Progetto PMCSN

Marco Giorgi Giovanni D'Agostino

Matricola: 0266724 Matricola: 0255794

1 Introduzione

Nella seguente relazione verrà presentato un approfondimento di un lavoro universitario svolto nell'ambito del Cloud Computing. Verranno quindi analizzate le performance del sistema in uno scenario tratto da dati reali e che verrà descritto nei successivi paragrafi.

2 Descrizione del problema

Negli ultimi anni la presenza di dispositivi connessi è aumentata notevolmente nel mondo e se da un lato la quantità di dati raccolti continua ad aumentare così come la capacità di calcolo necessaria per processarli, dall'altro la connettività disponibile per trasportare l'informazione dal dispositivo IOT verso i data center non si rileva sempre adeguata allo scopo. In particolare, applicazioni con requisiti stringenti in termini di tempo di risposta o sicurezza non sono supportate al meglio dall'attuale paradigma Cloud che richiede lo spostamento dei dati dai confini della rete verso strutture di elaborazione centralizzate.

Il Fog computing, sfruttando capacità di calcolo, immagazzinamento dati fisicamente vicini all'IoT e altamente distribuiti, cerca di risolvere questi problemi rendendo possibile il supporto ad applicazioni time-sensitive.

Un esempio applicativo di Fog Computing è il servizio Smart Parking.

Il problema del parcheggio nelle grandi città come Roma diventa sempre più comune, basti pensare che ormai è normale vedere che in ogni famiglia ci siano minimo 2 veicoli, pertanto nasce l'esigenza di trovare una soluzione adeguata per rendere intelligente la scelta del posto auto.

Una soluzione possibile a questo problema è quella dell'uso di parcheggi con sensori Raspberry che segnalano la presenza di quanti slot liberi sono disponibili in un'area di sosta a pagamento.

Ai confini della rete sono dunque posti i nodi fog responsabili di un certo numero di parcheggi dotati di sensori, simulando un vero e proprio gestore di aree di sosta. Ogni nodo fog saprà ad ogni istante il numero di posti auto liberi nell'area di sua competenza e il servizio implementato nel Cloud saprà in ogni momento quali sono i nodi fog con disponibilità di parcheggio.

Un utente può richiedere la disponibilità di parcheggio oppure prenotare un posto libero specifico tramite applicazione al nodo fog più vicino alla sua attuale posizione. Se ci sono

Progetto PMCSN II Problema

abbastanza posti liberi nel nodo fog la richiesta verrà accolta, altrimenti il nodo indirizzerà la richiesta al Cloud.

Quest'ultimo, se ci sono parcheggi disponibili in un altro nodo vicino a quello contattato dall'utente, inoltrerà all'applicazione la posizione dell'area di sosta da raggiungere.

Se in un dato momento non ci sono posti liberi in una determinata zona il Cloud segnalerà l'indisponibilità momentanea di posti liberi.

Nella seguente relazione ci si è posto il problema di valutare le prestazione del sistema descritto precedentemente a partire dai dati raccolti dagli studi che riguardano la mobilità di Roma del 2019 e in particolare sul traffico relativo alle ore di punta. Nello specifico sono stati trattati due casi:

- nel primo troviamo un semplice sistema abstract non preemptive senza priorità con code FIFO
- nel secondo studiamo il sistema migliorato progettato con code che considerano le size delle richieste e che quindi sfrutta una politica di coda short job first.

FIGURE 1: Smart Parking Idea

Progetto PMCSN II Problema

3 Studi preliminari

Dai dati raccolti da (https://romamobilita.it/it/media/pubblicazioni/rapporto-mobilita-2019) è emerso che Roma conta una rete stradale di 8.000 Km di cui 1.300 km di rete principale, sulla quale circolano 370.000 veicoli privati al giorno nelle ore di punta e sulla superficie sono presenti 75.000 posti auto a pagamento su strada. Vengono quindi considerate le ore di punta i seguenti intervalli di tempo:

Ore di punta
7:30-9:00
12:00-14:00
16:00-17:00
18:00-19:00

Si assume che tra i 75.000 posti solo 1/5 di questi viene dotato di sensori, le auto in cerca di parcheggio a pagamento nelle ore di punta sono circa 1/5 delle 370.000. Il tempo medio di permanenza di un auto all'interno di un parcheggio si assume che sia circa 60 minuti, inoltre il tasso di uscita dal parcheggio viene considerato come un servizio distribuito esponenzialmente.

Il servizio relativo ai nodi fog e al cloud sono ipotizzati distribuiti esponenzialmente con tasso rispettivamente pari a 0.8 e 0.65 richieste al secondo e comprendono per semplicità i possibili ritardi di trasmissione.

Infine, si considerano richieste con arrivi distribuiti esponenzialmente con tempi di interarrivo di Poisson.

4 Obiettivi e Assunzioni

Dalla definizione di fog computing nasce l'esigenza di avere tempi di risposta del sistema il più breve possibile quindi uno degli scopi del progetto è quello di individuare il modello più adatto che minimizzi il tempo di risposta medio globale.

Si assume che la tolleranza alla risposta del sistema da parte dell'utente è in media di 2 secondi, per questo ci si pone come obiettivo quello di avere un tempo medio di risposta globale pari circa a 2 secondi.

Il contesto in cui siamo interessati a raggiungere questi obiettivi è relativo allo scenario dove i nodi fog sono omogenei e che i tassi di arrivo in ogni istante sono divisi uniformemente.

Quindi, il tasso di arrivo al cloud sarà in ogni istante il tasso di uscita al singolo nodo fog per il numero di nodi fog totali, rappresentando di fatto uno scenario pseudo critico.

Per quanto riguarda il secondo scenario, realizzato facendo distinzione tra le size delle richieste, è stato mantenuto un tasso di servizio medio del nodo fog invariato rispetto al caso precendente.

5 Soluzione Analitica

5.1 Sistema FIFO

5.1.1 Sottoinsieme del Fog Node

Partendo dalle ipotesi e dai dati precedentemente descritti il tasso di arrivo al secondo delle richieste per il nodo fog i è stato calcolato al variare del numero dei nodi N nel seguente modo:

$$\lambda_f = \frac{NaP}{3600 * h} \cdot \frac{1}{N} \tag{1}$$

Ore di punta	h	4.5
Auto totali circolanti a Roma nelle ore di punta	$A_{_tot}$	370000
Percentuale di auto in cerca di posti a pagamento	NaP%	20%
Auto in cerca di parcheggio	NaP	$A_{_tot} * NaP\%$
Tasso di servizio	μ_f	0.8req/sec
Utilizzazione	$ ho_f$	λ_f/μ_f

Per il calcolo dei tempi medi di attesa e del numero di richieste in coda sono state usate le seguenti formule:

$$E(T_Q)_f = \frac{\rho_f \cdot E(S)_f}{(1 - \rho_f)} \tag{2}$$

$$E(N_Q)_f = \lambda_f \cdot E(T_Q)_f \tag{3}$$

Per il calcolo del tempo medio di risposta del nodo fog:

$$E(T_S)_f = E(T_Q)_f + E(S)_f \tag{4}$$

Le richieste elaborate vengono indirizzate con probabilita **P** al sottosistema Cloud e con probabilità **1-P** usciranno dal sistema, ovvero verrà generata la risposta per l'utente.

5.1.2 La Probabilità di occupazione del parcheggio

Uno dei problemi che ci siamo posti è stato quello di calcolare opportunamente la probabilità di routing della richiesta da un nodo fog al sistema cloud. Per fare ciò si è scelto di modellare un sistema per rappresentare un reale parcheggio gestito da un nodo fog. Quindi, è stata immaginata l'area di sosta come un sistema M/M/m/m con m rappresentate il numero totale di posti assegnabili. Si assume che il sistema suddetto non presenta coda, i tempi di interarrivo sono random, mentre il tasso di servizio è distribuito esponenzialmente e rappresenta il tasso medio di sosta di un'auto all'interno dell'area di parcheggio.

