

Barem de corectare

Subiectul I

		Punctaj parţial	Punctaj
A	Amestec de gaze	parşiai	
a)	Din		
	$ u = \sum_{i=1}^{N} \nu_i, $	0,5 p.	
	adică		
	$\frac{m}{\mu} = \sum_{i=1}^N \frac{m_i}{\mu_i},$ rezultă $\frac{1}{\mu} = \sum_{i=1}^N \frac{m_i}{\mu_i} = \sum_{i=1}^N \frac{w_i}{\mu_i},$	0,5 p.	2 p.
	$\mu \underset{i=1}{\overset{\sim}{\succeq}} \mu_i \underset{i=1}{\overset{\sim}{\succeq}} \mu_i$		
	sau $\mu = \frac{1}{\sum_{i=1}^{N} \frac{w_i}{u_i}}.$	1 p.	
b)	Din		
	$m = \sum_{i=1}^{N} m_i$,	0,5 p.	
	rezultă $\mu u = \sum_{i=1}^N \mu_i u_i,$	0,5 p.	2 p.
	t=1		
	$\mu = \sum_{i=1}^{N} x_i \mu_i.$	1 p.	
В.	Aer umed		
c)	$p_a + p_v = H$, unde p_a este presiunea parțială a aerului uscat, iar p_v este presiunea vaporilor.		
	Din ecuatia termica de stare scrisa pentru un volum V de amestec rezulta		
	$p_a V = v_a RT$ și $p_v V = v_v RT$, rezultă		
	$\frac{p_a}{v_a} = \frac{p_v}{v_v} = \frac{p_a + p_v}{v_a + v_v} = \frac{H}{v}.$	0,5 p.	1,0 p.
	Fracția molară a vaporilor este $x = x_v = \frac{v_v}{v} = \frac{p_v}{H} = \frac{hp_s}{H}.$	0,5 p.	

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 1 din 8

d)	$\gamma = \frac{C_p}{C_V} = \frac{\frac{\nu_a C_{p_a} + \nu_v C_{p_v}}{\nu}}{\frac{\nu_a C_{V_a} + \nu_v C_{V_v}}{\nu}} = \frac{(1 - x)C_{p_a} + xC_{p_v}}{(1 - x)C_{v_a} + xC_{v_v}},$	0,5 p.	
	Dar		
	$\gamma_a = \frac{c_{p_a}}{c_{V_a}}$ și $\gamma_v = \frac{c_{p_v}}{c_{V_v}}$.	0,5 p.	
	Din relațiile Mayer $C_{p_a} - C_{V_a} = C_{p_v} - C_{V_v} = R$,	0,5 p.	2.0
	Găsim astfel $C_{p_a} = R \frac{\gamma_a}{\gamma_{a-1}}$ și $C_{V_a} = R \frac{1}{\gamma_{a-1}}$.	0,5 p. 0,5 p.	3,0 p.
	Analog pentru vapori, $C_{p_v} = R \frac{\gamma_v}{\gamma_{v-1}}$ și $C_{V_v} = R \frac{1}{\gamma_{v-1}}$.	0,5 p.	
	Prin urmare		
	$\gamma = \frac{R(1-x)\frac{\gamma_a}{\gamma_{a-1}} + Rx\frac{\gamma_v}{\gamma_{v-1}}}{R(1-x)\frac{1}{\gamma_{a-1}} + Rx\frac{1}{\gamma_{v-1}}} = \frac{(1-x)\frac{\gamma_a}{\gamma_{a-1}} + x\frac{\gamma_v}{\gamma_{v-1}}}{(1-x)\frac{1}{\gamma_{a-1}} + x\frac{1}{\gamma_{v-1}}} = \frac{x+7}{x+5}.$ Where do for x a supervision sets	0,5 p.	
	$R(1-x)\frac{1}{\gamma_{a-1}} + Rx\frac{1}{\gamma_{v-1}} - (1-x)\frac{1}{\gamma_{a-1}} + x\frac{1}{\gamma_{v-1}}$		
e)	Viteza de faza a sunetufui este		
	$v = \sqrt{\frac{\gamma RT}{\mu}},$		
	unde		
	$\mu = x\mu_v + (1-x)\mu_a.$	0,5 p.	1,0 p.
	Prin urmare,		
	$v = \sqrt{RT \frac{\frac{(1-x)\frac{\gamma_a}{\gamma_{a-1}} + x\frac{\gamma_v}{\gamma_{v-1}}}{(1-x)\frac{1}{\gamma_a-1} + x\frac{1}{\gamma_{v-1}}}}{x\mu_v + (1-x)\mu_a}} = \sqrt{RT \frac{x+7}{(x+5)(29-11x)}}$	0,5 p.	
	Oficiu		1 p.
	Punctaj total		10 p.

