- §1. Đạo hàm
- §2. Vi phân
- §3. Các định lý cơ bản về hàm khả vi Cực trị
- §4. Công thức Taylor
- §5. Quy tắc L'Hospital

§1. ĐẠO HÀM

1.1. Các định nghĩa

a) Định nghĩa đạo hàm

Cho hàm số y = f(x) xác định trong lân cận (a; b) của

$$x_0 \in (a; b)$$
. Giới hạn:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

(nếu có) được gọi là đạo hàm của y = f(x) tại x_0 .

Ký hiệu là $f'(x_0)$ hay $y'(x_0)$.

Nhận xét. Do $\Delta x = x - x_0$ nên:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

b) Đạo hàm một phía

Cho hàm số y = f(x) xác định trong lân cận phải

$$(x_0;b)$$
 của x_0 . Giới hạn $\lim_{x\to x_0^+}\frac{f(x)-f(x_0)}{x-x_0}$ (nếu có)

được gọi là đạo hàm bên phải của y = f(x) tại x_0 .

Ký hiệu là $f'(x_0^+)$. Tương tự, $f'(x_0^-)$.

Nhận xét. Hàm số f(x) có đạo hàm tại x_0 khi và chỉ khi

$$f'(x_0) = f'(x_0^-) = f'(x_0^+).$$

c) Đạo hàm vô cùng

- Nếu tỉ số $\frac{\Delta y}{\Delta x} \to \infty$ khi $\Delta x \to 0$ thì ta nói y = f(x) có đạo hàm vô cùng tại x_0 .
- Tương tự, ta cũng có các khái niệm đạo hàm vô cùng một phía.

VD 1. Cho
$$f(x) = \sqrt[3]{x} \Rightarrow f'(0) = \infty$$
,
$$f(x) = \sqrt{x} \Rightarrow f'(0^+) = +\infty.$$

Chú ý

Nếu f(x) liên tục và có đạo hàm vô cùng tại x_0 thì tiếp tuyến tại x_0 của đồ thị y=f(x) song song với trục Oy.

1.2. Các quy tắc tính đạo hàm

1) Đạo hàm tổng, hiệu, tích và thương của hai hàm số:

$$(u \pm v)' = u' \pm v';$$
 $(uv)' = u'v + uv';$

$$\left(\frac{k}{v}\right)' = \frac{-kv'}{v^2}, \ k \in \mathbb{R}; \qquad \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}.$$

2) Đạo hàm của hàm số hợp f(x) = y[u(x)]:

$$f'(x) = y'(u).u'(x)$$
 hay $y'(x) = y'(u).u'(x)$.

3) Đạo hàm hàm số ngược của y = y(x):

$$x'(y) = \frac{1}{y'(x)}.$$

Đạo hàm của một số hàm số sơ cấp

$$1)\left(x^{\alpha}\right)'=\alpha.x^{\alpha-1};$$

$$2)\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}};$$

$$3)\left(\sin x\right)' = \cos x;$$

4)
$$\left(\cos x\right)' = -\sin x$$
;

5)
$$(\tan x)' = \frac{1}{\cos^2 x}$$
$$= 1 + \tan^2 x;$$

$$6)\left(\cot x\right)' = -\frac{1}{\sin^2 x};$$

$$7)\left(e^x\right)'=e^x;$$

8)
$$\left(a^{x}\right)' = a^{x} \cdot \ln a;$$

9)
$$\left(\ln\left|x\right|\right)' = \frac{1}{x};$$

$$10) \left(\log_a |x| \right)' = \frac{1}{x \cdot \ln a};$$

11)
$$\left(\arcsin x\right)' = \frac{1}{\sqrt{1 - x^2}};$$

11)
$$\left(\arcsin x\right)' = \frac{1}{\sqrt{1-x^2}};$$
 12) $\left(\arccos x\right)' = \frac{-1}{\sqrt{1-x^2}};$

13)
$$\left(\arctan x\right)' = \frac{1}{1+x^2};$$

13)
$$\left(\arctan x\right)' = \frac{1}{1+x^2}$$
; 14) $\left(\arctan x\right)' = \frac{-1}{1+x^2}$.

