CAPITOLO 3.

AZIONI SULLE COSTRUZIONI

3.1. OPERE CIVILI E INDUSTRIALI

3.1.1. GENERALITÀ

Nel presente paragrafo vengono definiti i carichi, nominali e/o caratteristici, relativi a costruzioni per uso civile o industriale. La descrizione e la definizione dei carichi devono essere espressamente indicate negli elaborati progettuali.

I carichi sono in genere da considerare come applicati staticamente, salvo casi particolari in cui gli effetti dinamici devono essere debitamente valutati. Oltre che nella situazione definitiva d'uso, si devono considerare le azioni agenti in tutte le fasi esecutive della costruzione.

3.1.2. PESI PROPRI DEI MATERIALI STRUTTURALI

Le azioni permanenti gravitazionali associate ai pesi propri dei materiali strutturali sono derivate dalle dimensioni geometriche e dai pesi dell'unità di volume dei materiali con cui sono realizzate le parti strutturali della costruzione. Per i materiali più comuni possono essere assunti i valori dei pesi dell'unità di volume riportati nella Tab. 3.1.I.

Tab. 3.1.I - Pesi dell'unità di volume dei principali materiali

MATERIALI	PESO UNITÀ DI VOLUME [kN/m³]		
Calcestruzzi cementizi e malte			
Calcestruzzo ordinario	24,0		
Calcestruzzo armato (e/o precompresso)	25,0		
Calcestruzzi "leggeri": da determinarsi caso per caso	14,0 ÷ 20,0		
Calcestruzzi "pesanti": da determinarsi caso per caso	28,0 ÷ 50,0		
Malta di calce	18,0		
Malta di cemento	21,0		
Calce in polvere	10,0		
Cemento in polvere	14,0		
Sabbia	17,0		
Metalli e leghe	<u>.</u>		
Acciaio	78,5		
Ghisa	72,5		
Alluminio	27,0		
Materiale lapideo			
Tufo vulcanico	17,0		
Calcare compatto	26,0		
Calcare tenero	22,0		
Gesso	13,0		
Granito	27,0		
Laterizio (pieno)	18,0		
Legnami	<u>.</u>		
Conifere e pioppo	4,0 ÷ 6,0		
Latifoglie (escluso pioppo)	6,0 ÷ 8,0		
Sostanze varie			
Acqua dolce (chiara)	9,81		
Acqua di mare (chiara)	10,1		
Carta	10,0		
Vetro	25,0		

Per materiali strutturali non compresi nella Tab. 3.1.I si potrà far riferimento a specifiche indagini sperimentali o a normative o documenti di comprovata validità, trattando i valori nominali come valori caratteristici.

3.1.3. CARICHI PERMANENTI NON STRUTTURALI

Sono considerati carichi permanenti non strutturali i carichi presenti sulla costruzione durante il suo normale esercizio, quali quelli relativi a tamponature esterne, divisori interni, massetti, isolamenti, pavimenti e rivestimenti del piano di calpestio, intonaci, controsoffitti, impianti ed altro, ancorché in qualche caso sia necessario considerare situazioni transitorie in cui essi non siano presenti.

Le azioni permanenti gravitazionali associate ai pesi propri dei materiali non strutturali sono derivate dalle dimensioni geometriche e dai pesi dell'unità di volume dei materiali con cui sono realizzate le parti non strutturali della costruzione. I pesi dell'unità di volume dei materiali non strutturali possono essere ricavati dalla Tab. 3.1.I, oppure da specifiche indagini sperimentali o da normative o da documenti di comprovata validità, trattando i valori nominali come valori caratteristici.

In linea di massima, in presenza di orizzontamenti anche con orditura unidirezionale ma con capacità di ripartizione trasversale, i carichi permanenti non strutturali potranno assumersi, per le verifiche d'insieme, come uniformemente ripartiti. In caso contrario, occorre valutarne le effettive distribuzioni.

I tramezzi e gli impianti leggeri degli edifici per abitazioni e per uffici potranno assumersi, in genere, come carichi equivalenti distribuiti, purché i solai abbiano adeguata capacità di ripartizione trasversale.

Per gli orizzontamenti degli edifici per abitazioni e per uffici, il peso proprio di elementi divisori interni potrà essere ragguagliato ad un carico permanente uniformemente distribuito g_2 , purché vengano adottate le misure costruttive atte ad assicurare una adeguata ripartizione del carico. Il carico uniformemente distribuito g_2 potrà essere correlato al peso proprio per unità di lunghezza G_2 delle partizioni nel modo seguente:

Gli elementi divisori interni con peso proprio maggiore di 5,00~kN/m devono essere considerati in fase di progettazione, tenendo conto del loro effettivo posizionamento sul solaio.

3.1.4. SOVRACCARICHI

I sovraccarichi, o carichi imposti, comprendono i carichi legati alla destinazione d'uso dell'opera; i modelli di tali azioni possono essere costituiti da:

 $\begin{array}{lll} \text{-} & \text{carichi verticali uniformemente distribuiti} & q_k \\ \\ \text{-} & \text{carichi verticali concentrati} & Q_k \\ \\ \text{-} & \text{carichi orizzontali lineari} & H_k \end{array}$

I valori nominali e/o caratteristici di $q_{k'}$ Q_k ed H_k sono riportati nella Tab. 3.1.II. Tali valori sono comprensivi degli effetti dinamici ordinari, purché non vi sia rischio di rilevanti amplificazioni dinamiche della risposta delle strutture.

Tab. 3.1.II - Valori dei sovraccarichi per le diverse categorie d'uso delle costruzioni

Cat.	Ambienti	q _k [kN/m²]	Q _k [kN]	H _k [kN/m]
	Ambienti ad uso residenziale			,
A	Aree per attività domestiche e residenziali; sono compresi in questa categoria i locali di abitazione e relativi servizi, gli alberghi (ad esclusione delle aree soggette ad affollamento), camere di degenza di ospedali	2,00	2,00	1,00
	Scale comuni, balconi, ballatoi	4,00	4,00	2,00
	Uffici			
В	Cat. B1 Uffici non aperti al pubblico	2,00	2,00	1,00
ь	Cat. B2 Uffici aperti al pubblico	3,00	2,00	1,00
	Scale comuni, balconi e ballatoi	4,00	4,00	2,00
	Ambienti suscettibili di affollamento			
	Cat. C1 Aree con tavoli, quali scuole, caffè, ristoranti, sale per banchetti, lettura e ricevimento	3,00	3,00	1,00
	Cat. C2 Aree con posti a sedere fissi, quali chiese, teatri, cinema, sale per conferenze e attesa, aule universitarie e aule magne	4,00	4,00	2,00
С	Cat. C3 Ambienti privi di ostacoli al movimento delle persone, quali musei, sale per esposizioni, aree d'accesso a uffici, ad alberghi e ospedali, ad atri di stazioni ferroviarie	5,00	5,00	3,00
	Cat. C4. Aree con possibile svolgimento di attività fisiche, quali sale da ballo, palestre, palcoscenici.	5,00	5,00	3,00
	Cat. C5. Aree suscettibili di grandi affollamenti, quali edifici per eventi pubblici, sale da concerto, palazzetti per lo sport e relative tribune, gradinate e piattaforme ferroviarie.	5,00	5,00	3,00
	Scale comuni, balconi e ballatoi		tegoria d'uso se guenti limitazio	
	,	≥ 4,00	≥ 4,00	≥ 2,00

