Answers:

Assuming the size of kernel is 3x3

A. After median filter

167	170	93	183
178	178	162	162
184	190	183	162
190	190	162	129

B. After threshold T=165

0	255	0	255	0	0
255	255	255	0	0	255
255	0	0	255	255	255
255	255	255	0	0	0
0	255	255	0	255	0
255	0	255	0	0	255

C. Connected components after labelling operation on (B)

Assuming the traversing inclusive of all 8 adjacent directions.

0	1	0	1	0	0
1	1	1	0	0	1
1	0	0	1	1	1
1	1	1	0	0	0
0	1	1	0	2	0
1	0	1	0	0	2

D. Erosion with custom structuring element on (B)

0	0	0	0	0	0
0	255	0	0	0	0
0	0	0	0	255	0
0	255	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

2.

- Store global mapping of texton as key, colour as value. Map each unique texton to a new random or selected colour. Map<texton, colour>.
- Plot out the textons in a scatter plot, dx and dy. Apply clustering algorithm for each clusters, then assign a colour to each of those clusters. If the texton belongs to that cluster, apply the colour to that texton.
- For each texton split them into R,G,B channels, then take the histogram of that texton, average the histogram of R,G,B. Then merge and apply the colour into (avgR, avgG, avgB) for that texton.

3.

a) Image 1 and Image 2 (elephant and the buffalo) are the most similar in-terms of chi squared distance which is 0.5, as compared with 2 other longer distance which are 1.5 and 2.

For the steps I used to get the answer, refer to my working draft down below.

b)

- 1. Chi squared distance can return negative values, as compare to Euclidean distance which does not return negative values.
- 2. Absolute value of chi of image 1 and image 2, and absolute value chi of image 2 and image 1 are the same. $|x^2(img2, img1)| == |x^2(img1, img2)|$, where Euclidean distance based on histogram of image 2 and image 1 will give the same result as image 1 and image 2.
- 3. Chi formula only allows use of 2 comparison, where Euclidean distance allow you to have more than 2 comparison with more than 2 different dimensions.

2D:
$$distance = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

3D: $distance = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

Steps:

	Wong Tiung Kinf 1132702943
[a]	Assuming the size of Kernel is 3x3.
	r.C. Cite
	After filter:
	167 170 93 183
	178 178 162 162
	184 190 183 162 190 1162 129.
	$\frac{196 190 1162 129.}{\text{Select idx} = 9/2 = 4.}$
55.	rov 1,011 = 65, 76,85,88, 167,109, 170, 178, 182 -7 167.
	row 1, col 2 = 65,76, 88,93 4170/178,196,237.
V	104-1, col 3 = 36,65,69, 881, 1821, 183, 196, 237.
	104 1, col 4 = 36, 61,93, 147, 183, 196, 199/201, 237.
	1042,011 = 65,76,167,169, [178], 182, 184, 203, 222.
	101 2 12 = 65.76.93 1/2 1/2 1/2 1/2 1/2 202
	1042, 1013 = 36, 65, 93, 161, 162, 1732, 183, 196, 222. $1042, 1014 = 36, 71, 93, 161, 1162, 183, 196, 199, 201$
	1002, 014-36, 77, 93, 167, 1162, 183, 196, 199, 201
	104 3,0112 65, 76, 157, 167, 184.
	10+3, cc/2 = 63, 76, 129, 162, 190.
,	WV3, col3 = 65, 129, 161, 162, 183.
T F	1003,0014 = 25,77,129,161,162
	10+4, col 1= 131, 157, 173, 184, 196
	1004, col 2 = 160, 129, 131; 1(2, 190.
	1014, (013 = 52, 100, 129, 161, 262.
	1044,0014- 25,52,.77, 100,124.
b)	After threshold T=165
2)	0 255 0 -255 0 0
	255 255 255 0 0 255
	255 0 0 255 255 255
	255 255 255 0 255 0
1	255 0 255 0 255 0 255 0 255 0 0 255

	No:
	Assuming the traversing algorithm for connected components inclusive of all 8 adjacent directions.
. (2)	
	© (creativeproducts) www.cpstationery.com.my

Subject:		No:Date:
30) 11 = 8,5,3,0		
I2 = 6,5,4,1, I3 = 5,0,4,2,		16 from 1 to 6
d2(T1 T2)	6 [I1(K)-I2(K	$\left(\frac{1}{2}\right)^{2} I1(k) - I2(k)$
X (11, 12) = .	======================================	$\frac{ C + in + i \cdot b}{ I - I - I } = \frac{ I - I }{ I - I } = I -$
2	$\frac{1}{2}\left(\frac{4}{2} + \frac{0}{0} + \frac{1}{-1}\right) +$	$\left(\frac{1}{-1}\right) + \left(\frac{2}{2}\right) + \left(\frac{1}{-1}\right)$
	very small numb	
2	= (2+1-1+2-1)	= 0.5. Ktron 1 to 6.
x²(I1,I3) = =	$\frac{1}{2}\left(\frac{9}{3} + \frac{25}{5} - \frac{1}{1} - \frac{4}{2} + \frac{1}{2}\right)$	$\frac{0}{0.001} = \frac{1}{1} = \frac{1}{3} \frac{1(16) - 13(16)}{5, -1, -2, 0, -1}.$
		small asympt.
2 (313-1-2-13= 2	1
22 - 2	we examps, - h -	2 2 2 2 4 6 60 (1 3 .
2(72.71) - 1	(- 4 + 0 + 1 + 1 = 2	+1). I2(K)-I1(K) Kfrom 1+06.
2 (2) 2 2	Very SMAIL NAM	= -2, 0, 1, 1, -2, 1.
2 -	(-2+0+1+1-2+1)	2 = 0 0
		72/11-13(4) 45am / ta/
$\chi^{2}(I^{2},I^{3}) = \frac{1}{2}(I^{2},I^{3})$	1+5+0-1-2+0)	= 1, 5,0, -1 -2,0.
	(-3-5+1+2+0+1)	I3(K) - I1(K) K + 20 1 + 16 6.
	-2.	
x 2(13, 12) =	= (=)-5+0+1+2+0)	25(10) - 22(11) 11 from 1 to 6.
2	1 (-3) = -1.5	
The second section of the second second		creative products www.cpstationery.com.my

	No:
1 . 4	Image Fand Image 2 are the most similar amages.
	because they have least difference values. 11.3-3
	7 - 4000
h	
b)	1. can only compare the histograms, unlike enclidean distance where you
	can add more dimensions. to the equation.
	2. Mentile Value Las 146 with in this ac postures just support, Beau.
	I districte between its growing -
	2. Chi can have negative values and euclidean distance cannot have negative values.
	3. Absolute difference of the of histogram I and 2 will return the same difference.
	as compared to Afference of histogram 2 and 1.
	$ \chi^{c}(Z1, Z2) = \chi^{c}(Z2, Z1) $
***	Euclidean difference of histogram I and 2 will give some Hernit as histogram 2 and 1.
	š.