1 Forelesning 7

1.1 Plan for forelesningen

- Let-bindinger
- Introduksjon til rekursjon

1.1.1 Let-bindinger

Vi kan innføre midlertidige verdier i programmene våre ved å bruke nøkkelordet let og in:

```
solveQuadratic a b c
= let discriminant = b*b - 4*a*c
    in ((-b + sqrt discriminant)/(2*a)
    , (-b - sqrt discriminant)/(2*a))
```

1.1.2 Mønster matching

Hva gjør denne funksjonen?

```
ordpair :: (0rd a) \Rightarrow a \Rightarrow a \Rightarrow (a,a)
ordpair x y = if x <= y then (x, y) else (y, x)
```

Den plasserer det minste elementet i input i første index i tuplen som funksjonen returnerer.

Hva gjør funksjonen diff

```
diff x y = let (a, b) = ordpair x y
   in (b - a)
```

1.1.3 Flere let features

Let uttrykk kan brukes

- til å definerer funksjoner
- $\bullet\,$ ido-notasjon

1.2 Rekursjon

Fra engelsk: "recursion" fra

• "recur" på norsk "å skje igjen" eller "gjentatt"

(egentlig fra latin "recurro", som betyr "å løpe tilbake"), men hva er det som "gjentas" eller skjer igjen?

Definisjon 1. En funksjon er rekursiv dersom den kaller seg selv igjen (muligens med nye parametere).

Eksempel. Her er en av ukesoppgavene fra uke 1, skrevet rekursivt.

triangle :: Integer -> Integer
triangle n = if n == 0
then 0
else n + (triangle (n - 1))

 \Diamond

1.2.1 Oppsett

Strukturen i en typisk rekursiv funksjon

- Grunntilfelle(r)
- Rekursive tilfeller

Eksempel. Vi kan la mønstrene i argumentet bestemme grunntilfellet og rekursive tilfeller

```
sum' :: [Integer] -> Integer
sum' [] = 0
sum' (x:xs) = x + sum' xs
```

 \Diamond

Eksempel. Rekursive funskjoner er relativt enkle å bevise ting om

```
sum' [a,b,c] = a + b + c
```

 \Diamond

Bevis. Vi har at

```
sum' [a,b,c]
= sum (a:b:c:[])
= a + sum'(b:c:[])
= a + b + sum'(c:[])
= a + b + c + sum' []
= a + b + c + 0
= a + b + c
```

 \Box

1.3 Forskjellige typer rekursjon

- Rekursjon på heltall
- Rekursjon på lister (og senere datatyper)

- Produktiv rekursjon
- Generell rekursjon

1.3.1 Rekursjon på heltall

```
countDown :: Integer -> [Integer]
countDown 0 = [0]
countDown x = x:(counDown (x - 1))
```

- Oftests er 0 eller 1 grunntilfellet.
- De rekursive kallene kaller funksjonen med et midnre parameter.

OBS: Dette gir ofte partielle funksjoner.

- Hva skjer med funksjonen over hvis man gir negativ input?
 - Jo den vil kalle på seg selv i all evighet ettersom den aldri når grunntilfellet.
- Hvordan burde vi ordne det slik at vi ikke får problemer med negative tall?
 - Enten ved å sjekke om tallet er negativt, og dersom det er det, legger vi til 1 istedenfor og trekke fra, eller så kan vi kalle funksjonen på absoluttverdien av x.

1.4 Primitiv vs generell rekursjon (Ackermann)

Men det finnnes veldig kompliserte ting man kan gj;re hvis man vil:

```
ackermann :: Integer -> Integer
ackermann 0 n = n + 1
ackermann m 0 = ackermann (m - 1) 1
ackermann m n = ackermann (m - 1) (ackermann m (n - 1))
```

Denne funksjonen vokser veldig fort! Men i teorien kommer den alltid frem til et svar.

1.5 Rekursjon på lister og andre datastrukturer

Vi har allerede sett et eksempel, la oss ta noen til

Eksempel. For å reversere en liste rekursivt

```
reverse :: [a] -> [a]
reverse [] = []
reverse (a : as) = reverse as ++ [a]
```

- Gjør mønster matching på alle konstruktørene.
- Det rekursive kallet gjøres direkte på variablene introdusert av mønsteret.

 \Diamond

Eksempel. For å definere zip

 \Diamond