5 Cálculo Diferencial — Primitivação

1. Determine uma primitiva de cada uma das funções:

a)
$$2x^2 + 3x^3$$
,

a)
$$2x^2 + 3x^3$$
, b) $\frac{1}{\sqrt{x}} + \frac{1}{x} + \frac{1}{x^2}$, c) $\frac{x^2 - x + 1}{\sqrt{x}}$,

c)
$$\frac{x^2-x+1}{\sqrt{x}}$$
,

d)
$$\sqrt[3]{1-x}$$

d)
$$\sqrt[3]{1-x}$$
, e) $\frac{\sqrt[3]{x^2} + \sqrt{x^3}}{x}$, f) $2x\sqrt[5]{x^2-1}$,

f)
$$2x \sqrt[5]{x^2 - 1}$$

g)
$$\frac{x^3}{3 + x^4}$$

g)
$$\frac{x^3}{3 + x^4}$$
 h) $\frac{e^x}{1 + 2e^x}$, i) $\frac{\cos x}{1 + \sin x}$

i)
$$\frac{\cos x}{1 + \sin x}$$

$$k) \frac{\operatorname{sen}(2x)}{1 + \operatorname{sen}^2 x}$$

$$1) \cos^2 x,$$

m)
$$\frac{1}{\cos^2 x}$$

n)
$$\frac{e^{\operatorname{tg} x}}{\cos^2 x}$$

$$o) x \cos(x^2 + 2),$$

p)
$$e^x \operatorname{sen}(e^x)$$
,

q)
$$x^2 \sqrt[3]{1 + x^3}$$
,

$$r) \frac{e^x}{(1+e^x)^2}$$

j)
$$sen(2x)$$
, k) $\frac{sen(2x)}{1 + sen^2 x'}$, l) $cos^2 x$,
m) $\frac{1}{cos^2 x'}$, n) $\frac{e^{tgx}}{cos^2 x'}$, o) $x cos(x^2 + 2)$,
p) $e^x sen(e^x)$, q) $x^2 \sqrt[3]{1 + x^3}$, r) $\frac{e^x}{(1 + e^x)^2}$,
s) $\frac{sen x}{1 + cos^2 x'}$, t) $\frac{1}{\sqrt{1 - 4x^2}}$, u) $\frac{x + 1}{\sqrt{1 - x^2}}$, v) $\frac{x^3}{(1 + x^4)^2}$, w) $cos^3 x \sqrt{sen x}$, x) $tg^2 x$,

t)
$$\frac{1}{\sqrt{1-4x^2}}$$

$$u) \frac{x+1}{\sqrt{1-x^2}}$$

v)
$$\frac{x^3}{(1+x^4)^2}$$

w)
$$\cos^3 x \sqrt{\sin x}$$

$$x) tg^2 x$$

2. (Exercício IV.22 de [2]) Determine uma primitiva de cada uma das funções:

a)
$$(x^2 + 1)^3$$
,

d)
$$\frac{1}{\sqrt[5]{1-2r}}$$
,

b) e^{x+3} , c) 2^{x-1} , e) $\frac{x}{1+x^2}$, f) $\frac{x^3}{x^8+1}$,

g)
$$\cot g x$$

h) $3^{\sin^2 x} \sin 2x$, i) $\frac{\text{tg } \sqrt{x}}{\sqrt{x}}$,

$$j) \frac{e^x}{\sqrt{1 - e^{2x}}},$$

 $k) \frac{x}{(1+x^2)^{\alpha'}}$ l) $\cos x \cos 2x$,

m)
$$sen^3 x cos^4 x$$
, n) $tg^3 x + tg^4 x$.

