

Algebra

Alessandro D'Andrea

20. Spazi vettoriali

Richiami

- ▶ Molti fenomeni possiedono aspetti lineari
- Le applicazioni lineari tra spazi \mathbb{R}^n sono descritti da matrici, e da equazioni di primo grado senza termine noto
- Oggi: Concetto astratto di spazio vettoriale
- Sottospazi vettoriali; nucleo e immagine di un'applicazione lineare

Applicazioni lineari

Un'applicazione $T: \mathbb{R}^m \to \mathbb{R}^n$ è lineare se soddisfa

$$T(\lambda x) = \lambda T(x), \qquad T(x+y) = T(x) + T(y),$$

dove $x = (x_1, \dots, x_m), y = (y_1, \dots, y_m)$ sono m-uple di numeri reali, e $\lambda \in \mathbb{R}$.

E' necessario che lo spazio di partenza e di arrivo siano \mathbb{R}^m , \mathbb{R}^n per poter verificare la linearità di T, o concepire la possibilità che T sia lineare? Non esattamente.

Per controllare che $T: V \rightarrow W$ sia lineare abbiamo bisogno di potere

- ▶ sommare elementi di V per scrivere T(x + y)
- ▶ sommare elementi di W per scrivere T(x) + T(y)
- ▶ fare multipli di elementi di V per scrivere $T(\lambda x)$
- ▶ fare multipli di elementi di W per scrivere $\lambda T(x)$.

Spazi vettoriali

Sia K un campo. Si dice K-spazio vettoriale un insieme V dotato di

- ▶ un'operazione $+: V \times V \rightarrow V$ di *somma tra vettori* che lo renda gruppo abeliano;
- un'operazione · : K × V → V di prodotto per uno scalare che soddisfa
 - $ightharpoonup 1 \cdot v = v;$
 - $(\lambda + \mu) \cdot \mathbf{v} = \lambda \cdot \mathbf{v} + \mu \cdot \mathbf{v};$
 - $(\lambda \mu) \cdot \mathbf{v} = \lambda \cdot (\mu \cdot \mathbf{v});$
 - $\lambda \cdot (\mathbf{v} + \mathbf{w}) = \lambda \cdot \mathbf{v} + \lambda \cdot \mathbf{w}.$

Gergo: gli elementi di *V* si dicono *vettori*, gli elementi di *K* si dicono *scalari*.

Esempio: se $K = \mathbb{R}$, allora $V = \mathbb{R}^n$ è uno spazio vettoriale.

Prime proprietà

- $ightharpoonup 0 \cdot v = 0.$
 - ▶ Dalla definizione, $0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v$
 - Poiché V è un gruppo abeliano rispetto a +, posso sottrarre $0 \cdot v$ da entrambi i membri, e ottenere $0 \cdot v = 0$
 - Attenzione: il primo 0 è uno scalare, mentre il secondo 0 è un vettore!!
 - ▶ Una dimostrazione simile fornisce $\lambda \cdot 0 = 0$.
- ▶ $(-1) \cdot v = -v$
 - ▶ Dalla definizione, e dal fatto che abbiamo appena dimostrato, si ha: $0 = 0 \cdot v = (-1 + 1) \cdot v = (-1) \cdot v + 1 \cdot v = (-1) \cdot v + v$
 - ▶ Allora $(-1) \cdot v$ sommato a v dà l'elemento neutro della somma di V
 - ▶ Pertanto, $(-1) \cdot v$ coincide con l'inverso additivo -v di v in V.
 - Attenzione: in (-1) · v, il −1 indica l'inverso additivo di 1 nel campo K; −v indica invece l'inverso additivo di v nel gruppo abeliano V.

Tutte le manipolazioni tipiche del caso \mathbb{R}^n continuano ad essere valide in ogni spazio vettoriale.

