Transport Through Membranes

Voet & Voet, Chapter 20

> cells (and organelles in eukaryotes) are separated from their environment by membranes

Lipid bilayers are highly impermeable to ions and polar molecules

⇒ Specific transport proteins are needed for polar/ionic substances to enter the cell

Thermodynamics:

(J/mol)

03/11/22

Chemical potential $\mu_A = \mu_A^{o'} + RT \ln[A]$

Going from Out to In:

$$\Rightarrow \Delta \mu_A = \mu_A(\text{in}) - \mu_A(\text{out}) = RT \ln \frac{[A]_{in}}{[A]}$$

 $[A]_{in} < [A]_{out} \Rightarrow \Delta \mu < 0 = \text{spontaneous}$

$$[A]_{in} > [A]_{out} \Rightarrow \Delta \mu > 0 = \text{unfavorable}$$

⇒ The net flow will always be from side of high [A] to side of low [A]

Ion Concentration Differences Generate Membrane Potentials

> ion transport systems maintain transmembrane concentration differences

 \Rightarrow Resulting charge differences generate an electric potential difference = membrane potential $\Delta \Psi = \Psi(in) - \Psi(out) \approx 100 \text{ mV}$

⇒ Only ionic substances will be affected

Electrochemical potential of A

$$\Delta \mu_A = \mu_A(\text{in}) - \mu_A(\text{out}) = RT \ln \frac{[A]_{in}}{[A]_{out}} + Z_A F \Delta \Psi$$

Kinetics:

ionic charge of A — Faraday constant = 96,494 C/mol

The driving force for the non-mediated flow of A through a medium is A's electrochemical potential gradient

Fick's first law

$$J_A = -[A]u_A \left(\frac{d\mu_A}{dx}\right)$$

For uncharged molecules ⇒

$$J_A = -D_A \left(\frac{d[A]}{dx}\right)$$

Diffusion coefficient = RTu_A

The Kinetics of Non-Mediated Transport of A Depends on A's Concentration Gradient and its Permeability Coefficient

The Kinetics of Mediated Transport: E.g., Glucose Transport into Erythrocytes

The hints for a glucose transporter:

1.) Speed and Specificity

TABLE 18-1. PERMEABILITY COEFFICIENTS OF NATURAL AND SYNTHETIC MEMBRANES TO D-GLUCOSE AND D-MANNITOL AT 25°C

Membrane Preparation	Permeability Coefficient (cm · s ⁻¹)	
	D-Glucose	D-Mannitol
Synthetic lipid bilayer	2.4×10^{-10}	4.4×10^{-11}
Calculated nonmediated diffusion	4 × 10 ⁻⁹	3×10^{-9}
Intact human erythrocyte	2.0×10^{-4}	5×10^{-9}

Source: Jung, C.Y., in Surgenor, D. (Ed.), The Red Blood Cell, Vol. 2, p. 709, Academic Press (1975).

4.) Specific chemical inactivation

HgCl₂ reduces permeability for glucose to that of mannitol ⇒ transporter contains an -SH

2.) Saturation kinetics like an enzyme

Ionophores Help Our Understanding

Ionophore = **Substance** that increases permeability of membranes to particular ions

- **→** forms zigzag backbone where valine C=O's coordinate K⁺
- hydrophobic methyls and isopropyls project outward

Valinomycin octahedrally chelates K^+ (r = 1.33 Å) and Rb^+ (r = 1.49 Å); Na^+ (r = 0.95 Å) or Li^+ (r = 0.60 Å) are too small

 \Rightarrow 10,000-fold specificity for K⁺ over Na⁺ (record!)

Gramicidin A: Channel-Forming Ionophore

- > an antibiotic from *Bacillus brevis*, transports 10⁷ K⁺/s across membrane
- > 15 alternating D- and L-amino acids, blocked termini
- > permits passage of H⁺, alkali cations; but blocked by Ca²⁺

Gramicidin A

➤ head-to-head dimers:

- > "β helix":
- * rolled up parallel β sheet;
- right handed;
- 6-7 residues/turn;
- alternating D-, L-amino acids necessary to generate hydrophobic exterior;
- polar backbone groups line central channel;
- **♣** Trp side chains oriented with their polar N-H groups directed towards bilayer surface ⇒ orientation perpendicular to membrane!
- ➤ Download structure 1MAG from http://www.rcsb.org/ View w/ PyMOL Viewer

03/11/22