Lengoaiak, Konputazioa eta Sistema Adimendunak

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua
Bilboko Ingeniaritza Eskola (UPV/EHU)

Lengoaia eta Sistema Informatikoak Saila

2. maila — 2019-2020 ikasturtea

6. gaia: Sistema Adimendunak

0,9 puntu

Ebazpena

2019/10/28

1 DNF monotonoen algoritmoa (0,300 puntu)

Demagun erabiltzaileak 5 aldagai (n = 5) erabil ditzakeen g DNF monotonoa duela buruan.

Algoritmoak g-ren baliokidea den h formula eraiki arte erabiltzailearen eta algoritmoaren artean gertatuko den elkarrekintza urratsez urrats zehaztu behar da.

Horretarako, badakigu algoritmoak g-ren baliokidea den h formula eraiki arte erabiltzailearengandik honako balorazioak edo kontraadibideak jasoko dituela (True eta False idatzi beharrean T eta F idatziko da):

- $b_1 = (T, T, T, F, T)$
- $b_2 = (F, T, F, T, F)$
- $b_3 = (T, F, T, T, T)$
- $b_4 = (T, F, T, F, T)$

Badakigu baita ere *g* formula *True* egiten duten balorazioak zein diren erabakitzeko, erabiltzaileak honako egia-taula hau erabiliko duela:

$\neg x_5$	$\neg x_1 \land \neg x_2$	$\neg x_1 \wedge x_2$	$x_1 \land \neg x_2$	$x_1 \wedge x_2$
$\neg x_3 \wedge \neg x_4$	F	F	F	F
$\neg x_3 \wedge x_4$	F	T	F	T
$x_3 \land \neg x_4$	T	F	T	T
$x_3 \wedge x_4$	T	T	F	T
x_5	$\neg x_1 \wedge \neg x_2$	$\neg x_1 \wedge x_2$	$x_1 \land \neg x_2$	$x_1 \wedge x_2$
$\frac{x_5}{\neg x_3 \land \neg x_4}$	$ \begin{array}{c c} \neg x_1 \land \neg x_2 \\ \hline F \end{array} $	$\frac{\neg x_1 \land x_2}{T}$	$\frac{x_1 \wedge \neg x_2}{T}$	$\frac{x_1 \wedge x_2}{F}$
$\neg x_3 \wedge \neg x_4$	F	T	T	\overline{F}

Ebazpena:

E-ren bidez erabiltzailea adieraziko da eta A-ren bidez algoritmoa.

E:
$$n = 5$$

A:
$$h_0 = F, h_0 \leftrightarrow g$$
?

E: Ez. $b_1 = (T, T, T, F, T)$ balorazioarekin g-ren balioa T da eta h_0 -ren balioa F da.

