LINEAR REGRESSION

DATA1

```
import numpy as np
import pandas as pd
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")

In [265... data=pd.read_csv(r"C:\Users\kyathi\Downloads\1_2015.csv")

In [266... data.describe()
```

Out[266...

	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom	Trust (Government Corruption)	Generosity	Dystopia Residual
count	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000	158.000000
mean	79.493671	5.375734	0.047885	0.846137	0.991046	0.630259	0.428615	0.143422	0.237296	2.098977
std	45.754363	1.145010	0.017146	0.403121	0.272369	0.247078	0.150693	0.120034	0.126685	0.553550
min	1.000000	2.839000	0.018480	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.328580
25%	40.250000	4.526000	0.037268	0.545808	0.856823	0.439185	0.328330	0.061675	0.150553	1.759410
50%	79.500000	5.232500	0.043940	0.910245	1.029510	0.696705	0.435515	0.107220	0.216130	2.095415
75%	118.750000	6.243750	0.052300	1.158448	1.214405	0.811013	0.549092	0.180255	0.309883	2.462415
max	158.000000	7.587000	0.136930	1.690420	1.402230	1.025250	0.669730	0.551910	0.795880	3.602140

In [267... data.head()

Out[267...

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom	Trust (Government Corruption)	Generosity	Dystopia Residual
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	0.66557	0.41978	0.29678	2.51738
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	0.62877	0.14145	0.43630	2.70201
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	0.64938	0.48357	0.34139	2.49204
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	0.66973	0.36503	0.34699	2.46531
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	0.63297	0.32957	0.45811	2.45176

In [268... data.tail()

Out[268...

	Country	Region	Happiness Rank	Happiness Score	Standard Error	(GDP per Capita)	Family	Health (Life Expectancy)	Freedom	Trust (Government Corruption)	Generosity	Dystopia Residual
153	Rwanda	Sub- Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864	0.59201	0.55191	0.22628	0.67042
154	Benin	Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910	0.48450	0.08010	0.18260	1.63328
155	Syria	Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.47489	0.72193	0.15684	0.18906	0.47179	0.32858
156	Burundi	Sub- Saharan Africa	157	2.905	0.08658	0.01530	0.41587	0.22396	0.11850	0.10062	0.19727	1.83302
157	Togo	Sub- Saharan Africa	158	2.839	0.06727	0.20868	0.13995	0.28443	0.36453	0.10731	0.16681	1.56726
data	.info()											

In [269...

Out[271... <seaborn.axisgrid.PairGrid at 0x20fb84aaa50>

In [270...

In [271...

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 158 entries, 0 to 157
         Data columns (total 12 columns):
              Column
                                             Non-Null Count Dtype
              Country
                                             158 non-null
                                                             object
              Region
                                                             object
          1
                                             158 non-null
              Happiness Rank
                                             158 non-null
                                                             int64
              Happiness Score
                                             158 non-null
                                                             float64
              Standard Error
                                             158 non-null
                                                             float64
              Economy (GDP per Capita)
                                             158 non-null
                                                             float64
          6
              Family
                                             158 non-null
                                                             float64
              Health (Life Expectancy)
                                             158 non-null
                                                             float64
              Freedom
                                             158 non-null
                                                             float64
              Trust (Government Corruption) 158 non-null
                                                             float64
                                                             float64
              Generosity
                                             158 non-null
          11 Dystopia Residual
                                             158 non-null
                                                             float64
         dtypes: float64(9), int64(1), object(2)
         memory usage: 14.9+ KB
          data.columns
          Index(['Country', 'Region', 'Happiness Rank', 'Happiness Score',
Out[270...
                  'Standard Error', 'Economy (GDP per Capita)', 'Family',
                  'Health (Life Expectancy)', 'Freedom', 'Trust (Government Corruption)',
                  'Generosity', 'Dystopia Residual'],
                 dtype='object')
          sns.pairplot(data)
```


In [272... sns.displot(data['Freedom'])

Out[272... <seaborn.axisgrid.FacetGrid at 0x20fbf428a90>


