One Factor Experiments

- Computation of Effects
- Estimating Experimental Errors
- Allocation of Variation
- ANOVA Table and F-Test
- Visual Diagnostic Tests
- Confidence Intervals For Effects
- Unequal Sample Sizes

©2010 Raj Jain www.rajjain.com

One Factor Experiments

□ Used to compare alternatives of a single categorical variable.

$$y_{ij} = \mu + \alpha_j + e_{ij}$$

For example, several processors, several caching schemes

r = Number of replications

 y_{ij} = ith response with jth alternative

 μ = mean response

 α_j = Effect of alternative j

 $e_{ij} = \text{Error term}$

$$\sum \alpha_j = 0$$

Computation of Effects

$$\sum_{i=1}^{r} \sum_{j=1}^{a} y_{ij} = ar\mu + r \sum_{j=1}^{a} \alpha_j + \sum_{i=1}^{r} \sum_{j=1}^{a} e_{ij}$$
$$= ar\mu + 0 + 0$$
$$\mu = \frac{1}{ar} \sum_{i=1}^{r} \sum_{j=1}^{a} y_{ij} = \bar{y}..$$

Computation of Effects (Cont)

$$\bar{y}_{.j} = \frac{1}{r} \sum_{i=1}^{r} y_{ij}$$

$$= \frac{1}{r} \sum_{i=1}^{r} (\mu + \alpha_j + e_{ij})$$

$$= \frac{1}{r} \left(r\mu + r\alpha_j + \sum_{i=1}^{r} e_{ij} \right)$$

$$= \mu + \alpha_j + 0$$

$$\alpha_j = \bar{y}_{.j} - \mu = \bar{y}_{.j} - \bar{y}_{..}$$

Example 20.1: Code Size Comparison

\overline{R}	V	Z
144	101	130
120	144	180
176	211	141
288	288	374
144	72	302

Entries in a row are unrelated.(Otherwise, need a two factor analysis.)

Example 20.1 Code Size (Cont)

	R	V	Z	
	144	101	130	
	120	144	180	
	176	211	141	
	288	288	374	
	144	72	302	
Col Sum	$\Sigma y_{.1} = 872$	$\Sigma y_{.2} = 816$	$\Sigma y_{.3} = 1127$	$\Sigma y_{} = 2815$
Col Mean	$\bar{y}_{.1} = 174.4$	$\bar{y}_{.2} = 163.2$	$\bar{y}_{.3} = 225.4$	$\mu = \bar{y}_{} = 187.7$
Col Effect	$\alpha_1 = \bar{y}_{.1} - \bar{y}_{}$	$\alpha_2 = \bar{y}_{.2} - \bar{y}_{}$	$\alpha_3 = \bar{y}_{.3} - \bar{y}_{}$	
	=-13.3	=-24.5	=37.7	

Example 20.1: Interpretation

- Average processor requires 187.7 bytes of storage.
- □ The effects of the processors R, V, and Z are -13.3, -24.5, and 37.7, respectively. That is,
 - > R requires 13.3 bytes less than an average processor
 - > V requires 24.5 bytes less than an average processor, and
 - > Z requires 37.7 bytes more than an average processor.

Estimating Experimental Errors

■ Estimated response for *j*th alternative:

$$\hat{y}_j = \mu + \alpha_j$$

□ Error:

$$e_{ij} = y_j - \hat{y}_j$$

□ Sum of squared errors (SSE):

$$SSE = \sum_{i=1}^{r} \sum_{j=1}^{a} e_{ij}^{2}$$

Example 20.2

$$\begin{bmatrix} 144 & 101 & 130 \\ 120 & 144 & 180 \\ 176 & 211 & 141 \\ 288 & 288 & 374 \\ 144 & 72 & 302 \end{bmatrix} = \begin{bmatrix} 187.7 & 187.7 & 187.7 \\ 187.7 & 187.7 & 187.7 \\ 187.7 & 187.7 & 187.7 \\ 187.7 & 187.7 & 187.7 \end{bmatrix}$$

$$\begin{bmatrix}
-13.3 & -24.5 & 37.7 \\
-13.3 & -24.5 & 37.7 \\
-13.3 & -24.5 & 37.7 \\
-13.3 & -24.5 & 37.7 \\
-13.3 & -24.5 & 37.7
\end{bmatrix}$$

