Paper Review: A Pervasive Theory of Heterogeneity Adjustment, with Applications to Graphical Model Inference

Jianqing Fan, Han Liu, Weichen Wang, and Ziwei Zhu

Presented by Ching-Wei Cheng

February 17, 2016 (BaT Group Meeting)

Outline

Introduction

Problem Setup

The ALPHA Framework
Explicit rates of convergence
Specification test
Estimating number of factors

Conditional Graphical Model Covariance estimation Precision estimation

Numerical Studies Synthetic datasets

Discussion

- Heterogeneity is a fundamental challenge when analyzing aggregated datasets from multiple sources
 - Violation of the ideal "iid" sampling assumption and may produce misleading results
 - ► Batch/lab effect in genomics
 - In finance, varying market regime and economy status can be viewed as a temporal batch effect
- Modeling and estimating heterogeneity effect is extremely challenging
 - Limited sample sizes are accessible from an individual homogeneous distribution (experiment)
 - ► High dimensionality (Even much than total sample size)
- Existing batch-effect adjustment methods
 - are more on the practical side and none of them has a systematic theoretical justification
 - are developed in a case-by-case fashion and are only applicable to certain problem domains
- ► This paper proposes a generic theoretical framework to model, estimate, and adjust heterogeneity across multiple datasets

Overview of the proposed heterogeneity adjustment via factor models

Assume the panel data from $i^{\rm th}$ batch/lab, $1 \leq i \leq m$ (fixed), follows an approximate factor model

$$X_{jt}^{i} = \lambda_{j}^{i\mathsf{T}} f_{t}^{i} + u_{jt}^{i}, \quad 1 \le j \le p, \ 1 \le t \le n_{i}$$
 (1)

- ightharpoonup p-dimensional data with sample size n_i
- ightharpoonup Low-rank term $\lambda_j^{i\top} f_t^i$ models the heterogeneity effect
- $\triangleright \lambda_i^i$ are factor loadings
- f_t^i are the unobserved factors
 - number of factors $K^i = \dim(\mathbf{f}_t^i)$, assumed to be fixed
 - independent of u^i_{jt}
- $m u_t^i = (u_{1t}^i, \dots, u_{pt}^i)^\mathsf{T}$ shares the same common distribution with $\mathsf{E}[u_t^i] = \mathbf{0}$ and $\mathsf{Cov}(u_t^i) = \mathbf{\Sigma}$ for all $i = 1, \dots, m$

Overview of the proposed heterogeneity adjustment via factor models

Matrix representation:

$$\mathbf{X}^{i} = \mathbf{\Lambda}^{i} \mathbf{F}^{i\mathsf{T}} + \mathbf{U}^{i}$$

$${}_{(\mathbf{p} \times n_{i})} (\mathbf{F}^{i} \times n_{i}) + {}_{(\mathbf{p} \times n_{i})}$$

$$(2)$$

(Rows and columns represent dimension and observation, respectively)

Example 1

If $f_t^i \sim \mathcal{N}(\mathbf{0}, I)$ and $u_t^i \sim \mathcal{N}(\mathbf{0}, \Sigma)$, then the t^{th} observation from i^{th} data

$$oldsymbol{X}_t^i \sim \mathcal{N}(\mathbf{0}, oldsymbol{\Lambda}^i oldsymbol{\Lambda}^{i\mathsf{T}} + oldsymbol{\Sigma})$$

- lacktriangle Heterogeneity effect is modeled by the low-rank component $oldsymbol{\Lambda}^i oldsymbol{\Lambda}^{i\mathsf{T}}$
- ▶ Heterogeneity adjusted signal $\hat{U}^i = X^i \hat{\Lambda}^i \hat{F}^{i\mathsf{T}}$, treated as homogeneous across data sources
- Speaking of estimation...
 - ▶ PCA can consistently estimate F^i and Λ^i when n_i is large
 - When n_i is small, external covariate information \boldsymbol{W}^i_j (associated with the j^{th} dimension) may help to recover $\boldsymbol{\lambda}^i_j$ E.g., $\boldsymbol{\lambda}^i_j = (g^i_1(\boldsymbol{W}^i_j), \dots, g^i_{K^i}(\boldsymbol{W}^i_j))^{\mathsf{T}}$

High-dimensional Gaussian graphical model for common covariance structure

After the heterogeneity is removed...

