Neural networks

Hastie, Tibshirani, Friedman Ch 11 Kevin Murphy Ch. 8.3 and 16.5

> CS 6140 Machine Learning Professor Olga Vitek

> > April 11, 2017

Simple example: single-layer network

Two-class prediction, $Y = \{0, 1\}$:

$$f(X) = f(w_0 \cdot 1 + w_1 X_1 + \ldots + w_m X_m) \ge t$$

Perceptron:

- Two layers of nodes (input and output)
- Activation: step function (a neuron "fires"):

$$f(X) = \begin{cases} 1, & \text{if } w_0 \cdot 1 + w_1 X_1 + \ldots + w_m X_m \ge t \\ 0, & \text{if } w_0 \cdot 1 + w_1 X_1 + \ldots + w_m X_m < t \end{cases}$$

 \Rightarrow linear decision boundary: $w_0 \cdot 1 + w_1 X_1 + \ldots + w_m X_m = t$ https://deeplearning4j.org/neuralnet-overview

Recall: logistic regression

• 2 classes: a sigmoidal (activation) function

$$\log\left(\frac{\pi(X)}{1 - \pi(X)}\right) = \beta_0 + \beta' X$$

$$\pi(X) = \frac{e^{\beta_0 + \beta' X}}{1 + e^{\beta_0 + \beta' X}} = \frac{1}{1 + e^{-(\beta_0 + \beta' X)}}$$

- A monotonic increasing/decreasing function
- Perceptron: sigmoid activation function
- Extension to K > 2 classes
 - Baseline category logistic regression

$$\log \frac{\pi_k(X)}{\pi_1(X)} = \alpha_k + \beta'_k X, \quad k = 2, \dots, K$$

- Since
$$\pi_k(X) = \pi_1(X)e^{\alpha_k + \beta_k'X}$$
 and $\sum_{k=1}^K \pi_k(X) = 1$

$$\begin{cases}
\pi_1(X) = \frac{1}{1 + \sum_{k=2}^K \exp(\alpha_k + \beta_k'X)}, & k = 1 \\
\pi_j(X) = \frac{\exp(\alpha_k + \beta_k'X)}{1 + \sum_{k=2}^K \exp(\alpha_k + \beta_k'X)}, & k = 2, 3, \dots, K
\end{cases}$$

Details on K > 2 classes: conditional multinomial distributions

- $Y|X = x \sim Multinomial(n_{i+}, \pi_1(x), \dots, \pi_K(x))$
- ullet X predictor; Y multinomial response with K categories

	Column			
Row	1	• • •	K	Total
1	$\pi_{11} \ (\pi_{1 1})$	•••	$\pi_{1K} \ (\pi_{K 1})$	π_{1+}
:	:	:	:	:
I	$\pi_{I1} \ (\pi_{1 I})$	•••	$\pi_{IK} \ (\pi_{K I})$	π_{I+}
Total	π_{+1}		π_{+J}	π_{++}

Consider the new notation:

$$\pi_k(X) = P(Y = k | X = x), \sum_{k=1}^{J} \pi_k = 1$$

 ${\sf -}$ If Y is ordered, we can also be interested in cumulative probabilities:

$$P_j(X) = P(Y \le k | X = x)$$

Alternative logistic regression with K > 2 classes

- Log-linear model, multinomial distribution
 - Model $\log \pi_k(X)$ as linear of X + constraints $\log \pi_k(X) = \alpha_k + \beta_k' X \log Z,$ where Z is a normalizing constraint.

