Example: Sea sickness 2

- The "rocking" study on sea sickness was repeated with 28 subjects.
- 2 times higher frequency (0.333 Hz) and acceleration (0.222 G).
- From the table, it seems that the times are shorter in the second study!

Time	Vomit	Study
(min.)	(yes = 1)	
30	1	1
50	1	1
50	0	1
120	0	1
5	1	2
6	0	2
11	1	2
120	0	2

- + 2,2,2,2,2,2,2)

- + 0.0.0.0.0.0.0)
- > fit<-survfit(Surv(Time,Status)~study)

> summarv(fit)

Call: survfit(formula = Surv(Time, Status) ~ study)

study=1

time	n.risk	${\tt n.event}$	survival	std.err	lower	95% CI	upper	95% CI
30	21	1	0.952	0.0465		0.866		1.000
50	20	1	0.905	0.0641		0.788		1.000
51	18	1	0.854	0.0778		0.715		1.000
82	16	1	0.801	0.0894		0.644		0.997
98	15	1	0.748	0.0981		0.578		0.967

studv=2

time	n.risk	${\tt n.event}$	survival	std.err	lower	95% CI	upper	95% CI	
5	28	1	0.964	0.0351		0.898		1.000	
11	26	2	0.890	0.0599		0.780		1.000	
13	24	1	0.853	0.0679		0.730		0.997	
24	23	1	0.816	0.0744		0.682		0.976	
63	22	1	0.779	0.0797		0.637		0.952	
65	21	1	0.742	0.0841		0.594		0.926	
69	20	2	0.668	0.0906		0.512		0.871	
79	18	1	0.630	0.0928		0.472		0.841	
82	17	2	0.556	0.0956		0.397		0.779	
102	15	1	0.519	0.0961		0.361		0.746	
115	14	1	0.482	0.0962		0.326		0.713	

```
> plot(fit[1],xlab="Time",ylab="Survival")
> lines(fit[2],col="red",lty=2)
> legend(10,0.5,legend=c("study 1","study 2"),lty=c(1,2),col=c("black","red"))
```



```
data vomit2;
input time vomit study;
cards;
30 1 1
50 1 1
50 0 1
51 1 1
66 0 1
82 1 1
98 1 1
. . .
120 0 2
120 0 2
120 0 2
120 0 2
120 0 2
120 0 2
run;
proc lifetest data=vomit2;
by study;
time time*vomit(0);
run;
```

The LIFETEST Procedure

study=1

Product-Limit Survival Estimates

time	Survival	Failure	Survival Standard Error	Number Failed	Number Left
0.000	1.0000	0	0	0	21
30.000	0.9524	0.0476	0.0465	1	20
50.000	0.9048	0.0952	0.0641	2	19
50.000*				2	18
51.000	0.8545	0.1455	0.0778	3	17
66.000*				3	16
82.000	0.8011	0.1989	0.0894	4	15
98.000	0.7477	0.2523	0.0981	5	14
120.000*				5	13
120.000*				5	12
120.000*				5	11
120.000*				5	10
120.000*				5	9
120.000*				5	8
120.000*				5	7
120.000*				5	6
120.000*				5	5
120.000*				5	4
120.000*				5	3
120.000*				5	2
120.000*				5	1
120.000*				5	0

NOTE: The marked survival times are censored observations.

Summary Statistics for Time Variable time

Quartile Estimates

Percent	Point Estimate	95% Confide [Lower	nce Interval Upper)
75 50	•		
25	98.000	51.000	
Mean	Standard I		·

89.259 4.789

NOTE: The mean survival time and its standard error were underestimated because the largest observation was censored and the estimation was restricted to the largest event time.

Summary of the Number of Censored and Uncensored Values

Percent			
Censored	Censored	Failed	Total
76.19	16	5	21

Product-Limit Survival Estimates

			Survival		
			Standard	Number	Number
time	Survival	Failure	Error	Failed	Left
0.000	1.0000	0	0	0	28
5.000	0.9643	0.0357	0.0351	1	27
6.000*				1	26
11.000				2	25
11.000	0.8901	0.1099	0.0599	3	24
13.000	0.8530	0.1470	0.0679	4	23
24.000	0.8159	0.1841	0.0744	5	22
63.000	0.7788	0.2212	0.0797	6	21
65.000	0.7418	0.2582	0.0841	7	20
69.000				8	19
69.000	0.6676	0.3324	0.0906	9	18
79.000	0.6305	0.3695	0.0928	10	17
82.000				11	16
82.000	0.5563	0.4437	0.0956	12	15
102.000	0.5192	0.4808	0.0961	13	14
115.000	0.4821	0.5179	0.0962	14	13
120.000*				14	12
120.000*				14	11
120.000*			•	14	10
120.000*				14	9
120.000*				14	8
120.000*				14	7
120.000*			•	14	6
120.000*			•	14	5
120.000*				14	4
120.000*			•	14	3
120.000*				14	2
120.000*	•		•	14	1
120.000*			•	14	0

