Условная вероятность. Полная вероятность. Теорема Байеса

Условная вероятность - вероятность наступления одного события при условии наступлении второго.

$$P(A|B) = rac{P(A\cap B)}{P(B)}$$

$$P(A|B) = rac{P(A\cap B)}{P(B)}$$

$$P(A \cap B) = P(A|B)P(B)$$

Предположим, что кто-то бросает две честные шестигранные кости, и мы должны предсказать результат. D1 – это значение первой кости, а D2 – второй.

Какова вероятность, что D1 = 2

$$P(D1=2) = \frac{6}{36} = \frac{1}{6}$$

_		D_2						
+		1	2	3	4	5	6	
D_1	1	2	3	4	5	6	7	
	2	3	4	5	6	7	8	
	3	4	5	6	7	8	9	
	4	5	6	7	8	9	10	
	5	6	7	8	9	10	11	
	6	7	8	9	10	11	12	

Предположим, что кто-то бросает две честные шестигранные кости, и мы должны предсказать результат. D1 – это значение первой кости, а D2 – второй.

Какова вероятность, что

$$D1 + D2 \le 5$$

$$P(D1 + D2 \le 5) = \frac{10}{36}$$

+		D_2						
		1	2	3	4	5	6	
D_1	1	2	3	4	5	6	7	
	2	3	4	5	6	7	8	
	3	4	5	6	7	8	9	
	4	5	6	7	8	9	10	
	5	6	7	8	9	10	11	
	6	7	8	9	10	11	12	

Предположим, что кто-то бросает две честные шестигранные кости, и мы должны предсказать результат. D1 — это значение первой кости, а D2 — второй.

Какова вероятность, что D1 = 2, при условии $D1 + D2 \le 5$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{3/36}{10/36}$$
$$P(D1 = 2 \mid D1 + D2 \le 5) = \frac{3}{10}$$

+		D_2						
		1	2	3	4	5	6	
D_1	1	2	3	4	5	6	7	
	2	3	4	5	6	7	8	
	3	4	5	6	7	8	9	
	4	5	6	7	8	9	10	
	5	6	7	8	9	10	11	
	6	7	8	9	10	11	12	

Важно! Вероятность А при условии В, не равна вероятности В при условии А!

$$P(A|B) \neq P(B|A)$$

$$P(A|B) = P(B|A)$$
 Только если $P(A) = P(B)$

Формула полной вероятности позволяет вычислить вероятность интересующего события через условные вероятности этого события

$$P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$$

Теорема Байеса - позволяет найти вероятность события при условии, что произошло другое взаимосвязанное с ним событие

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Пусть вероятность брака у первого рабочего p_1 = 0,9, у второго рабочего — p_2 = 0,5, а у третьего p_3 = 0,2.

Первый изготовил n_1 = 800 деталей, второй — n_2 600 деталей, а третий — n_3 = 900 деталей.

Начальник цеха берёт случайную деталь, и она оказывается бракованной. Спрашивается, с какой вероятностью эту деталь изготовил третий рабочий?

Событие В — брак детали, событие А_і — деталь произвёл рабочий і.

$$P(A_i) = \frac{n_i}{N} \qquad N = n_1 + n_2 + n_3 \qquad P(B|A_i) = p_i$$

$$P(B) = \sum_{i=1}^{3} P(A|B_i)P(B_i) \qquad P(A_3|B) = \frac{P(B|A_3)P(A_3)}{P(B)}$$

$$P(A_3|B) = \frac{P(B|A_3)P(A_3)}{P(B)}$$

$$= \frac{P(B|A_3)P(A_3)}{P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3)}$$

$$= \frac{\frac{p_3n_3}{N}}{\frac{p_1n_1}{N} + \frac{p_2n_2}{N} + \frac{p_3n_3}{N}} = \frac{\frac{0.2 * 900}{2300}}{\frac{0.9 * 800}{2300} + \frac{0.5 * 600}{2300} + \frac{0.2 * 900}{2300}}$$

$$= 0.15$$