K-Nearest Neighbor

Instance Based Learning

- How do you know if the rent of the house is reasonable?
 - You compare it to known example's
- This is how people naturally use Instance Based Learning algorithm

 X_2

 X_2

Instance Based Learning

17

- Family of learning algorithm that:
 - Doesn't build a model to the data (like tree in Decision Tree)
 - Instead compares new instance with instances seen in training
- Time complexity:
 - Fast learning (No learning...)
 - Potentially slow classification/prediction (O(n))
- Space complexity:
 - Store all in instances (O(n))
- Used in both Classification and Regression

© Ben Galili

Parzen window – Classification

18

© Ben Galili

Parzen window – Classification

$$p(\vec{x}_{new}|A_i) = \frac{1}{n_i} \sum_{\vec{x} \in A_i} \frac{1}{h^d} K\left(\frac{\vec{x}_{new} - \vec{x}}{h}\right)$$

Parzen window – problems

From Parzen window to kNN

Radius - **Fixed**Number of samples in window - **Varying**

From Parzen window to kNN

Radius - **Fixed**Number of samples in window - **Varying**

Radius - **Varying**Number of samples in window - **Fixed**

From Parzen window to kNN

Radius - **Fixed**Number of samples in window - **Varying**

Radius - **Varying**Number of samples in window - **Fixed**

K-Nearest Neighbors – kNN

- Nearest Neighbor prediction:
 - On input instance, find the "nearest" training instance and predict whatever the neighbor's target value is
- K-Nearest Neighbor prediction:
 - On input instance, find the k "nearest" instances and estimate the majority (for discrete) or average (for continuous) of their target values

© Ben Galili 27

Prediction

- On input instance x find k nearest neighbors $\{x^{(i)}\}$ for $i \in \{1, ..., k\}$ and predict:
 - For regression [average] :

$$\hat{f}(x) = \frac{1}{k} \sum_{i=1}^{k} f(x^{(i)})$$

• For classification [majority vote]:

$$\hat{f}(x) = MAJ_i(\{f(x^{(i)})\})$$

* Where MAJ is the majority function over all $\it i$

Pros and Cons

Advantages:

- Training is fast
- Can learn very complex target functions easily
- You don't lose information

Disadvantages

- Slow at prediction time
- Lots of memory storage
- Easily fooled by irrelevant attributes\instances

© Ben Galili 29

Questions

• How to find nearest? What is near?

• Slow query & Large space

• How to choose k?

Questions

• How to find nearest? What is "near"?

• Slow query & Large space

• How to choose k?

Distance For Numeric Features

• L-p distance:

$$Lp(x^{(i)}, x^{(j)}) = \sqrt{\sum_{l=1}^{d} |x_l^{(i)} - x_l^{(j)}|^p}$$

l – the index of the vector dimension

d – the dimension of the vector

L1 distance = 3+4=7

L1 distance = 3+4=7

L2 distance = sqrt(16+9)=5

L1 distance = 3+4=7

L2 distance = sqrt(16+9)=5

L_inf distance = max(3,4) = 4

Distance For Numeric Features

- When p=2 the Lp distance is called the Euclidean distance
- When p=1 the Lp distance is called the Manhattan distance
- When $p = \infty$ we define this function as follow:

$$L\infty(x^{(i)}, x^{(j)}) = MAX_l|x_l^{(i)} - x_l^{(j)}|$$

Examples

•
$$x^{(1)} = (1, 2, 4), x^{(2)} = (4, 0, 3)$$

• When p = 2:

$$L2(x^{(1)}, x^{(2)}) = \sqrt[2]{\sum_{l=1}^{3} (x_l^{(1)} - x_l^{(2)})^2} = \sqrt[2]{(-3)^2 + (2)^2 + (1)^2} = \sqrt[2]{14}$$

• When p = 1:

$$L1(x^{(1)}, x^{(2)}) = \sum_{l=1}^{3} |x_l^{(1)} - x_l^{(2)}| = 3 + 2 + 1 = 6$$

• When $p = \infty$:

$$L\infty(x^{(1)}, x^{(2)}) = MAX(|-3|, |2|, |1|) = 3$$

Euclidean distance

Manhattan distance

Euclidean distance

Manhattan distance

Euclidean distance

Manhattan distance

Euclidean distance

Manhattan distance

Euclidean distance

Manhattan distance

Euclidean distance

Manhattan distance

What about non Numeric?

- How do you measure the distance between Blue, Green and Red?
 - First convert to numeric, then measure the distance
 - Use other methods Hamming, Value Difference Measure, etc...

