One Fourth Labs

Loss function

Loss function for Binary Classification

What is the loss function that you can use for a binary classification problem

- 1. In normal cases, the number of neurons in the output layer would be equal to the number of classes
- 2. However a shortcut in the case of binary classification would be to use only one output neuron that uses a sigmoid function. Here is a diagrammatic representation of that configuration

- 3. Here, $\hat{y} = P(y = 1)$
- 4. Therefore, we can obtain P(y = 0) = 1 P(y = 1)
- 5. Consider the following values for the variables

a.
$$b = [0.5 \ 0.3]$$

b.
$$y = 1$$

$$W_1 = \begin{bmatrix} 0.9 & 0.2 & 0.4 & 0.3 \\ -0.5 & 0.4 & 0.3 & 0.3 \\ 0.1 & 0.1 & -0.1 & 0.2 \\ -0.2 & 0.5 & 0.5 & / \end{bmatrix}$$

- c. $W_2 = [0.5 \ 0.8 \ -0.6 \ 0.3]$
- d. $x = [0.3 \ 0.5 \ -0.4 \ 0.3]$

PadhAl: Deep Neural Networks

One Fourth Labs

- 6. The output values are as follows
 - a. $a_1 = W_1 * x + b_1 = [0.8 \ 0.52 \ 0.68 \ 0.67]$
 - b. $h_1 = sigmoid(a_1) = [0.69 \ 0.63 \ 0.66 \ 0.67]$
 - c. $a_2 = W_2 * h_1 + b_2 = 0.948$
 - d. $\hat{y} = sigmoid(a_2) = 0.7207$
 - e. In this case y = 1 *True distribution* [0 1]
 - f. Predicted distribution \hat{y} [0.2793 0.7207]
 - g. Cross Entropy Loss:
 - i. $L(\Theta) = (y)(-\log(\hat{y})) + (1-y)(-\log(\hat{y}))$
 - ii. In this case, since y = 1
 - iii. $L(\Theta) = -1 * log(0.7207)$
 - iv. $L(\Theta) = 0.327$
- 7. Consider another case where $x = [-0.6 -0.6 \ 0.2 \ 0.3]$ and true class y = 1
- 8. The output values are as follows
 - a. $a_1 = W_1 * x + b_1 = [0.01 \ 0.71 \ 0.42 \ 0.63]$
 - b. $h_1 = sigmoid(a_1) = [0.50 \ 0.67 \ 0.60 \ 0.65]$
 - c. $a_2 = W_2 * h_1 + b_2 = 0.921$
 - d. $\hat{y} = sigmoid(a_2) = 0.7152$
 - e. In this case y = 0 *True distribution* [1 0]
 - f. Predicted distribution \hat{y} [0.2848 0.7152]
 - g. Cross Entropy Loss:
 - i. $L(\Theta) = (y)(-\log(\hat{y})) + (1-y)(-\log(\hat{y}))$
 - ii. In this case, since y = 0
 - iii. $L(\Theta) = -1 * log(1 0.7152)$
 - iv. $L(\Theta) = 1.2560$
 - v. Here, even though the true value was 0, our neuron was outputting a very large value(0.7152) which was already indicative of a large loss value.