NATIONAL UNIVERSITY OF SINGAPORE

SEMESTER 2, 2022/2023

MA2001 Linear Algebra

Homework Assignment 2

- **1.** For each of the following sets, decide if it is a subspace of \mathbb{R}^n . The value of n varies from question to question and should be clear from context.
 - (i) The line passing through the points (1,2) and (-2,-4).

Solution. The slope of the line is ((-4)-2)/((-2)-1)=2, and the line has equation

$$y = 2(x-1) + 2 = 2x$$
,

which is homogeneous. Hence, the line is a subspace of \mathbb{R}^2 .

(ii) $\{(x, y) \mid x + y = 1\}.$

Solution. Since x + y = 1 is non-homogeneous, the solution set is not a subspace of \mathbb{R}^2 .

(iii) $\{(x, y, z) \mid x + y = 1\}.$

Solution. Since x + y = 1 is non-homogeneous, the solution set is not a subspace of \mathbb{R}^3 .

(iv) $\{(x, y, z) \mid xyz = 0\}.$

Solution. Since (1,1,0) and (0,0,1) are both in the set, but (1,1,0) + (0,0,1) = (1,1,1) is not, this set is not closed under addition, and thus it is not a subspace of \mathbb{R}^3 .

(v) The solution set to the system Ax = b, where $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ and $b = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

Solution. Since Ax = b is non-homogeneous, the solution set is not a subspace of \mathbb{R}^2 .

(vi) $\{(w, x, y, z) \mid w + 2x - y + z = 0\}.$

Solution. Since w+2x-y+z=0 is homogeneous, the solution set is a subspace of \mathbb{R}^4 .

(vii) The set of all $b \in \mathbb{R}^2$ such that the system Ax = b is consistent, where A is a fixed 2×2 invertible matrix.

1

Solution. If A is invertible, then the system Ax = b is always consistent. Hence, the set is \mathbb{R}^2 , which is a subspace of \mathbb{R}^2 .

2. Consider the following vectors in \mathbb{R}^3 :

$$u_1 = (1, -3, 2),$$
 $u_2 = (0, 2, -1),$ $v_1 = (0, -3, -2),$ $v_2 = (1, -1, 1),$ $v_3 = (2, 0, 1).$

Solution. View each vector as a column vector.

$$\begin{pmatrix} v_1 & v_2 & v_3 & u_1 & u_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 & 1 & 0 \\ -3 & -1 & 0 & -3 & 2 \\ -2 & 1 & 1 & 2 & -1 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} -3 & -1 & 0 & -3 & 2 \\ 0 & 1 & 2 & 1 & 0 \\ -2 & 1 & 1 & 2 & -1 \end{pmatrix}$$

$$\xrightarrow{R_3 - \frac{2}{3}R_1} \begin{pmatrix} -3 & -1 & 0 & -3 & 2 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & \frac{5}{3} & 1 & 4 & -\frac{7}{3} \end{pmatrix} \xrightarrow{R_3 - \frac{5}{3}R_2} \begin{pmatrix} -3 & -1 & 0 & -3 & 2 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & -\frac{7}{3} & \frac{7}{3} & -\frac{7}{3} \end{pmatrix} .$$

Since the columns corresponding to u_1, u_2 are non-pivot, both $u_1, u_2 \in \text{span}\{v_1, v_2, v_3\}$.

Indeed, since all rows of the row-echelon form of $egin{pmatrix} oldsymbol{v}_1 & oldsymbol{v}_2 & oldsymbol{v}_3 \end{pmatrix}$ are nonzero, we conclude that

$$\operatorname{span}\{\boldsymbol{v}_1,\boldsymbol{v}_2,\boldsymbol{v}_3\} = \mathbb{R}^3.$$

$$\begin{pmatrix} u_1 & u_2 & v_1 & v_2 & v_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1 & 2 \\ -3 & 2 & -3 & -1 & 0 \\ 2 & -1 & -2 & 1 & 1 \end{pmatrix} \xrightarrow{R_2 + 3R_1} \begin{pmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 2 & -3 & 2 & 6 \\ 0 & -1 & -2 & -1 & -3 \end{pmatrix}$$

$$\xrightarrow{R_3 + \frac{1}{2}R_2} \begin{pmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 2 & -3 & 2 & 6 \\ 0 & 0 & -\frac{7}{2} & 0 & 0 \end{pmatrix}$$

