Analyse

Exercice 1 Théorème de Césàro et applications.

Soient $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N}$ et $\ell\in\mathbb{R}$.

1. (a) Montrer que

$$u_n \xrightarrow[n \to +\infty]{} \ell \implies \frac{1}{n} \sum_{k=1}^n u_k \xrightarrow[n \to +\infty]{} \ell.$$

- (b) Étudier la réciproque.
- 2. Lemme de l'escalier.

Montrer que

$$u_{n+1} - u_n \xrightarrow[n \to +\infty]{} \ell \implies \frac{u_n}{n} \xrightarrow[n \to +\infty]{} \ell.$$

3. On suppose désormais que

$$\forall n \in \mathbb{N}, u_n > 0 \text{ et } \ell > 0.$$

Montrer que

$$u_n \xrightarrow[n \to +\infty]{} \ell \implies \sqrt[n]{\prod_{k=1}^n u_k} \xrightarrow[n \to +\infty]{} \ell.$$

Exercice 2 Transformation d'Abel.

Soient $(\varepsilon_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$. On pose, pour $n\in\mathbb{N}$, $V_n\coloneqq\sum_{k=0}^nv_k$.

1. Principe de la sommation d'Abel.

Montrer que

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=0}^n \varepsilon_k v_k = \sum_{k=0}^{n-1} (\varepsilon_k - \varepsilon_{k+1}) V_k + \varepsilon_n V_n.$$

2. Démonstration du théorème d'Abel.

On suppose que $(\varepsilon_n)_{n\in\mathbb{N}}$ est une suite décroissante de limite nulle et que $(V_n)_{n\in\mathbb{N}}$ est bornée. Montrer que $\sum_n \varepsilon_n v_n$ converge.

3. Application.

Soient $\alpha > 0$, $\theta \in \mathbb{R} \setminus (2\pi\mathbb{Z})$.

- (a) Montrer que la série $\sum \frac{e^{in\theta}}{n^{\alpha}}$ converge.
- **(b)** En déduire la nature des séries $\sum \frac{\cos(n\theta)}{n^{\alpha}}$ et $\sum \frac{\sin(n\theta)}{n^{\alpha}}$.

Exercice 6

Montrer que la série $\sum_{n\geqslant 2}\ln\Bigl(1-\frac{1}{n^2}\Bigr)$ converge et calculer sa somme.

Exercice 7

Soit $(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+)^{\mathbb{N}}$ une suite positive.

- **1.** Est-ce que, si $u_n = \underset{n \to +\infty}{\mathfrak{o}} \left(\frac{1}{n}\right)$, alors $\sum_n u_n$ converge?
- 2. Montrer que

$$\left\{egin{aligned} (u_n)_{n\in\mathbb{N}} & ext{est décroissante} \ \sum_n u_n & ext{converge} \end{aligned}
ight\} & \implies u_n = \mathop{\mathfrak{o}}_{n o +\infty} \Big(rac{1}{n}\Big).$$

Exercice 20

Existe-t-il $x, y \notin \mathbb{Q}$ tels que $x^y \in \mathbb{Q}$?

Exercice 21

Soit $f \in \mathscr{C}^2(\mathbb{R}, \mathbb{R})$. Calculer

$$\lim_{x \to 0} \frac{f'(x) - \frac{f(x) - f(0)}{x}}{x}.$$

Algèbre

Exercice 28

Soit $n \ge 2$. Soit $P \in \mathbb{R}_n[X]$ ayant n racines réelles distinctes.

Soit a > 0. Que dire des racines de $P^2 + a$?

Exercice 30

Déterminer les polynômes $P \in \mathbb{R}[X]$ de degré supérieur ou égal à 1 tels que P' divise P.

Exercice 36 Noyaux et images itérés, cœur et nilespace.

Soient E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$ et $u \in L(E)$.

1. Montrer que

$$\forall k \in \mathbb{N}$$
, $\operatorname{Ker}(u^k) \subset \operatorname{Ker}(u^{k+1})$ et $\operatorname{Im}(u^{k+1}) \subset \operatorname{Im}(u^k)$.

- **2.** Montrer qu'il existe $k \in \mathbb{N}$ tel que $Ker(u^k) = Ker(u^{k+1})$. On notera p le plus petit entier k vérifiant cette propriété.
- 3. Montrer que

$$\forall k \in \mathbb{N}, \quad \mathsf{Ker}(u^{p+k}) = \mathsf{Ker}(u^p) \ \ \mathsf{et} \ \ \ \mathsf{Im}(u^{p+k}) = \mathsf{Im}(u^p)$$

4. Montrer que $E = \text{Ker}(u^p) \oplus \text{Im}(u^p)$.

Les sous-espaces $Im(u^p)$ et $Ker(u^p)$ s'appellent respectivement « cœur » et « nilespace » de u.

Exercice 40 Matrices de rang 1.

Soient $n \in \mathbb{N}^*$ et $A \in M_n(\mathbb{C})$ une matrice de rang 1.

- **1.** Montrer qu'il existe $C \in M_{n,1}(\mathbb{C})$ et $L \in M_{1,n}(\mathbb{C})$ telles que A = CL.
- **2.** Montrer que $A^2 = \text{Tr}(A)A$.
- **3.** Déterminer, pour $p \in \mathbb{N}$, une expression de A^p .

Exercice 42

Soient $n \in \mathbb{N}^*$ et $N \in M_n(\mathbb{C})$ une matrice *nilpotente*.

La matrice N est dite nilpotente lorsqu'il existe $p \in \mathbb{N}$ tel que $N^p = 0_{M_n(\mathbb{C})}$.

Montrer que $N - I_n$ est inversible et déterminer son inverse.

