### COOPERATIVE DRIVING

HW3

ECE 5553 - AUTONOMY IN VEHICLES

03/21/2018





#### **CACC/ACC SIMULATION**

**HOMOGENEOUS CONVOY** 

#### SIMULATION MODEL FOR THE CONVOY VEHICLES



Multiport ECE 5553 Autonomy in Vehicles Switch Selection Switch **CACC Generic Model** Acceleration Profile Terminator E-◀-E-◀— erminator2 Vehicle 5 Vehicle 3 Vehicle 1 Zero Acceleration **⊑**• 0 Ramp Acceleration timegap\_ Velocity delta\_x\_ Clock To Workspace Timegap Scope3 PosVelAcc Relative Timegap Time Relative Distances

#### • Parameters :

- Vehicle Model Gain(kG5, ... kG1) = 1.0
- Vehicle Time Constant (T5, ... T1) = 0.7
- Actuator (Internal) Delay (phi5, ... phi1) [s] = 0.1
- Communication System Delay (theta5, ... theta2) [s] = 0.3
- Headway time (hd5, ... hd1) [s] = 0.6
- Vehicle length (L5, ... L1) [m] = 5
- Distance at standstill (r5, ... r1) [m] = 30
- Initial vehicle position (x5in) [m] = 0
  - (x4in) [m] =44 (x4in) [m] =50
  - (x3in) [m] =88 (x3in) [m] =100
  - (x2in) [m] =132 (x2in) [m] =150
  - (x1in) [m] =176 (x1in) [m] =200
- Initial vehicle velocity (V5in, ... V1in) [m/sec] = 15
- CACC On/Off [0 or 1]
- Controller Gain (wK5, ... wK1) = 2.4

#### Any parameters changed:

- CCAC = 0 or CCAC =1
- Change the initial vehicle velocity 25 m/s and change position by adding 50 m to vehicle 1 to 4.

### SIMULATION RESULTS TO QUESTIONS ASKED HOMOGENOUS CONVOY - CACC



The vehicle time between all the vehicle is constant at 0.7s.

With CACC = 1 (on), vehicle 2 to 5 can be controlled to approximate the time gap to 0.6 sec as time goes to infinity.

According to the plot, it takes 16 sec to let vehicle 2 -5 have the same time gap.

There are some overshooting and undershooting, but the magnitude of the oscillation is reducing.

Vehicle 2 has the highest oscillation magnitude before 8 second but the fastest to be settle down.

In opposite, vehicle 5 has the lowest oscillation magnitude before 8 second but the longest time to be settle down.



#### SIMULATION RESULTS TO QUESTIONS ASKED **HOMOGENOUS CONVOY - CACC**



CENTER FOR AUTOMOTIVE RESEARCH

- The vehicle time between all the vehicle is constant at 0.7s.
- With CACC = 1 (on), vehicle 2 to 5 can be controlled to follow the lead car in the same path as shown in Positon plot.
- The acceleration of all the car keep at 2 m/s^2. It turns out that all of the vehicle has the same speed.



# SIMULATION RESULTS TO QUESTIONS ASKED HOMOGENOUS CONVOY - ACC



- The vehicle time between all the vehicle is constant at 0.7s.
- With CACC = 0 (off), vehicle 2 to 5 cannot be controlled to approximate the time gap to 0.6 sec as time goes to infinity.
- Time gap is about 0.608, which is approximately 0.1 sec away from the desire time gap.
- Oscillatory response of the convoy with very poor time gap regulation in the ACC case.



#### SIMULATION RESULTS TO QUESTIONS ASKED **HOMOGENOUS CONVOY - ACC**



CENTER FOR AUTOMOTIVE RESEARCH

- The vehicle time between all the vehicle is constant at 0.7s.
- ACC can do the same job to controlled the acceleration of vehicle 2 to5, but the rate of acceleration is large.
- $(2-(-0.5))/2 = 1.25 \text{ m/s}^3$
- The rate of acceleration under 1 can be consider as a comfort driving.
- The acceleration oscillations in acceleration plot shows that ACC also has poor drivability characteristics as compared to CACC.
- As a result the velocity changed variously than velocity of CACC Model.