3. Calcule uma primitiva de cada uma das funções:

a)
$$\sqrt{2x} + \sqrt{\frac{x}{2}}$$
, b) $3 \sec x + 2x^2$, c) $\frac{x^2}{1 + x^3}$, d) xe^{-x^2} , e) $\frac{3 \sec x}{(1 + \cos x)^2}$, f) $x \sqrt{1 + x^2}$, g) $e^{2 \sec x} \cos x$, h) $\frac{1}{1 + e^x}$, i) $tg x$, t , $tg x \sec^3 x$ l) $cos^3 x \sec^3 x$

c)
$$\frac{x^2}{1+x^3}$$
,

d)
$$xe^{-x^2}$$

g)
$$e^{2 \sin x} \cos x$$
,

j)
$$\frac{1}{2+x^2}$$
,

j)
$$\frac{1}{2+x^2}$$
, k) $tg x \sec^3 x$, l) $\cos^3 x \sec^3 x$, m) $\frac{1}{(1+x^2) \arctan x}$, n) $\frac{x}{1+x^4}$, o) $\frac{1}{\sqrt{x}(1+x)}$

p)
$$\frac{1}{1+3x^2}$$
,

q) $\frac{e^x}{e^{2x} + 4}$, r) $\sqrt{\frac{\arccos x}{1 - x^2}}$, t) $\frac{1}{(x+1)(x-2)}$, u) $\frac{1}{(x+1)^2}$,

s)
$$\frac{x}{\sqrt{1-2x^4}}$$
,

v)
$$\frac{\cos(\log x)}{x}$$
,

w) $\frac{1}{x \log x}$

x) $\sec^4 x$.

4. (Exercício IV.23 de [1]) Determine as funções que verificam as condições impostas em cada uma das alíneas seguintes:

a)
$$f'(x) = \frac{1}{4+9x^2}$$
, $x \in \mathbb{R}$; $f(0) = 1$.

b)
$$g'(x) = \frac{1}{x-1}, x \in \mathbb{R} \setminus \{1\}; g(0) = 0, g(2) = 3.$$

c)
$$h'(x) = \sec^2 x$$
, para x no dominio de $\sec x$; $h(k\pi) = k$, $k \in \mathbb{Z}$.

5. (Exercício 5.5 de [2]) Para cada uma das funções definidas pelas expressões

$$x \operatorname{sen}(x^2), \qquad \frac{e^x}{2 + e^x}, \qquad \frac{1}{(1 + x^2)(1 + \operatorname{arctg}^2 x)}$$

determine se possível:

- a) uma primitiva que se anule no ponto x = 0;
- b) uma primitiva que tenda para 0 quando $x \to +\infty$.
- 6. Calcule uma primitiva de cada uma das funções racionais (todas imediatamente primitiváveis):

a)
$$\frac{1}{1-x'}$$

a)
$$\frac{1}{1-x}$$
, b) $\frac{1}{(x-3)^3}$, c) $\frac{x+1}{x^2+1}$,

c)
$$\frac{x+1}{x^2+1}$$

d)
$$\frac{x}{1+(x-1)^2}$$
, e) $\frac{2x+1}{x^2+4}$, f) $\frac{1}{x^2+2x+2}$.

e)
$$\frac{2x+1}{x^2+4}$$

f)
$$\frac{1}{x^2 + 2x + 2}$$

7. Calcule uma primitiva de cada uma das funções racionais:

a)
$$\frac{1}{x^2 + x}$$

a)
$$\frac{1}{x^2 + x'}$$
 b) $\frac{x+1}{x(x-1)^2}$, c) $\frac{x^2 + x - 4}{x(x^2 + 4)}$,

c)
$$\frac{x^2 + x - 4}{x(x^2 + 4)}$$

d)
$$\frac{x^2 + 1}{x^2(x-1)}$$

e)
$$\frac{x^5}{x^2 - 1}$$
,

d)
$$\frac{x^2 + 1}{x^2(x - 1)}$$
, e) $\frac{x^5}{x^2 - 1}$, f) $\frac{x}{(x + 1)(x + 2)^2}$, g) $\frac{x^3 + 2x^2 + 2x}{(x + 1)^2}$, h) $\frac{x^4}{x^4 - 1}$, i) $\frac{x^3 + 4x^2 - 4x}{x^4 - 16}$.

