Exercises:

- 1. For any points $\vec{b} \in \mathbb{R}^n$, define $\vec{b}_{proj} = \sum_{j=1}^r (\vec{b} \cdot \hat{u}_j) \hat{u}_j$. Show for all \vec{b}_{proj} belongs to the span of the columns of A, and that for all y in the span of the columns of A, $\|\vec{b}_{proj} \vec{b}\|^2 \leq \|\vec{y} \vec{b}\|^2$.
 - Show that $\vec{b}_{proj} \in Span\{Cols(A)\}$. Since $\vec{b}_{proj} = \sum_{j=1}^{r} (\vec{b} \cdot \hat{u})\hat{u}$, and each \hat{u}_{j} is a linear combination of the rows of A, then \vec{b}_{proj} is a linear combination of the columns of A.
 - $\|\vec{b}_{proj} \vec{b}\|^2 \leq \|\vec{y} \vec{b}\|^2$. Suppose $\vec{y} \in Span\{A\}$. Then $\vec{y} - \vec{b} = \vec{y} - \vec{b}_{proj} + \vec{b}_{proj} - \vec{b}$. Since $\vec{b}_{proj} \in Span\{A\}$, and $\vec{b} \not\in Span\{A\}$, then $\vec{y} - \vec{b}_{proj}$ is orthogonal to $\vec{b}_{proj} - \vec{b}$. Therefore by the Pythagorean theorem, $\|\vec{y} - \vec{b}\|^2 = \|\vec{y} - \vec{b}_{proj}\|^2 + \|\vec{b}_{proj} - \vec{b}\|^2$. Since $\|\vec{b}_{proj} - \vec{b}\|^2$ is constant then the only function that can be minimized is $\|\vec{y} - \vec{b}_{proj}\|^2$, which defines the square of the distance to \vec{b}_{proj} . Therefore it is minimized when $\vec{y} = \vec{b}_{proj}$, thus $\|\vec{b}_{proj} - \vec{b}\|^2 \leq \|\vec{y} - \vec{b}\|^2$.
- 2. Show that for all $\vec{x} \in \mathbb{R}^n$,

$$||A\vec{x}_0 - \vec{b}||^2 \le ||A\vec{x} - \vec{b}||^2.$$

Let $\vec{y} = A\vec{x}$, for arbitrary $\vec{x} \in \mathbb{R}^n$. Then the above equation may be rewritten as $\|\vec{b}_{proj} - \vec{b}\|^2 \le \|\vec{y} - \vec{b}\|^2$. Therefore as demonstrated by the problem above the inequality is true.

3. Show that for $s+1 \leq j \leq n$, $A\hat{w}_j = 0$. Note that $\{\hat{w}_{s+1}, \dots, \hat{w}_n\}$ is an orthonormal basis of the null space Null(A) of A. Next show that if \vec{x}_0 satisfies $A\vec{x}_0 = \vec{b}_{proj}$, then so does

$$\vec{x}_1 := \vec{x}_0 - \sum_{j=s+1}^n (\mathbf{x}_0 \cdot \vec{w}_j) \, \vec{w}_j = \sum_{j=1}^s (\vec{x}_0 \cdot \vec{w}_j) \, \vec{w}_j.$$

Moreover, show that $\|\vec{x}_1\| \leq \|\vec{x}_0\|$, and there is equality if and only if \vec{x}_0 is in the span of the rows of A.

- Show that for $s+1 \leq j \leq n$, $A\hat{w}_j = 0$. Since $Span\{A\} = Q$, and Q is given by $Q = [\hat{w}_1, \dots, \hat{w}_s]$, then $Q^{\perp} = [\hat{w}_{s+1}, \dots, \hat{w}_n]$. Therefore by the definition of orthogonality $A\hat{w}_j = [\hat{w}_1 \cdot \hat{w}_j, \dots, \hat{w}_s \cdot \hat{w}_j] = [0, \dots, 0]$.
- Show that if \vec{x}_0 satisfies $A\vec{x}_0 = \vec{b}_{\text{proj}}$, then so does

$$\vec{x}_1 := \vec{x}_0 - \sum_{j=s+1}^n (\vec{x}_0 \cdot \vec{w}_j) \, \vec{w}_j = \sum_{j=1}^s (\vec{x}_0 \cdot \vec{w}_j) \, \vec{w}_j.$$

$$A\vec{x}_{1} = A(\vec{x}_{0} - \sum_{j=s+1}^{n} (\vec{x}_{0} \cdot \vec{w}_{j}) \vec{w}_{j})$$