Cat.	Ambienti	q _k [kN/m²]	Q _k [kN]	H _k [kN/m]		
	Ambienti ad uso commerciale					
	Cat. D1 Negozi	4,00	4,00	2,00		
D	Cat. D2 Centri commerciali, mercati, grandi magazzini	5,00	5,00	2,00		
	Scale comuni, balconi e ballatoi	Secondo	o categoria d'us	o servita		
	Aree per immagazzinamento e uso commerciale ed uso industriale					
E	Cat. E1 Aree per accumulo di merci e relative aree d'accesso, quali biblioteche, archivi, magazzini, depositi, laboratori manifatturieri	≥ 6,00	7,00	1,00*		
	Cat. E2 Ambienti ad uso industriale	da valutarsi caso per caso				
	Rimesse e aree per traffico di veicoli (esclusi i ponti)					
F-G	Cat. F Rimesse, aree per traffico, parcheggio e sosta di veicoli leggeri (peso a pieno carico fino a 30 kN)	2,50	2 x 10,00	1,00**		
r-G	Cat. G Aree per traffico e parcheggio di veicoli me- di (peso a pieno carico compreso fra 30 kN e 160	da valutarsi caso per caso e comunque				
	kN), quali rampe d'accesso, zone di carico e scarico merci.	5,00	2 x 50,00	1,00**		
	Coperture					
H-I-K	Cat. H Coperture accessibili per sola manutenzione e riparazione	0,50	1,20	1,00		
	Cat. I Coperture praticabili di ambienti di categoria d'uso compresa fra A e D	secondo categorie di appartenenza				
	Cat. K Coperture per usi speciali, quali impianti, eliporti.	da valutarsi caso per caso				

^{*} non comprende le azioni orizzontali eventualmente esercitate dai materiali immagazzinati

I valori riportati nella Tab. 3.1.II sono riferiti a condizioni di uso corrente delle rispettive categorie. Altri regolamenti potranno imporre valori superiori, in relazione ad esigenze specifiche.

In presenza di carichi atipici (quali macchinari, serbatoi, depositi interni, impianti, ecc.) le intensità devono essere valutate caso per caso, in funzione dei massimi prevedibili: tali valori dovranno essere indicati esplicitamente nelle documentazioni di progetto e di collaudo statico.

3.1.4.1 SOVRACCARICHI VERTICALI UNIFORMEMENTE DISTRIBUITI

Analogamente ai carichi permanenti non strutturali definiti al § 3.1.3 ed in linea di massima, in presenza di orizzontamenti anche con orditura unidirezionale ma con capacità di ripartizione trasversale, i sovraccarichi potranno assumersi, per la verifica d'insieme, come uniformemente ripartiti. In caso contrario, occorre valutarne le effettive distribuzioni.

Per le categorie d'uso A, B, C, D, H e I, i sovraccarichi verticali distribuiti che agiscono su un singolo elemento strutturale facente parte di un orizzontamento (ad esempio una trave), possono essere ridotti in base all'estensione dell'area di influenza A $[m^2]$ di competenza dell'elemento stesso. Il coefficiente riduttivo α_A è dato da

$$\alpha_{A} = \frac{5}{7}\psi_{0} + \frac{10}{A} \le 1,0$$
 [3.1.1]

essendo 🕫 il coefficiente di combinazione (Tab. 2.5.I). Per le categorie C e D, an non può essere minore di 0,6.

Analogamente, per le sole categorie d'uso da A a D, le componenti di sollecitazione indotte dai sovraccarichi agenti su membrature verticali, tra i quali pilastri o setti, facenti parte di edifici multipiano con più di 2 piani, possono essere ridotti in funzione del numero di piani caricati n, essendo il coefficiente riduttivo α_n dato da

$$\alpha_{n} = \frac{2 + (n - 2)\psi_{0}}{n} \,. \tag{3.1.2}$$

I due coefficienti riduttivi α_{A} e α_{n} non possono essere combinati.

3.1.4.2 SOVRACCARICHI VERTICALI CONCENTRATI

I sovraccarichi verticali concentrati Q_k riportati nella Tab. 3.1.II formano oggetto di verifiche locali distinte e non si applicano contemporaneamente ai carichi verticali ripartiti utilizzati nelle verifiche dell'edificio nel suo insieme; essi devono essere applicati su impronte di carico appropriate all'utilizzo ed alla forma dell'orizzontamento; in assenza di precise indicazioni può essere considerata una forma dell'impronta di carico quadrata pari a 50×50 mm, salvo che per le rimesse, i parcheggi e le aree di transito (categorie F e G). Per le costruzioni di categoria F, i carichi si applicano su due impronte di 100×100 mm, distanti assialmente 1,80 m. Per le costruzioni di categoria G, i carichi si applicano su due impronte di 200×200 mm, distanti assialmente 1,80 m.

^{**} per i soli parapetti o partizioni nelle zone pedonali. Le azioni sulle barriere esercitate dagli automezzi dovranno essere

3.1.4.3 SOVRACCARICHI ORIZZONTALI LINEARI

I sovraccarichi orizzontali lineari H_k riportati nella Tab. 3.1.II devono essere utilizzati per verifiche locali e non si combinano con i carichi utilizzati nelle verifiche dell'edificio nel suo insieme.

I sovraccarichi orizzontali lineari devono essere applicati alle pareti alla quota di 1,20 m dal rispettivo piano di calpestio; devono essere applicati ai parapetti o ai mancorrenti alla quota del bordo superiore.

Le verifiche locali riguardano, in relazione alle condizioni d'uso, gli elementi verticali bidimensionali quali i tramezzi, le pareti, i tamponamenti esterni, comunque realizzati, con l'esclusione dei divisori mobili (che comunque devono garantire sufficiente stabilità in esercizio).

Il soddisfacimento di questa prescrizione può essere documentato anche per via sperimentale, e comunque mettendo in conto i vincoli che il manufatto possiede e tutte le risorse che il tipo costruttivo consente.

