MAS242 ANALYSIS I QUIZ 3

Problem 1. (15 points) For $\mathbf{x} = (x_1, x_2)$ and $\mathbf{y} = (y_1, y_2)$ in \mathbb{R}^2 , define

$$d_1(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + |x_2 - y_2|$$

- (1) Show that d_1 is a metric on \mathbb{R}^2 .(5pt)
- (2) Define a d_1 neighborhood $N_1(\mathbf{x}; s)$ of $\mathbf{x} = (x_1, x_2)$ to be $N_1(\mathbf{x}; s) = {\mathbf{y} \in \mathbb{R}^2 : d_1(\mathbf{x}, \mathbf{y}) < s}$. Let $N(\mathbf{x}; r)$ be any Euclidean neighborhood of \mathbf{x} . Show that there exist positive r_1 and r_2 such that

$$N_1(\mathbf{x}; r_1) \subset N(\mathbf{x}; r) \subset N_1(\mathbf{x}; r_2)$$

(10pt)

Problem 2. (15 points) Prove that, if $\{\mathbf{x}_k\}$ is a bounded sequence in \mathbb{R}^n and $\mathbf{y}_1, \dots, \mathbf{y}_M$ are cluster points of $\{\mathbf{x}_k\}$, then $S = \{\mathbf{x}_k : k \in \mathbb{N}\} \cup \{\mathbf{y}_1, \dots, \mathbf{y}_M\}$ is closed

 $Date \hbox{: } 25 \hbox{ March } 2021.$