DLD LAB 11

Topic: COMBINATIONAL LOGIC CIRCUITS - Decoders

A decoder is a combinational circuit that converts binary information from n input lines to a maximum of 2ⁿ unique output lines.

The 2-to-4 Decoder:

X	Υ	Do	D1	D2	D3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

The 3 x 8 Decoder:

Table 4.6 *Truth Table of a Three-to-Eight-Line Decoder*

Inputs		Outputs								
x	y	z	Do	D ₁	D ₂	D ₃	D_4	D ₅	D ₆	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

FIGURE 4.18 Three-to-eight-line decoder

DLD LAB 12

Topic: COMBINATIONAL LOGIC CIRCUITS - Encoders

- **★ Binary Encoder**
 - Example: 4-to-2 Binary Encoder

Only one switch should be activated at a time

$x_3 x_2 x_1$	y1 y0
0 0 0	0 0
0 0 1	0 1
0 1 0	1 0
1 0 0	1 1

★ Octal-to-Binary Encoder (8-to-3)

I_7	I_6									Y_{θ}
0	0	0	0	0	0	0	1	0	0	0
0		0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

$$Y_2 = I_7 + I_6 + I_5 + I_4$$

 $Y_1 = I_7 + I_6 + I_3 + I_2$
 $Y_0 = I_7 + I_5 + I_3 + I_1$

Table 4.7 *Truth Table of an Octal-to-Binary Encoder*

Inputs							Outputs			
D ₀	D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇	x	y	Z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	O	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1