Math 17500: Midterm Solution

November 3, 2015

1. Find all positive integers x less 200 such that $x \equiv 1 \mod 11$ and $x \equiv 9 \mod 13$.

As gcd(11, 13) = 1, the solution belongs to the congruence class

$$x \equiv 13 \times a + 9 \times 11 \times b \mod 11 \times 13$$

with $a, b \in \mathbf{Z}$ satisfying $13a \equiv 1 \mod 11$ and $11b \equiv 1 \mod 13$. The equation $13a \equiv 2a \equiv 1 \mod 11$ has solution $a \equiv 6 \mod 11$. The equation $11b \equiv -2b \equiv 1 \mod 13$ has solution $b \equiv -7 \equiv 6 \mod 13$. Thus $x \equiv 13 \times 6 + 9 \times 11 \times 6 \equiv 672 \equiv 100 \mod 143$. In the range 0 < x < 200, the only solution is x = 100.

2. Find all positive integers less than than 100 such that $x^2 \equiv 11 \mod 49$.

We first find the solution of the equation $x^2 - 11 \equiv x^2 - 40 \mod 7$. This equation has two solutions $x \equiv \pm 2 \mod 7$. The solution of the equation $x^2 - 11 \equiv 0 \mod 49$ must be of the form $x \equiv \pm 2 + 7\gamma$.

If x = 2 + 7y, we have $(2 + 7y)^2 - 11 \equiv 28y - 7 \mod 49$. This is equivalent to $4y \equiv 1 \mod 7$ and $y \equiv 2 \mod 7$. In this case $x \equiv 16 \mod 49$.

If x = -2 - 7y, a similar calculation implies $x \equiv -16 \equiv 33 \mod 49$.

3. Find the residue of $2^{1000} + 2^{100}$ modulo 13.

By the little Fermat theorem, $2^{12} \equiv 1 \mod 13$. For $1000 \equiv 100 \equiv 4 \mod 12$, we have $2^{1000} \equiv 2^{100} \equiv 2^4 \equiv 3 \mod 13$. Therefore $2^{1000} + 2^{100} \equiv 6 \mod 13$.

4. Check that 2 is a primitive root modulo 13 by calculating the residue modulo 13 of all powers of 2.

У	1	2	3	4	5	6	7	8	9	10	11	12
$2^y \mod 13$	2	4	8	3	6	12	11	9	5	10	7	1

The table shows that $y \mapsto 2^y$ defines a bijection between $\mathbb{Z}/12\mathbb{Z}$ and $(\mathbb{Z}/13\mathbb{Z})^\times$. As it is obvisously a homomorphism of abelian groups, this application defines an isomorphism between $\mathbb{Z}/12\mathbb{Z}$ and $(\mathbb{Z}/13\mathbb{Z})^\times$.

- 5. Find all residue classes x modulo 13 such that $x^3 \equiv 1 \mod 13$.
 - For $y \mapsto 2^y$ defines an isomorphism of abelian groups $\mathbb{Z}/12\mathbb{Z} \to (\mathbb{Z}/13\mathbb{Z})^\times$, it is enough to look for solution of the form $x \equiv 2^y \mod 13$ where y is a congruence class modulo 12. The equation $2^{3y} \equiv 1 \mod 13$ implies that $3y \equiv 0 \mod 12$ and thus $y \equiv 0 \mod 4$. Thus y is congruent to 0, 4 or 8 mod 12. Looking up to above table we infer that x congruent to 1, 3 or 9 modulo 13.
- 6. Find all residue classes *x* modulo 169 such that $x^3 \equiv 1 \mod 169$.

By the previous question, x has to be of the form 1+13t, 3+13t or 9+13t. If $x \equiv 1+13t \mod 169$ then $(1+13t)^3 \equiv 1+3\times 13t \mod 169$ by the binomial formula. The variable t satisfies the equation $3\times 13t \equiv 0 \mod 169$ or equivalently, $t \equiv 0 \mod 13$. Thus $t \equiv 1 \mod 169$.

If $x = 3 + 13t \mod 169$ then $(3 + 13t)^3 \equiv 3^3 + 3 \times 3^2 \times 13t \mod 169$ by the binomial formula. The variable t satisfies the equation $27 \times 13t \equiv -26 \mod 169$ or equivalently, $t \equiv -2 \mod 13$. Thus $x \equiv -23 \mod 169$.

If $x = 9 + 13t \mod 169$ then $(9 + 13t)^3 \equiv 9^3 + 3 \times 9^2 \times 13t \mod 169$ by the binomial formula. The variable t satisfies the equation $3 \times 9^2 \times 13t \equiv 117 \mod 169$ or equivalently, $3 \times 9^2 t \equiv 9 \mod 13$. Simplifying by 9 that is coprime to 13, we find $27t \equiv 5 \equiv 1 \mod 13$. Thus $x \equiv 22 \mod 169$.

- 7. Prove that $(\mathbb{Z}/5\mathbb{Z})^{\times}$ and $(\mathbb{Z}/8\mathbb{Z})^{\times}$ are not isomorphic as abelian groups.
 - For all prime p, $(\mathbf{Z}/p\mathbf{Z})^{\times}$ is a cyclic group of order p-1. In particular $(\mathbf{Z}/5\mathbf{Z})^{\times}$ is isomorphic to $\mathbf{Z}/4\mathbf{Z}$. On the other hand, direct inspection every element of $(\mathbf{Z}/8\mathbf{Z})^{\times}$ is its own inverse. In particular the latter can't be isomorphic to $\mathbf{Z}/4\mathbf{Z}$.
- 8. Prove that $2^n + 1$ is a prime if and only if $\phi(2^n + 1) = 2^n$.

For every integer m, $\mathbb{Z}/m\mathbb{Z}$ has no more than m-1 elements for the congruence class of 0 isn't invertible. It has exactly m-1 elements if and only if every nonzero congruence class module m is invertible and thus m has no strict divisor other than 1. Thus m has to be a prime. In particular $\phi(2^n+1)=2^n$ if and only if 2^n+1 is a (Fermat) prime.

9. Prove that $(\mathbf{Z}/(2^n+1)\mathbf{Z})^{\times}$ and $(\mathbf{Z}/2^{2n+1}\mathbf{Z})^{\times}$ are not isomorphic as abelian groups.

We have $\phi(2^n + 1) \le 2^n$ and $\phi(\mathbf{Z}/2^{2n+1}\mathbf{Z})^{\times} = 2^{2n}$. Groups of different order can't be isomorphic.

10. Let p be an odd prime. How many are there primitive roots modulo p^2 . Justify your answer.

If p is an odd prime $(\mathbf{Z}/p^2\mathbf{Z})^{\times}$ is a cyclic group of order p(p-1). In other words there is an isomorphism $(\mathbf{Z}/p^2\mathbf{Z})^{\times} \simeq \mathbf{Z}/p(p-1)\mathbf{Z}$. Via this isomorphism, primitive congruence classes modulo p^2 correspond to invertible class modulo p(p-1). Thus there are exactly $\phi(p(p-1)) = (p-1)\phi(p-1)$ primitive classes modulo p^2 .