模拟与数字电路

Analog and Digital Circuits

课程主页 扫一扫

第十八讲: MOSFET 及其小信号模型

Lecture 18: MOSFET & Small Signal Model

主 讲: 陈迟晓

Instructor: Chixiao Chen

提纲

- 复习
 - BJT晶体管的小信号模型时什么?

- MOSFET电路原理与小信号模型
- MOSFET习题
- 晶体管放大电路

图解法确定静态工作点Q

$$v_{\rm GS} = V_{\rm GG} = V_{\rm GSQ}$$

直流负载线: $v_{DS} = V_{DD} - i_D R_c$

得到静态工作点: $V_{\rm GSQ}$ 、 $I_{\rm DQ}$ 、 $V_{\rm DSQ}$

静态: $v_i = 0$

• 输入回路

$$v_{\rm GS} = V_{\rm GG} = V_{\rm GSQ}$$

• 输出回路

$$v_{\rm DS} = V_{\rm DD} - i_{\rm D} R_{\rm d}$$

(直流负载线)

金属一氧化物一半导体场效应管

Metal-Oxide-Semiconductor (MOS) Field Effect Transistor (FET)

MOSFET 原理

Vgs < Vth无导电沟道

Vgs > Vth形成反型区存在导电沟道

Vds > Vgs-Vth沟道夹断

MOSFET 工作区域

• 截止区
$$i_{\rm D} = 0$$

• 可变电阻区
$$v_{\rm DS} < (v_{\rm GS} - V_{\rm TN})$$

 $i_{\rm D} = K_{\rm n} [2(v_{\rm GS} - V_{\rm TN}) v_{\rm DS} - v_{\rm DS}^2]$

• 饱和区 $v_{\text{GS}} > V_{\text{TN}}$, 且 $v_{\text{DS}} > (v_{\text{GS}} - V_{\text{TN}})$ $i_{\text{D}} = K_{\text{n}} (v_{\text{GS}} - V_{\text{TN}})^2$

BJT vs. MOSFET

Complementary MOS

- BJT vs. MOSFET
 - 现代集成电路工艺 多采用MOSFET

	BJT	E-MOSFET
相似	电极(b、c、e)	电极 (g、d、s)
	工作区(截止、放大、饱和)	工作区(截止、恒流、可变电阻)
不同	双极性	单极性
	流控型	压控型

放大区与非放大区

增强型NMOS管

饱和区的条件: $V_{GSO} > V_{TN}$,

$$I_{\rm DQ} > 0$$
 , $V_{\rm DSQ} > V_{\rm GSQ} - V_{\rm TN}$

假设NMOS管工作于饱和区,利用

$$I_{DQ} = K_n (V_{GSQ} - V_{TN})^2$$
 计算**Q**点。

若: $V_{\text{GSO}} < V_{\text{TN}}$, NMOS管截止。

若: $V_{\rm DSO} < V_{\rm GSO} - V_{\rm TN}$, NMOS管可能工作在可变电阻区。

预夹断临界点轨迹

如果初始假设是错误的,则必须作出新的假设,同时重新分析电路。

小信号模型

λ为沟道长度调制系数

1. え=0时

(以增强型NMOS管为例)

在饱和区内有

$$i_{D} = K_{n}(v_{GS} - V_{T})^{2} + V_{gs} - V_{T}$$

$$= K_{n}(V_{GSQ} + v_{gs} - V_{T})^{2} + K_{n}(V_{GSQ} - V_{T}) + v_{gs}^{2}$$

$$= K_{n}[(V_{GSQ} - V_{T}) + v_{gs}]^{2} + K_{n}v_{gs}^{2}$$

$$= K_{n}(V_{GSQ} - V_{T})^{2} + 2K_{n}(V_{GSQ} - V_{T})v_{gs} + K_{n}v_{gs}^{2}$$

动态值

(交流)

非线性失

真项

静态值 (直流)

当, $v_{gs} << 2(V_{GSO} - V_{TN})$ 时, $i_{D} \approx I_{DQ} + g_{m}v_{gs} = I_{DQ} + i_{d}$

