r+1} & \dots & 0 \cdot \underline{v}_n \\ & & & & & \end{vmatrix} = \begin{bmatrix} \begin{vmatrix} & & & & \\ \underline{v}_1 & \dots & \underline{v}_r & \underline{v}_{r+1} & \dots & \underline{v}_n \\ & & & & & \end{vmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 & 0 \\ & \ddots & & & \\ 0 & & \sigma_r & 0 & 0 \\ 0 & & 0 & 0 & 0 \end{bmatrix} = \mathbf{V}\mathbf{\Sigma}$$

$$AUU^T = V\Sigma U^T$$

$$A^{(m\times n)} = V^{(m\times m)} \Sigma^{(m\times n)} U^{(n\times n)^T}$$

SVD: Example

Let us find the SVD for the matrix:
$$\mathbf{A} = \begin{bmatrix} -1 & 1 \\ 2 & 2 \end{bmatrix}$$

In order to find V, we need to calculate eigenvectors of A^TA :

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \begin{bmatrix} -1 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$

(5-
$$\lambda$$
)²-9=0; $\lambda_{1,2} = \frac{10 \pm \sqrt{100-64}}{2} = 5 \pm 3 = 8, 2$

SVD: Example

The corresponding eigenvectors are found by:

$$\begin{bmatrix} 5 - \lambda_i & 3 \\ 3 & 5 - \lambda_i \end{bmatrix} \underline{\mathbf{u}}_i = 0$$

$$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \underline{\mathbf{u}}_{1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \underline{\mathbf{u}}_{1} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$\begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \underline{u}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \underline{u}_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

SVD: Example

Now, we obtain V and Σ :

$$\mathbf{A}\underline{\mathbf{u}}_{1} = \sigma_{1}\underline{\mathbf{v}}_{1} = \begin{bmatrix} -1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 0 \\ 2\sqrt{2} \end{bmatrix} = 2\sqrt{2} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \underline{\mathbf{v}}_{1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} , \quad \sigma_{1} = 2\sqrt{2};$$

$$\mathbf{A}\underline{\mathbf{u}}_{2} = \sigma_{2}\underline{\mathbf{v}}_{2} = \begin{bmatrix} -1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix} = \sqrt{2} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \underline{\mathbf{v}}_{2} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} , \quad \sigma_{2} = \sqrt{2};$$

A=VΣUT:
$$\begin{bmatrix} -1 & 1 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$