

MATEMÁTICA DISCRETA 2

Aula 09

Congruência

Cristiane Loesch

Brasília 2025

Exercicio

Calcule $39 \oslash 38$ em Z_{351} .

Em que situação 7+6=1 faz sentido?

Em que situação 7+6=1 faz sentido?

Pensemos num relógio!

Em que situação 7+6=1 faz sentido?

Pensemos num relógio!

Vamos pensar nas aulas de uma escola que iniciam as 7h e que os alunos tem 6 horas de aula.

Em que situação 7+6=1 faz sentido?

Pensemos num relógio!

Vamos pensar nas aulas de uma escola que iniciam as 7h e que os alunos tem 6 horas de aula.

Aula terminam a 1h!

Possível solução!

*FONTE: OBMEP

Em que situação 7+6=1 faz sentido?

Pensemos num relógio!

Vamos pensar nas aulas de uma escola que iniciam as 7h e que os alunos tem 6 horas de aula.

Aula terminam a 1h!

Possível solução!

Alguns dizem 13h ao invés de 1h.

Em que situação 7+6=1 faz sentido?

Pensemos num relógio!

Vamos pensar nas aulas de uma escola que iniciam as 7h e que os alunos tem 6 horas de aula.

Aula terminam a 1h!

Possível solução!

Alguns dizem 13h ao invés de 1h.

Matematicamente, pode-se dizer que: $13 \equiv 1 \mod 12$

Em que situação 7+6=1 faz sentido?

Pensemos num relógio!

Vamos pensar nas aulas de uma escola que iniciam as 7h e que os alunos tem 6 horas de aula.

Aula terminam a 1h!

Possível solução!

Alguns dizem 13h ao invés de 1h.

Matematicamente, pode-se dizer que: $13 \equiv 1 \mod 12$

Informa o número de partes que se divide o relógio

Em que situação 7+6=1 faz sentido?

Pensemos num relógio!

Vamos pensar nas aulas de uma escola que iniciam as 7h e que os alunos tem 6 horas de aula.

Aula terminam a 1h!

Possível solução!

Alguns dizem 13h ao invés de 1h.

Matematicamente, pode-se dizer que: $13 \equiv 1 \mod 12$

Informa o número de partes que se divide o relógio

Logo, $14 \equiv 2 \mod 12$ $20 \equiv 8 \mod 12$

*FONTE: OBMEP

$$6 \equiv 2 \mod 4$$

$$6 \equiv 2 \mod 4$$

$$10 \equiv 2 \mod 4$$

$$6 \equiv 2 \mod 4$$

$$10 \equiv 2 \mod 4$$

E se dividirmos em 4 partes?

 $6 \equiv 2 \mod 4$

 $10 \equiv 2 \mod 4$

E se dividirmos em 4 partes?

$$6 \equiv 2 \mod 4$$

$$10 \equiv 2 \mod 4$$

Método clássico:

$$\begin{array}{c|c} 6 & 4 \\ -4 & 1 \end{array}$$

E se dividirmos em 4 partes?

$$6 \equiv 2 \mod 4$$

$$10 \equiv 2 \mod 4$$

Método clássico:

$$\begin{array}{c|ccccc}
6 & 4 & & \\
-4 & 1 & & \\
\hline
2 & & 10 & 4 & \\
& & -8 & 2 & \\
\hline
\end{array}$$

E se dividirmos em 4 partes?

$$6 \equiv 2 \mod 4$$

$$10 \equiv 2 \mod 4$$

Neste exemplo existem 4 classes de equivalência: 0, 1, 2, 3.

 $0 \rightarrow resto 0$

1 → resto 1

 $2 \rightarrow \text{resto } 2$

 $3 \rightarrow \text{resto } 3$

Método clássico:

E se dividirmos em 4 partes?

$$6 \equiv 2 \mod 4$$

$$10 \equiv 2 \mod 4$$

Neste exemplo existem 4 classes de equivalência: 0, 1, 2, 3.

 $0 \rightarrow \text{resto } 0$

 $1 \rightarrow \text{resto } 1$

 $2 \rightarrow \text{resto } 2$

 $3 \rightarrow \text{resto } 3$

Assim, 6 e 10 pertencem à mesma classe de equivalência, pois deixam o mesmo resto na divisão por 4.

E se dividirmos em 4 partes?

$$6 \equiv 2 \mod 4$$

$$10 \equiv 2 \mod 4$$

Neste exemplo existem 4 classes de equivalência: 0, 1, 2, 3.

 $0 \rightarrow \text{resto } 0$

1 → resto 1

 $2 \rightarrow \text{resto } 2$

 $3 \rightarrow \text{resto } 3$

Assim, 6 e 10 pertencem à mesma classe de equivalência, pois deixam o mesmo resto na divisão por 4.

Logo, 6 , 10 e 2 são congruentes mod 4

<u>DEFINIÇÃO</u>: Seja $n \in \mathbb{Z}$, n>1. Diz-se que dois números $a,b \in \mathbb{Z}$ são congruentes módulo n, se os restos se sua divisão euclidiana por n são iguais.

ou

$$a \equiv b \pmod{n}$$

Obs: n>1 pois $7 \equiv 0 \mod 1$

<u>DEFINIÇÃO</u>: Seja $n \in \mathbb{Z}$, n>1. Diz-se que dois números $a,b \in \mathbb{Z}$ são congruentes módulo n, se os restos se sua divisão euclidiana por n são iguais.

ou

$$a \equiv b \mod n$$

 $a \equiv b \pmod{n}$

<u>Obs</u>: existem autores que utilizam a notação $a \equiv b[n]$. Não a utilizaremos aqui.

Obs: n>1 pois $7 \equiv 0 \mod 1$

<u>DEFINIÇÃO</u>: Seja $n \in \mathbb{Z}$, n>1. Diz-se que dois números $a,b \in \mathbb{Z}$ são congruentes módulo n, se os restos se sua divisão euclidiana por n são iguais.

 $a \equiv b \pmod{n}$

a)
$$-56 \equiv -11 \pmod{9}$$

<u>DEFINIÇÃO</u>: Seja $n \in \mathbb{Z}$, n>1. Diz-se que dois números $a,b \in \mathbb{Z}$ são congruentes módulo n, se os restos se sua divisão euclidiana por n são iguais.