Hamming distance

- The Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different:
 - "roses" and "toned" is 3
 - "karolin" and "kerstin" is 3
 - 1011101 and 1001001 is 2
 - 2143896 and 2233796 is 3

Weighted kNN - motivation

Weighted kNN - motivation

Weighted kNN - motivation

Weighted kNN

52

- Is the neighbor with distance 5 has the same contribute like the neighbor with distance 10?
- We need a way to give the closer neighbors more weight
- This is called weighted kNN
- What is the simplest way to do it?
 - Divide the neighbor class in the distance
 - Now calculate the majority

Distance weighted Knn

• For Regression/continuous attributes instead of doing:

$$\hat{f}(x) = \frac{1}{k} \sum_{i=1}^{k} f(x^{(i)})$$

• We can do:

$$\hat{f}(x) = \frac{\sum_{i=1}^{k} w_i f(x^{(i)})}{\sum_{i=1}^{k} w_i}$$
Where $w_i = \frac{1}{distance(x^{(i)}, x)}$

Example

- K=3
- The 3 nearest neighbors:
 - X1 distance = 5, class = No
 - X2 distance = 2, class = Yes
 - X3 distance = 5, class = No
- Regular kNN will output 'No'
- The weighted:

•
$$MAJ\left(\frac{No}{5}, \frac{Yes}{2}, \frac{No}{5}\right) = 'Yes'$$

Question

- How to find nearest? ? What is "near"?
 - We know the possible methods, but which one to choose?
- Slow query & Large space X
- How to choose k? X

Question

- How to find nearest? ? What is "near"?
 - We know the possible methods, but which one to choose?
- Slow query & Large space X
- How to choose k? X

Improving Efficiency

57

Compute time

$$T_{predict\ sample} = N_{samples} * T_{compute\ distance}$$

- We want to reduce query time and space.
 - Reduce $N_{samples}$
 - Reducing search time using search structures K-D Tree
 - Reducing number of points by filtering
 - Reducing distance calculation time
 - Interrupt calculation
 - Reduce number of features (feature selection)

Improving Efficiency

Compute time

$$T_{predict \ sample} = N_{samples} * T_{compute \ distance}$$

- We want to reduce query time and space.
 - Reduce $N_{samples}$
 - Reducing search time using search structures K-D Tree
 - Reducing number of points by filtering
 - Reducing distance calculation time
 - Interrupt calculation
 - Reduce number of features (feature selection)

A word on Curse of Dimensionality

- How many features do we want to consider in our algorithm why not all:
 - The required number of samples grows exponentially with the number of variables
 - The relevant information is store in few features
 - In high dimension all instances are far from each other this is bad for kNN
- In practice, beyond a certain point, the inclusion of additional features leads to worse rather than better performance!

Improving Efficiency

61

Compute time

$$T_{predict \ sample} = N_{samples} * T_{compute \ distance}$$

- We want to reduce query time and space.
 - Reduce $N_{samples}$
 - Reducing search time using search structures K-D Tree
 - Reducing number of points by filtering
 - Reducing distance calculation time
 - Interrupt calculation
 - Reduce number of features (feature selection)

Efficiency – Reducing distance calculation time

- We want less calculation on far (not relevant) instances, and full calculation on close instances
- Our distance built from sum of distances
- We will stop if the current sum is greater than some threshold

Efficiency – Reducing distance calculation time

- Example:
- $x^{(1)} = (1, 2, 4), x^{(2)} = (4, 0, 3), x^{(3)} = (10, 0, 3)$
- We want the nearest neighbor, where $x^{(1)}$ is the query instance we choose 10 to be our threshold (I2-distance)
- How the computation look like?

$$Lp(x^{(i)}, x^{(j)}) = \sqrt[p]{\sum_{l=1}^{d} |x_l^{(i)} - x_l^{(j)}|^p}$$

Improving Efficiency

Compute time

$$T_{predict \ sample} = N_{samples} * T_{compute \ distance}$$

- We want to reduce query time and space.
 - Reduce $N_{samples}$
 - Reducing search time using search structures K-D Tree
 - Reducing number of points by filtering
 - Reducing distance calculation time
 - Interrupt calculation
 - Reduce number of features (feature selection)

Efficiency – K-D Tree

- Instead of search the nearest neighbor on all training data we will construct an efficient search structure
- We divide the data to partitions, each time in different dimension
- The search for the neighbors, first will find the relevant partition and then will search only in this partition

Efficiency – K-D Tree

- Example:
 - Points set: (2,3), (5,4), (9,6), (4,7), (8,1), (7,2)

Improving Efficiency

Compute time

$$T_{predict \ sample} = N_{samples} * T_{compute \ distance}$$

- We want to reduce query time and space.
 - Reduce $N_{samples}$
 - Reducing search time using search structures K-D Tree
 - Reducing number of points by filtering
 - Reducing distance calculation time
 - Interrupt calculation
 - Reduce number of features (feature selection)

Efficiency - Reducing number of points by filtering

• Goal:

remove points from the training set that don't effect the boundary

• Forward: insert training set points one by one but keep only those that are not classified correctly

• **Backward:** accept all points in the training set and then go through the points and remove those that are correctly classified by their (KNN) neighbors

Note: order dependent (Greedy!)

