Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$r = a_3 - a_2 = 6$, unde r este rația progresiei aritmetice	2p
	$a_1 = a_2 - r = 6 - 6 = 0$	3 p
2.	$a-5+2a-5=2 \Leftrightarrow 3a=12$	3p
	a = 4	2p
3.	$5^{x-1} = 5^2$, deci $x-1=2$	3 p
	x=3	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt 6 numere care sunt multipli de 16, deci sunt 6 cazuri favorabile, de unde obținem $p = \frac{6}{90} = \frac{1}{15}$	3 p
5.	$A\left(\frac{1+x_C}{2}, \frac{4+y_C}{2}\right)$, de unde obținem $x_C = 5$	3 p
	$y_C = 0$	2p
6.	$\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$, $\sin\frac{\pi}{2} = 1$, $\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$	3p
	$E\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} + 1 - \frac{\sqrt{3}}{2} = 1$	2p

1.a)	$\det A = \begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix} = 1 \cdot 1 - (-1) \cdot (-1) =$ $= 1 - 1 = 0$	3p 2p
b)	$B(0) = \begin{pmatrix} 0 & 3 \\ 2 & 0 \end{pmatrix} \Rightarrow B(x) - B(0) = \begin{pmatrix} x & -x \\ -x & x \end{pmatrix} =$	3p
	$= x \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = xA, \text{ pentru orice număr real } x$	2p
c)	$C(a) = \begin{pmatrix} a & 3-a \\ 2-a & a \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} - \begin{pmatrix} a+1 & 2-a \\ 1-a & a+1 \end{pmatrix} = \begin{pmatrix} 2-a & 2a+1 \\ a+1 & 3-2a \end{pmatrix} \Rightarrow \det(C(a)) = -10a+5,$	3p
	pentru orice număr întreg a	
	$-10a + 5 = 0 \Rightarrow a = \frac{1}{2} \notin \mathbb{Z}$, deci matricea $C(a)$ este inversabilă, pentru orice număr întreg a	2p
2.a)	$1*2=(2\cdot 1-1)(2\cdot 2-1)+1=$	3 p
	$=1\cdot 3+1=4$	2p

b)	$x*x = 4x^2 - 4x + 2$, pentru orice număr real x	2p
	$4x^2 - 4x + 2 = 2 \Rightarrow 4x^2 - 4x = 0$, de unde obţinem $x = 0$ sau $x = 1$	3 p
c)	$m*\left(1+\frac{1}{m}\right)=\left(2m-1\right)\left(1+\frac{2}{m}\right)+1$, pentru orice număr întreg nenul m	2p
	$(2m-1)(1+\frac{2}{m})=0$ și, cum m este număr întreg nenul, obținem $m=-2$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$\int (x) - (2x)^{+1} + (mx) -$	2p
	$=4x + \frac{1}{x} = \frac{4x^2 + 1}{x}, \ x \in (0, +\infty)$	3 p
b)	$\lim_{x \to +\infty} \frac{f(x) - \ln x}{x^2 + x + 4} = \lim_{x \to +\infty} \frac{2x^2 + 1}{x^2 + x + 4} = \lim_{x \to +\infty} \frac{x^2 \left(2 + \frac{1}{x^2}\right)}{x^2 \left(1 + \frac{1}{x} + \frac{4}{x^2}\right)} =$	3 p
	$= \lim_{x \to +\infty} \frac{2 + \frac{1}{x^2}}{1 + \frac{1}{x} + \frac{4}{x^2}} = 2$	2p
c)	$f'(x) > 0$, pentru orice $x \in (0, +\infty) \Rightarrow f$ este strict crescătoare, deci f este injectivă	2 p
	f este continuă, $\lim_{x\to 0} f(x) = -\infty$ și $\lim_{x\to +\infty} f(x) = +\infty$, deci f este surjectivă, de unde	
	$x \to 0$ $x \to +\infty$ obţinem că f este bijectivă	3p
	obținen că j este orjectivă	
2.a)	$\int_{0}^{4} \frac{f(x)}{e^{x} + 2x^{2}} dx = \int_{0}^{4} x dx = \frac{x^{2}}{2} \Big _{0}^{4} =$	3 p
	$=\frac{16}{2}-0=8$	2p
b)	$\int_{0}^{1} (f(x) - 2x^{3}) dx = \int_{0}^{1} xe^{x} dx = xe^{x} \begin{vmatrix} 1 - \int_{0}^{1} e^{x} dx = e - e^{x} \end{vmatrix}_{0}^{1} =$	3 p
	=e-e+1=1	2p
c)	$\int_{1}^{2} \frac{1}{x} \cdot f(x^{2}) dx = \int_{1}^{2} \frac{1}{x} \cdot x^{2} \left(e^{x^{2}} + 2x^{4}\right) dx = \frac{1}{2} \int_{1}^{2} \left(x^{2}\right)' e^{x^{2}} dx + \int_{1}^{2} 2x^{5} dx = \frac{1}{2} e^{x^{2}} \left \frac{2}{1} + \frac{x^{6}}{3}\right ^{2} = \frac{e^{4} - e}{2} + 21$	3 p
	$\frac{e^4 - e}{2} + 21 = \frac{e^4 - e}{2} + a$, de unde obținem $a = 21$	2p

