	N	Monash Uni	versity				
	Sem Facult	nester Examina					
EXAM CODES		mple-	Melke				
TITLE OF PAI	TITLE OF PAPER: Sample-						
EXAM DURAT	TION:)			
READING TIM	1E:						
THIS PAPER IS	S FOR STUDENTS	S STUDYING AT:(tick where applicable)	1			
☐ Berwick ☑ Caulfield ☐ Pharmacy	☐ Clayton☐ Gippsland☐ Other (specify	☐ Malaysia ☐ Peninsula	☑ Off Campus Le ☐ Enhancement St	_	Open Learning Sth Africa		
case, mobile pl specifically per be deemed to be an exam is a disc	hone or other ma mitted as noted be e in your possession ipline offence under	terial/item which low. Any material n. You are reminde Monash Statute 4.1	ion, a book, notes, pa has not been author or item on your desl ed that possession of un l.	rised for the k, chair or p nauthorised n	e exam or erson will		
concisely express work. Any mate needs to overflo case and that the of the examinat	sed factual informa erial written on the w from its designate material on the blation, even if no que s. The total is 80 in	tion. The backs of pages we ted answer space to ank page is for correct stions are attempted.	neatly on this paper magill not normally be cablank page, clearly etion. This paper must d. There are 8 quest counts as 60% of the second counts.	y be used for orrected. If indicate that be handed up ions, each or	any rough an answer this is the at the end f which is		
CALCU OPEN I	LATORS		□ YES □ YES				
	FICALLY PERMI	TTED ITEMS	□ YES				
Candida	ites must complete i	this section if requir	red to write answers w	ithin this pap	ver		
STUDENT ID		.———	DESK NUMBER		_		

Office Use Only

Question 1:

Consider the following two star schemas. Star schema-1 has a dimension called Semester_Year_Dimension, whereas in Star Schema-2, the Semester_Year_Dimension is split into two dimensions (e.g. Semester_Dimension and Year_Dimension)

Star Schema-1 (one semester-year dimension)

Star Schema-2 (two separate dimensions for semester and year)

Questions:

- (i) Show the sample contents of tables Semester_Year_Dimension and Fact-1 (from Star Schema-1), and the sample contents of tables Semester_Dimension, Year Dimension, and Fact-2 (from Star Schema-2)
- (ii) Compare and contrast the two star schemas.

Star Schema-1:

SQL> select * from sem_year_dim;

SEM_ID	OYEAR	OSEM
20092	2009	2
20091	2009	1

SQL> select * from student_enrollment_fact;

OCAMPUS	SEM_ID	UCODE	GRADE	NUM_OF_STUD	ENT	TOTAL_SCORE
Main	20091	IT001	HD		3	253
Main	20091	IT001	D		2	149
Main	20091	IT002	C		1	65
Main	20091	IT002	N		1	47
Main	20092	IT002	D		2	151
City	20092	IT001	C		1	64
Main	20091	IT001	N		1	41
Main	20092	IT002	C		1	64
DE	20092	IT004	P		2	105
City	20091	IT003	C		1	63
City	20092	IT001	N		1	32

11 rows selected.

Star Schema-2:

SQL> select * from sem_dim;

SEM_ID -----1 1 2

SQL> select * from year_dim;

YEAR_ID -----2009

SQL> select * from student_enrollment_fact_2;

OCAMPUS	SEM_ID	YEAR_ID	UCODE	GR	NUM_OF_STUDENT	TOTAL_SCORE
DE	2	2009	IT004	P	2	105
Main	1	2009	IT001	N	1	41
Main	1	2009	IT001	D	2	149
Main	2	2009	IT002	C	1	64
Main	1	2009	IT002	N	1	47
Main	2	2009	IT002	D	2	151
City	2	2009	IT001	N	1	32
Main	1	2009	IT002	C	1	65
City	1	2009	IT003	C	1	63
Main	1	2009	IT001	HD	3	253
City	2	2009	IT001	C	1	64

11 rows selected.

Continue your answer here:

Star schema-1 (semester_year dim):

- Duplication. For example: S1 appears many times
- But if we need to access the dimension, we only need one join between the fact and semester year dim

Star schema-2 (semester dim and year dim):

- No duplication. For example, there is only one S1.
- If we need to access both semester and year dimensions, we need two join operations between the fact and the two dimension tables. Having more join operation is always costly.

