This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: A61K 9/127, 9/107, 9/06	A1	11) International Publication Number: WO 94/03157 43) International Publication Date: 17 February 1994 (17.02.94)
(21) International Application Number: PCT/E (22) International Filing Date: 23 July 1993		CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL
(71) Applicant (for all designated States except US): DUSTRIA CHIMICA S.P.A. [IT/IT]; Piazzi 1, 1-20141 Milano (IT).	POLI a Agrip	Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.
(72) Inventors; and (75) Inventors/Applicants (for US only): POLI, Stefar MAILLAND, Federico [IT/IT]; MORO, Lui Via Volturno, 48, 1-20089 Quinto de' Stamp (1T).	gi (IT/I	
(74) Agent: BIANCHETTI, Giuseppe; Studio Consuvettuale, Via Rossini, 8, 1-20122 Milano (IT).	ilenza E	

(54) Title: PHARMACEUTICAL COMPOSITIONS FOR TRANSMUCOSAL DELIVERY OF PEPTIDES

(57) Abstract

Bioadhesive microemulsions or liposomic dispersions containing proteic substances, especially calcitonin, that allow the systemic, local or topical administration of drugs by transmucosal route are described. This type of administration shows some considerable advantages of activity, tolerability, dosage individualization and drug stability.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR France		MR	Mauritania
AU	Australia	GA	Gabon	· MW	Malawi
BB	Barbados	GB	United Kingdom	NE	Niger
BE	Belgium	GN	Guinea	NL	Netherlands
BF	Burkina Faso	GR	Greece	NO	Norway
BG	Bulgaria	HU	Hungary	NZ	New Zealand
BJ	Bénin	ΙE	Ireland	PL	Poland
BR	Brazil	1T	Italy	PT	Portugal
BY	Belarus	JP	Japan	RO	Romania
CA	Canada	KP	Democratic People's Republic	RU	Russian Federation
CF	Central African Republic		of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	ΚZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovak Republic
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
cs	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	UA	Ukraine
DE	Germany	MG	Madagascar	US	United States of America
DK	Denmark	ML	Mali	UZ	Uzbekistan
ES	Spain	MN	Mongolia	VN	Viet Nam
FI	Finland				

WO 94/03157 PCT/EP93/01965

PHARMACEUTICAL COMPOSITIONS FOR TRANSMUCOSAL DELIVERY OF PEPTIDES.

The present invention refers to pharmaceutical compositions in the form of microemulsions or liposomic dispersions for the transmucousal administration substances pharmacologically peptidic proteins or they differ from the known liposomic active: microemulsified compositions in that they contain in addition a thermosetting agent able to enhance the residence time on the administration site and. consequently, to promote the absorption of the delivered drug.

The administration of proteinic substances has been, from few years ago, limited to the parenteral route as it was the only one which granted a good absorption to molecules having a complex structure and not able to tolerate environments with a high acidity and rich of proteolytic enzymes such as that ones can be found in the digestive apparatus. The need to apply by means of an invasive way, the difficulty in obtaining, on a large scale, many proteins from natural sources and the very high activity of such substances, with the consequent risks of overdosage, have determined the limited diffusion of such substances in the clinical practice.

Pecent attempts to orally administer the peptide substances with drug delivery systems such as microparticles and liposomes, did not obtain relevant

5

10

15

20

20

25

results in absorption or reproduciblity of the same: variability in the digestive time transit the presence apparatus, associated to large the the researcher has made proteolytic enzymes, consider the oral administration as a problem.

More recently, always in the attempt to avoid the more invasive parenteral administration, formulations suitable to the nasal administration of proteinic substances have been proposed.

of this disadvantage tipical 10 administration consists in: the relatively reduced area available for the absorption, the high clearance (which particular the contact) and the time of reduce characteristic of the muconasal epithelium which covers the upper respiratory organs, that is the presence of 15 cilia in association with mucus producing glands.

In addition, the "absorption promoters" frequently used in formulations for nasal administration produce a relevant damage to the mucociliary clearance of the deposit zone of the formulation and give problems to the repeated or chronic treatment cycles.

With the same aims, it has also been proposed the rectal administration of protein substances: this kind nevertheless confined of administration is mediterranean area and even considered unproposable to nordamerican and nordeuropean populations. the inconvenient, is ethnical to the considered that the rectal ampoul has a limited surface and a basic pH.

30 More recently it has been found that the intravaginal way, till now considered for local

10

15

20

25

30

absorption of protein substances. The vaginal mucous is in fact able to allow the diffusion of substances pharmacologically active from the application surface to the dermic stratum where is present a rich vascular area able to absorb and drain in the systemic circle, besides the deep dermic stratum, considerable quantity of the substance applied.

