Algorithmic Game Theory

- Minimax Principles

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Spring 2024

Outline

Two-Player Zero-Sum Games

- Minimax Theorems
 - Yao's Minimax Principle
 - An Application: Comparison-Based Sorting

Outline

Two-Player Zero-Sum Games

- Minimax Theorems
 - Yao's Minimax Principle
 - An Application: Comparison-Based Sorting

Payoff Matrix

	Scissors	Paper	Stone
Scissors	0	1	-1
Paper	-1	0	1
Stone	1	-1	0

- Rows: Alice's choices.
- Columns: Bob's choices.
- Entry position (i, j): state or profile.
- Entry value: the amount paid by Bob to Alice.

Payoff Matrix (the explicit form)

	Scissors	Paper	Stone
Scissors	(0,0)	(1, -1)	(-1,1)
Paper	(-1,1)	(0,0)	(1, -1)
Stone	(1, -1)	(-1, 1)	(0,0)

- Rows: Alice's choices.
- Columns: Bob's choices.
- Entry position (i, j): state or profile.
- Entry value: the amount paid by Bob to Alice.

Outline

Two-Player Zero-Sum Games

- Minimax Theorems
 - Yao's Minimax Principle
 - An Application: Comparison-Based Sorting

	B1	B2	ВЗ	B4	B5
A1	0	-1	2	-3	4
A2	-5	6	-7	8	-9
А3	10	-11	12	-13	14
A4	-15	16	-17	18	-19
A5	20	-21	22	-23	24

	B1	B2	ВЗ	B4	B5
A1	0	-1	2	-3	4
A2	-5	6	-7	8	-9
А3	10	-11	12	-13	14
A4	-15	16	-17	18	-19
A5	20	-21	22	-23	24

- What is $\min_j M_{1j}$? $\min_j M_{2j}$? $\min_j M_{3j}$? $\min_j M_{4j}$? $\min_j M_{5j}$?
- What is $\max_i M_{i1}$? $\max_i M_{i2}$? $\max_i M_{i3}$? $\max_i M_{i4}$? $\max_i M_{i5}$?

	B1	B2	В3	B4	B5
A1	0	-1	2	-3	4
A2	-5	6	-7	8	-9
А3	10	-11	12	-13	14
A4	-15	16	-17	18	-19
A5	20	-21	22	-23	24

- What is $\min_j M_{1j}$? $\min_j M_{2j}$? $\min_j M_{3j}$? $\min_j M_{4j}$? $\min_j M_{5j}$?
- What is $\max_i M_{i1}$? $\max_i M_{i2}$? $\max_i M_{i3}$? $\max_i M_{i4}$? $\max_i M_{i5}$?

	B1	B2	B3	B4	B5
A1	0	-1	2	-3	4
A2	-5	6	-7	8	-9
A3	10	-11	12	-13	14
A4	-15	16	-17	18	-19
A5	20	-21	22	-23	24

• $\max_i \min_j M_{ij} =$

	B1	B2	B3	B4	B5
A1	0	-1	2	-3	4
A2	-5	6	-7	8	-9
A3	10	-11	12	-13	14
A4	-15	16	-17	18	-19
A5	20	-21	22	-23	24

• $\max_i \min_j M_{ij} = -3$.

	B1	B2	B3	B4	B5
A1	0	-1	2	-3	4
A2	-5	6	-7	8	-9
A3	10	-11	12	-13	14
A4	-15	16	-17	18	-19
A5	20	-21	22	-23	24

- $\max_i \min_j M_{ij} = -3$.
- $\min_{i} \max_{i} M_{ij} =$

	B1	B2	ВЗ	B4	B5
A1	0	-1	2	-3	4
A2	-5	6	-7	8	-9
A3	10	-11	12	-13	14
A4	-15	16	-17	18	-19
A5	20	-21	22	-23	24

- $\max_i \min_j M_{ij} = -3$.
- $\min_{j} \max_{i} M_{ij} = 16$.

Exercise

Observation

For all payoff matrices M,

$$\max_{i} \min_{j} M_{ij} \leq \min_{j} \max_{i} M_{ij}$$

Exercise

Observation

For all payoff matrices M,

$$V_R = \max_i \min_j M_{ij} \le \min_j \max_i M_{ij} = V_C$$

• When the equality holds, the game is said to have a solution (saddle point) and the value is $V = V_R = V_C$.

$$\min_{j} M_{ij} \leq \max_{i} M_{ij}$$
?

Let

- $\bullet \ f(i) = \min_j M_{ij}, \quad j^* = \arg \min_j M_{ij}.$
- $\bullet \ g(j) = \max_i M_{ij}, \quad i^* = \arg\max_i M_{ij}.$

$$\min_{j} M_{ij} \leq \max_{i} M_{ij}$$
?

