Considerações gerais

- Dispositivo com três terminais.
- Usados em múltiplas aplicações: amplificação de sinais, dispositivos digitais.
- Princípio básico: Uso de uma tensão entre dois terminais para controlar a corrente no terceiro terminal.
- **●** Uso do sinal de controlo de modo a permitir que a corrente no terceiro terminal varie de zero a um valor elevado (dispositivo actuando como interruptor).
- **●** FET Field Effect Transistor

Vantagens dos MOSFETs

■ Comparados com os BJT, os transístores MOS podem ser fabricados muito mais pequenos (i.e., ocupando uma área de silício muito mais pequena na pastilha de circuito integrado), além de o seu processo de fabrico ser mais simples. O consumo de energia é também inferior.

Transistores	Nível de integração	Abreviatura	Exemplo
2 -50	small-scale integration	SSI	
50 - 5000	medium-scale integration	MSI	
5000 - 100,000	Large-scale integration	LSI	Intel 8086 (29,000)
100K - 10 million	very large scale integration	VLSI	Pentium (3 million)
10 million to 1000 million	ultra large scale integration	ULSI	Pentium III (30 million)
1000 million -	super large scale integration	SLSI	

■ Este nível de integração é definido em termos de transístores por circuito.

Estrutura do MOSFET

- A Fig. 1 mostra a estrutura física do MOSFET do tipo canal-n enriquecido (à frente veremos o porquê desta designação).
- O transístor é fabricado num substrato do tipo p.
- No substrato, foram criadas duas regiões do tipo n fortemente dopadas, indicadas na Fig. 1 como regiões n+, designadas por fonte (source) e dreno.
- Uma camada fina (tipicamente de 2-50 nm) de dióxido de silício (SiO₂), (isolante eléctrico), foi desenvolvida na superfície do substrato, cobrindo a área entre as regiões da source e do dreno.
- Seguidamente, deposita-se metal por cima da camada de óxido para formar o eléctrodo "gate" do dispositivo.
- Finalmente, realizam-se contactos metálicos nas regiões da source, dreno e substrato.
- Desta forma, foram criados quatro terminais: os terminais da gate (G), da source (S), do dreno (D) e do substrato ou corpo (B).
- O nome do transístor MOS (metal-óxido-semicondutor) deriva da sua estrutura física.

Estrutura do MOSFET

- O substrato forma junções pn com as regiões da source e do dreno. Em funcionamento normal, estas junções pn são mantidas permanentemente inversamente polarizadas.
- Uma vez que o dreno vai estar com uma tensão positiva relativamente à source, as duas junções pn podem ser efectivamente colocadas em corte, ligando simplesmente o terminal do substrato ao terminal da source. Admitese que é esse o caso na descrição do funcionamento do MOSFET a seguir desenvolvida.
- Desta forma, o substrato poderá ser considerado como não tendo nenhum efeito no funcionamento do dispositivo, e o MOSFET poderá ser tratado como um dispositivo de três terminais, i.e., a gate (G), a source (S) e o dreno (D).
- Iremos verificar que uma tensão aplicada à gate controla o fluxo de corrente entre a source e o dreno. Esta corrente flúi na direcção longitudinal do dreno para a source na região designada por "canal".
- A região do canal tem um comprimento L e uma largura W, dois importantes parâmetros do MOSFET. Tipicamente, L tem valores entre 0.11 e 3 μm, e W entre 0.2 e 100 μm.
- O MOSFET é normalmente construído como um dispositivo simétrico. Assim, a source e o dreno podem ser trocados sem alteração das características do transístor.

DEEC

M DEEC

Funcionamento sem tensão na gate

- Se não for aplicada qualquer tensão de polarização à gate, entre a source e o dreno existem dois díodos em série opostos.
- Um díodo é constituído pela junção pn formada pela região n+ do dreno e o substrato do tipo p e o outro pela junção formada pelo substrato e a região n+ da source.
- \blacksquare Se se aplicar uma tensão v_{DS} positiva entre o dreno e a source, a existência destes dois díodos impede que flua corrente entre o dreno e a source.
- \blacksquare De facto, o percurso entre o dreno e a source tem uma resistência muito elevada (da ordem de $10^{12} \, \Omega$).

