Problem.

Suppose that $\lambda \in F$ and that $J = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$.

Prove by induction that $J^n = \begin{pmatrix} \lambda^n & n\lambda^{n-1} \\ 0 & \lambda^n \end{pmatrix}$ for all $n \ge 1$.

Proof.

Let
$$P(n) = "J^n = \begin{pmatrix} \lambda^n & n\lambda^{n-1} \\ 0 & \lambda^n \end{pmatrix}$$
".

In case n=1, the claim holds, since $J=\begin{pmatrix} \lambda^1 & 1 \cdot \lambda^{1-1} \\ 0 & \lambda^1 \end{pmatrix}$. Thus, P(1) is true.

Suppose now P(k) holds for some $k \in \mathbb{Z}^+$.

Therefore,
$$J^k = \begin{pmatrix} \lambda^k & k\lambda^{k-1} \\ 0 & \lambda^k \end{pmatrix}$$
.

Note that, by inductive hyptothesis,

$$JJ^{k} = \begin{pmatrix} \lambda^{k} & k\lambda^{k-1} \\ 0 & \lambda^{k} \end{pmatrix} \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \tag{1}$$

$$= \begin{pmatrix} \lambda^k \lambda + k \lambda^{k-1} \cdot 0 & 1 \cdot \lambda^k + k \lambda^{k-1} \lambda \\ 0 \cdot \lambda + \lambda^k \cdot 0 & 0 \cdot 1 + \lambda^k \lambda \end{pmatrix}$$
 (2)

$$= \begin{pmatrix} \lambda^{k+1} & (k+1)\lambda^k \\ 0 & \lambda^{k+1} \end{pmatrix}, \tag{3}$$

which is exactly the claim in case n = k + 1. Therefore, P(k + 1) holds.

Since the claim is also true in case n=1, then $\forall n \in \mathbb{Z}^+.P(n)$ is true by induction. \square

Problem.

Suppose
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 1 & -1 \\ -6 & -5 & -3 \end{pmatrix}$$
 over $F = \mathbb{Q}$.

Find an invertible matrix Q such that $Q^{-1}AQ$ is in Jordan canonical form.

Solution.

Note that
$$A - tI = \begin{pmatrix} -t & 1 & 1 \\ 2 & 1 - t & -1 \\ -6 & -5 & -3 - t \end{pmatrix}$$
.

Expanding along the first row, we see that

$$\det(A - tI) = -t \begin{pmatrix} 1 - t & -1 \\ -5 & -3 - t \end{pmatrix} - \begin{pmatrix} 2 & -1 \\ -6 & -3 - t \end{pmatrix} + \begin{pmatrix} 2 & 1 - t \\ -6 & -5 \end{pmatrix}$$
(4)

$$= -t ((1-t)(-3-t) - 5) - (-6-2t-6) + (-10+6-6t)$$
 (5)

$$= t(1-t)(3+t) + 5t + 2(t+3) + 6 - 4 - 6t$$
(6)

$$= -\left((t^2 - t)(t+3) - 6 - 7t - 6 + 6t + 4\right) \tag{7}$$

$$= -\left(t^3 + 2t^2 - 3t - 8 - t\right) \tag{8}$$

$$= -\left(t^3 + 2t^2 - 4t - 8\right) \tag{9}$$

$$= -\left(t^2(t+2) - 4(t+2)\right) \tag{10}$$

$$= -(t-2)(t+2)^2 \tag{11}$$

Thus, $\lambda = 2$ and $\lambda = -2$ are the only eigenvalues.

Consider A-2I:

$$A - 2I = \begin{pmatrix} -2 & 1 & 1\\ 2 & -1 & -1\\ -6 & -5 & -5 \end{pmatrix}$$
 (12)

Now we solve (A-2I)|0:

$$R_1 \to R_1 + R_2, R_3 \to -\frac{1}{8}(R_3 + 3R_2) \mid \leadsto \begin{bmatrix} 0 & 0 & 0 & 0 \\ 2 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 (14)

$$R_2 \to \frac{1}{2}(R_2 + R_3) \rightsquigarrow \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 (15)

Therefore, $\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ spans E_2 , and there is one column in the dot diagram corresponding to K_2 .