Matematică *M_şt-nat*

Varianta 1

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați termenul a_1 al progresiei aritmetice $(a_n)_{n>1}$, știind că $a_2 = 6$ și $a_3 = 12$.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x 5. Determinați numărul real a pentru care f(a) + f(2a) = 2.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $5^x \cdot \frac{1}{5} = 25$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie multiplu de 16.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(3,2) și B(1,4). Determinați coordonatele punctului C, astfel încât punctul A este mijlocul segmentului BC.
- **5p 6.** Se consideră expresia $E(x) = \sin x + \sin \frac{3x}{2} \cos \frac{x}{2}$, unde x este număr real. Arătați că $E\left(\frac{\pi}{3}\right) = 1$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $B(x) = \begin{pmatrix} x & 3-x \\ 2-x & x \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că det A = 0.
- **5p b**) Arătați că B(x) B(0) = xA, pentru orice număr real x.
- **5p** c) Arătați că matricea $C(a) = B(a) \cdot B(1) B(a+1)$ este inversabilă, pentru orice număr întreg a.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție x * y = (2x-1)(2y-1)+1.
- **5p a)** Arătați că 1*2=4.
- **5p b**) Determinați numerele reale x pentru care x * x = 2.
- **5p** c) Determinați numărul întreg nenul m pentru care $m * \left(1 + \frac{1}{m}\right) = 1$.

- 1. Se consideră funcția $f:(0,+\infty)\to\mathbb{R}$, $f(x)=2x^2+1+\ln x$.
- **5p** a) Arătați că $f'(x) = \frac{4x^2 + 1}{x}, x \in (0, +\infty).$
- **5p b)** Arătați că $\lim_{x \to +\infty} \frac{f(x) \ln x}{x^2 + x + 4} = 2$.
- **5p** $| \mathbf{c} |$ Demonstrați că funcția f este bijectivă.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x(e^x + 2x^2)$.
- **5p a)** Arătați că $\int_{0}^{4} \frac{f(x)}{e^{x} + 2x^{2}} dx = 8$.

- **5p b)** Arătați că $\int_{0}^{1} (f(x) 2x^{3}) dx = 1$.
- **5p** c) Determinați numărul real a pentru care $\int_{1}^{2} \frac{1}{x} \cdot f(x^{2}) dx = \frac{e^{4} e}{2} + a$.

Examenul național de bacalaureat 2022 Proba E. c) Matematică M_st-nat

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 7

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$m_a = \frac{a+b}{2} = \frac{20 - \sqrt{21} + 22 + \sqrt{21}}{2} =$	3 p
	$=\frac{42}{2}=21$	2p
2.	f(a) = a - 1, pentru orice număr real a	2p
	$g(a) = 3 - a \Rightarrow f(a) + g(a) = a - 1 + 3 - a = 2$, pentru orice număr real a	3 p
3.	$7x-6=x^2 \Rightarrow x^2-7x+6=0$	2p
	x=1 sau $x=6$, care convin	3 p
4.	Cifra unităților se poate alege în 2 moduri	2p
	Pentru fiecare alegere a cifrei unităților, cifra zecilor se poate alege în câte 4 moduri, deci se pot forma $2 \cdot 4 = 8$ numere	3p
5.	M(3,3)	2p
	$OM = 3\sqrt{2}$, $AM = 3\sqrt{2}$, de unde obținem că triunghiul AOM este isoscel	3 p
6.	Măsura unghiului ACB este egală cu 30°	2p
	Dacă AD este înălțimea din vârful A a triunghiului ABC , atunci triunghiul ACD este	
	dreptunghic, cu unghiul ACD de 30° , de unde obținem $AD = \frac{AC}{2} = 2$	3 p

1.a)	$A(1) = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} = 1 \cdot 2 - (-1) \cdot 1 =$	3 p
	=2+1=3	2p
b)	$A(-1) = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}, A(2) = \begin{pmatrix} 1 & -2 \\ 2 & 3 \end{pmatrix} \Rightarrow A(-1) \cdot A(2) - A(-1) = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} =$	3 p
	$= \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 2I_2$	2p
c)	$A(x) \cdot A(-x) + xA(x) = \begin{pmatrix} 1+x^2 & x^2 \\ -x^2 & 1 \end{pmatrix} + \begin{pmatrix} x & -x^2 \\ x^2 & x^2 + x \end{pmatrix} = \begin{pmatrix} 1+x+x^2 & 0 \\ 0 & 1+x+x^2 \end{pmatrix} = \begin{pmatrix} x^2+x+1 \end{pmatrix} I_2,$	3 p
	pentru orice număr real x	
	$(x^2 + x + 1)I_2 = 3I_2$, de unde obținem $x^2 + x - 2 = 0$, deci $x = -2$ sau $x = 1$	2p
2.a)	$1 \circ 2 = 4(1 \cdot 2 + 1) - 3(1 + 2) =$	3р
	=12-9=3	2p
b)	$a \circ 3 = 9a - 5$, deci $9a - 5 = 4$, de unde obținem $a = 1$	3p
	$a \circ (-a) = 1 \circ (-1) = 4(-1+1) - 3(1-1) = 0$	2p

	Central Paysonal de l'Ontre 31 Evaluate in Educaçõe	
c)	$x \circ 1 = x + 1$, $(x \circ 1) \circ (x - 1) = 4x^2 - 6x$, pentru orice număr real x	3 p
	$4x^2 - 6x \le 4$, de unde obţinem $x \in \left[-\frac{1}{2}, 2 \right]$	2p

