

® BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES PATENTAMT

® Offenlegungsschrift

® DE 44 38 021 A 1

(21) Aktenzeichen:

P 44 38 021.6

2 Anmeldetag:

25. 10. 94

43) Offenlegungstag:

2. 5.98

(5) Int. Cl.6:

C 07 C 275/28

C 07 C 275/30 C 07 C 275/26

C 07 C 275/34 C 07 C 335/16 C 07 C 273/18

C 07 D 295/135 A 61 K 31/17 **JE 4438021 A**

① Anmelder:

Dr. Karl Thomae GmbH, 88400 Biberach, DE

(7) Erfinder:

Hurnaus, Rudolf, Dipl.-Chem. Dr., 88400 Biberach, DE; Maier, Roland, Dipl.-Chem. Dr., 88400 Biberach, DE; Müller, Peter, Dipl.-Chem. Dr., 88441 Mittelbiberach, DE; Woitun, Eberhard, Dipl.-Chem. Dr., 88400 Biberach, DE; Mark, Michael, Dr., 88400 Biberach, DE; Bernhard, Dipl.-Chem. Dr., 88400 Biberach, DE; Budzinski, Ralph-Michael, Dipl.-Blol. Dr., 88400 Biberach, DE; Hallermayer, Gerhard, Dipl.-Chem. Dr., 88437 Maselheim, DE

- Neue Phenylhamstoffe, diese Verbindungen enthaltende Arzneimittel und Verfahren zu ihrer Herstellung
- 5 Die Erfindung betrifft neue Phenylharnstoffe der allgemeinen Formel I

$$R_{1} \xrightarrow{R_{3}} \stackrel{X}{\stackrel{X}{\sim}} \stackrel{R_{4}}{\stackrel{I}{\sim}} \stackrel{R_{5}}{\stackrel{I}{\sim}} \qquad (1)$$

in der

R₁ bis R₈ und X wie im Anspruch 1 definiert sind, und deren Säureadditionssalze, welche wertvolle pharmakologische Eigenschaften aufwelsen, insbesondere eine sterke Hemmwirkung auf die Cholesterolbiosynthese, diese Verbindungen enthaltende Arzneimittel und Verfahren zu ihrer Herstellung.

Beschreibung

Die Erfindung betrifft neue Phenylharnstoffe, diese Verbindungen enthaltende Arzneimittel und Verfahren zu ihrer Herstellung.

In der Literatur werden zahlreiche Phenylharnstoffe beschrieben, welche als Herbizide, Biozide, Wachstumsregulatoren, Pestizide, Fungizide oder Bakterizide eingesetzt werden können (siehe beispielsweise C.A. 99, 141054b, C.A. 60, 15775h, EP-A-0.066.922, DE-A-32 45 679, DE-A-32 22 622, DE-A-32 21 871, WP-O-81.02156, EP-A-0.028.829).

Außerdem werden in der US-A-4.387.105 Phenylharnstoffe, in denen eine Aminocarbonylgruppe durch zwei gleiche Alkyl- oder Cycloalkylreste substituiert ist, beschrieben, welche eine serumcholesterolsenkende bzw. antiatherosklerotische Wirkung aufweisen, die durch eine Hemmung des Enzyms Acyl-CoA-Cholesterol-Acyltransferase (ACAT) zustande kommt.

Es wurde nun gefunden, daß die neuen Phenylharnstoffe der allgemeinen Formel

und, sofern R₁ eine basische Gruppe enthält, deren Säureadditionssalze, insbesondere für die pharmazeutische Anwendung deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren, überlegene pharmakologische Eigenschaften aufweisen, insbesondere eine starke Hemmwirkung auf die Cholesterolbiosynthese.

In der obigen allgemeinen Formel bedeuten

X ein Sauerstoff- oder Schwefelatom,

25

30

R₁ eine tert.Butylgruppe oder eine Phenylgruppe, die durch eine Hydroxy-, Alkoxy- oder Alkylgruppe mit jeweils 1 bis 3 Kohlenstoffatomen mono- oder disubstituiert sein kann, wobei die Substituenten gleich oder verschieden sein können und wobei eine solche Alkoxygruppe in 2- oder 3-Stellung durch eine Dialkylaminogruppe, in der jeder Alkylteil 1 bis 3 Kohlenstoffatome enthalten kann, oder durch eine Pyrrolidino-, Piperidino- oder Hexamethyleniminogruppe substituiert sein kann,

R₂ ein Wasserstoffatom oder eine Alkylgruppe mit 1 oder 2 Kohlenstoffatomen,

R₃ eine Alkylgruppe mit 1 bis 3 Kohlenstoffatomen,

R4 eine geradkettige oder verzweigte Alkyl-, Alkenyl- oder Alkinylgruppe, welche gegebenenfalls noch durch einen Rest der allgemeinen Formel

substituiert sein können, wobei der Alkylteil 1 bis 12 Kohlenstoffatome und der einfach oder mehrfach ungesättigte Alkenyl- oder Alkinylteil jeweils 3 bis 12 Kohlenstoffatome enthalten kann; R4 kann desweiteren einen Cycloalkylrest mit insgesamt 7 bis 12 Kohlenstoffatomen oder eine Gruppe der Formel

darstellen, wobei R₅ und R₆, die gleich oder verschieden sein können, ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine Trifluormethyl-, Alkyl- oder Alkoxygruppe, in denen der Alkylteil jeweils 1 bis 4 Kohlenstoffatome enthalten kann, oder zusammen mit dem Phenylring eine Naphthylgruppe bedeuten.

Die vorstehend genannten Reste in der allgemeinen Formel I können beispielsweise folgende Bedeutungen innehaben:

R₁ = tert.Butyl, Phenyl, 2-Methyl-phenyl, 3-Methyl-phenyl, 4-Methyl-phenyl, 2,3-Dimethyl-phenyl, 2,4-Dimethyl-phenyl, 2,5-Dimethyl-phenyl, 3,4-Dimethyl-phenyl, 2-Ethyl-phenyl, 3-Ethyl-phenyl, 4-Ethyl-phenyl, 2,3-Diethyl-phenyl, 2,4-Diethyl-phenyl, 3,4-Di-n-propyl-phenyl, 2-Hydroxy-phenyl, 3-Hydroxy-phenyl, 4-Hydroxy-phenyl, 2,3-Dihydroxy-phenyl, 2,4-Dihydroxy-phenyl, 2,5-Di-

44 38 021 DE

hydroxy-phenyl, 3,4-Dihydroxy-phenyl, 2-Methoxy-phenyl, 3-Methoxy-phenyl, 4-Methoxy-phenyl, 2,3-Dimethoxy-phenyl, 2,4-Dimethoxy-phenyl, 2,5-Dimethoxy-phenyl, 3,4-Dimethoxy-phenyl, 2-Ethoxy-phenyl, 3-Ethoxy-phenyl, 2,5-Dimethoxy-phenyl, 2,5-Dimethoxy-phenyl, 3,4-Dimethoxy-phenyl, 2-Ethoxy-phenyl, 3-Ethoxy-phenyl, 3-Ethoxy-phen phenyl, 4-Ethoxy-phenyl, 2,3-Diethoxy-phenyl, 2,4-Diethoxy-phenyl, 2,5-Diethoxy-phenyl, 3,4-Diethoxy-phenyl, 4-n-Propoxy-phenyl, 3,4-Di-n-propoxy-phenyl, 2-Hydroxy-3-methyl-phenyl, 2-Hydroxy-4-methyl-phenyl, 2-H droxy-5-methyl-phenyl, 3-Hydroxy-2-methyl-phenyl, 3-Hydroxy-4-methyl-phenyl, 3-Hydroxy-5-methyl-phenyl, 2-Methoxy-3-methyl-phenyl, 2-Methoxy-4-methyl-phenyl, 2-Methoxy-5-methyl-phenyl, 3-Methoxy-2-methylphenyl, 4-Methoxy-3-methyl-phenyl, 3-Methoxy-5-methyl-phenyl, 2-Ethoxy-3-methyl-phenyl, 3-Ethoxy-4-methyl-phenyl, 2-Ethoxy-5-methyl-phenyl, 4-Ethoxy-3-methyl-phenyl, 3-Ethoxy-5-methyl-phenyl, 4-(2-N.N-Dimethylamino-ethoxy)phenyl, 4-(2-N.N-Diethylamino-ethoxy)phenyl, 4-(2-N.N-Di-n-propylamino-ethoxy)-phenyl, 4-(2-N.N-Diisopropylamino-ethoxy)phenyl, 4-(2-N-Ethyl-N-methylamino-ethoxy)phenyl, 4-(3-N.N-Dimethylamino-propoxy)phenyl, 4-(3-N.N-Diethylamino-propoxy)phenyl, 4-(3-N-Ethyl-N-methylamino-propoxy)phenyl, 4-(2-N.N-Dimethylamino-ethoxy)-3-methyl-phenyl, 4-(2-N.N-Diethylamino-ethoxy)-3-methyl-phenyl, 4-(2-N.N-Di-n-propylamino-ethoxy)-3-methyl-phenyl, 4-(2-N.Ethyl-N-methylamino-ethoxy)-3-methyl-phenyl, 4-(3-N.N-Dimethylamino-propoxy)-3-methyl-phenyl, 4-(3-N.N-Diethylamino-propoxy)-3-methyl-phenyl, 4-(3-N-Ethyl-phenyl, N-methyl-amino-propoxy)-3-methyl-phenyl, 4-(2-Pyrrolidino-ethoxy)-phenyl, 4-(2-Piperidino-ethoxy)phenyl, 15 4-(2-Hexamethylenimino-ethoxy)phenyl, 4-(3-Pyrrolidino-propoxy)phenyl, 4-(3-Piperidino-propoxy)phenyl, 4-(2-Pyrrolidino-ethoxy)-3-methyl-phenyl, 4-(2-Piperidinoet-4-(3-Hexamethylenimino-propoxy)phenyl, 4-(2-Hexamethylenimino-ethoxy)-3-methyl-phenyl, 3-Methyl-4-(3-pyrrolidino-prohoxy)-3-methyl-phenyl, poxy)phenyl, 3-Methyl-4-(3-piperidino-propoxy)phenyl, 4-(3-Hexamethylenimino-propoxy) -3-methyl-phenyl, R₂ = Wasserstoff, Methyl, Ethyl, wobei Methyl, Ethyl bevorzugt in 2-Stellung steht, 20 R₃ = Methyl, Ethyl, Propyl, Isopropyl, R₄ = Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, n-Pentyl, 3-Methyl-n-butyl, 3-Methyl-n-pentyl, 3-Ethyl-n-pentyl, 4-Methyl-n-pentyl, n-Hexyl, 3-Methyl-n-hexyl, 4-Methyl-n-hexyl, 3-Ethyl-n-hexyl, n-Heptyl, 3-Methyl-n-heptyl, 3-Ethyl-n-heptyl, n-Octyl, 3-Methyl-n-octyl, 3-Ethyl-n-octyl, 3,7-Dimethyl-n-octyl, 3,7-Diethyl-n-octyl, n-Nonyl, 3,7-Dimethyl-n-nonyl, 3,7-Diethyl-n-nonyl, n-Decyl, 3,7-Dimethyl-n-decyl, 3,7-Diethyl-n-decyl, n-Undecyl, n-Dodecyl, Allyl, Crotyl, 3-Butenyl, 3,3-Dimethylallyl, 3,3-Diethylallyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 3-Methyl-2-pentenyl, 3-Methyl-3-pentenyl, 3-Methyl-4-pentenyl, 3-Ethyl-2-pentenyl, 3-Ethyl-3-pentenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 3-Methyl-2-hexenyl, 3-Methyl-3-hexenyl, 3-Methyl-4-hexenyl, nyl, 3-Methyl-5-hexenyl, 3-Ethyl-2-hexenyl, 3-Ethyl-3-hexenyl, 3-Ethyl-4-hexenyl, 3-Ethyl-5-hexenyl, 2-Heptenyl, 3-Heptenyl, 4-Heptenyl, 5-Heptenyl, 6-Heptenyl, 3-Methyl-2-heptenyl, 3-Methyl-3-heptenyl, 3-Methyl-4-heptenyl, 3-Methyl-5-heptenyl, 3-Methyl-6-heptenyl, 3-Ethyl-2-heptenyl, 3-Ethyl-3-heptenyl, 3-Ethyl-4-heptenyl, 3-Ethyl-5-heptenyl, 3-Ethyl-6-heptenyl, 2-Octenyl, 3-Octenyl, 4-Octenyl, 5-Octenyl, 6-Octenyl, 7-Octenyl, 3-Methyl-2-octenyl, 3-Methyl-3-octenyl, 3-Methyl-4-octenyl, 3-Methyl-5-octenyl, 3-Methyl-6-octenyl, 3-Methyl-7-octenyl, 3-Ethyl-2-octenyl, 3-Ethyl-3-octenyl, 3-Ethyl-4-octenyl, 3-Ethyl-5-octenyl, 3-Ethyl-6-octenyl, 3-Ethyl-7-oc tenyl, 2,6-Octadienyl, 3,7-Dimethyl-6-octenyl, 3,7-Diethyl-2-octenyl, 3,7-Dimethyl-2,6-octadienyl, 3,7-Diethyl-35 2,6-octadienyl, Cyclohexylmethyl, Phenyl, Benzyl, 2-Phenylethyl, 3-Phenylpropyl, 4-Phenylbutyl, Cinnamyl, Propargyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, R₅ und R₆ = Wasserstoff, Fluor, Chlor, Brom, Methyl, Ethyl, Isopropyl, Propyl, Butyl, tert.Butyl, Trifluormethyl, Methoxy, Ethoxy, Propoxy, Butoxy bzw. zusammen die Butadinylgruppe. Bevorzugte Verbindungen der allgemeinen Formel I sind die jenigen, in denen 40 R₁ eine tert.Butylgruppe oder eine Phenylgruppe, die durch eine Methyl-, Hydroxy-, Methoxy- oder Ethoxygruppe mono- oder disubstituiert sein kann, wobei die Substituenten gleich oder verschieden sein können und eine Ethoxygruppe in 2-Stellung durch eine Dimethylamino- oder Diethylaminogruppe substituiert sein kann, R2 ein Wasserstoffatom, R3 eine Methyl- oder Ethylgruppe, R4 eine geradkettige oder verzweigte Alkyl-, Alkenyl- oder Alkinylgruppe, welche gegebenenfalls durch einen 45 Phenylrest substituiert sein können, wobei der Alkylteil 1 bis 10 Kohlenstoffatome, der einfach oder zweifach ungesättigte Alkenylteil 3 bis 10 Kohlenstoffatome und der Alkinylteil 3 bis 5 Kohlenstoffatome enthalten kann, Rs und Re, die gleich oder verschieden sein können, ein Wasserstoff-, Fluor- oder Chloratom, eine Methyl-, Ethyl-, Isopropyl-, tert. Butyl-, Trifluormethyl- oder Methoxygruppe oder 50 R₅ und R₆ zusammen mit dem Phenylring eine Naphthylgruppe und X ein Sauerstoffatom bedeuten, insbesondere die jenigen Verbindungen, in denen R₁ eine tert.Butylgruppe oder eine Phenylgruppe, die in 4-Stellung durch eine Methoxy-, Hydroxy- oder 2-(N.N-Diethylamino)-ethoxygruppe substituiert ist und zusätzlich in 3-Stellung durch eine Methylgruppe substituiert sein kann. 55 R₂ ein Wasserstoffatom, R₃ eine Methylgruppe, R4 eine n-Propyl-, n-Butyl-, Isobutyl-, 3-Methyl-butyl-, n-Pentyl-, n-Hexyl-, n-Heptyl-, n-Octyl-, n-Nonyl-, n-Decyl-, Allyl-, Crotyl-, 3,3-Dimethyl-allyl-, Propargyl-, 3,7-Dimethyl-6-octenyl-, 3,7-Dimethyl-2,6-octadienyl-Cyclohexylmethyl-, Benzyl- oder Phenylgruppe, Rs ein Wasserstoff-, Fluor- oder Chloratom, eine Methyl-, Ethyl-, Isopropyl-, tert.Butyl-, Trifluormethyl- oder 60 Methoxygruppe, R₆ ein Wasserstoff-, Fluor- oder Chloratom, eine Methyl- oder Ethylgruppe oder R₅ und R₆ zusammen mit dem Phenylring eine Naphthylgruppe und X ein Sauerstoffatom bedeuten, und, sofern R1 eine Phenylgruppe darstellt, in welcher eine Ethoxygruppe in 2-Stellung durch eine basische Gruppe substituiert ist, deren Säureadditionssalze, insbesondere für die pharmazeutische Anwendung deren physiologisch verträgliche Salze mit anorganischen oder organischen Säuren.

