Homework 4 Written

June 23th, 2021 at 11:59pm

1 Reinforcement Learning

Imagine an unknown game which has only two states $\{A, B\}$ and in each state the agent has two actions to choose from: $\{Up, Down\}$. Suppose a game agent chooses actions according to some policy π and generates the following sequence of actions and rewards in the unknown game:

t	s_t	a_t	s_{t+1}	r_t
0	A	Down	В	-2
1	В	Down	В	-4
2	В	Up	В	0
3	В	Up	A	3
4	Α	Up	A	1

Unless specified otherwise, assume a discount factor $\gamma = 0.5$ and a learning rate $\alpha = 0.5$.

1. Recall the update function of Q-learning is:

$$Q\left(s_{t}, a_{t}\right) \leftarrow (1 - \alpha)Q\left(s_{t}, a_{t}\right) + \alpha \left(r_{t} + \gamma \max_{a'} Q\left(s_{t+1}, a'\right)\right)$$

Assume that all Q-values initialized as 0. What are the following Q-values learned by running Q-learning with the above experience sequence?

$$Q(A, Down) = -1, \quad Q(B, Up) = 1.5$$

2. In model-based reinforcement learning, we first estimate the transition function T(s, a, s') and the reward function R(s, a, s'). Fill in the following estimates of T and R, estimated from the experience above. Write "n/a" if not applicable or undefined.

$$\hat{T}(A, Up, A) = 1$$
 $\hat{T}(A, Up, B) = 0$ $\hat{T}(B, Up, A) = 0.5$ $\hat{T}(B, Up, B) = 0.5$

$$\hat{R}(A,Up,A) = \overset{1}{\underline{}} \quad \hat{R}(A,Up,B) = \underset{\underline{}}{\underline{}} \quad \hat{R}(B,Up,A) = \overset{3}{\underline{}} \quad \hat{R}(B,Up,B) = \overset{0}{\underline{}} \quad \hat{R}(B,Up,B) = \overset{0}{\underline{\phantom$$

1

3. To decouple this question from the previous one, assume we had a different experience and ended up with the following estimates of the transition and reward functions:

s	a	s'	$\hat{T}(s,a,s')$	$\hat{R}(\mathrm{s,a,s'})$
A	Up	A	1	10
A	Down	A	0.5	2
A	Down	В	0.5	2
В	Up	Α	1	-5
В	Down	В	1	8

(a) Give the optimal policy $\hat{\pi}^*(s)$ and \hat{V}^*s for the MDP with the transition function \hat{T} and the reward function \hat{R} .

Hint: for any $x \in \mathbb{R}, |x| < 1$, we have $1 + x + x^2 + x^3 + x^4 + \dots = 1/(1-x)$

$$\hat{\pi}^*(A) = \underset{---}{\text{Up}} \quad \hat{\pi}^*(B) = \underset{---}{\text{Down}} \quad \hat{V}^*(A) = \underset{---}{\text{20}} \quad \hat{V}^*(B) = \underset{---}{\text{16}}$$

(b) If we repeatedly feed this new experience sequence through our Q-learning algorithm, what values will it converge to? Assume the learning rate α_t is properly chosen so that convergence is guaranteed.

i. the value found above, \hat{V}^*

- ii. the optimal values, V^*
- iii. neither \hat{V}^* nor V^*
- iv. not enough information to determine

2 Policy Evaluation

In this question, you will be working in an MDP with states S, actions A, discount factor γ , transition function T, and reward function R.

We have some fixed policy $\pi: S \to A$, which returns an action $a = \pi(s)$ for each state $s \in S$. We want to learn the Q function $Q^{\pi}(s, a)$ for this policy: the expected discounted reward from taking action a in state s and then continuing to act according to $\pi: Q^{\pi}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma Q^{\pi}(s', \pi(s')) \right]$. The policy π will not change while running any of the algorithms below.

1. Can we guarantee anything about how the values Q^{π} compare to the values Q^{*} for an optimal policy π^{*} ? (a)

(a) $Q^{\pi}(s,a) \leq Q^*(s,a)$ for all s,a

- (b) $Q^{\pi}(s, a) = Q^{*}(s, a)$ for all s, a
- (c) $Q^{\pi}(s, a) \geq Q^{*}(s, a)$ for all s, a
- (d) None of the above guaranteed
- 2. Suppose T and R are unknown. You will develop sample-based methods to estimate Q^{π} . You obtain a series of samples (s_1, a_1, r_1) , (s_2, a_2, r_2) , ... (s_T, a_T, r_T) from acting according to this policy (where $a_t = \pi(s_t)$, for all t)
 - (a) Recall the update equation for the Temporal Difference algorithm, performed on each sample in sequence:

$$V\left(s_{t}\right) \leftarrow \left(1 - \alpha\right)V\left(s_{t}\right) + \alpha\left(r_{t} + \gamma V\left(s_{t+1}\right)\right)$$

which approximates the expected discounted reward $V^{\pi}(s)$ for following policy π from each state s, for a learning rate α . Fill in the blank below to create a similar update equation which will approximate Q^{π} using the samples. You can use any of the terms $Q, s_t, s_{t+1}, a_t, a_{t+1}, r_t, r_{t+1}, \gamma, \alpha, \pi$ in you equation, as well as \sum and max with any index variables (i.e. you could write \max_a or \sum_a and then use a somewhere else), but no other terms.

$$\label{eq:r_t+qQ(s_{t+1},a_{t+1})} \begin{split} r_{t+q} & \text{$(s_t,a_t) \leftarrow (1-\alpha)Q(s_t,a_t) + \alpha[___]$} \end{split}$$

(b) Now, we will approximate Q^{π} using a linear function: $Q(s,a) = \sum_{i=1}^{d} w_i f_i(s,a)$ for weights w_1, \ldots, w_d and feature functions $f_1(s,a), \ldots, f_d(s,a)$.

To decouple this part from the previous part, use Q_{samp} for the value in the blank in part (a)(i.e. $Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha Q_{samp}$) Which of the following is the correct sample-based update for each w_i ?

i.
$$w_i \leftarrow w_i + \alpha \left[Q\left(s_t, a_t\right) - Q_{samp} \right]$$

ii.
$$w_i \leftarrow w_i - \alpha \left[Q\left(s_t, a_t\right) - Q_{samp} \right]$$

iii.
$$w_i \leftarrow w_i + \alpha \left[Q\left(s_t, a_t\right) - Q_{samp} \right] f_i\left(s_t, a_t\right)$$

iv. $w_i \leftarrow w_i - \alpha \left[Q\left(s_t, a_t\right) - Q_{samp} \right] f_i\left(s_t, a_t\right)$

v.
$$w_i \leftarrow w_i + \alpha \left[Q\left(s_t, a_t\right) - Q_{samp} \right] w_i$$

vi.
$$w_i \leftarrow w_i + \alpha \left[Q\left(s_t, a_t\right) - Q_{samp} \right] w_i$$

- (c) The algorithms in the previous parts (part a and b) are: ii
 - i. model-based

ii. model-free