Instituto da Computação - UFRJ

Silvanna Rosseto

Laboratório 3

Eduarda Varela, Gustavo Michaloski

Sumário

1	Introdução	1
2	Multiplicação Sequencial	1
3	Multiplicação Concorrente	1
4	Checagem de Corretude	2
5	Tabelas e gráficos	2
	5.1 Matriz 500 x 500	2
	5.2 Matriz 1000 x 1000	4
	5.3 Matriz 2000 x 2000	5
	5.4 Gráficos e análise	6

1 Introdução

Esta atividade tem como objetivo principal a análise comparativa entre a implementação sequencial e concorrente do algoritmo de multiplicação de matrizes. Através da coleta de dados de tempo de execução e do cálculo de métricas como aceleração e eficiência, busca-se quantificar o impacto da paralelização na performance do algoritmo, considerando diferentes tamanhos de matrizes e números de threads.

2 Multiplicação Sequencial

Conforme o roteiro da atividade, foi desenvolvida uma implementação sequencial do algoritmo de multiplicação de matrizes. A entrada do programa consiste em três arquivos: dois contendo as matrizes a serem multiplicadas e um terceiro para armazenar o resultado da multiplicação. Além da geração do arquivo de saída, o programa também exibe na tela o tempo de execução de cada etapa do processo: tempo incial, tempo de processo e tempo de finalização.

3 Multiplicação Concorrente

Além da versão sequencial proposta, implementou-se uma versão concorrente do algoritmo de multiplicação de matrizes. A entrada consiste no números de threads que serão utilizada para a tarefa e em três arquivos. Dos quais dois são referentes as duas matrizes a serem multiplicadas e um arquivo de saída para armazenar o resultado. Adicionalmente, o programa apresenta o tempo de execução total e o tempo de cada etapa do processo: tempo incial, tempo de processo e tempo de finalização.

4 Checagem de Corretude

Para a validação da corretude dos resultados obtidos, os arquivos de saída matrizR.bin (concorrente) e matrizS.bin (sequencial), foram comparados utilizando o comando diff no terminal Linux:

\$ diff matrizR.bin matrizS.bin

A ausência de retorno do terminal indica que os resultados obtidos pela multiplicação de matrizes são equivalentes.

5 Tabelas e gráficos

A partir dos tempos individuais das etapas de inicialização, processamento e finalização determinou-se pela soma o tempo de execução total do programa. As tabelas a seguir apresentam os tempos de execução para cada matriz e de cada etapa, para que posteriormente haja uma análise detelhada do desempenho dos programas.

5.1 Matriz 500 x 500

Iteração	Tempo Inicial (s)	Tempo de Multiplicação (s)	Tempo Final (s)
1	0.003134	0.535232	0.000283
2	0.003201	0.534105	0.000283
3	0.003134	0.533921	0.000312
4	0.003204	0.534929	0.000226
5	0.003260	0.533684	0.000306

Tabela 1: Tempos de execução da multiplicação de matrizes (programa sequencial)

Iteração	Tempo Inicial (s)	Tempo de Multiplicação (s)	Tempo Final (s)
1	0.003093	0.522131	0.000621
2	0.001761	0.528984	0.000712
3	0.003513	0.541233	0.000773
4	0.001891	0.526009	0.000712
5	0.003156	0.527430	0.001080

Tabela 2: Tempos de execução da multiplicação de matrizes 500x500 (1 thread)

Ite	ração	Tempo Inicial(s)	Tempo de Multiplicação (s)	Tempo Final (s)
	1	0.003038	0.271050	0.000678
	2	0.002045	0.268002	0.000665
	3	0.003092	0.272007	0.000665
	4	0.003050	0.269408	0.000683
	5	0.003030	0.271758	0.000659

Tabela 3: Tempos de execução da multiplicação de matrizes 500x500 (2 threads)

Iteração	Tempo Inicial (s)	Tempo de Multiplicação (s)	Tempo Final (s)
1	0.003834	0.146880	0.00797
2	0.003504	0.014233	0.000657
3	0.003174	0.150860	0.000667
4	0.003110	0.146732	0.000705
5	0.001834	0.173963	0.000694