Let

- $f(i) = \min_j M_{ij}$, $j^* = \arg\min_j M_{ij}$.
- $\bullet \ g(j) = \max_i M_{ij}, \quad i^* = \arg\max_i M_{ij}.$

We have

• $\forall j$, $M_{i,j^*} \leq M_{ij}$.

$$\min_{j} M_{ij} \leq \max_{i} M_{ij}?$$

Let

- $f(i) = \min_j M_{ij}$, $j^* = \arg \min_j M_{ij}$.
- $g(j) = \max_i M_{ij}$, $i^* = \arg \max_i M_{ij}$.

We have

- $\forall j$, $M_{i,j^*} \leq M_{ij}$.
- $\forall i, M_{i,j} \leq M_{i*j}$.

$$\min_{j} M_{ij} \leq \max_{i} M_{ij}$$
?

Let

- $f(i) = \min_j M_{ij}$, $j^* = \arg \min_j M_{ij}$.
- $\bullet \ g(j) = \max_i M_{ij}, \quad i^* = \arg \max_i M_{ij}.$

We have

- $\forall j$, $M_{i,j^*} \leq M_{ij}$.
- $\forall i, M_{i,j} \leq M_{i*j}$.
- $\forall i \forall j$, $M_{i,j^*} \leq M_{i^*,j}$.

$$\min_{j} M_{ij} \leq \max_{i} M_{ij}$$
?

Let

- $f(i) = \min_j M_{ij}$, $j^* = \arg \min_j M_{ij}$.
- $g(j) = \max_i M_{ij}$, $i^* = \arg \max_i M_{ij}$.

We have

- $\forall j$, $M_{i,j^*} \leq M_{ij}$.
- $\forall i$, $M_{i,j} \leq M_{i^*j}$.
- $\forall i \forall j$, $M_{i,j^*} \leq M_{i^*,j}$. (since $M_{i,j^*} \leq M_{ij} \leq M_{i^*,j}$)

Example

	Scissors	Paper	Stone
Scissors	0	1	2
Paper	-1	0	1
Stone	-2	-1	0

• Now, we have $V_R = V_C = 0$, so V = 0.

⊏xampie

	Scissors	Paper	Stone
Scissors	0	1	2
Paper	-1	0	1
Stone	-2	-1	0

- Now, we have $V_R = V_C = 0$, so V = 0.
- What if a game has no solution (i.e., no saddle point)?

- Now, we have $V_R = V_C = 0$, so V = 0.
- What if a game has no solution (i.e., no saddle point)?
- * Introduce randomization in the choice of strategies.

Example

	Scissors (33%)	Paper (33%)	Stone (33%)
Scissors (33%)	0	1	2
Paper (33%)	-1	0	1
Stone (33%)	-2	-1	0

- Now, we have $V_R = V_C = 0$, so V = 0.
- What if a game has no solution (i.e., no saddle point)?
- * Introduce randomization in the choice of strategies.

Mixed Strategies

Mixed Strategies

A mixed strategy is a probability distribution on the set of possible strategies.

- $\mathbf{p} = (p_1, \dots, p_n)$: probability distribution on the rows of \mathbf{M} .
- $\mathbf{q} = (q_1, \dots, q_m)$: probability distribution on the columns of M.
- The payoff (of Alice) now becomes a random variable.

Mixed Strategies

Mixed Strategies

A mixed strategy is a probability distribution on the set of possible strategies.

- $\mathbf{p} = (p_1, \dots, p_n)$: probability distribution on the rows of \mathbf{M} .
- $\mathbf{q} = (q_1, \dots, q_m)$: probability distribution on the columns of M.
- The payoff (of Alice) now becomes a random variable.

$$\mathbb{E}[\mathsf{payoff}] = \mathbf{p}^{\top} \mathbf{M} \mathbf{q} = \sum_{i=1}^{n} \sum_{j=1}^{m} p_{i} M_{ij} q_{j}.$$

Best over distributions

$$V_R = \max_{\mathbf{p}} \min_{\mathbf{q}} \mathbf{p}^{\top} \mathbf{M} \mathbf{q}$$

 $V_C = \min_{\mathbf{q}} \max_{\mathbf{p}} \mathbf{p}^{\top} \mathbf{M} \mathbf{q}$

Best over distributions

$$V_R = \max_{\mathbf{p}} \min_{\mathbf{q}} \mathbf{p}^{\top} \mathbf{M} \mathbf{q}$$

