Практическое занятие «Ассемблер–11» $19~{\it mas}~2020~{\it roda}$

Вещественные величины предполагаем 8-байтными. Во всех задачах подразумевается ввод данных с клавиатуры и вывод результата на экран.

1. Для заданного целого n > 0 вычислите сумму ряда

$$\sum_{k=1}^{n} \frac{1}{k^2}.$$

Здесь k, естественно — целое беззнаковое 4-байтное число.

- 2. Для двух вещественных чисел найдите их максимум и минимум. Запишите результат в переменные и выведите на экран.
- 3. Напишите программу, решающую квадратное уравнение $ax^2 + bx + c = 0$ в вещественных (если дискриминант не меньше нуля) или комплексных (если дискриминант отрицателен) числах. Здесь a, b, c вещественные числа. Считаем, что $a \neq 0$. Разумно использовать 4 вещественных переменных для записи вещетвенных и мнимых частей корней (последнее, если корни комплексные).
- 4. Простой многоугольник с n вершинами задан массивом из 2n вещественных чисел, содержащих координаты его вершин: x_1 y_1 x_2 y_2 ... x_n y_n . Вычислите его периметр.
- 5*. Решите численно задачу Коши $\dot{x} = a \cdot x \cdot (b-x), t \in [0,T], x \in \mathbb{R}, x(0) = x_0,$ методом Эйлера: $x_{i+1} = x_i + \Delta t \cdot a \cdot x_i \cdot (b-x_i), i = 1, \dots, N, \Delta t = T/N$. Параметры задачи: a, b, x_0, T вещественные числа, N натуральное число.

Смысл этого метода: пары (t_i, x_i) , где $t_i = i \cdot \Delta t$, задают ломаную линию, приближающую график искомой неизвестной функции, решения задачи Коши. Собственно, через сходимость таких ломаных при увеличении числа промежуточных моментов t_i Леонард Эйлер за сто лет до Огюстена Луи Коши доказывал существование и единственность задачи Коши.