Since the column corresponding to v_1 is pivot, and those corresponding to v_2, v_3 are non-pivot, we have $v_1 \notin \text{span}\{u_1, u_2\}$ and $v_2, v_3 \notin \text{span}\{u_1, u_2\}$.

In particular, since $\{u_1, u_2\}$ contains only 2 vectors, it is not large enough to span \mathbb{R}^3 . As a conclusion:

- (i) $u_1 \in \text{span}\{v_1, v_2, v_3\}, u_2 \in \text{span}\{v_1, v_2, v_3\};$ $\text{span}\{u_1\} \subseteq \text{span}\{v_1, v_2, v_3\}, \text{span}\{u_2\} \subseteq \text{span}\{v_1, v_2, v_3\}, \text{span}\{u_1, u_2\} \subseteq \text{span}\{v_1, v_2, v_3\}.$
- (ii) $v_1 \notin \text{span}\{u_1, u_2\}, v_2 \in \text{span}\{u_1, u_2\}, v_3 \in \text{span}\{u_1, u_2\};$ $\text{span}\{v_1\} \not\subseteq \text{span}\{u_1, u_2\}, \text{span}\{v_2\} \subseteq \text{span}\{u_1, u_2\}, \text{span}\{v_3\} \subseteq \text{span}\{u_1, u_2\};$ $\text{span}\{v_1, v_2\} \not\subseteq \text{span}\{u_1, u_2\}, \text{span}\{v_1, v_3\} \not\subseteq \text{span}\{u_1, u_2\}, \text{span}\{v_2, v_3\} \subseteq \text{span}\{u_1, u_2\};$ $\text{span}\{v_1, v_2, v_3\} \not\subseteq \text{span}\{u_1, u_2\}.$
- (iii) span $\{v_1, v_2\} \neq \text{span}\{v_1, v_2, v_3\}$. Here are two ways to see this. (1) The latter is \mathbb{R}^3 (as observed previously) but the former cannot be \mathbb{R}^3 as $\{v_1, v_2\}$ has only two vectors. (2) Prove that $v_3 \notin \text{span}\{v_1, v_2\}$ by row-reducing $\begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix}$ and noting that the third column is pivot.

3. Find the determinant of the following matrix:

$$\mathbf{A} = \begin{pmatrix} 2 - x & 0 & 2 \\ 1 & 2 - x & 0 \\ 3 & -2 & 2 - x \end{pmatrix}.$$

Solution. Expand along the 1st row:

$$\det(\mathbf{A}) = (2-x) \begin{vmatrix} 2-x & 0 \\ -2 & 2-x \end{vmatrix} + 2 \begin{vmatrix} 1 & 2-x \\ 3 & -2 \end{vmatrix}$$
$$= (2-x) \cdot (2-x)^2 + 2 \cdot [1(-2) - 3(2-x)]$$
$$= -x^3 + 6x^2 - 6x - 8.$$

4. Let V be a subset of \mathbb{R}^n . Suppose that there are vectors $v_1, v_2 \in V$ such that $v_1 - 2v_2 \notin V$. Prove that V is not a subspace of \mathbb{R}^n .

Proof. By definition, $v_1 - 2v_2 = v_1 + (-2)v_2 \in \text{span}\{v_1, v_2\}$.

Assume that V is a subspace of \mathbb{R}^n . Since $v_1, v_2 \in V$, we have span $\{v_1, v_2\} \subseteq V$, and thus $v_1 - 2v_2 \in V$, a contradiction.

