I apologise for the somewhat inconsistent formatting, I'm trying out some new things to see what I like best. The blocks with the blue bar are my favourite so far but I do like my \rightarrow arrows.

(1) Find the stationary points of $y=(x^4-2x^3)e^{2x}$. Note: you must give exact values - do not approximate the stationary point values

Final answers:

	1	2	3
x	0	$+\sqrt{3}$	$-\sqrt{3}$
y	0	$9e^{2\sqrt{3}}-6\sqrt{3}e^{2\sqrt{3}}$	$\frac{9+6\sqrt{3}}{e^{2\sqrt{3}}}$
$pprox (x,y)^*$	(0, 0)	(1.732, -44.481)	(-1.732)(0.607)

^{*}approximates for curiosity's sake

Working out for (1)

Finding y'

$$y = (x^4 - 2x^3)e^{2x}$$

$$u=x^4-2x^3$$

$$u'=4x^3-6x^2$$

$$v=e^{2x}$$

$$v'=2e^{2x}$$

$$u imes v' + v imes u'$$

->
$$(x^4 - 2x^3) imes 2e^{2x} + e^{2x}(4x^3 - 6x^2)$$

$$\Rightarrow e^{2x}(2x^4 - 4x^3) + e^{2x}(4x^3 - 6x^2)$$

$$-> 2e^{2x}x^4 - 4e^{2x}x^3 + 4e^{2x}x^3 - 6e^{2x}x^2$$

$$-> 2e^{2x}x^4 - 4e^{2x}x^3 + 4e^{2x}x^3 - 6e^{2x}x^2$$

$$-> 2e^{2x}x^4 - 6e^{2x}x^2$$

$$y' = 2e^{2x}x^4 - 6e^{2x}x^2$$

Stationary points

$$x=0,\ x=\sqrt[3]{3}$$

$$y' = 2e^{2x}x^4 - 6e^{2x}x^2$$

$$-> 0 = 2e^{2x}x^4 - 6e^{2x}x^2$$

$$-> 2e^{2x}x(x^3-3x)$$

$$-> 2e^{2x}x^2(x^2-3)$$

Setup a difference of two squares formula, where $a^2 - b^2 = (a + b)(a - b)$

$$-> -3 = (\sqrt{3})^2$$

->
$$(x^2 - (\sqrt{3})^2)$$

->
$$x^2 - (\sqrt{3})^2$$

->
$$(x + \sqrt{3})(a - \sqrt{3})$$

Apply the zero-product principle

->
$$0 = 2e^{2x}x^2(x^2 - 3)(x + \sqrt{3})(x - \sqrt{3})$$

$$e^{2x}=0$$
 ($2
eq 0$ so it's unneeded) or

$$x=0$$
 (for the x^2 term) or

$$x-\sqrt{3}=0$$
 or

$$x + \sqrt{3} = 0$$

Sifting for valid values

$$e^{2x} = 0$$

->
$$e = \sqrt[2x]{0}$$

$$-> \sqrt[2x]{0} = 0$$

 $e \neq 0$, so it is not a stationary point

$$x_1 = 0$$

-> Can be true, so it's valid

$$x-\sqrt{3}=0$$

->
$$x_2=+\sqrt{3}$$

$$x + \sqrt{3} = 0$$

->
$$x_3=-\sqrt{3}$$

So, the points on the *x*-axis are $0, \sqrt{3}$, and $-\sqrt{3}$

Finding the stationary point y-values

From the x-values $0, -\sqrt{3}$, and $\sqrt{3}$

Finding y_1 from $x_1=0$

$$y_1 = ((0)^4 - 2(0)^3)e^{2(0)}$$

->
$$(0-0) \times 1$$

$$y_1 = 0$$

Finding y_1 from $x_2 = \sqrt{3}$

$$y_2 = ((\sqrt{3})^4 - 2(\sqrt{3})^3)e^{2(\sqrt{3})}$$

$$(\sqrt{3})^4 = 9$$

Applying the root rule $(\sqrt[n]{a})^n = a$

$$-> -2(\sqrt{3})^3$$

->
$$-2(\sqrt[3]{3})^2\sqrt{3}$$

-> $-2(3)\sqrt{3}$
= $-6\sqrt{3}$
-> $e^{2\sqrt{3}}(9 - 6\sqrt{3})$

$$\Rightarrow e^{2\sqrt{3}}(9 - 6\sqrt{3})$$
$$y_2 = 9e^{2\sqrt{3}} - 6\sqrt{3}e^{2\sqrt{3}}$$

