サウンドコード技術を利用した新型セキュリティーシステムの開発

愛媛大学

周 細紅 王 森レイ 高橋 寛

2018年9月22日

発表の流れ

- 1.背景
- 2.目的
- 3.サウンドコードを用いた電子錠システム
- 4.基板設計
- 5. 今後の予定

背景

- 近年, 日本人の防犯に対する意識は向上しており, 「ホームセキュリティ」 に対する関心が高まっている.
- セキュリティ市場が急速に成長している.
- 市場

2015年セキュリティ関連の国内市場の調査結果一富士経済グループより

		2014年	2018年予測	2014年比
全体市場		4,868億円	6,144億円	126.2%
監視カメラ	ラシステム分野	730億円	985億円	134.9%
アクセスコ	ントロール分野	459億円	5 2 9 億円	115.3%
イベント監視/	/ 通報関連機器分野	538億円	813億円	151.1%

安全・安心・安価の新しいセキュリティシステムが強く求められている。

従来のセキュリティシステム

マンション、アパート、戸建住宅などの個人住宅、企業の事務所などにおいて、様々な認証機能があるセキュリティシステムが導入されている

従来のセキュリティシステム

暗証番号錠:

暗証番号が漏れやすい、安全性が低い本人の負担が大きい(記憶に関して)

IDカード錠:

カードの紛失による安全性を失う 管理コストが高い 本人の負担が大きい(管理に関して)

目的&目標

• 目的:

安全・安心・安価の 新しいセキュリティシステムを開発する

• 目標:

新しい秘密鍵として**サウンドコード**を利用する 鍵の解錠・施錠を行う電子錠システムを開発する

電子錠システムの基板化(アームコアを利用)

サウンドコード(Sound Code)

文字情報を信号処理技術によって「音声」に変換して受送信する音声通信技術 連携企業:株式会社フィールドシステムの知財

サウンドコードを用いた電子錠システムの構成

電子錠システム基板設計の流れ

回路および基板設計

回路仕様。 				
マイコン	ARM9TDMI Processor core			
SDRAM	32M Byte(実行メモリ)			
NAND	64M Byte(データメモリ)			
NOR	8M Byte(bootとsystemメモリ)			
通信方式	Ethernet (サーバ), サウンドコード(マイクとスピーカー)			
基板仕様				
種類	2面 リジット基板			
寸法	100mm×100mm			
設計ツール				
ツール	Altium Designer(Protel)			

回路図設計

ARMコア部回路図

Ethernetモジュール回路図

電源モジュール回路図

メモリモジュール回路図

PCB (Printed Circuit Board) 設計(配置配線)

PCB (Printed Circuit Board) 設計(3D ビジョン)

今後の予定

- 1. 基板の試作
- 2. システム機能検証

