lecture 3 - Jan 20, 2023

- Multi Arm Bondits
 - · Introduction
 - · Exploration Exploitation Delina
 - · Epsilon-Greedy Policy
 - · Optimistic Initial Values
 - · Upper contidence Bound Selection policy
 - · Gradient-Based Selection Palicy
 - . Thompson Sampling

HW1 - Due Jan 27

Project 1 is Posted - Due Feb 7

TA's first office hour: Friday, Jan 20, 12pm-1pm

overview:

Learning - Distribution are - Poliy: a

Q(a) = 0 by all as 1

$$Q(a) = Q(a) + \alpha [R - Q(a)]$$

Policy 1: E-greely

$$\alpha \in \begin{cases} \underset{\alpha \in A}{\operatorname{argmax}} & \alpha(\alpha) \\ \alpha \in A \end{cases}$$
 | $-\epsilon \leftarrow j_{\text{reading}}$

RIQ - Random Vor iable

$$a^{1}$$

$$a^{1}$$

$$a^{2}$$

$$a^{2}$$

$$b \in \mathcal{Q}(a^{1}) = 20, \quad Q(a^{2}) = 0$$

$$a^{2}$$

Qta1)=5 Optimistic Initial Value: Qta2)=6

aitin1

$$\bigcirc (\alpha^1) = \bigcirc (\alpha^2) = 0$$

Time 1 ation of

o action² 12

Revious 5 $Q(a') = Q(a') + \langle [R - Q(a')] = 2.5$

(P(a) = (Ya1) + 0 [R-Q(a1)]=10

Randons(a, a²) &

8=0.1 -> \ a¹ -> 0.95

\[
a^2 -> 0.95

 $Q(a^2)=0$ $\begin{cases}
P(a^2)=0
\end{cases} \begin{cases}
P(a^2)=0
\end{cases} \begin{cases}
P(a^2)=10
\end{cases} \\
P(a^2)=10
\end{cases} \begin{cases}
P(a^2)=10
\end{cases} \begin{cases}
P(a^2)=10
\end{cases} \begin{cases}
P(a^2)=10
\end{cases} \\
P(a^2)=10
\end{cases} \begin{cases}
P(a^2)=10
\end{cases} \\
P(a^2)=10
\end{cases} \begin{cases}
P(a^2)=10
\end{cases} \\
P(a$

Upper considence Bound (UCB) < Policy

$$a_{t} = argmax \qquad a + c \qquad \frac{logt}{N_{t}(a)}$$

$$addition to the consent estimates to the consent estimates af $Q(a)$$$

Nt(a): # that action a is soluted up to time t

 $Q(a) = Q(a) + \alpha \left[R - Q(a)\right]$ $Q(a) = Q(a) + \alpha \left[R - Q(a)\right]$ $Q(a) = Q(a) + \alpha \left[R - Q(a)\right]$ $Q(a) = Q(a) + \alpha \left[R - Q(a)\right]$

$$Q(a') = 10 \qquad Q(a^2) = 1$$

$$M(a') = 100 \qquad N(a^2) = 1 \qquad t = 101$$

$$t = 102 \qquad a_t = arg max \qquad Q(a) + c \qquad \sqrt{loot} \qquad 1$$

$$arg max \qquad 10 + c \qquad \sqrt{log 102} \qquad 1 + c \qquad \sqrt{log 102} \qquad 1$$

$$a^1 \qquad a^2 \qquad 1 + c \qquad 10 + o = 2/3 \qquad 1 + c \qquad 1 + c \qquad 10 +$$

Policy: Gradient-Bandit Policy

Directly Parametrizing the Policy:

Hz (a): numeric predorence has action a

Gibbs distribution

$$H_{t+1}(a) = H_t(a) + \alpha \frac{\delta E[R_t]}{\delta H_t(a)}$$
 Average realizable $\frac{\delta E[R_t]}{\delta H_t(a)}$

$$\mathcal{H}_{t+1}(A_t) = \mathcal{H}_t(A_t) + \alpha (R_t - \overline{R_t})(1-\overline{R_t}(A_t))$$

At: outin Seleted at time t

a: all actions expect At

Rt: Averge Reward up to current time to including "t"

$$R_{t} = 0$$
, $R_{t} = 10$, $A_{t} = a'$ $A = \{a', a''\}$
Action 1 \rightarrow $+ \times (R_{t} - \overline{R_{t}}) (1 - R_{t}(A_{t}))$ $(A_{t} = a', a'') = 0.4$

action 2 -
$$\propto (R_t - \overline{R_t}) T_{t}(\alpha)$$

Action 1... +
$$\chi$$
 (Rt- Rt) (1- Rt(At)) $= \frac{e^{H_{+}(\alpha)}}{\sum_{\alpha} e^{H_{+}(\alpha')}}$
action 2... - χ (Rt- Rt) $= \frac{1}{2} (-2) = \frac{1}{2} (-2) =$

(2)

$$H_{2}(\alpha^{1})=0$$
, $H_{2}(\alpha^{2})=0$
 $L_{2}(\alpha^{1})=\frac{e^{0}}{e^{0}+e^{0}}=\frac{1}{2}$ $\longrightarrow A_{t}=\alpha^{2}$
 $\mathcal{F}_{2}(\alpha^{1})=\frac{1}{2}$

$$A_1 = a^2$$
, $R_2 = 2$ $\Rightarrow R_2 = \frac{10 + 2}{2} = 6$

prehere UPalete

$$L \int_{0}^{\infty} H_3(a^2) = H_2(a^2) + \alpha \left[R - R_2 \right] \left(1 - T_2(a^2) \right) = 1$$

$$H_3(a^1) = H_2(a^1) - \alpha \left[R_2 - R_2 \right] T_2(a^1) = 1$$

$$H_3(a^1) = 1$$
, $H_3(a^2) = -1$

Ly $H_3(a^1) = \frac{e^1}{e^1 + e^1} = 8.88$?

 $(I_3(a^2) = \frac{e^1}{e^1 + e^1} = 8.12$