BA-INF 011 – Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben

Stand vom 5.2.2014

Bitte beachten Sie, dass die tatsächlichen Klausuraufgaben von den unten aufgeführten geringfügig abweichen können, e.g. andere Zahlen, Buchstaben etc.

1. Mengen, Relationen und Funktionen

Aufgabe 1

Beweisen Sie die folgenden Eigenschaften der Mengenoperationen:

- 1. Assoziativität.
- 2. Distributivität.

Aufgabe 2

Beweisen Sie die De Morgan'sche Regeln für Mengenoperationen.

Aufgabe 3

Beweisen Sie folgende Aussage: Seien $x, y \in \mathbb{Z}$. xy ist genau dann ungerade, wenn sowohl x als auch y ungerade sind.

Aufgabe 4

Seien A eine Menge und Π eine Menge von Teilmengen von A, so dass $\emptyset \notin \Pi$, $\bigcup \Pi = A$ und alle Elemente von Π paarweise disjunkt sind. Beweisen Sie, dass Π eine Partition von A ist.

Aufgabe 5

Sei $R = \{(a,b), (a,c), (c,d), (a,a), (b,a)\}$. Was ist die Hintereinanderausführung $R \circ R$ von R mit sich selbst? Was ist das Inverse R^{-1} von R? Sind R, $R \circ R$ und R^{-1} Funktionen?

Aufgabe 6

Seien $A \neq \emptyset$ und $R := \emptyset \subseteq A \times A$. Ist R reflexiv, symmetrisch, anti-symmetrisch oder transitiv? Begründen Sie Ihre Antwort.

Seien R und S partielle Ordnungen auf A. Zeigen Sie, dass $R \cap S$ eine partielle Ordnung ist.

Aufgabe 8*

Gegeben seien die binären Relationen R und S auf $A = \{1, 2, \dots, 7\}$, wie in Abbildung 1 dargestellt.

- 1. Schreiben Sie die Relationen R, S und $R \cup S$ in Mengenschreibweise auf.
- 2. Sind die Relationen R, S und $R \cup S$ symmetrisch, reflexiv oder transitiv?
- 3. (Neu) Geben Sie den reflexiven, transitiven Abschluss von $R \cup S$ an.

Abbildung 1: Die Relationen R und S.

Aufgabe 9

Sei $f: A \to B$. Zeigen Sie, dass $R = \{(a, a') \in A \times A \mid f(a) = f(a')\}$ eine Äquivalenzrelation ist.

Aufgabe 10

Sei S eine Menge von Mengen. Zeigen Sie, dass $R_S := \{(A,B) \mid A,B \in S, A \subseteq B\}$ eine partielle Ordnung ist. Sei nun $S = 2^{\{1,2,3\}}$. Zeichnen Sie den gerichteten Graphen, der R_S repräsentiert. Welches Element oder welche Elemente sind minimal?

Zeigen Sie: Sei R eine Äquivalenzrelation auf einer Menge A. Dann bilden die Äquivalenzklassen von R eine Partition von A.

Aufgabe 12

Zeigen Sie: Eine Relation R ist genau dann eine partielle Ordnung, wenn sie reflexiv und transitiv ist und keine nichttriviale Kreise besitzt.

Aufgabe 13

Zeigen Sie: Der reflexive, transitive Abschluss R^* einer zweistellige Relation R ist gleich

 $(R \cup \{(a,b) \mid \exists \text{ Kette in } R \text{ von } a \text{ nach } b\}) \subseteq R^*.$

Aufgabe 14

- 1. Sei $R = \{(a, b), (a, c), (a, d), (d, c), (d, e)\}$. Geben Sie den reflexiven, transitiven Abschluss R^* von R an. Zeichnen Sie den gerichteten Graphen, der R^* repräsentiert.
- 2. Der symmetrische Abschluss einer Relation R auf A ist der Abschluss von R bezüglich der Relation

$$\widetilde{Q} := \{ ((a, b), (b, a)) \mid a, b \in A \}.$$

Ist der transitive Abschluss von dem symmetrischen Abschluss einer Binärrelation immer reflexiv? Zeigen Sie dies oder geben Sie ein Gegenbeispiel.

Aufgabe 15

Zeigen Sie: Sei P eine Abschlusseigenschaft, die durch Relationen auf einer Menge D definiert ist und sei $A \subseteq D$. Dann existiert eine eindeutige Menge B mit $A \subseteq B$, die die Eigenschaft P besitzt.

