

Regroupement - Programmation fonctionnelle - LISP <u>Vendredi 13 juin 2025</u>

Durée: 1h00

Remarques et commentaires :

- Commencez par lire le sujet dans son intégralité.
- Les exercices sont indépendants les uns des autres.
- Facilitez la lecture et la compréhension des codes proposés.
- copier/coller la question avant de répondre, envoyez vos réponses à otman.manad02@univ-paris8.fr sujet : Regroupement_PFL1_Nom_Prénom_NumEtudiant en PDF nommé Regroupement_PFL1_Nom_Prénom_NumEtud.

Epreuve 1:

Que rendent les évaluations des expressions suivantes, données par l'interprète de LISP (expliquez les intermédiaires) :

- a) (car (cdr '((a b) (c d) (e) f)))
- b) (car (cdr (car '((a b c) (d e f)))))
- c) (car (cdr '(car ((a b c) (d e f)))))
- d) (car '(cdr (car ((a b c) (d e f)))))
- e) (eval (cons '+ (cons 4 (list 5))))
- f) (list? (+ 2 3))
- g) (pair? (cons 'a 'b))
- h) (list? (cons 'a 'b))

Epreuve 2:

On dispose d'une liste de doublets associant des types d'IA et un score de biais (nombre réel ou entier).

(("IA-type1" . 0.12) ("IA-type2" . 0.08) ...)

- Construire récursivement une liste contenant uniquement les valeurs de biais.

Fonction attendue: (extraire-biais liste-doublets) — (0.12 0.08 ...)

Calculer ensuite le biais moyen à partir de cette liste de scores.

Fonction attendue: (biais-moyen liste-doublets) — valeur-moyenne

A. On dispose d'un arbre (liste récursive) contenant des chaînes de caractères représentant des concepts d'IA (ex. "NLP", "ML", "Al", "Robotics", "XAI", etc.).

Écrire une fonction chirurgicale récursive qui modifie l'arbre en place pour ne garder que les chaînes dont la longueur est > n (filtrage de termes suivant n).

Fonction attendue:

(filtrer-concepts n arbre) → arbre modifié (toutes chaînes < n supprimées)

Astuce 1: Utilisez string et length pour les calculs.

Astuce 2 : Commencez par écrire une version non chirurgicale pour construire un nouvel arbre, puis transformez-la en version chirurgicale (modifie la liste originalement).

Bon courage.