MATH 3022 ALGEBRA II: LECTURE 1

JOE TRAN

1. Recall From MATH 3021

Definition 1. Let G be a set and binary operation $*: G \times G \to G$. The pair (G,*) is called a group if

(1) (Associative) For all $x, y, z \in G$,

$$x * (y * z) = (x * y) * z$$

(2) (Identity) There exists an $e \in G$ such that for all $x \in G$,

$$x * e = e * x = x$$

(3) (Inverse) For every $x \in G$, there exists an inverse $x^{-1} \in G$ such that

$$x * x^{-1} = x^{-1} * x = e$$

Definition 2. A group (G, *) is called an abelian group if for every $x, y \in G$,

$$x * y = y * x$$

Example 1. Below are examples of groups.

- $(\mathbb{Z},+)$, (\mathbb{Q},\cdot) , (\mathbb{R},\cdot) , (\mathbb{C},\cdot)
- $GL_n(\mathbb{F}), SL_n(\mathbb{F})$
- $(\mathbb{Z}_n, +_n), (n\mathbb{Z}, +)$
- $(\mathbb{F}[x], +)$ (we will study this when talking about polynomials)¹
- S_n , D_n , A_n

Remark 1. The examples \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_n , $n\mathbb{Z}$, $\mathbb{F}[x]$ and $\mathcal{M}_n(\mathbb{F})$ are all abelian groups under addition. Furthermore, we have a type of "multiplication" operation for these examples. This second operation called "multiplication" will be used in Ring Theory.

Question 1. What are the properties of "multiplication" for the sets in Remark 1?

Let S be any of the sets in Remark 1. We require that

- (1) Associativity: For all $x, y, z \in S$, x(yz) = (xy)z.
- (2) Distributive: For all $x, y, z \in S$, x(y+z) = xy + xz and (x+y)z = xz + yz

Date: Winter 2024.

¹The notation \mathbb{F} means the field of \mathbb{Q} , \mathbb{R} or \mathbb{C} .

JOE TRAN

Definition 3. Let R be a set with two binary operations + and \cdot . Then the set R is called a ring if the following are satisfied:

(1) For all $x, y \in R$,

2

$$x + y = y + x$$

(2) For all $x, y, z \in R$,

$$(x+y) + z = x + (y+z)$$

(3) There exists a $0 \in R$ such that for all $x \in R$,

$$x + 0 = 0 + x = x$$

(4) For every $x \in R$, there exists an element $-x \in R$ such that

$$x + (-x) = 0$$

- (5) For all $x, y, z \in R$, (xy)z = x(yz)
- (6) For all $x, y, z \in R$, x(y+z) = xy + xz and (x+y)z = xz + yz

Example 2. The following are examples of rings.

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_n , $n\mathbb{Z}$ with the usual addition + and multiplication ·
- $\mathcal{M}_n(\mathbb{F})$ with matrix addition + and multiplication ..
- $\mathcal{C}([a,b])$ with usual addition + and multiplication ·
- \mathbb{Z}_n with modulo addition $+_n$ and modulo multiplication \cdot_n

Note that $GL_n(\mathbb{F})$ is actually not a ring, because it is not closed under addition. In particular, if $A \in GL_n(\mathbb{F})$, then $-A \in GL_n(\mathbb{F})$, but $A + (-A) = 0 \notin GL_n(\mathbb{F})$.

Further Readings: Chapter 16, pg. 190-192