Soluciones de los problemas

Tabla de contenidos

1	1 Problema 1	
	1.1 Caso favorable	
	1.1.a Método pesimista	
	1.1.b Método optimista	
	1.1.c Método Hurwicz	4
	1.1.d Método Savage	5
	1.1.e Método Laplace	5
	1.1.f Método punto ideal	6
	1.1.g Resumen caso favorable	6
	1.2 Caso desfavorable	7
	1.2.a Método pesimista	
	1.2.b Método optimista	
	1.2.c Método Hurwicz	
	1.2.d Método Savage	9
	1.2.e Método Laplace	9
	1.2.f Método punto ideal	9
	1.2.g Resumen caso desfavorable	9
2	2 Problema 2	
	2.1 Planteamiento del problema	
	2.2 Resolución del problema	

```
# Cargar librerías necesarias
library(tinytable)
# Cargar script con funciones
source("teoriadecision funciones incertidumbre.R")
# Preparar tema propio para tablas
colores <- hcl.colors(5, palette = "Berlin")</pre>
crea vector posiciones tabla <- function(numero columnas) {</pre>
     posiciones <- ""
     for(i in 1:numero columnas) {
           posiciones <- paste0(posiciones, "c")</pre>
     }
     return(posiciones)
}
crea_tabla_estilo <- function(tabla, nombresfila = TRUE) {</pre>
     if (nombresfila == TRUE) {
           rn <- rownames(tabla)</pre>
           if (is.null(rn)) rn <- rep("", nrow(tabla))</pre>
           tabla <- cbind(rn = rn, tabla, stringsAsFactors = FALSE)
           colnames(tabla)[1] <- ""</pre>
           rownames(tabla) <- NULL</pre>
     }
     t <- tt(tabla, theme = "empty", width = 1) |>
           style_tt(j = 1:ncol(tabla), align =
crea vector posiciones tabla(ncol(tabla)), alignv = "m") |>
           style_tt(i = 0, line = "b", line_color = colores[2], line_width = 0.2,
           background = colores[5], color = colores[3]) |>
           style_tt(i = 0, line = "t", line_color = colores[1], line_width = 0.1) |>
           style_tt(i = 1:nrow(tabla), line = "b", line_color = colores[1],
line\_width = 0.1) > style\_tt(j = 1:(ncol(tabla)-1), line = "r", line\_color = 1:(ncol(tabla)-1), line = 1
colores[1], line width = 0.1)
     return(t)
}
```

1 Problema 1

Se deben implementar todos los métodos de decisión bajo incertidumbre, tanto para el caso favorable como para el caso desfavorable (pesimista, optimista, Hurwicz, Savage, Laplace y punto ideal) para la siguiente tabla de decisión:

	ω1	ω2	ω3	ω4
a1	5	15	8	18
a2	7	13	14	20
a3	6	17	11	17
a4	4	14	16	16
a5	10	10	13	15

1.1 Caso favorable

1.1.a Método pesimista

```
alternativa_pesimista <- criterio.Wald(tabla_decision, favorable = TRUE)
```

Para el criterio de Wald, en el caso favorable, la alternativa 5 es la mejor y el valor óptimo es 10.

1.1.b Método optimista

```
alternativa_optimista <- criterio.Optimista(tabla_decision, favorable = TRUE)
```

Para el criterio Optimista, en el caso favorable, la alternativa 2 es la mejor y el valor óptimo es 20.

1.1.c Método Hurwicz

Para el criterio de Hurwicz, en el caso favorable, la alternativa 2 es la mejor y el valor óptimo es 13.5. Con un valor de $\alpha=0.5$.

