Package 'TensorComplete'

May 10, 2021

Type Package

Title Tensor Noise Reduction and Completion Methods
Version 1.1.0
Author Chanwoo Lee <chanwoo.lee@wisc.edu>, Miaoyan Wang <miaoyan.wang@wisc.edu></miaoyan.wang@wisc.edu></chanwoo.lee@wisc.edu>
Maintainer Chanwoo Lee <chanwoo.lee@wisc.edu></chanwoo.lee@wisc.edu>
Imports pracma, methods, utils, tensorregress, MASS
Description Efficient algorithms for tensor noise reduction and completion. This package includes a suite of parametric and nonparametric tools for estimating tensor signals from noisy, possibly incomplete observations. The methods allow a broad range of data types, including continuous, binary, and ordinal-valued tensor entries. The algorithms employ the alternating optimization. The detailed algorithm description can be found in the following three references.
URL Chanwoo Lee and Miaoyan Wang. Tensor denoising and completion based on ordinal observations. ICML, 2020. http://proceedings.mlr.press/v119/lee20i.html Chanwoo Lee and Miaoyan Wang. Beyond the Signs: Nonparametric tensor completion via sign series. 2021. https://arxiv.org/abs/2102.00384 Chanwoo Lee, Lexin Li, Hao Helen Zhang, and Miaoyan Wang. Nonparametric trace regression in high dimensions via sign series representation. 2021. https://arxiv.org/abs/2105.01783
License GPL(>=2)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Altopt 2 bic 3 fit_continuous_cp 3
fit_continuous_tucker
fit_nonparaT
fit_ordinal
likelihood
realization
Index 10
1

2 Altopt

Altopt	Alternating optimization of the weighted classification loss	

Description

Optimize the weighted classification loss given a weight tensor, an observed data tensor, and a large margin loss. This function is used as a subroutine in the main function fit_nonparaT.

Usage

```
Altopt(Ybar,W,r,type = c("logistic","hinge"),start = "linear")
```

Arguments

Ybar A given (possibly noisy and incomplete) data tensor.

W A weight tensor used in the weighted classification loss.

r A rank to be fitted (CP rank).

type A large margin loss to be used. Logistic or hinge loss is available.

start Choice of initialization method. Use random initialization if start = "random";

Use the initialization based on low rank approximation if start = "linear". Lin-

ear initialization is default.

Value

The returned object is a list of components.

binary_obj - Trajectory of binary loss values over iterations.

obj - Trajectory of weighted classification loss values over iterations.

iter - The number of iterations.

error - Trajectory of errors over iterations.

fitted - A tensor that optimizes the weighted classification loss.

References

C. Lee and M. Wang. Beyond the Signs: Nonparametric Tensor Completion via Sign Series. *arXiv* preprint arXiv:2102.00384, 2021.

Examples

```
library(tensorregress)
indices = c(2,3,4)
noise = rand_tensor(indices)@data
Theta = array(runif(prod(indices),min=-3,max = 3),indices)

# The signal plus noise model
Y = Theta + noise

# Optimize the weighted classification for given a sign tensor sign(Y) and a weight tensor abs(Y)
result = Altopt(sign(Y),abs(Y),r = 3,type = "hinge",start = "linear")
signTheta = sign(result$fitted)
```

bic 3

bic	Bayesian Information Criterion (BIC) value.	

Description

Compute Bayesian Information Criterion (BIC) given a parameter tensor, an observed tensor, the dimension, and the rank based on cumulative logistic model. This BIC function is designed for searching rank in the fit_ordinal function.

Usage

```
bic(ttnsr,theta,omega,d,r)
```

Arguments

ttnsr	An observed tensor.
theta	A continuous-valued tensor (latent parameters).
omega	The cut-off points.
d	Dimension of the tensor.
r	Rank of the tensor.

Value

BIC value at given inputs based on cumulative logistic model.

fit_continuous_cp	Signal tensor estimation from a noisy and incomplete data tensor
	based on CP low rank tensor method.

Description

Estimate a signal tensor from a noisy and incomplete data tensor using CP low rank tensor method.

Usage

```
fit_continuous_cp(data,r)
```

Arguments

data A given (possibly noisy and incomplete) data tensor.

r Rank of the signal tensor.

