если

$$u = f(x + y + z, x^2 + y^2 + z^2).$$

Найти полные дифференциалы первого и второго порядков от следующих сложных функций (х, у и г независимые переменные):

3288.
$$u = f(t)$$
, rate $t = x + y$.

3289.
$$u = f(t)$$
, the $t = \frac{y}{x}$. 3290. $u = f(\sqrt{x^2 + y^2})$.

3291.
$$u = f(t)$$
, rae $t = xyz$. 3292. $u = f(x^2 + y^2 + z^2)$. 3293. $u = f(\xi, \eta)$, rae $\xi = ax$, $\eta = by$.

3293.
$$u = f(\xi, \eta)$$
, где $\xi = ax$, $\eta = by$.

3294.
$$u = f(\xi, \eta)$$
, the $\xi = x + y$, $\eta = x - y$.

3295.
$$u = f(\xi, \eta)$$
, rate $\xi = xy$, $\eta = \frac{x}{\mu}$.

3296.
$$u = f(x + y, z)$$
.

3296.
$$u = f(x + y, z)$$
.
3297. $u = f(x + y + z, x^2 + y^2 + z^2)$.

$$3298. \ u = f\left(\frac{x}{y}, \frac{y}{z}\right).$$

3299.
$$u = f(x, y, z)$$
, rate $x = t$, $y = t^2$, $z = t^3$.

3300.
$$u = f(\xi, \eta, \zeta)$$
, rae $\xi = ax$, $\eta = by$, $\zeta = cz$.
3301. $u = f(\xi, \eta, \zeta)$, rae $\xi = x^2 + y^2$, $\eta = x^2 - y^2$,

 $\zeta = 2xu$.

Найти $d^n u$, если:

3302.
$$u = f(ax + by + cz)$$
. 3303. $u = f(ax, by, cz)$. 3304. $u = f(\xi, \eta, \zeta)$, right $\xi = a_1x + b_1y + c_1z$, $\eta = a_2x + b_2y + c_2z$, $\zeta = a_3x + b_3y + c_3z$.

3305. Пусть u = f(r), где $r = \sqrt{x^2 + y^2 + z^2}$ и f — дважды дифференцируемая функция. Показать, что

$$\Delta u = F(r),$$

где $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} + \frac{\partial^2 u}{\partial z^2}$ — оператор Лапласа, и найти функцию F.

3306. Пусть u и v — дважды дифференцируемые функции и Δ — оператор Лапласа (см. задачу 3305). Доказать, что

$$\Delta (uv) = u \, \Delta v + v \, \Delta u + 2\Delta (u, v),$$

где

$$\Delta\left(u,\ v\right) = \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} + \frac{\partial u}{\partial z} \frac{\partial v}{\partial z}.$$

3307. Показать, что функция

$$u = \ln \sqrt{(x-a)^2 + (y-b)^2}$$