	Secretar III-lea (Soute pa	
1.a)	$f'(x) = 4x + 1 - \frac{5}{x} =$	3p
	$= \frac{4x^2 + x - 5}{x} = \frac{(x - 1)(4x + 5)}{x}, \ x \in (0, +\infty)$	2p
b)	$\lim_{x \to +\infty} \frac{f(x) + 5\ln x}{3 - x - x^2} = \lim_{x \to +\infty} \frac{2x^2 + x + 3}{3 - x - x^2} = \lim_{x \to +\infty} \frac{x^2 \left(2 + \frac{1}{x} + \frac{3}{x^2}\right)}{x^2 \left(\frac{3}{x^2} - \frac{1}{x} - 1\right)} =$	3p
	$= \lim_{x \to +\infty} \frac{2 + \frac{1}{x} + \frac{3}{x^2}}{\frac{3}{x^2} - \frac{1}{x} - 1} = -2$	2p
c)	$f'(x) = 0 \Rightarrow x = 1; f'(x) \le 0$, pentru orice $x \in (0,1] \Rightarrow f$ este descrescătoare pe $(0,1]$ și	2
	$f'(x) \ge 0$, pentru orice $x \in [1, +\infty) \Rightarrow f$ este crescătoare pe $[1, +\infty)$, deci $f(x) \ge f(1)$, pentru orice $x \in (0, +\infty)$	3 p
	$f(1)=6$, deci $2x^2+x+3-5\ln x \ge 6$, de unde obținem $2x^2+x \ge 3+5\ln x$, pentru orice $x \in (0,+\infty)$	2p
	$\int_{0}^{1} \frac{f(x)}{e^{x}} dx = \int_{0}^{1} (3 - 2x) dx = \left(3x - 2 \cdot \frac{x^{2}}{2} \right) \Big _{0}^{1} =$	3p
b)	$ \begin{vmatrix} 3-1=2 \\ \int_{0}^{2} f(x) dx = \int_{0}^{2} (3-2x)e^{x} dx = (3-2x)e^{x} \begin{vmatrix} 2 \\ 0 \end{vmatrix} + 2e^{x} \begin{vmatrix} 2 \\ 0 \end{vmatrix} = $	2p 3p
c)	$= -e^{2} - 3 + 2e^{2} - 2 = e^{2} - 5$ $\int_{a}^{1} \frac{e^{3x}}{f^{3}(x)} dx = \int_{a}^{1} \frac{1}{(3 - 2x)^{3}} dx = -\frac{1}{2} \int_{a}^{1} \frac{(3 - 2x)^{3}}{(3 - 2x)^{3}} dx = \frac{1}{4} \cdot \frac{1}{(3 - 2x)^{2}} \Big _{a}^{1} = \frac{1}{4} \cdot \left(1 - \frac{1}{(3 - 2a)^{2}}\right), \text{ pentru}$	2p 3p
	orice $a \in (-\infty, 1)$ $\frac{1}{4} \cdot \left(1 - \frac{1}{(3 - 2a)^2}\right) = \frac{2}{9} \text{ si, cum } a \in (-\infty, 1), \text{ obținem } a = 0$	2p

Matematică M_st-nat

Varianta 7

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Arătați că media aritmetică a numerelor $a = 20 \sqrt{21}$ și $b = 22 + \sqrt{21}$ este egală cu 21.
- **5p 2.** Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, f(x) = x 1 și $g: \mathbb{R} \to \mathbb{R}$, g(x) = 3 x. Arătați că f(a) + g(a) = 2, pentru orice număr real a.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{7x-6} = x$.
- **5p 4.** Determinați câte numere naturale pare, de două cifre, au cifrele elemente ale mulțimii {1,2,3,4}.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(6,0) și B(6,6). Arătați că triunghiul AOM este isoscel, unde punctul M este mijlocul segmentului OB.
- **5p 6.** Se consideră triunghiul ABC, dreptunghic în A, astfel încât AC = 4 și măsura unghiului B este egală cu 60° . Arătați că înălțimea din vârful A a triunghiului ABC are lungimea egală cu 2.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $A(x) = \begin{pmatrix} 1 & -x \\ x & x+1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(1)) = 3$.
- **5p** | **b**) Arătați că $A(-1) \cdot A(2) A(-1) = 2I_2$.
- **5p** c) Determinați numerele reale x pentru care $A(x) \cdot A(-x) + xA(x) = 3I_2$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = 4(xy+1) 3(x+y)$.
- **5p** a) Arătați că $1 \circ 2 = 3$.
- **5p b**) Arătați că, dacă $a \circ 3 = 4$, atunci $a \circ (-a) = 0$.
- **5p** c) Determinați valorile reale ale lui x pentru care $(x \circ 1) \circ (x-1) \le 4$.

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = 2x^2 + x + 3 5\ln x$.
- **5p a)** Arătați că $f'(x) = \frac{(x-1)(4x+5)}{x}, x \in (0,+\infty).$
- **5p b)** Arătați că $\lim_{x \to +\infty} \frac{f(x) + 5 \ln x}{3 x x^2} = -2$.
- **5p** c) Demonstrați că $2x^2 + x \ge 3 + 5 \ln x$, pentru orice $x \in (0, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (3-2x)e^x$.
- **5p** a) Arătați că $\int_{0}^{1} \frac{f(x)}{e^{x}} dx = 2.$
- **5p b)** Arătați că $\int_{0}^{2} f(x) dx = e^{2} 5$.
- **5p** c) Determinați $a \in (-\infty,1)$ pentru care $\int_{a}^{1} \frac{e^{3x}}{f^{3}(x)} dx = \frac{2}{9}$.

