MxNet Gluon

Basics, Computer Vision, NLP (and even more NLP)
Part VII (Machine Translation / Transformers)

Leonard Lausen
Haibin Lin
Alex Smola

Outline

8:30-9:15	Installation and Basics (NDArray, AutoGrad, Libraries)
9:15-9:30	Neural Networks 101 (MLP, ConvNet, LSTM, Loss, SGD) - Part I
9:30-10:00	Break
10:00-10:30	Neural Networks 101 (MLP, ConvNet, LSTM, Loss, SGD) - Part II
10:30-11:00	Computer Vision 101 (Gluon CV)
11:00-11:30	Parallel and distributed training
11:30-12:00	Data I/O in NLP (and iterators)
12:00-13:30	Break
13:30-14:15	Embeddings
14:15-15:00	Language models (LM)
15:00-15:30	Sequence Generation from LM
15:30-16:00	Break
16:00-16:15	Sentiment analysis
16:15-17:00	Transformer Models & machine translation
17:00-17:30	Questions

Sequence translation models

Neural Machine Translation

- Need encoder of sequence
 - Words / characters to embedding
 - Embed entire sequence
- Attention for deciding where to position the decoder
- Again, LSTM stack for the decoded sequence
- Encoding / decoding via subwords rather than char / word

Google Neural Machine Translation

Encoder: Bidireciontal LSTM + LSTM + Residual

Decoder: LSTM + Residual + MLP Attention

Google Neural Machine Translation

- Gluon-NLP:
 - BLEU <u>26.22</u> on IWSLT2015, 10 epochs, Beam Size=10
- Tensorflow/NMT:
 - BLEU <u>26.10</u> on IWSLT2015, Beam Size=10

Encoder: Bidireciontal LSTM + LSTM + Residual

Decoder: LSTM + Residual + MLP Attention

Detail - LSTM with Residual Connections

Detail - Hindsight is 20/20 - Bidirectional LSTM

Transformers aka Do we really need LSTMs?

Transformer

- Encoder
 - 6 layers of self-attention+ffn
- Decoder
 - 6 layers of masked self-attention
 - output of encoder + ffn
- Our implementation:
 - BLEU <u>27.51</u> on WMT2014en_de,
- Tensorflow/t2t:
 - BLEU <u>26.55</u> on WMT2014en_de

Transformer

Self Attention Module

Attention $(Q, K, V) = \operatorname{softmax}\left(d_k^{-\frac{1}{2}}QK^{\top}\right)V$

- Q 'queries' (usually learned parameters)
- K 'keys' (can be embeddings themselves)
- V 'values' (can be embeddings, too, i.e. K=V)

Multi-Head Attention

Scaled Dot-Product Attention

Encoding the input

Decoding the output

... then beam search to decode

Resources

- Deep Learning the Straight Dope <u>https://gluon.mxnet.io/</u>
- A 60-minute Gluon Crash Course <u>https://gluon-crash-course.mxnet.io/</u>
- GluonCV http://gluon-cv.mxnet.io/
- GluonNLP https://gluon-nlp.mxnet.io/
- MXNet User Forum <u>http://discuss.mxnet.io/</u>
- MXNet Documentation <u>https://mxnet.apache.org/</u>

