Cycle Pré-ingenieur Première Année Agèbre II - 2023/2024

Groupes et morphismes de groupes

1. Lois de composition internes

Exercice 1

Les propositions suivantes sont-elles vraies ou fausses? Justifier votre réponse.

- 1. La soustraction est un LCI dans \mathbb{Z} .
- 2. 0 est l'élément neutre de la soustraction dans \mathbb{Z} .
- 3. La soustraction dans \mathbb{Z} est associative.
- 4. 0 est l'élément neutre pour l'addition dans \mathbb{N} .
- 5. L'addition est associative dans \mathbb{N} .
- 6. L'addition est une LCI dans l'ensemble des nombres entiers pairs.
- 7. L'addition est une LCI dans l'ensemble des nombres entiers impairs.

Exercice 2

Préciser pour chacune des LCI \star définies ci-dessous si elle est associative, commutative, possède un élément neutre.

- 1. $\forall x, y \in \mathbb{R}; x \star y = \sqrt{x^2 + y^2}$
- 2. $\forall x, y \in \mathbb{R}; x \star y = \ln(\exp x + \exp y)$

Exercice 3

Pour tout $(x,y) \in [0,1]^2$, on pose : $x \star y = x + y - xy$

- 1. Montrer que ($[0,1],\star$) est un magma commutatif et associatif.
- 2. Montrer que $([0,1],\star)$ possède un élément neutre.
- 3. Quels sont les éléments inversibles de $([0,1],\star)$?

Exercice 4

Soit E un ensemble muni d'une loi de composition interne associative \star et d'un élément neutre. Un élément de E est dit idempotent si $x \star x = x$.

- 1. Montrer que si x et y sont idempotents et commutent, alors $x \star y$ est idempotent.
- 2. Montrer que si x est idempotent et inversible alors x^{-1} est idempotent.

Exercice 5

Soit E un ensemble muni d'une loi de composition interne \star associative. Pour tout a de E, on définit les applications g_a et d_a de E dans E:

$$\forall x \in E; \quad d_a(x) = x \star a \quad \text{et} \quad g_a(x) = a \star x.$$

- 1. Montrer que si a existe dans E tel que g_a et d_a soient surjectives, alors E possède un élément neutre pour la loi \star .
- 2. Montrer que si pour tout a de E, les applications g_a et d_a sont surjectives, alors tout élément de E possède un inverse pour la loi \star .

2. Groupes, sous-Groupes

Exercice 6

Sur $G = \mathbb{R}_+^* \times \mathbb{R}$, on définit l'opération \star par :

$$(x,y) \star (x',y') = (xx',xy'+y).$$

Montrer que (G, \star) est un groupe.

Exercice 7

Soit les quatre fonctions de \mathbb{R}^* dans \mathbb{R}^* :

$$f_1(x) = x$$
, $f_2(x) = \frac{1}{x}$, $f_3(x) = -x$, $f_4(x) = -\frac{1}{x}$.

Montrer que $G = \{f_1, f_2, f_3, f_4\}$ muni de la loi \circ est un groupe.

Exercice 8

Quel est le plus petit sous-groupe de $(\mathbb{R}, +)$ (respectivement de (\mathbb{R}^+, \times)) contenant 1? Contenant 2?

Exercice 9

Les ensembles suivants, munis de l'addition des réels, sont-ils des groupes? Justifier.

- 1. $\{a\sqrt{2} \mid a \in \mathbb{N}\}$
- $2. \left\{ a\sqrt{2} + b\sqrt{3} \mid a, b \in \mathbb{Z} \right\}$
- 3. $\{a\sqrt{2} + b\sqrt{3} \mid a \in \mathbb{Z}, b \in \mathbb{N}\}$

Exercice 10

Les ensembles suivants, munis de la multiplication des réelles, sont-ils des groupes? Justifier.

- 1. $\left\{1, -1, \frac{1}{2}, 2\right\}$
- 2. $\{a^{2n} \mid a = \pm 1, n \in \mathbb{Z}\}$
- $3. \left\{ a + b\sqrt{2} \mid a, b \in \mathbb{Q}^* \right\}$

Exercice 11

Soit S un sous-groupe d'un groupe (G,*) et $a \in G$. Montrer que $a^{-1} * S * a = \{a^{-1} * b * a \mid b \in S\}$ est un sous-groupe de G, dit conjugué de S.

Exercice 12

Soit (G, *) un groupe et $A \subseteq G$, non vide. On pose :

$$N(A) = \{ x \in G \mid x^{-1} * A * x = A \}.$$

Montrer que N(A) est un sous-groupe de G.

Exercice 13

Soit (E,*) et (F,\cdot) deux groupes. On munit l'ensemble produit $E\times F$ de la loi de composition \otimes définie par :

$$(x,y)\otimes(x',y')=(x\star x',y\cdot y').$$

- 1. Montrer que $(E \times F, \otimes)$ est un groupe.
- 2. Soit E' un sous-groupe de E et F' un sous-groupe de F. Montrer que $E' \times F'$ est un sous-groupe de $E \times F$, muni de la loi \otimes .

Exercice 14

Soit G =]-1,1[muni de la loi * définie par $x * y = \frac{x+y}{1+xy}$. Montrer que (G,*) est un groupe abélien.

Exercice 15

Soit G un groupe et H et K deux sous-groupes de G.

