Elm-style Functional Reactive Programming demystified

Sergei Winitzki

SF Types, Theorems, and Programming Languages

April 13, 2015

What is "functional reactive programming"

FRP has little to do with...

- multithreading, message-passing concurrency, "actors"
- distributed computing on massively parallel load-balanced clusters
- ma/reduce, the "reactive manifesto", (insert latest fad here)...

FRP is...

- pure functions using temporal types as primitives
 - (temporal type \approx lazy stream of events)

Transformational vs. reactive programs

Transformational programs	Reactive programs
example: pdflatex elm_talk.tex	example: any GUI program, OS
start, run, then stop	keep running indefinitely
read some input, write some output	wait for signals, send messages
execution: sequential, parallel	"main run loop" + concurrency
difficulty: algorithms	signal/response sequences
specification: classical logic?	classical temporal logic?
verification: proof of correctness?	model checking?
synthesis: extract code from proof?	temporal logic synthesis?
type theory: intuitionistic logic	intuitionistic <i>temporal</i> logic

Difficulties in reactive programming

- Input signals may come at unpredictable times
 - Imperative updates are difficult to keep in the correct order
 - Flow of events becomes difficult to understand
- Asynchronous (out-of-order) callback structures are difficult to maintain
- Inverted control ("the system will call you") obscures the flow of data
- Some concurrency is usually required (e.g. background tasks)
 - Explicit multithreaded code is hard

Motivation for FRP

- Reactive programs work on infinite sequences of input/output values
- Main idea: make infinite sequences implicit, as a new "temporal" type
 - lacktriangle (Elm) Signal lpha an infinite sequence of values of type lpha
 - ightharpoonup alternatively, a value of type α that "changes with time"
- Reactive programs are pure functions
 - ightharpoonup a GUI is a pure function of type Signal Inputs ightarrow Signal View
 - lacktriangle a Web server is a pure function Signal Request ightarrow Signal Response
 - ▶ all mutation is **implicit** in Signal α ; our code is 100% immutable
 - \star instead of updating an x:Int, we define a value of type Signal Int
 - asynchronous behavior is implicit: our code has no callbacks
 - concurrency / parallelism is implicit
 - ★ the runtime needs to provide the required scheduling of events

Elm in a nutshell

- ullet Elm is a pure polymorphic λ -calculus with products and sums
- Temporal type $\Sigma \alpha$ a time-dependent value of type α
- Temporal primitive terms:

$$\begin{array}{ll} \operatorname{constant}\colon \ \alpha \to \Sigma \alpha \\ \operatorname{map2}\colon \ (\alpha \to \beta \to \gamma) \to \Sigma \alpha \to \Sigma \beta \to \Sigma \gamma \\ \operatorname{foldp}\colon \ (\alpha \to \beta \to \beta) \to \beta \to \Sigma \alpha \to \Sigma \beta \\ \operatorname{drop}\colon \ (\alpha \to \operatorname{Bool}) \to \Sigma \alpha \to \Sigma \alpha \\ \operatorname{async}\colon \ \Sigma \alpha \to \Sigma \alpha \end{array}$$

- Domain-specific primitive types: Bool, Int, Float, String, View
- Standard library with data structures, HTML, HTTP, etc.
- Try Elm online at http://elm-lang.org/try

"Hello, world" in Elm

The value called main will be visualized by the runtime

```
import Graphics.Element (..)
import Text (..)
import Signal (..)

main : Signal Element
main = constant ( plainText "Hello, World!" )
```

Typical program structure in Elm

A state machine:

```
\texttt{update: Command} \, \to \, \texttt{State} \, \to \, \texttt{State}
```

A rendering function:

```
draw: State \rightarrow View
```

A manager that merges the required input signals:

```
merge\_input: \Sigma Command
```

- Predefined input signals: Mouse, Keyboard, timer, HTML, etc.
- Program boilerplate:

```
init_state : State
```

main : Σ View

main = map draw \$ foldp update init_state merge_input

Some limitations of Elm-style FRP

- No recursion of any kind
- ullet No higher-order signals: no $\Sigma(\Sigma \alpha)$ allowed by type system
- The signal processing logic is specified statically
- No way of defining new signals
- Impossible to implement the "dining philosophers"!

Part 2. Temporal logic and FRP

- Reminder (Curry-Howard): temporal logic expressions will be our types
- We only need to control the order of events: no hard real-time requirements
- How to understand temporal logic:
 - ▶ classical propositional logic ≈ Boolean arithmetic
 - ightharpoonup intuitionistic propositional logic pprox same but without **true** / **false** dichotomy
 - (linear-time) temporal logic pprox Boolean arithmetic for *infinite sequences*
 - intuitionistic temporal logic \approx same but without true / false dichotomy
- In other words:
 - a temporal type represents a single infinite sequence of values

Boolean arithmetic: notation

- Classical propositional (Boolean) logic: T, F, $a \lor b$, $a \land b$, $\neg a$, $a \to b$
- A notation better adapted to school-level arithmetic: 1, 0, a+b, ab, a'
- The only "new rule" is 1+1=1
- Define $a \rightarrow b = a' + b$
- Some identities:

$$0a = 0$$
, $1a = a$, $a + 0 = a$, $a + 1 = 1$,
 $a + a = a$, $aa = a$, $a + a' = 1$, $aa' = 0$,
 $(a + b)' = a'b'$, $(ab)' = a' + b'$, $(a')' = a$
 $a(b + c) = ab + ac$, $(a + b)(a + c) = a + bc$

