Bs to mu mu search with 1.14 fb-1 of 7 TeV pp collisions at CMS

Motivation

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.2 \pm 0.2) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.0 \pm 0.1) \times 10^{-10}$$
(Buras 2010)

Muon Reconstruction

Detector Resolution

Analysis

$$\begin{split} \mathcal{B}(B_{s}^{0} \to \mu^{+}\mu^{-}; 95\%\text{C.}L.) &= \frac{N(n_{obs}, n_{B}, n_{S}; 95\%\text{C.}L.)}{\varepsilon_{B_{s}^{0}} N_{B_{s}^{0}}} = \frac{N(n_{obs}, n_{B}, n_{S})}{\varepsilon_{B_{s}^{0}} \mathcal{L} \sigma(pp \to B_{s}^{0})} \\ &= \frac{N(n_{obs}, n_{B}, n_{S})}{N(B^{\pm} \to J/\psi K^{\pm})} \frac{A_{B^{+}}}{A_{B_{s}^{0}}} \frac{\varepsilon_{B^{+}}^{ana}}{\varepsilon_{B_{s}^{0}}^{\mu}} \frac{\varepsilon_{B^{+}}^{trig}}{\varepsilon_{B_{s}^{0}}^{\mu}} \frac{f_{u}}{\varepsilon_{B_{s}^{0}}^{trig}} \mathcal{B}(B^{+} \to J/\psi [\mu^{+}\mu^{-}]K^{-}) \end{split}$$

400

200

0.15

0.2

Results

1000

500

1000

rr-				
	Barrel		Endcap	
	$B^0 \rightarrow \mu^+\mu^-$	$B_s^0 \rightarrow \mu^+\mu^-$	$B^0 o \mu^+ \mu^-$	$B_s^0 \rightarrow \mu^+\mu^-$
Acceptance	$(24.62 \pm 0.99) \times 10^{-2}$	$(24.72 \pm 0.99) \times 10^{-2}$	$(22.61 \pm 0.91) \times 10^{-2}$	$(23.14 \pm 0.93) \times 10^{-2}$
$\varepsilon_{ m analysis}$	$(2.23 \pm 0.19) \times 10^{-2}$	$(2.22 \pm 0.19) \times 10^{-2}$	$(1.16 \pm 0.10) \times 10^{-2}$	$(1.24 \pm 0.11) \times 10^{-2}$
$\varepsilon_{ m tot}$	$(0.36 \pm 0.04) \times 10^{-2}$	$(0.36 \pm 0.04) \times 10^{-2}$	$(0.21 \pm 0.02) \times 10^{-2}$	$(0.21 \pm 0.02) \times 10^{-2}$
$N_{ m signal}^{ m exp} \ N_{ m bg}^{ m exp}$	0.065 ± 0.011	0.80 ± 0.16	0.025 ± 0.004	0.36 ± 0.07
$N_{ m bg}^{ m exp}$	0.40 ± 0.23	0.60 ± 0.35	0.53 ± 0.27	0.80 ± 0.40
$N_{ m peak}^{ m exp}$	0.25 ± 0.06	0.07 ± 0.02	0.16 ± 0.04	0.04 ± 0.01
$N_{\rm obs}$	0	2	1	1

(Lack of) Dependence on Pile-Up

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) < 1.9 \times 10^{-8}$$
 (95% C.L.)
 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) < 1.6 \times 10^{-8}$ (90% C.L.)
 $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.6 \times 10^{-9}$ (95% C.L.)
 $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.7 \times 10^{-9}$ (90% C.L.)

p values for background-only hypothesis

$$B_s^0 \to \mu^+ \mu^-$$
: 0.11

$$B^0 o \mu^+ \mu^-$$
: 0.40

p value for $5.6 imes ext{SM}$ (cf. arXiv:1107.2304)

 $B_s^0 o \mu^+ \mu^-$: 0.053