1.3. Đạo hàm hàm số cho bởi phương trình tham số

Cho hàm số y = f(x) có phương trình dạng tham số x = x(t), y = y(t). Giả sử x = x(t) có hàm số ngược và hàm số ngược này có đạo hàm thì:

$$y'(x) = \frac{y'(t)}{x'(t)} \frac{hay}{t} y'_x = \frac{y'_t}{x'_t}.$$

VD 2. Tính
$$y'(x)$$
 của hàm số cho bởi
$$\begin{cases} x = 2t^2 - 1 \\ y = 4t^3 \end{cases}, t \neq 0.$$

Giải. Ta có:
$$y'(x) = \frac{(4t^3)'}{(2t^2 - 1)'} = \frac{12t^2}{4t} = 3t$$
.

$$egin{aligned} \mathbf{VD~3.} \ \mathbf{Tính} \ y_x'(1) \ \mathrm{của~hàm~s\^{o}~cho~b\^{o}i} \ \begin{cases} x = e^t \ y = t^2 - 2t \end{cases}. \end{aligned}$$

Giải. Ta có:
$$y'_x = \frac{(t^2 - 2t)'}{(e^t)'} = \frac{2t - 2}{e^t}$$
.

$$x = 1 \Leftrightarrow e^t = 1 \Leftrightarrow t = 0 \Rightarrow y'_x(1) = -2.$$

1.4. Đạo hàm cấp cao

• Giả sử f(x) có đạo hàm f'(x) và f'(x) có đạo hàm thì $\left(f'(x)\right)'=f''(x)$ là đạo hàm cấp hai của f(x).

Tương tự ta có:

$$f^{(n)}(x) = \left(f^{(n-1)}(x)\right)'$$
 là đạo hàm cấp n của $f(x)$.

VD 4. Cho hàm số $f(x) = \sin^2 x$. Tính đạo hàm $f^{(6)}(0)$.

A.
$$f^{(6)}(0) = 32$$
;

B.
$$f^{(6)}(0) = -32$$
;

C.
$$f^{(6)}(0) = -16$$
;

D.
$$f^{(6)}(0) = 0$$
.

Giải. Ta có $f'(x) = \sin 2x \Rightarrow f''(x) = 2\cos 2x$

$$\Rightarrow f'''(x) = -4\sin 2x \Rightarrow f^{(4)}(x) = -8\cos 2x$$

$$\Rightarrow f^{(5)}(x) = 16\sin 2x \Rightarrow f^{(6)}(x) = 32\cos 2x.$$

Vậy
$$f^{(6)}(0) = 32 \Rightarrow A$$
.

VD 5. Tính $f^{(n)}(x)$ của hàm số $f(x) = (1-x)^{n+1}$.

Giải. Ta có
$$f'(x) = -(n+1)(1-x)^n$$

$$f''(x) = n(n+1)(1-x)^{n-1}$$

$$f'''(x) = -(n-1)n(n+1)(1-x)^{n-2}$$

Vậy $f^{(n)}(x) = (-1)^n \cdot (n+1)!(1-x)$.

VD 6. Tính $y^{(n)}$ của hàm số $y = \frac{1}{x^2 - 3x - 4}$.

Giải. Ta có

$$y = \frac{1}{(x+1)(x-4)} = \frac{1}{5} \cdot \frac{1}{x-4} - \frac{1}{5} \cdot \frac{1}{x+1}$$

$$\Rightarrow y = \frac{1}{5} \left[(x-4)^{-1} - (x+1)^{-1} \right].$$

Ta có
$$y' = -\frac{1}{5} [(x-4)^{-2} - (x+1)^{-2}]$$

$$\Rightarrow y'' = \frac{1}{5} \cdot 2 [(x-4)^{-3} - (x+1)^{-3}]$$

$$\Rightarrow y''' = -\frac{1}{5} \cdot 2 \cdot 3 [(x-4)^{-4} - (x+1)^{-4}], \dots$$

Vây
$$y^{(n)} = \frac{(-1)^n n!}{5} \left[\frac{1}{(x-4)^{n+1}} - \frac{1}{(x+1)^{n+1}} \right].$$

1.5. Đạo hàm của hàm số ẩn

- Cho phương trình F(x,y) = 0 (*). Nếu y = y(x) là hàm số xác định trong 1 khoảng nào đó sao cho khi thế y(x) vào (*) ta được đồng nhất thức thì y(x) được gọi là **hàm số ẩn** xác định bởi (*).
- Đạo hàm hai vế (*) theo x, ta được $F'_x + F'_y y'_x = 0$.

Vậy
$$y'_x = -\frac{F'_x}{F'_y}, F'_y \neq 0.$$

 $y'(x) = y'_x$ được gọi là đạo hàm của hàm số ẩn y(x).

VD 7. Cho hàm ấn y(x) xác định bởi $xy - e^x + e^y = 0$. Tính y'(x).

