TPT 元素说明(Version 96.2)

目录

Instruction 前言	15
Variable 元素参数	16
Type 值	16
Life 值	16
Ctype 值	16
X,Y 值	
Vx,Vy 值	
Temp 值	
Flags 值	
Tmp 值	
Tmp2 值	
Dcolour 值	
Pavg0 值	
Pavg1 值	18
──Wall 墙类	19
清除墙【ErasesWalls】	19
导体墙【ConductiveWall】	19
电控墙【Ewall】	19
检测器【Detector】	20
▼■风向计【Streamline】	20
风扇【Fan】	21
液体墙【LiquidPermeable】	22
吸收墙【AbsorbingWall】	22

	墙【Wall】	23
	压力墙【NonpermeableWall】	23
	粉末墙【PowderPermeableWall】	23
	导体【Conductor】	24
	电锁体【EHole】	24
	气体墙【GaspermeableWall】	25
		25
	能量墙【EnergyWall】	26
	阻压墙【PressureWall】	27
	清除一切【Eraser】	27
	静止墙【Freezes】	27
₩ EI	lectronics 电子类	29
	METL 金属(METL)【Metal】Type:014	29
	SPRK 电脉冲(SPRK)【Spark】Type:015	29
	PSCN P 型硅(PSCN)【PtypeSilicon】Type:035	30
	NSCN N 型硅(NSCN) 【NtypeSilicon】 Type:036	30
	INSL 绝缘体(INSL)【Insulator】Type:038	31
	NTCT 负温度系数热敏电阻(NTCT)【NegativeTemperatureCoefficientThermistor】Type:043	31
	PTCT 正温度系数热敏电阻(PTCT)【PositiveTemperatureCoefficientThermistor】Type:046	32
	电极(ETRD)【Electrode】Type:050	32
	e池(BTRY)【Battery】Type:053	32
	swcH 开关(SWCH)【Switch】Type:056	33

	^{INWR} 绝缘线(INWR)【InsulatedWire】Type:062	33
	特斯拉线圈(TESC)【TeslaCoil】Type:088	34
	INST 瞬时导体(INST)【InstantConductor(InstantlyConducts)】Type:106	34
	WIFI WIFI(WIFI) 【WIFI】 Type:124	35
	ARAY A 射线发射器(ARAY)【AtypeRayEmitter】Type:126B 射线(BRAY)Type:127	35
	e磁脉冲武器(EMP)【ElectromagneticPulse】Type:134	36
	wwLC WireWorld 线(WWLD)【WireWorldWire】Type:156	37
	CRAY 物质射线发射器(CRAY)【CRayEmitter(ParticleRayEmitter)】Type:167	37
	TUNG 钨(TUNG)【Tungsten】Type:171	38
	DRAY D 射线发射器(DRAY)【DuplicatorRayEmitter】Type:178	38
() _{Po}	oweredMaterial 可控材料	39
	CCRY 液晶(LCRY)【LiquidCrystal】Type:054	
	PCLN 可控复制体(PCLN)【PoweredClone】Type:074	39
	HSWC 热开关(HSWC)【HeatSwitch】Type:075	40
	DLAY 延时器(DLAY)【Delay】Type:079	40
	<mark>STOR</mark> 堆栈(STOR)【Store】Type:083	
	PVOD 可控虚空(PVOD)【PoweredVoid】Type:084	41
	PUMP 压力泵(PUMP)【PressurePump】Type:097	42
	PBCN 可控可破坏复制体(PBCN)【BreakablePoweredClone】Type:153	42
	GPMP引力泵(GPMP)【GravityPump】Type:154	43
	PPIP 可控动力管(PPIP)【PoweredPipe】Type:161	43

②Sensors 传感器	44
虚无(INVS)【InvisibleType:115	44
<mark>DTEC</mark> 探测器(DTEC)【Detector】Type:162	45
TSNS 温度传感器(TSNS)【TemperatureSensor】Type:164	45
PSNS 压力传感器(PSNS)【PressureSensor】Type:172	46
LSNS 生命探测器(LSNS)【LifeSensor】Type:185	46
线性探测器(LDTC)【LinearDetector】Type:186	47
vsNs 速度探测器(VSNS)【VelocitySensor】Type:189	47
⇒ Force 动力材料	48
PIPE 动力管(PIPE)【Pipe】Type:099	48
加速器(ACEL)【Accelerator】Type:137	49
<mark>DCEL</mark> 减速器(DCEL)【Decelerator】Type:138	49
GBMB 重力炸弹(GBMB)【GravityBomb】Type:157	49
FRAY 力射线发射器(FRAY)【ForceRayEmitter】Type:159	50
RPEL 反射极(RPEL)【Repeller】Type:160	50
DMG 压力炸弹(DMG)【Damage】Type:163	50
PSTN 活塞(PSTN)【Piston】Type:168	50
FRME 支架(FRME)【Frame】Type:169	51

Explosives 爆炸物	52
FIRE 火焰(FIRE) 【Fire】 Type:004	52
GUN 黑火药(GUN)【Gunpowder】Type:007	52
NITR	52
C-4	52
RBDM 固态铷(RBDM)【Rubidium】Type:041	53
LRBD 液态铷(LRBD)【LiquidRubidium】Type:042	53
THDR 电光火球/球状闪电(THDR)【Thunder】Type:048	53
THRM 铝热剂(THRM)【Thermite】Type:065	53
CFLM 冷焰(CFLM)【SubzeroFlame】Type:068	54
FIRW 烟花(FIRW)【Fireworks】Type:069	54
FUSE 导火线(FUSE)【Fuse】Type:070	54
FSEP 导火线粉尘(FSEP)【Fusepowder】Type:071	54
<mark>LIGH</mark> 闪电(LIGH)【Lightning】Type:087	54
高爆炸药(DEST)【DestructiveBomb】Type:089	55
传统烟花(FWRK)【OriginalFireworks】Type:098	55
<mark>вомв</mark> 炸药(BOMB)【Bomb】Type:129 火花(EMBR)【Ember】Type:147	55
C-5 C-5 低温炸弹(C5)【C-5】Type:130	56
TNT 三硝基甲苯(TNT)【Trinitrotoluene】Type:139	56
写火索(IGNC)【IgnitionCord】Type:140	56
GBMB引力炸弹(GBMB)【GravityBomb】Type:157	56
штн 锂(LITH)【Lithium】 Туре:191	57

グ Gases 气体 58
GAS 石油气(GAS)【Gas】Type:01058
wTRV 水蒸气(WTRV)【WaterVapor】Type:02358
PLSM 等离子体(PLSM)【Plasma】Type:04958
NBLE
SMKE,烟(SMKE)【Smoke】 Type:05759
OXYG 氧气(OXYG)【Oxygen】Type:06159
CAUS 酸气(CAUS)【CausticGas】Type:08660
F06 雾(FOG)【Fog】Type:09260
BOYL 波义耳气(BOYL)【Boyle】Type:14160
HYGN 氢气(HYGN)【Hydrogen】Type:14861
RFRG 制冷剂(RFRG)【Refrigerant】Type:18361
▲ Liquids 液体 62
watr 水(WATR) 【Water】 Type:00262
OIL 石油(OIL)【Oil】Type:00363
<mark>LAVA</mark> 岩浆(LAVA)【Lava】Type:00663
ACID 酸(ACID)【Acid】Type:02164
DST₩ 蒸馏水(DSTW)【DistilledWater】Type:02565
sltw 盐水(SLTW)【SaltWater】Type:02765
<mark>ммах</mark> 蜡油(MWAX)【MoltenWax】Type:03465
LN2 液氮(LN2)【LiquidNitrogen】Type:03765

	<mark>DESL</mark> 柴油(DESL)【Diesel】Type:058	66
	LOXY 液氧(LOXY)【LiquidOxygen】Type:060	66
	GLOW 荧光液(GLOW)【Glow】Type:066	66
	碳酸水(BUBW)【BubbledWater(CarbonatedWater)】Type:082	67
	BIZR 奇特液体(BIZR)Type:103 奇特气体(BIZG)Type:104 奇特固体(BIZS)【Bizarre】Type:105	67
	PSTE _浆 糊(PSTE)【Paste】Type:111 固体浆糊(PSTS)Type:112	67
	GEL 胶体(GEL)【Gel】Type:142	67
	soap 肥皂(SOAP)【Soap】Type:149	68
	MERC 水银(MERC)【Mercury】Type:152	68
	VIRS 病毒(VIRS)【Virus】Type:174 病毒块(VRSS)Type:175 病毒气(VRSG)Type:176	68
i.	Powders 粉末	69
	<mark>DUST</mark> 尘埃(DUST)【Dust】Type:001	69
	STNE 石粉(STNE)【Stone】Type:005	69
	snow雪(SNOW)【Snow】Type:016	69
	CNCT 混凝土(CNCT)【Concrete】Type:024	70
	salt] 盐(SALT)【Salt】Type:026	70
	BRMT 金属粉(BRMT)【BrokenMetal】Type:030	70
	<mark>SAND</mark> 沙子(SAND)【Sand】Type:044	70
	BGLA 碎玻璃(BGLA)【BrokenGlass】Type:047	71
	<mark>YEST</mark> 酵母(YEST)【Yeast】Type:063 菌尸(DYST)【DeadYeast】Type:064	71
	BCOL 煤粉(BCOL)【BrokenCoal】Type:073	71
	FRZZ 寒尘(FRZZ)【Freeze】Type:100	71

GRAV 引力	力尘(GRAV)【Gravity】Type:102	72
ANAR 反引	引力尘(ANAR)【AntiAirParticle】Type:113	72
PQRT石j	英砂(PQRT)【BrokenQuartz】Type:133	72
BREL 电流	查(BREL)【BrokenElectronics】Type:135	72
CLST 粘力	土砂(CLST)【ClayDust】Type:155	73
SAWD	末(SAWD)【Sawdust】Type:181	73
slcN _{硅光}	纷(SLCN)【Silicon】Type:191	73
■ Solids 固体		74
600 粘土	±(GOO) [Goo] Type:012	74
ICE 冰(I	ICE) 【Ice】 Type:013	74
WOOD	対(WOOD)【Wood】Type:017	74
PLNT植物	物(PLNT)【Plant】Type:020	74
BMTL 脆名	金属(BMTL)【BreakableMetal】Type:029	75
wax 蜡(\	WAX) [Wax] Type:033	75
GLAS 玻璃	离(GLAS)【Glass】Type:045	75
NICE	水(NICE)【NitrogenIce】Type:051	75
COAL 煤((COAL) 【Coal】 Type:059	76
BRCK	夬(BRCK)【Brick】Type:067	76
IRON 铁(I	IRON) 【Iron】 Type:076	76
DRIC 干力	水(DRIC)【Drylce】Type:081	76
SPNG 海组	锦(SPNG)【Sponge】Type:090	77
RIME _{霜(F}	RIME)	77

	wine 藤蔓(VINE)【Vine】Type:114	77
	SHLD 自修复膜(SHLD) 【Shield】Type:119 修复膜 2/3/4(SHD2/3/4)Type:120/121/122	77
	FILT 滤镜(FILT)【Filter】Type:125	78
	GRTZ 石英(QRTZ)【Quartz】Type:132	80
	tran 钛(TTAN)【Titanium】Type:144	81
	GOLD 金(GOLD) 【Gold】 Type:170	81
	CRMC 陶瓷(CRMC)【Ceramic】Type:179	81
	HEAC 导热体(HEAC) 【Rapidheatconductor】Type:180	81
	भारा भारा चि(PTNM) 【Platinum】 Type:188	82
	ROCK 岩石(ROCK)【Rock】Type:190	82
\mathfrak{F}_{R}	adioactive 放射性物质	83
	NEUT中子(NEUT)【Neutrons】Type:018	83
	PLUT 钚(PLUT)【Plutonium】 Type:019	83
	PHOT 光子(PHOT)【Photons】Type:031	84
	<mark>URAN</mark> 铂(URAN)【Uranium】Type:032	84
	AMTR 反物质(AMTR)【Antimatter】Type:072	84
	重水(DEUT)【DeuteriumOxide】Type:095	84
	WARP 迁跃粉(WARP)【Warp】Type:096	85
	ISOZ 同位素 Z(ISOZ)【IsotopeZ】Type:107	85
	国态同位素 Z(ISZS) 【SolidISOZ】 Type:108	85
	SING 奇点(SING)【Singularity】Type:131	85
	ELEC 电子(ELEC)【Electrons】Type:136	85

EXOT 奇异物质(EXOT)【ExoticMatter】Type:145	86
VIBR 振金(VIBR)【Vibranium】Type:165	86
BVBR 振金粉(BVBR)【BrokenVibranium】Type:166	87
PROT 质子(PROT)【Protons】Type:173	87
GRVT 引力子(GRVT)【Graviton】Type:177	88
POLO (POLO) 【Polonium】 Type:182	88
★ Special 特殊	89
× 橡皮(Eraser)【Eraser】	89
CLNE 复制体(CLNE)【Clone】Type:009	89
虚空(VOID)【Void】Type:022	89
钻石(DMND)【Diamond】Type:028	89
vacu 吸气孔(VACU)【Vacuum】Type:039	89
₹₹ VENT 排气孔(VENT)【AirVent】Type:040	90
STKM 火柴人(STKM)【Stickman】Type:055 火柴人出生点(SPWN)Type:118	90
conv 转化器(CONV)【Converter】Type:085	90
BCLN 可破坏复制体(BCLN)【BreakableClone】Type:093	90
PRTI 传送门入口(PRTI)【PortalIN】Type:109	90
PRTO 传送门出口(PRTO)【PortalOUT】Type:110	91
STK2 火柴人二号(STK2)【SecondStickman】Type:128 火柴人二号出生点(SPWN2)Type:117	91
TRON 智能微粒(TRON)【Tron】Type:143	91
BHOL 黑洞(BHOL)【BlackHole】Type:150	91
wHoL 白洞(WHOL)【WhiteHole】Type:151	91
FIGH 大手(FIGH) 「Fighter」 Type:158	01

■ ■■ Life	- 生命游戏	92
	生命游戏(GOL)【GameofLife】Type:078 Ctype:0	92
	高等生命(HLIF)【HighLife】Ctype:1	92
	asim 同化(ASIM)【Assimilation】Ctype:2	92
	2X2(2X2) [2X2] Ctype:3	93
	DANI 日以继夜(DANI)【DayandNight】Ctype:4	93
	AMOE 阿米巴(AMOE)【Amoeba】Ctype:5	93
	MOVE 移动(MOVE)【Move】Ctype:6	94
	BGC (PGOL)【Pseudo】Ctype:7	94
	方片(DMOE)【Diamoeba】Ctype:8	. 94
	34(34) 【34】Ctype:9	95
	长生(LLIF)【LongLife】Ctype:10	95
	STAN 染色剂(STAN) 【Stains】 Ctype:11	95
	新子(SEED)【Seeds】Ctype:12	96
	MAZE 迷宫(MAZE)【Maze】Ctype:13	96
	COAG 凝固物(COAG)【Coagulations】Ctype:14	96
	城墙(WALL)【Walledcities】Ctype:15	97
	gnar 木节(GNAR)【Gnarl】Ctype:16	97
	REPL 复制基因(REPL)【Replicator】Ctype:17	97
	MYST 谜(MYST) 【Mystery】 Ctype:18	98
	边缘人(LOTE)【LivingontheEdge】Ctype:19	98
	FRG2 青蛙变体(FRG2)【LikeFrogsRule】Ctype:20	- 98

	STAR 星球大战(STAR)【StarWars】Ctype:21	99
	FROG 青蛙(FROG)【Frogs】Ctype:22	99
	<mark>BRAN</mark> 布莱恩 6 号(BRAN)【Brian6】Ctype:23	99
	CUST 自定义 GOL (CUST)【CustomGOL】Ctype:24	99
?	Secrets 隐藏元素	100
	空白(NONE)【None】Type:000	100
	MORT 烟尘(MORT)【Mortvert】Type:077	100
	FRZW 寒水(FRZW)【FrozenWater】Type:101	100
	<mark>EQVE</mark> 速度尘(EQVE)【EqualVelocity】Type:116	100
	LOLZ 大声笑! (LOLZ)【LaughOutLoud】Type:123	100
	LOVE 爱心(LOVE)【Love】Type:094	101
	<mark>BRAN</mark> 布莱恩 6 号(BRAN)【Brian6】Type:146	101
) 「Tools 工具	102
	HEAT 加热(HEAT)【Heat】	102
	cool 制冷(COOL)【Cool】	102
	AIR 空气(AIR)【Air】	102
	yac 真空(VAC)【Vacuum】	102
	PGRV 正引力工具(PGRV)【PositiveGravityTool】	103
	NGRV 负引力工具(BGRV)【NegativeGravityTool】	103
	MIX 混合工具(MIX)【Mix Tool】	103
	CYCL 气旋(CYCL)【Cyclone】	103
	wind 凤(WIND)【Wind】	103

	AMBM <mark>环境热减少工具(AMBM)【DecreaseAmbientHeatTool】</mark>	103
	AMBP 环境热增加工具(AMBP)【IncreaseAmbientHeatTool】	104
	PROP 属性修改器(PROP)【EditPropertyTool】	104
	厚 标记(SIGN)【Sign】	104
	采样器(SAMP)【Sampler】	104
Dec	coration tools 装饰工具	105
Fav	rorites 收藏夹	111
Sea	nrch for element 查找元素	111
附 1	1:控制台的基本用法(Using the console)	112
	Set 命令	112
	Quit 命令	112
	Create 命令	112
	Delete 命令	112
	Bubble 命令	112
	Reset 命令	112
附 2	2:HUD(headsupdisplay)	113
	基本说明	113
	调试模式(Debug)【快捷键 D】	113
	快捷键	113
附 3	3:显示模式(Display Modes)	114
	气流显示模式(Velocity display)	114
	气压显示模式(Pressure display)	115
	轨迹显示模式(Persistent display)	116
	标准显示模式(Fire display)	117
	模糊显示模式(Blob display)	118
	温度显示模式(Heat display)	110

环境温度显示和物质温度显示	119	
特效显示模式(Fancy display)	120	
无特效显示模式(Nothing display)	121	
热传导显示模式(Heat gradient display)	122	
速压混合显示模式(Alternate velocity display)	123	
Life 显示模式(Life display)	124	
网格工具(Grid)	125	
附 4:快捷键(Hotkeys)	126	
单快捷键(Single Hotkeys)	126	
组合快捷键(Key Combinations)	126	
附 5:元素 Type 值表(ElementTypeValue)	128	
附 6: 元素导热速度表(HeatConductionSpeedometer)		
附 7: PHOT 元素反射值表(PHOT-ElementReflectionValue)		
参考资料及延伸阅读 Reference&More		

Instruction------前言

本篇元素说明是基于 **Ike** 的《TPT 元素说明 91.5 Snapshot54》和官方 WIKI 重新修订、排版并整理, 当前版本为 Version 96。修改了之前版本遗留的大量错误,并对 LIFT 电路相关的元素展开了详细的说明和具体操作指南。新增了元素导热速度表。

以下引用91.5的前言

本文是针对TPT 初学者的初级教程,包含TPT 中各元素的性质、制作方法以及一些简单用途。 大部分元素均附有该元素的Type 值(TPT 中各元素的唯一编码,一个Type 值对应一种元素)。 本文以翻译官方Wiki 中的内容为主,对一些明显错误做了修改,同时加入了一些额外补充。 感谢@每年化氢对91.0版本新功能的修订和其他错误的改正。 感谢@流汗进行时、@crazyboy2000和TPT交流群的群友们对本文中错误的指正。 如果发现错误可以给我发邮件:ikesnowy@outlook.com。 TPT 交流群:179225194 lke 2016.8.1

感谢 @Ike 撰写的《TPT 元素说明 91.5 Snapshot54》 本文是基于《TPT 元素说明 91.5 Snapshot54》部 分重写并重新排版

感谢 物理沙盘实验室(99309202)的群友们、E=hv 对本文错误指正

如果发现错误可以发送邮件到: dragonrster@gmail.com 2380723764@qq.com

DragonRSTCR 2021.7.18

Variable-----元素参数

Type 值

type

元素的唯一编号,用于表示该元素的种类。

Life 值

life

(用于记录时间/寿命/损耗的参数,一般单位为帧,但也可用于记录强度/状态)

表示病毒(VIRS)的存在帧数。

表示酸(ACID)还能腐蚀多少物质。

表示开关(SWCH)的状态。

表示火柴人(STKM)的生命值。

表示燃烧时间(FIRE)。

表示传送门(PRTI/PRTO)产生的气压影响。

Ctype 值

ctype

(用于记录物质,等于被记录物质的 Type 值)

复制体(BCLN,PCLN,PBCN,CLNE): 代表复制体正在复制的元素种类。

制造凝固物(ICE): 比如将冰(ICE)的 Ctype 值改为中子(NEUT), 熔化后会变为中子。

制造熔融物(LAVA): 比如将岩浆(LAVA)的 Ctype 设置为钻石(DMND)即可得到熔融的钻石。

电脉冲(SPRK): Ctype 表示它正流经物质的种类。

颜色(PHOT,FILT,FWRK,GLOW,BRAY): 用于储存这些物质的颜色数值。

动力管(PIPE): 用于修改其模式(红,绿,蓝和未激活时)。

石英(QRTZ): 用于记录石英的生长速度,改变其 Ctype 可改变其生长速度。

Worldwire 线(WWLD): 改变其状态(头、尾、空)。

X.Y 值

y

(用于记录物质的位置坐标)

用于改变物质的位置。

通过把大量物质的坐标设为相同点可以制造出黑洞(BHOL)。

Vx,Vy 值

UR

(用于记录物质的速度)

用于改变物质在 X.Y 方向上的分速率。

Temp 值

temp

(用于记录物质的温度)

用于改变物质的温度,单位是开尔文(K)。

Flags 值

flags

(用于标记某些物质, 使程序忽略它们)

该值应用在程序内部,会自动复原且不会随存档保存。

用于标记液体团内部的液体颗粒,使得这些颗粒不会被运动模拟模块计算进去,从而节省 CPU 使用量。

υy

Tmp 值

tmp

(特征参数,根据元素种类有不同的作用)

动力管(PIPE): 用于表示其内运送的元素种类。 物质射线发射器(CRAY): 用于表示射线长度。 生命元素(LIFE): 用于某些生命元素的颜色表示。

Tmp2值

tmp2

(特征参数 2, 与 Tmp 值作用相同)

探测器(DTEC): 用于调节侦测范围。

活塞(PSTN): 用于调节活塞的最大长度。

病毒(VIRS): 用于记录被感染物质的 Type 值。

奇异物质(EXOT):表示奇异物质最大所能接受的辐射量。

Dcolour 值

dcolour

(用于记录物质的外加颜色)

