Cours:

1)
$$S_n = \sqrt{\frac{1-q^{n+L}}{1-q}}$$
 $S_1 \neq 1$

Sou

 $S_1 = \sqrt{\frac{1-q^{n+L}}{1-q}}$ $S_1 \neq 1$

2) $(P = 0) \mapsto (TP \text{ ou })$

P	91	PAP
V	V	V
V	F	F
F	V	V
F	F	V

1 ex +1 ≠0 ssi ex ≠-1 1). a excepte son $11 + \frac{e^2 - 1}{e^2 + 1} \neq 0$ son $\frac{e^2 + 1 + e^2 - 1}{e^2 + 1} \neq 0$ son $\frac{2e^2}{e^2 + 1} \neq 0$ que est toujours that can $e^2 > 0$; donc 9 = R $a = \frac{e^{\chi}(e^{\ell\chi} + e^{\chi})}{4 + \frac{e^{\chi} - 4}{e^{\chi} + 1}} = \frac{e^{\chi}(e^{\ell\chi} + e^{\chi})}{\frac{ge^{\chi}}{e^{\chi} + 1}} = \frac{e^{\chi}(e^{\ell\chi} + e^{\chi})(e^{\chi} + 1)}{ge^{\chi}}$ $=\frac{1}{2}(e^{x}(e^{x}+1))(e^{x}+1) = \frac{1}{2}e^{x}(e^{x}+1)^{2}$ 2) $\forall x \in \mathbb{R}$, $f'(x) = \frac{e^{x}(e^{3x} + 3e^{x}) - (e^{x} - 1)(3e^{3x} + 3e^{x})}{(e^{3x} + 3e^{x})^{2}}$ $= e^{4x} + 3e^{2x} - (3e^{4x} + 3e^{2x} - 3e^{3x} - 3e^{3})$ $= \frac{-2e^{4x} + 3e^{3x} + 3e^{x}}{e^{2x} (e^{2x} + 3)^{2}} = \frac{-2e^{3x} + 3e^{x} + 3e^{x}}{e^{x} (e^{2x} + 3)^{2}}$ $\frac{3)}{2} \left\{ \frac{Q_a = R}{a(x)} = \frac{1}{|x|^2 + 4|x| + 4} - 4|x| = \frac{1}{|x|^2 + 4} = \frac{1}{|x|^2 + 4} \right\}$ $|\widehat{\mathcal{D}}_{b}| = |\mathbb{R}^{2}|$ $|\widehat{\mathcal{D}_{b}| = |\mathbb{R}^{2}|$ $|\widehat{\mathcal{D}}_{b}| =$ 4) $S_n = \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k+2} = \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=2}^{n} \frac{1}{k}$ (j= B+2)

1

$$S_{n} = \sum_{R=1}^{n} \frac{1}{R} = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} = \frac{1}$$

1) a)
$$\forall x \in \mathbb{R}$$
, $\exists y \in Joit \infty C$, $x = \ell n y$
Negation: $\exists x \in \mathbb{R}$, $\forall y \in Joit \infty C$, $x \neq \ell n y$

b)
$$\forall z \in \mathbb{C}, z^2 \in \mathbb{C}$$

Négation: $\exists z \in \mathbb{C}, z^2 \notin \mathbb{C}$

- 2) (a) est vicue can $\forall x \in \mathbb{R}$, sin $x \in \mathbb{R}$, donc YXEIR, AMX>O OU AMX (O
 - (b) est fausse can 7(b) est maie. En effer: 7(6) H (JXEIR, smx 60) er (3xEIR, Dunx >0)] Il suffer de choisin x = 0 er x'= 13

pour justifier que The est maré

Donc (a) et/b) ne sont pas équivalentes

P	9	12	P19	PDR	(a)	Pug	R1(PV9)	(6)
V	V	V	V	V	\vee	V	V	V
>	V	F	V	F	V	V	F	F
V	F	V	F	V	V	V	V	V
V	F	F	F	F	F	✓	F	F
F	V	V	F	V	V	V	\vee	V
F	V	F	F	V	V	V	F	F
F	F	V	F	V	V	F	F	\vee
F	F	F	F	V	\vee	F	F	F

Ex3

1) a) Sour E>0.

Choisissons 1=1>0 Soverir 21/4 e IR

- (B) Supposons que 1x-4/<8
- D) Aloro |f(x)-f(y)|= 1c-c1=0 < €
- @ /f(x)-f(y)/< 8

or TP est noue; il suffit do choisi par exemple a = b = c = 1, can $\int (a+b+c)^2 = 9$ et donc $\int (a+b^2+c^2)^2 = 3$

(a+b+c)2 + a2+62+c2