

# 1.8 nV/√Hz, 36 V Precision Amplifiers

### ADA4004-1/ADA4004-2/ADA4004-4

#### **FEATURES**

Very low voltage noise: 1.8 nV/√Hz Low input bias current: 90 nA maximum Offset voltage: 125 µV maximum

High gain: 120 dB Wide bandwidth: 12 MHz ±5 V to ±15 V operation

#### **APPLICATIONS**

**Precision instrumentation Filter blocks** Microphone preamplifiers **Industrial control** Thermocouples and RTDs **Reference buffers** 

#### **GENERAL DESCRIPTION**

The ADA4004-1/ADA4004-2/ADA4004-4 are 1.8 nV/ $\sqrt{\text{Hz}}$ precision amplifiers featuring 40 μV offset, 0.7 μV/°C drift, 12 MHz bandwidth, and low 1.7 mA per amplifier supply current.

The ADA4004-1/ADA4004-2/ADA4004-4 are designed on the high performance *i*Polar<sup>™</sup> process, enabling improvements such as reduced noise and power consumption, increased speed and stability, and smaller footprint size. Novel design techniques enable the ADA4004-1/ADA4004-2/ADA4004-4 to achieve 1.8 nV/ $\sqrt{\text{Hz}}$ voltage noise density and a low 6 Hz 1/f noise corner frequency while consuming just 1.7 mA per amplifier. The small package saves board space, reduces cost, and improves layout flexibility.

Applications for these amplifiers include high precision controls, PLL filters, high performance precision filters, medical and analytical instrumentation, precision power supply controls, ATE, and data acquisition systems. Operation is fully specified from  $\pm 5$  V to  $\pm 15$  V from -40°C to +125°C.

The ADA4004-1, ADA4004-2, and ADA4004-4 are members of a growing series of low noise op amps offered by Analog Devices, Inc., (see Table 1).

Table 1. Voltage Noise

| Pkg.   | 0.9 nV | 1.1 nV | 1.8 nV    | 2.8 nV | 3.8 nV |
|--------|--------|--------|-----------|--------|--------|
| Single | AD797  | AD8597 | ADA4004-1 | AD8675 | AD8671 |
| Dual   |        | AD8599 | ADA4004-2 | AD8676 | AD8672 |
| Quad   |        |        | ADA4004-4 |        | AD8674 |

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  $Trademarks \ and \ registered \ trademarks \ are \ the \ property \ of \ their \ respective \ owners.$ 

### PIN CONFIGURATIONS



Figure 3. 8-Lead MSOP (RM-8) and 8-Lead SOIC (R-8)



Figure 4. 14-Lead SOIC (R-14)



NOTES
1. NC = NO CONNECT.
2. IT IS RECOMMENDED THAT THE EXPOSED PAD BE CONNECTED TO V-.

Figure 5. 16-Lead LFCSP (CP-16-23)

Changes to Figure 5......1

Added 5-Lead SOT, 8-Lead SOIC, and 8-Lead MSOP ...... Universal

Changes to General Description Section ......1

6/09-Rev. C to Rev. D

10/08-Rev. B to Rev. C

TABLE OF CONTENTS

#### Absolute Maximum Ratings ......5 ESD Caution......5 Typical Performance Characteristics......6 REVISION HISTORY Added Table 1; Renumbered Sequentially ......1 7/15-Rev. G to Rev. H Change to Output Voltage Low Parameter, Table 2......3 Changed CP-16-4 to CP-16-23 and Changed LFCSP\_VQ to Changes to Supply Current per Amplifier Parameter, Table 2..........3 LFCSP\_WQ.....Throughout Added Phase Margin Parameter, Table 2......3 Change to Output Voltage Low Parameter, Table 3......3 Changes to Supply Current per Amplifier Parameter, Table 3 .........4 Added Phase Margin Parameter, Table 3.....4 Changes to Table 4......5 4/11-Rev. F to Rev. G Changes to Table 5 ......5 Update Outline Dimensions......12 Changes to Ordering Guide......13 6/10-Rev. E to Rev. F 11/07—Rev. A to Rev. B Changes to Figure 14 and Figure 17.......7 Changed V<sub>S</sub> to V<sub>SY</sub> ......Universal Changes to General Description ......1 10/09-Rev. D to Rev. E Changes to Supply Current per Amplifier ......3 Changes to Product Title, General Description Section, and Changes to Open-Loop Gain.....4 Changes to Supply Current per Amplifier ......4

7/06—Rev. 0 to Rev. A

1/06—Revision 0: Initial Version

Changes to Figure 10, Figure 11, Figure 13, and Figure 14.......7

Changes to Figure 26.....9

Changes to Table 4......5

Changes to Ordering Guide ...... 12

## **SPECIFICATIONS**

 $V_{SY} = \pm 5$  V,  $V_{CM} = 0$  V,  $T_A = 25$ °C, unless otherwise specified.

