

Optical Tweezers

Wells Bishop and Hannah Liss
University of Oregon
Advanced Projects Lab Spring 2017

Overview

- Goal: to observe Brownian motion of magnetite microspheres through a controlled heating environment
- Success with stable trapping of silica microspheres with new laser of $1\mu m$
- Difficulty with trapping of magnetite microspheres with both new and previous laser

Theory

Two forces in the optical tweezers to trap particles:

Scattering force:
 Photons carry
 momentum.

$$E^2 = (m_0 c^2)^2 + p^2 c^2$$

Gradient force:
 Trapped particles
 move towards the
 higher intensity.

- Ray Optic and Rayleigh Regime
 - Dependent on wavelength and particle size
- New magnetic particles required us to switch from Ray Optic to Rayleigh Regime
- Went from 637nm laser to I µm infrared laser
- Heating element is a coiled wire driven by a function generator at high frequency

Set Up

- Sample:
 - Deionized water with 0.1% of 1µm diameter microspheres
- MicroscopeObjective:
 - 100x
 - NA: 1.3 oil immersion

Ferromagnetic Spheres

- Magnetite core with silica coating
 - 95-98% Fe3O4
 - Saturation of Magnetization = 85 emu/g
- Approximately Iµm diameter
- Index of refraction n=2.13
 - Much greater than the index of refraction of silica (n=1.45)

Low Frequency Heating

Qualitative Results

- Magnetic field applied influences magnetite microspheres
- Could not differentiate between low and high power/frequency heating
 - No observable change in Brownian motion
- Still unable to observe a stable trap

- Magnetite versus silica microspheres
 - Conductive materials have a much larger reflection, absorption, and refractive index
 - Larger scattering force and trap instability
 - Magnetite tend to clump together
- Slide maintenance and shelf life
 - Bacteria growth, air bubbles, etc.
- Alignment of infrared laser
 - Not visible on CCD
- Metal sample holder/objective could be cause of distress regarding observations of a magnetic field at higher frequencies

Future Project Goals

- Heating element
 - Needs smaller diameter coil and less number of turns to reduce impedance
 - Quantitatively measure Brownian motion of heated particles
- Trapping efficiency
 - Increase laser optimization
 - Need to measure trap strength (Stoke's)