

Doc. Number :
☐ Tentative Specification
■ Preliminary Specification
Approval Specification

MODEL NO.: R213UCE SUFFIX: L01

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for y signature and comments.	your confirmation with your

Approved By	Checked By	Prepared By
kj01.cheng	yuhsiang.chang	matt.yi.chen
(鄭光容/514-12216)	(張喻翔/514-10922)	(陳 俞 伊/514-10924)
2014-10-28	2014-10-21	2014-10-21
09:44:13 CST	19:15:58 CST	10:21:04 CST

Version 1.0 20th Oct. 2014 1/32

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURES	5
1.3 GENERAL SPECIFICATIONS	5
2. MECHANICAL SPECIFICATIONS	5
3. ABSOLUTE MAXIMUM RATINGS	6
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	6
3.2 ELECTRICAL ABSOLUTE RATINGS	6
3.2.1 TFT LCD MODULE	6
3.2.2 BACKLIGHT UNIT	7
4. ELECTRICAL SPECIFICATIONS	7
4.1 FUNCTION BLOCK DIAGRAM	
4.2. INPUT INTERFACE CONNECTIONS(CN1)	7
4.3 ELECTRICAL CHARACTERISTICS	
4.3.1 LCD ELETRONICS SPECIFICATION	10
4.3.2 Vcc Power Dip Condition	
4.3.3 BACKLIGHT UNIT	
4.3.4 CONVERTER ELECTRICAL CHARATERISTICS	
4.3.5 CONVERTER INPUT CONNECTOR PIN ASSIGNMENT(CN2)	14
4.4 LVDS INPUT SIGNAL SPECIFICATIONS	15
4.4.1 LVDS DATA INPUT DATA ORDER (VESA Mode)	15
4.4.2 LVDS DATA INPUT DAT ORDER (JEIDA Mode)	
4.4.3 COLOR DATA INPUT ASSIGNMENT	16
4.5 DISPLAY TIMING SPECIFICATIONS	
4.6 POWER ON/OFF SEQUENCE	19
5. OPTICAL CHARACTERISTICS	20
5.1 TEST CONDITIONS	20
5.2 OPTICAL SPECIFICATIONS	20
6. RELIABILITY TEST ITEM	24
7. PACKING	
7.1 PACKING SPECIFICATIONS	25
7.2 PACKING METHOD	25
7.3 PALLET	26
7.4 UNPACKING METHOD	27
8. INX MODULE LABEL	27

9. F	PRECAUTIONS	. 28
	9.1 ASSEMBLY AND HANDLING PRECAUTIONS	
	9.2 STORAGE PRECAUTIONS	
	9.3 OPERATION PRECAUTIONS	
	9.4 SAFETY PRECAUTIONS	
	9.5 SAFETY STANDARDS	
	9.6 OTHER	
	pendix. OUTLINE DRAWING	
, .PI	P	

REVISION HISTORY

Version	Date	Page	Description
0.0	24 th , June, 2014	All	Spec Ver.0.0 was first issued.
1.0	20 th , Oct, 2014	All	Spec Ver.1.0 was first issued.
		5	Section 1.3 update power consumption value
		7	Section 3.2.2 update backlight electrical information
		9	Section 4.3.1 update
		12	Section 4.3.3 note drawing update
		20	Section 5.2 update By vlaue
		24	Section 6 update Vibration Test condition Sine Wave

Version 1.0 20th Oct. 2014 4 / 32

INNOLUX 群創光電

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

R213UCE-L01 is a 21.3" TFT Liquid Crystal Display module with LED Backlight unit and one 30-pin 2ch-LVDS interface. This module supports 1600 x 1200 UXGA screen and can display up to 16.7M colors. The module includes build-in converter for Backlight.

1.2 FEATURES

This specification applies to the Type 21.3" Color TFT LCD Module, Model R213UCE-L01. This module includes a converter board for the LED backlight unit.