Criação de um canal para a condução de corrente

- Source e o dreno ligados à massa. Aplicação de uma tensão positiva à gate (Fig. 2).
- ■Uma vez que a source está à massa, toda a tensão da gate aparece entre a gate e a source, pelo que foi designada por v_{CS} .
- ■A tensão positiva da gate tem dois efeitos:

A tensão positiva da gate tem dois efeitos:

Criação de um canal para a condução de corrente

- Por um lado, origina que as lacunas (cargas positivas) sejam repelidas da região do substrato situada por baixo da gate (a região do canal).
- Estas lacunas são empurradas para baixo, deixando atrás uma região esvaziada de portadores. Esta região de depleção contém iões negativos correspondentes aos átomos aceitadores que perderam as lacunas que foram repelidas.
- Por outro lado, a tensão positiva da gate atrai electrões das regiões n+ da source e do dreno (onde existem em abundância) para a região do canal. Quando o número de electrões acumulado junto da superfície do substrato por baixo da gate é suficiente, constitui-se, de facto, uma região n ligando a source e o dreno, como se indica na Fig. 2.
- Aplicando uma tensão positiva entre o dreno e a source, flúi corrente nesta região n induzida, transportada pelos electrões móveis. A região n induzida forma, assim, um canal por onde a corrente flúi do dreno para a source, pelo que essa designação é apropriada.
- O MOSFET da fig. 2 é chamado MOSFET de canal n ou, alternativamente, transistor NMOS.
- Note-se que um MOSFET de canal n é formado num substrato do tipo p e o canal é criado invertendo a superfície do substrato do tipo p para o tipo n. Por esta razão, o canal induzido é, também, designado por camada de inversão.

Departamento de Engenharia Electrotécnica e de Computadores

6

Criação de um canal para a condução de corrente

- \blacksquare O valor de v_{GS} necessário para que um número suficiente de electrões móveis se acumulem na região do canal para formar um canal condutor é chamado tensão limiar e é designado por Vt. Obviamente, Vt para um FET de canal n é positiva. O valor de Vt é controlado durante o fabrico do dispositivo e, tipicamente, toma valores compreendidos entre 0.5 e 1.0 V.
- A gate e o corpo do MOSFET formam um condensador de placas paralelas em que o dieléctrico é a camada de óxido. A tensão positiva da gate faz com que se acumule carga positiva na placa superior do condensador (o eléctrodo da gate). A correspondente carga negativa da placa inferior é formada pelos electrões do canal induzido. Desenvolve-se, assim, um campo eléctrico vertical entre a gate e o substrato. É este campo eléctrico que controla a quantidade de carga no canal, determinando assim a sua condutividade e, consequentemente, a corrente que flúi no canal quando se aplica uma tensão $v_{\rm DS}$.

7

Funcionamento com pequeno valor de v_{DS}

- Tendo-se já induzido um canal, aplique-se agora uma tensão v_{DS} positiva entre o dreno e a source (Fig. 3).
- \blacksquare Consideremos, primeiramente, o caso em que v_{DS} é pequena (digamos, 50mV).
- \blacksquare A tensão v_{DS} faz com que flua uma corrente i_D no canal n induzido.
- Esta corrente é constituída por electrões que viajam da source para o dreno (daí os nomes source e dreno).
- Por convenção a direcção da corrente é contrária ao fluxo das cargas negativas, logo a corrente no canal é do dreno para a source.
- \blacksquare A grandeza de i_D depende da densidade de electrões no canal, que, por sua vez, depende da grandeza de v_{GS}.

Funcionamento com pequeno valor de V_{DS}

- \blacksquare Concretamente, para $v_{GS} = V_t$ o canal está limiarmente induzido pelo que a corrente é ainda muito pequena.
- Para v_{GS} > Vt mais electrões são atraídos para o canal (aumento da profundidade) dando origem a uma redução da resistência ou aumento da condutância. A condutância do canal é proporcional à tensão da gate em excesso $(v_{GS} V_t)$ ou tensão de overdrive (V_{OV}) $(V_{OV} = v_{GS} V_t)$
- \blacksquare A corrente i_D será proporcional a v_{GS} V_t e, obviamente, à tensão v_{DS} que origina i_D .

M DEEC

- Esboço de i_D versus v_{DS} para vários valores de v_{GS} (Fig. 4).
- **■** Vemos que o MOSFET funciona como uma resistência linear cujo valor é controlado por v_{GS}.
- A resistência é infinita para $v_{GS} \leq V_t$, . O seu valor diminui à medida que v_{GS} se torna maior do que V_t .

Funcionamento com pequeno valor de v_{DS}

CONCLUSÕES IMPORTANTES

■ A descrição anterior indica que para o MOSFET conduzir, é necessário induzir um canal. O aumento de v_{GS} acima da tensão limiar V_t enriquece o canal, e daí as designações funcionamento em modo de enriquecimento e MOSFET de enriquecimento. Finalmente, notemos que a corrente que sai do terminal da source (i_s) é igual à corrente que entra pelo terminal do dreno (i_p) e que a corrente da gate $i_G = 0$.

