

EX-2024-00149385- -UNC-ME#FAMAF

PROGRAMA DE ASIGNATURA		
ASIGNATURA: Análisis Numérico	AÑO: 2024	
CARACTER: Obligatoria	UBICACIÓN EN LA CARRERA: 2° año 1° cuatrimestre	
CARRERA: Licenciatura en Ciencias de la Computación		
REGIMEN: Cuatrimestral	CARGA HORARIA: 120 horas	

ASIGNATURA: Análisis Numérico I	AÑO: 2024	
CARACTER: Obligatoria	UBICACIÓN EN LA CARRERA: 2° año 1° cuatrimestre	
CARRERA: Licenciatura en Matemática		
REGIMEN: Cuatrimestral	CARGA HORARIA: 150 horas	

ASIGNATURA: Análisis Numérico I	AÑO: 2024
CARACTER: Obligatoria	UBICACIÓN EN LA CARRERA: 2° año 1° cuatrimestre
CARRERA: Licenciatura en Matemática Aplicada	
REGIMEN: Cuatrimestral	CARGA HORARIA: 150 Horas.

FUNDAMENTACIÓN Y OBJETIVOS

Es de gran importancia que estudiantes de las Licenciatura en Ciencias de la Computación, Licenciatura en Matemática y Licenciatura en Matemática Aplicada adquieran las herramientas básicas para formular y resolver problemas de matemática aplicada, utilizando de manera óptima algoritmos y computadoras.

En esta materia el/la estudiante logrará:

- * conocer los algoritmos para resolver problemas básicos de matemática aplicada;
- * discernir acerca de la técnica más conveniente para resolver cada problema;
- * implementar el algoritmo en un lenguaje de programación;
- * interpretar los resultados obtenidos computacionalmente.

CONTENIDO

Unidad I: Análisis de errores

Error absoluto y relativo. Redondeo y truncamiento. Propagación de errores. Sistemas de punto fijo y punto flotante. Errores de representación. Propagación de errores. Estrategias para evitar cancelación de dígitos significativos.

Unidad II: Solución de ecuaciones no lineales

Métodos de Bisección, Newton, Secante y de punto fijo. Resultados de convergencia y algoritmos.

Unidad III: Interpolación numérica

Interpolación polinomial. Teorema de existencia y unicidad del polinomio interpolante. Formas de Lagrange y de Newton. Diferencias divididas. Análisis de error del polinomio interpolante. Splines lineales y cúbicos.

Unidad IV: Aproximación de funciones

Teoría de cuadrados mínimos. Caso discreto y caso continuo. Ecuaciones normales. Polinomios ortogonales.

EX-2024-00149385- -UNC-ME#FAMAF

Unidad V: Integración numérica

Reglas simples y compuestas: rectángulo, punto medio, trapecio y Simpson. Reglas Gaussianas.

Unidad VI: Solución de sistemas de ecuaciones lineales

Eliminación Gaussiana y factorización LU. Algoritmos. Conteo operacional. Métodos iterativos: Jacobi y Gauss-Seidel.

Unidad VII: Introducción a la Programación Lineal

Convexidad y desigualdades lineales. Programación lineal. Introducción al método Simplex.

BIBLIOGRAFÍA

BIBLIOGRAFÍA BÁSICA

- * D. Kincaid, W. Cheney. Numerical Analysis. Mathematics of scientific computing. 3rd. edition. AMS, 2002.
- * R. Burden, J. Faires. Análisis Numérico. Thomson Learning, 2002.

BIBLIOGRAFÍA COMPLEMENTARIA

- * L. Eldén, L. Wittmeyer-Koch, Numerical Analysis: an introduction. Academic Press, 1990.
- * I. Griva, S. Nash, A. Sofer. Linear and nonlinear optimization. SIAM, 2009.

EVALUACIÓN

FORMAS DE EVALUACIÓN

Se tomarán 2 (dos) parciales y sus correspondientes instancias de recuperación.

Se tomarán 2 (dos) trabajos de laboratorio y sus correspondientes instancias de recuperación. -Examen final escrito

REGULARIDAD

Aprobar los 2 (dos) parciales, o uno de ellos y el recuperatorio del otro.

Aprobar los 2 (dos) trabajos de laboratorio, o uno de ellos y el recuperatorio del otro.

PROMOCIÓN

No se prevé régimen de promoción.