Abstract Algebra by Pinter, Chapter 23

Amir Taaki

Abstract

Chapter 23 on Elements of Number Theory

${\bf Contents}$

1	A. S	Solving Single Congruences	3
		Q1	3
	1.1	•	_
		1.1.1 a	3
		1.1.2 b	4
		1.1.3 c	4
		1.1.4 d	4
		1.1.5 e	4
		1.1.6 f	4
	1.2	Q2	4
		1.2.1 a	4
		1.2.2 b	4
		1.2.3 c	5
			5
		1.2.5 e	5
		1.2.6 f	5
	1.3	Q3	5
		1.3.1 a	5
		1.3.2 b	6
	-1 -1		
	1.4	Q4	6
		1.4.1 a	6
		1.4.2 b	6
		1.4.3 c	6
		1.4.4 d	6
		1.4.5 e	6
		1.4.6 f	6
	1.5	Q5	6
		1.5.1 a	6
		1.5.2 b	7
			7
		1.5.4 d	7
	1.6	$\mathrm{Q}6$	7
		1.6.1 a	7
		1.6.2 b	7
		1.6.3 c	7
			7
		1.6.4 d	1
2	D (Calving Sata of Communacy	0
4	~ 4	Solving Sets of Congruences	8
	2.1	Q1	8
		2.1.1 a	8
		2.1.2 b	8
		2.1.3 c	8
	2.2	Q2	9
	۵.2	2.2.1 a	9
		2.2.2 b	9
		2.2.3 c	10
	2.3	03	10

	2.4	$\mathrm{Q4}$		10
		2.4.1 a		10
		2.4.2 b		11
	2.5	Q5		12
	2.0	2.5.1 a		$\frac{12}{12}$
				12
		2.5.2 b		12
9	C	El		10
3		Elementary Properties of Congruence		13
	3.1	Q1		13
	3.2	Q2		13
	3.3	Q3		13
	3.4	Q4		14
	3.5	Q5		14
	3.6	Q6		14
	3.7	Q7		14
	3.8	Q8		14
	3.9	Q9		15
	5.9	Ø3		19
4	D	Further Properties of Congruence		15
-	4.1	Q1		15
				-
	4.2	Q2		15
	4.3	Q3		15
	4.4	Q4		16
	4.5	Q5		16
	4.6	Q6		16
	4.7	Q7		16
	4.8	Q8		16
	4.9	Q9		17
	1.0		•	
5	E . (Consequences of Fermat's Theorem		17
	5.1	Q1		17
	0.1	& + · · · · · · · · · · · · · · · · · ·		
	5.2	Ω 2		
	5.2	$Q_2 \ldots \ldots Q_3$		17
	5.3	Q3		17 18
	$5.3 \\ 5.4$	Q3		17 18 18
	5.3 5.4 5.5	Q3		17 18 18 18
	5.3 5.4 5.5 5.6	Q3		17 18 18 18 18
	5.3 5.4 5.5	Q3		17 18 18 18
	5.3 5.4 5.5 5.6	Q3		17 18 18 18 18
	5.3 5.4 5.5 5.6	Q3		17 18 18 18 18
	5.3 5.4 5.5 5.6	Q3 a b Q4 Q5 5.7.1 a		17 18 18 18 18 18
	5.3 5.4 5.5 5.6 5.7	Q3 a b Q4 Q5 5.7.1 a 5.7.2 b		17 18 18 18 18 18 19 19
	5.3 5.4 5.5 5.6 5.7	Q3 a b Q4 Q5 5.7.1 a 5.7.2 b Q6 5.8.1 a		17 18 18 18 18 18 19 19
	5.3 5.4 5.5 5.6 5.7	Q3 a b Q4 Q5 5.7.1 a 5.7.2 b Q6 5.8.1 a 5.8.2 b		17 18 18 18 18 18 19 19
	5.3 5.4 5.5 5.6 5.7 5.8	Q3 a . b . Q4 . Q5 5.7.1 a . 5.7.2 b . Q6 . 5.8.1 a . 5.8.2 b . Q7		17 18 18 18 18 19 19 19
	5.3 5.4 5.5 5.6 5.7 5.8	Q3 a b Q4 Q5 5.7.1 a 5.7.2 b Q6 5.8.1 a 5.8.2 b Q7 Q8		17 18 18 18 18 19 19 19 19
	5.3 5.4 5.5 5.6 5.7 5.8	Q3 a b C3 C4 Q4 Q5 5.7.1 a 5.7.2 b C6 5.8.1 a 5.8.2 b C7 OQ8 5.10.1 a		17 18 18 18 18 19 19 19 19
	5.3 5.4 5.5 5.6 5.7 5.8	Q3 a b C3 b C4 Q4 Q5 5.7.1 a 5.7.2 b Q6 5.8.1 a 5.8.2 b Q7 Q8 5.10.1 a 5.10.2 b		17 18 18 18 18 19 19 19 19 19 20
	5.3 5.4 5.5 5.6 5.7 5.8	Q3 a b C3 C4 Q4 Q5 5.7.1 a 5.7.2 b C6 5.8.1 a 5.8.2 b C7 OQ8 5.10.1 a		17 18 18 18 18 19 19 19 19
	5.3 5.4 5.5 5.6 5.7 5.8	Q3 a b C3 b C4 Q4 Q5 5.7.1 a 5.7.2 b Q6 5.8.1 a 5.8.2 b Q7 Q8 5.10.1 a 5.10.2 b		17 18 18 18 18 19 19 19 19 19 20
	5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Q3 a b C4 Q4 Q5 5.7.1 a 5.7.2 b Q6 5.8.1 a 5.8.2 b Q7 Q8 5.10.1 a 5.10.2 b 5.10.3 c		17 18 18 18 18 19 19 19 19 19 20 20
	5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Q3		17 18 18 18 18 19 19 19 19 20 20 20
	5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Q3 a b C4 Q4 Q5 5.7.1 a 5.7.2 b Q6 5.8.1 a 5.8.2 b Q7 Q8 5.10.1 a 5.10.2 b 5.10.3 c 5.10.4 d		17 18 18 18 18 19 19 19 19 20 20 20 20
	5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Q3 a b C4 Q4 Q5 5.7.1 a 5.7.2 b Q6 5.8.1 a 5.8.2 b Q7 OQ8 5.10.1 a 5.10.2 b 5.10.3 c 5.10.4 d Q9 5.11.1 a		17 18 18 18 18 19 19 19 19 20 20 20 20 20
	5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Q3 a b C4 Q4 Q5 5.7.1 a 5.7.2 b Q6 5.8.1 a 5.8.2 b Q7 OQ8 5.10.1 a 5.10.2 b 5.10.3 c 5.10.4 d Q9 5.11.1 a 5.11.2 b		17 18 18 18 18 19 19 19 19 20 20 20 20 20 20
6	5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Q3 a b C4 Q4 Q5 5.7.1 a 5.7.2 b Q6 5.8.1 a 5.8.2 b Q7 OQ8 5.10.1 a 5.10.2 b 5.10.3 c 5.10.4 d Q9 5.11.1 a 5.11.2 b		17 18 18 18 18 19 19 19 19 20 20 20 20 20 20
6	5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Q3 a b Cy Q4 Q5 5.7.1 a 5.7.2 b Q6 5.8.1 a 5.8.2 b Q7 0 Q8 5.10.1 a 5.10.2 b 5.10.3 c 5.10.4 d Q9 5.11.1 a 5.11.2 b 5.11.3 c Consequences of Euler's Theorem		17 18 18 18 18 19 19 19 19 20 20 20 20 20 20 20
6	5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 F. 0 6.1	Q3 a b Q4 Q5 5.7.1 a 5.7.2 b Q6 5.8.1 a 5.8.2 b Q7 0 Q8 5.10.1 a 5.10.2 b 5.10.3 c 5.10.4 d Q9 5.11.1 a 5.11.2 b 5.11.2 b 5.11.3 c Consequences of Euler's Theorem Q1		177 188 188 188 189 199 199 200 200 200 200 200 200 200 200 200 2
6	5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Q3 a b Q4 Q5 5.7.1 a 5.7.2 b Q6 5.8.1 a 5.8.2 b Q7 0 Q8 5.10.1 a 5.10.2 b 5.10.3 c 5.10.4 d 1 Q9 5.11.1 a 5.11.2 b 5.11.3 c Consequences of Euler's Theorem Q1 Q2		17 18 18 18 18 18 19 19 19 20 20 20 20 20 20 21 21 21
6	5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Q3 a b C4 Q4 Q5 5.7.1 a 5.7.2 b Q6 5.8.1 a 5.8.2 b Q7 0 Q8 5.10.1 a 5.10.2 b 5.10.3 c 5.10.4 d Q9 5.11.1 a 5.11.2 b 5.11.3 c Consequences of Euler's Theorem Q1 Q2 Q3		17 18 18 18 18 19 19 19 19 20 20 20 20 20 20 20 21 21 21 21
6	5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 6.2 6.3 6.4	Q3 a b Q4 Q5 5.7.1 a 5.7.2 b Q6 . 5.8.1 a 5.8.2 b Q7 0 Q8 5.10.1 a 5.10.2 b 5.10.3 c 5.10.4 d 1 Q9 5.11.1 a 5.11.2 b 5.11.3 c Consequences of Euler's Theorem Q1 Q2 Q3 Q4		17 18 18 18 18 18 19 19 19 19 20 20 20 20 20 20 21 21 21 21 21
6	5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 6.2 6.3 6.4 6.5	Q3 a b Q4 Q4 Q5 5.7.1 a 5.7.2 b Q6 5.8.1 a 5.8.2 b Q7 Q8 0 S 5.10.1 a 5.10.2 b 5.10.1 a 5.10.2 b 5.10.3 c 5.10.4 d 1 Q9 5.11.1 a 5.11.2 b 5.11.3 c Consequences of Euler's Theorem Q1 Q2 Q3 Q4 Q5		17 18 18 18 18 19 19 19 19 20 20 20 20 20 21 21 21 21 22
6	5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 6.2 6.3 6.4	Q3 a b Q4 Q5 5.7.1 a 5.7.2 b Q6 . 5.8.1 a 5.8.2 b Q7 0 Q8 5.10.1 a 5.10.2 b 5.10.3 c 5.10.4 d 1 Q9 5.11.1 a 5.11.2 b 5.11.3 c Consequences of Euler's Theorem Q1 Q2 Q3 Q4		17 18 18 18 18 18 19 19 19 19 20 20 20 20 20 20 21 21 21 21 21

