Álgebra lineal I, Grado en Matemáticas

Febrero 2017, Primera Semana

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora.

Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Determinante de una matriz.
- (b) Forma escalonada reducida (o forma de Hermite por filas) de una matriz.
- (c) Dependencia e independencia lineal de vectores.
- (d) Aplicación lineal

Ejercicio 1: (2 puntos) Demuestre el siguiente resultado: Si A es una matriz cuadrada de orden n, entonces $det(A) \neq 0$ si y sólo si A es invertible. (Teorema 1.84, pág. 54)

Ejercicio 2: (2 puntos)

Sean V un \mathbb{K} —espacio vectorial de dimensión 4 y

$$U \equiv \begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_2 + x_3 = 0 \end{cases}$$

un subespacio vectorial de V cuyas ecuaciones están referidas a una base $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$. Determine todos los subespacios suplementarios de U que contienen a la recta $R_1 = L(v_1 + v_2 + v_4)$. ¿Alguno de ellos contiene a la recta $R_2 \equiv \{x_1 = x_2 = x_4 = 0\}$?

Ejercicio 3: (4 puntos)

Sean $a \in \mathbb{K}$ y $f_a : \mathbb{K}^3 \to \mathbb{K}^3$ la aplicación lineal cuya matriz en la base canónica es:

$$\left(\begin{array}{ccc}
1 & a & 0 \\
a & 1 & a \\
0 & a & 1
\end{array}\right)$$

- (a) Decida, según los valores de $a \in \mathbb{K}$ si f_a es inyectiva, sobreyectiva o biyectiva.
- (b) Estudie si el conjunto $U = \{x \in \mathbb{K}^3 : f_a(x) = x\}$ es un subespacio vectorial de \mathbb{K}^3 .
- (c) Determine la matriz de f_a en la base $\mathcal{B}' = \{(1,0,0), (0,1,1), (0,1,-1)\}.$

Ejercicio 1: Demuestre el siguiente resultado: Si A es una matriz cuadrada de orden n, entonces $det(A) \neq 0$ si y sólo si A es invertible.

Demostración: Teorema 1.84, pág 54.

Demostraciones alternativas:

- \Rightarrow) Si A es invertible, entonces es producto de matrices elementales $A = E_1 \cdots E_k$. Utilizando las propiedades del determinante se tiene que $\det(A) = \det(E_1) \cdots \det(E_k)$, y como las matrices elementales tienen determinante no nulo, entonces $\det(A) \neq 0$.
- \Rightarrow) Si A es invertible, entonces existe A^{-1} y se cumple $A \cdot A^{-1} = I_n$. Aplicando la propiedad del determinante respecto del producto de matrices

$$\det A \cdot \det A^{-1} = \det I_n = 1 \implies \det A \neq 0$$

- \Leftarrow) Si det $A \neq 0$ y $H_f(A)$ es la forma de Hermite por filas de A, entonces existe una matriz invertible P tal que $PA = H_f(A)$ y det P det $A = \det H_f(A)$. Entonces det $H_f(A) \neq 0$ y como $H_f(A)$ es una matriz cuadrada triangular de orden n, no puede tener ningún elemento nulo en la diagonal principal. Esto es equivalente a decir que $H_f(A)$ tiene n pivotes y por tanto su rango es n. Así, rg $A = \operatorname{rg} H_f(A) = n$, luego A es invertible.
- \Leftarrow) Todavía más fácil. Dada una matriz A cualquiera de orden n, siempre podemos construir su matriz adjunta Adj(A). Si $\det A \neq 0$, además podemos construir la siguiente matriz $\frac{Adj(A)^t}{\det A}$, que sabemos es la matriz inversa de A. Luego A es invertible.

Ejercicio 2: Sean V un \mathbb{K} —espacio vectorial de dimensión 4 y

$$U \equiv \begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_2 + x_3 = 0 \end{cases}$$

un subespacio vectorial de V cuyas ecuaciones están referidas a una base $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$. Determine todos los subespacios suplementarios de U que contienen a la recta $R_1 = L(v_1 + v_2 + v_4)$. ¿Alguno de ellos contiene a la recta $R_2 \equiv \{x_1 = x_2 = x_4 = 0\}$?

Solución: Determinamos una base de U, que estará formada por dos vectores (dim U=2) pues las ecuaciones implícitas de U son exactamente 2. Podemos determinar la base resolviendo el sistema y obteniendo así las ecuaciones paramétricas. Una posible base es:

$$\mathcal{B}_U = \{u_1 = (1, 0, -1, 0)_{\mathcal{B}}, u_2 = (0, 1, -2, 1)_{\mathcal{B}}\}$$

Un suplementario de U estará generado por dos vectores u_3 y u_4 de modo que $\{u_1, u_2, u_3, u_4\}$ sea una base de V. Nos piden los suplementarios que contienen a la recta $R_1 = L((1,1,0,1)_{\mathcal{B}})$, de modo que podemos tomar $u_3 = (1,1,0,1)_{\mathcal{B}}$ y $u_4 = (a,b,c,d)_{\mathcal{B}}$ sólo deberá cumplir la condición de independencia lineal del conjunto de vectores $\{u_1, u_2, u_3, u_4\}$.

$$\det \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -2 & 1 \\ 1 & 1 & 0 & 1 \\ a & b & c & d \end{pmatrix} = 3d - 3b \neq 0 \Leftrightarrow b \neq d$$

