Regularization

Linear regression when d > n

Data in matrix/vector form

$$oldsymbol{A} := egin{bmatrix} \longleftarrow & oldsymbol{x}_1^ op & \longrightarrow \ \longleftarrow & oldsymbol{x}_2^ op & \longrightarrow \ & dots \ & dots \ & oldsymbol{x}_n^ op & \longrightarrow \end{bmatrix}, \qquad oldsymbol{b} := egin{bmatrix} y_1 \ y_2 \ dots \ & dots \ y_n \end{bmatrix} \ .$$

Ordinary least squares

Ordinary least squares \hat{w}_{ols} : typically "defined" by $\hat{w}_{\text{ols}} := (A^{\top}A)^{-1}A^{\top}b$. Ill-defined when d > n. In this case, the $d \times d$ matrix

$$oldsymbol{A}^{ op}oldsymbol{A} \ = \ \sum_{i=1}^n oldsymbol{x}_i oldsymbol{x}_i^{ op}$$

is not invertible (as its rank is at most n < d).

1/29

Regularization

Typical solution: regularization

Some examples:

- encourage $\|w\|_2^2$ to be small ("ridge regression")
- encourage $\|\boldsymbol{w}\|_1$ to be small ("Lasso")
- lacktriangledown encourage w to be sparse ("sparse regression")

Example: regularized least squares criterion

Find $oldsymbol{w} \in \mathbb{R}^d$ to minimize

$$\|\boldsymbol{A}\boldsymbol{w} - \boldsymbol{b}\|_2^2 + \lambda R(\boldsymbol{w})$$

where $\lambda > 0$ and $R: \mathbb{R}^d \to \mathbb{R}_+$ is a penalty function / regularizer.

Understanding regularization

How do I decide which type of regularization to use?

- ► Could just try them all . . .
- ▶ Better answer: try to understand their statistical behavior in a broad class of scenarios.

2/23

3 / 20

Ridge regression

Ridge regression

Ridge regression

Find $oldsymbol{w} \in \mathbb{R}^d$ to minimize

$$\|Aw - b\|_2^2 + \lambda \|w\|_2^2$$

where $\lambda > 0$.

This always has a unique solution.

Ridge regression via calculus

Ridge regression objective is convex function of w. Suffices to find w where gradient is zero.

$$\nabla_{\boldsymbol{w}} \Big\{ \|\boldsymbol{A}\boldsymbol{w} - \boldsymbol{b}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2} \Big\} = 2\boldsymbol{A}^{\top} (\boldsymbol{A}\boldsymbol{w} - \boldsymbol{b}) + 2\lambda \boldsymbol{w}.$$

This is zero when

$$(\boldsymbol{A}^{\top}\boldsymbol{A} + \lambda \boldsymbol{I})\boldsymbol{w} = \boldsymbol{A}^{\top}\boldsymbol{b},$$

a system of linear equations in w.

Matrix $A^{T}A + \lambda I$ is invertible since $\lambda > 0$, so its *unique* solution is

$$\hat{\boldsymbol{w}}_{ ext{ridge}} \; := \; (\boldsymbol{A}^{ op} \boldsymbol{A} + \lambda \boldsymbol{I})^{-1} \boldsymbol{A}^{ op} \boldsymbol{b} \,.$$

Ridge regression: geometry

If $\hat{m{w}}_{\mathrm{ols}}$ exists, then ridge regression objective (as function of $m{w}$) is

$$\|m{A}(m{w} - \hat{m{w}}_{\mathrm{ols}})\|_2^2 + \lambda \|m{w}\|_2^2 + (\mathsf{stuff} \ \mathsf{not} \ \mathsf{depending} \ \mathsf{on} \ m{w})$$
 .

Aside: Eigendecompositions

Every symmetric matrix $M \in \mathbb{R}^{d \times d}$ guaranteed to have eigendecomposition with real eigenvalues:

real eigenvalues: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$ $(\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_d));$ corresponding orthonormal eigenvectors: v_1, v_2, \dots, v_d $(V = [v_1 | v_2 | \cdots | v_d]).$

Eigenvectors v_1, v_2, \dots, v_d constitute an **orthonormal basis** for \mathbb{R}^d .

