Machine learning: un tour d'horizon

Quentin de Laroussilhe

April 18, 2014

- 1 Introduction
- 2 Concepts généraux
- 3 Modèles de regression
- 4 Modèles de classification
- 5 Clustering et réduction dimensionnelle
- 6 Conclusion

Introduction

Apprentissage

Mécanismes conduisant à l'acquisition de nouveaux savoirs et de nouvelles compétences.

Vecteurs d'apprentissage

- Répétition, mémorisation
- Inférence
- Abstraction
- Intuition
-

Apprentissage automatique

Un algorithme d'apprentissage permet d'entrainer un modèle destiné à approcher les solutions d'une instance d'un problème.

Ils permettent de résoudre des problèmes sur de larges volumes de données qu'il serait impossible de traiter avec des moyens algorithmiques traditionnels.

Quelques applications

- Reconnaissance de caractères, traitement image et parole
- Trading automatisé
- Moteurs de recherche / suggestion
- Business intelligence
- Robotique

Concepts généraux

Dataset

Feature extraction

L'extraction de feature a pour but de caractériser les données d'apprentissage.

- Réduction de la dimension du problème
- Définies par un exepert ou un algorithme

Exemples

- Individu : {poids, age, taille, ...}
- Programme informatique : {AST, report d'une test suite}
- Caractère : {valeur des pixels du caractère redimensionné}
- Cours boursier : {open, close, high, low}

Apprentissage supervisé

Type d'apprentissage visant à apprendre à partir d'un ensemble d'exemples étiquetés à étiqueter des éléments inconnus.

Autrement formulé, à partir d'un set d'input et d'un set d'output, on cherche à trouver la relation liant input et output.

Apprentissage supervisé : classification

Un problème de classification consiste à trouver une relation entre un input et une classe, parmis un set fini de classes possibles.

Exemples

- Détection du visage, classes = {présence, absence}
- OCR, classes = {caracteres identifiables}

Apprentissage supervisé : régression

Un problème de regression consiste à trouver la relation liant les variables d'un dataset à une variable de prediction.

Exemples

- Prévision de la fréquentation des routes
- Prévision de la charge d'un serveur
- Estimation de la consommation d'electricité d'un menage

Apprentissage non-supervisé

Extraire des patterns (structure sous-jacente) dans un training set non étiqueté. On observe un set de données pour trouver les relations cachées qui s'y trouvent.

Syntastic and functional variability of code submission in a ML course, Stanford University

Apprentissage par renforcement

Apprendre un comportement (policy) optimal au sein d'un environnement en se basant sur un feedback régulier de la série d'actions effectuée.

- Béhaviorisme (Pavlov, Watson, Skinner)
- Black-box
- Contingence de renforcement : {state, action, reward}

Apprentissage par renforcement : policy search

Exploration de l'espace des comportements de façon a maximiser le nombre de récompenses reçues.

- Utilisation de metaheuristiques
- Problème d'optimisation complexe
- Optimums locaux, No Free Lunch...

Tradeoff biais variance

Il est impossible d'effectuer un apprentissage sans poser un apprioris (un biais) sur les données que l'on étudie.

Définitions

- Biais : à quel point le modèle est "flexible"
- Variance : à quel point le résultat d'apprentissage va varier suite à d'une faible modification du training set

Tradeoff biais variance

- Plus le biais est faible, plus la variance augmente, inversement
- Une variance forte implique une faible tolérance au bruit, une généralisation moins importante
- Un biais trop fort empêche de trouver un modèle qui va fitter le training set

Tradeoff biais variance

High bias (underfit)

Choisir un modèle d'apprentissage

Le modèle va imposer un biais sur l'apprentissage.

Comment choisir?

- Etude ou hypothese de la répartition dataset
- Comparaison de plusieurs modèles
- Meta-learning

Valider un modèle

Il est nécessaire de tester le modèle une fois entrainé. On ne peut tester le modèle sur les données servant à l'entrainement (une interpolation polynomiale de degré n peut approximer exactement n-1 exemples).

