POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI

KIERUNEK: Automatyka i Robotyka (AiR)

SPECJALNOŚĆ: Robotyka (ARR)

PROJEKT INŻYNIERSKI

Wybrane metody przetwarzania biosygnałów

Selected methods for the analysis of bio-signals

AUTOR:

Maciej Przydatek

Prowadzący projekt:

dr inż. Andrzej Wołczowski

OCENA PROJEKTU:

Pracę dedykuję kochanej Siostrze, najdzielniejszej i najsilniejszej osobie jaką znam.

Spis treści

1	$\mathbf{W}\mathbf{p}$	rowadzenie	3
	1.1	Wstęp	4
	1.2	Cel pracy	5
2	Opi	s i struktura bazy danych ruchów	7
	2.1	Metodologia pomiarów biosygnałów	7
	2.2	Wtórna baza danych - ekstrakcja cech za pomocą STFT	8
3	Sele	ekcja cech - analiza wewnątrzklasowa	11
	3.1	Średnia i odchylenie standardowe wartości cech	11
	3.2	Wskazanie "złych" współrzędnych w klasie	12
	3.3	Analiza zbiorcza	13
	3.4	Podsumowanie	13
4	Sele	ekcja cech - analiza międzyklasowa	15
	4.1	Wyznaczenie średnich reprezentantów klas	15
	4.2	Różnice współrzędnych pomiędzy parami klas	15
	4.3	Macierz różnic $M\Delta$	16
	4.4	Podsumowanie	18
5	Tes	ty - klasyfikacja za pomocą kNN	19
	5.1	Opis	19
	5.2	Wektory nieprzetworzone	20
		5.2.1 Wyniki dla wszystkich klas	20
		5.2.2 Wyniki dla wybranych klas	21
	5.3	Wektory przetworzone metodą naturalną	22
		5.3.1 Wyniki dla $\Sigma_{max}=2000$	22
		5.3.2 Wyniki dla $\Sigma_{max} = 3000$	24
	5.4	Wektory przetworzone metodą sekwencyjnego przeglądu zwrotnego SBS	25
		5.4.1 Opis	25
		5.4.2 Wyniki dla wymiaru 1119	25
		5.4.3 Wyniki dla wymiaru 567	26

		5.4.4	Wyniki dla wymiaru 261	28
	5.5	Klasyfi	kacja z wykorzystaniem metody redukcji PCA	29
		5.5.1	Wyniki dla $dimension = 3000 \ \dots \dots \dots \dots \dots \dots \dots$	29
		5.5.2	Wyniki dla $dimension = 2000$	30
		5.5.3	Wyniki dla $dimension=1000$	30
		5.5.4	Wyniki dla $dimension = 500 \ . \ . \ . \ . \ . \ .$	31
		5.5.5	Wyniki dla $dimension = 400 \dots \dots \dots$	31
		5.5.6	Wyniki dla $dimension = 300$	32
		5.5.7	Wyniki dla $dimension = 200$	32
		5.5.8	Wyniki dla $dimension = 150 \ . \ . \ . \ . \ . \ .$	33
6	Dys	kusja i	wnioski	35
Bi	bliog	rafia		37

4 1. Wprowadzenie

Rozdział 1

Wprowadzenie

1.1 Wstęp

Ręka jest bardzo istotnym narządem człowieka wykorzystywanym zarówno do celów manipulacyjnych jak i w komunikacji międzyludzkiej czy w interfejsie człowiekkomputer. Utrata reki bardzo istotnie wpływa na komfort i efektywność radzenia sobie z czynnościami wykonywanymi na co dzień. Zadaniem protezy ręki jest częściowe przywrócenie utraconych funkcji kończyny - zwłaszcza funkcji manipulacyjno-chwytnych. Aby realizować to zadanie, proteza musi mieć możliwość przyjmowania różnych układów palców oraz orientacji w zależności od woli człowieka. Mięśnie poruszające palcami znajdują się w większości w przedramieniu. Po amputacji lub utracie ręki w okolicach nadgarstka pozostają więc one nienaruszone, a człowiek zachowuje możliwość świadomego poruszania nimi dokładnie tak, jakby wykonywał określony ruch palcami ręki. Aktywności mięśni towarzyszą zjawiska biofizyczne, które na zewnątrz objawiają się jako sygnały. Są to zarówno sygnały elektryczne (miopotencjały) jak i mechaniczne (miowibracje). Sygnały te propagują w tkance otaczającej i objawiają się na powierzchni przedramienia, na skórze, jako sygnały elektromiograficzne (EMG) i mechanomiograficzne (MMG). Różnym ruchom palców odpowiada aktywność różnych grup mięśni. To z kolei objawia się jako różne sygnały EMG i MMG. Odczyt i właściwa interpretacja tych sygnałów powinna więc dawać możliwość rozróżniania pomiędzy klasami ruchów, jakie człowiek wykonuje, a w konsekwencji odtworzenie ich za pomocą protezy. Jednak nieinwazyjnym pomiarom tych sygnałów - na przykład na skórze - towarzyszą liczne zakłócenia pochodzące od zewnętrznych pól elektrycznych i akustycznych (dzwięki zakłócające odczyt miowibracji). Aby poprawnie zinterpretować tak zaszumione odczyty w zadowalającym czasie, stosuje się zamianę wektora próbek zapisanych w dziedzinie czasu na wektor cech (ekstrakcję cech), a następnie ogranicza się ich liczbę do minimum dającego błąd rozpoznawania nie większy niż ustalona granica (selekcja cech). Niniejszy dokument zawiera krótki opis sposobu ekstrakcji cech oraz skupia się na metodzie ich selekcji, która powstała w ramach projektu inżynierskiego (dalej "metoda naturalna"), a także jej porównanie z istniejącymi metodami matematycznymi.

1.2. Cel pracy 5

1.2 Cel pracy

Celem pracy było przebadanie wybranych metod przetwarzania biosygnałów w taki sposób, aby ostatecznie uzyskać efektywne ich rozpoznawanie.

Do badań wybrano metodę ekstrakcji cech opartą na transformacji STFT oraz dla porównania dwie metody selekcji cech: metodę "naturalną" - prowadzoną przez operatora oraz metodę sekwencyjnego przeglądu zwrotnego SBS. Dla ostatecznej weryfikacji wyniki skonfrontowano z danymi uzyskanymi metodą PCA.

Rozdział 2

Opis i struktura bazy danych ruchów

2.1 Metodologia pomiarów biosygnałów

Rejestracja sygnałów odbywa się za pomocą ośmiokanałowej karty pomiarowej PCI, która zbiera dane z 8 elektrod umieszczonych na przedramieniu z częstotliwością 1 kHz.

Rysunek 2.1: Rozmieszczenie elektrod na przedramieniu

Przebiegi czasowe zapisywane są do plików tekstowych o 8 kolumnach i 1995 wierszach reprezentujących odpowiednio 8 kanałów i 1995 chwil czasowych, w których dokonano pomiaru. Każda klasa ruchu reprezentowana jest przez 50 takich plików, które odpowiadają 50 powtórzeniom wykonania danego ruchu (dalej "powtórzenia"). Każda badana osoba posiada w bazie 9 klas ruchów. Zebrano pomiary dla 3 conych, jednak dalsze rozważania zawierają się w obrębie danych pojedynczej osoby.

