

Department of Physics

| Examination paper for TFY4185 Measurement Technique/ Måleteknikk                                                                    |        |             |  |
|-------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|--|
| Academic contact during examination: Patrick Es                                                                                     | вру    |             |  |
| Phone: +47 41 38 65 78                                                                                                              |        |             |  |
| Examination date: 2 December 2015                                                                                                   |        |             |  |
| Examination time (from-to): 09:00 - 13:00                                                                                           |        |             |  |
| Permitted examination support material:                                                                                             |        |             |  |
| Single or Bi-lingual dictionary permitted All calculators permitted 1 side of an A5 sheet with printed or handwritten formulas perm | nitted |             |  |
| Other information:                                                                                                                  |        |             |  |
| Language: English                                                                                                                   |        |             |  |
| Number of pages:                                                                                                                    |        |             |  |
| Number of pages enclosed:                                                                                                           |        |             |  |
|                                                                                                                                     |        |             |  |
|                                                                                                                                     |        |             |  |
|                                                                                                                                     |        |             |  |
|                                                                                                                                     |        |             |  |
|                                                                                                                                     |        | Checked by: |  |
|                                                                                                                                     |        |             |  |
|                                                                                                                                     | Date   | Signature   |  |

## BJT parameters for common emitter configuration (subscript ) other subscripts: Input, Output Forward, Reverse,

| h <sub>FE</sub>       | DC gain                                                      | $I_{C}/I_{B}$                                                   |                                                                                     |
|-----------------------|--------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| $h_{fe}$              | AC gain                                                      | $i_{\rm c}/i_{\rm b}$                                           | h <sub>FE</sub> ≈h <sub>fe</sub> (mostly)                                           |
| <b>g</b> <sub>m</sub> | Transconductance                                             | $\Delta I_{\rm C} / \Delta V_{\rm BE} = i_{\rm c} / v_{\rm be}$ | $\sim 40 \cdot I_C \approx 40 \cdot I_E$                                            |
| h <sub>ie</sub>       | Small signal input resistance                                | $\Delta V_{BE} / \Delta I_{B} = v_{be} / i_{b}$                 | $\sim$ 1 / (40·I <sub>B</sub> ) $\Omega \approx h_{fe}$ / (40·I <sub>C</sub> )      |
| h <sub>oe</sub>       | Output admittance (1/r <sub>o</sub> )                        | $\Delta I_{\rm C} / \Delta V_{\rm CE} = i_{\rm c} / v_{\rm ce}$ |                                                                                     |
|                       | where $r_0$ = Slope in the active region                     |                                                                 |                                                                                     |
| r <sub>e</sub>        | Emitter resistance                                           | $\Delta V_{BE} / \Delta I_{C} = v_{be} / i_{c} = 1/g_{m}$       | $\approx v_{\rm be} / i_{\rm e}$ that is, $h_{\rm ie} = h_{\rm fe} \cdot r_{\rm e}$ |
| h <sub>re</sub>       | Early effect (V <sub>CE</sub> affects bias V <sub>BE</sub> ) | $\Delta V_{CE} / \Delta V_{BE}$                                 |                                                                                     |

$$h_{FE} = \frac{I_C}{I_B}$$
 $I_E = I_C + I_B = (h_{FE} + 1) \cdot I_B$ 
but because  $h_{FE} >> 1$ ,
 $I_E \approx h_{FE} \cdot I_B = I_C$ 

$$h_{FE} = \frac{I_C}{I_B}$$

$$I_E = I_C + I_B = (h_{FE} + 1) \cdot I_B$$
but because  $h_{FE} >> 1$ ,
$$I_E \approx h_{FE} \cdot I_B = I_C$$

$$I_B = I_{BS} \cdot e^{40 \cdot V_{BE}} \quad \text{where } I_{BS} \text{ is constant}$$

$$I_C = h_{FE} \cdot I_B = h_{FE} \cdot I_{BS} \cdot e^{40 \cdot V_{BE}}$$

$$g_m = \frac{\Delta I_C}{\Delta V_{BE}} = \frac{dI_C}{dV_{BE}} = 40 \cdot h_{FE} \cdot I_{BS} \cdot e^{40 \cdot V_{BE}}$$

$$g_m = \frac{\Delta I_C}{\Delta V_{BE}} = 40 \cdot I_C \approx 40 \cdot I_E$$