Package 'phenmod'

October 14, 2022

Type Package
Title Auxiliary Functions for Phenological Data Processing, Modelling and Result Handling
Version 1.2-7
Date 2022-04-14
Author Maximilian Lange
Maintainer Maximilian Lange <maximilian.lange@ufz.de></maximilian.lange@ufz.de>
Description Provides functions for phenological data preprocessing, modelling and result handling. For more information, please refer to Lange et al. (2016) <doi:10.1007 s00484-016-1161-8="">.</doi:10.1007>
Depends R (>= 3.0), gstat, RColorBrewer, lattice, pheno
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-04-14 11:30:02 UTC
Dute/1 ubilcution 2022 04 14 11.50.02 01C
R topics documented:
bbObs
data.addTemperatures
data.combine
data.combine.clusters
data.combine.clusters.search
data.combine.stationNet
data.combine.timeseries
data.coordinates2gridcellnumber
data.extract
data.loadTemperature
data.main
data.read.phase

2 bbObs

	lcObs	18
	pim.solve	
	relatedGrid	
	result.extract.interpolate	
	result.extract.main	
	result.extract.mask	
	result.extract.sub	
	result.main	
	result.pic.histogramm	
	result.pic.maps	
	result.pic.scatterplot	
	result.rsquare	
	temperatures	
	tsm.solve	
	util.geoco2gk	
	util.isLeapYear	
Index		37

bb0bs

Phenological observation: budburst

Description

This dataset gives an example of budburst observations from the German Weather Service (DWD) obtainable by the plant phenological online database PPODB. The dataset was extracted out of the downloadable tsv-File by use of data.read.phase.

Usage

data(bb0bs)

Format

A dataframe containing three observations.

Source

Plant Phenological Online Database (PPODB), http://www.phenology.de

References

Dierenbach, J., Badeck, F.W., Schaber, J., 2013. The plant phenological online database (PPODB): an online database for long-term phenological data. International Journal of Biometeorology, 1-8.

See Also

data.read.phase,lcObs

data.addTemperatures 3

data.addTemperatures Add temperature data to a dataset.

Description

Adds a temperature vector to a dataset containing spatial and seasonal phenological information.

Usage

```
data.addTemperatures(dataset, grid.related.to.Temperatures,
temperature.filenames,
temperature.matrix, temperature.scale.factor,
out2File=FALSE, silent=FALSE)
```

Arguments

dataset

A dataset containing spatial and seasonal phenological information. Can be created by using function data.extract.

grid.related.to.Temperatures

A grid containing spatial informations for the temperature data.

temperature.filenames

The full name of temperature files. The filenames have to contain the year (YYYY) of the temperature observation. The files should be stored as RData-Files and have to contain a matrix called 'edk.one.year' with 366 columns (one per day) and the number of rows equal to the number of rows in 'grid.related.to.Temperatures'. Should have the value NULL if a temperature matrix should be used instead.

temperature.matrix

An array containing temperature data. The year of the observation should given as rowname, the columns should equal the julian day of the observation and the third dimension of the array should equal the location given in 'grid.related.to.Temperatures'. The matrix will be used instead of temperature files if 'temperature.filenames' is NULL.

temperature.scale.factor

The down-scaling factor for the temperature data (needed if the data is scaled).

out2File A boolean value determining wether the output will be stored in log-files.

silent A boolean value determining wether the function should generate output mes-

sages or not.

Details

Adds a temperature vector to a dataset containing spatial (The coordinates of the station as Gauss-Krueger coordinates) and seasonal (The year for which the budburst day should be modelled and the leafcolouring day of the previous year) phenological information.

Value

A dataset containing spatial and seasonal phenological data and the added temperatures.

4 data.combine

Author(s)

Daniel Doktor, Maximilian Lange

See Also

```
data.loadTemperature,data.extract,relatedGrid,temperatures
```

Examples

```
## load extracted observations as created by 'data.extract'
 data(extractedObs)
 ## load temperature data
 data(temperatures)
 ## load grid with spatial informations for temperature files
 data(relatedGrid)
 ## add temperatures from files in working directory
 dataset <- data.addTemperatures(dataset=extractedObs,</pre>
out2File=FALSE,
grid.related.to.Temperatures=relatedGrid,
temperature.filenames=NULL,
temperature.matrix=temperatures,
temperature.scale.factor=0.1)
 ## resulting dataset should equal 'dataFinal'
 data(dataFinal)
 dataFinal
 dataset
```

data.combine

Main function to combine timeseries

Description

This function creates a station net and builds clusters of stations out of it. These clusters are used to create combined timeseries.

Usage

```
data.combine(dataset, range=5000, alt.range=50, shuffle=TRUE,
tries=100, silent=FALSE, out2File=FALSE,
clusters.tmp.file="tmpcluster.RData")
```

Arguments

used to generate the combined timeseries.

range The maximum distance between two stations that should be connected in the

station net.

data.combine 5

alt.range	The maximum altitude difference between two stations that should be connected in the station net.
shuffle	A boolean value determining wether the stations should be processed in their order (value: FALSE) or if they should be shuffled befor processing (value: TRUE). Shuffled stations produce different results each run.
tries	If value of 'shuffle' is true, the integer value 'tries' determines how much cluster-lists should be created. The cluster-list with the lowest number of entries will be returned (this will increase the size of the clusters).
silent	A boolean value determining wether the function should generate output messages or not.
out2File	A boolean value determining wether the output will be stored in log-files.
clusters.tmp.file	
	A file where the clusters are saved for evaluation. If the value is NULL, no file will be created

Details

This function joins the functions data.combine.stationNet, data.combine.clusters and data.combine.timeseries.

Value

A dataset containing the combined timeseries as a data.frame with same columns like a data.frame created by data.extract.