- Since
$$\pi_k(X) = \frac{1}{Z} \cdot e^{\alpha_k + \beta_k' X}$$
, and $\sum_{k=1}^K \pi_k(X) = 1$, $\Rightarrow Z = \sum_{k=1}^K e^{\alpha_k + \beta_k' X}$ $\Rightarrow \pi_k(X) = \frac{e^{\alpha_k + \beta_k' X}}{\sum_{k=1}^K e^{\alpha_k + \beta_k' X}}$, a softmax function

- The exp exaggerates differences between X
- Close to 1 when $\alpha_k + \beta_k' X \approx$ max of all values, close to 0 otherwise
- Only K-1 free parameters
- Set $\alpha_K = 0$, $\beta_K = 0$ to have the previous case
- Use as activation function in perceptron

Neural networks

Single hidden layer neural network

PUseful when input features are not very informative

Fig. 11.2. Hastie, Tibshirani, Friedman *The Elements of Statistical Learning* 2008

Activation function

Solid red: $\sigma(v) = 1/(1 + exp(-v))$

Dashed blue: $\sigma(\frac{1}{2}v)$

Dashed purple: $\sigma(10v)$

Large multiplier \rightarrow hard activation at v = 0.

 $\sigma(s(v-v_0))$ shifts the activation threshold from 0 to v_0 .

In original neural networks: $\sigma(v)$ step activation (neuron "fires" above a threshold)

Fig. 11.3. Hastie, Tibshirani, Friedman
The Elements of Statistical Learning 2008

Single hidden layer neural network

- K-class classification (regression: 1 class)
 - Y_i ∈ {0,1} for each class {1,..., K}
 - -p input features X (including constant 1)
- Hidden features:

created from linear combinations of inputs

$$Z_m = \sigma(\alpha_{0m} + \alpha'_m X), m = 1, \dots, M$$

$$T_k = \beta_{0k} + \beta'_z Z, k = 1, \dots, K$$

$$f_k(X) = g_k(T), k = 1, \dots, K$$

 Z_m : basis expansions of original inputs Need to learn all the parameters from data!

Activation function:

Example : sigmoid
$$\sigma(v) = \frac{1}{1+e^{-v}}$$
 Linear $\sigma \to \text{linear model}$

Output function

Example: softmax
$$g_k(T) = \frac{e^{T_k}}{\sum_{l=1}^K e^{T_k}}$$

(can use identity for regression)

Example

- Set-up:
 - K classes; M=3 (3 hidden nodes or layers) P=2 (two predictors)
- Prediction: transformation of outputs

$$T = \{T_1, T_2\}: f_k(X) = g_k(T)$$

$$T_k = \beta_{0k}$$

$$+ \beta_{1k} \cdot \frac{1}{1 + \exp\{-(\alpha_{01} + \alpha_{11}X_1 + + \alpha_{21}X_2)\}}$$

$$+ \beta_{2k} \cdot \frac{1}{1 + \exp\{-(\alpha_{02} + \alpha_{12}X_1 + + \alpha_{22}X_2)\}}$$

$$+ \beta_{3k} \cdot \frac{1}{1 + \exp\{-(\alpha_{03} + \alpha_{13}X_1 + + \alpha_{23}X_2)\}}$$

- Class-specific linear combinations of node-specific input summaries
- Notes:
 - $-\beta_{0k}$ and α_{0m} "bias" -nodes
 - Basis expansion, where parameters of the bases α_{lm} are learned from the data
 - $-\sigma()$ is linear \to linear model in inputs
 - $f_k()$ softwmax \rightarrow logistic regression, linear in Z_m
 - $-M=1 \rightarrow \text{perceptron}$

2-class logistic regression: likelihood

• $Y_i \overset{ind}{\sim} \mathsf{Bernoulli}(\pi_i)$ where

$$\pi_i = \frac{\exp(\beta_0 + \beta_1 X_i)}{1 + \exp(\beta_0 + \beta_1 X_i)}$$

Log likelihood (=cross-entropy): logL =

$$= \log \left\{ \prod_{i=1}^{n} \pi_{i}^{Y_{i}} (1 - \pi_{i})^{1 - Y_{i}} \right\}$$

$$= \sum_{i=1}^{n} Y_{i} \log(\pi_{i}) + \sum_{i=1}^{n} (1 - Y_{i}) \log(1 - \pi_{i})$$

$$= \sum_{i=1}^{n} Y_{i} \log \left(\frac{\pi_{i}}{1 - \pi_{i}} \right) + \sum_{i=1}^{n} \log(1 - \pi_{i})$$

$$= \sum_{i=1}^{n} Y_{i} (\beta_{0} + \beta_{1} X_{i}) - \sum_{i=1}^{n} \log(1 + \exp(\beta_{0} + \beta_{1} X_{i}))$$

