

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

Asymptotic analysis

A problem to solve

- Given a student ID, find the student's name
 - What operations can we perform?

• How are the students organized (if at all)?

Efficiency

- Complexity theory studies algorithm *efficiency*
 - Particularly, how well an algorithm scales as problem size increases
- For two algorithms that solve the same problem, we want to compare on some measure of efficiency, e.g.
- Time (how long it takes to run) Time complexity
 - Space (how much memory is used while running)
 - Other attributes?
 - Expensive operations, e.g. I/O
 - Code elegance, tricks/shortcuts
 - Energy/power
 - Ease of programming, legal issues, etc.

Analysing runtime

```
...
old2 = 1;
old1 = 1;
for (i = 3; i < n; i++) {
  result = old2 + old1;
  old1 = old2;
  old2 = result;
}</pre>
```

How long does this take?

It depends!

- What is n?
- What hardware?
- What programming language?
- What compiler?

Want a description that does not depend on so many factors

Analysing number of operations

- Focusing on only one complexity measure number of operations performed by the algorithm on an input of given size, e.g.
 - # instructions executed
 - # comparisons
- Some operations are more costly than others, but as a rough indicator, counting operations is good enough

Analysing runtime

```
...
old2 = 1;
old1 = 1;
for (i = 3; i < n; i++) {
  result = old2 + old1;
  old1 = old2;
  old2 = result;
}</pre>
```

How many operations does this take?

It depends!

• What is n?

- Running time is a function of n such as T(n)
- Runtime analysis in this way no longer depends on hardware or subjective conditions

Input size

ainteger

- What is meant by the input size n? Some application-specific examples:
 - Dictionary: # of words
 - Restaurant: # of customers, # of menu choices, # of employees etc.
 - Airline: # of flights, # of customers, # of luggage etc.
- Find a way to express the number of operations performed as a function of the input size *n*

Back to comparing algorithms

and scalability

- Suppose we have two different algorithms
 - up to n = 200, algorithm A is faster
 - beyond n = 200, algorithm B is faster
 - which one is really faster?
- Computer science emphasises studying big versions of problems
 - i.e. when the input size scales up to a very large number
- But we still want to have a simple, *approximate* way to make comparisons between the behaviours of different algorithms' rates of growth
 - use a simple, well-understood function as a reference

Order notation

our algorithm reference function
$$T(n)$$
 is in big-0 of $f(n)$

- Let T(n) and f(n) be functions mapping $\mathbb{Z}^+ \to \mathbb{R}^+$
- $T(n) \in O(f(n))$ if there are constants c and n_0 such that $T(n) \le c \cdot f(n)$ for all $n \ge n_0$

We want to compare the "overall" runtime (or memory usage, etc.) of our function against a familiar, simple function

O-notation, visually

Why do we bother?

• Suppose a computer executes 10¹² operations per second

$rac{1}{\sqrt{2}}(n)$	10	100	1000	10,000	10^{12}
n	10 ⁻¹¹ s	10 ⁻¹⁰ s	10^{-9} s	10^{-8} s	1 s
$n \log n$	10^{-11} s	10^{-9} s	10^{-8} s	10^{-7} s	40 s
n^2	10 ⁻¹⁰ s	10^{-8} s	10^{-6} s	10^{-4} s	10 ¹² s
n^3	10^{-9} s	10^{-6} s	10^{-3} s	1 s	10 ²⁴ s
2^n	10 ⁻⁹ s	10 ¹⁸ s	10 ²⁸⁹ s		

• For reference:

 $-10^4 \text{ s} = 2.8 \text{ hours}, 10^{18} \text{ s} \approx 30 \text{ billion years}$

Order notation

big · O

- $T(n) \in O(f(n))$ if there are constants c and n_0 such that $T(n) \le c$. f(n) is upper bound on T(n) f(n) for all $n \ge n_0$
 - T(n) is bounded from above by $c \cdot f(n)$
 - i.e. the growth of T(n) is no faster than f(n)

big. Orega

- $T(n) \in \Omega(f(n))$ if $f(n) \in O(T(n))$ sin is a lover bound
 - T(n) is bounded from below by $d \cdot f(n)$
 - i.e. T(n) grows no slower than f(n)

Lis: Theta

- $T(n) \in \Theta(f(n))$ if $T(n) \in O(f(n))$ and $T(n) \in \Omega(f(n))$ T(n) is bounded from above and below by f(n)