Author(s)

Daniel Doktor, Maximilian Lange

References

Schaber J., Badeck F. (2002). Evaluation of methods for the combination of phenological time series and outlier detection. Tree Physiology, 22:973-982

See Also

```
data.combine.clusters,data.combine.stationNet,data.combine.timeseries
```

```
## load extracted observations as created by 'data.extract'
   data(extractedObs)

## combine timeseries
   data.combined <- data.combine(dataset=extractedObs, range=5000,
alt.range=50, shuffle=TRUE, tries=3,
silent=FALSE, out2File=FALSE,
clusters.tmp.file=NULL)</pre>
```

6 data.combine.clusters

data.combine.clusters Station cluster creation.

Description

Creates a list of station clusters.

Usage

```
data.combine.clusters(dataset, stations.net,
shuffle=TRUE, tries=100,
silent=FALSE, out2File=FALSE)
```

Arguments

dataset	The dataset with the stations to cluster and their coordinates.
stations.net	A list containing the information which stations are neighbours. Created by function data.combine.stationNet.
shuffle	A boolean value determining wether the stations should be processed in their order (value: FALSE) or if they should be shuffled befor processing (value: TRUE). Shuffled stations produce different results each run.
tries	If value of 'shuffle' is true, the integer value 'tries' determines how much cluster-lists should be created. The cluster-list with the lowest number of entries will be returned (this will increase the size of the clusters).
silent	A boolean value determining wether the function should generate output messages or not.
out2File	A boolean value determining wether the output will be stored in log-files.

Details

Creates a list of station clusters by randomly creating clusters (if value of 'shuffle' is TRUE) and chosing the list with the lowest number of clusters.

Value

Returns a list of station clusters (a station cluster is a vector containing related stations).

Author(s)

Daniel Doktor, Maximilian Lange

See Also

```
data.combine.clusters.search,data.combine.stationNet
```

data.combine.clusters.search

7

Examples

```
## load extracted observations as created by 'data.extract'
   data(extractedObs)

## create station net
   stations.net <- data.combine.stationNet(extractedObs,
   range=5000, alt.range=50, silent=FALSE,
   out2File=FALSE)

## search clusters in station net
   clusters <- data.combine.clusters(extractedObs, stations.net,
   shuffle=TRUE, tries=3, silent=FALSE,
   out2File=FALSE)</pre>
```

data.combine.clusters.search

Cluster search

Description

Searches clusters in a station net.

Usage

```
data.combine.clusters.search(stations, stations.net,
shuffle=TRUE)
```

Arguments

stations A list of all stations.

stations.net A list of neighbourstations (neighbours of the station at same list position in list

'stations').

shuffle A boolean value determining wether the stations should be processed in their

order (value: FALSE) or if they should be shuffled befor processing (value:

TRUE).

Details

Searches related stations in a station net. If value of 'shuffle' is TRUE, each run of this method produces different results.

Value

Returns a list containing related stations.

Author(s)

Daniel Doktor, Maximilian Lange

8 data.combine.stationNet

Examples

```
## load extracted observations as created by 'data.extract'
    data(extractedObs)

## create station net
    stations.net <- data.combine.stationNet(extractedObs, range=5000,
    alt.range=50, silent=FALSE, out2File=FALSE)

## search clusters in station net
    stations <- as.list(unique(extractedObs$STAT_ID))
    clusters <- data.combine.clusters.search(stations,
    stations.net, shuffle=TRUE)</pre>
```

data.combine.stationNet

Station net creator

Description

Creates a net of the stations of dataset by checking the distances between the stations.

Usage

```
data.combine.stationNet(dataset, range,
alt.range, silent=FALSE,
out2File=FALSE)
```

Arguments

_	
dataset	A dataset created by data.extract containing the information that should be used to generate the station net.
range	The maximum distance between two stations that should be connected in the net.
alt.range	The maximum altitude difference between two stations that should be connected in the net.
silent	A boolean value determining wether the function should generate output messages or not.
out2File	A boolean value determining wether the output will be stored in log-files.

Details

Only stations with a maximal distance of 'range' and maximal altitude difference of 'alt.range' are connected.

data.combine.timeseries 9

Value

Returns a list with entries for all stations of dataset. Each list entry stands for a station and contains all neighbours of that station.

Author(s)

Daniel Doktor, Maximilian Lange

Examples

```
## load extracted observations as created by 'data.extract'
data(extractedObs)

## create station net
    stations.net <- data.combine.stationNet(extractedObs,
range=5000, alt.range=50, silent=FALSE,
out2File=FALSE)</pre>
```

data.combine.timeseries

Create combined timeseries

Description

Creates combined timeseries out of the dataset by using clusters of stations.

Usage

```
data.combine.timeseries(dataset, clusters,
silent=FALSE, out2File=FALSE,
minimalClusterSize=5)
```

Arguments

dataset A dataset created by data.extract containing the information that should be

used to generate the combined timeseries.

clusters A list of station clusters generated by data.combine.clusters.

silent A boolean value determining wether the function should generate output mes-

sages or not.

out2File A boolean value determining wether the output will be stored in log-files.

 ${\tt minimalClusterSize}$

An integer value determining the minimal number of stations in a cluster to be included in combining process.

Details

The combined timeseries are created by using the function pheno.lad.fit of package 'pheno'. This process eliminates outliers and smooths the data.

Value

A dataset containing the combined timeseries as a data.frame with same columns like a data.frame created by data.extract.

