CMSC 471: Games

KMA Solaiman

ksolaima@purdue.edu

Overview

- Game playing
 - State of the art and resources
 - Framework
- Game trees
 - Minimax
 - Alpha-beta pruning
 - Adding randomness

Why study games?

- Interesting, hard problems requiring minimal "initial structure"
- Clear criteria for success
- Study problems involving {hostile, adversarial, competing} agents and uncertainty of interacting with the natural world
- People have used them to assess their intelligence
- Fun, good, easy to understand, PR potential
- Games often define very large search spaces, e.g. chess 35¹⁰⁰ nodes in search tree, 10⁴⁰ legal states

Chess early days

- 1948: Norbert Wiener <u>describes</u> how chess program can work using minimax search with an evaluation function
- 1950: Claude Shannon publishes <u>Programming a Computer for Playing Chess</u>
- 1951: Alan Turing develops *on paper* 1st program capable of playing full chess games (<u>Turochamp</u>)
- 1958: 1st program plays full game on IBM 704 (loses)
- 1962: Kotok & McCarthy (MIT) 1st program to play credibly
- 1967: Greenblatt's Mac Hack Six (MIT) defeats a person in regular tournament play

State of the art

- 1979 Backgammon: BKG (CMU) tops world champ
- 1994 Checkers: Chinook is the world champion
- 1997 Chess: IBM Deep Blue beat Gary Kasparov
- 2007 Checkers: solved (it's a draw)
- 2016 Go: AlphaGo beat champion Lee Sedol
- 2017 Poker: CMU's <u>Libratus</u> won \$1.5M from 4 top poker players in 3-week challenge in casino
- 20?? Bridge: Expert bridge programs exist, but no world champions yet

Classical vs. Statistical/Neural Approaches

 We'll look first at the classical approach used from the 1940s to 2010

 Then at newer statistical approached of which AlphaGo is an example

These share some techniques

Typical simple case for a game

- 2-person game, with alternating moves
- Zero-sum: one player's loss is the other's gain
- **Perfect information**: both players have access to complete information about state of game. No information hidden from either player.
- No chance (e.g., using dice) involved

Typical simple case for a game

- 2-person game, with alternating moves
- Zero-sum: one player's loss is the other's gain
- **Perfect information**: both players have access to complete information about state of game. No information hidden from either player.
- No chance (e.g., using dice) involved
- Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim, Othello
- But not: Bridge, Solitaire, Backgammon, Poker, Rock-Paper-Scissors, ...

Can we use ...

- Uninformed search?
- Heuristic search?
- Local search?
- Constraint based search?

None of these model the fact that we have an adversary ...

How to play a game

- A way to play such a game is to:
 - Consider all the legal moves you can make
 - Compute new position resulting from each move
 - Evaluate each to determine which is best
 - Make that move
 - Wait for your opponent to move and repeat
- Key problems are:
 - Representing the "board" (i.e., game state)
 - Generating all legal next boards
 - Evaluating a position

Deterministic Games

- Many possible formalizations, one is:
 - States: S (start at s₀)
 - Players: P={1...N} (usually take turns)
 - Actions: A (may depend on player / state)
 - Transition Function: $SxA \rightarrow S$
 - Terminal Test: S → $\{t,f\}$
 - Terminal Utilities: $SxP \rightarrow R$
- Solution for a player is a policy: S → A

Zero-Sum Games

- Zero-Sum Games
 - Agents have opposite utilities (values on outcomes)
 - Lets us think of a single value that one maximizes and the other minimizes
 - Adversarial, pure competition

- General Games
 - Agents have independent utilities (values on outcomes)
 - Cooperation, indifference, competition, and more are all possible
 - More later on non-zero-sum games

Evaluation function

- Evaluation function or static evaluator used to evaluate the "goodness" of a game position

 Contrast with heuristic search, where evaluation function estimates cost from start node to goal passing through given node
- Zero-sum assumption permits single function to describe goodness of board for both players
 - $-\mathbf{f}(\mathbf{n}) >> \mathbf{0}$: position n good for me; bad for you
 - $-\mathbf{f}(\mathbf{n}) \ll \mathbf{0}$: position n bad for me; good for you
 - f(n) near 0: position n is a neutral position
 - f(n) = +infinity: win for me
 - f(n) = -infinity: win for you

Evaluation function examples

For Tic-Tac-Toe

f(n) = [# my open 3lengths] - [# your open 3lengths] Where 3length is complete row, column or diagonal that has no opponent marks

