Capstone Project Final Presentation

New York State Hospital Inpatient Discharge

DSE Online July'22 - Group 6

Mentor: Vidhya K.

Team Leader: Shailja Barsaiyan

Team Members:

Aditya Aryan Mahima Bhardwaj Morvi Kohad Shailja Barsaiyan Shrika Garg

Problem Definition & Statement

- Healthcare industry in New York (NY) facing difficulty in ensuring that every community across the state has equal access to healthcare.
- Examine hospital inpatient discharge data from diverse communities in New York, to identify regions where additional healthcare coverage is needed for specific diagnoses or procedure codes.
- Healthcare providers can allocate their resources more efficiently and enhance healthcare outcomes.

Hospital Service Area	Hospital County	Operating Certificate Number	Permanent Facility Id	Facility Name	Age Group	Zip Code - 3 digits	Gender	Race	Ethnicity
Long Island	Nassau	2950001.0	527.0	Mount Sinai South Nassau	70 or Older	115	М	White	Not Span/Hispanic
Long Island	Suffolk	5153000.0	913.0	Huntington Hospital	70 or Older	117	F	Black/African American	Not Span/Hispanic
New York City	Richmond	7004003.0	1737.0	Staten Island University Hospital Prince's Bay	50 to 69	103	М	White	Spanish/Hispanic

Problem Statement 1

Predicting Length of
Stay through a
Machine Learning
Supervised Algorithm.

Problem Statement 2

To anticipate the likelihood of Patient Mortality.

Problem Statement 3

Analyse demographics to identify specific diagnoses.

Dataset

- Hospital inpatient discharge data by Dept. of Health of New York State publicly available at:
 https://health.data.ny.gov/Health/Hospital-Inpatient Discharges-SPARCS-De-Identified/tg3i-cinn
- The dataset consists of 2101588 rows & 33 columns.

 For simplification, considered 2,00,000 rows from our dataset.

Range	RangeIndex: 210158 entries, 0 to 210157							
Data	ta columns (total 33 columns):							
#	Column	Non-Null Count	Dtype					
0	Hospital Service Area	209092 non-null	object					
1	Hospital County	209092 non-null	object					
2	Operating Certificate Number	208954 non-null	float64					
3	Permanent Facility Id	209092 non-null	float64					
4	Facility Name	210158 non-null	object					
5	Age Group	210158 non-null	object					
6	Zip Code - 3 digits	205617 non-null	object					
7	Gender	210158 non-null	object					
8	Race	210158 non-null	object					
9	Ethnicity	210158 non-null	object					
10	Length of Stay	210158 non-null	int32					
11	Type of Admission	210158 non-null	object					
12	Patient Disposition	210158 non-null	object					
13	Discharge Year	210158 non-null	int64					
14	CCSR Diagnosis Code	210012 non-null	object					
15	CCSR Diagnosis Description	210012 non-null	object					
16	CCSR Procedure Code	152647 non-null	object					
17	CCSR Procedure Description	152647 non-null	object					
18	APR DRG Code	210158 non-null	int64					
19	APR DRG Description	210158 non-null	object					
20	APR MDC Code	210158 non-null	int64					
21	APR MDC Description	210158 non-null	object					
22	APR Severity of Illness Code	210158 non-null	int64					
23	APR Severity of Illness Description	209909 non-null	object					
24	APR Risk of Mortality	209909 non-null	object					
25	APR Medical Surgical Description	210158 non-null	object					
26	Payment Typology 1	210158 non-null	object					
27	Payment Typology 2	102735 non-null	object					
28	Payment Typology 3	33282 non-null	object					
29	Birth Weight	20806 non-null	object					
30	Emergency Department Indicator	210158 non-null	object					
31	Total Charges	210158 non-null	float64					
32	Total Costs	210158 non-null	float64					
dtypes: float64(4), int32(1), int64(4), object(24)								

Exploratory Data Analysis

- Found and handled missing data
- 757 duplicate rows were dropped.
- Outliers Box-Cox Transformation
- •Removed redundant columns.

greatlearning

```
(health data.isnull().mean()*100).sort values(ascending=False)
Birth Weight
                                        90.187052
Payment Typology 3
                                        84.163254
Payment Typology 2
                                        51.140906
CCSR Procedure Code
                                        27.293285
CCSR Procedure Description
                                        27.293285
Zip Code - 3 digits
                                        2.133174
Operating Certificate Number
                                         0.581053
Hospital County
                                         0.514515
Hospital Service Area
                                         0.514515
Permanent Facility Id
                                         0.514515
APR Risk of Mortality
                                         0.117989
APR Severity of Illness Description
                                         0.117989
CCSR Diagnosis Code
                                         0.074795
CCSR Diagnosis Description
                                         0.074795
```


