MAPDP:

Cooperative Multi-Agent Reinforcement Learning to Solve Pickup and Delivery Problems

Wangxianyi

17U

2024年5月12日

- Introduction
- 2 Formulation
- 3 Methodology
- MAPDP
- **5** Experiments
- **6** Conclusion
- References

Introduction

Introduction •0

- Pormulation
- Methodology
- 4 MAPDP
- 5 Experiments
- 6 Conclusion

Background Introduction

Introduction

- Vehicle Routing Problem (VRP) is crucial in various real-world applications such as express systems, industrial warehousing, and on-demand delivery.
- Cooperative Pickup and Delivery Problem (PDP) is a variant of VRP that plays a significant role in applications like on-demand delivery and industrial logistics.
- Challenges in solving cooperative PDP include structural dependency between pickup and delivery pairs and the need for effective cooperation among different vehicles.

Wangxianyi
MAPDP:Cooperative Multi-Agent Reinforcement Learning to Solve Pickup and Delivery Problems

• Introduction

Formulation

- 2 Formulation
- 3 Methodology
- 4 MAPDP
- 5 Experiments
- **6** Conclusion
- References

Mathematical Modeling of Cooperative PDP

$$\min \sum_{k=1}^{K} \sum_{i=0}^{2N} \sum_{j=1}^{2N+1} e_{ij} x_{ijk} \quad (1)$$

- $x_{ijk} \in \{0,1\}$: whether the vehicle k travels directly from node v_i to node v_i .
- e_{ij}: spatial distances.

$$\sum_{k=1}^{K} \sum_{j=1}^{2N+1} x_{ijk} = 1, \forall i \in [0, 2N], \quad (2)$$

$$\sum_{k=1}^{K} \sum_{i=0}^{2N} x_{ijk} = 1, \forall j \in [1, 2N+1], \quad (3)$$

- (ロ)(御)(草)(草) 草 かくぐ

Mathematical Modeling of Cooperative PDP

- d_i: Each pickup order has a demand volume.
- C_k : Capacity of the k-th vehicle.
- S: A consecutive routing sequence from v₀ and ends at v_{2N+1}.

Wangxianvi

$$\sum_{j=1}^{2N+1} x_{i,jk} = \sum_{j=0}^{2N+1} x_{i+N,jk}, \forall k \in [1, K], i \in [1, N],$$
(5)

$$T_i \le T_{i+N}, \forall i \in [1, N] \tag{6}$$

- 4 ロ ト 4 御 ト 4 差 ト 4 差 ト 2 × 9 Q C

MAPDP:Cooperative Multi-Agent Reinforcement Learning to Solve Pickup and Delivery Problems

- 1 Introduction
- 2 Formulation
- 3 Methodology
- 4 MAPDP
- **5** Experiments
- **6** Conclusion
- References

Explanation of State, Action

- State: At step t, agent k's state includes its remaining capacity C_k^t and current trajectory S_k^t . The current location, the last visited node, is denoted by $v_{I_k^t}$, where I_k^t is the node index.
- Action: The action at step t for vehicle agent k is to determine a node as its next target, represented as v(k, t).

^aAll vehicles can communicate centrally, ensuring full observability in the cooperative PDP setting.

References

References

Explanation of Transition, Reward

- Transition: For each agent: $S_k^{t+1} = (S_k^t; \{v_{I_k^t}\}), C_k^{t+1} = C_k^t d_{I_k^t}$, where ; means concatenating the partial solution with the new selected node.
- Reward: Minimize the total travel distance. At each step, the reward $r_k^t = -e_{l_k^t}$ is the negative length of the newly traveled arc, and the final episode reward $R = \sum_{k=1}^{k=K} \sum_{t=0}^{T-1} r_k^{t}$ is the sum of all individual rewards r_k^t .

Wangxianyi

where $\ensuremath{\mathsf{T}}$ is the decision step amount in a complete episode

- (ロ) (問) (注) (注) (注) の(()

- 1 Introduction
- 2 Formulation
- 3 Methodology
- 4 MAPDP
- **5** Experiments
- **6** Conclusion
- References

Formulation Methodology MAPDP Experiments Conclusion Reference

Overview of MAPDP Framework

图 1: MAPDP Framework

Wangxianyi
MAPDP:Cooperative Multi-Agent Reinforcement Learning to Solve Pickup and Delivery Problems

Paired Context Embedding

- \mathcal{L}_i : Original 2-D location information.
- x_i = W^x[L_i, d_i] + b^x: Concatenat the two features and map them into one dense vector.

$$h_i^0 = \begin{cases} W_0^x x_i + b_0^x, & i = 0, \\ W_p^x [x_i; x_{i+N}] + b_p^x, & 1 \le i \le N, \\ W_d^x x_i + b_d^x, & N+1 \le i \le 2N, \end{cases}$$
(7

