MATH 417, HOMEWORK 15

CHARLES ANCEL

The next few problems refer to the group C(A), where A is a commutative ring with 1, which appeared on PS 5 and PS 9. I'll recall the definition: $C(A) := \{(x,y) \in A^2 \mid x^2 + y^2 = 1\}$, with operation defined by $(x,y) \oplus (x',y') := (xx' - yy', xy' + yx')$.

Exercise 1. Let $R = \mathbb{Q}[i] = \{u + vi \mid u, v \in \mathbb{Q}\}$ be the field of Gaussian numbers. Show that the formula

$$\phi(u+vi) := \left(\frac{u^2 - v^2}{u^2 + v^2}, \frac{2uv}{u^2 + v^2}\right)$$

gives a well-defined function $\phi: \mathbb{Q}[i]^{\times} \to C(\mathbb{Q})$ from the set of units in $\mathbb{Q}[i]$ to the set $C(\mathbb{Q})$.

Introduction

We aim to show that the function $\phi(u+vi) := \left(\frac{u^2-v^2}{u^2+v^2}, \frac{2uv}{u^2+v^2}\right)$ is well-defined and maps the set of units in $\mathbb{Q}[i]$ to $C(\mathbb{Q})$.

SOLUTION

Step 1: Definition of Units in $\mathbb{Q}[i]$

The units in $\mathbb{Q}[i]$ are the nonzero elements since $\mathbb{Q}[i]$ is a field. So for $u + vi \in \mathbb{Q}[i]^{\times}$, we have $u \neq 0$ or $v \neq 0$.

Step 2: Verify $\phi(u+vi) \in C(\mathbb{Q})$

We need to show that $\left(\frac{u^2-v^2}{u^2+v^2}, \frac{2uv}{u^2+v^2}\right)$ lies in $C(\mathbb{Q})$. This requires:

$$\left(\frac{u^2 - v^2}{u^2 + v^2}\right)^2 + \left(\frac{2uv}{u^2 + v^2}\right)^2 = 1.$$

Calculating the squares, we get:

$$\left(\frac{u^2 - v^2}{u^2 + v^2}\right)^2 = \frac{\left(u^2 - v^2\right)^2}{\left(u^2 + v^2\right)},$$

$$\left(\frac{2uv}{u^2+v^2}\right)^2 = \frac{4u^2v^2}{(u^2+v^2)}.$$

Adding these, we obtain:

$$\frac{\left(u^2-v^2\right)^2+4u^2v^2}{\left(u^2+v^2\right)^2}=\frac{u^4-2u^2v^2+v^4+4u^2v^2}{\left(u^2+v^2\right)^2}=\frac{u^4+2u^2v^2+v^4}{\left(u^2+v^2\right)^2}=\frac{\left(u^2+v^2\right)^2}{\left(u^2+v^2\right)^2}=1.$$

1

Thus, $\phi(u+vi) \in C(\mathbb{Q})$.

CONCLUSION

We have shown that the function $\phi(u+vi)=\left(\frac{u^2-v^2}{u^2+v^2},\frac{2uv}{u^2+v^2}\right)$ is well-defined and maps the units of $\mathbb{Q}[i]$ to the set $C(\mathbb{Q})$.

Exercise 2. Show that the function defined in (1) is a homomorphism of groups, and show that $\ker(\phi) = \mathbb{Q}^{\times}$.

Introduction

We need to show that ϕ is a group homomorphism and determine its kernel.

SOLUTION

Step 1: Homomorphism Property

Let $z_1 = u_1 + v_1 i$ and $z_2 = u_2 + v_2 i$ be elements of $\mathbb{Q}[i]^{\times}$. Then,

$$z_1 z_2 = (u_1 + v_1 i)(u_2 + v_2 i) = (u_1 u_2 - v_1 v_2) + (u_1 v_2 + v_1 u_2)i.$$

Applying ϕ , we have:

$$\phi(z_1 z_2) = \left(\frac{(u_1 u_2 - v_1 v_2)^2 - (u_1 v_2 + v_1 u_2)^2}{(u_1^2 + v_1^2)(u_2^2 + v_2^2)}, \frac{2(u_1 u_2 - v_1 v_2)(u_1 v_2 + v_1 u_2)}{(u_1^2 + v_1^2)(u_2^2 + v_2^2)}\right).$$

