OUTCOMES

Upon completion of the course, the students will be able to:

- Identify the different types of polymers, polymerisation processes and some special properties and applications of polymers.
- Identify suitable adsorbents/ adsorption process and catalysts for pollution abatement and other industrial processes.
- Discuss the concepts involved in the absorption of radiation by materials and various photophysical processes, polymer chemistry, surface chemistry and catalysis.
- Point out the spectral techniques for qualitative and quantitative analysis & thermodynamics of various processes.
- Discuss the importance of the nano materials (and their superiority over conventional materials), feasibility of their preparation and uses
- Elaborate on various technologies for the fabrication of integrated circuits & specialty materials in the electronics/electrical industry

TEXT BOOKS:

- 1. Jain P.C and Monika Jain, "Engineering Chemistry", Dhanpet Rai Publishing Company (P) Ltd., New Delhi, 2013.
- 2. Wong M.N., "Polymer for electronics and photonic applications", John Wiley, New York, 2006.

REFERENCES:

- Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company Ltd, New Delhi, 2012
- 2. Vairam S., Kalyani P., Suba Ramesh., "Engineering Chemistry", Wiley India Pvt Ltd., New Delhi., 2011.
- 3. Khanna O.P.," Material Science" NIH Publications, 2007.

EVALUATION METHOD TO BE USED:

Continuous assessment	Mid term	End Semester
15(T) + 25 (P)	20	40

MA6251	DISCRETE MATHEMATICS	L	Т	Р	EL	CREDITS
		3	1	0	3	5
MODULE I	LOGIC		L	T	Р	EL
			3	1	0	3

Propositional Logic – Propositional equivalences - Predicates and Quantifiers – Nested Quantifiers

SUGGESTED ACTIVITIES:

Problem Solving sessions

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems

Quizzes

MODULE II	PROOFS	Г	Т	Р	EL
		3	1	0	3

Rules of inference - Introduction to proofs – Proof methods and strategy.

SUGGESTED ACTIVITIES:

- Problem Solving sessions
- Applications in real life problems

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE III	COMBINATORICS	L	Т	Р	EL
		3	1	0	3

Mathematical induction – Strong induction and well ordering – The basics of counting - The pigeonhole principle- Permutations and Combinations

SUGGESTED ACTIVITIES:

- Problem Solving sessions
- Applications in real life problems

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE IV	RECURRENCES	L	Т	Р	EL
		3	1	0	3

Recurrence relations -Solving linear recurrence relations using generating functions – Inclusion - Exclusion Principle and its applications.

SUGGESTED ACTIVITIES:

- Problem Solving sessions
- Applications in real life problems

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE V	GRAPH THEORY	L	Т	Р	EL
		3	1	0	3

Graphs and graph models – Graph terminology and special types of graphs – Matrix representation of graphs and graph isomorphism – Connectivity – Euler and Hamilton paths.

SUGGESTED ACTIVITIES:

- Problem Solving sessions
- Flipped class room
- Applications in real life problems

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE VI	ALGEBRAIC STRUCTURE 1	L	Т	Р	EL
		3	1	0	3

Algebraic systems – Semi groups and monoids – Groups - Subgroups - Homomorphisms

SUGGESTED ACTIVITIES:

- Problem Solving sessions
- Applications in real life problems

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE VII	ALGEBRAIC STRUCTURE 2	L	Т	Р	EL
		3	1	0	3

Normal subgroup and coset - Lagrange's theorem - Definitions and examples of Rings and Fields

SUGGESTED ACTIVITIES:

- Problem Solving sessions
- Flipped Class room

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE VIII	LATTICES	L	Т	Р	EL
		3	1	0	3

Partial ordering – Posets – Lattices as Posets – Properties of lattices - Lattices as algebraic systems – Sub lattices

SUGGESTED ACTIVITIES:

- Problem Solving sessions
- Applications in real life problems

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE IX	BOOLEAN ALGEBRA	L	T	Р	EL
		3	1	0	3

Direct product and Homomorphism – Some special lattices – Boolean algebra

SUGGESTED ACTIVITIES:

- Problem Solving sessions
- Applications in real life problems

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

OUTCOMES:

Upon completion of the course, the students will be able to:

- Identify techniques to test the logic of a program.
- · Identify structures at many levels.
- Work with a class of functions which transform a finite set into another finite set which relates to input and output functions in Computer Science.
- Discuss the counting principles.
- Point out the properties of algebraic structures such as groups, rings and fields.

TEXT BOOKS:

- 1. Kenneth H.Rosen, "Discrete Mathematics and its Applications", Tata McGraw Hill Pub. Co. Ltd., New Delhi, 7th Edition, Special Indian edition, 2011.
- 2. Tremblay J.P. and Manohar R, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2011. 22.
- 3. Susanna S. Epp, "Discrete Mathematics with Applications" Cengage Learning, New Delhi, 8th Edition, 2016.

REFERENCES:

- 1. Ralph. P. Grimaldi, "Discrete and Combinatorial Mathematics: An Applied Introduction", Pearson Education Asia, Delhi, 4th Edition, 2007.
- 2. Thomas Koshy," Discrete Mathematics with Applications", Elsevier Publications, 2006. 3
- 3. Seymour Lipschutz and Mark Lipson, "Discrete Mathematics", Schaum"s Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010.