

Eandon:	zed 2-approximation alg for vertex cover
l Ps	I an uncovered edge C=(U,V) UK one of u or V at roundom (equal probability) neart into S
Theorem.	IF G has a vertex cover of cardinality k then the algorithm above outputs a random set whose expected cardinality is $\leq 2k$.
Proof.	Let $S_t := set S$ after t iterations. Let $S^* := any$ vertex cover of $size k$. Claim: $E S_t \cap S^* \ge E S_t \setminus S^* $. Proof. Induction on t . $t = 0 \implies trivial$.
	t > 0. Consider edge $e=(u,v)$ that was active in iteration to If $u \in S^*$, $v \notin S^*$ or $u \notin S^*$, $v \in S^*$ expected change in LHS = expected change in RHK IF $u,v \in S^*$ then expected change in LHS = +1
	expected change in RHS = 0. After m iterations $S_m = S$. S_0 $\mathbb{E} S = \mathbb{E} S_m = \mathbb{E} S_m S^* + \mathbb{E} S_m S^* $
Extend	$\leq 2 \cdot E s_m s^* \leq 2 \cdot s^* $. QED.
YOU	s to weighted vertex ever: pick a or v at adm with probabilities $Pr(u) = \frac{w_v}{w_u + w_v}$ $Pr(v) = \frac{w_u}{w_u + w_v}$