So every $oldsymbol{w} \in \mathbb{R}^d$ can be written as a linear combination of these vectors:

$$oldsymbol{w} \; = \; \sum_{j=1}^d \langle oldsymbol{v}_j, oldsymbol{w}
angle oldsymbol{v}_j \, .$$

Ridge regression: eigendecomposition

Write eigendecomposition of $oldsymbol{A}^{ op}oldsymbol{A}$ as

$$oldsymbol{A}^ op oldsymbol{A} = \sum_{j=1}^d \lambda_j oldsymbol{v}_j oldsymbol{v}_j^ op$$

where $v_1, v_2, \ldots, v_d \in \mathbb{R}^d$ are orthonormal eigenvectors with corresponding eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d \geq 0$.

▶ For $\lambda > 0$, the inverse of $\boldsymbol{A}^{\top}\boldsymbol{A} + \lambda \boldsymbol{I}$ exists, and has the form

$$\left(oldsymbol{A}^{ op}oldsymbol{A} + \lambda oldsymbol{I}
ight)^{-1} \; = \; \sum_{j=1}^d rac{1}{\lambda_j + \lambda} oldsymbol{v}_j oldsymbol{v}_j^{ op} \; .$$

9 / 29

Ridge regression vs. ordinary least squares

If $\hat{m{w}}_{
m ols}$ exists, then

$$egin{array}{lll} \hat{m{w}}_{
m ridge} &=& \left(m{A}^ op m{A} + \lambda m{I}
ight)^{-1} \left(m{A}^ op m{A}
ight) \hat{m{w}}_{
m ols} \ &=& \left(\sum_{j=1}^d rac{1}{\lambda_j + \lambda} m{v}_j m{v}_j^ op
ight) \left(\sum_{j=1}^d \lambda_j m{v}_j m{v}_j^ op
ight) \hat{m{w}}_{
m ols} \ &=& \left(\sum_{j=1}^d rac{\lambda_j}{\lambda_j + \lambda} m{v}_j m{v}_j^ op
ight) \hat{m{w}}_{
m ols} \quad ext{(by orthogonality)} \ &=& \sum_{j=1}^d rac{\lambda_j}{\lambda_j + \lambda} \langle m{v}_j, \hat{m{w}}_{
m ols}
angle m{v}_j \,. \end{array}$$

Interpretation: Shrink \hat{w}_{ols} towards zero by $\frac{\lambda_j}{\lambda_j + \lambda}$ factor in direction v_j .

Effective degrees-of-freedom: $\mathrm{df}(\lambda) := \sum_{j=1}^d \frac{\lambda_j}{\lambda_j + \lambda}$.

Coefficient profile

Horizontal axis: varying λ (large λ to left, small λ to right). **Vertical axis**: coefficient value in $\hat{\boldsymbol{w}}_{\mathrm{ridge}}$ for eight different variables.

.

Coefficient profile (flipped)

Horizontal axis: varying λ (small λ to left, large λ to right). **Vertical axis**: coefficient value in \hat{w}_{ridge} for eight different variables.

How to compare OLS and ridge?

- ► Case 1: A^TA not invertible.
 No comparison, because OLS even doesn't exist.
- ▶ Case 2: $A^{\top}A$ is invertible (but perhaps close to being singular). How do ridge regression and OLS compare?

Is there a general setting in which to analyze OLS and ridge regression?

- ▶ Statistical learning setting: data comes from unknown distribution P over $\mathbb{R}^d \times \mathbb{R}$, goal is to minimize expected square loss. (In context of regression, typically called **random design**.)
- **•** ...

Fixed-design setting

Easier/cleaner to study OLS and ridge regression in the fixed design setting:

Assume x_1, x_2, \ldots, x_n are not random; only y_1, y_2, \ldots, y_n are random. (A is not random; only b is random.)

Also assume all y_i have finite variance.