$$= A\vec{x}_{0} - A \sum_{j=s+1}^{n} (\vec{x}_{0} \cdot \vec{w}_{j}) \vec{w}_{j}$$

$$= A\vec{x}_{0} - \sum_{j=s+1}^{n} (\vec{x}_{0} \cdot \vec{w}_{j}) A\vec{w}_{j}$$

$$= A\vec{x}_{0} - 0 = \vec{b}_{proj}.$$

- Show that $\|\vec{x}_1\| \leq \|\vec{x}_0\|$, and there is equality if and only if \vec{x}_0 is in the span of the rows of A Since $\vec{x}_0 \sum_{j=s+1}^n (\mathbf{x}_0 \cdot \vec{w}_j) \vec{w}_j = \sum_{j=1}^s (\vec{x}_0 \cdot \vec{w}_j) \vec{w}_j$, then x_0 can be expressed in terms of parallel and orthogonal components with respect to A: $\vec{x}_0 = \sum_{j=s+1}^n (\mathbf{x}_0 \cdot \vec{w}_j) \vec{w}_j + \sum_{j=1}^s (\vec{x}_0 \cdot \vec{w}_j) \vec{w}_j$. Therefore by the Pythagorean theorem, $\|\vec{x}_0\|^2 = \|\sum_{j=s+1}^n (\mathbf{x}_0 \cdot \vec{w}_j) \vec{w}_j\|^2 + \|\sum_{j=1}^s (\vec{x}_0 \cdot \vec{w}_j) \vec{w}_j\|^2 = \|\sum_{j=s+1}^n (\vec{x}_0 \cdot \vec{w}_j) \vec{w}_j\|^2 + \|\vec{x}_1\|^2 \geq \|\vec{x}_1\|^2$. Since the norm of a vector has a range of $\mathbb{R}_{\geq 0}$, and x^2 is a monotonically increasing function on that set, then $\|\vec{x}_1\| \leq \|\vec{x}_0\|$. In addition, if \vec{x}_0 is in the span of the rows of A, then $\sum_{j=s+1}^n (\vec{x}_0 \cdot \vec{w}_j) \vec{w}_j = 0$, and thus $\|\vec{x}_0\| = \|\vec{x}_1\|$. If we assume $\|\vec{x}_1\| = \|\vec{x}_0\|$, then by definition of \vec{x}_1 , $\|\vec{x}_0\| = \|\sum_{j=1}^s (\vec{x}_0 \cdot \vec{w}_j) \vec{w}_j\| = \|QQ^T\vec{x}_0\|$. Therefore since the magnitude of \vec{x}_0 is equivalent to it's magnitude projected into A, then it is in the span of the rows of A.
- 4. (a) $\vec{b} = (1, 2, 3, 4), ||\vec{b} \vec{b}_{proj}|| = 1$, unique solution \vec{x} to $A\vec{x} = \vec{b}_{proj}, \vec{x} = (2, \frac{-5}{2}, 0, \frac{3}{2})$.
 - (b) $\vec{b} = (1, 1, 1, -1), ||\vec{b} \vec{b}_{proj}|| = 2$, unique solution \vec{x} to $A\vec{x} = \vec{b}_{proj}, \vec{x} = (0, 0, 0, 0)$.
 - (c) $\vec{b} = (1, 1, -1, 1), ||\vec{b} \vec{b}_{proj}|| = 0$, unique solution \vec{x} to $A\vec{x} = \vec{b}_{proj}, \vec{x} = (1, 0, 0, 0)$.
- 5. Show that as long as all of the $\vec{x_j}$ are not the same, then rank(A) = 2 and the 2×2 matrix A^TA is invertible. By definition of invertible, we must show that $det(A^TA) \neq 0$. Since rank(A) = 2, then when we perform gram schmidt we will get $\{\hat{u}_1, \hat{u}_2\} = Span\{A\}$. Therefore let $Q = \{\hat{u}_1, \hat{u}_2\}$. Then by QR factorization $A^TA = R^TQ^TQR = R^TR$. By definition of R,

$$R = \begin{bmatrix} Col_1(A) \cdot \hat{u}_1 & \cdots & Col_n(A) \cdot \hat{u}_1 \\ Col_1(A) \cdot \hat{u}_2 & \cdots & Col_n(A) \cdot \hat{u}_2 \end{bmatrix}.$$

