

Лекция 6

Линейные формы

Содержание лекции:

В данной лекции мы начнем изучать свойства линейных отображений и разовьем методы, которыми будем активно пользоваться для системного их исследования в дальнейшем. Ближайшим предметом рассмотрения будет линейная форма - скалярная функция векторного аргумента.

Ключевые слова:

Линейная форма, ядро линейной формы, равенство линейных форм, нуль-форма, сумма форм, произведение формы на число, коэффициенты формы в базисе, сопряженные базисы, естественный изоморфизм.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

6.1 Основные определения

Линейной формой f на пространстве $X(\Bbbk)$ называется отображение

$$f: X(\mathbb{k}) \to \mathbb{k},$$

обладающее свойством линейности:

$$f(x_1 + x_2) = f(x_1) + f(x_2), \quad f(x)\alpha = f(x)\alpha, \quad \forall x, x_1, x_2 \in X(\mathbb{k}), \quad \forall \alpha \in \mathbb{k}.$$

Nota bene Для линейных форм приняты следующие обозначения:

$$f(x), \quad (f, x) \quad x \in X(\mathbb{k}). \tag{6.1}$$

Пример 6.1. Примеры линейных форм:

- 1. $X = E_3$: $(f, \vec{x}) = \prod p_{\vec{l}}^{\perp} \vec{x};$
- 2. $X = \mathbb{R}^n$: $(f, x) = \xi^k$, $x = \sum_{k=1}^n e_k \xi^k$;
- 3. $X = \mathcal{P}_n$: $(f, x) = \int_a^b f(t)x(t)dt$, $f(t) \in \mathcal{P}_n$;
- 4. $X = \mathbb{R}_n^n$: $(f, x) = \sum_{i=1}^n x_{ii} = \operatorname{tr} x$.

 $\mathbf{Ядром}$ линейной формы f называется множество

$$\ker f = \{ x \in X(\mathbb{k}) : f(x) = 0 \}.$$

Лемма 6.1. Ядро ker f - линейное подпространство в $X(\mathbb{k})$.

Достаточно проверить замкнутость $\ker f$ относительно операций в $X(\Bbbk)$. Пусть

$$\forall x, x_1, x_2 \in \ker f, \quad \forall \alpha \in \mathbb{k}$$

тогда прямой проверкой можно убедиться в том, что

$$x_1 + x_2 \in \ker f$$
, $\alpha x \in \ker f$.

Nota bene Имеет место следующее неравенство (будет доказано позже):

$$\operatorname{codim}_{\mathbb{k}} \ker f \leq 1.$$

Nota bene Всякое уравнение вида

$$f(x) = \alpha, \quad \alpha \in \mathbb{k},$$

задает линейное многообразие M с несущим пространством $\ker f$.

$$M = x_0 + \ker f$$
, $f(x_0) = \alpha$.

6.2 Пространство линейных форм

Говорят, что линейные формы f и g равны (f = g), если

$$(f,x) = (g,x) \quad \forall x \in X(\mathbb{k}).$$

Линейная форма θ называется **нулевой** (нуль-формой), если

$$(\theta, x) = 0 \quad \forall x \in X(\mathbb{k}).$$

Суммой линейных форм f и g называется отображение h = f + g:

$$(h, x) = (f, x) + (g, x) \quad \forall x \in X(\mathbb{k}).$$

Лемма 6.2. Отображение h - линейная форма над $X(\Bbbk)$.

Покажем, что

$$h(x_1 + x_2) = h(x_1) + h(x_2), \quad h(\alpha x) = \alpha h(x) \quad \forall x, x_1, x_2 \in X(\mathbb{k}).$$

Действительно, первое свойство следует из:

$$(h, x_1 + x_2) = (f, x_1 + x_2) + (g, x_1 + x_2) =$$

$$= (f, x_1) + (f, x_2) + (g, x_1) + (g, x_2) = (h, x_1) + (h, x_2).$$

Второе свойство доказывается аналогично

$$(h, x\alpha) = (f, x\alpha) + (g, x\alpha) = (f, x)\alpha + (g, x)\alpha = (h, x)\alpha.$$

Произведением линейной формы f на число $\alpha \in \mathbb{k}$ называется отображение $v = \alpha f$, такое что:

$$(v,x) = \alpha(f,x).$$

Лемма 6.3. Отображение v - линейная форма над $X(\Bbbk)$.

Покажем, что

$$v(x_1 + x_2) = v(x_1) + v(x_2), \quad v(x\beta) = v(x)\beta \quad \forall x, x_1, x_2 \in X(\mathbb{k}).$$

Аналогично доказательству выше имеем:

$$(v, x_1 + x_2) = \alpha(f, x_1 + x_2) = \alpha(f, x_1) + \alpha(f, x_2) = (v, x_1) + (v, x_2),$$

$$(v, x\beta) = \alpha(f, x)\beta = \alpha(f, x)\beta = (v, x)\beta.$$

ЛИНЕЙНЫЕ ФОРМЫ

Теорема 6.1. Множество линейных форм на $X(\mathbb{k})$ может быть наделено структурой линейного пространства.