3.2. AZIONE SISMICA

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione e sono funzione delle caratteristiche morfologiche e stratigrafiche che determinano la risposta sismica locale.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A come definita al § 3.2.2), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente $S_e(T)$, con riferimento a prefissate probabilità di eccedenza P_{V_R} come definite nel § 3.2.1, nel periodo di riferimento V_R , come definito nel § 2.4. In alternativa è ammesso l'uso di accelerogrammi, purché correttamente commisurati alla pericolosità sismica locale dell'area della costruzione.

Ai fini della presente normativa le forme spettrali sono definite, per ciascuna delle probabilità di superamento P_{V_R} nel periodo di riferimento V_R , a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

- a, accelerazione orizzontale massima al sito;
- F_o valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T_{C}^{*} valore di riferimento per la determinazione del periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale

Per i valori di a_{gr} , F_o e T_C^* , necessari per la determinazione delle azioni sismiche, si fa riferimento agli Allegati A e B al Decreto del Ministro delle Infrastrutture 14 gennaio 2008, pubblicato nel S.O. alla Gazzetta Ufficiale del 4 febbraio 2008, n.29, ed eventuali successivi aggiornamenti.

3.2.1. STATI LIMITE E RELATIVE PROBABILITÀ DI SUPERAMENTO

Nei confronti delle azioni sismiche, sia gli Stati limite di esercizio (SLE) che gli Stati limite ultimi (SLU) sono individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti. Gli Stati limite di esercizio (SLE) comprendono:

- Stato Limite di Operatività (SLO): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e le apparecchiature rilevanti in relazione alla sua funzione, non deve subire danni ed interruzioni d'uso significativi;
- Stato Limite di Danno (SLD): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali ed orizzontali, mantenendosi immediatamente utilizzabile pur nell'interruzione d'uso di parte delle apparecchiature.

Gli Stati limite ultimi (SLU) comprendono:

- Stato Limite di salvaguardia della Vita (SLV): a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva invece una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali;
- Stato Limite di prevenzione del Collasso (SLC): a seguito del terremoto la costruzione subisce gravi rotture e crolli dei componenti non strutturali ed impiantistici e danni molto gravi dei componenti strutturali; la costruzione conserva ancora un margine di sicurezza per azioni verticali ed un esiguo margine di sicurezza nei confronti del collasso per azioni orizzontali.

Le probabilità di superamento nel periodo di riferimento $P_{V_{R'}}$ cui riferirsi per individuare l'azione sismica agente in ciascuno degli stati limite considerati, sono riportate nella Tab. 3.2.I.

 $\textbf{Tab. 3.2.I} - Probabilit\`{a} \ di \ superamento \ P_{V_R} \ in \ funzione \ \ dello \ stato \ limite \ considerato$

Stati Limite	$\mathbf{P}_{\mathrm{V}_{\mathrm{R}}}$: Probabilità di superamento nel periodo di riferimento \mathbf{V}_{R}		
Ctati limita di acamainia	SLO	81%	
Stati limite di esercizio	SLD	63%	
Stati limite ultimi	SLV	10%	
Stati limite ulumi	SLC	5%	

Qualora la protezione nei confronti degli stati limite di esercizio sia di prioritaria importanza, i valori di P_{V_R} forniti in tabella devono essere ridotti in funzione del grado di protezione che si vuole raggiungere.

Per ciascuno stato limite e relativa probabilità di eccedenza P_{V_R} nel periodo di riferimento V_R si ricava il periodo di ritorno T_R del sisma utilizzando la relazione:

$$T_R = -V_R / \ln (1 - P_{V_R}) = -C_U V_N / \ln (1 - P_{V_R})$$
 [3.2.0]

3.2.2 CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE

Categorie di sottosuolo

Ai fini della definizione dell'azione sismica di progetto, l'effetto della risposta sismica locale si valuta mediante specifiche analisi, da eseguire con le modalità indicate nel § 7.11.3. In alternativa, qualora le condizioni stratigrafiche e le proprietà dei terreni siano chiaramente riconducibili alle categorie definite nella Tab. 3.2.II, si può fare riferimento a un approccio semplificato che si basa sulla classificazione del sottosuolo in funzione dei valori della velocità di propagazione delle onde di taglio, V_S . I valori dei parametri meccanici necessari per le analisi di risposta sismica locale o delle velocità V_S per l'approccio semplificato costituiscono parte integrante della caratterizzazione geotecnica dei terreni compresi nel volume significativo, di cui al § 6.2.2.

I valori di V_s sono ottenuti mediante specifiche prove oppure, con giustificata motivazione e limitatamente all'approccio semplificato, sono valutati tramite relazioni empiriche di comprovata affidabilità con i risultati di altre prove in sito, quali ad esempio le prove penetrometriche dinamiche per i terreni a grana grossa e le prove penetrometriche statiche.

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, $V_{S,eq}$ (in m/s), definita dall'espressione:

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$
 [3.2.1]

con:

h_i spessore dell'i-esimo strato;

 $V_{S,i}$ velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Per le fondazioni superficiali, la profondità del substrato è riferita al piano di imposta delle stesse, mentre per le fondazioni su pali è riferita alla testa dei pali. Nel caso di opere di sostegno di terreni naturali, la profondità è riferita alla testa dell'opera. Per muri di sostegno di terrapieni, la profondità è riferita al piano di imposta della fondazione.

Per depositi con profondità H del substrato superiore a 30 m, la velocità equivalente delle onde di taglio $V_{S,eq}$ è definita dal parametro $V_{S,30}$, ottenuto ponendo H=30 m nella precedente espressione e considerando le proprietà degli strati di terreno fino a tale profondità.

Le categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato sono definite in Tab. 3.2.II.

Tab. 3.2.II – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

Categoria	Caratteristiche della superficie topografica
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteriti de managina di c
В	stiche meccaniche più scadenti con spessore massimo pari a 3 m. Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi- stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
Е	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego- rie C o D, con profondità del substrato non superiore a 30 m.

Per queste cinque categorie di sottosuolo, le azioni sismiche sono definibili come descritto al § 3.2.3 delle presenti norme. Per qualsiasi condizione di sottosuolo non classificabile nelle categorie precedenti, è necessario predisporre specifiche analisi di risposta locale per la definizione delle azioni sismiche.