- The screen format is intended to support UXGA 1600(H) x 1200(V) resolution.
- All input signals are LVDS (Low Voltage Differential Signaling) interface.
- This module is UL approved and Rohs compliant

1.3 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	21.3" real diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1600 x R.G.B. x 1200	Pixel	-
Pixel Pitch	0.27 (H) x 0.27 (V)	mm	-
Pixel Arrangement	RGB Vertical stripe	-	-
Display Colors	16.7M	-	-
Transmissive Mode	Normally Black	-	-
Surface Treatment	Anti-glare	-	-
Luminance, White	500	cd/m2	-
Power Consumption	Total 26.6W (typ.), cell 4.2W (typ.), Converte	r 22.4W (typ.)	(1)

Note (1) The specified power consumption: Total= cell (reference 4.3.1)+Converter (reference 4.3.4)

2. MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	456.5	457	457.5	mm	
Module Size	Vertical (V)	349.5	350	350.5	mm	(1)
	Thickness (T)	19.65	20.15	20.65	mm	
Bezel Area	Horizontal	437.7	438.2	438.7	mm	
Dezei Alea	Vertical	329.5	330	330.5	mm	
Active Area	Horizontal	-	432	-	mm	
Active Alea	Vertical	-	324	-	mm	
Weight		(2316)	(2412)	(2508)	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Version 1.0 20th Oct. 2014 5 / 32

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

ltom	Item Symbol		lue	Unit	Note
iteiii	Syllibol	Min.	Max.	Oilit	NOLE
Storage Temperature	TST	-20	60	°C	(1)
Operating Ambient Temperature	TOP	0	50	°C	(1), (2)

Note (1)

- (a) 90 %RH Max. (Ta < 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max.
- (c) No condensation.

Note (2) The temperature of panel surface should be 0 °C min. and 60 °C max.

Relative Humidity (%RH)

3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

Item	Symbol	Val	lue	Unit	Note
	- Cy	Min.	Max.		11010
Power Supply Voltage	VCCS	-0.3	13.2	V	(1)
Logic Input Voltage	V _{IN}	-0.3	3.6	V	(1)

Version 1.0 20th Oct. 2014 6 / 32

3.2.2 BACKLIGHT UNIT

Item	Symbol	Val	Value		Note	
item	Symbol	Min.	Max.	Unit	Note	
Light Bar Voltage	V _W	-	42	V		
Converter Input Voltage	V_{BL}	10.8	13.2	V		
Control Signal Level	-	0	5	V	(2)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) The control signals include On/Off Control and External PWM Control.

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

4.2. INPUT INTERFACE CONNECTIONS(CN1)

Pin	Name	Description
1	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
2	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
3	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
4	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
5	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
6	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
7	GND	Ground
8	RXOC-	Negative LVDS differential clock input. (odd)

Version 1.0 20th Oct. 2014 7 / 32

9	RXOC+	Positive LVDS differential clock input. (odd)
10	RXO3-	Negative LVDS differential data input. Channel O3(odd)
11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
12	RXE0-	Negative LVDS differential data input. Channel E0 (even)
13	RXE0+	Positive LVDS differential data input. Channel E0 (even)
14	GND	Ground
15	RXE1-	Negative LVDS differential data input. Channel E1 (even)
16	RXE1+	Positive LVDS differential data input. Channel E1 (even)
17	GND	Ground
18	RXE2-	Negative LVDS differential data input. Channel E2 (even)
19	RXE2+	Positive LVDS differential data input. Channel E2 (even)
20	RXEC-	Negative LVDS differential clock input. (even)
21	RXEC+	Positive LVDS differential clock input. (even)
22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
23	RXE3+	Positive LVDS differential data input. Channel E3 (even)
24	NC	For LCD internal use only, Do not connect
25	SELLVDS	Low (0V): VESA Mode (Default), High(3.3V): JEIDA Mode Note(4)
26	NC	For LCD internal use only, Do not connect
27	NC	For LCD internal use only, Do not connect
28	Vcc	+12.0V power supply
29	Vcc	+12.0V power supply
30	Vcc	+12.0V power supply

Note (1) Connector Part No.: P-TWO 187114-30091

Note (2) The first pixel is odd.