Author(s)

Daniel Doktor, Maximilian Lange

References

Schaber J., Badeck F. (2002). Evaluation of methods for the combination of phenological time series and outlier detection. Tree Physiology, 22:973-982

See Also

```
pheno.lad.fit, data.extract, data.combine.stationNet, data.combine.clusters
```

Examples

```
## load extracted observations as created by 'data.extract'
data(extractedObs)

## create station net
    stations.net <- data.combine.stationNet(extractedObs,
    range=5000, alt.range=50, silent=FALSE,
    out2File=FALSE)

## search clusters in station net
    clusters <- data.combine.clusters(extractedObs,
    stations.net, shuffle=TRUE, tries=3,
    silent=FALSE, out2File=FALSE)

## combine timeseries
    data.combined <- data.combine.timeseries(extractedObs,
    clusters, out2File=FALSE)</pre>
```

data.coordinates2gridcellnumber

Search number of gridcell for given coordinates.

Description

Searches the number of the cell of a given spatial grid by given coordinates (Gauss-Krueger-Coordinates).

Usage

```
data.coordinates2gridcellnumber(grid, x,y)
```

data.extract 11

Arguments

grid	The grid in which the cell should be searched.
X	The 'Rechtswert' of the Gauss-Krueger-Coordinates.
у	The 'Hochwert' of the Gauss-Krueger-Coordinates.

Details

Searches the number of the cell of a given spatial grid by given coordinates (Gauss-Krueger-Coordinates).

Value

Returns the cell-number of the grid-cell which is next to the given coordinates.

Author(s)

Daniel Doktor, Maximilian Lange

Examples

```
## load grid containing spatial information
data(relatedGrid)

## search position in grid
xy <- util.geoco2gk(54.12,10.17,4)
gridposition <- data.coordinates2gridcellnumber(grid=relatedGrid,
x=xy[,1],y=xy[,2])
gridposition</pre>
```

data.extract

Essential data extraction.

Description

Extracts the essential data out of budburst and leafcolouring data and combines them.

Usage

```
data.extract(data.budburst, data.leafcolouring,
valid.years=1952:2009, out2File=FALSE,
silent=FALSE)
```

12 data.extract

Arguments

data.budburst A dataset extracted by function data.read.phase containing budburst infor-

mation of currently processed plant.

data.leafcolouring

A dataset extracted by function data.read.phase containing leafcolouring in-

formation of currently processed plant.

valid. years The years that should be included in extraction process (may be needed if some

data in datasets are insufficient).

out2File A boolean value determining wether the output will be stored in log-files.

silent A boolean value determining wether the function should generate output mes-

sages or not.

Details

This function extracts the essential data out of budburst and leafcolouring data and combines them. Therefor it extracts the stations contained in both datasets and searches the leafcolouring dates and the related budburst date (at the following year).

Value

A dataset containing the station ID, the station geographic and the Gauss-Krueger-coordinates of the station, the altitude of the station, the year and the julian day of the budburst and the leafcolouring and outlier information for budburst and leafcolouring.

Author(s)

Daniel Doktor, Maximilian Lange

See Also

```
\verb|data.read.phase, 1c0bs, bb0bs, extracted0bs|
```

```
## load budburst observations (extracted via 'data.read.phase')
data(bb0bs)
## load leafcolouring observations (extracted via 'data.read.phase')
data(lc0bs)

## extract essential data
data.extracted <- data.extract(data.budburst=bb0bs,
data.leafcolouring=lc0bs,
out2File=FALSE)</pre>
```

data.loadTemperature 13

data.loadTemperature Loads a temperature vector

Description

Loads a temperature vector of given length from a given day of a given year.

Usage

```
data.loadTemperature(year, temperature.year, temperature.previous.year,
from.previous.year.doy, length, position,
scale.factor=0.1)
```

Arguments

year The year of the budburst doy which should be calculated.

temperature.year

A vector of temperature data (with length 365 or 366) of year given by 'year'.

temperature.previous.year

A vector of temperature data (with length 365 or 366) of previous year.

from.previous.year.doy

The day the modelling starts (leafcolouring day of previous year).

length The length of the resulting temperature vector.

position The number of the grid-cell for which the temperatures should be loaded.

scale. factor The down-scaling factor for the temperature data (needed if the data is scaled).

Details

Loads a temperature vector of given length from temperature data. The day of leafcolouring of the previous year should be given as starting day. The vector contains one temperature datapoint per day and should have a length of 300 or more to ensure a stable modelling process. Internal function used by method data.addTemperatures.

Value

A vector with temperature data for a given location and a given period.

Author(s)

Daniel Doktor, Maximilian Lange

See Also

data. add Temperatures, data. coordinates 2 grid cell number

14 data.main

Examples

```
t.year <- as.matrix(rnorm(365, mean=10, sd=5))
t.p.year <- as.matrix(rnorm(365, mean=9, sd=6))
temperatures <- data.loadTemperature(year=2006,temperature.year=t.year,
temperature.previous.year=t.p.year,
from.previous.year.doy=210, length=365,
position=1, scale.factor=0.1)</pre>
```

data.main

Main function for data conversion.

Description

This function extracts data from tsv-Files, creates combined timeseries out of them if needed and adds temperature data.

Usage

```
data.main(extraction.done=TRUE, out2File=FALSE,
grid.related.to.temperaturefiles,
valid.years=1952:2009,
combine.time.series=TRUE, range=10000,
alt.range=50, temperature.scale.factor=1,
dataPath=getwd(),temperature.filenames,
temperature.matrix, pathForTmpFiles=getwd(),
pathToSave=getwd(), plant="beech")
```

Arguments

extraction.done

If data extraction was already done, turn this value to TRUE and the extracted values will be loaded from 'pathForTmpFiles'.

out2File A boolean value determining wether the output will be stored in log-files.

grid.related.to.temperaturefiles

A grid containing spatial informations for the temperature files.

valid.years The years that should be included in extraction process (may be needed if some

data in datasets are insufficient).

combine.time.series

A boolean value determining wether the extracted timeseries should be combined or not.

range The maximum distance between two stations that should be connected in the

ange The maximum distance between two stations that should be connected in the

station station-net needed for the timeserie-combination.

