Lenguaje Ensamblador Sistemas de Numeración

René Guamán-Quinche

rguaman@unl.edu.ec

Bits

- La unidad más pequeña de información en la computadora es el bit
- Un bit puede estar no magnetizado, o apagado, de modo que su valor es cero
- Un bit puede estar magnetizado, o encendido, de modo que su valor es uno

Un sólo bit no proporciona mucha información, pero es sorprendente lo que un conjunto de ellos puede hacer

Bytes

- Un grupo de 8 bits se llama bytes, el cual representa localidades de almacenamiento, tanto en memoria interna como en discos externos
- En memoria cada byte tiene un dirección única, que inicia con 0 para el primer byte
- Cada byte tiene 8 bits para datos y un bit de paridad

Un bit de paridad es un dígito binario que indica si el número de bits con un valor de 1 en un conjunto de bits es par o impar

- Los 8 bits de datos proporcionan la base para la aritmética binaria y para representar caracteres
- 8 bits permiten combinaciones diferentes en condiciones de apagados-encendido

La paridad requiere que el número de bits encendidos en cada byte siempre sea impar

Bytes

- La paridad requiere que el número de bits encendidos en cada byte siempre sea impar
 - La letra A (01000001) contiene 2 bits encendidos, para forzar la paridad impar, el procesador procede de forma automática su bit de paridad en encendido 01000001-1
 - El asterisco * (00101010) contiene 3 bits encendidos, para mantener la paridad impar 00101010-0
 - Cuando una instrucción hace referencia a un byte en memoria interna, procesador verifica su paridad
 - Si su paridad es par, el sistema supone que un bit está perdido y exhibe un mensaje 0 de error
 - Un error de paridad puede ser por una falla de hw o trastorno eléctrico

Sistemas de numeración

La **memoria en un computador** está compuesta de números

La memoria del computador no almacena estos números en decimal (base 10)

Los computadores almacenan toda la información en binario (base 2)

Sistemas de numeración - Décimal

Los números con base 10 están compuestos de 10 posibles dígitos (0-9)

Cada dígito de un número tiene una potencia de 10 asociada con él, basada en su posición en el número:

$$234 = 2 \times 10^2 + 3 \times 10^1 + 4 \times 10^0$$

Sistemas de numeración - Binario

Los números en base dos están compuestos de dos posibles dígitos (0 y 1). Cada dígito de un número tiene una potencia de 2 asociada con él basada en su posición en el número:

$$11001_{2} = 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= 16 + 8 + 1$$

$$= 25$$

· Sistemas de numeración - Binario

Decimal	Binario	Decimal	Binario	
0	0000	8	1000	
1	0001	9	1001	
2	0010	10	1010	
3	0011	11	1011	
4	0100	12	1100	
5	0101	13	1101	
6	0110	14	1110	
7	0111	15	1111	

Cuadro 1.1: Decimal de 0 a 15 en binario

N	No hay carry antes			Sí hay carry antes			
0	0	1	1	0	0	1	1
+0	+1	+0	+1	+0	+1	+0	+1
0	1	1	0	1	0	0	1
			c		c	$^{\rm c}$	c

Figura 1.1: Suma binaria (c es carry)

Sistemas de numeración - Hexadecimal

Tienen base 16, 16 dígitos posibles. Se usan letras para estos dígitos adicionales. Los 16 dígitos hexadecimales son: 0-9 y luego A, B, C, D, E, F. El dígito A equivale a 10 en decimal, B es 11 etc. Cada dígito de un número hexadecimal tiene una potencia de 16 asociada con él:

$$2BD_{16} = 2 \times 16_{2} + 11 \times 16_{1} + 13 \times 16_{0}$$

= 512 + 176 + 13
= 701

Complemento A2

Se utiliza en la resta de dos números binarios puede obtenerse sumando al minuendo el complemento a dos del sustraendo.

```
Ejemplos. restar, 91 - 45 = 46, en binario:
```

```
91 = 1011011
```

$$45 = 0101101$$

* 45 le sacamos el complemento A1

A1 = Invertir el número, 1 a 0 y 0 a 1

0101101 => 1010010

Complemento A2

Se utiliza en la resta de dos números binarios puede obtenerse sumando al minuendo el complemento a dos del sustraendo.

Ejemplos. restar, 91 - 45 = 46, en binario:

$$91 = 1011011$$

$$45 = 0101101$$

* 45 le sacamos el complemento A2

A2 = Sumamos el complemento A1 +1

1010010

<u>+ 1</u>

1010011

Complemento A2

Se utiliza en la resta de dos números binarios puede obtenerse sumando al minuendo el complemento a dos del sustraendo.

Ejemplos. restar, 91 - 45 = 46, en binario:

91 = 1011011

45 = 0101101

Realizamos la suma de 91 + 45 A2

1011011

1010011

10101110

En el resultado nos sobra un bit, que se desborda por la izquierda. Pero, como el número resultante no puede ser más largo que el minuendo, el bit sobrante¹³ se desprecia