2.2 Wtórna baza danych - ekstrakcja cech za pomocą STFT

Dla każdej klasy ruchu, dla każdego powtórzenia, dla każdego kanału $(9 \times 50 \times 8)$ wyznaczono spektrogram za pomocą Krótkoczasowej Transformaty Fouriera (Short-Time Fourier Transformation). Parametry funkcji spectrogram w środowisku Matlab, a następnie dalsze przetworzenie danych skonstruowano tak, by dla każdego pojedynczego kanału spektrogram posiadał 20 chwil czasowych i 20 punktów częstotliwościowych.

Rysunek 2.2: Przykładowy spektrogram

Wartości amplitud pojedynczego spektrogramu dla jednego kanału, dla danego powtórzenia danej klasy ruchu ułożono w wektor w następujący sposób: kolejne wartości wg rosnących częstotliwości w pierwszej chwili czasu, potem podobnie dla kolejnych (rosnąco) chwil czasu. W wyniku tej operacji otrzymano wektor 400 wartości odpowiadający pojedynczemu kanałowi. Wektory odpowiadające poszczególnym kanałom danego powtórzenia połączono w jeden, otrzymując wektor "spektrogramowy" (wektor cech) danego powtórzenia.

Wektor (3200 próbek) - 1 powtórzenie

Rysunek 2.3: Przykładowy wektor "spektrogramowy"

W ten sposób wyekstrahowano 450 wektorów cech $h^{i,r}$ (gdzie **i - nr ruchu**, $i \in (1,9)$ oraz **r - nr powtórzenia**, $r \in (1,50)$), zawierających 3200 cech. W dalszej części opisuje się operacje przeprowadzane wyłącznie na tych wektorach.

Rozdział 3

Selekcja cech - analiza wewnątrzklasowa

W tym rozdziale opisano wybieranie takich cech wewnątrz każdej klasy (osobno), które najmniej różnią się między sobą w różnych powtórzeniach. Uzyskano to, poszukując cech różniących się najbardziej i odpowiednio oznaczając te cechy w wektorze cech.

3.1 Średnia i odchylenie standardowe wartości cech

Aby uzyskać miarę rozproszenia danej próbki pomiędzy powtórzeniami, można posłużyć się jej średnią i odchyleniem standardowym.

Przeanalizowano każdą j-tą współrzędną wektora cech $h^{i,r}$ (po wszystkich powtórzeniach r, w klasie i i określono jej średnią:

$$\mu_j^i = \frac{1}{50} \sum_{r=1}^{50} h_j^{i,r} \tag{3.1}$$

oraz odchylenie standardowe w klasie:

$$\sigma_j^i = \sqrt{\frac{1}{50} \sum_{r=1}^{50} (h_j^{i,r} - \mu_j^i)^2}$$
 (3.2)

Ponieważ jednak odchylenie standardowe w ujęciu bezwzględnym nie daje dobrego porównania rozproszenia między próbkami (odchylenie standardowe dla liczby 2, 3, 5 jest takie samo jak dla liczb 102, 103, 105, gdzie względem skali ich wartości bardziej odbiegają od siebie elementy 2,3,5), znormalizowano odchylenie (tworząc n-odchylenie) dzieląc je przez średnią:

$$n\sigma_j^i = \frac{\sigma_j^i}{\mu_j^i} \tag{3.3}$$

Powtórzono to dla wszystkich współrzędnych $h_j^{i,r}$ (j = 1, 2, ..., 3200), wektorów $h^{i,r}$ w klasie oraz po wszystkich klasach (i = 1, ..., 9). W wyniku otrzymano reprezentantów idealnych każdej klasy ruchu, jako zbiór wartości średnich każdej współrzędnej, ich

odchyleń standardowych oraz n-odchyleń.

3.2 Wskazanie "złych" współrzędnych w klasie

Utworzono ranking n-odchyleń współrzędnych wektora cech.

Rysunek 3.1: Rozkład wartości n-odchyleń w klasach

Rysunek 3.2: Przykładowy rozkład wartości n-odchyleń w jednej z klas

3.3. Analiza zbiorcza 13

Po obserwacji powyższych wykresów wywnioskowano, iż w każdej klasie ruchu około 3000 współrzędnych (cech) posiada n-odchylenia poniżej pewnego, odpowiedniego dla klasy progu, podczas gdy pozostałe 200 znacznie go przekracza. Wobec tego arbitralnie przyjęto 200 najbardziej rozstrzelonych współrzędnych jako najgorsze w każdej klasie oraz odpowiednio je oznaczono.

3.3 Analiza zbiorcza

Porównano wyniki wewnątrzklasowe dla różnych klas. Utworzono macierz wartości σ_i' "złych" współrzędnych w poszczególnych klasach (wiersze odpowiadają kolejnym klasom, kolumny kolejnym współrzędnym wektora cech, komórki przyjmują wartości: 0 - "dobra" współrzędna lub $n\sigma_j^i$ - "zła" współrzędna). Dodatkowy, dolny wiersz macierzy zawiera Σ_W' - sumę wartości σ_i' w kolumnie oraz Σ_W - liczbę powtórzeń ruchu dla których dana współrzędna wektora jest "zła". Dodatkowa kolumna (z prawej strony) zawiera Σ_R' - sumę wartości σ_i' w wierszu oraz Σ_R - liczbę "złych" współrzędnych w danej klasie ruchu.

3.4 Podsumowanie

Powyższa macierz stanowi wynik analizy wewnątrzklasowej. Można z niej odczytać m.in. które współrzędne są oznaczone jako "złe", a także informację na temat klas ruchów w których są tak traktowane.

Rozdział 4

Selekcja cech - analiza międzyklasowa

W rozdziale tym opisano wyznaczanie cech, które dobrze różnicują klasy ruchów, tj. ich rozstrzelenie pomiędzy klasami jest jak największe.

4.1 Wyznaczenie średnich reprezentantów klas

Aby tego dokonać, posłużono się średnimi reprezentantami klas, tzw. "wektorami idealnymi". Dla k-tej klasy wektor taki przyjmuje postać:

$$\mu^k = [\mu_1^k, \mu_2^k, \dots, \mu_n^k], (n = 3200)$$
 (4.1)

4.2 Różnice współrzędnych pomiędzy parami klas

Poszukiwane są takie współrzędne wektora, które dobrze różnicują pomiędzy klasami ruchów. Dla każdej możliwej pary wektorów idealnych, dla każdej współrzędnej wyznaczono znormalizowaną różnicę wg wzoru:

$$|k-l| \to \Delta_j^{k-l} = \frac{|\mu_j^k - \mu_j^l|}{\mu_j^k + \mu_j^l}$$
 (4.2)

Wartości te zostaną wykorzystane w dalszej selekcji współrzędnych wektora cech.