- lacktriangle We can combine \widehat{U}^{i} 's for a Gaussian graphical model inference
- lacktriangledown For a typical p-dimensional random vector $m{u}=(u_1,\ldots,u_p)\sim\mathcal{N}(\mathbf{0},m{\Sigma})$
 - The sparsity pattern of the precision matrix $\Omega = \Sigma^{-1}$ encodes the information of an undirected graph G = (V, E)
 - lacktriangleq V consists of p vertices corresponding to p dimensions in $oldsymbol{u}$
 - ▶ E describes the dependence relationship between those p variables, i.e., $\Omega_{i,j} \neq 0$ iff X_i and X_j are linked/independent
- lacktriangle Estimate Ω by using the CLIME method of Cai *et al.* (2011)

ALPHA (Adaptive Low-rank Principal Heterogeneity Adjustment)

Goal: Recover U^i from the observation X^i and combine all the estimated U^i 's together to enhance the inferential power of Σ or $\Omega = \Sigma^{-1}$

Problem Setup

A semiparametric factor model

$$X_{jt}^{i} = (\boldsymbol{g}^{i}(\boldsymbol{W}_{j}^{i}) + \boldsymbol{\gamma}_{j}^{i})^{\mathsf{T}} \boldsymbol{f}_{t}^{i} + u_{jt}^{i}, \quad 1 \leq j \leq p, \ 1 \leq t \leq n_{i}, \ 1 \leq i \leq m$$
 (3)

- ullet $oldsymbol{W}^i_j = (W^i_{j1}, \dots, W^i_{jd})$ are the extra covariates for dimension j
- ullet $oldsymbol{g}^i:\mathbb{R}^d o\mathbb{R}^{K^i}$
- $lackbox{} \gamma^i_j$ is the loading vector that is invariant of $oldsymbol{W}^i_j$

Matrix representation:

$$m{X}^i = m{\Lambda}^i m{F}^{i\mathsf{T}} + m{U}^i \quad \text{where } m{\Lambda}^i = m{G}^i(m{W}^i) + m{\Gamma}^i, \quad 1 \leq i \leq m$$
 (4)

- ▶ $G^i(W^i)$ and Γ^i are $(p \times K^i)$ nonparametric and parametric factor loadings, where $g^i_k(W^i_j)$ and γ_{jk} are the $(j,k)^{\text{th}}$ elements
- ▶ U^i is the homogeneous signal matrix of dimension $p \times n_i$ with u^i_{jt} the $(j,k)^{\text{th}}$ element

Problem Setup

Modeling assumptions

Assumption 2.1 (Data Generating Process)

- (i) $n_i^{-1} \mathbf{F}^{i\mathsf{T}} \mathbf{F}^i = \mathbf{I}$.
- (ii) $\{ m{u}_t^i \}_{t \leq n_i, i \leq m}$ are independent within and between subgroups. $m{u}_t^i$'s are sub-Gaussian with $\mathsf{E}[m{u}_t^i] = m{0}$ and $\mathsf{Cov}(m{u}_t^i) = m{\Sigma}$ across all subgroups and are independent of $\{ m{W}_j^i, m{f}_t^i \}_t \{ m{f}_t^i \}_{t \leq n_i}$ is a stationary process, but with arbitrary temporal dependency.
- (iii) There exists a constant $C_0 > 0$ s.t. $\|\Sigma\|_2 \le C_0$.
- (iv) The tail of the factors is sub-Gaussian, i.e., $\exists C_1 > 0$ s.t. for $j \leq K^i, t \leq n_i, P(|f_{jt}^i| > t) \leq \exp(-C_1 t^2)$.
- ▶ Typical assumptions for factor models in literature
- lacktriangle Factors $oldsymbol{F}^i$ are identifiable up to an orthonormal trasformation $oldsymbol{H}^i$
 - lacktriangle We need to choose $oldsymbol{H}^i$ carefully

Regime 1: $oldsymbol{G}^i(oldsymbol{W}^i) = oldsymbol{0}$ a.s.