- **5.** Let $u_1 = (-3,0,2)$, $u_2 = (1,4,0)$, $u_3 = (1,2,-1)$, $u_4 = (0,3,-2)$.
 - (i) Is span $\{u_1, u_2, u_3, u_4\} = \mathbb{R}^3$?
 - (ii) Is span $\{u_1, u_2, u_3\} = \mathbb{R}^3$?
 - (iii) Is span{ u_1, u_2 } = \mathbb{R}^3 ?

Solution. View each vector as a column vector.

$$\begin{pmatrix} \boldsymbol{u}_1 & \boldsymbol{u}_2 & \boldsymbol{u}_3 & \boldsymbol{u}_4 \end{pmatrix} = \begin{pmatrix} -3 & 1 & 1 & 0 \\ 0 & 4 & 2 & 3 \\ 2 & 0 & -1 & -2 \end{pmatrix} \xrightarrow{R_3 + \frac{2}{3}R_1} \begin{pmatrix} -3 & 1 & 1 & 0 \\ 0 & 4 & 2 & 3 \\ 0 & \frac{2}{3} & -\frac{1}{3} & -2 \end{pmatrix} = \begin{pmatrix} -3 & 1 & 1 & 0 \\ 0 & 4 & 2 & 3 \\ 0 & 0 & -\frac{2}{3} & -\frac{5}{2} \end{pmatrix}.$$

(i) All rows of row-echelon form of $egin{pmatrix} u_1 & u_2 & u_3 & u_4 \end{pmatrix}$ are nonzero, so

$$span\{u_1, u_2, u_3, u_4\} = \mathbb{R}^3.$$

(ii) All rows of row-echelon form of $egin{pmatrix} u_1 & u_2 & u_3 \end{pmatrix}$ are nonzero, so

$$\mathrm{span}\{\boldsymbol{u}_1,\boldsymbol{u}_2,\boldsymbol{u}_3\}=\mathbb{R}^3.$$

(iii) The last row of row-echelon form of $egin{pmatrix} oldsymbol{u}_1 & oldsymbol{u}_2 \end{pmatrix}$ is zero, so

$$\operatorname{span}\{\boldsymbol{u}_1,\boldsymbol{u}_2\} \neq \mathbb{R}^3.$$

Alternatively, since $\{u_1, u_2\}$ has only 2 vectors, it is not large enough to span \mathbb{R}^3 .

6. Suppose A is an $m \times n$ matrix with the property that for all $x \in \mathbb{R}^n$, we have Ax = 0. Prove that A is the zero matrix.

Proof. Let $A = (a_{ij})_{m \times n}$. By assumption, for any $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$,

$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n = 0, \quad i = 1, \dots, m.$$

In particular, fix i = 1, ..., m and let $(x_1, x_2, ..., x_n) = (a_{i1}, a_{i2}, ..., a_{in})$, then

$$0 = a_{i1}a_{i1} + a_{i2}a_{i2} + \dots + a_{in}a_{in} = a_{i1}^2 + a_{i2}^2 + \dots + a_{in}^2,$$

which implies that $a_{i1} = a_{i2} = \cdots = a_{in} = 0$, i.e., the i^{th} row of A is 0. Since i = 1, ..., m is arbitrary, we conclude that A = 0.

Alternative proof: By assumption, the system Ax = b is consistent if and only if b = 0.

Let $v_1, v_2, ..., v_n$ be the columns of A. This means that span $\{v_1, v_2, ..., v_n\} = \{0\}$. Consequently, $v_1 = v_2 = \cdots = v_n = 0$, i.e., A = 0.

- 7. Define $V = \{(t, 2t, 3t 1) \mid t \in \mathbb{R}\}.$
 - (i) Express V in implicit form, i.e., come up with a linear system whose solution set is V.
 - (ii) Is there a homogeneous linear system whose solution set is *V*? Justify your answer.

Solution. (i) Let (x, y, z) = (t, 2t, 3t - 1), i.e., x = t, y = 2t and z = 3t - 1. Then

$$t = x = y/2 = (z + 1)/3$$
.

