SEMINAR ALGEBRA III, 2022-2023

TIBERIU DUMITRESCU

- 1. Arătați că 4-i divide 22+3i în domeniul $\mathbb{Z}[i]$.
- 2. Arătați că 13 + 4i nu se divide cu 6 + i în $\mathbb{Z}[i]$.
- 3. Verificați dacă $3+\sqrt{2}$ divide numerele $13\pm2\sqrt{2}$ în $\mathbb{Z}[\sqrt{2}]$.
- 4. Arătați că elementele inversabile (aka unitățile) inelului $\mathbb{Z}[i]=\{a+bi\mid a,b\in\mathbb{Z}\}$ sunt $1,\,-1,\,i,\,-i.$
- 5. Găsiți unitățile inelului $\mathbb{Z}[\sqrt{d}]$ pentru d < -1.
- 6. Găsiți unitățile inelului $\mathbb{Z}[(1+\sqrt{-3})/2]$.
- 7. Verificati dacă $24 + 5\sqrt{23}$ este element inversabil în inelul

$$\mathbb{Z}[\sqrt{23}] = \{a + b\sqrt{23} \mid a, b \in \mathbb{Z}\}.$$

- 8. Arătați că unitățile inelului $\mathbb{Z}[\sqrt{2}]$ sunt $\pm (1+\sqrt{2})^m$ cu m întreg.
- 9. Arătați că unitățile inelului $\mathbb{Z}[\sqrt{3}]$ sunt $\pm (2-\sqrt{3})^m$ cu m întreg.
- 10. Arătați că unitățile inelului $\mathbb{Z}[\sqrt{14}]$ sunt $\pm (15 4\sqrt{14})^m$ cu m întreg.
- 11. Verificați dacă 2 + 5i divide numerele 7 + 3i, 7 3i, 7 + i în $\mathbb{Z}[i]$.
- 12. Verificați dacă $1+\sqrt{5}$ divide $1-\sqrt{5}$
 - (i) în inelul $\mathbb{Z}[\sqrt{5}]$,
 - (ii) în inelul $\mathbb{Z}[(1+\sqrt{5})/2]$.
- 13. Verificați dacă numerele următoare sunt asociate în divizibilitate:
 - (i) 9 + 7i și 7 + 9i în inelul $\mathbb{Z}[i]$,
 - (ii) $7 + 2\sqrt{2}$ și $5 + \sqrt{2}$ în inelul $\mathbb{Z}[\sqrt{2}]$,
 - (iii) $23 + 13\sqrt{3}$ și $5 \sqrt{3}$ în inelul $\mathbb{Z}[\sqrt{3}]$
- 14. Găsiți divizorii lui 21 în inelul $\mathbb{Z}[\sqrt{-5}]$.
- 15. Arătați că: 2+3i divide a+bi în $\mathbb{Z}[i] \Leftrightarrow 13$ divide 2a+3b în \mathbb{Z} .
- 16. Arătați că: 1+i divide a+bi în $\mathbb{Z}[i] \Leftrightarrow 2$ divide a+b în \mathbb{Z} .
- 17. Verificați dacă
 - $3+\sqrt{-2}$ divide $a+b\sqrt{-2}$ în $\mathbb{Z}[\sqrt{-2}] \Leftrightarrow 11$ divide a^2+2b^2 în \mathbb{Z} .
- 18. Determinați divizorii lui 13 4i în $\mathbb{Z}[i]$.
- 19. Arătați că $\mathbb{Z}[\sqrt[3]{2}] = \{a + b\sqrt[3]{2} + c\sqrt[3]{4}; \ a, b, c \in \mathbb{Z}\}$ este subinel al lui \mathbb{C} .
- 20. Arătați că $3 \sqrt[3]{4}$ este un divizor al lui 23 în inelul $\mathbb{Z}[\sqrt[3]{2}]$.
- 21. Verificați dacă $8 + 3\sqrt{7}$ divide toate numerele din $\mathbb{Z}[\sqrt{7}]$.

- 22. Fie A un domeniu și a un element nenul al lui A. Spunem că $b, c \in A$ sunt congruente modulo a (notație $b \equiv_a c$) dacă a divide b c. Arătați că \equiv_a este o relație de echivalență pe A.
- 23. Găsiți un număr natural n astfel încât $5+2\sqrt{3}\equiv_{2-3\sqrt{3}} n$ în $\mathbb{Z}[\sqrt{3}]$ (cf. ex. precedent).
- 24. Determinați numerele $a + bi \in \mathbb{Z}[i]$ pentru care a + bi divide a bi.
- 25. Scrieți asociații lui $2 + \sqrt{-3}$ în inelul $\mathbb{Z}[(1 + \sqrt{-3})/2]$.
- 26. Arătați că 5-4i divide a+bi în $\mathbb{Z}[i] \Leftrightarrow a \equiv_{41} 9b$.
- 27. Determinaţi divizorii lui $9 + 14\sqrt{-2}$ în inelul $\mathbb{Z}[\sqrt{-2}]$.
- 28. Determinați un număr din $\mathbb{Z}[\sqrt{33}]-\{\pm 1\}$ care divide numerele $2+5\sqrt{33}$ și $1+\sqrt{33}$ în $\mathbb{Z}[\sqrt{33}]$.
- 29. Arătați că numărul $170 + 39\sqrt{19}$ este inversabil în inelul $\mathbb{Z}[\sqrt{19}]$.
- 30. Fie $a+b\sqrt{-3}\in\mathbb{Z}[\sqrt{-3}]$ cu $a,b\in\mathbb{Z}$. Arătați că a,b au aceeași paritate \Leftrightarrow $a+b\sqrt{-3}$ se divide cu $2,\,1+\sqrt{-3}$ sau $1-\sqrt{-3}$.
- 31. Fie $n \geq 2$ un număr întreg și $A = \{a/(1+bn); \ a, b \in \mathbb{Z}\}.$
 - (i) Arătați că A este un subinel al lui \mathbb{Q} .
 - (ii) Determinați unitățile lui A.
- (iii) Arătați că n este putere de număr prim \Leftrightarrow pentru orice $x,y\in A$ rezultă x divide y sau y divide x.
- 32. Verificați dacă numărul $4 + 2\sqrt[3]{7} + \sqrt[3]{49}$ este inversabil în inelul $\mathbb{Z}[\sqrt[3]{7}]$.
- 33. Fie $a,b\in\mathbb{Z}$ coprime. Arătați că există $c\in\mathbb{Z}$ cu proprietatea: $a+b\sqrt{d}$ divide $x+y\sqrt{d}$ în $\mathbb{Z}[\sqrt{d}]\Leftrightarrow a^2-b^2d$ divide x+cy.
- 34. Arătați că în inelul $\mathbb{Z}[\sqrt{-5}]$ numerele 13 și $3+2\sqrt{-5}$ sunt elemente prime.
- 35. Arătați că în inelul $\mathbb{Z}[\sqrt{-5}]$:
 - (i) $3 + \sqrt{-5}$ este atom neprim,
 - (ii) $7 \sqrt{-5}$ este element reductibil.
- 36. Arătați că în inelul $\mathbb{Z}[\sqrt{6}]$ numerele 7 și $5-\sqrt{6}$ sunt elemente prime.
- 37. Arătați că în inelul $\mathbb{Z}[\sqrt{6}]$ numerele 2, 3, 5, 25 și $\sqrt{6}$ sunt elemente reductibile.
- 38. Este $2 + \sqrt{5}$ element irreductibil (resp. prim) în $\mathbb{Z}[\sqrt{5}]$?
- 39. Arătați că în inelul $\mathbb{Z}[\sqrt{-3}]$:
 - (i) $2 \sin 1 + \sqrt{-3}$ sunt atomi neprimi,
 - (ii) 5 şi $2 + \sqrt{-3}$ sunt atomi primi,
 - (iii) 7 este element reductibil.
- 40. Verificați dacă numerele 2, 7, 31 sunt elemente prime, atomi neprimi sau elemente reductibile în inelul $\mathbb{Z}[\sqrt{10}]$.
- 41. Fie $a,b\in\mathbb{Z}$ astfel încât a^2+b^2 se divide cu 19. Arătați că 19 divide numerele a și b.
- 42. Fie A un domeniu şi $a, b \in A$ două elemente asociate. Arătați că a este element prim (resp. atom) dacă şi numai dacă b este element prim (resp. atom).

