1 Introduction

SPYVALK

Theorem 1.1. Supongase que f es continua en a, y f(a) > 0. Entonces existe un número $\delta > 0$ tal que f(a) > 0 para todo x que satisface $|x - a| < \delta$. Análogicamente, si f(a) < 0, entonces existe un número $\delta > 0$ tal que f(x) < 0 para todo x que satisface $|x - a| < \delta$.

Proof. Considere el caso f(a)>0 puesto que f que es continua en a si $\in>0$ existe un $\delta>0$ tal que ,para todo x.

$$si |x-a| < \delta, entonces |f(x) - f(a)| < \epsilon.$$

Puesto que f(a)>0 podemos tomar a f(a) como el \in . Así pues, existe $\delta>0$ tal que para todo x.

$$si |x-a| < \delta, entonces |f(x) - f(a)| < f(a).$$