

Luiz Antônio Nonenmacher Júnior

Motivação

kaggle

Motivação

Imagens

Sons

Tabelas

Motivação

Redes Neurais / Deep Learning

Gradient Boosted Trees (XGBoost, LightGBM, CatBoost)

Gradient Boosted Trees

Gradient Boosted Trees

Decision Trees

- Decision Trees
- Ensembling
 - Voting
 - Bagging
 - Random Forests
 - Boosting
 - Adaptative Boosting
 - Gradient Boosting
 - XGBoost, LightGBM, CatBoost
- Implementação

Akinator

Decision Trees

Were you... Male? Yes No In 3rd class? An adult? Yes No Yes In 3rd class? Yes 27% 100% 46%

Survival Rate

Decision Trees

Uma árvore de decisão é montada através de uma sequencia de perguntas binárias que resultam em uma classe, uma probabilidade ou algum valor contínuo.

As perguntas são obtidas buscando maximizar o ganho de informação.

Uma forma de se visualizar árvores de decisão é que cada gera uma reta dividindo os pontos.

Decision Trees

Dependendo do caso, árvores podem gerar regiões muito específicas e causas overfitting.

Decision Trees

Decision Trees

Uma das formas de contornar esse problema é através dos hiperparametros do modelo, como profundidade (depth) ou mínimo de elementos por nó.

Ensemble Learning

Ensemble Learning

Combinação de diferentes modelos para obter um modelo final com desempenho melhor que os modelos individuais.

- Voting
- Bagging
- Boosting

Voting

Imagine que treinamos cinco modelos para diferenciar cachorros de lobos.

Voting

Cachorro ou lobo?

Cachorro ou lobo?

M

Max Voting

Classe

→ LOBO

CACHORRO

 $\frac{M}{3}$ — LOBO — LOBO

M CACHORRO

M
5
LOBO

Cachorro ou lobo?

M

0,52

Average Voting

Cachorro ou lobo?

Weighted Average Voting

Bagging (Bootstrap aggregating)

Bagging

Conjunto de dados é dividido em subsets de mesmo tamanho usando uma amostragem randômica com reposição (Bootstrapping).

Bagging

Cada subset gera um modelo e no final se obtém o resultado por votação.

Random Forests

Random Forests

Feature bagging

Modelo que utiliza conceitos de Bagging, sendo cada subset gerado é treinado por uma árvore de decisão.

Além disso, faz "feature bagging" na hora de dividir cada nó, selecionado somente um subset das features.

Random Forests

Boosting

Boosting

Ao invés de serem gerados em paralelo, modelos são gerados sequencialmente de acordo com os resultados dos modelos anteriores.

- Adaptative Boosting (AdaBoost)
- Gradient Boosting

AdaBoosting

AdaBoosting

Algoritmo que se baseia em dar pesos para as amostras, que são atualizados a cada etapa de acordo com os resultados dos modelos.

Podem ser utilizados diversos modelos, mas geralmente utilizam-se árvores de decisão.

AdaBoosting

Combined classifier

No final, os modelos são combinados usando pesos de acordo com o erro de cada modelo.

$$\alpha_t = \frac{1}{2} ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Gradient Boosting

GRADIENT DESCENT WENNER!

Gradient Boosting

Método que utiliza ideias semelhante ao gradiente descente (Gradient Descent) para minimização de uma função de erro.

Também pode ser implementado com diversas funções, mas geralmente se utilizam árvores de decisão.

Gradient Boosting

Intuição: Queremos prever a idade de uma pessoa baseado no fato dela gostar de jardinagem, videogames ou chapéus:

PersonID	Age	LikesGardening	PlaysVideoGames	LikesHats
1	13	FALSE	TRUE	TRUE
2	14	FALSE	TRUE	FALSE
3	15	FALSE	TRUE	FALSE
4	25	TRUE	TRUE	TRUE
5	35	FALSE	TRUE	TRUE
6	49	TRUE	FALSE	FALSE
7	68	TRUE	TRUE	TRUE
8	71	TRUE	FALSE	FALSE
9	73	TRUE	FALSE	TRUE

Gradient Boosting

Tree 1

ID	Age	Prediction 1	Residual 1
1	13	19,25	-6,25
2	14	19,25	-5,25
3	15	19,25	-4,25
4	25	57,2	-32,2
5	35	19,25	15,75
6	49	57,2	-8,2
7	68	57,2	10,8
8	71	57,2	13,8
9	73	57,2	15,8