 $= I_{\mathrm{DQ}} + g_{\mathrm{m}} v_{\mathrm{gs}} + K_{\mathrm{n}} v_{\mathrm{gs}}^{2}$

其中 $g_{\rm m} = 2K_{\rm n}(V_{\rm GSO} - V_{\rm TN})$

$$i_{\mathrm{D}} \approx I_{\mathrm{DQ}} + g_{\mathrm{m}} v_{\mathrm{gs}} = I_{\mathrm{DQ}} + i_{\mathrm{d}}$$

小信号模型

•
$$\lambda = 0$$

1. え=0时

$$i_{\mathrm{D}} = I_{\mathrm{DQ}} + g_{\mathrm{m}} v_{\mathrm{gs}} = I_{\mathrm{DQ}} + i_{\mathrm{d}}$$

纯交流 i

$$i_{\rm d} = g_{\rm m} v_{\rm gs}$$

电路模型

- $g_{\rm m}v_{\rm gs}$ 是受控源,且为电压控制电流源(VCCS)。
- 电流方向与 $v_{\rm gs}$ 的极性是关 联的。

小信号模型

• $\lambda \neq 0$

2. *λ*≠0时

d、s端口看入有一电阻 r_{ds}

$$r_{ds} = \frac{\partial v_{DS}}{\partial i_{D}} \bigg|_{V_{GSQ}}$$

$$= \frac{1}{\lambda K_{n} (V_{GSQ} - V_{TN})^{2}} \approx \frac{1}{\lambda I_{DQ}} = \frac{V_{A}}{I_{DQ}}$$

小信号模型对应晶体管特性曲线

r_{ds} 物理意义

例题: 在右图电路中,已知如下参数 $V_{TN}=1V$ $K_n=0.8\text{mA}/V^2$ $\lambda=0.02V^{-1}$

求: (1) 该电路的输入静态工作点 (包括Vg, Vd, 及工作区域)

- (2) 画出该电路的小信号等效电路
- (3) 该电路的动态指标

(包括:增益,高频输入阻抗,输出阻抗)

例1
$$V_{\text{TN}} = 1 \text{V}$$
 $K_{\text{n}} = 0.8 \text{mA} / \text{V}^2$ $\lambda = 0.02 \text{V}^{-1}$

解: (1) 静态工作点

$$V_{\text{GSQ}} = \left(\frac{R_{\text{g2}}}{R_{\text{g1}} + R_{\text{g2}}}\right) V_{\text{DD}} = \frac{40}{60 + 40} \times 5 \text{V} = 2 \text{V}$$

假设工作在饱和区

$$I_{\rm DQ} = K_{\rm n} (V_{\rm GS} - V_{\rm TN})^2 = (0.8)(2-1)^2 \,\mathrm{mA} = 0.8 \,\mathrm{mA}$$

$$V_{\rm DSO} = V_{\rm DD} - I_{\rm D}R_{\rm d} = [5 - (0.8)(3.9)]V = 1.88V$$

满足
$$V_{DSQ} > (V_{GSQ} - V_{TN})$$

假设成立,结果即为所求。

例1
$$V_{\text{TN}} = 1 \text{V}$$
 $K_{\text{n}} = 0.8 \text{mA} / \text{V}^2$ $\lambda = 0.02 \text{V}^{-1}$

解: (2) 动态指标

模型参数
$$V_{GSO} = 2V$$

$$V_{\rm GSQ} = 2V$$

$$g_{\rm m} = 2K_{\rm n}(V_{\rm GSQ} - V_{\rm TN})$$
$$= 2 \times 0.8 \times (2 - 1) \text{mA/V}$$
$$= 1.6 \text{mA/V}$$

$$r_{\rm ds} = \frac{1}{\lambda K_{\rm n} (V_{\rm GSO} - V_{\rm TN})^2} = \frac{1}{0.02 \times 0.8 \times (2-1)^2} = 62.5 \,\mathrm{k}\Omega$$

