0.1 **Ensemble Theory**

0.1.1 Space

描述 gas model 的方法: 列出所有气体粒子的 (q,p).

0.1.1.1 μ -space by Ehrenfest

 (x, y, z, v_x, v_u, v_z) 6-dim space. 其中的一个点描述的是一个粒子的状态. 共需 $N \sim N_A$ 个点进行描述.

$$\sum_{i} \delta(x - x_i) \delta(y - y_i) \delta(z - z_i) \delta(v_x - v_{xi}) \delta(v_y - v_{yi}) \delta(v_z - v_{zi})$$

Distribution function: $f(\vec{x}, \vec{v}, t) d^3 \vec{x} d^3 \vec{v}$

随着时间推移, $H=\int f\ln f$ 总是趋向于减小. 在达成最小/细致平衡时: \vec{x} : 均匀; \vec{v} : Maxwell 分布. [Discussion] 质疑: 令某一时刻 t 下 $\vec{v}\to -\vec{v}$, 难道不会使 H 回升吗?

0.1.1.2 Γ-space

 $\{q_1, q_2, q_3, p_1, p_2, p_3, q_4, q_5, q_6, p_4, p_5, p_6, \cdots\}$, 6N-dim. 空间中的一个点描述的是整团气体某时刻下的状态. 系统的演化即 点的运动.

在 μ -空间中的通过 course-graining 分割的一个 $|k\rangle$ 状态格子中, 有着 n_k 个粒子. 该格子的体积为 6-dim phase volume $\omega_k = \Delta \vec{q}_k \Delta \vec{p}_k$. 相应地, 在 Γ 空间中由这 n_k 个粒子所占据的空间体积为 $\prod_{\alpha=1}^{n_k} \Delta \vec{q}_\alpha \Delta \vec{p}_\alpha = \prod_{\alpha=1}^{n_k} \omega_k = \omega_k^{n_k}$. 因此所有粒子所占据的

在给定的 $\{n_k\}$ 中, 同状态 $|k\rangle$ 的粒子间交换不会产生新的状态数, 因此修正: $W' = \frac{N!}{\prod n_k!} \prod_k \omega_k^{n_k}$. 该体积和状态数成正 比, 那么寻找在 $\sum_{k} n_k = N$, $\sum_{k} \varepsilon_k n_k = E$ 约束下使得空间体积/状态数极大的 $n_k^* = A\omega_k e^{-\beta \varepsilon_k}$

0.1.1.3 Geomatry of High-Dimensional Space

0.1.1.3.1 An Illustrative Example: Sphere in n-dim Space 3-dim space: S^2 , B^3 ; n-dim space: S^{n-1} , B^n .

在 n-dim 欧式空间中的一个点 $x=(x_1,x_2,\cdots,x_n)$. \vec{x} 的长度为 $|x|=\sqrt{\sum_{i=1}^n x_i^2}$.

体积:
$$V(B_R^n) = C_n R^n$$
, $C_n = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}$, $\Gamma(z+1) \equiv \int_0^\infty t^{-z} e^{-t} dt \stackrel{z \in \mathbb{Z}}{=} z! \approx \sqrt{2\pi z} \left(\frac{z}{e}\right)^z$

$$C_n \stackrel{n \text{ even}}{=} \frac{\pi^{n/2}}{\left(\frac{n}{2}\right)!} \Rightarrow V\left(B_R^n\right) \simeq \frac{1}{\sqrt{n\pi}} \left(\sqrt{\frac{2\pi e}{n}}\right)^n R^n, \quad \text{unit sphere: } V\left(B_R^n\right) = 1 \Leftrightarrow R = \sqrt{\frac{n}{2\pi e}}$$

设两共心球半径分别为 $^{'}R$, $R(1+\varepsilon)$. 求夹层(Shell)体积为 $V_{\rm shell}=V(R)[(1+\varepsilon)^n-1^n]$. 即使 ε 很小, 也会随着 $n \uparrow$ 使得 $V[R(1+\varepsilon)]$ 急剧上升. 即高维空间中体积集中在"边缘".

[Example] 高维酒杯. 要求填满圆锥形酒杯的一半, 随着维度升高, 酒面高度也会升高, 趋近于酒杯边缘.

[Example] 密度均匀, n-dim, 半径为 R 的高维球 B_R^n . 只取单个轴 x, 另一个轴作为垂直 x 分量的 B_R^n 球切片 $B_{R'}^{n-1}$, 其中 $R' = R\sqrt{1 - \frac{x^2}{R^2}}$. 存在 $\int_{-R}^{R} \rho(x) dx = \int_{-R}^{R} V\left(B_{R'}^{n-1}\right) dx = V\left(B_{R}^{n}\right)$, 求 $\rho(x)$ 表达式.

$$\frac{V\left(B_{R'}^{n-1}\right)}{V\left(B_{R}^{n-1}\right)} = \left(\frac{R'}{R}\right)^{n-1} = \left(1 - \frac{x^2}{R^2}\right)^{\frac{n-1}{2}} \simeq e^{-(n-1)x^2/2R^2}; \text{ For a unit ball, } R = \sqrt{\frac{n}{e}} \Rightarrow \rho(x) \simeq e^{-ex^2/2}V(B_1^{n-1})$$

0.1.1.3.2 The Geometric Deviation Principle Minkowski 求和. 点集 A + B 对应于 $\vec{a} + \vec{b}$. A, B 本身具有一定的形状.

Brunn-Minkowski inequality: $[V(A+B)]^{1/n} \geq [V(A)]^{1/n} + [V(B)]^{1/n}$. A 和 B 为齐形凸体, 即 $A = \alpha B + x$ 时取等. Isoperimetric principle: 等面积, 求周长最小: 等体积, 求表面积最小.

