2.3

Nombre dérivé de fonctions usuelles

SPÉ MATHS 1ÈRE - JB DUTHOIT

✓ Démonstration 2.1

Soit a un nombre réel.

Soit a un nombre réel. Montrer que la fonction carré est dérivable en a. Donner son nombre dérivé.

^Démonstration 2.2

Soit a un nombre réel non nul.

Montrer que la fonction inverse est dérivable en a. Donner son nombre dérivé.

∠Démonstration 2.3

Montrer que la fonction racine carrée n'est pas dérivable en 0.

Propriété

Fonction usuelle	Ensemble de dé-	$a \in \dots$	nombre dérivé
	finition		
f(x) = mx + p	\mathbb{R}	$a \in \mathbb{R}$	f'(a) = m
$f(x) = x^2$	\mathbb{R}	$a \in \mathbb{R}$	f'(a) = 2a
$f(x) = x^3$	\mathbb{R}	$a \in \mathbb{R}$	$f'(a) = 3a^2$
$f(x) = \frac{1}{x}$	\mathbb{R}^*	$a \in \mathbb{R}^*$	$f'(a) = -\frac{1}{a^2}$
$f(x) = x^4$	\mathbb{R}	$a \in \mathbb{R}$	$f'(a) = 4a^3$
$f(x) = \sqrt{x}$	$[0; +\infty[$	$a \in]0; +\infty[$	$f'(a) = \frac{1}{2\sqrt{a}}$

Exercice 2.6

Soit f la fonction définie sur [-2; 2] par $f(x) = x^3$. Soit $a \in \mathbb{R}$

- 1. Rappeler f'(a) et en déduire f'(-1).
- 2. Tracer la tangente à C_f en -1, notée T_{-1} .
- 3. Existe-t-il une autre tangente à C_f parallèle à T_{-1} ? Si oui, la tracer ensuite.
- 4. Existe-t-il une tangente à C_f parallèle à la droite d'équation y = 12x + 1?.
- 5. Existe-t-il une tangente parallèle à l'axe des abscisses?

\bigcirc Exercice 2.7

Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}$.

On considère la courbe représentative de f, notée C_f et tracée en vert. On considère également la tangente à C_f en 1, tracée en noir.

- 1. Lire le nombre dérivé f'(1).
- 2. Retrouver ce résultat par le calcul
- 3. Donner une équation de T_1 , tangente à C_f en 1.
- 4. La courbe C_f admet-elle une tangente à C_f parallèle à la droite d'équation y=2x-5? Si oui, déterminer les coordonnées du point de contact entre la courbe et la tangente.