

Introduction to Bioinformatics

S. Ravichandran, PhD, PMP FNLCR

Short Biography

- I go by the name Ravi
 - S. Ravichandran
- I work for FNLCR (Leidos Biomedical Inc)
 - Joined FNLCR (back then NCI) around early 2002
- I am a scientist. I support and carry out my own research. I am also involved in teaching/training/Research for the past 15 years.
 - Taught Biocomputing in Hood in 2010
 - BIFX-550, since 2015

Short Biography

Also have a Project Management Professional certification (a.k.a PMP)

WELCOME Please Introduce Yourselves

- Name?
- What do you do?
- Experience with Bioinformatics?
- Experiences beyond Windows?
 - Linux, Mac etc.
- Any programming experience?
 - C, Fortran, C++, Java, Python etc.
- If you haven't done so,
 - Please also send me a short introduction/goals via email

Book

- Mostly (Parts I and II)
- Few classes
 from Part III and outside
 the book

book web link (http://www.bioinfbook.org)

Ebook:

<u>Vitalsource.com (not affiliated and no monetary/other benefits)</u>

Note that we need the THIRD Edition for this class

Bioinformatics and Functional Genomics

3rd ed. Jonathan Pevsner

Sometimes the class content for a week can spill over to the next week

Tentative Course Overview

1. Introduction to Bioinformatics

☐ Syllabus-Book-Final Project-Grades-Introduction to Bioinformatics-Basics

2. Command line resources introduction

☐ Linux OS-Eutils-R/Rstudio-Hands-on exercises

3. Access to Data

☐ Where is the data coming from?-How is it stored?-NCBI-UniProt;-Ensembl-How to retrieve data?-Common prompt/Web-interface-Handson/Quiz

4. Pairwise Sequence Alignment-I [M]

■ Homology-Orthologs/Paralogs-Scoring Matrices-Derivation-Popular scoring matrices PAM/BLOSUM-Algorithm used for Alignment-Hands-on exercises-Quiz

5. Pairwise Sequence Alignment-II [M]

Course Overview

6. BLAST [M]

☐ Applications of sequence alignment-NCBI Blast interface-Details of BLAST-E-scores-Databases used for search-How to carry out meaningful searches

7. Multiple Sequence Alignment (MSA) [M] (book MSA chapter comes after Adv. DB searching)

■ What is MSA?-MSA using ClustalW-Alternative applications, Tcoffee, ProbCons, MUSCLE etc.-MSA in the genomic context-Hands-on and Quiz

8. Advanced Database Searching

PSSM, PSI-BLAST; HMM; Sensitivity in Searches; NextGen sequencing

9. Molecular Phylogeny and Evolution

☐ Phylogenetic tress and explain their parts; How trees are created and what are the different methods-Positive and Negative selection and evolution

Course Overview

Mid-term

☐ Multiple choice/web site search-Open Book/Web in-class exam

10. NextGen Sequencing

■ NGS data generation-FASTQ, SAM/BAM and VCF file formats-How reads are aligned to reference genome-Genome variants-Variant calling-Consequence of variants in individual genomes

11. Bioinformatic approaches to RNA and Gene Expression

RNA-types, measuring RNA (Microarrays technique; RNAseq)-Exploratory data Analysis-Visualization-Statistics of quantifying RNA-basics of t-test

Course Overview

12. Structural Bioinformatics/Functional Genomics

Why the need for 3D structures-How to connect to 1D sequence to 3D structures-How 3D structure is related to biological function-Protein Data Bank (PDB)-Why need 3D structure-Analysis?

