Robotics

Estimation and Learning with Dan Lee

Week 4. Localization

4.2 Map Registration

LIDAR Depth Sensor

- Depth measurements made in polar coordinates
- Continuous readings, r, at discrete angles, θ

LIDAR Depth Sensor

- Depth measurements made in polar coordinates
- Continuous readings, r, at discrete angles, θ

LIDAR Depth Sensor

- Depth measurements made in polar coordinates
- Continuous readings, r, at discrete angles, θ

Map Representation

- Discrete Grid representing 2D space (see Week 3)
- White cells represent the presence of an obstacle

Map Measurements

Map

Measurements

Find robot pose that best explains the measurements

• Find robot pose that best explains the measurements

- Correlate laser obstacles with map obstacles
- Correlate laser free space with map free space

$$\sum_{r} \delta(p_x + r\cos(p_\theta + r_\theta), p_y + r\sin(p_\theta + r_\theta)) \cdot m(x, y)$$

Find the best pose

$$\max_{p} \sum_{r} \delta(p_x + r\cos(p_\theta + r_\theta), p_y + r\sin(p_\theta + r_\theta)) \cdot m(x, y)$$

• Laser scans penetrate free space

Adding pose uncertainty