DeepLabCut AI Residency

Day 2 Session 2: Network evaluation & video analysis

July 30 & August 1, 2025 McGill University, Montreal

Jiayue Yang
Vic Shao-Chinh Chiang

Recall: DeepLabCut workflow

Train DNN

Summary of DLC commands

Table 1 Summary of commands		
Operation	Command	
Open IPython and import DeepLabCut (Step 1)	ipython import deeplabcut	
Create a new project (Step 2)	<pre>deeplabcut.create_new_project('project_name', 'experimenter', ['path of video 1', 'path of video2',])</pre>	
Set a config_path variable for ease of use (Step 3)	<pre>config_path = '/yourdirectory/project_name/config.yaml'</pre>	
Extract frames (Step 4)	deeplabcut.extract_frames(config_path)	
Label frames (Steps 5 and 6)	deeplabcut.label frames(config path)	
Check labels (optional)(Step 7)	deeplabcut.check labels(config path)	
Create training dataset (Step 8)	deeplabcut.create_training_dataset(config_path)	
Train the network (Step 9)	deeplabcut.train_network(config_path)	
Evaluate the trained network (Step 11)	deeplabcut.evaluate_network(config_path)	
Video analysis and plotting results (Step 11)	<pre>deeplabcut.analyze_videos(config_path, ['path of video 1 or folder', 'path of video2',])</pre>	
Video analysis and plotting results (Step 12)	<pre>deeplabcut.plot_trajectories(config_path, ['path of video 1', 'path of video2',])</pre>	
Video analysis and plotting results (Step 13)	<pre>deeplabcut.create_labeled_video(config_path, ['path of video 1', 'path of video2',])</pre>	
Refinement: extract outlier frames (Step 14)	<pre>deeplabcut.extract_outlier_frames(config_path,['path of video 1', 'path of video 2'])</pre>	
Refine labels (Step 15)	deeplabcut.refine_labels(config_path)	
Combine datasets (Step 16)	deeplabcut.merge_datasets(config_path)	

Network evaluation!

Anaconda Prompt (anaconda3)

Loading...

By bodyparts:

Evaluation results

train train test train train test test test id_head id_head id_head id_head test %Trainin Shuffle Training id head id head id head Detector train test train rmse_pc test mAP test train epochs pcutoff _snout_ _leftear_ _rightear _tailbas _snout_ _leftear_ _rightear _tailbas rmse pc number epochs rmse (TD only) accurac accurac _accura e_accur utoff accurac accurac _accura e_accur utoff СУ acy СУ acy 0.95 100 28.71 24.22 48.37 0.82 0.86 0.82 9.01 0.5 0.33 0.67 0.6 53.33 0.84 9.01 46.67 53.33 0.67

What do they mean?

Columns	Meanings	
%Training dataset	0.95 = 95% labeled data for training. 5% held separated for testing	
Shuffle number	Shuffle split (for cross-validation & training runs)	
Training epochs	100 = # of training iterations	
Detector epochs (TD only)	-1 = N/A (only for a top-down detector)	
pcutoff	0.6 = confidence cutoff (prediction < 0.6 ignored)	
train rmse	Root Mean Square Error on training set for all points, in pixels	
train rmse_pcutoff	Training RMSE for predictions > 0.6	
train mAP	Mean Average Precision (how precise key points localized in training set)	
train mAR	Mean Average Recall (how good all points are detected)	
test rmse	RMSE on testing set for all points, in pixels	
test rmse_pcutoff	Testing RMSE for predictions > 0.6	
test mAP	mAP on test set	
test mAR	mAR on test set	