13. Genomic Variations and Phenotypic Effect Predictions [M]

☐ Theory behind variant impact prediction tools (MutationTaster, SIFT and Polyphen2)-Pros and Cons of using prediction tools for impact analysis

14. Introduction to Molecular Modeling

Intro to PubChem-Connection of PubChem to 3D database and UniProt-Simulate Protein-Protein, Protein-Ligand interactions-Visualization and Analysis

Find a Gene; Final Project Student Presentations

☐ Final Project-Student Presentations-More on first class

Grades

 In-class work, Computer Lab/Problems (end of each relevant chapter in the book) and ongoing assignments (help you complete final project) 50%

Mid-term 25%

- Final Exam (Presentation/Write-up): 25%
 - 15 minutes presentation and 5 minutes for Q&A
- Contact Email:

ravichandran@hood.edu

More on Mid-term (open-web exam; in-class exam)

- Two parts
- First part (Basic Biology/Bioinformatics)
 - Multiple-choice
 - Some brief answer type questions
- Second part (carries more points)
 - Have to use online servers to answer the questions
 - 4 questions
 - Expect to provide elaborate answers

General Class Structure

- Lecture (~ half of the class time)
 - Lectures (helpful if you can read the chapter before the class)
- Remaining time
 - Discussion Questions
 - Computer Labs (from the book assigned in class)
 - Assignments (mostly every alternate week)
 - Upload your solutions to the instructor before leaving the class
 - Self-Quiz (end of each chapter)
 - Optional but helpful

General Class Structure

- Absence
 - Planned absence: Please email me ahead of time
 Emergency: I will work with you

- I <u>will not</u> cover <u>all the</u> materials for each chapter in the book.
 - Will cover important topics
 - what is important, is based on my experience
- Depending on the time and progress, I may decide to expand/drop a chapter

General Class Structure

- Math
 - -Basic knowledge with motivation
- R
 - -I am sure you all have exposure to R/Other programming languages(?)
 - R-Programming is not needed but basic knowledge will be helpful
- Any Questions, so far????

Technology

- Windows (default)
 - Modern Windows
- Linux OS
 - Via bio-linux (account is created and ready)
- Software for the class will be available in the class computers
- Please use Class Computers for the class work

Communication

- BlackBoard
- Each class materials will be stored in a separate folder
- I mostly upload materials for the class a day before the class

Online servers that require user accounts

- NCBI
 - myNBCl (user account)
 - https://www.ncbi.nlm.nih.gov/
- Ensemble
- UCSC etc.
- Galaxy
 - https://usegalaxy.org/ (user account)
- Create the accounts ahead of time

Teaching Bioinformatics

- Software/Browser/OS
 - Version issues
 - Scripts sometimes fail
 - Web connectivity issues
 - NCBI/Ensembl might change their genomic browsers without notice; Genomic browsers behave sometimes differently with different browsers/OS
 - Book has few typos; some exercises might be different
- Please be patient, thanks!

Applications

missing missense f....zip

BIFX550-C13-112....pptx

Year 1977 Host Human Protein HA Subtype H1N1

5 protein sequences after collapsing (7 total)									
•	Accession	Length	Host	Protein	Subtype	Country	Region	Date	Virus name
4	ABD60944	566	Human	HA	H1N1	Hong Kong	N	1977	Influenza A virus (A/Hong Kong/117/1977(H1N1))
1	ABO44134	566	Human	HA	H1N1	China	N	1977	Influenza A virus (A/Tientsin/78/1977(H1N1))
4	ABD95350	566	Human	HA	H1N1	Russia	N	1977	Influenza A virus (A/USSR/90/1977(H1N1))
4	APC57869	566	Human	HA	H1N1	USSR		1977	Influenza A virus (A/USSR/90/1977(H1N1))
•	ABD60933	566	Human	HA	H1N1	Russia	N	1977	Influenza A virus (A/USSR/92/1977(H1N1))

"it is better 100 guilty Persons should escape than that one innocent Person should suffer" Benjamin Franklin