Finding
$$y_1$$
 from $x_3 = -\sqrt{3}$ $y_2 = ((-\sqrt{3})^4 - 2(-\sqrt{3})^3)e^{2(-\sqrt{3})}$

$$(-\sqrt{3})^4 = 9$$

$$-2(-\sqrt{3})^3 = -2(-\sqrt{3})^2 \times -\sqrt{3}$$

$$-\sqrt{3}^2 = -3$$

$$-2 \times -3 = 6$$

$$(9-6\times-\sqrt{3})e^{2(-\sqrt{3})} \\ -> (9+6\sqrt{3})e^{2(-\sqrt{3})} \\ -> 9e^{2-\sqrt{3}}+6\sqrt{3}e^{2(-\sqrt{3})}$$

Apply the reciprocal index law $x^{-y} = \frac{1}{x^y}$

9
$$e^{2(-\sqrt{3})} + 6\sqrt{3}e^{2(-\sqrt{3})}$$

-> 9 $e^{-2\sqrt{3}} + 6\sqrt{3}e^{-2\sqrt{3}}$
-> $\frac{9}{e^{2\sqrt{3}}} + \frac{6\sqrt{3}}{e^{2\sqrt{3}}}$
 $y_3 = \frac{9+6\sqrt{3}}{e^{2\sqrt{3}}}$

(2) Draw a single sign table and an accompanying sign diagram.

For each interval in the sign table, select a value of x and show all working to obtain the sign of the gradient in that interval.

Note: there should be no approximations in working to obtain gradient for the selected values of x. Please leave the expressions with square roots and powers of e.

Finding y''

$$y' = 2e^{2x}x^4 - 6e^{2x}x^2$$

Left side

$$u_{LL}=2e^{2x}$$
 and $u'_{LL}=4e^{2x}$ $v_{LR}=x^4$ and $v'_{LR}=4x^3$ $uv'+vu' o u_{LL}v'_{LR}+v_{LR}u'_{LL}$ $2e^{2x} imes 4x^3+x^4 imes 4e^{2x}$

-> $u'_L = 8e^{2x}x^3 + 4e^{2x}x^4$

Right side

$$u_{RL}=6e^{2x}$$
 and $u_{RL}^{\prime}=12e^{2x}$ $v_{RR}=x^2$ and $v_{RR}^{\prime}=2x$

$$6e^{2x} imes 2x + x^2 imes 12e^{2x} \ ext{->} v_{B}' = 12e^{2x}x + 12e^{2x}x^2$$

Combining left and right

$$\begin{split} y'' &= (u_L') - (u_R') \\ & -> (8e^{2x}x^3 + 4e^{2x}x^4) - (12e^{2x}x + 12e^{2x}x^2) \\ & -> 8e^{2x}x^3 + 4e^{2x}x^4 - 12e^{2x}x - 12e^{2x}x^2 \\ & -> y'' = 4e^{2x}x^4 + 8e^{2x}x^3 - 12e^{2x}x^2 - 12e^{2x}x \end{split}$$

Filled out sign table

Working out is below

	1	2	3
x	0	$+\sqrt{3}$	$-\sqrt{3}$
y	0	$9e^{2\sqrt{3}}-6\sqrt{3}e^{2\sqrt{3}}$	$\frac{9+6\sqrt{3}}{e^{2\sqrt{3}}}$
$\approx (x,y)^*$	(0,0)	(1.732, -44.481)	(-1.732)(0.607)
y''	0	$12\sqrt{3}e^{2\sqrt{3}}$	$-rac{12\sqrt{3}}{e^{2\sqrt{3}}}$
pprox y''	0, need sign test	644.02	-0.65
	+,0,-, local max	> 0, local min	< 0, local max