 - i.e. T(n) grows at the same rate as f(n)

Ω -notation, visually

• $T(n) \in \Omega(f(n))$ if $\exists d, n_0$ such that $T(n) \ge d \cdot f(n) \ \forall \ n \ge n_0$

Given the same sort of adjustments, T(n) should be *greater* than $d \cdot f(n)$

Θ-notation, visually

• $T(n) \in \Theta(f(n))$ if $\exists c, d, n_0$ such that $d \cdot f(n) \le T(n) \le c \cdot f(n) \ \forall n \ge n_0$

Given the same sort of adjustments, T(n) should be **between** the adjusted versions of f(n)

Asymptotic Analysis Hacks

Running time approximation

• Eliminate low order terms

$$\blacksquare 4n + 5 \implies 4n$$

$$\bullet 0.5n \log n - 2n + 7 \implies 0.5n \log n$$

$$2^n + n^3 + 3n \implies 2^n$$

- Eliminate constant coefficients
 - \bullet 4n \implies n
 - $0.5n \log n \implies n \log n$
 - $n \log(n^2) = 2n \log n \implies n \log n$

$$\log 2n = \log^2 2 + \log n$$

- $10,000n^2 + 25n \in \Theta(n^2)$
- $10^{-10}n^2 \in \Theta(n^2)$
- $n \log n \in O(n^2)$ \checkmark $n \log n \notin SL(n^2)$ $n \log n \in \Omega(n)$ \checkmark $n \log n \notin O(n)$
- $n^3 + 4 \in O(n^4)$, but not $\Theta(n^4)$
- $n^3 + 4 \in \Omega(n^2)$, but not $\Theta(n^2)$

Common growth rate functions

- Typical growth rates in order
 - Constant: O(1)
 - Logarithmic: $O(\log n)$ $(\log_k n, \log(n^2) \in O(\log n))$
 - Poly-log:

 Sublinear

 O(n) $O(\log n)^k$
 - Linear: O(n)
 - Log-linear: $O(n \log n)$
 - Superlinear: $O(n^{1+c})$ (c is a constant, 0 < c < 1)
 - Quadratic: $O(n^2)$
 - Cubic: $O(n^3)$
 - Polynomial $O(n^k)$ (k is a constant) "tractable"
 - Exponential $O(c^n)$ (c is a constant > 0) "intractable"
 - Factorial 0 (n!) exe us factorial

Dominance

- We can look at the dominant term to guess at a big-O growth rate. e.g.
 - $T(n) = 2n^2 + 600n + 60000$
 - Up to n = 100, the constant term dominates
 - Between n = 100 and n = 300, the linear term dominates
 - Beyond n = 300, the quadratic term dominates, $T(n) \in O(n^2)$
- Which will be faster in the long run? n^3 vs $n^3 \log n$?
 - split up and use dominance relationships

•
$$n^3$$
 vs $n^{3.01}/\log n$?

 $\frac{1}{1} \cdot 1$
 $\frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{1}$

What does order notation tell us?

- Note that the definitions of O and Ω use inequality, thus the statements for a function $f(n) = 3n \log_2 n$:
 - $f(n) \in O(n \log n)$ and
 - **■** $f(n) \in O(2^n)$
 - are both true
- However, one is more meaningful than the other
 - "Our function f(n) has growth behaviour no worse than this other pretty well-behaved function", vs
 - "Our function f(n) has growth behaviour no worse than one of the worst functions known"
- We aim to obtain the "tightest" upper or lower bounding function that still satisfies the O/Ω relation

Asymptotic analysis proofs

- Use the definitions of O and/or Ω to determine either a witness pair (c, n_0) satisfying the definition, or show that no such witness pair is possible
- Example: Prove that for $f(n) = 2 \log_6 n$ and g(n) = 3n, $f(n) \in O(g(n))$

There are constants c > 0 and $n_0 > 0$ such that $2 \log_6 n \le c \cdot 3n$ for all $n \ge n_0$

Choose c = 1, $n_0 = 6$, it can be seen that LHS \leq RHS and remains so as n increases.