		6.7.1 a	. 22
		6.7.2 b	. 23
		6.7.3 c	
	0.0		
	6.8	Q8	
	6.9	Q9	. 23
7	G .	Wilson's Theorem, and Some Consequences	23
	7.1	Q1	. 23
		7.1.1 Every Finite Integral Domain is a Field	. 24
		7.1.2 Remaining Elements Product is Unity	
	7.2	Q2	
	7.3	Q3	
		•	
	7.4	Q4	
	7.5	Q5	
	7.6	Q6	. 25
	7.7	Q7	. 25
	7.8	Q8	. 25
	7.9	Q9	
	1.0		. 20
8	н	Quadratic Residues	26
O	8.1	Q1	
	-	· ·	
	8.2	Q2	
	8.3	Q3	
	8.4	Q4	. 26
	8.5	Q5	. 26
	8.6	Q6	. 27
		8.6.1 a	
		8.6.2 b	
	07		
	8.7	$Q7 \dots \dots$	
	8.8	Q8	
		$8.8.1 \left(\frac{30}{101}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $. 27
		$8.8.2 \left(\frac{10}{151}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $. 28
		Q Q Q (15)	28
		$\langle 41 \rangle$	
		(097)	
		$8.8.5 \left(\frac{379}{401}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
		8.8.6 Is 14 a quadratic residue modulo 59	. 28
	8.9	Q9	. 28
9	I. P	Primitive Roots	28
	9.1	01	. 28
	9.2	O2	
	9.3	Q3	_
	9.5		
		9.3.1 6	
		9.3.2 10	
		9.3.3 12	. 29
		9.3.4 14	. 29
		9.3.5 15	. 29
	9.4	Q4	
	9.5	Q5	
		·	
	9.6	Q6	
	9.7	Q7	. 31

1 A. Solving Single Congruences

1.1 Q1

1.1.1 a

$$60x \equiv 12 \; (\bmod \; 24)$$

$$\gcd(60,24) = 12/12$$

$$\implies 5x \equiv 1 \pmod{2}$$
$$x \equiv 3 \pmod{2}$$

1.1.2 b

$$\gcd(42,30)=6$$

$$7x \equiv 4 \pmod{5}$$

$$x \equiv 2 \pmod{5}$$

1.1.3 c

No solution because gcd(49, 25) = 1 so equation cannot be reduced.

1.1.4 d

$$39 = 13 \times 3$$

$$52 = 13 \times 2^2$$

$$\gcd(39, 52) = 13 \nmid 14$$

1.1.5 e

$$\gcd(147, 98) = 49 \nmid 47$$

1.1.6 f

$$\gcd(39,52)=13$$

$$3x \equiv 2 \pmod{4}$$

$$x \equiv 3$$

1.2 Q2

1.2.1 a

$$12x \equiv 7 \pmod{25}$$

Note that $12 \perp 25$

$$12k + 25l = 1$$

$$\implies k = -2, l = 1$$

$$\implies 12\cdot (-2) \equiv 1 \ (\bmod \ 25)$$

$$\implies 12 \cdot 23 \equiv 1 \pmod{25}$$

$$\implies 12 \cdot 23 \cdot 7 \equiv 7 \pmod{25}$$

$$\implies 12 \cdot 11 \equiv 7 \pmod{25}$$

1.2.2 b

$$35x \equiv 8 \pmod{12}$$

$$35 \perp 12$$

$$\implies 35 \cdot (-1) + 12 \cdot 3 = 1$$

$$\implies 35 \cdot (-1) \equiv 1 \pmod{12}$$

$$\implies 35 \cdot 11 \equiv 1 \pmod{12}$$

$$\implies 35 \cdot 88 \equiv 8 \pmod{12}$$

$$\implies 35 \cdot 4 \equiv 8 \pmod{12}$$

1.2.3 c

$$15x \equiv 9 \pmod{6}$$

$$15k + 6l = 1$$

$$15 = 6(2) + 3$$

$$6 = 3(2) + 0$$

$$\gcd(15, 6) = 3$$

$$5x \equiv 3 \pmod{2}$$

$$x \equiv 1 \pmod{2}$$

$$15(1) \equiv 9 \pmod{6}$$

1.2.4 d

$$42x \equiv 12 \pmod{30}$$

$$42k + 30l = \gcd(42, 30)$$

$$42 = 30(1) + 12$$

$$30 = 12(2) + 6$$

$$12 = 6(2) + 0$$

$$7x \equiv 2 \pmod{5}$$

$$2x \equiv 2 \pmod{5}$$

$$x \equiv 1 \pmod{5}$$

$$x \equiv 1 \pmod{5}$$

1.2.5 e

$$147x \equiv 49 \pmod{98}$$
$$1\overline{4}7 = \overline{4}9$$
$$\implies 49x \equiv 49 \pmod{98}$$
$$\implies x \equiv 1 \pmod{98}$$

1.2.6 f

$$39x \equiv 26 \pmod{52}$$

$$52 = 39(1) + 13$$

$$39 = 13(3) + 0$$

$$\implies \gcd(52, 39) = 13$$

$$\implies 3x \equiv 2 \pmod{4}$$

$$\implies x \equiv 2 \pmod{4}$$

$$\implies x \equiv 2 \pmod{52}$$

1.3 Q3

1.3.1 a

$$2x^2 \equiv 8 \pmod{10}$$

$$\Rightarrow 2x^2 - 8 = 10y$$
 but $\gcd(2,10) = 2$
$$\Rightarrow x^2 - 4 = 5y \in \langle 5 \rangle$$

$$\Rightarrow x^2 - 4 \equiv 0 \pmod{5}$$

$$\Rightarrow x^2 \equiv 4 \pmod{10}$$

1.3.2 b

$$1^2 \equiv 1 \pmod{5}$$
$$2^2 \equiv 4 \pmod{5}$$
$$3^2 \equiv 4 \pmod{5}$$

$$4^2 \equiv 1 \pmod{5}$$

1.4 Q4

1.4.1 a

$$6x^2 \equiv 9 \pmod{15} \implies 2x^2 \equiv 3 \pmod{5}$$

 $\implies x = 2 \pmod{5}$

1.4.2 b

$$60x^2 \equiv 18 \pmod{24} \implies 10x^2 \equiv 3 \pmod{4}$$

$$\implies 2x^2 \equiv 3 \pmod{4}$$

 $x \neq 2$ because $2 \times 2 \mid 4 \implies x^2 \equiv 0 \pmod{4}$.

Likewise coefficient is 2 so for any n, 2n is either 2 or 0. No solution.

1.4.3 c

$$30x^2 \equiv 18 \pmod{24}$$

 $\implies 5x^2 \equiv 3 \pmod{4}$
 $\implies x^2 \equiv 3 \pmod{4}$

No solution.

1.4.4 d

$$4(x+1)^2 \equiv 14 \pmod{10}$$

$$\implies 4(x+1)^2 \equiv 4 \pmod{10}$$

$$x \equiv 0 \pmod{10}$$

1.4.5 e

$$4x^{2} - 2x + 2 \equiv 0 \pmod{6}$$

$$\implies 2x^{2} - x + 1 \equiv 0 \pmod{3}$$

$$\implies x = 2$$

1.4.6 f

$$3x^2 - 6x + 6 \equiv 0 \pmod{15}$$

$$\implies x^2 - 2x + 2 \equiv 0 \pmod{5}$$

$$x = 3, 4 \pmod{5}$$

1.5 Q5

1.5.1 a

$$x^4 \equiv 4 \pmod{6}$$

$$x^4 \equiv (x^2)^2 \pmod{6}$$
 Let $y = x^2$
$$y^2 \equiv 4 \pmod{6}$$

$$y \equiv 2 \pmod{6} \text{ or } 4 \pmod{6}$$

$$x^2 = 2 \pmod{6} \text{ or } 4 \pmod{6}$$

$$\Rightarrow x \equiv 2 \pmod{6}$$

1.5.2 b

$$2(x-1)^4 \equiv 0 \pmod{8}$$

$$\implies (x-1)^4 \equiv 0 \pmod{4}$$

$$\implies (x-1)^2 \equiv 0, 2 \pmod{4}$$

Let y = x - 1

$$\implies y^2 \equiv 0 \pmod{4}$$

$$\implies y \equiv 0, 2 \text{ (mod 4)}$$

 $\implies x \equiv 1, 3 \pmod{4}$

1.5.3 c

$$x^{3} + 3x^{2} + 3x + 1 \equiv 0 \pmod{8}$$

 $(x+1)^{3} \equiv 0 \pmod{8}$
 $\implies x+1 \equiv 0, 2, 4, 6$

(any factor of 2 since $2^3 \equiv 8 \equiv 0$)

