ДИСКРЕТНАЯ МАТЕМАТИКА

ИУЗ - 5 семестр

Лекция 8. ТЕОРЕМА ЛАГРАНЖА (ПРОДОЛЖЕНИЕ). КОЛЬЦА, ТЕЛА, ПОЛЯ

Определение 8.1. Множества A и B называются равномощными (|A| = |B|), если существует взаимнооднозначное отображение (биекция) f множества A на множество B .

Теорема 1. Всякий левый смежный класс подгруппы H равномощен H .

 \blacktriangleleft Для произвольного фиксированного $a \in G$ зададим отображение $\varphi_a \colon H \to aH$ следующим образом:

$$\varphi_a(h) = ah.$$

- 1. Отображение φ_a есть сюръекция, так как если $y\in aH$, то y=ah для некоторого $h\in H$, откуда $y=\varphi_a(h)$.
- 2. φ_a инъекция, поскольку из равенства $ah_1=ah_2$ в силу законов сокращения в группе $\mathcal G$ следует $h_1=h_2$.

Следовательно, φ_a — биекция и |aH|=|H| . \blacktriangleright

Определение 8.2. Порядком конечной группы называется количество элементов этой группы.

Теорема 2 (теорема Лагранжа). Порядок конечной группы делится на порядок любой ее подгруппы. (без доказательства)

Следствия теоремы Лагранжа.

Следствие 8.1. Любая группа простого порядка является циклической.

■ Возьмем в группе, порядок которой есть простое число, какую-то ее циклическую подгруппу, образующий элемент которой отличен от единицы (нейтрального элемента) группы.

Тогда эта подгруппа содержит не менее двух элементов и ее порядок, согласно теореме Лагранжа, должен быть делителем порядка группы.

Поскольку порядок всей группы — простое число, а порядок подгруппы не меньше 2, то он совпадет с порядком всей группы. ▶

Рассмотрим моноид (группу) (M,\cdot) . Подмоноид (P,\cdot) (подгруппу) называют **тривиальным подмоноидом** (**тривиальной подгруппой**), если **носитель** содержит только единицу исходного моноида ($P=\{\mathbf{1}\}$) или совпадает с носителем исходного моноида (группы) (P=M).

Группу называют неразложимой, если она не имеет нетривиальных подгрупп.

rst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Следствие 8.2. Конечная группа неразложима тогда и только тогда, когда она является циклической группой, порядок которой есть простое число.

Тогда циклическая подгруппа с образующим элементом a совпадает с \mathcal{G} . Допустим, что |G| — составное число, т.е.

$$\exists (k,l \in \mathbb{N}, k \neq 1, l \neq 1, k \neq |G|, l \neq |G|) \mid |G| = kl$$

Тогда циклическая подгруппа с образующим элементом $b=a^k$ не совпадает с $\mathcal G$, так как $b^l=a^{kl}=a^{|G|}=\mathbf 1$ и в этой подгруппе не более l элементов, что противоречит неразложимости группы $\mathcal G$.

Следовательно, порядок группы \mathcal{G} есть простое число. \blacktriangleright

Следствие 8.3. В конечной группе $\mathcal G$ для любого элемента $b \in G$ имеет место равенство $b^{|G|} = 1$.

 ◆ Если группа \mathcal{G} циклическая и элемент b — ее образующий элемент, утверждение очевидно.

Если же элемент b является образующим элементом некоторой циклической подгруппы группы $\mathcal G$ порядка k < |G| , то в силу теоремы Лагранжа |G| = kl для некоторого натурального l .

Отсюда получаем $b^{|G|} = b^{kl} = (b^k)^l = \mathbf{1}^l = \mathbf{1}$. \blacktriangleright

8.1. Кольца, тела, поля

t ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Определение 8.3. Кольцом называют алгебру

$$\mathcal{R} = (R, +, \cdot, \mathbf{0}, \mathbf{1}),$$

сигнатура которой состоит из двух бинарных и двух нульарных операций, причем для любых $a, b, c \in R$ выполняются равенства:

- 1) a + (b + c) = (a + b) + c;
- 2) a + b = b + a;
- 3) a + 0 = a;
- 4) для каждого $a \in R$ существует элемент a', такой, что $a + a' = \mathbf{0}$;
- 5) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$;
- 6) $a \cdot 1 = 1 \cdot a = a$;
- 7) $a \cdot (b+c) = a \cdot b + a \cdot c$, $(b+c) \cdot a = b \cdot a + c \cdot a$.

Операцию + называют сложением кольца.

