Math 103A: Homework 6 solutions

1. Solution to Problem 1

We need to show that $\phi: S_A \to S_B$ is a bijection and it satisfies the homomorphism property.

 ϕ is well defined. $f:A\to B$ is a bijection, so $f^{-1}:B\to A$ is a bijection. Also, given $\sigma\in S_A, \sigma:A\to A$ is a bijection by definition. Since composition of bijections is a bijection, $\phi(\sigma)=f\circ\sigma\circ f^{-1}:B\to A\to A\to B$ is a bijection. Hence $\phi(\sigma)\in S_B$. ϕ is surjective. Given $\gamma\in S_B$, let $\sigma=f^{-1}\circ\gamma\circ f$. By similar arguments as above, we see that $\sigma\in S_A$. But $\phi(\sigma)=f\circ\sigma\circ f^{-1}=f\circ f^{-1}\circ\gamma\circ f\circ f^{-1}=\gamma$. ϕ is injective. $\phi(\sigma)=\phi(\gamma)\implies f\circ\sigma\circ f^{-1}=f\circ\gamma\circ f^{-1}\implies f^{-1}\circ f\circ\sigma\circ f^{-1}\circ f=f^{-1}\circ f\circ\sigma\circ f=f^{-1$

2. Solution to Problem 2

(a) We know matrix multiplication is associative, and G_n contains the identity. So we need only show that G_n is closed under multiplication and it contains all the inverses. G_n contains two types of elements, R^i and R^iX for $0 \le i \le n-1$. Note that $X^2 = I$, $R^n = I$ (as rotating a vector n times by $\frac{2\pi}{n}$ radians maps a vector to itself), and RXR = X (by explicit computation, for example). The last identity gives $XR = R^{-1}X$. Given this, we have: $R^aR^b = R^{(a+b) \mod n}$, $R^a(R^bX) = R^{(a+b) \mod n}X$, $(R^aX)R^b = R^a(XR^b) = R^a(R^{-b}X) = R^{(a-b) \mod n}X$ and $(R^aX)(R^bX) = (R^aX)(XR^{-b}) = R^aR^{-b} = R^{(a-b) \mod n}$. This covers all the four cases, and G_n is closed under multiplication.

For inverses, we use the above computations to see that the inverse of R^i for $1 \le i \le n-1$ is R^{n-i} and the inverse of everything else is itself.

(b) We give an explicit bijection $f: D_4 \to G_4$, and verify that it satisfies the homomorphism property. First note that D_4 is generated by $\rho_1 = (1\ 2\ 3\ 4)$ and $\mu_1 = (1\ 2)(3\ 4)$ as given on Pg. 80 in the book. The eight elements are in fact $\{\rho_0 = \rho_1^0 = id, \rho_1, \rho_2 = \rho_1^2, \rho_3 = \rho_1^3, \mu_1, \mu_2 = \rho_1^3 \mu_1, \delta_1 = \rho_1 \mu_1, \delta_2 = \rho_1^2 \mu_1\}$. Also note that $\rho_1^4 = \mu_1^2 = id$, and $\rho_1 \mu_1 \rho_1 = (1\ 2)(3\ 4) = \mu_1$. This implies $\mu_1 \rho_1 = \rho_1^{-1} \mu_1$ and $\mu_1^a \rho_1^b = \rho_1^{(-1)^a b} \mu_1^a$.

Also, since RXR = X and $R^4 = X^2 = I$, the above computations work analogously in G_4 as well and we get $X^aR^b = R^{(-1)^ab}X^a$.

Now we define $f: D_4 \to G_4$ as $f(\rho^a \mu^b) = R^a X^b$. It is clearly onto, and as $|G_4| = |D_4|$, f is a bijection. To see that it satisfies the homomorphism property:

 $f((\rho^a \mu^b)(\rho^c \mu^d)) = f(\rho^a (\mu^b \rho^c) \mu^d) = f(\rho^a (\rho^{(-1)^b c} \mu^b) \mu^d) = f(\rho^{(a+(-1)^b c)} \mu^{(b+d)}) = f(\rho^a (\mu^b \rho^c) \mu^d) = f$

 $f(\rho^a \mu^b) f(\rho^c \mu^d) = (R^a X^b) (R^c X^d) = R^a (X^b R^c) X^d = R^a R^{(-1)^b c} X^b X^d = R^{(a+(-1)^b c)} X^{(b+d)}$. Hence, f is an isomorphism.