```
'Generosity', 'Dystopia Residual']]
          y=data['Freedom']
          from sklearn.model selection import train test split
In [276...
          x train,x test,y train,y test = train test split(x,y,test size=0.30)
          from sklearn.linear model import LinearRegression
In [277...
          lr=LinearRegression()
          lr.fit(x train,y train)
Out[277...
           ▼ LinearRegression
          LinearRegression()
          predx=lr.predict(x test)
In [278...
          print(predx)
         [0.64951768 0.49095965 0.52981146 0.4686313 0.48998233 0.36697138
          0.49499433 0.57747593 0.31737435 0.66218654 0.40622614 0.66029771
          0.28483721 0.43431943 0.10391459 0.51652476 0.63316585 0.55688303
          0.65133062 0.21378051 0.54289474 0.43004978 0.38243499 0.51500517
          0.17271243 0.66970285 0.41355072 0.59412002 0.41482721 0.60317173
          0.36797266 0.41490146 0.09269245 0.07649465 0.24281248 0.45956339
          0.39821566 0.25151092 0.3773163 0.47692361 0.18226877 0.25926124
          0.33230451 0.59607663 0.53217181 0.57720247 0.40330644 0.35601461]
In [279...
          print(lr.score(x_test,y_test))
         0.9999960140756539
          plt.scatter(y_test,predx)
In [280...
Out[280... <matplotlib.collections.PathCollection at 0x20fbfd0c650>
```


DATA2

```
In [281... data1=pd.read_csv(r"C:\Users\kyathi\Downloads\4_Drug200.csv")
In [282... data1.describe()
```

\sim		г	-	0	2
()	UT.	н	7	X	۷
_	0. 0	L		_	

	Age	Na_to_K
count	200.000000	200.000000
mean	44.315000	16.084485
std	16.544315	7.223956
min	15.000000	6.269000
25%	31.000000	10.445500
50%	45.000000	13.936500
75%	58.000000	19.380000
max	74.000000	38.247000

In [283...

data1.head()

Out[283...

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY

In [284... data1.tail()

Out[287... <seaborn.axisgrid.PairGrid at 0x20fbfcc41d0>

```
Out[284...
               Age Sex
                              BP Cholesterol Na_to_K Drug
          195
                 56
                      F
                             LOW
                                        HIGH
                                               11.567 drugC
                16
                      М
                             LOW
                                               12.006 drugC
          196
                                        HIGH
          197
                 52
                      M NORMAL
                                        HIGH
                                                9.894 drugX
          198
                 23
                      M NORMAL
                                     NORMAL
                                               14.020 drugX
                      F
                             LOW
                                    NORMAL
                                               11.349 drugX
          199
                 40
          data1.info()
In [285...
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 200 entries, 0 to 199
         Data columns (total 6 columns):
              Column
                          Non-Null Count Dtype
                           200 non-null
                                          int64
              Age
                          200 non-null
          1
              Sex
                                          object
          2
              BP
                           200 non-null
                                          object
              Cholesterol 200 non-null
                                          object
              Na_to_K
                           200 non-null
                                          float64
          4
              Drug
                           200 non-null
                                          object
         dtypes: float64(1), int64(1), object(4)
         memory usage: 9.5+ KB
In [286...
          data1.columns
Out[286... Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='object')
          sns.pairplot(data1)
In [287...
```



```
In [288... BP={'BP':{'LOW':0,'NORMAL':1,'HIGH':2}}
    data1=data1.replace(BP)
    data1
```

Out[288...

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	2	HIGH	25.355	drugY
1	47	М	0	HIGH	13.093	drugC
2	47	М	0	HIGH	10.114	drugC
3	28	F	1	HIGH	7.798	drugX
4	61	F	0	HIGH	18.043	drugY
•••						
195	56	F	0	HIGH	11.567	drugC
196	16	М	0	HIGH	12.006	drugC
197	52	М	1	HIGH	9.894	drugX
198	23	М	1	NORMAL	14.020	drugX
199	40	F	0	NORMAL	11.349	drugX

200 rows × 6 columns

```
In [289...
```

```
Cholestrol={'Cholesterol':{'LOW':0,'NORMAL':1,'HIGH':2}}
data1=data1.replace(Cholestrol)
data1
```

O	4.1	 \circ	\cap	
υu	τ	 ŏ	9	

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	2	2	25.355	drugY
1	47	М	0	2	13.093	drugC
2	47	М	0	2	10.114	drugC
3	28	F	1	2	7.798	drugX
4	61	F	0	2	18.043	drugY
•••						
195	56	F	0	2	11.567	drugC
196	16	М	0	2	12.006	drugC
197	52	М	1	2	9.894	drugX
198	23	М	1	1	14.020	drugX
199	40	F	0	1	11.349	drugX

200 rows × 6 columns

