Berechenbarkeit

Vorlesung 5: While-Programme

15. Mai 2025

Termine — Modul Berechenbarkeit

ÜBUNGEN	Vorlesung	
13.5. Übung 3 B-Woche	15.5. While-Programme	
20.5. Übung 3 A-Woche	22.5. Rekursion I (Übungsblatt 4)	
27.5. Übung 4 B-Woche	29.5.	
3.6. Übung 4 A-Woche	5.6. Rekursion II (Übungsblatt 5)	
10.6. Übung 5 B-Woche (Montag Feiertag)	12.6. Entscheidbarkeit	

ÜBUNGEN	Vorlesung	
17.6. Übung 5 A-Woche	19.6. Unentscheidbarkeit (Übungsblatt 6)	
24.6. Übung 6 B-Woche	26.6. Spez. Probleme	
1.7. Übung 6 A-Woche	3.7. Klasse P	
8.7. Abschlussübung beide Wochen	10.7. NP-Vollständigkeit	

Wiederholung — Berechenbarkeit

Definition (§4.8 Turing-Berechenbarkeit; Turing-computability)

Partielle Funktion $f: \mathbb{N}^k \dashrightarrow \mathbb{N}$ Turing-berechenbar falls deterministische TM M mit $bin(f) = \mathcal{T}(M)$ existiert

Definition (§4.15 Loop-Berechenbarkeit; Loop-computability)

Funktion $f \colon \mathbb{N}^k \to \mathbb{N}$ Loop-berechenbar falls Loop-Programm P mit $f = |P|_k$ existiert

Wiederholung — Berechenbarkeit

intuitiv berechenbar

Turing-berechenbar

Loop-berechenbar

Wiederholung — Berechenbarkeit

§5.1 Definition (Ackermann-Funktion; Ackermann function)

Für alle $x, y \in \mathbb{N}$ sei

$$a(x,y) = \begin{cases} y+1 & \text{falls } x=0 \\ a(x-1,1) & \text{falls } x \neq 0 \text{ und } y=0 \\ a(x-1,a(x,y-1)) & \text{sonst} \end{cases}$$

Wilhelm Ackermann (* 1896; † 1962)

- Dtsch. Mathematiker
- Student von David Hilbert
- Gymnasiallehrer & Ehrenprofessor Uni Münster

§5.2 Theorem

Ackermann-Funktion total; d.h. $a: \mathbb{N}^2 \to \mathbb{N}$

§5.2 Theorem

Ackermann-Funktion total; d.h. $a: \mathbb{N}^2 \to \mathbb{N}$

Beweis (vollständige Induktion über 1. Argument)

IA: a(0,y) = y+1 für alle $y \in \mathbb{N}$ definiert

§5.2 Theorem

Ackermann-Funktion total; d.h. $a: \mathbb{N}^2 \to \mathbb{N}$

Beweis (vollständige Induktion über 1. Argument)

IA: a(0,y) = y+1 für alle $y \in \mathbb{N}$ definiert

IS: Sei a(x,y) für alle $y \in \mathbb{N}$ definiert. Dann

$$a(x + 1, y) = a(x, a(x + 1, y - 1)) = a(x, a(x, a(x + 1, y - 2)))$$

$$= \cdots = \underbrace{a(x, a(x, \cdots a(x + 1, 0) \cdots))}_{(y+1) \text{ mal}}$$

$$= \underbrace{a(x, a(x, \cdots a(x, 1) \cdots))}_{(y+1) \text{ mal}}$$

für alle $y \in \mathbb{N}$ definiert

Problem Ist Ackermann-Funktion Loop-berechenbar?

$x \setminus y$	0	1	2	3	4
0	1	2	3	4	5
1	2	3	4	5	6
2	3	5	7	9	11
3	5	13	29	61	125
4	13	65.533	$\gg 10^{10.000}$		

§5.3 Lemma

a(x,y)>y für alle $x,y\in\mathbb{N}$

§5.3 Lemma

a(x,y)>y für alle $x,y\in\mathbb{N}$

Beweis (vollständige Induktion über 1. Argument)

IA: a(0,y) = y+1 > y für alle $y \in \mathbb{N}$

§5.3 Lemma

a(x,y) > y für alle $x,y \in \mathbb{N}$

Beweis (vollständige Induktion über 1. Argument)

IA: a(0,y) = y+1 > y für alle $y \in \mathbb{N}$

IS: Sei a(x,y)>y für alle $y\in\mathbb{N}$. Vollständige Induktion über y

§5.3 Lemma

a(x,y) > y für alle $x,y \in \mathbb{N}$

Beweis (vollständige Induktion über 1. Argument)

IA: a(0,y) = y+1 > y für alle $y \in \mathbb{N}$

IS: Sei a(x,y)>y für alle $y\in\mathbb{N}$. Vollständige Induktion über y

• IA: $a(x+1,0) = a(x,1) \stackrel{\text{IH}}{>} 1 > 0$ nach IH a(x,y) > y

§5.3 Lemma

a(x,y) > y für alle $x,y \in \mathbb{N}$

Beweis (vollständige Induktion über 1. Argument)

