

Strojové vidění a fyzikální podstata

Strojové vidění a zpracování obrazu (BI-SVZ)

Strojové vidění

- Průmyslové systémy
- Automatizace
- Zpracování obrazu
- Kamery a senzory

Strojové vidění – cíle

- Nahrazení subjektivního posouzení
- Vyšší úroveň automatizace

- Kontrola kvality
- Kompletační linky
- Bezpečnost osob
- Identifikace vozidel

Výrobní průmysl

Výrobní průmysl

Výrobní průmysl

Doprava

Výrobní průmysl

Doprava

Výrobní průmysl

Bezpečnost

potraviny

Výrobní průmysl

Doprava

Bezpečnost

potraviny

Vznik obrazu

zdroj energie / osvětlení

reálný obraz

zdroj energie / osvětlení

zdroj energie / osvětlení

výstup / digitální obraz

reálný obraz

Optická soustava – lidské oko

Fyziologie oka, https://is.muni.cz/www/345402/66012191/Fyziologie_oka.pdf

Optická soustava – lidské oko

slepá skvrna?

Fyziologie oka, https://is.muni.cz/www/345402/66012191/Fyziologie_oka.pdf

Optická soustava – ostření

Fyziologie oka, https://is.muni.cz/www/345402/66012191/Fyziologie_oka.p

Marcel Jiřina, Jakub Novák, Lukáš Brchl

Optická soustava – senzory

Fyziologie oka, https://is.muni.cz/www/345402/66012191/Fyziologie_oka.pd

Optická soustava – senzory

Fyziologie oka, https://is.muni.cz/www/345402/66012191/Fyziologie_oka.p

Elektromagnetické spektrum

Elektromagnetické spektrum

Vlnová délka (m)

Elektromagnetické spektrum

Vlnová délka (m)

$$\lambda = \frac{c}{f} \qquad \lambda = c \cdot T$$

🔏 ... vlnová délka

c ... rychlost světla

f ... frekvence vlnění

T ... perioda vlnění

 $c = 300\ 000\ \mathrm{km} \cdot \mathrm{s}^{-1}$

Stereoskopie

- Způsob zobrazení 3D scény na 1D ploše
 - → Poskytnout každému oku jiný obraz

Detektory

Detektory

CCD

Kvalita obrazu Dynamika Nízký šum 2010

CMOS

Rychlost snímání Cena

Detektory

Detektory – CCD

- Snímání analogového signálu
- Převod energie na napětí
- Přenos napětí
- Digitalizace v PC

Detektory – CMOS

- Snímání analogového signálu
- Digitalizace na senzoru

Dynamický rozsah – Kapacita buňky

- Fotoelektrický jev
 - Elektrony

Kapacita buňky

Odstup signálu od šumu (SNR)

šum = $\sqrt{\text{počet elektronů}}$

 $SNR = \sqrt{\text{saturační kapacita}}$

"Znovu naplněná sklenice nemá vždy stejnou hladinu." (cit. T. Gřeš)

Temný šum

- I když nedopadá na senzor světlo uvolňují se v polovodiči elektrony!
- Určuje detekční limit
- Minimální signál, který jsme schopni změřit

temný šum = **obvykle 8** - **100 elektronů**

Maximální kapacita Saturační kapacita Temný šum

"Po vyprázdnění sklenice zůstane na dně pár kapek." (cit. T. Gřeš)

Dynamický rozsah

$$DR = \frac{\text{saturační kapacita}}{\text{temný šum}}$$

$$DR_{db} = 20 \cdot \log \left(\frac{\text{saturační kapacita}}{\text{temný šum}} \right)$$

"Dynamický rozsah je poměr mezi plnou a prázdnou sklenicí." (cit. T. Gřeš)

Dynamický rozsah

Vícečipové kamery – Bayerova maska

Vícečipové kamery – Bayerova maska

Vícečipové kamery – 3CCD, 3CMOS

Vícečipové kamery – 3CCD, 3CMOS

Vícečipové kamery – 3CCD, 3CMOS

Vícečipové kamery – 3CCD, 3CMOS

Multispektrální kamery – NIR

Multispektrální kamery

Multispektrální kamery

2CCD HDR

2CCD HDR

2CCD HDR

Inteligentní kamery

- 360° kamery
- Bar & QR readery
- Face recognition
- License plate readery

- Obecně kamery s algoritmy zpracování obrazu
- Jednoúčelové
- Zpracování na čipu kamery

https://www.deviantart.com/pansasunavee/art/Camera-man-162001348

Vlastnosti kamery

- Gain (zesílení)
- Digitální posuv
- Gamma
- Rozlišení + oblast zájmu (ROI)
- Binning
- Datový formát (mono, bayer, yuv422)
- Doba expozice + režim
- Clona
- Závěrka

Zvýšení citlivosti kamery

Zvýšení citlivosti kamery

- Gain
 - Analogové zesílené signálu z čipu
 - Zvýší se i šum
- Expoziční čas
 - Sníží se snímková frekvence
- Digitální posuv výstupu A/D převodníku
 - Zvýší se šum
- Binning
 - Sníží se rozlišení

Zvýšení snímkové frekvence

Zvýšení snímkové frekvence

- Omezení oblasti zájmu
 - Zmenší se zorné pole
- Binning
 - Sníží se rozlišení
 - Nefunguje u všech kamer
- Pozor na expoziční čas
- Pozor na zvolenou bitovou hloubku