alt.range The maximum altitude difference between two stations that should be connected

in the station-net needed for the timeserie-combination.

temperature.scale.factor

The down-scaling factor for the temperature data (needed if the data is scaled).

data.main 15

dataPath The path where the tsv-tables are stored. These tsv-tables should have the fol-

lowing name: '<PLANT>_budburst.tsv' for budburst-data or '<PLANT>_leafcolouring.tsv'

for leafcolouring-data, where <PLANT> stands for the name of the plant, for ex-

ample 'beech'.

is NULL.

temperature.filenames

The full name of temperature files. The filenames have to contain the year (YYYY) of the temperature observation. The files should be stored as RData-Files and have to contain a matrix called 'edk.one.year' with 366 columns (one

per day) and the number of rows equal to the number of rows in 'grid.related.to.Temperatures'.

Should have the value NULL if a temperature matrix should be used instead.

temperature.matrix

An array containing temperature data. The year of the observation should given as rowname, the columns should equal the julian day of the observation and the third dimension of the array should equal the location given in 'grid.related.to.Temperatures'. The matrix will be used instead of temperature files if 'temperature.filenames'

pathForTmpFiles

The path where the extracted data should be temporarily stored as RData-files.

pathToSave The path where the resulting dataframe should be stored as RData-file with

the name '<PLANT>-dataset.RData' for non-combined data or '<PLANT>-

dataset-cts.RData' for combined data.

plant The name of the plant which should be processed.

Details

This function is the main method for data extraction. It exctracts budburst and leafcolouring data from tsv-Files, creates combined timeseries out of them if needed and adds temperature data from RData files containing daily mean temperatures.

Value

Returns nothing, but saves the resulting dataset in 'pathToSave'.

Author(s)

Daniel Doktor, Maximilian Lange

See Also

data.extract,data.combine,data.addTemperatures

```
## load temperature data
data(temperatures)
## load grid with spatial informations for temperature files
data(relatedGrid)
## extract dataset from datafiles in working directory
```

16 data.read.phase

```
## Not run: dataset <- data.main(extraction.done=FALSE, out2File=FALSE,
grid.related.to.temperaturefiles=relatedGrid,
combine.timeseries=TRUE, range=5000, alt.range=50,
temperature.scale.factor=0.1, dataPath=getwd(),
temperature.filenames=NULL,
temperature.matrix=temperatures,
pathForTmpFiles=getwd(), pathToSave=getwd(),
plant="beech")
## End(Not run)</pre>
```

data.read.phase

Read data from TSV-table

Description

This function reads phenological data out of a tsv-table.

Usage

```
data.read.phase(path, filename)
```

Arguments

path The path of the tsv-file to read. filename The filename of the tsv-table.

Details

Reads phenological data out of a tsv-table containing the columns 'DWD_STAT_ID' (the ID of the phenological station), 'STAT_NAME' (the name of the phenological station), 'STAT_LON' (the longitude of the station), 'STAT_LAT' (the latitude of the station), 'STAT_ALT' (the altitude of the station), 'BEGIN_OBS' (the year the station started the observation), 'END_OBS' (the year the station stopped the observation), 'NATURRAUM_ID' (the id of the region), 'PHASE_ID' (the ID of the observed phase), 'OBS_DAY' (the julian day the observed phase starts), 'OBS_YEAR' (the year at which 'OBS_DAY' was observed), 'CHECKED' (a value determining wether the result was checked or not), 'outlier' (if result was checked, this value determines wether it was an outlier or not). Such a dataset can be obtained at http://www.phenology.de.

Value

Returns the table as R-Dataframe.

Author(s)

Daniel Doktor, Maximilian Lange

dataFinal 17

References

Dierenbach, J., Badeck, F.W., Schaber, J., 2013. The plant phenological online database (PPODB): an online database for long-term phenological data. International Journal of Biometeorology, 1-8.

See Also

1c0bs,bb0bs

Examples

```
##read file 'beech_budburst.tsv' out of working directory
## Not run: data.budburst <- data.read.phase(path=getwd(),
filename="beech_budburst.tsv")
## End(Not run)

## resulting data looks like the following:
data(lcObs)
data(bbObs)

lcObs
bbObs</pre>
```

dataFinal

Preprocessed data

Description

This dataset contains phenological data (connected leafcolouring and budburst observations) as well as spatially related temperature data. The dataset was created out of extractedObs, relatedGrid and temperatures by use of data.addTemperatures.

Usage

```
data(dataFinal)
```

Format

A dataframe containing three rows of connected phenological information combined with temperature data.

See Also

 $data.\,add Temperatures, bb0bs, lc0bs, extracted Obs, related Grid, temperatures$

18 lcObs

extracted0bs

Phenological observation: leafcolouring and budburst

Description

This dataset gives an example of leafcolouring observations connected with subsequent budburst observations. The observations are extracted out of phenological data from the German Weather Service (DWD) obtainable by the plant phenological online database PPODB. The dataset was created out of the datasets bb0bs and lc0bs by use of method data.extract.

Usage

```
data(extractedObs)
```

Format

A dataframe containing three rows of connected observations.

Source

Plant Phenological Online Database (PPODB), http://www.phenology.de

References

Dierenbach, J., Badeck, F.W., Schaber, J., 2013. The plant phenological online database (PPODB): an online database for long-term phenological data. International Journal of Biometeorology, 1-8.

See Also

data.extract,bb0bs,lc0bs

1c0bs

Phenological observation of leafcolouring

Description

This dataset gives an example of leafcolouring observations from the German Weather Service (DWD) obtainable by the plant phenological online database PPODB. The dataset was extracted out of the downloadable tsv-File by use of data.read.phase.

