1709.10089 - Overcoming Exploration in Reinforcement Learning with Demonstrations

Overcoming Exploration in Reinforcement Learning with Demonstrations

Ashvin Nair¹², Bob McGrew¹, Marcin Andrychowicz¹, Wojciech Zaremba¹, Pieter Abbeel¹²

Yunqiu Xu

- Imitation learning + RL:
 - o Goal: similar to DDPGfD, try to handle sparse reward
 - Use demonstration to overcome exploration problem
 - Combine DDPG with Hindsight
 - o Test on robot arm manipulating, and some tasks not solvable by RL and behavioral cloning alone (创新点存疑, 这里不就是DQfD和DDPGfD的工作么)

1. Introduction

- Challenge: sparse reward
 - o Hand designed reward function is prone to sub-optimal
 - Large exploration space
- Our work:
 - o Replace random exploration by learning from demonstration
 - Combine RL (DDPG) with imitation learning, make learned policy better than demonstrations
 - o HER: speeds up training on sparse reward

2. Related Work

- Imitation learning:
 - BC: can not exceed demonstration

- DAGGER: need expert during all of training
- IRL: omitted, for that we have assumed the knowledge of reward function
- RL and robot learning: omitted
- Combine RL with imitation learning → closest to DQfD and DDPGfD
 - 。 DDPGfD 解决了相对简单的任务(injection), 重点在加速已经可解决的任务
 - 本工作试图探索更难解决或未被解决的任务
 - Multi-step behaviors
 - Generalization to varying goal states

3. Background

- DDPG:
 - Model-free, off-policy, continuous action-space → suitable for demonstration learning
 - Actor: policy to maximize action value with respect to parameters, update by policy gradient
 - o Critic: action-value function to evaluate Q value, update by Bellman function
- Muiti-goal RL
 - o Train agents with parametrized goals
 - o Sample the goal at the beginning every episode as additional input
 - HER: more general policies
 - o UVAF: make learning with sparse reward easier
- Hindsight Experience Replay (HER)
 - o Assumption: we can get reward for each state
 - \circ Store an episode (s_1, s_2, \ldots, s_T) in replay buffer twice:
 - One is with original goal
 - Another it with "final goal" in this episode: if the agent still fails at s_T , then set s_T as goal for this episode

4. Method

- Second replay buffer R_D :
 - 。 和DDPGfD一样, 另外构建一个用于存储demonstration的replay buffer
 - Demonstration的格式同replay buffer中的transition相同
- Behavior cloning loss
 - Goal: train the actor
 - Computed only on demonstration examples

$$L_{BC} = \sum_{i=1}^{N_D} (\pi(s_i| heta_\pi) - a_i)^2$$

Then compute its gradient to improve actor's parameters

$$\lambda_1
abla_{ heta_\pi} J - \lambda_2
abla_{ heta_\pi} L_{BC}$$

- \circ Maximize J, minimize L_{BC}
- \circ Why use L_{BC} : avoid improving too significantly beyond demonstration \to 学 到的策略可以有一定提升,但不能与demonstration差别太大,防止步子太大扯着蛋(出发点类似DPPO)
- Q-filter
 - \circ Used in L_{BC}

$$L_{BC} = \sum_{i=1}^{N_D} (\pi(s_i| heta_\pi) - a_i)^2 1_{Q(s_i,a_i) < Q(s_i,\pi(s_i))}$$

- 。 Why use $\mathbf{1}_{Q(s_i,a_i)< Q(s_i,\pi(s_i))}$:仅仅使用demonstration会陷入sub-optimal, 添加 filter后,仅当demonstrator action的Q值大于actor action时才使用 L_{BC} ,换言之,我 们用于学习的demonstration不能太差
- Resets to demonstration states
 - DQfD中如何使用demonstration: 先用demonstration预训练, 然后抽取 demonstration 以及 self-generated transition (总共minibatch个, 二者比重可调节)
 - 本工作: 在某些training episodes, 使用demonstration episodes中的states和goals
 → restarts from within demonstrations
 - o assumption: we can start episodes from any given state
 - How to reset:
 - lacksquare Sample a demonstration $D=(s_0,a_0,s_1,a_1,\ldots,s_N,a_N)$
 - lacksquare Sample a state s_i from D
 - lacksquare Set final state s_N as the final state of D o same as HER
 - lacksquare Then our goal for this episode is try to reach s_N from s_i

o Reset demonstration will not be used in testing time

5. Experiment

Tasks: MuJoCo 7-DOF manipulating

How to collect demonstration : VR environment

5.1 Comparison to Previous Work

Fig. 2: Baseline comparisons on tasks from [1]. Frames from the learned policy are shown above each task. Our method significantly outperforms the baselines. On the right plot, the HER baseline always fails.

5.2 Block Stacking: Difficult Multi-step Task

Fig. 2: Baseline comparisons on tasks from [1]. Frames from the learned policy are shown above each task. Our method significantly outperforms the baselines. On the right plot, the HER baseline always fails.

5.3 Ablation Analysis

Fig. 5: Ablation results on longer horizon tasks with a step reward. The upper row shows the success rate while the lower row shows the average reward at the final step of each episode obtained by different algorithms. For stacking 4 and 5 blocks, we use 2 random seeds per method. The median of the runs is shown in bold and each training run is plotted in a lighter color. Note that for stacking 4 blocks, the "No BC" method is always at 0% success rate. As the number of blocks increases, resets from demonstrations becomes more important to learn the task.

6. Summary

- Similar to DQfD and DDPGfD, try to leverage demonstration to speed up learning
 - 。 DDPGfD是DQfD的连续版, 使用DDPG, 实验解决injection问题
 - 本工作也使用DDPG, 算法更新过程有一定不同

• 本工作:

- \circ 在计算 L_{BC} 时添加Q-filter, 只学习还不错的demonstration, 防止sub-optimal
- 。 使用HER解决sparse reward问题
- 实验除了解决一些经典问题, 还尝试解决block-stacking

• Limitation:

- 。 本工作和DDPGfD类似, 还需在性能上做下对比
- 。 模仿学习中一些固有问题还难以解决, 比如在real world中难以获得大量 demonstration
- Reset demonstration这部分需要假设我们可以从任意状态开始

• 一些解决办法:

- MIL (1709.04905 One-Shot Visual Imitation Learning via Meta-Learning): 将
 imitation learning 和 meta learning 结合, 训练用任务还是那么多demonstration,
 但力图让测试用任务达到one-shot
- Reverse curriculum learning (1707.05300 Reverse Curriculum Generation for Reinforcement Learning): 尝试到达接近终点的位置, 一点点倒推