Chapitre 3 : Analyse Synchrone

Analyse synchrone

Le but de l'analyse est de comprendre le fonctionnement d'une machine logique déjà existante. Cette analyse se déroule toujours de la manière suivante :

1. Identifier les différentes parties du schéma générale d'une machine logique :

- 2. Établir les équations des excitations : E = F(X,Q)
- 3. Écrire la table de Transition $Q^+=G(E)$ et la table de sortie
- 4. Coder les états et écrire la table des états
- 5. Écrire la table des sorties (si pas déjà fait en 3)
- 6. Dessiner le graphe de Transition

Analyse avec bascule T

En synchrone, le circuit de bouclage est constitué par les bascules

Analyse avec bascule T

Table de transition et de sortie

Équations de transition:

$$Q_0^+ = X \overline{Q_0} + \overline{X} Q_0$$

$$Q_1^+ = X \overline{Q_1} Q_0 + \overline{X} Q_1 + Q_1 \overline{Q_0}$$

Équation de sortie :

$$Z = Q_0 + Q_1$$

Table de Transition et de sortie

$$Q_1^+ Q_0^+$$

Х	0		1		Z
$Q_1 Q_0$					
00	0	0	0	1	0
01	0	1	1	0	1
11	1	1	0	0	1
10	1	0	1	1	1

Graphe de transition

<u>Graphe de transition</u>:

La machine logique passe à 0 lorsque elle a détecté l'entrée à 1 pendant 3 fronts actifs d'horloge.

4

Exemple 1 :Chronogramme

Évolution sur front actif sauf pour l'entrée de forçage RESET (asynchrone)

Exemple n°2 : Machine d'état avec des bascules J-K

Machine de Mealy

Exemple n°2 - Equations

Excitation

$$J_1 = X$$

$$K_1 = X \cdot Y$$

$$J_2 = \overline{X}$$

$$K_2 = 0$$

Equation Caractéristique

$$Q^+ = J \cdot Q + \overline{K} \cdot Q$$

$$Q_1^+ = J_1 \cdot Q_1 + K_1 \cdot Q_1$$

$$\mathbf{Q}_2^+ = \mathbf{J}_2 \cdot \mathbf{Q}_2 + \mathbf{K}_2 \cdot \mathbf{Q}_2$$

Equations de transition

$$Q1 + X \cdot \overline{Q_1} + \overline{(X \cdot Y)} \cdot Q_1 = X \cdot \overline{Q_1} + \overline{X} \cdot Q_1 + \overline{Y} \cdot Q_1$$

$$Q2^{+} = \overline{X} \cdot \overline{Q_2} + \overline{0} \cdot \overline{Q_2} = \overline{X} \cdot \overline{Q_2} + \overline{Q_2}$$

Exemple n°2: Table de Transition/Sortie

$$Q1^{+} = X \cdot Q_1 + X \cdot Q_1 + Y \cdot Q_1$$
 $Q2^{+} = X \cdot Q_2 + Q_2$

		XY						
S	$Q_1 Q_2$	00	01	11	10			
A	0 0	01,0	01,0	10,0	10,0			
В	0 1	01,1	01,1	11,1	11,1			
C	1 0	11,0	11,0	00,1	10,1			
D	1 1	11,1	11,1	01,1	11,1			
	$Q_1^+Q_2^+, Z$							