Lec05.md 2025-05-30

Lecture 05: Planning and Decision-Making in Agents

& Learning Objectives

By the end of this lecture, you should be able to:

- Understand how agents plan and make decisions based on goals and context.
- Learn about the ReAct and Tree-of-Thought (ToT) prompting strategies.
- Implement basic planning loops using LLMs.
- Differentiate reactive responses from deliberative planning.

Key Concepts

Agent Planning

- **Planning**: The ability to decompose a goal into a sequence of intermediate actions or steps.
- **Decision-making**: Choosing the next best action based on the agent's internal state and external environment.

Prompt-Based Planning

- Use prompting strategies to guide LLMs in reasoning:
 - **ReAct (Reason + Act)**: Combines step-by-step thinking with actions.
 - Tree-of-Thought (ToT): Explores multiple reasoning paths before making a decision.
 - Chain-of-Thought (CoT): Focuses on coherent linear reasoning.

Example: ReAct Prompt Structure

Thought: I need to look up the weather before recommending clothes.

Action: Search["weather in Paris"] Observation: It's 12°C and raining.

Thought: Since it's cold and wet, I'll suggest a jacket and umbrella.

Final Answer: Wear a jacket and take an umbrella.

Required Tools/Libraries

- OpenAl API or Hugging Face models
- LangChain (optional for tool orchestration)
- Python

A Hands-on Exercise: Implement a ReAct Agent

Goal: Create a simple agent that can solve a trivia task using reasoning and simulated tools.

Lec05.md 2025-05-30

Step 1: Define a prompt template

You are a smart agent that can think and act. Use Thought and Action steps to solve the problem.

Question: What U.S. state is known as the Sunshine State?

Thought: I should recall U.S. state nicknames.

Action: Lookup["state nicknames"]

Observation: Florida is the Sunshine State.

Thought: Now I know the answer.

Final Answer: Florida

Step 2: Implement the logic in Python (pseudo-interpreter)

1. Feed a ReAct-style prompt to the LLM.

- 2. Simulate tool use with a lookup dictionary or stub function.
- 3. Loop until the agent outputs `Final Answer`.

Step 3: Analyze

- What if the agent makes a wrong assumption?
- How can you improve it with multiple thoughts or fallback strategies?

Bonus:

- Try implementing a Tree-of-Thought style: generate multiple reasoning paths and compare them before acting.
- Compare outputs with and without structured reasoning prompts.