Calculating 0

$$y'' = 4e^{2x}x^4 + 8e^{2x}x^3 - 12e^{2x}x^2 - 12e^{2x}x$$
-> $4e^{2(0)}(0)^4 + 8e^{2(0)}(0)^3 - 12e^{2(0)}(0)^2 - 12e^{2(0)}(0)$
-> $4 \times 0 + 8 \times 0 - 12 \times 0 - 12 \times 0$
= 0

As 0 = 0, the sign test has to be used.

Sign test calculations

	x < 0 at $x = -0.1$	x = 0	x>0 at $x=0.1$
Exact (=)	$-4e^{-2} = -rac{4}{e^2}$	0	$-12e^2$
Approx (≈)	0.8780	0	-1.6020
Results	+	0	_

The results are +,0,-, that means the point must be a local maximum.

Calculating +0.1

$$\begin{split} y'' &= 4e^{2x}x^4 + 8e^{2x}x^3 - 12e^{2x}x^2 - 12e^{2x}x \\ -> 4e^{2(0.1)}(0.1)^4 + 8e^{2(0.1)}(0.1)^3 - 12e^{2(0.1)}(0.1)^2 - 12e^{2(0.1)}(0.1) \\ -> 4e^{0.2}(0.0001) + 8e^{0.2}(0.001) - 12e^{0.2}(0.01) - 12e^{0.2}(0.1) \end{split}$$

$$\begin{array}{l} -> \frac{4}{10000}e^{\frac{1}{5}} + \frac{8}{1000}e^{\frac{1}{5}} - \frac{12}{100}e^{\frac{1}{5}} - \frac{12}{10}e^{\frac{1}{5}} \\ -> \frac{4}{10000}e^{\frac{1}{5}} + \frac{80}{10000}e^{\frac{1}{5}} - \frac{1200}{10000}e^{\frac{1}{5}} - \frac{12000}{10000}e^{\frac{1}{5}} \\ 4 + 80 - 1200 - 12,000 = -13,116 \\ -> -\frac{13116}{10000}e^{\frac{1}{5}} \\ = \frac{-3279e^{\frac{1}{5}}}{2500} \\ \approx -1.6020 \end{array}$$

Calculating -0.1

$$\begin{split} y'' &= 4e^{2x}x^4 + 8e^{2x}x^3 - 12e^{2x}x^2 - 12e^{2x}x \\ & > 4e^{2(-0.1)}(-0.1)^4 + 8e^{2(-0.1)}(-0.1)^3 - 12e^{2(-0.1)}(-0.1)^2 - 12e^{2(-0.1)}(-0.1) \\ & > 4e^{-0.2}(0.0001) + 8e^{-0.2}(-0.001) - 12e^{-0.2}(0.01) - 12e^{-0.2}(-0.1) \\ & > \frac{4}{10000}e^{-\frac{1}{5}} - \frac{8}{1000}e^{-\frac{1}{5}} - \frac{12}{100}e^{-\frac{1}{5}} + \frac{12}{10}e^{-\frac{1}{5}} \\ & > \frac{4}{10000}e^{-\frac{1}{5}} - \frac{80}{1000}e^{-\frac{1}{5}} - \frac{1200}{100}e^{-\frac{1}{5}} + \frac{12000}{10}e^{-\frac{1}{5}} \\ & 4 - 80 - 1200 + 12000 = 10724 \\ & > \frac{10724}{10000}e^{-\frac{1}{5}} \\ & > \frac{2681}{2500}e^{-\frac{1}{5}} \\ & \approx 0.8780 \end{split}$$

