Scilab Textbook Companion for Basic Electrical Engineering by D. P. Kothari And I. J. Nagrath¹

Created by
Ashish Bora
B. Tech.
Electrical Engineering
IIT Bombay
College Teacher
Prof. Madhu Belur
Cross-Checked by
Lavitha Pereira

August 21, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Basic Electrical Engineering

Author: D. P. Kothari And I. J. Nagrath

Publisher: Tata McGraw - Hill Education, New Delhi

Edition: 3

Year: 2010

ISBN: 9780070146112

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Elementary Concepts and Definitions	13
2	Fundamentals of Resistive Circuits	24
3	Fundamentals of Reactive Circuits	43
4	Steady State Analysis For Sinusoidal Excitation	56
5	Frequency Response	88
6	Three Phase Circuits	101
7	Magnetic Circuits	115
8	Transformers	127
9	EMF and Torque in Electric Machines	151
10	DC Machines	160
11	Synchronous Machine	17 6
12	Induction Motor	188
14	Measurement Techniques and Electric and Electronic Instrumentation	199
15	Power Systems	207

List of Scilab Codes

Exa 1.A.1	Additional Solved Problem 1	13
Exa 1.A.2	Additional Solved Problem 2	13
Exa 1.A.3	Additional Solved Problem 3	14
Exa $1.A.4$	Additional Solved Problem 4	15
Exa 1.A.5	Additional Solved Problem 5	15
Exa $1.A.6$	Additional Solved Problem 6	16
Exa 1.A.7	Additional Solved Problem 7	16
Exa 1.A.9	Additional Solved Problem 9	17
Exa 1.1	Problem1	17
Exa 1.2	Problem2	18
Exa 1.3	Problem3	19
Exa 1.5	Problem5	19
Exa 1.7	Problem7	19
Exa 1.9	Problem9	20
Exa 1.10	Problem10	21
Exa 1.11	Problem11	21
Exa 1.12	Problem12	21
Exa 1.13	Problem13	22
Exa 1.15	Problem15	22
Exa 2.1	Problem1	24
Exa 2.2	Problem2	25
Exa 2.3	Problem3	25
Exa 2.4	Problem4	26
Exa 2.5	Problem5	26
Exa 2.6	Problem6	27
Exa 2.7	Problem7	27
Exa 2.8	Problem8	27
Exa 2.9	Problem9	28

Exa 2.10	Problem10											28
Exa 2.11	Problem11											29
Exa 2.13	Problem13											29
Exa 2.14	Problem14											30
Exa 2.15	Problem15											30
Exa 2.16	Problem16											30
Exa 2.17	Problem17											31
Exa 2.18	Problem18											31
Exa 2.19	Problem19											32
Exa 2.20	Problem20											32
Exa 2.21	Problem21											33
Exa 2.22	Problem22											33
Exa 2.23	Problem23											34
Exa 2.24	Problem24											34
Exa 2.25	Problem25											35
Exa 2.26	Problem26											35
Exa 2.27	Problem27											36
Exa 2.28	Problem28											36
Exa 2.29	Problem29											37
Exa 2.30	Problem30											37
Exa 2.31	Problem31											38
Exa 2.32	Problem32											38
Exa 2.33	Problem33											39
Exa 2.35	Problem35											39
Exa 2.36	Problem36											40
Exa 2.37	Problem37											40
Exa 2.38	Problem38											41
Exa 2.39	Problem39											41
Exa 2.40	Problem40											41
Exa 3.1	Problem1 .											43
Exa 3.2	Problem2 .											43
Exa 3.3	Problem3 .											44
Exa 3.4	Problem4 .											44
Exa 3.5	Problem5 .											45
Exa 3.6	Problem6 .											45
Exa 3.7	Problem7.											45
Exa 3.8	Problem8 .											46
Exa 3.9	Problem9 .											46

Exa 3.11	Problem11	47
Exa 3.12	Problem12	47
Exa 3.13	Problem13	48
Exa 3.16	Problem16	48
Exa 3.18	Problem18	49
Exa 3.21	Problem21	49
Exa 3.22	Problem22	49
Exa 3.24	Problem24	50
Exa 3.26	Problem26	50
Exa 3.27	Problem27	51
Exa 3.29	Problem29	52
Exa 3.32	Problem32	52
Exa 3.33	Problem33	53
Exa 3.36	Problem36	54
Exa 3.37.3	38Problem37 and 38	54
Exa 4.1	Problem1	56
Exa 4.2	Problem2	56
Exa 4.4	Problem4	57
Exa 4.5	Problem5	57
Exa 4.6	Problem6	58
Exa 4.7	Problem7	58
Exa 4.8	Problem8	59
Exa 4.9	Problem9	61
Exa 4.10	Problem10	61
Exa 4.11	Problem11	61
Exa 4.12	Problem12	62
Exa 4.13	Problem13	63
Exa 4.14	Problem14	63
Exa 4.15	Problem15	64
Exa 4.16	Problem16	65
Exa 4.17	Problem17	66
Exa 4.18	Problem18	66
Exa 4.21	Problem21	67
Exa 4.22	Problem22	68
Exa 4.23	Problem23	68
Exa 4.24	Problem24	69
Exa 4.25	Problem25	70
Exa. 4.26	Problem26	70

Exa 4.27	Problem27			 										71
Exa 4.28	Problem28			 						 				72
Exa 4.29	Problem29			 						 				72
Exa 4.30	Problem30			 										73
Exa 4.31	Problem31			 										73
Exa 4.32	Problem32			 						 				74
Exa 4.33	Problem33			 										74
Exa 4.34	Problem34			 										75
Exa 4.35	Problem35			 						 				76
Exa 4.36	Problem36			 										77
Exa 4.37	Problem37			 										77
Exa 4.38	Problem38			 						 				78
Exa 4.39	Problem39			 										79
Exa 4.40	Problem40			 										79
Exa 4.41	Problem41			 										80
Exa 4.42	Problem42			 										80
Exa 4.43	Problem43			 										81
Exa 4.44	Problem44			 										81
Exa 4.45	Problem45			 						 				82
Exa 4.46	Problem46			 						 				83
Exa 4.47														83
Exa 4.48	Problem48			 										84
Exa 4.49	Problem49			 										85
Exa 4.50	Problem50			 										85
Exa 4.51	Problem51			 						 				86
Exa 4.52	Problem52			 										87
Exa 5.1	Problem1 .			 										88
Exa 5.2	T 11 0													88
Exa 5.3	Problem3 .													89
Exa 5.4														89
Exa 5.5	Problem5 .													90
Exa 5.6														90
Exa 5.7														91
Exa 5.8														91
Exa 5.9														91
Exa 5.10														92
Exa 5.11	Problem11													92
Exa 5 12	Problem12	•	•	-		•		-		Ī	٠	•		93

Exa 5.13	Problem13	93
Exa 5.14	Problem14	94
Exa 5.15	Problem15	94
Exa 5.17	Problem17	95
Exa 5.18	Problem18	95
Exa 5.19	Problem19	96
Exa 5.20	Problem20	96
Exa 5.21	Problem21	97
Exa 5.22	Problem22	98
Exa 5.28	Problem28	98
Exa 5.29	Problem29	99
Exa 6.1	Problem1	101
Exa 6.2	Problem2	102
Exa 6.3	Problem3	102
Exa 6.4	Problem4	103
Exa 6.5	Problem5	103
Exa 6.6	Problem6	104
Exa 6.7	Problem7	104
Exa 6.9	Problem9	105
Exa 6.10	Problem10	106
Exa 6.11	Problem11	107
Exa 6.12	Problem12	107
Exa 6.13	Problem13	108
Exa 6.14	Problem14	109
Exa 6.15	Problem15	109
Exa 6.16	Problem16	110
Exa 6.17	Problem17	111
Exa 6.18	Problem18	111
Exa 6.19	Problem19	112
Exa 6.20	Problem20	112
Exa 6.21	Problem21	113
Exa 7.1	Problem1	115
Exa 7.2	Problem2	115
Exa 7.3	Problem3	116
Exa 7.4	Problem4	116
Exa 7.5	Problem5	117
Exa 7.6	Problem6	117
Exa. 7.7	Problem7	118

Exa 7.8	Problem8	. 119
Exa 7.9	Problem9	. 120
Exa 7.10	Problem10	. 121
Exa 7.11	Problem11	. 122
Exa 7.12	Problem12	. 122
Exa 7.14	Problem14	. 122
Exa 7.15	Problem15	. 123
Exa 7.16	Problem16	. 124
Exa 7.17	Problem17	. 124
Exa 7.18	Problem18	. 125
Exa 7.19	Problem19	. 126
Exa 8.1	Problem1	. 127
Exa 8.2	Problem2	. 127
Exa 8.3	Problem3	. 128
Exa 8.4	Problem4	. 129
Exa 8.5	Problem5	. 130
Exa 8.6	Problem6	. 130
Exa 8.7	Problem7	. 131
Exa 8.8	Problem8	. 131
Exa 8.9	Problem9	. 132
Exa 8.10	Problem10	. 134
Exa 8.11	Problem11	. 134
Exa 8.12	Problem12	. 136
Exa 8.13	Problem13	. 137
Exa 8.14	Problem14	. 138
Exa 8.15	Problem15	. 139
Exa 8.16	Problem16	. 140
Exa 8.17	Problem17	. 141
Exa 8.18	Problem18	. 142
Exa 8.19	Problem19	. 142
Exa 8.20	Problem20	. 143
Exa 8.21	Problem21	. 144
Exa 8.22	Problem22	. 145
Exa 8.23	Problem23	. 145
Exa 8.24	Problem24	. 146
Exa 8.25	Problem25	. 146
Exa 8.26	Problem26	. 147
Exa 8.27	Problem27	. 148

Exa 8.28	Problem28	. 149
Exa 8.29	Problem29	. 149
Exa 9.1	Problem1	. 151
Exa 9.2	Problem2	. 152
Exa 9.3	Problem3	. 152
Exa 9.4	Problem4	. 153
Exa 9.5	Problem5	. 153
Exa 9.6	Problem6	. 154
Exa 9.7	Problem7	. 154
Exa 9.8	Problem8	. 155
Exa 9.9	Problem9	. 155
Exa 9.10	Problem10	. 156
Exa 9.11	Problem11	. 156
Exa 9.12	Problem12	. 157
Exa 9.13	Problem13	. 157
Exa 9.14	Problem14	. 157
Exa 9.15	Problem15	. 158
Exa 9.16	Problem16	. 158
Exa 10.1	Problem1	. 160
Exa 10.2	Problem2	. 161
Exa 10.3	Problem3	. 161
Exa 10.4	Problem4	. 162
Exa 10.5	Problem5	. 162
Exa 10.6	Problem6	. 163
Exa 10.7	Problem7	. 163
Exa 10.8	Problem8	. 164
Exa 10.9	Problem9	. 165
Exa 10.10	Problem10	. 165
Exa 10.11	Problem11	. 166
Exa 10.12	Problem12	. 167
Exa 10.13	Problem13	. 167
Exa 10.14	Problem14	. 168
Exa 10.15	Problem15	1.00
Exa 10.16	Problem16	. 169
Exa 10.17	Problem17	
Exa 10.18	Problem18	
Exa 10.19	Problem19	. 171
	Problem20	171

Exa 10.21	Problem21	. 172
$\mathrm{Exa}\ 10.22$	Problem22	. 172
$\mathrm{Exa}\ 10.23$	Problem23	. 173
Exa 10.24	Problem24	. 173
$\mathrm{Exa}\ 10.25$	Problem25	. 174
Exa 10.26	Problem26	. 174
Exa 11.1	Problem1	. 176
Exa 11.2	Problem2	. 176
Exa 11.3	Problem3	. 177
Exa 11.4	Problem4	. 178
Exa 11.5	Problem5	. 179
Exa 11.6	Problem6	. 179
Exa 11.7	Problem7	. 180
Exa 11.8	Problem8	. 180
Exa 11.9	Problem9	. 181
Exa 11.10	Problem10	. 182
Exa 11.11	Problem11	. 183
Exa 11.12	Problem12	. 184
Exa 11.13	Problem13	. 184
Exa 11.14	Problem14	. 185
Exa 11.15	Problem15	. 186
Exa 12.1	Problem1	. 188
Exa 12.2	Problem2	. 188
Exa 12.3	Problem3	. 189
Exa 12.5	Problem5	. 189
Exa 12.6	Problem6	. 190
Exa 12.7	Problem7	. 191
Exa 12.8	Problem8	. 192
Exa 12.9	Problem9	. 193
Exa 12.10	Problem10	. 193
Exa 12.11	Problem11	. 194
Exa 12.12	Problem12	. 194
Exa 12.13	Problem13	. 195
Exa 12.14	Problem14	. 195
Exa 12.15	Problem15	100
Exa 12.16	Problem16	
Exa 12.17	Problem17	. 198
Exa 14 1	Problem1	199

Exa 14.2	Problem2	199
Exa 14.3	Problem3	200
Exa 14.4	Problem4	200
Exa 14.5	Problem5	200
Exa 14.6	Problem6	201
Exa 14.7	Problem7	202
Exa 14.8	Problem8	202
Exa 14.9	Problem9	203
Exa 14.10	Problem10	203
Exa 14.11	Problem11	203
Exa 14.12	Problem12	204
Exa 14.13	Problem13	204
Exa 14.14	Problem14	205
Exa 14.15	Problem15	205
Exa 14.17	Problem17	206
Exa 14.18	Problem18	206
Exa 15.1	Problem1	207
Exa 15.2	Problem2	207
Exa 15.3	Problem3	208
Exa 15.4	Problem4	208
Exa 15.5	Problem5	209
Exa 15.6	Problem6	209
Exa 15.7	Problem7	210

Chapter 1

Elementary Concepts and Definitions

Scilab code Exa 1.A.1 Additional Solved Problem 1

```
1 t=0.1
2 R=800
3 i=50*exp(-10*t)/1000
4 v=50*cos(25*t)
5 v_i=10*t^(2.5)
6
7 P1=i*i*R
8 P2=v*v/R
9 P3=v_i
10
11 disp(P3,P2,P1)
```

Scilab code Exa 1.A.2 Additional Solved Problem 2

```
1 v2=5
2 i2=v2/1000
```

```
3 v1=-i2/5
4 vs=v1
5
6 disp(vs)
```

Scilab code Exa 1.A.3 Additional Solved Problem 3

```
1 L=20/1000
4 disp("Part1")
5 function i = i(t)
6
     i = 8*exp(-100*t);
7 endfunction
9 t=10/1000
10 v= L*(derivative(i,t))
11 disp(v,"V=")
12
15 t=0.1
16
17 function v=v(t)
     v = 6 * exp(-12 * t)
18
19 endfunction
20
21 i0=8
22
23 i2=1/L*intg(0,t,v)+i0
24 disp(i2)
25
26 ////////Part3
27 disp("Part3")
28 function i3 = i3(t)
```

Scilab code Exa 1.A.4 Additional Solved Problem 4

```
1 function i = i(t)
2     i = 9*sin(%pi*t)/1000;
3 endfunction
4
5 t=200/1000
6 CV=intg(0,t,i)
7 Wc=300E-6
8 C=(CV^2)/(2*Wc)
9 disp(C)
```

Scilab code Exa 1.A.5 Additional Solved Problem 5

```
1 L=25E-3
2
3 T=5/1000
4 I=1/L*integrate('25*cos(500*t)','t',0,T)
5 P=25*cos(500*T)*I
6
7 t1=%pi/2/500 ////power absorbed zero
```

```
8 t2=%pi/500 ////energy stored zero
9
10 disp(I,P,t1,t2)
```

Scilab code Exa 1.A.6 Additional Solved Problem 6

```
1  e0=8.85E-12
2  er=1
3  A=%pi*(1/200)^2
4  d=150/1000000
5  C=er*e0*A/d
6
7  E=1/1000
8  v=sqrt(2*E/C)
9  disp(v)
10
11  E=2/1000000
12  v=100
13  er=2*E/(v^2)/C
14  disp(er)
```

Scilab code Exa 1.A.7 Additional Solved Problem 7

```
1 t=10/1000
2 v3=8*exp(-50*t)
3 p3=v3*(-3.6)
4 P=[230/1000*4.8; (-3.2)*1.45;p3]
5
6 disp("Power absorbed are respectively")
7 disp(P)
```

Scilab code Exa 1.A.9 Additional Solved Problem 9

```
1 \text{ Im} = 250/1000
2 w = 100
3 r=4
4 L=50/1000
5 t = 25/1000
7 i=Im*sin(w*t)
8 Vr = i * r
9 Vl = Im * L * w * cos(w*t)
10
11 Pr=i*i*r
12 Pl=Vl*i
13 \text{ wl} = 1/2 * L * i * i
14 wl_min=0 //\min current = 0
15 wl_max=1/2*L*Im*Im //Im is the max current
16
17 disp("All values in Joules")
18 disp(wl_max,wl_min,wl,Pl,Pr)
```

Scilab code Exa 1.1 Problem1

```
disp("v1=A cos(w t+p)")
disp("i1=B cos(w1 t+p1)")
disp("i2=C sin(w2 t+p2)")
disp("All values in degrees")
w=input("w=")
p=input("p=")
v1=input("w1=")
p1=input("p1=")
v2=input("w2=")
p2=input("p2=")
```

```
13
        lag1=p-p1;
        disp(lag1, "i1 lags v1 by ")
14
15 else
        disp("Lag undefined for i1")
16
17 \text{ end}
18
19
20 if(w==w2)
21
        lag2=p-p2+90;
22
        disp(lag2, "i2 lags v1 by ")
23 else
        disp("Lag undefined for i2")
24
25 \, \mathrm{end}
```

Scilab code Exa 1.2 Problem2

```
1 // X cos(w t+p)+Y sin(w t+q)
2
3 X=50
4 Y=-30
5 w=120
6 p=-45
7 p=p/180*%pi;
8 q=160
9 q=q/180*%pi;
10
11 //Part1
12
13 A=X*cos(p)+ Y*sin(q);
14 B=-X*sin(p)+ Y*cos(q);
15
16 disp(B,"B=",A,"A=")
```

Scilab code Exa 1.3 Problem3

```
1 G1=input("G1=")
2 G2=input("G2=")
3 G3=input("G3=")
4 Is1=input("Is1=")
5 Is2=input("Is2=")
6
7 A=[G1+G3,-G3;-G3,G2+G3];
8 I=[Is1;Is2];
9 V=inv(A)*I;
10
11 disp(V)
```

Scilab code Exa 1.5 Problem5

```
1
2
3 R1=input("R1=")
4 R2=input("R2=")
5 R3=input("R3=")
6 Vs1=input("Vs1=")
7 Vs2=input("Vs2=")
8
9 R=[R1+R3,-R3;-R3,R2+R3];
10 V=[Vs1;-Vs2];
11 I=inv(R)*V;
12
13 disp(I)
```

Scilab code Exa 1.7 Problem7

```
1 R1=1
```

```
2 R2 = 6
 3 R3 = 12
 4 R4 = 4
 5 I4 = 3/4
 6 V6=6
 8 V4 = 3/4 * 4
9 I12=3/12
10 IR = 3/4 + I12
11
12 R = -12 * I12 + V6 / KVL
13 disp(R, "R(Ohm)=")
14
15 I6=V6/6
16 I1=I6+IR
17
18 Vs = 1 * I1 + V6 / KVL
19 \operatorname{disp}(\operatorname{Vs}, \operatorname{"Vs}(\operatorname{V})=\operatorname{"})
20
21 disp(Vs*I1, "Power(W)=")
```

Scilab code Exa 1.9 Problem9

```
1 i1=4
2 v3=3
3 v4=8
4
5 i3=v3/3
6 i4=v4/4
7
8 i2=(i1-i3-i4)/2 //KCL
9 v2=2*i2
10
11 disp(v2,"v2=")
```

Scilab code Exa 1.10 Problem10

```
1 v1=6

2 i2=2

3 i3=4

4

5 v2=2*i2

6 v3=2*i3

7

8 v4=-v1+4*i2+v3-v2 //KVL

9 i4=v4/3

10 disp(i4)
```

Scilab code Exa 1.11 Problem11

```
1 i1=4-1 // KCL at node 1
2 disp(i1,"i1=")
3
4 v1=i1*1
5 v12=1*1
6 v2=v1-v12
7 i2=v2/1
8
9 i3=1-i2 //KCL at node 2
10
11 Vs=v2-1*i3 //KVL
12 disp(Vs,"Vs=")
```

Scilab code Exa 1.12 Problem12

```
1 i34=10-8 //KCL at node 4
2 v34=5*i34
3 v23=40-10 //KVL
4 vx=v23
5 disp(vx,"vx=")
6 ix=4-8 //KCL at node 1
7 disp(ix,"ix=")
8 i23=ix+10 //KCL at node 2
9 R2=vx/i23
10 disp(R2,"R2=")
11 v14=40+6*ix //KVL
12 R1=v14/8
13 disp(R1,"R1=")
```

Scilab code Exa 1.13 Problem13

```
1  vs=0.01 // *cos(1000*t)
2
3  vpi=vs
4  i0=-vpi/1000
5  vo=i0*1000;
6  printf("v0 = %f *cos(1000*t)",vo)
```

Scilab code Exa 1.15 Problem15

```
1 t=0.1
2 R=800
3 i=50*exp(-10*t)/1000
4 v=50*cos(25*t)
5 v_i=10*t^(2.5)
6
7 P1=i*i*R
8 P2=v*v/R
```

```
9 P3=v_i
10
11 disp(P3,P2,P1)
```

Chapter 2

Fundamentals of Resistive Circuits

Scilab code Exa 2.1 Problem1

```
1 function s=series(r1,r2)
       s=r1+r2
3 endfunction
5 function p=parallel(r1,r2)
       p=r1*r2/(r1+r2)
7 endfunction
9 r1=series(12,8)
10 r2=parallel(20,r1)
11 \quad r3=series(r2,50)
12 r4=parallel(30,r3)
13 r5=series(10,r4)
14 r6=series(r5,20)
15 Req_ab=parallel(r5,40)
16 disp(Req_ab)
17
18 r7 = 40 + 20 + 10 // series
19 Req_bc=parallel(r4,r7)
```

```
20 disp(Req_bc)
```

