Sheaves on Manifolds Exercise II.19 の解答

ゆじとも

2021年2月9日

Sheaves on Manifolds [Exercise II.19, KS02] の解答です。

II Sheaves

本文では、局所コンパクト空間であるという場合には、ハウスドルフ性を常に仮定していることに注意しておく (cf. 本文 [Proposition 2.5.1, KS02] 直前の記述)。

問題 II.19. X を局所コンパクト空間として、A を可換環で $\operatorname{wgld}(A) < \infty$ であるものとする。 $F \in \mathsf{D}^+(A_X)$ として、 $\Omega, Z \subset X$ をそれぞれ開集合と閉集合とする。 a_X を一意的な射 $X \to \{\operatorname{pt}\}$ とする。以下を示せ:

$$R\Gamma(\Omega, F) \cong Ra_{X*}R\mathcal{H}om(A_{\Omega}, F),$$
 (1)

$$R\Gamma_c(\Omega, F) \cong Ra_{X!}(A_{\Omega} \otimes^L F),$$
 (2)

$$R\Gamma_Z(X,F) \cong Ra_{X*}R\mathcal{H}om(A_Z,F),$$
 (3)

$$R\Gamma_c(Z, F) \cong Ra_{X!}(A_Z \otimes^L F).$$
 (4)

証明. (1) と (3) を示す。F を入射的とすると、本文 [Proposition 2.4.6 (vii), KS02] より、 $\mathcal{H}om(-,F)$ は脆弱層である。従って、 $a_{X*}=\Gamma(X,-)$ に関して acyclic である。よって

$$R(a_{X*} \circ \mathcal{H}om(A_{\Omega}, -)) \cong Ra_{X*} \circ R\mathcal{H}om(A_{\Omega}, -), \quad R(a_{X*} \circ \mathcal{H}om(A_{Z}, -)) \cong Ra_{X*} \circ R\mathcal{H}om(A_{Z}, -),$$

が成り立つ。ここで $\Omega \subset X$ は開であるので、 $a_{X*} \circ \mathcal{H}om(A_{\Omega}, -) \cong \Gamma(\Omega, -)$ が成り立ち、 $Z \subset X$ は閉であるので、 $a_{X*} \circ \mathcal{H}om(A_{Z}, -) \cong \Gamma_{Z}(X, -)$ が成り立つ。よって

$$R\Gamma(\Omega, -) \cong Ra_{X*} \circ R\mathcal{H}om(A_{\Omega}, -), \quad R\Gamma_{Z}(X, -) \cong Ra_{X*} \circ R\mathcal{H}om(A_{Z}, -),$$

が成り立つ。以上で(1)と(3)の証明を完了する。

(2) と (4) を示す。Z を局所閉集合とする。 A_Z は A_X -flat なので、 $A_Z \otimes^L (-) \cong A_Z \otimes (-)$ が成り立つ。また、本文 [Proposition 2.3.10, KS02] より、 $A_Z \otimes (-) \cong (-)_Z$ が成り立つ。さらに、 $(-)_Z$ は完全函手であるので、従って、

$$Ra_{X!} \circ (-)_Z \cong R(a_{X!} \circ (-)_Z) \cong R\Gamma_c(Z, -)$$

が成り立つ。Z を開または閉とすることにより、(2) と (4) が従う。以上で問題 II.19 の解答を完了する。 \square

References

[KS02] M. Kashiwara and P. Schapira. Sheaves on Manifolds. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2002. ISBN: 9783540518617. URL: https://www.springer.com/jp/book/9783540518617.