Challenges

- Gender: 'U' -> 'F'.
- Type of Admission: 'Not available' -> 'Emergency'.
- Ethnicity: 'Unknown' -> 'Spanish/Hispanic'.
- Length of Stay: '120 +' -> '120'.
- Zip code- 3 digits: 'OOS' -> '999'

	PCA1	PCA2	PCA3	PCA4	PCA5	PCA6	PCA7	PCA8	PCA9
0	0.994469	-1.832399	-0.558417	0.702948	0.140031	-1.423593	-0.862880	-0.967540	0.744109
1	0.986631	-1.054495	-1.657258	-0.380080	1.021009	-0.411818	-0.916541	0.272960	-0.069503
2	-0.714474	1.208255	0.564185	-2.231641	-0.065607	0.787736	-2.306795	-1.721018	1.495781
3	-0.330712	-0.880742	1.419413	-3.961436	0.283889	-0.150569	1.488955	-2.304413	2.817339
4	1.026106	0.182703	-1.012931	-0.088671	1.076888	0.347429	1.875579	0.673722	-0.800719

```
Before OverSampling, counts of label '0': 72723
Before OverSampling, counts of label '1': 30114
Before OverSampling, counts of label '2': 27083
Before OverSampling, counts of label '3': 13686

After OverSampling, counts of label '0': 72723
After OverSampling, counts of label '1': 72723
After OverSampling, counts of label '2': 72723
After OverSampling, counts of label '2': 72723
```

greatlearning

```
health_data.Gender= health_data['Gender'].str.replace('U','F')
health_data['Type of Admission'] = health_data['Type of Admission'].str.replace('Not Available','Emergency')
```

```
health_data['Length of Stay'].unique()

array(['4', '8', '1', '16', '2', '19', '14', '11', '13', '20', '3', '9', '6', '5', '12', '17', '15', '22', '34', '7', '25', '23', '21', '10', '24', '30', '35', '78', '18', '33', '26', '42', '41', '81', '31', '48', '28', '29', '38', '56', '49', '103', '27', '91', '59', '120 +', '53', '39', '52', '40', '46', '51', '32', '60', '45', '58', '44', '43', '66', '36', '50', '85', '63', '102', '68', '61', '84', '89', '54', '47', '37', '76', '92', '64', '71', '95', '62', '83', '74', '67', '111', '99', '80', '55', '75', '96', '82', '87', '98', '104', '77', '110', '69', '112', '97', '93', '115', '116', '57', '114', '72', '65', '79', '70', '86', '118', '94', '105', '117', '73', '109', '107', '108', '101', '106', '90', '119', '113', '100', '88'], dtype=object)
```

```
health_data[health_data['Zip Code - 3 digits'] == 'OOS'].count()[0]

17731

health_data['Zip Code - 3 digits'] = health_data['Zip Code - 3 digits'].apply(lambda x: str(x).replace('OOS','999'))
health_data['Zip Code - 3 digits'] = health_data['Zip Code - 3 digits'].astype(np.number)
```

- Performed PCA for dimensionality reduction - 70% variation
- Class balancing through SMOTE

Univariate Analysis

- Most people were diagnosed with Liveborn.
- Most of the patients are least likely to die.
- No of patients are much more in New York city.
- Most people belong to 70-older age group.

Bivariate Analysis

- People with lowest risk of mortality have shortest stays.
- Total charges & costs have positive relation with LOS.
- Risk of Mortality increases with respect to age.

Multivariate Analysis

- Males above 17 are staying more than females.
- Cancer Center or Children Hospital Females stayed longer than men on the same prescription.
- Total charges and costs have positive correlation with length of stay.

Regression

XGBoost

- ✓ Faster than other

 X High computation algorithms
- ✓ Top performing for large × Prone to overfitting datasets
- × Loss of explanatory power

building_model(XGBRegressor(max_depth = 7,learning_rate=0.03,n_estimators= 150),X_train,X_test,y_train,y_test)

R2 score on test data: 0.845361880942902 R2 score on train data: 0.889489995935017

RMSE Traning: 2.7437 RMSE Testing: 3.2197

	Model	R2-score	MSE	RMSE	MAPE
8	XGBoost	8.186505e-01	1.215737e+01	3.486742e+00	4.257394e-01
6	Random Forest	6.470432e-01	2.366165e+01	4.864324e+00	6.569270e-01
5	Decision Tree	6.224458e-01	2.531062e+01	5.030966e+00	6.808814e-01
2	Ridge Regression	4.719058e-01	3.540257e+01	5.950006e+00	1.097963e+00
0	Linear Regreesion	4.719058e-01	3.540257e+01	5.950006e+00	1.097971e+00
1	Lasso regression	4.621198e-01	3.605861e+01	6.004882e+00	1.143252e+00
4	KNeighbors	3.842834e-01	4.127663e+01	6.424689e+00	7.520471e-01

SGDRegressor -8.924664e+26 5.982949e+28 2.446007e+14 7.957311e+13

Predicting Length of Stay

Model Building

- Encoding and Scaling
- Performed 9 Algorithms
- Highest R2 Model -XGBoost

GridSearchCV

 Hyperparameter Tuning – Found out best parameters.

