Algebra Homework

May 23, 2017

Ex 1.1.

- 1. Prove that if $[K(\alpha):K]$ is odd, then $K(\alpha)=K(\alpha^2)$.
- 2. Given L_1/K and L_2/K with $L_1, L_2 \subseteq L$, show that

$$L_1 \otimes_K L_2$$
 is a field $\iff [L_1L_2:K] = [L_1:K][L_2:K]$

Ex 1.2.

- 1. Prove that $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
- $2. \ \ \text{Determine} \ \left[\mathbb{Q}\left(\sqrt{3+2\sqrt{2}}\right):\mathbb{Q}\right], \left[\mathbb{Q}\left(\sqrt{3+4i}+\sqrt{3-4i}\right):\mathbb{Q}\right], \left[\mathbb{Q}\left(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right):\mathbb{Q}\right].$

Ex 1.3. Let R be a PID and $a \in R$. TFAE:

- 1. a is an irrducible element.
- 2. $\langle a \rangle$ is a maximal ideal.
- 3. $\langle a \rangle$ is a prime ideal.
- 4. a is a prime element.

Ex 1.4. Let L/K be algebraic and $\tau:L\to L$ be a monomorphism fixing K. Show that τ is onto. (so τ is isom.)

Ex 1.5.

- 1. Determine the splitting field L for x^4+2 over $\mathbb{Q},\,[L:\mathbb{Q}]$ and $\mathrm{Aut}(L/Q).$
- 2. Determine the splitting field L for $x^6 4$ over \mathbb{Q} , $[L : \mathbb{Q}]$ and $\operatorname{Aut}(L/Q)$.

Ex 1.6. Let $L_1, L_2 \subseteq L$ with $[L_1 : K] < \infty$ and $[L_2 : K] < \infty$. Assume L_1 and L_2 are splitting fields over K. Show that

- 1. L_1L_2 is a splitting fields over K.
- 2. $L_1 \cap L_2$ is a splitting fields over K.

Ex 2.1. Show that

$$\mathbb{F}_q \subseteq \mathbb{F}_r \iff r = q^n \text{ for some } n \in \mathbb{N}.$$

Ex 2.2. Let $K = \mathbb{F}_q$ be a finite field.

- 1. Show that there exists an irreducible polynomial of degree n in K[x] for all $n \in \mathbb{N}$.
- 2. Let L be a splitting field of $x^n 1$ over K. Show that [L:K] = k is the least positive integer s.t. $n \mid q^k 1$.

Ex 2.3. Let K be a finite field. Show that any element in K can be written as the sum of two squares.

Ex 3.1. Let L/K be a finite extension with [L:K] = n. For any field extension M/K, there are at most n monomorphisms from L to M which fix K.

Ex 3.2.

- 1. If F is a finite field, then F is not algebraically closed.
- 2. Let F be a finite field and $F(\alpha, \beta)/F$ be an algebraic extension. Show that $\exists c \in F(\alpha, \beta)$ s.t. $F(\alpha, \beta) = F(c)$. i.e. $F(\alpha, \beta)/F$ is a simple extension.

Ex 3.3.

- 1. Let F be a finite field and G, H be subgroups of $(F^{\times},\cdot,1)$. If |G|=|H|=n, then G=H.
- 2. If F is a field such that $(F^{\times}, \cdot, 1)$ is cyclic, then F is a finite field.

Ex 3.4.

- 1. For any prime p and any nonzero $a \in \mathbb{F}_p$, prove that $x^p x + a$ is irreducible and separable.
- 2. Show that $f(x) = x^3 + px + q \in K[x]$ is separable $\iff 4p^3 + 27q^2 \neq 0$.

Ex 3.5. Let L/K be a separable extension and $f(x) \in K[x]$ be an irreducible polynomial. Assume that $f(x) = f_1(x) \cdots f_n(x)$ for some $f_i(x) \in L[x] \quad \forall i = 1, ..., n$. Show that if f_i is separable $\forall i$, then f is separable.

Ex 3.6.

