Лабораторная работа

Измерение частоты темнового счёта и шум-фактора твердотельного фотоумножителя SiPM

Автор работы: Хоружий Кирилл

Кузнецова Арина Евгений Дедков Александр Двуреченский

Яушев Михаил

От: 25 ноября 2021 г.

Цель работы

Измерение частоты темнового счёта и шум-фактора твердотельного фотоумножителя SiPM.

Оборудование

Источник-измеритель Keithley 236 (smu), измерительный модуль (фильтр низких частот, фотодетектор, фильтр высоких частот, усилитель), длинная линия с волновым сопротивлением $50\,\mathrm{Om}$, осциллограф Tektronix TDS7104, пинцет.

Рис. 1: Блок-схема измерительной установки

Источник измеритель smu, состоящий из управляемого источника напряжения vs и измерителя тока, через фильтр низких частот измерительного модуля обеспечивает фотодетектор напряжением обратного смещения.

Сигнал с фотодетектора проходит через фильтр высоких частот и усиливается при помощи amp. Сигнал с выход усилителя попадает в длинную линию и передается на вход осциллографа scope.

Ход работы (измерение шумовых характеристик)

Шум осциллографа. Настроим осциллограф. Измерим параметры шума осциллографа. Для этого запустим построение гистограммы в режиме «sample» и получим из нее стандартное отклонение амплитуды шумов:

$$\sigma_{\rm osc} = 134.8\,{\rm mkB}.$$

Шум усилителя. Подключим в схему радиочастотный усилитель. Проведем для данной схемы измерения аналогичные предыдущему пункту:

$$\sigma_{\rm amp} = 1.195 \,\mathrm{mB},$$

при этом коэффициент усиления прибора равен: G = 60.

Шум-факторы. Расчитаем шум-факторы входа осциллографа и усилителя:

$$F = \frac{S_{\rm in}/N_{\rm in}}{S_{\rm out}/N_{\rm out}} = \frac{N_{\rm out}}{GN_{\rm in}}.$$

Входной шум будем считать тепловым:

$$N_{\rm in} = \sqrt{4kTR\Delta f} = 1.42 \cdot 10^{-5} \,\mathrm{B}.$$

Тогда:

$$F_{\rm osc} = \frac{\sigma_{\rm osc}}{N_{\rm in}} = 9.5, \hspace{0.5cm} F_{\rm amp} = \frac{\sigma_{\rm amp}}{G \cdot N_{\rm in}} = 1.4, \hspace{0.5cm} \frac{F_{\rm amp}}{F_{\rm osc}} = 0.15 < 1,$$

а значит примем решение использовать усилитель, так как его шум-фактор ниже.

Шум схемы. Подключим к получившемуся тракту источник-измеритель и измерительный модуль с фотодетектором. Убедимся, что напряжение на детектор подается в обратном смещении и произведем измерение шума полученной схемы при подаче напряжения в 0 В.

$$\sigma_{\mathrm{svs}} = 1.259 \,\mathrm{мB}.$$

Темновой ток. Произведем измерение темнового тока с учетом утечки:

$$I_{\mathrm{full}} = 5.24 \pm 0.03 \,\mathrm{HA}, \qquad I_{\mathrm{loss}} = 0.010 \pm 0.002 \,\mathrm{HA}$$

Откуда темновой ток через фотодетектор равен:

$$I_{\rm dark} = I_{\rm full} - I_{\rm loss} = 5.23 \pm 0.03 \, {\rm HA}.$$

Рис. 2: Осциллограммы детекции пиков и одиночных пиков.

Ход работы (шум фактор и темновой счёт)

Частота темнового счёта SiPM. Перейдем в режим регистрации экстремумов (рис. 2), и установим временное разрешение в 80 ns. Измерим частоты темнового счёта с различным разрешением res (см. таблицу 1).

Построим зависимость (см. рис. 3) частоты темнового счёта f от разрешения рeak-detect, где f можем найти, как

$$f = \frac{\text{hits}}{\text{wfms} \times T},$$

где wfms – количество разверток, hits – количество зарегистрированных импульсов, T – время развертки осциллографа, равно 0.1 ms.

Рис. 3: Зависимость частоты темнового счёта f от разрешения res

Можно явно разделить зависомость f(res) на две области, разграниченные значением в 1 μ с. Чем меньше res, тем чаще импульсы попадают на границу дух временных интервалов, от чего эффектиное значение f увеличивается. Чем больше res, тем чаще несколько импульсов попадает в один интервадл, от чего эффективное значение f уменьшается.

Таким образом res = $1~\mu$ с находится в промежутке между длительностью одного импульса и средним периодом повторения, а значит искомое значение частота темнового счёта:

$$f = (0.17 \pm 0.02) \text{ M}$$
Гц.

Шум фактор SiPM. Для расчета шум-фактора воспользуемся формулой

$$F = 1 + \frac{\sigma^2}{\mu^2} = 1.026,$$

где параметры взяты из гистограммы для разрешения 200 нс. Из σ дополничтельно вычтена $\sigma_{\rm sys}$.

Оценка величины заряда Оценить можно тремя способами. Во-первых, зная темновой ток и частоту темнового счета f имеем:

$$q = \frac{I_{\rm dark}}{f} = (3.1 \pm 0.4) \times 10^{-14} \, {\rm Kp} = (1.9 \pm 0.2) \times 10^5 \, e,$$

где e – заряд электрона. Во-вторых, исходя из формы пика (рис. 2) и внутреннего сопротивления осциллографа $R=50\,\mathrm{Om}$:

$$q = \frac{1}{R} \int\limits_{\rm pike} U(t) \, dt \approx \frac{1}{R} \times {\rm high} \times {\rm width} = \frac{1}{50 \; \Omega} \times (20 \, {\rm mB}) \times (2 \, {\rm ns}) \approx 5 \times 10^6 e.$$

В третьих, из прошлой работы известно, что по порядку величины емкость фотодетектора $C \approx 20\,\mathrm{n\Phi}$, откуда:

$$q \approx C \cdot \mu = 5 \cdot 10^{-13} \, \mathrm{K} \mathrm{J} = 3 \cdot 10^6 \, e.$$

Стандартные отклонения могут быть получены из отклонения амплитуды импульсов:

$$\frac{\sigma_q}{q} = \frac{\sigma}{\mu} = 0.16.$$

Вывод

Измерена зависимость частоты темнового счёта f(res) для SiPM, по которой определено значение f:

$$f = (0.17 \pm 0.02) \text{ M}$$
Гц.

Вид зависимости f(res) соответствует предполаагаемому. Определен шум-фактор SiPM:

$$F = 1.03$$
.

Оценено среднее количество электронов в одной лавине:

$$q = (1.9 \pm 0.2) \times 10^5 e$$
.

Дополнение

Таблица 1: Измерение частоты темнового счёта f с различным резрешением res

res, $\mu s/pt$	hits $\times 10^6$	wfms $\times 10^3$	f, МГц
0.04	15.450	1.005	0.153
0.10	18.570	1.004	0.184
0.20	18.360	1.040	0.176
0.80	16.900	1.036	0.163
2.00	13.520	1.021	0.132
8.00	5.972	1.005	0.059
40.00	1.251	1.001	0.012
200.00	0.251	1.004	0.002