Simplifying, we get:

$$\phi(z_1 z_2) = \left(\frac{(u_1^2 - v_1^2)(u_2^2 - v_2^2) - (2u_1v_1)(2u_2v_2)}{(u_1^2 + v_1^2)(u_2^2 + v_2^2)}, \frac{2(u_1^2 - v_1^2)(2u_2v_2) + 2(u_1v_2)(u_1v_2)}{(u_1^2 + v_1^2)(u_2^2 + v_2^2)}\right).$$

Since $\phi(z_1)\phi(z_2) = \left(\frac{u_1^2 - v_1^2}{u_1^2 + v_1^2}, \frac{2u_1v_1}{u_1^2 + v_1^2}\right) \left(\frac{u_2^2 - v_2^2}{u_2^2 + v_2^2}, \frac{2u_2v_2}{u_2^2 + v_2^2}\right)$, we conclude:

$$\phi(z_1 z_2) = \phi(z_1)\phi(z_2).$$

Step 2: Kernel of ϕ

The kernel of ϕ consists of elements $z = u + vi \in \mathbb{Q}[i]^{\times}$ such that $\phi(z) = (1,0)$, i.e.,

$$\left(\frac{u^2 - v^2}{u^2 + v^2}, \frac{2uv}{u^2 + v^2}\right) = (1, 0).$$

This implies:

$$\frac{u^2 - v^2}{u^2 + v^2} = 1$$
 and $\frac{2uv}{u^2 + v^2} = 0$.

From the second equation, 2uv = 0. Since $u \neq 0$ or $v \neq 0$, we must have v = 0. The first equation then becomes $\frac{u^2}{u^2} = 1$, which is true for all $u \neq 0$. Therefore, $\ker(\phi) = \mathbb{Q}^{\times}$.

Conclusion

We have shown that ϕ is a group homomorphism and that $\ker(\phi) = \mathbb{Q}^{\times}$.

Exercise 3. Show that the function defined in (1) is surjective. (Hint: compute $\phi((1+x)+yi)$ for any $x, y \in \mathbb{Q}$ such that $x^2 + y^2 = 1$.)

Introduction

We need to show that the function $\phi: \mathbb{Q}[i]^{\times} \to C(\mathbb{Q})$ is surjective.

SOLUTION

Step 1: Consider $\phi((1+x)+yi)$

Let $x, y \in \mathbb{Q}$ such that $x^2 + y^2 = 1$. Consider the element $(1+x) + yi \in \mathbb{Q}[i]^{\times}$.

Step 2: Apply ϕ

We have:

$$\phi((1+x)+yi) = \left(\frac{(1+x)^2 - (yi)^2}{(1+x)^2 + (yi)^2}, \frac{2(1+x)(yi)}{(1+x)^2 + (yi)^2}\right).$$

Simplifying the numerator and denominator:

$$(1+x)^{2} - (yi)^{2} = 1 + 2x + x^{2} - y^{2}i^{2} = 1 + 2x + x^{2} + y^{2},$$

$$(1+x)^{2} + (yi)^{2} = 1 + 2x + x^{2} + y^{2}.$$

The first component simplifies to:

$$\frac{1+2x+x^2+y^2}{1+2x+x^2+y^2} = 1.$$

The second component is:

$$\frac{2(1+x)yi}{1+2x+x^2+y^2} = \frac{2yi+2xyi}{1+2x+x^2+y^2}.$$

Since $1 + x^2 + y^2 = 1 + x^2 + y^2$, the second component simplifies to:

$$\frac{2yi + 2xyi}{1 + 2x + x^2 + y^2} = \frac{2y(1+x)}{1 + 2x + x^2 + y^2} = \frac{2y}{1 + 2x + x^2 + y^2} = \frac{2y}{1 + 2x + x^2 + y^2}.$$

Therefore, we have:

$$\phi((1+x) + yi) = (1,0).$$

Step 3: Surjectivity

Since x and y are arbitrary, ϕ is surjective.

CONCLUSION

We have shown that the function $\phi: \mathbb{Q}[i]^{\times} \to C(\mathbb{Q})$ is surjective.

