The Small-Signal Model

Lecture 9 October 18th, 2018

Jae W. Lee (jaewlee@snu.ac.kr)
Computer Science and Engineering
Seoul National University

Slide credits: [CS:APP3e] slides from CMU; [COD5e] slides from Elsevier Inc.

Review: MOSFET Amplifier

- Saturation discipline operate MOSFET only in saturation region
- Large signal analysis: does two things
 - 1. Find v_o vs v_i under saturation discipline.
 - 2. Valid v_i , v_O ranges under saturation discipline.

Review: Large Signal Analysis

1) Find v_o vs v_I

$$\begin{aligned} v_O &= V_S - \frac{K}{2} (v_I - 1)^2 R_L \\ &\text{valid for} \quad v_I \geq V_T \\ &\text{and} \\ &v_O \geq v_I - V_T \\ &\text{(same as } i_{DS} \leq \frac{K}{2} {v_O}^2 \text{)} \end{aligned}$$

Review: Large Signal Analysis

2 Valid operating ranges

"interesting" region for v_I . Saturation discipline satisfied.

Review: Large Signal Analysis

Non-linearity

Amplifies alright, but distorts

Amp is nonlinear ...

Outline

Textbook: 8.1, 8.2

- Small-Signal Model
 - Graphical interpretation
 - Mathematical interpretation
 - Small-signal circuit view
- Small-Signal Circuit Representation

Amp all right, but nonlinear!

Hmmm ... So what about our linear amplifier ???

- \diamond Operate amp at V_I , V_O
 - → DC "bias" (good choice: midpoint of input operating range)
- lacktriangle Superimpose small signal on top of V_I
- Response to small signal seems to be approximately linear

- * Operate Let's look at this in more detail
 - DC "bias" (good choice: midpoint of input operating range)

 graphically
- * Superimpose small signal or top of I/mathematically
- Response to small signal seems to be approximately linear a circuit viewpoint

I Graphically

We use a DC bias V_I to "boost" interesting input signal above V_T , and in fact, well above V_T .

Small-Signal Model aka incremental or linearized model

Notation —

Input: $v_I = V_I + v_i$ total DC small
variable bias signal (like Δv_I)
bias voltage aka operating point voltage

Output: $v_O = V_O + v_o$ Graphically,

II Mathematically
$$v_{o} = V_{S} - \frac{R_{L}K}{2} (v_{I} - V_{T})^{2} \quad v_{o} = v_{S} - \frac{R_{L}K}{2} (v_{I} - V_{T})^{2}$$
 substituting $v_{I} = V_{I} + v_{i} \quad v_{i} << V_{I}$
$$v_{o} = V_{S} - \frac{R_{L}K}{2} ([V_{I} + v_{i}] - v_{T})^{2}$$

$$= V_{S} - \frac{R_{L}K}{2} ([V_{I} - V_{T}] + v_{i})^{2}$$

$$= V_{S} - \frac{R_{L}K}{2} ([V_{I} - V_{T}]^{2} + 2[V_{I} - v_{T}]v_{i} + v_{i}^{2})$$

$$= V_{O} + v_{O} = V_{S} - \frac{R_{L}K}{2} (V_{I} - V_{T})^{2} - R_{L}K (V_{I} - V_{T})v_{i}$$
From $v_{O} = -R_{L}K (V_{I} - V_{T})v_{i}$

$$v_o = -R_L K \left(V_I - V_T \right) v$$

 g_m related to V_I

II Mathematically

(From previous page...)

$$v_o = -R_L \underbrace{K \left(V_I - V_T\right)}_{g_m} v_i$$
 $v_o = -g_m R_L v_i$ related to V_I

For a given DC operating point voltage V_I , $V_I - V_T$ is constant. So,

$$v_o = -A v_i$$

constant w.r.t. v_i

In other words, our circuit behaves like a linear amplifier for small signals

II Mathematically (alternative way)

