12th November 2017 T04

MA1100 Fundamental Concepts of Mathematics AY2017/18 Sem 1

Homework 5

By: Qi Ji A0167793L

Q 1. Let A be a finite set of size m where $m \ge 1$, and let a be an element of A. Prove that one has $|A \setminus \{a\}| + 1 = m$.

Proof. A is finite, so $\{a\} \subseteq A$ is also finite, by complement principle, $|A \setminus \{a\}| + |\{a\}| = |A|$, so $|A \setminus \{a\}| + 1 = m$.

Q 2. Let S be a finite set and let $f: S \to S$ be a function. Prove that f is injective iff f is surjective.

Proof. Suppose $f: S \to S$ is injective. For any subset $X \subseteq S$, let $f(X) \subseteq S$ be the X-image of f,

$$f(X) := \{ y \in S : \exists x \in X. \ f(x) = y \}.$$

Clearly $|f(S)| \leq |S|$ and |f(S)| is finite. Since f is injective, by injection principle, $|S| \leq |f(S)|$, so |f(S)| = |S|. By corollary of complement principle, f(S) = S and f is surjective. Conversely suppose f is surjective. For any subset $Y \subseteq S$, let $f^*(Y) \subseteq S$ denote the Y-preimage of f

$$f^*(Y) := \{ x \in S : f(x) \in Y \}.$$

Clearly $|f^*(S)| \leq |S|$, and since f is surjective, for every $y \in S$, $f^*(\{y\})$ is non-empty.

$$\forall y \in S. |f^*(\{y\})| \geqslant 1$$

Because f is well-defined, for any distinct pair of elements in S, the f-preimage of their singletons are disjoint.

$$\forall y_1, y_2 \in S. \ y_1 \neq y_2 \implies f^*(\{y_1\}) \cap f^*(\{y_2\}) = \emptyset$$

Because f is totally-defined, the union of f-preimages of every element in its range will cover the domain S, so let |S| be n, and for $i \in \{1, 2, ..., n\}$, let y_i denote each element in S,

$$\bigcup_{i=1}^{n} f^{*}(\{y_{i}\}) = S$$

$$\left|\bigcup_{i=1}^{n} f^{*}(\{y\})\right| = |S|$$

$$\sum_{i=1}^{n} |f^{*}(\{y_{i}\})| = n$$

for each y_i , $f^*(\{y_i\})$ is non-empty

$$1 \cdot n \leqslant \sum_{i=1}^{n} |f^*(\{y_i\})| = n$$

this means that for each $y_i \in S$, $|f^*(\{y_i\})| = 1$, therefore f is injective.

Q 3. Let $m, n \in \mathbb{N}$ be so that n > m. Prove that there is no injective function f from $\{1, \ldots, n\}$ to $\{1, \ldots, m\}$. (*Pigeonhole Principle*)

Proof. First note that $\{1,\ldots,n\}\cong\mathbb{N}_{< n}$ and $\{1,\ldots,m\}\cong\mathbb{N}_{< m}$ are finite,

$$n > m$$

 $|\{1, \dots, n\}| > |\{1, \dots, m\}|$

Then by (contrapositive of) injection principle, there does not exist injective map f from $\{1,\ldots,n\}$ to $\{1,\ldots,m\}$.

Q 4. Prove that the function $f: \mathbb{N} \to \mathbb{Z}$ defined by $f(n) := \begin{cases} \frac{n-1}{2}; & \text{if } n \text{ is odd,} \\ \frac{-n}{2}; & \text{if } n \text{ is even,} \end{cases}$ is bijective. $(\mathbb{N} \text{ starts from 1 in this question.})$

 $\textit{Proof. Define } g: \mathbb{Z} \to \mathbb{N}, z \mapsto \begin{cases} -2z; & \text{if } z < 0, \\ 2z+1; & \text{if } z \geqslant 0. \end{cases}$

For any odd $n \in \mathbb{N}$,

$$(g \circ f)(n) = g\left(\frac{n-1}{2}\right) = 2\left(\frac{n-1}{2}\right) + 1 = n,$$

and for any even $n \in \mathbb{N}$,

$$(g \circ f)(n) = g\left(\frac{-n}{2}\right) = -2\left(\frac{-n}{2}\right) = n.$$

So $g \circ f = id_{\mathbb{N}}$.

For any $z \in \mathbb{Z}$, z < 0, -2z > 0 and is even,

$$(f \circ g)(z) = f(-2z) = \frac{-(-2z)}{2} = z,$$

and when $z \ge 0$, 2z + 1 > 0 and is odd,

$$(f \circ g)(z) = f(2z+1) = \frac{(2z+1)-1}{2} = z.$$

So $f \circ g = \mathrm{id}_{\mathbb{Z}}$. Since f is invertible, f is bijective.