设 n-dim 无定形点集 C 和 n-dim 球点集 B, 两者体积相同 $V(C)=V(B)=V(B_R^n)$. 设 $\epsilon \to 0$, $C+\epsilon B$ 使得在 C 表 面增加薄壳. 那么 C 的 (n-1)-dim 表面积(Area)可借该薄壳体积除以厚度 ϵ 得到: Area $=\lim_{\epsilon \to 0} \frac{V(C+\epsilon B)-V(C)}{\epsilon}$. 不等式: $V(C+\epsilon B)^{1/n} \geq V(C)^{1/n} + V(\epsilon B)^{1/n} = V(B)^{1/n} + (\epsilon^n V(B))^{1/n} \Rightarrow \text{Area} \geq \lim_{\epsilon \to 0} \frac{[(1+\epsilon)^n-1]}{\epsilon} V(B) \approx n \cdot V(B), C$ 为球时

[Example] 取两铁环沾肥皂水, 铁环间由肥皂水薄膜相连. 几何: curvature; 物理: surface tension. Laplace preessure: $p \propto \sigma \overline{H}$. [Example] 悬链线(Catenary Curve).

类比不等式
$$\frac{x+y}{2} \ge \sqrt{xy}$$
, 那么 $\sqrt{[V(C)V(D)]} \le V\left[\frac{C+D}{2}\right] \le \left(1-\frac{\epsilon^2}{8}\right)^n V(B)$. ϵ 为不对齐程度.

设单位体积球点集 B, 而 C 占据 B 体积的 $\frac{1}{2}$, 剩下的 $\frac{1}{2}$ 体积为 D. 即有 $V(C)=\frac{1}{2}V(B)$. 那么 $M=\frac{C+D}{2}$ 所能占据的 体积是有限的. 代入 V(B)=1 得 $V(D)\leq 2(1-\frac{1}{8}\epsilon^2)^{2n}\times V(B)=2e^{-n\epsilon^2/4}V(B).$

[Example] 考虑 n-dim 球的球面 S^{n-1} , 在球面上有一分布函数 f 且随球面坐标缓慢变化. 找到 f 的中位数 M, 分界为 $S_1(f < M)$ 和 $S_2(f > M)$. 令 S_1 向 S_2 方向膨胀微薄一层,得到 $f = M + \epsilon$ 界线;同样地, S_2 向 S_1 方向膨胀后,得到 $f = M - \epsilon$ 界线. 因为 $V(S_1) \ll V(S^{n-1})$ 且 $V(S_2) \ll V(S^{n-1})$, 说明球面上大部分数值都集中在中值 M 附近.

0.1.1.3.3 Probability Perspective @ Levy, 1980 Uniform distribution of dots → volume interpretted as the probability.

[Example] Probability theory of large deviation. Toss coin(抛掷硬币): $X_i = 0, 1$; 均值 $M_N = \frac{1}{N} \sum_{i=1}^{N} X_i$. 令 $x \in \left(\frac{1}{2}, 1\right)$,

 $P(M_N > x) < e^{-NI(x)},$ 其中 $I(x) = x \ln x + (1-x) \ln (1-x) + \ln 2.$ 令 $x = \frac{1}{2} + \epsilon,$ 则 $P(M_N > \frac{1}{2} + \epsilon) < e^{-2N\epsilon^2}.$

$$M_N, \text{ ``macrostate''}. \text{ microstates: } C_N^{NM_N} = C_N^k.$$

$$C_N^k = \frac{N!}{k!(N-k)!} \Rightarrow \ln C_k = \ln \left[\frac{N!}{k!(N-k)!} \right] \simeq -N \ln x \ln x - N(1-x) \ln (1-x) = -N[I(x) - \ln 2]$$

$$S = k_B \ln C_N^k$$

[Example] $[-1,1] \otimes [-1,1]$ 空间内随机撒点. 设 x+y=0 分割线, 该线上的点有 $\lim_{n\to\infty}\sum_{i=1}^n x_i=0$; 相应地, 若 $\lim_{n\to\infty}x+y=\epsilon$ 描述了偏离中心线的程度.

From Dynamics to Probability Description

Measurement: time-avarage. Phase space with macroscopic constraint: ensemble-avarage. Poincare recurrence theorem(庞加莱 回归定理)

时间平均:
$$\langle f \rangle_t = \frac{\displaystyle\sum_i f_i \tau_i}{\displaystyle\sum_i \tau_i}$$

Course-grained description of phase space: $f_i = f_\alpha$, $\forall i \in \alpha$.

$$\begin{split} \langle f \rangle_t &= \frac{1}{T} \sum_\alpha f_\alpha t_\alpha, \quad t_\alpha = \sum_{i \in \alpha} \tau_\alpha \\ &= \sum_\alpha f_\alpha \times \left(\frac{t_\alpha}{T}\right) = \sum_\alpha f_\alpha p_\alpha, \quad \text{prob description: } p_\alpha = \frac{t_\alpha}{T} \end{split}$$

Formal presentation: in equilibrium,

ensemble avarage
$$\langle f \rangle_e = \langle \langle f \rangle_e \rangle_t = \langle \langle f \rangle_t \rangle_e$$

$$\left\langle \lim_{T \to \infty} \langle f \rangle_t \right\rangle_e = \lim_{T \to \infty} \langle f \rangle_t : \quad \text{ergodic}(各态历经), 初态无关$$

$$\langle f \rangle_e = \lim_{T \to \infty} \langle f \rangle_t$$

不同情况下的 microstate: 1. In Γ-space(6N-dim), (q, p); 2. $|n\rangle$; 3. $\sigma = \pm 1$; 4. $\sigma = \{0, 1\}$... Representative point \leftrightarrow one gas. Density function(continuum description) $\sum_i \delta(x-x_i) \to \rho(x)$.

$$\langle f \rangle = \frac{\sum_{\alpha} f_{\alpha} p_{\alpha,t}}{\sum_{\alpha} p_{\alpha,t}} \Longrightarrow \frac{\int f(q,p) \rho(q,p,t) \mathrm{d}^{3N} q \mathrm{d}^{3N} p}{\int \rho(q,p,t) \mathrm{d}^{3N} q \mathrm{d}^{3N} p}$$

equilibrium condition: $\langle f \rangle$ time-invariant $\rightarrow \frac{\partial \rho}{\partial t} = 0$

Ot [Discussion] 若 $\rho(q,p,t)=q(q,p)f(t),\langle f\rangle$ 在数学上也是平衡的. 这种情况下需要考虑到

$$\int g(q,p)f(t)\mathrm{d}^{3N}q\mathrm{d}^{3N}p=N \Rightarrow f(t)=\mathrm{const.} \Rightarrow \frac{\partial \rho}{\partial t}=0.$$

0.1.2.1 Dynamics

0.1.2.1.1 A Single Representative Point in Γ-**Space** . Hamiltonian 力学: $\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}$. 特征: 1. 轨迹不可能自相交; 2. 回归定理.