Conclusion: From the FACT point of view, it does not really matter whether we have two separate dimensions or just one dimension. They are the same. However, if two information, like semester and year, is often seen as one entity or one piece of information, it would be easier if the two information is present in one dimension.

Question 2:

Using the real estate case study, assume we have a junk dimension as follows:

Table JunkDIM:

Table JunkD	'IIVI:			
JUNKID	ENSUITE	POOL	ASPECT_FACING	G SPA
	yes	no	East	yes
	yes	no	South	yes
	no	no	North	yes
	no	no	East	no
	yes	no	North	no
	yes	yes	South	yes
	no	no	West	no
	yes	yes	East	yes
	null	no	North	no
	no	yes	East	no
	yes	no	South	no
12	yes	no	North	yes
13	yes	no	East	no
14	no	no	North	no
15	no	yes	South	yes
16	yes	yes	North	no
17	no	no	East	yes
18	yes	yes	South	no
19	no	no	South	yes
20	no	yes	West	no
21	yes	yes	North	yes
22	no	yes	North	yes
23	null	no	East	no
24	no	no	South	no
25	nul	no	West	no
26	no	yes	West	yes
27	yes	no	West	no
	no	no	West	yes
29	yes	yes	West	no
30	no	yes	North	no
31	no	yes	East	yes
32	nul	no	South	no
	yes	yes	West	yes
	yes	no	West	yes
	yes	yes	East	no
	no	yes	South	no

The star schema using this junk dimension is as follows:

A tempfact table has been created as follows:

A JunkId attribute is added to the TempFactProperty table using the following Later Table command:

```
Alter Table TempFactProperty
Add (JunkID Number(2));
```

The JunkID column in TempFactProperty is still empty. There are two ways to write an update SQL command to update the JunkID column in the TempFactProperty. Option-1 is to use a cursor in which the update junkid is placed in a loop. Option-2 is to use a subquery in the update TempFactProperty set JunkID.

Question: Write the SQL code to update JunkID column in TempFactProperty to match with the JunkID column in the JunkDim using the above two options.

OPTION-1:

```
Declare
    cursor junkcursor is
        select * from JunkDim;

begin
    for junkcursorrec in junkcursor LOOP
        update TempFactProperty
    set JunkID = junkcursorrec.JunkID
    where Ensuite = junkcursorrec.Ensuite
    and Spa = junkcursorrec.Spa
    and Pool = junkcursorrec.Pool
    and Aspect_Facing = junkcursorrec.Aspect_Facing;
    end loop;
end;
//
```

OPTION-2:

Question 3:

Given the following star schema for a bookshop:

Write the SQL commands to answer the following queries:

- a. Show total number (quantity) of books, including subtotals, by different transaction periods and customer locations
- b. Show top 10% book categories from the sales
- c. Show top 2 book price ranges which include the most number (quantity) of sold books

```
-- Qa (total number (quantity) by different periods and customer locations
SELECT
decode(grouping(l.location desc),1,'All location',1.location desc) as Location,
decode (grouping (p.period desc), 1, 'All Quarter', p.period desc),
SUM(f.TotalSalesQuantity) as total number
FROM BookSalesFact f, perioddim p, locationdim l
WHERE f.locations id = 1.locations id
AND f.periodID = p.periodID
GROUP BY rollup(1.location desc, p.period desc);
LOCATION
                           DECODE (GROUPING (P.PERIOD DESC) TOTAL NUMBER
1st quarter
                           2nd quarter
                                                                   1
Sydney
                           All Quarter
                                                                   3
Melbourne
                           2nd quarter
                                                                   3
Melbourne
                           3rd quarter
Melbourne
                           4th quarter
Melbourne
                           All Quarter
                                                                  10
All location
                           All Quarter
                                                                  13
8 rows selected.
SQL> -- Qb (top10%)
SOL> SELECT *
  2 FROM (
  3 SELECT c.category_desc, SUM(p.TotalSalesQuantity) as total sales,
  4 percent rank() over (order by SUM(p.TotalSalesQuantity)) as percent
  5 FROM BookSalesFact p, categorydim c
  6 WHERE p.category_id = c.category_id
  7 GROUP BY c.category desc)
  8 WHERE percent >= 0.9
  9 ORDER BY percent desc;
                         TOTAL SALES PERCENT
CATEGORY DESC
Science Fiction
SQL> Qc (top2 rank)
SELECT *
 FROM (
  SELECT pricerangeID, SUM(p.TotalSalesQuantity),
  RANK() over (order by SUM(p. Total Sales Quantity) desc) as ranking
 FROM BookSalesFact p
 GROUP BY pricerangeID
 ORDER BY ranking)
WHERE ranking <= 2;
PRICERANGEID SUM (P. TOTAL NUMBER) RANKING
                            3
                            3
```

