A PROGRAMOZÁS ALAPJAI 1 (BMEVIEEAA00, 2024/25/1) NAGYHÁZI FELADAT

Shanon-Fano kódoló és dekódoló program

készítette:

Ferencz Péter (RFG7SN)

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar

Mérnökinformatikus Bsc

2024 Október-November

1.	Spec	cifikáció		1
	1.1.	A progr	am célja	1
	1.2.	Felhas	ználói interakció	1
		1.2.1.	kódolás (kodol)	1
		1.2.2.	dekódolás (dekodol)	1
	1.3.	A progr	am által elfogadott kapcsolók	2
		1.3.1.	Bemenet	2
		1.3.2.	Kimenet	2
		1.3.3.	Kódtábla	2
		1.3.4.	Statisztika	2
		1.3.5.	Segítség	3
	1.4.	A progr	am kimenete	3
2.	Adat	szerkez	eet-mutató	5
				5
3.	•	nutató		7
	3.1.	Fájllista	1	7
4.	Adat	szerkez	retek dokumentációja	9
	4.1.	Bits str	uktúrareferencia	9
		4.1.1.	Részletes leírás	9
		4.1.2.	Adatmezők dokumentációja	9
			4.1.2.1. b	9
			4.1.2.2. length	0
	4.2.	CodeW	/ord struktúrareferencia	0
		4.2.1.	Részletes leírás	0
		4.2.2.	Adatmezők dokumentációja	0
			4.2.2.1. bits	1
			4.2.2.2. codeWord	1
	4.3.	codewo	ordFrequency struktúrareferencia	1
		4.3.1.	Részletes leírás	2
		4.3.2.	Adatmezők dokumentációja	2
			4.3.2.1. codeWord	2
			4.3.2.2. freq	2
	4.4.	comma	andLineArguments struktúrareferencia	2
		4.4.1.	Részletes leírás	3
		4.4.2.	Adatmezők dokumentációja	3
			4.4.2.1. displayStatistics	3
			4.4.2.2. displayTable	
			4.4.2.3. infile	3
			4.4.2.4. mode	
			4.4.2.5. outfile	3

	4.5.	InputFi	leBuffer st	truktúrareferencia	 		14
		4.5.1.	Részlete	s leírás	 		14
		4.5.2.	Adatmez	ők dokumentációja	 		14
			4.5.2.1.	currentBit	 		14
			4.5.2.2.	file	 		14
	4.6.	Node s	truktúrare	ferencia	 		15
		4.6.1.	Adatmez	ők dokumentációja	 		15
			4.6.1.1.	codeword	 		15
			4.6.1.2.	left_0	 		15
			4.6.1.3.	right_1	 		15
			4.6.1.4.	set	 		16
	4.7.	Output	FileBuffer	struktúrareferencia	 		16
		4.7.1.	Részletes	s leírás	 		16
		4.7.2.	Adatmez	ők dokumentációja	 		16
			4.7.2.1.	bits	 		17
			4.7.2.2.	file	 		17
5	Fáile	k doku	mentációj	io			19
J.			_	encia			19
	0.1.		•	finíciók dokumentációja			21
		0.1.1.		NULLBIT			21
		5.1.2.		yek dokumentációja			21
		0.1.2.	5.1.2.1.	bits cpy()			21
			5.1.2.2.	bits_equ()			21
			5.1.2.3.	bits isNullbit()			21
			5.1.2.4.	bits_popBit()			22
			5.1.2.5.	bits_popBits()			22
				bits_print()	 	 •	23
			5.1.2.7.	bits_pushBit()	 		23
			5.1.2.8.	bits_pushBits()			23
			5.1.2.9.	getBitFromRight()			23
	5.2.	lib/code		ijlreferencia			25
		5.2.1.		iníciók dokumentációja			26
			5.2.1.1.	uchar			26
	5.3.	lib/deb	ua/debua.ł	h fájlreferencia			27
		5.3.1.		finíciók dokumentációja			27
			5.3.1.1.	CHECKMALLOCNULL			27
			5.3.1.2.	PRINTDEBUG CORRUPTEDFILE			28
			5.3.1.3.	PRINTDEBUG_CUSTOM			28
			5.3.1.4.	PRINTDEBUG_FILEERR			28
			5.3.1.5.	PRINTDEBUG_MALLOCNULL			28
	5.4.	lib/deco		referencia			28
		_	•				

	5.4.1.	Függvények dokumentációja	29
		5.4.1.1. decode()	30
5.5.	lib/enco	der.h fájlreferencia	30
	5.5.1.	Függvények dokumentációja	31
		5.5.1.1. encode()	31
5.6.	lib/fileB	uffer.h fájlreferencia	32
	5.6.1.	Függvények dokumentációja	34
		5.6.1.1. buff_createInputFileBuffer()	34
		5.6.1.2. buff_createOutputFileBuffer()	34
		5.6.1.3. buff_destroyInputFileBuffer()	35
		5.6.1.4. buff_destroyOutputFileBuffer()	35
		5.6.1.5. buff_flush()	35
		5.6.1.6. buff_readBit()	36
		5.6.1.7. buff_readBits()	36
		5.6.1.8. buff_readChar()	36
		5.6.1.9. buff_readInt()	37
		5.6.1.10. buff_rewind()	37
		5.6.1.11. buff_writeBit()	37
		5.6.1.12. buff_writeBits()	38
		5.6.1.13. buff_writeChar()	38
		5.6.1.14. buff_writeInt()	38
5.7.	lib/grap	h.h fájlreferencia	39
	5.7.1.	Függvények dokumentációja	40
		5.7.1.1. freeTree()	40
		5.7.1.2. graph_countLeaves()	41
5.8.	lib/mair	h fájlreferencia	41
	5.8.1.	Enumerációk dokumentációja	42
		5.8.1.1. MODE	42
5.9.	lib/stats	.h fájlreferencia	43
	5.9.1.	Függvények dokumentációja	44
		5.9.1.1. stats_printCodetableArray()	44
		5.9.1.2. stats_printCodetableStatsArray()	44
		5.9.1.3. stats_printCodetableTree()	44
		5.9.1.4. stats_printCompression()	45
5.10.	src/bin.	c fájlreferencia	45
	5.10.1.	Függvények dokumentációja	46
		5.10.1.1. bits_cpy()	46
		5.10.1.2. bits_equ()	46
		5.10.1.3. bits_isNullbit()	47
		5.10.1.4. bits_popBit()	47
		5.10.1.5. bits_popBits()	47
		5.10.1.6. bits_print()	48

5.10.1.7. bits_pushBit()	48
5.10.1.8. bits_pushBits()	48
5.10.1.9. getBitFromRight()	49
5.11. src/decoder.c fájlreferencia	49
5.11.1. Függvények dokumentációja	50
5.11.1.1. appendCodeword()	50
5.11.1.2. createNodeIfNotexists()	50
5.11.1.3. decode()	50
5.11.1.4. displayTable()	51
5.11.1.5. freeTree()	51
5.12. src/encoder.c fájlreferencia	51
5.12.1. Függvények dokumentációja	52
5.12.1.1. codewordToBits()	52
5.12.1.2. compare_by_bitlength()	52
5.12.1.3. compare_by_freq()	53
5.12.1.4. encode()	53
5.12.1.5. setCodeWord()	53
5.13. src/fileBuffer.c fájlreferencia	54
5.13.1. Függvények dokumentációja	
5.13.1.1. buff_createInputFileBuffer()	55
5.13.1.2. buff_createOutputFileBuffer()	55
5.13.1.3. buff_destroyInputFileBuffer()	56
5.13.1.4. buff_destroyOutputFileBuffer()	
5.13.1.5. buff_flush()	
5.13.1.6. buff_readBit()	
5.13.1.7. buff_readBits()	
5.13.1.8. buff_readChar()	57
5.13.1.9. buff_readInt()	58
5.13.1.10.buff_rewind()	58
5.13.1.11.buff_writeBit()	58
5.13.1.12.buff_writeBits()	59
5.13.1.13. buff_writeChar()	59
5.13.1.14. buff_writeInt()	59
5.14. src/graph.c fájlreferencia	60
5.14.1. Függvények dokumentációja	60
5.14.1.1. freeTree()	61
5.14.1.2. graph_countLeaves()	61
5.15. src/main.c fájlreferencia	61
5.15.1. Függvények dokumentációja	62
5.15.1.1. main()	62
5.15.1.2. parseCLA()	62
5.15.1.3. printHelp()	63

