ANALYSIS OF DATA AND ENVIRONMENT

- Number of train data points = 120435
- Number of Test data points = 54235 (predicting High data points and low data points)
- input features: x1(n-2), x1(n-1), x1(n),x2(n-2), x2(n-1), x2(n)
- Output feature = Force (F1)
- Optimizer = Adam
- Loss function = Mean Squared Error
- Version of TensorFlow used = 2.6.0

DEEP LEARNING MODEL STRUCTURE

Predicting Middle Amplitude points(39-78 Interaction points) including past appearances

Random Forest

Root Mean squared error = 0.062257

Deep Learning Model

Predicting Middle Amplitude points(39-78 Interaction points) for a lower time period including past appearances

Random Forest

(CLOSER VIEW OF INITIAL POINTS)

Predicting Middle Amplitude points(39-78 Interaction points) for a lower time period including past appearances

Deep Learning Model

(CLOSER VIEW OF INITIAL POINTS)

Error as a function of time using past appearances

Error as a function of time using past appearances (closer view of initial points)

Error as a function of time

Feature Importance plot for random forest using past appearances

ANALYSIS OF DATA AND ENVIRONMENT

- Number of train data points = 120435
- Number of Test data points = 54235 (predicting High data points and low data points)
- input features: $x1(n-2^*\tau)$, $x1(n-\tau)$, x1(n), $x2(n-2^*\tau)$, $x2(n-\tau)$, x2(n)
- Output feature = Force (F1)
- Optimizer = Adam
- Loss function = Mean Squared Error
- Version of TensorFlow used = 2.6.0

Predictions

Random Forest

(CLOSER VIEW OF INITIAL POINTS)

Predictions

Deep Learning Model

(CLOSER VIEW OF INITIAL POINTS)

Error as a function of time using past appearances for large samples

Error as a function of time using past appearances (closer view of initial points)

Feature Importance plot for random forest using past appearances

ANALYSIS OF DATA AND ENVIRONMENT

- Number of train data points = 120435
- Number of Test data points = 54235 (predicting High data points and low data points)
- input features: x1,x2
- Output feature = Force (F1)
- Optimizer = Adam
- Loss function = Mean Squared Error
- Version of TensorFlow used = 2.6.0

Predicting Middle Amplitude points(39-78 Interaction points) for a lower time period including past appearances

Random Forest

(CLOSER VIEW OF INITIAL POINTS)

Predicting Middle Amplitude points(39-78 Interaction points) for a lower time period including past appearances

Deep Learning Model

(CLOSER VIEW OF INITIAL POINTS)

Error as a function of time using past appearances for large samples

Error as a function of time using past appearances for small samples

Error as a function of time

Feature Importance plot for random forest using past appearances

Random Forest Vs Deep Learning

Models' performances on Middle amplitude points

Input feature vs output feature	p1,p2 f1		p1[i+1] - p1[i], p2[i+1] - p2[i] f1		p1[i],p1[i- τ],p1[i-2* τ] p2[i],p2[i- τ],p2[i-2* τ] f1	
Model	DL model	RF	DL model	RF	DL model	RF
"RMSE"	0.081841	0.075171	0.055043	0.060872	0.047670	0.060872
Max error	0.575535	0.918093	0.798003	0.923737	0.800174	0.94290
Min error	4.17*10^-7	5 * 10^-7	1.192*10^-6	2.42*10^-17	5.96*10^-8	1.98*10^-6
Medin error	0.034598	0.034598	0.021189	0.021189	0.019451	0.019451
Time taken by the model(in sec)	0:00:27.6	0:01:22.6	0:01:15.9	0:01:12.7	0:01:15.0	0:01:22.3

Including Past Inputs

Random Forest

RBF

Deep Learning

Error comparison among the three models

Feature Importance

x1(n), x1(n-1), x1(n-2), x2(n), x2(n-1), x2(n-2)

Including Past Inputs

Random Forest

Deep Learning

Error comparison of the three models

Feature importance

x1(n), x1(n-2), x1(n-4), x2(n), x2(n-2), x2(n-4)

5 past inputs

x1(n), x1(n-t), x1(n-2t), x1(n-3t) x1(n-4t), x2(n), x2(n-t), x2(n-2t), x2(n-3t), x2(n-4t) t = 2

Random Forest

Deep Learning

RMSE: 3.400057485

Error comparison of the three models

Feature importance (given 5 past inputs)

Considering velocity as an input feature (dx/dt)

Random Forest

RMSE: 0.5483032

Deep Learning

RMSE: 0.39842286

Error comparison b/w Random Forest vs Deep learning model

Feature Importance for different values of α

Results:

Using Fractional Derivatives of positions as input features with different values of α

 $\alpha \in [0.5, 0.6, 0.7, 0.8, 0.9]$

Fractional calculus of X1 at order = 0.5 using python

Fractional calculus of X1 at order = 0.6 using python

Fractional calculus of X1 at order = 0.7 using python

Fractional calculus of X1 at order = 0.8 using python

Fractional calculus of X1 at order = 0.9 using python

Fractional calculus of X2 at order = 0.9 using python

