Exercice 2

T est la maturité, $K \ge 0$ le strike, $S_t \ge 0$ est le prix de l'actif risque, B_t le prix du zéro-coupon que rapporte 1 à maturité $(B_T = 1)$.

[1] On veut montrer que $(S_0 - K B_0)_+ \leqslant C_0 \leqslant S_0$ par un raisonnement d'arbitrage. On observe que par définition on a $S_T - K \leqslant (S_T - K)_+ \leqslant S_T$ car $K \geqslant 0$ et que $C_T = (S_T - K)_+$. Une stratégie que majore la valeur de la call à maturité est donc celle d'acheter l'actif risque au temps 0 et de le conserver jusqu'au temps T. Si on note X_t la valeur de cette stratégie on a $X_t = S_t$ et donc puisque $X_T \geqslant C_T$ on doit avoir $S_t = X_t \geqslant C_t$ pour tout temps. La stratégie $X_t = 0$ donne une première borne inférieure: $0 = X_T \leqslant C_T \Rightarrow 0 = X_0 \leqslant C_0$. Une autre borne est donnée par la stratégie que à t = 0 achète S et vend K zéro-coupons. Sa valeur est donc $X_t = S_t - K B_t$ qui donne $X_T \leqslant C_T \Rightarrow S_t - K B_t = X_t \leqslant C_t$ pour tout $t \leqslant T$. Donc on a aussi $C_t \geqslant \max(0, S_t - K B_t)$.

[2] La parité call-put donne $C_t - P_t = S_t - KB_t$ qui avec les inégalités $(S_0 - KB_0)_+ \leqslant C_0 \leqslant S_0$ implique que $(KB_0 - S_0)_+ \leqslant P_0 \leqslant KB_0$.

[3] Si on note $C_t(K,T)$ le prix du call de maturité T et strike K au temps $t \leq T$ on a que

$$K_1 \leqslant K_2 \implies C_T(K_1, T) = (S_T - K_1)_+ \leqslant (S_T - K_2)_+ = C_T(K_2, T)$$

donc par arbitrage $C_t(K_1, T) \leq C_t(K_2, T)$ pour tout temps $t \leq T$ qui montre que le prix du call est décroissante par rapport au strike. Soient maintenant $T_1 \leq T_2$ deux maturités. On considère deux stratégies X, Y. La stratégie X c'est d'acheter S et vendre $C(KB_{T_1}, T_1)$ au temps 0. La stratégie Y c'est d'acheter S et vendre $C(K, T_2)$ au temps 0. Donc

$$X_t = S_t - C_t(KB_{T_1}, T_1), \qquad Y_t = S_t - C_t(K, T_2)$$

Au temps T_1 la call vendue par X peut être exerce (si $S_{T_1} > K$). On appelle E cet événement. Après et vend une call européenne doit avoir le temps T_1 on a que

$$X_t = S_t \mathbb{I}_{E^c} + K B_t \mathbb{I}_E$$

car si l'option a été exercé, alors j'ai du vendre mon action au prix KB_{T_1} et acheter K zéro coupons qui valent B_{T_1} chacun. Si l'option n'a été exercé, alors au temps $t \geq T_1$ je possède encore mon actif risque. Au temps T_2 on a donc (sous l'hypothèse que B est normalisé à T_2) $X_{T_2} = S_{T_2}\mathbb{I}_{E^c} + K\mathbb{I}_E$. D'autre par, la stratégie Y vaut $Y_{T_2} = S_{T_2} + (S_{T_2} - K)_+ = \max(S_{T_2}, K)$. Donc $X_{T_2} \leq Y_{T_2}$ qui implique pour absence d'arbitrage que $X_t \leq Y_t$ pour tout $t \leq T_2$ et en particulier que $C_t(KB_{T_1}, T_1) \leq C_t(K, T_2)$. Puisque $B_{T_1} \leq 1$ on a aussi que $C_t(K, T_1) \leq C_t(K, T_2)$.

[4] Pour le prix du put on considère les stratégies

$$X_0 = KB_0 - P_0(KB_{T_1}, T_1), Y_0 = KB_0 - P_0(K, T_2)$$

Quand $t = T_1$ on note E l'evenement que le put a été exerce, donc pour $T_1 \leqslant t \leqslant T_2$: $X_t = S_t \mathbb{I}_E + KB_t \mathbb{I}_{E^c}$. Au temps T_2 on a $Y_{T_2} = K - (K - S_{T_2})_+$ et $X_{T_2} = S_{T_2} \mathbb{I}_E + K \mathbb{I}_{E^c}$, donc $Y_{T_2} \leqslant X_{T_2} \Rightarrow Y_0 \leqslant X_0 \Rightarrow P_0(KB_{T_1}, T_1) \geqslant P_0(K, T_2)$.

Exercice 3

[1] Soient A_t et E_t le valeurs d'un option Américaine et Européenne. On a $A_T = E_T$ à maturité, donc la stratégie $X_t = A_t - E_t$ qui consiste à acheter un option Américaine et vendre une Européenne vaut $X_T = 0$ a maturité, donc on doit avoir $X_t \ge 0$ pour tout temps (autrement je peut vendre X et gagner de l'argent). A noter que l'argument n'est pas symétrique car si je vend l'option Américaine alors je donne le droit a quelq 'un de l'exercer a tout temps $t \le T$ et donc c'est pas possible dire que $X_T = 0$.

- [2] On veut montrer que $C_t^e > (S_t KB_t)_+$ (avec inégalité stricte). Or si pour quelque t on avait $C_t^e = 0$ alors je aurais pu acheter C à ce moment et donc réaliser avec proba positive un gain au temps T car $\mathbb{P}(S_T > K) > 0$. De manière similaire si $C_t^e = S_t KB_t > 0$ alors la call a le même prix que la stratégie d'acheter S et de vendre K z.c. qui rapporte $S_T K$ à maturité. Ce payoff est toujours $S_T = K$ 0 alors la call a le même prix que la stratégie d'acheter $S_T = K$ 1 on a $S_T = K$ 2 qui donne la possibilité à un arbitrage.
- [3] Donc on a que $C_t^a \ge C_t^e > (S_t K B_t)_+ \ge (S_t K)_+$ si on fait l'hypothèse que $B_t \le 1$ pour tout $t \le T$. Donc le prix de la call américaine est toujours strictement supérieure de son payoff au temps t. Il vaut mieux la vendre que l'exercer.
- [4] Si je vends une call Américaine et l'acheteur l'exerce avant maturité je peut réaliser un gain donc a tout temps la stratégie Y de vendre une call Américaine et acheter une Européenne a un valeur $Y_t \geqslant E_t A_t$. Mais $Y_T \geqslant 0$ et donc $Y_t \geqslant 0$ a tout temps ce qui implique que $E_t \geqslant A_t$, donc $E_t = A_t$.