

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ МЕТАЛЛУРГИИ, МАШИНОСТРОЕНИЯ И ТРАНСПОРТА КАФЕДРА «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ»

Курсовая работа

Метод Фибоначчи с запаздыванием Дисциплина: программирование на языке С

Разработал:

ст. гр. 33335/2 Комаров А.Е.

Преподаватель Ананьевский М.С.

Санкт-Петербург 2018

Оглавление

Курсовая работа	. 1
Введение	. 3
История	. 3
Задача, которую решает метод Фибоначчи с запаздыванием	. 4
Реализация на С++	. 6
Анализ алгоритма	. 7
Список литературы	. 8

Введение

Метод Фибоначчи с запаздываниями (*Lagged Fibonacci Generator*) — один из методов генерации псевдослучайных чисел. Он позволяет получить более высокое "качество" псевдослучайных чисел.

В отличие от генераторов, использующих линейный конгруэнтный алгоритм, фибоначчиевы генераторы можно использовать в статистических алгоритмах, требующих высокого разрешения.

Наибольшую популярность фибоначчиевы датчики получили в связи с тем, что скорость выполнения арифметических операций с вещественными числами сравнялась со скоростью целочисленной арифметики, а фибоначчиевы датчики естественно реализуются в вещественной арифметике.

История

Последовательность, в которой зависит более, чем от одного из предшествующих значений, и которая определяется следующей формулой: $X_{n+1} = (X_n + X_{n-1}) \ mod \ (2^m)$, носит название последовательность Фибоначии.

После, в начале 50-х годов, она была немного модернизирована: $X_{n+1} = (X_n + X_{n-k}) \mod (2^m)$, где k рекомендовалось брать больше 15.

В 1958 году Митчел Дж. Ж. и Мур Д. Ф. вывели последовательность: $X_n = (X_{n-24} + X_{n-55}) \ mod \ (2^m)$, где $n \ge 55$, m — чётное число, X_0, X_1, \ldots, X_{54} — произвольные целые числа. Числа 24 и 55 выбраны так, чтобы определялась последовательность, младшие значащие двоичные разряды $(X_n, \ mod \ (2))$ которой имеют длину периода $2^{55} - 1$.

Очевидными преимуществами данного алгоритма являются его быстрота, поскольку он не требует умножения чисел, а также, длина периода, однако, случайность, полученных с помощью него чисел, мало исследована.

Числа 24 и 55 обычно называют *запаздыванием*, а числа X_n — последовательностью Фибоначчи с запаздыванием.

Впоследствии, на основе этих работ было подобрано множество запаздываний, которые приводят к длинным периодам по модулю 2.

Задача, которую решает метод Фибоначчи с запаздыванием

Нам нужно получить псевдослучайное значение. При чем, если нам нужна последовательность случайных чисел, то она должна обладать хорошими статистическими свойствами.

Известны разные схемы использования метода Фибоначчи с запаздыванием. Один из широко распространённых фибоначчиевых датчиков основан на следующей рекуррентной формуле:

$$k_i = egin{cases} k_{i-a} - k_{i-b} \text{ , } & \text{если } k_{i-a} \geq k_{i-b} \ k_{i-a} - k_{i-b} + 1, & \text{если } k_{i-a} < k_{i-b} \end{cases}$$

где k_i — вещественные числа из диапазона [0,1), a и b — целые положительные числа, параметры генератора, называемые лагами. Для работы фибоначчиеву датчику требуется знать $\max(a,b)$ предыдущих сгенерированных случайных чисел. При программной реализации для хранения сгенерированных случайных чисел необходим некоторый объем памяти, зависящих от параметров a и b.

Такая формула будет выдавать нам случайные числа в диапазоне [0,1), нам же нужны целые положительные числа в несколько разрядов. Модернизируем эту формулу в следующуу:

$$k_i = \begin{cases} k_{i-a} - k_{i-b} , & \text{если } k_{i-a} \ge k_{i-b} \\ k_{i-b} - k_{i-a} , & \text{если } k_{i-a} < k_{i-b} \end{cases}$$

где k_i теперь целые положительные числа.

Для полученной формулы есть следующий алгоритм:

1. Запрашиваем у пользователя параметры a, b и кол-во желаемых случайных величин (Amount).

- 2. Создаем массив $Arr[\]$, размер которого будет равен $\max(a,b)+Amount+1$.
- 3. Для работы этой формулы необходимо участок массива от 0 до $\max(a,b)$, заполнить случайными величинами. Как эти величины получены, не имеет значения. В данном случае будем использовать встроенную функцию rand().
- 4. Выполняем цикл от i = 0, до $i = \max(a, b) + Amount$, увеличивая i на единицу.
- 5. В каждой итерации цикла выполняем проверку: Если $Arr[i-a] \ge Arr[i-b],$
 - следующий эл-т массива равен Arr[i-a] Arr[i-b],
 - в противном случае Arr[i-b] Arr[i-a].

Разберем пример:

Нужно получить 5 случайных целых положительных чисел. a=4, b=7.

