2. Feladatok

1. Határozza meg a következő függvények értelmezési tartományát, elsőrendű parciális deriváltjait és azok értelmezési tartományát!

(a)
$$f(x,y) = x^3 + y^3 - 3xy$$
 (b) $f(x,y) = x^y$

(c)
$$f(x,y) = y^2 \ln \sqrt{xy}$$
 (d) $f(x,y) = \arcsin\left(\frac{y}{x}\right)$

(e)
$$f(x,y) = \frac{x^3 e^y}{1 + \sin x + y^2}$$
 (f) $f(x,y) = \frac{e^{2x-3y}}{2x - 3y}$

(g)
$$f(x,y) = x \operatorname{tg}(x+y)$$
 (h) $f(x,y) = x \ln(x^2 + y^2)$

(i)
$$f(x,y) = \ln \sqrt{x^7 y^4}$$
 (j) $f(x,y) = x^2 - 5xy + 3y^2 - 6x + 7y + 8$

(k)
$$f(x,y) = \text{tg}(3x - 5y)$$
 (l) $f(x,y) = \sqrt{x^3 - 5x^2y + y^4}$

(m)
$$f(x,y) = e^{x^2 \sin x - y^2 x^3}$$

2. Határozza meg a következő függvények másodrendű parciális deriváltjait! Ellenőrizze le, hogy valóban teljesül az $f_{xy}(x,y) = f_{yx}(x,y)$ egyenlőség!

(a)
$$f(x,y) = \ln(x + e^y)$$
 (b) $f(x,y) = x^y$ (c) $f(x,y) = x \operatorname{tg}(x+y)$

$$\text{(d) } f(x,y) = \arccos\left(\frac{y}{x}\right) \quad \text{(e) } f(x,y) = \frac{y^2}{x+y} \quad \text{(f) } f(x,y) = \arctan\left(\frac{x+y}{1-xy}\right)$$

(g)
$$f(x,y) = y - xe^y + x$$
 (h) $f(x,y) = e^{xy}$ (i) $f(x,y) = x\sin(x+y) + y\sin(x+y)$

3. Írja fel az alábbi felületek érintősíkjának egyenletét a megadott pontban!

(a)
$$f(x,y) = 5x^2 - 2xy + 3y^2 + 5x - 6$$
 és $P_0(1,-1)$

(b)
$$f(x,y) = (x^2 - 6x)(y^2 - 4y)$$
 és $P_0(1,2)$

(c)
$$f(x,y) = \arcsin\left(\frac{x}{y}\right)$$
 és $P_0(1,2)$

(d)
$$f(x,y) = (x^2 + y^2) \ln(xy)$$
 és $P_0(2,1/2)$

(e)
$$f(x,y) = x \operatorname{tg} y - y \operatorname{tg} x$$
 és $P_0(\pi/4,0)$

$$\text{(f) } f(x,y) = 3y + e^{xy^2} + 2y \ \text{arctg} \frac{x}{y} \quad \text{ \'es } \quad P_0(0,1)$$

(g)
$$f(x,y) = \frac{x^2y}{x^2 + 2y^2}$$
 és $P_0(1,1)$

- 4. Határozza meg annak a síknak az egyenletét, amely átmegy a P(2,-1,3) ponton és párhuzamos az $f(x,y)=\cos\left(x^2+y^2\right)$ felület $x_0=\frac{\sqrt{\pi}}{2}, y_0=\frac{\sqrt{\pi}}{2}$ koordinátájú pontjához tartozó érintősíkkal.
- 5. Az $f(x,y) = \ln(xy)$ felületnek mely pontjaiban párhuzamosak az érintősíkok az x + y + z = 0 síkkal?
- 6. Az $f(x,y) = x^2 2xy + 3y^2 5x + 3y 5$ felület mely pontjaiban vízszintes az érintősík?
- 7. Határozza meg a következő függvények adott irány szerinti iránymenti deriváltját a megadott pontban!

(a)
$$f(x,y) = x^3 - 5xy^2 - 2x + 1$$
, $\alpha = 40^\circ$, $P_0(1,0)$

(b)
$$f(x,y) = (x-y)^2$$
, $\alpha = \frac{pi}{3}$, $P_0(2,3)$

(c)
$$f(x,y) = \sqrt{x^2 + y^2}$$
, $\alpha = 135^\circ$, $P_0(-5,5)$

(d)
$$f(x,y) = \sin(xy)$$
, $\alpha = 150^{\circ}$, $P_0(1,0)$

(e)
$$f(x,y) = \frac{x^2 \ln y}{x^2 + 3y^2}$$
, $\underline{v} = (-3,4)$, $P_0(-1,1)$

(f)
$$f(x,y) = \frac{xy(1+y)}{x^2+y^2}$$
, $\underline{v} = (-4,3)$, $P_0(3,1)$

(g)
$$f(x,y) = x^4[2 - \ln(1+y^2)], \quad \underline{v} = (1,3), \quad P_0(1,0)$$

(h)
$$f(x,y) = \ln(x^2 + y^2)$$
, $\underline{v} = (1,3)$, $P_0(-3,-4)$

- 8. Határozza meg mely irány esetén lesz nulla az $f(x,y)=x^3+y^3-3xy+e^y$ függvény $P_0(2,0)$ pontbeli iránymenti deriváltja! És mely irány esetén lesz maximális az iránymenti derivált?
- 9. Milyen irányban lesz az $f(x,y)=y^3e^{-2x-1}$ függvény $(\frac{1}{2},1)$ pontbeli iránymenti deriváltja maximális, illetve minimális?
- 10. Határozza meg az $f(x,y)=x^2e^y$ függvgény $P_0(2,0)$ pontbeli, a $\underline{v}=(3,4)$ vektorra merőleges iránymenti deriváltját!