511-2017-10-20-action-II

Rick Gilmore 2017-10-20 13:49:15

Prelude

https://www.youtube.com/embed/L0CVoFsUhC4

Prelude

https://www.youtube.com/embed/XaI5IRuS2aE

Today's Topics

· The neuroscience of action

Muscles are sensory organs, too!

Can Stock Photo

Two muscle fiber types

e 2001 Sinaver Associates, Inc.

Two muscle fiber types

- Intrafusal fibers
 - Sense length/tension
 - Contain muscle spindles linked to la afferents
 - ennervated by gamma (γ) motor neurons
- Extrafusal fibers
 - Generate force
 - ennervated by alpha (α) motor neurons

Monosynaptic stretch (myotatic) reflex

- Muscle stretched (length increases)
- Muscle spindle in intrafusal fiber activates
- Ia afferent sends signal to spinal cord
 - Activates alpha (α) motor neuron
- Muscle contracts, shortens length

Monosynaptic stetch (myotatic) reflex

• Gamma (γ) motor neuron fires to take up intrafusal fiber slack

BIOLOGICAL PSYCHOLOGY, Fourth Edition, Figure 11.9 (Part 3) © 2004 Sinsuer Associates, Inc.

Monosynaptic stretch (myotatic) reflex

BIOLOGICAL PSYCHOLOGY, Fourth Edition, Figure 11.10 (Part 1) © 2004 Sinauer Associates, Inc.

Why doesn't antagonist muscle respond?

Why doesn't antagonist muscle respond?

- Polysynaptic inhibition of antagonist muscle
- Prevents/dampens tremor

Brain gets fast(est) sensory info from spindles

TABLE 8.2 Fibers That Link Receptors to the CNS

Sensory function(s)	Receptor type(s)	Axon type	Diameter (μm)	Conduction speed (m/s)
Proprioception (see Chapter 11)	Muscle spindle	Aα	13–20	80–120
Touch (see Figures 8.12 and 8.13)	Pacinian corpuscle, Ruffini's ending, Merkel's disc, Meissner's corpuscle	Αβ	6–12	35–75
Pain, temperature	Free nerve endings; VRL1	Aδ	1–5	5–30
Temperature, pain, itch	Free nerve endings; VR1, CMR1	С	0.02-1.5	0.5-2

BIOLOGICAL PSYCHOLOGY, Fourth Edition, Table 8.2 © Sinauer Associates, Inc.

How the brain controls the muscles

- Pyramidal tracts
 - Pyramidal cells (Cerebral Cortex Layer 5) in primary motor cortex (M1)
 - Corticobulbar (cortex -> brainstem) tract
 - Corticospinal (cortex -> spinal cord) tract
- Crossover (decussate) in medulla
 - L side of brain ennervates R side of body

Corticospinal tract

https://commons.wikimedia.org/wiki/File:Gray764.png#/media/File:Gray764.png

How the brain controls the muscles

- Extrapyramidal system
 - Tectospinal tract
 - Vestibulospinal tract
 - Reticulospinal tract
- Involuntary movements
 - Posture, balance, arousal

Extrapyramidal system

https://upload.wikimedia.org/wikipedia/commons/b/be/Gray672.png

This figure shows that the descending motor pathways in red on the right have their own spatial organization depending on where they originate in the brain.

Disorders

- Parkinson's
- Huntington's

The Faces of Parkinson's

Parkinson's

- Slow, absent movement, resting tremor
- Cognitive deficits, depression
- DA Neurons in substantia nigra degenerate
- Treatments
 - DA agonists
 - DA agonists linked to impulse control disorders in ~1/7 patients (Ramirez-Zamora et al. 2016)
 - Levodopa (L-Dopa), DA precursor

Awakenings

Huntington's

http://cp91279.biography.com/1000509261001/1000509261001 guthrie-centennial-1.jpg

Huntington's

- Formerly Huntington's Chorea
 - "Chorea" from Greek for "dance"
 - "Dance-like" pattern of involuntary movements
- Cognitive decline
- Genetic + environmental influences
- Disturbance in striatum
- No effective treatment

Huntington's

Remember

- · Control of movement determined by multiple sources
- Cerebral cortex + basal ganglia + cerebellum + spinal circuits

Multiple, parallel controllers

BIOLOGICAL PSYCHOLOGY, Faurth Edition, Figure 11.4 © 2004 Strauer Associates, Inc.

Cerebellum as predictor of future sensory states? (Ito 2008)

http://venturebeat.com/wp-content/uploads/2009/10/star-trek-holodeck.jpg

The Real Reason for Brains

What does motor cortex activity encode?

Shenoy et al., 2013

Cortical Control of Arm Movements: A Dynamical Systems Perspective

Annual Review of Neuroscience

Vol. 36:337-359 (Volume publication date July 2013)
First published online as a Review in Advance on May 29, 2013
https://doi.org/10.1146/annurev-neuro-062111-150509

Dynamic systems perspective

- Dynamics of
 - World events, W(s)
 - Extero- and interoceptive sensory systems, S(t)
 - Nervous system states, N(t)
 - Muscle states, B(t)
 - Effects of muscles on world

Next time...

- Cognition
- · Quiz 2 due

References

Ito, Masao. 2008. "Control of Mental Activities by Internal Models in the Cerebellum." *Nat. Rev. Neurosci.* 9 (4): 304–13. doi:10.1038/nrn2332.

Ramirez-Zamora, Adolfo, Lucy Gee, James Boyd, and José Biller. 2016. "Treatment of Impulse Control Disorders in Parkinson's Disease: Practical Considerations and Future Directions." *Expert Rev. Neurother.* 16 (4): 389–99. doi:10.1586/14737175.2016.1158103.