CS 207: Discrete Structures

Abstract algebra and Number theory

Lecture 35 Oct 13 2015

Next topic

Abstract algebra and Number theory: An introduction

Definition of a group

Definition

A group is a set S along with a operator * such that the following conditions are satisfied:

- ▶ Closure: $\forall a, b \in S, a * b \in S$.
- Associativity: $\forall a, b, c \in S, \ a * (b * c) = (a * b) * c.$
- ▶ Identity: $\exists e \in S \text{ s.t.}, \forall a \in S, a * e = e * a = a.$
- ▶ Inverse: $\forall a \in S, \exists a' \in S \text{ s.t.}, a * a' = a' * a = e.$

Examples of groups

- ▶ Every permutation group is an abstract group
 - ightharpoonup A permutation group is a subset of permutations of a set X which satisfy the group properties.
 - ▶ The set of all permutations of $\{1, ..., n\}$ is a special group, called the symmetric group, S_n .
- ▶ Every automorphism group is an abstract group.
 - ▶ The set of all automorphisms of a graph is a group.

Examples of groups

- ▶ Every permutation group is an abstract group
 - ightharpoonup A permutation group is a subset of permutations of a set X which satisfy the group properties.
 - ▶ The set of all permutations of $\{1, ..., n\}$ is a special group, called the symmetric group, S_n .
- ▶ Every automorphism group is an abstract group.
 - ▶ The set of all automorphisms of a graph is a group.
- ▶ What about the following?
 - 1. $(\mathbb{Z}, +)$ is a group. Yes.
 - 2. (\mathbb{Z}, \times) .
 - 3. $(\mathbb{Q} \setminus \{0\}, \times)$
 - 4. $(\mathbb{Z}_n, +_n)$
 - 5. (\mathbb{Z}_n, \times_n)
 - 6. $(\mathbb{Z}_n \setminus \{0\}, \times_n)$.

Properties of groups

- ▶ A group has a unique identity element.
- ▶ Let G be a group. For all $a, b, c \in G$, a * b = a * c implies b = c.
- ▶ Every element in a group has a unique inverse.
- ► For any two elements $(a * b)^{-1} = b^{-1} * a^{-1}$.

Properties of groups

- ▶ A group has a unique identity element.
 - ▶ Suppose not. Let $e_1 \neq e_2$ be the identity elements.
 - ▶ Then, $\forall a, a * e_1 = e_1 * a = a$, implies $e_2 * e_1 = e_1 * e_2 = e_2$
 - Also $\forall a, a * e_2 = e_2 * a = a$, implies $e_1 * e_2 = e_2 * e_1 = e_1$.
 - ▶ Implies $e_1 = e_2$, a contradiction.
- ▶ Let G be a group. For all $a, b, c \in G$, a * b = a * c implies b = c.
- ▶ Every element in a group has a unique inverse.
- For any two elements $(a * b)^{-1} = b^{-1} * a^{-1}$.

Properties of groups

- ▶ A group has a unique identity element.
- ▶ Let G be a group. For all $a, b, c \in G$, a * b = a * c implies b = c.
- ▶ Every element in a group has a unique inverse.
- ► For any two elements $(a * b)^{-1} = b^{-1} * a^{-1}$.
- ▶ Is it the case that (a * b) = (b * a)? What if you add this?

Properties of groups

- ▶ A group has a unique identity element.
- ▶ Let G be a group. For all $a, b, c \in G$, a * b = a * c implies b = c.
- ▶ Every element in a group has a unique inverse.
- For any two elements $(a * b)^{-1} = b^{-1} * a^{-1}$.
- ▶ Is it the case that (a * b) = (b * a)? What if you add this?
- ▶ Abstract groups vs permutation groups (subset of permutations satisfying the group properties)?

Properties of groups

- ▶ A group has a unique identity element.
- ▶ Let G be a group. For all $a, b, c \in G$, a * b = a * c implies b = c.
- ▶ Every element in a group has a unique inverse.
- ► For any two elements $(a * b)^{-1} = b^{-1} * a^{-1}$.
- ▶ Is it the case that (a * b) = (b * a)? What if you add this?
- ▶ Abstract groups vs permutation groups (subset of permutations satisfying the group properties)?
- ▶ Every permutation group is an abstract group. What about the converse?