O notation proofs

Prove
$$f(n) = 2 \cdot \log_{1} n$$
 $g(n) = 3 \cdot n$, $f(n) \in O(g(n))$
 $2 \cdot \log_{1} n \leq C \cdot 3 \cdot n$, for all $n \geq n$.
 $2 \cdot \log_{1} n \leq 2 \cdot \log_{1} n$
 $f(n) = 2 \cdot \log_{1} n \leq 2 \cdot n$ $n \geq 6$
 $\leq C \cdot 3 \cdot n$ $n \geq 6$, $C = \frac{2}{3}$
 $f(n) \in O(g(n))$ $C = \frac{2}{3}$, $n = 6$

O notation proofs

$$f(n) = 2n^{3} + 4n + 6 \qquad g(n) = 3n^{4}$$

prove $f(n) \in O(g(n))$

$$f(n) = 2n^{3} + 4n + 6 \leq 2n + 4n + 6n^{3} \quad n \ge 1$$

$$\leq 2n^{4} + 4n^{4} + 6n^{4} \quad n \ge 1$$

$$\leq 12n^{4}$$

$$\leq 4 \cdot 3 \cdot n^{4}$$

$$\leq 2n^{4} \cdot 3 \cdot n^{4}$$

$$\leq 3n^{4} \cdot 3n^{4} \cdot 3n^{4}$$

$$\leq 3n^{4} \cdot 3n^{4} \cdot 3n^{4} \cdot 3n^{4} \cdot 3n^{4}$$

$$\leq 3n^{4} \cdot 3n^{4} \cdot 3n^{4} \cdot 3n^{4} \cdot 3n^{4}$$

$$\leq 3n^{4} \cdot 3n^{4} \cdot 3n^{4} \cdot 3n^{4} \cdot 3n^{4}$$

$$\leq 3n^{4} \cdot 3n^{4} \cdot 3n^{4} \cdot 3n^{4} \cdot 3n^{4} \cdot 3n^{4}$$

$$\leq 3n^{4} \cdot 3n^{4} \cdot 3n^{4} \cdot 3n^{4} \cdot 3n^{4} \cdot 3n^{4} \cdot 3n^{4}$$

$$\leq 3n^{4} \cdot 3n^$$

prove 3n € 0 (2 log_n)

Mond abbroach:

3n & C. 2 logen for all n = n.

let c=1 and No=6 clearly LHS = PHS

X

we have shown that one specific (c, n,)
pair doesn't work.

we need to show that no pale can possibly work

Asymptotic analysis proofs

• Example: Prove that for $f(n) = 2 \log_6 n$ and g(n) = 3n, $g(n) \notin$ O(f(n))

Assume for the purpose of a contradiction, that $g(n) \in O(f(n))$

Then, there are constants c > 0 and $n_0 > 0$ such that $3n \le c \cdot 2 \log_6 n$ for all by L'Hopital's rule $n \geq n_0$

Solving the inequality for c, we obtain $c \ge \frac{3n}{2 \log_6 n}$

However, as n increases, the value of $\frac{3n}{2 \log_6 n}$ increases, and there is no such constant c which can remain at least as large this increasing value – contradicting our initial assumption

Therefore $g(n) \notin O(f(n))$

Input size

- We have described the number of operations as a function of a given input size *n*
 - But, how are the *n* items organised?
 - e.g., to find my favourite riding boots in my closet

Analysing code

Types of analysis

- Bound flavour
 - Upper bound (O)
 - Lower bound (Ω) , useful for *problems*
 - Asymptotically tight (Θ)
- Analysis case
 - Best case (lucky)
 - Worst case (adversary)
 - Average case
 - "common" case
- Analysis quality
 - Loose bound (any true analysis)
 - Tight bound (no better "meaningful" bound that is asymptotically different)

Rare, mostly useless

Useful, pessimistic

Useful, tricky to determine

Useful, poorly defined

Analysing code

```
int find(int key, int arr[], int n) {
  int i;
  for (i = 0; i < n; i++) {
    if (arr[i] == key)
      return i;
  }
  return -1;
}</pre>
```

- Step 1: What is the input size *n*?
- Step 2: What kind of analysis should we perform?
 - Worst case? Best case? Average case?
- Step 3: How much does each line cost?
 - (are lines even the correct unit?)

