What does BERT look at? An analysis of BERT's attention.

Stanford + Facebook AI, ACL Workshop on Black-box NLP 2019

Mathieu Ravaut

Wednesday, April 8th 2020

Motivation

Sesame Street now omnipresent in NLP:

- ELMo (Allen AI, 2018)
- BERT (Google, 2018)
- XLNet (Google + CMU, 2019)
- RoBERTa (Facebook, 2019)
- AlBERT (Google, 2019)
- BART (Facebook, 2020)
- ELECTRA (Google + Stanford, 2020)
- ..

All are **Transformer**-based architectures. All rely on **attention**.

Motivation

SQUAD 2.0 Leaderboard (April 2020):

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar & Jia et al. '18)	86.831	89.452
1 Mar 12, 2020	ALBERT + DAAF + Verifier (ensemble) PINGAN Omni-Sinitic	90.386	92.777
2 Jan 10, 2020	Retro-Reader on ALBERT (ensemble) Shanghai Jiao Tong University http://arxiv.org/abs/2001.09694	90.115	92.580
3 Nov 06, 2019	ALBERT + DAAF + Verifier (ensemble) PINGAN Omni-Sinitic	90.002	92.425
4 Sep 18, 2019	ALBERT (ensemble model) Google Research & TTIC https://arxiv.org/abs/1909.11942	89.731	92.215
4 Feb 25, 2020	Albert_Verifier_AA_Net (ensemble) QIANXIN	89.743	92.180
5 Jan 23, 2020	albert+transform+verify (ensemble) qianxin	89.528	92.059
6 Mar 06, 2020	ALBert-LSTM (ensemble) oppo.tensorlab	89.269	91.777
7 Dec 08, 2019	ALBERT+Entailment DA (ensemble) CloudWalk	88.761	91.745
8 Mar 06, 2020	ELECTRA (single model) Google Brain & Stanford	88.716	91.365

Encoder block

Encoder block

Encoder block

Encoder block

Self-attention weights

Looking at the self-attention distribution for "it" from 5th to 6th layer of the Transformer:

Self-attention weights

The weight between each pair of words (i,j) is written:

$$\alpha_{ij} = \frac{\exp(q_i^T k_j)}{\sum_{l=1}^n \exp(q_i^T k_l)}$$

Self-attention weights

The weight between each pair of words (i,j) is written:

$$\alpha_{ij} = \frac{\exp(q_i^T k_j)}{\sum_{l=1}^n \exp(q_i^T k_l)}$$

- Are these connections meaningful?
- Can we use these attention heads as already trained classifiers?

How much do attention heads attend to **previous / current / next** token?

- Most heads put little weight on the current token.
- In layers 2,4,7,8: **4 heads** put > 50% of attention weight on **previous** token.
- In layers 1,2,3,6: **5 heads** put > 50% on the **next token**.

What about the always present [SEP] and [CLS], or [.] tokens?

Do heads attend so much to [SEP] because it's the "default" to attend to when the head's function is not called for (ex: noun in a head focused on verb-direct-obj links)?

Small magnitude for [SEP]: changing the attention weights to [SEP] does not change much the BERT outputs.

Entropy over the attention distribution for [CLS] token only.

Figure 4: Entropies of attention distributions. In the first layer there are particularly high-entropy heads that produce bag-of-vector-like representations.

Figure 4: Entropies of attention distributions. In the first layer there are particularly high-entropy heads that produce bag-of-vector-like representations.

Building models with attention heads

Goal is to evaluate attention heads at word-level tasks.

BERT uses byte-pair tokenization: ~8% of *words are split into multiple tokens*.

- Attention to word = $[token_1, ..., token_k]$: sum(weight to each token)
- Attention **from** word = $[token_1, ..., token_k]$: **mean**(weight from each token)

Dependency syntax

Bills on ports and immigration were submitted by Senator Brownback, Republican of Kansas.

