## Data Scientists in Software Teams: State of the Art and Challenges

Original paper by: Miryung Kim, Thomas Zimmermann, Robert DeLine, Andrew Begel Summary by: Liam Day

### Introduction

Data scientists analyze data to make informed decisions regarding business and engineering.

793 professional data scientists at Microsoft were surveyed

- Some of the problems Data Scientists work on
  - User Engagement
  - Software Productivity and Quality
  - Domain Specific
  - Business Intelligence
  - Discussion

- Actual Discipline of Data Scientists
  - o 38% Data Scientists
  - o 24% Software Engineers
  - 18% Program Managers
  - o 20% Other Disciplines

# What is the demographic and educational background of data scientists at Microsoft?

- Professional Experience
  - o 13.6 Years on average
  - 7.4 Years at Microsoft
    - 9.8 Years analyzing data
- Educational Background
  - 34% Bachelors
  - 41% Masters
  - 22% PhD's

#### Skills

- Skill sets strong for things like Product
  Development, Business, and Backend
  Programming
- Structured Data, Data Manipulation, and Big Data/Distributed Systems were most frequently reported
- Spatial Statistics, Surveys/Marketing,
  Simulation, Bayesian/Monte-Carlo statistics
  were less frequently reported

## **Working Styles**

- 81%Analyze product and customer data
- 76% Communicate results and insights
- o 60% Big data cloud computing platforms
- 51% Build predictive models from the data
- 36% build data engineering platforms to collect and process data
- o 31% add instrumentation to collect data
- o 12% manage a team of data scientists

#### Time Spent



# How do data scientists work?, and what tools do they use?

- Popular tools include
  - o SQL, Excel, R, MATLAB, Minitab, SPSS, JMP, Python, Office BI, SCOPE, Azure ML, TLC
- One of the big insights of the paper was that their are too many tools.
- There are issues moving between different platforms so work has limited reusability