Se muestra a continuación una tabla con las alternativas óptimas y los valores óptimos para diferentes valores de alfa, que van desde 0 hasta 1 con incrementos de 0.1:

Alfa	Alternativa óptima	Valor óptimo		
0.0	5	10.0		
0.1	5	10.5		
0.2	5	11.0		
0.3	5	11.5		
0.4	2	12.2		
0.5	2	13.5		
0.6	2	14.8		
0.7	2	16.1		
0.8	2	17.4		
0.9	2	18.7		
1.0	2	20.0		

Y gráficamente:

```
gráfico_Hurwicz <- dibuja.criterio.Hurwicz(tabla_decision, favorable = TRUE)</pre>
```

Criterio de Hurwicz (favorable - línea discontinua)

Además, se muestra un gráfico donde se pueden apreciar los intervalos de las alternativas óptimas para diferentes valores de alfa:

```
intervalos_Hurwicz <- dibuja.criterio.Hurwicz_Intervalos(tabla_decision,
favorable = TRUE)</pre>
```

Criterio de Hurwicz (favorable - línea discontinua)

1.1.d Método Savage

```
alternativa_Savage <- criterio.Savage(tabla_decision, favorable = TRUE)
```

Para el criterio de Savage, en el caso favorable, la alternativa 2 es la mejor y el valor óptimo es 4.

1.1.e Método Laplace

```
alternativa_Laplace <- criterio.Laplace(tabla_decision, favorable = TRUE)</pre>
```

Para el criterio de Laplace, en el caso favorable, la alternativa 2 es la mejor y el valor óptimo es 13.5.

1.1.f Método punto ideal

```
alternativa_puntoideal <- criterio.PuntoIdeal(tabla_decision, favorable =
TRUE)</pre>
```

Para el criterio de Punto Ideal, en el caso favorable, la alternativa 2 es la mejor y el valor óptimo es 5.3851648.

1.1.g Resumen caso favorable

```
matriz_resumen_favorable <- matrix(c(</pre>
              alternativa_pesimista$criterio,
               alternativa optimista$criterio,
               alternativa_Hurwicz$criterio,
               alternativa_Savage$criterio,
               alternativa_Laplace$criterio,
alternativa_puntoideal$criterio,alternativa_pesimista$AlternativaOpt,
               alternativa optimista$AlternativaOpt,
               alternativa_Hurwicz$AlternativaOpt,
               alternativa Savage$AlternativaOpt,
               alternativa_Laplace$AlternativaOpt,
               alternativa_puntoideal$AlternativaOpt),
               nrow = 6, byrow = FALSE)
resumen favorable <- as.data.frame(matriz resumen favorable)</pre>
colnames(resumen_favorable) <- c("Criterio", "Alternativa óptima")</pre>
crea_tabla_estilo(resumen_favorable, FALSE)
```

Criterio	Alternativa óptima
Wald	5
Optimista	2
Hurwicz	2
Savage	2
Laplace	2
Punto Ideal	2

Vemos que las alternativas óptimas son diferentes según el criterio utilizado, siendo la alternativa a_2 la que más veces aparece como óptima (5 veces). Ya alternativa a_5 aparece una sola vez como óptima para el criterio pesimista y es la mejor alternativa también para el criterio de Hurwicz con valores de α menores que 0.375.

O Decisión final

En este caso se va a optar por la alternativa a_2 dado que es la que mayor número de veces aparece como óptima. En todos los criterios excepto en el persimista.

1.2 Caso desfavorable

1.2.a Método pesimista

```
alternativa_pesimista_desfavorable <- criterio.Wald(tabla_decision, favorable
= FALSE)</pre>
```

Para el criterio de Wald, en el caso desfavorable, la alternativa 5 es la mejor y el valor óptimo es 15.

1.2.b Método optimista

```
alternativa_optimista_desfavorable <- criterio.Optimista(tabla_decision,
favorable = FALSE)</pre>
```

Para el criterio Optimista, en el caso desfavorable, la alternativa 4 es la mejor y el valor óptimo es 4.

1.2.c Método Hurwicz

Para el criterio de Hurwicz, en el caso desfavorable, la alternativa 4 es la mejor y el valor óptimo es 10. Con un valor de $\alpha=0.5$.