Nuovi esempi

- L'insieme $\mathbb{R}[x]$ di tutti i polinomi a coefficienti reali costituisce un \mathbb{R} -spazio vettoriale, rispetto alla somma tra polinomi e al prodotto di un polinomio per numeri reali.
- L'insieme C([0,1]) delle funzioni continue $[0,1] \to \mathbb{R}$ è un \mathbb{R} -spazio vettoriale rispetto all'operazione di somma tra funzioni e a quella di multiplo reale di una funzione.
- ▶ Ogni campo K è un K-spazio vettoriale rispetto alle sue due operazioni.
- ▶ Se K è un campo, allora K^n è un K-spazio vettoriale se $K = \mathbb{R}$, si ottiene \mathbb{R}^n .
- ▶ Il campo dei numeri complessi \mathbb{C} è un \mathbb{R} -spazio vettoriale.
- ▶ Il campo dei numeri reali \mathbb{R} è un \mathbb{Q} -spazio vettoriale.

Gergo: un \mathbb{R} -spazio vettoriale è uno spazio vettoriale reale; un \mathbb{C} -spazio vettoriale è uno spazio vettoriale complesso.

Sottospazi vettoriali

Se V è uno spazio vettoriale, un sottoinsieme **non vuoto** $W \subset V$ si dice sottospazio vettoriale se è uno spazio vettoriale rispetto alle operazioni di V.

In modo equivalente:

- W deve essere un sottogruppo di V:
 - 0 ∈ W;
 - ▶ se $w, w' \in W$, allora $w + w' \in W$;
 - ▶ se $w \in W$, allora $-w \in W$.
- ▶ W deve contenere ogni multiplo di ciascun suo elemento
 - ▶ se $w \in W$ e $\lambda \in K$, allora $\lambda w \in W$.

Il più piccolo dei sottospazi vettoriali di V contiene solo lo 0. Il più grande dei sottospazi vettoriali di V è V stesso.

I sottoinsiemi $\{0\}$ e V sono detti sottospazi vettoriali banali di V.

Applicazioni lineari

Se U, V sono spazi vettoriali (sullo stesso campo K) allora $T: U \to V$ è K-lineare (o semplicemente lineare) se

- ► T(u + u') = T(u) + T(u') per ogni scelta di $u, u' \in U$;
- ▶ $T(\lambda u) = \lambda T(u)$ per ogni $\lambda \in K$, $u \in U$.

Ogni applicazione lineare $T:U\to V$ tra spazi vettoriali è un omomorfismo di gruppi, e deve quindi mandare l'identità nell'identità e l'inverso nell'inverso, come abbiamo già visto. Poiché la notazione è additiva

- T(0) = 0;
- ► T(-u) = -T(u).

Come con gli omomorfismi tra gruppi, il nucleo di un'applicazione lineare $T:U\to V$ è l'insieme di tutti gli elementi di U che T manda in 0.

Nucleo e immagine

Se U, V sono spazi vettoriali e $T:U\to V$ è lineare, allora

- ▶ ker $T = \{u \in U \mid T(u) = 0\}$ è il nucleo di T;
- ▶ im $T = \{v \in V \mid v = T(u) \text{ per qualche } u \in U\}$ è l'immagine di T.
- ker T è un sottospazio vettoriale di U
 - ▶ T(0) = 0, quindi $0 \in \ker T$;
 - ▶ Se $u, u' \in \ker T$, allora T(u) = T(u') = 0 e quindi T(u + u') = T(u) + T(u') = 0 + 0 = 0, e $u + u' \in \ker T$;
 - Se $u \in \ker T$, allora T(u) = 0. Di conseguenza, per ogni scelta di $\lambda \in K$, si ha $T(\lambda u) = \lambda T(u) = \lambda \cdot 0 = 0$, e quindi $\lambda u \in \ker T$.
- ▶ im T è un sottospazio vettoriale di V
 - 0 = T(0), quindi $0 \in \text{im } T$;
 - Se $v, v' \in \text{im } T$, allora v = T(u), v' = T(u') per qualche scelta di $u, u' \in U$. Pertanto v + v' = T(u) + T(u') = T(u + u'), e $v + v' \in \text{im } T$:
 - Se v ∈ im T, allora v = T(u) per qualche u ∈ U. Di conseguenza, per ogni scelta di λ ∈ K, si ha λv = λT(u) = T(λu), e quindi λv ∈ im T.