4.3 Macierz różnic $M\Delta$

Utworzono macierz różnic. Kolumny numerowane od 1 do 3200 przechowują znormalizowane różnice pomiędzy odpowiadającymi sobie współrzędnymi dla każdej możliwej pary wektorów idealnych. Każda para przechowywana jest w jednym wierszu. Do macierzy wprowadzamy dodatkową kolumnę (z prawej strony), która zawiera sumy komórek każdego wiersza.

$$M\Delta = \begin{bmatrix} \Delta_1^{1-2} & \Delta_2^{1-2} & \dots & \Delta_{3200}^{1-2} & \Delta^{1-2} = \sum_{a=1}^{3200} \Delta_a^{1-2} \\ \Delta_1^{1-3} & \Delta_2^{1-3} & \dots & \Delta_{3200}^{1-3} & \Delta^{1-3} = \sum_{a=1}^{3200} \Delta_a^{1-3} \\ \dots & \dots & \dots & \dots \\ \Delta_1^{k-l} & \Delta_2^{k-l} & \dots & \Delta_{3200}^{k-l} & \Delta^{k-l} = \sum_{a=1}^{3200} \Delta_a^{k-l} \\ \dots & \dots & \dots & \dots \\ \Delta_1^{8-9} & \Delta_2^{8-9} & \dots & \Delta_{3200}^{8-9} & \Delta^{8-9} = \sum_{a=1}^{3200} \Delta_a^{8-9} \end{bmatrix}$$

$$(4.3)$$

Uporządkowano macierz $M\Delta$ rosnąco po wartościach ostatniej kolumny otrzymując w ten sposób ranking rozróżnialności par (od najgorzej do najlepiej rozpoznawalnej pary). Następnie każdy wiersz (niezależnie) posortowano malejąco, otrzymując ranking współrzędnych od najlepiej do najgorzej różnicujących daną parę. Aby znaleźć najlepsze współrzędne, należy wybrać pewną ilość pierwszych cech z każdej pary, a następnie zsumować logicznie te zbiory. Zdecydowano się na wybieranie takiej ilości współrzędnych, aby suma wartości ich różnic nie przekroczyła pewnej wartości Σ_{max} . Takie podejście zapewnia pobranie większej ilości cech dla pary gorzej odróżnialnej oraz mniejszej dla pary lepiej odróżnialnej. Arbitralnie dobrano maksymalną wartość, której nie należy przekroczyć przy sumowaniu wartości dla każdego wiersza, poczynając od lewej strony. Ze względu na najmniejszą wartość $\Sigma = 3087.14$ (dla pary 2-3) przyjęto $\Sigma_{max} = 2000$.

Poniżej przedstawiono macierz zawierającą kilka skrajnych wartości (i numerów próbek) dla każdej pary z jednoczesnym zaznaczeniem ile pierwszych próbek należy zsumować, aby nie przekroczyć określonej maksymalnej sumy.

Nazwa pary	1. najlepsza	2. najlepsza	3. najlepsza	4. najlepsza	 2. najgorsza	1. najgorsza	Σ w wierszu	Ilość próbek, których Σ ≤ 2000
2-3	8,86 2886	8,85 2885	8,53 3006	8,29 3007	 0,08 803	0,07 1223	3087,14	968
1-3	9,17 2886	9,1 2885	8,78 3006	8,54 3007	 0,08 1123	0,08 1183	3261,15	853
1-2	10,92 2885	10,44 2886	10,09 2905	9,37 2906	 0,1 838	0,1 1120	3488,51	713
6-9	9,77 2865	9,47 2866	8,95 3025	8,62 3026	 0,11 802	0,1 2403	4268,29	559
5-9	9,6 2865	9,28 2866	8,72 3025	8,54 2886	 0,14 2019	0,13 920	4333,51	564
4-9	9,6 2865	9,27 2866	8,64 3025	8,37 2885	 0,11 1120	0,1 823	4350,22	501
2-9	11,04 1646	10,62 1647	10,52 1666	10,16 1645	 0,07 1123	0,05 2023	4488,93	455
8-9	10,33 3165	9,86 3185	9,57 3186	9,26 2865	 0,1 859	0,09 2003	4492,23	504
1-9	9,62 2865	9,38 2866	8,98 1947	8,64 1967	 0,07 803	0,07 802	4564,53	461
7-9	9,47 2865	9,14 2866	8,63 3025	8,5 1967	 0,13 2017	0,12 879	4704,88	456
6-7	13,25 2865	11,74 2866	10,74 2867	9,98 2885	 0,1 2002	0,06 2003	4735,95	587
5-7	13,02 2865	11,5 2866	10,56 2867	10,05 2885	 0,11 822	0,09 823	4736,44	605
4-7	13,01 2865	11,49 2866	10,46 2867	9,93 2885	 0,13 403	0,13 880	4894,99	569
3-9	10,39 1947	10,18 1967	9,67 1987	9,65 2865	 0,1 2403	0,08 1603	4906,66	381
1-7	13,04 2865	11,63 2866	10,59 2867	9,97 2885	 0,13 898	0,13 2003	4951,45	516
3-7	13,88 2865	12,28 2866	11,24 2867	9,7 2885	 0,13 880	0,06 1623	5410,16	485
2-7	13,39 2865	11,61 2866	10,81 2867	9,69 2885	 0,08 1603	0,06 2003	5585,9	439
1-4	18,31 2946	16,15 2945	15,72 2865	15,38 2926	 0,1 818	0,1 1143	6081,01	223
7-8	20,66 3006	18,3 3007	18,2 3005	17,25 3026	 0,08 2002	0,07 1603	6084,1	240
4-8	24,67 261	23,93 281	19,01 3006	17,72 241	 0,11 816	0,08 803	6146,54	246
5-8	21,35 148	21,08 261	20,89 281	19,5 147	 0,12 837	0,12 858	6401,02	213
6-8	24,41 148	24,17 261	22,63 147	22,46 281	 0,11 839	0,1 2002	6503,68	196
5-6	25,07 3026	23,17 3006	22,46 2865	21,63 3027	 0,12 2020	0,12 2040	6532,07	160
2-4	21 2561	19,21 2946	18,94 2541	16,93 2945	 0,1 1223	0,07 804	6770,1	196
1-8	23,88	22,9 148	21,18 281	20,92 167	 0,11 1180	0,08 1123	6792,65	188
4-5	17,78 2886	17,73 2885	15,86 2906	15,85 2884	 0,13 979	0,12 859	6961,7	230
3-4	19,93 2946	18,68 2561	18,01 2945	17,19 2865	 0,09 1503	0,09 804	7056,92	188
4-6	25,09 3026	22,98 3006	22,47 2865	21,67 3027	 0,13 859	0,12 820	7320,84	160
2-8	22,97 148	22,97 147	20,43 167	20,36 146	 0,08 1203	0,07 1603	7468,32	177
3-8	20,52 261	19,89 3006	19,09 186	18,91 148	 0,09 2022	0,09 1123	7520,58	192
1-6	25,05 3026	23,23 3006	22,41 2865	21,73 3027	 0,11 860	0,07 1603	8157,45	155
1-5	20,34 2601	17,65 2885	17,42 2886	15,85 2884	 0,12 2040	0,12 1243	8266,9	174
2-5	23,87 2601	18,17 2885	18,04 2886	16,68 2865	 0,12 2019	0,12 2040	8583,05	194
2-6	26,02 3026	23,91 3006	23,75 2865	22,64 3027	 0,11 2040	0,07 2003	8740,73	139
3-5	21,66 2601	18,54 2885	18,31 2886	17,29 2865	 0,13 938	0,12 2039	9204,52	167
3-6	26,36 3026	24,6 2865	24,04 3006	23,09 3027	 0,12 938	0,1 2403	9388,31	133

Tabela. 4.1: Macierz różnic posortowana wg ostatniej kolumny oraz indywidualnie wg każdego wiersza.