Per trovare la probabilità di congestione del parcheggio è stata utilizzata la catena di Markov come in figura. Ogni stato rappresenta il numero di posti occupati in ogni istante di tempo, analiticamente è stata utilizzata la formula della Erlang-B per determinare la probabilità che il parcheggio sia pieno.

$$P = \pi_{loss} = \left(\frac{\lambda_f}{\mu_p}\right)^m * \frac{1}{m!} * \pi_0 \tag{5}$$

$$\pi_0 = \left[\sum_{i=0}^m \left(\frac{\lambda_f}{\mu_p} \right)^i * \frac{1}{i!} \right]^{-1} \tag{6}$$

Tempo di servizio	$E(S)_p$	3600 sec
Tasso di servizio	μ_p	0.00028 req/sec

N Fog	N Slot	λ_f	P
190	79	0.02404	14,09%
150	100	0.03045	13,38%
120	125	0.03807	12,75%
100	150	0.04568	12,28%
75	200	0.06091	11,64%
50	300	0.09136	10,90%
40	375	0.11420	10,57%
35	428	0.13051	10,31%
30	500	0.15226	10,21%
10	1500	0.45679	9,34%
6	2500	0.76131	9.13%

Table 1: Probabilità di occupazione parcheggio al variare del numero dei nodi Fog.

5.1.3 Sottoinsieme Cloud

Il tasso di ingresso per il sottosistema Cloud per N nodi fog dipende dal tasso di uscita del sottosistema Fog nel caso in cui il parcheggio risulti pieno, moltiplicato per ciascun nodo(come accennato nelle assunzioni):

$$\lambda_c = \lambda_f \cdot P \cdot N \tag{7}$$

Tasso di servizio
$$|\mu_c|$$
 0.65 req/sec

Per il calcolo dei tempi medi di attesa e del numero di richieste in coda sono state usate le seguenti formule:

$$E(T_Q)_c = \frac{\rho_c \cdot E(S)_c}{(1 - \rho_c)} \tag{8}$$

$$E(N_Q)_c = \lambda_c \cdot E(T_Q)_c \tag{9}$$

Per il calcolo del tempo medio di risposta del nodo fog:

$$E(T_S)_c = E(N_O)_c + E(S)_c$$
 (10)

5.1.4 Valori Globali

Per quanto riguarda la computazione dei tempi di risposta globali del sistema abbiamo utilizzato la seguente formula:

$$E(T_S) = E(T_S)_f \cdot (1 - P) + (E(T_S)_c + E(T_S)_f) \cdot P \tag{11}$$

5.1.5 Risultati

Modello Analitico Caso FIFO											
numero di Fog Node (NF)	190	150	120	100	75	50	40	35	30	10	6
numero di posti per Fog Node (NpF)	78,95	100	125	150	200	300	375	428,57	500	1500	2500
P	0,140964	0,133837	0,127502	0,122823	0,116420	0,109034	0,105695	0,103122	0,102062	0,093406	0,091330
1-P	0,859036	0,866163	0,872498	0,877177	0,883580	0,890966	0,894305	0,896878	0,897938	0,906594	0,908670
tasso di arrivo totale (λ_tot)	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901
tasso di arrivo per fog node (λ)	0,024042	0,030453	0,038066	0,045679	0,060905	0,091358	0,114198	0,130511	0,152263	0,456790	0,761317
tempi di interarrivo per fog node (Ta)	41,59459	32,83784	26,27027	21,89189	16,41892	10,94595	8,756757	7,662162	6,567568	2,189189	1,313514
tasso di servizio del fog node (µ)f	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8
tempo di servizio medio del fog node (E(S))f	1,25	1,25	1,25	1,25	1,25	1,25	1,25	1,25	1,25	1,25	1,25
tempo medio in coda (E(Tq))f	0,038729	0,049465	0,062449	0,075696	0,103007	0,161150	0,208146	0,243678	0,293837	1,663669	24,601064
popolazione in coda (E(Nq))f	0,000931	0,001506	0,002377	0,003458	0,006274	0,014722	0,023770	0,031803	0,044741	0,759948	18,729205
utilizzazione fog node (P)f	0,030052	0,038066	0,047582	0,057099	0,076132	0,114198	0,142747	0,163139	0,190329	0,570988	0,951646
throughput fog node	0,024042	0,030453	0,038066	0,045679	0,060905	0,091358	0,114198	0,130511	0,152263	0,456790	0,761317
tempo di risposta fog node (E(Ts))f	1,288729	1,299465	1,312449	1,325696	1,353007	1,411150	1,458146	1,493678	1,543837	2,913669	25,851064
popolazione di un fog node (E(N))f	0,030983	0,039572	0,049959	0,060556	0,082405	0,128920	0,166517	0,194942	0,235070	1,330935	19,680851
tasso di arrivo al cloud (λ)c	0,643910	0,611354	0,582417	0,561041	0,531794	0,498058	0,482803	0,471049	0,466209	0,426668	0,417186
interarrivo cloud (T)c	1,553013	1,635713	1,716984	1,782400	1,880429	2,007800	2,071240	2,122922	2,144960	2,343744	2,397010
tasso di servizio cloud (µ)c	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
tempo di servizio medio cloud (E(S))c	1,538462	1,538462	1,538462	1,538462	1,538462	1,538462	1,538462	1,538462	1,538462	1,538462	1,538462
utilizzazione cloud (Pc)	0,990630	0,940545	0,896025	0,863140	0,818144	0,766243	0,742773	0,724691	0,717245	0,656412	0,641825
throughput cloud	0,643910	0,611354	0,582417	0,561041	0,531794	0,498058	0,482803	0,471049	0,466209	0,426668	0,417186
tempo di attesa medio del cloud (E(Tq))c	162,655165	24,337570	13,258059	9,702699	6,921314	5,042982	4,442494	4,049655	3,902505	2,939174	2,756821
popolazione media in coda cloud (E(Nq))c	104,735227	14,878876	7,721713	5,443614	3,680710	2,511695	2,144848	1,907586	1,819384	1,254051	1,150108
tempo di risposta del cloud (E(Ts))c	164,193627	25,876031	14,796520	11,241160	8,459776	6,581443	5,980955	5,588117	5,440967	4,477635	4,295282
popolazione del cloud (E(Nq))c	105,725857	15,819420	8,617738	6,306754	4,498854	3,277938	2,887621	2,632276	2,536628	1,910463	1,791933
tempo di risposta globale (E(TS))	24,434119	4,762636	3,199035	2,706363	2,337891	2,128752	2,090301	2,069933	2,099153	3,331906	26,243352
throughput sistema	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901

FIGURE 2: Tabella risultati analitici caso FIFO

Dalla tabella si evidenzia che il risultato migliore ottenuto è il sistema che presenta un numero di nodi Fog pari a 35. Infatti, le utilizzazioni di un singolo centro fog e del cloud risultano inferiori a 0.8 e il tempo di risposta globale risulta in media pari ai 2 secondi.

Se viene aumentato il numero di nodi il tempo di risposta dell'intero sistema risulta maggiore ai 2 secondi a causa dell'incremento del carico sul cloud, che porta ad una crescita del tempo medio di attesa in coda. Viceversa, se si riduce il numero di nodi fog, il carico avrà un impatto maggiore sul singolo nodo fog, con conseguente aumento dei tempi medi di attesa.

Inoltre, al variare del numero dei nodi fog nel sistema risulta che raggiungendo i 190 nodi fog l'utilizzazione del cloud tenderà a valori maggiori di 1, viceversa con un numero di nodi fog inferiori a 6 l'utilizzazione dei nodi fog sarà maggiore di 1.

5.2 Sistema SJF

Per migliorare le prestazione del caso illustrato in precedenza abbiamo deciso di tenere in considerazione le size delle richieste utilizzando un modello di code di tipo short job first sia per il sottosistema fog che per il sottosistema cloud. Utilizzando questo approccio le richieste con minor tempo di servizio verranno soddisfatte prima rispetto le altre.

