(104031) אינפי 1מ' | תרגול 23 - יוליה

שם: איל שטיין

January 16, 2023

נושאי השיעור: משפט דרבו, ליפשיצית, לופיטל

נושא ראשון - משפט דרבו:

תרגיל 1.

 $f'\left(rac{1}{2}
ight)=1$ וגם $f\left(0
ight)=f\left(1
ight)=0$ כך ש $\left[0,1
ight]$ וגם (0,1) וגם יחיי f

 $.f'\left(c
ight)=rac{2}{\pi}$ -ע כך פר $c\in\left(0,1
ight)$ כך שי מתרון:

- : ראשית נשתמש במשפט רול
- (0,1) וגזירה בקטע הפונקציה רציפה בקטע –
- $f'\left(a
 ight)=0$ -ע כך משפט רול קיימת $a\in\left(0,1
 ight)$ קיימת *
 - 0 < a < 1 כי ל- $\frac{1}{2}$ כי מין הסגור בקטע גזירה גזירה לפי הנתון ל
- $f'\left(a
 ight)=0$ ובין $f'\left(rac{1}{2}
 ight)=1$ את כל הערכים שבין ובין $f'\left(rac{1}{2}
 ight)=1$ ובין הזה את כל הערכים שבין
 - $0<rac{2}{\pi}<0$ את מקבלת f' ובפרט *
 - $f'\left(c
 ight)=rac{2}{\pi}$ -ע כלומר קיימת קיימת $c\in\left(0,1
 ight)$ ולכן ובין aובין בקטע בין כלומר כלומר כלומר י

נושא שני - ליפשיציות:

הגדרה 2. ליפשיצית

- .I-ם תהי f המוגדרת ב-
- $|f\left(x
 ight)-f\left(y
 ight)|\leq K\cdot|x-y|$ מתקיים $x,y\in I$ כך שלכל $K\in\mathbb{R}$ כך אם ליפשיצית אם ליפשיצית אם היים *

:הערה 3. ידוע כי

. הציפה במ"ש $f \Leftarrow$ ליפשיץ (מוכיחים בעזרת לגראנז') אם $f \Leftarrow$ רציפה במ"ש $f \Leftrightarrow$ רציפה הנגזרת הסומה

.4 הערה

- x^2 או $\tan(x)$: רציפה, לדוגמה $f \not\gg \omega$ שו •
- [0,1] בקטע \sqrt{x} בקטע, לדוגמה: \sqrt{x} בקטע •
- רפשיץ, לדוגמה: |x| לא ליפשיץ \Rightarrow חסומה ליפשיץ לדוגמה ליפשיץ

תרגיל 5.

 $|f\left(x
ight)-f\left(y
ight)|\leq\left|x-y
ight|^{2}$ מתקיים $x,y\in\mathbb{R}$ כל שלכל $f:\mathbb{R}
ightarrow\mathbb{R}$ מתקיים

.צ"ל: הוכיחו כי f קבועה

:פתרון - דרך ראשונה

 $.x_0\in\mathbb{R}$ יהי.

$$0 \le \left| rac{f(x) - f(x_0)}{x - x_0}
ight| \le |x - x_0| \xrightarrow[x \to x_0]{} 0$$
 איי -

$$\lim_{x \to x_0} \left| \frac{f(x) - f(x_0)}{x - x_0} \right| = 0$$
 ולכן

 $\lim_{x\to x_0}\left|\frac{f(x)-f(x_0)}{x-x_0}\right|=0\ \ \text{tdc}.$ א ולכן אם הגבול בערך מוחלט שווה לאפס אז גם הגבול עצמו שווה אפס. יולפי משפט, אם הגבול בערך מוחלט אווה לאפס אז גם הגבול י

$$f'\left(x_{0}
ight)=\lim_{x
ightarrow x_{0}}rac{f\left(x
ight)-f\left(x_{0}
ight)}{x-x_{0}}=0$$
 : לכך י

. אם f אז $x_0 \in \mathbb{R}$ לכל $f'(x_0) = 0$ אז \cdot

פתרון - דרך שנייה:

- (x < y) (בה"כ $x, y \in \mathbb{R}$ יהיו
- $z:\left|f\left(x
 ight)-f\left(y
 ight)
 ight|$ ניקח נקודה $z=rac{x+y}{2}$ ונבחן ניקח ניקח ניקח ניקח את הביטוי

$$|f(x) - f(y)| = |f(x) - f(z) + f(z) - f(y)|$$

- ולפי אי שוויון המשולש מתקיים:

$$|f(x) - f(y)| \le |f(x) - f(z)| + |f(z) - f(y)|$$

* ולפי הנתון מתקיים:

$$|f(x) - f(z)| + |f(z) - f(y)| \le |x - z|^2 + |z - y|^2$$

 $z=rac{x+y}{2}$ נציב י

$$\frac{|x-y|^2}{2^2} + \frac{|x-y|^2}{2^2} = \frac{|x-y|^2}{2}$$

מתקיים מחקרים אינדוקטיבי ונקבל אינדוקטיבי אינדוקטיבי $n\in\mathbb{N}$ אינדוקטיבי אינדוקטיבי *

$$0 \le |f(x) - f(y)| \le \frac{|x - y|^2}{2^n}$$

- $0\leq\left|f\left(x
 ight)-f\left(y
 ight)
 ight|<arepsilon$ ולכן גם arepsilon>0 היא תהיה $2^{n}\xrightarrow[n
 ightarrow\infty]{}0$ מכיוון ש
 - arepsilon>0 הוא מספר קבוע שקטן מכל ומכיוון ש- $|f\left(x
 ight)-f\left(y
 ight)|$ ומכיוון ש
 - |f(x) f(y)| = 0 אז י

:נושא שלישי - לופיטל

משפט 6. משפט לופיטל.

- . יהיו f,g גזירות
 - : אם •
- $\lim_{x \to x_0} g\left(x
 ight) = 0$ וגם וו $\lim_{x \to x_0} f\left(x
 ight) = 0$, או במילים אחרות, או במילים החרות, או במילים
 - $.x_{0}$ בסביבה של $g'\left(x\right)\neq0$ –
 - . קיים $\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = L$ הגבול
 - $\lim_{x o x_0}rac{f(x)}{g(x)}=L$ אא •

תרגיל 7.

 $\lim_{x o 0}rac{x^2\cdot\sin\left(rac{1}{x}
ight)}{\sin(x)}$ שבו את הגבול של -

פתרון:

- נניח שבדקנו שגם המונה וגם המכנה שואפים ל-0 והנגזרת של המכנה לא מתאפסת.
 - :נעשה לופיטל " $\frac{0}{0}$ " ונקבל •

$$\lim_{x \to 0} \frac{x^2 \cdot \sin\left(\frac{1}{x}\right)}{\sin\left(x\right)} = \lim_{x \to 0} \frac{2x \cdot \sin\left(\frac{1}{x}\right) \cdot \cos\left(\frac{1}{2}\right)}{\cos\left(x\right)}$$

- קיבלנו שגבול הנגזרות לא קיים, ולכן לא ניתן להשתמש בלופיטל.

• נוכיח שהגבול של המנה קיים בלי קשר למשפט לופיטל:

$$\lim_{x\to 0}\frac{x^2\cdot\sin\left(\frac{1}{x}\right)}{\sin\left(x\right)}=\lim_{x\to 0}\frac{\overbrace{x}^{-1}}{\sin\left(x\right)}\cdot x\cdot\sin\left(\frac{1}{x}\right)$$

 $\lim_{x o 0} rac{x^2 \cdot \sin\left(rac{1}{x}
ight)}{\sin(x)} = 0$ ולפי חסומה כפול שואפת לאפס נקבל –

תרגיל 8.

