September 16, 2022 9:06 AM

CALC 1100 2.2.3 Lecture Notes Fall 2022

2.2.3 Derivatives of Elementary Functions

2.2.3A Derivatives of Trigonometric Functions

The trigonometric functions are defined as functions of the independent variable x, the input, that represents an angle measured in $\underline{radians}$.

Basic Trigonometric Functions Reciprocal Trigonometric Functions Sine: $y = \sin x$ Cosecant: $y = \csc x$; $\csc x = \frac{1}{\sin x}$

Cosine:
$$y = \cos x$$
 Secant: $y = \sec x$; $\sec x = \frac{1}{\cos x}$

Cotangent:
$$y = \cot x$$
; $\cot x = \frac{1}{\tan x}$

The generalized derivative formulas as presented on the Formula Sheet

Assume that u=u(x). The Chain Rule is embedded into the formulas

$$\frac{|d|}{dx}[\sin u] = \cos u \cdot u' \qquad \frac{d}{dx}[\cos u] = -\sin u \cdot u' \qquad \frac{d}{dx}[\tan u] = \sec^2 u \cdot u' \qquad \frac{d}{dx}[\cot u] = -\csc^2 u \cdot u'$$

$$\frac{d}{dx}[\sec u] = \sec u \tan u \cdot u' \qquad \frac{d}{dx}[\csc u] = -\csc u \cot u \cdot u'$$

Practice

1. Find the derivative of each function.

$$a.y = 0.52 \cos x, \text{ find } y'$$

$$b.y = \frac{\pi}{2} \sin \theta$$
, find $\frac{dy}{d\theta}$

$$c. y = 7 \sin 2x - 3 \cos 4x, \text{ find } y'$$

2. Find the derivative of each function

a.2. If
$$f(\theta) = 5\sin(100\pi\theta - 0.40)$$
, find $f'(\theta)$.

$$b.y = 0.05\cos^5 x$$

$$c. y = 3\sec(4x)$$

d.If
$$n$$
 is any integer, find $\frac{dy}{dx}$ for $y = \frac{\pi}{4}\cos(nx)$

Answers

1. a.
$$-0.52 \sin x$$
; b. $\frac{\pi}{2} \cos \theta$; c. $14 \cos 2x + 12 \sin 4x$

2. a.
$$500\pi \cos(100\pi\theta - 0.40)$$
; b. $-0.25 \sin x \cos^4 x$; c. $12 \sec(4x) \tan 4x$; d. $-\frac{n\pi}{4} \sin(nx)$

$$2a) f(\theta) = 5 \sin(100\pi\theta - 0.4)$$

$$f'(\theta) = \frac{d\theta}{d\theta} = 5 \cos(100\pi\theta - 0.40) \cdot \frac{d\theta}{d\theta}$$

$$= 500\pi \cos(100\pi\theta - 0.40)$$

$$y' = 0.05(5)(\cos x)^{4} \frac{d}{dx} \cos x = ($$

Lire poll
$$f(\pi) = \lambda$$

 CALC 1100
 2.2.3 Lecture Notes
 Fall 2022

The exponential function is a power function with the constant Base and variable Exponent

$$POWER = BASE^{EXPONENT}$$

$$y = b^x$$
,

where x- the independent variable, the INPUT

y – the dependent variable, the OUTPUT, is the value computed based on the input and a fixed parameter b.

Three exponential functions with b > 1 are shown on the left:

$$y = 10^x$$
, $y = e^x$ and $y = 2^x$

Observe, that all three graphs

- rise very quickly
- pass through the point (0,1), the Y-int
- domain: $(-\infty, \infty)$
- range: y > 0
- Horizontal axis y = 0 is the horizontal asymptote:

$$\lim_{x \to -\infty} y = 0^+$$

Exponential functions are continuous and smooth and used commonly in mathematical modelling

Derivative Formulas:

$$\frac{d}{dx}[b^x] = b^x \ln b$$

$$\frac{d}{dx}[e^x] = e^x$$

We start with basic examples that use the derivative formulas:

Derivative of the Exponential Function of Base \boldsymbol{b}	EXAMPLE 1
$\frac{d}{dx} [b^x] = b^x \ln b$ <u>Verbally</u> : to differentiate the exponential function, copy the expression and adjust it by the $\ln b$ (In of base). Use Chain Rule to handle any nested functions.	a. $y = 10^x$, then $b = 10$, $u = x$, $\frac{du}{dx} = 1$ $y' = \frac{d}{dx}[10^x] = 10^x \ln 10$ b. $y = 10^{3x}$, then $b = 10$, $u = 3x$, $\frac{du}{dx} = 3$ $y' = \frac{d}{dx}[10^{3x}] = 10^{3x} \ln 10 (3)$ $= 3 \ln 10 10^{3x}$

