Задачи со звёздочками по курсу "Математический анализ-1". Часть 4.

 Φ КН, Пилотный поток, 1-й курс, 2024/2025 уч. г.

Для максимальной оценки нужно набрать не менее 80 баллов.

Дедлайн: 14. 05. 2025, 23:59

- **1. а)** (3 балла). Найдите для кривой $x^3 + y^3 = 3xy$ рациональную параметризацию (это значит найти такие рациональные функции φ и ψ , зависящие от вещественной переменной t, что при подстановке φ вместо x, а ψ вместо y в уравнение этой кривой получится верное при всех допустимых t равенство).
 - б) (8 баллов). Докажите, что для кривой

$$y^2 = x(x-1)(x-2)$$

не существует таких многочленов P_1 , P_2 , Q_1 , Q_2 , что функции $y(t) = \frac{P_1(t)}{P_2(t)}$ и $x(t) = \frac{Q_1(t)}{Q_2(t)}$ отличны от констант и удовлетворяют уравнению этой кривой (то есть при подстановке в уравнение кривой y(t) вместо y и x(t) вместо x это уравнение превращается в тождество).

2. а) (7 балюв). Пусть $f \in C^1[0,1]$. Докажите неравенство Пуанкаре:

$$\int_{0}^{1} \left| f(x) - \int_{0}^{1} f(t)dt \right| dx \le \int_{0}^{1} |f'(x)| dx.$$

б) (7 баллов). Пусть $f \in C^1[0,1]$. Докажите неравенство:

$$\int_{0}^{1} |f(x)| dx \le \max \left\{ \int_{0}^{1} |f'(x)| dx, \left| \int_{0}^{1} f(x) dx \right| \right\}.$$

3. (10 баллов). Пусть функция f дважды непрерывно дифференцируема на отрезке [0,1] и

$$f(0) = f(1) = 0, \ f'(0) = a.$$

Найдите минимальное значение $\int_{0}^{1} |f''(x)|^{2} dx$.

4. (10 баллов). Рассмотрев интеграл

$$I_n = \frac{1}{n!} \int_{0}^{\pi/2} \left(\frac{\pi^2}{4} - t^2\right)^n \cos t dt,$$

где $n \in \mathbb{N} \cup \{0\}$, докажите *иррациональность числа* π .

- **5.** Функция $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$ называется дзета-функцией Римана.
- а) (8 баллов). Доказав равенство

$$I_n = \frac{4}{\pi} \frac{(2n)!!}{(2n-1)!!} \int_0^{\pi/2} x^2 \cos^{2n} x dx = \sum_{k=n+1}^{\infty} \frac{1}{k^2},$$

где $n \in \mathbb{N} \cup \{0\}$ и (-1)!! = 1, найдите значение $\zeta(2)$.

- **б)** (6 баллов). Симметричен ли график функции $y = \zeta(x)$ относительно прямой y = x? Ответ обоснуйте.
 - **6. а)** (6 баллов). Исследуйте на сходимость интеграл $\int_{0}^{+\infty} \frac{xdx}{1+x^4\sqrt{x}\sin^2 x}$.

- **б)** (5 баллов). Вытекает ли из сходимости интеграла $\int\limits_{1}^{+\infty} f(x)dx$ сходимость интегралов $\int\limits_{1}^{+\infty} f^3(x)dx$ и $\int\limits_{1}^{+\infty} \frac{|f(x)|}{x^2}dx$?
 - 7. а) (3 балла). Докажите, что из линейной связности множества следует его связность.
- **б)** (6 баллов). Докажите, что если связное множество в \mathbb{R}^d открыто, то оно линейно связно.
- в) (6 баллов). Докажите, что множество $A \subset \mathbb{R}^2$, состоящее из точек графика функции $y = \sin(1/x)$ и множества $\{(x,y) \mid x=0,\ y\in [-1,1]\}$ связно, но не является линейно связным (в \mathbb{R}^2 подразумевается обычная евклидова метрика).
- **8.** (11 баллов). Пусть $f: \mathbb{R}^2 \to \mathbb{R}$ определена на всей плоскости и непрерывна по каждой из переменных x и y при фиксированном значениях другой переменной. Пусть также f(x,y)=0 при $(x,y)\in M$, где M всюду плотное множество в \mathbb{R}^2 . Докажите, что тогда $f\equiv 0$.