Condizioni topografiche

Per condizioni topografiche complesse è necessario predisporre specifiche analisi di risposta sismica locale. Per configurazioni superficiali semplici si può adottare la seguente classificazione (Tab. 3.2.III):

Tab. 3.2.III – Categorie topografiche

Categoria	Caratteristiche della superficie topografica		
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°		
T2	Pendii con inclinazione media i > 15°		
Т3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°		
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°		

Le suesposte categorie topografiche si riferiscono a configurazioni geometriche prevalentemente bidimensionali, creste o dorsali allungate, e devono essere considerate nella definizione dell'azione sismica se di altezza maggiore di 30 m.

3.2.3. VALUTAZIONE DELL'AZIONE SISMICA

3.2.3.1 DESCRIZIONE DEL MOTO SISMICO IN SUPERFICIE E SUL PIANO DI FONDAZIONE

Ai fini delle presenti norme l'azione sismica è caratterizzata da 3 componenti traslazionali, due orizzontali contrassegnate da X ed Y ed una verticale contrassegnata da Z, da considerare tra di loro indipendenti. Salvo quanto specificato nel § 7.11 per le opere e i sistemi geotecnici, la componente verticale verrà considerata ove espressamente specificato (Capitolo 7) e purché il sito nel quale sorge la costruzione sia caratterizzato da un'accelerazione al suolo, così come definita nel seguente §3.2.3.2, pari ad $a_g \ge 0.15g$.

Le componenti possono essere descritte, in funzione del tipo di analisi adottata, mediante una delle seguenti rappresentazioni:

- accelerazione massima in superficie;
- accelerazione massima e relativo spettro di risposta in superficie;
- storia temporale del moto del terreno.

Sulla base di apposite analisi di risposta sismica locale si può poi passare dai valori in superficie ai valori sui piani di riferimento definiti nel § 3.2.2; in assenza di tali analisi l'azione in superficie può essere assunta come agente su tali piani.

Le due componenti ortogonali indipendenti che descrivono il moto orizzontale sono caratterizzate dallo stesso spettro di risposta o dalle due componenti accelerometriche orizzontali del moto sismico.

La componente che descrive il moto verticale è caratterizzata dal suo spettro di risposta o dalla componente accelerometrica verticale. In mancanza di documentata informazione specifica, in via semplificata l'accelerazione massima e lo spettro di risposta della componente verticale attesa in superficie possono essere determinati sulla base dell'accelerazione massima e dello spettro di risposta delle due componenti orizzontali. La componente accelerometrica verticale può essere correlata alle componenti accelerometriche orizzontali del moto sismico.

Quale che sia la probabilità di superamento P_{V_R} nel periodo di riferimento V_R , la definizione degli spettri di risposta elastici, degli spettri di risposta di progetto e delle storie temporali del moto del terreno è fornita ai paragrafi successivi.

3.2.3.2 SPETTRO DI RISPOSTA ELASTICO IN ACCELERAZIONE

Lo spettro di risposta elastico in accelerazione è espresso da una forma spettrale (spettro normalizzato) riferita ad uno smorzamento convenzionale del 5%, moltiplicata per il valore della accelerazione orizzontale massima a_g su sito di riferimento rigido orizzontale. Sia la forma spettrale che il valore di a_g variano al variare della probabilità di superamento nel periodo di riferimento $P_{V_{\nu}}$ (vedi § 2.4 e § 3.2.1).

Gli spettri così definiti possono essere utilizzati per strutture con periodo fondamentale minore o uguale a 4,0 s. Per strutture con periodi fondamentali superiori lo spettro deve essere definito da apposite analisi oppure l'azione sismica deve essere descritta mediante storie temporali del moto del terreno.

3.2.3.2.1 Spettro di risposta elastico in accelerazione delle componenti orizzontali

Lo spettro di risposta elastico in accelerazione della componente orizzontale del moto sismico, S_e, è definito dalle espressioni seguenti:

$$0 \le T \le T_B \qquad S_e (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right]$$
 [3.2.2]

$$\begin{split} T_B &\leq T < T_C & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T}\right) \\ T_D &\leq T & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C \cdot T_D}{T^2}\right) \end{split}$$

nelle quali:

Tè il periodo proprio di vibrazione;

S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente

$$S = S_S \cdot S_T$$
 [3.2.3]

essendo S_S il coefficiente di amplificazione stratigrafica (vedi Tab. 3.2.IV) e S_T il coefficiente di amplificazione topografica (vedi Tab. 3.2.V);

η è il fattore che altera lo spettro elastico per coefficienti di smorzamento viscosi convenzionali ξ diversi dal 5%, mediante la relazione

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
, [3.2.4]

 $dove \; \xi \; (espresso \; in \; percentuale) \; \grave{e} \; valutato \; sulla \; base \; dei \; materiali, \; della \; tipologia \; strutturale \; e \; del \; terreno \; di \; fondazione;$

- F_o è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale, ed ha valore minimo pari a 2,2;
- T_C è il periodo corrispondente all'inizio del tratto a velocità costante dello spettro, dato dalla relazione

$$T_{c} = C_{c} \cdot T_{c}^{*}$$
, [3.2.5]

dove: T_C* è definito al § 3.2 e C_Cè un coefficiente funzione della categoria di sottosuolo (vedi Tab. 3.2.IV);

 $T_{B}\ \ \dot{e}\ il\ periodo\ corrispondente\ all'inizio\ del tratto\ dello\ spettro\ ad\ accelerazione\ costante,\ dato\ dalla\ relazione$

$$T_{\rm B} = T_{\rm C}/3$$
 [3.2.6]

T_D è il periodo corrispondente all'inizio del tratto a spostamento costante dello spettro, espresso in secondi mediante la relazione:

$$T_D = 4.0 \cdot \frac{a_g}{a} + 1.6$$
 [3.2.7]

Per categorie speciali di sottosuolo, per determinati sistemi geotecnici o se si intenda aumentare il grado di accuratezza nella previsione dei fenomeni di amplificazione, le azioni sismiche da considerare nella progettazione possono essere determinate mediante più rigorose analisi di risposta sismica locale. Queste analisi presuppongono un'adeguata conoscenza delle proprietà geotecniche dei terreni e, in particolare, delle relazioni sforzi-deformazioni in campo ciclico, da determinare mediante specifiche indagini e prove.

In mancanza di tali determinazioni, per le componenti orizzontali del moto e per le categorie di sottosuolo di fondazione definite nel \S 3.2.2, la forma spettrale su sottosuolo di categoria \mathbf{A} è modificata attraverso il coefficiente stratigrafico S_S , il coefficiente topografico S_T e il coefficiente C_C che modifica il valore del periodo T_C .