	5.16. src/stats.c fájlreferencia	 63
	5.16.1. Függvények dokumentációja	 64
	5.16.1.1. calcFileSize()	 64
	5.16.1.2. prettyPrintChar()	 64
	5.16.1.3. printCodetableTreeRec()	 64
	5.16.1.4. stats_printCodetableArray()	 65
	5.16.1.5. stats_printCodetableStatsArray()	 65
	5.16.1.6. stats_printCodetableTree()	 65
	5.16.1.7. stats_printCompression()	 66
Me	Meta	67
	5.17. Források, felhasznált irodalom	 67
	5 18 Felhasznált segédprogramok	67

1. fejezet

Specifikáció

1.1. A program célja

A program célja tetszőleges adat tömörítése majd ezek kitömörítése információvesztés nélkül. Ennek megvalósítására a Shanon-Fano tömörítő algoritmust ^{1 2} alkalmazza.

1.2. Felhasználói interakció

A felhasználó két üzemmódot választhat ki a program futtatásakor: kódolás vagy dekódolás. Ezeket az első parancssori argumentumban a 'kodol' és 'dekodol' kulcsszavakkal tudja kiválasztani.

1.2.1. kódolás (kodol)

Kódoló üzemmódban a bemenetet (lásd Bemenet) a Shanon-Fano kódoló algoritmust alkalmazva írja a kimenetre (lásd Kimenet) a kódolt adatot.

```
program kodol --bemenet <fájl> --kimenet <fájl>
```

1.2.2. dekódolás (dekodol)

Dekódoló üzemmódban a bemenetet (lásd Bemenet) a Shanon-Fano dekódoló algoritmust alkalmazva írja a kimenetre (lásd Kimenet) a dekódolt adatot.

```
program dekodol --bemenet <fájl> --kimenet <fájl>
```

¹C. E. Shannon, "A Mathematical Theory of Communication", 1948

²Robert M. Fano, "The Transmittion of Information", 1949

1.3. A program által elfogadott kapcsolók

A program futása során tetszőleges futtatást befolyásoló kapcsolókat (flageket) beállíthatunk. Ezek sorrendje tetszőlegesen választható.

1.3.1. Bemenet

Parancssori megnevezés: --bemenet <forrásfájl>

Opcionális paraméter.

Ha nincs megadva, de a program egy figyelmeztető üzenet kíséretében folytatja a lefutást.

A fájl méretétől és tartalmától független a program lefutása.

Az azt követő paraméter megadja a forrásfájl elérési útvonalát. Ha nincs megadva, stdin-ról kér be új sorral lezárt szöveget.

1.3.2. Kimenet

Parancssori megnevezés: --kimenet <célfájl>

Opcionális paraméter.

Ha nincs megadva, de a program egy figyelmeztető üzenet kíséretében folytatja a lefutást.

A fájl méretétől és tartalmától független a program lefutása.

Az azt követő paraméter megadja a célfájl elérési útvonalát. Ha nincs megadva, stdout-ra írja ki a program a program kimenetét.

1.3.3. Kódtábla

Parancssori megnevezés: --kodtabla

Opcionális paraméter.

Azt szabályozza, hogy a kódtáblát kiírja-e a program a standard kimenetre.

1.3.4. Statisztika

Parancssori megnevezés: --statisztika

Opcionális paraméter.

Azt határozza meg, hogy a program kiírjon-e további számitásokat a program hatékonyságára vonatkozólag. Az alábbi számítások történnek kiírásra:

- Tömörítés mértéke: bemenet mérete a tömörített adat méretéhez képest
- · Kódtábal mérete: Egymástól eltérő kódok száma
- · Kódok mérete: legrövidebb kód, leghosszabb kód, kódok átlagos mérete

1.3.5. Segítség

Parancssori megnevezés: --help

Opcionális paraméter.

A felhasználót tájékoztatja a program helyes használatáról. Ha ez a kapcsoló meg van adva, akkor a program nem ellenőrzi a többi kötelező kapcsoló jelenlétét, kiírja a szöveget majd kódolás / dekódolás nélkül befejezi a futást. Az alábbi szöveg íródik ki:

```
program [üzemmód] <...kapcsolók...>
Üzemmód: kodol, dekodol
Kapcsolók:
--bemenet <forrásfájl>: Bemeneti fájl (ha üres akkor stdin)
--kimenet <célfájl>: Bemeneti fájl (ha üres akkor stdout)
--kodtabla <fájl>: A kódtábla fájl (kötelező)
--statisztika: A tömörítés hatékonyságát értékelő statisztika (opcionális)
--help: Ezt az üzenetet írja ki (opcionális)
```

1.4. A program kimenete

Sikeres futtatás esetén a program a A program által elfogadott kapcsolók pontban meghatározott viselkedés szerint működik. Sikertelen futtatás esetén a konzolra kiíródik a probléma és egy nem nullás kilépési kóddal a program megáll.

A fájl ami generálódik a következőképpen épül fel: Kódtábla karaktereinek száma: Hány darab karaktert és annak kódolását tartalmaz a kódtábla. Lehetséges értékei: 0-255 -> 1-256

Illeszkedés hossza: A fájl végén hány darab 0 bit van a 8 bites fájlmentés kielégítéséhez.

Kódtábla, melynek minden eleme az alábbiakból épül fel:

- Karakter: nyolc bit, melyet tömörítünk
- a karaktert reprezentáló kód hossza 8 biten
- a kód, mely nullás és eggyesek sorozata

Kódolt adat

	III		Kó	dtábla			
Kódolt karakterek hossza (1-256)	Illeszkedés hossza (0-7)	karakter ASCII	karakterkód hosszza	kód		Kódolt adat	Illeszkedés (0)
	(0-7)	8 bit	n = 8 bit	n bit			
I = 8 bit	i = 3 bit		legalább l	legalább l bit	i bit		

		kime	

2. fejezet

Adatszerkezet-mutató

2.1. Adatszerkezetek

Az összes adatszerkezet listája rövid leírásokkal:

Bits	
Tetszőleges hosszú bitsorozat eltárolására alkalmas struktúra	9
CodeWord	
Karakter, és az azt kódoló bitsorozat	10
codewordFrequency	
Kódolt szót és annak a szövegben előfordulásának gyakoriságát eltároló struktúra	-11
commandLineArguments	
A program parancssori argumentumait rendező struktúra	12
InputFileBuffer	
Struktúra, mely lehetővé teszi a bitenkénti olvasást egy fájlból	14
Node	15
OutputFileBuffer	
Struktúra, mely lehetővé teszi a bitenkénti írást egy fájlba	16