- A: Orain b_1 -etik abiatuta inplikatzaile lehena kalkulatuko da. Lehenengo T balioa aldatuko da. g-ren balioa T al da $b_1^1 = (\underline{F}, T, T, F, T)$ balorazioarekin?
- E: Bai.
- A: Beraz, aldaketa hori behin betikoa edo iraunkorra izango da. Bigarren T balioa aldatuko da. g-ren balioa T al da $b_1^2 = (F, F, T, F, T)$ balorazioarekin?
- E: Ez.
- A: Bigarren T balioa mantendu egingo da eta hirugarren T balioa aldatuko da. g-ren balioa T al da $b_1^3 = (F, T, \underline{F}, F, T)$ balorazioarekin?
- E: Bai.
- A: Beraz, aldaketa hori behin betikoa edo iraunkorra izango da. Laugarren T balioa aldatuko da. g-ren balioa T al da $b_1^4 = (F, T, F, F, \underline{F})$ balorazioarekin?
- E: Ez.
- A: Laugarren T balioa mantendu egingo da. Beste aldaketarik ezin denez egin, inplikatzaile lehena $b_1^3 = (F, T, F, F, T)$ da. b_1^3 balorazioan T balioa duten aldagaiak kontuan hartuz, proposamen berria egingo da: $h_1 = F \vee (x_2 \wedge x_5)$. $h_1 \leftrightarrow g$?
- E: Ez. $b_2 = (F, T, F, T, F)$ balorazioarekin g-ren balioa T da eta h_1 -en balioa F da.
- A: Orain b_2 -tik abiatuta inplikatzaile lehena kalkulatuko da. Lehenengo T balioa aldatuko da. g-ren balioa T al da $b_2^1 = (F, \underline{F}, F, T, F)$ balorazioarekin?
- E: Ez.
- A: Lehenengo T balioa mantendu egingo da. Bigarren T balioa aldatuko da. g-ren balioa T al da $b_2^2 = (F, T, F, \underline{F}, F)$ balorazioarekin?
- E: Ez.
- A: Bigarren T balioa mantendu egingo da. Beste aldaketarik ezin denez egin, inplikatzaile lehena $b_2 = (F, T, F, T, F)$ da. b_2 balorazioan T balioa duten aldagaiak kontuan hartuz, proposamen berria egingo da: $h_2 = F \lor (x_2 \land x_5) \lor (x_2 \land x_4)$. $h_2 \leftrightarrow g$?
- E: Ez. $b_3 = (T, F, T, T, T)$ balorazioarekin g-ren balioa T da eta h_2 -ren balioa F da.
- A: Orain b_3 -tik abiatuta inplikatzaile lehena kalkulatuko da. Lehenengo T balioa aldatuko da. g-ren balioa T al da $b_3^1 = (\underline{F}, F, T, T, T)$ balorazioarekin?
- E: Bai.
- A: Beraz, aldaketa hori behin betikoa edo iraunkorra izango da. Bigarren T balioa aldatuko da. g-ren balioa T al da $b_3^2 = (F, F, \underline{F}, T, T)$ balorazioarekin?
- E: Ez.
- A: Bigarren T balioa mantendu egingo da eta hirugarren T balioa aldatuko da. g-ren balioa T al da $b_3^3 = (F, F, T, \underline{F}, T)$ balorazioarekin?
- E: Ez.
- A: Hirugarren T balioa mantendu egingo da eta laugarren T balioa aldatuko da. g-ren balioa T al da $b_3^4 = (F, F, T, T, \underline{F})$ balorazioarekin?
- E: Bai.

- A: Beraz, aldaketa hori behin betikoa edo iraunkorra izango da. Beste aldaketarik ezin denez egin, inplikatzaile lehena $b_3^4 = (F, F, T, T, F)$ da. b_3^4 balorazioan T balioa duten aldagaiak kontuan hartuz, proposamen berria egingo da: $h_3 = F \lor (x_2 \land x_5) \lor (x_2 \land x_4) \lor (x_3 \land x_4)$. $h_3 \leftrightarrow g$?
- E: Ez. $b_4 = (T, F, T, F, T)$ balorazioarekin g-ren balioa T da eta h_3 -ren balioa F da.
- A: Orain b_4 -tik abiatuta inplikatzaile lehena kalkulatuko da. Lehenengo T balioa aldatuko da. g-ren balioa T al da $b_4^1 = (\underline{F}, F, T, F, T)$ balorazioarekin?
- E: Ez.
- A: Lehenengo T balioa mantendu egingo da eta bigarren T balioa aldatuko da. g-ren balioa T al da $b_4^2 = (T, F, \underline{F}, F, T)$ balorazioarekin?
- E: Bai.
- A: Beraz, aldaketa hori behin betikoa edo iraunkorra izango da. Hirugarren T balioa aldatuko da. g-ren balioa T al da $b_4^3 = (T, F, F, F, F)$ balorazioarekin?
- E: Ez.
- A: Hirugarren T balioa mantendu egingo da. Beste aldaketarik ezin denez egin, inplikatzaile lehena $b_4^2 = (T, F, F, F, T)$ da. b_4^2 balorazioan T balioa duten aldagaiak kontuan hartuz, proposamen berria egingo da: $h_4 = F \vee (x_2 \wedge x_5) \vee (x_2 \wedge x_4) \vee (x_3 \wedge x_4) \vee (x_1 \wedge x_5)$. $h_4 \leftrightarrow g$?
- E: Bai.

2 k-CNFen algoritmoa (0,300 puntu)

Demagun erabiltzaileak 3 aldagai (n = 3) erabil ditzakeen g 2-CNFa duela buruan (beraz, k = 2).

Algoritmoak g-ren baliokidea den h formula eraiki arte erabiltzailearen eta algoritmoaren artean gertatuko den elkarrekintza urratsez urrats zehaztu behar da.

