东南大学考试卷

课程名称 <u>工科数分(上)期中</u> 考试学期 <u>16-17-2</u> **得分** _____

适用专业 选学工科数分的各类专业 考试形式 闭卷 考试时间长度 120分钟

题号	_	=	Ξ	四	五	六
得分						
评阅人						

一、 填空题(本题共9小题,每小题4分,满分36分)

1. 设
$$f(x) = (x-1)^{10} \sin x$$
,则 $f^{(10)}(1) =$ ______;

2. 设
$$f(x) = \begin{cases} (1+2x^2)^{\frac{1}{\sin x^2}} & x \neq 0 \\ a & x = 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a =$ _____;

3. 设
$$y = x^{\cos(1+2x)}$$
,则 d $y =$ ______;

5. 设
$$f'(0) = 1$$
, $f(0) = 0$, 则 $\lim_{x \to 0} \frac{f(1 - \cos x)}{\tan x^2} =$ ______;

7. 设
$$f(x) = \begin{cases} x^2 \arctan \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
,则 $\lim_{x \to 0^+} \frac{f'(x)}{x} = \underline{\qquad}$;

8. 设
$$f(x) = \frac{e^x - b}{(x - a)(x - 1)}$$
 有无穷间断点 $x = 0$,有可去间断点 $x = 1$,则

$$a = \underline{\hspace{1cm}}, b = \underline{\hspace{1cm}}$$

9. 若
$$x > 0$$
 ,则极限 $\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^n \sqrt{(nx+k)(nx+k+1)} = \underline{\hspace{1cm}}$.

- 二、 计算下列各题(本题共5小题,每小题7分,满分35分)
- 1. 设 y = y(x) 是由参数方程 $\begin{cases} x = 2 + t^2 \\ y = \sin 2t \end{cases}$ 所确定的函数,求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 和 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.

2. 设 y=y(x) 由方程 y=f(x-y) 所确定,其中 f 具有二阶导数,且其一阶导数不等于 -1,求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 和 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.

3. 设
$$f(x) = \ln(1 - x^2)$$
, 求 $f^{(n)}(x)$.

4. 己知
$$f(x) = \begin{cases} \ln x, & x \ge 1, \\ 2(x-1), & x < 1, \end{cases}$$
, 设 $g(x) = f(f(x))$, 求 $g(x)$ 及 $g'(x)$.

- 5. 已知 $f(x) = \frac{1+x}{\sin x} \frac{1}{x}$, 记 $a = \lim_{x \to 0} f(x)$,
 - (1) 求 a 的值; (2) 若当 $x \to 0$ 时, f(x) a 是 x^k 的同阶无穷小,求 k.

三、(本题满分7分) 用定义证明 $\lim_{x\to 1} \frac{1}{2x+1} = \frac{1}{3}$.

四、(本题满分8分) 已知数列 $\{a_n\}$ 满足:

$$a_1 = 1, a_2 = \frac{1}{2}, a_n = \frac{1 + a_{n-2}}{2 + a_{n-2}} \quad (n \ge 3)$$

判断 $\{a_n\}$ 是否收敛?若收敛求其极限.

五、(本题满分7分)证明:函数 $f(x) = x + \cos 2x$ 在 $(-\infty, +\infty)$ 上一致连续.

六、(本题满分7分) 设函数 f(x) 在 [1,3] 上连续,在 (1,3) 内可导,且 $f(1)=1, f(2)=5, f(3)=2, \ \ \text{证明}: \ \ \text{至少存在一点}\ \xi\in(1,3)\ \ \text{使得}\ f'(\xi)=2.$