6 2.1 Adatszerkezetek

3. fejezet

Fájlmutató

3.1. Fájllista

Az összes fájl listája rövid leírásokkal:

lib/bin.h	 	 	 	 	 	 		 						19
lib/codeword.h	 	 	 	 	 	 		 						25
lib/decoder.h	 	 	 	 	 	 		 						28
lib/encoder.h	 	 	 	 	 	 		 						30
lib/fileBuffer.h	 	 	 	 	 	 		 						32
lib/graph.h	 	 	 	 	 	 		 						39
lib/main.h														41
lib/stats.h	 	 	 	 	 	 		 						43
lib/debug/debug.h .	 	 	 	 	 	 		 						27
src/bin.c														45
src/decoder.c														49
src/encoder.c														51
src/fileBuffer.c														54
src/graph.c														60
src/main.c	 	 	 	 	 	 		 						61
src/stats c	 													63

8 3.1 Fájllista

4. fejezet

Adatszerkezetek dokumentációja

4.1. Bits struktúrareferencia

Tetszőleges hosszú bitsorozat eltárolására alkalmas struktúra.

```
#include <bin.h>
```

Adatmezők

- long long unsigned int b
 - A tárolt szám A bitek jobbról balra értelmezendőek.
- size_t length

A tárolt bitsorozat hossza.

4.1.1. Részletes leírás

Tetszőleges hosszú bitsorozat eltárolására alkalmas struktúra.

4.1.2. Adatmezők dokumentációja

4.1.2.1. b

long long unsigned int Bits::b

A tárolt szám A bitek jobbról balra értelmezendőek.

4.1.2.2. length

size_t Bits::length

A tárolt bitsorozat hossza.

Ez a dokumentáció a struktúráról a következő fájl alapján készült:

• lib/bin.h

4.2. CodeWord struktúrareferencia

Karakter, és az azt kódoló bitsorozat.

#include <codeword.h>

A CodeWord osztály együttműködési diagramja:

Adatmezők

uchar codeWord

Egy byte, melyet a Shanon-Fano kódolás szerint kódolunk.

· Bits bits

Egy bitsorozat, melyet a Shanon-Fano kódolás szerint a codeWord kódolt változata.

4.2.1. Részletes leírás

Karakter, és az azt kódoló bitsorozat.

4.2.2. Adatmezők dokumentációja

4.2.2.1. bits

Bits CodeWord::bits

Egy bitsorozat, melyet a Shanon-Fano kódolás szerint a codeWord kódolt változata.

4.2.2.2. codeWord

uchar CodeWord::codeWord

Egy byte, melyet a Shanon-Fano kódolás szerint kódolunk.

Ez a dokumentáció a struktúráról a következő fájl alapján készült:

• lib/codeword.h

4.3. codewordFrequency struktúrareferencia

Kódolt szót és annak a szövegben előfordulásának gyakoriságát eltároló struktúra.

#include <encoder.h>

A codewordFrequency osztály együttműködési diagramja:

Adatmezők

· float freq

Az adott kódolt szó előfordulásának frekvenciája.

• CodeWord codeWord

Kódolt szó

4.3.1. Részletes leírás

Kódolt szót és annak a szövegben előfordulásának gyakoriságát eltároló struktúra.

4.3.2. Adatmezők dokumentációja

4.3.2.1. codeWord

CodeWord codewordFrequency::codeWord

Kódolt szó

4.3.2.2. freq

float codewordFrequency::freq

Az adott kódolt szó előfordulásának frekvenciája.

Ez a dokumentáció a struktúráról a következő fájl alapján készült:

· lib/encoder.h

4.4. commandLineArguments struktúrareferencia

A program parancssori argumentumait rendező struktúra.

```
#include <main.h>
```

Adatmezők

const char * infile

A -bemenet kapcsoló által megadott stream.

· const char * outfile

A -kimenet kapcsoló által megadott stream.

enum MODE mode

A program üzemmódja: kódolás vagy dekódolás.

bool displayTable

Megajda, hogy a program kiírja-e a kódtáblát.

· bool displayStatistics

Megajda, hogy a program kiírjon-e további számitásokat a program hatékonyságára vonatkozólag.

4.4.1. Részletes leírás

A program parancssori argumentumait rendező struktúra.

4.4.2. Adatmezők dokumentációja

4.4.2.1. displayStatistics

bool commandLineArguments::displayStatistics

Megajda, hogy a program kiírjon-e további számitásokat a program hatékonyságára vonatkozólag.

4.4.2.2. displayTable

bool commandLineArguments::displayTable

Megajda, hogy a program kiírja-e a kódtáblát.

4.4.2.3. infile

const char* commandLineArguments::infile

A -bemenet kapcsoló által megadott stream.

4.4.2.4. mode

enum MODE commandLineArguments::mode

A program üzemmódja: kódolás vagy dekódolás.

4.4.2.5. outfile

const char* commandLineArguments::outfile

A -kimenet kapcsoló által megadott stream.

Ez a dokumentáció a struktúráról a következő fájl alapján készült:

• lib/main.h

4.5. InputFileBuffer struktúrareferencia

Struktúra, mely lehetővé teszi a bitenkénti olvasást egy fájlból.

```
#include <fileBuffer.h>
```

Adatmezők

• FILE * file

A fájl, melyből olvasunk.

uchar * currentBit

Megadja, hogy az adott fájl olvasásánál hanyadik bitnél tartunk. Értéke 0 és 7 közötti.

4.5.1. Részletes leírás

Struktúra, mely lehetővé teszi a bitenkénti olvasást egy fájlból.

4.5.2. Adatmezők dokumentációja

4.5.2.1. currentBit

```
uchar* InputFileBuffer::currentBit
```

Megadja, hogy az adott fájl olvasásánál hanyadik bitnél tartunk. Értéke 0 és 7 közötti.

4.5.2.2. file

```
FILE* InputFileBuffer::file
```

A fájl, melyből olvasunk.

Ez a dokumentáció a struktúráról a következő fájl alapján készült:

• lib/fileBuffer.h

4.6. Node struktúrareferencia

#include <graph.h>

A Node osztály együttműködési diagramja:

Adatmezők

- uchar codeword
- bool set
- struct Node * left_0
- struct Node * right_1

4.6.1. Adatmezők dokumentációja

4.6.1.1. codeword

uchar Node::codeword

4.6.1.2. left_0

struct Node* Node::left_0

4.6.1.3. right_1

struct Node* Node::right_1

4.6.1.4. set

bool Node::set

Ez a dokumentáció a struktúráról a következő fájl alapján készült:

• lib/graph.h

4.7. OutputFileBuffer struktúrareferencia

Struktúra, mely lehetővé teszi a bitenkénti írást egy fájlba.

```
#include <fileBuffer.h>
```

Az OutputFileBuffer osztály együttműködési diagramja:

Adatmezők

• FILE * file

A fájl, melybe írunk.

• Bits * bits

A még nem a fájlba beírt bitek.

4.7.1. Részletes leírás

Struktúra, mely lehetővé teszi a bitenkénti írást egy fájlba.

4.7.2. Adatmezők dokumentációja

4.7.2.1. bits

Bits* OutputFileBuffer::bits

A még nem a fájlba beírt bitek.

4.7.2.2. file

FILE* OutputFileBuffer::file

A fájl, melybe írunk.

Ez a dokumentáció a struktúráról a következő fájl alapján készült:

• lib/fileBuffer.h

5. fejezet

Fájlok dokumentációja

5.1. lib/bin.h fájlreferencia

#include <stdio.h>
#include <stdbool.h>
A bin.h definíciós fájl függési gráfja:

Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Adatszerkezetek

struct Bits

Tetszőleges hosszú bitsorozat eltárolására alkalmas struktúra.

