CPU II

Design

Chapter 4

CPU Model

Processor pins

- Power supply
- Ground
- Clock
- Address pins
- Data pins
- IO pins
- Read pin (to memory)
- Write pin (to memory)
- Interrupt pins

CPU Model

Execution Cycle

- Determine instruction
- Fetch instruction
- Decode instruction
- Fetch operands
- Execute
- Store result

• ...

Execution Cycle

Figure 6. The Parallel Instruction Fetches and Instruction Executions

Figure 7. Single Cycle ALU Operation

CPU Core Components

- ALU
 - Computation unit
- Register
 - Fast data storage
- Control unit
 - Management unit
- Internal bus
 - Connect the three components

CPU Core Components

Internal Bus

- Control signals + tri-state gates
- Types
 - Data bus
 - Data mem, registers, IOs
 - Address bus
 - Program counter (to code mem)
 - Registers (to data mem)
 - Control bus
 - Instruction decoder

ALU

- Arithmetic instructions
 - Integer and floating arithmetic computation
 - Signed and unsigned addition and subtraction
 - Multiplication? (*)
 - Division? (/ %)
 - Logarithm, exponentiation, ??
- Logic instructions
 - AND, OR, XOR
 - NOT: 1's and 2's complements

ALU

- Branch instructions
 - Conditional branch
 - Jump : direct, indirect, relative, absolute
 - Call, return : direct, indirect, relative, absolute
- Data transfer instructions
 - Mem to and from reg
 - Reg to reg, mem to mem
 - Mem and reg to and from IO
 - Code mem to and from data mem

ALU

- Bit and bit testing instructions
 - Set, clear
 - Swap, shift
 - Test
- MCU and MMU control instructions
 - NOP
 - Sleep (pause)
 - Soft interrupt
 - Memory control and map

Registers

- Store operands and results
- Made by flip-flop or SRAM
- Storage register vs. shift register
- Special registers
 - Status register
 - State of a processor
 - Timer
 - Program counter

Control Unit

- Fetch instruction
 - Sequential
 - Branch
- Fetch operands
 - Pipeline
- Control execution
 - Select functional unit
 - Signal functional unit

CPU Clock

- External clock
- Internal clocks
 - Generation
 - How? (RC delay)
 - Divide
 - How? (Counter)

On-chip Memory

- Non-volatile memory
 - Data in memory will not disappear
 - Read-only memory (ROM): Figure 4-39
 - Programmable link/fuse : Figure 4-40
 - Types
 - MROM
 - PROM
 - EPROM
 - EEPROM
 - Flash

Volatile Memory

- Random-access memory (RAM)
- Types
 - SRAM : flip-flop
 - DRAM : capacitor
 - Discharge when read or overtime
 - Need recharge / refresh
 - Refresh is controlled by memory controller

Cache

- Level-1 cache
 - Inside CPU
 - Cache vs. on-chip main memory
 - Snapshot of a part of main memory
 - Directly interact with the CPU
 - Most code only access code and data within a range
 - Cache hit vs. cache miss

Cache

- Data transfer between cache and main memory
 - Consistency
 - Read criteria: high hit rate and low miss rate
 - Write strategies
 - Write through
 - Write back
 - CPU and memory architecture
 - CPU↔cache↔MMU↔memory↔DMA↔HD

On-chip Memory Management

Functionalities

- Control multiple physical memories
- Translate logical address to physical address
- Handle memory security
- Control cache
- Handle bus arbitration between CPU and memory
- Memory organization
 - Code and data memory
 - Memory mapping

Example: Memory and IO Mapping

- 256 IOs
- 1 64KB ROM (flash)
- 3 64KB RAMs
- Von-Nueman architecture
- Mapping (20-bit address space)
 - 0x00 0xFF IOs (share space with ROM)
 - 0x100 0xFFFF code in ROM
 - 0x10000 0x3FFFF data in RAMs
 - A selection signal on 0x**000**XX