Po zsumowaniu logicznym powstałych zbiorów uzyskano 1472 unikalnych numerów cech. Pierwsze 25 z nich przedstawiono w tabeli poniżej.

Ranking najlepszych wsp. wektora	Nr współrzędnej wektora	Liczba par, w których wybrano daną współrzędną
1	2865	36
2	2866	36
3	2867	36
4	2985	36
5	2986	36
6	2987	36
7	3005	36
8	3006	36
9	3007	36
10	3008	36
11	3024	36
12	3025	36
13	3026	36
14	3027	36
15	3028	36
16	3029	36
17	3045	36
18	3046	36
19	3047	36
20	3048	36
21	3065	36
22	3066	36
23	3067	36
24	2864	35
25	2845	34

Tabela. 4.2: Pierwsze 25 najlepszych cech wybranych metodą naturalną

Można zauważyć, iż pierwsze 23 najlepszych współrzędnych zostało wybranych niezależnie w każdej z 36 par klas.

4.4 Podsumowanie

Wektor częściowo przedstawiony powyżej stanowi wynik analizy międzyklasowej. Zawiera on numery współrzędnych (cech), które najlepiej różnicują dowolną parę klas ruchów. Jest dodatkowo posortowany wg częstości występowania cech w różnych parach.

Rozdział 5

Testy - klasyfikacja za pomocą kNN

5.1 Opis

Aby ocenić efektywność obranego podejścia należy przeprowadzić eksperymenty rozpoznawania ruchów a następnie porównać ich wyniki z wynikami powstałymi po testach innych metod. W przeprowadzonych badaniach do rozpoznawania zastosowano algorytm k-Najbliższych Sąsiadów (k-NN).

Algorytm k-NN jest przykładem klasyfikatora, którego zasada działania opiera się na badaniu własności obiektów znanych (uczących, treningowych), pozostających w najbliższym sąsiedztwie z obiektami nowymi (testowymi) w sensie ustalonej miary odległości. W szczególności, dla wybranego wektora cech X, należącego do zbioru testowego, poszukiwany jest zbiór NN (tzw. zbiór sąsiadów) złożony z k wektorów, należących do zbioru uczącego, które są najbliższe wektora badanego według ustalonej metryki. Wśród wektorów należących do zbioru najbliższych sąsiadów NN przeprowadzane jest zliczanie liczności klas. Wektor X jest przypisywany do klasy, która jest reprezentowana przez największą liczbę wektorów ze zbioru NN (w przypadku równych liczności klas wymagane jest dodatkowe kryterium).

Do najczęściej wykorzystywanych miar odległości między wektorami cech należą metryka euklidesowa (5.1), metryka miejska (5.2). Poniżej pokazano przykładowe metryki, umożliwiające wyznaczanie odległości pomiędzy wektorami cech $X=(X1,\ldots,Xm)$ oraz $Y=(Y1,\ldots Ym)$.

$$\rho_1(X,Y) = \sqrt{\sum_{i=1}^{m} (X_i - Y_i)^2}$$
(5.1)

$$\rho_2(X,Y) = \sum_{i=1}^m |X_i - Y_i| \tag{5.2}$$

Następnie z każdej klasy wybrano 30 powtórzeń do nauki klasyfikatora. Pozostałe 20 pozostało do testów. Zatem pełny zbiór uczący posiada 270 wektorów cech.

5.2 Wektory nieprzetworzone

5.2.1 Wyniki dla wszystkich klas

Na początku przeprowadzono klasyfikację "surowych" wektorów cech, bez selekcji współrzędnych w oparciu o przedstawiony algorytm selekcji naturalnej.

Nr rozp.									
klasy/	Klasa 1	Klasa 2	Klasa 3	Klasa 4	Klasa 5	Klasa 6	Klasa 7	Klasa 8	Klasa 9
nr testu									
Test 1	1028	2028	3018	4018	5024	6024	7027	8025	9024
Test 2	1028	2028	3023	4018	5020	6018	7014	8026	9007
Test 3	1012	2027	3010	4029	5024	6022	7025	8030	9028
Test 4	1028	2014	3018	4028	2008	6018	7025	8021	9024
Test 5	2011	2014	3022	4003	5024	6007	7028	8024	9020
Test 6	2022	2026	3011	4024	5027	6016	7014	8026	9028
Test 7	1028	2010	3016	4029	5022	6018	7027	8026	9028
Test 8	2022	2010	3022	4029	5022	5023	7017	8028	9017
Test 9	1012	2014	3022	1012	5021	6010	7027	8030	9029
Test 10	1012	2014	2021	4029	5029	6010	7027	8026	9024
Test 11	1020	2010	3023	4029	5024	6025	3010	8021	9020
Test 12	1028	2018	2021	4012	5024	6012	7005	8025	9028
Test 13	1012	2014	3016	4024	5024	2001	7028	8026	9028
Test 14	1012	2014	2021	4017	5024	6024	7014	8025	9017
Test 15	1028	2024	3018	4017	5024	6010	7030	8027	9017
Test 16	1023	2025	3023	4022	5024	6018	7025	8025	9024
Test 17	1012	2018	3011	4022	5029	6008	7025	8025	9028
Test 18	1028	2018	3011	4022	5024	6026	7029	8030	9028
Test 19	1028	2014	3022	4029	5024	6016	3024	8025	9024
Test 20	1028	2014	3021	4012	5027	6017	7025	8021	9020
Suma źle rozp.	3	0	3	1	1	2	2	0	0

Tabela. 5.1: Wyniki rozpoznawania dla danych surowych dla wszystkich klas

Każdy wynik rozpoznawania podawany jest w formacie A0B, gdzie A – numer klasy, do której została zakwalifikowana określona próbka testowa, 0 – przerwa, B – numer próbki (powtórzenia ruchu) z klasy A, która jest najbliżej próbki testowej (zgodnie z algorytmem k-NN). W szczególności, pierwsza kolumna w tabeli 5 zawiera wyniki klasyfikacji dla wszystkich 20 testowych wektorów cech (próbek testowych), należących do klasy 1, a pozostałe kolumny zawierają wyniki klasyfikacji dla próbek testowych, które należą do kolejnych klas. Na przykład, dla danej z komórki tabeli (Test 1, Klasa 1) zapis 1028 oznacza, że pierwsza próbka (Test 1) ze zbioru testowego klasy 1 znajduje się najbliżej próbki 28, należącej do klasy 1, tj. została ona prawidłowo zakwalifikowana do klasy 1. Z kolei dana 2011, znajdująca się w komórce (Test 5, Klasa 1) tabeli, oznacza, że próbka Test 5 ze zbioru testowego klasy 1 znajduje się najbliżej próbki 11, należącej do klasy 2, tj. została ona błędnie zakwalifikowana do klasy 2. W ostatnim wierszu tabeli podawane są liczby błędnie sklasyfikowanych próbek.

Poniżej przedstawiono tabelę prawdy, która w przystępniejszy sposób ukazuje dane z poprzedniej tabeli.