Giải. Ta có
$$F = xy - e^x + e^y$$

$$\Rightarrow \begin{cases} F_x' = y - e^x \\ F_y' = x + e^y. \end{cases}$$

Vậy
$$y'(x) = -\frac{F'_x}{F'_y} = \frac{e^x - y}{x + e^y}.$$

VD 8. Cho hàm ẩn y(x) xác định bởi:

$$xy - e^x + \ln y = 0$$
 (*). Tính $y'(0)$.

Giải. Ta có:

$$F = xy - e^{x} + \ln y \Rightarrow \begin{cases} F'_{x} = y - e^{x} \\ F'_{y} = x + \frac{1}{y} \end{cases}$$
$$\Rightarrow y'(x) = \frac{e^{x} - y}{x + \frac{1}{y}}.$$

Thay x = 0 vào (*), ta được: $-1 + \ln y = 0 \Rightarrow y = e$.

Vậy
$$y'(0) = \frac{e^0 - e}{0 + \frac{1}{e}} = e - e^2$$
.

VD 9. Cho hàm ẩn y(x) xác định bởi:

$$\ln \sqrt{x^2 + y^2} = \arctan \frac{y}{x}$$
. Tính $y'(x)$.

Giải. Ta có:
$$F = \ln \sqrt{x^2 + y^2 - \arctan \frac{y}{x}}$$

$$\Rightarrow F_x' = \frac{x}{x^2 + y^2} - \frac{-\frac{y}{x^2}}{1 + \frac{y^2}{x^2}} = \frac{x + y}{x^2 + y^2},$$

Turong tự
$$F'_y = \frac{y-x}{x^2+y^2} \Rightarrow y'(x) = \frac{x+y}{x-y}$$
.

Chú ý

Ta có thể xem hàm ẩn y(x) như hàm hợp u(x) và thực hiện đạo hàm như hàm số hợp.

VD 10. Cho hàm ẩn y(x) xác định bởi:

$$y^3 + (x^2 + 1)y + x^4 = 0$$
. Tính $y'(x)$.

Giải. Đạo hàm hai vế của phương trình theo x, ta được:

$$3y^2y' + 2xy + (x^2 + 1)y' + 4x^3 = 0.$$

Vậy
$$y'(x) = -\frac{4x^3 + 2xy}{3y^2 + x^2 + 1}$$
.

.....

§2. VI PHÂN

2.1. Vi phân cấp một

Hàm số y=f(x) được gọi là $\emph{khả}$ \emph{vi} tại $x_0\in D_f$ nếu

 $\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0) \text{ có thể biểu diễn dưới}$

dạng: $\Delta f(x_0) = A.\Delta x + O(\Delta x)$

với A là hằng số và $0(\Delta x)$ là VCB khi $\Delta x \rightarrow 0$.

Khi đó, đại lượng $A.\Delta x$ được gọi là vi phân của hàm số y=f(x) tại x_0 . Ký hiệu $df(x_0)$ hay $dy(x_0)$.

<u>Nhận xét</u>

•
$$\Delta f(x_0) = A.\Delta x + 0(\Delta x) \Rightarrow \frac{\Delta f(x_0)}{\Delta x} = A + \frac{0(\Delta x)}{\Delta x}$$

$$\Rightarrow \frac{\Delta f(x_0)}{\Delta x} \xrightarrow{\Delta x \to 0} A \Rightarrow f'(x_0) = A.$$

$$\Rightarrow df(x_0) = f'(x_0) \cdot \Delta x \text{ hay } df(x) = f'(x) \cdot \Delta x.$$

• Chọn $f(x) = x \Rightarrow df(x) = \Delta x \Rightarrow dx = \Delta x$.

Vậy
$$df(x) = f'(x)dx$$
 hay $dy = y'dx$.

VD 1. Tính vi phân cấp 1 của $f(x) = x^2 e^{3x}$ tại $x_0 = -1$.

Giải. Ta có
$$f'(x) = (2x + 3x^2)e^{3x} \Rightarrow f'(-1) = e^{-3}$$

$$V_{ay} df(-1) = e^{-3} dx.$$

VD 2. Tính vi phân cấp 1 của $y = \arctan(x^2 + 1)$.

Giải. Ta có
$$y' = \frac{(x^2+1)'}{1+(x^2+1)^2} = \frac{2x}{1+(x^2+1)^2}$$
.

Vậy
$$dy = \frac{2x}{1 + (x^2 + 1)^2} dx$$
.

VD 3. Tính vi phân cấp 1 của hàm số $y = 2^{\ln(\arcsin x)}$.