用于记录物质的外加颜色(用装饰工具 decorationtools 染上去的颜色)。

只接受 16 进制颜色码,如 0xFF000000 为黑色。

Pavg0 值

paug0

(新的特征值)

在堆栈(STOR)中用于记录被吸收元素的 Tmp 值。

Pavg1 值

paug1

(新的特征值)

在堆栈(STOR)中用于记录被吸收元素的 Ctype 值。

这个种类包含 18 种物质, 15 种是真正的墙(能阻挡物质), 所有的都无法被摧毁。

注: 一些物质例如 BRAY(由 ARAY 产生时)能穿过任何墙,这只是因为它(们)在生成时无视墙类,并不能出现在大多数墙体内 LIGH 也是如此

清除墙【ErasesWalls】

描述: "清除所有墙类。"

阻挡: 不适用

允许: 不适用

特殊:无

写体墙【ConductiveWall】

描述"阻挡一切,可以当作导体。"

阻挡:一切

允许:没有

特殊:能传导SPRK(电脉冲)。

示例:

电控墙【E-wall】

描述: "电控墙, 通电时允许通过。"

阻挡:一切,除非通电。

允许:没有,除非通电。

特殊:未通电时性质类似墙(不可导电),通电时类似导体。

示例:

──检测器【Detector】

描述: "检测器。内部存在物质时,发出电脉冲。"

阻挡: 无

允许:一切

特殊:内部有物质时向周围的导体发出电脉冲。激活时,发出橙色光。

示例:

■风向计【Streamline】

描述: "风向计。设置一个风向计的起始点。"

阻挡: 无

允许:一切

特殊:显示周围压力的运动方向。与其他墙不同,笔刷的大小不会产生影响。

风扇【Fan】

描述: "风扇产生气压使用直线工具设置方向和强度。"

阻挡: 无

允许:一切

特殊:产生压力和气流。要使用,把风扇放在需要的地方,继续选定风扇,按住上档键(Shift)点击风扇并拖动鼠标来决定气流方向。

风扇给予火柴人产生气流的能力,就像它是个普通物质一样它的头会变为淡蓝色,会被任何其他它所碰到的物体替代。

使用方法:设置风扇的位置,不要选择其他的元素,按住 shift,鼠标(左键)按住你设置好的风扇,拖动鼠标,直线的方向(风扇到光标位置)和长度即为气流的方向和强度。

液体墙【LiquidPermeable】

描述: "阻挡大多数物体,除了液体。可以导电。"

阻挡: 气体, 粉末, 固体和能量粒子。

允许:液体和压力

特殊: 向周围任何导体传播电脉冲。

示例:

吸收墙【AbsorbingWall】

描述: "吸收物质,允许气压通过。"

阻挡:没有,但会吸收它们。

允许:压力

特殊: 吸收所有进入的物质但是, 如果物质的速度足够快(具体未知), 且穿过吸收墙的密度较小, 物质能顺利通

过。

描述: "基础墙, 阻挡一切。"

阻挡:一切

允许:没有

特殊:允许射线发射器(ARAY)的射线通过。

压力墙【Non-permeableWall】

描述: "允许压力通过,阻挡一切物质。"

阻挡: 气体, 液体, 粉末, 固体, 能量粒子。

允许:压力

特殊:无

示例:

■粉末墙【Powder-PermeableWall】

描述: "允许粉末通过, 阻挡其他所有物质。"

阻挡: 气体, 液体, 固体, 能量粒子

允许:粉末和压力。

特殊:无

■■导体【Conductor】

描述: "允许所有物质通过。可以导电。"

阻挡: 无

允许:一切

特殊: 向周围任何导体传播电脉冲。

■电锁体【E-Hole】

描述: "电锁体吸收物质, 通电时释放。"

阻挡:没有,但会吸收它们。

允许:压力

特殊: 未通电时吸收其中物质,通电时释放。吸收过多物质时产生黑洞每个像素的电锁体最多能吸收 1500 个像素的物质,超过以后会形成黑洞。电锁体也会让火柴人和打手失去喷气背包。

气体墙【GaspermeableWall】

描述: "允许气体通过。"

阻挡:液体、粉末、固体、能量粒子

允许:气体和压力。

特殊:这种墙也会允许火焰通过。

示例:

当力墙【GravityWall】

描述: "引力墙范围内的万有引力(注: 默认的普通引力除外, 可以按 W 切换)将失效。"

阻挡:无

允许:一切

特殊:如果你用引力墙画了一个框,在框内万有引力将失效。它并不会阻挡任何东西,只是将其内的物质的引力值改为 0.

当一个火柴人/打手触碰到它时,小型的火箭鞋将会出现(也叫喷气背包),给予它通过向相反方向喷出等离子体来飞行的能力。一个火柴人仍然能使用其他物质,但是走路或跳跃时一定会产生等离子体,穿过可燃物质时危险。火柴人装备着喷气背包时,不会被等离子体所伤,但是仍然会被它烫伤。

控制:

^方向键: 上升

<方向键: 向左

>方向键: 向右

<>同时按住: 匀速缓慢下降

示例:

能量墙【EnergyWall】

描述: "允许能量粒子通过,阻挡其他物质。"

阻挡: 气体,液体,粉末,固体

允许: 能量和压力

特殊: 无

■ 阻压墙 【PressureWall】

描述: "允许所有物质通过,隔绝压力。"

阻挡:压力

允许: 所有物质

特殊: 无

示例:

──清除一切【Eraser】

描述:"清除墙、物质、标识。"

阻挡: 不适用

允许: 不适用

特殊:无

静止墙【Freezes】

描述: "静止其内所有物质, 除非通电。"

阻止其内物质移动和变化。I 如果其他导电的墙向静止墙发出电脉冲,静止效果将失效,物质将继续移动和变化。(电脉冲消失后恢复静止效果)

♥ Electronics-----电子类

操作技巧: CTRL+=可以移除屏幕上的所有电脉冲。

METL 金属(METL)【Metal】------Type:014

描述: 最基础的导体, 可以熔化。电子通过时, 会将其加热至 300C.在 1000C/1273.15K 时, 会熔化成铁水(LAVA)。 铁水仍然是铁, 可如液体一样流动。冷却后, 铁水会凝固为铁.

制取:铁(IRON)熔化后倒在煤(COAL)或者煤粉(BCOL)上并冷却可得到金属(METL)。

熔点: 999.85℃/1273.15k, 变为 MoltenMETL

特性:在电脉冲(SPRK)通过时会升温并产生少量压力。

导热率: 251

初始温度: 22℃/295.15k

示例:

SPRK电脉冲(SPRK)【Spark】-----Type:015

描述: 所有电子设备的基础。电脉冲不能单独放置(并不是一个真实的粒子), 你需要将其放在导体上。电子在多 数导体中, 每8帧移动一次, 前4帧是激发状态, 后4帧抑制状态, 然后可接收新电子。水和 GOLD 是例外。电 子在导体中流动,会产生热量。两段导体之间空隙不超过一个像素时,电脉冲可以跳过空隙继续传播,在大多数 情况下,INSL 绝缘体会阻碍电子的流动。两个导体之间,只要存在绝缘体,电子将无法通过。在绝缘体中,某些 元素也不会被激发,但是个别元素(如 PSTN)是例外。某些元素,有特别的规则限制,其电流可导向哪些导体。参 见各个元素

初始温度: 22℃/295.15k

导热率: 251

SPRK 是在以下情况下创建的:

与 BRTY 相邻的导电物质

ELEC.BRAY.LIGH 或 THDR 击中导体。

PHOT 击中 PSCN 和 NSCN 组成的太阳能电极板(见右图)

PSNS,TSNS,DTEC 或 LSNS 被激活

CLNE(Ctype: SPRK)在导体旁边

DLAYLife 为 0 时旁边是 NSCN

P型硅(PSCN) 【P-typeSilicon】-----Type:035

描述:可以电脉冲传导给任何导体,可以熔化。P型硅与N型硅(NSCN)紧贴可以形成一个简单的太阳能电池板, 有光子撞击 P 型硅的时候会产生电脉冲。另外,P 型硅也可以用来激活一些动力材料和制作二极管。1 个像素厚 的 P 型硅层, 铺在 N 型硅表面, 可制成简易的太阳能电池板。通常用于激活动力材料或二极管。

熔点: 1413.85℃/1687.15k, 变成 LAVA(PSCN)

导热率: 251

初始温度: 22℃/295.15k

示例:

NSCNN 型硅(NSCN)【N-typeSilicon】-----Type:036

描述:只要满足目标材料的条件(如果存在),例如具有正确温度的 NTCT,NSCN 就会传导到大多数导体。但不会 向 P 型硅(PSCN)传递电脉冲(即电脉冲只能从 PSCN 单向传导到 NSCN),可以熔化,可以与 PSCN 结合形成 PN 结 使用。用于关闭一些可控材料和制作二极管。NSCN 还用作 WIFI 的仅输出材料,INST 的输出,以及关闭 SWCH

熔点: 1413.85℃/1687.15k, 变成 LAVA(NSCN)

导热率: 251

初始温度: 22℃/295.15k

示例:

INSL 绝缘体(INSL)【Insulator】-----Type:038

描述: 绝缘体, 既不吸收, 也不释放热量给其它元素。这意味着, 它可用于保护对热量敏感的元素。一个像素宽, 即可起作用。但是绝缘体易燃,需要注意。绝缘体可用于阻止电子,在间距小超过2个像素的导线和导体间流动。 (相邻接触或间隔 1 个像素, 电子都可以流动)这样, 将 1 个像素宽的导线, 置于绝缘体之间, 将阻隔电子流动。 易燃(不能碰到明火和熔融物),谨慎使用。

导热率: 0

初始温度: 22℃/295.15k

示例:

NTCT 负温度系数热敏电阻(NTCT) 【NegativeTemperatureCoefficientThermistor】-----Type:043

描述: 半导体,只有超过 100℃时才导电,如果与 METL 相连,则会将自身加热至 200°C。不持续加热会自动冷 却(2.5℃/帧)到 22℃,可以用于给特定物质降温。能够熔化。可以通过 PSCN/NSCN 输入/输出电脉冲,当一个像 素的 NTCT 周围 3x3 的范围内有通电的金属(METL)时温度自动上升至 199.85℃。

熔点: 1413.85℃/1687k, 变成 MoltenNTCT

导热率: 251

初始温度: 22℃/295.15k。

示例:

(利用 NTCT 实现的"与"门)

PTCT 正温度系数热敏电阻(PTCT)【PositiveTemperatureCoefficientThermistor】------Type:046

描述: 半导体, 只有低于 100℃时才导电, 也能自动冷却(2.5℃/帧)到 22℃左右, 可以熔化。可以通过 PSCN/NSCN 输入/输出电脉冲, 当一个像素的 PTCT 周围 3x3 的范围内有通电的金属(METL)时温度自动上升至 199.85℃。

熔点: 1414℃/1687.15k 时变成 MoltenPTCT

导热率: 251

初始温度: 22℃/295.15k

示例:

(利用 PTCT 实现的"非"门)

e极(ETRD)【Electrode】-----Type:050

描述: 一旦通电, 会在相邻两个电极之间产生等离子体(PLSM, 9000+℃), 每次持续 20 帧, 如果用的太多会停不 下来。

其他:墙不会干扰等离子体的产生,不过有可能会隔开;如果两个电极之间有绝缘体(INSL)阻隔则不会产生等离

元素参数: Life 值为产生等离子体的持续时间(需要同时修改两边的电极)。

导热率: 251

初始温度: 22℃/295.15k

示例:

BTRY电池(BTRY)【Battery】------Type:053

描述: 固体, 能提供稳定的电脉冲给导电元素(除液体), 到达沸点以后升华变成等离子体(PLSM)。

沸点: 1999.85℃/2273k

导热率: 251

初始温度: 22℃/295.15k

swcH开关(SWCH)【Switch】-----Type:056

描述:从 PSCN 导入电时,开关可导电。从 NSCN 导入电时,开关不可导电。SWCH 关闭时,是暗绿色,开启时,是绿色。通过装饰功能,开关可制作实用的电灯泡。它导电的速度,与从哪儿导入电有关,这是一个粒子顺序的话题。在开始导电时,它的导电速度就保存下来,从左上角导入,则它的导电速度更快,其它方向导入,则偏慢一些。

导热率: 251

初始温度: 22℃/295.15k

示例:

INWR 绝缘线(INWR)【InsulatedWire】-----Type:062

描述: 只能在 P 型硅(PSCN)与 N 型硅(NSCN)之间传递电脉冲(双向),可以熔化。INWR 比大多数其他元素具有更多受限制的 SPRK 传导规则,因此是"绝缘的"。INWR 执行 SPRK 往返的元素只有 5 个:

IMWR,PSCN,NSCN--INWR 与这些元素互相传导

SWCH, WIFI-INWR 传导至这些元素,但不从这些元素传导

特点: INWR 对于 BRAY 射线是透明的,射线可以直接通过而不是被阻挡。这允许 BRAY 光束相互交叉——BRAY 光束通常会阻挡穿过它的其他白色 BRAY 光束,除非光束穿过的空间包含对 BRAY 透明的粒子。

其他一些元素对 BRAY 也是透明的,例如 FILT 和 ARAY,但大多数都阻挡了 BRAY。

INWR 不会被任何穿过它的 BRAY 光束激发(大多数导体在被 BRAY 击中时会被激发)。

用途: 可用于电子产品以允许为 SPRK 创建"交叉点",因为 INWR 不会与大多数其他电子元件进行传导或传导。

对 BRAY 的透明性意味着 INWR 可用作打印机中的 ROM(由 ARAY 读取)以存储图像和解码器。当反复通电时, INWR 会迅速冷却到 22°C, 这在限制温度或需要快速冷却时非常有用。

熔点: 1413.85℃/1687k, 变成 LAVA(INWR)

导热率: 251

初始温度: 22℃/295.15k

TESC 特斯拉线圈(TESC) 【TeslaCoil】 ------Type:088

描述: 通电可以产生闪电(LIGH, 高温, 可以穿透一切, 产生较大的压力并使一些导电材料产生电脉冲)。将它做成线圈状如下图可以效果最大化。如果制作 1 像素宽的 TESC 串, 当被激活时它就会开始冷却。

元素参数: Tmp 值可用于设定闪电的长度和生成概率

导热率: 251

初始温度: 22℃/295.15k

示例:

INST 瞬时导体(INST)【InstantConductor(InstantlyConducts)】------Type:106

描述: 导电速度和导电墙相同,只能通过 P 型硅(PSCN)输入电脉冲,N 型硅(NSCN) 和 GOLD 输出电脉冲。PPIP 检测到附近被激发的 INST 时会反转方向,而 CRAY 和 ARAY 在被 INST 激发时,发出的射线会穿透一切。与导电墙性质类似不会被高压破坏,也不能熔融。

导热率: 251

初始温度: 22℃/295.15k

WiFI Wi-Fi(WIFI) [WiFi] ------Type:124

描述: 能无线转移电脉冲, 可使用大多数导电物质输入电脉冲(除了 N 型硅), 只能由 N 型硅(NSCN)、绝缘线(INWR)或 P 型硅(PSCN)输出电脉冲。不导热。在高压下会损坏。89.0 版本后传导电脉冲时会延迟一帧。

Wi-Fi 有 101 个频道可以使用,频道之间互不干扰,最后一个频道是单独的,从-273.15——-200.01。Wi-Fi 只会和相同频道的 Wi-Fi 传输电脉冲。相邻频道之间相隔 100℃(会变颜色)。在调试模式(Debug, 热键"D")下,相同频道的 WIFI 之间会出现连接线。

可以使用升温笔/降温笔(HEAT/COOL)来调整 Wi-Fi 的频道。设置 WiFi 频道最简单的方法是使用 PROP。只需将 WiFi 的温度更改为频道乘以 100。例如,要获得频道 47,您将温度设置为 4700。实际频道显示在 Tmp 值中,以便更容易查看。

压力极限: 15Pressure, 会碎裂成金属粉(BRMT)

导热率: 0

初始温度: 22℃/295.15k

示例:

频道:

ARAY A 射线发射器(ARAY)【A-typeRayEmitter】-----Type:126B 射线(BRAY)-----Type:127

导热率: 0

初始温度: 22℃/295.15k

其他: 在 69 版本之后,ARAY 不再导热,其产生的 B 射线(BRAY)温度将会是 ARAY 的温度。这一特性被用来制作恒温器。

染色:射线(BRAY)经过滤镜时会以设定好的染色方式染色。

描述:可以从所有电导体,甚至 SWCH 接收 SPRK。能射出 B 射线(BRAY),可以从任意导电物质中接受电脉冲, 之后会沿着电脉冲的方向发射射线,多个射线相撞会产生固体 B 射线(会慢慢消失)。与其他电子设备不同,ARAY 必须从与其直接接触的像素接收 SPRK。

其他模式:

由P型硅(PSCN)输入电脉冲时会产生另一种不能导电的射线,会清除其他的BRAY,并很快消失。由超导线(INST)输入电脉冲时产生的射线具有穿透性,可以穿透多个导电材料。

来自 ARAY 的 BRAY 也可以具有不同的属性,具体取决于用于激发它的内容。如果设置了 ARAY 的 Life,则 生成的 BRAY 将使用 ARAY 的 Life。

BRAY 是 ARAY 被任何导体激活所产生的。它的颜色由 30 位色谱上的颜色之间的比率决定。它可以容纳 30 位数字, 并且默认情况下(除非它是由 PSCN 创建的), 所有 30 位都设置为白色。您可以使用 FILT 将该值设置为 不同的值或对其执行按位运算。

BRAY 元素在创建后迅速消失, Life 为 30 帧。与中子和光子不同, BRAY 穿过所有壁元素, 除非碰到一个不 透明的粒子。如果 BRAY 击中导体,例如 METL,则该元素会产生 SPRK。BRAY 也可以通过 ARAY。

如果两条 BRAY 线发生碰撞,它们会在该点创建一个"实心"BRAY,该点将缓慢消失,Life 为 1020。"实心"BRAY 的独特之处在于它也是透明的。因此,虽然 BRAY 通常不透明,但当它们创建"实体"BRAY 时它会变得透明。任 何穿过"固体"BRAY 的白色 BRAY 都会将 BRAY 的 Life 恢复到 1020。

用 PSCN 激活 ARAY 将创建一个棕色 BRAY。棕色 BRAY 类似于白色 BRAY,但不激活导体,也不与 FILT 相互作 用。它甚至没有波长。它还会擦除任何活动的白色 BRAY, 在与自身碰撞时不会创建"实体"版本。

透明元件

BRAY 可以穿过的元件。透明元素包括"固体"BRAY、FILT、STOR、ARAY、INWR 和激活的 SWCH。 INWR 比较特殊,BRAY 可以穿过 INWR 而且不会被激活。

BRAY 与 SWCH

BRAY 可以通过打开的 SWCH。如果 SWCH 关闭,则可以使用与其直接相邻的两个棕色 BRAY(与两条棕色 BRAYA 交点的位置)来打开它。如果 SWCH 处于开启状态,情况也是如此。

描述: EMP 会随机摧毁所有正在工作(通电)的电子产品。有几率使受到 EMP 影响的 Wi-Fi(WIFI)的频道改变。同样 的,延时计(DLAY)的延时时间也可能被随机改变。A 射线发射器(ARAY)、开关(SWCH)、金属(METL)、脆金属(BMTL)、 Wi-Fi(WIFI)等可能会发热或损坏。"普通"导体(METL、TTAN、IRON、RBDM、BMTL、TUNG、加压 QRTZ)和 INWR 不受 EMP 影响。

(注: EMP 是全屏幕有效的)

元素参数:恢复时间(Life)默认为 220 帧。

导热率: 121

初始温度: 22℃/295.15k

WireWorld 线(WWLD) 【WireWorldWire】------Type:156

描述: WWLD 是一种基于另一个名为 WireWorld 的游戏的固体导电元素。WWLD 不会因压力而熔化或破裂。 WWLD 接受来自 PSCN 的 SPRK 并提供给 NSCN。WWLD 的工作原理与 GOL 相同,应用简单的数学规则会导致四种不同状态的生成;空、电子头(蓝色)、电子尾(白色)和导体(橙色)。

它遵循的规则是:

空→空

电子头→电子尾

电子尾→导体

如果恰好一两个相邻单元是电子头,则导体→电子头,否则仍为导体。

(请注意,一个"单元格"是一个像素)

导热率: 250

初始温度: 22℃/295.15k

示例:

(四循环时钟 4-CycleClock)

^{CRAY}物质射线发射器(CRAY)【C-RayEmitter(ParticleRayEmitter)】------Type:167

描述: 当 CRAY 从与粒子直接相邻(接触)的任何一侧(包括对角线)发出 SPRK 时,它将向相反方向发射粒子束。 其属性取决于引发它的导体、温度、Tmp、Tmp2、Ctype 和 Life 的组合。

Ctype 设置 CRAY 产生的粒子的类型。Ctype 为 0(默认)意味着它将其 Ctype 设置为接触它的第一个粒子的类型,包括导体。

Temp 设置产生的粒子的温度。

Life 设置产生的粒子的寿命。

Tmp 设置射线的长度。当 CRAY 激活时,产生 Tmp 值长的射线。

Tmp2 设置产生的射线与发射端之间间隔的距离。

性质:

- 被 NSCN 所激活的 CRAY 的性质有
 - 1.射线(即创造元素)可以穿过滤镜,但不能穿过其他元素。
- 被 INST 所激活的 CRAY 性质有
 - 1.射线不仅能穿过滤镜还能穿过其他元素。
- 被 INWR 所激活的 CRAY 性质有
 - 1.射线不仅能穿过滤镜还能穿过其他元素。
 - 2.能发射 SPRK 使在其直线 Tmp2 格后的其 Tmp 个的导体通电。
- 被 PSCN 所激活的 CRAY 特性有
 - 1.删除在在其直线上的 Tmp2 格后的其(Tmp2+Tmp)格前的元素,并将原来是空缺的格子用编号为其 Ctype 的元素填充。

- 2.不能删除 FILT, DMND。
- 3.会被 DMND 所阻挡。

被 PSCN 所激活的 CRAY(Ctype 为 SPRK)特性有

- 1.删除在在其直线上的 Tmp2 格后的其 Tmp 个元素。
- 2.不能删除 FILT, DMND。
- 3.会被 DMND 所阻挡。

导热率: 0

初始温度: 22℃/295.15k

^{TUNG}钨(TUNG)【Tungsten】-----Type:171

描述: 脆性金属, 具有很高的熔点, 但不耐压, 通电后温度会不断上升至 3324℃, 同时白热化, 可以用于加热或 者制作灯泡。

制取: 把金属粉(BRMT)加热至 1000℃会变成钨(TUNG)(旧版本是熔化)。

压力极限: 当前后压强改变>1Pressure 时碎裂成金属粉(BRMT)。

熔点: 3421.85℃/3695k

导热率: 251

初始温度: 22℃/295.15k

示例:

Temp: 3322.29

描述: 又称复制射线发射器, 当由 P 型硅(PSCN)激活时, 会将沿电流方向对前方的所有粒子(不论种类是否相同) 都复制一份,如果中途有阻碍则会直接删除挡路的粒子并继续复制。当由 INWR 激活时,不会进行对角复制。 元素参数:

Tmp:设定复制序列的最小长度,如果这个值小于复印机面前的粒子长度,则复制不会发生。

Tmp2:设定新物质与旧物质之间的空隙,复制产生的新物质序列将会与原来的物质隔开一定距离。

导热率: 0

初始温度: 22℃/295.15k

示例:

(复制一次,复制序列为空白+ICE+WOOD+ICE,Tmp=4,Tmp2=1)

○ PoweredMaterial-----可控材料

操作技巧:大部分可控材料都是用 P 型硅(PSCN)激活/输入,N 型硅(NSCN)关闭/输出。 元素参数:大部分可控材料都是 Life≥10=激活; Life < 10=关闭。

连CRY 液晶(LCRY)【LiquidCrystal】-----Type:054

描述: 液晶,激活时改变颜色。用 P 型硅(PSCN)激活,N 型硅(NSCN)关闭。激活时允许光子(PHOT)缓慢通过,极高温度(999.85℃/1273k)下会变成碎玻璃(BGLA)。激活后,部分通过它的质子(PROT)会被转变为光子(PHOT)。

导热率: 251

初始温度: 22.00℃/295.15k

示例:

描述: 激活时变得和复制体(CLNE)一样,可以复制与之接触的物质。用 P 型硅(PSCN)激活,N 型硅(NSCN)关闭。也可以通过修改 Ctype 值来改变复制的物质种类。它以不同的方式克隆光子,它会在每一帧的每一侧放置一个,以确保激光束可以保持恒定。

导热率: 251

初始温度: 22.00℃/295.15k

示例:

HSWC 热开关(HSWC)【HeatSwitch】 ------Type:075

描述: 当激活时才可以导热,不可摧毁。用 P 型硅(PSCN)激活,N 型硅(NSCN)关闭。HSWC 可以从 FILT 接收数 据。它将这些序列化的数据转化为热量,这使得 HSWC 在加热高级用户方面非常有用。此功能还可用于使用 TSNS 传输数据。HSWC 不受高温和压力的影响。

导热率: 激活后=251

初始温度: 22.00℃/295.15k

示例:

(上方是岩浆 LAVA,下方是水 WATR)

©LAY 延时器(DLAY)【Delay】------Type:079

描述: 当电脉冲通过延时计时会延迟 X 帧, X 等于延时计的温度, 不导热, 可以使用升温笔(HEAT)和降温笔 (COOL)来改变温度,最低为 1℃。DLAY 可以在大量使用时正常工作,但是 PSCN 和 NSCN 之间必须有两个像素 的间隙, 否则电脉冲会跳过1个像素的间隙, 并且会出现两个电脉冲, 这在某些情况下很有用。

过程描述:

电脉冲输入(PSCN)

Life 值变为当前温度,颜色变亮

每过一帧, Life-1, 直到 Life=0, 颜色变暗

电脉冲输出(NSCN)

导热率: 0

初始温度: 4.00℃/277.15k

示例: (第 1~4 帧)

描述: 固体, 吸收一个像素的与之接触的物质, 修改它的 Ctype 值可以使它吸收特定的物质, 用 P 型硅(PSCN)或 A 射线发射器(ARAY)的射线激活后释放, 也可以传递给动力管(PIPE)。

91.0beta 后, 堆栈也可以将物质传递给传送门入口(PRTI)。

元素参数:

Tmp=被吸收元素的 type 值

Temp=被吸收元素的 Temp 值

Tmp2=被吸收元素的 Life 值

Pavg[0]=被吸收元素的 Tmp 值

Pavg[1]=被吸收元素的 Ctype 值

导热率: 0

初始温度: 22.00℃/295.15k

示例:

PVOD 可控虚空(PVOD)【PoweredVoid】-----Type:084

描述:固体,一旦激活就如同虚空(VOID)一样,吸收一切物质。用P型硅(PSCN)激活,N型硅(NSCN)关闭。Tmp值为0时会只吸收Ctype值代表的物质,Tmp值为1时则不吸收Ctype代表的物质。

导热率: 251

初始温度: 22.00℃/295.15k

示例:

(Ctype 值为尘埃 DUST,Tmp=0)

(Ctype 值为尘埃 DUST,Tmp=1)

PUMP压力泵(PUMP)【PressurePump】-----Type:097

描述:不导热,激活时改变使周围压力值变为自身温度值,自身温度可用升温/降温笔(HEAT/COOL)控制。用P型 硅(PSCN)激活,N型硅(NSCN)关闭。当TMP设置为1时,可以从FILT接收数据并相应地改变周围的压力。此功能可与压力传感器(PSNS)结合使用。

导热率: 0

初始温度: 0.00℃/273.15k 温度范围: -256~256℃

示例:

PBCN 可控可破坏复制体(PBCN)【BreakablePoweredClone】------Type:153

描述: 激活时和可破坏复制体(BCLN)相同,复制与之相接触的物质,但可以被破坏。用 P 型硅(PSCN)激活,N 型 硅(NSCN)关闭。

压力极限: 5Pressure

导热率: 251

初始温度: 22.00℃/295.15k

示例:

^{GPMP}引力泵(GPMP)【GravityPump】-----Type:154

描述:不导热,使用需开启牛顿万有引力(热键"N"),激活时改变其万有引力为自身温度值,可以使用升温/降温笔(HEAT/COOL)来改变自身温度。温度升高会使自身引力增加,吸引其他粒子,反之亦然。用P型硅(PSCN)激活,N型硅(NSCN)关闭。

从 91.0snapshot21 开始,光子(PHOT)通过未通电的引力泵(GPMP)会转变成引力子(GRVT),生成引力子的Tmp 值取决于引力泵的温度值。仅在菜单中启用牛顿重力时才有效。

导热率: 0

初始温度: 0.00℃/273.15k 温度范围: -256~256℃

示例:

(温度为 24.65℃的引力泵 GPMP)

PPIP 可控动力管(PPIP)【PoweredPipe】-----Type:161

描述: 动力管(PIPE)的可控形式,利用 P 型硅(PSCN)激活时其中的物质将会运输,用 N 型硅(NSCN)则会停止其中物质的运输,用超导线(INST)会使物质向反方向运输。当激活时,周围包裹的砖块(BRCK)会发出蓝光。其他使用方法请参考动力管(PIPE)。PPIP 是少数使用 Pavg0 和 Pavg1 的元素之一。Pavg1 用于存储 BIZR/S/G 或 PHOT的颜色

导热率: 0

初始温度: 0.00℃/273.15k

©Sensors-----传感器

注:大多数传感器在把数据复制到 FILT 时通常会对第 29 位进行占位

虚无(INVS)【Invisible-----Type:115

描述: 当施加压力时对粒子隐形,使物质通过。在不施加压力时,光子(PHOT)可以通过它并变成中子(NEUT),在 4 Pressure 左右时隐形。

元素参数: Tmp=1 时隐形; Tmp=0 时还原

导热率: 164

初始温度: 22.00℃/295.15k

示例:

DTEC探测器(DTEC)【Detector】-----Type:162

描述: 和使用复制体(CLNE)的方法基本一致, 放置好探测器后, 将需要探测的物质与之直接接触就能设置它的 Ctype 值为这个物质的 Type 值,之后每当有相同的物质与之接触时都能产生一个电脉冲,可以由金属或导电体 输出(导电墙不行)。是探测墙的缩小化替代品。

DTEC 还可以在其 Tmp2 范围内检测 BRAY 和 PHOT 的 Ctype 并将其传输到相邻的 FILT。

元素参数: Tmp2=侦测范围, 最大 25 像素

导热率: 0

初始温度: 22.00℃/295.15k

示例:

(范围内检测 BRAY 的 Ctype 并将其传输到 FILT)

FILT (转换),温度: 22.00 C,Life: 0,Tmp: 0,压力: 0.00

(Ctype=SMKE)

描述:不导热,可以用升温/降温笔(HEAT/COOL)来改变自身温度,当周围(2x2)有温度比它高的物质时,温度传感 器会发出电脉冲给周围的导电体(水 WATR、盐水 SLTW、热敏电阻 NTCT&PTCT、绝缘线 INWR)。您可以设置 Tmp2 属性来更改它检测温度的半径(以正方形的形状)。最大半径为 25。当 Tmp 设置为 1 时,它可以将其温度数据传 输到 FILT(会占用第 29 位)。当 Tmp 被设定为 2, TSNS 将把电脉冲传给检测范围内的比它温度低的物质。

导热率: 0

初始温度: 22.00℃/295.15k

示例:

描述:不导热,可以用升温/降温笔(HEAT/COOL)来改变自身温度,当压力大于其温度值时,压力传感器会发出电 脉冲给周围的导电体(水 WATR、盐水 SLTW、热敏电阻 NTCT&PTCT、绝缘线 INWR)。

当 Tmp 设置为 1 时,它可以将其压力数据传输到 FILT(会占用第 29 位)。当 Tmp 被设定为 2,PSNS 将把电 脉冲传给检测范围内的比它压力低的物质。

导热率: 0

初始温度: 4.00℃/277.15k

示例:

描述: 生命探测器, 当其周围元素 Lite 值高于传感器温度时, 产生电流。生命探测器, 是不可熔化、不可破碎的 元件, 当有比它 Life 值更高的粒子在它附近时, 它会产生电流。

Tmp 参数:

Tmp=1 进入序列化模式,将周围的粒子的 Life 值数据(会占用第 29 位), 复制到 FILT(会占用第 29 位)

Tmp=2 反转模式, 当周围的粒子 Life 值, 高于它的温度时 LSNS 产生电流

Tmp=3 反序列化,设置周围的粒子的 Life 值

用途: LSNS 在 DEUT 的压缩处理过程中中非常有用。DEUT 的 Life 值,会在加热或冷却时发生变化,这时它的压 缩程序,可以用这个元素来衡量。它也可以用来检测 VIBR 是否接近于爆炸。

导热率: 0

初始温度: 4.00℃/277.15k

示例:

(把 Life 值数据复制到 FILT)

FILT (set colour, 0x1000000A)

描述:从8个方向(上、下、左、右、四个45度对角线)检测粒子,并在相反方向激发导体。它检测到的粒子由 其 Ctype 值设置。如果未设置 Ctype 值,它可以检测任何粒子。请注意,粒子必须与要检测的导体和 LDTC 成 一直线(因此得名线性检测器)。

LDTC 的 Tmp 值决定了它的范围(它可以检测到多远的粒子)。范围并不局限于 25。

LDTC 的 Life 值决定了它在扫描前会跳过多少个像素。例如,如果它的 Life 值是 10, 它的 Tmp 是 15, 它会 跳过 10 个像素, 开始扫描 15 个像素, 然后停止。

跟 DTEC 一样可以把 FILT 和 BRAY 的 Ctype 值,复制到相反方向的 FILT 上。

注意:一旦找到粒子,LDTC 将停止扫描,无论该粒子是否与其 Ctype 匹配。除非它的 Life 值设置为>1,否 则在它周围放置导体会妨碍它的功能。这可以通过改变元素参数来改变,如下所示。

元素参数:

Tmp 设定检测的范围:

Tmp2=1 反转模式(所有不是 Ctype 值的元素会激发 LDTC)

Tmp2=2 忽略能量粒子

Tmp2=4 忽略颜色(不区分颜色)

Tmp2=8 扫描粒子后方的物体(如果没有设定该值,LDTC 将不会检测隐藏在粒子后方的粒子)

Life: 会跳过多少像素, 才开始扫描

导热率: 0

初始温度: 22.00℃/295.15k

描述: 当速度高于传感器温度的粒子在附近时, 速度传感器会生成 SPRK。将温度与总速度(Vx 和 Vy 组合)进行 比较,以确定 VSNS 是否会触发。设置 Tmp2 来确定检测半径(以正方形的形状)。默认值为 2,最大值为 25。 VSNS 可以在其检测范围内检测附近粒子的速度,将其传输到相邻的 FILT 或 FILT 线。

元素参数:

Tmp=1 数据复制, 将附近粒子的速度数据复制到 FILT(会占用第 29 位)

Tmp=2 侦测模式,当附近有一个速度低于其温度的粒子时,VSNS 会产生电脉冲

Tmp=3 数据读取,读取存储在 FILT 中的速度并将其复制到附近的粒子。仅保留速度的数据,而不保留方向 数据,可以在不改变运动方向的情况下调整它们的速度。

Tmp2 设定检测的范围.

(对于所有 VSNS 仅作用于非固体粒子。)

导热率: 0

初始温度: 4.00℃/277.15k

示例:

(把数据值复制到 FILT)

-动力材料 **⇒**Force------

动力材料用于影响不同类型的物质

PIPE 动力管(PIPE)【Pipe】-----Type:099

描述:可以用于向一个方向运输物质,自带动力,放置完毕后会在周围自动出现一圈砖块(BRCK)。不过在其中的 东西可能会改一下名字(如: MoltenPSCN 会变成岩浆 LAVA)。

使用方法: 放置好动力管之后, 在确定为出口的地方擦去一部分砖块(BRCK), 之后动力管会自动开始形成, 等到 完全形成之后将另一头的砖块(BRCK)擦去即可使用。可以用于运输或制造一个单向门。管道完整形成后,可以移 除 BRCK 并用另一个元素替换。

压力极限: 10Pressure, 变为金属粉(BRMT)。

导热率: 0

初始温度: 0.00℃/273.15k

示例:

(利用动力管制作的单向门)

Accelerator】------Type:137

描述: 可以加速物质(除了固体), 有效范围 1 个像素, 默认状态下能加速粒子 10%的速度, 通过修改 Life 值可以 改变加速程度。将直行或列靠在一起(1 像素间隙)并在它们之间放置一个粒子。粒子将在它移动的方向上加速。 此外,加速器不会克服重力。

元素参数: Life 值(0-1000)非零时,加速程度从 0.01%-10%范围内改变,负值时为减速, Life=0 时默认加速 10%

导热率: 251

初始温度: 22.00℃/295.15k

示例:

DCEL 减速器(DCEL)【Decelerator】-----Type:138

描述: 和加速器(ACEL)相反,但是只能减速能量粒子(光子 PHOT、中子 NEUT、电子 ELEC 等)通过修改 Life 值可 以改变减速程度。最大值为 100。将 Life 设置为 100 时会使所有粒子立即停止。默认情况下, 它将使粒子减速 91%。

导热率: 251

初始温度: 22.00℃/295.15k

描述: 重力炸弹是一种非常独特的"炸药"。它是游戏中唯一在引爆时不会产生热效应的炸药(DMG 某些情况下除 外)。它在爆发出强烈的正重力(拉力效应),然后是负重力(推力效应)。这些力足以破坏一些脆性固体,例如 GLAS 和 BMTL。GBMB 离其他粒子越近,效果越强,但它仍然对整个屏幕产生影响,但离它越远的东西就越少。重力 冲击波可以影响能量类粒子在屏幕上的路径。

导热率: 251

初始温度: 20.00℃/292.15k

示例:

描述:又称 F 射线发射器。通电后,会沿着电流方向寻找物质并施加力(这与射线发射器 ARAY 的方向判定规则一 样), 当物质温度大于动力射线发射器的温度时, 物质将会被动力射线发射器给吸引, 反之, 则物质会被动力射线 发射器推开。不导热,可以使用升温/降温笔(HEAT/COOL)来改变自身温度。FRAY 可以影响任何移动的粒子,这 包括辐射粒子。如果它的 Tmp 值为 0, 它只为 10 个粒子设置速度。

Tmp 参数: Tmp 值代表可设置速度粒子的个数。Tmp 值为 0 时,只设置 10 个粒子的速度。

导热率: 0

初始温度: 22.00℃/295.15k

RPEL 反射极(RPEL)【Repeller】------Type:160

描述: 不需通电,和动力射线发射器(FRAY)一样,根据温度来吸引或推开物质,有效范围为 20 像素。如果 RPEL 设置了 Ctype 值,它只会影响该类型的粒子。

速度计算公式: Temp(°C)/10=vX=vY

元素参数: 从 Snapshot54 开始. Ctype 值记录被反射的物质种类

导热率: 0

初始温度: 22.00℃/295.15k

<u>™</u>压力炸弹(DMG)【Damage】-----Type:163

描述:对碰到它的物质表面产生一个破坏性的压力(除了钻石 DMND)。(可产生大于通过笔施加的压力极限 256)

导热率: 29

初始温度: 22.00℃/295.15k

PSTN 活塞(PSTN) 【Piston】------Type:168

描述: PSTN 至少需要 2 像素才能起作用,当用 PSCN 激活时,PSTN 会变长,碰到物质后它不会停止而是继续 推动物质以上升,使用 NSCN 激活可以使它缩(不仅是 NSCN 可以收回 PSTN, 还有 INST、TTAN 等)。通过使用 FRME 可以一次性推动更多物质。

移动距离: 随温度或 PSTN 长度设置。PSTN 每次激活时伸出或缩回的像素数取决于激活位置与发射端之间的距 离-1。该距离也可以通过改变 PSTN 颗粒的温度来设置。0°C 以上每升高 10 度(四舍五入到最接近的 10 度), 移 动量就会增加 1 个像素, 这是 PSTN 中所有粒子的总和。活塞最多可推动 29 个 FRME 像素, 两侧最多 14 个 FRME.

激活位置发射端之间的距离为 2 伸出像素为 1

激活位置发射端之间的距离为 4 伸出像素为 3

移动的粒子数: 用 Tmp 值设置。默认值(0)允许 PSTN 最多推送 30 个像素。如果 Tmp 为 1 或更大, PSTN 可以 推送 X 个像素, 其中 X 等于当前的 Tmp 值。

最大延伸长度: 用 Tmp2 值设置。默认值(0)允许 PSTN 扩展到 255 像素。如果 Tmp2 大于零,则最大扩展长度 为 Tmp2 值。当您需要 PSTN 扩展到比其默认值 255 更远的地方,或者您需要它在任何给定长度处停止时,这 会很有用。

阻塞元素: 用 Ctype 设置。例如,如果 PSTN 的 Ctype 是 DMND,当延伸的 PSTN 与 DMND 接触时, PSTN 将 停止延伸,并且如果 PSTN 被收回,则不会收回 DMND。如果您不希望 PSTN 推动或拉动某些类型的元素,或 者您希望 PSTN 简单地停在某个位置,这会很有用。它不只适用于 DMND,任何给定的 Ctype 都适用。

(PSTN 的温度可以叠加, 但属性不能)

导热率: 0

初始温度: 22.00℃/295.15k

FRME支架(FRME)【Frame】------Type:169

描述: 用于增加活塞一次性推动物质的数量, 至少需要1像素厚度, 最多能向一个方向延长15像素, 用活塞(PSTN) 推动其中一个像素就可以推动和收回整个支架(以及支架上方的物质)。如果某一个像素的支架被挡住(比如墙),那 么整个支架都不会移动,任何被 FRME 捕获的粒子都会阻止整个事物缩回。确保保持框架后面的路径畅通。

注意事项: 只有位于活塞上方第一层的支架能起作用, 第二层之后的支架是不起支撑作用的(也就是说你不能建造 一个树杈状的支架并整体移动它)。同时, 如果你使用了两个以上的活塞来推动支架, 那么在收回时它们会互相挡 住。令 Tmp=1 可以使支架变为"非粘性",也就是说此时支架被推出后就不能被收回。

导热率: 0

-爆炸物 Explosives-----

注:该类别中的大多数元素在暴露于 FIRE 时都会燃烧或发生反应(FIRE 本身、C5 和 CFLM 除外), 并且每种元素具 有不同的特性,导致其反应不同。压力、高温(Temp)、电、与其他粒子的接触、火(FIRE)、等离子体(PLSM)甚至水 (WATR)都可能触发此类别中的某些元素。

FIRE 火焰(FIRE)【Fire】------Type:004

描述: 明火, 用于点燃或加热, 火焰本身温度升高至一定程度(2499.85℃/2773k 左右)会变成等离子体(PLSM)。当 火焰温度低于 351.85℃/625k 时会产生烟(SMKE)。WATR、DSTW、SLTW、BUBW 或 CO2 可以用来灭火。

存在时间(Life): 100-200 之间随机

元素参数: Tmp=3 时燃烧产生蒸馏水(DSTW)

导热率: 88

初始温度: 422.00℃/295.15k

GUN黑火药(GUN)【Gunpowder】-----Type:007

爆炸点: 399.85℃/673k

描述: 以粉末形式爆炸,温度到达爆炸点时爆炸,也可以被明火或电脉冲引爆。与 ACID 反应会爆炸,被 NEUT 照射后会变成 DUST。

导热率: 97

初始温度: 22.00℃/295.15k

燃点: 399.85°C/673k

描述: 炸药, 压力下(3 Pressure 左右)、电脉冲、明火都可以引起爆炸。爆炸点与压力有关, 压力越小爆炸点越低。 暴露在中子下产生石油气(GAS)和柴油(DESL)。可以与粘土砂(CLST)混合形成三硝基甲苯(TNT)。如果用 NEUT 照射 会转化为 OIL。

导热率: 50

初始温度: 22.00℃/295.15k

爆炸点: 399.85℃/673k

描述: 压力敏感型炸药, 暴露在高压(3 Pressure 左右)下、电脉冲或者达到爆炸点都可以引发爆炸。暴露在中子 (NEUT)下会变成粘土(GOO)。

导热率: 88

RBDM 固态铷(RBDM)【Rubidium】-----Type:041

熔点: 38.85℃/312k

描述: 低熔点, 遇水爆炸, 可与水(WATR)、蒸馏水(DSTW)、盐水(SLTW)、苏打水(BUBW)、酸(ACID)、火焰(FIRE)

