PKU 高等代数 I2023 秋期中

2023年11月9日

1.(4*7') 计算下列各行列式:

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & a_1 & 0 & \cdots & 0 & 0 \\ 1 & 0 & a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & a_{n-2} & 0 \\ 1 & 0 & 0 & \cdots & 0 & a_{n-1} \end{vmatrix}, \begin{vmatrix} 1 - x_1 & x_2 & 0 & \cdots & 0 & 0 \\ -1 & 1 - x_2 & x_3 & \cdots & 0 & 0 \\ 0 & -1 & 1 - x_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 - x_{n-1} & x_n \\ 0 & 0 & 0 & \cdots & -1 & 1 - x_n \end{vmatrix}$$

2.(32') 已知

$$\alpha_1 = (1,1,2,4)^T, \alpha_2 = (0,1,1,2)^T, \alpha_3 = (-1,1,0,0), \alpha_4 = (0,1,1,3)^T, \alpha_5 = (-1,-1,-2,-3)^T; \beta = (0,3,3,7)^T$$

- (a)(12) 求 α_1,\ldots,α_5 的一个极大线性无关组。
- (b)(10') 证明: $\beta \in <\alpha_1, ..., \alpha_5>$.
- (c)(10) 求出方程组 $\sum_{i=1}^{5} \alpha_i x_i = \beta$ 的解集。
 - 3.(10') 设 $\alpha_1,\alpha_2,\ldots,\alpha_m\in\mathbb{F}^n$ 是线性无关向量组, $\beta_1,\beta_2,\ldots,\beta_n$ 是 \mathbb{F}^n 的基。
 - a 如果 m < n, 证明 $\exists \{i_1, i_2, \ldots, i_{n-m}\} \subset \{1, 2, \ldots, n\}, \alpha_1, \ldots, \alpha_m, \beta_{i_1}, \ldots, \beta_{i_{(n-m)}}$ 是 \mathbb{F}^n 的一组基。
 - b 满足条件 a 的向量组 $\beta_{i_1},\ldots,\beta_{i_{(n-m)}}$ 是唯一的吗? 对你的判断给出证明。
 - 4.(10) 设 $A = (a_{ij})_{n \times n}$. 证明下列条件等价:
 - a rank(A) = r

b
$$\exists A \begin{pmatrix} i_1 & i_2 & \cdots & i_r \\ j_1 & j_2 & \cdots & j_r \end{pmatrix} \neq 0$$
,且 $\forall i, j \in 1, 2, \dots, n$ 都有 $A \begin{pmatrix} i_1 & i_2 & \cdots & i_r & i \\ j_1 & j_2 & \cdots & j_r & j \end{pmatrix} = 0$. 其中 $1 \leq i_1 < i_2 < \dots < i_r \leq n, \ 1 \leq j_1 < j_2 < \dots < j_r \leq n$.

5.(10') 设 $\alpha_1, \ldots, \alpha_n, \beta \in \mathbb{F}^n$, $A = (\alpha_1, \ldots, \alpha_n)$. $B_i = (\ldots, \beta, \ldots)$ 是把 A 的第 i 列用 β 替换所得到的矩阵, $i = 1, 2, \ldots, n$. 证明: 当 $|A| \neq 0$ 时,方程组 $\sum_{i=1}^n \alpha_i x_i = \beta$ 的解为 $(\frac{|B_1|}{|A|}, \ldots, \frac{|B_n|}{|A|})^{\mathrm{T}}$ 。

6.(10') 设 $f:\mathcal{M}_n(\mathbb{F})\to\mathbb{F}$ 是一个函数,满足下列条件:

a
$$\forall 1 \leq i < j \leq n, f(\alpha_1, \dots, \alpha_i, \dots, \alpha_j, \dots, \alpha_n) = -f(\alpha_1, \dots, \alpha_j, \dots, \alpha_i, \dots, \alpha_n);$$

b
$$\forall 1 \leq i \leq n, c, d \in \mathbb{F}, f(\alpha_1, \dots, c\alpha_i + d\beta_i, \dots, \alpha_n) = cf(\alpha_1, \dots, \alpha_i, \dots, \alpha_n) + df(\alpha_1, \dots, \beta_i, \dots, \alpha_n);$$

c $f(e_1,e_2,\ldots,e_n)=1$ 。 e_1,\ldots,e_n 是 \mathbb{F}^n 的标准基,第 i 位是 1,其他位都是 0。

证明: $f(\alpha_1, \ldots, \alpha_n) = |\alpha_1, \ldots, \alpha_n|$.