Statistical Methods for Insurance: Multilevel Models

Di Cook & Souhaib Ben Taieb, Econometrics and Business Statistics, Monash University W6.C2

Overview of this class

- · Fixed effects vs random effects
- · Mixed effects models
- Diagnostics

What is a multilevel model?

- Observations are not independent, but belong to a hierarchy
- Example: individual level demographics (age, gender), and school level information (location, cours offerings, classroom resources)
- Multilevel model enables fitting different types of dependencies

Fixed vs random

- Fixed effects can be used when you know all the categories, e.g. age, gender, smoking status
- Random effects are used when not all groups are captured, and we have a random selection of the groups, e.g. individuals (if you have multiple measurements), schools, hospitals

Mixed effects models - a type of multilevel model

For data organized in g groups, consider a continuous response linear mixed-effects model (LME model) for each group i, i = 1, ..., g:

$$\mathbf{y}_{i} = \mathbf{X}_{i} \boldsymbol{\beta} + \mathbf{Z}_{i} \mathbf{b}_{i} + \varepsilon_{i}$$

$$(n_{i} \times 1) = (n_{i} \times p)(p \times 1) + (n_{i} \times q)(q \times 1) + (n_{i} \times 1)$$

- \mathbf{y}_i is the vector of outcomes for the n_i level-1 units in group i
- \mathbf{X}_i and \mathbf{Z}_i are design matrices for the fixed and random effects
- β is a vector of p fixed effects governing the global mean structure
- \mathbf{b}_i is a vector of q random effects for between-group covariance
- ε_i is a vector of level-1 error terms for within-group covariance

Example

- Data: radon, 919 owner-occupied homes in 85 counties of Minnesota.
 Available in the ньмаіад раскаде
- · Response: log. radon
- Fixed: storey (categorical)
- · Covariate: *uranium* (quantitative)
- Random: county (house is a member of county)

6/40

Take a look

Plot of response vs covariate. What do you see?

Here's what we see

- · Vertical stripes: each county is represented by an average uranium value
- · Weak linear association, lots of variation for houses within county
- Four points inline horizontally at the base (be suspicious)
- · Some counties only have 2, 3 points
- Scales?

Pre-processing

- · Counties with less than 4 observations removed
- Four flat-line observations should be removed, really suspect these were erroneously coded missing values

Look again

Fit a simple model

 $log. radon = \beta_0 + \beta_1 storey + \beta_2 uranium + \varepsilon$

```
##
## Call:
## qlm(formula = log.radon ~ storey + uranium, data = radon sub)
##
## Deviance Residuals:
##
          10 Median 30
      Min
                                       Max
## -2.6610 -0.4928 0.0191 0.4745 2.4205
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4483 0.0313 46.25 < 2e-16 ***
## storeyfirst floor -0.6112 0.0733 -8.34 3.3e-16 ***
                     0.8359 0.0742 11.26 < 2e-16 ***
## uranium
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for gaussian family taken to be 0.547)
##
```

11/40

Your turn

Make a sketch of what this model looks like.

Fit an interaction term

```
##
## Call:
## qlm(formula = log.radon ~ storey * uranium, data = radon sub)
##
## Deviance Residuals:
##
               10 Median
      Min
                                 30
                                        Max
## -2.6445 -0.4898 0.0131 0.4653
                                     2.4369
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
                                       0.0318 45.91 < 2e-16 ***
## (Intercept)
                            1.4580
                        -0.6659 0.0796 -8.37 2.7e-16 ***
## storeyfirst floor
## uranium
                            0.8909 0.0805 11.07 < 2e-16 ***
## storeyfirst floor:uranium -0.3620 0.2066 -1.75
                                                         0.08 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for gaussian family taken to be 0.546)
##
      Null deviance: 538.51 on 795 degrees of freedom
##
```

13/40

What does this model look like?