Context Encoding

The initial paired context embedding h_i^0 is processed through L attention layers

- Multi-head attention layer (MHA).
- Skipconnection layer (He et al. 2016).
- Feed-forward (FF) layer.
- Batch normalization (BN) layers (Ioffe and Szegedy 2015).

$$Q_{i}^{h}, K_{i}^{h}, V_{i}^{h} = W_{Q}^{h}h_{i}, W_{K}^{h}h_{i}, W_{V}^{h}h_{i},$$
 (8)

$$A_i^h = softmax(Q_i^h K^{h^T} / \sqrt{d_k}) V_j^h, \qquad (9)$$

$$MHA_{i} = Concat(A_{i}^{1}, A_{i}^{2}, ..., A_{i}^{H})W_{O},$$
 (10)

Context Encoding

Attention

←□ → ←□ → ← ≥ → ← ≥ → ₹ MAPDP Experiments 00000000

MHA

图 2: MAPDP Framework

 $MHA_i = Concat(A_i^1, A_i^2, ..., A_i^H)W_O$

Wangxianyi MAPDP:Cooperative Multi-Agent Reinforcement Learning to Solve Pickup and Delivery Problems

Context Encoding

$$\hat{h}_i = BN^{\ell}(h_i^{\ell-1} + MHA_i^{\ell}(h_1^{\ell-1}, h_2^{\ell-1}, \cdots h_{2N}^{\ell-1})), \eqno(11)$$

$$h_i^\ell = BN^\ell(\hat{h}_i + FF^\ell(\hat{h}_i)).$$
 (12)

Context Encoding

Cooperative Multi-Agent Decoders

A communication layer to record the updated states of different agents as follows:

$$Comm^{t} = [h_{l_{1}^{t}}; C_{1}^{t}; h_{l_{2}^{t}}; C_{2}^{t}; ...; h_{l_{K}^{t}}; C_{K}^{t}]$$
 (13)

- $h_{k,(c)}^t = [\overline{h}^2; h_{l_i^t}; C_k^t; Comm^t]$: Agent kconcatenates essential information for decision-making, including global static representation, its current state, and others'.
- v_{It}: Agent k selects the next node to visit at step t.

Cooperative Decoding

 $^{^{2}\}bar{h} = \frac{1}{2N} \sum_{i=0}^{2N} h_{i}$: The average of all nodes

Wangxianvi MAPDP:Cooperative Multi-Agent Reinforcement Learning to Solve Pickup and Delivery Problems

Cooperative Multi-Agent Decoders

$g_k^t = MHA_{k(c)}(h_1, h_2, ..., h_{2N}),$ (14)

$$Q_k^t, K_{k,i}^t = W_{Q,k} g_k^t, W_{K,k} h_i,$$
 (15)

$$u_{k,i}^t = D tanh\left(\frac{Q_k^{t\,T} K_{k,i}^t}{\sqrt{d_k}}\right), \quad (16)$$

$$p_{\theta_k,\phi}(v(k,t)) = softmax\left(Mask^t(u_{k,i}^t)\right)$$
 (17)

Cooperative Decoding

- $W_{Q,k}$ and $W_{K,k}$ are the weight matrices of the last single-head attention
- D=10 is the clip rate for better exploration (Bello et al. 2016).
- Fleet handler: Randomly maintains the action of one agent from all candidates to the node and keeps the others stay at their current location $V_{I_{\nu}^{t}}$.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

- Introduction
- 2 Formulation
- 3 Methodology
- 4 MAPDP
- **5** Experiments
- **6** Conclusion
- References