 $a \equiv b \pmod{n}$

a)
$$-56 \equiv -11 \pmod{9}$$

$$-56 \mid 9$$

$$+63 \mid -7$$

<u>DEFINIÇÃO</u>: Seja $n \in \mathbb{Z}$, n>1. Diz-se que dois números $a,b \in \mathbb{Z}$ são congruentes módulo n, se os restos se sua divisão euclidiana por n são iguais.

 $a \equiv b \pmod{n}$

a)
$$-56 \equiv -11 \pmod{9}$$

<u>DEFINIÇÃO</u>: Seja $n \in \mathbb{Z}$, n>1. Diz-se que dois números $a,b \in \mathbb{Z}$ são congruentes módulo n, se os restos se sua divisão euclidiana por n são iguais.

 $a \equiv b \pmod{n}$

a)
$$-56 \equiv -11 \pmod{9}$$

<u>DEFINIÇÃO</u>: Seja $n \in \mathbb{Z}$, n>1. Diz-se que dois números $a,b \in \mathbb{Z}$ são congruentes módulo n, se os restos se sua divisão euclidiana por n são iguais.

 $a \equiv b \pmod{n}$

EXEMPLOS:

a)
$$-56 \equiv -11 \pmod{9}$$

Sua vez!

b)
$$-31$$
____1($mod 7$)

O QUE VOCÊ ACHA? SÃO CONGRUENTES?

<u>DEFINIÇÃO</u>: Seja $n \in \mathbb{Z}$, n>1. Diz-se que dois números $a,b \in \mathbb{Z}$ são congruentes módulo n, se os restos se sua divisão euclidiana por n são iguais.

 $a \equiv b \pmod{n}$

EXEMPLOS:

a)
$$-56 \equiv -11 \pmod{9}$$

b)
$$-31$$
____1($mod 7$) $-31=7 q+r$

$$11 = 7q + r$$

<u>DEFINIÇÃO</u>: Seja $n \in \mathbb{Z}$, n > 1. Diz-se que dois números são congruentes módulo n, se os restos se sua divisão euclidiana por n são iguais.

 $a \equiv b \pmod{n}$

EXEMPLOS:

a)
$$-56 \equiv -11 \pmod{9}$$

b)
$$-31$$
____1($mod 7$)

$$-31=7q+r \Rightarrow -31=7(-5)+4$$

$$11 = 7q + r$$

<u>DEFINIÇÃO</u>: Seja $n \in \mathbb{Z}$, n>1. Diz-se que dois números $a,b \in \mathbb{Z}$ são congruentes módulo n, se os restos se sua divisão euclidiana por n são iguais.

 $a \equiv b \pmod{n}$

EXEMPLOS:

a)
$$-56 \equiv -11 \pmod{9}$$

b)
$$-31$$
___1($mod 7$)

$$-31=7q+r \Rightarrow -31=7(-5)+4$$

$$11 = 7q + r \Rightarrow 11 = 7(1) + 4$$

<u>DEFINIÇÃO</u>: Seja $n \in \mathbb{Z}$, n>1. Diz-se que dois números $a,b \in \mathbb{Z}$ são congruentes módulo n, se os restos se sua divisão euclidiana por n são iguais.

 $a \equiv b \pmod{n}$

a)
$$-56 \equiv -11 \pmod{9}$$

b)
$$-31 \equiv 11 \pmod{7}$$

$$-31=7q+r \Rightarrow -31=7(-5)+4$$

$$11 = 7q + r \Rightarrow 11 = 7(1) + 4$$

Voltemos à idéia inicial!

$$7 + 6 = 1$$

Matemáticamente:

Logo,

$$7+6\equiv 1 \pmod{12}$$

PROPOSIÇÃO: Sejam $a, b, n \in \mathbb{Z}$, n>1, temos:

$$a \equiv b \pmod{n} \iff n \mid a - b$$

ou seja, $a \equiv b \pmod{n} \Leftrightarrow a-b \notin \text{divisível por } n$.

PROPOSIÇÃO: Sejam $a, b, n \in \mathbb{Z}$, n>1, temos:

$$a \equiv b \pmod{n} \Leftrightarrow n \mid a - b \mid$$

ou seja, $a \equiv b \pmod{n} \Leftrightarrow a-b \notin \text{divisível por } n$.

Sua vez!

EXEMPLOS: Verifique se as afirmações a seguir são verdadeiras:

a)
$$1 \equiv 7 \pmod{6}$$

b)
$$7 \equiv -5 \pmod{6}$$

c)
$$-5 \equiv -11 \pmod{6}$$

PROPOSIÇÃO: Sejam $a, b, n \in \mathbb{Z}$, n>1, temos:

$$a \equiv b \pmod{n} \Leftrightarrow n \mid a - b$$

ou seja, $a \equiv b \pmod{n} \Leftrightarrow a-b \notin \text{divisível por } n$.

Sua vez!

EXEMPLOS: Verifique se as afirmações a seguir são verdadeiras:

a)
$$1 \equiv 7 \pmod{6}$$
 \longrightarrow $1-7=-6$

b)
$$7 \equiv -5 \pmod{6}$$

c)
$$-5 \equiv -11 \pmod{6}$$

PROPOSIÇÃO: Sejam $a, b, n \in \mathbb{Z}$, n>1, temos:

$$a \equiv b \pmod{n} \Leftrightarrow n \mid a - b \mid$$

ou seja, $a \equiv b \pmod{n} \Leftrightarrow a-b \notin \text{divisível por } n$.

Sua vez!

a)
$$1 \equiv 7 \pmod{6}$$
 \longrightarrow $1-7=-6$ \longrightarrow $+6|-6$

b)
$$7 \equiv -5 \pmod{6}$$

c)
$$-5 \equiv -11 \pmod{6}$$

PROPOSIÇÃO: Sejam $a, b, n \in \mathbb{Z}$, n>1, temos:

$$a \equiv b \pmod{n} \Leftrightarrow n \mid a - b$$

ou seja, $a \equiv b \pmod{n} \Leftrightarrow a-b \notin \text{divisível por } n$.

