E.T.: Re-Thinking Self-Attention for Transformer Models on GPUs

Shiyang Chen¹, Shaoyi Huang², Santosh Pandey¹, Guang R. Gao³, Long Zheng³,
Caiwen Ding², Hang Liu¹
Stevens Institute of Technology¹
University of Connecticut²
University of Delaware³

Outline

- * Motivation
- * Challenge #1: Long turnaround time
- * Challenge #2: Gigantic model size
- * Technique #1: Self-Attention Primitives
- * Technique #2: Attention-Aware, Tensor-Core Friendly Pruning
- * Evaluation
- * Conclusion

Motivation: Sequence-based Problems is Everywhere ...

Attention is All You Need!

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravity. Question What causes precipitation to fall? Answer Candidate gravity

Question Answering on SQuAD2.0 dev

Rank	Model	F1 🕈	EM	Extra Training Data	Paper	Code	Result	Year
1	XLNet (single model)	90.6	87.9	×	XLNet: Generalized Autoregressive Pretraining for Language Understanding	0	Ð	2019
2	XLNet+DSC	89.51	87.65	×	Dice Loss for Data-imbalanced NLP Tasks	0	Ð	2019
3	RoBERTa (no data aug)	89.4	86.5	~	RoBERTa: A Robustly Optimized BERT Pretraining Approach	0	Ð	2019

Semantic Textual Similarity on MRPC

Rank	Model	Accuracy¶	F1	Paper	Code	Result	Year
1	SMART-RoBERTa Large	93.7%		SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization	O	Ð	2019
2	ALBERT	93.4%		ALBERT: A Lite BERT for Self- supervised Learning of Language Representations	O	Ð	2019
3	RoBERTa	92.3%		RoBERTa: A Robustly Optimized BERT Pretraining Approach	0	Ð	2019

Challenge #1. Long Turnaround Time

Encoder workflow

Model workflow

Challenge #1. Long Turnaround Time

Challenge #2. Gigantic model size

Kernels are not free

Think self-attention as a primitive

Think self-attention as a primitive

Compute the self-attention on-the-fly

Evaluate on-the-fly-attention

BERT_base:

• Model Size: 768

• Number of heads: 12

Transformer:

• Model Size: 800

• Number of heads: 4

Pruning makes the model small

1	en	CO
	CH	26

4	3	6	9
8	7	6	2
4	8	3	2
5	2	4	9

Sparse

0	0	6	0
0	7	0	2
0	8	0	0
5	2	0	0

Using emerging hardware

All-New Matrix Core Technology for HPC and Al

Powered by the all-new Matrix Core technology, this powerful engine delivers nearly 3.5x performance boost for HPC (FP32 matrix) and nearly 7x for AI (FP16) workloads compared to the prior generation AMD data center GPU.²

- All-New FP32 and FP16 Matrix Core Technology
- BFloat16 operations for AI
- Enhar opera

VOLTA TENSOR CORES

First Generation

Designed specifically for deep learning, the first-generation Tensor Cores in NVIDIA Volta™ deliver groundbreaking performance with mixed-precision matrix multiply in FP16 and FP32—up to 12X higher peak teraFLOPS (TFLOPS) for training and 6X higher peak TFLOPS for inference over NVIDIA Pascal. This key capability enables Volta to deliver 3X performance speedups in training and inference over Pascal.

[1]. https://www.amd.com/en/technologies/cdna

[2]. https://www.nvidia.com/en-us/data-center/tensor-cores

LEARN MORE ABOUT VOLTA >

Efficient computing on sparse models

Tensor-tile

Prune the model as fine-tuning

$$\min \quad f(\{\mathbf{W}^k\}_{k=1}^N, \{\mathbf{b}^k\}_{k=1}^N) + \lambda \sum_{k=1}^N \sum_{i=1}^p \sum_{j=1}^q \frac{\|\mathbf{W}_{ij}^k\|_2}{\|\mathbf{W}_{ij}^{k-1}\|_2 + \epsilon}$$
Original loss
Regularizer

Prune the model as fine-tuning

8.0	0.6	0	0
1.2	2.1	0	0
0	0	-0.1	3.6
0	0	2.1	5.1
0	0	1.7	1.2
0	0	0.4	1.5
2.3	1.5	0	0
0.7	2.1	0	0

Performance gain from pruning

Efficient computing on sparse models

Irregular

0	0	6	0
0	7	0	2
0	8	0	0
5	2	0	0

Row

4	3	6	9
0	0	0	0
4	8	3	2
0	0	0	0

Column

4	0	6	0
8	0	6	0
4	0	3	0
5	0	4	0

Tensor-tile

0	0	6	9
0	0	6	2
4	8	0	0
5	2	0	0

	Irregular	Row	Column	Tensor-til
Accuracy				
Latency				

Attention-aware pruning

Evaluate pruning algorithms

Compare with state-of-the-art

Conclusion

- * We design a novel self-attention architecture with 2.5x speedup compared with TensorRT
- * We introducing tensor-tile pruning algorithms and model-aware pruning.
- * E.T. is avaliable at:

*

Thank You & Questions?