2) Ache as assíntotas horizontais dos gráficos das funções:

a)
$$y = \frac{-2x+3}{3x^2+1}$$

b)
$$y = \frac{-2x^2 + 3}{3x^2 + 1}$$

c)
$$y = \frac{-2x^3 + 3}{3x^2 + 1}$$

a) $\lim_{x \to +\infty} \frac{-2x+3}{3x^2+1} = \lim_{x \to +\infty} \frac{-2x}{3x^2} = \lim_{x \to +\infty} \frac{-2}{3x^2} = 0$

 $\lim_{x \to -\infty} \frac{-2x + 3}{3x^2 + 1} = \lim_{x \to -\infty} \frac{-2x}{3x^2} = \lim_{x \to -\infty} \frac{-2}{3x} = 0$

ASSINTOTA HORIZONTAL: 4= 0.

2) Ache as assíntotas horizontais dos gráficos das funções:

a)
$$y = \frac{-2x+3}{3x^2+1}$$

b)
$$y = \frac{-2x^2 + 3}{3x^2 + 1}$$

c)
$$y = \frac{-2x^3 + 3}{3x^2 + 1}$$

b)
$$\lim_{\chi \to +\infty} \frac{-2\chi^2 + 3}{3\chi^2 + 1} = \lim_{\chi \to +\infty} \frac{2\chi^2}{3\chi^2}$$

$$=\lim_{x\to+\infty} -\frac{2}{3} = -\frac{2}{3}$$

 $\lim_{x \to -\infty} \frac{-2x^2 + 3}{3x^2 + 1} = \lim_{x \to -\infty} \frac{-2x^2}{3x^2} = \lim_{x \to -\infty} -\frac{2}{3} = -\frac{2}{3}$

$$= \lim_{x \to -\infty} -\frac{2}{3} = -\frac{2}{3}$$

· ASSINTOTA HORIZONTAL : y=- 2

2) Ache as assíntotas horizontais dos gráficos das funções:

a)
$$y = \frac{-2x+3}{3x^2+1}$$

b)
$$y = \frac{-2x^2 + 3}{3x^2 + 1}$$

c)
$$y = \frac{-2x^3 + 3}{3x^2 + 1}$$

 $= 2x^3 + 3 =$

 $\lim_{x \to 2x} \frac{-2x}{x} =$

 $\lim_{x \to +\infty} \frac{-2x}{3} = -\infty$

 $\lim_{x \to -\infty} \frac{-2x^3 + 3}{3x^2 + 4} = \lim_{x \to -\infty} \frac{-234}{3} = +\infty$

MÃO EXISTE ASSÍNTOTA HORIZONTAL

3) A população y de uma cultura de bactérias segue o modelo da função logística

$$y = \frac{925}{1 + e^{-0.3 t}}$$

onde t é o tempo em dias. A população tem um limite quando t cresce ilimitadamente?

$$\lim_{t \to +\infty} y = \lim_{t \to +\infty} \frac{925}{1 + e} = \lim_{t \to +\infty} \frac{925}{1 + (e)^{0,3t}} = \lim_{t \to +\infty} \frac{925}{1 + (e)^{0,3t}} = \lim_{t \to +\infty} \frac{925}{1 + e} = \lim_{t \to +\infty} \frac{$$

$$\left(\frac{a}{b}\right)^{2} = \left(\frac{b}{a}\right)^{2} = \left(\frac{b}{a}\right)^{2} = \frac{b}{a}$$

- 4) A aprendizagem P(t) ao longo de t anos de trabalho de um operário é dada por P(t) = 60 20. e $^{-0.2t}$.
- O que ocorre com a aprendizagem depois de vários anos de trabalho?

$$\lim_{t \to +\infty} P(t) = \lim_{t \to +\infty} \left(6\theta - 2\theta \cdot (1)^{-0.2t} \right) =$$

$$= \lim_{t \to +\infty} \left(60 - 20 \cdot \frac{1}{20,2t} \right) = 60$$

R: A APREMOIZAGEM TENDE A 60.

