Second Théorème de Shannon

Théorie de l'information

Michel Celette

Second Théorème de Shannon

Codage Cana

Dans le cas d'une source simple à deux états et d'un codage binaire : 2^k mots de codes choisis parmi 2^n

Décodage au sens du maximum de vraisemblance (voir TD 8)

Théorie de l'information

Michel Celette

Second Théorème de Shannon

Codage Cana

Connaissant la séquence y en sortie le mot x_m en entrée est vraisemblablement celui pour lequel $p(y|x_m)$ est maximal. On décode donc y en choisissant le mot $x_m \in X_n$ tel que

$$(\forall x_{m'} \in X_n)(x_{m'} \neq x_m \Longrightarrow p(y|x_m) > p(y|x_{m'}))$$

Probabilité d'erreur de décodage pour un mot donné en entrée

Théorie de l'information

Michel Celette

Second Théorème de Shannon

Codage Cana

- Exemple 1 : 2 mots en entrée, 3 mots possibles en sortie
- Sachant que x_m a été émis en entrée de canal, quelle est la probabilité d'avoir un décodage érroné?
- Même question sachant que $x_{m'}$ a été émis en entrée de canal

Probabilité d'erreur de décodage pour un mot donné en entrée

Théorie de l'information

Michel Celette

Second Théorème de Shannon

Codage Cana

Exemple 2 : en entrée tous les mots de X_n sont possibles, 3 mots possibles en sortie lorsque x_m est en entrée

Sachant que m a été émis en entrée de canal, quelle est la probabilité d'avoir un décodage érroné?
 On pourra utilisé la fonction Φ défini ci dessous :

$$\Phi_m(y) = \begin{cases} 1 & \text{si il existe } m' \text{ tel que } p(y|x_{m'}) > p(y|x_m) \\ sinon \end{cases}$$

Majoration de la probabilité d'erreur de décodage pour un mot donné en entrée

Théorie de l'information

Michel Celette

Second Théorème de Shannon

Codage Cana

$$P_{\theta}(m) = \sum_{y \in Y_n} P(y|x_m) \Phi_m(y)$$

pour tout $m \in X_n$, s > 0, $y \in Y_n$ on peut majorer $\Phi_m(y)$ par

$$\Phi_m(y) \leq \left(\frac{\sum\limits_{m' \neq m} P(y|x_m')^{\frac{1}{1+s}}}{P(y|x_m)^{\frac{1}{1+s}}}\right)^s$$

$$P_e(m) \leq \sum\limits_{y \in Y_n} \left\{ P(y|x_m)^{\frac{1}{1+s}} \left(\sum\limits_{m' \neq m} P(y|x_m')^{\frac{1}{1+s}} \right)^s \right\}$$

Codage aléatoire

Théorie de l'information

Michel Celett

Second Théorème de Shannon

Codage Cana

- les mots de codes sont issus de tirages indépendants selont une loi P(x) définie sur l'ensemble des séquences d'entrées
- lorsque les mots de codes sont aléatoires, les P(y|xm) qui en dépendent sont des variables aléatoires indépendantes
- P_e(m) est une une variable aléatoire dont nous allons majorer l'espérance et en déduire qu'il existe nécessairement un code pour lequel la probabilité d'erreur est aussi inférieure à la borne obtenue

Majoration de la probabilité d'erreur moyenne pour un ensemble probabilisé de codes

Théorie de l'information

Michel Celette

Second Théorème de Shannon

Shannon

• pour tout mot m on a
$$E\left(P(y|x_m)^{\frac{1}{1+s}}\right) = \sum_{x \in X_n} P(x) (P(y|x)^{\frac{1}{1+s}})$$

pour tout 0 < s < 1 on a</p>

$$\begin{split} E\left(P_{\theta}(m)\right) & \leq & E\left\{\sum_{y \in Y_{n}} \left[P(y|x_{m})\frac{1}{1+s}\left(\sum_{m' \neq m} P(y|x'_{m})\frac{1}{1+s}\right)^{s}\right]\right\} \\ & \leq & \sum_{y \in Y_{n}} E\left\{\left[P(y|x_{m})\frac{1}{1+s}\left(\sum_{m' \neq m} P(y|x'_{m})\frac{1}{1+s}\right)^{s}\right]\right\} \\ & \leq & \sum_{y \in Y_{n}} \left\{E\left[P(y|x_{m})\frac{1}{1+s}\right]E\left[\left(\sum_{m' \neq m} P(y|x'_{m})\frac{1}{1+s}\right)^{s}\right]\right\} \\ & \leq & \sum_{x^{s} \text{ concave}} \left\{E\left[P(y|x_{m})\frac{1}{1+s}\right]\left[E\left(\sum_{m' \neq m} P(y|x'_{m})\frac{1}{1+s}\right)\right]^{s}\right\} \\ & \leq & \sum_{y \in Y_{n}} \left\{E\left[P(y|x_{m})\frac{1}{1+s}\right]\left[E\left(\sum_{m' \neq m} P(y|x'_{m})\frac{1}{1+s}\right)\right]^{s}\right\} \end{split}$$

$$E(P_e(m)) \le (M-1)^s \sum_{y \in Y_n} \left(\sum_{x \in X_n} P(x) P(y|x)^{\frac{1}{1+s}} \right)^{1+s}, \quad 0 < s < 1$$

