Chapitre 22

Espaces de dimension finie

22	Espaces de dimension finie
	22.3 Nombre maximal de vecteurs linéairement indépendants
	22.5 Algroithme de la base incomplète
	22.8 Théorème de la base incomplète
	22.11 Caractérisation de la dimension finie par le cardinal des familles libres
	$22.12 Th\'{e}or\`{e}me \ de \ la \ dimension \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
	22.18Caractérisation des bases en dimension finie
	22.20 Majoration du rang et cas d'égalité
	22.22 Dimension d'un sous-espace vectoriel
	$22.23 Formule \ de \ Grassmann \ . \ . \ . \ . \ . \ . \ . \ . \ . \$
	22.27 Caractérisation des couples de sous-espaces vectoriels supplémentaires
	22.28Existence et dimension d'un supplémentaire en dimension finie
	22.30Base de $\mathcal{L}(E,F)$
	22.32 Dimension d'espaces isomorphes
	22.35Rang d'une famille génératrice
	22.36Existence et majoration du rang en dimension finie
	22.39Effet d'une composition sur le rang
	22.40Noyau et image d'une restriction
	22.41Restriction de u à un supplémentaire de ker u

22.3 Nombre maximal de vecteurs linéairement indépendants

Propostion 22.3

Soit E un \mathbb{K} -ev de dimension finie engendré par n éléments. Alors toute partie libre de E possède au plus n éléments.

Soit G une famille génératrice de E avec $G = (g_1, \ldots, g_n)$. Soit \mathcal{L} une famille libre de E. Supposons par l'absurde que $|\mathcal{L}| > n$. Pour $k \in [1, n]$, on note :

P(k): "E est engendré par n-k vecteurs de G et k vecteurs de \mathcal{L} "

Pour k = 0, la famille convient.

On suppose que pour $k \in [0, n-1]$, $E = Vect(\underbrace{g_1, \dots, g_{n-k}}_{\in G}, \underbrace{l_1, \dots, l_k}_{\in L})$

Comme $l_{k+1} \in E$, on écrit $l_{k+1} = \sum_{i=1}^{n-k} \alpha_i g_i + \sum_{i=1}^k \beta_i l_j$.

Comme \mathcal{L} est libre, $l_{k+1} \notin Vect(l_1, \ldots, l_k)$.

Donc il existe $i \in [1, n-k], \alpha_i \neq 0$ et quitte à renommer les g_i , on peut supposer $\alpha_{n-k} \neq 0$ et ainsi :

$$g_{n-k} \in Vect(g_1, \dots, g_{n-k}, l_1, \dots, l_k, l_n + 1)$$

Ainsi:

$$E = Vect(g_1, \dots, g_{n-k}, l_1, \dots, l_k, l_{k+1})$$

Par récurrence, P(k) est vraie pour $k \in [0, n]$, en particulier, P(n) est vraie. $(l1, \ldots, l_n)$ est une base de E. Or $l_{n+1} \in E$ et (l_1, \ldots, l_{n+1}) libre. Absurde.

22.5 Algroithme de la base incomplète

Théorème 22.5

Soit $E \neq \{0\}$ un \mathbb{K} -ev de dimension finie et $\{x_i\}_{1 \leq i \leq n}$ une partie génératrice de E dont les p premiers vecteurs sont linéairement indépendants. Dans ces conditions, E possède une base constituée des vecteurs x_1, \ldots, x_p et de certains vecteurs x_{p+1}, \ldots, x_n .

On utilise l'algorithme suivant :

On initialise $\mathcal{F} = (x_1, \dots, x_p)$. Pour tout $k \in [p+1, n]$:

- Si $x_k \in Vect(\mathcal{F})$, on laisse \mathcal{F} invariant.
- Si $x_k \notin Vect(\mathcal{F})$, on remplace \mathcal{F} par $\mathcal{F} \cup \{x_k\}$.

L'algorithme s'arrête en temps fini.

La famille \mathcal{F} obtenue est libre, elle est également génératrice car :

$$\forall i \in [1, n], x_i \in \mathcal{F} \text{ ou } x_i \in Vect(\mathcal{F})$$

Donc $E = Vect(x_i)_{i \in [\![1,n]\!]} \subset Vect(\mathcal{F}) \subset E$. Donc \mathcal{F} est une base.

22.8 Théorème de la base incomplète

Théorème 22.8

Soit $E \neq \{0\}$ un \mathbb{K} -ev de dimension finie.

- 1. Toute famille libre de E peut être complétée en une base finie de E.
- 2. De toute famille génératrice de E on peut extraire une base finie de E.

En particulier, E possède une base finie.

Soit \mathcal{G} une famille génératrice finie.