Amplificazione stratigrafica

Per sottosuolo di categoria A i coefficienti $S_S\,e\,C_C\,valgono\,1.$

Per le categorie di sottosuolo **B**, **C**, **D** ed **E** i coefficienti S_S e C_C possono essere calcolati, in funzione dei valori di F_o e T_C^* relativi al sottosuolo di categoria **A**, mediante le espressioni fornite nella Tab. 3.2.IV, nelle quali g = 9.81 m/s² è l'accelerazione di gravità e T_C^* è espresso in secondi.

Tab. 3.2.IV – Espressioni di S_S e di C_C

Categoria sottosuolo	S_{S}	C _C
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot(T_{\rm C}^*)^{-0,20}$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	$1,25 \cdot (T_C^*)^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_C^*)^{-0,40}$

Amplificazione topografica

Per tener conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica locale, si utilizzano i valori del coefficiente topografico S_T riportati nella Tab. 3.2.V, in funzione delle categorie topografiche definite nel § 3.2.2 e dell'ubicazione dell'opera o dell'intervento.

Tab. 3.2.V – Valori massimi del coefficiente di amplificazione topografica S_T

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta di un rilievo con pendenza media minore o uguale a 30°	1,2
T4	In corrispondenza della cresta di un rilievo con pendenza media maggiore di 30°	1,4

La variazione spaziale del coefficiente di amplificazione topografica è definita da un decremento lineare con l'altezza del pendio o del rilievo, dalla sommità o dalla cresta, dove S_T assume il valore massimo riportato nella Tab. 3.2.V, fino alla base, dove S_T assume valore unitario.

3.2.3.2.2 Spettro di risposta elastico in accelerazione della componente verticale

Lo spettro di risposta elastico in accelerazione della componente verticale del moto sismico, $S_{ve'}$ è definito dalle espressioni:

$$\begin{split} 0 &\leq T < T_B & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split} \label{eq:secondard}$$

nelle quali:

T è il periodo proprio di vibrazione (in direzione verticale);

 F_v è il fattore che quantifica l'amplificazione spettrale massima, in termini di accelerazione orizzontale massima del terreno a_g su sito di riferimento rigido orizzontale, mediante la relazione:

$$F_{v} = 1.35 \cdot F_{o} \cdot \left(\frac{a_{g}}{g}\right)^{0.5}$$
 [3.2.9]

I valori di a_g , F_o , S, η sono definiti nel § 3.2.3.2.1 per le componenti orizzontali del moto sismico; i valori di S_S , T_{B_p} , T_C e T_{D_p} salvo più accurate determinazioni, sono riportati nella Tab. 3.2.VI.

Tab. 3.2.VI - Valori dei parametri dello spettro di risposta elastico della componente verticale

Categoria di sottosuolo	s_s	T _B	T _C	T_D
A, B, C, D, E	1,0	0,05 s	0,15 s	1,0 s

Per tener conto delle condizioni topografiche, in assenza di specifiche analisi si utilizzano i valori del coefficiente topografico ST riportati in Tab. 3.2.V.

3.2.3.2.3 Spettro di risposta elastico in spostamento delle componenti orizzontali

Lo spettro di risposta elastico in spostamento delle componenti orizzontali $S_{De}(T)$ si ricava dalla corrispondente risposta in accelerazione $S_{p}(T)$ mediante la seguente espressione:

$$S_{De}(T) = S_e(T) x \left(\frac{T}{2\pi}\right)^2$$
 [3.2.10]

purché il periodo proprio di vibrazione T non ecceda i valori T_E indicati in Tab. 3.2.VII.

Tab. 3.2.VII – Valori dei parametri T_E e T_F

Categoria sottosuolo	T _E [s]	T _F [s]
A	4,5	10,0
В	5,0	10,0
C, D, E	6,0	10,0

Per periodi di vibrazione eccedenti T_E, le ordinate dello spettro possono essere ottenute dalle formule seguenti:

$$\begin{split} T_{E} < T \leq T_{F} & S_{De} (T) = 0,025 \cdot a_{g} \cdot S \cdot T_{C} \cdot T_{D} \cdot \left[F_{o} \cdot \eta + \left(1 - F_{o} \cdot \eta \right) \cdot \frac{T - T_{E}}{T_{F} - T_{e}} \right] \\ T > T_{F} & S_{De} (T) = d_{o} \end{split}$$
 [3.2.11]

dove tutti i simboli sono già stati definiti, ad eccezione di d_g, definito nel § 3.2.3.3.

3.2.3.3 SPOSTAMENTO ORIZZONTALE E VELOCITÀ ORIZZONTALE DEL TERRENO

I valori dello spostamento orizzontale d_e e della velocità orizzontale v_e massimi del terreno sono dati dalle seguenti espressioni:

$$\begin{aligned} \mathbf{d}_{\mathrm{g}} &= 0.025 \cdot \mathbf{a}_{\mathrm{g}} \cdot \mathbf{S} \cdot \mathbf{T}_{\mathrm{C}} \cdot \mathbf{T}_{\mathrm{D}} \\ \mathbf{v}_{\mathrm{g}} &= 0.16 \cdot \mathbf{a}_{\mathrm{g}} \cdot \mathbf{S} \cdot \mathbf{T}_{\mathrm{C}} \end{aligned} \tag{3.2.12}$$

dove a_{g} , S, T_{C} , T_{D} assumono i valori già utilizzati al § 3.2.3.2.1.

3.2.3.4 SPETTRI DI RISPOSTA DI PROGETTO PER LO STATO LIMITE DI OPERATIVITÀ (SLO)

Per lo stato limite di operatività lo spettro di risposta di progetto $S_d(T)$ da utilizzare, sia per le componenti orizzontali che per la componente verticale, è lo spettro di risposta elastico corrispondente, riferito alla probabilità di superamento nel periodo di riferimento P_{V_p} considerata (v. §§ 2.4 e 3.2.1).

3.2.3.5 SPETTRI DI RISPOSTA DI PROGETTO PER GLI STATI LIMITE DI DANNO (SLD), DI SALVAGUARDIA DELLA VITA (SLV) E DI PREVENZIONE DEL COLLASSO (SLC)

Qualora le verifiche agli stati limite di danno, di salvaguardia della vita e di prevenzione al collasso non vengano effettuate tramite l'uso di opportune storie temporali del moto del terreno ed analisi non lineari dinamiche al passo, ai fini del progetto o della verifica delle costruzioni le capacità dissipative delle strutture possono essere considerate attraverso una riduzione delle forze elastiche, che tenga conto in modo semplificato della capacità dissipativa anelastica della struttura, della sua sovraresistenza, dell'incremento del suo periodo proprio di vibrazione a seguito delle plasticizzazioni. In tal caso, lo spettro di risposta di progetto $S_d(T)$ da utilizzare, sia per le componenti orizzontali, sia per la componente verticale, è lo spettro di risposta elastico corrispondente riferito alla probabilità di superamento nel periodo di riferimento P_{V_R} considerata (v. §§ 2.4 e 3.2.1). Per valutare la domanda verrà utilizzato tale spettro, nel caso di analisi non lineare statica ponendo $\eta = 1$, nel caso di analisi lineare, statica o dinamica con le ordinate ridotte sostituendo nelle formule [3.2.2] (per le componenti orizzontali) e nelle formule [3.2.8] (per le componenti verticali) η con 1/q, dove q è il fattore di comportamento definito nel Capitolo 7 (Tabella 7.3.I).

