

Matplotlib and Seaborn

Library for data analysis

- NumPy (Numerical Python)
 - Large multidimensional array operations
- SciPy (Scientific Python)
 - Many efficient numerical routines such as routines for numerical integration and optimization
- Pandas
 - Data manipulation and data visualization
- Matplotlib
 - Data exploration and data visualization
- Seaborn
 - High-level data visualization library based on Matplotlib
- Scikit-learn
 - Machine learning and statistical modeling

Outline

- Matplotlib
 - Single plot
 - Multiple plot
 - Secondary y-axis
- Seaborn
 - X-axis with categorical data
 - Countplot, barplot, heatmap
 - Numerical data
 - Histogram, scatter plot, joint plot, pair plot
 - Facet Grid

Matplotlib

matplotlib

Matplotlib is a low-level data visualization library in python.

matplotlib.pyplot

 Pyplot is a subset of matplotlib, which is a collection of the most commonly used plotting functions.

```
import matplotlib.pyplot as plt
```


Matplotlib - figure and axes

- Figure object: The outermost container for matplotlib plots, which can contain multiple Axes objects.
- Axes object: The axes is the area your plot appears in. (In matplotlib, axes <u>is not</u> the plural form of axis)

Matplotlib - single plot (1/3)

- Step1: Create figure and axes
- Step2: Plot a chart in axes
- Step3: Format the style

```
#step1: Create a figure and axes
fig = plt.figure(figsize=(6, 4))
ax1 = fig.add_subplot()
```


type(fig)

matplotlib.figure.Figure

type(ax1)

matplotlib.axes._subplots.AxesSubplot

Matplotlib - single plot (2/3)

- Step1: Create figure and axes
- Step2: Plot a chart in axes
- Step3: Format the style

	Sales	Cumulative_sales
Jan	113	113
Feb	84	197
Mar	87	284
Apr	50	334
May	97	431
Jun	68	499
Jul	48	547
Aug	54	601
Sep	37	638
Oct	38	676
Nov	40	716
Dec	57	773

Matplotlib - single plot (3/3)

- Step1: Create figure and axes
- Step2: Plot a chart in axes
- Step3: Format the style

```
#step1: Create a figure and axes
fig = plt.figure(figsize=(6, 4))
ax1 = fig.add_subplot()

#step2: Plot a chart in axes
sales_df.plot(kind = "bar", y = "Sales", ax = ax1)

#step3: Format the style
ax1.set_title("Monthly sales report", fontsize=18)
ax1.set_xlabel("Month", fontsize=12)
ax1.set_ylabel("Sales", fontsize=12);
```

Monthly sales report

Matplotlib - multiple plots

- Use three integers (nrows, ncols, index) to describe the positions.
- The subplot will take the index position on a grid with nrows rows and ncols columns.
 index starts at 1 in the upper left corner and increases to the right.

Matplotlib - multiple plots

Assign axes by the argument ax.

	Sales	Cumulative_sales
Jan	113	113
Feb	84	197
Mar	87	284
Apr	50	334
May	97	431
Jun	68	499
Jul	48	547
Aug	54	601
Sep	37	638
Oct	38	676
Nov	40	716
Dec	57	773

<AxesSubplot:>

Matplotlib - multiple plots

Plot charts in axes and format the charts

```
#step1: Create a figure and axes
fig = plt.figure(figsize=(12,4))
ax1 = fig.add_subplot(1,2,1)
ax2 = fig.add_subplot(1,2,2)
#step2: Plot a chart in axes
sales_df.plot(kind = "bar", y = "Sales", ax=ax1)
sales_df.plot(kind = "line", y = "Cumulative_sales", ax=ax2, color = "red", marker = "o")
#step3: Format the style
ax1.set_title("Monthly sales", fontsize = 18)
ax2.set_title("Cumulative monthly sales", fontsize = 18)
ax2.set_ylim([0,1000]);
```


Matplotlib - Single plot with secondary y-axis

• In some cases, we need the secondary y-axis: it allows you to use the same X axis with two different sets of Y-axis data with two different scales.

Matplotlib - Single plot with secondary y-axis

```
#step1: Create a figure and axes
fig = plt.figure(figsize=(12,3))
ax1 = fig.add_subplot()
ax2 = ax1.twinx()
#step2: Plot a chart in axes
sales_df.plot(kind = "bar", y = "Sales", ax=ax1)
sales_df.plot(kind = "line", y = "Cumulative_sales", ax=ax2, color = "red", marker = "o")
#step3: Format the style
ax1.set_xlabel("date", fontsize = 18)
ax1.set_ylabel("Sales", fontsize = 18)
ax1.legend(loc="upper left")
ax2.set_ylabel("Cumulative sales", fontsize = 18)
ax2.set_ylim([0,1000])
ax2.legend(loc="upper right");
```


Exercise

(A.1) Given the synthetic dataset above, each column represents the quarterly sales of products A, B, and C. Create a figure with three bar charts to show the sales data of each product.