Scilab code Exa 2.2 Problem2

```
1 I=(14-4)/(8+5+5+7) //KVL
2 disp(I)
```

Scilab code Exa 2.3 Problem3

```
1 r1 = 100
2 v = 3/4
4 r2=r1*v/(1-v)
7 function p=parallel(r1,r2)
       p=r1*r2/(r1+r2)
9 endfunction
10
11 ///// Part1
12 R2_eq=parallel(r2,10000)
13 \text{ k=R2\_eq/(R2\_eq+r1)}
14 change1=(3/4-k)/(3/4)*100
15 disp(change1)
16 ///// Part2
17
18 R2_eq=parallel(r2,1000)
19 k=R2_eq/(R2_eq+r1)
20 change2=(3/4-k)/(3/4)*100
21 disp(change2)
```

Scilab code Exa 2.4 Problem4

```
1 function p=parallel(r1,r2)
2     p=r1*r2/(r1+r2)
3 endfunction
4
5
6 v=150
7
8 Req=1000*parallel(parallel(10,5),4)
9 i1=v/(2000+0.2*1000+Req)
10 v1=i1*0.2*1000
11 VReq=Req*i1
12 i2=VReq/4000
13
14 disp(v1)
15 disp(i2)
```

Scilab code Exa 2.5 Problem5

```
1 function [Rab,Rbc,Rca] = star_to_delta(Ra,Rb,Rc)
2
       X = Ra * Rb + Rb * Rc + Rc * Ra
3
       Rab=X/Rc
4
       Rbc=X/Ra
       Rca=X/Rb
6 endfunction
8 function p=parallel(r1,r2)
9
       p=r1*r2/(r1+r2)
10 endfunction
11
12 [Rx,Ry,Rz]=star_to_delta(8,4,2)
13
14 Req_ad=parallel(parallel(4,Rx)+parallel(12,Rz),
      parallel(3,Ry))
```

```
15 disp(Req_ad)
```

Scilab code Exa 2.6 Problem6

```
1 //Converting Voltage source with series resistance
     to current source
2 I=1/(1/4)
3
4 //KCL at nodes 1,2,3 using conductances
5 A=[11,-3,-4;-3,6,-2;-4,-2,11]
6 V=inv(A)*[5;-7;6]
7
8 disp(V)
```

Scilab code Exa 2.7 Problem7

```
1 function p=parallel(r1,r2)
2     p=r1*r2/(r1+r2)
3 endfunction
4
5 Req=parallel(15,30)
6
7 //KCL at nodes 1 and 2
8 A=[3,-1;-3,5]
9 V=inv(A)*[80;-360]
10
11 disp(V(1))
```

Scilab code Exa 2.8 Problem8

Scilab code Exa 2.9 Problem9

```
1 //KCLs
2
3 A=[2,-1;-4,19]
4 V=inv(A)*[10;25]
5
6 Pc=1*V(1)
7 Iv=(5-V(2))/2 + (5-V(1))/5
8 Pv=5*Iv
9
10 disp(V)
11 disp(Pv,Pc)
```

Scilab code Exa 2.10 Problem10

```
1 //converting 9v voltage source to current source
2 I=9/0.45
3 I=I-7
4
5 //KCLs
```

```
6 A=[1/0.45+1/10,-1/10; 0.2-1/10,1/10-0.2]
7 V=inv(A)*[-18;5]
8 disp(V(2))
```

Scilab code Exa 2.11 Problem11

```
//converting voltage source to current source

I = 240/3

//KCLs

A = [1/3+1/6, -1/6; -1/6, 1/6+1/12+1/30]

V=inv(A)*[70;5]

Vx = V(1)

Vy = V(2) - 60

V6 = V(2) - V(1)

P6 = V6 * V6/6

disp(P6)
```

Scilab code Exa 2.13 Problem13

```
1 // KVLs

2

3 A=[24,-6,-8;-6,20,-5;-8,-5,25]

4 I=inv(A)*[16;0;0]

5 I5=I(2)-I(3)

6 disp(I5)
```

Scilab code Exa 2.14 Problem14

```
1 //convert practical current source to voltage source
2 V=10*5
3
4 //KVLs
5 A=[35,-20;-20,50]
6 I=inv(A)*[50;-100]
7
8 v=20*(I(1)-I(2))
9 disp(v)
```

Scilab code Exa 2.15 Problem15

```
1 i1=0.37
2
3 //KVL for loop 2
4 i2=(-100+20*i1)/50
5
6 //KVL for loop 1
7 R=(50+20*(i2-i1))/i1
8 disp(R)
```

Scilab code Exa 2.16 Problem16

```
1 //Converting current sources to voltage sources
2 // O=[i1;i2;vx]
3
4 A=[10,-3,4;-3,7,0;3,-3,-1]
```

Scilab code Exa 2.17 Problem17

Scilab code Exa 2.18 Problem18

```
1 //Nodal Equations
2
3 A=[0.6,-0.5;2,-1.6]
4 V=inv(A)*[4;0]
5 V12=V(1)-V(2)
6 disp(V12)
```

Scilab code Exa 2.19 Problem19

```
1 //convert dependent current source to dependent
    voltage source
2
3 //Mesh Equations
4 A=[14,-2,0;-2,18,3;2,-2,-1]
5 O=inv(A)*[100;0;0]
6
7 disp(0(3))
```

Scilab code Exa 2.20 Problem20

```
1 ////////Part 1
3 // Nodal Method
4 v1 = (8/5+16/10)/(1/5+1/2+1/10)
5 disp(v1)
6 i5 = (8 - v1) / 5000
7 disp(i5)
8
10 //////////Part2
11
12 //Mesh Method
13
14 A = [7, -2; -2, 12]
15 I = inv(A) * [8; -16]/1000
16 disp(I)
17
18 v1=2*1000*(I(1)-I(2))
19 disp(v1)
```

Scilab code Exa 2.21 Problem21

```
1 function p=parallel(r1,r2)
       p=r1*r2/(r1+r2)
3 endfunction
5 //deactivate voltage source
7 i11=4*6/8
8 i21 = 4 * 2/8
9 v11=i11*2
10 \quad v21=1*1
11
12 //deactivate current source
13 Req=parallel(2,7)
14
15 \text{ v22=8*Req/(2+Req)}
16 v12=v22*(2/(2+5))
17
18 v1=v11+v12
19 v2 = v21 + v22
20
21 disp(v2,v1)
```

Scilab code Exa 2.22 Problem22

```
1 function p=parallel(r1,r2)
2    p=r1*r2/(r1+r2)
3 endfunction
4
5 //Thevenin Equivalent
```

```
6 I=(32-8)/30
7 Voc=32-20*I
8 Ro=parallel(20,10)
9 disp(Ro, Voc)
10
11 //Norton Equivalent
12 Isc=32/20+8/10
13 disp(Ro, Isc)
```

Scilab code Exa 2.23 Problem23

```
1 //convert current source to voltage source
2 V=3.5*20
3
4 //KVL
5 I=100/(10+20+V)
6 Voc=100-10*I
7
8 //Finding Isc
9 I=100/10
10 Isc=(1+3.5)*I
11
12 Ro=Voc/Isc
13
14 disp(Ro, Voc)
```

Scilab code Exa 2.24 Problem24

```
1 V=32
2 I=1
3 R1=20
4 R2=8
5 R3=2
```

```
6 Voc1=V/(R1+R2+R3)*(R2+R3) ///a,b open
7 Isc1=V/R1 ///a,b short
8
9 Voc2=I*R2/(R1+R2+R3)*R1
10 Isc2=I*R2/(R2+R3)
11
12 ///by superposition
13 Voc=Voc1+Voc2
14 Isc=Isc1+Isc2
15
16 disp(Voc)
17 disp(Isc)
```

Scilab code Exa 2.25 Problem25

```
1 function [Ra,Rb,Rc]=delta_to_star(Rab,Rbc,Rca)
       X = Rab + Rbc + Rca
3
       Ra=Rab*Rca/X
       Rb = Rab * Rbc / X
       Rc=Rca*Rbc/X
6 endfunction
8 function p=parallel(r1,r2)
9
       p=r1*r2/(r1+r2)
10 endfunction
11
12 [R1,R2,R3] = delta_to_star(4,12,8)
13 Req=10+4+parallel(R1+15,R2+16)
14
15 I=12/Req
16 disp(I)
```

Scilab code Exa 2.26 Problem26

```
//convert current source to voltage source

V1=4*2
V2=2*2

//Mesh Analysis

A=[7,-3;-15,19]
I=inv(A)*[6;-14]

Vx=3*(I(1)-I(2))
disp(Vx)
```

Scilab code Exa 2.27 Problem27

```
//Short Circuit AB and convert Curr Source to V
source

V=9*5
Isc=(45-9)/6

function p=parallel(r1,r2)
p=r1*r2/(r1+r2)
endfunction

Ro=parallel(5+1,3)
disp(Ro,Isc)
```

Scilab code Exa 2.28 Problem28

```
1 //Mesh Analysis
2
3 A=[4,-2;998,24.5]
```

```
4  I=inv(A)*[1/1000;0]
5
6  disp(I)
7
8  P1=I(2)^2*2.5*1000
9  P2=1/1000*I(1)
10  P3=-10^6*I(1)*I(2)
11  P=[P1,P2,P3]
12  disp(P)
```

Scilab code Exa 2.29 Problem29

Scilab code Exa 2.30 Problem30

```
1 function p=parallel(r1,r2)
2 p=r1*r2/(r1+r2)
```

```
3 endfunction
4
5 R=parallel(60,120)
6
7 //Mesh Analysis
8
9 A=[6,-4;-4,12]
10 I=inv(A)*[2.4;-3.6]
11 I3=I(1)-I(2)
12
13 I60=I3*120/(120+60)
14 disp(I60)
```

Scilab code Exa 2.31 Problem31

```
1 //Nodal Equation
2
3 Vn=198/10.5
4 I60=Vn/60
5 disp(I60)
```

Scilab code Exa 2.32 Problem32

```
1 V8=2*8
2
3 //KVL
4 I1=(30-16)/10
5
6 //KCL at left node
7 I2=2-I1
8
9 //KVL middle mesh
10 I4=(10*I1-2*I2)/4
```

```
11 Vx=4*I4
12
13 //right node
14 Ix=I4-I2
15
16 disp(Vx)
```

Scilab code Exa 2.33 Problem33

```
1 //////////////////investigate the if
     then else construct
2
3
4
5 I=5
6
7 //KVL
8 R = (-12.5 + 15)/I - 0.02 - 0.035
9 disp(R)
10
11 P=poly([-25,12.5,0.035],"I","coeff")
12 Z=roots(P)
13 Ib=Z(2)
14 disp(Ib)
15
16 I = (13-12.5)/0.035
17 R = (15-13)/I-0.02
18 disp(R)
```

Scilab code Exa 2.35 Problem35

```
1 R=12*12/4-25
2 disp(R)
```

```
3
4 I=sqrt(1.6/1000/10000)
5 R=12/I-10000-15000
6 disp(R)
7
8 I=0
9 V=12
10 disp(V)
```

Scilab code Exa 2.36 Problem36

```
function p=parallel(r1,r2)
p=r1*r2/(r1+r2)
endfunction

Req=1+parallel(parallel(1,1),1)
disp(Req)
```

Scilab code Exa 2.37 Problem37

```
function p=parallel(r1,r2)
p=r1*r2/(r1+r2)
endfunction

R1=parallel(parallel(40,60),80+40)
Req=20+parallel(10+R1,30)
disp(Req)
```

Scilab code Exa 2.38 Problem38

```
1 function p=parallel(r1,r2)
2     p=r1*r2/(r1+r2)
3 endfunction
4
5 R1=parallel(5,40)+15
6 Req=parallel(R1,15)+10
7 i=6/(1000*Req)
8
9 ix=i*R1/(R1+15)
10 disp(ix)
11
12 P=i*i*10000 /////wrongly done in the book as ix*ix *10000
13 disp(P)
```

Scilab code Exa 2.39 Problem39

```
1 function p=parallel(r1,r2)
2     p=r1*r2/(r1+r2)
3 endfunction
4
5 R1=parallel(1,3)
6
7 //convert current source to voltage
8 V=20/1000*2000
9 I=(40-8)/(2+0.75)
10
11 Pr=8*I
12 disp(Pr)
```

Scilab code Exa 2.40 Problem40

```
1 function p=parallel(r1,r2)
       p=r1*r2/(r1+r2)
3 endfunction
5 I1=12/1000
6 Ix=I1*30/(30+60)
7 \text{ disp}(Ix)
9 I2 = 20/1000
10 \quad V2 = I2 * (10 + 5)
11 R1=10+parallel(30,60)
12 I1=V2/R1
13 Ix=I1*30/(30+60)
14 disp(Ix) //Wrongly printed in the book as 10
15
16 \text{ Ix} = 6/1000
17 I1 = (30+60)/30 * Ix
18 V2=I1*R1
19 I2=V2/15
20 disp(I2)
21
22 \text{ Is} = 45
23 I1=45*(10+5)/(10+5+R1)
24 Ix=I1*30/(30+60)
25 disp(Ix) ///Answer is wrong in the book
```

Chapter 3

Fundamentals of Reactive Circuits

Scilab code Exa 3.1 Problem1

Scilab code Exa 3.2 Problem2

```
1 function p=parallel(r1,r2)
2     p=r1*r2/(r1+r2)
3 endfunction
4
```

```
5 Leq=1+parallel(2,2)+parallel(parallel(3,3),3)
6
7 disp(Leq)
```

Scilab code Exa 3.3 Problem3

```
1 function C=seriesC(C1,C2)
        C=C1*C2/(C1+C2)
3 endfunction
5 V = 100
7 \text{ Cp} = 1 + 2
8 Ceq=seriesC(Cp,6)
9 q = Ceq * V
10
11 q1=q*(1/(1+2))
12 q2=q-q1
13
14 disp(q2,q1,q)
15
16 \quad E6 = q * q/2/6/1000
17 E1=q1*q1/2/1/1000
18 E2=q2*q2/2/2/1000
19 Enet=E1+E2+E6
20
21 disp(Enet, E6, E2, E1)
```

Scilab code Exa 3.4 Problem4

```
1 L=poly([3,-4,1],"L","coeff")
2 disp(roots(L))
```

Scilab code Exa 3.5 Problem5

```
1 function C=seriesC(C1,C2)
2     C=C1*C2/(C1+C2)
3 endfunction
4
5 Ceq=1+seriesC(6,3)
6
7 disp(Ceq)
```

Scilab code Exa 3.6 Problem6

```
1 function p=parallel(r1,r2)
2     p=r1*r2/(r1+r2)
3 endfunction
4
5 Lbc=parallel(1/10,1/20)
6 Leq=1/50+Lbc
7 disp(Leq)
8
9 Vbc=Lbc*150
10 disp(Vbc)
```

Scilab code Exa 3.7 Problem7

```
1 function C=seriesC(C1,C2)
2     C=C1*C2/(C1+C2)
3 endfunction
```

```
5  Ceq=seriesC(seriesC(10,20),40)
6  disp(Ceq)
7
8  q=Ceq*280
9  disp(q)
10
11  V1=q/10
12  V2=q/20
13  V3=q/40
14
15  disp(V3,V2,V1)
```

Scilab code Exa 3.8 Problem8

```
1  Ceq=10+20+40
2  Q=200*[10,20,40]
3
4  disp(Q)
5  Qnet=Q(1)+Q(2)+Q(3)
6  disp(Qnet)
```

Scilab code Exa 3.9 Problem9

```
//deactivate all independent sources

function p=parallel(r1,r2)
    p=r1*r2/(r1+r2)
endfunction

L=2
Req=parallel(6,12)+4
T1=L/Req
disp(T1)
```

```
11

12 C=1/2

13 Req=2+parallel(6,12)+2

14 T2=Req*C

15 disp(T2)
```

Scilab code Exa 3.11 Problem11

```
1 L=2
2
3 VL_Ominus=0 //steady state
4 disp(VL_Ominus)
5
6 i_Ominus=1
7 i_Oplus=i_Ominus
8 VL_Oplus=12-4*i_Oplus
9 disp(VL_Oplus)
10
11 di_by_dt_Oplus=VL_Oplus/L
12 disp(di_by_dt_Oplus)
```

Scilab code Exa 3.12 Problem12

```
1 Vc_0m=100

2 Vc_0p=Vc_0m

3 T=(400+100)*2E-6

4 i_0p=100/500

5 P_0p=i_0p^2*400

6 disp(P_0p)
```

Scilab code Exa 3.13 Problem13

```
1  Vc_0m=10
2  Vc_0p=Vc_0m
3  disp(Vc_0p)
4
5  //KVL
6  i1_0p=(10-Vc_0p)/20
7  i2_0p=Vc_0p/20
8
9  //KCL
10  iC_0p=i1_0p-i2_0p
11  disp(iC_0p)
12  iC_inf=0 //capacitor is open circuit
13  disp(iC_inf)
14  VC_inf=10*20/(20+20)
15  disp(VC_inf)
```

Scilab code Exa 3.16 Problem16

```
1 L=0.25
2 R=250
3 V=10
4 T=L/R
5
6 t=0.5E-3
7 i=V/R*(1-exp(-t/T))
8 disp(i)
9
10 t=2E-3
11 i=V/R*((exp((1E-3-t)/T)-exp(-t/T)))
12 disp(i)
```

Scilab code Exa 3.18 Problem18

```
1 R=5000

2 C=1.0E-6

3 Ie=1/1000

4 Vcf=Ie*R

5 T=R*C

6

7 t=10/1000

8 Vc10=Vcf*(1-exp(-t/T))

9 disp(Vc10)

10

11 t=20/1000

12 Vc20=Vcf*(1-exp(-t/T))-Vc10

13 disp(Vc20)
```

Scilab code Exa 3.21 Problem21

```
1 //Replace curr source by voltage source
2 Ics=1/1000
3 R=100*1000
4 V=Ics*R
5
6 Vc_0m=25/(25+100)*V
7 disp(Vc_0m)
8
9 Vc_0p=Vc_0m
10 disp(Vc_0p)
11
12 Vc_inf=(V-10)*25/(100+25)
13 disp(Vc_inf)
```

Scilab code Exa 3.22 Problem22

```
1 L=20/1000
2 VR2_0p=10
3 VR2_inf=0
4 VR2_1=5
5
6 t=1/1000
7 T=-t/log((VR2_1-VR2_inf)/(VR2_0p-VR2_inf))
8
9 R2=L/T
10 R1=1/(2/VR2_0p-1/R2)
11
12 disp(R2,R1)
```

Scilab code Exa 3.24 Problem24

```
1  C=1/4
2  Vc_0m=12/(12+6)*12
3  Vc_0p=8
4  disp(Vc_0p)
5  t=0
6  V_0p=6*cos(t)
7
8  //at t=0+
9  Vth=12/(12+6)*6
10  Rth=6*12/(6+12)
11  ic_0p=(Vth-8)/Rth
12  disp(ic_0p)
13  d_by_dt_Vc_0p=ic_0p/C
14  disp(d_by_dt_Vc_0p)
```

Scilab code Exa 3.26 Problem26

```
1 / at t = 0 -
```

```
2 iL=4
3 v=0
4 disp(v,iL)
5
6 //at t=0+
7 iL=4
8 v=-4*20
9 disp(v,iL)
```

Scilab code Exa 3.27 Problem27

```
1 function p=parallel(r1,r2)
2
       p=r1*r2/(r1+r2)
3 endfunction
5 L=25/1000
7 / at t = 0 -
8 R1=parallel(150,75)
9 iL_0m = 30/2
10 disp(iL_Om)
11
12 R2=parallel(150,50)
13 ix_0m=R2/(R2+75)*30
14 disp(ix_0m)
15
16
17 / at t = 0 +
18 \text{ iL\_Op=iL\_Om}
19
20 T=L/(75+50)
21 iL_inf=0
22
23 / at t = 0.2 ms
24 t=0.2E-3
```

```
25
26 iL=iL_inf+(iL_0p-iL_inf)*exp(-t/T)
27 ix=-iL
28 disp(ix,iL)
```

Scilab code Exa 3.29 Problem29

```
1 R=250
 2 C = 25E - 3
 3
4 / at t = 0 -
5 v_0m = 200*0.2
7 / at t=0+
8 \quad v_0p = v_0m
9
10 T = R * C
11 v_inf=0
12
13 / at t = 0.2 \,\mathrm{ms}
14 t=0.2E-3
15
16 t=T*log((v_0p-v_inf)/(20-v_inf))
17 disp(t)
```

Scilab code Exa 3.32 Problem32

```
1 L=0.2
2 R=50+30
3
4 iL_0m=100/50
5 iL_0p=iL_0m
6 iL_inf=0
```

```
7 T=L/R
8
9 t=10/1000
10 iL_10=iL_0p*exp(-t/T)
11 disp(iL_10)
12
13 t1=-T*log(0.5*iL_0p/(iL_0p))
14 disp(t1)
```

Scilab code Exa 3.33 Problem33

```
1 R=5
2 L=2
3 V=10
4 T=L/R
5
6 iL_m=V/R
7 disp(iL_m)
8 iL_0p=iL_m
9 \text{ iL\_inf} = 2 + V/R
10
11 //function I=iL(t)
          I = i L_i n f + (i L_0 p - i L_i n f) * exp(-t/T)
13 //endfunction
14
15 // disp(iL(0.5))
16 // disp(iL(1.5))
17
18 \ t=0.5
19 I=iL\_inf+(iL\_0p-iL\_inf)*exp(-t/T)
20 disp(I)
21
22 t=1.5
23 I=iL\_inf+(iL\_0p-iL\_inf)*exp(-t/T)
24 disp(I)
```

Scilab code Exa 3.36 Problem36

```
1 L=4/1000
2 R = 1000
3 V=9
4
5 iL_0m=V/(2*R)
6 \text{ iL\_Op=iL\_Om}
7 iL_inf=0
8 isw_inf=V/R
9 T=L/R
10
11 t = 5E - 6
12
13 \text{ iL}_5 = \text{iL}_0 p * \exp(-t/T)
14 disp(iL_5)
15
16 \text{ isw\_5=isw\_inf*}(1-\exp(-t/T))
17 disp(isw_5)
```

