Aprendizaje Automático

Árboles de Decisión Regresión

Classification vs Regression

Árbol de regresión

- Dado un conjunto de datos D = (x1, y1),, (xn, yn) donde xi, yi € R
- Donde el target es un valor continuo
- El objetivo es predecir este valor continuo

```
data = pd.read_csv("PlayTennisR.csv")

data.head()
```

	Day	Outlook	Temperature	Humidity	Wind	Hours Pla	yed
0	D1	Sunny	Hot	High	Weak		26
1	D2	Sunny	Hot	High	Strong		30
2	D3	Overcast	Hot	High	Weak		48
3	D4	Rain	Mild	High	Weak		46
4	D5	Rain	Cool	Normal	Weak		62
							\ /

Ejemplo de árbol de regresión

Ejemplo de árbol de regresión

Ejemplo de árbol de regresión

Criterio de Separación

Mean Square Error - MSE

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2$$

Escogemos el mínimo de los MSE

$$\hat{y} = \arg\min_{y \in \mathbb{R}} \sum_{i \in \mathcal{R}_k} (y - y_i)^2 = \frac{1}{\sum \mathbb{I}(x_i \in \mathcal{R}_k)} \cdot \sum \mathbb{I}(x_i \in \mathcal{R}_k) \cdot y_i$$

Ejemplo de Play Tennis

Conversión a valores numéricos

```
data = pd.read_csv("PlayTennisR.csv")

data.head()
```

	Day	Outlook	Temperature	Humidity	Wind	Hours Played
0	D1	Sunny	Hot	High	Weak	26
1	D2	Sunny	Hot	High	Strong	30
2	D3	Overcast	Hot	High	Weak	48
3	D4	Rain	Mild	High	Weak	46
4	D5	Rain	Cool	Normal	Weak	62

	Outlook	Temperature	Humidity	Wind	Hours Played
0	2	1	0	1	26
1	2	1	0	0	30
2	0	1	0	1	48
3	1	2	0	1	46
4	1	0	1	1	62

Cálculo de MSE

Variable: **X0 = Outlook** Valores [0, 1, 2]

Posibles cortes (Split): [0.5, 1.5]

Con split = 0.5, entonces

	Outlook	Temperatu	Humidity	Wind	Hours Played
0	2	1	0	1	26
1	2	1	0	0	30
2	0	1	0	1	48
3	1	2	0	1	46
4	1	0	1	1	62
5	1	0	1	0	23
6	0	0	1	0	43
7	2	2	0	1	36
8	2	0	1	1	38
9	1	2	1	1	48
10	2	2	1	0	48
11	0	2	0	0	62
12	0	1	1	1	44
13	1	2	0	0	30

Si Outlook < 0.5 media = 49.25 MSE = 57.68

Si Outlook > 0.5 media = 38.7 MSE = 133.61

MSE total =
$$57.68 + 133.61$$
 = 191.29

Cuál es el menor MSE?

Realizando los cálculos:

Variable	Split	Media1	MSE1	Media2	MSE2	MSE total
Outlook	0.5	49.25	57.69	38.70	133.61	191.30
	1.5	45.11	145.65	35.60	288.08	433.73
Temperatura	0.5	41.5	194.25	41.80	110.76	305.01
	1.5	45.00	102.33	39.25	144.68	247.01
Humidity	0.5	43.71	119.06	39.71	142.20	261.26
		40		20.00	490.00	A
Wind	0.5	43.50	97.75	39.33	173.89	271.64

Outlook con split 0.5 sería el más óptimo para ser el nodo raíz

Arbol generado

Algoritmo

- Start with $\mathcal{R}_1 = \mathbb{R}^d$
- For each feature j=1,...,d, for each value $v\in\mathbb{R}$ that we can split on:
 - Split the data set:

$$I_{<} = \{i : x_{ij} < v\} \text{ and } I_{>} = \{i : x_{ij} \ge v\}$$

• Estimate parameters:

$$\beta_{<} = \frac{\sum_{i \in I_{<}} y_{i}}{|I_{<}|} \text{ and } \beta_{>} = \frac{\sum_{i \in I_{>}} y_{i}}{|I_{>}|}$$

Quality of split is measured by the squared loss:

$$\sum_{i \in I_{<}} (y_i - \beta_{<})^2 + \sum_{i \in I_{>}} (y_i - \beta_{>})^2$$

- Choose split with minimal loss.
- Recurse on both children, with $(x_i, y_i)_{i \in I_{<}}$ and $(x_i, y_i)_{i \in I_{>}}$.

Notebook

2 regression example

Cómo evaluar el score en regresión?

R² o coeficiente de determinación: El coeficiente determina la calidad del modelo para replicar los resultados, y la proporción de variación de los resultados que puede explicarse por el modelo.

R²: Coeficiente de determinación

Coefficient of Deternination,
$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

Sum of Squares Regression, $SSR = \sum_i (f_i - \bar{y})^2$

Sum of Squares Total, $SST = \sum_i (y_i - \bar{y})^2$

Sum of Squares Error, $SSE = \sum_i (y_i - f_i)^2$

Cuál es el rango de R²?

Train and test split

Train Dataset

Even better: Train, validation and test split

Overfitting

High bias (underfit)

"Just right"

(overfit)

Sobreentrenamiento

- Se debe evitar el sobreentrenamiento
 - Parar de crecer el árbol temprano.
 - Postprocesamiento del árbol (poda)

Cómo?

- Usar un conjunto de ejemplos de validación
- Usar estadísticas