Matrices (1)

- 1. Sean A y B dos matrices cuadradas de orden 2:
 - a) ¿Es cierta la igualdad $(A+B)^2 = A^2 + 2 \cdot A \cdot B + B^2$? ¿Por qué?
 - b) ¿Es cierta la igualdad $A^2 B^2 = (A + B) \cdot (A B)$? ¿Por qué?
- 2. Decimos que una matriz cuadrada A es ortogonal si $A \cdot A^t = I_n$.
 - a) Comprobar que la matriz $M = \begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix}$ es ortogonal.
 - b) Demostrar que el producto de dos matrices ortogonales es ortogonal.
- 3. Demostrar que si A y B son matrices cuadradas tales que $A \cdot B = A$ y $B \cdot A = B$ entonces $A^2 = A$.
- 4. a) Dada la matriz: $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ calcular A^n .
 - b) Dada la matriz $A = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$ calcular A^n .
 - c) Dada la matriz $A = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$ calcular A^n .
 - d) Dada la matriz $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ calcular A^n .
- 5. Sea la matriz $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ y $J = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$:

Si M es una matriz de la forma M = aI + bJ, con a y b números reales, se pide:

- a) Calcular M^2 y M^3 .
- b) Calcular M^n , para cualquier número natural n.
- 6. Dada la matriz $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ calcular: $H = A + A^2 + A^3 + \cdots + A^{n-1} + A^n$
- 7. Demostrar que:
 - a) Si A es una matriz cuadrada tal que: $A \neq I_n$ y que $A^2 = A$, entonces no tiene inversa.
 - b) Si A es una matriz cuadrada tal que $A^2 = 0_n$, entonces A no tiene inversa.
- 8. Dadas las matrices de la forma $A = \begin{pmatrix} 1 & 0 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ se pide:
 - a) Demostrar que el producto de dos matrices de este tipo es una matriz de este tipo.
 - b) Demostrar que todas las matrices de este tipo tienen inversa, y calcularla.