

Path Sensitive MFP Solutions In Presence of Intersecting Infeasible Control Flow Path Segments

Komal Pathade (TCS Research, India)

and

Uday Khedker (IIT Bombay, India)

Outline

Background : Solutions of Data Flow Analysis

Motivation

Our Solution

Experiments and Results

Direction of Future Work

Data Flow Analysis

Values of z at node 5?

Values of z at node 5?

Computes value along each path separately

Node	Value of z	Value of z from paths	
	Blue	Red	
5	z=2	z=0	

- An Infeasible Path
- Approaches exist to detect such paths

Values of z at node 5?

Computes value along each path separately

Node	Value of z	from paths
	Blue	Red
5	z=2	z=0

Values of *z* at node 5?

Computes value along each path separately

Node	Value of z	Value of z from paths	
	Blue	Red	
5	z=2	Z	

- Red path is infeasible so z=0 is discarded, so z=2.
 (Precise)
- Not Scalable: maintains values of the order of O(number of paths * number of nodes)
- Number of paths is exponential.

Maximum Fix Point (MFP) Solutions

Values of *z* at node 5?

Compute range of values reaching along all paths

Node	Value Range of z from all paths
5	z=[0,2]

- Scalable: computes only one value per program point
- Imprecise: z=0 is included which reaches along infeasible path (marked in red)

Scalability and Precision Trade-off

Partially Path Sensitive Solutions

Values of z at node 5?

Node	Value range of z from		
	Feasible Paths Infeasible segment sta		
	Red		
4	z=[2,2]	z=[0,0]	
5	z=[2,2] $z=[0,0]$		
6	z=[2,2]	z=[0,0]	

Values of z at node 5?

art

Values of z at node 5?

Compute range of values along feasible and infeasible path separately

Value range of z from		
Feasible Paths	Infeasible segment start	
	Red	
z=[2,2]	z = [0,0]	
z=[2,2]	z= (0]	
z=[2,2]	z=[0,0]	
	Feasible Paths $z=[2,2]$ $z=[2,2]$	

The final range is meet of ranges from all buckets (except discarded ranges)

Green Path Segment is also Infeasible

Values of z at node 5?

Compute range of values along feasible and infeasible path separately

Node	Value range of z from		
	Feasible Paths Infeasible segment st		
		Red	
4	z=[2,2]	z = [0,0]	
5	z=[2,2]	z= [0]	
6	z=[2,2]	z = [0,0]	

The final range is meet of ranges from all buckets (except discarded ranges)

One bucket for Green path segment

Values of z at node 5?

Node	Value range of z from		
	Feasible Paths Infeasible segment star		egment start
		Red	Green
4	z=[2,2]	z=[0,0]	z=[0,0]
5	z=[2,2]	z= (0]	z=[0,0]
6	z=[2,2]	z = [0,0]	z = [0,0]

Values of z at node 5?

Node	Value range of z from		
	Feasible Paths Infeasible segment start		
		Red	Green
4	z=[2,2]	z=[0,0]	z = [0,0]
5	z=[2,2]	z= (0]	z = [0,0]
6	z=[2,2]	z = [0,0]	z =X ,0]

Values of z at node 5?

Node	Value range of z from		
	Feasible Paths	Infeasible segment start	
		Red	Green
4	z=[2,2]	z = [0,0]	z=[0,0]
5	z=[2,2]	z= X 0]	z=[0,0]
6	z=[2,2]	z=[0,0]	z= (,0]

Values of z at node 5?

Compute range of values along feasible and infeasible path separately

Value range of z from		
Feasible Paths Infeasible segment start		egment start
	Red	Green
z=[2,2]	z=[0,0]	z=[0,0]
z=[2,2]	z= X 0]	z=[0,0]
Z=[2,2]	z=[0,0]	z= [,0]
	Feasible Paths $z=[2,2]$ $z=[2,2]$	Feasible Paths Infeasible set $z=[2,2]$ $z=[0,0]$ $z=[2,2]$ $z=[0,0]$

Imprecise: z=[0,0] is part of green bucket at node 5 and data flow value in green bucket is not discarded at node 5.