Modeling assumptions

- $m X^i = m \Lambda^i m F^{i\mathsf{T}} + m U^i$, reduced to traditional factor models
- ightharpoonup Find $\widehat{m{F}}^i$ first using PCA
- $lackbox{}\widehat{m{\Lambda}}^i=n_i^{-1}m{X}^im{F}^i$ and $\widehat{m{U}}^i=m{X}^i-\widehat{m{\Lambda}}^i\widehat{m{F}}^{i\mathsf{T}}$

Assumption 2.2 (General Loadings)

(i) (Pervasiveness) $\exists c_{\min}, c_{\max} > 0$ s.t.

$$c_{\min} < \lambda_{\min}(p^{-1}\boldsymbol{\Lambda}^{i\mathsf{T}}\boldsymbol{\Lambda}^{i}) < \lambda_{\max}(p^{-1}\boldsymbol{\Lambda}^{i\mathsf{T}}\boldsymbol{\Lambda}^{i}) < c_{\max}, \ a.s. \ \forall \, i.$$

- (ii) $\max_{k \le K^i, j \le p} |\lambda_{jk}^i| = O_P(\sqrt{\log p}).$
- ▶ The notion of random loadings λ^i_{jk} is natural for providing a unified theoretical treatment regime 1 and regime 2

Regime 2: $oldsymbol{G}^i(oldsymbol{W}^i) eq oldsymbol{0}$ a.s.

Modeling assumptions

 $m X^i = (m G^i(m W^i) + m \Gamma^i) m F^{i\mathsf{T}} + m U^i$, need to leverage effectsof external covariates and provide better estimates for the low-rank structure

Assumption 2.3 (Covariate-related Loadings)

(i) (Pervasiveness) $\exists c_{\min}, c_{\max} > 0$ s.t.

$$c_{\min} < \lambda_{\min}(p^{-1} \mathbf{G}^{i} (\mathbf{W}^{i})^{\mathsf{T}} \mathbf{G}^{i} (\mathbf{W}^{i}))$$
$$< \lambda_{\max}(p^{-1} \mathbf{G}^{i} (\mathbf{W}^{i})^{\mathsf{T}} \mathbf{G}^{i} (\mathbf{W}^{i})) < c_{\max}, \ a.s. \ \forall i.$$

- (ii) $\max_{k \leq K^i, j \leq p} \mathsf{E}[g_k(\boldsymbol{W}_j^i)^2] < \infty.$
- ► Semiparametric factor models can be better estimated by Projected-PCA (Fan *et al.*, 2016) if Assumption 2.3 holds
 - lacktriangle Estimate $m{f}_t^i$ first by projecting $m{X}^i$ onto the covariate space of $m{W}^i$ to reduce the magnitude of $m{u}_t^i$
 - Apply PCA on the projected data

Modeling assumptions

Assumption 2.4 (Covariate-free Loadings)

- (i) $\mathsf{E}[\gamma_{jk}^i] = 0$, $\max_{k \le K^i, j \le p} |\gamma_{jk}^i| = O_P(\sqrt{\log p})$.
- (ii) Write $\gamma^i_j=(\gamma^i_{j1},\dots,\gamma^i_{jK^i})^\mathsf{T}$. Assume $\{\gamma^i_j\}_{j\leq p}$ are independent of $\{W^i_j\}_{j\leq p}$.
- (iii) Define $\nu_p^i = \max_{k \leq K^i} p^{-1} \sum_{j \leq p} \mathsf{Var}(\gamma_{jk}^i) < \infty$. Assume

$$\max_{k \leq K^i, j \leq p} \sum_{j \prime \leq p} \left| \mathsf{E} \left[\gamma^i_{j\prime k} \gamma^i_{jk} \right] \right| = O(\nu_p).$$

The ALPHA Framework

- ► Methodologically, for each sub-dataset we aim to estimate the heterogeneity component and subtract it from the raw data
- ► Theoretically, we aim to obtain the explicit rates of convergence for both the corrected homogeneous signal and its sample covariance matrix
 - ▶ Use $\widehat{\cdot}$ and $\widetilde{\cdot}$ to represent estimates by PCA and Projected-PCA, resp.
 - ► Temporarily forget the subgroup index *i* in Theorem 3.1–3.3

Overview of the theorems:

- ▶ Theorem 3.1 provides generic asymptotic representations for \widehat{U} and $\widehat{U}\widehat{U}^\mathsf{T}$, where the detailed rates provided in Theorem 3.2 for regime 1 and Theorem 3.3 for regime 2
- lackbox From $\widehat{U}\widehat{U}^\mathsf{T}$, we can have convergence rate for $\widehat{\Sigma}$
- ▶ Theorem 4.1 gives theoretical guarantee for the CLIME solver $\widehat{\Omega}$, which takes $\widehat{\Sigma}$ as input

The ALPHA Framework

Theorem 3.1

For any $K \times K$ matrix \boldsymbol{H} s.t. $\|\boldsymbol{H}\| = O_P(1)$, if $\log p = O(n)$,

$$\widehat{\boldsymbol{U}} - \boldsymbol{U} = -\frac{1}{n} \boldsymbol{U} \boldsymbol{F} \boldsymbol{F}^{\mathsf{T}} + \boldsymbol{\Pi},$$

where

$$\|\mathbf{\Pi}\|_{\max} = O_P \left[\frac{\sqrt{\log n}}{n} \left(\|\mathbf{F}^\mathsf{T}(\widehat{\mathbf{F}} - \mathbf{F}\mathbf{H})\|_{\max} \|\mathbf{\Lambda}\|_{\max} + \|\mathbf{U}(\widehat{\mathbf{F}} - \mathbf{F}\mathbf{H})\|_{\max} \right) + \|\widehat{\mathbf{F}} - \mathbf{F}\mathbf{H}\|_{\max} \|\mathbf{\Lambda}\|_{\max} + \sqrt{\log n} \|\mathbf{H}\mathbf{H}^\mathsf{T} - \mathbf{I}\|_{\max} \|\mathbf{\Lambda}\|_{\max} \right];$$

and furthermore

$$\widehat{\boldsymbol{U}}\widehat{\boldsymbol{U}}^{\mathsf{T}} - \boldsymbol{U}\boldsymbol{U}^{\mathsf{T}} = -\frac{1}{n}\boldsymbol{U}\boldsymbol{F}\boldsymbol{F}^{\mathsf{T}}\boldsymbol{U}^{\mathsf{T}} + \boldsymbol{\Delta},$$

where

$$\begin{split} \|\boldsymbol{\Delta}\|_{\max} &= O_P \Big[\|\boldsymbol{U}(\widehat{\boldsymbol{F}} - \boldsymbol{F}\boldsymbol{H})\|_{\max} \|\boldsymbol{\Lambda}\|_{\max} + \|\boldsymbol{U}(\widehat{\boldsymbol{F}} - \boldsymbol{F}\boldsymbol{H})\|_{\max}^2 \\ &+ \|\boldsymbol{F}^\mathsf{T}(\widehat{\boldsymbol{F}} - \boldsymbol{F}\boldsymbol{H})\|_{\max} \|\boldsymbol{\Lambda}\|_{\max}^2 + n \|\boldsymbol{H}\boldsymbol{H}^\mathsf{T} - \boldsymbol{I}\|_{\max} \|\boldsymbol{\Lambda}\|_{\max}^2 \Big]. \end{split}$$

The ALPHA Framework by PCA for Regime 1

- ▶ Columns of \widehat{F}/\sqrt{n} are the top K eigenvectors of X^TX
- ▶ Denote by ${\pmb K}$ the $K \times K$ diagonal matrix of top K eigenvalues of $(np)^{-1}{\pmb X}^{\sf T}{\pmb X}$
- Define

$$\boldsymbol{H} = \frac{1}{np} \boldsymbol{\Lambda}^\mathsf{T} \boldsymbol{\Lambda} \boldsymbol{F}^\mathsf{T} \widehat{\boldsymbol{F}} \boldsymbol{K}^{-1}$$

▶ It has been shown that $\|\boldsymbol{H}\|, \|\boldsymbol{H}^{-1}\| = O_P(1)$

The ALPHA Framework by PCA for Regime 1

Theorem 3.2 (When G(W) = 0 a.s.)

