ECE 5730 Memory Systems Spring 2009

Professor Dave Albonesi

Computer Systems Laboratory
School of Electrical and Computer Engineering

Welcome!

Instructor

- Professor Dave Albonesi
 - 333 Rhodes Hall
 - dha7@cornell.edu
 - **254-5473**
 - Office Hours: Tuesday & Thursday from 1-2pm and by appointment

Prerequisites

 You must have had ECE 4750 (or an equivalent course) to take this class!

But you don't need ECE 5720!

Course Logistics

Textbook

- Memory Systems by Jacob, Ng, and Wang
- Also technical papers

Blackboard

- Announcements, lecture slides, papers
- Please self-enroll this week

Grading

Grade Computation

– Weekly quizzes: 25%

- 2 Exams: 50% (25% each)

Project: 25%

Quizzes

- First 10 minutes on Tuesdays
 - Will start on time (too bad if you show up late)
 - Covers lecture material from prior week
 - 5 multiple choice questions (2 points each)
 - Open everything (including Blackboard site)
 - Lowest 3 quiz scores are dropped
 - No make-ups

Exams

- Two exams
 - Week of March 9th
 - Week of April 27th
 - Scheduled outside of class
 - Open everything
- No Final Exam

Project

- Independent research project
- Use simulation tools to study some aspect of memory systems design
- Due in class on April 30th
- More about this in a few weeks...

Code of Academic Integrity

- http://cuinfo.cornell.edu/Academic/AIC.html
- Strictly followed in this course (violators will be prosecuted)
- As Cornell students, you are responsible for reading and abiding by this policy

Course Objectives

- Understand in detail the issues, trade-offs, and techniques in designing memory systems
 - Cache hierarchies, main memories, disk systems
 - Physical, organizational, system-level

- Performance, power, reliability

- Gain knowledge of research in the field
- Acquire research experience via a project using simulation tools

Course Topics

Caches

- Logical organization
- Implementation issues
- Management approaches

Main memories

- DRAM physical design
- Organizational and signaling issues
- Memory controllers

Disks

- Physical and data layers
- Drive interface and bus standards
- Disk caches
- Disk controllers and systems

talk more about

ORAM types, less about

ECE 3/4/475 topm

Course Topics

- Case Studies
- Other topics
 - Power efficient memory system design
 - Memory systems for parallel computer architectures
 - Emerging memory technologies

A very brief sampling of what's to come...

A Typical (Old) PC System

Lecture 1: 14

A Memory Hierarchy

A Few Cache Design Options...

Many cach

Mesign options

Logical

Organization

Transparent Caches Software-Managed Caches Self-Managed Scratch-Pads Scratch-Pad Memories

Content Management

Design-Time Heuristics Run-Time Heuristics

Consistency Management

Consistency with Self Consistency with Backing Store Consistency with Other Caches

Trace Cache

Stream Buffers

Main Memory

The Evolution of DRAMs

1980'

Lecture 1: 20

SDRAM Organization and Access

Memory Control

Disk Drives

Disk Drive Controller

Disk Interface Standards

Next Time

Cache Organization