Lec 5: Positive Definite and Semidefinite Matrices.

Symmetric Positive Definite S

- O All Di>0
- @ Energy x^TSx>0 (all x≠0)
- 3 S=ATA (independent columns in A)
- @ All leading determinants > 0
- (5) All pivots inclimination > 0

$$S = \begin{bmatrix} 3 & 4 \\ 4 & 5 \end{bmatrix}$$
 indefinite matrix λ_1 , $\lambda_2 = \begin{bmatrix} 3 & 4 \\ 4 & 5 \end{bmatrix} = -1$.

$$S = \begin{bmatrix} 3 & 4 \\ 4 & 6 \end{bmatrix}$$
 leading determinates. $\begin{bmatrix} -3 & 4 \\ 4 & -6 \end{bmatrix}$

pluots 3:
$$S \rightarrow \begin{bmatrix} 3 & 4 \\ 0 & \frac{2}{3} \end{bmatrix}$$
 $\frac{2 \times 2 \text{ det}}{|x| \text{ det}} = \frac{2}{3}$

energy:
$$[x \ y] \begin{bmatrix} 3 \ 4 \ 4 \ 6 \end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix} = f(x,y)$$

= $3x^2 + 6y^2 + 4xy + 4xy + 6xy +$

Bowl
$$f(x,y) = x^T S x$$

convex

gradient descent $\nabla f = \begin{cases} \frac{df}{dx} \\ \frac{dx}{dx} \end{cases}$

- S.T positive definite, S+T? yes
 - energy $x^{T}(S+T)x = x^{T}Sx + x^{T}Tx > 0 \Rightarrow S+T$ is positive definite
- S positive definite, St? yes
 - S^{\dagger} has eigenvalues $\frac{1}{\lambda} > 0 \implies S^{\dagger}$ is positive definite.
- S positive definite, Q5Q? us
 - $Q^TSQ = Q^TSQ \Rightarrow Q^TSQ$ is similar to $S \Rightarrow Q^TSQ$ have the same eigenvalues as S. $\chi^TQ^TSQ\chi = y^TSy > 0$

Positive Semidefinite

 $\lambda_i \geqslant 0$, $x^T S x \geqslant 0$, $A^T A$ (dependent columns allowed).,

determinates $\geqslant 0$, r pivots > 0 , $r \le n$

Semi
$$\begin{pmatrix} 3 & 4 \\ 4 & 16/3 \end{pmatrix}$$
 $\lambda_1 + \lambda_2 = 3 + \frac{16}{3}$, $\lambda_1 \cdot \lambda_2 = 0 \Rightarrow \lambda = 8\frac{1}{3}$, 0

Semi def
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 $\lambda = 3, 0, 0$ (rank+trace).

$$= 3 \cdot \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{\lambda_1 g_1 g_1^T + 1}{\lambda_3 g_1 g_2^T + 1} = Q \wedge Q^T$$

$$= 3 \cdot \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$