Semaine n° 14 : du 18 décembre au 22 décembre

Lundi 18 décembre

- Cours à préparer : Chapitre XIII Groupes, anneaux, corps
 - Partie 3.1 : Structure d'anneau. Règles de calcul, formule du binôme de Newton. Groupe des inversibles d'un anneau. Anneau nul. Diviseur de 0; anneau intègre.
 - Partie 3.2 : Sous-anneau.
- Exercices à corriger en classe
 - Feuille d'exercices nº 12 : exercices 8 et 13.

Mardi 19 décembre

- Cours à préparer : Chapitre XIII Groupes, anneaux, corps
 - Partie 3.3: Morphismes d'anneaux.
 - Partie 3.4 : Structure de corps.
- Exercices à corriger en classe
 - Feuille d'exercices nº 13 : exercices 4, 7.

Jeudi 21 décembre

- Cours à préparer : Chapitre XIV Limite d'une fonction
 - Partie 1 : Propriété vraie au voisinage d'un point, au voisinage de $+\infty$, de $-\infty$. Intérieur d'un intervalle, adhérence d'un intervalle.
 - Partie 2.1: Fonction admettant une limite finie ou infinie en un point, en $+\infty$, en $-\infty$. Unicité de la limite sous réserve d'existence. Fonction définie en un point a admettant une limite en a.
 - Partie 2.2: Fonction admettant une limite à gauche, une limite à droite en un point a.
- Exercices à corriger en classe
 - Feuille d'exercices nº 13 : exercices 10, 13.

Vendredi 22 décembre

- Cours à préparer : Chapitre XIV Limite d'une fonction
 - Partie 3.1 : Opérations sur les limites. Caratérisation séquentielle de la limite d'une fonction.
 - Partie 3.2 : Limites et inégalités.

Échauffements

Mardi 19 décembre

• Déterminer la limite des suites définies par

 $-- \forall n \in \mathbb{N}^*, u_n = \left(1 - \frac{1}{n}\right)^n.$

- $\forall n \in \mathbb{N}^*, y_n = n^{\frac{2}{n}}.$
- Cocher toutes les assertions vraies :

Soit $(u_n)_{n\geqslant 0}$ une suite réelle croissante. On pose $v_n=u_n+\frac{1}{n}$. Les suites $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ sont adjacentes

- \square lorsque $(u_n)_{n\geqslant 0}$ converge
- □ lorsque $u_{n+1} u_n \geqslant \frac{1}{n(n+1)}$ pour tout n □ lorsque $(u_n)_{n\geqslant 0}$ est majorée
- \square lorsque $u_{n+1} u_n \leqslant \frac{1}{n(n+1)}$ pour tout n

Jeudi 21 décembre

- Soit la suite définie par $u_0 \in \mathbb{R}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{u_n^2 + 3}{4}$. Déterminer le comportement de (u_n) en fonction de u_0 .
- Cocher toutes les assertions vraies : Soit $A \subset \mathbb{R}$ et $f: A \to \mathbb{R}$. Soit $D \subset A$.
 - \square Si pour tout $x \in D$ on a $f(x) \in D$, alors f est stable par D.
 - \square Si $f(D) \subset D$, alors D est stable par f.
 - \square D est stable par f si et seulement si pour tout $u_0 \in D$, la suite définie par « pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n \gg \text{est bien définie.}$
 - \square Si D est stable par f, f a un point fixe dans D.

Vendredi 22 décembre

- Soit $n \in \mathbb{N}^*$. Résoudre l'équation $z^{2n} + \sqrt{2}z^n + 1 = 0$ d'inconnue $z \in \mathbb{C}$.
- Cocher toutes les assertions vraies :

Soit $(u_n)_{n\geqslant 1}$ définie par son premier terme $u_1>0$ et la relation de récurrence $u_{n+1}=u_n+\frac{1}{u_n}$. Alors on peut montrer par récurrence sur n que

 \square u_n est rationnel

 $\square u_n \leqslant u_{n+1}$

 $\square u_n > 0$

 $\square u_n \leqslant nu_1$