Setting: figsize = (15,4)

#step1: Create a figure and axes

#step2: Plot a chart in axes

#step3: Format the style

	Α	В	С
Jan	124	144	136
Feb	148	123	124
Mar	126	97	129
Apr	102	142	124
May	116	111	144
Jun	132	75	123

Different plotting methods

plt.hist(diabetes_df.BloodPressure)
plt.ylabel('Frequency')
plt.show()

Matplotlib

Matplotlib (Create a container) Pandas (plot)

fig = plt.figure(figsize=(6, 4))

sns.histplot(data = diabetes_df, x = "BloodPressure", bins = 10);

Seaborn

120

Outline

- Matplotlib
 - Single plot
 - Multiple plot
 - Secondary y-axis
- Seaborn
 - X-axis with categorical data
 - Countplot, barplot, heatmap
 - Numerical data
 - Histogram, scatter plot, joint plot, pair plot
 - Facet Grid

Seaborn

 Seaborn is a package that provides many types of insightful plots. You can write simple code to visualize complex graphics.

- Data structures accepted by seaborn
 - Objects from pandas or numpy
 - Long-form and wide-form
- Installation

```
pip install seaborn
import seaborn as sns
```


Countplot

- Use countplot() to show the counts of observations in each bar.
- Pass arguments: data, x

	country	description	designation	points	price	province	region_1	region_2	variety	winery
51	France	This structured, complex Chardonnay is packed	NaN	90	68.0	Burgundy	Chassagne- Montrachet	NaN	Chardonnay	Chartron et Trébuchet
53	France	With its light color and cool feel, this well	L'Inédit	90	28.0	Loire Valley	Coteaux du Giennois	NaN	Pinot Noir	Clement e Floriar Berthie
63	France	l'Homme Mort is a northern extension of the Fo	L'Homme Mort Premier Cru	91	45.0	Burgundy	Chablis	NaN	Chardonnay	Domaine Chenevières
66	France	The steely character of a young Chablis is ver	Fourchaume Premier Cru	91	38.0	Burgundy	Chablis	NaN	Chardonnay	Louis Max
76	France	This wine is bone-dry, although with some age	Le Nombre d'Or Brut Nature	91	85.0	Champagne	Champagne	NaN	Chardonnay	Aubry
150908	France	Another premier cru from Michel Gros, this one	Aux Brulees	90	65.0	Burgundy	Vosne- Romanée	NaN	Pinot Noir	Michel Gros
150909	France	This is a lovely, fragrant Burgundy, with a sm	Clos dea Argillieres	89	52.0	Burgundy	Nuits-St Georges	NaN	Pinot Noir	Daniel Rior
150910	France	Scents of graham cracker and malted milk choco	NaN	89	38.0	Burgundy	Chambolle- Musigny	NaN	Pinot Noir	Michel Gros
150911	France	This needs a good bit of breathing time, then	Les Chaliots	87	37.0	Burgundy	Nuits-St Georges	NaN	Pinot Noir	Michel Gros
150912	France	The nose is dominated by the attractive scents	Les Charmes	87	65.0	Burgundy	Chambolle- Musigny	NaN	Pinot Noir	Daniel Rior

Countplot

Use the argument hue to specify the categorical variable used for color encoding.

country	variety		
France	Cabernet Sauvignon	44	
	Chardonnay	2247	
	Pinot Noir	1446	
	Red Blend	267	
Italy	Cabernet Sauvignon	214	
	Chardonnay	450	
	Pinot Noir	7	
	Red Blend	3111	
	Tempranillo	1	
Spain	Cabernet Sauvignon	74	
	Chardonnay	67	
	Pinot Noir	31	Understand the data
	Red Blend	987	•
	_Tempranillo	2099	behind the chart

Barplot

- Use barplot() to draw a bar chart grouped by a categorical variable.
- A bar plot shows the mean (or other estimator) value.

	country	description	designation	points	price	province	region_1	region_2	variety	winery
51	France	This structured, complex Chardonnay is packed	NaN	90	68.0	Burgundy	Chassagne- Montrachet	NaN	Chardonnay	Chartron et Trébuchet
53	France	With its light color and cool feel, this well	L'Inédit	90	28.0	Loire Valley	Coteaux du Giennois	NaN	Pinot Noir	Clement et Florian Berthier
63	France	L'Homme Mort is a northern extension of the Fo	L'Homme Mort Premier Cru	91	45.0	Burgundy	Chablis	NaN	Chardonnay	Domaine Chenevières
66	France	The steely character of a young Chablis is ver	Fourchaume Premier Cru	91	38.0	Burgundy	Chablis	NaN	Chardonnay	Louis Max
76	France	This wine is bone-dry, although with some age	Le Nombre d'Or Brut Nature	91	85.0	Champagne	Champagne	NaN	Chardonnay	Aubry
150908	France	Another premier cru from Michel Gros, this one	Aux Brulees	90	65.0	Burgundy	Vosne- Romanée	NaN	Pinot Noir	Michel Gros
150909	France	This is a lovely, fragrant Burgundy, with a sm	Clos dea Argillieres	89	52.0	Burgundy	Nuits-St Georges	NaN	Pinot Noir	Daniel Rion
150910	France	Scents of graham cracker and malted milk choco	NaN	89	38.0	Burgundy	Chambolle- Musigny	NaN	Pinot Noir	Michel Gros
150911	France	This needs a good bit of breathing time, then	Les Chaliots	87	37.0	Burgundy	Nuits-St Georges	NaN	Pinot Noir	Michel Gros
150912	France	The nose is dominated by the attractive scents	Les Charmes	87	65.0	Burgundy	Chambolle- Musigny	NaN	Pinot Noir	Daniel Rion

4580 rows x 10 columns

Heatmap

• A heatmap is a two-dimensional visual representation of data using colors, where the colors all represent different values.

