# $12n_{0013} \ (K12n_{0013})$



### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$I_1^u = \langle -u^{20} + 2u^{19} + \dots + 3u^2 + 2b, -u^{20} + 2u^{19} + \dots + 2a + 1, u^{22} - 3u^{21} + \dots - u + 1 \rangle$$

$$I_2^u = \langle -u^3 a - 2u^2 a - u^3 - au - 2u^2 + 2b - a - u - 1, u^2 a + u^3 + a^2 + au + u^2 + 2a + u, u^4 + u^3 + u^2 + 1 \rangle$$

\* 2 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 30 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle -u^{20} + 2u^{19} + \dots + 3u^2 + 2b, -u^{20} + 2u^{19} + \dots + 2a + 1, u^{22} - 3u^{21} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{20} - u^{19} + \dots + \frac{3}{2}u - \frac{1}{2}\\ \frac{1}{2}u^{20} - u^{19} + \dots + \frac{3}{2}u^{3} - \frac{3}{2}u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{19} + \frac{5}{2}u^{18} + \dots - \frac{5}{2}u + \frac{5}{2}\\ -u^{21} + \frac{5}{2}u^{20} + \dots + \frac{5}{2}u^{2} - u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{3}{2}u^{18} - 2u^{17} + \dots - \frac{3}{2}u + \frac{5}{2}\\ \frac{3}{2}u^{20} - 3u^{19} + \dots + \frac{5}{2}u^{2} - u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{3}{2}u^{20} - 3u^{19} + \dots + \frac{5}{2}u^{2} - u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{3}{2}u^{20} - 3u^{19} + \dots + \frac{5}{2}u^{2} - u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{7} - 2u^{3}\\ -u^{9} - u^{7} - 3u^{5} - 2u^{3} - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3}\\u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} + u\\u^{7} + u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{7} - 2u^{3}\\u^{7} + u^{5} + 2u^{3} + u \end{pmatrix}$$

#### (ii) Obstruction class = -1

(iii) Cusp Shapes 
$$= \frac{7}{2}u^{21} - 8u^{20} + \frac{27}{2}u^{19} - \frac{19}{2}u^{18} + 32u^{17} - \frac{99}{2}u^{16} + \frac{163}{2}u^{15} - 45u^{14} + \frac{197}{2}u^{13} - 102u^{12} + \frac{365}{2}u^{11} - \frac{157}{2}u^{10} + \frac{253}{2}u^9 - 58u^8 + 151u^7 - 40u^6 + 53u^5 + \frac{59}{2}u^4 + \frac{23}{2}u^3 + \frac{35}{2}u^2 + \frac{21}{2}u + \frac{17}{2}u^{10} + \frac{157}{2}u^{10} + \frac{157}{2}u^{$$

## (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing            |
|-----------------------|-------------------------------------------|
| $c_1$                 | $u^{22} + 17u^{21} + \dots + 31u + 1$     |
| $c_2, c_5$            | $u^{22} + 5u^{21} + \dots + 7u + 1$       |
| $c_3$                 | $u^{22} - 5u^{21} + \dots + 5u + 1$       |
| $c_4, c_7$            | $u^{22} + u^{21} + \dots - 640u + 256$    |
| $c_6, c_{10}$         | $u^{22} + 3u^{21} + \dots + u + 1$        |
| c <sub>8</sub>        | $u^{22} + 3u^{21} + \dots - 2455u + 2425$ |
| $c_9, c_{11}, c_{12}$ | $u^{22} - 3u^{21} + \dots - 11u + 1$      |

