Math 5110 – Real Analysis I– Fall 2024 w/Professor Liu

Paul Carmody Homework #2 – September 18, 2024

I. Consider a sequence x_n of real numbers. The limit inferior and limit superior of x_n are defined by

$$\liminf_{n \to \infty} x_n = \lim_{n \to \infty} \left(\inf_{k \ge n} x_k \right), \ \limsup_{n \to \infty} x_n = \lim_{n \to \infty} \left(\sup_{k \ge n} x_k \right)$$

(a) Show that

$$\liminf_{n \to \infty} x_n = \sup_{n > 0} \left(\inf_{k \ge n} x_k \right)$$

and

$$\limsup_{n \to \infty} x_n = \inf_{k \ge 0} \left(\sup_{k \ge n} x_k \right)$$

First, $\liminf_{n\to\infty}$: Let $y_n=\inf_{k\geq n}x_k$. Then, given any $j>k,y_k\leq y_j$. That is, y_n is a bounded increasing sequence. All $y_n\leq \sup_{n\to\infty}y_n$ Thus, the $\lim_{n\to\infty}y_n=\sup_{n\geq 0}y_n$. Next, $\limsup_{n\to\infty}$: Let $z_n=\sup_{k\geq n}x_k$. Then, given any $j>k,z_k\geq z_j$. That is, z_n is a bounded decreasing sequence. All $z_n\geq \inf_{n\to\infty}z_n$ Thus, the $\lim_{n\to\infty}z_n=\inf_{n\geq 0}z_n$.

(b) Show that $\liminf_{n\to\infty} x_n$ and $\limsup_{n\to\infty} x_n$ are well-defined for any sequence x_n . (Unlike $\lim_{n\to\infty} x_n$.) We allow values of ∞ and $-\infty$

Using (y_n) from (a), that must exist one and only one value for $\lim_{n\to\infty}y_n$ as it is bounded and increasing, thus its limit is well-defined. Similarly, for (z_n) .

(c) Let x_n be a bounded sequence, and let L be the set of limit points of x_n , i.e., the set of all limits of subsequences of x_n . Show $\liminf_{n\to\infty} x_n = \inf L$ and $\limsup_{n\to\infty} = \sup L$.

Let L be the set of limit points for x_n . Then, for any $w \in L$ there is a $(w_k) \in (x_n)$ subsequence such that $\lim_{k\to\infty} w_k = w$. The $\inf_{k\to\infty} w_k \ge \inf L \ge \liminf_{n\to\infty} x_n$. However, from (a) we can see that

$$\liminf_{n \to \infty} x_n = \sup_{n \ge 0} \left(\inf_{k \ge n} x_k \right)$$

therefore $\liminf_{n \to \infty} x_n \ge \inf_{n \to \infty} L$ thus $\liminf_{n \to \infty} x_n = \inf_{n \to \infty} L$.

Similarly, for $\limsup x_n$.

(d) Let x_n be a bounded sequence. Conclude using (c) that $\liminf_{n\to\infty}x_n\leq \limsup_{n\to\infty}x_n$, with equality if and only if x_n is convergent.

By definition, $\inf L \leq \sup L$ therefore $\liminf_{n \to \infty} x_n \leq \limsup_{n \to \infty} x_n$. Therefore, from (a)

$$\sup_{n>0} \left(\inf_{k \ge n} x_k \right) \le \inf_{n \ge 0} \left(\sup_{k > n} x_k \right)$$

Now using (y_n) and (z_n) from (a) we can see that we have

$$\sup_{n>0} y_n \le \inf_{n\ge 0} z_n$$

we have a bounded increasing sequence on the left less than a bounded decreasing sequence on the right. They can only be equal if they converge to the same value.

- II. Prove that for any (possibly uncountable) collection $(F_{\alpha})_{\alpha \in A}$ of closed sets, the intersection $F = \bigcup_{\alpha \in A} F_{\alpha}$ is closed, in two ways.
 - (a) Using the fact that any union of open sets is open, and DeMorgan's Laws from set theory, which state

$$X \setminus \left(\bigcup_{\alpha \in A} E_{\alpha}\right) = \bigcap_{\alpha \in A} \left(X \setminus E_{\alpha}\right) \text{ and } X \setminus \left(\bigcap_{\alpha \in A} E_{\alpha}\right) = \bigcup_{\alpha \in A} \left(X \setminus E_{\alpha}\right)$$

for all collection of sets $(E_{\alpha})_{\alpha \in A}$

Given that every open set, $E \in X$ is the union of other open sets $\bigcup_{\alpha \in A} E_{\alpha}$ for some index set A (whether countable or uncountable). We know that the complement is closed and the complement can be expressed as

$$E^{c} = X \setminus E$$

$$= X \setminus \left(\bigcup_{\alpha \in A} E_{\alpha} \right)$$

$$= \bigcap_{\alpha \in A} (X \setminus E_{\alpha})$$

each E_{α} is the complement of an open set, hence they are closed. Thus, E^{c} which is closed is made up of the intersection of closed sets.

