

ARQUITETURA DE SOFTWARE

Motivação e Benefícios

Profa. Dra. Anna Beatriz Marques

Baseado em slides do Prof. Hyggo Oliveira de Almeida

O QUE É ARQUITETURA?

- Arquitetura como um processo
 - A arte ou ciência de construir edificações de quaisquer tipos para uso humano
 - A ação ou processo de construir
 - O método ou estilo especial que direciona os detalhes da estrutura e ornamentação de uma construção
- Arquitetura como um artefato
 - Trabalho arquitetural: estrutura, construção
 Construção ou estrutura em geral

O QUE É ARQUITETURA DE SOFTWARE? Muitas definições...

- "...conjunto de elementos arquiteturais (ou de projeto) que têm uma forma particular."
 Perry and Wolf, 1992
- "...estrutura(s) do sistema, que compreende(em) os componentes de software, as propriedades externamente visíveis desses componentes, e os relacionamentos entre eles." Clements et al., 1997
- "...especificação abstrata do sistema consistindo primeiramente de componentes funcionais descritos em termos de seus comportamentos, interfaces e interconexões entre componentes." Hayes-Roth, 1994
- "Arquitetura de software é o estudo da estrutura em larga escala e desempenho de sistemas de software" Lane, 1990
- "A arquitetura de um sistema complexo é seu estilo e método de projeto e construção" Hayes-Roth, 1995
- "...estrutura de suporte de um sistema" Rechtin, 1992
- "...estrutura de sistema que consiste de módulos ativos, um mecanismo para permitir interação entre estes módulos e um conjunto de regras que governam a interação"
 Boasson, 1995

O QUE É ARQUITETURA DE SOFTWARE? Muitas definições...

- "...conjunto de elementos arquiteturais (ou de projeto) que têm uma forma particular."
 Perry and Wolf, 1992
- "...estrutura(s) do sistema, que compreende(em) os componentes de software, as propriedades externamente visíveis desses componentes, e os relacionamentos entre eles." Clements et al., 1997
- "...especificação abstrata do sistema consistindo primeiramente de componentes funcionais descritos em termos de seus comportamentos, interfaces e interconexões entre componentes." Hayes-Roth, 1994
- "Arquitetura de software é o estudo da estrutura em larga escala e desempenho de sistemas de software" Lane, 1990
- "A arquitetura de um sistema complexo é seu estilo e método de projeto e construção" Hayes-Roth, 1995
- "...estrutura de suporte de um sistema" Rechtin, 1992
- "...estrutura de sistema que consiste de módulos ativos, um mecanismo para permitir interação entre estes módulos e um conjunto de regras que governam a interação"
 Boasson, 1995

O QUE É ARQUITETURA DE SOFTWARE? Resumindo...

- Elementos em comum...
 - Descrição dos componentes principais
 - Relacionamentos e interações entre componentes
 - Omite informação sobre o conteúdo dos componentes não relacionada a suas interações
 - O comportamento dos componentes é uma parte da arquitetura enquanto possa ser discernido do ponto de vista de outro componente
 - A arquitetura define uma lógica por trás dos componentes e da estrutura

O QUE É ARQUITETURA DE SOFTWARE? Rational Software

- Arquitetura de Software também envolve
 - Funcionalidade
 - Usabilidade
 - Desempenho
 - Reúso
 - Facilidade de compreensão
 - Restrições e equilíbrio de fatores econômicos e tecnológicos

O QUE É ARQUITETURA DE SOFTWARE? Restringindo Projeto e

Implementação

A arquitetura envolve um conjunto de decisões de design,
 regras ou padrões que restringem o projeto e a implementação

 As decisões de arquitetura são as mais fundamentais e alterá-las provoca efeitos colaterais significativos.