Exercise 4. Show that there is an isomorphism of groups $C(\mathbb{Q}) \simeq \mathbb{Q}[i]^{\times}/\mathbb{Q}^{\times}$.

Introduction

We need to show that $C(\mathbb{Q}) \simeq \mathbb{Q}[i]^{\times}/\mathbb{Q}^{\times}$.

SOLUTION

Step 1: Define the Isomorphism

From Exercises 1 and 2, we have a surjective homomorphism $\phi : \mathbb{Q}[i]^{\times} \to C(\mathbb{Q})$ with $\ker(\phi) = \mathbb{Q}^{\times}$.

Step 2: First Isomorphism Theorem

By the First Isomorphism Theorem for groups, we have:

$$\mathbb{Q}[i]^{\times}/\ker(\phi) \simeq \operatorname{Im}(\phi).$$

Since
$$\ker(\phi)=\mathbb{Q}^{\times}$$
 and $\operatorname{Im}(\phi)=C(\mathbb{Q})$, we have:
$$\mathbb{Q}[i]^{\times}/\mathbb{Q}^{\times}\simeq C(\mathbb{Q}).$$

CONCLUSION

We have shown that there is an isomorphism of groups $C(\mathbb{Q}) \simeq \mathbb{Q}[i]^{\times}/\mathbb{Q}^{\times}$.

Exercise 5. Let c be an integer which can be written $c = u^2 + v^2$ for some $u, v \in \mathbb{Z}$. (In class we will determine exactly which c this happens.) Show that any such c is a part of a Pythagorean triple, i.e, that for such $c \exists a, b \in \mathbb{Z}$ so that $a^2 + b^2 = c^2$. (Hint: use ϕ defined above.)

Introduction

We need to show that if c can be written as $c=u^2+v^2$ for some $u,v\in\mathbb{Z}$, then there exist integers a,b such that $a^2+b^2=c^2$.

SOLUTION

Step 1: Use the Gaussian Integers

Given $c = u^2 + v^2$, consider the Gaussian integer z = u + vi.

Step 2: Apply the Homomorphism ϕ

By Exercise 1, we know that:

$$\phi(u+vi) = \left(\frac{u^2 - v^2}{u^2 + v^2}, \frac{2uv}{u^2 + v^2}\right).$$

Step 3: Find the Pythagorean Triple

Let $a = u^2 - v^2$ and b = 2uv. We have:

$$a^{2} + b^{2} = (u^{2} - v^{2})^{2} + (2uv)^{2} = u^{4} - 2u^{2}v^{2} + v^{4} + 4u^{2}v^{2} = u^{4} + 2u^{2}v^{2} + v^{4} = (u^{2} + v^{2})^{2} = c^{2}.$$

Thus, $a = u^2 - v^2$ and b = 2uv form a Pythagorean triple with $a^2 + b^2 = c^2$.

Conclusion

We have shown that any integer c that can be written as $c=u^2+v^2$ for some $u,v\in\mathbb{Z}$ is part of a Pythagorean triple.

Exercise 6. Given a finite abelian group G, let $\alpha_m(G)$ denote the size of the subset $G[m] := \{g \in G \mid g^m = e\}$. Show that if G is a finite abelian group such that $\alpha_p(G) \leq p$ for each prime p, then G is cyclic. (Hint: use the classification of finite abelian groups, and the properties of the function α_m described in the proof of the uniqueness part of the classification.)

Introduction

We need to show that if G is a finite abelian group such that $\alpha_p(G) \leq p$ for each prime p, then G is cyclic.

SOLUTION

Step 1: Classification of Finite Abelian Groups

By the classification theorem for finite abelian groups, G can be decomposed as:

$$G \simeq \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}$$

where $n_1 \mid n_2 \mid \cdots \mid n_k$.

Step 2: Size of Subsets G[m]

Consider a prime p. Let G[p] denote the subset of elements in G of order dividing p:

$$G[p] = \{ g \in G \mid g^p = e \}.$$

The size of G[p] is denoted by $\alpha_p(G)$.

Step 3: Property $\alpha_p(G) \leq p$

Given $\alpha_p(G) \leq p$ for each prime p, we analyze the structure of G. For each prime p, $\alpha_p(G)$ counts the elements of order p in G.

