TP Maple Option Calcul Formel Agrégation Codes correcteurs

15 janvier 2013

1 Codes de Reed-Solomon/BCH

1. Soit $\alpha \in \mathbb{F}_{2^6}$ défini par $\alpha^6 + \alpha + 1 = 0$. A l'aide de Maple vérifier que α engendre $(\mathbb{F}_{2^6})^*$. Pour la suite, on pourra définir α à l'aide de la commande RootOf:

alias(alpha=RootOf(x^6+x+1));

Afin d'écrire les éléments de \mathbb{F}_{2^6} dans la base $(1, \alpha, \alpha^2, \alpha^3, \alpha^4, \alpha^5)$, utiliser la commande Normal : Normal(alpha^8) mod 2;

- 2. Déterminer les polynômes minimaux sur \mathbb{F}_2 de α^3 , α^5 , α^7 et α^9 .
- 3. Soit $H = (H_{i,j})_{1 \le i \le 10, 1 \le j \le 63} \in M_{10,63}(\mathbb{F}_{2^6})$ telle que pour tout $i \in \{1, \dots, 10\}, j \in \{1, \dots, 63\}$,

$$H_{i,j} = \alpha^{i(j-1)}$$
.

Soit C le code de longueur 63 défini sur \mathbb{F}_{2^6} par

$$C = \{c \in (\mathbb{F}_{2^6})^{63}, H \cdot^t c = 0\}.$$

Montrer que C est un code [63,53,11] cyclique dont on déterminera le polynôme générateur. En déduire une matrice génératrice G pour C et vérifier à l'aide de Maple que H · t G=0.

- 4. Soit \mathcal{C} le code binaire défini par $\mathcal{C} = \mathcal{C} \cap \mathbb{F}_2^{63}$. Construire une matrice de contrôle de \mathcal{C} (matrice génératrice du dual de \mathcal{C}) et le polynôme générateur de \mathcal{C} . Que dire de la distance minimale de \mathcal{C} ?
- 5. Soit $c \in C$. Soit $v \in (\mathbb{F}_{2^6})^{63}$ tel que

$$v(X) - c(X) = \sum_{i=1}^{r} Y_i X^{e_i}$$

avec $1 \le r \le 5$ et $Y_i \ne 0$.

On note $X_i = \alpha^{e_i}$ pour $1 \le i \le r$.

Soit $S = H \cdot t$ et notons S_1, \ldots, S_{10} les coordonnées de S.

(a) Montrer que

$$\begin{cases}
S_1 &= Y_1 X_1 + \dots + Y_r X_r \\
S_2 &= Y_1 X_1^2 + \dots + Y_r X_r^2 \\
\vdots \\
S_{10} &= Y_1 X_1^{10} + \dots + Y_r X_r^{10}
\end{cases} \tag{1}$$

où $X_i = \alpha^{e_i}$ pour i entre 1 et r.

(b) Déterminer c connaissant v revient à déterminer les X_i et Y_i connaissant S. L'objectif de ce qui suit est d'éviter de résoudre le système polynomial (1) directement. Pour cela, on va se ramener à la résolution de systèmes linéaires. On peut aussi utiliser une autre méthode basée sur l'algorithme d'Euclide (voir texte plus tard).

On définit le polynôme localisateur d'erreurs $\sigma(z)$ par

$$\sigma(z) = \prod_{i=1}^{r} (1 - X_j z) = 1 + \sum_{i=1}^{r} s_i z^i \in \mathbb{F}_{2^6}[z]$$
 (2)

Montrer que

$$\underbrace{\begin{pmatrix}
S_{1} & S_{2} & S_{3} & \cdots & S_{r} \\
S_{2} & S_{3} & S_{4} & \cdots & S_{r+1} \\
S_{3} & S_{4} & S_{5} & \cdots & S_{r+2}
\end{pmatrix}}_{S}
\begin{pmatrix}
s_{r} \\
\vdots \\
s_{2} \\
s_{1}
\end{pmatrix} =
\begin{pmatrix}
-S_{r+1} \\
-S_{r+2} \\
-S_{2r}
\end{pmatrix}$$
(3)

et que la matrice S est inversible.

- (c) Soit $v \in (\mathbb{F}_{2^6})^{63}$ défini par $v_i = \alpha^{i-1}$ pour $i \neq 1, 5, 12, 23, 45$ et $v_i = \alpha^{i-1} + \alpha^i$ pour i = 1, 5, 12, 23, 45. En utilisant (3), (2) et (1), déterminer, s'il existe, le mot le code le plus proche de v.
- 6. Plus généralement écrire un algorithme de décodage pour les codes de Reed-Solomon $[n=p^m-1,n-d+1,d]$ définis sur \mathbb{F}_{p^m} (p premier et $m\geq 2)$ et engendrés par $g(x)=(x-\alpha)\cdots(x-\alpha^{d-1})$ où $\alpha\in\mathbb{F}_{p^m}$ est une racine primitive n-ième de 1.

2 Codes de Hamming (binaires)

- 1. Ecrire un programme qui prend en entrée un entier naturel $r \geq 2$ et qui calcule la matrice de contrôle H définissant le code de Hamming binaire \mathcal{H}_r de longueur $n = 2^r 1$.
- 2. Ecrire une procédure qui permet de calculer *une* matrice génératrice de \mathcal{H}_r .Les codes \mathcal{H}_3 et \mathcal{H}_4 possèdent-ils une matrice génératrice sous forme systématique?
- 3. Ecrire un programme qui prend en entrée un entier naturel $r \geq 2$, une matrice génératrice G de \mathcal{H}_r et un mot de l'espace ambiant v tel que $v = m \cdot G + e$, où $m \in \mathbb{F}_2^k$, $e \in \mathbb{F}_2^n$, $w(e) \leq 1$ avec $n = 2^r 1$ et k = n r. Ce programme rend c ainsi que m. Faire des tests.

3 Codes de Hamming sur \mathbb{F}_q

Soit r un entier ≥ 2 . Un code de Hamming $\mathcal{H}_r(q)$ sur le corps fini \mathbb{F}_q est défini à équivalence près par une matrice de parité dont les colonnes sont les r-uplets non nuls de \mathbb{F}_q avec une première entrée non nulle égale à 1. Par exemple $\mathcal{H}_2(3)$ est, à équivalence près, le code sur \mathbb{F}_3 de matrice génératrice

$$H = \left(\begin{array}{rrr} 1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{array} \right).$$

- 1. Ecrire une procédure qui construit une matrice de contrôle d'un code de Hamming $\mathcal{H}_r(q)$ sur \mathbb{F}_q pour $r \in \mathbb{N}$, $r \geq 2$. On demande de plus que la matrice formée des dernières colonnes de cette matrice de contrôle soit la matrice identité.
- 2. Ecrire un algorithme de décodage et faire des tests.