$$\implies x \equiv 7, 1, 3, 5$$

1.5.4 d

$$x^{4} + 2x^{2} + 1 \equiv 4 \pmod{5}$$

$$\implies (x^{2} + 1) \equiv 4 \pmod{5}$$

$$\implies x^{2} + 1 \equiv 2, 3 \pmod{5}$$

$$\implies x^{2} \equiv 1, 2 \pmod{5}$$

$$\implies x \equiv 1, 4 \pmod{5}$$

1.6 Q6

1.6.1 a

$$14x + 15y = 11$$

Note that 14(-1) + 15(1) = 1, thus

$$14(-1 \cdot 11) + 15(1 \cdot 11) = 11$$
$$x = -11, y = 11$$

1.6.2 b

$$4(-1) + 5(1) = 1$$

1.6.3 c

21x + 10y is an ideal in \mathbb{Z} , with a least value t, such that $J = \langle t \rangle$ and therefore if $q \in J$ then $t \mid q$. But the least value t = 11 and $11 \nmid 9$. So there is no solution.

1.6.4 d

$$30x^2 + 24y = 18$$
$$30x^2 \equiv 18 \pmod{24}$$
$$5x^2 \equiv 3 \pmod{4}$$
$$x^2 \equiv 3 \pmod{4}$$

2 B. Solving Sets of Congruences

2.1 Q1

2.1.1 a

 $x\equiv 7\ (\text{mod }8) \qquad x\equiv 11\ (\text{mod }12)$ $\gcd(8,12)=4$ $7\ (\text{mod }4)\equiv 3\equiv 11\ (\text{mod }4)$

Solution exists.

$$lcm(8, 12) = 8 \times 12/4 = 24$$

$$x = 8q + 7$$

$$\Rightarrow 8q + 7 \equiv 11 \pmod{12}$$

$$8q \equiv 4 \pmod{12}$$

$$q \equiv 5 \pmod{12}$$

$$x = 8q + 7$$

$$= 8(12r + 5) + 7$$

$$= 96r + 47$$

2.1.2 b

$$x \equiv 12 \pmod{18} \qquad x \equiv 30 \pmod{45}$$

$$\gcd(18, 45) = 9$$

$$\ker(18, 45) = 18 \times 45/9 = 90$$

 $x \equiv 47 \pmod{24}$ $\equiv 23 \pmod{24}$

$$x=18q+12$$

$$18q + 12 \equiv 30 \pmod{45}$$
$$18q \equiv 18 \pmod{45}$$
$$q \equiv 1 \pmod{45}$$
$$x = 18(45r + 1) + 12$$
$$= 18 \times 45r + 30$$
$$x \equiv 30 \pmod{90}$$

2.1.3 c

$$gcd(15, 14) = 1$$

 $lcm(15, 14) = 210$

$$15q + 8 \equiv 11 \pmod{14}$$
$$15q \equiv 3 \pmod{14}$$
$$q \equiv 3 \pmod{14}$$
$$x \equiv 53 \pmod{210}$$

2.2 Q2

2.2.1 a

$$10x \equiv 2 \pmod{12} \qquad 6x \equiv 14 \pmod{20}$$

$$\gcd(10,12) = 2$$

$$5x \equiv 1 \pmod{6}$$

$$x \equiv 5 \pmod{6}$$

$$6x \equiv 14 \pmod{20}$$

$$3x \equiv 7 \pmod{10}$$

$$\gcd(6,20) = 2$$

$$x \equiv 9 \pmod{10}$$

$$gcd(6, 10) = 2$$

5 (mod 2) = 1 = 9 (mod 2)

has a solution.

$$lcm(6, 10) = 30$$

solution is modulo 30.

$$x = 6q + 5$$

$$6q + 5 \equiv 9 \pmod{10}$$

$$6q \equiv 4 \pmod{10}$$

$$3q \equiv 2 \pmod{5}$$

$$q \equiv 4 \pmod{5}$$

$$q \equiv 4 \pmod{5}$$

$$q = 5r + 4$$

$$x = 6(5r + 4) + 5 = 30r + 29$$

$$x \equiv 29 \pmod{30}$$

2.2.2 b

$$4x \equiv 2 \pmod{6}$$

$$9x \equiv 3 \pmod{12}$$

$$\gcd(4,6) = 2$$

$$\therefore 4x \equiv 2 \pmod{6} \implies 2x \equiv 1 \pmod{3}$$

$$x \equiv 2 \pmod{3}$$

$$\gcd(9,12) = 3$$

$$\therefore 9x \equiv 3 \pmod{12} \implies 3x \equiv 1 \pmod{4}$$

$$x \equiv 3 \pmod{4}$$

$$\gcd(3,4) = 1$$

has no solution.

 $2 \; (\bmod \; 1) = 0 \neq 3 \; (\bmod \; 1)$

2.2.3 c

$$10x \equiv 2 \pmod{12}$$

$$\gcd(6,8) = 2 \implies 3x \equiv 1 \pmod{4}$$

$$\gcd(10,12) = 2 \implies 5x \equiv 1 \pmod{6}$$

$$\implies x \equiv 3 \pmod{4}$$

$$\implies x \equiv 5 \pmod{6}$$

$$\gcd(4,6) = 2$$

$$3 \pmod{2} = 1 = 5 \pmod{2}$$

 $6x \equiv 2 \pmod{8}$

has a solution.

$$lcm(4,6) = 12$$

$$x = 4q + 3$$

$$4q + 3 \equiv 5 \pmod{6}$$

$$4q \equiv 2 \pmod{6}$$

$$\gcd(4,6) = 2$$

$$\Rightarrow 2q \equiv 1 \pmod{3}$$

$$q \equiv 2 \pmod{3}$$

$$q \equiv 3r + 2$$

$$x = 4(3r + 2) + 3$$

$$= 12r + 11$$

$$x \equiv 11 \pmod{12}$$

2.3 Q3

See attached file ch23b3.pdf.

2.4 Q4

2.4.1 a

$$x \equiv 2 \pmod{3}$$
 $x \equiv 3 \pmod{4}$ $x \equiv 1 \pmod{5}$ $x \equiv 4 \pmod{7}$

All modulo are coprime so there is a solution.

$$lcm(3, 4, 5, 7) = 3 \times 4 \times 5 \times 7 = 420$$

recursively find a solution for each equation.

$$x = 3q + 2$$

$$3q + 2 \equiv 2 \pmod{4}$$

$$3q \equiv 1 \pmod{4}$$

$$q \equiv 3 \pmod{4}$$

$$q = 4r + 3$$

$$x = 3(4r + 3) + 2$$

$$= 12r + 11$$

$$x \equiv 11 \pmod{12}$$

but also $x \equiv 1 \pmod{5}$

$$x = 12q' + 11$$

$$12q' + 11 \equiv 1 \pmod{5}$$

$$12q' \equiv 0 \pmod{5}$$

$$q' \equiv 0 \pmod{5}$$

$$q' = 5r'$$

$$\Rightarrow x = 11$$

this also fits the equation $x \equiv 4 \pmod{7}$.

2.4.2 b

$$6x \equiv 4 \pmod{8} \qquad 10x \equiv 4 \pmod{12} \qquad 3x \equiv 8 \pmod{10}$$

$$6x \equiv 4 \pmod{8} \implies 3x \equiv 2 \pmod{4} \implies x \equiv 2 \pmod{4}$$

$$10x \equiv 4 \pmod{12} \implies 5x \equiv 2 \pmod{6} \implies x \equiv 4 \pmod{6}$$

$$3x \equiv 8 \pmod{10} \implies x \equiv 6 \pmod{10}$$

$$\gcd(4,6) = 2 \qquad 2 \pmod{2} = 0 = 4 \pmod{2}$$

$$\gcd(4,10) = 2 \qquad 2 \pmod{2} = 0 = 6 \pmod{2}$$

$$\gcd(6,10) = 2 \qquad 2 \pmod{2} = 0 = 6 \pmod{2}$$

thus there is a solution x.

$$t = \text{lcm}(4, 6, 10) = \text{lcm}(\text{lcm}(4, 6), 10) = \text{lcm}(12, 10) = 60$$

Solution is modulo t = 60.

$$x \equiv 2 \pmod{4}$$

$$x \equiv 4 \pmod{6}$$

$$x \equiv 6 \pmod{10}$$

$$x = 4q + 2$$

$$4q + 2 \equiv 4 \pmod{6}$$

$$4q \equiv 2 \pmod{6}$$

$$q \equiv 2 \pmod{6}$$

$$q = 6r + 2$$

$$x = 4(6r + 2) + 2$$

$$= 24r + 10$$

$$24r + 10 \equiv 6 \pmod{10}$$

$$24r \equiv -4 \pmod{10}$$

$$12r \equiv 3 \pmod{5}$$

$$r \equiv 4 \pmod{5}$$

$$r \equiv 4 \pmod{5}$$

$$r = 5s + 4$$

$$x = 24(5s + 4) + 10$$

$$= 120s + 106$$

$$x = 106 \pmod{60}$$

$$= 46 \pmod{60}$$

2.5 Q5

2.5.1 a

$$4x + 6y = 2 \implies 4x \equiv 2 \pmod{6}$$

 $9x + 12y = 3 \implies 9x \equiv 3 \pmod{12}$

$$4x \equiv 2 \pmod{6} \implies 2x \equiv 1 \pmod{3} \implies x \equiv 2 \pmod{3}$$