Note (3) Input signal of even and odd clock should be the same timing.

Version 1.0 20th Oct. 2014 8 / 32

Note (4) SELLVDS

Note (5) Interface connector PIN1 position (PCBA board front view)

Version 1.0 20th Oct. 2014 9 / 32

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

Parame	ator	Symbol		Value		Unit	Note
i arame	il Ci	Symbol	Min.	Тур.	Max.	Oilit	14016
Power Supply	y Voltage	Vcc	10.8	12.0	13.2	V	-
Ripple Vo	ltage	V_{RP}	-	-	300	mV	-
Rush Cu	Rush Current			-	1.5	Α	(2)
Dower Supply	White	-	-	0.35	0.42	Α	(3)a
Power Supply Current	Black	-	-	0.26	0.32	Α	(3)b
Current	Vertical Stripe	-	-	0.34	0.41	Α	(3)c
Power Co	Power Consumption			4.2	5.04	Watt	(4)
LVDS differenti	LVDS differential input voltage			-	600	mV	(5)
LVDS common	n input voltage	Vic	1.0	1.2	1.4	V	-

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) Measurement Conditions:

Vcc rising time is 470µs

Version 1.0 20th Oct. 2014 10 / 32

Note (3) The specified max power supply current is under the conditions at Vcc = 12.0 V, $Ta = 25 \pm 2 \,^{\circ}\text{C}$, Fr = 60Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The power consumption is specified at the pattern with the maximum current.

Note (5) Vid waveform condition

Version 1.0 20th Oct. 2014 11 / 32

4.3.2 Vcc Power Dip Condition

4.3.3 BACKLIGHT UNIT

Parameter	Symbol		Value	Unit	Note	
Farameter	Syllibol	Min. Typ. Ma		Max.	Offic	Note
LED Light Bar Input Voltage Per Input Pin	VPIN		(37.2)	(42)	V	(1), Duty=100%, IPIN=150mA
LED Light Bar Current Per Input Pin	IPIN		(150)		mA	(1), (2) Duty=100%
LED Life Time	LLED	50,000			Hrs	(3)
Power Consumption (Output power)	PBL		(22.4)	(25.2)	W	(1) Duty=100%, IPIN=150mA

Note (1) LED light bar input voltage and current are measured by utilizing a true RMS multi-meter as shown below:

Note (2) PBL(Typ) = IPIN(Typ) \times VPIN(Typ) \times (4) PBL(Max) = IPIN(TYP) \times VPIN(Max) \times (4) input pins. Note (3) The lifetime of LED is defined as the time when LED packages continue to operate under the conditions at Ta = 25 \pm 2 $^{\circ}$ C and I= (150)mA (per chip) until the brightness becomes \leq 50% of its original value.

Version 1.0 20th Oct. 2014 12 / 32

4.3.4 CONVERTER ELECTRICAL CHARATERISTICS

Ta = 25 ± 2 °C

Paramete	•	Symbol		Value	•	Unit	Note
Faraniete		Syllibol	Min.	Тур.	Max.	Offic	Note
Converter Power Su	pply Voltage	V_{i}	10.8	12.0	13.2	V	(Duty 100%)
Converter Power Su	Converter Power Supply Current				(2.34)	Α	@ Vi = 12V (Duty 100%)
Input Power Consum	nption	Pi		(22.4)	(25.2)	W	@ Vi = 12V (Duty 100%)
BL Control Level	Backlight on	BLON	2	3.3	5.0	V	
DE COMMON LOVON	Backlight off	22011	0	0	8.0	V	
PWM Control Level	PWM High Level	E PWM	2	3.3	5.0	V	Positive Dimming
	PWM Low Level		0	0	0.8	V	
PWM Control Duty F	PWM Control Duty Ratio			_	100	%	
PWM Control Freque	f _{PWM}	100	200	1K	Hz		