SSE =
$$(-30.4)^2 + (-54.4)^2 + \dots + (76.6)^2 = 94365.20$$

©2010 Raj Jain www.rajjain.com

Allocation of Variation

$$y_{ij} = \mu + \alpha_j + e_{ij}$$

$$y_{ij}^2 = \mu^2 + \alpha_j^2 + e_{ij}^2 + 2\mu\alpha_j + 2\mu e_{ij} + 2\alpha_j e_{ij}$$

$$\sum_{i,j} y_{ij}^2 = \sum_{i,j} \mu^2 + \sum_{i,j} \alpha_j^2 + \sum_{i,j} e_{ij}^2 + \text{Cross product terms}$$

$$SSY = SS0 + SSA + SSE$$

$$SS0 = \sum_{i=1}^{r} \sum_{j=1}^{a} \mu^2 = ar\mu^2$$

Allocation of Variation (Cont)

SSA =
$$\sum_{i=1}^{r} \sum_{j=1}^{a} \alpha_j^2$$
=
$$r \sum_{j=1}^{a} \alpha_j^2$$

■ Total variation of y (SST):

$$SST = \sum_{i,j} (y_{i,j} - \bar{y}_{..})^2$$

$$= \sum_{i,j} y_{ij}^2 - ar\bar{y}_{..}^2$$

$$= SSY - SS0 = SSA + SSE$$

Example 20.3

$$SSY = 144^{2} + 120^{2} + \dots + 302^{2} = 633639$$

$$SSO = ar\mu^{2}$$

$$= 3 \times 5 \times (187.7)^{2} = 528281.7$$

$$SSA = r \sum_{j} \alpha_{j}^{2}$$

$$= 5[(-13.3)^{2} + (-24.5)^{2} + (37.6)^{2}]$$

$$= 10992.1$$

$$SST = SSY - SSO$$

$$= 633639.0 - 528281.7 = 105357.3$$

$$SSE = SST - SSA$$

$$= 105357.3 - 10992.1 = 94365.2$$

Example 20.3 (Cont)

Percent variation explained by processors = $100 \times \frac{10992.13}{105357.3} = 10.4\%$

■ 89.6% of variation in code size is due to experimental errors (programmer differences).

Is 10.4% statistically significant?

Analysis of Variance (ANOVA)

- Importance ≠ Significance
- \square Important \Rightarrow Explains a high percent of variation
- Significance
 - \Rightarrow High contribution to the variation compared to that by errors.
- Degree of freedom
 - = Number of independent values required to compute

$$SSY = SSO + SSA + SSE$$

 $ar = 1 + (a-1) + a(r-1)$

Note that the degrees of freedom also add up.

F-Test

□ Purpose: To check if SSA is *significantly* greater than SSE.

Errors are normally distributed \Rightarrow SSE and SSA have chisquare distributions.

The ratio $(SSA/v_A)/(SSE/v_e)$ has an F distribution.

where $v_A = a-1 = \text{degrees of freedom for SSA}$

 v_e =a(r-1) = degrees of freedom for SSE

Computed ratio > $F_{[1-\alpha; \nu_A, \nu_e]}$

 \Rightarrow SSA is significantly higher than SSE.

 SSA/v_A is called mean square of A or (MSA).

Similary, MSE=SSE/ ν_e

ANOVA Table for One Factor Experiments

Compo-	Sum of	%Variation	DF	Mean	F-	F-
nent	Squares			Square	Comp.	Table
У	SSY= $\sum y_{ij}^2$		ar			
$ar{y}_{\cdot \cdot}$	$SS0=ar\mu^2$		1			
у- $ar{y}_{\cdot \cdot}$	SST=SSY-SS0	100	ar-1			
A	$SSA = r\Sigma \ \alpha_i^2$	$100 \left(\frac{\text{SSA}}{\text{SST}} \right)$	a-1	$MSA = \frac{SSA}{a-1}$	$\frac{\mathrm{MSA}}{\mathrm{MSE}}$	$F_{[1-\alpha;a-1,$
e	SSE=SST- SSA	$100 \left(\frac{\text{SSE}}{\text{SST}} \right)$	a(r-1)	$MSE = \frac{SSE}{a(r-1)}$		a(r-1)]

