Документация по обучению нейросети на PyTorch с нуля

Этот документ — подробное руководство по созданию и обучению простой нейронной сети с нуля на языке Python с использованием библиотеки **PyTorch**. Он предназначен для новичков, которые не имеют опыта в машинном обучении и хотят понять, как работает нейросеть, какие параметры на что влияют, и как анализировать результаты.

◆Содержание

- 1. Загрузка данных
- 2. Построение модели
- 3. Активационные функции
- 4. Функции потерь (Loss Function)
- 5. Оптимизаторы
- 6. Обучение модели
- 7. Анализ результатов
- 8. Графики Accuracy и Loss
- 9. Переобучение: признаки и решения
- 10. Экспорт модели (сохранение)

1. Загрузка данных

Мы используем **датасет MNIST**, который содержит изображения цифр (от 0 до 9) в виде 28x28 пикселей.

```
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

transform = transforms.Compose([transforms.ToTensor()])
train_data = datasets.MNIST(root='.', train=True, download=True,
transform=transform)
test_data = datasets.MNIST(root='.', train=False, download=True,
transform=transform)

train_loader = DataLoader(train_data, batch_size=64, shuffle=True)
test_loader = DataLoader(test_data, batch_size=64)
```

ToTensor() переводит картинку из PIL-формата в тензор (матрицу), который понимает РуТогсh.

2. Построение модели

Модель — это класс, наследующий nn. Module , содержащий:

- Слои (fully-connected): fc1 , fc2
- Forward-функцию: описывает, как данные проходят через сеть

```
class SimpleNet(nn.Module):
    def __init__(self, activation='relu'):
        super(SimpleNet, self).__init__()
        self.fc1 = nn.Linear(28*28, 128)
        self.fc2 = nn.Linear(128, 10)
        self.activation = activation

def forward(self, x):
        x = x.view(-1, 28*28)
        if self.activation == 'relu':
            x = F.relu(self.fc1(x))
        elif self.activation == 'sigmoid':
            x = torch.sigmoid(self.fc1(x))
        elif self.activation == 'tanh':
            x = torch.tanh(self.fc1(x))
        return self.fc2(x)
```

3. Активационные функции

Активационная функция — важная часть сети, она решает, передавать ли сигнал дальше.

Название	Особенности	Применение
ReLU	Быстрая, работает лучше всего в целом	по умолчанию
Sigmoid	Сжимает значение от 0 до 1	устарела, но важна для понимания
Tanh	Сжимает от -1 до 1, сглаживает	альтернатива sigmoid

ReLU чаще всего используется, потому что не вызывает затухающего градиента (в отличие от сигмоида).

4. Функция потерь (Loss Function)

Loss — это метрика, показывающая **насколько сильно ошибается модель**. Мы использовали:

```
criterion = nn.CrossEntropyLoss()
```

Она используется для задач **многоклассовой классификации**. Чем меньше значение loss, тем точнее предсказание модели.

5. Оптимизаторы

Оптимизатор обновляет веса модели для минимизации потерь. Мы использовали:

```
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
```

Название	Особенности
SGD	простой, но медленный
Adam	адаптивный, быстрый, почти всегда хорош
RMSprop	похож на Adam, но чаще для RNN

6. Обучение модели

Модель проходит данные по эпохам (итерациям по всему датасету). На каждой эпохе:

- Делается прямой проход (forward)
- Вычисляется ошибка (loss)
- Делается обратный проход (backpropagation)
- Обновляются веса

```
for epoch in range(1, epochs + 1):
    for X, y in loader:
        optimizer.zero_grad()
        out = model(X)
        loss = criterion(out, y)
        loss.backward()
        optimizer.step()
```

Мы выводили loss и accuracy на **особых эпохах**: 1, 2, 3, 10, 20... 100.

7. Анализ результатов

• Loss: Если сильно падает, модель учится.

- Accuracy: Показывает процент правильных предсказаний.
- Если loss стал почти 0, а ассuracy почти 100%, возможен **overfitting** (см. ниже).

8. Графики Accuracy и Loss

```
plt.plot(epochs, loss_hist)
plt.plot(epochs, [a * 100 for a in acc_hist])
```

Ты увидишь, как loss убывает, а ассuracy растёт. Если на графике появляются "скачки" или выбросы — это могут быть **аномалии**, вызванные случайной ошибкой в обучении или переобучением.

9. Переобучение (overfitting)

Что это: модель идеально выучила тренировочные данные, но плохо работает на новых.

Признаки:

- Loss падает, ассигасу высокая на тренировке
- Но на тесте ассигасу резко хуже

Решения:

- Добавить Dropout
- Уменьшить количество эпох
- Использовать больше данных
- Использовать регуляризацию (например, weight decay)

10. Экспорт модели

Чтобы сохранить модель после обучения:

```
torch.save(model.state_dict(), 'model.pth')
```

Чтобы загрузить:

```
model.load_state_dict(torch.load('model.pth'))
model.eval()
```

• Что ещё можно добавить

- Dropout слои для борьбы с переобучением
- Softmax на выходе для получения вероятностей
- Разделение обучения на train/test и валидацию
- Вывод confusion matrix

Заключение

Ты теперь умеешь:

- Загружать данные
- Строить и обучать нейросеть
- Использовать активации и оптимайзеры
- Анализировать результаты

И самое главное — ты разбираешься, что именно происходит на каждом шаге!