STAT206B Homework #1

Due: 01/20 (Th) - Tentative.

- 1. Let $X \sim \text{Exp}(\lambda)$, where $E(X) = 1/\lambda$. What is the pmf (probability mass function) of $Y = \lfloor X \rfloor$ (the floor of X)? Do you recognize it as a distribution that you have studied in the past?
- 2. Let X_1 and X_2 be two independent random variables such that $X_i \sim \operatorname{Ga}(a_i, b)$ for any $a_1, a_2, b > 0$. Define $Y = X_1/(X_1 + X_2)$ and $Z = (X_1 + X_2)$.
 - (a) Find the joint pdf for Y and Z and show that these two random variables are independent.
 - (b) Find the marginal pdf of Z. Do you recognize this pdf as belonging to some family that you know?
 - (c) Find the marginal pdf of Y. Do you recognize this pdf as belonging to some family that you know?
 - (d) Compute $E(Y^k)$ for any k > 0.
 - (e) What does this result imply if $a_i = b = 1$?
- 3. Consider three independent random variables X_1 , X_2 and X_3 such that $X_i \stackrel{indep}{\sim} \text{Gamma}(a_i, b)$, i = 1, 2, 3. Let

$$Y = (Y_1, Y_2, Y_3) = \left(\frac{X_1}{X_1 + X_2 + X_3}, \frac{X_2}{X_1 + X_2 + X_3}, \frac{X_3}{X_1 + X_2 + X_3}\right).$$

- (a) Show that $Y \sim \text{Dirichlet}(a_1, a_2, a_3)$, a Dirichlet distribution.
- (b) How can this result be used to generate random variables according to a Dirichlet distribution? Write a simple function in R or Matlab (your choice) that takes as inputs n, the number of trivariate vectors to be generated, and $\mathbf{a} = (a_1, a_2, a_3)$ and generates a matrix of size $n \times 3$ whose rows correspond to independent samples from a Dirichlet distribution with parameter (a_1, a_2, a_3) .

Use each of $\mathbf{a} = (0.01, 0.01, 0.01)$, (100, 100, 100), and (3, 5, 10) and comment how the density of \mathbf{Y} changes over \mathbf{a} .

- 4. Y follows an inverse Gamma distribution with shape parameter a and scale parameter b $(Y \sim \mathrm{IG}(a,b))$ if Y=1/X with $X \sim \mathrm{Gamma}(a,b)$ (assume the Gamma distribution is parameterized such that $\mathrm{E}(X)=ab$).
 - (a) Find the density of Y.
 - (b) Compute $E(Y^k)$. Do you need to impose any constrain on the problem for this expectation to exists?
 - (c) Compare $E(Y^k)$ to $1/E(X^k)$ (hint: look at the ratio of the two quantities).
- 5. Y follows a log normal distribution with parameters μ and σ^2 (denotes as $Y \sim \text{Log-N}(\mu, \sigma^2)$ if $Y = \exp(X)$ where $X \sim \text{N}(\mu, \sigma^2)$).
 - (a) Find the density of Y.

- (b) Compute the mean and the variance of Y.
- 6. Let $\boldsymbol{X}=(X_1,X_2,\ldots,X_p)$ with $X\sim \mathrm{N}_p(\boldsymbol{\mu},\Sigma)$ and set $\boldsymbol{Z}_1=(X_1,\ldots,X_q)$ and $\boldsymbol{Z}_2=(X_{q+1},\ldots,X_p)$ with 1< q< p. Show that

$$\boldsymbol{Z}_1 \mid \boldsymbol{Z}_2 \sim \mathrm{N}_q \left(\boldsymbol{\mu}_1 + \Sigma_{12} \Sigma_{22}^{-1} (\boldsymbol{Z}_2 - \boldsymbol{\mu}_2), \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \right),$$

where μ_k and $\Sigma_{k\ell}$ denote the blocks of μ and Σ where the rows correspond to the variables in \mathbb{Z}_k and the columns to the variables in \mathbb{Z}_ℓ .

