Electromagnetismo 2

Escuela de Ciencias Físicas y Matemáticas

1. Identidades y teoremas vectoriales

1.1
$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$

1.2
$$\int_a^b \nabla \varphi \, d\mathbf{l} = \varphi(b) - \varphi(a)$$

1.3
$$\int_{V} \nabla \cdot \mathbf{F} \, dv = \oint_{S} \mathbf{F} \cdot \mathbf{n} \, da$$

1.4
$$\int_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} \, da = \oint_{C} \mathbf{F} \cdot d\mathbf{l}$$

1.5
$$\nabla \cdot \nabla \varphi = \nabla^2 \varphi$$

1.6
$$\nabla \cdot \nabla \times \mathbf{F} = 0$$

1.7
$$\nabla \times \nabla \varphi = 0$$

1.8
$$\nabla \times \nabla \times \mathbf{F} = \nabla(\nabla \cdot \mathbf{F}) - \nabla^2 \mathbf{F}$$

1.9
$$\nabla(\varphi\psi) = (\nabla\varphi)\psi + \varphi\nabla\psi$$

1.10
$$\nabla (\mathbf{F} \cdot \mathbf{G}) = (\mathbf{F} \cdot \nabla)\mathbf{G} + \mathbf{F} \times (\nabla \times \mathbf{G}) + (\mathbf{G} \cdot \nabla)\mathbf{F} + \mathbf{G} \times (\nabla \times \mathbf{F})$$

1.11
$$\nabla \cdot (\varphi \mathbf{F}) = (\nabla \varphi) \cdot \mathbf{F} + \varphi \nabla \cdot \mathbf{F}$$

1.12
$$\nabla \cdot (\mathbf{F} \times \mathbf{G}) = (\nabla \times \mathbf{F}) \cdot \mathbf{G} - (\nabla \times \mathbf{G}) \cdot \mathbf{F}$$

1.13
$$\nabla \times (\varphi \mathbf{F}) = (\nabla \varphi) \times \mathbf{F} + \varphi \nabla \times \mathbf{F}$$

1.14
$$\nabla \times (\mathbf{F} \times \mathbf{G}) = (\nabla \cdot \mathbf{G})\mathbf{F} - (\nabla \cdot \mathbf{F})\mathbf{G} + (\mathbf{G} \cdot \nabla)\mathbf{F} - (\mathbf{F} \cdot \nabla)\mathbf{G}$$

1.15
$$\int_{S} \mathbf{n} \times \nabla \varphi \, da = \oint_{C} \varphi \, d\mathbf{l}$$

1.16
$$\int_{V} \nabla \varphi \, dv = \oint_{S} \varphi \mathbf{n} \, da$$

1.17
$$\int_{V} \nabla \times \mathbf{F} \, dv = \oint_{S} \mathbf{n} \times \mathbf{F} \, da$$

1.18
$$\int_{V} (\mathbf{\nabla} \cdot \mathbf{G} + \mathbf{G} \cdot \mathbf{\nabla}) \mathbf{F} \, dv = \oint_{S} \mathbf{F} (\mathbf{G} \cdot \mathbf{n}) \, da$$

2. Coordenadas cilíndricas

$$\hat{\mathbf{r}} = \cos\theta \,\hat{\mathbf{i}} + \sin\theta \,\hat{\mathbf{j}}$$

$$\hat{\mathbf{i}} = \cos\theta \,\hat{\mathbf{r}} - \sin\theta \,\hat{\mathbf{\theta}}$$

$$2.1 \quad \hat{\boldsymbol{\theta}} = -\sin\theta\,\hat{\mathbf{i}} + \cos\theta\,\hat{\mathbf{j}}$$

$$\hat{\mathbf{j}} = \sin \theta \, \hat{\mathbf{r}} + \cos \theta \, \hat{\mathbf{\theta}}$$

$$\hat{\mathbf{k}} = \hat{\mathbf{k}}$$

2.2
$$\nabla \varphi = \hat{\mathbf{r}} \frac{\partial \varphi}{\partial r} + \hat{\mathbf{\theta}} \frac{1}{r} \frac{\partial \varphi}{\partial \theta} + \hat{\mathbf{k}} \frac{\partial \varphi}{\partial z}$$

