

1ª série Inteligência Artificial

# Conceitos Fundamentais da Inteligência Artificial

Rildo Oliveira





#### ROTEIRO DE AULA

**OBJETO DO CONHECIMENTO:** Conceitos Fundamentais da Inteligência Artificial

**HABILIDADE:** Levantar e testar hipóteses para resolver problemas do cotidiano pessoal, da escola e do trabalho, utilizando procedimentos e linguagens adequados à investigação científica.

#### **OBJETIVOS:**

- Compreender os princípios básicos da IA, como aprendizado de máquina e redes neurais.
- Identificar as principais áreas de aplicação da IA
  DA TEORIA À PRÁTICA: Uso de imagens, texto e conceitos para um melhor entendimento do tema abordado.





## Pasta Compartilhada e Grupo









#### Princípios Básicos Da Inteligência Artificial

A Inteligência Artificial (IA) é um campo da ciência da computação que se concentra no desenvolvimento de sistemas capazes de realizar tarefas que normalmente requerem inteligência humana.





## Princípios Básicos Da Inteligência Artificial

Dois princípios fundamentais da IA são:

- Aprendizado de Máquina.
- Redes Neurais.



### Aprendizado De Máquina E Redes Neurais

O **Aprendizado de Máquina** é uma subárea da IA que permite aos computadores aprenderem a partir de dados, sem serem explicitamente programados.

As **Redes Neurais** são um modelo computacional inspirado no funcionamento do cérebro humano, composto por neurônios interconectados.



#### Introdução ao Aprendizado de Máquina

O aprendizado de máquina é um ramo da inteligência artificial que se concentra no desenvolvimento de algoritmos que permitem aos computadores aprenderem a partir de dados.







#### Introdução ao Aprendizado de Máquina

Ele permite que os sistemas automatizem tarefas sem a necessidade de serem explicitamente programados para cada ação.

O aprendizado de máquina é amplamente utilizado em áreas como reconhecimento de padrões, processamento de linguagem natural, visão computacional e muito mais.





#### Introdução ao Aprendizado de Máquina

No aprendizado de máquina, os algoritmos são treinados com conjuntos de dados para encontrar padrões nos dados e fazer previsões ou tomar decisões.







## Um algoritmo pode realmente aprender?

Reconhecer emoções!

Figura 1 – Expressão facial: alegria



Fonte: Ekman, 2011



## Canal Educação PRODRAMA DE MEDIÇÃO TERMILÓRICA

#### Um algoritmo pode realmente aprender?

No reconhecimento de emoções em imagens faciais, os algoritmos podem ser treinados com conjuntos de dados rotulados, onde cada imagem é associada a uma emoção específica (como felicidade, tristeza, raiva, etc.).

Figura 2 – Expressão facial: tristeza



Fonte: Ekman, 2011



#### Um algoritmo pode realmente aprender?

Com técnicas avançadas de aprendizado de máquina, como redes neurais convolucionais, é possível extrair características das expressões faciais e aprender padrões que correspondem a diferentes emoções.

Figura 3 – Expressão facial: raiva raiva 1 sobrancelhas franzidas 2 olhos brilhantes lábios cerrados

Fonte: Ekman, 2011





#### Como a IA detecta emoções





Fonte: Jaques e Oliveira, 2008



#### Pré-processamento de Dados

O pré-processamento de dados envolve a preparação e limpeza dos dados antes de alimentá-los aos algoritmos de aprendizado. Isso inclui tarefas como remoção de valores ausentes, normalização de dados, codificação de variáveis categóricas e seleção de características relevantes.





#### Pré-processamento de Dados

Um pré-processamento adequado dos dados pode melhorar significativamente o desempenho dos modelos de aprendizado de máquina.







#### Algoritmos de Aprendizado Supervisionado

Os algoritmos de aprendizado supervisionado são treinados com pares de entrada e saída conhecidos. Isso inclui algoritmos como Regressão Linear, que modela relações lineares, e Máquinas de Vetores de Suporte, que encontram fronteiras de decisão ótimas para classificação.



#### Problemas Comuns em Aprendizado Supervisionado

Desafios como overfitting, onde o modelo se adapta demais aos dados de treinamento, e underfitting, onde o modelo não captura as complexidades dos dados, são comuns. Além disso, a importância de conjuntos de validação na busca por modelos robustos.