Bareme propuse de:

prof. Ion TOMA, CN Mihai Viteazul, București lect. univ. dr. Cornel Mironel NICULAE, Universitatea din București prof. dr. Constantin COREGA, CN Emil Racoviță, Cluj-Napoca conf. univ. dr. Sebastian POPESCU, Universitatea "Alexandru Ioan Cuza" din Iași

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 2 din 8

Subiectul al II-lea

A		Punctaj parţial	Punctaj
a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1р	1р
b)	Unda se reîntoarce cu vârful ascuțit spre stânga și răsturnată. Unda f deplasata la dreapta cu $D-L$ o notăm cu $h(x)=f(x-D+L)$.	0,25p	
	Unda reflectata complet $g\left(D - \frac{L}{2} + s\right) = -h\left(D - \frac{L}{2} - s\right)$		
	Substituind $x = D - \frac{L}{2} + s$ în relația de mai sus rezultă $g(x) = -h(2D - L - x) =$		0.5p
	-f(D-x).	0,25	
	Expresia undei este $y(x,t) = -f\left(D - x + v\left(t - \frac{D}{v}\right)\right)$ sau: $y(x,t) = -f\left(-x + vt\right).$		
c)	Unda se reîntoarce cu vârful ascuțit spre stânga și nerăsturnată.		
	Unda f deplasata la dreapta cu $D - L$ o notăm cu $h(x) = f(x - D + L)$.	0.25p	
	$g\left(D - \frac{L}{2} + s\right) = h\left(D - \frac{L}{2} - s\right).$		
	Substituind $x = D - \frac{L}{2} + s$ în relația anterioară rezultă $g(x) = f(D - x)$.		0,5p.
	Expresia undei este $y(x,t) = f\left(D - x + v\left(t - \frac{D}{v}\right)\right)$	0,25p	
	y(x,t) = f(-x + vt).		

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 3 din 8

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

 Pagina 4 din 8

$v = \sqrt{(L-x)g}.$ Identificăm $v = \sqrt{Lg - gx} \equiv \sqrt{v_0^2 + 2ax}$ și rezultă $a = -g/2$	0,5p. 0,5p	
Oficiu		1 p.
Punctaj total		10 p.

prof. Ion TOMA, CN Mihai Viteazul, București lect. univ. dr. Cornel Mironel NICULAE, Universitatea din București prof. dr. Constantin COREGA, CN Emil Racoviță, Cluj-Napoca conf. univ. dr. Sebastian POPESCU, Universitatea "Alexandru Ioan Cuza" din Iași