```
In [290... sns.displot(data1['BP'])
```

Out[290... <seaborn.axisgrid.FacetGrid at 0x20fbec3f390>


```
Out[295...
          ▼ LinearRegression
         LinearRegression()
         predx=lr.predict(x test)
In [296...
         print(predx)
         0.66478985 0.8958076 0.85153863 0.7650131 1.19970427 1.00393148
         1.22942271 0.79871039 0.85138054 0.73551521 1.17548538 1.06286758
         1.15362539 0.94195932 1.05856108 0.79736095 0.71765968 0.81583898
         1.09958733 1.07754333 1.02502709 0.64069165 0.65273128 0.60603272
         0.64299522 1.11384323 1.12984113 1.07873291 0.89362042 1.04690375
         0.96132529 0.91754464 1.3464836 1.14018067 0.7550575 1.0448254
         1.20809777 1.35321993 1.02006836 0.78975314 0.93815984 0.71583193
         0.67072122 1.27880809 0.97089447 0.9241592 0.67850225 1.16960569
         0.77673145 0.85964508 1.25312341 1.09919858 0.99805993 0.77555002
In [297...
         print(lr.score(x_test,y_test))
         -0.1890698891615492
         plt.scatter(y_test,predx)
In [298...
Out[298... <matplotlib.collections.PathCollection at 0x20fc02e96d0>
```


DATA3

In [299... data2=pd.read_csv(r"C:\Users\kyathi\Downloads\7_Uber.csv")
 data2

Out[299		Unnamed:	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitu
	0	24238194	2015-05-07 19:52:06.0000003	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	-73.999512	40.7232
	1	27835199	2009-07-17 20:04:56.0000002	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	-73.994710	40.7503
	2	44984355	2009-08-24 21:45:00.00000061	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	-73.962565	40.7726
	3	25894730	2009-06-26 08:22:21.0000001	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	-73.965316	40.8033
	4	17610152	2014-08-28 17:47:00.000000188	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	-73.973082	40.7612
	•••	•••					•••		
	199995	42598914	2012-10-28 10:49:00.00000053	3.0	2012-10-28 10:49:00 UTC	-73.987042	40.739367	-73.986525	40.7402
	199996	16382965	2014-03-14 01:09:00.0000008	7.5	2014-03-14 01:09:00 UTC	-73.984722	40.736837	-74.006672	40.7396
	199997	27804658	2009-06-29 00:42:00.00000078	30.9	2009-06-29 00:42:00 UTC	-73.986017	40.756487	-73.858957	40.6925
	199998	20259894	2015-05-20 14:56:25.0000004	14.5	2015-05-20 14:56:25 UTC	-73.997124	40.725452	-73.983215	40.6954
	199999	11951496	2010-05-15 04:08:00.00000076	14.1	2010-05-15 04:08:00 UTC	-73.984395	40.720077	-73.985508	40.7687
	200000 rows × 9 colu		mns						
	4								•
In [300	data2.de	escribe()							

OUT 300	O.	-4-	г	-	0	0	
0001 000	()	IIT.		~	и	и	
	\sim	$u \iota$		\sim	\sim	\sim	

	Unnamed: 0	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
count	2.000000e+05	200000.000000	200000.000000	200000.000000	199999.000000	199999.000000	200000.000000
mean	2.771250e+07	11.359955	-72.527638	39.935885	-72.525292	39.923890	1.684535
std	1.601382e+07	9.901776	11.437787	7.720539	13.117408	6.794829	1.385997
min	1.000000e+00	-52.000000	-1340.648410	-74.015515	-3356.666300	-881.985513	0.000000
25%	1.382535e+07	6.000000	-73.992065	40.734796	-73.991407	40.733823	1.000000
50%	2.774550e+07	8.500000	-73.981823	40.752592	-73.980093	40.753042	1.000000
75%	4.155530e+07	12.500000	-73.967154	40.767158	-73.963658	40.768001	2.000000
max	5.542357e+07	499.000000	57.418457	1644.421482	1153.572603	872.697628	208.000000

In [301...

data2.head()

Out[301...

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	р
0	24238194	2015-05-07 19:52:06.0000003	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	-73.999512	40.723217	
1	27835199	2009-07-17 20:04:56.0000002	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	-73.994710	40.750325	
2	44984355	2009-08-24 21:45:00.00000061	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	-73.962565	40.772647	
3	25894730	2009-06-26 08:22:21.0000001	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	-73.965316	40.803349	
4	17610152	2014-08-28 17:47:00.000000188	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	-73.973082	40.761247	
4									

In [302...

data2.tail()

In [304...

data2.columns

Out[302		Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitud
	19999	95 42598914	2012-10-28 10:49:00.00000053	3.0	2012-10-28 10:49:00 UTC	-73.987042	40.739367	-73.986525	40.74029
	19999	16382965	2014-03-14 01:09:00.0000008	7.5	2014-03-14 01:09:00 UTC	-73.984722	40.736837	-74.006672	40.73962
	19999	27 804658	2009-06-29 00:42:00.00000078	30.9	2009-06-29 00:42:00 UTC	-73.986017	40.756487	-73.858957	40.69258
	19999	20259894	2015-05-20 14:56:25.0000004	14.5	2015-05-20 14:56:25 UTC	-73.997124	40.725452	-73.983215	40.69541
	19999	99 11951496	2010-05-15 04:08:00.00000076	14.1	2010-05-15 04:08:00 UTC	-73.984395	40.720077	-73.985508	40.76879
	4								>
In [303	data2	.info()							
1	RangeIr Data co	•	frame.DataFrame' entries, 0 to 199 9 columns): Non-Null Cou	999					
,	0 Ur 1 ke 2 fa 3 pi 4 pi 5 pi 6 dr 7 dr 8 pa dtypes:	nnamed: 0 ey are_amount ickup_datetime ickup_longitude ropoff_longitude ropoff_latitude assenger_count tloat64(5), usage: 13.7+	de 200000 non-ne 200000 non-ne 200000 non-ne 199999 non-ne 200000 non-ne int64(2), object	ull int64 ull object ull float64					

RandomForest

Data1

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")

In [306... df1=pd.read_csv(r"C:\Users\kyathi\Downloads\C1_Ionosphere.csv")
df1
```