## Overfitting e Underfitting: Causas e Soluções

Overfitting e underfitting são problemas comuns em aprendizado de máquina que ocorrem quando o modelo é muito complexo ou muito simples em relação aos dados.

O overfitting ocorre quando o modelo se ajusta demais aos dados de treinamento e falha em generalizar para novos dados.





### Overfitting e Underfitting: Causas e Soluções

Exemplo: se oferecermos a um sistemas uma grande quantidade de imagens de gatos para que ele reconheça o que é um gato, pelo excesso de imagem ele irá usar a comparação de imagens e não buscará as características dos felinos







## Overfitting e Underfitting

O underfitting ocorre quando o modelo é muito simplificado e não consegue capturar a complexidade dos dados.

Um sistema tenta prever se um e-mail é spam ou não com base em várias características.

Se você usar um modelo de aprendizado muito simples o modelo pode não ser capaz de capturar a complexidade dos dados e seu resultado será ruim.





#### Algoritmos de Aprendizado Não Supervisionado

No aprendizado não supervisionado, algoritmos como o K-means são utilizados para agrupar dados sem rótulos. Já a Análise de Componentes Principais (PCA) reduz a dimensionalidade, destacando as características mais importantes dos dados.





## Aplicações Práticas do Aprendizado Não Supervisionado

O aprendizado não supervisionado é aplicado em diversas áreas, desde segmentação de mercado até organização automática de dados. Esses algoritmos permitem descobrir padrões e estruturas ocultas nos dados.





#### Aprendizado por Reforço

No aprendizado por reforço, um agente aprende a realizar ações em um ambiente para maximizar recompensas. Isso é comumente usado em jogos, robótica e otimização de sistemas complexos.





#### Desafios em Aprendizado por Reforço

O aprendizado por reforço enfrenta desafios como a maldição da dimensionalidade, onde o espaço de ações se torna vasto, e o dilema exploração versus exploração, onde o agente deve equilibrar a busca por recompensas imediatas e a exploração de novas ações.





#### TIPOS DE APRENDIZADO DE MACHINE LEARNING





## Aprendizado Profundo (Deep Learning)

O aprendizado profundo, também conhecido como deep learning, é uma subárea do aprendizado de máquina que utiliza redes neurais profundas para aprender representações de dados.

Ele é capaz de lidar com grandes volumes de dados e extrair características complexas de maneira automática.





## Aprendizado Profundo (Deep Learning)

O aprendizado profundo tem sido aplicado com sucesso em diversas áreas, como visão computacional, processamento de linguagem natural, reconhecimento de fala, reconhecimento de imagem e muito mais.





#### Redes Neurais Artificiais

As redes neurais artificiais são modelos computacionais inspirados no funcionamento do cérebro humano. Elas são compostas por neurônios artificiais interconectados, organizados em camadas, e são capazes de aprender a partir de dados.







#### Redes Neurais Artificiais

As redes neurais artificiais são amplamente utilizadas em aprendizado de máquina, reconhecimento de padrões, processamento de linguagem natural, visão computacional e muito mais.





#### Redes Neurais Artificiais

O treinamento de redes neurais artificiais envolve a apresentação de exemplos de entrada juntamente com as saídas desejadas, e ajuste dos pesos das conexões entre os neurônios para minimizar uma

função de custo.







#### Dica de Vídeo

## O que é Machine Learning (Aprendizado de Máquina)?

Por que o Machine Learning tem sido tão importante no mundo da inteligência artificial.







#### Referências Bibliográficas

- 1. Russell, S.; Norvig, P. (2016). "Artificial Intelligence: A Modern Approach". Pearson.
- 2. Nilsson, N. J. (2009). "The Quest for Artificial Intelligence: A History of Ideas and Achievements". Cambridge University Press.
- 3. McCarthy, J.; Minsky, M. L.; Rochester, N.; Shannon, C. E. (1955). "A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence". Al Magazine, 27(4).
- 4. Kurzweil, R. (2005). "The Singularity Is Near: When Humans Transcend Biology". Viking Adult.

## ATÉ A PRÓXIMA AULA!