Home Work #1

Ali BaniAsad 401209244

March 16, 2023

1 Question 1

 $h = 200_{km} \rightarrow r = R_e + h = 6378.137 + 200 = 6578.1137, \quad \mu = 3.986 \times 10^{14}_{m^3/s^2} = 3.986 \times 10^5_{km^3/s^2}$ The orbit is circular.

1.1 Part a

$$T = 2\pi \sqrt{\frac{r^3}{\mu}} = 2\pi \sqrt{\frac{6578.1137^3}{3.986 \times 10^5}} = 5309.62_{\text{sec}}$$
 (1)

$$T\omega = 2\pi \to \omega = \frac{2\pi}{T} = \frac{2\pi}{5309.62} = 0.00118_{rad/sec}$$
 (2)

1.2 Part b

$$v = \sqrt{\frac{\mu}{r}} = \sqrt{\frac{3.986 \times 10^5}{6578.1137}} = 7.78_{km/\text{sec}}$$
 (3)

The new velocity is calculated as:

$$v_{new} = v + 0.5_{km.\,\text{sec}} = 8.28_{km.\,\text{sec}} \tag{4}$$

Assume the new orbit is circular just changed altitude and has a new velocity.

$$v_{new} = \sqrt{\frac{\mu}{r_{new}}} \to r_{new} = \frac{\mu}{v_{new}^2} = 5808_{km}$$
 (5)

$$T = 2\pi \sqrt{\frac{r_{new}^3}{\mu}} = 2\pi \sqrt{\frac{5808^3}{3.986 \times 10^5}} = 4405.08_{\text{sec}}$$
 (6)

$$T_{new}\omega_{new} = 2\pi \to \omega_{new} = \frac{2\pi}{T_{new}} = \frac{2\pi}{4405.08} = 0.00143_{rad/sec}$$
 (7)

 r_{new} is smaller than the earth's radius.

2 Question 2

Assume \mathbf{r}_0 and \mathbf{v}_0 as:

$${m r}_0 = \begin{bmatrix} 1600 & 5310 & 3800 \end{bmatrix}_{km}^{\mathrm{T}}, \quad {m v}_0 = \begin{bmatrix} -7.350; & 0.4600 & 2.470 \end{bmatrix}_{km/\,\mathrm{sec}}^{\mathrm{T}}$$

Ali BaniAsad 401209244 2.1 Part a

2.1 Part a

the n-body problem was solved with MATLAB with the n-body function in the question directory. The results are illustrated below.

Figure 1: 3D trajectory

Ali BaniAsad 401209244 2.1 Part a

Ali BaniAsad 401209244 2.1 Part a

Ali BaniAsad 401209244 2.2 Part b

Figure 4: 3D trajectory in xy axis

2.2 Part b

Using the below transfer matrix to transfer from ECI coordinate to the ECEF coordinate.

$$\boldsymbol{T}^{ECCF-ECI} = \begin{bmatrix} \cos(\omega_E t) & -\sin(\omega_E t) & 0\\ \sin(\omega_E t) & \cos(\omega_E t) & 0\\ 0 & 0 & 1 \end{bmatrix}$$
$$\boldsymbol{\phi} = \arccos(\frac{\boldsymbol{r}(3)}{r})$$
$$\boldsymbol{\lambda} = \begin{cases} \arctan(\frac{\boldsymbol{r}(1)}{r_{xy}}), & \boldsymbol{r}(2) > 0\\ 2\pi - \arctan(\frac{\boldsymbol{r}(1)}{r_{xy}}), & \boldsymbol{r}(2) \le 0 \end{cases}$$

Ali BaniAsad 401209244 2.2 Part b

Below the figure drawn provided by tamaskis, please click here to see the source code. Please use the mentioned library to run code or skip the part on earth fig.

2.3 Part c (Bonus)

In this section find the orbital elements, then, change the inclination to 0.4_{rad} (using oe2ecf and vec2orbElem functions). Then, find \mathbf{r}_0 and \mathbf{v}_0 by new orbital elements. The results are illustrated below.

Figure 7: 3D trajectory compared to new inclination

First Orbit Second Orbit

In general, changing the inclination of a satellite's orbit will cause its ground track to move to different latitudes and longitudes on the Earth's surface. In this example when the inclination changed from 0.7_{rad} to 0.4_{rad} , the range of longitude decreased.

Ali BaniAsad 401209244 CONTENTS

Contents

1	Question 1
	1.1 Part a
	1.2 Part b
2	Question 2
	2.1 Part a
	2.1 Part a

Ali BaniAsad 401209244 LIST OF FIGURES

List of Figures

1	3D trajectory
2	3D trajectory in zx axis
3	3D trajectory in zy axis
4	3D trajectory in xy axis
5	Satellite latitude versus its longitude for one day
6	Satellite latitude versus its longitude for one day
7	3D trajectory compared to new inclination
8	3D trajectory in zx axis compared to new inclination
9	3D trajectory in zy axis compared to new inclination
10	3D trajectory in xy axis compared to new inclination
11	Satellite latitude versus its longitude for one day compared to new inclination