 $\lim_{x\to 0} (1+x)^{\frac{1}{\sin(x)}}$: חשבו את הגבול

פתרון:

- $f(x) = (1+x)^{\frac{1}{\sin(x)}}$ נגדיר •
- x=0 מוגדרת וחיובית בסביבת f
 - : ולכן ניתן לרשום אותה

$$e^{ln(f(x))}$$

:נבחן את הביטוי $ln\left(f\left(x\right)\right)$ ונקבל –

$$ln\left(f\left(x\right)\right) = \frac{1}{\sin\left(x\right)} \cdot ln\left(1+x\right)$$

 $: \lim_{x o 0} rac{\ln(1+x)}{\sin(x)}$ כעת נמצא את הגבול * לפיטל " $rac{0}{0}$ מתקיים:

$$\lim_{x \to 0} \frac{\ln(1+x)}{\sin(x)} = \lim_{x \to 0} \frac{\frac{1}{1+x}}{\cos(x)} = 1$$

: ונקבל $\lim_{x \to 0} \frac{ln(1+x)}{\sin(x)} = 1$ נציב *

$$\lim_{x \to 0} f(x) = e^1 = e$$

תרגיל 9.

 $\lim_{x
ightarrow0^{+}}\left(rac{1}{x}+ln\left(x
ight)
ight)$: חשבו את הגבול

:פתרון

: נעשה מכנה משותף ונקבל

$$\lim_{x\rightarrow0^{+}}\frac{1}{x}+\ln\left(x\right)=\lim_{x\rightarrow0^{+}}\frac{1+x\cdot\ln\left(x\right)}{x}$$

 $\lim_{x\to 0^+} x \cdot ln(x)$ נבחן את הביטוי –

$$x \cdot ln(x) = \frac{ln(x)}{\frac{1}{x}}$$

 $\frac{\infty}{\infty}$ " נקבל: \star

$$\lim_{x \to 0^+} \frac{\ln(x)}{\frac{1}{x}} = \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0^+} (-x)$$

$$\lim_{x \to 0^+} \left(-x \right) = 0$$

- כלומר קיבלנו ש:

$$\lim_{x \to 0^{+}} \frac{1 + \overbrace{x \cdot ln(x)}^{\to 0}}{\underbrace{x}_{\to 0}} = +\infty$$

. הערה 10. מומלץ לזכור את סדר ה"מהירות" של השאיפה לאפס הערה - $\ln\left(x\right) < x < e^x < x^x$ הערה של השאיפה המהירות" של השאיפה לאפס

תרגיל 11.

:נגדיר סדרה לכל $n\in\mathbb{N}$ כך ש

$$\lim_{n \to \infty} \left(e^{n + \frac{1}{n}} - e^n \right)$$

$$.f\left(x
ight) =\left(e^{x+rac{1}{x}}-e^{x}
ight)$$
 נגדיר •

 $(0,\infty)$ מוגדרת וגזירה בקטע f הפונקציה –

 $\lim_{x \to \infty} f\left(x\right)$ את נבחן את *

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^x \cdot \left(e^{\frac{1}{x}} - 1 \right)$$

$$= \lim_{x \to \infty} \frac{e^{\frac{1}{x}} - 1}{e^{-x}}$$

. כעת לפי לופיטל " $\frac{0}{0}$ " נקבל י

$$\lim_{x\to\infty}\frac{-\frac{1}{x^2}\cdot e^{\frac{1}{x}}}{-e^{-x}}$$

$$=\lim_{x\to\infty}\frac{\overbrace{e^x}^{\infty}}{x^2}\cdot\overbrace{e^{\frac{1}{x}}}^{\rightarrow 1}$$

. לפי משפט "חשבון גבולות" לגבולות אינסופיים מתקיים:

$$\lim_{x\to\infty} \overbrace{\frac{e^x}{x^2}}^{\to\infty} \cdot \overbrace{e^{\frac{1}{x}}}^{\to 1} = \infty$$

- י ולכן הגבול של מנת הנגזרות קיים ושווה לאינסוף.
 - $\lim_{x\to\infty}f\left(x
 ight)=\infty$ מצאנו ש •
- $f\left(a_{n}
 ight)=\infty$ ש מתקיים $a_{n}=n$ ובפרט עבור $a_{n}\xrightarrow[n
 ightarrow\infty]{}\infty$ סדרה לכל סדרה לכן לפי משפט היינה, לכל סדרה

$$\lim_{n \to \infty} \left(e^{n + \frac{1}{n}} - e^n \right) = \infty$$
 כלומר *