Q 5. Let F be a finite set and let I be an infinite set. Prove that $I \setminus F$ is infinite.

Proof. Without loss of generality, suppose $F \subseteq I$, then $I = F \cup (I \setminus F)$. (Otherwise consider the intersection of F and I.) Suppose for a contradiction $I \setminus F$ is finite, since $I \setminus F$ and F are finite and disjoint, by addition principle,

$$|F| + |I \setminus F| = |F \cup (I \setminus F)|$$

and $F \cup (I \setminus F)$ is also finite. But $F \cup (I \setminus F) = I$, so id_I is a bijective map from an infinite set to a finite set, a contradiction.

Q 6. Let S be a set. Prove that S is countable iff there is an injective function $f: S \to \mathbb{N}$.

Proof. If S is countable, $S \leq \mathbb{N} \iff$ exists injective function $f: S \to \mathbb{N}$.

Q 7. Let S be a non-empty set. Prove that S is countable iff there is a surjective map $f: \mathbb{N} \to S$.

Proof. If S is countable, $S \preceq \mathbb{N} \iff$ exists injective map $g: S \to \mathbb{N} \iff$ exists surjective map $f: \mathbb{N} \to S$ (consequence of Axiom of Choice, because $S \neq \emptyset$).

Q 8. Prove that if C_1, \ldots, C_n is countable, then $C_1 \times C_2 \times \cdots \times C_n$ is countable.

Lemma 8.1. $\mathbb{N} \times \mathbb{N} \cong \mathbb{N}$. (Another proof in Q11)

Proof. Consider this visual representation of $\mathbb{N} \times \mathbb{N}$

Define a bijection $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ by diagonally tracing the diagram above, ie $f(0) := (0,0), f(1) := (0,1), f(2) := (1,0), f(3) := (0,2), f(4) := (1,1), f(5) := (2,0), \dots$

Lemma 8.2. Product of two countable sets is countable.

Proof. Suppose C_1, C_2 are countable sets, $C_1 \leq \mathbb{N}$ and $C_2 \leq \mathbb{N}$, so there exists injective maps $f: C_1 \to \mathbb{N}$ and $g: C_2 \to \mathbb{N}$, then define h as

$$h: C_1 \times C_2 \to \mathbb{N} \times \mathbb{N},$$

 $(c_1, c_2) \mapsto (f(c_1), g(c_2)).$

Suppose $c_1, c'_1 \in C_1$ and $c_2, c'_2 \in C_2$ such that $h(c_1, c_2) = h(c'_1, c'_2)$, then $(f(c_1), g(c_2)) = (f(c'_1), g(c'_2))$ which means $f(c_1) = f(c'_1)$ and $g(c_2) = g(c'_2)$, and because f and g are injective, $c_1 = c'_1$ and $c_2 = c'_2$, so $(c_1, c_2) = (c'_1, c'_2)$ and h is injective. This means $C_1 \times C_2 \leq \mathbb{N} \times \mathbb{N}$, and because $\mathbb{N} \times \mathbb{N} \cong \mathbb{N}$ (from Lemma 8.1), $C_1 \times C_2 \leq \mathbb{N}$.

Proposition. Product of finitely many countable sets is countable.

Proof. Product of 2 countable sets is countable. Now suppose the product of n countable sets, $C_1 \times C_2 \times \cdots \times C_n$, is countable, $C_1 \times C_2 \times \cdots \times C_n \leq \mathbb{N}$, and C_{n+1} is also countable. Then by Lemma 8.2, $(C_1 \times C_2 \times \cdots \times C_n) \times C_{n+1} \leq \mathbb{N}$. Therefore by induction, for any $n \in \mathbb{N}$, $n \geq 2$, $C_1 \times C_2 \times \cdots \times C_n$ is countable.

Q 9. Let X and Y be any two sets. Suppose |X| = |Y|. Show that $|\mathcal{P}(X)| = |\mathcal{P}(Y)|$.

Proof. Suppose X and Y are any two sets where |X| = |Y|, then there exists a bijective map $f: X \to Y$. For any $C \subseteq X$, the f-image of C is a subset of Y where

$$f(C) := \{ y \in Y : \exists c \in C. \ f(c) = y \}$$

and because f is bijective, f(C) is uniquely determined by C. Similarly, for any $D \subseteq Y$, the f-preimage of D is a subset of X where

$$f^*(D) := \{ x \in X : f(x) \in D \}$$

which is also uniquely determined by D because f is bijective. We can define the bijective map ψ

$$\psi: \mathcal{P}(X) \to \mathcal{P}(Y), \quad C \mapsto f(C).$$

For any $C, C' \in \mathcal{P}(X)$, if $C \neq C'$, then because f is bijective, $f(C) \neq f(C')$, so ψ is injective. For any $D \in \mathcal{P}(Y)$, because f is surjective, $f^*(D) \subseteq X$, so in particular, there exists $C \in \mathcal{P}(X)$ where f(C) = D, so ψ is surjective. Hence ψ is bijective, and as a result $|\mathcal{P}(X)| = |\mathcal{P}(Y)|$