Giải. Ta có
$$y' = \left[\ln(\arcsin x)\right]' 2^{\ln(\arcsin x)} \ln 2$$

$$= \frac{1}{\sqrt{1 - x^2}} 2^{\ln(\arcsin x)} \ln 2$$

$$\Rightarrow dy = \frac{2^{\ln(\arcsin x)} \ln 2}{\sqrt{1 - x^2} \arcsin x} dx.$$

2.2. Vi phân cấp cao

Giả sử y = f(x) có đạo hàm đến cấp n thì:

$$d^n y = d(d^{n-1}y) = y^{(n)}dx^n$$

được gọi là vi phân cấp n của hàm y = f(x).

VD 4. Tính vi phân cấp 2 của hàm số $y = \ln(\sin x)$.

Giải. Ta có
$$y' = \frac{\cos x}{\sin x} \Rightarrow y'' = -\frac{1}{\sin^2 x}$$
.

$$V\hat{a}y \ d^2y = -\frac{dx^2}{\sin^2 x}.$$

VD 5. Tính vi phân cấp n của hàm số $y = e^{2x}$.

Giải. Ta có
$$y' = 2e^{2x} \Rightarrow y'' = 2^2 e^{2x}$$

 $\Rightarrow ... \Rightarrow y^{(n)} = 2^n e^{2x} \Rightarrow d^n y = 2^n e^{2x} dx^n.$

VD 6. Tính vi phân cấp 2 của $f(x) = \tan x$ tại $x_0 = \frac{\pi}{4}$.

Giải. Ta có $f'(x) = 1 + \tan^2 x$

$$\Rightarrow f''(x) = 2\tan x(1 + \tan^2 x) \Rightarrow f''\left(\frac{\pi}{4}\right) = 4.$$

Vậy
$$d^2 f\left(\frac{\pi}{4}\right) = 4dx^2$$
.

Chú ý

Khi x là một hàm số độc lập với y thì công thức $d^n y = y^{(n)} dx^n$ không còn đúng nữa.

.....

§3. CÁC ĐỊNH LÝ CƠ BẢN VỀ HÀM KHẢ VI CỰC TRỊ CỦA HÀM SỐ

3.1. Các định lý

3.1.1. Bổ đề Fermat

Cho hàm số f(x) xác định trong (a;b) và có đạo hàm tại $x_0 \in (a;b)$. Nếu f(x) đạt giá trị lớn nhất (hoặc bé nhất) tại x_0 trong (a;b) thì $f'(x_0)=0$.

3.1.2. Định lý Rolle

Cho hàm số f(x) liên tục trong [a;b] và khả vi trong (a;b). Nếu f(a)=f(b) thì $\exists c \in (a;b)$ sao cho f'(c)=0.

3.1.3. Định lý Cauchy

Cho hai hàm số f(x), g(x) liên tục trong [a;b], khả vi trong (a;b) và $g'(x) \neq 0, \forall x \in (a;b)$.

Khi đó, $\exists c \in (a;b)$ sao cho:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

3.1.4. Định lý Lagrange

Cho hàm số f(x) liên tục trong [a;b], khả vi trong (a;b).

Khi đó, $\exists c \in (a;b)$ sao cho:

$$\frac{f(b) - f(a)}{b - a} = f'(c).$$

- 3.2. Cực trị của hàm số
- 3.2.1. Hàm số đơn điệu
- a) Định nghĩa

Cho hàm số f(x) liên tục trong trong (a;b). Khi đó:

• f(x) được gọi là tăng (đồng biến) trong (a;b) nếu

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} > 0, \ \forall x_1, x_2 \in (a;b) \ \text{và} \ x_1 \neq x_2.$$

• f(x) được gọi là giảm (nghịch biến) trong (a;b) nếu

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} < 0, \ \forall x_1, x_2 \in (a;b) \ \text{và} \ x_1 \neq x_2.$$

• f(x) được gọi là đơn điệu trong (a;b) nếu f(x) tăng hay giảm trong (a;b).

• Nếu f(x) đơn điệu trong (a;b) và liên tục trong (a;b] thì f(x) đơn điệu trong (a;b] (trường hợp khác tương tự).

b) Định lý

Cho hàm số f(x) khả vi trong trong (a;b). Khi đó:

- Nếu $f'(x) > 0, \forall x \in (a;b)$ thì f(x) tặng trong (a;b).
- Nếu $f'(x) < 0, \forall x \in (a;b)$ thì f(x) giảm trong (a;b).

VD 1. Tìm các khoảng đơn điệu của $y = \ln(x^2 + 1)$.

Giải. Ta có
$$D = \mathbb{R}$$
 và $y' = \frac{2x}{x^2 + 1}$.

$$y' = \frac{2x}{x^2 + 1} > 0 \Leftrightarrow x > 0.$$

Vậy hàm số giảm trên $(-\infty; 0)$ và tăng trên $(0; +\infty)$.

