Phil 320 Chapter 12: Models

Let Γ be a set of sentences. A *model* of Γ is an interpretation that makes each sentence in Γ true. We are interested in knowing what kinds of models a given set of sentences has.

Initial examples:

- (i) Γ is a set of valid sentences. Any interpretation at all is a model.
- (ii) Γ is $\{\exists x \ \forall y \ y=x\}$. Any interpretation whose domain has one object is a model.
- (iii) Γ is the set of sentences of arithmetic true in the standard interpretation. There are many distinct models: N, non-negative rationals, non-negative reals.

12.1 Size and Number of Models; Isomorphisms

The *size* of a model M is the size of its domain |M|. For the examples above, (i) has models of all sizes; (ii) has only models of size 1; (iii) has only infinite models.

Example 1 (at least size n): For each n, let I_n be

$$\forall x_1 \ \forall x_2 \dots \ \forall x_{n-1} \ \exists x_n \ (x_n \neq x_1 \ \& \ x_n \neq x_2 \ \& \dots \ \& \ x_n \neq x_{n-1}).$$

This sentence is true in M if and only if there are at least n objects in the domain of M.

Example 2 (at most n): The sentence $J_n = \sim I_{n+1}$ asserts that there are at most n objects.

Example 3 (exactly n): $I_n \& J_n$ is true iff the domain contains exactly n objects.

Example 4 (only infinite models):

- a) (Infinite set Γ) $\Gamma = \{I_1, I_2, ...\}$, i.e., all the I_n 's. If M is a model, then |M| has at least n objects for each n, so it must be infinite.
- b) (Finite set Γ) Let R be a 2-place predicate. Let Γ be:
 - (1) $\forall x \exists y R(x, y)$
 - (2) $\forall x \forall y \sim (R(x, y) \& R(y, x))$
 - (3) $\forall x \ \forall y \ \forall z ((R(x, y) \& R(y, z)) \rightarrow R(x, z)).$

 Γ has an infinite model: N, with R interpreted as <. Γ has no finite model.

Isomorphisms

Example 1: $L = \{<\}$ – a single 2-place predicate.

Interpretation M_1 :

Domain $|M_1| = N$ Momain $|M_2| = -N$, i.e., $\{0, -1, -2, ...\}$ $<^{M_1}$ is less-than $<^{M_2}$ is greater-than

These two interpretations of L are *isomorphic* because: a) there is a *correspondence* between the domains: a 1-1 function j from the domain $|M_1|$ onto the domain $|M_2|$, namely, j(n) = -n. Also, b) $m <^{M_1} n$ iff m < n iff -m > -n iff $j(m) <^{M_2} j(n)$, so j 'preserves' the relation < between interpretations.

Definition (Isomorphism):

Two interpretations P and Q of a language L are *isomorphic* if there is a 1-1 function j from the domain |P| onto the domain |Q| that satisfies the following three conditions for all predicates, constants and function symbols in L:

- (II) For every n-place predicate R and all $p_1,...,p_n$ in |P|, $R^P(p_1,...,p_n)$ iff $R^Q(j(p_1),...,j(p_n))$
- (I2) For every constant c, $j(c^P) = c^Q$
- (I3) For every n-place function symbol f and all $p_1, ..., p_n$ in |P|, $j([f^p(p_1,...,p_n)]) = f^p(j(p_1),...,j(p_n)).$

Method for proving two interpretations are isomorphic:

- 1) Clearly indicate the language and the two interpretations, P and Q.
- 2) Write down the function j with domain |P| and range |Q|, and explain why j is 1-1 and onto.
- 3) Show that clauses (I1), (I2) and (I3) are correct for each nonlogical symbol.

Example 2: L is $\{0, \equiv\}$, where 0 is a constant and \equiv is a two-place relation.

- 1) P: domain |P| is N; $m \equiv^{P} n$ iff n m is even; $\mathbf{0}^{P} = 0$ Q: domain |Q| is $\{0, 2, 4, 6, ...\}$; $m \equiv^{Q} n$ iff n m is evenly divisible by 4; $\mathbf{0}^{Q} = 0$.
- 2) j(n) = 2n is 1-1 and onto.
- 3) $m \equiv^{P} n$ iff n-m = 2k for some k iff 2(n-m) = 4k for some k iff $2n \equiv^{Q} 2m$ iff $j(n) \equiv^{Q} j(m)$.

$$j(\mathbf{0}^P) = j(0) = 2 \cdot 0 = 0 = \mathbf{0}^Q$$
.

Proposition 12.4 (interchangeable domains): Suppose P and Q are sets, and there is a 1-1 onto function j from P to Q. Suppose Q is any interpretation with domain Q. Then there is an interpretation P with domain P such that P is isomorphic to Q.

Corollary: For any interpretation with a domain having n elements, there is an isomorphic interpretation whose domain is $\{0, 1, ..., n-1\}$. For any interpretation with an enumerably infinite domain, there is an isomorphic interpretation whose domain is N.

Proposition 12.5 (Isomorphism Lemma): If P and Q are isomorphic interpretations of the same language L, then for every sentence A of L, we have

(*)
$$P \models A \text{ iff } Q \models A.$$

Upshot: Two isomorphic interpretations are the same in every important way. We say that two models have the same *isomorphism type* if they are isomorphic.