# data preparation	
heatmap_data = pd.crosstab(wine_df["variety"],wine_df["country"])	
heatmap_data	

country	France	Italy	Spain
variety			
Cabernet Sauvignon	44	214	74
Chardonnay	2247	450	67
Pinot Noir	1446	7	31
Red Blend	267	3111	987
Tempranillo	0	1	2099

Use crosstab() to get a cross table of two categorical variables.

- https://seaborn.pydata.org/generated/seaborn.heatmap.html
- A cross table is a frequency table that shows the frequency of the combination of values of two categorical variables. https://pandas.pydata.org/docs/reference/api/pandas.crosstab.html

Heatmap

- Custom style
 - annot: If True, show the data value in each cell.
 - fmt: String formatting code to use when adding annotations.

France	Italy	Spain
44	214	74
2247	450	67
1446	7	31
267	3111	987
0	1	2099
	44 2247 1446 267	2247 450 1446 7 267 3111

Exercise

Exercise.B

```
titanic_df = sns.load_dataset("titanic", dtype = {"survived": object, "pclass":object})
(B.1) Show the first 10 rows of the dataset.
(B.2) Use a count plot to display the number of male and female passengers.
(B.3) Use a count plot to display the number of male and female passengers, and use the column survived to divide the data into two subgroups.
Hint: hue
(B.4) Create a cross table based on the columns pclass and survived .
Hint: pd.crosstab()
(B.5) Use the result obtained in (B.4) to draw a heatmap.
Setting: cmap = "coolwarm"
```


- https://seaborn.pydata.org/generated/seaborn.load_dataset.html
- sns.get_dataset_names()

Histogram

20

- Use histplot() to get the histogram.
- Use hue to show the distribution of each category.

```
sns.histplot(data = diabetes_df, x = "BloodPressure")

<AxesSubplot:xlabel='BloodPressure', ylabel='Count'>

100
80
60
```


BloodPressure

Scatter plot

- Use scatterplot() to show the relationship between two variables.
- Use hue to show the scatter plot for each category.

```
sns.scatterplot(data = diabetes_df, x = "Age", y = "BloodPressure")

<AxesSubplot:xlabel='Age', ylabel='BloodPressure'>

120 -
100 -
```

```
120 -

100 -

100 -

80 -

40 -

20 30 40 50 60 70 80
```

<AxesSubplot:xlabel='Age', ylabel='BloodPressure'>

Jointplot

Use jointplot() to show the individual distribution and the relationship between two variables.

sns.jointplot(data = diabetes_df, x = "Age", y = "BloodPressure")

<seaborn.axisgrid.JointGrid at 0x19793e56640>

Jointplot

Use the argument hue to specify the categorical variable used for color encoding.

```
sns.jointplot(data = diabetes_df, x = "Age", y = "BloodPressure", hue = "Outcome")
<seaborn.axisgrid.JointGrid at 0x19793df2e20>
```


Pair plot

- Use Pairplot() to plot pairwise relationships in a dataset.
- The diagonal plots are univariate distribution plot (histogram) of the data in each column.

Exercise

Exercise.C

diamond_df = sns.load_dataset("diamonds") (C.1) Show the first 5 rows of the dataset. (C.2) Show the distribution of the price. Hint: histplot() (C.3) Use a scatter plot to show the relathionship between carat and price of the best clarity diamonds. Hint: Select a subset by using diamond df.clarity == "IF" (C.4) Use a join plot to show the relathionship between carat and price of the best clarity diamonds.

FacetGrid

- FacetGrid is basically a grid of subplots.
- The method FacetGrid() return a FacetGrid object which stores some information on how you want to break down your data visualization.

Step1: Initialize the grid

Step2: Draw a plot on every facet

FacetGrid

Change chart type

```
fig = sns_FacetGrid(data = diabetes_df, col="Outcome")
fig.map(sns.kdeplot) "BloodPressure")
```

<seaborn.axisgrid.FacetGrid at 0x25650c48e80>


```
fig = sns.EacetGrid(data = diabetes_df, col = "Outcome")
fig.map(sns.scatterplot) "Age", "BloodPressure")
```

<seaborn.axisgrid.FacetGrid at 0x25650d6ac10>

Exercise

Exercise.D

(D.1) Use the dataframe diamond_df in (C.1). Draw a price histogram for each cut category.

Hint: col="cut"