\cap	+-	$\Gamma \supset$	0	6
Uί	ルレ	[>	0	O

	1	0	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.37708	1.1	0.03760	•••	-0.51171	0.41078	-0.46168	0.21266	-0.34
() 1	0	1.00000	-0.18829	0.93035	-0.36156	-0.10868	-0.93597	1.00000	-0.04549		-0.26569	-0.20468	-0.18401	-0.19040	-0.11
1	1	0	1.00000	-0.03365	1.00000	0.00485	1.00000	-0.12062	0.88965	0.01198		-0.40220	0.58984	-0.22145	0.43100	-0.17
2	. 1	0	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.00000	0.00000	0.00000		0.90695	0.51613	1.00000	1.00000	-0.20
3	3 1	0	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.23255	0.77152	-0.16399		-0.65158	0.13290	-0.53206	0.02431	-0.62
4	l 1	0	0.02337	-0.00592	-0.09924	-0.11949	-0.00763	-0.11824	0.14706	0.06637		-0.01535	-0.03240	0.09223	-0.07859	0.00
		. 														
345	5 1	0	0.83508	0.08298	0.73739	-0.14706	0.84349	-0.05567	0.90441	-0.04622		-0.04202	0.83479	0.00123	1.00000	0.12
346	5 1	0	0.95113	0.00419	0.95183	-0.02723	0.93438	-0.01920	0.94590	0.01606		0.01361	0.93522	0.04925	0.93159	0.08
347	' 1	0	0.94701	-0.00034	0.93207	-0.03227	0.95177	-0.03431	0.95584	0.02446		0.03193	0.92489	0.02542	0.92120	0.02
348	3 1	0	0.90608	-0.01657	0.98122	-0.01989	0.95691	-0.03646	0.85746	0.00110		-0.02099	0.89147	-0.07760	0.82983	-0.17
349) 1	0	0.84710	0.13533	0.73638	-0.06151	0.87873	0.08260	0.88928	-0.09139		-0.15114	0.81147	-0.04822	0.78207	-0.00

350 rows × 35 columns

4

In [307...

df1.describe()