(b) More directly, using the fact that a set G is closed if and only if for any convergent sequence (x_n) with all $x_n \in G$, the limit x is also in G.

Let $F, G \in X$ be closed sets and let $(x_n) \subset G$ and $(y_n) \subset F$ both be convergent sequences. Further, we let $(x_n), (y_n) \subset G \cap F$. Not that F closed means that $(x_n) \in F$ implies that $\lim_{n \to \infty} x_n \in F$, thus $\lim_{n \to \infty} x_n \in G \cap F$ and a similar argument can be made for y_n and G. Thus sequences contained in $G \cap F$ must also contain their limits and $G \cap F$ is closed. This can extend to any number of intersections.

III. (a) Let (x_n) be a Cauchy sequence in a metric space X. Show that if a subsequence (x_{n_j}) of x_n converges to x, then the entire sequence also converges to x.

Let (x_n) be Cauchy and let (x_{n_j}) be a convergent subsequence of (x_n) . Then, there exists for every $\epsilon > 0$ there is $N \in \mathbb{N}$ such that whenever $j, k > N, |x_{n_j} - x_{n_k}| < \epsilon$. Let $M = \min\{n_j, n_k\}$. We can see that $|x_m - x_k| < \epsilon$. $x_m, x_k \in x_n$ and x_n is Cauchy, therefore all this is true for all elements of m, k > M, hence (x_n) converges.

(b) Show that the metric space

$$C^1((-1,1)) = \{f: (-1,1) \to \mathbb{R}, f \text{ is differentiable and } f' \text{ is continuous in } (1,-1)\}$$

with the metric

$$d(f,g) = \sup_{x \in (-1,1)} |f(x) - g(x)|$$

is not complete. (Hint: similar to the proof that the rational numbers are not complete, find a sequence $C^1((-1,1))$ that converges in d metric to a function that is not in $C^1((-1,1))$, and show that this sequence is Cauchy.)

Let $f_n(x) = x^{\frac{1}{2n+1}}$. We can see that given any $\epsilon > 0$ there is $N \in \mathbb{N}$ such that n, m > N the distance

$$d(f_n, f_m) = \sup_{x \in (-1,1)} |f_n(x) - f_m(x)|$$
$$= \sup_{x \in (-1,1)} |x^{1/2n+1} - x^{1/2m+1}|$$
$$< \epsilon$$

The functions are all differentiable and their derivatives are continuous, but

$$\lim_{n \to \infty} x^{\frac{1}{2n+1}} = \left\{ \begin{array}{ll} -1 & x < 0 \\ 1 & x > 0 \end{array}, \forall x \in (-1, 1) \right.$$

which is not a member of $C^{1}((-1,1))$

IV. Let A and B be subsets of the metric space X. which one of the following is true?

$$(A \cup B)^o = A^o \cup B^o, \tag{2.1}$$

$$(A \cup B)^o \subset A^o \cup B^o$$
, "=" fails for some A and B (2.2)

$$(A \cup B)^o \supset A^o \cup B^o$$
, "=" fails for some A and B (2.3)

- (2.3) Consider $X = \mathbb{R}^3$ and A is the open unit disc in the X-Y plane centered at the origin and B is the open unit disc in the Y-Z plane centered at the origin. $(A \cup B)^o \supset A^o \cup B^o$.
- V. Let $C^0([a,b])$ be the space of continuous functions on [a,b], with the metric $d(f,g) = \sup_{x \in [a,b]} |f(x) g(x)|$.

Show that the map $I: C^0([a,b]) \to \mathbb{R}$ defined by $I(f) = \int_a^b f(x) dx$ is continuous mapping from $C^0([a,b])$ to \mathbb{R} .