Under Assumptions 2.1 and 2.2, we have $\|\mathbf{\Lambda}\|_{\max} = O_P(\sqrt{\log p})$ and

(i)
$$\|\widehat{\boldsymbol{F}} - \boldsymbol{F}\boldsymbol{H}\|_F = O_P(\sqrt{n/p} + 1/\sqrt{n})$$
 and $\|\widehat{\boldsymbol{F}} - \boldsymbol{F}\boldsymbol{H}\|_{\max} = O_P(\sqrt{\log n/p} + \sqrt{\log n}/n);$

(ii)
$$\| \mathbf{F}^{\mathsf{T}} (\hat{\mathbf{F}} - \mathbf{F} \mathbf{H}) \|_{\max} = O_P(1 + \sqrt{n}/p);$$

(iii)
$$\|\boldsymbol{U}(\widehat{\boldsymbol{F}} - \boldsymbol{F}\boldsymbol{H})\|_{\max} = O_P((1 + n/p)\sqrt{\log p} + n\|\boldsymbol{\Sigma}\|_1/p);$$

(iv)
$$\| \mathbf{H} \mathbf{H}^{\mathsf{T}} - \mathbf{I} \|_{\max} = O_P(1/n + 1/p).$$

As a result,

$$\|\mathbf{\Pi}\|_{\max} = O_P \left(\sqrt{\log n \log p} (1/\sqrt{p} + 1/n) + \sqrt{n} \|\mathbf{\Sigma}\|_1/p \right)$$
$$\|\mathbf{\Delta}\|_{\max} = O_P \left((1 + n/p) \log p + \sqrt{n} \|\mathbf{\Sigma}\|_1/p + \sqrt{n}^2 \|\mathbf{\Sigma}\|_1^2/p^2 \right)$$

The ALPHA Framework by Projected-PCA for Regime 2

- lacksquare Factor loadings $oldsymbol{\Lambda} = oldsymbol{G}(oldsymbol{W}) + oldsymbol{\Gamma}$
 - lacktriangle A function of covariates W, which is independent of Γ and U
 - Sieve approximation $G(W) \approx \Phi(W)B$
 - $\Phi(\mathbf{W})$ is a $p \times (Jd)$ matrix of basis functions
 - ▶ \boldsymbol{B} is a $(Jd) \times K$ matrix of sieve coefficients
 - J is the sieve dimension
 - ▶ The idea of Projected-PCA: $PX \approx P\Phi(W)BF^{\mathsf{T}} \approx G(W)F^{\mathsf{T}}$
- Define the projection matrix

$$P = \Phi(W) \left[\Phi(W) \Phi(W)^{\mathsf{T}} \right]^{-1} \Phi(W)^{\mathsf{T}}$$

- ▶ Columns of \widetilde{F}/\sqrt{n} are the top K eigenvectors of $X^{\mathsf{T}}PX$
- ▶ Define by \boldsymbol{K} the $K \times K$ diagonal matrix of top K eigenvalues of $(np)^{-1}\boldsymbol{X}^\mathsf{T}\boldsymbol{P}\boldsymbol{X}$
- Define

$$\boldsymbol{H} = \frac{1}{np} \boldsymbol{B}^\mathsf{T} \boldsymbol{\Phi}(\boldsymbol{W})^\mathsf{T} \boldsymbol{\Phi}(\boldsymbol{W}) \boldsymbol{B} \boldsymbol{F}^\mathsf{T} \widetilde{\boldsymbol{F}} \boldsymbol{K}^{-1}$$

► Similarly, $\|H\|$, $\|H^{-1}\| = O_P(1)$

The ALPHA Framework by Projected-PCA for Regime 2

Theorem 3.3 (When $G(W) \neq 0$ a.s.)

Choose $J=(p\min(n,p,\nu_p^{-1}))^{1/\kappa}$ and assume $J^2\phi_{\max}^2\log(nJ)=O(p)$, where $\phi_{\max}=\max_{\nu\leq J}\sup_{x\in\mathcal{X}}\phi_{\nu}(x)$. Under Assumptions 2.1, 2.3, 2.4, 3.1 and 3.2 (for basis functions and sieve approximation), as $p,J\to\infty$, n can be either divergent or bounded, we have $\|\mathbf{\Lambda}\|_{\max}=O_P(J\phi_{\max}+\sqrt{\log p})$ and

(i)
$$\|\widetilde{F} - FH\|_F = O_P(\sqrt{n/p})$$
 and $\|\widetilde{F} - FH\|_{\max} = O_P(\sqrt{\log n/p})$;