g)
$$\frac{x^3 + 2x^2 + 2x}{(x+1)^2}$$

h)
$$\frac{x^4}{x^4 - 1}$$
,

i)
$$\frac{x^3 + 4x^2 - 4x}{x^4 - 16}$$

- 8. Determine todas as primitivas de cada uma das funções do exercício anterior (nos respectivos domínios).
- 9. (Exercício 5.16 de [2]) Determine
 - a) Uma expressão geral das primitivas da função definida em R por

$$f(x) = (x+1)e^{x^2+2x}.$$

b) A primitiva *G*, da função

$$g(x) = \frac{x+3}{x^4 - x^2}$$

definida no intervalo]1, + ∞ [e que verifica a condição $\lim_{x\to +\infty} G(x) = 3$.

10. (Exercício 5.3 de [2]) Determine uma função F definida em $\mathbb{R} \setminus \{1\}$ que obedece às seguintes condições:

$$F'(x) = \frac{1}{(x-1)^2}, \qquad F(2) = 0, \qquad \lim_{x \to -\infty} F(x) = 10.$$

11. (Exercício 5.12 de [2]) Determine a função ψ :]-1, + ∞ [$\to \mathbb{R}$ que satisfaz as condições

$$\forall_{x>-1} \ \psi''(x) = \frac{1}{1+x}, \quad \psi(0) = \psi'(0) = 1.$$

12. (Exercício IV.25 de [1]) Usando o método de primitivação por partes, calcule uma primitiva de cada uma das funções:

a)
$$xe^x$$
,

b)
$$x \operatorname{arctg} x$$

c)
$$arcsen x$$

d)
$$x \operatorname{sen} x$$

e)
$$x^3 e^{x^2}$$

f)
$$\log^3 x$$

a)
$$xe^x$$
, b) $x \operatorname{arctg} x$, c) $\operatorname{arcsen} x$, d) $x \operatorname{sen} x$, e) $x^3 e^{x^2}$, f) $\log^3 x$, g) $x^n \log x$, $n \in \mathbb{N}$, h) $\frac{x^7}{(1-x^4)^2}$.

h)
$$\frac{x^7}{(1-x^4)^2}$$

13. Usando o método de primitivação por partes, calcule uma primitiva de cada uma das funções:

a)
$$e^{x}(e^{x} + x)$$
,

b)
$$e^x \operatorname{sen} x$$
,

c)
$$x^3 e^{-x^2}$$

d)
$$arctg x$$
,

e)
$$\sqrt{x} \log x$$

f)
$$x(1+x^2)$$
 arctg

d)
$$\arctan x$$
,
g) $\frac{x^5}{\sqrt{1+x^3}}$,

b)
$$e^{x} \sin x$$
, c) $x^{3}e^{-x^{2}}$,
e) $\sqrt{x} \log x$ f) $x(1 + x^{2}) \arctan x$,
h) $\log \left(\frac{1}{x} + 1\right)$, i) $x^{2} \log^{2} x$,

i)
$$x^2 \log^2 x$$
,

j)
$$\log^2 x$$
,

k)
$$\frac{1}{x^3} \cos \frac{1}{x}$$

k)
$$\frac{1}{x^3}\cos\frac{1}{x}$$
, l) $\cos 2x \log(\operatorname{tg} x)$,

m)
$$3x\sqrt{1-x^2}$$
 arcsen x , n) $\frac{\log x}{(1+x)^2}$, o) $\cosh x \cos x$,

$$n) \frac{\log x}{(1+x)^2},$$

o)
$$\operatorname{ch} x \operatorname{cos} x$$
,

$$p) 3^x \cos x,$$

q)
$$\cos(\log x)$$
, r) $\frac{x^2}{(1+x^2)^2}$.

