Q1.

(a) Firstly we have

$$A^{T} A = \begin{bmatrix} 2 & 1 & -2 & 4 \\ 1 & 2 & 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \\ -2 & 2 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} 25 & 0 \\ 0 & 9 \end{bmatrix}$$
$$AA^{T} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \\ -2 & 2 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & -2 & 4 \\ 1 & 2 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 4 & -2 & 8 \\ 4 & 5 & 2 & 4 \\ -2 & 2 & 8 & -8 \\ 8 & 4 & -8 & 16 \end{bmatrix}$$

By solving $\det(\lambda I - A^T A) = 0$, we obtain eigenvalues $\lambda_1 = 25$ and $\lambda_2 = 9$, then by solving $(\lambda I - A^T A)v = 0$, we obtain corresponding eigenvectors $v_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$ and $v_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$.

Also, $\lambda_1 = 25$ and $\lambda_2 = 9$ are also eigenvalues of AA^T which can be verified by $\det(\lambda I - AA^T) = 0$, then by solving $(\lambda I - AA^T)u = 0$, we obtain corresponding eigenvectors $u_1 = \begin{bmatrix} 2/5 & 1/5 & -2/5 & 4/5 \end{bmatrix}^T$ and $u_2 = \begin{bmatrix} 1/3 & 2/3 & 2/3 & 0 \end{bmatrix}^T$.

Let $U = \begin{bmatrix} u_1 & u_2 \end{bmatrix}$, $\Sigma = \begin{bmatrix} \sqrt{\lambda_1} & 0 \\ 0 & \sqrt{\lambda_2} \end{bmatrix}$, $V = \begin{bmatrix} v_1 & v_2 \end{bmatrix}$, then we have the singular value decomposition of A as

$$A = U\Sigma V^{T} = \begin{bmatrix} 2/5 & 1/3 \\ 1/5 & 2/3 \\ -2/5 & 2/3 \\ 4/5 & 0 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(b) From part (a), we have singular value decomposition of A as $A = U\Sigma V^T$, then we can easily obtain the singular value decomposition of A^T as

$$A^{T} = (U\Sigma V^{T})^{T} = V\Sigma^{T}U^{T} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2/5 & 1/5 & -2/5 & 4/5 \\ 1/3 & 2/3 & 2/3 & 0 \end{bmatrix}$$

Q2.

By the Shur decomposition, matrix A can be written as

$$A = UDU^H$$

where U is a unitary matrix and D is an upper-triangle matrix. Since matrix A is normal, we have $AA^H = A^H A$, that is

$$(UDU^{H})(UDU^{H})^{H} = (UDU^{H})^{H}(UDU^{H})$$

$$DD^{H} = D^{H}D$$

Then matrix D must be a diagonal matrix whose diagonal elements are the eigenvalues of matrix A, then

$$A^{H}A = (UDU^{H})^{H}(UDU^{H}) = UD^{H}DU^{H} = U(D^{H}D)U^{H}$$

where D^HD is also a diagonal matrix whose diagonal elements are square of the diagonal elements of D, that is, eigenvalues of A^HA are square of eigenvalues of A.

According to the definition of singular value, matrix A's singular values are arithmetic square roots of A^HA 's eigenvalues, thus for A's eigenvalues λ_i , it has corresponding singular value $\sigma_i = \sqrt{\lambda_i^2} = |\lambda_i|$.