Операцию · — умножением кольца.

Элемент 0 — нулем кольца.

элемент 1 — единицей кольца.

Равенства 1–7, указанные в определении, называют аксиомами кольца.

Аксиомы кольца 1-4 означают, что алгебра $(R, +, \mathbf{0})$, сигнатура которой состоит только из операций сложения кольца + и нуля кольца $\mathbf{0}$, является абелевой группой.

Эту группу называют **аддитивной группой кольца** \mathcal{R} По сложению кольцо есть коммутативная (абелева) группа.

Аксиомы кольца 5 и 6 показывают, что алгебра $(R,\cdot,\mathbf{1})$, сигнатура которой включает только умножение кольца \cdot и единицу кольца $\mathbf{1}$, есть моноид. Этот моноид называют мультипликативным моноидом кольца \mathcal{R} По умножению кольцо есть моноид.

Аксиома 7 устанавливает связь между сложением кольца и умножением кольца.

Операция умножения дистрибутивна относительно операции сложения.

Кольцо — это алгебра с двумя бинарными и двумя нульарными операциями $\mathcal{R} = (R, +, \cdot, \mathbf{0}, \mathbf{1})$, такая, что:

- 1) алгебра $(R, +, \mathbf{0})$ коммутативная группа;
- 2) алгебра $(R, \cdot, 1)$ моноид;
- 3) операция · (умножения кольца) дистрибутивна относительно операции + (сложения кольца).

irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Определение 8.4. Кольцо называют коммутативным, если его операция умножения коммутативна.

- **Пример 8.1. а.** Алгебра $(\mathbb{Z},+,\cdot,0,1)$ есть коммутативное кольцо. Отметим, что алгебра $(\mathbb{N},+,\cdot,0,1)$ кольцом не будет, поскольку $(\mathbb{N},+)$ коммутативная полугруппа, но не группа.
- **б.** Рассмотрим алгебру $\mathbb{Z}_k = (\{0,1,\ldots,k-1\},\oplus_k,\odot_k,0,1)$ ($k\geq 1$) с операцией \oplus_k сложения по модулю k и \odot_k (умножения по модулю k). Операция умножения по модулю k аналогична операции сложения по модулю $k:m\odot_k n$ равно остатку от деления на k числа $m\cdot n$. Эта алгебра есть коммутативное кольцо, которое называют кольцом вычетов по модулю k .
- в. Алгебра $(2^A, \triangle, \cap, \varnothing, A)$ коммутативное кольцо. Это следует из свойств пересечения и симметрической разности множеств.
- г. Множество всех квадратных матриц фиксированного порядка с операциями сложения и умножения матриц некоммутативное кольцо. Единицей этого кольца является единичная матрица, а нулем — нулевая.

Аксиомы кольца называют также основными тождествами кольца.

Тождество кольца — это равенство, справедливость которого сохраняется при подстановке вместо фигурирующих в нем переменных любых элементов кольца.

Введем операцию вычитания для кольца и докажем тождества для этой операции.

Это возможно потому, что аддитивная группа кольца коммутативна и в ней определена операция вычитания.

Теорема 3. В любом кольце выполняются следующие тождества:

1
$$\mathbf{0} \cdot a = a \cdot \mathbf{0} = \mathbf{0}$$
;

$$2 (-a) \cdot b = -(a \cdot b) = a \cdot (-b);$$

3
$$(a-b) \cdot c = a \cdot c - b \cdot c$$
, $c \cdot (a-b) = c \cdot a - c \cdot b$.

◄ Докажем тождество $0 \cdot a = 0$ (1).

$$\forall a (a + \mathbf{0} \cdot a = \mathbf{1} \cdot a + \mathbf{0} \cdot a = (\mathbf{1} + \mathbf{0}) \cdot a = \mathbf{1} \cdot a = a).$$

В аддитивной группе кольца получили уравнение

$$a + \mathbf{0} \cdot a = a$$

относительно неизвестного элемента $\mathbf{0} \cdot a$.

В аддитивной группе любое уравнение вида a+x=b имеет единственное решение x=b-a .

$$\mathbf{0} \cdot a = a - a = \mathbf{0}$$
 .

Тождество $a \cdot \mathbf{0} = \mathbf{0}$ доказывается аналогично.

Докажем тождество $-(a \cdot b) = a \cdot (-b)$ (2). Имеем

$$a \cdot (-b) + a \cdot b = a \cdot ((-b) + b) = a \cdot \mathbf{0} = \mathbf{0} \Rightarrow$$

$$\Rightarrow a \cdot (-b) = -(a \cdot b)$$

 $(-a) \cdot b = -(a \cdot b)$ можно доказать точно так же.