3. Solution to II.8 Q2

$$\tau^2 \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 5 & 6 & 3 \end{pmatrix}$$

4. Solution to II.8 Q8

Since σ is a cycle of length 6, $\sigma^6 = id$. So, $\sigma^{100} = (\sigma^6)^{16} \sigma^4 = \sigma^4 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 1 & 3 & 4 \end{pmatrix}$

5. Solution to II.8 Q12

The orbit of 1 under τ is $\{1, 2, 3, 4\}$ (since $1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 1$).

6. Solution to II.8 Q21

(a) We know that matrix multiplication is associative and the identity matrix is among the 6 matrices. So we only need to show that the set is closed under multiplication and has all the inverses.

Let $A_1, A_2, \dots A_6$ be the given matrices. Note that $A_1 \cdot [1\ 2\ 3]^\intercal = [\ 1\ 2\ 3]^\intercal$, $A_2 \cdot [1\ 2\ 3]^\intercal = [\ 2\ 3\ 1]^\intercal$, $A_3 \cdot [1\ 2\ 3]^\intercal = [\ 3\ 1\ 2]^\intercal$ etc, and we get 6 different permutations of the vector $[\ 1\ 2\ 3]^\intercal$ when multiplied by the six matrices. So, when we multiply A_i and A_j , A_i permutes the three columns of A_j and the resulting matrix has exactly one 1 in each column and each row. So the set is closed under multiplication.

For inverses, note that for any A_i , it's transpose A_i^{T} is clearly in the set, as the property of having exactly one 1 in each column and row is preserved. But $A_i \cdot A_i^{\mathsf{T}} = I$. So it contains all the inverses, and hence is a group.

(b) By the first half of part (a), we see that the group is isomorphic to S_3 .

7. Solution to II.8 Q47

Let σ be a non-identity permutation in $S_{n\geq 3}$. We need to prove that there exists γ in S_n such that $\sigma\gamma\neq\gamma\sigma$. Since σ is not the identity, there exists $1\leq i\leq n$ such that $\sigma(i)=j$ and $i\neq j$. Let γ be the permutation $(i\ k)$ where $k\neq i\neq j$ (here we need $n\geq 3$ to get the three distinct elements). Then $(\sigma\gamma)(i)=\sigma(k)\neq j$ (as $\sigma(i)=j$ and permutation is a bijection). But $(\gamma\sigma)(i)=\gamma(j)=j$. So $(\sigma\gamma)(i)\neq(\gamma\sigma)(i)$, and that implies $\sigma\gamma\neq\gamma\sigma$.

8. Solution to II.8 Q49

Let $A = \{a_1, a_2, \dots, a_n\}$. Let $\sigma \in S_A$ be the permutation (a_1, a_2, \dots, a_n) (written in cyclic notation). Then $<\sigma>$, the subgroup generated by σ , clearly has size |A|, and is transitive. In fact, given $a_i, a_j \in A$ with i < j, $\sigma^{j-i}(a_i) = a_j$, and its inverse would take a_i to a_i .

9. Solution to II.9 Q2

The orbits of the permutation are $\{1,5,7,8\}$, $\{2,3,6\}$ and $\{4\}$.

10. Solution to II.9 Q9

(1,2)(4,7,8)(2,1)(7,2,8,1,5) = (1,5,8)(2,4,7). Here, the four cycles in the left hand side are four different permutations, but two cycles on the right hand side is just one permutation written in the cyclic notation.

2

11. Solution to II.9 Q13

- (a) The order of the cycle (1,4,5,7) is 4.
- (b) Part (a) suggests that the order of a cycle of length n is n.
- (c) The order of (4,5)(2,3,7) is 6, and the order of (1,5)(3,5,7,8) is 4.
- (d) The orders of the permutations in Exercise 10,11 and 12 are 6,6 and 8 respectively.
- (e) The order of a permutation is the least common multiple of the lengths of its disjoint cycles.

12. Solution to II.9 34

Let $\sigma = (a_1, a_2, \dots, a_n)$ where n is odd. Then $\sigma^2 = (a_1, a_2, \dots, a_n)(a_1, a_2, \dots, a_n) = (a_1, a_3, \dots, a_n, a_2, a_4, \dots, a_{n-1})$, which is a cycle of length n.