5.2.1 Sottosistema Fog

A differenza del caso precedente vengono calcolati i tempi di attesa nel seguente modo:

$$E(T_Q)_f = \frac{\lambda_f}{2} E(S^2)_f \cdot \int_0^\infty \frac{\partial F(x)}{(1 - \lambda_f \int_0^x t f(t) \partial t))^2}$$
(12)

$$E(N_Q)_f = \lambda_f \cdot E(T_Q)_f \tag{13}$$

5.2.2 Sottosistema Cloud

Anche nel sottosistema Cloud sono stati adottati meccanismi di Short Job First, i calcoli per il tempo di attesa medio e per la popolazione media in coda fanno riferimento alle seguenti formule:

$$E(T_Q)_c = \frac{\lambda_c}{2} E(S^2)_c \cdot \int_0^\infty \frac{\partial F(x)}{(1 - \lambda_c \int_0^x t f(t) \partial t))^2}$$
(14)

$$E(N_Q)_c = \lambda_c \cdot E(T_Q)_c \tag{15}$$

5.2.3 Valori Globali

Per quanto riguarda la computazione del tempo di risposta medio globale del sistema abbiamo utilizzato la seguente formula:

$$E(T_S) = E(T_S)_f \cdot (1 - P) + (E(T_S)_c + E(T_S)_f) \cdot P \tag{16}$$

5.2.4 Risultati

			Modello	Analitico C	aso SJF						
Numero di Fog Node (NF)	190	150	120	100	75	50	40	35	30	10	6
Numero di posti per Fog Node (NpF)	78,947	100	125	150	200	300	375	428,571	500	1500	2500
Probabilità parcheggio pieno (P)	0,140964	0,133837	0,127502	0,122823	0,116420	0,109034	0,105695	0,103122	0,102062	0,093406	0,091330
Probabilità parcheggio non pieno (1-P)	0,859036	0,866163	0,872498	0,877177	0,883580	0,890966	0,894305	0,896878	0,897938	0,906594	0,908670
Tasso di arrivo totale (λ_tot)	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901
Tasso di arrivo per singolo fog node (λ_f)	0,024042	0,030453	0,038066	0,045679	0,060905	0,091358	0,114198	0,130511	0,152263	0,456790	0,761317
Tempo di interarrivo per fog node (Ta_f)	41,594595	32,837838	26,270270	21,891892	16,418919	10,945946	8,756757	7,662162	6,567568	2,189189	1,313514
Tasso di servizio del fog node (μ_f)	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8
Tempo di servizio medio del fog node (E(S)_f)	1,25	1,25	1,25	1,25	1,25	1,25	1,25	1,25	1,25	1,25	1,25
Tempo medio in coda (E(Tq)_f)	0,038143	0,048515	0,060948	0,073506	0,099017	0,151701	0,192785	0,223020	0,264559	1,102970	6,740521
Popolazione in coda (E(Nq)_f)	0,000917	0,001477	0,002320	0,003358	0,006031	0,013859	0,022016	0,029107	0,040283	0,503826	5,131672
Utilizzazione fog node (p_f)	0,030052	0,038066	0,047582	0,057099	0,076132	0,114198	0,142747	0,163139	0,190329	0,570988	0,951646
Throughput fog node (X_f)	0,024042	0,030453	0,038066	0,045679	0,060905	0,091358	0,114198	0,130511	0,152263	0,456790	0,761317
Tempo di risposta del singolo fog node (E(Ts)_f)	1,288143	1,298515	1,310948	1,323506	1,349017	1,401701	1,442785	1,473020	1,514559	2,352970	7,990521
Popolazione di un fog node (E(N)_f)	0,030983	0,039543	0,049902	0,060456	0,082405	0,128057	0,164762	0,192246	0,230612	1,074813	6,083318
Tasso di arrivo al cloud (λ_c)	0,643910	0,611354	0,582417	0,561041	0,531794	0,498058	0,482803	0,471049	0,466209	0,426668	0,417186
Tempo di interarrivo cloud (Ta_c)	1,553013	1,635713	1,716984	1,782400	1,880429	2,007800	2,071240	2,122922	2,144960	2,343744	2,397010
Tasso di servizio cloud (μ_c)	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
Tempo di servizio medio cloud (E(S)_c)	1,538462	1,538462	1,538462	1,538462	1,538462	1,538462	1,538462	1,538462	1,538462	1,538462	1,538462
Utilizzazione cloud (ρ_c)	0,990630	0,940545	0,896025	0,863140	0,818144	0,766243	0,742773	0,724691	0,717245	0,656412	0,641825
Throughput cloud (X_c)	0,643910	0,611354	0,582417	0,561041	0,531794	0,498058	0,482803	0,471049	0,466209	0,426668	0,417186
Tempo di attesa medio nel cloud (E(Tq)_c)	28,245765	7,152109	4,780460	3,899190	3,127891	2,538576	2,332399	2,191321	2,137038	1,758033	1,680733
Popolazione media in coda nel cloud (E(Nq)_c)	18,187720	4,372472	2,784219	2,187606	1,663392	1,264357	1,126089	1,032219	0,996306	0,750096	0,701179
Tempo di risposta del cloud (E(Ts)_c)	29,784227	8,690570	6,318922	5,437651	4,666353	4,077037	3,870861	3,729783	3,675499	3,296495	3,219194
Popolazione media nel cloud (E(Nq)_c)	19,178351	5,313017	3,680245	3,050746	2,481536	2,030599	1,868862	1,756910	1,713551	1,406508	1,343004
Tempo di risposta globale (E(Ts))	5,486647	2,461635	2,116623	1,991372	1,892273	1,846238	1,851914	1,857640	1,889688	2,660881	8,284530
Throughput sistema (X)	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901	4,567901

FIGURE 3: Tabella risultati analitici caso SJF

Come ci si aspetta, i risultati evidenziano un miglioramento delle prestazioni del sistema utilizzando code con politica short job first. I tempi di risposta globali risultano a parità di nodi fog molto inferiori rispetto il modello FIFO. In questo caso il miglior tempo di risposta medio si ottiene con un'architettura di fog computing formata da 50 nodi.

Progetto PMCSN Next Event Simulation

6 Next Event Simulation

Ai fini di analizzare le prestazioni del sistema è stata utilizzato l'approccio Next Event Simulation.

Il sistema viene osservato durante una finestra temporale T in cui si possono verificare vari tipi di eventi.

La finestra, quindi, rappresenta l'intervallo, espresso in secondi, tra l'istante di tempo di inizio simulazione e l'istante in cui nessun altra richiesta arriva nel sistema.

6.1 Livello Concettuale e delle Specifiche

La figura illustra lo schema ad alto livello del modello che andremo a specificare.

FIGURE 4: Modello del sistema

FIGURE 5: Routing di una richiesta: una richiesta può andare con probabilità P al cloud o essere soddisfatta immediatamente con probabilità 1-P

Per la descrizione degli stati dividiamo il sistema in 2 sottosistemi e analizziamoli singolarmente.

Il primo sottosistema considerato è quello rappresentato dal nodo fog. Per prima cosa occorre definire su quale fog node la richiesta verrà presa in considerazione. Successi-

Progetto PMCSN Next Event Simulation

vamente è necessario avere variabili che tengano traccia dei tempi di completamento, del numero di richieste elaborate e del numero di richieste all'interno del nodo.

Occorre definire quindi un array di N fog node con N scelto opportunamente.

Viene quindi impostata la probabilità di routing tra i due sottosistemi, calcolata precedentemente in modo analitico.

Il secondo sottosistema da considerare è quello rappresentate la componente cloud. Come nel caso dei nodi fog anche qui avremo una variabile che indica il tempo di completamento, il numero di richieste elaborate e il numero di richieste nel sistema.

6.2 Eventi

6.2.1 Nodo Fog

Di seguito definiamo gli eventi corrispettivi ad un i-esimo nodo fog:

- Arrivo di una richiesta ad un nodo fog_i
- Processamento della richiesta da parte del fogi e uscita dal sistema
- Completamento della richiesta da parte del fog_i ed ingresso nel cloud

6.2.2 Cloud

Per quanto riguarda il cloud una richiesta arriverà da un nodo fog con probabilità P e il sottosistema si occuperà di gestire le richieste inoltrate da tutti gli N nodi fog del sistema. Abbiamo dunque i seguenti eventi:

- Arrivo di una richiesta al cloud
- Completamento della richiesta da parte del *cloud* e uscita dal sistema

6.3 Gestione degli Eventi

Gli eventi, descritti precendetemente, vengono gestiti tramite una lista ordinata di job, definita job_list , contentente tutte le richieste con i rispettivi eventi associati. A supporto di questa lista, la struttura dati di ogni componente del sistema conterrà una variabile che indica l'istante dell'evento di completamento più vicino che lo interessa. Al verificarsi di un evento, la tipologia di questo viene determinata confrontando il suo istante con quello relativo all'istante del successivo arrivo o del completamento più prossimo del cloud o del fog. Una volta identificata la tipologia l'evento verrà gestito nel seguente modo:

• All'occorrenza di un evento di arrivo la richiesta viene smistata in modo uniforme al nodo i-esimo di destinazione che si occuperà di gestirla. Se il nodo fog selezionato risulta vuoto questa richiesta viene immediatamente posta in servizio e si genera l'istante del suo completamento. In caso contrario, ovvero se già una richiesta si trova in servizio o se la coda non è vuota, la richiesta viene posta in attesa e la generazione dell'evento di completamento associata è ritardata al momento in cui verrà posta in servizio. La job_list viene opportunamente aggiornata per tener traccia dell'istante di arrivo ed eventuale istante di completamento della nuova richiesta.

