

National University

of Computer & Emerging Sciences-Islamabad
Chiniot-Faisalabad Campus

Dr. Hashim Yasin,

Department of Artificial Intelligence & Data Science.

Al 2002: Artificial Intelligence

Assignment No. 4

Due Date: Wednesday, 03 April 2024 (02:00 pm)

Instructions:

- 1. Submit your assignment with a **report** in soft form within the due date and time. Late submission will result in a deduction of marks.
- 2. Mention your names and roll numbers clearly on your document.
- 3. Name your zip or other folder/file that you want to submit, according to the following format, Al_A4_RollNo_FirstName
- 4. Try to solve each task of the assignment on your own.
- 5. No excuse or resubmission is permissible.

Question No. 1: [CSP ... map coloring problem]

Consider the constraint satisfaction problem of the following map coloring problem where the state space is represented as,

Variables: DJ, SO, ET, KE, UG, TA, RW, BU

Domains: Di = red; green; blue

Constraints: adjacent regions must have different colours, e.g.,

- *DJ* ≠ *SO*
- $(DJ;SO) \in [(red; green); (red; blue); (green; red); (green; blue) ...]$

How many solutions are there for the above-mentioned map-coloring problem? How many solutions if four colors are allowed? Two colors?

Question No. 2: [CSP ... N-queens problem]

Consider the problem of placing k queen on an $n \times n$ chessboard such that no two queens are attacking each other, where k is given and $k \leq n^2$.

- 1. Choose a CSP formulation. In your formulation, what are the variables?
- 2. What are the possible values of each variable?
- 3. What sets of variables are constrained, and how?

Question No. 3: [CSP ... Sudoku]

Implement constraint satisfaction problem of the following Sudoku puzzle with 9×9 grid. The state space is represented as,

Variables: empty cells

Domains: numbers range from 1 to 9

Constraints: rows, column, boxes contain all different numbers.

Moreover, the user have choice to enter any number on any cell considering the constraint as mentioned above.

Hint: An example of Sudoku puzzle has been shown where the task is represented on left side while the solution is on right side.

	1	2	3	4	5	6	7	8	9
Α			3		2		6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Е	7								8
F			6	7		8	2		
G			2	6		9	5		
н	8			2		3			9
- 1			5		1		3		

	1		3	4	5	6	7	8	9
Α	4	8	3	9	2	1	6	5	7
В	9	6	7					2	
С	2	5	1	8	7	6	4	9	3
D	5	4	8	1	3	2	9	7	6
Е	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
н	8	1	4	2	5	3	7	6	9
1	6	9	5	4	1	7	3	8	2

Question No. 4: [Sentence Validity]

- (a) Decide whether each of the following sentences is valid, unsatisfiable, or neither with some proof:
 - i. $(Smoke \Rightarrow Fire) \Rightarrow (\neg Smoke \Rightarrow \neg Fire)$
 - ii. Smoke ∨ Fire ∨ ¬Fire
 - **iii.** ((Smoke \land Heat) \Rightarrow Fire) \Leftrightarrow ((Smoke \Rightarrow Fire) \lor (Heat \Rightarrow Fire))
 - iv. (Smoke \Rightarrow Fire) \Rightarrow ((Smoke \land Heat) \Rightarrow Fire)
 - v. Big \vee Dumb \vee (Big \Rightarrow Dumb)
- **(b)** Consider the following sentence:

$$[(Food \Rightarrow Party) \lor (Drinks \Rightarrow Party)] \Rightarrow [(Food \land Drinks) \Rightarrow Party]$$

- i. Determine, using enumeration, whether this sentence is valid, satisfiable (but not valid), or unsatisfiable.
- **ii.** Convert the left-hand and right-hand sides of the main implication into CNF, showing each step, and explain how the results confirm your answer to (a).
- iii. Prove your answer to (a) using resolution.

Question No. 5: [Propositional Logic]

Consider a vocabulary with only four propositions, A, B, C, and D. How many models are there for the following sentences?

- (a) B V C.
- (b) $\neg A \lor \neg B \lor \neg C \lor \neg D$.
- (c) $(A \Rightarrow B) \land A \land \neg B \land C \land D$.

Question No. 6: [Inference in Propositional Logic]

[Wumpus world]: Consider the following example where the knowledge base is:

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2
1,1 A	2,1	3,1	4,1
OK	ok		

$$R_{1}: \neg P_{1,1}.$$

$$R_{2}: B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1}).$$

$$R_{3}: B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1}).$$

$$R_{4}: \neg B_{1,1}.$$

$$R_{5}: B_{2,1}.$$

$$P_{1,1}$$
= pit in [1,1] and $B_{1,1}$ = Breeze in [1,1]

- Apply the inference rules and derive the proof step by step that $\neg P1,2$.
- Apply the resolution theorem and derive the proof step by step that $\neg P1,2$.