Докажем тождества (3).

Рассмотрим $(a-b) \cdot c = a \cdot c - b \cdot c$.

С учетом доказанного выше имеем

$$a \cdot (b-c) = a \cdot (b+(-c)) = a \cdot b + a \cdot (-c) = a \cdot b - a \cdot c,$$

т.е. тождество справедливо.

Тождество $c \cdot (a-b) = c \cdot a - c \cdot b$ доказывается аналогично. \blacktriangleright

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Следствие 8.4. В любом кольце справедливо тождество

$$(-1) \cdot x = x \cdot (-1) = -x.$$

 \blacktriangleleft Указанное следствие вытекает из второго тождества теоремы 3 при $a=\mathbf{1}$ и b=x . $\blacksquare \blacktriangleright$

Первые два тождества в теореме выражают свойство, называемое аннулирующим свойством нуля в кольце.

Тождества (3) теоремы 3 выражает свойство дистрибутивности операции умножения кольца относительно операции вычитания.

В любом кольце производя вычисления, можно раскрывать скобки и менять знаки так же, как и при сложении, вычитании и умножении действительных чисел.

Определение 8.5. Ненулевые элементы a и b кольца \mathcal{R} называют делителями нуля, если $a \cdot b = \mathbf{0}$ или $b \cdot a = \mathbf{0}$.

Пример 8.2. а. Кольцо вычетов по модулю k , если k — составное число. В этом случае произведение по модулю k любых m и n , дающих при обычном перемножении число, кратное k , будет равно нулю.

В кольце вычетов по модулю 6 элементы 2 и 3 являются делителями нуля, поскольку $2\odot_6 3=0$.

б. Кольцо квадратных матриц фиксированного порядка (не меньшего двух). Например, для матриц второго порядка имеем

$$\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

При отличных от нуля a и b приведенные матрицы являются делителями нуля.

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

По умножению кольцо является только моноидом, не группой. Множество всех элементов кольца, в котором $0 \neq 1$, не может образовывать группы по умножению, так как нуль не может иметь обратного. Если предположить, что такой элемент 0' существует, то, с одной стороны, $0 \cdot 0' = 0' \cdot 0 = 1$, а с другой — $0 \cdot 0' = 0' \cdot 0 = 0$, откуда 0 = 1. Это противоречит условию $0 \neq 1$.

Рассмотрим множество всех ненулевых элементов кольца. Если в кольце имеются делители нуля, то подмножество всех ненулевых элементов кольца не образует группы по умножению, это подмножество не замкнуто относительно операции умножения, т.е. существуют ненулевые элементы, произведение которых равно нулю.

Определение 8.6. Кольцо, в котором множество всех ненулевых элементов по умножению образует группу, называют **телом**.

Определение 8.7. Коммутативное тело называют **полем**, а группу ненулевых элементов тела (поля) по умножению —**мультипликативной группой** этого **тела(поля)**.

Поле есть частный случай кольца, в котором операции обладают дополнительными свойствами.

Аксиомы поля

Поле есть алгебра $\mathcal{F}=(F,+,\cdot,\mathbf{0},\mathbf{1})$, сигнатура которой состоит из двух бинарных и двух нульарных операций, причем справедливы тождества:

- 1) a + (b + c) = (a + b) + c;
- 2) a + b = b + a;
- 3) a + 0 = a;
- 4) для каждого $a \in F$ существует элемент -a , такой, что $a + (-a) = \mathbf{0}$;
- 5) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$;
- 6) $a \cdot b = b \cdot a$;
- 7) $a \cdot 1 = 1 \cdot a = a$;
- 8) для каждого $a \in F$, отличного от ${\bf 0}$, существует элемент a^{-1} , такой, что $a \cdot a^{-1} = {\bf 1}$;
- 9) $a \cdot (b+c) = a \cdot b + a \cdot c$.

Пример 8.3. а. Алгебра $(\mathbb{Q}, +, +, \cdot, 0, 1)$ есть поле, называемое полем рациональных чисел.

б. Алгебры $(\mathbb{R}, +, \cdot, 0, 1)$ и $(\mathbb{C}, +, \cdot, 0, 1)$ есть поля, называемые **полями действительных** и **комплексных чисел** соответственно.

rst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

8.2. Области целостности

Областью целостности называют коммутативное кольцо без делителей нуля.

Так, кольцо целых чисел есть область целостности.