Summary Statistics for Time Variable time

Quartile Estimates

Percent	Point Estimate	95% Confide [Lower	nce Interval Upper)
75			
50	115.000	69.000	•
25	65.000	13.000	82.000
25	65.000	13.000	82.000
Mean	Standard	Error	

NOTE: The mean survival time and its standard error were underestimated because the largest observation was censored and the estimation was restricted to the largest event time.

Summary of the Number of Censored and Uncensored Values

Percent Censored	Censored	Failed	Total
50.00	14	14	28

84.739 7.709

Difference in survival curves at fixed points

At a fixed point t_0 , we look at the different survival probabilities,

$$H_0: S_1(t_0) = S_2(t_0) = \ldots = S_K(t_0)$$
 vs $H_a:$ at least one $\neq .$

Like in regression, we rewrite this hypothesis as

$$H_0: CS(t_0) = 0$$

with $K-1\times K$ contrast matrix C and vector $S(t_0)$ given by

$$C = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & -1 \\ 0 & 1 & 0 & \dots & 0 & -1 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & \dots & 1 & -1 \end{bmatrix} \quad \text{and} \quad S(t_0) = \begin{bmatrix} S_1(t_0) \\ S_2(t_0) \\ \vdots \\ S_K(t_0) \end{bmatrix}.$$

Comparison of survival curves

Lateral Test for two or more samples

Since we have that

$$\hat{S}_j(t_0) \approx N(S_j(t_0), \text{Var}(S_j(t_0))), \quad j = 1, \dots, K$$

Hence, under H_0 ,

$$T = (C\hat{S}(t_0))^t [C\hat{V}C^t]^{-1} (C\hat{S}(t_0)) \approx \chi_{K-1}^2$$

with \hat{V} diagonal matrix containing $\widehat{\operatorname{Var}}(\hat{S}_j(t_0)), j = 1, \dots, K$.

Remarks:

- Simple method to compare survival curves, but fixed point t_0 has to be chosen in advance!
- More time points $t_{01}, \ldots, t_{0m} \Rightarrow$ correction multiple testing (ex: Bonferroni).

-Comparison of survival curves

Lateral Test for two or more samples

Returning to the example, we compare the survival probability in both groups at time-points $t_0 = 30, 60, 90$.

We have the hypotheses,

$$H_0: S_1(t_0) = S_2(t_0)$$
 vs $H_a: S_1(t_0) \neq S_2(t_0)$.

and the test is, under H_0 ,

$$T = \frac{(\hat{S}_1(t_0) - \hat{S}_2(t_0))^2}{\widehat{\text{Var}}(\hat{S}_1(t_0)) + \widehat{\text{Var}}(\hat{S}_2(t_0))} \approx \chi_1^2.$$

t_0	$\hat{S}_1(t_0)$	$\hat{S}_2(t_0)$	T	<i>p</i> -value
30	$0.9524 \ (0.0465)$	0.8159 (0.0744)	2.4205	0.1198
60	$0.8545 \ (0.0778)$	$0.8159 \ (0.0744)$	0.1286	0.7199
90	$0.7477 \ (0.0981)$	$0.5563 \ (0.0956)$	1.9525	0.1623

Comparison of survival curves

Lateral Test for two or more samples

Log-rank test

Instead of looking at fixed time points, we want to compare the whole survival function of different groups,

$$H_0: S_1(t) = S_2(t) = \dots = S_K(t), \ 0 < t < \tau.$$

Since the true survival functions are unknown in each group, we go for a nonparametric test.

Before we derive the test statistic for this nullypothesis. We look at a simpler setting with K=2,

$$H_0: S_1(t) = S_2(t), \ 0 < t < \tau.$$

In this setting it is more clear which idea's we will use here.