Scilab code Exa 3.37.38 Problem37 and 38

```
1 R=20
2 L=2
3 C=1/25
4
5 //at t=0-
6 iR=-4
7 iL=4
8 iC=0
9 vR=-R*4
```

```
10 \text{ vC} = -\text{vR}
11 vL=0
12
13 disp(iR,iL,iC,vR,vL,vC)
14
15 / at t = 0 +
16 iL=iL
17 \text{ vC} = \text{vC}
18 iR = 5 - 4
              //KCL at node 1
19 \text{ vR}=R*iR
              //KCL at node 2
20 iC=4+iR
21 vL=vC+vR //KVL inner mesh
22
23 disp(iR,iL,iC,vR,vL,vC)
24
25
26 //at t=0+ derivatives are
27 \text{ DiL=vL/L}
28 DvC=iC/C
                         // Differentiating KCL at node 1
29 DiR=-DiL
                         // Differentiating KCL at node 2
30 DiC=DiR
31 \text{ DvR} = \text{R} * \text{DiR}
                             // Differentiating KVL inner mesh
32 \text{ DvL} = \text{DvR} + \text{DvC}
33
34 disp(DiR, DiL, DiC, DvR, DvL, DvC)
```

Chapter 4

Steady State Analysis For Sinusoidal Excitation

Scilab code Exa 4.1 Problem1

Scilab code Exa 4.2 Problem2

Scilab code Exa 4.4 Problem4

```
1 ///////part a
2 L=0.05
3 R = 20
4 w = 1.2E3
5 X1 = w * L
6 \ V = complex (100, 200)
7 I = complex(5,0)
9 Xc=-imult(R+imult(X1)-V/I)
10 C=1/w/Xc
11
12 disp(C)
13
14 ////////part b
15 \quad w = 200
16 \ V = complex (100,0)
17 \quad Xl = w * L
18 Xc=-imult(R+imult(X1)-V/I)
19 C=1/w/Xc
20
21 disp(C)
```

Scilab code Exa 4.5 Problem5

```
1 L=0.0255
2 R1=6
3 V=240
4 f=50
5 w=2*%pi*f
6 Va=sqrt(V^2/10)
7 Vb=3*Va
8 X1=w*L
9 Theta1=atan(X1/R1)
```

```
10 Theta2=%pi/2-Theta1 //Va and Vb are in quadrature
11
12 I=Vb/sqrt(R1^2+X1^2)
13
14 R=(Va/I)/sqrt(1+tan(Theta2)^2)
15 disp(R)
16
17 Xc=R*tan(Theta2)
18 C=1/w/Xc
19 disp(C)
```

Scilab code Exa 4.6 Problem6

```
1 Z1=complex(10,15)
2 Z2=complex(6,-8)
3
4 I=complex(15,0)
5 I1=I*Z2/(Z1+Z2)
6 I2=I*Z1/(Z1+Z2)
7 phase=[atan(imag(I1)/real(I1)); atan(imag(I2)/real(I2)))]
8 disp(phase*180/%pi)
9
10 V=I1*Z1
11 disp(180/%pi*atan(imag(V)/real(V)))
```

Scilab code Exa 4.7 Problem7

```
1 function [r,theta]=cart_to_polar(z)
2     x=real(z)
3     y=imag(z)
4     r=norm(z)
5     theta=atan(y/x)
```

```
6 endfunction
8 function Zeq=parallel(Z1,Z2)
       Zeq = Z1 * Z2 / (Z1 + Z2)
9
10 endfunction
11
12 w = 400
13 R = 10
14 L = 25E - 3
15 C=250E-6
16 \ Xl = w * L * \%i
17 Xc = 1/(w*C*\%i)
18
19 ///////part a
20 Zin1=R+Xc
21 [r1, theta1] = cart_to_polar(Zin1)
22 disp(theta1*180/%pi,r1)
23
24 ///////part b
25 // Zin2 = 10 + parallel(Xc, Xl) ///impedence is infinite
      ... thus an error
26 //[r2, theta2] = cart_to_polar(Zin2)
27 disp(90," inf")
28
29
30 ///////part c
31 Zin3=R+parallel(Xc,Xl+10)
32 [r3,theta3]=cart_to_polar(Zin3)
33 disp(theta3*180/%pi,r3)
```

Scilab code Exa 4.8 Problem8

```
1 function [r,theta]=cart_to_polar(z)
2     x=real(z)
3     y=imag(z)
```

```
r = norm(z)
4
       theta = atan(y/x)
5
6 endfunction
  function [x,y]=polar_to_cart(zpolar)
       r=real(zpolar)
9
       theta=imag(zpolar)/180*%pi
10
       x=r*cos(theta)
11
12
       y=r*sin(theta)
13 endfunction
14
15 function Zeq=parallel(Z1,Z2)
16
       Zeq = Z1 * Z2 / (Z1 + Z2)
17 endfunction
18
19 R=200
20 L = 0.5
21 C=50E-6
22 w = 200
23
24 X1 = w * L * %i
25 \text{ Xc} = 1/(w*C*\%i)
26
27 /////////part a
28 Ir=complex (0.02*\cos(30*\%pi/180), 0.02*\sin(30*\%pi/180)
      )
29 V = Ir * R
30 I1=V/X1
31 \text{ Ic=V/Xc}
32 I = Ir + Il + Ic
33 disp(I)
34
35 ///////part b
36 [Ix, Iy] = polar_to_cart(complex(2,-40))
37 I=complex(Ix,Iy)
38 Zin=parallel(parallel(R,Xc),X1)
39 \quad V = Zin * I
40 \text{ Ir=V/R}
```

```
41 disp(V, Ir)
```

Scilab code Exa 4.9 Problem9

```
1 p=poly([0,2,0,-8],"w","coeff")
2 w=roots(p)
3 disp(w(1))
```

Scilab code Exa 4.10 Problem10

```
1 function Zeq=parallel(Z1,Z2)
2    Zeq=Z1*Z2/(Z1+Z2)
3 endfunction
4
5 Zeq=parallel(5,3-imult(6))
6 I=complex(10,0)
7 V=Zeq*I
8 pf=cos(atan(imag(V)/real(V)))
9 P=norm(V)*norm(I)*pf
10 disp(pf,P)
```

Scilab code Exa 4.11 Problem11

```
1 P1=8000
2 pf1=0.8
3 V1=430
4
5 I1=P1/V1/pf1
6 Pr1=P1-I1^2*1
7 Q1=P1*tan(acos(pf1))
```

```
8 Qr1=Q1-I1^2*1.2
9 Sr1=sqrt(Pr1^2+Qr1^2)
10
11 Vl=Sr1/I1
12 Pl=15000
13 Ql=Pl*tan(acos(0.8))
14 Pr2=P1-Pr1
15 \ Qr2 = Ql - Qr1
16 Sr2=sqrt(Pr2^2+Qr2^2)
17
18 I2=Sr2/V1
19 P2=Pr2+I2^2*0.7
20 \quad Q2 = Qr2 + I2^2 * 0.9
21
22 pf = cos(atan(Q2/P2))
23 S2=sqrt(P2^2+Q2^2)
24 V2=S2/I2
25
26 disp(V2,pf,P2,Q2,Q1,V1)
```

Scilab code Exa 4.12 Problem12

```
1  V=231
2  f=50
3  w=2*%pi*f
4  Sl=10
5  pf=0.8
6  Pl=Sl*pf
7  Ql=Sl*sin(acos(pf))
8  Qc=Ql-tan(acos(0.95))*Pl
9
10  C=Qc*1000/V^2/w
11
12  Is1=10*1000/V
13  Il=Is1
```

```
14 Is2=norm(Pl+%i*(Ql-Qc))*1000/V
15
16 disp(Is2,Is1,C,Qc)
```

Scilab code Exa 4.13 Problem13

```
1 function [x,y]=polar_to_cart(r,theta)
       theta=theta/180*%pi
3
       x=r*cos(theta)
       y=r*sin(theta)
5 endfunction
7 //converting v source to curr source
8 V = 15
9 R = 5
10 I1=V/R
11
12
13 [Ix,Iy]=polar_to_cart(2,-30)
14 I2=complex(Ix,Iy)
15
16 //nodal analysis
17 A = [0.7 - 0.1 * \%i, -0.5; -0.5, 0.5 + 0.5 * \%i]
18 V = inv(A) * [I1; I2]
19
20 [rv1, thetav1] = polar(V(1))
21 [rv2, thetav2] = polar(V(2))
22
23 disp(real(thetav2*180/%pi),rv2,real(thetav1*180/%pi)
      ,rv1)
```

Scilab code Exa 4.14 Problem14

```
1 w = 600
2 R = 10
3 L = 10E - 3
4 C=0.5E-3
5 \quad Xl = w * L * \%i
6 Xc=1/(w*C*%i) //Xc value in the book is wrong
7 V1=40
8 \ V2 = complex(0, -30)
9
10 //mesh analysis
11 A = [R + X1, -R; -R, R + Xc]
12 I=inv(A)*[V1; V2]
13
14 Ir=I(1)-I(2)
15 \text{ Vr}=R*Ir
16
17 disp(Vr) //Final answer is different
```

Scilab code Exa 4.15 Problem15

```
1 Z1=complex(2,-1)
2 Z2=complex(0,-5)
3 Z3=complex(2,1)
4 I1=1
5 I2=complex(0,-2)
6
7 //deactivate curr source 2
8 V11=I1*(Z2+Z3)/(Z1+Z2+Z3)*Z1
9 V21=I1*Z1/(Z1+Z2+Z3)*Z3
10
11 //deactivate curr source 1
12 V12=I2*Z3*Z1/(Z1+Z2+Z3)
13 V22=I2*(Z1+Z2)/(Z1+Z2+Z3)*Z3
14
15 V1=V11+V12
```

```
16 V2=V21+V22
17
18 disp(V2,V1)
```

Scilab code Exa 4.16 Problem16

```
1 function [Ra,Rb,Rc]=delta_to_star(Rab,Rbc,Rca)
        X=Rab+Rbc+Rca
3
        Ra=Rab*Rca/X
4
        Rb=Rab*Rbc/X
        Rc = Rca * Rbc / X
6 endfunction
8 function Zeq=parallel(Z1,Z2)
        Zeq = Z1 * Z2 / (Z1 + Z2)
10 endfunction
11
12 V=20
13 w = 2
14 R = 1
15 C = 1/2
16 \text{ Xc} = 1/(w*C*\%i)
17 Zab=-%i
18 \text{ Zbc}=2
19 \text{ Zca=2}
20
21 [Za,Zb,Zc]=delta_to_star(Zab,Zbc,Zca)
22 Zth=Za+parallel(R+Zb,Xc+Zc)
23
24 \text{ Vdc=V*(Zc+Xc)/(R+Zb+Zc+Xc)}
25 disp(Zth, Vdc)
26
27 Isc=Vdc/Zth
28 disp(Zth, Isc)
```

Scilab code Exa 4.17 Problem17

```
1 function Zeq=parallel(Z1,Z2)
       Zeq = Z1 * Z2 / (Z1 + Z2)
3 endfunction
4
5 V=20
6 \quad Z1 = complex(5,10)
7 Z2 = complex(3,-4)
9 Vth = V * Z2/(Z1 + Z2)
10 Zth=parallel(Z1,Z2)
11
12 //by maximum power transfer theorem
13 Z1 = conj(Zth)
14 P=norm(Vth/(Zth+Z1))^2*real(Z1)
15 disp(P,Z1)
16
17 Rl=sqrt(real(Zth)^2+(4+imag(Zth))^2)
18 disp(R1)
```

Scilab code Exa 4.18 Problem18

```
function [x,y]=polar_to_cart(r,theta)
theta=theta/180*%pi

x=r*cos(theta)
y=r*sin(theta)
endfunction

R1=1
R2=6
L=2
```

```
10 C = 1/3
11
12 [Vx, Vy] = polar_to_cart(4,30)
13 [Ix,Iy]=polar_to_cart(0.8,-10)
14
15 //deactivate current source
16 V=complex(Vx,Vy)
17 w = 3
18 X1 = w * L * \%i
19 Xc = 1/(w*C*\%i)
20
21 \quad Ill = V/(R1+R2+X1+Xc)
22 Pav1=norm(Il1)^2*R1
23
24 //deactivate voltage source
25 I = complex(Ix,Iy)
26 w = 5
27 \text{ X1=w*L*%i}
28 \text{ Xc} = 1/(w*C*\%i)
29
30 I12=I*(R2+X1)/(R2+X1+R1+Xc)
31 Pav2=norm(I12)^2*R1
32
33 Pav=Pav1+Pav2
34 disp(Pav)
```

Scilab code Exa 4.21 Problem21

```
1 I=35
2 VR=25
3 Vr1=40
4 VRr1=50
5 Vc=45
6 C=50E-6
7 Xc=Vc/I
```

```
8 w=1/(Xc*C)
9
10 theta=acos((VR^2+VRrl^2-Vrl^2)/(2*VR*VRrl))
11 x=VRrl*cos(theta)-25
12 y=VRrl*sin(theta)
13
14 r=x/I
15 L=y/(I*w)
16 Vappl=sqrt((VR+x)^2+y^2)
17 R=VR/I
18
19 disp(L,r,R)
```

Scilab code Exa 4.22 Problem22

```
1 V=12
2 w=1000
3 R=4
4 L=5E-3
5 C=400E-6
6 X1=w*L*%i
7 Xc=1/(w*C*%i)
8
9 //mesh analysis
10 A=[R+X1,-X1;2-X1,X1+Xc]
11 I=inv(A)*[12;0]
12
13 disp(I(1)) //answer is wrong in the book
```

Scilab code Exa 4.23 Problem23

```
1 function [x,y]=polar_to_cart(r,theta)
2 theta=theta/180*%pi
```

```
x=r*cos(theta)
3
       y=r*sin(theta)
5 endfunction
7 [I1x, I1y] = polar_to_cart(2,10)
8 [I2x,I2y]=polar_to_cart(3,120)
9
10 I1=complex(I1x,I1y)
12 \quad w = 4
13 R=2
14 L=3
15 C = 1/4
16 X1=w*L*%i
17 Xc = 1/(w*C*\%i)
18
19 //deactivate source 2
20 i1 = (R+X1)/(R+X1+Xc)*I1
21 i2=1/(R+X1+Xc)*I2
22 i = i1 + i2
23 disp(i) //answer is wrong in the book
```

Scilab code Exa 4.24 Problem24

```
1 V=230
2 w=2*%pi*50
3 R=8
4 L=0.1
5 C=160E-6
6
7 X1=w*L*%i
8 disp(X1)
9
10 Xc=1/(w*C*%i)
11 disp(Xc)
```

```
12
13  Z=norm(R+X1+Xc)
14  disp(Z)
15  I=V/Z
16  disp(I)
17  pf=cos(atan(norm(X1+Xc)/R))
18  disp(pf)
19
20  Vcoil=I*norm(R+X1)
21  Vc=norm(I*Xc)
22  disp(Vc, Vcoil)
```

Scilab code Exa 4.25 Problem25

```
1 function Zeq=parallel(Z1,Z2)
2
        Zeq = Z1 * Z2 / (Z1 + Z2)
3 endfunction
5 V=100
6 \quad Z1 = complex(0, -5)
7 \quad Z2 = complex(5,0)
8 \quad Z3 = complex(0,5)
9 I = [0, 0, 0]
10
Z=Z1+parallel(Z2,Z3)
12 I(1) = V/Z
13
14 I(2) = Z3/(Z2+Z3)*I(1)
15 I(3)=Z2/(Z2+Z3)*I(1)
16
17 disp(I)
```

Scilab code Exa 4.26 Problem26

```
1 function Zeq=parallel(Z1,Z2)
        Zeq = Z1 * Z2 / (Z1 + Z2)
3 endfunction
5 //converting curr source to v source
6 I = 0.4
7 R1=15
8 V = I * R1
9 w = 400
10
11 R2=5
12 R3=80
13 L = 25E - 3
14 X1 = w * L * \%i
15
16 Zeq=R1+R2+parallel(R3,X1)
17 I = V / Zeq
18 I1=I*R3/(R3+X1)
19 Ix = I * X1 / (R3 + X1)
20
21 disp(I1, Ix)
```

Scilab code Exa 4.27 Problem27

```
1  V=4
2  w=2
3
4  R=4
5  L=2
6  X1=w*L*%i
7
8  I1=V/(X1+R)
9  Xc=-V/imag(I1)
10  C=1/(w*Xc)
11  disp(C)
```

Scilab code Exa 4.28 Problem28

```
1 function [x,y]=polar_to_cart(r,theta)
        theta=theta/180*%pi
        x=r*cos(theta)
4
        y=r*sin(theta)
5 endfunction
7 I = 4
8 w = 500
9 [Ir, Ic] = polar_to_cart(3,40)
10 Ix=complex(Ir,Ic)
11 C=1E-3
12 L = 10E - 3
13 X1=w*L*%i
14 \text{ Xc} = 1/(w*C*\%i)
15
16 Il=I-Ix
17 Ic=Ix
18 \text{ Vc=Ic*Xc}
19 V1=I1*X1
20 \text{ Vx=V1-Vc}
21 \quad disp(Vx)
               //answer wrong in the book
```

Scilab code Exa 4.29 Problem29

```
1  w=10
2  R=2
3  L=0.3
4  Ir=10*(cos(%pi/4)+%i*sin(%pi/4))
5  Vr=Ir*R
```

```
6  Vc=20*(cos(%pi/4)-%i*sin(%pi/4))
7  V=Vr+Vc
8  Ic=Ir
9  C=Ic/(w*Vc*%i)
10  disp(real(C))  /////Wrong in book
```

Scilab code Exa 4.30 Problem30

```
1 R=2000
2 C=5E-6
3 w=1000
4
5 Xc=1/(w*C*%i)
6 Y=1/R+1/Xc
7 Z=1/Y
8 Req=real(Z)
9 Ceq=-1/(imag(Z)*w)
10
11 disp(Ceq*1E6,Req) /////Answer wrong in the book
```

Scilab code Exa 4.31 Problem31

```
1  I=10*(cos(%pi/180*37)-%i*sin(%pi/180*37))
2  V=6
3  C=250E-6
4  w=1000
5  Xc=1/(w*C*%i)
6
7  Ic=V/Xc
8  disp(Ic)
9
10  Ix=imag(I-Ic)
11  X=abs(V/Ix)
```

```
12 Ir=real(I-Ic)
13 R=V/Ir
14
15 disp(R,X)
```

Scilab code Exa 4.32 Problem32

```
1 V1 = 30 + 10 * \%i
2 V2=30
3 w = 1000
4 L=1
5 C1 = 1E - 6
6 C2 = 1E - 6
 7 R1=1000
8 R2 = 1000
9
10 X1 = \%i * w * L
11 Xc1 = \%i/(w*C1)
12 Xc2 = \%i/(w*C2)
13
14 //////mesh equations
15
16 A = [1, \%i; \%i, 1-2*\%i]
17 I = inv(A) * [10 * \%i; 30]
18
19 Ic1=I(1)-I(2)
20
21 disp(Ic1)
```

Scilab code Exa 4.33 Problem33

```
1 function [x,y]=polar_to_cart(r,theta)
2 theta=theta/180*%pi
```

Scilab code Exa 4.34 Problem34

```
1 function [x,y]=polar_to_cart(r,theta)
2
       theta=theta/180*%pi
3
       x=r*cos(theta)
4
       y=r*sin(theta)
5 endfunction
7 [Ir, Ic] = polar_to_cart(2,10)
8 I1=complex(Ir,Ic)
9 [Ir, Ic] = polar_to_cart(3,90+30)
10 I2=complex(Ir,Ic)
11
12 w = 4
13 R = 2
14 L=0.5
15 C = 1/4
16 \ Xl = w * L * \%i
17 Xc=1/(w*C*\%i)
```

```
18
19  // deactivate voltage source
20  i1=I1*(R+X1)/(R+X1+Xc)
21
22  // deactivate curr source
23  i2=I2/(R+X1+Xc)
24
25  i=i1+i2
26  disp(i)
```

Scilab code Exa 4.35 Problem35

```
1 function Zeq=parallel(Z1,Z2)
2
        Zeq = Z1 * Z2 / (Z1 + Z2)
3 endfunction
5 I=10
6 w = 2000
7 R = 200
8 L=0.125
9
10 Xl = w * L * \%i
11
12 Zeq=parallel(R,X1)
13 \quad V = I * Zeq
14 Il=V/Xl
15 Ir=V/R
16
17 t = 1/1000
18 I1=sqrt(2)*real(I*exp(%i*w*t))
19 Il1=sqrt(2)*real(Il*exp(%i*w*t))
20 Ir1=sqrt(2)*real(Ir*exp(%i*w*t))
21 V1=sqrt(2)*real(V*exp(%i*w*t))
22
23 \text{ Ps} = -V1 * I1
```

```
24 Pr=-V1*Ir1
25 Pl=-V1*Il1
26
27 disp(Pl,Pr,Ps)
```

Scilab code Exa 4.36 Problem36

```
1 function [x,y]=polar_to_cart(r,theta)
       theta=theta/180*%pi
3
       x=r*cos(theta)
       y=r*sin(theta)
5 endfunction
7 [Vr, Vc] = polar_to_cart(120,45)
8 V=complex(Vr,Vc)
9
10 [Zr,Zc]=polar_to_cart(16.3,24.5)
11 Z=complex(Zr,Zc)
12
13 w = 50
14
15 I=V/Z
16 P=V*conj(I)
17 Pavg=real(P)
18 pf=real((V/I)/norm(V/I))
19
20 disp(pf,Pavg)
```

Scilab code Exa 4.37 Problem37

```
1 function Zeq=parallel(Z1,Z2)
2 Zeq=Z1*Z2/(Z1+Z2)
3 endfunction
```

```
5 function [x,y]=polar_to_cart(r,theta)
       theta=theta/180*%pi
       x=r*cos(theta)
7
       y=r*sin(theta)
9 endfunction
10
11 [Ir,Ic]=polar_to_cart(20,60)
12 I=complex(Ir,Ic)
13
14 w = 5000
15 R=3000
16 L = 1
17 C=0.25E-6
18 X1 = w * L * \%i
19 Xc = 1/(w*C*\%i)
20
21 Z=parallel(R+X1,Xc)
22 V = I * Z
23 disp(V)
```