# SIMULATION RESULTS INITIAL CONDITION DETERMINATION



- Initial vehicle position = initial vehicle velocity \* headway time + distance at standstill + vehicle length
- = 25 m/s \* 0.6 s + 30 m + 5 m
- = 15 m + 30 m + 5 m
- =50 m

## SIMULATION RESULTS TO QUESTIONS ASKED HOMOGENOUS CONVOY – CACC WITH 25 M/S



- The vehicle time between all the vehicle is constant at 0.7s.
- CACC works better in a high speed condition.
- The oscillation magnitude (overshoot & undershoot)of all the vehicles are smaller as compare to the CACC model in 15 m/s case.
- From the plot, it still takes 16 sec to completely settle down all vehicles form 2 to 5.



# SIMULATION RESULTS TO QUESTIONS ASKED HOMOGENOUS CONVOY – CACC WITH 25 M/S



- CACC has a better performance in high speed.
- It still takes 16 second to make all vehicle have same acceleration.



# SIMULATION RESULTS TO QUESTIONS ASKED HOMOGENOUS CONVOY – ACC WITH 25 M/S

- ACC also have a better performance at high speed (25 m/s)
- The oscillation magnitude (overshoot & undershoot) of all the vehicles are smaller as compare to the ACC model in 15 m/s case.
- Although the time gap is reduced as time goes to infinity, it doesn't fix the problem that it still have very poor time gap regulation in the ACC case



#### SIMULATION RESULTS TO QUESTIONS ASKED HOMOGENOUS CONVOY – ACC WITH 25 M/S



CENTER FOR AUTOMOTIVE RESEARCH

- ACC is able to do the same control job in high speed as well.
- Although ACC have better performance in high speed, the acceleration oscillations in acceleration plot shows that ACC also has poor drivability characteristics as compared to CACC.





#### **CACC/ACC SIMULATION**

HETEROGENEOUS CONVOY

#### Parameters :

- Vehicle Model Gain(kG5, ... kG1) = 1.0
- Vehicle Time Constant (T5) = 0.7
  - (T4) = 0.35
  - (T3) = 0.6
  - (T2) = 0.4
  - (T1) = 0.3
- Actuator (Internal) Delay (phi5, ... phi1) [s] = 0.1
- Communication System Delay (theta5, ... theta2) [s] = 0.3
- Headway time (hd5, ... hd1) [s] = 0.6
- Vehicle length (L5, ... L1) [m] = 5
- Distance at standstill (r5, ... r1) [m] = 30
- Initial vehicle position (x5in) [m] = 0
  - (x4in) [m] =44
  - (x3in) [m] =88
  - (x2in) [m] =132
  - (x1in) [m] = 176
- Initial vehicle velocity (V5in, ... V1in) [m/sec] = 15
- CACC On/Off [0 or 1]
- Controller Gain (wK5, ... wK1) = 2.4
- Any parameters changed:
  - CCAC = 0 or CCAC = 1

## SIMULATION RESULTS TO QUESTIONS ASKED HETEROGENEOUS CONVOY - CACC



- Since the vehicle time constant has been changed for each vehicle from 2 to 5.
- It creates more difficulty for CACC model to control path following.
- Vehicle 2 is the first one to be settle down, then vehicle 3,4,5
- In heterogeneous convoy, CACC control vehicle 2 -5 to have the same time gap within 16 seconds.



### SIMULATION RESULTS TO QUESTIONS ASKED HETEROGENEOUS CONVOY - CACC



- In CACC, the oscillation amplitude of vehicle 2 to 5 doesn't change rigorously as compare to the homogeneous convoy.
- With CACC = 1 (on), vehicle 2 to 5 can be controlled to follow the lead car in the same path as shown in Positon plot.
- The acceleration of all the car keep at 2 m/s^2. It turns out that all of the vehicle has the same speed.
- It still takes 16 second to make all vehicle have same acceleration.