Aufgabe 16

Zeigen Sie, dass jede endliche partielle Ordnung mindestens ein minimales Element besitzt.

Aufgabe 17

Zeigen Sie, dass die Relation "gleichmächtig" eine Äquivalenzrelation ist.

Aufgabe 18

Sei A eine abzählbar unendliche Menge. Zeigen Sie, dass A und \mathbb{N} gleichmächtig sind.

Aufgabe 19

Zeigen Sie, dass die Vereinigung von endlich vielen abzählbaren Mengen abzählbar ist.

Sei C eine Menge von Mengen, die wie folgt definiert ist.

- $\emptyset \in C$.
- Falls $S_1 \in C$ und $S_2 \in C$ sind, dann ist auch $\{S_1, S_2\} \in C$.
- Falls $S_1 \in C$ und $S_2 \in C$ sind, dann ist auch $S_1 \times S_2 \in C$.
- ullet Keine anderen Elemente sind in C außer denen, die durch die ersten drei Regeln abgeleitet werden können.
- 1. Erklären Sie, warum $\{\emptyset, \{\emptyset\}\}\} \in C$.
- 2. Zeigen oder widerlegen Sie, dass C unendliche Mengen enthält.
- 3. Ist C abzählbar oder Überabzählbar unendlich? Beweisen Sie Ihre Antwort.

Aufgabe 21

Zeigen Sie, dass $\mathbb{N} \times \mathbb{N}$ abzählbar ist.

Aufgabe 22

Zeigen Sie, dass die Vereinigung von abzählbar vielen abzählbaren Mengen wieder abzählbar ist.

Aufgabe 23

Zeigen Sie mittels vollständiger Induktion, dass

$$\sum_{i=0}^{n} i \cdot (i+1) \cdot (i+2) = \frac{n \cdot (n+1) \cdot (n+2) \cdot (n+3)}{4}.$$

Aufgabe 24

Zeigen Sie mittels vollständiger Induktion, dass falls $n \ge 0$, dann ist $n^4 - 4n^2$ teilbar durch 3.

Aufgabe 25

Zeigen Sie, dass für jede natürliche Zahl $n \in \mathbb{N}_0$ gilt, dass

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1.$$

Aufgabe 25 B*

Zeigen Sie für jedes $x \neq 1, x \in \mathbb{R}$, dass

$$\sum_{i=1}^{n} ix^{i-1} = \frac{1 - (n+1)x^n + nx^{n+1}}{(1-x)^2}$$

gilt.

Sei S eine beliebige Teilmenge von \mathbb{N} mit |S|=1000. Zeigen Sie, dass es mindestens ein Paar von Elementen $x \neq y$ gibt, so dass x-y durch 573 teilbar ist. Verwenden Sie zum Beweis das Schubfachprinzip.

Aufgabe 27

Zeigen Sie: Für jede endliche Menge A gilt $|2^A| = 2^{|A|}$.

Aufgabe 28

Zeigen Sie, dass die Summe der ersten $n, n \ge 1$ ungeraden Zahlen gleich n^2 ist.

Aufgabe 29

Sei $n \ge 1$ eine natürliche Zahl. Zeigen Sie, dass n das Produkt von Primzahlen ist.

Aufgabe 30

Zeigen Sie, dass jeder Geldbetrag von mindestens 4 Cents mit Zwei- und Fünfcentstücken bezahlt werden kann.

Aufgabe 31

Sei R eine binäre Relation auf einer endlichen Menge A. Zeigen Sie, dass falls in R eine Kette der Länge |A|+1 existiert, dann gibt es in R einen Kreis.

Aufgabe 32

Zeigen Sie, dass die Menge $2^{\mathbb{N}}$ überabzählbar ist.

Aufgabe 33*

Gegeben sei eine nichtleere Menge A. Geben Sie jeweils eine Relation auf A an, die

- 1. (2 Punkte) reflexiv und transitiv, aber nicht symmetrisch,
- 2. (2 Punkte) reflexiv und symmetrisch, aber nicht transitiv, und
- 3. (2 Punkte) symmetrisch und transitiv, aber nicht reflexiv ist.

