§ 13.

Wegintegrale

In diesem Paragraphen seien alle vorkommenden Wege stets stückweise stetig differenzierbar.

Definition

Sei $\gamma:[a,b]\to\mathbb{R}^n$ ein Weg, $\gamma=(\eta_1,\ldots,\eta_n),\Gamma\coloneqq\Gamma_\gamma.$ $g:\Gamma\to\mathbb{R}$ stetig und $f=(f_1,\ldots,f_n):\Gamma\to\mathbb{R}^n$ stetig.

(1) Für
$$j \in \{1, \dots, n\}$$
: $\int_{\gamma} g(x) dx_j := \int_a^b g(\gamma(t)) \cdot \eta_j'(t) dt$

(2)

$$\int_{\gamma} f(x) \cdot dx := \int_{\gamma} f_1(x) dx_1 + \dots + f_n(x) dx_n$$
$$:= \sum_{j=1}^{n} \int_{\gamma} f_j(x) dx_j$$

Es ist $\int_{\gamma} f(x) \cdot dx = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) dt$ und heißt das Wegintegral von f längs γ .

Beispiel

 $f(x,y,z) \coloneqq (z,y,x), \ \gamma(t) = (t,t^2,3t), \ t \in [0,1]. \ f(\gamma(t)) = (3t,t^2,t), \ \gamma'(t) = (1,2t,3), \ f(\gamma(t)) \cdot \gamma'(t) = 3t + 2t^3 + 3t = 6t + 2t^3.$

$$\int_{\gamma} f(x, y, z) \cdot d(x, y, z) = \int_{0}^{1} (6t + 2t^{3}) dt = \frac{7}{2}.$$

Satz 13.1 (Rechnen mit Wegintegralen)

 γ, Γ, f seien wie oben, $g: \Gamma \to \mathbb{R}^n$ sei stetig, $\hat{\gamma} = (\hat{\gamma}_1, \dots, \hat{\gamma}_n) : [\alpha, \beta] \to \mathbb{R}^n$ sei rektifizierbar und $\xi, \eta \in \mathbb{R}$.

(1)
$$\int_{\gamma} (\xi f(x) + \eta g(x)) \cdot dx = \xi \int_{\gamma} f(x) \cdot dx + \eta \int_{\gamma} g(x) \cdot dx$$

(2) Ist
$$\gamma = \gamma^{(1)} \oplus \gamma^{(2)} \implies \int_{\gamma} f(x) \cdot dx = \int_{\gamma^{(1)}} f(x) \cdot dx + \int_{\gamma^{(2)}} f(x) \cdot dx$$

(3)
$$\int_{\gamma^{-}} f(x) \cdot dx = -\int_{\gamma} f(x) \cdot dx$$

(4)
$$\left| \int_{\gamma} f(x) \cdot dx \right| \le L(\gamma) \cdot \max\{\|f(x)\| : x \in \Gamma\}$$

(5) Ist
$$\hat{\gamma} \sim \gamma \implies \int_{\gamma} f(x) \cdot dx = \int_{\hat{\gamma}} f(x) \cdot dx$$
.

Beweis

- (1) klar
- (2) Ana I, 23.9
- (3) nur für γ stetig differenzierbar. $\gamma^{-}(t) = \gamma(b+a-t), \ t \in [a,b].$ $\int_{\gamma^{-}} f(x) \cdot dx = \int_{a}^{b} f(\gamma(b+a-t)) \cdot \gamma'(b+a-t)(-1) dt = (\text{subst. } \tau = b+a-t, \ d\tau = dt)$ $= \int_{a}^{a} f(\gamma(\tau)) \cdot \gamma'(\tau) d\tau = -\int_{a}^{b} f(\gamma(\tau)) \cdot \gamma'(\tau) d\tau = -\int_{a}^{c} f(x) \cdot dx.$
- (4) Übung
- (5) Sei $\hat{\gamma} = \gamma \circ h$, $h : [\alpha, \beta] \to [a, b]$ stetig und streng wachsend. $h(\alpha) = a$, $h(\beta) = b$. Nur für γ und h stetig db. Dann ist $\hat{\gamma}$ stetig db.

$$\int_{\hat{\gamma}} f(x) \cdot dx = \int_{\alpha}^{\beta} f(\gamma(h(t))) \cdot \gamma'(h(t)) \cdot h'(t) dt = (\text{subst. } \tau = h(t), \ d\tau = h'(t) dt) = \int_{a}^{b} f(\gamma(\tau)) \cdot \gamma'(\tau) d\tau = \int_{\gamma} f(x) \cdot dx.$$

Definition

 γ , Γ seien wie immer in diesem Paragraphen. γ sei stückweise stetig differenzierbar. s sei die zu γ gehörende Weglängenfunktion und $g:\Gamma\to\mathbb{R}$ stetig. 12.4 \Longrightarrow s ist wachsend $\stackrel{\text{Ana I}}{\Longrightarrow}$ $s\in BV[a,b];\ g\circ\gamma$ stetig $\stackrel{\text{Ana I, 26.6}}{\Longrightarrow}$ $g\circ\gamma\in R_s[a,b].$

$$\int_{\gamma} g(x) \, \mathrm{d}s := \int_{a}^{b} g(\gamma(t)) \|\gamma'(t)\| \, \mathrm{d}t$$

Integral bzgl. der Weglänge.