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	17	3	0	0	0	0	0	0	0
Klasa 2	0	20	0	0	0	0	0	0	0
Klasa 3	0	3	17	0	0	0	0	0	0
Klasa 4	1	0	0	19	0	0	0	0	0
Klasa 5	0	1	0	0	19	0	0	0	0
Klasa 6	0	1	0	0	1	18	0	0	0
Klasa 7	0	0	2	0	0	0	18	0	0
Klasa 8	0	0	0	0	0	0	0	20	0
Klasa 9	0	0	0	0	0	0	0	0	20

Tabela. 5.2: Tabela prawdy dla danych surowych dla wszystkich klas

5.2.2 Wyniki dla wybranych klas

Wstępne wyniki sugerują, że dla uzyskania określonego poziomu niezawodności rozpoznawania należy zrezygnować z rozpoznawania pewnych klas ruchów. Można to zrobić usuwając kolejno błędnie rozpoznawane klasy i notując wyniki klasyfikacji (dla pełnego wektora 3200 elementów). Zauważono, że klasy o numerach 1 i 3 są często rozpoznawane, jako klasa 2, natomiast klasy 6 i 7 są często rozpoznawane, jako inne klasy. Dlatego przeprowadzono proces klasyfikacji z pominięciem klas 2, 6, 7. Odpowiednie wyniki zawarto w tabelach poniżej.

Nr rozp. klasy/	Klasa 1	Klasa 2	Klasa 3	Klasa 4	Klasa 5	Klasa 6	Klasa 7	Klasa 8	Klasa 9
nr testu									
Test 1	1028	0	3018	4018	5024	0	0	8025	9024
Test 2	1028	0	3023	4018	5020	0	0	8026	9007
Test 3	1012	0	3010	4029	5024	0	0	8030	9028
Test 4	1028	0	3018	4028	9021	0	0	8021	9024
Test 5	1028	0	3022	4003	5024	0	0	8024	9020
Test 6	1028	0	3011	4024	5027	0	0	8026	9028
Test 7	1028	0	3016	4029	5022	0	0	8026	9028
Test 8	1030	0	3022	4029	5022	0	0	8028	9017
Test 9	1012	0	3022	1012	5021	0	0	8030	9029
Test 10	1012	0	3023	4029	5029	0	0	8026	9024
Test 11	1020	0	3023	4029	5024	0	0	8021	9020
Test 12	1028	0	3018	4012	5024	0	0	8025	9028
Test 13	1012	0	3016	4024	5024	0	0	8026	9028
Test 14	1012	0	3018	4017	5024	0	0	8025	9017
Test 15	1028	0	3018	4017	5024	0	0	8027	9017
Test 16	1023	0	3023	4022	5024	0	0	8025	9024
Test 17	1012	0	3011	4022	5029	0	0	8025	9028
Test 18	1028	0	3011	4022	5024	0	0	8030	9028
Test 19	1028	0	3022	4029	5024	0	0	8025	9024
Test 20	1028	0	3021	4012	5027	0	0	8021	9020
Suma źle rozp.	0	0	0	1	1	0	0	0	0

Tabela. 5.3: Wyniki rozpoznawania dla danych surowych dla klas (1 3 4 5 8 9)

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	20	0	0	0	0	0	0	0	0
Klasa 2	0	0	0	0	0	0	0	0	0
Klasa 3	0	0	20	0	0	0	0	0	0
Klasa 4	1	0	0	19	0	0	0	0	0
Klasa 5	0	0	0	0	19	0	0	0	1
Klasa 6	0	0	0	0	0	0	0	0	0
Klasa 7	0	0	0	0	0	0	0	0	0
Klasa 8	0	0	0	0	0	0	0	20	0
Klasa 9	0	0	0	0	0	0	0	0	20

Tabela. 5.4: Tabela prawdy dla danych surowych dla klas (1 3 4 5 8 9)

5.3 Wektory przetworzone metodą naturalną

W następnym kroku przetestowano proces klasyfikacji używając wektory przefiltrowanych za pomocą metody naturalnej.

5.3.1 Wyniki dla $\Sigma_{max} = 2000$

Po przeprowadzeniu selekcji ustalono sumę $\Sigma_{max}=2000$. Ilość cech została zredukowana do 1472 współrzędnych. Wyniki przedstawiono poniżej.

Nr rozp.									
klasy/	Klasa 1	Klasa 2	Klasa 3	Klasa 4	Klasa 5	Klasa 6	Klasa 7	Klasa 8	Klasa 9
nr testu									
Test 1	1028	2022	3018	4018	5023	6010	7027	8027	9028
Test 2	1025	2028	3023	4018	5020	6018	7014	8026	9028
Test 3	1028	2030	3008	4029	5024	6022	7025	8030	9028
Test 4	1025	2019	2022	4018	2008	6018	7025	8021	9024
Test 5	2011	2014	3022	4003	5024	6007	7005	8024	9020
Test 6	2022	3022	3010	4024	5023	6025	7014	8026	9005
Test 7	1028	2010	3016	4029	5024	6018	7015	8026	9028
Test 8	2008	2010	3022	4029	5023	5023	7017	8026	9017
Test 9	1012	2014	3026	4029	2014	6025	7026	8023	9028
Test 10	1012	2014	2021	4029	5029	6010	7027	8026	9024
Test 11	1020	2010	3022	4018	5024	6010	3010	8021	9020
Test 12	1028	2018	3018	4012	2008	6018	7005	8025	9028
Test 13	1028	2026	3016	4029	5022	2001	7003	8026	9028
Test 14	1025	2014	2021	4029	5020	6024	7023	8027	9017
Test 15	1023	2024	3016	4017	5023	6010	7030	8021	9017
Test 16	1023	2024	3023	4022	5023	6018	7025	8025	9025
Test 17	1012	2019	2010	4020	5029	6008	7025	8025	9028
Test 18	1028	2018	3011	4018	5026	6025	7029	8030	9020
Test 19	1028	2014	3022	4029	5024	6016	7017	8025	9026
Test 20	1004	2014	3017	4012	5020	5013	7025	8027	9020
Suma źle rozp.	3	1	4	0	3	3	1	0	0

Tabela. 5.5: Wyniki rozpoznawania dla metody naturalnej ($\Sigma_{max}=2000$) dla wszystkich klas

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	17	3	0	0	0	0	0	0	0
Klasa 2	0	19	1	0	0	0	0	0	0
Klasa 3	0	4	16	0	0	0	0	0	0
Klasa 4	0	0	0	20	0	0	0	0	0
Klasa 5	0	3	0	0	17	0	0	0	0
Klasa 6	0	1	0	0	2	17	0	0	0
Klasa 7	0	0	1	0	0	0	19	0	0
Klasa 8	0	0	0	0	0	0	0	20	0
Klasa 9	0	0	0	0	0	0	0	0	20

Tabela. 5.6: Tabela prawdy dla metody naturalnej ($\Sigma_{max}=2000$) dla wszystkich klas

5.3.2 Wyniki dla $\Sigma_{max} = 3000$

Tym razem sumę ustalono na $\Sigma_{max}=3000$. Ilość cech została zredukowana do 2950 współrzędnych. Wyniki przedstawiono poniżej.