An important characteristic wich allow high absorption values in the vaginal area, as well as for nasal cavity and mucous in general, is the bioadhesion of the formulation.

The formulations commonly used in the medical practice take advantage of the vehicle charachteristics: its viscosity and composition play an important role on the time of persistence of the drug effective amount in the absorption area, as well as the achievement of an opportune absorption area and the extension of the same.

Cenerally, the lower is the mobility of the vehicle, the higher is its viscosity then, the more permanence time increases, consequently, higher is the possibility that active substance is quantitatively absorbed.

Nevertheless, we must not neglect the fact that, usually, a reduced viscosity helps to spread the dispersion of the dosage applied by means of suitable mechanical devices, such as the nasal minipump or foam generators, allowing a very fine distribution of the product. This is very important to increase the contact surface and promote drug absorption.

10

15

20

25

invention The objects of present are of the form pharmaceutical compositions in microemulsions or liposomic dispersions characterized by the fact that contain a thermosetting agent able to allow the product viscosity increase with temperature, thus allowing a longer mucousal residence time enhanced drug absorption profile.

properties of the thermosetting the Due to possible to make pharmaceutical vehicles it is compositions which have a reduced viscosity at room helping the distribution on temperature, product finely divided. When surface, with a composition reach the mucous a structural change take function of the body temperature, the place as а viscosity of the product increase thus determining a large persistence of the system on the absorption zone.

The use of formulations that are liquid at room temperature but which increase their viscosity with temperature giving semi-solid products when warmed to the body value is already known.

There are, in fact, some patents that describe the use of a particular polymer (Pluronic) to reach that goal.

As example, the U.S. Pat. No. 4,478,822 describes a vehicle useful to deliver a medicament to a body orifice, with a drug delivery system consisting of a clear liquid which forms semi-solid gel at human body temperature.

The desired sol-gel transition temperature of the solution can be modified by changes in polymer concentration or in chemical characteristics of the

10

15

20

25

30

solution.

We have surprisingly found that the same goal can be obtained also in systems more and more complex, like liposomes of microemulsions.

Normally, this type of formulations require an hard work to balance the composition. In fact, microemulsions are a very complex system with the coexistence of at least three different phases: a disperse phase, an interface layer of surfactants and/or cosurfactants surrounding the disperse phase, a continuous phase that contains the previous ones. The addition of relevant amounts of copolymer in order to obtain the sol-gel system transition, normally change dramatically the precise ratio between the 4 main components of the microemulsion system, that are water, surfactants, cosurfactants and oil. Only a formulation work devoted to find a new balance point allows to obtain thermosetting microemulsions. The same problem, with due proportions and limitations, is arising also to liposomic dispersion.

In a typical realization, the invention uses as thermosetting vehicle, a polyoxyethylene-polyoxypropylene copolymer, preferably the one known with the trade name of Pluronic F 127TM or Lutrol F 127TM. These characteristics, which are favourable even when present in conventional solutions, are particularly important and effective when join complex and modern vehicles such as the liposomic or microemulsion systems.

The liposomic systems, well-known for their potential of vectorization, consist in spherules, with very small dimensions, composed of concentric layers of

10

15

20

25

3.0

phospholipidic material which are alternated to discrete and isolated aqueous spaces.

The high affinity with mucouses, typical of liposomic systems, is dramatically increased by the introduction of termosetting polymers, generating a product with bioadhesive characteristics which, by increasing the potential of vectorisation, leads to an improved activity.

For the liposomic products, that contain the polyoxyethylene-polyoxypropylene copolymer, the viscosity changement induced by the temperature is reversible (fig. 1).

said can be extended to the What previously microemulsionated systems too: the well proportioned constituent, essential from a combination of its view, with a polyoxyethylenepoint of structural "apparent polyoxypropylene copolymer produces an increase the viscosity when solution" able to contact with mucouses. The human body application of this system, following the partial solvent evaporation, generates a barrier which, owing to the thermosetting gelation, promotes the bioadhesion of the system.

Even in this case the transition temperature from the sol condition to the gel is reversible (fig. 2).

Object of the present invention are pharmaceutical transmucousal for the useful compositions or nasal, vaginal administration. in particular substances pharmacologically peptidic or proteinic include substances similar Examples of active. desmopressine, interleukin, insulin, calcitonin, (granulocite monocite irterferon, GMCSF

10

stimulating factor), ciclosporin, posatirelin, protirelin, timopentin, pidotimod, mono or polyclonales antigenes, antigenic proteins of bacterial or viral origin, parathormon, gonadorelin, coagulation factors, epidermic growth factors, "insulin like" growth factor, endorphin and their derivatives or fragments, tioxoprolylcysteine, tioxoprolylthiazolidincarboxylic acid, irudine and their derivatives.