Tweaking the **Parameters**

 Tweaked the best parameters to reduce overfitting.

Final Model

3.817232e-01 4.144826e+01 6.438032e+00 1.881566e+00

• Chose the final model with an R2 of 0.85.

Classification

Anticipating Risk of Mortality

	precision	recall	f1-score	support
	p			
				2424
0	0.89	0.86	0.87	31269
1	0.52	0.52	0.52	12946
2	0.62	0.68	0.65	11455
3	0.79	0.76	0.78	5876
accuracy			0.75	61546
macro avg	0.70	0.71	0.71	61546
weighted avg	0.75	0.75	0.75	61546

Recall F1-score Cohen-Kappa Accuracy Precision 0.704929 0.705056 0.617180 0.708635 0.703087 0.604168 0.701913 0.594090 0.730852 0.689986 0.694400 0.691491 0.576730 0 Logistic Regreesion 0.714977 0.683174 0.480408 0.560562 0.594824 0.551555 Naive Bayes 0.658532 0.629032 0.643087 0.630866 0.498932 0.620615 0.629731 0.624279 0.482554 0.655721

Train accuracy = 0.7958383180011825 Test accuracy = 0.7467585220810451 Recall = 0.706490969627444 Precision = 0.7047257419365186 F1 score = 0.7051368560764072 Kappa = 0.6153310155288524

Model Building

- Class Balancing using SMOTE
- Performed 7 Algorithms
- Highest Accuracy Model -XGBoost

GridSearchCV

 Hyperparameter Tuning – Found out the best parameters.

Tweaking the Parameters

 Tweaked the best parameters to improve precision and recall.

Final Model

 Chose the final model with an accuracy of 0.75.

Clustering

K-Means Clustering

- ✓ Simple
- ✓ Eliminates bias
- ✓ Great for large scale data
- × High computation
- × Sensitive to initial centroids
- × Prone to curse of dimensionality

PCA

- Scaling
- Finding Eigen values and vectors
- Analyzing % variations
- Choosing 9 components

Elbow Plot

- WCSS vs K for up to 20 clusters
- Elbow point at K = 4

Silhouette Score Analysis

 Finding silhouette score for up to 10 clusters

K-Means

- Building model with K= 4
- Adding labels to data

Clustering

- Cluster 0 belongs to the subgroup that impacts livebirth - Not Spanish/Hispanic ethnicity.
- Cluster 1 belongs to the subgroup that impacts Septicaemia.
- Cluster 2 belongs to the subgroup that impacts Covid disease.
- Cluster 3 belongs to the subgroup that impacts livebirth -Spanish/Hispanic ethnicity.

Inferences

Regression (LOS)

- Children below 18 have shorter stays.
- New-born admissions take 2 days.
- Advance resource allocation for severely ill and high-risk patients is needed.
- Patients admitted in emergencies tend to have longer stays, therefore separate rooms can be reserved for them.
- Our regression model R2 suggests that it explains 84.5% of variation in LOS; with a RMSE of 3.2.

Classification (Risk of Mortality)

- Hospitals should prioritize specialized care for older patients (70 and above) due to their higher mortality risk.
- Patients with 'Medicare' payment typology have higher mortality risks, suggesting the need for improved care coordination.
- Strategies to reduce mortality risks should be prioritized for patients admitted in emergency situations.
- Our classification model classifies 75% of unseen data correctly; with precision and recall of 70% and 71% respectively.

Inferences

Clustering

- Manhattan County and New York City hospitals should collaborate with local health authorities to address higher mortality risks collectively.
- Implement robust management protocols due to the prevalence of septicaemia diagnoses.
- Prioritize patient safety initiatives, including quality improvement programs, infection prevention and control measures.
- Clusters are formed which describe livebirth, Septicemia and COVID diagnoses.

Further Steps

- In the future, we can focus on ensuring the availability and quality of relevant data to train the models effectively.
- Additionally, we can explore different feature engineering techniques to enhance the predictive power of the models.
- Before deploying, we can check our model's performance on a diverse set of data to ensure it generalizes well, test it against edge cases, outliers, and scenarios that may challenge its accuracy.

Thank You!!