Se muestra a continuación una tabla con las alternativas óptimas y los valores óptimos para diferentes valores de alfa, que van desde 0 hasta 1 con incrementos de 0.1:

Alfa	Alternativa óptima	Valor óptimo
0.0	5	15.0
0.1	5	14.5
0.2	4	13.6
0.3	4	12.4
0.4	4	11.2
0.5	4	10.0
0.6	4	8.8
0.7	4	7.6
0.8	4	6.4
0.9	4	5.2
1.0	4	4.0

Y gráficamente:

```
gráfico_Hurwicz_desfavorable <- dibuja.criterio.Hurwicz(tabla_decision,
favorable = FALSE)</pre>
```

Criterio de Hurwicz (desfavorable - línea discontinua)

Además, se muestra un gráfico donde se pueden apreciar los intervalos de las alternativas óptimas para diferentes valores de alfa:

```
intervalos_Hurwicz_desfavorable <-
dibuja.criterio.Hurwicz_Intervalos(tabla_decision, favorable = FALSE)</pre>
```

Criterio de Hurwicz (desfavorable - línea discontinua)

1.2.d Método Savage

```
alternativa_Savage_desfavorable <- criterio.Savage(tabla_decision, favorable =
FALSE)</pre>
```

Para el criterio de Savage, en el caso desfavorable, la alternativa 1 es la mejor y el valor óptimo es 5.

1.2.e Método Laplace

```
alternativa_Laplace_desfavorable <- criterio.Laplace(tabla_decision, favorable
= FALSE)</pre>
```

Para el criterio de Laplace, en el caso desfavorable, la alternativa 1 es la mejor y el valor óptimo es 11.5.

1.2.f Método punto ideal

```
alternativa_puntoideal_desfavorable <- criterio.PuntoIdeal(tabla_decision,
favorable = FALSE)</pre>
```

Para el criterio de Punto Ideal, en el caso desfavorable, la alternativa 1 es la mejor y el valor óptimo es 5.92.

1.2.g Resumen caso desfavorable

```
alternativa_puntoideal_desfavorable$criterio,
    alternativa_pesimista_desfavorable$AlternativaOpt,
    alternativa_optimista_desfavorable$AlternativaOpt,
    alternativa_Hurwicz_desfavorable$AlternativaOpt,
    alternativa_Savage_desfavorable$AlternativaOpt,
    alternativa_Laplace_desfavorable$AlternativaOpt,
    alternativa_puntoideal_desfavorable$AlternativaOpt),
    nrow = 6, byrow = FALSE)

resumen_desfavorable <- as.data.frame(matriz_resumen_desfavorable)
colnames(resumen_desfavorable) <- c("Criterio", "Alternativa óptima")
crea_tabla_estilo(resumen_desfavorable, FALSE)</pre>
```

Criterio	Alternativa óptima
Wald	5
Optimista	4
Hurwicz	4
Savage	1
Laplace	1
Punto Ideal	1

Vemos que las alternativas óptimas son diferentes según el criterio utilizado, siendo la alternativa a_1 la que más veces aparece como óptima (3 veces). La alternativa a_4 aparece en dos ocasiones como óptima, por último para el criterio pesimista la mejor alternativa es a_5 y es la mejor alternativa también para el criterio de Hurwicz con valores de α menores que 0.143 .

O Decisión final

En este caso se va a optar por la alternativa a_1 dado que es la que mayor número de veces aparece como óptima y en el criterio de Hurwicz el gráfico nos muestra que es bastante equilibrada para todos los valores de alfa aunque nunca sea la mejor.

2 Problema 2

Una persona recibe una herencia de 200.000 euros y se le presentan diferentes opciones de inversión para los próximos 10 años.