Consider A + 2I:

$$A + 2I = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 3 & -1 \\ -6 & -5 & -1 \end{pmatrix}$$
 (16)

(17)

Now we solve (A + 2I)|0:

$$R_2 \to \frac{1}{4}(R_1 + R_2), R_3 \to \frac{1}{2}(R_3 + 3R_1) \mid \leadsto \begin{bmatrix} 2 & 1 & 1 \mid 0 \\ 1 & 1 & 0 \mid 0 \\ 0 & -1 & 1 \mid 0 \end{bmatrix}$$
 (18)

$$R_1 \to (R_1 - R_2) \implies \begin{bmatrix} 0 & -1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix}$$
 (19)

$$R_3 \to (R_3 + R_1) \implies \begin{bmatrix} 0 & -1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 (20)

Therefore, $\begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$ spans E_{-2} , and there is one column in the dot diagram corresponding to K_{-2} .

Since the algebraic multiplicity of -2 is 2 and it is equal to $\dim K_{-2}$, we know there must be a cycle of length two containing an element $v \in V$ such that $(A+2I)v = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$ and v is a generalised eigenvector in K_{-2} .

We now solve $A + 2I \mid \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$:

$$A + 2I \mid \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 2 & 3 & -1 & -1 \\ -6 & -5 & -1 & -1 \end{bmatrix}$$
 (21)

$$R_2 \to \frac{1}{4}(R_1 + R_2), R_3 \to \frac{1}{2}(R_3 + 3R_1) \iff \begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 \end{bmatrix}$$
 (22)

$$R_1 \to \frac{1}{2}(R_1 - R_3) \rightsquigarrow \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 \end{bmatrix}$$
 (23)

$$R_1 \to \frac{1}{2}(R_1 - R_2) \rightsquigarrow \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 1 \end{bmatrix}$$
 (24)

Therefore, if $v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, then x + y = 0 and -y + z = 1.

Therefore, if
$$x = \tau$$
, then $v = \begin{pmatrix} \tau \\ -\tau \\ 1 - \tau \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \tau \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$.

Now consider $(A + 2I)^2$:

$$(A+2I)^2 = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 3 & -1 \\ -6 & -5 & -1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 1 \\ 2 & 3 & -1 \\ -6 & -5 & -1 \end{pmatrix}$$
 (25)

$$= \begin{pmatrix} 0 & 0 & 0 \\ 16 & 14 & 0 \\ -20 & -16 & 0 \end{pmatrix} \tag{26}$$

Note that $(A+2I)^2\begin{pmatrix}0\\0\\1\end{pmatrix}=0$, which means that $\begin{pmatrix}0\\0\\1\end{pmatrix}$ is a generalised eigenvector.

Since dim $K_{-2} = 2$, $(T + 2I) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$ and $\beta = \{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \}$ is linearly independent (if there exist $a_1 \in \mathbb{F}$, $a_2 \in \mathbb{F}$ such that

$$a_1 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + a_2 \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = 0,$$

then from the first row $a_2 = 0$ and from the third $a_1 = a_2 = 0$), then β spans K_{-2} . Since the characteristic polynomial of A splits, then $V = K_2 \oplus K_{-2}$.

Let $\gamma = \left\{ \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$. Since $\left\{ \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$ is a basis of K_2 , while β is a basis of K_2 , while β is a basis of K_2 , while β is a basis of K_2 .

Therefore, $[A]_{\gamma}$ is in Jordan Canonical Form, and therefore, by the change-of-basis

formula,
$$Q = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 0 \\ -1 & -1 & 1 \end{pmatrix}$$
.

Expanding along the first row, we obtain that $\det[A]_{\gamma} = -\det\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = -1$.

