Produsul scalar al vectorilor

Problema 2.1. Determinați lungimile diagonalelor unui paralelogram construit pe vectorii $\mathbf{a} = 2\mathbf{m} + \mathbf{n}$ și $\mathbf{b} = \mathbf{m} - 2\mathbf{n}$, unde \mathbf{m} și \mathbf{n} sunt vectori de lungime 1 iar $\angle(\mathbf{m}, \mathbf{n}) = 60^{\circ}$.

Problema 2.2. Să se găsească unghiul dintre vectorii $\mathbf{a} = 2\mathbf{m} + 4\mathbf{n}$ şi $\mathbf{b} = \mathbf{m} - \mathbf{n}$, unde \mathbf{m} şi \mathbf{n} sunt vectori unitari, iar $\angle(\mathbf{m}, \mathbf{n}) = 120^{\circ}$.

Problema 2.3. Lungimea ipotenuzei AB a unui triunghi dreptunghic ABC este egală cu c. Calculați suma

$$S = \overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{BA} + \overrightarrow{CA} \cdot \overrightarrow{CB}.$$

Problema 2.4. Determinați unghiul format de diagonalele paralelogramului construit pe vectorii $\mathbf{a}(2,1,0)$ și $\mathbf{b}(0,-2,1)$.

Problema 2.5. Determinați numărul real λ astfel încât cosinusul unghiului format de vectorii

$$\mathbf{p} = \mathbf{i} + 2\mathbf{j} + \lambda \mathbf{k}$$

şi

$$q = 3i + j$$

să fie egal cu $\frac{5}{12}$.

Problema 2.6. Un vector \mathbf{p} este perpendicular pe vectorii $\mathbf{a} = 3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ și $\mathbf{b} = 18\mathbf{i} - 22\mathbf{j} - 5\mathbf{k}$ și face un unghi obtuz cu axa Oy. Determinați componentele lui \mathbf{p} , știind că $||\mathbf{p}|| = 14$.

Problema 2.7. Un vector \mathbf{p} este perpendicular pe vectorii $\mathbf{a}(4,-2,-3)$ și $\mathbf{b}(0,1,3)$ și face un unghi ascuțit cu axa Ox. Determinați componentele lui \mathbf{p} dacă $\|\mathbf{p}\| = 26$.

Problema 2.8. Se dau trei vectori $\mathbf{a}(4,1,5)$, $\mathbf{b}(0,5,2)$ și $\mathbf{c}(-6,2,3)$. Determinați un vector \mathbf{x} astfel încât $\mathbf{x} \cdot \mathbf{a} = 18$, $\mathbf{x} \cdot \mathbf{b} = 1$, $\mathbf{x} \cdot \mathbf{c} = 1$.

Problema 2.9. Într-un triunghi echilateral ABC, de latură egală cu unitatea, $\overrightarrow{BC} = \mathbf{a}$, $\overrightarrow{CA} = \mathbf{b}$, $\overrightarrow{AB} = \mathbf{c}$. Calculați

$$\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}$$
.

Problema 2.10. Se dă în spațiu un patrulater ABCD, astfel încât $\overrightarrow{AB} = (1,2,-2)$, $\overrightarrow{BC} = (-2,-1,-2)$ și $\overrightarrow{CD} = (-1,-2,2)$. Demonstrați că patrulaterul este un pătrat.

Problema 2.11. Lungimile vectorilor nenuli \mathbf{a} și \mathbf{b} sunt egale. Determinați unghiul φ dintre ei, dacă se șie că vectorii $\mathbf{p} = \mathbf{a} + 3\mathbf{b}$ și $\mathbf{q} = 5\mathbf{a} + 3\mathbf{b}$ sunt perpendiculari.

Problema 2.12. Determinați unghiul, în radiani, între vectorii u și v în următoarele cazuri:

- (a) $\mathbf{u} = (1, 0, 1), \mathbf{v} = (-2, 10, 2);$
- (b) $\mathbf{u} = (3, 3, 0), \mathbf{v} = (2, 1, -2);$
- (c) $\mathbf{u} = (-1, 1, 1), \mathbf{v} = (1, 1, 1);$

(d)
$$\mathbf{u} = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}, 0\right), \mathbf{v} = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}, \sqrt{3}\right);$$

(e)
$$\mathbf{u} = (300, 300, 0), \mathbf{v} = (-2000, -1000, 2000).$$

Problema 2.13. Determinați vectorul \mathbf{u} astfel încât $\|\mathbf{u}\| = \sqrt{2}$, măsura în grade a unghiului dintre \mathbf{u} și (1, -1, 0) să fie de 45° , iar \mathbf{u} să fie perpendicular pe vectorul (1, 1, 0).

Problema 2.14. Calculați $\overrightarrow{AB} \cdot \overrightarrow{DC}$, știind că ABCD este un tetraedru regulat, de muchie egală cu 1.

Problema 2.15. Calculați $\|2\mathbf{u} + 4\mathbf{v}\|^2$, știind că $\|\mathbf{u}\| = 1$, $\|\mathbf{v}\| = 2$, iar măsura în radiani a unghiului dintre \mathbf{u} și \mathbf{v} este egală cu $\frac{2\pi}{3}$.

Problema 2.16. Fie A,B,C trei puncte din \mathbb{R}^3 şi fie $\mathbf{c} = \overrightarrow{BA}$ şi $\mathbf{a} = \overrightarrow{BC}$. Demonstrați că vectorul $\mathbf{u} = \frac{\mathbf{c}}{\|\mathbf{c}\|} + \frac{\mathbf{a}}{\|\mathbf{a}\|}$ este paralel cu bisectoarea unghiului \widehat{ABC} . Interpretați rezultatul, legându-l de o proprietate cunoscută a rombului.

Problema 2.17. Determinați vectorul \mathbf{u} astfel încât $\|\mathbf{u}\| = 3\sqrt{3}$, iar \mathbf{u} este perpendicular pe vectorii $\mathbf{v} = (2, 3, -1)$ și $\mathbf{w} = (2, -4, 6)$. Dintre vectorii \mathbf{u} care verifică aceste condiții, care formează un unghi ascutit cu vectorul (1, 0, 0)?

Problema 2.18. Determinați vectorul \mathbf{u} , perpendicular pe vectorii $\mathbf{v}=(4,-1,5)$ și $\mathbf{w}=(1,-2,3)$ și care satisface $\mathbf{u}\cdot(1,1,1)=-1$.