

Description

The VSM80N06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} =60V, I_D =80A $R_{DS(ON)}$ =6.5m Ω (typical) @ V_{GS} =10V $R_{DS(ON)}$ =7.5m Ω (typical) @ V_{GS} =4.5V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- PWM
- Load Switching

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM80N06-TC	VSM80N06	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	60	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	80	А	
Drain Current-Continuous(T _C =100°ℂ)	I _D (100℃)	56.5	Α	
Pulsed Drain Current	I _{DM}	320	Α	
Maximum Power Dissipation	P _D	110	W	
Derating factor		0.73	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	390	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Electrical Characteristics (T_C=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit		
Off Characteristics	•		•					
Drain-Source Breakdown Voltage	BV _{DSS} V _{GS} =0V I _D =250µA		60	-	-	V		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μA		
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA		
On Characteristics (Note 3)	•		•					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	0.8	1.3	1.8	V		
Dunin Course On State Desigtance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	6.5	8.0	mΩ		
Drain-Source On-State Resistance		V _{GS} =4.5V, I _D =20A	-	7.5	9.5	mΩ		
Forward Transconductance	g FS	V _{DS} =5V,I _D =20A	20	-	-	S		
Dynamic Characteristics (Note4)	-		•			•		
Input Capacitance	C _{lss}	\/ -20\/\/ -0\/	-	4000	-	PF		
Output Capacitance	Coss	V_{DS} =30V, V_{GS} =0V,	-	290	-	PF		
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	210	-	PF		
Switching Characteristics (Note 4)	-		•			•		
Turn-on Delay Time	t _{d(on)}		-	8.5	-	nS		
Turn-on Rise Time	t _r	V_{DD} =30V, R_L =1 Ω	-	7	-	nS		
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =3 Ω	-	40	-	nS		
Turn-Off Fall Time	t _f		-	15	-	nS		
Total Gate Charge	Qg	\/ 00\/ L 00A	-	90.3		nC		
Gate-Source Charge	Q_{gs}	V _{DS} =30V,I _D =20A,	-	10.9		nC		
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	20.6		nC		
Drain-Source Diode Characteristics	-		•			•		
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-		1.2	V		
Diode Forward Current (Note 2)	Is		-	-	80	А		
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 20A	-	32	-	nS		
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	45	-	nC		
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)						

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2\%$.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition : Tj=25 $^{\circ}\text{C}$,V_{DD}=30V,V_G=10V,L=0.5mH,Rg=25 Ω

Test circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

v1.0

120 100 Power Dissipation (W) 80 60 40 20 0 0 50 75 100 125 150 175 T_J-Junction Temperature (°C)

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10ID Current- Junction Temperature

http://www.vseei.com/

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance

Page 5