Corollary:

- (a) Any set of sentences with a finite model has a model whose domain is $\{0, 1, ..., n\}$
- (b) Any set of sentences with an infinite enumerable model has a model with domain N.

12.2 Equivalence Relations

Important for later work and a useful illustration of isomorphism types.

a) Basics

An equivalence relation \equiv on a set is a two-place relation that is like "equality in some respect". For example:

1) People; $a \equiv b$ iff a and b have the same parents.

$$[a \equiv a; \text{ if } a \equiv b, \text{ then } b \equiv a; \text{ if } a \equiv b \text{ and } b \equiv c, \text{ then } a \equiv c.]$$

2) Integers; $a \equiv b$ iff a-b is an even number.

```
[a \equiv a; \text{ if } a \equiv b, \text{ then } b \equiv a; \text{ if } a \equiv b \text{ and } b \equiv c, \text{ then } a \equiv c.]
```

We want to look at interpretations for the language $\{\equiv\}$ which are models of the following three sentences (we refer their conjunction as the single sentence Eq):

- (1) $\forall x \ x \equiv x$
- (2) $\forall x \ \forall y \ (x \equiv y \rightarrow y \equiv x)$
- (3) $\forall x \ \forall y \ \forall x \ ((x \equiv y \ \& \ y \equiv z) \rightarrow x \equiv z)$

We'll write E for the relation that is the denotation of \equiv . For any a, b and c, E will have to satisfy three properties corresponding to (1) - (3):

- (1) *a E a* (Reflexive)
- (2) $a E b \rightarrow b E a$ (Symmetric)
- (3) $(a E b \& b E c) \rightarrow a E c$ (Transitive)

Any relation satisfying these is called an *equivalence relation* on the domain X.

Def: If E is an equivalence relation on X, then the equivalence class of a, written [a], is the set of all b in X such that b E a.

Example 1: The equivalence class of a is all full siblings of a.

Example 2: The equivalence class of 0 is $\{0, \pm 2, \ldots\}$, i.e., the even numbers; the equivalence class of 1 is the odd numbers.

Definition: A partition of X is a set (family) of subsets of X satisfying two conditions:

- (1) Mutually exclusive. No element of X belongs to more than one such subset.
- (2) Exhaustive. Every element of X belongs to one such subset.

Proposition: Any partition of X gives rise to an associated equivalence relation E: aEb if and only if a and b belong to the same element of the partition. Any equivalence relation E on X gives rise to an associated partition.

b) Models

Focus on denumerable (= enumerably infinite) models of Eq, i.e., take N as the domain, and E as an equivalence relation on N that is the denotation of \equiv . We represent such a model by its signature: the number of equivalence classes with infinitely many elements, the number with 1 element, etc. List starting with the number of infinite classes:

 $(1, 0, 0, \ldots)$ Just one class with infinitely many elements.

 $(0, \infty, 0, 0...)$ Every number is a separate equivalence class.

Example 1: $\Gamma = \{Eq, \forall x \forall y \ x \equiv y\}.$

 $a \ E \ b$ for any two numbers a and b, so there is just one equivalence class consisting of all of N. The signature is (1,0,0,...).

Any two infinite models of Γ are isomorphic: if the domain of M_1 is $\{a_1, a_2,...\}$ and the domain of M_2 is $\{b_1, b_2,...\}$, set $j(a_n) = b_n$ and j is an isomorphism.

Example 2: $\Gamma = \{Eq, \forall x \forall y (x \equiv y \leftrightarrow x = y)\}$

Here, a E b iff a = b, so each object is its own equivalence class. The signature is $\{0, \infty, 0, \ldots\}$. Again, any two infinite models of Γ are isomorphic, with $j(a_n) = b_n$.

Example 3: $\Gamma = \{Eq, \forall x \exists y (y \neq x \& x \equiv y \& \forall z (z \equiv x \rightarrow (z=x \lor z=y)))\}$

Here, for each a there is exactly one b such that $b \neq a$ and $a \equiv b$. So each equivalence class has exactly two objects. Again, any two models are isomorphic.

12.3 Lowenheim-Skolem and Compactness Theorems

Lowenheim-Skolem Theorem: If a set of sentences Γ has a model, then it has an enumerable [finite or infinite] model.

Compactness Theorem: If every finite subset of a set of sentences Γ has a model, then Γ has a model.

Three consequences:

I. Corollary 12.16: If Γ has arbitrarily large finite models, then Γ has a denumerable (= enumerably infinite) model.

Proof: Let Γ^* be all the sentences in Γ **plus** all of the sentences I_n : $\Gamma^* = \Gamma \cup \{I_1, I_2, ...\}$.

Step 1: Every finite subset of Γ^* has a model.

Step 2: Γ^* has a model.

Step 3: Γ has a denumerable model.

A set Γ of sentences is (*implicationally*) *complete* if for every A in the language, either A or $\sim A$ is a consequence of Γ .

A set Γ of sentences is *denumerably categorical* if any two denumerable models of Γ are isomorphic.

II. Corollary 12.17. If Γ is a denumerably categorical set of sentences having no finite models, then Γ is complete.

III. Corollary 12.18.

- (a) If Γ has a model, then Γ has a model whose domain is $\{0,...,n\}$ for some n, or else all of \mathbb{N} .
- (b) If Γ contains no function symbols or identity and has a model, then Γ has a model whose domain is all of N.