2. Modulare Arithmetik

Beweisen Sie folgende Teilbarkeitsregeln:

- 1. $a|b \Rightarrow a|bc$, für alle $c \in \mathbb{Z}$.
- 2. $(a|b \text{ und } b|c) \Rightarrow a|c \text{ (Transitivität)}.$
- 3. $(a|b \text{ und } a|c) \Rightarrow a|(sb+tc) \text{ für alle } s,t \in \mathbb{Z}.$
- 4. $(a|(b+c) \text{ und } a|b) \Rightarrow a|c$.
- 5. Falls $c \neq 0$, dann gilt $a|b \Leftrightarrow ac|bc$.
- 6. Für $a, b \in \mathbb{N}$ gilt $a|b \Rightarrow a \leq b$.

Aufgabe 2

Zeigen Sie: Seien $d \in \mathbb{N}_0$, $x \equiv y \mod n$ und $a \equiv b \mod n$. Dann gilt

- 1. $x + a \equiv y + b \mod n$.
- 2. $x a \equiv y b \mod n$.
- 3. $xa \equiv yb \mod n$.
- 4. $x^d \equiv y^d \mod n$.

Aufgabe 3

Fibonacci-Zahlen f_0, f_1, \ldots sind rekursiv wie folgt definiert: $f_0 := 0, f_1 := 1$ und $f_{n+2} := f_{n+1} + f_n$ für $n \ge 0$. Zeigen Sie, dass je zwei aufeinanderfolgende Fibonacci-Zahlen f_n und f_{n+1} teilerfremd sind, d.h. $ggT(f_n, f_{n+1}) = 1$ für alle $n \ge 0$.

Aufgabe 4

Seien $a, b \in \mathbb{Z}$, $b \neq 0$. Zeigen Sie, dass es eindeutig bestimmte Zahlen $q, r \in \mathbb{Z}$ gibt, so dass a = qb + r und $0 \leq r < |b|$.

Aufgabe 5

Seien $a, b \in \mathbb{Z}$. Zeigen Sie: es gilt $a \equiv b \mod n$ genau dann, wenn a - b durch n teilbar ist.

Aufgabe 6

Seien $a,b\in\mathbb{Z}$ ungleich Null. Zeigen Sie, dass dann ggT(a,b) die kleinste positive Linearkombination von a und b ist.

Aufgabe 7

Seien $a, b \in \mathbb{Z}$ und $n \in \mathbb{N}$. Zeigen Sie: $(n|ab \text{ und } ggT(a, n) = 1) \Rightarrow n|b$.

Seien $a, b \in \mathbb{Z}$ und $n \in \mathbb{N}$. Zeigen Sie: $ggT(n, a) = ggT(n, b) = 1 \Rightarrow ggT(n, ab) = 1$.

Aufgabe 9

Seien $a, x, y \in \mathbb{Z}$ und $n \in \mathbb{N}$. Beweisen Sie, dass falls ggT(a, n) = 1 und $ax \equiv ay \mod n$, dann gilt auch $x \equiv y \mod n$.

Aufgabe 10

Seien R eine Repräsentantenmenge modulo n und $a \in \mathbb{Z}$ mit ggT(a, n) = 1. Zeigen Sie, dass dann auch aR eine Repräsentantenmenge modulo n ist.

Aufgabe 11

Seien $a,n\in\mathbb{N}$ und ggT(a,n)=1. Zeigen Sie, dass dann $ax\equiv b\ mod\ n$ in \mathbb{Z} lösbar und die Lösung modulo n eindeutig ist.

Aufgabe 12

Zeigen Sie: Für eine ganze Zahl a existiert ihr multiplikatives Inverses modulo n genau dann, wenn a relativ prim zu n ist.

Aufgabe 13

Der Algorithmus EUKLID terminiert nach höchstens $2\lceil \log b \rceil$ Schleifendurchläufe.

Aufgabe 14

Erweitern Sie den Algorithmus EUKLID, so dass dieser auch die Linearkombination des ggT(a,b) der Eingaben a und b ausgibt.

Aufgabe 14

- 1. Bestimmen Sie mittels Euklidischen Algorithmus den ggT(348,124) und geben Sie dabei alle Schritte explizit an.
- 2. Sei a = 61 und n = 130. Bestimmen Sie das multiplikative Inverse von $a \mod n$.

Aufgabe 16

Zeigen Sie, dass für alle ganzen Zahlen $a, b \in \mathbb{Z}$ und $n \geq 1$ gilt: $ggT(an, bn) = n \ ggT(a, b)$.

Beweisen Sie den Fundamentalsatz der Arithmetik.

