Risk Aversion in Learning Algorithms

Andreas Haupt Microsoft Research New England April 16, 2024

Consequential Online Learning

User shows up

Empfehlungssysteme

Empfehlungssysteme

Empfehlungssysteme

The effect is observed

The Online Learning Problem

Interactions Online Are Common

Content online

Credit Scores

Hiring

Bad Rep' is Hard to Get Rid of

N(0,1)

Bad Rep' is hard to get rid of: ε -Greedy

Bad Rep' is hard to get rid of: ε -Greedy

(b) One realization of the advantage walk for ε -Greedy where the safe action has distribution $\mathbb{1}_{\{0\}}$ while the risky action has distribution U[-1,1]

arepsilon-Greedy is risk-averse

Theorem. Let $(\varepsilon_t)_{t\in\mathbb{N}}$ such that $\varepsilon_t\to 0, \Sigma\varepsilon_t=\infty$.

If there is a deterministic action a^* among the optimal actions, and all actions have symmetric reward distributions, $\mathbb{P}[a_t = a^*] \to 1$.

Proof Sketch. Consider the story of aggregate historic rewards $(X_t)_{t \in \mathbb{N}}$.

- ullet Define the last crossing time of zero au.
- Let E be event that is positive
- $(X_t)_{\tau < t' < t} | E$ is a positive symmetric random walk with small variance.
- \bullet For constant exploration, get convergence to probability in (0,1).

Empirically, the theorem is correct

- Simulation with one deterministic Arm
- Consider prediction policy setting: Known 0 treatment effect

(a) Perfect risk aversion.

Drop Assumptions

(a) ε -Greedy with no optimal safe action.

Finite-time effect may be large

(b) ε -Greedy with a strictly better risky action.

Application to a Recommendation System

- Return utility $u_{ij} = x_{ij} + \varepsilon_{ij}$
- Could do fancier simulation with

Risk Aversion in Reinforcement Learning

Visualization of a Grid World

The Reinforcement Learning Problem

- S: States
- A: Actions
- *T*: Transitions
- R: Reward Function
- γ : Discount factor

Goal: Maximize
$$\sum_{t=0}^{T} \gamma^{T} r(s_{t}, a_{t})$$

- Common class of algorithms: Policy Optimization
- $\pi: S \times A \times \Theta \rightarrow \Delta(A)$
- Θ: Parameter Space
- Classical algorithm REINFORCE

Bring up high variance low variance point

Bring up high variance low variance point

The Development Process of

• Consider θ_t developing as

$$d\theta_t = L(\theta_t)dt$$
 "gradient flow"

The real development is finite

$$\theta_{t+1} - \theta_t = hL(\theta_t)dt$$

The reality is also noisily observed

$$\theta_{t+1} - \theta_t = hL(\theta_t)dt + \sqrt{h\sigma(\theta_t)}dW_t$$

What is the real loss?

How to Correct for Risk Aversion

Recap: What was the issue with risk aversion

- Algorithm affects data distribution
- Noisy data leads to less of such data, not more
- What are ideas for correcting?
- Optimism!
- (If someone of you mentions reweighing: In the paper, some nice maths, we can discuss)

UCB is risk-neutral

Theorem. There exists $\rho_0 > 1$ such that for any $\rho > \rho_0$ and any $(\varepsilon_t)_{t \in \mathbb{N}}$ with $\varepsilon_t \to 0$, UCB is risk-neutral.

Proof Sketch. Consider the story of aggregate historic rewards $(X_t)_{t \in \mathbb{N}}$.

- Prove again that there is
- Let E be event that is positive
- $(X_t)_{\tau \leq t' \leq t}$ | E is a positive symmetric random walk with small variance.
- \bullet For constant exploration, get convergence to probability in (0,1).

Optimism in Bandits

Theorem is correct

Optimism too low

Optimism in Reinforcement Learning

Wisdom from Labor Economics (Li et al. 2020)