Applications

Criminal Justice system

https://www.innocenceproject.org/dnaexonerations-in-the-united-states/

- Genetic evidence and exoneration
- First event happened in 1989
- Since then ~367 cases had been resolved using DNA exoneration
- DNA evidence is admitted in criminal trials in almost all states in USA
- Disease, Therapy(?)
 - Breast cancer: Mutations in BRCA1/2 genes
 - Achondroplasia (Dwarfism): Mutations in FGFR3 gene
- Evolving area
 - Systems' view is lacking

Outline for today

- Basics
 - What is bioinformatics?-Formal definitions
- Information
 - Sequence
 - Databases
 - Approximation and relevance to chemistry
 - Structure (3D)
 - Experiments
 - Models
- What can we learn from the information?
 - Function

>sp|P04792|HSPB1_HUMAN Heat shock protein beta

MTERRVPFSLLRGPSWDPFRDWYPHSRLFDQAFGLPRLPEEWSQWLGGSSWPGYVRPLPP AAIESPAVAAPAYSRALSRQLSSGVSEIRHTADRWRVSLDVNHFAPDELTVKTKDGVVEI TGKHEERQDEHGYISRCFTRKYTLPPGVDPTQVSSSLSPEGTLTVEAPMPKLATQSNEIT IPVTFESRAOLGGPEAAKSDETAAK

Outline for today

- How can we learn from the information?
 - Comparison (Sequence)
 - And Lots of help from Math/Statistics Information (structure)
 - 1D → 3D → Function → Drug Discovery

Two selected genetic disorders/disease
 (Sickle Cell Anemia, Lactose Intolerance)

Common Definitions of Bioinformatics

- "Use of <u>computer databases</u> and <u>algorithms</u> to analyze the proteins, genes and the complete collection of DNA that comprises the organism (genome)" Pevsner, Bioinformatics and Functional Genomics, 2015 III Ed.
- Research, Development or Application of data to analyze and/or <u>build models</u> to understand the biological <u>mechanisms</u>
 - Collection, maintenance and analyzing

Three perspectives

- First
 - Cell
 - Study of individual genes/proteins and their collections
- Second
 - Individual organisms
 - Different regions/different development stages/different times
- Third
 - Genomics: The tree of life
 - How to group many organisms

Motivation

- Existing Diversity
 - People (different races, different traits etc.)
 - Animals
 - Fungi etc.
- At the micro cellular level
 - There is so much (??) similarity
 - We will spend almost all our time in this world
 - Key players: Proteins, DNA & RNA
 - Their interaction(s) in a limited way

Motivation

- Use the genomic differences to explain the phenotypical differences
 - Cell structure is same; Small differences make us who we are

History of Life on Earth

Life

- Ability to reproduce itself
 - Many other definitions!
- All life evolved from a common ancestor
 - Evolution
 - inheritance, passing of characteristics from parents, variation
 - Variation
 - Mutation-Genetic modification-sexual recombinationviruses etc

Prokaryotes
Dr. Woese proposed a division (1977)

"The branch of science concerned with classification, especially of organisms"

Taxonomy

Molecular Biology for Computer Scientists, Chapter 1, Lawrence Hunter

Figure 1. A very incomplete and informal taxonomic tree. Items in italics are common names of representative organisms or classes. Most of the elided taxa are Bacteria; Vertebrates make up only about 3% of known species.

Tree of life

Viruses not part of the tree

Cell as a factory

Human

K. Khoshmanesh et al. / Computational Biology and Chemistry 32 (2008) 315-331

Roughly 37.2 trillion cells in our body

Typical cell (across length) 10 x 10⁻⁶m

Morbid Map of the Human mtDNA Genome

To understand the language of DNA, we need to understand some Chemistry/Biochemistry

Brief Introduction

15

Si (

В

12

10

11

16

Te

17

Periodic Table

 \mathbf{H}

Li

Periodic Table of Elements

Be

3

Na Mg

×

18

He

Ne

Ar

Kr

Xe

D

Т

🥐 <u>H</u>elp

At Rn

Phosphate

💢 Cancel

DNA has direction

http://en.wikipedia.org/wiki/File:GC_base_pair_jypx3.png

Biology is the chemistry that crawls

What holds the molecules together?