Matematică *M_şt-nat* BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$N = \log_2 \frac{24}{12} + 3 = \log_2 2 + 3 =$	3p
	$=1+3=4=2^2$	2p
2.	$f(a) = a^2 \Leftrightarrow a^2 - 2a + 1 = 0$	3 p
	a = 1	2p
3.	$x^{2}-2x-2=(x-2)^{2} \Rightarrow x^{2}-2x-2=x^{2}-4x+4$	3 p
	x = 3, care convine	2p
4.	Mulțimea A are 10 elemente, deci sunt 10 cazuri posibile	2p
	Numerele divizibile cu 9 din mulțimea A sunt 6!, 7!, 8!, 9! și 10!, deci sunt 5 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{1}{2}$	1p
5.	$\overrightarrow{EB} + \overrightarrow{FC} = \overrightarrow{EA} + \overrightarrow{AB} + \overrightarrow{FD} + \overrightarrow{DC} = \overrightarrow{AB} + \overrightarrow{DC}$	2p
	$2(\overrightarrow{EB} + \overrightarrow{FC}) = 2\overrightarrow{AB} + 2\overrightarrow{DC} = \overrightarrow{AB} + \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{AC}$	3 p
6.	$(\sin x + \cos x)^2 - (\sin x - \cos x)^2 = 4\sin x \cos x =$	2p
	$= 2 \sin 2x = 2 \cos \left(\frac{\pi}{2} - 2x\right)$, pentru orice număr real x	3 p

1.a)	$A(-1) = \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} \Rightarrow \det(A(-1)) = \begin{vmatrix} 1 & 1 \\ -2 & 1 \end{vmatrix} =$	2p
	$=1\cdot 1-1\cdot \left(-2\right)=3$	3 p
b)	$\det(A(x)) = \begin{vmatrix} x^2 & 1 \\ x - 1 & 1 \end{vmatrix} = x^2 - x + 1, \text{ pentru orice număr real } x$	3 p
	Cum $\det(A(x)) \neq 0$ pentru orice număr real x , obținem că matricea $A(x)$ este inversabilă	2p
	pentru orice număr real x	-P
c)	$A(1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \Rightarrow (A(1))^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$	2p
	Cum $A(2) = \begin{pmatrix} 4 & 1 \\ 1 & 1 \end{pmatrix}$ și $X = (A(1))^{-1} \cdot A(2) \cdot (A(1))^{-1}$, obținem $X = \begin{pmatrix} 3 & -3 \\ 1 & 0 \end{pmatrix}$	3 p
2.a)	$\sqrt{2} \circ 0 = \sqrt{2} \cdot 0 - \sqrt{2} \left(\sqrt{2} + 0 - 1 \right) + 2 =$ $= -2 + \sqrt{2} + 2 = \sqrt{2}$	3 p
	$=-2+\sqrt{2}+2=\sqrt{2}$	2p

b)	$x^{2} - 2 - \sqrt{2}(x - \sqrt{2} + x + \sqrt{2} - 1) + 2 = x \Leftrightarrow x^{2} - (2\sqrt{2} + 1)x + \sqrt{2} = 0$	3p
	$x = \sqrt{2} - 1$ sau $x = \sqrt{2} + 2$	2p
c)	$e = \sqrt{2} + 1$ este elementul neutru al legii de compoziție "°", deci a este simetrizabil în	2p
	raport cu ,, \circ " dacă și numai dacă există a ', astfel încât $a \circ a' = a' \circ a = \sqrt{2} + 1$	2p
	$aa'-\sqrt{2}(a+a'-1)+2=\sqrt{2}+1 \Leftrightarrow aa'+1-\sqrt{2}(a+a')=0$ deci, dacă a și a' sunt numere	3p
	raționale, obținem $a + a' = 0$ și $aa' = -1$, deci $a = -1$ sau $a = 1$, care convin	ъp

(30 de puncte) **SUBIECTUL al III-lea**

1.a)	$f'(x) = (x - \ln(x^2 + 1))' = 1 - \frac{1}{x^2 + 1} \cdot 2x =$	3p
	$=\frac{x^2-2x+1}{x^2+1} = \frac{(x-1)^2}{x^2+1}, \ x \in (0,+\infty)$	2p
b)	Tangenta la graficul funcției f în punctul A este paralelă cu dreapta de ecuație $y = \frac{1}{5}x + 1$, deci $f'(n) = \frac{1}{5}$	3р
	$5(n-1)^2 = n^2 + 1 \Leftrightarrow 2n^2 - 5n + 2 = 0$ şi, cum n este număr natural nenul, obținem $n = 2$	2p
c)	$f'(x) > 0$, pentru orice $x \in (0,1) \Rightarrow f$ strict crescătoare pe $(0,1)$, $f'(x) > 0$, pentru orice $x \in (1,+\infty) \Rightarrow f$ strict crescătoare pe $(1,+\infty)$ și, cum f este continuă în $x = 1$, obținem că f este strict crescătoare pe $(0,+\infty)$, deci injectivă	2p
	Cum $\lim_{x\to 0} f(x) = 0$, $\lim_{x\to +\infty} f(x) = +\infty$ și f este continuă și strict crescătoare pe $(0,+\infty)$, obținem că f este surjectivă, deci bijectivă	3 p
2.a)	$\int_{1}^{e} x^{2} \left(f(x) + \frac{2 \ln x}{x^{3}} \right) dx = \int_{1}^{e} \frac{1}{x} dx = \ln x \Big _{1}^{e} =$	3 p
	$= \ln e - \ln 1 = 1$	2p
b)	$\int_{1}^{\sqrt{5}} x \cdot f(x^2 + 3) dx = \frac{1}{2} \int_{1}^{\sqrt{5}} (x^2 + 3)' \cdot f(x^2 + 3) dx = \frac{1}{2} F(x^2 + 3) \Big _{1}^{\sqrt{5}} =$	3p
	$=\frac{1}{2}\left(\frac{\ln 8}{64} - \frac{\ln 4}{16}\right) = -\frac{5\ln 2}{128}$	2p
c)	$\int_{e}^{e^{2}} x F(x) dx = \int_{e}^{e^{2}} \frac{\ln x}{x} dx = \frac{\ln^{2} x}{2} \Big _{e}^{e^{2}} = \frac{\ln^{2} (e^{2}) - \ln^{2} e}{2} = \frac{3}{2}$	3 p
	$\frac{a^2-1}{2} = \frac{3}{2}$, de unde obținem $a = -2$ sau $a = 2$	2p