Makródefiníciók

• #define NULLBIT ((Bits){ .b = 0, .length = 0 })

Hibás kimenetet jelentő bitsorozat, melynek hossza 0.

Függvények

• Bits getBitFromRight (Bits bits, int n)

Adott bitsorozatnak megadja a jobról számított n -edik bitjét.

• void bits_pushBit (Bits *bits, char b)

Egy bitsorozatot bővít egy b bittel.

void bits_pushBits (Bits *bits, Bits append)

Egy bitsorozatot bővít egy másik bitsorozattal jobb oldalról.

• Bits bits_popBit (Bits *bits)

Egy bitsorozatból adja vissza a legkissebb helyiértéken álló bitet, majd azt eltávolítja.

• Bits bits_popBits (Bits *bits, int length)

Egy bitsorozatból adja vissza a legkissebb helyiértéktől számolva length bitet, majd azokat eltávolítja.

- void bits_cpy (Bits src, Bits *dest)
- void bits print (Bits bits)

Kiír egy bitsorozatot ASCII 0 és 1 karakterekkel.

• bool bits_equ (Bits b1, Bits b2)

Összehasonlít két bitsorozatot.

• bool bits_isNullbit (Bits b)

Megmondja, hogy egy adott bitsorozat értelmes-e.

5.1.1. Makródefiníciók dokumentációja

5.1.1.1. NULLBIT

```
#define NULLBIT ((Bits) { .b = 0, .length = 0 })
```

Hibás kimenetet jelentő bitsorozat, melynek hossza 0.

5.1.2. Függvények dokumentációja

5.1.2.1. bits_cpy()

5.1.2.2. bits_equ()

Összehasonlít két bitsorozatot.

Paraméterek

b1	Az összehasonlítandó bitsorozat
b2	Az összehasonlítandó bitsorozat

Visszatérési érték

igaz, hogyha a bitsorozatok hossza és bitjei megegyeznek, különben hamis

5.1.2.3. bits_isNullbit()

```
bool bits_isNullbit ( $\operatorname{Bits}\ b )
```

Megmondja, hogy egy adott bitsorozat értelmes-e.

Paraméterek

b A vizsgálandó bitsorozat

Visszatérési érték

igaz, hogyha a bitsorozat hossza 0, különben hamis

5.1.2.4. bits_popBit()

Egy bitsorozatból adja vissza a legkissebb helyiértéken álló bitet, majd azt eltávolítja.

Paraméterek

bits A bitsorozat, melyből kivesszük a bitet

Visszatérési érték

5.1.2.5. bits_popBits()

Egy bitsorozatból adja vissza a legkissebb helyiértéktől számolva length bitet, majd azokat eltávolítja.

Paraméterek

bits	A bitsorozat, melyből kivesszük a biteket
length	A kivett bitek száma

Visszatérési érték

5.1.2.6. bits_print()

Kiír egy bitsorozatot ASCII 0 és 1 karakterekkel.

Paraméterek

```
bits A kiírandó bitsorozat
```

5.1.2.7. bits_pushBit()

Egy bitsorozatot bővít egy b bittel.

Paraméterek

bits	A bővítendő bitsorozat
b	a hozzáadott bit

5.1.2.8. bits_pushBits()

Egy bitsorozatot bővít egy másik bitsorozattal jobb oldalról.

Paraméterek

bits	A bővítendő bitsorozat
append	A hozzáfűzendő bitsorozat

5.1.2.9. getBitFromRight()

Adott bitsorozatnak megadja a jobról számított n -edik bitjét.

Paraméterek

bits	A bitsorozat, melyből kiválasztjuk a bitet
n	Jobbról számítva hányadik bit

Visszatérési érték

A keresett bit

5.2. lib/codeword.h fájlreferencia

#include <stdbool.h>
#include "bin.h"

A codeword.h definíciós fájl függési gráfja:

Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Adatszerkezetek

struct CodeWord

Karakter, és az azt kódoló bitsorozat.

Típusdefiníciók

 typedef unsigned char uchar Előjel nélküli 8 bites karakter.

5.2.1. Típusdefiníciók dokumentációja

5.2.1.1. uchar

typedef unsigned char uchar

Előjel nélküli 8 bites karakter.

5.3. lib/debug/debug.h fájlreferencia

Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Makródefiníciók

- #define CHECKMALLOCNULL(ptr) if(ptr == NULL) { PRINTDEBUG_MALLOCNULL(); exit(1); }
 Megnézi, hogy ptr NULL-e. Ha igen, akkor kilép a programból 1es értékkel, különben nem változtatja meg a futást.
- #define PRINTDEBUG_MALLOCNULL();;

Kiírja hogy egy memóriafoglalás sikertelen volt.

• #define PRINTDEBUG_FILEERR();;

Kiírja, hogy a fájlművelet sikertelen volt.

• #define PRINTDEBUG_CORRUPTEDFILE();;

Kiírja, hogy dekódolás közben nem várt karakterrel találkoztnk.

• #define PRINTDEBUG CUSTOM(str, ...) ;;

Általános hibakeresésre használható, konzolra való kiírásra alkalmas.

5.3.1. Makródefiníciók dokumentációja

5.3.1.1. CHECKMALLOCNULL

Megnézi, hogy ptr NULL-e. Ha igen, akkor kilép a programból 1es értékkel, különben nem változtatja meg a futást.

5.3.1.2. PRINTDEBUG_CORRUPTEDFILE

```
#define PRINTDEBUG_CORRUPTEDFILE( ) ;;
```

Kiírja, hogy dekódolás közben nem várt karakterrel találkoztnk.

5.3.1.3. PRINTDEBUG_CUSTOM

Általános hibakeresésre használható, konzolra való kiírásra alkalmas.

5.3.1.4. PRINTDEBUG_FILEERR

```
#define PRINTDEBUG_FILEERR( ) ;;
```

Kiírja, hogy a fájlművelet sikertelen volt.

5.3.1.5. PRINTDEBUG_MALLOCNULL

```
#define PRINTDEBUG_MALLOCNULL( ) ;;
```

Kiírja hogy egy memóriafoglalás sikertelen volt.

5.4. lib/decoder.h fájlreferencia

```
#include <stdio.h>
#include <stdbool.h>
#include "debug/debug.h"
#include "main.h"
#include "bin.h"
#include "fileBuffer.h"
#include "codeword.h"
```

#include "graph.h"

A decoder.h definíciós fájl függési gráfja:

Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Függvények

int decode (commandLineArguments args)
 Dekódol egy Shanon-Fano algoritmussal kódolt fájlt.

5.4.1. Függvények dokumentációja

5.4.1.1. decode()

```
int decode (
                 {\tt commandLineArguments}\ {\tt args} )
```

Dekódol egy Shanon-Fano algoritmussal kódolt fájlt.