Atomic level: Chemistry Rules

- Bonded interactions
 - Covalent bonds
- Non-bonded interactions
 - H-bonds
 - Holds DNA
 - Makes drug binding work
 - Ionic, VDW etc.

$$H^{\delta+}$$
 $O_{\delta-}$
 $H^{\delta+}$
 $\delta +$
 $H^{\delta+}$
 $\delta +$
 $\delta +$
 $\delta +$
 $\delta +$

H-bonds

Which pair is easy to break?

A-T

Or

G-C

of H-bonds

Can we think of A-T being the site for DNA actions such as double-stranded → single-stranded

Replication and Transcription etc.

DNA/RNA 3D Structures

probabilities

CGCGAATTCGGG GCGCTTAAGCCC

GGGCUAUUAGCUCAGUUGGUUAGAGCGCACCC CUGAUAAGGGUGAGGUCGCUGAUUCGAAUUC AGCAUAGCCCA

DNA/RNA

- Different types of DNA
 - B, -Z etc
- Different RNAs
 - mRNA
 - Nucleus → Ribosomes
 - NR (non-coding; 95% of all RNAs)
 - tRNA
 - rRNA

e-Genome Genome → Computers

Ecoli

a 0 1 1 0 0 1 1

- 4 million bases
 - 4,000,000 * 1 Byte = 4,000,000
 - ~4 MB Hard drive
- Human
 - > ~ 3,000,000,000 (3 Billion) bases (one copy)
 - ➤ Each cell
 - > 3 x 10⁹ * 1 Byte = 3 x 10⁹ = 3 GB

How much DNA in a Genome?

Eukaryotic genome (haploid) size vary widely

The common unit for quantifying DNA is C-value

- What is C-value?
 - # of base pairs in DNA or picograms (pg) of DNA
 - \square 1 pg \cong 1Gb (gigabases) Giga = 10⁹ Mega = 10⁶
 - \square more precisely 1 pg * 0.9869 x 10⁹

Compare Eukaryotic species using C-Value

Complexity of organisms doesn't correlate with C-values

"I Don't care what you think, PEANUTS are important"

Species	Common name	C value (Gb)
S. Cerevisiae	Yeast	0.012
Dysidea Crawshagi	Sponge	0.054
Drosophila melanoga:	ster Fruit Fly	0.12
Oryza Sativa	Rice	0.47
√ Gallus domesticus	Chicken	1.23
Canis familiaris	Dog	2.9
Rattus norvegicus	Rat	2.9
Xenopaus laevis	African clawed fro	og 3.1
Homo sapiens	Human	3.3
Allium cepa	Onion	15
Lilium formosanum	Lily	36
Protopterus aethiopic	cus Marbled lungfish	140
Amoeba proteus	Amoeba	290

Total length of DNA present in one adult human

```
(length of 1 bp) * (# of bp/cell) * (# of cells in body)

= (0.34 \times 10^{-9} \text{ m}) (6 \times 10^{9}) (10^{13})

= 2.0 \times 10^{13} \text{m} = 12.42 \text{ Billion Miles}
```


~ 70 trips from Earth to the Sun & back

How can this lengthy molecule fit inside a tiny cell?