Exercice 43 Lemme de Hadamard.

Soit $n \in \mathbb{N}^*$.

Une matrice $A \in M_n(\mathbb{C})$ *est dite* à diagonale strictement dominante *lorsque*

$$\forall i \in [1, n], \quad |a_{i,i}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{i,j}|.$$

Montrer qu'une matrice à diagonale strictement dominante est inversible.

Exercice 55 Inversibilité dans $M_n(\mathbb{Z})$.

Soit $n \in \mathbb{N}^*$. Soit $M \in M_n(\mathbb{Z})$.

Déterminer une condition nécessaire et suffisante pour que M soit inversible et que $M^{-1} \in M_n(\mathbb{Z})$.

Exercice 59

Soit $n \in \mathbb{N}^*$. Calculer le déterminant

$$\Delta_n := \begin{vmatrix} 3 & 1 & & & & (0) \\ 2 & 3 & 1 & & & \\ & 2 & 3 & \ddots & & \\ & & \ddots & \ddots & 1 \\ (0) & & 2 & 3 \end{vmatrix}.$$

Exercice 69 Similitudes d'un espace euclidien.

Soient $(E, \langle \cdot | \cdot \rangle)$ un espace euclidien de dimension $n \in \mathbb{N}^*$ et $f \in L(E)$.

• On dit que f est une similitude de rapport $\lambda \in \mathbb{R}_+$ lorsque

$$\forall x \in E, \quad ||f(x)|| = \lambda ||x||.$$

On dit que f préserve l'orthogonalité lorsque

$$\forall x, y \in E, \quad x \perp y \implies f(x) \perp f(y).$$

- **1.** Soient $x, y \in E$ tels que ||x|| = ||y|| = 1. Montrer que $x y \perp x + y$.
- **2.** Soit $\lambda \in \mathbb{R}_+$. Montrer que

$$f$$
 est une similitude de rapport $\lambda \iff \forall x,y \in E, \ \left\langle f(x) \,\middle|\, f(y) \right\rangle = \lambda^2 \langle x \,\middle|\, y \rangle.$

- **3.** Soit $\lambda \in \mathbb{R}_+$. On suppose que f est une similitude de rapport λ . Montrer que f préserve l'orthogonalité.
- **4.** On suppose que f préserve l'orthogonalité. Soit $(e_1, ..., e_n)$ une base orthonormée de E.
 - (a) Soient $i, j \in [1, n]$. Montrer que $||f(e_i)|| = ||f(e_j)||$.
 - **(b)** En déduire qu'il existe $\lambda \in \mathbb{R}_+$ tel que f est une similitude de rapport λ .

Exercice 75

On se place dans $\mathbb{R}[X]$ que l'on munit du produit scalaire

$$\langle \cdot \mid \cdot \rangle : (P, Q) \longmapsto \int_0^1 P(t)Q(t) dt.$$

Existe-t-il $A \in \mathbb{R}[X]$ tel que pour tout $P \in \mathbb{R}[X]$, $P(0) = \langle A \mid P \rangle$?

Exercice 80 Suites de carré sommable.

On considère

$$\ell^2 \coloneqq \left\{ (u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \;\;\middle|\;\; \sum_n \lvert u_n \rvert^2 \; \mathsf{converge}
ight\}.$$

On définit sur $\ell^2 \times \ell^2$ l'application suivante :

$$\langle \cdot \mid \cdot \rangle : \left((u_n)_{n \in \mathbb{N}}, (v_n)_{n \in \mathbb{N}} \right) \longmapsto \sum_{n=0}^{+\infty} u_n v_n.$$

- 1. Montrer que $\left(\ell^2,\left\langle\cdot\mid\cdot\right\rangle\right)$ est un espace préhilbertien réel.
- 2. On considère

$$F:=\left\{(u_n)_{n\in\mathbb{N}}\quad\middle|\quad\exists p\in\mathbb{N}:\ \forall n\geqslant p,\ u_n=0\right\}.$$

- (a) Montrer que F est un sous-espace vectoriel de ℓ^2 , différent de ℓ^2 .
- **(b)** Montrer que $F \neq (F^{\perp})^{\perp}$.

Probabilités

Exercice 84

Soit $(p_n)_{n\in\mathbb{N}^*}\in[0,1]^{\mathbb{N}^*}$. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes telle que

$$\forall n \in \mathbb{N}^*, \quad X_n \sim \mathscr{B}(p_n).$$

On pose, pour $n \in \mathbb{N}^*$,

$$S_n := rac{X_1 + \cdots + X_n}{n}$$
 et $m_n := rac{p_1 + \cdots + p_n}{n}$.

Montrer que

$$\forall \varepsilon > 0, \quad \lim_{n \to +\infty} \mathbb{P}(|S_n - m_n| \geqslant \varepsilon) = 0.$$

Exercice 85

Soit X une variable aléatoire réelle définie sur un espace probabilisé fini. Montrer que

$$\mathbb{E}[X]^2 \leqslant \mathbb{E}[X^2].$$

Exercice 89

1. Soient $n \in \mathbb{N}^*$ et $p \in [0,1]$. Soit X une variable aléatoire suivant une loi binomiale $\mathcal{B}(n,p)$. Montrer que

$$\forall \varepsilon > 0, \quad \mathbb{P}\left(\left|\frac{X}{n} - p\right| \geqslant \varepsilon\right) \leqslant \frac{p(1-p)}{n\varepsilon^2}.$$

2. Application.

On lance un dé cubique parfait. Déterminer un nombre de lancers minimal pour pouvoir affirmer, avec un risque d'erreur inférieur à 5%, que la fréquence d'apparition du 6 diffère de $^{1}/_{6}$ d'au plus $^{1}/_{100}$.