Calculating $\sqrt{3}$

$$\begin{split} y'' &= 4e^{2x}x^4 + 8e^{2x}x^3 - 12e^{2x}x^2 - 12e^{2x}x \\ & -> 4e^{2\sqrt{3}}(\sqrt{3})^4 + 8e^{2(\sqrt{3})}(\sqrt{3})^3 - 12e^{2\sqrt{3}}\sqrt{3}^2 - 12e^{2\sqrt{3}}\sqrt{3} \\ & -> (9\times 4e^{2\sqrt{3}}) + (3\times 8e^{2(\sqrt{3})}\times\sqrt{3}) - (3\times 12e^{2\sqrt{3}}) - (12e^{2\sqrt{3}}\sqrt{3}) \\ & -> (36e^{2\sqrt{3}}) + (24\sqrt{3}e^{2(\sqrt{3})}) - (36e^{2\sqrt{3}}) - (12\sqrt{3}e^{2\sqrt{3}}) \\ & -> (36e^{2\sqrt{3}}) + (24\sqrt{3}e^{2(\sqrt{3})}) - (36e^{2\sqrt{3}}) - (12\sqrt{3}e^{2\sqrt{3}}) \\ & -> 24\sqrt{3}e^{2\sqrt{3}} - 12\sqrt{3}e^{2\sqrt{3}} \\ &= 12\sqrt{3}e^{2\sqrt{3}} \\ &\approx 644.02 \end{split}$$

644.02 > 0 so it is a local minimum

Calculating $-\sqrt{3}$

$$\begin{split} y'' &= 4e^{2x}x^4 + 8e^{2x}x^3 - 12e^{2x}x^2 - 12e^{2x}x \\ & \to (4e^{2(-\sqrt{3})}(-\sqrt{3})^4) + (8e^{2(-\sqrt{3})}(-\sqrt{3})^3) - (12e^{2(-\sqrt{3})}(-\sqrt{3})^2) - (12e^{2(-\sqrt{3})}(-\sqrt{3})) \\ & (4e^{2(-\sqrt{3})}(-\sqrt{3})^4) \\ & \to 4e^{2(-\sqrt{3})} \times 9 \\ & \to 36e^{2(-\sqrt{3})} \\ & (8e^{2(-\sqrt{3})}(-\sqrt{3})^3) \\ & \to (8e^{2(-\sqrt{3})}(-\sqrt{3})^2 \times (-\sqrt{3})) \\ & \to 8 \times 3 = 24 \\ & \to -24\sqrt{3}e^{2(-\sqrt{3})} \\ & (12e^{2(-\sqrt{3})}(-\sqrt{3})^2) \\ & \to (12e^{2(-\sqrt{3})} \times 3) \\ & \to (36e^{2(-\sqrt{3})}) \end{split}$$

$$\begin{array}{l} -> \times -1 \\ -> -36e^{2(-\sqrt{3})} \\ (12e^{2(-\sqrt{3})}(-\sqrt{3})) \\ -> -12\sqrt{3}e^{2(-\sqrt{3})} \\ -> \times -1 \\ -> 12\sqrt{3}e^{2(-\sqrt{3})} \\ 36e^{2(-\sqrt{3})} - 36e^{2(-\sqrt{3})} - 24\sqrt{3}e^{2(-\sqrt{3})} + 12\sqrt{3}e^{2(-\sqrt{3})} \\ -> \frac{36e^{2(-\sqrt{3})} - 36e^{2(-\sqrt{3})} - 24\sqrt{3}e^{2(-\sqrt{3})} + 12\sqrt{3}e^{2(-\sqrt{3})} \\ -> -24\sqrt{3}e^{2(-\sqrt{3})} + 12\sqrt{3}e^{2(-\sqrt{3})} \\ -> -12\sqrt{3}e^{2(-\sqrt{3})} \\ -> -12\sqrt{3}e^{-2\sqrt{3}} \\ -> -12\sqrt{3}e^{2(-\sqrt{3})} \\ \approx -0.65 \end{array}$$

As -0.65 < 0, it is a local maximum