Об одном классе моделей системы с дискретными состояниями

Баранов Антон Игоревич, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: проф. Сушков Ю.А.

Санкт-Петербург 2008г.

История появления задачи

Похожие задачи были рассмотрены сотрудником Копенгагенской телефоннной компании, ученым Агнером Эрлангом, в период между 1908 и 1922 годами. Стояла задача упорядочить работу телефонной станции и заранее рассчитать качество обслуживания потребителей в зависимости от числа используемых устройств. Но Эрланг рассматривал системы с фиксированными операциями на аппаратах.

Впервые такие задачи были рассмотрены в диссертации Г. Ф. Кропычева с помощью аппарата Эрланга.

Перечисление схем

Задача: построить всевозможные схемы моделей систем некоторого класса с дискретными состояниями, где число аппаратов равно двум, а число операций — трем.

Определение

Элементарная операция – неделимое действие по обслуживанию заявки в системе.

Определение

Составная операция – операция, состоящая из нескольких элементарных операций.

Перечисление схем

Допущения:

- на аппаратах могут быть элементарные и составные операции;
- на аппаратах неограниченное количество операций;
- обслуживание заявки может начинаться и заканчиваться на любом из аппаратов;
- на аппаратах могут быть условные и безусловные операции;
- на аппаратах не могут одновременно находиться безусловные операции с одинаковыми наименьшими элементарными операциями;
- на аппарате не может быть одинаковых условной и безусловной операций одновременно;
- если на первом из аппаратов есть безусловная операция λ_i , то на другом аппарате могут быть условные операции: (λ_i) ; $(\lambda_{i-1,i})$, если на первом есть безусловная операция λ_{i-1} ; $(\lambda_{i-2,i-1,i})$, если на первом аппарате есть безусловные операции λ_{i-2} , λ_{i-1} или безусловная операция $\lambda_{i-2,i-1}$ и так далее;
- на аппарате не может быть недоступных операций, то есть если на аппарате есть операция, то она должна выполняться в процессе функционирования аппарата обязательно;
- все элементарные операции должны быть выполнены в системе;
- система обладает свойством марковости.

Алгоритм построения схем.

Алгоритм:

- генерирование возможных операций;
- генерирование возможных наборов безусловных операций на одном аппарате;
- генерирование возможных совокупностей наборов безусловных операций на всех аппаратах;
- генерирование возможных условных операций на всех аппаратах;
- генерирование возможных переходов (связей) между аппаратами;
- проверка на эквивалентность полученных схем моделей систем.

Преимущество данного алгоритма:

 возможность на начальном этапе отбрасывать невозможные состояния системы: 00 01 02 10 11 12 W0 W1 W2 WW 0W.

Генерирование возможных наборов безусловных операций на одном аппарате

Правила генерации наборов безусловных операций на одном аппарате:

- на одном аппарате не может быть несколько одинаковых операций;
- на аппарате не может быть одновременно безусловных операций вида $\lambda_1; \lambda_{1,2}; \lambda_{1,2,3}$, то есть на аппарате безусловная операция может включать в себя какую-то элементарную операцию только тогда, когда на аппарате нет безусловной операции с меньшим числом элементарных операций, включающей эту элементарную операцию (операции располагаются по возрастанию).

Генерирование возможных совокупностей наборов безусловных операций на всех аппаратах

Определение

Минимумом безусловной операции называется наименьший номер элементарной операции

Определение

Максимумом безусловной операции называется наибольший номер элементарной операции

Определение

Минимальное множество аппарата — множество объединений минимумов всех операций на этом аппарате.

Определение

Максимальное множество аппарата — множество объединений максимумов всех операций на этом аппарате.

Генерирование возможных совокупностей наборов безусловных операций на всех аппаратах

Правила генерации совокупностей наборов безусловных операций на всех аппаратах:

- на любых аппаратах должны присутствовать безусловные операции, включающие в себя элементарные начальную и конечную операции;
- для каждого элемента из максимального множества аппарата на любом другом аппарате должна существовать такая операция, что если из ее минимума вычесть 1, то получится данный элемент максимального множества;
- для каждого элемента из минимального множества аппарата на любом другом аппарате должна существовать такая операция, что если к ее максимуму прибавить 1, то получится данный элемент минимального множества;
- на аппаратах не могут одновременно находиться операции с одинаковыми минимумами.

Пример схемы

Рассмотрим пример решения одной из сгенерированных моделей системы. Пусть у нас есть такая схема:

Возможные состояния системы

Теперь запишем состояния, в которых могут находиться наши аппараты:

Α	В	
0	0	
1	2	
3	12	
W	3	

Запишем состояния всей системы:

0 0	0 2	0 12	0 3
1 0	1 2	1 12	1 3
3 0	3 2	3 12	3 3
W 0	W 2	W 12	W 3

Исключим заведомо невозможные состояния, здесь оно только одно - W0.

Граф состояний системы

Следующим шагом необходимо построить граф состояний системы:

Система дифференциальных уравнений

Система дифференциальных уравнений, построенная по графу состояний:

Область применения результатов данной работы

Результаты данной работы могут найти применение:

- в практических приложениях;
- в обучении студентов;
- в разработке математических моделей;
- и т.д.

Различие выполнения двух операций последовательно и параллельно

Пусть есть схемы:

Составим системы дифференциальных уравнений наших схем моделей:

$$\begin{cases} \frac{dP_{0,0}}{dt} & = \frac{1}{t_3} \frac{dP_{0,3}}{dt} - \frac{1}{\lambda} \frac{dP_{0,0}}{dt}, \\ \frac{dP_{1,0}}{dt} & = \frac{1}{t_3} \frac{dP_{1,3}}{dt} + \frac{1}{\lambda} \frac{dP_{0,0}}{dt} - \frac{1}{t_1} \frac{dP_{1,0}}{dt}, \\ \vdots & & \\ P_{i,j} > 0. \end{cases}$$

Различие выполнения двух операций последовательно и параллельно

$$\begin{cases} \frac{dP_{0,0}}{dt} &= \frac{1}{t_{23}} \frac{dP_{0,23}}{dt} - \frac{1}{\lambda} \frac{dP_{0,0}}{dt}, \\ \frac{dP_{1,0}}{dt} &= \frac{1}{t_{23}} \frac{dP_{1,23}}{dt} + \frac{1}{\lambda} \frac{dP_{0,0}}{dt_0} - \frac{1}{t_1} \frac{dP_{1,0}}{dt}, \\ \frac{dP_{0,23}}{dt} &= \frac{1}{t_1} \frac{dP_{1,0}}{dt} + \frac{1}{t_{23}} \frac{dP_{0,23}}{dt} - \frac{1}{\lambda} \frac{dP_{0,23}}{dt} - \frac{1}{t_{23}} \frac{dP_{0,23}}{dt}, \\ \frac{dP_{1,23}}{dt} &= \frac{1}{\lambda} \frac{dP_{0,23}}{dt} - \frac{1}{t_1} \frac{dP_{1,23}}{dt} - \frac{1}{t_{23}} \frac{dP_{1,23}}{dt}, \\ \frac{dP_{W,23}}{dt} &= \frac{1}{t_1} \frac{dP_{1,23}}{dt} - \frac{1}{t_{23}} \frac{dP_{W,23}}{dt}, \\ \sum_{i,j} P_{i,j} &= 1, \\ P_{i,j} \geq 0. \end{cases}$$

Если делаем предположение, что $t_{12}=t_1+t_2$. То получаем, что такие две схемы не изоморфны.