>

Доказывается прямой проверкой аксиом линейного пространства.

4

Сопряженным пространством к линейному пространству $X(\Bbbk)$ называется пространство $X^*(\Bbbk)$ линейных форм на $X(\Bbbk)$.

6.3 Сопряженное пространство

Коэффициентами линейной формы в базисе $\{e_j\}_{j=1}^n$ линейного пространства $X(\mathbb{k})$ называются ее значения на базисных векторах:

$$(f, e_i) = \varphi_i, \quad f \leftrightarrow (\varphi_1, \varphi_2, \dots, \varphi_n)$$

Теорема 6.2. Задание линейной формы эквивалентно заданию ее значений на базисных векторах, то есть заданию ее коэффициентов.

>

⇒ Очевидно.

 \leftarrow Пусть в выбранном базисе $\{e_j\}_{j=1}^n$ линейного пространства X линейная форма задана набором коэффициентов $(\varphi_1, \varphi_2, \dots, \varphi_n)$, тогда

$$(f,x) = \left(f, \sum_{j=1}^{n} e_j \xi^j\right) = \sum_{j=1}^{n} (f, e_j \xi^j) = \sum_{j=1}^{n} (f, e_j) \xi^j = \sum_{j=1}^{n} \varphi_j \xi^j, \quad \forall x \in X.$$

4

Теорема 6.3. (о базисе X^*) Множество линейных форм $\{f^k\}_{k=1}^n: X(\Bbbk) \to \Bbbk$, действующих на $X(\Bbbk)$ с базисом $\{e_j\}_{j=1}^n$ как

$$(f^k, x) = \xi^k, \quad x = \sum_{j=1}^n e_j \xi^j.$$

образует базис пространства $X^*(\mathbb{k})$.

▶

Покажем, что $\left\{f^k\right\}_{k=1}^n$ образуют полный и линейнонезависимый набор.

1. Полнота:

$$(f,x) = \sum_{j=1}^{n} \varphi_j \xi^j = \sum_{j=1}^{n} \varphi_j (f^j, x) \quad \forall x \in X \quad \Leftrightarrow \quad f = \sum_{j=1}^{n} \varphi_j f^j.$$

2. Линейная независимость:

$$\sum_{j=1}^{n} \alpha_j f^j = \theta \quad \Rightarrow \quad \left(\sum_{j=1}^{n} \alpha_j f^j, e_k\right) = 0 \quad \Rightarrow \quad \alpha_k = 0 \quad \forall k.$$

Nota bene Заметим, что в обозначениях теоремы мы получаем

$$(f^k, e_j) = \delta_j^k = \begin{cases} 0, & k \neq j, \\ 1, & k = j. \end{cases}$$

Базисы $\{e_j\}_{j=1}^n$, $\{f^k\}_{k=1}^n$ пространств X и X^* соответственно называются **сопряженными**, если они обладают свойством:

$$(f^k, e_j) = \delta_j^k.$$

Лемма 6.4. Для каждого базиса $\{e_j\}_{j=1}^n$ линейного пространства $X(\Bbbk)$ может быть построен сопряженный ему базис пространства $X^*(\Bbbk)$ и наоборот.

6.4 Изоморфизм пространств X и X^*

Nota bene Размерности пространств $X(\Bbbk)$ и $X^*(\Bbbk)$ одинаковы, а значит данные пространства изоморфны:

$$\dim_{\mathbb{k}} X = \dim_{\mathbb{k}} X^* \quad \Leftrightarrow \quad X(\mathbb{k}) \simeq X^*(\mathbb{k}).$$

Nota bene Аналогично пространству $X^*(\Bbbk)$ сопряженному $X(\Bbbk)$ можно ввести пространство $X^{**}(\Bbbk)$ сопряженное пространству $X^*(\Bbbk)$ - второе сопряженное пространство - множество линейных форм на $X^*(\Bbbk)$:

$$\hat{x}: X^* \to \mathbb{k}, \quad \hat{x}(f) = (\hat{x}, f) \in \mathbb{k},$$

$$\hat{x}(f+g) = \hat{x}(f) + \hat{x}(g), \quad \hat{x}(\alpha f) = (\hat{x}\alpha)(f).$$

Изоморфизм двух линейных пространств называется **естественным изоморфизмом**, если он устанавливается без применения понятия базиса.

Лемма 6.5. Изоморфизм между $X(\Bbbk)$ и $X^{**}(\Bbbk)$ - естественный.

Искомый изоморфизм устанавливается отношением:

$$\hat{x} \leftrightarrow x: \quad (\hat{x}, f) = (f, x), \quad \forall f \in X^*(\mathbb{k}).$$

Nota bene Таким образом на $X^{**}(\Bbbk)$ естественным образом индуцируется структура линейного пространства:

$$(\hat{x} + \hat{y}, f) = (\hat{x}, f) + (\hat{y}, f), \quad (\alpha \hat{x}, f) = \alpha(\hat{x}, f).$$