a) Umsetzung einer Verbindung der allgemeinen Formel

Erfindungsgemäß erhält man die neuen Verbindungen nach folgenden Verfahren:

$$R_1 \xrightarrow{R_1} N - U_1 \qquad ,(II)$$

mit einer Verbindung der allgemeinen Formel

$$U_2 - N \xrightarrow{R_4} R_5$$

$$R_6$$
,(III)

in denen

5

10

15

20

25

35

40

45

50

55

65

R₁ bis R₆ wie eingangs definiert sind, einer der Reste U₁ oder U₂ ein Wasserstoffatom und der andere der Reste U₁ oder U₂ eine Z₁—CX-Gruppe, in der X wie eingangs definiert ist und

Z₁ eine nucleophile Austrittsgruppe wie ein Halogenatom, eine Alkoxy-, Aryloxy-, Aralkoxy-, Alkylthio-, Arylthio- oder Aralkylthiogruppe, z. B. ein Chlor- oder Bromatom, eine Methoxy-, Ethoxy-, Phenoxy-, Methylthio- oder Ethylthiogruppe, darstellt.

Die Umsetzung wird zweckmäßigerweise in einem inerten Lösungsmittel wie Ether, Toluol, Methylenchlorid oder Dimethylformamid und vorzugsweise in Gegenwart einer Base wie beispielsweise Triethylamin, Pyridin, Kaliumcarbonat oder einem Überschuß des eingesetzten Amins bei Temperaturen zwischen —10°C und der Siedetemperatur des Lösungsmittels, bevorzugt jedoch bei Temperaturen zwischen 0 und 30°C durchgeführt.

b) Zur Herstellung von Verbindungen der allgemeinen Formel I, in der X ein Sauerstoffatom darstellt: Alkylierung einer Verbindung der allgemeinen Formel

in der

R₁, R₂ und R₅ und R₆ wie eingangs definiert sind, einer der Reste R₃' oder R₄' ein Wasserstoffatom und der andere der Reste R₃' oder R₄' die für R₃ oder R₄ eingangs erwähnten Bedeutungen besitzt, mit einer Verbindung der allgemeinen Formel

$$Z_2-R_7$$
 (V)

in der

R7 die für R3 oder R4 eingangs erwähnten Bedeutungen besitzt und

Z₂ eine nucleophile Austrittsgruppe wie ein Halogenatom oder eine substituierte Sulfonyloxygruppe, z. B. ein Chlor-, Brom- oder Jodatom, eine Methylsulfonyloxy-, Ethylsulfonyloxy- oder p-Toluolsulfonyloxygruppe, darstellt.

Die Alkylierung wird zweckmäßigerweise in einem inerten Lösungsmittel wie Benzol, Ether, Tetrahydrofuran, Glykoldimethylether oder Dimethylformamid und vorzugsweise in Gegenwart einer Base wie Lithium-diisopropylamid, Kalium-tert.butylat oder Natriumhydrid bei Temperaturen zwischen —10 und 30°C ausgeführt.

c) Zur Herstellung von Verbindungen der allgemeinen Formel I, in der R_I eine Phenylgruppe, die durch mindestens eine Alkoxygruppe mit 1 bis 3 Kohlenstoffatomen substituiert ist, wobei die Alkoxygruppe in 2oder 3-Stellung durch eine Dialkylaminogruppe, in der jeder Alkylteil 1 bis 3 Kohlenstoffatome enthalten kann, oder durch eine Pyrrolidino-, Piperidino- oder Hexamethyleniminogruppe substituiert sein kann, und X ein Sauerstoffatom darstellt: Alkylierung einer Verbindung der allgemeinen Formel

$$R_{1}'$$
 R_{2}
 R_{3}
 R_{4}
 R_{4}
 R_{5}
 R_{5}
 R_{6}
 R_{6}
 R_{6}

in der

R₂ bis R₆ wie eingangs definiert sind und

R₁' eine Hydroxyphenylgruppe, die zusätzlich durch eine Hydroxy-, Alkoxy- oder Alkylgruppe mit jeweils 1 bis 3 Kohlenstoffatomen substituiert sein kann, wobei eine Alkoxygruppe in 2- oder 3-Stellung durch eine Dialkylaminogruppe, in der jeder Alkylteil 1 bis 3 Kohlenstoffatome enthalten kann, oder durch eine Pyrrolidino- oder Hexamethyleniminogruppe substituiert sein kann, bedeutet, mit einer Verbindung der allgemeinen Formel

20

$$Z_3-Alk-R_8$$
 (VII)

in der

Alk eine n-Alkylengruppe mit 1 bis 3 Kohlenstoffatomen,

R₈ ein Wasserstoffatom, eine Pyrrolidino-, Piperidino-, Hexamethylenimino- oder Dialkylaminogruppe, in 25 welcher jeder Alkylteil 1 bis 3 Kohlenstoffatome enthalten kann, und

Z₃ eine nukleophile Austrittsgruppe wie ein Halogenatom, z. B. ein Chlor-, Brom- oder Jodatom, darstellen.

Die Alkylierung wird zweckmäßigerweise in einem Lösungsmittel oder Lösungsmittelgemisch wie Aceton, Diethylether, Dimethylstormamid, Dimethylsulfoxid, Benzol, Tetrahydrofuran oder Dioxan vorzugsweise in Gegenwart eines säurebindenden Mittels, z. B. eines Alkoholats wie Kalium-tert.butylat, eines Alkalihydroxids wie Natrium- oder Kaliumhydroxid, eines Alkalicarbonats wie Kaliumcarbonat, eines Alkaliamids wie Natriumamid, eines Alkalihydrids wie Natriumhydrid, einer tertiären organischen Base wie Triethylamin oder Pyridin, wobei die letzteren gleichzeitig auch als Lösungsmittel dienen können, oder eines Reaktionsbeschleunigers wie Kaliumjodid, je nach der Reaktionsfähigkeit des nukleophil austauschbaren Restes zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 50 und 120°C, z. B. bei der Siedetemperatur des verwendeten Lösungsmittels, durchgeführt.

Die Umsetzung kann aber auch in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid/Wasser, Chloroform/Wasser, Benzol/Wasser unter Zusatz eines säurebindenden Mittels wie z. B. Natronlauge, Kalilauge und eines Phasentransfer-Katalysators wie Tetrabutylammonium-hydrogensulfat, vorzugsweise bei Raumtemperatur, durchgeführt werden.

Bei den vorstehend beschriebenen Umsetzungen können gegebenenfalls vorhandene reaktive Gruppen wie Hydroxygruppen während der Umsetzung durch übliche Schutzgruppen geschützt werden, welche nach der Umsetzung wieder abgespalten werden.

Beispielsweise kommt als Schutzrest für eine Hydroxygruppe die Trimethylsilyl-, Acetyl-, Benzoyl-, Methyloder Benzylgruppe in Betracht.

Die gegebenenfalls anschließende Abspaltung eines verwendeten Schutzrestes erfolgt vorzugsweise hydrolytisch in einem wäßrigen Lösungsmittel, z. B. in Wasser, Isopropanol/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Gegenwart einer Säure wie Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Natriumhydroxid oder Kaliumhydroxid bei Temperaturen zwischen 25 und 50°C. Die Spaltung eines Benzyloxyrestes erfolgt vorzugsweise hydrogenolytisch, z. B. mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle in einem Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester oder Eisessig gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 50°C, vorzugsweise jedoch bei Raumtemperatur, und einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar, wobei eine im Rest R4 vorhandene Doppel- oder Dreifachbindung gleichzeitig aufhydriert werden kann. Die Spaltung einer Alkoxygruppe erfolgt vorzugsweise mittels Bortribromid in einem geeigneten Lösungsmittel wie Methylenchlorid oder Chloroform bei Temperaturen zwischen – 30 und 30°C oder durch Umsetzung mit Natriumthioethanolat in einem Lösungsmittel wie Dimethylformamid bei Temperaturen zwischen 100 und 160°C, vorzugsweise bei der Siedetemperatur des Lösungsmittels.

Ferner können die erhaltenen Verbindungen der allgemeinen Formel I, in der R_I eine Phenylgruppe darstellt, 60 welche durch mindestens eine in 2- oder 3-Stellung durch eine Dialkylamino-, Pyrrolidino-, Piperidino- oder Hexamethyleniminogruppe substituierte Alkoxygruppe substituiert ist, in ihre Säureadditionssalze, insbesondere für ihre pharmazeutische Anwendung in ihre physiologisch verträglichen Säureadditionssalze mit anorganischen oder organischen Säuren übergeführt werden. Als Säuren kommen hierbei beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Essigsäure, Milchsäure, Zitronensäure, Weinsäure, Bernsteinsäure, Maleinsäure oder Fumarsäure in Betracht.

Die als Ausgangsstoffe verwendeten Verbindungen der allgemeinen Formeln II bis VII sind literaturbekannt bzw. man erhält diese nach bekannten Verfahren.

Die als Ausgangsverbindungen verwendeten N-Alkyl-cyclohexylamine der allgemeinen Formel II sind literaturbekannt [J. Chem. Soc. (C), 1509 (1967)] bzw. lassen sich aus den entsprechenden Cyclohexanonen und primären Aminen durch reduktive Aminierung nach Leuckart-Wallach bzw. mittels katalytisch erregtem Wasserstoff in Gegenwart eines Schwermetallkatalysators wie Raney-Nickel herstellen, oder durch Reduktion der intermediär gebildeten entsprechenden Ketimine mittels komplexer Metallhydride wie Natriumcyanoborhydrid, Natriumborhydrid oder Lithiumaluminiumhydrid bzw. durch katalytisch erregten Wasserstoff in Gegenwart eines Schwermetallkatalysators wie Palladium erhalten.

Hierbei werden die Amine der allgemeinen Formel II als cis/trans-Gemische erhalten, die gegebenenfalls nach bekannten Methoden mittels Säulenchromatographie an Kieselgel bzw. Aluminiumoxid oder durch fraktionierte Kristallisation ihrer Salze mit anorganischen oder organischen Säuren, in die reinen Isomeren getrennt werden können.

Die als Ausgangsverbindungen verwendeten Carbamoylverbindungen der allgemeinen Formeln II und III sind literaturbekannt bzw. lassen sich aus den entsprechenden Aminen durch Reaktion mit überschüssigem Phosgen, Diphosgen, Triphosgen oder Thiophosgen in inerten Lösungsmitteln wie Essigsäureethylester, Benzol, Toluol, Chloroform, Methylenchlorid, Hexan, bei Temperaturen zwischen 0°C und der Siedetemperatur des Lösungsmittels, vorzugsweise bei Temperaturen zwischen 50 und 120°C, darstellen.

Die als Ausgangsverbindungen verwendeten Phenylharnstoffe der Formel IV lassen sich in bekannter Weise aus den entsprechenden sekundären Aminen durch Umsetzung mit den entsprechenden Isocyanaten herstellen, wobei die zur Verwendung kommenden Isocyanate entweder kommerziell erhältlich sind oder durch Reaktion der entsprechenden Amine mit überschüssigem Phosgen, Diphosgen, Triphosgen in inerten Lösungsmitteln wie Essigsäureethylester, Benzol, Toluol, Chloroform, Methylenchlorid, Hexan, bei Temperaturen zwischen 0°C und der Siedetemperatur des Lösungsmittels, vorzugsweise bei Temperaturen zwischen 50 und 110°C erhalten werden können.

Für den Fall, daß die Verbindungen der allgemeinen Formel I asymmetrische Kohlenstoffatome enthalten und damit in Form von Enantiomeren- oder Diastereomerengemischen vorliegen, lassen sich die erhaltenen Verbindungen nach an sich üblichen Verfahren in ihre optischen Antipoden auftrennen.