Value

The returned object is a list of components.

est - An estimated signal tensor based on CP low rank tensor method.

U - A list of factor matrices.

lambda - A vector of tensor singular values.

4 fit_continuous_tucker

Examples

```
library(tensorregress)
indices = c(2,3,4)
noise = rand_tensor(indices)@data
Theta = array(runif(prod(indices),min=-3,max = 3),indices)
# The signal plus noise model
Y = Theta + noise
# Estimate Theta from CP low rank tensor method
hatTheta = fit_continuous_cp(Y,3)
print(hatTheta$est)
```

fit_continuous_tucker Signal tensor estimation from a noisy and incomplete data tensor based on the Tucker model.

Description

Estimate a signal tensor from a noisy and incomplete data tensor using the Tucker model.

Usage

```
fit_continuous_tucker(ttnsr,r,alpha = TRUE)
```

Arguments

ttnsr A given (possibly noisy and incomplete) data tensor.

r A rank to be fitted (Tucker rank).

alpha A signal level

alpha = TRUE If the signal level is unknown.

Value

A list containing the following:

C - An estimated core tensor.

A - Estimated factor matrices.

iteration - The number of iterations.

cost - Log-likelihood value at each iteration.

Examples

```
# Latent parameters
library(tensorregress)
alpha = 10
A_1 = matrix(runif(15*2,min=-1,max=1),nrow = 15)
A_2 = matrix(runif(15*2,min=-1,max=1),nrow = 15)
A_3 = matrix(runif(15*2,min=-1,max=1),nrow = 15)
C = as.tensor(array(runif(2^3,min=-1,max=1),dim = c(2,2,2)))
theta = ttm(ttm(ttm(C,A_1,1),A_2,2),A_3,3)@data
```

fit_nonparaT 5

```
theta = alpha*theta/max(abs(theta))
adj = mean(theta)
theta = theta-adj
omega = c(-0.2,0.2)+adj

# Observed tensor
ttnsr <- realization(theta,omega)@data

# Estimation of parameters
continuous_est = fit_continuous_tucker(ttnsr,c(2,2,2),alpha = 10)</pre>
```

fit_nonparaT

Main function for nonparametric tensor estimation and completion based on low sign rank model.

Description

Estimate a signal tensor from a noisy and incomplete data tensor using nonparametric tensor method via sign series.

Usage

```
fit_nonparaT(Y,truer,H,Lmin,Lmax,option = 2)
```

Arguments

Υ	A given (possibly noisy and incomplete) data tensor. The function allows both continuous- and binary-valued tensors. Missing value should be encoded as NA.
truer	Sign rank of the signal tensor.
Н	Resolution parameter.
Lmin	Minimum value of the signal tensor (or minimum value of the tensor Y).
Lmax	Maximum value of the signal tensor (or maximum value of the tensor Y).
option	A large margin loss to be used. Use logistic loss if option = 1 , hinge loss if option = 2 . Hinge loss is default.

Value

The returned object is a list of components.

fitted - A series of optimizers that minimize the weighted classification loss at each level.

est - An estimated signal tensor based on nonparametic tensor method via sign series.

References

C. Lee and M. Wang. Beyond the Signs: Nonparametric Tensor Completion via Sign Series. *arXiv* preprint arXiv:2102.00384, 2021.

fit_ordinal

Examples

```
library(tensorregress)
indices = c(2,3,4)
noise = rand_tensor(indices)@data
Theta = array(runif(prod(indices),min=-3,max = 3),indices)

# The signal plus noise model
Y = Theta + noise

# Estimate Theta from nonparametic completion method via sign series
hatTheta = fit_nonparaT(Y,truer = 3,H = 3,Lmin = -3,Lmax = 3, option =2)
print(hatTheta$est)
```

fit_ordinal

Main function for parametric tensor estimation and completion based on ordinal observations.

Description

Estimate a signal tensor from a noisy and incomplete ordinal-valued tensor using the cumulative logistic model.

