Standard 802.11 - Wi-Fi

### Zastosowania LAN/MAN

- Sieć Wi-Fi przypomina sieć komórkową.
- Najczęściej jest rozszerzeniem topologii sieci LAN.





Wykorzystanie anten kierunkowych umożliwia zastosowanie w sieciach miejskich.



### **Przypomnienie – IEEE 802.2**

- Warstwa łącza danych dzieli się na dwie podwarstwy:
  - MAC (Medium Access Control) warstwę dostępu do medium, np. 802.3 (Ethernet), 802.5 (TokenRing),
  - LLC (Logical Link Control) niezależną od technologii.
- LLC określa własne PDU
- Dzięki LLC możliwe jest łączenie sieci o różnych standardach MAC urządzeniem pracującym w drugiej warstwie modelu OSI/ISO – bridging.

### Przypomnienie – IEEE 802.2



- DSAP (Destination Service Access Point ) kod protokołu warstwy wyższej, do którego mają trafić dane
- SSAP (Source Service Access Point ) kod protokołu warstwy wyższej, z którego pochodzą dane
- Control np. sterowanie przepływem, numerowanie pakietów.
- Dane (lub wypełnienie), wielkość zapewniająca minimalną długość całego pola danych

### 802.11 - warstwy i funkcje

- MAC Medium Access Control
  - sposób dostępu do medium, fragmentacja, enkrypcja.
- MAC Management
  - synchronizacja, roaming, MIB, sterowanie mocą, tworzenie komórek BSS.
- Station Management
  - koordynacja wszystkich funkcji zarządzania.
- PLCP Physical Layer Convergence Protocol
  - mapowanie ramek MPDU na ramki warstwy fizycznej,
  - wykrywanie zajętości kanału.
- PMD Physical Medium Dependent
  - definiuje charakterystykę medium i metody transmisji i odbioru danych
- PHY Management
  - channel selection, MIB







### IEEE 802.11. Nie tylko a/b/g/n/ad

- 802.11 Specyfikacja standardu WLAN warstwa fizyczna: 2,4 GHz DSSS, FHSS oraz IR.
- 802.11a (Wi-Fi 2) Warstwa fizyczna dla 5,2 GHz, OFDM.
- 802.11b (Wi-Fi 1) Warstwa fizyczna dla 2,4 GHz, DSSS + CCK.
- 802.11c Usprawnienia w warstwie MAC dla bridge'ów.
- 802.11d –Regulacja zakresów częstotliwości dla większej liczby krajów.
- 802.11e -Rozszerzenie warstwy MAC o sterowania parametrami QoS.
- 802.11F Inter-Access Point Protocol określa wymagania dla AP i pozwala na tworzenie sieci z punktów dostępowych różnych producentów.
- 802.11g (Wi-Fi 3) Usprawnienia wersji b w warstwie fiz., przepływność > 20 Mb/s.
- 802.11h –Rozszerzenie wersji a o zarządzanie mocą i dynamiczny wybór kanału.
- 802.11i -Rozszerzenia warstwy MAC o mechanizmy bezpieczeństwa.
- 802.11n (**Wi-Fi 4**) Przepływności do 200 Mb/s, technologia MIMO (09.2009)
- 802.11ac (**Wi-Fi 5**) Warstwa fizyczna 5 GHz, przepływność > 500 Mb/s (01.2014)
- 802.11ad (WiGig) Warstwa fizyczna 60 GHz, przepływność do 7 Gbit/s
- 802.11ax (**Wi-Fi 6**) w trakcie specyfikacji, przepływność ok. 10 Gbit/s
- Ponadto  $802.11\{j|k|m|p|r|s|T|u|v\}$