Wie bereits eingangs erwähnt, weisen die Verbindungen der Formel I wertvolle pharmakologische Eigenschaften auf, insbesondere eine starke Hemmwirkung auf die endogene Cholesterolbiosynthese. Da der größte Teil des im Organismus befindlichen Cholesterols nicht mit der Nahrung aufgenommen, sondern endogen synthetisiert wird, kommt der Hemmung der Cholesterolbiosynthese eine entscheidende Rolle bei der Regulation des Cholesterolstoffwechsels zu, während die vorstehend erwähnten ACAT-Hemmer im wesentlichen nur den mit der Nahrung zugeführten Cholesterolanteil beeinflussen.

Bei den Phenylharnstoffen der vorliegenden Erfindung handelt um Verbindungen, welche die Cholesterolbiosynthese zu hemmen vermögen und daher gegenüber strukturähnlichen vorbekannten Verbindungen ein eigenständiges pharmakologisches Profil aufweisen.

Aufgrund ihrer ausgezeichneten Hemmeigenschaften auf die Cholesterolbiosynthese und guten Verträglichkeit sind die Verbindungen der allgemeinen Formel I in bevorzugter Weise dazu geeignet den Cholesterolstoffwechsel zu normalisieren und überhöhte Serumcholesterolspiegel abzubauen und damit besonders wirkungsvoll zur Prävention und Behandlung von Hyperlipoproteinämien, der Atherosklerose und den aus den atherosklerotischen Gefäßveränderungen resultierenden Folgeerkrankungen, wie beispielsweise des Myokardinfarktes, der Claudicatio intermittens, der ischämischen Herzerkrankung, der koronaren Herzkrankheit und der cerebralen Ischämie.

Die biologische Wirkung von Verbindungen der allgemeinen Formel I wurde durch Bestimmung des ¹⁴C-Acetateinbaus in die mit Digitonin fällbaren Steroide nach der folgenden Methode ermittelt:

Humane Hepatoma-Zellen (Hep G2) werden nach 3-tägiger Anzucht für 16 Stunden in cholesterolfreiem Medium stimuliert. Die zu testenden Substanzen (gelöst in Dimethylsulfoxyd; Endkonzentration 0,1%) werden während dieser Stimulationsphase zugesetzt. Anschließend wird nach Zugabe von 200 mMol/l 2-14C-Acetat 2 Stunden bei 37°C im Brutschrank weiterinkubiert.

Nach Ablösen der Zellen und Verseifen des Cholesterolesters wird nach Extraktion Cholesterol mit Digitonin zur Fällung gebracht. Das in Cholesterol eingebaute ¹⁴C-Acetat wird durch Szintillationsmessung bestimmt.

Es wurde gefunden, daß beispielsweise die Verbindungen

- $A = N_3 Crotyl N_1 (trans-4 tert.butyl cyclohexyl) N_1 methyl N_3 phenyl harnstoff,$
- $B = N_1 \{trans-4-(4-Methoxy-3-methyl-phenyl)cyclohexyl \} N_1 methyl-N_3 phenyl-N_3 propyl-harnstoff,$
- $C = N_1$ -(trans-4-tert.Butyl-cyclohexyl)- N_1 -methyl- N_3 -(3-methyl-butyl)- N_3 -phenyl-harnstoff,
- $D = N_1 (trans-4-tert.Butyl-cyclohexyl)-N_3-(3,3-dimethyl-allyl)-N_1-methyl-N_3-phenyl-harnstoff,$
 - $E = N_1 \frac{1}{1} \frac{1}$
 - $F = N_1$ -(trans-4-tert.Butyl-cyclohexyl)- N_3 -hexyl- N_1 -methyl- N_3 -phenyl-harnstoff
 - bei einer Testkonzentration von 10⁻⁶ Mol/I den ¹⁴C-Acetateinbau in Cholesterol zu mindestens 50% hemmen.
 - Die Verbindungen zeichnen sich weiterhin durch eine sehr gute Verträglichkeit aus. So zeigte beispielsweise Verbindung D nach oraler Applikation von 1000 mg/kg an der Maus keinerlei toxische Nebenwirkungen.

Zur pharmazeutischen Anwendung lassen sich die Verbindungen der allgemeinen Formel I zusammen mit einem oder mehreren inerten Trägerstoffen oder Verdünnungsmitteln in an sich bekannter Weise in die üblichen pharmazeutischen Zubereitungsformen, z. B. in Tabletten, Dragees, Kapseln oder Suppositorien einarbeiten. Die Einzeldosis kann dabei bei oraler Gabe zwischen 0,02 bis 2 mg, vorzugsweise 0,08 bis 1 mg pro kg Körpergewicht variieren entsprechend einer Tagesdosis von 5 bis 300 mg für einen Menschen von 60 kg Körpergewicht, wobei die Tagesdosis vorzugsweise in 1 bis 3 Einzelgaben aufgeteilt wird.

Die nachfolgenden Beispiele sollen die Erfindung näher erläutern:

Beispiele zur Herstellung der Ausgangsmaterialien:

Beispiel A

N_1 -(trans-4-tert.Butyl-cyclohexyl)- N_1 - methyl- N_3 -phenyl-harnstoff	5			
2,7 g (16 mMol) N-Methyl-trans-4-tert.butyl-cyclohexylamin werden in 30 ml absolutem Ether vorgelegt und unter Rühren und Kühlung im Eisbad tropfenweise mit einer Lösung von 1,9 g (16 mMol) Phenylisocyanat in 20 ml absolutem Ether versetzt. Nach Beendigung der Zugabe wird 30 Minuten nachgerührt, dann vom gebildeten kristallinen Niederschlag abgesaugt und mit Ether gewaschen. Ausbeute: 3,4 g (75% der Theorie), Schmelzpunkt: 187 – 188° C.	10			
er.: C 74,95; H 9,79; N 9,71; ef.: C 74,65; H 9,92; N 9,67.				
H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,88 (s, 9H), 0,9—1,95 (m, 9H), 2,87 (s, 3H), 4,07 (m, 1H), 7,02 (m, 1H), 7,22—7,45 (m, 4H). In analoger Weise wurden erhalten:	20			
a.) N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₃ -(3-chlorphenyl)-N ₁ -methyl-harnstoff				
Hergestellt aus (3-Chlor-phenyl)isocyanat und N-Methyl-trans-4-tert.butyl-cyclohexylamin Ausbeute: 64% der Theorie, Schmelzpunkt: 172—173° C.	25			
Ber.: C 66,96; H 8,43; N 8,68; gef.: C 66,88; H 8,17; N 8,60.				
b.) N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₃ -(4-chlor-phenyl)-N ₁ -methyl-harnstoff	34			
Hergestellt aus (4-Chlor-phenyl)isocyanat und N-Methyl-trans-4-tert.butyl-cyclohexylamin Ausbeute: 70,2% der Theorie, Schmelzpunkt: 170—171°C.	3:			
Ber.: C 66,96; H 8,43; N 8,68; gef.: C 67,05; H 8,70; N 8,77.				
c.) N_1 —(trans-4-tert.Butyl-cyclohexyl)- N_3 -(2,6-dichlor-phenyl)- N_1 -methyl-harnstoff	4			
Hergestellt aus (2,6-Dichlor-phenyl)isocyanat und N-Methyltrans-4-tert.butyl-cyclohexylamin. Ausbeute: 81,0% der Theorie, Schmelzpunkt: 178—179° C.	•			
Ber.: C 60,50; H 7,33; N 7,84; gef.: C 60,20; H 7,29; N 7,88.	4			
d) N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₃ -(3-methoxy-phenyl)-N ₁ -methyl-harnstoff				
Hergestellt aus (3-Methoxy-phenyl)isocyanat und N-Methyl-trans-4-tert.butyl-cylohexylamin. Ausbeute: 91,5% der Theorie, Schmelzpunkt: 161 — 162° C.	5			
Ber.: C 71,66; H 9,49; N 8,79; gef.: C 71,45; H 9,43; N 8,68.	5			
e.) N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₃ -(4-methoxy-phenyl)-N ₁ -methyl-harnstoff				
Hergestellt aus (4-Methoxy-phenyl)isocyanat und N-Methyl-trans-4-tert.butyl-cyclohexylamin. Ausbeute: 94,3% der Theorie, Schmelzpunkt: 187 — 189°C.	6			
Ber.: C 71,66; H 9,49; N 8,79; gef.: C 71,38; H 9,19; N 8,66.	-			
f.) N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₃ -(2-methoxy-phenyl)-N ₁ -methyl-harnstoff	0			
Hergestellt aus (2-Methoxy-phenyl)isocyanat und N-Methyl-trans-4-tert.butyl-cyclohexylamin.				

Ausbeute: 91,8% der Theorie, Ausbeute: 117-118°C. Ber.: C 71,66; H 9,49; N 8,79; gef.: C71,67; H9,53; N8,72. g.) N₁-(trans-4-tert.Butyl-cyclohexyl)-N₁-methyl-N₃-(3-methyl-phenyl)harnstoff Hergestellt aus (3-Methyl-phenyl)isocyanat und N-Methyl-trans-4-tert.butyl-cyclohexylamin. Ausbeute: 79% der Theorie, Schmelzpunkt: 210-211°C. Ber.: C 75,45; H 10,00; N 9,26; gef.: C75,18; H9,74; N9,12. 15 h.) N₁-(trans-4-tert.Butyl-cyclohexyl)-N₁-methyl-N₃-(4-methyl-phenyl)harnstoff Hergestellt aus (4-Methyl-phenyl)isocyanat und N-Methyl-trans-4-tert.butyl-cyclohexylamin. Ausbeute: 82,7% der Theorie, Schmelzpunkt: 214-215°C. Ber.: C 75,45; H 10,00; N 9,26; gef.: C 75,41; H 10,30; N 9,27. i) N₁-(trans-4-tert.Butyl-cyclohexyl)-N₃-(2,6-dimethyl-phenyl)-N₁-methyl-harnstoff 25 Hergestellt aus (2,6-Dimethyl-phenyl)isocyanat und N-Methyl-trans-4-tert.butyl-cyclohexylamin. Ausbeute: 94,9% der Theorie, Schmelzpunkt; 211 – 213°C. 30 Ber.: C 75,90; H 10,19; N 8,85; gef.: C 75,98; H 10,44; N 8,99. k.) N1-(trans-4-tert.Butyl-cyclohexyl)-N3-(2,6-diethyl-phenyl)-N1-methyl-harnstoff 35 Hergestellt aus (2,6-Diethyl-phenyl)isocyanat und N-Methyltrans-4-tert.butyl-cyclohexylamin. Ausheute: 93.9% der Theorie. Schmelzpunkt: 223—225°C. Ber.: C 76,69; H 10,53; N 8,13; gef.: C 76,74; H 10,76; N 8,09. 1.) N₁-(trans-4-tert.Butyl-cyclohexyl)-N₃-(2-isopropyl-6-methyl-phenyl)-N₁-methyl-harnstoff Hergestellt aus (2-Isopropyl-6-methyl-phenyl)isocyanat und N-Methyl-trans-4-tert.butyl-cyclohexylamin. 45 Ausbeute: 87,7% der Theorie, Schmelzpunkt: 214-216°C. Ber.: C 76,69; H 10,53; N 8,13; gef.: C 76,80; H 10,71; N 8,12. m.) N₁-(trans-4-tert.Butyl-cyclohexyl)-N₃-(2,4-difluor-phenyl)-N₁-methyl-harnstoff Hergestellt aus (2,4-Difluor-phenyl)isocyanat und N-Methyl-trans-4-tert.butyl-cyclohexylamin. Ausbeute: 52% der Theorie, Schmelzpunkt: 120°C. Ber.: C 66,64; H 8,08; N 8.64: gef.: C 66,48; H 7,88; N 8,74. 60 n.) N1-(trans-4-tert.Butyl-cyclohexyl)-N1-ethyl-N3-phenyl-harnstoff Hergestellt aus Phenylisocyanat und N-Ethyl-trans-4-tert.butyl-cyclohexylamin. Ausbeute: 88% der Theorie, Schmelzpunkt: 170-171°C. Ber.: C 75,45; H 10,00; N 9,26;

gef.: C 75,42; H 10,33; N 9,13.