Sua vez!

a)
$$1 \equiv 7 \pmod{6}$$
 \longrightarrow $1-7=-6$ \longrightarrow $+6 \mid -6$ Ok!

b)
$$7 \equiv -5 \pmod{6}$$

c)
$$-5 \equiv -11 \pmod{6}$$

PROPOSIÇÃO: Sejam $a, b, n \in \mathbb{Z}$, n>1, temos:

$$a \equiv b \pmod{n} \Leftrightarrow n \mid a - b$$

ou seja, $a \equiv b \pmod{n} \Leftrightarrow a-b \notin \text{divisível por } n$.

Sua vez!

a)
$$1 \equiv 7 \pmod{6}$$
 \longrightarrow $1-7=-6$ \longrightarrow $+6 | -6$ Ok!

b)
$$7 \equiv -5 \pmod{6}$$
 \longrightarrow $7 - (-5) = 12$ \longrightarrow $+6 \mid 12$ Ok!

c)
$$-5 \equiv -11 \pmod{6}$$

PROPOSIÇÃO: Sejam $a, b, n \in \mathbb{Z}$, n>1, temos:

$$a \equiv b \pmod{n} \Leftrightarrow n \mid a - b \mid$$

ou seja, $a \equiv b \pmod{n} \Leftrightarrow a-b \notin \text{divisível por } n$.

Sua vez!

a)
$$1 \equiv 7 \pmod{6}$$
 \longrightarrow $1-7=-6$ \longrightarrow $+6 \mid -6$ Ok!

b)
$$7 \equiv -5 \pmod{6}$$
 \longrightarrow $7 - (-5) = 12$ \longrightarrow $+6 \mid 12$ Ok!

c)
$$-5 \equiv -11 \pmod{6}$$
 $\longrightarrow -5 - (-11) = 6$ $\longrightarrow 6 \mid 6$ Ok!

PROPOSIÇÃO: Sejam $a, b, n \in \mathbb{Z}$, n>1, temos:

$$a \equiv b \pmod{n} \Leftrightarrow n \mid a - b$$

ou seja, $a \equiv b \pmod{n} \Leftrightarrow a-b \notin \text{divisível por } n$.

Sua vez!

a)
$$1 \equiv 7 \pmod{6}$$
 \longrightarrow $1-7=-6$ \longrightarrow $+6|-6$ Ok!

b)
$$7 \equiv -5 \pmod{6}$$
 \longrightarrow $7 - (-5) = 12$ \longrightarrow $+6 \mid 12$ Ok!

c)
$$-5 \equiv -11 \pmod{6}$$
 $\longrightarrow -5 - (-11) = 6$ $\longrightarrow 6 \mid 6$ Ok!
 $1 \equiv 7 \equiv -5 \equiv -11 \pmod{6}$

PROPOSIÇÃO: Sejam $a,b,n\in\mathbb{Z}$, n>1, temos:

$$a \equiv b \pmod{n} \iff n \mid a - b$$

ou seja, $a \equiv b \pmod{n} \Leftrightarrow a-b \notin \text{divisível por } n$.

Obs:

Para:

$$n=0 \Rightarrow a \equiv b \pmod{0} \Leftrightarrow a=b$$

$$n=0 \Rightarrow a \equiv b \pmod{0} \Leftrightarrow a=b$$

$$n=1 \Rightarrow a \equiv b \pmod{1}$$
 sempre!

$$n=2$$
 \Rightarrow $a\equiv b \pmod{2}$ \Leftrightarrow $a \in b$ são ambos pares ou ambos ímpares

Sua vez!

a)
$$a=11$$
, $b=3$, $n=2$

b)
$$a=17$$
, $b=11$, $n=3$

c)
$$a=17$$
 , $b=11$, $n=5$

Sua vez!

a)
$$a=11$$
, $b=3$, $n=2$ \Rightarrow $11-3=8$

b)
$$a=17$$
, $b=11$, $n=3$

c)
$$a=17$$
 , $b=11$, $n=5$

Sua vez!

a)
$$a=11$$
, $b=3$, $n=2$ \Rightarrow $11-3=8$, $2|8$

b)
$$a=17$$
, $b=11$, $n=3$

c)
$$a=17$$
 , $b=11$, $n=5$

Sua vez!

a)
$$a=11$$
, $b=3$, $n=2$ \Rightarrow $11-3=8$, $2|(11-3)$

b)
$$a=17$$
, $b=11$, $n=3$

c)
$$a=17$$
 , $b=11$, $n=5$

Sua vez!

a)
$$a=11$$
 , $b=3$, $n=2$ \Rightarrow $11-3=8$, $2|8$, $2|(11-3)$ $\log 11 \equiv 3 \pmod 2$

b)
$$a=17$$
 , $b=11$, $n=3$

c)
$$a=17$$
 , $b=11$, $n=5$

Sua vez!

EXEMPLO: Verifique

a)
$$a=11$$
 , $b=3$, $n=2$ \Rightarrow $11-3=8$, $2|8$, $2|(11-3)$ $\log 11\equiv 3 \pmod 2$ b) $a=17$, $b=11$, $n=3$ \Rightarrow $17-11=6$ \Rightarrow $3|6$

 $\log 17 \equiv 11 \pmod{3}$

c)
$$a=17$$
 , $b=11$, $n=5$

Sua vez!