Funcionamento com v_{DS} superiores

- \blacksquare Considere-se, agora, que v_{DS} se torna maior, e que v_{GS} é mantida constante num valor maior do que V_t .
- Note-se que v_{DS} aparece como uma queda de tensão ao longo do canal, i.e., se percorrermos o canal desde a source até ao dreno, a tensão (medida em relação à source) aumenta de 0 até v_{DS} .
- Assim, a tensão entre a gate e pontos ao longo do canal diminui desde o valor v_{GS} , na extremidade da source, até ao valor v_{GS} v_{DS} , na extremidade do dreno.

■ Uma vez que a profundidade do canal depende desta tensão, concluímos que o canal não tem, agora, profundidade uniforme; pelo contrário, exibe a forma afunilada que se vê na Fig. 5, com maior profundidade do lado da source e menor do lado do dreno.

Funcionamento com v_{DS} superiores

■ Quando v_{DS} aumenta, o canal torna-se mais afunilado e a sua resistência aumenta correspondentemente. Assim, a curva i_D - v_{DS} deixa de ser rectilínea, encurvando como se mostra na fig. 6.

Note-se que à medida que v_{DS} aumenta, a tensão $v_{GD} = v_{GS}$ - v_{DS} , diminui, i.e., a tensão entre a gate e o canal na extremidade do dreno. Quando v_{DS} atinge o valor que reduz a tensão v_{GD} ao valor V_t , i.e., v_{GS} - $v_{DS} = V_t$ ou $v_{DS} = v_{GS}$ - V_t , a profundidade do canal do lado do dreno diminui para zero, dizendo-se então que o canal está estrangulado (pinched off).

Funcionamento com v_{DS} superiores

Notas Importantes

- lacktriangle A tensão $oldsymbol{v_{DS}}$ para a qual ocorre a saturação é designada por $oldsymbol{v_{DSsat}}$ lacktriangle lacktr
- Para cada valor de $v_{GS} \ge V_t$, há um valor correspondente de $v_{DS,sat}$.
- O transístor opera na região de saturação se $v_{DS} \ge v_{DS,sat}$.
- \blacksquare A região das características i $_D$ - v_{DS} obtidas para $v_{DS} < v_{DS,sat}$ é chamada região de tríodo, uma designação herdada do tempo das válvulas. Esta região também designada como região óhmica.

Evolução do canal à medida que v_{DS} aumenta enquanto v_{GS} permanece constante.

Dedução da relação i_D – v_{DS} .

- lacktriangle Assuma-se que a tensão v_{GS} é aplicada entre a gate e a source com $v_{GS} > V_t$., para induzir o canal.
- Assuma-se, também, que a tensão v_{DS} é aplicada entre o dreno e a source.
- \blacksquare Considere-se a operação na região tríodo, para a qual o canal deve ser contínuo e assim v_{GS} deve ser maior de que V_t , ou de forma equivalente, $v_{DS} < v_{GS} V_t$.
- O canal nestas circunstâncias tem a forma ilustrada na Fig. 8.

A região do canal forma um condensador plano em que o SiO₂ funciona como dieléctrico.

Capacidade por unidade de área da gate

 ϵ_{ox} = Permitividade do óxido = 3.9 ϵ_{o} = 3.45 x 10⁻¹¹ F/m

t_{ox} é a espessura do óxido

Dedução da relação i_D – v_{DS} .

Exemplo

Para
$$t_{ox} = 10 \text{ nm}$$
 $C_{ox} = 3.45 \times 10^{-3} \text{ F/m}^2$

- \blacksquare Considere-se, agora, a faixa infinitesimal da gate a uma distância x da fonte.
- **A** capacidade desta faixa é C_{ox} W dx.
- Para o cálculo da carga armazenada nesta faixa infinitesimal da gate, multiplica-se a capacidade pela tensão efectiva entre a gate e o canal no ponto x (Q=CV), onde esta tensão é a tensão que é responsável pela indução do canal no ponto x (dada por, $v_{GS} v(x) V_t$) onde v(x) é a tensão no canal no ponto x.
 - A carga do electrão dq na porção infinitesimal do canal, no ponto x, é:

$$dq = -C_{ox}(Wdx)[v_{GS} - v(x) - V_{t}]$$
(1)

O sinal negativo, refere-se ao facto da carga ser negativa.