Usage

data(lcObs)

Format

A dataframe containing three observations.

pim.solve 19

Source

Plant Phenological Online Database (PPODB), http://www.phenology.de

References

Dierenbach, J., Badeck, F.W., Schaber, J., 2013. The plant phenological online database (PPODB): an online database for long-term phenological data. International Journal of Biometeorology, 1-8.

See Also

data.read.phase,bb0bs

pim.solve

Promoter-Inhibitor-Model

Description

Applies a promoter-inhibitor-model to a given dataset.

Usage

```
pim.solve(params, data, model.no=1,
silent=FALSE, out2File=FALSE)
```

Arguments

params	The parameters for the promoter-inhibitor-model as list or vector with following order: a1, a2, a3, a4, T.min.i, T.opt.i, T.max.i, T.min.p, T.opt.p, T.max.p
data	A dataset containing the station ID, the station geographic and the Gauss-Krueger-coordinates of the station, the altitude of the station, the year and the julian day of the budburst and the leafcolouring, outlier information for budburst and leafcolouring and temperature data for modelling. Can be created by using the function data.main.
model.no	The promoter-inhibitor-model to use. See references for more details.
silent	A boolean value determining wether the function should generate output messages or not.
out2File	A boolean value determining wether the output will be stored in log-files.

Details

Applies a promoter-inhibitor-model with given parameters to a given dataset.

Value

A dataset containing the values of the origin dataset and additionally the modelled budburst days.

20 relatedGrid

Author(s)

Daniel Doktor, Maximilian Lange

References

Schaber, J. and Badeck, F.-W. (2003). Physiology-based phenology models for forest tree species in Germany . International Journal of Biometeorology 47:193-201

See Also

```
data.main
```

Examples

```
## load preprocessed data
data(dataFinal)

## set or load params
params <- c(0, 0.058326, 0.109494, 0.039178,
-10.34, -0.89, 18.11,-10.03,
28.61, 44.49)

## apply model
result <- pim.solve(params, dataFinal, model.no=11,
silent=FALSE, out2File=FALSE)</pre>
```

relatedGrid

Grid containing spatial information related to temperature data

Description

This dataset, based on a digital elevation model contains spatial information related to the temperature data.

Usage

```
data(relatedGrid)
```

Format

A dataframe containing spatial information.

Source

digital elevation model

See Also

temperatures

result.extract.interpolate

Result interpotion

Description

Interpolates result values with given spatial information.

Usage

```
result.extract.interpolate(mask.grid, values, alt, x, y)
```

Arguments

mask.grid	The grid with spatial information the values are ordered by.
values	The values which should be interpolated.
alt	The related altitude for the gridcells of 'mask.grid'.
Х	$The\ related\ Rechtswert\ (Gauss-Krueger-coordinates)\ for\ the\ gridcells\ of\ `mask.grid'.$
у	The related Hochwert (Gauss-Krueger-coordinates) for the gridcells of 'mask.grid'.

Details

Interpolates result values with given spatial information by external drift kriging.

Value

A vector with the interpolated values.

Author(s)

Daniel Doktor, Maximilian Lange

References

Krige, D.G., 1951. A statistical approach to some basic mine valuation problems on the witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa 52, 119-139. Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers & Geosciences 30, 683-691.

See Also

```
result.extract.main,data.main
```

22 result.extract.main

Examples

```
## load preprocessed data
 data(dataFinal)
 ## load spatial information
 data(relatedGrid)
 ## set or load params
 params <-c(0, 0.058326, 0.109494, 0.039178,
-10.34, -0.89, 18.11, -10.03,
28.61, 44.49)
 ## apply model
 result <- pim.solve(params, dataFinal, model.no=11,</pre>
silent=FALSE, out2File=FALSE)
 ## resolve outlier information
 outliers <- result$outlier.bb + result$outlier.lc</pre>
 outliers.na <- which(is.na(outliers)==TRUE)</pre>
 outliers[outliers.na] <- rep(0, length(outliers.na))</pre>
 mask.grid <- relatedGrid</pre>
 ## extract valid modelled values
 values.model <- result.extract.sub(mask.grid=mask.grid,</pre>
result$doy.bb.pim, result$gk4.x,
result$gk4.y, outliers=outliers,
silent=FALSE, withOutliers=FALSE)$values
 ## interpolate result values with spatial informations of mask.grid
 values.model <- result.extract.interpolate(mask.grid=mask.grid,</pre>
values=values.model, alt=mask.grid$alt,
x=mask.grid$x, y=mask.grid$y)
```

result.extract.main Essential result extraction

Description

Extracts essential results from model.

Usage

```
result.extract.main(mask.grid, result.grid, model="pim",
interpolate=TRUE, silent=FALSE, withOutliers=FALSE)
```

Arguments

mask.grid

A grid containing spatial information related to values (which should be extracted) and their Gauss-Krueger-Coordinates. The values in the resulting data.frame will be ordered related to values in mask.grid.

result.extract.main 23

result.grid	The grid created by pim. solve containing observated and modelled values.
model	A character value determining which model was used to create the results (either 'pim' or 'tsm').
interpolate	A boolean value determining wether the results should be interpolated (with spatial information of mask.grid) or not.
silent	A boolean value determining wether the function should generate output messages or not.
withOutliers	A boolean value determining wether outliers should be included in extraction and transformation or not.

Details

Extracts essential results (observed and modelled results and their difference and coordinates) from used model.