r)
$$\frac{x^2}{(1+x^2)^2}$$

14. a) Usando o método de primitivação por partes, mostre que, para $k \in \mathbb{N}$, k > 1, tem-se:

$$P\left(\frac{x^2}{(1+x^2)^k}\right) = \frac{1}{2(1-k)} \left(\frac{x}{(1+x^2)^{k-1}} - P\left(\frac{1}{(1+x^2)^{k-1}}\right)\right).$$

b) Justifique que, para $k \in \mathbb{N}$, k > 1,

$$P\left(\frac{1}{(1+x^2)^k}\right) = -\frac{1}{2(1-k)}\frac{x}{(1+x^2)^{k-1}} + \left(1 + \frac{1}{2(1-k)}\right)P\left(\frac{1}{(1+x^2)^{k-1}}\right).$$

(Sugestão:
$$\frac{1}{(1+x^2)^k} = \frac{1}{(1+x^2)^{k-1}} - \frac{x^2}{(1+x^2)^k}$$
).

c) Utilize a alinea anterior para calcular

$$P\left(\frac{1}{(1+x^2)^2}\right), \qquad P\left(\frac{1}{(1+x^2)^3}\right).$$

15. Determine uma primitiva de cada uma das seguintes funções, utilizando substituições

apropriadas:

a)
$$\frac{e^{4x}}{e^{2x} + 1}$$
, b) $\frac{1}{\sqrt[3]{x}(1 + \sqrt[3]{x^4})}$, c) $\frac{\sqrt{x - 1}}{x}$, d) $\frac{\sqrt{x} - 1}{\sqrt[3]{x} + 1}$, e) $\frac{e^{2x}}{(e^{2x} - 1)(1 + e^x)}$, f) $\frac{1}{(2 - x)\sqrt{1 - x}}$, g) $\frac{1 - \lg x}{1 + \lg x}$, h) $\frac{\log x}{x(\log x - 1)^2}$, i) $\frac{1}{x + \sqrt[3]{x^2}}$

16. (Exercícios 5.21, 5.23, 5.24, 5.26, 5.28, 5.31 de [2]) Determine uma primitiva de cada uma das seguintes funções, utilizando substituições apropriadas:

a)
$$\frac{1+\sqrt{x}}{x(4-\sqrt{x})}$$
, b) $\frac{1}{x\sqrt[4]{1+x}}$, c) $\frac{1}{1+e^{2x}}$, d) $\frac{e^{3x}}{(1+e^{2x})(e^x-1)^2}$, e) $\frac{2\log x-1}{x\log x(\log x-1)^2}$, f) $\frac{1}{\sec^2 x\cos x}$.

17. Determine, usando a substituição indicada, uma primitiva de cada uma das funções seguintes:

a)
$$\sec x$$
, $t = \sec x$,
b) $\frac{1}{x^2 \sqrt{x^2 - 1}}$, $x = \sec t$,
c) $\sqrt{1 - x^2}$, $x = \sec t$
d) $\frac{1}{1 + \sec x + \cos x}$, $tg\frac{x}{2} = t$,
e) $\frac{\sqrt{1 - x^2}}{x^4}$, $x = \cos t$,
f) $\frac{e^{x/2}}{\sqrt{1 - e^x}}$, $t = \sqrt{1 - e^x}$,
g) $\frac{\sec x}{1 - \sec x}$, $tg\frac{x}{2} = t$,
h) $\frac{1}{\sqrt{x(1 - x)}}$, $x = \sec^2 t$,
i) $\frac{3 \sec x + 3}{\cos x + \sec 2x}$, $t = \sec x$,
j) $\sec^3 x$, $t = \sec x$,
k) $\frac{1}{\sqrt{x^2 + 1}}$, $x = tgt$,
l) $\frac{\cos x}{1 + \sec x - \cos^2 x}$, $t = \sec x$,
m) $\frac{1}{x \sqrt{1 - x^2}}$, $t = \sqrt{1 - x^2}$,
n) $\frac{1}{\sqrt{1 + e^x}}$, $t = \sqrt{1 + e^x}$,
o) $\sqrt{4 + x^2}$, $t = 2 tgt$,
p) $\frac{x(x - 1)}{\sqrt{x^2 - 1}}$, $t = \sec t$.