反应,可以导电而不爆炸。在38.85℃熔化成液态铷。

导热率: 240

初始温度: 22.00℃/295.15k

下面液态铷(LRBD)【LiquidRubidium】-----Type:042

凝固点: 37.85℃/311k

描述:液态铷,压力越大,爆炸点越低,其他性质和固态铷一样

爆炸点: 0 Pressure 时, 687.85℃/961k

导热率: 170

初始温度: 67.00℃/340.15k

THUR 电光火球/球状闪电(THDR) 【Thunder】-----Type:048

描述: 很热的类液体物质, 高温(9000.00℃)带电, 与物质接触时产生巨大压力(256 Pressure)。球状闪电的运动不 受压力影响。最具破坏性的元素之一,会产生强烈的压力冲击波(256压力),并在与非金属(或刚刚传输过电脉冲 而无法导电的金属)接触时传导温度。THDR的动作不受压力影响。THDR通常用于产生大量压力(和热量),可 用于启动聚变反应(通过将其与 HYGN 混合)。但是,由于它的导热率非常低,因此不是一种非常有效的产热方 式。

导热率: 1

初始温度: 9000℃/9273.15k

THRM 铝热剂(THRM)【Thermite】-----Type:065

描述:只能与火焰(FIRE)、等离子体(PLSM)、岩浆(LAVA)、生命(LIFE)反应,产生巨大的热量(点燃时产生 3000℃高 温)。最后生成的 MoltenThermite 冷却后产生脆金属(BMTL)。它的金属特性意味着它是游戏中密度较大的粉末之 一,因此它会沉入大多数液体甚至某些粉末中。

产生: 将金属粉(BRMT)与电渣(BREL)共热至 250℃/523.15k 以上能制得铝热剂(THRM)。

导热率: 211

☞ 冷焰(CFLM)【Sub-zeroFlame】-----Type:068

描述: 绝对零度(-273.15℃/0k)的火焰, 可以引爆 C-5 低温炸弹(C-5)和 ANAR, 但不会点燃其他元素。

导热率: 88

初始温度: -273.15℃/0k

<mark>FIRW</mark>烟花(FIRW)【Fireworks】-----Type:069

描述: 用明火点燃后,烟花会升高并爆炸,产生高温(6000℃-9000℃) 和七彩的余烬(EMBR)中爆炸。

元素参数: Tmp=2 时引爆

导热率: 70

初始温度: 22.00℃/295.15k

^{FUSE}导火线(FUSE)【Fuse】------Type:070

描述: 高温下或通电能缓慢燃烧, 燃烧温度 4000-6000℃左右, 在 2.71Pressure 下碎裂成导火索粉尘(FSEP)

元素参数: Tmp 小于 40 时碎裂

燃点: 700℃/973.15k

导热率: 200

初始温度: 22.00℃/295.15k

FSEP 导火线粉尘(FSEP)【Fusepowder】-----Type:071

描述: 燃烧缓慢, 需要较高温度才能点燃, 比如使用等离子体(PLSM)或者电脉冲(SPRK)。燃烧时温度很高(3000+℃), 因此燃烧时火焰是等离子体。

燃点: 400°C/673.15k

导热率: 70

初始温度: 22.00℃/295.15k

Lightning】-----Type:087

描述:仿真的闪电,改变笔刷大小可以调整闪电大小和威力,可以穿过墙。V96.2 以后 LIGH 持续时间变得更长。 参数设定:

Tmp 闪电的角度(逆时针旋转,单位:度)

Tmp2=-1 删除碰到的物质

Tmp2=0 变成极小的电火花(此时闪电只会局限于周围 4x4 的范围)

Tmp2=1 弯曲的闪电

Tmp2=2 产生大量分叉的闪电

Tmp2=3 传递电脉冲并造成破坏(此时闪电只会局限于周围 4x4 的范围)

Tmp2=4 初始模式

导热率: 0

初始温度: 与笔刷大小有关, 最小时为-273.15℃/0k, 最大为 7976.85℃/8250k

描述:升级版炸药(BOMB),只有钻石(DMND)、复制体(CLNE)、可破坏复制体(BCLN)、可控复制体(PCLN)、可控可破坏复制体(PBCN)和墙(Wall)等与其直接接触可以不触发爆炸。产生高温高压,和重水(DEUT)或钚(PLUT)接触会触发其裂变反应。

元素参数: 当高爆炸药被触发后, Life 值会变为 37 并随帧数而减少, 减至 0 是高爆炸药消失, 通过修改其 Life 值可以修改其爆炸的持续时间。

导热率: 150

初始温度: 22.00℃/295.15k

传统烟花(FWRK)【OriginalFireworks】-----Type:098

燃点: 126.85℃/400k

描述:由中子(NEUT)或者达到燃点时激发,比烟花(FIRW)升的更高,但火焰苍白。用中子或热量(200C)爆炸。跳得比 FIRW 高,有奇怪的轨迹和苍白的余烬。热时爆炸(温度约 7000C 以上)。

产生: 尘埃(DUST)在中子(NEUT)轰击下可以转变为传统烟花(FWRK)。

导热率: 100

初始温度: 22.00℃/295.15k

№№炸药(BOMB)【Bomb】-----Type:129 火花(EMBR)【Ember】-----Type:147

描述: 当它接触到除 DMND、任何类型的克隆或任何类型的墙以外的任何其他粒子时会爆炸。当 BOMB 爆炸时,8 像素半径内的所有粒子都被 9725.85C 的 EMBR(钻石、克隆等除外)替换,并产生压力。爆炸发生后,这种 EMBR"弹片"在爆炸温度下弹出,造成损坏。然而,弹片的导电性随着其 Life 值而迅速下降,过一段时间就会不复存在。

导热率: 29/29

C-5 低温炸弹(C-5)【C-5】-----Type:130

描述:在压力、冷焰(CLFM)、液氧(LOXY)、液氮(LN2)、冷焰(CFLM)、智能微粒(TRON),以及其他温度低于-174℃ 的液体接触时爆炸。对压力不敏感。对 PHOT 是透明的, 通过的光线会变成蓝色的。

导热率: 88

初始温度: 22.00℃/295.15k

INI 三硝基甲苯(TNT)【Trinitrotoluene】------Type:139

爆炸点: 399.85℃/673k

描述: 与 C-4 塑胶炸弹(C-4)相似,但产生更多的压力和较少的火焰。爆炸时产生的高热(1000+℃)足以融化金属 (METL)。它只能用明火点燃。爆炸时会产生类似炸药(BOMB)爆炸时的火花(EMBR)。TNT 是唯一一种在点燃时立即 爆炸的炸药。

导热率: 88

初始温度: 22.00℃/295.15k

「IgnitionCord」-----Type:140

燃点: 399.85°C/673k

描述: 电脉冲或者明火或者达到燃烧点都能点燃它,能缓慢燃烧,在水中也可以燃烧。通过改变其 Tmp 值可以 改变它的燃烧速度。Tmp 值越高燃烧时间越长。中子(NEUT)可以穿过导火索但会使导火索朝中子来源方向运动。

导热率: 88

初始温度: 22.00℃/295.15k

⁶⁹⁴⁸引力炸弹(GBMB)【GravityBomb】-----Type:157

描述: 使用需要启用牛顿万有引力。碰到物质时会吸附在物质上并产生一个巨大的引力, 随后再突然变为巨大的 斥力从而破坏物质。

爆炸过程: 碰触物质后 Life 值变为 60,发光并附着在物质上, 产生引力(20)Life 值降至 20 以下时, 瞬间改变周围 引力值为-80。

导热率: 29

但(LITH)【Lithium】-----Type:191

描述: 与水接触会发生爆炸。它吸收 CO2, 然后可以转化为 GLAS。与水接触时,它会加热自身并将水变成氢气。在 1000K 时它会爆炸。纯净时可用于制造电池。

元素参数:

氢化(Tmp):

当 LITH 每接触 WATR, SLTW, DSTW, BUBW 或 WTRV 时它的氢化值会增加 1 时。

如果锂在 166.85C 以上与它们会产生爆炸。否则它会将它们转化为 HYGN 并释放热量。当锂内含有电时, 产生的反应和热量都会更加剧烈。

氢化值存储在 Tmp 值中。

碳酸化(Tmp2):

当 LITH 接触到 CO2 时,每吸收一个 CO2 粒子,其碳酸化值增加 1。碳化值存储在 Tmp2 值中

锂电池: 当锂足够纯(氢化因子+碳酸化因子<5)时,可作为可充电电池使用。锂通过 PSCN 充电,通过 NSCN 放电。

电荷值存储在 Ctype 中,并会将该值平均给与周围的 LITH 粒子。

杂质: LITH 的杂质由氢化和碳酸化值的总和决定。

当杂质达到最大值 10 时,它将停止与 CO2 和水反应(除非它已经燃烧)。

爆炸: 在爆炸阶段,LITH 会启动倒数计时器并释放 FIRE 粒子。如果 LITH 在这种状态下与 OXYG 接触,它会将 OXYG 和自身变成 PLSM,并产生一定的压力。当爆炸计时器结束时,它会变成 LAVA。如果碳酸化值大于3,它将变成熔融的 GLAS,而不是熔融的 LITH。

如果它与 FIRE 接触同时它的温度大于 166.85C, 氢化值小于 6, LITH 就会爆炸。

反应: ACID 会把 LITH 变成 HYGN, 而不是摧毁它。

初始温度: 22.00℃/295.15k

导热率: 70

♥ Gases-----气体

气体是具有很小引力、没有引力或升力(如蒸汽)的轻元素。

GAS 石油气(GAS) 【Gas】------Type:010

描述: 易燃气体,当其温度低于 60 摄氏度和处于或高于+6P 压力时, GAS 将转变回 OIL。PTNM 在 2 P 和 200℃时接触 GAS 会使其变成 INSL。

燃点: 299.85℃/573k 液化压力: 6Pressure

产生:中子轰击石油(OIL)或柴油(DESL)。在低压/加热下石油会变成石油气。

导热率: 42

初始温度: 24.00℃/297.15k

水蒸气(WTRV)【WaterVapor】-----Type:023

描述: 水蒸气, 水加热到 100℃以上或者盐水加热到 109.86℃以上时产生。当水快速大量沸腾时, 蒸汽会产生非常高的压力。WTRV 通过加压或冷却冷凝为 DSTW。水蒸气遇到酸(ACID)会变成酸气(CAUS)。

如果 WTRV 承受 ≤-49.93P 的压力, 它会凝华, 形成 RIME, 这是冰的另一种形式。当 RIME 通电时, 它会变成 FOG。

液化点: 371℃/97.85k

导热率: 48

初始温度: 122.00℃/295.15k

等离子体(PLSM)【Plasma】-----Type:049

描述: 炽热的气体, 9725.85℃, 从 10000℃ 开始。它具有与 FIRE 相似的特性, 可以燃烧东西并引爆炸药。存在时间(Life): 200 以内随机。由于它的热量, 它会间接引爆 FUSE、FSEP 和 FWRK 之类的东西。

产生: 可以通过将 FIRE 加热到 2499.85℃ 以上或 BTRY 加热到 1999.85℃ 以上来产生等离子体。

激活 ETRD 时,在它和最近的其他 ETRD 之间将产生等离子体。

此外,通过激发 NBLE,它会在大约 175 帧内电离并变成等离子体。

关闭 FUSE 和 FSEP 将产生等离子体。

INSL 与 DEST 接触时将变成等离子。INSL 也可以在高温下熔化并变成等离子体

导热率: 5

初始温度: 9725.85℃/9999k

NBLE 惰性气体(NBLE)【NobleGas】-----Type:052

描述:通电后能电离成等离子体(PLSM),但只有1600℃左右,不断通电能增大其温度。冷却后等离子体将变回惰 性气体。NBLE 也是核聚变过程的第二阶段。

聚变: 高温(大于 5000℃)高压(100 Pressure)下,惰性气体将聚变产生等离子体(PLSM)、一份中子(NEUT)、一份光 子(PHOT)(红色)、一份二氧化碳(CO2)。同时聚变会产生 50 Pressure 的压力和 9000℃的高温。

导热率: 106

初始温度: 24.00°C/297.15k

SMKE, 【Smoke】-----Type:057

描述:火焰冷却到较低温度时会产生烟。可以燃烧。烟接触较热物质时会产生轻微压力。烟可以被植物(PLNT)吸 收产生氧气(OXYG)。

燃点: 351.85℃/625k

导热率: 88

初始温度: 342.00℃/615.15k

🚾氧气(OXYG)【Oxygen】-----Type:061

描述:高度易燃的气体,可以被火焰(FIRE)点燃,在低温或高压(大于100Pressure)下会液化成液氧(LOXY)。烟(SMKE) 或者二氧化碳(CO2)被植物(PLNT)吸收后能产生氧气用来模拟光合作用。当 OXYG 暴露在高牛顿重力和最大可能 的温度和压力下时,它会融合成熔化的 BMTL。当氧气与 BOYL 混合时,反应将产生水蒸汽(WTRV)和 4 P 的压力。

聚变: 氧气暴露在高引力、高温度(9700℃/9973.15k 以上)和压力(250Pressure 以上)下时会聚变成熔融态的脆金属 (MoltenBMTL), 同时产生一份光子(PHOT)、一份等离子体(PLSM)、一份引力子(GRVT)。

液化点: -183.15℃/90k

导热率: 70

初始温度: 22.00℃/295.15k

描述: 高密度气体。真空中会下沉。与水反应生成苏打水(BUBW),低温下会变成干冰(DRIC)。不支持燃烧,可用 于灭火。被植物(PLNT)吸收后形成氧气(OXYG)。

产生: BUBW 会慢慢产生 CO2, 会产生 0.5P 的压力, 随着压力的增加, 产生的 CO2 减少。如果在密闭容器 中,压力大于 3P 时二氧化碳将停止产生。每一帧,BUBW 变化的几率是 4000 分之一。

BUBW 在两种情况下几乎会立即爆炸:当它被任何粉末接触时,以及当它低于-5P 压力时。每个粒子在爆 炸时会释放 0.2P 的压力。

当它接触固体(不是 DMND 或 GLAS)时会产生更多的 CO2。对于附近的每个固体,它能够产生 40000 吃 CO2, 并随之释放 0.2P 的压力。

BUBW 创建的所有 CO2 的 Ctype 值为 5, 以将其标识为由它创建的。

聚变:二氧化碳在高温(9500℃以上)、高压(200Pressure 以上)下会发生聚变,产生等离子体(PLSM)、极度高温高 压的冲击波、一份中子(NEUT)、一份电子(ELEC)和一份氧气(OXYG)。

凝固点: -78.5℃/194.65k

导热率: 88

初始温度: 22.00℃/295.15k

CAUS酸气(CAUS)【CausticGas】-----Type:086

描述:酸性气体,性质和酸(ACID)相似,能腐蚀几乎所有物质并产生热量。除非反应产生的热量激活或点燃所述 爆炸物,否则它不会触发爆炸物。与 ACID 不同的是,CAUS 不会燃烧,它会溶解粒子,直到其 Life 值达到 50, 然后它就会中消失。当它生成时,它的 Life 值为 75,每吸收一个粒子 Life 值就会减少 1。与水蒸气 (WTRV)接触 时,有 0.4% 的机会产生酸气(CAUS)。

产生: GAUS+GAS(大于 3P 压力)产生 RFRG

导热率: 70

初始温度: 22.00℃/295.15k

F06雾(FOG)【Fog】-----Type:092

描述: 雾, 原为隐藏元素, 88.1 版本后可以直接制造, 升温时(到达 100°C/373.15k)会变成水蒸气(WTRV)。

制取方法: 波义尔气(BOYL)和水(WATR)或者氧气(OXYG)混合时能产生雾(FOG)。霜(RIME)受到电脉冲刺激会形成 雾(FOG), 但此方法制取的雾(FOG)会在 100 帧以后重新变成霜(RIME)。

导热率: 100

初始温度: -30℃/243.15k

BOYL 波义耳气(BOYL)【Boyle】-----Type:141

描述:不可燃气体,热胀冷缩。也可用于核反应堆,在容器内放入铀(URAN)和波义尔气,铀会在压力下产生大量 热,而热量又使波义尔气膨胀产生更高压力,因此这个反应就能一直进行下去。波义耳气和氧气(OXYG)反应能生 成水(WATR),和水反应能生成雾(FOG)。

导热率: 42

初始温度: 24.00℃/297.15k

HYGN 氢气(HYGN) 【Hydrogen】-----Type:148

描述:可以用火焰(FIRE)点燃,能与氧气(OXYG)燃烧形成水蒸气(WTRV)。氢气没有气压,因此在温度小于零时能触碰石英(QRTZ)而不使其破碎。当氢气在大于8P的压力下与DESL接触时,会变成OIL,而DESL会变成WATR。但是DESL在大于5的压力下会变成FIRE。因此必须在DESL着火之前使其转换,并安全地取出反应物。或者您可以使用TTAN来保护DESL免受压力,因为只有HYGN需要加压。

聚变: 高温(2000℃)高压(50 Pressure)下,氢气(HYGN)会转化为稀有气体(NBLE),瞬间产生等离子体(PLSM)并释放一份中子(NEUT),一份光子(PHOT)(黄色)和 1(或 2)份惰性气体(NBLE),并且有 10%的机会释放一个电子(ELEC)。同时产生 50 Pressure 的压力和 4000℃的高温。

产生: 中子(NEUT)+电子(ELEC)=氢气(HYGN)

导热率: 251

初始温度: 22.00℃/295.15k

PERG制冷剂(RFRG) 【Refrigerant】------Type:183

描述:一种淡蓝色气体,在2P或更大压力下液化时加热,在2或更低压力下蒸发时冷却。它可以被中子分裂成 CAUS和GAS。不能点燃。

产生: NEUT+RFGL 会产生 CAUS 和 GAS

CAUS+GAS(>3.0 P)会产生 RFGL

导热率: 3

▲ Liquids----

不同密度的流体,都有不同的性质。不同的液体可能会冻结、蒸发、熔化、燃烧和/或传导。

如果存在, P表示压力, T表示温度(在 HUD 中称为"温度")。对于温度单位, C表示摄氏度, K表示开尔 文;这是因为 HUD 仅以摄氏度显示温度,而控制台仅接受开尔文单位。

WATR 水(WATR) 【Water】------Type:002

描述: 能导电的水,蒸馏水(DSTW)与大多数物质接触后都会变成这种水,植物(PLNT)可以吸收这种水生长。如 果用中子轰击,水会变成蒸馏水。中子将在水中行进并将水转化为蒸馏水,但会减慢速度并最终被水或(如果存 在)吸收中子的材料终止。

沸点: 99.85℃/373.0k 凝固点: 0°C/273.15k

反应:

内在反应:

WATR[温度≥(+99.86+2×压力)C|(373.01+2×压力))K]→WTRV+0.50 压力

WATR[温度≤-0.01℃|273.14K]&[压力≥+0.80]→SNOW

WATR[温度≤-0.01℃|273.14K]&[压力≤+0.79]→ICE

产生 WATR 的反应:

BOYL+OXYG→WATR

HYGH[压力≤+0.79]+DESL[压力≤+0.50]→WATR+OIL

BUBW(经过一段时间)→WATR+CO2[C 型 STNE]

SPNG[Life=n]→WATR+SPNG[Life=n-1]

RIME[温度≥0.00C|273.15K]→WATR

与电的反应:

WATR+SPRK→WATR+SPRK 更多 WATR(最慢的传导)

与爆炸物的反应:

WATR+FIRE[非 Ctype=WATR]→WATR

WATR+LRBD/RBDM→WATR+WTRV+FIRE[温度=+922.00C|1195.15K]

与气体的反应:

WATR+CO2→BUBW

WATR+BOYL→FOG

与液体的反应:

WATR+DSTW→WATR×2(中速)

WATR+SLTW→SLTW×2(中速)

WATR+GLOW→DEUT(渐进和局部)

WATR[温度≤+100.04C|373.19K]+GEL[Tmp=0]→GEL[Tmp=+1]

WATR+FRZW→FRZW×2(中速)

与粉末的反应:

WATR+SALT→SLTW

WATR+FRZZ→FRZW[如果 WATR 具有更高的温度,则更慢]

WATR+CLST→PSTE

与固体的反应:

WATR+PLNT→PLNT×2

WATR+IRON→WATR+BMTL[Tmp=1]

WATR[温度≤+100.04C|373.19K]+SPNG[Life=n&Life<50]→SPNG[LIfe=n+1]

与放射性物质/辐射的反应:

WATR+NEUT[Vx 和 Vy 的某些速度]→DSTW+NEUT[较小 Vx 和 Vy 的较慢速度] WATR+ELEC→HYGN+ELEC[反射]+OXYG

导热率: 29

初始温度: 22.00℃/295.15k

^{IOIL} 石油(OIL)【Oil】------Type:003

描述:液体,易燃,较低压力/加热下会变成石油气(GAS)。如果用中子(ENUT)照射硝酸甘油,会转化为油。如果 在任何压力≤-166.51 下,任何温度的油都会自发蒸发成气体。这种变化会在每个粒子的位置产生+0.50的压力。

沸点: 59.85℃/333k

导热率: 42

初始温度: 22.00℃/295.15k

<mark>LAVA</mark>岩浆(LAVA)【Lava】------Type:006

描述:冷却后变成固体,所有熔融物都是一个样子,区别在于其 Ctype,熔融物也是核反应的副产物之一。未生 成的熔岩在 HUD 中显示为"MoltenAAAA",其中 AAAA 是已熔化成熔岩的材料的名称。即使它在 HUD 中没有提 到熔岩,它仍然是熔岩。如果熔岩的 Ctype 以某种方式改变(例如通过控制台),就会产生许多奇异的熔岩形式, 例如熔化的火柴人、熔化的水或熔化的火。

高温可熔融物:

除 BTRY、INST 和 WWLD 之外的所有电子设备。

除 SNOW、BREL、ANAR、GRAV、FRZZ、BCOL、FSEP、YEST 和 DUST 外的所有粉末。

固体 BMTL 和 GLAS。

导热率: 60

初始温度: 1522.00℃/1795.15k

ACID 酸(ACID) 【Acid】 ------Type:021

描述:可以腐蚀几乎所有物质,除了:岩浆(LAVA)、液氮(LN2)、放射性元素、特殊元素、爆炸物、玻璃(GLAS)、石英(QRTZ)、石英沙(PQRT)、钻石(DMND)、金(GOLD)等。可燃,可以由明火、电脉冲、岩浆点燃,生成酸气(CAUS)。

材料的硬度值定义了 ACID 是否可以腐蚀材料、材料腐蚀的速度有多快。0 表示不能被 ACID 腐蚀。1 到 1000 之间的硬度值表示可以被腐蚀,较小的值更容易发生反应。