1. Soit \mathcal{L} une famille libre. On applique l'algorithme de la base incomplète à $\mathcal{L} \cup \mathcal{G}$ qui fournit une base B de E contenant \mathcal{L} .

2. Comme \mathcal{G} est génératrice, on fixe $x \neq 0 \in \mathcal{G}$ comme premier vecteur de \mathcal{G} et on lui applique l'algorithme de la base incomplète.

La base obtenue est bien constituée de vecteurs de \mathcal{G} .

Remarque

Remarque

Si \mathcal{G} est une famille génératrice, elle contient nécessairement une famille génératrice finie.

22.11 Caractérisation de la dimension finie par le cardinal des familles libres

Corollaire 22.11

Soit E un espace vectoriel. Alors E est de dimension finie si et seulement si toute famille libre de E est de cardinal fini.

On suppose E de dimension finie. Donc E possède une famille génératrice à n vecteurs.

Donc les familles libres de E ont un cardinal inférieur à n.

Elles sont finies.

Par contraposée, on suppose E de dimension infinie.

Soit $x \in E$ avec $x \neq 0$.

On pose $x_1 = x$. Comme E est de dimension infinie, on choisit $x_2 \in E \setminus Vect(x_1)$.

On poursuit les raisonnement par récurrence pour obtenir une famille libre $(x_n)_{n\in\mathbb{N}^*}$.

22.12 Théorème de la dimension

Théorème 22.12

Soit $E \neq \{0\}$ un espace vectoriel de dimension finie. Toutes les bases de E sont finies et sont de même cardinal.

Soit B et B' deux bases. On a :

$$|B| \le |B'| \text{ et } |B'| \le |B|$$

Donc:

$$|B| = |B'|$$

22.18 Caractérisation des bases en dimension finie

Théorème 22.18

Soit E un \mathbb{K} -ev de dimension finie $n \neq 0$. Une famille de n vecteurs est une base si, et seulement si, elle est libre, si, et seulement si, elle est génératrice.

Soit \mathcal{F} une famille avec $|\mathcal{F}| = \dim E = n$.

— On suppose que \mathcal{F} est libre.

On applique sur ${\mathcal F}$ le théorème de la base incomplète.

On obtient alors une base B de E avec :

$$\mathcal{F} \subset E$$

Or $|B| = \dim E = |\mathcal{F}|$.

Donc $\mathcal{F} = B$.

— On suppose \mathcal{F} génératrice. On procède de la même manière en utilisant le théorème de la base extraite.

22.20 Majoration du rang et cas d'égalité

Propostion 22.20

On a

$$rg(x_1,\ldots,x_k) \leq k$$

avec égalité si et seulement si la famille est libre.

Soit $Vect((x_i)_{i \le k})$ possède un système fini de k vecteurs générateurs.

$$\dim(Vect(x_1,\ldots,x_k)) \leq k$$

- Si dim $(Vect(x_1, ..., x_k)) = k$, alors (22.18), $(x_1, ..., x_k)$ est une base, donc est libre.
- Si la famille est libre, c'est une base de $Vect(x_1,\ldots,x_k)$, donc $\dim(Vect(x_1,\ldots,x_k))=k$.

22.22 Dimension d'un sous-espace vectoriel

Propostion 22.22

Soit E un \mathbb{K} -ev de dimension finie et F un sous-espace vectoriel de E. Alors F est de dimension finie et $\dim F \leq \dim E$, avec égalité si et seulement si F = E.

Soit F un sous-espace vectoriel de E, avec E de dimension finie.

Ainsi, F est lui-même de dimension finie (22.11).

Si \mathcal{L} est une famille libre de F:

$$|\mathcal{L}| \leq \dim E$$

Donc (il suffit de prendre pour \mathcal{L} une base de F):

$$\dim F \leq \dim E$$

Si $\dim F = \dim E$, alors une base de F est aussi une base de E (22.18). Ainsi :

$$F = Vect(B) = E$$

22.23 Formule de Grassmann

Théorème 22.23

Soit E un espace vectoriel, F et G deux sous-espaces vectoriels de dimensions finies. Alors F+G est de dimension finie et :

$$\dim(F+G) = \dim F + \dim G - \dim F \cap G$$

 $F \cap G \subset F$, donc $F \cap G$ est de dimension finie.

On note $n = \dim F \cap G$.

On choisit une base (e_1, \ldots, e_n) de $F \cap G$.

