第13章 概率推理

《人工智能算法》

清华大学出版社 2022年7月

提纲

- ◆ 引例
- ◆ 贝叶斯网概念
- ◆ 贝叶斯网参数学习
- ◆ 贝叶斯网结构学习
- ◆ 基于贝叶斯网的概率推理
- ◆ 总结

引例

哪些事件可能导致患者呼吸困难?

遗传、长期吸烟、长期接触致癌物、 感染COVID-19、其他因素...

产生呼吸困难(T) 无呼吸困难症状(F)

现实世界的推理存在不确定性

- > 知识不完整
- 信息来源不准确
- 测试手段的局限性

已知患者长期吸烟

患者无不良生活习惯

P(呼吸困难=T) =0.01

P(呼吸困难=T|长期吸烟=T)=0.6

已知患者长期吸烟,且感染了COVID-19

P(呼吸困难=T|长期吸烟=T, 感染COVID-19=T) =0.9

引例

◆ 概率推理(Probabilistic Inference)基于概率论描述随机事件 带来的不确定性

基于专家经验 推理的局限性

数据和知识来源多 不同领域知识学习成本高昂

实际问题日益复杂 用户需求提高

◆ 概率图模型(Probabilistic Graphical Model)

步骤:

- ① 将随机事件视为变量
- ② 构建变量间复杂依赖关系
- ③ 设计概率推理算法

常用模型:

- · 贝叶斯网 (Bayesian Network)
- 马尔科夫网 (Markov Network)
- · 条件随机场 (Conditional Random Field)

应用场景: 金融分析、故障检测、医疗诊断…

提纲

- ◆ 引例
- ◆ 贝叶斯网概念
- ◆ 贝叶斯网参数学习
- ◆ 贝叶斯网结构学习
- ◆ 基于贝叶斯网的概率推理
- ◆ 总结

贝叶斯网的基本概念(1)

- ◆ 贝叶斯网 (Bayesian Network, BN)
 - ➤ 有向无环图 (Directed Acyclic Graph, DAG)
 - ➤ 条件概率表(Conditional Probability Table, CPT)

◆ BN定义

- ◆ BN表示为二元组 $B = (G, \theta)$:
- G = (V, E)是一个DAG, 其中 $V = \{v_1, v_2, ..., v_n\}$ 为节点的集合, E 为边的集合, $< v_i, v_j > (i, j = 1, 2, ..., n, i \neq j)$ 表示节点 v_i 与节点 v_i 之间存在由 v_i 到 v_i 的依赖关系
- ho θ 表示各节点参数的集合,包括每个节点所对应的条件概率参数 离散情形下构成CPT

贝叶斯网的基本概念(2)

◆ 简单的贝叶斯网实例

变量含义:

➤ S: "吸烟"

➤ A: "发烧"

➤ B: "呼吸困难"

➤ *L*: "肺癌"

➤ C: "感染COVID-19"

所有变量为二值变量 (取值为T和F)

P(S)
0.6
0.4

A	P(A)
T	0.6
F	0.4

В	S	A	P(B S,A)
T	T	T	0.9
F	T	T	0.1
T	T	F	0.83
F	T	F	0.17
T	F	T	0.2
F	F	T	0.8
T	F	F	0.05
F	F	F	0.95
•			•

L	В	P(L B)
T	T	0.8
F	T	0.2
T	F	0.1
F	F	0.9

C	В	P(C B)
T	T	0.6
F	T	0.4
T	F	0.01
F	F	0.99

贝叶斯网的基本概念(3)

◆ 贝叶斯网的构建方法

手工 构建

- 模型可解释性高
- 需要领域专家知识 工作量大

通过数据分 析构建BN 通过算法学习与数据尽可 能吻合的模型

- 模型构建工作量小
- 模型构建速度相对快
- 得到的结构可能需要专 家进一步优化

◆ 贝叶斯网的应用

推荐系统

故障诊断

机器学习

因果推断

提纲

- ◆ 引例
- ◆ 贝叶斯网概念
- ◆ 贝叶斯网参数学习
- ◆ 贝叶斯网结构学习
- ◆ 基于贝叶斯网的概率推理
- ◆ 总结

参数学习(1)

