

Chapter 5

Divide and Conquer

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 5

integers, matrices, and polynomials

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Complex Multiplication

Complex multiplication. (a + bi) (c + di) = x + yi.

Grade-school.
$$x = ac - bd$$
, $y = bc + ad$.

Q. Is it possible to do with fewer multiplications?

Complex Multiplication

Complex multiplication. (a + bi) (c + di) = x + yi.

Grade-school.
$$x = ac - bd$$
, $y = bc + ad$.

- Q. Is it possible to do with fewer multiplications?
- **A.** Yes. [Gauss] x = ac bd, y = (a + b)(c + d) ac bd.

3 multiplications, 5 additions

Remark. Improvement if no hardware multiply.

5.5 Integer Multiplication

Integer Addition

Addition. Given two *n*-bit integers a and b, compute a+b. Grade-school. $\Theta(n)$ bit operations.

Multiplication. Given two *n*-bit integers a and b, compute $a \times b$.

Brute-Force. $\Theta(n^2)$ bit operations.

1	1	1	1	1	1	0	1	
	1	1	0	1	0	1	0	1
+	0	1	1	1	1	1	0	1
1	0	1	0	1	0	0	1	0

Add

Divide-and-Conquer Multiplication: Warmup

To multiply two n-bit integers a and b:

- Multiply four $\frac{1}{2}n$ -bit integers, recursively.
- Add three pairs of $\frac{1}{2}n$ -bit integers and shift to obtain result.

$$x = 2^{n/2} \cdot x_1 - \frac{1}{2} \cdot \frac{1}$$

Ex.
$$a = 10001101$$
 $b = 11100001$

$$T(n) = 4T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n^2)$$

assumes n is a power of 2

Recursion Tree

$$T(n) = \begin{cases} 0 & \text{if } n = 0\\ 4T(n/2) + n & \text{otherwise} \end{cases}$$

$$T(n) = \sum_{k=0}^{\lg n} n \, 2^k = n \left(\frac{2^{1+\lg n} - 1}{2-1} \right) = 2n^2 - n$$

Karatsuba Multiplication

To multiply two n-bit integers a and b:

- Add two pairs of $\frac{1}{2}n$ bit integers.
- Multiply three pairs of $\frac{1}{2}n$ -bit integers, recursively.
- Add two pairs, subtract two pairs, and shift two n-bit intehers to obtain result.

$$a = 2^{n/2} \cdot a_1 + a_0$$

$$b = 2^{n/2} \cdot b_1 + b_0$$

$$ab = 2^n \cdot a_1 b_1 + 2^{n/2} \cdot (a_1 b_0 + a_0 b_1) + a_0 b_0$$

$$= 2^n \cdot a_1 b_1 + 2^{n/2} \cdot ((a_1 + a_0)(b_1 + b_0) - a_1 b_1 - a_0 b_0) + a_0 b_0$$
1
2
1
3
3

Karatsuba Multiplication

To multiply two n-bit integers a and b:

- Add two pairs of $\frac{1}{2}n$ bit integers.
- Multiply three pairs of $\frac{1}{2}n$ -bit integers, recursively.
- Add two pairs, subtract two pairs, and shift two n-bit intehers to obtain result.

$$a = 2^{n/2} \cdot a_1 + a_0$$

$$b = 2^{n/2} \cdot b_1 + b_0$$

$$ab = 2^n \cdot a_1 b_1 + 2^{n/2} \cdot (a_1 b_0 + a_0 b_1) + a_0 b_0$$

$$= 2^n \cdot a_1 b_1 + 2^{n/2} \cdot ((a_1 + a_0)(b_1 + b_0) - a_1 b_1 - a_0 b_0) + a_0 b_0$$
1
2
1
3
3

Theorem. [Karatsuba-Ofman 1962] Can multiply two n-bit integers in $O(n^{1.585})$ bit operations.

$$T(n) \leq \underbrace{T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + T(1+\lceil n/2 \rceil)}_{\text{recursive calls}} + \underbrace{\Theta(n)}_{\text{add, subtract,shift}} \Rightarrow T(n) = O(n^{\lg 3}) = O(n^{1.585})$$