Question 4:

Consider the following Student Enrolment star schemas: Star Schema Version-1 does not have a dimension hierarchy, whereas Star Schema Version-2 has a dimension hierarchy: from country to state, and to campus.

Questions:

- a. In contrasting both star schemas, is there any mistake in any of the two star schemas (Note that Star Schema Version-1 does not have a hierarchy, and Star Schema Version-2 does have)?
 - If yes, state which star schema, and explain your reason.
 - If no, also explain your reason.
- b. Compare both star schemas.
 - If there are mistakes in any (or both) star schemas, you need to draw the correct schema(s) first before comparing between each other.
 - If there are no mistakes in both star schemas, you can immediately compare the two star schemas.

Also, when you compare the two star schemas, you need to use some sample data (in the fact and in certain dimensions) to support your arguments

Write your answers here:

(a) There is a mistake in Star Schema Version-2; the mistake is in the hierarchy. The hierarchy should start from the most detail (e.g. Campus) to the most general (e.g. Country). Hence, the correct hierarchy should be CampusDIM→StateDIM→CountryDIM, and not in the opposite direction. Consequently, the fact should have CampusName, instead of CountryID.

There is no mistake in Star Schema Version-1.

Continue your answers here:

(b) The correct star schema for version-2 is as follows: Note: the FK must also be correct.

Continue your answers here:

Data duplication or Normalization

Star Schema-1: unnormalized, has data duplication The corrected (new) Star Schema-2: normalized, minimized data duplication

Minimise Join

Star Schema-1: need only one join between Fact and CampusDIM The corrected (new) Star Schema-2: need three join operations between Fact, CampusDIM, StateDIM, and CountryDIM

For example: when we answer a query "how many students from campus in Australia", Star Schema-1 needs to join Fact with CampusDIM only, whereas Star Schema-2 needs to join tables Fact, CampusDIM, StateDIM, and CountryDIM.

Question 5:

This question is taken from the *Bookshop* Case Study on Temporal Data Warehousing. The following shows a star schema shows a fact table (number of books sold) and three dimensions (e.g. Month, Branch, and Book). The Book dimension is temporal dimension, which contains a temporal attribute, called Price, which is book price.

The tables for this star schema have been created and populated from the operational database. The sample data is as follows:

Month DIM Table

Month_	ID
201503	
201502	
201501	
201412	
etc	

Branch DIM Table

Branch_ID	Branch_Address
City	Melbourne Central Shopping Centre, Melbourne
Chadstone	285 Dandenong Road, Chadstone
Camberwell	199 Burke Road, Camberwell
etc	

Book_DIM Table

Book_ID	Book_Title	Author
C1	CSIRO Diet	CSIRO Team
H6	Harry Potter 6	Rowling
DV	Da Vinci Code	Dan Brown
•••	•••	•••

Book_Price_DIM Table

Book_ID	Start_Date	End_Date	Price	Remarks
C1	201401	201407	\$45.95	Full Price
C1	201408	201410	\$36.75	20% Discount
C1	201411	201501	\$23.00	Half Price
C1	201502	201512	\$45.95	Full Price
Н6	201401	201403	\$21.95	Launching
Н6	201404	201501	\$30.95	Full Price
Н6	201502	201512	\$10.00	End of Product Sale
DV	201401	201512	\$27.95	Full Price