Comparison of survival curves

Lateral Test for two or more samples

Suppose we observe, from populations j = 0, 1,

$$(T_{j1}, \delta_{j1}), (T_{j2}, \delta_{j2}), \ldots, (T_{jn_j}, \delta_{jn_j}).$$

Under H_0 , both populations are equal. Hence we can order the uncensored lifetimes. Denote by τ_1, \ldots, τ_k be the k ordered, distinct death times.

At the *l*-th death time, we construct a 2×2 contingency table,

Popul / Died	yes	no	Total
0	d_{0l}	$n_{0l}-d_{0l}$	n_{0l}
1	d_{1l}	$n_{1l} - d_{1l}$	n_{1l}
Total	d_l	$n_l - d_l$	n_l

where d_{jl} is the number of deaths and n_{jl} is the number at risk in population j at this time.

Now, under H_0 and conditional on the marginals, d_{jl} has a hypergeometric distribution.

$$d_{jl} \sim \text{Hypergeometric}(n_l, d_l, n_{jl}).$$

Therefore, we find that the mean and variance of d_{jl} are given by

$$E[d_{jl}] = \frac{n_{1l}d_{l}}{n_{l}}$$

$$Var(d_{jl}) = \frac{n_{l} - n_{1l}}{n_{l} - 1} n_{1l} \frac{d_{l}}{n_{l}} \left(1 - \frac{d_{l}}{n_{l}} \right)$$

$$= \frac{n_{1l}n_{0l}d_{l}(n_{l} - d_{l})}{n_{l}^{2}(n_{l} - 1)}.$$

-Comparison of survival curves

Lateral Test for two or more samples

If the sample size at each death time is sufficiently large, we approximate the hypergeometric distribution by a normal distribution.

$$d_{1l} - E[d_{1l}] = d_{1l} - \frac{n_{1l}d_l}{n_l} \approx N\left(0, \frac{n_{1l}n_{0l}d_l(n_l - d_l)}{n_l^2(n_l - 1)}\right).$$

Assuming that the contingency tables at different death times are independent, we find the log-rank test,

$$T = \frac{\left[\sum_{l=1}^{k} \left(d_{1l} - \frac{n_{1l}d_l}{n_l}\right)\right]^2}{\sum_{l=1}^{k} \frac{n_{1l}n_{0l}d_l(n_l - d_l)}{n_l^2(n_l - 1)}}$$

which is, under H_0 , approximately χ^2 distributed with df 1.

Some remarks:

- By the hypergeometric distribution, we get in the denominator a finite sample correction factor.
- The numerator can be interpreted as $\sum_{l=1}^{k} (O_l E_l)$ where O_l is the observed number of deaths in group 1, and E_l is the expected number, given the risk set. furthermore E_l is the proportion of deaths in group 1 among those at risk.
- It does not matter which group we choose to sum over because $\sum_{\text{groups}} (O_l E_l) = 0$.

```
proc lifetest data=vomit2;
time time*vomit(0):
strata study;
run;
The LIFETEST Procedure
Testing Homogeneity of Survival Curves for time over Strata
       Rank Statistics
study
          Log-Rank Wilcoxon
1
            -3.8607 -149.00
            3.8607
                      149.00
Covariance Matrix for the Log-Rank Statistics
study
         4.64782 -4.64782
          -4 64782
                   4 64782
```

. .

Test of Equality over Strata

| Pr > | Test | Chi-Square | DF | Chi-Square | Log-Rank | 3.2069 | 1 | 0.0733 | Wilcoxon | 3.1816 | 1 | 0.0745 | -2Log(LR) | 3.4928 | 1 | 0.0616

Lateral Test for two or more samples

The log-rank test is a special case of the Tarone-Ware class of tests.

$$T = \frac{\left[\sum_{l=1}^{k} w_l \left(d_{1l} - \frac{n_{1l}d_l}{n_l}\right)\right]^2}{\sum_{l=1}^{k} w_l^2 \frac{n_{1l}n_{0l}d_l(n_l - d_l)}{n_l^2(n_l - 1)}}$$

where $w_l \geq 0$ are weights.

Test	w_l
Log-rank	1
Wilcoxon or Gehan	$\mid n_l \mid$
Peto-peto	$ ilde{S}(t_i)$
Harrington-Fleming (p,q)	$\hat{S}(t_i)^p (1 - \hat{S}(t_i))^q, \ p, q \ge 0$

with
$$\tilde{S}(t) = \prod_{t_i \le t} \left(1 - \frac{d_i}{n_i + 1}\right)$$
.