- 43. Verificați dacă în inelul $\mathbb{Z}[\sqrt{10}]$ numerele 2, 3, 7, 21 $7\sqrt{10}$, 3 $2\sqrt{10}$ sunt elemente ireductibile sau prime.
- 44. Arătați că numerele 3 și $5+2\sqrt{-14}$ din inelul $\mathbb{Z}[\sqrt{-14}]$ sunt atomi neprimi.
- 45. Investigați dacă numerele 17, 465 + $124\sqrt{14}$, $1 + \sqrt{14}$ din inelul $\mathbb{Z}[\sqrt{14}]$ sunt elemente prime, atomi neprimi sau elemente reductibile.
- 46. Arătați că 2 este ireductibil în $\mathbb{Z}[\sqrt{-7}]$ dar reductibil în $\mathbb{Z}[(1+\sqrt{-7})/2]$
- 47. Folosind inelul $\mathbb{Z}[\sqrt{14}],$ arătați că ecuația $y^2=14x^2+23$ nu are soluții în numere întregi.
- 48. Folosind inelul $\mathbb{Z}[\sqrt{-2}]$, rezolvați ecuația $13x^2 = y^2 + 2z^2$ în numere întregi.
- 49. Arătați că $11 + \sqrt{-7}$ este un atom neprim al inelului $\mathbb{Z}[\sqrt{-7}]$.
- 50. Arătați că

$$67 + 20\sqrt{2} = (3 + \sqrt{2})(5 + 2\sqrt{2})(7 - 3\sqrt{2})$$

este o factorizare atomică a lui $67 + 20\sqrt{2}$ în inelul $\mathbb{Z}[\sqrt{2}]$.

- 51. Găsiți o factorizarea atomică a lui 633 + 135i în inelul $\mathbb{Z}[i]$. (Ind. $211^2 + 45^2 = 46546 = 2 \times 17 \times 37^2$.)
- 52. Găsiți toate factorizările atomice ale lui $29 5\sqrt{-5}$ în inelul $\mathbb{Z}[\sqrt{-5}]$.
- 53. Găsiți o factorizare atomică a lui 91 în inelul $\mathbb{Z}[(1+\sqrt{-3})/2]$.
- 54. Găsiți o factorizare atomică a lui $5 + 2\sqrt{-6}$ în inelul $\mathbb{Z}[\sqrt{-6}]$.
- 55. Arătați că în inelul $\mathbb{Z}[\sqrt{-14}]$

$$3^4 = (5 + 2\sqrt{-14})(5 - 2\sqrt{-14})$$

sunt factorizări atomice ale lui 81.

56. Rezolvați în numere întregi sistemului de ecuații

$$\begin{cases} xz + 2yv = 3 \\ xv + yz = 2. \end{cases}$$

folosind inelul $\mathbb{Z}[\sqrt{2}]$.

- 57. Arătați că inelul $\mathbb{Z}[X]$ este inel CLD.
- 58. Găsiți o factorizarea atomică a lui -15 + 23i în inelul $\mathbb{Z}[i]$.
- 59. Găsiți toate factorizările atomice ale lui $30+13\sqrt{-6}$ în inelul $\mathbb{Z}[\sqrt{-6}]$.
- 60. Sunt $14 = \sqrt{14}^2 = 2 \cdot 7$ factorizări atomice ale lui 14 în inelul $\mathbb{Z}[\sqrt{14}]$?
- 61. Rezolvați în numere întregi sistemul de ecuații

$$\begin{cases} xz - 5yv = -19 \\ xv + yz = 17. \end{cases}$$

(Ind. Folosiţi inelul $\mathbb{Z}[\sqrt{-5}]$).

62. Considerăm subinelul

$$A = \{a + 2f \mid a \in \mathbb{Z}, \ f \in \mathbb{Z}[X]\}$$

al lui $\mathbb{Z}[X]$. Arătați că A este inel CLD dar nu este noetherian. (Ind. Utilizați idealul $I=\{f\in A\mid f(0)=0\}.$)

- 63. Este inelul $\mathbb{Z} + X\mathbb{Q}[X]$ noetherian ?
- 64. Este inelul $\mathbb{Z} + 2\mathbb{Z}[X]$ noetherian?
- 65. Este inelul $\mathbb{R} + X\mathbb{C}[X]$ noetherian?
- 66. Arătați că inelul $\mathbb{Q} + X\mathbb{R}[X]$ este atomic.
- 67. Listați divizorii lui 62 + 34i în $\mathbb{Z}[i]$. Presupunem cunoscut faptul că $\mathbb{Z}[i]$ este inel factorial.
- 68. Descompuneți numărul 20538 110334i în produs de factori primi în $\mathbb{Z}[i]$.
- 69. In $\mathbb{Z}[i]$, descompuneți toate numerele de normă 24375 în produs de factori primi.
- 70. Descompuneți numărul $140770 91910\sqrt{2}$ în produs de factori primi în $\mathbb{Z}[\sqrt{2}]$.
- 71. Descompuneți numărul $1170570-150780\sqrt{3}$ în produs de factori primi în $\mathbb{Z}[\sqrt{3}]$.
- 72. Listaţi divizorii lui 95 27 $\sqrt{2}$ în $\mathbb{Z}[\sqrt{2}]$. Presupunem cunoscut faptul că $\mathbb{Z}[\sqrt{2}]$ este inel factorial.
- 73. Arătați că inelul $\mathbb{Z}[\sqrt{-26}]$ este nefactorial folosind egalitatea

$$109^2 + 12^2 \cdot 26 = 5^6.$$

- 74. Folosind atomul 2, arătați că inelul $\mathbb{Z}[\sqrt{d}]$ este nefactorial dacă d < -2.
- 75. Arătați că inelul $\mathbb{Z}[\sqrt{10}]$ este nefactorial.
- 76. Arătați că inelul $\mathbb{Z}[\sqrt{26}]$ este nefactorial.
- 77. Găsiți un număr $a+b\sqrt{-10}\in\mathbb{Z}[\sqrt{-10}]$ cu a>71 care nu are factorizare unică în acest inel.
- 78. Rezultă din egalitatea $\sqrt{6}^2 = 2 \cdot 3$ că inelul $\mathbb{Z}[\sqrt{6}]$ este nefactorial ?
- 79. Arătați că 32 se scrie ca produs de doi atomi în inelul $\mathbb{Z}[\sqrt{-7}]$. Deduceți că inelul $\mathbb{Z}[\sqrt{-7}]$ nu este factorial.
- 80. Fie p un număr prim diferit de 5. Arătați că inelul $\mathbb{Z}[\sqrt{5p}]$ nu este factorial. (Ind. 2 este atom neprim.)
- 81. Arătați că inelul $\mathbb{Z}[\sqrt[3]{10}]$ nu este factorial. (Ind. Găsiți un polinom unitar din $\mathbb{Z}[X]$ cu rădăcina $1 + \sqrt[3]{10} + \sqrt[3]{100}$)/3).
- 82. Fie A un inel factorial și $a,b\in A-\{0\}$ astfel încât $a^{2n-1}|b^{2n}|a^{2n+1}$ pentru orice $n\geq 1$. Arătați că a este asociat cu b.
- 83. Arătați că inelul $\mathbb{Z}[\sqrt{82}]$ nu este factorial.
- 84. Găsiți un număr din $\mathbb{Z}[\sqrt{-4}]$ cu factorizare atomică neunică.
- 85. Arătați că $8+\sqrt{-17}$ este un atom neprim al inelului $\mathbb{Z}[\sqrt{-17}]$.
- 86. Arătați că 81 nu se poate scrie ca produs de elemente prime în $\mathbb{Z}[\sqrt{-17}]$.
- 87. Calculați cmmdc al numerelor 2-9i, 6-7i în $\mathbb{Z}[i]$.
- 88. Pentru numerele a = 779 247i, b = 817 + 19i, calculați (a, b) și [a, b] în $\mathbb{Z}[i]$.

