

Small Scale Parallel Programming Analysis of Matrix-Matrix Multiply

Salvatore Filippone

salvatore.filippone@cranfield.ac.uk

An Example: Matrix product

$$C \leftarrow C + A \cdot B$$
 \Leftrightarrow $C_{ij} = C_{ij} + \sum_{1 \le k \le n} A_{ik} B_{kj}$

Gives rise to three nested loops

```
for i=1:n
  for j=1:n
    for k=1:n
       c(i,j)=a(i,k)*b(k,j)+c(i,j);
    end
  end
end
end
```

Exercise: Compute the product AB + C by employing all possible permutations of the loop nest, and compare the resulting speed; assume square matrices, and vary from N = 1 to N = 1000

Matrix product: IJK

```
do i=1, n
  do j=1, n
    do k=1, n
      c(i,j)=a(i,k)*b(k,j)+c(i,j)
      end do
  end do
end do
```


Matrix product: IKJ

```
do i=1, n
  do k=1, n
   do j=1, n
      c(i,j)=a(i,k)*b(k,j)+c(i,j)
      end do
  end do
end do
```


Matrix product: JIK

```
do j=1, n
  do i=1, n
    do k=1, n
       c(i,j)=a(i,k)*b(k,j)+c(i,j)
       end do
  end do
end do
```


Matrix product: JKI

```
do j=1, n
  do k=1, n
    do i=1, n
       c(i,j)=a(i,k)*b(k,j)+c(i,j)
       end do
  end do
end do
```


Matrix product: KIJ

```
do k=1, n
  do i=1, n
    do j=1, n
    c(i,j)=a(i,k)*b(k,j)+c(i,j)
    end do
end do
end do
```


Matrix product: KJI

```
do k=1, n
  do j=1, n
    do i=1, n
       c(i,j)=a(i,k)*b(k,j)+c(i,j)
       end do
  end do
end do
```


Measurements

end do

Matrix product 1: pipeline usage

```
do i=1, n
  do j=1, n
    do k=1. n
                                                                              CI.. 118:
                                              201
                                               17 | 000094 1
                                                               LFDU
                                                                        fp0,gr11=a.rns9.(gr11,gr5,0)
       c(i,j)=a(i,k)*b(k,j)&
                                                                        fp1,gr12=b.rns8.(gr12,8)
                                               17 | 000098 1
                                                               LFDU
          +c(i,j)
                                               17 | 00009C 1
                                                               FMA
                                                                        fp7=fp7,fp0,fp1,fcr
     end do
                                               O 00000A0 0
                                                               BCT
                                                                        ctr=CL.118,taken=100%(100,0)
  end do
```

Execution time is dominated by LOAD instructions (2:1)

Matrix product 1: pipeline usage

```
17 I
                                  CL.120:
17 | 000114 1
                 FMA
                            fp2=fp2,fp4,fp7,fcr
17 | 000118 1
                 LFDU
                            fp12,gr11=a.rns9.(gr11,gr5,0)
17 | 00011C 1
                 LFL
                            fp13=b.rns8.(gr12.8)
17 | 000120 1
                 LFDU
                            fp4,gr11=a.rns9.(gr11,gr5,0)
171 000124 1
                 LFL
                            fp7=b.rns8.(gr12,16)
17 | 000128 1
                 LFDU
                            fp10,gr11=a.rns9.(gr11,gr5,0)
171 00012C 1
                 LFL
                            fp11=b.rns8.(gr12,24)
171 000130 1
                 FMA
                            fp5=fp5,fp12,fp13,fcr
17 | 000134 1
                 LFDU
                            fp12,gr11=a.rns9.(gr11,gr5,0)
17 | 000138 1
                 LFL
                            fp13=b.rns8.(gr12,32)
171 00013C 1
                 FMA
                            fp0=fp0,fp4,fp7,fcr
17 | 000140 1
                 LFDU
                            fp4,gr11=a.rns9.(gr11,gr5,0)
17 | 000144 1
                 LFL
                            fp7=b.rns8.(gr12,40)
171 000148 1
                 FMA
                            fp1=fp1,fp10,fp11,fcr
171 00014C 1
                 LFDU
                            fp10,gr11=a.rns9.(gr11,gr5,0)
17 | 000150 1
                 LFL
                            fp11=b.rns8.(gr12.48)
171 000154 1
                 FMA
                            fp3=fp3,fp12,fp13,fcr
                 LFDU
171 000158 1
                            fp12,gr11=a.rns9.(gr11,gr5,0)
                            fp13=b.rns8.(gr12,56)
17 | 00015C 1
                 LFL
17 | 000160 1
                 FMA
                            fp6=fp6,fp4,fp7,fcr
171 000164 1
                 I.FDU
                            fp4,gr11=a.rns9.(gr11,gr5,0)
17 | 000168 1
                 LFDU
                            fp7,gr12=b.rns8.(gr12,64)
17 | 00016C 1
                 FMA
                            fp8=fp8,fp10,fp11,fcr
171 000170 1
                 FMA
                            fp9=fp9,fp12,fp13,fcr
01 000174 0
                 BCT
                            ctr=CL.120.taken=100%(100.0)
```

