

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

(NASA-CR-147632) INVESTIGATIONS OF THE 0.020-SCALE 88-OTS INTEGRATED SPACE SHUTTLE VEHICLE JET-PLUME MODEL IN THE NASA/AMES PESEARCH CENTER 11 BY 11-FOOT UNITARY PLAN WIND TUDNEL (IA80), VCLUME 1 (Chrysler

N76-33263

Unclas G3/16 07275

SPACE SHITTLE

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPACE CENTER HOUSTON, TEXAS

DMS-DR-2212 NASA CR-147,632

VOLUME 1 OF 4
INVESTIGATIONS OF THE 0.020-SCALE 88-OTS

INTEGRATED SPACE SHUTTLE VEHICLE JET-PLUME MODEL

IN THE NASA/AMES RESEARCH CENTER

11 x 11-FOOT UNITARY PLAN WIND TUNNEL (IA80)

by

M. E. Nichols Shuttle Aero Sciences Rockwell International Space Division

Prepared under NASA Contract Number NAS9-13247

by

Data Management Services Chrysler Corporation Space Division New Orleans, La. 70189

for

Engineering Analysis Division

Johnson Space Center National Aeronautics and Space Administration Houston, Texas

WIND TUNNEL TEST SPECIFICS:

Test Number:

ARC 11-023

NASA Series Number:

1A80

Model Number:

88-OTS 4 through 8 November 1974

Test Dates: Occupancy Hours:

132

FACILITY COORDINATOR:

AERODYNAMICS ANALYSIS ENGINEER:

J. J. Brownson Mail Stop 227-5

Ames Research Center

Moffett Field, Ca. 94035

Phone: (415) 965-6262

J. S. Stone Mail Code ACO7

Rockwell International

Space Division

12214 Lakewood Blvd.

Downey, Ca. 90241

Phone: (213) 922-4810

PROJECT ENGINEERS:

D. E. Thornton M. E. Nichols

R. R. Burrows Mail Code AD38

Rockwell International

Space Division

12214 Lakewood Blvd.

Downey, Ca. 90241

J. J. Brownson Mail Stop 227-5

Ames Research Center Moffett Field, Ca. 94035

Phone: (415) 965-6262

Phone: (213) 922-2849

DATA MANAGEMENT SERVICES:

Prepared by:

Liaison--D. A. Sarver

Operations -- M. M. Mann, H. C. Zimmerle, C. R. Edwards

Reviewed by:

D. E. Poucher

Approved:

L. Glynn Manage

Data Operations

Concurrence:

N. D. Kemp, Manager

Data Management Services

Chrysler Corporation Space Division assumes no responsibility for the data presented other than display characteristics.

INVESTIGATIONS OF THE 0.020-SCALE 88-OTS INTEGRATED SPACE SHUTTLE VEHICLE JET-PLUME MODEL IN THE NASA/AMES RESEARCH CENTER 11 × 11-FOOT UNITARY PLAN WIND TUNNEL (IA80)

Ву

M. E. Nichols, Rockwell International Space Division

ABSTRACT

This report documents the results of jet-plume effects wind tunnel test IA80 of the 0.020-scale 88-0TS launch-configuration Space Shuttle Vehicle model in 11 x 11-foot leg of the NASA/Ames Research Center Unitary Plan Wind Tunnel. This test involved cold-gas Main Propulsion System and Solid Rocket - Motor plume simulations at Mach numbers from 0.6 to 1.4. IA80 was a continuation of a series of planned tests of plume effects, including IA19 and IA72. The test period was 4 through 8 November 1974, for 377 recorded runs.

The test-program objective was to determine integrated vehicle surface-pressure distributions, elevon and rudder hinge moments, and wing and vertical-tail root bending and torsional moments due to MPS and SRB plume interactions. Nozzle power conditions were controlled per pretest nozzle calibrations carried out by Rockwell International.

Model angle-of-attack was varied from -4° to +4°; model angle-of-sideslip was varied from -4° to +4°. Reynolds number was varied for certain test conditions and configurations, with the nominal freestream total pressure being 14.69 psia.

ABSTRACT (Concluded)

This report consists of 4 volumes of force and pressure data. They are arranged in the following manner:

VOLUME NUMBER		CONTENTS		
1	1A80	Plotted Force and Pressure Data		
2	1A80	Tabulated Force Data		
	1A80	Tabulated Pressure Data in Forc	e Format	
		(a) orbiter base	pages	164-221
		(b) orbiter fuselage	pages	222-954
3	1A80	Tabulated Pressure Data		
		(a) orbiter fuselage	pages	1-248
		(b) orbiter bodyflap upper su	rface pages	249-496
		(c) orbiter bodyflap lower su	rface pages	497-744
4	1A80	Tabulated Pressure Data		
		(a) external tank	pages	745-992
		(b) external tank base	pages	993-1240
		(c) SRB skirt	pages	1241-1488

TABLE OF CONTENTS

		Page
ABSTRACT		iii
INDEX OF MODEL FIGURES		2
INDEX OF DATA FIGURES		3
NOMENCLATURE		17
CONFIGURATIONS INVESTIGATED		24
TEST FACILITY DESCRIPTION		27
DATA REDUCTION		28
RESULTS AND DISCUSSION		34
TABLES		
I. TEST CONDITIONS		35
II. DATA SET/RUN NUMBER COLLATION SUMMARY		36
III. MODEL DIMENSIONAL DATA		44
IV. PRESSURE TAP NUMBER ASSIGNMENTS		78
FIGURES		
MODEL		80
DATA		85
VOLUME 1 (FORCE AND PRESSURE)		
APPENDIX		85
TABULATED SOURCE DATA		
VOLUME 2 (FORCE AND PRESSURE IN FORCE FOR	RMAT)	
VOLUMES 3, 4 (PRESSURE)		

INDEX OF MODEL FIGURES

Figure	Title	Page
1.	Axis systems.	80
2.	Integrated Space Shuttle Vehicle lawsch configuration.	81
3.	Model installation photographs.	
a.	Model 88-OTS Installation, Front View	82
b.	Model 88-OTS Installation, Rear View	83

INDEX OF DATA FIGURES

FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGE
4	EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH = 0.6 PLUMES OFF	ELV-IB, ELV-OB	A	1-6
5	EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH = 0.9 PLUMES OFF	ELV-IB, ELV-OB	A	7-12
6	EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH = 1.1 PLUMES OFF	ELV-IB, ELV-OB	A .	13-18
7	EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH = 1.25 PLUMES OFF	ELV-IB, ELV-OB	A	19-24
8	EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH = 1.4 PLUMES OFF	ELV-IB, ELV-OB	Α	25-30
9	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH, M = 0.6 PLUME OFF	ELV-IB, ELV-OB	В	31-34
10	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH, M = 0.9 PLUME OFF	ELV-IB, ELV-0B	В	35-38
11	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH, M = 1.1 PLUME OFF	ELV-IB, ELV-OB	В	39-42
12	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH, M = 1.25 PLUME OFF	ELV-IB, ELV-OB	В	43-46
13	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH, M = 1.4 PLUME OFF	ELV-IB, ELV-OB	В	47-50
14	EFFECT OF ELEVON SETTING ON WING LOADS IN YAW, MACH = 0.6 PLUMES OFF	ELV-IB, ELV-OB	Ε	51-56

I GURE UMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGE
15	EFFECT OF ELEVON SETTING ON WING LOADS IN YAW, MACH = 0.9 PLUMES OFF	ELV-IB, ELV-OB	E	57-62
16	EFFECT OF ELEVON SETTING ON WING LOADS IN YAW, MACH = 1.1 PLUMES OFF	ELV-IB, ELV-OB	E	63-68
17	EFFECT OF ELEVON SETTING ON WING LOADS IN YAW, MACH = 1.25 PLUMES OFF	ELV-IB, ELV-OB	E	69-74
18	EFFECT OF ELEVON SETTING ON WING LOADS IN YAW, MACH = 1.4 PLUMES OFF	ELV-IB. ELV-OB	E	75-80
19	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M = 0.6 PLUME OFF	ELV-IB, ELV-OB	F	81-84
20	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M = 0.9 PLUME OFF	ELV-IB, ELV-OB	F	85-88
21	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M = 1.1 PLUME OFF	ELV-IB, ELV-OB	F	89-92
22	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M = 1.25 PLUME OFF	ELV-IB, ELV-OB	F	93-96
23	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M = 1.4 PLUME OFF	ELV-IB, ELV-OB	F	97-100
24	EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH = 0.6 PLUMES ON	ELV-IB, ELV-OB	A	101-106
25	EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH = 0.9 PLUMES ON	ELV-IB, ELV-OB	A	107-112

4

	INDEX OF DATA FIGU	KES (Continued)		
FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGE
26	EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH=1.1 PLUMES ON	ELV-78, ELV-OB	A	113-118
27	EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH = 1.25 PLUMES ON	ELV-IB, ELV-OB	Α .	119-124
28	EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH = 1.4 PLUMES ON	ELV-IB, ELV-OB	A	125-130
29	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH, M = 0.6 PLUME ON	ELV-IB, ELV-OB	. B	131-134
30	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH, M = 0.9 PLUME ON	ELV-IB, ELV-OB	В	135-138
31	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH, M = 1.1 PLUME ON	ELV-IB, ELV-OB	В	139-142
32	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH, M = 1.25 PLUME ON	ELV-IB, ELV-OB	В	143-146
33	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH, M = 1.4 PLUME ON	ELV-IB, ELV-OB	В	147-150
34	EFFECT OF ELEVON SETTING ON WING LOADS IN YAW, MACH = 0.6 PLUMES ON	ELV-IB, ELV-OB	E	151-156
35	EFFECT OF ELEVON SETTING ON WINGS LOADS IN YAW, MACH = 0.9 PLUMES ON	ELV-IB, ELV-OB	E	157-162
36	EFFECT OF ELEVON SETTING ON WING LOADS IN YAW, MACH = 1.1 PLUMES ON	ELV-IB, ELV-OB	E	163-168

Ç

FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGE
37	EFFECT OF ELEVON SETTING ON WING LOADS IN YAW, MACH = 1.25 PLUMES ON	ELV-IB, ELV-OB	E	169-174
38	EFFECT OF ELEVON SETTING ON WING LOADS IN YAW, MACH = 1.4 PLUMES ON	ELV-IB, ELV-OB	E	175-180
39	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M = 0.6 PLUME ON	ELV-IB, ELV-OB	F	181-184
40	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M = 0.9 PLUME ON	ELV-IB, ELV-OB	F	185-188
41	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M = 1.1 PLUME ON	ELV-IB, ELV-OB	F	189-192
42	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M = 1.25 PLUME ON	ELV-IB, ELV-OB	F	193-196
43	EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M = 1.4 PLUME ON	ELV-IB, ELV-OB	F	197-200
44	PLUME EFFECTS ON VERTICAL TAIL LOADS, MACH = 0.6	PLUME	С	201-203
45	PLUME EFFECTS ON VERTICAL TAIL LOADS, MACH = 0.9	PLUME	C	204-206
46	PLUME EFFECTS ON VERTICAL TAIL LOADS, MACH = 1.1	PLUME	C	207-209
47	PLUME EFFECTS ON VERTICAL TAIL LOADS, MACH = 1.25	PLUME	C	210-212

•

FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGE
48	PLUME EFFECTS ON VERTICAL TAIL LOADS, MACH = 1.4	PLUME	С	213-215
49	PLUME EFFECTS ON RUDDER HINGE MOMENT, MACH = 0.6	PLUME	D	216-126
50	PLUME EFFECTS ON RUDDER HINGE MOMENT, MACH = 0.9	PLUME	D	217-217
51	PLUME EFFECTS ON RUDDER HINGE MOMENT, MACH = 1.1	PLUME	D	218-218
52	PLUME EFFECTS ON RUDDER HINGE MOMENT, MACH = 1.25	PLUME	D	219-219
53	PLUME EFFECTS ON RUDDER HINGE MOMENT, MACH = 1.4	PLUME	D	220-220
54	EFFECT OF PLUMES ON WING LOADS IN PITCH, MACH = 0.6	PLUME	A	221-223
55	EFFECT OF PLUMES ON WING LOADS IN PITCH, MACH = 0.9	Plume	A	224-226
56	EFFECT OF PLUMES ON WING LOADS IN PITCH, MACH = 1.1	PLUME	A	227-229
57	EFFECT OF PLUMES ON WING LOADS IN PITCH, MACH = 1.25	PLUME	A	230-232
58	EFFECT OF PLUMES ON WING LOADS IN PITCH, MACH = 1.4	PLUME	A	233-235

FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGE
59	EFFECT OF PLUMES ON ELEVON HINGE MOMENT IN PITCH, MACH = 0.6	PLUME	В	236-237
60	EFFECT OF PLUMES ON ELEVON HINGE MOMENTS IN PITCH, MACH = 0.9	PLUME	В	238-239
61	EFFECT OF PLUMES ON ELEVON HINGE MOMENTS IN PITCH, MACH = 1.1	PLUME	В	240-241
62	EFFECT OF PLUMES ON ELEVON HINGE MOMENTS IN PITCH, MACH = 1.25	PLUME	В	242-243
63	EFFECT OF PLUMES ON ELEVON HINGE MOMENTS IN PITCH, MACH = 1.4	PLUME	В	244-245
64	EFFECT OF PLUMES ON WING LOADS IN YAW, MACH = 0.6	PLUME	E	246-248
65	EFFECT OF PLUMES ON WING LOADS IN YAW, MACH = 0.9	PLUME	E	249-251
66	EFFECT OF PLUMES ON WING LOADS IN YAW, MACH = 1.1	PLUME	E	252-254
67	EFFECT OF PLUMES ON WING LOADS IN YAW, MACH = 1.25	PLUME	E	255-257
68	EFFECT OF PLUMES ON WING LOADS IN YAW, MACH = 1.4	PLUME	E	258-260
69	EFFECT OF PLUMES ON ELEVON HINGE MOMENT IN YAW, MACH = 0.6	PLUME	F	261-262

 ∞

FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGE
70	EFFECT OF PLUMES ON ELEVAN HINGE MOMENT IN YAW, MACH = 0.9	PLUME	F	263-264
71	EFFECT OF PLUMES ON ELEVON HINGE MOMENT IN YAW, MACH = 1.1	PLUME	F .	265-266
72	EFFECT OF PLUMES ON ELEVON HINGE MOMENT IN YAW, MACH = 1.25	PLUME	F	267-268
73	EFFECT OF PLUMES ON ELEVON HINGE MOMENT IN YAW, MACH = 1.4	PLUME	F	269-270
74	EFFECT OF SSME PLUME SIZE ON WING LOAD IN PITCH, MACH = 0.6	PLUME	A	271-273
75	EFFECT OF SSME PLUME SIZE ON WING LOAD IN PITCH, MACH = 0.9	PLUME	A	274-276
76	EFFECT OF SSME PLUME SIZE ON WING LOAD IN PITCH, MACH = 1.1	PLUME	A	277-279
77	EFFECT OF SSME PLUME SIZE ON WING LOAD IN PITCH, MACH = 1.25	PLUME	A	280-282
78	EFFECT OF SSME PLUME SIZE ON WING LOAD IN PITCH, MACH = 1.4	PLUME	A	283-285
79	EFFECT OF SSME PLUME SIZE ON WING LOAD IN YAW, MACH = 0.6	PLUME	E	286-288
80	EFFECT OF SSME PLUME SIZE ON WING LOAD IN YAW, MACH = 0.9	PLUFE	. E	289-291

FIGURE NUMBER	TITLE	CONDITTONS VARYING	PLOTTED CGEFFICIENTS SCHEDULE	PAGE
81	EFFECT OF SSME PLUME SIZE ON WING LOAD IN YAW, MACH = 1.1	PLUME	Ē	292-294
82	EFFECT OF SSME PLUME SIZE ON WING LOAD IN YAW, MACH = 1.25	PLUME		295-297
83	EFFECT OF SSME PLUME SIZE ON WING LOAD IN YAW, MACH = 1.4	PLUME	E	298-300
84	EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN PITCH, MACH = 0.6	PLUME	В	301-302
85	EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN PITCH, MACH = 0.9	PLUME	В	303-304
86	EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN PITCH, MACH = 1.1	PLUME	В	305-306
87	EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN PITCH, MACH = 1.25	PLUME	В	307-308
88	EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN PITCH, MACH = 1.4	PLUME	В	309-310
89	EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN YAW, MACH = 0.6	PLUME	F	311-312
90	EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN YAW, MACH = 0.9	PLUME	F 1	313-314
91	EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN YAW, MACH = 1.1	PLUME	F	315-316

5

FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGE
92	EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN YAW, MACH = 1.25	PLUME	F	317-318
93	EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN YAW, MACH = 1.4	PLUME	**************************************	319-320
94	EFFECT OF REYNOLDS NUMBER IN PITCH, MACH = 0.6 PLUMES OFF	RN/L	A,B	321-325
95	EFFECT OF REYNOLDS NUMBER IN PITCH, MACH = 0.9 PLUMES OFF	RN/L	A,B	326-330
96	EFFECT OF REYNOLDS NUMBER IN PITCH, MACH = 1.1 PLUMES OFF	RN/L	A,B	331-335
97	EFFECT OF REYNOLDS NUMBER IN PITCH, MACH = 1.25 PLUMES OFF	RN/L	A,B	336-340
98	EFFECT OF REYNOLDS NUMBER IN PITCH, MACH = 1.4 PLUMES OFF	RN/L	A,B	341-345
99	EFFECT OF REYNOLDS NUMBER IN YAW, MACH = 0.6 PLUMES OFF	RN/L	E,F, C,D	346-354
100	EFFECT OF REYNOLDS NUMBER IN YAW, MACH = 0.9 PLUMES OFF	RN/L	E,F, C,D	355-363
101	EFFECT OF REYNOLDS NUMBER IN YAW, MACH = 1.1 PLUMES OFF	RN/L	E,F, C,D	364-372
102	EFFECT OF REYNOLDS NUMBER IN YAW, MACH = 1.25 PLUMES OFF	RN/L	E,F, C,D	373-381

FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGE
103	EFFECT OF REYNOLDS NUMBER IN YAW, MACH = 1.4 PLUMES OFF	RN/L	E,F, C,D	382-390
104	EFFECT OF REYNOLDS NUMBER IN PITCH, MACH = 0.6 PLUMES ON	RN/L	A,B	391-395
105	EFFECT OF REYNOLDS NUMBER IN PITCH, MACH = 0.9 PLUMES ON	RN/L	A,B	396-400
106	EFFECT OF REYNOLDS NUMBER IN PITCH, MACH = 1.1 PLUMES ON	RN/L	A,B	401-405
107	EFFECT OF REYNOLDS NUMBER IN YAW, MACH = 0.6 PLUMES ON	RN/L	E,F, C,D	406-414
108	EFFECT OF REYNOLDS NUMBER IN YAW, MACH = 0.9 PLUMES ON	RN/L	E,F, C,D	415-423
109	EFFECT OF REYNOLDS NUMBER IN YAW, MACH = 1.1 PLUMES ON	RN/L	E,F, C,D	424-432
110	SUMMARY, SRB PLUME SIZE EFFECTS ON WING LOADS	PLUME	H	433-435
111	SUMMARY, SRB PLUME SIZE EFFECTS ON ELEVON HINGE MOMENTS	PLUME	K	436-437
112	SUMMARY, EFFECTS OF ELEVON DEFLECTION ON WING LOADS, POWER OFF	DELVIB, DELVOB	1	438-440
113	SUMMARY, EFFECTS OF ELEVON DEFLECTION ON WING LOADS, POWER ON	DELVIB, DELVOB		441-443