Progetto PMCSN Next Event Simulation

• Al verificarsi dell'evento di completamento fog, viene individuato l'identificativo del nodo in cui avviene il completamento. Con una probabilità definita P la richiesta corrispettiva all'evento verrà indirizzata al sottosistema cloud, altrimenti la richiesta uscirà dal sistema. Se la coda del nodo risulta non vuota allora una richiesta viene immediatamente posta in servizio e si genera l'istante del suo completamento, altrimenti il nodo fog si pone in attesa di nuove richieste. La job_list viene opportunamente aggiornata per tener traccia l'istante di completamento della richiesta corrispondente.

- All'occorrenza di un evento di arrivo al cloud di una richiesta proveniente da un nodo fog, questa viene posta in servizio se il cloud risulta non occupato, generando il suo istante di completamento. Se invece il sistema cloud risulta occupato, questa richiesta viene posta in attesa e la generazione dell'evento di completamento associata è ritardata al momento in cui verrà posta in servizio. La job_list viene opportunamente aggiornata per tener traccia dell' istante di completamento del cloud della richiesta corrispondente.
- Quando avviene un evento di completamento del cloud, se la coda risulta non vuota allora una richiesta viene immediatamente posta in servizio e si genera l'istante del suo completamento, altrimenti il cloud si pone in attesa di nuove richieste. La *job_list* viene opportunamente aggiornata per tener traccia dell' eventuale istante di completamento della richiesta corrispondente.

L'aggiornamento del clock di sistema avviene in corrispondenza del processamento di un nuovo evento e viene mantenuta una struttura dati che memorizza in ogni momento l'istante dell'evento corrente e quello del successivo. Con l'ausilio di questa struttura dati viene calcolato il tempo di permanenza di ogni richiesta all'interno di ciascun componente in modo incrementale.

7 Statistiche

Le statistiche sono state calcolate utilizzando i programmi usv.c ed estimate.c.

Il primo di questi permette di eseguire l'algoritmo One-Pass di Welford che può essere utilizzato per calcolare la media campionaria e la deviazione standard. Questo algoritmo è superiore ai convenzionali algoritmi one-pass in quanto è molto meno soggetto a significativi errori di arrotondamento in virgola mobile.

Il secondo programma invece permette di calcolare la stima dell'intervallo di confidenza dei valori di media, dato un livello di confidenza $1 - \alpha$, nel nostro caso del 95% e quindi con $\alpha = 0.05$.

Le metriche di output considerate per questo sistema sono:

- Tempo medio di servizio per un nodo fog e per il cloud
- Tempo medio di attesa per un nodo fog e per il cloud
- Popolazione media in coda per un nodo fog e per il cloud
- Tempo di risposta medio per un nodo fog, per il cloud e per il sistema
- Throughput medio per un nodo fog, per il cloud e per il sistema

Le metriche sono state studiate sia per il caso FIFO che per il caso SJF.

Nelle successive sezioni sono quindi riportati lo studio del sistema nel tranisitorio e nello stazionario.

7.1 Studio Transitorio

In questo paragarfo vengono affrontate le statistiche transitorie, ovvero quelle statistiche prodotte da una simulazione di eventi discreti ad orizzonte finito.

Lo studio condotto in questa fase è stata fatto considerando diverse repliche della simulazione indipendenti l'una dall'altra. Sono state effettuate quindi 20 iterazioni caratterizzate da un tempo di simulazione crescente. Allo scadere del tempo di simulazione per ogni iterazione si attende quindi lo svuotamente completo del sistema riportandolo così allo stato originale.

Infine in ogni iterazione viene eseguita la simulazione con 100 seed diversi da cui sono state ottenute le misurazioni utilizzate per calcolare la stima dei valori medi e i relativi intervalli di confidenza.

I grafici e le stime, sia per il caso FIFO e per il caso Short Job First, che verranno presentati in seguito sono state fatte considerando il modello di sistema con 35 nodi fog, in quanto dall'analisi analitica risulta essere la configurazione migliore del numero di nodi fog.

7.1.1 FIFO vs **SJF**

I grafici evidenziano come all'aumentare del tempo considerato il valore medio effettivo si stabilizza intorno al valore teorico e l'intervallo di confidenza tenda a ridursi.

Le 20 iterazioni utilizzate per la simulazione del transitorio sono i seguenti intervalli di tempo misurati in secondi 300, 500, 800, 1000, 2000, 4000, 5000, 6000, 8000, 10000, 15000, 20000, 25000, 30000, 35000, 40000, 50000, 60000, 80000, 100000. I seed considerati variano di una unità a partire dal valore 123456789, mentre gli stream selezionati per generare le distribuzioni vengono mantenuti costanti al variare dei seed.

Dai grafici è possibile osservare che per alcune misurazioni la stazionarietà viene raggiunta anche prima dell'ultima iterazione presa in esame.

FIGURE 6: Tempo di servizio medio del Cloud

Figure 7: Tempo di servizio medio di un nodo Fog

I tempi di servizio medi del fog e del cloud raggiungono la stazionarietà in egual modo sia per il caso di coda FIFO sia per la coda SJF. Questo coincide con il fatto che la politica di coda non incide sui tempi medi di servizio dei centri.

 $F_{IGURE} \ 8: \ Tempo \ di \ risposta \ medio \ Cloud \ FIFO$

FIGURE 9: Tempo di risposta medio Cloud SJF

 F_{IGURE} 10: Tempo di risposta medio di un nodo Fog FIFO

FIGURE 11: Tempo di risposta medio di un nodo Fog SJF

FIGURE 12: Tempo di risposta medio sistema FIFO

FIGURE 13: Tempo di risposta medio sistema SJF

Per quanto riguarda i tempi di risposta medi possiamo osservare che nel caso dello SJF i risultati della simulazione sembrano essere più vicini a quelli teorici rispetto al caso FIFO. Ipotizziamo che questo sia dovuto alla minor variabilità dei tempi in coda, che viene confermato osservando i grafici relativi ai tempi di attesa e di popolazione media in coda. In generale il nodo fog tende ad avere un numero di richieste in attesa inferiore rispetto a quello del cloud.

FIGURE 14: Tempo di coda medio Cloud FIFO

 $F_{IGURE} \ 15: \ Tempo \ medio \ in \ coda \ Cloud \ SJF$

FIGURE 16: Tempo medio in coda di un nodo Fog FIFO

 $F_{IGURE}\ 17{:}\ Tempo\ medio\ in\ coda\ di\ un\ nodo\ Fog\ SJF$

FIGURE 18: Popolazione media in coda Cloud FIFO

 F_{IGURE} 19: Popolazione media in coda Cloud SJF

 F_{IGURE} 20: Popolazione media in coda di un nodo Fog FIFO

FIGURE 21: Popolazione media in coda di un nodo Fog SJF

Infine analizzando i risultati del throughput per entrambe le implementazioni FIFO e SJF possiamo notare come i risultati convergono verso i valori teorici che corrispondono ai tassi di arrivo dei rispettivi sottosistemi, in quanto l'utilizzazione dei centri è sempre inferiore al 100%.

FIGURE 22: Throughput Cloud

FIGURE 23: Throughput di un nodo Fog

FIGURE 24: Throughput sistema

7.2 Studio Stazionario

Al fine di ottenere le stime dei valori medi e i relativi intervalli di confidenza, per le statistiche di stato stazionario è stato utilizzato il metodo Batch Means.