Paraméterek

Parancssori bemenet, amely a dekódolás folyamatát módosítja

Visszatérési érték

0, ha a dekódolás sikeres volt. Minden más érték sikertelen

5.5. lib/encoder.h fájlreferencia

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "main.h"
#include "fileBuffer.h"
#include "codeword.h"
#include "bin.h"
#include "debug/debug.h"
```

Az encoder.h definíciós fájl függési gráfja:

Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Adatszerkezetek

· struct codewordFrequency

Kódolt szót és annak a szövegben előfordulásának gyakoriságát eltároló struktúra.

Függvények

• int encode (commandLineArguments args)

Kódol Shanon-Fano algoritmus alkalmazásával egy fájlt.

5.5.1. Függvények dokumentációja

5.5.1.1. encode()

```
int encode ( {\tt commandLineArguments}\ args\ )
```

Kódol Shanon-Fano algoritmus alkalmazásával egy fájlt.

Paraméterek

args Parancssori bemenet, amely a dekódolás folyamatát módosítja

0, ha a dekódolás sikeres volt. Minden más érték sikertelen

5.6. lib/fileBuffer.h fájlreferencia

```
#include <stdlib.h>
#include <stdbool.h>
#include <stdio.h>
#include "debug/debug.h"
#include "bin.h"
#include "codeword.h"
A fileBuffer.h definiciós fájl függési gráfja:
```


Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Adatszerkezetek

struct InputFileBuffer

Struktúra, mely lehetővé teszi a bitenkénti olvasást egy fájlból.

• struct OutputFileBuffer

Struktúra, mely lehetővé teszi a bitenkénti írást egy fájlba.

Függvények

InputFileBuffer buff_createInputFileBuffer (const char *path)

Készít egy bitek olvasására alkalmas puffert.

OutputFileBuffer buff_createOutputFileBuffer (const char *path)

Készít egy bitek írására alkalmas puffert.

void buff_destroyInputFileBuffer (InputFileBuffer buffer)

Bezárja a puffer által megynyitott fájlt, és felszabadítja az az által lefoglalt memóriát.

void buff destroyOutputFileBuffer (OutputFileBuffer buffer)

Bezárja a puffer által megynyitott fájlt, és felszabadítja az az által lefoglalt memóriát.

void buff_rewind (InputFileBuffer buffer)

A fájl újboli olvasására készíti fel a puffer.

• bool buff writeBits (OutputFileBuffer buff, Bits bit)

Egy fájlba ír biteket.

bool buff_writeBit (OutputFileBuffer buff, Bits bit)

Egy fájlba ír 1 bitet.

• bool buff_writeChar (OutputFileBuffer buff, uchar val)

Egy fájlba ír 1 karaktert.

bool buff_writeInt (OutputFileBuffer buff, int val)

Egy fájlba ír 1 egész számot.

bool buff_flush (OutputFileBuffer buff)

Beírja a fájlba a puffer tartalmát, 0val kiegészítve.

• Bits buff readBit (InputFileBuffer buff)

Egy fálból olvas 1 bitet.

• Bits buff_readBits (InputFileBuffer buff, int bitCount)

Egy fálból olvas bitCount darab bitet.

Bits buff_readChar (InputFileBuffer buff)

Egy fálból olvas 1 karaktert.

• Bits buff readInt (InputFileBuffer buff)

Egy fálból olvas 1 egész számot.

5.6.1. Függvények dokumentációja

5.6.1.1. buff_createInputFileBuffer()

Készít egy bitek olvasására alkalmas puffert.

Paraméterek

```
path A fájl elérési útvonala
```

Visszatérési érték

Az elkészített puffer

5.6.1.2. buff_createOutputFileBuffer()

Készít egy bitek írására alkalmas puffert.

Paraméterek

path A fájl elérési útvonala

Az elkészített puffer

5.6.1.3. buff_destroyInputFileBuffer()

```
void buff_destroyInputFileBuffer ( InputFileBuffer\ buffer\ )
```

Bezárja a puffer által megynyitott fájlt, és felszabadítja az az által lefoglalt memóriát.

Paraméterek

buffer A felszabadítandó puffer

5.6.1.4. buff_destroyOutputFileBuffer()

```
void buff_destroyOutputFileBuffer ( {\tt OutputFileBuffer}\ buffer\ )
```

Bezárja a puffer által megynyitott fájlt, és felszabadítja az az által lefoglalt memóriát.

Paraméterek

buffer A felszabadítandó puffer

5.6.1.5. buff_flush()

Beírja a fájlba a puffer tartalmát, 0val kiegészítve.

Paraméterek

buff A puffer, melybe írunk

Visszatérési érték

'false', ha sikeres a művelet, különben 'true'

5.6.1.6. buff_readBit()

Egy fálból olvas 1 bitet.

Paraméterek

buff	A puffer, amiből olvasunk
------	---------------------------

Visszatérési érték

NULLBIT, ha EOF vagy fájl olvasási hiba lépett fell, különben az olvasott bit

5.6.1.7. buff_readBits()

Egy fálból olvas bitCount darab bitet.

Paraméterek

buff	A puffer, amiből olvasunk
bitCount	Hány darab bitet olvassunk

Visszatérési érték

A beolvasott bitsorozat

5.6.1.8. buff_readChar()

Egy fálból olvas 1 karaktert.

Paraméterek

buff A puffer, amiből olvasunk

A beolvasott karakter

5.6.1.9. buff_readInt()

Egy fálból olvas 1 egész számot.

Paraméterek

Visszatérési érték

A beolvasott szám

5.6.1.10. buff_rewind()

A fájl újboli olvasására készíti fel a puffer.

Paraméterek

	buffer	A visszahízandó puffer
--	--------	------------------------

5.6.1.11. buff_writeBit()

```
bool buff_writeBit (
                OutputFileBuffer buff,
                Bits bit )
```

Egy fájlba ír 1 bitet.

Paraméterek

buff	A puffer, melybe írunk
bit	A beírandó bit. Hogyha a bitsorozat hossza nem 1, akkor a

'false', ha sikeres a művelet, különben 'true'

5.6.1.12. buff_writeBits()

```
bool buff_writeBits (
                OutputFileBuffer buff,
                Bits bit )
```

Egy fájlba ír biteket.

Paraméterek

buff	A puffer, melybe írunk	
bit	Egy tetszőleges hosszúságú bitsorozat	

Visszatérési érték

'false', ha sikeres a művelet, különben 'true'

5.6.1.13. buff_writeChar()

Egy fájlba ír 1 karaktert.

Paraméterek

buff	A puffer, melybe írunk
val	A beírandó érték

Visszatérési érték

'false', ha sikeres a művelet, különben 'true'

5.6.1.14. buff_writeInt()

Egy fájlba ír 1 egész számot.

buff	A puffer, melybe írunk	
val	A beírandó érték	

Visszatérési érték

'false', ha sikeres a művelet, különben 'true'

5.7. lib/graph.h fájlreferencia

```
#include <stdlib.h>
#include <stdbool.h>
#include "codeword.h"
#include "debug/debug.h"
A graph.h definiciós fájl függési gráfja:
```


Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Adatszerkezetek

• struct Node

Függvények

- int graph_countLeaves (Node *root)
 - Megszámolja egy bináris fagráf leveleinek számát.
- void freeTree (Node *root)

Rekurzívan felszabadít egy fagráfot.

5.7.1. Függvények dokumentációja

5.7.1.1. freeTree()

```
void freeTree (
    Node * root )
```

Rekurzívan felszabadít egy fagráfot.

root	a felszabadítandó gráf gyökere	
------	--------------------------------	--

5.7.1.2. graph_countLeaves()

```
int graph_countLeaves ( Node * root )
```

Megszámolja egy bináris fagráf leveleinek számát.

Paraméterek

root	A fagráf gyökere
------	------------------

Visszatérési érték

A fagráf leveleinek száma

5.8. lib/main.h fájlreferencia

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include <stdbool.h>
#include "debug/debug.h"
#include "stats.h"
#include "encoder.h"
#include "decoder.h"
```

A main.h definíciós fájl függési gráfja:

Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Adatszerkezetek

• struct commandLineArguments

A program parancssori argumentumait rendező struktúra.