BookSales Fact Table

Month ID	Branch ID	Book ID	Number Books Sold
201503	City	C1	5
201503	City	Н6	15
201503	City	DV	23
201503	City		
201503	Chadstone	C1	15
201503	Chadstone	Н6	3
201503	Chadstone	DV	2
201503	Chadstone		
201503	Camberwell	C1	1
201503	Camberwell	Н6	1
201503	Camberwell	DV	2
201503	Camberwell		
201503	•••		
•••	•••		
201412	City	C1	15
201412	City	H6	6
201412	City	DV	6
201412	City		
201412	Chadstone	C1	10
201412	Chadstone	Н6	8
201412	Chadstone	DV	1
201412	Chadstone		
201412	Camberwell	C1	18
201412	Camberwell	Н6	3
201412	Camberwell	DV	2
201412	Camberwell		
201412			
•••	•••		

Question: Write the SQL command to produce the following report (10 marks):

Month_ID	Branch_ID	Book_ID	Book_Title	Author	Price	Number_Books
						_Sold
201503	City	C1	CSIRO Diet	CSIRO Team	\$45.95	5
201503	City	Н6	Harry Potter 6	Rowling	\$10.00	15
201503	City	DV	Da Vinci Code	Dan Brown	\$27.95	23
201503	City					
201503	Chadstone	C1	CSIRO Diet	CSIRO Team	\$45.95	15
201503	Chadstone	Н6	Harry Potter 6	Rowling	\$10.00	3
201503	Chadstone	DV	Da Vinci Code	Dan Brown	\$27.95	2
201503	Chadstone					
201503	Camberwell	C1	CSIRO Diet	CSIRO Team	\$45.95	1
201503	Camberwell	Н6	Harry Potter 6	Rowling	\$10.00	1
201503	Camberwell	DV	Da Vinci Code	Dan Brown	\$27.95	2
201503	Camberwell					
201503						
201412	City	C1	CSIRO Diet	CSIRO Team	\$23.00	15
201412	City	H6	Harry Potter 6	Rowling	\$30.95	6
201412	City	DV	Da Vinci Code	Dan Brown	\$27.95	6
201412	City					
201412	Chadstone	C1	CSIRO Diet	CSIRO Team	\$23.00	10
201412	Chadstone	Н6	Harry Potter 6	Rowling	\$30.95	8
201412	Chadstone	DV	Da Vinci Code	Dan Brown	\$27.95	1
201412	Chadstone					
201412	Camberwell	C1	CSIRO Diet	CSIRO Team	\$23.00	18
201412	Camberwell	Н6	Harry Potter 6	Rowling	\$30.95	3
201412	Camberwell	DV	Da Vinci Code	Dan Brown	\$27.95	2
201412	Camberwell					
201412						
•••	•••		•••			

The structures of the above tables are as follows:

SQL> desc Month_DIM; Name	Null?	Туре
MONTH_ID		VARCHAR2 (6)
SQL> desc Branch_DIM;		
Name	Null?	Туре
BRANCH_ID BRANCH_ADDRESS		VARCHAR2(15) VARCHAR2(50)

Name	Null?	Туре
BOOK ID		VARCHAR2(5)
BOOK_TITLE		VARCHAR2(20)
AUTHOR		VARCHAR2(20)
SQL> desc Book_Price_DIM;		
Name	Null?	Туре
BOOK_ID		VARCHAR2(5)
START_DATE		VARCHAR2(6)
END_DATE		VARCHAR2(6)
PRICE		NUMBER(6,2)
REMARKS		VARCHAR2(20)
SQL> desc BookSales_Fact;		
Name	Null?	Туре
MONTH ID		VARCHAR2(6)
BRANCH ID		VARCHAR2(15)
BOOK ID		VARCHAR2(5)
NUMBER BOOKS SOLD		NUMBER

```
Select
   F.Month_ID,
   F.Branch_ID,
   F.Book_ID,
   B.Book_Title,
   B.Author,
   P.Price,
   F.Number_Books_Sold
From BookSales_Fact F, Book_DIM B, Book_Price_DIM P
Where F.Book_ID = B.Book_ID
And B.Book_ID = P.Book_ID
And F.Month_ID >= P.Start_Date
And F.Month_ID <= P.End_Date;</pre>
```