Nr rozp.									
klasy/	Klasa 1	Klasa 2	Klasa 3	Klasa 4	Klasa 5	Klasa 6	Klasa 7	Klasa 8	Klasa 9
nr testu									
Test 1	1028	2022	3023	4018	5023	6024	7027	8027	9028
Test 2	1028	2028	3023	4014	5020	6018	7014	8026	9028
Test 3	1028	2030	3010	4029	5024	6022	7025	8030	9028
Test 4	1028	2019	3014	4018	2008	6018	7028	8021	9024
Test 5	2022	2014	3018	4003	5024	6007	7028	8024	9020
Test 6	1028	2026	3010	4024	5020	6025	7014	8026	9029
Test 7	1028	2010	3016	4029	5022	6018	7024	8026	9028
Test 8	2022	2010	3022	4029	5022	5023	7017	8026	9017
Test 9	1012	2014	3026	1012	5023	6010	7017	8023	9029
Test 10	1012	2014	2021	4029	5029	6010	7027	8026	9024
Test 11	1028	2010	3022	4029	5024	6025	3010	8021	9020
Test 12	1028	2018	2021	4012	5024	6018	7005	8025	9028
Test 13	1028	2026	3016	4029	5024	2001	7028	8026	9028
Test 14	1025	2014	2021	4029	5024	6024	7014	8021	9005
Test 15	1028	2024	3010	4017	5023	6010	7030	8027	9017
Test 16	1023	2013	3023	4022	5024	6018	7025	8025	9024
Test 17	1012	2019	3010	4020	5029	6008	7025	8025	9028
Test 18	1028	2018	3011	4022	5026	6025	7029	8030	9020
Test 19	1028	2014	3022	4029	5024	6016	7030	8025	9024
Test 20	1028	2014	3019	4012	5020	5013	7025	8021	9020
Suma źle rozp.	2	0	3	1	1	3	1	0	0

Tabela. 5.7: Wyniki rozpoznawania dla metody naturalnej ($\Sigma_{max}=3000$) dla wszystkich klas

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	18	2	0	0	0	0	0	0	0
Klasa 2	0	20	0	0	0	0	0	0	0
Klasa 3	0	3	17	0	0	0	0	0	0
Klasa 4	1	0	0	19	0	0	0	0	0
Klasa 5	0	1	0	0	19	0	0	0	0
Klasa 6	0	1	0	0	2	17	0	0	0
Klasa 7	0	0	1	0	0	0	19	0	0
Klasa 8	0	0	0	0	0	0	0	20	0
Klasa 9	0	0	0	0	0	0	0	0	20

Tabela. 5.8: Tabela prawdy dla metody naturalnej ($\Sigma_{max}=3000$) dla wszystkich klas

5.4 Wektory przetworzone metodą sekwencyjnego przeglądu zwrotnego SBS

5.4.1 Opis

Jako metodę konfrontującą metodę naturalną wybrano SBS, ponieważ idea tego podejścia jest w pewnym sensie podobna do opisywanej w dokumencie. Podczas implementacji opierano się na [tu będzie publikacja którą znalazł Bartek]. Sprawdzono wyniki dla trzech różnych wymiarowości. Następnie trzykrotnie wyselekcjonowano losowo 40 wektorów uczących. 10 pozostałych wykorzystano do rozpoznawania.

5.4.2 Wyniki dla wymiaru 1119

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	6	1	0	1	2	0	0	0	0
Klasa 2	0	7	3	0	0	0	0	0	0
Klasa 3	0	1	9	0	0	0	0	0	0
Klasa 4	1	0	0	9	0	0	0	0	0
Klasa 5	3	0	1	2	3	0	0	0	1
Klasa 6	0	1	0	0	0	8	1	0	0
Klasa 7	0	0	1	0	0	0	9	0	0
Klasa 8	0	0	0	0	0	0	1	8	1
Klasa 9	0	1	1	0	0	0	0	0	8

Tabela. 5.9: Tabela prawdy dla metody SBS dla wymiaru 1119 - I zestaw wektorów

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	7	1	0	1	1	0	0	0	0
Klasa 2	0	7	3	0	0	0	0	0	0
Klasa 3	0	4	5	0	0	0	0	0	1
Klasa 4	3	0	0	7	0	0	0	0	0
Klasa 5	3	0	0	1	6	0	0	0	0
Klasa 6	1	0	0	0	0	8	1	0	0
Klasa 7	1	0	0	0	0	0	8	0	1
Klasa 8	0	0	0	0	0	0	0	10	0
Klasa 9	0	0	0	0	0	0	0	0	10

Tabela. 5.10: Tabela prawdy dla metody SBS dla wymiaru 1119 - II zestaw wektorów

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	8	1	0	1	0	0	0	0	0
Klasa 2	0	7	3	0	0	0	0	0	0
Klasa 3	0	2	8	0	0	0	0	0	0
Klasa 4	4	1	0	5	0	0	0	0	0
Klasa 5	2	1	0	0	7	0	0	0	0
Klasa 6	0	1	0	0	0	8	1	0	0
Klasa 7	0	1	1	0	0	0	7	0	1
Klasa 8	0	1	0	0	0	0	0	8	1
Klasa 9	0	1	1	0	0	0	0	0	8

Tabela. 5.11: Tabela prawdy dla metody SBS dla wymiaru 1119 - III zestaw wektorów

5.4.3 Wyniki dla wymiaru 567

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	6	1	0	1	2	0	0	0	0
Klasa 2	0	7	3	0	0	0	0	0	0
Klasa 3	0	1	9	0	0	0	0	0	0
Klasa 4	1	0	0	8	1	0	0	0	0
Klasa 5	2	0	1	2	4	0	0	0	1
Klasa 6	0	1	0	0	0	8	1	0	0
Klasa 7	0	0	1	0	0	0	9	0	0
Klasa 8	0	0	0	0	0	0	1	9	0
Klasa 9	0	1	0	0	0	0	0	0	9

Tabela. 5.12: Tabela prawdy dla metody SBS dla wymiaru 567 - I zestaw wektorów

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	7	1	0	1	1	0	0	0	0
Klasa 2	0	7	3	0	0	0	0	0	0
Klasa 3	0	4	5	0	0	0	0	0	1
Klasa 4	3	0	0	7	0	0	0	0	0
Klasa 5	4	0	0	1	5	0	0	0	0
Klasa 6	1	0	0	0	0	8	1	0	0
Klasa 7	1	0	0	0	0	0	8	0	1
Klasa 8	0	0	0	0	0	0	0	10	0
Klasa 9	0	0	0	0	0	0	1	0	9

Tabela. 5.13: Tabela prawdy dla metody SBS dla wymiaru567 - II zestaw wektorów

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	7	1	0	1	1	0	0	0	0
Klasa 2	0	7	3	0	0	0	0	0	0
Klasa 3	0	2	8	0	0	0	0	0	0
Klasa 4	4	1	0	5	0	0	0	0	0
Klasa 5	2	1	0	0	7	0	0	0	0
Klasa 6	0	1	0	0	0	8	1	0	0
Klasa 7	0	1	1	0	0	0	7	0	1
Klasa 8	0	1	0	0	0	0	0	8	1
Klasa 9	0	0	2	0	0	0	0	0	8

