# Redes de Computadores

### **Shortest Paths in Networks**

Manuel P. Ricardo, Rui Prior

Universidade do Porto

- » What is a graph?
- » What is a spanning tree?
- » What is a shortest path tree?
- » How are paths defined in a network?
- » How does the Dijkstra algorithm work?
- » How does a link state routing protocol work?
- » How does a node learn about neighbours?
- » How does the Bellman-Ford algorithm work?
- » How does a distance vector work?
- » What are the limitations of the layer 2 network of switches?
- » How does the IEEE spanning tree protocol work?
- » What is the maximum capacity of a flow network?

### Graph – Directed and Undirected



a) Directed graph



b) Undirected graph

$$G = (V, E)$$

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\}, \qquad |V| = 6$$

$$E = \{(v_1, v_2), (v_2, v_3), (v_2, v_4), (v_3, v_4), (v_3, v_4), (v_4, v_3), (v_3, v_5), (v_4, v_5), (v_5, v_6)\}, \qquad |E| = 8$$

$$G = (V, E)$$

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\}, \qquad |V| = 6$$

$$E = \{(v_1, v_2), (v_2, v_3), (v_2, v_4), (v_3, v_4), (v_3, v_4), (v_3, v_5), (v_4, v_5), (v_5, v_6)\}, \qquad |E| = 7$$

### Tree

- Tree T = (V,E)
  - » connected graph with no cycles
  - » number of edges |E| = |V| 1
  - » any two vertices of the tree are connected by exactly one path
- A tree T is said to span a graph G = (V,E) (spanning tree) if
  - T = (V,E') and  $E' \subseteq E$



### Shortest Path Trees

- Graphs and Trees can be weighted
  - $\rightarrow$  G=(V, E, w)
  - $\rightarrow$  T=(V, E', w)
  - $w: E \rightarrow \mathbb{R}$



- Total cost of a tree T  $\rightarrow$   $C_{total}(T) = \sum_{i=1}^{|E|} w(e_i)$
- Minimum Spanning Tree T\*  $\rightarrow C_{total}(T^*) = \min(C_{total}(T))$ 
  - » algorithms used to compute MST: Prim, Kruskal
- Shortest Path Tree (SPT) Rooted at Vertex s
  - » tree composed by the union of the shortest paths between s and each of other vertices of G
  - » algorithms used to compute SPT: Dijkstra, Bellman-Ford
  - » depends on s
- Computer networks use Shortest Path Trees

# Routing in Layer 3 Networks

## Forwarding, Routing

- Forwarding → data plane
  - » directing packet from input to output link
  - » using a forwarding table
- Nouting → control plane
  - » computing paths the packets will follow
  - » routers exchange messages
  - » each router creates its forwarding table



### Importance of Routing

### End-to-end performance

- » path affects quality of service
- » delay, throughput, packet loss

#### • Use of network resources

- » balance traffic over routers and links
- » avoiding congestion by directing traffic to less-loaded links

### Transient disruptions

- » failures, maintenance
- » limiting packet loss and delay during changes

### Shortest-Path Routing

#### Path-selection model

- » Destination-based
- » Load-insensitive (e.g., static link weights)
- » Minimum sum of link weights
  - Special case: minimum hop count (all weights equal)



### Shortest-Path Problem

- Given a network topology with link costs
  - $\mathbf{c}(\mathbf{x},\mathbf{y})$  link cost from node x to node y
  - » infinity if x and y are not direct neighbors
- ◆ Compute the least-cost paths from source u to all nodes
   p(v) node predecessor of node v in the path to u



## Dijkstra's Shortest-Path Algorithm

- Iterative algorithm
  - » After k iterations  $\rightarrow$  known least-cost paths to k nodes
- $\mathbf{S} \rightarrow \mathbf{set}$  of nodes for which least-cost path is known
  - » Initially,  $S=\{u\}$ , where u is the source node
  - » Add one node to **S** in each iteration
- $D(v) \rightarrow$  current cost of path from source to node v
  - » Initially
    - D(v) = c(u,v) for all nodes v adjacent to u
    - **D**(**v**) =  $\infty$  for all other nodes **v**
  - » Continually update **D(v)** when shorter paths are learned