Table 2.

| Parameter                    | Symbol                   | Conditions                                                      | Min  | Тур  | Max   | Unit   |
|------------------------------|--------------------------|-----------------------------------------------------------------|------|------|-------|--------|
| INPUT CHARACTERISTICS        |                          |                                                                 |      |      | _     |        |
| Offset Voltage               | $V_{os}$                 |                                                                 |      | 40   | 140   | μV     |
|                              |                          | $-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$        |      |      | 300   | μV     |
| Input Bias Current           | I <sub>B</sub>           |                                                                 |      | 40   | 85    | nA     |
|                              |                          | $-40^{\circ}C \le T_{A} \le +125^{\circ}C$                      |      |      | 165   | nA     |
| Input Offset Current         | los                      |                                                                 |      | 40   | 85    | nA     |
|                              |                          | $-40^{\circ}C \le T_{A} \le +125^{\circ}C$                      |      |      | 100   | nA     |
| Input Voltage Range          | IVR                      |                                                                 | -3.5 |      | +3.5  | V      |
| Common-Mode Rejection Ratio  | CMRR                     | $V_{CM} = -3.0 \text{ V to } +3.0 \text{ V}$                    | 105  | 111  |       | dB     |
|                              |                          | $-40^{\circ}C \le T_{A} \le +125^{\circ}C$                      | 95   | 110  |       | dB     |
| Open-Loop Gain               | A <sub>vo</sub>          | $R_L = 2 k\Omega$ , $V_{OUT} = -2.5 V to +2.5 V$                | 250  | 400  |       | V/mV   |
|                              |                          | $-40^{\circ}C \le T_{A} \le +125^{\circ}C$                      | 170  |      |       | V/mV   |
| Offset Voltage Drift         | $\Delta V_{OS}/\Delta T$ | $-40^{\circ}C \le T_{A} \le +125^{\circ}C$                      |      | 0.7  | 1     | μV/°C  |
| OUTPUT CHARACTERISTICS       |                          |                                                                 |      |      |       |        |
| Output Voltage High          | V <sub>OH</sub>          | $R_L = 2 k\Omega$ to ground                                     | 3.7  | 3.9  |       | V      |
|                              |                          | $-40^{\circ}C \le T_{A} \le +125^{\circ}C$                      | 3.4  | 3.6  |       | V      |
| Output Voltage Low           | V <sub>OL</sub>          | $R_L = 2 k\Omega$ to ground                                     |      | -3.6 | -3.55 | V      |
| -                            |                          | -40°C ≤ T <sub>A</sub> ≤ +125°C                                 |      | -3.6 | -3.4  | V      |
| Short-Circuit Limit          | I <sub>SC</sub>          |                                                                 |      | 25   |       | mA     |
|                              |                          | $-40^{\circ}C \le T_{A} \le +125^{\circ}C$                      |      |      |       | mA     |
| Output Current               | Io                       | $V_{OUT} = \pm 3.6 \text{ V}$                                   |      | ±10  |       | mA     |
| POWER SUPPLY                 |                          |                                                                 |      |      |       |        |
| Power Supply Rejection Ratio | PSRR                     | $V_{SY} = \pm 5 \text{ V to } \pm 15 \text{ V}$                 | 110  | 118  |       | dB     |
|                              |                          | $-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$ | 110  |      |       | dB     |
| Supply Current per Amplifier | I <sub>SY</sub>          |                                                                 |      |      | 2.0   | mA     |
|                              |                          | $-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$ |      |      | 2.2   | mA     |
| DYNAMIC PERFORMANCE          |                          |                                                                 |      |      |       |        |
| Slew Rate                    | SR                       | $R_L = 2 k\Omega$ to ground                                     |      | 2.7  |       | V/µs   |
| Gain Bandwidth Product       | GBP                      | _                                                               |      | 12   |       | MHz    |
| Phase Margin                 | Фм                       |                                                                 |      | 48   |       | Degree |
| NOISE PERFORMANCE            |                          |                                                                 |      |      |       |        |
| Voltage Noise                | e <sub>n p-p</sub>       | f = 0.1 Hz to 10 Hz                                             |      | 0.1  |       | μV p-p |
| Voltage Noise Density        | e <sub>n</sub>           | f = 1 kHz                                                       |      | 1.8  |       | nV/√Hz |
| Current Noise Density        | in                       | f = 10 Hz                                                       |      | 3.5  |       | pA/√Hz |
| Current Noise Density        | in                       | f = 200 Hz                                                      |      | 1.2  |       | pA/√Hz |

