

FCC Test Report

FCC EVALUAT	FCC EVALUATION REPORT FOR CERTIFICATION				
Project Reference No.	271859				
Product	Remote Training System				
Brand Name					
Model	SCOUTTRAINER100				
Alternate Model	N/A				
Tested according to	FCC Rules and Regulations Part 15 Subpart C 2013 15.249 ANSI C63.4-2009				

Tested in period	2014.08.28 to 2014.10.17	
Issued date	2014.10.17	
Name and address	Nemko	
of the Test House	Nemko Shanghai Ltd. Shenzhen Unit CD, Floor 10, Tower 2, Kefa District, Shenzhen, China	Branch a Road 8#, Hi-Technology Park, Nanshan
	Phone: +86 755 8221 0420	Fax: +86 755 8221 3363
Tested by	Zone Peng	
		2014.10.17
	Zone Peng	date
Verified by	Daron Lon	
		2014.10.17
	Daria Liu	date

This form is only for use by Nemko, or by others according to special agreement with Nemko. The report may be reproduced infull. Partial reproduction may only be made with the written content of Nemko Shanghai. This report applies only to the sample(s) tested. It is the manufacturer's responsibility to assure the additional production units of this product are manufactured with identical electrical and mechanical components.

Reference No.: 271859

Contents of This Report

1. Client Information	4
1.1 Applicant	
1.2 Manufacturer	4
1.3 Scope	4
2. Equipment under Test (EUT)	5
2.1 Identification of EUT	5
2.2 Detail spec:	5
2.3 Additional Information Related to Testing	6
3. General Test Conditions	6
3.1 Location	6
3.2 Operating Environment	6
3.2 Operating During Testing	6
3.4 Test Equipment	7
4. Measurement Uncertainty	7
5. Radiated Electromagnetic Disturbances	8
5.1 Test Procedure	8
5.2 Measurement Equipment	8
5.3 Test Result	8
5.3.1 Diagram 5-1	11
5.3.2 Diagram 5-2	12
5.3.3 Diagram 5-3	13
5.3.4 Diagram 5-4	14
5.3.5 Diagram 5-5	15
5.3.6 Diagram 5-6	16
5.3.7 Diagram 5-7	17
5.3.8 Diagram 5-8	18
5.3.10 Diagram 5-10	20
5.3.11 Diagram 5-11	21
5.3.12 Diagram 5-12	22
5.3.13 Diagram 5-13	23
5.3.14 Diagram 5-14	24
5.3.15 Diagram 5-15	25
5.3.16 Diagram 5-16	26
5.3.17 Diagram 5-17	27
5.3.18 Diagram 5-18	28
5.3.19 Diagram 5-19	29
5.3.20 Diagram 5-20	30
5.3.21 Diagram 5-21	31
5.3.22 Diagram 5-22	32
6. 20 dB bandwidth Test	33
6.1 Test Procedure	33
6.2 Measurement Equipment	33
6.3 Test Result:	33
7 POWER LINE CONDUCTED EMISSION TEST	37

7.1 Test Procedure	37
7.2 Measurement Equipment	37
7.3 Test Result	37
7.3.1 Diagram 7-1	38
7.3.2 Diagram 7-2	39
8 Antenna requirement	40
8.1 Requirement	40
8.2 Result	40
Appendix A Sample Label	41
Appendix B EUT external photo	
Appendix C EUT external photo	
Appendix D setup photo	

FCC ID: VLJ-T100C Reference No.: 271859

1. Client Information

1.1 Applicant

Company Name: Binatone Electronics International Ltd.

Company Address: Floor 23A, 9 Des Voeux Road West, Sheung Wan,

Hong Kong

1.2 Manufacturer

Company Name: Foshan Shunde Alford Electronics Co., Ltd.

Company Address: Xinjiao Industrial Park, DaLiang, ShunDe, Foshan City,

Guangdong Province, China

1.3 Scope

•Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 15.