 $V_C = \min_{\mathbf{q}} \max_{\mathbf{p}} \mathbf{p}^{\top} \mathbf{M} \mathbf{q}$

von Neumann's Minimax Theorem

For any two-player zero-sum game specified by a matrix M,

$$\max_{\boldsymbol{p}} \min_{\boldsymbol{q}} \boldsymbol{p}^{\top} \boldsymbol{M} \boldsymbol{q} = \min_{\boldsymbol{q}} \max_{\boldsymbol{p}} \boldsymbol{p}^{\top} \boldsymbol{M} \boldsymbol{q}.$$

 The saddle-point exists here and the two distributions p and q are called optimal mixed-strategies.

von Neumann's Minimax Theorem

For any two-player zero-sum game specified by a matrix M,

$$\max_{\boldsymbol{p}} \min_{\boldsymbol{q}} \boldsymbol{p}^{\top} \boldsymbol{M} \boldsymbol{q} = \min_{\boldsymbol{q}} \max_{\boldsymbol{p}} \boldsymbol{p}^{\top} \boldsymbol{M} \boldsymbol{q}.$$

- Once **p** is fixed, $\mathbf{p}^{\top} M \mathbf{q}$ is a linear function of **q** and can be minimized by setting 1 to the q_j with the smallest coefficient in the function.
- If C knows the distribution p being used by R, then its optimal strategy is a pure strategy.

Loomis' Theorem

Loomis' Theorem

For any two-player zero-sum game specified by a matrix M,

$$\max_{\mathbf{p}} \min_{i} \mathbf{p}^{\top} \mathbf{M} \mathbf{e}_{j} = \min_{\mathbf{q}} \max_{i} \mathbf{e}_{i}^{\top} \mathbf{M} \mathbf{q}.$$

• e_k : a unit vector with value 1 in the kth position and 0's elsewhere.

Example (when q is fixed)

	$q_1 = \frac{1}{8}$	$q_2 = \frac{1}{2}$	$q_3 = \frac{3}{8}$
	Scissors	Paper	Stone
p_1 Scissors	0	1	$\overline{-1}$
p_2 Paper	-1	0	1
^{p3} Stone	1	-1	0

Example (when q is fixed)

	$q_1 = \frac{1}{8}$	$q_2 = \frac{1}{2}$	$q_3 = \frac{3}{8}$
	Scissors	Paper	Stone
^{p₁} Scissors	0	1	-1
p_2 Paper	-1	0	1
^{p3} Stone	1	-1	0

$$\mathbf{p}^{\mathsf{T}} \mathbf{M} \mathbf{q} =$$

Example (when **q** is fixed)

	$q_1 = \frac{1}{8}$	$q_2 = \frac{1}{2}$	$q_3 = \frac{3}{8}$
	Scissors	Paper	Stone
p_1 Scissors	0	1	$\overline{-1}$
p_2 Paper	-1	0	1
^{p3} Stone	1	-1	0

• $\mathbf{p}^{\top} M \mathbf{q} = \frac{1}{8} p_1 + \frac{1}{4} p_2 + (-\frac{3}{8}) p_3$. So we should choose $\mathbf{p} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^{\top}$ for utility maximization.

Example (when q is fixed; Nash equilibrium)

	$q_1 = \frac{1}{3}$	$q_2 = \frac{1}{3}$	$q_3 = \frac{1}{3}$
	Scissors	Paper	Stone
p_1 Scissors	0	1	$\overline{-1}$
p_2 Paper	-1	0	1
^{p3} Stone	1	-1	0

Example (when **q** is fixed; Nash equilibrium)

	$q_1 = \frac{1}{3}$	$q_2 = \frac{1}{3}$	$q_3 = \frac{1}{3}$
	Scissors	Paper	Stone
P ₁ Scissors	0	1	-1
p_2 Paper	-1	0	1
^{p3} Stone	1	-1	0

$$\mathbf{p}^{\mathsf{T}} \mathbf{M} \mathbf{q} =$$

Example (when q is fixed; Nash equilibrium)

	$q_1 = \frac{1}{3}$	$q_2 = \frac{1}{3}$	$q_3 = \frac{1}{3}$
	Scissors	Paper	Stone
P ₁ Scissors	0	1	$\overline{-1}$
p_2 Paper	-1	0	1
^{p3} Stone	1	-1	0

• $\mathbf{p}^{\top} M \mathbf{q} = \frac{1}{3} p_1 + \frac{1}{3} p_2 + \frac{1}{3} p_3$. So we should choose $\mathbf{p} = [? ? ?]^{\top}$ for utility maximization.

