- 1. 3.3
- 2. 3.4
- 3. 3.5
- 4. 3.6
- 5. 3.7
- 6. 3.8
- 7. 3.9

Section 3.2: Doped Semiconductors

- **3.3** For a *p*-type silicon in which the dopant concentration $N_A = 5 \times 10^{18} / \text{cm}^3$, find the hole and electron concentrations at T = 300 K.
- **3.4** For a silicon crystal doped with phosphorus, what must N_D be if at T = 300 K the hole concentration drops below the intrinsic level by a factor of 10^8 ?
- **3.5** In a phosphorus-doped silicon layer with impurity concentration of 10^{17} /cm³, find the hole and electron concentrations at 27° C and 125° C.

Section 3.3: Current Flow in Semiconductors

- **3.6** A young designer, aiming to develop intuition concerning conducting paths within an integrated circuit, examines the end-to-end resistance of a connecting bar 10- μ m long, 3- μ m wide, and 1 μ m thick, made of various materials. The designer considers:
- (a) intrinsic silicon
- (b) *n*-doped silicon with $N_D = 5 \times 10^{16} / \text{cm}^3$
- (c) *n*-doped silicon with $N_D = 5 \times 10^{18} / \text{cm}^3$
- (d) *p*-doped silicon with $N_A = 5 \times 10^{16} / \text{cm}^3$
- (e) aluminum with resistivity of $2.8 \mu\Omega \cdot \text{cm}$

Find the resistance in each case. For intrinsic silicon, use the data in Table 3.1. For doped silicon, assume $\mu_n = 3\mu_p = 1200 \text{ cm}^2/\text{V} \cdot \text{s}$. (Recall that $R = \rho L/A$.)

3.7 Contrast the electron and hole drift velocities through a 10-µm layer of intrinsic silicon across which a voltage

- of 3 V is imposed. Let $\mu_n = 1350 \text{ cm}^2/\text{V} \cdot \text{s}$ and $\mu_p = 480 \text{ cm}^2/\text{V} \cdot \text{s}$.
- **3.8** Find the current that flows in a silicon bar of 10- μ m length having a 5- μ m \times 4- μ m cross-section and having free-electron and hole densities of $10^4/\text{cm}^3$ and $10^{16}/\text{cm}^3$, respectively, when a 1 V is applied end-to-end. Use $\mu_n = 1200 \text{ cm}^2/\text{V} \cdot \text{s}$ and $\mu_p = 500 \text{ cm}^2/\text{V} \cdot \text{s}$.
- **3.9** In a 10- μ m-long bar of donor-doped silicon, what donor concentration is needed to realize a current density of 2 mA/ μ m² in response to an applied voltage of 1 V? (*Note*: Although the carrier mobilities change with doping concentration, as a first approximation you may assume μ_n to be constant and use 1350 cm²/V·s, the value for intrinsic silicon.)