Dedução da relação i_D – v_{DS}

 \blacksquare A tensão v_{DS} produz um campo eléctrico ao longo do canal na direcção negativa x. No ponto x, este campo é dado por:

$$E(x) = -\frac{dv(x)}{dx} \tag{2}$$

lacksquare O campo eléctrico E(x) leva a que a carga se movimente em direcção ao dreno, com uma velocidade dx/dt

$$\frac{dx}{dt} = -\mu_n E(x) = \mu_n \frac{dv(x)}{dx}$$
 (3)

Mobilidade dos electrões

- A corrente resultante i pode ser obtida por $i = \frac{dq}{dt} = \frac{dq}{dx} \frac{dx}{dt}$ (4)
- Usando as equações (1) e (3), vem:

$$i = -\mu_n C_{ox} W[v_{GS} - v(x) - V_t] \frac{dv(x)}{dx}$$
 (5)

Dedução da relação $i_D - v_{DS}$

- Embora calculada num ponto específico do canal, a corrente *i* tem de ser constante em todos os pontos, ao longo do canal.
- **Assim**, a corrente tem de ser igual à corrente da source para o dreno (i_D)

$$i_D = -i = \mu_n C_{ox} W[v_{GS} - v(x) - V_t] \frac{dv(x)}{dx}$$
 (6)

ou

$$i_D dx = \mu_n C_{ox} W[v_{GS} - v(x) - V_t] dv(x)$$

Integrando ambos os lados da equação, com limites de x=0 a x=L, correspondentemente, para v(0)=0 a $v(L)=v_{DS}$

$$\int_{0}^{L} i_{D} dx = \int_{0}^{v_{DS}} \mu_{n} C_{ox} W[v_{GS} - v(x) - V_{t}] dv(x)$$

$$i_{D} = \mu_{n} C_{ox} \frac{W}{L} \left[(v_{GS} - V_{t}) v_{DS} - \frac{1}{2} v_{DS}^{2} \right]$$
(7)

Expressão que representa a característica i_D-v_{DS} na região do tríodo.

Dedução da relação $i_D - v_{DS}$

O valor da corrente no início da região de saturação, pode ser obtida substituindo $v_{DS} = v_{GS} - V_t$

$$i_D = \frac{1}{2} (\mu_n C_{ox}) \frac{W}{L} (v_{GS} - V_t)^2$$
 (8)

Expressão que representa a característica $\mathbf{i}_{\mathrm{D}}\text{-}\mathbf{v}_{\mathrm{DS}}$ na região de saturação.

- \blacksquare Para um dado valor de v_{GS} , obtém-se o correspondente valor de saturação i_D
- $\ ^{\blacksquare}\ \mu_n C_{ox}$ é uma constante determinada pelo processo tecnológico usado para fabricar o MOSFET canal n. É designado por parâmetro de transcondutância do processo.
- Este parâmetro determina o valor da transcondutância do MOSFET, é designado por k'_n e tem as dimensões de A/V²:

Região de tríodo

$$k_n' = \mu_n C_{ox} \qquad (9)$$

■ Substituindo (9) em (8) e (7), resulta:

$$i_{D} = k_{n}^{'} \frac{W}{L} \left[(v_{GS} - V_{t}) v_{DS} - \frac{1}{2} v_{DS}^{2} \right]$$

Região de saturação

$$i_D = \frac{1}{2} k_n \frac{W}{L} (v_{GS} - V_t)^2$$

Dedução da relação $i_D - v_{DS}$

- Das equações (7) e (8), constata-se que a corrente de dreno é proporcional à relação entre largura do canal W e o comprimento do mesmo L, conhecido "aspect ratio" do MOSFET.
- Os valores de W e de L podem ser seleccionados pelo projectista de modo a obter a característica *i v* desejada.

EXEMPLO 1

- Considere um processo tecnológico, tal que: $L_{min} = 0.4 \ \mu m$, $t_{ox} = 8 \ nm$, $\mu_n = 450 \ cm^2/(Vs)$ e $V_t = 0.7 \ V$.
- a) Determine C_{ox} e k'_n.
- b) Para um mosfet com W/L = 8 μ m / 0.8 μ m, calcule os valores de V_{GS} e de V_{DSmin} , necessários para operar o transístor na região de saturação com uma corrente de I_D = 100 μ A.
- c) Para o dispositivo em (b), determine o valor de V_{GS} necessário para que o dispositivo opere como uma resistência de 1000 Ω para um valor muito pequeno de v_{DS} .