Enumerációk

enum MODE { ENCODE = 0 , DECODE = 1 , UNSET = -1 }
 Megadja, hogy a program a 'kodol' vagy 'dekodol' paraméterrel lett meghívva.

5.8.1. Enumerációk dokumentációja

5.8.1.1. MODE

 $\quad \text{enum } \underline{\text{MODE}}$

Megadja, hogy a program a 'kodol' vagy 'dekodol' paraméterrel lett meghívva.

Enumeráció-értékek

ENCODE	
DECODE	
UNSET	

5.9. lib/stats.h fájlreferencia

```
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "graph.h"
#include "debug/debug.h"
#include "bin.h"
```

A stats.h definíciós fájl függési gráfja:

Ez az ábra azt mutatja, hogy mely fájlok ágyazzák be közvetve vagy közvetlenül ezt a fájlt:

Függvények

• void stats_printCompression (const char *src, const char *dest)

Kiszámolja és kiírja két fájl mérete közötti különbséget.

void stats_printCodetableTree (Node *root)

Egy fagráf esetén kiírja a kódolt karaktereket és azok kódját.

- void stats_printCodetableArray (CodeWord array[], int elements)
 - Egy kódtömb esetén kiírja a kódolt karaktereket és azok kódját.
- void stats_printCodetableStatsArray (CodeWord array[], int elements)

Kiírja egy kódtömb statisztikáját.

5.9.1. Függvények dokumentációja

5.9.1.1. stats_printCodetableArray()

Egy kódtömb esetén kiírja a kódolt karaktereket és azok kódját.

Paraméterek

array	A kódtömb
elements	A tömb elemeinek száma

5.9.1.2. stats_printCodetableStatsArray()

Kiírja egy kódtömb statisztikáját.

Paraméterek

array	A kódtömb	
elements	A tömb elemeinek száma	

5.9.1.3. stats_printCodetableTree()

```
void stats_printCodetableTree (
          Node * root )
```

Egy fagráf esetén kiírja a kódolt karaktereket és azok kódját.

root	A fagráf gyökere
------	------------------

5.9.1.4. stats_printCompression()

Kiszámolja és kiírja két fájl mérete közötti különbséget.

Paraméterek

src	A bemeneti fájl elérési útvonala	
dest	A kimeneti fájl elérési útvonala	

5.10. src/bin.c fájlreferencia

```
#include "bin.h"
A bin.c definíciós fájl függési gráfja:
```


Függvények

- Bits getBitFromRight (Bits bits, int n)
 - Adott bitsorozatnak megadja a jobról számított n -edik bitjét.
- void bits_pushBits (Bits *bits, Bits append)

Egy bitsorozatot bővít egy másik bitsorozattal jobb oldalról.

• void bits_pushBit (Bits *bits, char b)

Egy bitsorozatot bővít egy b bittel.

• Bits bits_popBit (Bits *bits)

Egy bitsorozatból adja vissza a legkissebb helyiértéken álló bitet, majd azt eltávolítja.

• Bits bits_popBits (Bits *bits, int length)

Egy bitsorozatból adja vissza a legkissebb helyiértéktől számolva length bitet, majd azokat eltávolítja.

- void bits_cpy (Bits src, Bits *dest)
- void bits_print (Bits bits)

Kiír egy bitsorozatot ASCII 0 és 1 karakterekkel.

• bool bits_equ (Bits b1, Bits b2)

Összehasonlít két bitsorozatot.

bool bits_isNullbit (Bits b)

Megmondja, hogy egy adott bitsorozat értelmes-e.

5.10.1. Függvények dokumentációja

5.10.1.1. bits_cpy()

5.10.1.2. bits_equ()

Összehasonlít két bitsorozatot.

Paraméterek

b1	Az összehasonlítandó bitsorozat
b2	Az összehasonlítandó bitsorozat

Visszatérési érték

igaz, hogyha a bitsorozatok hossza és bitjei megegyeznek, különben hamis

5.10.1.3. bits_isNullbit()

Megmondja, hogy egy adott bitsorozat értelmes-e.

Paraméterek

```
b A vizsgálandó bitsorozat
```

Visszatérési érték

igaz, hogyha a bitsorozat hossza 0, különben hamis

5.10.1.4. bits_popBit()

Egy bitsorozatból adja vissza a legkissebb helyiértéken álló bitet, majd azt eltávolítja.

Paraméterek

```
bits A bitsorozat, melyből kivesszük a bitet
```

Visszatérési érték

5.10.1.5. bits_popBits()

Egy bitsorozatból adja vissza a legkissebb helyiértéktől számolva length bitet, majd azokat eltávolítja.

Paraméterek

bits	A bitsorozat, melyből kivesszük a biteket
length A kivett bitek száma	

5.10.1.6. bits_print()

Kiír egy bitsorozatot ASCII 0 és 1 karakterekkel.

Paraméterek

bits A kiírandó bitsorozat

5.10.1.7. bits_pushBit()

Egy bitsorozatot bővít egy b bittel.

Paraméterek

bits	A bővítendő bitsorozat
b	a hozzáadott bit

5.10.1.8. bits_pushBits()

Egy bitsorozatot bővít egy másik bitsorozattal jobb oldalról.

Paraméterek

bits	A bővítendő bitsorozat	
append	A hozzáfűzendő bitsorozat	

5.10.1.9. getBitFromRight()

Adott bitsorozatnak megadja a jobról számított n -edik bitjét.

Paraméterek

bits	A bitsorozat, melyből kiválasztjuk a bitet
n	Jobbról számítva hányadik bit

Visszatérési érték

A keresett bit

5.11. src/decoder.c fájlreferencia

```
#include "decoder.h"
A decoder.c definíciós fájl függési gráfja:
```


Függvények

void appendCodeword (Node *root, Bits codeword, char set)

Egy fagráfhoz, codeword bitjeinek bejárása alapján beállítja egy elem kódolt karakterét. Ha az adott elérés nem létezik, a függvény létrehozza azt.

Node * createNodeIfNotexists (Node *parent, int dir)

Egy fagráf adott eleméből megpróbál dir által meghatároott úton továbbhaladni. Ha az nem létezik, létrehozza azt.

- void displayTable (Node *root, Bits *_path)
- void freeTree (Node *root)

Rekurzívan felszabadít egy fagráfot.

• int decode (commandLineArguments args)

Dekódol egy Shanon-Fano algoritmussal kódolt fájlt.

5.11.1. Függvények dokumentációja

5.11.1.1. appendCodeword()

```
void appendCodeword (
     Node * root,
     Bits codeword,
     char set )
```

Egy fagráfhoz, codeword bitjeinek bejárása alapján beállítja egy elem kódolt karakterét. Ha az adott elérés nem létezik, a függvény létrehozza azt.

Paraméterek

root	A fagráf gyökere
codeword A bejárás bitjei: 0 = bal, 1 (minden más) = jobb	
set A beállítandó karakter, melyhez elérkeztünk a bejárás vég	

5.11.1.2. createNodelfNotexists()

Egy fagráf adott eleméből megpróbál dir által meghatároott úton továbbhaladni. Ha az nem létezik, létrehozza azt.

