物理实验报告

学号: __12311004 __ 姓名: 刘达洲 日期: __2025.3.28 __ 时间: 周五下午

1 实验目的

学习落球法测量液体黏度的原理和方法,掌握黏度测定实验的操作技术及数据处理方法。

2 实验原理

小球在液体中下落时受到三个力的作用:

$$F = G - F_b - F_d \tag{1}$$

其中,重力 $G = \frac{1}{6}\pi d^3 \rho g$,浮力 $F_b = \frac{1}{6}\pi d^3 \rho_0 g$, $d \times \rho \times \rho_0$ 分别为小球直径、密度和液体密度。

粘滞阻力的表达式与液体的流动形态密切相关。液体的流动形态分为层流和湍流。层流是一种稳定的流动,整个流动可划分成互不干扰的流动层,粘滞阻力的表达式较为简单;湍流是一种非稳定的流动,伴随着涡旋和混沌边界等现象,粘滞阻力的表达式非常复杂。在流体力学中,液体的流动形态由雷诺数来预测。雷诺数越小,流动形态越接近层流;反之,容易产生湍流。对于小球在液体中下落的情形,雷诺数的定义为

$$Re = \frac{v\rho_0 d}{\eta} \qquad (2)$$

其中, η 表示液体黏度, ν 表示小球下落速度。不难验证, 本实验的相关参数可保证 $Re \ll 1$, 流动形态为层流, 且粘滞阻力的表达式可简化为

$$F_d = 3\pi \eta dv \qquad (3)$$

此即著名的 Stokes 公式。

由 Stokes 公式可知, 在小球加速下落的过程中, 粘滞阻力不断增加。最终, 小球会达到一个终止速度 v_f , 此时粘滞阻力与重力、浮力达到平衡, 即

$$3\pi \eta dv_f = \frac{1}{6}\pi d^3 (\rho - \rho_0) g \qquad (4)$$

达到平衡后, 小球以速度 v_f 匀速下落。由方程 (4) 可得黏度计算公式

$$\eta = \frac{1}{18} \cdot \frac{d^2 \left(\rho - \rho_0\right) g}{v_f}$$

注意,上述黏度计算公式仅适用于液体无限宽广的理想情况。由于本实验中的液体处在量筒中,因而计算黏度时需要使用 Ladenburg 修正公式

$$\eta = \frac{1}{18} \cdot \frac{d^2 g \left(\rho - \rho_0\right)}{v_f (1 + 2.4d/D)(1 + 1.7d/H)} \tag{5}$$

其中,D 和 H 分别代表液柱的直径和高度。上述方程等号右边分母中的两个因子 (1 + 1.2d/D) 和 (1 + 1.65d/H) 分别是对容器壁效应和液柱有限高效应作出的修正。

3 实验器材

量筒, 蓖麻油 (密度 $0.96g/cm^3$), 温度计, 钢尺, 游标卡尺, 钢球, 秒表

4 实验内容

- 1. 用温度计测量实验室温度,实验开始和结束时各测一次,取平均值;
- 2. 用钢尺测量液柱高度 H;
- 3. 用游标卡尺测量液柱直径 D;
- 4. 量筒上均匀地分布着 9 道容积刻度线,分别对应于 100ml, 200ml, 300ml, 400ml, 500ml, 600ml, 700ml, 800ml 和 900ml。测量量筒相邻刻度线间距 *L*;
- 5. 选取三种钢球,按直径从小打到大,分别标记为 A, B 和 C,并用千分尺测量直径;
- 6. 用电子称称量钢球质量;
- 7. 打开秒表,用镊子将钢球 A 移至油面中心附近无初速释放,用秒表依次记录其经过800ml,700ml,600ml,500ml,400ml,300ml,和100ml8个刻线处的时刻。对于钢球 B 和 C,进行类似操作,记录相应时刻。每种球释放三个;
- 8. 绘制钢球下落的 s-t 图像, 并通过拟合确定各自终止速度;
- 9. 对每种钢球,根据公式(6)分别计算蓖麻油黏度 η_A 、 η_B 和 η_C

5 实验结果

画出的 s-t 图像如下图所示:

拟合得到的 R^2 均接近 1,说明拟合较为准确。 将数据带入上面的公式,计算得到:

计算得到的每个测量的速度:

速度 v_C1: 2.92 cm/s

速度 v_C2: 2.91 cm/s

速度 v_C3: 2.97 cm/s

速度 v_B1: 1.91 cm/s

速度 v_B2: 1.90 cm/s

速度 v_B3: 1.91 cm/s

速度 v_A1: 1.12 cm/s

速度 v_A2: 1.12 cm/s

速度 v_A3: 1.12 cm/s

计算得到的平均速度 (每个小球):

平均速度 v_A: 1.12 cm/s

平均速度 v_B: 1.91 cm/s

平均速度 v_C: 2.93 cm/s

使用平均速度计算得到的黏度 (每个小球):

