Only for the personal use of students registered in CS 671, Fall 2020 at Rutgers University. Redistribution out of this class without the Instructor's permission is not permitted.

CS 671: Graph Streaming Algorithms and Lower Bounds

Problem set 10

Rutgers: Fall 2020

Due: 11:59PM, November 17, 2020

Problem 1. Given a graph G = (V, E), a MIS of G is any independent set (vertices with no edges to each other) which is maximal (any other vertex is neighbor to at least one of the chosen vertices). We design an $O(\log \log n)$ -pass semi-streaming algorithm for the maximal independent set (MIS) problem in this question.

Consider the following algorithm:

- 1. Let v_1, \ldots, v_n be a fixed ordering of vertices of G.
- 2. Sample every vertex of G independently and with probability p > 0. Let S be this sample and G[S] be the *induced* subgraph of G on these vertices.
- 3. Let $T \leftarrow \emptyset$ and iterate over S in this order and for each vertex $v_i \in S$: if no neighbor of v_i in S belongs to T, set $T \leftarrow T \cup \{v_i\}$.

Let H denote the graph obtained after removing T and all vertices incident on T from G. Observe that the output T of this algorithm is an independent set in G but not necessarily a maximal one.

- (i) Prove that with high probability, maximum degree of H is $O(\frac{1}{p} \cdot \log n)$.
- (ii) Prove that with high probability, number of edges in G[S] is $O(pn \cdot p\Delta \cdot \log n)$, where Δ is the maximum degree of G.

Let us now use this subroutine to solve the MIS problem.

- 1. Let $\mathcal{M} \leftarrow \emptyset$, and $G_1 = G$. For i = 1 to ∞ :
 - (a) If G_i has $O(n \log n)$ edges, store G_i explicitly and **return** an MIS of G_i plus \mathcal{M} .
 - (b) Run the algorithm above with parameter $p_i = n^{-1/2^i}$ on the graph G_i to obtain a set T_i .
 - (c) Let $\mathcal{M} \leftarrow \mathcal{M} \cup T_i$ and let G_{i+1} be the graph obtained after removing T_i and all vertices incident on it from G_i .
- (iii) Prove that the for-loop in this algorithm runs for at most $O(\log \log n)$ passes and the algorithm computes an MIS of the input graph.
- (iv) Prove that with high probability, this algorithm only requires $O(n \cdot \text{polylog}(n))$ space.