Утверждение 8.1. Если А — конечное множество и $f:A\to A$ — инъекция, то она является сюръекцией и следовательно биекцией

Теорема 4. Конечная область целостности является полем.

Определим отображение f_a множества всех ненулевых элементов в себя по формуле $f_a(x) = a \cdot x$

 $(a \cdot x \neq \mathbf{0})$ в области целостности при $a \neq \mathbf{0}$ и $x \neq \mathbf{0}$).

Докажем, что отображение f_a — инъекция (каждый элемент из области значений имеет единственный прообраз).

$$a\cdot x=a\cdot y \Rightarrow a\cdot (x-y)=\mathbf{0}\Rightarrow$$
 $\Rightarrow x-y=\mathbf{0}$ (т.к. делители нуля отсутствуют) $\Rightarrow x=y$

Множество носитель по условию теоремы конечено, следовательно, f_a — биекция (утверждение 8.1).

Поэтому $\forall (y) \exists ($ единственный $x) | y = a \cdot x$.

В частности, при y=1 равенство $a\cdot x=1$ выполнено для некоторого однозначно определенного x , т.е. $x=a^{-1}$. \blacktriangleright

Следствия теоремы 4.

Следствие 8.5. Кольцо \mathbb{Z}_p вычетов по модулю p является полем тогда и только тогда, когда p — простое число.

 \blacktriangleleft Пусть \mathbb{Z}_p является полем. Покажем, что p — простое число. Предположим — p составное.

Тогда найдутся такие k и l , $0 < k \le p-1; 0 < l \le p-1$, что $p = k \cdot l \Rightarrow$ $k \cdot l = 0 \pmod{p} \Rightarrow k$ и l — делители нуля в кольце \mathbb{Z}_p .

Следовательно, \mathbb{Z}_p — не поле.

Число р не может быть составным.

Пусть p — простое число.

Предположим, что $m \cdot n = 0 \pmod{p}$, т.е. элементы m и n кольца \mathbb{Z}_p будут делителями нуля (кольцо не область целостности).

$$p$$
 — простое число и $(m \cdot n = 0 \pmod{p}) \Rightarrow$ $(m = 0 \pmod{p}) \vee (n = 0 \pmod{p})$

$$((m = 0 \pmod{p})) \lor (n = 0 \pmod{p}))$$

Т.к.
$$((0 \le m \le p-1) \land (0 \le n \le p-1)) \Rightarrow (m=0) \lor (n=0)$$
.

Следовательно, при простом p делителей нуля нет.

Кольцо \mathbb{Z}_p является конечной областью целостности и по теореме 4 полем.

ДОПОЛНИТЕЛЬНЫЙ МАТЕРИАЛ. Доказательство теоремы Лагранжа. Подгруппоид тривиальный. Подгруппоид собственный. Малая теорема Ферма

Теорема Лагранжа Порядок конечной группы делится на порядок любой ее подгруппы.

■ Во введенном выше отношении эквивалентности \sim_H классом эквивалентности элемента a является множество aH (левый смежный класс подгруппы H по элементу a).

Согласно теореме 5 из лекции 5, все левые смежные классы образуют разбиение множества G на подмножества, равномощные в силу теоремы 1 подгруппе H .

Так как группа $\mathcal G$ конечна, то число элементов разбиения конечно. Обозначив это число через k , заключаем, что |G|=k|H| . Следовательно, порядок группы |G| делится на порядок группы |H| . \blacktriangleright

Напомним, что теорема 5 из лекции 5 имеет следующую формулировку: бинарное отношение \sim_H есть эквивалентность на G, причем класс эквивалентности произвольного элемента $a \in G$ совпадает с левым смежным классом aH.

Подмоноид, **носитель** которого содержит только единицу исходного моноида ($P=\{\mathbf{1}\}$), а также подмоноид, носитель которого совпадает с носителем исходного моноида (P=M), называют **тривиальным подмоноидом** (в частности, **тривиальной подгруппой**).

Подмоноид, не являющийся тривиальным, называют нетривиальным подмоноидом (в частности, нетривиальной подгруппой).

Подгруппоид (подполугруппу, подмоноид, подгруппу) (G, *) называют **собственным подгруппоидом (подполугруппой, подмоноидом, подгруппой)** группоида (полугруппы, моноида, группы) (K, *), если его носитель G есть co6cmbehoe подмножество множества <math>K.