7

FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGE
114	SUMMARY, EFFECTS OF ELEVON DEFLECTION ON ELEVON HINGE MOMENTS POWER OFF	DELVIB, DELVOB	L	444-445
115	SUMMARY, EFFECTS OF ELEVON DEFLECTION ON ELEVON HINGE MOMENTS POWER ON	DELVIB, DELVOB	L	446-447
116	SUMMARY, EFFECTS SSME PLUME SIZE ON VERTICAL TAIL LOADS	PLUME	N	448-450
117	SUMMARY, EFFECTS SSME PLUME SIZE ON RUDDER HINGE MOMENTS	PLUME	M	451-451
118	EFFECT OF SSME PLUME SIZE ON WING LOADS	ALPHA, BETA	G	452-469
119	EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT	ALPHA, BETA	J	470-481
120	SUMMARY, SRB PLUME EFFECTS ON WING CENTER OF PRESSURE	PLUME	0	482-483
121	SUMMARY, SSME PLUME EFFECTS ON VERTICAL TAIL CENTER OF PRESSURE	PLUME	P	484-485
122	SUMMARY, MACH RAMP MAXIMUM WING LOADS	PLUME	G	486-488
123	SUMMARY, MACH RAMP MAXIMUM ELEVON HINGE MOMENTS	PLUME	J	489-490
124	EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA = -4.0		Q	491-514
125	EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA = 0.0	BETA	Q	515-586

ü

FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGE
126	EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA = 4.0	•	Q	587-610
127	ORB VENT PRESSURES	ALPHA, BETA	Q	611-644
128	AVERAGE ORB VENT PRESSURES	ALPHA, BETA	R	645-662
129	DELTA AVERAGE ORB VENT PRESSURES DUE TO PLUMES	ALPHA, BETA	S	663-680
130	PLUME EFFECTS ON ET BASE PRESSURE COEFFICIENT, MACH = 0.6	ALPHA, BETA, PHI	T	681-700
131	PLUME EFFECTS ON ET BASE PRESSURE COEFFICIENT, MACH = 0.9	ALPHA, BETA, PHI	Т	701-720
132	PLUME EFFECTS ON ET BASE PRESSURE COEFFICIENT, MACH = 1.1	ALPHA, BETA, PHI	T	721-740
133	PLUME EFFECTS ON ET BASE PRESSURE COEFFICIENT, MACH = 1.25	ALPHA, BETA, PHI	T	741-760
134	PLUME EFFECTS ON ET BASE PRESSURE COEFFICIENT, MACH = 1.4	ALPHA, BETA, PHI	T	761-780
135	PLUME EFFECTS ON SRB BASE PRESSURE COEFFICIENTS, MACH = 0.6	ALPHA, BETA, XB/LB	U	781-786
136	PLUME EFFECTS ON SRB BASE PRESSURE COEFFICIENTS, MACH = 0.9	ALPHA, BETA, XB/LB	U	787-792
137	PLUME EFFECTS ON SRB BASE PRESSURE COEFFICIENTS, MACH = 1.1	ALPHA, BETA, XB/LB	U	793- 798

7

FIGURE NUMBER	TITLE	CONDITIONS VARYING	PLOTTED COEFFICIENTS SCHEDULE	PAGE
138	PLUME EFFECTS ON SRB BASE PRESSURE COEFFICIENTS, MACH = 1.25	ALPHA, BETA, XB/LB	v	799-804
139	PLUME EFFECTS ON SRB BASE PRESSURE COEFFICIENTS, MACH = 1.4	ALPHA, BETA, XB/LB	U	805-810

PLOTTED COEFFICIENTS SCHEDULE:

- (A) CBMW, CTMW, CNW versus ALPHA
- (B) CHEI, CHEO versus ALPHA
- (C) CBMV, CTMV, CYV versus BETA
- (D) CHR versus BETA
- (E) CBMW, CTMW, CNW versus BETA
- (F) CHEI, CHEO versus BETA
- (G) CBMW, CTMW, CNW versus MACH NUMBER
- (H) DCBMW, DCTMW, DCNW versus MACH NUMBER
- (I) DCBMWE, DCTMWE, DCNWE versus MACH NUMBER
- (J) CHEI, CHEO versus MACH NUMBER
- (K) DCHEI, DCHEO versus MACH NUMBER
- (L) DCHEIE, DCHEOE versus MACH NUMBER

(M)	DCHR versus MACH NUMBER
(N)	DCMBV, DCTMV, DCYV versus MACH NUMBER
(0)	DXWCP, DYWCP versus MACH NUMBER
(P)	DXVCP, DZVCP versus MACH NUMBER
(Q)	CP versus MACH NUMBER
(R)	CP#AV versus MACH NUMBER
(S)	DCP#A versus MACH NUMBER
(T)	CP versus R/ROD
(U)	CP versus PHI

NOMENCLATURE

	"lot	
Symbol	Symbol	<u>Definition</u>
b	BREF	span of wing, in
b _V		span of vertical tail, in
BMV		vertical tail-root bending moment (about vertical tail reference center), in-1b
$^{\rm BM}v_{\rm O}$		vertical tail-root bending moment at outboard gauge, in-1b
BMVI		vertical tail-root bending moment at inboard gauge, in-1b
BM _W		<pre>wing-root bending moment (about wing reference center), in-lb</pre>
$BM_{W_{\mathbf{I}}}$		wing-root bending moment at inboard gauge, in-1b
BM _W O		wing-root bending moment at outboard gauge, in-1b
c	LREF	MAC of wing, in
c_{B_V}	CBMV	vertical tail-root bending-moment coefficient
c _{BW}	CBMW	wing-root bending-moment coefficient
Ē _E		MAC of total elevon panel, in
c _{HE} I	CHEI	hinge-moment coefficient for inboard elevon
c _{HEO}	CHEO	hinge-moment coefficient for outboard elevon
c _{HET}	CHET	total elevon hinge-moment coefficient

Symbol	Plot Symbol	Definition
$c_{H_{R}}$	CHR	hinge-moment coefficient for rudder
c _{NM}	CNW	wing normal-force coefficient
c _{Pi}	CPi	pressure coefficient for model surface tap i
$\mathtt{CPR}_{\mathbf{j}}$		chamber-pressure ratio for nozzle j
\bar{c}_R		MAC of rudder panel, in
c_{T_V}	CTMV	vertical tail-root twisting-moment coefficient
c _{TW}	CTMW	wing-root torsion-moment coefficient
\bar{c}_{V}		MAC of vertical tail, in
CYV	CYV	vertical-tail side-force coefficient
EPRj		exit-pressure ratio for nozzle j
ET		External Tank
HMEI		hinge moment of inboard elevon, in-lb
HM _E O		hinge moment of outboard elevon, in-lb
HMR		hinge moment of rudder, in-lb
M	MACH	freestream Mach number
MPS		Main Propulsion System
N		nominal

Symbol	Plot <u>Symbol</u>	<u>Definition</u>
OTS		Orbiter + Tank + SRB
P _c j		chamber pressure (absolute) of nozzle j
PcSRM		SRM supply total pressure, psia (as set)
PcMPS		MPS supply total pressure, psia (as set)
$P_{e_{j}}$		exit pressure (absolute) of nozzle j
Pi		pressure (absolute) at model surface tap i
P _T		freestream total pressure, psia
P _w		freestream static pressure, psia
q	Q(PSF)	freestream dynamic pressure, psf
Re/ft	RN/L	freestream unit Reynolds number, ft ⁻¹
S	SREF	reference wing area, ft ²
SRB		Solid Rocket Booster
SRM		Solid Rocket Motor
SSME		Space Shuttle Main Engine
SE		reference elevon area, ft ²
s _R		reference rudder area, ft ²
s_{V}		reference vertical tail area, ft ²
TMV		vertical tail-root torsional moment (about vertical tail reference center), in-1b
$TM_{V_{\mathbf{G}}}$		vertical tail-root torsional moment at gauge, in-1b

<u>Symbol</u>	Plot Symbol	<u>Definition</u>
TMW		wing-roottorsional moment (about wing reference center), in-1b
TM _{WG}		wing-root torsional moment at gauge, in-1b
T _{MPS}		MPS supply total temperature, °R
T _T SRM		SRM supply total temperature, °R
T_T		freestream total temperature, °R
T _∞		freestream static temperature, °R
x _{CPV}	XVCP	vertical tail center-of-pressure, longitudinal location, in
X _{CPW}	XWCP	wing center-of-pressure, longitudinal location, in
x _N		Orbiter nose station, in
$x_{TM}_{V_G}$		longitudinal location of vertical tail-root torsional gauge, in
X _{TMWG}		longitudinal location of wing-root torsional gauge, in
XVRC		longitudinal (station) location of vertical tail reference center, in
XWRC		longitudinal (station) location of wing reference center, in
YBWMI		lateral location of inboard wing-rest bending gauge, in
Y _{BMWO}		lateral location of outboard wing $-\!$

Symbol	Plot Symbol	<u>Definition</u>
YCP _W	YWCP	wing center-of-pressure, lateral location, in
Ywrc		lateral (buttplane) location of wing reference center, in
$z_{BM_{V_{\widetilde{I}}}}$		vertical location of inboard vertical tail-root bend- ing gauge, in
$z_{BM}v_0$		vertical location of outboard vertical tail-root bending gauge, in
ZCPV	ZVCP	vertical tail center-of-pressure, vertical location, in
Z _{VRC}		vertical (waterplane) location of vertical tail reference center, in
α	ALPHA	model angle-of-attack, deg
^α Nj		pitch angle of nozzle-j measured in a plane parallel to the Orbiter plane of symmetry, degrees
β	BETA	model angle-of-sideslip, deg
Y _N j		pitch angle of nozzle-j measured in a plane which yaws with the nozzle, degrees
⁶ BF	BDFLAP	bodyflap deflection, deg
_ε ι Ι	ELV-LI	left inboard elevon deflection, deg
°E10	ELV-LO	left outboard elevon deflection, deg
δ _{E_{rI}}	ELV-RI	right inboard elevon deflection, deg
⁶ Era	ELV-RO	right outboard elevon deflection, deg

()

Symbo1	Plot Symbol	<u>Definition</u>
δEΙ	ELV-IB	inboard elevon deflection, deg
^δ E ₀	ELV-OB	outboard elevon deflection. deg
δR	RUDDER	rudder deflection, deg
δSB	SPDBRK	speedbrake deflection, deg
∿c ^b !	DCPi	<pre>incremental pressure coefficient, i = tap#</pre>
$^{\Delta C}_{p_{\mathbf{a}v_\#}}$	DCP#A	average value of incremental pressure coefficients for model surface taps
$^{\Psi}$ N $_{ extsf{j}}$		yaw angle of nozzle-j measured in an Orbiter waterplane, deg
ф	PHI	radial location, deg
$^{C_{p}}_{av_\#}$	CP#AV	average value of pressure coefficients for model surface taps
Δ(i)	D(i)	incremental coefficient (i) due to thrust (i) ≡ previously defined coefficient
Δ(i) _{δE}	D(i)E	<pre>incremental coefficient (i) due to elevon deflection, (i) ≡ previously defined coefficient</pre>
r _B		body length, in
R/R _{od}	R/ROD	radius of tap location divided by outer radius
x _B /e _B	XB/LB	SRB base longitudinal distance divided by body length

NOMENCLATURE (Concluded)

SUBSCRIPTS	
В	base, body
С	chamber
e	exit
E	elevon
G	gauge
i	surface-pressure tap number
1	inboard
j	nozzle number
Ĭ	left
N	nozzle, Orbiter nose
0	outboard, Orbiter
r	right
R	rudder
R S	Solid Rocket Booster
T	External Tank, total
٧	vertical tail
W	wing
&	static

CONFIGURATIONS INVESTIGATED

The model employed in Test IA80, 88-OTS, was a 0.020-scale representation of the Vehicle 5 Space Shuttle launch configuration with mated Orbiter, External Tank, and Solid Rocket Boosters. Main Propulsion System and Solid Rocket Motor cold-gas plume-simulation was made possible by dual high-pressure air-supply systems.

Various elevon control settings were incorporated in the run schedule, while no gimbal-angle changes were made on the nozzles. Several different nozzle operation pressures were set for each Mach number, and two nozzle contours were tested.

Component dimensions are presented in Table III. Control-setting parameters were as indicated in Table II. Model surface-pressure tap locations are shown in Table IV.

The Orbiter, designated as 0, was comprised of components identified as follows:

Component Symbol	Description
B ₆₂	fuselage
c ₁₂	canopy
E ₅₂	elevons
F ₁₀	bodyflap
M ₁₆	OMS/RCS pods
N ₈₇	MPS nozzles, conical
N ₈₉	OMS nozzles

CONFIGURATIONS INVESTIGATED (Continued)

 N_{104} MPS nozzles, contoured rudder/speedbrake V_8 vertical tail wing

The External Tank, designated as T_{28} , was comprised of components identified as follows:

attach structure
attach structure
attach structure
aft attach crossbeam
feedline
feedline
ET protuberances

CONFIGURATIONS INVESTIGATED (Concluded)

The solid rocket booster, designated as S_{22} , was composed of components identified as follows:

N ₈₈	SRB nozzles
PS ₁₁	SRB protuberances
PS ₁₂	SRB protuberances
PS ₁₃	SRB protuberances
PS ₁₄	SRB protuberances
PS ₁₇	SRB protuberances
PS ₁₈	SRB protuberances
PS ₁₉	SRB protuberances

The launch configuration was designated as OTS on the Data Set/Run Number Collation Summary sheets.

TEST FACILITY DESCRIPTION

The NASA/Ames Research Center Unitary Plan Wind Tunnel 11 x 11 transonic leg is one of three circuits operating from a common power system and two compressor systems. The 11 x 11 leg is capable of attaining Mach numbers from 0.60 to 1.40, at Reynolds numbers from 1.7 x 10^6 per foot to 9.4 x 10^6 per foot.

The tunnel is a closed-return, air-medium, variable-density facility, operating at ambient temperatures and having a bled test section for transonic conditions.

Models are supported by means of conventional stings or sting/strut assemblies for force, moment, pressure, and component-loads testing. The tunnel sector-strut system can attain angles-of-attack to \pm 15 degrees and angles-of-sideslip to \pm 15 degrees about its body-of-revolution.

Schlieren and shadowgraph photographic systems are available, and high-pressure air-supply systems exist for use in power-plume simulations and thrust tests.

DATA REDUCTION

Standard tunnel operation parameters were computed by the facility along with model plume-simulation pressure data, model surface-pressure values and coefficients, rudder and elevon hinge-moments, and air-supply temperatures. Model angle-of-attack was determined by the onboard dangleometer. Furthermore, wing and vertical-tail bending and torsional moments were recorded and reduced to present centers-of-pressure and forces.

The following equations and methods were used: Wing Normal-Force Coefficient:

$$C_{N_W} = \frac{BM_{W_I} - BM_{W_Q}}{(Y_{BM_{W_Q}} - Y_{BM_{W_I}}) S q}$$

Wing-Root Bending-Moment Coefficient:

$$c_{B_{W}} = \begin{bmatrix} BM_{W_{0}} \\ S \neq b \end{bmatrix} + \begin{bmatrix} c_{N_{W}} (Y_{BM_{W_{0}}} - Y_{WRC}) \\ b \end{bmatrix}$$

$$= \begin{bmatrix} BM_{W_{I}} \\ S \neq b \end{bmatrix} + \begin{bmatrix} c_{N_{W}} (Y_{BM_{W_{I}}} - Y_{WRC}) \\ b \end{bmatrix}$$

Wing-Root Torsional-Moment Coefficient:

$$C_{T_W} = \begin{bmatrix} TM_{W_G} \\ S \neq \overline{C} \end{bmatrix} - \begin{bmatrix} C_{N_W} (X_{TM_W_G} - X_{WRC}) \\ \overline{C} \end{bmatrix}$$

DATA REDUCTION (Continued)

Wing-Center-of-Pressure:

$$X_{CP_{W}} = X_{TM_{W_{G}}} - \begin{bmatrix} TM_{W_{G}} \\ \hline S C_{N_{W}} q \end{bmatrix}$$

$$Y_{CP_{W}} = Y_{BM_{W_{I}}} + \begin{bmatrix} BM_{W_{I}} \\ \hline S C_{N_{W}} q \end{bmatrix}$$

$$= Y_{BM_{W_{O}}} + \begin{bmatrix} BM_{W_{O}} \\ \hline C_{N_{W}} S q \end{bmatrix}$$

Vertical Tail Side-Force Coefficient:

$$c_{\gamma_{V}} = \frac{BM_{V_{I}} - BM_{V_{O}}}{(Z_{BM_{V_{O}}} - Z_{BM_{V_{I}}}) S_{V} q}$$

Vertical Tail-Root Bending-Moment Coefficient:

$$c_{B_{V}} = \begin{bmatrix} BM_{V_{0}} \\ S_{V} & Q & b_{V} \end{bmatrix} + \begin{bmatrix} c_{V_{V}} & (Z_{BM_{V_{0}}} - Z_{VRC}) \\ b_{V} \end{bmatrix}$$

$$= \begin{bmatrix} BM_{V_{I}} \\ S_{V} & Q & b_{V} \end{bmatrix} + \begin{bmatrix} c_{V_{V}} & (Z_{BM_{V_{0}}} - Z_{VRC}) \\ b_{V} \end{bmatrix}$$

Vertical Tail-Root Torsional-Moment Coefficient:

$$c_{\mathsf{T}_{\mathsf{V}}} = \begin{bmatrix} \mathsf{TM}_{\mathsf{V}_{\mathsf{G}}} \\ \mathsf{S}_{\mathsf{V}} & \mathsf{q} & \mathsf{\bar{c}}_{\mathsf{V}} \end{bmatrix} = \begin{bmatrix} c_{\mathsf{Y}_{\mathsf{V}}} & (\mathsf{X}_{\mathsf{TM}_{\mathsf{V}_{\mathsf{G}}}} - \mathsf{X}_{\mathsf{VRC}}) \\ \mathsf{\bar{c}}_{\mathsf{V}} \end{bmatrix}$$

DATA REDUCTION (Continued)

Vertical Tail Center-of-Pressure:

$$Z_{CP_{V}} = X_{TM_{V_{G}}} - \begin{bmatrix} T_{M_{V_{G}}} \\ C_{V_{V}} S_{V} q \end{bmatrix}$$

$$Z_{CP_{V}} = Z_{BM_{V_{O}}} + \begin{bmatrix} B_{V_{O}} \\ C_{V_{V}} S_{V} q \end{bmatrix}$$

$$= Z_{BM_{V_{O}}} + \begin{bmatrix} B_{M_{V_{O}}} \\ C_{V_{V}} S_{V} q \end{bmatrix}$$

Nozzle-Pressure Ratios;

$$CPR_{j} = \frac{Pc_{j}}{P_{\infty}}$$
Pe

$$EPR_{j} = \frac{Pe_{j}}{P_{\infty}}$$

where: j = 1, Top MPS nozzle

2, L.H. MPS nozzle 3, R.H. MPS nozzle 4, L.H. SRB nozzle

5, R.H. SRB nozzle

Hinge-Moments:

$$\frac{E}{C_{H_{E_{I}}}} = \frac{H_{E_{I}}}{S_{E} q \bar{c}_{E}}$$

$$C_{H_{E_{O}}} = \frac{H_{E_{O}}}{S_{E} q \bar{c}_{E}}$$

$$C_{H_{E_{T}}} = C_{H_{E_{I}}} + C_{H_{E_{O}}}$$

$$C_{H_{R}} = \frac{H_{R}}{S_{R} q \bar{c}_{R}}$$

DATA REDUCTION (Continued)

Surface-Pressure Coefficients:

$$C_{p_i} = \frac{P_i - P_{\infty}}{q}$$

Coefficient averages:

For
$$i = 2, 21, 22, 39, 40, 60, 67, 68, 75, 76$$

$$C_{p_{av_i}} = (C_{p_i} + C_{p_{i+2}} + C_{p_{i+4}} + C_{p_{i+6}})/4$$
For $i = 12, 29, 30, 47, 48$:
$$C_{p_{av_i}} = (C_{p_i} + C_{p_{i+2}} + C_{p_{i+6}} + C_{p_{i+8}})/4$$

And:

$$c_{p_{av_{13}}} = (c_{p_{13}} + c_{p_{17}} + c_{p_{19}}) / 3$$

 $c_{p_{av_{59}}} = (c_{p_{59}} + c_{p_{61}} + c_{p_{63}} + c_{p_{67}}) / 4$

To reflect plume effects on surface pressures, incremental data were computed from results of tests with plume simulation and tests without plume simulation:

$$\Delta C_{p_{i}} = C_{p_{i}} \binom{\text{with}}{\text{plume}} - C_{p_{i}} \binom{\text{without}}{\text{plume}}$$

$$\Delta C_{p_{av_{i}}} = C_{p_{av_{i}}} \binom{\text{with}}{\text{plume}} - C_{p_{av_{i}}} \binom{\text{without}}{\text{plume}}$$

DATA REDUCTION (Continued)

Symbol .	Full-Sca	le	Mode1-Sca	le
b	936.68	in	18.734	in
by	315.72	in	6.3144	
ō	474.8	in	9.496	in
ĒΕ .	90.70	in	1.814	in
ō _R	73.20	in	1.464	in
ēγ	199.81	in	3.996	in
₽ _B	1290.3	in	25.806	in
SE	210.00	ft ²	0.08400	ft ²
S _R	100.15	ft ²	0.04006	ft ²
S	2690.0	ft ²	1.0760	ft ²
s _V	413.25	ft ²	0.16530	ft ²
x _N	235.0		4.700	in
x _{TM} _{VG}			28.5500	in
$x_{TM_{W_{G}}}$			24.6400	in
X _{VRC}	1414.3	in	28.286	in
Xwrc	1307.0	in	26.140	in
$^{Y_{BM_{W_{I}}}}$			2.4962	in
Y _B M _W O	• • • • • • • • • • • • • • • • • • •		3.9037	in
•				

DATA REDUCTION (Concluded)

Symbol Symbol	Full-Scale	Model-Scale
YWRC	106.0 in	2.120 in
ZBWAI		10.4681 in
z_{BMV_O}		11.3935 in
Z _{VRC}	503.0 in	10.060 in

Resulting data are presented in the data figures and in the appendix.