 $9x \equiv 3 \pmod{12} \implies 3x \equiv 1 \pmod{4} \implies x \equiv 3 \pmod{4}$

$$x = 3q + 2$$

$$3q+2\equiv 3\ (\mathrm{mod}\ 4)$$

$$3q \equiv 1 \pmod{4}$$

$$q\equiv 3\ (\mathrm{mod}\ 4)$$

$$q = 4r + 3$$

$$x=3(4r+3)+2$$

$$=12r+11$$

$$t = \text{lcm}(6, 12) = 12$$

$$x \equiv 11 \pmod{12}$$

$$x = 12s + 11$$

$$=-1$$

$$y = 1$$

2.5.2 b

$$3x + 4y = 2$$

$$5x + 6y = 2$$

$$3x + 10y = 8$$

$$3x \equiv 2 \pmod{4}$$

$$5x\equiv 2\ (\mathrm{mod}\ 6)$$

$$3x \equiv 8 \pmod{1}0$$

From 23B4b, $x \equiv 46 \pmod{60}$

$$6y \equiv 2 \pmod{5}$$

$$y \equiv 2 \pmod{5}$$

$$10y \equiv 8 \pmod{3}$$

$$y \equiv 2 \pmod{2}$$

$$4y \equiv 2 \pmod{3}$$

$$y \equiv 2 \pmod{3}$$

$$t = \operatorname{lcm}(3, 5) = 15$$

$$y = 5q + 2$$

$$5q + 2 \equiv 2 \pmod{3}$$
$$2q \equiv 0 \pmod{3}$$
$$y = 2$$

but $x \equiv 46 \pmod{60}$

$$5(46) + 6(2) \equiv 50 + 12 \equiv 2 \pmod{60}$$

 $3(46) + 10(2) \equiv 18 + 20 \equiv 38 \not\equiv 8 \pmod{60}$

so there's no solution.

3 C. Elementary Properties of Congruence

3.1 Q1

If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \mod n$.

$$b-a=nq_1$$

$$b=nq_1+a$$

$$b-c=nq_2$$

$$(nq_1+a)-c=nq_2$$

$$a-c=nq_2-nq_2$$

$$=n(q_2-q_1)$$

$$\Longrightarrow a\equiv c \; (\mathrm{mod} \; n)$$

3.2 Q2

If $a \equiv b \pmod{n}$, then $a + c \equiv b + c \pmod{n}$.

$$a - b = nq$$

$$c - c = 0$$

$$a - b + (c - c) = nq$$

$$(a + c) - (b + c) = nq$$

$$\Rightarrow a + c \equiv b + c \pmod{n}$$

3.3 Q3

If $a \equiv b \pmod{n}$, then $ac \equiv bc \pmod{n}$.

$$a - b = nq$$

$$c(a - b) = cnq$$

$$ac - ab = n(qc)$$

$$ac \equiv bc \pmod{n}$$

3.4 Q4

 $a \equiv b \pmod{1}$.

$$a \equiv b \pmod{n} \iff n \mid (a - b)$$

 $1 \mid (a - b) \implies a \equiv b \pmod{1}$

3.5 Q5

If $ab \equiv 0 \pmod{p}$, where p is a prime, then $a \equiv 0 \pmod{p}$ or $b \equiv 0 \pmod{p}$.

$$ab \equiv 0 \pmod{p} \implies ab = np$$

 $\implies p \mid ab$

but p is prime so either $p \mid a$ or $p \mid b$.

If $p \mid a$ then $a \equiv 0 \pmod{p}$.

If $p \mid b$ then $b \equiv 0 \pmod{p}$.

3.6 Q6

If $a^2 \equiv b^2 \pmod{p}$, where p is a prime, then $a \equiv \pm b \pmod{p}$.

$$a^2 \equiv b^2 \pmod{p}$$
$$a^2 - b^2 = np$$
$$(a+b)(a-b) = np$$

Since p is prime then either $p \mid (a+b)$

If $p \mid (a+b)$ then $a \equiv -b \pmod{p}$.

If $p \mid (a - b)$ then $a \equiv b \pmod{p}$.

3.7 Q7

If $a \equiv b \pmod{m}$, then $a + km \equiv b \pmod{m}$, for any integer k. In particular, $a + km \equiv a \pmod{m}$.

$$a \equiv b \pmod{m} \implies a - b = mq_1$$

$$\implies (a + km) - b = mq_1 + km$$

$$= m(q_1 + k)$$

$$\implies a + km \equiv b \pmod{m}$$

$$a - a = 0 = 0m \implies a \equiv a \pmod{m}$$

$$\implies a + km \equiv a \pmod{m}$$

3.8 Q8

If $ac \equiv bc \pmod{n}$ and $\gcd(c, n) \equiv 1$, then $a \equiv b \pmod{n}$.

$$\$ac \equiv bc \pmod{n} \implies ac - bc = c(a - b) = nq$$

So $n \mid c(a-b)$ but $\gcd(c,n) = 1 \implies n \mid (a-b) \implies a \equiv b \pmod{n}$.

3.9 Q9

If $a \equiv b \pmod{n}$, then $a \equiv b \pmod{m}$ for any m which is a factor of n.

$$n = rm$$

$$a - b = nq = (rm)q$$

$$= m(rq)$$

$$\implies a \equiv b \pmod{m}$$

4 D. Further Properties of Congruence

4.1 Q1

If $ac \equiv bc \pmod{n}$, and $\gcd(c, n) \equiv d$, then $a \equiv b \pmod{n}/d$.

$$\begin{aligned} ac - bc &= nq \\ \gcd(c,n) &= d \implies c = c_1d, n = n_1d \\ c_1d(a-b) &= n_1dq \\ c_1(a-b) &= n_1q \end{aligned}$$

but $\gcd(c_1,n_1)=1$ so $n_1\nmid c_1\implies n_1\mid (a-b).$

$$\implies a - b = n_1 k$$

$$n = n_1 d \implies n_1 = \frac{n}{d}$$

$$a - b = (\frac{n}{d})k$$

$$\implies a \equiv b \pmod{\frac{n}{d}}$$

4.2 Q2

If $a \equiv b \pmod{n}$, then gcd(a, n) = gcd(b, n).

$$\begin{aligned} a_1 d &\equiv b \pmod{n_1 d} \\ a_1 d - b &= n_1 dy \\ b &= a_1 d - n_1 dy \\ &= d(a_1 - n_1 y) \\ &\Longrightarrow d \mid b \\ \gcd(a_1, n_1) &= 1 \implies \gcd(b, n_1) = 1 \\ &\Longrightarrow \gcd(b, n) = d \end{aligned}$$

4.3 Q3

If $a \equiv b \pmod{p}$ for every prime p, then $a \equiv b$.

Assume $a \neq b$ and

$$\begin{split} a &= p_1 \cdots p_i p_{i+1} \cdots p_n \\ b &= p_1 \cdots p_i q_i \cdots q_m \end{split}$$

where $gcd(a, b) = p_1 \cdots p_i$.

If $p \in \{p_1, \dots, p_i\}$ then $p \mid a$ and $p \mid b$ and $a \pmod{p} \equiv 0 \equiv b \pmod{p}$.

If $p \in \{q_1, \dots, q_m\}$ where $p \neq p_j$ such that $1 \leq j \leq n$ then $p \nmid a$ and $p \nmid b$ so $a \not\equiv b \pmod p$.

Likewise for $p = p_j : i \le j \le n$.

Therefore $a \equiv b \pmod{p}$ for all prime p implies they both share the exact same prime factors, and a = b.

4.4 Q4

If $a \equiv b \pmod{n}$, then $a^m \equiv bm \pmod{n}$ for every positive integer m.

$$(a-b)=nq$$

$$a = b + nq$$

$$a^{m} = (b + nq)^{m}$$

$$= b^{m} + \binom{1}{m} b^{m-1} (nq)^{1} + \dots + \binom{m-1}{m} b (nq)^{m-1} + (nq)^{m}$$

$$\implies a^{m} \equiv b^{m} \pmod{n}$$

4.5 Q5

If $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$ where gcd(m, n) = 1, then $a \equiv b \pmod{m}n$.

$$\begin{aligned} a-b &= mx = ny \\ \implies n \mid (a-b) \text{ and } m \mid (a-b) \end{aligned}$$

but $gcd(m, n) = 1 \implies mn \mid (a - b)$

$$a \equiv b \mid mn$$

4.6 Q6

If $ab \equiv 1 \pmod{c}$, $ac \equiv 1 \pmod{b}$ and $bc \equiv 1 \pmod{a}$, then $ab + bc + ac \equiv 1 \pmod{a}bc$. (Assume a, c > 0.)

$$ab-1=cq_1\\ac-1=bq_2$$

$$bc-1=aq_3$$

$$(ab-1)(ac-1)(bc-1) = (abc)(q_1q_2q_3)$$

$$\begin{split} (a^2bc - ab - ac + 1)(bc - 1) &= a^2b^2c^2 - ab^2c - abc^2 + bc - a^2bc + ab + ac - 1 \\ (a^2b^2c^2 - ab^2c - abc^2 - a^2bc) + bc + ab + ac \equiv 1 \; (\text{mod } abc) \\ &\implies ab + bc + ac \equiv 1 \; (\text{mod } abc) \end{split}$$

4.7 Q7

If $a^2 \equiv 1 \pmod{2}$, then $a^2 \equiv 1 \pmod{4}$.

$$a^2 - 1 \mid 2 \implies a^2 - 1 \mid 4$$

4.8 Q8

If $a \equiv b \pmod{n}$, then $a^2 + b^2 \equiv 2ab \pmod{n^2}$, and conversely.

$$a - b = nq$$
$$(a - b)^2 = a^2 - 2ab + b^2 = n^2q^2$$
$$\implies a^2 + b^2 = 2ab \pmod{n^2}$$

4.9 Q9

If $a \equiv 1 \pmod{m}$, then a and m are relatively prime.

$$a - 1 = mq$$
$$a - mq = 1$$

From 22c1 this implies gcd(a, b) = 1.

