Analysis of Large Graphs: Link Analysis, PageRank

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

New Topic: Graph Data!

High dim.

Locality sensitive hashing

Clustering

Dimensional ity reduction

Graph data

PageRank, SimRank

Community Detection

Spam Detection

Infinite data

Filtering data streams

Web advertising

Queries on streams

Machine learning

SVM

Decision Trees

Perceptron, kNN

Apps

Recommen der systems

Association Rules

Duplicate document detection

Graph Data: Social Networks

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Graph Data: Media Networks

Connections between political blogs

Polarization of the network [Adamic-Glance, 2005]

Graph Data: Information Nets

Citation networks and Maps of science

[Börner et al., 2012]

Graph Data: Communication Nets

Graph Data: Technological Networks

Seven Bridges of Königsberg

[Euler, 1735]

Return to the starting point by traveling each link of the graph once and only once.

Web as a Graph

- Web as a directed graph:
 - Nodes: Webpages
 - Edges: Hyperlinks

I teach a class on Networks.

CS224W: Classes are in the Gates building

Computer
Science
Department
at Stanford

Stanford University

Web as a Graph

- Web as a directed graph:
 - Nodes: Webpages
 - Edges: Hyperlinks

Web as a Directed Graph

Broad Question

- How to organize the Web?
- First try: Human curated
 Web directories
 - Yahoo, DMOZ, LookSmart
- Second try: Web Search
 - Information Retrieval investigates: Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
 - But: Web is huge, full of untrusted documents, random things, web spam, etc.

Web Search: 2 Challenges

- 2 challenges of web search:
- (1) Web contains many sources of information Who to "trust"?
 - Trick: Trustworthy pages may point to each other!
- - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers

coreference resolution

Ranking Nodes on the Graph

All web pages are not equally "important"

www.joe-schmoe.com vs. www.stanford.edu

There is large diversity in the web-graph node connectivity.
 Let's rank the pages by the link structure!

Link Analysis Algorithms

- We will cover the following Link Analysis approaches for computing importances of nodes in a graph:
 - Page Rank
 - Hubs and Authorities (HITS)
 - Topic-Specific (Personalized) Page Rank
 - Web Spam Detection Algorithms

PageRank: The "Flow" Formulation

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

Links as Votes

- Idea: Links as votes
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Think of in-links as votes:
 - www.stanford.edu has 23,400 in-links
 - www.joe-schmoe.com has 1 in-link
- Are all in-links are equal? 类似于:本文猛不猛,看 引用。还是个recursi ve的
 - Links from important pages count more
 - Recursive question!

Inlinks = Links on other websites that send traffic to your site (进来的). Inlinks are harder to fake than outlinks 所以通常采用比较多,类似于他引 Outlinks = Links on your site that send people to other sites (出去的)

Example: PageRank Scores

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page j with importance r_j has n out-links,
 each link gets r_i / n votes
- Page j's own importance is the sum of the votes on its in-links

$$r_{j} = r_{i}/3 + r_{k}/4$$

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a "rank" r_j for page j

此处的
$$i$$
 是所有指向 j 的 i 网页的集合 $r_j = \sum_{i o j} \frac{r_i}{\mathbf{d}_i}$

 d_i out-degree of node i

The web in 1839

"Flow" equations:

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
 - No unique solution

- Flow equations: $r_y = r_y/2 + r_a/2$ $r_a = r_y/2 + r_m$ $r_m = r_a/2$
- All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:

$$r_y + r_a + r_m = 1$$

Solution:
$$r_y = \frac{2}{5}$$
, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$

- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

PageRank: Matrix Formulation

- Stochastic adjacency matrix M
 - Let page $m{i}$ has $m{d}_{m{i}}$ out-links
 - If $i \rightarrow j$, then $M_{ji} = \frac{1}{d}$ else $M_{ji} = 0$
 - *M* is a column stochastic matrix
 - Columns sum to 1 对于一列,各个elements就是去各个j,自然和是1
- Rank vector r: vector with an entry per page
 - $lackbox{\hspace{0.1cm}$\hspace{0.1cm}$} oldsymbol{r_i}$ is the importance score of page $oldsymbol{i}$
 - $\sum_i r_i = 1$
- The flow equations can be written

$$r = M \cdot r$$

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

Example

Remember the flow equation: $r_j = \sum_{i \to j} \frac{r_i}{d_i}$ Flow equation in the matrix form

$$M \cdot r = r$$

Suppose page i links to 3 pages, including j

Eigenvector Formulation

The flow equations can be written

$$r = M \cdot r$$

NOTE: *x* is an eigenvector with the corresponding eigenvalue λ if:

 $Ax = \lambda x$

- So the rank vector r is an eigenvector of the stochastic web matrix M
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1
 - Largest eigenvalue of M is 1 since M is column stochastic
 - Why? We know r is unit length and each column of M sums to one, so $Mr \leq 1$
- We can now efficiently solve for r!
 The method is called Power iteration

Example: Flow Equations & M

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

$$\begin{array}{c|ccccc} & y & a & m \\ y & \frac{1}{2} & \frac{1}{2} & 0 \\ a & \frac{1}{2} & 0 & 1 \\ m & 0 & \frac{1}{2} & 0 \end{array}$$

$$r = M \cdot r$$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$

Power Iteration Method

- Given a web graph with N nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $\mathbf{r}^{(0)} = [1/N,....,1/N]^T$
 - Iterate: $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$
 - Stop when $|\mathbf{r}^{(t+1)} \mathbf{r}^{(t)}|_1 < \varepsilon$

 $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |\mathbf{x}_i|$ is the **L**₁ norm Can use any other vector norm, e.g., Euclidean

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

d_i . out-degree of node i

PageRank: How to solve?