- Recall that equivalent specification for Binomial distribution exists
- Maximum likelihood estimates do not have closed form

Optimizing the likelihood: gradient descent

- Example: minimize function with two parameters $J(\theta_0, \theta_1)$
 - Start with some θ_0 , θ_1
 - Simultaneously change θ_0 , θ_1 in direction of steepest descent

$$\theta_j^{r+1} = \theta_j^r - \eta_r \frac{\partial}{\partial \theta_j} J(\theta_0^r, \theta_1^r)$$

- Stop when reaching (local) minimum of $J(\theta_0, \theta_1)$

• Comments:

- η_r : step size or learning rate. Typically a fixed parameter. Advanced algorithms choose automatically.
- Results reach local minimum
- Results sensitive to starting values

Example: gradient descent

Minimize $J(\theta_0, \theta_1) = 0.5(\theta_0^2 - \theta_1)^2 + 0.5(\theta_0 - 1)^2$,

Start at (0,0), 20 steps, fixed learning rate η .

Left: $\eta = 0.1$. Moves slowly but finds the valley.

Right: $\eta = 0.6$. Oscillates and never converges.

KM Fig 8.2

Logistic regression: parameter estimation

• Minimizing -log likelihood $J(\beta) = -\log L$

$$J(\beta) = -\left[\sum_{i=1}^{n} Y_{i} \log(\pi_{i}) + \sum_{i=1}^{n} (1 - Y_{i}) \log(1 - \pi_{i})\right]$$

- π_i are non-linear functions of β
- Partial derivatives:

$$\frac{\partial}{\partial \beta_j} J(\beta) = \sum_{i=1}^n (\pi_i - y_i) x_j$$

– Update to each parameter:

$$\beta_j^{r+1} = \beta_j^r - \eta_r \sum_{i=1}^n (\pi_i^r - y_i) x_j$$

- Note
 - Same for linear regression, replace π_i^k with \widehat{y}_i^k
- Improvements
 - Line search algorithm: automatically picks η_k
 - Newton's method: takes into account the curvature of the space (second derivatives)

Example: line search

- ullet Set r=0 and initial guess $heta_0^r$ and $heta_1^r$
 - Compute a descent direction \mathbf{d}_r
 - Choose η_r to "loosely" minimize $\phi(\alpha) = J(\theta_r + \eta \mathbf{d}_k)$
 - Update $\boldsymbol{\theta}^{r+1} = \boldsymbol{\theta}_r + \eta \mathbf{d}_k$
- Until tolerance reached

Neural network: learning (parameter estimation)

- Fitting to the data
 - The full collection of parameters

$$\theta = \{\alpha_{0m}, \alpha_m, m = 1, ..., M\} \ M(P+1)$$
 weights and $\{\beta_{0k}, \beta_k, k = 1, ..., K\} \ K(M+1)$ weights

Minimize

- Regression: RSS $R(\theta) = \sum_{k=1}^{K} \sum_{i=1}^{N} (y_i f_k(x_i))^2$
- Classification: cross-entropy $R(\theta) = -\sum_{k=1}^K \sum_{i=1}^N y_i \log f_k(x_i)$
- $-g_k(T_k)$ softmax + cross-entropy $R(\theta)$
 - → linear logistic regression in the hidden units
- Maximum likelihood parameter estimation
- Global optimum $R(\theta)$ likely overfits
 - Heavily overparametrized
 - Start with predictor weights \approx 0 (approximately linear in X), gradually increase