Efficiency - Reducing number of points by filtering

- This procedure called Edited kNN
- Backward KNN(S)

```
T = S

For each instance x in T

if x is classified correctly by T-{x}

remove x from T

Return T
```

Forward KNN(S)

```
T = \emptyset
For each instance x in S

if x is not classified correctly by T

add x to T

Return T
```


Open question

- How to find nearest?
 - We know the possible methods, but which one to choose?
- Slow query & Large space √
 - We now able to reduce space (irrelevant points) & accelerate query time (K-D tree, reducing calculation time)
- How to choose k? X

Overfitting

• Recall: polynomial regression

M = 3

x

Overfitting

K=15

- When we're using a statistical model (like linear regression, for example), we fit the model on a training set in order to make predications on a data that wasn't trained (general data)
- In order to do that we need to split the data to training and test sets

Is this enough?

- How do we fine tune our model (choose the best hyper parameters for the model)?
- We can't use the test set for choosing the hyper parameters why?
- We need another set validation set

- Splitting the data only once has some drawbacks:
 - If the dataset is "sparse" then we need all the data we can get
 - If we get an unfortunate split then this method might not work (we can reduce the probability for that by shuffling the data)
- The second method for fine tune our model is cross-validation
- It's very similar to train/val split, but it's applied to more subsets
- Meaning, we split our data into k subsets, and train on k-1 one of those subset
- What we do is to hold the last subset for test
- We're able to do it for each of the subsets

79

- There are two main methods for executing the cross validation:
 - K-folds cross validation:
 - In K-Folds Cross Validation we split our data into k different subsets (or folds)
 - We use k-1 subsets to train our data and leave the last subset (or the last fold) as test data
 - We then average the model against each of the folds and then finalize our model
 - After that we test it against the test set

- There are two main methods for executing the cross validation:
 - Leave One Out cross validation (LOOCV):
 - In this type of cross validation, the number of folds (subsets) equals to the number of observations we have in the dataset
 - We then average ALL of these folds
 - Because we would get a big number of training sets (equals to the number of samples), this
 method is very computationally expensive and should be used on small datasets
 - If the dataset is big, it would most likely be better to use a different method, like k-fold

- There are two main methods for executing the cross validation:
 - So, what method should we use? How many folds?
 - The more folds we have
 - We will be reducing the error due the bias but increasing the error due to variance
 - The computational price would go up too, obviously the more folds you have, the longer it would take to compute it and you would need more memory
 - With a lower number of folds
 - we're reducing the error due to variance, but the error due to bias would be bigger
 - It's would also computationally cheaper
 - Therefore, in big datasets, k=10 is usually advised
 - In smaller datasets, as I've mentioned before, it's best to use LOOCV

Cross Validation

- For kNN need to choose
 - K=?
 - P=?
- Cross validation a method for hyper parameter optimization

parameters	Mean error
K=1, p=2	0.78
K=5, p=2	0.25
K=3, p=1	0.48

Open question

- How to find nearest? √
 - We know the possible methods & we use X-Fold Cross Validation to chose best one?
- Slow query & Large space √
 - We now able to reduce space (irrelevant points) & accelerate query time (K-D tree, reducing calculation time)
- How to choose k? √
 - We use X-Fold Cross Validation to chose best one

Questions

- We first want to find a measure for p(x) at the end we will convert it to $p(x|A_i)$
 - The mathematical definition for pdf, p(x):
 - The probability that x is between 2 points a and b

$$P(a < x < b) = \int_{a}^{b} p(x)dx$$

- The probability is non negative for all real \boldsymbol{x}
- For all possible x the integral is 1:

$$\int_{-\infty}^{\infty} p(x)dx = 1$$

- If we look at a region ${\mathcal R}$
 - The probability P that x is inside a region \mathcal{R} :

$$P = \int_{\mathcal{R}} p(x) dx$$

• If we assume that \mathcal{R} is so small that p(x) does not vary much within it, we can write:

$$P = \int_{\mathcal{R}} p(x)dx \approx p(x) \int_{\mathcal{R}} dx = p(x)V$$

Where *V* is the volume of \mathcal{R}

- Suppose that n samples are drawn independently according to some pdf p(x)
- If there are m out of n samples falling within \mathcal{R} , we have:

$$P = \frac{m}{n}$$

• We got that:

$$P = \frac{m}{n} = p(x)V$$
$$p(x) = \frac{m/n}{V}$$

• If \mathcal{R} is hypercube centered at x, and h is the length of the edge of the hypercube we get:

$$V = h^d$$

Where d is the dimension of the hypercube

• We can now define a kernel function:

$$K(u) = \begin{cases} 1, & if |u| < \frac{1}{2} \\ 0, & otherwise \end{cases}$$

• And in our case, m , the total number of samples falling within \mathcal{R} , out of n samples, is given by:

$$m = \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right)$$

And we finally got the probability of x:

$$p(x) = \frac{m/n}{V} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h^d} K\left(\frac{x - x_i}{h}\right)$$

 We can change the kernel (window) function to yield other parzen window density estimation methods

Parzen window – classification

• Now that we can estimate the instance probability, we can use the likelihood, $p(x|A_i)$, to classify:

$$p(\vec{x}_{new}|A_i) = \frac{1}{n_i} \sum_{\vec{x} \in A_i} \frac{1}{h^d} K\left(\frac{\vec{x}_{new} - \vec{x}}{h}\right)$$