Puede terminar de pagar su hipoteca actual, ahorrando 40.000 euros de intereses y le sobrarían 30.000 euros que pondría en una cuenta remunerada al 2% anual

Puede seguir pagando su hipoteca y elegir una de las siguientes opciones

- Adquirir un piso por esa cantidad y si los alquileres turísticos siguen siendo posibles podrá generar un 6% anual. Si por el contrario se regularan pasaría a perder un 1% anual.
- Invertir en un fondo indexado que le puede generar un 7% anual pero si la bolsa baja perderá un 8%.
- Invertir en una franquicia de una cadena de comida rápida. Si acierta con el sitio podrá generar un 10% anual pero si se equivoca al seleccionar el sitio incurrirá en unas pérdidas anuales del 10%

2.1 Planteamiento del problema

Alternativas

- a1: Pagar hipoteca
- a2: Adquirir piso
- a3: Invertir en un fondo
- a4: Invertir en una franquicia

Estados de la naturaleza

- e1: Regulación alquileres
- · e2: No regulación alquileres
- e3: Bolsa sube
- e4: Bolsa baja
- e5: Acierta con la ubicación
- e6: Se equivoca con la ubicación

Ahora vamos a construir la matriz de decisión para un año. Puesto que los estados de la naturaleza afectan por parejas (e1-e2, e3-e4, e5-e6) a las alternativas (a2, a3, a4). Se van a reducir a que la inversión de cada alternativa salga bien o mal ese año.

- e1 red: Inversión exitosa
- e2_red: Inversión fallida

Puesto que la alternativa 1 no se ve afectada por los estados de la naturaleza esta alternativa tendrá valores fijos en todos ellos y no se ve alterada por esta reducción.

Vamos a hacer una tabla para un año y luego aplicaremos los criterios de decisión bajo incertidumbre para ver qué alternativa es la mejor.

```
m11 <- 4000 + 30000 * 0.02

m12 <- 4000 + 30000 * 0.02

m21 <- 200000 * 0.06 - 4000

m22 <- -200000 * 0.01 - 4000

m31 <- 200000 * 0.07 - 4000

m32 <- -200000 * 0.08 - 4000

m41 <- 200000 * 0.1 - 4000

m42 <- -200000 * 0.1 - 4000
```

	Inversión exitosa	Inversión fallida		
Pagar hipoteca	4600	4600		
Aquirir piso	8000	-6000		
Invertir fondo	10000	-20000		
Invertir franquicia	16000	-24000		

2.2 Resolución del problema

En la siguiente tabla se muestran los resultados de aplicar todos los criterios de decisión bajo incertidumbre para el caso favorable.

```
resultado2 <- criterio.Todos(tabla_decision2, alfa = 0.5, favorable = TRUE)
res <- as.data.frame(resultado2)

crea_tabla_estilo(res, nombresfila = TRUE)</pre>
```

	Inver- sión exito- sa	Inver- sión fallida	Wald	Opti- mista	Hur- wicz	Sava- ge	Lapla- ce	Punto Ideal	Veces Opti- ma
Pagar hipo- teca	4600	4600	4600	4600	4600	11400	4600	11400	4
Aqui- rir pi- so	8000	-6000	-6000	8000	1000	10600	1000	13280	1
Inver- tir fon- do	10000	-20000	-20000	10000	-5000	24600	-5000	25321	0
In- vertir fran- quicia	16000	-24000	-24000	16000	-4000	28600	-4000	28600	1
iAlt.Opt (fav.)	-	-	Pagar hipo- teca	In- vertir fran- quicia	Pagar hipo- teca	Aqui- rir pi- so	Pagar hipo- teca	Pagar hipo- teca	Pagar hipo- teca

Observamos que para 4 de los 6 criterios la alternativa óptima es "Pagar hipoteca", siendo las otras dos alternativas óptimas "Invertir en una franquicia" para el criterio optimista y "Adquirir un piso" para el criterio de Hurwicz.

O Decisión final

Se va a optar por la alternativa "Pagar hipoteca" ya que es la que más veces aparece como óptima y además es la opción más segura, ya que las demás alternativas conllevan un riesgo mayor de pérdida económica.