Karatsuba: Recursion Tree

$$T(n) = \begin{cases} 0 & \text{if } n = 0\\ 3T(n/2) + n & \text{otherwise} \end{cases}$$

$$T(n) = \sum_{k=0}^{\lg n} n \left(\frac{3}{2}\right)^k = n \left(\frac{\left(\frac{3}{2}\right)^{1+\lg n} - 1}{\frac{3}{2} - 1}\right) = 3n^{\lg 3} - 2n$$

Karatsuba Multiplication

```
KARATSUBA-MULTIPLY(x, y, n)
IF (n=1)
   RETURN x \times y.
ELSE
   m \leftarrow [n/2].
   a \leftarrow |x/2^m|; b \leftarrow x \mod 2^m.
   c \leftarrow |y/2^m|; d \leftarrow y \mod 2^m.
   e \leftarrow \text{Karatsuba-Multiply}(a, c, m).
   f \leftarrow \text{Karatsuba-Multiply}(b, d, m).
   g \leftarrow \text{KARATSUBA-MULTIPLY}(a-b, c-d, m).
   RETURN 2^{2m} e + 2^m (e + f - g) + f.
```

Practice: Faster than grade-school algorithm for about 320-640 bits.

History of asymptotic complexity of integer multiplication

	1	
-	٠	-
	ı	

year	algorithm	order of growth
?	brute force	$\Theta(n^2)$
1962	Karatsuba-Ofman	$\Theta(n^{1.585})$
1963	Toom-3, Toom-4	$\Theta(n^{1.465})$, $\Theta(n^{1.404})$
1966	Toom-Cook	$\Theta(n^{1+\varepsilon})$
1971	Schönhage-Strassen	$\Theta(n \log n \log \log n)$
2007	Fürer	$n \log n 2^{O(\log^* n)}$
?	?	$\Theta(n)$

number of bit operations to multiply two n-bit integers

used in Maple, Mathematica, gcc, cryptography, ...

Remark. GNU Multiple Precision Library uses one of five different algorithm depending on size of operands.

integer arithmetic problems with same complexity: integer division, integer square, integer square root

Matrix Multiplication

Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$C_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

$$\begin{bmatrix} .59 & .32 & .41 \\ .31 & .36 & .25 \\ .45 & .31 & .42 \end{bmatrix} = \begin{bmatrix} .70 & .20 & .10 \\ .30 & .60 & .10 \\ .50 & .10 & .40 \end{bmatrix} \times \begin{bmatrix} .80 & .30 & .50 \\ .10 & .40 & .10 \\ .10 & .30 & .40 \end{bmatrix}$$

Brute Force. $\Theta(n^3)$ arithmetic operations.

Fundamental question. Can we improve upon brute force?

Matrix Multiplication: Warmup

To multiply two n-by-n matrices A and B:

- Divide: partition A and B into $\frac{1}{2}n$ -by- $\frac{1}{2}n$ blocks.
- Conquer: multiply 8 pairs of $\frac{1}{2}n$ -by- $\frac{1}{2}n$ matrices, recursively.
- Combine: add appropriate products using 4 matrix additions.

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$C_{11} = (A_{11} \times B_{11}) + (A_{12} \times B_{21})$$

$$C_{12} = (A_{11} \times B_{12}) + (A_{12} \times B_{22})$$

$$C_{21} = (A_{21} \times B_{11}) + (A_{22} \times B_{21})$$

$$C_{22} = (A_{21} \times B_{12}) + (A_{22} \times B_{22})$$

$$T(n) = \underbrace{8T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, form submatrices}} \implies T(n) = \Theta(n^3)$$

Fast Matrix Multiplication: Key Idea

Key idea. multiply 2-by-2 blocks with only 7 multiplications.