- 89. Arătați că în inelul $\mathbb{Z}[\sqrt{-17}]$:
 - (i) $2 + \sqrt{-17}$ şi 7 sunt relativ prime,
 - (ii) $6 + 3\sqrt{-17}$ și 21 nu au cmmdc.
- 90. Arătați că în inelul $\mathbb{Z}[\sqrt{-5}]$ numerele $13-7\sqrt{-5}$ și $29-5\sqrt{-5}$ nu au CMMDC. Observați că numerele se divid cu $1-\sqrt{-5}$.
- 91. Arătați că în domeniul $\mathbb{Z}[\sqrt{-5}]$:
 - (i) idealul generat de 29 și $13 + \sqrt{-5}$ este principal,
 - (*ii*) 29 și $13 + \sqrt{-5}$ au cmmdc,
 - (iii) 29 şi $13 + \sqrt{-5}$ au cmmmc.
- 92. Arătați că în domeniul $\mathbb{Z}[\sqrt{13}]$:
 - (i) $2 \sin 1 + \sqrt{13} \text{ sunt coprime},$
 - (ii) idealul generat de 2 și $1 + \sqrt{13}$ nu este principal.
- 93. Arătați că în domeniul $\mathbb{Z}[\sqrt{-3}]$:
 - (a) $2 \sin 1 + \sqrt{-3} \text{ sunt coprime (i.e. au cmmdc} = 1),$
 - (b) 2^3 şi $(1+\sqrt{-3})^3$ nu sunt coprime.
- 94. Arătați că în domeniul $\mathbb{Z}[(1+\sqrt{-15})/2]$ idealul generat de 19 și $9-(1+\sqrt{-15})/2$ este principal.
- 95. Fie $a,b,c \in \mathbb{Z}[i] \{0\}$ cu (a,b) = (a,c) = (b,c) = 1. Arătați că: (N(a),N(b),N(c)) = 1.
- 96. Fie $x, \pi \in \mathbb{Z}[\sqrt{d}] \{0\}$ cu π element prim. Arătați că π divide $x^{N(\pi)} x$.
- 97. Arătați că 5 divide z(z+1)(z+2)(z+3)(z+4) pentru orice $z \in \mathbb{Z}[i]$.
- 98. E adevărat că 3 divide z(z+1)(z+2) pentru orice $z \in \mathbb{Z}[i]$?
- 99. Fie n un număr natural nenul care se scrie în două moduri ca sumă de două pătrate. Arătați că n este neprim.
- 100. Presupunem cunoscut faptul că orice număr prim p de forma 8k+1 sau 8k+3 se poate scrie sub forma $p=a^2+2b^2$ cu a,b numere naturale. Arătați că inelul $\mathbb{Z}[\sqrt{-2}]$ este factorial.
- 101. Fie a, b două numere întregi cu (a, b) = d. Calculați (a + bi, a bi) în $\mathbb{Z}[i]$.
- 102. Arătați că $x,y\in\mathbb{Z}[\sqrt{d}]$ sunt coprime dacă au normele coprime în \mathbb{Z} . Este reciproca adevărată ?
- 103. Fie A un domeniu și $x \in A$ care este un produs de elemente prime. Arătați că există [x,y] pentru orice $y \in A$.
- 104. Arătați că în inelul $\mathbb{Z}[\sqrt{-5}]$ numerele $3 + 2\sqrt{-5}$ și $3 2\sqrt{-5}$ au CMMMC.
- 105. Fie $a, b, c \in \mathbb{Z}[i] \{0\}$. Arătați că

$$(a,b,c) = 1 \Leftrightarrow (a+b+c,ab+bc+ac,abc) = 1.$$

- 106. Descrieți perechile de numere din $\mathbb{Z}[i]$ cu (a,b)=3-i și [a,b]=20+10i.
- 107. Fie $a, b, c \in \mathbb{Z}[i] \{0\}$. Arătați că

$$(a, [b, c])(a, b, c) = (a, b)(a, c).$$

Notațiile (...), [...] însemnă cmmdc, respectiv cmmmc.

108. Fie A un inel factorial și $a, b, c \in A - \{0\}$. Arătați că

$$[a, b, c](a, b)(a, c)(b, c) = abc(a, b, c).$$

- 109. Fie d un număr întreg de forma 4k+1 care nu este pătrat perfect. Arătați că numerele $2(1+\sqrt{d})$ și $(1+\sqrt{d})^2$ nu au cmmdc în inelul $\mathbb{Z}[\sqrt{d}]$.
- 110. Arătați că idealul $< 2, \sqrt{6} > \dim \mathbb{Z}[\sqrt{6}]$ este principal.
- 111. Arătați că idealul $< 2, \sqrt{-6} > \dim \mathbb{Z}[\sqrt{-6}]$ nu este principal.
- 112. Arătați că în inelul $\mathbb{Z}[\sqrt{7}]$ numerele $2-\sqrt{7}$ și $3+4\sqrt{7}$ sunt comaximale (adică idealul generat de ele este tot inelul).
- 113. Găsiți un generator pentru idealul $< -1 + 5i, 1 + 3i > \dim \mathbb{Z}[i]$.
- 114. Arătați că în $\mathbb{Z}[\sqrt{-3}]$ avem $<2>\cap<1+\sqrt{-3}>=<4,2+2\sqrt{-3}>$ și că acest ideal nu este principal.
- 115. Fie A un domeniu. Arătați că A[X] este inel principal dacă și numai dacă A este corp.
- 116. Arătați că idealul $< 23, 11 \sqrt{6} > \dim \mathbb{Z}[\sqrt{6}]$ este principal.
- 117. Găsiți $z \in \mathbb{Z}[\sqrt{-6}]$ astfel încât idealul < 11, z > nu este principal.
- 118. In inelul $\mathbb{Z}[\sqrt{-19}]$, găsiți un exemplu de factorizare atomică neunică.
- 119. Verificați dacă în $\mathbb{Z}[\sqrt{-5}]$ avem egalitatea

$$<2>\cap<1+\sqrt{-5}>=<6,2+2\sqrt{-5}>$$
.

120. Arătați că oricare două numere din șirul

$$(1+i)+1$$
, $(1+i)^2+1$, $(1+i)^4+1$, $(1+i)^8+1$, ..., $(1+i)^{2^n}+1$, ... sunt relativ prime în $\mathbb{Z}[i]$.

- 101 F: 4 : 1
- 121. Fie A un inel comutativ și unitar, iar $a,b,c\in A$ cu proprietatea < a,b>=< a,c>=< b,c>= A. Arătați că < ab,ac,bc>= A.
- 122. Determinați valorile lui n pentru care $(2+i)^n+1$ și 2+3i sunt relativ prime în $\mathbb{Z}[i].$
- 123. Considerăm subinelul lui $\mathbb C$

$$A = \{(a + b\sqrt{-5})/(2c + 1) \mid a, b, c \in \mathbb{Z}\}.$$

Verificați dacă idealul generat în A de 2 și $1+\sqrt{-5}$ este principal.

- 124. Calculați (43 81i, 33 19i) în $\mathbb{Z}[i]$ folosind algoritmul lui Euclid.
- 125. $a=33-8\sqrt{-11},\,22+\sqrt{-11}$ în $\mathbb{Z}[(1+\sqrt{-11})/2]$ folosind algoritmul lui Euclid.
- 126. Calculați un generator al idealului $(65 + 55i)\mathbb{Z}[i] \cap (29 + 3i)\mathbb{Z}[i]$.
- 127. Există $q \in \mathbb{Z}[i]$ astfel încât N((7+3i)-(2+4i)q) < N(2+4i)?
- 128. Fie A un domeniu și $a,a',b,b',c\in A-\{0\}$ cu proprietatea aa'+bb'=1. Rezolvați ecuația ax+by=c.
- 129. Rezolvați în $\mathbb{Z}[i]$ ecuația (3+i)x + (5-i)y = 7+i.