### Wi-Fi 0/1/2/3/4/5/6/7

| Wi-Fi Generations |                  |                                 |         |                             |
|-------------------|------------------|---------------------------------|---------|-----------------------------|
| Generation        | IEEE<br>Standard | Maximum<br>Linkrate<br>(Mbit/s) | Adopted | Radio<br>Frequency<br>(GHz) |
| Wi-Fi 7           | 802.11be         | 40000                           | TBA     | 2.4/5/6                     |
| Wi-Fi 6E          | 802.11ax         | 600 to 9608                     | 2020    | 2.4/5/6                     |
| Wi-Fi 6           |                  |                                 | 2019    | 2.4/5                       |
| Wi-Fi 5           | 802.11ac         | 433 to 6933                     | 2014    | 5                           |
| Wi-Fi 4           | 802.11n          | 72 to 600                       | 2008    | 2.4/5                       |
| (Wi-Fi 3)         | 802.11g          | 6 to 54                         | 2003    | 2.4                         |
| (Wi-Fi 2)         | 802.11a          | 6 to 54                         | 1999    | 5                           |
| (Wi-Fi 1)         | 802.11b          | 1 to 11                         | 1999    | 2.4                         |
| (Wi-Fi 0)         | 802.11           | 1 to 2                          | 1997    | 2.4                         |
|                   |                  |                                 |         |                             |

### Warstwa fizyczna - 802.11

- 802.11
  - przepływności 1 lub 2 Mb/s,
  - pasmo 2,4-2,4835 GHz,
  - technika transmisji:
     DSSS, FHSS, IR-PPM.
- 802.11b
  - przepływności do 11 Mb/s
  - pasmo 2,4-2,4835 GHz,
  - technika transmisji: DSSS+ CCK
- efektywne przepustowości uzyskiwane w warstwie aplikacji to co najwyżej 50% podanej przepustowości,
- zależą m.in. od zakłóceń, interferencji, odległości od stacji.

- 802.11a
  - przepływności do 54 Mb/s
  - pasmo 5,2-5,8 GHz
  - technika transmisji: OFDM.
- 802.11g
  - przepływności do 54 Mb/s
  - pasmo 2,4-2,4835 GHz,
  - technika transmisji: ERP-DSSS, ERP-OFDM
- 802.11n
  - przepływności do 200 Mb/s
  - pasmo 2,4-2,4835 GHz,
  - technika transmisji: MIMO-OFDM.
- 802.11ac
  - przepływności do 1300Mb/s
  - pasmo 5 GHz (ISM),
  - technika transmisji: MIMO, MU-MIMO, OFDM.

### Warstwa fizyczna 802.11a - OFDM

- 12 niepokrywających się kanałów o szerokości 18 MHz odległych od siebie o 20 MHz
- różne sposoby modulacji dla różnych przepływności:
  - 6, 9 Mb/s BPSK
  - 12, 18 Mb/s QPSK
  - 24, 36 Mb/s 16-QAM
  - 48, 54 Mb/s 64-QAM





### Warstwa fizyczna 802.11b - DSSS

 14 kanałów o szerokości 22 MHz odległych od siebie o 5 MHz



### Skalowalność w ESS

- Niepokrywające się kanały umożliwiają zwiększenie pojemności sieci
  - -3 \* 11 = 33 Mb/s dla 802.11b
  - -3 \* 54 = 162 Mb/s dla 802.11g
  - -12 \* 54 = 648 Mb/s dla 802.11a









### Wdrożenie

- Zapewnienie odpowiedniego pokrycia przestrzeni
  - dopasowanie rozwiązania do istniejących warunków,
  - przeprowadzenie pomiarów zasięgu.
- Zapewnienie skalowalności rozwiązania
  - możliwości rozszerzenia zasięgu infrastruktury,
  - możliwości zwiększenia pojemności.
- Niezawodność
  - dostarczenie urządzeń zapasowych.
- Zabezpieczenie przed niepowołanym dostępem.