IA: a(0,y) = y+1 > y für alle $y \in \mathbb{N}$

IS: Sei a(x,y)>y für alle $y\in\mathbb{N}$. Vollständige Induktion über y

- IA: $a(x+1,0) = a(x,1) \stackrel{\text{IH}}{>} 1 > 0$ nach IH a(x,y) > y
- IS: Sei a(x+1,y) > y

$$a(x+1,y+1) = a(x,a(x+1,y)) \stackrel{\mathsf{IH}}{>} a(x+1,y) \stackrel{\mathsf{IH}}{\geq} y+1$$

nach äußerer und danach innerer IH

§5.4 Lemma

$$a(x, y + 1) > a(x, y)$$
 für alle $x, y \in \mathbb{N}$

§5.4 Lemma

$$a(x, y + 1) > a(x, y)$$
 für alle $x, y \in \mathbb{N}$

Beweis (mit Hilfe von §5.3)

• Sei x = 0

$$a(0, y + 1) = y + 2 > y + 1 = a(0, y)$$

§5.4 Lemma

$$a(x, y + 1) > a(x, y)$$
 für alle $x, y \in \mathbb{N}$

Beweis (mit Hilfe von §5.3)

• Sei x = 0

$$a(0, y + 1) = y + 2 > y + 1 = a(0, y)$$

• Sei x > 0

$$a(x, y + 1) = a(x - 1, a(x, y)) > 35.3$$

§5.5 Lemma

a(x,y') > a(x,y) für alle $x,y,y' \in \mathbb{N}$ mit y' > y

§5.5 Lemma

$$\mathit{a}(x,y') > \mathit{a}(x,y)$$
 für alle $x,y,y' \in \mathbb{N}$ mit $y' > y$

Beweis

Leichte Übung mit Hilfe von §5.4

§5.6 Lemma

$$a(x+1,y) \geq a(x,y+1)$$
 für alle $x,y \in \mathbb{N}$

§5.6 Lemma

$$a(x+1,y) \ge a(x,y+1)$$
 für alle $x,y \in \mathbb{N}$

Beweis (vollständige Induktion über 2. Argument)

IA:
$$a(x+1,0) = a(x,1)$$
 für alle $x \in \mathbb{N}$

§5.6 Lemma

$$a(x+1,y) \ge a(x,y+1)$$
 für alle $x,y \in \mathbb{N}$

Beweis (vollständige Induktion über 2. Argument)

IA:
$$a(x+1,0) = a(x,1)$$
 für alle $x \in \mathbb{N}$

IS: Sei
$$a(x+1,y) \ge a(x,y+1)$$
 für alle $x \in \mathbb{N}$

$$a(x+1,y+1) = a(x,a(x+1,y)) \stackrel{§5.5}{\geq} a(x,a(x,y+1)) \stackrel{§5.5}{\geq} a(x,y+2)$$

unter Nutzung der IH und §5.4

§5.7 Lemma

$$a(x+1,y)>a(x,y)$$
 für alle $x,y\in\mathbb{N}$

§5.7 Lemma

$$a(x+1,y)>a(x,y)$$
 für alle $x,y\in\mathbb{N}$

Beweis

$$a(x+1,y) \stackrel{\S 5.6}{\geq} a(x,y+1) \stackrel{\S 5.4}{>} a(x,y)$$

§5.7 Lemma

$$a(x+1,y) > a(x,y)$$
 für alle $x,y \in \mathbb{N}$

Beweis

$$a(x+1,y) \stackrel{\S 5.6}{\geq} a(x,y+1) \stackrel{\S 5.4}{>} a(x,y)$$

§5.8 Theorem (Monotonie der Ackermann-Funktion)

$$a(x',y') \geq a(x,y)$$
 für alle $x,x',y,y' \in \mathbb{N}$ mit $x' \geq x$ und $y' \geq y$

§5.7 Lemma

$$a(x+1,y) > a(x,y)$$
 für alle $x,y \in \mathbb{N}$

Beweis

$$a(x+1,y) \stackrel{\S 5.6}{\geq} a(x,y+1) \stackrel{\S 5.4}{>} a(x,y)$$

§5.8 Theorem (Monotonie der Ackermann-Funktion)

$$a(x',y') \ge a(x,y)$$
 für alle $x,x',y,y' \in \mathbb{N}$ mit $x' \ge x$ und $y' \ge y$

Beweis

$$a(x',y') \stackrel{\S 5.7}{\geq} a(x,y') \stackrel{\S 5.5}{\geq} a(x,y)$$

§5.9 Definition (norm. Loop-Programm; unitary Loop program)