EXEMPLO: Verifique

a)
$$a=11$$
 , $b=3$, $n=2$ \Rightarrow $11-3=8$, $2|8$, $2|(11-3)$ $\log 0$ $11\equiv 3 \pmod 2$ b) $a=17$, $b=11$, $n=3$ \Rightarrow $17-11=6$ \Rightarrow $3|6$

 $\log 17 \equiv 11 \pmod{3}$

c)
$$a=17$$
 , $b=11$, $n=5$ \Rightarrow $17-11=6$ \Rightarrow $5 \nmid 6$
$$\log 17 \neq 11 \pmod{5}$$

<u>PROPOSIÇÃO</u>: Seja $n \in \mathbb{Z}$ e n positivo. Os inteiros a e b são congruentes módulo n se, e somente se, existe um inteiro k de forma que:

$$a=b+k\cdot n$$

<u>PROPOSIÇÃO</u>: Seja $n \in \mathbb{Z}$ e n positivo. Os inteiros a e b são congruentes módulo n se, e somente se, existe um inteiro k de forma que:

$$a=b+k\cdot n$$

$$73 \equiv 13 \pmod{5}$$

<u>PROPOSIÇÃO</u>: Seja $n \in \mathbb{Z}$ e n positivo. Os inteiros a e b são congruentes módulo n se, e somente se, existe um inteiro k de forma que:

$$a=b+k\cdot n$$

$$73 \equiv 13 \pmod{5}$$

$$73 = 13 + 5 k$$

<u>PROPOSIÇÃO</u>: Seja $n \in \mathbb{Z}$ e n positivo. Os inteiros a e b são congruentes módulo n se, e somente se, existe um inteiro k de forma que:

$$a=b+k\cdot n$$

$$73 \equiv 13 \pmod{5}$$

$$73 = 13 + 5 k$$

$$5|(73-13) \Rightarrow 5|60 \Rightarrow 12=k$$

PROPOSIÇÃO: Seja $n \in \mathbb{Z}$ e n positivo. Os inteiros a e b são congruentes módulo n se, e somente se, existe um inteiro k de forma que:

$$a=b+k\cdot n$$

$$73 \equiv 13 \pmod{5}$$

$$73 = 13 + 5 k$$

$$5|(73-13) \Rightarrow 5|60 \Rightarrow 12=k$$

$$73 = 13 + 12.5$$

i)
$$a \equiv a \pmod{n}$$

i)
$$a \equiv a \pmod{n}$$

ii) se
$$a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$$

i)
$$a \equiv a \pmod{n}$$

ii) se
$$a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$$

iii) se
$$a \equiv b \pmod{n}$$
 e $b \equiv c \pmod{n}$ $\Rightarrow a \equiv c \pmod{n}$

i)
$$a \equiv a \pmod{n}$$

ii) se
$$a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$$

iii) se
$$a \equiv b \pmod{n}$$
 e $b \equiv c \pmod{n}$ $\Rightarrow a \equiv c \pmod{n}$

EXEMPLO:
$$5 \equiv 9 \pmod{4} \ e \ 9 \equiv 13 \pmod{4}$$

i)
$$a \equiv a \pmod{n}$$

ii) se
$$a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$$

iii) se
$$a \equiv b \pmod{n}$$
 e $b \equiv c \pmod{n}$ $\Rightarrow a \equiv c \pmod{n}$

EXEMPLO:
$$5 \equiv 9 \pmod{4}$$
 e $9 \equiv 13 \pmod{4} \Rightarrow 5 \equiv 13 \pmod{4}$ Divisões por 4 com resto 1

i)
$$a \equiv a \pmod{n}$$

ii) se
$$a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$$

iii) se
$$a \equiv b \pmod{n}$$
 e $b \equiv c \pmod{n}$ $\Rightarrow a \equiv c \pmod{n}$

iv) se
$$a \equiv b \pmod{n}$$
 e $c \equiv d \pmod{n}$ $\Rightarrow \begin{cases} a + c \equiv b + d \pmod{n} \\ a \cdot c \equiv b \cdot d \pmod{n} \end{cases}$

PROPRIEDADES: Seja $n \in \mathbb{Z}$, n > 1, um inteiro fixo e $\forall a, b, c, d \in \mathbb{Z}$, as seguintes propriedades são válidas:

i)
$$a \equiv a \pmod{n}$$

ii) se
$$a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$$

iii) se
$$a \equiv b \pmod{n}$$
 e $b \equiv c \pmod{n}$ $\Rightarrow a \equiv c \pmod{n}$

iv) se
$$a \equiv b \pmod{n}$$
 e $c \equiv d \pmod{n}$ $\Rightarrow \begin{cases} a + c \equiv b + d \pmod{n} \\ a \cdot c \equiv b \cdot d \pmod{n} \end{cases}$

EXEMPLO:

$$1 \equiv 5 \pmod{4} \quad e \quad 6 \equiv 10 \pmod{4}$$

Divisões por 4 com resto 1

Divisões por 4 com resto 2

PROPRIEDADES: Seja $n \in \mathbb{Z}$, n > 1, um inteiro fixo e $\forall a, b, c, d \in \mathbb{Z}$, as seguintes propriedades são válidas:

i)
$$a \equiv a \pmod{n}$$

ii) se
$$a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$$

iii) se
$$a \equiv b \pmod{n}$$
 e $b \equiv c \pmod{n}$ $\Rightarrow a \equiv c \pmod{n}$

iv) se
$$a \equiv b \pmod{n}$$
 e $c \equiv d \pmod{n}$ $\Rightarrow \begin{cases} a + c \equiv b + d \pmod{n} \\ a \cdot c \equiv b \cdot d \pmod{n} \end{cases}$

EXEMPLO:

$$1 \equiv 5 \pmod{4} \ e \ 6 \equiv 10 \pmod{4} \Rightarrow 1 + 6 \equiv 5 + 10 \mod{4}$$

Divisões por 4 com resto 1

Divisões por 4 com resto 2

PROPRIEDADES: Seja $n \in \mathbb{Z}$, n > 1, um inteiro fixo e $\forall a, b, c, d \in \mathbb{Z}$, as seguintes propriedades são válidas:

i)
$$a \equiv a \pmod{n}$$

ii) se
$$a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$$

iii) se
$$a \equiv b \pmod{n}$$
 e $b \equiv c \pmod{n}$ $\Rightarrow a \equiv c \pmod{n}$

iv) se
$$a \equiv b \pmod{n}$$
 e $c \equiv d \pmod{n}$ $\Rightarrow \begin{cases} a + c \equiv b + d \pmod{n} \\ a \cdot c \equiv b \cdot d \pmod{n} \end{cases}$

EXEMPLO:

$$1 \equiv 5 \pmod{4} \ e \ 6 \equiv 10 \pmod{4} \Rightarrow 1 + 6 \equiv 5 + 10 \pmod{4} \Rightarrow 7 \equiv 15 \pmod{4}$$