Video analysis

```
IPython: C:/
  metrics/test.rmse:
                               8.95
  metrics/test.rmse_pcutoff: 8.95
  metrics/test.mAP:
                              46.67
  metrics/test.mAR:
                              50.00
Epoch 91/100 (lr=0.0001), train loss 0.01170
Epoch 92/100 (lr=0.0001), train loss 0.01478
Epoch 93/100 (lr=0.0001), train loss 0.01215
Epoch 94/100 (lr=0.0001), train loss 0.01144
Epoch 95/100 (lr=0.0001), train loss 0.01081
Epoch 96/100 (lr=0.0001), train loss 0.01080
Epoch 97/100 (lr=0.0001), train loss 0.01158
Epoch 98/100 (lr=0.0001), train loss 0.01154
Epoch 99/100 (lr=0.0001), train loss 0.01037
Training for epoch 100 done, starting evaluation
Epoch 100/100 (lr=0.0001), train loss 0.01151, valid loss 0.01627
Model performance:
  metrics/test.rmse:
                               9.01
  metrics/test.rmse_pcutoff:
                               9.01
  metrics/test.mAP:
                              46.67
  metrics/test.mAR:
                              53.33
                                                                                       | 19/19 [00:03<00:00, 5.35it/s]
100%
100%
                                                                                          | 1/1 [00:00<00:00, 4.83it/s]
100%
                                                                                       | 19/19 [00:02<00:00, 6.61it/s]
100%
                                                                                                 | 1/1 [00:00<?, ?it/s]
                                                                                     2330/2330 [10:48<00:00, 3.59it/s]
100%
100%
                                                                                    2330/2330 [00:04<00:00, 511.54it/s]
                                                                                     112/112 [00:00<00:00, 1203.49it/s]
100%
```

Video analysis

Can still edit config.yaml for parameters such as batch_size

You can simply add new videos, no need to add them in the cofig file!

Video analysis

deeplabcut.analyze_videos(path_to_config, [video_list], save_as_csv=True, ...)

Tracking methods: same animal or not?

Ways to link detections of body parts of consistent animals across time

	What does it do?	Pro	Con
Ellipse	 Draw an ellipse to the key bodyparts/points of each detected animal Tracks both spatial location and orientation (by angle of ellipse) of the animal across frames 	 Fast Good identity tracking when animals are close or rotating (moderate interaction) 	 May mistake if similar animal (shape and pose) Can mix-up while heavy occlusions or entangled animals
Вох	 Draw a bounding box around all prediction of an animal to define its location in each frame Tracks same animal by matching boxes at their locations across frames 	 Fast Good for simple, spaced animal Not complex body parts Not closely interacting 	 Can be bad if animals overlap or interact close together Only use spatial location (not internal structure)
Skeleton	 Draw a complete skeleton structure (considering spatial orientation of all key bodyparts and their connections) Track same animal by matching shape, orientation, and geometry of the pose/skeleton 	 Slower Can track complex behaviors (grooming, crossing, etc.) Dataset animals need to be consistent identity 	 Requires higher computational power Requires a well-defined and accurate skeleton structure for the animal

Trajectory: video analysis results

Filtering vs. unfiltered

Labeled video creation

```
deeplabcut.create_labeled_video(config_path,['fullpath/afolderofvideos'], videotype='.mp4', filtered=True)

deeplabcut.create_labeled_video(config_path,['fullpath/afolderofvideos'], videotype='.mp4', draw_skeleton=True)

deeplabcut.create_labeled_video(config_path,['fullpath/afolderofvideos'], videotype='.mp4', trailpoints=10)

deeplabcut.create_labeled_video(config_path,['fullpath/afolderofvideos'], save_frames=True/False)
```

Unfiltered, ellipse

Filtering, skeleton

Single mice

PROTOCOL

Nath et al. (2019). Nature Protocols.

400 500 600 700 800 900

200 300

400 500

Finger2

200 300 400 500 600 700 800

Finger2

Next...

- After correcting all labels (refine tracklet & extract outliers), you
 could merge datasets to make a new one
 - Create a new training dataset to re-train the network
- Weights of each bodyparts will be re-initialized from ImageNet
- You can manually change the init_weights in pose_cfg.yaml to the snapshot from previous iteration before training
- Analysis using prediction (.csv)?
- Other tools you could use:
 - Deeplabcut 3D
 - YOLO (You Only Look Once)
 - Model Zoo

After outlier extraction and re-train

Iteration 0 (50 epochs, 27 training set images)

Iteration 1 (50 epochs, 115 training set images)