

Simulation of Gaetano Sciolari Chandelier

Date: Monday, October 14, 2024

Analysis type: Static

Table of Contents

Study Properties	. 2
Units	. 2
Material Properties	. 3
Loads and Fixtures1	L1
Interaction Information1	2
Mesh information1	.3
Resultant Forces1	Ę
Study Results 1	6

Study Properties

Study name	Static 1
Analysis type	Static
Mesh type	Solid Mesh
Thermal Effect:	On
Thermal option	Include temperature loads
Zero strain temperature	298 Kelvin
Include fluid pressure effects from SOLIDWORKS Flow Simulation	Off
Solver type	Automatic
Inplane Effect:	Off
Soft Spring:	Off
Inertial Relief:	Off
Incompatible bonding options	Automatic
Large displacement	Off
Compute free body forces	On
Friction	Off
Use Adaptive Method:	Off

Units

Unit system:	SI (MKS)
Length/Displacement	mm
Temperature	Kelvin
Angular velocity	Rad/sec
Pressure/Stress	N/m^2

Material Properties

Model Reference	Properties		Components
	Name: Model type: Default failure criterion: Yield strength: Tensile strength: Elastic modulus: Poisson's ratio: Mass density: Shear modulus: Thermal expansion coefficient:	Brass Linear Elastic Isotropic Max von Mises Stress 2.39689e+08 N/m^2 4.78413e+08 N/m^2 1e+11 N/m^2 0.33 8,500 kg/m^3 3.7e+10 N/m^2 1.8e-05 /Kelvin	SolidBody 1(Boss-Extrude1)(brass_pin-10), SolidBody 1(Boss-Extrude1)(brass_pin-11), SolidBody 1(Boss-Extrude1)(brass_pin-12), SolidBody 1(Boss-Extrude1)(brass_pin-13), SolidBody 1(Boss-Extrude1)(brass_pin-14), SolidBody 1(Boss-Extrude1)(brass_pin-15), SolidBody 1(Boss-Extrude1)(brass_pin-16), SolidBody 1(Boss-Extrude1)(brass_pin-17), SolidBody 1(Boss-Extrude1)(brass_pin-18), SolidBody 1(Boss-Extrude1)(brass_pin-19), SolidBody 1(Boss-Extrude1)(brass_pin-2), SolidBody 1(Boss-Extrude1)(brass_pin-20), SolidBody 1(Boss-Extrude1)(brass_pin-21), SolidBody 1(Boss-Extrude1)(brass_pin-22), SolidBody 1(Boss-Extrude1)(brass_pin-23), SolidBody 1(Boss-Extrude1)(brass_pin-24), SolidBody 1(Boss-Extrude1)(brass_pin-25), SolidBody 1(Boss-Extrude1)(brass_pin-25), SolidBody 1(Boss-Extrude1)(brass_pin-26), SolidBody 1(Boss-Extrude1)(brass_pin-27), SolidBody 1(Boss-Extrude1)(brass_pin-29), SolidBody 1(Boss-Extrude1)(brass_pin-29), SolidBody 1(Boss-Extrude1)(brass_pin-29), SolidBody 1(Boss-Extrude1)(brass_pin-3), SolidBody 1(Boss-Extrude1)(brass_pin-3), SolidBody 1(Boss-Extrude1)(brass_pin-3), SolidBody 1(Boss-Extrude1)(brass_pin-3), SolidBody 1(Boss-Extrude1)(brass_pin-31), SolidBody 1(Boss-Extrude1)(brass_pin-32),

SolidBody 1(Boss-Extrude1)(brass_pin-33), SolidBody 1(Boss-Extrude1)(brass_pin-34), SolidBody 1(Boss-Extrude1)(brass pin-35), SolidBody 1(Boss-Extrude1)(brass pin-36), SolidBody 1(Boss-Extrude1)(brass pin-37), SolidBody 1(Boss-Extrude1)(brass_pin-38), SolidBody 1(Boss-Extrude1)(brass pin-39), SolidBody 1(Boss-Extrude1)(brass pin-4), SolidBody 1(Boss-Extrude1)(brass pin-40), SolidBody 1(Boss-Extrude1)(brass pin-41), SolidBody 1(Boss-Extrude1)(brass_pin-43), SolidBody 1(Boss-Extrude1)(brass_pin-44), SolidBody 1(Boss-Extrude1)(brass pin-45), SolidBody 1(Boss-Extrude1)(brass_pin-46), SolidBody 1(Boss-Extrude1)(brass_pin-47), SolidBody 1(Boss-Extrude1)(brass_pin-48), SolidBody 1(Boss-Extrude1)(brass pin-49), SolidBody 1(Boss-Extrude1)(brass pin-50), SolidBody 1(Boss-Extrude1)(brass_pin-51), SolidBody 1(Boss-Extrude1)(brass pin-52), SolidBody 1(Boss-Extrude1)(brass_pin-53), SolidBody 1(Boss-Extrude1)(brass pin-54), SolidBody 1(Boss-Extrude1)(brass pin-55), SolidBody 1(Boss-Extrude1)(brass_pin-56), SolidBody 1(Boss-Extrude1)(brass pin-57), SolidBody 1(Boss-Extrude1)(brass_pin-58), SolidBody 1(Boss-Extrude1)(brass pin-59),