Power Iteration:

• 1:
$$r'_j = \sum_{i \to j} \frac{r_i}{d_i}$$

- 2: r = r'
- If not converged: goto 1

Example:

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

PageRank: How to solve?

Power Iteration:

- Set $r_j = 1/N$
- 1: $r'_j = \sum_{i \to j} \frac{r_i}{d_i}$
- 2: r = r'
- If not converged: goto 1

$$\begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \begin{array}{ccccc} 1/3 & 1/3 & 5/12 & 9/24 & 6/15 \\ 1/3 & 3/6 & 1/3 & 11/24 & \dots & 6/15 \\ 1/3 & 1/6 & 3/12 & 1/6 & 3/15 \\ \end{array}$$

Iteration 0, 1, 2,

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Random Walk Interpretation

Imagine a random web surfer:

- At any time t, surfer is on some page i
- At time t+1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely

Let:

- p(t) ... vector whose i^{th} coordinate is the prob. that the surfer is at page i at time t
- lacksquare So, $oldsymbol{p}(oldsymbol{t})$ is a probability distribution over pages

The Stationary Distribution

- Where is the surfer at time *t*+1?
 - Follows a link uniformly at random $p(t+1) = M \cdot p(t)$

Suppose the random walk reaches a state

$$p(t+1) = M \cdot p(t) = p(t)$$

then p(t) is stationary distribution of a random walk

- Our original rank vector r satisfies $r = M \cdot r$
 - So, r is a stationary distribution for the random walk

Existence and Uniqueness

 A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy **certain conditions**, the **stationary distribution is unique** and eventually will be reached no matter what the initial probability distribution at time **t** = **0**

PageRank: The Google Formulation

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

PageRank: Three Questions

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i} \quad \text{or equivalently} \quad r = Mr$$

Does this converge?

层层前进,感觉很稳 记住这个套路

- Does it converge to what we want?
- Are results reasonable?

Does this converge?

The "Spider trap" problem:

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Example:

Does it converge to what we want?

The "Dead end" problem:

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathbf{d}_i}$$

Example:

RageRank: Problems

2 problems:

(1) Some pages are

dead ends (have no out-links) 导致结果变成零

Such pages cause importance to "leak out"

- (2) Spider traps
 (all out-links are within the group)
 - Eventually spider traps absorb all importance

Problem: Spider Traps

Power Iteration:

- Set $r_i = 1$
- $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

	y	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	1

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_m = r_a/2 + r_m$$

Example:

Solution: Random Teleports

- The Google solution for spider traps: At each time step, the random surfer has two options
 - $lacksymbol{\blacksquare}$ With prob. $oldsymbol{eta}$, follow a link at random $_{oldsymbol{ iny{ iny{100}}}$
 - With prob. 1- β , jump to some random page
 - lacktriangle Common values for $oldsymbol{eta}$ are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

Power Iteration:

- Set $r_i = 1$
- $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

	y	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_m = r_a/2$$

Example:

Iteration 0, 1, 2,

Solution: Always Teleport

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

Why Teleports Solve the Problem?

$$r^{(t+1)} = Mr^{(t)}$$

Markov chains

- Set of states X
- Transition matrix P where $P_{ij} = P(X_t=i \mid X_{t-1}=j)$
- π specifying the stationary probability of being at each state $x \in X$
- Goal is to find π such that $\pi = P \pi$

Why is This Analogy Useful?

- Theory of Markov chains
- <u>Fact:</u> For <u>any start vector</u>, the power method applied to a Markov transition matrix *P* will converge to a <u>unique</u> positive stationary vector as long as *P* is <u>stochastic</u>, <u>irreducible</u> and <u>aperiodic</u>.