电压增益
$$v_i = v_{gs}$$
 $v_o = -g_m v_{gs} (r_{ds} \parallel R_d)$

$$A_{v} = \frac{v_{o}}{v_{i}} = -\frac{g_{m}v_{gs}(r_{ds} || R_{d})}{v_{gs}} = -g_{m}(r_{ds} || R_{d}) \approx -g_{m}R_{d} = -6.24$$

$$A_v = -g_m(r_{ds} || R_d)$$
 经常当作公式使用

例1
$$V_{\text{TN}} = 1 \text{V}$$
 $K_{\text{n}} = 0.8 \text{mA} / \text{V}^2$ $\lambda = 0.02 \text{V}^{-1}$

解: (2) 动态指标

输入电阻

$$R_{i} = \frac{v_{i}}{i_{i}} = R_{gs1} \parallel R_{gs2} = 24 \text{ k}\Omega$$

受静态偏置电路的影响, 栅极绝缘的特性并未充分表现 出来

输出电阻

$$v_{gs} = 0$$

$$R_{o} = \frac{v_{t}}{i_{t}} = r_{ds} || R_{d} \approx R_{d}$$

$$= 3.9 \text{ k}\Omega$$

小信号的使用条件

$$v_{\rm gs} << 2 (V_{\rm GSQ} - V_{\rm TN})$$

• 小信号

$$g_{\rm m} = 2K_{\rm n}(V_{\rm GSQ} - V_{\rm TN})$$
$$r_{\rm ds} = \frac{1}{\lambda K_{\rm n}(V_{\rm GSQ} - V_{\rm TN})^2}$$

- 参数都是小信号参数,即微变参数或交流参数。
- 与静态工作点有关。
- 只适合对交流信号(变化量)的分析。
- 未包含结电容的影响,不能用于分析高频情况。

信号的线性放大

- 抽象层面的理解
- 线性放大的条件

放大电路需要能量供给 |A| > 1,且保持常数

当
$$x_1 = v_s$$
, $x_0 = v_o$, $A > 1$ 时

线性放大的特点表现为任何一点的电压幅值被放大的程度完全相同,也反映了输入对输出的控制。

话筒电压信号的线性放大

实际放大信号的非理想因素

• 放大器的非线性失真

 $x_{\rm I}$ • 放大电路输出摆幅限 制导致的非线性失真 • 放大器过程中的噪声耦合

放大电路模型

1. 信号放大时电路的一般构成

需要供电电源;是双口网络。

▶接地符号"⊥"的含义电路中的电位参考基准点,定义为零电位。也是输入、输出和电源的"共同端"。

放大电路的直流传递函数

2. 放大电路增益形式

电压增益(电压放大倍数)

$$A_v = \frac{v_o}{v_i}$$

电流增益 $A_i = \frac{i_0}{i}$

互阻增益 $A_r = \frac{v_o}{i_i}$ (Ω)

互导增益 $A_g = \frac{i_o}{v_i}$ (S)

功率增益 $A_p = \frac{P_0}{P_1}$

增益分贝数表示

电压增益= $20\lg|A_v|$ dB

电流增益= $20\lg|A_i|$ dB

功率增益= $10\lg A_p dB$

"甲放大电路的增益为-20倍"和"乙放大电路的增益为-20dB",问哪个电路的增益大?

放大电路输入、输出特性

3. 放大电路模型

电压放大模型

 A_{vo} ——负载开路时的 电压增益

R_i — 放大电路的 输入电阻

R₀ — 放大电路的 输出电阻

放大电路输入、输出特性

3. 放大电路模型

电压放大模型

由输出回路得

$$v_{o} = A_{vo}v_{i}\frac{R_{L}}{R_{o} + R_{L}}$$

则电压增益为

$$A_v = \frac{v_o}{v_i} = A_{vo} \frac{R_L}{R_o + R_L}$$

由此可见

$$R_{\rm L} \downarrow \longrightarrow A_v \downarrow$$

即负载的大小会影响增益的大小

要想减小负载的影响,则希望

$$R_{\rm o} << R_{\rm L}$$

理想情况 $R_0 = 0$

在输入回路

$$f v_i = \frac{R_i}{R_{si} + R_i} v_s$$

即信号源内阻会导致输入信号衰减 要想减小衰减,则希望

$$R_{\rm i} >> R_{\rm s}$$

理想情况 $R_i = \infty$