UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELETRÔNICA

PROJETO RTL: TRABALHO FINAL LABORATÓRIO DE SISTEMAS DIGITAIS

Felipe Freitas Sergio Bicalho

Belo Horizonte, setembro de 2020

INTRODUÇÃO

O seguinte relatório tem como objetivo descrever o sistema de controle de acessos a um estacionamento, mostrar o seu diagrama conceitual de Máquina de Estados de Alto Nível, o desenho do Caminho de Dados.

DESCRIÇÃO DO SISTEMA

Figura 1: Sistema de Controle de Acessos a um estacionamento com 16 vagas.

Em um estacionamento privado, o controle de entrada e saída é realizado por uma única via. O sistema deve identificar automaticamente o veículo e sua intenção, seja de ingressar ou sair do estabelecimento.

Ao se posicionar em frente ao sensor1 o sistema deverá imprimir um ticket, que possui um código baseado na placa do veículo, que deverá ser obrigatoriamente retirado pelo motorista e só assim a cancela deverá ser liberada e será fechada somente após o veículo passar completamente pelo sensor2. Caso o estacionamento esteja em sua capacidade máxima de lotação o sistema não poderá permitir o acesso de outros veículos ao estabelecimento.

Caso a intenção do motorista seja sair do estacionamento ele deverá colocar um ticket validado para liberar a cancela, após o veículo passar completamente pelo sensor1 a cancela deverá ser fechada.

Máquina de Estados de Alto Nível

Diagrama de blocos

Entradas e Saídas

Entradas	Sensor1	1 bit		
	Sensor2	1 bit		
	Check_Ticket1	1 bit		
	Check_Ticket2	1 bit		
	Placa_Read1	16 bits		
	Placa_Read2	16 bits		
	Ticket_Code1	16 bits		

	Open_Gate	1 bit		
Saídas	Ticket_Code2	16 bits		
	Vagas_disponiveis	4 bits		
	Mensagem	16 bits		

Componentes do Caminho de dados

Comparador

```
LessThan1
                                    menor
                      LESS Than 0
                                    maior
                                    igual
entity comparador is
        port
        (
                           : in std_logic_vector (15 downto 0);
                Χ
                у
                           : in std_logic_vector (15 downto 0);
                igual, maior, menor : out std_logic
        );
end entity;
architecture rtl of comparador is
begin
        igual \leq '1' when x = y else '0';
        maior \neq '1' when x > y else '0';
        menor \leftarrow '1' when x \leftarrow y else '0';
end rtl;
```

(1) →	Msgs						
+- /tb_comparador/A	-No Data-	52428		13107		8738	
- → /tb_comparador/B	-No Data-	0	17476		13107		65535
/tb_comparador/big	-No Data-						
/tb_comparador/sm	-No Data-						
/tb_comparador/equal	-No Data-						

Contador


```
entity contador is
       port (
                       clock, reset, enableUp, enableDown : in std_logic;
                       q: out std_logic_vector (3 downto 0));
end contador;
architecture arch of contador is
begin
       process (clock, reset)
       variable contagem: integer range 0 to 15;
       begin
               if reset = '1' then
                       contagem := 0;
               elsif clock'event and clock='1' then
                       if enableUp='1' then
                               contagem := contagem+1;
                       elsif enableDown='1' then
                               contagem := contagem-1;
                       end if;
               end if;
               q <= conv_std_logic_vector(contagem, 4);</pre>
       end process;
```

end arch;