◆ BN参数学习

基于样本数据计算变量节点的条件概率参数

给定一个BN $\mathcal{B} = (G, \theta)$,其中G = (V, E):

✓ 任意节点 $v_i \in V$ 取值为共有 r_i 个可能取值1,2,..., r_i , v_i 的父节点集记为 $\pi(v_i)$ 、共有 q_i 种可能组合(若 v_i 无父节点,则 $q_i = 1$)

✓ 若 v_i 取值为 $k(1 \le k \le r_i)$, $\pi(v_i)$ 取第j种组合,此时参数为

$$\theta_{ijk} = P(v_i = k | \pi(v_i) = j)(1 \le i \le n)$$

如何有效从计算 θ_{ijk} ,进而计算 \mathcal{B} 中所有节点的 所有参数,得到参数集合 θ ?

参数学习(2)

◆ BN的参数学习

- ✓ 给定一组关于B的独立同分布的完整样本数据集 $D = \{d_1, d_2, ..., dm\}$, θ 的某个取值 θ_0 与D的拟合程度用条件概率 $P(D|\theta = \theta_0)$ 度量, $P(D|\theta = \theta_0)$ 越大,拟合程度越高。
- ✓ θ 的似然函数:

$$L(\theta|D) = P(D|\theta) = \prod_{i}^{m} P(d_{i}|\theta)$$

参数学习(3)

◆ 最大似然估计(Maximum Likelihood Estimation)

利用D中的样本数据,反推最具有可能(最大概率)导致这些样本结果出现的参数值,即求 θ 的某个取值 $\theta = \theta^*$,使 θ 的似然函数 $L(\theta \mid D)$ 值最大。

步骤:

(1) 对于任意样本 d_a $(1 \le a \le m)$, 定义特征函数

$$\chi(i,j,k;d_a) = \begin{cases} 1, 若d_a 中 v_i = k 且 \pi(v_i) = j \\ 0, 其他 \end{cases}$$

参数学习(4)

- ◆ 最大似然估计(Maximum Likelihood Estimation)
 - (2) 对 $L(\theta|D)$ 取对数,得到 θ 的对数似然函数:

$$l(\theta|D) = \log P(D|\theta) = \log \prod_{a=1}^{m} P(d_a|\theta) = \sum_{a=1}^{m} \log P(d_a|\theta)$$
$$= \sum_{a=1}^{m} \sum_{i=1}^{n} \sum_{j=1}^{q_i} \sum_{k=1}^{r_i} \chi(i,j,k;d_a) \log \theta_{ijk}$$

其中, $P(d_a|\theta)$ 为给定 θ 时样本 d_a 出现的概率,记为:

$$m_{ijk} = \sum_{a=1}^{m} \chi(i, j, k; d_a)$$

 m_{ijk} 称为充分统计量,直观上是数据集D中所有满足 $v_i = k \pi (v_i) = j$ 的样本数

参数学习(5)

- ◆ 最大似然估计(Maximum Likelihood Estimation)
 - (3) 将 θ 的对数似然函数化简为:

$$l(\theta|D) = \sum_{i=1}^{n} \sum_{j=1}^{q_i} \sum_{k=1}^{r_i} m_{ijk} \log \theta_{ijk}$$

(4) θ_{ijk} 的最大似然估计:

$$\theta_{ijk}^* = \begin{cases} \frac{m_{ijk}}{\sum_{k=1}^{r_i} m_{ijk}}, \ddot{\Xi} \sum_{k=1}^{r_i} m_{ijk} > 0 & \\ \frac{1}{r_i}, \ddot{\Xi} \sum_{k=1}^{r_i} m_{ijk} = 0 \end{cases}$$

$$\frac{1}{r_i}, \ddot{\Xi} \sum_{k=1}^{r_i} m_{ijk} = 0$$

$$\frac{1}{r_i}, \ddot{\Xi} \sum_{k=1}^{r_i} m_{ijk} = 0$$

$$\frac{p + \ddot{\Xi} \mathcal{L}_{v_i = k} \pi_{v_i) = j} \text{ in } \ddot{\Xi} \mathbf{L}_{v_i} = j}{\mathbf{D}} \text{ in } \ddot{\Xi} \mathbf{L}_{v_i} = j} \text{ in } \ddot{\Xi} \mathbf{L}_{v_i} = j}$$