Con questo metodo il bias di stato iniziale viene eliminato perché le statistiche per ogni batch (diverso dal primo) vengono inizializzate allo stato del sistema al momento in cui vengono ripristinati i contatori statistici per il batch. Quindi, ogni batch ha per condizioni iniziali le condizioni finali del batch precedente; in questo modo, è possibile applicare le tecniche di stima degli intervalli per statistiche di transitorio anche a statistiche stazionarie.

I parametri adottati per il batch means sono i seguenti:

- k = 64
- size = T/k
- T = 10000000 secondi
- intervallo di confidenza con $\alpha = 0.05$

Nelle successive sezioni verranno mostrati due studi condotti attraverso il Batch Means. Il primo studio condotto in questa fase riguarda il comportamento del sistema al variare del numero di nodi fog. Di fatto questo comporta una variazione del tasso di arrivi nei nodi fog nonchè una diversa percentuale di routing in quanto i parcheggi tendono ad avere un numero di slot che si contrae al cambiamento del numero di nodi. In aggiunta a questo è stato studiato il comportamento del sistema con 35 nodi fog al variare del tasso di arrivo totale. Sebbene il risultato migliore del sistema SJF fosse 50 nodi fog per motivi di confronto sono stati stimati i tempi medi in base ad una configurazione con 35 nodi.

7.2.1 Studio 1: Batch Means FIFO

Riportiamo dunque i grafici relativi al caso FIFO confrontando il comportamento del cloud e di un nodo fog al variare del numero di nodi nel sistema.

Figure 25: Tempo di risposta medio

FIGURE 26: Tempo di attesa medio

FIGURE 27: Popolazione media in coda

FIGURE 28: BM: Throughput

Da questi grafici si può osservare come il tempo di risposta viene influenzato molto dal cloud in quanto questo dovrà interagire con più nodi del sistema quindi avrà tempi in coda maggiori per ogni richiesta. Questo è naturale in un modello di fog computing in quanto i nodi fog vengono propriamente sfruttati per avere tempi di risposta rapidi per l'utente sfruttando capacità computazionali ai bordi della rete. Come è evidente al crescere del numero di nodi se da una parte i nodi fog tenderanno ad avere tempi di attesa molto brevi e quindi tempi di risposta medi considervolmente piccoli, il cloud tenderà invece ad avere tempi di attesa molto lunghi che influenzeranno i tempi di risposta. Vicevera al diminuire del numero di nodi fog, il parcheggio si espanderà diminuendo così la probabilità di richieste inoltrate nel cloud e dunque il carico computazionale maggiore sarà del nodo fog.

Infine per quanto riguarda il grafico in Figura 28, viene mostrato il confronto tra il throughput del cloud e del fog con quello del sistema, quest'ultimo considerando tutti gli N nodi fog. Come previsto dall'analisi teorica, avendo un'utilizzazione inferiore a 1, il throughput coincide con i tassi di arrivo per ogni componente.

7.2.2 Studio 1:BM SJF

Osserviamo, quindi come il sistema con la politica short job first si comporta al crescere del numero di fog nello stazionario.

FIGURE 29: Tempo di risposta medio SJF

 $F_{IGURE} \ 30: \ Tempo \ di \ attesa \ in \ coda \ medio \ SJF$

 $F_{IGURE} \ 31: \ Popolazione \ media \ in \ coda \ SJF$

FIGURE 32: BM: Throughput SJF

Anche in questo caso, come spiegato nel sistema FIFO, il cloud tenderà ad avere un comportamento opposto nell'analisi dei tempi medi rispetto al singolo nodo fog.

Risulta quindi interessante confrontare i tempi di risposta e di attesa delle due implementazioni.

Come ci si aspetta dalla teoria al variare del numero dei fog il sistema FIFO avrà tempi di risposta maggiori rispetto al sistema SJF e ciò è dovuto ai tempi di attesa medi del cloud del sistema FIFO che risultano avere una crescita molto più rapida rispetto all'implementazione SJF.

FIGURE 33: Tempo di risposta medio FIFO vs SJF

FIGURE 34: Tempo di attesa in coda medio FIFO vs SJF

7.2.3 Studio 2: Batch Means FIFO vs SJF

In questa sezione affronteremo lo studio che riguarda l'analisi, attraverso il metodo del Batch Means, nello scenrario in cui si vuole osservare il comportamento del sistema al variare del tasso di arrivo fino ad una situazione estrema in cui l'utilizzazione di uno dei due sottosistemi sia prossima al 100%.

I tassi di arrivo totali nel sistema considerati variano da 1 a 6.3 richieste al secondo, con l'ultimo valore che corrisponde alla soglia massima tollerata dal sottosistema cloud prima che raggiunga un'utilizzazione pari a 1.

FIGURE 35: Tempo di risposta medio del sistema FIFO vs SJF

FIGURE 36: Tempi di risposta medi FIFO vs SJF

I precedenti grafici ci mostrano come i tempi di risposta medi del sistema SJF crescano più lentamente rispetto a quelli del caso FIFO. Il contribuito maggiore al trend in entrambi i casi è dovuto all'aumentare del tempo di risposta medio del cloud. In particolare, il tempo di risposta medio del sistema con code SJF risulta ancora accettabile per valori del tasso di arrivo prossimi al massimo tollerabile. Queste considerazioni risultano ancora più evidenti guardando i grafici relativi ai tempi medi di attesa dei due sistemi.

 F_{IGURE} 37: Tempo di attesa in coda medio FIFO vs SJF

FIGURE 38: Popolazione in coda media FIFO vs SJF

FIGURE 39: BM: Throughput

Come ci si aspetta dall'analisi teorica il throughput del sistema, e quello dei singoli centri, cresce linearmente all'aumentare del tasso di arrivo per poi arrestarsi in corrispondenza della soglia massima.

7.3 Tabelle Transitorio

Simulation Time	E(S) Cloud	Error	E(S) Fog	Error
300	1,52503	0,024351	1,232779	0,03885
500	1,525855	0,018798	1,240409	0,030408
800	1,522579	0,015315	1,246315	0,022924
1000	1,526526	0,014384	1,245546	0,021445
2000	1,529602	0,010344	1,245789	0,015315
4000	1,535661	0,006425	1,247372	0,01038
5000	1,534155	0,005913	1,248378	0,01
6000	1,534114	0,005787	1,248217	0,009158
8000	1,535705	0,004741	1,249043	0,007409
10000	1,536793	0,004461	1,248572	0,007425
15000	1,537702	0,003649	1,24809	0,0059
20000	1,538239	0,003229	1,244523	0,005344
25000	1,538136	0,002803	1,245811	0,004515
30000	1,53845	0,002635	1,246235	0,004239
35000	1,538848	0,00228	1,246909	0,003768
40000	1,539077	0,001993	1,247067	0,003383
50000	1,538536	0,001824	1,247147	0,003025
60000	1,538853	0,00157	1,247289	0,002728
80000	1,539138	0,001297	1,247997	0,002377
100000	1,53861	0,001237	1,248566	0,002072

 F_{IGURE} 40: Tempo di servizio medio FIFO

Simulation Time	E(S) Cloud	Error	E(S) Fog	Error
300	1,526101	0,024438	1,25934	0,042343
500	1,527368	0,018724	1,255847	0,031404
800	1,52066	0,015256	1,243037	0,023835
1000	1,525372	0,014318	1,254457	0,022076
2000	1,528431	0,010048	1,252493	0,014503
4000	1,535446	0,006704	1,247491	0,009534
5000	1,53442	0,005857	1,24904	0,009136
6000	1,53396	0,005764	1,250262	0,008856
8000	1,535496	0,004799	1,249225	0,007193
10000	1,536783	0,004359	1,249666	0,006283
15000	1,537741	0,003642	1,249015	0,004621
20000	1,538201	0,003249	1,248491	0,003834
25000	1,53828	0,002815	1,249048	0,003598
30000	1,538508	0,0026	1,248737	0,003347
35000	1,538776	0,002314	1,251136	0,003192
40000	1,539055	0,001993	1,250874	0,003122
50000	1,538399	0,001818	1,250038	0,002825
60000	1,538794	0,001585	1,249839	0,002357
80000	1,539161	0,001299	1,250071	0,00216
100000	1,538594	0,001232	1,250907	0,002046