3.2.3.6 IMPIEGO DI STORIE TEMPORALI DEL MOTO DEL TERRENO

Gli stati limite, ultimi e di esercizio, possono essere verificati mediante l'uso di storie temporali del moto del terreno artificiali o naturali. Ciascuna storia temporale descrive una componente, orizzontale o verticale, dell'azione sismica; l'insieme delle tre componenti (due orizzontali, tra loro ortogonali, ed una verticale) costituisce un gruppo di storie temporali del moto del terreno.

La durata delle storie temporali artificiali del moto del terreno deve essere stabilita sulla base della magnitudo e degli altri parametri fisici che determinano la scelta del valore di a_g e di S_S . In assenza di studi specifici, la parte pseudo-stazionaria dell'accelerogramma associato alla storia deve avere durata di 10 s e deve essere preceduta e seguita da tratti di ampiezza crescente da zero e decrescente a zero, in modo che la durata complessiva dell'accelerogramma sia non inferiore a 25 s.

Gli accelerogrammi artificiali devono avere uno spettro di risposta elastico coerente con lo spettro di risposta adottato nella progettazione. La coerenza con lo spettro di risposta elastico è da verificare in base alla media delle ordinate spettrali ottenute con i diversi accelerogrammi, per un coefficiente di smorzamento viscoso equivalente ξ del 5%. L'ordinata spettrale media non deve presentare uno scarto in difetto superiore al 10%, rispetto alla corrispondente componente dello spettro elastico, in alcun punto del maggiore tra gli intervalli $0,15s \div 2,0s \in 0,15s \div 2T$, in cui T è il periodo proprio di vibrazione della struttura in campo elastico, per le verifiche agli stati limite ultimi, e $0,15s \div 1,5T$, per le verifiche agli stati limite di esercizio. Nel caso di costruzioni con isolamento sismico, il limite superiore dell'intervallo di coerenza è assunto pari a 1,2 T_{is} , essendo T_{is} il periodo equivalente della struttura isolata, valutato per gli spostamenti del sistema d'isolamento prodotti dallo stato limite in esame.

L'uso di storie temporali del moto del terreno artificiali non è ammesso nelle analisi dinamiche di opere e sistemi geotecnici.

L'uso di storie temporali del moto del terreno generate mediante simulazione del meccanismo di sorgente e della propagazione è ammesso a condizione che siano adeguatamente giustificate le ipotesi relative alle caratteristiche sismogenetiche della sorgente e del mezzo di propagazione e che, negli intervalli di periodo sopraindicati, l'ordinata spettrale media non presenti uno scarto in difetto superiore al 20% rispetto alla corrispondente componente dello spettro elastico.

L'uso di storie temporali del moto del terreno naturali o registrate è ammesso a condizione che la loro scelta sia rappresentativa della sismicità del sito e sia adeguatamente giustificata in base alle caratteristiche sismogenetiche della sorgente, alle condizioni del sito di registrazione, alla magnitudo, alla distanza dalla sorgente e alla massima accelerazione orizzontale attesa al sito.

Le storie temporali del moto del terreno registrate devono essere selezionate e scalate in modo tale che i relativi spettri di risposta approssimino gli spettri di risposta elastici nel campo dei periodi propri di vibrazione di interesse per il problema in esame. Nello specifico la compatibilità con lo spettro di risposta elastico deve essere verificata in base alla media delle ordinate spettrali ottenute con i diversi accelerogrammi associati alle storie per un coefficiente di smorzamento viscoso equivalente ξ del 5%. L'ordinata spettrale media non deve presentare uno scarto in difetto superiore al 10% ed uno scarto in eccesso superiore al 30%, rispetto alla corrispondente componente dello spettro elastico in alcun punto dell'intervallo dei periodi propri di vibrazione di interesse per l'opera in esame per i diversi stati limite.

3.2.4. EFFETTI DELLA VARIABILITÀ SPAZIALE DEL MOTO

3.2.4.1 VARIABILITÀ SPAZIALE DEL MOTO

Nei punti di contatto con il terreno di opere con sviluppo planimetrico significativo, il moto sismico può avere caratteristiche differenti, a causa del carattere asincrono del fenomeno di propagazione, delle disomogeneità e delle discontinuità eventualmente presenti, e della diversa risposta locale del terreno.

Degli effetti sopra indicati deve tenersi conto quando essi possono essere significativi e in ogni caso quando le condizioni di sottosuolo siano così variabili lungo lo sviluppo dell'opera da richiedere l'uso di accelerogrammi o di spettri di risposta diversi.

In assenza di modelli fisicamente più accurati e adeguatamente documentati, un criterio di prima approssimazione per tener conto della variabilità spaziale del moto sismico consiste nel sovrapporre agli effetti dinamici, valutati ad esempio con lo spettro di risposta, gli effetti pseudo-statici indotti dagli spostamenti relativi.

Nel dimensionamento delle strutture in elevazione tali effetti possono essere trascurati quando il sistema fondazione-terreno sia sufficientemente rigido da rendere minimi gli spostamenti relativi. Negli edifici ciò avviene, ad esempio, quando si collegano in modo opportuno i plinti di fondazione.

Gli effetti dinamici possono essere valutati adottando un'unica azione sismica, corrispondente alla categoria di sottosuolo che induce le sollecitazioni più severe.

Qualora l'opera sia suddivisa in porzioni, ciascuna fondata su sottosuolo di caratteristiche ragionevolmente omogenee, per ciascuna di esse si adotterà l'appropriata azione sismica.

3.2.4.2 SPOSTAMENTO ASSOLUTO E RELATIVO DEL TERRENO

Il valore dello spostamento assoluto orizzontale massimo del suolo (d_e) può ottenersi utilizzando l'espressione [3.2.12].

Nel caso in cui sia necessario valutare gli effetti della variabilità spaziale del moto richiamati nel paragrafo precedente, il valore dello spostamento relativo tra due punti i e j caratterizzati dalle proprietà stratigrafiche del rispettivo sottosuolo ed il cui moto possa considerarsi indipendente, può essere stimato secondo l'espressione seguente:

$$d_{ij \max} = 1,25 \sqrt{d_{gi}^2 + d_{gj}^2}$$
 [3.2.13]

dove d_{gi} e d_{gi} sono rispettivamente gli spostamenti massimi del suolo nei punti i e j, calcolati con riferimento alle caratteristiche locali del sottosuolo.