RESULTS AND DISCUSSION

Generally high data confidence can be ascribed to the results of this test program, as instrumentation anomalies were few and correctable. Most data error was attributable to model failure, and the following outlines those incidents.

Hinge-moment data was consistently good with only minor zero-return changes due to gradual wear of hinge bearings in the elevons.

Post test data-correction factors had to be applied to Main Propulsion System nozzle chamber pressure readings, as the total-pressure probes progressively failed during testing. However, these corrections were small, on the order of 1%, and are already incorporated in data presented herein.

Scanivalve-measured Orbiter, External Tank, and Solid Rocket Booster surface pressures were also extremely reliable, with only one orifice apparently plugged, Tap #30 shown in Table 4.

Due to the loss of the right-hand contoured MPS nozzle during Run 311, all contoured-nozzle configuration testing after Run 313 employed the conical nozzle in the top-center location. The top-center contoured nozzle was used in the right-hand location, consequently.

TABLE I

ST: IA80			DATE \$ 8 NOV., 197
	TEST CON	IDITIONS	
MACH NUMBER	REYNOLDS NUMBER (per foot)	DYNAMIC PRESSURE (pounds/sq. inch)	STAGNATION TEMPERATUR (degrees Fahrenheit)
0.60	1.75 x 10 ⁶	1.46	77
0.60	2.56 x 10 ⁶	2.13	81
0.60	3.39 x 10 ⁶	2.93	91
0.90	2.17 x 10 ⁶	2.44	85
0.90	3.13 x 10 ⁶	3.52	90
0.90	4.26 x 10 ⁶	4.48	92
1.10	2.25 x 10 ⁶	2.93	90
1.10	3.27 x 10 ⁶	4.26	94
1.10	4.30 x 10 ⁶	5.79	109
1.25	2.27 x 10 ⁶	3.11	90
1.25	3.29 x 10 ⁶	4.52	94
1.25	4.36 x 10 ⁶	6.16	105
1.40	2.23 x 10 ⁶	3.18	90
1.40	3.22 x 10 ⁶	4.62	96
1.40	4.25 x 10 ⁶	6.32	111
BALANCE UTILIZED:	None		
BRENIOE STELLES.	CAPACITY:	ACCURACY:	COEFFICIENT TOLERANCE:
NF			T-B-T-freehighed (galacing grave gra
SF			- A sub-trainformation of the second for the second and second to the second second to the second se
AF			- Allendage of the second
РМ			Non-Market del Anno communication agriculture (School) (Nogovite ver and Angelligie (School))
RM			****
YM			
COMMENTS:			

				_	_	
•		_	 _	Ŧ	•	
1	и	u	_			
	н					

EST:	THE	<u>U</u>			DAT	A SE	RU	וא אנו	MBER	COLLATIC	N SUMMARY		8 NOV		·V
DATA SE		CONFIGURATION	SCH		: 10	To a second	10			ETERS/VALU	ES	NO. OF RUNS	ANGLE-UP	O	4
DENTIFIE			α					SEO					240	241	242
E400	-	75		8	NH	N	0	10	3.4	0.6	 		222		224
	22		1-	+	\vdash	-	\vdash	╁╁╌	4.25	0.9	+		74	15	76
	23			+	-	$\vdash\vdash$		++	++-	1-1			49	49	50
	24			+	\vdash	-	$\vdash \vdash$	++	++-	1.25	+		1	2	3
£)5		-	_		-	$\vdash \vdash$	4-1-	-	1.4			243		245
	<u>) نا</u>		\dashv	+	N+	17	-		3.4	0.6				1	1
	27		11	_		$\bot \bot$	$\vdash \vdash$	4-4-	4.25	0.9	 			226 18	79
	ා <u>පි</u>					\sqcup	\sqcup	11	₩.	1.1			77	52	
(29			\perp	!	$\downarrow \downarrow$	\sqcup	44-	1	1.25			51	 	75
	10				l v	1		$\bot \bot$	V	1.4	1		4	5	9
1	111				N	N+			3.4	0.6			249		
	12						Ш		4.25	0.9			231	232	
	13									1.1			80	81	82
	14			П	\prod		П			1.25			54	55	
	5				V	TV	П	TT		1.4			7	8	9
	is				N	N-		TT		0.9			234	235	
	17			\parallel				\prod	TT	1.1			93	84	85
	8	\downarrow				1	1	1	V	1.25			57	58	59
		13 15 CH,ŁO, SHEETI	,F,QR	C	25 19/1	PLE,	31 7 ₁ E ₁	C.O.E	37 F₁F₁ 1	43 C.I.EMT.	49 SCH 50U LE	55 5	61 IDVAR (1)	67	7 R (2)

TABLE II. - Continued. IA80 TEST: DATE: DATA SET/RUN NUMBER COLLATION SUMMARY PARAMETERS/VALUES ANGLE-OF-ATTACK SCHD. NO. OF RUNS DATA SET CONFIGURATION IDENTIFIER B BRBSMESELSEO RN M α REHOI9 0 10 4.25 1.4 N-4.25 0.9 22 1.1 23 1.25 60 61 24 13 25 89 N' -1.25 63 28 OFF OFF 0.6 238 29 4.25 0.9 1220 30 31 66 67 32 33 1.75 0.6 34 267 35 36 13 19 25 31 43 49 55 61 67 75 76 COEFFICIENTS IDVAR (1) IDVAR (2) NOV a OR B SCHEDULES

TABLE II. - Continued.

				SOURCE MAIL		MACHINE STATE							Mark Mark Commercial Science	maketauptra > 145 r	and the second second	CRES CAMPE
TEST:	14 <u>8</u> 0			DATA	SET	/RUI	וטא א	MBER	COLLATIO	ON SUMMARY	DATE	:				
	The second secon	sci	HD.	T	<u> </u>			PARAM	ETERS/VALU	JES	NO. OF	ANO	LE-OF	-ATTA	CK	
DATA SET	CONFIGURATION	α	β	SRB	SSITE	SE I	SEO	RN	M		RUNS	MACH NO.	-4	0	4	
RE4031	ΦT5		3	OFF	OFF	0	0	2.25	1.4			<u> </u>	33	34	35	
39				\sim	٨,			1.75	0.6				273	274	215	
39								225	0.9				264	265	266	
40				V	V		\coprod	2.25	1.1			<u> </u>	27	28	29	
41				OFF	CFF			2.5	0.6				252		254	
42								3.25	0.9						260	115
43							\coprod		1. /			ļ	36	37	38	-
44									1.25				42	43	44	KUN 7
45				V	1			1	1.4			<u> </u>	45	46	47	NUMBE
46				\mathcal{N}	N			2.5	0.6			<u> </u>	255	256	257	エ
41								3.25	0.9				261	262	263	Ů.
48			*	V	*	V	V	3.25	1.1			<u> </u>	39	40	41	
49			0	OFF	0ff	8	4	4.25	V			92				
50			0	2	N				V			93				
51			B	OFF	OFF				0.98				112	113	114	
52				2	N			V	0.98				115	116	117	
53				OFF	OFF		Ш	3.4	0.6				288		290	
V 54			Y	V	¥	Y	1	4.25	0.9			<u> </u>	296	297	298	Ц
1	7 13 19			25		31		37	43	49	55	61		67	7	5 76
				ب		ببل		بيا.	خلليب			ىيىل	AR (1)	IDVA	R (2)	VDV
α OF SCHED	•						DEFFIC	IENTS								

A ...

9

TABLE II. - Continued.

						IA	DEF 1		Continu	cu.						
TEST:	TA 80			DAT	A SE	T/RU	וא או	MBER	COLLA	TION SUMM	IARY	DATE	:			
DATA SET		SCH	4D.					PARAN	AETERS/VA	LUES		NO.	AN	GLE-OF-ATT	ACK	
IDENTIFIER	CONFIGURATION			SRE	SSM	SEI		RN				NO. OF RUNS	3	-4 C		
RE4055	$\phi \tau s$		8		OFF		4	4.25						106 10	7 108	
56								\prod	1.25				<u> </u>	94 9	5 96	
57								1	1.4					100 10]
58				N	N			3.4	0.6					291 29	2 293	
59				1				4.25	0.9					299 300	301]
60								\prod	1./					109 110		TES
61			Ш						1.25					97 98	3 99	-
62			Ш	Y	1				1.4				_	103 104	105	-
63			Ш	NT	N'	1	V	14	0.98				↓	118 119	7 120	NUMBERS
64			Ш	9 F F	OFF	8	-4	3.4	0.6					314 315		BER
65			Ш					4.25	0.9					302 30	3 304	1 "
66			Ш			Ш			1./				1	133 134		
67									1.25					127 128	129	1
68			Ш	V	V	\coprod		¥	1.4				<u> </u>	12/ 122		1
69			Ц	N	N	Ш		3.4	0.6				<u> </u>	317 3/9		
70		$\perp \downarrow$	Ц					4.25	C. 9				<u> </u>		307	
71			Ц					$oldsymbol{\downarrow}$	1.1				<u> </u>	136 137	_	-
V 12	<u> </u>	Ш	L	¥	V	1	1	1	1.25					130 131	132	<u>L</u>
, 7	13 19			25		31		37	43	49)	55	61	67		75 7 6
			لد	ـــــ	 .					ىلىيىن		للسب		<u> </u>	40.73	N. D.V
α OR SCHEDU	•					C	OEFFIC	CIENTS					יטו	VAR (1) IDV	AR (2)	N D V

TABLE II. - Continued.

TEST:]	A80		(247/5 8/0	DAT	ΔSE				COLLA		IMMADV		ATE:	niconnana 2000 CHENNANA	all the same of th		
· DATA SET		sc	HD.		, JL	1. 100			METERS/VA		JMMAKI		NO.	ANGLE-OF	-ATTAC	K	
IDENTIFIER	CONFIGURATION	α	β	SRB	SSME	Sei	SEO	IRN	M				NO. OF RUNS	1-4	0	4	Г
RELIO73	OTS		B	N	N	8	-4	4.25	1.4					124	125	Rb	
14				OFF	OFF	8	0	3.4	0.6					276			
15								4.25	0.9					252			
76].]					153		155	
77							\prod	П	1.25					147	148		
18				Ý	V			1	1.4					14/	142	143	-
74				N	\mathcal{N}'			3.4	0.6					279	280	281	1.5 #
80					j			4.25	0.9					285			RUN
81									1.1						157	158	-
82							\prod		1.25					150	151	152	m
83				*	٧	V	V	V	1.4					144	145	146	RS
84				OFF	CFF	3	2	3.4	0.6					326		328	
85						1		4.25						320	321		[
86				V	V		П	V	7.					159	160	16/	
81				\mathcal{N}	2			3.4	0,6			1 1		329	330		
88								4.25						323	324		
39		$\Pi\Pi$		v	V	1		4.25	1.1					162	163	164	
v 90			V	DFF	OFF	4		7	0.6					332	333		
1 7	13 19		2	25		31		37	43		49	55	61		67		5 76
a OR	<u> </u>		ı		4-1-		DEFFIC		4444	1111		1111		IDVAR (1)	سا	(2) N	
SCHEDU	*																

TABLE II. - Continued.

TEST: J	TA 80		DAT	A SET	/RUN	I NUM	IBER	COLLATI	ON SUMMARY	DATI	Ξ:			
DATA SET	CONFIGURATION	SCH						ETERS/VALI	UES	NO	. AI	NGLE-OF-ATTA	СК	
IDENTIFIER		-		SEME.	SEI	SE0	RN	p7		OF RUN	s	-40	4	
RE4091	ØTS	1 8	OFF	OFF	4	4	4.25	0.9				338 339	340	
92								1.1				177 178		
93						\perp		1.25				17/ 172	173	
94						\Box	٧	1.4				165 166	167	
95			M	N			3,4	0.6				335 330	337	
96							4.25	0.9				34/342	343	7
97								1.1				190 181	132	15
98								1,25				174 175		R C N
99			V	V	V	1	V	1.4				168 169		N N N
AO			OFF	DFF	0	4	3.4	06			1	I I	346	3BM
All					ŤŤ		4.25	0.9			1	350 351	352	Ŧ\$
AZ						11		11			1	195 196		
Á3						71		1.25			1	189 190		
A4						11		1.4	1		1	183 184	185	
A5			N	1 /	++	11.	34	0.6			 		349	
Ab				tit			1.25				1		355	
A7				111	11	+		11	 	 	1	198 199	200	
V 48						1		25	 	 	 	192 193	194	
1 7	13 19		75	 -	<u> </u>							(1.2)/10		一
<u>'</u>	13 19		25	1	1		37	43	49	55	61	67	75	76
			-1-1-1-	4 - 1 - 1 - 4.		FFICI					10'	VAR (1) IDVA	R (2) N	DV
a OR SCHEDUL														
SCHEDUL														

TABLE II. - Continued.

TEST:	IA8C			DAT	A SET	r/RU	N NU	MBER	COLLA	TION S	SUMMARY		DATE:				
DATA SET	CONFIGURATION	SC	٦D.				-		ETERS/V	ALUES			NO. OF	ANGLE-0	-ATTA	CK	
DENTIFIER	CONFIGURATION	α	β	SRB	SSME	SEI	SEO	RN	M				RUNS	-4	10	4	Į
RE40A9	OTS		В	N	N	0	4	4.25	1.4					186	187	138	1
BO				N	#2 CUT	0	0	3.4	0.6					302	363	364]
BI								4.25	0.9					365	366	367]
B2									1.1					20	7 208	209	
B3						П	П	П	1.25					204	205	206	
В4			T	1	V		\sqcap	1	1.4					20	202	203	=
85				N	#1 04T			3.4	0.6					3:50			15
86								4.25	0.9					35		361	RUN
B1								T	1-1					216		218	Z C
B 8								H^{-}	1.25				i	21.		215	NUMBERS
89		1	T				11	H^-	14					210	7	212	ร์
co	OTS W/ET BAXESPOLL			OFF	OFF	\sqcap		H^-	0.9					37	375		
CI	ψ13 W/21 Σπεχυαί		+	Ť	1		H	 	1.1					36.5			1
C2		+	+	1/	N			#	19					3.79			1
<u>C2</u>		1-1	+	1	1			1	1-1			1		37/	4	¥	1
1 0		╂┤	1	- -		_	-	-	1-1					- 17/1	17/2	114	1
		+					 	 				-			 	 	1
		╂╌╂		-			-	-				+	-		+	 	1
		لـــا						<u> </u>									<u></u>
7	13 19			25		31		37	4:		49	55		E1	67		75 76
			لب					IENTS			سيب			IDVAR (1)	LEVA	P (2)	NDV
a OR	β						021710										
SCHEDU	LES																<u>- </u>

TABLE II. - Concluded.

DATASETS	IDVAR(1)	IDVAR(2)	COEFFICIENTS
RE40XX EE4XXX	ALPHA ALPHA	BETA BETA	CBMW, CTMW, CNW, CHEI, CHEO, CBMV, CTMV, CYV, CHR, MACH XWCP, YWCP, XVCP, ZVCP
AE4XXX BE4XXX	ALPHA ALPHA	BETA BETA	CP379, CP717, CP380, CP718, CP381, CP716, CP720, CP719, CP374, CP376 CP2, CP4, CP6, CP8, CP12, CP14, CP18, CP20
CE4XXX	ALPHA	BETA	CP29, CP31, CP35, CP37, CP30, CP32, CP36, CP38
DE4XXX	ALPHA	BETA	CP76, CP78, CP80, CP82, CP75, CP77, CP79, CP81
FE4XXX	ALPHA	BETA	CP378, CP715, CP375, CP377, CP721, CP372, CP714, CP722, CP373, CP713
GE4XXX	ALPHA	BETA	CP723, CP371, CP370, CP724
HE4XXX	ALPHA	BETA	CP22, CP24, CP26, CP28, CP21, CP23, CP25, CP27
IE4XXX	ALPHA	BETA	CP13, CP17, CP19
JE4XXX	ALPHA	BETA	CP39, CP41, CP43, CP45, CP40, CP42, CP44, CP46
KE4XXX	ALPHA	BETA	CP47, CP49, CP53, CP55, CP48, CP50, CP54, CP56
LE4XXX	ALPHA	BETA	CP60, CP62, CP64, CP66, CP59, CP61, CP63, CP65
ME4XXX	ALPHA	BETA	CP68, CP70, CP72, CP74, CP67, CP69, CP71, CP73
RE4CXX	ALPHA	BETA	CP for pressure tap* 9, 10, 15, 16, 33, 34, 51, 54, 57, 58
RE4DXX	ALPHA	BETA	CP for pressure taps* 700, 702, 704, 706, 382, 384, 708, 710, 383, 385
RE4EXX	ALPHA	BETA	CP for pressure taps* 701, 703, 705, 707, 386, 388, 709, 711, 387, 389
RE4GXX	ALPHA	BETA	CP for pressure taps* 518, 805, 800, 521, 806, 801, 804, 807, 802, 515, 808, 803
RE4HXX	ALPHA	BETA	CP for pressure taps* 541, 810, 814, 821, 826, 815, 811, 816, 822, 827, 817, 823, 828, 832, 812, 818, 824, 829, 830, 833, 809, 813, 819, 820, 825, 831, 834
RE4IXX	ALPHA	BETA	CP for pressure taps* 841, 842, 843, 844

 $[\]star$ See TABLE IV for tap locations.

