Aprendizagem por Reforço - Q Learning

Relembrando... Algoritmo Value Iteration

Utilidade de um estado é dado pela equação de Bellman:

$$U(s) = R(s) + \gamma \max_{a} \sum_{s} T(s,a,s') U(s')$$

- Necessário conhecer a priori o modelo de transição T e as recompensas
- Quando não se conhece, o agente pode explorar o ambiente e aprender a política

Aprendizado por Reforço

Idéia Básica:

 Explorar o ambiente para calcular qualidade das ações para cada estado

 Objetivo: aprender a qualidade das ações para cada estado, armazenada na tabela Q

Ac	tion	Action	2 • • •	Action
State	Qıı	Q ₁₂	•••	Q _{1M}
State ₂	Q ₂₁	Q22	•••	Q _{2M}
:	•••	:	٠.	:
State _N	Q _{N1}	Q _{N2}	•••	Q _{MM}

Procedimento:

- Inicializar valores de qualidade Q(s,a) de forma arbitrária para cada estado e ação
- Dado estado inicial
- Repita
 - Escolher uma ação e executá-la
 - Aplicar a recompensa recebida
 - Observar o novo estado s'
 - Atualizar o valor de Q(s,a) conforme regra de aprendizagem
- Procedimento pode ser repetido até alcançar uma convergência dos valores da tabela Q

м

Q-Learning

Equação de atualização

Taxa de aprendizagem

Estimativa de Q(s,a) pela Equação de Belman

- Equação de atualização (rationale)
 - Bellman Equation:

$$Q(s,a) = r + \gamma \max_{a'} Q(s',a')$$

• Loss function (squared error):

$$L = \mathbb{E}[(\mathbf{r} + \gamma \mathbf{m} \mathbf{a} \mathbf{x}_{a'} \mathbf{Q}(\mathbf{s}', \mathbf{a}') - Q(\mathbf{s}, \mathbf{a}))^{2}]$$
target

Ver exemplo do código