Dependency syntax

- At most one connection between 2 words.
- Different types of dependencies:
 - o *prep*: preposition
 - o *aux*: auxiliary
 - o *advmod*: adverb modifier
- Evaluation with accuracy.
- Dataset is the **PennTreebank** (WSJ) with Stanford Dependencies labels.

10 most common
dependencies

Relation	Head	Head Accuracy	
All	7-6	34.5	26.3 (1)
prep	7-4	66.7	61.8 (-1)
pobj	9-6	76.3	34.6 (-2)
det	8-11	94.3	51.7(1)
nn	4-10	70.4	70.2(1)
nsubj	8-2	58.5	45.5 (1)
amod	4-10	75.6	68.3(1)
dobj	8-10	86.8	40.0 (-2)
advmod	7-6	48.8	40.2(1)
aux	4-10	81.1	71.5 (1)
poss	7-6	80.5	47.7 (1)
auxpass	4-10	82.5	40.5(1)
ccomp	8-1	48.8	12.4 (-2)
mark	8-2	50.7	14.5 (2)
prt	6-7	99.1	91.4 (-1)

Other dependencies where heads do well.

layer6

10 most common dependencies

Relation	Head Accuracy		Baseline	
All	7-6	34.5	26.3 (1)	
prep	7-4	66.7	61.8 (-1)	
pobj	9-6	76.3	34.6 (-2)	
det	8-11	94.3	51.7(1)	
nn	4-10	70.4	70.2(1)	
nsubj	8-2	58.5	45.5 (1)	
amod	4-10	75.6	68.3(1)	
dobj	8-10	86.8	40.0 (-2)	
advmod	7-6	48.8	40.2(1)	
aux	4-10	81.1	71.5 (1)	
poss	7-6	80.5	47.7 (1)	
auxpass	4-10	82.5	40.5 (1)	
ccomp	8-1	48.8	12.4 (-2)	
mark	8-2	50.7	14.5 (2)	
prt	6-7	99.1	91.4 (-1)	

Heads are evaluated in both directions (to/from the current word) and we take the highest weight.

layer6

Other

well.

dependencies where heads do

Relation Head		Accuracy	Baseline	
All	7-6	34.5	26.3 (1)	
prep	7-4	66.7	61.8 (-1)	
pobj	9-6	76.3	34.6 (-2)	
det	8-11	94.3	517(1)	
nn	(4-10)	70.4	70.2(1)	
nsubj	8-2	58.5	45.5(1)	
amod	4-10	75.6	68.3(1)	
dobj	8-10	86.8	40.0 (-2)	
advmod	7-6	48.8	40.2(1)	
aux	4-10	81.1	71.5(1)	
poss	7-6	80.5	47.7 (1)	
auxpass	4-10	82.5	40.5(1)	
ccomp	8-1	48.8	12.4 (-2)	
mark	8-2	50.7	14.5 (2)	
prt	6-7	99.1	91.4 (-1)	

Layer number - head number

dependencies where heads do well.

10 most common dependencies

layer6

Other

10 most common
dependencies

Relation	Head	Accuracy	Baseline
All	7-6	34.5	26.3 (1)
prep	7-4	66.7	61.8 (-1)
pobj	9-6	76.3	34.6 (-2)
det	8-11	94.3	51.7(1)
nn	4-10	70.4	70.2(1)
nsubj	8-2	58.5	45.5 (1)
amod	4-10	75.6	68.3(1)
dobj	8-10	86.8	40.0 (-2)
advmod	7-6	48.8	40.2(1)
aux	4-10	81.1	71.5 (1)
poss	7-6	80.5	47.7 (1)
auxpass	4-10	82.5	40.5(1)
ccomp	8-1	48.8	12.4 (-2)
mark	8-2	50.7	14.5 (2)
prt	6-7	99.1	91.4 (-1)

Simple baseline: predict the word at fixed distance *offset* from the current word

Other dependencies where heads do well.