0.1.2.1.2 Multiple Representative Points 在 Γ -空间中选取一个体积 ω , 将会有 $\int_{\mathbb{R}^n} \rho(q,p,t) d\omega$ 个代表点. 其表面为 $\partial \omega$. 代表 点在 Γ -空间中的运动速度为 $\vec{v}_i = \{\dot{q}_i, \dot{p}_i\}$. 那么存在关系

$$\begin{split} &\frac{\partial}{\partial t} \int_{\omega} \rho(q,p,t) \mathrm{d}\omega = - \int_{\partial \omega} \rho \vec{v} \cdot \hat{n} \mathrm{d}\sigma = - \int_{\omega} \nabla \cdot (\rho \vec{v}) \mathrm{d}\omega, \quad \nabla = \left(\frac{\partial}{\partial \mathbf{q}}, \frac{\partial}{\partial \mathbf{p}}\right) \\ &\Rightarrow \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0, \quad \text{Continuity Equation} \end{split}$$

Material deriavtive. 设 $g(\vec{x},t)$, flow field: $\vec{v}(\vec{x},t)$.

$$g(\vec{x} + \delta \vec{x}, t + \delta t) - g(\vec{x}, t) = g(\vec{x}, t) + \delta \vec{x} \frac{\partial g}{\partial \vec{x}} + \delta t \frac{\partial g}{\partial t} - g(\vec{x}, t) = \delta \vec{x} \frac{\partial g}{\partial \vec{x}} + \delta t \frac{\partial g}{\partial t} = \delta t \left(\vec{v} \cdot \frac{\partial g}{\partial \vec{x}} + \frac{\partial g}{\partial t} \right)$$

$$\frac{\mathrm{D}g}{\mathrm{D}t} \equiv \frac{g(\vec{x} + \delta \vec{x}, t + \delta t) - g(\vec{x}, t)}{\delta t} = \vec{v} \cdot \frac{\partial g}{\partial \vec{x}} + \frac{\partial g}{\partial t}$$

Liouville's theorem:
$$\begin{split} \frac{\mathrm{D}\rho(q,p,t)}{\mathrm{D}t} &= \frac{\partial\rho}{\partial t} + \vec{v}\cdot\nabla\rho = \frac{\partial\rho}{\partial t} + \sum_i \left(\dot{q}_i\frac{\partial\rho}{\partial\rho_i} + \dot{p}_i\frac{\partial\rho}{\partial p_i}\right) \\ &= \frac{\partial\rho}{\partial t} + \sum_i \left(\frac{\partial H}{\partial p_i}\frac{\partial\rho}{\partial\rho_i} - \frac{\partial H}{\partial q_i}\frac{\partial\rho}{\partial p_i}\right) = \boxed{\frac{\partial\rho}{\partial t} + \{\rho,H\} = 0} \end{split}$$

[Discussion] How to understand $\frac{\mathrm{D}\rho}{\mathrm{D}t}=0$? 1. canonical transform; 2. incompressibility ($\nabla\cdot\vec{v}=0$)

$$\frac{\partial \rho}{\partial t} + \nabla(\rho \vec{v}) = 0 \Rightarrow \underbrace{\frac{\partial \rho}{\partial t} + \vec{v} \cdot \nabla \rho}_{i} + \rho \nabla \cdot \vec{v} = 0 \Rightarrow \nabla \cdot \vec{v} = 0$$

$$\text{check:} \quad \nabla \cdot \vec{v} = \sum_{i} \left(\frac{\partial}{\partial q_{i}} \dot{q}_{i} + \frac{\partial}{\partial p_{i}} \dot{p}_{i} \right) = \sum_{i} \left(\frac{\partial}{\partial q_{i}} \frac{\partial H}{\partial p_{i}} - \frac{\partial}{\partial p_{i}} \frac{\partial H}{\partial q_{i}} \right) = 0$$

 $\frac{1}{i}$ $(0q_i \quad op_i \quad)$ $\frac{1}{i}$ $(0q_i \, op_i \quad op_i \, oq_i)$ H-dynamics \Leftrightarrow incompressibility of representative points. 若 ρ 为H函数 $\rho(H)$, 则 $\{\rho,H\}=0\Rightarrow \frac{\partial \rho}{\partial t}=0$, 即达成 equilibrium; 两种可能: 1. $\rho=$ const.; 2. @Gibbs: canonical $\Rightarrow \ln \rho \propto H$

Microcanonical Ensemble 0.1.3

气体模型 macrostate: (E, N, V), to construct an ensemble of microstates. surface of (6N-1)-dim.