С помощью теоремы Лагранжа (точнее, следствия 8.3) можно доказать, что если целое число n не делится на простое число p, то $n^{p-1}-1$ делится на p. В теории чисел это утверждение известно как **малая теорема Ферма**. Действительно, пусть n=rp+k, где r— целое, а 0< k < p (остаток от деления n на p). Тогда ясно, что $n^{p-1}=k^{p-1} \pmod{p}$ (достаточно разложить $(rp+k)^{p-1}$ по формуле бинома Ньюмона). Рассмотрим группу \mathbb{Z}_p^* (мультипликативную группу вычетов по модулю p) и в этой группе элемент k. Порядок группы $\mathbb{Z}_p^*=p-1$. Если k=1, то

$$n^{p-1} - 1 = (1^{p-1} - 1) \pmod{p} = 0 \pmod{p}$$

и утверждение очевидно. Согласно следствию 8.3, в группе \mathbb{Z}_p^* справедливо равенство $k^{p-1}=1$, т.е. $k^{p-1}=1\pmod{\mathfrak{p}}$, и, следовательно, $k^{p-1}-1=0\pmod{\mathfrak{p}}$, т.е. число k^{p-1} равно 1 по модулю p . Поэтому $n^{p-1}=k^{p-1}=1\pmod{\mathfrak{p}}$.

Малая теорема Ферма дает возможность доказывать утверждения о делимости очень больших чисел. Например, из нее следует, что при p=97 число 97 является делителем $n^{96}-1$ для любого n, не делящегося на 97. Подобного рода заключения важны при разработке алгоритмов защиты информации.

Кроме того, используя малую теорему Ферма, можно вычислять в *полях вычетов* по *модулю* p (p — простое число) элементы, обратные к заданным относительно умножения. Действительно, если $a \in \mathbb{Z}_p$, то, так как $a^{p-1}=1$, умножая последнее равенство на a^{-1} , получим $a^{p-2}=a^{-1}$. Таким образом, для того чтобы вычислить элемент, обратный к a по умножению, достаточно возвести его в степень p-2 или, что равносильно, в степень, равную остатку от деления числа p-2 на порядок циклической подгруппы группы \mathbb{Z}_p^* , порожденной элементом a.

Пример 8.4. Рассмотрим, как вычислить элемент, обратный к a по умножению в поле \mathbb{Z}_{17} . Согласно полученному выше результату, для вычисления обратного к a элемента нужно найти $a^{17-2}=a^{15}$. Однако объем вычислений можно сократить, если порядок циклической подгруппы, порожденной элементом a, меньше порядка группы.

Порядок группы \mathbb{Z}_{17}^* равен 16, следовательно, порядок циклической подгруппы, порожденной элементом a, может составлять, согласно теореме Лагранжа, 2, 4, 8, 16 (т.е. быть каким-то из делителей числа 16). Поэтому при поиске обратного элемента достаточно проверить следующие степени a (кроме 15-й): 1 (остаток от деления 15 на 2), 3 (остаток от деления 15 на 4) и 7 (остаток от деления 15 на 8).

Найдем элемент, обратный к 2. Очевидно, что $2^{-1} \neq 2$, так как $2\odot_{17}2=4\neq 1$. Далее получим $2^3=4\odot_{17}2=8$. Поскольку $2\odot_{17}8=16\neq 1$, то $2^3=8$ также не является обратным к 2. Вычислим $2^7=2^3\odot_{17}2^3\odot_{17}2=8\odot_{17}8\odot_{17}2=9$. Поскольку $9\odot_{17}2=1$, в итоге получаем $2^{-1}=9$.

Найдем элемент, обратный к 14. Так как $14\odot_{17}14=9$, то $14^{-1}\neq 14$. Вычисляем $14^3=14\odot_{17}9=7$, но $14\odot_{17}7=13$, т.е. $14^3\neq 14^{-1}$. Далее,

$$14^7 = 14^3 \odot_{17} 14^4 = 7 \odot_{17} 13 = 6,$$

 $14 \odot_{17} 6 = 16 = -1.$

Мы видим, что и $14^7 \neq 14^{-1}$. Следовательно, остается вычислить $14^{-1}=14^{15}$. Однако в этом случае вычисления можно сократить, заметив, что $14\odot_{17}14^7=14\odot_{17}6=-1$. Из последнего равенства получим

$$1 = 14 \odot_{17} (-6) = 14 \odot_{17} 11,$$

откуда $14^{-1} = 11$.

Отметим, что $14^{16} = 1$, т.е. порядок циклической подгруппы, порожденной элементом 14, совпадает с порядком всей группы \mathbb{Z}_{17}^* , и, следовательно, эта группа является циклической, порожденной элементом 14 (хотя и не только им).