기본 패키지	base, utils, stats, graphics	Description (Hmiss)	mean, median, sd, var, quantile, max, min
ETL	 foreach, stringr data.table, sqldf, plyr, dplyr, reshape, reshape2 Amelia, DMwR / cvTools, doBy, sampling, caret, DMwR 	(Hmisc) 변수 선택 (caret, FSelector, rpart)	■ cov, cor, rcorr(x, y, type="spearman")\$r # pearson ■ nearZeroVar(data, saveMetrics=T) # nzv=true인 변수 제거 ■ findCorrelation(cor(data)) # 표시된 열 제거 ■ m <- linear.correlation(y ~ x1 + x2, data=data) ■ m[order(-m), , drop=F] # rank.correlation, chi.squared # attr_importance 값이 높은 변수부터 제거 ■ m <- rpart(y ~ x1 + x2, data=data] ■ varImp(m) # overall 값이 높은 변수부터 제거 ■ m <- prcomp(data, scale=T) # 표준 점수로 주성분분석 ■ m <- princomp(data, cor=T) # 상관 행렬로 주성분분석 ■ summary(m), predict(m), plot(m, type="l"), biplot(m) ■ m <- cmdscale(data) ■ plot(m[, 1], m[, 2], type="l") ■ text(m[, 1], m[, 2], rownames(m), cex=0.8)
Description	■ Hmisc, caret, FSelector, rpart		
데이터 타입	■ vector : vector, factor, ordered, matrix, array ■ list : list, data.frame ■ 속성 : names, dim, dimnames, row.names, class, levels		
데이터 속성 조회	 class, unclass, attributes, attr, str, mode, typeof library(help="~"), methods, args, example 		
인코딩 (KoNLP)	localeToCharset(), Encoding(~)		
I/O	 read.table("~.csv", header=T, sep=",", stringsAsFactors=F, na.strings=c("NIL"), comment.char="#", fileEncoding="UTF-8", encoding="CP949") write.table(data, file="~.csv", row.names=F, sep=",", append=F, quote=F, fileEncoding="UTF-8") save(data, "~.RData"), load("~.RData") 	분류 분석 (Classification) MASS, party, rparty, randomForest, ROCR, caret, lattice	 m <- Ida(Species ~ ., data=train); # qda, ctree m <- cforest(Species ~ ., data=train, control=cforest_unbiased(mtry = 3)); m <- randomForest(Species ~ ., data=train, ntree=100, proximity=TRUE); pred <- predict(result\$m), pred\$class plot(m, type="simple) margin(m, test\$cls), varImpPlot(m), importance(m)
데이터 결합	■ rbind(~, ~), cbind(~, ~), merge(~, ~, all=T)		
변수 추가 (plyr)	transform(data, var1 = ~), mutate(data, var2 = ~)		
반복 실행 (foreach)	■ foreach(i = 1:5, .combine=rbind) %do% { ~ }	예측 분석 (Estimation) TTR, forecast, mgcv	 m <- lm(left ~ upper, data = data) step(lm(left ~ 1, data=data), scope=list(lower=~ 1, upper=~ upper), direction="forward") # 전진선택법 step(lm(left ~ upper, data=data), scope=list(lower=~ 1, upper=~ upper), direction="backward") # 후진소거법 step(lm(left ~ 1, data=data), scope=list(lower=~ 1, upper=~ upper), direction="both") # 단계적방법 auto.arima(data) SMA(data01, n = 2) # 평활 diff(data01, differences = 2) # 차분 pacf(data01, lag.max=10) acf(data01, lag.max=10, Plot=TRUE) data02 <- arima(data, order=c(2, 0, 0)) # 모델 보정 data03 <- forecast.Arima(data02, h=20) # 예측 m <- decompose(data)
결측값 처리 (Amelia)	 is.na, complete.cases, na.omit, missmap, na.rm zztemp <- amelia(data, m=5, ts="year", cs="country")' data\$field <- zztemp\$imputation[[5]]\$field 		
이상값 처리 (DMwR)	 factor <- lofactor(data, k=5) idx <- order(factor, decreasing=T)[1:5] pairs(data[, 1:4], pch=pch, col=col) biplot(prcomp(data[, 1:4]), cex=.8, xlabs=labels) 		
 행별 함수 (plyr)	 adply(data, 1, function(row) { ~ }) 		
열별 함수 (plyr)	 adply(data, 1, function(row) { ~ }) adply(data, 2, function(col) { ~ }) 		
	aggregate(value ~ group, data, function(group) { ~ })		
값별 함수 적용	sapply(data, function(val) { ~ })		
데이터 구조 변환 (reshape)	 melt(data, id=c("~"), na.rm=T) cast(data, y ~ x ~ z, func, subset=variable=="~") cast(data, y ~ . z, func) 	군집 분석 (Clustering) cluster, fpc, class	 m\$x, m\$trend, m\$seasonal, m\$random m <- kmeans(data, centers = 3); m <- hclust(dist(data, method = "euclidean")^2, method = "ward"); pred <- cutree(m, k = 3) type : complete(Default), single, ward, average subtype : euclidean(D), manhattan, canberra,minkowski m <- pam(data, 3); m <- fanny(data, 2); m\$cluster