Tabela. 5.14: Tabela prawdy dla metody SBS dla wymiaru 567 - III zestaw wektorów

5.4.4 Wyniki dla wymiaru 261

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	6	1	0	1	2	0	0	0	0
Klasa 2	0	7	3	0	0	0	0	0	0
Klasa 3	0	2	8	0	0	0	0	0	0
Klasa 4	3	0	0	6	1	0	0	0	0
Klasa 5	2	0	1	2	4	0	0	0	1
Klasa 6	0	1	0	0	0	8	1	0	0
Klasa 7	0	0	2	0	0	0	7	0	1
Klasa 8	0	0	0	0	0	0	1	9	0
Klasa 9	0	1	1	0	0	0	1	0	7

Tabela. 5.15: Tabela prawdy dla metody SBS dla wymiaru 261 - I zestaw wektorów

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	6	1	0	1	2	0	0	0	0
Klasa 2	0	6	4	0	0	0	0	0	0
Klasa 3	0	4	5	0	0	0	0	0	1
Klasa 4	3	0	0	6	1	0	0	0	0
Klasa 5	5	0	0	1	4	0	0	0	0
Klasa 6	1	0	0	0	0	8	1	0	0
Klasa 7	1	0	2	0	0	0	6	0	1
Klasa 8	0	0	0	0	0	0	0	10	0
Klasa 9	0	0	1	0	0	0	2	0	7

Tabela. 5.16: Tabela prawdy dla metody SBS dla wymiaru 261 - II zestaw wektorów

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	6	1	0	1	2	0	0	0	0
Klasa 2	0	7	3	0	0	0	0	0	0
Klasa 3	0	2	8	0	0	0	0	0	0
Klasa 4	4	1	0	3	2	0	0	0	0
Klasa 5	2	1	0	1	6	0	0	0	0
Klasa 6	0	1	0	0	0	8	1	0	0
Klasa 7	0	1	1	0	1	0	6	0	1
Klasa 8	1	0	1	0	0	0	0	7	1
Klasa 9	0	0	2	0	0	0	0	0	8

Tabela. 5.17: Tabela prawdy dla metody SBS dla wymiaru 261 - III zestaw wektorów

5.5 Klasyfikacja z wykorzystaniem metody redukcji PCA

Metoda PCA reprezentuje zupełnie inne podejście do redukcji informacji w stosunku do metody naturalnej czy SBS. Dlatego też, chcąc porównać obydwie ścieżki, zdecydowano się na przeprowadzenie testów z użyciem tego algorytmu.

Wybrano 40 wektorów z każdej klasy do nauki klasyfikatora k-NN pozostawiając 10 do testów.

Poniżej zaprezentowano wyniki klasyfikacji dla różnych wartoście parametru dimension metody PCA.

5.5.1 Wyniki dla dimension = 3000

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	10	0	0	0	0	0	0	0	0
Klasa 2	0	8	2	0	0	0	0	0	0
Klasa 3	0	1	9	0	0	0	0	0	0
Klasa 4	0	0	0	10	0	0	0	0	0
Klasa 5	0	0	0	0	10	0	0	0	0
Klasa 6	0	0	0	0	0	10	0	0	0
Klasa 7	0	0	2	0	0	0	8	0	0
Klasa 8	0	0	0	0	0	0	0	10	0
Klasa 9	0	0	0	0	0	0	0	0	10

Tabela. 5.18: Tabela prawdy dla metody PCA, wymiar dimension = 3000

${\bf 5.5.2}\quad {\bf Wyniki~dla}~dimension=2000$

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	7	3	0	0	0	0	0	0	0
Klasa 2	0	10	0	0	0	0	0	0	0
Klasa 3	0	1	9	0	0	0	0	0	0
Klasa 4	0	0	0	10	0	0	0	0	0
Klasa 5	0	0	0	0	10	0	0	0	0
Klasa 6	0	0	0	0	0	10	0	0	0
Klasa 7	0	0	0	0	0	0	10	0	0
Klasa 8	0	0	0	0	0	0	0	10	0
Klasa 9	0	0	0	0	0	0	0	0	10

Tabela. 5.19: Tabela prawdy dla metody PCA, wymiar dimension = 2000

5.5.3 Wyniki dla dimension = 1000

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	9	0	0	1	0	0	0	0	0
Klasa 2	0	9	1	0	0	0	0	0	0
Klasa 3	0	0	10	0	0	0	0	0	0
Klasa 4	0	0	0	10	0	0	0	0	0
Klasa 5	0	0	0	0	10	0	0	0	0
Klasa 6	0	0	0	0	0	10	0	0	0
Klasa 7	0	0	0	0	0	0	10	0	0
Klasa 8	0	0	0	0	0	0	0	10	0
Klasa 9	0	0	0	0	0	0	0	0	10

Tabela. 5.20: Tabela prawdy dla metody PCA, wymiar dimension = 1000

5.5.4 Wyniki dla dimension = 500

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	10	0	0	0	0	0	0	0	0
Klasa 2	0	8	2	0	0	0	0	0	0
Klasa 3	0	0	10	0	0	0	0	0	0
Klasa 4	0	0	0	10	0	0	0	0	0
Klasa 5	0	0	0	0	10	0	0	0	0
Klasa 6	0	0	0	0	0	10	0	0	0
Klasa 7	0	0	0	0	0	0	10	0	0
Klasa 8	0	0	0	0	0	0	0	10	0
Klasa 9	0	0	0	0	0	0	0	0	10

Tabela. 5.21: Tabela prawdy dla metody PCA, wymiar dimension = 500

5.5.5 Wyniki dla dimension = 400

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	9	1	0	0	0	0	0	0	0
Klasa 2	0	10	0	0	0	0	0	0	0
Klasa 3	0	2	8	0	0	0	0	0	0
Klasa 4	1	0	0	9	0	0	0	0	0
Klasa 5	0	0	0	0	10	0	0	0	0
Klasa 6	1	1	0	0	0	8	0	0	0
Klasa 7	0	0	0	0	0	0	10	0	0
Klasa 8	0	0	0	0	0	0	0	10	0
Klasa 9	0	0	0	0	0	0	0	0	10

Tabela. 5.22: Tabela prawdy dla metody PCA, wymiar dimension = 400

5.5.6 Wyniki dla dimension = 300

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	9	0	0	1	0	0	0	0	0
Klasa 2	0	8	2	0	0	0	0	0	0
Klasa 3	0	1	9	0	0	0	0	0	0
Klasa 4	0	0	0	10	0	0	0	0	0
Klasa 5	0	0	0	0	10	0	0	0	0
Klasa 6	0	0	0	0	0	10	0	0	0
Klasa 7	0	0	0	0	0	0	10	0	0
Klasa 8	0	0	0	0	0	0	0	10	0
Klasa 9	0	0	0	0	0	0	0	0	10

Tabela. 5.23: Tabela prawdy dla metody PCA, wymiar dimension = 300

5.5.7 Wyniki dla dimension = 200

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	9	1	0	0	0	0	0	0	0
Klasa 2	0	10	0	0	0	0	0	0	0
Klasa 3	0	1	9	0	0	0	0	0	0
Klasa 4	0	0	0	10	0	0	0	0	0
Klasa 5	0	0	0	0	10	0	0	0	0
Klasa 6	0	0	0	0	0	10	0	0	0
Klasa 7	0	0	0	0	0	0	10	0	0
Klasa 8	0	0	0	0	0	0	0	10	0
Klasa 9	0	0	0	0	0	0	0	0	10