Il moto di due punti del terreno può considerarsi indipendente per punti posti a distanze notevoli, in relazione al tipo di sottosuolo; il moto è reso indipendente anche dalla presenza di forti variabilità orografiche tra i punti.

In assenza di forti discontinuità orografiche, lo spostamento relativo tra punti a distanza x (in m) si può valutare con l'espressione:

$$d_{ij}(x) = d_{ij0} + (d_{ijmax} - d_{ij0}) \left[1 - e^{-1.25(x/v_x)^{0.7}}\right]$$
 [3.2.14]

dove v_s è la velocità di propagazione delle onde di taglio in m/s e d_{ij0} è dato dall'espressione

$$d_{ij0} = 1,25 |d_{gi} - d_{gj}|$$
 [3.2.15]

Per punti che ricadano su sottosuoli differenti a distanza inferiore a 20 m, lo spostamento relativo è rappresentato da d_{ij0} ; se i punti ricadono su sottosuolo dello stesso tipo, lo spostamento relativo può essere stimato, anziché con l'espressione [3.2.14], con le espressioni

$$d_{ij}\left(x\right) = \frac{d_{ijmax}}{v_{s}} \cdot 2,3x \text{ per sottosuolo tipo D,}$$

$$d_{ij}\left(x\right) = \frac{d_{ijmax}}{v_{s}} \cdot 3,0x \text{ per sottosuolo di tipo diverso da D.}$$
[3.2.16]

Per la determinazione delle sollecitazioni indotte nei ponti dagli spostamenti relativi del terreno, si possono utilizzare criteri riportati in documenti di comprovata validità.

3.3. AZIONI DEL VENTO

Il vento, la cui direzione si considera generalmente orizzontale, esercita sulle costruzioni azioni che variano nel tempo e nello spazio provocando, in generale, effetti dinamici.

Per le costruzioni usuali tali azioni sono convenzionalmente ricondotte alle azioni statiche equivalenti definite al § 3.3.3. Per le costruzioni di forma o tipologia inusuale, oppure di grande altezza o lunghezza, o di rilevante snellezza e leggerezza, o di notevole flessibilità e ridotte capacità dissipative, il vento può dare luogo ad effetti la cui valutazione richiede l'uso di metodologie di calcolo e sperimentali adeguate allo stato dell'arte.

3.3.1. VELOCITÀ BASE DI RIFERIMENTO

La velocità base di riferimento v_b è il valore medio su 10 minuti, a 10 m di altezza sul suolo su un terreno pianeggiante e omogeneo di categoria di esposizione II (vedi Tab. 3.3.II), riferito ad un periodo di ritorno $T_R = 50$ anni.

In mancanza di specifiche ed adeguate indagini statistiche, v_bè data dall'espressione:

$$\mathbf{v}_{\mathbf{b}} = \mathbf{v}_{\mathbf{b}.0} \cdot \mathbf{c}_{\mathbf{a}} \tag{3.3.1}$$

 $V_{b,0}$ è la velocità base di riferimento al livello del mare, assegnata nella Tab. 3.3.I in funzione della zona in cui sorge la costruzione (Fig. 3.3.1);

c_a è il coefficiente di altitudine fornito dalla relazione:

$$c_a = 1$$
 per $a_s \le a_0$

$$c_a = 1 + k_s \left(\frac{a_s}{a_0} - 1\right)$$
 per $a_0 < a_s \le 1500$ m [3.3.1.b]

dove:

 a_{0} , k_s sono parametri forniti nella Tab. 3.3.I in funzione della zona in cui sorge la costruzione (Fig. 3.3.1);

 \mathbf{a}_{s} è l'altitudine sul livello del mare del sito ove sorge la costruzione.

Tale zonazione non tiene conto di aspetti specifici e locali che, se necessario, dovranno essere definiti singolarmente.

Tab. 3.3.I -Valori dei parametri $v_{b,0}$, a_0 , k_s

Zona	Descrizione	v _{b,0} [m/s]	a ₀ [m]	\mathbf{k}_{s}
1	Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia (con l'eccezione della pro- vincia di Trieste)	25	1000	0,40
2	Emilia Romagna	25	750	0,45
3	Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)	27	500	0,37
4	Sicilia e provincia di Reggio Calabria	28	500	0,36
5	Sardegna (zona a oriente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	750	0,40
6	Sardegna (zona a occidente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	500	0,36
7	Liguria	28	1000	0,54
8	Provincia di Trieste	30	1500	0,50
9	Isole (con l'eccezione di Sicilia e Sardegna) e mare aperto	31	500	0,32

Per altitudini superiori a 1500 m sul livello del mare, i valori della velocità base di riferimento possono essere ricavati da opportuna documentazione o da indagini statistiche adeguatamente comprovate, riferite alle condizioni locali di clima e di esposizione. Fatte salve tali valutazioni, comunque raccomandate in prossimità di vette e crinali, i valori utilizzati non dovranno essere minori di quelli previsti per 1500 m di altitudine.

Fig. 3.3.1 - Mappa delle zone in cui è suddiviso il territorio italiano

3.3.2. VELOCITÀ DI RIFERIMENTO

La velocità di riferimento v_r è il valore medio su 10 minuti, a 10 m di altezza dal suolo su un terreno pianeggiante e omogeneo di categoria di esposizione II (vedi Tab. 3.3.II), riferito al periodo di ritorno di progetto Tr. Tale velocità è definita dalla relazione:

$$\mathbf{v}_{\mathbf{r}} = \mathbf{v}_{\mathbf{b}} \cdot \mathbf{c}_{\mathbf{r}} \tag{3.3.2}$$

dove

v_b è la velocità base di riferimento, di cui al § 3.3.1;

cr è il coefficiente di ritorno, funzione del periodo di ritorno di progetto Tr.

In mancanza di specifiche e adeguate indagini statistiche, il coefficiente di ritorno è fornito dalla relazione:

$$c_r = 0.75 \sqrt{1 - 0.2 \times \ln \left[-\ln \left(1 - \frac{1}{T_R} \right) \right]}$$
 [3.3.3]

dove TR è il periodo di ritorno espresso in anni.