参数学习(6)

◆ 基于最大似然估计的参数学习示例

给定B的结构G

关于B的独立同分布数据D

所有变量为二值变量(取值为T和F)

	v_1	v_2	v_3
d_1	F	F	F
d_2	T	T	T
d_3	T	T	F
d_4	F	F	F

$$P(v_1 = T) \frac{D$$
中满足 $v_1 = T$ 样本实例数 $= \frac{2}{4}$ $= \frac{2}{4}$ $= \frac{1}{4}$ $= \frac{1}{4}$

参数学习(7)

◆ 基于最大似然估计的参数学习实例

 v_2 只有一个父节点 v_1 , $\pi(v_2)$ 共有 $\pi(v_2) = \text{Tan}(v_2) = \text{F两种组合}$ 分别记为第1种和第2种组合

	v_1	v_2	v_3
d_1	F	F	F
d_2	T	T	T
d_3	T	T	F
d_4	F	F	F

$$\theta_{2T1}^* = \frac{D$$
中满足 $v_2 = T$ 和 $\pi(v_2) = T$ 的样本实例数 $= \frac{2}{2}$

$$\theta_{2T2}^* = \frac{D$$
中满足 $v_2 = T$ 和 $\pi(v_2) = F$ 的样本实例数
 D 中满足 $\pi(v_2) = F$ 的样本实例数

参数学习(8)

◆ 基于最大似然估计的参数学习实例

	v_1	v_2	v_3
d_1	F	F	F
d_2	T	T	T
d_3	T	T	F
d_4	F	F	F

$$\theta_{2F1}^* = \frac{D$$
中满足 $v_2 = F$ 和 $\pi(v_2) = T$ 的样本实例数
 D 中满足 $\pi(v_2) = T$ 的样本实例数

$$\theta_{2F2}^* = \frac{D$$
中满足 $v_2 = F$ 和 $\pi(v_2) = F$ 的样本实例数 $= \frac{2}{2}$

参数学习(9)

◆ 基于最大似然估计的参数学习实例

	v_1	v_2	v_3
d_1	F	F	F
d_2	T	T	T
d_3	T	T	F
d_4	F	F	F

计算所有节点的CPT:

		1
Ρ	1124	1
1	(ν)	J

v_1	T	F
$P(v_1)$	2/4	2/4

 $P(v_2|v_1)$

$v_1^{v_2}$	Т	F
T	2/2	0
F	0	2/2

 $P(v_3|v_2)$

$v_2^{v_3}$	Т	F
Т	1/2	1/2
F	0	2/2

提纲

- ◆ 引例
- ◆ 贝叶斯网概念
- ◆ 贝叶斯网参数学习
- ◆ 贝叶斯网结构学习
- ◆ 基于贝叶斯网的概率推理
- ◆ 总结

结构学习(1)

◆ BN的结构学习

在给定数据集的前提下寻找一个与训练样本集匹配最好的网络结构

结构学习主要包括以下两类方法:

评分搜索

(Scoring and Search)

将BN结构学习视为组合优化问题

贝叶斯信息准则

(Bayesian Information Criterion, BIC)

+

爬山算法

条件独立测试

(Conditional Independence Test)

将BN视为描述变量之间条件 独立性关系的网络模型 卡方测试

(Chi-Square Test)

条件互信息测试(Conditional Mutual Information Test)

结构学习(2)

◆ 基于BIC评分和爬山法的BN结构学习

BIC评分: 在大样本前提下对边缘似然函数的一种近似

$$BIC(\mathcal{B}|D) = \sum_{i=1}^{n} \sum_{j=1}^{q_i} \sum_{k=1}^{r_i} m_{ijk} \log \frac{m_{ijk}}{m_{ij*}} - \sum_{i=1}^{n} \frac{q_i(r_i - 1)}{2} \log m$$