Out[307			1	0	0.99539	-0.05889	0.852	43 0	.02306	0.83398	-0	.37708	1.1	0.0376	0	0.56811
	cou	ınt	350.000000	350.0	350.000000	350.000000	350.0000	000 350.0	000000	350.000000	350.	000000	350.000000	350.00000	0	350.000000
	me	an	0.891429	0.0	0.640330	0.044667	0.6003	50 0.	116154	0.549284	0.	120779	0.510453	0.18175	6	0.395643
	9	std	0.311546	0.0	0.498059	0.442032	0.5204	31 0.4	461443	0.493124	0.	520816	0.507117	0.48448	2	0.579206
	n	nin	0.000000	0.0	-1.000000	-1.000000	-1.0000	000 -1.0	000000	-1.000000	-1.	000000	-1.000000	-1.00000	0	-1.000000
	2!	5%	1.000000	0.0	0.471517	-0.065388	0.4125	555 -0.0	024868	0.209105	-0.	053483	0.086785	-0.04900	3	0.000000
	50	0%	1.000000	0.0	0.870795	0.016700	0.8086	520 0.0	021170	0.728000	0.	015085	0.682430	0.01755	0	0.549175
	7!	5%	1.000000	0.0	1.000000	0.194727	1.0000	000 0.3	335317	0.970445	0.	451572	0.950555	0.53619	2	0.907165
	m	ax	1.000000	0.0	1.000000	1.000000	1.0000	000 1.0	000000	1.000000	1.	000000	1.000000	1.00000	0	1.000000
	8 ro	ws ×	34 columns	S												
	4															•
In [308	df1	. hea	ad()													
Out[308		1 (0.99539	-0.0588	9 0.85243	0.02306	0.83398	-0.37708	1.	1 0.03760	•••	-0.51171	0.41078	-0.46168	0.212	66 -0.34090
	0	1 (1.00000	-0.1882	29 0.93035	-0.36156	-0.10868	-0.93597	1.0000	0 -0.04549		-0.26569	-0.20468	-0.18401	-0.190	40 -0.1159
	1	1 (1.00000	-0.0336	1.00000	0.00485	1.00000	-0.12062	0.8896	5 0.01198		-0.40220	0.58984	-0.22145	0.431	00 -0.1736
	2	1 (1.00000	-0.4516	1.00000	1.00000	0.71216	-1.00000	0.0000	0.00000		0.90695	0.51613	1.00000	1.000	00 -0.2009!
	3	1 (1.00000	-0.0240	0.94140	0.06531	0.92106	-0.23255	0.7715	2 -0.16399		-0.65158	0.13290	-0.53206	0.024	31 -0.6219 ⁻
	4	1 (0.02337	-0.0059	92 -0.09924	-0.11949	-0.00763	-0.11824	0.1470	6 0.06637		-0.01535	-0.03240	0.09223	-0.078	59 0.00737
	5 ro	ws ×	35 columns	S												
	4															•
In [309	df1	.in	fo()													

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 350 entries, 0 to 349
Data columns (total 35 columns):