How can this lengthy molecule fit inside a tiny cell

http://commonfund.nih.gov/epigenomics/figure.aspx

Genome Organization

- Chromatin (Histone wrapping)
- 2) Chromosome

- pre-mRNA
- 7-methylguanosime placed at 5' end (prevent RNA degradation)
- Poly A tail is added at the 3'end (200 bps)
- splicing
- Final product, mRNA

Theory published by **Crick** 1958 (Yes, the same Crick that worked with Watson)

Splicing

- Archaea and Bacteria
 - Usually have one chromosomes
 - Chromosomes are circular
 - some can be linear
- Eukaryotes
 - Multiple chromosomes
 - Linear
 - Packed into cell nucleus

Chromosome (highlight: Gene)

No.	Exon / Intron	Start	End	Start Phase	End Phase	Length	Sequence
	5' upstream sequence						gcaggagccagggctgggcataaaagtcagggcagagccatctattgctt
1	ENSE00001829867	5,227,071	5,226,930	-	2	142	ACATTTGCTTCTGACACACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATC TGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAG TTGGTGGTGAGGCCCTGGGCAG
	Intron 1-2	5,226,929	5,226,800			130	$\verb gttggtatcaaggttacaagacaggtattggtctattttcccacccttag \\$
2	ENSE00001057381	5,226,799	5,226,577	2	0	223	GCTGCTGGTGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCAC TCCTGATGCTGTTATGGGCAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGC CTTTAGTGATGGCCTGGCTCACCTGGACAACCTCAAGGGCACCTTTGCCACACTGAGTGA GCTGCACTGTGACAAGCTGCACGTGGATCCTGAGAACTTCAGG
	Intron 2-3	5,226,576	5,225,727			850	$\verb gtgagtctatgggacgcttgatgtt $
3	ENSE00001600613	5,225,726	5,225,464	0	-	263	CTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCACCCCA CCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGGTGTGGCCTAATGCCCTGGCCCACAAG TATCACTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAG TCCAACTACTAAACTGGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATA AAAAACATTTATTTTCATTGCAA
	3' downstream sequence						tgatgtatttaaattatttctgaatattttactaaaaagggaatgtggga

Gene sequence

mRNA (cDNA) and protein sequences

1	ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATC	60
		10
	MVH	3
51	TGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAG	120
L1	TGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAG	70
4	LTPEEKSAVTALWGKVNVDE	23

Water molecules

Proteins in 3D

Drug binding inhibition

Vitamin-H bound protein (183 aa protein)

Proteins vs DNA

Proteins

- Unstable
 - Seconds to months
 - Depends on protein & organism
 - <> life span of human proteins: 1 day
 - Destroyed after some time and recycled

DNA

- Stable
- DNA can be stable even for 100,000 years!!!

Related Dogmas

- Central Dogma of Genomics
 - Genome → <u>Transcriptome</u> → Proteome → Cellular Phenotype

- Study of organisms that inhabit the human body
 - microbiome

What differentiates different cells?

Gene Regulation

RNA

binds

Polymerase

- Promoters, Transcriptor factor binding regions are identified by experiments.
 - Collecting samples and sequence alignments etc.

Same content (~25K Genes), different function Active

- Brain Cells
 - Amyloid, myosin, α-amylase
- Muscle Cells
 - Amyloid, myosin, α -amylase
- Salivary Gland Cells
 - Amyloid, myosin, α-amylase

NonActive

Approximations in Bioinformatics

- 3 → 1 Letter (don't forget the chemistry)
 - Protein (20 alphabet)
 - Glu-Leu-Val-Ile-Ser-Thr-His-Glu-Lys-Ile-Gln-Gly
 - ELVISTHEKING
 - DNA/RNA (4 letter alphabet)
- Redundant information of DNA

ATGGAGCTGTCTTG TACCTCGACAGAAG

storage

What is the key issue in Bioinformatics?

Release	Date	Bases (GB)	Seq (GB)	Bases(WGS)	Seq (WGS)
235	12/2019	388,417,258,009	215,333,020	6,277,551,200,690	1,127,023,870

Data Growth in numbers

Need for algorithms to model and carry out analysis

Whole Genome Shotgun (WGS)
High-throughput sequencing (Illumina etc.)

Image from NCBI GenBank

Storage/Retrieval

What can we do with the information? Can we compare/align them? What do we learn from the alignments? Comparing 3D is one way

Not all 3D information is available

So, sequence comparison is the common approach

How to find out whether two proteins are related?

