1 Forme Bilineari e Prodotti Scalari

1.1 Forme Bilineari

Sia $\mathbb{V}(\mathbb{K})$ uno spazio vettoriale sul campo \mathbb{K} . Una forma bilineare su \mathbb{V} è un'applicazione

$$*: \mathbb{V}(\mathbb{K}) \times \mathbb{V}(\mathbb{K}) \to \mathbb{K}$$

tale che $\forall \mathbf{v}, \mathbf{u}, \mathbf{w} \in \mathbb{V}$ e $k \in \mathbb{K}$

- 1. $(\mathbf{v} + \mathbf{u}) * \mathbf{w} = (\mathbf{v} * \mathbf{w}) + (\mathbf{u} * \mathbf{w})$
- 2. $\mathbf{v} * (\mathbf{u} + \mathbf{w}) = (\mathbf{v} * \mathbf{u}) + (\mathbf{v} * \mathbf{w})$
- 3. $(k\mathbf{v}) * \mathbf{u} = \mathbf{v} * (k\mathbf{u}) = k(\mathbf{v} * \mathbf{u})$

Si deduce che $0 * \mathbf{v} = \mathbf{v} * 0 = 0, \forall \mathbf{v} \in \mathbb{V}$.

1.2 Forma bilineare simmetrica

Una forma bilineare *, su uno spazio vettoriale $\mathbb{V}(\mathbb{K})$, si dice forma bilineare simmetrica o prodotto scalare se, comunque si considerino due vettori \mathbf{v} e \mathbf{w} in $\mathbb{V}(\mathbb{K})$, si ha:

$$\mathbf{v} * \mathbf{w} = \mathbf{w} * \mathbf{v}$$

1.3 Prodotti scalari e ortogonalità

In uno spazio vettoriale $\mathbb{V}(\mathbb{K})$, con prodotto scalare ".", due vettori \mathbf{v} e \mathbf{w} si dicono **ortogonali** e si scrive $\mathbf{v} \perp \mathbf{w}$ se $\mathbf{v} \cdot \mathbf{w} = 0$.

1.4 Complemento ortogonale

Sia $\mathbb{V}(\mathbb{K})$ uno spazio vettoriale con prodotto scalare "·" e sia A un sottoinsieme, non vuoto, di \mathbb{V} . Si dice **complemento ortogonale** di A in $\mathbb{V}_n(\mathbb{K})$, l'insieme (si legge A ortogonale)

$$A^{\perp} = \mathbf{v} \in \mathbb{V} \mid \mathbf{v} \cdot \mathbf{w} = 0, \forall \mathbf{w} \in A$$

1.4.1 Proposizione

Sia $\mathbb{V}(\mathbb{K})$ uno spazio vettoriale con prodotto scalare "." e sia \mathbf{w} un vettore di $\mathbb{V}(\mathbb{K})$ tale che $\mathbf{w} \cdot \mathbf{w} \neq 0$. Allora, ogni vettore \mathbf{v} di $\mathbb{V}(\mathbb{K})$ si può esprimere come somma di due vettori \mathbf{w}_1 e \mathbf{w}_2 , dove \mathbf{w}_1 è ortogonale a \mathbf{w} e \mathbf{w}_2 è proporzionale a \mathbf{w} . Dimostrazione: Ogni vettore $\mathbf{v} \in \mathbb{V}(\mathbb{K})$ si può scrivere come:

$$\mathbf{v} = \left(\mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) + \left(\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}\right)$$

Un calcolo diretto dimostra che $\mathbf{w}_1 = \mathbf{v} - \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}$ è ortogonale \mathbf{w} mentre, ovviamente, $\mathbf{w}_2 = \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}$ è proporzionale a \mathbf{w} , secondo lo scalare $\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$

1.5 Coefficiente di Fourier

Sia $\mathbb{V}(\mathbb{K})$ uno spazio vettoriale con prodotto scalare "·" e sia \mathbf{w} un vettore di \mathbb{V} tale che $\mathbf{w} \cdot \mathbf{w} \neq 0$. Se \mathbf{v} è un vettore di $\mathbb{V}(\mathbb{K})$, si dice **coefficiente** o **componente di Fourier** di \mathbf{v} lungo \mathbf{w} il numero reale

$$\mathbf{v}_w = rac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$$

e si dice **proiezione** di \mathbf{v} su \mathbf{w} il vettore $\overrightarrow{\mathbf{v}} = \mathbf{v}_w \mathbf{w}$.