o.) N_1 -(trans-4-tert.Butyl-cyclohexyl)- N_3 -phenyl- N_1 -propyl-harnstoff

Hergestellt aus Phenylisocyanat und N-Propyl-trans-4-tert.butyl-cyclohexylamin. Ausbeute: 79% der Theorie, Schmelzpunkt: 141°C.	5			
Ber.: C 75,90; H 10,19; N 8,85; gef.: C 75,87; H 10,32; N 8,64.				
p.) N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₁ -methyl-N ₃ -(1-naphthyl)harnstoff	10			
Hergestellt aus N-Methyl-trans-4-tert.butyl-cyclohexylamin und (1-Naphthyl)isocyanat. Ausbeute: 76,4% der Theorie, Schmelzpunkt: 175°C.	15			
Ber.: C 78,06; H 8,93; N 8,28; gef.: C 78,12; H 8,98; N 8,33.				
q.) N_1 -[trans-4-(4-Methoxy-3-methyl-phenyl)cyclohexyf]- N_1 -methyl- N_3 -phenyl-harnstoff	20			
Hergestellt aus Phenylisocyanat und N-Methyl-trans-4-(4-methoxy-3-methyl-phenyl) cyclohexylamin. Ausbeute: 86% der Theorie, Schmelzpunkt: 188–189°C.				
Ber.: C 74,97; H 8,01; N 7,95;	25			
gef.: C 74,68; H 8,03; N 8,00. H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 1,48—2,08 (m, 8H), 2,20 (s, 3H), 2,40 (m, 1H), 2,92 (s, 3H), 3,80 (s, 3H), 4,26 (m, 1H), 6,70—7,46 (m, 8H) Das als Ausgangsmaterial verwendete N-Methyl-trans-4-(4-methoxy-3-methyl-phenyl)cyclohexylamin wird durch Umsetzung von Cyclohexan-1,4-dion-monoethylenketal mit 4-Methoxy-3-methyl-phenyl-lithium zu 4-Hydroxy-4-(4-methoxy-3-methyl-phenyl)cyclohexanon-ethylenketal (Schmelzpunkt: 88°C), anschließende Wasserabspaltung zu 4-(4-Methoxy-3-methyl-phenyl)cyclohex-3-en-1-on-ethylenketal (Schmelzpunkt: 69°C), nachfolgende Hydrierung und Deketalisierung zu 4-(4-Methoxy-3-methyl-phenyl)cyclohex-1-on-(Schmelzpunkt: 94°C), gende Hydrierung und Deketalisierung zu 4-(4-Methoxy-3-methyl-phenyl)cyclohex-1-on-(Schmelzpunkt: 94°C),				
reduktive Aminierung mit Methylamin zum N-Methyl-cis/trans-4-(4-methoxy-3-methyl-phenyl)cyclohexylamin und anschließende Isomerentrennung, in kristalliner Form (Schmelzpunkt: 98°C) erhalten.	35			
Beispiel B				
N ₁ -(cis-4-tert.Butyl-cyclohexyl)-N ₁ -methyl-N ₃ -phenyl-harnstoff	40			
5,08 g (30 mMol) N-Methyl-cis-4-tert.butyl-cyclohexylamin werden in 50 ml absolutem Ether gelöst und unter Rühren und Eiskühlung tropfenweise mit einer Lösung von 3,6 g (30 mMol) Phenylisocyanat in 15 ml absolutem Ether versetzt. Nach Beendigung der Zugabe wird 30 Minuten nachgerührt, dann eingeengt und der Einengungsrückstand an Kieselgel säulenchromatographisch gereinigt (Fließmittel: Methylenchlorid). Ausbeute: 6.0 g (69,5% der Theorie)- Schmelzpunkt: 103-105°C.				
Ber.: C 74,96; H 9,79; N 9,71; gef.: C 74,98; H 9,92; N 9,59. ¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,88 (s, 9H), 1,13—2,0 (m, 9H), 3,01 (s, 3H), 4,23 (m, 1H), 7,01 (m, 1H), 7,18—7,45 (m, 4H). Auf analoge Weise wurden erhalten:	50			
a.) N1-(cis-4-tert-Butyl-cyclohexy-)-N ₁ -methyl-N ₃ -(4-methyl-phenyl)harnstoff	55			
Hergestellt aus (4-Methyl-phenyl)isocyanat und N-Methyl-cis 4-tert.butyl-cyclohexy-amin Ausbeute: 86,1% der Theorie, Schmelzpunkt: 150—151°C.				
Ber.: C 75,45; H 10,00; N 9,26; gef.: C 75,34; H 10,08; N 9,18.	60			
b.) N ₁ -(cis-4-tertButyl-cyclohexyl)-N ₃ -2,6-dimethyl-phenyl)-N ₁ -methyl-harnstoff				
Hergestellt aus (2,6-Dimethyl-phenyl)isocyanat und N-Methyl-cis-4-tert.butyl-cyclohexylamin Ausbeute: 88,6% der Theorie, Schmelzpunkt 199 – 201°C.	65			

```
Ber.: C 75,90; H 10,19; N 8,85;
     gef.: C 75,87; H 10,27; N 8,81.
                      c.) N<sub>1</sub>-(cis-4-tert.Butyl-cyclohexyl)-N<sub>3</sub>-(2-methoxy-phenyl)-N<sub>1</sub>-methyl-harnstoff
       Hergestellt aus (2-Methoxy-phenyl)isocyanat und N-Methyl-cis-4-tert.butyl-cyclohexylamin.
     Ausbeute: 77,2% der Theorie,
     Schmelzpunkt: 58-60°C.
10 Ber.: C71,66; H 9,49; N 8,79;
     gef.: C71,96; H9,57; N8,93.
                      d.) N<sub>1</sub>-(cis-4-tert.Butyl-cyclohexyl)-N<sub>3</sub>-(3-methoxy-phenyl)-N<sub>1</sub>-methyl-harnstoff
       Hergestellt aus (3-Methoxy-phenyl)isocyanat und N-Methyl-cis-4-tert.butyl-cyclohexylamin.
     Ausbeute: 66% der Theorie,
     Schmelzpunkt: 140-142°C.
     Ber.: C 71,66; H 9,49; N 8,79;
20 gef.: C71,98; H9,57; N 9,03.
                      e.) N<sub>1</sub>-(cis-4-tert.Butyl-cyclohexyl)-N<sub>3</sub>-(2,6-dichlor-phenyl)-N<sub>1</sub>-methyl-harnstoff
       Hergestellt aus (2,6-Dichlor-phenyl)isocyanat und N-Methyl-cis-4-tert.butyl-cyclohexylamin.
    Ausbeute: 86,6% der Theorie,
     Schmelzpunkt: 174-176°C.
     Ber.: C 60,50; H 7,33; N 7,84;
    gef.: C 60,28; H 7,16; N 7,76.
30
                        f.) N<sub>1</sub>-(cis-4-tert.Butyl-cyclohexyl)-N<sub>3</sub>-(3-chlor-phenyl)-N<sub>1</sub>-methyl-harnstoff
       Hergestellt aus (3-Chlor-phenyl)isocyanat und N-Methyl-cis-4-tert.butyl-cyclohexylamin.
     Ausbeute: 83,8% der Theorie,
    Schmelzpunkt: 139-141°C.
     Ber.: C 66,96; H 8,43; N 8,68;
     gef.: C 66,99; H 8,53; N 8,73.
                      g.) N<sub>1</sub>-(cis-4-tert,Butyl-cyclohexyl)-N<sub>3</sub>-(2,4-difluor-phenyl)-N<sub>1</sub>-methyl-harnstoff
40
       Hergestellt aus (2,4-Difluor-phenyl)isocyanat und N-Methyl-cis-4-tert.butyl-cyclohexylamin.
     Ausbeute: 85,6% der Theorie,
     Schmelzpunkt: 98-100°C.
45
     Ber.: C 66,64; H 8,08; N 8,64;
     gef.: C 66,57; H 8,14; N 8,81.
                              h.) N1-(cis-4-tert.Butyl-cyclohexyl)-N1-ethyl-N3-phenyl-harnstoff
50
       Hergestellt aus Phenylisocyanat und N-Ethyl-cis-4-tert.butyl-cyclohexylamin.
     Ausbeute: 84% der Theorie.
     Schmelzpunkt: 98°C.
55 Ber.: C 75,45; H 10,00; N 9,26;
     gef.: C 75,51; H 10,13; N 9,35.
                          i.) N1-(cis-4-tert.Butyl-cyclohexyl)-N1-methyl-N3-(1-naphthyl)harnstoff
       Hergestellt aus N-Methyl-cis-4-tert.butyl-cyclohexylamin und (1-Naphthyl)isocyanat.
     Ausbeute: 94,7% der Theorie,
     Schmelzpunkt: 178°C.
     Ber.: C 78,06; H 8,93; N 8,28;
65 gef.: C78,36; H9,11; N8,13.
```

Beispiele zur Herstellung der Endprodukte:

Beispiel 1

$N_3\text{-}Benzyl\text{-}N_1\text{-}(trans\text{-}4\text{-}tert.butyl\text{-}cyclohexyl)\text{-}N_1\text{-}methyl\text{-}N_3\text{-}phenyl\text{-}harnstoff}$

144 mg (6 mMol) Natriumhydrid werden in 20 ml absolutem Dimethylformamid suspendiert und anschließend mit 1,11 g (3,8 mMol) N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₁ -methyl-N ₃ -phenyl-harnstoff versetzt. Nach 1 Stunde Rühren bei 40 bis 50°C wird auf Raumtemperatur abgekühlt und tropfenweise mit 680 mg (4 mMol) Benzylbromid versetzt. Nach Rühren über Nacht wird mit eiskalter 2N-Salzsäure zersetzt und mit Ether extrahiert. Die Extrakte werden über Magnesiumsulfat getrocknet, eingeengt und der Einengungsrückstand an Kieselgel säulenchromatographisch gereinigt (Fließmittel: Petrolether/Essigsäureethylester 10:1). Ausbeute: 1,3 g (86% der Theorie),			
Schmelzpunkt: 93°C. Ber.: C 79,32; H 9,05; N 7,40;			
gef.: C 79,53; H 9,31; N 7,28.	15		
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,82-1,85 (s+m, 18H), 2,47 (s, 3H), 3,90 (m, 1H), 4,84 (s, 2H), 7,03-7,35 (m, 10H). Auf analoge Weise wurden erhalten:	20		
a.) N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₁ -methyl-N ₃ -phenyl-N ₃ -propyl-harnstoff			
Hergestellt aus N₁-(trans-4-tert.Butyl-cyclohexyl)-N₁-methyl-N₃-phenyl-harnstoff und Propylbromid. Ausbeute: 91% der Theorie, Schmelzpunkt: ÖL	25		
Ber.: C 76,31; H 10,37; N 8,48; gef.: C 76,62; H 10,63; N 8,36.			
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,81-1,85 (s+t+m, 23H), 2,40 (s, 3H), 3,56 (m, 2H), 3,83 (m, 1H), 7,06-7,30 (m, 5H).	30		
b.) N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₃ -hexyl-N ₁ -methyl-N ₃ -phenyl-harnstoff			
Hergestellt aus N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₁ -methyl-N ₃ -phenyl-harnstoff und Hexylbromid. Ausbeute: 60% der Theorie, Schmelzpunkt: Öl.	35		
Ber.: C 77,37; H 10,82; N 7,52; gef.: C 77,31; H 10,96; N 7,22.	40		
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,83-1,85 (s+m, 29H), 2,40 (s, 3H), 3,57 (m, 2H), 3,83 (m, 1H), 7,06-7,25 (m, 5H).			
c.) N_1 -(trans-4-tert.Butyl-cyclohexyl)- N_3 -(3,3-dimethyl-allyl)- N_1 -methyl- N_3 -phenyl-harnstoff	45		
Hergestellt aus N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₁ -methyl-N ₃ -phenyl-harnstoff und 3,3-Dimethylallyl-bromid.			
Ausbeute: 82% der Theorie, Schmelzpunkt: 78—80° C.	50		
Ber.: C 77,48; H 10,18; N 7,86; gef.: C 77,60; H 10,42; N 7,64.			
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,81—1,85 (3s+m, 24H), 2,41 (s, 3H), 3,85 (m, 1H), 4,18 (d, 2H), 5,32 (m, 1H), 6,98—7,35 (m, 5H).	55		
d.) N ₃ -Allyl-N ₁ -(trans-4-tert.butyl-cyclohexyl)-N ₁ -methyl-N ₃ -phenyl-harnstoff			
Hergestellt aus N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₁ -methyl-N ₃ -phenyl-harnstoff und Allylbromid. Ausbeute: 69% der Theorie, Schmelzpunkt: Öl.	60		
Ber.: C 76,78; H 9,82; N 8,53; gef.: C 76,78; H 9,91; N 8,31.	65		
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,82-1,85 (s+m, 18H), 2,43 (s, 3H), 3,87 (m, 1H), 4,23 (d, 2H), 5,1 (m, 2H), 5,97 (m, 1H), 7,0-7,35 (m, 5H).			

e.) N1-(trans-4-tert.Butyl-cyclohexyl)-N3-crotyl-N1-methyl-N3-phenyl-harnstoff

Hergestellt aus N₁-(trans-4-tert.Butyl-cyclohexyl)-N₁-methyl-N₃-phenyl-harnstoff und Crotylbromid. Ausbeute: 72% der Theorie,

5 Schmelzpunkt:ÖL

Ber.: C77,14; H 10,01; N 8,18; gef.: C76,83; H 9,86; N 7,95.

1H-NMR-Spektrum (200 mHz, CDCl₃); Signale bei ppm:
 0,83-1,83 (s+m, 21H), 2,42 (s, 3H), 3,86 (m, 1H), 4,15 (d, 0,8H), 4,25 (d, 0,2H), 5,55 (m, 1H), 7,0-7,35 (m, 5H).

f.) N₁-(trans-4-tert.Butyl-cyclohexyl)-N₃-cinnamyl-N₁-methyl-N₃-phenyl-harnstoff

Hergestellt aus N₁-(trans-4-tert.Butyl-cyclohexyl)-N₁-methyl-N₃-phenyl-harnstoff und Cinnamylbromid. Ausbeute: 51% der Theorie, Schmelzpunkt: 105°C.

Ber.: C 80,15; H 8,97; N 6,92; gef.: C 80,37; H 8,97; N 6,84.

25

50

65

¹H-NMR-Spektrum (200 mHz, CDCl₃); Signale bei ppm: 0,81-1,86 (s+m, 18H), 2,45 (s, 3H), 3,89 (m, 1H), 4,39 (d, 2H), 6,39 (s, 1H), 7,0-7,4 (m, 10H).

g.) N1-(trans-4-tert.Butyl-cyclohexyl)-N1-methyl-N3-(3-methyl-butyl)-N3-phenyl-harnstoff

Hergestellt aus N₁-(trans-4-tert.Butyl-cyclohexyl)-N₁-methyl-N₃-phenyl-harnstoff und 3-Methyl-butylbromid. Ausbeute: 38% der Theorie, Schmelzpunkt: 63° C.

Ber.: C 77,04; H 10,68; N 7,81; gef.: C 77,08; H 11,02; N 7,87.

¹H-NMR-Spektrum (200 mHz, CDCl₃); Signale bei ppm: 35 0,82-1,85 (s+d+m, 27H), 2,38 (s, 3H), 3,6 (m, 2H), 3,84 (m, 1H), 7,0-7,36 (m, 5H).

 $\label{eq:local_$

Hergestellt aus N_1 -(trans-4-tert.Butyl-cyclohexyl)- N_3 -(2,6-dimethyl-phenyl)- N_1 -methyl-harnstoff und 3,3-Dimethyl-allylbromid.

Ausbeute: 70,2% der Theorie, Schmelzpunkt: Öl.

Ber.: C 78,07; H 10,48; N 7,28; gef.: C 78,25; H 10,71; N 7,11.