On complète cette famille libre en :

- une base $(e_1,\ldots,e_n,f_1,\ldots,f_p)$ de F
- une base $(e_1, \ldots, e_n, g_1, \ldots, g_q)$ de G

Montrons que $(E_1, \ldots, e_n, f_1, \ldots, f_p, g_1, \ldots, g_q)$ est une base de F + G.

$$F + G = Vect(e_1, \dots, e_n, f_1, \dots, f_p) + Vect(e_1, \dots, e_n, g_1, \dots, g_q)$$

= $Vect(e_1, \dots, e_n, f_1, \dots, f_p, g_1, \dots, g_q)$

La famille génératrice. On suppose :

$$\sum_{i=1}^{n} \alpha_{i} e_{i} + \sum_{i=1}^{p} \beta_{i} f_{i} + \sum_{i=1}^{q} \gamma_{i} g_{i} = 0$$

Donc:

$$\sum_{i=1}^{q} \gamma_i g_i = -\sum_{i=1}^{n} \alpha_i e_i - \sum_{i=1}^{p} \beta_i f_i \in F \cap G$$

Donc (liberté de $(e_1, \ldots, e_n, g_1, \ldots, g_q)$):

$$(\gamma_1,\ldots,\gamma_q)=(0,\ldots,0)$$

Puis:

$$\sum_{i=1}^{n} \alpha_i e_i + \sum_{i=1}^{p} \beta_i f_i = 0$$

Donc (liberté de $(e_1, \ldots, e_n, f_1, \ldots, f_p)$):

$$(\alpha_1, \dots, \alpha_n) = (0, \dots, 0)$$
$$(\beta_1, \dots, \beta_p) = (0, \dots, 0)$$

Donc:

$$\dim(F+G) = n+p+q$$

$$= n+p+n+q-n$$

$$= \dim F + \dim G - \dim F \cap G$$

22.27 Caractérisation des couples de sous-espaces vectoriels supplémentaires

Propostion 22.27

Soit E un espace de dimension finie, F et G deux sous-espaces vectoriels de F. Alors F et G sont supplémentaires si et seulement si :

$$F \cap G = \{0\}$$
 et $\dim F + \dim G = \dim E$

si et seulement si :

$$F + G = E$$
 et $\dim F + \dim G = \dim E$

$$F$$
 et G sont supplémentaires ssi $F \oplus G = E$ ssi $F \cap G = \{0\}$ et $F + G = E$ (\Rightarrow 22.26 \Leftarrow 22.26, 22.22) ssi $F \cap G = \{0\}$ et $\dim F + \dim G = \dim E$ (\Rightarrow 22.26 \Leftarrow 22.23) ssi $F + G = E$ et $\dim F + \dim G = \dim E$

22.28 Existence et dimension d'un supplémentaire en dimension finie

Théorème 22.28

Soit E un espace vectoriel de dimension finie et F un sous espace vectoriel de E. Alors il existe un supplémentaire S de F et :

$$\dim S = \dim E - \dim F$$

- Si $F = \{0\}$, E convient.
- Si $F \neq \{0\}$, on choisit une base de F (f_1, \ldots, f_p) que l'on complète en une base $(f_1, \ldots, f_p, s_1, \ldots, s_q)$ de E $(\dim E = p + q)$. $S = Vect(s_1, \ldots, s_q)$ convient.

22.30 Base de $\mathcal{L}(E,F)$

Propostion 22.30

Si E et F sont de dimension finie, la famille $(u_{i,j})_{(i,j)\in I\times J}$ décrite dans l'exemple précédent est une base de $\mathcal{L}(E,F)$.

— Montrons que $(u_{i,j})$ est libre. On suppose $\sum_{(i,j)\in I\times J}\lambda_{i,j}u_{i,j}=0$.

$$\forall k \in I, \sum_{(i,j) \in I \times J} \lambda_{i,j} u_{i,j}(b_k) = 0$$

$$\operatorname{donc} \sum_{(i,j) \in I \times J} \lambda_{i,j} \delta_{i,k} c_j = 0$$

$$\operatorname{donc} \sum_{j \in J} \lambda_{k,j} c_j = 0$$

Par liberté des (c_i) , on a :

$$\forall k \in I, \forall j \in J, \lambda_{k,j} = 0$$

— Montrons que $(u_{i,j})$ est génératrice. Soit $f \in \mathcal{L}(E,F)$. Pour tout $k \in I$, $f(b_k) = \sum_{j \in J} \lambda_{k,j} c_j$ ((c_j) est une base de F). Alors:

$$f = \sum_{(i,j) \in I \times J} \lambda_{i,j} u_{i,j}$$
 (théorème de rigidité)

22.32 Dimension d'espaces isomorphes

Propostion 22.32

Soit E et F deux espaces isomorphes. Si l'un des deux est de dimension finie, alors les deux le sont et :

$$\dim E = \dim F$$

Réciproquement, si E et F sont de dimension finie avec dim E = dim F, alors E et F sont isomorphes.