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \qquad P_1 = A_{11} \times (B_{12} - B_{22})$$

$$C_{11} = P_5 + P_4 - P_2 + P_6$$

$$C_{12} = P_1 + P_2$$

$$C_{21} = P_3 + P_4$$

$$C_{22} = P_5 + P_1 - P_3 - P_7$$

$$P_{1} = A_{11} \times (B_{12} - B_{22})$$

$$P_{2} = (A_{11} + A_{12}) \times B_{22}$$

$$P_{3} = (A_{21} + A_{22}) \times B_{11}$$

$$P_{4} = A_{22} \times (B_{21} - B_{11})$$

$$P_{5} = (A_{11} + A_{22}) \times (B_{11} + B_{22})$$

$$P_{6} = (A_{12} - A_{22}) \times (B_{21} + B_{22})$$

$$P_{7} = (A_{11} - A_{21}) \times (B_{11} + B_{12})$$

- 7 multiplications.
- 18 = 11 additions and +7 subtractions.

Fast Matrix Multiplication

To multiply two n-by-n matrices A and B: [Strassen 1969]

- Divide: partition A and B into $\frac{1}{2}n$ -by- $\frac{1}{2}n$ blocks.
- Compute: $7 \frac{1}{2}n$ -by- $\frac{1}{2}n$ matrices via 10 matrix additions.
- Conquer: multiply 7 pairs of $\frac{1}{2}n$ -by- $\frac{1}{2}n$ matrices, recursively.
- Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.

- Assume n is a power of 2.
- T(n) = # arithmetic operations.

$$T(n) = \underbrace{7T(n/2)}_{\text{recursive calls}} + \underbrace{\Theta(n^2)}_{\text{add, subtract}} \implies T(n) = \Theta(n^{\log_2 7}) = O(n^{2.81})$$

Fast Matrix Multiplication: Practice

Implementation issues.

- Sparsity.
- Caching effects.
- Numerical stability.
- Odd matrix dimensions.
- Crossover to classical algorithm around n = 128.

Common misperception. "Strassen is only a theoretical curiosity."

- Advanced Computation Group at Apple reports 8x speedup on 64 Velocity Engine when $n \approx 2{,}500$.
- Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax = b, determinant, eigenvalues, SVD, snf other matrix ops.

Linear algebra reductions

Matrix multiplication. Given two n-by-n matrices, compute their product.

problem	linear algebra	order of growth
matrix multiplication	$A \times B$	$\Theta(MM(n))$
matrix inversion	A^{-1}	$\Theta(MM(n))$
determinant	A	$\Theta(MM(n))$
system of linear equations	Ax = b	$\Theta(MM(n))$
LU decomposition	A = L U	$\Theta(MM(n))$
least squares	$\min Ax - b _2$	$\Theta(MM(n))$

numerical linear algebra problems with the same complexity as matrix multiplication

Fast Matrix Multiplication: Theory

- Q. Multiply two 2-by-2 matrices with 7 scalar multiplications?
- A. Yes! [Strassen 1969]

$$\Theta(n^{\log_2 7}) = O(n^{2.807})$$

- Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
- A. Impossible. [Hopcroft and Kerr 1971]

$$\Theta(n^{\log_2 6}) = O(n^{2.59})$$

- Q. Two 3-by-3 matrices with 21 scalar multiplications?
- A. Also impossible.

$$\Theta(n^{\log_3 21}) = O(n^{2.77})$$

- Q. Two 70-by-70 matrices with only 143,640 scalar multiplications?
- A. Yes! [Pan, 1980]

$$\Theta(n^{\log_{70}143640}) = O(n^{2.80})$$

- December, 1979. $O(n^{2.521813})$
- **January**, 1980. $O(n^{2.521801})$

History of asymptotic complexity of matrix multiplication

year	algorithm	order of growth
?	brute force	$O(n^3)$
1969	Strassen	$O(n^{2.808})$
1978	Pan	$O(n^{2.796})$
1979	Bini	$O(n^{2.780})$
1981	Schönhage	$O(n^{2.522})$
1982	Romani	$O(n^{2.517})$
1982	Coppersmith-Winograd	$O(n^{2.496})$
1986	Strassen	$O(n^{2.479})$
1989	Coppersmith-Winograd	$O(n^{2.376})$
2010	Strother	$O(n^{2.3737})$
2011	Williams	$O(n^{2.3727})$
?	?	$O(n^{2+\varepsilon})$

number of floating-point operations to multiply two n-by-n matrices