Value

A data.frame containing the modelled values ('doy.model'), the observed values ('doy.observed'), their difference ('doy.dif') and related coordinates ('x', 'y')

Author(s)

Daniel Doktor, Maximilian Lange

See Also

```
result.extract.sub,result.extract.mask,result.extract.interpolate
```

```
## load preprocessed data
 data(dataFinal)
 ## load spatial information
 data(relatedGrid)
 ## set or load params
 params <-c(0, 0.058326, 0.109494, 0.039178,
-10.34, -0.89, 18.11,-10.03,
28.61, 44.49)
 ## apply model
 result <- pim.solve(params, dataFinal, model.no=11,</pre>
silent=FALSE, out2File=FALSE)
 ## extract essential results
 result.values <- result.extract.main(</pre>
mask.grid=relatedGrid,
result.grid=result, model="pim",
interpolate=FALSE, silent=FALSE)
```

24 result.extract.mask

```
result.extract.mask Result masking
```

Description

Masks values with the spatial informations of a given grid.

Usage

```
result.extract.mask(mask.grid, values)
```

Arguments

mask.grid The grid with the spatial informations which should be used for masking.

values The values to mask (in same order as 'mask.grid').

Details

Masks values with the spatial informations of a given grid. Gridcells with NA value are masked in the resulting data.frame by setting them to '-9999'.

Value

A vector of masked values.

Author(s)

Daniel Doktor, Maximilian Lange

See Also

```
result.extract.main
```

```
## load preprocessed data
data(dataFinal)
## load spatial information
data(relatedGrid)

## set or load params
params <- c(0, 0.058326, 0.109494, 0.039178,
-10.34, -0.89, 18.11,-10.03,
28.61, 44.49)

## apply model
result <- pim.solve(params, dataFinal, model.no=11,
silent=FALSE, out2File=FALSE)</pre>
```

result.extract.sub 25

```
## resolve outlier information
outliers <- result$outlier.bb + result$outlier.lc
outliers.na <- which(is.na(outliers)==TRUE)
outliers[outliers.na] <- rep(0, length(outliers.na))

mask.grid <- relatedGrid

## extract valid modelled values
values.model <- result.extract.sub(mask.grid=mask.grid,
result$doy.bb.pim, result$gk4.x,
result$gk4.y, outliers=outliers,
silent=FALSE, withOutliers=FALSE)$values

## mask result values with spatial informations of mask.grid
values.model <- result.extract.mask(relatedGrid,
values.model)</pre>
```

result.extract.sub

Extract values

Description

Extracts and transformates given values to a data.frame with same order as a given masking grid.

Usage

```
result.extract.sub(mask.grid, values, gk4.x, gk4.y,
outliers, silent=FALSE, withOutliers=FALSE)
```

Arguments

mask.grid	A grid containing spatial information related to the values and their Gauss-Krueger-Coordinates. The values in the resulting data.frame will be ordered related to values in 'mask.grid'.
values	The values that should be extracted and transformed.
gk4.x	Gauss-Krueger-Rechtswert related to values.
gk4.y	Gauss-Krueger-Hochwert related to values.
outliers	Outlier information related to values.
silent	A boolean value determining wether the function should generate output messages or not.
withOutliers	A boolean value determining wether outliers should be included in extraction and transformation or not.

Details

Extracts and transformates given values (with related Gauss-Krueger-Coordinates) to a data.frame with same order as a given masking grid.

26 result.main

Value

A grid containing the values and their coordinates (as given in 'mask.grid').

Author(s)

Daniel Doktor, Maximilian Lange

See Also

```
result.extract.main
```

Examples

```
## load preprocessed data
 data(dataFinal)
 ## load spatial information
 data(relatedGrid)
 ## set or load params
 params <-c(0, 0.058326, 0.109494, 0.039178,
-10.34, -0.89, 18.11,-10.03,
28.61, 44.49)
 ## apply model
 result <- pim.solve(params, dataFinal, model.no=11,</pre>
silent=FALSE, out2File=FALSE)
 ## resolve outlier information
 outliers <- result$outlier.bb + result$outlier.lc</pre>
 outliers.na <- which(is.na(outliers)==TRUE)</pre>
 outliers[outliers.na] <- rep(0, length(outliers.na))</pre>
 mask.grid <- relatedGrid</pre>
 ## extract valid modelled values
 values.model <- result.extract.sub(mask.grid=mask.grid,</pre>
result$doy.bb.pim, result$gk4.x,
result$gk4.y, outliers=outliers,
silent=FALSE, withOutliers=FALSE)$values
```

result.main

Result evaluation

Description

Main function for result evaluation.

result.main 27

Usage

```
result.main(mask.grid, result.grid, plant="beech", model="pim",
year=1954, picPath=getwd(), picName="beech-budburst",
createFiles=TRUE, rsquarePath=getwd(),
rsquareFile="rsquare.RData", rsquare.type="cod",
silent=FALSE, withOutliers=FALSE)
```

Arguments

mask.grid	A grid with spatial information related to the resulting grid of modelling.
result.grid	The resulting grid of modelling. Can be obtained by using pim. solve or tsm. solve.
plant	The plant name for which the values of 'result.grid' are modelled.
model	A character value determining which model was used to create the results (either 'pim' or 'tsm').
year	The processed year.
picPath	The path where the created png-files should be stored.
picName	The filename of the created png-files.
createFiles	A boolean flag determining wether the results should be stored in files or not.
rsquarePath	The path where the RData-file with the rsquare-dataset should be stored.
rsquareFile	The filename of the RData-file with the rsquare-dataset.
rsquare.type	The value of type (either 'cod' or 'pearson') determines whether the coefficient of determination or the squared pearson correlation coefficient is used as rsquare.
silent	A boolean value determining wether the function should generate output messages or not.
withOutliers	A boolean value determining wether outliers should be included in extraction

Details

Main function for result evaluation. Extracts essential values from resulting grid, interpolates and masks values, creates histogramms, scatterplot and maps and calculates r-square.

and transformation or not.