- ✓ 第一项是模型结构G的优参对数似然度(Parameter Maximized Loglikelihood),度量模型结构G与数据集D的拟合程度。
- ✓ 若仅基于第一项选择模型,会得到一个任意两个节点之间都存在一条边的BN。

因此,增加第二项作为惩罚项(Penalty), 防止模型过拟合。

结构学习(3)

◆ 基于BIC评分和爬山法的BN结构学习

BIC评分的分解:用于减小搜索过程中的计算开销

- ightharpoonup 给定BN中任意节点 v_i , v_i 的家族(Family)为 v_i 与其父节点集 $\pi(vi)$ 及相关边构成的局部结构
- $> v_i$ 的家族BIC评分:

$$BIC(< v_i, \pi(v_i) > |D) = \sum_{j=1}^{q_i} \sum_{k=1}^{r_i} m_{ijk} \log \frac{m_{ijk}}{m_{ij*}} - \sum_{i=1}^n \frac{q_i(r_i - 1)}{2} \log m$$
则有

$$BIC(\mathcal{B}|D) = \sum_{i=1}^{n} BIC(\langle v_i, \pi(v_i) \rangle) > |D)$$

结构学习(4)

- ◆ 基于BIC评分和爬山法的BN结构学习
 - ▶ 基于爬山法找到BIC评分最高的模型

步骤:

- (1) 初始结构为无边模型,或基于领域知识设置初始结构
- (2)通过<mark>加边、减边、反转边</mark>三种算子对当前结构局部进行修改, 得到一系列候选模型
- (3) 计算不同候选模型参数的最大似然估计及相应的BIC评分
- (4) 迭代选出当前BIC评分最高的候选结构,直至收敛

结构学习(5)

基于BIC评分和爬山法的BN结构学习

三种算子:

初始结构

减边 $v_2 \rightarrow v_3$

 $加边v_2 \rightarrow v_4$ 反转边 $v_3 \rightarrow v_2$

加边 $v_4 \rightarrow v_2$, 导致环,不允许

结构学习(6)

◆ 基于爬山法的BN结构学习算法

V: 随机变量集合,D: 关于V的完整数据,f: BIC评分函数, G_0 : 初始BN结构 $G \leftarrow G_0$, $\theta \leftarrow L(\theta \mid D)$, $oldScore \leftarrow f(G, \theta \mid D)$

While true Do

 $G^* \leftarrow \emptyset; \theta^* \leftarrow \emptyset; newScore \leftarrow -\infty$

进行加边、减边和反转边操作,得到结构G'

 $\theta' \leftarrow L(\theta'|D); \quad tmpScore \leftarrow f(G', \theta'|D)$

If tmpScore > newScore Then

 $G \leftarrow G^*$; $\theta \leftarrow \theta^*$; oldScore \leftarrow newScore

End for

If newScore > oldScore **Then**

 $G \leftarrow G^*; \theta \leftarrow \theta^*; oldScore \leftarrow newScore$

Else Return (G, θ)

End while

时间复杂度: $O(|V|^2 \times |D|)$

t为迭代次数

提纲

- ◆ 引例
- ◆ 贝叶斯网概念
- ◆ 贝叶斯网参数学习
- ◆ 贝叶斯网结构学习
- ◆ 基于贝叶斯网的概率推理
- ◆ 总结

基于贝叶斯网的概率推理(1)

◆ 基于BN的概率推理算法

E: 证据变量集合; Q: 查询变量集合

▶ 精确推理算法

> 近似推理算法

通过降低对精度的要求,在限定时间内得到一个近似解

- 重要性采样(Importance Sampling)
- 马尔科夫链蒙特卡洛(Markov Chain Monte Carlo, MCMC)

基于贝叶斯网的概率推理(2)

◆ 基于BN的精确推理算法

L=T作为证据、S=T作为查询,计算条件概率P(S=T|L=T)

> 一般联合概率分布推理

步骤:

- (1) 从联合概率P(S,A,B,L,C)出发
- (2) 计算边缘概率分布 $P(S, L) = \sum_{A,B,C} P(S, A, B, L, C)$

