ATS 421/521

Climate Modeling Spring 2013

Lecture 5

- Stochastic Climate Models
- Meridional Energy Transport

Previous Lecture

Reading

• For Friday: Hargreaves et al. (2012)

For Monday: Script chapter 2.5

Stochastic Climate Models

OD-EBM Solutions

are smooth

Response timescale $\Delta t = C/B = 2$ years

real world has variability

Variability last 150 years (instrumental period)

Global surface air temperature anomaly from NASA/GISS

Variability last 400,000 years (paleo)

Estimated spectrum of surface temperatures including paleoclimate proxies. From Huybers & Curry (2006, Nature 441, 329).

Auto-Regressive Process of Order One (AR1)

Hasselmann (1976) Tellus

Periodogram

see chapter 12 of the book "Statistical Analysis in Climate Research" by von Storch and Zwiers (2001, Cambridge University Press)

HW2: include variability in your 0D EBM!

Meridional Energy Transport

TOA Fluxes from Satellites Earth Radiation Budget Experiment (ERBE)

Total Incident Solar Radiation S (W/m²)

use ERBE_mean.cdf shade solar

Absorbed Solar Radiation (W/m²)

In ferret: shade asr go land

Outgoing Longwave Radiation (W/m²)

In ferret: shade olr go land

Zonally Averaged Incident Solar Radiation

red: $S(\phi) = 195 + 125\cos(2\phi)$

use in 1D EBM

Zonally averaged absorbed solar and outgoing longwave radiation

Diffusive parameterization of meridional heat transport:

$$\vec{F}_{m} = -CK \vec{\nabla} T = -CK \frac{\partial T}{\partial y}$$
Heat Diffusivity Temperature Gradient

$$C\frac{\partial T}{\partial t} = -\vec{\nabla} \vec{F}_m + F_{SW} - F_{LW}$$

$$\uparrow$$
Meridional
Heat Flux
Convergence

(2.18)

in spherical coordinates

Meridional Heat Flux Divergence:

$$\vec{\nabla} \vec{F}_{m} = -\vec{\nabla} (CK \vec{\nabla} T) = \frac{-1}{R^{2} \cos \phi} \frac{\partial}{\partial \phi} \left(CK \cos \phi \frac{\partial T}{\partial \phi} \right)$$
Discretized: latitude

Discretized:

$$-\vec{\nabla}\vec{F}_{m} = \frac{-1}{R\cos\phi} \frac{\Delta F_{m}}{\Delta \phi} = \frac{-1}{R\cos\phi} \frac{F_{mj+1} - F_{mj}}{\phi_{j+1}^{2} - \phi_{j}^{2}}$$

$$F_{mj} = -CK_{j} \frac{\cos \tilde{\phi}_{j}}{R} \frac{T_{j} - T_{j-1}}{\phi_{j} - \phi_{j-1}}$$

Set up 10 grid from pole to pole.

Boundary Conditions:

$$F_{m1} = F_{mN+1} = 0$$