14) Ache as assíntotas horizontais e verticais:

a)
$$f(x) = \frac{x^2 + 1}{x^2}$$

b)
$$f(x) = \frac{4}{(x-2)^3}$$

b)
$$f(x) = \frac{4}{(x-2)^3}$$
 c) $f(x) = \frac{x^2-2}{x^2-x-2}$ d) $f(x) = \frac{2+x}{1-x}$

d)
$$f(x) = \frac{2+x}{1-x}$$

a)
$$f(x) = \frac{x^2 + 1}{x^2}$$

$$\chi^2 = 0 \iff x = 0$$

ASSINTOTA HORIZONTAL; Y=1

14) Ache as assíntotas horizontais e verticais:

a)
$$f(x) = \frac{x^2 + 1}{x^2}$$

b)
$$f(x) = \frac{4}{(x-2)^3}$$

c)
$$f(x) = \frac{x^2 - 2}{x^2 - x - 2}$$
 d) $f(x) = \frac{2 + x}{1 - x}$

d)
$$f(x) = \frac{2+x}{1-x}$$

VERTICAL; X = 2 ASSINTOTA HORIZONTAL: Y = 0

14) Ache as assíntotas horizontais e verticais:

a)
$$f(x) = \frac{x^2 + 1}{x^2}$$

b)
$$f(x) = \frac{4}{(x-2)^3}$$

c)
$$f(x) = \frac{x^2 - 2}{x^2 - x - 2}$$
 d) $f(x) = \frac{2 + x}{1 - x}$

d)
$$f(x) = \frac{2+x}{1-x}$$

$$(x) = \frac{x^2 - 2}{x^2 - x - 2}$$

$$3x^{2} - x - 2 = 0$$

$$x = \frac{1 \pm \sqrt{1 - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1} = \frac{1 \pm 3}{2}$$

14) Ache as assíntotas horizontais e verticais:

a)
$$f(x) = \frac{x^2 + 1}{x^2}$$

b)
$$f(x) = \frac{4}{(x-2)^3}$$

c)
$$f(x) = \frac{x^2 - 2}{x^2 - x - 2}$$
 d) $f(x) = \frac{2 + x}{1 - x}$

d)
$$f(x) = \frac{2+x}{1-x}$$

ASSINTOTA VERTICAL; X = -

ASSIMOTA HORIZONTAZ

ASSINTOTA HORIZONTAL; y = 1

14) Ache as assíntotas horizontais e verticais:

a)
$$f(x) = \frac{x^2 + 1}{x^2}$$

b)
$$f(x) = \frac{4}{(x-2)^3}$$

b)
$$f(x) = \frac{4}{(x-2)^3}$$
 c) $f(x) = \frac{x^2-2}{x^2-x-2}$ d) $f(x) = \frac{2+x}{1-x}$

d)
$$f(x) = \frac{2+x}{1-x}$$

$$f(1) = \frac{3}{0}$$

ASSIMOTA VERTICALS lim $\frac{3+x}{1-x}$ = lim $\frac{x}{1-x}$ = lim (-1)=-1 1-x=0 (-1)=-1

e)
$$f(x) = \frac{x^3}{x^2 - 1}$$

e)
$$f(x) = \frac{x^3}{x^2 - 1}$$
 f) $f(x) = \frac{-4x}{x^2 + 4}$

g)
$$f(x) = \frac{x^2 - 1}{2x^2 - 8}$$

h)
$$f(x) = \frac{x^2 + 1}{x^3 - 8}$$

 $x^{3} - 8 = 0 \Leftrightarrow x^{3} = 8 \Leftrightarrow x^{3} + \infty$

f(a) = -5

 $\lim_{\chi \to +\infty} \frac{\chi^2 + 1}{\chi^3 - 8} = \lim_{\chi \to +\infty} \frac{\chi^2}{\chi^3} = \lim_{\chi \to +\infty} \frac{1}{\chi} = 0$

 $x^{3} - 8 = 0 \Leftrightarrow x = 0$ $\Rightarrow x = \sqrt{8} \Leftrightarrow x = 2$ $x = \sqrt{8} \Leftrightarrow x = 2$ $x = \sqrt{8} \Leftrightarrow x = \sqrt{2} + \sqrt{1} = 0$ $x = \sqrt{8} \Leftrightarrow x = \sqrt{2} = 0$ $x = \sqrt{8} \Leftrightarrow x = \sqrt{2} = 0$ $x = \sqrt{8} \Leftrightarrow x = \sqrt{2} = 0$ $x = \sqrt{8} \Leftrightarrow x = \sqrt{2} \Rightarrow \sqrt{2} = 0$