(3) 计算
$$P(S = T|L = T) = \frac{P(S=T, L=T)}{P(L=T)}$$

整个联合概率分布包含2⁵-1个独立参数,方法具有极高的复杂度

S	P(S)
T	0.6
F	0.4

A	P(A)
T	0.6
F	0.4

В	S	A	P(B S,A)
T	T	T	0.9
F	T	T	0.1
T	T	F	0.83
F	T	F	0.17
T	F	T	0.2
F	F	T	0.8
T	F	F	0.05
F	F	F	0.95
F T	F F	T F	0.8 0.05

L	В	P(L B)
T	T	0.8
F	T	0.2
T	F	0.1
F	F	0.9

С	В	P(C B)
T	T	0.6
F	T	0.4
T	F	0.01
F	F	0.99

基于贝叶斯网的概率推理(3)

> 利用变量间的条件独立性,分解联合概率分布

采用链式规则: $P(L) = \sum_{S} \sum_{A} \sum_{B} \sum_{C} P(S) P(A) P(B|S,A) P(L|B) P(C|B)$

计算步骤	乘法(次)	加法(次)
$P(S)P(A) \to P(S,A)$	4	/
$P(S,A)P(B S,A) \rightarrow P(B,S,A)$	8	/
$P(B,S,A)P(L B)$ $\rightarrow P(L,B,S,A)$	16	/
$P(L,B,S,A)P(C B)$ $\rightarrow P(C,L,B,S,A)$	32	/
$P(C, L, B, S, A) \rightarrow P(C, L, B, E)$	/	16
$P(C,L,B,E) \rightarrow P(L,B,E)$	/	8
$P(L,B,E) \to P(L,E)$	/	4
$P(L,E) \to P(L)$	/	2
总计	60	30

S T	P(S)		A T	P(A) 0.6
F	0.4 (S)		F	0.4 (A)
		\ <u></u>	70	
		/	(B)	\
	(L)			(c)

В	S	A	P(B S,A)
T	T	T	0.9
F	T	T	0.1
T	T	F	0.83
F	T	F	0.17
T	F	T	0.2
F	F	T	0.8
T	F	F	0.05
F	F	F	0.95

L	В	P(L B)
T	T	0.8
F	T	0.2
T	F	0.1
F	F	0.9

C	В	P(C B)
T	T	0.6
F	T	0.4
T	F	0.01
F	F	0.99

需要60次乘法和30次加法

基于贝叶斯网的概率推理(4)

> 利用变量间的条件独立性,分解联合概率分布

分解链式规则: $P(L) = \sum_{B} P(L|B) \sum_{C} P(C|B) \sum_{S} P(S) \sum_{A} P(A) P(B|S,A)$

计算步骤	数字乘法 (次)	数字加法 (次)
$P(A)P(B S,A) \rightarrow P(B,A S)$	8	/
$P(B,A S) \to P(B S)$	/	4
$P(S)P(B S) \to P(B,S)$	4	/
$P(B,S) \to P(B)$	/	2
$P(C B)P(B) \rightarrow P(C,B)$	4	/
$P(C, B) \to P(B)$	/	2
$P(L B)P(B) \to P(L,B)$	4	/
$P(L,B) \to P(L)$	/	2
总计	20	10

S	P(S) 0.6		A	P(A)
T	0.6		T	P(A) 0.6
F	0.4		F	0.4
	\bigcirc S			A
		\ <u></u>	(B)	
		/		
				(c)

В	S	A	P(B S,A)
T	T	T	0.9
F	T	T	0.1
T	T	F	0.83
F	T	F	0.17
T	F	T	0.2
F	F	T	0.8
T	F	F	0.05
F	F	F	0.95

L	В	P(L B)
T	T	0.8
F	T	0.2
T	F	0.1
F	F	0.9

C	В	P(C B)
T	T	0.6
F	T	0.4
T	F	0.01
F	F	0.99

仅需要20次乘法和10次加法

基于贝叶斯网的概率推理(5)