#### Polymath

- Jack of all trades
- Above average PHD

#### Evangelist

Explain data

#### Preparer

- Querying and manipulating data
- O Deal with many data streams

#### Shaper

- Analyzing and preparing
- Most are dedicated data scientists

#### Analyzer

Around half time analyzing

#### Platform Builder

- Building platforms and instrumentation
- Mostly software engineers

#### Moonlighter 50/20%

Less data focus

| Entire population 532 people                | 12.0%<br>4.7h | 7.2%<br>2.9h   | 11.7%<br>4.9h  | 12.5%<br>5.2h  | 4.8%<br>2.1h | 6.9%<br>3.0h | 8.5%<br>3.5h  | 9.2%<br>3.8h  | 2.4%<br>1.1h | 5.5%<br>2.1h   | 4.1%<br>1.9h  | 15.1%<br>6.7h  |
|---------------------------------------------|---------------|----------------|----------------|----------------|--------------|--------------|---------------|---------------|--------------|----------------|---------------|----------------|
| Cluster 1<br>Polymath -<br>156 people       | 10.4%<br>4.4h | 8.5%<br>3.6h   | 11.5%<br>5.1h  | 15.1%<br>6.7h  | 9.1%<br>4.0h | 7.7%<br>3.6h | 7.4%<br>3.5h  | 7.9%<br>3.6h  | 3.2%<br>1.5h | 5.2%<br>2.3h   | 4.0%<br>2.0h  | 10.1%<br>4.5h  |
| Cluster 2<br>Data Evangelist-<br>71 people  | 6.8%<br>2.2h  | 2.1%<br>1.0h   | 6.7%<br>2.5h   | 7.7%<br>2.9h   | 2.4%<br>1.2h | 7.0%<br>2.6h | 12.0%<br>4.5h | 23.0%<br>8.6h | 3.7%<br>1.3h | 9.5%<br>3.3h   | 13.4%<br>6.0h | 5.7%<br>2.6h   |
| Cluster 3<br>Data Preparer-<br>122 people   | 24.5%<br>9.4h | 4.9%<br>1.9h   | 19.6%<br>7.8h  | 10.0%<br>4.0h  | 3.0%<br>1.3h | 9.0%<br>4.1h | 11.6%<br>4.5h | 8.8%<br>3.5h  | 1.5%<br>0.7h | 3.9%<br>1.3h   | 1.5%<br>0.7h  | 1.8%<br>0.8h   |
| Cluster 4<br>Data Shaper-<br>33 people      | 5.6%<br>2.5h  | 1.8%<br>0.7h   | 27.0%<br>11.5h | 25.7%<br>10.9h | 6.0%<br>2.6h | 8.9%<br>3.8h | 7.6%<br>3.3h  | 7.5%<br>3.2h  | 2.1%<br>1.0h | 3.3%<br>1.4h   | 2.5%<br>1.1h  | 1.9%<br>0.9h   |
| Cluster 5<br>Data Analyzer-<br>24 people    | 9.9%<br>3.7h  | 0.9%<br>0.3h   | 5.8%<br>2.4h   | 49.1%<br>18.4h | 4.6%<br>2.2h | 6.6%<br>2.7h | 5.2%<br>2.2h  | 5.8%<br>2.4h  | 1.8%<br>0.9h | 4.2%<br>1.6h   | 2.8%<br>1.3h  | 3.2%<br>1.3h   |
| Cluster 6<br>Platform Builder-<br>27 people | 12.5%<br>4.4h | 48.5%<br>18.4h | 6.1%<br>2.6h   | 4.3%<br>1.9h   | 3.8%<br>1.1h | 2.7%<br>1.2h | 4.4%<br>2.0h  | 4.1%<br>1.9h  | 2.1%<br>0.9h | 3.0%<br>1.1h   | 1.4%<br>0.6h  | 6.9%<br>3.1h   |
| Cluster 7<br>Moonlighter 50% -<br>63 people | 7.3%<br>3.1h  | 5.0%<br>2.2h   | 5.0%<br>2.1h   | 5.5%<br>2.4h   | 2.8%<br>1.2h | 4.2%<br>2.0h | 7.8%<br>3.3h  | 5.9%<br>2.4h  | 1.8%<br>0.8h | 5.7%<br>2.3h   | 2.5%<br>1.1h  | 46.5%<br>20.0h |
| Cluster 8<br>Moonlighter 20% -<br>32 people | 2.9%<br>1.2h  | 1.4%<br>0.6h   | 1.9%<br>0.9h   | 1.6%<br>0.7h   | 0.4%<br>0.2h | 1.5%<br>0.7h | 1.7%<br>0.8h  | 2.3%<br>1.0h  | 0.6%<br>0.3h | 2.1%<br>1.0h   | 2.9%<br>1.3h  | 80.9%<br>36.1h |
| Cluster 9<br>Insight Actor-<br>4 people     | 0.9%<br>0.1h  | 2.1%<br>1.0h   | 1.8%<br>0.2h   |                | 0.9%<br>0.1h | 5.7%<br>1.5h | 18.5%<br>4.8h | 10.1%<br>1.6h | 3.0%<br>1.1h | 57.1%<br>11.8h |               |                |
|                                             | 1             | 1              | - 1            | - 1            | -            | -            | 1             |               |              | -              | 1             | - 1            |

Level askilled by the contract of the state of the state

### What challenges do data scientists face?

- Data Quality
  - Limits confidence
- Data Availability
  - Missing, Incomplete, and Access
- Data Preparation
  - Format and Documentation

- Scale
  - o Time
  - Generic Tools lack feature
- Machine Learning
  - Problems are undefined
- Buy-In
  - Dedicated work is limited

# Data scientists advice to overcome those challenges?

- Better Learning
  - Things like MOOCS are currently used
- Professionalizing the practice
  - Some basis training
- Community of Practice
  - Hands on learning was a recurring request

- R was the most popular tool
- Too many tools with limited interoperability
  - Work reuse limited
- Defining and translating between goals and data
- Having a gut instinct about the data

## How do data scientists increase confidence about the correctness of their work?

- Group review
  - With peers
- Cross referencing
  - Other sources
- Human labeled ground truth
  - Need human knowledge to decide what is true
- Simulation
  - o To build up a cross reference
- Repeatability

### **Questions & Discussion**

How would you solve a too many tools issue?

### Reference

Data Scientists in Software Teams: State of the Art and Challenges

By: Miryung Kim, Thomas Zimmermann, Robert DeLine, Andrew Begel

Accessed from: <a href="http://web.cs.ucla.edu/~miryung/Publications/tse2017-datascientists.pdf">http://web.cs.ucla.edu/~miryung/Publications/tse2017-datascientists.pdf</a>

Accessed on: 2018/07/17