### Przepustowość w funkcji odległości

- Maksymalny zasięg:
  - 40 km @ 2 Mb/s,
  - 18 km @ 11 Mb/s,



### Metody dostępu do medium

- Distributed Coordination Function (DCF)
  - [wymagana] realizuje metodę dotępu CSMA/CA (carrier sense multiple access with collision avoidance),
  - wykorzystywana obu trybach infrastructure i ad-hoc.
  - do transmisji punkt-punkt może stosować mechanizm wykrywania zajętości medium: RTS/CTS (request to send/clear to send).
- Point Coordination Function (PCF)
  - [opcjonalna] realizuje metodę CF (contention free),
  - ma priorytet nad DCF i dostarcza ramki bez rywalizacji,
  - wymaga centralnego sterowania ( -> koordynatory punktowe PC Point Coorinators)
  - wykorzystywana tylko w trybie infrastructure,
  - rzadko wykorzystywana ze względu na zwiększenie obciążenia w BSS.

### **Warstwa MAC**

- Priorytety dostępu do medium
  - określone przez długość przestrzeni międzyramkowej tzw. IFS,
  - nie gwarantują dostępu,
  - cztery długości:
    - SIFS ( short inferframe space ),
    - PIFS ( PCF interframe space ),
    - DIFS ( DCF interframe space ),
    - EIFS ( extended interframe space ).



### **Dostęp DCF**

- Podstawowy sposób dostępu do medium.
- Redukuje prawdopodobieństwo wystąpienia kolizji.
- Każda poprawnie odebrana ramka jest potwierdzana (pozytywne potwierdzenia).
- Dlaczego CSMA/CA a nie CSMA/CD?

### Algorytm:

- 1.Stacja zaczyna wykrywać zajętość medium.
- 2. Jeśli medium jest zajęte to stacja oczekuje na jego zwolnienie.
- 3. Jeśli medium jest wolne to stacja oczekuje czas DIFS.
- 4. Jeśli w tym czasie medium zostanie zajęte to powrót do pkt. 2.
- 5.Jeśli w tym czasie medium pozostaje wolne to stacja generuje losowe opóźnienie tzw. *backoff interval*
- 6.Jeśli w czasie *backoff* medium zostanie zajęte stacja wstrzymuje *backoff* i czeka DIFS na zwolnienie medium
- 7. Jeśli w czasie *backoff* medium pozostaje wolne to stacja może transmitować.





STA<sub>1</sub>

STA<sub>2</sub>

po otrzymaniu zezwolenia nadawać będzie tylko stacja STA<sub>2</sub>



### **Dostęp PCF**

- Gwarantuje bezsporny (ang. *contention-free*) dostęp do medium.
- Kluczowym elementem jest punkt koordynacji (ang. Point Coordination) implementowany przez AP
  - ⇒ PCF przeznaczony jest tylko dla trybu *infrastructure*.
- Wykorzystuje priorytet (tj. krótszy IFS niż DCF: PIFS < DIFS) w dostępie do łącza.</li>
- Współpracuje ze stacjami w trybie DCF.

# Podział na dwa okresy (sposoby dostępu): - bez kolizyjny – CFP, - kolizyjny (CSMA/CA) – CP. CFP repetition interval Contention Free Period Perio



### Tworzenie komórek BSS

- Komórka zbiór skoordynowanych stacji z określonymi parametrami:
  - identyfikator SSID, BSSID,
  - wspólny zegar,
  - wybrany kanał (dla DSSS, OFDM)/sekwencja skakania (dla FHSS),
  - inne np. *aBeaconPeriod*.
- Każda stacja może utworzyć własną komórkę BSS lub IBSS.
- Funkcja realizowana przez operację podwarstwy zarządzania MAC *Management*.

### Jak stacja dołącza do komórki BSS?

- 1. Wykrycie dostępnych komórek BSS
  - aktywne, pasywne,
  - infrastructure BSS, independent BSS.
- 2. Synchronizacja z komórką BSS.
- 3. Uwierzytelnianie:
  - w systemie otwartym (ang. open system authentication),
  - z kluczem dzielonym (ang. shared key authentication).
- 4. Asocjacja z punktem dostępowym
  - oczywiście może mieć miejsce tylko w przypadku komórki typu infrastructure.