Normiertes Loop-Programm P entweder

•
$$P = x_i = x_\ell + z \text{ mit } i, \ell \ge 1 \text{ und } z \in \{-1, 0, 1\}$$

§5.9 Definition (norm. Loop-Programm; unitary Loop program)

Normiertes Loop-Programm P entweder

- $P = x_i = x_\ell + z \text{ mit } i, \ell \ge 1 \text{ und } z \in \{-1, 0, 1\}$
- $P = P_1$; P_2 für normierte Loop-Programme P_1 und P_2

§5.9 Definition (norm. Loop-Programm; unitary Loop program)

Normiertes Loop-Programm P entweder

- $P = x_i = x_\ell + z \text{ mit } i, \ell \ge 1 \text{ und } z \in \{-1, 0, 1\}$
- $P = P_1$; P_2 für normierte Loop-Programme P_1 und P_2
- $P = \text{LOOP}(x_i) \{P'\}$ für normiertes Loop-Programm P', $i \notin \text{var}(P')$

§5.9 Definition (norm. Loop-Programm; unitary Loop program)

Normiertes Loop-Programm P entweder

- $P = x_i = x_\ell + z \text{ mit } i, \ell \ge 1 \text{ und } z \in \{-1, 0, 1\}$
- $P = P_1$; P_2 für normierte Loop-Programme P_1 und P_2
- $P = \mathsf{LOOP}(x_i) \{ P' \}$ für normiertes Loop-Programm P', $i \notin \mathsf{var}(P')$

Notizen

- Zuweisungen nur mit Addition von $\{-1, 0, 1\}$
- Schleifenvariable nicht in Schleifenkörper

§5.10 Theorem

Jedes Loop-Programm *P* hat äquiv. normiertes Loop-Programm

§5.10 Theorem

Jedes Loop-Programm P hat äquiv. normiertes Loop-Programm

Beweisskizze

• Ersetze Zuweisung $x_i = x_\ell + n$ mit $n \in \mathbb{N}$ durch

$$x_i = x_\ell + 1$$
; $x_i = x_i + 1$; ...; $x_i = x_i + 1$

• (analog für n < 0)

§5.10 Theorem

Jedes Loop-Programm P hat äquiv. normiertes Loop-Programm

Beweisskizze

• Ersetze Zuweisung $x_i = x_\ell + n$ mit $n \in \mathbb{N}$ durch

$$x_i = x_\ell + 1$$
; $x_i = x_i + 1$; ...; $x_i = x_i + 1$

- (analog für n < 0)
- Ersetze LOOP (x_i) {P'} durch

$$x_{\ell} = x_i$$
; LOOP $(x_{\ell}) \{ P' \}$

wobei $x_{\ell} \notin var(P)$ im Gesamtprogramm P nicht vorkommt

§5.11 Definition (Größenbegrenzung)

Sei *P* normiertes Loop-Programm mit $\max var(P) \le n$.

Definiere $f_P^{(n)} \colon \mathbb{N} \to \mathbb{N}$ für alle $s \in \mathbb{N}$ durch

$$f_p^{(n)}(s) = \max \left\{ \sum_{i=1}^n r_i \mid s_1, \dots, s_n \in \mathbb{N}, \sum_{i=1}^n s_i \le s, \right.$$
 $(r_1, \dots, r_n) = \|P\|_n(s_1, \dots, s_n) \right\}$

§5.11 Definition (Größenbegrenzung)

Sei *P* normiertes Loop-Programm mit $\max var(P) \le n$.

Definiere $f_P^{(n)} \colon \mathbb{N} \to \mathbb{N}$ für alle $s \in \mathbb{N}$ durch

$$f_p^{(n)}(s) = \max \left\{ \sum_{i=1}^n r_i \mid s_1, \dots, s_n \in \mathbb{N}, \sum_{i=1}^n s_i \le s,
ight.$$
 $(r_1, \dots, r_n) = \|P\|_n(s_1, \dots, s_n) \right\}$

Notizen

- $f_p^{(n)}(s)$ maximale Summe Variablenendwerte bei Eingaben (s_1, \ldots, s_n) deren Summe $\sum_{i=1}^n s_i$ höchstens s ist
- Kein Variablenendwert oder Funktionsergebnis größer als $f_P(s)$ (bei Eingaben, die sich auf höchstens s summieren)

§5.12 Theorem

Für jedes normierte Loop-Programm P mit $\max \text{var}(P) \leq n$ existiert $k \in \mathbb{N}$ mit $f_P^{(n)}(s) < a(k,s)$ für alle $s \in \mathbb{N}$

§5.12 Theorem

Für jedes normierte Loop-Programm P mit $\max \text{var}(P) \leq n$ existiert $k \in \mathbb{N}$ mit $f_P^{(n)}(s) < a(k,s)$ für alle $s \in \mathbb{N}$

Beweis (Induktion über Struktur normierter Programme; 1/3)

