Algèbre linéaire d'un point de vue algorithmique

chapIV. DETERMINANTS

Question 1. Nous connaissons l'aire du parallélogramme construit sur deux vecteurs $x\vec{i}+y\vec{j}$ et $x'\vec{i}+y'\vec{j}$ et qui peut se calculer par la formule xy'-yx'

Nous concevons l'idée d'un parallélépipè de (en clair une « boîte ») construit sur trois vecteurs de l'espace

$$x\vec{i}+y\vec{j}+z\vec{k},\,x'\vec{i}+y'\vec{j}+z'\vec{k} ext{ et } x''\vec{i}+y''\vec{j}+z''\vec{k}$$

et nous aimerions calculer son volume

et même continuer dans des dimensions plus grandes.

Remarque 1.

aire

LES QUATRE GRANDS PRINCIPES

- 1. Le déterminant d'une matrice diagonale doit être le produit des termes de la diagonale
- 2. Le déterminant doit être conservé lorsqu'on ajoute à un « côté » un multiple d'un autre; donc le déterminant d'une matrice triangulaire doit être le produit des termes de la diagonale
- 3. Si on multiplie une colonne de la matrice A par le réel k le déterminant est multiplié par k.
- 4. $\forall (A, B) \in \mathcal{M}_n(R)^2 \det(AB) = \det(A)\det(B)$

1 1. Le déterminant d'une matrice carrée.

Définition 2.

1. Le déterminant de $A \in \mathcal{M}_{2,2}(\mathbb{R})$:

Soit
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, $det(A) = a_{11}a_{22} - a_{12}a_{21}$

2. Le déterminant de $A \in \mathcal{M}_{3,3}(\mathbb{R})$ (règle de Sarrus):

Soit
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
,

 $\det(A) = (a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}) - (a_{13}a_{22}a_{31} + a_{12}a_{21}a_{33} + a_{11}a_{23}a_{32}).$

Que l'on retient par un petit schéma.

1.1 ATTENTION : cette règle ne convient que pour le cas n=3!!!!

Exemple 3. Calcul du déterminant de
$$A = \begin{pmatrix} 0 & 1 & 5 \\ 3 & -6 & 9 \\ 2 & 6 & 1 \end{pmatrix}$$

Règle de Sarrus

Définition 4. Le Déterminant d'une matrice CARREE de taille n AVANT TOUT

- 1. Si A possède une ligne ou une colonne nulle det(A)=0.
- 2. Si A est triangulaire supérieure ou inférieure $\det(A) = \prod_{i=1...n} a_{\text{ii}}{}_{i \in \{1,...,n\}}$.
- 3. Si A possède deux lignes égales det(A)=0.

DE MANIERE GENERALE

- 4. Le déterminant de A ne change pas si on ajoute à une ligne un multiple d'une autre.
- 5. Le déterminant est multiplié par -1 si on échange deux lignes.
- 6. Le déterminant est multiplié par k lorsqu'on multiplie une de ses lignes par k.

Exemple 5.

Soit
$$B = \begin{pmatrix} 1 & 3 & -2 & 4 \\ 2 & 6 & -4 & 8 \\ 3 & 9 & 1 & 5 \\ 1 & 1 & 4 & 8 \end{pmatrix}$$
; montrer par un minimum de calculs que $\det(B) = 0$.

Solution. Si on soustrait deux fois la première ligne de la deuxième ligne on obtient la matrice $\begin{pmatrix} 1 & 3 & -2 & 4 \\ 0 & 0 & 0 & 0 \\ 3 & 9 & 1 & 5 \\ 1 & 1 & 4 & 8 \end{pmatrix}$, dont le déterminant est nul donc $\det(B)=0$

Proposition 6. Stratégie de calcul d'un déterminant

Soit une matrice carrée A

 $pour\ calculer\ det(A)$

on peut effectuer une suite d'opérations élémentaires sur les lignes afin d'aboutir à une matrice triangulaire

(en appliquant les 4, 5 et 6)

si en route on trouve une ligne nulle, on peut s'arrêter, det(A)=0

si on aboutit à une matrice triangulaire son déterminant est immédiat

.