Analysing code

```
int find(int key, int arr[], int n) {
  int i;
  for (i = 0; i < n; i++) {
    if (arr[i] == key)
      return i;
  }
  return -1;
}</pre>
```

- Step 4: What is T(n) in its raw form?
- Step 5: Simplify T(n) and convert to order notation
 - Also, which notation? O, Θ , Ω
- Step 6: Prove the asymptotic bound by finding constants c and n_0 satisfying the required inequality(ies)

```
for i = 1 to n do
for j = 1 to n do
sum = sum + 1

1

n times
n times
```

- A straightforward example in pseudocode
- Each loop runs n times, and a constant amount of work is done inside each loop
 - might be different absolute amounts of work, but still constant

$$T(n) = \sum_{i=1}^{n} \left(1 + \sum_{j=1}^{n} 2\right) = \sum_{i=1}^{n} (1 + 2n) = n + 2n^{2} = O(n^{2})$$

Simpler version

• Count the number of times sum = sum + 1 is executed

$$T(n) = \sum_{i=1}^{n} \sum_{j=1}^{n} 1 = \sum_{i=1}^{n} n = n^{2} = O(n^{2})$$

 $\frac{1}{1} \frac{1}{1} \frac{1}$

• Time complexity:

- a) $\Theta(n)$
- b) $\Theta(n \log n)$
- c) $\Theta(n^2)$
- d) $\Theta(n^2 \log n)$
- e) None of these

Pure math approach

```
i = 1
while i < n do
   for j = i to n do
      sum = sum + 1
i++</pre>
```

```
"1" operation
i varies from 1 to n-1
j varies from i to n
"1" operation
"1" operation
```

$$T(n) = 1 + \sum_{i=1}^{n-1} \left(1 + \sum_{j=i}^{n} 1\right)$$

$$= 1 + \sum_{i=1}^{n-1} \left(1 + n - i + 1\right) = 1 + \sum_{i=1}^{n-1} \left(n - i + 2\right)$$

Pure math approach
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i = \sum_{i=1}^{n} a + \sum_{i=1}^{n} \sum_{i=1}^{n-1} \frac{n(n-1)}{2}$$

$$T(n) = 1 + \sum_{i=1}^{n-1} (n-i) + 2) = 1 + \sum_{i=1}^{n-1} (n+2) - \sum_{i=1}^{n-1} i$$

$$= 1 + (n-1)(n+2) - \sum_{i=1}^{n-1} i = 1 + n^2 + n - 2 - \frac{n(n-1)}{2}$$

$$= \frac{n^2}{2} + \frac{3n}{2} - 1$$

$$= \frac{n^2}{2} + \frac{3n}{2} - 1$$

$$= \frac{n(n+1)}{2} + n = \frac{n(n+1)}{2}$$

$$= \frac{n^2}{2} + \frac{3n}{2} - 1$$

$$= \frac{n(n+1)}{2} + n = \frac{n(n+1)}{2}$$

$$= \frac{n(n+1)}{2} + n = \frac{n(n+1)}{2}$$

$$= \frac{n(n+1)}{2} + n = \frac{n(n+1)}{2}$$

Simplified math approach

$$T(n) = \sum_{i=1}^{n-1} \sum_{j=i}^{n} 1$$

$$= \sum_{i=1}^{n-1} (n-i+1) = (n-1)(n+1) - \sum_{i=1}^{n-1} i$$

$$= n^2 - 1 - \frac{n(n-1)}{2} = \frac{n^2}{2} + \frac{n}{2} - 1 \qquad T(n) \in \Theta(n^2)$$

$$T(n) = \sum_{i=1}^{n} \sum_{j=1}^{n} 1 \qquad j = 1, 2, 4, ..., x$$

$$= 2^{0}, 2^{1}, 2^{2}, ..., 2^{k}$$

$$T(n) = \sum_{i=1}^{n} \sum_{k=0}^{\lfloor \log_2 n \rfloor} 1 \le \sum_{i=0}^{n} \log_2 n = (n \text{ for } n) \log_2 n$$

$$T(n) \in O(n \log n)$$
base does not matter (asymptotically) $\log_2 n = \log_2 n$

A visual aid for loop executions

- Determine the range of your loop variable
- Determine the range of your loop variable
- Determine how many elements within that range will be "hit"

- Complexities of nested loops are (usually) multiplied
- Complexities of separate loops are (usually) added

```
int i, j;
for (i = 1; i < 9*n; i = i*2) {
  for (j = n*n; j > 0; j--) {
    ...
  }
}
```


• Take extra care when an inner loop condition depends on the outer loop variable!