Satz 13.2 (Rechnen mit Integralen bezgl. der Weglänge)

Seien γ, g wie oben.

$$(1) \int_{\gamma^{-}} g(x) \, \mathrm{d}s = \int_{\gamma} g(x) \, \mathrm{d}s$$

(2) Ist
$$\gamma = \gamma^{(1)} \oplus \gamma^{(2)} \implies \int_{\gamma} g(x) \, \mathrm{d}s = \int_{\gamma^{(1)}} g(x) \, \mathrm{d}s + \int_{\gamma^{(2)}} g(x) \, \mathrm{d}s.$$

Beispiel

$$g(x,y) = (1+x^2+3y)^{1/2}, \ \gamma(t) = (t,t^2), \ t \in [0,1].$$

$$g(\gamma(t)) = (1 + t^2 + 3t^2)^{1/2} = (1 + 4t^2)^{1/2}, \ \gamma'(t) = (1, 2t), \ \|\gamma'(t)\| = (1 + 4t^2)^{1/2} \implies \int_{\gamma} g(x, y) \, \mathrm{d}s = \int_{0}^{1} (1 + 4t^2) \, \mathrm{d}t = \frac{7}{3}$$

Gegeben: $\gamma_1, \gamma_2, \dots, \gamma_m$ rektifizierbare Wege, $\gamma_k : [a_k, b_k] \to \mathbb{R}^n$ mit $\gamma_1(b_1) = \gamma_2(a_2), \gamma_2(b_2) = \gamma_3(a_3), \dots, \gamma_{m-1}(b_{m-1}) = \gamma_m(a_m).$ $\Gamma := \Gamma_{\gamma_1} \cup \dots \cup \Gamma_{\gamma_m}.$

 $\text{AH}(\gamma_1,\ldots,\gamma_m) \coloneqq \{\gamma: \gamma \text{ ist ein rektifizierbarer Weg im } \mathbb{R}^n \text{ mit: } \Gamma_\gamma = \Gamma, \ L(\gamma) = L(\gamma_1) + \cdots + L(\gamma_m) \text{ und } \int_\gamma f(x) \cdot \mathrm{d}x = \int_{\gamma_1} f(x) \cdot \mathrm{d}x + \cdots + \int_{\gamma_m} f(x) \cdot \mathrm{d}x \text{ für } jedes \text{ stetige } f: \Gamma \to \mathbb{R}^n \}.$

Ist $\gamma \in AH(\gamma_1, \dots, \gamma_m)$, so sagt man γ entsteht durch **Aneinanderhängen** der Wege $\gamma_1, \dots, \gamma_m$.

Satz 13.3 (Stetige Differenzierbarekeit der Aneinanderhängung)

 $\gamma_1, \ldots, \gamma_m$ seien wie oben. Dann: $AH(\gamma_1, \ldots, \gamma_m) \neq \emptyset$.

Sind $\gamma_1, \ldots, \gamma_m$ stetig differenzierbar, so existiert ein stückweise stetig differenzierbarer Weg $\gamma \in AH(\gamma_1, \ldots, \gamma_m)$.

Beweis

O.B.d.A: m = 2. Sei $c > b_1$ beliebig.

Def. $h:[b_1,c]\to [a_2,b_2]$ linear wie folgt: h(x)=px+q, $h(b_1)=a_2$, $h(c)=b_2$. $\hat{\gamma}_2\coloneqq \gamma_2\circ h$. Dann: $\gamma_2\sim\hat{\gamma}_2$. $\gamma:=\gamma_1\oplus\hat{\gamma}_2$. 12.2, 12.7, 13.2 $\Longrightarrow \gamma\in AH(\gamma_1,\gamma_2)$.

Beispiel

In allen Beispielen sei f(x,y) = (y, x - y) und $t \in [0,1]$.

(1) $\gamma_1(t) = (t,0), \gamma_2(t) = (1,t).$

Sei $\gamma \in AH(\gamma_1, \gamma_2)$. Anfangspunkt von γ ist (0,0), Endpunkt von γ ist (1,1). Nachrechnen: $\int_{\gamma_1} f(x,y) \cdot d(x,y) = 0, \ \int_{\gamma_2} f(x,y) \cdot d(x,y) = \frac{1}{2}. \text{ Also: } \int_{\gamma} f(x,y) \cdot d(x,y) = \frac{1}{2}$

(2) $\gamma_1(t) = (0, t), \ \gamma_2(t) = (t, 1).$

Sei $\gamma \in AH(\gamma_1, \gamma_2)$, Anfangspunkt von γ ist (0,0), Endpunkt von γ ist (1,1). Nachrechnen: $\int_{\gamma} f(x,y) \cdot d(x,y) = \frac{1}{2}$

(3) $\gamma(t)=(t,t^3)$. Anfangspunkt von γ ist (0,0), Endpunkt von γ ist (1,1). Nachrechnen: $\int_{\gamma} f(x,y) \cdot d(x,y) = \frac{1}{2}$