Table III Model Dimensional Data

MODEL COMPONENT: A'TTACH STRUCTURE - AT 28

GENERAL DESCRIPTION: Rear orbiter to ET attach structure (LH and RH) (2 members)

MODEL SCALE:	0.020		MODEL	DRAWING NO.:	
CRAWING NO.:	VL78-000063,	VL78-000062B			
DIMENSIONS:		MEMBER		FULL SCALE	MODEL SCALE
		#1	x _o	1317.00	26.34
			Yo	<u>- 96.50</u> (LH) - 1.930
				96.50	RH) 1.930
			zo	267.50	5.350
			$\mathbf{x}_{\mathbf{T}}$	2058.00	41.16
			YT	-125.68	(LH) <u> 2.514</u>
				125.68	(RH) <u>2.514</u>
			$z_{\mathbf{T}}$	515.5	10.310
		#2	x _o	1317.00	26.34
			Yo	- 96.50 (LH) <u>- 1.930</u>
				96.50 (RH) <u>1.930</u>
			z_{o}	267.50	5,350
			$\mathbf{x_T}$	1872.00	37.44
			$\mathbf{Y_T}$	-125.68 (LH) - 2.514
				125.68 (RH) 2.514
			$\mathbf{z_{T}}$	504.5	10.090
Diamete	r, In.	# 1		11.5	0.230
		#2		15.5	0.310

MODEL COMPONENT: ATTACH STRUCTURE - AT 31 REAR ET to SRB attach structure (LH and RH). (3 members) GENERAL DESCRIPTION: MODEL DRAWING: MODEL SCALE: 0.020 VL78-000063, -000062B, -000066 DRAWING NO.: MEMBER FULL SCALE MODEL SCALE DIMENSIONS: 41.16 2058.00 $\mathbf{X_T}$ #1 3.430 3.430 -171.50YT 171.50 1.064 57.00 2058.00 41.16 #2 $\mathbf{X_T}$ 3,277 YT **-**163.85 8.996 449.81 $Z_{\mathbf{T}}$ 1511,00 30,22 Xs Ys 1.5310.315 Z_s 2058 41.16 #3 X_T -3,234 <u>-161,72</u> $\mathbf{Y}_{\mathbf{T}}$ 343_00 6.860 z_{T} 30.22 1511.00 X s Ys 53.24 1.597 -1.14057,00 Z_{B}

#1

#2

#3

Diameter of members, In .:

Table III (Cont'd)

MODEL COMPONENT: ATTACH STRUCTURE - AT 32

GENERAL DESCRIPTION: Forward orbiter/ET attach structure (2 members)

2B, Martin Ma	rietta 8	260020914	
MINNIBINR		FULL SCALE	MODEL SCALE
<i>#</i> 1	χ _o	388.15	7. 763
	Yo	0	0
r Z _T 614)	Zo	LWR ML	LWR ML
	$x_{\mathbf{T}}$	1129.9	22.598
	$\mathbf{Y}_{\mathbf{T}}$	46.50	9.300
,	$z_{ m T}$	562.58	11,251
#2	x _o	388.15	7, 763
	Yo	0	0
	Zo	LWR ML	LWR ML
	Хт	1129.9	22.598 _
	${f r}_{f T}$	-46.50	-0.930
	z_{T}	562.58	11. 252
# 1		6.00	0.120
#2		6.00	0.120
	MEMBER #1 r Z _T 614) #2	MEMBER #1 Xo Yo Yo XT YT XT #2 Xo Yo Zo XT XT XT XT XT XT XT	#1 X ₀ 388.15 Y ₂ 0 T Z _T 614) Z ₀ LWR ML X _T 1129.9 Y _T 46.50 Z _T 562.58 #2 X ₀ 388.15 Y ₀ 0 Z ₀ LWR ML X _T 1129.9 Y _T -46.50 Z _T 562.58 #1 6.00

MODEL COMPONENT : BODY B		
GENERAL DESCRIPTION : Configuration	140C orbiter fu	selage. MCR_200-R4.
Similar to 140A/B fuselage except aft	body revised an	d improved midbody-
wing-boot fairing, $X_0 = 940 \text{ to } X_0 = 1$	040.	
MODEL SCALE: 0.020		
DRAWING NUMBER: <u>VL70-000140C</u> , -000200B, -00	00202C , - 000205 00203	5A
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length (IML: Fwd Sta $X_0 = 238$) Length (OML: Fwd Sta $X_0 = 235$),		25.806 25.866
Max Width (At $X_0 = 1528.3$), In.	264.0	5.280
Max Depth (At $X_0 = 1464$), In.	250.0	5.00
Fineness Ratio	4.899	4.899
Area - Ft ²		-
Max. Cross—Sectional	340.885	0, 136
Planform		
Wetted		-
Base		

MODEL COMPONENT : CANOPY - C12			
GENERAL DESCRIPTION : Configuration 14	OC orbiter	canopy.	<u>Vehicle</u>
Cabin No. 31 updated to MCR 200-R4.	Used with	Fuselage	В ₆₂ .
MODEL SCALE: 0.020			
DRAWING NUMBER: VL70-000140C, -0	00202B, -00	00204	
DIVENSIONS	5111 (65) (- 400	
DIMENSIONS:	FULL SCALE	E MODI	EL SCALE
Length($X_0 = 434.643$ to 578), In.	143.35	7	2,867
Max Width (At $X_0 = 513.127$), In.	152.41	2	3.048
Max Depth (At $Z_0 = 501 \text{ to } 449.39$), In. 51.61		1.032
Fineness Ratio			
Area			
Max. Cross-Sectional			
Planform	•		
Wetted			
Base			

MODEL COMPONENT: ELEVON - E52		
GENERAL DESCRIPTION: Elevon for configuration elevon split line X = 312.5. 6.0" g		
MODEL SCALE: 0.020		
DRAWING NUMBER: VL70-0001400	<u>c,</u> -006089, -006092	, SS-A01260
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area - Ft ²	210.0	0.084
Span (equivalent) , In,	349.2	6.984
Inb'd equivalent chord , In.	118.0	2.360
Outb'd equivalent chord, In.	55.19	1.104
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	0.2096	0.2096
At Outb'd equiv. chord	0.4004	0,4004
Sweep Back Angles, degrees		
Leading Edge	0.0	0.0
Tailing Edge	-10.056	-10.056
Hingeline (Product of area & c)	0.0	0.0
Area Moment	Ft ³ 1587.25	0.0127
Mean Aerodynamic Chord, In.	90.7	1,814
Hingeline dihedral (origin at $Z_0 = 261.3509$), deg.)	5.229	5. 229

MODEL COMPONENT : BODY FLAP - :	F ₁₀	
GENERAL DESCRIPTION : Configuration	140C body flap.	Hingeline located
at $X_0 = 1532$, $Z_0 = 287$.		
MODEL SCALE: 0.020		
DRAWING NUMBER:	355114	
DIMENSIONS :	FULL SCALE	MODEL SCALE
Length($X_0 = 1525.5 \text{ to } 1613$), In.	87,50	1.750
Max Width (At L. E., Xo = 1525.	5) <u>In. 256.00</u>	5.12
Max Depth $(X_0 = 1532.0)$, In.	19.798	0.594
Fineness Ratio		
Area - Ft ²		
Max. Cross-Sectional (At H.	L. <u>) 35.196</u>	0, 0317
Planform	135.00	0 1215
Wetted		
Base $(X_0 = 1613)$	4.89	0.0044

Table III (Cont'd)

MODEL COMPONENT: FEEDLINE - FL10

GENERAL DESCRIPTION: LH2 feedline on upper left-hand side of T28.

MODEL SCALE: 0.020

DRAWING NO.: VL78-000063, -000062B

DIMENSIONS:		FULL SCALE	NNMODEL SCALE
Leading edge at:	x_T	2071.5	41.430
	YT	- 70.00	-1,400
	$z_{\mathbf{T}}$	573.934	11.479
Trailing edge at:	$\mathbf{x}_{\mathbf{T}}$	2081.8	41.636
	YT	- 70.00	-1.400
	z_{T}	584.059	11.681
Diameter of line (17.0 I.	D.)	18.160	0.363

MODEL COMPONENT: FEEDLINE - FL11

GENERAL DESCRIPTION: LO 2 feedline on upper right-hand of T 28

MODEL SCALE: 0.020

DRAWING NUMBER: VL78-000063, -000062B

DIMENSIONS:		FULL SCALE	_ DEL SCALE
Leading edge at:	$\mathbf{x}_{\mathtt{T}}$	1000.667	20.013
	$\mathbf{Y}_{\mathbf{T}}$	70.00	1.400
	$\mathbf{z}_{\mathbf{T}}$	150.519	3.010
Trailing edge at:	$\mathbf{x_T}$	2071.5	41,430
	$\mathbf{Y}_{\mathbf{T}}$	70.00	1.400
	$z_{\mathbf{T}}$	573.934	11.479
Diameter of line (17.0	I.D.)	18.16 O.D.	0.363

MODEL COMPONENT: FAIRING - FR10

GENERAL DESCRIPTION: Umbilical door fairing between aft ET/Orbiter attach structure.

MODEL SCALE: 0.020

DRAWING NO.: VL78-000063, -000062B, Martin Marietta 82600207000

DIMENSIONS:		FULL SCALE	MODEL SCALE
Leading edge at:	$\mathbf{x}_{\mathbf{T}}$	2052.0	41.04
Length		193.0	3.86
Width		15.00	0.300

MODEL COMPONENT : OMS POD - M16		
GENERAL DESCRIPTION : Configuration	140C orbiter ON	MS pod - short
pod.		
MODEL SCALE: 0.020		
DRAWING NUMBER: VL70-008401, -0	08410	
DIMENSIONS :	FULL SCALE	MODEL SCALE
Length (OMS Fwd Sta X _o = 1310.	5), In. 258.50	5. 170
Max Width(At $X_0 = 1511$), In.	136,8	2. 736
Max Depth (At $X = 1511$), In.	74.70	1.474
Fineness Ratio	<u>2.484</u>	2.484
Area - Ft ²		
Max. Cross—Sectional	58.864	0,024
Planform		
Wetted		
Base		

MODEL COMPONENT: MPG NOZZLES - N87				
GENERAL DESCRIPTION: Flow-through MPS 1	GENERAL DESCRIPTION: Flow-through MPS nozzles.			
MODEL SCALE: 0.020				
DRAVING NUMBER: SS-A01279				
DIMENSIONS:	FULL SCALE	MODEL SCALE		
MACH NO. 1.55, 2.0, 2.2, 2.6, 3.0, 3.5				
Length - In. Gimbal Point to Exit Plane Throat to Exit Plane	157.0 181,55	3.140 3.361		
Diameter - In. Exit Throat Inlet	90.435	1,809 0.467		
Area - ft ² Exit Throat	44.607 2.974	0.178 0.00198		
Gimbal Point (Station) In. Upper Nozzle Xo Yo Zo	1445.00 0.0 443.00	28.90 0.0 8.86		
Lower Nozzles Xo Y _O Z _O	$ \begin{array}{r} 1468.17 \\ \pm 53.0 \\ \hline 342.64 \end{array} $	29.363 ±1.06 6.853		
Null Position - Deg. Upper Nozzle Pitch Yaw	<u>16</u> 0	16		
Lower Nozzle Pitch Yaw	10	0 		

MODEL COMPONENT: SR	B NOZZLE - N ₈₈		
GENERAL DESCRIPTION:	Flow-through SRB	nozzle simulator =	7.0 prototype
MODEL 2017 D. 0.20			
MODEL SCALE: 0.020			
DRAVING NUMBER: SS-A0	11281		
DIMENSIONS;		FULL SCALE	MODEL SCALE
MAC 2 1.55, 2.0,	2.2, 2.6, 3.0, 3.	5	
Length 4. Gianal Point to I Throat to Exit Pi		86.8 112.135	1.736 2.243
Diameter in. Exit Throat Inlet		114. 290 64. 53	2.886 1.291
Area - ft ² Exit Throat		356. 738 22. 712	0.143 0.009
Gimbal Point (Station	n) - In.		
ХВ Z		1902.6 250.2	38,052 5,010
Lower Nozzles X Y Z			
Null Position - Deg.			
Pitch Yaw		0	0
Lower Nozzle Pitch Yaw			

MODEL COMPONENT: OMS NOZZLES - N89		·	
GENERAL DESCRIPTION: OMS nozzle in stowed position which is outboard 8			
deg. and down 7 deg. from null position.	Use with M ₁₆ .		
MODEL SCALE: 0.020			
DRAWING NUMBER: SS-A01279			
DIMENSIONS:	FULL SCALE	MODEL SCALE	
MACH NO.			
Length - In. Gimbal Point to Exit Plane Throat to Exit Plane	56.0	1.12	
Diameter - In. Exit (.O.D.) Throat Inlet	50.0	1.00	
Area - ft ² Exit Throat			
Gimbal Point (Station) - In.			
Xo Yo Zo	$\frac{1518.00}{88.00}$ 492.0	30,360 1.76 9.84	
Lower Nozzles X Y Z			
Null Position - Deg.			
Pitch Yaw	15°49 1 6°30'	15°49' 6°30'	
Lower Nozzle Pitch Yaw			

MODEL COMPONENT: NOZZLES 2 1104	
GENERAL DESCRIPTION: Flow-through	MPS nozzles with gimbal capability.
Same as N ₈₇ , except that these nozzl	es have contoured interior, the exterior
same as N ₈₇ when shroud is attache	d.
MODEL SCALE: 0.020	
DRAWING NUMBER: SS-A01261	
DIMENSIONS:	FULL SCALE MODEL SCALE
MACH NO.	
Length - In. Gimbal Point to Exit Plane Throat to Exit Plane	157.00 3.14 119.69 2.394
Diameter - In. Exit Throat Inlet	90, 435 30, 140 0, 603
Area - ft ² Exit Throat	44.607 0.0178 4.955 0.00198
Gimbal Point (Station) - In. Upper Nozzle Xo Yo Zo	1445.00 28.90 0.0 0.0
Lower Nozzles X o Y o Z o	1468, 17 29, 3634 53.0 1.06 342, 64 6, 853
Null Position - Deg. Upper Nozzlo Pitch Yaw	16 <u>16</u> <u>0</u>
Lower Nozzle Pitch Yaw	OUTBID 3°30° OUTBID 3° 30°

MODEL COMPONENT : ELECTRICAL T	TUNNEL - PS ₁₁	
GENERAL DESCRIPTION :Tunnel runr	ning longitudinall	y on the SRB for
electrical wires.		
MODEL SCALE: 0.020		
DRAWING NUMBER: VC77-000002		
DIMENSIONS :	FULL SCALE	MODEL SCALE
Width, In.	5.70	0.114
Radius, In.	5,70	0.114
Height, In	4.70	0.094
L.E. at Sta.	494.70	9.894
L.E. sweepback angle, Deg.	30.0	30.0
Max. Cross-Sectional		
Planform		
Wetted		
Base		

MODEL COMPONENT: ELECTRICAL TUNNEL - PS12

GENERAL DESCRIPTION: Four ring stiffeners located at the aft end of the solid rocket boosters. The stiffener is a curved I-beam.

MODEL SCALE: 0.020

DRAWING NO.: VC77-000002

DIMENSIONS:		FULL SCALE	MODEL SCALE
Height, In.		2.5	0.050
Length, In.		2.0	0.04
Locations:	x _B =	1602.00	32. 04
		1644.00	32.88
		1729.00	34.58
		1771.00	35.42

MODEL COMPONENT: CIRCUMFERENTIAL STIFFENER - PS₁₃

GENERAL DESCRIPTION: Ring stiffener located at the point where the skirt flares. The stiffener is I-beam.

MODEL SCALE: 0.020

DRAWING NO.: VC77-000002

DIMENSIONS:		FULL SCALE	MODEL SCALE
Height, In.		6.50	0.130
Length, In.		4.00	0.080
Location centerline	x_B	1833.70	36.674

MODEL COMPONENT: SOLID ROCKET BOOSTER - EXTERNAL TANK ATTACH - PS₁₄

GENERAL DESCRIPTION: Two-ring stiffeners located at aft end of

solid rocket boosters. The stiffener is curved I-beam.

MODEL SCALE: 0.020

DRAWING NO.: VC77-000002

DIMENSIONS:	FULL SCALE	MODEL SCALE
Height, In.	8.00	0. 160
Length, In.	3.00	0.060
Location centerline	X _B 1511.00	30. 22

MODEL COMPONENT: SRB PROTUBERANCES - PS₁₇

GENERAL DESCRIPTION: Electrical connecting box mounted on top of PS₁₄.

MODEL SCALE: 0.020

DRAWING NO.: None

DIMENSIONS:	F ODL SOALE	MODEL SCALE
Width, In.	60.00	1.200
Depth, In.	17.5	0.350

Centerline of box located 15 deg inboard from vertical plane of symmetry.

MODEL COMPONENT: SRB PROTUBERANCE - PS 18

GENERAL DESCRIPTION: Tie-down fixtures mounted on the aft skirt. Total of four founted 30 deg. on both sides of vertical plane of symmetry.

MODEL SCALE: 0,020

DRAWING NO.: None

DIMENSIONS:	FULL SCALE	MODEL SCALE
Sta. of leading edge (XB)	1861.2	37, 224
Sta. of Trailing Edge (XB)	1925.2	38,504
Max. width, In.	14.2	0. 284
Height, In.	8.3	0.166

MODEL COMPONENT: SRE PROTUBERANCES - PS19

GENERAL DESCRIPTION: Aft separation motor pod mounted on aft skirt

at 20 deg. inboard from top vertical plane of symmetry.

MODEL SCALE: 0.020

DRAWING NO.: None

DIMENSIONS:	FULL SCALE	MODEL SCALE
Width, In.	14.0	0.280
Height, In. (at Trailing edge)	19.0	0.380
Sweepback of leading edge, deg.	15.0	15.0

MODEL COMPONENT: ET PROTUBERANCE - PT12

GENERAL DESCRIPTION: Lightning rod attached to ET nose.

MODEL SCALE: 0.020

DRAWING NO.: VL78-000068A

DIMENSIONS:	FULL SCALE	MODEL SCALE
Length	30.90	0.618
Diameter, In.	3.20	0.096

MODEL COMPONENT: ELECTRICAL LINE - PT22

GENERAL DESCRIPTION: Left-hand electrical conduit line on T28.

MODEL SCALE: 0.020

DRAWING NO.: VL78-000063, VL78-000062B

DIMENSIONS:		FULL SCALE	MODEL SCALE
Leading edge at:	$\mathbf{x_T}$	1084,333	21.687
	$\mathtt{Y}_{\mathbf{T}}$	- 99.591	- 1.992
	z_{T}	-139.620	- 2.794
Trailing edge at:	$\mathbf{x_T}$	2058.00	41.16
	$\mathtt{Y}_{\mathbf{T}}$	- 99.491	-1.992
	z_{T}	-139.620	-2.794
Conduit size:		2.0 x 6.0	0.04×0.12

Centerline of line located radially at φ = 35.5 deg.

MODEL COMPONENT: LO2 RECIRCULATION LINE - PT23

GENERAL DESCRIPTION: LO₂ recirculation line on right-hand upper side

of T₂₈.

MODEL SCALE: 0.020

DRAWING NO.: VL78-000063, -000062B, Martin Marietta 82600207000

DIMENSIONS:		FULL SCALE	MODEL SCALE
Leading edge at:	$\mathbf{x_T}$	1040.667	20.813
	$\mathbf{Y}_{\mathbf{T}}$	94.169	1.883
	z_T	540.934	11 11.817
Trailing edge at:	$\mathbf{x_T}$	2062.920	41.258
	${\bf Y_T}$	70.00	1.40
	z_{T}	573.934	11.479
Diameter of line		4.00	0.080

Centerline of lines located radially at $\phi = 33^{\circ} 45^{\circ}$

(Right of TDC looking forward).

MODEL COMPONENT: LH2 RECIRCULATION LINE - PT24

GENERAL DESCRIPTION: LH₂ recirculation line on T₂₈.

MODEL SCALE: 0.020

DRAWING NO.: VL78-000063, -000062B, Martin Marietta 82600207000

DIMENSIONS:		FULL SCALE	MODEL SCALE
Leading edge at:	$\mathbf{x}_{\mathbf{T}}$	1040.667	20.813
	$\mathbf{Y}_{\mathbf{T}}$	- 94.169	-1.883
	z_{T}	540.934	11.819
Trailing edge at:	$\mathbf{x_T}$	2062.920	41.258
	$\mathbf{Y}_{\mathbf{T}}$	- 70.00	-1.400
	$z_{\mathtt{T}}$	573.934	11.479
Diameter of line		4.0	0.080

Centerline of line located radially at $\varphi = 33^{\circ}45'$

(Left of TDL looking forward).

MODEL COMPONENT: ELECTRICAL LINE - PT25

GENERAL DESCRIPTION: Right-hand aft electrical conduit line on T₂₈ with LH₂ pressure sensor line and LOX vent valve actuator line.

MODEL SCALE: 0.020

DRAWING NO.: VL78-000063, -000062B, Martin Marietta 82600207000

DIMENSIONS:		FULL SCALE	MODEL SCALE
Leading edge at:	$\mathbf{x_T}$	1084.333	21, 687
	$\mathtt{Y}_{\mathbf{T}}$	99.591	1. 992
	$z_{\mathbf{T}}$	139.620	2. 792
Trailing edge at:	$x_{\mathbf{T}}$	2058.000	41.16
	$\mathtt{Y}_{\mathbf{T}}$	99.591	1.992
	z_{T}	139.620	2. 792
Conduit size		2.0 x 6.0	0.04 x 0.12

Centerline of line located radially at φ = 35.5 deg.