- Arquitetura e projeto são a mesma coisa
- Arquitetura e infraestrutura são a mesma coisa
- Arquitetura é 'plana' e expressa por un único diagrama
- A arquitetura não pode ser medida ou validada

- Arquitetura e projeto são a mesma coisa
- A arquitetura é um aspecto do projeto, focada em
 - elementos que são importantes estruturalmente
 - elementos que têm impacto significativo em desempenho, confiabilidade, custo, adaptabilidade, etc.
- A arquitetura não diz respeito ao projeto detalhado de componentes individuais

- Arquitetura = infraestrutura
- Arquitetura aborda...
 - Aspectos dinâmicos
 - Argumentação lógica
 - Adequação ao contexto
 - Contexto de negócio
 - Contexto de desenvolvimento

- Arquitetura é 'plana' e expressa por um único diagrama
- A arquitetura é plana apenas em casos muito triviais
- A arquitetura tem muitas dimensões, que representam múltiplas questões de múltiplos stakeholders
- Usar um único diagrama para representar todas as dimensões da arquitetura leva à **sobrecarga semântica** (leia-se "confusão")
- Arquitetura requer múltiplas visões

- · A arquitetura não pode ser medida ou validada
- Arquiteturas podem ser sistematicamente avaliadas contra requisitos de qualidade e funcionais, riscos e atributos chave do sistema
 - Revisando os artefatos da arquitetura
 - **Testando** os protótipos da arquitetura

Por Que Arquitetar?

- Integridade e qualidade do sistema
- Controle da complexidade
- Previsibilidade
- Testabilidade
- Reúso
- Comunicação
- Organização e gerência de projetos

Integridade e qualidade do sistema

- A arquitetura propicia integridade conceitual e qualidade ao sistema, ao mesmo tempo em que permite mudanças
 - Funcionalidade requerida
 - Atributos de qualidade
 - Novos requisitos
 - Requisitos modificados
 - Tendências tecnológicas
- A arquitetura propicia longevidade ao sistema
 - Facilidade de evolução
 - Escalabilidade

Controle da complexidade

- Dividir para conquistar
 - Decomposição em componentes
 - Detalhes de implementação ocultos
- Separação de áreas de interesse
 - Componentes (e camadas) encapsulam detalhes
 - Componentes distintos podem ser implementados por pessoas com especialidades diferentes

Previsibilidade

- Previsibilidade do processo
 - Protótipos da arquitetura permitem coletar métricas
 - Métricas de custo do desenvolvimento
 - Métricas de cronograma
- Previsibilidade comportamental
 - Iterações da arquitetura removem maiores riscos

Testabilidade

- Sistemas adequadamente componentizados suportam maior e melhor
 - Diagnóstico de problemas
 - Rastreabilidade
 - Detecção de erros

Reúso

- A arquitetura define regras de substituição
- Interfaces entre componentes definem limites de substituição
- A arquitetura propicia diferentes granularidades de reúso
 - Reúso em pequena escala, no nível de componentes
 - Reúso em larga escala
 - Subsistemas
 - Produtos
 - Frameworks

Comunicação

- A arquitetura auxilia a comunicação entre stakeholders
- Visões distintas endereçam questões de stakeholders distintos
- A arquitetura comunica decisões chave de projeto

Organização e gerência de projetos

- Estrutura organizacional alinhada com a arquitetura
 - Equipe(s) de desenvolvimento
 - Subcontratados
- Componentes / subsistemas utilizados como unidades para
 - Desenvolvimento
 - Gerência de configuração
 - Teste
 - Implantação e evolução
- Componentes / subsistemas desenvolvidos concorrentemente

Evitar ou reduzir custos

- Minimizar o custo de (re)trabalho
- Economias com o reúso
 - Reúso de componentes
 - Desenvolvimento de componentes reutilizáveis
- Economias com a utilização efetiva de recursos do projeto
- Economias com estimativas de custo / cronograma mais precisas
- Economias com manutenção aprimoradas

Evitar ou reduzir custos

- O investimento em arquitetura ocorre nas fases iniciais do desenvolvimento
 - Concepção
 - Elaboração
- Modelos de estimativa de custo são imprecisos nas fases iniciais
- Os benefícios da arquitetura ocorrem durante a implementação e manutenção