Reference No.: 271859

2. Equipment under Test (EUT)

2.1 Identification of EUT

Category: Remote Training System

Model Name: SCOUTTRAINER100

Alternate model: N/A

Brand name: M motorola

Technical data

(Rating, etc.): As below

2.2 Detail spec:

Carrier Frequency: 915.5MHz-921.26MHz

Number of Channel: 25

Channel step: 240kHz

Channels List:

- 1. 915.5
- 2. 915.74
- 3. 915.98
- 4. 916.22
- 5. 916.46
- 6. 916.70
- 7. 916.94
- 8. 917.18
- 9. 917.42
- 10. 917.66
- 11. 917.90
- 12. 918.14
- 13. 918.38
- 14. 918.62
- 15. 918.86
- 16. 919.10
- 17. 919.34
- 18. 919.58
- 19. 919.82
- 20. 920.06
- 21. 920.30
- 22. 920.54
- 23. 920.7824. 921.02
- 25. 921.26

23. 321.20

Modulation Type: MSK

Reference No.: 271859

Mode of operation (duplex, simplex, half duplex) : duplex

Antenna Type: Intergral Antenna

Antenna gain: 0dBi

Adapter Label:

2.3 Additional Information Related to Testing

CHL: 915.5MHz

CHM: 918.38MHz

CHH: 921.26MHz

3. General Test Conditions

3.1 Location

Global United Technology Services Co., Ltd. -- Nemko ELA 632

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China

FCC Registration No.:600491 IC Registration No.9079A-1

Note: all test are witnessed by NEMKO engineer

3.2 Operating Environment

All tests and measurements were performed in a shielded enclosure or a controlled environment suitable for the tests conducted. The climatic conditions in the test area are automatically controlled and recorded continuously.

Parameters	Recording during test	Accepted deviation
Ambient temperature	20-25°C	15 – 35 °C
Relative humidity	45-55%	30 - 60%
Atmospheric pressure	101.2 kPa -101.3kPa	86-106kPa

3.2 Operating During Testing

TM1: CHL keeping TX mode TM2: CHM keeping TX mode TM3: CHH keeping TX mode

TM4: Keeping TX + Charging mode

FCC ID: VLJ-T100C Reference No.: 271859

Remark: When measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, have been performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. No findable change appear.

X,Y,Z 3 axis of EUT all have been tested , only the worse case is reported Only choose the worse mode to be the representative test mode

3.4 Test Equipment

The test equipments used in testing are calibrated on a regular basis. For most of the testing equipments accredited calibration is conducted once a year. For certain equipment the calibration interval is longer. Between the calibrations all test equipment are controlled and verified on a regular basis. The test equipments used are defined in each test section of this report.

4. Measurement Uncertainty

The Measurement Uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 with the confidence level of 95 %.

Conducted Emission: 0.15~30MHz 3.45dB
Radiated Emission: 30MHz~1000MHz 4.50dB
1GHz-18GHz 4.70dB

Reference No.: 271859

5. Radiated Electromagnetic Disturbances

5.1 Test Procedure

The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber. An antenna was located 3m from the EUT on an adjustable mast.

The EUT were rotated 0 to 360 degree and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. The test result are reported as below.

For below 1GHz

RBW=100 kHz; VBW=300KHz.The frequency range from 30MHz to 1000MHz is checked using Pk detector . For fundamental test , RBW=1MHz, VBW=1MHz.

For above 1GHz. The frequency range from 1GHz to 10GHz(10th harmonics) is checked.

RBW=1MHz; VBW=1MHz,PK detector for peak emissions measurement above 1GHz

Duty cycle correction factor is used for average evaluation by peak measurenment.

5.2 Measurement Equipment

Equipment	Model No.	Serial No.	Cal. Due	Manufacturer
EMI Test Receiver	ESU26	GTS203	Jul. 04 2015	R&S
BiConiLog Antenna	VULB9163	GTS214	Feb. 26 2015	SCHWARZBECK
Horn Antenna	BBHA9120D	GTS215	Feb. 26 2015	SCHWARZBECK
Horn Antenna	BBHA9170	GTS216	Feb. 26 2015	SCHWARZBECK
Coaxial Cable	N/A	GTS213	Apr. 01 2015	GTS
Coaxial Cable	N/A	GTS211	Apr. 01 2015	GTS
Coaxial cable	N/A	GTS210	Apr. 01 2015	GTS
Coaxial Cable	N/A	GTS212	Apr. 01 2015	GTS
Amplifier	8347A	GTS204	Jul. 04 2015	HP

5.3 Test Result

Harmonics emission:

Channel	Connect mode	Antenna Polarity	Remark	Test Data	Test Result	
921.26MHz	204 20MH= TV mode		1-10GHz	Diagram 5-1	Pass	
921.26MHz TX mode	Horizontal	1-10GHz	Diagram 5-2	Pass		
045 5MH - TV	TV made	Horizontal	1-10GHz	Diagram 5-3	Pass	
915.5MHz TX mode		Vertical	1-10GHz	Diagram 5-4	Pass	
049.20MU=	MHz TX mode	Vertical	1-10GHz	Diagram 5-5	Pass	
918.38MHz		Horizontal	1-10GHz	Diagram 5-6	Pass	

Fundamental emission:

Channel	Connect mode	Antenna Polarity	Test Data	Test Result		
915.5MHz	TX mode	Horizontal	Diagram 5-7	Pass		
913.3101112	1 × mode	Vertical	Diagram 5-8	Pass		
918.38MHz	TX mode	Vertical	Diagram 5-9	Pass		
910.301/1172		Horizontal	Diagram 5-10	Pass		
921.26MHz	4 OCM - TV	Horizontal	Diagram 5-11	Pass		
921.20111112	TX mode	Vertical	Diagram 5-12	Pass		

Reference No.: 271859

Spurious emission:

Channel	Connect mode	Antenna Polarity	Remark	Test Data	Test Result
915.5MHz	TV mode	Horizontal	30 – 1000MHz	Diagram 5-13	Pass
915.5MHz TX mode	1 × mode	Vertical	30 - 1000MHz	Diagram 5-14	Pass
040 20MU~	TV mode	Vertical	30 – 1000MHz	Diagram 5-15	Pass
910.301/1172	918.38MHz TX mode		30 – 1000MHz	Diagram 5-16	Pass
921.26MHz	OCMUL TV		30 – 1000MHz	Diagram 5-17	Pass
921.20NITZ	TX mode	Vertical	30 – 1000MHz	Diagram 5-18	Pass

Remark:

If PK value is lower than QP/AV limit, then PK, QP and AV deem to comply their own limit.

1) All modes of operation were investigated and the worst -case emission mode are reported.

Band Edge:

,				
Channel	Connect mode	Antenna Polarity	Test Data	Test Result
015 5MU-	TX mode	Horizontal	Diagram 5-19	Pass
915.5MHz	1 × mode	Vertical	Diagram 5-20	Pass
024 26MH -	TV mode	Horizontal	Diagram 5-21	Pass
921.26MHz	TX mode	Vertical	Diagram 5-22	Pass

Remark:

1) All restriction band have been tested. Only worse case is reported

NOTES:

- 1.All modes were measured and the worst case emission was reported.
- 2. H =Horizontal V=Vertical
- 3. Emission = Reading +Antenna Factor + Cable Loss -Amp Factor(if exist)
- 4. Emission level $dB\mu V = 20 \log Emission level <math>\mu V/m$
- 5. The lower limit shall apply at the transition frequencies
- 6. All the emissions outside of band should comply with 15.209 limits.

Reference No.: 271859

Remark:

The limit of 15.209 of 3 meter distance is

Frequency	Distance	Field strength		Distance	Field strength
MHz	m	μV/m	dBµV/m(QP)	m	dBµV/m(QP)
30-88	3	100	40.0	10	30.0
88-216	3	150	43.5	10	33.5
216-960	3	200	46.0	10	36.0
960-1000	3	500	54.0	10	44.0
Above 1000	3	74.0 dBµV/m (PK)		/	/
		54.0 dBµV/m (AV)			

15.205 Restricted bands of operation:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150. 0 5	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)

5.3.1 Diagram 5-1

CF: 921.26MHz Ant. : Vertical

Harmonics Emission

	Freq		Antenna Factor				Limit Line	Over Limit	Remark	
	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
1 2 3 4 5	1843.000 2764.500 3686.000 4607.500 5529.000	42.07 40.40 37.68 35.22 39.55	31.53	7.30 8.44	33.59 32.54 31.99	40.85 41.66 43.20	74.00 74.00 74.00	-35.75 -33.15 -32.34 -30.80 -25.26	Peak Peak Peak	
6 7 8 9	6450.500 7372.000 8293.500 9215.000	35.23 31.34 29.73	33.57 36.49	10.83 11.75 12.58	32.13 31.84 31.83	47.50 47.74 47.10	74.00 74.00 74.00	-26.50 -26.26 -26.90	Peak Peak Peak	