MODEL COMPONENT: LOX PRESSURE LINE - PT 26

GENERAL DESCRIPTION: LOX pressure line on the T28.

MODEL SCALE: 0.020

DRAWING NO.: VL78-000063, -000062B, Martin Marietta 82600207000

DIMENSIONS:		FULL SCALE	MODEL SCALE
Leading edge at:	$\mathbf{x_T}$	360.733	7. 215
	${f y_T}$	15.145	0.303
	$z_{\mathbf{T}}$	407.718	8. 154
Trailing edge at:	$\mathbf{x_T}$	2083.5	41.670
	${f Y_T}$	63.25	1. 265
	z_{T}	609.00	12. 180
Line diameter		2.0	0.040

Centerline of line located radially at ϕ = 27 deg.

MODEL COMPONENT: ELECTRICAL LINE - PT27

GENERAL DESCRIPTION: Electrical conduit on the right-hand forward

section of T28.

MODEL SCALE: 0.020

DRAWING NO.: VL78-000062B

DIMENSIONS:		FULL SCALE	MODEL SCALE
Leading edge at:	$\mathbf{x_T}$	360.733	7.215
	$\mathbf{Y}_{\mathbf{T}}$	11.549	0.231
	z_{T}	412.474	8.250
Trailing edge at:	$\mathbf{x_T}$	876.273	17.525
	$\mathbf{Y}_{\mathbf{T}}$	226.114	4.522
	$z_{\mathtt{T}}$	646.774	12.935

Centerline of conduit located radially at $\phi = 47.5$ deg.

MODEL COMPONENT: RUDDER - R5		
GENERAL DESCRIPTION: Configuration 140C or	oi t er rudder	(identical to
configuration A/B rudder)		
MODEL SCALE: 0.020		
DRAWING NUMBER: VL70-000146B,	-000095	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area - Ft ²	100.15	0.004
Span (equivalent) - In.	201.00	4.020
Inb'd equivalent chord $-t_n$.	91,585	1,832
Outb'd equivalent chord - In.	50.833	1.017
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	0.400	0.400
At Outb'd equiv. chord	0.400	0.400
Sweep Back Angles, degrees		
Leading Edge		
Tailing Edge	26,25	26.25
Hingeline (Product of area & c)	34.83	34,83
Area Moment , Ft ³	610.92	0.0049
Mean Aerodynamic Chord, In.	73.2	1.464

MODEL COMPONENT : BOOSTER SOLID	ROCKET MOTO	R - S ₂₂	
GENERAL DESCRIPTION: The BSRM is an external propulsion system			
which is jettisoned and recoverable after	r burnout. The	BSRM's can	
be refurbished and reused after recovery.			
MODEL SCALE: 0.020			
DRAWING NUMBER : VC77-000002C,	VC70-000002A,	VC72-000002C	
DIMENSIONS:	FULL SCALE	MODEL SCALE	
Length - In.	1789.60	35.792	
Max Width (Tank Dia.), In.	146.00	2.92	
Max Depth (Aft Shroud Dia.), In.	208.20	4. 164	
Fineness Ratio	8.596	8.596	
Area - Ft ²			
Max. Cross-Sectional	236.423	0.095	
Planform			
Wetted			
Base			
WP of BSRM Centerline (X_T)	400.00	8.00	
FS of BSRM nose (X_T)	743.0	14.86	
BP of BSRM centerline (X_T)	250.5	5.010	

MODEL COMPONENT : EXTERNAL TANK - T ₂₈		
GENERAL DESCRIPTION :		
NOTE: Dimensions are to tank str	ructural OML, TPS	not included).
MODEL SCALE: 0.020		
DRAWING NUMBER: VL72-000143D	, VL78-000063	
DIMENSIONS :	FULL SCALE	MODEL SCALE
Length - In.	1844, 275	36.886
Moxlwxxx Dia In.	331.00	6.62
Max Depth		
Fineness Ratio	5.687	5,687
Area - Ft ²		
Max. Cross-Sectional	594.678	0. 239
Planform		
Wetted		
Base		

MODEL COMPONENT: VERTICAL - V8		•
GENERAL DESCRIPTION: Configuration 140C orb	oiter vertical	tail
(identical to configuration 140A/B vertical tail)		
MODEL SCALE: 0.020		
DRAWING NUMBER: VL70-000140C, -000146B		
dimensions:	FULL SCALE	MODEL SCALE
TOTAL DATA		
Area (Theo) - Ft ² Planform Span (Theo) - In. Aspect Ratio Rate of Taper Taper Ratio Sweep-Back Angles, Degrees. Leading Edge Trailing Edge O.25 Element Line Chords: Root (Theo) WP Tip (Theo) WP MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC	413, 253 315, 72 1, 675 0, 507 0, 404 45, 00 26, 25 41, 13 268, 50 198, 47 199, 81 1463, 35 635, 52 0, 0	0, 165 6, 314 1, 675 0, 507 0, 404 45, 00 26, 25 41, 13 5, 370 2, 169 3, 996 29, 267 12, 710 0, 0
Airfoil Section Leading Wedge Angle - Deg. Trailing Wedge Angle - Deg. Leading Edge Radius Void Area	10.00 14.92 2.00	10.0 14.92 0.04 0.0053
Blanketed Area	0.0	0.0

POOR QUALITY

MODEL COMPONENT: WING-W	• · · · · · · · · · · · · · · · · · · ·	sialman Dihadral
angle is along trailing edge of wing. Geometric to		ickness. Dinedral
MODEL SCALE: 0.020		
TEST NO.	DWG. NO. VI	<u>70-000140A, -</u> 000200
DIMENSIONS:	FULL-SCALE	MODEL SCALE
TOTAL DATA Area (Theo.) Ft ² Planform	2690.00	1.076
Span (Theo In. Aspect Ratio Rate of Taper Taper Ratio	936.68 2.265 1.177 0,200	18. 734 2. 265 1. 177 0. 200
Dihedral Angle, degrees Incidence Angle, degrees Aerodynamic Twist, degrees	3.500 0.500	3.500
Sweep Back Angles, degrees Leading Edge Trailing Edge 0.25 Element Line	45.000 - 10.056 35.209	45.000 - 10.056 35.209
Chords: Root (Theo) B.P.O.O. Tip, (Theo) B.P. MAC	689.24 137.85 474.81	13. 785 2. 757 9. 496
Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC	1136.83 290.58 182.13	22. 737 5. 812 3. 643
EXPOSED DATA Area (Theo) Ft ² Span, (Theo) In. BP108 Aspect Ratio Taper Ratio	1751.50 720.68 2.059 0.245	0.701 14.4136 2.059 0.245
Chords Root BP108 Tip 1.00 <u>b</u>	562.09 137.05	11. 242 2. 757
MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA)	392.83 1185.98 294.30 251.77	7.856 23.720 5.886 5.035
$\begin{array}{c} xxxx-64 \\ \text{Root } \underline{b} = \\ -1 & 2 \end{array}$	0, 113	0. 113 0. 120
Tip $\frac{b}{2}$ = Data for (1) of (2) Sides	0.120	0.120
Leading Edge Cuff 2 Planform Area Ft2 Leading Edge Intersects Fus M. L. 0 Sta Leading Edge Intersects Wing @ Sta	113.18 500.00 1024.00	0. 045 10. 00 20. 480

TABLE IV. - PRESCURE TAP NUMBER ASSIGNMENTS

ORBITER FUSELAGE

X _o STA	Z o W.L	Tap LH	No. RH
7.60 8.240 8.260 8.28 15.48 15.48 15.48 18.490 18.490	7.08 7.08 7.26 7.26 7.54 7.54 7.76 7.02 7.02 7.24 7.24	17 13 19 29 35 31 37	2 6 4 8 12 18 14 20 36 32 38

X _o	Z _o	Tap	No
STA	WL	LH	RH
17.90 18.30 17.90 18.30 19.70 20.10 19.70 20.10 22.36 22.76 22.36 22.76	7.54 7.54 7.76 7.76 7.54 7.76 7.54 7.54 7.54 7.76	25 27 27 39 41 45 47 549	226480442684556

X STA	MT S ^O	Tap LH	No RH
27.62 28.02 27.62 28.02 26.84 27.08 26.84 27.08	6.72 6.72 6.98 6.98 6.72 6.72	75 79 77 81 59 63 61 65	76 80 78 82 60 64 62 66
27.40 27.54 27.40 27.54	6.18 6.18 6.28	67 71 69 73	68 72 70 74

ORB. FUS. RADIAL LOCATIONS

\$ \X'0	11.40	15.20	18.84	22.50	26.14
120	10	16	34	52	58
240	9	15	33	51	57

ORB. BODY FLAP - UPPER SURFACE

Xo		Y _o (B.	L)		
STA	-1.89	-0.82	0.0	0.82	1.89
31.10	700	704	382	708	383
31.80	702	706	384	710	385

ORB. BODY FLAP - LWR SURFACE

x _o	Y ₀ (B.L.)							
STA	-1.89	-0.82	0.0	0.82	1.89			
31.10 31.80	701 703	705 707	386 388	709 711	387 389			

TABLE IV. - Concluded.

ORBITER BASE

Y O BL	Z O WL	Tap No.
-2.30 438 0.00 .438 2.30 -2.30 0.00 2.30 -2.30	6.59 6.10 6.59 6.10 6.59 7.15 7.15 8.00	379 717 380 718 381 716 720 719 374

Y O BL	Z O WL	Tap No.
0.00 2.30 -2.09 87 .87 2.09 -2.45 -1.73	7.72 8.00 8.38 8.21 8.38 8.88 8.70 8.70	376 378 715 375 377 721 372 714 722

Y o BL	Z o WL	Tap No.
2.45 -1.77 1.77 -1.00 1.00	8.88 9.18 9.18 10.0 10.0	373 713 723 371 370 724

EXTERNAL TANK

X _T		φI	EG.				_	
STA	0	45	90	135	186	225	270	315
19.0 38.0	5 1 8	800	521	801	804	802	515	803
41.16	805		806		807		808	

F	T BASI	3							
					P 				
I	ROD	0	45	90	135	180	225	270	315
	.45 .635 .840 .895 .946	5 ⁴ 1 810 81 ⁴ 821 826	815	811 816 822 827	817 823 828 832	812 818 824 829	830 833	809 813 819	820 825 831 834

SRB (Inside Skirt)

ĺ	X ₋		<u> </u>	φ	
	STA	0	90	180	270
	380	841	842	843	844

Notest

Figure 1. - Axis systems.

N 455 TO BOOM AC

ထ

Figure 2. - Integrated space shuttle vehicle launch configuration.

a. Model 88-OTS Installation, Front ViewFigure 3. - Model photographs.

b. Model 88-01S Installation, Rear View Figure 3. - Concluded.

Page intentionally left blank

DATA FIGURES

FIG. 4 EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH=0.6 PLUMES OFF

(A)BETA = .00

PAGE

(A)BETA .00 PAGE 2

FIG. 4 EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH=0.6 PLUMES CFF
(A)BETA = .00

PAGE

PAGE (A)BETA .00 6

FIG. 5 EFFECT OF ELEVON SETTING ON WING LCADS IN PITCH, MACH=0.9 PLUMES CFF

(A)BETA = .00 PAGE 7

(A)BETA .00 PAGE

FIG. 7 EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH=1.25 PLUMES OFF

(A)BETA = .00

PAGE 19

PAGE 20 (A)BETA .00

FIG. 7 EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH.MACH=1.25 PLUMES OFF
(A)BETA = .00
PAGE 2

RN/L

REFERENCE INFORMATION

PAGE 22 (A)BETA .00

FIG. 7 EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH=1.25 PLUMES OFF

(A)BETA = .00

PAGE 23

- Carrella

PAGE 26 $(\Lambda)BET\Lambda =$.00

EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH=1.4 PLUMES OFF FIG. 8 PAGE 27 .00 (A)BETA

- The Street and the Superior

FIG. 9 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH, M=0.6 PLUMEOFF

(A)BETA = .00

PAGE 31

FIG. 9 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH, M=0.6 PLUMEOFF

(A)BETA = .00

PAGE 32

FIG. 9 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH.M=0.6 PLUMEOFF

(A)BETA = .00

PAGE 33

FIG. 9 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH. M=0.6 PLUMEOFF

(A)BETA = .00

PAGE 34

FIG. 10 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH.M=0.9 PLUMEOFF

(A)BETA = .00

PAGE 35

FIG. 10 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH. M=0.9 PLUMEOFF 36 PAGE (A)BETA .00

FIG. 10 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH.M=0.9 PLUMEOFF

(A)BETA = .00

PAGE 37

FIG. 10 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH.M=0.9 PLUMEOFF

(A)BETA = .00

PAGE 38

FIG. 11 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH, M=1.1 PLUMEOFF

(A)BETA = .00

PAGE 39

FIG. 11 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH.M=1.1 PLUMEOFF (A)BETA = .00 PAGE 40

FIG. 11 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH, M=1.1 PLUMEOFF

(A)BETA = .00

PAGE 41

FIG. 11 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH, M=1.1 PLUMEOFF

(A)BETA = .00

PAGE 42

FIG. 12 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITC-, M=1.25 PLUMEOFF

(A)BETA = .00

PAGE 43

FIG. 12 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH, M=1.25 PLUMEOFF

(A)BETA = .00

PAGE 44

FIG. 12 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH. M=1.25 PLUMEOFF

(A)BETA = .00

PAGE 45

FIG. 12 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH. M=1.25 PLUMECFF (A)BETA =.00 PAGE 46

FIG. 13 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH.M=1.4 PLUMECFF

(A)BETA = .00

PAGE 47

FIG. 13 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH.M=1.4 PLUMEOFF

(A)BETA = .00

PAGE 48

-

FIG. 13 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH, M=1.4 PLUMEOFF

(A)BETA = .00

PAGE 49

FIG. 13 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN PITCH.M=1.4 PLUMEOFF

(A)BETA = .00

PAGE 50

FIG. 14 EFFECT OF ELEVON SETTING ON WING LOADS IN YAW, MACH=0.6

PAGE

51

FIG. 14 EFFECT OF ELEVON SETTING ON WING LOADS IN YAW, MACH-O.6

(A)ALPHA =.00 PAGE

55

j.™°.

(A)ALPHA =.00

PAGE

\$ 1

No.

FIG. 17 EFFECT OF ELEVON SETTING ON WING LOADS IN YAW, MACH=1.25 PLUMES OF PAGE

69

(A)ALPHA =PAGE 70 .00

RN/L

REFERENCE INFORMATION

FIG. 18 EFFECT OF ELEVON SETTING ON WING LOADS IN YAW, MACH=1.4

PLUMES OFF PAGE 75

Austria Losso

FIG. 18 EFFECT OF ELEVON SETTING ON WING LOADS IN YAW, MACH=1.4

PLUMES OFF PAGE 79

FIG. 19 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M=0.6 PLUME OFF

FIG. 19 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M=0.6 PLUME OFF

(A)ALPHA = .00

PAGE 82

FIG. 19 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW. M=0.6 PLUME OFF

(A)ALPHA = .00

PAGE 84

FIG. 20 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M=0.9 PLUME OFF

(A)ALPHA = .00

PAGE 85

FIG. 20 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M=0.9 PLUME OFF

(A)ALPHA = .00

PAGE 86

FIG. 20 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M=0.9 PLUME OFF

FIG. 20 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M=0.9 PLUME OFF

(A)ALPHA = .00

PAGE 88

FIG. 21 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M=1.1 PLUME OFF

(A)ALPHA = .00

PAGE 89

FIG. 21 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M=1.1 PLUME OFF

(A)ALPHA = .00

PAGE 90

FIG. 21 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M=1.1 PLUME OFF

(A)ALPHA = .00

PAGE 91

FIG. 21 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M=1.1 PLUME OFF

(A)ALPHA = .00

PAGE 92

eren er er manner i stende mit et et ette flette flette flette flette flette flette flette flette flette flett

FIG. 22 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M=1.25 PLUME OFF

(A)ALPHA = .00

PAGE 93

FIG. 22 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M=1.25 PLUME OFF

(A)ALPHA = .00

PAGE 94

FIG. 22 EFFECT OF ELEVON SETTING ON ELEVON HINGE MCMENT IN YAW, M=1.25 PLUME OFF

(A)ALPHA = .00

PAGE 96

FIG. 23 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M=1.4 PLUME OFF

FIG. 23 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M=1.4 PLUME OFF

(A)ALPHA = .00

PAGE 98

FIG. 23 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M=1.4 PLUME OFF

(A)ALPHA = .00

PAGE 99

FIG. 23 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENT IN YAW, M=1.4 PLUME OFF

(A)ALPHA = .00

PAGE 100

FIG. 24 EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH=0.6 PLUMES ON

(A)BETA = .00

PAGE 101

PAGE 102 (A)BETA =.00

FIG. 24 EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH=0.6 PLUMES ON

(A)BETA = .00

PAGE 103

PAGE 104 (A)BETA =.00

FIG. 24 EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH=0.6 PLUMES ON

(A)BETA = .00

PAGE 105

(A)BETA =.00

-

 $(\Lambda)BET\Lambda =$ PAGE

FIG. 26 EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH. MACH=1.1 PLUMES ON PAGE 114

FIG. 26 EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH=1.1 PLUMES ON PAGE 118

FIG. 27 EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH=1.25 PLUMES ON

(A)BETA = .00

PAGE 119

PAGE (A)BETA =120 .00

FIG. 27 EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH=1.25 PLUMES ON PAGE 121

(A)BETA =.00 PAGE 122

FIG. 27 EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH, MACH=1.25 PLUMES ON

(A)BETA = .00

PAGE 124

, ,

(A)BETA =.00

FIG. 28 EFFECT OF ELEVON SETTING ON WING LOADS IN PITCH. MACH=1.4 PLUME

(A)BETA = .00

PAGE

129

(A)BETA =.00

FIG. 29 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH.M=0.6 PLUME ON (A)BETA = .00

ANGLE OF ATTACK. ALPHA. DEGREES

3

2

-3

-4

FIG. 29 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH. M=0.6 PLUME ON (A)BETA = .00

FIG. 29 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH. M=0.6 PLUME ON (A)BETA = .00

PAGE 134

FIG. 30 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH.M=0.9 PLUME ON

(A)BETA = .00

PAGE 135

FIG. 30 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH, M=0.9 PLUME ON PAGE 136

FIG. 30 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH.M=0.9 PLUME ON

(A)BETA = .00

PAGE 137

FIG. 30 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH, M=0.9 PLUME ON (A)BETA = .00

PAGE 138

FIG. 31 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH. M=1.1 PLUME ON

(A)BETA = .00

PAGE 139

FIG. 31 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH, M=1.1 PLUME ON PAGE 140

FIG. 31 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH.M=1.1 PLUME ON (A)BETA = .00

PAGE 141

FIG. 31 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH, M=1.1 PLUME ON PAGE 142

سبير چ

FIG. 32 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH.M=1.25PLUME ON

(A)BETA = .00

PAGE 143

FIG. 32 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH. M=1.25PLUME ON (A)BETA = .00

PAGE 144

-

FIG. 32 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH.M=1.25PLUME ON

(A)BETA = .00

PAGE 145

FIG. 32 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH, M=1.25PLUME ON

(A)BETA = .00

PAGE 146

FIG. 33 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH.M=1.4 PLUME ON PAGE 147

FIG. 33 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH.M=1.4 PLUME ON (A)BETA = .00

PAGE 148

-

FIG. 33 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH.M=1.4 PLUME ON

(A)BETA = .00

PAGE 149

FIG. 33 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN PITCH, M=1.4 PLUME ON

(A)BETA = .00

PAGE 150

·

. . . .

1 "

ردائيلاند .

