

COMP2054 Tutorial Session 4: Recurrence Relations

Rebecca Tickle
Warren Jackson
AbdulHakim Ibrahim

Session outcomes

- Solve recurrence relations to provide exact solutions.
- Use induction to prove recurrence relation definitions.

Exact Solutions

Resolving exact solutions from recurrence relations

Q1.
$$T(n) = T(n-1) + 1$$
 and $T(1) = 1$

Q2.
$$T(n) = 2 \cdot T(n-1)$$
 and $T(1) = 1$

Q3. $T(n) = 2 \cdot T(n/2)$ and T(1) = 1

Resolve the exact solutions for the following:

■ Q4.
$$T(n) = 3 \cdot T(n-1)$$
 and $T(1) = 1$

- Q5. $T(n) = 3 \cdot T(n/3)$ and T(1) = 1
- Q6. $T(n) = 2 \cdot T(n/4)$ and T(1) = 1

Recurrence Proofs

Proving exact solutions are the same as their recursive definitions

Q1. Proof

Given: T(n) = T(n-1) + 1 and T(1) = 1

Prove: T(n) = n

Q2. Proof

Given: $T(n) = 2 \cdot T(n-1)$ and T(1) = 1

Prove: $T(n) = 2^{n-1}$

Recurrence proofs

- Q3. Given $T(n) = 2 \cdot T(n/2)$ and T(1) = 1Prove that $T(2^k) = 2^k$
- Q4. Given $T(n) = 3 \cdot T(n-1)$ and T(1) = 1Prove that $T(n) = 3^{n-1}$
- Q5. $T(n) = 3 \cdot T(n/3)$ and T(1) = 1Prove that $T(3^k) = 3^k$
- Q6. $T(n) = 2 \cdot T(n/4)$ and T(1) = 1Prove that $T(4^k) = 2^k$

Additional Practice Questions

For each of the following:

- 1. Find the exact solution
- 2. Prove by induction

• Q7.
$$T(n) = 4 \cdot T(n/4)$$

• Q8.
$$T(n) = 4 \cdot T(n/2)$$

■ Q9.
$$T(n) = T(n-1) + n$$

• Q10.
$$T(n) = 2 \cdot T(n/2) + 1$$

■ Q11.
$$T(n) = n \cdot T(n-1)$$

Assume you are given T(1) = 1

Thank you