18. (Exercício 5.21 de [2]) Determine, ou justifique que não existem, funções que verifiquem as seguintes condições:

a)
$$f'(x) = \frac{\arctan x}{1+x^2}$$
, $\lim_{x \to +\infty} f(x) = 0$.

b)
$$g'(x) = \frac{1+\sqrt{x}}{x(4-\sqrt{x})}, \ x > 16, \lim_{x \to +\infty} g(x) = 1.$$

19. (Exercício 5.24 de [2]) Determine, ou justifique que não existem, funções que verifiquem as seguintes condições:

a)
$$f''(x) = (1 + \sin x)\cos x$$
, $f'(0) = 0$, $f(0) = 3$.

b)
$$g'(x) = \frac{1}{1+e^{2x}}$$
, $\lim_{x \to +\infty} g(x) = 1$.

20. Determine, utilizando métodos de primitivação adequados, uma primitiva de cada uma das seguintes funções:

a)
$$|x|$$
,

b)
$$x \arcsin \frac{1}{x}$$
,

c)
$$sen(log x + 1)$$
,

d)
$$sen^2 x cos^2 x$$
,

e)
$$\sqrt{x}$$
 arctg \sqrt{x} ,

f)
$$\frac{1 + \log^2 x}{x \left(1 + \log x\right)'}$$

g)
$$\frac{e^{-x}}{e^{2x}-2e^x+2'}$$

h)
$$\frac{1+x}{1+\sqrt{x}}$$
,

i)
$$\cos^3 x$$
,

$$j) \cos^4 x$$

$$k) x \log \frac{1-x}{1+x'}$$

1)
$$\frac{1}{(x+1)(x+2)(x+3)}$$

$$m) \frac{\log(\log x)}{x \log x},$$

n)
$$\log(x + \sqrt{x})$$
,

o)
$$\frac{1}{x^3}e^{\frac{1}{x}}$$
,

$$p) \cos x \log(1 + \sin^2 x),$$

q)
$$\frac{\log(\log x)}{x}$$
,

r)
$$x \operatorname{arctg}^2 x$$
,

s)
$$\frac{\log(1+x)}{\sqrt{1+x}}$$
,

t)
$$\frac{1}{\operatorname{sen} x}$$

u)
$$\frac{x \cos x}{\sin^2 x}$$
,

$$v) \frac{\sin x}{1 + 3\cos^2 x}$$

w)
$$\log(\cos x) \operatorname{tg} x$$
,

$$(x) \frac{1}{(x+1)\sqrt{x+2}}$$

y)
$$(\operatorname{arcsen} x)^2$$
,

$$z) \frac{1}{\cos x(1-\sin x)}.$$

21. Determine uma função $\varphi:\mathbb{R}\to\mathbb{R}$ que verifique as condições seguintes:

$$\varphi''(x) = \frac{e^x}{(e^x + 1)^2}, \lim_{x \to -\infty} \varphi'(x) = -1, \lim_{x \to +\infty} \varphi(x) = \frac{\pi}{2}.$$

Outros exercícios: 5.2, 5.4, 5.7, 5.14, 5.17, 5.20, 5.22, 5.25, 5.32 de [2].

Parte III Bibliografia

0 Bibliografia

- [1] J. Campos Ferreira. *Introdução à Análise Matemática*. Fundação Calouste Gulbenkian, Lisboa.
- [2] Departamento de Matemática do Instituto Superior Técnico. *Exercícios de Análise Matemática I/II*, 2ª edição, 2005. IST Press, Lisboa.