Matematică M şt-nat

Model

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Arătați că numărul $N = \log_2 24 \log_2 12 + 3$ este pătratul unui număr natural.
- **5p** 2. Determinați numărul real a pentru care punctul $A(a,a^2)$ aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 1.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2 2x 2} = x 2$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{1!, 2!, 3!, ..., 10!\}$, acesta să fie divizibil cu 9.
- **5p 5.** Se consideră triunghiul \overrightarrow{ABC} și punctul D mijlocul segmentului \overrightarrow{BC} . Arătați că, pentru orice puncte E și F astfel încât $\overrightarrow{AE} = \overrightarrow{FD}$, are loc relația $2(\overrightarrow{EB} + \overrightarrow{FC}) = \overrightarrow{AB} + \overrightarrow{AC}$.
- **5p** 6. Arătați că $(\sin x + \cos x)^2 (\sin x \cos x)^2 = 2\cos\left(\frac{\pi}{2} 2x\right)$, pentru orice număr real x.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(x) = \begin{pmatrix} x^2 & 1 \\ x-1 & 1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(-1)) = 3$.
- **5p b)** Demonstrați că matricea A(x) este inversabilă, pentru orice număr real x.
- **5p** c) Determinați matricea $X \in \mathcal{M}_2(\mathbb{R})$ pentru care $A(1) \cdot X \cdot A(1) = A(2)$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă și cu element neutru $x \circ y = xy \sqrt{2}(x+y-1) + 2$.
- **5p a)** Arătați că $\sqrt{2} \circ 0 = \sqrt{2}$.
- **5p b)** Determinați numerele reale x pentru care $\left(x \sqrt{2}\right) \circ \left(x + \sqrt{2}\right) = x$.
- **5p c)** Determinați numerele raționale al căror simetric în raport cu legea de compoziție "o" este număr rațional.

- 1. Se consideră funcția $f:(0,+\infty) \to (0,+\infty)$, $f(x) = x \left(1 \frac{1}{x} \ln(x^2 + 1)\right)$.
- **5p** a) Arătați că $f'(x) = \frac{(x-1)^2}{x^2+1}, x \in (0,+\infty).$
- **5p b)** Determinați numărul natural nenul n, știind că tangenta la graficul funcției f în punctul A(n, f(n)) este paralelă cu dreapta de ecuație $y = \frac{1}{5}x + 1$.
- **5p** c) Demonstrați că funcția f este bijectivă.

- **2.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{1}{x^3} \frac{2 \ln x}{x^3}$ și funcția $F:(0,+\infty) \to \mathbb{R}$, $F(x) = \frac{\ln x}{x^2}$, o primitivă a lui f.
- **5p a)** Arătați că $\int_{1}^{e} x^2 \left(f(x) + \frac{2 \ln x}{x^3} \right) dx = 1$.
- **5p b)** Arătați că $\int_{1}^{\sqrt{5}} x \cdot f(x^2 + 3) dx = -\frac{5 \ln 2}{128}$.
- **5p** c) Determinați numerele reale a pentru care $\int_{e}^{e^2} x \cdot F(x) dx = \frac{a^2 1}{2}.$

Examenul național de bacalaureat 2022 Proba E. c) Matematică M_{st-nat}

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$q = \frac{b_2}{b_1} = 2\sqrt{2}$, unde q este rația progresiei geometrice $(b_n)_{n \ge 1}$	2p
	$b_4 = b_1 q^3 = \sqrt{2} \cdot \left(2\sqrt{2}\right)^3 = 32$	3p
2.	Axa Ox este tangentă graficului funcției $f \Leftrightarrow \Delta = 0 \Leftrightarrow 4 - 4m = 0$ m = 1	3p 2p
3.	$3^{x-1}(3^3 - 3 - 6) = 6 \Leftrightarrow 3^{x-1} \cdot 18 = 6 \Leftrightarrow 3^{x-1} = \frac{1}{3}$ x - 1 = -1, deci $x = 0$	3p
4.	Mulţimea A are 90 de elemente, deci sunt 90 de cazuri posibile Numărul $2n-60$ aparţine mulţimii A dacă $10 \le 2n-60 \le 99$, deci sunt 45 de cazuri favorabile, de unde obţinem $p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{45}{90} = \frac{1}{2}$	2p 2p 3p
5.	$m_{AB}=-\frac{1}{3}$ și, cum $d\perp AB$, obținem $m_d=3$ $C(2,3)$ și, cum $C\in d$, obținem că ecuația dreptei d este $y-3=3(x-2)$, adică $y=3x-3$	2p 3p
6.	AC = AB = 6	2p
	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC \cdot \sin 120^{\circ}}{2} = \frac{6 \cdot 6 \cdot \frac{\sqrt{3}}{2}}{2} = 9\sqrt{3}$	3p