ASSINTOTA VERTICAL: X = 2

ASSÍNTOTA HORIZONGAZ:

Associe cada função ao seu gráfico. Recorra às assíntotas horizontais como auxílio.

i)
$$f(x) = \frac{3x^2}{x^2 + 2}$$

$$ii) f(x) = \frac{2x}{\sqrt{x^2 + 2}}$$

$$iii) f(x) = \frac{x}{x^2 + 2}$$

iv)
$$f(x) = 2 + \frac{x^2}{x^4 + 1}$$

$$f(x) = 5 - \frac{1}{x^2 + 1}$$

$$Vi) f(x) = \frac{2x^2 - 3x + 5}{x^2 + 1}$$

i)
$$\lim_{\chi \to +\infty} \frac{3\chi^2}{\chi^2 + \lambda} = \lim_{\chi \to +\infty} \frac{3\chi^2}{\chi^2} = \lim_{\chi \to +\infty} 3 = 3$$

$$\lim_{\chi \to +\infty} \frac{3x^{2}}{\chi^{2} + 2} = \lim_{\chi \to -\infty} 3 = 3$$

$$\lim_{\chi \to -\infty} \frac{2x}{\chi^{2} + 2} = \lim_{\chi \to +\infty} \frac{2x}{\chi} = \lim_{\chi \to +\infty} \frac{2x}{\chi} = \lim_{\chi \to +\infty} 2 = 2$$

$$\lim_{\chi \to +\infty} \frac{2x}{\chi^{2} + 2} = \lim_{\chi \to +\infty} \frac{2x}{\chi^{2}} = \lim_{\chi \to +\infty} 2 = 2$$

 $\lim_{\chi \to -\infty} \frac{2\chi}{\sqrt{\chi^2 + \lambda}} = \lim_{\chi \to -\infty} \frac{2\chi}{\sqrt{\chi^2}} = \lim_{\chi \to -\infty} \frac{2\chi}{\sqrt{\chi^2 + \lambda}} = \lim_$

Associe cada função ao seu gráfico. Recorra às assíntotas horizontais como auxílio.

i)
$$f(x) = \frac{3x^2}{x^2 + 2}$$

$$ii) f(x) = \frac{2x}{\sqrt{x^2 + 2}}$$

$$iii) f(x) = \frac{x}{x^2 + 2}$$

iv)
$$f(x) = 2 + \frac{x^2}{x^4 + 1}$$

V)
$$f(x) = 5 - \frac{1}{x^2 + 1}$$

$$Vi) f(x) = \frac{2x^2 - 3x + 5}{x^2 + 1}$$

III) lim $\frac{x}{x^2+2}$ = lim $\frac{x}{x^2}$ = lim $\frac{1}{x}$ = 0 $x \to +\infty$ x^2+2 $x \to +\infty$ x^2 $x \to +\infty$

$$\lim_{\chi \to -\infty} \frac{\chi}{\chi^2 + \lambda} = \lim_{\chi \to -\infty} \frac{1}{\chi} = 0$$

$$\lim_{\chi \to +\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to +\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4} \right) = \lim_{\chi \to +\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4} \right) = \lim_{\chi \to +\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda} + \frac{\chi^2}{\chi^4 + \lambda} \right) = \lim_{\chi \to -\infty} \left(\frac{1}{\lambda$$

15) Associe cada função ao seu gráfico. Recorra às assíntotas horizontais como auxílio.

i)
$$f(x) = \frac{3x^2}{x^2 + 2}$$

$$ii) f(x) = \frac{2x}{\sqrt{x^2 + 2}}$$

$$iii) f(x) = \frac{x}{x^2 + 2}$$

iv)
$$f(x) = 2 + \frac{x^2}{x^4 + 1}$$

$$f(x) = 5 - \frac{1}{x^2 + 1}$$

$$f(x) = \frac{2x^2 - 3x + 5}{x^2 + 1}$$

V)
$$\lim_{x\to+\infty} \left(5 - \frac{17}{x^2+1}\right) = 5$$

$$\lim_{x \to -\infty} \left(5 - \frac{1}{x^2 + 1} \right) = 5$$

Vi)
$$\lim_{x \to +\infty} \frac{2x^2 - 3x + 5}{x^2 + 1} = \lim_{x \to +\infty} \frac{2x^2}{x^2} = \lim_{x \to +\infty} 2 = 2$$

$$\lim_{x \to -\infty} \frac{2x^{2} - 3x + 5}{x^{2} + 1} = \lim_{x \to -\infty} 2 = 2 \quad f(0) = 5$$

