Ejercicio 1.-

- A.- Sean $1 \le r \le s$ dos números enteros y sea $\mathcal{S} = \{\mathbf{v}_1, \dots, \mathbf{v}_s\}$ un conjunto de vectores de un espacio vectorial V (sobre un cuerpo arbitrario \mathbb{K}). Probar que si el conjunto \mathcal{S} es linealmente independiente entonces $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ es linealmente independiente.
- B.- En el \mathbb{R} -espacio vectorial \mathbb{R}^4 , consideremos los vectores $\mathbf{w}_1 = (1, 1, 0, -1), \mathbf{w}_2 = (2, 1, 1, -2)$ y los subespacios vectoriales

$$V_a = \left\{ \begin{array}{l} x_2 + x_3 = 0 \\ 2x_1 + x_2 + ax_3 - 3x_4 = 0 \end{array} \right. , \qquad W = \ \langle \mathbf{w}_1, \mathbf{w}_2 \rangle \ .$$

Se pide:

- 1.- Estudiar, según los valores de a, las dimensiones de los subespacios $V_a \cap W$ y $V_a + W$. Hallar, si existen, los valores de a tales que $V_a \oplus W = \mathbb{R}^4$.
- 2.- Sean $\mathbf{u}_1 = (1, 1, 1, 1), \mathbf{u}_2 = (3, 0, 0, 2)$. Probar que $\mathcal{C} := {\mathbf{u}_1 + W, \mathbf{u}_2 + W}$ es una base de \mathbb{R}^4/W .
- 3.- Hallar las coordenadas del vector (0, 1, -1, 0) + W respecto de la base C.

Ejercicio 2.- Sean L_1 y L_2 los siguientes subespacios afines en $\mathbb{A}^4(\mathbb{Q})$:

$$L_1 = \begin{cases} x_1 & +x_3 & -2x_4 & = & 3, \\ x_2 & -5x_3 & -x_4 & = & -2, \\ x_1 & +3x_2 & +x_3 & = & 12, \end{cases}$$
 $L_2 = (0,3,5,-2) + \langle \overrightarrow{(1,0,-1,0)} \rangle.$

Se pide:

- A.- Calcular la posición relativa de L_1 y L_2 , indicando la dimensión de las variedades L_1 , L_2 , $L_1 \cap L_2$ y $L_1 + L_2$.
- B.- Hallar unas ecuaciones implícitas de $L_1 + L_2$.
- C.- Calcular una perpendicular común a los subespacios afines L_1 y L_2 . ¿Es única?
- D.- Dar un plano afín paralelo a L_1 y L_2 y que no corte a la variedad suma $L_1 + L_2$.

Ejercicio 3.- Consideremos la siguiente matriz 3×3 sobre el cuerpo $\mathbb C$ de los números complejos,

$$A = \left(\begin{array}{ccc} a & 0 & 0\\ 6 & -1 & 1\\ 2 & -2 & 1 \end{array}\right).$$

Aquí $a \in \mathbb{C}$ es un parámetro indeterminado. Sea $f : \mathbb{C}^3 \to \mathbb{C}^3$ el endomorfismo cuya matriz respecto de la base canónica es A y $g : \mathbb{A}^3(\mathbb{C}) \to \mathbb{A}^3(\mathbb{C})$ la aplicación afín tal que g(0,0,0) = (0,1,2) y $\vec{g} = f$.

- A.- Calculad para qué valores de $a\in\mathbb{C}$ cada una de las siguientes propiedades es cierta:
 - 1.- f es diagonalizable.
 - 2.- El núcleo de f es no trivial.
 - 3.- f es sobreyectivo.
 - 4.- g es una afinidad.

Supongamos en adelante que a = -1.

- B.- Hallad una matriz invertible P y una matriz diagonal D tales que $D = P^{-1}AP$.
- C.- Calculad los puntos y las rectas fijas de g.

Ejercicio 4.- En el plano afn eucldeo se considera la aplicación afín $f: \mathbb{A}^2(\mathbb{R}) \longrightarrow \mathbb{A}^2(\mathbb{R})$ la definida por: f(x,y) = (y,x+1). Se pide:

- A.- Probar que f es un movimiento y clasificarlo.
- B.- Descomponer f como producto de simetrías axiales.
- C.- Comprobar si, en el espacio afín $\mathbb{A}^3(\mathbb{R})$, la aplicación afín definida por $f(x_1, x_2, x_3) = (x_2, x_3, x_1)$ es un movimiento directo o inverso.