- 1. If char $K = p \neq 0$ and $[L:K] < \infty$ with $p \nmid [L:K]$, then L is separable over K.
- 2. Let char $K = p \neq 0$. Show that an algebraic element $\alpha \in L$ is separable over $K \iff K(\alpha) = K(\alpha^{p^n})$ for all $n \geq 1$.

Ex 4.1.

- 1. Determine the Galois group of $f(x) = x^5 4x + 2$ over \mathbb{Q} .
- 2. Determine the Galois group of $f(x) = x^3 3x + 1$ over \mathbb{Q} .

Ex 4.2. Let char K = 0 and F/K be finite, normal. Let $g(x) \in K[x]$ and L be a splitting field of g(x) over F. Show that L/K is a normal extension.

(Note: $g(x) \in K[x]$ but L is over F)

Ex 4.3.

Def 1.

- A character χ of a group G with values in a field L is a homomorphism $\chi: G \to L^{\times}$.
- The characters χ_1, \ldots, χ_n of G are said to be linearly independent over L if there is no nontrivial relation

$$a_1\chi_1 + \cdots + a_n\chi_n = 0$$
, $a_1, \ldots, a_n \in L$ are not all 0

as a function on G.

- 1. Show that if χ_1, \ldots, χ_n are distinct characters of G with values in L, then they are linearly independent over L.
- 2. Show that if $\sigma_1, \ldots, \sigma_n$ are distinct monomorphisms from K to L, then they are linearly independent over L.
- 3. Show that distinct automorphisms of K are linearly independent over K.

Ex 4.4.

- 1. If L/K is Galois, then $\exists f$: irr. in K[x] s.t. L is a splitting field of f(x) over K.
- 2. TFAE
 - (a) L/K is a Galois extension.
 - (b) K is the fixed field of a subgroup of Aut(L).
 - (c) K is the fixed field of Aut(L/K).

Ex 4.5. Find the Galois group of $x^4 - 2$ over \mathbb{Q} . Find all subgroups of this group and find all corresponding intermediate fields between the splitting field of $x^4 - 2$ over \mathbb{Q} and \mathbb{Q} .

Ex 4.6. Find all proper subfields of $\mathbb{Q}\left(\sqrt[3]{5}, \frac{-1+i\sqrt{3}}{2}\right)$ and $\mathbb{Q}\left(i, \sqrt{7}\right)$ respectively.

Ex 5.1.

- 1. Let p be an odd prime with $p \nmid m$. Suppose $a \in \mathbb{Z}$ s.t. $\Phi_m(a) \equiv 0 \pmod{p}$. then $\operatorname{ord}(a) = m$ in $(\mathbb{Z}/p\mathbb{Z})^{\times}$. (hint: $x^m 1 = \prod_{d \mid m} \Phi_d(x)$)
- 2. Let $a \in \mathbb{Z}$. Show that if p is an odd prime dividing $\Phi_m(a)$, then either $p \mid m$ or $p \equiv 1 \pmod{m}$.

Ex 5.2.

- 1. Show that $\left[\mathbb{Q}\left(\zeta_n + \frac{1}{\zeta_n}\right) : \mathbb{Q}\right] = \frac{\varphi(n)}{2}$.
- 2. Find Φ_8, Φ_9 .
- 3. Show that $x^{16} + 1$ is irreducible in $\mathbb{Q}[x]$ and is reducible in $\mathbb{F}_7[x]$ as a product of 4 quartic polynomials.

Ex 5.3. show that p: odd prime, $(\mathbb{Z}/p^e\mathbb{Z})^{\times}$ is cyclic of order $p^{e-1}(p-1)$ and $(\mathbb{Z}/2^e\mathbb{Z})^{\times} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{e-2}\mathbb{Z}, e \geq 2$.

Hints:

- 1. Check $(1+p)^{p^{e-1}} \equiv 1 \pmod{p^e}$ but $(1+p)^{p^{e-2}} \not\equiv 1 \pmod{p^e}$. And for $e \ge 3$, $(1+2^2)^{2^{e-2}} \equiv 1 \pmod{2^e}$ but $(1+2^2)^{2^{e-3}} \not\equiv 1 \pmod{2^e}$.
- 2. If each Sylow p-subgroup of G is normal, then G is isomorphic to the product of all sylow p-subgroups.