5 E. Consequences of Fermat's Theorem

5.1 Q1

If p is a prime, find $\phi(p)$. Use this to deduce Fermat's theorem from Euler's theorem.

 V_p is the set of all invertible elements in \mathbb{Z}_p .

 V_p is thus a group with respect to multiplication.

Let $\bar{a} \in V_p$

$$\begin{split} \bar{sa} &= 1 \\ \Longrightarrow sa - 1 \in \langle n \rangle \\ \Longrightarrow sa - 1 &= tn \\ sa - tn &= 1 \end{split}$$

So invertible elements a in $\mathbb{Z}_n \implies a$ and n are relatively prime, and vice versa.

All cosets of $\langle n \rangle$ (except $\langle n \rangle$ itself) have a gcd of 1.

$$\mathbb{Z}_p^* = \{\bar{1},\bar{2},\ldots,p-1\}$$

So it follows that

$$\phi(p) = p - 1$$

5.2 Q2

If p > 2 is a prime and $a \neq 0 \pmod{p}$, then

$$a(p-1)/2 \equiv \pm 1 \pmod{p}$$

$$a^{p-1} = 1 \pmod{p}$$

$$\implies a^{\frac{p-1}{2} \cdot 2} \equiv x^2 \equiv 1 \pmod{p}$$

$$x^2 \equiv 1 \pmod{p} \implies x \in \{-1, 1\}$$

$$a^{(p-1)/2} \equiv \pm 1 \pmod{p}$$

5.3 Q3

5.4 a

Let p be a prime > 2. If $p \equiv 3 \pmod{4}$, then (p-1)/2 is odd.

$$p \equiv 3 \pmod{4}$$

$$p-1 \equiv 2 \pmod{4}$$

$$\Rightarrow 4 \mid [(p-1)-2]$$

$$\Rightarrow (p-1)-2 = 4q$$

$$\Rightarrow \frac{p-1}{2} - 1 = 2q$$

$$\Rightarrow \frac{p-1}{2} \equiv 1 \pmod{2}$$

thus $\frac{p-1}{2}$ is odd.

5.5 b

Let p>2 be a prime such that $p\equiv 3\pmod 4$. Then there is no solution to the congruence $x^2+1\equiv 0\pmod p$.

$$x^2 \equiv -1 \pmod{p}$$

$$x^{2 \cdot \frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{2}} \pmod{p}$$

By Fermat's theorem

$$x^{p-1} \equiv 1 \pmod{p}$$

but since (p-1)/2 is odd, then $(-1)^{\frac{p-1}{2}}=-1$ so there is no solution to the congruence $x^2+1\equiv 0\pmod p$.

5.6 Q4

Let p and q be distinct primes. Then $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$.

$$\begin{split} p^{q-1} &\equiv 1 \pmod{q} \\ q^{p-1} &\equiv 1 \pmod{p} \\ \\ p^{q-1} - 1 &= qn \\ q^{p-1} - 1 &= pm \\ \\ (p^{q-1} - 1)(q^{p-1} - 1) &= p^{q-1}q^{p-1} - p^{q-1} - q^{p-1} + 1 \\ &= (pq)(mn) \\ \\ &\Longrightarrow p^{q-1} + q^{p-1} \equiv 1 \pmod{pq} \end{split}$$

5.7 Q5

Let p be a prime.

5.7.1 a

If, $(p-1) \mid m$, then $a^m \equiv 1 \pmod{p}$ provided that $p \nmid a$.

$$(p-1) \mid m \implies m = q(p-1)$$

 $a^m = a^{q(p-1)} = (a^{p-1})^q$

$$a^{p-1} \equiv 1 \pmod{p}$$
$$(a^{p-1})^q \equiv 1^q \pmod{p}$$
$$a^m \equiv 1 \pmod{p}$$

5.7.2 b

If, $(p-1) \mid m$, then $a^m + 1 \equiv a \pmod{pq}$ for all integers a.

If $p \mid a$ then $a^x \equiv 0 \pmod{p}$ for any x so $a^{m+1} \equiv 0 \equiv a \pmod{p}$.

Otherwise $p \nmid a$ so $a^m \equiv 1 \pmod{p} \implies a^{m+1} \equiv a \pmod{p}$

5.8 Q6

Let p and q be distinct primes.

5.8.1 a

 $\textit{If } (p-1) \mid m \textit{ and } (q-1) \mid m, \textit{ then } a^m \equiv 1 \pmod{pq} \textit{ for any a such that } p \nmid a \textit{ and } q \nmid a.$

$$a^m \equiv 1 \pmod{p}$$

 $a^m \equiv 1 \pmod{q}$

 $gcd(p,q) = 1 \implies p$ and q share no divisors

but $p \mid (a^m-1)$ and $q \mid (a^m-1) \implies pq \mid (a^m-1)$

$$a^m - 1 \equiv 0 \pmod{pq}$$

 $a^m \equiv 1 \pmod{pq}$

5.8.2 b

If $(p-1) \mid m$ and $(q-1) \mid m$, then $a^m + 1 \equiv a \pmod{pq}$ for integers a.

Let $p \mid a$ then $a \equiv 0 \pmod{p}$ and $a \equiv 1 \pmod{q}$.

$$\implies a^m(a-1) = (pq)(mn)$$

$$\implies a^{m+1} - a = (pq)(mn)$$

$$\implies a^{m+1} \equiv a \pmod{pq}$$

Likewise if $q \mid a$.

If both $p \mid a$ and $q \mid a$ then $pq \mid a$ and so $a \equiv 0 \pmod{pq}$ and $a^{m+1} \equiv 0 \pmod{pq}$.

Otherwise $p \nmid a$ and $q \nmid a$ so

$$a^m \equiv 1 \pmod{pq}$$
$$\implies a^{m+1} \equiv a \pmod{pq}$$

5.9 Q7

$$\forall i \in \{1, \dots, n\}, (p_i - 1) \mid m$$

$$\implies a^{m+1} \equiv a \text{ (mod } \prod_{i=1}^n p_i)$$

5.10 Q8

5.10.1 a

$$p = 7$$
 $q = 19$ $m = 18$
 $(7-1) \mid 18$ $(19-1) \mid 18$
 $\implies a^{18+1} = a \pmod{7 \times 19}$
 $a^{1}9 \equiv a \pmod{133}$

5.10.2 b

$$a \in \langle 2 \rangle, \langle 3 \rangle, \langle 11 \rangle$$

$$m=10$$

$$q_1=2 \qquad q_2=3 \qquad q_3=11$$

$$\implies a^{10}=1 \; (\text{mod } 66)$$

5.10.3 c

5.10.4 d

$$\begin{array}{cccc} q_1=7 & q_2=13 & q_3=17 \\ & m=48 \\ & (7-1)\mid 48 & (13-1)\mid 48 & (17-1)\mid 48 \\ & \Longrightarrow a^{49}\equiv a \; (\mathrm{mod}\; 1457) \end{array}$$

5.11 Q9

5.11.1 a

$$Q = \{2, 3, 5, 7\}$$

$$8^{38} = 8^{2 \times 19} = (8^2)^1 9$$

$$\forall q \in Q, (q - 1) \mid (19 - 1)$$

$$\Rightarrow a^{18+1} \equiv a \pmod{210}$$

$$\Rightarrow x = 8^2$$

where $a = 8^2$

5.11.2 b

$$p = 7 q = 19$$

$$7^{57} = (7^3)^1 9$$

$$m = 18$$

$$(7-1) \mid m (19-1) \mid m$$

$$a^{m+1} \equiv a \pmod{pq}$$

$$(7^3)^{18+1} \equiv 7^3 \pmod{7 \times 19}$$

$$x = 7^3$$

5.11.3 c

$$Q = \{2, 3, 11\}$$
$$72 = 2^3 3^2$$

73 is prime so $m \neq 73$ since there is no $(p-1) \mid m : p \in Q$.

Since $(p-1) \mid m$ then m=72, if p=11 then $(11-1) \nmid 72$ so $m \neq 72$.

Since 5 is a prime, and there are no factorizations of 73, this has no solution.

6 F. Consequences of Euler's Theorem

6.1 Q1

If gcd(a, n) = 1, the solution modulo n of $ax \equiv b \pmod{n}$ is $x \equiv a^{\phi(n)-1}b \pmod{n}$.

