

## ROSSMANN MAĞAZA SATIŞLARI TAHMİNİ

Harun ÇATAL

Danışman: Prof. Dr. Şule Gündüz Öğüdücü

#### • ÖZET

- Projenin Açıklaması
- Projenin Amacı
- Projenin Kapsamı
- Proje Hakkında Teknik Bilgiler
- Veri Kümeleri
- Özellikler
- Ön Hazırlık
- Ekstra Özellik Türetme
- Veri Analizi
- Modeller
- Sonuç
- Görselleştirme
- Kaggle Sonuçları

### Projenin Açıklaması

- Proje bir Kaggle yarışmasıdır.
- Rossmann Avrupa'nın çeşitli ülkelerinde yayılmış olan 3000'den fazla mağazası olan kozmetik ve ilaç ticareti yapan bir şirkettir.



### Projenin Amacı

- 1 Ocak 2013 ile 31 Temmuz 2015 tarihleri arasında
   1115 Rossmann mağazasına ait satış verilerini kullanarak
   856 Rossmann mağazasının 17 Eylül 2015' e kadar olan
   satışlarını öngörmektir.
- Projenin amacı Rossmann şirketine sağlam bir satış tahmin modeli oluşturmaktır.
- Ayrıca mağaza müdürlerini doğru şekilde bilgilendirerek mağaza hakkında gerekli önlemler almalarını sağlamaktır.

### Projenin Kapsamı

- Farklı ön hazırlık metodlarını uygulama
- Uygun modelleri seçme
- Uygun modelleri veri kümesine uygulama
- Verileri görselleştirme
- Sonuçları yorumlama

### Proje Hakkında Teknik Bilgiler

- Problem Türü: Veriden tahmin yapma (Forecasting)
- Programlama Dili: Python 3.5
- Programlama Ekipmanları: Python Anaconda Spyder IDE
- Kullanılan Kütüphaneler: Pandas, Skilearn, Numpy, Matplotlib,
   Seaborn

#### Veri Kümeleri

☐ Projede kullanılmak üzere elimizde 3 adet veri kümesi vardır.

| No | Veri Kümesi | Özellikler                                                                                                                                   | Nitelik sayısı | Boyut( Satır) |
|----|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|
| 1  | Train       | store, day of week,<br>date,<br>sales,customers,<br>open, promo, state<br>holiday, school<br>holiday                                         | 9              | 1017210       |
| 2  | Store       | store, storetype, assortment, competition distance, competition open since month, promo2, promo2since week, promo2since year, promo interval | 10             | 1115          |
| 3  | Test        | id, store, dayofweek,<br>date, open, promo,<br>state holiday, school<br>holiday                                                              | 8              | 41089         |

### Veri Kümeleri

☐ Train veri kümesindeki eksik bilgileri tamamlamak için Train ve Store veri kümelerine katma( join) işlemi uygulanmıştır.

# Özellikler

| No | Özellik        | Muhtemel Değerler                                        |  |  |
|----|----------------|----------------------------------------------------------|--|--|
| 1  | Store          | 1 ile 1115 arası                                         |  |  |
| 2  | DayOfWeek      | 1,2,3,4,5,6,7                                            |  |  |
| 3  | Date           | 01.01.2013 ile 31.07.2015 arası                          |  |  |
| 4  | Sales          | 0 ile 41551 arası                                        |  |  |
| 5  | Customers      | 0 ile 7338 arası                                         |  |  |
| 6  | Open           | 0( Kapalı), 1( Açık)                                     |  |  |
| 7  | Promo          | 0( Promosyon yok), 1( Promosyon)                         |  |  |
| 8  | State Holiday  | a: Resmi tatil<br>b: Paskalya<br>c: Noel<br>0: Tatil yok |  |  |
| 9  | School Holiday | 0( Yok), 1( Var)                                         |  |  |
| 10 | Store Type     | a: En büyük b, c, d: En küçük                            |  |  |
| 11 | Assortment     | a: Normal<br>b: Ekstra<br>c: Genişletilmiş               |  |  |

# Özellikler

| No | Özellik                        | Muhtemel Değerler                                                     |
|----|--------------------------------|-----------------------------------------------------------------------|
| 12 | Competition distance           | 20 ile 70860 arası                                                    |
| 13 | Competition open since month   | 1 ile 12 arası                                                        |
| 14 | Competition open since year    | 1900 ile 2015 arası                                                   |
| 15 | Promo2 (Uzun süreli promosyon) | 0( Yok), 1( Var)                                                      |
| 16 | Promo2 since week              | 1 ile 50 arası                                                        |
| 17 | Promo2 since year              | 2009-2015                                                             |
| 18 | Promo interval                 | (jan, apr, jul, oct)<br>(fab, may, aug, nov)<br>(mar, jun, sept, dec) |