Execution time is STILL dominated by LOAD instructions (2:1) but the pipeline is better exploited. What did the compiler do????

Let us reorder the loops:

```
do j=1, n
  do i=1, n
    do k=1, n
       c(i,j)=a(i,k)*b(k,j) + c(i,j)
    end do
  end do
end do
end do
```

In the innermost loop, variables I and J are fixed; Different iterations of the I loop use the same K and J values; can they proceed in parallel?


```
do j=1, n

do i=1, n, 2

do k=1, n

c(i+0,j)=a(i+0,k)*b(k,j) + c(i+0,j)

c(i+1,j)=a(i+1,k)*b(k,j) + c(i+1,j)

end do

end do

end do
```



```
do j=1, n
  do i=1, n, 2
    t0 = c(i+0,j)
    t1 = c(i+1,j)
    do k=1, n
      b0 = b(k,j)
      t0 = a(i+0,k)*b0 + t0
      t1 = a(i+1,k)*b0 + t1
    end do
    c(i+0,j) = t0
    c(i+1,j) = t1
  end do
end do
Ok, why stop at \times 2?
```



```
do i=i4+1,ib,4
                                                   55 | 1
                                                             LFL
                                                                        fp8=a.rns9.(gr26,24)
   t0 = c(i+0,j)
                                                   52 1
                                                             LFDU
                                                                        fp1,gr26=a.rns9.(gr26,gr30,0)
   t1 = c(i+1,i)
                                                   52 1
                                                             FMA
                                                                        fp2=fp9,fp2,fp0,fcr
   t2 = c(i+2, j)
                                                   53 I 1
                                                             LFL.
                                                                        fp13=a.rns9.(gr26,8)
   t3 = c(i+3,i)
                                                                        fp3=a.rns9.(gr26,16)
                                                   54 | 1
                                                             LFL
   do k=1.kb
                                                             FMA
                                                   54 | 1
                                                                        fp12=fp6,fp0,fp11,fcr
      b0 = b(k,j)
                                                   53 1
                                                             FMA
                                                                        fp31=fp5,fp0,fp10,fcr
      t0 = t0 + a(i+0,k)*b0
                                                   55 | 1
                                                             LFL
                                                                        fp5=a.rns9.(gr26,24)
      t1 = t1 + a(i+1,k)*b0
                                                             LFDU
                                                   52 1
                                                                        fp6,gr26=a.rns9.(gr26,gr30,0)
      t2 = t2 + a(i+2,k)*b0
                                                   55 I 1
                                                             FMA
                                                                        fp7=fp7,fp0,fp8,fcr
      t3 = t3 + a(i+3,k)*b0
                                                   53 I 1
                                                             LFL.
                                                                        fp8=a.rns9.(gr26,8)
   end do
                                                   54 | 1
                                                             LFL
                                                                        fp9=a.rns9.(gr26,16)
   c(i+0.i) = t0
                                                   55 l 1
                                                             LFL
                                                                        fp10=a.rns9.(gr26,24)
   c(i+1,j) = t1
                                                   52 1
                                                             LFDU
                                                                        fp0,gr26=a.rns9.(gr26,gr30,0)
   c(i+2.i) = t2
                                                   52 1
                                                             FMA
                                                                        fp11=fp2,fp1,fp4,fcr
   c(i+3.i) = t3
                                                   53 | 1
                                                             LFL
                                                                        fp1=a.rns9.(gr26,8)
end do
                                                   54 | 1
                                                             LFL.
                                                                        fp2=a.rns9.(gr26,16)
                                                   53 I 1
                                                             FMA
                                                                        fp31=fp31,fp4,fp13,fcr
                                                   54 | 1
                                                             FMA
                                                                        fp12=fp12,fp4,fp3,fcr
55 I
                                  CL. 170:
                                                   52 1
                                                             LFL.
                                                                        fp13=b.rns8.(gr27,24)
52 1
          FMA
                    fp9=fp5,fp0,fp7,fcr
                                                   55 | 1
                                                             LFL
                                                                        fp3=a.rns9.(gr26,24)
52 L 1
          LFL.
                    fp4=b.rns8.(gr27,16)
                                                   55 I 1
                                                             FMA
                                                                        fp4=fp7,fp4,fp5,fcr
53 I 1
          FMA
                    fp5=fp11,fp7,fp1,fcr
                                                   52 1
                                                             FMA
                                                                        fp5=fp11,fp6,fp13,fcr
54 | 1
          FMA
                    fp6=fp6,fp7,fp2,fcr
                    fp2,gr26=a.rns9.(gr26,gr30.0) 54 | 1
                                                             FMA
                                                                        fp6=fp12,fp13,fp9,fcr
52 1
          LFDU
                                                   53 | 1
                                                             FMΔ
                                                                        fp11=fp31,fp13,fp8,fcr
52 L 1
          LFL
                    fp0=b.rns8.(gr27,8)
                                                   52 1
                                                             LFDU
                                                                        fp7,gr27=b.rns8,(gr27,32)
55 I 1
          FMA
                    fp7=fp8,fp7,fp3,fcr
                                                             FMA
                                                                        fp8=fp4,fp13,fp10,fcr
                                                   55 1
53 | 1
          LFL
                    fp10=a.rns9.(gr26,8)
                                                    0 0
                                                             BCT
                                                                        ctr=CL.170,taken=100%(100,0)
54 | 1
          LFL
                    fp11=a.rns9.(gr26,16)
```