 $V_{\text{SY}} = \pm 15 \text{ V}, V_{\text{CM}} = 0 \text{ V}, T_{\text{A}} = 25 ^{\circ}\text{C}$ , unless otherwise specified.

Table 3.

| Parameter                    | Symbol               | Conditions                                                                  | Min   | Тур    | Max    | Unit    |
|------------------------------|----------------------|-----------------------------------------------------------------------------|-------|--------|--------|---------|
| INPUT CHARACTERISTICS        |                      |                                                                             |       |        |        |         |
| Offset Voltage               | Vos                  |                                                                             |       | 40     | 125    | μV      |
|                              |                      | $-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$                    |       |        | 270    | μV      |
| Input Bias Current           | I <sub>B</sub>       |                                                                             |       | 40     | 90     | nA      |
|                              |                      | $-40$ °C $\leq$ T <sub>A</sub> $\leq$ $+125$ °C                             |       |        | 165    | nA      |
| Input Offset Current         | los                  |                                                                             |       |        | 60     | nA      |
|                              |                      | $-40$ °C $\leq$ T <sub>A</sub> $\leq$ $+125$ °C                             |       |        | 100    | nA      |
| Input Voltage Range          | IVR                  |                                                                             | -12.5 |        | +12.5  | ٧       |
| Common-Mode Rejection Ratio  | CMRR                 | $V_{CM} = -12.5 \text{ V to } +12.5 \text{ V}$                              | 110   | 113    |        | dB      |
|                              |                      | $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$      | 100   | 104    |        | dB      |
| Open-Loop Gain               | A <sub>vo</sub>      | $R_L = 2 \text{ k}\Omega$ , $V_{OUT} = -12.0 \text{ V to } +12.0 \text{ V}$ | 500   | 1200   |        | V/mV    |
|                              |                      | $-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$                    | 250   | 500    |        | V/mV    |
| Offset Voltage Drift         | ΔV <sub>os</sub> /ΔT | $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$      |       | 0.7    | 1      | μV/°C   |
| OUTPUT CHARACTERISTICS       |                      |                                                                             |       |        |        |         |
| Output Voltage High          | V <sub>OH</sub>      | $R_L = 2 k\Omega$ to ground                                                 | 13.4  | 13.6   |        | ٧       |
|                              |                      | $-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$                    | 13.1  | 13.3   |        | ٧       |
| Output Voltage Low           | V <sub>OL</sub>      | $R_L = 2 k\Omega$ to ground                                                 |       | -13.3  | -13.2  | ٧       |
|                              |                      | $-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$                    |       | -13.25 | -13.15 | ٧       |
| Short-Circuit Limit          | I <sub>sc</sub>      |                                                                             |       | 25     |        | mA      |
| Output Current               | lo                   | $V_{OUT} = \pm 13.6 \text{ V}$                                              |       | ±10    |        | mA      |
| POWER SUPPLY                 |                      |                                                                             |       |        |        |         |
| Power Supply Rejection Ratio | PSRR                 | $V_{SY} = \pm 5 V \text{ to } \pm 15 V$                                     | 110   | 118    |        | dB      |
|                              |                      | $-40$ °C $\leq$ T <sub>A</sub> $\leq$ $+125$ °C                             | 110   |        |        | dB      |
| Supply Current per Amplifier | I <sub>SY</sub>      |                                                                             |       |        | 2.2    | mA      |
|                              |                      | $-40$ °C $\leq$ T <sub>A</sub> $\leq$ $+125$ °C                             |       |        | 2.4    | mA      |
| DYNAMIC PERFORMANCE          |                      |                                                                             |       |        |        |         |
| Slew Rate                    | SR                   | $R_L = 2 k\Omega$ to ground                                                 |       | 2.7    |        | V/µs    |
| Gain Bandwidth Product       | GBP                  |                                                                             |       | 12     |        | MHz     |
| Phase Margin                 | $\Phi_{M}$           |                                                                             |       | 48     |        | Degrees |
| NOISE PERFORMANCE            |                      |                                                                             |       |        |        |         |
| Voltage Noise                | e <sub>n p-p</sub>   | f = 0.1 Hz to 10 Hz                                                         |       | 0.15   |        | μV p-p  |
| Voltage Noise Density        | e <sub>n</sub>       | f = 1 kHz                                                                   |       | 1.8    |        | nV/√Hz  |
| Current Noise Density        | in                   | f = 10 Hz                                                                   |       | 3.5    |        | pA/√Hz  |
| Current Noise Density        | i <sub>n</sub>       | f = 200 Hz                                                                  |       | 1.2    |        | pA/√Hz  |