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 5 din 8

Subiectul al III-lea

A		Punctaj partial	Punctaj
a)	$L = Fx_m - \Delta E_p = \Delta E_c = 0 \Rightarrow \frac{k_1 x_m}{2} = F \Rightarrow x_m = \frac{2F}{k_1}$	0.5p.	0.5p
b)	$ma = F - k_1 x = -k_1 \left(x - \frac{F}{k_1} \right)$ $\frac{k_1}{m} = \omega_1^2; x - \frac{F}{k_1} = A_1 \sin(\omega_1 t + \varphi_1)$	0,5p.	
	la $t = 0$: $\begin{cases} x = 0 \Rightarrow -\frac{F}{k_1} = A_1 \sin \varphi_1 \\ v = 0 \Rightarrow 0 = \omega_1 A_1 \cos \varphi_1 \Rightarrow \varphi_1 = \pm \frac{\pi}{2} \end{cases} \Rightarrow A_1 = -\frac{F}{k_1}$	1p.	
	Deci: $x(t) = \frac{F}{k_1} - \frac{F}{k_1} \sin\left(\omega_1 t + \frac{\pi}{2}\right) = \frac{F}{k_1} (1 - \cos \omega_1 t),$		2p.
	$\operatorname{sau} x(t) = \frac{F}{k_1} \left(1 - \cos \sqrt{\frac{k_1}{m}} t \right) \Rightarrow$		
	$x(t) = \frac{F}{k_1} - \frac{F}{k_1} \sin\left(\sqrt{\frac{k_1}{m}}t + \frac{\pi}{2}\right) \sin x(t) = \frac{F}{k_1} + \frac{F}{k_1} \sin\left(\sqrt{\frac{k_1}{m}}t - \frac{\pi}{2}\right).$	0,5р	
	Rezultă: $\omega_1 = \sqrt{\frac{k_1}{m}}$; $A_1 = \pm \frac{F}{k_1}$; $\varphi_1 = \mp \frac{\pi}{2}$; $B_1 = \frac{F}{k_1}$.		
c)	La $t_1 = \frac{\pi}{3} \sqrt{\frac{m}{k_1}} \Rightarrow \omega_1 t_1 = \sqrt{\frac{k_1}{m} \frac{\pi}{3}} \sqrt{\frac{m}{k_1}} = \frac{\pi}{3}$. Ecuația de mișcare este		
	$ma = -k_1x$. Legea de mişcare o căutam de forma: $x(t) = A_2 \sin\left(\sqrt{\frac{k_1}{m}}t + \varphi_2\right)$		
	La $t = t_1$, $x(t_1) = \frac{F}{k_1} \left(1 - \cos \frac{\pi}{3} \right) = \frac{F}{2k_1}$; $v(t_1) = \frac{F}{k_1} \sqrt{\frac{k_1}{m}} \sin \sqrt{\frac{k_1}{m}} t_1 = \frac{F}{\sqrt{mk_1}} \sin \frac{\pi}{3} = \frac{F}{2} \sqrt{\frac{3}{mk_1}}$.	0,5p.	
	in Vine Vine Vine Vine Vine Vine Vine Vi		
	Atunci $\begin{cases} \frac{F}{2k_1} = A_2 \sin\left(\frac{\pi}{3} + \varphi_2\right) \\ \frac{F}{2} \sqrt{\frac{3}{mk_1}} = A_2 \sqrt{\frac{k_1}{m}} \cos\left(\frac{\pi}{3} + \varphi_2\right) \end{cases} \Rightarrow \begin{cases} A_2 \sin\left(\frac{\pi}{3} + \varphi_2\right) = \frac{F}{2k_1} \\ A_2 \cos\left(\frac{\pi}{3} + \varphi_2\right) = \frac{F\sqrt{3}}{2k_1} \end{cases}$		1,5p
	$A_2 = \frac{F}{k_1} \operatorname{si} \sin \left(\frac{\pi}{3} + \varphi_2 \right) = \frac{1}{2} \Rightarrow \frac{\pi}{3} + \varphi_2 = \frac{\pi}{6} \operatorname{sau} \frac{5\pi}{6}.$	0,5p.	
	Obs: $t_1 = \frac{\pi}{3} \sqrt{\frac{m}{k_1}}$; $\omega_1 = \sqrt{\frac{k_1}{m}} \Rightarrow T_1 = 2\pi \sqrt{\frac{m}{k_1}} \Rightarrow \frac{t_1}{T_1} = \frac{1}{6} \Rightarrow t_1 = \frac{T_1}{6} \Rightarrow \frac{\pi}{3} + \varphi_2 = \frac{\pi}{6} \Rightarrow \frac{\pi}{3} + \varphi_2 = \frac{\pi}{6} \Rightarrow \frac{\pi}{3} + \varphi_2 = \frac{\pi}{6} \Rightarrow \frac{\pi}{3} + \varphi_3 = \frac{\pi}{6} \Rightarrow \frac{\pi}{3} + \varphi_4 = \frac{\pi}{3} + $	0,5p.	
	$\varphi_2 = -\frac{\pi}{6}.$ Prin urmare: $x(t) = \frac{F}{k_1} \sin\left(\sqrt{\frac{k_1}{m}}t - \frac{\pi}{6}\right)$		

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 6 din 8

В
d)

$$\tau = 2\Delta t_1 + 2\Delta t_2.$$

Pentru deplasarea corpului pe distanța OC=*l* parcursă în intervalul Δt_1 scriem ecuația:

$$ma = -k_1 x \qquad \Rightarrow \qquad x(t) = A_3 \sin\left(\sqrt{\frac{k_1}{m}}t + \varphi_3\right)$$

$$La \ t = 0, \begin{cases} x = 0 \Rightarrow \sin\varphi_3 = 0 \\ v = v_0 \Rightarrow v_0 = A_3\sqrt{\frac{k_1}{m}}\cos\varphi_3 \Rightarrow A_3 = v_0\sqrt{\frac{m}{k_1}} \end{cases} \Rightarrow$$

$$x(t) = v_0 \sqrt{\frac{m}{k_1}} \sin \sqrt{\frac{k_1}{m}} t$$

La
$$t = \Delta t_1 \Rightarrow x(\Delta t_1) = l$$
, $\Rightarrow l = v_0 \sqrt{\frac{m}{k_1}} \sin \sqrt{\frac{k_1}{m}} \Delta t_1 \Rightarrow \sin \sqrt{\frac{k_1}{m}} \Delta t_1 = \frac{l}{v_0} \sqrt{\frac{k_1}{m}} \Rightarrow \frac{l}{m_0} \sqrt{\frac{l}{m_0}} \sqrt{\frac{l}{m_0}$

$$\Delta t_1 = \sqrt{\frac{m}{k_1}} \arcsin\left(\frac{l}{v_0}\sqrt{\frac{k_1}{m}}\right) = \frac{\pi}{4}\sqrt{\frac{m}{k_1}}$$

0,5p.