Horretarako, badakigu algoritmoak g-ren baliokidea den h formula eraiki arte erabiltzailearengandik honako balorazioak edo kontraadibideak jasoko dituela (True eta False idatzi beharrean T eta F idatziko da):

- $b_1 = (T, T, F)$
- $b_2 = (F, T, T)$
- $b_3 = (T, F, T)$
- $b_4 = (F, T, F)$
- $b_5 = (F, F, T)$

Ebazpena:

E-ren bidez erabiltzailea adieraziko da eta A-ren bidez algoritmoa.

E:
$$k = 2$$
 eta $n = 3$

A:

 $h_0 \leftrightarrow g$?

E: Ez. $b_1 = (T, T, F)$ balorazioarekin g-ren balioa T da eta h_0 -ren balioa F da.

A: $b_1 = (T, T, F)$ balorazioarentzat h_0 -ren balioa eta g-ren balioa berdinak izan daitezen, balorazio horrekin F diren h_0 -ren osagaiak ezabatuko dira:

$$h_0 = \underbrace{(\neg x_1)} \land (\neg x_2) \land (\neg x_3) \land (x_1) \land (x_2) \land \underbrace{(x_3)} \land \\ \underbrace{(\neg x_1 \lor \neg x_2)} \land (\neg x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (x_1 \lor x_2) \land \\ \underbrace{(\neg x_1 \lor \neg x_3)} \land \underbrace{(\neg x_1 \lor x_3)} \land (x_1 \lor \neg x_3) \land (x_1 \lor x_3) \land \\ \underbrace{(\neg x_2 \lor \neg x_3)} \land \underbrace{(\neg x_2 \lor x_3)} \land (x_2 \lor \neg x_3) \land (x_2 \lor x_3)$$

Proposamen berria honako hau da:

$$h_1 = (\neg x_3) \land (x_1) \land (x_2) \land (\neg x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (x_1 \lor x_2) \land (\neg x_1 \lor \neg x_3) \land (x_1 \lor \neg x_3) \land (x_1 \lor x_3) \land (\neg x_2 \lor \neg x_3) \land (x_2 \lor \neg x_3) \land (x_2 \lor x_3)$$

 $h_1 \leftrightarrow g$?

E: Ez. $b_2 = (F, T, T)$ balorazioarekin g-ren balioa T da eta h_1 -en balioa F da.

A: $b_2 = (F, T, T)$ balorazioarentzat h_1 -en balioa eta g-ren balioa berdinak izan daitezen, balorazio horre-kin F diren h_1 -en osagaiak ezabatuko dira:

$$\begin{array}{rcl} h_1 & = & \underline{(\neg x_3)} \land \underline{(x_1)} \land (x_2) \land \\ & & \overline{(\neg x_1 \lor x_2)} \land \underline{(x_1 \lor \neg x_2)} \land (x_1 \lor x_2) \land \\ & & \overline{(\neg x_1 \lor \neg x_3)} \land \underline{(x_1 \lor \neg x_3)} \land (x_1 \lor x_3) \land \\ & & \overline{(\neg x_2 \lor \neg x_3)} \land \overline{(x_2 \lor \neg x_3)} \land (x_2 \lor x_3) \end{array}$$

Proposamen berria honako hau da:

$$h_2 = (x_2) \land \\ (\neg x_1 \lor x_2) \land (x_1 \lor x_2) \land \\ (\neg x_1 \lor \neg x_3) \land (x_1 \lor x_3) \land \\ (x_2 \lor \neg x_3) \land (x_2 \lor x_3)$$

 $h_2 \leftrightarrow g$?

E: Ez. $b_3 = (T, F, T)$ balorazioarekin g-ren balioa T da eta h_2 -ren balioa F da.

A: $b_3 = (T, F, T)$ balorazioarentzat h_2 -ren balioa eta g-ren balioa berdinak izan daitezen, balorazio horrekin F diren h_2 -ren osagaiak ezabatuko dira:

$$\begin{array}{rcl} h_2 & = & \underline{(x_2)} \ \land \\ & \underline{(\neg x_1 \lor x_2)} \ \land \ (x_1 \lor x_2) \ \land \\ & \underline{(\neg x_1 \lor \neg x_3)} \ \land \ (x_1 \lor x_3) \ \land \\ & \underline{(x_2 \lor \neg x_3)} \ \land \ (x_2 \lor x_3) \end{array}$$

Proposamen berria honako hau da:

$$h_3 = (x_1 \lor x_2) \land (x_1 \lor x_3) \land (x_2 \lor x_3)$$

 $h_3 \leftrightarrow g$?

