Q1.

For question (a) you are given a certain **chip planning** task. You have **four blocks** with the following areas. The dimension of each small grid is 0.5×0.5

Block A: A = 2

Block B: A = 9

Block C: A = 4

Block D: A = 3

• are metals and lacktriangle, \triangle are obstacles

(a)	Find and draw a floor plan with the minimum total area enclosed if the global bounding box is a 20×20 grid.	[3]
(b)	Find the Manhattan Distance from S to T1.	[2]
(c)	Using Lee's Maze Algorithm , find the shortest path from S to T1 and T2, allowing minimum bends	[4]
(d)	Find the memory requirement for the algorithm if we use a sequence of natural numbers . If the maximum memory requirement of the provided grid is 45 bytes , find how many unique numbers starting from 0 can be used for wave propagation in Lee's maze algorithm.	[6]