SOLUÇÃO

a)
$$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} = \frac{3.45 \times 10^{-11}}{8 \times 10^{-9}} = 4.32 \times 10^{-3} \text{ F/m}^2$$

 $= 4.32 \text{ fF/}\mu\text{m}^2$
 $k'_n = \mu_n C_{ox} = 450 \text{ (cm}^2/\text{V·s}) \times 4.32 \text{ (fF/}\mu\text{m}^2)$
 $= 450 \times 10^8 (\mu\text{m}^2/\text{V·s}) \times 4.32 \times 10^{-15} (\text{F/}\mu\text{m}^2)$
 $= 194 \times 10^{-6} (\text{F/V·s})$
 $= 194 \mu\text{A/V}^2$

(c) Para o mosfet na região do tríodo com v_{DS} muito pequeno.

$$i_D \equiv k_n' \frac{W}{L} (v_{GS} - V_t) v_{DS}$$

M DEEC

A resistência do dreno para a source r_{DS} , pode ser determinada:

$$\begin{split} r_{DS} &= \frac{v_{DS}}{i_D} \bigg|_{\text{small } v_{DS}} \\ &= 1 / \left[k_n' \frac{W}{L} (V_{GS} - V_t) \right] \end{split}$$

(b) Para operação na região de saturação

$$i_D = \frac{1}{2} k_n' \frac{W}{L} (v_{GS} - V_t)^2$$

Assim,

$$100 = \frac{1}{2} \times 194 \times \frac{8}{0.8} (V_{GS} - 0.7)^2$$

Resultando,

$$V_{GS} - 0.7 = 0.32 \text{ V}$$

ou

$$V_{GS} = 1.02 \text{ V}$$

e

$$V_{DSmin} = V_{GS} - V_c = 0.32 \text{ V}$$

$$1000 = \frac{1}{194 \times 10^{-6} \times 10(V_{GS} - 0.7)}$$

$$V_{GS} - 0.7 = 0.52 \text{ V}$$

$$V_{GS} = 1.22 \text{ V}$$

O MOSFET de canal p

- Um MOSFET de enriquecimento de canal p (transístor PMOS) é fabricado num substrato do tipo n com regiões p^+ para o dreno e a source, e usa lacunas como portadores de carga.
- \blacksquare O dispositivo funciona da mesma maneira que o de canal n, excepto que v_{GS} e v_{DS} são negativas e a tensão limiar V_t é negativa. A corrente i_D entra pelo terminal da source e sai pelo terminal do dreno.
- De facto, como os portadores de carga nos NMOS são electrões, e estes têm uma mobilidade cerca de três vezes maior do que as lacunas, no silício, os transístores NMOS podem ocupar uma área menor e, assim, serem mais rápidos, além de requererem menores tensões de alimentação.
- Todavia, não se deve ignorar os PMOS por duas razões: os PMOS continuam a ser fabricados para circuitos discretos, e principalmente porque os circuitos CMOS (MOS complementar) que são actualmente a tecnologia dominante, utilizam os dois tipos de transístores, NMOS e PMOS.

MOS complementar ou CMOS

- A tecnologia MOS complementar utiliza transístores MOS das duas polaridades.
- De facto, actualmente, a tecnologia CMOS é a mais usada de todas as tecnologias de circuitos integrados MOS, quer no que respeita a circuitos analógicos, quer digitais.

temos uma seccão transversal duma pastilha CMOS os transistores ilustrando como PMOS e NMOS são fabricados.

Fig. 9

■ Note-se que enquanto o transístor NMOS é implementado directamente no substrato do tipo p, o transístor PMOS é fabricado numa região n especialmente criada, conhecida como um poço n. Os dois dispositivos são isolados um do outro por uma espessa região de óxido que funciona como um isolante.

Características tensão-corrente do MOSFET

Símbolo de circuito

- A Fig. 10(a) mostra o símbolo de circuito para o MOSFET de enriquecimento de canal n.
- ■O espaço entre as duas linhas verticais, que representam a gate e o canal, indica que o eléctrodo da gate é isolado do corpo do dispositivo.
- A polaridade do substrato do tipo p e o canal n é indicado pela seta do traço que representa o substrato.
- ■Esta seta também indica a polaridade do transístor, i.e., que se trata de um dispositivo de canal n.
- ■Para identificar a source e o dreno (sem ter de escrever S e D), a simbologia do circuito é modificada (ver fig.9b). Para o efeito uma seta é colocada no terminal da source, distinguindo esta do terminal de dreno.

A seta aponta na direcção normal do fluxo de corrente, indicando assim a polaridade dispositivo (i.e. *canal n*)

Fig. 10

Características tensão-corrente do MOSFET

- Embora o símbolo da Fig (b), claramente distinga a source do dreno, na prática é a polaridade da tensão aplicada através do dispositivo que determina a source e o dreno.
- O dreno é sempre positivo relativo à source num FET canal n.
- Em aplicações onde a fonte está ligada ao corpo do dispositivo (situação mais comum), é possível simplificar ainda mais o símbolo do circuito (Fig. 10 (c)).

