Math 107 Lecture 18

Matrix Invertibility and Properties

by Dr. Kurianski on October 30, 2024

» Announcements and Objectives

Announcements

- * Skill Check 5 is next Wed (11/6, 110 mins)
- Solutions to Homeworks 1-8 available in Canvas Modules
- Pre-Notes due before start of next lecture
- * Assignments Due Friday (11/1):
 - * HW9 Handwritten Questions
 - * HW9 Coding Problems
 - * HW9 MATLAB File Upload

Objectives

- * Discuss properties of the inverse and transpose
- * Discuss special types of matrices and their features
- Use the Invertible Matrix Theorem to determine whether given matrices are invertible
- * Define and compute the determinant of $n \times n$ matrices

» Diagonal entries

Definition: Let A be an $m \times n$ matrix. The diagonal of A consists of the entries a_{11} , a_{22} ,

Example:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$

Example:
$$B = \begin{bmatrix} 3 & 1 & 7 \\ 8 & 7 & -2 \\ 0 & 5 & -1 \end{bmatrix}$$

» Triangular Matrices

Definition

Definition: An $n \times n$ matrix for which all elements above the main diagonal are zero is called a **lower triangular matrix**.

Example:
$$C = \begin{bmatrix} 0.5 & 0 & 0 \\ 6 & 21 & 0 \\ 7 & 5\pi & -1 \end{bmatrix}$$

Definition: An $n \times n$ matrix for which all elements below the main diagonal are zero is called an **upper triangular matrix**.

Example:
$$C = \begin{bmatrix} -10 & 34 & 9 \\ 0 & \sqrt{2} & 57 \\ 0 & 0 & -4 \end{bmatrix}$$

» Diagonal matrix

Definition

Definition: A diagonal matrix is an $n \times n$ matrix in which the only nonzero entries lie on the diagonal.

Example:
$$B = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Remark: For a matrix to be a diagonal matrix, it *must* be square (same number of rows as columns).

» Inverse of diagonal matrices

Fact: If *A* is a diagonal matrix with diagonal entries d_1 , d_2 , ..., d_n , i.e.,

$$A = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & d_n \end{bmatrix}$$

where none of the diagonal entries are zero then A^{-1} exists and is equal to

$$A^{-1} = egin{bmatrix} 1/d_1 & 0 & \dots & 0 \ 0 & 1/d_2 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & \dots & 0 & 1/d_n \end{bmatrix}$$

Matrix Transpose

Matrix Transpose

» Transpose

Matrix Transpose

Definition

Definition: Let A be an $m \times n$ matrix. The **transpose** of A, denoted A^T , is the $n \times m$ matrix whose columns are the respective rows of A.

Matrix Transnose

» Properties of the Matrix Transpose

Let A and B be matrices where the following operations are defined, and let k be a scalar. Then:

1.
$$(A + B)^T = A^T + B^T$$

$$2. (kA)^T = kA^T$$

3.
$$(AB)^T = B^T A^T$$

4.
$$(A^{-1})^T = (A^T)^{-1}$$

$$5. (A^T)^T = A$$

» Transpose of Product

Question: Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 1 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 7 & 0 \\ 6 & -2 \\ 1 & 0 \end{bmatrix}$.

Use MATLAB to compute the following:

(a) A^T

Matrix Transpose

- (b) B^T
- (c) $(AB)^T$
- (d) A^TB^T
- (e) $B^T A^T$

Matrix Transpose

» Properties of the Matrix Transpose

Example

Question: Let *A* and *B* be any $n \times n$ invertible matrices. Simplify $((A^{-1}B^{-1})^T)^{-1}$.

Matrix Transpose

» Symmetric and Skew Symmetric

Definition: A matrix A is symmetric if $A^T = A$

Example:
$$A = \begin{bmatrix} 1 & 6 & 5 \\ 6 & 4 & 3 \\ 5 & 3 & 2 \end{bmatrix}$$

Definition: A matrix A is skew symmetric if $A^T = -A$.

Example:
$$A = \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & 1 \\ -2 & -1 & 0 \end{bmatrix}$$

Invertible Matrix Theorem

» Invertible Matrix Theorem

Theorem: Let A be an $n \times n$ matrix. The following statements are equivalent.

- * A is invertible.
- * The reduced row echelon form of A is I.
- * The equation $A\vec{x} = \vec{b}$ has exactly one solution for every $n \times 1$ vector \vec{b} .
- * The equation $A\vec{x} = \vec{0}$ has exactly one solution (namely, $\vec{x} = \vec{0}$).