Example 20.4: Code Size Comparison

Compo-	Sum of	%Variation	DF	Mean	F-	F-
nent	Squares			Square	Comp.	Table
y	633639.00					
$y_{}$	528281.69					
у- <i>у</i>	105357.31	100.0%	14			
A	10992.13	10.4%	2	5496.1	0.7	2.8
Errors	94365.20	89.6%	12	7863.8		
$s_e = \sqrt{\text{MSE}} = \sqrt{7863.77} = 88.68$						

□ Computed F-value < F from Table

☐ The variation in the code sizes is mostly due to experimental errors and not because of any significant difference among the processors.

©2010 Rai Jain www.raijain.com

Visual Diagnostic Tests

Assumptions:

- 1. Factors effects are additive.
- 2. Errors are additive.
- 3. Errors are independent of factor levels.
- 4. Errors are normally distributed.
- 5. Errors have the same variance for all factor levels.

Tests:

Residuals versus predicted response:

No trend \Rightarrow Independence

Scale of errors << Scale of response

- \Rightarrow Ignore visible trends.
- \square Normal quantilte-quantile plot linear \Rightarrow Normality

Example 20.5

- Horizontal and vertical scales similar
 - \Rightarrow Residuals are not small \Rightarrow Variation due to factors is small compared to the unexplained variation
- □ No visible trend in the spread
- \bigcirc Q-Q plot is S-shaped \Rightarrow shorter tails than normal.

©2010 Raj Jain www.rajjain.com

Confidence Intervals For Effects

■ Estimates are random variables

Parameter	Estimate	Variance
$\overline{\mu}$	$ar{y}_{\cdot \cdot}$	s_e^2/ar
$lpha_j$	$ar{y}_{.j}$ - $ar{y}_{}$	$s_e^2(a-1)/ar$
$\mu + \alpha_j$	$ar{y}_{.j}$	s_e^2/r
$\sum_{j=1}^{a} h_j \alpha_j, \sum_{j=1}^{a} h_j = 0$	$\sum_{j=1}^{a} h_j \ \bar{y}_{.j}$	$\sum_{j=1}^{a} s_e^2 h_j^2/r$
s_e^2	$\frac{\sum e_{ij}^2}{a(r-1)}$	

Degrees of freedom for errors = a(r-1)

- For the confidence intervals, use t values at a(r-1) degrees of freedom.
- □ Mean responses: $\hat{y}_j = \mu + \alpha_j$
- □ Contrasts $\sum h_j \alpha_j$: Use for α_1 - α_2

©2010 Rai Jain www.raijain.com

Example 20.6: Code Size Comparison

Error variance
$$s_e^2 = \frac{94365.2}{12} = 7863.8$$

Std Dev of errors
$$= \sqrt{\text{(Var. of errors)}}$$

 $= 88.7$

Std Dev of
$$\mu = s_e/\sqrt{ar} = 88.7/\sqrt{15} = 22.9$$

Std Dev of
$$\alpha_j = s_e \sqrt{\{(a-1)/(ar)\}}$$

= $88.7\sqrt{(2/15)} = 32.4$

Example 20.6 (Cont)

- □ For 90% confidence, $t_{[0.95; 12]}$ = 1.782.
- □ 90% confidence intervals:

$$\mu = 197.7 \mp (1.782)(22.9) = (146.9, 228.5)$$
 $\alpha_1 = -13.3 \mp (1.782)(32.4) = (-71.0, 44.4)$
 $\alpha_2 = -24.5 \mp (1.782)(32.4) = (-82.2, 33.2)$
 $\alpha_3 = 37.6 \mp (1.782)(32.4) = (-20.0, 95.4)$

- □ The code size on an average processor is significantly different from zero.
- Processor effects are not significant.