硬度值在1到60之间使反应放热,升温公式如下:温度_上升=(60-硬度)*7

例: 将水(WATR)粒子放在 ACID 粒子的顶部。水的硬度值为 20, 这会导致酸加热 60-20=40*7=280 度。

同位素 Z(ISOZ): 暴露于中子(NEUT)的酸会形成放射性元素同位素 Z。

腐蚀性气体(CAUS): 与水蒸气(WTRV)接触的酸有 0.4%的几率反应成

每个酸粒子的 Life 值为 75。每进行一次反应,酸粒子的 Life 值就会减少 1。(模拟稀释)生命值达到 50 或以下时,酸性粒子将被消耗。每个酸粒子在被消耗之前都会腐蚀 25 个其他粒子。相互接触的酸性粒子会交换 Life 值。(模拟扩散)

酸对某些材料的处理方式不同,如果下面未列出,则预计该材料会被酸腐蚀。以下是特殊情况材料列表:

爆炸物(将转化为两个 Life 值=4 的火(FIRE)粒子)

C-4/塑料炸药(C-4/PLEX)

硝酸甘油(NITR)

火药(GUNP)

铷(RBDM)

液体铷(LRBD)

水蒸气(WTRV)(最终所有的水蒸气都会变成腐蚀性气体,但这是一个缓慢的反应)

玻璃(GLAS)(模拟实验室条件)*

酸(ACID)和腐蚀性气体(CAUS)(出于显而易见的原因)

复制体 CLNE)

可控复制体(PCLN)

黄金(GOLD)

石英(QRTZ)

(粉末形式也受到影响。)

导热率: 34

[™]蒸馏水(DSTW)【DistilledWater】-----Type:025

描述:不导电的理论纯水,由水蒸气冷凝或中子轰击水(WATR)获得,DSTW 具有与 WATR 相同的沸点和冰点。植 物(PLNT)不能吸收这种水且不会导致铁生锈。DSTW 可以被 BUBW 和 WATR 污染成 WATR。当通电时会发生电解 (分离成 HHO)。

沸点: 99.85℃/373.0k 凝固点: 0°C/273.15k

导热率: 23

初始温度: 22.00℃/295.15k

點水(SLTW)【SaltWater】-----Type:027

描述: 盐(SALT)+水(WATR)的产物,能更快的导电(比 WATR 快),具有更高沸点和更低的凝固点,沸腾后产生水蒸 气(WTRV)+盐(SALT)。同时它还会使植物(PLNT)死亡和使石英(QRTZ)缓慢生长。SLTW 在 T≥ 109.86 + 2P 。承受 任何压力的 SLTW 在 ≤ -20.01 摄氏度时会变成 ICE (Ctype SLTW) 或 SNOW, 如果压力< 0.8P 则变成 ICE (Ctype SLTW), 如果压力≥ 0.8P 时会变成 SNOW。

沸点: 109.85℃/383k 凝固点: -21.1℃/252.05k

导热率: 75

初始温度: 22.00℃/295.15k

^{™™}蜡油(MWAX)【MoltenWax】------Type:034

描述: 融化的蜡(WAX), 可以燃烧, 45℃时凝固成蜡(WAX)。蜡油不是非常易燃, 除非在高温(673k 以上)下会导致 蜡油立即点燃。

燃点: 399.85℃/673k 凝固点: 44.85℃/318k

导热率: 44

初始温度: 50.00℃/323.15k

LN2 液氮(LN2) 【LiquidNitrogen】 ------Type:037

描述:液氮,遇到比它热的物质后会消失并产生压力。LN2 和 NICE(氮冰)通常用作冷却机制,因为 LN2 在任何温 度下都会消失。

沸点: -196.15℃/77.0k(消失)

凝固点: -210.15℃/63k

导热率: 70

初始温度: -205.00℃/68.15k

DESL 柴油(DESL) 【Diesel】------Type:058

描述: 可燃液体, 密度比水小, 具有和硝化甘油一样的性质, 但可以稳定燃烧而不爆炸。温度达到燃点或压力超过极限时自发燃烧。

反应: HYGH(压力>8 P)+DESL(压力≤5 P)→WATR+OIL(非常困难,因为 DESL 在压力高于 5 P 时会爆炸)

NEUT+DESL→NEUT+GAS

燃点: 61.85℃/335k 压力极限: 5Pressure

导热率: 42

初始温度: 22.00℃/295.15k

应对液氧(LOXY)【LiquidOxygen】-----Type:060

描述: 点燃时产生 2000℃/1726.85k 的等离子体(PLSM), 升温时转变成氧气(OXYG)。

沸点: -183.05℃/90.1k

导热率: 70

初始温度: -193.15℃/80k

^{GLOW}荧光液(GLOW)【Glow】-----Type:066

描述: 荧光液,状态、压力或温度变化时改变颜色,与水混合产生重水(DEUT)。光子(PHOT)接触到它会增殖。可以使电子(ELEC)变成光子(PHOT),但仅限于GLOW内部。

颜色表:

颜色	状态
灰色	正常
蓝色	移动中
亮红色	高温
深绿/深蓝	低温
翠绿	低压
黄色	高温高压
亮粉	高温低压
暗一些的翠绿	低温高压
深蓝	低温低压

导热率: 44

初始温度: 42.00℃/315.15k

碳酸水(BUBW)【BubbledWater(CarbonatedWater)】------Type:082

描述: 和其他物质接触时会释放出二氧化碳(CO2)并产生压力。

产生: BUBW 会慢慢产生 CO2,会产生 0.5 P的压力,随着压力的增加,产生的 CO2 减少。如果在密闭容器中,压力大于 3 P时二氧化碳将停止产生。每一帧,BUBW 变化的几率是 4000 分之一。

BUBW 在两种情况下几乎会立即爆炸: 当它被任何粉末接触时,以及当它低于-5 P 压力时。每个粒子在爆炸时会释放 0.2 P 的压力。

当它接触固体(不是 DMND 或 GLAS)时会产生更多的 CO2。对于附近的每个固体,它有 1/40000 的概率产生 CO2, 并随之释放 0.2 P 的压力。

BUBW 创建的所有 CO2 的 Ctype 值为 5, 以将其标识为是由它创建的。

沸点: 99.85℃/373.0k 凝固点: 0℃/273.15k

导热率: 29

初始温度: 20.00℃/293.15k

BIZR 奇特液体(BIZR)--Type:103 奇特气体(BIZG)--Type:104 奇特固体(BIZS) 【Bizarre】--Type:105

描述:与一般物理规律相反的液体,高温时凝固,低温时汽化,用颜色工具改变它的颜色后,它将把其他与之相遇的物质染成它的颜色。同时,它还能将光子(PHOT)转换成电子(ELEC)。

沸点: -173.15°C/100k 凝固点: 126.85°C/400k 导热率: 29/42/251

初始温度: 22.00℃/295.15k

PSTE 浆糊(PSTE) 【Paste】-----Type:111 固体浆糊(PSTS)-----Type:112

描述: 胶体, 在压力下变硬。高温下变成砖块(BRCK)。可以通过混合水(WATR)和粘土(CLST)来制造浆糊。

烧制温度: 473.85℃/747k

压力极限: 0.5Pressure, 变为固体浆糊(PSTS)。

导热率: 29/29

初始温度: 20.00℃/293.15k

GEL 胶体(GEL)【Gel】-----Type:142

描述: 能够吸收水分,之后颜色会变深、变得不那么粘稠而且导热系数会增加。当碰到海绵(SPNG)时,水会从胶体中移动到海绵里。碰到浆糊(PSTE)时,水会从浆糊中转移到胶体中,浆糊会变成粘土砂(CLST)。有气体接触胶体表面时,胶体会无序的扩散到气体中,可用于气体的干燥。

导热率: 29

描述: 0.5 Pressure 时产生肥皂泡,可以洗去染色。肥皂泡在-25℃/248.15k 时会凝固。可用于治愈病毒(VIRS)的感染,使其变为原来的物质或直接消失。肥皂会在较低温度下结冰。

导热率: 29

初始温度: 20.00℃/293.15k

MERC 水银(MERC) 【Mercury】-----Type:152

描述:液体,体积随温度变化,可以导电。水银是 TPT 里最重的液体,甚至可以让尘埃(DUST)浮起来。不可摧毁,

不能燃烧,不会蒸发。它对火柴人(STKM)没有毒性。某些元素(例如 BOMB)可以造成破坏。

元素参数: Tmp 值过高时会增大自身体积。

导热率: 251

初始温度: 22℃/295.15k

示例:

wirs 病毒(VIRS) 【Virus】----Type:174 病毒块(VRSS)----Type:175 病毒气(VRSG)----Type:176

描述: 89.0 版本后加入,会将其碰触到的所有物质变成病毒(VIRS),一段时间后会自己死亡。肥皂(SOAP)可以治愈病毒(VIRS)并使物质恢复。质子(PROT)可以使病毒(VIRS)不会自动死亡。只能被等离子体(PLSM)点燃。

不受 VIRS 影响的元素是能量类型元素引力子(GRVT)、PROT、电子(ELEC)、光子(PHOT)、中子(NEUT)、奇点 (SING)、反物质(ATMR)和钻石 (DMND)。

VIRS 是少数对 LOLZ 和 LOVE 产生有趣效果的元素之一。如果 VIRS 触及其中之一,则 VIRS 将被"克隆",因为 VIRS 将 LOVE/LOLZ 的一个像素更改为更多 VIRS,但随后 LOVE/LOLZ 会重组,将 VIRS 推开。最终,VIRS 会同时腐蚀所有的 LOVE/LOLZ,否则 VIRS 将被完全推开并停止被克隆。

沸点: 399.85℃/673k 变成病毒气(VRSG)

凝固点: 31.85℃/305k 变成病毒块(VRSS)

元素参数: Tmp2=感染物质的 Type 值

导热率: 251/251/251

初始温度: 72.00℃/345.15k

A Powders-----

粉末是可移动,不粘着的粒子,受引力影响

少51 (DUST) 【Dust】------Type:001

描述: 轻粉末, 难燃烧且火焰微弱。火柴人(STKM)—开始就能产生尘埃。用 NEUT 轰击时, DUST 会变 FWRK。 燃烧时,它会产生 FIRE,Life 值在 185 到 255 之间时变成 SMKE。DUST 是启动 TPT 时默认选择的粒子。这是因 为它的元素 ID 为 1。默认情况下,火柴人也会默认发射 DUST。

产生: 以通过加热 DYST 或者用 NEUT 轰击 GUN 产生。

元素参数: 点燃后默认燃烧 10 帧, 修改 Life 值可以改变其燃烧时间

导热率: 70

初始温度: 22.00℃/295.15k

5TNE石粉(STNE)【Stone】-----Type:005

描述: 重粉末, 熔化时变为岩浆(LAVA)。

产生: STNE 可通过冷 LAVA 或对 BRCK 施加压力产生。

反应: ROCK 和 WATR 反应时生成 STEN。OXYG 和熔融的 SLCN 反应时有 1/3 的概率生成 STNE 此反应还会生成

SAND、CLST/RQRT。 熔点: 709.85℃/983k

导热率: 150

初始温度: 22.00℃/295.15k

雪(SNOW)【Snow】-----Type:016

描述: 轻粉末,冰(ICE)在压力下破坏形成雪,加热后变成水(WATR)。可以使中子(NEUT)减速。

熔点: -0.15℃/273k

产生:可以压力下通过冷却 WARE、DSTW、BUBW 或 SLTW 来产生雪,对 ICE 施加压力也可产生雪。

反应: 雪会在 0°C 融化成它 Ctype 值的元素(即使该元素不是一种水,可以用此特性来制作奇点炸弹),除了 SLTW,

它会在-21.1°C 融化。

导热率: 46

初始温度: -8.00℃/265.15k

CNCT 混凝土(CNCT)【Concrete】-----Type:024

描述: 重粉末, 比石粉坚固且更难熔化。和其他粉末不同, 它是刚性的, 可以竖直堆积而不会倒下。任何东西都 不能通过 CNCT,包括 DEST。

产生: CNCT 可以通过将熔化的 ROCK 置于 25 P 到 50 P 之间的压力下来创建 (1/25000 几率)。

熔点: 849.85℃/1123k

导热率: 100

初始温度: 22.00℃/295.15k

SALT盐(SALT)【Salt】-----Type:026

描述:能溶于水(WATR)形成盐水(SLTW),较高温度下能熔化,能腐蚀铁(IRON)变成脆金属(BMTL)和金属粉(BRMT)。

反应: 可以将 WATR 和 DSTW 变成 SLTW, 同时慢慢溶解。

将 IRON 转换为 BMTL 然后是 BRMT, 除非 GOLD 就在附近以将其还原。

SALT 也会慢慢溶解在 SLTW 中, 这两者都会破坏 PLNT。

凝胶(SPNG)和海绵(GEL)从盐水中吸收水分,平均每四个盐水(SLTW)颗粒产生一个盐(SALT)。

熔点: 899.85℃/1173k

导热率: 110

初始温度: 22.00℃/295.15k

■RMI 金属粉(BRMT)【BrokenMetal】------Type:030

描述: 重粉末, 能导电。如果脆金属(BMTL)熔化后缓慢冷却就会形成金属粉。在电脉冲(SPRK)通过时会升温。被 腐蚀的铁(IRON)或者脆金属也能形成金属粉。另一种方式是将脆金属暴露在高压下使之碎裂。在>250°C 下与 BREL 结合时形成铝热剂 THRM,燃烧铝热剂能形成熔融态的脆金属(MoltenBMTL)。

导热率: 211

初始温度: 22.00℃/295.15k

SAND) 【Sand】-----Type:044

描述: 重粉末,熔化后冷却能形成玻璃(GLAS)。

反应: 3x SLCN(熔融) + 3x OXYG → SADN + STNE +CLST/PQRT

 $3x ROCK + 3x WATR \rightarrow SAND + 2x STNE + 3x WATA$

熔点: 1699.85℃/1973k

导热率: 150

BGLA 碎玻璃(BGLA) 【BrokenGlass】-----Type:047

描述:碎玻璃,熔化后能重新变回玻璃(GLAS)。光子(PHOT)无法通过。

熔点: 1699.85℃/1973k

制取方法:给玻璃(GLAS)加压或者加热液晶(LCRY)可以得到碎玻璃。玻璃(GLAS)被 DMG 破坏时也会产生碎玻璃。

导热率: 150

初始温度: 22.00℃/295.15k

¥EST酵母(YEST)【Yeast】-----Type:063 菌尸(DYST)【DeadYeast】-----Type:064

描述: 酵母, 在特定温度范围(29.85℃/303k~43.85℃/317k,不包括边界值)会繁殖。被中子(NEUT)轰击或者温度太 高(99.85℃/373k 以上)会死掉变成菌尸(DYST)。菌尸在更高温度(199.85℃/473k 以上)下会变成尘埃(DUST)。在任 何温度下,酵母(YEST)触碰到菌尸(DYST)都会死亡。

元素参数: 菌尸(DYST)可以燃烧 20 帧(暂停时修改火焰温度即可点燃)

导热率: 70/70

初始温度: 22.00℃/295.15k

BCOL 煤粉(BCOL) 【BrokenCoal】-----Type:073

描述: 重粉末,只能用明火点燃,缓慢燃烧。被中子(ENUT)撞击时有概率变成锯末(SAWD)。

产生: BCOL 是由 WOOD 在低压 (小于-10)和高温 (大于 499.85℃)下生产的。

导热率: 150

初始温度: 22.00℃/295.15k

序ZZ 寒尘(FRZZ)【Freeze】------Type:100

描述: 轻粉末, 很冷, 能立即冻住水。能将水(WATR)转变成寒水(FRZW), 温度低于-223.15℃/50k 时变为可以自 动降温的冰(ICE), 当温度高于零度时变成寒水。寒水能将其他水变成寒水。

熔点: 0℃/273.15k

转变温度: -223.15℃/50k

压力极限: 1.8Pressure, 变为雪(SNOW)

导热率: 46

初始温度: -20°C/253.15k

GRAV 引力尘(GRAV) 【Gravity】------Type:102

描述:十分轻的粉末,几乎无视重力,随着速度改变颜色。接触火焰(FIRE)时燃烧。

导热率: 70

初始温度: 22.00℃/295.15k

ENAR 反引力尘(ANAR)【Anti-AirParticle】------Type:113

描述: 十分轻的粉尘, 它遵循相反的引力/压力/速度定律, 遇到冷焰(CFLM)时燃烧, 其过程会使压力降低 0.5P。ANAR 还可以使振金(VIBR)变成振金粉(BVBR)。ANAR 具有负的空气阻力和平流,使其对压力和重力场产 生相反的影响。例如, ANAR 被拉入白洞 (WHOL)和推开黑洞 (BHOL)。ANAR 会被白洞摧毁, 就像任何其他粒 子被黑洞摧毁一样。ANAR 本质上是防 DUST 的。它会"上升"穿过大多数粒子,除了 DUST, SAWD, GRAV, CNCT, GUN, 它们会在边缘之外阻挡它。

导热率: 70

初始温度: 22.00℃/295.15k

PORT 石英砂(PQRT) 【BrokenQuartz】-----Type:133

描述: 石英砂,可以熔化。ORTZ的破碎形式。可以通过从底部缓慢加热来熔炼回石英。如果放入 SLTW,可以 将其转换 QRTZ。

反应: DMG + QRTZ → PQRT

CLST(熔融) + PQRT(熔融) → 2x CRMC(熔融)

熔点: 2300℃/2573.15k

导热率: 3

初始温度: 22.00℃/295.15k

电渣(BREL) 【BrokenElectronics】 -----Type:135

描述: 使用电磁脉冲武器(EMP)摧毁电子设备留下的物质,不能重铸,能导电。振金(VIBR)爆炸时会产生 BREL。 在 10Pressure 以上压力下通电会不断升温,在 30Pressure 以上压力下通电会形成奇异物质(EXOT),在 1000°C 和 高于50Pressure的压力下此反应可以被铂催化。在240°C以上与BRMT结合时,它们会形成THRM和BRTM/BREL。

导热率: 211

CLST 粘土砂(CLST)【ClayDust】-----Type:155

描述: 和水结合时产生浆糊(PSTE)。它能自然的结合在一起, 温度越低越牢固, 在大约-70℃时冻结, 顶部就像混 凝土一样牢固。CLST 与 NITR 混合时会产生 TNT。

产生: CLST 可以通过将 CRMC 置于低于-30 P 的压力下来创建。

PSTE + GEL → CLST + GEL

PSTE + SPNG → CLST + SPNG

3x SLCN(熔融) + 3x OXYG → SADN + STNE +CLST/PQRT

反应: WATR + CLST → PSTS

CLST(熔融) + PQRT(熔融)/QRTZ(熔融) → 2x CRMC(熔融)

 $NITR + CLST \rightarrow TNT$

熔点: 982.85℃/1256k

导热率: 70

初始温度: 22℃/295.15k

<mark>sawD</mark>锯末(SAWD)【Sawdust】-----Type:181

描述: 一种非常轻的粉末,可以漂浮在水面上。它是在高速粒子撞击 WOOD 时产生的。NEUT 撞击 BCOL 时也 会产生 SAWD。所有其他粉末都漂浮在上面,可以分层。

导热率: 70

初始温度: 22℃/295.15k

SLCN硅粉(SLCN)【Silicon】------Type:191

描述: 硅是一种非常闪亮的粉末,它像黄金一样导电。当熔融时,它可以用于各种反应以产生其他元素。熔化 的 STNE 与 COAL 或 BCOL 混合时,会以 1/60 的几率变成熔化的 SLCN。

反应: 熔融 SLCN 与 OXYG 混合时, 会产生各种其他熔融元素。它有 1/3 的几率变成 SAND, 有 1/3 的几率变成 STNE。最后的 1/3 将根据温度变成两个元素之一,如果 SLCN 小于 7446.3℃,它将产生熔融 CLST,否则将产生熔 融 PORT。熔融 SLCN 也与熔融 METL 或 BMTL 反应。SLCN 变成熔融的 NSCN,其他反应物会变成熔融的 PSCN。

导热率: 100

□ Solids-----

⁶⁰⁰粘土(GOO)【Goo】------Type:012

描述: 固体, 在压力下会变形消失。中子(NEUT)同样可以使粘土轻微变形。

压力极限: 1Pressure

导热率: 75

初始温度: 22.00℃/295.15k

描述: 固体, 冷冻的水, 在压力下会破碎变成雪(SNOW)。可以熔化。可以使中子(NEUT)减速。它的 Ctype 值决 定了它会融化成什么。例如,Ctype 值为 SLTW 的 ICE 在融化时会变成 SLTW。

熔点: 0°C/273.15k 压力极限: 0.8Pressure

导热率: 46

初始温度: -28.00℃/245.15k

wooi木材(WOOD)【Wood】-----Type:017

描述:固体,可燃物,允许中子(NEUT)通过。以一般速度燃烧。在高温下,WOOD 会变暗,直到变成煤黑色,然 后燃烧。另一方面,如果低于冰点,木材会变成冰蓝色。烧焦的木材(超过 176.85℃)永远无法恢复并恢复其正常 颜色。NEUT 可以穿过木材,同时使木材变形。当 VINE 放在 WOOD 旁边时,VINE 将在 WOOD 上生长,直到所 有可以到达的木材都被 PLNT/VINE 覆盖。NEUT 穿过 PLNT 时会将其变 WOOD。当高速粒子撞击 WOOD 时,它 会变成 SAWD。木材在低压(-10 P)和高温(499.85℃)下会变成 BCOL

燃点: 599.85℃/873k

导热率: 164

初始温度: 22.00℃/295.15k

^{PLNT}植物(PLNT)【Plant】------Type:020

描述: 植物, 吸收水分生长。低温时变成蓝色。可燃物。在中子(NEUT)轰击下变成木材(WOOD)。盐水(SLTW)会 破坏植物。可以吸收二氧化碳(CO2)或者烟(SMKE)并产生氧气,以模拟光合作用。火柴人(STKM/STK2)可以吃(走 近)植物来增加(5点)生命值。Tmp值为1的PLNT会沿着WOOD生长。

燃点: 299.85℃/573k

导热率: 65

脆金属(BMTL)【BreakableMetal】-----Type:029

描述: 可以破坏的金属。在压力大于 2.5 P 的情况下破坏,高温下熔化。在电脉冲通过时会升温。经常用作可破 坏建筑的建筑材料。仅能允许一半的光子(PHOT)通过。Tmp 值为 1 的 BMTL 会慢慢变成 BRMT。这种类型的 BMTL 是在 IRON 生锈时形成的。THRM 燃烧时会产生熔化的 THRM,然后冷却成 BMTL。如果 BRMT 熔化并冷 却,它将再次形成 BMTL。接触它的所有光子中有一半会通过,另一半会反射出去。液态 BMTL 也在聚变的最后 一步产生: 9000℃ 温度、250 压力和高牛顿重力下的氧气。