[Discussion] 可能总动量 $\vec{P} \neq \vec{0}$, 总角动量 $\vec{L} \neq \vec{0}$. 以动量为例子:

$$\underline{p_{1x}^2 + p_{1y}^2 + p_{1z}^2} + p_{2x}^2 + \dots + p_{Nz}^2 \stackrel{\text{ideal gas}}{=} 2mE, \quad P_z = \sum_{i=1}^N p_{1z} \to 0, \text{ due to high dimension.}$$

$$\text{[Example] 2-state system. } |1\rangle:N_1,|2\rangle:N_2. \quad P_1 = \frac{N_1^{i=1}}{N_1+N_2}, P_2 = \frac{N_2}{N_1+N_2} \Rightarrow \langle f \rangle = f_1P_1 + f_2P_2.$$

Equilibrium density function?
$$\rho(q,p) = \begin{cases} \text{const.} & H(q,p) \in \lim_{\Delta \to 0} \left[E - \frac{\Delta}{2}, E + \frac{\Delta}{2} \right] \\ 0, & \text{others} \end{cases}$$

Foundation of equilibrium: 等概率假设, 且为 ergodicity(各态历经). Closed system:
$$S=k_B\ln\Omega,\quad \Omega=\frac{\omega}{\omega_0},\quad \omega$$
: allowed region of motion, ω_0 : some constant

$$\delta q \delta p \sim h \Rightarrow (\delta \mathbf{q} \delta \mathbf{p}) \sim h^{3N} \Rightarrow \omega_0 = h^{3N}$$

$$\Omega = \frac{1}{N! h^{3N}} \int_{\mathbb{R}^3} \mathrm{d}^3 \vec{q}_1 \mathrm{d}^3 \vec{q}_2 \cdots \mathrm{d}^3 \vec{q}_N \mathrm{d}^3 \vec{p}_1 \mathrm{d}^3 \vec{p}_2 \cdots \mathrm{d}^3 \vec{p}_N, \quad N! \text{ to make } S \text{ is extensive}$$

⇒ indisdinguishability of microscopic particles

0.1.3.1 Equation of State for Ideal Gas

Derive the equation of state by microcanonical ensemble method

理想气体的内能表达式: $\sum_{i=1}^{N} |\vec{p_i}|^2 = 2mE$. 等能面为 (3N-1) 维球面, 且球面半径约为 \sqrt{E} . 那么相空间体积/微观态数

$$\Omega \sim (\sqrt{E})^{3N-1} \sim E^{3N/2}$$
. 克劳修斯熵 $S = k_B \ln \Omega = \frac{3}{2} k_B N \ln E + \text{const.}$; 1st law: $\frac{1}{T} = \left(\frac{\partial S}{\partial E}\right)_V \Rightarrow E = \frac{3}{2} N k_B T$.

在 1D 下存在关系
$$p \cdot L \sim \pi \Rightarrow p \sim \frac{1}{L} \Rightarrow \delta p \sim \frac{1}{L}$$
 ,则更良的微观态数表达式为 $\Omega \sim \frac{(\sqrt{E})^{3N-1}}{(\delta p)^{3N}} \stackrel{V \sim L^3}{\longrightarrow} \left(E^{3/2}V\right)^N$

在 1D 下存在关系
$$p \cdot L \sim \pi \Rightarrow p \sim \frac{1}{L} \Rightarrow \delta p \sim \frac{1}{L}$$
 ,则更良的微观态数表达式为 $\Omega \sim \frac{(\sqrt[]{E})^{3N-1}}{(\delta p)^{3N}} \stackrel{V \sim L^3}{\longrightarrow} \left(E^{3/2}V\right)^N$, $S = k_B \ln \Omega = Nk_B \left(\frac{3}{2} \ln E + \ln V + \text{const.}\right) \Rightarrow \left(\frac{\partial S}{\partial V}\right)_E = \frac{Nk_B}{V} \Rightarrow \mathrm{d}S = \frac{3}{2}Nk_B \frac{\mathrm{d}E}{E} + \frac{Nk_B}{V} \frac{\mathrm{d}V}{V} = \frac{\mathrm{d}E}{T} + \frac{P\mathrm{d}V}{T}$,

观察比较得到
$$Nk_B \frac{dV}{V} = \frac{PdV}{T} \Rightarrow P = \frac{N}{V} k_B T$$
.

0.1.3.2 Dilute Hard Sphere System

各小球可占体积为因各自体积而相互减少. 设小球半径为 a, 体积为 $\omega_e=rac{4}{3}\pi(2a)^3$. 接触距离至少为球心间距所以是 2a.

微观态数为
$$\Omega = \frac{1}{N!h^N} \int d^3\vec{q}_1 d^3\vec{q}_2 \cdots d^3\vec{q}_N d^3\vec{p}_1 d^3\vec{p}_2 \cdots d^3\vec{p}_N$$
, 其中

$$\int d^3 \vec{q}_1 \cdots d^3 \vec{q}_N = V(V - \omega_e)(V - 2\omega_e) \cdots [V - (N-1)\omega_e] = \prod_{i=0}^{N-1} (V - i\omega_e) \stackrel{\ln}{\Rightarrow} \ln \prod_{i=0}^{N-1} (V - i\omega_e) = \sum_{i=0}^{N-1} \ln (V - i\omega_e).$$

使用极限
$$\ln(x + \delta x) \Leftrightarrow \ln x + \frac{1}{x}\delta x$$
,则 $\sum_{i=0}^{N-1} \ln(V - i\omega_e) = \sum_{i=0}^{N-1} \left(\ln V - \frac{i\omega_e}{V}\right) = N \ln V - \frac{\omega_e}{V} \frac{(N-1)N}{2}$

$$\simeq N \left(\ln V - \frac{\omega_e N}{2V} \right) \simeq N \ln \left(V - \frac{\omega_e N}{2} \right) \Rightarrow \int \mathrm{d}^{3N} q = \left(V - \frac{\omega_e N}{2} \right)^N$$

[Exercise]设有 N 个硬球, 半径 a, 约定 $\omega_e = \frac{4}{3}\pi(2a)^3$, 体系能量为 E, 总体积为 V, 温度为 T. 尝试计算 S(E,V), 状态方程.

[Hint:Area
$$(S^{n-1}) = \frac{2\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})}R^{n-1}$$
]

0.1.3.3 Einstein's Model for Heat Capacity of Solid(1907)

Excitations → Solid property? Quantum?