17) Determine os limites, se existir:

a)
$$\lim_{x \to +\infty} \frac{4x - 3}{2x + 5}$$

Solução:

$$\lim_{x \to +\infty} \frac{4x - 3}{2x + 5} = \frac{\lim_{x \to +\infty} (4x - 3) \div x}{\lim_{x \to +\infty} (2x + 5) \div x} = \frac{\lim_{x \to +\infty} 4 - \lim_{x \to +\infty} \frac{3}{x}}{\lim_{x \to +\infty} 2 + \lim_{x \to +\infty} \frac{5}{x}} = \frac{4 - 3 \cdot \lim_{x \to +\infty} \frac{1}{x}}{2 + 5 \cdot \lim_{x \to +\infty} \frac{1}{x}} = \frac{4}{2} = 2$$

b)
$$\lim_{x \to +\infty} \frac{4x + 2x^2}{-7 + 3x^3}$$
 from $\frac{2x^2}{3x^3}$ from $\frac{2}{3x^3}$ from $\frac{2}{3x} = 0$

c)
$$\lim_{x \to -\infty} \frac{2x^2 - x + 5}{4x^3 - 1} = \lim_{x \to -\infty} \frac{3x^2}{5x^3} = \lim_{x \to -\infty} \frac{1}{3x} = 0$$

d)
$$\lim_{x \to -\infty} (x^2 + 5) = +\infty$$

e)
$$\lim_{x \to +\infty} \left(x^3 + 1365\right) = +\infty$$

f)
$$\lim_{x \to +\infty} (3-x) = -\infty$$

g)
$$\lim_{x \to +\infty} (x^2 - x) = +\infty$$

h)
$$\lim_{x \to +\infty} (x^3 - x^2 - x + 1) = +\infty$$

i)
$$\lim_{x \to +\infty} \left(-x^4 + 7x^3 - x^2 + x + 1 \right) = -\infty$$

j)
$$\lim_{x \to +\infty} \frac{x+1}{x^2+1} = \lim_{x \to +\infty} \frac{x}{x^2} = \lim_{x \to +\infty} \frac{1}{x} = 0$$

k)
$$\lim_{x \to -\infty} \frac{x^2 - 5x + 8}{x + 3} = \lim_{x \to -\infty} \frac{x^3}{x} = \lim_{x \to -\infty} x = -\infty$$

1)
$$\lim_{x \to +\infty} \frac{1 - x + x^2 + 5x^3}{4 + x^3} = 5$$

m)
$$\lim_{x \to -\infty} \frac{1 - 4x^3}{5x^3 - 8} = -\frac{4}{5}$$

n)
$$\lim_{x \to +\infty} \left(10 + \underline{e}^{-x}\right) - \lim_{x \to +\infty} \left(10 + \frac{1}{x}\right) = 10$$

 $f(x) = \log x$

o)
$$\lim_{x \to +\infty} \left[\ln (x+1) \right] = +\infty$$

$$\frac{x \left[\ln (x+1) \right]}{20} = +\infty$$

$$\frac{3}{50} = 3,04$$

$$\frac{3}{100} = \frac{3}{4,62}$$

p)
$$\lim_{x \to +\infty} \frac{2x^3 - 5x^2 + 3}{x^2 + 4x - 1}$$

q)
$$\lim_{x \to 2} f(x)$$
 onde $f(x) = \begin{cases} x^2 - 1, & x \le 2 \\ x + 1, & x > 2 \end{cases}$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (x^2 - 1) = 3$$

$$\lim_{x \to 2^{-}} \chi \to 2^{-}$$

$$\lim_{x \to 2^{-}} f(x) = 3$$

$$\lim_{x \to 2^{-}} \chi \to 2$$

$$\lim_{x\to 2^+} f(x) = \lim_{x\to 2^+} (x+1) = 3$$