2.3
$$\nabla \cdot \mathbf{F} = \frac{1}{r} \frac{\partial}{\partial r} (rF_r) + \frac{1}{r} \frac{\partial F_{\theta}}{\partial \theta} + \frac{\partial F_z}{\partial z}$$

$$2.4 \quad \nabla \times \mathbf{F} = \hat{\mathbf{r}} \left(\frac{1}{r} \frac{\partial F_z}{\partial \theta} - \frac{\partial F_{\theta}}{\partial z} \right) + \hat{\mathbf{\theta}} \left(\frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r} \right) + \hat{\mathbf{k}} \frac{1}{r} \left(\frac{\partial}{\partial r} (rF_{\theta}) - \frac{\partial F_r}{\partial \theta} \right)$$

$$2.5 \quad \nabla^2 \varphi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \varphi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \varphi}{\partial \theta^2} + \frac{\partial^2 \varphi}{\partial z^2}$$

armónicos cilíndricos

1
$$\ln r$$

$$r^n \cos n\theta$$
 $r^{-n} \cos n\theta$

$$r^n \operatorname{sen} n\theta$$
 $r^{-n} \operatorname{sen} n\theta$

3. Coordenadas esféricas

$$\hat{\mathbf{r}} = \sin \theta \cos \phi \,\hat{\mathbf{i}} + \sin \theta \sin \phi \,\hat{\mathbf{j}} + \cos \theta \,\hat{\mathbf{k}} \quad | \hat{\mathbf{i}} = \sin \theta \cos \phi \,\hat{\mathbf{r}} + \cos \theta \cos \phi \,\hat{\mathbf{\theta}} - \sin \phi \,\hat{\mathbf{\phi}}$$

$$\mathbf{\hat{r}} = \operatorname{sen}\theta \cos \phi \,\mathbf{\hat{i}} + \operatorname{sen}\theta \operatorname{sen}\phi \,\mathbf{\hat{j}} + \cos \theta \,\mathbf{\hat{k}}$$

$$\mathbf{\hat{\theta}} = \cos \theta \cos \phi \,\mathbf{\hat{i}} + \cos \theta \operatorname{sen}\phi \,\mathbf{\hat{j}} - \operatorname{sen}\theta \,\mathbf{\hat{k}}$$

$$\mathbf{\hat{\beta}} = -\operatorname{sen}\phi \,\mathbf{\hat{i}} + \cos \phi \,\mathbf{\hat{j}}$$

$$\mathbf{\hat{k}} = \cos \theta \,\mathbf{\hat{r}} - \operatorname{sen}\theta \,\mathbf{\hat{\theta}}$$

3.2
$$\nabla \varphi = \hat{\mathbf{r}} \frac{\partial \varphi}{\partial r} + \hat{\mathbf{\theta}} \frac{1}{r} \frac{\partial \varphi}{\partial \theta} + \hat{\mathbf{\phi}} \frac{1}{r \operatorname{sen} \theta} \frac{\partial \varphi}{\partial \phi}$$

3.3
$$\nabla \cdot \mathbf{F} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 F_r) + \frac{1}{r \operatorname{sen} \theta} \frac{\partial}{\partial \theta} (F_{\theta} \operatorname{sen} \theta) + \frac{1}{r \operatorname{sen} \theta} \frac{\partial F_{\phi}}{\partial \phi}$$