Aufgabe 18

Bestimmen Sie die kleinste von 1 verschiedene natürliche Zahl x_0 , die die folgenden Kongruenzen gleichzeitig erfüllt:

$$x_0 \equiv 2 \bmod 3$$
$$x_0 \equiv 3 \bmod 5$$

 $x_0 \equiv 5 \mod 2$

Aufgabe 19

Zeigen Sie: Die Gleichung $ax \equiv b \mod n$ hat eine Lösung in \mathbb{Z}_n genau dann, wenn b durch ggT(a,n) teilbar ist.

3. Algebraische Strukturen

Aufgabe 1

Beweisen Sie folgende Gruppeneigenschaften:

Sei (G, \circ, e) eine Gruppe. Dann gilt

- 1. Jedes Element $x \in G$ besitzt genau ein Inverses $x^{-1} \in G$.
- 2. Für alle $x \in G$ gilt $(x^{-1})^{-1} = x$.
- 3. Für alle $x, y \in G$ gilt $(x \circ y)^{-1} = y^{-1} \circ x^{-1}$.
- 4. Für alle $x,y,z\in G$ gilt $(x\circ y=x\circ z\Rightarrow y=z)$ und $(y\circ x=z\circ x\Rightarrow y=z).$
- 5. Für alle $a, b \in G$ existiert genau ein $x \in G$ mit $a \circ x = b$ und genau ein $y \in G$ mit $y \circ a = b$.

Aufgabe 2

- 1. Beweisen Sie, dass eine Halbgruppe (M, \circ) höchstens ein neutrales Element besitzen kann.
- 2. Beweisen Sie die Eindeutigkeit der Elemente $x:=a^{-1}\circ b$ und $y:=b\circ a^{-1}$ als Lösungen der Gleichungen $a\circ x=b$ und $y\circ a=b$.

Aufgabe 3

Bezeichne S_n die Menge aller bijektiven Abbildungen $f:\{1,2,...,n\}\to\{1,2,...,n\}$, d.h. die Menge aller Permutationen von 1,2,...,n. Als Verknüpfung \circ der Permutationen nehmen wir ihre Hintereinanderausführung, d.h. $f\circ g(x)=f(g(x))$. Bezeichne e die identische Permutation, d.h. e(x)=x. Zeigen Sie, dass (S_n,\circ,e) eine Gruppe ist. Ist diese Gruppe kommutativ? Beweisen Sie Ihre Antwort.

Aufgabe 4

Sei $m \in \mathbb{N}$. Zeigen Sie, dass $(m\mathbb{Z}, +, 0)$ eine Untergruppe von $(\mathbb{Z}, +, 0)$ ist.

Aufgabe 5

Zeigen Sie: Seien (G, \circ, e) eine Gruppe und $H \subseteq G$. Dann ist (H, \circ) genau dann eine Gruppe, wenn gilt:

- $a, b \in H \Rightarrow a \circ b \in H$, für alle $a, b \in G$,
- $e \in H$ und
- $a \in H \Rightarrow a^{-1} \in H$.

Aufgabe 6

Zeigen Sie: Seien (G, \circ, e) eine Gruppe und $H \subseteq G$. Dann ist (H, \circ) genau dann eine Untergruppe von G, wenn $H \neq \emptyset$ und $\forall a, b \in G : a, b \in H \Rightarrow ab^{-1} \in H$.

Seien n eine natürliche Zahl und $\mathbb{Z}_n^{\times} := \{a \in \mathbb{Z}_n | a \neq 0 \text{ und } ggT(a,n) = 1\}$. Außerdem bezeichne · die Multiplikation modulo n. Zeigen Sie, dass dann $(\mathbb{Z}_n^{\times}, \cdot)$ eine kommutative Gruppe ist.

Aufgabe 8

Seien $H \subseteq \mathbb{Z}$ und (H, +, 0) eine nichttriviale Untergruppe von $(\mathbb{Z}, +, 0)$. Zeigen Sie, dass dann $H = m\mathbb{Z}$ für ein $m \in \mathbb{N}$ gilt.

Aufgabe 9

Sei (H, \circ, e) eine Untergruppe der Gruppe (G, \circ, e) . Zeigen Sie, dass jedes Element $x \in G$ zu genau einer Linksklasse bezüglich H gehört.

