

基于差异矩阵和矩阵度量的行人重识别方法

Person Re-identification via Discrepancy Matrix and Matrix Metric

研究背景

研究动机和方法

实验结果和分析

1500 个警员, 1个月时间

329 段视频片段

是同一人吗?

摄像头 a

摄像头 b

挑战

研究方向

行人表征

- Zheng Wang, Ruimin Hu, et al., Scale-adaptive Lowresolution Person Re-identification via Learning A Discriminating Surface, International Joint Conference on Artificial Intelligence (IJCAI), pp.2669-2675, Aug, 2016
- Zheng Wang, Ruimin Hu, et al., Multi-Level Fusion for Person Re-identification with Incomplete Marks, ACM international Conference on Multimedia (ACM MM), pp.1267-1270, Oct, 2015
- Mang Ye, Chao Liang, Zheng Wang, et al., Specific Person Retrieval via Incomplete Text Description, ACM International Conference on Multimedia Retrieval (ICMR), pp.547-550, Jun, 2015

距离度量

- Zheng Wang, Ruimin Hu, Yi Yu, Junjun Jiang, Jiayi Ma, Shin'ichi Satoh, Statistical Inference of Gaussian-Laplace Distribution for Person Verification, ACM international Conference on Multimedia (ACM MM), 2017
- Zheng Wang, Ruimin Hu, et al., Zero-Shot Person Reidentification via Cross-View Consistency, IEEE Transactions on Multimedia, Vol 18, No 2, pp.260-272, Feb, 2016
- Zheng Wang, Ruimin Hu, et al., TAICHI Distance for Person Re-identification, International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar, 2017
- Jin Wang, Zheng Wang, et al., DeepList: Learning Deep Features with Adaptive Listwise Constraint for Person Reidentification, IEEE Transactions on Circuits and Systems for Video Technology, Vol 27, No 3, pp.513 - 524, Mar, 2017

Camera A Camera B

$$d(x_p^A, x_q^B) = (x_p^A - x_q^B)^{\top} \mathbf{M} (x_p^A - x_q^B)$$

$$\mathbf{M} = \mathbf{L}^{\top} \mathbf{L}$$

$$d(x_p^A, x_q^B) = \|\mathbf{L} (x_p^A - x_q^B)\|^2$$

- Zheng Wang, Ruimin Hu, et al., Region-based Interactive Ranking Optimization For Person Reidentification, Pacific-Rim Conference on Multimedia (PCM), pp.1-10, Dec, 2014 (最佳论文奖)
- Mang Ye, Chao Liang, Zheng Wang, et al., Ranking Optimization for Person Re-identification via Similarity and Dissimilarity, ACM international Conference on Multimedia (ACM MM), pp.1239-1242, Oct, 2015
- Mang Ye, Chao Liang, Yi Yu, Zheng Wang, et al., Person Re-identification via Ranking Aggregation of Similarity Pulling and Dissimilarity Pushing, IEEE Transactions on Multimedia, Vol 18, No 12, pp.2553-2566, Dec, 2016

Region-based Interactive Re-ranking

研究背景

研究动机和方法

实验结果和分析

从特性表示到差异表示

by characteristic

猜想:

- (1) 抵消了摄像头变化?
- (2) 能突出细节?

国立情報学研究所 National Institute of Informatics

差异表示更好

$$f_i^A - f_i^B = v + \sigma_i$$

$$\mathbf{X}_p^A = [x_p^A - f_1^A; x_p^A - f_2^A; ...; x_p^A - f_{N_r}^A]$$

$$\mathbf{X}_q^B = [x_q^B - f_1^B; x_q^A - f_2^B; ...; x_q^B - f_{N_r}^B]$$

Method (rank@)	1	2	3	4	5	6	7	8	9	10
hand-crafted feature vector	21.3	29.7	34.6	39.4	43.9	47.5	49.9	53.3	55.6	57.6
hand-crafted discrepancy matrix	22.9	33.4	39.5	43.7	46.5	49	51.9	54.7	56.9	59.7
deep-learned feature vector	29.3	37.9	44.5	49.5	53.5	57.6	61.0	62.9	65.6	67.7
deep-learned discrepancy matrix	31.8	43.1	49.8	54.2	57.9	61.1	63.2	65.3	68.3	69.7

