SUBBMISSION_1

libraries %matplotlib notebook

import pandas as pd
import numpy as np
#import scipy as sc
import custom_function as cf

import matplotlib import seaborn import matplotlib.dates as md from matplotlib import pyplot as plt from mpl_toolkits.axes_grid1 import host_subplot import mpl_toolkits.axisartist as AA

from sklearn import preprocessing from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.covariance import EllipticEnvelope

from sklearn.ensemble import IsolationForest from sklearn.svm import OneClassSVM

Cluster and seasonal analysis (daytime patterns)

df = pd.read_csv("/Users/nkochura@us.ibm.com/Documents/ML_COMPETITION_DATAAI/https-github.ibm.com-ML4DevOps/data/grafana_data_cpu.csv")

df.head()

	timestamp	value	http
0	4/21/19 0:00	18.5	9,244
1	4/21/19 0:15	15.2	9,304
2	4/21/19 0:30	16.2	9,364
3	4/21/19 0:45	19.2	9,424
4	4/21/19 1:00	19.4	9,484

print(df.info())

print(df['value'].mean())
print(df['timestamp'].head(10))
<class 'pandas.core.frame.DataFrame'>

RangeIndex: 673 entries, 0 to 672 Data columns (total 3 columns): timestamp 673 non-null object value 673 non-null float64 http 673 non-null object dtypes: float64(1), object(2) memory usage: 15.9+ KB

None

17.188261515601784

- 0 4/21/19 0:00
- 1 4/21/19 0:15
- 2 4/21/19 0:30
- 3 4/21/19 0:45
- 4 4/21/19 1:00
- 5 4/21/19 1:15
- 6 4/21/19 1:30
- 7 4/21/19 1:45
- 8 4/21/19 2:00
- 9 4/21/19 2:15

Name: timestamp, dtype: object

change the type of time column for plotting df['timestamp'] = pd.to_datetime(df['timestamp'])

print(df['timestamp'].head(10))

plot the data

df.plot(x='timestamp', y='value')

- 0 2019-04-21 00:00:00
- 1 2019-04-21 00:15:00
- 2 2019-04-21 00:30:00
- 3 2019-04-21 00:45:00
- 4 2019-04-21 01:00:00
- 5 2019-04-21 01:15:00
- 6 2019-04-21 01:30:00
- 7 2019-04-21 01:45:00
- 8 2019-04-21 02:00:00
- 9 2019-04-21 02:15:00

Name: timestamp, dtype: datetime64[ns]

<matplotlib.axes._subplots.AxesSubplot at 0x13fe17240>

Extracting some useful features

```
df['hours'] = df['timestamp'].dt.hour
df['daylight'] = ((df['hours'] >= 7) & (df['hours'] <= 22)).astype(int)

df['DayOfTheWeek'] = df['timestamp'].dt.dayofweek
df['WeekDay'] = (df['DayOfTheWeek'] < 5).astype(int)

# An estimation of anomly population of the dataset
outliers_fraction = 0.01

# time with int to plot easily
df['time_epoch'] = (df['timestamp'].astype(np.int64)/100000000000).astype(np.int64)

# creation of 4 distinct categories that seem useful (week end/day week & night/day)
df['categories'] = df['WeekDay']*2 + df['daylight']

a = df.loc[df['categories'] == 0, 'value']
b = df.loc[df['categories'] == 1, 'value']
c = df.loc[df['categories'] == 2, 'value']
d = df.loc[df['categories'] == 3, 'value']
```

```
fig, ax = plt.subplots()
a_heights, a_bins = np.histogram(a)
b_heights, b_bins = np.histogram(b, bins=a_bins)
c_heights, c_bins = np.histogram(c, bins=a_bins)
d_heights, d_bins = np.histogram(d, bins=a_bins)

width = (a_bins[1] - a_bins[0])/6

ax.bar(a_bins[:-1], a_heights*100/a.count(), width=width, facecolor='blue', label='WeekEndNight')
ax.bar(b_bins[:-1]+width, (b_heights*100/b.count()), width=width, facecolor='green', label
='WeekEndDay')
ax.bar(c_bins[:-1]+width*2, (c_heights*100/c.count()), width=width, facecolor='red', label
='WeekDayNight')
ax.bar(d_bins[:-1]+width*3, (d_heights*100/d.count()), width=width, facecolor='black', label
='WeekDayDay')

plt.legend()
plt.show()
```