熔点: 999.85℃/1273k 压力极限: 1Pressure

制取方法: 氧气(OXYG)+最高的温度、压力+引力。

导热率: 251

初始温度: 22.00℃/295.15k

wax 蜡(WAX)【Wax】------Type:033

描述: 蜡, 加热会融化。反射中子(NEUT), 在光子(PHOT)的照射作用下会融化。可燃。

熔点: 45.85℃/319k

导热率: 44

初始温度: 22.00℃/295.15k

^{GLAS}玻璃(GLAS)【Glass】------Type:045

描述: 固体, 当压力变化>0.25Pressure 时会破碎, 可以熔化。光子(PHOT)可以通过玻璃并分散成不同波长的光。 玻璃不能被酸(ACID/CAUS)腐蚀。中子(NEUT)通过玻璃时会产生单色光子(PHOT)。电子(ELEC)与玻璃接触时会生 成无害的火花(EMBR)。如果通过了足够数量的 NEUT,GLAS 会增加 NEUT 的数量。

熔点: 1699.85℃/1973k

导热率: 150

初始温度: 22.00℃/295.15k

NICE 氦冰(NICE) 【NitrogenIce】-----Type:051

描述: 氮的固体形式。熔化后变成 LN2、当过度加热时、LN2 又会消失。对于 NICE 来说大多数材料的温度都足 够高,可以将其熔化成液体形式,并且大概率使液体沸腾。

熔点: -210.05°C/63.1k

导热率: 46

初始温度: -238.15℃/35k

^{COAL}媒(COAL)【Coal】------Type:059

描述: 煤,可以用 FIRE、PLSM、LAVA 点燃,会缓慢燃烧。加热时会慢慢白热化,停止加热后会自身冷却变为浅 灰色。这个性质在煤粉(BCOL)中也同样存在。被中子轰击时会变成木材(WOOD),会吸收光子。在4.31Pressure以 上压力下会碎裂变成煤粉(BCOL)。

元素参数: Life 小于 100 时燃烧, Tmp 小于 40 时碎裂。

压力极限: 4.31Pressure

导热率: 200

初始温度: 22.00℃/295.15k

^{BRCK} 砖块(BRCK)【Brick】------Type:067

描述: 可破坏的建筑材料。是石粉的固体形式, 不能导电, 可以熔化。在压力大于 8.8 P 时会碎裂成石粉(STNE)。

元素参数:修改其 Tmp 值为 1 可以制得像可控动力管(PPIP)那样的蓝光砖块。

制取方法: 浆糊(PSTE)加热至 480℃/753.15k 可以转化成砖块。

压力极限: 8.8Pressure 熔点: 949.85°C/1223k

导热率: 251

初始温度: 22.00℃/295.15k

IRON铁(IRON)【Iron】------Type:076

描述:会被以下物质腐蚀:盐(SALT)、盐水(SLTW)、氧气(OXYG)、水(WATR)、液氧(LOXY),腐蚀后变成脆金属(BMTL)。 可用于电解水。

反应: IRON 在接触时 SALT、当 SLTW、WATR、OXYG 会变成 BMTL。在长时间暴露于任何这些元素后、BMTL 将变成 BRMT 代表生锈。将 GOLD 放在附近会逆转并阻止这个过程。

熔点: 1413.85°C/1687k

导热率: 251

初始温度: 22.00℃/295.15k

DRIC 干冰(DRIC)【Drylce】------Type:081

描述: 干冰, 当二氧化碳(CO2)温度为-78.5℃以下时形成。当 DRIC 被加热到-80℃以上时, 即使在高温下, 也 需要一段时间才能重新变成 CO2。

升华点: -77.5℃/195.65k

导热率: 2

初始温度: -100.50℃/172.65k

<mark>\$PNG</mark>海绵(SPNG)【Sponge】-----Type:090

描述: 可以从多种元素中(水 WATR、盐水 SLTW、蒸馏水 DSTW、寒水 FRZW、苏打水 BUBW、胶体 PSTE)吸水, 吸水之后颜色变暗。暴露在明火下或温度达到燃点时燃烧。高压下或灼烧时会释放出吸收的水。当海绵吸收盐水 时,它可能会析出盐。当吸收 BUBW 时,它会释放 CO2。当吸收 PSTE 时, PSTE 会变成 CLST。

燃点: 2456.85℃/2730k

导热率: 251

初始温度: 22.00℃/295.15k

霜(RIME)【Rime】-----Type:091

描述: 霜,可以通电升华成雾(FOG)。0 摄氏度或更高温度时变回 WATR,或在某些压力下变回 WTRV。

熔点: 0°C/273.15k

制取方法:如果水蒸气快速冷却凝华就有可能形成霜(RIME)。

导热率: 100

初始温度: -30℃/243.15k

WINE 藤蔓(VINE)【Vine】-----Type:114

描述: 藤蔓, 吸水生长, 中心部分是植物(PLNT), 暴露在中子(NEUT)下会变成木材(WOOD)并向中子方向生长。 藤蔓以一种半随机方式生长,形状有点像草。

燃点: 299.85℃/573k

导热率: 65

初始温度: 22.00℃/295.15k

SHLD自修复膜(SHLD)【Shield】-----Type:119 修复膜 2/3/4(SHD2/3/4)-----Type:120/121/122

描述:通电时,会自动生长出保护膜,从内到外依次是 SHD4、SHD3、SHD2、SHLD。除 SHLD 外的所有类型都 将用下面的级别填充周围的空白空间。例如, SHD3 将用 SHD2 包围自己。分解压力分别为: 40/25/15/7 Pressure。 不导电,不导热。

导热率: 0/0/0/0

FILT 滤镜(FILT) 【Filter】-----Type:125

描述: 颜色会随温度改变(由冷到热依次: 深蓝、浅蓝、绿色、橙色、棕色、红色),可以改变光子(PHOT)的颜色。 当射线(BRAY)经过时同样也会染上滤镜的颜色。FILT可以储存 30 位数字。每一位用(Ctype 值)2 的次方表示,或用 0x000000000 来表示。

当 FILT 的 Ctype 为 0 时,则波长将根据其温度计算:冷时缓慢移向蓝色,热时缓慢移至红色。从技术上讲,设置一组 5 位,从 0°C 开始,每 40°C 红移 1 位,经过 25 次移位,在 1000°C 时,该组移到红色中的最大位频谱的一部

滤镜不会受到环境温度的影响(即不受热辐射的影响)。

用法:

热导体

使用 FILT 的最简单方法可能是传递热量。FILT 具有非常高(但不是最高)的热导率并且几乎坚不可摧,使 其成为将热量从反应器转移到冷却液的理想选择。它对于调试也很有用,因为它会在 0°C 时将颜色从蓝色变为 1000°C 时的红色。请注意,如果启用环境热模拟,FILT 的温度将不受其周围"空气温度"的影响,只会受到接触 它的物品的影响。

ARAY 射线组

ARAY 射线组由 ARAY 和 FILT 组成,它们按顺序相互激活。当 ARAY 被激活时,它会创建一条 BRAY 射线。 BRAY 的使用 Life 值为 30,因此除非不经常使用这条 **ARAY 射线组**,否则您需要找到一种方法在下一个 SPRK 循环之前消除 BRAY。可以通过使用棕色 BRAY 射线来做到这一点,但大多数情况下,沿其路径放置透明粒子会更容易,其中 FILT 是最常见的。

光子和 BRAY 的着色特性

BIZR/G/S、BRAY、FILT 和 PHOT 粒子将它们的波长存储在 Ctype 值中。

可见颜色仅取决于 5 位组中的位数量:红色、黄色、绿色、青色和蓝色。它们的长度分别为 9、3、6、3 和 9 位。剩下的位置被保留,但不影响粒子的颜色。更具体地说,颜色仅取决于这些数量的比例。要设置所有位,请将 Cype 值设置为 0x3FFFFFFF 或-1,这将启用所有波长并使其变为白色。

FILT 也使用 Ctype 值字段来存储波长,但是,如果 Ctype 值为 0,则波长将根据其温度计算:冷时缓慢移向蓝色,热时移至红色。从技术上讲,设置一组 5 位,从 0°C 开始,每 40°C 红移 1 位,经过 25 次移位,在 1000°C 时,该组移到红色中的最大位频谱的一部分。

电子逻辑元件

由于 FILT 能够在给定模式下更改 BRAY 的波长,可以将其视为一个非常强大的逻辑运算符,可以单独进行复杂和大规模的计算。它能够将大量二进制信息存储到一个非常小的空间(每像素 30 位)。对于有经验的人来

说,FILT 电子设备比 INST 或金属电子设备更容易设置。下面是模式列表。每种模式都有一个目的。的和,不, 异或,和或门电路提供访问到逻辑系统的基本元素。

FILT 有许多由其 Tmp 属性决定的操作模式:

Tmp 值	作用模式
0(转换)	将进入的光子颜色变为自身颜色
1(过滤)	吸收与自身颜色不一样的光子
2(增加)	将自身颜色添加到进入的光子光谱中
3(删除)	将自身颜色从进入的光子光谱中删去
4(红移)	红移
5(蓝移)	蓝移
6(透明)	不做任何改变
7(异或)	对光子的颜色进行异或运算
8(反色)	反色, 白色的光子会被直接吸收
9(散射)	随机模式

Tmp 为 0 的具有将所穿过的 BRAY 的 Ctype 染成自己的 Ctype 的能力。

Tmp 为 1 的拥有与门的能力,即将穿过自身的 BRAY 染成其原来的 Ctype 与自身的 Ctype 相与的结果。

Tmp 为 2 的拥有或门的能力,即将穿过自身的 BRAY 染成其原来的 Ctype 与自身的 Ctype 相或的结果。

Tmp 为 3 的拥有删除的能力,即将穿过自身的 BRAY 染成与其原来的 Ctype 与自身的 Ctype 各位相减(不借位)的结果。

Tmp 为 4 的拥有红移的能力,即将穿过自身的 BRAY 染成其原来的 Ctype 各位左移的结果。

Tmp 为 5 的拥有蓝移的能力,即将穿过自身的 BRAY 染成其原来的 Ctype 各位右移的结果。

Tmp 为 6 的不对射线有影响。

Tmp 为 7 的拥有异或门的能力,即将穿过自身的 BRAY 染成其原来的 Ctype 与自身的 Ctype 相异或的结果。

Tmp 为 8 的拥有非门的能力,即将穿过自身的 BRAY 染成其原来的 Ctype 各位取反的结果。

任何其他 Tmp 值都使 FILT 在功能上等同于模式 6。

几乎所有这些模式都相当于一个逻辑门阵列,将其逻辑应用于 30 位中的每一个。FILT 电子设备通常通过将 BRAY 设置为特定值并将其移动通过一个或多个具有特定模式和/或值的 FILT 来执行。然后读取输出。输出可以通过将其放回一行 FILT 以供以后存储或计算来读取,或者根据它是否可以通过 FILT 来读取或关闭。

FILT 电子设备有时会使用电脉冲作为更直接的输出,因为如果在 BRAY 上执行的操作结果为零,那么 BRAY 将终止并且不会产生任何电脉冲。通过这种方式,您可以获得二进制 1 或 0,具体取决于操作是否导致 0。虽然此功

能有时可能非常有用,但如果意外发生,您可能根本没有任何操作使 BRAY 停止。为了避免这种情况,大多数 人在计算时总是设置第 30 位,即使计算结果为零,他们仍然可以读取它。对于所有操作,该位将被忽略,并且 仅存在于 BRAY 周围。请注意,如果任何位在任何方向上偏移过多,它的数据并消失。

FILT 存储技术

FILT 有三种存储方式

简易存储:有时只需要存储数据。简易存储是将每个值使用一个 FILT 储存,以便您以后可以引用它。

参考存储:有时必须处理一些相当大的数字。当为计算机编码时,或者正在为打印机编写一组指令时, 可以将这些大数字分配给更小、更易于管理的数字。例如,如果有五个值。537100575、537085324、 536870975、536870975 和 537052300。这些数字中的每一个都是字母 h、e、l、l 或 o 的直接数据表示。如果 可以按他们在字母表中的位置来称呼他们,就像这个8,5,12,12,15。现在不是使用大约18位来存储单个字母, 而是使用4位。

共享存储: 将多个值写入同一个 FILT。大多数情况下,如果在 FILT 中使用的位数少于 7 位。那么可以通 过将另外7位移位到同一频谱上来利用剩余的23位。

DTEC 可用于修改 FILT 的 Ctype 值:当 PHOT 或 BRAY 在 DTEC 的范围内时,DTEC 将频谱复制到一行直接 相邻的 FILT 的线或点中(如果存在)。

LDTC 也可用于修改 FILT 的 Ctype 值: 当它检测到 PHOT、BRAY 甚至 FILT 本身时,它只会将光谱复制到与 检测元素直接相对的 FILT 的线或点中。由于 LDTC 的精确性和多功能性,LDTC 正在迅速取代大多数基于 FILT 的电子产品中的 DTEC。

导热率: 251

初始温度: 22.00℃/295.15k

□RTZ 石英(QRTZ)【Quartz】-----Type:132

描述:接近绝对零度时会变得很脆并碎裂成石英砂(PORT),允许一部分光子(PHOT)通过并散射掉另一部分。高温 时缓慢熔化。遇到盐水(SLTW)时会缓慢生长,修改 Ctype 值可以改变其生长速度。在压力下能够导电。QRTZ 的 阴影由其 Tmp2 值控制。通过放置它生成的默认值是 0-10, 其中 0 表示相当深的蓝色, 而 10 表示接近白色。 当熔融的 QRYN 和熔融的 CLST 混合时会变成熔融的 CRMC。

熔点: 2300℃/2573.15k

元素参数: 生长速度由 Ctype 值决定, Ctype 值越高生长越快

导热率: 3

描述: 金属固体, 坚固的材料。熔点很高, 能导电。中子(NEUT)通过时会被吸收 5%(每一帧)。通电时允许压力通 过,未通电时不传导任何压力,不论任何厚度都可以阻隔压力。如果熔融的 TTAN 与 EXOT 混合,它会变成熔融 的 VIBR, 可以冷却形成 VIBR。

熔点: 1667.85℃/1941k

导热率: 251

初始温度: 22.00℃/295.15k

©LD 金(GOLD)【Gold】-----Type:170

描述: 金属, 十分牢固, 具有高熔点, 抗腐蚀(但通电时会受到酸的腐蚀), 可以保护铁(IRON)免受腐蚀。和钛(TTAN) 一样, 当中子(NEUT)通过时会损失大约 1/7。具有良好的导电性, 比一般导体导电速度快 50%(只有超导线 INST 和 电极 ETRD 比它快),并允许电脉冲(SPRK)跨越 3 格像素的空隙传导,可以通过 INSL 和其他材料。

熔点: 1063.85℃/1337k

导热率: 251

初始温度: 22.00℃/295.15k

©RMC] 【Ceramic】-----Type:179

描述: 固体,受压时熔点会增加。允许中子(NEUT)、引力子(GRVT)以及质子(PROT)通过。在一定的负压下(≤-30Pressure)会转变成粘土砂(CLST)。通过对 5 个位置(包括本身在内每个方向延伸两个像素)的压力取平均值。

制取方法:熔融的石英(QRTZ)+熔融的粘土砂(CLST)。

熔点: 0 Pressure,2614.00℃/2887.15k,压力每升高 1P 熔点升高 10℃,255 P 下熔点为 5164℃。

导热率: 35

初始温度: 22.00℃/295.15k

导热体(HEAC)【Rapidheatconductor】-----Type:180

描述: HEAC 一般不会熔化,不受压力影响。导热速度比任何其他材料都快。融化 HEAC 的唯一方法是在其上使 用 LIGH, 当 LIGH 击中 HEAC 时,HEAC 才会融化。当温度低于~1650℃时,它会变回固体形式。

导热率: 255

描述:可以催化某些反应。由于它像 GOLD 一样快速传导,因此可以用作具有更高熔点的 GOLD 替代品。

反应:

必须直接接触 PTNM 才能反应

ISZS/ISOZ → PLUT + PTOH

SHLD 进入下一阶段并在接触 PTNM 时立即增长

以下 3 种反应基于二次概率曲线发生,从<=0C 时的 0%到 1500℃时的 100%几率

在超过 2P 的压力和 200℃下: GAS → INSL+60℃

在超过 50 P 的压力和 1000℃下: BREL → EXOT+(-30C)

SMKE → CO2

氢反应

当 HYGN 和另一个元素都在附近时,会发生反应。

HYGN + DESL → OIL + WATR

HYGH + OXYG → DSTW + SPRK+(5℃), PTNM 被触发

两个 HYGN 在 500℃以上有 1/1000 的机会进行冷聚变。这会产生一份 NBLE、一份 NEUT 和一份 PHOT,很少 (1/10)一份 ELEC。这也会产生 1000℃和 10 P 的压力。

导热率: 251

初始温度: 22.00℃/295.15k

ROCK 岩石(ROCK) 【Rock】------Type:190

描述: 坚固的材料, CNCT 可以堆叠在它上面。ROCK 可以作为 CNCT 的地基。与所有其他元素相反, CNCT 不会 跌落 ROCK 的边缘。

ROCK 对 ACID 和 DEST 也有很强的抗酸和抗爆能力。虽然是固体,但 ROCK 可以被水侵蚀。水与周围速度差大于 0.5 时小概率(1/1000)会侵蚀 ROCK 变成 SAND(33%)或 STNE(67%)

反应: ROCK 的大部分反应都是在熔化的 ROCK 上进行的。

熔融 ROCK 在至少 25 的压力下有 12500 分之一的几率会变成以下的熔融物:

25-50 压力 75-100 压力, >=4726.85C

BRMT(50%) TTAN(20%) CNCT(50%) IRON(80%)

50-73 压力 1 00+压力, >=4726.85C, 额外 20%几率

QRTZ URAN(20%)

73-75 压力 PLUT(16%) GOLD(12.5%) UNG(64%)

QRTZ(87.5%)

导热率: 200

-放射性物质 **⊗**Radioactive-----

放射性物质包含裂变元素以及具有独特属性的元素。

NEUT中子(NEUT)【Neutrons】-----Type:018

描述:不受重力影响的粒子,可以随意移动。可以由钚(PLUT)或重水(DEUT)裂变产生。当穿过 GOLD 时,一小部 分中子会消失。中子受万有引力的作用,SNOW、ICE 可使其减速。穿过 GOLD 时会消失一小部分,TTAN 反射 NEUT 时会吸收 5%. 而 MERC 会吸收所有 NEUT。

可以与某些物质作用,如:

使钚(PLUT)裂变

使重水(DEUT)裂变

使黑火药(GUN)变成尘埃(DUST)

使植物(PLNT)变成木材(WOOD)

使尘埃(DUST)变成传统烟花(FWRK)

使硝化甘油(NITR)变成石油气(GAS)

使 C-4 塑胶炸药(C-4)变成粘土(GOO)

使水(WATR)变成蒸馏水(DSTW)

使酸(ACID)变成同位素-Z(ISOZ)

使柴油(DESL)变成石油气

使酵母(YEST)变成菌尸(DYST)

使煤(COAL)变成木材(WOOD)

使 BCOL 转换为 SAWD

使 RFRG 转化为 CAUS 和 GAS

存在时间(Life): 1000 以内数值随机。

导热率: 60

初始温度: 22.00℃/295.15k

环(PLUT) 【Plutonium】 -----Type:019

描述: 裂变, 在高压下、被闪电击中或大量的中子(NEUT)轰击时更不稳定。反应产物是铀(URAN)、中子(NEUT)、 熔融态的钚(MoltenPLUT),并带来最高的温度和少量的火焰。如果压力低于-2 P, PLUT 将不会与中子反应。冷却 之后将会形成石粉(STNE)。会杀死火柴人(STKM)。当被白光照射时,PLUT将大部分反射为绿光,光谱中带有微小 的黄线和蓝线。

导热率: 251

初始温度: 26.00℃/299.15k

PHOT光子(PHOT)【Photons】-----Type:031

描述:沿直线传播,不受重力影响,受牛顿万有引力影响。可以被反射,或散射。用于点燃物质或传递热量。经 过滤镜(FILT)时会改变颜色,经过棱镜时会色散。透过非隐形状态下的虚无(INVS)时会转变成中子(NEUT)。透过奇 特气体/液体/固体(BIZG/BIZR/BIZS)时会转换成电子(ELEC)。

注:不同元素反射 PHOT 值可查阅附录。

反应: 光子(PHOT)+氢气(HYGH)=质子(PROT)+电子(ELEC)

存在时间(Life): 680 帧

导热率: 251

初始温度: 922.00℃/295.15k

wan 铀(URAN)【Uranium】-----Type:032

描述:核反应的副产品,在压力下会快速上升温度(指数关系),在低压或没有压力时会缓慢冷却。铀用于核反应 堆 IRL 以产生热量以产生蒸汽,蒸汽用于旋转涡轮机并凝结成水,涡轮机的速度在发电机中提供动力。由于产生 蒸汽压力的反应增加了加热。压力引起的热量变化率以指数方式确定, 256 P 的压力下温度每帧增加 83.01℃。

导热率: 251

初始温度: 52.00℃/325.15k

MTB 反物质(AMTR)【Antimatter】-----Type:072

描述:可以破坏大多数物质并产生低压和光子,受到微弱的重力影响。除 AMTR、DMND、CLNE、PCLN、VOID、 VACU、BHOL、RPTI、PRTO、所有能量粒子不可破坏。

元素参数: Life 值代表反应次数, 初始值为 0 每与另一个粒子发生反应(包括产生光子)时, Life 值增加 1, 当 Life 值到达4时便会消失。

导热率: 70

初始温度: 22.00℃/295.15k

重水(DEUT)【DeuteriumOxide】-----Type:095

描述: 热胀冷缩, 受热时膨胀颜色变暗, 受冷时收缩颜色变浅。DEUT 压缩的体积与其 Life 值成反比, 而 Life 值 又与温度成反比。只能通过中子(NEUT)、闪电(LIGH/THDR)或高爆炸药(DEST)激发,会产生大量的中子和高压。受 热时最多可以膨胀 6000 倍,在负压下不能进行裂变反应。电子(ELEC)能使重水降温直到绝对零度,也可以通过施 加引力来压缩重水。

制取: 荧光液(GLOW)+水(WATR)=重水(DEUT)

元素参数: Life 值代表压缩程度,数值越大,压缩程度越高

导热率: 251

WARP 迁跃粉(WARP) 【Warp】-----Type:096

描述:不可见的气体,传送时会产生 ELEC。会随机将接触到的物质传送出去(除了 DMND、STKM/STK2、 CLNE/BCLN/PCLN),运动方式和中子(NEUT)类似,存在时间很短只有几秒钟。当用足够的 ELEC 轰击时,EXOT 会产生 WARP,这将产生非常大的温度和压力。与 NEUT 或 PROT 混合时可产生无限的聚变反应。