0,5p.

Pentru deplasarea corpului pe distanța CD, de durată Δt_2 , scriem ecuația:

$$ma = -k_1 x - k_2 (x - l) = -(k_1 + k_2) x + k_2 l = -(k_1 + k_2) \left(x - \frac{k_2 l}{k_1 + k_2} \right)$$

$$\omega_2 = \sqrt{\frac{k_1 + k_2}{m}} \operatorname{si} x - \frac{k_2 l}{k_1 + k_2} = A_4 \sin(\omega_2 t + \varphi_4).$$

La
$$t = \Delta t_1$$
, $x = l$ si $v(\Delta t_1) = v_0 \sqrt{\frac{m}{k_1}} \sqrt{\frac{k_1}{m}} \cos\left(\sqrt{\frac{k_1}{m}} \Delta t_1\right)$ \Rightarrow

$$v(\Delta t_1) = v_0 \cos \left[\arcsin \left(\frac{l}{v_0} \sqrt{\frac{k_1}{m}} \right) \right] = v_0 \sqrt{1 - \frac{k_1 l^2}{m v_0^2}}.$$

Deci la
$$t = \Delta t_1 \Rightarrow \begin{cases} l - \frac{k_2 l}{k_1 + k_2} = A_4 \sin(\omega_2 t + \varphi_4) \\ v_0 \sqrt{1 - \frac{k_1 l^2}{m v_0^2}} = \omega_2 A_4 \cos(\omega_2 t + \varphi_4) \end{cases} \Rightarrow$$

$$\begin{cases} A_4 \sin(\omega_2 t + \varphi_4) = \frac{lk_1}{k_1 + k_2} \\ A_4 \cos(\omega_2 t + \varphi_4) = v_0 \sqrt{\frac{m}{k_1 + k_2}} \sqrt{1 - \frac{k_1 l^2}{m v_0^2}} \end{cases} \Rightarrow A_4 = \sqrt{\frac{l^2 k_1^2}{(k_1 + k_2)^2} + \frac{m v_0^2}{k_1 + k_2}} \left(1 - \frac{k_1 l^2}{m v_0^2}\right) = \sqrt{\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}} = C_1 \left(\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}\right) = C_2 \left(\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}\right) = C_3 \left(\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}\right) = C_3 \left(\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}\right) = C_3 \left(\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}\right) = C_3 \left(\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}\right) = C_3 \left(\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}\right) = C_3 \left(\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}\right) = C_3 \left(\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}\right) = C_3 \left(\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}\right) = C_3 \left(\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}\right) = C_3 \left(\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}\right) = C_3 \left(\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}\right) = C_3 \left(\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}\right) = C_3 \left(\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}\right) = C_3 \left(\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}\right) = C_3 \left(\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}\right) = C_3 \left(\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}\right) = C_3 \left(\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}\right)$$

$$A_4 = \sqrt{\frac{l^2 k_1^2}{(k_1 + k_2)^2} + \frac{m v_0^2}{k_1 + k_2}} \left(1 - \frac{k_1 l^2}{m v_0^2}\right) = \sqrt{\frac{m v_0^2}{k_1 + k_2} - \frac{k_1 k_2 l^2}{(k_1 + k_2)^2}} =$$

$$\frac{k_1 l}{k_1 + k_2} \sqrt{\frac{m v_0^2 (k_1 + k_2)}{k_1^2 l^2} - \frac{k_2}{k_1}} = \frac{2}{3} l.$$

$$A_4 = \frac{2}{3}l$$

$$= \arcsin \frac{k_1 l}{k_1 + k_2} \frac{k_1 + k_2}{k_1 l} \frac{1}{mv_1^2(k_1 + k_2) k_2}$$

$$A_4 = \frac{2}{3}l$$

$$\omega_2 \Delta t_1 + \varphi_4 = \arcsin\left(\frac{k_1 l}{k_1 + k_2} \frac{1}{A_4}\right) = \arcsin\frac{k_1 l}{k_1 + k_2} \frac{k_1 + k_2}{k_1 l} \frac{1}{\sqrt{\frac{mv_0^2(k_1 + k_2)}{k_1^2 l^2} \frac{k_2}{k_1}}}$$

1p.

- Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev. Pagina 7 din 8

	$\Rightarrow \varphi_4 = \arcsin \frac{1}{\sqrt{\frac{mv_0^2}{k_1l^2} \left(1 + \frac{k_2}{k_1}\right) - \frac{k_2}{k_1}}} - \sqrt{\frac{k_1 + k_2}{m}} \sqrt{\frac{m}{k_1}} \arcsin \left(\frac{l}{v_0} \sqrt{\frac{k_1}{m}}\right) \Rightarrow$		
	$\varphi_4 = \frac{\pi}{12} \left(2 - 3\sqrt{3} \right)$	0,5p.	
	La $\Delta t_1 + \Delta t_2 \Rightarrow v = 0 \Leftrightarrow 0 = A_4 \sqrt{\frac{k_1 + k_2}{m}} \cos[\omega_2(\Delta t_1 + \Delta t_2) + \varphi_4] \Rightarrow$		
	$\omega_2(\Delta t_1 + \Delta t_2) + \varphi_4 = \frac{\pi}{2} \Rightarrow \Delta t_1 + \Delta t_2 = \frac{\frac{\pi}{2} - \varphi_4}{\omega_2} = \frac{\pi}{2\omega_2} - \frac{\varphi_4}{\omega_2} \Rightarrow$		
	$\tau = 2(\Delta t_1 + \Delta t_2) = \frac{\pi}{\omega_2} - \frac{2\varphi_4}{\omega_2} = \pi \sqrt{\frac{m}{k_1 + k_2}} - 2\sqrt{\frac{m}{k_1 + k_2}}\varphi_4$		
	$=\pi\sqrt{\frac{m}{3k_1}-2\sqrt{\frac{m}{3k_1}\frac{\pi}{12}}(2-3\sqrt{3})}\Rightarrow$		
	$\tau = \pi \sqrt{\frac{m}{3k_1}} \left(\frac{3\sqrt{3} + 4}{6} \right)$		
		0,5p	
e)	$\bar{F} = \frac{\Delta p}{2\Delta t_2} = \frac{2mv_1}{2\Delta t_2} = \frac{mv_0\sqrt{1 - \frac{k_1 l^2}{mv_0^2}}}{\pi\sqrt{\frac{m}{2k_1}\left(\frac{1}{3} + \frac{\sqrt{3} - \sqrt{2}}{4}\right)}} = \frac{mv_0}{\pi}\sqrt{\frac{k_1}{m}\frac{12}{4 + 3(\sqrt{3} - \sqrt{2})}}$	0.5	0.5
	$\bar{F} = \frac{mv_0^2}{\pi l} \frac{6\sqrt{2}}{4+3(\sqrt{3}-\sqrt{2})} \Rightarrow$	0,5p.	0,5p
	3.3(13-12)		
	$ar{F}=rac{kl}{\pi}rac{12\sqrt{2}}{4+3(\sqrt{3}-\sqrt{2})}$		
f)	$L = 2(\Delta x_1 + \Delta x_2).$		
	$\Delta x_1 = \frac{k_2 l}{k_1 + k_2} + A_4 = \frac{k_2 l}{k_1 + k_2} + \frac{k_1 l}{k_1 + k_2} \sqrt{\frac{m v_0^2}{k_1 l^2} \left(1 + \frac{k_2}{k_1}\right) - \frac{k_2}{k_1}}$		
	$\Delta x_1 = \frac{2}{3}l + \frac{1}{3}l\sqrt{2\cdot 3 - 2} = \frac{4l}{3}.$	0,5p.	
	$\frac{mv_0^2}{2} = \frac{k_1(\Delta x_2)^2}{2} \Rightarrow$		1,5p
	$\Delta x_2 = v_0 \sqrt{\frac{m}{k_1}} = l\sqrt{2} \Rightarrow$	0,5p.	
	$L = 2\left(\frac{4l}{3} + l\sqrt{2}\right)$		
	$L = 2l(4 + 3\sqrt{2})$	0,5p	
	Oficiu		1 p.
	Punctaj total		10 p.

Bareme propuse de:

prof. Ion TOMA, CN Mihai Viteazul, București

lect. univ. dr. Cornel Mironel NICULAE, Universitatea din București

prof. dr. Constantin COREGA, CN Emil Racoviță, Cluj-Napoca

conf. univ. dr. **Sebastian POPESCU**, Universitatea "Alexandru Ioan Cuza" din Iași

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

Pagina 8 din 8