PHYS 101 EXPERIMENT 3. CONSERVATION OF LINEAR MOMENTUM: COLLISIONS

Name & Surname: Avolo Tovusboy ID#: 21902322 Section: OOL

Data & Results: [45]

	Bef	ore the Colli	sion	After the Collision		
	ΔR (cm)	Δt (ns)	V _{cm} (<u>C</u>)	ΔR (co)	Δt (mg)	V _{cm} (∰)
1	2	50	0.04	2	50	0.04
2	2	50	0.04	2	50	0.04
3	2	50	0.04	2	50	0.04
1	2	(m)	001	0	F	001

Table 1a: Collision with two steel disks (center of mass)

	Left Puck			Right Puck			
	ΔR (2A)	Δt (415)	V (20)	ΔR (cor)	Δt (ms)	V(0)	
1	2.5	50	0,05	2-6	50	0,052	
2	2.5	50	0.05	2.6	50	0.052	
3	2.5	50	0.05	2.6	50	0.052	
4	2.3	50	0.046	2.2	50	0.044	

Table 1b: Collision with two steel disks before the collision

		Vavg left=	0.49 m/s	Eleft= 0.0504	Vavg right= 0.5 m/s	Eright= 0,0525	
0391	0.0	49 cm =	0.49 <u>m</u>	2.(0.42)(0.49)2	Jog 2 0.05 cm = 0.5	1	_
		E _{initial} = E _{le}	ft+ Eright=				

PHYS 101 EXPERIMENT 3. CONSERVATION OF LINEAR MOMENTUM: COLLISIONS

Name & Surname: Arda Tayusbay ID#:21902722 Section: 004

	Left Puck			Right Puck			
	ΔR (cm)	Δt (1½)	V (20)	ΔR (cm)	Δt (ns)	v (22)	
1	2-6	50	0.052	2	50	0.04	
2	2.6	50	0.052	2	50	0.04	
3	2.6	50	0.952	2	50	0.04	
4	2-6	50	0.052	1.9	50	0,038	

Table 1c: Collision with two steel disks after the collision

Vavg left= 0,52 m/s	Eleft= 0,0568	Vavg right= 0, 395 m/S	Eright= 0,0328
).052 cm = 0.52 m	1. (0.42)(0.52)2	0.0395 cm	1 . (0.42) (0.395)
E _{final} = E _{left} + E _{right} =	2009	0.395 m/s	
Eximal = 0.0567 +	0.0320		
20,08961			
E _{final} / E _{initial} =	Energy Loss % =	ritial - 3tinal	100 = 12,93%
- 0.0896 2 0.8	909	Einstial !	and a second sec

	Before the Collision			After the Collision		
	ΔR (cm)	Δt (ms)	V _{cm} (cn)	ΔR (α)	∆t (≈\$)	V _{cm} (co)
1	1.5	50	0-03	1.4	50	0.028
2	1.5	50	0.03	1.5	50	0.03
3	1.4	50	0.028	1.4-	-50	0,028
4	1.5	50	0.03	1.4	50	0.028

Table 2a: Collision with two steel disks & Velcro (center of mass)

PHYS 101 EXPERIMENT 3. CONSERVATION OF LINEAR MOMENTUM: COLLISIONS

Name & Surname: Arola Tayubay

ID#: 21902722

Section: 004

	Left Puck			Right Puck		
	ΔR (25%)	Δt (%)	V (55)	ΔR (m)	Δt (ms)	٧ (ش)
1	1.9	50	0.038	1.8	50	0.036
2	1.8	50	0.936	1.8	50	0.036
3	1.8	50	0.036	4.8	50	0.036
4	1.5	50	0.03	1.6	50	0.032

Table 2b: Collision with two steel disks & Velcro before the collision

$$V_{avg \, left} = 0.35 \, m/s \quad E_{left} = 0.0257 \qquad V_{avg \, right} = 0.35 \, m/s \quad E_{right} = 0.0257$$

$$V_{avg \, left} = 0.35 \, m/s \quad \frac{1}{5} \cdot (0.42)(0.35)^2 \quad G_{avg} = 0.35 \, m/s \quad \frac{1}{2} \cdot (0.42)(0.35)^2$$

$$E_{initial} = E_{left} + E_{right} = 2 \cdot (0.0257)^2 \cdot (0.0514)$$

$$E_{initial} = E_{left} + E_{right} = 2 \cdot (0.0257)^2 \cdot (0.0514)$$

	Left Puck			Right Puck			
	ΔR (cm)	Δt (ms)	V (cm)	ΔR (cor)	Δt (ms)	V (cm)	
1	1.3	50	0.026	1-4	50	0.028	
2	1.5	50	0.03	1-5	50	0.03	
3	1.3	50	0.026	1-4	50	0.028	
4	1.3	50	0.026	1.5	50	9.03	

Table 2c: Collision with two steel disks & Velcro after the collision

Vavglett= 0.27 M/S	Eleft= 0.0153	Vavg right= 0.29 m/s	Eright= 0.0177
108, 27 20.027	cm 1. (0.62)(0.25	1)2	
Efinal = Eleft + Eright = 20.73 o	And and the second seco	And the second particular and the second	to the second se
= 0.0153+ 0.0177	= 0.033 j		
	Energy Loss % = 3	-lead - Ferral was	0.0514 - 0.033. 100 235,2
E _{final} / E _{initial} =	chergy coss 70 - 210	The state of the s	0-0514
0.033 = 0.642		Einstiol	Amen described accommodated and appropriate programme.
0.0514		2	135,80 1.1
0.0019		2	(35,00)

5

Name & Surname: Arda Tavubay

1D#: 21902322

Section: ()()

symmetrical

Questions:

1. [5] If you are given a data sheet with only spark timer prints on it, can you distinguish between the initial and final states of the pucks?

If we ignore the energy loss coused by the system, we connet distinguish the states of pucks in clostic collisional since its motion will be symmetric with equal distances => However, inclustic collision can be distinguished by objects motion, as their movement will differ. =>

2. [5] A particle collides obliquely with an identical particle initially at rest. Assuming elastic collision, show that the two particles move at 90° from each other after the collision.

systems preserves their momentum.

Let u, be the velocity of the first particle. Then;

D mu, +0 = mu, - mu, where u, is the velocity of first porticle, and 3 is the selectly of second porticle after the collision. Thus; 2 or - o' + o'. We also know that energy is also second porticle after the is also preserved: 3 & mu, = {m(v)2 + 1 m(v)2 => 1 u2 = (v)2+(v2) By combining @ prod D, we see that 5 2 4. 02' = 0

conclusion: [15] Thus, since the scalar product of these velocities the angle between them must be 90°

purpose of this experiment was observing the states of momentum, collision types and their significances. To calculate precise results, airtable was used to reduce frictional force.

first, we observed elestic collusion as we used two identical pucks and collished them. We took the data of the distances between the center points, and the distance traveled by each pucks, before and after the collision for every 50 ms time interval. We then used this data to measure the velocity and the energy of the pucks. With measured energies, we then calculated the energy loss percentage. Jince this system was not perfect, energy was not preserved. I found 12.931. energy loss due to possible conditions such as friction between the picks and the air table or a small incline in

Jeconally, we repeated the same procedure, but with attaching veicro topes to puchs so that they would unste and continue the motion together, allowing us to observe inclustic collision. We again took the data of multiple distances (some as the first part). At the end, recalculated the energy 1935 percentage which for my case was 35.80%. We again, possible reasons for such energy loss is due to the friction force, or an incline in the air table.