(ii)
$$\|\mathbf{F}^{\mathsf{T}}(\widetilde{\mathbf{F}} - \mathbf{F}\mathbf{H})\|_{\max} = O_P(\sqrt{n/p} + n/p + n\sqrt{\nu_p/p});$$

(iii)
$$\|\boldsymbol{U}(\boldsymbol{F} - \boldsymbol{F}\boldsymbol{H})\|_{\max} = O_P(\sqrt{n\log p/p} + nJ\phi_{\max}\|\boldsymbol{\Sigma}\|_1/p);$$

(iv)
$$\| \mathbf{H} \mathbf{H}^{\mathsf{T}} - \mathbf{I} \|_{\max} = O_P(1/p + 1/\sqrt{pn} + \sqrt{\nu_p/p}).$$

As a result,

$$\begin{split} \|\mathbf{\Pi}\|_{\text{max}} &= O_P \left(\sqrt{\log n \log p / p} + \sqrt{\log n} \|\mathbf{\Sigma}\|_1 / p \right) \\ \|\mathbf{\Delta}\|_{\text{max}} &= O_P \left(n \sqrt{\nu_p / p} (J^2 \phi_{\text{max}}^2 + \log p) \right. \\ &+ n J \phi_{\text{max}} \|\mathbf{\Sigma}\|_1 / p (J \phi_{\text{max}} + \sqrt{\log p}) + n^2 J^2 \phi_{\text{max}}^2 \|\mathbf{\Sigma}\|_1^2 / p^2 \right) \end{split}$$

if there exists C s.t. $\nu_n > C/n$

The ALPHA Framework

Specification test

To test $H_0^i: m{G}^i(m{W}^i) = m{0}$ a.s., Fan et al. (2016) proposed a testing statistic

$$S^i = rac{1}{p} \operatorname{tr} \left(oldsymbol{\Xi}^i \widehat{oldsymbol{\Lambda}}^{i\mathsf{T}} oldsymbol{P}^i \widehat{oldsymbol{\Lambda}}^i
ight) \quad ext{where} \quad oldsymbol{\Xi}^i = \left(rac{1}{p} \widehat{oldsymbol{\Lambda}}^{i\mathsf{T}} \widehat{oldsymbol{\Lambda}}^i
ight)^{-1}$$

Theorem 3.4 (Specification test)

Under all assumptions above, if additionally $\{ {m W}_j^i, {m \gamma}_j^i \}_{j \leq p}$ are iid, as $p, n^i, J \to \infty$, we have under $H_0^i: {m G}^i({m W}^i) = {m 0}$ a.s.,

$$\frac{pS^i - JdK^i}{\sqrt{2JdK^i}} \stackrel{D}{\to} \mathcal{N}(0,1).$$

- ▶ Under H_0 , Λ^i has nothing to do with W^i and so S^i should be close to 0 after projection
- lacksquare If H^i_0 is rejected, we identify $oldsymbol{X}^i$ as regime 2 and apply Projected-PCA

The ALPHA Framework

Estimating number of factors

- lackbox We have assumed observed K^i for each subgroup, but practically it needs to be estimated
- ▶ For regime 1...
 - ▶ Define $\hat{K}^i = \arg\max_{k < K_{\max}} \lambda_k(\boldsymbol{X}^{i\mathsf{T}}\boldsymbol{X}^i)/\lambda_{k+1}(\boldsymbol{X}^{i\mathsf{T}}\boldsymbol{X}^i)$
 - $P(\widehat{K}^i = K^i) \to 1$
- ▶ For regime 2...
 - ▶ Define $\widetilde{K}^i = \arg\max_{k \le K_{\max}} \lambda_k(X^{i\top}P^iX^i)/\lambda_{k+1}(X^{i\top}P^iX^i)$
 - $P(\widetilde{K}^i = K^i) \to 1$
- ▶ By slightly altering the original assumptions of Ahn and Horenstein (2013) and Fan *et al.* (2016), we have $P(\widehat{K}^i = K^i, \forall i \leq m) \rightarrow 1$ and $P(\widetilde{K}^i = K^i, \forall i \leq m) \rightarrow 1$
- ▶ Given \widehat{K}^i for regime 1 and \widetilde{K}^i for regime 2, we can treat the problem as if the number of factors for all subgroups are already known to us