Example (when **q** is fixed; Nash equilibrium)

	$q_1 = \frac{1}{3}$	$q_2 = \frac{1}{3}$	$q_3 = \frac{1}{3}$
	Scissors	Paper	Stone
P ₁ Scissors	0	1	-1
p_2 Paper	-1	0	1
^{p3} Stone	1	-1	0

• $\mathbf{p}^{\top} M \mathbf{q} = \frac{1}{3} p_1 + \frac{1}{3} p_2 + \frac{1}{3} p_3$. So we should choose $\mathbf{p} = \begin{bmatrix} ? & ? \end{bmatrix}^{\top}$ for utility maximization. Can you find any $\mathbf{p} \neq \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \end{bmatrix}^{\top}$ which leads to better expected payoff?

Exercise (5%)

Determine the value V_R of the following 2×2 matrix game and give optimal mixed strategies for the two players.

$$\left(\begin{array}{cc} 5 & 6 \\ 7 & 4 \end{array}\right)$$

Outline

Two-Player Zero-Sum Games

- Minimax Theorems
 - Yao's Minimax Principle
 - An Application: Comparison-Based Sorting

The Intuitive Idea

- View the algorithm designer as the column player C.
 - The columns: the set of all possible algorithms.
 - Each column: a pure strategy of *C*; a deterministic algorithm which is always correct.
 - \star V_C : the worst-case running time of any deterministic algorithm.
- View the adversary choosing the input as the row player R.
 - The rows: the set of all possible inputs (of fixed size).
 - Each row: a pure strategy of R; a specific input.
 - \star V_R : the non-deterministic complexity of the problem.
- The payoff from C to R: some real-valued measure of the performance of an algorithm.
 - E.g., running time, solution quality, space, etc.

When considering mixed-strategies

- A mixed-strategy for C: a probability distribution over the space of always correct deterministic algorithms (Las Vegas).
- A mixed-strategy for *R*: a probability distribution over the space of all inputs.

Distributional Complexity

The expected running time of the best deterministic algorithm for the worst distribution on the inputs.

When considering mixed-strategies

- A mixed-strategy for C: a probability distribution over the space of always correct deterministic algorithms (Las Vegas).
- A mixed-strategy for *R*: a probability distribution over the space of all inputs.

Distributional Complexity

The expected running time of the best deterministic algorithm for the worst distribution on the inputs.

 Smaller than the deterministic complexity since the algorithms knows the input distribution.

When considering mixed-strategies

- A mixed-strategy for C: a probability distribution over the space of always correct deterministic algorithms (Las Vegas).
- A mixed-strategy for *R*: a probability distribution over the space of all inputs.

Distributional Complexity

The expected running time of the best deterministic algorithm for the worst distribution on the inputs.

- Smaller than the deterministic complexity since the algorithms knows the input distribution.
- Loomis' Theorem implies that the distributional complexity = the least possible expected running time achievable by any randomized algorithm.

Corollary

- Let Π be a problem with a finite set $\mathcal I$ of input instances of fixed size.
- ullet Let ${\mathcal A}$ be a finite set of deterministic algorithms.
- Let C(I, A) denote the running time of algorithm $A \in A$ on input $I \in \mathcal{I}$.
- Let p be a probability distribution over I.
- Let \mathbf{q} be a probability distribution over \mathcal{A} .

Let $I_{\bf p}$ be a random input chosen according to ${\bf p}$ and $A_{\bf q}$ be a randomized algorithm chosen according to ${\bf q}$. Then

$$\max_{\mathbf{p}} \min_{\mathbf{q}} \mathbb{E}[C(\textit{I}_{\mathbf{p}},\textit{A}_{\mathbf{q}})] = \min_{\mathbf{q}} \max_{\mathbf{p}} \mathbb{E}[C(\textit{I}_{\mathbf{p}},\textit{A}_{\mathbf{q}})]$$

and

$$\max_{\mathbf{p}} \min_{A \in \mathcal{A}} \mathbb{E}[C(I_{\mathbf{p}}, A)] = \min_{\mathbf{q}} \max_{I \in \mathcal{I}} \mathbb{E}[C(I, A_{\mathbf{q}})].$$

Result by Andrew C.-C. Yao

Yao's Minimax Principle

For all distributions \mathbf{p} over \mathcal{I} and \mathbf{q} over \mathcal{A} ,

$$\min_{A \in \mathcal{A}} \mathbb{E}[C(I_{\mathbf{p}}, A)] \leq \max_{I \in \mathcal{I}} \mathbb{E}[C(I, A_{\mathbf{q}})]$$

Result by Andrew C.-C. Yao

Yao's Minimax Principle

For all distributions \mathbf{p} over \mathcal{I} and \mathbf{q} over \mathcal{A} ,

$$\min_{A \in \mathcal{A}} \mathbb{E}[C(I_{\mathbf{p}}, A)] \leq \max_{I \in \mathcal{I}} \mathbb{E}[C(I, A_{\mathbf{q}})]$$

The expected running time of the optimal deterministic algorithm for an arbitrarily chosen input distribution \mathbf{p} is a lower bound on the expected running time of the optimal Las Vegas randomized algorithm for problem Π .

