第四章 二元关系

- 一. 偏序集中的重要元素
 - 1. 极大元与极小元

定义: 设 (P, \leq) 是半序集, $A \subseteq P$,若 $a \in A$,且在 A 中找不到 一个元素 b $(b \neq a)$,使 $a \leq b$ $(b \leq a)$,则称 a 为 A 中的极大元(极小元)。 y是 B 的极小元 $\Leftrightarrow \exists y (y \in A \land \neg \exists x (x \in A \land x \neq y \land x \leq y))$

y是B的极大元 $\Leftrightarrow \exists y(y \in A \land \neg \exists x(x \in A \land x \neq y \land y \leq x))$

注意1: A的极大元与极小元要在A(子集)中寻找, 不要到P(全集)中寻找。

- 一. 偏序集中的重要元素
 - 1. 极大元与极小元

例:自然数集合N及其上的整除|构成半序集(N, |), $A = \{2,3,4,5,6,7,8,9\}$ 则

A中极大元: 8, 6, 9, 5, 7

A中极小元: 2, 3, 5, 7

注意2:极大元,极小元并不要求唯一,且同一元素,可以既是极大元,又是极小元,如5,7。

- 一. 偏序集中的重要元素
 - 2. 最大元与最小元

定义: $设(P, \leq)$ 是半序集, $A \subseteq P$, 若 $a \in A$, $\forall b \in A$, $b \leq a$ $(a \leq b)$, 则称 $a \not A$ 的最大元(最小元)。

注意: A的最大元与最小元一定在A(子集)中寻找, 不要到P(全集)中寻找。

子集A中是不存在最大元 (最小元)的。

- 一. 偏序集中的重要元素
 - 2. 最大元与最小元

定理: <A, ≼>是偏序集, B是A的非空子集, 如果B有最小元(最大元), 则最小元(最大元)是唯一的。

证明: 假设B有两个最小元a、b,则因为a是最小元,b $\in B$,根据最小元定 λ ,有 $a \le b$;类似地,因为b是最小元, $a \in B$,根据最小元定义,有 $b \le a$ 。因为 \le 有反对称性,所以有a=b。

同理,可证最大元的唯一性。

- 一. 偏序集中的重要元素
 - 2. 最大元与最小元
 - 小结: (A,≤)是偏序集. B是A的非空子集. 则
 - (1) B的极小元总是存在的,就是子集Hasse图中处在最下层的元素;B的极大元也总是存在的,就是子集Hasse图中处于最上层的元素。
 - (2) B的最小元(最大元)有时可能不存在,只要有唯一的极小(大)元,则这个极小(大)元就是最小(大)元。否则,就没有最小(大)元。

- 一. 偏序集中的重要元素
 - 3. 上界与下界

定义:设(P, \leq) 是半序集, $A\subseteq P$, 若 $a\in P$, 对 \forall $b\in A$,都有 $b\leq$ a, 则称a是A的上界; 若 $a\in P$, 对 \forall $b\in A$, 对 \forall $b\in A$, 都有 $a\leq b$,则称 a 为A的下界。

注意: A的上下界要到P(全集)中寻找, 不局限于A(子集)。

一. 偏序集中的重要元素

3. 上界与下界

例: B={a,b,c},则(P(B), ⊆)是半序集,其Hasse图如右 图所示。设A = {Φ,{a},{b},{c},{a,c},{a,b},{a,c}}

- (1) A无最大元,但存在A的上界 $\{a, b, c\}$;
- (2) ①为A的最小元, 也是A的下界;
- (3) 最大(小)元是A的一个上(下)界;
- (4) 上(下)界可以不唯一,也可以不存在;

- 一. 偏序集中的重要元素
 - 4. 上确界与下确界

定义: 设 (P, \leq) 是半序集, $A \subseteq P$,若 a 是 A 的一个上界,而 \forall A 的上界 b,都有 $a \leq b$,则称 a 是 A 的上确界;若 a 是 A 的一个下界,而 \forall A 的下界 b,都有 $b \leq a$,则称 b 是 A 的下确界。

说明:

上确界: 所有上界中的最小者, 最小上界;

下确界: 所有上界中的最大者, 最大下界;

另外, 如果存在上(下)确界, 则上(下)确界一定是唯一的;