Incremental SCC Maintenance in Sparse Graphs

Aaron Bernstein Rutgers University Aditi Dudeja Rutgers University

Seth Pettie
University of Michigan

Background

Cycle Detection:

- 1. Initially: empty graph, adversary adds directed edges.
- 2. The algorithm stops when a cycle appears.

Background

SCC Maintenance:

- 1. The algorithm doesn't terminate on first appearance of cycle. Instead, update strongly connected components.
- 2. Related problem: maintaining a topological sort.

Known Results

Reference	Update Time	Incremental SCC
[KB06]	$O(\min\{m^{3/2}\log n, m^{3/2} + n^2\log n\})$	No
[LC07]	$O(m^{3/2} + m\sqrt{n}\log n)$	No
[AFM08]	$O(n^{2.75})$	No
[BFG09]	$ ilde{O}(n^2)$	No
$[HKM^+12]$	$O(m^{3/2})$	Yes
[BFGT16]	$O(m \cdot \min\{m^{1/2}, n^{2/3}\}), \tilde{O}(n^2)$	Yes
[BC18]	$\tilde{O}(m\sqrt{n})$	No
[BK20]	$ ilde{O}(m^{4/3})$	No

Our results: Incremental SCC maintenance in $\tilde{O}\left(m^{\frac{4}{3}}\right)$ total time.

Techniques

Observation:

u and v are on a cycle iff A(u) = A(v), D(u) = D(v).

Too expensive to maintain for all vertices.

Techniques

Framework of [BC18]:

- 1. Sample a set of hubs S.
- 2.Let $V_{i,j} = \{v \text{ with } | A(v) \cap S | = i, | D(v) \cap S | = j\}$.
- 3. A cycle, if present is contained in a fixed $G[V_{i,j}]$.
- 4. If edge (u, v) is inserted then do a forward search from v Exploring nodes reachable from v but lying in $G[V_{i,j}]$.

Runtime

 τ - related nodes: There is a path from u to v and $|A(v)\backslash A(u)| \le \tau$, $|D(u)\backslash D(v)| \le \tau$.

Intuition for Relatedness

1. Let
$$|S| = \frac{100n \log n}{\tau}$$
.

2. Suppose there is a path from u to v and they lie in the same partition, then they are τ - related with high probability.

Why? $A(u) \cap S \subseteq A(v) \cap S, D(v) \cap S \subseteq D(u) \cap S$.

Runtime

- 1. For each node x explored during forward search, we get a τ -related pair (u, x).
- 2. Total number of τ -related pairs at any time = $\tilde{O}(n\tau)$

 $(u, x_1), (u, x_2), \cdots, (u, x)$ are new τ – related pairs.

Techniques

Framework of [BK20]:

- 1. Combines [BC18] with balanced search: if an edge (u, v) is inserted then, alternately do forward search from v and backward search from u.
- 2. Now, if total number of explored vertices is λ , then the $O(\lambda^2)$ \mathcal{T} related pairs are discovered. This gives a better bound.

 $(i+1)^2$ new τ – related pairs formed.

As before:

- 1. Sample a set of hubs S.
- 2.Let $V_{i,j} = \{v \text{ with } | A(v) \cap S | = i, | D(v) \cap S | = j\}$.
- 3. A new SCC, if present is contained in a fixed $G[V_{i,j}]$.
- 4. If edge (u, v) is inserted then do a forward search from v and backward search from u. Exploring nodes in $G[V_{i,j}]$.

We update C while updating A(s), D(s).

So we only do search when there is no new component, or the new component is small.

 τ -related nodes: There is a path from u to v, $|A(u)\backslash A(v)| \le \tau$, $|D(v)\backslash D(u)| \le \tau$, and the SCCs containing u and v are smaller than τ .

Total number of τ - related pairs is $\tilde{O}(n\tau)$.