Paraméterek

parent	Az elem, melyből kiindulunk	
dir	Az irány: 0 = bal, 1 (minden más) = jobb	

Visszatérési érték

A gráf azon eleme, mely parent -től dir irányba helyezkedik el

5.11.1.3. decode()

```
int decode ( {\tt commandLineArguments} \ {\tt args} \ )
```

Dekódol egy Shanon-Fano algoritmussal kódolt fájlt.

args Parancssori bemenet, amely a dekódolás folyamatát módosítja

Visszatérési érték

0, ha a dekódolás sikeres volt. Minden más érték sikertelen

5.11.1.4. displayTable()

```
void displayTable (
     Node * root,
     Bits * _path )
```

5.11.1.5. freeTree()

```
void freeTree (
    Node * root )
```

Rekurzívan felszabadít egy fagráfot.

Paraméterek

root a felszabadítandó gráf gyökere

5.12. src/encoder.c fájlreferencia

```
#include "encoder.h"
Az encoder.c definíciós fájl függési gráfja:
```


Függvények

• void setCodeWord (codewordFrequency codes[], int i, int j)

Rekurzívan beállítja egy kód tömbön az adott karakter Shanon-Fano algoritmus szerinti kódját.

• Bits codewordToBits (codewordFrequency code[], int codesLength, uchar find)

Megkeresi code tömbben, find karaktert.

int compare_by_freq (const void *a, const void *b)

Frekvenciájuk alapján összehasonlít 2 frekvenciával rendelkező karakterkódolást.

• int compare_by_bitlength (const void *a, const void *b)

Kódolásuk hossza alapján összehasonlít 2 rendelkező karakterkódolást.

• int encode (commandLineArguments args)

Kódol Shanon-Fano algoritmus alkalmazásával egy fájlt.

5.12.1. Függvények dokumentációja

5.12.1.1. codewordToBits()

Megkeresi code tömbben, find karaktert.

Paraméterek

code	A kódtömb
codesLength	A kódtömb hossza
find	A keresett karakter

Visszatérési érték

A keresett kódolás vagy NULLBIT

5.12.1.2. compare_by_bitlength()

Kódolásuk hossza alapján összehasonlít 2 rendelkező karakterkódolást.

Paraméterek

а	Az összehasonlítandó karakterkódolás
ь	Az összehasonlítandó karakterkódolás

```
0 = \text{egyeznek}, > 0 = \text{a kódja hosszabb}, < 0 \text{ b kódja hosszabb}
```

5.12.1.3. compare_by_freq()

Frekvenciájuk alapján összehasonlít 2 frekvenciával rendelkező karakterkódolást.

Paraméterek

	Az összehasonlítandó karakterkódolás
b	Az összehasonlítandó karakterkódolás

Visszatérési érték

0 = egyeznek, > 0 = b frekvenciája nagyobb, < 0 a frekvenciája nagyobb

5.12.1.4. encode()

```
int encode ( {\tt commandLineArguments}\ args\ )
```

Kódol Shanon-Fano algoritmus alkalmazásával egy fájlt.

Paraméterek

args	Parancssori bemenet, amely a dekódolás folyamatát módosítja
------	---

Visszatérési érték

0, ha a dekódolás sikeres volt. Minden más érték sikertelen

5.12.1.5. setCodeWord()

Rekurzívan beállítja egy kód tömbön az adott karakter Shanon-Fano algoritmus szerinti kódját.

codes	A kódtömb
i	A tömb kezdeti indexe (inkluzív)
j	A tömb vegső indexe (inkluzív)

5.13. src/fileBuffer.c fájlreferencia

#include "fileBuffer.h"
A fileBuffer.c definíciós fájl függési gráfja:

Függvények

- InputFileBuffer buff_createInputFileBuffer (const char *path)
 - Készít egy bitek olvasására alkalmas puffert.
- OutputFileBuffer buff_createOutputFileBuffer (const char *path)

Készít egy bitek írására alkalmas puffert.

- void buff_destroyInputFileBuffer (InputFileBuffer buffer)
 - Bezárja a puffer által megynyitott fájlt, és felszabadítja az az által lefoglalt memóriát.
- void buff_destroyOutputFileBuffer (OutputFileBuffer buffer)
 - Bezárja a puffer által megynyitott fájlt, és felszabadítja az az által lefoglalt memóriát.
- void buff_rewind (InputFileBuffer buffer)
 - A fájl újboli olvasására készíti fel a puffer.
- bool buff_writeBits (OutputFileBuffer buff, Bits bit)

Egy fájlba ír biteket.

• bool buff_writeBit (OutputFileBuffer buff, Bits bit)

Egy fájlba ír 1 bitet.

• bool buff_writeChar (OutputFileBuffer buff, uchar val)

Egy fájlba ír 1 karaktert.

bool buff_writeInt (OutputFileBuffer buff, int val)

Egy fájlba ír 1 egész számot.

bool buff_flush (OutputFileBuffer buff)

Beírja a fájlba a puffer tartalmát, 0val kiegészítve.

• Bits buff_readBit (InputFileBuffer buff)

Egy fálból olvas 1 bitet.

• Bits buff_readBits (InputFileBuffer buff, int bitCount)

Egy fálból olvas bitCount darab bitet.

Bits buff_readChar (InputFileBuffer buff)

Egy fálból olvas 1 karaktert.

• Bits buff readInt (InputFileBuffer buff)

Egy fálból olvas 1 egész számot.

5.13.1. Függvények dokumentációja

5.13.1.1. buff_createInputFileBuffer()

Készít egy bitek olvasására alkalmas puffert.

Paraméterek

```
path A fájl elérési útvonala
```

Visszatérési érték

Az elkészített puffer

5.13.1.2. buff_createOutputFileBuffer()

Készít egy bitek írására alkalmas puffert.

Paraméterek

path A fájl elérési útvonala

Az elkészített puffer

5.13.1.3. buff_destroyInputFileBuffer()

```
void buff_destroyInputFileBuffer ( InputFileBuffer\ buffer\ )
```

Bezárja a puffer által megynyitott fájlt, és felszabadítja az az által lefoglalt memóriát.

Paraméterek

buffer A felszabadítandó puffer

5.13.1.4. buff_destroyOutputFileBuffer()

```
void buff_destroyOutputFileBuffer ( {\tt OutputFileBuffer}\ buffer\ )
```

Bezárja a puffer által megynyitott fájlt, és felszabadítja az az által lefoglalt memóriát.

Paraméterek

buffer A felszabadítandó puffer

5.13.1.5. buff_flush()

Beírja a fájlba a puffer tartalmát, 0val kiegészítve.

Paraméterek

buff A puffer, melybe írunk

Visszatérési érték

'false', ha sikeres a művelet, különben 'true'

5.13.1.6. buff_readBit()

Egy fálból olvas 1 bitet.

Paraméterek

buff	A puffer, amiből olvasunk
------	---------------------------

Visszatérési érték

NULLBIT, ha EOF vagy fájl olvasási hiba lépett fell, különben az olvasott bit

5.13.1.7. buff_readBits()

Egy fálból olvas bitCount darab bitet.

Paraméterek

buff	A puffer, amiből olvasunk
bitCount	Hány darab bitet olvassunk

Visszatérési érték

A beolvasott bitsorozat

5.13.1.8. buff_readChar()

Egy fálból olvas 1 karaktert.

Paraméterek

buff A puffer, amiből olvasunk

A beolvasott karakter

5.13.1.9. buff_readInt()

Egy fálból olvas 1 egész számot.

Paraméterek

buff A puffer, amiből olvasu	nk
------------------------------	----

Visszatérési érték

A beolvasott szám

5.13.1.10. buff_rewind()

A fájl újboli olvasására készíti fel a puffer.

Paraméterek

buffer	A visszahízandó puffer
Dullel	A VISSZAHIZAHUU PUHEI

5.13.1.11. buff_writeBit()

```
bool buff_writeBit (
                OutputFileBuffer buff,
                Bits bit )
```

Egy fájlba ír 1 bitet.

