```
In [1]: #Exploring data and correlation of the variables
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
In [2]: housing data = pd.read csv('datasets/housing.csv')
In [3]: #print first 5 sample of the dataset
          #median house value for target in regression
          housing data.head()
Out[3]:
             longitude latitude housing_median_age total_rooms total_bedrooms population households median_incc
          0
               -122.23
                        37.88
                                            41.0
                                                       880.0
                                                                      129.0
                                                                                322.0
                                                                                           126.0
                                                                                                         8.3
          1
               -122.22
                        37.86
                                            21.0
                                                      7099.0
                                                                     1106.0
                                                                               2401.0
                                                                                           1138.0
                                                                                                         8.3
               -122.24
                        37.85
                                            52.0
          2
                                                      1467.0
                                                                      190.0
                                                                                496.0
                                                                                           177.0
                                                                                                         7.2
                                                                      235.0
          3
               -122.25
                        37.85
                                            52.0
                                                      1274.0
                                                                                558.0
                                                                                           219.0
                                                                                                         5.6
               -122.25
                        37.85
                                            52.0
                                                      1627.0
                                                                      280.0
                                                                                565.0
                                                                                           259.0
                                                                                                         3.8
In [4]: #shape of datasets (number of entries, variables)
          housing data.shape
Out[4]: (20640, 10)
In [6]: #remove missing entry
          housing data = housing data.dropna()
In [7]: housing data.shape
Out[7]: (20433, 10)
In [8]: #view variable statistics
          housing_data.describe()
Out[8]:
                    longitude
                                  latitude housing_median_age
                                                              total_rooms total_bedrooms
                                                                                           population
                                                                                                      house
          count 20433.000000 20433.000000
                                                             20433.000000
                                                                            20433.000000
                                                                                        20433.000000
                                                                                                     20433.0
                                                 20433.000000
                  -119.570689
                                35.633221
                                                   28.633094
                                                              2636.504233
                                                                              537.870553
                                                                                          1424.946949
                                                                                                       499.4
           mean
                     2.003578
                                 2.136348
                                                              2185.269567
                                                                              421.385070
                                                                                          1133.208490
                                                                                                       382.2
            std
                                                   12.591805
            min
                  -124.350000
                                32.540000
                                                    1.000000
                                                                 2.000000
                                                                                1.000000
                                                                                            3.000000
                                                                                                         1.0
                                                                                          787.000000
                                                                                                       280.0
            25%
                  -121.800000
                                33.930000
                                                    18.000000
                                                              1450.000000
                                                                              296.000000
            50%
                  -118.490000
                                34.260000
                                                   29.000000
                                                              2127.000000
                                                                              435.000000
                                                                                          1166.000000
                                                                                                       409.0
            75%
                                                                                                       604.0
                  -118.010000
                                37.720000
                                                   37.000000
                                                              3143.000000
                                                                              647.000000
                                                                                          1722.000000
            max
                  -114.310000
                                41.950000
                                                   52.000000 39320.000000
                                                                             6445.000000 35682.000000
                                                                                                      6082.0
In [9]: #this is unique because the value is string
          housing_data['ocean_proximity'].unique()
Out[9]: array(['NEAR BAY', '<1H OCEAN', 'INLAND', 'NEAR OCEAN', 'ISLAND'],
                 dtype=object)
```

1 dari 3 4/4/2020, 3:33 PM

```
In [13]: fig, ax = plt.subplots(figsize=(12,8))
    plt.scatter(housing_data['median_income'], housing_data['median_house_value'])
    plt.xlabel('Median Income')
    plt.ylabel('Median house value')
```

Out[13]: Text(0, 0.5, 'Median house value')



In [14]: #to view correlation between every correlation. as you can see, in median\_house\_val
 ue, median\_income variable is the most correlated to the house price. range from -1
 to 1.
 housing\_data\_corr = housing\_data.corr()
 housing\_data\_corr

## Out[14]:

|                    | longitude | latitude  | housing_median_age | total_rooms | total_bedrooms | population | hou |
|--------------------|-----------|-----------|--------------------|-------------|----------------|------------|-----|
| longitude          | 1.000000  | -0.924616 | -0.109357          | 0.045480    | 0.069608       | 0.100270   | 0   |
| latitude           | -0.924616 | 1.000000  | 0.011899           | -0.036667   | -0.066983      | -0.108997  | -0  |
| housing_median_age | -0.109357 | 0.011899  | 1.000000           | -0.360628   | -0.320451      | -0.295787  | -0  |
| total_rooms        | 0.045480  | -0.036667 | -0.360628          | 1.000000    | 0.930380       | 0.857281   | 0   |
| total_bedrooms     | 0.069608  | -0.066983 | -0.320451          | 0.930380    | 1.000000       | 0.877747   | 0   |
| population         | 0.100270  | -0.108997 | -0.295787          | 0.857281    | 0.877747       | 1.000000   | 0   |
| households         | 0.056513  | -0.071774 | -0.302768          | 0.918992    | 0.979728       | 0.907186   | 1   |
| median_income      | -0.015550 | -0.079626 | -0.118278          | 0.197882    | -0.007723      | 0.005087   | 0   |
| median house value | -0.045398 | -0.144638 | 0.106432           | 0.133294    | 0.049686       | -0.025300  | 0   |

2 dari 3 4/4/2020, 3:33 PM

```
In [15]: #heatmat from seaborn view better visualization of correlation, input params is cor
    relattion data

fig, ax = plt.subplots(figsize=(12,10))
    sns.heatmap(housing_data_corr, annot=True)
```

Out[15]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1c454783c48>



In []:

3 dari 3 4/4/2020, 3:33 PM