1.a)	$\det A = \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix} = 0 \cdot 0 - 1 \cdot (-1) =$	3p
	= 0 + 1 = 1	2p
b)	$B(3) \cdot B(5) = (3I_2 + iA)(5I_2 + iA) = 15I_2 + 8iA + i^2A \cdot A = 16I_2 + 8iA =$	3p
	$=8(2I_2+iA)=8B(2)$, deci $x=2$	2p
c)	$B(m)+iB(n) = {m+in i-1 \atop -i+1 m+in} \Rightarrow \det(B(m)+iB(n)) = (m+in)^2 - 2i, \text{ unde } m, n \in \mathbb{Z}$	2p
	$B(m)+iB(n)$ nu este inversabilă, deci $\det(B(m)+iB(n))=0 \Rightarrow m^2-n^2+2(mn-1)i=0$ şi, cum m şi n sunt numere întregi, obținem perechile $(-1,-1)$ şi $(1,1)$	3p
2.a)	$2*5 = 2\cdot 5 - \sqrt{(2-1)(5-1)} =$	3p
	$=10-\sqrt{4}=8$	2p

b)	$x*1 = x \cdot 1 - \sqrt{(x-1)(1-1)} = x$, pentru orice $x \in M$	2p
	$1*x=1\cdot x-\sqrt{(1-1)(x-1)}=x$, pentru orice $x\in M$, deci $e=1$ este elementul neutru al legii de compoziție,,*"	3р
c)	$((nx)*y)-x(n*y) = x\sqrt{(n-1)(y-1)} - \sqrt{(nx-1)(y-1)} = \sqrt{y-1} \cdot \frac{(x-1)(nx-x-1)}{x\sqrt{n-1} + \sqrt{nx-1}}, \text{ pentru}$	2p
	$x, y \in M $ şi $n \in \mathbb{N}$, $n \ge 2$	
	Cum $nx - x - 1 = x(n-1) - 1$ și $x \ge 1$, n este număr natural, $n \ge 2$, obținem $nx - x - 1 \ge 0$,	2n
	deci $(nx) * y \ge x(n * y)$, pentru orice $x, y \in M$ și orice număr natural $n, n \ge 2$	эp

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{\frac{2}{\sqrt{x}} \cdot (x^2 + 3) - 4\sqrt{x} \cdot 2x}{(x^2 + 3)^2} =$	3p
	$(x^2+3)^2$	Эþ
	$= \frac{2x^2 + 6 - 8x^2}{\sqrt{x}(x^2 + 3)^2} = \frac{6(1 - x^2)}{\sqrt{x}(x^2 + 3)^2}, \ x \in (0, +\infty)$	2p
b)	Tangenta la graficul funcției f în punctul $A(a, f(a))$ este paralelă cu axa $Ox \Leftrightarrow f'(a) = 0$,	3p
	deci $1 - a^2 = 0$ Cum $a \in (0, +\infty)$, obținem $a = 1$	2p
c)	$f'(x) < 0$, pentru orice $x \in (1, +\infty) \Rightarrow f$ este strict descrescătoare pe $(1, +\infty)$	2p
	$1 < x < x + \frac{1}{x} \Rightarrow f(x) > f\left(x + \frac{1}{x}\right), \text{ deci } \frac{\sqrt{x}}{x^2 + 3} > \frac{\sqrt{x + \frac{1}{x}}}{x^2 + \frac{1}{x^2} + 5}, \text{ pentru orice } x \in (1, +\infty)$	3 p
2.a)	$\int_{0}^{1} e^{x} f(x) dx = \int_{0}^{1} (e^{x} + 2x) dx = (e^{x} + x^{2}) \Big _{0}^{1} =$	3 p
	= e + 1 - 1 = e	2p
b)	$\int_{-1}^{0} f(x) dx = \int_{-1}^{0} (1 + 2xe^{-x}) dx = (x - 2(x + 1)e^{-x}) \Big _{-1}^{0} =$	3 p
	=-2-(-1)=-1	2p
c)	$F'(x) = f(x), \text{ pentru orice } x \in \mathbb{R}, \text{ deci } \int_{0}^{1} F(x) f''(x) dx = F(x) f'(x) \left \frac{1}{0} - \frac{f^{2}(x)}{2} \right _{0}^{1} =$ $= F(1) f'(1) - F(0) f'(0) - \frac{f^{2}(1) - f^{2}(0)}{2}$	3p
	$f'(x) = 2(1-x)e^{-x}$, deci $f'(1) = 0$ şi, cum $F(0) = 0$, obţinem $\int_{0}^{1} F(x)f''(x)dx = \frac{-2(e+1)}{e^{2}}$, deci $a = -2$	2p
	ucci <i>u</i> = -2	

Examenul național de bacalaureat 2022

Proba E. c)