— Si dim E = n, on choisit B une base de E. Si $f: E \to F$ est un isomorphisme, alors f(B) est une base de F. Donc F est de dimension finie et dim $F = |f(B)| = |B| = n = \dim E$. — On suppose que $\dim E = n = \dim F$.

Soit (e_1, \ldots, e_n) une base de E et (f_1, \ldots, f_n) une base de F.

On définit (théorème de rigidité) $u \in \mathcal{L}(E, F)$ par :

$$\forall i \in [1, n], u(e_i) = f_i$$

D'après (21.70), u est un isomorphisme.

22.35 Rang d'une famille génératrice

Propostion 22.35

Soit $(x_i)_{i\in I}$ une famille génératrice de E. Le rang de u, s'il existe est égal au rang de la famille $(u(x_i))_{i\in I}$.

$$rg(u) = \dim(Im(u))$$

$$= \dim(Vect(u(x_i))_{i \in I}) (21.21)$$

$$= rg(u(x_i))_{i \in I}$$

22.36 Existence et majoration du rang en dimension finie

Propostion 22.36

— Soit $u \in \mathcal{L}(E, F)$. Si E ou F sont de dimension finie, alors Im(u) est également de dimension finie et (avec les conditions adéquates) :

$$rg(u) \le \dim E$$
 ou $rg(u) \le \dim F$

- Avec les conditions appropriées :
 - $-rg(u) = \dim E$ si et seulement si u est injective
 - $rg(u) = \dim F$ si et seulement si u est surjective

On suppose E et F de dimension finie.

- $Im(u) \subset F$ et $\dim(Im(u)) \leq \dim F$ et $rg(u) = \dim F$ si et seulement si (22.22) Im(u) = F si et seulement si u est surjective.
- Soit (e_1, \ldots, e_n) une base de E. Comme (e_1, \ldots, e_n) engendre E:

$$rg(u) = rg(u(e_1), \dots, u(e_n))$$
 (22.35)
 $\leq n = \dim E$ (22.20)

$$rg(u(e_1), \dots, u(e_n)) = n$$
 ssi $(u(e_1), \dots, u(e_n))$ est libre (21.68) ssi u est injective

22.39 Effet d'une composition sur le rang

Théorème 22.39

Soit $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$. Alors:

- 1. $rg(v \circ u) \le \min(rg(u), rg(v))$
- 2. si v est injective, alors $rg(v \circ u) = rg(u)$
- 3. si u est surjective, alors $rg(v \circ u) = rg(v)$
- 1. $Im(v \circ u) \subset Im(v)$ donc $rg(v \circ u) \leq rg(v)$ et $Im(v \circ u) = Im(v|_{Im(v)})$ donc :

$$rg(v \circ u) = rg(v|_{Im(u)}) \le \dim(Im(u)) = rg(u)$$

- 2. Si v est injective, alors (22.36), $rg(\left.v\right|_{Im(u)})=\dim(Im(u))=rg(u)$
- 3. Si u est surjective, alors Im(u) = F, et d'aprè (22.39.1) :

$$rg(v \circ u) = rg(v|_F) = rg(v)$$

22.40 Noyau et image d'une restriction

Lemme 22.40

Soit $u \in \mathcal{L}(E, F)$ et E' un sous-espace vectoriel de E. Soit $v \in \mathcal{L}(E', F)$ la restriction de u à E'. Alors :

- $--\ker v = \ker u \cap E'$
- Si $\ker u + E' = E$, alors Im(v) = Im(u)

Soit $x \in E$.

_

$$x \in \ker v \Leftrightarrow \begin{cases} x \in E' \\ v(x) = 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} x \in E' \\ u(x) = 0 \end{cases}$$
$$\Leftrightarrow x \in \ker u \cap E$$

— Supposons que $\ker u + E' = E$. On a toujours $Im(v) \subset Im(u)$. Soit $y \in Im(u)$. On choisit $x \in E$ tel que y = u(x). On écrit $x = \alpha + \beta$ avec $\alpha \in \ker u$ et $\beta \in E'$. Ainsi:

$$y = u(x) = u(\alpha + \beta) = u(\alpha) + u(\beta) = 0 + v(\beta) \in Im(v)$$

22.41 Restriction de u à un supplémentaire de $\ker u$

Corollaire 22.41

Soit S un supplémentaire de ker u dans E. Alors u induit un isomorphisme de S sur Im(u).

Soit $v: S \to Im(u); x \mapsto u(x)$.

D'après (22.40), v est injective et surjective, donc fournit bien un isomorphisme de S sur Im(u).