 F_{IGURE} 41: Tempo di servizio medio SJF

Simulation Time	E(Ts) Cloud	Error	E(Ts) Fog	Error	E(Ts) Globale	Error
300	4,948835	0,385762	1,452419	0,059803	1,962644	0,073514
500	5,253347	0,347759	1,479247	0,05044	2,020867	0,059354
800	5,208771	0,277431	1,487239	0,03805	2,024263	0,047502
1000	5,296564	0,253341	1,48567	0,035173	2,031745	0,043546
2000	5,399068	0,208226	1,494683	0,025666	2,051327	0,034346
4000	5,677162	0,162607	1,501116	0,018447	2,086431	0,024451
5000	5,579797	0,13391	1,49947	0,017247	2,074747	0,02098
6000	5,576613	0,124114	1,498996	0,016517	2,073945	0,02042
8000	5,635158	0,123028	1,498343	0,01349	2,079328	0,017561
10000	5,64238	0,107802	1,496474	0,012643	2,078203	0,016004
15000	5,598497	0,08624	1,494596	0,010146	2,071801	0,012382
20000	5,601329	0,0775	1,488176	0,008758	2,065673	0,011101
25000	5,602113	0,066737	1,490036	0,007746	2,067614	0,009385
30000	5,601539	0,058632	1,489581	0,00712	2,067099	0,008633
35000	5,615884	0,051885	1,490516	0,00615	2,069514	0,007444
40000	5,630428	0,052646	1,489682	0,00566	2,070179	0,007375
50000	5,611239	0,050097	1,490155	0,004999	2,068674	0,006971
60000	5,617655	0,043322	1,490334	0,00451	2,069514	0,006077
80000	5,62481	0,039063	1,49072	0,004036	2,070638	0,00564
100000	5,617808	0,035871	1,491296	0,003543	2,070492	0,005062

FIGURE 42: Tempo di risposta medio FIFO

Simulation Time	E(Ts) Cloud	Error	E(Ts) Fog	Error	E(Ts) Globale	Error
300	3,478642	0,153545	1,459764	0,056968	1,818412	0,05806
500	3,582936	0,134013	1,46264	0,04407	1,832041	0,044464
800	3,593905	0,116834	1,449929	0,035578	1,82046	0,036928
1000	3,632361	0,114205	1,467044	0,033385	1,841541	0,034049
2000	3,646573	0,079028	1,478977	0,021056	1,854939	0,021557
4000	3,712815	0,051472	1,472768	0,013968	1,855559	0,014563
5000	3,687243	0,045547	1,474628	0,013208	1,854782	0,013527
6000	3,692039	0,045887	1,476345	0,012854	1,856995	0,013126
8000	3,695295	0,041626	1,473558	0,011177	1,854543	0,011244
10000	3,704235	0,036899	1,474504	0,009702	1,85641	0,01011
15000	3,705903	0,029124	1,47231	0,007203	1,854389	0,007786
20000	3,709874	0,025139	1,472813	0,005895	1,855301	0,006437
25000	3,718011	0,02309	1,47255	0,005535	1,855877	0,005975
30000	3,720595	0,020495	1,471278	0,005168	1,854872	0,005762
35000	3,724506	0,019097	1,474429	0,004798	1,858425	0,005244
40000	3,726481	0,017041	1,474424	0,00458	1,858624	0,004978
50000	3,724219	0,017542	1,472924	0,004254	1,856891	0,004656
60000	3,725015	0,015517	1,47244	0,003789	1,856489	0,004096
80000	3,730155	0,012984	1,472739	0,003329	1,857318	0,003726
100000	3,725459	0,011608	1,473968	0,003075	1,858062	0,003326

 $F_{IGURE} \ 43: \ Tempo \ di \ risposta \ medio \ SJF$

Simulation Time	E(Tq) Cloud	Error	E(Tq) Fog	Error
300	3,423805	0,373632	0,21964	0,032405
500	3,727492	0,336714	0,238839	0,027833
800	3,686193	0,267832	0,240923	0,021728
1000	3,770038	0,244261	0,240123	0,019587
2000	3,869466	0,201906	0,248894	0,014631
4000	4,141501	0,159299	0,253744	0,01138
5000	4,045642	0,13094	0,251093	0,009982
6000	4,042498	0,120909	0,250779	0,00965
8000	4,099453	0,120246	0,2493	0,007783
10000	4,105587	0,105251	0,247903	0,006756
15000	4,060796	0,084174	0,246506	0,005749
20000	4,063091	0,075587	0,243653	0,004831
25000	4,063977	0,065004	0,244225	0,004466
30000	4,06309	0,057139	0,243345	0,004023
35000	4,077036	0,050635	0,243607	0,003683
40000	4,091352	0,051635	0,242615	0,003343
50000	4,072703	0,04911	0,243009	0,002954
60000	4,078802	0,042527	0,243045	0,002682
80000	4,085673	0,038392	0,242723	0,002402
100000	4,079198	0,035233	0,24273	0,002064

 F_{IGURE} 44: Tempo di attesa medio in coda FIFO

Simulation Time	E(Tq) Cloud	Error	E(Tq) Fog	Error
300	1,952541	0,13756	0,200424	0,025059
500	2,055569	0,120548	0,206793	0,020818
800	2,073245	0,106329	0,206891	0,01706
1000	2,10699	0,103584	0,212587	0,016066
2000	2,118143	0,071251	0,226484	0,010527
4000	2,177369	0,046424	0,225277	0,007833
5000	2,152823	0,041224	0,225587	0,007147
6000	2,15808	0,041416	0,226084	0,006789
8000	2,159799	0,03803	0,224332	0,00608
10000	2,167453	0,03377	0,224838	0,005389
15000	2,168162	0,026711	0,223295	0,004156
20000	2,171673	0,022982	0,224322	0,003586
25000	2,17973	0,021241	0,223502	0,003336
30000	2,182088	0,018865	0,222542	0,003016
35000	2,18573	0,01765	0,223293	0,002709
40000	2,187426	0,015916	0,223549	0,002616
50000	2,18582	0,016381	0,222886	0,002341
60000	2,186221	0,014577	0,222601	0,002201
80000	2,190994	0,012143	0,222669	0,001834
100000	2,186865	0,010786	0,223061	0,001599

 $F_{IGURE}\ 45{:}\ Tempo\ di\ attesa\ medio\ in\ coda\ SJF$

Simulation Time	E(Nq) Cloud	Error	E(Nq) Fog	Error
300	1,617871	0,198042	0,028645	0,004558
500	1,750918	0,167747	0,030963	0,00383
800	1,7322	0,131859	0,031849	0,003074
1000	1,776561	0,121042	0,031852	0,002851
2000	1,825754	0,099477	0,033033	0,002079
4000	1,956753	0,078003	0,033477	0,001623
5000	1,907726	0,063911	0,03302	0,001428
6000	1,905726	0,059721	0,032932	0,00138
8000	1,934695	0,060174	0,032614	0,001105
10000	1,936552	0,052269	0,032421	0,000962
15000	1,912569	0,041585	0,032195	0,000811
20000	1,91492	0,037597	0,031844	0,000675
25000	1,914947	0,032114	0,03192	0,000631
30000	1,913979	0,028337	0,031818	0,000573
35000	1,919934	0,024945	0,03187	0,000525
40000	1,927261	0,025676	0,031709	0,000475
50000	1,919056	0,024461	0,031746	0,000421
60000	1,920613	0,021128	0,031723	0,000371
80000	1,923991	0,019069	0,031671	0,000329
100000	1,92122	0,017551	0,031659	0,000279

 $F_{IGURE}\,46\colon \text{Popolazione media in coda FIFO}$

Simulation Time	E(Nq) Cloud	Error	E(Nq) Fog	Error
300	0,908579	0,06947	0,025466	0,003414
500	0,960954	0,06165	0,026545	0,002866
800	0,975287	0,055701	0,027271	0,002463
1000	0,993661	0,053842	0,027928	0,0023
2000	0,999472	0,036864	0,029889	0,001528
4000	1,026934	0,02329	0,029553	0,001137
5000	1,013123	0,020665	0,029541	0,001031
6000	1,015284	0,020987	0,029569	0,000985
8000	1,016217	0,01959	0,029277	0,000864
10000	1,019959	0,017129	0,029365	0,000767
15000	1,01971	0,013575	0,029118	0,0006
20000	1,022179	0,011852	0,029293	0,000526
25000	1,026342	0,010901	0,029167	0,000484
30000	1,027561	0,00978	0,029052	0,000446
35000	1,028951	0,009062	0,029187	0,000403
40000	1,029682	0,008227	0,029201	0,000388
50000	1,029242	0,008446	0,029102	0,000344
60000	1,029078	0,007561	0,029054	0,000324
80000	1,03141	0,006361	0,029046	0,00027
100000	1,029619	0,005653	0,029106	0,000233

