

CLIPPEDIMAGE= JP411329902A

PAT-NO: JP411329902A

DOCUMENT-IDENTIFIER: JP 11329902 A

TITLE: SOLID ELECTROLYTIC CAPACITOR AND MANUFACTURE
THEREOF

PUBN-DATE: November 30, 1999

INVENTOR-INFORMATION:

NAME	COUNTRY
YOSHIDA, KATSUHIRO	N/A
KUGE, NORIKO	N/A

ASSIGNEE-INFORMATION:

NAME	COUNTRY
NEC CORP	N/A

APPL-NO: JP10133791

APPL-DATE: May 15, 1998

INT-CL (IPC): H01G009/052;H01G009/04

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a niobium solid electrolytic capacitor having little changes in electrostatic capacitance before and after a reflow process when a part is mounted, and to provide the manufacturing method for the niobium solid electrolytic capacitor.

SOLUTION: This is a solid electrolytic capacitor in which a dielectric layer, which is formed on the surface of an anode member obtained by sintering molded niobium metal powder, is composed of a niobium oxide layer and a niobium nitride region, and the manufacturing method of the solid electrolytic capacitor. In this case, the nitrogen concentration after the anode member,

which is obtained by sintering, has been nitrogen-treated, is 900 to 2,300 ppm.

Also, a conductive high molecular material layer is provided on the surface of the dielectric layer as a cathode layer, and then a graphite layer and a silver paste layer are provided successively.

COPYRIGHT: (C)1999,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-329902

(43)公開日 平成11年(1999)11月30日

(51)Int.Cl.⁶
H 01 G 9/052
9/04

識別記号
3 0 1

F I
H 01 G 9/05
9/04 K
3 0 1

審査請求 有 請求項の数9 O L (全 6 頁)

(21)出願番号 特願平10-133791

(22)出願日 平成10年(1998)5月15日

(71)出願人 000004237
日本電気株式会社
東京都港区芝五丁目7番1号
(72)発明者 吉田 勝洋
東京都港区芝五丁目7番1号 日本電気株
式会社内
(72)発明者 久下 徳子
東京都港区芝五丁目7番1号 日本電気株
式会社内
(74)代理人 弁理士 若林 忠 (外4名)

(54)【発明の名称】 固体電解コンデンサ及びその製造方法

(57)【要約】

【課題】 本発明は、部品実装時のリフロー工程の前後で、静電容量の変化が少ないニオブ固体電解コンデンサ及びその製造方法を提供することを目的とする。

【解決手段】 ニオブの金属粉末を成形し、次いで焼結して得られる陽極体の表面部分に形成される誘電体層が、ニオブ酸化物層及びニオブ窒化物領域からなることを特徴とする固体電解コンデンサ及びその製造方法。

1

【特許請求の範囲】

【請求項1】ニオブの金属粉末を成形し、次いで焼結して得られる陽極体の表面部分に形成される誘電体層が、ニオブ酸化物層及びニオブ窒化物領域からなることを特徴とする固体電解コンデンサ。

【請求項2】前記焼結して得られた陽極体を窒化処理した後の窒素濃度が、900～2300 ppmであることを特徴とする請求項1記載の固体電解コンデンサ。

【請求項3】前記誘電体層の表面に、陰極層として導電性高分子材料層、次いでグラファイト層、次いで銀ペースト層が、設けられていることを特徴とする請求項1記載の固体電解コンデンサ。

【請求項4】前記導電性高分子材料層が、ポリピロールからなる導電性高分子材料層である請求項3記載の固体電解コンデンサ。

【請求項5】ニオブの金属粉末を成形し、次いで焼結して得られる陽極体の表面を窒化処理する工程と、この窒化処理された陽極体を陽極化成してニオブ酸化物層及びニオブ窒化物領域からなる誘電体層を形成する工程とを有する固体電解コンデンサの製造方法。

【請求項6】前記窒化処理が、ニオブの金属粉末を成形し、次いで焼結して得られる陽極体を窒素雰囲気下で加熱する窒化処理である請求項5記載の固体電解コンデンサの製造方法。