## Dijsktra's Algorithm

```
Initialization:
      S = \{u\}
3.
      for all nodes v
4.
       if v adjacent to u
5.
         D(v) = c(u,v)
6.
         p(v) = u
       else D(v) = \infty
7.
8.
9.
    Loop:
10.
      find node w not in S with the smallest D(w)
11.
      add w to S
12.
      update D(v), p(v) for all v adjacent to w and not in S:
    if D(w) + c(w,v) < D(v)
13.
14.
    D(v) = D(w) + c(w,v)
15.
        p(v) = w
16. repeat until all nodes are in S
```

# Dijkstra's Algorithm - Example



# Dijkstra's Algorithm - Example



### Shortest-Path Tree

- ◆ Shortest-path tree from u
   ◆ Forwarding table at u



NOTE: keeping track of the predecessors is necessary to build the shortest paths tree

|   | link  |
|---|-------|
| V | (u,v) |
| W | (u,w) |
| X | (u,w) |
| У | (u,v) |
| Z | (u,v) |
| S | (u,w) |
| t | (u,w) |

### Link-State Routing

- Each router keeps track of its incident links
  - » link up, link down
  - » cost on the link
- Each router broadcasts link states
  - » every router gets a complete view of the graph
- Each router runs Dijkstra's algorithm, to
  - » compute the shortest paths
  - » construct the forwarding table
- Example protocols
  - » Open Shortest Path First (OSPF)
  - » Intermediate System Intermediate System (IS-IS)

### Detection of Topology Changes

- Beacons generated by routers on links
  - » Periodic "hello" messages in both directions
  - » After a few missed "hellos" → link failure detected



### Broadcasting the Link State

- How to Flood the link state?
  - » every node sends link-state information through adjacent links
  - » next nodes forward that info to all links except the one where the information arrived





- When to initiate flooding?
  - » Topology change
    - link or node failure/recovery
    - link cost change
  - » Periodically
    - refresh link-state information
    - typically 30 minutes





## Scaling Link-State Routing

- Overhead of link-state routing
  - » flooding link-state packets throughout the network
  - » running Dijkstra's shortest-path algorithm
- Introducing hierarchy through "areas"



### Bellman-Ford Algorithm

- Define distances at each node x
  - $d_x(y) = cost of least-cost path from x to y$
- Update distances based on neighbors
  - $d_x(y) = \min \{c(x,v) + d_v(y)\}$  over all neighbors v



### Distance Vector Algorithm

- c(x,v) = cost for direct link from x to v node x maintains costs of direct links c(x,v)
- $D_x(y)$  = estimate of least cost from x to y node x maintains distance vector  $\mathbf{D}_x = [D_x(y): y \in \mathbf{N}]$
- Node x maintains also its neighbors' distance vectors for each neighbor v, x maintains  $\mathbf{D}_{v} = [\mathbf{D}_{v}(y): y \in \mathbf{N}]$
- Each node v periodically sends D<sub>v</sub> to its neighbors
  - » and neighbors update their own distance vectors
  - $D_x(y) \leftarrow \min_{v} \{c(x,v) + D_v(y)\}$  for each node  $y \in N$
- Over time, the distance vector  $D_x$  converges

### Distance Vector Algorithm

- Iterative, asynchronous each local iteration caused by:
  - local link cost change
  - distance vector update message from neighbor
- Distributed
  - » node notifies neighbors only when its DV changes
- Neighbors then notify their neighbors, if necessary

