Table of Contents

Preface.	Preface	
Part I.	Understanding Language Models	
1. An	Introduction to Large Language Models	3
W]	hat Is Language AI?	4
	Recent History of Language AI	5
I	Representing Language as a Bag-of-Words	6
I	Better Representations with Dense Vector Embeddings	8
7	Types of Embeddings	10
I	Encoding and Decoding Context with Attention	11
A	Attention Is All You Need	15
I	Representation Models: Encoder-Only Models	18
(Generative Models: Decoder-Only Models	20
7	Γhe Year of Generative AI	23
Th	e Moving Definition of a "Large Language Model"	25
Th	e Training Paradigm of Large Language Models	25
La	rge Language Model Applications: What Makes Them So Useful?	27
	sponsible LLM Development and Usage	28
Lir	mited Resources Are All You Need	28
Int	erfacing with Large Language Models	29
I	Proprietary, Private Models	29
	Open Models	30
(Open Source Frameworks	31
Ge	nerating Your First Text	32
Su	mmary	34

2.	Tokens and Embeddings	37
	LLM Tokenization	38
	How Tokenizers Prepare the Inputs to the Language Model	38
	Downloading and Running an LLM	39
	How Does the Tokenizer Break Down Text?	43
	Word Versus Subword Versus Character Versus Byte Tokens	44
	Comparing Trained LLM Tokenizers	46
	Tokenizer Properties	55
	Token Embeddings	57
	A Language Model Holds Embeddings for the Vocabulary of Its Tokenizer	57
	Creating Contextualized Word Embeddings with Language Models	58
	Text Embeddings (for Sentences and Whole Documents)	61
	Word Embeddings Beyond LLMs	63
	Using pretrained Word Embeddings	63
	The Word2vec Algorithm and Contrastive Training	64
	Embeddings for Recommendation Systems	67
	Recommending Songs by Embeddings	67
	Training a Song Embedding Model	69
	Summary	71
3.	Looking Inside Large Language Models	. 73
	An Overview of Transformer Models	74
	The Inputs and Outputs of a Trained Transformer LLM	74
	The Components of the Forward Pass	76
	Choosing a Single Token from the Probability Distribution (Sampling/	
	Decoding)	79
	Parallel Token Processing and Context Size	81
	Speeding Up Generation by Caching Keys and Values	83
	Inside the Transformer Block	85
	Recent Improvements to the Transformer Architecture	95
	More Efficient Attention	96
	The Transformer Block	101
	Positional Embeddings (RoPE)	102
	Other Architectural Experiments and Improvements	105
	Summary	106
	All III Son Bookers of London Madels	
ar	t II. Using Pretrained Language Models	
4.	Text Classification	111
	The Sentiment of Movie Reviews	112
	Text Classification with Representation Models	113

	Model Selection	115
	Using a Task-Specific Model	116
	Classification Tasks That Leverage Embeddings	120
	Supervised Classification	121
	What If We Do Not Have Labeled Data?	123
	Text Classification with Generative Models	127
	Using the Text-to-Text Transfer Transformer	128
	ChatGPT for Classification	132
	Summary	135
5.	Text Clustering and Topic Modeling	137
	ArXiv's Articles: Computation and Language	138
	A Common Pipeline for Text Clustering	139
	Embedding Documents	139
	Reducing the Dimensionality of Embeddings	140
	Cluster the Reduced Embeddings	142
	Inspecting the Clusters	144
	From Text Clustering to Topic Modeling	146
	BERTopic: A Modular Topic Modeling Framework	148
	Adding a Special Lego Block	156
	The Text Generation Lego Block	160
	Summary	164
6.	Prompt Engineering	167
	Using Text Generation Models	167
	Choosing a Text Generation Model	167
	Loading a Text Generation Model	168
	Controlling Model Output	170
	Intro to Prompt Engineering	173
	The Basic Ingredients of a Prompt	173
	Instruction-Based Prompting	175
	Advanced Prompt Engineering	177
	The Potential Complexity of a Prompt	177
	In-Context Learning: Providing Examples	180
	Chain Prompting: Breaking up the Problem	182
	Reasoning with Generative Models	184
	Chain-of-Thought: Think Before Answering	185
	Self-Consistency: Sampling Outputs	188
	Tree-of-Thought: Exploring Intermediate Steps	189
	Output Verification	191
	Providing Examples	192
	Grammar: Constrained Sampling	194