N atoms, 等效于 3N independent oscillators. Total energy: U, distributed to 3N oscillators. 等效为将 $\frac{U}{\hbar u_0}$ 个竖隔板插入由

微观态数
$$W = \frac{\left[(3N-1) + \left(\frac{U}{\hbar\omega_0}\right)\right]!}{(3N-1)!\left(\frac{U}{\hbar\omega_0}\right)!}$$
,则每 1 mol 原子的熵为 $s(u) = k_B \ln W \simeq 3R \left[\ln\left(1 + \frac{u}{u_0}\right) + \frac{u}{u_0}\ln\left(1 + \frac{u_0}{u}\right)\right]$,其中 $s = \frac{S}{N/N_A}$, $u = \frac{U}{N/N_A}$, $u_0 = 3N_A\hbar\omega_0$. 压强是某量对体积的偏导数 $P = \frac{\partial \sharp}{\partial V}$, $\sharp : U, S \cdots$,热容则是 $c = T\frac{\partial S}{\partial T}$. 温度 $\frac{1}{T} = \left[\frac{\partial S(U)}{\partial U}\right] = \frac{k_B}{\hbar\omega_0}\ln\left(1 + \frac{3}{u}\hbar\omega_0\right)$,代入即有 $\frac{1}{3N_A}u(T) = \frac{\hbar\omega_0}{e^{\hbar\omega_0/k_BT} - 1}$,正是 Boson 行为. 热容为 $c = \frac{\partial u}{\partial T} = 3N_Ak_B\left(\frac{\hbar\omega_0}{k_BT}\right)^2e^{-\frac{\hbar\omega_0}{k_BT}}$.

0.1.4 Canonical Ensemble

Macrostate: (N, V, T). 能量允许涨落. 又名: Entropy representation.

Equilibrium density function? @Gibbs:
$$\frac{\partial \rho}{\partial t} = -\vec{v} \cdot \nabla \rho$$
. If equilibrium $\frac{\partial \rho}{\partial t} = 0$, then $\vec{v} \cdot \nabla \rho = 0$.
$$\sum_{i} \left(\dot{q}_{i} \frac{\partial \rho}{\partial q_{i}} + \dot{p}_{i} \frac{\partial \rho}{\partial q_{i}} \right) = 0 \Rightarrow \sum_{i} \left(\frac{\partial H}{\partial p_{i}} \frac{\partial \rho}{\partial q_{i}} - \frac{\partial H}{\partial q_{i}} \frac{\partial \rho}{\partial q_{i}} \right) = 0$$
. 若 ρ 为 H 函数 $\rho(H)$, 则方程自动满足.
$$\rho_{1+2} = \rho_{1} \times \rho_{2}, \quad H_{1+2} = H_{1} + H_{2} \Rightarrow \ln \rho \propto \alpha H \Rightarrow \rho \propto e^{\alpha H}$$

0.1.4.1 Connection to Microcanonical Ensemble

0.1.4.1.1 Environment & System Perspective 设环境为 A', 处于态 $|r'\rangle$; 体系为 A, 处于态 $|r\rangle$, A + A' 整体是孤立系统. 那么 有 $E_r+E_{r'}=E^{(0)}={
m const.}$; 设 Ω' 为环境微观态数, 则体系处于态 $|r\rangle$ 的概率 $P_r\propto\Omega'(E_{r'})=\Omega'(E^{(0)}-E_r)$. 假定体系所占能 君 $E_r + E_{r'} = E^{(0)} - \text{Const.}$,又 $E_r = \text{Const.}$,又 $E_r = \text{Const.}$,又 $E_r = \text{Const.}$,以 $E_r \ll E^{(0)}$,则可 Taylor 展开: $\ln \Omega'(E^{(0)} - E_r) = \ln \Omega'(E^{(0)}) + \frac{\partial \ln \Omega'}{\partial E'} \Big|_{E' = E^{(0)}} \underbrace{(E_{r'} - E^{(0)})}_{E' = E^{(0)}} + \cdots = \text{const.} - \beta E_r$ 于是得到 Boltzmann factor/Canonical distribution $P_r = \frac{e^{-\beta E_r}}{\sum e^{-\beta E_r}}$.

[Discussion] Taylor 展开时, 为何不需要保留更高次? \Rightarrow 为了保持 S 的广延性.

0.1.4.1.2 Multiple Systems Perspective 制备 N 个正则系综, 整体组成一个微正则系综. 设 n_r 个系统处于状态 $|r\rangle$, 能量为 E_r . 则存在约束条件 $\sum_r n_r = N$, $\sum_r n_r E_r = NU = N\langle E_r \rangle$. 微观态数为 $W = \frac{N!}{\prod n_r!}$, 寻找 $\{n_r\}$ 使得 W 最大化. $\Rightarrow \frac{n_r^*}{N} = \frac{e^{-\beta E_r}}{\sum e^{-\beta E_r}}.$

[Dsicussion] Why is $\ln \rho \propto \alpha E \Rightarrow \rho \propto e^{\alpha E}$ simple: 1. No dynamics information; 2. Time-reversal symmetry. Detailed-balance(细 致平衡); 3. 具有可加性. 引申为 $\ln \rho = \alpha + \beta E$; 4. 设 $f(\epsilon)$ 为体系处于能量 ϵ 的概率,则有 $\frac{f(\epsilon_1)}{f(\epsilon_2)} = \frac{f(\epsilon_1 + \epsilon)}{f(\epsilon_2 + \epsilon)}$. 定义 $f(\epsilon) = g(\epsilon - \epsilon_2) \Rightarrow g(\epsilon)g(\epsilon_1 - \epsilon_2) = g(0)g(\epsilon_1 - \epsilon_2 - \epsilon) \Rightarrow g(\epsilon) = g(0)e^{-\beta\epsilon} \Rightarrow \frac{f(\epsilon_1)}{f(\epsilon_2)} = e^{-\beta(\epsilon_1 - \epsilon_2)}$

0.1.4.2 Revisit Maxwell Distribution

0.1.4.2.1 Galton's Statistical Model

0.1.4.2.2 Based on Symmetry 各向同性: $f(\vec{v}) = f(v) = f_0(v_x) f_0(v_y) f_0(v_z)$

0.1.4.2.3 Boltzmann 能量离散化.
$$\exists \{n_r\}, \text{ s.t. } W = \frac{N!}{\prod_{\alpha} n_{\alpha}!}$$

0.1.4.2.4 Based on Ensemble Theory 能量中动量和位置分离: E(q,p) = K(p) + U(q) 因此统计独立: $\rho(q,p) \propto e^{-\beta E(q,p)} \Rightarrow \rho(q,p) = Ae^{-\beta [K(p)+U(q)]} = Ae^{-\beta K(p)} \cdot e^{-\beta U(q)}$.