Exemple 7.

Calculer les déterminants suivants

$$\begin{vmatrix}
1 & 1 & 0 & -1 \\
1 & 2 & 1 & 0 \\
1 & 3 & 2 & 1 \\
1 & 4 & 3 & 2
\end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & 1 & 25 \\ -1 & 1 & 4 & 21 \\ 1 & 0 & 1 & 25 \\ -1 & 1 & 23 & 0 \end{vmatrix}$$

.

DEUX GRANDES PROPRIETES DES DETERMINANTS

Théorème 8. det(A) et l'inversibilité

- 1. Soit $A \in \mathcal{M}_{nn}(\mathbb{R})$, A est inversible si et seulement si $det(A) \neq 0$.
- 2. **Dans ce cas** $det(A^{-1})=1/det(A)$.

Exemple 9.

1. Soit
$$B = \begin{pmatrix} 1 & 3 & -2 & 4 \\ 2 & 6 & -4 & 8 \\ 3 & 9 & 1 & 5 \\ 1 & 1 & 4 & 8 \end{pmatrix}$$
; déterminer à l'aide de son déterminant si B est inversible

2. Soit
$$\begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 5 & 1 & 2 & 0 \\ 0 & 5 & 1 & 2 \end{pmatrix}$$
; déterminer à l'aide de son déterminant si T est inversible

3. Si l'une de ces deux matrices est inversible, que feriez-vous pour la calculer?

Théorème 10. Le déterminant est multiplicatif

$$\forall (A, B) \in \mathcal{M}_{\mathrm{nn}}(\mathbb{R})^2, \det(AB) = \det(A)\det(B).$$

Exemple 11. Soient les deux matrices

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \text{ et } B = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix}$$

- 1. Calculer leurs déterminants
- 2. Calculer leur produit.
- 3. Vérifier que det(A)det(B)=det(AB)

Théorème 12. le déterminant est invariant par transposition

$$\forall A \in \mathcal{M}_{nn}(\mathbb{R}), \det({}^{t}A) = \det(A).$$

Remarque 13. Ceci est très important

Donc toutes les propriétés des déterminants relatives aux lignes sont aussi vraies pour les colonnes.

Exemple 14.

1.
$$M = \begin{pmatrix} 4 & 8 & 5 & 0 \\ 2 & 4 & 4 & 0 \\ 1 & 2 & 3 & 0 \\ 0 & 0 & 2 & 15 \end{pmatrix}$$
; prouver que $det(M) = 0$.

2.
$$N = \begin{pmatrix} 1 & 1 & 3 & 10 \\ 1 & 1 & 2 & 8 \\ 1 & 1 & 1 & 4 \\ 0 & a & 0 & 2 \end{pmatrix}$$
; choisir une valeur de a pour que $det(N) = 0$

Proposition 15. Stratégie de calcul d'un déterminant

Soit une matrice carrée A

 $pour\ calculer\ det(A)$

on peut effectuer une suite d'opérations élémentaires sur les lignes ou sur les colonnes afin d'aboutir à une matrice triangulaire

si en route on trouve une ligne ou une colonne nulle, on peut s'arrêter, det(A)=0

si on aboutit à une matrice triangulaire son déterminant est immédiat

Exemple 16.

$$R = \begin{pmatrix} 1 & 1 & 4 & 2 \\ 2 & 1 & 8 & 4 \\ 6 & 7 & 24 & 11 \\ 0 & 2 & 1 & 1 \end{pmatrix}; calculer det(R)$$

Problème 1.

1. Soit
$$B = \begin{pmatrix} 1 & 3 & -2 & 4 \\ 2 & 6 & -4 & 8 \\ 3 & 9 & 1 & 5 \\ 1 & 1 & 4 & 8 \end{pmatrix}$$
; montrer par un minimum de calculs que det(B)=0.

