■ Data Engineering HACKATHON – CASE STUDY DOCUMENT

Data Sources

1. Yahoo Finance

Use the yfinance Python library to retrieve OHLCV (Open, High, Low, Close, Volume) data at a **minute-level interval** for S&P 500 symbols. The list of S&P 500 symbols can be obtained from this Wikipedia page.

2. CoinMarketCap

Scrape the "All Crypto" table using any suitable Python scraping library (e.g., BeautifulSoup, requests, or Selenium). Limit the extraction to the top 10 cryptocurrencies by market cap.

3. Open Exchange Rates

Create an account at Open Exchange Rates and obtain your **App ID**. Use the API key to fetch live foreign exchange data.

Task 1 – Data Acquisition

Implement a serverless ingestion system using AWS Lambda and Amazon EventBridge:

- Configure AWS Lambda functions to acquire data from each source (Yahoo Finance, CoinMarketCap, Open Exchange Rates).
- Use Amazon EventBridge rules to trigger each Lambda function every minute.
- Each Lambda function should fetch the data from its respective source and store it in an **S3 bucket**.

S3 Bucket Configuration

- Bucket naming convention: data-hackathon-smit-yourname.
- All data should be stored under the raw/ folder, organized by date.
- Each file should include a **contract or metadata** about the source, such as timestamp, source name, symbol, and response status.

Example

 lambda_yahoofinance runs every minute, fetches minute-level OHLCV data for all S&P 500 symbols, and stores it in:

s3://data-hackathon-smit-{yourname}/raw/yahoofinance/YYYY/MM/DD/{H
HMM}.{file-format}

Task 2 – Data Processing

In this task, you will build a real-time data processing pipeline by connecting the S3 bucket (created in Task 1) with Amazon SNS, SQS FIFO queues, and AWS Lambda.

Step-by-Step Instructions:

1. SNS Integration:

- o Configure Amazon SNS to listen to new object creation events in your S3 bucket.
- Use object metadata (contract) added during Task 1 to apply filters in SNS. Based on the source (e.g., Yahoo Finance, CoinMarketCap, Open Exchange Rates), route the event to the appropriate SQS FIFO queue.

2. SQS FIFO Queues:

- Create three separate SQS FIFO queues, one for each data source:
 - yahoo-finance-queue.fifo
 - coinmarketcap-queue.fifo

- openexchangerates-queue.fifo
- As files arrive every minute, SNS filters and forwards relevant metadata to these queues.
- For example, by the 5th minute, each queue should have received five messages corresponding to five processed files.

3. Lambda Processing:

- Deploy three AWS Lambda functions, each specifically designed to handle data from a different source.
- Use Amazon EventBridge to trigger each Lambda function every minute.
- Each Lambda function reads messages from its respective SQS queue and processes the data accordingly:
 - Yahoo Finance → Snowflake: Parse the OHLCV data and insert it into a Snowflake data warehouse.
 - CoinMarketCap → S3: Transform and save the scraped crypto data to a processed S3 location.
 - Open Exchange Rates → SQL Server: Extract exchange rates and insert them into an SQL Server database.