Alan Turing's function for chess

- f(n) = w(n)/b(n) where w(n) = sum of point value of white's pieces and <math>b(n) = sum of black's
- Traditional piece values: pawn:1; knight:3; bishop:3; rook:5; queen:9

Evaluation function examples

Most evaluation functions specified as a weighted sum of positive features
 f(n) = w₁*feat₁(n) + w₂*feat₂(n) + ... + w_n*feat_k(n)

- Example chess features are piece count, piece values, piece placement, squares controlled, etc.
- IBM's chess program <u>Deep Blue</u> (circa 1996) had >**8K features** in its evaluation function

But, that's not how people play

- People also use *look ahead* i.e., enumerate actions, consider opponent's possible responses, REPEAT
- Producing a *complete* game tree is only possible for simple games
- So, generate a partial game tree for some number of plys
 - Move = each player takes a turn
 - Ply = one player's turn
- What do we do with the game tree?

Adversarial Search

Game trees

- Problem spaces for typical games are trees
- Root node is current board configuration; player must decide best single move to make next
- Static evaluator function rates board position f(board):real, > 0 for me; < 0 for opponent
- Arcs represent possible legal moves for a player
- If my turn to move, then root is labeled a "MAX" node; otherwise it's a "MIN" node
- Each tree level's nodes are all MAX or all MIN; nodes at level i are of opposite kind from those at level i+1

Game Tree for Tic-Tac-Toe

Game Tree for Tic-Tac-Toe

Game Tree for Tic-Tac-Toe

Adversarial Game Trees

Terminal States: V(s) = known

States Under Opponent's Control:

$$V(s') = \min_{s \in \text{successors}(s')} V(s)$$

Terminal States:

$$V(s) = known$$

- 1. Create MAX node with current board configuration
- 2. Expand nodes to some depth (a.k.a. plys) of lookahead in game
- 3. Apply evaluation function at each **leaf** node
- 4. Back up values for each non-leaf node until value is computed for the root node
 - At MIN nodes: value is **minimum** of children's values
 - At MAX nodes: value is maximum of children's values
- 5. Choose move to child node whose backed-up value determined value at root

Minimax theorem

- Intuition: assume your opponent is at least as smart as you and play accordingly
 - If she's not, you can only do better!
- Von Neumann, J: Zur Theorie der Gesellschafts-spiele Math. Annalen. **100** (1928) 295-320
 - For every 2-person, 0-sum game with finite strategies, there is a value V and a mixed strategy for each player, such that (a) given player 2's strategy, best payoff possible for player 1 is V, and (b) given player 1's strategy, best payoff possible for player 2 is –V.
- You can think of this as:
 - -Minimizing your maximum possible loss
 - -Maximizing your minimum possible gain

Partial Game Tree for Tic-Tac-Toe

Why backed-up values?

- Why not just use a good static evaluator metric on immediate children
- Intuition: if metric is good, doing look ahead and backing up values with Minimax should be better
- Non-leaf node N's backed-up value is value of best state MAX can reach at depth **h** if MIN plays *well*
 - "plays well": same criterion as MAX applies to itself
- If e is good, then backed-up value is better estimate of STATE(N) goodness than e(STATE(N))
- Use lookahead horizon h because time to choose move is limited

Minimax Tree

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Compute each node's minimax
 value: the best achievable
 utility against a rational
 (optimal) adversary

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Terminal values: part of the game

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Minimax values: computed recursively

Terminal values: part of the game

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Minimax values: computed recursively

Terminal values: part of the game

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Minimax values: computed recursively

Terminal values: part of the game

```
def max-value(state):
    initialize v = -∞
    for each successor of state:
        v = max(v, min-value(successor))
    return v
```

```
def max-value(state):
    initialize v = -∞
    for each successor of state:
        v = max(v, min-value(successor))
    return v
```

```
def min-value(state):
   initialize v = +∞
   for each successor of state:
     v = min(v, max-value(successor))
   return v
```

```
def max-value(state):
    initialize v = -∞
    for each successor of state:
        v = max(v, min-value(successor))
    return v
```



```
def min-value(state):
    initialize v = +∞
    for each successor of state:
        v = min(v, max-value(successor))
    return v
```

def max-value(state):

initialize $v = -\infty$

for each successor of state:

v = max(v, min-value(successor))

return v

def min-value(state):

initialize $v = +\infty$

for each successor of state:

v = min(v, max-value(successor))

return v

$$V(s) = \max_{s' \in \text{successors}(s)} V(s')$$

$$V(s') = \min_{s \in \text{successors}(s')} V(s)$$

Minimax Implementation (Dispatch)

def value(state):

if the state is a terminal state: return the state's utility

if the next agent is MAX: return max-value(state)

if the next agent is MIN: return min-value(state)