Divisões por 4 com resto 1

Divisões por 4 com resto 2

Divisões por 4 com resto 3

i)
$$a \equiv a \pmod{n}$$

ii) se
$$a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$$

iii) se
$$a \equiv b \pmod{n}$$
 e $b \equiv c \pmod{n}$ $\Rightarrow a \equiv c \pmod{n}$

iv) se
$$a \equiv b \pmod{n}$$
 e $c \equiv d \pmod{n} \Rightarrow \begin{cases} a + c \equiv b + d \pmod{n} \\ a \cdot c \equiv b \cdot d \pmod{n} \end{cases}$

v) se
$$a \equiv b \pmod{n} \Rightarrow \begin{cases} a + c \equiv b + c \pmod{n} \\ a \cdot c \equiv b \cdot c \pmod{n} \end{cases}$$

PROPRIEDADES: Seja $n \in \mathbb{Z}$, n>1, um inteiro fixo e $\forall a,b,c,d,\in \mathbb{Z}$, as seguintes propriedades são válidas:

i)
$$a \equiv a \pmod{n}$$

ii) se
$$a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$$

iii) se
$$a \equiv b \pmod{n}$$
 e $b \equiv c \pmod{n}$ $\Rightarrow a \equiv c \pmod{n}$
iv) se $a \equiv b \pmod{n}$ e $c \equiv d \pmod{n}$ $\Rightarrow \begin{cases} a + c \equiv b + d \pmod{n} \\ a \cdot c \equiv b \cdot d \pmod{n} \end{cases}$

v) se
$$a \equiv b \pmod{n} \Rightarrow \begin{cases} a + c \equiv b + c \pmod{n} \\ a \cdot c \equiv b \cdot c \pmod{n} \end{cases}$$

EXEMPLO: $2 \equiv 6 \pmod{4}$ Divisões por 4
com resto 2

i)
$$a \equiv a \pmod{n}$$

ii) se
$$a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$$

iii) se
$$a \equiv b \pmod{n}$$
 e $b \equiv c \pmod{n}$ $\Rightarrow a \equiv c \pmod{n}$

iv) se
$$a \equiv b \pmod{n}$$
 e $c \equiv d \pmod{n}$ $\Rightarrow \begin{cases} a + c \equiv b + d \pmod{n} \\ a \cdot c \equiv b \cdot d \pmod{n} \end{cases}$ v) se $a \equiv b \pmod{n} \Rightarrow \begin{cases} a + c \equiv b + c \pmod{n} \\ a \cdot c \equiv b \cdot c \pmod{n} \end{cases}$

EXEMPLO:
$$2 \equiv 6 \pmod{4} \Rightarrow 2 + 3 \equiv 6 + 3 \mod{4}$$

i)
$$a \equiv a \pmod{n}$$

ii) se
$$a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$$

iii) se
$$a \equiv b \pmod{n}$$
 e $b \equiv c \pmod{n}$ $\Rightarrow a \equiv c \pmod{n}$

iv) se
$$a \equiv b \pmod{n}$$
 e $c \equiv d \pmod{n} \Rightarrow \begin{cases} a + c \equiv b + d \pmod{n} \\ a \cdot c \equiv b \cdot d \pmod{n} \end{cases}$

v) se
$$a \equiv b \pmod{n} \Rightarrow \begin{cases} a + c \equiv b + c \pmod{n} \\ a \cdot c \equiv b \cdot c \pmod{n} \end{cases}$$

EXEMPLO:
$$2 \equiv 6 \pmod{4} \Rightarrow 2 + 3 \equiv 6 + 3 \mod{4} \Rightarrow 5 \equiv 9 \mod{4}$$

i)
$$a \equiv a \pmod{n}$$

ii) se
$$a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$$

iii) se
$$a \equiv b \pmod{n}$$
 e $b \equiv c \pmod{n}$ $\Rightarrow a \equiv c \pmod{n}$

iv) se
$$a \equiv b \pmod{n}$$
 e $c \equiv d \pmod{n} \Rightarrow \begin{cases} a + c \equiv b + d \pmod{n} \\ a \cdot c \equiv b \cdot d \pmod{n} \end{cases}$

v) se
$$a \equiv b \pmod{n} \Rightarrow \begin{cases} a + c \equiv b + c \pmod{n} \\ a \cdot c \equiv b \cdot c \pmod{n} \end{cases}$$

vi) se
$$a \equiv b \pmod{n} \Rightarrow a^k \equiv b^k \pmod{n}$$
, $\forall k \in \mathbb{Z}$, $z > 0$

Proposição 1:

Seja $n \in \mathbb{N}$ e $a, b, c, d \in \mathbb{Z}$. Se $a \equiv b \pmod{n}$ e $c \equiv d \pmod{n}$, então:

- (a) $a \pm c \equiv b \pm d \pmod{n}$;
- (b) $ac \equiv bd \pmod{n}$.

Demonstração: (a) Por hipótese temos que $a-b=nk_1$ e $c-d=nk_2$. Somando as duas expressões obtemos $(a+c)-(b+d)=n(k_1+k_2)$. Portanto, $a+c\equiv b+d\pmod n$. De forma análoga, fazendo a subtração entre as duas expressões acima obtemos $a-c\equiv b-d\pmod n$.

(b) Além disso, multiplicando $a = b + nk_1$ e $c = d + nk_2$, temos

$$ac = (b + nk_1)(d + nk_2)$$

= $bd + n(bk_2 + dk_1 + nk_1k_2)$
= $bd + nk_3$.

Portanto, $ac \equiv bd \pmod{n}$.

Proposição 2:

Se (c, n) = g, então

$$ac \equiv bc \pmod{n}$$

se, e somente se,

$$a \equiv b \pmod{n/g}$$
.