- 130. Rezolvați în $\mathbb{Z}[i]$ ecuația (3+i)x + (5-i)y = 8+i.
- 131. Arătați că $N(\sqrt{10}-2q)\geq 4$ pentru orice $q\in\mathbb{Z}[\sqrt{10}]$. Deduceți că inelul $\mathbb{Z}[\sqrt{10}]$ nu este norm-euclidian.
- 132. Arătați că inelul $\mathbb{C}[x,y]/(x^2+y^2-1)$ este euclidian.
- 133. Arătați că subinelul $\{(a+b\sqrt{-5})/(2c+1);\ a,b,c\in\mathbb{Z}\}$ al lui $\mathbb C$ este euclidian.
- 134. Rezolvați ecuația $y^3 = x^2 + 2$ în \mathbb{Z} folosind inelul $\mathbb{Z}[\sqrt{-2}]$.
- 135. Rezolvați ecuația $y^3 = x^2 + 4$ în \mathbb{Z} folosind inelul $\mathbb{Z}[i]$.
- 136. Completați tabelul următor cu întregi Gauss astfel încât produsele pe orizontală/verticală să fie numerele indicate

- 137. Găsiți un tabel ca în ex. precedent cu numere din $\mathbb{Z}[\sqrt{-5}]$ care nu poate fi completat.
- 138. Completați tabelul următor cu (nouă) numere din $\mathbb{Z}[\sqrt{-2}]$ astfel încât produsele pe orizontală/verticală să fie numerele indicate

- 139. Fie A un inel factorial și $a,b,c,d\in A-\{0\}$ cu ab=cd. Arătați că există $x,y,u,v\in A-\{0\}$ cu: xy=a,uv=b,xu=c,yv=d.
- 140. Calculați $(11+15\sqrt{2},3+13\sqrt{2})$ în $\mathbb{Z}[\sqrt{2}]$ cu Algoritmul lui Euclid.
- 141. Rezolvați ex. precedent prin factorizare.
- 142. In $\mathbb{Z}[\sqrt{2}]$, rezolvați ecuația

$$(11 + 15\sqrt{2})x + (3 + 13\sqrt{2})y = 5 + 3\sqrt{2}.$$

143. In $\mathbb{Z}[\sqrt{-3}]$, rezolvați ecuația

$$(1+\sqrt{-3})x + (1-\sqrt{-3})y = 2.$$

- 144. Determinați mulțimea $\{x \in \mathbb{Z}[i] \mid (3x+2)/(2x+3) \in \mathbb{Z}[i]\}.$
- 145. Fie $\omega=(1+\sqrt{-7})/2$. Arătați că $2\omega^n$ este atom al lui $\mathbb{Z}[\sqrt{-7}]$ pentru orice $n\geq 1$. (Ind. Factorizați în $\mathbb{Z}[1+\sqrt{-7})/2]$.)
- 146. Fie p un număr natural prim de forma 4k+3 și fie $a,b\in\mathbb{Z}$. Arătați că dacă p divide a^2+b^2 , atunci p divide a.
- 147. Fie $z \in \mathbb{Z}[i]$ nenul și neinversabil. Arătați că următoarele afirmații sunt echivalente.
 - (i) $t \in \mathbb{Z}[i]$ şi N(z)|N(t) implică z|t.
- (ii)z e asociat cu $(1+i)^ma$ unde $m\geq 0$ și a este un număr întreg impar cu toți factorii primi de forma 4k+3.

148. Verificați dacă următoarele ideale din $\mathbb{Z}[\sqrt{79}]$ sunt prime:

$$<11>, <2>, <3+\sqrt{79}>, <6+\sqrt{79}>, <80+9\sqrt{79}>.$$

149. Verificați dacă următoarele ideale din $\mathbb{Z}[\sqrt{-10}]$ sunt prime:

$$<7,2-\sqrt{-10}>,<11,2+13\sqrt{-10}>,<3,1-\sqrt{-10}>.$$

- 150. Verificați dacă idealul < 5, 12 i > este prim în $\mathbb{Z}[i]$.
- 151. Verificați dacă idealul $< 23 + 3\sqrt{-5}, 13 + 2\sqrt{-5} >$ este prim în $\mathbb{Z}[\sqrt{-5}]$.
- 152. Găsiți două numere întregi nenule a,b astfel încât idealul

$$< a + b\sqrt{10}, 9 + \sqrt{10} >$$

al inelului $\mathbb{Z}[\sqrt{10}]$ este ideal prim.

- 153. Verificați dacă idealul < 3 + i, 3 i > este prim în $\mathbb{Z}[i]$.
- 154. Arătați că idealul $< 3 + \sqrt{-5}, 3 \sqrt{-5} > \dim \mathbb{Z}[\sqrt{-5}]$ este prim.
- 155. Arătați că idealul $P=<7,3+\sqrt{-5}>$ al lui $\mathbb{Z}[\sqrt{-5}]$ este egal cu $\{a+b\sqrt{-5}\mid a,b\in\mathbb{Z},\ a\equiv_7 3b\}.$

Conchideți că P este ideal prim.

156. Arătați că idealul $P = \langle X^2 + 1, 2 - 3X \rangle$ al lui $\mathbb{Z}[X]$ este egal cu

$$\{f(X) \in \mathbb{Z}[X] \mid f(5) \in 13\mathbb{Z}\}.$$

Conchideți că P este ideal prim.

- 157. Fie $a+b\sqrt{-5}\in\mathbb{Z}[\sqrt{-5}]-<23>$. Arătaţi că < 23, $a+b\sqrt{-5}>$ este ideal prim în $\mathbb{Z}[\sqrt{-5}]$ dacă şi numai dacă a^2+5b^2 se divide cu 23.
- 158. Fie P un ideal prim nenul al inelului $\mathbb{Z}[i]$. Arătați că $P \cap \mathbb{Z} = p\mathbb{Z}$, unde p este un număr prim.
- 159. Arătați că în $\mathbb{Z}[X]$ idealul < 5,
 X+1>este prim iar idealul < 5, $X^2+1>$ nu este prim.
- 160. Arătați că idealele prime ale inelului $A=\{a/(1+6b)|\ a,b\in\mathbb{Z}\}$ sunt <0>,<2> și <3>.
- 161. Fie A un domeniu cu proprietatea: a|b sau b|a pentru orice $a,b\in A$. Arătați că $\cap_{n\geq 1} x^n A$ este ideal prim pentru orice element neinversabil $x\in A$.
- 162. Arătați că în $\mathbb{Z}[\sqrt{-6}]$ idealul < 11 > nu este prim dar este produs de două ideale prime. Intr-un inel A, produsul idealelor < a, b > și < c, d > este prin definiție idealul < ac, ad, bc, bd >.
- 163. Fie $a,b,c,d\in\mathbb{Z}$ cu (a,b)=1. Arătaţi că idealul $M=< a+b\sqrt{-5},c+d\sqrt{-5}>$ din $\mathbb{Z}[\sqrt{-5}]$ este prim dacă şi numai dacă $(a^2+5b^2,ac-bd)$ este număr prim.
- 164. Arătați că idealul $H=< X^2+1, Y^2+1> \dim \mathbb{Q}[X,Y]$ nu este prim. (Ind. $X^2-Y^2\in H.$)
- 165. Arătați că idealul $P = \langle X^2 + X + 1, Y^2 Y + 2 \rangle$ din $\mathbb{R}[X, Y]$ nu este prim.
- 166. Arătați că $(3, 1 \sqrt{-5})$ este ideal prim în inelul $\mathbb{Z}[\sqrt{-5}]$.