Пусть $k_0=5,\ k_1=15,\ k_2=20,\ k_3=13,\ k_4=8,\ k_5=2,\ k_6=3,$ $k_7=17,$ тогда:

$$k_8 = k_{8-7} - k_{8-4} = 15 - 8 = 7$$
 $(k_{i-b} > k_{i-a});$
 $k_9 = k_{9-7} - k_{9-4} = 20 - 2 = 18$ $(k_{i-b} > k_{i-a});$
 $k_{10} = k_{10-7} - k_{10-4} = 13 - 3 = 10$ $(k_{i-b} > k_{i-a});$
 $k_{11} = k_{11-4} - k_{11-7} = 17 - 8 = 9$ $(k_{i-a} \ge k_{i-b});$
 $k_{12} = k_{12-4} - k_{12-7} = 7 - 2 = 5$ $(k_{i-a} \ge k_{i-b});$
 $k_{13} = k_{13-4} - k_{13-7} = 18 - 3 = 15$ $(k_{i-a} \ge k_{i-b});$

В итоге мы получили числа 7, 18, 10, 9, 5, 15. Видно, генерируемая последовательность чисел внешне похожа на случайную. Также видно, что диапазон выдаваемых случайных чисел лежит от 0, до максимального из выбранных в начале случайных чисел.

Реализация на С++

```
#include <iostream>
#include <time.h>
#include <vector>
#include <iterator>
using namespace std;
typedef vector <int> Mass;
int main()
    unsigned int a = 0, b = 0;
    int Amount = 0;
    Mass::iterator LagA;
                                       //создаем все итераторы
    Mass::iterator LagB;
    Mass::iterator Lag;
    std::cout<<" Lag a = ";
                                        //запрос параметров
    std::cin>>a;
    std::cout<<" Lag b = ";
    std::cin>>b;
    std::cout<<" Amount of numbers ";</pre>
    std::cin>>Amount;
    Mass massive(1);
                                        //создаем массив
    massive.resize(max(a,b)+Amount+1);
    LagA=massive.begin();
                                         //инициализируем лаги и сдвигаем на
    advance(LagA,a);
                                         //значения а и б
    LagB=massive.begin();
    advance(LagB,b);
    if(LagA>LagB) Lag=LagA;
                                        //доп. итератор для корректной работы
    else Lag=LagB;
                                         //цикла
    Mass::iterator index;
                                         //основной итератор движения по
    index=massive.begin();
                                         //массиву
    srand(time(NULL));
                                        //заполняем первую часть массива
    while(index<=Lag) {</pre>
                                         //случайными значениями
        *index = rand();
        cout<<"number="<<*index<<endl;</pre>
        index++;
    }
    for (; index != massive.end(); index++, LagA++, LagB++)
        if (*LagA >= *LagB)
                                         //получаем последовательность методом
                                        // Фиблначчи с запаздываем
            *index = *LagA - *LagB;
        } else *index = *LagB -*LagA;
        std::cout<<*index<< std::endl;</pre>
    }
```

Пример выполнения полученной программы:

```
Lag a = 10
10
Lag b = 20
20
Amount of numbers 10
10
3667
67
3944
5221
4249
29022
5554
3650
11114
12405
```

Анализ алгоритма

В целом сложность алгоритма можно оценить как O(n), где $n = \max(a,b) + Amount + 1$.

Также, ниже приведен график полученных 500 значений при трех различных параметрах a и b.

Из графика видно, что, действительно, данный метод обладает хорошими свойствами и выдает достаточно хорошие последовательности псевдослучайных чисел. Также, можно заметить, что при достаточно малой разности b-a диапазон выдачи случайных чисел заметно сужается, что делает это метод неидеальным.

Лаги a и b — «магические» и их не следует выбирать произвольно. Рекомендуются следующие значения лагов: (a,b) = (55,24), (17,5), (97,33).

Качество получаемых случайных чисел зависит от значения константы, а чем оно больше, тем выше размерность пространства, в котором сохраняется равномерность случайных векторов, образованных из полученных случайных чисел. В то же время, с увеличением величины константы а увеличивается объём используемой алгоритмом памяти.

Значения (a,b) = (17,5) можно рекомендовать ДЛЯ простых приложений, не использующих векторы высокой размерности случайными компонентами. Значения (a, b) = (55, 24) позволяют получать числа, удовлетворительные для большинства алгоритмов, требовательных к качеству случайных чисел. Значения (a, b) = (97,33) позволяют получать очень качественные случайные числа и используются в алгоритмах, работающих со случайными векторами высокой размерности. Фибоначчиев генератор случайных чисел (с лагами 20 и 5) используется в широко известной системе Matlab.

В настоящее время подобрано достаточно много пар чисел a и b, приведём некоторые из них:

 $(38,89), (37,100), (30,127), (83,258), (107,378), (273,607), (1029,2281), \dots$

Список литературы

- *Жельников В*. Криптография от папируса до компьютера. 1996. 325 с.
- https://www.intuit.ru/studies/courses/691/547/lecture/12383?page=2
- https://ru.wikipedia.org/wiki/Meтод Фибоначчи с запаздываниями
- http://nethash.ru/145-protivodejstvie-metodam-socialenoj-injenerii.html?page=9