VD 2. Tìm các khoảng đơn điệu của $f(x) = \frac{x^2 + 1}{(x-1)^2}$.

Giải. Ta có
$$D = \mathbb{R} \setminus \{1\}$$
 và $f'(x) = \frac{2 - 2x^2}{(x - 1)^4}$.
$$f'(x) > 0 \Leftrightarrow -1 < x < 1.$$

Vậy hàm số giảm trên hai khoảng $(-\infty; -1)$, $(1; +\infty)$ và tăng trên khoảng (-1; 1).

VD 3. Tìm các khoảng đơn điệu của $y = \frac{1}{\sqrt{x^2 - 2x}}$.

Giải. Ta có $D = (-\infty; 0) \cup (2; +\infty)$ và

$$y' = \frac{1 - x}{\sqrt{(x^2 - 2x)^3}} > 0 \Leftrightarrow x < 0.$$

Vậy hàm số tăng trên $(-\infty; 0)$ và giảm trên $(2; +\infty)$.

VD 4. Tìm các khoảng đơn điệu của $y = e^{\sqrt{x^3-4}}$.

Giải. Ta có
$$D = \sqrt[3]{4}; +\infty$$
 và

$$y' = \frac{3x^2 \cdot e^{\sqrt{x^3 - 4}}}{2\sqrt{x^3 - 4}} > 0 \Leftrightarrow x > \sqrt[3]{4}.$$

Vậy
$$y$$
 tăng trên $(\sqrt[3]{4}; +\infty)$ và giảm trên $(-\infty; \sqrt[3]{4})$.

3.2.2. Cực trị

a) Định nghĩa

Nếu f(x) liên tục trong (a;b) chứa x_0 và $f(x_0) < f(x)$ hay $f(x_0) > f(x)$, $\forall x \in (a;b) \setminus \{x_0\}$ thì f(x) đạt cực tiểu hay cực đại tại x_0 .

b) Định lý

Cho f(x) có đạo hàm đến cấp 2n trong (a;b) chứa x_0 thỏa $f'(x_0)=...=f^{(2n-1)}(x_0)=0$ và $f^{(2n)}(x_0)\neq 0$.

- Nếu $f^{(2n)}(x_0) > 0$ thì f(x) đạt **cực tiểu** tại x_0 .
- Nếu $f^{(2n)}(x_0) < 0$ thì f(x) đạt **cực đại** tại x_0 .

VD 5. Tìm cực trị (nếu có) của $f(x) = x^4$, $f(x) = x^3$.

Giải

• Xét hàm số $f(x) = x^4$, ta có:

$$f'(x) = 4x^3 = 0 \Leftrightarrow x = 0.$$

$$f''(x) = 12x^2, f'''(x) = 24x, f^{(4)}(x) = 24$$

$$\Rightarrow f'(0) = f''(0) = f'''(0) = 0, f^{(4)}(0) = 24 > 0.$$

Vậy hàm số $f(x) = x^4$ đạt cực tiểu tại x = 0.

• Xét hàm số $f(x) = x^3$, ta có:

$$f'(x) = 3x^2 = 0 \Leftrightarrow x = 0.$$

$$f''(x) = 6x$$
, $f'''(x) = 6 \Rightarrow f''(0) = 0$, $f'''(0) = 6 \neq 0$.

Vậy hàm số $f(x) = x^3$ không có cực trị.

3.2.3. Giá trị lớn nhất – giá trị nhỏ nhất

a) Định nghĩa

Cho hàm số y = f(x) có MXĐ D và $X \subset D$.

• Số M được gọi là **giá trị lớn nhất** của f(x) trên X nếu:

$$\exists x_0 \in X : f(x_0) = M \text{ và } f(x) \leq M, \ \forall x \in X.$$

Ký hiệu là:
$$M = \max_{x \in X} f(x)$$
.

• Số m được gọi là **giá trị nhỏ nhất** của f(x) trên X nếu:

$$\exists x_0 \in X : f(x_0) = m \text{ và } f(x) \ge m, \ \forall x \in X.$$

Ký hiệu là:
$$m = \min_{x \in X} f(x)$$
.

Chú ý

- Hàm số có thể không đạt max hoặc min trên $X \subset D$.
- Nếu $M = \max_{x \in X} f(x)$ và $m = \min_{x \in X} f(x)$ thì: $m \le f(x) \le M, \ \forall x \in X.$

b) Phương pháp tìm max – min

Hàm số liên tục trên đoạn [a; b]

Cho hàm số y = f(x) liên tục trên đoạn [a; b].