MONTH_ID	BRANCH_ID	BOOK_	AUTHOR	PRICE	NUMBER_BOOKS_SOLD
201503	City	C1	CSIRO Team	45.95	5
201503	City	н6	Rowling	10	15
201503	City	DV	Dan Brown	27.95	23
201503	Chadstone	C1	CSIRO Team	45.95	15
201503	Chadstone	н6	Rowling	10	3
201503	Chadstone	DV	Dan Brown	27.95	2
201503	Camberwell	C1	CSIRO Team	45.95	1
201503	Camberwell	н6	Rowling	10	1
201503	Camberwell	DV	Dan Brown	27.95	2
201412	City	C1	CSIRO Team	23	15
201412	City	н6	Rowling	30.95	6
MONTH_ID	BRANCH_ID	BOOK_	AUTHOR	PRICE	NUMBER_BOOKS_SOLD
201412	City	DV	Dan Brown	27.95	6
201412	Chadstone	C1	CSIRO Team	23	10
201412	Chadstone	н6	Rowling	30.95	8
201412	Chadstone	DV	Dan Brown	27.95	1
201412	Camberwell	C1	CSIRO Team	23	18
201412	Camberwell	н6	Rowling	30.95	3
201412	Camberwell	DV	Dan Brown	27.95	2

¹⁸ rows selected.

Question 6:

This question is taken from the *Product-Sales-Supplier* Case Study.

The director of a company is interested in analyzing the statistics of its product sales history. The analysis is needed for identifying which products are popular, which suppliers supply those products, when is the best time to purchase more stock, etc. You are required to design a small Data Warehouse to keep track of the statistics.

The director is particularly interested in analyzing the *total sales* (Quantity * Price) by *product*, *customer locations* (*suburbs and postcodes*), *sales time periods* (monthly and yearly), and *supplier*.

The operational database currently has the following tables:

Your snowflake schema will have a Bridge Table connecting Product Dimension and Supplier Dimension. A snowflake schema with a Bridge Table as shown below:

The above snowflake schema is missing two attributes: WeightFactor attribute, and ListAGG attribute.

Questions:

- a. **Draw a new snowflake schema** (call it Snowflake Schema version 2) for the above case study, but this new snowflake schema must **use a WeightFactor attribute** (**without ListAGG attribute**). You also need to **show sample records** in the Product Dimension, the Bridge Table, and the Supplier Dimension. The sample data must show the correct values for the Weight attribute. Make sure that in your snowflake schema, the attributes are clearly shown.
- b. **Draw another snowflake schema** (call it Star Schema version 3), which also has a Bridge Table and a WeightFactor attribute. But version-3 snowflake schema has the **ListAGG** attribute. You also need to **show sample records** in the Product Dimension, the Bridge Table, and the Supplier Dimension. The sample data must show the correct values for the Weight and ListAGG attributes.
- c. Write the **SQL query** to create the ProductDim table for the Star Schema version 3.

ProductDIM Table

ProductNo	ProductType	WeightFactor
P1	Shoes	0.5
P2	Jeans	0.33
etc		

ProdSup_Bridge Table

ProductNo	SupplierID
P1	S1
P1	S2
P2	S2
P2	S3
P2	S4
etc	

SupplierDIM Table

Supplied Bill Tuble		
SupplierID	SupplierName	
S1	Supplier-1	
S2	Supplier-2	
S3	Supplier-3	
S4	Supplier-4	
etc		

SupplierName

Continue your answer here:

ProductDIM Table

ProductNo	ProductType	WeightFactor	SupplierGroupList	
P1	Shoes	0.5	S1_S2	
P2	Jeans	0.33	S2_S3_S4	
etc				

ProdSup_Bridge Table

ProductNo	Sup	plierID
P1	S 1	
P1	S2	
P2	S2	
P2	S3	
P2	\S4	
etc		

SupplierDIM Table

Supplied Edit Tubic			
SupplierID	SupplierName		
S1	Supplier-1		
S2	Supplier-2		
S3	Supplier-3		
S4	Supplier-4		
etc			

Continue your answer here:

Question 7:

This question is based on the Robcor case study. The following is the E/R diagram of the operational database in the Robcor case study:

A star schema for the above operational database is shown as follows:

Questions:

- a. Is it possible to determine which level Robcor Star Schema-1 is? If it is possible, state the level and also give the reason. If it is not possible to state the level, then give the reason.
- b. Let's have a look at the following star schema (Robcor Star Schema-2). Between the two star schemas (Robcor Star Schema-1 and Robcor Star Schema-2), which one has a higher level of aggregation? State the name of the star schema, whether it is Robcor Star Schema-1 or Robcor Star Schema-2, and explain the reason.