# (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing                  |
|-----------------------|-----------------------------------------------------|
| $c_1$                 | $y^{22} - 19y^{21} + \dots - 29y + 1$               |
| $c_2, c_5$            | $y^{22} + 17y^{21} + \dots + 31y + 1$               |
| $c_3$                 | $y^{22} - 55y^{21} + \dots + 143y + 1$              |
| $c_4, c_7$            | $y^{22} + 45y^{21} + \dots + 344064y + 65536$       |
| $c_6,c_{10}$          | $y^{22} + 3y^{21} + \dots + 11y + 1$                |
| <i>C</i> <sub>8</sub> | $y^{22} + 135y^{21} + \dots + 316362175y + 5880625$ |
| $c_9, c_{11}, c_{12}$ | $y^{22} + 35y^{21} + \dots + 11y + 1$               |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.443267 + 0.917989I  |                                       |                     |
| a = 1.79705 + 0.42952I    | -1.64918 - 2.09688I                   | 0.35789 + 3.47675I  |
| b = -0.004921 + 1.060270I |                                       |                     |
| u = 0.443267 - 0.917989I  |                                       |                     |
| a = 1.79705 - 0.42952I    | -1.64918 + 2.09688I                   | 0.35789 - 3.47675I  |
| b = -0.004921 - 1.060270I |                                       |                     |
| u = 0.720168 + 0.521314I  |                                       |                     |
| a = -0.12085 - 1.89524I   | -3.15354 - 2.22003I                   | -2.57059 + 3.13171I |
| b = 0.210578 - 1.177030I  |                                       |                     |
| u = 0.720168 - 0.521314I  |                                       |                     |
| a = -0.12085 + 1.89524I   | -3.15354 + 2.22003I                   | -2.57059 - 3.13171I |
| b = 0.210578 + 1.177030I  |                                       |                     |
| u = -0.786228 + 0.864892I |                                       |                     |
| a = 0.309770 - 0.406841I  | -5.42259 + 2.92304I                   | 0.66405 - 3.09728I  |
| b = -0.672095 + 0.089076I |                                       |                     |
| u = -0.786228 - 0.864892I |                                       |                     |
| a = 0.309770 + 0.406841I  | -5.42259 - 2.92304I                   | 0.66405 + 3.09728I  |
| b = -0.672095 - 0.089076I |                                       |                     |
| u = -0.948373 + 0.755313I |                                       |                     |
| a = -0.16577 + 1.46179I   | -10.31720 - 0.20205I                  | -2.87081 - 0.56297I |
| b = -0.211609 + 1.390430I |                                       |                     |
| u = -0.948373 - 0.755313I |                                       |                     |
| a = -0.16577 - 1.46179I   | -10.31720 + 0.20205I                  | -2.87081 + 0.56297I |
| b = -0.211609 - 1.390430I |                                       |                     |
| u = -0.763942 + 1.021840I |                                       |                     |
| a = 1.53053 - 1.26261I    | -9.36150 + 6.49304I                   | -1.80593 - 4.67801I |
| b = -0.296827 - 1.316550I |                                       |                     |
| u = -0.763942 - 1.021840I |                                       |                     |
| a = 1.53053 + 1.26261I    | -9.36150 - 6.49304I                   | -1.80593 + 4.67801I |
| b = -0.296827 + 1.316550I |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.269873 + 0.669231I  |                                       |                     |
| a = 0.754251 + 0.193264I  | 0.305023 - 1.133800I                  | 3.87062 + 6.16556I  |
| b = -0.084971 - 0.208905I |                                       |                     |
| u = 0.269873 - 0.669231I  |                                       |                     |
| a = 0.754251 - 0.193264I  | 0.305023 + 1.133800I                  | 3.87062 - 6.16556I  |
| b = -0.084971 + 0.208905I |                                       |                     |
| u = 0.967508 + 0.974980I  |                                       |                     |
| a = -0.224218 + 0.619641I | -18.0328 - 3.5472I                    | 0.60128 + 2.10334I  |
| b = -1.215960 - 0.024945I |                                       |                     |
| u = 0.967508 - 0.974980I  |                                       |                     |
| a = -0.224218 - 0.619641I | -18.0328 + 3.5472I                    | 0.60128 - 2.10334I  |
| b = -1.215960 + 0.024945I |                                       |                     |
| u = 1.005100 + 0.939078I  |                                       |                     |
| a = -0.378437 - 1.203500I | 16.7892 + 2.8754I                     | -1.69600 - 0.52262I |
| b = -0.58715 - 1.46073I   |                                       |                     |
| u = 1.005100 - 0.939078I  |                                       |                     |
| a = -0.378437 + 1.203500I | 16.7892 - 2.8754I                     | -1.69600 + 0.52262I |
| b = -0.58715 + 1.46073I   |                                       |                     |
| u = 0.948146 + 1.018020I  |                                       |                     |
| a = 1.14718 + 1.69204I    | 17.0662 - 10.0252I                    | -1.33592 + 4.78932I |
| b = -0.61183 + 1.42911I   |                                       |                     |
| u = 0.948146 - 1.018020I  |                                       |                     |
| a = 1.14718 - 1.69204I    | 17.0662 + 10.0252I                    | -1.33592 - 4.78932I |
| b = -0.61183 - 1.42911I   |                                       |                     |
| u = -0.036441 + 0.595658I |                                       |                     |
| a = 0.47769 + 1.42665I    | 0.68417 - 1.38791I                    | 7.27307 + 5.07376I  |
| b = 0.429450 - 0.716106I  |                                       |                     |
| u = -0.036441 - 0.595658I |                                       |                     |
| a = 0.47769 - 1.42665I    | 0.68417 + 1.38791I                    | 7.27307 - 5.07376I  |
| b = 0.429450 + 0.716106I  |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = -0.319079 + 0.434625I |                                       |                      |
| a = -2.12719 + 1.76082I   | -0.06729 + 2.75299I                   | 1.012349 - 0.159946I |
| b = 0.545330 + 0.947805I  |                                       |                      |
| u = -0.319079 - 0.434625I |                                       |                      |
| a = -2.12719 - 1.76082I   | -0.06729 - 2.75299I                   | 1.012349 + 0.159946I |
| b = 0.545330 - 0.947805I  |                                       |                      |