2. Calculer
$$\begin{vmatrix} 1 & 0 & 1 & 25 \\ -1 & 1 & 4 & 21 \\ 1 & 0 & 1 & 25 \\ -1 & 1 & 23 & 0 \end{vmatrix}.$$

Problème 2. Fil d'Ariane

1. Calculer
$$\begin{vmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{vmatrix}$$

2. Calculer
$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

2 Travaux Dirigés

Exercice 1. Soit les matrices
$$\mathbf{M} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$
 et $\mathbf{N} = \begin{pmatrix} 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 & 0 \end{pmatrix}$ calculer $\det(\mathbf{M})$ et $\det(\mathbf{N})$.*

6

Exercice 2. Soit $A \in \mathcal{M}_{nn}(\mathbb{R})$ et d=det(A) (n>1) *

- a. Déterminer det(-A).
- b. Déterminer det(kA), où k est un réel.

Exercice 3. Pour montrer que la matrice suivante a un déterminant nul *

$$\mathbf{A} = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 111 \\ 2 & 3 & 4 & 5 & 121 \\ 3 & 4 & 5 & 6 & 132 \\ 4 & 5 & 6 & 7 & 157 \\ 5 & 6 & 7 & 8 & 158 \end{array} \right).$$

Soustraire la troisième colonne de la quatrième puis la première de la deuxième.

Conclure.

Exercice 4. Soient les matrices de $\mathcal{M}_{nn}(\mathbb{R})$ A et B; on suppose que le déterminant de la matrice produit AB est nul, montrer que l'une au moins n'est pas inversible.*

Exercice 5. Trouver le déterminant de la matrice suivante en effectuant une suite d'opérations élémentaires:

$$\mathbf{A} = \left(\begin{array}{cccc} 1 & 2 & -2 & 0 \\ 2 & 3 & -4 & 1 \\ -1 & -2 & 0 & 2 \\ 0 & 2 & 5 & 3 \end{array}\right).$$

Exercice 6. Soit une matrice $A \in \mathcal{M}_{nn}(\mathbb{R})$, montrer que le déterminant de ^tAA est positif.

Exercice 7. Soit les matrices $(A, B, M) \in \mathcal{M}_{nn}(\mathbb{R})^3$, où M est inversible; on suppose que $A = M^{-1}BM$, comparer det(A) et det(B).*

3 Mineurs et Cofacteurs

Définition 17. Mineurs, cofacteurs

Soit
$$A \in \mathcal{M}_{nn}(\mathbb{R})$$
, où $A = (a_{ij})_{(i,j) \in \{1,...,n\} \times \{1,...,n\}}$

On appelle mineur de l'élément a_{ij} le déterminant de la matrice extraite obtenue en supprimant la i-ème ligne et la j-ième colonne; on le note M_{ii} .

On appelle cofacteur de l'élement a_{ij} la quantité $C_{ij} = (-1)^{i+j} M_{ij}$.

Exemple 18.

$$A = \left(\begin{array}{ccc} 1 & -1 & 0 \\ 2 & -2 & 5 \\ 3 & -3 & 0 \end{array}\right)$$

mineur de a_{11} : $M_{11} = \begin{vmatrix} -2 & 5 \\ -3 & 0 \end{vmatrix} = 15$; cofacteur de a_{11} : $C_{11} = (-1)^{1+1} \begin{vmatrix} -2 & 5 \\ -3 & 0 \end{vmatrix} = 15$

mineur de
$$a_{12}$$
: $M_{12} = \begin{vmatrix} 2 & 5 \\ 3 & 0 \end{vmatrix} = -15$; cofacteur de a_{12} : $C_{12} = (-1)^{1+2} \begin{vmatrix} 2 & 5 \\ 3 & 0 \end{vmatrix} = -15$

mineur de a_{13} : $M_{13} = \begin{vmatrix} 2 & -2 \\ 3 & -3 \end{vmatrix} = 0$; cofacteur de a_{13} : $C_{13} = (-1)^{1+3} \begin{vmatrix} 2 & -2 \\ 3 & -3 \end{vmatrix} = 0$ mineur de a_{31} : $M_{31} = \begin{vmatrix} -1 & 0 \\ -2 & 5 \end{vmatrix} = -5$; cofacteur de a_{13} : $C_{13} = (-1)^{3+1} \begin{vmatrix} -1 & 0 \\ -2 & 5 \end{vmatrix} = -5$ etc..