Tabela 4: Tempos de execução da multiplicação de matrizes 500x500 (4 threads)

Iteração	Tempo Inical (s)	Tempo de Multiplicação (s)	Tempo Final (s)
1	0.002802	0.142382	0.000689
2	0.003105	0.137456	0.000667
3	0.003170	0.137770	0.000644
4	0.002414	0.141331	0.000684
5	0.003060	0.136538	0.000687

Tabela 5: Tempos de execução da multiplicação de matrizes 500x500 (8 threads)

Nível	Tempo Inicial (s)	Tempo de Multiplicação (s)	Tempo Final (s)	Tempo Total (s)
Prog Seq	0,0031886	0,529174	0,000779	0,533142
Conc = 1	0,002682	$0,\!534374$	0,000281	0,537338
Conc = 2	0,002851	$0,\!270625$	0,000670	0,274146
Conc = 4	0,0030912	$0,\!152113$	0,001973	0,157177
Conc = 8	0,0029102	$0,\!139095$	0,000674	0,142679

Tabela 6: Média dos tempos de execução para a matriz 500 x 500

Configuração	Aceleração	Eficiência
Conc = 1	0,992190067	0,992190067
Conc = 2	1,944738278	0,972369139
Conc = 4	3,391968968	0,847992241
Conc = 8	3,736634198	0,467079274

Tabela 7: Valores de Aceleração e Eficiência para a matriz 500×500

5.2 Matriz 1000 x 1000

Execução	tempo Inicial (s)	Tempo de Multiplicação (s)	Tempo Final (s)
1	0.011959	4.310385	0.000776
2	0.008953	4.303137	0.000723
3	0.012151	4.408626	0.000676
4	0.012059	4.309690	0.001057
5	0.010387	4.404891	0.000684

Tabela 8: Tempos de execuçãoda multiplicação de matrizes (sequencial)

Execução	Tempo Inicial (s)	Tempo de Multiplicação (s)	Tempo de Final (s)
1	0.008872	4.371260	0.002739
2	0.008352	4.621069	0.002998
3	0.010381	4.296244	0.002956
4	0.011116	4.325652	0.002934
5	0.011323	4.292391	0.002834

Tabela 9: Tempos de execução da multiplicação de matrizes 1000 x 1000 (1 threads)

Execução	Tempo Inicial (s)	Tempo de Multiplicação (s)	Tempo Final (s)
1	0.012054	2.129419	0.002858
2	0.008587	2.169884	0.002954
3	0.008246	2.133618	0.002994
4	0.011929	2.137318	0.002749
5	0.010741	2.156935	0.002842

Tabela 10: Tempos de execução da multiplicação de matrizes 1000 x 1000(2 threads)

Execução	Tempo Inicial (s)	Tempo de Multiplicação (s)	Tempo Final (s)
1	0.011886	1.129683	0.002865
2	0.009457	1.122836	0.002925
3	0.011645	1.145302	0.002940
4	0.010183	1.209705	0.002795
5	0.009285	1.179869	0.002913

Tabela 11: Tempos de execução da multiplicação de matrizes 1000 x 1000 (4 threads)

Execução	Tempo Inicial (s)	Tempo de Multiplicação (s)	Tempo Final (s)
1	0.011082	1.491960	0.002737
2	0.011063	1.496755	0.002896
3	0.004560	1.504800	0.002819
4	0.011955	1.491265	0.002781
5	0.011417	1.504510	0.002841

Tabela 12: Tempos de execução da multiplicação de matrizes 1000 x 1000 (8 threads)

Configuração	Tempo Inicial (s)	Tempo de Multiplicação (s)	Tempo Final (s)	Tempo Total (s)
Prog Seq	0.011101	4.347345	0.000783	4.359230
Prog Conc =1	0.010008	4.381323	0.002892	4.394224
$Prog\ Conc = 2$	0.010311	1.454348	0.002879	1.586256
Prog Conc =4	0.010491	1.574791	0.002887	1.708578
Prog Conc =8	0.010015	0.497858	0.002814	0.510688

