Ch 3.2.2: Questions to ask of Multiple Linear Regression Lecture 6 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

Dept of Computational Mathematics, Science & Engineering

Weds, Sep 14, 2022

Announcements

Last time:

- 3.1 Linear regression
- Started 3.2 Multiple Linear regression

Announcements:

 Homework #2 Due TONIGHT on Crowdmark

2/29

Munch (MSU-CMSE) Weds, Sep 14, 2022

Covered in this lecture

- Multiple linear regression
- Hypothesis test in that case
- Forward and Backward Selection
- R^2 and RSE
- Confidence intervals and prediction intervals

Section 1

Review from last time

Linear Regression with One Variable

Predict Y on a single variable X

$$Y \approx \beta_0 + \beta_1 X$$

- Find good guesses for $\hat{\beta}_0$, $\hat{\beta}_1$.
- $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$
- $e_i = y_i \hat{y}_i$ is the *i*th residual
- RSS = $\sum_i e_i^2$

 RSS is minimized at least squares coefficient estimates

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$
$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

Evaluating the model

- Linear regression is unbiased
- Variance of linear regression estimates:

$$SE(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right]$$
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

where
$$\sigma^2 = \operatorname{Var}(\varepsilon)$$

• Estimate σ : $\hat{\sigma}^2 = \frac{RSS}{n-2}$

• The 95% confidence interval for β_1 approximately takes the form

$$\hat{\beta}_1 \pm 2 \cdot \text{SE}(\hat{\beta}_1)$$

• Hypothesis test:

$$H_0$$
: $\beta_1 = 0$
 H_a : $\beta_1 \neq 0$

▶ Test statistic $t = \frac{\hat{eta}_1 - 0}{\operatorname{SE}(\hat{eta}_1)}$

Assessing the accuracy of the model

Residual standard error (RSE):

$$RSE = \sqrt{\frac{1}{n-2}RSS}$$

R squared:

$$R^{2} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$
$$TSS = \sum_{i} (y_{i} - \overline{y})^{2}$$

Least Squares Prediction for Multiple Linear Regression

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p + \varepsilon$$

Given estimates $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \cdots, \hat{\beta}_p$, prediction is

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$$

Minimize the sum of squares

$$RSS = \sum_{i} (y_i - \hat{y}_i)^2$$
$$= \sum_{i} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_1 - \dots - \hat{\beta}_p x_p)$$

- Coefficients are closed form but UGLY
- β_j is average effect on Y for one unit increase in X_j if all other X_i stay fixed

Dr. Munch (MSU-CMSE)

Section 2

Ch 3.2.2: Questions to ask of your regression

. Munch (MSU-CMSE) Weds, Sep 14, 2022

Question 1

Is at least one of the predictors X_1, \dots, X_p useful in predicting the response?

Q1: Hypothesis test

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$$

 H_a : At least one β_j is non-zero

F-statistic:

$$F = \frac{(\mathit{TSS} - \mathit{RSS})/p}{\mathit{RSS}/(n-p-1)} \sim F_{p,n-p-1}$$

The F-statistic for the hypothesis test

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)} \sim F_{p,n-p-1}$$

Image from wikipedia, By IkamusumeFan - Own work, CC BY-SA 4.0,

Or. Munch (MSU-CMSE) Weds, Sep 14, 2022

Do Q1 section in jupyter notebook

r. Munch (MSU-CMSE) Weds, Sep 14, 2022

Q2

Do all the predictors help to explain Y, or is only a subset of the predictors useful?

. Munch (MSU-CMSE) Weds, Sep 14, 2022

Q2: A first idea

Great, you know at least one variable is important, so which is it?....

Do Q2 section in jupyter notebook

r. Munch (MSU-CMSE) Weds, Sep 14, 2022

Why is this a bad idea?

Dr. Munch (MSU-CMSE) Weds, Sep 14, 2022

Q3

How well does the model fit the data?

. Munch (MSU-CMSE) Weds, Sep 14, 2022

Assessing the accuracy of the module

Almost the same as before

Residual standard error (RSE):

$$RSE = \sqrt{\frac{1}{n - \frac{p}{p} - 1}}RSS$$

R squared:

$$R^{2} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$
$$TSS = \sum_{i} (y_{i} - \overline{y})^{2}$$

R^2 on Advertising data

- Just TV: $R^2 = 0.61$
- Just TV and radio: $R^2 = 0.89719$
- All three variables: $R^2 = 0.8972$

RSE on Advertising Data

- Just TV: *RSE* = 3.26
- Just TV and radio: RSE = 1.681
- All three variables: RSE = 1.686

If all else fails, look at the data

r. Munch (MSU-CMSE) Weds, Sep 14, 2022

Q4

Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

Q4: Making predictions

Given estimates $\hat{\beta}_0, \dots, \hat{\beta}_p$ for β_0, \dots, β_p Least squares plane:

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \dots + \hat{\beta}_p X_p$$

estimate for the true population regression plane

$$f(X) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

24 / 29

. Munch (MSU-CMSE) Weds, Sep 14, 2022

Confidence intervals and Prediction Intervals

Confidence Interval

The range likely to contain the population parameter (mean, standard deviation) of interest.

Prediction Interval

The range that likely contains the value of the dependent variable for a single new observation given specific values of the independent variables.

Specific to the Advertising Data

Compute a confidence interval to determine how close \hat{Y} will be to f(X)

Advertising example:

If \$100K is spent on TV, and \$20K on radio, the 95% CI for sales is [10,985, 11,528].

Compute a prediction interval to quantify the uncertainty in sales for a particular city.

Advertising example:

Given that \$100,000 is spent on TV advertising and \$20,000 is spent on radio advertising in that city the 95% prediction interval is [7,930, 14,580].

Comparing the two

27 / 29

r. Munch (MSU-CMSE) Weds, Sep 14, 2022

Go take a look at the code under Q4

Dr. Munch (MSU-CMSE)

Next time

Lec#		Date	Topic	Reading	Homeworks
1	w	Aug 31	Intro / First day stuff / Python Review Pt 1	1	
2	F	Sep 2	What is statistical learning?	2.1	
	М	Sep 5	No class - Labor day		
3	W	Sep 7	Assessing Model Accuracy	2.2.1, 2.2.2	HW #1 Due
4	F	Sep 9	Linear Regression	3.1	
5	М	Sep 12	More Linear Regression	3.1/3.2	
6	W	Sep 14	Even more linear regression	3.2.2	HW #2 Due
7	F	Sep 16	Probably more linear regression	3.3	
8	М	Sep 19	Intro to classification, Logisitic Regression	2.2.3, 4.1, 4.2, 4.3	
9	W	Sep 21	More logistic regression		HW #3 Due
10	F	Sep 23	Review		
11	М	Sep 26	Midterm #1		
12	W	Sep 28	[No class, Dr Munch out of town]		
13	F	Sep 30	[No class, Dr Munch out of town]		
14	М	Oct 3	Leave one out CV	5.1.1, 5.1.2	
15	W	Oct 5	k-fold CV	5.1.3	
16	F	Oct 7	More k-fold CV	5.1.4	
17	М	Oct 10	CV for classification	5.1.5	HW #4 Due
18	W	Oct 12	Resampling methods: Bootstrap	5.2	
19	F	Oct 14	Subset selection	6.1	
20	М	Oct 17	Shrinkage: Ridge	6.2.1	HW #5 Due
21	W	Oct 19	Shrinkage: Lasso	6.2.2	
22	F	Oct 21	Dimension Reduction	6.3	