导热率: 100

初始温度: 22.00℃/295.15k

ISOZ 同位素-Z(ISOZ) 【Isotope-Z】-----Type:107

描述: 放射性液体, 可以被光子(PHOT)或负压激发, 会释放出更多的光子。

凝固点: -113.15℃/160k

制取方法:酸(ACID)被中子(NEUT)轰击后会形成同位素-Z

导热率: 29

初始温度: 22.00℃/295.15k

ISZS 固态同位素-Z(ISZS)【SolidISOZ】-----Type:108

描述:会随时间流逝慢慢衰减成光子(PHOT),负压会加快衰变速度,和钚(PLUT)的性质相反。可以熔化成液态, 这通常会在衰变过程中发生,或者可以通过加热手动完成。

熔点: 26.85℃/300k

导热率: 251

初始温度: -133.15℃/140k

sing 奇点(SING)【Singularity】-----Type:131

描述:会产生超低压的粉末,可以破坏其它物质,本质上是粉末状的黑洞。吃下过多的物质之后,奇点会爆炸, 产生中子(NEUT)和电子(ELEC)。使用控制台可以立即使奇点爆炸,关闭空气压力也会导致奇点直接消失。Tmp 值 越高威力越高, 可与 SNOW 堆叠做奇点炸弹。

导热率: 70

初始温度: 22.00℃/295.15k

电子(ELEC)【Electrons】-----Type:136

描述:一种能量粒子,有和中子(NEUT)相似的运动方式,但是速度不会渐渐变慢。电子会给触碰到的导电物质一 个电脉冲。和中子(NEUT)接触会形成氢气。电子也可以用于电解水。电子撞击荧光液(GLOW)后会转变成光子 (PHOT), 而撞击重水(DEUT)会使其压缩。

存活时间(Life): 680 帧

导热率: 251

EXOT 奇异物质(EXOT)【ExoticMatter】-----Type:145

描述: EXOT 是一种奇怪的液体, 奇异物质具有岩浆(LAVA)的密度和压力以及冰(ICE)的一些性质。冷却下来之后, 奇异物质会变成固体,且以常温的一半速度闪烁。如果奇异物质没有被电子激发,且温度低于常温,那么它会产 生负压; 当温度高于常温时, 它会逐渐递增的释放正压。奇异物质也能冷却(0℃)并变成固体, 但受到大量电子冲 击时依然会发生猛烈的爆炸。

产生: 将电渣(BREL)持续通电并加压到最大压力, 加热到 9000℃以上即可得到奇异物质。

反应:

与电子(ELEC)的反应

在电子的轰击下,它会发出彩虹色的光并产生压力,产生的压力取决于它受到电子轰击的数量,并按一定 比率散发到环境当中去,同时,当环境压力等于奇异物质的压力时它会立即停止产生压力。当奇异物质受到电子 轰击超过一定限度(Tmp2 值+1000)时, 它将转变成拥有极高压力和温度的迁跃粉(WARP)。

与中子(NEUT)的反应

当奇异物质被中子轰击时,它会很快失去颜色,但保留闪烁,如果中子太多,那么奇异物质就会变成与之 直接相接触的物质(除了光子、中子、电子和墙)。

元素参数:

闪烁循环=Tmp 值

最大辐射接受量=Tmp2值

导热率: 250

初始温度: 20.00℃/293.15k

WIBR 振金(VIBR)【Vibranium】-----Type:165

描述: VIBR 可以储存能量,然后在猛烈的爆炸中释放出来。它开始是深绿色,但随着它获得能量,它变得越来越 亮,最终发出白色的光。充满电后,它会发出绿色光,并开始越来越快地闪烁(白色)。VIBR 不会被 BOMB 破坏, 爆炸只会稍微提高其 Tmp 值。

反应: 能存储能量的物质, 当超过限度之后就会以剧烈爆炸的形式释放出来, 储存能量的变多会使它的颜色变亮, 超过极限后会开始闪光,向所有与之直接相连的导体释放电脉冲,释放所有热量,750 帧后爆炸。

能量换算:

3℃=1Tmp 值温度总保持在-2.5℃~2.5℃之间

正压时 1 Pressure=7Tmp 值负压时 1 Pressure=2Tmp 值压力总保持在 0 Pressure 左右

20 个能量粒子(包括 GRVT)=1Tmp 值

产生:将奇异物质和熔融态的钛(MoltenTTAN)混合在一起,会形成熔融态的振金(MoltenVIBR),之后删去剩余的 奇异物质, 冷却即可得到振金。

反应: 和奇异物质接触会使振金变成奇异物质。

当接触到反引力尘(ANAR)时会变成振金粉(BVBR)同时形成负压驱散反引力尘。

振金到达极限时如果用冷焰(CFLM)灼烧会变为蓝光,之后会恢复原状。

元素参数

Tmp 值-可吸收能量总数。

导热率: 251

初始温度: 0.00℃/273.15k

^{BVBR}振金粉(BVBR)【BrokenVibranium】------Type:166

描述:具有和振金相似的性质,只不过是粉末状的。与 VIBR 不同,它可以被 BOMB 破坏,并且它允许一些 PROT 像其他元素一样穿过它。

导热率: 164

初始温度: 22.00℃/295.15k

PROT 质子(PROT) 【Protons】-----Type:173

描述:不能穿透绝缘体(INSL)、虚空(VOID/PVOD)、钻石(DMND)、振金(VIBR)以及墙,会清除碰到电脉冲性质:

当质子的温度 > 500℃时可以引爆爆炸物

防止不易导电的导体导电(比如奇异物质 EXOT)

当自身温度大于不导热物质的温度时,会使不导热物质的温度变为自身温度(如 CRAY、PRTI、PRTO),对 WIFI 的温度改变由质子自身的温度决定: 如果质子温度超过 200° C 则将 WIFI 温度升高 1000° C; 若在 100° C 间则 升高 100° C; 在 -100° C 间则降低 100° C; 在 -200° C 间则降低 1000° C。

如果它不在某一物质内部的话, 会缓慢消失(680 帧)

当质子与其他质子对撞时会产生新物质,物质种类由两者的速度平方和决定:

平方和	产生物质	
>4250	奇点(SING)	
>275	钚(PLUT)	
>170	铀(URAN)	
>100	等离子体(PLSM)	
>40	氧气(OXYG)	
>20	二氧化碳(CO2)	
>10	惰性气体(NBLE)	
<10	不反应	
只有两个质子速度方向几乎完全相反时才算作对撞。		

反应:

质子+电子(ELEC)=氢气(HYGH)

质子+虚无(INVS)=中子(NEUT)

质子+液晶(LCRY)=光子(PHOT)

质子+钋(POLO)= 钚(PLUT)

与重水(DEUT)反应生成质子

碰到奇异物质(EXOT)会使其不断降温并最终生成冷焰(CFLM)

导热率: 61

GRVT 引力子(GRVT)【Graviton】-----Type:177

描述: 玻色子之一,会在周围产生额外的引力场。GRVT 可以穿过大多数材料,类似于 PROT。但它不会改变不导热的材料的温度。

计算公式: 周围产生的引力场=0.2*Tmp 值, Tmp 值初始为7

导热率: 61

初始温度: 22℃/295.15k

\$\(POLO)【Polonium】-----Type:182

描述: 钋,高放射性。衰变成 NEUT 并升温。钋除了随着时间的推移固有的热量增加外,还会以恒定的速率产生高温中子。暴露于中子会增加其 Tmp 值,在 5 时变为贫化钋。贫化钋呈灰色。耗尽的钋不会释放中子,但会继续释放热量,最高温度为 115.01℃。如果钋的 Tmp 低于默认值,它会产生更长的中子。将 Tmp 设置为-50将使钋产生很长时间的 NEUT,因为它会在耗尽之前释放 55 个中子。鉴于钋对质子不透明,钋在暴露于质子时会变成钚,但这可能比预期花费的时间更长。

导热率: 251

初始温度: 115℃/388.15k

★Special------

描述: 这些元素通常不属于任何其他类别, 并且具有特殊属性。

描述:擦除粒子。用于删除屏幕上的粒子。默认键位为鼠标右键。如需擦除标志或墙,必须分别使用标志工具和 清除墙。

CLNE 复制体(CLNE)【Clone】-----Type:009

描述:可以复制它第一个触碰到的物质,并将其记录到 Ctype 值内。可以被 SING 和 VIRS 摧毁。它可以记住最后 碰触到的物质并保存在 Stamps/Saves 中。光子可以穿过所有类型的 CLNE 和 BCLN。

导热率: 251

初始温度: 22℃/295.15k

虚空(VOID)【Void】-----Type:022

描述:可以吸收物质(除固体,即使被活塞推入)并产生少量压力。可设置 Ctype 值来选择吸收哪种物质。TPT 的 默认边界实际上就是这种物质。可以用复制体(CLNE)与虚空或黑洞(BHOL)相结合来制作一个温度控制器。

导热率: 251

初始温度: 22℃/295.15k

┗MND钻石(DMND)【Diamond】-----Type:028

描述: 固体,不导电,不可摧毁。只有当它被推离屏幕、位于吸收固体的墙内或被 DRAY 的另一个元素覆盖时, 它才会被破坏。

导热率: 186

初始温度: 22℃/295.15k

^{VACU}吸气孔(VACU)【Vacuum】-----Type:039

描述: 会产生负压, 吸收物质之后会发热, 可以被 BOMB 和 DEST 摧毁。

导热率: 255

初始温度: 92℃/365.15k

<u>VENT</u>排气孔(VENT)【AirVent】-----Type:040

描述: 固体,产生气压,可以被 BOMB 和 DEST 摧毁。

导热率: 255

初始温度: 6℃/279.15k

描述: 受重力和压力影响, 使用方向键来控制其运动, 可以在水下呼吸, 受到压力、高温、放射性物质等各种危 险的东西会损失生命值,吃(走近)植物(PLNT)可以恢复生命值,修改 Life 值可以修改生命值上限,以下 能力:

复制:火柴人可以复制他的头碰到的物质,当碰到一个特定物质(或墙)时,他的头会改变颜色,此时按方向键 ↓,火柴人就会吐出该种物质。

使用电子产品: 当火柴人的头碰到金属时, 按方向键↓可以给金属一个电脉冲, 这样就可以使用电子产品了。 火箭鞋:当火柴人碰到重力墙时,会拥有火箭鞋(喷出高温的等离子体 PLSM),同样用方向键控制,碰到电锁体 (E-Hole)时会恢复原状。

导热率: 0/0

燃点: 346.85℃/620k 初始温度: 36.6℃/309.75k

描述: 固体, 可以转换它接触到的物质的 Type 值为它自身的 Ctype 值, 使用方法类似复制体(CLNE)。可以通过 Tmp 值可设定待转化原料物质。

导热率: 251

初始温度: 22℃/295.15k

BCLN 可破坏复制体(BCLN)【BreakableClone】-----Type:093

描述: 在较大压力(不论是正压还是负压)下会消失的复制体(就像粘土 GOO 一样)。

导热率: 251

初始温度: 22°C/295.15k

PRTI 传送门入口(PRTI)【PortalIN】-----Type:109

描述:可以传送物质和电脉冲,和 Wi-Fi(WIFI)相似,通过改变自身温度可以产生不同频道,产生一个负压,从这 里进入的物质将被传送至传送门出口(PRTO),如果暂时没有传送门出口,它可以先储存一部分物质。其表面积越 大, 传送速度越快。

导热率: 0

序TO 传送门出口(PRTO)【PortalOUT】-----Type:110

描述:和传送门入口(PRTI)配套,物质从这里出来,形成正压力。

导热率: 0

初始温度: 22℃/295.15k

STEZ 火柴人二号(STK2)【SecondStickman】--Type:128 火柴人二号出生点(SPWN2)--Type:117

描述:用 WASD 控制,其余和火柴人(STKM)相同。

导热率: 0

初始温度: 36.6℃/309.75k

TRON 智能微粒(TRON)【Tron】-----Type:143

描述: 绝对零度的粒子, 会智能躲避障碍, 随时间流逝尾巴会变长, 可用于降温。

元素参数: 颜色由 Tmp 值决定

导热率: 40

初始温度: -273.15℃/0k

BHOL 黑洞(BHOL)【BlackHole】-----Type:150

描述:使用需开启牛顿万有引力,产生引力吸入物质并升温。可以用控制台制造大量物质(>225)压缩在同一点上制得。

元素参数: 改变黑洞的 Tmp 值可以改变其引力值,公式为引力=Tmp*0.001,引力值至少为 0.1 P,最多为 51.2 P。

导热率: 186

初始温度: 22℃/295.15k

(WHOL) 【WhiteHole】-----Type:151

描述: 使用需开启牛顿万有引力,产生斥力排斥物质。

元素参数:修改白洞的 Tmp 值可以改变其斥力值,公式为斥力=Tmp*0.001,斥力值至少为 0.1 P,最多为 51.2 P。

导热率: 186

初始温度: 22℃/295.15k

FIGH 打手(FIGH) 【Fighter】 ------Type:158

描述: 电脑控制的小人, 会通过喷东西来杀死火柴人(STKM), 其它身体属性和火柴人是相同的, 最多可以制造 100 个打手。

燃点: 346.85℃/620k

导热率: 0

初始温度: 36.6℃/309.75k

:.. Life-----生命游戏

注1: 以下的"细胞"指一个像素

注 2: 所有生命类元素在活动时都带有高温, 随时间过去温度降为绝对零度

注 3: 所有生命类元素都可以穿越屏幕(比如掉下去的会从顶端出现)

注 4: 所有生命类元素共用一个 Type 值,使用 Ctype 值进行区分

注 5: 所有生命类元素的导热率均为 40, 且不能被酸腐蚀

基本规则:

每一帧系统都将检查每个细胞, 分为两种情况:

1.如果一个细胞周围有两到三个活细胞,那么系统判定下一帧这个细胞还可以继续存在

2.如果一个空白细胞周围有三个活细胞,那么系统判定下一帧这个空白细胞将变成活细胞

当细胞随每一帧过去但形态不再变化时称为"稳定"状态。有一些细胞可以穿越整个屏幕而不以任何方式"爆发", 称其为"滑翔机"。

以下的元素本质上都是生命游戏,但使用不同的规则。

^{此匠}高等生命(HLIF)【HighLife】------Ctype:1

描述: 和生命游戏(GOL)有一样的规则,但多了额外一条: 高等生命细胞被 2~3 个细胞包围时存活,被 3~6 个细 胞包围时活化。

asim 同化(ASIM)【Assimilation】------Ctype:2

基本规则:

存活规则: 当这个细胞周围有 4/5/6/7 个细胞时存活

繁殖规则: 当这个细胞有 3/4/5 个细胞时活化

这种生命稳定后总能达到完美的钻石形状。

2X2(2X2) 【2X2】------Ctype:3

基本规则:

存活规则: 当这个细胞被 1/2/5 个细胞围绕时存活

繁殖规则: 当这个细胞被 3/6 个围绕时活化

这种生命能形成方形或线,让人眼花缭乱。

□■NII 日以继夜(DANI)【DayandNight】-----Ctype:4

基本规则:

存活规则: 当这个细胞被 3/4/6/7/8 和细胞围绕时存活 繁殖规则: 当这个细胞被 3/6/7/8 个细胞围绕时活化

<mark>^{MOE</mark>阿米巴(AMOE)【Amoeba】------Ctype:5</mark>}

基本规则:

存活规则: 当这个细胞被 1/3/5/8 个细胞围绕时存活 繁殖规则: 当这个细胞被 3/5/7 个细胞围绕时活化

Move】------Ctype:6

基本规则

存活规则: 当这个细胞被 2/4/5 个细胞围绕时存活

繁殖规则: 当这个细胞被 3/6/8 个细胞围绕时活化

在某些情况下你能得到一个会不断移动的细胞组。

(不断向两边移动的细胞组)

PSOL 假货(PGOL) 【Pseudo】------Ctype:7

基本规则:

存活规则: 当这个细胞被 2/3/8 个细胞围绕时存活

繁殖规则: 当这个细胞被 3/5/7 个细胞围绕时活化

活动方式很像 GOL, 但其实不是。

<mark>PMOE</mark>方片(DMOE)【Diamoeba】------Ctype:8

基本规则:

存活规则: 当这个细胞被 5/6/7/8 个细胞围绕时存活

繁殖规则: 当这个细胞被 3/5/6/7/8 个细胞围绕时活化

会形成不规则的菱形形状,如果垂直画两条直线的话,会形成一个规整 的矩形。

34(34) [34] -----Ctype:9

基本规则:

存活规则: 当这个细胞被 3/4 个细胞围绕时存活

繁殖规则: 当这个细胞被 3/4 个细胞围绕时活化(这就是它名字的由来)

长生(LLIF)【LongLife】------Ctype:10

基本规则:

存活规则: 当这个细胞被 5 个细胞围绕时存活

繁殖规则: 当这个细胞被 3/4/5 个细胞围绕时活化

它们组成团块之后几乎不会减少。

<u>\$TAN</u>染色剂(STAN)【Stains】------Ctype:11

基本规则:

存活规则: 当这个细胞被 2/3/5/6/7/8 个细胞围绕时存活

繁殖规则: 当这个细胞被 3/6/7/8 个细胞围绕时活化

元素参数: Tmp 值控制其颜色, 当 Tmp 值=1/2/3/4/大于等于 5 时,

颜色不断变暗。

^{SEED}种子(SEED)【Seeds】------Ctype:12

基本规则:每一代都会在当前所在的代际上死亡,有两个细胞围绕时 繁殖,因此不是爆炸性增长就是完全停滞。

MAZE迷宫(MAZE)【Maze】------Ctype:13

基本规则:

存活规则: 当这个细胞被 1/2/3/4/5 个细胞围绕时存活

繁殖规则: 当这个细胞被3个细胞围绕时活化

^{COAG}凝固物(COAG)【Coagulations】------Ctype:14

基本规则:

存活规则: 当这个细胞被 2/3/5/6/7/8 个细胞围绕时存活

繁殖规则: 当这个细胞被 3/7/8 个细胞围绕时活化

wall 城墙(WALL) 【Walledcities】------Ctype:15

基本规则:

存活规则: 当这个细胞被 2/3/4/5 个细胞围绕时存活 繁殖规则: 当这个细胞被 4/5/6/7/8 个细胞围绕时活化

^{GNAR}木节(GNAR)【Gnarl】------Ctype:16

基本规则:

存活规则: 当这个细胞被1个细胞围绕时存活 繁殖规则: 当这个细胞被1个细胞围绕时活化

基本规则:

存活规则: 当这个细胞被 1/3/5/7 个细胞围绕时存活 繁殖规则: 当这个细胞被 1/3/5/7 个细胞围绕时活化

MYST 谜(MYST) 【Mystery】------Ctype:18

基本规则:

存活规则: 当这个细胞被 0/5/6/7/8 个细胞围绕时存活 繁殖规则: 当这个细胞被 3/4/5/8 个细胞围绕时活化

└───边缘人(LOTE)【LivingontheEdge】------Ctype:19

基本规则:

存活规则: 当这个细胞被 3/4/5/8 个细胞围绕时存活

繁殖规则: 当这个细胞被 3/7 个细胞围绕时活化

死亡后能存在4帧

元素参数: Tmp 值控制其颜色, Tmp=1/2 时显示为黄色/橙色,

其他 Tmp 值都为红色。

基本规则:

存活规则: 当这个细胞被 1/2/4 个细胞围绕时存活

繁殖规则: 当这个细胞被3个细胞围绕时活化

死亡后能存在3帧

元素参数: Tmp 值控制其颜色, Tmp=2 时显示为深青色, 其他

Tmp 值都显示为亮青色。

STAR 星球大战(STAR) 【StarWars】------Ctype:21

基本规则:

存活规则: 当这个细胞被 3/4/5/6 个细胞围绕时存活 繁殖规则: 当这个细胞被 2/7/8 个细胞围绕时活化

死亡后能存在6帧

^{FROG}青蛙(FROG)【Frogs】------Ctype:22

基本规则:

存活规则: 当这个细胞被 1/2 个细胞围绕时存活 繁殖规则: 当这个细胞被 3/4 个细胞围绕时活化

死亡后能存在3帧

元素参数: Tmp 控制其颜色, Tmp=2 时显示为深绿色, 其他 Tmp 值都 显示为亮绿色。

BRAN 布莱恩 6号(BRAN)【Brian6】------Ctype:23

基本规则:

存活规则: 当这个细胞被 6 个细胞围绕时存活 繁殖规则: 当这个细胞被 2/4/6 个细胞围绕时活化

死亡后能存在3帧

元素参数: Tmp 值控制颜色, Tmp=2 时显示为亮棕色, 其他 Tmp 值都

显示为棕色

基本规则:可自定义 GOL 类型。使用 Ctrl+Shift+Rightclick 删除它们。

-隐藏元素 ? Secrets-----以下元素并不能通过常规方法制造 空白(NONE)【None】------Type:000 描述: 所有 HUD 显示为"Empty"的地方都是这种元素,用于模拟气压、温度等。 导热率: 0 初始温度: 22℃/295.15k MORT MORT Mortvert -----Type:077 描述:以玩家名字命名的元素。会释放烟雾并缓慢的飘落下来。可以通过控制台创建。只能被炸弹(BOMB)、反物 质(AMTR)和奇点(SING)摧毁。 导热率: 60 初始温度: -8.00℃/265.15k **FRZW**寒水(FRZW)【FrozenWater】------Type:101 描述: 寒尘(FRZZ)溶于水形成, 能自身不断降温直到绝对零度, 同时将更多的水变成寒水。 **凝固点:** -220.15℃/53k 导热率: 29 初始温度: -154.15℃ 描述:一个失败的实验品,现在是一种难以破坏的粉末,可以通过控制台或属性笔创建。 导热率: 70

初始温度: 22.00℃/295.15k

上 大声笑! (LOLZ) 【LaughOutLoud】------Type:123

描述:请不要怀疑,这货就是来搞笑的。

导热率: 40

初始温度: 99.85℃/373.0k

Love 爱心(LOVE)【Love】------Type:094

描述: 爱心形状,同样是类似于彩蛋的东西。

导热率: 40

初始温度: 99.85℃/373k

BRAN 布莱恩 6号(BRAN)【Brian6】------Type:146

描述: 生命元素改为使用 Ctype 区分后的遗留

导热率: 40

初始温度: 8726.85℃/9000k

♀ Tools-----工具

该组包含冷却或加热等工具。它们不会产生粒子。

⊯AT 加热(HEAT) 【Heat】

描述:为目标元素加热

这个工具不产生任何粒子,但会使鼠标指针附近的粒子周围环境温度上升。通过移动鼠标指针,并按住鼠标左键,这个工具会以 4 倍速度工作。

如果在按钮鼠标左键的同时,按住 Shift,它会让粒了温度上升得更快。

□□□ 制冷(COOL)【Cool】

描述:使目标元素冷却.