(a)

It is not possible to determine whether this star schema is level-1 or level-2 or a higher level. What we know is that Robcor Star Schema-1 is not level-0 (not the lowest level).

Reason: Robcor Star Schema-1 is not the lowest level, because some of the dimensions have a higher level of aggregation (e.g. time id which is based on month, instead of the actual charter date).

However, it is not possible to name whether this is level 1 or level 2, because there can be any schemas in between Robcor star-schema-1 and level-0.

If there is **no star** schema in between level-0 and Robcor star schema-1, then Robcor star schema-1 becomes level 1.

If there is **one star schema** in between level-0 and Robcor star schema-1, then Robcor star schema-1 is level 2.

If there are **two star schemas** in between level-0 and Robcor star schema-1, then obviously Robcor star schema-1 becomes level 3.

(b)

Robcor star schema-1 has a higher level of aggregation than Robcor star schema-2.

Reason: one Model can have multiple Aircrafts. Hence a star schema using Model as a dimension has a higher level of aggregation than a star schema using Aircraft as a dimension

Question 8:

Suppose an operational database contains one table, called *Student*.

Table Student

StudentID	StudentName	Suburb	Postcode	Sex
21001	Adam	Caulfield	3162	M
21003	Ben	Caulfield	3162	M
21008	Christine	Chadstone	3148	F
21019	Daisy	Caulfield	3162	F
21033	Edward	Clayton	3168	M
21122	Fred	Caulfield	3162	M
21123	Greg	Chadstone	3148	M

Suppose the star schema contains only two dimensions: SuburbDIM and SexDIM. The fact table has one fact measure, called TotalStudents.

SuburbDIM table can be created using the following SQL command (assume that the operational database is located at dtaniar account):

CREATE TABLE **SuburbIM** as SELECT distinct Suburb, Postcode FROM dtaniar.Student1;

Table SuburbDIM

Suburb	Postcode
Caulfield	3162
Chadstone	3148
Clayton	3168

SexDIM table can be created the same way:

CREATE TABLE **SexDIM** as SELECT distinct Sex FROM dtaniar.Studentl;

Table SexDIM

Sex
M
F

And the Fact table can be created using the following SQL command:

CREATE TABLE Fact as SELECT Suburb, Sex, Count(*) as TotalStudents FROM dtaniar.Student1 GROUP BY Suburb, Sex;

Table *Fact*

Suburb	Sex	TotalStudents
Caulfield	M	3
Caulfield	F	1
Chadstone	M	1
Chadstone	F	1
Clayton	M	1

Suppose we want to implement a surrogate key in the SuburbDIM, which we call SuburbID, for example.

Table SuburbDIM

SuburbID	Suburb	Postcode
1	Caulfield	3162
2	Chadstone	3148
3	Clayton	3168

Questions:

- (a) Write the SQL query to create SuburbDIM to include a surrogate key called SuburbID as shown in the same data above.
- (b) Supposed a tempfact table has been created using the following SQL query:

```
CREATE TABLE TempFact as SELECT Suburb, Sex FROM dtaniar.Student1;
```

Write an alter and an update command to alter the Tempfact to include a surrogate key (SuburbID).

(c) Write an SQL query to create a fact table so that the fact table will have the following contents:

Table Fact

SuburbID	Sex	TotalStudents
1	M	3
1	F	1
2	M	1
2	F	1
3	M	1

```
(a)
The SQL to create SuburbDIM is as follows:
     CREATE TABLE SuburbDIM as
            SELECT distinct Suburb, Postcode
            FROM dtaniar.Student1;
     Alter Table SuburbDIM add (SuburbID number(2));
     Drop Sequence Suburb seq ID;
     Create Sequence Suburb_seq_ID
       start with 1
       increment by 1
       maxvalue 99999999
       minvalue 1
       nocycle;
     Update SuburbIIM SET SuburbID = suburb_seq_ID.nextval;
(b)
     Alter Table TempFact
     Add (SuburbID Number(2));
     update TempFact tf
     set tf.SuburbID = (select s.SuburbID
                         from SuburbDIM s
                         where s.Suburb = tf.Suburb);
(c)
     Create Table Fact as
     Select SuburbID, Sex, Count(*) as TotalStudents
     From TempFact
     GROUP BY SuburbID, Sex;
```

THE END