Características i_D - v_{DS}

MOSFET de canal n enriquecido com tensões v_{GS} e v_{DS} aplicadas e indicando os sentidos normais das correntes (Fig.11 (a)).

24

Características tensão-corrente do MOSFET

Características i_D - v_{DS}

- Este circuito conceptual pode ser usado para medir as características i_D - v_{DS} , que são uma família de curvas, cada uma medida com uma tensão v_{GS} constante.
- É de esperar que cada uma das curvas i_D-v_{DS}, tenha a forma mostrada na Fig. 6.
- ■Na realidade as curvas i_D - v_{DS} práticas tem o aspecto apresentado na Fig. 11 (b).
- As características da Fig. 11(b) indicam que há três regiões distintas de funcionamento: a região de corte, a região de tríodo e a região de saturação.
- A região de saturação é a região usada para o funcionamento de FET como amplificador.
- Para funcionar como interruptor, utilizam-se as regiões de corte e de tríodo.

Fig. 11

M DEEC

Características tensão-corrente do MOSFET

Características i_D - v_{DS}

- \blacksquare O dispositivo está em corte quando $v_{GS} < V_t$.
- Para operar o MOSFET na região de tríodo, precisamos primeiro de induzir o canal, $\Rightarrow v_{GS} \ge V_t$ (10) e manter v_{DS} suficientemente pequeno para que o canal permaneça contínuo. Isto consegue-se assegurando que a tensão gate-dreno é: $v_{GD} > V_t$ (11)
- Esta condição pode ser representada explicitamente em termos de v_{DS}.

$$v_{GD} = v_{GS} + v_{SD} = v_{GS} - v_{DS}$$
 Assim, $v_{GS} - v_{DS} > V_t$ ou $v_{DS} < v_{GS} - V_t$ (12)

- As Eqs. (11) e (12) constituem as duas condições necessárias para assegurar o funcionamento da região de tríodo.
- Isto é, o MOSFET de canal n enriquecido funciona na região de tríodo quando \mathbf{v}_{GS} é maior do que \mathbf{V}_{t} e a tensão de dreno é menor do que a tensão da gate pelo menos de \mathbf{V}_{t} volt.
- Na região de tríodo, as características i_D-v_{DS} podem ser aproximadamente descritas pela relação.

$$i_{D} = k_{n}^{'} \frac{W}{L} \left[(v_{GS} - V_{t}) v_{DS} - \frac{1}{2} v_{DS}^{2} \right]$$
 (13)

Características tensão-corrente do MOSFET

Características i_D - v_{DS}

■ Se v_{DS} for suficientemente pequena, por forma a podermos desprezar o termo v_{DS}^2 , obtemos para as características i_D - v_{DS} junto da origem, a seguinte relação:

$$i_D \approx k_n^{'} \frac{W}{L} \left[(v_{GS} - V_t) v_{DS} \right]$$
 (14)

Esta relação linear representa o funcionamento do transístor MOS como uma resistência linear r_{DS} , cujo valor é controlado por v_{GS} . Mais especificamente, para um valor em particular $v_{GS} = V_{GS}$, r_{DS} é dado por:

$$r_{DS} = \frac{v_{DS}}{i_D} \Big|_{v_{GS} = V_{GS}}^{v_{DS} small} = \left[k_n \frac{W}{L} (v_{GS} - V_t) \right]^{-1}$$
(15)

Operação na região de saturação

Para operar o MOSFET na região de saturação, o canal tem de ser induzido, $v_{GS} \ge V_t$ (16) e estrangulado na extremidade do dreno, elevando v_{DS} a um valor que faça com que a tensão gate-dreno se torne inferior a V_t , $v_{GD} \le V_t$ (17)

Características tensão-corrente do MOSFET

Características i_D - v_{DS}

Operação na região de saturação

 \blacksquare A condição pode ser expressa explicitamente em termos de v_{DS} .

$$v_{DS} \ge v_{GS} - V_t$$
 (Canal estrangulado) (18)

- \blacksquare Isto é, o MOSFET de canal n enriquecido funciona na região de saturação quando v_{GS} é maior do que V_t e a tensão de dreno não é inferior à tensão da gate mais do que V, volt.
- A fronteira entre a região de tríodo e a região de saturação é caracterizada por

$$v_{DS} = v_{GS} - V_t \qquad \text{(Fronteira)} \tag{19}$$

 \blacksquare Substituindo este valor de v_{DS} em

$$i_{D} = k_{n}^{'} \frac{W}{L} \left[(v_{GS} - V_{t}) v_{DS} - \frac{1}{2} v_{DS}^{2} \right] \qquad \qquad i_{D} = \frac{1}{2} k_{n}^{'} \frac{W}{L} (v_{GS} - V_{t})^{2}$$

$$i_{D} = \frac{1}{2} k_{n}^{'} \frac{W}{L} (v_{GS} - V_{t})^{2}$$
 (20)