Execution time is STILL dominated by LOAD instructions (20:16) but the ratio is WAY better.

Why stop at $\times 4$? If it is such a good idea, apply it multiple times, in a 2D pattern

```
DO I=I4+1,IB,4
   T00 = C(I+0,J+0)
   T10 = C(I+1,J+0)
   T20 = C(I+2,J+0)
   T30 = C(I+3,J+0)
   T01 = C(I+0,J+1)
  T11 = C(I+1,J+1)
  T21 = C(I+2,J+1)
   T31 = C(I+3,J+1)
                                                    C(I+0,J+0) = T00
   AO = A(I,1)
                                                    C(I+1,J+0) = T10
   DO K=1,KB
                                                    C(I+2,J+0) = T20
      B0 = B(K,J+0)
                                                    C(I+3,J+0) = T30
      B1 = B(K,J+1)
                                                    C(I+0.J+1) = T01
      T00 = T00 + A0*B0
                                                    C(I+1,J+1) = T11
      T01 = T01 + A0*B1
                                                    C(I+2,J+1) = T21
      A1 = A(I+1,K)
                                                    C(I+3,J+1) = T31
      A2 = A(I+2,K)
                                                 END DO
      T10 = T10 + A1*B0
      T11 = T11 + A1*B1
      A3 = A(I+3,K)
      T20 = T20 + A2*B0
      T21 = T21 + A2*B1
      T30 = T30 + A3*B0
      T31 = T31 + A3*B1
      AO = A(I+0,K+1)
   END DO
```



```
103 l
                   CL.313:
1061 000694 1
                   FMA
                              fp4=fp4,fp2,fp5,fcr
107 | 000698 1
                   FMA
                             fp12=fp12,fp3,fp5,fcr
102 | 00069C 1
                   LFL
                              fp31=b.rns8.(gr20,8)
1021 0006A0 1
                   L.FDU
                             fp2,gr20=b.rns8.(gr20,16)
109 | 0006A4 1
                   FMA
                             fp8=fp8,fp6,fp9,fcr
110 | 0006A8 1
                   FMA
                              fp13=fp13,fp3,fp9,fcr
103 | 0006AC 1
                   LFL
                              fp30=b.rns8.(gr22,8)
                   I.FDU
106 | 0006B0 1
                              fp25,gr23=a.rns9.(gr23,gr27,0)
111 | 0006B4 1
                   FMA
                              fp11=fp11,fp6,fp10,fcr
112 | 0006B8 1
                   FMA
                              fp29=fp29,fp3,fp10,fcr
1091 0006BC 1
                   LFL
                             fp26=a.rns9.(gr23,8)
111| 0006C0 1
                   LFL
                             fp28=a.rns9.(gr23,16)
113 | 0006C4 1
                   LFDU
                              fp27,gr21=a.rns9.(gr21,gr27,0)
1061 0006C8 1
                   L.FDU
                             fp5,gr23=a.rns9.(gr23,gr27,0)
 01 0006CC 1
                   LRFI.
                             fp6=fp2
102 | 0006D0 1
                   FMA
                              fp0=fp0,fp7,fp31,fcr
103 | 0006D4 1
                   FMA
                              fp1=fp1,fp7,fp30,fcr
109| 0006D8 1
                   LFL
                             fp9=a.rns9.(gr23,8)
113 | 0006DC 1
                   LFDU
                              fp7,gr21=a.rns9.(gr21,gr27,0)
106 | 0006E0 1
                   FMA
                              fp4=fp4,fp31,fp25,fcr
                   FMA
107 | 0006E4 1
                              fp12=fp12,fp30,fp25,fcr
111 | 0006E8 1
                   LFL
                              fp10=a.rns9.(gr23,16)
103 | 0006EC 1
                   LFDU
                              fp3,gr22=b.rns8.(gr22,16)
1091 0006F0 1
                   FMA
                             fp8=fp8,fp31,fp26,fcr
110 | 0006F4 1
                   FMA
                              fp13=fp13,fp30,fp26,fcr
111 | 0006F8 1
                   FMA
                              fp11=fp11,fp31,fp28,fcr
                   FMA
                             fp29=fp29,fp30,fp28,fcr
1121 0006FC 1
1021 000700 1
                   FMA
                             fp0=fp0,fp27,fp2,fcr
103 | 000704 1
                   FMA
                             fp1=fp1,fp27,fp3,fcr
 01 000708 0
                   BCT
                              ctr=CL.313,taken=100%(100.0)
```