Scilab code Exa 4.38 Problem38

```
1 function Zeq=parallel(Z1,Z2)
2     Zeq=Z1*Z2/(Z1+Z2)
3 endfunction
4
5 V=5
6 w=5
7 R=2
8 L1=0.8
9 L2=1
10 C=1/5
11 X11=w*L1*%i
12 X12=w*L2*%i
```

```
13  Xc=1/(w*C*%i)
14
15  Vth=R/(R+X12)*V
16  Zth=Xc+parallel(X12,R)
17  disp(Zth,Vth)
18
19  I=Vth/(Zth+X11)
20  Vl=I*X11
21  S=Vl*conj(I)/2
22  disp(S)
```

Scilab code Exa 4.39 Problem39

```
1 Pm=600
2 Vm=sqrt(3*Pm)
3 f=15.36E6
4 w=2*%pi*f
5 t=20.3E-3
6 theta=%pi/2-modulo(w*t,2*%pi)
7
8 disp(theta*180/%pi)
```

Scilab code Exa 4.40 Problem40

```
1  V=240
2  w=100*%pi
3  R=6
4
5  Vr=120
6  I=Vr/R
7
8  t=(205/I)^2  ///t=r^2+Xl^2
```

Scilab code Exa 4.41 Problem41

```
1  w=2
2  L=1
3  C=0.5
4  X1=w*L*%i
5  Xc=1/(w*C*%i)
6
7  V=1
8  I=V/(1+%i)
9  Y=I/V
10  R=1/real(Y)
11
12  disp(R,Y)
```

Scilab code Exa 4.42 Problem42

```
1 w=400
2 R=5
3 L=25E-3
```

```
4 C=1.25E-3
5 X1=w*L*%i
6 Xc=1/(w*C*%i)
7
8 Z=R+X1+Xc
9 Y=1/Z
10 C=-imag(Y)/w
11 Yn=real(Y)
12 Rn=1/Y
13
14 disp(C)
```

Scilab code Exa 4.43 Problem43

```
1 function Zeq=parallel(Z1,Z2)
2
        Zeq = Z1 * Z2 / (Z1 + Z2)
3 endfunction
5 w = 800
6 R1=10
7 R2 = 20
8 L=0.05
9 C = 0.25E - 3
10 Xl = w * L * \%i
11 Xc = 1/(w*C*\%i)
12
13 Zeq1=R2+parallel(Xc,R1+Xl)
14 Zeq2=parallel(parallel(R1,R2)+Xc,X1)
15
16 disp(Zeq2,Zeq1)
```

Scilab code Exa 4.44 Problem44

```
1  pf=0.707
2  theta=acos(pf)
3  P=200
4  Q=tan(theta)*P
5  pf2=0.85
6  theta_n=acos(pf2)
7  Qn=Q*tan(theta_n)
8  Qc=Q-Qn
9
10  w=314
11  V=2000
12  C=Qc/(V*V*w)
13
14  disp(C)
```

Scilab code Exa 4.45 Problem45

```
1 I=20
2 w = 2000
3 R = 200
4 L=0.25
5 X1=w*L*%i
7 \text{ Ir}=I*X1/(X1+R)
8 Il=I-Ir
9 V1=X1*I1
10
11 \ t=1E-3
12 ir=sqrt(2)*real(Ir*exp(%i*w*t))
13 il=sqrt(2)*real(Il*exp(%i*w*t))
14 vl=sqrt(2)*real(Vl*exp(%i*w*t))
15 is=sqrt(2)*real(I*exp(%i*w*t))
16 \text{ vs=vl}
17
18 Pr=ir*ir*R
```

```
19 Pl=vl*il
20 Ps=is*ir*R
21 Pr=ir*vl
22
23 disp(Ps,Pl,Pr)
```

Scilab code Exa 4.46 Problem46

```
1 V1=1
2 w = 2
3 R=1
4 r = 1/2
5 L=0.5
6 C=1
7 Xl = w * L * \%i
8 Xc = 1/(w*C*\%i)
10 I1=V1/X1
11 VR = I1 * R
12 Vs=V1+VR
13
14 \ Vr = Vs
15 \text{ Ir=Vr/r}
16 Ic=Vs/Xc
17 Is=Ir+Ic+Il
18
19 PR = -VR * VR / R
20 Pr=-Vr*Vr/r
21 Ps=Vs*conj(Is)
22
23 disp(real(Ps),Pr,PR)
```

Scilab code Exa 4.47 Problem47

```
1 V = 10 * \%i
 2 w = 1000
3 R=2
4 L = 2E - 3
5 C=500E-6
6 \quad X1 = w * L * \%i
7 \text{ Xc} = 1/(w*C*\%i)
9 Zeq=X1+Xc+parallel(R,X1)
10 disp(Zeq)
11
12 I = V/Z
13 Ir=I*X1/(R+X1)
14 I12=I-Ir
15 V1 = I * X1
16 \text{ Vc=I*Xc}
17
18 disp(I,Ir,I12,V1,Vc)
```

Scilab code Exa 4.48 Problem48

```
1 function [x,y]=polar_to_cart(r,theta)
2          theta=theta/180*%pi
3          x=r*cos(theta)
4          y=r*sin(theta)
5 endfunction
6
7 [Vr,Vc]=polar_to_cart(100,120)
8 V1=complex(Vr,Vc)
9
10 I=10
11 w=5000
12 R=10000
13 L=2.4E-3
14 C=0.05E-3
```

```
15
16
17 [Vr, Vc] = polar_to_cart(96,60)
18 Vl = complex(Vr, Vc)
19
20 Xl = w * L * %i
21 Xc = 1 / (w * C * %i)
22
23 Il = Vl / Xl
24 Ic = I - Il
25 V2 = (R + Xc) * Ic + V1
26 V3 = V2 - V1
27 V1 = Ic * Xc
28
29 disp(V1, V2, V3)
```

Scilab code Exa 4.49 Problem49

```
1 function Zeq=parallel(Z1,Z2)
2    Zeq=Z1*Z2/(Z1+Z2)
3 endfunction
4
5 ////////short AB
6 Vab=0
7 Isc=50/4
8
9 ////////for Zn
10 Zn=parallel(4,8*%i)
11
12 disp(Isc,Zn)
```

Scilab code Exa 4.50 Problem50

```
1 function Zeq=parallel(Z1,Z2)
2    Zeq=Z1*Z2/(Z1+Z2)
3 endfunction
4
5 V=12*%i
6
7 Vth=4-12*%i/(4-12*%i+6+9*%i)*V
8 Zth=parallel(4-12*%i,6+9*%i)
9
10 I=Vth/(Zth+6+12*%i)
11 S=V*conj(I)
12 disp(S)
13
14 Zl=conj(Zth)
15 I=Vth/(Zth+Zl)
16 S=V*conj(I)
17 disp(Zth,S)
```

Scilab code Exa 4.51 Problem51

```
1 function Zeq=parallel(Z1,Z2)
2     Zeq=Z1*Z2/(Z1+Z2)
3 endfunction
4
5 I=5
6
7 Zth=parallel(40,30*%i)
8 Zl=conj(Zth)
9 Vth=Zth*I
10 Z=Zth+Z1
11 Il=Vth/Z
12 Pmax=abs(Il*Il*real(Z1))
13
14 disp(Zth,Pmax)
```

Scilab code Exa 4.52 Problem52

```
1  V=4*sqrt(2)
2  w=2
3  R=4
4  L=2
5  X1=w*L*%i
6
7  I1=V/(R+X1)
8  Ic=-imag(I1)*%i
9  C=Ic/(V*%i*w)
10
11  disp(C)
```

Chapter 5

Frequency Response

Scilab code Exa 5.1 Problem1

```
1 Q0 = 200
2
3 / a
4 R=1
5 C = 2E - 6
6 L=C/(QO/R)^2
7 disp(L)
9 L=2E-15
10 C = 1.2E - 9
11 R=Q0*sqrt(L/C)
12 disp(R)
13
14 R=118500
15 L=120E-12
16 C=L*(Q0/R)^2
17 disp(C)
```

Scilab code Exa 5.2 Problem2

```
1 R=1000
2 C=49E-6
3 L=13E-3
4
5 w0=1/sqrt(L*C)
6 Q0=w0*R*C
7
8 disp(Q0,w0)
```

Scilab code Exa 5.3 Problem3

```
1 R=5
2 C=0.08E-6
3 L=5E-3
4
5 w0=1/sqrt(L*C)
6 f0=w0/2/%pi
7 Q0=w0*L/R
8 bandwidth=w0/Q0
9 wb=bandwidth
10 w=[w0-1/2*wb,w0+1/2*wb]
11
12 disp(w(2),w(1))
```

Scilab code Exa 5.4 Problem4

```
1 L=40E-6
2 R=4.02
3 f0=800E3
4
5 w0=2*%pi*f0
6 C=1/(w0*w0*L)
7 Q0=w0*L/R
```

```
8 fb=f0/Q0
9
10 Xl=w0*L*%i
11 Xc=1/(w0*C*%i)
12 Zin=R+Xl+Xc
13
14 disp(Zin,fb,C)
```

Scilab code Exa 5.5 Problem5

```
1 G=5E-6
2 L=2E-3
3 I=2E-3
4 w=5000
5
6 C=1/(w*w*L)
7 Vmax=I/G
8 Il=1
9 I=Il*w*L*G
10
11 disp(I,Vmax,C)
```

Scilab code Exa 5.6 Problem6

```
1 w0=1000

2 w2=1050

3 wb=2*(w2-w0)

4

5 Q0=w0/wb

6 disp(Q0)
```

Scilab code Exa 5.7 Problem7

```
1  w0=200E3
2  wb=5E3
3  L=2.5E-3
4  Q=65
5
6  Q0=w0/wb
7  r=w0*L/Q
8
9  disp(r)
```

Scilab code Exa 5.8 Problem8

```
1  C=12E-9
2  L=4E-3
3  R=5
4
5  w0=1/sqrt(L*C)
6
7  Vc=1.5
8  I=w0*C*Vc
9  Zi=R
10  Vi=R*I
11
12  disp(Vi,w0)
```

Scilab code Exa 5.9 Problem9

```
1 w0=2.5E6
2 Zin=60E3
3 Q0=80
```

```
5 R=60E3
6 C=Q0/(w0*R)
7 L=1/(C*w0*w0)
8
9 disp(C,L,R)
```

Scilab code Exa 5.10 Problem10

```
1 C=2.5E-6

2 R=8

3 wb=400

4

5 L=R/wb

6 w0=1/sqrt(L*C)

7 Q0=w0*L/R

8 w1=w0-wb/2

9 w2=w0+wb/2

10

11 disp(w2,w1,Q0,w0,L)
```

Scilab code Exa 5.11 Problem11

```
1 w=1E6
2 wb=1000
3 V=0.05
4 I=5E-3
5
6 R=V/I
7 Q0=w0/wb
8 L=R*Q0/w0
9 C=1/(w0*w0*L)
10 V1=w0*L*I
11 Vc=V1
```

```
12 w1=w0-wb/2

13 w2=w0+wb/2

14

15 disp(w2,w1,Vc,V1,C,L,Q0,R)
```

Scilab code Exa 5.12 Problem12

```
1 R=1E6
2 L=1
3 C=1E-6
4 I=10E-6
5
6 w0=1/sqrt(L*C)
7 V=I*R
8
9 wb=1/(R*C)
10 Q0=w0/wb
11 w1=w0-wb/2
12 w2=w0+wb/2
13
14 disp(w2,w1,V,Q0,w0)
```

Scilab code Exa 5.13 Problem13

```
1 f0=1E6
2 Cmax=500E-12
3 C=450E-12
4 w0=2*%pi*f
5
6 L=1/(w0*w0*Cmax)
7
8 w=1/sqrt(L*C)
9 f=w/(2*%pi)
```

```
10 wb=2*2*%pi*(f-f0)
11 r=wb*L
12 Q0=2*%pi*f*L/r
13
14 disp(Q0,L,r)
15
16 ////// calculation mistakes in book
```

Scilab code Exa 5.14 Problem14

```
1 R=10E3
2 L=50E-3
3 C=100E-6
4
5 w0=1/sqrt(L*C)
6 Q0=w0*R*C
7 alpha=w0/2/Q0
8 zeta=alpha/w0
9 wd=w0*sqrt(1-zeta^2)
10
11 disp(wd,zeta,alpha,Q0,w0)
12
13 ///////calculation mistakes in the book
```

Scilab code Exa 5.15 Problem15

```
1 w0=1000
2 wd=997
3 Yin=1.2E-3
4
5 zeta=sqrt(1-(wd/w0)^2)
6 alpha=zeta*w0
7 R=1/Yin
```

```
8 C=1/(2*alpha*R)
9 L=1/(w0*w0*C)
10
11 disp(C,L,R)
```

Scilab code Exa 5.17 Problem17

```
1 I=1
2 w = 400
3 R = 500
4 L=1/40
5 C=250E-6
6 \quad Xl = w * L * \%i
7 \text{ Xc} = 1/(w*C*\%i)
9 \text{ w0=1/sqrt}(L*C)
10 //////at resonance
11 Ir=I
12 V = R * I
13 I1=V/X1
14 Ic=V/Xc
15 Icir=abs(I1)
16 \text{ Ic+Il=0}
17 \quad Icl=Ic+Il
18
19 disp(Icl,Ic,Il,Ir)
```

Scilab code Exa 5.18 Problem18

```
1 V=100
2 R=10
3 L=2E-3
4 C=200E-6
```

```
5
6 w0=1/sqrt(L*C)
7 X1=w0*L*%i
8 Xc=1/(w0*C*%i)
9 I=V/R
10
11 V1=I*X1
12 Vc=I*Xc
13 V1c=V1+Vc
14
15 disp(V1c,Vc,V1,I,w0)
```

Scilab code Exa 5.19 Problem19

```
1 R=1
2 L = 10E - 6
3 C = 10E - 12
4 V = 10
5
7 w0=1/sqrt(L*C)
8 X1 = w0 * L * \%i
9 Xc=1/(w0*C*%i)
10
11 Q0 = w0 * L/R
12 Z = R * Q0 * Q0
13 Iin=V/Z
14
15 \text{ Ic=V/Xc}
16
17 disp(Ic, Iin, Z, Q0, w0)
```

Scilab code Exa 5.20 Problem20

```
1 V=200
 2 R=2
 3 L=0.02
 4
 5 f = 25
6 w0 = 2 * \%pi * f
 7 C=1/(w0*w0*L)
8 I=V/2
9 \ Vc = 1/(C*w0)
10 disp(I,Vc)
11
12 f=50
13 \text{ w0=2*\%pi*f}
14 C=1/(w0*w0*L)
15 I = V/2
16 \ Vc=1/(C*w0)
17 disp(I,Vc)
18
19 f = 100
20 \text{ w0=2*\%pi*f}
21 C=1/(w0*w0*L)
22 I = V/2
23 \ Vc = 1/(C*w0)
24 disp(I, Vc)
```

Scilab code Exa 5.21 Problem21

```
1 R=10
2 L=0.1
3 C=150E-6
4
5 w=sqrt((1+R*R*C/L)/(L*C))
6 f=w/(2*%pi)
7
8 disp(f)
```

```
9 Req=R/(1-w*w*L*C+(w*R*C)^2)
10 disp(Req)
```

Scilab code Exa 5.22 Problem22

```
1 R=35
2 Q0=50
3 f1=540E3
4 f2=1610E3
5 w1=2*%pi*f1
6 w2=2*%pi*f2
7
8
9 L=1/(w1*(Q0/R))
10 Cmax=(Q0/R)^2*L
11 Cmin=1/(L*w2^2)
12
13 disp(Cmin*1000000, Cmax*1000000, L*1000000)
```

Scilab code Exa 5.28 Problem28

```
function [x,y]=polar_to_cart(r,theta)
theta=theta/180*%pi
x=r*cos(theta)
y=r*sin(theta)
endfunction

[Vr,Vc]=polar_to_cart(4,30)
V=complex(Vr,Vc)

[Ir,Ic]=polar_to_cart(0.8,-10)
I=complex(Ir,Ic)
```

```
13 \text{ wv} = 3
14 \text{ wi=5}
15 R1=1
16 L=2
17 R6=6
18 C = 1/3
19
20 //////deactivating curr source
21 X1=wv*L*%i
22 \text{ Xc} = 1/(\text{wv}*\text{C}*\%i)
23 Il1=V/(R1+R6+X1+Xc)
24 Pav1=norm(Il1)^2*R1
25
26 //////deactivating voltage source
27 X1=wi*L*%i
28 \text{ Xc} = 1/(\text{wi} * \text{C} * \text{%i})
29 I12=I*(R6+X1)/(R6+X1+R1+Xc)
30 Pav2=norm(I12)^2*R1
31
32 Pav=Pav1+Pav2
33
34 disp(Pav)
```

Scilab code Exa 5.29 Problem29

```
1 L=10E-6

2 R=1

3 C=10E-9

4 V=10

5

6 Zmax=L/R/C

7 I=V/Zmax

8 w0=1/sqrt(L*C)

9 w=0.9*w0

10
```

```
11 Y=R*C/L+%i*(w*C-1/w/L)
12 I=norm(Y)*V
13
14 disp(I)
```

Chapter 6

Three Phase Circuits

Scilab code Exa 6.1 Problem1

```
1 function [x,y]=polar_to_cart(r,theta)
        theta=theta/180*%pi
        x=r*cos(theta)
        y=r*sin(theta)
5 endfunction
7 omega=\exp(\%i*120/180*\%pi)
8 \ Va=200
9 \text{ Vb=200/omega}
10 \text{ Vc} = 200 * \text{omega}
11
12 [Zr,Zc]=polar_to_cart(100,60)
13 Z=complex(Zr,Zc)
14
15 Ia=Va/Z
16 \text{ Ib=Vb/Z}
17 Ic=Vc/Z
18
19 disp(Va, Vb, Vc, Ia, Ib, Ic)
```

Scilab code Exa 6.2 Problem2

```
1 V1=400
2 Vph=V1
3 pf=0.8
4
5 Pph=1500/3
6 Iph=Pph/Vph/pf
7 I1=sqrt(3)*Iph
8 theta=acos(0.8)
9 Iph=Iph*exp(%i*theta)
10 Zph=Vph/Iph
11
12 disp(Iph,I1,Zph)
```

Scilab code Exa 6.3 Problem3

```
1 V1=400
2 pf=0.8
3
4 Pph=1200/3
5 Vph=V1/sqrt(3)
6 Iph=Pph/Vph/pf
7 I1=Iph
8 theta=acos(0.8)
9 Zph=Vph/Iph*exp(%i*theta)
10
11 disp(I1,Iph,Zph)
```

Scilab code Exa 6.4 Problem4

```
1 function [x,y]=polar_to_cart(r,theta)
       theta=theta/180*%pi
2
3
       x=r*cos(theta)
       y=r*sin(theta)
5 endfunction
7 V1 = 400
8 Vp=V1/sqrt(3)
9 disp(Vp)
10
11 [Ir, Ic] = polar_to_cart(50, -30)
12 Il=complex(Ir,Ic)
13 Ip=I1
14 \text{ Zy=Vp/Il}
15 \text{ disp}(Zy)
16
17 P = sqrt(3) * V1 * I1 * cos(30/180 * %pi)
18 Q=sqrt(3)*V1*I1*sin(30/180*%pi)
19 disp(P,Q)
```

Scilab code Exa 6.5 Problem5

```
1 V1=400
2 Z=16+%i*12
3
4 Vp=V1
5 Ip=Vp/Z
6 pf=cos(atan(imag(Z)/real(Z)))
7 Il=Ip*sqrt(3)
8
9 P=sqrt(3)*V1*I1*pf
10 Q=sqrt(3)*V1*I1*sin(acos(pf))
11
```

```
12 S=P+%i*Q
13
14 disp(Ip,Il,pf,P,Q,S)
```

Scilab code Exa 6.6 Problem6

```
1 V1=400
2 Zload=60+%i*15
4 Vs=V1/sqrt(3)
5 \ Z=0.3+\%i*1+Zload
7 Il=Vs/Z
8 Vload=I1*Zload*sqrt(3)
9 Pload=3*Il*Il*real(Zload)
10 Qload=3*Il*Il*imag(Zload)
11 Sload=Pload+%i*Qload
12
13 /////////ll = lineloss
14 Pll=3*Il*Il*real(Z-Zload)
15 Qll=3*Il*Il*imag(Z-Zload)
16 S11=P11+%i*Q11
17
18 Ssource=Sload+Sll
20 disp(Il, Vload, Sload, Sll, Ssource)
```

Scilab code Exa 6.7 Problem7

```
1  Ig1=200000/sqrt(3)/11000/0.75
2  PG1=200000
3  QG1=200000*tan(acos(0.75))
4  SG1=PG1+%i*QG1
```

```
5
6 Pll=3*Ig1*Ig1*1
7 Qll=3*Ig1*Ig1*2.2
8 Sll=Pll+%i*Qll
9 S1G1=SG1-S11
10 V1=S1G1/sqrt(3)/Ig1
11
12
13 P1=400000
14 Ql = 400000 * tan(acos(0.8))
15 PlG2=Pl-real(SlG1)
16 QlG2=Ql-imag(SlG1)
17 SlG2=PlG2+%i*QlG2
18
19 IG2=S1G2/sqrt(3)/V1
20
21 Pll2=3*IG2*IG2*0.6
22 Q112=3*IG2*IG2*1.2
23
24 PG2=P1G2+P112
25 \quad QG2 = Q1G2 + Q112
26 \text{ SG2} = \text{PG2} + \% i * \text{QG2}
27 VG2=SG2/sqrt(3)/IG2
28
29 disp(norm(SG2),norm(VG2))
```

Scilab code Exa 6.9 Problem9

```
function [x,y]=polar_to_cart(r,theta)
theta=theta/180*%pi
x=r*cos(theta)
y=r*sin(theta)
endfunction
```

```
8 [Ir, Ic] = polar_to_cart(20, -30)
9 Iab=complex(Ir,Ic)
10
11 omega=exp(%i*120/180*%pi)
12 Ibc=Iab/omega
13 Ica=Iab*omega
14
15 IAa=Iab-Ica
16 Pab=Vl*norm(Iab)*cos(30/180*%pi)
17 Ptotal=3*Pab
18
19 Zp=V1/Iab
20 Rp=real(Zp)
21
22 disp(IAa)
23 disp(Ptotal)
24 disp(Rp)
```