### **ABSOLUTE MAXIMUM RATINGS**

Table 4.

| Parameter                            | Rating             |
|--------------------------------------|--------------------|
| Supply Voltage                       | ±18 V or +36 V     |
| Input Voltage                        | $V- < V_{IN} < V+$ |
| Differential Input Voltage           | ±600 mV            |
| Differential Input Current           | ±5 mA              |
| Output Short-Circuit Duration to GND | Indefinite         |
| Storage Temperature Range            | −65°C to +150°C    |
| Operating Temperature Range          | –40°C to +125°C    |
| Junction Temperature Range           | −65°C to +150°C    |
| Lead Temperature (Soldering 60 sec)  | 300°C              |
|                                      |                    |

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

#### THERMAL RESISTANCE

 $\theta_{JA}$  is specified with the device soldered on a circuit board with its exposed paddle soldered to a pad (if applicable) on a 4-layer JEDEC standard printed circuit board with zero airflow.

Table 5.

| Package Type                 | θ,Α | θ <sub>JC</sub> | Unit |
|------------------------------|-----|-----------------|------|
| 5-Lead SOT (RJ-5)            | 230 | 92              | °C/W |
| 8-Lead SOIC (R-8), ADA4004-1 | 177 | 53              | °C/W |
| 8-Lead SOIC (R-8), ADA4004-2 | 155 | 45              | °C/W |
| 8-Lead MSOP (RM-8)           | 186 | 52              | °C/W |
| 14-Lead SOIC_N (R-14)        | 115 | 36              | °C/W |
| 16-Lead LFCSP_VQ (CP-16-4)   | 44  | 31.5            | °C/W |

### **ESD CAUTION**



**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

### TYPICAL PERFORMANCE CHARACTERISTICS



Figure 6. Number of Amplifiers vs. Input Offset Voltage



Figure 7. Number of Amplifiers vs. Input Offset Voltage



Figure 8. Input Offset Voltage vs. Temperature



Figure 9. Number of Amplifiers vs. TCVos



Figure 10. Number of Amplifiers vs. TCVos



Figure 11. Input Bias Current vs. Temperature



Figure 12. Supply Current vs. Total Supply Voltage



Figure 13. V<sub>OH</sub> vs. Temperature



Figure 14. Open-Loop Gain and Phase vs. Frequency



Figure 15. Supply Current vs. Temperature



Figure 16. V<sub>OL</sub> vs. Temperature



Figure 17. Open-Loop Gain and Phase vs. Frequency



Figure 18. Open-Loop Gain vs. Temperature



Figure 19. Closed-Loop Gain vs. Frequency



Figure 20. Output Impedance vs. Frequency



Figure 21. Closed-Loop Gain vs. Frequency



Figure 22. Output Impedance vs. Frequency



Figure 23. PSRR vs. Frequency



Figure 24. PSRR vs. Temperature



Figure 25. CMRR vs. Temperature



Figure 26. Output Voltage vs. Current Load



Figure 27. CMRR vs. Frequency



Figure 28. Output Voltage vs. Current Load



Figure 29. Small-Signal Overshoot vs. Capacitive Load



Figure 30. Small-Signal Overshoot vs. Capacitive Load



Figure 31. Small-Signal Transient Response



Figure 32. No Phase Reversal



Figure 33. Large-Signal Transient Response



Figure 34. Small-Signal Transient Response



Figure 35. Voltage Noise (0.1 Hz to 10 Hz)



