Math 260 Exercises 1.A Solutions

David L. Meretzky

Tuesday August 21th, 2018

Problem 1. Suppose a and b are real numbers, not both 0. Find real numbers c and d such that $\frac{1}{(a+bi)} = c + di$.

Solution 1. Notice that we can multiply the denominator by it's conjugate: $\frac{1}{(a+bi)}*1 = \frac{1}{(a+bi)}*\frac{(a-bi)}{(a-bi)} = \frac{(a-bi)}{(a^2+b^2)} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i. \text{ Let } c = \frac{a}{a^2+b^2} \text{ and } d = -\frac{b}{a^2+b^2}.$

This problem shows that every complex number has a multiplicative inverse. We can then be sure that our definition of division for complex numbers from class will hold, that is for $\alpha \in \mathbb{C}$ where $\alpha \neq 0$. This is exactly the requirement that for $\alpha = a + bi$, a and b are real numbers which are not both 0.

Problem 2. Verify properties of \mathbb{C} :

Note from class: Think of λ as a scalar or number like something in \mathbb{F} and think of α , β , and γ as vectors in \mathbb{F}^n , (in this case the vectors are actually in \mathbb{C}^n) for n = 1.

Show that for all α , β , γ λ in \mathbb{C} .

- 1. $\alpha + \beta = \beta + \alpha$ commutativity of addition
- 2. $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ associativity of addition
- 3. $(\alpha\beta)\gamma = \alpha(\beta\gamma)$ commutativity of multiplication
- 4. Show that for every α there is a β so that $\alpha + \beta = 0$
- 5. Show that for every α there is a β so that $\alpha\beta = 1$
- 6. $\lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta$

Solution 2. Let $\alpha = a + bi$, $\beta = c + di$ $\gamma = (e + fi)$ and $\lambda = (h + ki)$

- 1. $\alpha + \beta = (a + bi) + (c + di)$ by definition of α and β = (a + c) + (b + d)i by definition of addition of complex numbers = (c + a) + (d + b)i by commutativity of addition for \mathbb{R} = (c + di) + (a + bi) by definition of addition of complex numbers $= \beta + \alpha$ by definition of α and β
- 2. $(\alpha + \beta) + \gamma = ((a + bi) + (c + di)) + (e + fi)$ by definition of α, β , and $\gamma = ((a+c)+(b+d)i)+(e+fi)$ by definition of addition of complex numbers = ((a+c+e)+(b+d+f)i) by definition of addition of complex numbers = (a+bi)+((c+e)+(d+f)i) by definition of addition of complex numbers = (a+bi)+((c+di)+(e+fi)) by definition of addition of complex numbers $= \alpha + (\beta + \gamma)$ by definition of α, β , and γ

- 3. $(\alpha\beta)\gamma = ((a+bi)(c+di))(e+fi)$ by definition of α,β , and $\gamma = ((ac-bd)+(ad+bc)i)(e+fi)$ by definition of multiplication of complex numbers
 - = ((ac bd)e (ad + bc)f) + ((ad + bc)e + (ac bd)f)i by definition of multiplication of complex numbers
 - =(ace-bde-adf+bcf)+(ade+bce+acf-bdf)i by defintion of associativity of real numbers
 - =(a+bi)((ce-df)+(cf+de)i) by definition of multiplication of complex numbers
 - = (a+bi)((c+di)(e+fi)) by definition of multiplication of complex numbers = $\alpha(\beta\gamma)$ by definition of α,β , and γ
- 4. for $\alpha = (a+bi)$ since for $a,b \in \mathbb{R}$ there exist unique additive inveses (-a) and (-b) define $\beta = ((-a) + (-b)i)$. Then $\alpha + \beta = (a+bi) + ((-a) + (-b)i) = (a+(-a)) + (b+(-b))i = 0 + 0i$.
- 5. define β as in problem 1.
- 6. $\lambda(\alpha+\beta) = (h+ki)((a+bi)+(c+di))$ by definition of α , β , and $\lambda = (h+ki)((a+c)+(b+d)i)$ by definition of addition of complex numbers = (h(a+c)-k(b+d))+(h(b+d)+k(a+c))i by definition of multiplication of complex numbers
 - $= (ha + hc kb kd) + (hb + hd + ka + kc)i \ by \ distributivity \ of \ real \ numbers$ $= (ha kb) + (hb + ka)i + (hc kd) + (hd + kc)i \ by \ definition \ of \ addition$ of complex numbers
 - =(h+ki)(a+bi)+(h+ki)(c+di) by definition of multiplication of complex numbers
 - $=\lambda\alpha+\lambda\beta$ by definition of α , β , and λ

I will not usualy do the proofs in such detail but it is important to see how to do proofs like this the first time around.

Problem 3. Find $x \in \mathbb{R}^4$ such that (4, -3, 1, 7) + 2x = (5, 9, -6, 8).