Therefore

$$R^{T}R = \begin{bmatrix} \sum_{j=1}^{n} (Col_{j}(A) \cdot \hat{u}_{1})^{2} & \sum_{j=1}^{n} (Col_{j}(A) \cdot \hat{u}_{1})(Col_{j}(A) \cdot \hat{u}_{2}) \\ \sum_{j=1}^{n} (Col_{j}(A) \cdot \hat{u}_{1})(Col_{j}(A) \cdot \hat{u}_{2}) & \sum_{j=1}^{n} (Col_{j}(A) \cdot \hat{u}_{2})^{2} \end{bmatrix}$$

$$= \begin{bmatrix} \|A^T \hat{u}_1\|^2 & (A^T \hat{u}_1) \cdot (A^T \hat{u}_2) \\ (A^T \hat{u}_1) \cdot (A^T \hat{u}_2) & \|A^T \hat{u}_2\|^2 \end{bmatrix}.$$

Therefore $det(A^TA) = (\|A^T\hat{u}_1\| \|A^T\hat{u}_2\|)^2 - ((A^T\hat{u}_1)\cdot (A^T\hat{u}_2))^2 = (\|A^T\hat{u}_1\| \|A^T\hat{u}_2\| + (A^T\hat{u}_2))^2 + (A^T\hat{u}_2)^2 + (A^T\hat{u}_2)^2$

 $(A^T\hat{u}_1)\cdot (A^T\hat{u}_2))(\|A^T\hat{u}_1\|\|A^T\hat{u}_2\|-(A^T\hat{u}_1)\cdot (A^T\hat{u}_2))$. The only way for this determinate to be 0 is if $A^T\hat{u}_1=A^T\hat{u}_2$. However this implies that the first row of R is equal to the second. In that case R would have a rank of 1, which would contradict the fact that rank(A)=2. Therefore $det(A)\neq 0$, and thus A^TA has an inverse.

- Show for all $\vec{y} \in \mathbb{R}^m$, $\exists \vec{x} \in \mathbb{R}^n$ such that for all $\vec{z} \in \mathbb{R}^n$, $||A\vec{x} \vec{y}|| \le ||A\vec{z} \vec{y}||$. Since $\vec{y} \in \mathbb{R}^m$, then \vec{y} decomposes into parts that are parallel and orthogonal to $A: \vec{y} = \vec{y}_{\perp} + \vec{y}_{\parallel}$. The portion which is parallel to A, \vec{y}_{\parallel} , by definition can be written as the product of a vector \vec{x}_0 in \mathbb{R}^n and $A: \vec{y}_{\parallel} = A\vec{x}_0$. Therefore by taking the decomposition of \vec{y} and the formula found for the parallel portion, we can solve for the orthogonal part: $\vec{y} = \vec{y}_{\perp} + \vec{y}_{\parallel} = \vec{y}_{\perp} + A\vec{x}_0$, $\vec{y} A\vec{x}_0 = \vec{y}_{\perp}$. Therefore $\vec{y} A\vec{z} = \vec{y}_{\perp} + \vec{y}_{\parallel} A\vec{z}$. Since by definition \vec{y}_{\perp} is orthogonal to A, and $A\vec{z}$ lies explicitly within A, then by the pythagorean theorem $||\vec{y} A\vec{z}||^2 = ||\vec{y}_{\perp}||^2 + ||\vec{y}_{\parallel} A\vec{z}||^2$. Therefore to minimize the above equation, we must choose $\vec{x} = \vec{x}_0$ so that $\vec{y}_{\parallel} A\vec{z} = \vec{0}$.
- Show that $A\vec{x} \vec{y} \perp Col_j(A)$, for $j = 1, \dots, n$. Since it's established that $A\vec{x} - \vec{y}$ is orthogonal to the columns of A, then by definition is is orthogonal to each individual columns $Col_j(A)$
- Finally show that $(A^TA)^{-1}A^T\vec{y}$ is the unique least squares solution of $A\vec{x} = \vec{y}$. Suppose there exists \vec{x}^* such that $A\vec{x}^* = \vec{y}$ in addition to $\vec{x} = (A^TA)^{-1}A^T\vec{y}$. We must show that $\vec{x}^* = (A^TA)^{-1}A^T\vec{y}$. Since both $A\vec{x}^* = \vec{y}$, $A\vec{x} = \vec{y}$, then $A\vec{x}^* = A\vec{x}$. By definition of \vec{x} , $A\vec{x}^* = A(A^TA)^{-1}A^T\vec{y}$. Multiplying both sides by A^T yields $A^TA\vec{x}^* = A^TA(A^TA)^{-1}A^T\vec{y}$. By the associativity of matrix multiplication and the definition of inverse we have, $A^TA\vec{x}^* = A^T\vec{y}$. Since A^TA has been shown to have an inverse, multiplying both sides by $(A^TA)^{-1}$ yields $\vec{x}^* = (A^TA)^{-1}A^T\vec{y}$.

6. y = 1.3369x - 1.13274