Power sequence and control signal timing are shown in the following figure

Note: While system is turned ON or OFF, the power sequences must follow as below descriptions

Turn ON sequence: $Vi(+12V) \rightarrow BLON \rightarrow E_PWM$ signal Turn OFF sequence: E_PWM signal $\rightarrow BLON \rightarrow Vi(+12V)$

Version 1.0 20th Oct. 2014 13 / 32

4.3.5 CONVERTER INPUT CONNECTOR PIN ASSIGNMENT(CN2)

Pin	Symbol	Remark
1		
2		
3	VI	+12 V
4		
5		
6		
7		
8	GND	GND
9		
10		
11	NC	No Connection
12	BLON	BL ON/OFF (ON:3.3V, OFF:0V)
13	NC	No Connection
14	E_PWM	External PWM Control for Positive (Hi Level: 3.3V, Low Level: 0V)

Connector Part No.: FCN JH2-D4-143N or CviLux Cl0114M1HRO-LA-NH or equivalent

Version 1.0 20th Oct. 2014 14 / 32

4.4 LVDS INPUT SIGNAL SPECIFICATIONS

4.4.1 LVDS DATA INPUT DATA ORDER (VESA Mode)

			•	,				
LVDS Channel O0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Charmer 00	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Channel O1	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 Channel O2	Data order	DE	NA	NA	OB5	OB4	OB3	OB2
LVDS Channel O3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Channel O3	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6
LVDS Channel E0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Charmer EU	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0
LVDS Channel E1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Channel E1	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1
LVDS Channel E2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 GHAHITEI EZ	Data order	DE	NA	NA	EB5	EB4	EB3	EB2
LVDS Channel E3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 CHAIITEI E3	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6

4.4.2 LVDS DATA INPUT DAT ORDER (JEIDA Mode)

LVDS Channel O0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Chamilei O0	Data order	OG2	OR7	OR6	OR5	OR4	OR3	OR2
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Channel O1	Data order	OB3	OB2	OG7	OG6	OG5	OG4	OG3
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 Channel O2	Data order	DE	NA	NA	OB7	OB6	OB5	OB4
LVDS Channel O3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Channel O3	Data order	NA	OB1	OB0	OG1	OG0	OR1	OR0
LVDS Channel E0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Charmer EU	Data order	EG2	ER7	ER6	ER5	ER4	ER3	ER2
LVDS Channel E1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Channel E1	Data order	EB3	EB2	EG7	EG6	EG5	EG4	EG3
LVDS Channel E2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 GHAHITEI EZ	Data order	DE	NA	NA	EB7	EB6	EB5	EB4
LVDS Channel E3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Chaillei E3	Data order	NA	EB1	EB0	EG1	EG0	ER1	ER0

Note: Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

Version 1.0 20th Oct. 2014 15 / 32

4.4.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

	Color											Da		Sigr											
				Re									reer							Βlι					
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:		:		:		:		:	:	:			:		:	:	:	:	
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	:0	0	0	0	0	0	0	0	0	0	0	0	:0
Reu	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	: [
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Dide	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	70	74.8	80.0	MHz	-
	Period	Tc	14.3	13.36	12.5	ns	
	Input cycle to cycle jitter	T_{rcl}	Tc-0.2	-	Tc+0.2	ns	(1)
	Input Clock to data skew	TLVCCS		-	200	ps	(2)
LVDS Clock	Spread spectrum modulation range		0.98*Fc	-	1.02*Fc	MHz	(2)
	Spread spectrum modulation frequency	F _{SSM}	-	-	200	KHz	(3)
	Frame Rate	Fr	ı	60	-	Hz	Tv=Tvd+Tvb
	Total	Tv	1208	1235	1250	Th	-
Vertical Display Term	Active Display	Tvd	1200	1200	1200	Th	-
	Blank	Tvb	8	35	50	Th	-
	Total	Th	965	1010	1066	Tc	Th=Thd+Thb
Horizontal Display Term	Active Display	Thd	800	800	800	Tc	-
	Blank	Thb	165	210	266	Tc	-

Note: Because this module is operated by DE only mode, Hsync and Vsync input signals are ignored.