1.6 Forme Quadratiche

Sia $\mathbb{V}(\mathbb{K})$ uno spazio vettoriale con prodotto scalare ".". Si dice **forma quadratica**, associata al prodotto scalare ".", l'applicazione

$$q: \mathbb{V}(\mathbb{K}) \to \mathbb{K}$$

$$\mathbf{v} o \mathbf{v} \cdot \mathbf{v}$$

1.7 Spazi con prodotto scalare definito positivo

Un prodotto scalare, assegnato in uno spazio vettoriale $\mathbb{V}(\mathbb{K})$ su un campo ordinato, si dice **definito positivo** se $\forall \mathbf{v} \in \mathbb{V}, \mathbf{v} \cdot \mathbf{v} \geq 0$ e $\mathbf{v} \cdot \mathbf{v} = 0 \iff \mathbf{v} = 0$

Una forma quadratica si dice definita positiva se tale è il prodotto scalare cui essa è associata.

1.8 Norma

Dato un vettore $\mathbf{v} \in \mathbb{V}^{\circ}(\mathbb{R})$ si dice **norma** di \mathbf{v} il numero reale positivo o nullo

$$||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{\mathbf{v}^2} = \sqrt{q(\mathbf{v})}$$

1.9 Versore

Sia $\mathbf{v} \neq 0$ un vettore di $\mathbb{V}^{\circ}(\mathbb{R})$, si dice **versore** di \mathbf{v} il vettore

$$\mathbf{v}' = \frac{\mathbf{v}}{||\mathbf{v}||}$$

1.10 Disuguaglianza di Cauchy-Schwarz

Siano \mathbf{v} e \mathbf{u} due vettori di $\mathbb{V}^{\circ}(\mathbb{R})$. Allora

$$|\mathbf{v} \cdot \mathbf{u}| \le ||\mathbf{v}|| \cdot ||\mathbf{u}||$$

ove $|v \cdot u|$ indica il valore assoluto di $\mathbf{v} \cdot \mathbf{u}$.

1.10.1 Dimostrazione

Siano non nulli i vettori ${\bf v}$ e ${\bf w}$. Diversamente la tesi è immediata. Per ongi numero reale α si ha

$$0 \le (\alpha \mathbf{u} + \mathbf{v})^2 = (\mathbf{u} \cdot \mathbf{u})\alpha^2 + 2(\mathbf{u} \cdot \mathbf{v})\alpha + (\mathbf{v} \cdot \mathbf{v})$$

e quindi, al variare di $\alpha \in \mathbb{R}$, il trinomio

$$||\mathbf{u}||^2 \alpha^2 + 2(\mathbf{u} \cdot \mathbf{v})\alpha + ||\mathbf{v}||^2$$

è maggiore o al più uguale a zero. Il suo discriminante non può, pertanto, essere positivo perchè se lo fosse, al variare di α , il trinomio cambierebbe segno. Risulta

$$\frac{\Delta}{4} = |\mathbf{u} \cdot \mathbf{v}|^2 - ||\mathbf{u}||^2 ||\mathbf{v}||^2 \le 0$$

1.11 Disuguaglianza triangolare

Siano \mathbf{v} e \mathbf{u} due vettori di $\mathbb{V}^{\circ}(\mathbb{R})$. Allora

$$||\mathbf{v} + \mathbf{u}|| \le ||\mathbf{v}|| + ||\mathbf{u}||$$

1.11.1 Dimostrazione

Sono immediati i seguenti calcoli:

$$||\mathbf{v} + \mathbf{u}||^2 = ||\mathbf{u}||^2 + \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{u} + ||\mathbf{v}||^2 \le ||\mathbf{u}||^2 + 2|\mathbf{u} \cdot \mathbf{v}| + ||\mathbf{v}||^2$$

Applicando la disuguaglianza di Cauchy-Schwarz si ottiene la tesi:

$$||\mathbf{v} + \mathbf{u}||^2 \le ||\mathbf{u}||^2 + 2||\mathbf{u}||||\mathbf{v}|| + ||\mathbf{v}^2|| = (||\mathbf{u}|| + ||\mathbf{v}||)^2$$

1.12 Osservazione

- : I vettori della base canonica $B = (e_1, e_2, \dots, e_n)$, dello spazio euclideo reale \mathbb{R}^n , godono delle seguenti proprietà:
 - 1. hanno norma unitaria, cioè, $||e_i|| = 1$ per $i = 1, 2 \cdots n$;
 - 2. sono tra loro ortogonali, cioè, $e_i \cdot e_j = 0$ per $i \neq j$ ove $i, j \in I_n$
 - 3. la *i*-esima componente, di un qualunque vettore (x_1, x_2, \ldots, x_n) di \mathbb{R}^n , si ottiene moltiplicando scalarmente quel vettore per e_i .

