Sabancı University, CS 302 AUTOMATA THEORY Fall 2023 - Final Examination

NAME:

NUMBER:

Closed (Book+Notes+All Electronic Devices)
Duration 150 minutes

Question 1 (25 pts)

(a) (5 pts)

State the definition of : (i) the transition function $\boldsymbol{\delta}$; (ii) the extended transition function $\boldsymbol{\delta}\boldsymbol{\mathcal{E}}$ of a nondeterministic finite automaton (NFA) \boldsymbol{A} and ; (iii) the language \boldsymbol{L}_A accepted by \boldsymbol{A} in terms of $\boldsymbol{\delta}\boldsymbol{\mathcal{E}}$ and the final state set $\boldsymbol{F} \subseteq \boldsymbol{Q}$ where \boldsymbol{Q} is the state set of the NFA \boldsymbol{A} .

- (b) (10 pts) Sketch an NFA X that accepts the language $L \subseteq \{0,1\}^*$ where for every string u in L, u has no substring "01".
- (c) (10 pts) Compute a minimal state DFA Y that accepts the language L defined in part (b) above.

17.1.2023

Sabancı University, CS 302 AUTOMATA THEORY Fall 2023 - Final Examination

NAME:

NUMBER:

Closed (Book+Notes+All Electronic Devices)
Duration 150 minutes

Question 2 (25 pts)

- (a) (12 pts) Write down a regular expression **E** over the alphabet set {0,1} such that **every** string **u** that has length 3 **or more** in the language corresponding to **E** has a **substring of length 3** that has 2 or more 0's in it.
- (b) (13 pts) Can you write down a regular expression E over the alphabet set $\{0,1\}$ such that for every string u in the language corresponding to E the number of 0's and 1's in u differ at most by 1? If your answer is YES write down the corresponding regular expression E; if it is NO then prove your result using an appropriate theorem.

17.1.2023

Sabancı University, CS 302 AUTOMATA THEORY Fall 2023 - Final Examination

NAME:

NUMBER:

Closed (Book+Notes+All Electronic Devices)
Duration 150 minutes

Question 3 (25 pts)

(a) (12 pts) Convert the following CFG into Chomsky Normal Form (CNF) where S is the start symbol; a,b,c,and d are terminals and S,A,B and C are nonterminal variables.

$$S \rightarrow A \mid B$$
; $A \rightarrow aAb \mid C \mid e$; $C \rightarrow cCd \mid cC \mid e$; $B \rightarrow Bb$

- (b) (8 pts) Using your CNF compute the steps of the leftmost derivation for the string w = aaccdbb
- (c) (5 pts) State the language L generated by the CNF in a simple logical notation.

17.1.2023

Sabancı University, CS 302 AUTOMATA THEORY Fall 2023 - Final Examination

NAME:

NUMBER:

Closed (Book+Notes+All Electronic Devices)
Duration 150 minutes

Question 4 (25 pts)

- (a) (5 pts) Consider the language $L_1 = (w \in \{a,b,c\}^* \mid w = a^n b^m c^k ; n > m \ge 0; k > 0)$ Is L_1 a context-free language? If so, compute a CFG to generate L_1 ; if not use the pumping lemma to prove otherwise.
- (b) (10 pts) Repeat part (a) for the language $L_2 = (w \in \{a,b,c\}^* \mid w = a^p b^m c^k ; p = m \ge k \ge 0)$ (c) (10 pts) Construct a single tape DTM M in graphical or tabular notation that decides the language L_3 below: (Initial ID: (s, #w))

 $L_3 = (w \in \{a,b,c\}^* \mid w = a^p b^m c^k ; p = m = k > 0)$