$$II. \\ I_2^u = \langle -u^3a - u^3 + \dots - a - 1, \ u^2a + u^3 + a^2 + au + u^2 + 2a + u, \ u^4 + u^3 + u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{3}a + \frac{1}{2}u^{3} + \dots + \frac{1}{2}a + \frac{1}{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{3}a - \frac{1}{2}u^{3} + \dots + \frac{1}{2}a + \frac{3}{2}\\\frac{1}{2}u^{3}a + \frac{1}{2}u^{3} + \dots + \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u^{3}a - \frac{1}{2}u^{3} + \dots + \frac{1}{2}a + \frac{3}{2}\\\frac{1}{2}u^{3}a + \frac{1}{2}u^{3} + \dots + \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + a + u + 1\\\frac{1}{2}u^{3}a + \frac{1}{2}u^{3} + \dots + \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u\\u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3}\\u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1\\u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes =  $-u^3a 3u^2a 2u^3 3au 3a + u + 2$

## (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing  |
|-----------------------|---------------------------------|
| $c_1, c_3, c_5$       | $(u^2 - u + 1)^4$               |
| $c_2$                 | $(u^2+u+1)^4$                   |
| $c_4, c_7$            | $u^8$                           |
| <i>C</i> <sub>6</sub> | $(u^4 + u^3 + u^2 + 1)^2$       |
| $c_8, c_{11}, c_{12}$ | $(u^4 - u^3 + 3u^2 - 2u + 1)^2$ |
| $c_9$                 | $(u^4 + u^3 + 3u^2 + 2u + 1)^2$ |
| $c_{10}$              | $(u^4 - u^3 + u^2 + 1)^2$       |

