BT209

Bioreaction Engineering

15/02/2023

We are planning to operate a batch reactor to convert A into R. This is a liquid reaction, the stoichiometry is $A \rightarrow R$, and the rate of reaction is given in Table. How long must we react each batch for the concentration to drop from $C_{A0} = 1.3$ mollliter to $C_{Af} = 0.3$ mollliter?

$C_{\rm A}$, mol/liter	$-r_A$, mol/liter·min			
0.1	0.1			
0.2	0.3			
0.3	0.5			
0.4	0.6			
0.5	0.5			
0.6	0.25			
0.7	0.10			
0.8	0.06			
1.0	0.05			
1.3	0.045			
2.0	0.042			

Simpson 1/3

$$\int_{x_0}^{x_2} f(x) dx = \int_{x_0}^{x_0+2h} f(x) dx$$

$$\approx \frac{1}{3} h (f_0 + 4 f_1 + f_2).$$

Composite Simpson 1/3

$$\int_a^b f(x) \, dx pprox rac{\Delta x}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 4f(x_{n-1}) + f(x_n))$$

Simpson 3/8

$$\int_a^b f(x) \, dx \approx \frac{3h}{8} [y_0 + 3y_1 + 3y_2 + y_3]$$

$$t = C_{A0} \int_0^{X_A} \frac{dX_A}{-r_A} = -\int_{C_{A0}}^{C_A} \frac{dC_A}{-r_A} \qquad \text{for } \varepsilon_A = 0$$

Enzyme E catalyses the fermentation of substrate A (the reactant) to product R. Find the size of mixed flow reactor needed for 95% conversion of reactant in a feed stream (25 liter/min) of reactant (2 mol/liter) and enzyme. The kinetics of the fermentation at this enzyme concentration are given by

$$A \xrightarrow{\text{enzyme}} R$$
, $-r_A = \frac{0.1 C_A}{1 + 0.5 C_A} \frac{\text{mol}}{\text{liter} \cdot \text{min}}$

Solution: Problem 2

A gaseous feed of pure A (1 mol/liter) enters a mixed flow reactor (2 liters) and reacts as follows:

$$2A \rightarrow R$$
, $-r_A = 0.05 C_A^2 \frac{\text{mol}}{\text{liter} \cdot \text{sec}}$

Find what feed rate (liter/min) will give an outlet concentration $C_A = 0.5$ mol/liter.

Solution: Problem 3

$$2A \rightarrow R$$
 with $-\Gamma_A = 0.05 C_A^2$, mol/lifes
Evaluate terms $E_A = \frac{1-2}{2} = -0.5$
 $X_A = \frac{C_{A0} - C_A}{C_{A0} + E_A C_A} = \frac{1-0.5}{1+(-0.5)(0.5)} = \frac{2}{3}$
So for mixed flow $V = \frac{V(-C_A)}{C_{A0} + E_A} = \frac{(2)(0.05 \times 0.5^2)}{(-2)(0.05 \times 0.5^2)} = 0.0375 \text{ lit/s} = 2.25 \text{ lit/min}$

Pure gaseous A at about 3 atm and 30°C (120 mmol/liter) is fed into a 1-liter mixed flow reactor at various flow rates. There it decomposes, and the exit concentration of A is measured for each flow rate. From the following data find a rate equation to represent the kinetics of the decomposition of A. Assume that reactant A alone affects the rate.

v_0 , liter/min	0.06	0.48	1.5	8.1	$A \rightarrow 3R$
C_{Δ} , mmol/liter	30	60	80	105	

Solution: Problem 4