Scilab code Exa 6.10 Problem10

```
1 omega=exp(%i*120/180*%pi)
2
3 Zp=17.32+%i*10
4 Vab=400
5 Iab=Vab/Zp
6 Ica=Iab/omega
7 IAa=Iab-Ica
8 IBb=IAa/omega
9 ICc=IAa*omega
10 disp(ICc,IBb,IAa)
11
12 Pab=(norm(Iab)^2)*real(Zp)
13 Ptotal=3*Pab
14 disp(Ptotal)
15
```

```
16 Itotal=IAa+IBb+ICc
17 disp(Itotal)
```

Scilab code Exa 6.11 Problem11

```
1 omega=exp(%i*120/180*%pi)
2
3 function [x,y]=polar_to_cart(r,theta)
       theta=theta/180*%pi
       x=r*cos(theta)
       y=r*sin(theta)
6
7 endfunction
9 [Zr,Zc]=polar_to_cart(5,60)
10 Z=complex(Zr,Zc)
11
12 [Vr, Vc] = polar_to_cart(25,30)
13 Van=complex(Vr,Vc)
14
15 Ian=Van/Z
16 Ibn=Ian/omega
17 Icn=Ian*omega
18
19 Vcn=Van*omega
20 Vac=Van-Vcn
21
22 disp(Ibn, Icn, Vac)
```

Scilab code Exa 6.12 Problem12

```
1 V=400
2 w=2*50*%pi
3 P=25000
```

```
4 pf1=0.7
5 theta1=acos(pf1)
6 Il1=P/(sqrt(3)*V*pf1)*exp(-%i*theta1)
7 Ip1=Il1/sqrt(3)
8
9
10 pf2=0.85
11 theta2=acos(pf2)
12 I12=P/(sqrt(3)*V*pf2)*exp(-%i*theta2)
13 Ip2=I12/sqrt(3)
14
15 Ic=Ip2-Ip1
                                    ///calculation
     mistake in the book at this step
16 C=real(Ic/(V*w*%i))
17 disp(C)
```

Scilab code Exa 6.13 Problem13

```
1  omega=exp(%i*120/180*%pi)
2  Vrn=400/sqrt(3)
3  Vyn=Vrn/omega
4  Vbn=Vrn*omega
5
6  P1=4000
7  P2=8000
8  P3=12000
9
10  Ir=conj(P1/Vrn)
11  Iy=conj(P2/Vyn)
12  Ib=conj(P3/Vbn)
13
14  In=Ir+Iy+Ib
15
16  disp(norm(Ir),norm(Iy),norm(Ib),norm(In))
```

Scilab code Exa 6.14 Problem14

```
1 function [x,y]=polar_to_cart(r,theta)
       theta=theta/180*%pi
       x=r*cos(theta)
3
       y=r*sin(theta)
4
5 endfunction
8 \text{ Vbc} = -400 * \%i
9 R1=1
10
11 [Sr,Sc]=polar_to_cart(10000,acos(0.8))
12 S=complex(Sr,Sc)
13
14
15 \text{ Vl=Vbc}
16 Il=norm(S/(sqrt(3)*V1))
                                     //////calculation
      mistake in book here
17 P=3*I1*I1*R1
18 disp(P)
19
20 Van=norm(Vbc/sqrt(3))
21
22 Ia=I1*exp(-\%i*acos(0.8))
23 omega=exp(%i*120/180*%pi)
24 Ib=Ia/omega
25
26 disp(Van, Ia, Ib)
```

Scilab code Exa 6.15 Problem15

```
1 function [x,y]=polar_to_cart(r,theta)
2
       theta=theta/180*%pi
       x=r*cos(theta)
3
       y=r*sin(theta)
4
5 endfunction
7 [Vr, Vc] = polar_to_cart(231,60)
8 Van=complex(Vr,Vc)
9
10 Sp=(2.5-\%i*1.2)*1000
11
12 omega = exp(\%i*120/180*\%pi)
13 Vbn=Van/omega
14 \ Vcn=Van*omega
15
16 Vbc=Vbn-Vcn
17
18 Ibc=conj(Sp/Vbc)
19 Ica=Ibc*omega
20 Iab=Ibc/omega
21
22 IaA=Ica-Iab
23
24 disp(IaA)
```

Scilab code Exa 6.16 Problem16

```
1 omega=exp(%i*120/180*%pi)
2 Vab=400
3 Vca=400*omega
4 Vbc=400/omega
5
6 //Mesh Method
7 A=[80+100*%i,100*%i;100*%i,50*%i]
8 I=inv(A)*[-Vca;Vbc]
```

```
9 Ia=I(1)

10 Ib=I(2)

11

12 Ic=-(Ia+Ib)

13 Van=80*Ia

14 Vbn=-50*%i*Ib

15 Vcn=100*%i*Ic

16

17 disp(Ia,Ib,Ic,Van,Vbn,Vcn)
```

Scilab code Exa 6.17 Problem17

Scilab code Exa 6.18 Problem18

```
1 V=400
2 P=900
3 pf=0.8
```

```
4
5  Pph=P/3
6  Vph=V/sqrt(3)
7  Iph=Pph/Vph/pf
8  Zph=Vph/Iph
9  theta=acos(pf)
10  Zph=Zph*exp(-%i*theta)
11  disp(Zph)
```

Scilab code Exa 6.19 Problem19

```
1  V=400
2  Z=complex(40,30)
3
4  Iph=V/Z
5  Il=sqrt(3)*norm(Iph)
6  Ptotal=sqrt(3)*Il*V*cos(atan(imag(Z)/real(Z)))
7
8  disp(Iph,Il,Ptotal)
```

Scilab code Exa 6.20 Problem20

```
1    Ig1=15000/sqrt(3)/800/0.8
2    PG1=15000
3    QG1=15000*tan(acos(0.8))
4    SG1=PG1+%i*QG1
5
6    Pl1=3*Ig1*Ig1*1.2
7    Ql1=3*Ig1*Ig1*1.8
8    Sl1=Pl1+%i*Ql1
9    SlG1=SG1-Sl1
10    Vl=SlG1/sqrt(3)/Ig1
```

```
12
13 P1=30000
14 Q1=30000*tan(acos(0.8))
15 PlG2=Pl-real(SlG1)
16 QlG2=Ql-imag(SlG1)
17 S1G2=P1G2+%i*Q1G2
18
19 IG2=S1G2/sqrt(3)/V1
20
21 Pll2=3*IG2*IG2*0.8
22 Q112=3*IG2*IG2*1.2
23
24 PG2=P1G2+P112
25 QG2=Q1G2+Q112
26 \text{ SG2} = \text{PG2} + \% \text{i} * \text{QG2}
27 VG2=SG2/sqrt(3)/IG2
28
29 disp(norm(SG2),norm(VG2))
```

Scilab code Exa 6.21 Problem21

```
1 omega=exp(%i*120/180*%pi)
2 w=2*50*%pi
3 Vry=415
4 Vyb=Vry/omega
5 Vbr=Vry*omega
6
7 C=40E-6
8 Zry=100
9 Zyb=complex(20,60)
10 Zbr=1/(%i*w*C)
11
12 I1=Vry/Zry
13 I2=Vyb/Zyb
14 I3=Vbr/Zbr
```

Chapter 7

Magnetic Circuits

Scilab code Exa 7.1 Problem1

```
1  uo=(4*%pi)*1E-7
2
3  i1=5
4  i2=2.5
5  r=0.4
6  H=i1/(2*%pi*r)
7
8  F=uo*H*i2  /////// attractive
9  ur=8000
10  Firon=ur*F
11
12  disp(H,F,Firon)
```

Scilab code Exa 7.2 Problem2

```
1 1=0.15
2 i1=50
3
```

```
4 H1=i1/(2*%pi*(0.1+1))
5 i2=-H1*(2*%pi*0.1)
6
7
8 disp(i2)
```

Scilab code Exa 7.3 Problem3

```
1 Ha=4/(2*%pi*0.2)
2 Hb=Ha
3 H=sqrt(Ha^2+Hb^2)
4 theta=(%pi+atan(-Hb/Ha))*180/%pi
5
6 disp(H,theta)
```

Scilab code Exa 7.4 Problem4

```
1  uo=(4*%pi)*1E-7
2
3  Bg=1.2
4  N=400
5  ur=4000
6
7  lc=(2*(20-4+16-4)-0.2)/100
8  Ac=4/100*4/100
9  Rc=lc/(ur*uo*Ac)
10
11  lg=0.2/100
12  Rg=lg/(uo*Ac)
13
14  R=Rc+Rg
15
16  flux=Bg*Ac
```

```
17 i=flux*R/N
18
19 disp(i)
```

Scilab code Exa 7.5 Problem5

```
1 function Zeq=parallel(Z1,Z2)
2
        Zeq = Z1 * Z2 / (Z1 + Z2)
3 endfunction
5 uo = (4*\%pi)*1E-7
6 \text{ fluxg1=0.8E-3}
8 lg1=0.02/100
9 lg2=0.02/100
10 \log 3 = 0.025/100
11 Ag1=2/100*1/100
12 \text{ Ag2} = 1/100 * 1/100
13 Ag3=1/100*1/100
14
15 Rg1=lg1/(uo*Ag1)
16 \text{ Rg2=lg2/(uo*Ag2)}
17 Rg3=lg3/(uo*Ag3)
18 Req=Rg1+parallel(Rg2, Rg3)
19
20 MMF=fluxg1*Req
21
22 disp(MMF)
```

Scilab code Exa 7.6 Problem6

```
1 uo=(4*%pi)*1E-7
2 ur=4000
```

```
3 fluxc=0.01
4 N = 500
6 L1 = (2*(20+4)+25+4)/100
7 Lc = (25+4)/100
8 Lr=Ll-0.02/100
9 Lg=0.02/100
10 \quad A = 4/100 * 4/100
11
12 R1=L1/(ur*uo*A)
13 Rc=Lc/(ur*uo*A)
14 Rr=Lr/(ur*uo*A)
15 Rg=Lg/(uo*A)
16
17 Fab=fluxc*Rc
18 fluxr=Fab/(Rr+Rg)
19 flux1=fluxc+fluxr
20
21 F = fluxl*Rl+Fab
22 I = F/N
23
24 disp(I)
```

Scilab code Exa 7.7 Problem7

```
1 uo=(4*%pi)*1E-7
2
3 11=50/100
4 12=20/100
5 13=50/100
6 1bc=0.025/100
7
8 A1=25E-4
9 A2=12.5E-4
10 A3=25E-4
```

```
11
12 \text{ fluxg} = 0.75E-3
13
14 B=fluxg/A1
15 \text{ Fbc=B/uo*lbc}
16
17 Hcd=200
18 Hab=Hcd
19 Fabcd=Hab*l1
20 Fad=Fbc+Fabcd
21 \text{ Had=Fab/}12
22 Bad=1.04
23 fluxad=Bad*A2
24
25 fluxdea=fluxad+fluxg
26 Bdea=fluxdea/A3
27 \text{ Hdea} = 500
28 \text{ Fdea=Hdea*} 13
29
30 \text{ F=Fdea+Fad}
31
32 disp(F)
```

Scilab code Exa 7.8 Problem8

```
1  uo=(4*%pi)*1E-7
2  ur=3000
3  Ac=10/100*10/1000
4  Bc=1.4
5  Hc=Bc/(uo*ur)
6  lc=150/100
7  Ftotal=Hc*lc
8
9  N2=800
10  I2=2
```

```
11 F2=N2*I2
12 F1 = Ftotal - F2
13
14 N1=400
                 ///out of terminal a
15 I1 = F1/N1
16 disp(I1)
17
18
19 Bc=1.4
20 fluxc=Bc*Ac
21 Rc=lc/(Ac*uo*ur)
22 \text{ Wf} = 1/2 * \text{Rc} * \text{fluxc} * \text{fluxc}
23 disp(Wf)
24
25
26
27 L1 = N1 * N1/Rc
28 L2 = N2 * N2/Rc
29 \quad M = sqrt(L1*L2)
30 disp(M)
```

Scilab code Exa 7.9 Problem9

```
1  uo=(4*%pi)*1E-7
2  ur=6000
3  A=5/2*2/10000
4  Lr=(%pi*(20+25)/2-0.1)/100
5  Lg=0.1/100
6  Rr=Lr/(uo*ur*A)
7  Rg=Lg/(uo*A)
8  Rtotal=Rr+Rg
9
10  F=2*500
11  flux=F/Rtotal
12  Bg=flux/A
```

```
13 disp(Bg)
14
15 L = flux * 500/2
16 disp(L)
17
18 Wfr=1/2*Rr*flux*flux
19 Wfg=1/2*Rg*flux*flux
20 disp(Wfg,Wfr)
21
22 imax=2
23 flux_max=flux
24 E=4.44*314/(2*\%pi)*500*flux_max
25 flux_max2=100/(sqrt(2)*4.44*314/(2*%pi)*500)
26 Fmax2=flux_max2*Rtotal
27 \quad \text{imax2=Fmax2/500}
28 disp(imax2)
```

Scilab code Exa 7.10 Problem10

```
1 Ac = 12/10000
2 Fmin=160*9.81
3 B=sqrt(Fmin*2*uo/Ac)
4
5 H = 2800
6 L = 75/100
7 F = H * L
8 \text{ Lg=0.1/1000}
9 \quad A = 24/10000
10 Rg=Lg/(uo*A)
11 fluxg=B*A
12 Fg=fluxg*Rg
13
14 Ftotal=F+Fg
15 imin=Ftotal/1000
16 disp(imin)
```

Scilab code Exa 7.11 Problem11

```
1 Wm1=1/2*(1200-750)*0.012
2 disp(Wm1)
3
4 flux_g=0.012/750*1200
5 Wm2=1/2*(flux_g-0.012)*1200
6 disp(Wm2)
7
8 Ra=1200/0.012
9 Rb=1200/flux_g
10 Fo=-1/2*(0.012^2)*0.75*10^6
11 Fc=-1/2*(flux_g^2)*0.75*10^6
12 disp(Fc,Fo)
```

Scilab code Exa 7.12 Problem12

```
1 V1=10
2
3 //Mesh Method
4 A=[1+10*%i,-80*%i;80*%i,-500-800*%i]
5 I=inv(A)*[V1;0]
6
7 V2=500*I(2)
8
9 disp(V1,V2,I)
```

Scilab code Exa 7.14 Problem14

```
1  uo=(4*%pi)*1E-7
2  ur=1600
3
4  lc=160/100
5  lg=0.8/1000
6  A=5/10000
7  N=1200
8
9  Rc=lc/(uo*ur*A)
10  Rg=lg/(uo*A)
11  R=Rc+Rg
12
13  L=N*N/R
14  disp(L)
```

Scilab code Exa 7.15 Problem15

```
1 N = 100
2 11=0.15
3 12 = 0.3
4 13 = 0.45
5 \quad A = 0.001
7 ur1=1447
8 ur2=5969
9 ur3=47750
10
11 flux=0.6E-3
12
13 B=flux/A
14
15 H1=B/(uo*ur1)
16 H2=B/(uo*ur2)
17 H3=B/(uo*ur3)
18 disp(H1,H2,H3)
```

```
19
20 F=H1*11+H2*12+H3*13
21 disp(F)
22
23 I=F/N
24 disp(I)
```

Scilab code Exa 7.16 Problem16

```
1 Pl1=1500
2 f1=50
3 Pl2=3000
4 f2=75
5
6 Y=[1,f1;1,f2]
7 X=inv(Y)*[Pl1/f1;Pl2/f2]
8
9 Ph1=X(1)*f1
10 Pe1=X(2)*f1*f1
11 Ph2=X(1)*f2
12 Pe2=X(2)*f2*f2
13
14 disp(Ph1,Pe1,Ph2,Pe2)
```

Scilab code Exa 7.17 Problem17

```
1  uo=(4*%pi)*1E-7
2  F=750*1
3  disp(F)
4
5  dm=(16+20)/200
6  lc=dm*%pi
7  Hc=F/lc
```

```
8 disp(Hc)
10 \text{ flux} = 1.25/1000
11 Ac=(20-16)*2.5/10000
12 Bc=flux/Ac
13 disp(Bc)
14
15 R=F/flux
16 disp(R)
17
18 \quad u = Bc/Hc
19 disp(u)
20
21 \text{ ur=u/uo}
                         //calculation mistake in the book
22 disp(ur)
      here
```

Scilab code Exa 7.18 Problem18

```
1 fluxc=1.5E-3
2 Ac=12/10000
3 Bc=fluxc/Ac
4 Hc=1250
5 lc=0.3
6 F=Hc*lc
7
8 Fa=200*1
9 Fb=600*0.75
10
11 Fc=F-Fb+Fa
12 Nc=Fc/0.5
13 disp(Nc) ///clockwise5
```

Scilab code Exa 7.19 Problem19

```
1 uo=(4*%pi)*1E-7
2 ur=2000
3 V=200
4 f=50
5 N = 1600
6 \text{ Ac} = 5/10000
8 \text{ flux_max=V/(4.44*f*N)}
9 Bmax=flux_max/Ac
10 disp(Bmax)
11
12 Rc = 20/100/(uo*ur*Ac)
13 Rg=0.5/1000/(uo*Ac)
14 R = Rc + Rg
15
16 \quad imax = flux_max * R/N
17 disp(imax)
18
19 Wfmax=1/2*R*(flux_max^2)
20 disp(Wfmax)
21
22 \text{ percent} = Rg/R*100
23 disp(percent)
```

Chapter 8

Transformers

Scilab code Exa 8.1 Problem1

```
1 V1=3300
2 f = 50
3 N1=100
4 N2=300
5 Z=100+35*\%i
6 flux_max=V1/(sqrt(2)*%pi*f*N1)
7 V2 = V1 * N2 / N1
8 I2 = V2/Z
9 I1=N2/N1*I2
10 S=V1*conj(I1)
11 \quad Z1 = Z * (N1/N2)^2
12
13 disp(flux_max)
14 disp(I1,I2)
15 disp(real(S),imag(S))
16 disp(Z1)
```

Scilab code Exa 8.2 Problem2

```
1 a = 2400/240
3 R=0.2+a*a*2/1000
4 X=0.6+a*a*6/1000
5 \text{ disp}(R,X)
7 Rlv=1/a/a*R
8 \text{ Xlv=1/a/a*X}
9 disp(Rlv,Xlv)
10
11 I2=150*1000/2400
12 Z=R+\%i*X
13 V = I2 * Z
14 pcnt=norm(V)/2400*100
15 disp(V,pcnt)
16
17 \text{ Im} = 2400/1600
18 Ii=2400/10000
19 Io=Ii-\%i*Im
20 pf=cos(atan(imag(Io)/real(Io)))
21 disp(Io,pf)
```

Scilab code Exa 8.3 Problem3

```
1 P=200E3
2 V1=11000
3 V2=415
4 f=50
5 N2=80
6
7 N1=V1/V2*N2
8 a=N1/N2
9 disp(a)
10
11 I2=P/V2
```

```
12 disp(I2)

13 I1=I2/a

14 disp(I1)

15

16 Z2=V2*V2/P

17 disp(Z2)

18 Z21=Z2*a*a

19 disp(Z21)
```

Scilab code Exa 8.4 Problem4

```
1 V1=200
2 f = 50
3 N1=150
4 Ac=10*5/10000
5
7 Flux_max=V1/(sqrt(2)*%pi*f*N1)
8 Bmax=Flux_max/Ac
9 Hmax = 250
10 \quad 1=2*(25+10)+2*(20+10)
11 1=1/100
12 \quad AT_max = Hmax * 1
13 Im_max = AT_max/150
14 Im_rms=Im_max/sqrt(2)
15 disp(Im_rms)
16
17 Fe_loss=23000
18
19 \text{ Cv} = 2*(25+2*10)*10*5 + 2*20*10*5
20 \text{ Cv} = \text{Cv} / 1000000
21 Cl=Fe_loss*Cv
22 disp(C1)
23
24 \text{ Ii} = 150/V1
```

Scilab code Exa 8.5 Problem5

```
1 function [x,y]=polar_to_cart(r,theta)
       theta=theta/180*%pi
3
       x=r*cos(theta)
       y=r*sin(theta)
5 endfunction
7 [Zr,Zc]=polar_to_cart(5,30)
8 Z2=complex(Zr,Zc)
9
10 V=200
11 N2 = 75
12 N1=100
13
14 I2=V/Z2
15 I1=N2/N1*I2
16
17 disp(norm(I1))
18 disp(" lagging", real(I1)/norm(I1))
```

Scilab code Exa 8.6 Problem6

```
1 R=60
2 V=6
3 Rs=2400
4
5 a=sqrt(Rs/R)
6 disp(a)
7
8 Pl_max=1/2*(R*R)/(Rs+Rs)
```

```
9 I1=V/2/Rs
10
11 I1=I1*a
12 disp(I1)
13 V1=V/2/a
14 disp(V1)
```

Scilab code Exa 8.7 Problem7

```
1 f=50
2 a=1100/220
3 \text{ Rhv} = 0.125
4 \text{ Xhv} = 0.625
5 \text{ Rlv} = 0.005
6 \text{ Xlv} = 0.025
8 \quad Zhv = Rhv + \%i * Xhv
9 Zlv = Rlv + \%i * Xlv
10
11 \quad Z1 = Zhv + a*a*Zlv
12 disp(Z1)
13 \quad Z2=Z1/a/a
14 disp(Z2)
15
16 Zpu1=Z1*0.05/1.1/1.1
17 disp(Zpu1)
18 Zpu2=Z2*0.05/0.22/0.22
19 disp(Zpu2)
```

Scilab code Exa 8.8 Problem8

```
1 P=600E3
2 a=2400/600
```

```
3 \text{ r1}=0.05
4 r2=0.004
5 x1=0.025
6 x2=0.016
7 R1=1667
8 \text{ Xm} = 417
10 ////As seen from the LV side
11
12 Zlv=r2+\%i*x2+1/a/a*(r1+\%i*x1)
13 disp(Zlv)
14
15 \text{ RiLV}=R1/a/a
16 disp(RiLV)
17 \text{ XmLV} = \text{Xm/a/a}
18 disp(XmLV)
19
20
21 \text{ Zpu=Zlv*0.6/0.6/0.6}
22 disp(Zpu)
23 Ri=RiLV*0.6/0.6/0.6
24 disp(Ri)
25 \text{ Xm} = \text{XmLV} * 0.6/0.6/0.6
26 disp(Xm)
```

