FMI, Info, Anul I Logică matematică și computațională

Seminar 4

1 Breviar

Pentru orice e și orice Γ , notăm cu $e \models \Gamma$ (și spunem că e satisface Γ sau e este model pentru Γ) dacă, pentru orice $\varphi \in \Gamma$, $e \models \varphi$. Pentru orice Γ , notăm cu $Mod(\Gamma)$ mulţimea modelelor lui Γ .

Spunem că Γ este satisfiabilă dacă există $e:V\to\{0,1\}$ cu $e\models\Gamma$ şi nesatisfiabilă în caz contrar, când nu există $e:V\to\{0,1\}$ cu $e\models\Gamma$, i.e. pentru orice $e:V\to\{0,1\}$ avem că $e\not\models\Gamma$. O mulțime Γ se numește finit satisfiabilă dacă orice $\Delta\subseteq\Gamma$ finită este satisfiabilă. Pentru orice mulțime Γ de formule și orice formulă φ , notăm $\Gamma\models\varphi$ (și spunem că din Γ se deduce semantic φ sau că φ este consecință semantică a lui Γ) dacă pentru orice $e:V\to\{0,1\}$ cu $e\models\Gamma$ avem $e\models\varphi$. De asemenea, notăm $\Gamma\models_{fin}\varphi$ (și citim din Γ se deduce semantic finit φ) faptul că există o submulțime finită Δ a lui Γ a.î. $\Delta\models\varphi$. Pentru orice $v\in V$ și $e:V\to\{0,1\}$, vom defini

$$v^e := \begin{cases} v, & \text{dacă } e(v) = 1, \\ \neg v, & \text{dacă } e(v) = 0, \end{cases}$$

2 Exerciţii

(S4.1) Să se găsească toate modelele fiecăreia dintre mulțimile de formule:

- (i) $\Gamma = \{v_n \to v_{n+1} \mid n \in \mathbb{N}\};$
- (ii) $\Gamma = \{v_0\} \cup \{v_n \to v_{n+1} \mid 0 \le n \le 7\}.$
- (S4.2) Fie $f: V \to \{0,1\}$. Găsiți Γ astfel încât $Mod(\Gamma) = \{f\}$. (S4.3)

- (i) Să se arate că mulțimea modelelor unei mulțimi satisfiabile și finite de formule este infinită.
- (ii) Găsiți o mulțime (infinită) de formule cu proprietatea că nu există o mulțime finită de formule care să aibă exact aceleași modele.