- 167. Determinaţi spectrul inelului $\mathbb{Z} + x\mathbb{Q}[x]$.
- 168. Este idealul generat de $x^3 2$ și $x^2 2x 1$ în $\mathbb{Z}[x]$ prim ?
- 169. Este idealul generat de 2 și $7x^5 3x 1$ în $\mathbb{Z}[x]$ prim ?
- 170. Arătați că $X\mathbb{Q}[X]$ este un ideal prim nemaximal al inelului $\mathbb{Z} + X\mathbb{Q}[X]$.
- 171. Arătați că în $\mathbb{Z}[\sqrt{-5}]$ idealul H=<2> nu este o intersecție de două ideale prime. (Ind. $(1+\sqrt{-5})^2\in H$.)
- 172. Arătați că idealul $< 2 + 4i > \dim \mathbb{Z}[i]$ nu este o intersecție de ideale prime.
- 173. Factorizați 2, 3, 5, 7 și 31 în $\mathbb{Z}[\sqrt[3]{2}]$.
- 174. Arătați că $(2, 1 + \sqrt{-5})$ este ideal maximal în inclul $\mathbb{Z}[\sqrt{-5}]$.
- 175. Arătați că inelul factor $\mathbb{Z}[(1+\sqrt{21})/2]/(1+\sqrt{21})\mathbb{Z}[(1+\sqrt{21})/2]$ nu este izomorf cu \mathbb{Z}_{20} .
- 176. Arătați că inelul factor $\mathbb{Z}[(1+\sqrt{17})/2]/(1+\sqrt{17})\mathbb{Z}[(1+\sqrt{17})/2]$ nu este izomorf cu \mathbb{Z}_{16} .
- 177. Arătați că inelul factor $\mathbb{Z}[\sqrt{d}]/(a+b\sqrt{d})$ are grupul subiacent izomorf cu $\mathbb{Z}_c \times \mathbb{Z}_{n/c}$ unde n este norma lui $a+b\sqrt{d}$ iar c=gcd(a,b).
- 178. Fie funcția $g: \mathbb{Z} \to \mathbb{Z}[i]/(4+i)\mathbb{Z}[i]$ dată prin $g(n) = \hat{n}$. Arătați că:
 - (i) g este morfism de inele,
 - (ii) q este surjectie,
 - (iii) $17\mathbb{Z} = ker(g)$,
 - (iv) \mathbb{Z}_{17} este izomorf cu inelul factor $\mathbb{Z}[i]/(4+i)\mathbb{Z}[i]$.
- 179. Fie funcția $f: \mathbb{Z}[i] \to \mathbb{Z}_2[X]/X^2\mathbb{Z}_2[X]$ dată prin $f(a+bi) = \bar{a} + \bar{b} + \bar{b}X$. Arătați că:
 - (i) f este morfism de inele,
 - (ii) f este surjectie,
 - $(iii) ker(f) = 2\mathbb{Z}[i],$
 - (iv) inelele factor $\mathbb{Z}[i]/2\mathbb{Z}[i]$ şi $\mathbb{Z}_2[X]/X^2\mathbb{Z}_2[X]$ sunt izomorfe.
- 180. Fie funcția $g: \mathbb{Z}_2[X] \to \mathbb{Z}[i]/2\mathbb{Z}[i]$ dată prin $g(P(X)) = \widehat{P(1+i)}$. Arătați că:
 - (i) g este bine-definită,
 - (ii) g este morfism de inele,
 - (iii) q este surjecție,
 - (iv) $ker(g) = X^2 \mathbb{Z}_2[X],$
 - (v) inelele factor $\mathbb{Z}[i]/2\mathbb{Z}[i]$ şi $\mathbb{Z}_2[X]/X^2\mathbb{Z}_2[X]$ sunt izomorfe.
- 181. Fie $\theta=(1+\sqrt{5})/2$. Arătați că inelul factor $\mathbb{Z}[\theta]/11\mathbb{Z}[\theta]$ este izomorf cu $\mathbb{Z}_{11}\times\mathbb{Z}_{11}$.
- 182. Fie $\theta=(1+\sqrt{5})/2$. Arătați că inelele factor $\mathbb{Z}[\theta]/5\mathbb{Z}[\theta]$ și $\mathbb{Z}_5[X]/X^2\mathbb{Z}_5[X]$ sunt izomorfe.
- 183. Fie $\theta = (1 + \sqrt{21})/2$. Arătați că inelul factor $\mathbb{Z}[\theta]\sqrt{21}\mathbb{Z}[\theta]$ este izomorf cu \mathbb{Z}_{21} .
- 184. Fie $\theta = (1 + \sqrt{-15})/2$. Arătați că inelul factor $\mathbb{Z}[\theta]/\theta\mathbb{Z}[\theta]$ este izomorf cu \mathbb{Z}_4 .
- 185. Fie A un inel comutativ și $x,y\in A$. Arătați că inelele factor A/(xA+yA) și $(A/xA)/\hat{y}(A/xA)$ sunt izomorfe.

- 186. Arătați că $A = \{a + b\sqrt[3]{12} + c\sqrt[3]{18}; \ a, b, c \in \mathbb{Z}\}$ este subinel al lui \mathbb{R} .
- 187. Fie $\theta = (1 + \sqrt[3]{10} + \sqrt[3]{100})/3$.
 - (i) Găsiți $m, n, p \in \mathbb{Z}$ așa ca $\theta^3 = m\theta^2 + n\theta + p$.
 - (ii) Arătați că $\mathbb{Z}[\theta] = \{a + b\theta + c\theta^2; a, b, c \in \mathbb{Z}\}$ este subinel al lui \mathbb{R} .
- 188. Arătați că $\mathbb{Z}[\sqrt[4]{2}] = \{a + b\sqrt[4]{2} + c\sqrt[4]{4} + d\sqrt[4]{8}; \ a, b, c, d \in \mathbb{Z}\}$ este subinel al lui \mathbb{R} .
- 189. Arătați că $\{a+b\sqrt[4]{5}+c(1+\sqrt{5})/2+d\sqrt[4]{5}(1+\sqrt{5})/2;\ a,b,c,d\in\mathbb{Z}\}$ este subinel al lui \mathbb{C} .
- 190. Este idealul $<3,1+\sqrt{-5}>\cap<3,1-\sqrt{-5}>\dim \mathbb{Z}[\sqrt{-5}]$ principal?
- 191. Scrieți polinomul $(3+i)X^3+(7+i)X-10\in\mathbb{Z}[i][X]$ ca produs dintre o constantă și un polinom primitiv.
- 192. Factorizați polinomul $15015X^4 + 60060$ în $\mathbb{Z}[X]$.
- 193. Fie polinoamele $f=2X+1+\sqrt{-3}$ și $g=2X+1-\sqrt{-3}$ din $\mathbb{Z}[\sqrt{-3}][X]$. Arătați că:
 - (i) f şi g sunt primitive dar fg este neprimitiv.
 - (ii) f și g sunt atomi, iar fg este produs de 3 atomi în $\mathbb{Z}[\sqrt{-3}][X]$.
- 194. Factorizați polinoamele $(3+i)X^4-(3+i)$ și $(5-i)X^6-(5-i)$ în $\mathbb{Z}[i][X]$ și calculați cmmdc al lor.
- 195. Verificați dacă $X^4 X^2 + 1$ este ireductibil în $\mathbb{Z}[i][X]$ sau $\mathbb{Z}[\sqrt{3}][X]$.
- 196. Factorizați polinomul $X^4 10X^2 + 1$ în inelul
 - (i) $\mathbb{Z}[X]$
 - $(ii) \mathbb{Z}[\sqrt{2}][X]$
 - $(iii) \mathbb{Z}[\sqrt{3}][X]$
 - $(iv) \mathbb{Z}[\sqrt{6}][X]$
 - $(v) \mathbb{Z}_2[X]$
 - $(vi) \mathbb{Z}_3[X].$
- 197. Găsiți un polinom 2-Eisenstein de grad 4 din $\mathbb{Z}[X]$ care este reductibil în $\mathbb{Q}(i)[X].$
- 198. Pentru $f=X^4+X^3+X^2+X+1$, arătați că f(X+1) este 5-Eisenstein în $\mathbb{Z}[X]$. Mai general, arătați că polinomul $(X^p-1)/(X-1)$ este ireductibil în $\mathbb{Q}[X]$ pentru orice număr prim p
- 199. Arătați că $X^4 + 3X^3 + 6X^2 \sqrt{3}X + \sqrt{3}$ este ireductibil în $\mathbb{Q}(\sqrt{3})[X]$.
- 200. Factorizați polinomul $X^3 + 7 + 5\sqrt{2}$ în $\mathbb{Z}[\sqrt{2}][X]$.
- 201. Fie A un domeniu astfel încât A[X] este inel factorial. Arătați că A este inel factorial.
- 202. Arătați că $11X^6 + 84X^5 91X^3 + 49X^2 + 56$ ireductibil in $\mathbb{Q}[X]$.
- 203. Arătati că
- $f = 3X^7 + 1067X^6 + 1261X^5 + 1358X^4 + 1455X^3 + 1649X^2 + 1843X + 2037.$

este ireductibil peste Q folosind Criteriul lui Eisenstein.