 $F_{\mbox{\scriptsize IGURE}}\,47\colon$ Popolazione media in coda SJF

Simulation Time	Throughput Cloud	Error	Throughput Fog	Error	Throughput Globale	Error
300	0,464664	0,008154	0,132893	0,003754	4,636373	0,119265
500	0,46709	0,005816	0,131313	0,003136	4,589194	0,099117
800	0,468824	0,004405	0,133378	0,002707	4,655746	0,08563
1000	0,470309	0,004093	0,133178	0,002312	4,650974	0,073524
2000	0,470835	0,002836	0,13289	0,001539	4,642465	0,048826
4000	0,472091	0,001759	0,131899	0,001054	4,612593	0,033187
5000	0,471333	0,001589	0,13143	0,000954	4,597114	0,029989
6000	0,471099	0,001659	0,131226	0,000935	4,590468	0,029455
8000	0,471476	0,001612	0,130797	0,000789	4,577381	0,024695
10000	0,471397	0,001352	0,130751	0,000701	4,575852	0,021945
15000	0,470791	0,001059	0,130609	0,000575	4,5708	0,018082
20000	0,471131	0,000927	0,130703	0,000548	4,574083	0,017234
25000	0,47109	0,000814	0,130694	0,000489	4,573786	0,015344
30000	0,470971	0,000787	0,130737	0,000428	4,575008	0,013406
35000	0,470855	0,000664	0,13082	0,000391	4,577497	0,012334
40000	0,470978	0,000638	0,130696	0,000361	4,573726	0,011376
50000	0,471126	0,000599	0,130635	0,000322	4,571962	0,010156
60000	0,470822	0,000543	0,130533	0,000289	4,568449	0,009131
80000	0,470869	0,000492	0,130488	0,000247	4,567091	0,00774
100000	0,470939	0,000461	0,130441	0,000205	4,565666	0,006417

FIGURE 48: Throughput FIFO

Simulation Time	Throughput Cloud	Error	Throughput Fog	Error	Throughput Globale	Error
300	0,462607	0,007897	0,129722	0,003925	4.534778	0.124524
500	0,46557	0,006045	0,129911	0,003141	4.543657	0.099472
800	0,468746	0,005125	0,13226	0,002803	4.620587	0.088586
1000	0,469961	0,004407	0,132042	0,002388	4.614973	0.075677
2000	0,470998	0,00311	0,132274	0,001692	4.623289	0.053053
4000	0,471479	0,001914	0,131245	0,001187	4.591457	0.037227
5000	0,470532	0,001609	0,130976	0,001067	4.582068	0.033432
6000	0,470292	0,001627	0,130788	0,001018	4.575918	0.032066
8000	0,470301	0,001521	0,130557	0,000819	4.568668	0.025765
10000	0,470461	0,001245	0,130621	0,000721	4.570839	0.022596
15000	0,470223	0,001068	0,13041	0,000567	4.563980	0.017854
20000	0,470617	0,000971	0,13057	0,000504	4.569402	0.015903
25000	0,470795	0,000828	0,130505	0,000425	4.567545	0.013405
30000	0,47085	0,000807	0,13052	0,000397	4.568069	0.012535
35000	0,470723	0,000724	0,130697	0,000376	4.573503	0.011929
40000	0,470691	0,000674	0,13061	0,000367	4.570732	0.011577
50000	0,47083	0,000619	0,130565	0,000332	4.569468	0.010516
60000	0,470677	0,000597	0,13051	0,000306	4.567575	0.009657
80000	0,470722	0,000534	0,130438	0,000264	4.565363	0.008283
100000	0,470797	0,000478	0,130484	0,00023	4.566898	0.007190

FIGURE 49: Throughput SJF

7.4 Tabelle Stazionario Studio1

Number of Fog	E(Ts) Cloud	Error	E(Ts) Fog	Error	E(Ts) Sistema	Error
6	4,298383	0,017358	25,368253	0,646402	25,760695	0,645994
10	4,489960	0,019273	2,914466	0,008470	3,333828	0,008463
30	5,452600	0,033421	1,541235	0,003960	2,097400	0,004793
35	5,586812	0,034918	1,495816	0,003968	2,071817	0,005338
40	5,995437	0,038873	1,431581	0,004321	2,093040	0,005849
50	6,578758	0,043130	1,410571	0,003704	2,127656	0,006331
75	8,475590	0,075115	1,355111	0,003499	2,341670	0,009070
100	11,245847	0,141706	1,326590	0,003748	2,707580	0,017676
120	14,774293	0,209969	1,315514	0,004219	3,199236	0,027544
150	25,681983	0,802647	1,302805	0,004513	4,739055	0,107068
190	162,114044	20,212379	1,289752	0,004954	24,134863	2,848489

 $F_{IGURE} \ 50: \ Tempo \ di \ risposta \ medio \ FIFO$

Number of Fog	E(Ts) Cloud	Error	E(Ts) Fog	Error	E(Ts) Sistema	Error
6	3,205558	0,009439	7,937111	0,131867	8,229875	0,131954
10	3,300971	0,008647	2,351048	0,004973	2,659391	0,005108
30	3,673324	0,012284	1,515978	0,003270	1,890878	0,003641
35	3,732518	0,012095	1,475415	0,002811	1,860313	0,003108
40	3,875044	0,011622	1,443586	0,003918	1,853139	0,004287
50	4,082623	0,012599	1,403780	0,003412	1,848908	0,003963
75	4,670392	0,022150	1,349957	0,004090	1,893684	0,004556
100	5,431088	0,034838	1,323714	0,003896	1,990760	0,005777
120	6,329487	0,049098	1,311018	0,004090	2,118027	0,007836
150	8,735813	0,143342	1,300175	0,004613	2,469376	0,019579
190	29,622662	2,699754	1,288971	0,004966	5,463989	0,381116

 $F_{IGURE} \ 51: \ Tempo \ di \ risposta \ medio \ SJF$

Number of Fog	E(Tq) Cloud	Error	E(Tq) Fog	Error
6	2,759108	0,016534	24,118884	0,645939
10	2,950520	0,018363	1,664519	0,007780
30	3,913269	0,032342	0,292921	0,002425
35	4,047372	0,034223	0,245250	0,002600
40	4,456278	0,038140	0,209150	0,002260
50	5,039513	0,042502	0,162032	0,001812
75	6,936395	0,074457	0,103715	0,001368
100	9,706708	0,140866	0,075998	0,001546
120	13,235168	0,209551	0,063326	0,001542
150	24,142841	0,801966	0,050177	0,001714
190	160,574835	20,211982	0,039519	0,001523

Figure 52: Tempo di attesa medio in coda FIFO

Number of Fog	E(Tq) Cloud	Error	E(Tq) Fog	Error
6	1,666262	0,008397	6,686860	0,131441
10	1,761537	0,007600	1,101367	0,004156
30	2,133962	0,011118	0,265532	0,001682
35	2,193097	0,011056	0,224076	0,001509
40	2,335856	0,010664	0,193508	0,001930
50	2,543386	0,011824	0,151925	0,001644
75	3,131192	0,021280	0,099473	0,001232
100	3,891951	0,033965	0,074437	0,001471
120	4,790361	0,048509	0,061435	0,001538
150	7,196675	0,142559	0,048787	0,001331
190	28,083465	2,699381	0,039343	0,001324

 $F_{IGURE} \ 53: \ Tempo \ di \ attesa \ medio \ in \ coda \ SJF$

Number of Fog	E(Nq) Cloud	Error	E(Nq) Fog	Error
6	1,150727	0,007578	18,365330	0,501210
10	1,259282	0,008185	0,760560	0,003850
30	1,824853	0,015907	0,044590	0,000390
35	1,905902	0,017052	0,032020	0,000370
40	2,151618	0,019295	0,023890	0,000280
50	2,510236	0,022255	0,014800	0,000170
75	3,687299	0,041341	0,006310	0,000090
100	5,444465	0,081458	0,003460	0,000070
120	7,708232	0,124574	0,002410	0,000060
150	14,757822	0,497327	0,001530	0,000050
190	103,467015	13,078622	0,000950	0,000040

