Would you rather:

- A) Work for 10 days and receive \$100 per day OR
- B) Work for 10 days. Receive \$2 on day 1, and every day after that you get double what you got the previous day.

	day 1	day 2	day 3	day 4	day 5	day 6	day 7	day 8	day 9	day 10
A)	100	100	100							\rightarrow
B)	2	2.2=4	8	16	32	64	128	256	512	1024
$2^{x} \cdot 2^{0} \cdot 2^{2} \cdot 2^{3}$ Total for plan A): $100 \cdot 10 = 100$										
Total for plan B):										

1

4.2 Working with integer exponents

Name	Symbol	Multiple of the Metre	Multiple as a Power of 10
terametre	Tm	1 000 000 000 000	10 ¹²
gigametre	Gm	1 000 000 000	10 ⁹
megametre	Mm	1 000 000	10 ⁶
kilometre	km 🗡	1 000 جره	10 ³
hectometre	hm 🛪	100 10'x10' =102	10 ²
decametre	dam 🗴	on 10 - 10°	10 ¹
metre	m	C ₁	

How do we represent multiples that are less than or equal to 1 as a power of 10?

	Name	Symbol	Multiple of the Metre	Multiple as a Power of 10
	terametre	Tm	1 000 000 000 000	10 ¹²
	gigametre	Gm	1 000 000 000	10 ⁹
く	megametre	Mm	1 000 000	10 ⁶
)	kilometre	km	1 000	10 ³
/	hectometre	hm	100	10 ²
	decametre	dam 火\	ૂ 10	10 ¹
	metre	m	21	(10°)
	decimetre	dm 六	0,00 TO	10-1
	centimetre	cm →	0,01 10- = 101-1	10-5
	millimetre	mm - K	0,001 10-2-10	10-3
	micrometre	μm	0.000,1	10-4
	nanometre	nm	0,000,01	10-5
	picometre	pm	0,000,001	10-6
	femtometre	fm	0.000 000 001	\ O ⁻⁹
	attometre	am	0.000 000 000 001	10-15

The rule for negative exponents is:

How is 10² related to 10⁻²?

Use the quotient rule to show that $x^0 = 1$, when x is not zero.

$$\frac{100}{100} = 10^{-1-1} = 10^{-2}$$

$$1 = \frac{x}{x} = \frac{x^{2}}{x^{2}} = x^{2} = x^{2} = x^{2}$$

$$(10)225^{2} = 1$$

Powers with integer bases in rational form

Evaluate:

a)
$$6^{-3} = \frac{1}{6^3}$$
 b) $(-9)^{-2}$ c) -2^{-5} d) $(\frac{2}{3})^{-3}$
 0.006 $(\frac{-9}{1})^2 = \frac{1}{1}$ $= \frac{1}{2^5}$ $= (\frac{35}{2^5})^3$ $= \frac{1}{2^5}$ $= \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2}$ $= \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2}$ $= \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2}$ $= \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2}$

Determine whether the following are true or false

a)
$$4^{-4} = \frac{1}{4^4}$$
 $4^{-4} = \frac{1}{4^6}$
b) $(\frac{1}{5})^{-6} = \frac{1}{5^6}$ $(\frac{1}{5})^{-6} = (\frac{5}{1^6})^{-6} = \frac{5^6}{1^6} = 5^6$
c) $(\frac{4}{5})^{-3} = \frac{-4^3}{5^3}$ $(-\frac{4}{5})^{-3} = (-\frac{5}{3})^3 = (-\frac{5}{3})^3$
d) $(\frac{3}{8})^{-2} = \frac{8^2}{3^2}$ $(\frac{3}{8})^{-2} = (\frac{8}{3})^2 = (\frac{-8}{3})^2 = \frac{8^2}{3^2}$

Simplify and Evaluate the following:

$$\frac{3^{5} \times 3^{-2}}{(3^{-3})^{2}} = \frac{3^{5} \cdot 3^{-2}}{3^{-6}} = \frac{3^{5-2}}{3^{-6}} = \frac{3^{3}}{3^{-6}}$$

$$= \frac{3^{5-2}}{3^{-6}} = \frac{3^{3}}{3^{-6}}$$

$$= \frac{3^{5-2}}{3^{-6}} = \frac{3^{3}}{3^{-6}}$$

$$= \frac{3^{5-2}}{3^{-6}} = \frac{3^{3}}{3^{-6}} = \frac{3^{3}}$$

$$\left[\left(-6^{-1} \right)^{-2} \right]^{1} = \left[\left(-\frac{1}{6} \right)^{-2} \right]^{-1} = \left[\left(-\frac{1}{6} \right)^{2} \right]^{-1} = \left[\left(6^{2} \right)^{2} \right]^{-1} = \left[\left$$

$$\frac{9^{-2}}{3^{-3}} = \frac{(3^2)^{-2}}{3^{-3}} = \frac{3^{-4}}{3^{-3}} = 3^{-4} = 3^{-1} = (\frac{1}{3})^{1} = \frac{1}{3}$$

Key Ideas:

- Product rule: $\times^{m} \cdot \times^{n} = \times^{m+n}$
- Quotient rule: $\frac{\times}{\times} = \times^{-}$ Negative exponent rule: $\times^{-} = \frac{\times}{\times}$

- Power rule:

 $\left(X_{m}\right)_{v} = X_{m,v} \quad \overline{ov} \left(X_{m}\right)_{v} = -$

HMWK: pg. 222 #4,6,7,8,11,15