National Textile University, Faisalabad

Department of Computer Science

Name:	Minahil Fatima	
Class:	BSCS-5B	
Registration No:	23-NTU-CS-1051	
Lab Report:	Week 6 Home task	
Course Name:	Embedded IoT Systems	
Submitted To:	Sir Nasir Mahmood	
Submission Date:	21-October, 2025	

Week 6 Home Task

Task: Display of temperature, humidity, and LDR readings on OLED

Circuit pin map:

Device name	Pin name	Pin number
OLED	VCC	3.3 V
OLED	GND	GND
OLED	SCL	GPIO22
OLED	SDA	GPIO21
DHT	GND	GND
DHT	DATA	GPIO14
DHT	VCC	5.5 V
LDR	First side	GND
LDR	Second side	3.3 V
10K Resistor	First side	GND
10K Resistor	Second side	GPIO36

Code screenshots:

```
src > G main.cpp > ...
  1 #include <Arduino.h>
      #include <Wire.h>
      #include <Adafruit GFX.h>
       #include <Adafruit_SSD1306.h>
       #include <DHT.h>
       // --- Pin configuration ---
       #define DHTPIN 14 // DHT22 data pin
#define DHTTYPE DHT11 // Change to DHT11 if needed
#define LDR_PIN 34 // LDR analog input pin
       #define SDA_PIN 21  // I2C SDA #define SCL_PIN 22  // I2C SCL
       #define SCREEN_WIDTH 128
       #define SCREEN HEIGHT 64
       Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, -1);
       DHT dht(DHTPIN, DHTTYPE);
       void setup() {
         Serial.begin(115200);
          Serial.println("Hello, ESP32!");
          // Initialize I2C on custom pins
          Wire.begin(SDA_PIN, SCL_PIN);
```

```
// Initialize OLED
  if (!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) {
    Serial.println("SSD1306 allocation failed");
    for (;;);
  display.clearDisplay();
  display.setTextColor(SSD1306 WHITE);
  display.setTextSize(1);
  display.setCursor(0, 0);
  display.println("Initializing...");
  display.display();
 // Initialize DHT sensor
  dht.begin();
  delay(1000);
void loop() {
 // Read temperature and humidity from DHT sensor
  float temperature = dht.readTemperature();
  float humidity = dht.readHumidity();
 // Read LDR analog value and convert to voltage
  int adcValue = analogRead(LDR PIN);
  float voltage = (adcValue / 4095.0) * 3.3;
  // Check if DHT read failed
  if (isnan(temperature) || isnan(humidity)) {
   Serial.println("Error reading DHT22 sensor!");
```

```
return;
// Print values on Serial Monitor
Serial.print("Temperature: ");
Serial.print(temperature);
Serial.print(" °C | Humidity: ");
Serial.print(humidity);
Serial.print(" % | LDR ADC: ");
Serial.print(adcValue);
Serial.print(" | Voltage: ");
Serial.print(voltage, 2);
Serial.println(" V");
// Display readings on OLED
display.clearDisplay();
display.setTextSize(1);
display.setCursor(0, 0);
display.println("Hello IoT");
display.setCursor(0, 16);
display.print("Temp: ");
display.print(temperature);
display.println(" C");
display.setCursor(0, 28);
display.print("Humidity: ");
display.print(humidity);
display.println(" %");
display.setCursor(0, 40);
```

```
display.print("LDR ADC: ");
display.println(adcValue);
display.setCursor(0, 52);
display.print("Voltage: ");
display.print(voltage, 2);
display.println(" V");
display.display();

delay(2000); // update every 2 seconds

delay(2000); //
```

Code build success:

Code upload success:

Output:

