Question number	Scheme	Marks
2	$(V=)3x^3$	B1
	$\frac{dV}{dx} = 9x^2$	M1
	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) = \frac{\mathrm{d}V}{\mathrm{d}t} \times \frac{\mathrm{d}x}{\mathrm{d}V}$ or $\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t}$ oe	M1
	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) = \frac{8}{9x^2}$ oe	A1
	$\left(\frac{\mathrm{d}x}{\mathrm{d}t} = \right) \frac{8}{9 \times 2^2} \qquad \text{oe}$	dM1
	$\frac{2}{9}$ oe	A1
		[6] Fotal 6 marks

Part	Mark	Additional Guidance	
	B1	Correct simplified expression for Volume	
	M1	Minimally acceptable attempt at differentiation—see general guidance	
		$(kx^2 \text{ where } k \neq 0 \text{ if working from correct } V)$	
	M1	A correct chain rule that could be used to find $\frac{dx}{dt}$	
		Condone absence of $\frac{dx}{dt}$ unless $\frac{dx}{dt}$ is not the subject.	
	A1	As shown oe	
	dM1	Substitution of $x = 2$ into their $\frac{dx}{dt}$, dependent on second method mark.	
	A1	Correct answer (exact or correct to 2dp or better)	
	For all marks condone poor notation e.g. use of dy/dx as long as not ambiguous.		