3.4
$$\nabla \times \mathbf{F} = \hat{\mathbf{r}} \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (F_{\phi} \sin \theta) - \frac{\partial F_{\theta}}{\partial \phi} \right] + \hat{\mathbf{\theta}} \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial F_{r}}{\partial \phi} - \frac{\partial}{\partial r} (rF_{\phi}) \right] + \hat{\mathbf{\Phi}} \frac{1}{r} \left[\frac{\partial}{\partial r} (rF_{\theta}) - \frac{\partial F_{r}}{\partial \theta} \right]$$

$$3.5 \quad \nabla^2 \varphi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \varphi}{\partial r} \right) + \frac{1}{r^2 \operatorname{sen} \theta} \frac{\partial}{\partial \theta} \left(\operatorname{sen} \theta \frac{\partial \varphi}{\partial \theta} \right) + \frac{1}{r^2 \operatorname{sen}^2 \theta} \frac{\partial^2 \varphi}{\partial \phi^2}$$

armónicos esféricos $\varphi_n = r^n P_n(\theta)$ o $\varphi_n = r^{-(n+1)} P_n(\theta)$

$$\begin{array}{ccc}
n & P_n(\theta) \\
\hline
0 & 1
\end{array}$$

- 1 $\cos \theta$
- $\frac{1}{2}(3\cos^2\theta 1)$
- $3 \qquad \frac{1}{2} (5\cos^3\theta 3\cos\theta)$

4. Sistema de coordenadas y vectores

La figura muestra el sistema de coordenadas y los vectores utilizados en las fórmulas de las siguentes secciones.

5. Magnetostática

5.1
$$\mathbf{F}_m = \frac{\mu_0}{4\pi} \frac{q_1 q_2}{|\mathbf{r}_2 - \mathbf{r}_1|^2} \mathbf{v}_2 \times \left(\mathbf{v}_1 \times \frac{\mathbf{r}_2 - \mathbf{r}_1}{|\mathbf{r}_2 - \mathbf{r}_1|} \right)$$

5.2
$$\mathbf{B}(\mathbf{r}_2,...) = \frac{\mu_0}{4\pi} \frac{q_1}{|\mathbf{r}_2 - \mathbf{r}_1|^2} \mathbf{v}_1 \times \frac{\mathbf{r}_2 - \mathbf{r}_1}{|\mathbf{r}_2 - \mathbf{r}_1|}$$

$$\mathbf{F_L} = q\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right)$$

$$5.4 d\mathbf{F} = Id\mathbf{l} \times \mathbf{B}$$

5.5
$$\mathbf{m} = I\mathbf{A} = \frac{1}{2}I\oint_C \mathbf{r} \times d\mathbf{l}$$
 (Aquí **A** es el vector de área)

$$5.6 \quad \tau = \mathbf{m} \times \mathbf{B}$$

5.7
$$\int_{V_1} (\cdots) \mathbf{J}(\mathbf{r_1}) dV_1 \to \oint_{C_1} (\cdots) I_1 d\mathbf{l}_1$$

5.8
$$\mathbf{B}(\mathbf{r}_2) = \frac{\mu_0}{4\pi} \int_{V_1} \frac{\mathbf{J}(\mathbf{r}_1) \times (\mathbf{r}_2 - \mathbf{r}_1)}{|\mathbf{r}_2 - \mathbf{r}_1|^3} dV_1$$

5.9
$$\nabla \cdot \mathbf{B} = 0$$
 $\oint_{\mathbf{S}} \mathbf{B} \cdot \hat{\boldsymbol{n}} \, da = 0$

5.10
$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$$
 $\oint_C \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{enc}$

5.11
$$\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$$

5.12
$$\mathbf{A}(\mathbf{r}_2) = \frac{\mu_0}{4\pi} \int_{V_1} \frac{\mathbf{J}(\mathbf{r}_1)}{|\mathbf{r}_2 - \mathbf{r}_1|} dV_1$$

5.13
$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \frac{\mathbf{m} \times \mathbf{r}}{|\mathbf{r}|^3}$$
 (Para \mathbf{r} mucho mayor que las dimensiones del circuito)

5.14
$$\mathbf{B} = -\mu_0 \mathbf{\nabla} \varphi^*$$
 con $\nabla^2 \varphi^* = 0$ (Para regiones donde $\mathbf{J} = 0$)

5.15
$$\mathbf{M} = \lim_{\Delta V \to 0} \sum_{i} \frac{\mathbf{m}_{i}}{\Delta V}$$

