

Kesikli Matematik

Algoritma Analizi

Dr. Öğr. Üyesi Mehmet Ali ALTUNCU Bilgisayar Mühendisliği

Algoritma Analizi

- Algoritma analizi, algoritmanın yürütülmesi için gerekli kaynak miktarının belirlenmesidir.
- Belirli bir problemi çözen herhangi bir algoritmanın ihtiyaç duyduğu kaynaklar için teorik tahminler sağlar.
- Başka bir ifadeyle, algoritmanın performansı ve kaynak kullanımı konusunda yapılan teorik çalışmaların tümüne algoritma analizi denir.
- Buradaki çalışmalar, herhangi bir programlama dilinden bağımsız bir şekilde yürütülür ki, gerçek anlamda sadece algoritmanın kendisi analiz edilip bilimsel bir yaklaşım benimsenebilsin.

Algoritmaların Performans Kriterleri

- Algoritma verimliliğinde ya da performansında iki kriter vardır:
- Zaman Karmaşıklığı (Time)
- Bellek Alan Karmaşıklığı (Memory)
- Zaman karmaşıklığı bir algoritmanın girdi ile çıktı arasında geçen zamanı hesaplar.
- Bellek karmaşıklığı ise harcanan bellek alanını hesaplar. Veri büyüdükçe bu zaman ve belleğin nasıl değiştiğini analiz eder.

Çalışma Zamanı

- Çalışma zamanı, 'n' boyutlu bir problemin algoritmasını çalıştırmak için gerekli olan zamana denir.
- Başka bir ifadeyle karşılaştırma, döngü çevirimi, aritmetik işlemler gibi algoritmanın işlevini yerine getirmesi için temel kabul edilen işlemlerin kaç kere yürütüldüğünü veren bir bağıntıdır.
- n boyutlu bir veride algoritmanın yaptığı temel işlemlerin sayısı **T(n)** ile gösterilir.

Çalışma zamanı hesabında dikkat edilmesi gereken temel hesap birimleri şu şekildedir:

- Programlama dilindeki deyimler
- Döngü sayıları
- Toplam işlem sayısı
- Dosyaya erişim sayısı
- Atama sayısı

Çalışma Zamanı

Örnek: Dizideki en küçük elemanı bulan bir algoritmaya bakalım.

Algoritmanın çalışma zamanı T(n) = 4n + 3 olur.

Zaman Karmaşıklığı

- Zaman karmaşıklığı, bir algoritmadaki yürütme zamanının derecesinin asimptotik notasyonlarla gösterilmesine denir. Başka bir ifadeyle, algoritmanın asimptotik notasyona göre karmaşıklık mertebesidir.
- Burada amaç, algoritmadaki eleman sayısı çok fazla olduğunda ya da veri seti sonsuza gittiğinde, giriş boyutu ve zaman arasındaki karmaşıklığı azaltmaktır.
- Yani detaylardan kurtularak çalışma süresi analizini basitleştirmektir.
- Bunun için asimptotik gösterimde, fonksiyon içerisindeki sabitler ve katsayılar gibi sonsuza giderken büyümeye pek etkisi olmayan önemsiz kısımlar atılır.
- Böylelikle geriye, verinin büyümesine bağlı olarak fonksiyonun büyümesinde en büyük etkiye sahip olan parametre kalır ve gerçek fonksiyona göre yaklaşık bir değer bulunabilir.

Zaman Karmaşıklığı

Zaman karmaşıklığı genel olarak özel gösterimler ile tanımlanmaktadır.

Bunlardan bazıları;

- Büyük O Notasyonu
- Büyük Omega (Ω) Notasyonu
- Büyük Theta (Θ) Notasyonu

şeklindedir.

Tanım: *f* ve *g* fonksiyonları reel sayılardan reel sayılara tanımlı iki fonksiyon olsun.

- f(x) fonksiyonu için c ve k sabit olmak üzere;
- $|f(x)| \le c|g(x)|$ ve x>k durumunda;
- f(x) = O(g(x)) olur. Yani; f(x) fonksiyonun büyüme hızı (Büyük-O) g(x) olmuş olur.
- f(x)'in = O(g(x)) olduğunu göstermek istiyorsak bunu sağlayan c ve k ikilisi bulmamız gerekir.

• Büyük-O Notasyonu, algoritma analizindeki zaman karmaşıklığında üst sınırı tanımlayan, matematiksel bir gösterimdir.

Örnek: $f(n) = 3n^2 + 8n$ 'in $O(n^2)$ olduğunu gösteriniz.

Çözüm: $3n^2+8n \le 3n^2+8n^2$ → $3n^2+8n \le 11n^2$ olduğuna göre $n \ge 1$ ve c=11 olması durumunda f(n), $O(n^2)$ olur.