¹H-NMR-Spektrum (200 mHz, CDCl₃); Signale bei ppm: 0,78-1,77 (3s+m, 24H), 2,23 (s, 6H), 2,38 (s, 3H), 3,43 (m, 1H), 3,98 (d, 2H), 5,46 (m, 1H), 7,03 (s, 3H).

i.) N1-(trans-4-tert.Butyl-cyclohexyl)-N3-(2,6-diethyl-phenyl)-N3-(3,3-dimethyl-allyl)-N1-methyl-harnstoff

Hergestellt aus N₁-(trans-4-tert.Butyl-cyclohexyl)-N₃-(2,6-diethyl-phenyl)-N₁-methyl-harnstoff und 3,3-Dimethyl-allylbromid.

Ausbeute: 91,8% der Theorie,

55 Schmelzpunkt: Öl.

Ber.: C 78,59; H 10,75; N 6,79; gef.: C 78,29; H 10,88; N 6,63.

¹H-NMR-Spektrum (200 mHz, CDCl₃); Signale bei ppm:
 0,78-1,75 (3s+m+t, 30H), 2,40 (s, 3H), 2,58 (m, 4H), 3,33 (m, 1H), 3,97 (d, 2H), 5,44 (m, 1H), 7,08-7,30 (m, 3H).

N₁-(trans-4-tert.Butyl-cyclohexyl)-N₃-(3,3-dimethyl-allyl)-N₃-(2-isopropyl-6-methyl-phenyl)-N₁-methyl-harn-stoff

Hergestellt aus N_1 -(trans-4-tert.Butyl-cyclohexyl)- N_3 -(2-isopropyl-6-methyl-phenyl)- N_1 -methyl-harnstoff und 3,3-Dimethyl-allylbromid.

Ausbeute: 97,3% der Theorie, Schmelzpunkt: 80 – 82° C.	
Ber.: C 78,59; H 10,75; N 6,79; gef.: C 78,60; H 10,79; N 6,710.	5
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,80–1,80 (3s+dd+m, 30H), 2,27 (s, 3H), 2,43 (s, 3H), 3,08 (m, 1H), 3,38 (m, 1H), 3,98 (d, 2H), 5,46 (m, 1H), 6,97–7,17 (m, 3H).	10
l) N_1 -(trans-4-tert.Butyl-cyclohexyl)- N_3 -(3,3-dimethyl-allyl)- N_1 -methyl- N_3 -(4-methyl-phenyl)harnstoff	
Hergestellt aus N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₁ -methyl-N ₃ -(4-methyl-phenyl)harnstoff und 3,3-Dimethyl-allylbromid. Ausbeute: 84% der Theorie, Schmelzpunkt: Öl.	15
Ber.: C77,79; H 10,33; N 7,56; gef.: C77,44; H 10,38; N 7,50.	20
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,82 – 1,84 (3s + m, 24H), 2,31 (s, 3H), 2,38 (s, 3H), 3,85 (m, 1H), 4,14 (d, 2H), 5,31 (m, 1H), 6,93 (d, 2H), 7,07 (d, 2H)	
m.) N_1 -(trans-4-tert.Butyl-cyclohexyl)- N_3 -(3,3-dimethyl-allyl)- N_1 -methyl- N_3 (3-methyl-phenyl)harnstoff	25
Hergestellt aus N_1 -(trans-4-tert.Butyl-cyclohexyl)- N_1 -methyl- N_3 -(3-methyl-phenyl)harnstoff und 3,3-Dimethylallylbromid. Ausbeute: 79,5% der Theorie,	
Schmelzpunkt: 49 – 50° C.	30
Ber.: C 77,79; H 10,34; N 7,56; gef.: C 78,01; H 10,55; N 7,57.	
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,82—1.84 (3s + m, 24H), 2,30 (s, 3H), 2,42 (s, 3H), 3,87 (m, 1H), 4,17 (d, 2H), 5,32 (m, 1H), 6,86 (m, 3H), 7,14 (m, 1H)	35
n.) N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₃ -(3,3-dimethyl-allyl)-N ₃ -(2-methoxy-phenyl)-N ₁ -methyl-harnstoff	
Hergestellt aus N_1 -(trans-4-tert.Butyl-cyclohexyl)- N_3 -(2-methoxy-phenyl)- N_1 -methyl-harnstoff und 3,3-Dimethyl-allylbromid. Ausbeute: 80,1% der Theorie, Schmelzpunkt: 125—127°C.	40
Ber.: C 74,57; H 9,91; N 7,25; gef.: C 74,44; H 9,68; N 6,98.	45
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,81—1,80 (3s+m, 24H), 2,36 (s, 3H), 3,18 (m, 1H), 3,88 (s, 3H), 4,04 (d, 2H), 5,38 (m, 1H), 6,80—7,25 (m, 4H)	
o.) N_1 -(trans-4-tert.Butyl-cyclohexyl)- N_3 -(3,3-dimethyl-allyl)- N_3 -(3-methoxy-phenyl)- N_1 -methyl-harnstoff	50
Hergestellt aus N_1 -(trans-4-tert.Butyl-cyclohexyl)- N_3 -(3-methoxy-phenyl)- N_1 -methyl-harnstoff und 3,3-Dimethyl-allylbromid. Ausbeute: 95,6% der Theorie, Schmelzpunkt: Öl.	55
Ber.: C74,57; H 9,91; N 7,25; gef.: C74,42; H 10,10; N 7,04.	
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,82-1,88 (3s+m, 24H), 2,44 (s, 3H), 3,77 (s, 3H), 3,90 (m, 1H), 4,19 (d, 2H), 5,32 (m, 1H), 6,57-6,7 (m, 3H), 7,12-7,30 (m, 1H)	60
p.) N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₃ -(3,3-dimethyl-allyl)-N ₃ -(4-methoxy-phenyl)-N ₁ -methyl-harnstoff	65
Hergestellt aus N_1 -(trans-4-tert.Butyl-cyclohexyl)- N_3 -(4-methoxy-phenyl)- N_1 -methyl-harnstoff und 3,3-Dimethyl-allylbromid. Ausbeute: 98,2% der Theorie,	

```
Schmelzpunkt: 90-91°C.
      Ber.: C74,57; H9,91; N7,25;
     gef.: C74,44; H 10,09; N 7,09.
     <sup>1</sup>H-NMR-Spektrum (200 mHz, CDCl<sub>3</sub>); Signale bei ppm:
     0,82-1,85 (3s+m, 24H), 2,39 (s, 3H), 3,78 (s, 3H), 3,80 (m, 1H), 4,10 (d, 2H), 5,32 (m, 1H), 6,82 (d, 2H), 6,98 (d, 2H)
         q.) N<sub>1</sub>-(trans-4-tert.Butyl-cyclohexyl)-N<sub>3</sub>-(2,6-dichlor-phenyl)-N<sub>3</sub>-(3,3-dimethyl-allyl)-N<sub>1</sub>-methyl-harnstoff
10
        Hergestellt aus N1-(trans-4-tert.Butyl-cyclohexyl)-N3-(2,6-dichlor-phenyl)-N1-methyl-harnstoff und 3,3-Dime-
     thyl-allylbromid.
     Ausbeute: 84,7% der Theorie,
     Schmelzpunkt: 138-140°C.
15
     Ber.: C 64,93; H 8,05; N 6,58;
     gef.: C 65,25; H 7,89; N 6,44.
     <sup>1</sup>H-NMR-Spektrum (200 mHz, CDCl<sub>3</sub>); Signale bei ppm:
    0,81 – 1,80 (3s + m, 24H), 2,40 (s, 3H), 3,55 (m, 1H), 4,15 (d, 2H), 5,49 (m, 1H), 7,05 – 7,40 (m, 3H)
          r.) N<sub>1</sub>-(trans-4-tert.Butyl-cyclohexyl)-N<sub>3</sub>-(2,4-difluor-phenyl)-N<sub>3</sub>-(3,3-dimethyl-allyl)-N<sub>1</sub>-methyl-harnstoff
        Hergestellt aus N<sub>1</sub>-(trans-4-tert.Butyl-cyclohexyl)-N<sub>3</sub>-(2,4-difluor-phenyl)-N<sub>1</sub>-methyl-harnstoff und 3,3-Dime-
    thyl-allylbromid.
     Ausbeute: 85,3% der Theorie,
     Schmelzpunkt: 102-104°C.
     Ber.: C 70,38; H 8,73; N 7,14;
    gef.: C 70,39; H 8,65; N 7,04.
     <sup>1</sup>H-NMR-Spektrum (200 mHz, CDCl<sub>3</sub>); Signale bei ppm:
     0,76-1,85 (3s+m, 24H), 2,40 (s, 3H), 3,71 (m, 1H), 4,04 (d, 2H), 5,34 (m, 1H), 6,74-7,12 (m, 3H)
                  s.) N1-(trans-4-tert.Butyl-cyclohexyl)-N3-(3,3-dimethyl-allyl)-N1-ethyl-N3-phenyl-harnstoff
35
       Hergestellt aus N<sub>1</sub>-(trans-4-tert.Butyl-cyclohexyl)-N<sub>1</sub>-ethyl-N<sub>3</sub>-phenyl-harnstoff und 3,3-Dimethyl-allylbro-
     Ausbeute: 84% der Theorie.
    Schmelzpunkt: Öl.
     Ber.: C 77,79; H 10,34; N 7,56;
     gef.: C77,94; H 10,36; N 7,54.
    <sup>1</sup>H-NMR-Spektrum (200 mHz, CDCl<sub>3</sub>); Signale bei ppm:
     0,75—1,85 (3s+t+m, 27H), 2,96 (q, 2H), 3,67 (m, 1H), 4,14 (d, 2H), 5,34 (m, 1H), 7,0-7,15 (m, 3H), 7,2—7,35 (m, 2H)
                t.) N<sub>1</sub>-(trans-4-tert.Butyl-cyclohexyl)-N<sub>3</sub>-(3,3-dimethyl-allyl)-N<sub>3</sub>-phenyl-N<sub>1</sub>-propyl-harnstoff
       Hergestellt aus N<sub>1</sub>-(trans-4-tert.Butyl-cyclohexyl)-N<sub>3</sub>-phenyl-N<sub>1</sub>-propyl-harnstoff und 3,3-Dimethyl-allylbro-
50
     mid.
     Ausbeute: 78% der Theorie.
     Schmelzpunkt: Öl.
    Ber.: C 78,07; H 10,48; N 7,28;
     gef.: C78,20; H 10,70; N 7,13.
     <sup>1</sup>H-NMR-Spektrum (200 mHz, CDCl<sub>3</sub>); Signale bei ppm:
     0,65-1,85 (3s+t+m, 29H), 2,81 (m, 2H), 3,65 (m, 1H), 4,14 (d, 2H), 5,33 (m, 1H), 7,0-7,26 (m, 5H)
60
                  u.) N1-(cis-4-tert.Butyl-cyclohexyl)-N3-(3,3-dimethyl-allyl)-N1-methyl-N3-phenyl-harnstoff
       Hergestellt aus N<sub>1</sub>-(cis-4-tert.Butyl-cyclohexyl)-N<sub>1</sub>-methyl-N<sub>3</sub>-phenyl-harnstoff und 3,3-Dimethyl-allylbromid.
     Ausbeute: 56% der Theorie,
    Schmelzpunkt: Öl.
     Ber.: C 77,48; H 10,18; N 7,86;
```

gef.: C77,13; H 10,14; N 7,96.

¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,83 – 1,95 (3s + m, 24H), 2,50 (s, 3H), 4,07 (m, 1H), 4,20 (d, 2H), 5,32 (m, 1H), 7,0 – 7,15 (m, 3H), 7,20 – 7,35 (m, 2H)	
v.) N ₁ -(cis-4-tert.Butyl-cyclohexyl)-N ₁ -methyl-N ₃ -phenyl-N ₃ -propyl-harnstoff	5
Hergestellt aus N_1 -(cis-4-tert.Butyl-cyclohexyl)- N_1 -methyl- N_3 -phenyl-harnstoff und Propylbromid. Ausbeute: 92% der Theorie, Schmelzpunkt: Öl.	
Ber.: C 76,31; H 10,37; N 8,48; gef.: C 76,51; H 10,55; N 8,28.	10
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,82-1,95 (s+t+m, 23H), 2,48 (s, 3H), 3,58 (m, 2H), 4,04 (m, 1H), 7,1 (m, 3H), 7,29 (m, 2H)	15
w.) N_1 -(cis-4-tert.Butyl-cyclohexyl)- N_3 -hexyl- N_1 -methyl- N_3 -phenyl-harnstoff	
Hergestellt aus N_1 -(cis-4-tert.Butyl-cyclohexyl)- N_1 -methyl- N_3 -phenyl-harnstoff und Hexylbromid. Ausbeute: 70% der Theorie, Schmelzpunkt: Öl.	20
Ber.: C 77,37; H 10,82; N 7,52; gef.: C 77,41; H 11,20; N 7,34.	
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,83 – 1,95 (s + m, 29H), 2,48 (s, 3H), 3,59 (m, 2H), 4,03 (m, 1H), 7,09 (m, 3H), 7,29 (m, 2H)	25
x.) N_1 -(cis-4-tert.Butyl-cyclohexyl)- N_3 -(2,4-difluor-phenyl)- N_3 -(3,3-dimethyl-allyl)- N_1 -methyl-harnstoff	
Hergestellt aus N ₁ -(cis-4-tert.Butyl-cyclohexyl)-N ₃ -(2,4-difluor-phenyl)-N ₁ -methyl-harnstoff und 3,3-Dimethyl-allylbromid. Ausbeute: 96,8% der Theorie, Schmelzpunkt: Öl.	30
Ber.: C 70,38; H 8,73; N 7,14; gef.: C 70,28; H 8,86; N 6,95.	35
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,83 (s, 9H), 1,0-1,9 (2s+m, 15H), 2,51 (s, 3H), 3,95 (m, 1H), 4,07 (d, 2H), 5,32 (m, 1H), 6,72-6,92 (m, 2H), 6,96-7,13 (m, 1H)	40
y.) N ₁ -(cis-4-tert.Butyl-cyclohexyl)-N ₃ -(3,3-dimethyl-allyl)-N ₁ -methyl-N ₃ -(4-methyl-phenyl)harnstoff	
Hergestellt aus N ₁ -(cis-4-tert.Butyl-cyclohexyl)-N ₁ -methyl-N ₃ -(4-methyl-phenyl)harnstoff und 3,3-Dimethyl-allylbromid. Ausbeute: 95,4% der Theorie, Schmelzpunkt: Öl.	45
Ber.: C 77,79; H 10,33; N 7,56; gef.: C 77,66; H 10,56; N 7,48.	50
¹ H-NRM-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,83 (s, 9H), 1,0-1,95 (2s + m, 15H), 2,31 (s, 3H), 2,49 (s, 3H), 4,04 (m, 1H), 4,17 (d, 2H), 5,32 (m, 1H), 6,95 (d, 2H), 7,08 (d, 2H)	55
z.) N_1 -(cis-4-tert.Butyl-cyclohexyl)- N_3 -(3,3-dimethyl-allyl)- N_3 -(2,6-dimethyl-phenyl)- N_1 -methyl-harnstoff	
Hergestellt aus N_1 -(cis-4-tert.Butyl-cyclohexyl)- N_3 -(2,6-dimethyl-phenyl)- N_1 -methyl-harnstoff und 3,3-Dimethyl-allylbromid. Ausbeute: 89,9% der Theorie, Schmelzpunkt: Öl.	60
Ber.: C 78,07; H 10,48; N 7,28; gef.: C 78,15; H 10,65; N 7,25. H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm:	65
1H-NMR-Spektrum (200 mHz, CDC(3); Signate bet ppin: 0.82 (s. 9H), 0.95—1,72 (2s + m, 15H), 2,22 (s, 6H), 2,46 (s, 3H), 3,72 (m, 1H), 4,0 (d, 2H), 5,44 (m, 1H), 7,02 (s, 3H)	

aa.) N₁-(cis-4-tert.Butyl-cyclohexyl)-N₃-(3,3-dimethyl-allyl)-N₃-(2-methoxy-phenyl)-N₁-methyl-harnstoff