 $\gcd(a,n)=1 \implies ax \equiv b \pmod n$ has a solution because it is equivalent to $\bar a\bar x=\bar b$ in \mathbb{Z}_n . By condition 4, $\bar a$ has a multiplicative inverse in \mathbb{Z}_n .

$$\bar{x} = \bar{a}^{-1}b$$

$$\gcd(a, n) = 1 \implies 1 - sa = tn \in \langle n \rangle \implies \bar{1} = \overline{sa}$$

Let V_n be the set of invertible elements in \mathbb{Z}_n . This is a group since inverses and products remain in V_n . From condition 4, $\bar{1} = \overline{sa} \implies 1 - sa \in \langle n \rangle \implies \gcd(a,n) = 1$. So $|V_n| = \phi(n)$ which is the number of relatively prime elements in V_n .

Since V_n is a group, the identity is $\bar{1}$ and for any $\bar{a} \in V_n$, $\bar{a}^{\phi(n)} = \bar{1}$. But we have $\bar{x} = \bar{a}^{-1}\bar{b}$ and it follows that

$$\begin{split} \bar{a}^{-1} &= \bar{a}^{\phi(n)} \bar{a}^{-1} \\ &= \overline{a^{\phi(n)-1}} \\ \bar{x} &= \overline{a^{\phi(n)-1}} \bar{b} \\ \Longrightarrow x &= a^{\phi(n)-1} b \pmod{n} \end{split}$$

6.2 Q2

If gcd(a, n) = 1, then $a^{m\phi(n)} \equiv 1 \pmod{n}$ for all values of m.

$$\gcd(a,n) = 1 \implies a^{\phi(n)} \equiv 1 \pmod{n}$$
$$(a^{\phi(n)})^m \equiv 1^m \pmod{n}$$
$$a^{m\phi(n)} \equiv 1 \pmod{n}$$

6.3 Q3

If gcd(m, n) = gcd(a, mn) = 1, then $a^{\phi(m)\phi(n)} \equiv 1 \pmod{mn}$.

$$a^{k\phi(m)} \equiv 1 \pmod{m}$$
$$a^{l\phi(n)} \equiv 1 \pmod{n}$$
$$a^{\phi(m)\phi(n)} \equiv 1 \pmod{m}$$
$$a^{\phi(m)\phi(n)} \equiv 1 \pmod{n}$$

Since gcd(m, n) = 1, then by theorem 4 t = lcm(m, n) = mn.

$$\begin{split} m \mid (a^{\phi(m)\phi(n)} - 1) \text{ and } n \mid (a^{\phi(m)\phi(n)} - 1) \iff t \mid (a^{\phi(m)\phi(n)} - 1) \\ \iff a^{\phi(m)\phi(n)} \equiv 1 \text{ (mod } mn) \end{split}$$

6.4 Q4

If p is a prime, $\phi(p^n) = p^n - p^{n-1} = p^{n-1}(p-1)$.

HINT: For any integer a, a and p^n have a common divisor $\neq \pm 1$ iff a is a multiple of p. There are exactly p^{n-1} multiples of p between 1 and p^n .

p is a prime and the only possible values for $gcd(a, p^n)$ are p, p^2, \dots, p^n .

Therefore $p \mid a$ and a is a multiple of p.

There are p^{n-1} multiples of p between 1 and p^n because there are p^{n-1} values in the sequence

$$p,2p,3p,\dots,(p^{n-1})p$$

Therefore $\phi(p^n)$ is equal to the total number of values minus the total number of multiples of p (the only possible values that divide a).

$$\phi(p^n) = p^n - p^{n-1}$$
$$= p^{n-1}(p-1)$$

6.5 Q5

For every $a \not\equiv 0 \pmod{p}$, $a^{p^n(p-1)}$ (? - malformed question), where p is a prime.

$$a\not\equiv 0\ (\mathrm{mod}\ p) \implies \gcd(a,p) = 1$$

$$a^{\phi(p^n)} \equiv 1\ (\mathrm{mod}\ pn) \implies \gcd(a,p^n) = 1$$

but
$$\phi(p^n) = p^{n-1}(p-1)$$
 so $a^{\phi(p^n)} = a^{p^{n-1}(p-1)}$ but $a^{\phi(p^n)} \equiv 1 \pmod{p^n}$ so $a^{p^{n-1}(p-1)} \equiv 1 \pmod{p^n}$ and so also $(a^{p^{n-1}(p-1)})^p \equiv 1^p \pmod{p^n}$ or $a^{p^n(p-1)} \equiv 1 \pmod{p^n}$

6.6 Q6

Under the conditions of part 3, if t is a common multiple of $\phi(m)$ and $\phi(n)$, then $a^t \equiv 1 \pmod{mn}$. Generalize to three integers l, m, and n.

$$\gcd(m,n)=\gcd(a,mn)=1, \qquad a^{\phi(m)\phi(n)}\equiv 1 \pmod{mn}$$

$$\phi(mn)=\phi(m)\phi(n)$$

$$\gcd(\phi(m),\phi(n))\cdot \operatorname{lcm}(\phi(m),\phi(n)) = \phi(m)\phi(n)$$

$$t = \operatorname{lcm}(\phi(m),\phi(n)) = \frac{\phi(m)\phi(n)}{\gcd(\phi(m),\phi(n))}$$

$$\begin{aligned} a^t &\equiv a^{\frac{\phi(m)\phi(n)}{\gcd(\phi(m),\phi(n))}} \equiv (a^{\phi(m)\phi(n)})^{\frac{1}{\gcd(\phi(m),\phi(n))}} \\ &\equiv 1 \; (\bmod \; mn) \end{aligned}$$

Likewise for l, m, n because $\gcd(\phi(l), \phi(m), \phi(n)) = \gcd(\phi(l), \gcd(\phi(m), \phi(n)))$ and the same for lcm.

$6.7 \quad Q7$

6.7.1 a

$$180 = 2^2 3^2 5$$

$$\begin{split} \phi(180) &= \phi(2^2)\phi(3^2)\phi(5) \\ &= 2^{2-1}(2-1)3^{2-1}(3-1)(5-1) \\ &= (2)(3\times 2)(4) = (2)(6)(4) \end{split}$$

Note $gcd(2^23^2, 5) = 1$

$$a^{\text{lcm}(\phi(2^23^2),\phi(5))} \equiv 1 \pmod{180}$$

 $a^{\text{lcm}(12,4)=12} \equiv 1 \pmod{180}$

6.7.2 b

$$a^42 \equiv 1 \pmod{1764}$$
$$1764 = 2^2 3^2 7^2$$
$$\gcd(2^2, 3^2, 7^2) = 1$$
$$\operatorname{lcm}(\phi(2^2), \phi(3^2), \phi(7^2)) = 42$$
$$a^42 \equiv 1 \pmod{1764}$$

6.7.3 c

$$1800 = 2^{3}3^{2}5^{2}$$

$$\gcd(2^{3}, 3^{2}, 5^{2}) = 1$$

$$\operatorname{lcm}(\phi(2^{3}), \phi(3^{2}), \phi(5^{2})) = 60$$

$$a^{60} \equiv 1 \pmod{1800}$$

6.8 Q8

If gcd(m, n) = l, prove that $n^{\phi(m)} + m^{\phi(n)} \equiv 1 \pmod{mn}$.

$$\begin{split} n^{\phi(m)} &\equiv 1 \pmod{m} \implies n^{\phi(m)} - 1 = mq_1 \\ m^{\phi(n)} &\equiv 1 \pmod{n} \implies m^{\phi(n)} - 1 = nq_2 \end{split}$$

$$\begin{split} (n^{\phi(m)}-1)(m^{\phi(n)}-1) &= (mn)(q_1q_2) \\ &= n^{\phi(m)}m^{\phi(n)} - n^{\phi(m)} - m^{\phi(n)} + 1 \\ n^{\phi(m)}m^{\phi(n)} &\equiv 1 \pmod{mn} \end{split}$$

6.9 Q9

If l, m, n are relatively prime in pairs, prove that $(mn)^{\phi(l)} + (ln)^{\phi(m)} + (lm)^{\phi(n)} \equiv 1 \pmod{lmn}$.

$$(mn)^{\phi(l)} \equiv 1 \pmod{mn}$$

$$(lm)^{\phi(n)} \equiv 1 \pmod{lm}$$

$$(ln)^{\phi(m)} \equiv 1 \pmod{ln}$$

$$[(mn)^{\phi(l)} - 1][(lm)^{\phi(n)} - 1] = (l^2m^2n^2)(q_1q_2q_3)$$

$$= [(mn)^{\phi(l)}(lm)^{\phi(n)} - (lm)^{\phi(n)} - (mn)^{\phi(l)} + 1][(ln)^{\phi(m)} - 1]$$

$$= (mn)^{\phi(l)}(lm)^{\phi(n)}(ln)^{\phi(m)} - (lm)^{\phi(n)}(ln)^{\phi(m)}$$

$$- (ln)^{\phi(m)}(mn)^{\phi(l)} + (ln)^{\phi(m)} - (mn)^{\phi(l)}(lm)^{\phi(n)}$$

$$+ (lm)^{\phi(n)} + (mn)^{\phi(l)} - 1$$

$$(mn)^{\phi(l)} + (ln)^{\phi(m)} + (lm)^{\phi(n)} \equiv 1 \pmod{lmn}$$

7 G. Wilson's Theorem, and Some Consequences

7.1 Q1

Prove that in \mathbb{Z}_p , $\overline{2} \cdot \overline{3} \cdots \overline{p-2} = \overline{1}$.

