

Physique Générale I

Chapitre 3 Les lois de Newton

Survol

- Intro / Définitions
- Les lois de Newton3 principes de base
- Les conséquences de chaque loi Équilibres, référentiels, régimes courants
- Des exemples
 Les forces courantes et applications

Introduction

Si un objet est mis en mouvement, c'est parce qu'il est soumis à une FORCE

- La force:
- grandeur et une direction = vecteur
- La force totale = somme (vectorielle) des forces
- L'unité de force est le Newton [N].
- Exemple, le poids :

w: la force gravitationnelle sur un objet (vecteur, [N]).

• La masse:

$$m = w/g$$
 (scalaire, [kg]) et $w = m g$

Référentiel

Définition:

- Base de vecteurs pour l'espace, avec une origine
- Choix infini, mais certains plus pratiques
- Doit être explicité! (droit, cartésien...)
- Physique ne dépend pas du choix (Galilée/Einstein...)

Ex: bloc sur plan incliné

Deux choix classiques: orthogonal au plan, ou vertical

Première loi de Newton

Tout objet conserve son état de repos ou de mouvement rectiligne uniforme en absence de force agissant sur lui.

Ex: disque sur une table "à air". Une fois qu'on frappe le disque il continue à vitesse constante.

Référentiel d'inertie

La 1ère loi ne nous semble pas toujours vérifiée...

Ex: en voiture ou sur un manège: on tourne "à vitesse constante", et on sent un force vers l'extérieur

Définition: Un Référentiel d'inertie est un référentiel dans lequel la première loi de Newton est applicable.

Le manège n'est pas un référentiel d'inertie!

Corrollaire

Tout référentiel se déplaçant à vitesse constante par rapport à un référentiel d'inertie en est un lui-même.

Exemple 1 : Même origine, orientation différente

Exemple 2 : repères se déplaçant à une vitesse relative v_c.

Repère 1

- 1. v = 0
- 2. $v = v_0 = cste$
- 3. $\mathbf{v} = \mathbf{a} \ t \neq \mathbf{cste}$

Repère 2

- 1. $v = v_c$
- 2. $v = v_0 + v_c = cste$
- 3. $\mathbf{v} = \mathbf{a} \ t + \mathbf{v_c} \neq \mathbf{cste}$

L'équilibre

Définition: Un objet dont l'état de mouvement reste inchangé (v = cste) est dit en **équilibre**

On distingue différents types d'équilibre:

A: instable

B: stable

C: indifférent

NB: n'implique pas v = 0! (C ou référentiel en mouvement)

L'équilibre

Conséquence de la première loi de Newton:

- objet en équilibre $\Sigma_i F_i = 0$
- condition nécessaire mais non suffisante

Troisième loi de Newton

Si un objet A exerce une force F sur un autre B, alors B exerce sur A une force égale en norme mais de sens opposé, -F (Principe d'action-réaction)

- Les forces d'action et de réaction s'exercent sur des objets différents : Leurs effets ne s'annulent pas
- Seules les forces s'exerçant sur un objet particulier peuvent modifier son état de mouvement
- Distinction entre les forces internes et externes à un système

Troisième loi de Newton

Exemple: trouver l'intrus

Deuxième loi de Newton

(dans un repère d'inertie)

Quand une force s'exerce sur un objet, celui-ci est soumis à une accélération qui a la même direction:

$$\mathbf{F} = \mathbf{m} \mathbf{a}$$

- Coefficient = masse d'inertie de l'objet
- Propriété intrinsèque qui Mesure la quantité de matière
- Unités: $[N] = [kg \cdot m / s^2]$

Deuxième loi de Newton (suite)

La **même force** appliquée à des objets différents produira une **accélération différente** :

$$\mathbf{F} = m \mathbf{a}$$
 et $\mathbf{a} = \mathbf{F} / m \propto 1/m$

m mesure l'inertie au mouvement

Exemple: dans le cas de l'action-réaction si $m_1 \neq m_2$

Types de Forces

Gravitation ordinaire

- A la surface terrestre, l'accélération gravitationnelle est constante (presque)
- La force doit donc être proprtionnelle à la masse:

$$F=mg$$

Loi de la gravitation universelle

$$\mathbf{F}_{21} = -G \, \frac{m_1 m_2}{r^2} \, \hat{\mathbf{r}}$$

La force est:

- toujours attractive
- proportionnelle au produit des masses
- inversément proportionnelle au carré de la distance

$$G = 6.67 \times 10^{-11} \frac{\text{Nm}^2}{\text{kg}^2}$$

Le poids d'un objet

Force gravitationnelle qui agit au voisinage de la surface de la terre

$$W = G \frac{m M_T}{R_T^2} = m G \frac{M_T}{R_T^2} = m g$$

$$g = G \frac{M_T}{R_T^2} = 6.67 \times 10^{-11} \frac{\text{Nm}^2}{\text{kg}^2} \frac{(6.0 \times 10^{24} \text{kg})}{(6400 \text{km})^2}$$

$$g = 9,81 \,\mathrm{m \, s^{-2}}$$

Evolution de g avec l'altitude

Amplitude de F_g par rapport à w

Force gravitationnelle entre 2 masses de 10 kg:

$$F_g = G \frac{mm'}{r^2} = 6,67 \times 10^{-11} \frac{100}{0,01} = 6,67 \times 10^{-7} \text{N}$$

$$W = mg = 10 \times 9,81 = 98,1 \text{ N}$$

$$\frac{F_g}{W} = 6.81 \times 10^{-9} \rightarrow \text{négligeable}$$

Nous ne remarquons pas les attractions gravitationnelles entre objets de dimensions "ordinaires"

Poids effectif w^e

- Poids : constant au voisinage de la surface terrestre
- Perception du poids : peut varier selon les circonstances
- Poids effectif:

Force totale exercée par un objet sur une balance opposé de la force s exercée par le sol sur l'objet

Exemple:

$$s - mg = ma$$

 $s = m (g+a)$
 $w^e = - m (g+a)$
 $g^e = g+a$

otat d'anogentaux

a = -g et $w^e = 0$ état d'apesanteur

Les ressorts

- Objet déformable réversiblement
- Force linéaire avec la déformation
- Proportionnalité = constante de ressort (k)

$$F(x) = -k \cdot x$$

- Toujours force de rappel
- Compression ou extension

Les ressorts - trajectoires

- Solution simple des équations de Newton
- sinus ou cosinus
- Fonctions périodiques de fréquence omega

$$F = -kx = ma = m\frac{d^2x}{dt^2}$$

$$\frac{d^2x}{dt^2} = -\left(\frac{k}{m}\right)x \rightarrow x(t) = x(0) \cdot \cos \omega t$$

$$\omega = \sqrt{k/m}$$

Tension dans une corde

- Action Réaction:
- Sur la corde : $-F_1 + F_2 = m a$
- Si m ≈ 0 (ou a=0): $F_1 = F_2$
- La corde transmet la force d'une extrémité à l'autre
- Tension T = force exercée en tout point de la corde

Exemple: ascenseur

$$a_y > 0 \longrightarrow T > w$$

$$a_y < 0 \longrightarrow T < w$$

$$a_y = 0 \longrightarrow T = 0$$

Que vaut la tension dans le cable ? Quels sont les points d'application ?

Exercice: chariot

Valeur de *T* et *a* :

Wagon 1:
$$F - T = m_1 a$$

Wagon 2:
$$T = m_2 a$$

$$F = (m_1 + m_2)\mathbf{a}$$

$$\mathbf{a} = \frac{F'}{(m_1 + m_2)}$$

$$T = \frac{m_2 F}{(m_1 + m_2)}$$

Exercice: bloc + poulie

bloc 1 : selon y
$$\rightarrow$$
 $N_1 = w_1 = m_1 g$
selon x \rightarrow $T = m_1 a$
bloc 2 : selon y \rightarrow $T - w_2 = -m_2 a$
 $m_2 g$