Solution 3. Add the additive inverse of (4, -3, 1, 7) to both sides of the equation. Then perform scalar multiplication by 1/2. We find that x = (1/2, 6, -7/2, 1/2).

Problem 4. Explain why there does not exist $\lambda \in \mathbb{C}$ such that $\lambda(2-3i, 5+4i, -6+7i) = (12-5i, 7+22i, -32-9i)$.

Solution 4. By defintion $\lambda(2-3i,5+4i,-6+7i) = (\lambda(2-3i),\lambda(5+4i),\lambda(-6+7i))$. Suppose there was such a λ , then since a list is determined by it's components and their orders $\lambda(2-3i,5+4i,-6+7i) = (12-5i,7+22i,-32-9i)$ if and only if $\lambda(2-3i) = 12-5i$, $\lambda(5+4i) = 7+22i$ and $\lambda(-6+7i) = -32-9i$. Let $\lambda = h+ki$. Then $\lambda(2-3i) = (h+ki)(2-3i) = (2h+3k)+(-3h+2k)i = 12-5i$, $\lambda(5+4i) = (h+ki)(5+4i) = (5h-4k)+(4h+5k)i = 7+22i$ and $\lambda(-6+7i) = (h+ki)(-6+7i) = (-6h-7k)+(7h-6k)i = -32-9i$.

We also now have that (2h+3k)+(-3h+2k)i=12-5i if and only if 2h+3k=12 and -3h+2k=-5. Similarly, (5h-4k)+(4h+5k)i=7+22i if and only if 5h-4k=7 and 4h+5k=22. Also (-6h-7k)+(7h-6k)i=-32-9i if and only if (-6h-7k)=-32 and (7h-6k)=-9.

Solving for h from 2h+3k=12 one obtains $h=\frac{12-3k}{2}$. Plugging this result into -3h+2k=-5 we get that $-3h+2k=-3*\frac{12-3k}{2}+2k=(13/2)k-18=-5$ means k=2 and h=3. Now still 5h-4k=7 and 4h+5k=22 must hold as well as the third pair of relations (-6h-7k)=-32 and (7h-6k)=-9. Plugging in our values for h and k we get that 5(3)-4(2)=7 holds and 4(3)+5(2)=22 hold. In the last relation, (-6(3)-7(2))=-32 but $(7(3)-6(2))=9\neq -9$. Our possible solutions h and k do not satisfy all three relations. Later we will prove that this cannot be the case. In part, Linear Algebra is the study of systems of linear equations.

Problem 5. Verify properties of \mathbb{F}^n : Let $x, y, z \in \mathbb{F}^n$ be vectors and $a, b \in \mathbb{F}$ be scalars

- 1. show associativity of addition (x + y) + z = x + (y + z)
- 2. show associativity of scalar multiplication (ab)x = a(bx)
- 3. show there is a multiplicative identity 1x = x
- 4. show distributivity of scalar multiplication (vector side) a(x+y) = ax + ay
- 5. show distributivity of scalar multiplication (scalar side) (a+b)x = ax + bx

Solution 5. 1. $(x+y)+z=((x_1,...,x_n)+(y_1,...,y_n))+(z_1,...,z_n)$ by definition of $x,y,z\in\mathbb{F}^n$ = $(x_1+y_1,...,x_n+y_n)+(z_1,...,z_n)$ by definition of vector addition in \mathbb{F}^n

```
= (x_1 + y_1, ..., x_n + y_n) + (z_1, ..., z_n) \text{ by definition of vector addition in } \mathbb{F}^n
= ((x_1 + y_1) + z_1, ..., (x_n + y_n) + z_n) \text{ by definition of associativity in } \mathbb{F}
= (x_1 + (y_1 + z_1), ..., x_n + (y_n + z_n)) \text{ by definition of vector addition in } \mathbb{F}^n
= (x_1, ..., x_n) + (y_1 + z_1, ..., y_n + z_n) \text{ by definition of vector addition in } \mathbb{F}^n
= (x_1, ..., x_n) + ((y_1, ..., y_n) + (z_1, ..., z_n)) \text{ by definition of vector addition in } \mathbb{F}^n
```

- = x + (y + z) by definition of $x, y, z \in \mathbb{F}^n$
- 2. This follows through a similar argument with the critical step being $(ab)x_i = a(bx_i)$ because multiplication in \mathbb{F} is associative.
- 3. $1x = 1(x_1, ..., x_n) = (1x_1, ..., 1x_n) = (x_1, ..., x_n) = x$.
- 4. $a(x+y) = a((x_1,...,x_n) + (y_1,...y_n)) = a(x_1+y_1,...,x_2+y_2) = (a(x_1+y_1),...,a(x_n+y_n)) = (ax_1+ay_1,...,ax_n+ay_n) = (ax_1,...,ax_n)+(ay_1,...ay_n) = a(x_1,...,x_n) + a(y_1,...y_n) = ax + ay.$
- 5. The scalar side follows from a similar argument namely, the critical step again is distributivity in F. Make sure you can justify every step in parts 2-5.