Örnek: $f(n) = 3n^2 + 8n$ 'in $O(n^3)$ olduğunu gösteriniz.

Çözüm: $3n^2+8n \le 3n^3+8n^3$ $\longrightarrow 3n^2+8n \le 11n^3$ olduğuna göre n≥1 ve c=11 olması durumunda f(n), $O(n^3)$ olur.

Örnek: $f(n) = x^2$ 'nin $O(\sqrt{x})$ olmadığını gösteriniz.

Çözüm: \sqrt{x} , $\sqrt{2x}$, $\sqrt{3x}$ ve x^2 grafiğine baktığımızda x^2 'nin aşağıdaki şekilde olduğu gibi herhangi bir \sqrt{Ax} 'den daha büyük olduğuna dikkat edin. Büyük-O Notasyonu, algoritma analizindeki zaman karmaşıklığında üst sınırı tanımlar. \sqrt{Ax} fonksiyonları ise x^2 fonksiyonunun altındadır.

Büyük - Omega (Ω) Notasyonu

Tanım: *f* ve *g* fonksiyonları reel sayılardan reel sayılara tanımlı iki fonksiyon olsun.

- f(x) fonksiyonu için c ve k sabit olmak üzere;
- $|f(x)| \ge c|g(x)|$ ve x>k durumunda;
- $f(x) = \Omega(g(x))$ olur. Yani; f(x) fonksiyonun büyüme hızı (Büyük-Omega) g(x) olmuş olur.
- f(x)'in = $\Omega(g(x))$ olduğunu göstermek istiyorsak bunu sağlayan c ve k ikilisi bulmamız gerekir.

Büyük - Omega (Ω) Notasyonu

• Büyük-Omega Notasyonu, algoritma analizindeki zaman karmaşıklığında alt sınırı tanımlayan, matematiksel bir gösterimdir.

Büyük - Omega (Ω) Notasyonu

Örnek: f(n) = 2n+5 'in $\Omega(n)$ olduğunu gösteriniz.

Çözüm: $2n+5 \ge 2n$ $n \ge 1$ ve c=2 olması durumunda f(n), $\Omega(n)$ olur.

Örnek: $f(n) = 5n^2-3n$ 'in $\Omega(n^2)$ olduğunu gösteriniz.

Çözüm: $5n^2$ -3n ≥ $4n^2$ \longrightarrow n≥3 ve c=4 olması durumunda f(n), $\Omega(n^2)$ olur.

Büyük - Theta (Θ) Notasyonu

Tanım: *f* ve *g* fonksiyonları reel sayılardan reel sayılara tanımlı iki fonksiyon olsun.

- f(x) fonksiyonu için c ve k sabit olmak üzere;
- $c_1|g(x)| \le |f(x)| \le c_2|g(x)|$ ve x>k durumunda;
- $f(x) = \Theta(g(x))$ olur. Yani; f(x) fonksiyonun büyüme hızı (Büyük-Theta) g(x) olmuş olur.
- f(x)'in = $\Theta(g(x))$ olduğunu göstermek istiyorsak bunu sağlayan c_1 , c_2 ve k üçlüsü bulmamız gerekir.

Büyük - Theta (Θ) Notasyonu

 Büyük-Theta Notasyonu, algoritma analizindeki zaman karmaşıklığında alt ve üst sınırı tanımlayan, matematiksel bir gösterimdir.

Büyük - Theta (Θ) Notasyonu

Örnek: f(n) = 2n+5 'in $\Theta(n)$ olduğunu gösteriniz.

Çözüm: 2n ≤ 2n+5 ≤ 3n \implies n≥5, c_1 =2 ve c_2 =3 olması durumunda f(n), $\Theta(n)$ olur.

Örnek: $f(n) = 5n^2-3n$ 'in $\Theta(n^2)$ olduğunu gösteriniz.

Çözüm: $4n^2 \le 5n^2-3n \le 5n^2 \longrightarrow n \ge 4$, $c_1=4$ ve $c_2=5$ olması durumunda f(n), $\Theta(n^2)$ olur.