Matematică *M_şt-nat*

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Calculați termenul b_4 al progresiei geometrice $(b_n)_{n\geq 1}$, știind că $b_1 = \sqrt{2}$ și $b_2 = 4$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = mx^2 2x + 1$, unde m este număr real nenul. Determinați numărul real nenul m pentru care axa Ox este tangentă graficului funcției f.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{x+2} 3^x 6 \cdot 3^{x-1} = 6$.
- **4.** Se consideră mulțimea A, a numerelor naturale de două cifre. Determinați probabilitatea ca, alegând un număr n din mulțimea A, numărul 2n-60 să aparțină mulțimii A.
- **5.** În reperul cartezian xOy se consideră punctele A(-1,4), B(5,2) și C, mijlocul segmentului AB. Determinați ecuația dreptei d care trece prin punctul C și este perpendiculară pe dreapta AB.
- **5p 6.** Se consideră triunghiul isoscel ABC, cu măsura unghiului A egală cu 120° și AB = 6. Arătați că aria triunghiului ABC este egală cu $9\sqrt{3}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ și $B(x) = xI_2 + iA$, unde x este număr real și $i^2 = -1$.
- **5p** a) Arătați că det A = 1.
- **5p b)** Determinați numărul real x pentru care $B(3) \cdot B(5) = 8B(x)$.
- **5p** c) Determinați perechile (m,n) de numere întregi pentru care matricea B(m)+iB(n) nu este inversabilă.
 - **2.** Pe mulțimea $M = [1, +\infty)$ se definește legea de compoziție $x * y = xy \sqrt{(x-1)(y-1)}$.
- **5p a)** Arătați că 2*5=8.
- **5p b)** Arătați că e = 1 este elementul neutru al legii de compoziție "*".
- **5p** c) Demonstrați că $(nx) * y \ge x(n * y)$, pentru orice $x, y \in M$ și orice număr natural $n, n \ge 2$.

- 1. Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{4\sqrt{x}}{x^2+3}$.
- **5p** a) Arătați că $f'(x) = \frac{6(1-x^2)}{\sqrt{x}(x^2+3)^2}, x \in (0,+\infty).$
- **5p b)** Determinați $a \in (0, +\infty)$, știind că tangenta la graficul funcției f în punctul A(a, f(a)) este paralelă cu axa Ox.
- **5p** c) Demonstrați că $\frac{\sqrt{x}}{x^2+3} > \frac{\sqrt{x+\frac{1}{x}}}{x^2+\frac{1}{x^2}+5}$, pentru orice $x \in (1,+\infty)$.

- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{e^x + 2x}{e^x}$.
- **a)** Arătați că $\int_{0}^{1} e^{x} f(x) dx = e.$ **b)** Arătați că $\int_{-1}^{0} f(x) dx = -1.$
- c) Determinați numărul real a pentru care $\int_{0}^{1} F(x) f''(x) dx = \frac{a(e+1)}{e^{2}}$, unde $F: \mathbb{R} \to \mathbb{R}$ este primitiva funcției f cu proprietatea F(0) = 0.

Examenul național de bacalaureat 2022 Proba E. c) Matematică *M st-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{2}(\sqrt{2}-1)(2+\sqrt{2}) = (2-\sqrt{2})(2+\sqrt{2}) =$	3 p
	=4-2=2	2p
2.	$f(x) = 0 \Leftrightarrow 2x^2 - 4x = 0$	3p
	x = 0 sau $x = 2$	2p
3.	$2^{x-3} = 2^{-2x} \Leftrightarrow x-3 = -2x$	3 p
	x=1	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	În mulțimea numerelor naturale de două cifre sunt 9 numere care sunt multipli de 11, deci sunt 9 cazuri favorabile, de unde obținem $p = \frac{9}{90} = \frac{1}{10}$	3р
5.	AC = 5	2p
	$BC = \sqrt{4^2 + 3^2} = 5$, deci $AC = BC$, de unde obținem că triunghiul ABC este isoscel	3 p
6.	$ \operatorname{tg}\frac{\pi}{3} = \sqrt{3}, \sin\frac{\pi}{2} = 1, \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2} $	3р
	$E\left(\frac{\pi}{3}\right) = \sqrt{3} + 1 - 2 \cdot \frac{\sqrt{3}}{2} = 1$	2p

1.a)	$M(1) = \begin{pmatrix} 2 & -1 \\ -2 & 3 \end{pmatrix} \Rightarrow \det(M(1)) = \begin{vmatrix} 2 & -1 \\ -2 & 3 \end{vmatrix} = 2 \cdot 3 - (-1) \cdot (-2) =$	3 p
	=6-2=4	2p
b)	$M(x) \cdot M(1) = \begin{pmatrix} 4x+2 & -4x-1 \\ -8x-2 & 8x+3 \end{pmatrix} =$	3 p
	$= \begin{pmatrix} (4x+1)+1 & -(4x+1) \\ -2(4x+1) & 2(4x+1)+1 \end{pmatrix} = M(4x+1), \text{ pentru orice număr real } x$	2 p
c)	$M(x) \cdot M(1) \cdot M(1) = (M(x) \cdot M(1)) \cdot M(1) = M(4x+1) \cdot M(1) = M(16x+5), \text{ pentru orice}$	3р
	număr real x	· P
	$M(16x+5) = M(x+2)$, de unde obținem $16x+5 = x+2$, deci $x = -\frac{1}{5}$	2p
2.a)	$(-1) \circ 0 = 5 \cdot (-1) \cdot 0 + 10 \cdot (-1) + 10 \cdot 0 + 18 =$	3 p
	=-10+18=8	2p
b)	$x \circ y = 5xy + 10x + 10y + 20 - 2 = 5x(y+2) + 10(y+2) - 2 =$	3 p
	=(5x+10)(y+2)-2=5(x+2)(y+2)-2, pentru orice numere reale x şi y	2p

c)	$m \circ m = 5(m+2)^2 - 2$, pentru orice număr întreg m	2p	Ī
	$5(m+2)^2-2=m \Rightarrow (m+2)(5m+9)=0$ şi, cum m este număr întreg, obținem $m=-2$	3 p	

