# JEGYZŐKÖNYV KORSZERŰ VIZSGÁLATI MÓDSZEREK LABORATÓRIUM

## MEISSNER-EFFEKTUS MÉRÉSE



• Mérést végezte : Brindza Mátyás

• Mérőtársak : Kovács Benjamin, Németh Olivér

 $\bullet$  Mérés időpontja : 2023.05.19.

# Tartalomjegyzék

| 1.        | . A mérés célja                          |                    |
|-----------|------------------------------------------|--------------------|
| 2.        | A mérés elméleti háttere                 | 3                  |
|           | A kísérleti elrendezés 3.1. A mérés elve | <b>4</b><br>4<br>5 |
| 4.        | A mérés menete                           | 8                  |
| <b>5.</b> | Kiértékelés                              | 9                  |

## 1. A mérés célja

A mérés során a normál-szupravezető fázisátalakulást vizsgáljuk, mely segítségével megállapítható ezen fázisok aránya - azaz a minta mekkora hányada viselkedik szupravezető-ként. Mivel az ellenállás mérésével gyakran gondok akadnak<sup>1</sup>, szuszceptibilitás mérésével vizsgáljuk a fázisátalakulást. A jelenséget, mely során szupravezető anyagok egy anyagra jellemző kritikus hőmérséklet  $(T_c)$  alatt kiszorítják magukból a mágneses teret, Meissnereffektusnak nevezzük. Mivel a minta belsejében a kritikus hőmérséklet alatt 0 a mágneses indukció vektora, taszítja a mágneseket - azaz diamágnesként viselkedik. A tökéletes szupravezető tökéletes diamágnesként viselkedik, azaz ekkor  $\chi = -1$ . Ezzel szemben az általunk vizsgált minta esetén  $-1 < \chi < 0$  a várt szuszceptibilitás - ennek a -1-hez való aránya a minta szupravezető hányada. Meghatározható  $T_c$  és az átalakulás szélessége  $(\Delta T_f)$  is. A mérés leírása és menete részeletesebben megtalálható a laboratóriumhoz írt jegyzetben ([1]).

## 2. A mérés elméleti háttere

A szupravezetés jelenségére a kvantummechanika ad magyarázatot. Ha a részecskék spinje  $\frac{1}{2}$  egész számú többszöröse, a Pauli-elv megtiltja, hogy a egy állapotban több részecske is lehessen. A Pauli-elv a hőmérséklet csökkentésével is érvényesül, sosem kerülhet minden részecske a legalacsonyabb energiaszintre. Alacsony energiájú állapotok esetén 1-1 ellentétes spinű részecske elfoglalhatja ugyanazt az állapotot, de a párokra változatlanul érvényes a Pauli-elv.

A kristályrácsban található ionok rezgései kvázirészecskéknek tekinthetőek (fononok). Az elektronok kölcsön tudnak hatni fononokkal, és előfordulnak olyan speciális esetek, hogy két elektron fononok által kötött párt alkotnak, amennyiben a fononok által közvetített kölcsönhatás elég erős. Ennek a párnak összesen 0 a spinje, és bozonként viselkedik. Ez a pár Cooper-pár néven ismert.

Szemléletes példa az alagúteffektus jelensége fémes rétegek közé zárt vékony szigetelő rétegen. A Pauli-elv miatt fermionok esetén korlátozott számban valósulnak meg átmentek, mivel a potenciálgát túloldalán is többnyire betöltött állapotok vannak. Ahhoz, hogy áram folyjon, potenciálkülönbséget kell létrehozni a két oldal között, ugyanis ekkor tudnak betöltetlen állapotokat találni maguknak az elektronok. Ezzel szemben a bozonok, ahogy a Cooper-pár is, indifferens az állapotok betöltöttségére, ugyanis nem érvényes rájuk a Pauli-elv. Így potenciálkülönbség nélkül is jelentős áram tud folyni a gáton.

Mivel az adott anyag normál vezetőként viselkedik magas hőmérsékleten, alacsony hőmérsékleten pedig szupravezetőként, fázisátalakulás játszódik le, mely reverzibilis. A két fázist egyértelműen elválasztja a Meissner-effektus jelenléte, így ennak mérésével vizsgálható a fázisátalakulás.

<sup>&</sup>lt;sup>1</sup>Csak egybefüggő szupravezető tartományokon lehet 0 ellenállást mérni, illetve a 0 ellenállásból nem következik, hogy szupravezetőről beszélünk.

### 3. A kísérleti elrendezés

A mérést az alábbi módon összeállított berendezéssel végezzük.



