4-Terminal Adjustable Voltage Regulators

General Description

The LM78MG and LM79MG are 4-terminal adjustable voltage regulators. They are designed to deliver continuous load currents of up to 500 mA with a maximum input voltage of +40V for the positive regulator LM78MG and -40V for the negative regulator LM79MG. Output current capability can be increased to greater than 10A through use of one or more external transistors. The output voltage range of the LM78MG positive voltage regulator is 5.0V to 30V and the output voltage range of the negative LM79MG is -30V to -2.6V. For systems requiring both a positive and negative, the LM78MG and LM79MG are excellent for use as a dual tracking regulator.

Features

- Output current in excess of 0.5A
- LM78MG positive output voltage + 5.0V to + 30V
- LM79MG negative output voltage -30V to -2.6V
- Internal thermal overload protection
- Internal short circuit current protection
- Output transistor safe-area protection

Connection Diagrams

LM78MG

TL/H/10058-1

Top View Heat sink tabs connected to input through device substrate. Not recommended for direct electrical connection.

LM79MG

TI /H/10058-2

.M78MG/LM79MG 4-Terminal Adjustable Voltage Regulators

Top View

Heat sink tabs connected to input through device substrate. Not recommended for direct electrical connection.

Ordering Information

Device Type	Device Code	Package Code	Package Description
Positive Adjustable Regulator	LM78MGCP	P04A	Molded 4-Lead TO-202
Negative Adjustable Regulator	LM79MGCP	P04A	Molded 4-Lead TO-202

Absolute Maximum Ratings

if Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature Range

-65°C to +150°C

LM79MGC Control Lead Voltage

Input Voltage

LM78MGC

LM78MGC

LM79MGC

-40V $0V \le V^+ \le V_O$

 $V_{\rm O}^- \leq V^- \leq 0V$

+ 40V

Operating Junction Temperature

Range

0°C to + 150°C

Lead Temperature (Soldering, 10 sec.)

265°C

Internal Power Dissipation

internally Limited

LM78MGC

Electrical Characteristics or C \leq T_A \leq 125°C for LM78MGC, V_I = 10V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, Test Circuit 1, unless otherwise specified

Symbol	Parameter	Conditions (Notes 1, 3)			Min	Тур	Max	Units
V _{IR}	Input Voltage Range	T _J = 25°C			7.5		40	٧
VOR	Output Voltage Range	$V_1 = V_O + 5.0$	V	-	5.0		30	٧
v _o	Output Voltage Tolerance	$(V_O + 3.0V) \le$ 5.0 mA $\le I_O \le$ $P_D \le 5.0W, V_I$		T _J = 25°C			4.0 5.0	% (V _O)
VO LINE	Line Regulation	(V _O + 2.5V) ≤	= 200 mA, $V_O \le 10V$, $V_I \le (V_O + 20V)$, = 200 mA, $V_O \ge 10V$				1.0	%(V _O)
VO LOAD	Load Regulation	$T_J = 25^{\circ}C, 5.0$ $V_I = V_O + 7.0$) mA ≤ l _O ≤ 500 mA, V				1.0	%(V _O)
Ic Control Lead Current	T _J = 25°C				1.0	6.0	μА	
							7.0	μ, (
Quiescent Current	$T_J = 25^{\circ}C$			2.8	5.0	mA		
						6.0		
RR	Ripple Relection	I _O = 125 mA, V _O = 5.0V, f =	8.0V ≤ V _I ≤ 18V, = 2400 Hz		62	80		dB
No	Output Noise Voltage	$10 \text{ Hz} \le \text{f} \le 100 \text{ kHz}, V_{\text{O}} = 5.0 \text{V}$				8	40	μV/ Vo
V _{DO}	Dropout Voltage (Note 2)					2	2.5	٧
los	Short Circuit Current	V _i = 35V, T _J = 25°C				600	mA	
l _{pk}	Peak Output Current	T _J = 25°C		0.4	0.8	1.4	Α	
ΔV _O /ΔΤ	Average Temperature	$V_{O} = 5.0V,$	$T_A = -55^{\circ}C \text{ to } + 25^{\circ}C$	*C			0.4	mV/°C/
	Coefficient of Output Voltage		T _A = 25°C to 125°C				0.3	V _O
V _C Control Lea	Control Lead Voltage	T _J = 25°C			4.8	5.0	5.2	٧
	(Reference)				4.75		5.25	•

$$V_0 = \left(\frac{R1 + R2}{R2}\right) V_{CONT}$$

$$V_{CONT} \text{ Nominally } = 5V$$

Recommended R2 current ≈ 1 mA

 $R2 = 5 k\Omega$

TL/H/10058-20

LM79MGC

Electrical Characteristics or C \leq T_J \leq 125°C for LM79MGC, V_I = -14V, I_O = 350 mA, C_I = 2.0 μ F, C_O = 1.0 μ F, Test Circuit 2, unless otherwise specified