Result by Andrew C.-C. Yao

Yao's Minimax Principle

For all distributions \mathbf{p} over \mathcal{I} and \mathbf{q} over \mathcal{A} ,

$$\min_{A \in \mathcal{A}} \mathbb{E}[C(I_{\mathbf{p}}, A)] \leq \max_{I \in \mathcal{I}} \mathbb{E}[C(I, A_{\mathbf{q}})]$$

The expected running time of the optimal deterministic algorithm for an arbitrarily chosen input distribution \mathbf{p} is a lower bound on the expected running time of the optimal Las Vegas randomized algorithm for problem Π .

• Trick: choose a suitable **p** and be aware of that the deterministic algorithm knows **p**.

Extension to Monte Carlo Type Randomized Algorithms

Proposition [Yao FOCS 1977]

For

- all distributions **p** over \mathcal{I} ,
- ullet all distributions ${f q}$ over ${\cal A}$,
- ullet any $\epsilon \in [0,1/2]$,

we have

$$\frac{1}{2} \left(\min_{A \in \mathcal{A}} \mathbb{E}[C_{2\epsilon}(I_{\mathbf{p}}, A)] \right) \leq \max_{I \in \mathcal{I}} \mathbb{E}[C_{\epsilon}(I, A_{\mathbf{q}})]$$

• $\mathbb{E}[C_{\epsilon}(I_{\mathbf{p}}, A)]$: the expected running time of a deterministic algorithm A that errs with probability $\leq \epsilon$.

Outline

1 Two-Player Zero-Sum Games

- Minimax Theorems
 - Yao's Minimax Principle
 - An Application: Comparison-Based Sorting

Comparison-Based Sorting Algorithms

- Examples: MergeSort, QuickSort, BubbleSort, SelectionSort, HeapSort, etc.
- Non-examples: RadixSort, BucketSort, etc.

An Application: Comparison-Based Sorting

Our Goal

Theorem

Any comparison-based Las Vegas sorting algorithm requires expected $\Omega(n \log n)$ time steps.

• A decision tree which models any comparison-based sorting algorithm.

- A decision tree which models any comparison-based sorting algorithm.
- Each tree leaf corresponds to a permutation (i.e., sorted result).

- A decision tree which models any comparison-based sorting algorithm.
- Each tree leaf corresponds to a permutation (i.e., sorted result).
 - Assume that the set of all permutations is uniformly distributed.

- A decision tree which models any comparison-based sorting algorithm.
- Each tree leaf corresponds to a permutation (i.e., sorted result).
 - Assume that the set of all permutations is uniformly distributed.
- Tree depth h: number of comparisons made by the algorithm.

• By the pigeonhole principle, we must have $2^h \ge n!$.

- By the pigeonhole principle, we must have $2^h \ge n!$.
- Thus¹,

$$h \ge \lg n! = \lg n(n-1) \cdots 2 \cdot 1 = \sum_{i=2}^{n} \lg i$$

$$\ge \sum_{i=n/2+1}^{n} \lg i \ge \sum_{i=n/2+1}^{n} \lg \left(\frac{n}{2}\right)$$

$$= \frac{n}{2} \lg \left(\frac{n}{2}\right) = \Omega(n \log n).$$

- By the pigeonhole principle, we must have $2^h \ge n!$.
- Thus¹,

$$h \ge \lg n! = \lg n(n-1) \cdots 2 \cdot 1 = \sum_{i=2}^{n} \lg i$$

$$\ge \sum_{i=n/2+1}^{n} \lg i \ge \sum_{i=n/2+1}^{n} \lg \left(\frac{n}{2}\right)$$

$$= \frac{n}{2} \lg \left(\frac{n}{2}\right) = \Omega(n \log n).$$

• Note: This only bounds the maximum depth of a leaf in the tree.

¹Note that $\lg_2(\cdot) = \log_2(\cdot)$.

The average (i.e., expected) depth of the decision tree minimized when the tree is a completely balanced.

The average (i.e., expected) depth of the decision tree minimized when the tree is a completely balanced. $\implies \Omega(\lg n!) = \Omega(n \log n)$ expected depth.

Discussions