## Wykrywanie dostępnych komórek BSS

- Pasywne:
  - stacja nasłuchuje na ramki beacon,
  - z zestawu ramek wybierane są następnie te o zadanej wartości identyfikatora komórki SSID,
  - w ramkach beacon zawarta jest także m.in. informacja o typie komórki: infrastructure, ad-hoc,
- Aktywne:
  - dla każdego/określonego kanału stacja transmituje ramki Probe z żądanym SSID oczekując na odpowiedź ProbeResponse.
  - może też transmitować ramki Probe z SSID typu broadcast szukając dowolnej komórki.
- Po wykryciu dostępnych komórek stacja ma potrzebne informacje, żeby móc dołączyć do komórki.

### Synchronizacja z komórką BSS

- Wszystkie stacje tworzące BSS muszą mieć zsynchronizowany zegar
  - szczególnie istotne dla FHSS określenie czasu aCurrentDwellTime.
- Realizowane przez funkcję TSF (ang. time synchronization function)
  - w trybie infrastructure funkcja realizowana przez AP,
  - w trybie ad-hoc funkcja realizowana przez wszystkich uczestników w sposób rozproszony.
  - wartość znacznika przekazywana w ramkach beacon i ProbeResponse.
- Zegar TSF ma częstotliwość 1 MHz i implementowany jest na 64-bitowym znaczniku

### Synchronizacja w trybie infrastructure

- AP generuje okresowo co aBeaconPeriod ramki beacon zawierające kopię swojego TSF.
- Każda stacja w komórce BSS obsługiwanej przez dany AP ustawia swój zegar zgodnie z wartością TSF zawartą w ramce beacon.



### Synchronizacja w trybie ad-hoc

- Każda może wygenerować ramkę beacon z aktualnym znacznikiem TSF.
- Każda stacja odbierająca ramkę beacon ustawia swój zegar zgodnie ze znacznikiem TSF zawartym odebranej ramce beacon, jeśli jest on późniejszy niż jej aktualny zegar.



### **Uwierzytelnianie w systemie otwartym**

- Najprostszy możliwy sposób uwierzytelniania.
- Stacja, która żąda uwierzytelnienia zostaje uwierzytelniona, jeśli tylko stacja uwierzytelniająca wyraża taką chęć.



- Efektem jest wzajemne uwierzytelnienie.
- W tym sposobie uwierzytelniania można wykorzystać WEP do szyfrowania danych (nie nagłówka).

### **Uwierzytelnianie z dzielonym kluczem**

- Oparte o współdzielony klucz, którego dostarczenie powinno nastąpić drogą inną niż 802.11.
  - wykorzystuje 128-bitowe pole challenge, które jest następnie szyfrowane przy użyciu mechanizmu WEP



- Efektem jest jednostronne uwierzytelnienie
- Procedura podatna jest na atak man-in-the-middle.

### (Re)asocjacja stacji

- Dialog stacji z punktem dostępowym, dzięki któremu możliwe są:
  - wymiana danych z punktem dostępowym,
  - roaming węzła pomiędzy poszczególnymi komórkami BSS w komórce ESS.
- (Re)asocjacja odbywa się na wyraźne żądanie warstw wyższych (w tym np. użytkownika).
- Może nastąpić dopiero po uwierzytelnieniu.
- (Re)asocjacja wiąże się z nadaniem przez punkt dostępowy identyfikatora association ID (AID).
- Odpowiedź na żądanie (re)asocjacji powinna zostać potwierdzona przez stację.
- Punkt dostępowy informuje system DS o (re)asocjacji stacji
  - na komunikat o (re)asocjacji poprzedni punkt dostępowy może zwolnić zasoby przydzielone dla danej stacji.
    - 802.11F IAPP Inter-Access Point Protocol

       współpraca punktów dostępowych urządzeń różnych producentów.