 $Demonstração: (\Rightarrow)$ Sejam $a, b, c \in \mathbb{Z}$ e $n, g \in \mathbb{N}$ tal que $ac \equiv bc \pmod{n}$ e (c, n) = g. Sabemos que

$$\left(\frac{c}{g}, \frac{n}{g}\right) = 1$$

e que n|(a-b)c, para algum $k \in \mathbb{Z}$. Dividindo a última expressão por g, temos

$$(n/g)|(a-b)(c/g).$$

Como (c/g, n/g) = 1, então n/g deve dividir a - b e portanto $a \equiv b \pmod{n/g}$.

(\Leftarrow) Por outro lado, suponha que $a \equiv b \pmod{n/g}$. Temos que existe $k \in \mathbb{Z}$ tal que a = b + (n/g)k. Multiplicando os dois lados por c obtemos o resultados, pois ac = bc + n(c/g)k, i.e., $ac \equiv bc \pmod{n}$.

Proposição 3:

Sejam $a,b,c\in\mathbb{Z},\ m,n\in\mathbb{N}$ e $a\equiv b\pmod n$. Então cada uma das afirmações é válida:

- (a) $am \equiv bm \pmod{mn}$;
- (b) $a^m \equiv b^m \pmod{n}$;
- (c) Se m|n, então $a \equiv b \pmod{m}$.

(b) por indução. Por hipótese $a \equiv b \pmod{n}$, ou seja, a afirmação é verdadeira para m = 1. Suponha que $a^m \equiv b^m \pmod{n}$ seja válida para algum $m \in \mathbb{N}$, assim pela **Proposição 1** temos que $a^m \cdot a \equiv b^m \cdot b \pmod{n}$, i.e., $a^{m+1} \equiv b^{m+1} \pmod{n}$. Portanto, por indução, a fórmula $a^m \equiv b^m \pmod{n}$ é válida para todo $m \in \mathbb{N}$.

$$\begin{array}{c}
 19 \equiv 3 \pmod{4} \\
 2 \equiv 6 \pmod{4}
 \end{array}
 \qquad (19+2) \equiv (3+6) \pmod{4}$$

$$21 - 9 = 12 = 3 \cdot 4$$

EXEMPLOS:

$$\begin{array}{c}
 19 \equiv 3 \pmod{4} \\
 2 \equiv 6 \pmod{4}
 \end{array}
 \qquad (19+2) \equiv (3+6) \pmod{4}$$

$$21 - 9 = 12 = 3 \cdot 4$$

$$\begin{array}{l}
15 \equiv 1 \pmod{7} \\
51 \equiv 2 \pmod{7}
\end{array}$$

$$15 \cdot 51 \equiv 1 \cdot 2 \pmod{7}$$

$$765 - 2 = 763 = 109 \cdot 7$$

EXEMPLOS:

$$\begin{array}{c}
 19 \equiv 3 \pmod{4} \\
 2 \equiv 6 \pmod{4}
 \end{array}
 \qquad (19+2) \equiv (3+6) \pmod{4}$$

$$21 - 9 = 12 = 3 \cdot 4$$

$$15 \equiv 1 \pmod{7}$$

$$51 \equiv 2 \pmod{7}$$

$$15 \cdot 51 \equiv 1 \cdot 2 \pmod{7}$$

$$765 - 2 = 763 = 109 \cdot 7$$

$$32 \equiv 12 \pmod{10} \longrightarrow 16 \equiv 6 \pmod{5}$$

$$(2,10) = 2$$

$$51 \equiv 2 \pmod{7}$$

PROPOSIÇÃO: Sejam $a,b,c,n\in\mathbb{Z}$, n>1 são satisfeitas as seguintes propriedades:

i) Reflexiva: $a \equiv a \pmod{n}$

ii) Simétrica: se $a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$

PROPOSIÇÃO: Sejam $a,b,c,n\in\mathbb{Z}$, n>1 são satisfeitas as seguintes propriedades:

i) Reflexiva: $a \equiv a \pmod{n}$

$$n|(a-a)=0$$

ii) Simétrica: se $a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$

iii) Transitiva: se
$$a \equiv b \pmod{n}$$
 e $b \equiv c \pmod{n}$ \Rightarrow $a \equiv c \pmod{n}$

PROPOSIÇÃO: Sejam $a,b,c,n\in\mathbb{Z}$, n>1 são satisfeitas as seguintes propriedades:

i) Reflexiva: $a \equiv a \pmod{n}$

$$n|(a-a)=0$$

ii) Simétrica: se $a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$

$$a \equiv b \pmod{n} \Rightarrow n | (a-b)$$

PROPOSIÇÃO: Sejam $a,b,c,n\in\mathbb{Z}$, n>1 são satisfeitas as seguintes propriedades:

i) Reflexiva: $a \equiv a \pmod{n}$

$$n|(a-a)=0$$

ii) Simétrica: se $a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$

$$a \equiv b \pmod{n} \quad \Rightarrow \quad n | (a-b) - n | - (a-b) \quad \Rightarrow \quad n | (b-a) \quad \Rightarrow \quad b \equiv a \pmod{n}$$

PROPOSIÇÃO: Sejam $a,b,c,n\in\mathbb{Z}$, n>1 são satisfeitas as seguintes propriedades:

i) Reflexiva: $a \equiv a \pmod{n}$

$$n|(a-a)=0$$

ii) Simétrica: se $a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$

$$a \equiv b \, (\bmod \, n) \quad \Rightarrow \quad n | (a-b) \twoheadrightarrow n | - (a-b) \quad \Rightarrow \quad n | (b-a) \quad \Rightarrow \quad b \equiv a \, (\bmod \, n)$$

PROPOSIÇÃO: Sejam $a,b,c,n\in\mathbb{Z}$, n>1 são satisfeitas as seguintes propriedades:

i) Reflexiva:
$$a \equiv a \pmod{n}$$

$$n|(a-a)=0$$

ii) Simétrica: se
$$a \equiv b \pmod{n} \implies b \equiv a \pmod{n}$$

$$a \equiv b \pmod{n} \Rightarrow n | (a-b) \rightarrow n | -(a-b) \Rightarrow n | (b-a) \Rightarrow b \equiv a \pmod{n}$$

iii) Transitive: so
$$a = b \pmod{n}$$
 $a = b \pmod{n}$ $b = c \pmod{n}$ $\Rightarrow a = c \pmod{n}$

iii) Transitiva: se
$$a \equiv b \pmod{n}$$
 e $b \equiv c \pmod{n}$ \Rightarrow $a \equiv c \pmod{n}$

CLASSE DE CONGRUÊNCIA:

O conjunto de todos os números inteiros congruentes a um inteiro a módulo n é chamado de classe de congruência de a módulo n.