2 | Page

CALC 1100 2.2.3 Lecture Notes Fall 2022

EXAMPLE 2. (Self-Check) Find the derivative of $y = 2^{4x}$ and evaluate it at x = 0.5 $y' = 2^{4x}$. In $2 \cdot \frac{3}{4x}$ Lung = 4(n) $2 \cdot \frac{3}{4x}$ $2 \cdot \frac{1}{4}$ $3 \cdot \frac{3}{4x}$ $3 \cdot \frac{1}{4}$ $4 \cdot \frac{3}{4x}$ $4 \cdot \frac{3}{4$

Derivative of the Exponential Function of	EXAMPLE 3
Base e	
$\frac{d}{dx}[e^x] = e^x$ $\frac{d}{dx}[e^u] = e^u \frac{du}{dx}$	a. $y = e^x$, then $u = x$, $\frac{du}{dx} = 1$ $y' = \frac{d}{dx}[e^x] = e^x(1) = e^x$ b. $y = e^{5x}$, then $u = 5x$, $\frac{du}{dx} = 5$
<u>Verbally:</u> to differentiate the exponential function with the base <i>e</i> , just copy the expression. Use Chain Rule to handle any nested functions. There is no need for adjusting because	$y' = \frac{d}{dx} [e^{5x}] = e^{5x}(5)$ $= 5(e^{5x})$

f(x) = (/ f(x) = (/ The exponential function of base e: $y=e^x$ is very popular in applications for this very reason: the derivative of the function is the function itself

EXAMPLE 4. Find the derivative of $y = e^{3x^2+4}$.

EXAMPLE 5 Find the derivative of $y = x^2 e^{5x}$.

By the Product Rule: $y' = (2x)e^{5x} + x^2e^{5x}(5) = xe^{5x}(2+5x)$

EXAMPLE 6 (Self-Check) Find the derivative of each of the following functions:

a.
$$y = 5^{3-2x^{2}}$$

y': $5^{3-2x^{2}}$

h. $y = 8e^{\sqrt{x}}$

c. $y = te$

y': $5^{3-2x^{2}}$

h. $y = 8e^{\sqrt{x}}$

y': $8e^{-x^{2}}$

y': $4x(5^{3-2x^{2}})$

h. $y = 8e^{\sqrt{x}}$

y': $4x(5^{3-2x^{2}})$

y': $4x(5^{3-2x^{2}})$

h. $y = 8e^{\sqrt{x}}$
 $y = 8e^{-x^{2}}$
 $(\frac{1}{4}x^{-\frac{1}{4}}) = \frac{4e^{-x^{2}}}{4x^{2}}$

3 | Page

CALC 1100 2.2.3 Lecture Notes Fall 2022

EXAMPLE 7 Find the derivative of $y = [\sin(e^x)]^3$.

This is a composite function. Break it up (decompose) to understand how to apply the Chain Rule $x \to e^x \to \sin(-) \to [-]^3$

The chain rule is applied three times along with rules for differentiating the power function, sine and the exponential function:

$$y' = 3[\sin(e^x)]^2 \frac{d}{dx} [\sin(e^x)] = 3[\sin(e^x)]^2 \cos(e^x) \frac{d}{dx} [e^x]$$
$$= 3e^x [\sin(e^x)]^2 \cos(e^x)$$

EXAMPLE 8 Find the derivative of $\frac{dy}{d\theta}$ of $y = e^{\theta} \cos 2\theta$.

Using the product rule with $u=e^{\theta}$ and $v=\cos 2\theta$, we compute

$$y' = \frac{dy}{d\theta} = e^{\theta} \cos 2\theta + e^{\theta} (-\sin 2\theta)2$$
$$= e^{\theta} \cos 2\theta - 2e^{\theta} \sin 2\theta$$
$$= e^{\theta} (\cos 2\theta - 2\sin 2\theta)$$

Practice

Find the derivatives of the functions.

a.
$$y = 7^{x} \cos 3x$$

b. $y = \frac{1}{2}(e^{x} + e^{-x})$
c. $y = \frac{1}{2}e^{\tan 2x}$

$$y^{1} = \frac{1}{2}e^{\frac{1}{2}}e^{\frac{1}{2}\cos^{2}x} \cdot \sec^{2}(a_{x}) \cdot a$$

$$\sec^{2}(a_{x})e^{\frac{1}{2}\cos^{2}x}$$

ANSWERS

oen encenquestions.

Ex.2:
$$y' = 4 \ln 2 \ 2^{4x}$$
; $y'(0.5) = 16 \ln 2 \cong 11.090$ to 3dp.

Ex.4
$$y' = e^{3x^2+4}(6x) = 6xe^{3x^2+4}$$

Ex 6. a.
$$-4x \ln 5 \ 5^{3-2x^2}$$
; b. $\frac{4e^{\sqrt{x}}}{\sqrt{x}}$; c. $e^t(1+t)$

Practice

a.
$$7^x(\ln 7\cos 3x - 3\sin 3x)$$
; b. $\frac{1}{2}(e^x - e^{-x})$; c. $\sec^2(2x)e^{\tan 2x}$