Cluster models and anomaly

We group together the combination of features. The points that are far from the cluster are points we consider those points as anomalies.

```
data = df[['value', 'hours', 'daylight', 'DayOfTheWeek', 'WeekDay']]
min_max_scaler = preprocessing.StandardScaler()
np_scaled = min_max_scaler.fit_transform(data)
data = pd.DataFrame(np_scaled)
# reduce to 2 importants features
pca = PCA(n_components=2)
data = pca.fit_transform(data)
# standardize these 2 new features
min_max_scaler = preprocessing.StandardScaler()
np_scaled = min_max_scaler.fit_transform(data)
data = pd.DataFrame(np_scaled)
# calculate with different number of centroids to see the loss plot (elbow method)
n_{cluster} = range(1, 20)
kmeans = [KMeans(n_clusters=i).fit(data) for i in n_cluster]
scores = [kmeans[i].score(data) for i in range(len(kmeans))]
fig, ax = plt.subplots()
ax.plot(n_cluster, scores)
plt.show()
```



```
# get the distance between each point and its nearest centroid. The biggest distances are considered as
anomaly
distance = cf.getDistanceByPoint(data, kmeans[14])
number_of_outliers = int(outliers_fraction*len(distance))
threshold = distance.nlargest(number_of_outliers).min()
# anomaly21 contain the anomaly result of method 2.1 Cluster (0:normal, 1:anomaly)
df['anomaly1'] = (distance >= threshold).astype(int)
# visualisation of anomaly with cluster view
fig, ax = plt.subplots()
colors = {0:'blue', 1:'red'}
ax.scatter(df['principal_feature1'], df['principal_feature2'], c=df["anomaly1"].apply(lambda x: colors[x]))
plt.show()
```



```
fig, ax = plt.subplots()
a = df.loc[df['anomaly1'] == 1, ['time_epoch', 'value']] #anomaly
ax.plot(df['time_epoch'], df['value'], color='blue')
ax.scatter(a['time_epoch'],a['value'], color='red')
plt.show()
```

visualisation of anomaly throughout time (viz 1)

Isolation forest

```
# Take useful feature and standardize them
data = df[['value', 'hours', 'daylight', 'DayOfTheWeek', 'WeekDay']]
min_max_scaler = preprocessing.StandardScaler()
np_scaled = min_max_scaler.fit_transform(data)
data = pd.DataFrame(np_scaled)
# train isolation forest
model = IsolationForest(contamination = outliers_fraction)
model.fit(data)
# add the data to the main
df['anomaly2'] = pd.Series(model.predict(data))
df['anomaly2'] = df['anomaly2'].map( {1: 0, -1: 1} )
print(df['anomaly2'].value_counts())
0 666
1
Name: anomaly2, dtype: int64
/Users/nkochura@us.ibm.com/Library/Enthought/Canopy/edm/envs/User/lib/python3.5/site-
packages/scipy/stats/stats.py:1706: FutureWarning: Using a non-tuple sequence for multidimensional
```

indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result. return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval # visualisation of anomaly throughout time (viz 1) fig, ax = plt.subplots()

a = df.loc[df['anomaly2'] == 1, ['time_epoch', 'value']] #anomaly

ax.plot(df['time_epoch'], df['value'], color='blue')
ax.scatter(a['time_epoch'],a['value'], color='red')
plt.show()

One class SVM

Good for novelty detection (no anomalies in the train set).

Take useful feature and standardize them data = df[['value', 'hours', 'daylight', 'DayOfTheWeek', 'WeekDay']] min_max_scaler = preprocessing.StandardScaler() np_scaled = min_max_scaler.fit_transform(data)

```
# train one class SVM
model = OneClassSVM(nu=0.95 * outliers_fraction) #nu=0.95 * outliers_fraction + 0.05
data = pd.DataFrame(np_scaled)
model.fit(data)
# add the data to the main
df['anomaly3'] = pd.Series(model.predict(data))
df['anomaly3'] = df['anomaly3'].map({1: 0, -1: 1})
print(df['anomaly3'].value_counts())
0 656
   17
1
Name: anomaly3, dtype: int64
# visualisation of anomaly throughout time (viz 1)
fig, ax = plt.subplots()
a = df.loc[df['anomaly3'] == 1, ['time_epoch', 'value']] #anomaly
ax.plot(df['time_epoch'], df['value'], color='blue')
ax.scatter(a['time_epoch'],a['value'], color='red')
plt.show()
```


visualisation of anomaly with cou values repartition (viz 2) a = df.loc[df['anomaly3'] == 0, 'value'] b = df.loc[df['anomaly3'] == 1, 'value']

```
fig, axs = plt.subplots()
axs.hist([a,b], bins=32, stacked=True, color=['green', 'red'])
plt.legend()
plt.show()
```