【請求項7】前記窒化処理により得られる陽極体中の窒素濃度が、900～2300 ppmであることを特徴とする請求項5記載の固体電解コンデンサの製造方法。

【請求項8】前記陽極化成の後、陰極層として導電性高分子材料層、次いでグラファイト層、次いで銀ペースト層を設ける請求項7記載の固体電解コンデンサの製造方法。

【請求項9】前記導電性高分子材料層が、ポリピロールからなる導電性高分子材料層である請求項8記載の固体電解コンデンサの製造方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、ニオブを陽極体として用いた固体電解コンデンサ（以下ニオブ固体電解コンデンサ）に関し、特に、リフロー工程前後における静電容量の変化の少ない固体電解コンデンサ及びその製造方法に関する。

【0002】

【従来の技術】固体電解コンデンサは一般的に、弁作用金属焼結体の表面に誘電体層として酸化物層を有し、その上に陰極層が形成され、さらに陰極層から陰極引き出し用リードが配設された構造となっている。

【0003】ここで、弁作用金属の焼結体は、弁作用金属の粉末を圧縮成形し、高温真空中で加熱されることにより得られ、酸化物層は、陽極化成することにより形成される。

2

【0004】弁作用金属は、弁作用を持つ一群の金属をいい、例えば、アルミニウム、チタン、ジルコニウム、ニオブ、ハフニウム、タンタル等が挙げられるが、この中で実用化されているのは、現時点では、アルミニウムとタンタルに限定される。さらに、アルミニウムについては、エッチング箔を陽極体として使用することが一般的であり、弁作用金属焼結体を用いた固体電解コンデンサは、タンタルを陽極体として用いた固体電解コンデンサ（以下タンタル固体電解コンデンサ）のみといつても過言ではない。

【0005】この最大の理由は、静電容量の安定性である。例えば、ニオブ固体電解コンデンサの場合、前に述べたタンタル固体電解コンデンサと比較して、誘電体層の酸化物層が熱の影響を非常に受けやすく、そのため静電容量が変化しやすい。特に、部品リフロー工程において、温度200～260°C、時間にして数秒～10秒程度の加熱により、静電容量が変化するため、実用化に到らなかつた経緯がある。

【0006】

20 【発明が解決しようとする課題】本発明の目的は、部品実装時のリフロー工程の前後で、静電容量の変化が少ないニオブ固体電解コンデンサ及びその製造方法を提供することである。

【0007】

【発明を解決するための手段】本発明は、ニオブの金属粉末を成形し、次いで焼結して得られる陽極体の表面部分に形成される誘電体層が、ニオブ酸化物層及びニオブ窒化物領域からなることを特徴とする固体電解コンデンサに関する。

30 【0008】また、本発明はニオブの金属粉末を成形し、次いで焼結して得られる陽極体の表面を窒化処理する工程と、この窒化処理された陽極体を陽極化成してニオブ酸化物層及びニオブ窒化物領域からなる誘電体層を形成する工程とを有する固体電解コンデンサの製造方法に関する。

【0009】本発明によれば、部品実装時のリフロー工程において、著しく静電容量の変動を抑えることが可能になる。

40 【0010】この理由としては、本発明者は、以下のように推定する。すなわち、リフロー工程等の加熱工程において、酸化物層から、ニオブ陽極基体側に酸素拡散がおこり、静電容量が増大する。しかし、誘電体中に含まれる窒素は、酸素ほど拡散が起こらないため、結果的に誘電体中の窒化物の相対的割合が増大することになる。ここで、窒化物は、酸化物と比較すると誘電率が低いため、窒化物の相対的割合の増大は、静電容量を下げる効果がある。以上より、発明者は、酸素拡散による静電容量の増加が、誘電率の低い窒化物の相対的割合の増加により相殺されていると推定しているのである。

50 【0011】

【発明の実施の形態】本発明の一実施形態を図面を用いて説明する。図1は、ニオブ固体電解コンデンサの一実施形態を示す図である。この図において、ニオブ粉末を成形し、次いで焼結して得られる陽極体の基体部分1に、ニオブ金属リード線2が埋設されている。この陽極体基体部分1の表面を覆うように、誘電体層3が設けられている。誘電体層3の厚みは、コンデンサの静電容量の設計によって異なるが、例えば、50～3000nm程度の厚みとなる。