从一个投影到两个投影

研究方法

$$E_{con}(\mathbf{L}_1, \mathbf{L}_2) = \frac{1}{M} \sum_{i=1}^{M} d(\mathbf{X}_i^A, \mathbf{X}_i^B).$$

$$E_{dis}(\mathbf{L}_1, \mathbf{L}_2) = \frac{1}{S} \sum_{k=1}^{S} l_{\beta}(e(s_k))$$

$$e(s_k) = d(\mathbf{X}_i^A, \mathbf{X}_i^B) - d(\mathbf{X}_i^A, \mathbf{X}_j^B)$$

$$l_{\beta}(z) = \frac{1}{\beta} \log(1 + e^{\beta z})$$

$$E_{spr}(\mathbf{L}_2) = \|\mathbf{L}_2\|_{2,1}$$

$$E(\mathbf{L}_1, \mathbf{L}_2) = E_{con}(\mathbf{L}_1, \mathbf{L}_2) + E_{dis}(\mathbf{L}_1, \mathbf{L}_2) + \mu E_{spr}(\mathbf{L}_2)$$
—致项 判别项 L_2 稀疏项

迭代交替优化

$$\frac{\partial E(\mathbf{L}_{1}, \mathbf{L}_{2})}{\partial \mathbf{L}_{1}} = \frac{\partial E_{con}(\mathbf{L}_{1}, \mathbf{L}_{2})}{\partial \mathbf{L}_{1}} + \frac{\partial E_{dis}(\mathbf{L}_{1}, \mathbf{L}_{2})}{\partial \mathbf{L}_{1}}$$

$$\frac{\partial E(\mathbf{L}_{1}, \mathbf{L}_{2})}{\partial \mathbf{L}_{2}} = \frac{\partial E_{con}(\mathbf{L}_{1}, \mathbf{L}_{2})}{\partial \mathbf{L}_{2}} + \frac{\partial E_{dis}(\mathbf{L}_{1}, \mathbf{L}_{2})}{\partial \mathbf{L}_{2}} + \mu \frac{\partial E_{spr}(\mathbf{L}_{2})}{\partial \mathbf{L}_{2}}$$

$$\frac{\partial E_{con}(\mathbf{L}_1, \mathbf{L}_2)}{\partial \mathbf{L}_1} = \frac{2}{M} \sum_{i=1}^{M} \mathbf{L}_1 \mathbf{Z}_i \mathbf{L}_2 \mathbf{L}_2^{\top} \mathbf{Z}_i^{\top}$$

$$\frac{\partial E_{con}(\mathbf{L}_1, \mathbf{L}_2)}{\partial \mathbf{L}_2} = \frac{2}{M} \sum_{i=1}^{M} \mathbf{Z}_i^{\top} \mathbf{L}_1^{\top} \mathbf{L}_1 \mathbf{Z}_i \mathbf{L}_2$$

$$\frac{\partial E_{dis}(\mathbf{L}_1, \mathbf{L}_2)}{\partial \mathbf{L}_1} = \frac{2}{S} \sum_{k=1}^{S} g(e(s_k)) (\mathbf{L}_1 \mathbf{U}_k \mathbf{L}_2 \mathbf{L}_2^{\top} \mathbf{U}_k^{\top} - \mathbf{L}_1 \mathbf{V}_k \mathbf{L}_2 \mathbf{L}_2^{\top} \mathbf{V}_k^{\top})$$

$$\frac{\partial E_{dis}(\mathbf{L}_1, \mathbf{L}_2)}{\partial \mathbf{L}_2} = \frac{2}{S} \sum_{k=1}^{S} g(e(s_k)) (\mathbf{U}_k^{\mathsf{T}} \mathbf{L}_1^{\mathsf{T}} \mathbf{L}_1 \mathbf{U}_k \mathbf{L}_2 - \mathbf{V}_k^{\mathsf{T}} \mathbf{L}_1^{\mathsf{T}} \mathbf{L}_1 \mathbf{V}_k \mathbf{L}_2)$$

$$\frac{\partial E_{spr}(\mathbf{L}_2)}{\partial \mathbf{L}_2} = 2\mathbf{D}\mathbf{L}_2$$

Algorithm 1 Learning the matrix metric L_1 and L_2

Input: The training data: Positive samples with pair form $\{(\mathbf{X}_i^A, \mathbf{X}_i^B)\}$, and Negative Samples with triple form $\{(\mathbf{X}_i^A, \mathbf{X}_i^B, \mathbf{X}_j^B)_k\}$.