#### Each node:

wait for (change in local link cost or message from neighbor)

recompute estimates

if DV to any destination has changed, notify neighbors

# Distance Vector Example - Step 0

| Ta        | able fo             | r A        | Ta             | able for     | В             |                    |               |               |               |          |                                                          |               |
|-----------|---------------------|------------|----------------|--------------|---------------|--------------------|---------------|---------------|---------------|----------|----------------------------------------------------------|---------------|
| Dst       | Cst                 | Нор        | Dst            | Cst          | Нор           |                    | E             |               | 3             |          | 1                                                        | C             |
| Α         | 0                   | (A)        | Α              | 4            | Α             |                    |               |               |               | T.       |                                                          | $\setminus_1$ |
| В         | 4                   | В          | В              | 0            | (B)           |                    | 2             | -             |               | F        |                                                          |               |
| С         | ~                   | _          | С              | $\infty$     | _             |                    |               | 6             |               | \        | 1                                                        |               |
| D         | ∞                   | _          | D              | 3            | D             |                    |               |               | 4             | `        |                                                          | 3 <b>D</b>    |
| Е         | 2                   | Е          | Е              | $\infty$     | _             |                    | A             |               | 4             |          | P                                                        |               |
|           |                     |            | _              | _            |               |                    |               |               |               |          | $\left( \begin{array}{c} \mathbf{B} \end{array} \right)$ |               |
| F         | 6                   | F          | F              | 1            | F             |                    |               |               |               |          |                                                          |               |
|           | 6<br>able fo        |            |                | able for     | <u> </u>      | Та                 | able for      | E             | Ta            | able for | F                                                        |               |
|           |                     |            |                |              | <u> </u>      | Ta<br>Dst          | able for      | Нор           | Ta<br>Dst     | able for | F<br>Hop                                                 |               |
| Та        | able fo             | r C        | Та             | able for     | D             |                    |               |               |               |          | 1                                                        |               |
| Ta<br>Dst | able fo             | r C        | Ta<br>Dst      | able for     | D             | Dst                | Cst           | Нор           | Dst           | Cst      | Нор                                                      |               |
| Dst A     | able fo<br>Cst<br>∞ | r C<br>Hop | Ta<br>Dst<br>A | cst          | Hop           | Dst<br>A           | Cst 2         | Нор           | Dst<br>A      | Cst<br>6 | Нор                                                      |               |
| Dst A B   | Cst                 | r C<br>Hop | Dst<br>A<br>B  | cst $\infty$ | Hop<br>-<br>B | Dst<br>A<br>B      | Cst<br>2<br>∞ | Hop<br>A<br>- | Dst<br>A<br>B | 6<br>1   | Hop<br>A<br>B                                            |               |
| Dst A B C | Cst                 | Hop – (C)  | Dst A B C      | Cst          | Hop  - B C    | Dst<br>A<br>B<br>C | Cst 2 ∞ ∞     | Hop<br>A<br>- | Dst A B C     | 6<br>1   | Hop<br>A<br>B                                            |               |

23

# Distance Vector Example - Step 1

| Ta  | able for    | Α   | Ta  | able for    | В   |     | E        |     |     |          |          |               |
|-----|-------------|-----|-----|-------------|-----|-----|----------|-----|-----|----------|----------|---------------|
| Dst | Cst         | Нор | Dst | Cst         | Нор |     | E        |     | 3   |          | 1        |               |
| Α   | 0           | (A) | Α   | 4           | Α   |     |          |     |     | F        |          | $\setminus_1$ |
| В   | 4           | В   | В   | 0           | (B) |     | 2        | 6   |     |          |          | \             |
| С   | 7           | F   | O   | 2           | F   |     |          | 0   |     | \        | 1        |               |
| D   | 7           | В   | D   | 3           | D   | (   |          |     | 1   | `        |          | 3 <b>D</b>    |
| Е   | 2           | Е   | ш   | 4           | F   |     | A        |     | 4   |          | B        |               |
| F   | 5           | Е   | F   | 1           | F   |     |          |     | _   |          | <b>B</b> | _             |
| Ta  | Table for C |     |     | Table for D |     |     | able for | Е   | Ta  | able for | F        |               |
| Dst | Cst         | Нор | Dst | Cst         | Нор | Dst | Cst      | Нор | Dst | Cst      | Нор      |               |
| Α   | 7           | F   | Α   | 7           | В   | Α   | 2        | Α   | Α   | 5        | В        |               |
| В   | 2           | F   | В   | 3           | В   | В   | 4        | F   | В   | 1        | В        |               |
| С   | 0           | (C) | C   | 1           | С   | C   | 4        | F   | O   | 1        | С        |               |
| D   | 1           | D   | D   | 0           | (D) | D   | $\infty$ | _   | D   | 2        | С        |               |
| Е   | 4           | F   | Е   | 8           | _   | Е   | 0        | (E) | Ш   | 3        | Е        |               |
| F   | 1           | F   | F   | 2           | С   | F   | 3        | F   | F   | 0        | (F)      | 24            |

