Derivation of Formulas for Poisson Power Calculation

Adam Sacarny

February 9, 2021

Here I work through the Poisson power calculation formulas derived in Signorini (1991).

Consider the poisson model in which individual i's mean function is given by:

$$\lambda_{i} = t_{i} \exp\left(\beta_{0} + \beta' x_{i}\right)$$

where t_i is exposure time (assumed independent of x_i), β_0 is a constant term, and $\beta = (\beta_1, \dots, \beta_p)$ is a vector of coefficients. Signorini shows that the ML estimate $\hat{\beta}$ is asymptotically distributed:

$$N\left(\beta, \frac{\exp\left(\beta_0\right) M^{-1}\left(\beta\right)}{N\mu_T}\right)$$

where N is the sample size, μ_T is the mean of the exposure time , and $M\left(\beta\right)$ is derived from differentiating the moment generating function of the covariates X.

We are interested in testing the hypothesis:

$$H_N: \quad \beta = (\beta_1^N, \beta_2, \dots, \beta_p)$$

 $H_A: \quad \beta = (\beta_1^A, \beta_2, \dots, \beta_p)$

Let $V\left(\beta_{1}\right)=\left\{M^{-1}\left(\beta\right)\right\}_{22}$, the element of M corresponding to β_{1} . Then under H_{N} , $\beta_{1}\sim N\left(\beta_{1}^{N},\frac{\exp(\beta_{0})V\left(\beta_{1}^{N}\right)}{N\mu_{T}}\right)$ and under H_{A} , $\beta_{1}\sim N\left(\beta_{1}^{A},\frac{\exp(\beta_{0})V\left(\beta_{1}^{A}\right)}{N\mu_{T}}\right)$.

Thus under H_A :

$$\Pr\left(\hat{\beta}_{1} - \beta_{1}^{N} > z_{\alpha}\sqrt{\frac{\exp(\beta_{0}) V\left(\beta_{1}^{N}\right)}{N\mu_{T}}}\right)$$

$$= \Pr\left(\frac{\beta_{1}^{A} - \hat{\beta}_{1}}{\sqrt{\frac{\exp(\beta_{0}) V\left(\beta_{1}^{A}\right)}{N\mu_{T}}}} < \frac{(\beta_{1}^{A} - \beta_{1}^{N}) - z_{\alpha}\sqrt{\frac{\exp(\beta_{0}) V\left(\beta_{1}^{N}\right)}{N\mu_{T}}}}{\sqrt{\frac{\exp(\beta_{0}) V\left(\beta_{1}^{A}\right)}{N\mu_{T}}}}\right)$$

$$= \Phi\left(\frac{(\beta_{1}^{A} - \beta_{1}^{N}) \sqrt{N\mu_{T} \exp(-\beta_{0})} - z_{\alpha}\sqrt{V\left(\beta_{1}^{N}\right)}}{\sqrt{V\left(\beta_{1}^{A}\right)}}\right)$$

And thus we achieve power ρ when:

$$\frac{\left(\beta_{1}^{A} - \beta_{1}^{N}\right)\sqrt{N\mu_{T}\exp\left(-\beta_{0}\right)} - z_{\alpha}\sqrt{V\left(\beta_{1}^{N}\right)}}{\sqrt{V\left(\beta_{1}^{A}\right)}} > z_{\rho}$$

Rearranging shows that to achieve power ρ we must have sample size:

$$N > \frac{\exp\left(-\beta_0\right)}{\mu_T \left(\beta_1^A - \beta_1^N\right)^2} \left[z_\alpha \sqrt{V\left(\beta_1^N\right)} + z_\gamma \sqrt{V\left(\beta_1^A\right)} \right]^2$$

Then all power calculations flow from the above given $V(\beta_1)$. This is all as given in Signorini (1991) with the minor addition of allowing for a null hypothesis other than $\beta_1^N = 0$.

Suppose that there is over- or under-dispersion so that $\mathrm{Var}\left[Y_i|X_i\right] \neq \mathbb{E}\left[Y_i|X_i\right]$. If we allow that $\mathrm{Var}\left[Y_i|X_i\right] = \sigma^2\mathbb{E}\left[Y_i|X_i\right]$, the above power calculations hold by redefining $V\left(\beta_1\right) \equiv \sigma^2V\left(\beta_1\right)$. σ^2 can be estimated from the Poisson goodness of fit tests available in Stata by running estat gof after a Poisson regression and dividing the fit statistic by its degrees of freedom.

In the univariate case, when X is distributed $\operatorname{Bernoulli}(\pi)$, we have $V(\beta_1) = \left(\pi e^{\beta}\right)^{-1} + (1-\pi)^{-1}$.

In the multivariate case, suppose X_1 is distributed $\operatorname{Bernoulli}(\pi)$ independently of (X_2,\ldots,X_p) , which is distributed $N\left(\mu,\Sigma\right)$, and let $\tilde{\beta}=(\beta_2,\ldots,\beta_p)$. Then we have $V\left(\beta_1\right)=\left[\left(\pi e^{\beta}\right)^{-1}+(1-\pi)^{-1}\right]\kappa$ where $\kappa=\exp\left(-\tilde{\beta}'\mu-\frac{1}{2}\tilde{\beta}'\Sigma\tilde{\beta}\right)$.

References

Signorini, David F. "Sample size for Poisson regression" Biometrika (1991)