SolidBody 1(Boss-Extrude1)(brass_pin-6), SolidBody 1(Boss-Extrude1)(brass_pin-60), SolidBody 1(Boss-Extrude1)(brass pin-61), SolidBody 1(Boss-Extrude1)(brass pin-62), SolidBody 1(Boss-Extrude1)(brass pin-63), SolidBody 1(Boss-Extrude1)(brass_pin-64), SolidBody 1(Boss-Extrude1)(brass pin-65), SolidBody 1(Boss-Extrude1)(brass pin-66), SolidBody 1(Boss-Extrude1)(brass pin-67), SolidBody 1(Boss-Extrude1)(brass pin-68), SolidBody 1(Boss-Extrude1)(brass_pin-69), SolidBody 1(Boss-Extrude1)(brass_pin-7), SolidBody 1(Boss-Extrude1)(brass pin-70), SolidBody 1(Boss-Extrude1)(brass_pin-71), SolidBody 1(Boss-Extrude1)(brass pin-73), SolidBody 1(Boss-Extrude1)(brass_pin-74), SolidBody 1(Boss-Extrude1)(brass pin-75), SolidBody 1(Boss-Extrude1)(brass pin-76), SolidBody 1(Boss-Extrude1)(brass_pin-77), SolidBody 1(Boss-Extrude1)(brass pin-78), SolidBody 1(Boss-Extrude1)(brass_pin-79), SolidBody 1(Boss-Extrude1)(brass pin-80), SolidBody 1(Boss-Extrude1)(brass pin-81), SolidBody 1(Boss-Extrude1)(brass_pin-82), SolidBody 1(Boss-Extrude1)(brass pin-83), SolidBody 1(Boss-Extrude1)(brass_pin-84), SolidBody 1(Boss-Extrude1)(brass pin-85),

SolidBody 1(Boss-Extrude1)(brass_pin-9), SolidBody 1(Boss-Extrude1)(plate-13-1/brass metal-1), SolidBody 1(Boss-Extrude1)(plate-16-2/brass metal-1), SolidBody 1(Boss-Extrude1)(plate-18-1/brass metal-1) Curve Data:N/A Name: Acrylic (Medium-high SolidBody 1(Cutimpact) Extrude4)(glass_glass_cube-Model type: Linear Elastic Isotropic Default failure Max von Mises Stress SolidBody 1(Cut-Extrude4)(glass glass cubecriterion: 4.5e+07 N/m^2 Yield strength: 11). Tensile strength: 7.3e+07 N/m^2 SolidBody 1(Cut-Elastic modulus: 3e+09 N/m^2 Extrude4)(glass glass cube-Poisson's ratio: 0.35 Mass density: 1,200 kg/m^3 SolidBody 1(Cut-Shear modulus: 8.9e+08 N/m^2 Extrude4)(glass_glass_cube-Thermal expansion 5.2e-05 /Kelvin coefficient: SolidBody 1(Cut-Extrude4)(glass glass cube-14). SolidBody 1(Cut-Extrude4)(glass_glass_cube-15), SolidBody 1(Cut-Extrude4)(glass_glass_cube-SolidBody 1(Cut-Extrude4)(glass glass cube-3), SolidBody 1(Cut-Extrude4)(glass_glass_cube-SolidBody 1(Cut-Extrude4)(glass glass cube-SolidBody 1(Cut-Extrude4)(glass glass cube-6), SolidBody 1(Cut-Extrude4)(glass_glass_cube-SolidBody 1(Cut-Extrude4)(glass_glass_cube-SolidBody 1(Cut-Extrude4)(glass metal cube-1),