I is continuous if for ever $\epsilon > 0$ there exists $\delta > 0$ such that $d(I(f), I(g)) < \epsilon$ whenever $d(f, g) < \delta$. Or

$$\begin{split} d(I(f),I(g)) &= \sup_{x \in [a,b]} |I(f(x)) - I(g(x))| \\ &= \sup_{x \in [a,b]} \left| \int_a^b f(x) dx - \int_a^b g(x) dx \right| \\ &= \sup_{x \in [a,b]} \left| \int_a^b f(x) - g(x) dx \right| \\ &= \sup_{x \in [a,b]} \int_a^b |f(x) - g(x)| dx \\ &\leq \int_a^b \sup_{x \in [a,b]} |f(x) - g(x)| dx \\ &\leq \int_a^b d(f,g) dx \\ &\leq d(f,g)[b-a] \end{split}$$

Thus when $\epsilon > 0$ choose $\delta > [b-a]d(f,g)$. Hence, I is continuous.

VI. Proposition 2.3.2 (Maximum principle). Let (X, d) be a compact metric space, and let $f: X \to \mathbb{R}$ be a continuous function. Then f is bounded. Furthermore, f attains its maximum at some point $x_{\max} \in X$, and also attains its minimum at some point $x_{\min} \in X$.

Prove Propostion 2.3.2 in the text, in two different ways.:

- a) As a consequence of Theorem 2.3.1 in text. Let $f: X \to \mathbb{R}$ be a continuous function on a compact set X. Then, by 2.3.1, f(X) is a compact set. Every compact set in \mathbb{R} is an interval. Let $\langle a,b \rangle$ be that interval, that is, $f: X \to \langle a,b \rangle$. If f were unbounded, then there would exist an $x \in X$ such that $f(x) \notin \langle a,b \rangle$ which cannot happen. Therefore, there must exists values in the domain x_{\min} and x_{\max} which are the maximum and minimum values of f, namely, a,b, respectively.
- b) Directly, using the sequential definition of compactness. Let $(x_n) \in X$ be any sequence in the compact space X. Being compact, (x_n) must converge and $\lim_{n \to \infty} x_n = x \in X$. Let $f: X \to \mathbb{R}$ be a continuous function. x_n converges implies that $f(x_n)$ also converges. Therefore, $\lim_{n \to \infty} f(x_n) = f(x)$ and is finite (otherwise f would not be continuous). Therefore, there exists an upper and lower bound of f. Let f be the lower bound and f be a sequence such that $\lim_{n \to \infty} y_n = f(x_n) = f(x_n)$. Then, let f be such that f be such that f converge. Thus, $\lim_{n \to \infty} f(x_n) = f(x_n) = f(x_n)$ and $\lim_{n \to \infty} f(x_n) = f(x_n)$ and $\lim_{n \to \infty} f(x_n) = f(x_n)$ be a sequence f which must converge. Thus, $\lim_{n \to \infty} f(x_n) = f(x_n)$ and $\lim_{n \to \infty} f(x_n) = f(x_n)$ and $\lim_{n \to \infty} f(x_n) = f(x_n)$ and $\lim_{n \to \infty} f(x_n) = f(x_n)$ for all f and $\lim_{n \to \infty} f(x_n) = f(x_n)$ and $\lim_{n \to \infty} f(x_n) = f(x_n)$ for all f and f are f and f and f are f are f and f are f are f and f are f are f and f are f and f are f and f are f and f are f and f are f are f are f and f are f are f are f and f are f are f are f and f are f and f are f are f are f and f are f and f are f are f are f and f are f are f and f are f are f are f are f are f are f and f a

VII. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function such that

$$\lim_{|x| \to \infty} f(x) = +\infty$$

Prove that f attains its minimum.

Recall that by definition, the limit in (??) means that Given A > 0, there is R > 0 such that

$$f(x) > A$$
 for all $x \notin B_R$

in other words, f(x) > A whenever $|x| \ge R$. Here, $|x| = d_2(x,0)$ and d_2 is the standard Euclidean distance defined in Example 1.4.

Given any A > 0 there exists an R > 0 such that f(x) > A whenever |x| > R. Therefore, $f(x) \le A$ whenever |x| < R. f(x) is bounded on B_R . Hence there exists an interval $\langle a, b \rangle \in \mathbb{R}$ such that $F(B_R) \subset \langle a, b \rangle$. Therefore f(x) is continuous on an interval, i.e., a compact set, and assumes a greatest and least value for some $x_{\min}, x_{\max} \in B_R$.