这个工具不产生任何粒子,但会使鼠标指针附近的粒子周边围环境温度下降。通过移动鼠标指针,并按住鼠标左键,这个工具会以 4 倍速度工作。

如果在按钮鼠标左键的同时,按住 Shift,它会让粒了温度下降得更快。

AIR 空气(AIR)【Air】

描述:空气,产生气流和压力.

这个工具不产生任何粒子,但会使鼠标指针附近的粒子周边围环境压力增加。通过移动鼠标指针,并按住鼠标左键,这个工具会以 4 倍速度工作,按住 Shift 可以加速。

yacuum】

描述:真空, 使气压下降.

这个工具不产生任何粒子,但会使鼠标指针附近的粒子周边围环境压力降低。按住 Shift 可以加速。

正引力工具(PGRV)【PositiveGravityTool】

描述:产生一个持续时间很短的引力

不是一个元素,在任意地方点击,来增加对应区域的引力,粒子会被吸引到这个区域。牛顿引力选项必须 开启。按住 Shift 键,会使作用力更强,按住 Ctrl 键,会使作用力减弱。

№ 负引力工具(BGRV)【NegativeGravityTool】

描述:产生一个持续时间很短的负引力井

不是一个元素,在任意地方点击,来降低对应区域的引力,粒子会被推离这个区域。牛顿引力选项必须开启。按住 Shift 键,会使作用力更强,按住 Ctrl 键,会使作用力减弱。

MIX 混合工具(MIX) 【Mix Tool】

描述:混合粒子

这个工具,使用时,让笔刷下方的,粒子随机地变换位置。按住 Shift 可以加速。

CYCL 气旋(CYCL)【Cyclone】

描述: 旋风,产生漩涡气流。

当用于混合气体时,可以清楚地看到该工具的涡流效果。

MIND) 【Wind】

描述:产生空气流动。

一种拖拽工具。它产生压力和速度,与鼠标指针移动的方向相同。使用这个工具,可以拉起粉末或液体。 WIND 也可以用于向目标物体,施加很大的气流。

➡➡环境热减少工具(AMBM)【DecreaseAmbientHeatTool】

描述:降低环境空气温度。

打开环境热量后,与 COOL 冷却粒子不同,使用此工具会降低空气温度。

MBP环境热增加工具(AMBP)【IncreaseAmbientHeatTool】

描述:降低环境空气温度。

打开环境热量后,与 HEAT 加热粒子不同,使用此工具会加热空气温度。

<mark>ጮ</mark>属性修改器(PROP)【EditPropertyTool】

描述:属性绘制工具。用于通过输入框,修改元素的属性

当选项这个工具,会立即弹出一个输入框。上面是属性的名字,如 ctype 或 temp,这些属性经常在命令行里面修改,下面的框用于输入数值。 当你设置好属性,点击 OK,然后像其它正常的笔刷一样使用。使用这个工具,你可以绘制属性。

如果你想使 CLNE 复制 DUST,你可以点击它。然后在上面选择 ctype,在下面框输入尘埃。

如果想修改 DEUT 的 Life 值到 1000, 你可以点击 DEUT, 在上面输入 life, 在下面输入 1000 即可。

■ 标记(SIGN) 【Sign】

描述:标记.显示文字。点击已存在的标记,可以编辑它。点击其它地方,可以放置一个新的。

可以在模拟界面中,按你想的方式放置任意的标记。点击一个标记,可以编辑或删除它。或点击其它任意地方,创建一个新的。

要链接到其它存档,可以输入 {c:(Save ID)|(Display text)} 作为链接,例如: {c:184767|Click here!}

要链接到论坛的帖子,输入 {t:(Thread ID)|(Display text)} 即可链接

要创建一个可点击产生电子的按钮,输入 {b|(Display text)}. 例如: {b|Click me!}

要链接到存档搜索界面,输入 {s:(Search Text)|(Display Text)}. 例如: {s:user:jacob1|View my saves!}

输入 {t}, {p}, {a},或 {type} 标记会显示,标记所在位置的,当前的温度,压力,环境温度或粒子名称。

如果使用这些标记,那它必须是标签中唯的元素,例如 "Temperature is {t}" 不会起作用。

描述:在屏幕上采样一个元素

被这个工具点击到的元素,将被选作左键绘制的元素。这个功能,与默认鼠标中键功能一样。

104

Decoration tools-----装饰工具

重要提示:使用需开启装饰颜色显示开关(就是右上角的"D"或者快捷键 Ctrl+B)

是一个黄色的植物(PLNT),利用装饰工具就可以有这样的效果

装饰工具栏

使用装饰工具是要点一下那个滚刷按钮的(这个和其他类别的元素不同), 左边的八个颜色(最后一个是黑色) 是预制颜色, 方便快捷调用, 如果使用了新的颜色也会显示在上面 中间的颜色是目前选中的颜色, 点击可以打开色盘, 如下图所示:

下面的四个数值中, 前三个为 RGB 数值, 最后一个是透明度, 后面的 0xFFFFFFFF 是这种颜色用 16 进制表示 后的数值(FF 代表 255, RGB+透明度各占两位数, 顺序为:透明度+RGB)

右边的 7 个是工具,第一个代表最基本的笔刷,会直接覆盖颜色,第二个是橡皮擦(默认右键),会删除当前颜色。第三个是渐变工具,会在两种颜色之间形成渐变,效果如下:

两种颜色

使用渐变工具涂抹

成品

接下来是四种混合模式

"/":增暗,会降低范围内当前选中颜色的亮度

选中蓝色后选中增暗工具并涂抹整个画面

成品

可以看到蓝色变成了深蓝色, 而红色则没有影响

"x":增亮,与"/"增暗相反

"-":删去,会删除范围内当前选中的颜色

选中删去工具后涂抹

成品

可以看到蓝色完全被删除变成了黑色

"+":增加,和删去"-"相反

Favorites------收藏夹

同时按住 Ctrl+Shift 并左键/右键点选元素就可以将其加入/移出收藏夹。 (被添加到收藏夹的元素会有爱心标志)

Search for element------查找元素

可以快速查找并选中某一个元素,只知道其中的一个字母也可以。

附 1:控制台的基本用法-----(Using the console)

Set 命令

基本格式:!Set+需要设置的参数+需要设置的粒子+改变后的值

例:

如果需要设置第 25 号粒子(即#25)的 Type 值为 METL, 那么命令就是:

!Set Type 25 metl

为了更加方便, 你可以使用关键字"ALL"或者一种元素的名字来快速设置, 如:

!Set Type all metl这将会设置所有粒子变为 METL!Set Type metl watr这将会设置所有 METL 变为 WATR

!Set Type metl none 这将会删除所有的 METL

同时,命令中的"Type"也是可以替换的,对于常用参数的介绍文章开头已经给出,这里就不多说了,可以按照自己的需要任意设置

Quit 命令

该命令的效果只有一个,直接退出 TPT

Create 命令

用于在指定地点创造一个粒子

基本格式:!Create+需要创造的粒子种类+创造粒子的位置(x,y)

例:

Delete 命令

用于删除某一个地方的所有元素

基本格式:!Delete+需要清空的位置(x,y)

例:

Bubble 命令

基本格式:!Bubble+需要产生泡泡的位置

例:

!bubble 100,100 在 100,100 的位置产生一个肥皂泡

Reset 命令

很有用的命令,可以恢复各种数值到默认状态

基本格式:!Reset+要恢复的参数

例:

!Reset velocity 使所有粒子的速度都变为零

!Reset Pressure 使所有压力都变为零

附 2:HUD-----(HeadsUpDisplay)

基本说明

HUD(heads-up-display), 其实就是位于窗口上方的一行数据显示区域, 如下图所示:

FPS: 57.00

GOO, Temp: 22.00 C, Pressure: 0.00

左起依次为(以下这些数据都会实时更新):

当前屏幕刷新率(FPS),这个数值越高,游戏运行越流畅,受硬件影响较大

当前光标位置上的元素(这里是粘土 GOO):当光标指向空白时,这项数值显示为 Empty

当前光标位置上的温度(这里是 22.00℃)

当前光标位置上的气压(这里是 OPressure)

调试模式(Debug)【快捷键 D】

FPS: 56.85 Parts: 1318

CLNE (DESL), Temp: 22.00 C, Life: 0, Tmp: 0, Pressure: -0.01 #0, X:313 Y:203

HUD 的调试模式能够实时提供更多信息

左起依次为:

第一行:

FPS 数值

当前主界面中全部的粒子数量:每一像素物质就是一个粒子

当前光标位置上的元素(这里是复制体 CLNE)

当前光标位置上元素的 Ctype 值(这里是柴油 DESL)

当前光标位置上的温度(这里是 22.00℃)

当前光标位置上元素的 life 值(这里是 0)

当前光标位置上的 Tmp 值(这里是 0)

当前光标位置上的气压(这里是-0.01)

第二行:

当前光标位置上粒子的序号(这里是 0)

当前光标所在的坐标:这里是(313,203)

快捷键

快捷键"H"可以打开/关闭 HUD 快捷键"D"可以打开/关闭调试(debug)模式

附 3:显示模式-----(DisplayModes)

气流显示模式(Velocity display) □ ■ □ ■ □ ■

快捷键

数字"1"

显示内容

显示气流的速度与强度,蓝色代表竖直速度,红色代表水平速度(实际状况下显示的是两种颜色的混合色,即两个速度的合速度)。正压力用绿色表示,负压力不显示。如下图:

气压显示模式(Pressure display) ■ ● ■ + ■ ■

快捷键

数字"2"

显示内容

通过红色/蓝色来显示正压/负压,颜色的变化呈网格状,如下图所示:

快捷键

数字"3"

显示内容

能够显示物质移动的轨迹, 如下图所示:

标准显示模式(Fire display) ■ ■ ■ ■

快捷键

数字"4"

显示内容

标准的显示模式,能显示包括白热化在内的大部分效果,如下图所示:

模糊显示模式(Blob display) ● ■ + ■ ●

快捷键

数字"5"

显示内容

使所有物质模糊化,如下图所示:

温度显示模式(Heat display) ■ ■ ■ ■ ■

快捷键

数字"6"

显示内容

对不同的温度用不同的颜色(深蓝色-粉红色)表示,如下图这个十分经典的存档所示:

环境温度显示和物质温度显示

温度显示分为两种,位于左侧的是环境温度显示,右侧的是物质温度显示。 环境温度显示需开启空气导热模式(快捷键 A),这样就可以显示所有空气的温度。

(注:这里的空气不是指一种元素,而是指所有 HUD 显示为"Empty"的区域) 物质温度显示没有使用条件,会显示所有 HUD 显示不为"Empty"的区域温度。

特效显示模式(Fancy display) ■ ■ □ + □ • □ • □ * □ ■

快捷键

数字"7"

显示内容

这是一个复合显示模式,包含气体的火焰效果、炸弹的闪光效果、放射物的荧光效果、液体的模糊效果和引力场的扭曲效果,如下图:

无特效显示模式(Nothing display)

快捷键

数字"8"

显示内容

只显示最基本的有色颗粒,无其他效果,如下图所示:

热传导显示模式(Heat gradient display) □ □■

快捷键

数字"9"

显示内容

在原物质颜色不变的基础上用明暗变化的波纹来显示热量的扩散,如下图所示:

速压混合显示模式(Alternate velocity display) □ ■ □ ■ □ +

快捷键

数字"0"

显示内容

速度用白色表示, 正压/负压用红色/蓝色表示, 如下图所示:

Life 显示模式(Life display) ■■■■

快捷键

在调试模式下,按 shift+1 进入 life 显示模式

显示内容

利用灰度来显示物质的 life 值大小,如下图所示:

网格工具(Grid)

快捷键

字母"G"

显示内容

可以在主界面上显示参考网格, 共有九种不同大小的网格可供选择, 如下图:

附 4:快捷键-----(Hotkeys)

单快捷键(Single Hotkeys)

Delete——滤镜,只删除笔刷范围内特定的元素

Insert 或者分号";"——替换模式

TAB——切换笔刷形状(圆形/方形/三角形)

空格——暂停

Q或者 Esc——退出游戏

Z——放大镜(在所需位置左键单击可固定)

S(+ctrl)——将某一区域保存到剪贴板(STKM2 存在时需要加 ctrl)

L——加载剪贴板中最近的存档

K——打开剪贴板

N——开启/关闭牛顿万有引力模拟

F-----帧进

G——开启/关闭网格

H——显示/隐藏 HUD

D(+shift)——开启/关闭调试模式(STK2 存在时需加 shift)

I——反转所有的气压和速度

W(+shift)——切换重力模式(正常/中心/无)(STK2 存在时需加 shift)

Y——切换气压模式(正常/无压力/无速度/关闭/停止)

U——打开/关闭空气导热模式

R——重置 LIFE 的代数(只有在调试模式下有效)

~——打开 Lua 控制台

=——重置气压和速度

[——降低笔刷大小

1——增加笔刷大小

B——进入装饰模式

E----查找元素

组合快捷键(Key Combinations)

Ctrl+C/V/X——复制/粘贴/剪切

Ctrl+F——进入透视(Find)模式, 能凸显所选元素

Ctrl+Z——撤销

Ctrl+G----显示/隐藏引力场

Ctrl+B——显示/隐藏装饰色

Ctrl+鼠标移动——绘制矩形

Shift+鼠标移动——绘制直线

Shift+Alt+鼠标移动——绘制 45°直线

鼠标中键/Alt+右键——切换到所选元素(类似 PS 中的吸管工具)

鼠标滚轮——调整笔刷大小

Ctrl+鼠标滚轮/+[]——调整笔刷竖直长度

Shift+鼠标滚轮/+[]——调整笔刷水平长度

Ctrl+Shift+R——水平翻转剪贴板中的存档(需要先选择存档)

Ctrl+R——逆时针旋转剪贴板中的存档(需要先选择存档)

Ctrl+方向键——移动剪贴板中的存档

Ctrl+Alt+左键——从元素列表中选择需要特定删除的元素

Ctrl+=——清除所有电脉冲

Ctrl+Shift+左键/右键——填充工具

Ctrl+l——安装 TPT(创建与.cps 文件的关联)

附 5:元素 Type 值表-----(ElementTypeValue)

Type 值	元素名称	Type 值	元素名称	Type 值	元素名称	Tpye 值	元素名称
0	NONE	48	THDR	96	WARP	144	TTAN
1	DUST	49	PLSM	97	PUMP	145	EXOT
2	WATR	50	ETRD	98	FWRK	146	E146
3	OIL	51	NICE	99	PIPE	147	EMBR
4	FIRE	52	NBLE	100	FRZZ	148	H2
5	STNE	53	BTRY	101	FRZW	149	SOAP
6	LAVA	54	LCRY	102	GRAV	150	NBHL
7	GUNP	55	STKM	103	BIZR	151	NWHL
8	NITR	56	SWCH	104	BIZRG	152	MERC
9	CLNE	57	SMKE	105	BIZRS	153	PBCN
10	GAS	58	DESL	106	INST	154	GPMP
11	PLEX	59	COAL	107	ISOZ	155	CLST
12	GOO	60	LO2	108	ISZS	156	WIRE
13	ICEI	61	O2	109	PRTI	157	GBMB
14	METL	62	INWR	110	PRTO	158	FIGH
15	SPRK	63	YEST	111	PSTE	159	FRAY
16	SNOW	64	DYST	112	PSTS	160	RPEL
17	WOOD	65	THRM	113	ANAR	161	PPIP
18	NEUT	66	GLOW	114	VINE	162	DTEC
19	PLUT	67	BRCK	115	INVIS	163	DMG
20	PLNT	68	CFLM	116	E116	164	TSNS
21	ACID	69	FIRW	117	SPAWN2	165	VIBR
22	VOID	70	FUSE	118	SPAWN	166	BVBR
23	WTRV	71	FSEP	119	SHLD1	167	CRAY
24	CNCT	72	AMTR	120	SHLD2	168	PSTN
25	DSTW	73	BCOL	121	SHLD3	169	FRME
26	SALT	74	PCLN	122	SHLD4	170	GOLD
27	SLTW	75	HSWC	123	LOLZ	171	TUNG
28	DMND	76	IRON	124	WIFI	172	PSNS
29	BMTL	77	MORT	125	FILT	173	PROT
30	BRMT	78	LIFE	126	ARAY	174	VIRS
31	PHOT	79	DLAY	127	BRAY	175	VRSS
32	URAN	80	CO2	128	STKM2	176	VRSG
33	WAX	81	DRIC	129	BOMB	177	GRVT
34	MWAX	82	CBNW	130	C5	178	DRAY
35	PSCN	83	STOR	131	SING	179	CRMC
36	NSCN	84	PVOD	132	QRTZ	180	HEAC
37	LNTG	85	CONV	133	PQRT	181	SAWD
38	INSL	86	CAUS	134	EMP	182	POLO
39	BHOL	87	LIGH	135	BREC	183	RFRG
40	WHOL	88	TESC	136	ELEC	184	RFGL
41	RBDM	89	DEST	137	ACEL	185	LSNS
42	LRBD	90	SPNG	138	DCEL	186	LDTC
43	NTCT	91	RIME	139	BANG	187	SLCN
44	SAND	92	FOG	140	IGNT	188	PTNM
45	GLAS	93	BCLN	141	BOYL	189	VSNS
46	PTCT	94	LOVE	142	GEL	190	ROCK
47	BGLA	95	DEUT	143	TRON	191	LITH

附 6: 元素导热速度表---(HeatConductionSpeedometer)

TPT 元素的导热速度表。

这个属性决定了计算热转导至附近元素的概率。

255 导热速度最快(立刻传递), 0 为最慢(不传导)。

导热率	元素名称	导热率	元素名称	导热率	元素名称	导热率	元素名称
0	ARAY	29	GEL	70	SAWD	251	BRAY
0	CRAY	29	ISOZ	70	SING	251	BRCK
0	DLAY	29	PSTE	70	YEST	251	BTRY
0	DRAY	29	PSTS	75	GOO	251	CLNE
0	DTEC	29	SOAP	75	SLTW	251	CONV
0	FIGH	29	WATR	88	C-4	251	DCEL
0	FRAY	34	ACID	88	C-5	251	DEUT
0	FRME	40	BRAN	88	CFLM	251	ELEC
0	GPMP	40	LIFE	88	CO2	251	ETRD
0	INSL	40	LOLZ	88	FIRE	251	FILT
0	LDTC	40	LOVE	88	IGNC	251	GOLD
0	LIGH	40	TRON	88	SMKE	251	HEAC
0	LSNS	42	BIZG	88	TNT	251	HSWC
0	PIPE	42	BOYL	97	GUN	251	HYGN
0	PPIP	42	DESL	100	CNCT	251	INST
0	PRTI	42	GAS	100	FOG	251	INWR
0	PRTO	42	OIL	100	FWRK	251	IRON
0	PSNS	44	GLOW	100	RIME	251	ISZS
0	PSTN	44	MWAX	100	WARP	251	LCRY
0	PUMP	44	WAX	106	NBLE	251	MERC
0	RPEL	46	FRZZ	110	SALT	251	METL
0	SHD2	46	ICE	121	EMP	251	NSCN
0	SHD3	46	NICE	150	BCOL	251	NTCT
0	SHD4	46	SNOW	150	BGLA	251	PBCN
0	SHLD	48	WTRV	150	DEST	251	PCLN
0	SPWN	50	NITR	150	GLAS	251	PHOT
0	SPWN2	60	LAVA	150	SAND	251	PLUT
0	STK2	60	MORT	150	STNE	251	POLO
0	STKM	60	NEUT	164	BVBR	251	PSCN
0	STOR	61	GRVT	164	INVS	251	PTCT
0	TSNS	61	PROT	164	WOOD	251	PVOD
0	WIFI	65	PLNT	170	LRBD	251	SPNG
1	THDR	65	VINE	186	BHOL	251	SPRK
2	DRIC	70	AMTR	186	DMND	251	SWCH
3	PQRT	70	ANAR	186	WHOL	251	TESC
3	QRTZ	70	CAUS	200	COAL	251	TTAN
3	RFGL	70	CLST	200	FUSE	251	TUNG
3	RFRG	70	DUST	211	BREL	251	URAN
5	PLSM	70	DYST	211	BRMT	251	VIBR
23	DSTW	70	EQVE	211	THRM	251	VIRS
29	BIZR	70	FIRW	240	RBDM	251	VOID
29	BOMB	70	FSEP	250	EXOT	251	VRSG
29	BUBW	70	GRAV	250	WWLD	251	VRSS
29	DMG	70	LN2	251	ACEL	255	VACU
29	EMBR	70	LOXY	251	BCLN	255	VENT
29	FRZW	70	OXYG	251	BIZS		
29	GBMB	70	LITH	251	BMTL		

附 7: PHOT 元素反射值表(PHOT-ElementReflectionValue)

元素	反射值(HEX)	反映值(BIN)	颜色
ACID	0x1FE001FE	001111111100000000000111111110	
BCOL	吸收	吸收	吸收
COAL	吸收	吸收	吸收
DUST	0x3FFFFC0	0111111111111111111111111000000	
GOLD	0x3C038100	0111100000000111000000100000000	
GOO	0x3FFAAA00	0111111111110101010101000000000	
LAVA	0x3FF00000	011111111110000000000000000000000000000	
NBLE	0x3FFF8000	011111111111111100000000000000000	
NITR	0x0007C000	000000000001111100000000000000	
NSCN	吸收	吸收	吸收
C-4	0x1F00003E	00111110000000000000000000111110	
PLNT	0x0007C000	000000000001111100000000000000	
PLUT	0x001FCE00	000000000111111100111000000000	
POLO	0x000FF200	000000000011111111001000000000	
PSCN	吸收	吸收	吸收
SNOW	0x03FFFFF	000001111111111111111111111111111111111	
SPRK	吸收	吸收	吸收
URAN	0x003FC000	0000000011111111000000000000000	

参考资料及延伸阅读------Reference&More

The Powder Toy - Wiki http://powdertoy.co.uk/Wiki/W/Main_Page.html

TPT 源代码 - GitHub https://github.com/simtr/The-Powder-Toy/

The Powder Toy Snapshot – Starcatcher http://starcatcher.us/TPT/

TPT 元素说明 V83.9 - 白左 http://sdrv.ms/10TAgsu

TPT 元素说明 V91.5 Snapshot54- Ike http://pan.baidu.com/s/1skbCd5b

131