- ▶ Best predictor of y_i is $\mathbb{E}[y_i]$ (in terms of expected square loss). Note: $\boldsymbol{x}_i \mapsto \mathbb{E}[y_i]$ might not be realized by a linear function.
- lackbox Let $oldsymbol{w}_{\star} \in \mathbb{R}^d$ be a weight vector that minimizes

$$oldsymbol{w} \; \mapsto \; \mathbb{E} \Big[\| oldsymbol{A} oldsymbol{w} - oldsymbol{b} \|_2^2 \Big]$$

(best *linear* predictor).

If $oldsymbol{A}^ op oldsymbol{A}$ is invertible, then $oldsymbol{w}_\star = (oldsymbol{A}^ op oldsymbol{A})^{-1} oldsymbol{A}^ op \mathbb{E}[oldsymbol{b}].$

Basic question: how well can we estimate w_{\star} ?

OLS: fixed-design analysis

When $\hat{w}_{\rm ols}$ exists (i.e., when $A^{\top}A$ is invertible), then it is an unbiased estimator of w_{\star} :

$$\mathbb{E}[\hat{\boldsymbol{w}}_{\mathrm{ols}}] = \boldsymbol{w}_{\star}.$$

Let $oldsymbol{arepsilon} := oldsymbol{b} - oldsymbol{A} oldsymbol{w}_{\star}$. Then

$$\operatorname{cov}(\hat{\boldsymbol{w}}_{\operatorname{ols}}) = (\boldsymbol{A}^{\top}\boldsymbol{A})^{-1}\boldsymbol{A}^{\top} \mathbb{E}[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}]\boldsymbol{A}(\boldsymbol{A}^{\top}\boldsymbol{A})^{-1}.$$

For example, if $\boldsymbol{\varepsilon} \sim \mathrm{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$, then

$$\operatorname{cov}(\hat{oldsymbol{w}}_{ ext{ols}}) \; = \; \sigma^2(oldsymbol{A}^ op oldsymbol{A})^{-1} \; = \; \sigma^2 \sum_{j=1}^d rac{1}{\lambda_j} oldsymbol{v}_j oldsymbol{v}_j^ op \, ,$$

so the variance of $\langle oldsymbol{v}_j, \hat{oldsymbol{w}}_{\mathrm{ols}}
angle$ is

$$\operatorname{var}(\langle oldsymbol{v}_j, \hat{oldsymbol{w}}_{ ext{ols}}
angle) \ = \ oldsymbol{v}_j^ op \operatorname{cov}(\hat{oldsymbol{w}}_{ ext{ols}}) oldsymbol{v}_j \ = \ rac{\sigma^2}{\lambda_j} \,.$$

Note: if λ_d is very close to zero (so A^TA is close to being singular), then the variance in direction v_d is very high.

Ridge regression: fixed-design analysis

Ridge regression is not an *unbiased* estimator w_{\star} :

$$\mathbb{E}[\hat{\boldsymbol{w}}_{\mathrm{ridge}}] \neq \boldsymbol{w}_{\star}$$
.

But, covariance of \hat{w}_{ridge} is always "smaller" than that of \hat{w}_{ols} :

$$\begin{array}{ll} \operatorname{cov}(\hat{\boldsymbol{w}}_{\operatorname{ridge}}) \ = \ (\boldsymbol{A}^{\top}\boldsymbol{A} + \lambda \boldsymbol{I})^{-1}\boldsymbol{A}^{\top} \, \mathbb{E}[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^{\top}]\boldsymbol{A}(\boldsymbol{A}^{\top}\boldsymbol{A} + \lambda \boldsymbol{I})^{-1} \\ & = \ \boldsymbol{M} \operatorname{cov}(\hat{\boldsymbol{w}}_{\operatorname{ols}})\boldsymbol{M} \quad (\mathsf{if} \ \hat{\boldsymbol{w}}_{\operatorname{ols}} \ \mathsf{exists}) \,, \end{array}$$

where

$$oldsymbol{M} \ \coloneqq \ \sum_{j=1}^d rac{\lambda_j}{\lambda_j + \lambda} oldsymbol{v}_j oldsymbol{v}_j^ op \, .$$