In a practical data analysis, the choice of the weights is important.

For example,

- Log-rank test has optimal power to detect alternatives in which the hazard are proportional.
- Wilcoxon-Gehan test is more "sensitive" to "early" differences in survival curves (at later times)
- Harrington-Fleming test with p = 0, q > 0 is "sensitive" to "late" differences.

Note: the decision about the choice of the test should be made before seeing the data!

```
proc lifetest data=vomit2;
time time*vomit(0);
strata study/test=(logrank wilcoxon peto);
run;
```

The LIFETEST Procedure

Testing Homogeneity of Survival Curves for time over Strata

Rank Statistics

study	Log-Rank	Wilcoxon	Peto
1	-3.8607	-149.00	-3.0632
2	3.8607	149.00	3.0632

. . .

Covariance Matrix for the Peto Statistics

study	1	2
1	2.94876	-2.94876
2	-2.94876	2.94876

Test of Equality over Strata

Test	Chi-Square	DF	Pr > Chi-Squar
Log-Rank	3.2069	1	0.0733
Wilcoxon	3.1816	1	0.0745
Peto	3.1822	1	0.0744

```
> survdiff(Surv(Time,Status)~study)
Call: survdiff(formula = Surv(Time, Status) ~ study)
```

```
N Observed Expected (O-E)^2/E (O-E)^2/V study=1 21 5 8.86 1.68 3.21 study=2 28 14 10.14 1.47 3.21
```

Chisq= 3.2 on 1 degrees of freedom, p= 0.0733

```
> survdiff(Surv(Time,Status)~study,rho=1)
Call: survdiff(formula = Surv(Time, Status) ~ study, rho = 1)
```

```
N Observed Expected (O-E)^2/E (O-E)^2/V study=1 21 4.01 7.2 1.41 3.22 study=2 28 11.49 8.3 1.22 3.22
```

Chisq= 3.2 on 1 degrees of freedom, p= 0.0728

When we have K populations, we generalize the previous results.

At the *l*-th ordered death time, we now construct a $K \times 2$ contingency table,

Popul / Died	yes	no	Total
1	d_{1l}	$n_{1l} - d_{1l}$	n_{1l}
2	d_{2l}	$n_{2l} - d_{2l}$	n_{2l}
K	d_{Kl}	$n_{Kl} - d_{Kl}$	n_{Kl}
Total	d_l	$n_l - d_l$	n_l

where d_{jl} is the number of deaths and n_{jl} is the number at risk in population j at this time.

Lest for two or more samples

Under H_0 , the vector \mathbf{O}_l of the observed deaths in groups 1 to K-1 at time l,

$$\mathbf{O}_l = (d_{1l}, \dots, d_{K-1})$$

has a multivariate hypergeometric distribution with mean \mathbf{E}_l and covariance matrix \mathbf{V}_l , given by

$$\mathbf{E}_{l} = \left(\frac{d_{l}n_{1l}}{n_{l}}, \dots, \frac{d_{l}n_{(K-1)l}}{n_{l}}\right)$$

$$\mathbf{V}_{jjl} = \frac{n_{jl}(n_{l} - n_{jl})d_{l}(n_{l} - d_{l})}{n_{l}^{2}(n_{l} - 1)}$$

$$\mathbf{V}_{jml} = \frac{-n_{jl}n_{ml}d_{l}(n_{l} - d_{l})}{n_{l}^{2}(n_{l} - 1)}.$$

Approximating this distribution by a multivariate normal distribution and using an analogous construction as before, we get a test statistic T,

$$T = (\mathbf{O} - \mathbf{E})\mathbf{V}^{-1}(\mathbf{O} - \mathbf{E})^t$$

which is approximately χ^2 distributed with df K-1.

Hereby $\mathbf{O} = \sum_{l=1}^{k} \mathbf{O}_{l}$, $\mathbf{E} = \sum_{l=1}^{k} \mathbf{E}_{l}$, $\mathbf{V} = \sum_{l=1}^{k} \mathbf{V}_{l}$ are the sums over the k distinct death times.

Example: Performance testing

- Test-subject were asked to perform a certain test and the time needed was recorded.
- 3 different noise distractions are applied.
- Did the different noise distractions influence the time to finish the test?