Scilab code Exa 8.9 Problem9

```
1  P=50E3
2  a=2200/220
3
4  ////OC Parameters
5  Poc=405
6  Ioc=5
7  Voc=220
```

```
9 ////SC Parameters
10 \, \text{Psc} = 805
11 \, \text{Isc} = 20.2
12 \ Vsc = 95
13
14
15 \quad YO = Ioc/Voc
16 Gi=Poc/Voc/Voc
17 Bm = sqrt(Y0 * Y0 - Gi * Gi)
18
19 Z=Vsc/Isc
20 R=Psc/Isc/Isc
21 X = sqrt(Z*Z-R*R)
22
23 /////// Referred to HV side
24 GiHV=Gi/a/a
25 disp(GiHV)
26 \text{ BmHV=Bm/a/a}
27 disp(BmHV)
28 disp(R)
29 disp(X)
30
31 //////// Referred to LV side
32 disp(Gi)
33 disp(Bm)
34 \text{ RLV=R/a/a}
35 disp(RLV)
36 \text{ XLV=X/a/a}
37 disp(XLV)
38
39
40 ///////Per unit
41 GiPU=GiHV/0.0103
42 BmPU=BmHV/0.0103
43 RPU=R/96.8
44 \text{ XPU} = X/96.8
45 disp(GiPU)
46 disp(BmPU)
```

```
47 disp(RPU)
48 disp(XPU)
```

Scilab code Exa 8.10 Problem10

```
1 P=50E3
2 a = 2200/110
4 ////OC Parameters
5 \text{ Poc} = 400
6 \, \text{Ioc} = 10
7 \ Voc = 110
9 \text{ YO=Ioc/Voc}
10 Gi=Poc/Voc/Voc
11 disp(Gi)
12 Bm=sqrt(Y0*Y0-Gi*Gi)
13 disp(Bm)
14
15 //////// Referred to HV side
16 GiHV=Gi/a/a
17 disp(GiHV)
18 BmHV=Bm/a/a
19 disp(BmHV)
20
21 //////Per unit
22 GiPU=Gi*P/Voc/Voc
23 \quad BmPU=Bm*P/Voc/Voc
24 disp(GiPU)
25 disp(BmPU)
```

Scilab code Exa 8.11 Problem11

```
1 P=25000
 2 V1=2200
3 V2 = 220
4 a = V1/V2
5 f=50
6 r1=2
7 r2=0.025
8 x 1 = 7
9 \times 2 = 0.07
10 \text{ Xm} = 16000
11
12 \text{ Im} = V2 / Xm
13 disp("pf=0, 90 degree lag Po=0", Im)
14
15 R=r1+a*a*r2
16 \quad X = x1 + a * a * x2
17 Z = sqrt(R*R+X*X)
18 Ifl=P/V1
19 Vsc=Z*If1
20 Vsc_percent=Vsc/V1*100
21 disp(Vsc, Vsc_percent)
22 \text{ Im} = Vsc/Xm
23 Im_percent=Im/Ifl*100
24 disp(Im, Im_percent)
25
26 \text{ Sc_pf} = \cos(\arctan(X/R))
27 disp(Sc_pf)
28
29 ///////Per unit
30 ZBpu=1000*2.2*2.2/25
31 r1pu=r1/193.6
32 r2pu=a*a*r2/193.6
33 \text{ x1pu} = \text{x1}/193.6
34 \text{ x2pu=a*a*x2/193.6}
35
36 Rpu=r1pu+r2pu
37 \text{ Xpu}=x1pu+x2pu
38
```

```
39 Xmpu=Xm/193.6
40 disp(Rpu, Xpu, Xmpu)
```

Scilab code Exa 8.12 Problem12

```
1 P=10000
2 v1=2300
3 v2 = 230
4 a = v1/v2
5 f = 50
6 \text{ r1}=3.96
7 r2=0.0396
8 x1=15.8
9 x2=0.158
10
11 R=r1+a*a*r2
12 X = x1 + a * a * x2
13 \ V2 = v2 * a
14 I = P/V2
15 theta=acos(0.80)
16 V1=V2+I*(R*cos(theta)+X*sin(theta))
17 disp(V1)
18 \text{ VR} = (V1 - V2) / V2
19 disp(VR)
20
21 \text{ pf=X/sqrt}(R*R+X*X)
22 theta2=acos(pf)
23 Il=I*(cos(theta)-\%i*sin(theta))
24 Ic=real(I1*tan(theta2))-imag(I1)
25 Rating_Cap=V2*Ic
26 disp(Rating_Cap)
27 V1=V2
28 disp(V1)
```

Scilab code Exa 8.13 Problem13

```
1 P=100000
 2 N1 = 400
3 N2 = 100
4 a=N1/N2
5 \text{ r1=0.3}
6 \text{ r2=0.015}
7 x1=1.1
8 x2=0.055
9 V1 = 2400
10
11 R=r1+a*a*r2
12 disp(R)
13 X = x1 + a * a * x2
14 disp(X)
15
16 I1=P/V1
17 pf=0.8
18 theta=acos(pf)
19 Vd=I1*(R*cos(theta)+X*sin(theta))
20 \text{ VR} = \text{Vd} / \text{V1} * 100
21 V2 = (V1 - Vd)/a
22 disp(VR, V2)
23 Vd=I1*(R*cos(theta)-X*sin(theta))
24 \text{ VR=Vd/V1*100}
25 V2 = (V1 - Vd)/a
26 disp(VR, V2)
27
                                      ////wrong in the book
28 pf = cos(atan(R/X))
29 disp("leading",pf)
```

Scilab code Exa 8.14 Problem14

```
1 P=10000
2 v1 = 2300
3 v2 = 230
4 a = v1/v2
5 f = 50
6 \text{ r1}=3.96
7 r2=0.0396
8 x1=15.8
9 x2=0.158
10
11 R=r1+a*a*r2
12 X = x1 + a * a * x2
13 \ V2 = v2 * a
14 I=P/V2
15 \text{ pf} = 0.8
16 theta=acos(pf)
17 V1=V2+I*(R*cos(theta)+X*sin(theta))
18 Pi = 75 * V1 * V1 / V2 / V2
19 Pc = I * I * R
20 Pl=Pi+Pc
21 \ PO = P * pf
22 \text{ effi=P0/(P0+P1)}*100
23 disp(effi)
24
25 V1 = V2
26 \text{ Pi} = 75
27 pf2=X/sqrt(R*R+X*X)
28 I=P0/V1/pf2
29 Pc = I * I * R
30 Pl=Pi+Pc
31 P0 = P * pf
32 \text{ effi=P0/(P0+P1)}*100
33 disp(effi)
34
35 I=sqrt(Pi/R)
36 \text{ Load=V2*I}
```

```
37 P0=Load*pf

38 P1=2*Pi

39 effi_max=P0/(P0+P1)*100

40 disp(effi_max)
```

Scilab code Exa 8.15 Problem15

```
1 P=15E3
2 a=3000/250
4 ////OC Parameters
5 \text{ Poc} = 105
6 \, \text{Ioc} = 0.62
7 \text{ Voc} = 250
9 ////SC Parameters
10 \, \text{Psc} = 360
11 Isc=5.2
12 \ Vsc = 157
13
14
15 \text{ YO=Ioc/Voc}
16 Gi=Poc/Voc/Voc
17 Bm = sqrt(Y0*Y0-Gi*Gi)
18
19 Z=Vsc/Isc
20 R=Psc/Isc/Isc
21 \quad X = sqrt(Z*Z-R*R)
22
23\ \ /////// Referred to HV side
24 \text{ GiHV} = \text{Gi/a/a}
25 disp(GiHV)
26 \text{ BmHV} = \text{Bm/a/a}
27 disp(BmHV)
28 disp(R)
```

```
29 disp(X)
30
31 //////Per unit
32 \quad ZB = 3.12/5.2
33 \text{ GiPU=Gi*ZB}
34 \quad BmPU=Y0*ZB
35 RPU=R/ZB/1000
36 \text{ XPU=X/ZB/1000}
37 disp(GiPU)
38 disp(BmPU)
39 disp(RPU)
40 disp(XPU)
41
42
43 pf=0.8
44 theta=acos(pf)
45 V2 = 250 * a
46 I=P/V2
47 Vd=I*(R*cos(theta)-X*sin(theta))
48 \text{ VR} = -\text{Vd}/\text{V2} * 100
49 disp(VR)
50 \text{ Pi} = 105
51 \text{ Pc} = I * I * R
52 Pl=Pi+Pc
53 P0=P*pf
54 \text{ effi=P0/(P1+P0)}*100
55
56 \text{ pf2} = \cos(\tan(R/X))
57 disp("leading", pf2)
58
59
60 IPU=sqrt(Pi/P/RPU)
61 effi_max=IPU
62 disp(effi_max)
```

Scilab code Exa 8.16 Problem16

```
1 v1 = 2500
2 v2 = 250
3 P=25000
4 \text{ Pc} = 130
5 Pcf1=320
6 pf = 0.8
8 V2=2750
9
10 \text{ PO=P*pf}
11 Pl=Pcfl+Pc
12 effi=P0/(P0+P1)*100
13 disp(effi)
14
15 I2=P/v2
16 I1=I2+P/v1
17 \text{ kVA} = I1 * v1 / 1000
18 P0=kVA*pf*1000
19 \text{ effi=P0/(P0+P1)}*100
20 disp(effi)
```

Scilab code Exa 8.17 Problem17

```
1 a=10
2 Load=120000
3 V=400
4
5 I=Load/V/sqrt(3)
6 V11=a*V/sqrt(3)
7 I11=sqrt(3)*I/a
8 all=V11/V
9 disp(V11,I11,all)
10
```

```
11 Vll=a*V*sqrt(3)
12 Ill=I/a/sqrt(3)
13 all=Vll/V
14 disp(Vll, Ill, all)
```

Scilab code Exa 8.18 Problem18

```
1 f=50
2 N1=500
3
4 Pin=60
5 Io = 0.4
6 Vin=220
7 r = 0.8
9 Pci=Io*Io*r
10 Pi=Pin-Pci
11 disp(Pi)
12 theta=acos(Pin/Vin/Io)
13 Im=Io*sin(theta)
14 \text{ Xm} = \text{Vin}/\text{Im}
15 \text{ disp}(Xm)
16 Iio=Io*cos(theta)
17 Ri=Vin/Iio
18 disp(Ri)
```

Scilab code Exa 8.19 Problem19

```
1 P=15E3
2 v1=2200
3 v2=220
4 a=v1/v2
5
```

```
6 ////OC Parameters
 7 \text{ Poc} = 185
8 \, \text{Ioc} = 2.72
9 \ Voc = 220
10
11 ////SC Parameters
12 \, \text{Psc} = 197
13 \text{ Isc=} 6.3
14 \ Vsc = 112
15
16 Pi=Poc
17 disp(Pi)
18
19 IHVfl=P/v1
20 Pcfl=IHVfl*IHVfl/Isc/Isc*Psc
21 disp(Pcfl)
22
23 pf = 0.85
24 \text{ Po=P*pf}
25 Pl=Pi+Pcfl
26 \text{ effi=Po/(Po+Pl)}*100
27 disp(effi)
28
29 Z=Vsc/Isc
30 R=Psc/Isc/Isc
31 \quad X = sqrt(Z*Z-R*R)
32 pf = 0.8
33 theta=acos(pf)
34 Vd1=IHVfl*(R*cos(theta)+X*sin(theta))
35 Vd2=IHVf1*(R*cos(theta)-X*sin(theta))
36 VR1=Vd1/v1*100
37 \text{ VR2=Vd2/v1*100}
38 disp(VR1, VR2)
```

Scilab code Exa 8.20 Problem20

```
1 P=50000
2 lr=0.9
4 P0=P*1*0.9
5 \text{ effi=} 0.974
6 Pl=(1-effi)/effi*P0
7 \text{ Pi=P1/2}
8 Pcfl=Pi/lr/lr
9
10 pf = 0.8
11 P0 = P * pf
12 Pl=Pi+Pcfl
13 \text{ effi=P0/(P0+P1)}*100
14 disp(effi)
15
16 P0=P/2*lr
17 \text{ Pl=Pi+Pcfl}/2/2
18 \text{ effi=P0/(P0+P1)}*100
19 disp(effi)
20
21 ////// calculation mistakes in the book
```

Scilab code Exa 8.21 Problem21

```
1  P=500E3
2  effi=0.95
3
4  A=[1,1;1,0.6*0.6]
5  Pa=inv(A)*[P*(1-effi)/effi;P*0.6*(1-effi)/effi]
6  Pi=Pa(1)
7  disp(Pi)
8  Pc=Pa(2)
9  disp(Pc)
10
11  Pl=Pi+0.75*0.75*Pc
```

```
12 effi=P*0.75/(P*0.75+P1)
13 disp(effi)
```

Scilab code Exa 8.22 Problem22

```
1 v1=2200
2 v2=220
3 f=50
4 emfperturn=12
5
6 N1=floor(v1/emfperturn)
7 N2=floor(v2/emfperturn)
8 disp(N1)
9 disp(N2)
10
11 fluxmax=emfperturn/4.44/f
12 Bmax=1.5
13 Ac=fluxmax/Bmax
14 disp(Ac)
```

Scilab code Exa 8.23 Problem23

```
1 v1=3300
2 v2=600
3 f=50
4 Ac=25/10000
5 l=1.2
6
7 Bmax=1.2
8 fluxmax1=Bmax*Ac
9 N1=v1/4.44/f/fluxmax1
10 N2=v2/4.44/f/fluxmax1
11 disp(N1,N2)
```

Scilab code Exa 8.24 Problem24

```
1 P=50000
2 v1=2400
3 v2=240
4 f=50
5 a=v1/v2
6 Pd=375
7 pf=0.4
8
9 I0=Pd/v1/pf
10 I0_prime=I0*a
11 disp(I0_prime,pf)
```

Scilab code Exa 8.25 Problem25

```
1 v1=220
2 v2=110
3 z1=0.32+%i*0.85
```

```
4 z2=0.11+%i*0.27
5 a=v1/v2
6
7 z=z1+a*a*z2
8 IHV=v1/norm(z)
9 ILV=IHV*a
10 disp(IHV,ILV)
```

Scilab code Exa 8.26 Problem26

```
1 P=1000000
2 v1=11000
3 v2 = 230
4 f = 50
5 \ Vsc = 310
6 \text{ Psc} = 5210
8 \text{ Isc=P/v1}
9 Z=Vsc/Isc
10 R=Psc/Isc/Isc
11 X = sqrt(Z*Z-R*R)
12
13 pf = 1
14 theta=acos(pf)
15 Vd=Isc*(R*cos(theta)+X*sin(theta))
16 \text{ VR=Vd/v1*100}
17 V1 = v1 + Vd
18 disp(VR, V1)
19
20 \text{ pf} = 0.8
21 theta=acos(pf)
22 Vd=Isc*(R*cos(theta)+X*sin(theta))
23 VR = Vd/v1 * 100
24 V1=v1+Vd
25 disp(VR, V1)
```

Scilab code Exa 8.27 Problem27

```
1 P=10000
2 v1 = 2200
3 v2 = 220
4 r1=4
5 \text{ r}2=0.04
6 \times 1 = 5
7 x2=0.05
8 a = v1/v2
9 R = r1 + a * a * r2
10 \quad X = x1 + a * a * x2
11 I1=P/v1
12 pf = 0.8
13 \ V2 = v2 * a
14 theta=acos(pf)
15 Vd=I1*(R*cos(theta)+X*sin(theta))
16 \text{ VR=Vd/v1*100}
17 V1 = v1 + Vd
18 disp(VR, V1)
19
20 pf = cos(atan(X/R))
21 disp("leading",pf)
22
23 \text{ Pr=P*pf}
24 Q=-P*sin(acos(pf))
```

```
25 disp(Q,Pr)
```

Scilab code Exa 8.28 Problem28

```
1 P=20000
2 v1=200
3 v2 = 400
4 f=50
5 V1=600
6 V2=200
7
8 a=V1/V2
9 disp(a)
10
11 I1=P/v2
12 VA=V1*I1
13 disp(VA)
14
15 disp(I1)
16 I2=30000/V2
17 Is=I2-I1
18 disp(I2)
19 disp(Is)
20
21 \quad VAtrans = v2 * I1
22 VAcond=30000-VAtrans
23 disp(VAtrans)
24 disp(VAcond)
```

Scilab code Exa 8.29 Problem29

```
1 P=100000
2 v1=11000
```

```
3  v2=400
4
5  V1=400
6  Vp=V1/sqrt(3)
7
8  a=ceil(v1/Vp)
9  disp(a)
10
11  I1=P/sqrt(3)/V1
12  Ip=I1
13  disp(I1,Ip)
14
15  I1=P/sqrt(3)/v1
16  Ip=I1/sqrt(3)
17  disp(I1,Ip)
```

Chapter 9

EMF and Torque in Electric Machines

Scilab code Exa 9.1 Problem1

```
1 f=50
2 flux = 0.016
3 S = 36
4 P=6
5 N = 10
6
8 m=S/P
9 gammaa=%pi/m
10 Kb=sin(m*gammaa/2)/m/sin(gammaa/2)
11 Nph = S * N * 2/2
12 Ep=4.44*Kb*f*Nph*flux
13 kVA = Ep * N / 1000
14 disp(kVA)
15
16 \text{ m=S/2/P}
17 gammaa=%pi/2/m
18 Kb=sin(m*gammaa/2)/m/sin(gammaa/2)
19 Nph = S * N * 2/2/2
```

```
20 Ep=4.44*Kb*f*Nph*flux
21 Eline=Ep*sqrt(2)
22 kVA=Ep*N*2/1000
23 disp(kVA)
24
25 m=S/3/P
26 gammaa=%pi/3/m
27 Kb=sin(m*gammaa/2)/m/sin(gammaa/2)
28 Nph=S*N*2/2/3
29 Ep=4.44*Kb*f*Nph*flux
30 Eline=Ep*sqrt(3)
31 kVA=Ep*N*3/1000
32 disp(kVA)
```

Scilab code Exa 9.2 Problem2

```
1 S=54
2 P=6
3 m=S/3/P
4 gammaa=%pi/3/m
5
6 Kb1=sin(m*gammaa/2)/m/sin(gammaa/2)
7 Kb3=sin(m*gammaa/2*3)/m/sin(gammaa/2*3)
8 Kb5=sin(m*gammaa/2*5)/m/sin(gammaa/2*5)
9
10 disp(Kb1)
11 disp(Kb3)
12 disp(Kb5)
```

Scilab code Exa 9.3 Problem3

```
1 f=50
2 n=500
```

```
3 m=5
4 N = 12
5 \text{ flux} = 0.025
7 P=120*f/n
8 S = m * 3 * P
9 Nph = S * N * 2/2/3
10 gammaa=%pi/3/m
11 Kb=sin(m*gammaa/2)/m/sin(gammaa/2)
12 polepitch=S/N
13 coilpitch=13
14 spa=(polepitch-coilpitch)*gammaa
15 Kp = \cos(spa/2)
16
17 Ep=4.44*Kb*Kp*f*Nph*flux
18 disp(Ep)
19 Eline=sqrt(3)*Ep
20 disp(Eline)
```

Scilab code Exa 9.4 Problem4

```
1 f=50
2 P=6
3 ns=120*f/P
4 disp(ns)
5 wm=2*%pi/60*ns
6 disp(wm)
```

Scilab code Exa 9.5 Problem5

```
1 F2=850
2 F1=400
3 lambda=123.6/180*%pi
```

```
4 ppp=1.408/1000
5
6 theta=%pi-lambda
7 Fr=sqrt(F1*F1+F2*F2-2*F1*F2*cos(theta))
8
9 fluxr=2/%pi*ppp*Fr
10 disp(fluxr)
```

Scilab code Exa 9.6 Problem6

```
1

2 P=6

3 N=1000

4

5 f=P*N/120

6 ns=120*f/4

7 s=0.04

8 n=(1-s)*ns

9 disp(n)
```

Scilab code Exa 9.7 Problem7

```
1
2 P=4
3 f=50
4
5
6 ns=120*f/P
7 n1=-1500
8 s1=(ns-n1)/ns
9 f2=s1*f
10 SRV=s1*80
11 disp(f2,SRV)
```

```
12

13 n2=1000

14 s2=(ns-n2)/ns

15 f2=s2*f

16 SRV=s2*80

17 disp(f2,SRV)
```

Scilab code Exa 9.8 Problem8

```
1
2 betaa=acos(0)*2/5
3 coilpitch=%pi-betaa
4 disp(coilpitch/%pi*180)
5
6 P=6
7 S = 72
8 \text{ m=S/P}
9 gammaa=%pi/m
10 cpis=150/180*%pi
11 betaa=%pi-cpis
12 Kp1 = \cos(betaa/2)
13 Kp3 = \cos (5*betaa/2)
14 Kp13 = \cos (13*betaa/2)
15 disp(Kp1)
16 disp(Kp3)
17 disp(Kp13)
```

Scilab code Exa 9.9 Problem9

```
1
2 P=2
3 f=50
4 S=42
```

```
5 m=S/3/P
6 gammaa=%pi/3/m
7 Kb=sin(m*gammaa/2)/m/sin(gammaa/2)
8 coilpitch=17
9 polepitch=S/2
10 spa=(polepitch-coilpitch)*gammaa
11 Kp=cos(spa/2)
12
13 N=S*2
14 Nc=N/2
15 Coilsperphase=Nc/3
16 Nph=Coilsperphase/2
17 Eline=2300
18 flux=Eline/sqrt(3)/4.44/Kb/Kp/f/Nph
19 disp(flux)
```

Scilab code Exa 9.10 Problem10

```
1 f=50
2 ns=1000
3 P=120*f/ns
4 disp(P)
5 s=(ns-940)/ns
6 disp(s*100)
7 nrr=ns-940
8 disp(nrr)
9 nrs=1000
10 disp(nrs)
11 s=2*s
12 n=1000*(1-s)
13 disp(n)
```

Scilab code Exa 9.11 Problem11

```
1  ns=1000
2  s=(ns-940)/ns
3  news=2*s
4  n=1000*(1-news)
5  disp(n)
```

Scilab code Exa 9.12 Problem12

```
1 P=8
2 f1=60
3 f2=50
4 If1=5
5 If2=f1/f2*If1
6 disp(If2)
7 nA2=120*f2/P
8 disp(nA2)
```