The pharmaceutical compositions, in accordance to the invention, can be in any form suitable for vaginal or nasal administration, such as soft gelatine vaginal capsules, vaginal suppository composed of natural or semi-synthetic glycerides, creams, gels, emulsions, suspensions, solutions, foams.

The liposomic systems can contain:

- modulators of transition temperature of phospholipids, such as cholesterol and its derivatives;
- antioxidant agents such as tochopherols, and their
 esters, BHA, BHT, carotenes;
 - stabilizer agents;
 - preservatives;
 - an alcoholic solvent phase;
- eventual auxiliary substances, such as pH
 correctors, moisturizers, perfumes, essences.

The microemulsion systems, in addition to the components already mentioned and to the polyoxyethylene-polyoxypropylene copolymer, could contain excipients known by the experts with the names of antioxidant, stabilizer, preservatives, buffers, and so on.

30

Obviously, the administration of liposomic and microemulsionated systems will be made easier by the use of suitable spray dispensers or applicators in form of cannula, syringe or similar devices.

preferred embodiment of the According to а invention, the compositions will contain stabilizer or polygalacturonic promoter, absorption polyglucuronic acid, hyaluronic acid, hyaluronamine, pharmaceutical hyaluronamide their salts and or acceptable dérivatives.

In vivo experimental studies employing products relevant to the invention, have shown that intravaginal systemic bioavailability allow a route comparable with that ones achievable by a parenteral administration, without presenting the limits of this route. As a consequence the dosage potency of proteins peptidic substances farmacologically active vaginal or nasal administration will be substantially similar to those already used for the well-known administration routes. Ιt is possible that, using pharmaceutical forms not exactly metered, such solutions, creams or gel, according to the invention, it is possible to obtain a personalization of the dosage: considering the often high pharmacological of the protein substances, this activity important advantages related to the reduction of the risks of overdose.

According to a preferred embodiment, the invention gives pharmaceutical compositions suitable to the vaginal or nasal administration containing as active ingredient a calcitonin of any source.

5

10

15

20

25

10

15

The high bioavailability level achievable by the vaginal administration of a calcitonin products relevant to the invention, with a proper bioadhesion, is shown by a pharmacological experiment. The decrease of calcemic level in rabbit serum after application of: a) a simple b) solution, thermosetting gel and c) a thermosetting gel furtherly thickned with hyaluronic acid, has been measured. As a reference the decrease of calcemic serum level obtained by administration of an equal dose of the same drug by i.m. route (see tab. 1) was chosen.

	Table	1	
ADMINISTRATION	,	CALCEMIC LEVEL VS	BASAL VALUE
TYPE	ROUTE	AREA (cm ²)	% VS I.M.
Solution 100 I.U.	i.m.	444	100
Solution 100 I.U.	vaginal	264	~ 6 0
Gel(Pluronic F127)	vaginal	439	99
Gel(High m.w. Hyalur.Acid)100 I.U.	vaginal	425	95

20

25

The demonstration of a systemic absorption of proteic substances, when administrated by vaginal or employing liposomic or microemulsions nasal route bioadhesive preparations, make possible a vaccineforms of immunitary therapy uninvasive or other protection using antigen substances.

It is well-known that the oral administration of drugs meets the compliance of patients; but it is well-

10

15

20

25

known too that a simple pharmaceutical oral dosage form cannot be employed with peptides or proteins. The object of the present invention is a pathway to bypass the limits of the oral route keeping a good compliance of the patients.

Neverthless the thermosetting liposomes or microemulsions not only are a drug delivery system particularly usefull for peptides and proteins, but can be advantageously employed also for low molecular weight drug, like nicotine, FANS and so on.

The invention will have a more detailed description by the following examples.

Example 1

and cholesterol (0.75 g) were Lecithin (4 g). dissolved in ethyl alcohol. Tocopherol acetate (0.02 g) was added to the solution. In an other container, sodium methylparaben (0.15 g), edetate disodium (0.1 g) and salmon calcitonin (7 mg) were dissolved in purified water (80 mL). The aqueous solution was added to the first one under stirring. The alcohol was evaporated by heating to form a liposomic dispersion . Thereto were added Lutrol F127 (13 g) and purified water (q.s.to reach 100 mL). The liposomic dispersion was subdivided that following were closed with a glass vials minipump. A pre-arranged unit dose administration was so allowed.

