Chapter 7.2: Flow of Electric Current in a Series Circuit and Parallel Circuit

1. Introduction to Electric Circuits 电路

• **Definition**: Electric current requires a complete path to flow, known as an electric circuit.

Example Sentence: An electric circuit provides a continuous path for electric current to flow.

2. Electrical Circuit Components

- Components and Symbols:
 - Switch
 - Dry Cell
 - Voltmeter
 - Galvanometer
 - Ammeter
 - Bulb
 - Resistor
 - Fuse
 - Variable Resistor

Example Sentence: Different circuit components like switches and bulbs are represented by specific symbols in circuit diagrams.

3. Series Circuit and Parallel 并联 Circuit

Series Circuit

• **Definition**: Components are connected one after another, and current flows through a single path.

Example Sentence: In a series circuit, all components are connected end-to-end, forming a single path for current flow.

Parallel Circuit

• **Definition**: Components are connected in separate paths, and each path has electrical components.

Example Sentence: In a parallel circuit, components are connected in multiple paths, allowing current to flow through each path independently.

4. Current, Voltage, and Resistance in a Series Circuit

- **Current**: The same through each component.
- Voltage: Sum of voltages across each component.
- Resistance: Sum of resistances of all components.
 - Formulas:
 - Current: $I=I_1=I_2$
 - lacktriangle Voltage: $V=V_1+V_2$
 - Resistance: $R = R_1 + R_2$

Example Sentence: In a series circuit, the total voltage is the sum of the voltages across all components, and the current remains the same throughout.

Advantages and Disadvantages of Series Circuit

- Advantages:
 - Same current through every component.
 - Controlled by one switch.
 - Increased voltage supplies more electric current.
- Disadvantages:
 - One damaged component stops the entire circuit.

- Adding components increases resistance, decreasing current.
- Components cannot be switched off individually.

Example Sentence: A major disadvantage of a series circuit is that if one component fails, the entire circuit stops functioning.

5. Current, Voltage, and Resistance in a Parallel Circuit

- **Current**: Sum of currents through each path.
- Voltage: Same across each component.
- **Resistance**: Reciprocal of the sum of reciprocals of individual resistances.
 - Formulas:
 - Current: $I=I_1+I_2$
 - Voltage: $V=V_1=V_2$
 - Resistance: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$

Example Sentence: In a parallel circuit, each component receives the same voltage, but the total current is the sum of the currents through each path.

Advantages and Disadvantages of Parallel Circuit

- Advantages:
 - Each component can be switched on/off separately.
 - Adding components does not affect other components.
- Disadvantages:
 - Voltage cannot be adjusted separately for each component.

Example Sentence: An advantage of a parallel circuit is that each appliance can be operated independently without affecting others.

6. Numerical Problems Related to Series and Parallel Circuits

- Series Circuit Example:
 - Calculate effective resistance, current, and voltage.

Example Solution:

$$ullet$$
 Effective Resistance: $R=R_1+R_2=2\Omega+2\Omega=4\Omega$

$$ullet$$
 Current: $I=rac{V}{R}=rac{6V}{4\Omega}=1.5A$

$$ullet$$
 Voltage: $V_1=I imes R_1=1.5A imes 2\Omega=3V$

Example Sentence: Calculating the effective resistance in a series circuit involves summing up the resistances of all components.

• Parallel Circuit Example:

Calculate effective resistance, current, and voltage.

• Example Solution:

• Effective Resistance:
$$\frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}=\frac{1}{2\Omega}+\frac{1}{2\Omega}=1\Omega$$

• Voltage: V=6V

$$ullet$$
 Current: $I=I_1+I_2=3A+3A=6A$

Example Sentence: In a parallel circuit, the effective resistance is calculated using the reciprocal of the sum of the reciprocals of individual resistances.