샘플링 (sampling)	■ idx <- sample(2, nrow(data), replace=T, prob=c(0.7, 0.3)) ■ idx <- strata(c("Species"), size=c(3, 4, 5), method="srswor", data=data) # srswor, srswr (복원)		

군집 분석 (Clustering) cluster, fpc, class	■ 군집 개수 산정 findCluster = function(data = iris[, 1:4], groups = 1:10) { models <- 0 for (i in groups) { models[i] <- sum(kmeans(data, centers = i)\$withinss) } plot(groups, models, type="b", xlab="수", ylab="제곱합") }	소셜 네트워크 분석 (Social Network Analytics) igraph	 m <- graph.data.frame(d = data, directed = TRUE, vertices = attrs) g <- graph.incidence(m, mode = c("all")) m <- graph.adjacency(data, weight = T, mode = "undirected") g <- simplify(g) m\$layout <- layout.fruchterman.reingold(m) vcount, ecount, V, E get.vertex.attribute(m, "name") get.edge.attribute(m, "advice_tie") plot(m, layout = layouts, main = "Krackhardt High-Tech Managers", edge.arrow.size = .05) vertex.size : color, frame, frame.color, shape, abel, label.font, label.family, label.cex, label.dist, label.color edge.color : arrow.width, arrow.size, arrow.width, lty, label, label.font, label.family, label.cex, label.color mAdvice <- delete.edges(m, E(m)[get.edge.attribute(m, name = "advice_tie") == 0]) mAdviceNo <- delete.vertices(mAdvice, V(mAdvice)[degree(mAdvice) == 0])
연관 분석 (Association) arules, arulesViz, pmml	 data <- as(data, "transactions") length, size, summary inspect, transactionInfo, itemsetInfo, itemInfo as(data, "list"); format(as.POSIXlt(transactionInfo(data[1])[["TimeStamp"]]), "%Y-%m-%d %H:%M:%S") itemFrequencyPlot(data, support = 0.1, cex.names = 0.8) m <- apriori(data, parameter = list (support = 0.01, confidence = 0.6)) # 최소 지지도, 최소 신뢰도 summary, length inspect(sort(m[1:10], by = "lift")) small <- subset(m, subset = rhs %in% "income=small" & 		
최적화 (Optimization) lpSolve, lpSolveAPI	 lift > 1.2) m <- make.lp(0, 4) lp.control(m, sense="max") set.objfn(m, c(4, 6, 7, 8)) add.constraint(m, c(1, 1.5, 2, 3), "<=", 800) solve(m), get.objective(m), get.variables(m) 		 m1 <- edge.betweenness.community(m) m1 <- walktrap.community(m, steps = 200, modularity = TRUE) plot(as.dendrogram(m1, use.modularity = TRUE)) deg_full_in <- degree(m, mode = "in") m1 <- closeness(m) sp_full_in <- shortest.paths(m, mode = "in") tc_full <- triad.census(m)
텍스트 마이닝 (Text Mining) tm, wordcloud	 getReaders(), getTransformations() 파일 읽기 finp <- file("data/~.txt", encoding = "UTF-8") lines <- readLines(finp) close(finp) doc <- Corpus(VectorSource(lines)) summary, inspect doc <- tm_map(doc, as.PlainTextDocument) as.PlainTextDocument, stripWhitespace, tolower, removePunctuation, removeWords (stopwords("english")), stripWhitespace, stemDocument m <- DocumentTermMatrix(doc) m <- removeSparseTerms(m, 0.70) m <- DocumentTermMatrix(doc, list(dictionary = dic)) m <- t(m), inspect(m) findFreqTerms(m, 10, 15) findAssocs(m, "oil", 0.65) frequency <- colSums(data) wordcloud(names(frequency), as.numeric(frequency), colors = c("green", "red")) 	Visualization ggplot2, aplpack, vcd, googleVis, shiny, caret	main, xlab, ylab, xlim, ylim, type = p, l, s, o, b, n col, col.lab, col.axis, pch, axes = F x, y, colour, shape, size, alpha, fill, binwidth ggplot(data=~, aes(x=~, y=~, colour=~, group=~)) geom_point(): smooth, line, histogram, density, bar, pointrange stat_bin2d(), facet_grid(Diet ~ .) xlab(), ylab(), coord_cartesion(xlim, ylim) coord_flip(), scale_x_reverse(), scale_y_reverse()count,density ggsave("~.png") pie(table(Species)) parcoord(iris[, 1:4], main="평행좌표", col = iris\$Species) faces(iris[, 1:4], face.type = 1, main = "안형그림") stars(cpi[, 2:6], locations = c(0, 0), radius = T, key.loc = c(0, 0), main = "상품성질별 소비자 물가지수") mosaicplot(~ Class + Survived, data=Titanic, color=TRUE) plot(gvisMotionChart(Fruits, idvar="Fruit", timevar="Year")) gvisGeoChart(data, locationvar, colorvar, sizebar)