Symbol	Parameter	Conditions (Notes 1, 3 & 4)			Min	Тур	Max	Units	
V _{IR}	Input Voltage Range	T _J = 25°C		-40		-7.0	>		
VOR	Output Voltage Range	$V_{I} = V_{O} - 5.0V$	$V_{\rm I} = V_{\rm O} - 5.0 \text{V}$		-30		-2.55	V	
Vo	Output Voltage Tolerance	$(V_O - 15V) \le V_I \le (V_O - 15V) \le V_I \le (V_O + 15V) \le 0.000$ 5.0 mA $\le I_O \le 350$ m $P_D \le 5.0$ W, $V_{I Max} = 100$	A,	T _J = 25°C			4.0 5.0	% (V _O)	
VO LINE	Line Regulation	$T_J = 25^{\circ}\text{C}, I_O = 200 \text{ mA}, V_O \le -10\text{V},$ $(V_O - 20\text{V}) \le V_I \le (V_O - 2.5\text{V}),$ $T_J = 25^{\circ}\text{C}, I_O = 200 \text{ mA}, V_O \le -10\text{V}$					1.0	%(V _O)	
VO LOAD	Load Regulation	$V_i = V_O - 7.0V$, 5.0 mA $\leq I_O \leq$ 500 mA, $T_J = 25^{\circ}C$					1.0	%(V _O)	
IC Control Lead Current		T _J = 25°C					2.0	μА	
							3.0		
IQ Quiescent Current	T _J = 25°C			2.1	7.0	mA			
						8.0			
RR	Ripple Rejection	$T_J = 26^{\circ}\text{C}, I_O = 125 \text{ mA}, V_I = -13V,$ $V_O = -5.0V, f = 2400 \text{ Hz}$			50			dB	
No	Noise	10 Hz \leq f \leq 100 kHz, V _O = -8.0V, I _L = 50 mA				25	80	μV/ VO	
V _{DO}	Dropout Voltage (Note 2)				-1.1	-23	٧		
los	Short Circuit Current	V _I = 35V, T _J = 25°C				600	mA		
I _{pk}	Peak Output Current			0.4	0.65	1.4	A		
ΔV _O /ΔΤ	Average Temperature	$V_{O} = -5.0V$,	$T_A = -55^{\circ}C$ to	+ 25°C			0.3	mV/°C/	
	Coefficient of Output Voltage	$I_0 = -5.0 \text{mA}$	T _A = 25°C to 12	25°C			0.3	Vo	
V _C	Control Lead Voltage	T _J = 25°C		-2.65	-2.55	-2.45	v		
(Reference)					-2.68		-2.43	٧	

Note 1: V_0 is defined for the LM 78MGC as $V_0 = \frac{R1 + R2}{R2}$ (5.0); the LM79MGC as $V_0 = \frac{R1 + R2}{R2}$ (-2.55).

Note 2: Dropout voltage is defined as that input/output voltage differential which causes the output voltage to decrease by 5% of its initial value.

Note 3: All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_W \le 10$ ms, duty cycle $\le 5\%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

Note 4: The convention for negative regulators is the Algebraic value, thus $-15\mathrm{V}$ is less than $-10\mathrm{V}$.

LM79MG Test Circuit 2

$$V_{O} = \left(\frac{R1 + R2}{R2}\right)V_{CONT}$$

$$V_{CONT} \text{ Nominally } = -2.55V$$

$$Recommended R2 current \approx 1 \text{ mA}$$

$$\therefore R2 = 2.6 \text{ k}\Omega$$

TL/H/10058-22

LM78MG Equivalent Circuit

Design Considerations

The LM78MG and LM79MG variable voltage regulators have an output voltage which varies from VCONT to typically

$$V_1 - 2.0V \text{ by } V_0 = V_{CONT} \frac{(R1 + R2)}{R2}$$

The nominal reference in the LM78MG is 5.0V and LM79MG is -2.55V. If we allow 1.0 mA to flow in the control swing to eliminate bias current effects, we can make R2 = 5 k Ω in the LM78MG. The output voltage is then: V_O = (R1 + R2) Volts, where R1 and R2 are in k Ω s.

Example: If R2 = $5.0 \text{ k}\Omega$ and R1 = $10 \text{ k}\Omega$ then

 $V_O = 15V$ nominal, for the LM78MG;

 $R2 = 2.6 \text{ k}\Omega$ and $R1 = 13 \text{ k}\Omega$ then

 $V_O = -15.3V$ nominal, for the LM79MG.

By proper wiring of the feedback resistors, load regulation of the devices can be improved significantly.

Both LM78MG and LM79MG regulators have thermal overload protection from excessive power, internal short circuit protection which limits each circuit's maximum current, and output transistor safe-area protection for reducing the output current as the voltage across each pass transistor is increased.

Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

Package	Тур	Max	Typ	Max		
	^Ө ЈС	θ _{JC}	θ _{JA}	θ _{JA}		
Power Watt	8.0	12.0	70	75		

$$P_{D \text{ Max}} = \frac{T_{J \text{ Max}} - T_{A}}{\theta_{JC} + \theta_{CA}} \text{ or}$$

$$\frac{T_{J \text{ Max}} - T_{A}}{\theta_{JC}} \text{ (without a heat sink)}$$

$$\theta_{CA} = \theta_{CS} + \theta_{SA}$$

Solving for T_J:

$$T_J = T_A + P_D(\theta_{JC} + \theta_{CA})$$
 or $T_A + P_D\theta_{JA}$ (without heat sink)

Where

T_J = Junction Temperature

T_A = Ambient Temperature

P_D = Power Dissipation

 $\theta_{\rm JC}$ = Junction-to-Case Thermal Resistance

 θ_{CA} = Case-to-Ambient Thermal Resistance

 θ_{CS} = Case-to-Heat Sink Thermal Resistance

 θ_{SA} = Heat Sink-to-Ambient Thermal Resistance

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Typical Applications for

LM78MG (Note 1)

Bypass capacitors are recommended for stable operation of the LM78MG over the input voltage and output current ranges. Output bypass capacitors will improve the transient response of the regulator.

The bypass capacitors, $(0.33~\mu F$ on the input, $0.1~\mu F$ on the output) should be ceramic or solid tantalum which have good high frequency characteristics. The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals.

Note 1: All resistor values in ohms.

Basic Positive Regulator

 $V_{O} = V_{CONT} \left(\frac{R1 + R2}{R2} \right)$

Positive 5.0V to 30V Adjustable Regulator

Positive 5.0V to 30V Adjustable Regulator $I_{\rm O} > 1.5$ A

$$R1 = \frac{\beta V_{BE(Q1)}}{|R|_{Max(\beta)} - |Q|}$$

Typical Applications for LM78MG (Note 1) (Continued)

± 10V, 500 mA Dual Tracking Regulator

1L/11/10000

Note: External series pass device is not short circuit protected.

Positive High Current Short Circuit Protected Regulator

 $R1 = \frac{\beta V_{BE(Q1)}}{V_{R Max(\beta+1)} - I_{O Max}}$

If load is not ground referenced, connect reverse biased diodes from outputs to ground.

Positive High-Current Voltage Regulator

TL/H/10058-13

External Series Pass (a)

Short-Circuit Limit (b)

Note 1: All resistor values in ohms.

Typical Applications for LM79MG (Note 1)

Bypass capacitors are recommended for stable operation of the LM79MG over the input voltage and output current ranges. Output bypass capacitors will improve the transient response of the regulator.

Basic Negative Regulator

$$V_0 = -V_{CONT} \left(\frac{R1 + R2}{R2} \right)$$

Negative High Current Short Circuit Protected Regulator

$$R1 = \frac{\beta V_{BE(Q1)}}{I_{R Max(\beta)} - I_{O Max}}$$

The bypass capacitors, (2.0 μ F on the input, 1.0 μ F on the output) should be ceramic or solid tantalum which have good high frequency characteristics. If aluminum electrolytics are used, their values should be 10 μ F or larger. The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals

-30V to -2.6V Adjustable Regulator

Note 1: All resistor values in ohms.

Negative High Current Voltage Regulator

Typical Performance Characteristics for LM78MG and LM79MG

8

TL/H/10058-7

Typical Performance Characteristics for LM78MG

TL/H/10058-5

Typical Performance Characteristics for LM79MG

TL/H/10056-6

Physical Dimensions inches (millimeters)

4-Lead Molded TO-202 (P)
Order Number LM78MGCT or LM79MGCT
NS Package Number P04A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Mallinas Samiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Sants Cters, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240 tintienet Semiconductor GmbH Industriestrasse 10 D-8080 Fursteniekbruck West Germany Test (D-81-41) 103-0 Teitz: 527-549 Fax: (08141) 103664 National Semiconductor Japan 1.34. Sansaido Bidg. 5F 4-16 Nishi Shinipka Shinipka-Ka, Tokyo 100, Japan Tet. 3-299-7001 FAX: 3-289-7000 Retional Semiconductor
Hong Kong Ltd.
Suite 513, 5th Floor
Chinachern Golden Plaza,
77 Mody Road, Tsiascha East,
Kowtoon, Hong Kong
Tet: 3-7231290
Telex: 62996 NSSEA HX
Fex: 3-3112535

Marional Semicondytores
Do Braell Lida.
Av. Brig. Farie Lima, 1383
6.J. Antor-Cong. 62
01451 Seo Paulo, SP, Braell
Tet; (55/11) 212-5066
Fac: (55/11) 211-1181 NSBR BR

Mation of Senticedoctor (Adetralia) PTY, Lid. 1st Floor, 441 St. Kide Rd. Methourne, 2004 Victory, Australia Tel: (33) 267-5000 Fox: 61-3-2677456