به نام خدا

شرح قسمتهای اصلی پروژه

ابتدا همه ی کتابخانه های مورد نیاز و فایل پایتون مربوط به توابع اقتصاد مهندسی را در فایل ژوپیتر وارد کردیم و فایل اکسل داده ها را در متغیر data بارگزاری و ذخیره کردیم. همانطور که از اطلاعات مشخص است، 3 سلول از ستون حقوق، مقادیر null دارند:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 33 entries, 0 to 32
Data columns (total 6 columns):
               Non-Null Count Dtype
    Column
    Years
             33 non-null
                              int64
    Salary 30 non-null
                              float64
    material 1 33 non-null
                              float64
3 material 2 33 non-null
                              float64
4
    demand
              33 non-null
                              int64
 5 price
              33 non-null
                              float64
dtypes: float64(4), int64(2)
memory usage: 1.7 KB
```

که با استفاده از interpolation این مقادیر را جایگذاری می کنیم.

در قدم بعدی، از رگرسیون خطی برای پیشبینی حقوق کارکنان شرکت استفاده کردیم. در این حالت دقت مدلسازی و نمودار حقوق کارکنان و خط رگرسیون به شرح زیر است:

```
The Accuracy of the Prediction

intercept = model.intercept_[0]
coefficient = model.coef_[0][0]