Théorème 19. Calcul d'un déterminant par la méthode des cofacteurs Soit $A \in \mathcal{M}_{nn}(\mathbb{R})$, où $A = (a_{ij})_{(i,j) \in \{1,...,n\} \times \{1,...,n\}}$

1. (développement par rapport à la i-ème ligne)

Quel que soit
$$i \in \{1, ..., n\}$$
, $det(A) = \sum_{j=1...n} a_{ij} (-1)^{i+j} M_{ij}$.

2. (développement par rapport à la j-ème colonne)

Quel que soit
$$j \in \{1, ..., n\}$$
, $det(A) = \sum_{i=1...n} a_{ij} (-1)^{i+j} M_{ij}$.

Exemple 20.

Soit $A = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 4 & 2 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 2 & 0 \end{pmatrix}$; calculer $\det(A)$ en développant suivant une ligne ou une colonne, choisie parce qu'elle contient beaucoup de 0.

4 Systèmes de Cramer, formules de Cramer

Définition 21.

Soit $A \in \mathcal{M}_{nn}(\mathbb{R})$, où $A = (a_{ij})_{(i,j) \in \{1,...,n\}}, B \in \mathcal{M}_{n1}(\mathbb{R})$, où $B = (b_j)_{j \in \{1,...,n\}}$ et le système AX = B.

On désignera pour tout j par A_j la matrice A, modifiée en remplaçant la j-ième colonne par la colonne B.

Théorème 22. Formules de Cramer

Soit $A \in \mathcal{M}_{nn}(\mathbb{R})$, où $A = (a_{ij})_{(i,j) \in \{1,...,n\}}, B \in \mathcal{M}_{n1}(\mathbb{R})$, où $B = (b_j)_{j \in \{1,...,n\}}$ et le système AX = B.

Le système sera dit de Cramer lorsque $det(A)\neq 0$.

Dans ce cas le système possède une solution unique
$$X = \begin{pmatrix} x_1 \\ \cdots \\ x_n \end{pmatrix}$$
 et pour tout $i \ x_i = \frac{\det(A_i)}{\det(A)}$.

Exemple 23.

$$\mbox{Appliquer le résultat au-dessus au système} \left\{ \begin{array}{l} 2x_1 + 3x_2 = 5 \\ 101x_1 - 52x_2 - 32x_3 = 49 \\ 46x_1 + 42x_2 + 23x_3 = 111 \end{array} \right.$$

4.1 Travaux Dirigés

Exercice 8. *

a. Le système suivant est-il de Cramer, le résoudre
$$\begin{cases} x1+x2+x3+x4=4\\ x1+x3=2\\ x2-x4=-2\\ x1+x4=4 \end{cases}$$
?

b. Et celui-ci ? (soyez paresseux)
$$\begin{cases} x1 + x2 + x3 + x4 = 4 \\ x1 + x4 = 2 \\ x2 - x4 = -2 \\ x1 - x3 = 4 \end{cases}$$
?

Problème 3. avec Maxima

la commande pour calculer le déterminant de la matrice a est « determinant(a) »

1. A l'aide de Maxima calculer
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 5 \\ 1 & 4 & 9 & 25 \\ 1 & 8 & 27 & 125 \end{vmatrix}$$

2. Déterminer si la matrice M=
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 5 \\ 1 & 4 & 9 & 25 \\ 1 & 8 & 27 & 125 \end{pmatrix}$$
 est inversible

3. A l'aide de Maxima calculer
$$\det(A) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$
, déterminer si A est inversible

9

Problème 4. Fil d'Ariane

Soit n un entier>2 et les reels (x1,x2,...,xn), (y1,y2,....,yn)

Problème 5.

Objectifs:

- 1. Savoir calculer immédiatement le déterminant d'une matrice triangulaire.
- 2. Savoir que le déterminant est nul lorsqu'une ligne ou une colonne est nulle, ou deux lignes (ou colonnes) sont égales.
- 3. Connaître et savoir utiliser les propriétés du déterminant (produit, inverse, transposée).
- 4. Savoir ce que sont les mineurs, les cofacteurs.
- 5. Connaître, comprendre et appliquer les formules de développement d'un déterminant suivant une ligne ou une colonne pour effectuer des calculs de déterminants.
- 6. Connaître la caractérisation des matrices carrées inversibles par le déterminant; savoir ce qu'est l'adjointe d'une matrice carrée, savoir que l'inverse d'une matrice carrée inversible à droite est le même qu'à gauche.
- 7. Savoir reconnaître un système de Cramer; connaître les formules de Cramer et savoir les utiliser (en basse dimension).