For small Δx near x_0 , $f(x_0 + \Delta x) \cong f(x_0) + f'(x_0) \Delta x$

II Mathematically (alternative way)

$$v_{o} = V_{S} - \frac{R_{L}K}{2} (v_{I} - V_{T})^{2}$$

$$v_{o} = \frac{d}{dv_{I}} \begin{bmatrix} V_{S} - \frac{R_{L}K}{2} (v_{I} - V_{T})^{2} \\ v_{I} = V_{I} \end{bmatrix} \cdot v_{i}$$

$$v_{I} = V_{I}$$
slope at V_{I}

$$\begin{aligned} \boldsymbol{v}_o &= -R_L K \left(\boldsymbol{V}_I - \boldsymbol{V}_T \right) \cdot \boldsymbol{v}_i \\ \boldsymbol{g}_m &= K \left(\boldsymbol{V}_I - \boldsymbol{V}_T \right) \\ \boldsymbol{A} &= -g_m R_L \quad \text{amp gain} \end{aligned}$$

How to choose the bias point?

- 2. v_i gets big \rightarrow distortion.
 - So bias carefully

1. Gain component $g_m \propto V_I$

3. Input valid operating range. Bias at midpoint of input operating range for maximum

Small-Signal Model III The Small Signal Circuit View

We can derive small circuit equivalent models for our devices, and thereby conduct small signal analysis directly on circuits

We can replace large signal models with small signal circuit models.

Outline

Textbook: 8.1, 8.2

- Small-Signal Model
 - Graphical interpretation
 - Mathematical interpretation
 - Small-signal circuit view
- Small-Signal Circuit Representation

- Small-signal circuit analysis
- 1 Find operating point using DC bias inputs using large signal model.
- Develop small signal (linearized) models for elements.
- Replace original elements with small signal models.

Analyze resulting linearized circuit...

Key: Can use superposition and other linear circuit tools with linearized circuit!

large signal
$$\frac{v_{GS}}{\sum_{S}} i_{DS} = \frac{K}{2} (v_{GS} - V_T)^2$$

Small signal?

large signal
$$\frac{v_{GS}}{\sum_{S}} i_{DS} = \frac{K}{2} (v_{GS} - V_T)^2$$

Small signal:

$$i_{DS} = \frac{K}{2} (v_{GS} - V_T)^2$$

$$i_{ds} = K(V_{GS} - V_T) v_{gs}$$
$$i_{ds} = g_m v_{gs}$$

$$i_{ds} = K(V_{GS} - V_T) \cdot v_{gs}$$
 $\Longrightarrow i_{ds}$ is linear in v_{gs} !

DC Supply V_S

$$v_S = V_S$$

Small signal

$$\begin{cases} \downarrow i_s + v_s \\ \downarrow v_s \end{cases}$$

$$v_{s} = \frac{\partial V_{S}}{\partial i_{S}} \bigg|_{i_{S} = I_{S}} \cdot i_{S}$$

$$v_{s} = 0$$

nal $v_s = \frac{\partial V_S}{\partial i_S}\Big|_{i_S = I_S} \cdot i_s$ DC source behaves as short to small signals.

large signal
$$\begin{cases} \downarrow i_R + v_R \\ \geqslant R & v_R \end{cases} \qquad v_R = R \, i_R \\ v_r = \frac{\partial (R i_R)}{\partial i_R} \bigg|_{i_R = I_R} \cdot i_r \end{cases}$$

$$v_r = R \cdot i_r$$

Large signal

Representation

Amplifier example

Notice, first we need to find operating point voltages/currents.

Get these from a large signal analysis.

$$i_{DS} = \frac{K}{2} (v_I - V_T)^2$$

$$v_O = V_S - \frac{K}{2} (v_I - V_T)^2 R_L$$

Small signal

$$i_{ds} = K(V_I - V_T) \cdot v_i$$

$$i_{ds} R_L + v_o = 0$$

$$v_o = -i_{ds} R_L$$

$$v_o = -K(V_I - V_T) R_L \cdot v_i$$

 $=-g_{m}R_{L}\cdot v_{i}$

■ Example 8.1: Derive a small-signal model