Sequence Alignment

DNA can be compared instead of protein. But, for most cases proteins have more information than DNA

- Relatedness (homology) among proteins/DNAs
 - Common function?

- Homology (common ancestor)
 - When two sequences (proteins/genes) are highly similar, they might be <u>homologous</u>
 - Converse is not true (lack of similarity != No Homology)

– What is homology?

How can I compare two sequences?

 Not possible without the help of Math and Statistics

 Luckily for us the problem is addressed and some framework is available for us to use

Temple F. Smith

Michael S. Waterman

Creative Commons License

82.88% identity

Human RT-Lemur Human RT-Lemur

Human RT-Lemur 51.37% identity

Human Goldfish

Human Goldfish Human Goldfish -KEFTPPVQAAYQKVVAGVANALAHKYH PSGFNADVQEAWQKFLSVVVSALCRQYH . *. ** *:**.:: *..**.::** 21.74% identity

Human MVHLTPEEKSAVTALWGKVNVDEV----GGEALGRLLVVYPWTQRFFESFGDLSTPDAVM Bloodworm -MGLSAAQRQVVASTWKDIAGSDNGAGVGKECFTKFLSAHHD---IAAVFGFSG----A

Human Bloodworm Human Bloodworm VCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH-LSAMEHRIGGKMTAAAKDAWAAAYADISGALISGLQS :..: *::* :: *: *: *::**

••••

19.85% Identity

HumanMVHLTPEEKSAVTALWGKVN--VDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNSoybeanMVAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAAKDLFSFLA----NGVDPTN

Human Soybean PKVKAHGKKVLGAFSDGLAHLDNLKG--TFATLSELHCDKLHVDPENFRLLGNVLVCVLA PKLTGHAEKLFALVRDSAGQLKASGTVVADAALGSVHAQKAVTDPQ-FVVVKEALLKTIK

**:..*.:*::. . *. .:*.

: *:*..:*.:* .**: * :: :.*: .:

Human Soybean HHFGKEFT----PPVQAAYQKVVAGVANALAHKYH
AAVGDKWSDELSRAWEVAYDELAAAIKKA-----

.*.::: :.**:::.*.: :*

Questions

- What sequences to use and why?
- What types of alignments
 - Global and Local
- Statistics of alignments
 - Scores and matrices

Two Cultures in Bioinformatics

- Two cultures
 - Web-based
 - Point-and-Click (no programming effort)
 - Command line
 - Sometimes steep learning curve (some programming)
- Which one is better?

Fig 1.5 from Bioinformatics and functional genomics / Jonathan Pevsner.— Third edition. Copyright Figure. Please do not distribute.

Validity of Predictions

- Can we use a software as a black-box?
- How do we know whether a software method is working properly?
- Each software team will in most cases do self evaluation
- Sensitivity(TPR) and Specificity(TNR)
 - Sensitivity: Detecting true cases
 - Specificity: Excluding those without disease

$$TNR = \frac{TN}{TN + FP}$$

Evaluations

Name	Competition			
Alignathon	gnathon Compare whole-genome sequence alignment methods			
EGASP	EGASP ENCODE Genome Annotation Assessment Project			
Assemblathon Compare the performance of genome assemblers				
GAGE Genome Assembly Gold-standard Evaluations				
ANRF	Assn. of Biomolecular Resource Facilities (ABRF) assessment of phosphorylation			
CASP	Critical Assessment of Structure Prediction			
CAFA	Critical Assessment of protein Function Annotation algorithms			
CAGI	Critical Assessment of Genome Interpretation. Assess computational methods for predicting phenotypic impacts of genomic variation			

New Paradigms for Learning Bioinformatics

- Online resources
 - Google
- Online Classes
 - MOOC
 - EdX, Stanford, Coursersa, Udacity etc.
- Programming
 - R, Python, Perl
 - Linux Shell scripting