- 7. Show that if $X \sim \text{Exp}(\beta)$, then
 - (a) $Y = X^{1/\gamma}$ has a Weibull distribution with parameters γ and β with $\gamma > 0$ a constant.
 - (b) $Y = (2X/\beta)^{1/2}$ has the Rayleigh distribution.

For both parts, derive the form of the pdf, verify that is a pdf, and calculate the mean and the variance.

- 8. Let $Y \mid X \sim \text{Poisson}(X)$ and let $X \sim \text{Exp}(\lambda)$. What is the marginal distribution of Y?
- 9. (Robert) If $y \sim \text{Binomial}(n, \theta)$ and $x \sim \text{Binomial}(m, \theta)$, and $\theta \sim \text{Beta}(\alpha, \beta)$. Find the predictive distribution of y given x.
- 10. (Robert) Give the posterior and the marginal distributions in the following cases:
 - (a) $x \mid \sigma^2 \sim N(0, \sigma^2)$ and $1/\sigma^2 \sim Gamma(1, 2)$.
 - (b) $x \mid p \sim \text{Negative-Binomial}(10, p)$ and $p \sim \text{Beta}(1/2, 1/2)$.
- 11. Assume that an observation, x_1, \ldots, x_n are iid from $N(\theta, \sigma^2)$, where μ and σ^2 are unknown. Consider $\tilde{\pi}(\theta, \sigma^2) \propto 1/\sigma^2$ (not a probability density, i.e., improper, Jeffreys prior).
 - (a) Find the joint posterior distribution.
 - (b) Find the posterior distributions $\pi(\theta \mid \bar{x}, s^2, \sigma^2)$ and $\pi(\sigma^2 \mid \bar{x}, s^2)$.
 - (c) Find the marginal posterior distribution of θ , $\pi(\theta \mid \bar{x}, s^2)$.
- 12. Consider $\mathbf{x}_i \mid \boldsymbol{\theta}, \boldsymbol{\Sigma} \stackrel{iid}{\sim} \mathrm{N}_p(\boldsymbol{\theta}, \boldsymbol{\Sigma}), \ i = 1, \dots, n$, where $\mathrm{N}_p(\boldsymbol{\theta}, \boldsymbol{\Sigma})$ represents the p-dimensional normal distribution with mean vector $\boldsymbol{\theta} \in \mathbb{R}^p$ and covariance matrix $\boldsymbol{\Sigma}$ ($p \times p$ positive definite matrix). Suppose $\boldsymbol{\theta}$ and $\boldsymbol{\Sigma}$ are unknown. Consider the following conjugate prior distributions;

$$\boldsymbol{\theta} \mid \Sigma \sim N_p(\boldsymbol{\mu}, 1/n_0 \Sigma), \text{ and } \Sigma^{-1} \sim \text{Wishart}_p(\alpha, W).$$

The Wishart distribution is described in Robert Exercise #3.21. Note that if $\Sigma^{-1} \sim \text{Wishart}_p(\alpha, W)$, $\Sigma \sim \text{inverse-Wishart}_p(\alpha, W^{-1})$.

fact: Given n observations x_1, \ldots, x_n of $N_p(\boldsymbol{\theta}, \Sigma)$, a sufficient statistic is

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
, and $S = \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^t$.

Tip: Read Robert $\S4.4.2$ (and/or BDA $\S3.6$).

(a) Find an expression of the joint posterior distribution as follows;

$$\pi(\boldsymbol{\theta}, \Sigma^{-1} \mid \bar{\boldsymbol{x}}, S) = \pi_1(\boldsymbol{\theta} \mid \Sigma, \bar{\boldsymbol{x}}, S) \pi_2(\Sigma^{-1} \mid \bar{\boldsymbol{x}}, S).$$

Also, identify $\pi_1(\boldsymbol{\theta} \mid \Sigma, \bar{\boldsymbol{x}}, S)$ and $\pi_2(\Sigma^{-1} \mid \bar{\boldsymbol{x}}, S)$

(b) Is the prior conjugate? Explain.