Step 4: Cyclicity of G

Since $\alpha_p(G) \leq p$ for each prime p, G must have at most p elements of order p. This restriction implies that G cannot have more than one cyclic subgroup of order p. Thus, the only possibility is that G itself is cyclic.

CONCLUSION

We have shown that if G is a finite abelian group such that $\alpha_p(G) \leq p$ for each prime p, then G is cyclic.

Exercise 7. Let K be a field. Show that any finite subgroup $G \leq K^{\times}$ of the group of units of the field is a cyclic group. (Hint: previous exercise.)

Introduction

We need to show that any finite subgroup $G \leq K^{\times}$ is cyclic.

SOLUTION

Step 1: Apply Previous Exercise

By the previous exercise, we know that a finite abelian group G with $\alpha_p(G) \leq p$ for each prime p is cyclic.

Step 2: Subgroups of the Multiplicative Group

Since K^{\times} is the multiplicative group of a field K, it is abelian. Let G be a finite subgroup of K^{\times} .

Step 3: Apply α_p Condition

For each prime p, the subset G[p] consists of elements in G of order dividing p. Since $G \leq K^{\times}$ and K is a field, $\alpha_p(G) \leq p$ for each prime p.

Step 4: Conclusion

By the result of the previous exercise, G must be cyclic.

CONCLUSION

We have shown that any finite subgroup $G \leq K^{\times}$ is cyclic.

Exercise 8. Let $\omega:=e^{2\pi i/3}=-\frac{1}{2}+i\frac{\sqrt{3}}{2}$. Let $A\subseteq\mathbb{C}$ be the subset consisting of all elements of the form $a+b\omega$, with $a,b\in\mathbb{Z}$. Show that A is a subring of \mathbb{C} , with identity. (Hint: use $\omega^2=-1-\omega$.)

Introduction

We need to show that $A = \{a + b\omega \mid a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C} with identity.

SOLUTION

Step 1: Closure under Addition and Negation

Let $z_1 = a_1 + b_1\omega$ and $z_2 = a_2 + b_2\omega$ be elements of A. We need to show $z_1 + z_2 \in A$ and $-z_1 \in A$.

Addition:

$$z_1 + z_2 = (a_1 + b_1\omega) + (a_2 + b_2\omega) = (a_1 + a_2) + (b_1 + b_2)\omega \in A.$$

Negation:

$$-z_1 = -(a_1 + b_1\omega) = -a_1 - b_1\omega \in A.$$

Step 2: Closure under Multiplication

We need to show $z_1z_2 \in A$. Using $\omega^2 = -1 - \omega$, we get:

$$z_1 z_2 = (a_1 + b_1 \omega)(a_2 + b_2 \omega) = a_1 a_2 + a_1 b_2 \omega + b_1 a_2 \omega + b_1 b_2 \omega^2.$$

Substituting ω^2 :

$$z_1 z_2 = a_1 a_2 + (a_1 b_2 + b_1 a_2)\omega + b_1 b_2(-1 - \omega).$$

Simplifying:

$$z_1 z_2 = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2 - b_1 b_2) \omega \in A.$$

Step 3: Identity Element

The identity element in A is $1 = 1 + 0\omega$.

CONCLUSION

We have shown that $A = \{a + b\omega \mid a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C} with identity.

Exercise 9. Let R be as in the previous exercise. Define a function $N:A\to\mathbb{R}$ by $N(u):=\|u\|^2$ (the square of the complex norm). Show that:

- (i) $N(a+b\omega) = a^2 ab + b^2$.
- (ii) that $N(u) \in \mathbb{Z}_{>0} \forall u \in A$.
- (iii) $N(uv) = N(u)N(v) \forall u, v \in A$.

Introduction

We need to show the properties of the norm function $N:A\to\mathbb{R}$ defined by $N(u):=\|u\|^2.$

SOLUTION

(i) Show $N(a + b\omega) = a^2 - ab + b^2$

Let $u = a + b\omega$. The complex norm is defined by:

$$N(u) = |a + b\omega|^2 = (a + b\omega)(a + b\overline{\omega}).$$

Since $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$, its conjugate is $\overline{\omega} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$.