CLASSE DE CONGRUÊNCIA:

O conjunto de todos os números inteiros congruentes a um inteiro a módulo n é chamado de classe de congruência de a módulo n.

CLASSE DE CONGRUÊNCIA:

O conjunto de todos os números inteiros congruentes a um inteiro a módulo n é chamado de classe de congruência de a módulo n .

EXEMPLO: Classes de congruência módulo 3

 $\overline{0} =$

 $\bar{1}$ =

 $\bar{2}=$

CLASSE DE CONGRUÊNCIA:

O conjunto de todos os números inteiros congruentes a um inteiro a módulo n é chamado de classe de congruência de a módulo n .

$$\overline{0} = \{\dots, -6, -3, 0, 3, 6, 9, \dots\}$$

$$\bar{2}=$$

CLASSE DE CONGRUÊNCIA:

O conjunto de todos os números inteiros congruentes a um inteiro a módulo n é chamado de classe de congruência de a módulo n .

$$\overline{0} = \{\dots, -6, -3, 0, 3, 6, 9, \dots\}$$

$$\overline{1} = \{..., -5, -2, 1, 4, 7, 10, ...\}$$

$$\bar{2}=$$

CLASSE DE CONGRUÊNCIA:

O conjunto de todos os números inteiros congruentes a um inteiro a módulo n é chamado de classe de congruência de a módulo n .

$$\bar{0} = \{..., -6, -3, 0, 3, 6, 9, ...\} \qquad ... = -6 = -3 = 0 = 3 = 6 = 9 = ... (mod 3)$$

$$\bar{1} = \{..., -5, -2, 1, 4, 7, 10, ...\}$$

$$\bar{2} = \{..., -7, -4, -1, 2, 5, 8, ...\}$$

CLASSE DE CONGRUÊNCIA:

O conjunto de todos os números inteiros congruentes a um inteiro a módulo n é chamado de classe de congruência de a módulo n .

$$\bar{0} = \{..., -6, -3, 0, 3, 6, 9, ...\}$$
 $... \equiv -6 \equiv -3 \equiv 0 \equiv 3 \equiv 6 \equiv 9 \equiv ... \pmod{3}$

$$\bar{1} = \{..., -5, -2, 1, 4, 7, 10, ...\}$$

$$\overline{2} = \{..., -7, -4, -1, 2, 5, 8, ...\}$$

Obs:
$$-6 \equiv -3 \mod 3 \rightarrow -6 - (-3) \mod 3 = -6 + 3 \mod 3 = -3 \mod 3 = 0$$

CLASSE DE CONGRUÊNCIA:

O conjunto de todos os números inteiros congruentes a um inteiro a módulo n é chamado de classe de congruência de a módulo n .

$$\overline{0} = \{\dots, -6, -3, 0, 3, 6, 9, \dots\}$$

$$\bar{1} = \{..., -5, -2, 1, 4, 7, 10, ...\}$$

$$\bar{2} = \{..., -7, -4, -1, 2, 5, 8, ...\}$$

CLASSE DE CONGRUÊNCIA:

O conjunto de todos os números inteiros congruentes a um inteiro a módulo n é chamado de classe de congruência de a módulo n .

$$\overline{0} = \{..., -6, -3, 0, 3, 6, 9, ...\} \qquad ... = -6 = -3 = 0 = 3 = 6 = 9 = ... (mod 3)$$

$$\bar{1} = \{..., -5, -2, 1, 4, 7, 10, ...\}$$
 $... \equiv -5 \equiv -2 \equiv 1 \equiv 4 \equiv 7 \equiv 10 \equiv ... \pmod{3}$

$$\bar{2} = \{..., -7, -4, -1, 2, 5, 8, ...\}$$

CLASSE DE CONGRUÊNCIA:

O conjunto de todos os números inteiros congruentes a um inteiro a módulo n é chamado de classe de congruência de a módulo n .

$$\overline{0} = \{..., -6, -3, 0, 3, 6, 9, ...\}$$
 $... = -6 = -3 = 0 = 3 = 6 = 9 = ... \pmod{3}$

$$\bar{1} = \{..., -5, -2, 1, 4, 7, 10, ...\}$$
 $... \equiv -5 \equiv -2 \equiv 1 \equiv 4 \equiv 7 \equiv 10 \equiv ... \pmod{3}$

$$\bar{2} = \{..., -7, -4, -1, 2, 5, 8, ...\}$$
 $... \equiv -7 \equiv -4 \equiv -1 \equiv 2 \equiv 5 \equiv 8 \equiv ... \pmod{3}$

CLASSE DE CONGRUÊNCIA:

O conjunto de todos os números inteiros congruentes a um inteiro a módulo n é chamado de classe de congruência de a módulo n .

$$\bar{0} = \{..., -6, -3, 0, 3, 6, 9, ...\}$$
 $... \equiv -6 \equiv -3 \equiv 0 \equiv 3 \equiv 6 \equiv 9 \equiv ... \pmod{3}$

$$\bar{1} = \{..., -5, -2, 1, 4, 7, 10, ...\}$$
 $... = -5 = -2 = 1 = 4 = 7 = 10 = ... \pmod{3}$

$$\bar{2} = \{..., -7, -4, -1, 2, 5, 8, ...\}$$
 $... \equiv -7 \equiv -4 \equiv -1 \equiv 2 \equiv 5 \equiv 8 \equiv ... \pmod{3}$

CLASSE DE RESÍDUOS MÓDULO n

EXEMPLO:

Existem quatro classes de resíduos módulo 4, a saber

CLASSE DE RESÍDUOS MÓDULO n

EXEMPLO:

Existem quatro classes de resíduos módulo 4, a saber

$$\overline{0} = \{\cdots, -8, -4, 0, 4, 8, \cdots\}
\overline{1} = \{\cdots, -7, -3, 1, 5, 9, \cdots\}
\overline{2} = \{\cdots, -6, -2, 2, 6, 10, \cdots\}
\overline{3} = \{\cdots, -5, -1, 3, 7, 11, \cdots\}$$

CLASSE DE RESÍDUOS MÓDULO n

EXEMPLO:

Existem quatro classes de resíduos módulo 4, a saber

$$\overline{0} = \{\cdots, -8, -4, 0, 4, 8, \cdots\}
\overline{1} = \{\cdots, -7, -3, 1, 5, 9, \cdots\}
\overline{2} = \{\cdots, -6, -2, 2, 6, 10, \cdots\}
\overline{3} = \{\cdots, -5, -1, 3, 7, 11, \cdots\}$$

Como cada elemento de $\mathbb Z$ está em exatamente uma dessas classes disjuntas então

$$\mathbb{Z} = \overline{0} \cup \overline{1} \cup \overline{2} \cup \overline{3}.$$

CLASSE DE RESÍDUOS MÓDULO n

EXEMPLO:

Existem quatro classes de resíduos módulo 4, a saber

$$\overline{0} = \{\cdots, -8, -4, 0, 4, 8, \cdots\}
\overline{1} = \{\cdots, -7, -3, 1, 5, 9, \cdots\}
\overline{2} = \{\cdots, -6, -2, 2, 6, 10, \cdots\}
\overline{3} = \{\cdots, -5, -1, 3, 7, 11, \cdots\}$$

Como cada elemento de $\mathbb Z$ está em exatamente uma dessas classes disjuntas então

$$\mathbb{Z} = \overline{0} \cup \overline{1} \cup \overline{2} \cup \overline{3}.$$

Além disso, $R = \{0, 1, 2, 3\}$ forma um sistema completo de resíduos módulo 4.

EXEMPLO: Considere o mês de outubro de 2014, conforme ilustrado na tabela a

seguir:	domingo	segunda	terça	quarta	quinta	sexta	sábado
				1	2	3	4
	5	6	7	8	9	10	11
	12	13	14	15	16	17	18
	19	20	21	22	23	24	25
	26	27	28	29	30	31	

em que as colunas indicam o dia da semana (matematicamente, números congruentes mod 7).

Neste exemplo, o dia 31 de outubro de 2014 é uma sexta-feira, 1º de novembro um sábado, 02 de novembro um domingo e assim por diante. Qual dia da semana será o dia 24 de novembro de 2014?

EVEMBLO.	domingo	segunda	terça	quarta	quinta	sexta	sábado
EXEMPLO:				1	2	3	4
	5	6	7	8	9	10	11
	12	13	14	15	16	17	18
	19	20	21	22	23	24	25
	26	27	28	29	30	31	

→ considere a operação:

$$24 = 7q + r$$

EVENDIO.	domingo	segunda	terça	quarta	quinta	sexta	sábado
EXEMPLO:				1	2	3	4
	5	6	7	8	9	10	11
	12	13	14	15	16	17	18
	19	20	21	22	23	24	25
	26	27	28	29	30	31	

→ considere a operação:

$$24 = 7q + r$$

EXEMPLO:	domingo	segunda	terça	quarta	quinta	sexta	sábado
EXEMPLO:				1	2	3	4
	5	6	7	8	9	10	11
	12	13	14	15	16	17	18
	19	20	21	22	23	24	25
	26	27	28	29	30	31	

→ considere a operação:

$$24 = 7q + r$$

$$24 = 7 \cdot 3 + 3$$

EVENDIO.	domingo	segunda	terça	quarta	quinta	sexta	sábado
EXEMPLO:				1	2	3	4
	5	6	7	8	9	10	11
	12	13	14	15	16	17	18
	19	20	21	22	23	24	25
	26	27	28	29	30	31	

→ considere a operação:

$$24 = 7q + r$$

$$24=7\cdot3+3 \longrightarrow resto=3$$

EVENDIO.	domingo	segunda	terça	quarta	quinta	sexta	sábado
EXEMPLO:				1	2	3	4
	5	6	7	8	9	10	11
	12	13	14	15	16	17	18
	19	20	21	22	23	24	25
	26	27	28	29	30	31	

→ considere a operação:

$$24 = 7q + r$$

$$24 = 7 \cdot 3 + 3 \longrightarrow resto = 3$$
$$24 \equiv 3 \pmod{7}$$

EVENDIO.	domingo	segunda	terça	quarta	quinta	sexta	sábado
EXEMPLO:				1	2	3	4
	5	6	7	8	9	10	11
	12	13	14	15	16	17	18
	19	20	21	22	23	24	25
	26	27	28	29	30	31	

→ considere a operação:

$$24 = 7q + r$$

Vamos utilizá-la para encontrar um número entre 1 e 7 que seja congruente a 24.

$$24 = 7 \cdot 3 + 3 \longrightarrow resto = 3$$
$$24 \equiv 3 \pmod{7}$$

Logo, como 3/11/2014 foi segunda-feira, o dia 24/11/2014 foi segunda-feira

A copa do mundo de futebol no Brasil foi em 2014. O jogo de abertura foi dia 12 de junho. Sem utilizar o calendário e sabendo que o dia 1º de janeiro de 2014 foi uma quarta-feira determine em que dia da semana ocorreu o jogo de abertura.

A copa do mundo de futebol no Brasil foi em 2014. O jogo de abertura foi dia 12 de junho. Sem utilizar o calendário e sabendo que o dia 1º de janeiro de 2014 foi uma quarta-feira determine em que dia da semana ocorreu o jogo de abertura.

Dica: que dia do ano de 365 dias é o dia 12/06?

jan	fev	mar	abr	maio	jun	31+28+31+30+31+12=163
31	28	31	30	31	12	12/06 → 163°

A que número entre 1 e 7, 163 é congruente? sábado domingo segunda quarta quinta terça sexta 163 = 7 q + r5 11 13 15 16 14 18 $163=7\cdot23+2 \longrightarrow resto=2$ 23 24 25 26 28 30 31

$$163 \equiv 2 \pmod{7}$$
 \longrightarrow $12/06/2014$ foi quinta-feira