Figure 36. Voltage Noise (0.1 Hz to 10 Hz)



Figure 37. Voltage Noise Density vs. Frequency



Figure 38. Current Noise Density vs. Frequency



Figure 39. Channel Separation vs. Frequency

### **OUTLINE DIMENSIONS**



Figure 40. 5-Lead Small Outline Transistor Package [SOT-23] (RJ-5) Dimensions shown in millimeters



COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 41. 8-Lead Standard Small Outline Package [SOIC\_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches)



Figure 42. 8-Lead Mini Small Outline Package [MSOP] (RM-8)

Dimensions shown in millimeters



#### COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.

Figure 43. 16-Lead Lead Frame Chip Scale Package [LFCSP\_WQ] 4 mm × 4 mm Body, Very Very Thin Quad (CP-16-23) Dimensions shown in millimeters



COMPLIANT TO JEDEC STANDARDS MS-012-AB
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 44. 14-Lead Standard Small Outline Package [SOIC\_N]
Narrow Body
(R-14)
Dimensions shown in millimeters and (inches)
Rev. H | Page 13 of 16

### **ORDERING GUIDE**

| Model <sup>1</sup> | Temperature Range | Package Description | Package Option | Branding |
|--------------------|-------------------|---------------------|----------------|----------|
| ADA4004-1ARJZ-R2   | −40°C to +125°C   | 5-Lead SOT-23       | RJ-5           | A1M      |
| ADA4004-1ARJZ-R7   | −40°C to +125°C   | 5-Lead SOT-23       | RJ-5           | A1M      |
| ADA4004-1ARJZ-RL   | -40°C to +125°C   | 5-lead SOT-23       | RJ-5           | A1M      |
| ADA4004-1ARZ       | −40°C to +125°C   | 8-Lead SOIC_N       | R-8            |          |
| ADA4004-1ARZ-R7    | −40°C to +125°C   | 8-Lead SOIC_N       | R-8            |          |
| ADA4004-1ARZ-RL    | −40°C to +125°C   | 8-Lead SOIC_N       | R-8            |          |
| ADA4004-2ARMZ      | −40°C to +125°C   | 8-Lead MSOP         | RM-8           | A1N      |
| ADA4004-2ARMZ-RL   | -40°C to +125°C   | 8-Lead MSOP         | RM-8           | A1N      |
| ADA4004-2ARMZ-R7   | -40°C to +125°C   | 8-Lead MSOP         | RM-8           | A1N      |
| ADA4004-2ARZ       | −40°C to +125°C   | 8-Lead SOIC_N       | R-8            |          |
| ADA4004-2ARZ-RL    | −40°C to +125°C   | 8-Lead SOIC_N       | R-8            |          |
| ADA4004-2ARZ-R7    | −40°C to +125°C   | 8-Lead SOIC_N       | R-8            |          |
| ADA4004-4ACPZ-R2   | −40°C to +125°C   | 16-Lead LFCSP_WQ    | CP-16-23       |          |
| ADA4004-4ACPZ-R7   | -40°C to +125°C   | 16-Lead LFCSP_WQ    | CP-16-23       |          |
| ADA4004-4ACPZ-RL   | -40°C to +125°C   | 16-Lead LFCSP_WQ    | CP-16-23       |          |
| ADA4004-4ARZ       | −40°C to +125°C   | 14-Lead SOIC_N      | R-14           |          |
| ADA4004-4ARZ-R7    | −40°C to +125°C   | 14-Lead SOIC_N      | R-14           |          |
| ADA4004-4ARZ-RL    | −40°C to +125°C   | 14-Lead SOIC_N      | R-14           |          |

<sup>&</sup>lt;sup>1</sup> Z = RoHS Compliant Part.

**Data Sheet** 

ADA4004-1/ADA4004-2/ADA4004-4

# NOTES

### **NOTES**