1. Sei $P = x_i = x_\ell + z$ mit $z \in \{-1, 0, 1\}$. Dann $f_P^{(n)}(s) \le 2s + 1$. Wir wählen k = 2

$$f_p^{(n)}(s) \le 2s + 1 < 2s + 3 = a(2, s)$$

mit 2s + 3 = a(2, s) unbewiesen (nette Übung)

Beweis (Induktion über Struktur normierter Programme; 2/3)

2. Seien P_1 und P_2 normierte Loop-Programme und $k_1, k_2 \in \mathbb{N}$ mit $f_{P_1}^{(n)}(s) < a(k_1, s)$ und $f_{P_2}^{(n)}(s) < a(k_2, s)$ für alle $s \in \mathbb{N}$. Sei $k' = \max(k_1 - 1, k_2)$. Dann für $P = P_1$; P_2

$$f_{P}(s) \le f_{P_{2}}^{(n)}(f_{P_{1}}^{(n)}(s))$$

 $< a(k_{2}, a(k_{1}, s))$ (Monotonie)
 $\le a(k', a(k'+1, s))$ (Monotonie)
 $= a(k'+1, s+1)$
 $\le a(k'+2, s)$ (§5.6)

Aussage gilt für k = k' + 2

Beweis (Induktion über Struktur normierter Programme; 3/3)

3. Sei P' normiertes Loop-Programm, $k' \in \mathbb{N}$ mit $f_{P'}^{(n)}(s) < a(k', s)$ für alle $s \in \mathbb{N}$. Sei $P = \mathsf{LOOP}(x_i) \{P'\}$ mit $i \notin \mathsf{var}(P')$ und $s \in \mathbb{N}$. Sei m_s Wert von x_i der zum Maximum $f_P^{(n)}(s)$ führt

$$f_{p}^{(n)}(s) \leq \underbrace{f_{p'}^{(n)}(f_{p'}^{(n)}(\cdots f_{p'}^{(n)}(s-m_{s})\cdots)) + m_{s}}_{m_{s} \text{ mal}}$$

$$\leq \cdots \leq \underbrace{a(k', a(k', \cdots a(k', s-m_{s})\cdots))}_{m_{s} \text{ mal}}$$

$$\leq \underbrace{a(k', a(k', \cdots a(k'+1, s-m_{s})\cdots))}_{m_{s} \text{ mal}}$$
(§5.4)

Aussage gilt für
$$k = k' + 1$$

= a(k'+1, s-1) < a(k'+1, s)

(§5.4)

§5.13 Theorem

Ackermann-Funktion <u>nicht</u> Loop-berechenbar

Beweis

Angenommen $a: \mathbb{N}^2 \to \mathbb{N}$ wäre Loop-berechenbar mit Programm P und $n = \max \text{var}(P)$. Dann ist $g: \mathbb{N} \to \mathbb{N}$ mit g(s) = a(s, s) für alle $s \in \mathbb{N}$ Loop-berechenbar via $P' = x_2 = x_1$; P.

§5.13 Theorem

Ackermann-Funktion <u>nicht</u> Loop-berechenbar

Beweis

Angenommen $a: \mathbb{N}^2 \to \mathbb{N}$ wäre Loop-berechenbar mit Programm P und $n = \max \text{var}(P)$. Dann ist $g: \mathbb{N} \to \mathbb{N}$ mit g(s) = a(s, s) für alle $s \in \mathbb{N}$ Loop-berechenbar via $P' = x_2 = x_1$; P. Gemäß §5.12 existiert $k \in \mathbb{N}$ mit

$$a(s,s) = g(s) \le f_{p'}^{(n)}(s) < a(k,s)$$

für alle $s \in \mathbb{N}$.

§5.13 Theorem

Ackermann-Funktion nicht Loop-berechenbar

Beweis

Angenommen $a: \mathbb{N}^2 \to \mathbb{N}$ wäre Loop-berechenbar mit Programm P und $n = \max \text{var}(P)$. Dann ist $g: \mathbb{N} \to \mathbb{N}$ mit g(s) = a(s, s) für alle $s \in \mathbb{N}$ Loop-berechenbar via $P' = x_2 = x_1$; P. Gemäß §5.12 existiert $k \in \mathbb{N}$ mit

$$a(s,s) = g(s) \le f_{p'}^{(n)}(s) < a(k,s)$$

für alle $s \in \mathbb{N}$. Für s = k entsteht Widerspruch

$$a(k,k) = g(k) \le f_{p'}^{(n)}(k) < a(k,k)$$

Also Ackermann-Funktion *a* nicht Loop-berechenbar

Konsequenz

Nicht jede intuitiv berechenbare (totale) Funktion Loop-berechenbar

Exkurs: Originale Ackermann-Funktion

Originaldefinition

$$\varphi(x, y, 0) = x + y$$

$$\varphi(x, y, 1) = x \cdot y$$

$$\varphi(x, y, 2) = x^{y}$$
...
$$\varphi(x, y, z) = x \uparrow^{z-1} y$$

- Iteriert jeweilig vorherige Operation
- Verschachtelungstiefe Schleifen abhängig von Eingabe z
- Nicht Loop-berechenbar