【0012】誘電体層3は、ニオブ酸化物層とニオブ窒化物領域からなり、その構造は、以下の5通りが考えられる。

(1) 図2に示すように、ニオブ金属陽極体の基体部分6の上に形成された誘電体層7が形成され、この誘電体層7が、ニオブ窒化物が均一分散したニオブ酸化物層8である場合。この場合のように、ニオブ窒化物が、誘電体層中で均一分散している場合も窒化物領域があるものとする。

(2) 図3に示すように、ニオブ金属陽極体の基体部分9の上に形成された誘電体層10が形成され、この誘電体層10が、ニオブ窒化物のかたまり11が、ニオブ酸化物12の中に存在している構造である場合。この場合のように、ニオブ窒化物のかたまりが、ニオブ酸化物層中に存在する場合も、ニオブ窒化物領域があるものとする。また、ニオブ窒化物領域が、酸化物層との間で明確な境界がなくても良い。

(3) 図4に示すように、ニオブ金属陽極体の基体部分13の上に形成された誘電体層14が形成され、この誘電体層14が、ニオブ窒化物層15が、ニオブ酸化物層16の中に層状に存在する構造である場合。ただし、この層は、誘電体層の任意の部分に存在してもよい。この場合のように、ニオブ窒化物層が、ニオブ酸化物層中に存在する場合も、ニオブ窒化物領域があるものとする。また、ニオブ窒化物領域が、酸化物層との間で明確な境界がなくても良い。

(4) 図1の誘電体層3が、部分的に(1)、(2)、(3)のうち任意の2つの構造を有する誘電体層である場合。

(5) 図1の誘電体層3が、部分的に(1)、(2)、(3)の3つの構造を有する誘電体層である場合。本発明は(1)～(5)のいずれの場合も含む。

【0013】ニオブ窒化物の含有量は、ニオブの金属粉末を成形し、次いで焼結して得られた陽極体を窒化処理した後の窒素含有量という形で定量される。窒素含有量が増加すると、リフロー工程前後の静電容量の変化率が減少するが、コンデンサの漏れ電流の値も増加するため、両者のバランスから、900～2300ppmの含有量であることが好ましい。

【0014】次に、図1に示すように、誘電体層3の外側に陰極層が形成されている。陰極層として、通常用い

られるものは使用できるが、例えば、二酸化マンガン層、次いでグラファイト層、次いで銀ペースト層が、順次形成された陰極層を使用することができる。

【0015】また、前記二酸化マンガンの代わりに導電性高分子材料層を設けることも可能である。二酸化マンガン層の形成には、200℃以上の加熱工程を伴うが、導電性高分子材料層の形成は、常温で行うことが可能であり、静電容量の安定化の目的のためには、工程的に有利であると言える。導電性高分子材料とは、半導体領域

10 以上の導電性を示す高分子材料のことをいい、ポリアセチレン、ポリアニリン、ポリパラフェニレン、ポリピロール、ポリチオフェン等が挙げられる。この中で、ポリピロールが、周波数特性がよく、電解酸化重合にて、膜形成性が良好な点から最適といえる。

【0016】この陰極層の外側に、図1に示すように、陰極層に接する形で陰極引き出し用のリード5が配設されている。さらにニオブ固体電解コンデンサは、エポキシ樹脂で外装されている。

【0017】続いてこの固体電解コンデンサの製造方法の一実施形態を説明する。平均粒径1～100μm程度のニオブ金属の粉末をある程度成形性を高めるためにバインダーを混合し、二次凝聚した造粒粉を作製する。次いで、図5に示すように、この造粒粉17にニオブ金属リード線18を埋設し、プレス工法により圧縮成形する。この圧縮成形体19を10⁻⁵Torr以下の中真空、さらに好ましくは10⁻⁶Torr以下の中真空中で、1200℃～1700℃の温度で焼結する。