Then V is the solution set of the linear system

$$x = y/2$$
 and $x = (z+1)/3$,

or

$$V = \{(x, y, z) \mid 2x - y = 0 \text{ and } 3x - z = 1\}.$$

- (ii) Let (x, y, z) = (0, 0, 0). Then $3x z = 0 \ne 1$. So $(0, 0, 0) \notin V$. Consequently, V is not a subspace of \mathbb{R}^3 , and thus it is not the solution set of any homogeneous linear system.
- 8. Consider the linear system Ax = 0, where $A = \begin{pmatrix} 2 & 3 & 1 & -1 & 2 \\ -2 & 0 & -2 & 1 & -1 \\ 2 & 2 & -2 & 2 & 0 \end{pmatrix}$.
 - (i) Prove that the solution set of the given homogeneous linear system is a subspace by expressing it as a span of certain vectors (that you have to specify).
 - (ii) Use the previous part to write down a general solution for the linear system $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$,

where
$$\boldsymbol{b} = \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}$$
.

Solution. (i) Apply Gauss-Jordan elimination to A:

$$A \xrightarrow[R_3 - R_1]{} \begin{pmatrix} 2 & 3 & 1 & -1 & 2 \\ 0 & 3 & -1 & 0 & 1 \\ 0 & -1 & -3 & 3 & -2 \end{pmatrix} \xrightarrow[R_3 + \frac{1}{3}R_2]{} \begin{pmatrix} 2 & 3 & 1 & -1 & 2 \\ 0 & 3 & -1 & 0 & 1 \\ 0 & 0 & -\frac{10}{3} & 3 & -\frac{5}{3} \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2}R_1}{\frac{1}{3}R_2} \xrightarrow[R_3 + \frac{1}{3}R_3]{} \begin{pmatrix} 1 & \frac{3}{2} & \frac{1}{2} & -\frac{1}{2} & 1 \\ 0 & 1 & -\frac{1}{3} & 0 & \frac{1}{3} \\ 0 & 0 & 1 & -\frac{9}{10} & \frac{1}{2} \end{pmatrix} \xrightarrow[R_2 + \frac{1}{3}R_3]{} \begin{pmatrix} 1 & \frac{3}{2} & 0 & -\frac{1}{20} & \frac{3}{4} \\ 0 & 1 & 0 & -\frac{3}{10} & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{9}{10} & \frac{1}{2} \end{pmatrix} \xrightarrow[R_1 - \frac{3}{2}R_2]{} \begin{pmatrix} 1 & 0 & 0 & \frac{2}{5} & 0 \\ 0 & 1 & 0 & -\frac{3}{10} & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{9}{10} & \frac{1}{2} \end{pmatrix}.$$

Let $x_4 = s$ and $x_5 = t$ be arbitrary parameters. Then

$$x_1 = -\frac{2}{5}s$$
, $x_2 = \frac{3}{10}s - \frac{1}{2}t$, $x_3 = \frac{9}{10}s - \frac{1}{2}t$.

So

$$(x_1, x_2, x_3, x_4, x_5) = s\left(-\frac{2}{5}, \frac{3}{10}, \frac{9}{10}, 1, 0\right) + t\left(0, -\frac{1}{2}, -\frac{1}{2}, 0, 1\right).$$

Hence, the solution set of A is

span
$$\{(-\frac{2}{5}, \frac{3}{10}, \frac{9}{10}, 1, 0), (0, -\frac{1}{2}, -\frac{1}{2}, 0, 1)\}$$
.

(ii) Note that the 3rd column of
$$\mathbf{A}$$
 is \mathbf{b} . So $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a solution $\mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$.

So Ax = b has general solution

$$x = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} -\frac{2}{5} \\ \frac{3}{10} \\ \frac{9}{10} \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ -\frac{1}{2} \\ -\frac{1}{2} \\ 0 \\ 1 \end{pmatrix}, \quad s, t \in \mathbb{R}.$$