Performance Evaluation

Agenda

- Confusion Matrix
- KPIs
- ROC, PR

True / Predicted-	→ positive	negative
positive		
negative		

Sample ID	Predicted class	True (concept) class
1	Т	Т
2	Т	Т
3	Т	Т
4	Т	F
5	Т	F
6	F	F
7	F	F
8	F	F
9	F	F
10	F	F
11	F	F
12	F	Т
13	F	Т
14	F	4

True / Predicted-	→ positive	negative
positive	TPs	FNs
negative	FPs	TNs

Sample ID	Predicted class	True (concept) class
1	Т	Т
2	Т	Т
3	Т	Т
4	Т	F
5	Т	F
6	F	F
7	F	F
8	F	F
9	F	F
10	F	F
11	F	F
12	F	Т
13	F	Т
14	F	Ţ

True / Predicted-	→ positive	negative
positive	TPs=3	FNs
negative	FPs	TNs

Sample ID	Predicted class	True (concept) class
1	T	T
2	Т	Т
3	Т	T
4	T	F
5	Т	F
6	F	F
7	F	F
8	F	F
9	F	F
10	F	F
11	F	F
12	F	Т
13	F	Т
14	F	Ē

True / Predicted-	→ positive	negative
positive	TPs=3	FNs=
negative	FPs=2	TNs=

Sample ID	Predicted class	True (concept) class
1	Т	Т
2	Т	Т
3	Т	Т
4	T	F
5	T	F_¦
6	F	F
7	F	F
8	F	F
9	F	F
10	F	F
11	F	F
12	F	Т
13	F	Т
14	F	Ŧ

True / Predicted-	→ positive	negative
positive	TPs=3	FNs=3
negative	FPs=2	TNs=

Sample ID	Predicted class	True (concept) class
1	Т	Т
2	Т	Т
3	Т	Т
4	Т	F
5	Т	F
6	F	F
7	F	F
8	F	F
9	F	F
10	F	F
11	F	F
12	F	T
13	F	T
14	F	Ĭ ¦

True / Predicted-	→ positive	negative
positive	TPs=3	FNs=3
negative	FPs=2	TNs=6

Sample ID	Predicted class	True (concept) class
1	Т	Т
2	Т	Т
3	Т	Т
4	Т	F
5	Т	F
6	F	F
7	F	F ¦
8	F	F
9	F	F
10	F	F
11	E	<u>F_</u> ¦
12	F	Т
13	F	Т
14	F	J

Agenda

- Confusion Matrix
- KPIs
- ROC, PR

- True positive rate (Recall)
- True negative rate (specificity)
- Precision
- F-score
- Alert rate

11

True / Predicted-	→ positive	negative
positive	TPs=3	FNs=3
negative	FPs=2	TNs=6

© Yinnon Meshi

 Accuracy = what is the precentage of samples that are correctly labelled?

•
$$Accuracy = \frac{TP + TN}{P + N}$$

• In our example Accuracy=9/14=64.2%

True / Predicted-	→ positive	negative
positive	TPs=3	FNs=3
negative	FPs=2	TNs=6

- Accuracy = what is the precentage of samples that are correctly labelled?
- $Accuracy = \frac{TP + TN}{P + N}$
 - In our example Accuracy=9/14=64.2%
- Q: Is a classifier with 90% accuracy a good classifier?

True / Predicted-	→ positive	negative
positive	TPs=3	FNs=3
negative	FPs=2	TNs=6

FNs=3

TNs=6

negative

True / Predicted → positive

TPs=3

FPs=2

 Accuracy = what is the precentage of samples that are correctly labelled?

Accuracy	_	TP+TN
Accuracy		P+N

• In our example Accuracy=9/14=64.2%

• A: Depending on the dataset!

True / Predicted	positive	negative
positive	TPs=30	FNs=20
negative	FPs=80	TNs=870

True / Predicted	positive	negative
positive	TPs=250	FNs=50
negative	FPs=50	TNs=650

positive

negative

© Yinnon Meshi

FNs=3

TNs=6

negative

True / Predicted → positive

TPs=3

FPs=2

 Accuracy = what is the precentage of samples that are correctly labelled?

•	Accuracy	_	TP+TN
	Accuracy	_	P+N

- In our example Accuracy=9/14=64.2%
- Q: Is a classifier with 90% accuracy a good classifier?
- A: Depending on the dataset!

True / Predicted	positive	negative
positive	TPs=30	FNs=20
negative	FPs=80	TNs=870

True / Predicted	positive	negative
positive	TPs=250	FNs=50
negative	FPs=50	TNs=650

positive

negative

T = 300, F = 700: 30% positive rate

© Yinnon Meshi

- Q: Is a classifier with 90% accuracy a good classifier?
- A: Depending on the dataset!

