Name: Hamed Vaheb

High Dimensional Statistics: Exercise Sheet 2

The exercises that I ask to be corrected are: 1, 4

1. Show: If $Z \sim \mathcal{N}_n(0, \Sigma)$ and Σ is invertible, then $Z^T \Sigma^{-1} Z \sim \chi^2_{(n)}$.

Solution. In general, we can decompose an arbitrary matrix P in the form $P = U^{-1}DU$, where D is the diagonal matrix containing eigenvalues of P, i.e., $D = diag(\lambda_1, ..., \lambda_n)$. If P is symmetric, $U^{-1} = U^T$ and hence $P = U^T DU$.

We first prove that Σ is symmetric:

$$\forall i, j \in \{1, ..n\}, (\Sigma)_{ij} = cov(Z_i, Z_j) = cov(Z_j, Z_i) = (\Sigma)_{ji}$$

Therefore, we can decompose Σ^{-1} as $\Sigma^{-1} = U^T D U$ and hence we can state the following:

$$Z^{T}\Sigma^{-1}Z = Z^{T}(U^{T}DU)Z$$
$$= (Z^{T}U^{T})D(UZ)$$
$$= (UZ)^{T}D(UZ)$$

Now we note that since $Z \sim \mathcal{N}_n(0, \Sigma)$ and $U^T U = I$, then $Y = UZ \sim \mathcal{N}_n(0, \Sigma)$ Hence, we can state that

$$(UZ)^{T}D(UZ) = Y^{T}DY$$

$$= Y^{T}diag(\lambda_{1}, ..., \lambda_{n})Y$$

$$= \sum_{i=1}^{n} \lambda_{i}Y_{i}^{2}$$

Let $A = \sum_{i=1}^n \lambda_i Y_i^2$. We know that $Y_i \sim \mathcal{N}_n(0, \sigma I_n)$, and therefore $\frac{Y_i}{\sigma^2} \sim \mathcal{N}_n(0, I_n)$. Then, $\frac{1}{\sigma^2} A = \frac{1}{\sigma^2} \sum_{i=1}^n \lambda_i Y_i^2$ will be summation of squares of independent normal random variables, which follow a Chisquared distribution, i.e., $\frac{A}{\sigma^2} \sim \chi_{(n)}^2$, and since σ^2 is a constant, we can deduce that $A = \sum_{i=1}^n \lambda_i Y_i^2 \sim \chi_{(n)}^2$