- 204. Arătați că polinomul f din ex. precedent este ireductibil peste $\mathbb Q$ reducândul mod 2.
- 205. Este polinomul f din ex. precedent ireductibil peste $\mathbb{Q}(i)$?
- 206. Fie p un număr prim și $f \in \mathbb{Z}[X]$ un polinom p-Eisenstein de grad ≥ 2 . Arătați că f(X+p) este polinom p-Eisenstein.
- 207. Factorizați polinomul $f = 3X^5 7X^4 + 2X^3 + 12X^2 + 2X 2$ în $\mathbb{Z}[X]$ știind că f are o rădăcină pozitivă $\alpha \in \mathbb{Q} \mathbb{Z}$.
- 208. Arătați că $Y^3 + XY^2 + X^3Y + X$ este ireductibil în $\mathbb{C}[X,Y]$.
- 209. Arătați că $33X^6 + 84X^5 546X^3 + 294X^2 + 168$ ireductibil in $\mathbb{Q}[X]$.
- 210. Arătați că $3X^6+11X^4-5X^3-4X^2+X+7$ este ireductibil în $\mathbb{Q}[X]$ reducândul mod 2.
- 211. Arătați că $\sqrt{-2}X^5 + (7-6\sqrt{-2})X^3 + 22X^2 + 1 + 7\sqrt{-2}$ este ireductibil în $\mathbb{Q}(\sqrt{-2})[X]$.
- 212. Arătați că $X^3Y + XY^2 + Y^3 + X$ este ireductibil în $\mathbb{C}[X,Y]$.
- 213. Arătați că polinomul $f = X^6 X^5 + X^4 X^3 + X^2 X + 1$ este ireductibil peste $\mathbb Q$ folosind teorema lui Murty. (Ind. $13 \cdot 17 \cdot 19 \cdot 23 547 \cdot 177 = -242$.)
- 214. Putem proba afirmația din ex. precedent reducându-l pe $f \mod 2$?
- 215. Fie $p \in \{2,3,5\}$ și $f \in \mathbb{Z}[X]$ un polinom p-Eisenstein. Rezultă că f este ireductibil peste $\mathbb{Q}(i)$?
- 216. Fie p un număr prim cu scrierea zecimală

$$p = 10^n \cdot 2 + 10^{n-1} a_{n-1} + \dots + 10a_1 + a_0, \quad 0 \le a_i \le 9.$$

Deduceți din teorema lui Murty că polinomul

$$f = 2X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0$$

este ireductibil.

- 217. Calculati continutul polinomului $420X^5 + 1170X^3 + 1650X^2 + 900 \in \mathbb{Z}[X]$.
- 218. Arătați că polinomul $f=2X^5-4X^4-7X^3+25X^2-14X-17$ este ireductibil în $\mathbb{Q}[X]$. [Ind. $X\mapsto X+1$.]
- 219. Fie $f=a_nX^n+a_{n-1}X^{n-1}+\cdots+a_1X+a_0\in\mathbb{Z}[X]$ cu $a_n\neq 0,\ a_0\neq 0$ si $n\geq 2$. Arătaţi că f este ireductibil dacă şi numai dacă $g=a_0X^n+a_1X^{n-1}+\cdots+a_{n-1}X+a_n$ este ireductibil.
- 220. Arătați că polinomul $f = (1+4\omega)X^4 + 3\omega X^3 + (1+\omega)X^2 6X + 2 + \omega$ este ireductibil în $\mathbb{Q}(\omega)[X]$, unde $\omega = (1+\sqrt{-3})/2$.
- 221. Arătați că polinomul $f=(6-7i)X^4+(15+8i)X^3+(11-10i)X^2-17X+2i$ este ireductibil în $\mathbb{Q}(i)[X]$.
- 222. Factorizați $X^5 + i$ în $\mathbb{Q}(i)[X]$. [Ind. $\mathbb{Z}[i]/(1+i) \simeq \mathbb{Z}_2$.]
- 223. Fie $f, g \in \mathbb{Q}[X]$ două polinoame unitare cu $fg \in \mathbb{Z}[X]$. Arătați că $f, g \in \mathbb{Z}[X]$.
- 224. Arătați că nu există un subinel propriu D al lui $\mathbb R$ astfel încât D este factorial și are corpul de fracții $\mathbb R$.

225. Arătați că $f = X^2 - X + 3$ este ireductibil în $\mathbb{Z}[\sqrt{-11}][X]$ dar este reductibil în $\mathbb{Q}[\sqrt{-11}][X]$.

226. Arătați că în $\mathbb{Z}[\sqrt{-3}][X]$ polinoamele $2X + 1 + \sqrt{-3}$ si $2X + 1 - \sqrt{-3}$ sunt primitive dar produsul lor nu este primitiv.

227. Fie $f \in \mathbb{Z}[X]$ un polinom primitiv de grad ≥ 1 . Arătați că f este primitiv în $\mathbb{Z}[i][X].$

228. Dați exemplu de extindere de inele factoriale $A \subseteq B$ astfel încât nu orice polinom primitiv din A[x] este primitiv in B[x].

229. Fie $f \in \mathbb{Z}[X]$ un polinom de grad $n \geq 1$. Arătați că f se poate scrie ca suma a două polinoame ireductibile de grad n din $\mathbb{Z}[X]$.

230. Arătați că $x^{2^n} + 1$ este ireductibil în $\mathbb{Z}[X]$.

231. Fie K un corp și $f \in K[X]$ un polinom de grad ≥ 1 . Arătați că f este ireductibil dacă și numai dacă f(X+1) este ireductibil.

232. Arătați că polinomul $X^8 + 1$ este ireductibil în $\mathbb{Q}[X]$.

233. Descompuneți polinomul $X^8 + 1$ în $\mathbb{C}[X]$ și $\mathbb{R}[X]$.

234. Factorizați 541 in \mathbb{Z} și apoi $x^9 + x^4 + x^3 + x^2 + 1$ în $\mathbb{Z}[X]$ și $\mathbb{Z}_2[X]$.

235. Factorizați $x^5 + 5x^4 + 10x^3 + 10x^2 - x - 2$ în $\mathbb{Z}[X]$.

236. Factorizați $x^4 + 6x^3 + 11x^2 - 8x + 1$ în $\mathbb{Z}_2[X]$, $\mathbb{Z}_3[X]$ și $\mathbb{Z}[X]$.

237. Fie $x, y \in \mathbb{Z}$ cu $y^3 = x^2 + 49$. Arătați că x este par și nu se divide cu 7.

238. Fie $x \in 2\mathbb{Z} - 7\mathbb{Z}$. Arătați că numerele x + 7i, x - 7i sunt coprime în $\mathbb{Z}[i]$.

239. Rezolvati ecuatia diofantică $u^3 = x^2 + 49$.

240. Sunt polinoamele 3x + 1, 5x + 1 coprime în $\mathbb{Z}[x]$? Dar comaximale?

241. In inelul $\mathbb{Z}[\sqrt{-5}]$ considerăm numerele $a=-2+3\sqrt{-5}$ și $b=22+3\sqrt{-5}$. Arătați că (a,b)=1 și ab este un pătrat perfect dar a nu este asociat cu un pătrat perfect.

242. Arătați că \mathbb{Z}_{13} este $\mathbb{Z}[i]$ -modul față de înmulțirea cu scalari

$$(a+bi)\widehat{x} := \widehat{(a+5b)}x, \ a,b \in \mathbb{Z}, \ \widehat{x} \in \mathbb{Z}_{13}.$$

243. Arătați că \mathbb{Z}_{17} este $\mathbb{Z}[i]$ -modul față de înmulțirea cu scalari: $(a+bi)x := (a+4b)x, \ a,b \in \mathbb{Z}, \ x \in \mathbb{Z}_{17}.$

244. Găsiți o structură de $\mathbb{Z}[i]$ -modul pe grupul \mathbb{Z}_{289} .

245. Arătați că \mathbb{Z}_7 nu are structuri de $\mathbb{Z}[\sqrt{3}]$ -modul.

246. Arătați că $\mathbb{Z}_3 \times \mathbb{Z}_3$ este $\mathbb{Z}[i]$ -modul față de înmulțirea cu scalari

$$(a+bi)(x,y) := (ax-by, ay+bx), \ a,b \in \mathbb{Z}, \ x,y \in \mathbb{Z}_3.$$

Calculați submodulele sale.

247. Pe grupul $\mathbb{Z}_2 \times \mathbb{Z}_2$ considerăm structura de $\mathbb{Z}[\sqrt{3}]$ -modul dată de $(a+b\sqrt{3})(x,y) := (ax+by,ay+bx), \ a,b \in \mathbb{Z}, \ x \in \mathbb{Z}_2.$ Determinati submodulele acestui modul.

