Sample Document in LATEX

Your name Roll no

1 Sample section

How much wood would wood chuck chuck if wood chuck would chuck wood?

2 Writing Math

Here we will see how to write math. Normal math symbols : $\alpha\beta\gamma\epsilon\phi\Phi$.

- 1. Bad math : B=A2+B*ci, B = A + B * c_i, phi:A - λ N
- 2. Good math : $B = A^2 + B \times c_{ij}$, $\phi : A \to N$.

2.1 Writing equations

- Normal equations : $\int_0^\infty e^{-x} x^{n-1} dx = \Gamma(n)$.
- Display math equation :

$$\int_0^\infty e^{-x} x^{n-1} \mathrm{d}x = \Gamma(n) \tag{1}$$

• Display math equation with no numbering :

$$\int_0^\infty e^{-x} x^{n-1} \mathrm{d}x = \Gamma(n)$$

• Writing sets

$$HP = \{ \langle M, x \rangle \mid M \text{ on inputs } x \text{ halts} \}$$
 (2)

$$S = \left\{ i \middle| \prod_{d|i} i \text{ is even }, i > 0 \right\}$$
 (3)

2.2 Aligning equations, writing text in math mode

$$\sum_{i=1}^{n} i = \sum_{i=1}^{n-1} i + n$$

$$= \frac{(n-1) \cdot n}{2} + n$$

$$= \frac{n(n+1)}{2}$$
[By induction hypothesis]

3 Writing Algorithms

Algorithm 1: Algorithm detecting odd cycle of length k

Result: Checks if G has an odd cycle of length k

Set
$$t \leftarrow \sum_{r=0}^{k} \begin{bmatrix} k \\ r \end{bmatrix}_2$$
;

Do something for $u \in V$ do

if Some condition then

Do this;

Do that;

if j > t then

Accept iff all conditions ok

- Step 1 :
- Step 2:

4 Drawing tables

Type	Language	Machine
Type 3	Regular	Finite Automata
Type 2	Context Free	Push Down Automata
Type 1	Context Sensitive	Linear Bounded Automata
Type 0	Recursively Enumerable	Turing Machine

5 Writing Theorems and Proofs

Claim 1. If m is mass and c is speed of light then,

$$E = mc^2 (4)$$

Proof. Trivial. \Box

Claim 2. There exists undecidable languages

Proof. (Idea) Set of languages is $\mathcal{P}(\Sigma^*)$ is uncountably infinite, while set of all Turing machines which can be identified with Σ^* is only countably infinite.

Theorem 3. A language is decidable if and only if its complement is also decidable.

Proof. (\Longrightarrow) Forward direction (\Longleftrightarrow) Reverse direction

6 Referring sections and theorems

Recalling equation 4 in claim 1 from section 5, it is possible to generate energy from nuclear reactions.

7 Including Images

Figure 1: CTAN lion (or lioness?) drawing by Duane Bibby

8 Compilation