Make M Stochastic

- Stochastic: Every column sums to 1
- Solution: Add green links

$$A = M + a^{T} \left(\frac{1}{n}e\right)$$

- a_i =1 if node *i* has out deg 0, =0 else
- e vector of all 1s 全都是1

	У	a	m
y	1/2	1/2	1/3
a	1/2	0	1/3
m	0	1/2	1/3

$$r_y = r_y/2 + r_a/2 + r_m/3$$

 $r_a = r_y/2 + r_m/3$
 $r_m = r_a/2 + r_m/3$

Make M Aperiodic

- A chain is periodic if there exists k > 1 such that the interval between two visits to some state s is always a multiple of k
- Solution: Add green links

Make M Irreducible

 From any state, there is a non-zero probability of going from any one state to any another

不会stuck在某一个点

Solution: Add green links

Solution: Random Jumps

- Google's solution that does it all:
 - Makes M stochastic, aperiodic, irreducible
- At each step, random surfer has two options:
 - With probability β , follow a link at random
 - With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_{j} = \sum_{i \to j} \beta \frac{r_{i}}{d_{i}} + (1 - \beta) \frac{1}{n}$$

The above formulation assumes that *M* has no dead ends. We can either preprocess matrix *M* (bad!) or explicitly follow random teleport links with probability 1.0 from dead-ends.

of node i

The Google Matrix

PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{n}$$

The Google Matrix A:

$$A = \beta M + (1 - \beta) \frac{1}{n} \boldsymbol{e} \cdot \boldsymbol{e}^T$$
 e vector of all 1s

A is stochastic, aperiodic and irreducible, so

$$r^{(t+1)} = A \cdot r^{(t)}$$

- What is β ?
 - In practice $\beta = 0.8, 0.9$ (make 5 steps and jump)

Random Teleports ($\beta = 0.8$)

How do we really compute the PageRank?

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

Computing Page Rank

- Key step is matrix-vector multiplication
 - $r^{\text{new}} = A \cdot r^{\text{old}}$
- Easy if we have enough main memory to hold A, r^{old}, r^{new}
- Say N = 1 billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N² entries
 - 10¹⁸ is a large number!

$$\mathbf{A} = \beta \cdot \mathbf{M} + (\mathbf{1} - \beta) \left[\mathbf{1} / \mathbf{N} \right]_{\mathbf{N} \times \mathbf{N}}$$

$$\mathbf{A} = 0.8 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 1 \end{bmatrix} + 0.2 \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

$$= \begin{array}{|c|c|c|c|c|c|c|c|} \hline 7/15 & 7/15 & 1/15 \\ \hline 7/15 & 1/15 & 1/15 \\ \hline 1/15 & 7/15 & 13/15 \\ \hline \end{array}$$

Matrix Formulation

- Suppose there are N pages
- Consider page j, with d_i out-links
- We have $M_{ij} = 1/|d_j|$ when $j \rightarrow i$ and $M_{ij} = 0$ otherwise
- The random teleport is equivalent to:
 - Adding a **teleport link** from j to every other page and setting transition probability to $(1-\beta)/N$
 - Reducing the probability of following each out-link from $1/|d_i|$ to $\beta/|d_i|$
 - Equivalent: Tax each page a fraction $(1-\beta)$ of its score and redistribute evenly

Rearranging the Equation

•
$$r=A\cdot r$$
, where $A_{ij}=\beta M_{ij}+\frac{1-\beta}{N}$
• $r_i=\sum_{j=1}^N A_{ij}\cdot r_j$
• $r_i=\sum_{j=1}^N \left[\beta M_{ij}+\frac{1-\beta}{N}\right]\cdot r_j$
 $=\sum_{j=1}^N \beta M_{ij}\cdot r_j+\sum_{j=1}^N \frac{1-\beta}{N}r_j$
 $=\sum_{j=1}^N \beta M_{ij}\cdot r_j+\frac{1-\beta}{N} \quad \text{since } \sum r_j=1$
• So we get: $r=\beta M\cdot r+\left[\frac{1-\beta}{N}\right]_N$

Note: Here we assumed **M** has no dead-ends.

 $[x]_N$... a vector of length N with all entries x

Sparse Matrix Formulation

We just rearranged the PageRank equation

$$r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$$

- where $[(1-\beta)/N]_N$ is a vector with all N entries $(1-\beta)/N$
- M is a sparse matrix! (with no dead-ends)
 - 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - Compute $r^{\text{new}} = \beta M \cdot r^{\text{old}}$
 - Add a constant value (1-β)/N to each entry in r^{new}
 - Note if M contains dead-ends then $\sum_i r_i^{new} < 1$ and we also have to renormalize r^{new} so that it sums to 1

PageRank: The Complete Algorithm

- Input: Graph G and parameter β
 - Directed graph G with spider traps and dead ends
 - Parameter β
- Output: PageRank vector r
 - Set: $r_j^{(0)} = \frac{1}{N}$, t = 1
 - do:

$$\forall j \colon r_j^{(t)} = \sum_{i \to j} \beta \frac{r_i^{(t-1)}}{d_i}$$

$$r_j^{(t)} = \mathbf{0} \text{ if in-deg. of } \mathbf{j} \text{ is } \mathbf{0}$$

Now re-insert the leaked PageRank:

$$\forall j: r_j^{(t)} = r'_j^{(t)} + \frac{1-S}{N}$$
 where: $S = \sum_j r'_j^{(t)}$

- t = t + 1
- while $\sum_{j} \left| r_{j}^{(t)} r_{j}^{(t-1)} \right| > \varepsilon$