- $lackbox{lack}$ Assume $oldsymbol{u}_t^i \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Sigma})$ with $\|oldsymbol{\Sigma}\|_1$ bounded
- ▶ Let

$$\widehat{m{V}}^i = \left\{ egin{array}{ll} \widehat{m{U}}^i & ext{for regime 1} \ \widetilde{m{U}}^i & ext{for regime 2} \end{array}
ight.$$

and estimate Σ by

$$\widehat{\Sigma} = \frac{1}{N - K^{tot}} \sum_{i=1}^{m} \widehat{V}^{i} \widehat{V}^{i\mathsf{T}}$$
 (5)

where
$$K^{tot} = \sum_{i=1}^{m} K^{i}$$

- Define
 - $\mathcal{M}_1 = \{i \leq m : G^i(W^i) = 0 \ a.s.\}$
 - $\mathcal{M}_2 = \{i \leq m : G^i(W^i) \neq 0 \text{ a.s.}\}$

Covariance estimation

- ▶ The oracle $\Sigma_N = N^{-1} \sum_{i=1}^m U^i U^{i\mathsf{T}}$ attains the rate $\|\Sigma_N \Sigma\|_{\max} = O_P(\sqrt{\log p/N})$
- ▶ By standard concentration bound,

$$\left\| \sum_{i=1}^{m} \left(\frac{1}{n_i} \mathbf{U}^i \mathbf{F}^i \mathbf{F}^{i\mathsf{T}} \mathbf{U}^{i\mathsf{T}} - K^i \mathbf{\Sigma} \right) \right\|_{\max} = O_P \left(\sqrt{K^{tot} \log p} \right)$$

▶ Therefore

$$\|\widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}_N\|_{\max} \le O_P \left(\frac{|\mathcal{M}_1| \log p}{N} + \frac{N_2 \log p}{N} \sqrt{\frac{\nu_p}{p}} + \frac{\sqrt{K^{tot} \log p}}{N} + \frac{K^{tot}}{N} \sqrt{\frac{\log p}{N}} \right)$$

$$=: O_P(a_{m,N,p})$$
(6)

Covariance estimation

- If all $i \in \mathcal{M}_1$ and $K^i \leq K_{\max} = O(1)...$
 - $a_{m,N,p} = m \log p/N$
 - ▶ Dominated by oracle rate $\sqrt{\log p/N} \iff m = O(\sqrt{N/\log p})$
 - lacktriangleright PCA works optimally when m does not grow too quickly
- ▶ If all $i \in \mathcal{M}_2$ and $K^i \leq K_{\max} = O(1)...$
 - $a_{m,N,p} = \sqrt{\nu_p/p} \log p + \sqrt{m \log p}/N$
 - ▶ Smaller than $\sqrt{\log p/N}$ if $p/\log p > CN$ for some C > 0
 - ▶ Good convergence can still be achieved even when m
 moderant N as long as p is large enough (Blessing of dimensionality)

Precision estimation

For a given $\widehat{\Sigma}$, CLIME solves the optimization problem

$$\widehat{\boldsymbol{\Omega}} = \mathop{\arg\min}_{\boldsymbol{\Omega}} \|\boldsymbol{\Omega}\|_{1,1} \quad \text{subject to } \|\widehat{\boldsymbol{\Sigma}}\boldsymbol{\Omega} - \boldsymbol{I}\|_{\max} \leq \lambda$$

where $\|\Omega\|_{1,1} = \sum_{i,j \le n} |\sigma_{i,j}|$ and λ is a tuning parameter

▶ Given C_0 and s, consider the sparse precision matrix class

$$\mathcal{F}(s, C_0) = \left\{ \mathbf{\Omega} : \mathbf{\Omega} \succ \mathbf{0}, \|\mathbf{\Omega}\|_1 \le C_0, \max_{1 \le i \le p} \sum_{j=1}^p \mathbb{1}(\Omega_{i,j} \ne 0) \le s \right\}$$