layer6

10 most common dependencies

Relation	Head	Head Accuracy	
All	7-6	34.5	26.3 (1)
prep	7-4	66.7	61.8 (-1)
pobj	9-6	76.3	34.6 (-2)
det	8-11	94.3	51.7(1)
nn	4-10	70.4	70.2(1)
nsubj	8-2	58.5	45.5 (1)
amod	4-10	75.6	68.3(1)
dobj	8-10	86.8	40.0 (-2)
advmod	7-6	48.8	40.2(1)
aux	4-10	81.1	71.5 (1)
poss	7-6	80.5	47.7 (1)
auxpass	4-10	82.5	40.5(1)
ccomp	8-1	48.8	12.4 (-2)
mark	8-2	50.7	14.5 (2)
prt	6-7	99.1	91.4 (-1)

Best offset value (predict the word 2 positions before the current word).

Other dependencies where heads do well.

layer6

Head 8-10

- Direct objects attend to their verbs
- 86.8% accuracy at the dobj relation

10 most common dependencies

Relation	Head	Accuracy	Baseline	
All	All 7-6		26.3 (1)	
prep	7-4	66.7	61.8 (-1)	
pobj	9-6	76.3	34.6 (-2)	
det	8-11	94.3	51.7(1)	
nn	4-10	70.4	70.2(1)	
nsubj	8-2	58.5	45.5 (1)	
amod	4-10	75.6	68.3(1)	
dobj	8-10	86.8	40.0 (-2)	
advmod	7-6	48.8	40.2(1)	
aux	4-10	81.1	71.5 (1)	
poss	7-6	80.5	47.7 (1)	
auxpass	4-10	82.5	40.5 (1)	
ccomp	8-1	48.8	12.4 (-2)	
mark	8-2	50.7	14.5 (2)	
prt	6-7	99.1	91.4 (-1)	

- Attention heads are bad overall (34.5 acc)
- Some heads are very good for one or a few dependencies (ex: 4-10).

Other dependencies where heads do well.

layer6

Coreference resolution

- Bill said he would come.
 he here refers to Bill.
- Does the head word of a coreferent mention most attend to the head of one of that mention antecedent?
- Evaluate the fraction of time this is the case (accuracy).
- Dataset is CoNLL-2012.

Coreference resolution

Model	All	Pronoun	Proper	Nominal
Nearest	27	29	29	19
Head match	52	47	67	40
Rule-based	69	70	77	60
Neural coref	83*	-	-	-
Head 5-4	65	64	73	58

^{*}Only roughly comparable because on non-truncated documents and with different mention detection.

Table 2: Accuracies (%) for systems at selecting a correct antecedent given a coreferent mention in the CoNLL-2012 data. One of BERT's attention heads performs fairly well at coreference.

- Display results from BERT's best head (head 5-4).
- BERT is better than two simple baselines but not a rule-based method nor a neural method.

Dependency syntax with multiple heads

- Idea: build a simple classifier on top of the attention maps.
- Use fixed Glove embeddings for words.

$$p(i|j) \propto \exp\left(\sum_{k=1}^{n} W_{k,:}(v_i \oplus v_j) \alpha_{ij}^k + U_{k,:}(v_i \oplus v_j) \alpha_{ji}^k\right)$$

 W, U are learned matrices of weights v are the Glove embeddings k is the head index

Dependency syntax with multiple heads

Model	UAS 80 UUAS*	
Structural probe		
Right-branching	26	
Distances + GloVe	58	
Random Init Attn + GloVe	30	
Attn	61	
Attn + GloVe	77	

Table 3: Results of attention-based probing classifiers on dependency parsing. A simple model taking BERT attention maps and GloVe embeddings as input performs quite well. *Not directly comparable to our numbers; see text.

- Are heads in the same layer similar to each other?
- We can compare attention distributions with the Jensen-Shannon divergence:

$$\sum_{\text{token} \in \text{data}} JS(H_i(\text{token}), H_j(\text{token}))$$

Visualization in 2D by applying multi-dimensional scaling.

Heads tagged with their **function**.

Embedded BERT attention heads Behaviors

Heads colored by **layer**.

Heads colored by **layer**.

First and last layers similar?

Thank you!