Example 2

Soybean lecithin (30 g), tocopherol acetate (500 mg) and cholesterol (2 g) were dissolved by heating in isopropyl alcohol. The solution was keeped at 50°C until 50 mM citrate buffer (pH 4.5, 1000 mL) containing

10

15

20

25

30

calcitonin (50 I.U./mL), beforehand heated at the same-temperature, was added, to give a hydro-alcoholic phospholipid dispersion. The mixture was vigorously shaken under reduced pressure causing the evaporation of isopropyl alcohol and giving a liposomic dispersion of calcitonin. Hydroxyethylcellulose (10 g) was added and a gel, having a suitable viscosity for the vaginal application, was obtained.

Example 3

Hyaluronic acid sodium salt (10 g) and Posatirelin (3.33 g) were dissolved in 50 mM citrate buffer (pH 4.5, 1000 mL). A suitable amount of Pluronic Fl27 was added, so to obtain an increased viscosity to body temperature. The gel formed shows a good clearless and can be applied into the vagina syringe dispenser.

Example 4

g) was dissolved in a mixture of Lecithin (6 isopropyl myristate and ethyl alcohol (12.5 mL). After complete dissolution tocopherol acetate (0.02 g) was added. Thereto sodium cholate (4 g) was suspended. Into an other container sodium methylparaben (0.15 g) and calcitonin (7 mg) were dissolved in purified water (60 solution of calcitonin was added Aqueous mL). lipophylic phase, maintained vigorously shaked. To the microemulsion, Pluronic F127 (15 g) was added formed and dissolved. A necessary amount of purified water to 100 mL was added. The amount entire make the microemulsion was optically clearless shown a and transition temperature sol-gel of about 30-40°C.

Example 5

Edetate disodium (0.15 g), sodium methylparaben

10

15

20

25

(0.225 g) and salmon calcitonin (12 mg) were dissolved in purified water (100 mL). A solution, obtained dissolving lecithin (5.6 g), cholesterol (1.12 g) and tocopherol in slightest amount needed of ethyl alcohol, was added. Thereto polyoxyethylene-polyoxypropylene copolymer (Pluronic F127, 19.5 g) was dissolved, and a necessary amount of purified water to make the entire amount 150 mL was added. The liposomic dispersion was subdivided into aerosol pressurizated container giving a thermosetting liposomic foam.

Example 6

and nicotine (3.8 q) (30 q) dissolved in a mixture of isopropylmiristate and ethyl keeping at 50°C until dissolution. alcohol, complete dissolution tocopherol acetate (0.6 g) was added and sodium cholate (15 g) was suspended. Into an other container sodium methylparaben (0.5 g) and sodium edetate (0.5 g) were dissolved in pre-heated (60°C) purified water (300 mL). Aqueous solution was added to lipophilic phase, maintained vigorously shaked. formed microemulsion was cooled to 5-10°C then Pluronic F127 (75 g) was added and dissolved. A necessary amount of purified water to make the entire amount 500 mL was The microemulsion, that shown a temperature sol-gel of about 30-40°C, can be applied on the skin or on the nasal mucousal with a suitable device.

10

25

CLAIMS

- 1. Pharmaceutical compositions suitable to drug protein or peptide administration on body mucosal surface characterized in that they are composed by:
- a multiphasic pharmaceutical administration system containing the active drug substance;
- b) a thermosetting polymer or copolymer able to enhance the viscosity of the system after the exposition to the body temperature;
- 2. Pharmaceutical compositions as described in the claim 1, characterized in that the multiphasic pharmaceutical administration system is represented by a liposomic suspension or dispersion.
- 3. Pharmaceutical composition as described in the claim 1, characterized in that the multiphasic pharmaceutical administration system is represented by a microemulsion or other pluriphase system containing at least a dispersed oily phase and a continuous aqueous phase or a dispersed aqueous phase and a continuous oily phase.
 - 4. Pharmaceutical compositions as defined in the preceding claims, characterized in that these are suitable to promote protein or peptide drugs absorption through the skin or mucousal membranes.
 - 5. Pharmaceutical compositions as defined in the preceding claims, characterized in that these are suitable to promote protein or peptide drugs absorption through the vaginal mucousal tissue.
- 30 6. Pharmaceutical compositions as defined in the preceeding claims, characterized in that these are

suitable to promote protein or peptide drugs absorption through the nasal mucousal tissue.