Ex 5.4.

- (a) Let $\mathbb{C}(t)$ be the field of rational functions over \mathbb{C} and L be a splitting field of $x^n t$ over $\mathbb{C}(t)$. Find $\operatorname{Gal}(L/\mathbb{C}(t))$.
- (b) Let $\mathbb{F}_p(t)$ be the field of rational functions over \mathbb{F}_p and L be a splitting field of $x^3 2t$ over $\mathbb{F}_p(t)$. Find $Gal(L/\mathbb{F}_p(t))$.

Ex 5.5. Let char $K \neq 2, 3$ and $f(x) = x^4 + px^2 + qx + r$ be irr. and separable with roots $\alpha_1, \ldots, \alpha_4$. Let $L = K(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ and $G_f = \operatorname{Gal}(L/K) \leq S_4$. Set $\beta_1 = \alpha_1\alpha_2 + \alpha_3\alpha_4, \beta_2 = \alpha_1\alpha_3 + \alpha_2\alpha_4, \beta_3 = \alpha_1\alpha_4 + \alpha_2\alpha_3$.

- (a) Show that $L^{G_f \cap V} = K(\beta_1, \beta_2, \beta_3)$ and $Gal(K(\beta_1, \beta_2, \beta_3)/K) \cong G_f/G_f \cap V$ where $V = \{1, (12)(34), (13)(24), (14)(23)\} \leq S_4$.
- (b) Show that there exists i s.t. $\beta_i \in K \iff G_f \leq D_4$.
- (c) Let $h(x) = (x \beta_1)(x \beta_2)(x \beta_3) \in K[x]$ with discriminant D(h), Show that
 - (1) If h(x) is irr. and $D(h) \notin K^2$, then $G_f \cong S_4$.
 - (2) If h(x) is irr. and $D(h) \in K^2$, then $G_f \cong A_4$.
 - (3) If h(x) splits completely in K[x], then $G_f \cong V$.
 - (4) Let h(x) has one root in K. Then
 - (i) If f(x) is irr. over $K(\beta_1, \beta_2, \beta_3)$, then $G_f \cong D_4$.
 - (ii) If f(x) is reducible over $K(\beta_1, \beta_2, \beta_3)$, then $G_f \cong C_4$.

Ex 6.1. Is $f(x) = 2x^5 - 10x + 5 \in \mathbb{Q}[x]$ solvable by radicals? Justify your answer!

Ex 6.2. Show that if $|G| = p^2q$ where p, q are distinct primes, then G is solvable.

Ex 6.3. Solve $x^4 + ax + b = 0$ in terms of radicals.

Ex 6.4. power sum: $p_k = \sum_{i=1}^n x_i^k$. show that newton identities: $s_0 = 1$,

$$ks_k = \sum_{i=1}^k (-1)^{i-1} s_{k-i} p_i, \qquad p_k = \sum_{i=1}^{k-1} (-1)^{i+k-1} s_{k-i} p_i + (-1)^{k-1} k s_k$$

 $(s_k \text{ are the elementary symmetric polynomials in } x_1, \ldots, x_n)$

Ex 6.5. For any prime $p \geq 5$. Let $k, m, n_1, \ldots, n_{k-2} \in \mathbb{Z}$ s.t.

$$\begin{cases} k \text{ is odd and } > 3, \\ m \text{ is even and } > 0, \\ n_1, \dots, n_{k-2} \text{ are even and } n_1 < n_2 < \dots < n_{k-2}. \end{cases}$$

Consider $g(x) = (x^2 + m)(x - n_1) \dots (x - n_{k-2})$ and $f(x) = g(x) - 2 \in \mathbb{Z}[x]$.

1. Show that f is irr. in $\mathbb{Z}[x]$

2. Show that f has exactly two non-real roots for $m \gg 0$. If k = p, then $G_f \cong S_p$.

Ex 7.1.