其中动能部分:
$$e^{-\beta K(p)} = \exp\left[-\beta \left(\frac{p_1^2}{2m} + \frac{p_1^2}{2m} + \dots + \frac{p_N^2}{2m}\right)\right] = e^{-\beta \frac{p_{1x}^2}{2m}} e^{-\beta \frac{p_{1x}^2}{2m}} e^{-\beta \frac{p_{1x}^2}{2m}} e^{-\beta \frac{p_{2x}^2}{2m}} e^{-\beta$$

New perspective on gas model: 将各粒子单独视为一个系统, 只有 E 交换而没有 N 交换: $\rho_1 = Ae^{-\beta \frac{p_1^2}{2m}}$

0.1.4.2.5 Geometric Viewpoint 在 $(p_{1x}, p_{1y}, p_{1z}, p_{2x}, p_{2y}, \cdots)$ 3N-dim 空间中, 挑任意一轴(以 p_{1x} 为例), 系统处于该轴上的 概率分布为? $\Rightarrow \rho(p_{1x}) \sim e^{-\beta p_{1x}^2}$ (Energy partition theorem)

[Example] 受热浴谐振子:
$$H = \alpha p^2 + \beta q^2$$
; $\langle \alpha p^2 \rangle = \int \alpha p^2 A^{-\beta H} \mathrm{d}q \mathrm{d}p = \frac{1}{2} k_B T$.

[Example] 推广: $H = \sum_i \alpha p_i^n$, $E_i = \alpha p_i^n$, $\langle E_i \rangle = \int E_i e^{-\beta E_i} \mathrm{d}E_i \Big/ \int e^{-\beta E_i} \mathrm{d}E_i = -\frac{\partial}{\partial \beta} \ln \left(\int e^{-\beta E_i} \mathrm{d}p_i \right)$.

Let $y = \beta^{\frac{1}{n}} p_i \Rightarrow \int e^{-\beta E_i} \mathrm{d}p_i = \beta^{-\frac{1}{n}} \int e^{-\alpha y^n} \mathrm{d}y \Rightarrow \boxed{\langle E_i \rangle = \frac{1}{n} k_B T}$.

0.1.4.3 Thermodynamics

[Discussion] 已知 1st law: dU = TdS - pdV, 如何将 U(V, S) 转变为 V 和 T 的未知函数 ?(V, T).

定义 $F \equiv U - TS$, 全微分 $dF = -pdV - SdT \Rightarrow F(V,T)$. 因此正则系综 (N,V,T) 也被称作 F-representation.

类似地, 定义 $G \equiv F + PV$ 从而得到 P 和 T 的函数 G(P,T). $G = \mu N$.

平均能量
$$\langle E_r \rangle = \frac{\displaystyle\sum_r E_r e^{-\beta E_r}}{\displaystyle\sum_r e^{-\beta E_r}} = -\frac{\partial}{\partial \beta} \ln \left(\displaystyle\sum_r e^{-\beta E_r} \right)$$

内能
$$U=F+TS=F-T\left(\frac{\partial F}{\partial T}\right)_{N,V}=\frac{\partial}{\partial (1/T)}\left(\frac{F}{T}\right)_{N,V}$$

记 $\beta = \frac{1}{k_B T}$, 则自由能 $F = -k_B T \ln Q_N(V,T)$, 其中正则配分函数对状态 $|r\rangle$ 求和形式为 $Q_N = \sum e^{-\beta E_r}$.

求
$$\langle \ln P_r \rangle = \left\langle \ln \left(\frac{e^{-\beta E_r}}{Q_N} \right) \right\rangle = -\ln Q_N - \beta \langle E_r \rangle = \beta (F - U) = -\frac{S}{k_B} \Rightarrow S = -k_B \sum_r P_r \ln P_r$$
, 正是 Gibbs entropy 形式.

对能量 i 求和形式: $Q_N = \sum g_i e^{-\beta E_i} = \int g(E) e^{-\beta E} dE$, 其中 g_i 为 degeneracy of energy level E_i (能级的简并度).

微观态数/ Γ -相空间体积的形式: $Q_N = \frac{1}{N!h^{3N}} \int e^{-\beta H(q,p)} \mathrm{d}^{3N} q \mathrm{d}^{3N} p$

[Discussion] $Q_N = \sum e^{-\beta E_r}$,根据 $e^{-\beta E_r}$ 能定论 $E_r = 0$ 是概率最高的能量吗? $(E_r)_{\text{most prob}} = U$. 因为还存在着 g(E) 调控 了概率, 使得 U 才是真正概率最高的能量. $e^{-\beta U}e^{S/k_B}$

0.1.4.4 Fluctuations

已知内能 U 可通过对正则配分函数求 β 偏导得到: $U = -\frac{\partial}{\partial \beta} \left(\ln \sum e^{-\beta E_r} \right)$. 若再对 U 求一次 β 偏导, 则有

$$\frac{\partial U}{\partial \beta} = -\frac{\sum_{r} E_r^2 e^{-\beta E_r}}{\sum_{r} e^{-\beta E_r}} + \left(\frac{\sum_{r} E_r e^{-\beta E_r}}{\sum_{r} e^{-\beta E_r}}\right)^2 = -\langle E^2 \rangle + \langle E \rangle^2 \equiv \langle (\Delta E)^2 \rangle = k_B T^2 C_v$$

