interact: An Interactive Design Environment for Asynchronous Logic

Jiayuan He, Wenmian Hua, Yi-Shan Lu, Sepideh Maleki, Yihang Yang, Keshav Pingali, Rajit Manohar

University of Texas at Austin & Yale University

http://github.com/asyncvlsi/

Previous setup: separate tools per step + Makefile

Core components of the flow

- ACT library: front-end tools
 - Design and netlist management
 - User design at the behavioral, gate, and circuit abstraction
- Timer library: both front-end and back-end tools
 - Timing graph creation
 - Cyclic analysis, critical cycle, and incremental update
 - Timing constraints and violating paths
 - Parasitic manager
- PhyDB library: back-end tools
 - Physical database
 - LEF/DEF import/export
 - Parasitics interface to timer

Modular approach to development

- Our project: an academic environment with students
 - Difficult to start the project by using a unified data structure (... no previous integrated async flow to mimic)
 - Need to enable parallel development by different students
- The solution
 - Each tool was converted to a library
 - Primary input/output from tool must read/write from core databases
 - ▶ ACT for design/netlist
 - PhyDB for physical design
 - * Netlist adaptor: an abstract API that simplifies tool development
 - Provided by the ACT library
 - Used to implement basic netlist functions
 - Tools can map ACT netlist objects to/from tool-specific representation

Libraries and our design flow

Example

Summary

- interact is an integrated tool to implement asynchronous circuits
 - Design management, cell mapping
 - Placement, global routing
 - Timing analysis
- Core databases: ACT (design) and PhyDB (geometry)
- Decoupled software architecture to simplify integration
 - Netlist adaptor permits language-agnostic tool development