Data	columns (to	otal	35 columns)	:
#	Column	Non-	-Null Count	Dtype
0	1		non-null	int64
1	0		non-null	int64
2	0.99539		non-null	float64
3	-0.05889		non-null	float64
4	0.85243		non-null	float64
5	0.02306	350	non-null	float64
6	0.83398	350	non-null	float64
7	-0.37708	350	non-null	float64
8	1.1	350	non-null	float64
9	0.03760	350	non-null	float64
10	0.85243.1	350	non-null	float64
11	-0.17755	350	non-null	float64
12	0.59755	350	non-null	float64
13	-0.44945	350	non-null	float64
14	0.60536	350	non-null	float64
15	-0.38223	350	non-null	float64
16	0.84356	350	non-null	float64
17	-0.38542	350	non-null	float64
18	0.58212	350	non-null	float64
19	-0.32192	350	non-null	float64
20	0.56971	350	non-null	float64
21	-0.29674	350	non-null	float64
22	0.36946	350	non-null	float64
23	-0.47357	350	non-null	float64
24	0.56811	350	non-null	float64
25	-0.51171	350	non-null	float64
26	0.41078	350	non-null	float64
27	-0.46168	350	non-null	float64
28	0.21266	350	non-null	float64
29	-0.34090	350	non-null	float64
30	0.42267	350	non-null	float64
31	-0.54487	350	non-null	float64
32	0.18641	350	non-null	float64
33	-0.45300	350	non-null	float64
34	g	350	non-null	object

```
dtypes: float64(32), int64(2), object(1)
          memory usage: 95.8+ KB
           g = {"g":{"g":1,"b":2}}
In [310...
           df1 = df1.replace(g)
           df1
Out[310...
                                 -0.05889
                                           0.85243
                                                     0.02306
                                                             0.83398
                                                                                           0.03760 ... -0.51171 0.41078 -0.46168
                 1 0 0.99539
                                                                        -0.37708
                                                                                       1.1
                                                                                                                                      0.21266
                                                                                                                                                -0.34
              0 1 0 1.00000
                                 -0.18829
                                            0.93035 -0.36156
                                                              -0.10868
                                                                         -0.93597 1.00000
                                                                                           -0.04549 ... -0.26569
                                                                                                                   -0.20468
                                                                                                                             -0.18401
                                                                                                                                       -0.19040
                                                                                                                                                 -0.11
                                                     0.00485
                                                               1.00000
              1 1 0 1.00000
                                 -0.03365
                                            1.00000
                                                                         -0.12062 0.88965
                                                                                            0.01198 ...
                                                                                                         -0.40220
                                                                                                                    0.58984
                                                                                                                             -0.22145
                                                                                                                                        0.43100
                                                                                                                                                 -0.17
                        1.00000
                                 -0.45161
                                            1.00000
                                                      1.00000
                                                               0.71216
                                                                         -1.00000
                                                                                  0.00000
                                                                                            0.00000 ...
                                                                                                          0.90695
                                                                                                                    0.51613
                                                                                                                              1.00000
                                                                                                                                        1.00000
                                                                                                                                                 -0.20
                                                                                  0.77152
                    0
                        1.00000
                                  -0.02401
                                            0.94140
                                                      0.06531
                                                               0.92106
                                                                         -0.23255
                                                                                           -0.16399
                                                                                                         -0.65158
                                                                                                                    0.13290
                                                                                                                             -0.53206
                                                                                                                                        0.02431
                                                                                                                                                 -0.62
              3 1
                                                                                                    ...
                                                                                            0.06637 ...
                                                    -0.11949
                                                              -0.00763
                        0.02337
                                 -0.00592
                                           -0.09924
                                                                         -0.11824 0.14706
                                                                                                         -0.01535
                                                                                                                  -0.03240
                                                                                                                              0.09223
                                                                                                                                       -0.07859
                                                                                                                                                  0.00
             ••• ... ...
                                                                         -0.05567 0.90441
                                                                                           -0.04622 ...
                        0.83508
                                  0.08298
                                            0.73739 -0.14706
                                                               0.84349
                                                                                                                              0.00123
