Assignment Aa (No evaluation on this)

- 1. Prove that every subset of a metric space M can be written as the intersection of open sets.
- 2. (siven $y = (y_n) \in H^{\infty}$ (Hilbert cube), $N \in \mathbb{N}$ and $\varepsilon > 0$. Show that $\S \times = (\times n) \in H^{\infty} \setminus [\times_k - y_k] < \varepsilon$, $k = 1, ..., N \$ is often in H^{∞} .
- 3. Let $e^{(R)} = (0, ..., 0, 1, 0, ..., 0)$. Show that $\frac{2}{8}e^{(R)}|_{R \ge 1}$ is closed as a subset $\frac{2}{8}|_{1}$.
- 4. Let F be the set of all at los s.t. xn=0 for all but finitely many n. L. F. closed 2. open 2. neither 2. Explain.
- 5. Show that co is a closed subset of loo.
- 6. Show that $A = \{x \in l_2 \mid |x_n| \leq \frac{1}{n}, x_n = l_1 \geq \ldots \}$ is a closed set in l_2 , but that $B = \{x \in l_2 \mid |x_n| \leq \frac{1}{n}, x_n = l_1 \geq \ldots \}$ is not an open set in l_2 .
- 7. The set $A = \{ y \in M \mid d(x,y) \leq r \}$ is called the closed ball about x of redius r.

 Show that A is a closed set, but give an example of a set A which need not be the closure of the B pen ball B(x,r).
- 8. If (V, |1.11) is any normed linear space, prove that the closed ball {x \in V | ||x|| \in 1} is always the clasure of the open ball {x \in V | ||x|| \in 1 \in \.
- 9. Show that A is open iff $A^{\circ} = A$ and that A is closed iff A = A.
 - 10. Show that diam (A) = diam (A).
- 11. If A, B any sets in M, then show that $\overline{AUB} = \overline{AUB}$ and $\overline{AOB} \subset \overline{AOB}$. Give an example of A and B where $\overline{AOB} \subsetneq \overline{AOB}$.