Hergestellt aus N₁-(cis-4-tert.Butyl-cyclohexyl)-N₃-(2-methoxy-phenyl)-N₁-methyl-harnstoff und 3,3-Dimethyl-allylbromid.

Ausbeute: 93,1% der Theorie,

Schmelzpunkt: Öl.

Ber.: C74,57; H 9,91; N 7,25; gef.: C74,32; H 10,08; N 7,31.

¹H-NMR-Spektrum (200 mHz, CDCl₃); Signale bei ppm: 0,77-1,90 (3s+m, 24H), 2,43 (s, 3H), 3,85 (s, 3H), 3,97 (m, 1H), 4,05 (d, 2H), 5,38 (m, 1H), 6,8-7,02 (m, 3H), 7,1-7,23 (m, 1H)

ab.) N₁-(cis-4-tert.Butyl-cyclohexyl)-N₃-(3,3-dimethyl-allyl)-N₃-(3-methoxy-phenyl)-N₁-methyl-harnstoff

Hergestellt aus N_1 -(cis-4-tert.Butyl-cyclohexyl)- N_3 -(3-methoxy-phenyl)- N_1 -methyl-harnstoff und 3,3-Dimethyl-allylbromid.

Ausbeute: 96,5% der Theorie,

20 Schmelzpunkt: Öl.

15

30

55

Ber.: C 74,57; H 9,91; N 7,25; gef.: C 74,50; H 10,10; N 7,19.

¹H-NMR-Spektrum (200 mHz, CDCl₃); Signale bei ppm: 0,82 (s, 9H), 1,0—1,93 (2s+m, 15H), 2,54 (s, 3H), 3,77 (s, 3H), 4,11 (m, 1H), 4,19 (d, 2H), 5,31 (m, 1H), 6,57—6,72 (m, 3H), 7,12—7,28 (m, 1H)

ac.) N₁-(cis-4-tert.Butyl-cyclohexyl)-N₃-(2,6-dichlor-phenyl)-N₃-(3,3-dimethyl-allyl)-N₁-methyl-harnstoff

Hergestellt aus N₁-(cis-4-tert.Butyl-cyclohexyl)-N₃-(2,6-dichlor-phenyl)-N₁-methyl-harnstoff und 3,3-Dimethyl-allylbromid.

Ausbeute: 88,1% der Theorie,

Schmelzpunkt: Öl.

Ber.: C 64,93; H 8,05; N 6,58; gef.: C 65,07; H 8,11; N 6,48.

¹H-NMR-Spektrum (200 mHz, CDCl₃); Signale bei ppm: 0,82 (s, 9H), 1,02—1,72 (2s + m, 15H), 2,50 (s, 3H), 3,81 (m, 1H), 4,07 (d, 2H), 5,48 (m, 1H), 7,04—7,38 (m, 3H)

ad.) N1-(cis-4-tert.Butyl-cyclohexyl)-N3-(3-chlor-phenyl)-N3-(3,3-dimethyl-allyl)-N1-methyl-harnstoff

Hergestellt aus N₁-(cis-4-tert.Butyl-cyclohexyl)-N₃-(3-chlor-phenyl)-N₁-methyl-harnstoff und 3,3-Dimethyl-allylbromid.

Ausbeute: 93,3% der Theorie, Schmelzpunkt: ÖL

Ber.: C 70,65; H 9,02; N 7,17; gef.: C 70,53; H 9,04; N 7,14.

¹H-NMR-Spektrum (200 mHz, CDCl₃); Signale bei ppm: 0,83 (s, 9H), 1,0-1,97 (2s+m, 15H), 2,56 (s, 3H), 4,10 (m, 1H), 4,19 (d, 2H), 5,28 (m, 1H), 6,90-7,29 (m, 4H)

ae.) N1-(cis-4-tert.Butyl-cyclohexyl)-N3-(3,3-dimethyl-allyl)-N1-methyl-N3-(1-naphthyl)-harnstoff

Hergestellt aus N₁-(cis-4-tert.Butyl-cyclohexyl)-N₁-methyl-N₃-(1-naphthyl)harnstoff und 3,3-Dimethyl-allyl-bromid.

Ausbeute: 97,2% der Theorie,

60 Schmelzpunkt:Öl.

Ber.: C 79,76; H 9,42; N 6,89; gef.: C 79,47; H 9,50; N 7,03.

¹H-NMR-Spektrum (200 mHz, CDCl₃); Signale bei ppm: 0,60 – 1,82 (3s + m, 24H), 2,35 (s, 3H), 4,02 (m, 1H), 4,16 (d, 2H), 5,50 (m, 1H), 7,10 – 8,15 (m, 7H)

af.) N_1 -(trans-4-tert.Butyl-cyclohexyl)- N_3 -(3,3-dimethyl-allyl)- N_1 -methyl- N_3 -(1-naphthyl)harnstoff			
Hergestellt aus N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₁ -methyl-N ₃ -(1-naphthyl)harnstoff und 3,3-Dimethyl-allyl-bromid.			
Ausbeute: 73,8% der Theorie, Schmelzpunkt: Öl.	5		
Ber.: C 79,76; H 9,42; N 6,89; gef.: C 79,93; H 9,69; N 6,89.	10		
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,55-1,70 (3s+m, 24H), 2,30 (s, 3H), 3,72 (m, 1H), 4,16 (d, 2H), 5,50 (m, 1H), 7,10-8,13 (m, 7H)			
ag.) N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₃ -(3-chlor-phenyl)-N ₃ -(3,3-dimethyl-allyl)-N ₁ -methyl-harnstoff			
Hergestellt aus N_1 -(trans-4-tert.Butyl-cyclohexyl)- N_3 -(3-chlor-phenyl)- N_1 -methyl-harnstoff und 3,3-Dimethyl-allylbromid. Ausbeute: 97,2% der Theorie, Schmelzpunkt: ÖL	20		
Ber.: C 70,65; H 9,02; N 7,17; gef.: C 70,85; H 9,10; N 7,11.			
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,82-1,89 (3s+m, 24H), 2,45 (s, 3H), 3,85 (m, 1H), 4,18 (d, 2H), 5,29 (m, 1H), 6,85-7,29 (m, 4H)	25		
ah.) N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₃ -(4-chlor-phenyl)-N ₃ -(3,3-dimethyl-allyl)-N ₁ -methyl-harnstoff			
Hergestellt aus N_1 -(trans-4-tert.Butyl-cyclohexyl)- N_3 -(4-chlor-phenyl)- N_1 -methyl-harnstoff und 3,3-Dimethyl-allylbromid. Ausbeute: 97,2% der Theorie, Schmelzpunkt: 75–76° C.	30		
Ber.: C 70,65; H 9,02; N 7,17; gef.: C 70,66; H 8,82; N 7,14.	35		
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,80 – 1,88 (3s + m, 24H), 2,42 (s, 3H), 3,84 (m, 1H), 4,15 (d, 2H), 5,29 (m, 1H), 6,97 (d, 2H), 7,24 (d, 2H)			
ai.) N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₃ -heptyl-N ₁ -methyl-N ₃ -phenyl-harnstoff	40		
Hergestellt aus N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₁ -methyl-N ₃ -phenyl-harnstoff und Heptylbromid. Ausbeute: 86% der Theorie, Schmelzpunkt: Öl.	45		
Ber.: C 77,67; H 10,95; N 7,25; gef.: C 77,51; H 10,92; N 7,23.			
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,75-1,84 (s+m, 31H), 2,39 (s, 3H), 3,57 (m, 2H), 3,84 (m, 1H), 6,98-7,13 (m, 3H), 7,22{,35 (m, 2H)	50		
ak.) N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₁ -methyl-N ₃ -nonyl-N ₃ -phenyl-harnstoff			
Hergestellt aus N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₁ -methyl-N ₃ -phenyl-harnstoff und Nonylbromid. Ausbeute: 80% der Theorie, Schmelzpunkt: Öl.	55		
Ber.: C 78,20; H 11,18; N 6,76; gef.: C 78,33; H 10,98; N 6,90.	60		
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,77 − 1,87 (s + m, 35H), 2,40 (s, 3H), 3,57 (m, 2H), 3,83 (m, 1H), 6,98 − 7,13 (m, 3H), 7,21 − 7,37 (m, 2H)			
al.) N_1 -(trans-4-tert.Butyl-cyclohexyl)- N_3 -decyl- N_1 -methyl- N_3 -phenyl-harnstoff	65		
Hergestellt aus N_1 -(trans-4-tert.Butyl-cyclohexyl)- N_1 -methyl- N_3 -phenyl-harnstoff und Decylbromid. Ausbeute: 88,6% der Theorie, Schmelzpunkt: Öl.			

```
Ber.: C 78,45; H 11,29; N 6,53;
      gef.: C78,17; H11,11; N6,45.
      <sup>1</sup>NMR-Spektrum (200 mHz, CDCl<sub>3</sub>); Signale bei ppm:
     0.77 - 1.85 (s + m, 37H), 2.40 (s, 3H), 3.57 (m, 2H), 3.83 (m, 1H), 6.98 - 7.13 (m, 3H), 7.21 - 7.37 (m, 2H)
                am.) N1-(trans-4-tert.Butyl-cyclohexyl)-N3-cyclohexyl-methyl-N1-methyl-N3-phenyl-harnstoff
        Hergestellt aus N<sub>1</sub>-(trans-4-tert.Butyl-cyclohexyl)-N<sub>1</sub>-methyl-N<sub>3</sub>-phenyl-harnstoff und Cyclohexyl-methylbro-
     mid.
 10
      Ausbeute: 57% der Theorie,
     Schmelzpunkt: Öl.
     Ber.: C 78,07; H 10,48; N 7,28;
15 gef.: C 78,12; H 10,68; N 7,08.
     <sup>1</sup>H-NMR-Spektrum (200 mHz, CDCl<sub>3</sub>); Signale bei ppm:
     0,77-1,87 (s+m, 29H), 2,41 (s, 3H), 3,45 (d, 2H), 3,87 (m, 1H), 6,98-7,12 (m, 3H), 7,20-7,35 (m, 2H)
                        an.) N1-(trans-4-tert.Butyl-cyclohexyl)-N3-butyl-N1-methyl-N3-phenyl-harnstoff
20
        Hergestellt aus N<sub>1</sub>-(trans-4-tert.Butyl-cyclohexyl)-N<sub>1</sub>-methyl-N<sub>3</sub>-phenyl-harnstoff und Butylbromid.
     Ausbeute: 77,4% der Theorie,
     Schmelzpunkt: Öl.
25
     Ber.: C 76,69; H 10,53; N 8,13;
     gef.: C 76,80; H 10,69; N 7,90.
     <sup>1</sup>H-NMR-Spektrum (200 mHz, CDCl<sub>3</sub>); Signale bei ppm:
     0.75 - 1.88 (s + t + m, 25H), 2.38 (s, 3H), 3.58 (m, 2H), 3.83 (m, 1H), 6.98 - 7.14 (m, 3H), 7.21 - 7.37 (m, 2H)
                     ao.) N<sub>1</sub>-(trans-4-tert.Butyl-cyclohexyl)-N<sub>1</sub>-methyl-N<sub>3</sub>-phenyl-N<sub>3</sub>-propargyl-harnstoff
        Hergestellt aus N<sub>1</sub>-(trans-4-tert.Butyl-cyclohexyl)-N<sub>1</sub>-methyl-N<sub>3</sub>-phenyl-harnstoff und Propargylbromid.
     Ausbeute: 73,50% der Theorie,
     Schmelzpunkt: 89° C.
     Ber.: C 77,26; H 9,26; N 8,58;
     gef.: C77,14; H9,39; N8,33.
     <sup>1</sup>H-NMR-Spektrum (200 mHz, CDCl<sub>3</sub>); Signale bei ppm:
     0,78--1,84 (s+m, 18H), 2,18 (t, 1H), 2,44 (s, 3H), 3,87 (m, 1H), 4,33 (d, 2H), 7,09-7,23 (m, 3H), 7,24-7,41 (m, 2H)
                       ap.) N1-(trans-4-tert.Butyl-cyclohexyl)-N1-methyl-N3-pentyl-N3-phenyl-harnstoff
45
        Hergestellt aus N<sub>1</sub>-(trans-4-tert.Butyl-cyclohexyl)-N<sub>1</sub>-methyl-N<sub>3</sub>-phenyl-harnstoff und Pentylbromid.
     Ausbeute: 89,2% der Theorie,
     Schmelzpunkt: ÖL
    Ber.: C 77,04; H 10,68; N 7,81;
     gef.: C77,18; H 10,83; N 7,54.
     <sup>1</sup>H-NMR-Spektrum (200 mHz, CDCl<sub>3</sub>); Signale bei ppm:
     0,77-1,85 (s+t+m, 27H), 2,40 (s, 3H), 3,58 (m, 2H), 3,83 (m, 1H), 6,98-7,13 (m, 3H), 7,22-7,36 (m, 2H)
55
                      aq.) N1-(trans-4-tert.Butyl-cyclohexyl)-N3-isobutyl-N1-methyl-N3-phenyl-harnstoff
        Hergestellt aus N<sub>1</sub>-(trans-4-tert.Butyl-cyclohexyl)-N<sub>1</sub>-methyl-N<sub>3</sub>-phenyl-harnstoff und Isobutylbromid.
     Ausbeute: 56% der Theorie,
    Schmelzpunkt: 101°C.
     Ber.: C 76,69; H 10,53; N 8,13;
     gef.: C 77,00; H 10,62; N 7,99.
     <sup>1</sup>H-NMR-Spektrum (200 mHz, CDCl<sub>3</sub>); Signale bei ppm:
     0,75-1,84 (s+d+m, 24H), 1,95 (m, 1H), 2,43 (s, 3H), 3,43 (d, 2H), 3,87 (m, 1H), 6,98-7,12 (m, 3H), 7,20-7,37 (m,
     2H)
```

