Algebra liniowa

 Z_7

1. Czy istnieje macierz X, dla której poniższe równanie macierzowe jest prawdziwe? Jeśli tak, to podać sposób wyznaczenia tej macierzy.

a)
$$\begin{bmatrix} 2 & -3 \\ 4 & -6 \end{bmatrix} \cdot X = \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$$
, b) $\begin{bmatrix} 3 & -1 & 2 \\ 4 & -3 & 3 \\ 1 & 3 & 0 \end{bmatrix} \cdot X = \begin{bmatrix} 3 & 9 & 7 \\ 1 & 11 & 7 \\ 7 & 5 & 7 \end{bmatrix}$,
c) $\begin{bmatrix} 5 & -6 & 4 \\ 3 & -3 & 2 \\ 4 & -5 & 2 \end{bmatrix} \cdot X = \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix}$, d) $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} \cdot X \cdot \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} -2 & 4 \\ 3 & -1 \end{bmatrix}$.

- 2. Niech ϕ będzie symetrią płaszczy
zny względem prostej y=2x. Niech ponadto $\mathcal{E}=((1,0),(0,1))$ i
 $\mathcal{A}=((1,2),(2,-1))$ będą bazami przestrzeni \mathbb{R}^2 . Wyznaczyć macierze zmiany bazy $M_{\mathcal{A}}^{\mathcal{E}}(id), M_{\mathcal{E}}^{\mathcal{A}}(id),$ a następnie obliczyć $M_{\mathcal{E}}^{\mathcal{E}}(\phi)$. Wyznaczyć wzór przekształcenia ϕ .
- 3. Dane są przekształcenia płaszczyzny \mathbb{R}^2 : ϕ rzut prostokątny na prostą y=-x oraz ψ obrót o kąt $\frac{\pi}{8}$ wokół punktu (0,0). Wyznaczyć macierze przekształcenia: $M_{\mathcal{E}}^{\mathcal{E}}(\phi^2 \circ \psi^4)$ oraz $M_{\mathcal{A}}^{\mathcal{A}}(\phi^2 \circ \psi^4)$, gdzie \mathcal{E} to baza kanoniczna \mathbb{R}^2 , zaś $\mathcal{A}=((1,1),(-1,0))$. Wyznaczyć wzór tego przekształcenia.
- 4. Wykazać, że $\mathcal{A}=((1,2,1),(-1,1,2),(-1,-2,0))$ jest bazą przestrzeni \mathbb{R}^3 . Znaleźć w bazie \mathcal{A} współrzędne wektorów $B_1=(3,3,1),\,B_2=(0,3,1),\,B_3=(3,0,1).$ Czy $\mathcal{B}=(B_1,B_2,B_3)$ jest bazą przestrzeni \mathbb{R}^3 ? Jeśli tak, to wyznaczyć macierz $M_{\mathcal{A}}^{\mathcal{B}}(id)$. Jak wyznaczyć macierz $M_{\mathcal{B}}^{\mathcal{A}}(id)$? Dla przekształcenia liniowego $\phi:\mathbb{R}^3\to\mathbb{R}^3$ określonego wzorem $\phi((x,y,z))=(x,x-y,x+2y-z)$ znaleźć macierz $M_{\mathcal{A}}^{\mathcal{B}}(\phi)$.
- 5. Wykazać, że układ $\mathcal{A}=(x+2,x^2+3x+1,-x^2-2x,x^3)$ tworzy bazę przestrzeni $\mathbb{R}[x]_3$. Wyznaczyć macierz $M_{\mathcal{A}}^{\mathcal{B}}(id)$, dla $\mathcal{B}=(1,x,x^2,x^3)$. Podać współrzędne wektora $2x^3-5x-5$ w bazie \mathcal{A} . Wyznaczyć macierz $M_{\mathcal{A}}^{\mathcal{B}}(F)$ przekształcenia liniowego $F:\mathbb{R}[x]_3\to\mathbb{R}[x]_3$, $F(w(x))=x\cdot w'(x)$.
- 6. Dane jest przekształcenie liniowe $\varphi: \mathbb{R}^3 \to \mathbb{R}[x]_2$ takie, że $\varphi((1,1,1)) = 2x^2 3x$, $\varphi((1,2,3)) = -3x$, $\varphi((1,2,4)) = 2x^2 4x$. Wyznaczyć wzór ogólny $\varphi((a,b,c))$. Komentarz: To jest zad.4 z zestawu 5, ale tym razem rozwiązujemy je wykorzystując rachunek macierzowy.