Année Universitaire 2020- 2021

Filière: SMIA / S1

Pr. FAIZ

Examen de rattrapage

Module Physique 2

Durée 1h

Exercice:

On fait subir à une mole d'un gaz parfait le cycle de transformations réversibles suivantes :

- 1→2 Compression adiabatique
- 2→3 Chauffage isobare
- 3→4 Détente adiabatique (V₃<V₄)
- 4→1 Refroidissement isochore

Chaque état i est définie par sa pression Pi, sa température Ti et son volume Vi (i varie de 1 à 4).

On pose $\alpha = \frac{V_1}{V_2}$ et $\beta = \frac{V_4}{V_3}$. 0 étant la constante universelle des gaz parfaits et γ le rapport des chaleurs molaires.

- ✓ 1. Représenter le cycle des transformations sur le diagramme (P, V).
- ✓ 2. Déterminer l'expression de :
 - \checkmark a. La pression P_2 en fonction de α , γ et P_1 ;
 - \checkmark a. La pression P₂ en fonction de α, γ et P₁; \checkmark b. La température T₂ en fonction de α, γ et T₁; $\begin{cases} PV = \alpha RT \\ PV = Cth \end{cases}$ $\begin{cases} PV = \alpha RT \\ PV = Cth \end{cases}$
 - \checkmark c. La pression P₃ en fonction de α , γ et P₁
 - \checkmark d. La température T_3 en fonction de α , β , γ et T_1 ;
 - \checkmark e. La pression P₄ en fonction de α , β , γ et P₁;
 - \checkmark f. La température T_4 en fonction de α , β , γ et T_1 ;
 - 3. Ce cycle est-il moteur ou récepteur ? Justifiez votre réponse sans faire du calcul.
- \checkmark 4. Déterminer en fonction de n, R, α, β, γ et T_1 , le travail et la chaleur mis en jeux le long de chaque transformation. Préciser la nature des échanges (énergie reçue ou cédée).
- √ 5. En déduire la variation de l'énergie interne ΔU pour chaque transformation puis pour tout
- $\sqrt{}$ 6. Déterminer la variation d'entropie ΔS pour chaque transformation. Déduire ΔS_{cycle} .
 - 7. Donnez l'expression du rendement ou de l'efficacité de la machine r en fonction de α, β
 - 8. Monter que r est compris entre 0 et 1.