Aufgabe 10

Seien (H', \circ, e) und (H'', \circ, e) Untergruppen der Gruppe (G, \circ, e) mit $H'' \subseteq H'$. Zeigen Sie:

$$[G:H^{''}] = [G:H^{'}] \cdot [H^{'}:H^{''}]$$

Aufgabe 11

Sei (G, \circ, e) eine Gruppe und (H, \circ, e) eine Untergruppe von G. Zeigen Sie: ord $G = ord H \cdot ind H$.

Aufgabe 12

Seien (G, \circ, e) eine endliche Gruppe und $a \in G$. Beweisen Sie, dass $H_a := \{a^0, a^1, ...\}$ eine Untergruppe von G ist.

Aufgabe 13

Beweisen Sie, dass zwei zyklische Gruppen genau dann isomorph sind, wenn sie dieselbe Ordnung haben.

Aufgabe 14

Sei $(\mathbb{F},+,\cdot,0,1)$ ein Körper. Beweisen Sie für alle $x,y\in\mathbb{F}$ folgende Köpereigenschaften:

- 1. $0 \cdot x = 0$
- 2. $(-x) \cdot y = x \cdot (-y) = -(x \cdot y)$
- 3. $(-x)^{-1} = -x^{-1}$ für $x \neq 0$
- 4. $x \cdot y = 0 \Rightarrow x = 0$ oder y = 0.

Seien (G, \circ, e) eine Gruppe und $H \subseteq G$ eine Untergruppe von G. $a, b \in G$ heißen äquivalent $a \sim b$, wenn $a^{-1}b \in H$.

- 1. Zeigen Sie, dass \sim eine Äquivalenzrelation ist.
- 2. Zeigen Sie, dass die Äquivalenzklassen der Relation \sim genau die Linksklassen bezüglich H sind.
- 3. Beweisen Sie, dass $a \circ H$ und H gleichmächtig sind.

Aufgabe 16

Seien (G, \circ, e) eine endliche Gruppe und $a \in G$. Zeigen Sie, dass dann $a^{ord G} = e$ gilt.

Aufgabe 17

Sei (G, \circ, e) eine endliche Gruppe und $a \in G$. Beweisen Sie, dass $H_a = \{a^0, a^1, ..., a^{ord\ a}\}$ eine Untergruppe von G ist.

Aufgabe 18

Sei $\mathbb{R}_{\geq 0}$ bzw. $\mathbb{R}_{> 0}$ die Menge aller reellen Zahlen x mit $x \geq 0$ bzw. x > 0. Ferner sei die Abbildung f: $(\mathbb{R}_{\geq 0}, +, 0) \to (\mathbb{R}_{> 0}, \cdot, 1)$ mit $f(x) := 2^x$ gegeben. Ist f ein Homomorphismus? Ist die Umkehrabbildung von f ein Homomorphismus? Beweisen Sie Ihre Antworten!

Aufgabe 19

Seien (G, \circ) und (H, *) zwei zyklische Gruppen mit erzeugenden Elementen $a \in G$ und $h \in H$. Ferner sei ord G = ord H. Betrachten Sie die Abbildung $f : G \to H$, wobei $f(g^k) := h^k$ für k = 0, 1, 2, Beweisen Sie, dass die Abbildung f bijektiv ist.

Aufgabe 20

Sei p eine Primzahl. Zeigen Sie, dass dann $(\mathbb{Z}_p, +, \cdot, 0, 1)$ ein Körper ist.

4. Einführung in die Logik

Aufgabe 1

Zwei aussagenlogische Ausdrücke ϕ_1 und ϕ_2 heißen äquivalent $\phi_1 \equiv \phi_2$, falls für jede Belegung B, mit B ist für ϕ_1 und für ϕ_2 geeignet, gilt $B \models \phi_1 \Leftrightarrow B \models \phi_2$. Zeigen Sie, dass \equiv eine Äquivalenzrelation ist.

Aufgabe 2

Geben Sie die kürzesten Ausdrücke für die folgenden Ausdrücke an. Beweisen Sie die Äquivalenz.

- 1. $y \land \neg y \to x \lor \neg x$
- 2. $x \to (x \land y)$
- 3. $(y \to x) \lor x$
- 4. $((x \land y) \leftrightarrow (y \lor z)) \rightarrow \neg y$
- 5. $\neg((x \land y) \leftrightarrow (x \land (y \lor z)))$

Gegeben sei folgender aussagenlogischer Ausdruck

$$(\neg x_1 \land x_2) \lor ((\neg x_1 \lor x_2) \land ((\neg x_1 \land \neg x_2) \lor x_3))$$

Leiten Sie aus diesem einen äquivalenten Ausdruck in disjunktiver Normalform ab.