Residual 1
-6,25
-5,25
-4,25
-32,2
15,75
-8,2
10,8
13,8
15,8

ID	Age	Prediction 1	Residual 1	Prediction 2	Combined Prediction	Residual
1	13	19,25	-6,25	-3,567	15,68	2,683
2	14	19,25	-5,25	-3,567	15,68	1,683
3	15	19,25	-4,25	-3,567	15,68	0,6833
4	25	57,2	-32,2	-3,567	53,63	28,63
5	35	19,25	15,75	-3,567	15,68	-19,32
6	49	57,2	-8,2	7,133	64,33	15,33
7	68	57,2	10,8	-3,567	53,63	-14,37
8	71	57,2	13,8	7,133	64,33	-6,667
9	73	57,2	15,8	7,133	64,33	-8,667

Esse algoritmo inicial pode ser estendido usando M modelos, gerando repetidas vezes novos modelos treinados nos resíduos do modelo anterior.

O algoritmo final é uma adaptação desse algoritmo inicial e pode ser explicado em 7 passos.

1. Iniciar modelo simples como a média dos valores

$$F_o(x) = \hat{y}$$

2. Definir função de perda (L) que depende do modelo inicial e dos valores de y

$$L = L(y, F_o(x))$$

3. Calcular pseudo-resíduos (r) para o primeiro modelo usando a derivada do erro L.

$$r_0 = -\frac{\delta L(y, F_0(x))}{\delta F_0(x)}$$

4. Treinar próximo modelo (h_0) usando r como input do modelo.

5. Calcular peso (γ) associado ao modelo, minimizando a função do erro:

$$\gamma_o = argmin(L(y, F_o(x) + \gamma_o h_o(x)))$$

6. Gerar novo modelo, usando learning rate v

$$F_1(x) = F_0(x) + v \gamma_0 h_0(x)$$

7. Repetir M vezes

Além desses 7 passos, há duas modificações importantes para reduzir overfitting e melhor generalização do modelo:

- A cada novo modelo gerado é selecionado apenas um subset dos dados para treinar (similar ao Bagging)
- O mesmo é feito com as colunas, sendo selecionado apenas um subset a cada iteração.

XGBoost

XGBoost

Implementação lançada em 2014 como um projeto de pesquisa por Tianqi Chen.

Suporte para diversas linguagens (C++, Java, Python, R, Julia) e frameworks para dados distribuídos (Apache Hadoop, Apache Spark). Pode ser treinado usando CPU ou GPU.

Implementa diversas otimizações que tornam o treinamento mais rápido e obtêm mais acurácia que a implementação base de Gradient Boosted Trees.

Popular no Kaggle, em especial 2016-2017 (Higgs Boson competition).

LightGBM

LightGBM

Lançado em Janeiro de 2017 pela Microsoft como uma melhoria do XGBoost, especialmente na velocidade de treino.

Ao contrário do XGBoost, tem algoritmo próprio para lidar com valores categóricos, sem precisar usar one-hot encoding (no entanto, categorias devem ser convertidas para números).

Método mais utilizado hoje no Kaggle devido a sua velocidade de treinamento.

Uma das diferenças em relação ao XGBoost (além do tratamento das features categóricas) é a forma de crescimento da árvore.

LightGBM

CatBoost

CatBoost

Lançado em Abril de 2017 pela Yandex (maior empresa de tecnologia e motor de busca da Rússia).

Também tem implementação própria para lidar com variáveis categóricas mas sem necessidade de converter categorias para números.

Em média, velocidade entre XGBoost e LightGBM utilizando CPU e mais rápido que LightGBM utilizando GPU.

Implementação menos utilizada que as outros duas.

Hiperparâmetros

As três implementações possuem diversos hiperparâmetros, mas alguns dos principais e comuns aos três são:

- N estimators
- Learning rate
- Max_depth
- Subsample
- Colsample
- Regularization alpha e lambda

Exemplo simples para demonstrar aplicação dos três modelos.

Todos os modelos usaram os hiperparametros default e 200 árvores.

O dataset é baseado no censo americano de 1994, cujo objetivo é prever renda (<50k ou >50k) com base em dados demográficos:

Dataset original e código da implementação:

<u>archive.ics.uci.edu/ml/datasets/Census+Income</u> github.com/luiznonenmacher/classical-machine-learning/tree/master/finding_donors_boosting

	age	workclass	education_level	education- num	marital-status	rital-status occupation		race	sex	capital- gain	capital- loss	hours- per-week	native- country	income
0	39	State-gov	Bachelors	13.0	Never-married	Adm-clerical	Not-in-family	White	Male	2174.0	0.0	40.0	United- States	<=50K
1	50	Self-emp- not-inc	Bachelors	13.0	Married-civ- spouse	Exec- managerial	Husband	White	Male	0.0	0.0	13.0	United- States	<=50K
2	38	Private	HS-grad	9.0	Divorced	Handlers- cleaners	Not-in-family	White	Male	0.0	0.0	40.0	United- States	<=50K
3	53	Private	11th	7.0	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0.0	0.0	40.0	United- States	<=50K
4	28	Private	Bachelors	13.0	Married-civ- spouse	Prof-specialty	Wife	Black	Female	0.0	0.0	40.0	Cuba	<=50K
5	37	Private	Masters	14.0	Married-civ- spouse	Exec- managerial	Wife	White	Female	0.0	0.0	40.0	United- States	<=50K
6	49	Private	9th	5.0	Married-spouse- absent	Other-service	Not-in-family	Black	Female	0.0	0.0	16.0	Jamaica	<=50K
7	52	Self-emp- not-inc	HS-grad	9.0	Married-civ- spouse	Exec- managerial	Husband	White	Male	0.0	0.0	45.0	United- States	>50K
8	31	Private	Masters	14.0	Never-married	Prof-specialty	Not-in-family	White	Female	14084.0	0.0	50.0	United- States	>50K
9	42	Private	Bachelors	13.0	Married-civ- spouse	Exec- managerial	Husband	White	Male	5178.0	0.0	40.0	United- States	>50K

	age	education- num	capital- gain	capital- loss	hours- per- week	workclass_ Federal- gov	workclass_ Local-gov	workclass_ Private	workclass_ Self-emp- inc	workclass_ Self-emp- not-inc	 native- country_ Portugal	native- country_ Puerto- Rico	native- country_ Scotland	(
13181	0.410959	0.600000	0.0	0.000000	0.500000	0	0	1	0	0	 0	0	0	
10342	0.438356	0.533333	0.0	0.000000	0.397959	0	0	1	0	0	 0	0	0	
20881	0.054795	0.666667	0.0	0.000000	0.357143	0	0	1	0	0	 0	0	0	
24972	0.301370	0.866667	0.0	0.905759	0.448980	0	1	0	0	0	 0	0	0	
43867	0.246575	0.600000	0.0	0.000000	0.500000	0	0	1	0	0	 0	0	0	

36177 linhas no conjunto de treino e 9045 no de teste. 103 colunas.

XGBoost

```
import xgboost as xgb
start = time()
xg = xgb.XGBClassifier(n estimators=200, random state=42, n jobs=4)
xg.fit(X train, y train)
end = time()
xgb training time = end - start
train predictions = xg.predict(X train)
test predictions = xg.predict(X test)
xgb train auc = accuracy score(train predictions, y train)
xgb test auc = accuracy score(test predictions, y test)
print('Training time: {}, train acc: {}, test acc = {}'.format(round(xgb training time,2),
                                                                round(xgb train auc,4),
                                                                round(xgb test auc,4)))
```

Training time: 3.87, train_acc: 0.8715, test_acc = 0.8672

LightGBM

```
import lightgbm as lgb
start = time()
lg = lgb.LGBMClassifier(n estimators=200, random state=42, n iobs=4)
lg.fit(X train, y train)
end = time()
lgb training time = end - start
train predictions = lg.predict(X train)
test predictions = lg.predict(X test)
lgb train auc = accuracy score(train predictions, y train)
lgb test auc = accuracy score(test predictions, y test)
print('Training time: {}, train acc: {}, test acc = {}'.format(round(lgb training time,2),
                                                               round(lgb train auc,4),
                                                               round(lgb test auc,4)))
```

Training time: 0.46, train_acc: 0.8862, test_acc = 0.8704

CatBoost

```
import catboost as ctb
start = time()
cb = ctb.CatBoostClassifier(n estimators=200, verbose=False, random state=42)
cb.fit(X train, y train)
end = time()
cb training time = end - start
train predictions = cb.predict(X train)
test predictions = cb.predict(X test)
cb train auc = accuracy score(train predictions, y_train)
cb test auc = accuracy score(test predictions, y test)
print('Training time: {}, train_acc: {}, test_acc = {}'.format(round(cb_training_time,2),
                                                               round(cb train auc,4),
                                                               round(cb test auc,4)))
```

Training time: 9.21, train_acc: 0.8769, test_acc = 0.871

Resultados:

Modelo	Training time (s)	Test Accuracy
XGBoost	3,87	0,8672
LightGBM	0,46	0,8704
CatBoost	9,21	0,8710

Contatos

ljuniornone@gmail.com

github.com/luiznonenmacher

www.linkedin.com/in/luiz-nonenmacher

Muito obrigado pela atenção!