รายงานวิชาปฏิบัติการ

ภาควิชาวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์

รหัสวิชา	242-301	ตอน01 วัน อังคาร	_
รหัสหัวข้อปฏิบัติการ _	2HA05		
ชื่อหัวข้อปฏิบัติการ	Introduction to	o FPGA design using Verilo	og

วันที่ลงปฏิบัติการ ____17 ตุลาคม 2560_____

อาจารย์ผู้สอน ____**อาจารย์คมสันต์ กาญจนสิทธิ์**_____

	<u> </u>			
ผู้จัดทำรายง	านชื่อ นายปณิธาน	ดวงขวัญ รหัส	i5735512036	
ผู้ร่วมงาน	ชื่อนางสาวรัตนา	พรไทยเกิดรหัส	i5735512047	
	ชื่อ	รหัส		

สำหรับเจ้าหน้าที่			
วันที่ตรวจรับ			
ลงชื่อ	_		

<u>การทดลองที่ 3HA05</u>

Introduction to FPGA design using Verilog

เครื่องมือและอุปกรณ์

- 1. โปรแกรม Xilinx
- 2. บอร์ด FPGA รุ่น XC3S200-TQ144C
- 3. คอมพิวเตอร์

การทดลอง

1. วงจร Adder

- a. เข้าโปรแกรม Xilinx
- b. New project พร้อมกำหนดคุณสมบัติตามที่อาจารย์ให้
- c. คลิกขวาที่ตัว Project ที่เราสร้างขึ้นมาทางซ้ายมือและทำการกำหนดตัวแปร ดังนี้
 - i. A เป็น input [3:0]
 - ii. B เป็น input [3:0]
 - iii. C เป็น output [4:0]
- d. ทำการกด Finish และสามารถเขียนโปรแกรมได้
- e. ใส่ code ดังนี้

f. ไปกำหนดขา input ให้ตรงกับบอร์ดของเรา โดยสามารถกำหนดให้ตรงโดย การดูจากบอร์ดของเรา โดยไปกำหนดที่ Source > Source for > Synthesis /Implementation และ Process > User Contraints > Assign Package Pins ดังรูป

- g. โปรแกรมลงสู่บอร์ด FPGA โดย
 - i. Process > Implement Programming File เพื่อทำการ
 Implement วงจรที่ได้ออกแบบไว้
 - ii. Process > Genearate Programming File
 - iii. Process > Generate Programming File > ConfigureDevice(iMPACT) โดยที่ใช้จะมีนามสกุลเป็น (.bit)
 - iv. หลังจากนั้นโปรแกรมจะ Build ลงบอร์ด FPGA

สรุปผลการทดลองวงจร Adder

จากบอร์ดเราได้กำหนดเป็น Sw0 – Sw3 ของตัวแปร a / Sw4 – Sw7 ของตัว แปร b โดยจะเป็น input และ output จะเป็น LED0 – LED7 เป็นของตัวแปร c โดยเรา สามารถสับสวิตซ์ได้และหลังจากนั้นตัวของโปรแกรมจะทำการ บวกค่ากันและไปแสดงผล บนแผง LED นั่นเอง

2. วงจร Decoder

- a. เข้าโปรแกรม Xilinx
- b. ทำเหมือนกับ a-c ในวงจร Decoder แต่เปลี่ยนกำหนดค่าตัวแปรดังนี้
 - i. I เป็น input [2:0]
 - ii. O เป็น output [7:0]
- c. ทำการกด Finish

d. หลังจากนั้นให้เขียน code ดังนี้

e. หลังจากนั้นทำการกำหนดขา input และ output ให้ตรงกับบอร์ด

f. หลังจากนั้นทำเหมือนขั้นตอน g ในวงจร Adder

สรูปผลการทดลองวงจร Decoder

กำหนดให้ sw0 – sw2 เป็น input คือตัวแปร I
และ LED0 – LED7 ให้เป็น output ของตัวแปร
o โดยเราสามารถสับสวิตซ์ได้ตามที่เราต้องการ
โดยจะแปลงจากโค้ดที่เราเขียนไปโดยมีเงื่อนไข
ดังนี้

000 > 00000001 / 001 > 00000010 / 010

> 00000100 / 011 > 00001000 / 100 >

00010000 / 101 > 00100000 / 110 >

01000000 / 111 > 10000000

3. วงจร Segment

- a. ทำตามขั้นตอนเหมือนกับทุกๆวงจรข้อ a c โดยมีการกำหนดตัวแปรใหม่ ดังนี้
 - i. I เป็น input [3:0]
 - ii. O เป็น output [6:0]
 - iii. Com เป็น output [0:0]
- b. เขียนโค้ดดังนี้

c. หลังจากนั้นให้กำหนดขาให้ตรงตามบอร์ด

d. ทำการ build ลงบอร์ด FPGA โดยทำตามขั้นตอนเหมือนกับทุกๆวงจร

สรุปผลการทดลองวงจร 7-Segment Decoder

เราทำการกำหนด input เป็น sw0 – sw3 โดยเป็นตัวแปร I ส่วนของ output จะเป็น 7-segment โดยในส่วนของ 7-segment นั้นจะมีค่า 0-6 โดยจะเป็นขา a-g นั่นเองโดยจะสังเกตว่า เราจะทำการแปลง input โดยแสดงผลบน 7-segment นั้นเราจะเห็นว่ามันจะแปลงตามค่าตาราง ความจริงนั่นเอง

Decimal	Input lines			Output lines							Display	
Digit	A	В	C	D	а	b	C	d	е	f	g	pattern
0	0	0	0	0	1	1	1	1	1	1	0	8
1	0	0	0	1	0	1	1	0	0	0	0	8
2	0	0	1	0	1	1	0	1	1	0	1	8
3	0	0	1	1	1	1	1	1	0	0	1	-8
4	0	1	0	0	0	1	1	0	0	1	1	8
5	0	1	0	1	1	0	1	1	0	1	1	8
6	0	1	1	0	1	0	1	1	1	1	1	8
7	0	1	1	1	1	1	1	0	0	0	0	8
8	1	0	0	0	1	1	1	1	1	1	1	8
9	1	0	0	1	1	1	1	1	0	1	1	8

Credit: https://www.electrical4u.com/bcd-to-seven-segment-decoder/