Struttura delle fibre

Ogni applicazione lineare $T: U \rightarrow V$, è un omomorfismo di gruppi. In particolare, T è iniettiva se e solo se il suo nucleo è $\{0\}$.

Abbiamo visto in precedenza che se $\phi:G\to H$ è un omomorfismo di gruppi, due elementi $g,g'\in G$ hanno la stessa immagine tramite ϕ se e solo se sono congruenti modulo il nucleo di ϕ .

Nel caso di T — ricordando che la notazione di gruppo è additiva — due elementi u, u' soddisfano T(u) = T(u') se e solo se differiscono per un elemento del nucleo.

Teorema

Siano U, V spazi vettoriali, $T: U \to V$ lineare, $v \in V$, e supponiamo che $u_0 \in U$ soddisfi $T(u_0) = v$. Allora le soluzioni $u \in U$ di T(u) = v sono tutti e soli gli elementi della forma $u_0 + k$, dove $k \in \ker T$.

Calcolo esplicito di un nucleo - J

Cosa vuol dire esattamente calcolare il nucleo di un'applicazione lineare? Vediamolo in un caso esplicito. Consideriamo l'applicazione lineare $\mathcal{T}:\mathbb{R}^3\to\mathbb{R}^2$ già vista in precedenza, la cui matrice era

$$\begin{pmatrix} 1 & 2 & -3 \\ 2 & 4 & 5 \end{pmatrix}.$$

In coordinate, l'azione di T è descritta da

$$T(x_1, x_2, x_3) = (x_1 + 2x_2 - 3x_3, 2x_1 + 4x_2 + 5x_3).$$

Determinare il nucleo di T significa individuare tutte le terne $(x_1, x_2, x_3) \in \mathbb{R}^3$ tali che $T(x_1, x_2, x_3) = (0, 0)$. In altre parole, si tratta di risolvere il sistema

$$\begin{cases} x_1 + 2x_2 - 3x_3 = 0 \\ 2x_1 + 4x_2 + 5x_3 = 0 \end{cases}$$

Calcolo esplicito di un nucleo - II

$$\begin{cases} x_1 + 2x_2 - 3x_3 = 0 \\ 2x_1 + 4x_2 + 5x_3 = 0 \end{cases}$$

Il sistema può essere risolto con il procedimento di eliminazione di Gauss:

e l'insieme delle soluzioni del sistema è ker $T = \{(-2t, t, 0) | t \in \mathbb{R}\}$. In particolare, T non è iniettiva, poiché ker $T \neq \{0\}$.

Importante: nel calcolo di un nucleo, i termini noti sono sempre 0 e rimangono 0 durante l'eliminazione. Il sistema lineare corrispondente è omogeneo.

Calcolo di una fibra - I

Sempre con la stessa applicazione $T: \mathbb{R}^3 \to \mathbb{R}^2$, supponiamo di voler determinare tutti gli elementi di \mathbb{R}^3 che hanno una certa immagine. Ad esempio, vogliamo trovare le soluzioni di

$$T(x_1, x_2, x_3) = (3, 6).$$

Chiaramente questo equivale a risolvere il sistema (non omogeneo!) di equazioni lineari

$$\begin{cases} x_1 + 2x_2 - 3x_3 = 3 \\ 2x_1 + 4x_2 + 5x_3 = 6 \end{cases}$$

Tuttavia, invece di risolverlo con il procedimento di eliminazione, avendo già calcolato precedentemente il nucleo, possiamo limitarci a cercare una soluzione qualsiasi del sistema. Ad esempio, $(x_1, x_2, x_3) = (3, 0, 0)$ è una soluzione!