İteratif Fonksiyonların Zaman Analizi

Örnek:

```
for (int i = 1; i <= n; i++) {
                                                for (int i = 1; i <= n; i=i+3) {
   // code
                                                // code
                                                              O(n/20) = O(n)
                    O(n)
                                                for (int i = 1; i <= n; i=i*3) {
for (int i = 1; i <= n; i++) {
 for (int j = 1; j <= n; j++) {
                                                // code
   // code
                   O(n^2)
                                                                  O(\log_3 n)
```

İteratif Fonksiyonların Zaman Analizi

Örnek (devam):

```
int search(int arr[], int N, int x)
                                               int fact()
  for (i = 0; i < n; i++)
    if (arr[i] == x)
                                                 for(i=1; i<=n; i++)
      return i;
                                                   fact=fact*i;
  return -1;
                                                 return fact;
                    O(n)
                                                                   O(n)
```

Örnek: Insertion Sort Algoritması

```
insertion(int arr[], int n)
   if (n \le 1)
    return;
  insertion(arr, n - 1);
  int last = arr[n - 1];
  int j = n - 2;
  while (i \ge 0 \&\& last < arr[i])
    arr[i + 1] = arr[i];
  arr[i + 1] = last;
```

- Özyineleme İlişkisi;
 - Temel Durum : T(0) = 1
 - n>0 için; T(n) = T(n-1) + n

Örnek: Insertion Sort Algoritması

- Özyineleme İlişkisi: T(0) = 1, T(n) = T(n-1) + n
- T(n-1) = T(n-2) + n-1
- T(n) = T(n-2)+n-1+n = T(n-2)+n+(n-1)
- T(n-2) = T(n-3)+n-2
- T(n) = T(n-3)+n+(n-1)+(n-2)
- T(n) = T(n-k)+n+(n-1)+(n-2)+...+(n-k+1)
- Temel duruma T(0) anında ulaşılır.
- $T(0) = 1 \implies n-k = 0 \implies k = n$
- $T(n) = T(0)+1+2+3+...+n = 1+[n(n+1)/2] \longrightarrow T(n) = O(n^2)$

Örnek: Binary Search Algoritması

```
BinarySearch(A, start, end, target)
  if start > end then
    return NOT FOUND
  mid = floor((start + end)/2)
  if A[mid] = target then
    return mid
  else if target < A[mid] then
    return BinarySearch(A, start, mid-1, target)
  else
    return BinarySearch(A, mid+1, end, target)</pre>
```

- Özyineleme İlişkisi;
 - Temel Durum : T(1) = 1
 - n>1 için; T(n) = T (n/2) + 1

Örnek: Binary Search Algoritması

- Özyineleme İlişkisi: T(1) = 1, T(n) = T (n/2) + 1
- T(n/2) = T(n/4) + 1
- T(n) = T(n/4) + 1 + 1 = T(n/4) + 2
- T(n/4) = T(n/8) + 1
- T(n) = T(n/8)+1+1+1 = T(n/8)+3
- $T(n) = T(n/2^k) + k$
- Temel duruma T(1) anında ulaşılır.
- $T(1) = 1 \implies n/2^k = 1 \implies k = \log_2 n$
- $T(n) = T(1) + \log_2 n \longrightarrow T(n) = 1 + \log_2 n \longrightarrow T(n) = O(\log n)$

Özyineleme İlişkisi Örnek: Merge Sort Algoritması **Temel Durum : T(1) = 1** 5 12 10 9 1 n>1 için; T(n) = 2T(n/2) + nT(n/2)T(n/2)5 12 Merge işlemi için dizinin uzunluğu olan n işlem

Örnek: Merge Sort Algoritması

- Özyineleme İlişkisi: T(1) = 1, T(n) = 2T (n/2) + n
- T(n/2) = 2T(n/4) + n/2
- $T(n) = 2[2T(n/4)+n/2]+n = 2^2T(n/4)+2n$
- T(n/4) = 2*T(n/8)+n/4
- $T(n) = 2^2[2T(n/8)+n/4]+2n = 2^3T(n/8)+3n$
- $T(n) = 2^k T(n/2^k) + kn$
- Temel duruma T(1) anında ulaşılır.
- $T(1) = 1 \longrightarrow n/2^k = 1 \longrightarrow k = log_2 n$
- $T(n) = 2^{\log n}T(n/2^k) + n\log_2 n = n + n\log_2 n \longrightarrow T(n) = O(n\log n)$

Rekürsif Kalıpları

- T(n) = aT(n-b) Og(n) olduğunda temel durumun T(0) için oluşması gerekir.
- T(n) = aT(n/b) Og(n) olduğunda temel durumun T(1) için oluşması gerekir.

Kaynaklar

- **Kenneth Rosen**, "Discrete Mathematics and Its Applications", 7th Edition, McGraw Hill Publishing Co., 2012.
- https://birhankarahasan.com/algoritma-analizi-nedir-zaman-karmasikligi-big-o-gost erimi#:~:text=Belirli%20bir%20problemi%20%C3%A7%C3%B6zen%20herhangi,% C3%A7al%C4%B1%C5%9Fmalar%C4%B1n%20t%C3%BCm%C3%BCne%20algorit ma%20analizi%20denir.
- <u>chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://web.ogu.edu.tr/Storage/egulbandilar/Uploads/AlgoritmaAnalizi.pdf</u>