	Summary	198
7.	Advanced Text Generation Techniques and Tools	199
	Model I/O: Loading Quantized Models with LangChain	200
	Chains: Extending the Capabilities of LLMs	202
	A Single Link in the Chain: Prompt Template	203
	A Chain with Multiple Prompts	206
	Memory: Helping LLMs to Remember Conversations	209
	Conversation Buffer	210
	Windowed Conversation Buffer	212
	Conversation Summary	214
	Agents: Creating a System of LLMs	218
	The Driving Power Behind Agents: Step-by-step Reasoning	219
	ReAct in LangChain	221
	Summary	224
8.	Semantic Search and Retrieval-Augmented Generation	225
	Overview of Semantic Search and RAG	226
	Semantic Search with Language Models	228
	Dense Retrieval	228
	Reranking	240
	Retrieval Evaluation Metrics	244
	Retrieval-Augmented Generation (RAG)	249
	From Search to RAG	250
	Example: Grounded Generation with an LLM API	252
	Example: RAG with Local Models	252
	Advanced RAG Techniques	255
	RAG Evaluation	257
	Summary	258
9.	Multimodal Large Language Models	259
	Transformers for Vision	260
	Multimodal Embedding Models	263
	CLIP: Connecting Text and Images	265
	How Can CLIP Generate Multimodal Embeddings?	265
	OpenCLIP	268
	Making Text Generation Models Multimodal	273
	BLIP-2: Bridging the Modality Gap	273
	Preprocessing Multimodal Inputs	278
	Use Case 1: Image Captioning	280
	Use Case 2: Multimodal Chat-Based Prompting	283
	Summary	286
	Summar y	∠00

Part III. Training and Fine-Tuning Language Models

10.	Creating Text Embedding Models Embedding Models What Is Contrastive Learning? SBERT Creating an Embedding Model Generating Contrastive Examples Train Model In-Depth Evaluation Loss Functions Fine-Tuning an Embedding Model Supervised Augmented SBERT Unsupervised Learning Transformer-Based Sequential Denoising Auto-Encoder Using TSDAE for Domain Adaptation	289 291 293 296 297 300 301 309 311 316 316 320
	Summary	321
11.	Fine-Tuning Representation Models for Classification. Supervised Classification Fine-Tuning a Pretrained BERT Model Freezing Layers Few-Shot Classification SetFit: Efficient Fine-Tuning with Few Training Examples Fine-Tuning for Few-Shot Classification Continued Pretraining with Masked Language Modeling Named-Entity Recognition Preparing Data for Named-Entity Recognition Fine-Tuning for Named-Entity Recognition Summary	323 323 328 333 337 340 345 347 352 353
12.	Fine-Tuning Generation Models. The Three LLM Training Steps: Pretraining, Supervised Fine-Tuning, and Preference Tuning Supervised Fine-Tuning (SFT) Full Fine-Tuning Parameter-Efficient Fine-Tuning (PEFT) Instruction Tuning with QLoRA Templating Instruction Data Model Quantization LoRA Configuration	355 357 357 359 367 367 369 370

Training Configuration	371
Training	372
Merge Weights	373
Evaluating Generative Models	373
Word-Level Metrics	374
Benchmarks	374
Leaderboards	376
Automated Evaluation	376
Human Evaluation	376
Preference-Tuning / Alignment / RLHF	378
Automating Preference Evaluation Using Reward Models	379
The Inputs and Outputs of a Reward Model	380
Training a Reward Model	380
Training No Reward Model	384
Preference Tuning with DPO	385
Templating Alignment Data	386
Model Quantization	386
Training Configuration	387
Training	388
Summary	389
Afterword	391
Index	393