cir, un conjunto de puntos que se encuentra sobre una recta que pasa por el origen es el único tipo de subespacio propio de \mathbb{R}^2 .

EJEMPLO 5.2.4 Un subespacio propio de \mathbb{R}^3

Sea $H = \{(x, y, z): x = at, y = bt \ y \ z = ct, a, b, c, t \ reales\}$. Entonces H consiste en los vectores en \mathbb{R}^3 que se encuentran sobre una recta que pasa por el origen. Para ver que H es un subespacio de \mathbb{R}^3 , sea $\mathbf{x} = (at_1, bt_1, ct_1) \in H$ y $\mathbf{y} = (at_2, bt_2, ct_2) \in H.$ Entonces

$$\mathbf{x} + \mathbf{y} = (a(t_1 + t_2), b(t_1 + t_2), c(t_1 + t_2)) \in H$$

У

$$\alpha \mathbf{x} = (a(\alpha t_1), b(\alpha t_1), c(\alpha t_1)) \in H.$$

Así, H es un subespacio de \mathbb{R}^3 .

EJEMPLO 5.2.5 Otro subespacio propio de \mathbb{R}^3

Sea $\pi = \{(x, y, z): ax + by + cz = 0; a, b, c \text{ reales}\}$. Entonces, como se vio en el ejemplo 5.1.6, π es un espacio vectorial; así, π es un subespacio de \mathbb{R}^3 .

En la sección 5.5 se demostrará que los conjuntos de vectores que se encuentran sobre rectas y planos que pasan por el origen son los únicos subespacios propios de \mathbb{R}^3 .

Antes de analizar más ejemplos es importante observar que no todo espacio vectorial tiene subespacios propios.

Nota

EJEMPLO 5.2.6 ℝ no tiene subespacios propios

Observe que \mathbb{R} es un espacio vectorial real: es decir. R es un espacio vectorial en donde los escalares se toman como los números reales. Éste es el ejemplo 5.1.1, con n = 1.

Sea H un subespacio de \mathbb{R} . Si $H \neq \{0\}$, entonces H contiene un número real α diferente de cero. Por el axioma vi), $1 = (1/\alpha)$ $\alpha \in H$ y $\beta 1 = \beta \in H$ para todo número real β . Así, si H no es el subespacio trivial, entonces $H = \mathbb{R}$. Es decir, \mathbb{R} no tiene subespacios propios.

EJEMPLO 5.2.7 Algunos subespacios propios de \mathbb{P}_n

Si \mathbb{P}_n denota el espacio vectorial de polinomios de grado menor o igual a n (ejemplo 5.1.7), y si $0 \le n$ m < n, entonces \mathbb{P}_m es un subespacio propio de \mathbb{P}_n como se verifica fácilmente.

EJEMPLO 5.2.8 Un subespacio propio de M_{mn}

Sea M_{mn} (ejemplo 5.1.10) el espacio vectorial de matrices de $m \times n$ con componentes reales y sea H = $\{A \in \mathbb{M}_{mn}: a_{11} = 0\}$. Por la definición de suma de matrices y multiplicación por un escalar, es obvio que los dos axiomas de cerradura se cumplen de manera que H es un subespacio.

EJEMPLO 5.2.9 Un subconjunto que no es un subespacio propio de M_{nn}

Sea $V = \mathbb{M}_{nn}$ (las matrices de $n \times n$) y sea $H = \{A \in \mathbb{M}_{nn} : A \text{ es invertible}\}$. Entonces H no es un subespacio ya que la matriz cero de $n \times n$ no está en H.

Nota

EJEMPLO 5.2.10 Un subespacio propio de C[0, 1]

 $P_n[0, 1]$ denota el conjunto de polinomios de grado menor o igual a n, definidos en el intervalo [0, 1].

 $\mathbb{P}_n[0, 1] \subset C[0, 1]$ (vea el ejemplo 5.1.8) porque todo polinomio es continuo y \mathbb{P}_n es un espacio vectorial para todo entero n de manera que cada $\mathbb{P}_n[0, 1]$ es un subespacio de C[0, 1].