INPUT SIGNAL TIMING DIAGRAM

Version 1.0 20th Oct. 2014 17 / 32

Note (1) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

Note (2) Input Clock to data skew is defined as below figures.

Note (3) The SSCG (Spread spectrum clock generator) is defined as below figures.

Version 1.0 20th Oct. 2014 18 / 32

4.6 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

Timing Specifications:

Parameters		Units		
1 diameters	Min	Тур.	Max	Office
T1	0.5	-	10	ms
T2	0	30	50	ms
T3	200	250	-	ms
T4	100	250	•	ms
T5	0	20	50	ms
T6	0.1	=	100	ms
T7	1000	=	-	ms

- Note (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- Note (2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- Note (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- Note (4) T7 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.
- Note (6) CMI won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.
- Note (7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "t6 spec".

Version 1.0 20th Oct. 2014 19 / 32

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V_{CC}	12	V
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"
LED Light Bar Input Current Per Input Pin	I _{PIN}	150	mA _{DC}
PWM Duty Ratio	D	100	%

5.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 5.1. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (5)

Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	White	W_x			(0.313)			
	vviile	W_y			(0.329)			
O a la n	Dod	R_x			(0.644)			
Color	Red	R_y		Тур.	(0.341)	Тур.		(1), (5)
Chromaticity (CIE 1931)	Green	G _x	$\theta_x=0^\circ$, $\theta_Y=0^\circ$	-0.03	(0.318)	+0.03		(1), (3)
(Green	G_y	CS-2000T		(0.611)			
	Dlue	B _x			(0.155)			
	Blue	B _y			(0.038)			
Center Luminan	ce of White	L _C		(400)	(500)		cd/m ²	(4), (5)
Contrast Ratio		CR		(1000)	(1200)		-	(2), (5)
Response Time		T_R	$\theta_x=0^\circ, \ \theta_Y=0^\circ$		(15)	(20)	ms	(3)
Response Time		T_F	υ _χ –υ , υγ –υ		(15)	(20)	ms	(3)
White Variation(a	adjacent)	δW_a	θ_x =0°, θ_Y =0° USB2000	(80)			-	(5), (6)
White Variation(t	otal)	δW_t	θ_x =0°, θ_Y =0° USB2000	(70)			-	(5), (6)
Viewing Angle		Θ_{y-} Θ_{x+}	CR ≥ 10	(80)	(89)		Deg.	(1), (5)
			USB2000		` ' '			(), (-)
		Θ_{x}						

Version 1.0 20th Oct. 2014 20 / 32

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

$$CR = CR (5)$$

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (4)

Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point

$$L_{C} = L(5)$$

L(x) is corresponding to the luminance of the point X at the following figure.

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 60 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 60 minutes in a windless room.

Version 1.0 20th Oct. 2014 22 / 32

Note (6) There is the Uniformity Measurement below:

'L_{bright}' represents the Luminance of the point that is brighter than the other point to be compared.

'L_{dark}' represents the Luminance of the point that is darker than the other point to be compared.

Measuring points are shown in the following Fig.

When the backlight is on with all pixels in the white (maximum gray) level, the luminance uniformity is defined as follows;

Where:

L_{bright}: The luminance of the brightness part of the area

L_{dark}: The luminance of the darkest part of the area

1. Adjacent Area

Luminance Uniformity =
$$\frac{L_{dark}}{L_{bright}} \ge 0.80$$

over a circular area of 10mm diameter placed anywhere on the screen.

2. Screen Total

Luminance Uniformity =
$$\frac{L_{dark}}{L_{bright}} \ge 0.70$$

over the entire screen.