- ◆ VE算法
- ➤ 变量消元法(Variable Elimination, VE): 通过分解联合分布简化推理 步骤:
 - (1) 设 $N(v_1, v_2, ..., v_n)$ 为 $\{v_1, v_2, ..., v_n\}$ 的函数,用 $\mathcal{F} = \{f_1, f_1, ..., f_b\}$ 表示一组函数,其中,每个 f_i (1 $\leq i \leq b$)涉及变量为 $\{v_1, v_2, ..., v_n\}$ 的一个子集。如果

 $\mathcal{F} = \prod_{i=1}^{b} f_i$

则称 \mathcal{F} 是N的一个分解(Factorization), $f_1, f_1, ..., f_b$ 称为这个分解的因子(Factor)。

基于贝叶斯网的概率推理(6)

◆ VE算法

(2) 消元 (Elimination):

设 $\mathcal{F} = \{f_1, f_1, ..., f_b\}$ 为函数 $\mathcal{N}(v_1, v_2, ..., v_n)$ 的一个分解,从 \mathcal{N} 中消去变量 v_1 的过程:

- 1) 从 \mathcal{F} 中删去所有 v_1 涉及的函数(设这些函数为{ $f_1, f_1, ..., f_k$ });
- 2) 将新函数 $\sum_{v_1} \prod_{i=1}^k f_i$ 放回 \mathcal{F} 中。

基于贝叶斯网的概率推理(7)

◆ VE算法

 $B: BN; E: 证据变量; e: 证据变量取值, Q: 查询变量; <math>\rho: \beta$: 待消元变量顺序,包括所有不在 $E \cup Q$ 中的变量

 $\mathcal{F} \leftarrow N(v_1, v_2, ..., v_n)$ //得到 \mathbf{B} 中所有变量条件概率分布的函数 在 \mathcal{F} 的因子中,将证据变量 \mathbf{E} 设置为其观测值 \mathbf{e} While $\rho \neq \emptyset$ **Do**

 $\rho \leftarrow \rho \setminus \{Z\}$ //**Z为** ρ 中第一个变量,将**Z**从 ρ 中删除 $\mathcal{F} \leftarrow \mathrm{Elim}(\mathcal{F}, Z)$ //**对变量Z进行消元**

End While

 $h(Q) \leftarrow \prod_{i=1}^{|\mathcal{F}|} f_i //$ 将 \mathcal{F} 中所有因子相乘,得到Q的函数h(Q)Return $h(Q)/\sum_{Q} h(Q)$

 $\mathbf{Elim}(\mathcal{F}, \mathbf{Z})$ $\mathcal{F} \leftarrow \mathcal{F} \setminus \{f_1, ..., f_k\}$ //从 \mathcal{F} 中删去所有涉及 \mathbf{Z} 的函数 $\{f_1, ..., f_k\}$ $g \leftarrow \prod_{i=1}^k f_i$ $h \leftarrow \sum_{\mathbf{Z}} g$ $\mathcal{F} \leftarrow \mathcal{F} \cup \{h\}$ //**将**h**放回** \mathcal{F} **Return** \mathcal{F}

假设B中每个变量有x种取值, ρ 为待消元变量个数,最坏情况下进行 $x \times \prod_{i=1}^{\rho} x$ 次运算;假设B中一共有n个变量,则算法时间复杂度为 $O(n \times x^{\rho+1})$ 。

基于贝叶斯网的概率推理(8)

◆ VE算法示例

基于VE算法计算P(S|L=F)

- (1) 设置变量消元顺序 ρ =<A, B, C>, 联合概率分解为 \mathcal{F} ={P(S), P(A), P(B|S,A), P(L|B), P(C|B)};
- (2) 设置证据L=F, 得到 $\mathcal{F}=\{P(S), P(A), P(B|S, A), P(L=F|B), P(C|B)\}$;
- (3) 消去A: A为第一个消元变量,与 之相关的函数是P(A)和P(B|S,A),消去A得到 $\mathcal{F} = \{P(S), P(L=F|B), P(C|B), \varphi_1(B,S)\}$, 其中, $\varphi_1(B,S) = \sum_A P(A)P(B|S,A)$ 。