TATA CONSULTANCY SERVICESExperience certainty.

Intersecting Infeasible Path Segments

- On average 70% infeasible path segments were intersecting in our benchmarks
- Keeping one bucket for one path segment creates duplication, which brings imprecision
- We need to create buckets that represent group of path segments to achieve precision

Our Idea

Keep a bucket for each color combination (each color represents one infeasible path segment)

	Node Feasible	/alue range of z from			
		Feasible Infeasi		easible se	sible segment start
		Paths	Red	Green	Red A Green
	5	z=[2,2]			z = [0,0]
	6	z=[2,2]			z = [0,0]

Our Idea

Keep a bucket for each color combination (each color represents one infeasible path segment)

	Value range of z from			
Node	Feasible	Infeasible segment start		
	Paths	Red	Green	Red A Green
5	z=[2,2]			z= (0]
6	z=[2,2]			z= [0]

Why Prior Work (PPMFP) Did Not Do It

- Low assessed Impact: How many Infeasible Path Segments are intersecting?
- High cost seems that exponential number of Buckets will be required: For K infeasible path segments:
 - 1. PPMFP Solution keeps K buckets
 - 2. Our Solution will require 2^K buckets?(Seems as bad as MOP solution in terms of complexity)

Our Contribution

- Low assessed Impact: How many Infeasible Path Segments are intersecting? Average 70%
- High cost seems that exponential number of Buckets will be required: For K infeasible path segments:
 - 1. PPMFP Solution keeps K buckets
 - 2. Our Solution will require 2^K buckets? **Requires number of buckets=O(Number of Edges)** (Seems as bad as MOP solution in terms of complexity)
- We propose heuristics to reduce number of buckets even further

How Many Buckets

- A Data Flow Value at a node is assigned to buckets representing colors of outgoing edges
- Maximum buckets at a node = | out edges |
- Total buckets = N * E, E = | out edges|

1. Eliminate Empty Buckets

	V	alue range of z from		
Node	lode Feasible	Infeasible segment start		
	Paths	Red	Green	Red A Green
5	z=[2,2]			z=[0,0]
6	z=[2,2]			z=[0,0]

1. Eliminate Empty Buckets

Node	Value range of z from		
	Feasible	Infeasible segment start	
	Paths	Red A Green	
5	z=[2,2]	z=[0,0]	
6	z=[2,2]	z=[0,0]	

- 2. Merge bucket with same infeasibility Constraint
- Infeasibility condition: a<4=false, is same for blue and green path.

	Value range of z from			
Node	Feasible	Infeasible segment start		
	Paths	Blue	Green	
5		z=[2,2]	z=[0,0]	

So one bucket is sufficient for blue and green paths

- 2. Merge bucket with same infeasibility Constraint
- Infeasibility condition: a<4=false, is same for blue and green path.

Node		ue range of z from Infeasible segment start
	Pallis	Green
5		z=[0,2]

So one bucket is sufficient for blue and green paths

- 2. Merge bucket with same infeasibility Constraint
- Infeasibility condition: a<4=false, is same for blue and green path.

Node	Feasible	Value range of z from sible Infeasible segment start	
	Paths	Green	
5		z= 1 ,2]	

So one bucket is sufficient for blue and green paths

Related Work

Benchmarks and Results

Benchmarks:

- Seven open source benchmarks: SPEC CPU 2006
- Three industry benchmarks

Results:

- 1. Improvement up to 3 times improvement over PPMFP.
- Up to 20% reduction in reaching definitions
- Up to 10% reduction in uninitialized variables.
- 2. Analysis Time: Up to 300% more than PPMFP.

Future Work

- Detecting infeasible path segments in presence of Arrays and Pointers in condition expressions is an open problem.
- Improving scalability of the approach, currently scales to 75KLoc

Thank You