黏度 η_A: 7.030271403618851 g/(cm·s)

黏度 η_B: 7.181458627089079 g/(cm·s)

黏度 η C: 7.123766789013336 g/(cm·s)

验算雷诺数:

计算得到的平均雷诺数 (每个小球):

平均雷诺数 Re_A: 0.0229

平均雷诺数 Re_B: 0.0509

平均雷诺数 Re_C: 0.0986

雷诺数均小于 0.1, 可以取零级解, 无需因雷诺数对黏度计算公式进行额外修正。

6 实验结论

根据公式, 计算得到

 $\eta_A = 7.03 \ g/(cm * s), \ \eta_B = 7.18 \ g/(cm * s), \ \eta_C = 7.12 \ g/(cm * s)$

7 思考题

- 1. **本实验为何要测量实验室温度?**液体的黏度与温度密切相关,蓖麻油的黏度随温度升高显著降低。实验中测量温度可修正温度对黏度的影响,确保计算结果准确。同时,温度变化可能导致液体密度 ρ_0 变化,需通过温度平均值提高参数可靠性。
- 2. **分别计算三种钢球下落的雷诺数,看其是否满足** $Re \ll 1$ **?** 雷诺数计算公式为 $Re = \frac{v\rho_0 d}{\eta}$ 。 代入各钢球的 v_f (匀速段速度)、直径 d、蓖麻油密度 ρ_0 及计算出的黏度 η 。计算得到满足 $Re \ll 1$ 。
- 3. **哪种钢球最先达到终止速度?**直径最大的钢球(C)最先达到终止速度。因其质量大,初始加速度高,粘滞阻力随速度增长更快,更快达到 $F_d = G F_b$ 的平衡状态。

8 误差来源分析

- 1. **温度波动误差**: 蓖麻油黏度对温度敏感,实验过程中温度变化未被实时监测,仅取首末温度平均值,导致黏度计算偏差。
- 2. **容器壁修正误差**: Ladenburg 修正公式 (1 + 2.4d/D)(1 + 1.7d/H) 的系数适用范围有限,若量简直径 D 或液高 H 测量不准,修正因子引入系统误差。
- 3. **计时人为误差**: 手动秒表记录小球经过刻度线时刻存在反应延迟,尤其小球下落后期速度较快时,时间记录误差放大。
- 4. **尺寸测量误差**:游标卡尺测量钢球直径 d 时未多位置测量,球体不规则性未被消除;量简直径 D 测量忽略刻度线内径与真实液柱直径差异。
- 5. **液体扰动影响**: 多次释放钢球导致蓖麻油产生湍流或温度梯度,破坏层流条件,后续小球下落速度 v_f 偏离理论值。
- 6. **匀速段判定误差**: 拟合 s-t 曲线时,若未准确选取匀速段数据点(如包含加速段),导致 v_f 拟合值偏大。
- 7. **钢球密度计算误差**: 电子秤称量质量时环境振动或球表面附着油膜未被清除, 导致 ρ 计算偏差, 影响 η 结果。

9 实验数据

T_1	T_2	T'	
23.2	23.5	23.4	

表 2: 2. 液柱高度 (cm)

	1,5 - 1	. /		
H_1	H_2	H_3	\overline{H}	
33.05	33.08	33.10	33.77	

表 3: 3. 液柱直径 (cm)

D_1	D_2	D_3	\overline{D}	
6.020	6.032	6.018	6.023	

表 4: 4. 刻线间距 (700ml 刻线到 800ml 刻线) (cm)

L_1	L_2	L_3	\overline{L}	
3.45	3.42	3.41	3.43	

表 5: 5. 小球直径 (mm)

	Φ_A	Φ_B	Φ_C				
	1.500 1.499 1.501	1.999 2.000 1.998	2.495 2.497 2.494				
平均	1.500	1.999	2.495				

表 6: 6. 小球质量 (g) 0.0637

表 7: 数据表格

名称	C 球 1	C 球 2	C 球 3	B 球 1	B 球 2	B 球 3	A 球 1	A 球 2	A 球 3
t_{800}	10.77	3.41	5.16	5.68	4.26	7.95	8.66	11.80	8.37
t_{700}	11.87	4.60	6.28	7.30	6.04	9.77	11.76	15.10	11.45
t_{600}	13.12	5.77	7.95	9.15	7.88	11.49	14.82	18.00	14.46
t_{500}	14.29	6.95	8.73	11.00	9.66	13.38	17.84	21.00	17.57
t_{400}	15.37	8.18	9.85	12.62	11.48	15.12	20.91	24.13	20.57
t_{300}	16.62	9.27	11.00	14.65	13.38	16.88	23.95	27.29	23.70
t_{200}	17.79	10.50	12.16	16.35	15.12	18.72	26.94	30.26	26.87
t_{100}	18.99	11.68	13.30	18.15	16.85	20.56	30.12	33.32	29.82