Your turn

Write down the equation of the fitted model

Mixed effects model

```
log. radon_{ij} = \beta_0 + \beta_1 storey_{ij} + \beta_2 uranium_i + b_{0i} + b_{1i} storey_{ij} + \varepsilon_{ij}
i = 1, \dots, \#counties; j = 1, \dots, n_i
```

```
library(lme4)
radon_lmer <- lmer(log.radon ~ storey + uranium +
   (storey | county.name), data = radon_sub)
summary(radon_lmer)
radon_lmer_fit <- augment(radon_lmer)</pre>
```

Your turn

For the radon data:

- What is p, q, g?
- And hence n_i , i = 1, ..., g?

$$log. radon_{ij} = \beta_0 + \beta_1 storey_{ij} + \beta_2 uranium_i + b_{0i} + b_{1i} storey_{ij} + \varepsilon_{ij}$$

$$i = 1, \dots, \#counties; j = 1, \dots, n_i$$

Examining the model output: fixed effects

Fixed effects:

	Estimate	Std.	Error	t	value
(Intercept)	1.48066	0.	.03856		38.40
storeyfirst floor	-0.59011	0.	.11246		-5.25
uranium	0.84600	0.	09532		8.88

How do these compare with the simple linear model estimates?

Coefficients:

18/40

Examining the model output: random effects

Random effects:

```
Groups Name Variance Std.Dev. Corr county.name (Intercept) 0.01388 0.1178 storeyfirst floor 0.22941 0.4790 0.02 Residual 0.50694 0.7120 Number of obs: 796, groups: county.name, 46
```

This is saying that the variance of the estimates for first floor observations is larger than the storey.

What it looks like

Or like this

Your turn

How does the mixed effects model differ from the simple linear model? (Hint: Think about the variance.)

Assumptions

Recall:

$$\mathbf{y}_{i} = \mathbf{X}_{i} \boldsymbol{\beta} + \mathbf{Z}_{i} \mathbf{b}_{i} + \boldsymbol{\varepsilon}_{i}$$

$$(n_{i} \times 1) = (n_{i} \times p)(p \times 1) + (n_{i} \times q)(q \times 1) + (n_{i} \times 1)$$

- \mathbf{b}_i is a random sample from $\mathcal{N}(\mathbf{0},\mathbf{D})$ and independent from the level-1 error terms,
- $\boldsymbol{\varepsilon}_i$ follow a $\mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{R}_i)$ distribution
- **D** is a positive-definite $q \times q$ covariance matrix and \mathbf{R}_i is a positive-definite $n_i \times n_i$ covariance matrix

Extract and examine level-1 residuals

$$\boldsymbol{\varepsilon}_i \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{R}_i)$$

Level-1 (observation level) look normal.

24/40

qqplot

Level-1 (observation level) do look nearly normal.

Examine within group

Summary statistics

```
## # A tibble: 6 x 4
    county.name
                     m
                                  n
##
          <fctr> <dbl> <dbl> <int>
## 1
          ANOKA 0.051 0.719
                                 52
       BELTRAMI
                0.335 0.867
     BLUE EARTH
                0.152 0.562
                                 14
## 4
        CARLTON -0.194 0.651
                                 10
## 5
         CARVER 0.322 0.924
                                  5
## 6
           CASS 0.383 0.504
```


resid1

28/40

Learn

There is some difference on average between counties, which means that residuals still have some structure related to the county location.

Normality tests

Anderson-Darling, Cramer-von Mises, Lilliefors (Kolmogorov-Smirnov)

```
##
## Anderson-Darling normality test
##
## data: radon_lmer_fit$resid1
## A = 0.4, p-value = 0.4
```

all believe that the residuals are consistent with normality.

Conclusion about level-1 residuals

The assumption:

$$\boldsymbol{\varepsilon}_i \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{R}_i)$$

is probably ok, at the worst it is not badly violated.

Random effects

$$\mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{D}), \quad i = 1, \dots g$$

where ${\bf D}$ allows for correlation between random effects within group, and these should be independent from the level-1 error

We have both intercepts (basement) and slopes (first floor)

Should be no correlation

Fitted vs Observed

Plotting the observed vs fitted values, gives a sense for how much of the response is explained by the model. Here we can see that there is still a lot of unexplained variation.

36/40

Goodness of fit

From the linear model

```
## null.deviance df.null logLik AIC BIC deviance df.residual
## 1 539 795 -887 1783 1806 432 792
```

From the random effects model

```
## sigma logLik AIC BIC deviance df.residual
## 1 0.712 -885 1784 1817 1760 789
```

Hmmm... deviance looks strange! Compute sum of squares of residuals instead:

[1] 387

Which model is best?

Influence

No overly influential observations

38/40

Resources

- HLMDiag package explanation
- HLM package

Share and share alike

This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/ 3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

40/40