Students Name: CSC242, Spring 2018 Assignment: Final Exam Review Please follow these instructions EXACTLY. Print out this document. All of the answers will be hand-written on this document • Put your name on the document. • Write your answers legibly. If I can't read it, it's wrong. Show your work on these pages. You may draw/scribble on them. The day of the Final Exam, physically hand in this document You may hand in this assignment early. Do so at my office. 1. Convert unsigned Decimal 86 to a. Binary _____ b. Hex 2. Convert signed decimal value **-120** to a. Binary _____ 3. Convert signed decimal value 200.0625 a. Binary . _____ . 4. If a computer uses 8-bit two's complement as a signed integer representation, what is the a. Largest number (positive), in decimal b. Smallest number (negative), in decimal c. Largest number (positive), in binary d. Smallest number (negative), in binary. 5. How many bits are required to address a 32M x 16 main memory (this notation means the memory has 32x2²⁰ words and each word has 16 bits) a. Main memory is word-addressable. b. Main memory is byte-addressable.

6. Simplify:
$$F(x,y,z) = (x + y) (x + y') (xz')'$$

a. Answer: _____

Students Name:		

CSC242, Spring 2018

Assignment: Final Exam Review

7. Simplify using a Karnaugh Map:

$$x'y'z' + xy'z' + x'y'z + xyz' + x'yz + x'yz'$$

$X \setminus YZ$	00	01	11	10
0	1	1	1	1
1	1	0	0	1

Answer: _____

8. Write the Boolean expression in the Sum-of-products form

X	Y	Z	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Boolean Expression:

9. What is the 1 gate that is considered the Universal Gate?

10. List the two types of sequential Circuits?

a. _____

b.

Students Name:	
Students Name:	

CSC242, Spring 2018

Assignment: Final Exam Review

- 11. Assume you have a byte-addressable machine that uses 32-bit integers and you are storing the Hex value **2B31** at address 0.
 - a. How is this value stored on a Big Endian machine?
 - b. How is this value stored on a Little Endian Machine?

Address	00	01	10	11
Big Endian				
Little Endian				

12.	If I	want	to des	sign a	two-	byte	register,	how	many	D	flip-f	lops	do l	l need	!?

Students Name:	
----------------	--

CSC242, Spring 2018

Assignment: Final Exam Review

13. Consider the MARIE program below. What is stored in the AC when the program completes?

Answer: _____

Hex	Label,	
Address	Start	Instruction
100		LOAD A
101		LOAD B
102		STORE D
103		CLEAR
104		OUTPUT
105		ADDI D
106		STORE B
107		HALT
108	Α,	HEX OOFC
109	В,	DEC 266
10A	С,	HEX 0108
10B	D,	HEX 0000