Two perspectives in Bioinformatics

- Cell Perspective
 - Contents of the cell
 - DNA/RNA/Protein
 - Analysis of the sequences

- Organism Perspective
 - How genes are expressed?
 - Age
 - Different tissues/cells
 - Race
 - Disease vs non-disease states

Command-line interface

 Command line or point-click or application focused

- What OS?
 - Windows or Linux

- Why?
 - Cost, ability to carry out tasks

Reproducibility

"More than 70% of researchers have tried and failed to reproduce another scientist's experiments, and more than half have failed to reproduce their own experiments"

Is there a reproducibility crisis? M.Baker, Nature, 533, 452, 2016

Reproduce another scientist's experiments (failed to reproduce their own experiment)

Chemistry: 90% (60%)

Biology: 80% (60%)

Physics & Engineering: 70% (50%)

Medicine: 70% (60%)

Earth and Env. Science: 60% (40%)

Reproducibility in Published Papers

- Script availability
 - Supplemental pages is a good place
 - Useful for checking the results
 - Useful for learning/teaching
 - Useful for reviewers
 - Etc.

Reproducibility using R

- R session
 - sessionInfo()
- What packages was used
 - library(??)
- Show the code
 - Use R command "dput" to make the user copy and use your code
- Show comments

```
# Reproducible Code; S. Ravichandran, Ph.D. 01/23/2017
# load libraries at the top of the script
library(rafalib)
# if not installed
# install.packages("rafalib")
# set seed for reproducibility
set.seed(100)
# create 100 uniform normally distributed random numbers
x <- rnorm(100)
y <- rnorm(100)
# use mypar from rafalib to plot 2 figs in 1 row
mypar(1,2)
hist(x,col="red"); hist(y,col="blue") # use two lines; for lack of space used 1 line
ttest <- t.test(x,y, alternative = "two.sided", conf.level = 0.95) # p-value = 0.94
# add an outlier in y and call it my
m_y < c(y, 150)
# use dput(data) if you want to send data via email; ex. dput(m_y)
#use two lines; for lack of space used 1 line
hist(x,col="red"); hist(m y,col="blue")
ottest <- t.test(x, m_y, alternative = "two.sided", conf.level = 0.95) # p-value = 0.94
ottest
sessionInfo() # provide sessionInfo()
```

Application-1 Sequence-based approach

Lactose Intolerance

"It has nothing to do with you, Bessie. It's just that I'm lactose intolerant."

"It has nothing to do with you, Bessie. It's just that I am Lactose intolerant"

Worldwide prevalence of lactose intolerance in recent populations (schematic)

Finland: 1/60K inborns have LCT intolerance

Very common in people of

- -West African,
- -Arabs,
- -Jewish,
- -Greek and
- -Italian descent.

(ghr.nlm.nih.gov)

Lactose intolerance

 Lactase is the gene that produces Lactase (protein enzyme)

Lactase digests Lactose → simple sugars

LCT Gene

- Intolerant
 - Gene turned off
- Tolerant (adult)
 - Persistence
- Remedy
 - Lactase pill
 - Which does not interfere with transcription but just provide a supply of Lactase enzyme
 - Need to be taken before the Lactose food

LCT Gene

- Lactase is active during childhood but slows or stops when child grows up for some people
- LCT (short name for the Lactase gene)

- Chr 2; 17 exons

The -14010*C variant associated with lactase persistence is located between an Oct-1 and HNF1 α binding site and increases lactase promoter activity

Tine G. K. Jensen · Anke Liebert · Rikke Lewinsky · Dallas M. Swallow · Jørgen Olsen · Jesper T. Troelsen

Figure 3

Locations of transcription factor-binding sites and predicted adaptive alleles upstream of LCT, the lactase gene. Three alleles were identified as potentially causal alleles in the African pastoral populations, whereas C/T-13910 was predicted to be the causal allele in Northern Europeans. Additionally, the T/G-13915 allele is correlated with lactase persistence in the Saudi Arabian population. The transcription factors and the sequence they bind in a supershift assay (48) are: HNF-4 α (-13854 to -13830), HNF-3 α and FOX (-13872 to -13848), Oct-1 and GAGA (-13933 to -13909), and Cdx-2 (-14040 to -14016).

