Normal Matrices

Definition

Let $A \in M_n$. To say that A is *normal* means:

$$AA^* = A^*A$$

Examples:

- 1). Unitary ($UU^* = I$)
- 2). Hermitian $(H^* = H)$
- 3). Skew-Hermitian $(H^* = -H)$
- 4). Positive Definite $(\forall \vec{x} \in \mathbb{C}^n \{\vec{x}\}, x^*Ax > 0)$
- 5). Positive Semidefinite $(\forall \vec{x} \in \mathbb{C}^n, x^*Ax \geq 0)$

Lemma

Let $T \in UT(n)$:

 $T \text{ normal} \implies T \text{ diagonal}$

Proof

Proof by induction on n

Base Case: n=1

$$T = [\lambda]$$
 is diagonal.

Assume that $T \in UT(n-1)$ normal $\implies T$ diagonal.

Assume $T \in UT(n)$ is normal

Let
$$T=\left[\begin{array}{c|c} S & \vec{x} \\ \hline 0 & a \end{array}\right]$$
 where $S\in UT(n-1),$ $\vec{x}\in\mathbb{C}^{n-1},$ and $a\in\mathbb{C}$

Now, since T is normal:

$$TT^* = T^*T$$

$$\begin{bmatrix} S \mid \vec{x} \\ 0 \mid a \end{bmatrix} \begin{bmatrix} S^* \mid 0 \\ \vec{x}^* \mid \bar{a} \end{bmatrix} = \begin{bmatrix} S^* \mid 0 \\ \vec{x}^* \mid \bar{a} \end{bmatrix} \begin{bmatrix} S \mid \vec{x} \\ 0 \mid a \end{bmatrix}$$

$$\begin{bmatrix} SS^* + \vec{x}\vec{x}^* \mid \bar{a}\vec{x} \\ a\vec{x}^* \mid |a|^2 \end{bmatrix} = \begin{bmatrix} S^*S \mid S^*\vec{x} \\ \vec{x}^*S \mid \vec{x}^*\vec{x} + |a|^2 \end{bmatrix}$$

From the lower right quadrant we get:

$$|a|^2 = \vec{x}^* \vec{x} + |a|^2$$

And so $\vec{x}^*\vec{x} = 0$, and thus $\vec{x} = 0$:

$$T = \begin{bmatrix} S & 0 \\ \hline 0 & a \end{bmatrix}$$

Now, from the upper left quadrant we get:

$$SS^* + \vec{x}\vec{x}^* = S^*S$$

and so $SS^*=S^*S$, indicating that S is normal. Thus, by the inductive assumption, S is also diagonal.

Therefore, T is diagonal.

Theorem

Let $A \in M_n$. TFAE:

- 1). *A* is normal $(AA^* = A^*A)$
- 2). A is unitary diagonalizable ($A = UDU^*$)
- 3). $\operatorname{tr}(A^*A) = \sum_{k=1}^n |\lambda_k|^2$, where $\lambda_k \in \operatorname{Sp}(A)$

Proof

 $1 \implies 2$: Assume A is normal

There exists unitary U such that $A=UTU^*$ for some $T\in UT(n)$ (Schur) $T=U^*$ ΔU

Now, using the fact that *A* is normal:

$$AA^* = A^*A$$

$$U^*AUU^*A^*U = U^*A^*UU^*AU$$

$$(U^*AU)(U^*AU)^* = (UAU^*)^*(U^*AU)$$

$$TT^* = T^*T$$

 ${\cal T}$ is triangular and normal and thus, by the above lemma, ${\cal T}$ is diagonal

Therefore A is unitary diagonalizable.

 $2 \implies 1$: Assume A is unitary diagonalizable

 $A=UDU^{\ast}$ for some diagonal matrix D

$$AA^* = (UDU^*)(UDU^*)^*$$

$$= UDU^*UD^*U^*$$

$$= UDD^*U^*$$

$$= UD^*DU^*$$

$$= UD^*U^*UDU^*$$

$$= (UDU^*)^*(UDU^*)$$

$$= A^*A$$

Therefore A is normal.

$2 \implies 3$: Assume A is unitary diagonalizable

There exists unitary U such that:

$$A = U \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix} U^*$$

$$\operatorname{tr}(A^*A) = \operatorname{tr}\left(\left(U\begin{bmatrix}\lambda_1 & 0 \\ 0 & \lambda_n\end{bmatrix}U^*\right)^* \left(U\begin{bmatrix}\lambda_1 & 0 \\ 0 & \lambda_n\end{bmatrix}U^*\right)\right)$$

$$= \operatorname{tr}\left(U\begin{bmatrix}\lambda_1 & 0 \\ 0 & \lambda_n\end{bmatrix}^* U^*U\begin{bmatrix}\lambda_1 & 0 \\ 0 & \lambda_n\end{bmatrix}U^*\right)$$

$$= \operatorname{tr}\left(U\begin{bmatrix}\overline{\lambda_1} & 0 \\ 0 & \lambda_n\end{bmatrix}\begin{bmatrix}\lambda_1 & 0 \\ 0 & \lambda_n\end{bmatrix}U^*\right)$$

$$= \operatorname{tr}\left(U^*U\begin{bmatrix}\overline{\lambda_1} & 0 \\ 0 & \overline{\lambda_n}\end{bmatrix}\begin{bmatrix}\lambda_1 & 0 \\ 0 & \lambda_n\end{bmatrix}U^*\right)$$

$$= \operatorname{tr}\left(\begin{bmatrix}\overline{\lambda_1} & 0 \\ 0 & \overline{\lambda_n}\end{bmatrix}\begin{bmatrix}\lambda_1 & 0 \\ 0 & \lambda_n\end{bmatrix}\right)$$

$$= \operatorname{tr}\left(\begin{bmatrix}\overline{\lambda_1} & 0 \\ 0 & \overline{\lambda_n}\end{bmatrix}\begin{bmatrix}\lambda_1 & 0 \\ 0 & \lambda_n\end{bmatrix}\right)$$

$$= \operatorname{tr}\left(\begin{bmatrix}|\lambda_1|^2 & 0 \\ 0 & \cdot & |\lambda_n|^2\end{bmatrix}\right)$$

$$= \sum_{l=1}^{n} |\lambda_k|^2$$

$$3 \implies 2$$
: Assume $\operatorname{tr}(A^*A) = \sum_{k=1}^n |\lambda_k|^2$

There exists unitary U and $T \in UT(n)$ such that:

$$A = UTU^*$$

such that
$$T = \begin{bmatrix} \lambda_1 & t_{ij} \\ & \ddots \\ 0 & \lambda_n \end{bmatrix}$$

$$\operatorname{tr}(A^*A) = \operatorname{tr}((UTU^*)^*(UTU^*))$$

$$= \operatorname{tr}(UT^*U^*UTU^*)$$

$$= \operatorname{tr}(UT^*TU^*)$$

$$= \operatorname{tr}(U^*UT^*T)$$

$$= \operatorname{tr}(T^*T)$$

$$\sum_{k=1}^{n} |\lambda_k|^2 = \sum_{k=1}^{n} |\lambda_k|^2 + \sum_{i < j} |t_{ij}|^2$$

So
$$\sum |t_{ij}|^2 = 0$$
 and thus $t_{ij} = 0$

Therefore, ${\cal T}$ is diagonal and ${\cal A}$ is unitary diagonalizable.