	SolidBody 1(Cut-
	Extrude4)(glass_metal_cube-
	11),
	SolidBody 1(Cut-
	Extrude4)(glass_metal_cube-
	12),
	SolidBody 1(Cut-
	Extrude4)(glass_metal_cube-
	14),
	SolidBody 1(Cut-
	Extrude4)(glass_metal_cube-
	15),
	SolidBody 1(Cut-
	Extrude4)(glass_metal_cube-
	16),
	SolidBody 1(Cut-
	Extrude4)(glass_metal_cube-
	17),
	SolidBody 1(Cut-
	Extrude4)(glass_metal_cube-
	18),
	SolidBody 1(Cut- Extrude4)(glass_metal_cube-
	19),
	SolidBody 1(Cut-
	Extrude4)(glass_metal_cube-
	22),
	SolidBody 1(Cut-
	Extrude4)(glass_metal_cube-
	23),
	SolidBody 1(Cut-
	Extrude4)(glass_metal_cube-
	24),
	SolidBody 1(Cut-
	Extrude4)(glass_metal_cube-
	25),
	SolidBody 1(Cut-
	Extrude4)(glass_metal_cube-
	3), SolidBody 1(Cut-
	Extrude4)(glass_metal_cube-
	4),
	SolidBody 1(Cut-
	Extrude4)(glass_metal_cube-
	5),
	SolidBody 1(Cut-
	Extrude4)(glass_metal_cube-
	6),
	SolidBody 1(Cut-
	Extrude4)(glass_metal_cube-
	7),
	SolidBody 1(Cut-
	Extrude4)(glass_metal_cube-
	8),

SolidBody 1(Cut-Extrude4)(glass_metal_cube-SolidBody 1(Cut-Extrude4)(metal metal cube SolidBody 1(Cut-Extrude4)(metal metal cube SolidBody 1(Cut-Extrude4)(metal metal cube -5), SolidBody 1(Cut-Extrude4)(metal metal cube SolidBody 1(Cut-Extrude4)(metal metal cube SolidBody 1(Cut-Extrude4)(metal metal cube -8), SolidBody 1(Cut-Extrude4)(metal_metal_cube -9) Curve Data:N/A 201 Annealed Stainless SolidBody 1(Boss-Name: Steel (SS) Extrude1)(lower_bracket-Linear Elastic Isotropic 1/mirrored stainless steel U Model type: -bracket-4), Default failure Max von Mises Stress criterion: SolidBody 1(Boss-Extrude1)(middle bracket-Yield strength: 2.92e+08 N/m^2 Tensile strength: 6.85e+08 N/m^2 1/mirrored_stainless_steel_U Elastic modulus: 2.07e+11 N/m^2 -bracket-3), Poisson's ratio: 0.27 SolidBody 1(Boss-Mass density: 7,860 kg/m^3 Extrude1)(plate-12-Thermal expansion 1.7e-05 /Kelvin 6/mirrored stainless steel 4 coefficient: -4-1), SolidBody 1(Boss-Extrude1)(plate-15-1/mirrored_stainless_steel_4 -4-1), SolidBody 1(Boss-Extrude1)(plate-20-2/mirrored stainless steel 4 -4-1),SolidBody 1(Boss-Extrude1)(plate-34-5/mirrored_stainless_steel_3 -4-1), SolidBody 1(Boss-Extrude1)(plate-35-6/mirrored_stainless_steel_3 -4-1),

			SolidBody 1(Boss- Extrude1)(plate-7- 3/mirrored_stainless_steel_4 -4-1), SolidBody 1(Boss- Extrude1)(upper_bracket- 1/mirrored_stainless_steel_U -bracket-23-24-1)
Curve Data:N/A			
	Name: Model type: Default failure criterion: Tensile strength: Compressive strength: Elastic modulus: Poisson's ratio: Mass density: Shear modulus: Thermal expansion coefficient:	Glass Linear Elastic Isotropic Mohr-Coulomb Stress 4e+07 N/m^2 1e+09 N/m^2 6.8935e+10 N/m^2 0.23 2,457.6 kg/m^3 2.8022e+10 N/m^2 9e-06 /Kelvin	SolidBody 1(Boss-Extrude1)(plate-1- 1/gray_mirrored_glass-1), SolidBody 1(Boss- Extrude1)(plate-10- 1/gray_mirrored_glass-1), SolidBody 1(Boss- Extrude1)(plate-11- 1/gray_mirrored_glass-1), SolidBody 1(Boss- Extrude1)(plate-14- 1/bronze_reflective_glass_tr ansparent-1), SolidBody 1(Boss- Extrude1)(plate-17- 1/gray_reflective_glass_trans parent-1), SolidBody 1(Boss- Extrude1)(plate-19- 1/bronze_reflective_glass_tr ansparent-1), SolidBody 1(Boss- Extrude1)(plate-2- 1/bronze_mirrored_glass-1), SolidBody 1(Boss- Extrude1)(plate-21- 1/gray_reflective_glass_trans parent-1), SolidBody 1(Boss- Extrude1)(plate-22- 1/gray_reflective_glass_trans parent-1), SolidBody 1(Boss- Extrude1)(plate-25- 1/bronze_reflective_glass_tr ansparent-1), SolidBody 1(Boss- Extrude1)(plate-28- 1/bronze_reflective_glass_tr ansparent-1), SolidBody 1(Boss- Extrude1)(plate-28- 1/bronze_reflective_glass_tr ansparent-1), SolidBody 1(Boss- Extrude1)(plate-3- 1/bronze_mirrored_glass-1),

1/gray_reflective_glass_trans parent-1), SolidBody 1(Boss-Extrude1)(plate-4-1/gray mirrored glass-1), SolidBody 1(Boss-Extrude1)(plate-5-1/gray mirrored glass-1), SolidBody 1(Boss-Extrude1)(plate-6-1/bronze_mirrored_glass-1), SolidBody 1(Boss-Extrude1)(plate-8-1/bronze_mirrored_glass-1), SolidBody 1(Boss-Extrude1)(plate-9-1/bronze_mirrored_glass-1)

Curve Data:N/A

Name: Plain Carbon Steel
Model type: Linear Elastic Isotropic
Default failure Max von Mises Stress

criterion:

Yield strength: 2.20594e+08 N/m^2
Tensile strength: 3.99826e+08 N/m^2
Elastic modulus: 2.1e+11 N/m^2

Poisson's ratio: 0.28

Mass density: 7,800 kg/m^3 Shear modulus: 7.9e+10 N/m^2 Thermal expansion 1.3e-05 /Kelvin

coefficient:

SolidBody 1(Cut-Extrude1)(structure-2)

Curve Data:N/A

Loads and Fixtures

Fixture name	Fixture Image	Fixture Details
Fixed-1		Entities: 2 face(s) Type: Fixed Geometry
Desultant Forces		

Resultant Forces				
Components	X	Υ	Z	Resultant
Reaction force(N)	-30	136.766	-40	145.62
Reaction Moment(N.m)	0	0	0	0

Load name	Load Image	Load Details
Gravity-1	į.	Reference: Top Plane Values: 0 0 -9.81 Units: m/s^2

Interaction Information

Interaction	Interaction Image	Interaction Properties
Global Interaction		Type: Bonded Components: 1 component(s) Options: Independent mesh

Mesh information

Mesh type	Solid Mesh
Mesher Used:	Blended curvature-based mesh
Jacobian points for High quality mesh	16 Points
Maximum element size	2.51615 in
Minimum element size	0.125808 in
Mesh Quality	High
Remesh failed parts independently	Off
Reuse mesh for identical parts in an assembly (Blended curvature-based mesher only)	Off

Mesh information - Details

Total Nodes	244675
Total Elements	122775
Maximum Aspect Ratio	31.29
% of elements with Aspect Ratio < 3	87.7
Percentage of elements with Aspect Ratio > 10	1.06
Percentage of distorted elements	0
Time to complete mesh(hh;mm;ss):	00:00:49

Mesh Quality Plots

Name	Туре	Min	Max
Quality1	Mesh	-	-

Resultant Forces

Reaction forces

Selection set	Units	Sum X	Sum Y	Sum Z	Resultant
Entire Model	N	-30	136.766	-40	145.62

Reaction Moments

Selection set	Units	Sum X	Sum Y	Sum Z	Resultant
Entire Model	N.m	0	0	0	0

Free body forces

Selection set	Units	Sum X	Sum Y	Sum Z	Resultant
Entire Model	N	-0.000380188	106.829	-19.9991	108.685

Free body moments

Selection set	Units	Sum X	Sum Y	Sum Z	Resultant
Entire Model	N.m	0	0	0	1e-33

Study Results

Name	Туре	Min	Max
Stress1	VON: von Mises Stress	2.265e+00N/m^2 Node: 39292	3.454e+07N/m^2 Node: 54370
Model name: gaetano_sciolari Study name: Static 1(-Default-) Plot type: Static nodal stress Stress1 Deformation scale: 1			
			von Mises (N/m^2)
	No.		3.454e+07
		A CONTRACTOR OF THE PROPERTY O	_ 3.108e+07
			_ 2.763e+07
			_ 2.418e+07
			_ 2.072e+07
			_ 1.727e+07 _ 1.381e+07
			1.036e+07
			6.907e+06
			_ 3.454e+06
			2.265e+00
, X			
	gaetano_sciolari-Static 1	-Stress-Stress1	

Name	Туре	Min	Max
Displacement1	URES: Resultant Displacement	0.000e+00mm Node: 217770	4.733e-01mm Node: 193988
		Node: 217770	Node: 193988

Name	Туре	Min	Max
Strain1	ESTRN: Equivalent Strain	4.790e-10	5.129e-04
		Element: 335	Element: 60702

Name	Туре	Min	Max
Stress Hot Spot1	VON: von Mises Stress	5.403e+01N/m^2	2.199e+07N/m^2
		Element: 335	Element: 25474