Cross validation:

Modèles de regression

Notations

Training set

$$T = \begin{bmatrix} 1, T_{1,1}, ..., T_{1,k} \\ 1, T_{2,1}, ..., T_{2,k} \\ ... \\ 1, T_{n,1}, ..., T_{n,k} \end{bmatrix}$$

- $T_i \in \mathbb{R}^k$ est le i^{eme} vecteur d'exemple
- k features
- n exemples

Régression linéaire

Régression linéaire

Relation linéaire à ajuster par pondération

On va chercher à modéliser une relation inconnue $F: \mathbb{R} \mapsto \mathbb{R}$ par une relation linéaire de la forme :

$$f: X \to \sum_{i=0}^k (X_i W_i)$$

Régression linéaire : batch gradient descent

Erreur =
$$\epsilon = \frac{1}{2} \sum_{i=1}^{n} (f(T_i) - F(T_i))^2$$

$$\frac{\partial \epsilon}{\partial W} = \left[\frac{\partial \epsilon}{\partial W_0}, ..., \frac{\partial \epsilon}{\partial W_k} \right]$$

Régression linéaire : batch gradient descent

$$Erreur = \epsilon = \frac{1}{2} \sum_{i=1}^{n} (f(T_i) - F(T_i))^2$$

Expression du gradient

$$\frac{\partial \epsilon}{\partial W_j} = \sum_{i=1}^n T_{i,j}(f(T_i) - F(T_i))$$

Suivre la pente de l'erreur

$$W_j := W_j - \alpha \frac{\partial \epsilon}{\partial W_j}$$

Perceptron

Réseaux de neurones (MLP)

Optimums locaux

Modèles de classification

K-nn

k-nearest neighbors

Points clefs

- Apprentissage supervisé
- Algorithme de classification
- Décision en fonction de la classe des k plus proches exemples du training set
- Vote à la majorité
- Couteux sur le calcul de la distance entre les points

K-nn

Decision tree

Decision tree

Decision tree: ID3

Weekend (Example)	Weather	Parents	Money l	Decision (Category)
W1	Sunny	Yes	Rich	Cinema
W2	Sunny	No	Rich	Tennis
W3	Windy	Yes	Rich	Cinema
W4	Rainy	Yes	Poor	Cinema
W5	Rainy	No	Rich	Stay in
W6	Rainy	Yes	Poor	Cinema
W7	Windy	No	Poor	Cinema
W8	Windy	No	Rich	Shopping
W9	Windy	Yes	Rich	Cinema
W10	Sunny	No	Rich	Tennis

Decision tree: ID3

- Inductive Dichotomiser 3
- Classifie selon des features booléennes ou parmis un set fini de classe
- Biais : Construction greedy de l'arbre basé sur une mesure d'entropie

Algorithme

- Calcul du gain d'information pour chaque split possible
- Choix de la feature présentant le gain d'information le plus fort pour splitter
- 3 Récursion jusqu'à ce que toutes les features aient été selectionné ou qu'il n'y ait plus d'exemples
- 4 Classe choisie en feuille : vote à la majorité

Entropie

$$H(S) = -\sum_{x \in X} p(x) log_2 p(x)$$

- X : L'ensemble des classes possibles
- p(x): Ratio des elements de S qui sont de classe x

Gain d'information

$$G(F_k) = H(S) - \sum_{t \in T} p(t)H(T)$$

- \blacksquare T : Différents subsets après découpage selon F_k
- p(t) : Ratio d'elements de S qui sont de classe x

Random forest

Tree bagging

Si l'on possède n arbres de decisions, on peut prendre la décision finale selon un vote à la majorité.

Random forest

- On construit n arbres de decisions sur un subset d'exemples du training-set.
- Chaque arbre est construit selon un subset de features aléatoire

SVM

Objectif

Trouver un hyperplan séparateur à marge maximale de deux classes d'exemples.