Evitar ou reduzir custos

- A gerência sempre é muito relutante em bancar custos nas fases iniciais do projeto
- Arquiteturas robustas são mais críticas se a complexidade do projeto, criticalidade e tamanho são grandes
- Boa arquitetura ajuda a estimar e a controlar os custos do projeto

A longo prazo, não arquitetar o sistema pode ser muito caro

CONCEITOS RELACIONADOS À ARQUITETURA

- Acoplamento
- Coesão
- Interface
- Componentes
- Conectores
- Padrão Arquitetural
- Estilo arquitetural
- Visão arquitetural

CONCEITOS RELACIONADOS À ARQUITETURA

- Acoplamento
- Coesão
- Interface
- Componentes
- Conectores
- Padrão Arquitetural
- Estilo arquitetural
- Visão arquitetural

CONCEITOS ACOPLAMENTO

- Grau de interconexão entre diferentes pedaços de um sistema
- Pedaços menos acoplados são mais fáceis de entender, testar, reusar e manter
- Baixo acoplamento também promove o paralelismo de implementação

CONCEITOS RELACIONADOS À ARQUITETURA

- Acoplamento
- Coesão
- Interface
- Componentes
- Conectores
- Padrão Arquitetural
- Estilo arquitetural
- Visão arquitetural

CONCEITOS COESÃO

- Quão proximamente são relacionadas as atividades dentro de um único pedaço (componente) ou entre um grupo de pedaços?
 - Componentes altamente coesos = relacionados a apenas UMA funcionalidade

CONCEITOS RELACIONADOS À ARQUITETURA

- Acoplamento
- Coesão
- Interface
- Componentes
- Conectores
- Padrão Arquitetural
- Estilo arquitetural
- Visão arquitetural

CONCEITOS INTERFACE

- As maneiras em que subsistemas dentro de um projeto maior interagem são claramente definidas.
- Idealmente, interações são especificadas de um modo que possam se manter relativamente estáveis ao longo do ciclo de vida do sistema.
- Um modo de alcançar isso é através de abstrações sobre a implementação concreta.

CONCEITOS INTERFACE

Interface bem definida

CONCEITOS INTERFACE

CONCEITOS RELACIONADOS À ARQUITETURA

- Acoplamento
- Coesão
- Interface
- Componentes
- Conectores
- Padrão Arquitetural
- Estilo arquitetural
- Visão arquitetural

CONCEITOS COMPONENTES

- Entidade da arquitetura que:
 - Encapsula um subconjunto de funcionalidades ou dados do sistema.
 - Restringe o acesso a esse subconjunto por meio de uma interface.
 - Possui um contexto necessário para sua execução.
- Pode ser simples ou complexo depende das decisões da arquitetura.
- Contexto necessário de um componente inclui:
 - Interface necessária para fornecer serviços a outros componentes
 - Disponibilidade de recursos, como dados.
 - Softwares necessários linguagem de programação, protocolos, drivers, etc.
 - Configurações de hardware.

CONCEITOS RELACIONADOS À ARQUITETURA

- Acoplamento
- Coesão
- Interface
- Componentes
- Conectores
- Padrão Arquitetural
- Estilo arquitetural
- Visão arquitetural

CONCEITOS CONECTORES

- Veículos de comunicação entre componentes
 - Descrição das interações entre componentes
- Exemplos de conectores:
 - Chamadas de procedimento
 - Anúncios de eventos
 - Protocolos de comunicação
 - Invocações de serviços

CONCEITOS RELACIONADOS À ARQUITETURA

- Acoplamento
- Coesão
- Interface
- Componentes
- Conectores
- Padrão Arquitetural
- Estilo arquitetural
- Visão arquitetural

CONCEITOS PADRÃO ARQUITETURAL X ESTILO ARQUITETURAL

- Um padrão de arquitetura é um conjunto de decisões de arquitetura que são aplicáveis em um **problema de design recorrente**.
 - Pode ser aplicada a softwares em diferentes contextos nos quais o problema ocorre.
 - Exemplo: sistema 3-camadas para operações de processamento, armazenamento e busca.
- Um estilo de arquitetura é uma coleção de decisões de arquitetura que:
 - São aplicadas em um determinado contexto
 - Restringe decisões de projeto da arquitetura que são específicas a um determinado software.
 - Exemplo: separar camada cliente e camada servidor.