定义相对变化量/涨落为 $\frac{\sqrt{\langle(\Delta E)^2\rangle}}{\langle E\rangle} = \frac{\sqrt{k_B T^2 C_v}}{U} \sim N^{-\frac{1}{2}}$

[Example] Classical harmonic oscillator ($\varepsilon_n = nh\nu$). Single oscillator:

$$\langle E_1 \rangle = \frac{\displaystyle\sum_n \varepsilon_n e^{-\beta \varepsilon_n}}{\displaystyle\sum_n e^{-\beta \varepsilon_n}} = \frac{h\nu}{e^{\beta h\nu} - 1}. \ \ \langle E_1^2 \rangle = (h\nu)^2 \frac{1 + e^{\beta h\nu}}{(e^{\beta h\nu} - 1)^2}, \ \langle (\Delta E_1)^2 \rangle = (h\nu)^2 \frac{e^{\beta h\nu}}{(e^{\beta h\nu} - 1)^2}, \ \frac{\sqrt{\langle (\Delta E_1)^2 \rangle}}{\langle E_1 \rangle} = e^{\frac{1}{2}\beta h\nu}. \ \ T \to 0,$$

涨落趋于发散.

$$N ext{ oscillators: } \langle (\Delta E)^2 \rangle = N \langle (\Delta E_1)^2 \rangle, \quad \frac{\sqrt{\langle (\Delta E)^2 \rangle}}{\langle E \rangle} = N^{-\frac{1}{2}} \frac{\sqrt{\langle (\Delta E_1)^2 \rangle}}{\langle E_1 \rangle}.$$

[Example] Reletive fluctuation of speed in Maxwell distribution. $f(v) = A \exp\left\{-\frac{mv^2}{2k_BT}\right\} \frac{v^2}{v^2} dv$, where $\frac{v^2}{v^2}$ for 3D gas.

$$\langle g(v) \rangle = \frac{\int g(v)f(v)dv}{\int f(v)dv}, \quad \frac{\sqrt{\langle v^2 \rangle}}{\langle v \rangle} = \sqrt{\frac{3\pi}{8} - 1}$$

[Example] Ideal gas. $H = \sum_{i=1}^{N} \frac{\vec{p}_i^2}{2m}$.

1. 使用正则系综方法. 配分函数为

$$Q_N(V,T) = \sum_r e^{-\beta E_r} = \frac{1}{N!h^{3N}} \int e^{-\beta \sum_{i=1}^N \frac{\vec{p}_i^2}{2m}} \mathrm{d}^{3N}q \mathrm{d}^{3N}p = \frac{1}{N!} \left(\frac{1}{\hbar^3} \int_{-\infty}^{+\infty} e^{-\beta \frac{p_1^2}{2m}} 4\pi p_1^2 \mathrm{d}p_1 \underbrace{\int_{-\infty}^{+\infty} \mathrm{d}^3 \vec{q}_1} \right)^N = \frac{Q_1(T,V)^N}{N!},$$

即各粒子统计独立. 单粒子配分函数 $Q_1=rac{V}{h^3}(2\pi mk_BT)^{rac{3}{2}}=rac{V}{\lambda_T^3}$, 其中 $\lambda_T=rac{h}{\sqrt{2\pi mk_BT}}$ 为热波长. 粒子间平均间距可估 算为 $a \sim \left(\frac{V}{N}\right)^{\frac{1}{3}}$. 若 $\lambda_T \ll a$, 即可认为 $h \to 0$, 无量子效应. 更一般性地, 若 Hamiltonian 仅为动量 p 的函数 H = H(p), 则单粒

子配分函数形为 $Q_1 = Vf(T)$. 当 $H = \sum_i \frac{p_i^2}{2m}$ 特殊情形时, 有 $f(T) = \lambda_T^{-3}$. 继续一般性的讨论:

$$\ln Q_N = \ln \left[\frac{(Vf(T))^N}{N!} \right] = N \ln f(T) + \ln \frac{V^N}{N!} = N \ln f(T) + \ln \left(\frac{e^N}{N^N} V^N \right) = N \ln f(T) + N \ln \left(\frac{eV}{N} \right)$$

记 $n = \frac{N}{V}$, 则 $\frac{F}{V} = nk_BT \left[\ln \left(\frac{n}{f} \right) - 1 \right] \Rightarrow P = \left(\frac{\partial F}{\partial V} \right)_{NT} = \frac{Nk_BT}{V}$, 和理想气体相同. 这说明满足该形式的状态方程,

真正重要的是各粒子统计独立.
$$S = -\left(\frac{\partial F}{\partial T}\right)_{N,V} = k_B V \left[-n \ln\left(\frac{n}{f}\right) + \frac{5}{2}n\right], \text{ extensive by adding } N!.$$

2. 通过态密度分析配分函数. $Q_N = \int g(E)e^{-\beta E} dE$, $g(E) \sim E^{\frac{3N}{2}-1}$. 那么概率则是 $P(E)dE = g(E)e^{-\beta E} dE$ 概率 P(E) 对能量 E 导数为 0 以寻找极值点 E_0 :

$$\frac{\partial}{\partial E} \left[g(E)e^{-\beta E} \right] = g'(E)e^{-\beta E} + g(E)(-\beta)e^{-\beta E} = \left(\frac{3N}{2} - 1 \right) E^{\frac{3N}{2} - 2} e^{-\beta E} + E^{\frac{3N}{2} - 1} (-\beta)e^{-\beta E}$$

$$= \left[\left(\frac{3N}{2} - 1 \right) E^{-1} - \beta \right] \times \sharp = 0 \Rightarrow E_0 = \left(\frac{3N}{2} - 1 \right) \frac{1}{\beta} \Rightarrow \lim_{N \to \infty} E_0 = \frac{3N}{2} k_B T$$

[Example] Colored Ideal Gas. N red atoms, N blue atoms, N green atoms. Statistically independent. microstate: (q, p, color)