Performance Comparison with Other Methods

-	1			D	andom Da	tocot			
Model	2N = 20, K=2							=10	
	Cost	Gap	Time	Cost	Gap	Time	Cost	Gap	Time
ACO (Gambardella, Taillard, and Agazzi 1999)	34.73	39.60%	6min	79.94	52.01%	32min	136.89	53.86%	51min
Tabu Search (Glover 1990)	29.76	19.67%	7min	64.57	22.78%	34min	112.38	26.31%	51min
OR-Tools (Google 2021)	25.91	4.18%	4min	54.64	3.90%	31min	94.25	5.93%	49min
RL-VRP (Nazari et al. 2018)	26.79	7.72%	1s	63.12	20.02%	5s	101.13	13.67%	9s
AM-VRP (Kool, van Hoof, and Welling 2019)	26.64	7.12.%	1s	67.41	28.18%	4s	105.91	19.04%	8s
MDAM (Xin et al. 2021)	25.98	4.46%	8s	67.24	27.86%	25s	105.11	18.14%	51s
MAPDP	24.87	0.00%	1s	52.59	0.00%	4s	88.97	0.00%	7s
		010070	10		al-World I	Dataset			,,,
Model		N = 20, K=		Rea	al-World I		2N	= 100, K=	
				Rea			2N Cost	= 100, K= Gap	
	2	N = 20, K=	2	Re:	N = 50, K =	=5			=10
Model	Cost	N = 20, K= Gap	Time	Rea 2 Cost	N = 50, K= Gap	=5 Time	Cost	Gap	=10 Time
Model ACO (Gambardella, Taillard, and Agazzi 1999)	2: Cost 812	N = 20, K= Gap 30.13%	Time 6min	Res 2 Cost 1205	N = 50, K= Gap 35.39%	Time 34min	Cost 2054	Gap 20.47%	=10 Time 53min
Model ACO (Gambardella, Taillard, and Agazzi 1999) Tabu Search (Glover 1990)	Cost 812 834	N = 20, K= Gap 30.13% 33.65%	Time 6min 6min	Cost 1205 1197	N = 50, K= Gap 35.39% 34.49%	Time 34min 34min	2054 2033	Gap 20.47% 19.24%	Time 53min 51min
Model ACO (Gambardella, Taillard, and Agazzi 1999) Tabu Search (Glover 1990) OR-Tools (Google 2021)	Cost 812 834 749	N = 20, K= Gap 30.13% 33.65% 20.03%	Time 6min 6min 4min	Cost 1205 1197 1056	N = 50, K= Gap 35.39% 34.49% 18.65%	Time 34min 34min 31min	2054 2033 1811	Gap 20.47% 19.24% 6.22%	Time 53min 51min 50min
Model ACO (Gambardella, Taillard, and Agazzi 1999) Tabu Search (Glover 1990) OR-Tools (Google 2021) RL-VRP (Nazari et al. 2018)	20 Cost 812 834 749 714	N = 20, K= Gap 30.13% 33.65% 20.03% 14.42%	Time 6min 6min 4min	2 Cost 1205 1197 1056 1130	N = 50, K= Gap 35.39% 34.49% 18.65% 26.97%	Time 34min 34min 31min 5s	Cost 2054 2033 1811 1842	Gap 20.47% 19.24% 6.22% 8.04%	=10 Time 53min 51min 50min

图 3: Comparison of Different Models on Random and Real-World Datasets

Wangxianyi LZU 21 / 28 Experiments 0000

Case Studies on Vehicle Cooperation

图 4: Case studies on vehicle cooperation analysis from two datasets.

LZU

Wangxianyi MAPDP:Cooperative Multi-Agent Reinforcement Learning to Solve Pickup and Delivery Problems 22 / 28 Experiments References

Case Studies on Vehicle Cooperation

- MAPDP-SP: The simplified model where all agent decoders share the same parameters. (Heterogeneous training can further slightly improve its effectiveness based on pure parameter sharing.)
- MAPDP-NC: The multi-agent framework without consideration on the communication embedding.(In a fully cooperative scenario, up-to-date communication with other agents is critical to effective coordination.)

Dataset	Model	2N=20	2N=50	2N=100
Random	MAPDP	24.87	52.59	88.97
	MAPDP-SP	24.99	53.61	89.78
	MAPDP-NC	26.89	68.78	108.12
Real	MAPDP	624	890	1705
	MAPDP-SP	639	943	1721
	MAPDP-NC	731	1033	1896

图 5: Case studies on vehicle cooperation analysis from two datasets.

1711 Wangxianvi MAPDP:Cooperative Multi-Agent Reinforcement Learning to Solve Pickup and Delivery Problems

- 1 Introduction
- 2 Formulation
- 3 Methodology
- 4 MAPDP
- **5** Experiments
- **6** Conclusion
- References

Formulation Methodology MAPDP Experiments Conclusion References 000 000 000 000 000

Conclusion

- The proposed MAPDP framework leverages Multi-Agent Reinforcement Learning (MARL) to effectively solve the Cooperative Pickup and Delivery Problem (PDP) by capturing dependencies and promoting cooperation among multiple vehicles.
- MAPDP outperforms existing baselines by at least 1.64
- The centralized MARL framework, paired context embedding, cooperative decoders, and cooperative A2C algorithm collectively contribute to the success of MAPDP in addressing the challenges of PDP.
- Future research directions may include exploring scalability of MAPDP to larger problem instances, incorporating real-time constraints, and adapting the framework to dynamic environments.

イロト (部) (注) (注) 注 り (0)

- 1 Introduction
- 2 Formulation
- 3 Methodology
- MAPDP
- **5** Experiments
- **6** Conclusion
- References

References

References

- [1] B. McMahan, E. Moore, D. Ramage, et al. Communication-efficient learning of deep networks from decentralized data[C]. Artificial intelligence and statistics, 2017, 1273-1282
- [2] Y. LeCun, L. Bottou, Y. Bengio, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324
- [3] Y. Kim, Y. Jernite, D. Sontag, et al. Character-aware neural language models[C]. Proceedings of the AAAI conference on artificial intelligence, 2016, 2741-2749

References ○○●

Thanks!