Back propagation: K classes, squared loss

Objective function

$$R(\theta) = \sum_{i=1}^{N} R_i = \sum_{i=1}^{N} \sum_{k=1}^{K} (y_{ij} - f_k(x_i))^2$$

- Here
$$f_k(x_i) = g_k(\beta_{0k} + \beta'_k Z)$$
, $k = 1, ..., K$
and $Z = \{\sigma(\alpha_{0m} + \alpha'_m x_i)\}$, $m = 1, ..., M$

Derivatives

$$\frac{\partial R_i}{\partial \beta_{km}} = -2 (y_{ik} - f_k(x_i)) g'_k (\beta'_k z_i) z_{mi}$$

$$\frac{\partial R_i}{\partial \alpha_{ml}} = -\sum_{k=1}^K 2 (y_{ik} - f_k(x_i)) g'_k (\beta'_k z_i) \beta_{km} \sigma' (\alpha_m x_i) x_{il}$$

ullet Gradient descent at iteration r+1

$$\beta_{km}^{r+1} = \beta_{km}^{r} - \eta_{r} \sum_{i=1}^{N} \frac{\partial R_{i}}{\partial \beta_{km}^{r}}$$

$$\alpha_{ml}^{r+1} = \alpha_{ml}^{r} - \eta_{r} \sum_{i=1}^{N} \frac{\partial R_{i}}{\partial \alpha_{ml}^{r}}$$

Back-propagation equations

Can write the derivatives above as

$$\frac{\partial R_i}{\partial \beta_{km}} = \delta_{ki} z_{mi} \text{ and } \frac{\partial R_i}{\partial \alpha_{ml}} = s_{mi} x_{il}$$

- δ_{ki} and s_{mi} are "errors" of the current model at the output and hidden layer levels
- Satisfy back-propagation equations

$$s_{mi} = \sigma'(\alpha' x_i) \sum_{k=1}^{K} \beta_{km} \delta_{ki}$$

- Update $r \rightarrow r + 1$ in two passes:
 - Forward pass: fix current parameters, fix weights δ_{ki} and s_{mi} , compute predicted values $\hat{f}_k(x_i)$
 - Backward pass: Compute δ_{ki} , then back-propagate to s_{mi} , and calculate gradients of the update
 - The info is passed to/from connected units

Comments

- Step size can be optimized by line search
- Newton method is not attractive, because the second derivative can be large
- See HTF Sec 11.4 for more details

Neural network: parameter estimation with weight decay

- Stopping rule
 - Start with $\theta \approx 0$, \uparrow , stop before global optimal
 - Amounts to shrinkage of global optimum weights
- Explicit regularization: weight decay

Minimize
$$R(\theta) + \lambda \left(\sum_{km} \beta_{km}^2 + \sum_{ml} \alpha_{ml}^2 \right)$$

- $-\lambda > 0$ is a tuning parameter
- Large λ shrink weights more towards linearity
- Estimate λ by cross-validation
- Scale the predictors, so that they are equally affected by regularization
- More hidden nodes can be compensated for with more regularization
- Back-propagation algorithm
 - Forward pass: fix weights, calculate $\hat{f}(x_i)$
 - Backward pass: fix predictions, calculate errors, and weights to minimize errors
 - Each unit passes and receives info only from its connection (easy to parallelize)

Prone to overfitting

Neural Network - 10 Units, No Weight Decay

Soft max activation and cross-entropy error. No weights decay, overfits the data

HTF Fig 11.4

Prone to overfitting

Neural Network - 10 Units, Weight Decay=0.02

Soft max activation and cross-entropy error. Weights decay.

HTF Fig 11.4

Generalizations:

- Deep learning:
 - Neural networks with > 1 hidden layer
- Convolutional neural networks
 - Train neural networks on local fields

Input Layer 29x29 Layer #1 6 Feature Maps Each 13x13 Layer #2 50 Feature Maps Each 5x5

Layer #3 Fully Connected 100 Neurons

Layer #4 Fully Connected 10 Neurons