ESTRUCTURAS ALGEBRAICAS. Problemas. 19 de Octubre.

Ejercicio 1. Hoja 3. Decimos que G actúa transitivamente sobre Ω si para todo par de elementos $\alpha, \beta \in \Omega$ existe un $g \in G$ tal que $g \cdot \alpha = \beta$.

- (a) Demuestra que si G actúa sobre Ω entonces G actúa transitivamente sobre la órbita de cada $\alpha \in \Omega$.
- (b) Prueba que S_n actúa transitivamente sobre $\Omega = \{1, \dots, n\}$ por evaluación.

Solución:

(a) Sea $[\alpha] = \{g \cdot \alpha : g \in G\}$ la órbita de $\alpha \in \Omega$. Decimos que G actúa transitivamente sobre $[\alpha]$ si para cada par de elementos $\beta_1, \beta_2 \in \Omega$ existe un elemento $g \in G$ tal que $\beta_1 = g \cdot \beta_2$. Para todo $\beta_i \in [\alpha]$, existe algún $g_i \in G$ tal que $\beta_i = g_i \cdot \alpha$. Observamos que

$$\beta_2 = g_2 \cdot \alpha \implies g_2^{-1} \cdot \beta_2 = g_2^{-1} \cdot (g_2 \cdot \alpha) = \alpha.$$

De donde deducimos que

$$\beta_1 = g_1 \cdot \alpha = g_1 \cdot (g_2^{-1} \cdot \beta_2) = (g_1 g_2^{-1}) \cdot \beta_2.$$

(b) Sean $a, b \in \{1, ..., n\}$. Consideramos el elemento $\sigma \in S_n$ definido como

$$\sigma(a) = b$$
, $\sigma(b) = a$, $\sigma(c) = c$, si $c \neq a, b$.

Es claro que con la acción de evaluación tenemos que $\sigma \cdot a = b$. Por tanto, S_n actúa transitivamente sobre $\{1, \ldots, n\}$.

Ejercicio 2. Hoja 3. Demuestra que S_4 tiene un subgrupo H isomorfo a D_8 .

Pista:

Definir una acción de D_8 en $\Omega = \{1, 2, 3, 4\}$. Para ello, identifica los elementos de Ω con los vértices de un cuadrado en el plano, cuyo centro sea el origen de coordenadas, y los elementos de D_8 con movimientos en el plano, como se definió en clase.

Denotamos $\cdot: D_8 \times \Omega \to \Omega$ la acción de D_8 en Ω . De manera natural, podemos asociarle un homomorfismo de grupos

$$\rho: G \to S_4, \quad g \mapsto \rho_q, \quad \text{donde } \rho_q(a) = g \cdot a.$$

Observa que $\ker(\rho) = \{g \in G : g \cdot a = a, \ \forall a \in \Omega\} = \{1\}$. Finalmente, aplica el Primer Teorema de Isomorfía para concluir que $G \cong \operatorname{im}(\rho) \leq S_4$.

Ejercicio 3. Hoja 3. Sean $H, K \leq G$ subgrupos finitos y $g \in G$. Probad que

$$|HgK| = \frac{|H||K|}{|g^{-1}Hg \cap K|}.$$

Deducid que

$$|HK| = \frac{|H||K|}{|H \cap K|} \,.$$

Solución:

Para probar la fórmula del enunciado usaremos la relación entre el número de elementos de las órbitas, el orden del grupo y el orden del centralizador. Definimos una acción del grupo $H \times K$ sobre el grupo G dada por

$$(H \times K) \times G \to G, \quad ((h,k),g) \mapsto (h,k) \cdot g := hgk^{-1}.$$

Comprobamos que es una acción bien definida. Para todo $g \in G$, $(h,k), (h',k') \in H \times K$, se tiene:

$$(e,e) \cdot g = ege^{-1} = ge = g$$

$$(h,k)\cdot(h',k')\cdot g = (h,k)\cdot h'gk'^{-1} = hh'gk'^{-1}k^{-1} = (hh')g(kk')^{-1} = (hh',kk')\cdot g.$$

Observamos que

$$\mathcal{O}(g) = \{(h,k) \cdot g \colon (h,k) \in H \times K\} = \{hgk^{-1} \colon h \in H, k \in K\} = HgK^{-1} = HgK.$$

$$(H \times K)_g = \{(h, k) \in H \times K : (h, k) \cdot g = g\} = \{(h, k) \in H \times K : hgk^{-1} = g\}$$

= $\{(h, k) \in H \times K : g^{-1}hg = k\} \cong g^{-1}Hg \cap K$

Por tanto, tenemos que

$$|HgK| = |\mathcal{O}(g)| = \frac{|H \times K|}{|(H \times K)_g|} = \frac{|H||K|}{|g^{-1}Hg \cap K|}.$$

Tomando g = e en la fórmula anterior, obtenemos

$$|HK| = \frac{|H||K|}{|H \cap K|} \,.$$

Ejercicio 6. Hoja 3. Si un grupo G actúa sobre un conjunto Ω , probad que para cada $\alpha \in \Omega$ y $g \in G$ se cumple que

$$G_{g\cdot\alpha}=g\ G_{\alpha}\ g^{-1}$$
.

Concluid que si G actúa transitivamente sobre Ω entonces los estabilizadores de elementos de Ω son subgrupos conjugados de G.

Solución:

Recordamos que $G_{\alpha} = \{g \in G : g \cdot \alpha = \alpha\}$ y $G_{g \cdot \alpha} = \{g' \in G : g' \cdot (g \cdot \alpha) = g \cdot \alpha\}$. Sea $g' \in G_{\alpha}$, observamos que

$$(gg'g^{-1})\cdot(g\cdot\alpha)=(gg'g^{-1}g)\cdot\alpha=g\cdot(g'\cdot\alpha)=g\cdot\alpha.$$

Por tanto, $g' \in G_{g \cdot \alpha}$. Recíprocamente, sea $g' \in G_{g \cdot \alpha}$, observamos que

$$(g^{-1}g'g)\cdot\alpha=g^{-1}\cdot(g'\cdot(g\cdot\alpha))=g^{-1}\cdot(g\cdot\alpha)=\alpha.$$

Por tanto, $g^{-1}g'g \in G_{\alpha}$, es decir, $g' \in g$ G_{α} g^{-1} .

Sean $\alpha, \beta \in \Omega$. Si la acción de G sobre Ω es transitiva, entonces existe $g \in G$ tal que $g \cdot \alpha = \beta$. Por tanto, tenemos que

$$G_{\beta} = G_{g \cdot \alpha} = g \ G_{\alpha} \ g^{-1};$$

es decir, todos los estabilizadores son subgrupos conjugados de ${\cal G}.$