MTH 309 - Activity 9 Determinants

1. For each of the following pairs of vectors, graph the parallelogram they span and determine its area.

i.
$$(4,0), (0,5)$$

ii.
$$(4,0),(2,5)$$

iii.
$$(4,1), (2,5)$$

iv.
$$(3,4), (12,8)$$

v.
$$(a, b), (c, d)$$

Example: Parallelogram spanned by (3,1) and (1,2).

2. Write a general rule for computing the area of the parallelogram spanned by two vectors in $(R)^2$.

3. Now consider the linear transformation $T:(R)^2 \to (R)^2$ defined by

$$T(\mathbf{x}) = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \mathbf{x}.$$

(a) What happens to the area of each parallelogram from problem 1 when the vectors are transformed by T?

(b) What about for the transformation given by $S(\mathbf{x}) = \begin{bmatrix} 5 & 6 \\ -2 & -3 \end{bmatrix} \mathbf{x}$?

(c) What about for the transformation given by $R(\mathbf{x}) = \begin{bmatrix} 4 & 6 \\ -2 & -3 \end{bmatrix} \mathbf{x}$?

(d) And for the arbitrary transformation $Q(\mathbf{x}) = A\mathbf{x}$?

4. Write a general rule that relates the area of the parallelogram after transformation to the area of the parallelogram before transformation.

5. Use your general rule, extended to \mathbb{R}^3 to find the areas of the following parallelopiped (3D parallelogram).

i. Spanned by $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} -2\\0\\0 \end{bmatrix} \right\}$.

ii. The unit cube (spanned by $\{e_1, e_2, e_3\}$) after being transformed by $P(\mathbf{x}) = \begin{bmatrix} 1 & 2 & 3 \\ 5 & -1 & 0 \\ 0 & -2 & -12 \end{bmatrix}$.

1

iii. The parallelopiped from part i. after being transformed by the transformation from part ii.