В	S	A	P(B S,A)
T	T	T	0.9
F	T	T	0.1
T	T	F	0.83
F	T	F	0.17
T	F	T	0.2
F	F	T	0.8
T	F	F	0.05
F	F	F	0.95

L	В	P(L B)
T	T	0.8
F	T	0.2
T	F	0.1
F	F	0.9

С	В	P(C B)
T	T	0.6
F	T	0.4
T	F	0.01
F	F	0.99

基于贝叶斯网的概率推理(9)

◆ VE算法示例

(4) 消去B: 与之相关的函数是

P(L=F|B)、P(C|B)和 $\varphi_1(B,S)$,消去B得到 $\mathcal{F}=\{P(S), \varphi_2(S,C)\}$,其中, $\varphi_2(S,C)=$ $\sum_B P(L=F|B)P(C|B) \varphi_1(B,S)$;

- (6) 计算 $h(S) = \varphi_3(S)$;
- (7) 返回 $h(S)/\sum_{S}h(S)$ 。

S	P(S)	
T	0.6	
F	0.4	

A	P(A)
T	0.6
F	0.4

s	A
	B
	C

В	S	A	P(B S, A)
T	T	T	0.9
F	T	T	0.1
T	T	F	0.83
F	T	F	0.17
T	F	T	0.2
F	F	T	0.8
T	F	F	0.05
F	F	F	0.95

L	В	P(L B)
T	T	0.8
F	T	0.2
T	F	0.1
F	F	0.9

C	В	P(C B)
T	T	0.6
F	T	0.4
T	F	0.01
F	F	0.99

基于贝叶斯网的概率推理(10)

近似推理算法

Gibbs采样:随机产生一个与证据E = e一致的样本 D_1 作为初始样本,每一步都从当前样本出发产生下一个样本。

步骤:

- (1) 对于当前第i 1步,设 $D_{i-1} = D_i$;
- (2) 按某个顺序对 D_{i-1} 中非证据变量逐个采样;
- (3) 设Z是下一个待采样变量,根据分布 $P(Z|mb(Z) = z_i)$ 对Z采样;
- (4) 用采样结果替代 D_i 中Z的当前取值。
- $> z_i 是 mb(Z) 在 D_i 中的当前取值$

基于贝叶斯网的概率推理(11)

```
B: BN, \eta: 采样次数, <math>E:  证据变量,e:  证据变量取值,Q:  查询变量,q:  查询变量取值,\rho:  非证据变量采样顺序 随机生成一个样本D_1,使E=e If Q=q Then m_q \leftarrow m_q+1 For i=2 To \eta Do D_i \leftarrow D_{i-1} For \rho中每一个变量Z Do y \leftarrow \sum_i P(z_i|mb(Z)) //计算Z的下一个状态,z_i为Z的不同状态取值 生成一个随机数x \in [0, y],Z的取值为 Z = \begin{cases} z_1, x \leq P(z_1|mb(Z)) \\ z_2, P(z_1|mb(Z)) \leq x \leq P(z_1|mb(Z)) + P(z_2|mb(Z)) \\ \ldots \end{cases}
```

If Q=q Then $m_q \leftarrow m_q+1$ Return m_q/η

 $D_i \leftarrow \text{replace}(D_i, Z)$

假设每个变量的取值状态有|z|种,其父变量共有c种组合,则算法的时间复杂度为 $O(\eta \times \rho \times |z|^c)$

基于贝叶斯网的概率推理(12)

◆ 基于Gibbs采样的概率推理示例

基于Gibbs采样算法近似计算P(S|L=F)

- ▶ 随机生成一个与证据L=F一致的 样本,假设为 $D_1=\{S=T, A=F, B=T, L=F, C=F\}$
- \rightarrow 由 D_1 生成样本 D_2
- 》 算法从 $D_2=D_1=\{S=T, A=F, B=T, L=F\}$ 出发,对非证据变量逐个 采样
- ➤ 采样顺序为<S, A, B, L, C>

В	S	A	P(B S,A)
T	T	T	0.9
F	T	T	0.1
T	T	F	0.83
F	T	F	0.17
T	F	T	0.2
F	F	T	0.8
T	F	F	0.05
F	F	F	0.95

L	В	P(L B)
T	T	0.8
F	T	0.2
T	F	0.1
F	F	0.9

C	В	P(C B)
T	T	0.6
F	T	0.4
T	F	0.01
F	F	0.99

基于贝叶斯网的概率推理(13)