For example, if $\boldsymbol{\varepsilon} \sim \mathrm{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$, then

$$\operatorname{cov}(\hat{m{w}}_{\operatorname{ridge}}) \ = \ \sigma^2 \sum_{j=1}^d rac{\lambda_j}{(\lambda_j + \lambda)^2} m{v}_j m{v}_j^ op \ = \ \sigma^2 \sum_{j: \lambda_j > 0} \underbrace{\left(rac{1}{(1 + \lambda/\lambda_j)^2}
ight)}_{\leq 1} \cdot rac{1}{\lambda_j} m{v}_j m{v}_j^ op.$$

Bias-variance trade-off

Very explicit bias-variance trade-off

$$egin{aligned} m{w}_{\star} - \mathbb{E}[\hat{m{w}}_{ ext{ridge}}] &= \sum_{j=1}^d rac{\lambda}{\lambda_j + \lambda} \langle m{v}_j, m{w}_{\star}
angle m{v}_j \,, \ & \cos(\hat{m{w}}_{ ext{ridge}}) &= (m{A}^{ op} m{A} + \lambda m{I})^{-1} m{A}^{ op} \, \mathbb{E}[m{arepsilon} m{arepsilon}^{ op}] m{A} (m{A}^{ op} m{A} + \lambda m{I})^{-1} \,. \end{aligned}$$

λ	bias	variance
↑	↑	
\downarrow	\rightarrow	↑

Using a similar analysis, can also reveal trade-off in excess expected square loss:

$$\mathbb{E} \Big[\| oldsymbol{A} \hat{oldsymbol{w}}_{ ext{ridge}} - oldsymbol{b} \|_2^2 \Big] - \mathbb{E} \Big[\| oldsymbol{A} oldsymbol{w}_\star - oldsymbol{b} \|_2^2 \Big] \,.$$

17 / 29

Other interpretations

ightharpoonup Suppose we replace A and b with

$$ilde{m{A}} \ := \ egin{bmatrix} m{A} \ \sqrt[]{\lambda} m{Q} \ \end{bmatrix} \ , \qquad ilde{m{b}} \ := \ egin{bmatrix} m{b} \ 0 \ \end{bmatrix} \ ,$$

where $oldsymbol{Q} \in \mathbb{R}^{d imes d}$ is any orthogonal matrix.

That is, add d fictitious labeled data $(\sqrt{\lambda} \boldsymbol{q}_j, 0)$ for $j=1,2,\ldots,d$, where $\boldsymbol{q}_1,\boldsymbol{q}_2,\ldots,\boldsymbol{q}_d$ is an orthonormal basis.

- ▶ Then $\tilde{\boldsymbol{A}}^{\top}\tilde{\boldsymbol{A}} = \boldsymbol{A}^{\top}\boldsymbol{A} + \lambda \boldsymbol{I}$, and $\tilde{\boldsymbol{A}}^{\top}\tilde{\boldsymbol{b}} = \boldsymbol{A}^{\top}\boldsymbol{b}$.
- $lackbox{ So }\hat{w}_{
 m ols}$ using $ilde{A}$ and $ilde{b}$ is the same as $\hat{w}_{
 m ridge}$ using A and b.
- lacktriangle For a similar reason, \hat{w}_{ridge} has a certain Bayesian interpretation.

Ridge regression: key takeaways

- ▶ Always well-defined (for $\lambda > 0$)
- ▶ Behavior depends on eigenvectors/eigenvalues of $A^{\top}A$; the original "coordinate system" is not relevant here.
- ▶ Relative to \hat{w}_{ols} (when it exists): shrinks \hat{w}_{ols} along eigenvector directions by amount related to eigenvalue and λ .
- ightharpoonup Regularization parameter λ is tuning-knob that controls bias-variance trade-off.
- ► Can be thought of as applying OLS to an augmented data set with "fake data" that ensures OLS is well-defined.

10 / 2

19 /

-- /-

Sparse regression

Sparsity

Another form of regularization: only consider sparse w—i.e., w with only a small number ($\ll d$) of non-zero entries.

Other advantages of sparsity (especially relative to ridge):

- ► Sparse solutions easier to "interpret" (but caveats about interpreting weights from before still apply).
- lacktriangledown Can be more efficient to evaluate $\langle w, x \rangle$ (both in terms of computing variable values and computing inner product).