True / Predicted	positive	negative
positive	TPs=30	FNs=20
negative	FPs=80	TNs=870

True / Predicted	positive	negative
positive	TPs=250	FNs=50
negative	FPs=50	TNs=650

T = 50, F = 950: 5% positives

T = 300, F = 700: 30% positives

- Let's compare to a Majority classifier
 - Predict "False" for all samples
 - In the left dataset we'll get 95% accuracy
 - In the right dataset we'll get 70% accuracy
- $accuracy\ lift\ over\ majority = \frac{classifier_accuracy}{mojority_accuracy}$

- Accuracy
- True positive rate (Recall)
- False positive rate (FPR)
- Precision
- Alert rate

True / Predicted-	→ positive	negative
positive	TPs=3	FNs=3
negative	FPs=2	TNs=6

- True positive rate (Recall)
 - Out of all the positive samples, how much did the classifier "catch"

•
$$TPR = Recall = \frac{TP}{P}$$

- False positive rate (FPR)
 - Out of all the negative samples, how much did the classifier mark as positive

•
$$FPR = specificity = \frac{FP}{N}$$

*we'll use those KPIs for the ROC curve

True / Predicted-	→ positive	negative
positive	TPs=3	FNs=3
negative	FPs=2	TNs=6

- True positive rate (Recall)
 - Out of all the positive samples, how much did the classifier "catch"

•
$$TPR = Recall = \frac{TP}{P}$$

- Precision (positive predictive value PPV)
 - Out of all the samples the classifier marked as True, on what percent was it correct

•
$$PPV = precision = \frac{TP}{TP + FP}$$

*we'll use those KPIs for the PR curve

True / Predicted-	→ positive	negative
positive	TPs=3	FNs=3
negative	FPs=2	TNs=6

• F1 Score

- Harmonic mean between precision and recall
- $F_1 = 2 * \frac{recall*precision}{recall+precision}$
- Much more affected by the lower value

True / Predicted-	→ positive	negative
positive	TPs=3	FNs=3
negative	FPs=2	TNs=6

Recall, precision	Average	F1
R=1, P=0	0.5	0
R=0.9, P=0	0.45	0

• F1 Score

- Harmonic mean between precision and recall
- $F_1 = 2 * \frac{recall*precision}{recall+precision}$
- Much more affected by the lower value

True / Predicted-	→ positive	negative
positive	TPs=3	FNs=3
negative	FPs=2	TNs=6

Recall, precision	Average	F1
R=1, P=0	0.5	0
R=0.9, P=0	0.45	0
R=0.8, P=0.3	0.55	0.436

© Yinnon Meshi 21

• F1 Score

- Harmonic mean between precision and recall
- $F_1 = 2 * \frac{recall*precision}{recall+precision}$
- Much more affected by the lower value

True / Predicted-	→ positive	negative
positive	TPs=3	FNs=3
negative	FPs=2	TNs=6

Recall, precision	Average	F1
R=1, P=0	0.5	0
R=0.9, P=0	0.45	0
R=0.8, P=0.3	0.55	0.436
R=0.7, P=0.7	0.7	0.7

© Yinnon Meshi 22

- "Alert rate" (non formal name)
 - % of samples marked as True

•
$$alert_rate = \frac{TP + FP}{T + F}$$

Very useful where part of the dataset is not labeled

True / Predicted-	→ positive	negative
positive	TPs=3	FNs=3
negative	FPs=2	TNs=6

Agenda

- Confusion Matrix
- KPIs
- ROC, PR

- Many classifiers predict the *probability* of sample to belong to the Positive class
- Choosing different thresholds yeilds different confusion matrices

Sample ID	Predicted probability	True (concept) class
1	0.95 T	Т
2	0.9 T	Т
3	0.89 T	Т
4	0.85 T	F
5	0.8 T	F
6	0.65 T	Т
7	0.6 T	F
8	0.6 T	F
9	0.58 T	F
10	0.3 F	F
11	0.21 F	Т
12	0.13 F	F
13	0.01 F	Т
14	0.01 F	F

- Many classifiers predict the *probability* of sample to belong to the Positive class
- Choosing different thresholds yeilds different confusion matrices

Sample ID	Predicted probability	True (concept) class
1	0.95 T	Т
2	0.9 T	Т
3	0.89 T	Т
4	0.85 T	F
5	0.8 T	F
6	0.65 T	Т
7	0.6 T	F
8	0.6 T	F
9	0.58 T	F
10	0.3 F	F
11	0.21 F	Т
12	0.13 F	F
13	0.01 F	Т
14	0.01 F	F

