

ME 4010: Control Systems Theory

Manish Anand

Whatsapp group

Scope of the course

Introduction to control systems

Modelling of systems: Frequency domain and State Space

Classical control theory: Frequency domain controller design

Modern control theory: Time domain controller design

Introduction to digital control systems

Brief introduction to higher level control system design

Practical applications/ implementations

Learning outcomes

- Develop models of new systems; perform system ID
- 2. Develop a controller for 1st and 2nd order systems: theoretically and programatically
- 3. Develop controllers to overcome disturbances
- 4. Develop controllers and observers using state space

- Matlab and Simulink programming to develop
 - a. Models of systems
 - b. Design controllers
 - c. Analyse performance of controllers
- Arduino based controller design to implement basics of digital controls

Expectations

Course work will be shared over Moodle

Attend class regularly (80% attendance)

Do all the programming assignments yourself. Assignments will be primarily Matlab and Simulink exercises. You may be asked to implement simple controls on arduino as well.

4 hours in class - 6 hours(at least) self study (per week)

Optional but recommended: Purchase an arduino kit from amazon with basic electronics components so we can do some experiments in class as well

Reference Books

Norman S Nise, Control Systems Engineering, Wiley India Edition, Wiley, 2018

Ogata, Modern Control Engineering, Fifth Edition, Pearson Education, 2015

Grading Scheme

Quiz 1	20
Quiz 2	20
End Sem	40
Tutorials, Assignments, etc.	20

Introduction

Super old and awesome control systems

Case study: Angular speed control

Measure the variable i.e. speed (w) Howe a set point (wo)

Know the natural dynamics of the system (eq. motor equation hotay spring inertice)

Lip > 0/p relationship.

Cystem ck.)

Super old and awesome control systems

Open loop and closed loop control

What is a control System - Grives a particular of p depending on iff

- A system which can make a decision without lunar intervention. - Achieve a set tappet outcome, desports the natural dynamics of the system

 $\frac{1}{2} \frac{1}{2} \frac{1}$

