Queens College

Department of Computer Science Midterm1 Exam Spring 2020 3.10.20

CS111

Instructor: Kangmei Yang

Complete all of the following information.

STUDENT LAST NAME (PRINT):	LU 113	\(\rac{1}{2}\)
STUDENT FIRST NAME (PRINT):	LOUBE	NS
LAB INSTRUCTOR'S NAME (PRINT):	Rebecca	Schley

CUNYFirst ID#: 23051269

SIGNATURE:

THIS IS A CLOSED BOOK TEST. NO BOOKS, NOTES, COMPUTERS, CELL PHONES, OR CALCULATORS ARE ALLOWED.

The exam has 4 problems; you should answer all of them.

Answer the problems in the spaces provide.

Problem:			03	04	Σ 23	
Grade:			2	7		

Seat#: <u>B14</u>

Version: E

Problem 1 (10 points)

Write a complete C++ program that does the following. (Programs that correctly carry out some of the tasks will receive partial credit.)

Excessively long program over 20 lines will lose points.

- 1. It asks the user to enter two positive integers a and b, each integer should has 3 or more digits.
- 2. It terminates the program if any entered number is illegal.
- 3. The program then prints the user's number with more digits, in case there's tie, print both.

Here's an example of how the program should work:

Enter two 3-digit or more positive integers: 456 987

The number with more digits is/are 456 987

```
#include ciostream>
Using namespace std;
int main () }
   int a = 9; b = 9; c = 0; d = 0
   cout << "Enter two positive numbers of << 3 or more digits. Hit ENTER after each number:
   Ciny a >> b;
  While (a < 100 11 b < 100) {
      couted" 3-digit numbers or more:
     cin>>a>>bi} return 0;
    While (a != 19) }
     a %10; a= a/10
       C++; }
      while (b1= a)}
          b % 10; b = 6/10
      if (c>d) {coutce" He rumber with more digits is
     else if (d>c) {coutex the number with more digits one "<< accepts of (c== d) {coutex the number with more digits one "<< accepts
```

Problem 2 (10 points) No Partial Credit

Write C++ statements to carry out the following tasks. Do not write complete programs, just give a single line of C++ code. No answer can use more than four lines of code.

Assume that integer variables x, y, and string variable z has been declared and initialized.

(a) If x < y < 10, replace x by 10

- (b) Print first x perfect squares (each on its own line, start from 1 then 4 then 9 and on)
 Answer:
- (c) Print the exact quotient of x and y.

(d) Repeatedly read in a new input of z when z is not John.

(e) Print the last digit of x, if x is negative, negate x to remove negative sign first. (Note: last digit is first digit from right.)

Answer:

$$\begin{array}{c} \text{Cout} < < \times \% \\ \text{if} (\times < \alpha) \\ \times \times = -1; \\ \end{array}$$

Problem 3 (10 points) No Partial Credit Consider the following C++ program. int main() { int x = 3, y = 111, z = 123; string mike = "Michael"; cout << x << "x" << mike << "=" << z << endl; //line a $cout << (100 \% y) << (y / 10) << "\nnn";$ //line b if ((x % 3 != 0) && (x < 4)) cout << x + y << endl; //line c else cout \ll y - x \ll endl; for (int c = y; $c \le z$; c += 3) cout << c; cout << endl; for (int i = 1; $i \le 2$; i++) { //line e for (int j = 2; $j \le x$; j++) cout << i << j; cout << endl; }</pre> return 0; (a) Output start at line a: 3 x Michael = 123 (b) Output start at line b: (c) Output start at line c: 108 (d) Output start at line d: 111 (e) Output start at line e:

Problem 4 (10 points)

Write a complete C++ program that asks the user for a positive number n. Then the program prints a vertical zig-zag shape of * with n lines that has width n. (Program doesn't need to validate the input. Excessively long programs over 18 lines will lose points.)

An example run of the program follows.

Enter a positive integers: 4

* timelude Liostreams

* Using name space stal;

* int main () {

*

(int n = Q;

Cout << "Enter a positive number: \n"

in"

cout exendl;

Return Q;

		ŧ				
		<u>6</u>				
			7			
			E			
	y .					1
					1.5	
			1		,	
	111					
		¥				
_						
						1
		Sir.				9
						,
1.5						
			* *			
	*					
	2					
	2					
		(i) X		1		
4.						
9						
		1.0				
					Y.	
3.						
	1					
					-7-	
	X Y					4 1
		**				
	0.					
			1			