                                                                                                                                                  0.12
                                                                                                         -0.04202
                                                                                                                    0.83479
                                                                                                                                        1.00000
                                            0.95183 -0.02723
            346 1 0 0.95113
                                  0.00419
                                                               0.93438
                                                                         -0.01920 0.94590
                                                                                            0.01606 ...
                                                                                                                    0.93522
                                                                                                                              0.04925
                                                                                                                                        0.93159
                                                                                                                                                  0.08
                                                                                                          0.01361
                                  -0.00034
                                            0.93207 -0.03227
                                                               0.95177
                                                                         -0.03431
                                                                                  0.95584
                                                                                            0.02446 ...
            347 1 0
                        0.94701
                                                                                                          0.03193
                                                                                                                    0.92489
                                                                                                                              0.02542
                                                                                                                                        0.92120
                                                                                                                                                  0.02
                                  -0.01657
                                            0.98122 -0.01989
                                                               0.95691
                                                                                  0.85746
            348
                    0
                        0.90608
                                                                         -0.03646
                                                                                            0.00110 ...
                                                                                                         -0.02099
                                                                                                                    0.89147
                                                                                                                             -0.07760
                                                                                                                                        0.82983
                                                                                                                                                 -0.17
                                                               0.87873
                1 0
                        0.84710
                                  0.13533
                                            0.73638 -0.06151
                                                                         0.08260
                                                                                  0.88928
                                                                                           -0.09139 ...
                                                                                                                                                 -0.00
            349
                                                                                                         -0.15114
                                                                                                                    0.81147
                                                                                                                             -0.04822
                                                                                                                                        0.78207
           350 rows × 35 columns
           4
                                                                                                                                                   •
           df1["g"].value_counts()
In [311...
Out[311...
           g
            1
                 224
                 126
            Name: count, dtype: int64
```

```
In [312... x = df1.drop("g",axis=1)]
          y = df1["g"]
          from sklearn.model selection import train test split
In [313...
          x train,x test,y train,y test = train test split(x,y,test size=0.40)
          from sklearn.ensemble import RandomForestClassifier
In [314...
          rfc=RandomForestClassifier()
          rfc.fit(x train,y train)
Out[314...
          ▼ RandomForestClassifier
          RandomForestClassifier()
          rf=RandomForestClassifier()
In [315...
          params={'max_depth':[1,2,3,4,5],
In [316...
                   'min_samples_leaf':[2,4,6,8,10],
                   'n estimators':[1,3,5,7]
          from sklearn.model_selection import GridSearchCV
In [317...
          gs=GridSearchCV(estimator=rf,param_grid=params,cv=2,scoring='accuracy')
          gs.fit(x_train,y_train)
                        GridSearchCV
Out[317...
           ▶ estimator: RandomForestClassifier
                 ▶ RandomForestClassifier
          rf_best=gs.best_estimator_
In [318...
          rf_best
```

```
Out[318...
                                       RandomForestClassifier
          RandomForestClassifier(max depth=3, min samples leaf=4, n estimators=5)
In [319...
          from sklearn.tree import plot tree
           plt.figure(figsize=(40,40))
           plot tree(rf best.estimators [4],feature names=None,class names=['Yes','No'])
          [\text{Text}(0.4230769230769231, 0.875, 'x[24] <= 0.099 \text{ ngini} = 0.416 \text{ nsamples} = 130 \text{ nvalue} = [148, 62] \text{ nclass} = \text{Yes'},
Out[319...
            Text(0.15384615384615385, 0.625, 'x[22] <= -0.009 \ ngini = 0.485 \ nsamples = 39 \ nvalue = [26, 37] \ nclass = No'),
            Text(0.07692307692307693, 0.375, 'gini = 0.0\nsamples = 16\nvalue = [23, 0]\nclass = Yes'),
            Text(0.23076923076923078, 0.375, 'x[25] <= 0.358 / ngini = 0.139 / nsamples = 23 / nvalue = [3, 37] / nclass = No'),
            Text(0.15384615384615385, 0.125, 'gini = 0.0 \nsamples = 19 \nvalue = [0, 34] \nclass = No'),
            Text(0.3076923076923077, 0.125, 'gini = 0.5\nsamples = 4\nvalue = [3, 3]\nclass = Yes'),
            Text(0.6923076923076923, 0.625, 'x[30] <= 0.026\ngini = 0.282\nsamples = 91\nvalue = [122, 25]\nclass = Yes'),
            Text(0.5384615384615384, 0.375, 'x[6] <= 0.695\ngini = 0.266\nsamples = 12\nvalue = [3, 16]\nclass = No'),
            Text(0.46153846153846156, 0.125, 'gini = 0.0 \nsamples = 7 \nvalue = [0, 13] \nclass = No'),
            Text(0.6153846153846154, 0.125, 'gini = 0.5\nsamples = 5\nvalue = [3, 3]\nclass = Yes'),
            Text(0.8461538461538461, 0.375, 'x[31] <= 0.79\ngini = 0.131\nsamples = 79\nvalue = [119, 9]\nclass = Yes'),
            Text(0.7692307692307693, 0.125, 'gini = 0.063\nsamples = 75\nvalue = [119, 4]\nclass = Yes'),
            Text(0.9230769230769231, 0.125, 'gini = 0.0\nsamples = 4\nvalue = [0, 5]\nclass = No')]
```