Konventionen

• Alle Variablen x_1, x_2, \ldots vom Typ N

(beliebige Größe)

Addition auf N begrenzt

$$n \oplus z = \max(0, n+z)$$

$$n \in \mathbb{N}, z \in \mathbb{Z}$$

Wir schreiben einfach + statt ⊕

Konventionen

• Alle Variablen x_1, x_2, \ldots vom Typ N

(beliebige Größe)

Addition auf N begrenzt

$$n \oplus z = \max(0, n+z)$$

$$n \in \mathbb{N}, z \in \mathbb{Z}$$

Wir schreiben einfach + statt ⊕

Definition (§4.9 Zuweisung; assignment)

Zuweisung ist Anweisung der Form $x_i = x_\ell + z$ mit $i, \ell \ge 1$ und $z \in \mathbb{Z}$

§5.14 Definition (While-Programm; While program)

While-Programm P entweder

• Zuweisung $P = x_i = x_\ell + z$ für $i, \ell \ge 1$ und $z \in \mathbb{Z}$

§5.14 Definition (While-Programm; While program)

While-Programm P entweder

- Zuweisung $P = x_i = x_\ell + z$ für $i, \ell \ge 1$ und $z \in \mathbb{Z}$
- Sequenz $P = P_1$; P_2 für While-Programme P_1 und P_2

§5.14 Definition (While-Programm; While program)

While-Programm P entweder

- Zuweisung $P = x_i = x_\ell + z$ für $i, \ell \ge 1$ und $z \in \mathbb{Z}$
- Sequenz $P = P_1$; P_2 für While-Programme P_1 und P_2
- While-Schleife $P = \text{WHILE}(x_i \neq 0) \{P'\}$ für While-Programm P', $i \in \mathbb{N}$

§5.14 Definition (While-Programm; While program)

While-Programm P entweder

- Zuweisung $P = x_i = x_\ell + z$ für $i, \ell \ge 1$ und $z \in \mathbb{Z}$
- Sequenz $P = P_1$; P_2 für While-Programme P_1 und P_2
- While-Schleife $P = \mathsf{WHILE}(x_i \neq 0) \{ P' \}$ für While-Programm P', $i \in \mathbb{N}$

Beispiele

• WHILE $(x_1 \neq 0)$ { $x_2 = x_1 + 5$; $x_1 = x_3 + 1$ }; $x_1 = x_3 + 0$

§5.14 Definition (While-Programm; While program)

While-Programm P entweder

- Zuweisung $P = x_i = x_\ell + z$ für $i, \ell \ge 1$ und $z \in \mathbb{Z}$
- Sequenz $P = P_1$; P_2 für While-Programme P_1 und P_2
- While-Schleife $P = \mathsf{WHILE}(x_i \neq 0) \{P'\}$ für While-Programm P', $i \in \mathbb{N}$

- WHILE $(x_1 \neq 0)$ { $x_2 = x_1 + 5$; $x_1 = x_3 + 1$ }; $x_1 = x_3 + 0$
- WHILE $(x_1 \neq 0)$ { gleiches Programm, leichter lesbar $x_2 = x_1 + 5$ $x_1 = x_3 + 1$ } $x_1 = x_3 + 0$

(Verzicht auf vollständige Quantifikation)

§5.15 Definition (Variablen und maximaler Variablenindex)

Für While-Programm P seien $var(P) \subseteq \mathbb{N}$ und $max var(P) \in \mathbb{N}$ verwendeten Variablenindices und größter verwendeter Variablenindex

$$var(x_i = x_{\ell} + z) = \{i, \ell\}$$

 $var(P_1; P_2) = var(P_1) \cup var(P_2)$
 $var(WHILE(x_i \neq 0) \{P'\}) = \{i\} \cup var(P')$

(Verzicht auf vollständige Quantifikation)

§5.15 Definition (Variablen und maximaler Variablenindex)

Für While-Programm P seien $var(P) \subseteq \mathbb{N}$ und $max var(P) \in \mathbb{N}$ verwendeten Variablenindices und größter verwendeter Variablenindex

$$var(x_i = x_{\ell} + z) = \{i, \ell\}$$

 $var(P_1; P_2) = var(P_1) \cup var(P_2)$
 $var(WHILE(x_i \neq 0) \{P'\}) = \{i\} \cup var(P')$

$$var(P) = \{1, 2, 3\}$$
 und $max var(P) = 3$ für folgendes Programm P WHILE $(x_1 \neq 0) \{x_2 = x_1 + 5; x_1 = x_3 + 1\}; x_1 = x_3 + 0$

Überblick

- k Eingaben in Variablen x_1, \ldots, x_k hinterlegt
- Erwartete Semantik für Zuweisung