1. ábra. A mérőberendezés összeállítása ( ${\bf M}$  : mérőtekercs;  ${\bf R}$  : referencia tekercs;  ${\bf G}$  : gerjesztő tekercs;  ${\bf H}$  : hőmérő) [1]

A mintát a mérőtekercsbe helyezzük ( $\mathbf{M}$ ). A szisztematikus hibák (pl. hőtágulás) kiköszöbölése értdekében referencia tekrecset ( $\mathbf{R}$ ) is használunk. A gerjesztő tekercs ( $\mathbf{G}$ ) segítségével indukált feszültéget mérjük a mérő- és a referencia tekercseken. A mérőfejet a tartályba helyezzük, ahol folyékony nitrogén hűti le a mérőfejet, melyben egy platina hőmérő ( $\mathbf{H}$ ) követi az ott uralkodó hőmérsékletet.

A kiértékeléshez szükséges a mérési adatok és a szuszceptibilitás közti összefüggés, illetve a lock-in technika elvi ismerete.

#### 3.1. A mérés elve

Gyenge teret feltételezve a mágnesettség és a mágneses indukció lineáris függvénye a mágneses térnek.

$$M = \chi H$$
  $B = \mu_0 (H + M) = \mu_0 (1 + \chi) H$  (1)

Egy n menetemelkedésű tekercsben egy f frekvenciájú és I amplitúdójú váltóáram által keltett tér nagysága az alábbi módon adható meg.

$$H = nI\sin(2\pi ft) \tag{2}$$

Az A keresztmetszetű, m menetemelkedésű és l hosszúságú tekercsen indukált feszültséget a Farady-törvény segítségével számoljuk ki.

$$U_0 = \frac{\mathrm{d}\Phi}{\mathrm{d}t} = -mAl\frac{\mathrm{d}B}{\mathrm{d}t} = -mAl\mu_0 \frac{\mathrm{d}H}{\mathrm{d}t} = -mV\mu_0 \frac{\mathrm{d}H}{\mathrm{d}t}$$
(3)

A tekercs térfogata V = Al. Az  $U_0$  mennyiség felel meg a referencia tekercsen mért jelnek, mely a gerjesztő tekercs időfüggése alapján  $\sim \cos(2\pi ft)$  módon váltakozik. A mintát

tartalmazó tekercsben indukálódott feszültséget hasonló módon kapjuk meg, figyelembe véve a minta térfogatát és szuszceptibilitását.

$$U = \mu_0 m \left[ (V - V_m) + V_m (1 + \chi) \right] \frac{\mathrm{d}H}{\mathrm{d}t} = U_0 + \mu_0 m \chi V_m \frac{\mathrm{d}H}{\mathrm{d}t}$$
 (4)

A (3) és (4) egyenletek segítségével kifejezhető a a feszültségkülönbség és a referencia feszültség aránya.

 $\frac{U - U_0}{U} = \frac{\Delta U}{U_0} = -\chi \frac{V_m}{V} \tag{5}$ 

A feszültségek és a térfogatok jól mérhetőek, de a pontosabb mérés érdekében differenciálerősítő segítségével külön mérhető a két tekercs feszültségkülönbsége.

#### 3.2. A lock-in módszer

A T hőmérsékletű, R ellenállású ohmos vezetőkben a töltéshordozók véletlenszerű mozgása zajfeszültséget hoz létre, mely Johnson-zaj néven ismert és a Planck-féle sugárzástörvényből levezethető. Ennek nagysága B sávszélességen az alábbi alakban adható meg.

$$U_{\rm zaj} = \sqrt{4k_B T R B} \tag{6}$$

Az erősítés sávszélességének csökkentésével csökkenthető a zaj, ezt valósítja meg a lockin módszer, mely egyetlen frekvencián erősít.

Az erősítés leírásához feltételezzük, hogy az  $U_r(t)$  referencia és az  $U_j(t)$  válaszjel tisztán harmonikus.

$$U_r(t) = U_{r0}\sin(\omega_r t + \Theta_r) \qquad U_j(t) = U_{j0}\sin(\omega_j t + \Theta_j)$$
(7)

A két jel szorzata két harmonikus  $(\omega_r - \omega_j$  és  $\omega_r + \omega_j$  frekvenciájú) függvény összegeként is előállítható.

$$U_r(t)U_j(t) = \frac{1}{2}U_{r0}U_{j0}\left[\cos\left((\omega_r - \omega_k)t + (\Theta_r - \Theta_j)\right) - \cos\left((\omega_r + \omega_k)t + (\Theta_r + \Theta_j)\right)\right]$$
(8)

Ennek a hosszú időre vett átlaga 0, kivéve ha az egyik koszínuszt konstanssá tesszük  $\omega_r = \omega_j$  által. Ekkor ugyanis a kimenő jel időátlaga :

$$U_{ki}(t) = \frac{1}{2}U_{r0}U_{j0}\cos(\Theta_r - \Theta_j)$$
(9)

Tekintve, hogy a mérés során a fent szerplő mennyiségek mindegyike állandó, meghatározhatóak a váltófeszültség vektorkomponensei, ugyanis külső beavatkozással fázismodulációt hozhatunk létre, mellyel a mérhető a jel referencia jellel megegyező és ellentétes fázisban lévő komponense.



