Diese Person existiert nicht! https://this-person-does-not-exist.com/de

Generative Al

Generative AI (Wiki)

Generative künstliche Intelligenz (auch generative KI oder GenAI) bezeichnet künstliche Intelligenz, die in der Lage ist, Texte, Bilder oder andere Medien mithilfe generativer Modelle zu erzeugen. Generative KI-Modelle lernen die Muster und Struktur ihrer Eingabedaten während des Trainings und erzeugen anschließend neue Daten mit ähnlichen Merkmalen.

Generative AI (ChatGPT (Selbst eine generative AI))

Ein generatives Modell in der künstlichen Intelligenz (KI) ist ein Typ von Modell, das darauf abzielt, neue Daten zu erstellen, die ähnlich zu den Trainingsdaten sind, mit denen es trainiert wurde. Im Gegensatz zu diskriminativen Modellen, die darauf ausgelegt sind, zwischen verschiedenen Klassen oder Kategorien zu unterscheiden, versucht ein generatives Modell, die Verteilung der Trainingsdaten zu erfassen, um neue Daten zu generieren.

Generative Al

Generative Al

Einsatzgebiete in der Computergrafik:

- Generierung von (teilbereichen in) Bildern.
- Konstruktion von 2D und 3D Modellen.
- Upsampling von Bildern auf eine höhere Auflösung.
- Filter (Endrauschen bei Pathtracing).

Das Gradientenverfahren angewendet auf eine Lossfunktion eines neuronalen Netzes wird als Backpropagation bezeichnet. Gegeben ist ein neuronales Netz $f: \Omega \times \mathbb{R}^n \to \mathbb{R}^m$, und ein Datensatz $D:=\{(x_i,y_i)\}$ mit $x_i\in \mathbb{R}^n,y_i\in \mathbb{R}^m$. Finde Gewichte Omega, so dass Lossfunktion

$$L_D:\Omega\subset\mathbb{R}^n\to\mathbb{R}$$

minimal wird. Zum Beispiel

$$L_D(\omega) := \sum_{(x_i, y_i) \in D} (f(\omega, x_i) - y_i)^2$$

Mehrdimensionale Differentialrechnung

Differenzierbarkeit

Gradient

Der Vektor

$$\nabla f(a) := \begin{pmatrix} \frac{\partial f(a)}{\partial x_1} \\ \vdots \\ \frac{\partial f(a)}{\partial x_n} \end{pmatrix}$$

wird als Gradient bezeichnet. Es ist $df(a) \cdot h = \langle \nabla f(a), h \rangle$.

Figure

Figure

Gradientenverfahren

Gradientenverfahren

Wie kann man Minima einer differenzierbaren Abbildung $f: \mathbb{R}^n \to \mathbb{R}$ finden?

Gradientenverfahren

- An jedem Punkt $x_k \in \mathbb{R}^n$ zeigt der negative Gradient $d_k := -\nabla f(x_k)$ in die steilste Abstiegsrichtung.
- Für hinreichend kleines α_k folgt mit Satz über die lokale Linearisierung:

$$f(x_{k+1}) = f(x_k + \alpha_k d_k) = f(x_k) + \alpha_k df(x_k) d_k + R(\alpha_k dk)$$

- Setze $x_{k+1} = x_k + \alpha_k d_k$
- Es gilt $f(x_{k+1}) \le f(x_k)$, falls $\nabla f(x_k) \ne 0$
- Falls die folge $f(x_k)$ beschränkt ist, so ist dieser Fixpunkt x^* ein Minimum, da $\nabla f(x^*) = 0$ gelten muss.

Gradientenverfahren

Figure: Quelle: Wikipedia

Gradientenverfahren

Höhenlinien

Sei $f: \mathbb{R}^n \to \mathbb{R}$ eine differenzierbare Funktion. Eine Kurve $\gamma: I \to \mathbb{R}^n$, auf der f konstant ist, also $f(\gamma(t)) = c$ für ein festes $c \in \mathbb{R}$ gilt, heißt Höhenlinie.