- 1. Montrer que $H \cap K$ est un sous-groupe de G.
- 2. Montrer que $H \cup K$ est un sous-groupe de G si et seulement si $H \subseteq K$ ou $K \subseteq H$.

Exercice 16

- 1. Soit $n \in \mathbb{N}$. Montrer que $n\mathbb{Z}$ est un sous-groupe de \mathbb{Z} .
- 2. Montrer que tout sous-groupe de \mathbb{Z} est de la forme $n\mathbb{Z}$ pour un certain $n \in \mathbb{N}$.
- 3. Soit $a, b \in \mathbb{Z}$. On note $a\mathbb{Z} + b\mathbb{Z} = \{au + bv \mid u, v \in \mathbb{Z}\}$. Montrer que $a\mathbb{Z} + b\mathbb{Z}$ est un sous-groupe de \mathbb{Z} . En particulier, $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$ pour un certain $d \in \mathbb{Z}$. Montrer alors que $d = \operatorname{pgcd}(a, b)$.

Exercice 17

Soit H un groupe abélien. Un élément $x \in H$ est dit d'ordre fini lorsqu'il existe $n \in \mathbb{N}$ tel que la somme $x + x + \ldots + x$ (n fois) soit égale à 0. Montrer que l'ensemble des éléments d'ordre fini est un sous-groupe abélien de H.

2.1 Morphismes de groupes

Exercice 18

Les applications $\phi:G\to H$ définies ci-dessous sont-elles des morphismes de groupes ?

- 1. $G = (\mathbb{R}^*, \times), H = (\mathbb{R}^*, \times), \phi(x) = |x|.$
- 2. $G = (\mathbb{R}^*, \times), H = (\mathbb{R}^*, \times), \phi(x) = 2x.$

Exercice 19

Traduire en termes d'homomorphisme de groupes les propriétés traditionnelles suivantes :

- $1. \ln(xy) = \ln(x) + \ln(y)$
- 2. $|zz'| = |z| \cdot |z'|$
- 3. $\sqrt{xy} = \sqrt{x} \cdot \sqrt{y}$
- 4. $e^{x+y} = e^x \cdot e^y$

Exercice 20

Soit $f: \mathbb{R} \to \mathbb{C}^*$ l'application définie par $f(x) = e^{ix}$.

Montrer que f est un homomorphisme de groupes. Calculer le noyau et l'image de f. f est-elle injective?

Exercice 21

Démontrer que les fonctions suivantes sont des morphismes de groupes. Déterminer leur noyau et leur image :

- 1. $\phi: (\mathbb{Z}, +) \to (\mathbb{R}^*, \times), n \mapsto (-1)^n$.
- 2. $\phi: (\mathbb{C}^*, \times) \to (\mathbb{C}^*, \times), z \mapsto \frac{z}{|z|}$.
- 3. $\phi: (\mathbb{R}_+^*, \times) \times (\mathbb{R}, +) \to (\mathbb{C}^*, \times), (r, \theta) \mapsto re^{i\theta}$.

Exercice 22

Soit G un groupe. Montrer que l'application $x \mapsto x^{-1}$ est un morphisme si et seulement si G est commutatif.

Exercice 23

Les applications suivantes sont-elles des morphismes de groupes? Si c'est le cas, déterminer leur noyau et leur image.

- 1. $f_1:(\mathbb{C}^*,\cdot)\to(\mathbb{R}^*,\cdot)$ définie par $f_1(z)=|z|$.
- 2. $f_2:(\mathbb{Z}^2,+)\to(\mathbb{Z},+)$ définie par $f_2(a,b)=a-b.$
- 3. $f_3:(\mathbb{Z}^3,+)\to (\mathbb{Q}_+^*,\cdot)$ définie par $f_3(a,b,c)=2^a\cdot 3^b\cdot 5^c$.

Exercice 24

Soit a un élément d'un groupe (G, *).

- 1. Montrer que l'application $f: \mathbb{Z} \to G$ définie par $f(k) = a^k$ est un morphisme du groupe $(\mathbb{Z},+)$ vers (G,*).
- 2. Déterminer l'image et le noyau de f.

Exercice 25

Soient $n \in \mathbb{N}^*$ et $f: (\mathbb{R}^*, \cdot) \to (\mathbb{R}^*, \cdot)$ définie par $f(x) = x^n$.

- 1. Montrer que f est un morphisme du groupe (\mathbb{R}^*,\cdot) dans lui-même.
- 2. Déterminer l'image et le noyau de f.

Exercice 26

- 1. Soit (G,*) un groupe, pour tout $h \in G$, on définit l'application $\Phi_h : G \to G$ par $\Phi_h(g) = h * g * h^{-1}$.
 - (a) Montrer que, pour tout $h \in G$, l'application Φ_h est un automorphisme de groupe $(\Phi_h \in \operatorname{Aut}(G))$.
 - (b) Déterminer l'inverse Φ_h^{-1} de Φ_h .
 - (c) Montrer que $\Phi_h \circ \Phi_k = \Phi_{h*k}$, pour tout $h, k \in G$.
- 2. Considérons l'application $\Phi: (G, *) \to \operatorname{Aut}(G, \circ)$ définie par $\Phi(h) = \Phi_h$.
 - (a) Montrer que Φ est un morphisme de groupe.
 - (b) On suppose que (G, \cdot) est commutatif. Déterminer le noyau de Φ .