Aufgabe 4

Beweisen Sie folgende Gesetze der Aussagenlogik:

- 1. Idempotenz
- 2. Kommutativität
- 3. Assoziativität
- 4. Absorption
- 5. Distributivität
- 6. Doppelte Negation
- 7. De Morgan.

Aufgabe 5

Zeigen Sie, dass jeder aussagenlogischer Ausdruck ϕ äquivalent zu einem Ausdruck in KNF und zu einem Ausdruck in DNF ist.

Aufgabe 6

Zeigen Sie, dass für zwei beliebige aussagenlogische Ausdrücke ϕ_1 und ϕ_2 genau dann $\phi_1 \equiv \phi_2$ gilt, wenn $\phi_1 \leftrightarrow \phi_2$ eine Tautologie ist.

Aufgabe 7

Betrachten Sie folgende Klauselmengen. Geben Sie möglichst kurze Deduktionen von \square aus \mathcal{K}_i für $1 \leq i \leq 3$ an. Geben Sie bei Resolventen die Klauseln an, aus denen sie gebildet wurden.

- 1. $\mathcal{K}_1 := \{\{x, y, \neg z\}, \{\neg x\}, \{x, y, z\}, \{x, \neg y\}\}.$
- 2. $\mathcal{K}_2 := \{\{x,y\}, \{x, \neg y, z\}, \{\neg x\}, \{\neg y, \neg z\}\}.$
- 3. $\mathcal{K}_3 := \{\{\neg x, \neg y, \neg z\}, \{\neg w, x\}, \{w\}, \{y\}, \{\neg v, z\}, \{v\}\}.$

Zeigen Sie, dass folgende Paare von prädikatenlogischen Ausdrücken nicht äquivalent sind:

```
1. (\forall x : P(x)) \lor (\forall x : Q(x)) und \forall x : P(x) \lor Q(x)
2. (\exists x : P(x)) \land (\exists x : Q(x)) und \exists x : P(x) \land Q(x)
```

Aufgabe 9

Beweisen Sie folgende Behauptungen:

- 1. Für jeden aussagenlogischen Ausdruck ϕ gibt es einen äquivalenten aussagenlogischen Ausdruck ϕ' der keine Disjunktion enthält.
- 2. Jeder Term in einem prädikatenlogischen Ausdruck hat eine gerade Anzahl von Klammern.

Aufgabe 10

Zeigen Sie: Seien \mathcal{K} eine Klauselmenge, $K_1, K_2 \in \mathcal{K}$ und D eine Resolvente von K_1 und K_2 . Dann sind \mathcal{K} und $\mathcal{K}' := \mathcal{K} \cup D$ äquivalent.

Aufgabe 11

Zeigen Sie, dass eine Klauselmenge \mathcal{K} genau dann unerfüllbar ist, wenn $\square \in R^*(\mathcal{K})$.

Aufgabe 12

Zeigen Sie: Seien ϕ ein Ausdruck über Σ und M und $M^{'}$ zwei für Σ geeignete Strukturen. Falls M und $M^{'}$ bzgl. ϕ sich nur in Werten, die diese Variablen, die im ϕ nicht frei sind, zuweisen, unterscheiden, dann gilt genau dann $M \models \phi$ wenn $M^{'} \models \phi$.

Aufgabe 13

Beweisen Sie folgende Behauptungen:

- 1. Jeder Ausdruck der Form $\forall x \ \phi \rightarrow \phi[x := t]$ ist gültig.
- 2. Falls ϕ gültig ist, dann ist auch $\forall x \ \phi$ gültig.

Aufgabe 14

- 1. (a) Zeigen Sie: Falls x nicht frei in ϕ vorkommt, dann ist der Ausdruck $\phi \to \forall x \ \phi$ gültig.
 - (b) Geben Sie ein Beispiel an, in dem x in ϕ frei vorkommt und der Ausdruck $\phi \to \forall x \ \phi$ ungültig ist
- 2. Zeigen Sie: Für alle ϕ und ψ ist der Ausdruck $(\forall x \ (\phi \to \psi)) \to ((\forall x \ \phi) \to (\forall x \ \psi))$ gültig.