FIG. 37 EFFECT OF ELEVON SETTING ON WING LOADS IN YAW, MACH=1.25 PLUMES ON PAGE 172

^

PAGE 174 $(\Lambda)\Lambda LPH\Lambda =$.00

FIG. 39 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M=0.6 PLUME ON (A)ALPHA = .00

£

FIG. 39 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M=0.6 PLUME ON PAGE 183

FIG. 39 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M=0.6 PLUME ON PAGE 184

FIG. 40 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M=0.9 PLUME ON PAGE 185

FIG. 40 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M=0.9 PLUME ON (A)ALPHA = .00 PAGE 186

-

FIG. 40 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M=0.9 PLUME ON (A)ALPHA = .00

FIG. 40 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW. M=0.9 PLUME ON

(A)ALPHA = .00

PAGE 188

FIG. 41 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW. M=1.1 PLUME ON

(A)ALPHA = .00

PAGE 189

FIG. 41 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M=1.1 PLUME ON

(A)ALPHA = .00

PAGE 190

FIG. 41 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M=1.1 PLUME CN
(A)ALPHA = .00
PAGE 191

FIG. 41 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M=1.1 PLUME ON

(A)ALPHA = .00

PAGE 192

FIG. 42 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M=1.25 PLUME ON

(A)ALPHA = .00

PAGE 193

FIG. 42 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M=1.25 PLUME ON

(A) ALPHA = .00

PAGE 194

FIG. 42 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M=1.25 PLUME ON

(A)ALPHA = .00

PAGE 195

FIG. 42 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, 1.25 PLUME OF PAGE 196

,----

FIG. 43 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M=1.4 PLUME ON PAGE 197

FIG. 43 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M=1.4 PLUME ON PACE 198

FIG. 43 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW, M=1.4 PLUME OF PAGE 199

FIG. 43 EFFECT OF ELEVON SETTING ON ELEVON HINGE MOMENTS IN YAW. M=1.4 PLUME ON (A)ALPHA = .00 PAGE 200

FIG. 44 PLUME EFFECTS ON VERTICAL TAIL LOADS, MACH=0.6

, 100kg

FIG. 44 PLUME EFFECTS ON VERTICAL TAIL LOADS, MACH=0.6
(A) ALPHA = .00

FIG. 44 PLUME EFFECTS ON VERTICAL TAIL LOADS, MACH=0.6
(A)ALPHA = .00

FIG. 45 PLUME EFFECTS ON VERTICAL TAIL LOADS, MACH=0.9
(A)ALPHA = .00

FIG. 45 PLUME EFFECTS ON VERTICAL TAIL LOADS, '1ACH=0.9

FIG. 45 PLUME EFFECTS ON VERTICAL TAIL LOADS, MACH=0.9

* *

FIG. 46 PLUME EFFECTS ON VERTICAL TAIL LOADS, MACH=1.1

FIG. 46 PLUME EFFECTS ON VERTICAL TAIL LOADS, MACH=1.1

FIG. 46 PLUME EFFECTS ON VERTICAL TAIL LOADS, MACH=1.1

FIG. 47 PLUME EFFECTS ON VERTICAL TAIL LOADS, MACH=1.25

i A

FIG. 47 PLUME EFFECTS ON VERTICAL TAIL LOADS, MACH=1.25
(A)ALPHA = .00

FIG. 47 PLUME EFFECTS ON VERTICAL TAIL LOADS, MACH=1.25 (A)ALPHA =.00

FIG. 48 PLUME EFFECTS ON VERTICAL TAIL LOADS, MACH=1.4
(A)ALPHA = .00

FIG. 48 PLUME EFFECTS ON VERTICAL TAIL LOADS, MACH=1.4
(A)ALPHA = .00

FIG. 48 PLUME EFFECTS ON VERTICAL TAIL LOADS, MACH=1.4
(A)ALPHA = .00

FIG. 49 PLUME EFFECTS ON RUDDER HINGE MOMENT, MACH=0.6

FIG. 50 PLUME EFFECTS ON RUDDER HINF MOMENT, MACH=0.9

FIG. 51 PLUME EFFECTS ON RUDDER HINGE MOMENT, MACH=1.1

()

FIG. 52 PLUME EFFECTS ON RUDDER HINGE MOMENT, MACH=1.25

FIG. 53 PLUME EFFECTS ON RUDDER HINGE MOMENT, MACH=1.4

FIG. 54 EFFECT OF PLUMES ON WING LOADS IN PITCH, MACH=0.6

PAGE 223.

FIG. 55 EFFECT OF PLUMES ON WING LOADS IN PITCH, MACH=0.9

FIG. 55 EFFECT OF PLUMES ON WING LOADS IN PITCH, MACH=0.9

*

FIG. 56 EFFECT OF PLUMES ON WING LOADS IN PITCH, MACH=1.1

CADBETA .00

FIG. 56 EFFECT OF PLUMES ON WING LOADS IN PITCH, MACH=1.1
(A)BETA = .00

(A)BETA =.00

FIG. 57 EFFECT OF PLUMES ON WING LOADS IN PITCH. MACH=1.25

CADBETA = .00

FIG. 57 EFFECT OF PLUMES ON WING LOADS IN PITCH, MACH=1.25
(A)BETA = .00

FIG. 58 EFFECT OF PLUMES ON WING LOADS IN PITCH, MACH=1.4

(A)BETA = .00

FIG. 58 EFFECT OF PLUMES ON WING LOADS IN PITCH, MACH=1.4
(A)BETA = .00

(A)BETA =.00

FIG. 59 EFFECT OF PLUMES ON ELEVON HINGE MOMENTS IN PITCH, MACH=0.6

(A)BETA = .00

FIG. 61 EFFECT OF PLUMES ON ELEVON HINGE MOMENTS IN PITCH, MACH=1.1

(A)BETA = .00

PAGE 240

FIG. 61 EFFECT OF PLUMES ON ELEVON HINGE MOMENTS IN PITCH. MACH=1.1 (A)BETA

.00

PAGE

FIG. 62 EFFECT OF PLUMES ON ELEVON HINGE MOMENTS IN PITCH, MACH=1.25 (A)BETA =.00 PAGE 242

FIG. 62 EFFECT OF PLUMES ON ELEVON HINGE MOMENTS IN PITCH, MACH=1.25

FIG. 63 EFFECT OF PLUMES ON ELEVON HINGE MOMENTS IN PITCH, MACH=1.4

(A)BETA = .00

PAGE 244

FIG.63A EFFECT OF PLUMES ON ELEVON HINGE MOMENTS IN PITCH MACH=1.4

(A)BETA = .00

PAGE

(A)ALPHA =.00

FIG. 64 EFFECT OF PLUMES ON WING LOADS IN YAW, MACH=0.6
(A)ALPHA = .00

FIG. 64 EFFECT OF PLUMES ON WING LOADS IN YAW, MACH=0.6
(A)ALPHA = .06

4 A

FIG. 65 EFFECT OF PLUMES ON WING LOADS IN YAW, MACH=0.9

(A)ALPHA = .00

(A)ALPHA =.00

FIG. 65 EFFECT OF PLUMES ON WING LOADS IN YAW, MACH=0.9

FIG. 66 EFFECT OF PLUMES ON WING LOADS IN YAW, MACH=1.1
(A)ALPHA = .00

FIG. S6 EFFECT OF PLUMES ON WING LOADS IN YAW, MACH=1.1

(A)ALPHA =.00

FIG. 67 EFFECT OF PLUMES ON WING LOADS IN YAW, MACH=1.25

FIG. 67 EFFECT OF PLUMES ON WING LOADS IN YAW, MACH=1.25

(A)ALPHA =.00

PASE

FIG. 67 EFFECT OF PLUMES ON WING LOADS IN YAW, MACH=1,25

(A)ALPHA = .00

(A)ALPHA = .00

FIG. 68 EFFECT OF PLUMES ON WING LOADS IN YAW, MACH=1.4

(A)ALPHA = .00

 $(\Lambda)\Lambda LPH\Lambda =$.00

FIG. 69 EFFECT OF PLUMES ON ELEVON HINGE MOMENT IN YAW, MACH=0.6

PAGE (A)ALPHA =.00

FIG. 70 EFFECT OF PLUMES ON ELEVON HINGE MOMENT IN YAW, MACH=0.9

(A)ALPHA = .00

PAGE

FIG. 70 EFFECT OF PLUMES ON ELEVON HINGE MOMENT IN YAW, MACH=0.9

(A)ALPHA = .00

PAGE

FIG. 71 EFFECT OF PLUMES ON ELEVON HINGE MOMENT IN YAW, MACH=1.1

FIG. 71 EFFECT OF PLUMES ON ELEVON HINGE MOMENT IN YAW, MACH=1.1

(A)ALPHA = .00

FIG. 72 EFFECT OF PLUMES ON ELEVON HINGE MOMENT IN YAW, MACH=1.25

FIG. 72 EFFECT OF PLUMES ON ELEVON HINGE MOMENT IN YAW, MACH=1.25

(A)ALPHA = .00

PAGE 268

FIG. 73 EFFECT OF PLUMES ON ELEVON HINGE MOMENT IN YAW, MACH=1.4

(A)ALPHA = .00

FIG. 73 EFFECT OF PLUMES ON ELEVON HINGE MOMENT IN YAW, MACH=1.4 (A)ALPHA =.00

FIG. 74 EFFECT OF SSME PLUME SIZE (IN WING LOAD IN PITCH, MACH=0.6
(A)BFTA = .00

FIG. 74 EFFECT OF SSME PLUME SIZE ON WING LOAD IN PITCH, MACH=0.6 (A)RFTA = .00

FIG. 75 EFFECT OF SSME PLUME SIZE ON WING LOAD IN PITCH, MACH=0.9

(A)BETA = .00

PAGE

A

..

. ,.02

_

FIG. 75 EFFECT OF SSME PLUME SIZE ON WING LOAD IN PITCH, MACH=0.9

(A)BETA = .00

FIG. 75 EFFECT OF SSME PLUME SIZE ON WING LOAD IN PITCH, MACH=0.9

*

-

FIG. 76 EFFECT OF SSME PLUME SIZE ON WING LOAD IN PITCH, MACH=1.1

(A)BETA = .00

CADBETA .00

FIG. 76 EFFECT OF SSME PLUME SIZE ON WING LOAD IN PITCH, MACH=1.1

FIG. 77 EFFECT OF SSME PLUME SIZE ON WING LOAD IN PITCH, MACH=1.25 PASE (A)BETA .00

FIG. 77 EFFECT OF SSME PLUME SIZE ON WING LOAD IN PITCH, MACH=1.25

FIG. 77 EFFECT OF SSME PLUME SIZE ON WING LOAD IN PITCH, MACH=1.25 (A)BETA .00 PAGE 282

FIG. 78 EFFECT OF SSME PLUME SIZE ON WING LOAD IN PITCH, MACH=1.4

(A)BETA =.00

FIG. 78 EFFECT OF SSME PLUME SIZE ON WING LOAD IN PITCH, MACH=1.4

FIG. 79 EFFECT OF SSME PLUME SIZE ON WING LOAD IN YAW. MACH=0.6

PAGE 287

(A)ALPHA = .00

,652s

J. 2.0

FIG. 81 EFFECT OF SSME PLUME SIZE ON WING LOAD IN YAW, MACH=1.1

(A)ALPHA = .00

PAGE 292

_

FIG. 81 EFFECT OF SSME PLUME SIZE ON WING LOAD IN YAW, MACH=1.1

FIG. 81 EFFECT OF SSME PLUME SIZE ON WING LUAD IN YAW, MACH=1.1

(A)ALPHA = .00

PAGE

....

FIG. 82 EFFECT OF SOME PLUME SIZE ON WIND LUMD IN TAW: MACH-1.23

(A) ALPHA = .00PAGE

(A)ALPHA =.00

FIG. 83 EFFECT OF SSME PLUME SIZE ON WING LOAD IN YAW. MACH=1.4

"(A)ALPHA = .00

PAGE

(A)ALPHA =.00

PAGE 300 .00 (A)ALPHA =

FIG. 84 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN PITCH. MACH=0.6

(A)BETA = .00

PAGE 302

FIG. 85 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN PITCH, MACH=0.9

(A)BETA = .00

PAGE 303

FIG. 85 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN PITCH, MACH=0.9 PAGE 304 .00 (A)BETA

FIG. 86 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN PITCH, MACH=1.1

(A)BETA = .00

PAGE 306

FIG. 87 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN PITCH. MACH=1.25

(A)BETA .00 PAGE

307

FIG. 87 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN PITCH, MACH=1.25

(A)BETA = .00

PAGE 308

FIG. 88 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN PITCH, MACH=1.4

FIG. 88 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN PITCH. MACH=1.4 (A)BETA .00 PAGE 310

FIG. 89 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN YAW. MACH=0.6

(A)ALPHA = .00

FIG. 89 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN YAW, MACH=0.6

(A) ALPHA = .00

PAGE 312

FIG. 90 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN YAW, MACH=0.9

(A)ALPHA = .00

PAGE 314

FIG. 91 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN YAW. MACH=1.1

(A)ALPHA = .00

PAGE 315

PAGE 316 (A)ALPHA =.00

FIG. 92 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN YAW, MACH=1.25

(A)ALPHA = .00

PAGE 317

PAGE 3:8 (A)ALPHA =.00

FIG. 93 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN YAW. MACH=1.4

(A) ALPHA = .00

PAGE 319

FIG. 93 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT IN YAW, MACH=1.4

(A) ALPHA = .00

PAGE 320

FIG. 94 EFFECT OF REYNOLDS NUMBER IN PITCH. MACH=0.6 PLUMES OFF

(A)BETA

.00

FIG. 94 EFFECT OF REYNOLDS NUMBER IN PITCH, MACH=0.6 PLUMES OFF

PAGE 324 (A)BETA .00

(A)BETA .00

326

(A)BETA .00

FIG. 95 EFFECT OF REYNOLDS NUMBER IN PITCH, MACH=).9 PLUMES OFF

(A)BETA = .00

FIG. 96 EFFECT OF REYNOLDS NUMBER IN PITCH. MACH=1.1 PLUMES OFF

(A)BETA =

.00

PAGE (A)BETA =.00

FIG. 96 EFFECT OF REYNOLDS NUMBER IN PITCH, MACH=1.1 PLUMES OFF

(A)BETA = .00

FIG. 96 EFFECT OF REYNOLDS NUMBER IN PITCH, MACH=1.1 PLUMES OFF

(A)BETA = .00

.00 (A)BETA =

FIG. 97 EFFECT OF REYNOLDS NUMBER IN PITCH. MACH=1.25 PLUMES OFF
(A)BETA = .00

FIG. 97 EFFECT OF REYNOLDS NUMBER IN PITCH, MACH=1.25 PLUMES OFF (A)BETA = .00

FIG. 97 EFFECT OF REYNOLDS NUMBER IN PITCH. MACH=1.25 PLUMES OFF

PAGE .00 (A)BETA =

(A)BETA = .00

*

FIG. 98 EFFECT OF REYNOLDS NUMBER IN PITCH, MACH=1.4 PLUMES OFF

(A)BETA = .00

PAGE 344 .00 (A)BETA

FIG. 98 EFFECT OF REYNOLDS NUMBER IN PITCH. MACH=1.4 PLUMES OFF

(A)BETA = .00

.00 PAGE 346 (A)ALPHA =

(A)ALPHA =

.00

(A)ALPHA = .00

FIG. 99 EFFECT OF REYNOLDS NUMBER IN YAW. MACH=0.6 PLUMES OFF

FIG. 99 EFFECT OF REYNOLDS NUMBER IN YAW, MACH=0.6 PLUMES OFF

(A)ALPHA = .00 PAGE

-

4

FIG. 100 EFFECT OF REYNOLDS NUMBER IN YAW, MACH=0.9 PLUMES OFF

(A)ALPHA = .00

 $(\Lambda)\Lambda LPH\Lambda =$.00

FIG. 100 EFFECT OF REYNOLDS NUMBER IN YAW, MACH=0.9 PLUMES OFF

361

(A)ALPHA = ...

.00

FIG. 100 EFFECT OF REYNOLDS NUMBER IN YAW, MACH=0.9 PLUMES OFF

363

(A)ALPHA =.00

FIG. 101 EFFECT OF REYNOLDS NUMBER IN YAW. MACH=1.1 PLUMES OFF

FIG. 101 EFFECT OF REYNOLDS NUMBER IN YAW. MACH=1.1 PLUMES OFF

(A)ALPHA = .00

(A)ALPHA =.00

PLUMES OFF (A)ALPHA =.00

FIG. 101 EFFECT OF REYNOLDS NUMBER IN YAW, MACH=1.1 PLUMES OFF

FIG. 101 EFFECT OF REYNOLDS NUMBER IN YAW, MACH=1.1 PLUMES OFF

FIG. 102 EFFECT OF REYNOLDS NUMBER IN YAW. MACH=1.25 PLUMES OFF

 $(\Lambda)\Lambda LPH\Lambda = .00$

PAGE

FIG. 102 EFFECT OF REYNOLDS NUMBER IN YAW. MACH=1.25 PLUMES OFF

(A)ALPHA =.00

FIG. 102 EFFECT OF REYNOLDS NUMBER IN YAW. MACH=1.25 PLUMES OFF

FIG. 102 EFFECT OF REYNOLDS NUMBER IN YAW. MACH=1.25 PLUMES OFF (A)ALPHA =.00

FIG. 102 EFFECT OF REYNOLDS NUMBER IN YAW, MACH=1.25 PLUMES OFF

FIG. 102 EFFECT OF REYNOLDS NUMBER IN YAW, MACH=1.25 PLUMES OFF

(A)ALPHA = .00

PAGE

*

4...

FIG. 102 EFFECT OF REYNOLDS NUMBER IN YAW. MACH=1.25 PLUMES OFF

FIG. 102 EFFECT OF REYNOLDS NUMBER IN YAW, MACH=1.25 PLUMES OFF PAGE $(\Lambda)\Lambda LPH\Lambda =$.00

FIG. 102 EFFECT OF REYNOLDS NUMBER IN YAW. MACH=1.25 PLUMES OFF

 $(\Lambda)\Lambda LPH\Lambda = .00$

(A)ALPHA =.00 PAGE

FIG. 103 EFFECT OF REYNOLDS NUMBER IN YAW. MACH=1.4 PLUMES OFF

PAGE .00 (A)ALPHA =

FIG. 103 EFFECT OF REYNOLDS NUMBER IN YAW, MACH=1.4 PLUMES OFF

(A)ALPHA =.00

PAGE $(\Lambda)\Lambda LPH\Lambda =$.00

FIG. 103 EFFECT OF REYNOLDS NUMBER IN YAW, MACH=1.4 PLUMES OFF

.00 (A)ALPHA =

FIG. 104 EFFECT OF REYNOLDS NUMBER IN PITCH, MACH=0.6 PLUMES ON (A)BETA = .00

(A)BETA =.00

FIG. 104 EFFECT OF REYNOLDS NUMBER IN PITCH, MACH=0.6 PL'IMES ON

(A)BETA = .00

PAGE

PAGE (A)BETA =.00

FIG. 105 EFFECT OF REYNOLDS NUMBER IN PITCH, MACH=0.9 PLUMES ON

(A)BETA = .00

PAGE

FIG. 105 EFFECT OF REYNOLDS NUMBER IN PITCH, MACH=0.9 PLUMES ON

(A)BETA = .00

PAGE

.