5 Travaux Dirigés

Exercice 9. Que pensez-vous de l'égalité det(A+B)=det(A)+det(B)? **

Exercice 10. Soit les matrices
$$C = \begin{pmatrix} 0 & 0 & 0 & 0 & 5 \\ 1 & 0 & 0 & 0 & 66 \\ 0 & 2 & 0 & 0 & 77 \\ 0 & 0 & 3 & 0 & 88 \\ 0 & 0 & 0 & 4 & 99 \end{pmatrix}, D = \begin{pmatrix} 11 & 0 & 0 & 0 & 3 \\ 1 & 0 & 0 & 0 & 0 \\ 4 & 2 & 0 & 0 & 0 \\ 5 & 5.6 & 5 & 0 & 0 \\ 87 & 120 & -65 & 4 & 0 \end{pmatrix};$$
 calculer $\det(C)$ et $\det(D)$ en

développant suivant une ligne ou une colonne bien choisie.**

Exercice 11. On désignera par \mathbf{A}_n la matrice à n lignes et n colonnes **

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & \dots & 0 \\ -1 & 0 & 1 & 0 & \dots & \dots & \dots & \dots \\ 0 & -1 & 0 & 1 & \dots & \dots & \dots & \dots \\ 0 & 0 & -1 & 0 & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & 0 & -1 & \dots & 1 & 0 \\ 0 & 0 & \dots & \dots & \dots & \dots & 0 & 1 \\ 0 & 0 & 0 & 0 & \dots & -1 & 0 \end{pmatrix}$$

- a. Calculer $det(A_2)$
- b. Calculer $det(A_3)$
- c. Calculer $\det(A_4)$
- d. Conjecturer la valeur de $det(A_n)$ en fonction de n; démontrer la conjecture.

Exercice 12. Soit une matrice A dont les termes sont des entiers et dont le déterminant est égal à -1, montrer que A^{-1} existe et ses termes sont des entiers.

Exercice 13. Soit
$$A_n = \begin{pmatrix} 2 & 1 & 0 & \dots & \dots & 0 \\ 1 & 2 & 1 & 0 & \dots & \dots & 0 \\ 0 & 1 & 2 & 1 & 0 & \dots & 0 \\ \dots & \dots & 1 & 2 & 1 & 0 & \dots & 0 \\ \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots & 0 \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots \\ 0 & \dots & \dots \\ 0 & \dots$$

- a. Calculer $det(A_1)$ et $det(A_2)$.
- b. En développant $\det(A_{n+2})$ suivant la première ligne (ou la première colonne) et en répétant l'opération, déterminer une relation exprimant $\det(A_{n+2})$ en fonction de $\det(A_{n+1})$ et $\det(A_n)$.
- c. Déterminer l'expression de $\det(A_n)$.

Exercice 14. Soit
$$A_n = \begin{pmatrix} 1 & -1 & 0 & . & . & . & . & 0 \\ -1 & 1 & -1 & 0 & . & . & . & 0 \\ 0 & -1 & 1 & -1 & 0 & . & . & 0 \\ . & . & -1 & 1 & -1 & 0 & . & 0 \\ . & . & . & . & . & . & . \\ 0 & 0 & . & . & . & . & . & 0 \\ 0 & . & . & . & . & . & 1 & 1 \\ 0 & . & . & . & . & 0 & -1 & 1 \end{pmatrix}$$

- a. Calculer $\det(A_1)$ et $\det(A_2)$.
- b. En développant $\det(A_{n+2})$ suivant la première ligne (ou la première colonne) et en répétant l'opération, déterminer une relation exprimant $\det(A_{n+2})$ en fonction de $\det(A_{n+1})$ et $\det(A_n)$.
- c. Déterminer l'expression de $det(A_n)$.