Matrix product: Unrolling 4x4

```
01
                                                         CL.302:
DO K=1.KB
                                           116 | 0006F8 1
                                                              FMA
                                                                        fp4=fp4,fp28,fp22,fcr
   BO = B(K,J+0)
                                             01 0006FC 1
                                                              LRFI.
                                                                        fp21=fp26
   B1 = B(K,J+1)
                                           115 | 000700 1
                                                              LFDU
                                                                        fp20,gr25=b.rns8.(gr25,8)
                                                                        fp8=fp8,fp28,fp26,fcr
   B2 = B(K,J+2)
                                           117 | 000704 1
                                                              FMA
   B3 = B(K,J+3)
                                           118 | 000708 1
                                                              FMA
                                                                        fp12=fp12,fp28,fp23,fcr
   TOO = TOO + AO*BO
                                                              L.FDU
                                                                        fp28,gr20=a.rns9.(gr20,gr31,0)
                                           1341 00070C 1
   T01 = T01 + A0*B1
                                           129 | 000710 1
                                                              FMA
                                                                        fp30=fp30,fp23,fp25,fcr
  T02 = T02 + A0*B2
                                           133 | 000714 1
                                                              FMA
                                                                        fp31=fp31,fp23,fp24,fcr
   T03 = T03 + A0*B3
                                           124 | 000718 1
                                                              FMA
                                                                        fp13=fp13,fp23,fp27,fcr
                                           130 | 00071C 1
                                                              FMA
   A1 = A(I+1,K)
                                                                        fp3=fp3,fp29,fp24,fcr
   A2 = A(I+2,K)
                                           131 | 000720 1
                                                              FMA
                                                                        fp7=fp7,fp22,fp24,fcr
   T10 = T10 + A1*B0
                                           115 | 000724 1
                                                              FMA
                                                                        fp0=fp0,fp28,fp20,fcr
                                           1261 000728 1
                                                              FMA
                                                                        fp2=fp2,fp29,fp25,fcr
   T11 = T11 + A1*B1
   T12 = T12 + A1*B2
                                           132 | 00072C 1
                                                              FMA
                                                                        fp11=fp11,fp26,fp24,fcr
  T13 = T13 + A1*B3
                                           127 | 000730 1
                                                              FMA
                                                                        fp6=fp6,fp22,fp25,fcr
   A3 = A(I+3,K)
                                           128 | 000734 1
                                                              FMA
                                                                        fp10=fp10,fp26,fp25,fcr
   T20 = T20 + A2*B0
                                           121 | 000738 1
                                                              FMA
                                                                        fp1=fp1,fp29,fp27,fcr
   T21 = T21 + A2*B1
                                           122 | 00073C 1
                                                              FMA
                                                                        fp5=fp5,fp22,fp27,fcr
   T22 = T22 + A2*B2
                                                              L.FDU
                                                                        fp26,gr23=b.rns8.(gr23,8)
                                           1171 000740 1
                                           116 | 000744 1
                                                              LFDU
                                                                        fp22,gr22=b.rns8.(gr22,8)
   T23 = T23 + A2*B3
   T30 = T30 + A3*B0
                                           123 | 000748 1
                                                              FMA
                                                                        fp9=fp9,fp21,fp27,fcr
  T31 = T31 + A3*B1
                                           1211 00074C 1
                                                              L.FDU
                                                                        fp27,gr24=a.rns9.(gr24,gr31,0)
                                                              LFDU
   T32 = T32 + A3*B2
                                           118 | 000750 1
                                                                        fp23,gr21=b.rns8.(gr21,8)
   T33 = T33 + A3*B3
                                           126 | 000754 1
                                                              LFL
                                                                        fp25=a.rns9.(gr24.8)
   AO = A(I+0,K+1)
                                           130 | 000758 1
                                                              LFL
                                                                        fp24=a.rns9.(gr24,16)
                                             01 00075C 1
                                                              LRFI.
                                                                        fp29=fp20
END DO
                                                                        ctr=CL.302.taken=100%(100.0)
                                             01 000760 0
                                                              BCT
```

