Assignment#5

GRAPHS

Common Input Format

The first line of the input file contains a positive integer **N**, the number of vertices of the graph. The set of vertices, **V** contains vertices that are labeled **0**, **1**, **2**, ..., **N-1**.

The second line contains a non-negative integer **E**, the number of edges of the graph. (Assume undirected graphs).

Then, **E** lines follow, each one containing three space-separated integers \mathbf{u} , \mathbf{v} and \mathbf{c} (\mathbf{u} , $\mathbf{v} \in \mathbf{V}$). This means, there is an undirected edge that connects the vertices labeled \mathbf{u} and \mathbf{v} , and the cost of this edge is \mathbf{c} .

Note: There can be more than one different correct output for a question. The sample output given here contains only one of them.

Sample Input

12 20

0 9 41 0 8 27 1 2 10 1 3 11

1 4 17

2 3 7

2 5 33 2

6 44

3 4 26

4 5 5 4 7

8

48154

9 16 5 6

21 6 7 31

6 10 18

6 11 29

7 8 20 8 9 13

10 11 23

Questions

1. **BFS**

Write a program that performs Breadth First Search in a graph.

Take an integer from the terminal as an extra input. Do the BFS, starting from this vertex.

Output Format

The output must contain exactly N integers on a single line – the sequence of vertex labels, in the order they are visited.

Sample Output (start at 1)

12345678910110

2. **DFS**

Write a program that performs Depth First Search in a graph.

Take an integer from the terminal as an extra input. Do the DFS, starting from this vertex.

Output Format

The output must contain exactly N integers on a single line – the sequence of vertex labels, in the order they are visited.

Sample Output (start at 1)

12345678091011

3. DIJKSTRA

Write a program that implements Dijkstra's algorithm.

Take an integer from the terminal as an extra input. This is the source vertex for Dijkstra's algorithm.

Output Format

The output must contain exactly N integers on a single line – the list of lengths of shortest paths from the source vertex (in the order of labels of vertices – 0 to N-1).

<u>Sample Output</u> (src node = 1)

59 0 10 11 17 22 14 25 32 33 32 43

4. KRUSKAL

Write a program that implements Kruskal's algorithm.

Output Format

Output the cost of the minimum spanning tree on the first line. Below that, output the adjacency matrix of the tree.

Sample Output

164

0 0 0 0 0 0 0 0 27 0 0 0

0 0 10 0 17 0 0 0 0 0 0 0

01007000000000

--- Best Wishes ---