Properties of groups

- ▶ A group has a unique identity element.
- ▶ Let G be a group. For all $a, b, c \in G$, a * b = a * c implies b = c.
- ▶ Every element in a group has a unique inverse.
- For any two elements $(a * b)^{-1} = b^{-1} * a^{-1}$.
- ▶ Is it the case that (a * b) = (b * a)? What if you add this?
- ▶ Abstract groups vs permutation groups (subset of permutations satisfying the group properties)?
- ▶ Every permutation group is an abstract group. What about the converse?

Cayley's theorem

Every abstract group is "isomorphic" to a permutation group.

Geometrical example: symmetries of a triangle

► Consider an equilateral triangle and look at transformations that move it to itself (called symmetries).

- ► Consider an equilateral triangle and look at transformations that move it to itself (called symmetries).
- ▶ That is, before and after it must occupy same position in space.

- ► Consider an equilateral triangle and look at transformations that move it to itself (called symmetries).
- ▶ That is, before and after it must occupy same position in space.
- ▶ How many such transformations are there?

- ► Consider an equilateral triangle and look at transformations that move it to itself (called symmetries).
- ▶ That is, before and after it must occupy same position in space.
- ▶ How many such transformations are there?
- ▶ What is the composition of two such transformations?

- ► Consider an equilateral triangle and look at transformations that move it to itself (called symmetries).
- ▶ That is, before and after it must occupy same position in space.
- ▶ How many such transformations are there?
- ▶ What is the composition of two such transformations?
- ► The symmetry transformations of an equilateral triangle form a group!

Matrices

▶ Consider set of all 2×2 matrices over \mathbb{R} . This is denoted $M_2(\mathbb{R})$.

Matrices

- ▶ Consider set of all 2×2 matrices over \mathbb{R} . This is denoted $M_2(\mathbb{R})$.
- ▶ What is an operation here?

Matrices

- ▶ Consider set of all 2×2 matrices over \mathbb{R} . This is denoted $M_2(\mathbb{R})$.
- ▶ What is an operation here? matrix multiplication.
- ▶ Is this a group?

Matrices

- ▶ Consider set of all 2×2 matrices over \mathbb{R} . This is denoted $M_2(\mathbb{R})$.
- ▶ What is an operation here? matrix multiplication.
- ► Is this a group? No!

Matrices

- ▶ Consider set of all 2×2 matrices over \mathbb{R} . This is denoted $M_2(\mathbb{R})$.
- ▶ What is an operation here? matrix multiplication.
- ▶ Is this a group? No!
- ▶ Consider the set of invertible matrices over \mathbb{R} , denoted $GL_2(\mathbb{R})$.
- ▶ Does this form a group

Matrices

- ▶ Consider set of all 2×2 matrices over \mathbb{R} . This is denoted $M_2(\mathbb{R})$.
- ▶ What is an operation here? matrix multiplication.
- ▶ Is this a group? No!
- ▶ Consider the set of invertible matrices over \mathbb{R} , denoted $GL_2(\mathbb{R})$.
- ▶ Does this form a group yes!

▶ The order of a finite group is the number of elements in it.

- ▶ The order of a finite group is the number of elements in it.
- ▶ If x is an element of a finite group, then the order of x in G is the least positive integer m such that $x^m = e$.

- ▶ The order of a finite group is the number of elements in it.
- ▶ If x is an element of a finite group, then the order of x in G is the least positive integer m such that $x^m = e$.

Prop

Let x be an element of order m in a finite group G. $x^s = e$ iff

- ▶ The order of a finite group is the number of elements in it.
- ▶ If x is an element of a finite group, then the order of x in G is the least positive integer m such that $x^m = e$.

Prop

Let x be an element of order m in a finite group G. $x^s = e$ iff s is a multiple of m.