iminuit 1.3 (release candidate)

Hans Dembinski, Christoph Deil MPIK Heidelberg

iminuit

- Interactive wrapper around C++ MINUIT2
 - Uses latest version from ROOT-6.12
 - Features of MINUIT2 without ROOT dependency
- Easy to install: pip install iminuit
- Official successor of pyminuit & pyminuit2
- Enhanced for interactive use and Cython compatibility
 - Nice print out in Jupyter notebooks and console
 - Simple plots build-in
- Issue tracker on Github (PRs welcome)
 - https://github.com/iminuit/iminuit
- Citable paper coming soon

Reference and tutorials on readthedocs.io

iminuit

MINUIT from Python - Fitting like a boss

iminuit is a Python interface to the MINUIT C++ package.

It can be used as a general robust function minimisation method, but is most commonly used for likelihood fits of models to data, and to get model parameter error estimates from likelihood profile analysis.

- · Code: https://github.com/iminuit/iminuit
- Documentation: http://iminuit.readthedocs.org/
- Mailing list: https://groups.google.com/forum/#!forum/iminuit
- PyPI: https://pypi.org/project/iminuit/
- · License: MINUIT is LGPL and iminuit is MIT
- Citation: https://github.com/iminuit/iminuit/blob/master/CITATION

In a nutshell

```
from iminuit import Minuit

def f(x, y, z):
    return (x - 2) *** 2 + (y - 3) *** 2 + (z - 4) *** 2

m = Minuit(f)

m.migrad() # run optimiser
print(m.values) # {'x': 2,'y': 3,'z': 4}

m.hesse() # run covariance estimator
print(m.errors) # {'x': 1,'y': 1,'z': 1}
```

Example: line fit


```
def line(x, a, b):
    return a + x * b
```

```
def least_squares(a, b):
    yvar = 0.01
    return sum((data_y - line(data_x, a, b)) ** 2 / yvar)
```

Parameter names are detected automatically by iminuit via introspection

```
from iminuit import Minuit
m = Minuit(least_squares, a=0, b=0, error_a=1, error_b=1, errordef=1)
```

In ipython notebook: m.print param()

```
        ±
        Name
        Value
        Hesse Error
        Minos Error-
        Minos Error+
        Limit-
        Limit+
        Fixed?

        0
        a
        0
        1
        ...
        ...
        No

        1
        b
        0
        1
        ...
        No
```

Example: line fit

m.migrad() # do the actual minimization

FCN = 10.3870112514	TOTAL NCALL = 32	NCALLS = 32
EDM = 1.38398344664e-21	GOAL EDM = 1e-05	UP = 1.0

Valid	Valid Param	Accurate Covar	PosDef	Made PosDef
True	True	True	True	False
Hesse Fail	HasCov	Above EDM		Reach calllim
False	True	False		False

±	Name	Value	Hesse Error	Minos Error-	Minos Error+	Limit-	Limit+	Fixed?
0	a	0.990966	0.0587754					No
1	b	1.94494	0.0990867					No

m.values['a'] # access fit value

Hesse and Minos errors

m.hesse()

±	Name	Value	Hesse Error	Minos Error-	Minos Error+	Limit-	Limit+	Fixed?
0	a	0.990966	0.0587754					No
1	b	1.94494	0.0990867					No

±	a	b
a	1.00	-0.84
b	-0.84	1.00

m.errors

m.covariance

m.matrix()

m.matrix(correlation=True)

m.minos()

Minos status for a: VALID

Error	-0.0587753813645	0.0587753813645
Valid	True	True
At Limit	False	False
Max FCN	False	False
New Min	False	False

Minos status for b: VALID

Error	-0.0990867388614	0.0990867388614
Valid	True	True
At Limit	False	False
Max FCN	False	False
New Min	False	False

m.merrors

Parameter limits, fixing parameters

FCN = 9616.37716626	TOTAL NCALL = 13	NCALLS = 13
EDM = 3.49145226281e-13	GOAL EDM = 1e-05	UP = 1.0

Valid	Valid Param	Accurate Covar	PosDef	Made PosDef
True	True	True	True	False
Hesse Fail	HasCov	Above EDM		Reach calllim
False	True	False		False

±	Name	Value	Hesse Error	Minos Error-	Minos Error+	Limit-	Limit+	Fixed?
0	a	5	0.1					Yes
1	b	0	0.00037873			0	10	No

Build-in Plotting

Numpy support

±	Name	Value	Hesse Error	Minos Error-	Minos Error+	Limit-	Limit+	Fixed?
0	x0	1.94494	0.0990867					No
1	x1	0.990966	0.0587754				-	No

```
# accessors for numpy arrays
m.np_values()
m.np_errors()
m.np covariance()
```

minimize interface

```
from iminuit import minimize # same interface as scipy.optimize.minimize

result = minimize(least_squares_np, (0, 0))

    fun: 10.387011251394036
    hess_inv: array([[ 0.00981818, -0.00490909],
        [-0.00490909,  0.00345455]])
    message: 'Optimization terminated successfully.'
    minuit: <iminuit._libiminuit.Minuit object at 0x10ed3a668>
        nfev: 36
        njev: 0
    success: True
        x: array([ 1.9449447 ,  0.99096644])
```

Result is of type scipy.optimize.OptimizeResult