CMSC 170

Introduction to Artificial Intelligence CNM Peralta 2nd Semester AY 2014-2015

PROBABILISTIC INFERENCE

We will now use our knowledge of Bayes networks for inference.

If there is a Burglary or Earthquake, the house Alarm will go off. If the house Alarm goes off, either John or Mary will call.

This can be treated as an input-output problem.

Given the inputs, what are the outputs?

The inputs are called the evidence.

The outputs are called the *query*.

Anything that is neither input nor output is *hidden*.

In this example, the evidence is that a burglary and earthquake occurred, and the query is whether John and Mary will call.

The output is a complete, joint probability distribution overe the query variables, called the posterior distribution given the evidence

Output:

P(J, M | B, E)Probability ...given the of one or evidence. more query

variables...

It is also possible to ask what the **most** likely explanation is, by instead computing:

$$max(P(J=q_1, M=q_2 | B=T, E=T)$$

What combination of values of J and M is most likely to occur given both B and E are true?

The flow of inputoutput can actually be reversed...

...or be in any direction, any combination.

If Mary calls, and we want to know if there was a burglary, which of the nodes are considered evidence, query, and hidden?

ANSWER

M is the evidence, B is the query, and J, A, and E are hidden.

Enumeration

A method of probabilistic inference that goes through all possibilities and adds them up to get an answer.

Conditional Probability

$$P(Q|E) = \frac{P(Q,E)}{P(E)}$$

Given that John and Mary called, what is the probability of a burglary?

$$P(+B|+J,+M) = \frac{P(+B,+J,+M)}{P(+J,+M)}$$

$$P(+B,+J,+M)$$
 from the Bayes r
$$=\sum_{E}\sum_{A}P(+B,+J,+M,E,A)$$

$$=P(+B)P(E)P(A|+B,E)$$

$$P(+J|A)P(+M|A)$$

Let's call this expression F(E, A).

Expand the expression using the flow of arrows from the Bayes network.

$$P(+B,+J,+M)$$
 using the flow of arrows from the Bayes network.
$$=F(+E,+A)+F(+E,\neg A)$$

$$+F(\neg E,+A)+F(\neg E,\neg A)$$

$$F(E,A)=P(+B)P(E)$$

$$+P(A|+B,E)$$

$$+P(+J|A)$$

$$+P(+M|A)$$

Expand the expression

В	P(B)
+B	0.001
¬В	0.999

Е	P(E)
+E	0.002
¬Ε	0.998

В	Е	Α	P(A B, E)
+B	+E	+A	0.95
+B	+E	$\neg \land$	0.05
+B	¬Ε	+A	0.94
+B	¬Ε	$\neg \land$	0.06
¬В	+E	+A	0.29
¬B	+E	$\neg \land$	0.71
¬B	¬Ε	+A	0.001
¬B	¬Ε	¬A	0.999