# (v) Riley Polynomials at the component

| Crossings                   | Riley Polynomials at each crossing |
|-----------------------------|------------------------------------|
| $c_1, c_2, c_3$ $c_5$       | $(y^2 + y + 1)^4$                  |
| $c_4, c_7$                  | $y^8$                              |
| $c_6, c_{10}$               | $(y^4 + y^3 + 3y^2 + 2y + 1)^2$    |
| $c_8, c_9, c_{11}$ $c_{12}$ | $(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$   |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.351808 + 0.720342I  |                                       |                     |
| a = 0.084432 - 0.576081I  | 0.211005 + 0.614778I                  | 1.10064 + 1.99408I  |
| b = 0.500000 + 0.866025I  |                                       |                     |
| u = 0.351808 + 0.720342I  |                                       |                     |
| a = -2.04112 - 0.65111I   | 0.21101 - 3.44499I                    | 5.86133 + 9.77094I  |
| b = 0.500000 - 0.866025I  |                                       |                     |
| u = 0.351808 - 0.720342I  |                                       |                     |
| a = 0.084432 + 0.576081I  | 0.211005 - 0.614778I                  | 1.10064 - 1.99408I  |
| b = 0.500000 - 0.866025I  |                                       |                     |
| u = 0.351808 - 0.720342I  |                                       |                     |
| a = -2.04112 + 0.65111I   | 0.21101 + 3.44499I                    | 5.86133 - 9.77094I  |
| b = 0.500000 + 0.866025I  |                                       |                     |
| u = -0.851808 + 0.911292I |                                       |                     |
| a = 0.033637 - 0.507913I  | -6.79074 + 1.13408I                   | -1.56110 - 0.68902I |
| b = 0.500000 - 0.866025I  |                                       |                     |
| u = -0.851808 + 0.911292I |                                       |                     |
| a = -1.07695 + 1.14911I   | -6.79074 + 5.19385I                   | -0.90087 - 4.17049I |
| b = 0.500000 + 0.866025I  |                                       |                     |
| u = -0.851808 - 0.911292I |                                       |                     |
| a = 0.033637 + 0.507913I  | -6.79074 - 1.13408I                   | -1.56110 + 0.68902I |
| b = 0.500000 + 0.866025I  |                                       |                     |
| u = -0.851808 - 0.911292I |                                       |                     |
| a = -1.07695 - 1.14911I   | -6.79074 - 5.19385I                   | -0.90087 + 4.17049I |
| b = 0.500000 - 0.866025I  |                                       |                     |

III. u-Polynomials

| Crossings             | u-Polynomials at each crossing                                             |
|-----------------------|----------------------------------------------------------------------------|
| $c_1$                 | $((u^2 - u + 1)^4)(u^{22} + 17u^{21} + \dots + 31u + 1)$                   |
| $c_2$                 | $((u^2 + u + 1)^4)(u^{22} + 5u^{21} + \dots + 7u + 1)$                     |
| $c_3$                 | $((u^2 - u + 1)^4)(u^{22} - 5u^{21} + \dots + 5u + 1)$                     |
| $c_4, c_7$            | $u^8(u^{22} + u^{21} + \dots - 640u + 256)$                                |
| <i>C</i> <sub>5</sub> | $((u^2 - u + 1)^4)(u^{22} + 5u^{21} + \dots + 7u + 1)$                     |
| $c_6$                 | $((u^4 + u^3 + u^2 + 1)^2)(u^{22} + 3u^{21} + \dots + u + 1)$              |
| c <sub>8</sub>        | $((u^4 - u^3 + 3u^2 - 2u + 1)^2)(u^{22} + 3u^{21} + \dots - 2455u + 2425)$ |
| $c_9$                 | $((u^4 + u^3 + 3u^2 + 2u + 1)^2)(u^{22} - 3u^{21} + \dots - 11u + 1)$      |
| $c_{10}$              | $((u^4 - u^3 + u^2 + 1)^2)(u^{22} + 3u^{21} + \dots + u + 1)$              |
| $c_{11}, c_{12}$      | $((u^4 - u^3 + 3u^2 - 2u + 1)^2)(u^{22} - 3u^{21} + \dots - 11u + 1)$      |

IV. Riley Polynomials

| Crossings             | Riley Polynomials at each crossing                                                           |
|-----------------------|----------------------------------------------------------------------------------------------|
| $c_1$                 | $((y^2 + y + 1)^4)(y^{22} - 19y^{21} + \dots - 29y + 1)$                                     |
| $c_2, c_5$            | $((y^2 + y + 1)^4)(y^{22} + 17y^{21} + \dots + 31y + 1)$                                     |
| $c_3$                 | $((y^2 + y + 1)^4)(y^{22} - 55y^{21} + \dots + 143y + 1)$                                    |
| $c_4, c_7$            | $y^8(y^{22} + 45y^{21} + \dots + 344064y + 65536)$                                           |
| $c_6, c_{10}$         | $((y^4 + y^3 + 3y^2 + 2y + 1)^2)(y^{22} + 3y^{21} + \dots + 11y + 1)$                        |
| $c_8$                 | $(y^4 + 5y^3 + 7y^2 + 2y + 1)^2$ $\cdot (y^{22} + 135y^{21} + \dots + 316362175y + 5880625)$ |
| $c_9, c_{11}, c_{12}$ | $((y^4 + 5y^3 + 7y^2 + 2y + 1)^2)(y^{22} + 35y^{21} + \dots + 11y + 1)$                      |