2. ábra. A fázisérzékeny demoduláció vektorábráka ( $U_A$ : valódi jel;  $U_Z$ : zaj;  $U_T$ : mért jel ( $U_A + U_Z = U_T$ );  $U_R$ : referenciajel;  $U_I$  a valódi jel referencia jellel fáziban lévő,  $U_Q$  a referencia jelre merőleges komponense ( $U_I + U_Q = U_A$ );  $\Theta$  a jel fázisszöge) [1]

Az  $\omega_j + \omega_i$  frekvencián megjelenő zaj időátlagolással kiküszöbölhető. A kimenő jelben csak az  $\omega = \omega_r = \omega_j$  körfrekvenciájú jelnek lesz járuléka, illetve ezek  $n\omega$  körfrekvenciájú és  $\Theta_n$  fázisú felharmonikusainak. A fázisdetektor kimenetén azonban általában az alapharmonikus jelenik meg, mely lényegét tekintve megegyezik az (9)-es kifejezéssel.

$$U_{ki}(t) = \frac{2}{\pi} U_{be} \cos(\Theta_r - \Theta_j)$$
(10)

Ezt az elvet kihasználva született meg az ún. kapuzó fázisdetektor, mely a referencia jellel azonos fázisban bocsájt ki négyszögjeleket. A kapuzó fázisdetektor kapcsolási rajza a 3. ábrán látható.



3. ábra. A kapuzó fázisdetektor felépítése ([1])

A négyszögjel és a mért jel szorzatának időbeli integrálja a fáziskülönbségtől függően változik (4. ábra), így megkereshetjük a mért jel referencia jellel azonos, illetve ellentétes fázisban lévő komponenseit.



4. ábra. A négyszögjel (a) és a mért jel (b) szorzata (c) és ennek időintegrálja (d) különböző fázisok  $(\phi)$  esetén [1]

A méréshez használt lock-in erősítőben (5. ábra) egy RC szűrő időátlagolja a fázis-érzékeny jelet. A kapuzást és a feszültségmodulálást ugyanaz a jelgenerátor végzi, így a frekvencia- és a fázisingadozás nem okoz mérési hibát.



5. ábra. A lock-in erősítő vázlata ( $\mathbf{KZ}$ : kiszajú erősítő;;  $\mathbf{SZ}$ : szélessávú erősítő;  $\mathbf{Ref}$ : referencia erősítő;  $\mathbf{FT}$ : fázistoló;  $\mathbf{Nsz}$ : négyszögerősítő;  $\mathbf{EF}$ : egyenfeszültség erősítő) [1]

## 4. A mérés menete

A berendezés bekapcsolása után megkeressük a 4. ábra alapján az időintegrál maximumát a fázis függvényében. Ez lassan változik a maximum körül, így a pontosabb beállítás végett először megkeressük azt a fázisállítást, ahol eltűnik, majd 90°-os fázistoltást végzünk. Megkönnyíti a beállítást az is, hogy  $\phi=180^\circ$  fázistolással a -1 szeresére változik az érték.

Beállítjuk a mérés paramétereit a számítógépen, ami a mérést és az adatrögzítést végezni fogja. Ezután a tartályba folyékony nitrogént töltünk. A tártály alja domború kialakítású, mely megkönnyíti a nitrogén adagolását. A mintát a mérőtekercsbe helyezzük², majd a mérőfejet ledugljuk a tartályba. A nitrogén szobahőmérsékleten forr, ezért ügyel-ünk a megfelelő levegőző szelep megnyitására a balesetveszély elkerülése végett. Elindítjuk a mérést, megvárjuk, amíg a minta lehűl és végbemegy a fázisátalakulás. Végül kivesszük a mérőfejet a tartálból, és megvárjuk, amíg a minta újra fázisátalakuláson megy keresztül - ezúttal szupravezető—normál fázisátalakulás. A számítógép rögzíti az egyik, illetve a másik tekercs feszültségét, ezek különbségét, a mérőfej hőmérsékletét és annak időbeli változását, továbbá mindegyik mérési ponthoz rögzíti a mérés elindítása óta eltelt időt.

