

L6 ANSWER 1 OF 1 WPIDS COPYRIGHT 2001 DERWENT INFORMATION
LTD

AN 1981-50839D [28] WPIDS

TI Releasing adhesive - comprises microencapsulated hydrocarbon e.g. propane
5 with thermoplastic resin, and resin adhesive.

DC A81 G03

PA (MATI) MATSUMOTO YUSHI SEIYAKU KK

CYC 1

PI JP 56061468 A 19810526 (198128)* <--

10 PRAI JP 1979-137386 19791023

AN 1981-50839D [28] WPIDS

AB JP 56061468 A UPAB: 19930915

Releasing adhesive contains (1) a heat-expanding fine globe in an amt. of
30-100 pts.wt. to 100 pts.wt. of adhesive component. (1) is produced by
15 microcapsuling (a) a component forming gas when heated at below the
softening pt. of (b), with (b) thermoplastic resin. (b) is e.g. acrylic
acid polymer such as polyacrylic ester, acrylic ester-acrylonitrile
copolymer, vinylidene chloride-methacrylic ester copolymer,
styrene-acrylic ester copolymer. (a) is pref. propane, butane, pentane,
20 isobutane. (1) has a grain dia. of 5-50 (10-30) microns and an expansion
rate of 20-150(80-150) times. Adhesive component includes pref. a
thermoplastic resin adhesive comprising e.g. natural rubber, SBR,
polyisobutylene, polyacrylate, auxiliary tackifier e.g. rosin, ester
gum, plasticiser e.g. mineral oil, lanolin, polybutene, filler e.g. Zn
25 white, MgO.

Used for adhesion of label, wall paper.

（アントリーフラム）

⑨ 日本国特許庁 (JP)

⑩ 特許出願公開

⑪ 公開特許公報 (A)

昭56-61468

§ Int. Cl.³
C 09 J 3/00

識別記号

厅内整理番号
7016-4 J

⑫ 公開 昭和56年(1981)5月26日

発明の数 2
審査請求 未請求

(全 4 頁)

⑬ 剥離可能な接着剤

⑭ 特 願 昭54-137386

⑮ 出 願 昭54(1979)10月23日

⑯ 発 明 者 宮崎正毅

奈良県生駒郡三郷町大字美松ヶ

丘東1丁目55番地

⑰ 発 明 者 河北英二

八尾市山本町南8丁目171番地

⑱ 出 願 人 松本油脂製業株式会社

八尾市渋川町2丁目1番3号

⑲ 代 理 人 弁理士 青山篠 外1名

明細書

1. 発明の名称

剥離可能な接着剤

2. 特許請求の範囲

1. 加熱により膨張する膨張性微小球を接着成分100重量部に対し30~100重量部含有する接着剤。

2. 膨張性微小球が発泡倍率約20~150倍である第1項記載の接着剤。

3. 膨張性微小球が約5~50μの粒径を有する第1項記載の接着剤。

4. 膨張性微小球の熱可塑性樹脂がアクリロニトリル-塩化ビニリデン共重合樹脂、アクリロニトリル-酢酸ビニル共重合樹脂、アクリロニトリル-メタアクリル酸メチル共重合樹脂

からなる群から選ばれた樹脂であり、ガス発生成分がプロパン、ブタン、ベンタン

から成る群から選ばれた低沸点液体である第1項記載の接着剤。

5. 接着剤が感圧接着剤である第1項記載の接着

剤。

6. 接着剤がエマルジョン型接着剤である第1項記載の接着剤。

7. 加熱により膨張する膨張性微小球を接着成分100重量部に対し約30~100重量部含有する接着剤を少なくとも片面に空布した接着性シート。

8. 膨張性微小球が発泡倍率約20~150倍である第7項記載の接着性シート。

9. 膨張性微小球が約5~50μの粒径を有する第7項記載の接着性シート。

10. 膨張性微小球の熱可塑性樹脂がアクリロニトリル-塩化ビニリデン共重合樹脂、アクリロニトリル-酢酸ビニル共重合樹脂、アクリロニトリル-メタアクリル酸メチル共重合樹脂

からなる群から選ばれた樹脂であり、ガス発生成分がプロパン、ブタン、ベンタン

から成る群から選ばれた低沸点液体である第7項記載の接着性シート。

11. 接着性シートが感圧接テープである第1項

記載の接着性シート。

12. 接着性シートがラベルである第1項記載の接着性シート。

13. 接着性シートが離紙である第1項記載の接着性シート。

3. 発明の詳細な説明

本発明は用済み後容易に剥離できる接着剤に関する。

接着剤、例えば感圧接着テープ、シーリングテープ、接着剤詰替テープ、絶縁テープ、ラベル、マスキングテープ等に用いられている粘着剤および一般に使用されている各種接着剤には一時的な接着性を得る目的で使用されるが用済み後、容易に接着性を喪失して剥離できる性質が要請されるものがある。

