Theorem 11.5

The class H_{pm} of hash functions defined by equations (11.3) and (11.4) is universal.

Proof

Consider two distinct keys k and l from Z_p , so that $k \neq l$. Without loss of generality, assume k > l.

For a given hash function h_{ab} we let

$$r = (ak + b) \bmod p,$$

$$s = (al + b) \bmod p.$$

We first prove that $r \neq s$. Assume

$$r = s$$
,

We have

$$r - s \equiv (ak + b) - (al + b) \equiv a(k - l) \equiv 0 \pmod{p}$$
.

Then

$$p|a(k-l)$$

On the other hand, because $a \in Z_p^*$, we get $p \nmid a$. Because $(k-l) \in Z_p$, we get $p \nmid (k-l)$. So

$$p \nmid a(k-l)$$
.

This is a contradiction.

So we have

$$r \neq s$$

Since $r \equiv s \pmod{m}$

$$r - s \equiv [(ak + b) \bmod p] - [(al + b) \bmod p] \equiv 0 \pmod m$$
$$[a(k - l) \bmod p] \equiv 0 \pmod m \tag{*}$$

The possible value of $[a(k-l) \bmod p]$ is $m, 2 \cdot m, ..., \lfloor p/m \rfloor \cdot m$. Its value cannot be zero because $r \neq s$.

So the number of different a satisfying formulae (*) is at most $\lfloor p/m \rfloor$. For each value of a, there are p different values of b. So the number of different h_{ab} satisfying $h_{ab}(k) = h_{ab}(l)$ is at most

$$\left\lfloor \frac{p}{m} \right\rfloor \cdot p \le \frac{(p-1)p}{m} = \frac{|H_{pm}|}{m}$$

So the class \mathcal{H}_{pm} of hash functions is universal.