- Many classifiers predict the *probability* of sample to belong to the Positive class
- Choosing different thresholds yeilds different confusion matrices
- Thershold = 0.7
 - Precision = 3/5
 - Recall = 3/6
 - FPR =2/8

Sample ID	Predicted probability	True (concept) class
1	0.95 T	Т
2	0.9 T	Т
3	0.89 T	Т
4	0.85 T	F
5	0.8 T	F
6	0.65 T	Т
7	0.6 T	F
8	0.6 T	F
9	0.58 T	F
10	0.3 F	F
11	0.21 F	Т
12	0.13 F	F
13	0.01 F	Т
14	0.01 F	27

- Many classifiers predict the *probability* of sample to belong to the Positive class
- Choosing different thresholds yeilds different confusion matrices
- Thershold = 0.7
 - Precision = 3/5
 - Recall = 3/6
 - FPR = 2/8
- Thershold = 0.5
 - Precision = 3/9
 - Recall = 3/6
 - FPR =5/8

Sample ID	Predicted probability	True (concept) class
1	0.95 T	Т
2	0.9 T	Т
3	0.89 T	Т
4	0.85 T	F
5	0.8 T	F
6	0.65 T	Т
7	0.6 T	F
8	0.6 T	F
9	0.58 T	F
10	0.3 F	F
11	0.21 F	Т
12	0.13 F	F
13	0.01 F	Т
14	0.01 F	28

PR, ROC curves

• Each point in the ROC curve fits a different threshold

Thresh	Precision	Recall	FPR=FP/N
0	0.43	1	1
0.05	0.42	0.83	0.875
0.2	0.45	0.83	0.75
0.25	0.4	0.67	0.75
0.4	0.44	0.67	0.625
0.59	0.5	0.67	0.5
0.62	0.67	0.67	0.25
0.7	0.6	0.5	0.25
0.82	0.75	0.5	0.167
0.87	1	0.5	0
0.89	1	0.33	0
0.92	1	0.17	0

Sample ID	Predicted probability	True (concept) class
1	0.95 T	Т
2	0.9 T	Т
3	0.89 T	Т
4	0.85 T	F
5	0.8 T	F
6	0.65 T	Т
7	0.6 T	F
8	0.6 T	F
9	0.58 T	F
10	0.3 F	F
11	0.21 F	Т
12	0.13 F	F
13	0.01 F	Т
14	0.01 F	F

© Yinnon Meshi

PR, ROC curves

PR and ROC curves for imbalanced data

• A random dataset of 4000 samples, 1% positive class, 99% negative class

DummyClassifier(strategy='stratified')

No Skill ROC AUC 0.490

LogisticRegression()

Logistic ROC AUC 0.771

PR and ROC curves for imbalanced data

• A random dataset of 4000 samples , 1% positive class, 99% negative class

DummyClassifier(strategy='stratified')

No Skill ROC AUC 0.490

LogisticRegression()

Logistic ROC AUC 0.771

DummyClassifier(strategy='stratified')

No Skill PR AUC: 0.036

LogisticRegression()

Logistic PR AUC: 0.098

Agenda

- Confusion Matrix
- KPIs
- ROC, PR
- Comparing Models

Comparing models

DummyClassifier(strategy='stratified')

- In many cases this comes from a business requirement
- AUC
 - Area under the ROC/PR curve
 - Can help to choose the best model by the highest AUC
 - In practice can help reject model with low AUC
- Required recall, Required precision
 - We can only advertise to customers with conversion rate above 20%
 - We need to catch >90% of the frauds above 1000\$
- Precision @ K
 - We can classify 100 cases/day, we need the highest precision
- Max F1
 - We need both good recall and good precision

- The first samples that have the highest score have a large impact on the way the graph looks like
 - If we replace the label of the first couple of samples (highest score) the graph may look very different
 - AUC can dramatically change

- The first samples that have the highest score have a large impact on the way the graph looks like
 - If we replace the label of the first couple of samples (highest score) the graph may look very different
 - AUC can dramatically change

© Yinnon Meshi

36

- The first samples that have the highest score have a large impact on the way the graph looks like
 - If we replace the label of the first couple of samples (highest score) the graph may look very different
 - AUC can dramatically change

Change sample #1670 from False to True

A "bumpy"/"noisy" PR curve is less indicative of model's performance

Apply binning

A "bumpy"/"noisy" PR curve is less indicative of model's performance

Apply binning

Round 2 digits $(0.218 \rightarrow 0.22)$

A "bumpy"/"noisy" PR curve is less indicative of model's performance

Apply binning

Round 2 digits (0.218→0.22)

Round 1 digit $(0.218 \rightarrow 0.2)$

