Lecture 15

ARMA Models: Part 1

Arnab Hazra

Definition of ARMA models

A autoregressive moving average model of order (p, q), abbreviated ARMA(p, q), is of the form

$$X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \ldots + \phi_{p}X_{t-p} + W_{t} + \theta_{1}W_{t-1} + \theta_{2}W_{t-2} + \ldots + \theta_{q}W_{t-q}.$$

- ► Here X_t is stationary, $W_t \sim WN(0, \sigma_W^2)$, and $\phi_1, \dots, \phi_p, \theta_1, \dots, \theta_q$ are constants with $\phi_p, \theta_q \neq 0$.
- ► The parameters *p* and *q* are called the autoregressive and the moving average orders, respectively.
- ▶ If X_t has a nonzero mean μ , we set $\alpha = (1 \phi_1 ... \phi_p)\mu$ and write the model as

$$X_{t} = \alpha + \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \ldots + \phi_{p}X_{t-p} + W_{t} + \theta_{1}W_{t-1} + \theta_{2}W_{t-2} + \ldots + \theta_{q}W_{t-q}.$$

Concise representation

A autoregressive moving average model of order (p, q), abbreviated ARMA(p, q), is of the form

$$X_t - \phi_1 X_{t-1} - \ldots - \phi_p X_{t-p} = W_t + \theta_1 W_{t-1} + \ldots + \theta_q W_{t-q}.$$

- ▶ When q = 0, the model is AR(p). We represent it using $\phi(B)X_t = W_t$.
- ▶ When p = 0, the model is MA(q). We represent it using $X_t = \theta(B)W_t$.
- ▶ We thus represent the ARMA(p, q) model using $\phi(B)X_t = \theta(B)W_t$.
- ▶ We should not unnecessarily disturb this to obtain $\eta(B)\phi(B)X_t = \eta(B)\theta(B)W_t$.
- ▶ Representing $X_t = W_t$ by $(1 0.5B)X_t = (1 0.5B)W_t$ can make the white noise process appear like ARMA(1, 1).

Three problems with ARMA models

1 Parameter redundant models

2 Stationary AR models that depend on the future

3 MA models that are not unique

They need to be resolved! We need restrictions to ensure they do not happen!

Solution to Problem 1

The AR and MA polynomials are defined as

$$\phi(z)=1-\phi_1z-\ldots-\phi_pz^p,\quad \phi_p\neq 0,$$

and

$$\theta(z) = 1 + \theta_1 z + \ldots + \theta_q z^q, \quad \theta_q \neq 0,$$

respectively, where z is a complex number.

- Along with its original definition, we will also require that $\phi(z)$ and $\theta(z)$ have no common factors.
- This ensures that the model $\eta(B)\phi(B)X_t = \eta(B)\theta(B)W_t$ is simplified to $\phi(B)X_t = \theta(B)W_t$, where $\phi(z)$ and $\theta(z)$ have no common factors.

Solution to Problem 2

An ARMA(p,q) model is said to be causal, if the time series $\{X_t; t=0,\pm 1,\pm 2,\ldots\}$ can be written as a one-sided linear process:

$$X_t = \sum_{j=0}^{\infty} \psi_j W_{t-j} = \psi(B) W_t,$$

where $\psi(B) = \sum_{j=0}^{\infty} \psi_j B^j$, and $\sum_{j=0}^{\infty} |\psi_j| < \infty$; we set $\psi_0 = 1$.

- To ensure this, we can look at the root of the AR polynomial.
- ▶ Consider the model $X_t = \phi X_{t-1} + W_t$; this process is causal when $|\phi| < 1$.
- ► The root of the AR polynomial $\phi(z) = 1 \phi z$ is $z_0 = 1/\phi$; thus, $|z_0| = |\phi|^{-1} > 1$.
- ▶ Property: An ARMA(p, q) model is causal if and only if $\phi(z)$ does not have any root z_0 for $|z_0| \le 1$.

Solution to Problem 3

An ARMA(p,q) model is said to be invertible, if the time series $\{X_t; t=0,\pm 1,\pm 2,\ldots\}$ can be written as

$$\pi(B)X_t = \sum_{j=0}^{\infty} \pi_j X_{t-j} = W_t,$$

where $\pi(B) = \sum_{j=0}^{\infty} \pi_j B^j$, and $\sum_{j=0}^{\infty} |\pi_j| < \infty$; we set $\pi_0 = 1$.

- ▶ To ensure this, we can look at the root of the MA polynomial.
- ▶ Consider the model $X_t = W_t + \theta W_{t-1}$; this process is invertible when $|\theta| < 1$.
- ► The root of the MA polynomial $\theta(z) = 1 + \theta z$ is $z_0 = -1/\theta$; thus, $|z_0| = |\theta|^{-1} > 1$.
- An ARMA(p, q) model is invertible if and only if $\theta(z)$ does not have any root z_0 for $|z_0| \le 1$.

Thank you!