- 248. Fie $n \geq 2$ un întreg. Arătați că \mathbb{Z}_n posedă o structură de $\mathbb{Z}[i]$ -modul dacă şi numai dacă 4 nu divide n şi factorii primi impari ai lui n sunt de forma 4k + 1.
- 249. Determinați valorile lui d din mulțimea $\{2,3,5,7\}$ pentru care există $\mathbb{Z}[\sqrt{d}]$ -module de ordin 10.
- 250. Verificați dacă \mathbb{Z}_{27} este $\mathbb{Z}[\sqrt{7}]\text{-modul față de înmulțirea cu scalari$

$$(a+b\sqrt{7})\widehat{x} := (a+13b)x, \ a,b \in \mathbb{Z}, \ \widehat{x} \in \mathbb{Z}_{27}.$$

- 251. Arătați că \mathbb{Z} -modulul factor $\mathbb{Z}^2/<(2,1),(1,-2)>$ este izomorf cu \mathbb{Z}_5 .
- 252. Fie $\mathbb{Z}[i]$ -modulul factor $M:=\mathbb{Z}[i]^2/<(3+i,3-i)>$. Arătați că există $\alpha\in Z[i]-\{0\}$ și $m\in M-\{0\}$ astfel încât $\alpha m=0$. Deduceți că M nu este izomorf cu $\mathbb{Z}[i]$.
- 253. Arătați că în \mathbb{Z} -modulul \mathbb{Z}^2 avem

$$\langle (3,1), (5,-3) \rangle > \cap \langle (7,0), (0,7) \rangle = \langle (14,0), (7,7) \rangle.$$

- 254. Fie M idealul lui $\mathbb{Z}[\sqrt{7}]$ generat de 9 si $5+2\sqrt{7}$. Arătaţi că M privit ca \mathbb{Z} -modul este generat de $5+2\sqrt{7}$ şi $9+3\sqrt{7}$. Aparţine $11-\sqrt{7}$ lui M?
- 255. Este $\mathbb{Z}[i]$ un $\mathbb{Z}[3i]$ -modul finit generat? Dar ciclic ?
- 256. Pe $M = \mathbb{Z}[i][X]$ considerăm structura de $\mathbb{Z}[X]$ -modul dată de morfismul de inele $f(X) \mapsto f(X^2) : \mathbb{Z}[X] \to \mathbb{Z}[i][X]$. Este M finit generat?
- 257. Fie P,Q_1,Q_2 cu $Q_1\subseteq P,$ submodule ale unui modul M. Arătați că $P\cap (Q_1+Q_2)=Q_1+(P\cap Q_2).$
- 258. Este conjugarea complexă un endomorfism al $\mathbb{Z}[i]$ -modulului \mathbb{C} ? Este conjugarea complexă un endomorfism al $\mathbb{Z}[\sqrt{2}]$ -modulului \mathbb{C} ?
- 259. Pe grupul \mathbb{Z}_{97} definim două structuri de $\mathbb{Z}[i]\text{-modul}$ (notate cu M și N) prin înmulțirile cu scalari
- (a+bi)x := (a+22b)x şi respectiv (a+bi)x := (a+75b)x unde $a,b \in \mathbb{Z}, x \in \mathbb{Z}_{97}$. Determinaţi aplicaţiile liniare de la M la N.
- 260. Pe grupul aditiv $G = \{(a+b\sqrt{2})/2^n | a,b,n \in \mathbb{Z}, n \geq 0\}$ considerăm structura de $\mathbb{Z}[\sqrt{2}]$ -modul dată de înmulțirea de numere reale. Este acest modul finit generat?
- 261. Arătați că orice $\mathbb{Z}[i]$ -submodul finit generat al lui $\mathbb{Q}[i]$ este ciclic.
- 262. Găsiți o structură de $\mathbb{Z}[i]$ -modul pe grupul abelian $\mathbb{Z}_5 \times \mathbb{Z}_{13}$. Listați submodulele acestui modul.
- 263. Pe grupul abelian $\mathbb{Z}_4 \times \mathbb{Z}_4$ considerăm structura de $\mathbb{Z}[\sqrt{-3}]$ -modul dată de înmulțirea cu scalari

$$(a+b\sqrt{-3})(x,y) := ((a+b)x, (a-b)y), \ a,b \in \mathbb{Z}, \ x,y \in \mathbb{Z}_4.$$

Calculați elementele submodulului generat de $(\hat{1}, \hat{1})$.

264. Arătați că în \mathbb{Z} -modulul \mathbb{Z}^2 avem

$$\langle (3,0),(1,1) \rangle \rangle \cap \langle (3,0),(1,-1) \rangle = \langle (3,0),(0,3) \rangle.$$

265. Deduceți din ex. precedent că în inelul $\mathbb{Z}[\sqrt{-5}]$ intersecția idealelor $<3,1+\sqrt{-5}>$ și $<3,1-\sqrt{-5}>$ este un ideal principal.

- 266. Fie A un inel principal cu corpul de fracții K astfel încât $A \neq K$. Pe K considerăm structura canonică de A-modul. Arătați că:
 - (i) orice A-submodul finit generat al lui K este ciclic,
 - (ii) K nu este A-modul finit generat.
- 267. Fie funcția

$$f: \mathbb{Z}^2 \to \mathbb{Z}_2 \times \mathbb{Z}_{10}, \ f(x,y) = (\bar{x}, \widehat{2x-y}).$$

Arătati că:

- (i) f este aplicație \mathbb{Z} -liniară.
- (ii) f este surjectivă.
- (iii) Nucleul lui f este egal cu < (4, -2), (2, 4) <math>> .
- (iv) Modulul factor $\mathbb{Z}^2/<(4,-2),(2,4)>$ este izomorf cu $\mathbb{Z}_2\times\mathbb{Z}_{10}$.
- 268. Folosind teorema fundamentală de izomorfism, arătați că $\mathbb{Z}[i]$ -modulul factor

$$\mathbb{Z}[i] \times \mathbb{Z}[i] / < (1+i, 1-i) >$$

este izomorf cu $\mathbb{Z}[i] \times \mathbb{Z}_2$. Structura de $\mathbb{Z}[i]$ -modul a lui $\mathbb{Z}[i] \times \mathbb{Z}_2$ este dată de

$$(a+bi)(c+di,x) = ((a+bi)(c+di), (a+b)x), \quad a,b,c,d \in \mathbb{Z}, x \in \mathbb{Z}_2.$$

- (Ind. Incercați cu funcția $(x,y) \mapsto (x-iy,y \cdot \widehat{1})$.)
- 269. Este $\mathbb{Z}[i]$ -modulul $\mathbb{Z}[i] \times \mathbb{Z}[i] / < (1+i,1-i) > \dim$ ex. precedent ciclic ?
- 270. Descrieți submodulul M generat de 1 și $\sqrt{2}$ în $\mathbb{Z}[i]$ -modulul \mathbb{C} . Este M un subinel al lui \mathbb{C} ?
- 271. Verificați dacă \mathbb{Z} -modulul \mathbb{Z}_{7854} este suma directă internă

$$<\widehat{1309}>\dot{+}<\widehat{1122}>\dot{+}<\widehat{714}>\dot{+}<\widehat{462}>.$$

- 272. In inelul $\mathbb{Z}[\sqrt{10}]$ considerăm idealul I generat de 3 și $1+\sqrt{10}$. Arătați că I este \mathbb{Z} -modul liber cu baza $\{3,1+\sqrt{10}\}$.
- 273. Arătați că $\mathbb{Z}[i]$ -modulul factor

$$\mathbb{Z}[i] \times \mathbb{Z}[i] / < (2-i, 2+i) >$$

este izomorf cu $\mathbb{Z}[i]$ cu structura canonică de $\mathbb{Z}[i]$ -modul. (Ind. Incercați cu funcția $(x,y)\mapsto (2+i)x-(2-i)y$.)

- 274. Arătați că $\mathbb{Z}[i]$ -modulul $\mathbb{Z}[i] \times \mathbb{Z}[i]$ este generat de vectorii (2-i,2+i) și
- 275. Fie A un inel comutativ și fie $a,b,a',b'\in A$ cu aa'+bb'=1. Arătați că A-modulul factor $A^2/<(a,b)>$ este izomorf cu A.
- 276. Arătați că

$$\mathbb{Z}_{144} = <\widehat{9} > \dot{+} < \widehat{16} >$$

ca \mathbb{Z} -module.