### Zarządzanie energią

- Stacja może znajdować się w jednym z dwóch stanów:
  - awake: stacja jest w pełni funkcjonalna, może odbierać i nadawać dane,
  - doze: stacja jest w trybie zmniejszonego poboru mocy i nie odbiera ani nie nadaje żadnych ramek.
- Stacja pracuje w jednym z dwóch trybów:
  - tryb Active Mode AM: stacja jest w stanie awake,
  - tryb Power Save PS: większość czasu stacja jest w stanie doze, ale przechodzi w stan awake:
    - na czas odbioru wybranych ramek beacon,
    - podczas CFP (por. PCF) jeśli jest CF-Pollable,
    - wymiany danych z AP na wyraźne żądanie PS-poll.

# Zarządzanie energią tryb infrastructure

- Stacja przekazuje do AP informacje o zmianie trybu pracy z: PS ↔ AM.
- Jeśli stacja STA pracuje w trybie oszczędzania energii AP buforuje ramki skierowane do STA.
- Informacja o stacjach, dla których zbuforowano ramki przesyłana jest w ramkach beacon jako tzw. traffic indication map (TIM) lub DTIM.
- Po wykryciu danych stacja wysyła ramkę PS-Poll.



# Zarządzanie energią tryb ad-hoc

- Stacje są zsynchronizowane i równocześnie przechodzą w stan awake w określonych odstępach czasu.
- Każda stacja buforuje ramki przeznaczone do stacji w trybie PS.
- Informacja o zbuforowanych danych przesyłana w specjalnej ramce ATIM adresowanej do odbiorcy danych
  - stacja docelowa musi potwierdzić otrzymanie ATIM.



### Bezpieczeństwo

- W sieciach bezprzewodowych szczególnie istotne
  - nie wystarczą drzwi, kłódka, ani strażnik.
- Możliwości:
  - bezpieczeństwo oparte o SSID niebezpieczeństwo,
  - bezpieczeństwo oparte o adresy MAC filtrowanie,
  - bezpieczeństwo oparte o WEP (Wired Equivalent Privacy),
  - WPA (WiFi Protected Access)
  - standard 802.11i WPA2,
  - sieci prywatne wirtualnie VPN.

### Bezpieczeństwo - WEP

- Standard definiuje wykorzystanie kluczy 40 bitowych
  - większość producentów używa kluczy >= 128b,
  - szyfrowanie Rivest Cipher 4 (RC4).
- Klucz musi być współdzielony pomiędzy obiema komunikującymi się stronami
  - w standardzie nie rozwiązany jest problem dystrybucji klucza,
  - wykorzystuje się dwa sposoby:
    - wszystkie stacje współdzielą do czterech różnych kluczy łatwiejszy wyciek,
    - pomiędzy każdymi dwoma komunikującymi się stacjami współdzielone inne klucze – trudniejsza dystrybucja.

### Bezpieczeństwo - WEP

- Klucz nie identyfikuje użytkownika, tylko urządzenie
  - kłopoty w przypadku utraty (klucz staje się dostępny).
- Poziom bezpieczeństwa zapewniony przez WEP okazuje się niewystarczający
  - zbyt słaba ochrona poufności danych,
  - zbyt słaba ochrona integralności danych.

### 802.11i

- Inaczej nazywane WPA2 (*Wi-Fi Protected Access*)
- Wykorzystanie standardu 802.1X w sieciach bezprzewodowych
  - 802.11 dostarcza funkcji zabezpieczania danych,
  - 802.1X dostarcza mechanizmów uwierzytelniania
  - oba współpracują w zarządzaniu kluczami.
- Wykorzystanie TKIP temporal key integrity program.
  - zmiana klucza co 10 000 pakietów.
- Obecnie wykorzystuje się AES *Advanced Encryption Standard* jako zamiennika 3DES.

### 802.1x

- Uwierzytelnia użytkownika a nie urządzenie.
- Uwierzytelnienie jest wzajemne.
- Wykorzystuje RADIUSa.
- Umożliwia wykorzystanie różnych sposobów uwierzytelniania:
  - LEAP, EAP-TLS, PEAP, EAP-MD5 i inne.



**KONIEC**