1. Let $\alpha_1, \ldots, \alpha_n$ be roots of f(x) and then

$$\delta = \begin{vmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{n-1} & \alpha_2^{n-1} & \dots & \alpha_n^{n-1} \end{vmatrix}$$

Show that

$$D = \begin{vmatrix} n & p_1 & \dots & p_{n-1} \\ p_1 & p_2 & \dots & p_n \\ \vdots & \vdots & \ddots & \vdots \\ p_{n-1} & p_n & \dots & p_{2n-2} \end{vmatrix}, \quad p_i = \sum_{k=1}^n \alpha_k^i$$

2. If $f(x) = x^n + px + q$, then $D = y_{n+1}n^nq^{n-1} + y_n(n-1)^{n-1}p^n$, where

$$y_n = \begin{cases} 1, & n \equiv 1, 2 \pmod{4} \\ -1, & n \equiv 0, 3 \pmod{4} \end{cases}$$

Ex 7.2. A transitive subgroup G of S_n containing a transposition and an (n-1)-cycle is S_n .

Ex 7.3.

1. If $f(x) = x^5 - x - 1$, then $G_f \cong S_5$.

2. If $f(x) = x^5 + x^4 - 4x^3 - 3x^2 + 3x + 1$, then $G_f \cong \mathbb{Z}/5\mathbb{Z}$.

- **Ex 8.1.** Use Zorn's lemma to show the existence of a transcendence base S of any extension L/K. (S may equal to \varnothing)
- **Ex 8.2.** Given L/M, M/K, show that $\operatorname{tr} \operatorname{deg}_K L = \operatorname{tr} \operatorname{deg}_M L + \operatorname{tr} \operatorname{deg}_K M$.
- **Ex 8.3.** Show that for any extension L/K, Tr : $L \to K$ is surjective.
- **Ex 8.4.** If L/K with $|L| < \infty$, show that $N_{L/K} : L^{\times} \to K^{\times}$ is also surjective.

Ex 9.1.

- 1. ED \implies PID.
- 2. ED \implies GCD domain.

Ex 9.2. A_{-19} is a PID but not a ED.

Ex 10.1.

- 1. If \sqrt{I} is a maximal ideal, then I is primary.
- 2. A power of a maximal ideal is m-primary.

Ex 10.2.

Def 2. The Jacobson radical of R is the intersection of all maximal ideals of R and is denoted by Jac R.

Show that $x \in \operatorname{Jac} R \iff 1 - rx$ is a unit $\forall r \in R$.

Ex 10.3.

- 1. Show that if M is a finitely generated R-module and IM = M with $I \subseteq \text{Jac } R$, then M = 0.
- 2. Show that if M is a finitely generated R-module, N is a submodule of M and $I \subseteq \operatorname{Jac} R$, then

$$M = IM + N \implies M = N.$$

Ex 10.4.

- 1. $V_1 \subseteq V_2 \iff \mathcal{I}(V_1) \supseteq \mathcal{I}(V_2)$.
- 2. $\mathcal{I}(V_1 \cup V_2) = \mathcal{I}(V_1) \cap \mathcal{I}(V_2)$.
- 3. $V_1 \cup V_2 = \mathcal{V}(\mathcal{I}(V_1)\mathcal{I}(V_2))$.
- 4. $\bigcap_{\lambda \in \Lambda} V_{\lambda} = \mathcal{V}\left(\sum_{\lambda \in \Lambda} \mathcal{I}(V_{\lambda})\right)$.
- 5. V is irr. $\iff \mathcal{I}(V) \in \operatorname{Spec} k[x_1, \dots, x_n]$.

Ex 10.5.

- 1. $f(\alpha) \in W \quad \forall \alpha \in V$.
- $2. \ \varphi = f^*.$
- 3. For different representations of R, $R \cong k[x_1, \ldots, x_n]/I_1 \overset{\Psi}{\underset{\Psi^{-1}}{\cong}} k[z_1, \ldots, z_l]/I_2$ and $\begin{cases} V_1 = \mathcal{V}(I_1) \\ V_2 = \mathcal{V}(I_2) \end{cases}$ Show that Ψ (and Ψ^{-1}) will give an isom. of V_1 and V_2 .