Valor de saturação da corrente i_D

Características tensão-corrente do MOSFET

Características i_D - v_{DS}

→

Operação na região de saturação

- Assim, em saturação, o MOSFET fornece uma corrente de dreno cujo valor é independente da tensão de dreno v_{DS} e é determinado pela tensão da gate v_{GS} de acordo com a relação quadrática da Eq. (20).
- **■** Um esboço é mostrado na fig. 12.

Como a corrente de dreno é independente da tensão de dreno, o MOSFET saturado comporta-se como uma fonte de corrente ideal cujo valor é controlado por $v_{\rm GS}$ de acordo com a relação não linear da Eq. (20).

A fig. 13 mostra uma representação do circuito em funcionamento na região de saturação.

Departamento de Engenharia Electrotécnica e de Computadores

29

Características tensão-corrente do MOSFET

Características i_D - v_{DS}

- Voltando às características i_D - v_{DS} da fig. 11(b), note-se que a fronteira entre as regiões de tríodo e de saturação está representada como uma curva a traço interrompido.
- ■Uma vez que esta curva é caracterizada por $v_{DS} = v_{GS} V_t$, a sua equação pode ser obtida substituindo $v_{GS} V_t$ por v_{DS} , quer na equação da região de tríodo (Eq. (13)), quer na equação da região de saturação (Eq. (20)).
- Assim,

$$i_D = \frac{1}{2} k_n \frac{W}{L} v_{DS}^2$$

- Deve notar-se que as características representadas nas Figs. 4, 11 e 12 são para um MOSFET com $k_n'(W/L) = 1.0 \text{ mA/V}^2 \text{ e V}_t = 1 \text{ V}.$
- O diagrama da fig. 14 mostra os níveis relativos que as tensões terminais do transístor NMOS de enriquecimento devem ter para o funcionamento nas regiões de tríodo e de saturação.

M DEEC

Características tensão-corrente do MOSFET

Níveis de tensão relativos nos terminais para um NMOS para funcionamento na região de tríodo e saturação

Exercício 1

Um transístor NMOS de enriquecimento com V_t =0,7 V tem a source ligada à massa e uma tensão de 1,5 V aplicada à gate. Quais as regiões de funcionamento para: (a) V_D =0,5 V; (b) V_D =0,9 V; (b) V_D =3 V.

Exercício 2

Se o transístor NMOS do Exercício 2 tiver mCox=100mA/V², W=10mm e L=1mm, determine o valor da corrente de dreno para as três situações indicadas (a), (b) e (c).

Departamento de Engenharia Electrotécnica e de Computadores

31

Características tensão-corrente do MOSFET

Resistência de saída finita em saturação

- \blacksquare A equação (14) e o circuito equivalente correspondente da Fig. 13, indicam que na saturação i_D é independente de v_{DS} .
- \blacksquare A variação Δv_{DS} na tensão dreno-source causa uma variação nula em i_D , o que implica que a resistência incremental na direcção do dreno de um MOSFET saturado é infinita.
- Isto é no entanto uma idealização baseada na premissa de que, uma vez o canal estrangulado na extremidade do dreno, posteriores aumentos de v_{DS} não têm qualquer efeito sobre a forma do canal.
- \blacksquare Na prática o aumento de v_{DS} para além de $v_{DS,sat}$ afecta um pouco o canal.
- \blacksquare Concretamente, à medida que v_{DS} aumenta, o ponto de estrangulamento do canal move-se ligeiramente do dreno em direcção à source.
- ■Tal é ilustrado na Fig. 15, da qual se nota que a tensão ao longo do canal permanece constante:

$$v_{DSat} = v_{GS} - V_t$$

e a tensão adicional aplicada ao dreno, surge como uma queda de tensão através da região de depleção estreita, entre o fim do canal e a região do dreno.

Características tensão-corrente do MOSFET

Resistência de saída finita em saturação

- Esta tensão acelera os electrões que atingem o fim do dreno do canal, varrendo-os para o dreno através da região de depleção.
- Com a largura da camada de depleção, o comprimento do canal é reduzido de L para L-ΔL
- Este fenómeno é designado por modulação do comprimento do canal.
- Visto que i_D é inversamente proporcional ao comprimento do canal (eq. 20), com a diminuição deste, i_D aumenta com o aumento de v_{DS} .