Usage

```
fit_ordinal(ttnsr,r,omega=TRUE,alpha = TRUE)
```

Arguments

A given (possibly noisy and incomplete) data tensor. The function allows binaryand ordinal-valued tensors. Missing value should be encoded as NA.

r A rank to be fitted (Tucker rank).

omega The cut-off points if known,
omega = TRUE if unknown.

alpha A signal level

alpha = TRUE if the signal level is unknown.

Value

A list containing the following:

C - An estimated core tensor.

A - Estimated factor matrices.

theta - An estimated latent parameter tensor.

iteration - The number of iterations.

cost - Log-likelihood value at each iteration.

omega - Estimated cut-off points.

likelihood 7

References

C. Lee and M. Wang. Tensor denoising and completion based on ordinal observations. *International Conference on Machine Learning (ICML)*, 2020.

Examples

```
# Latent parameters
library(tensorregress)
alpha = 10
A_1 = matrix(runif(15*2, min=-1, max=1), nrow = 15)
A_2 = matrix(runif(15*2, min=-1, max=1), nrow = 15)
A_3 = matrix(runif(15*2, min=-1, max=1), nrow = 15)
C = as.tensor(array(runif(2^3,min=-1,max=1),dim = c(2,2,2)))
theta = ttm(ttm(C,A_1,1),A_2,2),A_3,3)@data
theta = alpha*theta/max(abs(theta))
adj = mean(theta)
theta = theta-adj
omega = c(-0.2, 0.2) + adj
# Observed tensor
ttnsr <- realization(theta,omega)@data
# Estimation of parameters
ordinal_est = fit_ordinal(ttnsr,c(2,2,2),omega = TRUE,alpha = 10)
```

likelihood

Log-likelihood function (cost function).

Description

Return log-likelihood function (cost function) value evaluated at a given parameter tensor, an observed tensor, and cut-off points.

Usage

```
likelihood(ttnsr,theta,omega,type = c("ordinal","Gaussian"))
```

Arguments

ttnsr An observed tensor data.

theta A continuous-valued tensor (latent parameters).

omega The cut-off points.

type Types of log-likelihood function.

"ordinal" specifies log-likelihood function based on the cumulative logistic

model.

"Gaussian" specifies log-likelihood function based on the Gaussian model.

Value

Log-likelihood value at given inputs.

8 realization

рі	redict_ordinal	Predict model.	ordinal-valued	tensor	entries	from	the	cumulative	logistic	
		model.								

Description

Predict ordinal-valued tensor entries given latent parameters and a type of estimations.

Usage

```
predict_ordinal(theta,omega,type = c("mode","mean","median"))
```

Arguments

theta A continuous-valued tensor (latent parameters).

omega The cut-off points.
type Type of estimations:

"mode" specifies argmax based label estimation.
"mean" specifies mean based label estimation.
"median" specifies median based label estimation.

Value

A predicted ordinal-valued tensor given latent parameters and a type of estimations.

References

C. Lee and M. Wang. Tensor denoising and completion based on ordinal observations. *International Conference on Machine Learning (ICML)*, 2020.

Examples

```
indices <- c(10,20,30)
arr <- array(runif(prod(indices),-2,2),dim = indices)
b <- c(-1.5,0,1.5)
r_predict <- predict_ordinal(arr,b,type = "mode");r_predict</pre>
```

realization An ordinal-valued to

An ordinal-valued tensor randomly simulated from the cumulative model.

Description

Simulate an ordinal-valued tensor from the cumulative logistic model with the parameter tensor and the cut-off points.

Usage

```
realization(theta,omega)
```

realization 9

Arguments

theta A continuous-valued tensor (latent parameters).

omega The cut-off points.

Value

An ordinal-valued tensor randomly simulated from the cumulative logistic model.

References

C. Lee and M. Wang. Tensor denoising and completion based on ordinal observations. *International Conference on Machine Learning (ICML)*, 2020.

Examples

```
indices <- c(10,20,30)
arr <- array(runif(prod(indices)),dim = indices)
b <- qnorm((1:3)/4)
r_sample <- realization(arr,b);r_sample</pre>
```

Index

```
Altopt, 2
bic, 3
fit_continuous_cp, 3
fit_continuous_tucker, 4
fit_nonparaT, 5
fit_ordinal, 6
likelihood, 7
predict_ordinal, 8
realization, 8
```