Để tìm $\max_{x \in [a;b]} f(x)$ và $\min_{x \in [a;b]} f(x)$, ta thực hiện các bước sau:

- Bước 1. Giải phương trình f'(x) = 0. Giả sử có n nghiệm $x_1, ..., x_n \in [a; b]$ (loại các nghiệm ngoài [a; b]).
- Bước 2. Tính $f(a), f(x_1), ..., f(x_n), f(b)$.
- Bước 3. Giá trị lớn nhất, nhỏ nhất trong các giá trị đã tính ở trên là các giá trị max, min tương ứng cần tìm.

VD 6. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số

$$f(x) = x^4 - \frac{3}{2}x^2 - x + 3$$
 trên đoạn [0; 2].

Giải. Ta có: hàm số f(x) liên tục trên đoạn [0; 2].

$$f'(x) = 4x^3 - 3x - 1 = 0 \Leftrightarrow x = -\frac{1}{2} \lor x = 1.$$

Do $x = -\frac{1}{2} \notin [0; 2]$ nên ta loại.

Mặt khác:
$$f(0) = 3$$
, $f(1) = \frac{3}{2}$, $f(2) = 11$.

Vậy
$$\max_{x \in [0;2]} f(x) = 11$$
 tại $x = 2$, $\min_{x \in [0;2]} f(x) = \frac{3}{2}$ tại $x = 1$.

Chú ý

- Nếu đề bài chưa cho đoạn [a; b] thì ta phải tìm MXĐ
 của hàm số trước khi làm bước 1.
- Có thể đổi biến số t = t(x) và viết y = f(x) = g(t(x)). Gọi T là miền giá trị của hàm t(x) (ta thường gọi là điều kiện của t đối với x) thì:

$$\max_{x \in X} f(x) = \max_{t \in T} g(t), \min_{x \in X} f(x) = \min_{t \in T} g(t).$$

VD 7. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số $f(x) = \sqrt{-x^2 + 5x + 6}.$

Giải. Ta có điều kiện:

$$-x^{2} + 5x + 6 \ge 0 \Leftrightarrow -1 \le x \le 6 \Rightarrow D = [-1; 6].$$

Hàm số $f(x) = \sqrt{-x^2 + 5x + 6}$ liên tục trên D.

$$f'(x) = \frac{-2x+5}{2\sqrt{-x^2+5x+6}} = 0 \Leftrightarrow x = \frac{5}{2} \in D.$$

Mặt khác:
$$f(-1) = f(6) = 0$$
, $f(\frac{5}{2}) = \frac{7}{2}$.

Vậy
$$\max_{x \in D} f(x) = \frac{7}{2}$$
 tại $x = \frac{5}{2}$,
$$\min_{x \in D} f(x) = 0 \text{ tại } x = -1 \lor x = 6.$$

VD 8. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số

$$y = \frac{\sin x + 1}{\sin^2 x + \sin x + 1}.$$

Giải. Hàm số liên tục trên R.

Đặt $t = \sin x$, ta được:

$$y = \frac{t+1}{t^2+t+1}, \ t \in [-1; 1].$$

$$y' = \frac{-t^2 - 2t}{(t^2 + t + 1)^2} = 0 \Leftrightarrow t = 0 \in [-1; 1];$$

$$y(-1) = 0$$
, $y(0) = 1$, $y(1) = \frac{2}{3}$.

Vậy $\max_{x \in \mathbb{R}} y = 1 \Leftrightarrow \sin x = 0 \Leftrightarrow x = k\pi, k \in \mathbb{Z}.$

$$\min_{x \in \mathbb{R}} y = 0 \Leftrightarrow \sin x = -1 \Leftrightarrow x = -\frac{\pi}{2} + k2\pi, k \in \mathbb{Z}.$$

Hàm số liên tục trên khoảng (a; b)

Cho hàm y = f(x) liên tục trên (a; b) (a, b) có thể là ∞).

Để tìm $\max_{x \in (a;b)} f(x)$ và $\min_{x \in (a;b)} f(x)$, ta thực hiện các bước:

- Bước 1. Giải phương trình f'(x) = 0. Giả sử có n nghiệm $x_1, ..., x_n \in [a; b]$ (loại các nghiệm ngoài [a; b]).
- Bước 2. Tính $f(x_1),...,f(x_n)$ và hai giới hạn

$$L_1 = \lim_{x \to a^+} f(x), L_2 = \lim_{x \to b^-} f(x).$$

- Bước 3. Kết luận:
- 1) Nếu $\max\{f(x_1),...,f(x_n)\} > \max\{L_1,L_2\}$ thì $\max_{x \in (a;b)} f = \max\{f(x_1),...,f(x_n)\};$
- 2) Nếu $\min\{f(x_1),...,f(x_n)\} < \min\{L_1,L_2\}$ thì $\min_{x \in (a;b)} f = \min\{f(x_1),...,f(x_n)\};$
- 3) Nếu không thỏa 1) (hoặc 2)) thì hàm số không đạt max (hoặc min).