Figure: Quelle:

https://getoutside.ordnancesurvey.co.uk/guides/understanding-map-contour-lines-for-beginners/

Gradientenverfahren

Höhenlinien

Der Gradient steht senkrecht auf Höhenlinien.

Backpropagation

Backpropagation

• Initialisiere k := 0 und zufällige Gewichte w_0 .

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- ullet Initialisiere Genauigkeit $\epsilon>0$

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- ullet Initialisiere Genauigkeit $\epsilon>0$
- While $||\nabla L_D(\omega)|| > \epsilon$

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- While $||\nabla L_D(\omega)|| > \epsilon$
- Bestimme α_k mit $L_D(\omega_k + \alpha d_k) = L_D(\omega_k) + \alpha_k dL_D(\omega_k) d_k + R(\alpha_k dk)$

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- While $||\nabla L_D(\omega)|| > \epsilon$
- Bestimme α_k mit $L_D(\omega_k + \alpha d_k) = L_D(\omega_k) + \alpha_k dL_D(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- ullet Initialisiere Genauigkeit $\epsilon>0$
- While $||\nabla L_D(\omega)|| > \epsilon$
- Bestimme α_k mit $L_D(\omega_k + \alpha d_k) = L_D(\omega_k) + \alpha_k dL_D(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.
- $k \leftarrow k + 1$

Backpropagation

Mini Batch

• Datensatz D sehr groß (Big Data)

Backpropagation

Mini Batch

- Datensatz D sehr groß (Big Data)
- Berechnung des Gradienten der Lossfunktion entsprechend aufwendig.

Backpropagation

<u>Mi</u>ni Batch

- Datensatz D sehr groß (Big Data)
- Berechnung des Gradienten der Lossfunktion entsprechend aufwendig.
- Wende Backpropagation auf Teilräume $D' \subset D$ an (Minibatch).

Backpropagation

Mini Batch

- Datensatz D sehr groß (Big Data)
- Berechnung des Gradienten der Lossfunktion entsprechend aufwendig.
- Wende Backpropagation auf Teilräume $D' \subset D$ an (Minibatch).
- #D' = 1 stochastischer Gradientenabstieg.

Figure: Quelle: https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a

Backpropagation

Backpropagation

• Initialisiere k := 0 und zufällige Gewichte w_0 .

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$

Backpropagation

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D'_{k}}(\omega)|| > \epsilon$

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D'_{k}}(\omega)|| > \epsilon$
- ullet Bestimme α_k mit

$$L_{D'_k}(\omega_k + \alpha d_k) = L_{D'_k}(\omega_k) + \alpha_k dL_{D'_k}(\omega_k) d_k + R(\alpha_k dk)$$

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D'_{k}}(\omega)|| > \epsilon$
- Bestimme α_k mit $L_{D'_{\iota}}(\omega_k + \alpha d_k) = L_{D'_{\iota}}(\omega_k) + \alpha_k dL_{D'_{\iota}}(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D'_k}(\omega)|| > \epsilon$
- Bestimme α_k mit $L_{D'_k}(\omega_k + \alpha d_k) = L_{D'_k}(\omega_k) + \alpha_k dL_{D'_k}(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.
- Wähle neue Teilmenge $D'_{k+1} \subset D$.

- Initialisiere k := 0 und zufällige Gewichte w_0 .
- Initialisiere Genauigkeit $\epsilon > 0$
- Wähle Teilmenge $D_0' \subset D$
- While $||\nabla L_{D'_k}(\omega)|| > \epsilon$
- Bestimme α_k mit $L_{D'_k}(\omega_k + \alpha d_k) = L_{D'_k}(\omega_k) + \alpha_k dL_{D'_k}(\omega_k) d_k + R(\alpha_k dk)$
- Setze $\omega_{k+1} := \omega_k + \alpha_k d_k$.
- Wähle neue Teilmenge $D'_{k+1} \subset D$.
- $k \leftarrow k + 1$

Automatisches Ableiten

Figure: Quelle: Wikipedia

Automatisches Ableiten in Pytorch Automatisches Ableiten in JAX

Autoencoder

Autoencoder

Original

Encoder

Encoding

Decoder

Reconstruction

Generator & Discriminator