- 7. Pharmaceutical compositions as defined in the preceding claims, characterized in that these are suitable to promote protein or peptide drugs absorption through the rectal mucousal tissue.
- 8. Pharmaceutical compositions as specified in the preceding claims, characterized by the presence of polyoxyethylene-polyoxypropylene copolymers as thermosetting agents (able to increase the product viscosity by mean of the sol-gel phase transition induced by the exposition to the temperature of the body administration site).
- 9. Pharmaceutical compositions according to claim 8, where the thermosetting agent is represented by a copolymer known with the trade name of PLURONIC F127TM, in a final concentration range between 10% and 30% w/w, preferentially between 13% and 20% w/w.
- composition according to the Pharmaceutical preceeding claims, containing a protein or peptide drug 20 selected from the group consisting of calcitonin, insulin, desmopressine, interleukin, interferon, GMCSF (granulocite monocite colony stimulating ciclosporin, posatirelin, protirelin, timopentin, mono or polyclonal antigens, bacterial or viral antigenic 25 protein, parathormon, gonadorelin, coagulation factors, "insuline like" epidermic growth factors. and derivatives or fragment, factor, endorphin thioxoprolylcysteine, tioxoprolilthiazolidincarboxylic acid, nicotine, irudine and/or their derivatives. 30

10

preceeding claims, where the protein or peptide drug is represented by a calcitonin.

- 12. Pharmaceutical composition according to the preceeding claims, where the drug is represented by an antigen or an antibody suitable to be used for immunotherapy.
- 13. Pharmaceutical compositions according to the preceeding claims, containing as absorption enhancers or stabilizers one or more of the biopolymers polygalacturonic acid, polyglycuronic acid, hyaluronic acid, hyaluronamide or their salts or derivatives.
- 14. Pharmaceutical compositions according to the preceeding claims able to be administered as dermal or vaginal foam.

INTERNATIONAL SEARCH REPORT

unal Application No

PCT/EP 93/01965 A. CLASSIFICATION OF SUBJECT MATTER IPC 5 A61K9/127 A61K9/ A61K9/107 A61K9/06 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 5 A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category * 1 WO, A, 90 00048 (TEMPLE UNIVERSITY OF THE X COMMONWEALTH SYSTEM OF HIGHER EDUCATION) 11 January 1990 see page 1, line 17 - line 26 see page 3, line 9 - line 10 see page 5, line 15 - line 25 see page 8, line 25 - page 9, line 29 see page 12 - page 14; example 1 EP,A,O 386 960 (AMERICAN CYANAMID COMPANY) 1 - 14Y 12 September 1990 see page 1, line 1 - page 5, line 35 see page 7, line 36 - page 8, line 20 1,2,4-14 US,A,4 944 948 (USTER ET AL) 31 July 1990 Y see the whole document Patent family members are listed in annex. Further documents are listed in the continuation of box C. ΙX X Special categories of cited documents: "I" later document published after the international filing date or priority date and not in conflict with the application but cated to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to earlier document but published on or after the international filing date involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-*O* document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 4 January 1994 **74**. 01. 94 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Ripswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Benz, K

Form PCT/ISA/210 (second sheet) (July 1992)

Fax (+31-70) 340-3016

INTER: ... FIONAL SEARCH REPORT

Inte. .al Application No PCT/EP 93/01965

		PCI/LF 33/C	C1/EP 93/01905	
	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	iRe	levant to claim No.	
Category *	Citation of document, with indication, where appropriate, of the relevant passages			
	EP,A,O 177 223 (MEZEI) 9 April 1986 see page 4, line 21 - page 5, line 8 see page 5, line 27 - line 30		1-14	
	see page 7, line 6 - line 17 see page 8, line 24 - page 11, line 13		1 2	
	FR,A,2 660 192 (POLI INDUSTRIA CHIMICA S.P.A.) 4 October 1991 see page 8 - page 9; example 8		1,2	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

IN . ZRN. ONAL SEARCH REPORT

Information on patent family members

Intel Application No
PCT/EP 93/01965

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO-A-9000048	11-01-90	US-A- 4917892 AU-B- 613298 AU-A- 3851889 EP-A- 0393164 JP-T- 3501485	17-04-90 25-07-91 23-01-90 24-10-90 04-04-91
EP-A-0386960	12-09-90	GB-A- 2229443 AU-B- 632539 AU-A- 5076990 JP-A- 2300114	26-09-90 07-01-93 20-09-90 12-12-90
US-A-4944948	31-07-90	AU-A- 5182590 EP-A- 0460100 WO-A- 9009782 US-A- 5064655	26-09-90 11-12-91 07-09-90 12-11-91
EP-A-0177223	09-04-86	JP-A- 61085312 US-A- 4897269 US-A- 4761288	30-04-86 30-01-90 02-08-88
FR-A-2660192	04-10-91	DE-A- 4110779	02-10-91