Así, todos los suplementarios de U que contienen a la recta R_1 son de la forma

$$L((1,1,0,1)_{\mathcal{B}}, (a,b,c,d)_{\mathcal{B}}) \text{ con } b \neq d$$

A continuación estudiamos si alguno de ellos contiene a la recta $R_2 = L((0,0,1,0)_{\mathcal{B}})$. Para ello es suficiente comprobar si

$$(0,0,1,0)_{\mathcal{B}} \in L((1,1,0,1)_{\mathcal{B}}, (a,b,c,d)_{\mathcal{B}})$$
(1)

para algún valor de $a, b, c, d \in \mathbb{K}$, con $b \neq d$. La condición (1) es equivalentemente a

$$\operatorname{rg}\begin{pmatrix}0 & 0 & 1 & 0\\1 & 1 & 0 & 1\\a & b & c & d\end{pmatrix} = 2 \Leftrightarrow \begin{cases} \det\begin{pmatrix}0 & 1 & 0\\1 & 0 & 1\\a & c & d\end{pmatrix} = a - d = 0\\ \det\begin{pmatrix}0 & 1 & 0\\1 & 0 & 1\\b & c & d\end{pmatrix} = b - d = 0 \end{cases}$$

y puesto que la segunda condición es b=d y no se puede dar, entonces los tres vectores son siempre linealmente independientes. Así, R_2 no está contenida en ninguno de los planos suplementarios de U que contienen a R_1 .

Ejercicio 3: Sean $a \in \mathbb{K}$ y $f_a : \mathbb{K}^3 \to \mathbb{K}^3$ la aplicación lineal cuya matriz en la base canónica es:

$$\left(\begin{array}{ccc}
1 & a & 0 \\
a & 1 & a \\
0 & a & 1
\end{array}\right)$$

- (a) Decida, según los valores de $a \in \mathbb{K}$ si f_a es inyectiva, sobreyectiva o biyectiva.
- (b) Estudie si el conjunto $U = \{x \in \mathbb{K}^3 : f_a(x) = x\}$ es un subespacio vectorial de \mathbb{K}^3 .
- (c) Determine la matriz de f_a en la base $\mathcal{B}' = \{(1,0,0), (0,1,1), (0,1,-1)\}.$

Solución:

- (a) Por ser endomorfismo, es invectiva si y sólo si es sobreyectiva si y solo si es biyectiva. Así, basta comprobar cualquiera de las siguientes dos condiciones:
 - (1) Ker $f_a = \{0\}$
 - (2) Im $f_a = \mathbb{K}^3$

La segunda condición es equivalente a rg $f_a = 3$, que es el rango de cualquier matriz de f_a .

$$\operatorname{rg}\begin{pmatrix} 1 & a & 0 \\ a & 1 & a \\ 0 & a & 1 \end{pmatrix} = 3 \iff \det\begin{pmatrix} 1 & a & 0 \\ a & 1 & a \\ 0 & a & 1 \end{pmatrix} = 1 - 2a^2 \neq 0 \iff a \neq \pm \frac{\sqrt{2}}{2}$$

Entonces, si $a \neq \pm \frac{\sqrt{2}}{2}$ la aplicación f_a es biyectiva, mientras que si $a = \pm \frac{\sqrt{2}}{2}$ no es ni inyectiva ni sobreyectiva.

(b) En primer lugar, vemos que U es no vacío, puesto que $f_a(0) = 0$ implica que $0 \in U$. Entonces, tenemos que demostrar que se cumple $\alpha x + \beta y \in U$ para todo $\alpha, \beta \in \mathbb{K}$ y para todo $x, y \in U$:

$$f_a(\alpha x + \beta y) = \alpha f_a(x) + \beta f_a(y) = \alpha x + \beta y \iff \alpha x + \beta y \in U$$

Donde la primera igualdad se cumple por linealidad de f_a y la segunda por ser x e y vectores de U.

Otro modo de demostrarlo: El conjunto $U = \{x \in \mathbb{K}^3 : f_a(x) = x\}$ está formado por los vectores x cuyas coordenadas (x_1, x_2, x_3) en la base canónica (en la misma en la que viene dada la matriz) satisfacen

$$\begin{pmatrix} 1 & a & 0 \\ a & 1 & a \\ 0 & a & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

De donde se obtienen las ecuaciones

$$\begin{cases} ax_2 = 0 \\ ax_1 + ax_3 = 0 \\ ax_2 = 0 \end{cases}$$

Como las coordenadas de los vectores que determinan U son el conjunto de soluciones de un sistema lineal homogéneo (Teorema 3.54, pág. 126) entonces U es un subespacio vectorial.

(c) Si llamamos \mathcal{B} a la base canónica se tiene

$$\mathfrak{M}_{\mathcal{B}'}(f_a) = \mathfrak{M}_{\mathcal{B}\mathcal{B}'}\mathfrak{M}_{\mathcal{B}}(f_a)\mathfrak{M}_{\mathcal{B}'\mathcal{B}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & a & 0 \\ a & 1 & a \\ 0 & a & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix} \\
= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & a & 0 \\ a & 1 & a \\ 0 & a & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix} \\
= \begin{pmatrix} 1 & a & a \\ \frac{a}{2} & 1 + a & 0 \\ \frac{a}{2} & 0 & 1 - a \end{pmatrix}$$