Minimax Implementation (Dispatch)

```
def value(state):
    if the state is a terminal state: return the state's utility
    if the next agent is MAX: return max-value(state)
    if the next agent is MIN: return min-value(state)

def min-value(state):
    initialize v = -∞
    for each successor of state:
    v = max(v, value(successor))
    return v

def min-value(state):
    initialize v = +∞
    for each successor of state:
    v = min(v, value(successor))
    return v
```

Minimax Efficiency

- How efficient is minimax?
 - Just like (exhaustive) DFS
 - Time: O(b^m)
 - Space: O(bm)
- Example: For chess, b ≈ 35,
 m ≈ 100
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?

• Problem: In realistic games, cannot search to leaves!

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for non-terminal positions

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for non-terminal positions

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for non-terminal positions

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for non-terminal positions
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - α- β reaches about depth 8 decent chess program

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for non-terminal positions
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - $-\alpha$ - β reaches about depth 8 decent chess program
- Guarantee of optimal play is gone
- More plies makes a BIG difference
- Use iterative deepening for an anytime algorithm

Depth Matters

- Evaluation functions are always imperfect
- The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- An important example of the tradeoff between complexity of features and complexity of computation

Is that all there is to simple games?

Alpha-beta pruning

- Improve performance of the minimax algorithm through <u>alpha-beta pruning</u>
- "If you have an idea that is surely bad, don't take the time to see how truly awful it is"-Pat Winston (MIT)

- We don't need to compute the value at this node
- No matter what it is, it can't affect value of the root node

Alpha-beta pruning

- Traverse search tree in depth-first order
- At MAX node n, alpha(n) = max value found so far
 Alpha values start at -∞ and only increase
- At MIN node n, beta(n) = min value found so far Beta values start at $+\infty$ and only decrease
- **Beta cutoff**: stop search below MAX node N (i.e., don't examine more descendants) if alpha(N) >= beta(i) for some MIN node ancestor i of N
- Alpha cutoff: stop search below MIN node N if beta(N)<=alpha(i) for a MAX node anceastor i of N

Beta value of a MIN node is **upper** bound on final backed-up value; it can never increase

Beta value of a MIN node is **upper** bound on final backed-up value; it can never increase₄₅

Alpha value of MAX node is **lower** bound on final backed-up value; it can never decrease

Alpha-Beta Implementation

α: MAX's best option on path to rootβ: MIN's best option on path to root

```
def max-value(state, \alpha, \beta):
    initialize v = -\infty
    for each successor of state:
        v = \max(v, value(successor, \alpha, \beta))
        if v \ge \beta return v
        \alpha = \max(\alpha, v)
    return v
```

```
\label{eq:def_min-value} \begin{split} & \text{def min-value}(\text{state }, \alpha, \beta): \\ & \text{initialize } v = +\infty \\ & \text{for each successor of state:} \\ & v = \min(v, \text{value}(\text{successor}, \alpha, \beta)) \\ & \text{if } v \leq \alpha \text{ return } v \\ & \beta = \min(\beta, v) \\ & \text{return } v \end{split}
```

Alpha-Beta Pruning Properties

- This pruning has no effect on minimax value computed for the root!
- Values of intermediate nodes might be wrong
 - Important: children of the root may have the wrong value
 - So the most naïve version won't let you do action selection

Alpha-Beta Pruning Properties

- This pruning has no effect on minimax value computed for the root!
- Values of intermediate nodes might be wrong
 - Important: children of the root may have the wrong value
 - So the most naïve version won't let you do action selection
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
 - Time complexity drops to O(b^{m/2})
 - Doubles solvable depth!
 - Full search of, e.g. chess, is still hopeless...
- This is a simple example of metareasoning (computing about what to compute)

Alpha-Beta Quiz

Alpha-Beta Quiz 2

MAX

MIN

With alpha-beta we avoided computing a static evaluation metric for 14 of the 25 leaf nodes

Many other improvements

- Adaptive horizon + iterative deepening
- Extended search: retain k>1 best paths (not just one) extend tree at greater depth below their leaf nodes to help dealing with "horizon effect"
- Singular extension: If move is obviously better than others in node at horizon h, expand it
- Use <u>transposition tables</u> to deal with repeated states