## **Specification of Thermoelectric Module**

**TEC1-12710** 

### **Description**

The 127 couples, 40 mm × 40 mm size single module which is made of our high performance ingot to achieve superior cooling performance and 70 °C or larger delta T max, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

#### **Features**

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

### **Application**

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

### **Performance Specification Sheet**

| Th (°C)                    | 27    | 50    | Hot side temperature at environment: dry air, N <sub>2</sub>                                              |  |
|----------------------------|-------|-------|-----------------------------------------------------------------------------------------------------------|--|
| DT <sub>max</sub> (°C)     | 70    | 79    | Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side |  |
| U <sub>max</sub> (Voltage) | 16    | 17.2  | Voltage applied to the module at DT <sub>max</sub>                                                        |  |
| I <sub>max</sub> (Amps)    | 10.1  | 10.1  | DC current through the modules at DT <sub>max</sub>                                                       |  |
| Q <sub>Cmax</sub> (Watts)  | 101.1 | 110.5 | Cooling capacity at cold side of the module under DT=0 °C                                                 |  |
| AC resistance (Ohms)       | 1.25  | 1.38  | The module resistance is tested under AC                                                                  |  |
| Tolerance (%)              | ± 10  |       | For thermal and electricity parameters                                                                    |  |

### Geometric Characteristics Dimensions in millimeters

## Manufacturing Options



// See ordering option A

#### A. Solder:

1. T100: BiSn (Melting Point=138°C)

2. T200: CuSn (Melting Point= 227 °C)

#### **B. Sealant:**

1. NS: No sealing (Standard)

2. SS: Silicone sealant

3. EPS: Epoxy sealant

4. Customer specify sealing

#### C. Ceramics:

1. Alumina (Al<sub>2</sub>O<sub>3</sub>, white 96%)(AlO)

2. Aluminum Nitride (AlN)

#### **D. Ceramics Surface Options:**

- 1. Blank ceramics (not metalized)
- 2. Metalized (Copper-Nickel plating)

### **Ordering Option**

| Suffix | Thickness   | Flatness/        | Lead wire length (mm)    |
|--------|-------------|------------------|--------------------------|
|        | H / (mm)    | Parallelism (mm) | Standard/Optional length |
| TF     | 0:3.6±0.1   | 0: 0.05/0.05     | 150±3/Specify            |
| TF     | 1:3.6±0.05  | 1: 0.025/0.025   | 150±3/Specify            |
| TF     | 2:3.6±0.025 | 2: 0.015/0.015   | 150±3/Specify            |

Eg. TF01: Thickness 3.6±0.1(mm) and Flatness 0.025/0.025 (mm)

### Naming for the Module



T100: BiSn(Tmelt=138°C)

NS: No sealing AlO: Alumina (Al2O3, white 96%)
TF01: Thickness ± 0.1 (mm) and Flatness/ Parallelism: 0.025/0.025 (mm)

## **Specification of Thermoelectric Module**

**TEC1-12710** 



### Performance Curves at Th=50 °C





Standard Performance Graph Qc= f(DT)





Standard Performance Graph V= f(DT)





Standard Performance Graph Qc = f(V)

## **Specification of Thermoelectric Module**

### **TEC1-12710**



# 

### Performance Curves at Th=50 °C



Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C





Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

**Remark:** The coefficient of performance (COP) is the cooling power Qc/Input power ( $V \times I$ ).

### **Operation Cautions**

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation below I<sub>max</sub> or V<sub>max</sub>
- Work under DC

Note: All specifications subject to change without notice.