## Due Date: 22 December 2014, Monday (10:30).

## **Homework 5**

- 1) Consider a (causal-stable) LTI system with system function H(z) whose pole-zero diagram is shown in the figure.
- **a)** Express H(z) as  $H(z) = H_{\min}(z) H_{ap}(z)$  where  $H_{\min}(z)$  and  $H_{ap}(z)$  are minimum-phase and all-pass system functions, respectively. Show your work!
- **b)** Find  $H_1(z)$  and  $H_2(z)$  such that  $H_{\min}(z) = H_1(z) H_2(z)$  and  $H_1(z)$  and  $H_2(z)$  have, roughly, low-pass and high-pass frequency responses, respectively. Show your work!
- c) Find  $\left|H_1(e^{j\frac{\pi}{3}})\right|$  using a purely geometric approach on the polezero plot of  $H_1(z)$ . Show your work!



2)

a) Let  $H(z) = \sum_{n=0}^{N} h[n]z^{-n}$  be a generalized linear-phase filter of Type-I. Define  $g[n] = h[n]\cos\left(w_0[n-K]\right)$ 

where K is an integer and  $w_0$  is a rational multiple of  $\pi$ . Find K such that G(z) has generalized linear-phase.

- **b)** Let  $x[n] = \cos(w_0 n)$  be the input to a Type-I generalized linear-phase filter of length N+1. Find an expression (in terms of the filter coefficients h[n],  $w_0$  and N) for the output of this filter, y[n], in its <u>simplest</u> form.
- c) Assume that  $H_1(z)$  is a Type-III filter. <u>Prove</u> that it has two zeros on the real axis. Find the locations of these zeros as well.
- d) Assume that  $H_2(z)$  is a complex coefficient generalized linear-phase filter of length 3. Plot all the possible cases of its zero plots.
- 3) The following *complex multiplier* block diagram is given operating based on the relation:

$$(x_1[n] + j x_2[n]) (\alpha + j \beta) = y_1[n] + j y_2[n] \quad (j = \sqrt{-1}).$$

In this equation,  $\alpha$  and  $\beta$  are real numbers, whereas  $x_1[n]$ ,  $x_2[n]$ ,  $y_1[n]$  and  $y_2[n]$  are all real signals.



- a) Plot signal flow graph representation of the system above, such that only 3 multipliers are used.
- **b)** Given an extra constraint,  $x_2[n] = y_2[n-1]$ , determine transfer function  $H(z) = Y_1(z)/X_1(z)$ .
- c) Find the conditions on  $\alpha$  and  $\beta$ , such that H(z) is a stable all-pass function.
- d) Let H(z) denote a similar system to the all-pass system, H(z), in part (c) with the only difference that the parameter  $\alpha$  is replaced by  $-\alpha$  for the figure above. Determine the phase angle value of the system  $H(z) + \overline{H}(z)$  at the particular frequency,  $w = \pi/2$ .

- 4) Given the following flow graph,
  - a) Find the transfer function, H(z).
  - b) Plot the direct form II structure.
  - c) Plot the transposed direct form II structure.
  - d) Determine if this structure corresponds to an IIR or FIR system. Find  $d_1$  and  $d_2$  such that the system is casual and stable.



## 5) Matlab Part:

Consider the following system:

$$H(z) = \frac{(1 - 2z^{-1})(z + 2)\left(z - \frac{1}{2}\right)}{1 - \frac{1}{2}z^{-1} + \frac{1}{2}z^{-2}}$$

- a) Draw the pole-zero diagram of H(z), plot the magnitude, phase and group-delay of H(z)
- **b)** Express this system as  $H(z) = H_{min}(z)H_{ap}(z)$
- c) Plot the magnitude, phase and group-delay of  $H_{min}(z)$  and  $H_{ap}(z)$
- d) Let

$$H_i(z) = \frac{1}{H_{min}(z)}$$

Plot the magnitude, phase and group-delay of  $H_T(z) = H_i(z)H(z)$ . Comment on your results.