CSE 460: VLSI Design

Lecture 9: Finite State Machines (part 2)

Clock cycle: t₀ t₁ t₂ t₃ t₄ t₅ t₆ t₇ t₈ t₉ t₁₀

w: 0 1 0 1 1 0 1 1 1 0 1

z: 0 0 0 0 1 0 0 1 1 0 0

Figure 6.22 Sequences of input and output signals.

Steps->

- ➤ State diagram
- > State table
- > State assigned table
- ➤ K-map
- > Circuit

Figure 6.23 State diagram of an FSM that realizes the task in Figure 6.22.

Steps->

- > State diagram
- > State table
- > State assigned table
- ➤ K-map
- > Circuit

Present	Next state		Output z	
state	w = 0	w = 1	w = 0	w = 1
A	A	В	0	0
В	Α	В	0	1

Figure 6.24 State table for the FSM in Figure 6.23.

	Present state	Next state		Output	
		w = 0	w = 1	w = 0	w = 1
	У	Y	Y	z	z
	0	0	1	0	0
	1	0	1	0	1

Α

Figure 6.25 State-assigned table for the FSM in Figure 6.24.

Steps->

- ➤ State diagram
- > State table
- > State assigned table
- ➤ K-map
- > Circuit

Note that,

$$> Y = f(w,y)$$

$$> z = f(w,y)$$

$$Y = w$$

$$z = wy$$

Steps->

- > State diagram
- > State table
- > State assigned table
- \triangleright K-map (Y and z)
- > Circuit

Note that,

$$> Y = f(w,y)$$

$$> z = f(w,y)$$

Steps->

- > State diagram
- > State table
- > State assigned table
- ➤ K-map
- > Circuit

Encoding Schemes (State Assignment)

Consider a state assigned table below:

	Present	Next s	tate	
	state	w=0	w=1	Output
	y 2 y 1	Y ₂ Y ₁	<i>Y</i> ₂ <i>Y</i> ₁	
A	00	00	01	0
В	01	00	10	0
C	10	00	10	1
	11	dd	dd	d

Schemes->

- **➤** Binary encoding
- ➤ Gray encoding
- ➤ One-hot encoding

Encoding Schemes (State Assignment)

Consider another state assigned table below:

	Present	Next s	tate	
	state	w=0	w=1	Output
	y 2 y 1	Y ₂ Y ₁	<i>Y</i> ₂ <i>Y</i> ₁	
A	00	00	01	0
В	01	00	11	0
C	11	00	11	1
	10	dd	dd	d

Schemes->

- ➤ Binary encoding
- **➤** Gray encoding
- ➤ One-hot encoding

Decimal Number	4 bit Binary Number	4 bit Gray Code
	ABCD	$G_1G_2G_3G_4$
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0 1 0 1	0111
6	0110	0101
7	0 1 1 1	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Encoding Schemes (State Assignment)

Consider another state assigned table below:

	Present	Next state		
	state	w = 0	w = 1	Output
	$y_3 y_2 y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	Z
A	0 0 1	001	010	0
\mathbf{B}	010	0 0 1	100	0
C	100	001	100	1

Schemes->

- ➤ Binary encoding
- ➤ Gray encoding
- **➤** One-hot encoding

How many flipflops are required? Ans: 3