FIG. 106 EFFECT OF REYNOLDS NUMBER IN PITCH, MACH=1.1 PLUMES ON (A)BETA = .00

FIG. 106 EFFECT OF REYNOLDS NUMBER IN PITCH, MACH=1.1 PLUMES ON

(A)BETA = .00

*

FIG. 106 EFFECT OF REYNOLDS NUMBER IN PITCH, MACH=1.1 PLUMES ON

(A)BETA = .00

FIG. 107 EFFECT OF REYNOLDS NUMBER IN YAW, MACH=0.6 PLUMES ON

FIG. 107 EFFECT OF REYNOLDS NUMBER IN YAW, MACH=0.6 PLUMES ON

FIG. 107 EFFECT OF REYNOLDS JUMBER IN YAW, MACH-0.6 PLUMES ON

(A)ALPHA =.00

FIG. 107 EFFECT OF REYNOLDS NUMBER IN YAW, MACH=0.6 PLUMES ON

(A)ALPHA = .00

FIG. 108 EFFECT OF REYNOLDS NUMBER IN YAW. MACH=0.9 PLUMES ON

(A)ALPHA = .00

PAGE

415

FIG. 108 EFFECT OF REYNOLDS NUMBER IN YAW, MACH=0.9 PLUMES ON

FIG. 108 EFFECT OF REYNOLDS NUMBER IN YAW, MACH=0.9 PLUMES ON

(A)ALPHA = .00

|

FIG. 108 EFFECT OF REYNOLDS NUMBER IN YAW. MACH=0.9 PLUMES ON

(A)ALPHA = .00

FIG. 108 EFFECT OF REYNOLDS NUMBER IN YAW, MACH=0.9 PLUMES ON

FIG. 109 EFFECT OF REYNOLDS NUMBER IN YAW. MACH=1.1 PLUMES ON (A)ALPHA = .00

FIG. 109 EFFECT OF REYNOLDS NUMBER IN YAW, MACH=1.1 PLUMES ON (A) ALPHA = .00

PAGE 428

(A)ALPHA = .00 PAGE

FIG. 109 EFFECT OF REYNOLDS NUMBER IN YAW, MACH=1.1 PLUMES ON

(A)ALPHA = .00

FIG. 110 SUMMARY, SRB PLUME SIZE EFFECTS ON WING LOADS

(A)BETA = .00

FIG. 110 SUMMARY, SRB PLUME SIZE EFFECTS ON WING LOADS
(A)BETA = .00

FIG. 110 SUMMARY, SRB PLUME SIZE EFFECTS ON WING LOADS
(A)BETA = .00

FIG. 111 SUMMARY, SRB PLUME SIZE EFFECTS ON ELEVON HINGE MOMENTS

FIG. 111 SUMMARY, SRB PLUME SIZE EFFECTS ON ELEVON HINGE MOMENTS
(A)BETA = .00

FIG. 112 SUMMARY, EFFECTS OF ELEVON DEFLECTION ON WING LOADS, POWER OFF

(A)BETA = .00

PAGE 438

FIG. 112 SUMMARY, EFFECTS OF ELEVON DEFLECTION ON WING LOADS, POWER OFF (A)BETA .00

.9

9 1.0 MACH NUMBER

-.008‡

-.009E

.6

.7

.8

PAGE 439

1.4

1.3

1.2

1.1

FIG. 112 SUMMARY, EFFECTS OF ELEVON DEFLECTION ON WING LOADS, POWER OFF

(A)BETA = .00

PAGE 440

FIG. 113 SUMMARY, EFFECTS OF ELEVON DEFLECTION ON WING LOADS, POWER ON PAGE .00 (A)BETA =

441

FIG. 113 SUMMARY, EFFECTS OF ELEVON DEFLECTION ON WING LOADS, POWER ON

(A)BETA = .00

PAGE 442

* *

•

FIG. 113 SUMMARY, EFFECTS OF ELEVON DEFLECTION ON WING LOADS, POWER ON (A)BETA = .00

443

PAGE (A)BETA .00 444

FIG. 114 SUMMARY, EFFECTS OF ELEVON DEFLECTION ON ELEVON HINGE MOMENTS POWER OFF (A)BETA .00 PAGE 445

FIG. 115 SUMMARY, EFFECTS OF ELEVON DEFLECTION ON ELEVON HINGE MOMENTS POWER ON PAGE 447 .00 (A)BETA

FIG. 116 SUMMARY, EFFECTS SSME PLUME SIZE ON VERTICAL TAIL LOADS
(A)BETA = .00

* }

FIG. 116 SUMMARY, EFFECTS SSME PLUME SIZE ON VERTICAL TAIL LOADS

FIG. 116 SUMMARY, EFFECTS SSME PLUME SIZE ON VERTICAL TAIL LOADS .00

FAGE 450

CADBETA

FIG. 117 SUMMARY, EFFECTS SSME PLUME SIZE ON RUDDER HINGE MOMENTS

(A)BETA = .00

FIG. 118 EFFECT OF SSME PLUME SIZE ON WING LOADS

FIG. 118 EFFECT OF SSME PLUME SIZE ON WING LOADS

FIG. 118 EFFECT OF SSME PLUME SIZE ON WING LOADS

FIG. 118 EFFECT OF SSME PLUME SIZE ON WING LOADS

FIG. 118 EFFECT OF SSME PLUME SIZE ON WING LOADS

FIG. 118 EFFECT OF SSME PLUME SIZE ON WING LOADS

FIG. 118 EFFECT OF SSME PLUME SIZE ON WING LOADS

FIG. 118 EFFECT OF SSME PLUME SIZE ON WING LOADS

FIG. 118 EFFECT OF SSME PLUME SIZE ON WING LOADS

FIG. 118 EFFECT OF SSME PLUME SIZE ON WING LOADS

FIG. 118 EFFECT OF SSME PLUME SIZE ON WING LOADS

FIG. 118 EFFECT OF SSME PLUME SIZE ON WING LOADS

FIG. 118 EFFECT OF SSME PLUME SIZE ON WING LOADS

*

FIG. 118 EFFECT OF SSME PLUME SIZE ON WING LOADS

FIG. 118 EFFECT OF SSME PLUME SIZE ON WING LOADS

FIG. 118 EFFECT OF SSME PLUME SIZE ON WING LOADS

FIG. 118 EFFECT OF SSME PLUME SIZE ON WING LOADS

FIG. 118 EFFECT OF SSME PLUME SIZE ON WING LOADS

FIG. 119 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT

FIG. 119 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT

FIG. 119 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT

FIG. 119 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT

FIG. 119 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT

FIG. 119 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT

FIG. 119 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT

FIG. 119 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT

FIG. 119 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT

FIG. 119 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT

FIG. 119 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT

FIG. 119 EFFECT OF SSME PLUME SIZE ON ELEVON HINGE MOMENT

PAGE 484 (A)BETA .00

o. Historian et et ennes en entre les la libraries et le la libraries de la libraries de la libraries et libraries

j. 1310%,

FIG. 121 SUMMARY, SSME PLUME EFFECTS ON VERTICAL TAIL CENTER OF PRESSURE

(A)BETA = .00

PAGE

485

-.06 (A)BETA =

FIG. 122 SUMMARY, MACH RAMP MAXIMUM WING LOADS
(A)BETA = -.06

FIG. 122 SUMMARY, MACH RAMP MAXIMUM WING LOADS

(A)BETA = -.06

PAGE 488

*

FIG. 123 SUMMARY, MACH RAMP MAXIMUM ELEVON HINGE MOMENTS

(A)BETA = -.06

(A)BETA = -.06

FIG. 124 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=-4.C

(A)BETA = .00

PAGE

FIG. 124 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=-4.0

(A)BETA = .00

PAGE 492

-

FIG. 124 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=-4.0
(A)BETA = .00

PAGE 493

PAGE (A)BETA =.00

(A)BETA =PAGE .00 496

(A)BETA =.00 PAGE

1

PAGE (A)BETA = .00

FIG. 124 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=-4.0

(A)BETA = .00

PAGE

FIG. 124 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=-4.0

(A)BETA = .00

PAGE 504

•)

·

FIG. 124 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=-4.0

(A)BETA = .00

PAGE

FIG. 124 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=-4.0

(A)BETA = .00

PAGE 506

PUTTO IN HOME OF HISTORY AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PE

FIG. 124 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=-4.0

(A)BETA = ...00

PAGE 508

FIG. 124 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=-4.0

(A)BETA = .00

PAGE

PAGE

FIG. 124 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=-4.0

(A)BETA = .00

PAGE 512

FIG. 124 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=-4.0

(A)BETA = .00

PAGE 513

(A)BETA =.00 PAGE 514

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0
(A)BETA = -4.00

The state of the control of the cont

PAGE 515

to a constitute of the found of the second property and the second of the second of

.00

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

PAGE 517

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(A)BETA = -4.00

PAGE

MAG

518

*

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(B)BETA = .00

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(C)BETA = 4.00

PAGE

*

FIG. 125 EFFECT OF SSME PLUMES ON ORDITER BASE PRESSURE ALPHA=0.0
(A)BETA = -4.00

PAGE 521

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(B)BETA = .00

PAGE 522

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(C)BETA = 4.00

PAGE

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(A)BETA = -4.00

PAGE 524

*

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0 (B)BETA = .00

P#SE 525

PAGE (C)BETA = 4.00526

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(A)BETA = -4.00

PAGE

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(C)BETA = 4.00

PAGE

ALPHA=0.0 (A)BETA = -4.00PAGE 530

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(C)BETA = 4.00

PAGE 532

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(A)BETA = -4.00

PAGE

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(B)BETA = .00

PAGE 534

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

PAGE 536

* }

.

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(C)BETA = 4.00

PAGE 538

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0
(A)BETA = -4.00

PAGE (B)BETA =.00

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0
(C)BETA = 4.00

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0 (A)BETA = -4.00PAGE 542

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(B)BETA = .00

PAGE

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(C)BETA = 4.00

PAGE 544

*

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0
(A)BETA = -4.00

(B)BETA .00 PAGE 546

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0 (C)BETA = 4.00

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0 (A)BETA = -4.00PAGE

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(B)BETA = .00

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(C)BETA = 4.00

PAGE 550

•

dan pertubbah di perangan Pilipera

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(A)BETA = -4.00

PAGE

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(B)BETA = .00

PAGE 552

i j Kanggir

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(C)BETA = 4.00

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0 PAGE 554 (A)BETA = -4.00

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0
(B)BETA = .00

4.00

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(A)BETA = -4.00

PAGE

(B)BETA =.00 PAGE 558

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(C)BETA = 4.00

PAGE 559

(A)BETA = -4.00PAGE 560

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0
(B)BETA = .00

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(C)BETA = 4.00

PAGE 562

. .

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(A)BETA = -4.00

PAGE

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(B)BETA = .00

PAGE 564

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(C)BETA = 4.0C

PAGE 565

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(B)BETA = .00

PAGE

PAGE 568 (C)BETA =4.00

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(A)BETA = -4.00

PAGE

(B)BETA = .00 PAGE 570

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(C)BETA = 4.00

ALPHA=0.0 FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE (A)BETA = -4.00PAGE 572

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0 PAGE 574 (C)BETA =4.00

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0 (A)BETA = -4.00

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(B)BETA = .00

PAGE 576

. 4

E TOTAL

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(C)BETA = 4.00

PAGE 577

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(A)BETA = -4.00

PAGE 578

فستشع

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(C)BETA = 4.00

PAGE 580

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(B)BETA = .00

PAGE 582

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(C)BETA = 4.00

PAGE

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0

(A)BETA = -4.00

PAGE 584

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0
(B)BETA = .00

PAGE

FIG. 125 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=0.0 (C)BETA =4.00 PAGE 586

FIG. 126 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=4.0 .00

(A)BETA =

FIG. 126 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=4.0

(A)BETA = .00

PAGE

FIG. 126 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=4.0° PAGE 590

FIG. 126 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=4.0

(A)BETA = .00

PAGE

.00 PAGE 592 (A)BETA =

PAGE (A)BETA =.00

FIG. 126 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=4.0

(A)BETA = .00

FIG. 126 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE PAGE $(\Lambda)BET\Lambda =$.00

FIG. 126 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=4.0

(A)BETA = .00

PAGE

PAGE 598 (A)BETA =.00

FIG. 126 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=4.0

(A)BETA = .00

PAGE 600 .00 (A)BETA =

PAGE 602 (A)BETA .00

FIG. 126 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=4.0

(A)BETA = .00

PAGE 604

PAGE (A)BETA .00

FIG. 126 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=4.0

(A)BETA = .00

PAGE

PAGE 608 (A)BETA =.00

FIG. 126 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=4.0

(A)BETA = .00

PAGE

FIG. 126 EFFECT OF SSME PLUMES ON ORBITER BASE PRESSURE ALPHA=4.0

(A)BETA = .00

PAGE 610

FIG. 127 ORB VENT PRESSURES

FIG. 127 ORB VENT PRESSURES

-

FIG. 127 ORB VENT PRESSURES

FIG. 127 ORB VENT PRESSURES

. Terret

FIG. 127 ORB VENT PRESSURES

FIG. 127 ORB VENT PRESSURES

FIG. 127 ORB VENT PRESSURES

de d

FIG. 127 ORB VENT PRESSURES

-.1 -.2 -.3 -.3 -.5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5

FIG. 128 AVERAGE ORB VENT PRESSURES

FIG. 128 AVERAGE ORB VENT PRESSURES

FIG. 128 AVERAGE ORB VENT PRESSURES

September 1

FIG. 128 AVERAGE ORB VENT PRESSURES

FIG. 128 AVERAGE ORB VENT PRESSURES

FIG. 128 AVERAGE ORB VENT PRESSURES

*

FIG. 128 AVERAGE ORB VENT PRESSURES

FIG. 128 AVERAGE ORB VENT PRESSURES

FIG. 128 AVERAGE ORB VENT PRESSURES

FIG. 128 AVERAGE ORB VENT PRESSURES

FIG. 128 AVERAGE ORB VENT PRESSURES

FIG. 128 AVERAGE ORB VENT PRESSURES

FIG. 128 AVERAGE ORB VENT PRESSURES

FIG. 128 AVERAGE ORB VENT PRESSURES

FIG. 128 AVERAGE ORB VENT PRESSURES

FIG. 128 AVERAGE ORB VENT PRESSURES

FIG. 128 . . ERAGE ORB VENT PRESSURES

FIG. 128 AVERAGE ORB VENT PRESSURES

FIG. 129 DELTA AVERAGE ORB VENT PRESSURES DUE TO PLUMES

FIG. 129 DELTA AVERAGE ORB VENT PRESSURES DUE TO PLUMES

FIG. 129 DELTA AVERAGE ORB VENT PRESSURES DUE TO PLUMES

FIG. 129 DELTA AVERAGE ORB VENT PRESSURES DUE TO PLUMES

/ 3

FIG. 129 DELTA AVERAGE ORB VENT PRESSURES DUE TO PLUMES

FIG. 129 DELTA AVERAGE ORB VENT PRESSURES DUE TO PLUMES

FIG. 129 DELTA AVERAGE ORB VENT PRESSURES DUE TO PLUMES

FIG. 129 DELTA AVERAGE ORB VENT PRESSURES DUE TO PLUMES

FIG. 129 DELTA AVERAGE ORB VENT PRESSURES DUE TO PLUMES

FIG. 129 DELTA AVERAGE ORB VENT PRESSURES DUE TO PLUMES

FIG. 129 DELTA AVERAGE ORB VENT PRESSURES DUE TO PLUMES

FIG. 129 DELTA AVERAGE ORB VENT PRESSURES DUE TO PLUMES

FIG. 129 DELTA AVERAGE ORB VENT PRESSURES DUE TO PLUMES

the first of the second of the first of

FIG. 129 DELTA AVERAGE ORB VENT PRESSURES DUE TO PLUMES

FIG. 129 DELTA AVERAGE ORB MENT PRESSURES DUE TO PLUMES

FIG. 129 DELTA AVERAGE ORB VENT PRESSURES DUE TO PLUMES

FIG. 129 DELTA AVERAGE ORB VENT PRESSURES DUE TO PLUMES

FIG. 129 DELTA AVERAGE ORB VENT PRESSURES DUE TO PLUMES

ALPHA = -4.000 BEIA = .000 PHI = 30.000

ALPHA = -4.000 BEIA = .000 PHI = 270.000

41 PHA =

.000

BETA

PAGE 90.000 1 DL1 = .000 DETA = .000 PH:

9										
DATA SET		CONFIGURAT ARCI1-0231AB	ION DESCRIPT		ET BASE	ELV-1		MACH .600	RN/L 3.400	
(BE4H20) (BE4H11) (BE4H85) (BE4H80)	000044	ARC11-0231AB ARC11-0231AB ARC11-0231AB ARC11-0231AB	0 OTS(SRB=N 0 OTS(SRB=N 0 OTS(SRB=N	ORB=N) ORB=N+) ORB NO.1 O ORB NO.2 O	ET BASE ET BASE UT)ET BASE	.00 .00 .00	000. 000. 000. 000.	.600 .600 .600 .600	3.400 3.400 3.400 3.400	
COEFFICIENT, CP	. 4 <u>F</u> m		un en la cina	րաբարարա	lundani anim	anapana	70070070	70000		
	.3							ì		
										 110
	.2						1-1-1-			
							++++			
	· 1							+++	 	
	1								 	
							++++			
	2₺						++++	111		
<u> </u>	3 [10	10		
PRESSURE	3 <u>-</u>									
	4-									3
	<u> </u>			 	 - - -				1	
	5						+++++	+-+-		
	6									
	0								b	
	7								1	
									 	
	8						++++	 		

DISTANCE FROM CENTERLINE BASED ON OUTER RADIUS, R/ROD FIG. 130 PLUME EFFECTS ON ET BASE PRESSURE COEFFICIENT, MACH=0.6

.≥

.6

ALPHA = .000 BETA = -+.000 PHI = .000

-1.0<u>E</u>...

PAGE 693

i . 4

1.2

1.0

.8

BETA

-4.000

PAGE 695

ALPHA = .000 BETA = -4.000 PHI = 270.000

ALPHA = .000 BETA = 4.000 PHI = 180.000

ALPHA = -4.000 BETA = .000 PHI = .000

FIG. 131 PLUME EFFECTS ON ET BASE PRESSURE COEFFICIENT, MACH=0.9

ALPHA = -4.000 BETA = .000 PHI = 180.000

ALPHA = -4.000BETA = .000 PHI = 270.000

PAGE ALPHA = .000BETA = .000PHI = 90.000

706

PAGE ALPHA = .000 BETA .000 PHI = 270.000

PAGE 4.000 BETA .000 PHI = 90.000

ALPHA = .000 TA = -4.000 PHI = .000

= -4.000 = 90.000

714

FIG. 131 PLUME EFFECTS ON ET BASE PRESSURE COEFFICIENT, MACH=0.9

ALPHA = PHI = 270.000 .000 BETA = -4.000

BETA = 270.000 ALPHA = .000 4.000 PHI ==

FIG. 132 PLUME EFFECTS ON ET BASE PRESSURE COEFFICIENT, MACH=1.1

ALPHA = -4.000 BETA = .000 PHI = 90.000

Line Control of the C

PH! ALPHA = -4.000 BETA = .000 = 270.000

FIG. 132 PLUME EFFECTS ON ET BASE PRESSURE COEFFICIENT, MACH=1.1

ALPHA = .000 BETA = .000 = 270.000 PHI

PLUME EFFECTS ON ET BASE PRESSURE COEFFICIENT, MACH=1.1 FIG. 132

.000 PHI = 270.000 BETA ALPHA = 4.000 =

FIG. 132 PLUME EFFECTS ON ET BASE PRESSURE COEFFICIENT, MACH=1.1

FIG. 132 PLUME EFFECTS ON ET BASE PRESSURE COEFFICIENT, MACH=1.1

ALPHA = .000 BETA = -4.000 PHI = 90.000

ALPHA = .000 BETA = -4.000 FHI = 270.000

ALPHA =

.000

BETA

4.000

FH!

PAGE

737

FIG. 132 PLUME EFFECTS ON ET BASE PRESSURE COEFFICIENT, MACH=1.1

ALPHA = .000 BETA = 4.000 PH: = 90.000

ALPHA =

.000

BETA

4.000

PH

= 180.000

PAGE

Paris y

AT THE RESIDENCE OF THE PARTY O

FIG. 133 PLUME EFFECTS ON ET BASE PRESSURE COEFFICIENT, MACH=1.25

ALPHA = -4.000 BETA = .000 PHI = 90.000

PAGE 742

ALCOHOLOGICA DE LA CONTROL DE

ALPHA = .000 BETA = .000 PHI = .000

PAGE = 90.000 ALPHA = .0003ETA = .000PHI

PLUME EFFECTS ON ET BASE PRESSURE COEFFICIENT, MACH=1.25

ALPHA = 000 BETA = .000PHI = 270.000

FIG. 133 PLUME EFFECTS ON ET BASE PRESSURE COEFFICIENT, MACH=1.25

ALPHA = 4.000 BETA = .000 PHI = .000

ALPHA = 4.000 BETA = .000 PHI = 270.000 PAGE

ALPHA = .000 BETA = -4.000 PHI = 180.000

ALPHA = PHI = 270.000 .000 BETA = -4.000

ALPHA = .000 BETA = 4.000 PHI = 90.000

A CONTRACTOR OF THE STATE OF TH

FIG. 133 PLUME EFFECTS ON ET BASE PRESSURE COEFFICIENT, MACH=1.25

ALPHA = .000 BETA = 4.000 PHI = 270.000

- C. Milenous (เป็น Millionia dil Ni Marasa) เมื่อเสียน

Charles the Control of the Anna Control of the Cont

FIG. 134 PLUME EFFECTS ON ET BASE PRESSURE COEFFICIENT, MACH=1.4

ALPHA = -4.000 BETA = .000 PHI = 90.000

and the second of the second second

ALPHA = -4.000 BETA = .000 PHI = 270.000

PAGE 764

. .