Sparse regression methods

For any $T \subseteq \{1, 2, ..., d\}$, let $\hat{\boldsymbol{w}}_T := \mathsf{OLS}$ only using variables in T.

Subset selection

Brute-force strategy. Pick the $T\subseteq\{1,2,\ldots,d\}$ of size |T|=k for which

$$\|\boldsymbol{A}\hat{\boldsymbol{w}}_T - \boldsymbol{b}\|_2^2$$

is minimal, and return $\hat{m{w}}_T$.

Gives you exactly what you want (for given value k).

Only feasible for very small k, since complexity scales with $\binom{d}{k}$. (NP-hard optimization problem.)

Sparse regression methods

Forward stepwise regression

Greedy strategy. Starting with $T = \emptyset$, repeat until |T| = k:

Pick the $j \in \{1, 2, \dots, d\} \setminus T$ for which

$$\|A\hat{w}_{T\cup\{j\}}-b\|_2^2$$

is minimal, and add this j to T.

Return $\hat{\boldsymbol{w}}(T)$.

Gives you a k-sparse solution.

Primarily only effective when columns of $oldsymbol{A}$ are close to orthogonal.

Aside: l_p norms

For $p \geq 1$,

$$\|m{v}\|_p = \left(\sum_{j=1}^d |v_j|^p\right)^{1/p}.$$

In particular,

$$\|m{v}\|_1 = \sum_{j=1}^d |v_j|.$$

These are *norms* on \mathbb{R}^d , so:

- $ightharpoonup \|oldsymbol{u}-oldsymbol{v}\|_p$ is a valid *metric* on points in \mathbb{R}^d , and
- $\blacktriangleright \ \|c \boldsymbol{v}\|_p = |c| \cdot \|\boldsymbol{v}\|_p \text{ for any } \boldsymbol{v} \in \mathbb{R}^d \text{ and } c \in \mathbb{R}.$

Lasso (Tibshirani, 1994)

Lasso: least absolute shrinkage and selection operator

Let $\hat{m{w}}_{\mathrm{lasso}}$ be a minimizer of

$$oldsymbol{w} \; \mapsto \; rg \min_{oldsymbol{w} \in \mathbb{R}^p} \| oldsymbol{A} oldsymbol{w} - oldsymbol{b} \|_2^2 + \lambda \| oldsymbol{w} \|_1 \, .$$

Objective function is convex though not differentiable.

If $\hat{m{w}}_{
m ols}$ exists, then Lasso objective (as function of $m{w}$) is

$$\|m{A}(m{w}-\hat{m{w}}_{ ext{ols}})\|_2^2 + \lambda \|m{w}\|_1 + ext{(stuff not depending on }m{w} ext{)}\,.$$

25 / 29

Coefficient profile (Ridge vs. Lasso)

Horizontal axis: varying λ (large λ to left, small λ to right). Vertical axis: coefficient value in \hat{w}_{ridge} and \hat{w}_{lasso} for eight different variables.

Lasso: theory

Many results, mostly roughly of the following flavor. Suppose

- ▶ $\boldsymbol{b} \sim N(\boldsymbol{A}\boldsymbol{w}_{\star}, \sigma^2 \boldsymbol{I});$
- ▶ w_{\star} has $\leq k$ non-zero entries;
- ► A satisfies some special properties (typically not efficiently checkable);
- $\lambda \gtrsim \sigma \sqrt{2n \log(d)};$

then

$$\mathbb{E}\Big[\|\boldsymbol{w}_{\star} - \hat{\boldsymbol{w}}_{\text{lasso}}\|_{2}^{2}\Big] \leq O\bigg(\frac{\sigma^{2}k\log(d)}{n}\bigg).$$

Closely related to "compressed sensing"; theory involves high-dimensional convex geometry.

20 / 2:

Sparse regression: key takeaways

- ▶ **Sparsity**: a form of "regularization", but also desirable for other reasons.
- ► **Subset selection**: generally intractable.
- ▶ **Greedy algorithms** (e.g., forward stepwise regression): sometimes works.
- ► Lasso: shrink coefficients towards zero in a way that tends to lead to sparse solutions.