Diremo che i vettori v_1, v_2, \ldots, v_r , di uno spazio vettoriale $\mathbb{V}^{\circ}(\mathbb{V})$, tutti diversi dal vettore nullo, costituiscono un **sistema ortogonale** se $\mathbf{v}_i \cdot \mathbf{v}_j = 0$, per $i \neq j$ e $i, j \in I_r$. Se, inoltre, hanno norma unitario, essi costituiscono un **sistema ortonormale**. Una base, che sia anche un sistema ortogonale. Una base, che sia anche un sistema ortogonale, si dice **base ortonormale**. Ovviamente il vettore nullo è ortogonale a tutti i vettori di \mathbb{V} . Da un sistema (o da una base) ortogonale di \mathbb{V} si può sempre ricavare una base ortonormale di \mathbb{V} , dividendo ciascun vettore del sistema per la sua norma.

I vettori della base canonica, di uno spazio euclideo reale, costituiscono una base ortonormale, ma possiamo dimostrare che, in ogni spazio vettoriale f.g. con prodotto scalare definito positivo, è possibile costruire una base ortonormale che possiede le stesse proprietà che la base canonica ha negli spazi euclidei.

1.12.1 Lemma

In uno spazio vettoriale $V^{\circ}(\mathbb{R})$, se i vettori non nulli $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$, costituiscono un sistema ortogonale, allora sono linearmente indipendenti.

Partendo da una qualsiasi base di $\mathbb{V}^{\circ}(\mathbb{R})$, possiamo ora costrure una base ortogonale seguendo il procedimento detto **processo di ortogonalizzazione di Gram-Schmidt**.

1.12.2 Teorema

Fissata una base $B=(e_1,e_2,\ldots,e_n)$ di $\mathbb{V}^\circ(\mathbb{R})$, la sequenza $B'=(e'_1,e'_2,\ldots,e'_n)$ così costruita

$$\begin{aligned} \mathbf{e}_1' &= \mathbf{e}_1 \\ \mathbf{e}_2' &= \mathbf{e}_2 - \frac{\mathbf{e}_2 \cdot \mathbf{e}_1'}{\mathbf{e}_1' \cdot \mathbf{e}_1'} \mathbf{e}_1' \\ & \dots \\ \mathbf{e}_n' &= \mathbf{e}_n - \frac{\mathbf{e}_n \cdot \mathbf{e}_{n-1}'}{\mathbf{e}_{n-1}' \cdot \mathbf{e}_{n-1}'} \mathbf{e}_{n-1}' - \dots - \frac{\mathbf{e}_n \cdot \mathbf{e}_1'}{\mathbf{e}_1' \cdot \mathbf{e}_1'} \mathbf{e}_1' \end{aligned}$$

E' evidente che, volendo determinare una base ortonormale di uno spazio vettoriale con prodotto scalare definito positivo, basta normalizzare la base ottenuta applicando il processo di ortogonalizzazione di Gram-Schmidt a una base qualunque dello spazio.

1.13 Corollario

Se U è un sottospazio vettoriale di $\mathbb{V}^{\circ}(\mathbb{R})$ allora:

$$(U^{\perp})^{\perp} = U$$

1.13.1 Dimostrazione

Sia $dimV^{\circ}(\mathbb{R})=n$ e dimU=r. Dato che $U\subseteq U^{\perp\perp}$, si ha $dimU^{\perp\perp}=n-(n-r)=r=dimU$, si ha la tesi.

1.14 Teorema

L'insieme S delle soluzioni di $AX = \underline{0}$, sistema lineare omogeneo in m equazioni e n incognite, a coefficienti reali, è un sottospazio di $\mathbb{R}^n(\mathbb{R})$ di dimensione n - rK(A).

1.14.1 Dimostrazione

Osserviamo che le righe della matrice A sono vettori di $\mathbb{R}^R(\mathbb{R})$, ricordiamo che, abbiamo chiamato span(R) il sottospazio di $\mathbb{R}^n(\mathbb{R})$ generato dalla righe della matrice A. Inoltre, $\mathbb{R}^n(\mathbb{R})$, spazio euclideo reale, è dotato di prodotto scalare std. Pertanto il sistema AX = 0 può essere scritto