]	Noise lev	rel
9.0	10.0	12.0
9.5	12.0	12.0^{+}
9.0	12.0^{+}	12.0^{+}
8.5	11.0	12.0^{+}
10.0	12.0	12.0^{+}
10.5	10.5	12.0^{+}

```
> Level<-c(1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3)
> Time<-c(9.0,9.5,9.0,8.5,10.0,10.5,10.0,12.0,12.0,11.0,12.0,10.5,12.0,12.0,12.0,12.0,12.0,12.0)</pre>
```

> Censor<-c(1,1,1,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0)

> survfit(Surv(Time,Censor)~Level)

Call: survfit(formula = Surv(Time, Censor) ~ Level)

n events median 0.95LCL 0.95UCL Level=1 6 6 9.25 9.0 Inf Level=2 6 5 11.50 10.5 Inf Level=3 6 1 Inf Inf Inf

> fit<-survfit(Surv(Time,Censor)~Level)

> summary(fit)

Call: survfit(formula = Surv(Time, Censor) ~ Level)

Level=1

time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95% CI
8.5	6	1	0.833	0.152		0.5827		1.000
9.0	5	2	0.500	0.204		0.2246		1.000
9.5	3	1	0.333	0.192		0.1075		1.000
10.0	2	1	0.167	0.152		0.0278		0.997
10.5	1	1	0.000	NA		NA		NA

Level=2

time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95% CI
10.0	6	1	0.833	0.152		0.5827		1.000
10.5	5	1	0.667	0.192		0.3786		1.000
11.0	4	1	0.500	0.204		0.2246		1.000
12.0	3	2	0.167	0.152		0.0278		0.997

Level=3

time	n.risk	n.event	survival	std.err lower	95% CI upper	95% CI
12.000	6.000	1.000	0.833	0.152	0.583	1.000

> survdiff(Surv(Time,Censor)~Level,rho=1)
Call: survdiff(formula = Surv(Time, Censor) ~ Level, rho = 1)

N Observed Expected (0-E)^2/E (0-E)^2/V

 Level=1 6
 5.17
 1.39
 10.2756
 16.2355

 Level=2 6
 3.00
 3.28
 0.0235
 0.0536

 Level=3 6
 0.50
 4.00
 3.0625
 8.4750

Chisq= 18.3 on 2 degrees of freedom, p= 0.000105


```
data noise;
input Time censor level;
cards:
9.0 1 1
9.5 1 1
9.0 1 1
8.5 1 1
10.0 1 1
10.5 1 1
10.0 1 2
12.0 1 2
12.0 0 2
11.0 1 2
12.0 1 2
10.5 1 2
12.0 1 3
12.0 0 3
12.0 0 3
12.0 0 3
12.0 0 3
12.0 0 3
run:
proc lifetest data=noise;
time Time*censor(0);
strata level/test=(logrank wilcoxon peto);
run;
```

The LIFETEST Procedure

Testing Homogeneity of Survival Curves for Time over Strata

Rank Statistics

level	Log-Rank	Wilcoxon	Peto
1	4.4261	68.000	3.4232
2	0.4703	-5.000	-0.3476
3	-4.8964	-63.000	-3.0756

. .

Test of Equality over Strata

Chi-Square	DF	Pr > Chi-Square
20.3844	2	<.0001
18.3265 18.0014	2	0.0001 0.0001
	18.3265	20.3844 2 18.3265 2

LTests for trend

Sometimes we want to compare survival curves for three or more ordered groups. For example: different tumor stages (T0,T1,T2), age-groups,...

$$H_0: S_1(t) = S_2(t) = \dots = S_K(t), t \le \tau$$

$$H_a: \begin{cases} S_1(t) \ge S_2(t) \ge \dots \ge S_K(t), t \le \tau, \text{ at least one } > \\ \text{or} \\ S_1(t) \le S_2(t) \le \dots \le S_K(t), t \le \tau, \text{ at least one } < \end{cases}$$

In such case one may use a logrank test for trend:

$$T = \frac{\sum_{j=1}^{K} a_j (O_j - E_j)}{\sqrt{\sum_{j=1}^{K} \sum_{k=1}^{K} a_j a_k V_{jk}}} \approx N(0, 1), \text{ under } H_0,$$