(wie bisher)

Überblick

- k Eingaben in Variablen x_1, \ldots, x_k hinterlegt
- Erwartete Semantik für Zuweisung
- P_1 ; P_2 führt P_1 und danach P_2 aus

(wie bisher)

(wie bisher)

Überblick

- k Eingaben in Variablen x_1, \ldots, x_k hinterlegt
- Erwartete Semantik für Zuweisung (wie bisher)
- P_1 ; P_2 führt P_1 und danach P_2 aus (wie bisher)
- WHILE $(x_i \neq 0)$ {P'} wiederholt P' bis 0 =aktueller Wert von x_i (Änderungen an x_i ändern Anzahl Schleifendurchläufe)

Überblick

- k Eingaben in Variablen x_1, \ldots, x_k hinterlegt
- Erwartete Semantik für Zuweisung (wie bisher)
- P_1 ; P_2 führt P_1 und danach P_2 aus (wie bisher)
- WHILE $(x_i \neq 0)$ {P'} wiederholt P' bis 0 =aktueller Wert von x_i (Änderungen an x_i ändern Anzahl Schleifendurchläufe)
- Funktionswert ist Wert von x₁ nach Ablauf Programms

§5.16 Definition (Programmsemantik; program semantics)

Für While-Programm P und $\max \text{var}(P) \leq n$ ist **Semantik** von P partielle Funktion $\|P\|_n \colon \mathbb{N}^n \dashrightarrow \mathbb{N}^n$ für alle $a_1, \dots, a_n \in \mathbb{N}$

•
$$||x_i = x_\ell + z||_n(a_1, \ldots, a_n) = (a_1, \ldots, a_{i-1}, a_\ell + z, a_{i+1}, \ldots, a_n)$$

§5.16 Definition (Programmsemantik; program semantics)

Für While-Programm P und $\max \text{var}(P) \leq n$ ist **Semantik** von P partielle Funktion $\|P\|_n \colon \mathbb{N}^n \dashrightarrow \mathbb{N}^n$ für alle $a_1, \dots, a_n \in \mathbb{N}$

- $||x_i = x_\ell + z||_n(\alpha_1, \ldots, \alpha_n) = (\alpha_1, \ldots, \alpha_{i-1}, \alpha_\ell + z, \alpha_{i+1}, \ldots, \alpha_n)$
- $||P_1; P_2||_n(a_1, \ldots, a_n) = ||P_2||_n(||P_1||_n(a_1, \ldots, a_n))$

§5.16 Definition (Programmsemantik; program semantics)

Für While-Programm P und $\max \text{var}(P) \leq n$ ist **Semantik** von P partielle Funktion $\|P\|_n \colon \mathbb{N}^n \dashrightarrow \mathbb{N}^n$ für alle $a_1, \ldots, a_n \in \mathbb{N}$

- $||x_i = x_\ell + z||_n(a_1, \ldots, a_n) = (a_1, \ldots, a_{i-1}, a_\ell + z, a_{i+1}, \ldots, a_n)$
- $||P_1; P_2||_n(a_1, \ldots, a_n) = ||P_2||_n(||P_1||_n(a_1, \ldots, a_n))$
- $\|\mathbf{WHILE}(x_i \neq 0) \{P'\}\|_n(a_1, \dots, a_n)$

$$= \begin{cases} \|P'\|_n^t(a_1,\ldots,a_n) & \text{falls } t \in \mathbb{N} \text{ existiert und für alle } s < t \\ & \pi_i^{(n)}(\|P'\|_n^t(a_1,\ldots,a_n)) = 0 \\ & \pi_i^{(n)}(\|P'\|_n^s(a_1,\ldots,a_n)) \neq 0 \end{cases}$$
 undef sonst

Semantik der While-Schleife

- Finde Iterationsanzahl t mit
 - x_i enthält 0 nach t Iterationen
 - x_i enthält nicht 0 nach s < t Iterationen

Semantik der While-Schleife

- Finde Iterationsanzahl t mit
 - x_i enthält 0 nach t Iterationen
 - x_i enthält nicht 0 nach s < t Iterationen
- Gesamtberechnung undefiniert falls Teilberechnung undefiniert (undef = Endlosschleife)

Semantik der While-Schleife

- Finde Iterationsanzahl t mit
 - x_i enthält 0 nach t Iterationen
 - x_i enthält nicht 0 nach s < t Iterationen
- Gesamtberechnung undefiniert falls Teilberechnung undefiniert (undef = Endlosschleife)

•
$$||x_2 = x_1 + 5|$$
; $x_1 = x_3 + 1||_3(0,3,7) = (8,5,7)$

Semantik der While-Schleife

- Finde Iterationsanzahl t mit
 - x_i enthält 0 nach t Iterationen
 - x_i enthält nicht 0 nach s < t Iterationen
- Gesamtberechnung undefiniert falls Teilberechnung undefiniert (undef = Endlosschleife)