Borne de la probabilité d'erreur moyenne pour un canal sans mémoire et une source simple

Théorie de l'information

Second Théorème de Shannon

• la source est source simple :
$$P(x = x_1 x_2 \cdots x_n) = \prod_{k=1}^n P(x_k)$$

• le canal est sans mémoire :
$$P(y|x) = \prod_{k=1}^{n} P(y_k|x_k)$$

on en déduit pour 0 < s < 1

$$E(P_{\theta}(m)) \le (M-1)^{s} \sum_{y \in Y_{\Pi}} \left[\sum_{x \in X_{\Pi}} \prod_{k=1}^{n} \rho(x_{k}) P(y_{k}|x_{k})^{\frac{1}{1+s}} \right]^{\frac{1}{1+s}}$$

En se ramenant aux alphabets I d'entrée et J de sortie du canal on a

$$E(P_{\theta}(m)) \leq (M-1)^{s} \sum_{j \in J} \left[\sum_{i \in I} p(i) p(j|i)^{\frac{1}{1+s}} \right]^{1+s}, \quad 0 < s < 1$$

$$\begin{split} E(P_{\theta}(m)) &\leq 2^{-nE(R)} \\ \text{où } E(R) &= \max_{s, \{p(k)\}} \left\{ -sR - \log_2 \left(\sum_{j \in J} \left[\sum_{j \in I} p(i)p(j|i)^{\frac{1}{1+s}} \right]^{1+s} \right) \right\} \end{split}$$

Calcul de la borne pour un canal binaire symétrique pour une loi d'entrée uniforme

Théorie de l'information

Michel Celette

Second Théorème de Shannon

Codage Cana

Commentaire sur le second théorème de Shanon

Théorie de l'information

Michel Celette

Second Théorème de Shannon

Codage Cana

Si R < C alors **il existe** un code canal de rendement R dont la probabilité d'erreur est aussi faible que souhaité sitôt à condition que la longueur des mots de codes soit suffisante Il est possible de réduire la probabilité d'erreur à une valeur arbitrairement faible à rendement constant.

Structure $(\mathcal{B} = \{0,1\}, \oplus, \cdot)$ et \mathcal{B}^k

Théorie de l'information

Michel Celette

Second Théorème d Shannon

Codage Canal

(B,⊕,·) est un corps commutatif

0	0	1	
0	0	1	
-1	4	_	i

	0	1
0	0	0
1	0	1

- $igoplus (\mathcal{B}^k, \oplus, \cdot)$ est un \mathcal{B} -e.v.
 - $a_1 a_2 \cdots a_k \oplus b_1 b_2 \cdots b_k = (a_1 \oplus b_1)(a_2 \oplus b_2) \cdots (a_k \oplus b_k)$ • 0 1 0 1 1 1

- exemples : 1. 1101101 = 1101101 et 0.1101101 = 0000000
- vecteur (mot) nul 00 · · · 0
- base canonique $\{e_i = a_1 a_2 \cdots a_k | a_i = 1 \text{ et } j \neq i \Rightarrow a_j = 0, i = 1, \cdots, k\}$
- remarque tout vecteur = $a_1 a_2 \cdots a_k$ est son propre opposé puisque $a \oplus a = 00 \cdots 0$
- poids d'un mot " :

$$\omega(a_1 a_2 \cdots a_k) = \sum_{a_i=1} a_i$$

La base canonique de $(\mathcal{B}^k,\oplus,\cdot)$ est l'ensemble des mots de poids 1

distance de Hamming entre les mots $a = a_1 a_2 \cdots a_k$ et $b = b_1 b_2 \cdots b_k$

$$D_H(a,b) = \omega(a \oplus b)$$

(\mathcal{B}^k, \prec) algèbre de Boole

Théorie de l'information

Codage Canal

relation ≺ dans B

$$a \prec b \Longleftrightarrow a \leq b$$

relation d'ordre \prec dans \mathcal{B}^k

$$a_1\,a_2\cdots a_k \prec b_1\,b_2\cdots b_k \Longleftrightarrow \big(\forall j \in \{1,2,\cdots,k\}\big)a_j \prec b_j$$

 (\mathcal{B}^k, \prec) est une algèbre de Boole dont les atomes (successeurs immédiats du plus petit élément O) sont les mots de poids 1

Diagramme de Hasse de (B3, ≺)

Codage par bloc

Théorie de l'information

Michel Celette

Second Théorème de Shannon

Codage Canal

un code par bloc de rendement $\frac{k}{n}$ est une application

$$C: \quad \mathcal{B}^k \quad \to \quad \mathcal{B}^r$$

$$m \quad \to \quad C_n$$

Notons C l'ensemble des mots du code C

la distance du code $\mathcal C$ est la distance de Hamming minimale entre deux mots de codes distincts

$$d = min\{d_H(C_i, C_j), i \neq j, C_i \text{ et } C_j \in C\}$$

Détection : on peut détecter d-1 erreur

Correction: on peut corriger de façon exacte selon la méthode du maximum de vraisemblance au pl