6. RELIABILITY TEST ITEM

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50°C, 80%RH, 240hours	
High Temperature Operation		
(HTO)	Ta= 50 °C, 240hours	
Low Temperature Operation		
(LTO)	Ta= 0°C, 240hours	
High Temperature Storage (HTS)	Ta= 60° C, 240hours	
Low Temperature Storage (LTS)	Ta= -20°C, 240hours	
	Acceleration: 1.5 Grms	
	Wave:sine	
Vibration Test	Frequency: 10 - 300 Hz	
(Non-operation)	Sweep: 30 Minutes each Axis (X, Y, Z)	
	Acceleration: 50 G	
	Wave: Half-sine	
	Active Time: 11 ms	
Shock Test	Direction : $\pm X$, $\pm Y$, $\pm Z$.(one time for	
(Non-operation)	each Axis)	
	-20℃/30min , 60℃ / 30min , 100	
Thermal Shock Test (TST)	cycles	
	25°C ,On/10sec , Off /10sec , 30,000	
On/Off Test	cycles	
	Contact Discharge: ± 8KV,	
ESD (Electro Static Discharge)	150pF(330Ω)	
	Air Discharge: ± 15KV, 150pF(330Ω)	
	Operation:10,000 ft / 24hours	
Altitude Test	Non-Operation:30,000 ft / 24hours	

Note (1) criteria: Normal display image with no obvious non-uniformity and no line defect.

Note (2) Evaluation should be tested after storage at room temperature for more than two hour

Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

The fixing condition is shown as below:

7. PACKING

7.1 PACKING SPECIFICATIONS

(1) 5 LCD modules / 1 Box

(2) Box dimensions: 532(L) * 283(W) * 488(H) mm

(3) Weight: approximately: (13.7) kg (5 modules per box)

7.2 PACKING METHOD

Packaging method is shown as following figures.

Figure. 7-1 Packing method

Version 1.0 20th Oct. 2014 25 / 32

7.3 PALLET

Sea / Land Transportation (40ft / 40ft HQ Container)

Air Transportation

Figure. 7-2 Packing method

Version 1.0 20th Oct. 2014 26 / 32

7.4 UNPACKING METHOD

UN-packaging method is shown as following figures.

Figure. 7-3 Un-packing method

8. INX MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: R213UCE-L01
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.
- (c) INX barcode definition:

Serial ID: XX-XX-X-XX-YMD-L-NNNN

Code	Meaning	Description
XX	INX internal use	-
XX	Revision	Cover all the change
Х	INX internal use	-

Version 1.0 20th Oct. 2014 27 / 32

XX	INX internal use	-
YMD	Year, month, day	Year: 0~9, 2010=0, 2011=1, 2012=2 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U.
L	Product line #	Line 1=1, Line 2=2, Line 3=3,
NNNN	Serial number	Manufacturing sequence of product

9. PRECAUTIONS

9.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10)When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.

9.2 STORAGE PRECAUTIONS

- (1) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0° C to 35° C and relative humidity of less than 70%
- (2) Do not store the TFT-LCD module in direct sunlight
- (3) The module should be stored in dark place. It is prohibited to apply sunlight or fluorescent light in storing

9.3 OPERATION PRECAUTIONS

(1) The LCD product should be operated under normal condition.

Normal condition is defined as below:

Temperature : 20±15°C Humidity: 65±20%

Display pattern: continually changing pattern(Not stationary)

INNOLUX 群創光電

PRODUCT SPECIFICATION

(2) If the product will be used in extreme conditions such as high temperature, high humidity, high altitude ,display pattern or operation time etc...It is strongly recommended to contact INX for application engineering advice. Otherwise, its reliability and function may not be guaranteed.

9.4 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the module's end of life, it is not harmful in case of normal operation and storage.

9.5 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.

9.6 OTHER

When fixed patterns are displayed for a long time, remnant image is likely to occur.

Appendix. OUTLINE DRAWING

Version 1.0 20th Oct. 2014 30 / 32