Paraméterek

buff	A puffer, melybe írunk
bit	A beírandó bit. Hogyha a bitsorozat hossza nem 1, akkor a

'false', ha sikeres a művelet, különben 'true'

5.13.1.12. buff_writeBits()

```
bool buff_writeBits (
          OutputFileBuffer buff,
          Bits bit )
```

Egy fájlba ír biteket.

Paraméterek

buff	A puffer, melybe írunk
bit	Egy tetszőleges hosszúságú bitsorozat

Visszatérési érték

'false', ha sikeres a művelet, különben 'true'

5.13.1.13. buff_writeChar()

Egy fájlba ír 1 karaktert.

Paraméterek

buff	A puffer, melybe írunk
val	A beírandó érték

Visszatérési érték

'false', ha sikeres a művelet, különben 'true'

5.13.1.14. buff_writeInt()

Egy fájlba ír 1 egész számot.

buff	A puffer, melybe írunk
val	A beírandó érték

Visszatérési érték

'false', ha sikeres a művelet, különben 'true'

5.14. src/graph.c fájlreferencia

#include "graph.h"
A graph.c definíciós fájl függési gráfja:

Függvények

- int graph_countLeaves (Node *root)
 - Megszámolja egy bináris fagráf leveleinek számát.
- void freeTree (Node *root)

Rekurzívan felszabadít egy fagráfot.

5.14.1. Függvények dokumentációja

5.14.1.1. freeTree()

```
void freeTree (
    Node * root )
```

Rekurzívan felszabadít egy fagráfot.

Paraméterek

root	a felszabadítandó gráf gyökere
------	--------------------------------

5.14.1.2. graph_countLeaves()

```
int graph_countLeaves ( {\color{red}Node*root})
```

Megszámolja egy bináris fagráf leveleinek számát.

Paraméterek

```
root A fagráf gyökere
```

Visszatérési érték

A fagráf leveleinek száma

5.15. src/main.c fájlreferencia

```
#include "main.h"
A main.c definíciós fájl függési gráfja:
```


Függvények

• void printHelp ()

Kiírja a standard outputra a program elfogadott paramétereket és kapcsolókat.

• int parseCLA (int argc, char **argv, commandLineArguments *args)

A parancssori argumentumokat állítja be args paramétereként és alakítja át azokat commandLineArguments kapcsolókat feldolgozó függvény.

• int main (int argc, char **argv)

A program belépési pontja.

5.15.1. Függvények dokumentációja

5.15.1.1. main()

```
int main (
    int argc,
    char ** argv )
```

A program belépési pontja.

Paraméterek

argc	argv parancssori argumentumok hossza
argv	parancssori argumentumok

Visszatérési érték

A program futásának eredménye. 0 = Rendeltetésszerű futás, bármi más esetén sikertelen a program futása

5.15.1.2. parseCLA()

```
int parseCLA (
          int argc,
          char ** argv,
          commandLineArguments * args )
```

A parancssori argumentumokat állítja be args paramétereként és alakítja át azokat commandLineArguments kapcsolókat feldolgozó függvény.

Paraméterek

argc	argc hossza
argv	A programnak átadott parancssori paraméterek
args	A függvény ide tölti be a feldolgozott kapcsolókat. args értéke megváltozhat annak ellenére, hogy a
	függvény nem 0 kimenettel tér vissza

0, ha sikeres volt az argumentumok elemzése, és minden kötelező paraméter meg lett adva különben ettől eltérő érték

5.15.1.3. printHelp()

void printHelp ()

Kiírja a standard outputra a program elfogadott paramétereket és kapcsolókat.

5.16. src/stats.c fájlreferencia

#include "stats.h"

A stats.c definíciós fájl függési gráfja:

Függvények

void printCodetableTreeRec (Node *root, Bits *_path, int *_count, CodeWord *_min, CodeWord *_max, float
 * avg)

Rekurzívan kiírja egy bináris fagráf esetén a kódolt karaktereket és azok kódját. A stats_printCodetableTree segédfügvénye.

• long calcFileSize (const char *file)

Egy adott fájl méretét adja meg.

• void prettyPrintChar (uchar c)

Egy karakter beszédesebb formáját írja ki a standard kimenetre.

void stats_printCompression (const char *src, const char *dest)

Kiszámolja és kiírja két fájl mérete közötti különbséget.

void stats_printCodetableTree (Node *root)

Egy fagráf esetén kiírja a kódolt karaktereket és azok kódját.

void stats_printCodetableArray (CodeWord array[], int elements)

Egy kódtömb esetén kiírja a kódolt karaktereket és azok kódját.

void stats_printCodetableStatsArray (CodeWord array[], int elements)

Kiírja egy kódtömb statisztikáját.

5.16.1. Függvények dokumentációja

5.16.1.1. calcFileSize()

Egy adott fájl méretét adja meg.

Paraméterek

Visszatérési érték

A fájl mérete bájtokban

5.16.1.2. prettyPrintChar()

Egy karakter beszédesebb formáját írja ki a standard kimenetre.

Paraméterek

c A kiírandó karakter

5.16.1.3. printCodetableTreeRec()

```
void printCodetableTreeRec (
    Node * root,
    Bits * _path,
    int * _count,
    CodeWord * _min,
    CodeWord * _max,
    float * _avg )
```

Rekurzívan kiírja egy bináris fagráf esetén a kódolt karaktereket és azok kódját. A stats_printCodetableTree segédfügvénye.

root	A fagráf gyökere
_path	A fagráf jelenlegi elérési útvonala
_count	A fagráf beállított elemeinek száma
_min	A fagráf legrövidebben kódolt karaktere
_max	A fagráf leghosszabban kódolt karaktere
_avg	A kódolt karakterek hosszának átlaga

5.16.1.4. stats_printCodetableArray()

Egy kódtömb esetén kiírja a kódolt karaktereket és azok kódját.

Paraméterek

array	A kódtömb
elements	A tömb elemeinek száma

5.16.1.5. stats_printCodetableStatsArray()

Kiírja egy kódtömb statisztikáját.

Paraméterek

array	A kódtömb
elements	A tömb elemeinek száma

5.16.1.6. stats_printCodetableTree()

Egy fagráf esetén kiírja a kódolt karaktereket és azok kódját.

root	A fagráf gyökere
------	------------------

5.16.1.7. stats_printCompression()

Kiszámolja és kiírja két fájl mérete közötti különbséget.

Paraméterek

src	A bemeneti fájl elérési útvonala
dest	A kimeneti fájl elérési útvonala

Meta

5.17. Források, felhasznált irodalom

- Wayback Machine: C. E. Shannon, "A Mathematical Theory of Communication", 1948 (https://web.archive.org/web/1998071501 labs.com/cm/ms/what/shannonday/shannon1948.pdf)
- Halley's Comet software: Robert M. Fano, "The Transmittion of Information", 1949 (https://hcs64.com/files/fano-tr65-ocr-only.pdf)
- Linux man pages online: (https://man7.org/linux/man-pages/index.html)
- BME InfoC: (https://infoc.eet.bme.hu)

5.18. Felhasznált segédprogramok

- Fejlesztői környezet: Visual Studio Code (https://code.visualstudio.com/)
- · C compiler: GNU Compiler Collection (GCC) (https://gcc.gnu.org/)
- Projekt fordítása: Make (https://www.gnu.org/software/make/)
- Dokumentáció: Doxygen (https://www.doxygen.nl/)