巨行星的探测方法

161250010

陈俊达 2017年6月7日

说明

• 本次报告的重点在于给大家简要介绍一下探索巨行星的方法、原理及成果,不涉及定量的具体运算。

探测方法

直接观测

和恒星的光相比, 行星的光过于微弱

间接观测

- 脉冲星计时(Pulsar Timing)
- 多普勒光谱(Doppler Spectroscopy)
- 天体测量(Astrometry)
- 测光法 (Transit Photometry)
- · 微透镜/引力透镜 (Microlensing)

因为技术的限制, 目前探测到的很多行星都是巨行星

脉冲星计时

脉冲星

中子星 高速旋转 有强磁场

两极放出射线

地球能有规律 地探测到射线

行星对脉冲星运动的影响

靠近地球移动: 周期变短 远离地球移动: 周期变长

结果

- 推测围绕这个脉冲星运动的行星的存在;
- 推测行星轨道的半长轴;
- 推测行星质量的下限。

优势 & 缺点

- 灵敏,可以探测非常小的行星
- 不仅可以用来探测行星,还可 以探测星系内其他的成员
- 只能探测围绕脉冲星运动的 行星
- 脉冲星是超新星爆发后的结果,超新星爆发过程中,其周围的、原来的存在的行星很有可能会被毁掉。

成果(WOLSZCZAN, 1994)

The discovery of two Earth-mass planets **orbiting an old** (~10^9 years), rapidly spinning neutron star, the 6.2-millisecond radio pulsar PSR B1257+12, was announced in early 1992. It was soon pointed out that the approximately 3:2 ratio of the planets' orbital periods should lead to accurately predictable and possibly measurable gravitational perturbations of their orbits. The unambiguous detection of this effect, after 3 years of systematic timing observations of PSR B1257+12 with the 305-meter Arecibo radiotelescope, as well as the discovery of another, moon-mass object in orbit around the pulsar, constitutes irrefutable evidence that **the first planetary system** around a star other than the sun has been identified.

多普勒光谱

径向速度法(Radical Velocity)有着相似的原理

多普勒效应

当波源和观察者有相对运动的时, 观察者所观察到的波长会有变化。 当波源靠近观察者时,观测到的波长会变短 当波源远离观察者时,波长会变长。

光有波动性。 光源靠近观察者时,光会蓝移。 光源远离时,光会红移。

原理

行星运动影响恒星运动 恒星运动使它发出的光出现多普勒效应

结果&优势

- 推测围绕这个恒星运动的行星的存在;
- 推测行星轨道的半长轴;
- 推测行星质量的下限。

- 围绕恒星运动的行星比围绕 脉冲星的更为常见
- 是目前探测行星的主要方法

成果I(MAYOR & QUELOZ, 1995)

Pegasi is inferred from **observations of periodic variations in the star's radial velocity**. The companion lies only about eight million kilometres from the star, which would be well inside the orbit of Mercury in our Solar System. This object might be a gas-giant planet that has migrated to this location through orbital evolution, or from the radiative stripping of a brown dwarf.

成果2 (MARCY & BUTLER, 1998)

Eight extrasolar planet candidates have now been identified, all revealed by **Keplerian Doppler shifts** in their host stars. **The masses (m sin i)** lie between 0.5 and 7 M_{IUP}, and the semimajor axes are less than 2.1 astronomical units (AU). Doppler detectability favors high masses and small orbits, and improvements will render Saturn masses detectable within a few years. The substellar mass function (dN/dM) for companions is roughly flat from 70 down to $10 M_{IUP}$ but it exhibits a sharp increase for masses below 5 M_{IUP} For three of these companions (47 UMa, ρ Crb, and 55 Cnc), their circular orbits must be primordial (not tidally induced), indicating formation in a disk, as presumed for Solar System planets. Eccentric orbits may be explained by gravitational perturbations, either by companion stars, other planets, or disk resonances. The detections imply that \sim 6% of solar-type stars have giant planets within 2 AU. The small orbits (a < 2 AU) imply that the planets formed either in situ, without the benefit of ice grains, or suffered inward migration. Orbital decay within I Myr in disks appears inevitable and may shape the planet mass distribution. The observed stability of spectral line shapes suggests that nonradial stellar oscillations do not affect the planet detections.

天体测量

FACE-ON & EDGE-ON

原理

- 还是依赖于行星运动对恒星的扰动
- 测量不同时刻恒星的位置
- Face-on: 探测到圆周运动
- Edge-on: 往返运动

优势 & 缺点

可以直接估计行星的质量, 而不是估计质量下限。

- 只能观测到视直径/角直径 (angular diameter),不是 真正的轨迹直径(diameter)
- 当恒星和地球距离非常远的 时候,观测到的视直径就非 常小了。
- 需要长期观测

成果

- 星系HD 176051
- 联星系统, 距地球49光年, 质量分别为1.07和0.71倍太阳质量 (Muterspaugh, et al., 2006)
- 行星HD 176051b
- 质量在1.5木星质量左右