Ratio: (10:16). So, FLOP dominate. Does it work in practice?

Measurements, take 2

Performance MFLOPS on IBM POWER5 (peak 7600 MFLOPS)										
Alg.	100	200	300	400	500	600	700	800	900	1000
ijk	1519	1554	509	351	271	263	251	247	207	131
kij	885	330	264	218	178	67	63	55	54	57
4×1	2451	2254	1366	982	693	671	639	688	575	448
4×4	4385	3883	3155	2636	1785	2030	1671	2081	1505	1371

This is good for *pipeline and internal parallelism* but it is not using well the *memory hierarchy*.

Matrix product

$$C \leftarrow C + A \cdot B$$
 \Leftrightarrow $c_{ij} = c_{ij} + \sum_{l=1, \dots} a_{ik} b_{kj}$ $i, j = 1 \dots n$

Matrix product

$$C \leftarrow C + A \cdot B$$
 \Leftrightarrow $c_{ij} = c_{ij} + \sum_{k=1, p} a_{ik} b_{kj}$ $i, j = 1 \dots n$

In the above we only ever use associativity, not commutativity

Matrix product

$$C \leftarrow C + A \cdot B$$
 \Leftrightarrow $c_{ij} = c_{ij} + \sum_{k=1,n} a_{ik} b_{kj}$ $i, j = 1 \dots n$

In the above we only ever use associativity, not commutativity Therefore it is possible to rewrite as:

$$C \leftarrow C + A \cdot B$$
 \Leftrightarrow $C_{ij} = C_{ij} + \sum_{k=1, n/q} A_{ik} B_{kj}$ $i, j = 1 \dots n/q$

At each step we are accessing A_{ik} and B_{kj} , two $q \times q$ matrices, therefore $2q^2$ data items while doing $2q^3$ floating-point operations; thus

$$C \leftarrow C + A \cdot B$$
 \Leftrightarrow $c_{ij} = c_{ij} + \sum_{k=1,n} a_{ik} b_{kj}$ $i, j = 1 \dots n$

In the above we only ever use associativity, not commutativity Therefore it is possible to rewrite as:

$$C \leftarrow C + A \cdot B$$
 \Leftrightarrow $C_{ij} = C_{ij} + \sum_{k=1, n/q} A_{ik} B_{kj}$ $i, j = 1 \dots n/q$

At each step we are accessing A_{ik} and B_{kj} , two $q \times q$ matrices, therefore $2q^2$ data items while doing $2q^3$ floating-point operations; thus

Each data item is reused q times.

Matrix product: blocking

Partitioning of large matrix-matrix products

This is also the basis of parallelization; variants of the loop nests must be explored at the block level.

Matrix product: blocking

Measurements take 3: (Power5)

ATLAS Project: code generator exploring automatically all (most) possible code variants, and choosing the best. http://math-atlas.sourceforge.net/