Definition. For any sets A and B, let Maps(A, B) denote the subset of $A \times B$ defined by

$$\operatorname{Maps}(A,B) := \left\{ \begin{array}{cc} \varphi \in \mathfrak{P}(A \times B) : & \varphi \text{ as a relation from } A \text{ to } B \\ & \text{is totally defined and well-defined} \end{array} \right\}$$

Q 10. Let X and Y be any two sets, and consider the set Maps(X,Y) of all maps from X to Y. Show that $|\operatorname{Maps}(X,Y)| \leq |\mathcal{P}(X \times Y)|$.

Proof. Since by definition, $\operatorname{Maps}(X,Y) \subseteq \mathcal{P}(X \times Y)$, define the map

$$\Phi: \mathrm{Maps}(X,Y) \to \mathcal{P}(X \times Y)$$
$$\varphi \mapsto \varphi$$

which is almost the identity map, and is clearly injective. So $|\operatorname{Maps}(X,Y)| \leq |\mathcal{P}(X \times Y)|$. \square

Q 11. Use the unique prime factorisation property of \mathbb{Z} (fundamental theorem of arithmetic) and the Schröder-Bernstein theorem to show that $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$.

Proof. The map $\varphi : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$, $n \mapsto (12, n)$ is clearly an injective map from \mathbb{N} to $\mathbb{N} \times \mathbb{N}$, so $\mathbb{N} \times \mathbb{N}$. Now consider the map ψ ,

$$\psi : \mathbb{N} \times \mathbb{N} \to \mathbb{N},$$

 $(a,b) \mapsto 2^a \cdot 3^b$

For any $a, b, c, d \in \mathbb{N}$ where $\psi(a, b) = \psi(c, d)$, $2^a 3^b = 2^c 3^d$. Then by uniqueness of prime factors, a = c and b = d, so (a, b) = (c, d), and ψ is injective. Therefore $\mathbb{N} \times \mathbb{N} \leq \mathbb{N}$. By Schröder-Bernstein theorem, $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$.

Q 12. Show that

$$|\mathcal{P}(\mathbb{N})| \leq |\operatorname{Maps}(\mathbb{N}, \mathbb{N})|.$$

Use this and the above results to deduce that

$$|\mathcal{P}(\mathbb{N})| = |\operatorname{Maps}(\mathbb{N}, \mathbb{N})|.$$

Proof. For any $S \subseteq \mathbb{N}$, define Ψ ,

$$\Psi: \mathcal{P}(\mathbb{N}) \to \operatorname{Maps}(\mathbb{N}, \mathbb{N}),$$

$$S \mapsto \lambda_{S},$$
where $\lambda_{S}: \mathbb{N} \to \mathbb{N},$

$$n \mapsto \begin{cases} 1 & \text{if } n \in S, \\ 0 & \text{otherwise.} \end{cases}$$

For any two subsets of \mathbb{N} , $S_1, S_2 \in \mathcal{P}(\mathbb{N})$, if $S_1 \neq S_2$, without loss of generality, $\exists u \in S_1$. $u \notin S_2$. Then $\Psi(S_1)(u) = 1 \neq 0 = \Psi(S_2)(u)$. So in particular, $\Psi(S_1) \neq \Psi(S_2)$. Hence Ψ is injective and $|\mathcal{P}(\mathbb{N})| \leq |\operatorname{Maps}(\mathbb{N}, \mathbb{N})|$.

$$\begin{array}{ll} \text{From Q11,} & \mathbb{N} \cong \mathbb{N} \times \mathbb{N} \\ \text{from Q9,} & \mathcal{P}(\mathbb{N}) \cong \mathcal{P}(\mathbb{N} \times \mathbb{N}) \\ \text{from Q10,} & \text{Maps}(\mathbb{N}, \mathbb{N}) \preccurlyeq \mathcal{P}(\mathbb{N} \times \mathbb{N}) \\ \text{therefore} & \text{Maps}(\mathbb{N}, \mathbb{N}) \preccurlyeq \mathcal{P}(\mathbb{N}) \end{array}$$

Then because $\mathcal{P}(\mathbb{N}) \preceq \operatorname{Maps}(\mathbb{N}, \mathbb{N})$ and $\operatorname{Maps}(\mathbb{N}, \mathbb{N}) \preceq \mathcal{P}(\mathbb{N})$, by Schröder-Bernstein theorem, $\mathcal{P}(\mathbb{N}) \cong \operatorname{Maps}(\mathbb{N}, \mathbb{N})$.