総合研究大学院大学複合科学研究科統計科学専攻 5年一貫制博士課程入学試験問題

科目 数理

2015年1月20日(火) 10:00~12:00

注意事項

- 1. 試験開始の合図まで、この問題冊子を開かないこと.
- 2. 問題は第1問から第4問まである.
- 3. 本冊子に落丁, 乱丁, 印刷不鮮明な箇所などがあった場合には申し出ること.
- 4. 答案用紙4枚が渡されるので、すべての答案用紙について所定の場所に受験番号と 名前を忘れずに記入すること
- 5. 解答にあたっては、問題ごとに指定された答案用紙を使用すること. 書ききれない場合には答案用紙の裏面を使用してもよい.
- 6. 計算用紙3枚が渡されるので、所定の場所に受験番号と名前を忘れずに記入すること.
- 7. 答案用紙、計算用紙および問題冊子は持ち帰らないこと.

受験番号

第1問

[問 1] 次の関数をxに関して微分せよ.

(1)
$$\frac{1}{\sqrt{a^2 - x^2}}$$
 $(|x| < a)$

- $(2) e^{ax}(\sin bx + \cos bx)$
- (3) x^x (x > 0)

[問2] 次の定積分を計算せよ.

$$(1) \int_0^1 \log x \, dx$$

(2)
$$\int_{-1}^{2} |2 - x - x^2| dx$$

(3)
$$\int_0^{\pi/3} \tan^2 x \, dx$$

[問4] 次の行列 A の固有値を求めよ.

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

第2問

[問1]

関数 f(x) が x=a で連続とは、任意の $\epsilon>0$ に対して $\delta>0$ が存在して、 $|x-a|<\delta$ となるすべての x に対して $|f(x)-f(a)|<\epsilon$ となることである。また 2 つの関数 g(x), h(x) が x=a で連続であるとき、2 つの関数の積 g(x)h(x) も x=a で連続であることが知られる。この 2 つの関数の積の連続性の定理を用い、関数 $f(x)=x^2$ が定義域の各点で連続であることを示せ、

[問 2] 関数 $f(x) = x^3 - x + 1$ の増減、極大値、極小値、上下への凸、変曲点を調べ、グラフの概形を描け、

[問 3] 関数 $f(x) = \frac{e^x - 1 - x}{x^2 + x^3}$ の $x \to 0$ の極限を検討する.

- (1) 関数 f(x) の分子を 2次までテイラー近似し、 $\lim_{x\to 0} f(x)$ を求めよ.
- (2) 下記のロピタルの定理を用い、 $\lim_{x\to 0} f(x)$ を求めよ。ただし、定理の適用を明示的に記述せよ。

– ロピタルの定理

2つの関数 g(x) と h(x) が開区間 (a,b) で微分可能であり、 $c \in (a,b)$ について $\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = 0$ かつ、上の区間の c を除く任意の x に対して $h'(x) \neq 0$ とする.このとき、もし $\lim_{x \to c} \frac{g'(x)}{h'(x)}$ が存在するなら

$$\lim_{x \to c} \frac{g(x) - g(c)}{h(x) - h(c)} = \lim_{x \to c} \frac{g'(x)}{h'(x)}$$

が成り立つ.

第3問

定数 $\mathbf{x}=(x_1,x_2)$ に対応する y を、係数 w_0,w_1,w_2 を用いた下のような線形モデルで表すことを考える.

$$y = w_0 + w_1 x_1 + w_2 x_2 + \epsilon$$

ただし、誤差 ϵ は平均 0, 分散 σ^2 の正規分布 $N(0,\sigma^2)$ にしたがう確率変数である.

[問 1] y のしたがう確率密度関数を求めよ.

[問2] いま, データとして

$$\mathbf{x} = (x_{11}, x_{12})$$
 のとき $y = y_1$
 $\mathbf{x} = (x_{21}, x_{22})$ のとき $y = y_2$
 $\mathbf{x} = (x_{31}, x_{32})$ のとき $y = y_3$
 $\mathbf{x} = (x_{41}, x_{42})$ のとき $y = y_4$

が得られたとする. $\mathbf{w} = (w_0 \ w_1 \ w_2)^T$, $\epsilon = (\epsilon_1 \ \epsilon_2 \ \epsilon_3 \ \epsilon_4)^T$ と書くとき、適当な行列またはベクトル \mathbf{X} , \mathbf{y} を定義することで、上の関係を $\mathbf{y} = \mathbf{X}\mathbf{w} + \epsilon$ の形で表せ、ここで、 T は転置を表す。

[問3] 次の関数

$$L = \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2$$

を最小にする ${\bf w}$ を求めたい. L を ${\bf w}$ で微分することにより, L を最小にする ${\bf w}$ と ${\bf X}$, ${\bf y}$ との関係式を求めよ. ただし,行列 ${\bf A}$ とベクトル ${\bf w}$ の微分に対する下の関係は証明なしに使ってよい.

$$\frac{\partial}{\partial \mathbf{w}} (\mathbf{A} \mathbf{w}) = \mathbf{A}^T.$$
$$\frac{\partial}{\partial \mathbf{w}} (\mathbf{w}^T \mathbf{A} \mathbf{w}) = 2\mathbf{A} \mathbf{w}.$$

[問4] 上の[問2]において具体的に,

$$(x_{11}, x_{12}) = (6, 3),$$
 $y_1 = 1$
 $(x_{21}, x_{22}) = (-2, -1),$ $y_2 = 2$
 $(x_{31}, x_{32}) = (4, 2),$ $y_3 = -1$
 $(x_{41}, x_{42}) = (2, 1),$ $y_4 = 5$

であったとする. このとき, Lを最小にする \mathbf{w} は一意に定まらないことを示せ.

第4問

確率ベクトル $\mathbf{X}=(X_1,\cdots,X_p)^T$ が, $\boldsymbol{\mu}=(\mu_1,\cdots,\mu_p)^T$ を平均ベクトル,単位行列を分散行列とする多変量正規分布の確率密度関数

$$(2\pi)^{-\frac{p}{2}}\exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T(\mathbf{x}-\boldsymbol{\mu})\right)$$

を持つとする. このとき, 次の問いに答えよ.

[問 1] 次で定める標準正規累積分布関数

$$\Phi(t) = (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{t} \exp\left(-\frac{1}{2}x^2\right) dx$$

を使って、期待値 $E(|X_1|\cdots|X_p|)$ を求めよ.

[問 2] 定数ベクトル β に対して $Y = \beta^T X$ の確率密度関数を求めよ.

[問 3] 上の $\Phi(t)$ を使って、確率 $P(\beta^T X > \alpha)$ を求めよ。ただし、 β は定数ベクトル、 α は定数とする。

[問4] 平均ベクトル μ はゼロベクトルでないと仮定する。このとき、任意の α に対して、 β を単位ベクトル(β ^T $\beta=1$)とするとき、確率 $P(\beta$ ^T $X>\alpha$)が最大となる β を求めよ。