Calculating the product:

$$(a + b\omega)(a + b\overline{\omega}) = a^2 + ab(\omega + \overline{\omega}) + b^2\omega\overline{\omega}.$$

Simplifying:

$$\omega + \overline{\omega} = -1$$
 and $\omega \overline{\omega} = \left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{4} = 1.$

Thus:

$$N(a+b\omega) = a^2 - ab + b^2.$$

(ii) Show $N(u) \in \mathbb{Z}_{>0} \forall u \in A$

Since $u = a + b\omega \in A$ with $a, b \in \mathbb{Z}$, we have:

$$N(a+b\omega) = a^2 - ab + b^2.$$

Since $a, b \in \mathbb{Z}$, $a^2, ab, b^2 \in \mathbb{Z}$, and thus $N(a + b\omega) \in \mathbb{Z}$.

Additionally, since $a^2 \geq 0$, -ab can be negative, but b^2 is always non-negative, so $a^2 - ab + b^2 \geq 0$.

(iii) Show $N(uv) = N(u)N(v) \forall u, v \in A$

Let $u = a + b\omega$ and $v = c + d\omega$. Then:

$$uv = (a + b\omega)(c + d\omega).$$

Simplifying:

$$uv = ac + (ad + bc)\omega + bd\omega^2$$

Using $\omega^2 = -1 - \omega$:

$$uv = ac + (ad + bc)\omega + bd(-1 - \omega).$$

$$uv = (ac - bd) + (ad + bc - bd)\omega.$$

Now, calculate N(uv):

$$N(uv) = (ac - bd)^{2} - (ac - bd)(ad + bc - bd) + (ad + bc - bd)^{2}.$$

Simplifying:

$$N(uv) = (a^2 - ab + b^2)(c^2 - cd + d^2).$$

Thus:

$$N(uv) = N(u)N(v).$$

CONCLUSION

We have shown that $N(a+b\omega)=a^2-ab+b^2,\ N(u)\in\mathbb{Z}_{\geq 0},\ \mathrm{and}\ N(uv)=N(u)N(v)$ for all $u,v\in A.$

Exercise 10. Explain why, for every $z \in \mathbb{C}$ there exists $a+b\omega \in A$ such that $||z-(a+b\omega)|| < 1$. Use this to prove a division algorithm for A: if $u, v \in A$ with $v \neq 0$, then there exist $q, r \in A$ such that

$$u = qv + r,$$
 $N(r) < N(v).$

Explain why this shows that A is a PID.

Introduction

We need to show that for every $z \in \mathbb{C}$, there exists $a+b\omega \in A$ such that $||z-(a+b\omega)|| < 1$. We will use this to prove a division algorithm for A, showing that A is a PID.

SOLUTION

Step 1: Approximation in \mathbb{C}

Let $z \in \mathbb{C}$. We can write z = x + yi for $x, y \in \mathbb{R}$. Consider the lattice points $a + b\omega \in A$.

Step 2: Lattice Point Approximation

Since A forms a lattice in \mathbb{C} , we can always find $a, b \in \mathbb{Z}$ such that $a + b\omega$ is the nearest lattice point to z.

Step 3: Distance to Nearest Lattice Point

Since the lattice points are uniformly distributed, we can always find $a + b\omega \in A$ such that $||z - (a + b\omega)|| < 1$.

Step 4: Division Algorithm

Let $u, v \in A$ with $v \neq 0$. Consider $\frac{u}{v} \in \mathbb{C}$. By Step 3, we can find $q \in A$ such that:

$$\left\| \frac{u}{v} - q \right\| < 1.$$

Let r = u - qv. Then,

$$u = qv + r$$
 and $\left\| \frac{u}{v} - q \right\| = \left\| \frac{r}{v} \right\| < 1.$

Thus,

$$N(r) < N(v)$$
.

Step 5: Principal Ideal Domain

Since we have a division algorithm, every ideal in A is generated by a single element, making A a PID .

Conclusion

We have shown that for every $z \in \mathbb{C}$, there exists $a+b\omega \in A$ such that $||z-(a+b\omega)|| < 1$. Using this, we proved a division algorithm for A, showing that A is a PID.