- $||x_2 = x_1 + 5|$; $x_1 = x_3 + 1||_3(0,3,7) = (8,5,7)$
- $\|\mathbf{WHILE}(x_1 \neq 0) \{x_2 = x_1 + 5 ; x_1 = x_3 + 1\}\|_3(0,3,7) = (0,3,7)$

Semantik der While-Schleife

- Finde Iterationsanzahl t mit
 - x; enthält 0 nach t Iterationen
 - x_i enthält nicht 0 nach s < t Iterationen
- Gesamtberechnung undefiniert falls Teilberechnung undefiniert (undef = Endlosschleife)

- $||x_2 = x_1 + 5|$; $x_1 = x_3 + 1||_3(0,3,7) = (8,5,7)$
- $\|\mathbf{WHILE}(x_1 \neq 0) \{x_2 = x_1 + 5 ; x_1 = x_3 + 1\}\|_3(0,3,7) = (0,3,7)$
- $\|\mathbf{WHILE}(x_1 \neq 0) \{x_2 = x_1 + 5 ; x_1 = x_3 + 1\} \|_3 (1, 3, 7) = \text{undef}$

§5.17 Definition (berechnete Funktion; computed function)

While-Programm P mit $\max \text{var}(P) = n$ berechnet k-stellige partielle Funktion $|P|_k \colon \mathbb{N}^k \dashrightarrow \mathbb{N}$ mit $k \le n$ gegeben für alle $a_1, \dots, a_k \in \mathbb{N}$

$$|P|_k(a_1,\ldots,a_k) = \pi_1^{(n)}(\|P\|_n(a_1,\ldots,a_k,\underbrace{0,\ldots,0}_{(n-k) \text{ mal}}))$$

§5.17 Definition (berechnete Funktion; computed function)

While-Programm P mit $\max \text{var}(P) = n$ berechnet k-stellige partielle Funktion $|P|_k \colon \mathbb{N}^k \dashrightarrow \mathbb{N}$ mit $k \le n$ gegeben für alle $a_1, \dots, a_k \in \mathbb{N}$

$$|P|_k(a_1,\ldots,a_k)=\pi_1^{(n)}\big(\|P\|_n(a_1,\ldots,a_k,\underbrace{0,\ldots,0}_{(n-k) \text{ mal}})\big)$$

Notizen

- Eingaben a_1, \ldots, a_k in ersten k Variablen x_1, \ldots, x_k
- Weitere Variablen x_{k+1}, \ldots, x_n initial 0
- Auswertung Programm mit dieser initialen Variablenbelegung
- Ergebnis ist Inhalt erster Variable x

 nach Ablauf

§5.18 Definition (While-Berechenbarkeit; While-computability)

Partielle Funktion $f: \mathbb{N}^k \longrightarrow \mathbb{N}$ While-berechenbar falls While-Programm P mit $f = |P|_k$ existiert

Vollständig undefinierte partielle Funktion

$$x_1 = x_1 + 1$$
 $(x_1 > 0)$
WHILE $(x_1 \neq 0)$ $\{x_1 = x_1 + 1\}$ $(x_1 > 0)$

Vollständig undefinierte partielle Funktion

$$x_1 = x_1 + 1$$
 $(x_1 > 0)$
WHILE $(x_1 \neq 0)$ { $x_1 = x_1 + 1$ } $(x_1 > 0)$

Auswertung für $a \in \mathbb{N}$

$$||x_1 = x_1 + 1|$$
; WHILE $(x_1 \neq 0)$ $\{x_1 = x_1 + 1\}||_1(a)$
= $||WHILE(x_1 \neq 0)|$ $\{x_1 = x_1 + 1\}||_1(a + 1)$
= undef

da
$$||x_1 = x_1 + 1||_1^t(a+1) = (a+1+t)$$
 für alle $t \in \mathbb{N}$

Iteration (Simulation von LOOP)

 $(x_{\ell} \text{ unbenutzt})$

 $x_{\ell}=x_{i}$; WHILE $(x_{\ell}\neq0)$ {P'; $x_{\ell}=x_{\ell}-1$ } Schreibweise: LOOP (x_{i}) {P'}

Iteration (Simulation von LOOP)

 $(x_{\ell} \text{ unbenutzt})$

```
x_{\ell} = x_i; WHILE(x_{\ell} \neq 0) {P'; x_{\ell} = x_{\ell} - 1} Schreibweise: LOOP(x_i) {P'}
```

Notizen

- Jedes Loop-Programm damit auch While-Programm (für jedes Loop-Programm existiert äquivalentes While-Programm)
- Loop-berechenbare Funktionen sind also While-berechenbar

Iteration (Simulation von LOOP)

 $(x_{\ell} \text{ unbenutzt})$

```
x_{\ell}=x_i; WHILE(x_{\ell}\neq 0) {P'; x_{\ell}=x_{\ell}-1} Schreibweise: LOOP(x_i) {P'}
```