6 Les matrices de tournoi!!

On considère un ensemble de n joueurs qui participent à une compétition où chacun rencontre chaque autre joueur (exemple: championnat de foot, coupe de rugby); on appelle matrice du tournoi la matrice $T \in \mathcal{M}_n(\mathbb{Z})$ par $T_{ij}=1$ si le joueur i bat le joueur j, $T_{ij}=-1$ si le joueur i est battu par le joueur j et, bien sûr, $T_{ii}=0$.

Exercice 15.

Comparer T et sa transposée, montrer que si n est impair det(T)=0.

Exercice 16.

Montrer que dans tous les cas $det(T)\in\mathbb{Z}$.

Exercice 17.

Soit J la matrice dont les termes de la diagonale sont nuls et tous les autres sont égaux à 1; montrer que $det(T) \equiv det(J)[2]$.

Exercice 18.

$$\text{Expliquer pourquoi det}(\mathbf{J}) = \det \begin{pmatrix} n-1 & \dots & n-1 & \dots & n-1 & n-1 \\ 1 & 0 & 1 & \dots & \dots & 1 \\ 1 & 1 & 0 & 1 & \dots & 1 \\ 1 & \dots & 1 & 0 & 1 & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & \dots & 1 & 0 \end{pmatrix} = \det \begin{pmatrix} n-1 & 0 & 0 & \dots & 0 & 0 \\ 1 & -1 & 0 & \dots & \dots & 0 & 0 \\ 1 & 0 & -1 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & 0 & -1 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & 0 \\ 1 & 0 & \dots & 0 & 0 & -1 \end{pmatrix}.$$

Exercice 19.

Montrer que $det(T)=0 \iff n$ pair.

7 Activité informatique Maxima

Problème 6. avec Maxima !!

la commande pour calculer le déterminant de la matrice a est « determinant(a) »

- 1. A l'aide de Maxima calculer $\begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^3 & b^3 & c^3 & d^3 \end{vmatrix}$; «factor» vous permettra de le factoriser.
- 3. On considère le déterminant $\begin{vmatrix} 1 & \dots & \dots & 1 & 1 \\ x_1 & x_2 & \dots & \dots & x_n \\ x_1^2 & x_2^2 & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \dots \\ x_1^{n-1} & x_2^{n-1} & \dots & \dots & \dots & x_n^{n-1} \end{vmatrix}$; essayer d'énoncer l'expression de ce déterminant (sous la forme d'un produit).

4. Démonstration par récurrence:

- a. Montrer que D(X) est un polynôme en X; trouver le degré et le coefficient de X^{n-1} .
- b. Expliquer pourquoi les xi sont racines de D(X).
- c. En déduire l'hérédité de la formule proposée au 3 lorsque les xi sont distincts deux à deux.
- 5. Montrer que cette même formule est exacte lorsque des xi sont égaux entre eux.

Avertissement 24. syntaxe maxima

determinant(A); donne le déterminant (pas d'accent, c'est de l'anglais)

Pour résoudre un système

- 1. Ecrire les équations comme suit E1:x+2*y+6*z=4,
- 2. solve([E1,E2,...],[x,y,z]);

Exercice 20.

Pour toute liste de réels $(a_1, a_2, ..., a_n)$ on désigne par $D(a_1, a_2, ..., a_n)$ le déterminant de la matrice

$$\begin{pmatrix} a_1 + a_2 & -a_2 \\ -a_2 & a_2 + a_3 & -a_3 \\ 0 & -a_3 & a_3 + a_4 & \dots & \dots \\ \dots & 0 & \dots & \dots & -a_{n-1} \\ \dots & \dots & \dots & a_{n-1} + a_n & -a_n \\ 0 & 0 & \dots & -a_n & a_n \end{pmatrix}.$$
!!