CONCEITOS RELACIONADOS À ARQUITETURA

- Acoplamento
- Coesão
- Interface
- Componentes
- Conectores
- Padrão Arquitetural
- Estilo arquitetural
- Visão arquitetural

- Projeção de um modelo da arquitetura sob determinada perspectivas
 - Diferentes visões para diferentes stakeholders

Modelo

 Uma descrição completa de um sistema sob uma perspectiva particular e um nível específico de abstração

Visão

 Uma projeção de um modelo, que é visto sob uma determinada perspectiva, e omite entidades que não são relevantes a essa perspectiva

PARA PENSAR... VISÕES ARQUITETURAIS

- Que modelos você utilizaria para os seguintes stakeholders:
 - Arquiteto
 - Desenvolvedor
 - Cliente
 - Analista de Teste

VISÕES ARQUITETURAIS

Modelo "4+1" (Rational Software)

VISÕES ARQUITETURAIS LÓGICA

- Visão Lógica
 - "Retrato estático" dos relacionamentos existentes entre as entidades do sistema
 - Pode possuir duas ou mais representações, dentre elas, uma conceitual e outra de esquema de banco de dados

Visão Lógica

VISÕES ARQUITETURAIS PROCESSO

- Visão de Processo
 - Descreve aspectos de sincronização e concorrência
 - Descrição de processos concorrentes
 - Diferentes linhas de execução (threads), entidades ativas

Visão de Processo

VISÕES ARQUITETURAIS DESENVOLVIMENTO

- Visão de Desenvolvimento
 - Descreve a organização do software em seu ambiente de desenvolvimento
 - Componentes
 - Linguagens

Visão de Desenvolvimento

VISÕES ARQUITETURAIS FÍSICA

- Visão Física
 - Descreve o mapeamento do software para o hardware
 - Distribuição de componentes
 - Também chamada "deployment"

Visão Física

VISÕES ARQUITETURAIS CENÁRIOS (+1)

- Cenários (+1)
 - Cenários de funcionamento do sistema diretamente ligados à arquitetura
 - Principais casos de uso
 - Lembram de RUP?
 - Centrado em arquitetura!

BIBLIOGRAFIA RECOMENDADA

- Bibliografia Básica:
- I. TAYLOR, R. N.; MEDVIDOVIC, N.; DASHOFTY, E. M. Software architecture: Foundations, Theory, and Practice. Wiley, 2009. 750 p.
- CLEMENTS, Paul et al. Documenting software architectures: views and beyond. 2. ed. Massachusetts: Addison-Wesley Professional. 2010. 592 p.
- 3. BASS, Len; CLEMENTS, Paul; KAZMAN, Rick. Software architecture in practice. 2. ed. Boston, Massachusetts: Addison-Wesley Professional, 2003. 560 p.

BIBLIOGRAFIA RECOMENDADA

- Bibliografia Complementar:
- I. SHAW, Mary; GARLAN, David. Software architecture: perspectives on an emerging discipline. São Paulo: Prentice Hall. 1996. 242 p.
- 2. SOMMERVILLE, I. Engenharia de software. 7. ed. São Paulo: Pearson Addison-Wesley, 2007.
- 3. GORTON, Ian. Essential software architecture. Berlin: Springer, 2006. 283 p. ISBN 3540287132 (enc.).
- 4. REEKIE, John. A software architecture primer. Sydney, Australia: Angophora Press, 2006. 179 p. ISBN 0646458418 (broch.).
- 5. BEZERRA, E. Princípios de análise e projeto de sistemas com UML. 2. ed. Rio de Janeiro: Elsevier, 2007.

DÚVIDASP