## Distance Vector Example - Step 2

| Ta  | able for | Α   | Table for B |     |     |     | E 2      |     |     |          |          | $\overline{\mathbb{C}}$ |
|-----|----------|-----|-------------|-----|-----|-----|----------|-----|-----|----------|----------|-------------------------|
| Dst | Cst      | Нор | Dst         | Cst | Нор |     |          |     | 3   |          | 1        |                         |
| Α   | 0        | (A) | Α           | 4   | Α   |     |          |     |     | F        |          | \                       |
| В   | 4        | В   | В           | 0   | (B) |     | 2        | 6   |     |          |          | '                       |
| С   | 6        | Е   | С           | 2   | F   |     |          |     |     | \        | 1        |                         |
| D   | 7        | В   | D           | 3   | D   | (   |          |     | 4   | `        | \        | 3                       |
| Е   | 2        | Е   | E           | 4   | F   |     | A )-     |     | +   |          | B        |                         |
| F   | 5        | Е   | F           | 1   | F   |     |          |     |     |          | <b>B</b> |                         |
| Ta  | able for | С   | Table for D |     |     | Ta  | able for | Е   | Та  | able for | F        |                         |
| Dst | Cst      | Нор | Dst         | Cst | Нор | Dst | Cst      | Нор | Dst | Cst      | Нор      |                         |
| Α   | 6        | F   | Α           | 7   | В   | Α   | 2        | Α   | Α   | 5        | В        |                         |
| В   | 2        | F   | В           | 3   | В   | В   | 4        | F   | В   | 1        | В        |                         |
| С   | 0        | (C) | С           | 1   | С   | С   | 4        | F   | С   | 1        | С        |                         |
| D   | 1        | D   | D           | 0   | (D) | D   | 5        | F   | D   | 2        | С        |                         |
|     |          |     | Е           | 5   | С   | Е   | 0        | (E) | Е   | 3        | Е        |                         |
| Е   | 4        | F   |             | J   |     |     |          | (-) |     |          | _        |                         |

Demo: https://www.dcc.fc.up.pt/~rprior/RC/dvrp/

## Routing Information Protocol (RIP)

- Distance vector protocol
  - » nodes send distance vectors every 30 seconds
  - » or, when an update causes a change in routing
- RIP is limited to small networks

## BGP - The Exterior Gateway Routing Protocol



Information F receives from its neighbors about D

From B: "I use BCD"
From G: "I use GCD"
From I: "I use IFGCD"
From E: "I use EFGCD"

(b)

(a) A set of BGP routers. (b) Information sent to F

## Unique Spanning Tree in Ethernet Networks

## L2 Networking - Single Tree Required

a)

- Ethernet frame
  - No hop-count
  - Could *loop* forever
  - Broadcast frame, misconfiguration
- Layer 2 network
  - Required to have tree topology
  - Single path between every pair of stations
- Spanning Tree Protocol (STP)
  - Running in bridges
  - Helps building the spanning tree
  - Blocks ports



(11,10)

11

(11,20)

## Constructing a Spanning Tree

### Distributed algorithm

- » switches need to elect a "root" the switch with the smallest identifier
- » each switch identifies if its interface is on the shortest path from the root
- » messages (Y, d, X)
  - from node X
  - claiming Y is the root
  - and the distance is d