#### Ön Hazırlık

- Verideki boşlukların silinmesi
- Açık mağazaların veri kümesine alınması
- 🛘 Satış yapan mağazaların satış yapılan günlerinin alınması
- Tarih değişkenini parçalayıp özellik olarak ekleme
- ☐ Haritalama işlemleri

### Ekstra Özellik Türetme

- Süre Aralığının Anlamlandırılması
  - CompetitionOpen, PromoOpen özelliklerinde
  - -1 yıl 3 ay= 15, 3 yıl 3 ay = 39

#### Ekstra Özellik Türetme

- □ Tarihin promosyon aralığında olduğunun kontrolü
  - PromoInterval= (jan, apr, jul, oct) (fab, may, aug, nov) (mar, jun, sept, dec)
- 🛘 isPromoMonth özelliği eklendi.

#### Ekstra Özellik Türetme

- ☐ Haftalık, aylık ve yıllık satış miktarları
  - Her mağazanın haftalık, aylık ve yıllık satış rakamları belirlenerek özellik olarak veri kümesine eklenmiştir.

| 1  | WeekAvg, MonthAvg, YearAvg |
|----|----------------------------|
| 2  | 5235,4491,4527             |
| 3  | 5235,4491,4527             |
| 4  | 5235,4491,4527             |
| 5  | 5235,4491,4527             |
| 6  | 5235,4491,4527             |
| 7  | 3876,4491,4527             |
| 8  | 3876,4491,4527             |
| 9  | 3876,4491,4527             |
| 10 | 3876,4491,4527             |
| 11 | 2076 4401 4527             |

□ Ortalama müşteri sayısı & Ortalama satış



□ "DayOfWeek" özelliğinin analizi



☐ "Promo" özelliğinin analizi



☐ "SchoolHoliday" özelliğinin analizi



☐ "StateHoliday" özelliğinin analizi



"Assortment" özelliğinin analizi



☐ "StoreType"



☐ Özelliklerin önemi tablosu



- ☐ Random Forest Regresyonu
  - Random Forest algoritması regresyon esnasında birden fazla karar ağacı üreterek regresyon değerini yükseltmeyi hedefleyen bir algoritmadır.
  - Bireysel olarak oluşturulan karar ağaçları bir araya gelerek karar ormanı oluşturur.
  - Buradaki karar ağaçları bağlı olduğu veri kümesinden rastgele seçilmiş birer alt kümedir.

- □ Random Forest Regresyonu
  - Birçok alanda uygulanabilir. Oldukça hızlı ve doğru sonuçlar verir.
  - İyi sonuçlar vermesinin nedeni oldukça büyük ağaçlar oluşturmasıdır.
  - Mümkün olduğunca birbirinden farklı ağaçlar oluşturarak düşük korelasyon yapısında topluluklar oluşturur.
  - Bagging, birçok bağımsız belirleyici/model/öğrenici inşa ettiğimiz ve bazı model ortalama teknikleri kullanarak bunları birleştiren basit bir toplama tekniğidir.

- □ Random Forest Regresyonu
  - Birbirinden farklı olarak kurulan sınıflama ve regresyon ağaçları sonuca giden karar ormanını oluşturur. Karar ormanı oluşumu sırasında elde edilen sonuçlar bir araya gelerek en son tahmin yapılır.



- ☐ Random Forest Regresyonu
  - Ağaçlar oluştuktan sonra;
  - Test özelliklerini alınır ve sonuçları tahmin etmek ve tahmin edilen sonucu saklamak için rastgele oluşturulmuş karar ağacının kurallarını kullanılır.
  - Tahmin edilen her hedef için oylar hesaplanır.
  - Rastgele Orman algoritmasından son tahmin olarak yüksek oy olan tahmin seçilir.

□ Random Forest Regresyonu

#### Avantajları:

- Hem sınıflandırma hem regresyon görevlerinde kullanılıyor.
- Aşırı uyum bu tür projeler için en büyük sorunlardandır. Ama Random Forest' te yeteri kadar ağaç varsa bu sorun ortadan kalkar.
- Kategorik değerler için modellenebilir.

- ☐ XGBoost Regresyonu
  - Random Forest algoritmasındaki bagging yönteminde tahminler bağımsız olarak ele alınır.
  - Bu modelde ele aldığımız boosting ise tahminlerin bagging yönteminin aksine sırayla yapılmaktadır.
  - Bu nedenle bir gözlemin sonraki modellerde de görülme olasılığı eşit değildir.
  - En yüksek hataya sahip olanlar en çok görünenlerdir. Bu yüzden gözlemler hata oranına göre seçilmektedir.