例えば、ビール瓶や実験室内試料瓶等に用いるラベルは用済み後、洗浄してラベルを剥離しているが、この洗浄作業には大変な労力を要している。さらに、離紙は貼りつけは比較的容易であるが、その剥離作業は決して容易でない。

(3)

とができる。

本発明の目的にとつて好ましい熱膨張性微小球は大きさ約5~50μ、好ましくは約10~30であり、発泡倍率約20~150倍、好ましくは約80~150倍のものである。

熱可塑性樹脂の製造に用いられるモノマーは配合される粘着成分の種類により、適宜選定すればよい。具体的には、アクリル酸モノマー、例えばアクリル酸、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、メタクリル酸、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、ラウリルアクリレート、2-エチルヘキシルアクリレート等、アクリロニトリル、アルケニル芳香族モノマー、例えばステレン、α-メチルステレン、β-メチルステレン、p-メチルフェレン、エチルステレン、α-ビニルキシレン、α-クロロステレン、α-ブロモステレン等およびビニル系モノマー、例えば塩化ビニル、塩化ビニリデン、臭化ビニル、酢酸ビニル、

(5)

一般家庭用あるいは工業用製品においても接着剤で強固に接着された包装は解剖に手間どることは日常よく経験するところである。また工業上、作業工程や運送工程において一時的な仮接着を行い、次の工程で容易にそれを剥離せ得るならば著しく作業工程が簡素化する場合のあることも事実である。

しかしながら現在、その様な目的に使用できる便利な接着剤は提案されていない。本発明は現在時には接着性を出なわす、剥離時には単に加熱するのみで容易に剥離する接着剤を提供するものである。即ち本発明は加熱により膨張する膨張性微小球を接着成分100重量部に対し30~100重量部含有する接着剤および該接着剤を充てした接着性シートに関する。

本発明において用いられる加熱により膨張する熱膨張性微小球は熱可塑性樹脂を核としその内部に該樹脂の軟化点以下の温度でガスを発生する物質を含有するマイクロカプセルであり、例えば特公昭42-26524号等の方法によつて得るこ

(4)

筋酸ビニル、ステアリン酸ビニル等が例示される。これらのモノマーは相互に共重合させてもよく、イタコン酸、シトラコン酸、マレイン酸、フマル酸またはビニル安息香酸等と共に重合させてもよい。好ましくはアクリル酸系ポリマー、例えばポリアクリル酸エステル、アクリル酸エステル-アクリロニトリル・コポリマー、メタクリル酸エステル-アクリル酸コポリマー等、塩化ビニリデン系ポリマー、例えば塩化ビニリデン-メタクリル酸エステル、塩化ビニリデン-アクリロニトリルコポリマー等およびステレン系ポリマー、例えばポリステレン、ステレン-アクリル酸エステルコポリマー等である。特にブチルアクリレート-2エチルヘキシアクリレート-塩酸ビニル共重合物が好ましい。

上記熱可塑性樹脂の軟化点以下の温度でガスを発生する物質としては軟化点以下の沸点、好ましくは約-10℃~60℃の範囲の沸点を有する液体、例えばブタン、プロパン、ベンゼン、ヘキサン等特に好ましはイソブタン、ネオペンタン等で

(6)

ある。また、アゾビスイソブチロニトリル等の熱によって分解してガスを発生するものを用いてよい。

本発明のために使用し得る熱膨張性微小球は具体的にはミクロバール(松本油脂製造株式会社)、サランマイクロスフェア(ダウケミカル社)等の商品名で販売されているものから選定使用してもよい。

本発明に使用される接着成分は特に限定的ではなく從来公知のものから適宜選定すればよいが好ましくは熱可塑性樹脂系接着剤である。例えばセロハンテープ、クラフト紙テープ、ラベル、等には天然ゴム、再生ゴム、SBR、NBR、ポリイソブチレン、ポリビニルエーテル、ポリアクリルエステル等の粘着主剤にロジン、エステルガム、石油樹脂、フェノール樹脂、クマロンインデン樹脂等の粘着補助剤およびタル酸エステル、不飽和植物油、動物油、ラノリン、ポリブテン、ポリアクリレート、低分子量ポリイソブチレン等の可塑剤、亜鉛灰、酸化マグネシウム、炭酸カルシウム、クレー、水酸化アルミニウム、無水ケイ酸、カーボンプラック、チタン白、顔料等の充填剤および酸化防止剤、金属ジオカーバメート、金属キレート剤等の老化防止剤等を適宜配合した接着成分を用いればよい。