Scilab code Exa 9.13 Problem13

```
1 f1=60
2 f2=50
3 P1=12
4 P2=f2/f1*P1
5 disp(P2)
6 nset=120*f1/P1
7 disp(nset)
```

Scilab code Exa 9.14 Problem14

```
1 m=6
```

```
2 gammaa=%pi/m
3 Kb=sin(m*gammaa/2)/m/sin(gammaa/2)
4 
5 m=4
6 Kb=sin(m*gammaa/2)/m/sin(gammaa/2)
```

Scilab code Exa 9.15 Problem15

```
1
2 f=50
3 n=965
4 P=floor(120*f/n)
5 disp(P)
6
7 s=(1000-965)/1000
8 disp(s)
9 f2=s*f
10 disp(f2)
11
12 nsr=1000-965
13 disp(nsr)
14 nrr=120*f2/P
15 nsrf=1000-965-nrr
16 disp(nsrf)
```

Scilab code Exa 9.16 Problem16

```
1 f=50
2 P=4
3 a=2
4
5 ns=120*f/P
6 n=1440
```

```
7 s=1-n/ns

8 disp(s)

9 f2=s*f

10 disp(f2)

11 E1p=400

12 E2f=400/a

13 E2f2=E2f*f2/f

14 E2l=sqrt(3)*E2f2

15 disp(E21)
```

Chapter 10

DC Machines

Scilab code Exa 10.1 Problem1

```
1 P=6
2 S = 36
3 coilside=2
4 N=8
5 A = 2
6 d=0.25
71=0.18
8 Ia=10
9 avgflux=0.8
10 n = 1200
11
12 Z=S*coilside*N
13 flux=%pi*d/P*l*avgflux
14 Ea=flux*n*Z/60*P/A
15 \text{ Pm}=\text{Ea}*\text{Ia}
16 disp(Pm)
17 T=Pm/2/\%pi/n*60
18 disp(T)
```

Scilab code Exa 10.2 Problem2

```
1 P=4
2 A = 4
3 \text{ ra} = 0.145
4 1 = 0.21
5 Z=2*33*11
6 \text{ K=Z*P/2/\%pi/A}
7 disp(K)
9 Ap=2*%pi*ra/P*0.7*1
10 Barc=0.8
11 flux=Ap*Barc
12 n = 1200
13 Ea=K*flux*2*%pi*n/60
14 disp(Ea)
15
16 Ia=240
17 Ic=Ia/A
18 disp(Ic)
19
20 T=K*flux*Ia
21 disp(T)
22 Pg=Ea*Ia
23 disp(Pg)
```

Scilab code Exa 10.3 Problem3

```
1 P=5000
2 Vt=215
3 n=1000
4 Ra=0.4
5 Ia=P/Vt
6 Eag=Vt+Ra*Ia
7 Eam=Vt-Ra*Ia
```

```
8 newn=Eam/Eag*n/1.1
9 disp(newn)
```

Scilab code Exa 10.4 Problem4

```
1 P=200000
2 V=400
3 n=600
4 Z=864
5 P1=8000
6
7 Ia=P/V
8 Ra=P1/Ia/Ia
9 Ea=V-Ia*Ra
10 flux=Ea*60/n/Z
11 disp(flux)
```

Scilab code Exa 10.5 Problem5

```
1 N=1800
2 //////from figure
3 Voc=250
4 If=4.1
5 Rf=Voc/If
6 disp(If)
7 disp(Rf)
8
9 Rfcrit=150/2
10 disp(Rfcrit)
11
12 V3=120
13 Ncrit=N*V3/150
14 disp(Ncrit)
```

```
15

16 Rf220=220/3.2

17 Rext=Rf220-Rf

18 disp(Rext)
```

Scilab code Exa 10.6 Problem6

```
1 P = 4
2 V = 230
3 Z=888
4 \text{ Ra=0.8}
5 \text{ flux} = 5.4E - 3
6 \quad A=2
7
8 I1=2
9 \text{ If} = 0.6
10 Ia=Il-If
11 Ea=V-Ia*Ra
12 \quad n0=Ea*60/flux/Z/P*A
13 disp(n0)
14
15 T = 29.6
16 \quad Ia=T*2*\%pi/flux/Z/P*A
17 Il=Ia+If
18 disp(I1)
19 Ea=V-Ra*Ia
20 n=Ea*60/flux/Z/P*A
21 disp(n)
22 sr = (1-n/n0)*100
23 \text{ disp(sr)}
```

Scilab code Exa 10.7 Problem7

```
1  n1=1000
2  V=230
3  Ia=75
4  Ra=0.1
5  Ea1=V-Ia*Ra
6  Rf=275
7  If=V/Rf
8  Ke=Ea1/If/n1
9
10  n2=1200
11  Ia=125
12  Ea2=V-Ia*Ra
13  If2=Ea2/Ke/n2
14  Rf2=V/If2
15  Rfext=Rf2-Rf
16  disp(Rfext)
```

Scilab code Exa 10.8 Problem8

```
1  V=115
2  Ia1=25
3  Ra=0.3
4
5  n1=1450
6  Ea1=V-Ia1*Ra
7  Ke=Ea1/n1
8
9  n2=1200
10  Ea2=Ke*n2
11  Ia2=3/4*Ia1
12  Raext=(V-Ea2)/Ia2-Ra
13  disp(Raext)
14  effia=Ea2/V*100  ///calculation mistake in the book at this point
15  disp(effia)
```

```
16 V=Ea2+Ia2*Ra
17 effia=Ea2/V*100
18 disp(effia)
```

Scilab code Exa 10.9 Problem9

```
1 ////solving quadratic
2 Ra=0.5
3 P=8000
4 V = 230
5 \text{ Ea=V}
6 n = 1200
7 \text{ Ke=V/n}
9 p=poly([P*Ra,-V,1],"w","coeff")
10 w=roots(p)
11
                 ///rejecting small value
12 Ea=w(1)
13 n=Ea/Ke
14 disp(n)
15 T=P/2/\%pi/n*60
16 disp(T)
17 Ia=(V-Ea)/Ra
18 disp(Ia)
19 Kt=T/Ia
20
21
22 p=poly([-Kt*V/Ra,Kt*Ke/Ra,0.6E-4],"w","coeff")
23 \text{ w=roots}(p)
24 n=w(2)
25 disp(n)
```

Scilab code Exa 10.10 Problem10

```
1 V=300
2 \text{ Ea=V}
3 n1 = 1200
4 n2=1100
5 Kaphi=Ea/2/%pi/n1*60
7 T = 350
8 Ia=T/Kaphi
9 disp(Ia)
10 \quad \text{Ea=V*n2/n1}
11 Pm=Ea*Ia
12 disp(Pm)
13
14 Ra=(V-Ea)/Ia
15 disp(Ra)
16
17 disp(T)
18 Ea=600-Ia*Ra
19 n=Ea*60/Kaphi/2/%pi
20 \text{ Pm}=\text{Ea}*\text{Ia}
21 disp(Pm)
22 disp(n)
```

Scilab code Exa 10.11 Problem11

```
1 V=300
2 Ea=V
3 n1=1200
4 n2=1100
5 Kaphi=Ea/2/%pi/n1*60
6
7 T=350
8 Ia=T/Kaphi
9 Ea=V*n2/n1
10
```

```
11 Ra=(V-Ea)/Ia
12
13
14 Kaphi=Kaphi/2
15 n=Ea/Kaphi*60/2/%pi
16 Pm=Ea*Ia
17 T=Kaphi*Ia
18 disp(T)
19 disp(Pm)
20 disp(n)
```

Scilab code Exa 10.12 Problem12

```
1  V=600
2  Ia=40
3  R=0.5
4  Ea=V-Ia*R
5  n=500
6  Ka=Ea/Ia/2/%pi/n*60
7  T=Ka*Ia*Ia
8
9  n2=450
10  T=T*n2*n2/n/n
11  Ia=sqrt(T/Ka)
12  Ea=Ka*Ia*2*%pi*n2/60
13  Rtotal=(V-Ea)/Ia
14  Rext=Rtotal-R
15  disp(Rext)
```

Scilab code Exa 10.13 Problem13

```
1 V=220
2 Ra=1
```

```
3 Rse=0.4
4 Ia1=20
5 Ia2=sqrt(Ia1*Ia1*0.7*0.7*0.7)
6 Ea1=V-Ia1*(Ra+Rse)
7 Ea2=Ia2*0.7*Ea1/Ia1
8 Rext=(V-Ea2)/Ia2-Ra-Rse
9 disp(Rext)
```

Scilab code Exa 10.14 Problem14

```
1  V=250
2  Ia=25
3  n=1000
4  KaNfNse=V/Ia*60/2/%pi/n
5  T=KaNfNse*Ia*Ia
6  Ia=sqrt(V*2/KaNfNse/sqrt(KaNfNse*2*%pi*n/60*2*%pi*n/60/T/2))
7  w=sqrt(KaNfNse*2*%pi*n/60*2*%pi*n/60/T/2)*Ia
8  n=w*60/2/%pi
9
10  disp(n)
11  disp(Ia)
```

Scilab code Exa 10.15 Problem15

```
1  V=230
2  Rf=120
3  Ra=0.15
4  If=V/Rf
5  Psh=V*V/Rf
6
7  I=14.5
8  Pin=I*V
```

```
9 Ia=I-If
10 Pk=Pin-Ia*Ia*Ra
11
12 I=215
13 Ia=I-If
14 Pl=Ia*Ia*Ra+Pk
15 \quad Pin=V*I
16 effi=(Pin-Pl)/Pin
17 disp(effi)
18
19 Ia=sqrt(Pk/Ra)
20 Il=Ia+If
21 P1 = 2 * Pk
22 \quad Pin=V*I1
23 effi=(Pin-Pl)/Pin
24 disp(effi)
```

Scilab code Exa 10.16 Problem16

```
1 V = 250
2 Rf = 125
3 Ra=0.2
4 If=V/Rf
5 I=16
6 Ia0=I-If
7 Pk=V*Ia0-Ia0*Ia0*Ra+V*If
8
9 I=152
10 Ia=I-If
11 Pl=Ia*Ia*Ra+Pk
12 \quad Pin=V*I
13 effi=(Pin-Pl)/Pin
14 disp(effi)
15
16 Il=152
```

```
17  Ia=Il+If
18  Pl=Ia*Ia*Ra+Pk
19  Pout=V*Il
20  effi=Pout/(Pout+Pl)
21  disp(effi)
```

Scilab code Exa 10.17 Problem17

```
1 V=250

2 n=800

3 Ra=0.15

4 Rse=0.1

5 R=Ra+Rse

6

7 Ia1=120

8 Ea1=V-Ia1*R

9

10 Ia2=60

11 Ea2=V-Ia2*R

12 n2=Ea2/Ea1*n/0.7

13 disp(n2)
```

Scilab code Exa 10.18 Problem18

```
1 R=1.2

2 V=220

3 Ea35=V-35*R

4 n35=(475+400)/2

5

6 V=200

7 E0=V-35*(R+2)

8 n=n35*E0/Ea35

9 disp(n)
```

Scilab code Exa 10.19 Problem19

```
1 V = 250
2 Ia=200
3 Ra=0.22
5 Ea=V-Ia*Ra
6 \text{ Pm}=\text{Ea}*\text{Ia}
7 Prl=600
8 Pmout=Pm-Prl
9 n = 1250
10 wm = 2 * \%pi * n / 60
11 Tl=Pmout/wm
12 disp(T1)
13
14 Rf=125
15 \text{ Psh=V*V/Rf}
16 \text{ Pein=V*Ia+Psh}
17 effi=Pmout/Pein
18 disp(effi)
```

Scilab code Exa 10.20 Problem20

```
1 P=25000
2 n=1600
3 V=250
4 If=1.5
5 Rf=V/If
6 disp(Rf)
7
8 Ra=0.1
```

```
9 V=220
10 Ia=P/V
11 Ea=V-Ia*Ra
12 If=0.875
13 disp(If)
14 Rf=V/If
15 disp(Rf)
16
17 Pdev=Ea*Ia
18 disp(Pdev)
19 Tdev=Pdev/2/%pi/n*60
20 disp(Tdev)
```

Scilab code Exa 10.21 Problem21

```
1
 2 V = 230
3 Ea = 210
4 Ia = 40
5 Ra = (V-Ea)/Ia
6 disp(Ra)
7
8 \text{ Pdev=Ea*Ia}
9 n=1200
10 \text{ wm} = 2 * \% \text{pi} * \text{n} / 60
11 Tdev=Pdev/wm
12 disp(Pdev)
13 disp(Tdev)
14
15 n=n*V/Ea
16 disp(n)
```

Scilab code Exa 10.22 Problem22

```
1 V = 400
2 Ia = 50
3 n = 500
4 \text{ Ra=0.5}
5 Ea=V-Ia*Ra
6 Tdev=Ea*Ia/2/%pi/n*60
8 Iastart=75
9 Rs=V/Iastart-Ra
10 disp(Rs)
11 Tstart=Tdev*(Iastart/Ia)^2
12 disp(Tstart)
13
14 n2 = 200
15 Ea200 = Ea * n2/n
16 Rs=(V-Ea200)/Iastart-Ra
17 disp(Rs)
```

Scilab code Exa 10.23 Problem23

```
1  n1=1200
2  Rfcrit=260/4
3  n2=1600
4  Vfactor=n2/n2
5  Vn1=395
6  disp(Vn1)
```

Scilab code Exa 10.24 Problem24

```
1
2 Ia=500
3 Ra=0.05
4 Vb=2
```

```
5 Va=Ia*Ra+Vb
6 Vt=330
7 disp(Vt)
```

Scilab code Exa 10.25 Problem25

```
1 V=240
2 Ea=V
3 n=800
4 I=16
5 Ke=V/n/I
6 K=I/n
7
8 n=sqrt(V*2/Ke/K/sqrt(2))
9 disp(n)
10 Ia=sqrt(2)*K*n
11 disp(Ia)
```

Scilab code Exa 10.26 Problem26

```
1 V=600
2 Pout=60000
3 effi=0.85
4 Pin=Pout/effi
5 Il=Pin/V
6 Rf=100
7 If=V/Rf
8 Ia=Il-If
9 Ra=0.16
10 Ea=V-Ia*Ra
11
12 n=900
13 n0=n*V/Ea
```

Chapter 11

Synchronous Machine

Scilab code Exa 11.1 Problem1

```
1  P=1000000
2  Vrated=6600
3  If=60
4  Xs_unsat=4700/sqrt(3)/98
5  disp(Xs_unsat)
6  Xs_adj=Vrated/sqrt(3)/143
7  disp(Xs_adj)
8
9  Ia=P/sqrt(3)/Vrated
10  pf=0.8
11  theta=-acos(pf)
12  Ia=Ia*(exp(%i*theta))
13  Ef=norm(Vrated+%i*Xs_adj*Ia*sqrt(3))
14  disp(Ef)
15  VR=Ef/Vrated-1
16  disp(VR)
```

Scilab code Exa 11.2 Problem2

```
1 P = 45000
2 V = 440
3 pf = 0.8
4 Ia=P/sqrt(3)/V*exp(%i*acos(pf))
5 \text{ Vt=V/sqrt}(3)
6 \text{ Rs} = 0.2
7 \text{ Xs} = 1.8
8 Ef=norm(Vt-Ia*(Rs+%i*Xs))
9 If=Ef/85
10 \text{ Pein=pf*P}
11 Rf = 35
12 \quad Fl = If * If * Rf
13 Pin=Pein+Fl
14 Pcu=norm(3*Ia*Ia*Rs)
15 Pshaft=Pein-Pcu
16 Prl=1500
17 Pshaft_net=Pshaft-Prl
18 effi=Pshaft_net/Pin
19
20 disp(Pshaft_net)
21 disp(If)
22 disp(effi)
```

Scilab code Exa 11.3 Problem3

```
1 V=12500
2 Xs=8
3
4 Vt=V/sqrt(3)
5 Ef=Vt
6
7 Ef=Vt*1.2
8 Ia=(Ef-Vt)/Xs
9 theta=%pi/2
10 pf=0
```

```
11 Pe=0
12 Qe=-sqrt(3)*V*Ia
13 disp(Ia)
14 disp(Pe)
15 disp(Qe)
16 disp(pf)
17
18 Ef = Vt * 0.8
19 Ia=(Vt-Ef)/Xs
20 theta=-\%pi/2
21 pf = 0
22 Pe=0
23 Qe=sqrt(3)*V*Ia
24 disp(Ia)
25 disp(Pe)
26 disp(Qe)
27 disp(pf)
```

Scilab code Exa 11.4 Problem4

```
1  Pe=10000000
2  V=12500
3  Xs=8
4  Vt=V/sqrt(3)
5  Ef=Vt*1.2
6
7  delta=asin(Pe/3/Vt/Ef*Xs)
8  Ia=(Ef*exp(%i*delta)-Vt)/%i/Xs
9  pf=real(Ia)/norm(Ia)
10  Qe=-sqrt(3)*V*imag(Ia)
11
12  disp(norm(Ia))
13  disp(pf)
14  disp(Qe)
```

Scilab code Exa 11.5 Problem5

```
1
2 Pein=1000000
3 pf = 0.9
4 \text{ Xs} = 3.24
5 theta=acos(pf)
6 V=3300
7 Ia=Pein/sqrt(3)/pf/V*exp(%i*theta)
8 \text{ Vt=V/sqrt}(3)
9 Ef=norm(Vt-%i*Ia*Xs)
10 Pemax=3*Vt*Ef/Xs
11 Ia=(Vt+Ef*\%i)/\%i/Xs
12 Qe=-sqrt(3)*V*imag(Ia)
13
14 disp(Pemax)
15 disp(norm(Ia))
16 disp(real(Ia)/norm(Ia))
17 disp(Qe)
```

Scilab code Exa 11.6 Problem6

```
disp(Efline)
disp(atan(imag(Ef)/real(Ef)))

delta=-%pi/2
delta=-%pi/2
Efmin=Pe/3*Xs/Vt*sin(-delta)
Efminline=Efmin*sqrt(3)
disp(Efminline)
disp(delta/%pi*180)
Ia=(Vt+%i*Efmin)/%i/Xs
disp(norm(Ia))
disp(real(Ia)/norm(Ia))
```

Scilab code Exa 11.7 Problem7

```
1 f=50
2 ns=100
3 P=110000
4 pf=0.8
5
6 p=120*f/ns
7 disp(p)
8 kVA=P/pf/1000
9 disp(kVA)
10 kW=P/0.971/1000
11 disp(kW)
12 Tpm=kW*1000*60/2/%pi/ns
13 disp(Tpm)
```

Scilab code Exa 11.8 Problem8

```
1 P=12E6
2 Q=6E6
3 V=22000
```

```
4  Xs=8
5  S=P+%i*Q
6  theta=atan(Q/P)
7  disp(theta/%pi*180)
8
9  Ia=norm(S)/sqrt(3)/V
10  Ef=V/sqrt(3)+%i*Xs*Ia*exp(-%i*theta)
11  delta=atan(imag(Ef)/real(Ef))
12  disp(delta/%pi*180)
13
14  emf=norm(Ef)*sqrt(3)
15  disp(emf)
```

Scilab code Exa 11.9 Problem9

```
1 \operatorname{Isc} = 60
2 If=50
4 \ \text{Voc} = 15300
5 Isc=60
6 Xs_unsat=Voc/sqrt(3)/Isc
7 disp(Xs_unsat)
8
9 V=11000
10 \, \text{Isc} = 67.5
11 Xs_sat=V/sqrt(3)/Isc
12 disp(Xs_sat)
13
14 pf = 0.85
15 theta=acos(pf)
16 Ia=50*exp(-\%i*theta)
17 Vt=11000
18 Vl=Vt/sqrt(3)
19 Ef=V1+%i*Xs_sat*Ia
20 Efline=norm(Ef)*sqrt(3)
```

```
21 disp(Efline)
22
23 Voc=Efline
24 VR=Voc/Vt-1
25 disp(VR)
26 If=57.5
27 disp(If)
```

Scilab code Exa 11.10 Problem10

```
1 P=10000
2 V = 400
3 pf = 0.8
4 \text{ Xs} = 16
5 theta=acos(pf)
6 Ia=P/sqrt(3)/V*exp(-%i*theta)
7 Vt=V/sqrt(3)
8 \quad \text{Ef=Vt+\%i*Xs*Ia}
9 disp(norm(Ef))
10 disp(atan(imag(Ef)/real(Ef))*180/%pi)
11
12 Ef2=1.2*norm(Ef)
13 \text{ Pe=P*pf}
14 delta=asin(norm(Pe/3*Xs/Ef2/Vt))
15 Ef2=Ef2*exp(\%i*delta)
16 Ia=(Ef2-Vt)/\%i/Xs
                              //calculation mistake in the
       book at this point
17 disp(norm(Ia))
18 pf=real(Ia)/norm(Ia)
19 disp(pf)
20 disp(acos(pf)*180/%pi)
21
22 delta=%pi/2
23 Pemax=norm(3*Ef*Vt/Xs*sin(delta))
24 disp(Pemax)
```

```
25 Ef=norm(Ef)*%i
26 Ia=(Ef-Vt)/%i/Xs
27 disp(norm(Ia))
28 disp(real(Ia)/norm(Ia))
```

Scilab code Exa 11.11 Problem11

```
1 f = 50
2 \text{ MechLoad} = (8+0.5)*1000
3 Pein=MechLoad
4 Vt=231
5 \text{ Ef} = 750/\text{sqrt}(3)
6 \text{ Xs} = 16
7 delta=asin(Pein/3*Xs/Ef/Vt)
8 Ef = Ef * exp(-\%i*delta)
9 Ia=(Vt-Ef)/\%i/Xs
10 \text{ ns} = 120 * 50/4
11 ws=ns/60*2*%pi
12 Tdev=Pein/ws
13 Tshaft=8000/ws
14 disp(norm(Ia))
15 disp(real(Ia)/norm(Ia))
16 disp(acos(real(Ia)/norm(Ia))*180/%pi)
17 disp(Tdev)
18 disp(Tshaft)
19
20 \text{ Ef} = 600/\text{sqrt}(3)
21 \text{ delta=0}
22 Ia=(Vt-Ef)/%i/Xs
23 kVAR=sqrt(3)*400*norm(Ia)
24 disp(norm(Ia))
25 disp(real(Ia)/norm(Ia))
26 disp(kVAR)
27 C=norm(Ia)/Vt/2/\%pi/f
28
```

```
29  Ef = 300/sqrt(3)
30  Ia = (Vt - Ef)/%i/Xs
31  kVAR = sqrt(3) * 400 * norm(Ia)
32  disp(norm(Ia))
33  disp(real(Ia)/norm(Ia))
34  disp(kVAR)
35  L = Vt/norm(Ia)/2/%pi/f
36
37  kVAR = 6000
38  Ia = kVAR/sqrt(3)/400 * %i
39  Ef = Vt - %i * Xs * Ia
40  disp(Ef * sqrt(3))
```