0022	CTOL al III-lea (30 de puncte)	
1.a)	$f'(x) = \frac{2x(x-1) - (x^2+1)}{(x-1)^2} + \frac{1}{x-1} =$	3 p
	$=\frac{x^2-2x-1+x-1}{(x-1)^2} = \frac{x^2-x-2}{(x-1)^2}, \ x \in (1,+\infty)$	2p
b)	f(2)=5, f'(2)=0	2p
	Ecuația tangentei este $y - f(2) = f'(2)(x-2)$, adică $y = 5$	3 p
c)	$f'(x)=0 \Rightarrow x=2$; pentru $x \in (1,2] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $(1,2]$ și pentru $x \in [2,+\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[2,+\infty)$	3p
	$f(x) \ge f(2)$, pentru orice $x \in (1, +\infty)$, de unde obținem $\frac{x^2 + 1}{x - 1} + \ln(x - 1) \ge 5$, pentru orice $x \in (1, +\infty)$	2p
2.a)	$\int_{0}^{2} f(x)(6x^{2}+1)dx = \int_{0}^{2} (x+4)dx = \left(\frac{x^{2}}{2}+4x\right)\Big _{0}^{2} =$	3p
b)	$\int_{0}^{2} \left(f(x) - \frac{4}{6x^{2} + 1} \right) dx = \int_{0}^{2} \frac{x}{6x^{2} + 1} dx = \frac{1}{12} \int_{0}^{2} \frac{\left(6x^{2} + 1\right)'}{6x^{2} + 1} dx = \frac{1}{12} \ln\left(6x^{2} + 1\right) \Big _{0}^{2} =$	2p 3p
	$= \frac{1}{12} \ln 25 = \frac{\ln 5}{6}$	2p
c)	$\int_{0}^{1} \frac{x+4}{f(x)} \cdot e^{2x} dx = \int_{0}^{1} (6x^{2}+1) \cdot e^{2x} dx = \int_{0}^{1} (6x^{2}+1) \cdot \left(\frac{e^{2x}}{2}\right)^{1} dx = \left(6x^{2}+1\right) \cdot \left(\frac{e^{2x}}{2}\right)^{1} - \int_{0}^{1} 6xe^{2x} dx = \frac{7e^{2}-1}{2} - 3xe^{2x} \left \frac{1}{0} + \frac{3e^{2x}}{2} \right _{0}^{1} = 2e^{2} - 2$	3p
	$2e^2 - 2 = m(e^2 - 1)$, de unde obținem $m = 2$	2p

Matematică *M_şt-nat*

Varianta 3

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\sqrt{2}(\sqrt{2}-1)(2+\sqrt{2})=2$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^2 4x$. Determinați abscisele punctelor de intersecție a graficului funcției f cu axa Ox.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $2^{x-3} = \frac{1}{2^{2x}}$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie multiplu de 11.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-1,0), B(0,3) și C(4,0). Arătați că triunghiul ABC este isoscel.
- **5p** 6. Se consideră $E(x) = \operatorname{tg} x + \sin \frac{3x}{2} 2\cos \frac{x}{2}$, unde $x \in \left(0, \frac{\pi}{2}\right)$. Arătați că $E\left(\frac{\pi}{3}\right) = 1$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $M(x) = \begin{pmatrix} x+1 & -x \\ -2x & 2x+1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(M(1)) = 4$.
- **5p b**) Arătați că $M(x) \cdot M(1) = M(4x+1)$, pentru orice număr real x.
- **5p** c) Determinați numărul real x pentru care $M(x) \cdot M(1) \cdot M(1) = M(x+2)$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = 5xy + 10x + 10y + 18$.
- **5p** | **a**) Arătați că $(-1) \circ 0 = 8$.
- **5p** | **b**) Demonstrați că $x \circ y = 5(x+2)(y+2)-2$, pentru orice numere reale x și y.
- **5p c**) Determinați numărul întreg m pentru care $m \circ m = m$.

- **1.** Se consideră funcția $f:(1,+\infty) \to \mathbb{R}$, $f(x) = \frac{x^2+1}{x-1} + \ln(x-1)$.
- **5p** a) Arătați că $f'(x) = \frac{x^2 x 2}{(x 1)^2}, x \in (1, +\infty).$
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 2, situat pe graficul funcției f.
- **5p** c) Demonstrați că $\frac{x^2+1}{x-1} + \ln(x-1) \ge 5$, pentru orice $x \in (1,+\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x+4}{6x^2+1}$.
- **5p** a) Arătați că $\int_{0}^{2} f(x)(6x^{2}+1)dx = 10$.

- **5p b)** Arătați că $\int_{0}^{2} \left(f(x) \frac{4}{6x^2 + 1} \right) dx = \frac{\ln 5}{6}$.
- **5p** c) Determinați numărul real m pentru care $\int_{0}^{1} \frac{x+4}{f(x)} \cdot e^{2x} dx = m(e^{2} 1).$