5.16
$$\mathbf{J}_M = \mathbf{\nabla} \times \mathbf{M}, \quad \mathbf{j}_M = \mathbf{M} \times \hat{\mathbf{n}}$$

5.17
$$\mathbf{A}(\mathbf{r}_2) = \frac{\mu_0}{4\pi} \int_{V_1} \frac{\mathbf{J}_M(\mathbf{r}_1)}{|\mathbf{r}_2 - \mathbf{r}_1|} dV_1 + \frac{\mu_0}{4\pi} \oint_{S_1} \frac{\mathbf{j}_M(\mathbf{r}_1)}{|\mathbf{r}_2 - \mathbf{r}_1|} da_1$$

5.18
$$\varphi^*(\mathbf{r}_2) = -\frac{1}{4\pi} \int_{V_1} \frac{\nabla_1 \cdot \mathbf{M}(\mathbf{r}_1)}{|\mathbf{r}_2 - \mathbf{r}_1|} dV_1 + \frac{1}{4\pi} \oint_{S_1} \frac{\mathbf{M}(\mathbf{r}_1) \cdot \hat{\mathbf{n}}_1}{|\mathbf{r}_2 - \mathbf{r}_1|} da_1, \quad \nabla^2 \varphi^* = \nabla \cdot \mathbf{M}$$

5.19
$$\mathbf{B}(\mathbf{r}_2) = -\mu_0 \nabla \varphi^*(\mathbf{r}_2) + \mu_0 \mathbf{M}(\mathbf{r}_2)$$

$$5.20 \quad \mathbf{H} = \frac{1}{\mu_0} \mathbf{B} - \mathbf{M}$$

5.21
$$\mathbf{M} = \chi_m \mathbf{H}, \quad \mathbf{B} = \mu \mathbf{H}$$

5.22
$$\mathbf{H} = -\nabla \varphi^*$$

5.23
$$\nabla \times \mathbf{H} = \mathbf{J}$$
 $\oint_C \mathbf{H} \cdot d\mathbf{l} = I$

5.24
$$B_{1n} = B_{2n}$$
, $(\mathbf{H}_1 - \mathbf{H}_2)_t = \mathbf{j} \times \hat{\mathbf{n}}$

6. Inducción electromagnética

6.1
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
 $\oint_C \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi}{dt} = \mathcal{E}$

$$6.2 L = \frac{d\Phi}{dI}$$

6.3
$$\mathcal{E} = -L \frac{dI}{dt}$$

6.4
$$M_{ij} = \frac{d\Phi_{ij}}{dI_j} = M_{ji}$$
 $M_{ii} = L_i$ $M_{ij} = k\sqrt{L_i L_j}$, $-1 < k < 1$

7. Energía magnética

7.1
$$U = \frac{1}{2} \sum_{i} I_i \Phi_i$$
 con $\Phi_i = \sum_{j} M_{ij} I_j$

7.2
$$U = \frac{1}{2} \int_{V} \mathbf{H} \cdot \mathbf{B} \, dV$$

7.3
$$\mathbf{F} = \nabla U$$
 para I constante, $\mathbf{F} = -\nabla U$ para Φ constante

8. Circuitos C.A.

8.1
$$V = V_0 e^{i\omega t}, \qquad I = I_0 e^{i\omega t}$$

8.2
$$V = ZI$$
, $|I_0| = V_0/|Z|$

8.3
$$Z_R = R$$
, $Z_L = i\omega L$, $Z_C = \frac{-i}{\omega C}$

8.4
$$\bar{P} = \frac{1}{2}|I_0||V_0|\cos\phi$$

9. Ecuaciones de Maxwell

9.1
$$\nabla \cdot \mathbf{D} = \rho$$

$$9.2 \quad \nabla \cdot \mathbf{B} = 0$$

9.3
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

9.4
$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

9.5
$$u = \frac{1}{2} \left(\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H} \right)$$

9.6
$$\mathbf{S} = \mathbf{E} \times \mathbf{H}$$

9.7
$$\nabla \cdot \mathbf{S} + \frac{\partial \rho}{\partial t} = -\mathbf{J} \cdot \mathbf{E}$$