"我们我们也是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是

.000 PHI = 270.000 BETA = .000

ALPHA = 4.000 BETA = .000 PHI = 90.000

PAGE 770

_

PAGE .000 = 270.000 ALPHA = PHI 4.000 BETA =

ALPHA = .000 BETA = -4.000 PHI = .000

ALPHA = .000 BETA = -4.000 PH! = 90.000

Lection of Garages and Co.

\$

ALPHA = .000 BETA = 4.000 PH1 = 270.000 PAGE 780

FIG. 135 PLUME EFFECTS ON SRB BASE PRESSURE COEFFICIENTS, MACH=0.6

ALPHA = .000 BETA = .000 XB/LB = .950

PAGE 782

*

FIG. 135 PLUME EFFECTS ON SRB BASE PRESSURE COEFFICIENTS, MACH=0.6

ALPHA = .000 BETA = -4.000 XB/LB = .950

PAGE 784

DATA SE (BE4128 (BE4120 (BE4101	;	ARC	11-0	023 023 023	1 AB(1 AB(1 AB(0.0	TS (SRB SRB SRB	=OF ='\ =N+	F 0	RB= RB= RB=	V) }	•	SRB SRB SRB SRB	SK SK	IRT IRT			•	000 000 000 000		.1	-08 000 000 000	•	1ACH 160. 160. 160.	10	3 3	.40(.40(.40(.40())										
	15 [Ш		7	777		nn	m	-	 		1111				111	Ш			1171			77			1	 			1117			7		- I	7	7	7	T	T
	20			1	1												_	_				-	1	+	+						+	1	+		1	1	 	#	#	7
	25 <u>-</u>		\dashv	+	1																1			\dashv	+	+						1	1		7	7	+	1	1	
	30		1													-1	5								$\frac{1}{1}$								-	-	_		$\frac{1}{2}$		$\frac{1}{1}$	11
•	35)									\$ \$								少		1								1	+	$\frac{1}{1}$	\pm	+	1
CIEN	40		$\frac{1}{1}$	\dashv		1											_				1	\exists	\dashv	_	1	1	Z					1	9	 	$\frac{1}{1}$	\dashv	1	$\frac{1}{4}$	$\frac{1}{4}$. kundun
COEFF ICIENT	45 <u>-</u>			1	1	1																	\exists		<u> </u>	1					1	1	1	+	+	 	$\frac{1}{1}$	+	$\frac{1}{4}$	"Printer
	50			1	#	\exists															1	1	1	1	#	+					1	1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+	1	#	+	+	#	ահամաս
SS	55		1		-	\dashv																1	_	$\frac{1}{1}$	1	+	+					1	*	+	+	1	+	+	#	اساسات
	60		1	1	4																7	7		1	1	+	† -				X	1	1	1	+	7	\dashv	\mp	\mp	اعتباست
	.03 70			\exists	\dashv																				+								卢		1			$\frac{1}{4}$	1	li milim
	75 [1		_	1															$\frac{1}{1}$		_	1	\pm	+	-					1		+	1	 	$\frac{1}{1}$	1	#	
		H	#	1	\dashv	4											-				\dashv	1	1	+	+	+					1	$\frac{1}{1}$	+	+	1	+	$\frac{1}{1}$	#	+	
	FII	նում G.	ափ -4 13		P)I				ΙT				GL			AS			FI		4 E		TO		EN			IN		Pł		0	باجد	121 1 1	32	ш <u>і</u> .	u.

XB/LB = .950

785

PAGE

ALPHA =

.000

BETA

.000

FIG. 135 PLUME EFFECTS ON SRB BASE PRESSURE COEFFICIENTS, MACH=0.6

ALPHA = .000 BETA = 4.000 XB/LB = .950

FIG. 136 PLUME EFFECTS ON SRB BASE PRESSURE COEFFICIENTS, MACH=0.9

ALPHA = -4.000 BETA = .000 XB/LB = .950

DATA SET (AE4129) (AE4121) (AE4107) (AE4102)	SYMBOL O O O	ARCII ARCII ARCII ARCII	-023 -023	08A1	0T:	S(SI S(SI S(SI	RB=0 RB=N RB=N	FF 0	RB=0 RB=N RB=N	1)		SRI	3 S K 3 SK 3 SK 3 SK	IRT		Ε	.00 .00 .00 .00	0 0 0		7-08 000 000 000 000		4/.°4 .90 .90 .90	מנ מנ סנ	14.	/L .250 .250 .250 .250									
	En	սրոսիս	ıııııı	mili	mli	سابيد	mpi	m n:	أسأ		mm	m	η.π	11111		iiili	milin	m		****	191111	m	7	1	mm	min	11111	1111	mir	777	111111			
-	.10	††	+		\dashv	+	+	+				\dagger	十	十	\Box	+	十	†	T			1	\top							工	工			
	.15																ij													_		\sqcup	_	=
		11	1			4	\bot	-			_		_	1_		_	_	_	<u> </u>				-	\vdash			+	<u> _</u>	$\vdash \vdash$	\dashv	+	╁		1
_	.20 <u></u>	++		$\vdash \vdash$	\dashv	+		+	+	-		+	+	-		-	-	+-	┢		-		╫	\vdash		+	+	-	-	+	+	++	+-	1
		++-		\vdash	\dashv	<u></u>	+	#			\pm	\pm	+	+			士	上	上		─ 本	\forall	+	+-		1			計	十	+	\Box		
	.25	11			\top	1	1	+		•				ф <u> </u>								\perp	\nearrow	$\overline{\mathcal{L}}$							I	П		
ე _	.30					φ	\perp	-			工					\Box		T			o	\downarrow	\downarrow			\Rightarrow	\downarrow		$\vdash \vdash$	+		 		חווויו
and 🚅 in the 📆		1-1-			_	\perp	_					+	+	-		-	- -	+	-				+	\rightarrow		_	+	>	-	-	+	1-1	+	
COEFFICIENT	.35 [+-+		\vdash	+	-	+	+			_	1	+	\downarrow		_		+	\downarrow		φ.	+	+	-		\Rightarrow	${}^{+}$			+	+	1	\top	1
<u> </u>	[++	+		\dashv	+	\top	+-			\top	十	\dagger	T			1	\dagger	\dagger				$ mbox{}{\downarrow}$]
L	.40					—		1				1	1	φ_		\blacksquare		\pm			0	J	\perp				_	_		\bot	_	\vdash	_	3
片 -	.45	11	_	\sqcup		_ _	_		1		-	1	- -	┦	-		_	-	-			1	+	-		\checkmark		-	\vdash	+	+	++	+	1
	F	++	-		-	-	+	+	+			+	+	+		+	\dashv	+-	╀			+	+				\rightarrow	$ar{}$	$\vdash \vdash$	+	十	++	+	3
PRESSURE	.50 [++	-		\dashv	\dashv	\dashv	╫	+		+	+	+	+			+	+	+			+	+	1	1		+	+		十	-			
361		11	+		7	1	\top	\top			_	T															V			工	I	П		
<u> </u>	·.55																	$oxed{\bot}$					1			_	1	1		_	—	-		1
	.60₺	4-1-			4	_	_		1		_	_	1	1		\dashv		\bot	+-			-	+	1-		+	+	+-	-	\perp	+	11		- T
	E	++	+	\vdash	\dashv	\dashv	+	+	╁			+	+	╁	-		+	+-	+				╁	+-		+	1	+		- -	+	+		
-	.65	+	+	\vdash	+	1	+	+	-		\dashv	+	+	-			十	+	\dagger			1	+	+		十	1	1						1
	70	11			1	1	\top																						\Box	\perp	1	\coprod		Time I
	·.70						\Box						1	\perp				_	_				-	\bot		\perp		_	\dashv	_		++	-	The second
	· . 75	44			_	_	_	4	\vdash					-	-			+	-	_	\vdash		+	+		\dashv	-	+	$\vdash \vdash$	-	+	+++		4
	E.	بىلىسلىر	աիա -40	لسيل		ափ 0	بىلىنى	سان	ىنىلى با	 - 0	بلسب	ախ	l 80	سلب	վաւ	بلسا 2 1	<u>ւսև</u> Ո	ոհո	ահա 1	60 أسبا	ىلىسل	ىىلىپ ت	300 	սևու !	لسا	241 241	աևո Ո	uluu	58 1	лици 30	ահա	لىسار 32	ши. С	ᆆ
			70		F			L F			ION				ME			D I			BO.				NTE			, F	PHI				_	
	F	G.	136	F																						ACH								

XB/LB = .000 .000 .950 BETA ALPHA =

29) 21) 07) 02)	0004	AR		023	I AE	30	OTS OTS	15	RB RB	=N =N+	. ()RB	=N =N	.)			S	RB RB	SK SK SK	IR	7				.00. 00. 00.	0		:	000 000 000			.9(.9(.9(00		4	.25	0												
	10	771111	11111	7171	1111	'''	1111	T	"	пп	1111	T	1	-	1111		T	ш	ι.π	m	7	111	ımı	1111	T	7			****	1111	-	1	P	- 1	1111	111	1	1111	1	"	т	""	T	7	Ш		***	m	Ŧ
·	10	L					I						I				I			I									_			I	I					I				L	I	I					_
	15	-	-			-	+	+	-		-	-	+	-		-	+	1	-	+	+	\dashv	_	-	+	+	-		-	_	-	╀	+	-		_	\vdash	+	+	\dashv		<u> </u>	+	井	\dashv	\dashv	_	\vdash	-
	20							1				L	1				1	_	L	1	1				1	+	1						1					1	1			L	Ī	丰	7	コ		L	_
		+				-	+	+	-		-	\vdash	+	-		-	+	-	_	+	+	-		-	ł	+	+	-		_	_	┝	+	-		-	\vdash	+	+	\dashv		╁	+	\dotplus	\dashv	\dashv		\vdash	_
	25	T		-	_		\dagger	4				-	+	+	_	 	t		_	1	+	1		1	t	\dagger	1	_		-		\downarrow	t	1	_	-		\dagger	†	1		\vdash	+	\dagger	+			1	Ť
· - ·	30	L					L													_	-				I							I	I	7	<u></u>			I	I			L	Ţ	I	\Box	\Box		L	_
	E	+-	-		-	-	\bot	Φ			_	F	I	-		L	1	-	<u> </u> -	Ĭ	+	_			F	+	1				<u>ک</u>	-	\downarrow			_		-	\downarrow			-	\perp	+	\dashv	_		╀	_
٠.	35	+	-	-		\vdash	+	4	=	-	-		+	+	-	-	+	=	=	b	+	4		H	╪	+	+	_	_			+	+	7	<u> </u>		-	+	\dagger	\exists	>	-	+	+	+	\dashv		┝	-
	40							1			1		İ				1				İ				İ	İ	1						丈					İ	black		7	þ	上	土	士			L	_
•		1						7		_			+	+	_		+	_		b -	+	_	_		ļ	1	4			[_	L	1	1	_		-	1	1			<u> </u>	\perp	_ _	1			L	_
	45	+	-			-	+	+	\dashv	.	-	-	+	+		-	+		_	+	+	\dashv		-	+	+	\dashv	\dashv					+	-			\	+	+	-		├	+	+	ᆛ	-		┝	-
	E0 F	\dagger					T	1	-	-	-	\vdash	\dagger	+	_	-	t		_	-	\dagger	1	_	-	\dagger	\dagger	+		-	-	\vdash	T	1	4		-		1	\star	7		H	+	+	1	+		H	-
	50 E							I					I				I				I				I	I									_			I	I		\sum	Φ_	I	I	丁				_
	55	+					\perp	1			_	-	1	4		L	1	4	_	-	1	4		_	1	+	1	_			_	L	+	1				\downarrow	1	\dashv		┞	╀	\dotplus	4	-		\vdash	-
	-	-				-	+	+	+		-	-	+	+		-	+	\dashv	_	+	╁	\dashv		\vdash	+	+	+	-			-	\vdash	+	+		-	-	1	\forall	-		-	+	+	-	-		 	-
	60	+			_	\vdash	T	t		-		-	+	1	-		t	7	_	+	\dagger	\dashv	-	\vdash	t	\dagger	+				_	+	+	1		-	\vdash	\dagger	+	1	7	L	\dagger	Ť	\dagger	+	-		-
	65							I					I				I				1	\Box			I	I	1		_			I	I					I	I		_ E		I	I	\Box				_
		\bot				<u> </u>	1	1	-		_	\vdash	\perp	4	_	L	+	4	—	\vdash	+	4		_	+	\downarrow	+	_			_	-	+	4		_	L	+	\perp	4		<u> </u>	╀	+	\dashv	_		-	_
	70	+				-	\vdash	+	-	-	-	\vdash	+	+		-	+	\dashv	-	+	+	-		\vdash	+	+	+	-		-	-	\vdash	+	+		-	-	+	+	+	-	ή-	+	+	+	\dashv		\vdash	-
	75	1					F	1					+				+			<u> </u>	†	1			1	+	1		_		_		+	1				+	+	1		L	Ŧ	+	1	\exists		F	-
	₽π	ши	لىسا 1 ــــ	нші + О	ш	lim	ш	ņ	ш	1111	liii	بنط ا	+0 Մե	ul	1111	ш	:11	8	0	سل	uli	ш	li.	50 Im	u	ılıı	щ	ավ 16	 30	ىننىا	i	سار 2	ф 20	0 1111	ш	ш	<u>سا</u> 2	փ։ Կ(ىلىد بىلىد	ıııi.	ш	5 بىنىر		ulu J	ші	لس	3	50 أس	: כ
							R/	٩D	I	٩L	F	209	51	T	10	N	A	N	GL	Ε	٢	1E	AS	UF	RE	D				BC	T.				ΕN	ITE				Ξ,	F	ЭН							

.950

.000 XB/LE =

789

PAGE

ALPHA =

4.000

BETA

FIG. 136 PLUME EFFECTS ON SRB BASE PRESSURE COEFFICIENTS, MACH=0.9

ALPHA = .000 BETA = -4.000 XB/LB = .950 PAGE 790

DATA SET (BE4129) (BE4121) (BE4107) (BE4102)	SYMBOL O O A	ARCII ARCII ARCII ARCII	-023	38A18 38A18 38A18	0 OT	5 (S) 5 (S) 5 (S)	RB=1 RB=1 RB=1	OFF N N+	OR	B=N B=N	3		5 S	RB RB	SKI SKI SKI	RT RT			•	7-18 000 000 000).	-08 100 100 100	٢	.90 .90 .90	0	ų ų	.250 .250 .250 .250))									
	.10		Time	""		1			77	Ш	1111		1111	''''	.111	1111	Ш	1111	1111				1111		1111	11111	1	17.7		1777			****	Т		1111		
			-		_	\perp	_		-	\perp	4	_		_							_	\dashv	4	\bot	+	1	<u> </u>		-	\dashv		\dashv	+	+-	+			
	. 15			H	\dashv	+	+	+	+	+	\dashv	\dashv	\dashv	1							\dashv	\dashv	+	+	┪-	+	 			\dashv	\dashv	\dashv	+	+	+			1
	.20 <u></u>					丁			\perp	1	1												\Box									\Box	1					1
			+-	\vdash	4	\downarrow	4	\perp		4	4	\downarrow	4	_							\perp	\perp	\perp	\downarrow	\perp	-	-			\dashv	\dashv	-	\dashv	+	+			
_	.25	+	-		-			+	$-\Gamma$		7	7	=	=	_4	7-	-					\dashv	┪	+	\rightarrow	+		-		-	\dashv	\dashv	\dashv	+	+			
ე _	.30					•	1	\pm	士	士	#	寸										寸	\exists	•		1			Z					1				昌
•			-		1	4	1	+	+	1	-	\dashv	4									\dashv	+	+	-		\succ	\bigvee	1	[\Rightarrow	-	+	+	+			4
<u> </u>	.35		+-		+	-	+	+	+	+	+	+	+	\dashv	_	\equiv					_	4	+	- \$	\dagger	-	\vdash		7	7	- 🕇	t	\top	+	+-			-
21.	.40						1		1												\Box	\Box	\Box			K							1		I			1
COEFFICIENT	-	$oxed{+}$	+	\vdash	\dashv	中	+	+	+	\mp	+	+	+	=	=	_					\dashv	+	\pm	中	\downarrow	╀		/			\dashv	\dashv	+	+	╀	\vdash	\vdash	
පි -	.45	ff	+		+	+	+	+	+	+	+	\dashv	1	1							1	\dashv	\top	\dagger	\dagger	\forall				ユ	\exists				\mathbf{T}			<u> </u>
岳 -	.50			П			1	Ţ		\Box									-			\Box		\perp		L		Z		\Box	\nearrow	V	_	_	_			4
				\vdash	+	-	+	+	+	-	+	\dashv	\dashv				-				\dashv	\dashv	+	+	+	╀╌	-			\dashv	\dashv	\dashv	+	+	+	-		-
吊 -	.55				\top	\top	\dagger	\top	\top	\top	1													\perp	\perp						X			士				
-	.60				\bot			\bot	1				\neg								\dashv		\perp	\perp	L	_					_	7		-	-			-
		H	+	H	\dashv	+	+	+	+	+	+	\dashv	\dashv	-							-	1	+	+	+	\perp				-	\dashv	+	+	+	╁	\vdash		-
-	.65				士	1			1		1						_					1]	工	上								丁	土	1			1
	.70		_		\perp	4	_	4	4	\perp	4	_	4	_	_						-	\dashv	+	_	+	-	<u> </u>			_	_	\dashv	-	+	-			4
	=	H	+	\vdash	+	+	+	- -	+	+	+	\dashv	\dashv								\dashv	\dashv	+	+	+	+	-			\dashv	\dashv	\dashv	+	+	+			-
	.75		11111										11:1		:	1111	1111		1111	1111		ш.			11111	1	<u> </u>		ш					1		<u></u>		711E
			40			0				4(8					50			16				00			54		_		28	0		38	20	
		G. 1																							TOI								H1					

PAGE

791

ALPHA =

.000

BETA =

.000

XB/LB =

.950

ALPHA = .000 BETA = .000 XP/LB = .950

FIG. 137 PLUME EFFECTS ON SRB BASE PRESSURE COEFFICIENTS, MACH=1.1

ALPHA = .000 BETA = .000 XB/LB = .950

TO. 150 TEORE EFFECTS ON SAB BASE PRESSORE COEFFICIENTS, TIACH-1.E.

ALPHA = .000BEIA = .000XB/LB = .950

FIG. 138 PLUME EFFECTS ON SRB BASE PRESSURE COEFFICIENTS, MACH=1.25

PAGE 801

- Commence of the Commence of

PLUME EFFECTS ON SRB BASE PRESSURE COEFFICIENTS, MACH=1.4 FIG. 139

PAGE 806 ALPHA = .000 BETA = .000 XB/LB =.950

RADIAL POSITION ANGLE MEASURED FROM BOTTOM CENTERLINE, PHI FIG. 139 PLUME EFFECTS ON SRB BASE PRESSURE COEFFICIENTS, MACH=1.4

ALPHA = 4.000 BETA = .000 XB/LB = .950

FIG. 139 PLUME EFFECTS ON SRB BASE PRESSURE COEFFICIENTS, MACH=1.4

ALPHA = .000 BETA - -4.000 XB/LB = .950

PAGE 808

U

FIG. 139 PLUME EFFECTS ON SRB BASE PRESSURE COEFFICIENTS, MACH=1.4

