# Методы машинного обучения в задаче предсказания погоды предварительные результаты

Лена Волжина

руководитель Е.Г. Михайлова

СПбГУ, мат-мех, кафедра ИАС

27 декабря 2017г

#### Введение

- Погода состояние нижнего слоя атмосферы
- Температура, погодное явление, влажность, давление, ветер, ...
- Метеостанции, радиозонды, спутники
- Численный прогноз погоды
- ▶ Глобальные модели: GFS, JMA, ECMWF, CMC; региональная: WRF

#### Решающие деревья



https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=Lectures.DecisionTrees











#### Эксперименты

- temperature\_delta = temperature - climate\_temperature
- ► В момент *gentime* прогнозируем погоду в момент *time*
- $X = \{x_i = (f_i^1, \dots, f_i^M), i \in \overline{1..N}\}, y = \{y_i, i \in \overline{1..N}\}$
- $f_i$ : прогнозы поставщиков, климатические данные, вспомогательные переменные
- Задача: добавить показания ближайших станций в момент gentime (на 7 часов вперёд)
- ▶ Метрика:  $RMSE(y, \hat{y}) = \sqrt{\sum_{i=1}^{n} (y_i \hat{y_i})^2}$

#### Эксперименты: наивное решение

# Модели, обученные на всех краткосрочных горизонтах



### Эксперименты: только первые N часов



#### Эксперименты: сглаживание

$$smoothed\_fact\_temperature\_delta := \begin{cases} fact \cdot (1 - \frac{dist}{max\_distance}) + forecast \cdot \frac{dist}{max\_distance}, \\ if \ dist \leq max\_distance \\ forecast, \ if \ dist > max\_distance \end{cases}$$

где fact – исходное значение с одной из ближайших станций, dist – расстояние до неё, forecast – прогноз поставщика



### Дальнейшее развитие

- не только temperature\_delta
- кросс-валидация
- параметры градиентного бустинга
- другие способы сглаживания