Author(s)

Daniel Doktor, Maximilian Lange

See Also

result.extract.main,result.extract.interpolate,result.pic.histogramm,result.pic.maps,result.pic.scatt

28 result.pic.histogramm

Examples

```
## load preprocessed data
 data(dataFinal)
 ## load spatial information
 data(relatedGrid)
 ## set or load params
 params <-c(0, 0.058326, 0.109494, 0.039178,
-10.34, -0.89, 18.11, -10.03,
28.61, 44.49)
 ## apply model
 result <- pim.solve(params, dataFinal, model.no=11,</pre>
silent=FALSE, out2File=FALSE)
 ## evaluate resuts
 result.main(mask.grid=relatedGrid,
result.grid=result, plant="beech", model="pim",
year="1952-2009", picPath=getwd(), picName="beech-budburst",
createFiles=FALSE, rsquarePath=getwd(),
rsquareFile="rsquare.RData", rsquare.type="cod",
silent=FALSE, withOutliers=FALSE)
```

result.pic.histogramm *Histogramm Creation*

Description

Creates histogramms of results.

Usage

```
result.pic.histogramm(values, picPath=getwd(),
picName="budburst-beech", silent=FALSE,
createFile=TRUE)
```

Arguments

values	The data.frame with result values (can be created with result.extract.main).
picPath	The path where the png-files should be stored.
picName	The name of the created files with the histogramms.
silent	A boolean value determining wether the function should generate output messages or not.
createFile	A boolean value determining wether a png-File will be created or not.

Details

Creates histogramms of results (observed value, modelled value and difference of them).

result.pic.maps 29

Value

Returns nothing but creates histogramms as png-files with given path and filename.

Author(s)

Daniel Doktor, Maximilian Lange

See Also

```
result.extract.main,result.main
```

Examples

```
## load preprocessed data
 data(dataFinal)
 ## load spatial information
 data(relatedGrid)
 ## set or load params
 params <- c(0, 0.058326, 0.109494, 0.039178,
-10.34, -0.89, 18.11,-10.03,
28.61, 44.49)
 ## apply model
 result <- pim.solve(params, dataFinal, model.no=11,</pre>
silent=FALSE, out2File=FALSE)
 ## extract essential results
 result.values <- result.extract.main(</pre>
mask.grid=relatedGrid,
result.grid=result, model="pim",
interpolate=FALSE, silent=FALSE)
 ## create histogramm
 result.pic.histogramm(values=result.values,
picPath=getwd(), picName="beech_budburst",
silent=FALSE, createFile=FALSE)
```

result.pic.maps

Map creation

Description

Creates maps out of results.

Usage

```
result.pic.maps(values, picPath=getwd(),
picName="beech-budburst", silent=FALSE,
createFile=TRUE)
```

result.pic.maps

Arguments

values	The data.frame with result values (can be created with result.extract.main).
picPath	The path where the png-files should be stored.
picName	The name of the created files with the maps.
silent	A boolean value determining wether the function should generate output messages or not.
createFile	A boolean value determining wether a png-File will be created or not.

Details

Creates maps out of results.

Value

Returns nothing but stores maps as png-files with given path and filename.

Author(s)

Daniel Doktor, Maximilian Lange

See Also

```
result.extract.main,result.main
```

```
## load preprocessed data
 data(dataFinal)
 ## load spatial information
 data(relatedGrid)
 ## set or load params
 params <- c(0, 0.058326, 0.109494, 0.039178,
-10.34, -0.89, 18.11,-10.03,
28.61, 44.49)
 ## apply model
 result <- pim.solve(params, dataFinal, model.no=11,</pre>
silent=FALSE, out2File=FALSE)
 ## extract essential results
 result.values <- result.extract.main(</pre>
mask.grid=relatedGrid,
result.grid=result, model="pim",
interpolate=TRUE, silent=FALSE)
 ## not enough successfully calculated budbursts
 ## replace with examples
 result.values$doy.model <- round(rnorm(n=9,mean=100,sd=20))</pre>
 result.values$doy.observed <- round(rnorm(n=9,mean=100,sd=20))</pre>
```

result.pic.scatterplot 31

```
## create maps
  result.pic.maps(values=result.values,
picPath=getwd(), picName="beech_budburst",
silent=FALSE, createFile=FALSE)
```

```
result.pic.scatterplot
```

Scatterplot creation

Description

Creates a scatterplot out of result values.

Usage

```
result.pic.scatterplot(values, picPath=getwd(),
picName="beech-budburst", createFile=TRUE)
```

Arguments

values The values for which the scatterplot should be created.

picPath The path where the png-files should be stored.

picName The name of the created file with the scatterplot.

createFile A boolean value determining wether a png-File will be created or not.

Details

Creates a scatterplot out of result values. The observed values are shown at the abscissa and the modelled values at the ordinate.

Value

Returns nothing but stores the scatterplot as png-file with given path and filename.

Author(s)

Daniel Doktor, Maximilian Lange

See Also

```
result.main
```

32 result.rsquare

Examples

```
## load preprocessed data
 data(dataFinal)
 ## load spatial information
 data(relatedGrid)
 ## set or load params
 params <-c(0, 0.058326, 0.109494, 0.039178,
-10.34, -0.89, 18.11,-10.03,
28.61, 44.49)
 ## apply model
 result <- pim.solve(params, dataFinal, model.no=11,</pre>
silent=FALSE, out2File=FALSE)
 ## extract essential results
 result.values <- result.extract.main(</pre>
mask.grid=relatedGrid,
result.grid=result, model="pim",
interpolate=FALSE, silent=FALSE)
 ## create scatterplot
 result.pic.scatterplot(values=result.values,
picPath=getwd(), picName="beech_budburst",
createFile=FALSE)
```

result.rsquare

R-square calculation.

Description

Calculates the r-square value of a model.

