Assignment 1

CS 405/805-001: Computer Graphics

Instructor: Xue Dong Yang
Thursday, September 13, 2012
Due Date: Thursday, September 27, 2012

1. Written Question (10 marks)

Given two (non-collinear) vectors VI = (VIx, VIy, VIz) and V2 = (V2x, V2y, V2z). Three orthogonal unit length vectors \mathbf{u} , \mathbf{v} , and \mathbf{n} can be defined such that \mathbf{n} is along V1; \mathbf{u} is perpendicular to VI and V2; and \mathbf{v} is perpendicular to \mathbf{u} and \mathbf{n} , as illustrated in the above figure.

Derive, based on V1 and V2, the formula for calculating the unit-length vectors:

$$\mathbf{u} = (\mathbf{u}_{\mathbf{x}}, \, \mathbf{u}_{\mathbf{y}}, \, \mathbf{u}_{\mathbf{z}})$$

$$\mathbf{v} = (v_x, v_y, v_z)$$

$$\mathbf{n} = (\mathbf{n}_{x}, \, \mathbf{n}_{v}, \, \mathbf{n}_{z})$$

For example,
$$\mathbf{n} = V\mathbf{1}/|V\mathbf{1}|$$
, where $|V\mathbf{1}| = \sqrt{V1_x^2 + V1_y^2 + V1_z^2}$, then $\mathbf{n_x} = V1\mathbf{x}/|V1|$,

2. Programming Question (10 marks)

Write and implement a function (in C or C++) that takes two (non-collinear) vectors V1 and V2 that returns three orthogonal unit length vectors \mathbf{u} , \mathbf{v} , and \mathbf{n} , as defined in Question 1.

3. Written and Programming Question (40 marks)

In computer graphics, objects are usually defined in the world coordinate system. We also often use a coordinate system that is associated with the camera, and sometimes a light coordinate system, as illustrated in the following diagram:

Where:

• **x-y-z**: world coordinate system

• *VRP* = (VRPx, VRPy, VRPz) – View Reference Point (3D point)

• *VPN* = (VPNx, VPNy, VPNz) – View Plane Normal (3D vector)

• *VUP* = (VUPx, VUPy, VUPz) – Up Direction for the Camera (3D vector)

• *LRP* = (LRPx, LRPy, LRPz) – Light Reference Point (3D point)

• *LPN* = (LPNx, LPNy, LPNz) – Light Plane Normal (3D vector)

• *LUP* = (LUPx, LUPy, LUPz) – Up Direction for the Light (3D vector)

To transform a 3D point from one coordinate system to another, we may need to construct six transformation (4X4) matrices:

M_{wc}: from world to camera

M_{cw}: from camera to world

M_{wl}: from world to light

M_{lw}: from light to world

M_{cl}: from camera to light

M_{lc}: from light to camera

Use the second method given in the lecture to construct these matrices. For example, the transformation from world to camera:

$$M_{wc} = R*T$$

where

$$R = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ n_x & n_y & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad T = \begin{bmatrix} 1 & 0 & 0 & -VRP_x \\ 0 & 1 & 0 & -VRP_y \\ 0 & 0 & 1 & -VRP_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 M_{cw} is the inverse transformation of M_{wc} , thus can be derived as:

$$M_{cw} = M_{wc}^{-1} = [R * T]^{-1} = T^{-1} * R^{-1}$$

It is straightforward for T⁻¹ (think about why?):

$$\mathbf{T}^{-1} = \begin{bmatrix} 1 & 0 & 0 & -VRP_x \\ 0 & 1 & 0 & -VRP_y \\ 0 & 0 & 1 & -VRP_z \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 & VRP_x \\ 0 & 1 & 0 & VRP_y \\ 0 & 0 & 1 & VRP_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- a. Verify that $T * T^{-1} = I$.
- b. Because R is an orthogonal matrix, $R^{-1} = R^{T}$, i.e.:

$$\mathbf{R}^{-1} = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ n_x & n_y & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^T = \begin{bmatrix} u_x & v_x & n_x & 0 \\ u_y & v_y & n_y & 0 \\ u_z & v_z & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

What is the definition of orthogonal matrix? Verify that $R * R^{-1} = I$.

c. Write and implement a function that takes *VRP*, *VPN*, *VUP* as the input, and constructs two transformation matrices as the results:

 M_{wc} : from world to camera M_{cw} : from camera to world

[Hint: You should utilize the function developed in Question 2.]

d. Write and implement a function that takes LRP, LPN, LUP as the input, and constructs two transformation matrices as the results:

 M_{wl} : from world to light M_{lw} : from light to world

e. We want to construct the following two transformation matrices:

 M_{cl} : from camera to light M_{lc} : from light to camera

Each of these can be constructed by concatenating two proper matrices obtained in (c) and (d). Write down them.

f. Write and implement a testing main program to test your functions.

A set of testing points will be provided separately to you. Required output will also be specified in the testing data file.
Your hand-in should the source program and printed testing results.

..**CAD**