1. **存在三种颜色时的熵** S_{3c} : 单种颜色的配分函数 $Q_N(T,V)=\frac{1}{N!}\left(\frac{V}{\lambda_T}\right)^N$,则三种颜色总共的配分函数为 $Q=Q_N^3$. 那

么自由能为
$$F = -k_B T \ln Q = -3k_B T \ln \left(\frac{V}{N\lambda_T}\right)$$
. 熵为 $S_{3c} = -\left(\frac{\partial F}{\partial T}\right)_{NV} = 3Nk_B \ln \left(\frac{eV}{N}\right) - 3Nf'(T)$

2. 只存在一种颜色时的熵 S_{1c} : $S_{1c} = 3Nk_B \ln \left(\frac{eV}{3N}\right) - 3Nf'$

比较以上两个结果, 就会发现由于多出颜色自由度产生的混合熵 $\Delta S = S_{3c} - S_{1c} = k_B \ln 3^{3N}$.

[Discussion] 1. How to understand $\ln 3^{3N}$? statistically independent o analyze a single particle. 底数 3: 3 种颜色/状态. 2.

 $S_{\text{tot}} = S_{\{q,p\}} + S_{\text{color}}$. 新的自由度独立于 (q,p), 则熵直接相加.

[Example] 2-state. $|1\rangle:P_1=r;|2\rangle:P_2=1-r.$ For a single particle,

$$\widetilde{S}_{\text{mix}} = -k_B \sum_{r=1}^{2} P_r \ln P_r = -k_B [r \ln r + (1-r) \ln (1-r)].$$
 取极值: $r = \frac{1}{2} \Rightarrow \widetilde{S}_{\text{mix}} = k_B \ln 2$

0.1.5 Grand Canonical Ensemble

exchange energy, matter. (T, V, μ) . $|rs\rangle$: 粒子数为 N_r , 能量为 E_r . 令该系统 A 与环境 A' 整体组成一个孤立系统.

$$P_{rs} = \frac{e^{-\alpha N_r - \beta E_s}}{\sum_{r,s} e^{-\alpha N_r - \beta E_s}}$$

系综中能量的延拓: $U(S,V,N) \stackrel{F=U-TS}{\longrightarrow} F(T,V,N) \stackrel{\Phi=F-\mu N}{\longrightarrow} \Phi(T,V,\mu)$, 即 Grand potential.

$$\langle N \rangle = \sum_{r,s} N P_{rs} = \frac{\displaystyle\sum_{r,s} N_r e^{-\alpha N_r - \beta E_s}}{\displaystyle\sum_{r,s} e^{-\alpha N_r - \beta E_s}} = -\frac{\partial q}{\partial \alpha}, \\ q = \ln \left(\sum_{r,s} e^{-\alpha N_r - \beta E_s} \right).$$
可类比于 $\langle E \rangle = -\frac{\partial q}{\partial \beta} \Rightarrow$ q-potential

$$Q(Z,V,T) = \sum_{N_r=0}^{\infty} Z^{N_r} Q_{N_r}(V,T), \quad Z \equiv e^{-\alpha}, \text{ fugacity}(逸度)$$

导出 Gibbs entropy(for open system): $\langle \ln P_{rs} \rangle = \sum_{r,s} P_{rs} (\ln P_{rs}) \Rightarrow S = -k_B \sum_{r,s} P_{rs} \ln P_{rs}$.

粒子数涨落:
$$\langle (\Delta N)^2 \rangle = \frac{\langle N \rangle^2 k_B T \kappa_T}{V} \Rightarrow \frac{\langle (\Delta n)^2 \rangle}{\langle n^2 \rangle} = \frac{k_B T}{V} \kappa_T, \quad \kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial T} \right).$$

[Example] **Ideal gas.** $Q_N(V,T) = \frac{Q_1^N}{N!}, Q_1(V,T) = \frac{1}{h^3} \int e^{-\beta \frac{p^2}{2m}} \mathrm{d}^3 \vec{q} \mathrm{d}^3 \vec{p} = \frac{V}{\lambda_T^3}.$ 若 H = H(p),则形式为 $Q_1(V,T) = Vf(T)$.

从巨正则系综角度出发, 配分函数为 $Q(Z,V,T) = \sum_{N_r=0}^{\infty} Z^{N_r} \frac{[Vf(T)]^{N_r}}{N_r!} = e^{ZVf(T)}$, 其中 $Z = e^{-\alpha}$.

那么 q-potential 为 $q(Z,V,T)=\ln Q=ZVf(T)$. 各热力学量根据与 q 的关系分别导出: 压强 $P=\frac{k_BT}{V}q=Zk_BTf(T)$;

粒子数
$$N=-\frac{\partial q}{\partial \alpha}=ZVf(T)$$
; 内能 $U=-\frac{\partial q}{\partial \beta}=ZVk_BT^2f'(T)$; 状态方程 $PV=Nk_BT$.

[Example] Fluctuation of number of particles. 考虑体系 (V,N) 中的小区域 Ω , 体积为 v, 粒子数为 n. 则 Ω 中有 n 个粒子的概率 $P_n = \frac{\sum\limits_{s} e^{-\alpha n - \beta E_n^{(s)}}}{Q}.$ 猜测平均粒子数为 $\langle n \rangle = \frac{N}{V}v$. 独立同分布. 单个粒子在/不在 Ω 中的概率: $P_1 = \frac{v}{V}, \quad P_0 = 1 - \frac{v}{V}$. 则

$$\Omega \ \text{中有} \ n \ \text{个粒子的概率为} \ P(n) = \frac{N!}{(N-n)!n!} P_1^n P_0^{N-n}, \\ \lim_{N \to \infty} P(n) \ \text{将化为 Poisson 分布:} \ P(n) = \frac{\langle n \rangle^n}{n!} e^{-\langle n \rangle}, \\ \text{其中} \ \langle n \rangle = \frac{N}{V} v.$$