- 277. Arătați că \mathbb{Z} -modulul $\mathbb{Z}[i]$ este suma directă submodulelor generate 1+2i și respectiv 2+3i.
- 278. Găsiți o bază pentru \mathbb{Z} -submodulul lui \mathbb{Z}^3

(1, 1+i). (Ind. 1 = (1+i)(2-i) - (2+i).)

$$<(1,2,1),(2,-3,-1)> \cap <(3,1,1),(1,1,1)>.$$

- 279. Spunem că un modul este indecompozabil dacă singura sa descompunere în sumă directă internă $M=M_1\dot{+}M_2$ este cea trivială, adică $M=M\dot{+}\{0\}$. Arătați că \mathbb{Z} -modulele \mathbb{Z} , \mathbb{Q} și \mathbb{Z}_8 sunt indecompozabile.
- 280. Verificați dacă

$$B = \{1 + 2i, 2 + 3i\}, C = \{1 + 2i, 4 + 5i\}, D = \{1, 1 + i, 1 + 3i\}$$

sunt baze ale \mathbb{Z} -modulul liber $\mathbb{Z}[i]$.

- 281. Arătați că \mathbb{Z}_4 nu este \mathbb{Z}_8 -modulul liber. Generalizare.
- 282. Arătați că \mathbb{Z} -modulul factor $\mathbb{Z}^2/<(2,8)>$ nu este liber.
- 283. Numărați aplicațiile \mathbb{Z} -liniare de la $\mathbb{Z}[i]$ la $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.
- 284. Dați că un exemplu de două module nelibere M,N cu produsul direct $M\times N$ liber.
- 285. Arătați că suma directă externă a două module libere este un modul liber.
- 286. Fie A un domeniu cu toate idealele A-module libere. Arătați că A este inel principal.
- 287. Arătați că \mathbb{Z} -modulul \mathbb{Z}^3 este liber cu baza $\{(1,2,1),(2,-3,-1),(3,1,1)\}$.
- 288. Arătați că \mathbb{Z} -modulul factor $\mathbb{Z}^2/<(2,1),(1,-2)>$ nu este liber.
- 289. Fie R un inel comutativ, M un R-modul, $x,y\in M$ şi $\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in M_2(R)$ o matrice inversabilă. Arătați că $\{ax+by,cx+dy\}$ este bază a lui M dacă și numai dacă $\{x,y\}$ este bază.
- 290. Posedă grupurile \mathbb{Z}_8 , $\mathbb{Z}_2 \times \mathbb{Z}_4$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ structuri de $\mathbb{Z}[\sqrt[3]{3}]$ -modul?
- 291. Este $\mathbb{Z}[X^2, X^3]$ un $\mathbb{Z}[X^2]$ -modul liber ?
- 292. Găsiți o bază de \mathbb{Z} -modul liber pentru inelul $\mathbb{Z}[\sqrt[3]{2}]$.
- 293. Găsiți o bază de \mathbb{Z} -modul liber pentru inelul $\mathbb{Z}[\sqrt[3]{12}, \sqrt[3]{18}]$.
- 294. Fie B un domeniu și A un subinel al lui B. Arătați că dacă B este A-modul ciclic, atunci A=B.
- 295. Arătați că orice submodul neciclic al $\mathbb{Z}[i]$ -modulului $\mathbb{Z}[i]^2$ este generat de două elemente.
- 296. Arătați că \mathbb{Z} -modulul factor $\mathbb{Z}^3/<(1,2,3)>$ nu este ciclic.
- 297. Arătați că 3+5i, 4+7i este o bază a lui $\mathbb{Z}[i]$ privit ca \mathbb{Z} -modul.
- 298. Arătați că \mathbb{Z} -modulul \mathbb{Z}^3 este liber cu baza (1,2,1), (2,-3,-1), (3,1,1).
- 299. Arătați că idealul $I=<2,1+5\sqrt{-3}>$ al lui $\mathbb{Z}[\sqrt{-3}]$ nu este $\mathbb{Z}[\sqrt{-3}]$ -modul liber. Este I un \mathbb{Z} -modul liber ?
- 300. Pe $\mathbb{Z}_2 \times \mathbb{Z}_2$ considerăm structura de \mathbb{Z}_4 -modul dată prin $\hat{a}(\bar{x}, \bar{y}) = (\overline{ax}, \overline{ay})$ unde $a, x, y \in \mathbb{Z}$. Este acest modul liber?
- 301. Arătați că \mathbb{Z} -modulul \mathbb{Z}_{105} este suma directă a submodulelor $<\widehat{15}>,<\widehat{21}>,<\widehat{35}>$. Deduceți că \mathbb{Z}_{105} este izomorf cu $\mathbb{Z}_7\times\mathbb{Z}_5\times\mathbb{Z}_3$.

- 302. Arătați că $\mathbb{Z}[i]$ -modulul $\mathbb{Z}[i]/<2>$ nu este suma directă a două submodule nenule ale sale.
- 303. Arătați că un \mathbb{Z} -modul liber nu are elemente de ordin finit.
- 304. Arătați că \mathbb{Z} -modulul factor $\mathbb{Z}^3/<(3,1,1)>$ este liber cu baza $\overline{(1,2,1)},\overline{(2,-3,-1)}.$
- 305. Arătați că produsul direct a două module libere este modul liber.
- 306. Arătați că \mathbb{Z} -modulul $\mathbb{Z}^{\mathbb{N}}$ nu este liber.
- 307. Fie $A=\mathbb{Z}[X,Y]$. Privim pe A ca modul peste el însuși. Arătați că $M=\{f\in A\mid f(0,0)=0\}$ este un submodul al lui A și că M nu este liber.
- 308. Fie H un \mathbb{Z} -submodul al lui \mathbb{Z}^3 . Presupunem că există $(a,b,c), (0,d,e), (0,0,f) \in H$ astfel încât
 - $a = min\{x \mid (x, y, z) \in H, x > 0\},\$
 - $d = min\{y \mid (0, y, z) \in H, y > 0\},\$
 - $f = min\{z > 0 \mid (0, 0, z) \in H\}.$

Arătați că (a, b, c), (0, d, e), (0, 0, f) este o bază a lui H.

- 309. Arătați că în \mathbb{Z} -modulul factor $\mathbb{Z}^3/<(2,3,4)>$ clasele vectorilor (1,1,1), (0,0,1) formeaza o bază.
- 310. Fie M un \mathbb{Z} -modul liber. Arătați că M nu are elemente nenule de ordin finit. Deduceți că \mathbb{Z} -modulul factor $\mathbb{Z}^3/<(2,4,-6)>$ nu este liber.
- 311. Fie M idealul inelului $\mathbb{Z}[\sqrt[3]{11}]$ generat de 2 și $3+\sqrt[3]{11}$. Arătați că M privit ca \mathbb{Z} -modul are baza, $\{2, 1+\sqrt[3]{11}, 1+\sqrt[3]{121}\}$ deci M este liber.
- 312. Fie matrice
a $A=\left(\begin{array}{ccc}1&1&1\\-1&-1&-1\\1&1&1\end{array}\right)$. Arătați că operația externă

$$(f(X), \begin{pmatrix} x \\ y \\ z \end{pmatrix}) \mapsto f(A) \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

definește pe \mathbb{Q}^3 o structură de $\mathbb{Q}[X]$ -modul. Arătați că M este suma directă internă

$$\mathbb{Q}[X]g_1 \oplus \mathbb{Q}[X]g_2 \oplus \mathbb{Q}[X]g_3, \text{ unde } g_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, g_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, g_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$$

- 313. Fie E inelul endomorfismelor \mathbb{Q} -spațiului vectorial $\mathbb{Q}[X]$. Considerăm elementele $a,b,c,d\in E$ definite prin relațiile $a(X^n)=X^{2n},\ b(X^n)=X^{2n+1},\ c(X^{2n})=X^n,\ c(X^{2n+1})=0,\ d(X^{2n+1})=X^n,\ d(X^{2n})=0,\ n\geq 0.$ Arătați că $\{c,d\}$ este o bază a lui E privit ca E-module stâng. [Ind. $ac+bd=1,\ ca=1,\ cb=0.$]
- 314. Determinați imaginea și nucleul aplicației liniare $\phi: A \times A \to A, \ \phi(x,y) = (11-15\sqrt{2})x+(3-13\sqrt{2})y,$ unde $A=\mathbb{Z}[\sqrt{2}].$

Bibliografie.

- I.D. Ion, N. Radu, C. Nita, D. Popescu, Probleme de Algebra, EUB.
- C. Baetica, S. Dascalescu, C. Boboc, G. Mincu, Probleme de Algebra, EUB.
- J. Esmonde, M. Ram Murty, Problems in Algebraic Number Theory, Springer.