Calcolo di una fibra - II

Le soluzioni del sistema saranno allora tutte e sole quelle che si ottengono sommando a tale soluzione gli elementi del nucleo di T, ovvero le soluzioni del sistema omogeneo associato.

- ▶ Soluzione particolare dell'equazione T(u) = (3,6)
 - $u_0 = (3,0,0)$
- ▶ Soluzioni dell'equazione T(u) = (0,0), cioè elementi di ker T
 - ▶ $\ker T = \{(-2t, t, 0), t \in \mathbb{R}\}$
- ▶ Soluzione generale dell'equazione T(u) = (3,6)
 - $u_0 + \ker T = (3,0,0) + \{(-2t,t,0)\} = \{(3-2t,t,0)\}$, sempre al variare di $t \in \mathbb{R}$

Senza fare un conto, abbiamo appurato che le soluzioni del sistema di sopra sono tutte e sole le terne della forma (3-2t,t,0). Proviamo ora con il procedimento di eliminazione, per controllare se otteniamo la stessa cosa.

Calcolo di una fibra - III

$$\begin{cases} x_1 + 2x_2 - 3x_3 = 3 \\ 2x_1 + 4x_2 + 5x_3 = 6 \end{cases}$$

ed effettivamente otteniamo $(x_1, x_2, x_3) = (3 - 2t, t, 0)$.

Attenzione! Questa parametrizzazione delle soluzioni non è l'unica possibile. Ad esempio, anche (1, 1, 0) è una soluzione particolare, e quindi possiamo parametrizzare le soluzioni nel modo seguente

$$(x_1, x_2, x_3) = (1 - 2s, 1 + s, 0).$$

Descrivere l'insieme di soluzioni di un sistema lineare omogeneo in n incognite dicendo che è un sottospazio vettoriale di \mathbb{R}^n può essere interessante, ma... come sono fatti i sottospazi vettoriali?

Prima di poter dare una risposta compiuta a questa domanda avremo bisogno di sviluppare nuovi concetti (come, ad esempio, quello di dimensione). Tuttavia, senza essere rigorosi, possiamo già capire come sono fatti i sottospazi vettoriali in un caso nel quale abbiamo l'intuizione geometrica a guidarci.

Pertanto, cerchiamo di capire come sono fatti i sottospazi vettoriali di \mathbb{R}^2 , rappresentandolo geometricamente come un piano.

Partiamo dalla definizione: un sottospazio vettoriale

- contiene lo 0;
- se contiene un elemento, contiene anche tutti i suoi multipli;
 - ▶ In particolare contiene $-1 \cdot v$, cioè l'inverso additivo di v!!
- se contiene due elementi, contiene anche la loro somma.

L'esempio minimale di sottospazio di \mathbb{R}^2 è quindi $\{(0,0)\}$, che abbiamo già visto come sottospazio vettoriale banale.

Se un sottospazio vettoriale $U \subset \mathbb{R}^2$ contiene anche solo un elemento non nullo u, deve allora contenere tutti i suoi multipli λu .

Vale la pena di notare che l'insieme $\mathbb{R}u=\{\lambda u\,|\,\lambda\in\mathbb{R}\}$ dei multipli di $u\in\mathbb{R}^2$ è un sottospazio vettoriale di \mathbb{R}^2 , perché soddisfa le richieste elencate prima.

Questo ci dà altri esempi di sottospazi vettoriali: le rette passanti per l'origine.

Esistono altri sottospazi che sono più grandi delle rette per l'origine?

I sottospazi di R² sono

- ▶ la sola origine dim = 0
- ▶ le rette per l'origine dim = 1
- ▶ tutto \mathbb{R}^2 dim = 2

Nelle prossime lezioni studieremo il concetto di dimensione e daremo dimostrazioni più convincenti e meno grafiche di questa caratterizzazione dei sottospazi vettoriali di \mathbb{R}^2 .