-Comparison of survival curves

Large Tests for trend

where $a_1 < a_2 < \ldots < a_K$ are ordered of scores (mostly $a_j = j$) and

$$O_j = \sum_{l=1}^k d_{jl}$$

$$E_j = \sum_{l=1}^k \frac{n_{jl}d_l}{n_l}.$$

For the ordered alternative hypothesis, the test for trend has got a higher statistical power than the "usual" logrank.

```
proc lifetest data=noise;
time Time*censor(0);
strata level/trend;
run;
```

The LIFETEST Procedure

Scores for Trend Test

level	Score
1	1
2	2
3	3

Trend Tests

Test	Test Statistic	Standard Error	z-Score	Pr > z
Log-Rank	-9.3224	2.1960	-4.2451	<.0001
Wilcoxon	-131.0000	32.2452	-4.0626	<.0001

```
> survdiff(Surv(Time,Censor)~Level)
Call: survdiff(formula = Surv(Time, Censor) ~ Level)
        N Observed Expected (O-E)^2/E (O-E)^2/V
Level=1 6
                     1.57 12.4463 17.2379
Level=2 6
                5 4.53 0.0488 0.0876
              1 5.90 4.0660 9.4495
Level=3 6
Chisq= 20.4 on 2 degrees of freedom, p= 3.75e-05
> OB<-survdiff(Surv(Time,Censor)~Level)$obs
> NR
[1] 6 5 1
> EX<-survdiff(Surv(Time,Censor)~Level)$exp
> EX
[1] 1.573950 4.529692 5.896359
> V<-survdiff(Surv(Time,Censor)~Level)$var
> V
[,1]
          [,2]
                     [,3]
[1,] 1.1364441 -0.5619089 -0.5745352
[2.] -0.5619089 2.5244614 -1.9625525
[3.] -0.5745352 -1.9625525 2.5370877
> a < -c(1.2.3)
> test<-a%*%(OB-EX)
> stderror<-sqrt(t(a)%*%V%*%a)
> zscore<-test/stderror
> Pvalue <- 2*pnorm(abs(zscore),lower.tail=FALSE)
> data.frame(test,stderror,zscore,Pvalue)
       test stderror
                       zscore
                                    Pvalue
1 -9.322409 2.196042 -4.245095 2.185007e-05
```

With the log-rank test, we compare two or more survival curves.

However, sometimes there are confounding variables which also affect the outcome and for which we need to adjust for.

If the confounding variable has M levels, we get

$$H_0: S_{1m}(t) = S_{2m}(t) = \ldots = S_{Km}(t), \ t \le \tau, \ m = 1, \ldots, M.$$

Hence, we let the shape of the survival function differ for each level of the confounding variable.

To set up a test statistic, we divide the data according the M levels of the confounding variable and construct a 2×2 contingency table for each ordered death time at each level,

-Comparison of survival curves

Stratified tests

Popul / Died	yes	no	Total
1	d_{m0l}	$n_{m0l} - d_{m0l}$	n_{m0l}
2	d_{m1l}	$n_{m0l} - d_{m0l}$ $n_{m1l} - d_{m1l}$	n_{m1l}
Total	d_{ml}	$n_{ml} - d_{ml}$	n_{ml}

Let \mathbf{O}_m be the sum of the observed O's by applying the log-rank calculations in level m. Similar for \mathbf{E}_m , the sum of the expected E's and \mathbf{V}_m , the sum of the v's.

The stratified log-rank is

$$Z = \frac{\sum_{m=1}^{M} (\mathbf{O}_m - \mathbf{E}_m)}{\sqrt{\sum_{m=1}^{M} \mathbf{V}_m}}.$$