150 Kelley • Swanson

Kelley and Swanson, Human Genet, 2008:9:143-160

Possible Mechanism

<u>Protein (Activator) that</u> bind in Enhancer regions far away from Promoter (non-binding) and bends and interacts with Promoter (TATA region) to positively affect transcription

http://www.fda.gov/forconsumers/consumerupdates/ucm094550.htm

Where is the variation (or lack of) that causes Lactose Persistence (Lactose intolerance)?

Application-2 Sickle Cell Disease (SCD): Structure-based approach

Figure taken from NCBI/NIH

Data Source CDC

Malaria (2015)

214M (World-wide) ~1500 cases in US every year

Sickle-Cell Disease (SCD)

affects ~ 100,000 in US occurs 1/365 black or African-American births Occurs 1/16,300 Hispanic-American births

Biology of RBC

S.E.M of RBC Wikipedia

- RBC (a.k.a. erythrocytes, haematids etc.)
- Nucleus lacking in human
- 2.4 M raw RBC are produced/second
- Produced in bone marrow and travel all over body carrying O₂ (& CO₂)
- Carrier protein complex: Hemoglobin
 - Not a single gene product; 2 α and 2 β chains
 - HBA: α; HBB:β

- Genetic disorder
- HBB:Glu7→Val
- Cell sickle & dies sooner

Picture taken from

2 drops of oxygenated/deoxygenated blood

https://en.wikipedia.org/wiki/Red_blood_cell

Related Disease

- SCD → Anemia
- Spleen the blood filter will be clogged by the sickle cells and damages → infections
- Malaria is caused by mosquito bites. Parasite invades the RBC and destroys it.
- In US disease most commonly affects African American

HBB: Where is it?

NCBI Database

Hemoglobin alpha/beta sequences

```
10
                    20
                               30
                                           40
MVLSPADKTN VKAAWGKVGA HAGEYGAEAL ERMFLSFPTT KTYFPHFDLS
        60
                    70
                               80
                                                     100
                                                                     Alpha
HGSAQVKGHG KKVADALTNA VAHVDDMPNA LSALSDLHAH KLRVDPVNFK
       110
                  120
                              130
                                          140
LLSHCLLVTL AAHLPAEFTP AVHASLDKFL ASVSTVLTSK YR
```

E→V → Sickle Cell Anemia

```
10 20 30 40 50 60

MVHLTPEEKS AVTALWGKVN VDEVGGEALG RLLVVYPWTQ RFFESFGDLS TPDAVMGNPK
70 80 90 100 110 120

VKAHGKKVLG AFSDGLAHLD NLKGTFATLS ELHCDKLHVD PENFRLLGNV LVCVLAHHFG
130 140

KEFTPPVQAA YQKVVAGVAN ALAHKYH
```

CLUSTAL multiple sequence alignment by MUSCLE (3.8)

sp|P68871|HBB_HUMAN sp|P69905|HBA_HUMAN sp|P68871|HBB_HUMAN sp|P69905|HBA_HUMAN 43.9% identity

Summary

- What is Bioinformatics?
- Basics of Bioinformatics
- Cell biology
 - DNA/Proteins/RNA
- Central Dogma
- Expression → Function
- Homology, sequence alignment (1D \rightarrow 3D)
- Applications

FINAL PROJECT

FIND A GENE PROJECT

Thanks

S. Ravichandran, Ph.D ravichandran@hood.edu