Exercice: bloc + poulie (suite)

$$N_1 = w_1 = m_1 g$$

$$T = m_1 a$$

$$T - m_2 g = -m_2 a$$

$$m_1 \mathbf{a} - m_2 \mathbf{g} = -m_2 \mathbf{a}$$
 \Rightarrow $\mathbf{a} = \frac{m_2}{m_1 + m_2} \mathbf{g}$

$$T = m_1 \mathbf{a}$$
 \Rightarrow $T = \frac{m_1 m_2}{m_1 + m_2} \mathbf{g}$

Les forces de réaction

Force de contact/support qui agit pour empêcher deux corps solides de se superposer

Origine : interactions électrostatiques entre les atomes

Maintient les atomes à des distances de quelques Å (10⁻¹⁰ m) Apparence macroscopique: "ressort" parfait infiniment rigide Force normale à l'interface

Le frottement

Force qui agit pour s'opposer au mouvement d'un objet qui glisse sur un autre

• Origine :

- Adhérence mécanique due à la *rugosité* des surfaces
- -Liaisons de faible énergie entre les atomes

• Solutions :

- Les roulements qui rendent la séparation des surfaces plus aisée (minimiser la surface).
- Les fluides où les frottements sont faibles comparé aux frottements solide-solide.

XXXXX

Les forces de frottement

Frottement statique:

- $-f_s = F$
- f_s (max) indépendant de l'aire de contact
- $f_s (max) = \mu_s . N$
- μ_s coefficient de frottement statique (< 1)

Frottement cinétique:

- $f_{c} < f_{s} (max)$
- f_c indépendant
 de l'aire de contact
- $-\mathbf{f}_{c} = \mu_{c} \cdot \mathbf{N}$
- μ_c coefficient de frottement cinétique ($\mu_c < \mu_s$)

Détermination de µ_s

selony: $f_s = w \sin \theta$ selonx: $N = w \cos \theta$

$$\rightarrow \frac{f_s}{N} = tg\theta$$

à la limite du glissement $\theta = \theta_{max}$:

$$f_s = f_s(\text{max}) = \mu_s.N$$

$$\mu_{s} = \text{tg}\theta_{\text{max}}$$

Matériaux	μ_{s}	$\mu_{\rm c}$
Acier sur glace	0,1	0,05
Acier sur acier - sec	0,6	0,4
Acier sur acier - graissé	0,1	0,05
Corde sur bois	0,5	0,3
Téflon sur acier	0,04	0,04
Chaussure sur glace	0,1	0,05
Bottes de montagne sur rocher	1,0	0,8
Semelles de cuir sur tapis	0,6	0,5
Semelles de cuir sur bois	0,3	0,2
Semelles de caoutchouc sur bois	0,9	0,7
Pneus de voiture sur béton sec	1,0	0,7-0,8
Pneus de voiture sur béton mouillé	0,7	0,5
Pneus de voiture sur béton verglacé	0,3	0,02
Caoutchouc sur asphalte	0,60	. 0,40
Téflon sur téflon	0,04	0,04
Bois sur bois	0,5	0,3
Glace sur glace	0,05-0,15	0,02
Verre sur verre	0,9	0,4

^{*} La première colonne donne la valeur approchée du coefficient de frottement statique. La seconde colonne donne la valeur du coefficient de frottement cinétique qui sera discuté dans la suite.

Résumé

Les forces à prendre en compte lorsqu'un objet est posé sur un support :

- Le poids (vertical): w
- Les forces de contact

- tangentielle : **F**_f

- normale : N

Les aventures de Superman

force exercée par superman inférieure à:

$$f_s = \mu . N = 1 \times 100 \times 9,81 = 981N$$

- décélération du camion:

$$a = f / M = -981 / 50000 = -0.0196 \,\mathrm{m \, s^{-2}}$$

- distance nécessaire pour arrêter le camion:

$$V^{2} = V_{0}^{2} + 2a\Delta x$$

$$\Delta x = \frac{(V^{2} - V_{0}^{2})}{2a} = 900 / 0,0392 = 23000 \text{ m}$$