- ☐ XGBoost Regresyonu
  - XGBoost algoritması sınıflandırma ve regresyon için oluşturulmuş bir makine öğrenmesi tekniğidir.
  - XGBoost zayıf tahmin modellerinin biraraya gelmesiyle karar ağaçlarının oluşturmuş olduğu bir modeldir.

- ☐ XGBoost Regresyonu
  - Modellerin amacı denetlenebilir bir kayıp fonksiyonu tanımlamaktır.
  - Modelin hedefi bu kaybı en aza indirgemektir.
  - Model kayıp fonksiyonunu sıfıra yaklaştıracak şekilde tahminlerini güncellemektedir.
  - Kayıp = MSE =  $\Sigma$  (  $y_i y_i^p$  )  $y_i = i$ . hedef değer,  $y_i^p = i$ . tahmin değeri,  $L(y_i, y_i^p)$  kayıp fonksiyonudur.

- ☐ Random Forest Regresyonu ve XGBoost Regresyonu sonucunda "Predict" veri kümesi elde edilir.
- Bu küme satış tahminlerinden oluşan kümedir.
- Bu kümedeki veriler test kümesindeki veriler ile kıyaslanılıp hata fonksiyonu hesaplanır.

Bu projede hata fonksiyonu olarak RMSPE( Root Mean Square Percentage Error) fonksiyonu kullanılmaktadır.

RMSPE = 
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{y}_i}{y_i}\right)^2}$$

- ☐ Random Forest Regresyonu sonucunda bir tahmin kümesi oluşturulmuştur.
- Bu tahmin kümesi ile test kümesinin verileri kullanılarak RMSPE hesaplanmıştır.
- ☐ Bu değer 0.1468 olarak bulunmuştur.

|   | 0       |
|---|---------|
| О | 3654.3  |
| 1 | 10913.9 |
| 2 | 6104    |
| 3 | 5111.9  |
| 4 | 5221.9  |
| 5 | 13527.5 |
| 6 | 7803    |
| 7 | 4514.8  |
| 8 | 9721.6  |
| 9 | 7747.9  |

- ☐ XGBoost regresyonu sonucu için de aynı şekilde RMSPE hesaplanmıştır.
- □ 0. değer e^8.2072 yani 3667.25, 1. değer 4755.84 olarak hesaplanmıştır.
- ☐ RMSPE 0.172421 olarak hesaplanmıştır.

|   | О       |  |  |
|---|---------|--|--|
| О | 8.2072  |  |  |
| 1 | 8.46713 |  |  |
| 2 | 8.56448 |  |  |
| 3 | 9.04917 |  |  |
| 4 | 8.52179 |  |  |
| 5 | 8.9245  |  |  |
| 6 | 8.1747  |  |  |
| 7 | 8.94494 |  |  |
| 8 | 9.07072 |  |  |
| 9 | 8.57303 |  |  |

### Sonuçların Görselleştirilmesi

- Rastgele 3 mağaza seçilip gerçek satış değerleri ve modelin oluşturduğu tahmin verileri görselleştirilmiştir.
- □ 124 numaralı mağaza için gerçek satış ve tahmin grafiği



### Sonuçların Görselleştirilmesi

🛘 321 numaralı mağaza için gerçek satış ve tahmin grafiği



## Sonuçların Görselleştirilmesi

🛘 454 numaralı mağaza için gerçek satış ve tahmin grafiği



Kaggle Sonuçları

- ☐ Kaggle sonuçlarına göre birinci RMSPE' yi 0.10021 olarak bulmuştur.
- Bizim projemizde ise RMSPE Random Forest Regresyonu için
   0.146836, XGBoost regresyonu için 0.172421 olarak
   bulunmuştur.

| 1  | <b>-</b> 1  | Gert                | 0.10021 | 19  | Зу |
|----|-------------|---------------------|---------|-----|----|
| 2  | <b>^1</b>   | NimaShahbazi        | 0.10386 | 196 | Зу |
| 3  | <b>1</b> 0  | Neokami Inc         | 0.10583 | 40  | Зу |
| 4  | <b>1</b> 6  | Russ W              | 0.10621 | 126 | Зу |
| 5  | <b>1</b> 0  | MIPT + PZAD         | 0.10763 | 195 | Зу |
| 6  | <b>▲</b> 96 | João N. Laia        | 0.10771 | 14  | Зу |
| 7  | <b>▼</b> 6  | SDNT                | 0.10784 | 289 | Зу |
| 8  | <b>4</b> 7  | Evdilos_Ikaria      | 0.10817 | 239 | Зу |
| 9  | <b>4</b> 2  | Too busy to compete | 0.10826 | 200 | Зу |
| 10 | <b>1</b> 2  | NaiveLearners       | 0.10839 | 367 | Зу |

Dinlediğiniz için teşekkür ederim.

Harun Çatal