- 1. Etudier sur des exemples les affirmations suivantes:
- a. Si les $(a_1, a_2, ..., a_n)$ sont des entiers le déterminant aussi.
- b. Si les $(a_1, a_2, ..., a_n)$ sont des entiers positifs le déterminant aussi
- c. Si l'un des $(a_1, a_2, ..., a_n)$ est nul le déterminant aussi

$$2. \text{ Résoudre le système d'équations linéaires} \left\{ \begin{array}{l} 2x_1-x_2=1\\ -x_1+2x_2-x_3=1\\ -x_2+2x_3-x_4=1\\ \dots\\ -x_2+2x_3-x_4=1\\ \dots\\ -x_8+2x_9-x_{10}=1\\ -x_9+x_{10}=1 \end{array} \right. \text{ avec Maxima bien sûr }$$

3. Etudier sur des exemples l'inversion de la matrice $\begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ 0 & -1 & 2 & \cdots & \cdots & \\ \vdots & 0 & \cdots & \cdots & -1 & \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & & & -1 & 1 \end{pmatrix}.$ avec Maxima

12

4. En déduire l'expression possible de son inverse; vérifier.

Problème 7. Fil d'Ariane

. On désigne par A la matrice
$$\left(\begin{array}{cccc} 1 & -1 & 1 & 0 \\ -1 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{array} \right).$$

- a. Calculer A^2 .
- b. Résoudre le système d'équations linéaires $\begin{cases} 2x_1 2x_2 + 2x_3 2x_4 = 2\\ -2x_1 + 2x_2 2x_3 + 2x_4 = -2\\ 2x_3 2x_4 = 0\\ -2x_3 + 2x_4 = 0 \end{cases}.$ c. On pose B= $\begin{pmatrix} 2 & -2 & 2 & -2\\ -2 & 2 & -2 & 2\\ 0 & 0 & 2 & -2\\ 0 & 0 & -2 & 2 \end{pmatrix}$; B est-elle inversible? Justifier votre réponse
- d. En vous aidant d'un théorème du cours répondre à la même question pour A
- 2. On désigne par C la matrice $\begin{pmatrix} 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$
- a. Montrer que la matrice C est inversible.
- b. Déterminer les solutions du système d'équations linéaires $\begin{cases} x_1 x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 x_4 = 0 \end{cases}$
- c. Déterminer la matrice inverse C^{-1} .
- d. Sachant que le système $\begin{cases} x_1 x_2 + x_3 + x_4 = 1 \\ x_1 + x_2 x_3 + x_4 = 1 \\ x_1 + x_2 + x_3 x_4 = 1 \\ x_1 + x_2 + x_3 + x_4 = 1 \end{cases}$ possède comme solution le quadruplet (1,0,0,0)déterminer toutes ses solutions
- e. Déterminer le determinant de C

Problème 8. Fil d'Ariane

- . On désigne par A la matrice $\left(\begin{array}{cccc} 1 & -1 & 1 & 0 \\ -1 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{array} \right).$
- a. Calculer A^2 .
- b. Résoudre le système d'équations linéaires $\begin{cases} 2x_1 2x_2 + 2x_3 2x_4 = 2\\ -2x_1 + 2x_2 2x_3 + 2x_4 = -2\\ 2x_3 2x_4 = 0\\ -2x_3 + 2x_4 = 0 \end{cases}.$ c. On pose B= $\begin{pmatrix} 2 & -2 & 2 & -2\\ -2 & 2 & -2 & 2\\ 0 & 0 & 2 & -2\\ 0 & 0 & -2 & 2 \end{pmatrix}$; B est-elle inversible? Justifier votre réponse
- d. En vous aidant d'un théorème du cours répondre à la même question pour A

13

2. On désigne par C la matrice $\begin{pmatrix} 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$

- a. Montrer que la matrice C est inversible.
- b. Déterminer les solutions du système d'équations linéaires $\begin{cases} x_1 x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}.$
- c. Déterminer la matrice inverse C^{-1} .
- d. Sachant que le système $\begin{cases} x_1 x_2 + x_3 + x_4 = 1 \\ x_1 + x_2 x_3 + x_4 = 1 \\ x_1 + x_2 + x_3 x_4 = 1 \\ x_1 + x_2 + x_3 + x_4 = 1 \end{cases} \text{ possède comme solution le quadruplet } (1,0,0,0)$ déterminer toutes ses solutions.

déterminer toutes ses solutions.

e. Determiner le determinant de C