测光法

也叫凌日法

Source: https://exoplanets.nasa.gov/interactable/11/

原理

• 如果观测台和一个行星系统是edge-on,每一次行星经过观测台和恒星的连线时,都会触发**日偏食**,恒星亮度降低。

特点

- 日偏食的持续时间和强度取决于恒星与行星相对表面积 之比。
- 如果比例和太阳: 木星相当, 亮度降低1%。
- 已经足够人们探测到。
- · 空间望远镜(比如Kepler)的重要任务之一。

结果

局限

• 概率小

行星必须要刚好经过观测台和恒星的连线

概率和恒星直径及轨道半径的比有关

对于一个轨道半径是IAU,绕一个太阳大小的恒星的行星,出现这种对齐的概率是0.47%。

- 容易误报,一般和其他方法一起使用。
 - 2012年有个报道称Kepler通过这个方法观测一个行星系统的时候,误报的几率可能高达35%。(Santerne, et al., 2012)

成果

• 已经探测到2729个行星 (NASA, 2017)

引力透镜

引力透镜

• 广义相对论: 光线经过强引力场的时候会被扭曲

行星的存在的影响

- 行星的存在造成透镜的扭曲(defect)
- 使源恒星亮度出现一次急剧升高(spike)

优点 & 缺点

- 唯一有能力探测主序星附 近地球大小的行星的办法
- 到目前已经有4颗被确认
- 引力透镜现象发生不频繁
- 对大量恒星进行观测
- 两个恒星之间存在相对运动,引力透镜活动是一次性的

其他方法

- 直接成像(Direct imaging)
 - 红外成像,适用于离地球近、距恒星远以及体积巨大的行星
- 极化测定 (Polarimetry) (Schmid, et al., 2006)
 - 从恒星出发的非极化的光被行星反射后会被极化

总结

行星质量分布

引用

Butler, R. P., Vogt, S. S., Laughlin, G., Burt, J. A., Rivera, E. J., Tuomi, M., . . . Keiser, S. (2017, 2 12). *The LCES HIRES/Keck Precision Radial Velocity Exoplanet Survey*. Retrieved from Arxiv: https://arxiv.org/abs/1702.03571

Marcy, G. W., & Butler, R. P. (1998, 9). Detection of Extrasolar giant planets. *Annual Review of Astronomy and Astrophysics*, pp. 57-97.

Mayor, M., & Queloz, D. (1995, 11). A Jupiter-mass companion to a solar-type star. *Nature*, pp. 355-359. Muterspaugh, M. W., Lane, B. F., Kulkarni, S. R., Burke, B. F., Colavita, M. M., & Shao, M. (2006, 12). Limits to Tertiary Astrometric Companions in Binary Systems. *The Astrophysical Journal*, pp. 1469-1479.

NASA. (2017, 6 1). Searching for shadows - Transits. Retrieved from Exoplanets Exploration: https://exoplanets.nasa.gov/interactable/11/

Santerne, A., Díaz, R. F., Moutou, C., Bouchy, F., Hébrard, G., Almenara, J.-M., . . . Santos, N. C. (2012, 9). SOPHIE velocimetry of Kepler transit candidates VII. A false-positive rate of 35% for Kepler close-in giant exoplanet candidates. *Astronomy & Astrophysics*, p. 16.

Schmid, H. M., Beuzit, J.-L., Feldt, M., Gisler, D., Gratton, R., Henning, T., . . . Wolstencroft, R. (2006). Search and investigation of extra-solar planets with polarimetry. *IAU Colloquium #200* (pp. 165-170). Cambridge, UK: Cambridge University Press.

Townsend, R. (2009, 10 13). *The Search for Extrasolar Planets*. Retrieved from Rich Townsend's mad star: http://www.astro.wisc.edu/~townsend/static.php?ref=diploma-2

Wolszczan, A. (1994, 4). Confirmation of Earth-Mass Planets Orbiting the Millisecond Pulsar PSR B1257+12. *Science*, pp. 538-542.

https://commons.wikimedia.org/w/index.php?curid=1619505

http://www.openexoplanetcatalogue.com/planet/HD%20176051%20b/

https://www.eso.org/public/outreach/eduoff/cas/cas2004/casreports-2004/rep-228/

http://tech.sina.com.cn/d/s/2015-11-02/doc-ifxkhcfq1044217.shtml

https://zh.wikipedia.org/wiki/%E5%A4%9A%E6%99%AE%E5%8B%92%E6%95%88%E5%BA%94#/media/File:Dopplerfrequenz.gif

https://en.wikipedia.org/wiki/Methods_of_detecting_exoplanets

推荐阅读

- https://exoplanets.nasa.gov/interactable/11/
 - NASA官方网站,通过动画等介绍探测系外行星的方法和目前进展等
- http://www.astro.wisc.edu/~townsend/static.php?ref=diploma-2
 - University of Wisconsin-Madison威斯康星大学麦迪逊分校天文系的 Rich Townsend副教授
- https://en.wikipedia.org/wiki/Methods_of_detecting_exoplanets
 - 维基百科
- https://www.eso.org/public/outreach/eduoff/cas/cas2004/casreports-2004/rep-228/
 - European Southern Observatory欧洲南方天文台的官方网站

THANKS

And Q&A