Fig. 15

Características tensão-corrente do MOSFET

Resistência de saída finita em saturação

■ Para levar em consideração a dependência de i_p em função de v_{ps}, na saturação, substitui-se L, na eq. 20, por L - Δ L, obtendo-se:

$$i_D = \frac{1}{2} k_n' \frac{W}{L - \Delta L} (v_{GS} - V_t)^2 = \frac{1}{2} k_n' \frac{W}{L} \frac{1}{1 - (\Delta L/L)} (v_{GS} - V_t)^2$$

$$\cong \frac{1}{2} k_n \frac{W}{L} \left(1 + \frac{\Delta L}{L} \right) (v_{GS} - V_t)^2$$
 (assumido que (\Delta L/L) <<1)

- Assumindo que ΔL é proporcional a v_{DS} $\Delta L = \lambda v_{DS}$
- \blacksquare λ ' é um parâmetro relacionado com o processo tecnológico, com dimensões de μ m/V.
- Substituindo na expressão de i_n:

Usualmente λ'/L é designado por λ

$$i_{D} = \frac{1}{2} k_{n}^{'} \frac{W}{L} \left(1 + \frac{\lambda^{'}}{L} v_{DS} \right) (v_{GS} - V_{t})^{2} = \frac{1}{2} k_{n}^{'} \frac{W}{L} (v_{GS} - V_{t})^{2} (1 + \lambda v_{DS})$$
 (21)

Características tensão-corrente do MOSFET

Resistência de saída finita em saturação

- \blacksquare A fig. 16 mostra um conjunto típico de características i $_{D}$ - v_{DS} exibindo o efeito da modulação do comprimento do canal.
- A dependência linear observado entre i_p e v_{ps}, na região de saturação, é representada na equação (21) pelo factor $(1 + \lambda v_{ps})$.
- Na fig. 16 notamos que prolongando para a esquerda a parte rectilínea das características i_D-v_{DS} na saturação, elas intersectamse num mesmo ponto do eixo v_{DS} , caracterizado por v_{DS} = -1/ λ = - $\mathbf{V}_{\mathbf{A}}$, onde $\mathbf{V}_{\mathbf{A}}$ é uma tensão positiva.
- Da equação 21, se $i_D = 0$, então:

← Saturation

Triode

Características tensão-corrente do MOSFET

Resistência de saída finita em saturação

- V_A é um parâmetro do processo tecnológico, com dimensões de Volt designada como tensão de Early.
- \blacksquare Para um dado processo, V_A é proporcional ao comprimento do canal L, que o projectista seleccione para um MOSFET.
- Pode-se representar $V_A=V_A$ ' L, em que V_A ' é inteiramente dependente do processo tecnológico, cujas unidades são $V/\mu m$.
- ■Tipicamente, V_A' varia na gama de 5 V/μm a 50 V/μm.
- \blacksquare A equação 21, indica que quando a modulação do comprimento do canal é considerada, os valores de saturação de i_D dependem de v_{DS} .
- ${}^{\blacksquare}$ Assim, para um dado v_{GS} , uma variação Δv_{DS} produz uma correspondente variação Δi_{D} , na corrente de dreno i_{D} .
- **■**Uma consequência óbvia da modulação do comprimento do canal é que a resistência de saída em saturação é finita.
- Definindo a resistência de saída r_o (resistência em saturação) como, $r_o \equiv \left| \frac{\partial r_D}{\partial v_{DS}} \right|$

Características tensão-corrente do MOSFET

Resistência de saída finita em saturação

■ Usando as equações (21) e (22) podemos obter

$$r_{o} = \left[\lambda \frac{k_{n}^{'}}{2} \frac{W}{L} (v_{GS} - V_{t})^{2} \right]^{-1}$$
 (23)

■ A equação (23) pode ser escrita de modo simplificado como

$$r_o = \frac{1}{\lambda I_D} \qquad (24) \qquad \qquad ou \qquad \qquad r_o = \frac{V_A}{I_D} \qquad (25)$$

■ Em que I_D é a corrente de dreno sem levar em consideração a modulação do comprimento do canal.

$$I_{D} = \frac{1}{2} k_{n} \frac{W}{L} (v_{GS} - V_{t})^{2}$$

Assim a resistência de saída é inversamente proporcional à corrente de dreno.

 $i_{G} = 0$ + v_{GS} $\frac{1}{2} k'_{n} \frac{W}{L} (v_{GS} - V_{t})^{2}$ r_{o} r_{o} Fig. 17

Modelo de circuito equivalente, incorporando r_o .

