

Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications

Peifeng Yu, Mosharaf Chowdhury

INTRODUCTION

GPU: Lack of flexibility

A deep learning (DL) job can have many GPUs, but each GPU belongs to exactly one application.

- Hinders the scheduling ability of GPU cluster managers
- Underutilization
 - Hyper-parameter tuning (AutoML)
 - Model serving (Inference)

DESIGN

Salus is a consolidated execution service enabling sharing primitives:

- Fast job switching,
- Memory sharing

Without modifying any

- User scripts
- Operating systems, or
- Hardware

With the goal to

- Support new GPU schedulers,
- Improve GPU utilization

MEMORY USAGE

3 types of memory:

- Model
- Ephemeral
- Framework-internal

Memory usage when training ResNet152.

GPU LANE

- Continuous physical memory
 - + GPU stream
- Time-slicing within lane,
 parallel across lanes
- Dynamic re-partitioning
- Avoid in-lane fragmentation

SCHEDULING

PACK

packs tasks together for higher utilization.

SRTF

prioritize based on shortest remaining time.

FAIR

equalizes the resource usage of active jobs.

Still a Huge design space to explore

EVALUATION

I 00 jobs from a production trace: SRTF vs FIFO: 3.19x improvement in Avg. JCT

2 sets of hyper-parameter exploration

42 DL inference applications in 1 GPU