<sup>&</sup>lt;sup>2</sup>Mindegy melyik tekercs, nem megkülönböztethetők.

## 5. Kiértékelés

A mérési adatok az <a href="http://austen.elte.hu/">http://austen.elte.hu/</a> oldalon elérhetőek. A tekercs és a minta térfogata :

$$V_{\text{tekercs}} = 300 \text{ mm}^3$$

$$V_{\text{minta}} = 21.6 \text{ mm}^3$$
(11)

A mért adatokat<sup>3</sup> a 6. ábra jeleníti meg.



6. ábra. A mért adatok,  $\Delta U(T)$ 

A melegedő és a hűlő ágat úgy különböztetjük meg, hogy a hőmérséklet időfüggése alapján szétválasztjuk az adatsort.



7. ábra. A hűlő és a melegedő ágak szétválasztása

 $<sup>^3</sup>$ A kimeneti feszültség offszetje állítható, ezért a  $\Delta U$ tetszőlegesen eltolható manuálisan. Feltételezve, hogy a minta szuszceptibilitása normál vezetőként kicsi, görbék magas hőmérsékletű ága eltolható a  $\Delta U=0$ -ba.

A 6. ábrán látható, hogy a görbének hiszterézise van. Ezt úgy lehet kompenzálni, ha a két görbét a T tengellyel párhuzamosan egymásra csúsztatjuk. Mivel az alsó és a felső ágak asszimptotikusan konstanshoz tartanak, meghatározható ezen konstansok átlaga, így a két görbe átmetszhető egy  $\Delta U = {\rm const.}$  egyenessel. Meghatározzuk a metszéspontokat (8. ábra), majd ezek átlagtól való eltérésükkel eltolhatók, egymásra illeszthetőek a görbék (9. ábra).



8. ábra. A görbék eltolási paramétereinek meghatározása



9. ábra. Az egymásra tolt görbék

Ezek a görbék a (5)-ös kifejezés segítségével szuszceptibilitás-hőmérséklet grafikonná alakíthatók (10. ábra).



10. ábra. A szuszceptibilitás hőmérsékletfüggése

A  $\Delta U$  mennyiség hibája a görbe  $T < T_c$  tartományban való ingadozásából számolható ki, ugyanis ekkor már ténylegesen 0 ingadozást várnánk. Az  $U_0$  mennyiség hibáját pedig a két tekercsen mért feszültségek különbségének ingadozásából számoljuk ki<sup>4</sup>. Hibaterjedéssel kiszámolható a szuszceptibilitás hibája. Mindkét ágra kiszámolunk minden hibát, amit csak lehet, és a nagyobbat választjuk.

$$\left(\frac{\Delta \chi}{\chi}\right)^2 = \left(\frac{\Delta(\Delta U)}{\Delta U}\right)^2 + \left(\frac{\Delta U_0}{U_0}\right)^2 + \left(\frac{\Delta V_{\text{minta}}}{V_{\text{minta}}}\right)^2 + \left(\frac{\Delta V_{\text{tekercs}}}{V_{\text{tekercs}}}\right)^2 \tag{12}$$

A két ágon kapott szuszceptibilitásra kapott hiba<sup>5</sup>  $\Delta \chi = 8.5156 \cdot 10^{-5}$ . Ennél sokkal nagyobb hibát kapunk, ha hibaterjedéssel számoljuk a hibát.

$$\chi = 0.0793 \pm 0.00186 \tag{13}$$

Így a minta  $(7.93 \pm 1.86)\%$ -a alakult át szupravezetővé. Átalakulási hőmérsékletének azt hőmérsékletet tekintjük, amikor a minta szuszceptibilitása elérte a maximum 50%-át.

$$T_c = 92.865 \text{ °K} \pm 0.075 \text{ °K}$$
 (14)

Az átalakulás szélességét úgy definiáljuk, mint annak a két hőmérsékletnek a különbségét, ahol a szuszceptibilitás a maximális érték 10%-át, illetve 90%-át éri el.

$$\Delta T_f = 2.78 \text{ °K} \pm 0.21 \text{ °K}$$
 (15)

<sup>&</sup>lt;sup>4</sup>A két tekercsen mért feszültségek eltérése névleg 0, ha van egy konstans eltolás, akkor azt ezzel kikompenzáljuk.

<sup>&</sup>lt;sup>5</sup>Az átlaguktól való eltérés.

## Hivatkozások

[1] ELTE-TTK oktatói, Havancsák Károly (szerkesztette), Kemény Tamás (lektorálta) : Fizikai Mérések - Összevont Laboratóriumi Tananyag. http://atomfizika.elte.hu/kvml/docs/korszeruosszefuzott.pdf. Accessed: 2023.