ar.) N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₃ -(trans-3,7-dimethyl-2,6-octadienyl)-N ₁ -methyl-N ₃ -phenyl-harnstoff				
Hergestellt aus N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₁ -methyl-N ₃ -phenyl-harnstoff und trans-3,7-Dimethyl- 2,6-octadienyl-bromid. Ausbeute: 39% der Theorie, Schmelzpunkt: Öl.				
Ber.: C 79,19; H 10,44; N 6,60; gef.: C 79,28; H 10,56; N 6,55.	10			
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,77-2,10 (4s+m, 31H), 2,41 (s, 3H), 3,84 (m, 1H), 4,20 (d, 2H), 5,03 (m, 1H), 5,34 (m, 1H), 6,98-7,12 (m, 3H), 7,20-7,34 (m, 2H)				
as.) N_1 -[trans-4-(4-Methoxy-3-methyl-phenyl)cyclohexyl]- N_1 -methyl- N_3 -phenyl- N_3 -propyl-harnstoff	15			
Hergestellt aus N ₁ -[trans-4-(4-Methoxy-3-methyl-phenyl)-cyclohexyl]-N ₁ -methyl-N ₃ -phenyl-harnstoff und Propylbromid.				
Ausbeute: 76% der Theorie, Schmelzpunkt: ÖL	20			
Ber.: C 76,10; H 8,69; N 7,10; gef.: C 75,96; H 8,63; N 6,96.				
$^1\text{H-NMR-Spektrum}$ (200 mHz, CDCl ₃); Signale bei ppm: 0,9 (t, 3H), 1,34 — 2,0 (m, 10H), 2,20 (s, 3H), 2,32 (m, 1H), 2,45 (s, 3H), 3,57 (m, 2H), 3,79 (s, 3H), 4,00 (m, 1H), 6,68 — 7,39 (m, 8H)	25			
at.) N₃-(3,3-Dimethyl-allyl)-N₁-[trans-4-(4-methoxy-3-methyl-phenyl)cyclohexyl]-N₁-methyl-N₃-phenyl-harnstoff	30			
Hergestellt aus N ₁ -[trans-4-(4-Methoxy-3-methyl-phenyl)-cyclohexyl]-N ₁ -methyl-N ₃ -phenyl-harnstoff und 3,3-Dimethyl-allylbromid. Ausbeute: 89% der Theorie, Schmelzpunkt: ÖL	35			
Ber.: C 77,10; H 8,63; N 6,66; gef.: C 76,97; H 8,56; N 6,41.				
¹ H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 1,34-2,05 (2s+m, 14H), 2,20 (s, 3H), 2,31 (m, 1H), 2,45 (s, 3H), 3,80 (s, 3H), 4,01 (m, 1H), 4,20 (d, 2H), 5,34 (m, 1H), 6,69-7,37 (m, 8H)	40			
au.) N ₁ -(trans-4-(4-Methoxy-3-methyl-phenyl)cyclohexyl-N ₁ -methyl-N ₃ -(3-methyl-butyl)-N ₃ -phenyl-harnstoff				
Hergestellt aus N ₁ -{trans-4-(4-Methoxy-3-methyl-phenyl)-cyclohexyl}-N ₁ -methyl-N ₃ -phenyl-harnstoff und 3-Methyl-butylbromid.	45			
Ausbeute: 95% der Theorie, Schmelzpunkt: ÖL	50			
Ber.: C 76,74; H 9,06; N 6,63; gef.: C 77,00; H 9,34; N 6,51.				
1 H-NMR-Spektrum (200 mHz, CDCl ₃); Signale bei ppm: 0,83 – 2,00 (d + m, 17H), 2,19 (s, 3H), 2,32 (m, 1H), 2,43 (s, 3H), 3,62 (m, 2H), 3,80 (s, 3H), 3,99 (m, 1H), 6,67 – 7,39 (m, 8H)	55			
Beispiel 2				
N1-(trans-4-tert.Butyl-cyclohexyl)-N1,N3-dimethyl-N3-phenyl-harnstoff	6			
340 mg (2 mMol) N-Methyl-trans-4-tert.butyl-cyclohexylamin und 0,5 ml (2,9 mMol) N-Ethyl-diisopropylamin werden in 30 ml absolutem Methylenchlorid gelöst und bei Raumtemperatur tropfenweise mit einer Lösung von 340 mg (2 mMol) N-Methyl-N-phenyl-carbamidsäurechlorid in 10 ml Methylenchlorid versetzt. Nach beendeter				

340 mg (2 mMol) N-Methyl-trans-4-tert.butyl-cyclohexylamin und 0,5 ml (2,9 mMol) N-Ethyl-disopropylamin werden in 30 ml absolutem Methylenchlorid gelöst und bei Raumtemperatur tropfenweise mit einer Lösung von 340 mg (2 mMol) N-Methyl-N-phenyl-carbamidsäurechlorid in 10 ml Methylenchlorid versetzt. Nach beendeter Zugabe kocht man noch 2 Stunden am Rückfluß, kühlt dann ab und versetzt mit verdünnter Salzsäure. Nach Extraktion mit Methylenchlorid wird über Magnesiumsulfat getrocknet und eingeengt. Der Einengungsrückstand wird an Kieselgel säulenchromatographisch gereinigt (Fließmittel: Petrolether/Essigsäureethylester = 8:1).

Ausbeute: 334 mg (58% der Theorie), Schmelzpunkt: 60-61°C.

Ber.: C 75,45; H 10,00; N 9,26; gef.: C 75,30; H 10,08; N 9,15.

¹H-NMR-Spektrum (200 mHz, CDCl₃); Signale bei ppm: 0,83-1,84 (s+m, 18H), 2,43 (s, 3H), 3,19 (s, 3H), 3,35 (m, 1H), 7,08 (m, 3H), 7,27 (m, 2H)

10 Analog wurde hergestellt:

a.) N₁-(trans-4-tert.Butyl-cyclohexyl)-N₃,N₃-diphenyl-N₁-methyl-harnstoff

Hergestellt aus N,N-Diphenyl-carbamidsäurechlorid und N-Methyl-trans-4-tert.butyl-cyclohexylamin. Ausbeute: 73,1% der Theorie, Schmelzpunkt: 103—105°C.

Ber.: C 79,08; H 8,85; N 7,69; gef.: C 79,24; H 8,83; N 7,82.

¹H-NMR-Spektrum (200 mHz, CDCl₃); Signale bei ppm: 0,78-1,88 (s+m, 18H), 2,62 (s, 3H), 3,97 (m, 1H), 6,97-7,17 (m, 6H), 7,22-7,38 (m, 4H)

Beispiel 3

25

50

65

N1-(cis-4-tert.Butyl-cyclohexyl)-N1-methyl-N3,N3-diphenyl-harnstoff

1,02 g (6,0 mMol) N-Methyl-cis-4-tert.butyl-cyclohexylamin werden in 20 ml absolutem Essigsäureethylester gelöst und bei 60°C zu einer gerührten Lösung von 1,78 g (6 mMol) Triphosgen in 20 ml Essigsäureethylester getropft. Nach beendeter Zugabe wird noch 3 Stunden bei 80°C gerührt, dann im Wasserstrahlvakuum eingeengt und auf Raumtemperatur abgekühlt. Das hierbei roh erhaltene N-Methyl-N-(cis-4-tert.butyl-cyclohexyl)carbamidsäurechlorid wird in 25 ml Methylenchlorid gelöst und unter Eiskühlung zu einer gerührten Lösung von 1,01 g (6 mMol) Diphenylamin und 2,07 ml (12 mMol) N-Ethyl-diisopropylamin getropft. Nach 2 Stunden Rühren wird mit eiskalter 2N Salzsäure zersetzt, mit Methylenchlorid extrahiert, getrocknet und eingeengt. Der ölige Einengungsrückstand wird an Kieselgel säulenchromatographisch gereinigt

(Fließmittel: Petrolether/Essigsäureethylester = 5:1).

Ausbeute: 320 mg (14,6% der Theorie),

Schmelzpunkt: 90-92°C.

40 Ber.: C 79,08; H 8,85; N 7,69; gef.: C 78,79; H 9,02; N 7,59.

¹H-NMR-Spektrum (200 mHz, CDCl₃); Signale bei ppm: 0,8-0,95 (2s, 9H), 1,02-2,07 (m, 9H), 2,72 (s, 0,8H), 2,76 (s, 0,2H), 3,77 (m, 0,2H), 4,19 (m, 0,8H), 6,98-7,18 (m, 6H), 7,21-7,37 (m, 4H)

Beispiel 4

N₃-(3,3-Dimethyl-allyl)-N₁-[trans-4-(4-hydroxy-3-methyl-phenyl)cyclohexyl]-N₁-methyl-N₃-phenyl-harnstoff

0,6 g (1,4 mMol) N₃-(3,3-Dimethyl-allyl)-N₁-{trans-4-(4-methoxy-3-methyl-phenyl)cyclohexyl]-N₁-methyl-N₃-phenyl-harnstoff und 0,3 g (3,57 mMol) Natrium-thioethanolat werden in 1,5 ml Dimethylformamid 3,5 Stunden am Rückfluß erhitzt. Dann wird abgekühlt, mit 2N Salzsäure angesäuert und mit Ether extrahiert. Die Extrakte werden getrocknet, eingeengt und an Kieselgel säulenchromatographisch gereinigt

(Fließmittel: Toluol/Essigsäureethylester = 6:1).

Ausbeute: 470 mg (82% der Theorie),

Schmelzpunkt: 130-131°C.

Ber.: C 76,81; H 8,43; N 6,89; gef.: C 76,60; H 8,48; N 6,83.

¹H-NMR-Spektrum (200 mHz, CDCl₃); Signale bei ppm: 1,25—2,00 (2s+m, 14H), 2,23 (s, 3H), 2,30 (m, 1H), 2,43 (s, 3H), 4,02 (m, 1H), 4,20 (d, 2H), 5,34 (m, 1H), 6,68—7,37 (m, 8H)

Beispiel 5

N₁-ftrans-4-f4-(2-N₁N-Diethylamino-ethoxy)-3-methyl-phenyl]cyclohexyl]-N₃-(3,3-dimethyl-allyl)-N₁-methyl-phenyl]cyclohexyl

N₃-phenyl-harnstoff

0,4 g (1 mMol) N ₃ -(3,3-Dimethyl-allyl)-N ₁ -[trans-4-(4-hydroxy-3-methyl-phenyl)cyclohexyl]-N ₁ -methyl-			
0,4 g (1 mMol) N ₃ -(3,3-Dimethyl-allyl)-N ₁ -[trans-4-(4-hydroxy-3-methyl-phenyl)cyclohexyl]-N ₁ -methyl-N ₃ -phenyl-harnstoff werden in 30 ml Methylenchlorid gelöst und nach Zusatz von 4,2 ml (4,2 mMol) 1N Natron-lauge, 5 ml Wasser, 390 mg (2,25 mMol) 2-(N,N-Diethylamino)ethylchloridhydrochlorid und 10 mg Tetrabuty-lammonium-hydrogensulfat 48 Stunden bei Raumtemperatur gerührt. Anschließend wird mit Methylenchlorid extrahiert und nach dem Einengen der Extrakte an Kieselgel säulenchromatographisch gereinigt (Fließmittel: Toluol/Essigsäureethylester/Methanol/Ethanol mit Ammoniakgas gesättigt = 8:2:1:0,2). Ausbeute: 310 mg (61% der Theorie), Schmelzpunkt: Öl.			
Ber.: C 76,00; H 9,37; N 8,31; gef.: C 76,27; H 9,51; N 8,37.			
1,07 (t, 6H), 1,30-2,00 (2s+m, 14H), 2,20 (s, 3H), 2,30 (m, 1H), 2,45 (s, 3H), 2,65 (q,4H), 2,90 (t, 2H), 4,02 (t+m, 3H), 4,20 (d, 2H), 5,34 (m, 1H), 6,67-7,36 (m, 8H). Im folgenden wird die Herstellung pharmazeutischer Anwendungsformen anhand einiger Beispiele beschrieben:	15		
Beispiel I	20		
·			
Tabletten mit 5 mg N_1 -(trans-4-tert.Butyl-cyclohexyl)- N_3 -(3,3-dimethyl-allyl)- N_1 -methyl- N_3 -phenyl-harnstoff			
Zusammensetzung	25		
1 Tablette enthält:			
Wirkstoff 5,0 mg			
Milchzucker 148,0 mg	30		
Kartoffelstärke 65,0 mg	••		
Magnesiumstearat 2,0 mg			
220,0 mg			
Herstellungsverfahren	35		
Aus Kartoffelstärke wird durch Erwärmen ein 10%iger Schleim hergestellt. Die Wirksubstanz, Milchzucker und die restliche Kartoffelstärke werden gemischt und mit obigem Schleim durch ein Sieb der Maschenweite 1,5 mm granuliert. Das Granulat wird bei 45°C getrocknet, nochmals durch obiges Sieb gerieben, mit Magnesiumstearat vermischt und zu Tabletten verpreßt. Tablettengewicht: 220 mg Stempel: 9 mm	40		
Beispiel II			
·	46		
Dragées mit 5 mg N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₃ -(3,3-dimethyl-allyl)-N ₁ -methyl-N ₃ -phenyl-harnstoff	45		
Die nach Beispiel I hergestellten Tabletten werden nach bekanntem Verfahren mit einer Hülle überzogen, die im wesentlichen aus Zucker und Talkum besteht. Die fertigen Dragées werden mit Hilfe von Bienenwachs			
poliert. Dragéegewicht: 300 mg	50		
Beispiel III			
Suppositorien mit 5 mg N ₁ -(trans-4-tert.Butyl-cyclohexyl)-N ₃ -(3,3-dimethyl-allyl)-N ₁ -methyl-N ₃ -phenyl-harnstoff	55		
Zusammensetzung			
1 Zäpfchen enthält:			
Wirkston	60		
Zäpfchenmasse (z. B. Witepsol W 45 [®]) 1695,0 mg			
1700,0 mg			
Herstellungsverfahren			
Die feinpulverisierte Wirksubstanz wird in der geschmolzenen und auf 40°C abgekühlten Zäpfchenmasse suspendiert. Man gießt die Masse bei 37°C in leicht vorgekühlte Zäpfchenformen aus. Zäpfchengewicht 1,7 g.			