Example 20.6 (Cont)

□ Using $h_1=1$, $h_2=-1$, $h_3=0$, ($\sum h_i=0$):

Mean
$$\alpha_1 - \alpha_2 = \bar{y}_{.1} - \bar{y}_{.2} = 174.4 - 163.2 = 11.2$$

Std dev of
$$\alpha_1 - \alpha_2 = s_e \sqrt{(\sum h_j^2/r)}$$

= $88.7\sqrt{(2/5)} = 56.1$

90% CI for
$$\alpha_1 - \alpha_2 = 11.2 \mp (1.782)(56.1)$$

= $(-88.7, 111.1)$

 \Box CI includes zero \Rightarrow one isn't superior to other.

Example 20.6 (Cont)

□ Similarly,

90% CI for
$$\alpha_1 - \alpha_3$$

= $(174.4 - 225.4) \mp (1.782)(56.1)$
= $(-150.9, 48.9)$
90% CI for $\alpha_2 - \alpha_3$
= $(163.2 - 225.4) \mp (1.782)(56.1)$
= $(-162.1, 37.7)$

■ Any one processor is not superior to another.

Unequal Sample Sizes

$$y_{ij} = \mu + \alpha_j + e_{ij}$$

■ By definition:

$$\sum_{j=1}^{a} r_j \alpha_j = 0$$

 \square Here, r_i is the number of observations at *j*th level.

N =total number of observations:

$$N = \sum_{j=1}^{a} r_j$$

Parameter Estimation

Parameter	Estimate	Variance
μ	$ar{y}_{\cdot \cdot}$	s_e^2/N
$lpha_j$	$ar{y}_{.j}$ - $ar{y}_{}$	$s_e^2(N-r_j)/(Nr_j)$
$\mu + \alpha_j$	$ar{y}_{.j}$	s_e^2/r_j
$\sum h_j \alpha_j, \sum h_j = 0$	$h_j ar{y}_{.j}$	$s_e^2 \sum_{j=1}^a (h_j^2/r_j)$
s_e^2	$\sum e_{ij}^2/\{N-a\}$	<i>J</i> = <i>J</i> ·

Degrees of freedom for errors = N-a

Analysis of Variance

Compo-	Sum of	%Variation	DF	Mean	F-	F-
nent	Squares			Square	Comp.	Table
У	$SSY = \sum y_{ij}^2$		N			
$ar{y}_{}$	$SS0=N\mu^2$		1			
у- $ar{y}_{\cdot \cdot}$	SST=SSY-SS0	100	N-1			
A	$SSA = \sum_{j=1}^{a} r_j \alpha_j^2$	$100 \left(\frac{\text{SSA}}{\text{SST}} \right)$	a-1	$MSA = \frac{SSA}{a-1}$	$\frac{\mathrm{MSA}}{\mathrm{MSE}}$	$F_{[1-\alpha;a-1,N-a]}$
e	SSE=SST- SSA	$100 \left(\frac{\text{SSE}}{\text{SST}} \right)$	N-a	$MSE = \frac{SSE}{N-a}$		

Example 20.7: Code Size Comparison

	R	V	Z		
	144	101	130		
	120	144	180		
	176	211	141		
	288	288			
	144				
Column Sum	872	744	451	2067	
Column Mean	174.40	186.00	150.33		172.25
Column effect	2.15	13.75	-21.92		

- All means are obtained by dividing by the number of observations added.
- □ The column effects are 2.15, 13.75, and -21.92.

©2010 Raj Jain www.rajjain.com

Example 20.6: Analysis of Variance

$$\begin{bmatrix} 144 & 101 & 130 \\ 120 & 144 & 180 \\ 176 & 211 & 141 \\ 288 & 288 \\ 144 \end{bmatrix} = \begin{bmatrix} 172.25 & 172.25 & 172.25 \\ 172.25 & 172.25 & 172.25 \\ 172.25 & 172.25 & 172.25 \\ 172.25 & 172.25 \end{bmatrix} + \begin{bmatrix} 2.15 & 13.75 & -21.92 \\ 2.15 & 13.75 & -21.92 \\ 2.15 & 13.75 & -21.92 \\ 2.15 & 13.75 & 21.92 \\ 2.15 & 13.75 & 21.92 \end{bmatrix}$$

$$+ \begin{bmatrix} -30.40 & -85.00 & -20.33 \\ -54.40 & -42.00 & 29.67 \\ 1.60 & 25.00 & -9.33 \\ 113.60 & 102.00 \\ -30.40 \end{bmatrix}$$