Notizen

- Jedes Loop-Programm damit auch While-Programm (für jedes Loop-Programm existiert äquivalentes While-Programm)
- Loop-berechenbare Funktionen sind also While-berechenbar
- Schreibweisen Loop-Programme erlaubt (IF-THEN-ELSE, etc.)
- <u>Nicht</u> jede While-berechenbare partielle Funktion
 Loop-berechenbar (z.B. vollständig undefinierte partielle Funktion)

Komplexere Bedingung

$$x_k = x_i + 1$$
; $x_k = x_k - x_\ell$
WHILE $(x_k \neq 0)$ {
 P' ; $x_k = x_i + 1$; $x_k = x_k - x_\ell$
}

$$(x_k \ ext{unbenutzt})$$
 $(x_k = 0 \ ext{gdw}. \ x_i < x_\ell)$ $(x_k = 0 \ ext{gdw}. \ x_i < x_\ell)$ Schreibweise: $ext{WHILE}(x_i \geq x_\ell) \ \{P'\}$

```
Komplexere Bedingung
                                                                                     (x_{\downarrow} \text{ unbenutzt})
                                                                          (x_k = 0 \text{ qdw. } x_i < x_\ell)
x_k = x_i + 1; x_k = x_k - x_\ell
WHILE(x_{\nu} \neq 0) {
   P': x_{\iota} = x_{i} + 1; x_{k} = x_{k} - x_{\ell}
                                                                          (x_{l} = 0 \text{ adw. } x_{i} < x_{\ell})
                                                       Schreibweise: WHILE(x_i > x_\ell) { P'}
Ganzzahlige Division von x_i durch x_m in x_\ell
                                                                                     (x_{l} \text{ unbenutzt})
x_{\ell} = 0 : x_{\nu} = x_{i}
WHILE(x_{\nu} > x_m) {
   x_{\ell} = x_{\ell} + 1; x_{k} = x_{k} - x_{m}
                                                                Schreibweise: x_{\ell} = x_i \text{ DIV } x_m
```

Ganzzahliger Rest von x_i durch x_m in x_ℓ

$$x_{\ell} = x_{i}$$
WHILE $(x_{\ell} \ge x_{m}) \{x_{\ell} = x_{\ell} - x_{m}\}$

Schreibweise: $x_{\ell} = x_i \text{ MOD } x_m$

```
Ganzzahliger Rest von x_i durch x_m in x_\ell
```

```
\begin{aligned} x_{\ell} &= x_i \\ \text{WHILE}(x_{\ell} \geq x_m) \left\{ x_{\ell} = x_{\ell} - x_m \right\} & \text{Schreibweise: } x_{\ell} = x_i \, \text{MOD} \, x_m \\ \text{Collatz-Iteration} & \\ \text{WHILE}(x_1 > 1) \left\{ & \text{IF}(x_1 \, \text{MOD} \, 2 = 0) \left\{ x_1 = x_1 \, \text{DIV} \, 2 \right\} \\ \text{ELSE} \left\{ x_1 = 3 \cdot x_1 + 1 \right\} & \text{(halbiere } x_1 \, \text{falls gerade)} \\ \text{Sonst verdreifache & addiere 1)} \end{aligned}
```

Ganzzahliger Rest von x_i durch x_m in x_ℓ

```
x_{\ell} = x_i
WHILE(x_{\ell} \ge x_m) \{x_{\ell} = x_{\ell} - x_m\}
```

Schreibweise: $x_{\ell} = x_i \text{ MOD } x_m$

Collatz-Iteration

```
WHILE(x_1 > 1) {

IF(x_1 \text{ MOD } 2 = 0) {x_1 = x_1 \text{ DIV } 2}

ELSE {x_1 = 3 \cdot x_1 + 1}
```

(halbiere x_1 falls gerade) (sonst verdreifache & addiere 1)

Lothar Collatz (* 1910; † 1990)

- Dtsch. Mathematiker
- Formulierte ungelöste Collatz-Behauptung
- Ehrendoktorwürde TU Dresden

© Konrad Jacobs

```
Fallunterscheidung
                                                                              (n \in \mathbb{N})
IF(x_i = 0) \{P_0\}
                                                                               (Fall 0)
ELSE {\mathbf{IF}(x_i - 1 = 0) {P_1}
                                                                               (Fall 1)
        ELSE {····
                          ELSE {IF(x_i - n = 0) \{P_n\}
                                                                               (Fall n)
                                   ELSE {P}
               Schreibweise: CASE(x_i) OF 0: \{P_0\} \dots n: \{P_n\} ELSE \{P\}
```

Zusammenfassung

- Ackermann-Funktion
- Loop-berechenbar ⊊ intuitiv berechenbar
- While-Berechenbarkeit

Dritte Übungsserie bereits im Moodle