Ex 10.6.

1. Show that if $V = \mathcal{V}(y - x^2) \subseteq \mathbb{A}^2_{\mathbb{C}}$, then

$$\begin{array}{c} f: \mathbb{A}^1_{\mathbb{C}} \to V \\ t \mapsto (t, t^2) \end{array} \text{ is an isom.}$$

2. Show that if $V = \mathcal{V}(y^2 - x^3) \subseteq \mathbb{A}^2_{\mathbb{C}}$, then

$$f: \mathbb{A}^1_{\mathbb{C}} \to V$$

 $t \mapsto (t^2, t^3)$ is bijective but not an isom.

Ex 11.1.

- (a) Show that $\{y-x^2, z-x^3\}$ is not a Gröbner basis for x>y>z.
- (b) Find a Gröbner basis for $\langle y x^2, z x^3 \rangle$.

Ex 11.2.

- (a) Find a Gröbner basis of $I = \langle -x^3 + y, x^2y y^2 \rangle$.
- (b) Check $x^6 x^5 y \stackrel{?}{\in} I$.

Def 3.

- A Gröbner basis $G = \{g_1, \dots, g_m\}$ of I is said to be minimal if $LT(g_i)$ is monic for all i and $\forall j$, $LT(g_i) \notin \langle LT(G \setminus \{g_i\}) \rangle$.
- A minimal Gröbner basis $G = \{g_1, \ldots, g_m\}$ is said to be reduced if for all j, no term in g_j is divisible by any of $LT(g_1), \ldots, LT(g_{j-1}), LT(g_{j+1}), \ldots, LT(g_m)$.

Ex 11.3.

- 1. Show that for a given monomial ordering, every non-zero ideal I in $k[x_1, \ldots, x_n]$ has a unique reduced Gröbner basis.
- 2. Show that $I=\langle x^2y+xy^2-2y,x^2+xy-x+y^2-2y,xy^2-x-y+y^3\rangle$ and $J=\langle x-y^2,xy-y,x^2-y\rangle$ are equal.

Ex 11.4. Let $I = \langle x^2 + xy^5 + y^4, xy^6 - xy^3 + y^5 - y^2, xy^5 - xy^2 \rangle, x > y$. Find the reduced Gröbner basis of I.

Ex 11.5.

- 1. $\left(I:\left(\sum_{i=1}^r J_i\right)\right) = \bigcap_{i=1}^r (I:J_i)$. Here, $(I:J) \triangleq \{x \in R \mid xJ \subseteq I\}$.
- $2. \left(\bigcap_{i=1}^{r} I_i : J\right) = \bigcap_{i=1}^{r} (I_i : J).$
- 3. $((I_1:I_2):I_3)=(I_1:I_2I_3).$

Ex 12.1. The following sets are correspondent:

- (1) V (an affine algebraic set)
- (2) $\operatorname{Max} k[V]$
- (3) $\operatorname{Hom}_k(k[V], k)$

Def 4. Let S/R be an extension of rings and $I \subseteq R$ be an ideal. $a \in S$ is said to be integral over I if $\exists f(x) = x^n + r_1 x^{n-1} + \cdots + r_n$ with n > 0 and $r_i \in I$ s.t. f(a) = 0.

Ex 12.2. Let $a \in S$. Show that TFAE

- (1) a is integral over I.
- (2) R[a] is a finitely generated R-module and $a \in \sqrt{IR[a]}$. Here IR[a] is an ideal in R[a] generated by I.
- (3) There exists a subring S' of S (with $R[a] \subset S'$) s.t. S' is a finitely generated R-module and $a \in \sqrt{IS'}$.

Ex 12.3. Show that $\sqrt{IR} = \{ a \in S \mid a \text{ is integral over } I \}$ where R is the integral closure of R in S.