VD 9. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số

$$f(x) = \frac{x^3}{x^2 - 1} \text{ trên khoảng } (1; +\infty).$$

Giải. Ta có:

$$f'(x) = \frac{x^4 - 3x^2}{(x^2 - 1)^2} = 0 \Leftrightarrow x = \sqrt{3} \in (1; +\infty).$$

$$f\left(\sqrt{3}\right) = \frac{3\sqrt{3}}{2}.$$

Giới hạn: $\lim_{x \to 1^+} f(x) = \lim_{x \to +\infty} f(x) = +\infty$.

Do $\frac{3\sqrt{3}}{2} < +\infty$ nên f(x) không đạt max và

$$\min_{x \in \mathbb{R}} f(x) = \frac{3\sqrt{3}}{2} \Leftrightarrow x = \sqrt{3}.$$

Chú ý

Ta có thể lập bảng biến thiên của f(x) thay cho bước 3.

VD 10. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số

$$f(x) = \frac{x}{\sqrt{x^2 + 2} - 1}.$$

Giải. Ta có:

$$\sqrt{x^2 + 2} \ge \sqrt{2} > 1 \Rightarrow \sqrt{x^2 + 2} - 1 > 0 \Rightarrow D = \mathbb{R}.$$

$$f'(x) = \frac{2 - \sqrt{x^2 + 2}}{\sqrt{x^2 + 2} \left(\sqrt{x^2 + 2} - 1\right)^2} = 0 \Leftrightarrow x = \pm \sqrt{2}.$$

$$f\left(\sqrt{2}\right) = \sqrt{2}, f\left(-\sqrt{2}\right) = -\sqrt{2}.$$

Giới hạn:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x}{\left| x \middle| \left(\sqrt{1 + \frac{2}{x^2}} - \frac{1}{|x|} \right) \right|} \Rightarrow \lim_{x \to \pm \infty} f(x) = \pm 1.$$

Bảng biến thiên

Vậy
$$\max_{x \in \mathbb{R}} f(x) = \sqrt{2} \Leftrightarrow x = \sqrt{2}$$
,
$$\min_{x \in \mathbb{R}} f(x) = -\sqrt{2} \Leftrightarrow x = -\sqrt{2}$$
.

.....

Chương 2. Phép tính vi phân hàm một biến số §4. CÔNG THỰC TAYLOR

4.1. Công thức khai triển Taylor

a) Khai triển Taylor với phần dư Peano

Cho hàm f(x) liên tục trên [a; b] có đạo hàm đến cấp n+1 trên (a; b) với $x, x_0 \in (a; b)$ ta có:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + O((x - x_0)^n).$$

b) Khai triển Maclaurin

• Khai triển Taylor với phần dư Peano tại $x_0 = 0$ được gọi là *khai triển Maclaurin*.

Vây
$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k + O(x^n).$$

Khai triển Maclaurin được viết lại:

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + O(x^n).$$

VD 1. Khai triển Maclaurin của $f(x) = \tan x$ đến x^3 .

Giải. Ta có: f(0) = 0,

$$f'(x) = 1 + \tan^2 x \Rightarrow f'(0) = 1,$$

$$f''(x) = 2 \tan x + 2 \tan^3 x \Rightarrow f''(0) = 0,$$

$$f'''(x) = 2(1 + \tan^2 x) + 6 \tan^2 x(1 + \tan^2 x)$$

$$\Rightarrow f'''(0) = 2.$$

Vây $\tan x = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^2 + 0(x^3)$ $= x + \frac{1}{3}x^3 + 0(x^3).$

4.2. Các khai triển Maclaurin cần nhớ

1)
$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + 0(x^n)$$
.

2)
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + 0(x^n)$$
.

3)
$$\ln(1+x) = \frac{x}{1} - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + 0(x^n).$$

4)
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + 0(x^n).$$

5)
$$\sin x = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + 0(x^n).$$

Chú ý

Nếu u(x) là VCB khi $x \to 0$ thì ta thay x trong các công thức trên bởi u(x).

VD 2. Khai triển Maclaurin hàm số $y = \frac{1}{1+3x^2}$ đến x^6 .