score = model.score(X,Y)
score

<a href="mailto:ocef_0]</a>
0.9312739842698768
```


در گام بعدی تابع رگرسیون خطی را برای پیشبینی حقوقها تا سال 2050 تعریف کرده و این مقادیر را بدست می آوریم و به جدول اصلی اضافه می کنیم و نام دیتافریم جدید را complete_data

در قسمت بعدی برای تعیین قیمت هر واحد از ماده اولیه 1، مقدار آن در سال 2022 را با تابع present_to_future() که در فایل پایتون تعریف کردیم، با بهره 6 درصد و سالهای متناظر بعد از 2022، یک آرایه از مقادیر آینده آن بدست میآوریم و درنهایت آن را به داده اصلی اضافه می کنیم.

برای قیمت ماده اولیه 2، ابتدا مقادیر داده شده را به سال 1990 برده و روند کاهشی آن را می ابیم و برای سالهای آینده پیش بینی می کنیم.

نمودار مقادیر ارزش فعلی قیمتها در سال 1990 و خط رگرسیون:

دقت مدل:

حال مقادیر پیشبینی شده را با بهره 5 درصد به سالهای خودشان میبریم. نمودار قیمت ماده اولیه 2 برحسب سال:

در قسمت بعد، ابتدا تابع تقاضا را تعریف کرده و مقادیر آن را به دیتافریم اضافه می کنیم:

	Years	Salary	material 1	material 2	demand	price	demand_factor
0	1990	39343.000000	200.000000	89.600000	103.0	1200.0	1.000000
1	1991	46205.000000	212.000000	92.662500	104.0	1375.0	0.980199
2	1992	37731.000000	224.720000	95.807250	101.0	1451.0	0.960789
3	1993	43525.000000	238.203200	99.034819	99.0	1593.0	0.941765
4	1994	39891.000000	252.495392	102.345626	95.0	1718.5	0.923116
56	2046	182558.651070	5225.868178	215.143774	NaN	NaN	0.326280
57	2047	185213.703710	5539.420269	204.117656	NaN	NaN	0.319819
58	2048	187868.756350	5871.785485	191.451066	NaN	NaN	0.313486
59	2049	190523.808991	6224.092614	177.007523	NaN	NaN	0.307279
60	2050	193178.861631	6597.538171	160.640999	NaN	NaN	0.301194

حال با استفاده از این مقادیر به جای سال، مقادیر تقاضا را تا سال 2050 پیشبینی می کنیم: نمودار مقادیر تقاضا تا سال 2022 و خط رگرسیون:

دقت مدل:

و درنهایت مقادیر پیشبینی شده نیز به دادهها اضافه میشوند:

	Years	Salary	material 1	material 2	demand	price	demand_factor
0	1990	39343.000000	200.000000	89.600000	103.0	1200.0	1.000000
1	1991	46205.000000	212.000000	92.662500	104.0	1375.0	0.980199
2	1992	37731.000000	224.720000	95.807250	101.0	1451.0	0.960789
3	1993	43525.000000	238.203200	99.034819	99.0	1593.0	0.941765
4	1994	39891.000000	252.495392	102.345626	95.0	1718.5	0.923116
56	2046	182558.651070	5225.868178	215.143774	36.0	NaN	0.326280
57	2047	185213.703710	5539.420269	204.117656	36.0	NaN	0.319819
58	2048	187868.756350	5871.785485	191.451066	35.0	NaN	0.313486
59	2049	190523.808991	6224.092614	177.007523	34.0	NaN	0.307279
60	2050	193178.861631	6597.538171	160.640999	34.0	NaN	0.301194

برای پیشبینی قیمت محصول نیز از رگرسیون استفاده می کنیم و همانند قبل داریم: نمودار مقادیر قیمت محصول و خط رگرسیون:

دقت مدل:

و درنهایت دادهها تا سال 2050 کامل میشوند:

	Years	Salary	material 1	material 2	demand	price	demand_factor
0	1990	39343.000000	200.000000	89.600000	103.0	1200.0	1.000000
1	1991	46205.000000	212.000000	92.662500	104.0	1375.0	0.980199
2	1992	37731.000000	224.720000	95.807250	101.0	1451.0	0.960789
3	1993	43525.000000	238.203200	99.034819	99.0	1593.0	0.941765
4	1994	39891.000000	252.495392	102.345626	95.0	1718.5	0.923116
56	2046	182558.651070	5225.868178	215.143774	36.0	8244.5	0.326280
57	2047	185213.703710	5539.420269	204.117656	36.0	8370.0	0.319819
58	2048	187868.756350	5871.785485	191.451066	35.0	8495.5	0.313486
59	2049	190523.808991	6224.092614	177.007523	34.0	8621.0	0.307279
60	2050	193178.861631	6597.538171	160.640999	34.0	8746.5	0.301194
61 rc	61 rows × 7 columns						

خواسته اول:

ابتدا برحسب تقاضا بازهبندی انجام داده و درصد تخفیف را در دیتافریم d1 به عنوان یک ستون اضافه می کنیم:

	Years	Salary	material 1	material 2	demand	price	demand_factor	discount
0	1990	39343.000000	200.000000	89.600000	103.0	1200.0	1.000000	0.18
1	1991	46205.000000	212.000000	92.662500	104.0	1375.0	0.980199	0.18
2	1992	37731.000000	224.720000	95.807250	101.0	1451.0	0.960789	0.18
3	1993	43525.000000	238.203200	99.034819	99.0	1593.0	0.941765	0.18
4	1994	39891.000000	252.495392	102.345626	95.0	1718.5	0.923116	0.18
56	2046	182558.651070	5225.868178	215.143774	36.0	8244.5	0.326280	0.05
57	2047	185213.703710	5539.420269	204.117656	36.0	8370.0	0.319819	0.05
58	2048	187868.756350	5871.785485	191.451066	35.0	8495.5	0.313486	0.05
59	2049	190523.808991	6224.092614	177.007523	34.0	8621.0	0.307279	0.05
60	2050	193178.861631	6597.538171	160.640999	34.0	8746.5	0.301194	0.05
61 rows × 8 columns								

و درنهایت مقدار سود را با جمع ستون های درآمد و هزینه برای هرسال بدست می آوریم:

costs	rev	Net Profit
-61604.184000	123600.0	61995.816000
-69987.642000	143000.0	73012.358000
-62169.495805	146551.0	84381.504195
-68871.917270	157707.0	88835.082730
-65628.172449	163257.5	97629.327551
-371077.164270	296802.0	-74275.164270
-385000.245162	301320.0	-83680.245162
-393716.287683	297342.5	-96373.787683
-402443.870651	293114.0	-109329.870651
-417768.249131	297381.0	-120387.249131

حال با کشیدن نمودار مقادیر سود بر حسب سال و خط y=0 میابیم که از چه سالی به بعد، شرکت ضرر می کند:

خواسته دوم:

در این بخش، ابتدا 0.25 مقادیر سود شرکت از سال 2022 تا 2032 را به سال 2021 برده و جمع آن را در 0.2 ضرب کرده و به عنوان مقداری که شخص میخواهد سرمایه گذاری کند اعلام می کنیم. سپس این مقدار را در 11 سال، پخش می کنیم:

This Person's total investment value at the end of 2021 is 34088.79410217873. So He/She should start investing 4103.912134214918 at the end of each year, starting 2022 till the end of 2032.

خواسته سوم:

در این قسمت نیز، مقداری که فرد شرکت را میخرد، به علاوه 250000 دلار، باید در بدترین حالت برابر با سود کل شرکت، در سال صفر باشد. یعنی ابتدا سود شرکت را از سالهایی که سودده است، یعنی 2022 تا 2038 را به سال 2022 منتقل کرده و مجموع آن را منهای 250000 دلار میکنیم:

The company has the total profit amount of 793053.7024511567 in year 0. (2022) So they should buy the company in 2022 for at most 543053.7024511567 Dollars.