Ex 12.4. If $\phi: R_1 \to R_2$ is a ring homomorphism and $p \in \operatorname{Spec} R_1$, then

$$p = \phi^{-1}(q)$$
 for some $q \in \operatorname{Spec} R_2 \iff p = \phi^{-1}(R_2\phi(p))$

Ex 12.5. In a UFD R, $\forall p \in \operatorname{Spec} R$ with h(p) = 1, $p = \langle \alpha \rangle$ for some prime element $\alpha \in R$.

Ex 13.1. Let $0 \to N \to M \to L \to 0$ be exact in \mathbf{Mod}_R . Show that N, L are Artinian (Noetherian) $\iff M$ is Artinian (Noetherian).

Ex 13.2. Let R be an Artinian local ring with maximal ideal \mathfrak{m} , then TFAE:

- 1. R is a PIR
- 2. m is principal
- 3. $\dim_{R/\mathfrak{m}} \left(\mathfrak{m}/\mathfrak{m}^2 \right) \leq 1$

Ex 13.3. (Krull's Intersection Theorem) Let R be a Noetherian local ring with maximal ideal \mathfrak{m} , show that

$$\bigcap_{n=0}^{\infty} \mathfrak{m}^n = \langle 0 \rangle.$$

Def 5. Let R be an integral domain and $I, J \subseteq R$. We say $I \mid J$ if $\exists I' \subseteq R$ s.t. II' = J (so $J \subseteq I$)

Ex 13.4. Let R be a Dedekind domain, $I, J \subseteq R$ and $\begin{cases} I = P_1^{e_1} P_2^{e_2} \cdots P_n^{e_n} \\ J = P_1^{f_1} P_2^{f_2} \cdots P_n^{f_n} \end{cases}, e_i, f_j \ge 0. \text{ Show that}$

- 1. $I \subseteq J \iff J \mid I \iff f_i \le e_i$.
- 2. $I + J = \langle I, J \rangle = P_1^{d_1} P_2^{d_2} \cdots P_n^{d_n}$ where $d_i = \min\{f_i, e_i\}$.

Ex 13.5. Let R be a Dedekind domain, $I \subseteq R$ and $I = P_1^{e_1} P_2^{e_2} \cdots P_n^{e_n}$. Show that

- 1. $\exists J \subseteq R \text{ with } I + J = R \text{ s.t. } IJ = \langle a \rangle \text{ for some } a \in R.$
- 2. $I \subseteq R \implies R/I$ is a principal ring.
- 3. $I \subseteq R$, let $a \in I$ with $a \neq 0$. $\Longrightarrow I = \langle a, b \rangle$ for some $b \in I$.

Ex 14.1. If $0 \to M_1 \xrightarrow{\alpha} M_2 \xrightarrow{\beta} M_3 \to 0$ is exact in \mathbf{Mod}_R , then for $M, N \in \mathbf{Mod}_R$,

- $0 \to \operatorname{Hom}_R(M, M_1) \xrightarrow{\alpha'} \operatorname{Hom}_R(M, M_2) \xrightarrow{\beta'} \operatorname{Hom}_R(M, M_3)$ is exact,
- $0 \to \operatorname{Hom}_R(M_1, N) \xrightarrow{\beta^{\prime\prime}} \operatorname{Hom}_R(M_2, N) \xrightarrow{\alpha^{\prime\prime}} \operatorname{Hom}_R(M_3, N)$ is exact,
- $M \otimes_R M_1 \xrightarrow{1_M \otimes \alpha} M \otimes_R M_2 \xrightarrow{1_M \otimes \beta} M \otimes_R M_3 \to 0$ is exact.

Ex 14.2. Give examples to explain why $\operatorname{Hom}_R(M,\cdot), \operatorname{Hom}_R(\cdot,N), M \otimes_R \cdot$ are not exact functors.

Ex 14.3. Show that $h(y) \in \operatorname{Hom}_{\mathbb{Z}}(R, N_0), h \in \operatorname{Hom}_{R}(M_2, N)$ and $h \circ \alpha = f$.