5.3.2 Diagram 5-2

CF: 921.26MHz Ant. : Horizontal Harmonics Emission

5.3.3 Diagram 5-3

CF: 915.5MHz
Ant.: Horizontal
Harmonics Emission

5.3.4 Diagram 5-4

CF: 915.5MHz Ant. : Vertical

Harmonics Emission

5.3.5 Diagram 5-5

CF: 918.38MHz Ant. : Vertical

Harmonics Emission

5.3.6 Diagram 5-6

CF: 918.38MHz Ant. : Horizontal Harmonics Emission

	Freq		ntenna Factor		Preamp Factor		Limit Line	Over Limit	Remark
	MHz	dBu₹	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1 2 3 4 5	1837.000 2755.500 3674.000 4592.500 5511.000	46.55 40.41 38.73 35.66 34.25	25.45 28.26 29.21 31.49 32.01	4.88 5.72 7.28 8.41 9.51	34.17 33.61 32.56 31.98 32.43	42.71 40.78 42.66 43.58 43.34	74.00 74.00 74.00	-31.29 -33.22 -31.34 -30.42 -30.66	Peak Peak Peak
6 7 8 9	6429.500 7348.000 8266.500 9185.000	32.17 31.26 29.27 30.08	33.53 36.45 36.69 37.34	10.80 11.74 12.55 13.80	32.12 31.88 31.77 32.11	44.38 47.57	74.00 74.00	-29.62 -26.43 -27.26 -24.89	Peak Peak

5.3.7 Diagram 5-7

CF: 915.5MHz Ant. : Horizontal Fundamental Emission

5.3.8 Diagram 5-8

CF: 915.5MHz Ant. : Vertical

Fundamental Emission

5.3.9 Diagram 5-9

CF: 918.38MHz Ant.: Vertical

Fundamental Emission

dBuV dB/m dB dBuV/m dBuV/m ďΒ MHz 1 * 918.508 89.65 23.21 4.93 31.19 86.60 Peak

5.3.10 Diagram 5-10

CF: 918.38MHz Ant. : Horizontal Fundamental Emission

5.3.11 Diagram 5-11

CF: 921.26MHz Ant. : Horizontal Fundamental Emission

Reference No.: 271859

5.3.12 Diagram 5-12

CF: 921.26MHz Ant. : Vertical

Fundamental Emission

Reference No.: 271859

5.3.13 Diagram 5-13

CF: 915.5MHz Ant.: Horizontal **Spurious Emission**

FCC ID: VLJ-T100C Reference No.: 271859

5.3.14 Diagram 5-14

CF: 915.5MHz Ant. : Vertical Spurious Emission

Reference No.: 271859

5.3.15 Diagram 5-15

CF: 918.38MHz Ant. : Vertical Spurious Emission

5.3.16 Diagram 5-16

CF: 918.38MHz Ant. : Horizontal Spurious Emission

FCC ID: VLJ-T100C Reference No.: 271859

5.3.17 Diagram 5-17

CF: 921.26MHz Ant. : Horizontal Spurious Emission

Reference No.: 271859

5.3.18 Diagram 5-18

CF: 921.26MHz Ant. : Vertical Spurious Emission

Reference No.: 271859

5.3.19 Diagram 5-19

915.5MHz

Ant.: Horizontal **Band Edge**

	Freq		Antenna Factor						Remark
	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	dB	dBuV/m	dBuV/m		
1	902.000	46.50	23.12	4.87	31.18	43.31	46.00	-2.69	Peak

Reference No.: 271859

5.3.20 Diagram 5-20

915.5MHz Ant. : Vertical Band Edge

	Freq		Antenna Factor						
	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	902.000	46.00	23, 12	4.87	31.18	42.81	46.00	-3.19	Peak

5.3.21 Diagram 5-21

921.26MHz

Ant. : Horizontal Band Edge

	Freq		Antenna Factor						Remark
	MHz	dBu∜	dB/m	<u>dB</u>	<u>qp</u>	dBuV/m	$\overline{dB}\overline{uV/m}$	dB	
1	928.000	47.40	23.28	4.96	31.20	44.44	46.00	-1.56	Peak

5.3.22 Diagram 5-22

921.26MHz Ant. : Vertical Band Edge

	Freq						Limit Line		Remark	
	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	$\overline{dB} \overline{uV}/\overline{m}$	$\overline{dBuV/m}$	<u>dB</u>		
1	928.000	47.30	23.28	4.96	31.20	44.34	46.00	-1.66	Peak	

Reference No.: 271859

6. 20 dB bandwidth Test6.1 Test Procedure

Clause 15.215(c) 20dB Bandwidth:

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

6.2 Measurement Equipment

	Equipment	Calibration Due	Туре	Serial No.	Manufacturer
\boxtimes	Spectrum	Jul. 04 2015	FSP30	GTS208	RS

6.3 Test Result:

Modulation	Channel	20dB bandwidth
	CHL	870.000KHz
MSK	CHM	840.000KHz
	CHH	870.000KHz

MSK diagrams are as below:

FCC ID: VLJ-T100C

Reference No.: 271859

7 POWER LINE CONDUCTED EMISSION TEST

7.1 Test Procedure

An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission (MHz)	Conducted limit (dBµV)				
	Quasi-peak	Average			
0.15–0.5	66 to 56*	56 to 46*			
0.5–5	56	46			
5–30	60	50			
*-Decreases with the logarithm of the frequency.					

7.2 Measurement Equipment

		<u> </u>			
	Equipment	Calibration Due	Туре	Serial No.	Manufacturer
\boxtimes	EMI Test Receiver	Jul. 04 2015	ESCS30	1102.4500K30	Rohde & Schwarz
\boxtimes	10dB Pulse Limita	Jul. 04 2015	N/A	GTS224	Rohde & Schwarz
\square	X LISN	Jul. 04 2015	NSLK 8127	8127549	SCHWARZBECK
LISIN		NOLK 0121	0127349	MESS-ELEKTRONIK	

7.3 Test Result

The EUT was placed on a non-metallic table, 80cm above the ground plane. The other peripheral devices power cord connected to the power mains through another line impedance stabilization network. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4-2009 on conducted Emission test.

Preview measurements: Final measurement:

Receiver settings: PK&AV detector Receiver settings: QP&AV detector

RBW:9 kHz

TM4

Models	Power Line	Test Data	Test Result
SCOUTTRAINER100 With adapter BLJ5W060050P-U	Line	Diagram 7-1	Pass
	Neutral	Diagram 7-2	Pass

NOTES:

- 1. Measurements using CISPR quasi-peak mode & average mode.
- 2. All modes of operation were investigated and the worst -case emission are reported.
- 3. If PK value is lower than AV limit then no reading value listed in report .If QP value is Lower than AV limit ,then AV value don't listed in report.

Reference No.: 271859

7.3.1 Diagram 7-1

Condition : FCC PART15 CLASSB QP LISN-2013 LINE Test mode : Transmitting mode Test Engineer: Mike

	Freq	Read Level	LISN Factor			Limit Line	Over Limit	Remark
	MHz	dBuV	dB	d₿	dBuV	dBuV	dB	
1	0.505	41.03	0.12	0.11	41.26	56.00	-14.74	QP
2 3		36.25	0.13	0.12	36.50	56.00	-19.50	QP
3	0.775	36.27			36.54			•
4	1.411	35.89	0.12	0.13	36.14	56.00	-19.86	QP
5	1.949	35.66	0.12	0.14	35.92	56.00	-20.08	QΡ
6	2.474	34.93	0.13	0.15	35.21	56.00	-20.79	QP

Reference No.: 271859

7.3.2 Diagram 7-2

Trace: 70

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL Test mode : Transmitting mode Test Engineer: Mike

.050	Freq	Read	LISN Factor				Over Limit	Remark	
	MHz	dBuV	dB	₫B	dBuV	dBuV	dB		
1 2 3 4 5	0.595 0.923 1.037 2.346	36.84 36.71 35.80	0. 07 0. 07	0.12 0.13 0.13 0.15	37.04 36.91 36.05	56.00 56.00 56.00 56.00	-18.53 -18.96 -19.09 -19.95	QP QP QP QP	

FCC ID: VLJ-T100C

Reference No.: 271859

8 Antenna requirement

8.1 Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

8.2 Result

The antenna used for this product is Internal Patch antenna that no antenna other than that furnished by the responsible party shall be used with the device, The maximum peak gain of this antenna is 0dBi.

FCC ID: VLJ-T100C

Reference No.: 271859

Appendix A Sample Label

Labelling Requirements

The sample label shown shall be permanently affixed at a conspicuous location on the device and be readily visible to the user at the time of purchase.

*** The following paragraph specified in the label.

FCC ID: VLJ-T100C

Appendix B EUT external photo

Appendix C EUT external photo

Appendix D setup photo

Conducted emission

Radiated emission

Radiated emission

*****END OF REPORT*****