Usage

```
result.rsquare(values, type="cod")
```

Arguments

values A list containing the modelled (doy.model) and the observed (doy.observed) val-

ues.

type The value of type (either 'cod' or 'pearson') determines whether the coefficient

of determination or the squared pearson correlation coefficient is calculated.

Details

Calculates the r-square value of modelled values with given observed values.

temperatures 33

Value

The r-square as numeric value.

Author(s)

Daniel Doktor, Maximilian Lange

See Also

```
result.main
```

Examples

```
modelled <- c(100,102,98,97,96)
observed <- rep(100,5)
values <- list(doy.model=modelled, doy.observed=observed)
result.rsquare(values, type="cod")</pre>
```

temperatures

Temperature data

Description

This dataset contains interpolated temperature data based on data obtained from WebWerdis, the Web-based weather request and distribution system of the German Weather Service (DWD). The interpolation was done via external drift kriging provided by the 'gstat' package.

Usage

```
data(temperatures)
```

Format

A matrix containing 4 years (366 days) of temperature data at 9 different locations given by relatedGrid.

Source

WebWerdis (DWD)

References

Krige, D.G., 1951. A statistical approach to some basic mine valuation problems on the witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa 52, 119-139. Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers & Geosciences 30, 683-691.

See Also

relatedGrid

34 tsm.solve

tsm.solve	Temperature-Sum-Model	

Description

Applies a temperature-sum-model to a given dataset.

Usage

```
tsm.solve(params, data, silent=FALSE, out2File=FALSE)
```

Arguments

params	The parameters for the temperature-sum-model as list or vector with following order: T_b , F^* . T_b is the threshold temperature. Above this value, temperatures are summed for calculating the development rate. F^* is the threshold development rate. If the development rate reached this threshold, the phase occurs.
data	A dataset containing the station ID, the station geographic and the Gauss-Krueger-coordinates of the station, the altitude of the station, the year and the julian day of the budburst and the leafcolouring, outlier information for budburst and leafcolouring and temperature data for modelling. Can be created by using the function data.main.
silent	A boolean value determining wether the function should generate output messages or not.
out2File	A boolean value determining wether the output will be stored in log-files.

Details

Applies a temperature-sum-model with given parameters to a given dataset.

Value

A dataset containing the values of the origin dataset and additionally the modelled budburst days.

Author(s)

Daniel Doktor, Maximilian Lange

References

Menzel, A. (1997). Phaenologie von Waldbaeumen unter sich aendernden Klimabedingungen - Auswertung der Beobachtungen in den Internationalen Phaenologischen Gaerten und Moeglichkeiten der Modellierung von Phaenodaten. Thesis. Forstwissenschaftliche Fakultaet der Uni Muenchen. Muenchen, Universitaet Muenchen.

See Also

data.main

util.geoco2gk 35

Examples

```
## load preprocessed data
data(dataFinal)

## set or load params
params <- c(0, 100)

## apply model
result <- tsm.solve(params, dataFinal,
silent=FALSE, out2File=FALSE)</pre>
```

util.geoco2gk

Geographic coordinates to Gauss-Krueger-Coordinates

Description

Converts geographic coordinates to Gauss-Krueger-Coordinates.

Usage

```
util.geoco2gk(x,y, meridian=4)
```

Arguments

x A vector of longitudes to transform.
 y A vector of latitudes to transform.
 meridian The referenced meridian for Gauss-Krueger-Coordinates.

Details

Converts geographic coordinates (longitude, latitude) to Gauss-Krueger-Coordinates ('Rechtswert', 'Hochwert') referenced by a given meridian.

Value

A matrix containing the the 'Rechtswert' of the Gauss-Krueger-Coordinates in its first column and the 'Hochwert' in its second column.

Author(s)

Daniel Doktor, Maximilian Lange

```
x <- c(51.3, 54.7)
y <- c(12.3, 13.5)
gk.xy <- util.geoco2gk(x,y,4)</pre>
```

36 util.isLeapYear

util.isLeapYear

Leap year check

Description

Checks wether a given year is a leap year or not.

Usage

```
util.isLeapYear(year)
```

Arguments

year

A year or vector of years to check.

Details

This function checks wether a year (yyyy) is a leap year or not.

Value

Returns a boolean vector determining wether the given years are leap years (TRUE) or not (FALSE).

Author(s)

Daniel Doktor, Maximilian Lange

```
util.isLeapYear(2000:2012)
```

Index

```
* datasets
                                                  temperatures, 4, 17, 20, 33
    bb0bs, 2
                                                  tsm.solve, 27, 34
    dataFinal, 17
                                                  util.geoco2gk, 35
    extractedObs, 18
                                                  util.isLeapYear, 36
    1c0bs, 18
    relatedGrid, 20
    temperatures, 33
bb0bs, 2, 12, 17-19
data.addTemperatures, 3, 13, 15, 17
data.combine, 4, 15
data.combine.clusters, 5, 6, 9, 10
data.combine.clusters.search, 6, 7
data.combine.stationNet, 5, 6, 8, 10
data.combine.timeseries, 5, 9
data.coordinates2gridcellnumber, 10, 13
data.extract, 3-5, 8-10, 11, 15, 18
data.loadTemperature, 4, 13
data.main, 14, 19-21, 34
data.read.phase, 2, 12, 16, 18, 19
dataFinal, 17
extracted0bs, 12, 17, 18
1c0bs, 2, 12, 17, 18, 18
pheno.lad.fit, 9, 10
pim. solve, 19, 23, 27
relatedGrid, 4, 17, 20, 33
result.extract.interpolate, 21, 23, 27
result.extract.main, 21, 22, 24, 26-30
result.extract.mask, 23, 24
result.extract.sub, 23, 25
result.main, 26, 29–31, 33
result.pic.histogramm, 27, 28
result.pic.maps, 27, 29
result.pic.scatterplot, 27, 31
result.rsquare, 27, 32
```