Firstly note $x^2 \equiv 1 \pmod{p} \implies x = \pm 1 \text{ or that } x = \overline{1} \text{ or } x = \overline{p-1}.$

So the remaining nonzero integers in \mathbb{Z}_p have a multiplicative inverse since \mathbb{Z}_p is an integral domain having the cancellation property.

7.1.1 Every Finite Integral Domain is a Field

We show a typical element $a \neq 0$ has a multiplicative inverse.

Consider $a, a^2, a^3, ...$ Since there are finite elements, the group is cyclic so we must have $a^m \equiv a^n \pmod{p}$ for some m < n. So $0 \equiv a^m - a^n \equiv a^m (1 - a^{n-m}) \pmod{p}$.

Since there are no zero divisors $a^m \not\equiv \pmod{p}$ and hence $1 - a^{n-m} \equiv 0 \pmod{p}$

$$a(a^{n-m-1}) \equiv 1 \pmod{p}$$

7.1.2 Remaining Elements Product is Unity

For any $x \in \mathbb{Z}_p : x \neq \pm 1$, there is a multiplicative inverse $y \in \mathbb{Z}_p : y \neq \pm 1$. This is the set $\mathbb{Z}_p = \{0, \pm 1\} = \{\overline{2}, \overline{3}, \dots, p - 2\}$, which has exactly (p-3)/2 pairs, where $xy = \overline{1}$, and so the product of all these pairs is 1.

$$\overline{2}\cdot\overline{3}\cdots\overline{p-2}=\overline{1}$$

7.2 Q2

Prove $(p-2)! \equiv 1 \pmod{p}$ for any prime number p.

$$(p-2)! = 2 \cdot 3 \cdots (p-2)$$

From the previous question $\overline{2} \cdot \overline{3} \cdots \overline{p-2} = \overline{1}$ in \mathbb{Z}_p .

But also $\overline{2} \cdot \overline{3} \cdots \overline{p-2} = \overline{2 \cdot 3 \cdots (p-2)} = \overline{(p-2)!}$ and so $\overline{(p-2)!} = \overline{1}$. Both terms are in the same coset for $\langle p \rangle \implies p \mid [(p-2)!-1]$. $\implies (p-2)! \equiv 1 \pmod{p}$

7.3 Q3

Prove $(p-1)! + 1 \equiv 0 \pmod{p}$ for any prime number p. This is known as Wilson's theorem.

$$(p-1) \equiv -1 \pmod{p}$$

$$(p-2)! \equiv 1 \pmod{p}$$

$$(p-1)! = (p-2)!(p-1)$$

$$(p-1)! \equiv (p-2)!(p-1) \pmod{p}$$

$$\equiv (1)(-1) \pmod{p}$$

$$\equiv -1 \pmod{p}$$

$$(p-1)! + 1 \equiv 0 \pmod{p}$$

7.4 Q4

Prove that for any composite number $n \neq 4, (n-1)! \equiv 0 \pmod{n}$.

Any prime factor p of n will be a divisor of (n-1)! because p < n since $p \mid n$.

$$(n-1)! = (n-1)\cdots p\cdots 3\cdot 2\cdot 1$$

This also applies to all prime powers p^k in n, and so n itself is a factor of (n-1)!. Since n is composite (product of 2 or more integers).

$$(n-1)! \equiv 0 \pmod{n}$$

7.5 Q5

Prove that $[(p-1)/2]!^2 \equiv (-1)^{(p+1)/2} \pmod{p}$ for any prime p > 2.

$$\begin{split} (p-1)! + 1 &\equiv 0 \text{ (mod } p) \\ (p-1)! &\equiv (-1)^{(p-1)/2} \left(1 \cdot 2 \cdots \frac{p-1}{2}\right)^2 \text{ (mod } p) \\ (-1)^{(p-1)/2} \left(1 \cdot 2 \cdots \frac{p-1}{2}\right)^2 &\equiv -1 \text{ (mod } p) \end{split}$$

Multiply both sides by $(-1)^{(p-1)/2}$, noting that

$$((-1)^{(p-1)/2})^2 = (-1)^{p-1} = 1$$
 for any prime $p > 2$

(as p was specified in the question).

$$\left(1 \cdot 2 \cdots \frac{p-1}{2}\right)^2 \equiv -1 \cdot (-1)^{(p-1)/2} \pmod{p}$$

$$\left(\frac{p-1}{2}\right)!^2 \equiv (-1)^{(p+1)/2} \pmod{p}$$

7.6 Q6

Prove that if $p \equiv 1 \pmod 4$ then (p+1)/2 is odd. Conclude that $\left(\frac{p-1}{2}\right)!^2 \equiv -1 \pmod p$.

$$p-1=4q$$

$$p+1=4q+2$$

$$\frac{p+1}{2}=2q+1$$

therefore $\frac{p+1}{2}$ is odd, so $(-1)^{(p+1)/2} = -1$.

7.7 Q7

Prove that if $p \equiv 3 \pmod 4$ then (p+1)/2 is even. Conclude that $\left(\frac{p-1}{2}\right)!^2 \equiv 1 \pmod p$.

$$p-3=4q$$

$$p+1=4q+4$$

$$\frac{p+1}{2}=2q+2$$

So $\frac{p+1}{2}$ is even and $(-1)^{(p+1)/2} = 1$.

7.8 Q8

Prove that when p > 2 is a prime, the congruence $x^2 + 1 \equiv 0 \pmod{p}$ has a solution if $p \equiv 1 \pmod{4}$.

$$p \equiv 1 \text{ (mod 4)} \implies 4 \mid (p-1)$$

From 23G6

$$\left(\frac{p-1}{2}\right)!^2 \equiv -1 \pmod{p}$$
$$\therefore x = \left(\frac{p-1}{2}\right)!$$

7.9 Q9

Prove that for any prime p > 2, $x^2 \equiv -1 \pmod{p}$ has a solution iff $p \not\equiv 3 \pmod{4}$.

From 23E3b, there is no solution to $x^2 + 1 \equiv 0 \pmod{p}$ when $p \equiv 3 \pmod{4}$.

From 23G8, there is a solution when $p \equiv 1 \pmod{p}$.

8 H. Quadratic Residues

8.1 Q1

Let $h: \mathbb{Z}_p^* \to \mathbb{Z}_p^*$ be defined by $h(\overline{a}) = \overline{a}^2$. To show this is a homomorphism, let $\overline{x}, \overline{y} \in \mathbb{Z}_p^*$, then $h(\overline{x} \ \overline{y}) = h(\overline{x}\overline{y}) = \overline{x}\overline{y}^2 = (\overline{x}\ \overline{y})^2 = \overline{x}^2\overline{y}^2 = h(\overline{x})h(\overline{y})$. The kernel is $\{\pm\overline{1}\}$ because $h(\pm\overline{1}) = \overline{1}$ which is the identity element.

8.2 Q2

$$|\mathbb{Z}_p^{\times}| = p - 1$$

For any $\overline{a} \in \mathbb{Z}_p^{\times}$, $h(\overline{a}) = h(\overline{-a}) = \overline{a}^2$, so the range of h is (p-1)/2 elements.

$$ran h = R$$

The kernel of h is $\{\pm 1\}$ and $h(\pm \overline{1}) = \overline{1}$. So R contains the identity element. Secondly for any $\overline{x}^2, \overline{y}^2 \in R$, then $\overline{x}^2 \overline{y}^2 = \overline{x} \overline{y}^2 \in R$, so R is a subgroup of \mathbb{Z}_p^{\times} .

By the orbit-stabilizer theorem, the number of cosets is $\frac{|\mathbb{Z}_p^{\times}|}{|R|} = 2$.

Finally if there is an \overline{x} such that there is no $\overline{a} \in R : \overline{a}^2 = \overline{x}$, then $\overline{x} \neq R$, but $\overline{x} = Rx$. Since $1 \in R$ and $1 \cdot x = x \in Rx$.

8.3 Q3

Question is wrong. Maybe it's asking about Euler's criterion?

8.4 Q4

$$\left(\frac{17}{23}\right) = -1$$

$$\left(\frac{3}{29}\right) = -1$$

$$\left(\frac{5}{11}\right) = 1$$

$$\left(\frac{8}{13}\right) = -1$$

$$\left(\frac{2}{23}\right) = 1$$

8.5 Q5

Prove if $a \equiv b \pmod{p}$ then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$. In particular, $\left(\frac{a+kp}{p}\right) = \left(\frac{a}{p}\right)$.

$$a + kp \equiv a \pmod{p}, x^2 \equiv a \pmod{p}$$

$$\implies x^2 \equiv a + kp \pmod{p}$$

$$\implies \left(\frac{a + kp}{p}\right) = \left(\frac{a}{p}\right)$$

$$a \equiv b \pmod{p} \implies \left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$$

8.6 Q6

8.6.1 a

Show the Legendre symbol is homomorphic.

$$\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$$

If $a, b \in R$, then $ab \in R$, and $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right) = 1$.

Otherwise if $a \in R, b \notin R$, then $ab \notin R \implies ab \in R \cdot -1$, so $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right) = -1$ and vice versa.

Finally if $a,b \notin R$, then $a,b \in R \cdot -1$ and $ab \in R$, so $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right) = 1$.

8.6.2 b

Malformed question.

$$\left(\frac{a}{p}\right)\left(\frac{a}{p}\right) = \left(\frac{a^2}{p}\right)$$

8.7 Q7

$$\left(\frac{-1}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4} \\ -1 & \text{if } p \equiv 3 \pmod{4} \end{cases}$$

From G8 and G9.