Data2

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")

In [369... df2=pd.read_csv(r"C:\Users\kyathi\Downloads\C10_Loan1.csv")
df2
```

Out[369...

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	Yes	Single	125	No
1	No	Married	100	No
2	No	Single	70	No
3	Yes	Married	120	No
4	No	Divorced	95	Yes
5	No	Married	60	No
6	Yes	Divorced	220	No
7	No	Single	85	Yes
8	No	Married	75	No
9	No	Single	90	Yes

In [370... df2.describe()

Out[370...

	Annual Income
count	10.000000
mean	104.000000
std	45.631373
min	60.000000
25%	77.500000
50%	92.500000
75%	115.000000
max	220.000000

```
df2.head()
In [371...
             Home Owner Marital Status Annual Income Defaulted Borrower
Out[371...
                      Yes
                                                   125
          0
                                  Single
                                                                      No
          1
                      No
                                Married
                                                   100
                                                                      No
           2
                                  Single
                      No
                                                   70
                                                                      No
           3
                      Yes
                                Married
                                                   120
                                                                      No
                                                   95
           4
                      No
                                Divorced
                                                                      Yes
          df2.info()
In [372...
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 10 entries, 0 to 9
         Data columns (total 4 columns):
              Column
                                  Non-Null Count Dtype
              Home Owner
                                  10 non-null
                                                  object
              Marital Status
                                  10 non-null
                                                  object
          2 Annual Income
                                  10 non-null
                                                  int64
              Defaulted Borrower 10 non-null
                                                  object
         dtypes: int64(1), object(3)
         memory usage: 452.0+ bytes
         Home_Owner = {"Home Owner":{"Yes":1,"No":2}}
In [373...
          df2 = df2.replace(Home_Owner)
          Defaulted_Borrower = {"Defaulted Borrower":{"Yes":1,"No":2}}
          df2 = df2.replace(Defaulted_Borrower)
          Marital_Status = {"Marital Status":{"Divorced":0,"Single":1,"Married":2}}
          df2 = df2.replace(Marital_Status)
          df2
```

:[373	Home Owne	r Marital Status	Annual Income	Defaulted Borrower
	0	1 1	125	2
	1 2	2 2	100	2
	2 2	2 1	70	2
	3	1 2	120	2
	4 2	2 0	95	1
	5 2	2 2	60	2
	6	1 0	220	2
	7	2 1	85	1
	8	2 2	75	2
	9	2 1	90	1
74	df2["Home Owne	r"].value_count	s()	
	Home Owner 2 7 1 3 Name: count, o	ttyng: int64		
		Borrower"].val	ue_counts()	
'5	Defaulted Borr 2 7 1 3 Name: count, c	rower		
	x = df2.drop(" y = df2["Marit	'Marital Status" al Status"]	,axis=1)	

```
from sklearn.model selection import train test split
In [377...
          x train,x test,y train,y test = train test split(x,y,test size=0.40)
          from sklearn.ensemble import RandomForestClassifier
In [378...
          rfc=RandomForestClassifier()
          rfc.fit(x train,y train)
Out[378...
           ▼ RandomForestClassifier
          RandomForestClassifier()
          rf=RandomForestClassifier()
In [379...
In [380...
          params={ 'max_depth':[1,2,3,4,5],
                   'min_samples_leaf':[2,4,6,8,10],
                   'n_estimators':[1,3,5,7]
          from sklearn.model selection import GridSearchCV
In [381...
          gs=GridSearchCV(estimator=rf,param_grid=params,cv=2,scoring='accuracy')
          gs.fit(x_train,y_train)
                        GridSearchCV
Out[381...
           ▶ estimator: RandomForestClassifier
                  ▶ RandomForestClassifier
          rf_best=gs.best_estimator_
In [382...
          rf best
Out[382...
                                      RandomForestClassifier
          RandomForestClassifier(max_depth=1, min_samples_leaf=2, n_estimators=5)
```

```
In [383... from sklearn.tree import plot_tree
    plt.figure(figsize=(40,40))
    plot_tree(rf_best.estimators_[4],feature_names=None,class_names=['Yes','No'])

Out[383... [Text(0.5, 0.75, 'x[1] <= 87.5\ngini = 0.5\nsamples = 4\nvalue = [1, 4, 1]\nclass = No'),
        Text(0.25, 0.25, 'gini = 0.444\nsamples = 2\nvalue = [0, 2, 1]\nclass = No'),
        Text(0.75, 0.25, 'gini = 0.444\nsamples = 2\nvalue = [1, 2, 0]\nclass = No')]</pre>
```

x[1] <= 87.5 gini = 0.5 samples = 4 value = [1, 4, 1] class = No

gini = 0.444 samples = 2

gini = 0.444samples = 2

value = [0, 2, 1]class = No

value = [I, 2, 0]class = No