E: Ez. $b_4 = (F, T, F)$ balorazioarekin g-ren balioa T da eta h_3 -ren balioa F da.

A: $b_4 = (F, T, F)$ balorazioarentzat h_3 -ren balioa eta g-ren balioa berdinak izan daitezen, balorazio horrekin F diren h_3 -ren osagaiak ezabatuko dira:

$$h_3 = (x_1 \lor x_2) \land \frac{(x_1 \lor x_3)}{(x_2 \lor x_3)} \land$$

Proposamen berria honako hau da:

$$h_4 = (x_1 \lor x_2) \land (x_2 \lor x_3)$$

 $h_4 \leftrightarrow g$?

E: Ez. $b_5 = (F, F, T)$ balorazioarekin g-ren balioa T da eta h_4 -ren balioa F da.

A: $b_5 = (F, F, T)$ balorazioarentzat h_4 -ren balioa eta g-ren balioa berdinak izan daitezen, balorazio horrekin F diren h_4 -ren osagaiak ezabatuko dira:

$$h_4 = \frac{(x_1 \vee x_2)}{(x_2 \vee x_3)} \wedge$$

Proposamen berria honako hau da:

$$h_5 = (x_2 \vee x_3)$$

 $h_5 \leftrightarrow g$?

E: Bai.

3 k-DNFen algoritmoa (0,300 puntu)

Demagun erabiltzaileak 3 aldagai (n = 3) erabil ditzakeen g 2-DNFa duela buruan (beraz, k = 2).

Algoritmoak g-ren baliokidea den h formula eraiki arte erabiltzailearen eta algoritmoaren artean gertatuko den elkarrekintza urratsez urrats zehaztu behar da.

Horretarako, badakigu algoritmoak g-ren baliokidea den h formula eraiki arte erabiltzailearengandik honako balorazioak edo kontraadibideak jasoko dituela (True eta False idatzi beharrean T eta F idatziko da):

- $b_1 = (T, T, T)$
- $b_2 = (F, F, F)$
- $b_3 = (T, F, F)$
- $b_4 = (F, T, T)$
- $b_5 = (T, F, T)$

Ebazpena:

E-ren bidez erabiltzailea adieraziko da eta A-ren bidez algoritmoa.

E:
$$k = 2$$
 eta $n = 3$.

A:

$$h_{0} = (\neg x_{1}) \lor (\neg x_{2}) \lor (\neg x_{3}) \lor (x_{1}) \lor (x_{2}) \lor (x_{3}) \lor (\neg x_{1} \land \neg x_{2}) \lor (\neg x_{1} \land x_{2}) \lor (x_{1} \land \neg x_{2}) \lor (x_{1} \land x_{2}) \lor (\neg x_{1} \land \neg x_{3}) \lor (\neg x_{1} \land x_{3}) \lor (x_{1} \land \neg x_{3}) \lor (x_{1} \land x_{3}) \lor (\neg x_{2} \land \neg x_{3}) \lor (\neg x_{2} \land x_{3}) \lor (x_{2} \land \neg x_{3}) \lor (x_{2} \land x_{3})$$

 $h_0 \leftrightarrow g$?

E: Ez. $b_1 = (T, T, T)$ balorazioarekin g-ren balioa F da eta h_0 -ren balioa T da.

A: $b_1 = (T, T, T)$ balorazioarentzat h_0 -ren balioa eta g-ren balioa berdinak izan daitezen, balorazio horrekin T diren h_0 -ren osagaiak ezabatuko dira:

Proposamen berria honako hau da:

$$h_1 = (\neg x_1) \lor (\neg x_2) \lor (\neg x_3) \lor (\neg x_1 \land \neg x_2) \lor (\neg x_1 \land x_2) \lor (x_1 \land \neg x_2) \lor (\neg x_1 \land \neg x_3) \lor (\neg x_1 \land x_3) \lor (x_1 \land \neg x_3) \lor (\neg x_2 \land \neg x_3) \lor (\neg x_2 \land x_3) \lor (x_2 \land \neg x_3)$$

 $h_1 \leftrightarrow g$?