Giải.
$$y = \frac{1}{1 - (-3x^2)}$$

$$= 1 + (-3x^2) + (-3x^2)^2 + (-3x^2)^3 + 0(x^6)$$

$$= 1 - 3x^2 + 9x^4 - 27x^6 + 0(x^6).$$

VD 3. Khai triển Maclaurin của $y = \ln(1 - 2x^2)$ đến x^6 .

Giải.
$$y = \ln[1 + (-2x^2)]$$

$$= (-2x^2) - \frac{(-2x^2)^2}{2} + \frac{(-2x^2)^3}{3} + 0(x^6)$$

$$= -2x^2 - 2x^4 - \frac{8}{3}x^6 + 0(x^6).$$

VD 4. Khai triển Maclaurin của hàm số $y = 2^x$ đến x^4 .

Giải. Biến đổi:

$$y = 2^x = e^{\ln 2^x} = e^{x \ln 2}$$
.

$$V\hat{a}y \ 2^x = e^{x \ln 2}$$

$$= 1 + \frac{x \ln 2}{1!} + \frac{(x \ln 2)^2}{2!} + \frac{(x \ln 2)^3}{3!} + \frac{(x \ln 2)^4}{4!} + 0(x^4)$$

$$= 1 + x \ln 2 + \frac{\ln^2 2}{2} x^2 + \frac{\ln^3 2}{6} x^3 + \frac{\ln^4 2}{24} x^4 + 0(x^4).$$

VD 5. Cho hàm số $f(x) = x \cos 2x$. Tính $f^{(7)}(0)$.

Giải. Ta có:

$$\cos 2x = 1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} - \frac{(2x)^6}{6!} + 0(x^6)$$

$$\Rightarrow f(x) = x - \frac{4x^3}{2!} + \frac{16x^5}{4!} - \frac{64x^7}{6!} + 0(x^7)$$

$$\Rightarrow \frac{f^{(7)}(0)}{7!} = -\frac{64}{6!} \Rightarrow f^{(7)}(0) = -448.$$

.....

§5. QUY TẮC L'HOSPITAL

Định lý (quy tắc L'Hospital)

Cho hai hàm số f(x), g(x) liên tục và khả vi trong lân cận của điểm x_0 .

Nếu
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$
 (hoặc ∞) thì:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

VD 1. Tìm giới hạn
$$L = \lim_{x \to 0} \frac{e^x + e^{-x} - 2}{x^2}$$
.

Giải.
$$L = \lim_{x \to 0} \frac{(e^x + e^{-x} - 2)'}{(x^2)'} = \lim_{x \to 0} \frac{e^x - e^{-x}}{2x}$$

$$= \lim_{x \to 0} \frac{(e^x - e^{-x})'}{(2x)'} = \lim_{x \to 0} \frac{e^x + e^{-x}}{2} = 1.$$

VD 2. Tìm giới hạn
$$L = \lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^2 \cdot \arctan^2 x}$$
.

A.
$$L = 0$$
;

B.
$$L=\infty$$
;

A.
$$L = 0$$
; B. $L = \infty$; C. $L = \frac{1}{2}$; D. $L = \frac{1}{3}$.

Giải. Khi
$$x \to 0$$
, ta có:

$$\frac{x^2 - \sin^2 x}{x^2 \cdot \arctan^2 x} \sim \frac{x^2 - \sin^2 x}{x^4}$$

$$\Rightarrow L = \lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^4}.$$

$$L = \lim_{x \to 0} \frac{2x - \sin 2x}{4x^3}$$

$$= \lim_{x \to 0} \frac{2 - 2\cos 2x}{12x^2}$$

$$= \lim_{x \to 0} \frac{4\sin 2x}{24x}$$

$$= \lim_{x \to 0} \frac{8\cos 2x}{24} = \frac{1}{3} \Rightarrow D.$$

VD 3. Tìm giới hạn $L = \lim_{x \to 0^+} (x^3 \ln x)$ (dạng $0 \times \infty$).

Giải. Ta có:

$$L = \lim_{x \to 0^+} \frac{\ln x}{x^{-3}}$$

$$= \lim_{x \to 0^{+}} \frac{\frac{1}{x}}{-3x^{-4}}$$

$$= \lim_{x \to 0^+} \frac{-x^3}{3} = 0.$$

VD 4. Tìm giới hạn
$$L = \lim_{x \to 1} x^{\overline{x-1}}$$
 (dạng 1^{∞}).

Giải. Ta có:
$$L = \lim_{x \to 1} e^{\ln x^{\frac{1}{x-1}}}$$

$$= \lim_{x \to 1} e^{\frac{1}{x-1} \ln x} = e^{\lim_{x \to 1} \frac{\ln x}{x-1}}$$

$$= e^{\lim_{x \to 1} \frac{1}{x}} = e.$$

.....