## 01204211 Discrete Mathematics Lecture 19: Modular arithmetic 1

Jittat Fakcharoenphol

October 10, 2015

# The jug puzzle

#### Possibilities

# Integer linear combinations

# The minimum integer linear combinations

#### Review

In previous lectures, we studied various properties of integers and primes, and discussed primality testing algorithms. In this lecture, we will dive deeper into **modular arithmetic**, where we work with integers that "wrap around" when reaching a particular value, called the "modulus".

Alice was born on July. Betty was born in the next 7 months. Before Betty was born for 3 months, Cathy was born. Dave was born 10 months before Cathy. What is Dave's birth month?

Alice was born on July. Betty was born in the next 7 months. Before Betty was born for 3 months, Cathy was born. Dave was born 10 months before Cathy. What is Dave's birth month?

We shall encode 12 months as numbers from 0 (for January) to 11 (for December). Let a be Alice's birth month. If we denote by b,c, and d birth months of Betty, Cathy, and Dave, we can write down the conditions as follows:

Alice was born on July. Betty was born in the next 7 months. Before Betty was born for 3 months, Cathy was born. Dave was born 10 months before Cathy. What is Dave's birth month?

We shall encode 12 months as numbers from 0 (for January) to 11 (for December). Let a be Alice's birth month. If we denote by b,c, and d birth months of Betty, Cathy, and Dave, we can write down the conditions as follows:

$$a \mod 12 = 6 \mod 12$$
  
 $(a+7) \mod 12 = b \mod 12$   
 $(b-3) \mod 12 = c \mod 12$   
 $(c-10) \mod 12 = d \mod 12$ 

Alice was born on July. Betty was born in the next 7 months. Before Betty was born for 3 months, Cathy was born. Dave was born 10 months before Cathy. What is Dave's birth month?

We shall encode 12 months as numbers from 0 (for January) to 11 (for December). Let a be Alice's birth month. If we denote by b,c, and d birth months of Betty, Cathy, and Dave, we can write down the conditions as follows:

$$a \mod 12 = 6 \mod 12$$
  
 $(a+7) \mod 12 = b \mod 12$   
 $(b-3) \mod 12 = c \mod 12$   
 $(c-10) \mod 12 = d \mod 12$ 

This is a familiar system of linear equations, but with a little twist:

a "modulus" at the end.

## Congruence

To deal with these equations, Carl Friedrich Gauss introduced a notation for them, called congruence. Instead of writing

$$(a+7) \mod 12 = b \mod 12,$$

we write

$$a+7 \equiv b \pmod{12}$$
.

## Congruence

To deal with these equations, Carl Friedrich Gauss introduced a notation for them, called congruence. Instead of writing

$$(a+7) \mod 12 = b \mod 12,$$

we write

$$a + 7 \equiv b \pmod{12}$$
.

Formally, if

$$x \mod m = y \mod m$$
,

we can write

$$x \equiv y \pmod{m}$$
.



## The system with the congruence notation

Let's rewrite our previous set of equations using this notation:

$$a \equiv 6 \pmod{12}$$

$$a+7 \equiv b \pmod{12}$$

$$b-3 \equiv c \pmod{12}$$

$$c-10 \equiv d \pmod{12}$$

Now everything looks fairly much like normal equations. But do they behave the same?

## Addition, subtraction, and multiplication

Suppose that, for a positive integer q, we know that

$$a \equiv b \pmod{q}$$
,

and

$$c \equiv d \pmod{q}$$
.

It is not hard to show that

$$a + c \equiv b + d \pmod{q},$$

$$a - c \equiv b - d \pmod{q},$$

and

$$ac \equiv bd \pmod{q}$$
.

Thus, we can treat a system of congruences in the same way we deal with a system of linear equations, except the division.