# SIMULATION RESULTS TO QUESTIONS ASKED HETEROGENEOUS CONVOY - ACC



- Since the vehicle time constant has been changed for each vehicle from 2 to 5.
- It creates more difficulty for ACC model to control path following.
- Time gap is about 0.608, which is approximately 0.1 sec away from the desire time gap.
- Oscillatory response of the convoy with very poor time gap regulation in the ACC case.



## SIMULATION RESULTS TO QUESTIONS ASKED HETEROGENEOUS CONVOY - ACC



- ACC is able to do the same control job in heterogeneous convoy as well.
- Although ACC have better performance in high speed, the acceleration oscillations in acceleration plot shows that ACC also has poor drivability characteristics as compared to CACC.
- It still takes 16 second to make all vehicle have same acceleration.





#### **STRING STABILITY**

HETEROGENEOUS CONVOY

- Derivation of the String stability for CACC & ACC
- CACC

$$E_{i}(s) = X_{i-1}(s) - H(s) \cdot X_{i}(s)$$

$$X_{i}(s) = G_{i}(s) \cdot [Cff_{i}(s) \cdot e^{-\beta s} \cdot s^{2}X_{i-1} + Cfb_{i}(s) \cdot E_{i}(s)]$$

$$= G_{i}(s) \cdot [Cff_{i}(s) \cdot e^{-\beta s} \cdot s^{2} + Cfb_{i}(s)] \cdot X_{i-1}(s)$$

$$SS_{CACC,i}(s) = \frac{X_{i}(s)}{X_{i-1}(s)} = \frac{G_{i}(s) \cdot [Cff_{i}(s) \cdot e^{-\beta s} \cdot s^{2} + Cfb_{i}(s)]}{1 + G_{i}(s) \cdot Cfb_{i}(s) \cdot H(s)}$$

ACC

$$X_{i}(s) = G_{i}(s) \cdot Cfb_{i}(s) \cdot E_{i}(s)$$

$$[1 + G_{i}(s) \cdot Cfb_{i}(s) \cdot H(s)] \cdot X_{i}(s)$$

$$SS_{CACC,i}(s) = \frac{X_{i}(s)}{X_{i-1}(s)} = \frac{G_{i}(s) \cdot Cfb_{i}(s)}{1 + G_{i}(s) \cdot Cfb_{i}(s) \cdot H(s)}$$

hold off

CENTER FOR AUTOMOTIVE RESEARCH

```
clear all
 clc
 %String Stability Analysis of Heterogeneous Convoy Vehicles
 s=tf('s');
 t = [0.3, 0.4, 0.6, 0.35, 0.7];
 beta = 0.3;
 thd = 0.6;
 wk=[2.4, 2.4, 2.4, 2.4, 2.4];
 e = pade(exp(-beta*s));
- for k= 2:5
 G = 1/(s^2*(t(k)*s+1));
 H = 1 + thd*s:
 Cfb = wk(k)*wk(k) + wk(k)*s;
 Cff = 1/(s^2 *G*H):
 ACC(k-1) = Cfb*G/(1+ Cfb*G*H);
 CACC(k-1) = (Cfb + s^2*e *Cff)*G / (1+ Cfb*G*H);
 figure (1); bodemag(ACC(k-1)); hold on; grid on; title ('ACC Magnitude response');
 figure (2); bodemag (CACC(k-1)); hold on; grid on; title ('CACC Magnitude response');
 figure(3);
 hold on
 bodemag (ACC (k-1), '-b', CACC (k-1), '-g')
 title('String stability transfer function frequency responses for ACC and CACC systems');
 legend('ACC','CACC');
 -end
```











#### **SUBMISSION INFO**

HW 3 YIFAN WU