Tabela. 5.24: Tabela prawdy dla metody PCA, wymiar dimension = 200

5.5.8 Wyniki dla dimension = 150

Wynik									
klasyfikacji/	Klasa								
Nr klasy roz-	1	2	3	4	5	6	7	8	9
poznawanej									
Klasa 1	8	1	1	0	0	0	0	0	0
Klasa 2	0	10	0	0	0	0	0	0	0
Klasa 3	0	0	10	0	0	0	0	0	0
Klasa 4	0	1	0	9	0	0	0	0	0
Klasa 5	0	0	0	0	10	0	0	0	0
Klasa 6	0	0	0	0	0	10	0	0	0
Klasa 7	0	0	2	0	0	0	10	0	0
Klasa 8	0	0	0	0	0	0	0	10	0
Klasa 9	0	0	0	0	0	0	0	0	10

Tabela. 5.25: Tabela prawdy dla metody PCA, wymiar dimension = 150

Po obserwacji wyników stwierdzono, że błąd rozpoznawania przy zastosowaniu algorytmu PCA przy różnych wartościach dimension jest prawie identyczny. Jednocześnie zauważono, iż metoda ta jest mniej wrażliwa na problematyczne przy algorytmie selekcji naturalnej ruchy 2, 6 i 7.

Rozdział 6

Dyskusja i wnioski

Na podstawie uzyskanych wyników stwierdzono, że warunki, w jakich przeprowadzono eksperymenty (metodologia pomiaru, liczba i rozmieszczenie elektrod, zestaw ruchów, metoda ekstrakcji i selekcji cech), nie zapewniają całkowitej rozróżnialności badanych ruchów.

Poniżej zaprezentowano po 4 najlepsze (najbardziej różniące) cechy dla dwóch par - najlepiej i najgorzej rozróżnialnej.

Rysunek 6.1: Najlepsze 4 cechy dla najlepiej rozróżnialnej (3-6) pary

Rysunek 6.2: Najlepsze 4 cechy dla najlepiej rozróżnialnej (3-6) pary (powiększenie)

Rysunek 6.3: Najlepsze 4 cechy dla najgorzej rozróżnialnej (2-3) pary

Rysunek 6.4: Najlepsze 4 cechy dla najgorzej rozróżnialnej (2-3) pary (powiększenie)

Widać wyraźnie, że dla najlepiej rozpoznawalnej pary pierwsze 4 współrzędne w większości nie nakładają się na siebie, podczas gdy dla najgorzej rozpoznawalnej pary wartości te dość silnie się pokrywają. Ponieważ są to najbardziej różniące próbki, nie można liczyć na dobre rozróżnianie tej pary. Wyjaśnia to jednocześnie dlaczego wyniki uzyskane metodą PCA wydają się lepiej radzić z klasyfikowaniem ruchu 2 i 3 - PCA rotuje układ współrzędnych tak, by rzutowane na osie wartości były możliwie najbardziej rozstrzelone.

Aby poprawić działanie metody naturalnej należałoby zwiększyć liczbę zarejestrowanych powtórzeń (np. do 200), co poprawi wiarygodność części statystycznych metody, dodać drugą modalność (MMG), by rejestrować również inny typ sygnałów oraz, być może, poprawić rozmieszczenie punktów pomiaru na przedramieniu - kanały 3, 4, 5 niosą zwykle mało informacji.

Bibliografia

Spis rysunków

2.1	Rozmieszczenie elektrod na przedramieniu	7
2.2	Przykładowy spektrogram	8
2.3	Przykładowy wektor "spektrogramowy"	9
3.1	Rozkład wartości n-odchyleń w klasach	12
3.2	Przykładowy rozkład wartości n-odchyleń w jednej z klas	12
6.1	Najlepsze 4 cechy dla najlepiej rozróżnialnej (3-6) pary	35
6.2	Najlepsze 4 cechy dla najlepiej rozróżnialnej (3-6) pary (powiększenie)	36
6.3	Najlepsze 4 cechy dla najgorzej rozróżnialnej (2-3) pary	36
6.4	Najlepsze 4 cechy dla najgorzej rozróżnialnej (2-3) pary (powiększenie)	36

Spis tabel

4.1	Macierz różnic posortowana wg ostatniej kolumny oraz indywidualnie wg	
	każdego wiersza	17
4.2	Pierwsze 25 najlepszych cech wybranych metodą naturalną	18
5.1	Wyniki rozpoznawania dla danych surowych dla wszystkich klas	20
5.2	Tabela prawdy dla danych surowych dla wszystkich klas	21
5.3	Wyniki rozpoznawania dla danych surowych dla klas (1 3 4 5 8 9) $$	21
5.4	Tabela prawdy dla danych surowych dla klas (1 3 4 5 8 9)	22
5.5	Wyniki rozpoznawania dla metody naturalnej ($\Sigma_{max}=2000$) dla wszyst-	
	kich klas	23
5.6	Tabela prawdy dla metody naturalnej ($\Sigma_{max}=2000$) dla wszystkich klas .	23
5.7	Wyniki rozpoznawania dla metody naturalnej ($\Sigma_{max}=3000$) dla wszyst-	
	kich klas	24
5.8	Tabela prawdy dla metody naturalnej ($\Sigma_{max}=3000$) dla wszystkich klas .	24
5.9	Tabela prawdy dla metody SBS dla wymiaru 1119 - I zestaw wektorów $$	25
5.10	Tabela prawdy dla metody SBS dla wymiaru 1119 - II zestaw wektorów	25
5.11	Tabela prawdy dla metody SBS dla wymiaru 1119 - III zestaw wektorów $$.	26
5.12	Tabela prawdy dla metody SBS dla wymiaru 567 - I zestaw wektorów	26
5.13	Tabela prawdy dla metody SBS dla wymiaru 567 - II zestaw wektorów $$	27
5.14	Tabela prawdy dla metody SBS dla wymiaru 567 - III zestaw wektorów	27
5.15	Tabela prawdy dla metody SBS dla wymiaru 261 - I zestaw wektorów	28
5.16	Tabela prawdy dla metody SBS dla wymiaru 261 - II zestaw wektorów $$	28
5.17	Tabela prawdy dla metody SBS dla wymiaru 261 - III zestaw wektorów	29
5.18	Tabela prawdy dla metody PCA, wymiar $dimension = 3000$	29
5.19	Tabela prawdy dla metody PCA, wymiar $dimension = 2000$	30
5.20	Tabela prawdy dla metody PCA, wymiar $dimension = 1000$	30
5.21	Tabela prawdy dla metody PCA, wymiar $dimension = 500 \dots \dots$	31
5.22	Tabela prawdy dla metody PCA, wymiar $dimension = 400 \dots \dots$	31
5.23	Tabela prawdy dla metody PCA, wymiar $dimension = 300 \dots \dots$	32
5.24	Tabela prawdy dla metody PCA, wymiar $dimension = 200 \dots \dots$	32
5.25	Tabela prawdy dla metody PCA, wymiar $dimension = 150 \dots \dots$	33