【0018】次いで焼結後の冷却過程で窒素ガスを焼結炉内に導入し、図6に示すように、焼結された陽極体20のニオブ金属21の表面に窒化物22を形成する。ニオブは、一定温度で、窒素雰囲気下に放置することにより、窒化物を形成することが知られているが、この方法をとることにより、陽極体のごく表面を窒化処理しやすい、また窒化物の量を制御しやすいといった利点がある。この窒化物の形成工程については、かならずしも冷却過程で行う必要はなく、例えば、焼結体を常温に冷却後に、再度窒素雰囲気下で加熱し、窒化物を形成することも可能である。次いで、窒化物が形成された陽極体表面に、陽極化成により酸化物層を形成する。陽極化成とは、陽極体と対向電極を電解液の中に浸し、陽極体を直流電流の高電位側、対向電極を低電位側に接続し、電圧(以下化成電圧)を印加することにより、酸化物層を形成する工程をいう。本発明の製造方法では、窒化物が形成された陽極体の表面を侵入する形で酸化物層が形成されると同時に、窒化物も拡散により移動するため、誘電体層の構造としては、図3、図4に示される構造の組み合わせ、あるいは、図2、図3、図4に示される構造の組み合わせになりやすい。この誘電体層上に、陰極層を形成する。陰極層としては、通常用いられるものをしようすることができ、例えば、誘電体層の上に、二酸化マ

40 マンガン層、次いでグラファイト層、次いで銀ペースト層が、順次形成された陰極層を使用することができる。

5

ンガン層を形成し、その外側にグラファイト層、グラファイト層の外側に銀ペースト層を形成する。また、二酸化マンガン層の代わりに導電性高分子材料を形成して、さらに、その外側にグラファイト層、グラファイト層の外側に銀ペーストを形成することも可能である。前述のように、二酸化マンガン層は、工業的には、硝酸マンガンの熱分解形成されるため、200°C以上の加熱工程を伴うが、導電性高分子材料は、常温での電解酸化重合により形成できるため、静電容量の安定化といった観点からは、有利な製造方法といえる。

【0019】導電性高分子材料の中では、前述のように、周波数特性がよく、電解酸化重合で膜形成性のよいポリピロールがもっとも好ましい材料といえる。

【0020】この陰極層の上に、陰極引き出し用リードを等を付与した後、エポキシ樹脂で封止し、固体電解コンデンサを得る。

【0021】(実施例1) 平均粒径10μmのニオブ金属の粉末に3重量%のバインダーを混合し、二次凝集した造粒粉を作製した。次いで、図5に示すように、この造粒粉17gを0.15g使用して、ニオブ金属リード線2を埋設し、プレス工法により圧縮成形した。この圧縮成形体3を10⁻⁶Torr以下の中真空中で、1600°Cの温度で30分間焼結した。

【0022】次いで焼結後の冷却過程で窒素ガスを焼結炉内に導入し、窒化処理温度300°Cで、窒素の圧力300Torrの雰囲気下に5分間保持し、図6に示すよ*

$$\text{静電容量の変化率} (\%) = (\text{リフロー後の静電容量}) / (\text{リフロー前の静電容量}) \times 100 \quad (\text{式1})$$

漏れ電流は、印加電圧は、化成電圧の70%電圧で、印加時間1分の条件で測定を行った。本実施例の化成電圧は30Vであるため、21Vの電圧を印加した。その結果を、図8に示す。

【0030】静電容量の変化率は、約6.8%で窒化処理の効果が認められた。また、漏れ電流の値は、約0.03μFで良好な値を示した。

【0031】(実施例2)～(実施例5) ※

	処理温度 (°C)	窒素含有量 (ppm)
実施例 1	300	850
実施例 2	450	900
実施例 3	570	1600
実施例 4	600	2200
実施例 5	700	3000
比較例 1	未処理	80

注) 処理時の窒素圧 300Torr

処理時間 5分

実施例1～実施例5の結果をみると、窒化処理により、静電容量の変化率が減少し、効果があることがわかる。コンデンサの漏れ電流の値も増加するため、両者のバランスから、窒素含有量は、900～3000ppmであることが好ましく、静電容量の変化率が、±20%の範囲にある900～2300ppmは、もっとも好ましい。