The optimal matrix L_1^* and L_2^* . **Output:**

- 1: Initialize L_1 and L_2 ;
- 2: for n=1 to MaxIter do
- Fix \mathbf{L}_{2}^{n} ;
- Compute $\nabla E(\mathbf{L}_1) = \frac{\partial E(\mathbf{L}_1, \mathbf{L}_2)}{\partial \mathbf{L}_1}$ as Eq. 8, Eq. 10, and Eq. 12;
- Choose a proper step λ_1 as [61]; Compute $\mathbf{L}_1^{n+1} = \mathbf{L}_1^n \lambda_1 \nabla E(\mathbf{L}_1)$;
- Fix \mathbf{L}_1^{n+1} ;
- Compute $\nabla E(\mathbf{L}_2) = \frac{\partial E(\mathbf{L}_1, \mathbf{L}_2)}{\partial \mathbf{L}_2}$ as Eq. 9, Eq. 11, and Eq. 13;
- Choose a proper step λ_2 as [61]; Compute $\mathbf{L}_2^{n+1} = \mathbf{L}_2^n \lambda_2 \nabla E(\mathbf{L}_2)$;
- if converge then
- break;
- end if
- 14: end for

F. Nie, H. Huang, X. Cai, and C. H. Ding, "Efficient and robust feature selection via joint I2, 1-norms minimization," in Adv. Neural Inform. Process. Syst., 2010, pp. 1813–1821.

研究背景

研究动机和方法

实验结果和分析

(a) VIPeR dataset

(b) PRID 450S dataset

(c) CUHK01 dataset

(1) 差异矩阵

(2)矩阵度量投影 都有用

FTCNN

GoG

National Institute of Informatics

Cumulative Matching Characteristic (CMC) Curves - VIPeR dataset

判别项和一致项

与前沿方法的比较

ViPER

Method (rank@)	1	5	10	20
ELF [22]	12.0	-	43.0	60.0
BiCov [39]	20.6	43.2	56.1	68.0
SDALF [23]	19.9	38.4	49.4	66.0
eSDC [42]	26.3	46.4	58.6	72.8
MidFilter [64]	29.1	52.5	65.9	79.9
SCNCD [24]	37.8	68.5	81.2	90.4
RD [37]	33.3	65.1	78.3	88.5
PRDC [19]	15.7	38.4	53.9	70.1
KISSME [33]	19.6	48.0	62.2	77.0
PCCA [49]	19.3	48.9	64.9	80.3
LADF [34]	30.0	64.0	80.0	92.0
LOMO+XQDA [25]	40.0	68.5	80.5	91.0
DeepMetric [65]	28.2	59.3	73.4	86.4
DeepRanking [66]	38.4	69.2	81.3	90.4
DeepFeature+RDC [28]	40.5	60.8	70.4	84.4
DeepList [30]	40.5	69.1	80.1	91.2
LOMO+NFST [51]	42.2	71.4	82.9	92.0
(1) GoG [26]+XQDA	37.3	67.4	77.2	89.6
(2) FTCNN [56]+XQDA	31.2	59.8	74.0	83.5
(3) FTCNN+ DM ³	37.3(↑6.1)	67.4(↑7.6)	80.3(16.3)	89.5(†6.0)
Combine (1) and (2)	38.3	67.2	77.0	89.3
Combine (1) and (3)	42.7	74.3	85.1	93.1

PRID 450S

Method (rank@)	1	5	10	20
SCNCD [24]	41.6	68.9	79.4	87.8
KISSME [33]	33.0	59.8	71.0	79.0
CBRA [67]	26.4	57.1	71.0	83.2
CSL [68]	44.4	71.6	82.2	89.8
Mirror [69]	55.4	79.3	87.8	93.9
DRML [70]	56.4	-	82.2	90.2
(1) GoG [26]+XQDA	51.6	76.8	88.8	94.2
(2) FTCNN [56]+XQDA	50.2	74.2	84.8	93.7
(3) FTCNN+ DM ³	56.7(16.5)	83.1(†8.9)	88.4(†3.6)	94.7(†1.0)
Combine (1) and (2)	51.8	76.9	87.0	94.2
Combine (1) and (3)	61.0	85.8	92.0	96.7

CUHK01

Method (rank@)	1	5	10	20
SDALF [23]	9.9	22.6	30.3	41.0
TML [63]	20.0	43.5	56.0	69.3
SalMatch [71]	28.4	45.8	55.7	67.9
MidFilter [64]	34.3	55.1	65.0	74.9
RD [37]	31.1	-	68.5	79.1
ImprovedDeep [72]	47.5	71.0	80.0	-
(1) GoG [26]+XQDA	44.5	71.1	78.1	89.0
(2) FTCNN [56]+XQDA	41.1	63.5	73.6	85.8
(3) FTCNN+DM ³	43.7(12.6)	70.1(↑6.6)	77.4(†3.8)	88.7(12.9)
Combine (1) and (2)	42.1	70.1	78.3	89.6
Combine (1) and (3)	49.7	77.3	86.1	91.4

从特性向量到差异矩阵

从向量度量到矩阵度量

谢谢!