- On ne peut pas résoudre le problème avec un classifieur linéaire
- On projete les données dans un espace de dimension supérieure où il existe un hyperplan séparateur

Transformation vers l'espace de redescription

 $\varphi: S \to V$ où V est appelé espace de redescription.

$$\varphi:(x,y)\mapsto(x,y,x^2+y^2)$$

On peut exprimer le produit scalaire dans l'espace de redescription directement depuis l'espace d'origine grace à une fonction appelée kernel qui vérifie la condition de Mercer.

$$K(x,y) = \langle \varphi(x), \varphi(y) \rangle_V$$

Le calcul du produit scalaire ne coute plus O(dim(V)) ce qui pouvait mener à des calculs trop complexes.

Exemple de kernel

Kernel polynomial :
$$K(x, y) = (\langle x, y \rangle + k)^d$$

Clustering et réduction dimensionnelle

Clustering

Il peut-être intéressant de partitionner les données en plusieurs clusters partageant des caractéristiques communes.

Intérêts

- Segmentation
- Extraction de connaissance
- Réduction du nombre d'exemples

Réduction dimensionnelle

Quand le nombre de features est important :

- Le modèle sera complexe à entrainer
- Il est probable que certaines features soient corrélées
- Certaines features peuvent s'avérer inutiles pour résoudre le problème

Dans ce cas, il est possible d'effectuer une réduction dimensionnelle avant l'algorithme d'apprentissage supervisé.

K-moyenne

Points clefs

- Algorithme de clustering
- Basé sur la distance entre les points
- NP-difficile

Algorithme

- Placer k barycentres dans l'espace
- Assigner chaque point au barycentre le plus proche pour former k clusters
- 3 Recalculer les k barycentres de chaque cluster
- 4 Tant que les barycentres bougent, goto 2!

K-moyenne : partition de Voronoi

Objectif

Décoreler ou débruiter des features en explicitant une transformation linéaire pour les projeter dans un espace plus représentatif.

Methode

- Trouver une base orthogonale sur laquelle projeter les données de façon à maximiser la variance sur chaque axe.
- Trouver une base orthogonale sur laquelle projeter les données de façon à minimiser la distance entre les points et leurs projetés.

Covariance

Soient X et Y des vecteurs contenant chacun n valeurs d'une feature :

$$cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (X_i - moy(X))(Y_i - moy(Y))$$

Matrice de covariance

$$\Sigma = \begin{bmatrix} cov(X_1, X_1) & \dots & cov(X_1, X_k) \\ \dots & \dots & \dots \\ cov(X_1, X_k) & \dots & cov(X_k, X_k) \end{bmatrix}$$

Réduction vers un espace de dimension k

- Recentrer le centre du nuage de point à l'origine
- 2 Calcul de la matrice de covariance
- 3 Calcul des vecteurs propres et les valeurs propres de la matrice
- 4 Trier les vecteurs propres en fonction des valeurs propres
- Construire la matrice B contenant k vec. propres (un par ligne)
- **6** Projeter les points via la tansformation p(X) = BX

Deep-learning

- Préentrainement non supervisé de réseaux de neurones multicouches
- Puis apprentissage supervisé du problème à résoudre en utilisant l'abstraction fournie par le préentrainement.
- Bons résultats dans la reconnaissance d'image (convolutionary NN)

Autoencoders

Denoising autoencoder

Globalement le même principe que l'autoencoder, mis à part que l'on rajoute du bruit dans les données et on demande à l'autoencoder de reconstruire les données sans le bruit.

Article: mrlabs.org/?p=62

Stacked denoising autoencoder

Entrainement successif de denoising autoencoders, en réduisant petit à petit le nombre de dimensions au fur et à mesure des couches.

Conclusion

- Python
 - scipy (numpy, matplotlib, iPython)
 - matplotlib (Dataviz, animations)
 - theano (Deep learning, transparent GPU computing)
 - iPython notebook (atelier de calcul scientifique webbrowser)
- C/C++
 - Boost uBlas (Basic linear algebra library)
- Matlab

Questions

Des questions ?

Contact

Mail: q.delaroussilhe@underflow.fr

 ${\sf Blog: http://www.underflow.fr}$