はじめに

本章の内容

- 人工知能·機械学習·深層学習
 - 何が違うか、何ができるか
- 機械学習の分類
 - 教師あり学習、教師なし学習、中間的学習
- 近年の人工知能の話題

- 人工知能・機械学習・深層学習の関係
 - 人工知能 ⊃ 機械学習 ⊃ 深層学習

- 人工知能の定義
 - 現在、人が行っている知的な判断を代わりに行う技術
 - 事例:自動運転、サービスロボット、医療補助
 - 技術が普及すると人工知能とはみなされなくなる
 - 例)文字認識、顔検出
- 人工知能の要素技術
 - 探索・知識表現・推論・機械学習など

- 機械学習
 - ■「知的な判断を行う」技術を、データから規則性を導くことによって実現する方法
 - ビッグデータが利用可能になったことが背景

- 深層学習
 - 多層に非線形変換を重ねる手法による機械学習
 - 特徴抽出処理も学習対象とすることができる点が特長
 - 特に音声・画像・自然言語の認識・生成で高い性能を示す

- 機械学習のさまざまな側面
 - 入出力から見た機械学習
 - 最適化問題としての機械学習
 - オープンな問題としての機械学習

- 入出力から見た機械学習の定義
 - 普通の情報処理システム/従来の人工知能システム
 - 入力から出力を得るプログラムを人手で記述
 - 機械学習
 - 入力から出力を予測するプログラムを自動で生成

- 最適化問題としての機械学習の定義
 - \blacksquare プログラムとして、入力 $oldsymbol{x}$ から出力 \hat{y} を求める数理モデル f を設定

$$\hat{y} = f(oldsymbol{x}; heta)$$

- ただし θ はモデルのパラメータ
- ullet 正解 y と出力 \hat{y} から定義される損失関数 $L(y,\hat{y})$ の値が最小となるように、パラメータ heta を最適化

- オープンな問題としての機械学習の定義
 - 今後入ってくる未知の入力に対して、正しい出力を得るための数理モデルを、仮定・制約に基づいて決める
 - 仮定の例
 - 入力の微少な変化に対して、出力は大きくは変化しない
 - 制約の例
 - 出力は社会的偏見を反映してはならない

1.3 機械学習の分類

■ データへの正解の有無や出力の型で分類できる

1.3.1 教師あり学習

- 教師あり学習のデータ
 - 入力ベクトル x と正解情報 y のペア

$$\{(oldsymbol{x}_i,y_i)\}, \quad i=1,\ldots,N$$

■ 入力ベクトルは次元数 d の固定長ベクトル

$$oldsymbol{x}_i = (x_{i1}, \dots, x_{id})^T$$

- 入力ベクトルの各要素は数値またはカテゴリ
 - カテゴリデータの例:性別、居住地、天候、etc.
- 正解情報の型によって問題が分かれる
 - カテゴリ:識別
 - 連続値:回帰

1.3.1 教師あり学習

- 識別
 - 正解情報がカテゴリ
 - 例)感染の判定:陽性,陰性
 - 未知データに対する誤りが最小となるような入力空間上の識別面を求める
 - どちらの識別面が未知データに対してうまく識別できそうか

1.3.1 教師あり学習

- 回帰
 - 正解情報が連続値
 - 汎化誤差が最小となるような近似関数を求める
 - どちらの関数が未知データに対してうまく予測できそうか

- 教師なし学習のデータ
 - 入力ベクトル x のみ

$$\{\boldsymbol{x}_i\}, \quad i=1,\ldots,N$$

■ 入力ベクトルは次元数 d の固定長ベクトル

$$oldsymbol{x}_i = (x_{i1}, \dots, x_{id})^T$$

- 基本的にデータに潜む規則性を学習
- 規則がカバーする範囲によって問題が分かれる
 - データ全体をカバー:モデル推定
 - 頻出する傾向を発見:パターンマイニング

- モデル推定
 - 入力ベクトルは主として数値データ
 - クラスタリング:データをまとまりに分割する
 - データを生じさせたクラスを推定
 - モデル推定
 - クラスの確率分布を推定

- パターンマイニング
 - 頻出項目や隠れた規則性を発掘
 - 入力ベクトルは主としてカテゴリデータ

- 推薦システム
 - 入力は表面的には数値、実質カテゴリ

1.3.3 中間的学習

- 半教師あり学習: データが正解付き/なしの組み合わせ
- 自己教師あり学習
 - 一部の入力信号を隠して、それを復元するタスクで表現学習
 - 表現学習の後、少量のタスクデータでファインチューニング

1.3.3 中間的学習

- 強化学習
 - 遷移する状態における最適な行為を学習
 - 正解情報が間接的・確率的に与えられる

https://metacar.scottpletcher.guru/

1.3 機械学習の分類

まとめ

- 人工知能 ⊃ 機械学習 ⊃ 深層学習
- 機械学習とは
 - あらかじめ設定された仮定・制約を満たす数理モデルのパラメータを、入力と出力がペアになったデータ(あるいは入力のみのデータ)を用いて最適化する方法
- 機械学習の分類
 - 教師あり・教師なし・中間的

推奨資料

- 荒木雅弘. マンガでわかる機械学習, オーム社, 2018.
- 谷口忠大. イラストで学ぶ人工知能概論 改訂第2版. 講談社, 2020.