◆ 基于Gibbs采样的概率推理示例

采样过程如下:

① 对S进行采样,mb(S)包含节点A和 B,计算S的概率分布P(S|A=F,B=T),假设采样结果为S=F,则有 $D_2=\{S=F,A=F,B=T,L=F,C=F\}$

② 对A进行采样,此时S=F,mb(A)包含节点S和B,计算F的概率分布P(A|S)=F,B=T)。假设采样结果为A=T,则有 $D_2=\{S=F,A=T,B=T,L=F,C=F\}$

S	P(S)
T	0.6
F	0.4

A	P(A)
T	0.6
F	0.4

	1	1	1	0.9
	F	T	T	0.1
	T	T	F	0.83
	F	T	F	0.17
	T	F	T	0.2
	F	F	T	0.8
	T	F	F	0.05
	F	F	F	0.95
_				-

P(B|S, A)

L	В	P(L B)
T	T	0.8
F	T	0.2
T	F	0.1
F	F	0.9

С	В	P(C B)
T	T	0.6
F	T	0.4
T	F	0.01
F	F	0.99

基于贝叶斯网的概率推理(14)

◆ 基于Gibbs采样的概率推理示例

- ③ 对B进行采样,此时A=T,mb(B)包含节点S、A、L和C,因此,计算B的 概率分布P(B|S=F, A=T, L=F, C=F),假设采样结果为B=T,则有 D_2 ={S=F, A=T, B=T, L=F, C=F}
- ④ 对L进行采样,此时B=T,mb(L)包含节点B和C,计算L的概率分布P(L|B=T,C=F),假设采样结果为L=T,则有 $D_2=\{S=F,A=T,B=T,L=T,C=F\}$

В	S	A	P(B S,A)
T	T	T	0.9
F	T	T	0.1
T	T	F	0.83
F	T	F	0.17
T	F	T	0.2
F	F	T	0.8
T	F	F	0.05
F	F	F	0.95

L	В	P(L B)
T	T	0.8
F	T	0.2
T	F	0.1
F	F	0.9

С	В	P(C B)
T	T	0.6
F	T	0.4
T	F	0.01
F	F	0.99

基于贝叶斯网的概率推理(15)

◆ 基于Gibbs采样的概率推理示例

⑤ 对C进行采样,此时L=T,mb(C)包含节点B和L,计算C的概率分布P(C|B=T, L=T),假设采样结果为C=F,则有 D_2 ={S=F, A=T, B=y, L=T, C=F},即为 D_2 的最终值。

假设采样共得到 η 个样本,其中满足 Q=q的有 m_q 个,近似的后验概率为

$$P(Q=q) \approx \frac{m_q}{\eta}$$

S	P(S)
T	0.6
F	0.4

A	P(A)
T	0.6
F	0.4

s	A
	B
	\overline{C}

В	S	A	P(B S,A)
T	T	T	0.9
F	T	T	0.1
T	T	F	0.83
F	T	F	0.17
T	F	T	0.2
F	F	T	0.8
T	F	F	0.05
F	F	F	0.95

L	В	P(L B)
T	T	0.8
F	T	0.2
T	F	0.1
F	F	0.9

С	В	P(C B)
T	T	0.6
F	T	0.4
T	F	0.01
F	F	0.99

提纲

- ◆ 引例
- ◆ 贝叶斯网概念
- ◆ 贝叶斯网参数学习
- ◆ 贝叶斯网结构学习
- ◆ 贝叶斯网概率推理
- ◆ 总结

总结

- ◆ 不确定性知识表示和处理能力,是智能系统走向实用的重要要求
 - ✔ 概率图模型:图模型的概率性质,概率论+图论
 - ✓ 概率推理基本思想和分类
- ◆ 贝叶斯网的概念、参数学习和结构学习
- ◆ 基于贝叶斯网的概率推理(精确推理,近似推理)

结语

谢谢!