E: Ez. $b_2 = (F, F, F)$ balorazioarekin g-ren balioa F da eta h_1 -en balioa T da.

A: $b_2 = (F, F, F)$ balorazioarentzat h_1 -en balioa eta g-ren balioa berdinak izan daitezen, balorazio horre-kin T diren h_1 -en osagaiak ezabatuko dira:

$$\begin{array}{rcl} h_1 & = & \underbrace{\left(\neg x_1\right)} \vee \underbrace{\left(\neg x_2\right)} \vee \underbrace{\left(\neg x_3\right)} \vee \\ & \underbrace{\left(\neg x_1 \wedge \neg x_2\right)} \vee \left(\neg x_1 \wedge x_2\right) \vee \left(x_1 \wedge \neg x_2\right) \vee \\ & \underbrace{\left(\neg x_1 \wedge \neg x_3\right)} \vee \left(\neg x_1 \wedge x_3\right) \vee \left(x_1 \wedge \neg x_3\right) \vee \\ & \underbrace{\left(\neg x_2 \wedge \neg x_3\right)} \vee \left(\neg x_2 \wedge x_3\right) \vee \left(x_2 \wedge \neg x_3\right) \end{array}$$

Proposamen berria honako hau da:

$$h_2 = (\neg x_1 \wedge x_2) \vee (x_1 \wedge \neg x_2) \vee (\neg x_1 \wedge x_3) \vee (x_1 \wedge \neg x_3) \vee (\neg x_2 \wedge x_3) \vee (x_2 \wedge \neg x_3)$$

 $h_2 \leftrightarrow g$?

E: Ez. $b_3 = (T, F, F)$ balorazioarekin g-ren balioa F da eta h_2 -ren balioa T da.

A: $b_3 = (T, F, F)$ balorazioarentzat h_2 -ren balioa eta g-ren balioa berdinak izan daitezen, balorazio horrekin T diren h_2 -ren osagaiak ezabatuko dira:

$$h_2 = (\neg x_1 \wedge x_2) \vee \underline{(x_1 \wedge \neg x_2)} \vee (\neg x_1 \wedge x_3) \vee \underline{(x_1 \wedge \neg x_3)} \vee (\neg x_2 \wedge x_3) \vee (x_2 \wedge \neg x_3)$$

Proposamen berria honako hau da:

$$h_3 = (\neg x_1 \wedge x_2) \vee (\neg x_1 \wedge x_3) \vee (\neg x_2 \wedge x_3) \vee (x_2 \wedge \neg x_3)$$

 $h_3 \leftrightarrow g$?

E: Ez. $b_4 = (F, T, T)$ balorazioarekin g-ren balioa F da eta h_3 -ren balioa T da.

A: $b_4 = (F, T, T)$ balorazioarentzat h_3 -ren balioa eta g-ren balioa berdinak izan daitezen, balorazio horrekin T diren h_3 -ren osagaiak ezabatuko dira:

$$\begin{array}{rcl} h_3 & = & \underbrace{\left(\neg x_1 \wedge x_2\right)}_{\left(\neg x_1 \wedge x_3\right)} \vee \\ & & \underbrace{\left(\neg x_2 \wedge x_3\right)}_{\left(\neg x_2 \wedge x_3\right)} \vee \left(x_2 \wedge \neg x_3\right) \end{array}$$

Proposamen berria honako hau da:

$$h_4 = (\neg x_2 \wedge x_3) \vee (x_2 \wedge \neg x_3)$$

 $h_4 \leftrightarrow g$?

E: Ez. $b_5 = (T, F, T)$ balorazioarekin g-ren balioa F da eta h_4 -ren balioa T da.

A: $b_5 = (T, F, T)$ balorazioarentzat h_4 -ren balioa eta g-ren balioa berdinak izan daitezen, balorazio horrekin T diren h_4 -ren osagaiak ezabatuko dira:

$$h_4 = (\neg x_2 \wedge x_3) \vee (x_2 \wedge \neg x_3)$$

Proposamen berria honako hau da:

$$h_5 = (x_2 \wedge \neg x_3)$$

 $h_5 \leftrightarrow g$?

E: Bai.