A	J	P(J A)
+A	+J	0.9
+A	٦J	0.1
$\neg A$	+J	0.05
¬Α	٦J	0.95

Α	M	P(M A)
+A	+M	0.7
+A	$\neg M$	0.3
¬Α	+M	0.01
¬A	¬M	0.99

$$F(+E,+A) = P(+B)P(+E)P(+A|+B,+E)$$

$$= P(+J|+A)P(+M|+A)$$

$$= 0.001 \times 0.002 \times 0.95 \times 0.9 \times 0.7$$

$$F(+E,+A) = P(+B)P(+E)P(+A|+B,+E)$$

$$P(+J|+A)P(+M|+A)$$

$$= 0.001 \times 0.002 \times 0.95 \times 0.9 \times 0.7$$

$$= 0.000001197$$

$$F(+E,\neg A) = P(+B)P(+E)P(\neg A|+B,+E)$$

$$P(+J|\neg A)P(+M|\neg A)$$

$$= 0.001 \times 0.002 \times 0.05 \times 0.05 \times 0.01$$

$$F(+E,\neg A) = P(+B)P(+E)P(\neg A|+B,+E)$$

$$P(+J|\neg A)P(+M|\neg A)$$

$$= 0.001 \times 0.002 \times 0.05 \times 0.05 \times 0.01$$

$$= 0.00000000005$$

$$F(\neg E, +A) = P(+B)P(\neg E)P(+A|+B, \neg E)$$

$$P(+J|+A)P(+M|+A)$$

$$= 0.001 \times 0.998 \times 0.94 \times 0.9 \times 0.7$$

$$F(\neg E, +A) = P(+B)P(\neg E)P(+A|+B, \neg E)$$

$$P(+J|+A)P(+M|+A)$$

$$= 0.001 \times 0.998 \times 0.94 \times 0.9 \times 0.7$$

$$= 0.0005910156$$

$$F(\neg E, \neg A) = P(+B)P(\neg E)P(\neg A|+B, \neg E)$$

$$P(+J|\neg A)P(+M|\neg A)$$

$$= 0.001 \times 0.998 \times 0.06 \times 0.05 \times 0.01$$

$$F(\neg E, \neg A) = P(+B)P(\neg E)P(\neg A|+B, \neg E)$$

$$P(+J|\neg A)P(+M|\neg A)$$

$$= 0.001 \times 0.998 \times 0.06 \times 0.05 \times 0.01$$

$$= 0.00000002994$$

$$P(+B,+J,+M) = 0.000001197 + 0.00000000005 + 0.0005910156 + 0.00000002994$$

$$P(+B,+J,+M) = 0.000001197 + 0.00000000005 + 0.0005910156 + 0.00000002994 = 0.00059224259$$

$$P(+B|+J,+M) = \frac{0.00059224259}{P(+J,+M)}$$

Oops, that was just the numerator.

We still need to solve for the denominator:

$$P(+J,+M)$$

= $\sum_{B} \sum_{E} \sum_{A} P(B,+J,+M,E,A)$

FAST FORWARD...

$$P(+B|+J,+M) = {0.00059224259 \over P(+J,+M)} = 0.284$$

Why is the probability low, even though both John and Mary called?

The problem with enumeration is that it takes too long, especially when there are too many nodes.

Variable Elimination

An alternative approach to probabilistic inference that methodically shrinks the Bayes network into a single node, with a probability distribution derived from eliminated variables.

Variable elimination is faster than enumeration in most practical networks; it is just a cycle of joining factors and marginalizing variables.

R	P(R)
+R	0.1
¬R	0.9

R	Т	P(T R)
+R	+T	0.8
+R	$\neg \top$	0.2
¬R	+T	0.1
¬R	$\neg \top$	0.9

Т	L	P(L T)
+T	+L	0.3
+T	¬L	0.7
$\neg \top$	+L	0.1
$\neg \top$	¬L	0.9

Join R and T.

R	P(R)
+R	0.1
¬R	0.9

R	Т	P(T R)
+R	+T	0.8
+R	$\neg \top$	0.2
¬R	+T	0.1
¬R	$\neg \top$	0.9

R	Т	P(R, T)
+R	+T	0.08
+R	$\neg \top$	0.02
¬R	+T	0.09
¬R	$\neg \top$	0.81

Marginalize R from RT.

R	Т	P(R, T)
+R	+T	0.08
+R	$\neg \top$	0.02
¬R	+T	0.09
¬R	$\neg \top$	0.81

We have eliminated R.

Т	P(T)
+T	0.17
$\neg \top$	0.83

Т	L	$P(L \mid T)$
+T	+L	0.3
+T	¬L	0.7
$\neg \top$	+L	0.1
$\neg \top$	¬L	0.9

Join T and L.

Т	P(T)
+T	0.17
$\neg \top$	0.83

Т	L	P(L T)
+T	+L	0.3
+T	¬L	0.7
$\neg \top$	+L	0.1
$\neg \top$	¬L	0.9

Т	L	P(TL)
+T	+L	0.051
+T	¬L	0.119
$\neg \top$	+L	0.083
$\neg \top$	¬L	0.747

Marginalize T from TL.

Т	L	P(T, L)
+T	+L	0.051
+T	¬L	0.119
$\neg \top$	+L	0.083
$\neg \top$	¬L	0.747

The order in which joining factors and marginalizing variables is done will dictate if variable elimination is more efficient then enumeration; regardless, probabilistic inference is NP-hard.

QUIZ (1/4)

ls	Answer
F⊥A	
$F \perp A \mid D$	
$F \perp A \mid G$	
$F \perp A \mid H$	

QUIZ (1/4)

How many parameters are needed to represent this Bayes network?

BONUS

Kung kayo ay isang bitwise operator, aling bitwise operator kayo, at bakit?

(Bitwise operators: and, or, exclusive or)

ANSWERS

ls	Answer
F⊥A	Y
$F \perp A \mid D$	Ν
$F \perp A \mid G$	Ν
$F \perp A \mid H$	Y

QUIZ (1/4)

How many parameters are needed to represent this Bayes network?

