Block I

Definitions

1. Discrete dynamical systems

Dynamical system

Let:

- $\cdot\,M$ manifold
- $\cdot T$ monoid

$$\cdot \phi : M \times T \to M$$

Then, (M, T, ϕ) is a dynamical system if:

$$\forall \ x \in X :$$

$$\phi(x,0) = 0$$

$$\forall \ t_1,t_2 \in T :$$

$$\phi(\phi(x,t_1),t_2) = \phi(x,t_1+t_2)$$

Dimension

Let:

 $\cdot \left(M,T,\phi \right)$ dynamical system

We name dimension of (M, T, ϕ) to:

$$\cdot \dim(M)$$

We denote:

$$\cdot dim(M) = n : (M, T, \phi) \text{ n-D}$$

Discrete & Continuous

Let:

 $\cdot (M, T, \phi)$ dynamical system

Then, (M, T, ϕ) is discrete if:

$$T \stackrel{\subseteq}{\sim} \mathbb{N}$$

Then, (M, T, ϕ) is continuous if:

$$\cdot \, T \subset \mathbb{R}$$

 $\cdot T$ open

Defined by a function

Let:

 $\cdot \left(M,T,\phi \right)$ dynamical system

$$\cdot f : M \to M$$

Then, (M, T, ϕ) is a dynamical system defined by f if:

$$\cdot T = \mathbb{N}$$

$$\begin{array}{cccc} \phi : M \times \mathbb{N} & \longrightarrow & M \\ (x,n) & \longmapsto & f^n(x) \end{array}$$

We denote:

 (M, T, ϕ) dynamical system defined by $f: (M, \mathbb{N}, f)$

$$f \in \mathcal{C}^n(M) : (M, \mathbb{N}, f) \mathcal{C}^n$$

\mathbf{Orbit}

Let:

 (M, \mathbb{N}, f) functional dynamical system

$$\cdot x \in M$$

We name orbit of x to:

$$\{f^n(x)\}_{n\in\mathbb{N}}$$

We denote:

$$\cdot o(x)$$

Periodicity

Let:

 $\cdot (M, \mathbb{N}, f)$ dynamical system

$$\cdot x \in M$$

$$\cdot m \in \mathbb{N}$$

Then, x is a m-periodic point if:

$$f^m(x) = x$$

We denote:

$$\cdot \{x \in M \mid f(x) = x\} : \operatorname{Fix}(f)$$

Stability

Let:

$$f: \mathbb{R}^n \to \mathbb{R}^n$$

 $p \in \mathbb{R}^n$ m-periodic point

Then, p is stable if:

$$\ \, \forall \, \varepsilon \in \mathbb{R}^+ : \\ \\ \exists \, \delta \in \mathbb{R}^+ : \\ \\ \forall \, x \in B(p, \delta) : \\ \\ \forall \, n \in \mathbb{N} : \\ \\ f^{nm}(x) \in B(p, \varepsilon)$$

Then, p is unstable if:

 $\cdot\,p$ not stable

Attractive & Repulsive

Let:

$$f: \mathbb{R}^n \to \mathbb{R}^n$$

 $p \in \mathbb{R}^n$ m-periodic point

Then, p is attractive if:

$$\cdot p$$
 stable

$$\cdot \exists \varepsilon \in \mathbb{R}^+$$
:

$$\forall x \in B(p, \varepsilon)$$
:

$$f^{nm}(x) \xrightarrow{n} p$$

Then, p is repulsive if:

$$\cdot p$$
 attractive by f^{-1}

$$\cdot \forall \mathcal{U} \subset M \quad \mathcal{U} \text{ open } \wedge x \in \mathcal{U} :$$

$$\forall x' \in \mathcal{U} \mid_{\Pi} x' \neq x :$$

$$\exists N \in \mathbb{N}$$
:

$$\forall n \in \mathbb{N} \quad n \geq N$$
:

$$f^{nm}(x') \notin \mathcal{U}$$

Fixed point character

Let:

 (M, \mathbb{N}, f) functional dynamical system

We name Fixed point character to:

$$f: \operatorname{Fix}(f) \longrightarrow \{-1,0,1\}$$

$$x \longmapsto \begin{cases} +1 & x \text{ repulsive} \\ -1 & x \text{ attractive} \\ 0 & x \text{ no attractive no repulsive} \end{cases}$$

We denote:

$$\cdot f : \chi_f$$

Attraction set

Let:

 (M, \mathbb{N}, f) dynamical system

 $x \in M$ attractive m-periodic point

 $\cdot o(x)$ orbit of x

We name attraction set of x to:

$$\{y \in M \mid \exists x' \in o(x) : f^{nm}(y) \xrightarrow{n} x'\}$$

We denote:

$$\cdot A(x)$$

Multiplier

Let:

$$\cdot (M, \mathbb{N}, f) \mathcal{C}^1$$
 dynamical system

$$\cdot x \in M$$

We name multiplier of x to:

$$\cdot f'(x)$$

We denote:

$$\cdot m(x)$$

$$|m(x)| = 1 : x \text{ neutral point}$$

Feeble point

Let:

$$\cdot (M, \mathbb{N}, f) \mathcal{C}^3$$
 dynamical system

$$\cdot x \in M$$

Then, x is feeble point if:

$$\cdot x$$
 neutral point

$$f''(x) = 0$$

Sarkovskii's order

We name Sarkovskii's order to:

$$a = 2^{n}a', b = 2^{m}b'$$

$$a' = b' = 1$$

$$a' = 1, b' \neq 1$$

$$a' < b' \quad a' = b' \neq 1$$

$$a' < b' \quad a' = b' \neq 1$$

$$a < m \quad 1 \neq a' \neq b'$$

Chaos

Let:

 \cdot (\mathbb{R} , \mathbb{N} , f) dynamical system

Then, $(\mathbb{R}, \mathbb{N}, f)$ is chaotic if:

- · Fix(f) dense in \mathbb{R}
- $\cdot \exists x \in \mathbb{R}$:

o(x) dense in \mathbb{R}

 $\cdot \ \forall \ x \in \mathbb{R}$:

 $\exists \varepsilon \in \mathbb{R}^+$:

 $\forall \ \delta \in \mathbb{R}^+$:

$$\exists \ \tilde{x} \in B(x,\delta) :$$

$$\lim_{n} o(\tilde{x}) \notin B(x, \varepsilon)$$

Topological equivalence

Let:

$$(M, \mathbb{N}, f_1), (M, \mathbb{N}, f'_2)$$
 dynamical systems

Then, (M, \mathbb{N}, f_1) is topologically equivalent to (M, \mathbb{N}, f_2) if:

·
$$Fix(f) = Fix(f')$$

$$\cdot \forall x \in \text{Fix}(f)$$
:

$$\chi_{f_1}(x) = \chi_{f_2}(x)$$

We denote:

$$\cdot (M, \mathbb{N}, f) \sim (M, \mathbb{N}, f')$$

Bifurcation

Let:

$$\cdot \: \Lambda \subset M$$

 $\cdot\,(M,\mathbb{N},f_{\lambda})_{\lambda\in\Lambda}$ dynamical systems parametrized by Λ

$$\lambda_0 \in \Lambda$$

Then, λ_0 is a bifurcation value if:

$$\forall \ \varepsilon \in \mathbb{R}^+ :$$

$$\exists \ \lambda_1, \lambda_2 \in B(\lambda_0, \varepsilon) :$$

$$(M, \mathbb{N}, f_{\lambda_1}) \not\vdash (M, \mathbb{N}, f_{\lambda_2})$$

Saddle-node bifurcation

Let:

$$\cdot \: \Lambda \subset M$$

 $\cdot \, (M, \mathbb{N}, f_{\lambda})_{\lambda \in \Lambda}$ dynamical systems parametrized by Λ

$$\cdot\;\lambda_0\in\Lambda$$

$$x_0 \in M$$

Then, λ_0 is a saddle-node bifurcation value at x_0 if:

$$x_0 \in \operatorname{Fix}(f_{\lambda_0})$$

 $\cdot x_0$ neutral point of f_{λ_0}

$$\cdot \partial_{\lambda} f_{\lambda}(x_0) \neq 0$$

$$\cdot \partial_{xx} f_{\lambda}(x_0) \neq 0$$

Pitchfork bifurcation

Let:

- $\cdot \: \Lambda \subset M$
- $\cdot \, (M, \mathbb{N}, f_{\lambda})_{\lambda \in \Lambda}$ dynamical systems parametrized by Λ
- $\cdot \lambda_0 \in \Lambda$
- $x_0 \in M$

Then, λ_0 is Pitchfork bifurcation value at x_0 if:

- $x_0 \in \operatorname{Fix}(f_{\lambda_0})$
- $\cdot x_0$ neutral point of f_{λ_0}
- $\cdot \, \partial_{\lambda} f_{\lambda}(x_0, \lambda_0) = 0$
- $\partial_{x^2} f_{\lambda}(x_0, \lambda_0) = 0$
- $\cdot \partial_{\lambda x} f_{\lambda}(x_0, \lambda_0) \neq 0$
- $\cdot \, \partial_{x^3} f_{\lambda}(x_0, \lambda_0) \neq 0$

Period doubling bifurcation

Let:

$$\cdot \: \Lambda \subset M$$

 $\cdot \, (M, \mathbb{N}, f_{\lambda})_{\lambda \in \Lambda}$ dynamical systems parametrized by Λ

$$\cdot \lambda_0 \in \Lambda$$

$$x_0 \in M$$

Then, λ_0 is Period doubling bifurcation value at x_0 if:

 $\cdot \lambda_0$ Pitchfork bifurcation value at x_0 of f^2

Invariant curve

Let:

 $\cdot\,\gamma$ differentiable curve

$$p \in \mathbb{R}^n$$

Then, γ is invariant if:

$$\cdot \ \forall \ x \in \gamma * :$$

$$o(x) \subset \gamma *$$

Then, γ is converges to pif:

$$\cdot \ \forall \ x \in \gamma *$$
:

$$o(x) \xrightarrow{n} p$$

14 2 unit name

2. 2-D linear dynamical systems

Linear system

Let:

 (M, \mathbb{N}, f) functional dynamical system

Then, (M, \mathbb{N}, f) is linear if:

$$\begin{array}{ccc}
\cdot & \exists A \in \mathcal{M}_{n \times n}(\mathbb{R}) : \\
f : \mathbb{R}^n & \longrightarrow & \mathbb{R}^n \\
x & \longmapsto & Ax
\end{array}$$

Multiplier

Let:

 $\cdot \left(M,\mathbb{N},f\right)$ functional dynamical system

 $\cdot x \in M$

We name multiplier of x to:

 $\cdot Df(p)$