Scilab code Exa 11.12 Problem12

```
1 P=1000000
2 V=6600
3 Xs=25
4 pf=0.8
5 theta=acos(pf)
6 Ia=P/sqrt(3)/V*exp(-%i*theta)
7 Vt=V/sqrt(3)
8 Ef=Vt+%i*Xs*Ia
9 delta=asin(norm(Xs*Ia*cos(theta)/Ef))
10 Vt=norm(Ia)*Xs*sin(%pi-asin(pf)-delta)/sin(delta)
11 V1=Vt*sqrt(3)
12 disp(V1)
```

Scilab code Exa 11.13 Problem13

```
1
2
3 Xs=8
```

Scilab code Exa 11.14 Problem14

```
1
2 V = 400
3 Vt = V/sqrt(3)
4 Ia = 50
5 pf=1
6 \text{ theta=0}
7 \text{ Xs} = 1.3
9 Ef = Vt - \%i * Xs * Ia
10 delta=atan(imag(Ef)/real(Ef))
11 disp(delta*180/%pi)
12
13 Pelec=sqrt(3)*V*pf*Ia
14 Pmech=Pelec
15 \text{ pf} = 0.8
16 theta=acos(0.8)
17 Ia=Pelec/sqrt(3)/V/pf*exp(%i*theta)
18 Ef2=Vt-\%i*Xs*Ia
```

```
19  If=0.9*norm(Ef2)/norm(Ef)
20  disp(If)
```

Scilab code Exa 11.15 Problem15

```
1 Xspu=0.8
2 P=1000000
3 V=3000
4 Xs = Xspu * V * V/P
5
6 \text{ Vt=V/sqrt}(3)
7 \text{ Pm} = 750000
8 \text{ Pe=Pm}
9 pf = 0.85
10 theta=acos(pf)
11 Ia=Pm/0.8/sqrt(3)/V*exp(-%i*theta)
12
13 Ef = Vt - \%i * Xs * Ia
14 Efline=sqrt(3)*norm(Ef)
15 disp(Efline)
16
17 delta=%pi/2
18 Pmax=3*Vt*norm(Ef)/Xs
19 disp(Pmax)
20 \text{ ns} = 120*50/12
21 \text{ ws=ns*2*\%pi/60}
                           /////calculation mistake in the
22 Tmax=Pmax/ws
        book at this point
23 disp(Tmax)
24
25 \text{ delta=90}
26 \quad \text{Efmin=Pm/3*Xs/Vt}
27 Efmin_line=sqrt(3)*Efmin
28 disp(Efmin_line)
29
```

```
30 Ia=(Vt+%i*Efmin)/%i/Xs
31 disp(norm(Ia))
32 pf=real(Ia)/norm(Ia)
33 disp(pf)
```

Chapter 12

Induction Motor

Scilab code Exa 12.1 Problem1

```
1  V=400
2  I=80
3  pf=0.75
4  Pin=sqrt(3)*V*I*pf
5  Pshaft=Pin*0.85
6  disp(Pshaft)
7  ns=1000
8  s=0.04
9  n=(1-s)*ns
10  w=2*%pi*n/60
11  Tshaft=Pshaft/w
12  disp(Tshaft)
```

Scilab code Exa 12.2 Problem2

```
1 f=50
2 f2=120/60
3 s=f2/f
```

```
4    ns=1500
5    n=(1-s)*ns
6    w=2*%pi*n/60
7
8    T=100
9    Pshaft=T*w
10    disp(Pshaft)
11    Pm=(T+7)*w
12    Pcur=Pm*s/(1-s)
13    disp(Pcur)
14    Pin=Pm+Pcur+700
15    disp(Pin)
16    effi=Pshaft/Pin
17    disp(effi)
```

Scilab code Exa 12.3 Problem3

```
1
2  ns=120*50/20
3  sfl=1-292.5/ns
4
5  R2=0.12
6  X2=1.12
7  smaxT=R2/X2
8  disp(smaxT)
9
10  Tmax_by_Tfl=0.5/X2/(R2/sfl/((R2/sfl)^2+X2^2))
11  disp(Tmax_by_Tfl)
```

Scilab code Exa 12.5 Problem5

```
1 2 ns=750
```

```
3 R2 = 0.5
4 X2 = 5
5 \text{ smaxT} = R2/X2
6 n = (1 - smaxT) * ns
7 \text{ disp(n)}
9 k=R2/X2
10 Tmax_by_Tstart = (1+k*k)/2/k
11 disp(Tmax_by_Tstart)
12
13 p=poly([1,-4,1],"k","coeff")
14 w=roots(p)
15 R2 = w * 5
16 R2ext = R2 - 0.5
17
18 R2total=18.66
19 smaxT=R2total/X2
20 R2ext=R2ext(2)
21 disp(R2ext)
```

Scilab code Exa 12.6 Problem6

```
1
2 Tmax=200
3 Tstart=80
4
5 p=poly([1,-2*Tmax/Tstart,1],"smaxT","coeff")
6 smaxT=roots(p)
7 smaxT=smaxT(2)
8 disp(smaxT)
9
10
11 p=poly([1,-4,1],"w","coeff")
12 w=roots(p)
13 sfl=smaxT/w(1)
```

Scilab code Exa 12.7 Problem7

```
1 V = 440
2 \text{ ns} = 1000
3 \text{ ws} = 2 * \% \text{pi} * \text{ns} / 60
4 n = 975
5 s=1-n/ns
6 Z=1.06+0.576/s+\%i*(1.68+0.75)
7 I2=V/sqrt(3)/Z
8 \text{ Im} = -\%i * V/sqrt(3)/44.2
9 I1 = Im + I2
10 pf=real(I1)/norm(I1)
11 Pin=sqrt(3)*V*norm(I1)*pf
12 Pout=norm(3*I2*I2*0.576*(1/s-1))-415
13 effi=Pout/Pin
14 Tnet=Pout/ws/(1-s)
15
16 disp(Tnet)
17 disp(Pin)
18 disp(norm(I1))
19 disp(pf)
20 disp(effi)
```

Scilab code Exa 12.8 Problem8

```
1 V = 400
2 P0=1210
3 I0=8.7
4 Ri=(V/sqrt(3))^2/P0*3
5 disp(Ri)
6 pf=P0/sqrt(3)/V/I0
7 theta0=acos(pf)
8 Xm=Ri/tan(theta0)
9 disp(Xm)
10
11 P1=6050
12 V1=200
13 I1=47.8
14 R=P1/3/I1/I1
15 R1=0.42
16 disp(R1)
17 R2=R-R1
18 disp(R2)
19 \quad Z=V1/sqrt(3)/I1
20 X = sqrt(Z*Z-R*R)
21 disp(X)
22
23 \text{ ns} = 750
24 n = 710
25 \text{ ws=ns*2*\%pi/60}
26 \text{ s=1-n/ns}
27 Z = R1 + R2/s + \%i * X
28 I2=V/sqrt(3)/Z
29 I0=I0*exp(-\%i*theta0)
30 I1 = I0 + I2
31 disp(norm(I1))
32 pf=real(I1)/norm(I1)
```

```
33 disp(pf)
34 \text{ T=} norm (3*I2*I2*R2/s/ws)
35 \text{ disp}(T)
36 \quad Pout = T*ws*(1-s)
37 \text{ Pin=} \operatorname{sqrt}(3) * V * \operatorname{norm}(I1) * \operatorname{pf}
38 effi=Pout/Pin
39 disp(effi)
40
41 s = 1
42 Z = R + \%i * X
43 \quad I2=V/sqrt(3)/Z
44 I1=I0+I2
45 \text{ disp(norm(I1))}
46 Tstart=norm(3*I2*I2*R2/s/ws)
47 disp(Tstart)
48
49 \operatorname{smax}T = R2/\operatorname{sqrt}(R1^2 + X^2)
50 \quad Z=R1+R2/smaxT+\%i*X
51 I2=V/sqrt(3)/norm(Z)
52 \text{ Tmax}=3*I2*I2*R2/smaxT/ws
53 disp(Tmax)
54 disp(smaxT)
```

Scilab code Exa 12.9 Problem9

```
1    Is_by_Ifl=5
2    sfl=0.04
3    Ts_by_Tfl=Is_by_Ifl^2*sfl
4    disp("pu",Ts_by_Tfl)
```

Scilab code Exa 12.10 Problem10

1

Scilab code Exa 12.11 Problem11

```
1

2 s1=1-960/1000

3 s2=1-800/1000

4 R2ext=4/3*s2*0.25/s1-0.25

5 disp(R2ext)
```

Scilab code Exa 12.12 Problem12

```
1 smaxT=1-860/1000 
3 R2=0.25 
4 X2=R2/smaxT 
5 Tmax=180 
6 k=Tmax*X2 
7 
8 s=0.045
```

Scilab code Exa 12.13 Problem13

```
1 V = 400
2 Poutmech=5000
3 Pr1=285
4 Pm=Poutmech+Prl
5 s = 1 - 1445 / 1500
6 	 s2=1-900/1500
8
9
10 p = poly([0, -(1-s)*V*V/Pm/s, 1/s/s+1/s2/s2], "R2", "coeff
11 r=roots(p)
12 R2=r(1)
13 X2 = R2/s2
14
15 \text{ ws} = 2 * \% \text{pi} * 1500/60
16 Tmax = 3/ws * V * V / 3 * 0.5 / X2
17 disp(Tmax)
```

Scilab code Exa 12.14 Problem14

```
1 Pmout = 20000
2 Pwf1 = 1500
```

```
3 Pm=Pmout+Pwf1
4 disp(Pm)
5 ns=1500
6 n=1440
7 s=1-n/ns
8 Pg=Pm/(1-s)
9 disp(Pg)
10 Pcu=s*Pg
11 disp(Pcu)
```

Scilab code Exa 12.15 Problem15

```
1 V1=400
2 R1 = 2.28 * 3/2
3 R1ac=1.1*3.42
4
5 Y0=3.5/sqrt(3)/V1
6 \text{ Gi} = (445/3)/V1/V1
7 Bm=sqrt(Y0^2-Gi^2)
8 Ri = 1/Gi
9 \text{ Xm} = 1 / \text{Bm}
10
11 V2=200
12 \ Z=V2/16.7*sqrt(3)
13 R=2220/16.7/16.7
14 X = sqrt(Z*Z-R*R)
15 R2=R-R1ac
16
17 n = 935
18 ns=1000
19 \text{ s=1-n/ns}
20 \quad Z=R1ac+R2/s+\%i*X
21 I2 = V1/Z
22 \text{ Ii} = V1/Ri - \%i * V1/Xm
23 I1=I2+Ii
```

```
24 Iline=norm(I1)*sqrt(3)
25 pf=real(I1)/norm(I1)
26 \text{ ws} = 2 * \% \text{pi} * \text{ns} / 60
27 \text{ T=} norm (3*I2*I2*R2/s/ws)
28 disp(T)
29 disp(Iline)
30
31 Pm = norm(3*I2*I2*R2*(1-s)/s)
32 Pin=sqrt(3)*V1*Iline*pf
33 \text{ effi=Pm/Pin}
34 disp(effi)
35
36 V = 400
37 s = 1
38 \quad Z=R1ac+R2/s+\%i*X
39 \quad I2=V/sqrt(3)/Z
                            ///calculation mistake in the
       book at this step
40 Ts = norm(3*I2*I2*R2/ws)
41 disp(Ts)
```

Scilab code Exa 12.16 Problem16

```
1  V=400
2  Pmout=5000
3  Pr1=285
4  Pm=Pmout+Pr1
5
6  s=1-1445/1500
7  smaxT=1-900/1500
8  R2=(1/s-1)*V*V/Pm/(1/s^2+1/smaxT^2)
9  X2=R2/smaxT
10  ws=2*%pi*1500/60
11  Tmax=V*V/ws/2/X2
12  disp(Tmax)
```

Scilab code Exa 12.17 Problem17

```
1 V = 440
2 I=25
3 pf = 0.85
4 Pin=sqrt(3)*V*I*pf
5 \text{ ns} = 1500
 6 \text{ Pcore} = 750
7 Pcus=950
8 Pcur=450
9 Pwf1=250
10
11 Pg=Pin-Pcore-Pcus
12 disp(Pg)
13
14 Pm=Pg-Pcur
15 disp(Pm)
16
17 Pmout=Pm-Pwfl
18 disp(Pmout)
19
20 effi=Pmout/Pin
21 disp(effi)
22
23 s=Pcur/Pg
24 n = (1-s)*ns
25 \text{ disp(n)}
26
27 w = 2 * \%pi * n/60
28 \, \text{Tdev=Pm/w}
29 disp(Tdev)
30 Tnet=Pmout/w
31 disp(Tnet)
```

Chapter 14

Measurement Techniques and Electric and Electronic Instrumentation

Scilab code Exa 14.1 Problem1

```
1 Rv1=60/1000*10000
2 Rv2=120/1000*10000
3 Rx=(Rv2-Rv1)*(1/(27.5/30*2-1)-1)
4 I=27.5/1000/600*(Rx+600)/Rx
5 Vact=Rx*I
6 disp(Vact)
```

Scilab code Exa 14.2 Problem2

```
1
2  Ifsd=25/1000
3  Ix=4.975
4  Rx=Ifsd*5/Ix
5  disp(Rx)
```

```
6
7 Rx=20/Ifsd-5
8 disp(Rx)
```

Scilab code Exa 14.3 Problem3

```
1
2 R1=40/0.025-5
3 R2=60/0.025-5-R1
4 disp(R1)
5 disp(R2)
```

Scilab code Exa 14.4 Problem4

```
1
2 W1=500
3 W2=-200
4 P=W1+W2
5 phi=atan((W1-W2)/(W1+W2))
6 pf=cos(phi)
7 disp(pf)
8 disp(P)
```

Scilab code Exa 14.5 Problem5

```
1
2 E=4
3 R1=800
4 R2=80
5 R3=1605
```

```
6 R4=160

7 Rg=80

8 s=8

9

10 Eth=E*(R2/(R2+R4)-R1/(R1+R3))

11 Rth=R1*R3/(R1+R3)+R2*R4/(R2+R4)

12 Ig=Eth/(Rth+Rg)

13 D=s*Ig*1000000

14 disp(D)
```

Scilab code Exa 14.6 Problem6

```
1 function Zeq=parallel(Z1,Z2)
 2
         Zeq = Z1 * Z2 / (Z1 + Z2)
 3 endfunction
5 f=1000
6 w = 2 * \%pi * f
8 ///AB
9 R = 2000
10 C = 0.045E - 6
11 Xc=1/\%i/w/C
12 Z1=parallel(R,Xc)
13
14 ///BC
15 R=1000
16 C = 0.45E - 6
17 \text{ Xc}=1/\%i/\text{w/C}
18 \ Z2 = R + Xc
19
20 ///AD
21 C=0.4E-6
22 \quad Z3 = 1 / \%i / w / C
23
```

```
24 Z4=Z2*Z3/Z1
25 disp(Z4)
```

Scilab code Exa 14.7 Problem7

```
1
2  ksine=1.11
3  ksqr=1
4
5  err=(ksine-ksqr)/ksqr*100
6  disp("percent", err)
```

Scilab code Exa 14.8 Problem8

```
1
2 f = 50E6
3 w = 2 * \%pi * f
4 theta=5*\%pi/180
5
6
7 C = 1E - 12
8 R=1/theta/w/C
9 disp(R)
10
11 C=10E-12
12 R=1/theta/w/C
13 disp(R)
14
15 C=100E-12
16 R=1/theta/w/C
17 disp(R)
```

Scilab code Exa 14.9 Problem9

```
1
2 f=8E6
3 w=2*%pi*f
4 C=150E-12
5 R=5
6
7 Q1=1/w/C/R
8
9 Rins=0.1
10 Q2=1/w/C/(R+Rins)
11 err=(Q1-Q2)/Q1*100
12 disp(err)
```

Scilab code Exa 14.10 Problem10

```
1  f = 100 E3
2  w = 2 * %pi * f
3  C = 400 E - 12
4
5  L = 1/C/w/w
6  disp(L)
```

Scilab code Exa 14.11 Problem11

```
1
2 Resolution=1/10^4
3 disp(Resolution)
```

```
disp("14.760")

R_1V=1*Resolution
disp("0.5434") ///since any digits upto 4th decimal can be shown

R_10V=10*Resolution
disp("00.543") ///since only three decimal digits can be shown
```

Scilab code Exa 14.12 Problem12

```
1
2 Vp=10
3 Vref=5
4 R=100000
5 C=0.22E-6
6 T=Vp*R*C/Vref
7 disp(T)
```

Scilab code Exa 14.13 Problem13

```
1
2 V=3.217
3 bits=4
4 base=5
5 a=0
6
7 for i=1:bits
8    a=floor(V/base*(2^i))
9    disp(a);
10    V=V-a*base/(2^i)
```

11 end

Scilab code Exa 14.14 Problem14

Scilab code Exa 14.15 Problem15

```
1  V=5.9
2  Rx=0
3  Rm=2000
4  R1=49000
5  Ifsd=100E-6
6  Vam=Rm*Ifsd
7  I=(V-Vam)/R1
8  Ish=I-Ifsd
9  R2=Vam/Ish
10  disp(R2)
11
12  I=0.6*I
13  Req=V/I
14  Rx=Req-R1-Rm*R2/(R2+Rm)
15  disp(Rx)
```

Scilab code Exa 14.17 Problem17

```
1 f=50

2 w=2*%pi*f

3

4 Z2=1000

5 Z3=16800

6

7 C=0.38E-6

8 Xc=1/%i/w/C

9 Z4=833+Xc

10

11 Z1=Z2*Z3/Z4

12 Rx=real(Z1)

13 Lx=imag(Z1)/w

14

15 disp(Rx)

16 disp(Lx)
```

Scilab code Exa 14.18 Problem18

```
1 f=50
2 w=2*%pi*f
3 T=1/f
4
5 Iav=1/(T/2)*integrate('sin(w*t)','t',0,T/2)
6 disp(Iav)
```

Chapter 15

Power Systems

Scilab code Exa 15.1 Problem1

```
1 V1=250
2 V2=480
3 Vol2_by_Vol1=V1/V2
4
5 sav=(1-Vol2_by_Vol1)*100
6 disp(sav)
```

Scilab code Exa 15.2 Problem2

```
1 P=5E6
2 pf=0.85
3 V=33000
4 l=50000
5 rho=3E-8
6 Pt=P*pf
7 Pl=Pt*0.1
8 I=P/V
9 A1=2*I*I*rho*1/Pl
```

```
10 Vol1=2*l*A1

11 disp(Vol1)

12

13 Il=P/sqrt(3)/V

14 A2=3*Il*Il*rho*l/Pl

15 Vol2=3*l*A2

16 disp(Vol2)
```

Scilab code Exa 15.3 Problem3

```
1  f=50
2  w=2*%pi*f
3  I=0.8
4  V=220
5  P=75
6  phi=acos(P/V/I)
7
8  phi_new=acos(0.9)
9  Ic=I*cos(phi)*(tan(phi)-tan(phi_new))
10  C=Ic/V/w
11  disp(C)
12
13  phi_new=acos(1)
14  Ic=I*cos(phi)*(tan(phi)-tan(phi_new))
15  C=Ic/V/w
16  disp(C)
```

Scilab code Exa 15.4 Problem4

```
1 Cond_cost=100
2 charge=60
3 phi2=asin(0.1*Cond_cost/charge)
4 pf=cos(phi2)
```

```
5 disp(pf)
```

Scilab code Exa 15.5 Problem5

```
1
2 Oc=400000
3 pf1=0.8
4 phi1=acos(pf1)
5 ab=Oc/cos(phi1)*sin(phi1)
6 pf2=0.25
7 phi3=acos(pf2)
8 pf2=0.484
9
10 gammaa=(ab-pf2*Oc)/(pf2*cos(phi3)+sin(phi3))
11 disp(gammaa)
```

Scilab code Exa 15.6 Problem6

```
1 f=50
2 w=2*%pi*f
3 P=2E6
4 V=11000
5 pf=0.8
6 phi=acos(pf)
7 Xl=10
8 IR=P/sqrt(3)/V/pf
9 Vr=V/sqrt(3)
10 Vs=Vr+IR*X1*sin(phi)
11 Vsll=Vs*sqrt(3)
12 disp(Vsll)
13 VR=Vsll/V-1
14 disp(VR)
15
```

```
16  pf=1
17  disp(pf)
18  Qc=P*tan(phi)
19  C=Qc/V/V/w
20  disp(C)
```

Scilab code Exa 15.7 Problem7

```
1 f = 50
2 w = 2 * \%pi * f
3 V = 33000
4 Vr = V/sqrt(3)
5 P = 24E6/3
6 pf = 0.8
7 phi=acos(pf)
8 Ia=P/Vr/pf
9 R1 = 4
10 X1=20
11 Vs=Vr+Ia*(Xl*sin(phi)+Rl*cos(phi))
12 Vsll=sqrt(3)*Vs
13 VR = Vsll/V-1
14 disp(Vsll)
15 Ia=Ia*exp(-\%i*phi)
16 disp(norm(Ia))
17
18 phi1=atan(-R1/X1)
19 pf = cos(phi1)
20 Ia1=P/Vr/pf
                                  ////calculation mistake
21 Ia1=Ia1*exp(-\%i*phi1)
      in the book at this step
22
23 Ic=Ia1-Ia
24 C = norm(Ic/w/Vr)
25 disp(C)
26
```

```
27 LL1=norm(Ia*Ia*R1)
28 effi1=P/(P+LL1)
29 LL2=norm(Ia1*Ia1*R1)
30 effi2=P/(P+LL2)
31 disp(effi1)
32 disp(effi2)
```