NSCLC

- Laudanski et al., Eur Respir J (2001).
- In this study, we had 102 patients who were operated from long cancer.
- The severity of the cancer was expressed in three TNM (Tumor, Nodes, Metastasis) categories: I, II, IIIa.
- The expression of the P53 protein was found from tumor biopsies.
- We are interested on the effect of this protein on the survival time of a patient.

```
> NSCLC<-read.table("C:/Werk/Roel/Onderwijs/Theorie/SurvivalLeuven/NSCLC.txt".header=T.sep="\t")
> fit<-survfit(Surv(survtime,survind)~expres,data=NSCLC)
> summarv(fit)
> plot(fit[1],xlab="Time",ylab="Survival")
> lines(fit[2].col="red".ltv=2)
> legend(4.0.5,legend=c("Expres 0","Expres 1"),ltv=c(1.2),col=c("black","red"))
>
> survdiff(Surv(survtime,survind)~expres,data=NSCLC)
Call: survdiff(formula = Surv(survtime, survind) ~ expres, data = NSCLC)
         N Observed Expected (0-E)^2/E (0-E)^2/V
expres=0 47
                 17
                       26.2
                                 3.25
                                            7.1
expres=1 55
                 32
                       22.8 3.75
                                           7.1
Chisq= 7.1 on 1 degrees of freedom, p= 0.00769
> survdiff(Surv(survtime, survind)~expres+strata(tnm),data=NSCLC)
Call: survdiff(formula = Surv(survtime, survind) ~ expres + strata(tnm), data = NSCLC)
         N Observed Expected (O-E)^2/E (O-E)^2/V
expres=0 47
                17
                       25.5
                                 2.82
                                          6.05
expres=1 55
                 32
                       23.5
                              3.06 6.05
```

Chisq= 6.1 on 1 degrees of freedom, p= 0.0139


```
> survdiff(Surv(survtime,survind)~tnm,data=NSCLC)
Call: survdiff(formula = Surv(survtime, survind) ~ tnm, data = NSCLC)
       N Observed Expected (O-E)^2/E (O-E)^2/V
t.nm=1 21
               5
                     13.2
                               5.13
                                        7.30
t.nm=2 27
                    15.8
                            4.91 7.32
               7
tnm=3 54 37 19.9 14.60 26.23
Chisq= 26.3 on 2 degrees of freedom, p= 1.94e-06
> OB<-survdiff(Surv(survtime,survind)~tnm,data=NSCLC)$obs
> NR
[1] 5 7 37
> EX<-survdiff(Surv(survtime.survind)~tnm.data=NSCLC)$exp
> EX
[1] 13.24541 15.81566 19.93893
> V<-survdiff(Surv(survtime,survind)~tnm,data=NSCLC)$var
> V
Γ.1]
        [,2]
                   [,3]
[1.] 9.309469 -4.417150 -4.892319
[2.] -4.417150 10.623178 -6.206028
[3.] -4.892319 -6.206028 11.098346
> a < -c(1.2.3)
> test<-a%*%(OB-EX)
> stderror<-sqrt(t(a)%*%V%*%a)
> zscore<-test/stderror
> Pvalue <- 2*pnorm(abs(zscore),lower.tail=FALSE)
> data.frame(test,stderror,zscore,Pvalue)
     test stderror zscore
                                  Pvalue
1 25.30649 5.494766 4.605562 4.113525e-06
```

```
proc lifetest data=nsclc;
time Survtime*Survind(0);
strata expres;
run;
```

Testing Homogeneity of Survival Curves for Survtime over Strata

Rank Statistics

expres	Log-Rank	Wilcoxon
0	-9.2411	-648.00
1	9.2411	648.00

. .

Test of Equality over Strata

			Pr >
Test	Chi-Square	DF	Chi-Square
Log-Rank	7.1051	1	0.0077
Wilcoxon	6.5750	1	0.0103
-2Log(LR)	5.2939	1	0.0214

```
proc lifetest data=nsclc;
time Survtime*Survind(0);
test expres;
strata tnm;
run;
```

Univariate Chi-Squares for the Log-Rank Test

Variable	Test Statistic	Standard Deviation	Chi-Square	Pr > Chi-Square
expres	-8.4782	3.4457	6.0541	0.0139

Covariance Matrix for the Log-Rank Statistics

Variable expres expres 11.8730

Forward Stepwise Sequence of Chi-Squares for the Log-Rank Test

Variable	DF	Chi-Square	Pr > Chi-Square	Chi-Square Increment	Pr > Increment
expres	1	6.0541	0.0139	6.0541	0.0139

proc lifetest data=nsclc; time Survtime*Survind(0); strata tnm/trend; run;

Summary of the Number of Censored and Uncensored Values

Stratum	tnm	Total	Failed	Censored	Percent Censored
1	1	21	5	16	76.19
2	2	27	7	20	74.07
3	3	54	37	17	31.48
Total		102	49	53	51.96

Trend Tests

Test	Test Statistic	Standard Error	z-Score Pr >	
Log-Rank	25.3065	5.4948	4.6056	<.0001
Wilcoxon	1502.0000	403.6583	3.7210	0.0002