Boolean arithmetic: example

Of the three suspects A, B, C, only one is guilty of a crime. Suspect A says: "B did it". Suspect B says: "C is innocent." The guilty one is lying, the innocent ones tell the truth.

$$\phi = \left(ab'c' + a'bc' + a'b'c\right)\left(a'b + ab'\right)\left(b'c' + bc\right)$$

Simplify: expand the brackets, omit aa', bb', cc', replace aa = a etc.:

$$\phi = ab'c' + 0 + 0 = ab'c'$$

The guilty one is *A*.

Propositional linear-time temporal logic (LTL)

• We work with *infinite boolean sequences* ("linear time") **Boolean** operations:

$$a = [a_0, a_1, a_2, ...];$$
 $b = [b_0, b_1, b_2, ...];$ $a + b = [a_0 + b_0, a_1 + b_1, ...];$ $a' = [a'_0, a'_1, ...];$ $ab = [a_0b_0, a_1b_1, ...]$

Temporal operations:

(Next)
$$Na = [a_1, a_2, ...]$$

(Sometimes) $Fa = [a_0 + a_1 + a_2 + ..., a_1 + a_2 + ..., ...]$
(Always) $Ga = [a_0a_1a_2a_3..., a_1a_2a_3..., a_2a_3..., ...]$

Other notation (from modal logic):

$$Na \equiv \bigcirc a$$
; $Fa \equiv \lozenge a$; $Ga \equiv \Box a$

• Weak Until: pUq = p holds from now on until q first becomes true

$$pUq = q + pN(q + pN(q + ...))$$

Temporal logic redux

- LTL as type theory: do we use $N\alpha$, $F\alpha$, $G\alpha$ as new types?
- Are they to be functors, monads, ...?
- What is the operational semantics? (I.e., how to compile this?)

Interpreting values typed by LTL

- What does it mean to have a value x of type, say, $G(\alpha \to \alpha U\beta)$??
 - ▶ $x : \mathbf{N}\alpha$ means that $x : \alpha$ will be available *only* at the *next* time tick (x is a **deferred value** of type α)
 - $x : \mathbf{F}\alpha$ means that $x : \alpha$ will be available at *some* future tick(s) (x is an **event** of type α)
 - $x : \mathbf{G}\alpha$ means that a (different) value $x : \alpha$ is available at *every* tick (x is an **infinite stream** of type α)
 - $x : \alpha \mathbf{U}\beta$ means a **finite stream** of α that may end with a β
- Some temporal axioms of intuitionistic LTL:

Elm as an FRP language

ullet λ -calculus with type ${f G}lpha$, primitives map2, foldp, async

map2 :
$$(\alpha \to \beta \to \gamma) \to \mathbf{G}\alpha \to \mathbf{G}\beta \to \mathbf{G}\gamma$$

foldp : $(\alpha \to \beta \to \beta) \to \beta \to \mathbf{G}\alpha \to \mathbf{G}\beta$
async : $\mathbf{G}\alpha \to \mathbf{G}\alpha$

- (map2 makes G an applicative functor)
- async is a special scheduling instruction
- Limitations:
 - ▶ Cannot have a type $G(G\alpha)$, also not using N or F
 - Cannot construct temporal values by hand
 - ► This language is an *incomplete* Curry-Howard image of LTL!
 - ▶ I work after the boss comes by and until the phone rings:
 let after_until w (b,r) = (w or b) and not r in
 foldp after_until false (boss, phone)

Conclusions and outlook

- There are some languages that implement FRP in various ad hoc ways
- The ideal is not (yet) reached

Conclusions and outlook

• The ideal is not (yet) reached

Abstract

In my day job, most bugs come from imperatively implemented reactive programs. FRP is a declarative approach that promises to solve my problems.

FRP can be defined as a λ -calculus with types given by a propositional intuitionistic linear-time temporal logic (LTL). Although the Elm language uses only a subset of LTL, it achieves high expressivity for GUI programming. I discuss the current limitations of Elm and outline some possible extensions. I will also briefly review the motivations behind and the connections between temporal logic, FRP, and Elm.

My talk will be understandable to anyone familiar with Curry-Howard and functional programming. (The first part of the talk does not rely on temporal logic or Curry-Howard.)

Suggested reading

- E. Czaplicki, S. Chong. Asynchronous FRP for GUIs. (2013)
- E. Czaplicki. Concurrent FRP for functional GUI (2012).
- M. F. Dam. Lectures on temporal logic. Slides: Syntax and semantics of LTL, A Hilbert-style proof system for LTL
- E. Bainomugisha, et al. A survey of reactive programming (2013).
- W. Jeltsch. Temporal logic with Until, Functional Reactive Programming with processes, and concrete process categories. (2013).
- A. Jeffrey. LTL types FRP. (2012).
- D. Marchignoli. Natural deduction systems for temporal logic. (2002). See Chapter 2 for a natural deduction system for modal and temporal logics.