 $x^2 \equiv -1 \pmod{p}$ has a solution if $p \equiv 1 \pmod{4}$.

 $x^2 \equiv -1 \pmod{p}$ has no solution if $p \equiv 3 \pmod{4}$.

8.8 Q8

8.8.1 $\left(\frac{30}{101}\right)$

$$\left(\frac{30}{101}\right) = \left(\frac{3}{101}\right) \left(\frac{5}{101}\right) \left(\frac{2}{101}\right)$$

$$\left(\frac{101}{3}\right) = \left(\frac{2}{3}\right) = -1$$

$$101 \equiv 1 \pmod{4} \implies \left(\frac{3}{101}\right) = -1$$

$$\left(\frac{101}{5}\right) = \left(\frac{1}{5}\right) = 1 \implies \left(\frac{5}{101}\right) = 1$$

Cannot use reciprocity rule because only works for prime > 2.

$$\left(\frac{2}{101}\right) = -1$$

$$\therefore \left(\frac{30}{101} \right) = 1$$

8.8.2
$$\left(\frac{10}{151}\right)$$

$$\left(\frac{10}{151}\right) = \left(\frac{2}{151}\right) \left(\frac{5}{151}\right)$$

$$5 \equiv 1 \pmod{4} \implies \left(\frac{5}{151}\right) = \left(\frac{151}{5}\right) = \left(\frac{1}{5}\right) = 1$$

$$\left(\frac{2}{151}\right) = 1$$

$$\therefore \left(\frac{10}{151}\right) = 1$$

8.8.3 $\left(\frac{15}{41}\right)$

$$\left(\frac{15}{41}\right) = \left(\frac{3}{41}\right)\left(\frac{5}{41}\right)$$

$$41 \equiv 1 \pmod{4} \implies \left(\frac{3}{41}\right) = \left(\frac{41}{3}\right) = \left(\frac{2}{3}\right) = -1, \left(\frac{5}{41}\right) = \left(\frac{41}{5}\right) = \left(\frac{1}{5}\right) = 1$$

$$\therefore \left(\frac{15}{41}\right) = -1$$

8.8.4 $\left(\frac{14}{59}\right)$

$$\left(\frac{14}{59}\right) = \left(\frac{2}{59}\right) \left(\frac{7}{59}\right)$$

Both $59 \equiv 7 \equiv 3 \pmod{4} \implies \left(\frac{7}{59}\right) = -\left(\frac{59}{7}\right) = -\left(\frac{3}{7}\right) = -(-1) = 1.$

$$\frac{2}{59} = -1$$

$$\frac{14}{59} = -1$$

8.8.5
$$\left(\frac{379}{401}\right)$$

$$401 \equiv 1 \pmod{4} \implies \left(\frac{379}{401}\right) = \left(\frac{401}{379}\right) = \left(\frac{22}{379}\right) = 1$$

8.8.6 Is 14 a quadratic residue modulo 59

No

8.9 Q9

 $x^2 \equiv 30 \pmod{101}$ is solvable. The other two are not solvable.

9 I. Primitive Roots

Recall that V_n is the multiplicative group of all the invertible elements in \mathbb{Z}_n . If V_n happens to be cyclic, say $V_n = \langle m \rangle$, then any integer $a \equiv m \pmod n$ is called a primitive root of n.

9.1 Q1

Prove that a is a primitive root of n iff the order of \overline{a} in V_n is $\phi(n)$.

$$\operatorname{ord}(\overline{a}) = \phi(n) \implies \overline{a}^{\phi(n)} = \overline{1} \text{ in } V_n$$

This means there are $\phi(n)$ distinct powers of \overline{a} , which generate all the invertible elements of \mathbb{Z}_n \$, that is $a \equiv m \pmod{n}$ and $V_n = \langle a \rangle$.

9.2 Q2

Prove that every prime number p has a primitive root. (HINT: For every prime p, \mathbb{Z}_p^{\times} is a cyclic group. The simple proof of this fact is given as Theorem 1 in Chapter 33.)

For every prime number, $\mathbb{Z}_p^{\times}=\{\overline{1},\overline{2},\dots,\overline{p-1}\}$ is a group with order p-1.

Thus $\forall x \in \mathbb{Z}_p^{\times}, \overline{x}^{p-1} = \overline{1}, V_p = \langle x \rangle.$

9.3 Q3

Find primitive roots of the following integers (if there are none, say so): 6, 10, 12, 14, 15.

9.3.1 6

$$n = 6, \phi(6) = 2, \mathbb{Z}_6^{\times} = \{1, 5\}$$

1: 1

5: 5, 1

Primitive root of 6 is 5

9.3.2 10

$$n=10, \phi(10)=4, \mathbb{Z}_{10}^{\times}=\{1,3,7,9\}$$

x x^2 x^3 x^4

1: 1

3: 3, 9, 7, 1

7: 7, 9, 3, 1

8: 9, 1

Primitive roots of 10 is 3 and 7

9.3.3 12

$$n=12, \phi(12)=4, \mathbb{Z}_{12}^{\times}=\{1,5,7,11\}$$

1: 1

5: 5, 1

7: 7, 1

11: 11, 1

No primitive root of 12.

9.3.4 14

$$n=14, \phi(14)=6, \mathbb{Z}_{14}^{\times}=\{1,3,5,9,11,13\}$$

1: 1

3: 3, 9, 13, 11, 5, 1

5: 5, 11, 13, 9, 3, 1

9: 9, 11, 1

11: 11, 9, 1

13: 13, 1

14 has primitive roots 3 and 5

9.3.5 15

$$n=15, \phi(15)=8, \mathbb{Z}_{15}^{\times}=\{1,2,4,7,8,11,13,14\}$$

1: 1

2: 2, 4, 8, 1

4: 4, 1

7: 7, 4, 13, 1

8: 8, 4, 2, 1

11: 11, 1

14: 14, 1

There are no primitive roots modulo 15.

9.4 Q4

Suppose a is a primitive root of m. Prove: If b is any integer which is relatively prime to m, then $b \equiv a^k \pmod{m}$ for some $k \geq 1$.

$$\gcd(b,m) = 1 \implies \overline{b} \in V_m = \langle a \rangle$$

$$\implies \overline{b} = \overline{a}^k \text{ in } \mathbb{Z}_m$$

$$\implies b = a^k \pmod{m}$$

9.5 Q5

Suppose m has a primitive root, and let n be relatively prime to $\phi(m)$. (Suppose n > 0.) Prove that if a is relatively prime to m, then $x^n \equiv a \pmod{m}$ has a solution.

 \mathbb{Z}_m^{\times} is a multiplicative group with a cyclic subgroup V_m of invertible elements.

$$\forall x \in \mathbb{Z}_m^\times : \gcd(a,m) = 1 \iff a \in V_m$$

Thus $V_m = \langle g \rangle$, so $\overline{a} = \overline{g}^l$. So we want to find an $\overline{x} \in V_m$ or $\overline{x} = \overline{g}^k$ such that $\overline{x}^n = (\overline{g}^k)^n = \overline{g}^l$

$$(g^k)^n \equiv g^l \pmod{m}$$

This is equivalent to writing

$$kn \equiv l \pmod{\phi(m)}$$

 $\implies \phi(m) \mid (kn - l)$
 $\implies kn - l = q\phi(m)$

But note that since $gcd(n, \phi(m)) = 1$ then

$$cn + d\phi(m) = 1$$
 for some c and d

Returning to our previous statement, we have

$$kn - q\phi(m) = l$$

Since l is a linear combination of n and $\phi(m)$, then l is a multiple of the ideal J generated by $\gcd(n,\phi(m))=1$. Since J is the entire group of \mathbb{Z}_p^{\times} , so $l \in J$ and exists as a linear combination of n and $\phi(m)$.

Thus there is an $\overline{x} = \overline{g}^k$ such that $x^n \equiv a \pmod{m}$.

9.6 Q6

Let p > 2 be a prime. Prove that every primitive root of p is a quadratic nonresidue, modulo p. (HINT: Suppose a primitive root a is a residue; then every power of a is a residue.)

$$V_m = \langle a \rangle$$

but if a is a quadratic residue then

$$a^2 \equiv a \pmod{p}$$

So a cannot be a primitive root of p and a quadratic residue since it can only generate even powers of a.

Also there are $\phi(p)/2$ quadratic residues from 23H3, but $\phi(p)$ elements in V_m .

So a is not a quadratic residue.

9.7 Q7

A prime p of the form $p = 2^m + 1$ is called a Fermat prime. Let p be a Fermat prime. Prove that every quadratic nonresidue mod p is a primitive root of p.

Number of quadratic residues in \mathbb{Z}_p^\times is (p-1)/2 but $p=2^m+1$

$$\frac{p-1}{2} = \frac{(2^m+1)-1}{2} = 2^{m-1}$$

The number of primitive roots are the coprimes in \mathbb{Z}_p^{\times} which equals $\phi(\phi(p)) = \phi(p-1) = \phi((2^m+1)-1) = \phi(2^m)$. Since 2 is prime

$$\phi(2^m) = 2^{m-1}(2-1) = 2^{m-1}$$

From 23I6, we know every primitive root is a quadratic non-residue. Since both groups are the same size, we thus conclude that every quadratic non-residue is a primitive root.