Seien ϕ und ψ beliebige prädikatenlogische Ausdrücke. Zeigen Sie, dass dann folgendes gilt

- 1. $\forall x(\phi \land \psi) \equiv (\forall x \ \phi \land \forall x \ \psi).$
- 2. Falls x nicht frei in ψ vorkommt, dann $\forall x(\phi \land \psi) \equiv (\forall x \ \phi \land \psi)$.
- 3. Falls x nicht frei in ψ vorkommt, dann $\forall x(\phi \lor \psi) \equiv (\forall x \ \phi \lor \psi)$.

Aufgabe 16

Seien ϕ und ψ beliebige prädikatenlogische Ausdrücke. Zeigen Sie, dass dann folgendes gilt

- 1. Falls y nicht in ϕ vorkommt, dann $\forall x \ \phi \equiv \forall y \ \phi[x := y]$.
- 2. $\neg \forall x \ \phi \equiv \exists x \ \neg \phi$.
- 3. $\neg \exists x \ \phi \equiv \forall x \ \neg \phi$.

Aufgabe 17

Zeigen Sie: Jeder prädikatenlogischer Ausdruck kann in einen äquivalenten Ausdruck in Pränexnormalform transformiert werden.

Aufgabe 18

Bringen Sie folgende prädikatenlogische Ausdrücke in Pränexnormalform und geben Sie dabei alle Zwischenschritte an:

- 1. $(\exists x (P(x,y))) \rightarrow (\exists x (Q(x,x)))$
- 2. $\neg(\forall x(F(x,y) \to G(x,z)) \land \forall x, \forall y \ H(x,y))$
- 3. $\neg \exists z (F(z) \land \exists x (G(x,x) \land G(z,x)))$

Beim Umformen achten Sie auf den Gültigkeitsbereich der quantifizierten Variablen.

Aufgabe 19*

- 1. Geben Sie den Resolutionssatz an.
- 2. Geben Sie den Resolutionsalgorithmus an.

Aufgabe 20*

Sei

$$\alpha = (x_1 \wedge x_2) \vee \neg x_3 \vee (x_4 \wedge \neg x_5 \wedge (\neg x_1 \vee x_6)).$$

Geben Sie einen zu α äquivalenten Ausdruck in KNF sowie in DNF an.

Aufgabe 21*

Zeigen Sie, dass falls $\Delta \cup \{\neg \phi\}$ inkosistent ist, dann gilt auch $\Delta \vdash \phi$.

5. Automatentheorie und formale Sprachen

Aufgabe 1

Zeigen Sie: Zu jedem NEA $M_1=(Q,\sum,\delta,q_0,F)$ existiert ein äquivalenter DEA $M_2=(Q',\sum,\delta',q_0',F')$.

Aufgabe 2

Sei $M=(Q,\sum,\delta,q_0,F)$ ein DEA. Zeigen Sie, dass dann L(M) regulär ist.

Aufgabe 3

Formulieren Sie den Satz von Myhill und Nerode.

Aufgabe 4

Beweisen Sie den Satz von Myhill und Nerode: Folgende drei Aussage sind äquivalent,

- 1. Die Menge $L\subseteq (\sum)^*$ wird durch einen DEA akzeptiert.
- 2. L ist die Vereinigung einiger Äquivalenzklassen einer rechtsinvarianten Äquivalenzrelation von endlichem Index.
- 3. Sei R_L definiert durch

$$xR_Ly \Leftrightarrow \forall z \in (\sum)^* : xz \in L \Leftrightarrow yz \in L$$

Dann hat die Äquivalenz
relation ${\cal R}_L$ einen endlichen Index.

Aufgabe 5

Geben Sie den Zusammenhang zwischen dem Satz von Myhill und Nerode und der Minimierung der DEAs an.

Aufgabe 6

- 1. Formulieren Sie das Pumping-Lemma für reguläre Sprachen.
- 2. Zeigen Sie, dass $L^1 := \{a^n b^n \mid n \in \mathbb{N}\}$ und $L^2 := \{0^m \$ 0^m \mid m \in \mathbb{N}\}$ nicht regulär sind.
- 3. Beweisen Sie das Pumping Lemma für reguläre Sprachen.

Aufgabe 7

Zeigen Sie, dass reguläre Mengen unter Durchschnittsbildung abgeschlossen sind.

Die mit * gekennzeichneten Aufgaben sind neu. Des Weiteren werden keine neuen Aufgaben gestellt.