Example 20.6 ANOVA (Cont)

Sums of Squares:

SSY =
$$\sum y_{ij}^2 = 397375$$

SSO = $N\mu^2 = 356040.75$
SSA = $5\alpha_1^2 + 4\alpha_2^2$
 $+3\alpha_3^2 = 2220.38$
SSE = $(-30.40)^2 + (-54.40)^2 + \cdots$
 $+(-9.33)^2 = 39113.87$
SST = SSY - SSO = 41334.25

Degrees of Freedom:

$$SSY = SSO + SSA + SSE$$
 $N = 1 + (a-1) + N-a$
 $12 = 1 + 2 + 9$

©2010 Raj Jain www.rajjain.com

Example 20.6 ANOVA Table

Compo-	Sum of	%Variation	DF	Mean	F-	F-
nent	Squares			Square	Comp.	Table
y	397375.00					
$y_{}$	356040.75					
у-у	41334.25	100.00%	11			
\mathbf{A}	2220.38	5.37%	2	1110.19	0.26	3.01
Errors	39113.87	94.63%	9	4345.99		
$s_e = \sqrt{\text{MSE}} = \sqrt{4345.99} = 65.92$						

■ **Conclusion**: Variation due processors is insignificant as compared to that due to modeling errors.

Example 20.6 Standard Dev. of Effects

Consider the effect of processor Z: Since,

$$\alpha_{3} = y_{.3} - y_{..}$$

$$= \frac{1}{3}(y_{13} + y_{23} + y_{33}) - \frac{1}{12}(y_{11} + y_{21} + \dots + y_{32} + y_{42} + y_{13} + y_{23} + y_{33})$$

$$= \frac{1}{4}(y_{13} + y_{23} + y_{33}) - \frac{1}{12}(y_{11} + y_{21} + \dots + y_{32} + y_{42})$$

 \square Error in $\alpha_3 = \sum$ Errors in terms on the right hand side:

$$e_{\alpha_3} = \frac{1}{4}(e_{13} + e_{23} + e_{33}) - \frac{1}{12}(e_{11} + e_{21} + \dots + e_{32} + e_{42})$$

 \Box e_{ij}'s are normally distributed $\Rightarrow \alpha_3$ is normal with

$$s_{\alpha_3}^2 = \frac{1}{4^2} \times 3s_e^2 + \frac{1}{12^2} \times 9s_e^2 = 1086.36$$

©2010 Raj Jain www.rajjain.com

Model for One factor experiments:

$$y_{ij} = \mu + \alpha_j + e_{ij} \qquad \sum_{j=1}^a \alpha_j = 0$$
 Computation of circus

- Allocation of variation, degrees of freedom
- ANOVA table
- Standard deviation of errors
- Confidence intervals for effects and contracts
- Model assumptions and visual tests

©2010 Rai Jain www.raijain.co

Exercise 20.1

For a single factor design, suppose we want to write an expression for α_i in terms of y_{ij} 's:

$$\alpha_j = a_{11j}y_{11} + a_{12j}y_{12} + \dots + a_{raj}y_{ra}$$

What are the values of $a_{..j}$'s? From the above expression, the error in α_i is seen to be:

$$e_{\alpha_j} = a_{11j}e_{11} + a_{12j}e_{12} + \dots + a_{raj}e_{ra}$$

Assuming errors e_{ij} are normally distributed with zero mean and variance σ_e^2 , write an expression for variance of e_{α_j} . Verify that your answer matches that in Table 20.5.

Homework

Analyze the following one factor experiment:

\overline{R}	V	Z
145	102	131
120	144	180
177	212	142
288		
144		

- 1. Compute the effects
- 2. Prepare ANOVA table
- 3. Compute confidence intervals for effects and interpret
- 4. Compute Confidence interval for α_1 - α_3
- 5. Show graphs for visual tests and interpret