Processor I/O

- Most concepts are the same as board I/O
 - because the boundary of a board and a processor in an embedded system is not as clear as in a regular computer.
- I/O pin
 - Unidirectional (in or out)
 - Bidirectional (in and out)
 - Programmable

10 Pin Example

10 Pin Example

- LEDs
 - Connected to pin set A: 0, 1, 2
 - Two registers control pin set A
 - DDRA (\$1A (\$3A)): direction control
 - 0 : input
 - 1 : output
 - PORTA (\$1B (\$3B)) : data output
 - PINA (\$19 (\$39)) : data input

Embedded I/O Components

- Serial I/O
 - USART (example in sensor)
 - Universal Synchronous Asynchronous Receiver Transmitter
 - SPI
 - Serial Peripheral Interface
 - JTAG
 - Joint Test Action Group, IEEE 1149.1
 - Diagnose software and hardware of embedded system

JTAG

- Debug support is for many software developers the main reason to be interested in JTAG.
- Debugging architectures built up using JTAG, such as ARM CoreSight, Nexus, ...
- Processors can normally be halted, single stepped, or let run freely.
- Code breakpoints are supported, both for code in RAM and in ROM/flash.
- Data breakpoints are often available, as is bulk data download to RAM.

JTAG

JTAG pins

- TDI (Test Data In): input JTAG instructions
- TDO (Test Data Out) : obtain scanned data
- TCK (Test Clock): clock, SPI
- TMS (Test Mode Select): state control
- TRST (Test Reset) optional

09/27/12

JTAG

Examples of JTAG instructions

- EXTEST: for external testing, such as using pins to probe board-level behaviors
- INTEST: for internal testing, such as using pins to probe on-chip behaviors
- PRELOAD : loading pin output values before EXTEST
- SAMPLE : reading pin values into the boundary scan register
- HIGHZ: deactivates the outputs of all pins
- RUNBIST : places the chip in a self-test mode
- SCAN_N: configures a scan path select register (SCREG) affecting the signals to which other boundary scan operations apply
- USERCODE: returns a user-defined code, for example to identify which FPGA image is active
- HALT, RESTART : halts or restarts the CPU.

JTAG Example

- Boundary-scan Capabilities
- Debugger Access to:
 - All Internal Peripheral Units
 - Internal and External RAM
 - The Internal Register File
 - Program Counter
 - EEPROM and Flash Memories
- Extensive On-chip Debug Support for Break
 - AVR Break Instruction
 - Break on Change of Program Memory Flow
 - Single Step Break
 - 4 : Program Memory Breakpoints + Data Memory Breakpoints
- Programming of Flash, EEPROM, Fuses, and Lock Bits
- On-chip Debugging Supported by AVR Studio

JTAG Example

09/27/12

Interrupts

- Hardware interrupt
 - Internal
 - Timer, MMU, ADC, operation error, debugging
 - External
 - Hard drive, reset,
- Software interrupt
 - INT instruction
 - Trigger a special routine to change context or mode
- Interrupt vector

Interrupt Service

- Service routine (pseudo-code)
 - When an interrupt is triggered, normally the interrupt flag is cleared to disable other interrupts.
 - Save context
 - Enable other interrupts (optional, set the interrupt flag)
 - Execute the interrupt routine
 - Disable other interrupts (clear the interrupt flag)
 - Restore context
 - Return (normally the interrupt flag is set by the return)
- Example : case8.interrupt

External Interrupt

- Trigger hardware
 - Interrupt pins (IRQs)
 - Interrupt controller
- Trigger mechanism
 - Level-trigger
 - Edge-trigger
- Interrupt controller
 - Slave processor + I/O device

Processor Performance

- Computational performance
 - Throughput: instructions per second (MIPS)
 - Reliability: mean time between two failures
 - Recoverability: mean time from fail to normal
 - Availability: mean time from normal to fail
- Power performance
 - Duty percentage: mean percentage of execution
 - Idle-mode power consumption