 $F_{IGURE} \ 54: \ Popolazione \ in \ coda \ media \ FIFO$

Number of Fog	E(Nq) Cloud	Error	E(Nq) Fog	Error
6	0,695540	0,003860	5,088379	0,100781
10	0,751730	0,003550	0,503171	0,002131
30	0,993880	0,005740	0,040464	0,000277
35	1,033040	0,005780	0,029232	0,000221
40	1,127510	0,005570	0,022101	0,000244
50	1,266710	0,006430	0,013866	0,000158
75	1,665120	0,012070	0,006053	0,000079
100	2,182850	0,020120	0,003395	0,000071
120	2,789840	0,029030	0,002338	0,000061
150	4,400840	0,088620	0,001485	0,000044
190	18,091880	1,707950	0,000944	0,000033

 $F_{IGURE} \ 55 \hbox{: Popolazione in coda media SJF}$

Number of Fog	X Cloud	Error	X Fog	Error	X Sistema	Error
6	0,417050	0,000400	0,761292	0,000550	4,567766	0,003057
10	0,426800	0,000399	0,456920	0,000403	4,569237	0,003753
30	0,466310	0,000406	0,152231	0,000232	4,567408	0,006309
35	0,470880	0,000491	0,130535	0,000240	4,568565	0,007559
40	0,482810	0,000437	0,114232	0,000212	4,569590	0,007654
50	0,498090	0,000466	0,091350	0,000172	4,567727	0,007732
75	0,531550	0,000479	0,060873	0,000153	4,565581	0,010110
100	0,560850	0,000474	0,045566	0,000142	4,557921	0,012419
120	0,582370	0,000421	0,038047	0,000126	4,565910	0,013162
150	0,611150	0,000499	0,030459	0,000111	4,568703	0,014384
190	0,643780	0,000552	0,023970	0,000094	4,556294	0,015358

FIGURE 56: Throughput FIFO

Number of Fog	X Cloud	Error	X Fog	Error	X Sistema	Error
6	0,417416	0,000392	0,760879	0,000530	4,565745	0,002958
10	0,426746	0,000391	0,456856	0,000432	4,568556	0,004010
30	0,465729	0,000434	0,152389	0,000248	4,570824	0,006677
35	0,471032	0,000468	0,130449	0,000206	4,565945	0,006404
40	0,482690	0,000437	0,114202	0,000209	4,567959	0,007577
50	0,498031	0,000427	0,091267	0,000180	4,563853	0,008046
75	0,531766	0,000445	0,060851	0,000154	4,564291	0,010210
100	0,560832	0,000506	0,045598	0,000148	4,560616	0,012907
120	0,582362	0,000474	0,038045	0,000129	4,565706	0,013440
150	0,611434	0,000477	0,030424	0,000115	4,564185	0,014891
190	0,643777	0,000508	0,023985	0,000091	4,558549	0,014789

FIGURE 57: Throughput SJF

7.5 Tabelle Stazionario Studio2

Tasso di arrivo	E(Ts) Cloud	Error	E(Ts) Fog	Error	E(Ts) Sistema	Error
1	1,831141	0,004753	1,292791	0,005326	1,481581	0,005274
2	2,261373	0,006545	1,345524	0,004159	1,578672	0,004040
3	2,942727	0,010974	1,400246	0,003315	1,703642	0,003657
4	4,218600	0,018372	1,458139	0,003647	1,893077	0,003892
5	7,452804	0,056661	1,520475	0,004140	2,288859	0,007645
6	32,874914	1,095462	1,588133	0,003742	4,977536	0,113186
6,3	1630,953869	236,563098	1,613420	0,003472	169,764764	24,390140

FIGURE 58: Tempo di risposta medio FIFO

Tasso di arrivo	E(Ts) Cloud	Error	E(Ts) Fog	Error	E(Ts) Sistema	Error
1	1,807849	0,004372	1,292380	0,005260	1,478769	0,005171
2	2,133946	0,004982	1,340664	0,003898	1,560674	0,003804
3	2,56349	0,006333	1,390557	0,003626	1,654853	0,003750
4	3,190863	0,008418	1,443006	0,003300	1,771984	0,003456
5	4,369237	0,019507	1,496922	0,003579	1,947390	0,004115
6	9,883703	0,191998	1,550265	0,003555	2,569275	0,019941
6,3	173,883493	42,265807	1,566885	0,004108	19,494273	4,358044

FIGURE 59: Tempo di risposta medio SJF

Tasso di arrivo	so di arrivo E(Tq) Cloud		E(Tq) Fog	Error	
1	0,291587	0,002696	0,046468	0,001315	
2	0,721220	0,004895	0,095504	0,001348	
3	1,403224	0,009778	0,150094	0,001759	
4	2,679325	0,017578	0,208742	0,002179	
5	5,913632	0,056115	0,270296	0,002564	
6	31,335740	1,094857	0,339446	0,002511	
6,3	1629,414602	236,562811	0,361903	0,002377	

FIGURE 60: Tempo di attesa medio in coda FIFO

Tasso di arrivo	E(Tq) Cloud	Error	E(Tq) Fog	Error	
1	0,268296	0,002241	0,045837	0,001195	
2	0,593794	0,003283	0,092807	0,001335	
3	1,02398	0,005017	0,141788	0,001539	
4	1,651582	0,007215	0,192555	0,001584	
5	2,83007	0,018607	0,246149	0,001902	
6	8,34455	0,191475	0,301882	0,001968	
6,3	172,34501	42,265331	0,318129	0,002284	

FIGURE 61: Tempo di attesa medio in coda SJF

Tasso di arrivo	sso di arrivo E(Nq) Cloud		E(Nq) Fog	Error	
1	0,030106	0,000297	0,001328	0,000038	
2	0,148937	0,001091	0,005448	0,000083	
3	0,434421	0,00318	0,012852	0,000162	
4	1,105522	0,007894	0,023838	0,000262	
5	3,049375	0,030212	0,038628	0,000388	
6	19,398362	0,687775	0,058183	0,000455	
6,3	1058,585083	153,736251	0,065173	0,000468	

Figure 62: Popolazione in coda media FIFO

Tasso di arrivo	E(Nq) Cloud	Error	E(Nq) Fog	Error
1	0,027708	0,000254	0,001309	0,000034
2	0,122632	0,000741	0,005294	0,000083
3	0,317006	0,001672	0,012141	0,000139
4	0,681475	0,003267	0,021965	0,000196
5	1,459683	0,010311	0,035180	0,000298
6	5,165485	0,120979	0,051773	0,000355
6,3	161,156786	21,762212	0,057209	0,000441

 $F_{IGURE} \ 63: \ Popolazione \ in \ coda \ media \ SJF$

Tasso di arrivo	X Cloud	Error	X Fog	Error	X Sistema	Error
1	0,103247	0,000190	0,028577	0,000104	1,000335	0,003304
2	0,206504	0,000278	0,057039	0,000164	1,997035	0,005224
3	0,309584	0,000334	0,085619	0,000178	2,997300	0,005665
4	0,412597	0,000446	0,114198	0,000198	3,997449	0,006200
5	0,515627	0,000421	0,142907	0,000223	5,001697	0,006999
6	0,618920	0,000492	0,171407	0,000243	5,999657	0,007583
6,3	0,649347	0,000449	0,180083	0,000262	6,302430	0,008197

FIGURE 64: Throughput FIFO

Tasso di arrivo	X Cloud	Error	X Fog	Error	X Sistema	Error
1	0,103271	0,000194	0,028572	0,000101	1,000182	0,003203
2	0,206521	0,000277	0,057036	0,000169	1,996973	0,005343
3	0,309583	0,000356	0,085629	0,000188	2,997607	0,005921
4	0,412616	0,000419	0,114072	0,000225	3,993515	0,007049
5	0,51576	0,000478	0,142918	0,000242	5,002177	0,007600
6	0,618845	0,000484	0,171503	0,000212	6,002567	0,006638
6,3	0,649748	0,00048	0,179829	0,000230	6,294843	0,007222

FIGURE 65: Throughput SJF