1

Discrete Assignment

SAMMETA SAIPOORNA EE23BTECH11055

Question (11.9.3.14) The sum of first three terms of a G.P. is 16 and the sum of next three terms is 128. Determine the first term, the common ratio, and the sum to n terms of the G.P.

Δ	n	S		76	ľ
			v		

Parameter	Description	Value
<i>x</i> (0)	First term of AP	_
r	Common ratio	_
x(n)	General term of given AP	$x(0)r^nu(n)$
x(0) + x(1) + x(2)	sum of 1st,2nd and 3rd terms	16
x(3) + x(4) + x(5)	sum of 3rd,4th and 5th terms	128

$$y(n) = x(n) * u(n) \tag{1}$$

$$Y(z) = X(z)U(z) \tag{2}$$

Applying inverse Z-transform:

$$y(n) = x(0) \left[\frac{r^n - 1}{r - 1} \right]$$
 (3)

For y(3):

$$y(3) = x(0) \left[\frac{r^3 - 1}{r - 1} \right] \tag{4}$$

For
$$y(6) - y(3)$$
:

$$y(6) - y(3) = x(0) \left[\frac{r^6 - 1}{r - 1} - \frac{r^3 - 1}{r - 1} \right]$$
 (5)

$$128 = x(0) \left[\frac{r^6 - 1}{r - 1} - \frac{r^3 - 1}{r - 1} \right] \tag{6}$$

$$128 = x(0)r^3 \left[\frac{r^3 - 1}{r - 1} \right] \tag{7}$$

$$16 = x(0) \left[\frac{r^3 - 1}{r - 1} \right] \tag{8}$$

Divide equation (7) by equation (8):

$$\frac{128}{16} = r^3 \tag{9}$$

$$r^3 = 8 \tag{10}$$

$$r = 2 \tag{11}$$

So, the solution for r is 2. Substituting this value back into the expression for x(0), we get:

$$x(0) = \frac{16}{2^2 + 2 + 1}$$

$$= \frac{16}{7}$$
(12)

So, r = 2 and $x(0) = \frac{16}{7}$.