### Steps in Spanning Tree Algorithm

- Initially, each switch thinks it is the root
  - » switch sends a message out every interface
  - » identifying itself as the root with distance 0
  - $\rightarrow$  example: switch X announces (X, 0, X)
- Other switches update their view of the root
  - » upon receiving a message, check the root id
  - » if the new id is smaller, start viewing that switch as the root
- Switches compute their distance from the root
  - » add interface *cost* to the distance received from a neighbor
  - » identify interfaces not on a shortest path to the root and exclude them from the spanning tree

## Example - Switch #4's Viewpoint

- Switch #4 thinks it is the root
  - $\rightarrow$  sends (4, 0, 4) message to 2 and 7
- Then, switch #4 hears from #2
  - » receives (2, 0, 2) message from 2
  - » ... and thinks that #2 is the root
  - » and realizes it is just one hop away
- Then, switch #4 hears from #7
  - » receives (2, 1, 7) from 7
  - » and realizes this is a longer path
  - » so, prefers its own one-hop path
  - » and removes 4-7 link from the tree



For simplicity, consider all costs = 1

## Example - Switch #4's Viewpoint

- Switch #2 hears about switch #1
  - » switch 2 hears (1, 1, 3) from 3
  - » switch 2 starts treating 1 as root
  - $\rightarrow$  and sends (1, 2, 2) to neighbors
- Switch #4 hears from switch #2
  - » switch 4 starts treating 1 as root
  - » and sends (1, 3, 4) to neighbors
- Switch #4 hears from switch #7
  - » switch 4 receives (1, 3, 7) from 7
  - » and realizes this is a longer path
  - » so, prefers its own three-hop path
  - » and removes 4-7 link from the tree



# Maximum Flow of a Network

### Flow Network Model

#### Flow network

- » source s
- » sink t
- » nodes a, b and c
- Edges are labeled with **capacities** 
  - » (e.g. bit/s)



- Communication networks are not flow networks
  - » they are queue networks
  - » flow networks allow us to determine limit capacity values

## Maximum Capacity of a Flow Network

- Max-flow min-cut theorem
  - » maximum amount of flow transferable through a network equals minimum value among all simple cuts of the network
- ◆ Cut → split of the nodes V into two disjoint sets S and T
  - $\gg$  S U T = V
  - » there are  $2^{|V|-2}$  possible cuts
- Capacity of cut (S, T):  $c(S,T) = \sum_{(u,v) \mid u \in S, v \in T, (u,v) \in E} c(u,v)$

## Max-flow Min-cut - Example

 $2^{|5|-2} = 8$  possible cuts

|     |              | V            | ertic        | es           |   |        |             |
|-----|--------------|--------------|--------------|--------------|---|--------|-------------|
| Cut | s            | a            | ь            | c            | t | c(S,T) | Feasability |
| 1   | S            | S            | S            | $\mathbf{S}$ | Τ | 10     | ✓           |
| 2   | $\mathbf{S}$ | $\mathbf{S}$ | $\mathbf{S}$ | Τ            | Τ | 19     | ✓           |
| 3   | $\mathbf{S}$ | $\mathbf{S}$ | Τ            | $\mathbf{S}$ | Τ | 13     | ✓           |
| 4   | $\mathbf{S}$ | $\mathbf{S}$ | T            | $\mathbf{T}$ | Τ | 17     | ✓           |
| 5   | $\mathbf{S}$ | Т            | $\mathbf{S}$ | $\mathbf{S}$ | Τ | -      | ×           |
| 6   | $\mathbf{S}$ | Т            | $\mathbf{S}$ | $\mathbf{T}$ | Т | -      | ×           |
| 7   | $\mathbf{S}$ | Т            | Т            | $\mathbf{S}$ | Т | 11     | ✓           |
| 8   | S            | Т            | Т            | Τ            | Т | 12     | ✓           |

#### Maximum flow = 10









### Homework

#### 1. Review slides

#### 2. Read from Tanenbaum

- » Section 5.2 Routing algorithms
- » Section 4.8.3 Spanning Tree Bridges