Theorem 4.1

Suppose $\Omega \in \mathcal{F}(s,C_0)$ and $\widehat{\Sigma}$ given by (5) attains the rate

$$\|\widehat{\Sigma} - \Sigma_N\|_{\max} = O_P(a_{m,N,p})$$
 in (6). Letting $\tau_{m,N,p} = \sqrt{\log p/N} + a_{m,N,p}$ and $\lambda \asymp \tau_{m,N,p}$, we have

$$\|\widehat{\mathbf{\Omega}} - \mathbf{\Omega}\|_{\max} = O_P(\tau_{m,N,p}).$$

Furthermore.

$$\|\widehat{\Omega} - \Omega\|_1, \|\widehat{\Omega} - \Omega\|_2 = O_P(s\tau_{m,N,p}).$$

- Brain image network data ADHD-200
 - ► Contains rs-fMRI images of 688 subjects (491 healthy, 197 diseased)
 - ▶ 16 (13 healthy, 3 diseased) were dropped due to missing values
 - m = 672 subjects in this analysis
- lacktriangle Divided the whole brain into p=264 seed regions
- ▶ Each brain was scanned multiple times $(76 \le n_i \le 261)$
- lacktriangle Physical locations of the brain as covariates W (d=1 and discrete)
 - The level of batch effect is non-uniform over different locations of the brain when scanned in fMRI machine
 - Spatial adjacency does not necessarily imply brain functional connectivity (graph structure)
 - lacksquare Split 264 regions into J=10 clusters by hierarchy clustering
 - Sieve basis are $1(w 0.5 \le W < w + 0.5), w = 1, ..., 10$
- $K_{\text{max}} = 5$

Synthetic datasets

- Simulation settings:
 - 1. $m = 500, n_i = 10, p = 100, 200, \dots, 600$ and $G(W) \neq 0$
 - 2. $m = 100, 200, \dots, 1000, n_i = 10, p = 264$ and $G(W) \neq 0$
 - 3. $m = 100, n_i = 10, 20, \dots, 100, p = 264 \text{ and } G(W) \neq 0$
 - 4. $m = 20, 40, \dots, 200, n_i = 20, 40, \dots, 200, p = 264$ and G(W) = 0
- Model calibration and data generation:
 - 1. For $j \leq p$, generate iid covariates from multinomial distribution $P(W_j = s) = w_s, s = 1, \dots, 10$, where $\{w_s\}$ are calibrated with the hierarchy clustering results of the real data
 - 2. Calibrate the parameters (e.g., Σ, f_t^i, Λ^i , etc.) from the first 15 subjects in the healthy group

- ightharpoonup Estimation of Σ
 - 1. Blassing of dimensionality
 - 2. Blessing of increasing sample sizes
 - 3. PCA ourperforms Projected-PCA when n_i is large enough (when $p/\log p = O(N)$)
 - For fixed m, $\|\widehat{\mathbf{\Sigma}} \mathbf{\Sigma}\|_{\max} = O_P(\sqrt{\log p/N})$ and $\|\widetilde{\mathbf{\Sigma}} \mathbf{\Sigma}\|_{\max} = O_P(\sqrt{\log p/p})$
 - 4. PCA is much better since covariates have no explanation power at all
 - "nPCA" corresponds to no heterogeneity adjustment
- \blacktriangleright Estimation of Ω : similar results

Discussion

- ► A generic methodology ALPHA for heterogeneity adjustment
 - Consistently estimate and remove data heterogeneity
 - ► Flexible to include external information
- Future work
 - Pervasive conditions may be relaxed to allow for weaker signal batch effect
 - Finding practical interpretations of the estimated factors

Selected References

- Ahn, S. C. and Horenstein, A. R. (2013) Eigenvalue ratio test for the number of factors. *Econometrica*, **81**, 1203–1227. URL http://dx.doi.org/10.3982/ECTA8968.
- Cai, T., Liu, W. and Luo, X. (2011) A constrained ℓ₁ minimization approach to sparse precision matrix estimation. *Journal of the American Statistical Association*, **106**, 594–607. URL http://dx.doi.org/10.1198/jasa.2011.tm10155.
- Fan, J., Liao, Y. and Wang, W. (2016) Projected principal component analysis in factor models. *The Annals of Statistics*, **44**, 219–254. URL http://dx.doi.org/10.1214/15-AOS1364.