特開昭56-61468(3)
ム、クレー、水酸化アルミニウム、無水ケイ酸、カーボンプラック、チタン白、顔料等の充填剤および酸化防止剤、金属ジオカーバメート、金属キレート剤等の老化防止剤等を適宜配合した接着成分を用いればよい。

またゴム、熱可塑性樹脂等を水に乳化させたマルジション型接着剤、ペースト型接着剤等に熱膨張性微小球を配合し所要の目的を達成することもできる。

熱膨張性微小球の配合量は接着剤中の接着成分100重量部に対し約30~100重量部、好ましくは約40~70重量部である。熱膨張性微小球の配合量が約30重量部より少ないと剥離効果が不十分となり100重量部より多いと初期接着性が著しく損なわれる。

本発明接着剤で接着したラベル、壁紙等は剥離時適当な手段、例えば熱風、アイロンかけ、熱湯、赤外線照射等により加熱することにより熱膨張性微小球が膨張し、そのため接着性が失なわれて容易に剥離する。

(7)

本発明は第1図に示すごとく、基材シート(1)上に膨張性微小球を含む接着剤層(2)を形成せしめた接着性シートも包含するものである。この様な接着性シートとしては例えばビニルテープ、セロハンテープ、プラスチックテープ、包装テープ、シリシングテープ、防水テープ、絕縁テープ、切手、印紙、シール、ラベル、壁紙、包装および搬送における緩衝紙、保護シート、防錆紙、封筒、等のシート類等が例示される。これらのシートは所望により両面に接着剤を塗布してもよく、また所望部分にスポット印刷してもよい。

本発明接着剤はそれ自体、粘着性のシート状に成形して用いてよい。

本発明接着剤はラベル、壁紙等使用時は強固に接着して剥離しないが、用済み後は容易に剥離することの望ましいものの接着剤として特に有用である。

以下実施例をあげて本発明を説明する。

実施例1

以下の処方でゴム系感圧接着剤を配合した。

(9)

(8)

処方	重量部
ミクロバールF-30 ⁽¹⁾ (固体分70%)	6.0
天然ゴムラテックス(固体分55%)	1.82
水素添加ロジンエステル乳化液(固体分40%)	2.50
老化防止剤分散液(固体分50%)	4

(1): イソブタンを発泡剤とし塩化ビニリデンーアクリロニトリル共重合体を粒とする膨張性微小球。

上記接着剤をブレイド・コーティングを用いてクラフト紙上に100g/m²を塗布し、50℃で乾燥した。表面接着性を有する感圧接着シートが得られた。この接着シートをステンレススチール板に接着させ以下の条件で剥離試験にかけたときの剥離強度は250g/cm²であった。

剥離試験条件: JIS-Z-1523 紙粘着テープの試験方法の常態粘着力試験方法に基いて行った。

次いでこの接着シート付着ステンレススチール板赤外線ランプで120℃4分間照射したところ接着層が膨張しシートは自然にステンレススチー

—475—

(10)

1118

ル板から剥離した、また剥離後ステンレススチール面に汚れが残らなかつた。

実施例 2

以下の处方でエマルジョン型接着剤を調製した。

处方

アクリル系エマルジョン樹脂(固形分50%)

100部

2-エチルヘキシルアクリレート	70部
酢酸ビニル	30部
アクリル酸	2部

ミクロバールF-30(固形分70%) 70部

この接着剤20gを厚さ5mm、100×100mmの2枚のベニヤ板の半分に塗布し、ほぼ乾燥した後、両者を互い違い接着する。24時間室内に放置した後、接着剤の付着していない部分を万引で保持してベニヤ板面に直角に力をかけたが剥離せず、ベニヤ板が割れた。

一方、接着力部に赤外線(120°C、2分)を照射したものは接着強度が強張して手で簡単に剥離することができた。

(11)

実施例 3

以下の处方で加硫ゴムシート接着剤を調製した。

处方

ミクロバールF-30(固形分100%) 100部

天然ゴム(RSS、NO. 1) 100部

プロセスオイル 20部

老化防止剤(2,5-ジターシヤリーブチルハイドロキノン) 100部

水添ロジンエステル

これを80°Cで10分間健練しローラーで厚さ3mmのシートにする。別にミクロバールを配合しない厚さ7mmの天然ゴムシートを作り、上記ミクロシートをサンドイッチ状にはさんで再びローラーにかけ厚さ10mmのシートにする。ゴムはよく粘着し剥離しない。この三層シートを160°C、5分間加熱すると中央部の接着強度が強張し剥離した二枚の加硫ゴムシートが得られる。

4. 図面の簡単な説明

図1図は本発明接着性シートの一断面図を示す。

図中(1)は基材シート、(2)は膨張性微小球の層を示す。

02

第1図