6

* うに、陽極表面に窒化物を形成した。この陽極表面に対する窒素含有量は、850ppmであった。

【0023】次いで、窒化物が形成された陽極表面に、陽極化成により酸化物層を形成した。この時、最終の静電容量が2μFになるように、陽極表面に向電極に対して30Vの化成電圧を印加し、酸化層を形成した。

【0024】この酸化物層の上に、電解酸化重合により、ポリピロール層を形成し、さらにグラファイト層、銀ペースト層を順次形成した。この時のポリピロール層

10 の厚みは、1.0～2.0μm、グラファイト層及び銀ペースト層の厚みは、それぞれ2.0～5.0μmであった。

【0025】さらに、陰極引き出し用のリード線を陰極層の上に配設し、エポキシ樹脂で封止することにより、所望の固体電解コンデンサを得た。

【0026】この固体電解コンデンサに対し、リフロー前後の静電容量の変化と漏れ電流の値を測定した。

【0027】本実施例の固体電解コンデンサに適用したリフロー条件は、エアリフロー方式で、ピーク温度240°C、ピーク温度保持時間10秒で行った。

20 【0028】静電容量の測定については、周波数120Hz、実効電圧1.0V、バイアス1.5Vで行い、式1に示されるリフロー前後の静電容量変化率により、評価を行った。その結果を図7に示す。

【0029】

【数1】

※表1に示す温度で窒化処理を行い、焼結して得られた陽極表面に対する窒素含有量を表1に示すように変えた以外は、実施例1と全く同じ方法で固体電解コンデンサを作製した。静電容量変化率の結果を図7に示し、漏れ電流の評価結果を図8に示す。

【0032】

【表1】

★【0033】(比較例1) 実施例1の窒化処理を行わなかった以外は、全く実施例1と同様な方法で、固体電解コンデンサを作製した。静電容量変化率の結果を図7に示し、漏れ電流の評価結果を図8に示す。静電容量の変化率が約100%と窒化処理を行った場合と比較すると、変化率が高いことがわかる。

★50 【0034】

【発明の効果】本発明によれば、ニオブを陽極体に用いた固体電解コンデンサであって、後の部品リフロー工程の前後で、静電容量の変化が少ない固体電解コンデンサ及びその製造方法を提供することができる。

【図面の簡単な説明】

【図1】本発明の固体電解コンデンサの外装する前の断面図である。

【図2】本発明の固体電解コンデンサの誘電体層拡大概略図である。

【図3】本発明の固体電解コンデンサの誘電体層拡大概略図である。

【図4】本発明の固体電解コンデンサの誘電体層拡大概略図である。

【図5】焼結前のニオブ金属粉末の圧縮成形体を示す概略図である。

【図6】表面を窒化処理した後の陽極体を示す概略図である。

【図7】陽極体の窒素含有量とリフロー工程前後の静電容量の関係を示す図である。

【図8】陽極体の窒素含有量と漏れ電流の関係を示す図である。

【符号の説明】

- | | |
|----|----------------------|
| 1 | ニオブ金属陽極体 |
| 2 | ニオブ金属リード線 |
| 3 | 誘電体層 |
| 4 | 陰極層 |
| 5 | 陰極引き出し用リード |
| 6 | ニオブ金属陽極体の基部部分 |
| 7 | 誘電体層 |
| 8 | ニオブ窒化物が均一分散したニオブ酸化物層 |
| 9 | ニオブ金属陽極体の基部部分 |
| 10 | 誘電体層 |
| 11 | ニオブ窒化物のかたまり |
| 12 | ニオブ酸化物層 |
| 13 | ニオブ金属陽極体の基部部分 |
| 14 | 誘電体層 |
| 15 | ニオブ窒化物層 |
| 16 | ニオブ酸化物層 |
| 17 | ニオブ金属の粉末造粒粉 |
| 18 | ニオブ金属リード線 |
| 19 | 圧縮成形体 |
| 20 | 焼結された陽極体 |
| 21 | ニオブ金属 |
| 22 | 窒化物 |

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