Remark: We will add more statements to this theorem!

Determinant of 2×2 **Matrices**

» Determinants of 2×2 matrices

Definition

Definition: Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. The determinant of A, denoted $\det(A)$ or $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$, is given by

$$det(A) = ad - bc$$
.

Connection to inverse:

$$A^{-1} = rac{1}{ad-bc} egin{bmatrix} d & -b \ -c & a \end{bmatrix} = rac{1}{\det(A)} egin{bmatrix} d & -b \ -c & a \end{bmatrix}$$

» Determinants of 2×2 matrices

Examples

Example: Compute the determinants of the following matrices:

1.
$$A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$$

2.
$$B = \begin{bmatrix} -2 & -1 \\ 5 & 7 \end{bmatrix}$$

3.
$$C = \begin{bmatrix} 1 & -3 \\ -2 & 6 \end{bmatrix}$$

» Question

Question: (True or False?) Let *B* be a 2×2 matrix with det(B) = 0. Then *B* is not invertible.

Determinants of $n \times n$ Matrices

» Minor of A

Definition

Definition: Let A be an $n \times n$ matrix. The ij-minor of A, denoted A_{ij} , is the determinant of the $(n-1) \times (n-1)$ matrix formed by deleting the ith row and jth column of A.

Example: Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
. Compute A_{11} , A_{23} , and A_{32} .

» Cofactor

Definition

Definition: Let A be an $n \times n$ matrix. The ij-cofactor of A, denoted C_{ii} is the number

$$C_{ij} = (-1)^{i+j} A_{ij}.$$

Example:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
. Compute C_{23} and C_{11} .

» Cofactor Expansion

Definition

Definition: Let A be an $n \times n$ matrix. The **cofactor expansion of** A **along the** *i***th row** is the sum

$$a_{i1}C_{i1}+a_{i2}C_{i2}+\cdots+a_{in}C_{in}$$

The **cofactor expansion of** A **down the** jth **column** is the sum

$$a_{1j}C_{1j}+a_{2j}C_{2j}+\cdots+a_{nj}C_{nj}$$

Example:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
. Find the cofactor expansion along

the 2nd row.

Example: Find the cofactor expansion down the 3rd column.

» Determinant of an $n \times n$ Matrix

Definition

Definition: The determinant of an $n \times n$ matrix A is a number given by the following:

- * if A is 1×1 , then A = [a] and det(A) = a
- * if A is 2×2 , then $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and det(A) = ad bc
- * if A is $n \times n$ with n > 2, then

det(A) = cofactor exapansion along any row or column

» Determinant of an $n \times n$ Matrix

Example 1

Example: Find the determinant of

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -3 & 0 \\ 7 & 2 & 3 \end{bmatrix}$$

» Determinant of an $n \times n$ Matrix

Example 2

Example: Find the determinant of

$$\mathbf{A} = \begin{bmatrix} 4 & -3 & 1 \\ 0 & -2 & 0 \\ 5 & -7 & -1 \end{bmatrix}$$

Properties of Determinants

» Properties of Determinants

Theorems

Theorem: Let A and B be $n \times n$ matrices and let k be a scalar. The following are true:

- 1. $\det(kA) = k^n \det(A)$
- 2. $\det(A^T) = \det(A)$
- 3. det(AB) = det(A) det(B)
- 4. If A is invertible, then $det(A^{-1}) = \frac{1}{det(A)}$.

Theorem: A matrix *A* is invertible if and only if $det(A) \neq 0$.

» Properties of Determinants

Exercise

Example: Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} -3 & 0 \\ -1 & 5 \end{bmatrix}$. Compute $\det(A)$, $\det(B)$, and $\det(AB)$.

» Invertible Matrix Theorem (revisited)

Theorem: Let A be an $n \times n$ matrix. The following statements are equivalent.

- * A is invertible.
- * The reduced row echelon form of A is I.
- * The equation $A\vec{x} = \vec{b}$ has exactly one solution for every n imes 1 vector \vec{b} .
- * The equation $A\vec{x} = \vec{0}$ has exactly one solution (namely, $\vec{x} = \vec{0}$).
- * $det(A) \neq 0$

» Shortcut for 3×3 matrices

(Reference: Pgs 259-261 of Main Textbook)

Example: Find the determinant of
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Example: Find the determinant of
$$\mathbf{B} = \begin{bmatrix} 3 & -1 & 1 \\ -3 & 0 & -4 \\ 0 & -1 & -4 \end{bmatrix}$$

Question: (True or False?) The matrix *B* above is invertible.