CALCULUS II	Dept. or School		Year		proctor	
2015 Fall Midterm Exam	Student ID	And the second s	Name			
We your answer must be provided with descriptions how to get the answer. 1. For three points $P(2,-3,4)$, $Q(0,1,2)$, and $R(-1,2,0)$ in \mathbb{R}^3 . (a) (4 points) Find the area of the triangle whose vertices are P,Q,R .	\mathbb{R}^3 . For $B_n(-2n)$	eta , and γ be positive or each $n=1,2,\cdots$, c^{β} , $0,3n^{\beta}$) and $C_n(0,2n^{\beta})$ and $C_n(0,2n^{\beta})$.	associated	s and $O(0)$	$(0,0,0)$ the ints $A_n(n^{lpha})$	origin in $, 2n^{\alpha}, 0),.$
(b) (4 points) Find the equation of the plane that passes through the points P,Q,R .						
	(b) (6 poir O, A _n , E converge	nts) Let V_n be the vo $eta_n,$ and $C_n.$ Find the	lume of the	tetrahedror for the se	whose veries to $\sum_{n=1}^{\infty}$	ertices are $\sum_{n=1}^{\infty} (V_n)^{-1}$
(c) (4 points) Find the variable t which P,Q,R , and $S(1,t,2)$ are coplanar.						

3. (6 points) Find the symmetric equation of the line which meets perpendicularly with both of the lines: $L_1: \ x=1+t, \ y=1+2t, \ z=2+t \ ,$	5. (a) (4 points) Find an equation in a rectangular equation for the surface whose spherical equation is $6\cos\theta = \rho\sin\phi$.			
$L_2: \ x = 1 + s, \ y = 2 + s, \ z = 1 + s (s, t \in \mathbb{R}).$				
	(b) (6 points) Find symmetric equations for the tangent line to the curve of intersection of the equation (a) and the plane $x+y+z=1$ at the point $P(0,0,1)$.			
4. (6 points) Find an equation of the osculating plane of the space curve $\{(t^3,t^2,t) t\in R\}$ at the point $(1,1,1)$.				

proctor

CALCULUS II 2015 Fall Midterm Exam Dept. or School School Year Name

- 6. Let C be the curve represented by the vector function $r(t) = \langle \cos t, \sin t, t \rangle$.
- (a) (4 points) Find the curvature $\kappa(t)$ of C.

 $f(x,y) = \begin{cases} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0) \end{cases}$

7. Let a function f defined on \mathbb{R}^2 by

(b) (6 points) Let D be the osculating circle of C at the point $P(0,1,\pi/2)$. And suppose that every point (x,y,z) on D satisfies the equation

$$\frac{(x+a)^2}{b} + \frac{(y+c)^2}{d} = 1.$$

Then find the value a+b+c+d.

(b) (6 points) Show that f(x,y) is continuous at (0,0) but $f_x(x,y)$ is not continuous at (0,0).

8. (6 points) Find the linear approximation of the function $f(x,y) = \tan^{-1}(xy)$ at (1,1) and use it to approximate $f(1.01, 0.99)$.	10. (6 points) Let $f(x,y,z)=xe^{y-z^2}$, $x=uv$, $y=u-v$, and $z=u+v$. Use the chain rule to find $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$ when $u=3, v=-1$.
	*
9. (4 points) Find the tangent plane to the surface with parametric equations $r(u,v) = < u^2, v^2, uv > \text{ at the point } (1,1,1).$	