Beispiel IV

Kapseln mit 5 mg N1-(trans-4-tert.Butyl-cyclohexyl)-N3-(3,3-dimethyl-allyl)-N1-methyl-N3-phenyl-harnstoff

Zusammensetzung

1	Ka	psel	ent	häl	t:
---	----	------	-----	-----	----

Wirksubstanz	5,0 mg
Lactose	82,0 mg
Stärke	82,0 mg
Magnesiumstearat	1,0 mg
_	170.0 mg

Herstellungsverfahren

Die Pulvermischung wird intensiv gemischt und auf einer Kapselabfüllmaschine in Hartgelatine-Steckkapseln der Größe 3 abgefüllt, wobei das Endgewicht laufend überprüft wird.

Patentansprüche

1. Phenylharnstoffe der allgemeinen Formel

in der

5

10

15

20

25

30

35

40

45

50

55

60

65

X ein Sauerstoff- oder Schwefelatom,

R₁ eine tert.Butylgruppe oder eine Phenylgruppe, die durch eine Hydroxy-, Alkoxy- oder Alkylgruppe mit jeweils 1 bis 3 Kohlenstoffatomen mono- oder disubstituiert sein kann, wobei die Substituenten gleich oder verschieden sein können und wobei eine solche Alkoxygruppe in 2- oder 3-Stellung durch eine Dialkylaminogruppe, in der jeder Alkylteil 1 bis 3 Kohlenstoffatome enthalten kann, oder durch eine Pyrrolidino-, Piperidino- oder Hexamethyleniminogruppe substituiert sein kann,

R₂ ein Wasserstoffatom oder eine Alkylgruppe mit 1 oder 2 Kohlenstoffatomen,

R₃ eine Alkylgruppe mit 1 bis 3 Kohlenstoffatomen,

R4 eine geradkettige oder verzweigte Alkyl-, Alkenyl- oder Alkinylgruppe, welche gegebenenfalls noch durch einen Rest der allgemeinen Formel

substituiert sein können, wobei der Alkylteil 1 bis 12 Kohlenstoffatome und der einfach oder mehrfach ungesättigte Alkenyl- oder Alkinylteil jeweils 3 bis 12 Kohlenstoffatome enthalten kann, bedeuten,

R4 kann des weiteren einen Cycloalkylrest mit insgesamt 7 bis 12 Kohlenstoffatomen oder eine Gruppe der Formel

darstellen, wobei R₅ und R₆, die gleich oder verschieden sein können, ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine Trifluormethyl-, Alkyl- oder Alkoxygruppe, in denen der Alkylteil jeweils 1 bis 4 Kohlenstoffatome enthalten kann, oder zusammen mit dem Phenylring eine Naphthylgruppe bedeuten, und, sofern R₁ einen basischen Rest enthält, deren Säureadditionssalze.

44 38 021 DE

2. Phenylharnstoffe der allgemeinen Formel I gemäß Anspruch 1, in der

R₁ eine tert.Butylgruppe oder eine Phenylgruppe, die durch eine Methyl-, Hydroxy-, Methoxy- oder Ethoxygruppe mono- oder disubstituiert sein kann, wobei die Substituenten gleich oder verschieden sein können und eine Ethoxygruppe in 2-Stellung durch eine Dimethylamino- oder Diethylaminogruppe substituiert sein kann.

R2 ein Wasserstoffatom, R3 eine Methyl- oder Ethylgruppe,

R4 eine geradkettige oder verzweigte Alkyl-, Alkenyl- oder Alkinylgruppe, welche gegebenenfalls durch einen Phenylrest substituiert sein können, wobei der Alkylteil 1 bis 10 Kohlenstoffatome, der einfach oder zweifach ungesättigte Alkenylteil 3 bis 10 Kohlenstoffatome und der Alkinylteil 3 bis 5 Kohlenstoffatome enthalten kann.

R5 und R6, die gleich oder verschieden sein können, ein Wasserstoff-, Fluor- oder Chloratom, eine Methyl-, Ethyl-, Isopropyl-, tert. Butyl-, Trifluormethyl- oder Methoxygruppe oder

Rs und R6 zusammen mit dem Phenylring eine Naphthylgruppe und

X ein Sauerstoffatom bedeuten, und, sofern R1 einen basischen Rest enthält, deren Säureadditionssalze.

3. Phenylharnstoffe der allgemeinen Formel 1 gemäß Anspruch 1, in der

R1 eine tert.Butylgruppe oder eine Phenylgruppe, die in 4-Stellung durch eine Methoxy-, Hydroxy- oder 2-(N.N-Diethylamino)-ethoxygruppe substituiert ist und zusätzlich in 3-Stellung durch eine Methylgruppe substituiert sein kann,

15

25

30

35

60

R₂ ein Wasserstoffatom, R₃ eine Methylgruppe,

R4 eine n-Propyl-, n-Butyl-, Isobutyl-, 3-Methyl-butyl-, n-Pentyl-, n-Hexyl-, n-Heptyl-, n-Octyl-, n-Nonyl-, 20 n-Decyl-, Allyl-, Crotyl-, 3,3-Dimethyl-allyl-, Propargyl-, 3,7-Dimethyl-6-octenyl-, 3,7-Dimethyl-2, 6-octadienyl-, Cyclohexylmethyl-, Benzyl- oder Phenylgruppe,

Rs ein Wasserstoff-, Fluor- oder Chloratom, eine Methyl-, Ethyl-, Isopropyl-, tert.Butyl-, Trifluormethyloder Methoxygruppe,

Re ein Wasserstoff-, Fluor- oder Chloratom, eine Methyl- oder Ethylgruppe oder

R₅ und R₆ zusammen mit dem Phenylring eine Naphthylgruppe und

X ein Sauerstoffatom bedeuten, und, sofern R1 einen basischen Rest enthält, deren Säureadditionssalze.

4. Als Phenylharnstoffe der allgemeinen Formel gemäß Anspruch 1 die folgenden Verbindungen:

N3-Crotyl-N1-(trans-4-tert.butyl-cyclohexyl)-N1-methyl-N3-phenyl-harnstoff,

N₁-{trans-4-(4-Methoxy-3-methyl-phenyl)cyclohexyl)-N₁-methyl-N₃-phenyl-N₃-propyl-harnstoff

N1-(trans-4-tert.Butyl-cyclohexyl)-N1-methyl-N3-(3-methyl-butyl)-N3-phenyl-harnstoff

N1-(trans-4-tert.Butyl-cyclohexyl)-N3-(3,3-dimethyl-allyl)-N1-methyl-N3-phenyl-harnstoff,

N1-[trans-4-(4-Methoxy-3-methyl-phenyl)cyclohexyl]-N3-(3,3-dimethyl-allyl)-N1-methyl-N3-phenyl-harn-

N₁-(trans-4-tert.Butyl-cyclohexyl)-N₃-hexyl-N₁-methyl-N₃-phenyl-harnstoff.

5. Physiologisch verträgliche Säureadditionssalze der Verbindungen gemäß den Ansprüchen 1 bis 3 mit anorganischen oder organischen Säuren.

6. Arzneimittel, enthaltend eine Verbindung der allgemeinen Formel I gemäß den Ansprüchen 1 bis 4 oder dessen physiologisch verträgliches Säureadditionssalz gemäß Anspruch 5 neben einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.

7. Verfahren zur Herstellung eines Arzneimittels gemäß Anspruch 6, dadurch gekennzeichnet, daß auf nichtchemischem Wege eine Verbindung gemäß den Ansprüchen 1 bis 4 oder deren physiologisch verträgliches Säureadditionssalz gemäß Anspruch 5 in einen oder mehrere inerte Trägerstoffe und/oder Verdünnungsmittel eingearbeitet wird.

8. Verfahren zur Herstellung der neuen Phenylharnstoffe gemäß den Ansprüchen 1 bis 5, dadurch gekenn- 45 zeichnet, daß

a) eine Verbindung der allgemeinen Formel

$$R_1 \xrightarrow{R_3} N - U_1 \qquad , (II)$$

mit einer Verbindung der allgemeinen Formel

$$U_2 - N \xrightarrow{R_4} R_5$$

$$R_6$$
(III)

in denen

 R_1 bis R_6 wie mindestens in einem der Ansprüche 1 bis 4 definiert sind, einer der Reste U_1 oder U_2 ein Wasserstoffatom und der andere der Reste U_1 oder U_2 eine Z_1 —CX-Gruppe, in der

X wie mindestens in einem der Ansprüche 1 bis 4 definiert ist

unc

Z₁ eine nucleophile Austrittsgruppe darstellt, umgesetzt wird oder

b) zur Herstellung von Verbindungen der allgemeinen Formel I gemäß Anspruch 1, in der X ein Sauerstoffatom darstellt, eine Verbindung der allgemeinen Formel

10

15

5

$$R_{1} \xrightarrow{R_{3}' \quad 0 \quad R_{4}'} R_{5}$$

$$R_{1} \xrightarrow{R_{3}' \quad 0 \quad R_{4}'} R_{5}$$

$$R_{2} \xrightarrow{R_{3}' \quad 0 \quad R_{4}'} R_{5}$$

$$R_{6} \xrightarrow{R_{1}' \quad R_{2}'} R_{6}$$

20

25

30

35

40

45

50

55

60

65

in der R_1 , R_2 , R_5 und R_6 wie mindestens in einem der Ansprüche 1 bis 4 definiert sind, einer der Reste R_3 ' oder R_4 ' ein Wasserstoffatom und der andere der Reste R_3 ' oder R_4 ' die für R_3 oder R_4 mindestens in einem der Ansprüche 1 bis 4 erwähnten Bedeutungen besitzt, mit einer Verbindung der allgemeinen Formel

 Z_2-R_7 (V)

in der

 R_7 die für R_3 oder R_4 mindestens in einem der Ansprüche 1 bis 4 erwähnten Bedeutungen besitzt und Z_2 eine nucleophile Austrittsgruppe darstellt, alkyliert wird oder

c) zur Herstellung von Verbindungen der allgemeinen Formel I gemäß Anspruch 1, in der R₁ eine Phenylgruppe, die durch mindestens eine Alkoxygruppe mit 1 bis 3 Kohlenstoffatomen substituiert ist, wobei die Alkoxygruppe in 2- oder 3-Stellung durch eine Dialkylaminogruppe, in der jeder Alkylteil 1 bis 3 Kohlenstoffatome enthalten kann, oder durch eine Pyrrolidino-, Piperidino- oder Hexamethyleniminogruppe substituiert sein kann, und X ein Sauerstoffatom darstellen, eine Verbindung der allgemei-

nen Formel

in der

R₂ bis R₆ wie mindestens in einem der Ansprüche 1 bis 4 definiert sind und

R₁' eine Hydroxyphenylgruppe, die zusätzlich durch eine Hydroxy-, Alkoxy- oder Alkylgruppe mit jeweils 1 bis 3 Kohlenstoffatomen substituiert sein kann, wobei eine Alkoxygruppe in 2- oder 3-Stellung durch eine Dialkylaminogruppe, in der jeder Alkylteil 1 bis 3 Kohlenstoffatome enthalten kann, oder durch eine Pyrrolidino-, Piperidino- oder Hexamethyleniminogruppe substituiert sein kann, bedeutet,

mit einer Verbindung der allgemeinen Formel

$$Z_3-Alk-R_8$$
 (VII)

in der

Alk eine n-Alkylengruppe mit 1 bis 3 Kohlenstoffatomen,

R₈ ein Wasserstoffatom, eine Pyrrolidino-, Piperidino-, Hexamethylenimino- oder Dialkylaminogruppe, in welcher jeder Alkylteil 1 bis 3 Kohlenstoffatome enthalten kann, und

Z₃ eine nukleophile Austrittsgruppe darstellen, umgesetzt wird und

erforderlichen falls anschließend ein während den Umsetzungen a) bis c) zum Schutze von reaktiven Gruppen, wie einer Hydroxygruppe, verwendeter Schutzrest abgespalten wird und/oder

gewünschtenfalls anschließend eine so erhaltene Verbindung der allgemeinen Formel I, in der R₁ einen basischen Rest enthält, in ihre Säureadditionssalze, insbesondere in ihre physiologisch verträglichen Säureadditionssalze mit anorganischen oder organischen Säuren übergeführt wird.