Therefore, Q is invertible.

We find Q^{-1} by row-reduction:

$$\begin{bmatrix}
0 & 1 & 0 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 & 1 & 0 \\
-1 & -1 & 1 & 0 & 0 & 1
\end{bmatrix}$$
(27)

$$R_1 \to R_1 + R_2 \mid \leadsto \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & -1 & 0 & 0 & 1 & 0 \\ -1 & -1 & 1 & 0 & 0 & 1 \end{bmatrix}$$
 (28)

$$R_{2} \to -(-R_{1} + R_{2}) R_{3} \to R_{1} + R_{3} \mid \rightsquigarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 & 1 & 1 \end{bmatrix}$$
 (29)

$$R_2 \to R_2 + R_3 \mid \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & 1 \end{bmatrix}$$
 (30)

(31)

Therefore,
$$Q^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 2 & 1 & 1 \end{pmatrix}$$
.

Problem.

Using the previous parts, compute A^n for any $n \geq 1$.

Solution.

From the previous discussion of the dot diagram, the Jordan Canonical Form for a basis γ is as follows:

$$[A]_{\gamma} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{pmatrix} \tag{32}$$

Let
$$P = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $R = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{pmatrix}$.

Note that $P^n = \begin{pmatrix} 2^n & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, because the only nonzero entry is obtained by multiplying

the first row with the first column.

Moreover,
$$PR = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{pmatrix} = 0$$

and
$$RP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0$$
. Therefore, P and R commute.

Since $[A]_{\gamma} = P + R$, then $A^n = P^n + \sum_{i=1}^{n-1} (P^{n-i}R^i) + R^n$ by Binomial Theorem, which is applicable since P and R commute.

The middle sum is equal to 0, because PR = RP = 0.

We now calculate \mathbb{R}^n .

We claim that
$$R^n = \begin{pmatrix} 0 & 0 & 0 \\ 0 & (-2)^n & n(-2)^{n-1} \\ 0 & 0 & (-2)^n \end{pmatrix}$$
.

The claim holds in case n = 1.

Suppose that the claim holds in case n = k.

Then
$$R^k = \begin{pmatrix} 0 & 0 & 0 \\ 0 & (-2)^k & k(-2)^{k-1} \\ 0 & 0 & (-2)^k \end{pmatrix}$$
 and thus

$$R^{k+1} = R^k R = \begin{pmatrix} 0 & 0 & 0 \\ 0 & (-2)^k & k(-2)^{k-1} \\ 0 & 0 & (-2)^k \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{pmatrix}$$
(33)

$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & (-2)^{k+1} & (-2)^k + k(-2)^k \\ 0 & 0 & (-2)^{k+1} \end{pmatrix}$$
 (34)

$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & (-2)^{k+1} & k+1(-2)^{k+1-1} \\ 0 & 0 & (-2)^k + 1 \end{pmatrix}, \tag{35}$$

which is exactly the claim in case n = k + 1, similarly to the result in the problem 1.

Let $m_{21} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $m_{12} = (0,0)$. Then $R = \begin{pmatrix} 0 & m_{12} \\ m_{21} & J \end{pmatrix}$ in the notation of the first problem.

From the discussion above,

$$R^n = \begin{pmatrix} 0 & m_{12} \\ m_{21} & J^n \end{pmatrix}$$
 by induction.

Therefore, $[A]_{\gamma}^n=\begin{pmatrix} 2^n&0&0\\0&(-2)^n&n(-2)^{n-1}\\0&0&(-2)^n \end{pmatrix}$ and thus, since by the change-of-basis formula we have $[A]_{\gamma}=Q^{-1}AQ$, and thus

$$A^{n} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 0 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 2^{n} & 0 & 0 \\ 0 & (-2)^{n} & n(-2)^{n-1} \\ 0 & 0 & (-2)^{n} \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 2 & 1 & 1 \end{pmatrix}.$$