Tabela 13: Média dos tempos de execução para a matriz 1000 x 1000

Configuração	Aceleração	Eficiência
Conc = 1	0,992036501	0,992036501
Conc = 2	2,019447374	1,009723687
Conc = 4	3,723108647	0,9307771618
Conc = 8	2,885592672	0,360699084

Tabela 14: Valores de Aceleração e Eficiência para a matriz 1000 x 1000

5.3 Matriz 2000 x 2000

Execução	Tempo Inicial (s)	Tempo de Multiplicação (s)	Tempo Final (s)
1	0.019447	59.256418	0.002246
2	0.023536	59.206375	0.002231
3	0.022663	58.836387	0.001992
4	0.020162	58.750180	0.002241
5	0.021212	59.261991	0.002278

Tabela 15: Tempos de execução da multiplicação de matrizes (programa sequencial)

Execução	Tempo Inicial(s)	Tempo de Multiplicação (s)	Tempo Final (s)
1	0.018506	59.171197	0.010283
2	0.017596	58.821625	0.011793
3	0.018986	58.833272	0.011731
4	0.020632	58.719654	0.011045
5	0.018289	58.800944	0.011722

Tabela 16: Tempos de execução da multiplicação de matrizes 2000x2000 (1 thread)

Iteração	Tempo Inicial (s)	Tempo de Multiplicação (s)	Tempo Final (s)
1	0.018321	29.285046	0.011267
2	0.019200	29.451912	0.011704
3	0.019062	29.104625	0.012045
4	0.019175	29.312779	0.011856
5	0.020621	29.240686	0.012026

Tabela 17: Tempos de execução da multiplicação de matrizes 2000x2000 (2 threads)

Iteração	Tempo Inicial (s)	Tempo de Multiplicação (s)	Tempo Final (s)
1	0.019478	15.303 897	0.011 340
2	0.020686	15.434358	0.011998
3	0.019392	15.219468	0.011135
4	0.018 869	15.227890	0.011276
5	0.019 199	15.251655	0.011462

Tabela 18: Tempos de execução da multiplicação de matrizes 2000x2000 (4 threads)

Iteração	Tempo Inicial (s)	Tempo de Multiplicação (s)	Tempo Final (s)
1	0.019822	14.204 795	0.011 014
2	0.021790	14.259619	0.012051
3	0.019007	14.095977	0.011397
4	0.020124	14.183002	0.010943
5	0.062246	14.175776	0.011486

Tabela 19: Tempos de execução da multiplicação de matrizes 2000x2000 (8 threads)

Configuração	Tempo Inicial (s)	Tempo de Multiplicação (s)	Tempo Final (s)	Tempo Total (s)
Seq	0.021504	59.062216	0.002197	59.085917
Conc - 1	0.018801	58.869338	0.011314	58.899455
Conc - 2	0.019275	29.279009	0.011779	29.310065
Conc - 4	0.019524	15.287441	0.011442	15.318409
Conc - 8	0.020637	14.183833	0.011378	14.215849

Tabela 20: Média dos tempos de execução para a matriz 2000 x 2000

Configuração	Aceleração	Eficiência
Conc = 1	1.00316578	1.00316578
Conc = 2	2.015891735	1.007945868
Conc = 4	3.857183729	0.9642959323
Conc = 8	4,156340889	0.5195426112

Tabela 21: Valores de Aceleração e Eficiência para a matriz 2000 x 2000

5.4 Gráficos e análise

O experimento foi conduzido em uma máquina com um processador de 8 núcleos, cada um com 2 threads, totalizando 16 threads. A análise dos gráficos a seguir permite avaliar o impacto do aumento do número de threads no desempenho dos programas.

Os gráficos indicam que a aceleração aumenta com o número de threads, mas a eficiência diminui. Isso sugere que a paralelização é mais eficiente para um número menor de threads. A queda na aceleração da matriz 1000x1000 pode ser um indicativo de problemas de otimização ou variações nas amostras. A escolha do número ideal de threads depende do equilíbrio entre aceleração e eficiência.