Ove non specificato diversamente, si assumerà $T_R = 50$ anni, cui corrisponde $c_r = 1$. Per un'opera di nuova realizzazione in fase di costruzione o per le fasi transitorie relative ad interventi sulle costruzioni esistenti, il periodo di ritorno dell'azione potrà essere ridotto come di seguito specificato:

- per fasi di costruzione o fasi transitorie con durata prevista in sede di progetto non superiore a tre mesi, si assumerà TR ≥
 5 anni;
- per fasi di costruzione o fasi transitorie con durata prevista in sede di progetto compresa fra tre mesi ed un anno, si assumerà TR ≥ 10 anni;

3.3.3. AZIONI STATICHE EQUIVALENTI

Le azioni del vento sono costituite da pressioni e depressioni agenti normalmente alle superfici, sia esterne che interne, degli elementi che compongono la costruzione (§ 3.3.4).

L'azione del vento sui singoli elementi che compongono la costruzione va determinata considerando la combinazione più gravosa delle pressioni agenti sulle due facce di ogni elemento.

Nel caso di costruzioni di grande estensione, si deve inoltre tenere conto delle azioni tangenti esercitate dal vento (§ 3.3.4).

L'azione d'insieme esercitata dal vento su una costruzione è data dalla risultante delle azioni sui singoli elementi, considerando come direzione del vento quella corrispondente ad uno degli assi principali della pianta della costruzione; in casi particolari, come ad esempio per le torri a base quadrata o rettangolare, si deve considerare anche l'ipotesi di vento spirante secondo la direzione di una delle diagonali.

3.3.4. PRESSIONE DEL VENTO

La pressione del vento è data dall'espressione:

$$p = q_r c_e c_p c_d$$
 [3.3.4]

dove

q_r è la pressione cinetica di riferimento di cui al § 3.3.6;

c_e è il coefficiente di esposizione di cui al § 3.3.7;

c_p è il coefficiente di pressione di cui al § 3.3.8;

c_d è il coefficiente dinamico di cui al § 3.3.9.

3.3.5. AZIONE TANGENTE DEL VENTO

L'azione tangente per unità di superficie parallela alla direzione del vento è data dall'espressione:

$$p_f = q_r c_e c_f$$
 [3.3.5]

dove

q_r è la pressione cinetica di riferimento di cui al § 3.3.6;

c_e è il coefficiente di esposizione di cui al § 3.3.7;

c_f è il coefficiente d'attrito di cui al § 3.3.8.

3.3.6. PRESSIONE CINETICA DI RIFERIMENTO

La pressione cinetica di riferimento q_r è data dall'espressione:

$$q_r = \frac{1}{2} \rho v_r^2$$
 [3.3.6]

dove

v_r è la velocità di riferimento del vento di cui al § 3.3.2;

ρ è la densità dell'aria assunta convenzionalmente costante e pari a 1,25 kg/m³.

Esprimendo ρ in kg/m³ e v_r in m/s, q_r risulta espresso in N/m².

3.3.7. COEFFICIENTE DI ESPOSIZIONE

Il coefficiente di esposizione c_e dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno e dalla categoria di esposizione del sito ove sorge la costruzione. In assenza di analisi specifiche che tengano in conto la direzione di provenienza del vento e l'effettiva scabrezza e topografia del terreno che circonda la costruzione, per altezze sul suolo non maggiori di z = 200 m, esso è dato dalla formula:

$$c_{e}(z) = k_{r}^{2}c_{t} \ln(z/z_{0}) [7 + c_{t} \ln(z/z_{0})] \quad \text{per } z \ge z_{\text{min}}$$

$$c_{e}(z) = c_{e}(z_{\text{min}}) \quad \text{per } z < z_{\text{min}}$$
[3.3.7]

dove

 k_{r} , $z_{0^{\prime}}$ z_{min} sono assegnati in Tab. 3.3.II in funzione della categoria di esposizione del sito ove sorge la costruzione;

c_t è il coefficiente di topografia.

Tab. 3.3.II - Parametri per la definizione del coefficiente di esposizione

Categoria di esposizione del sito	K _r	z ₀ [m]	z _{min} [m]
I	0,17	0,01	2
II	0,19	0,05	4
III	0,20	0,10	5
IV	0,22	0,30	8
V	0,23	0,70	12

La categoria di esposizione è assegnata nella Fig. 3.3.2 in funzione della posizione geografica del sito ove sorge la costruzione e della classe di rugosità del terreno definita in Tab. 3.3.III. Nelle fasce entro 40 km dalla costa, la categoria di esposizione è indipendente dall'altitudine del sito.

Il coefficiente di topografia c_t è posto generalmente pari a 1, sia per le zone pianeggianti sia per quelle ondulate, collinose e montane. In questo caso, la Fig. 3.3.3 riporta le leggi di variazione di c_e per le diverse categorie di esposizione.

Nel caso di costruzioni ubicate presso la sommità di colline o pendii isolati, il coefficiente di topografia c_t può essere ricavato da dati suffragati da opportuna documentazione.

Tab. 3.3.III - Classi di rugosità del terreno

Classe di rugosità del terreno Descrizione	
A	Aree urbane in cui almeno il 15% della superficie sia coperto da edifici la cui altezza media superi i 15 m
В	Aree urbane (non di classe A), suburbane, industriali e boschive
С	Aree con ostacoli diffusi (alberi, case, muri, recinzioni,); aree con rugosità non riconducibile alle classi A, B, D
D	a) Mare e relativa fascia costiera (entro 2 km dalla costa); b) Lago (con larghezza massima pari ad almeno 1 km) e relativa fascia costiera (entro 1 km dalla costa)
	 c) Aree prive di ostacoli o con al più rari ostacoli isolati (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate,)

L'assegnazione della classe di rugosità non dipende dalla conformazione orografica e topografica del terreno. Si può assumere che il sito appartenga alla Classe A o B, purché la costruzione si trovi nell'area relativa per non meno di 1 km e comunque per non meno di 20 volte l'altezza della costruzione, per tutti i settori di provenienza del vento ampi almeno 30°. Si deve assumere che il sito appartenga alla Classe D, qualora la costruzione sorga nelle aree indicate con le lettere a) o b), oppure entro un raggio di 1 km da essa vi sia un settore ampio 30°, dove il 90% del terreno sia del tipo indicato con la lettera c). Laddove sussistano dubbi sulla scelta della classe di rugosità, si deve assegnare la classe più sfavorevole (l'azione del vento è in genere minima in Classe A e massima in Classe D).

Fig. 3.3.2 - Definizione delle categorie di esposizione

Fig. 3.3.3 - Andamento del coefficiente di esposizione c_e in funzione dell'altezza sul suolo (per c_t = 1)

3.3.8. COEFFICIENTI AERODINAMICI

Il coefficiente di pressione c_P dipende dalla tipologia e dalla geometria della costruzione e dal suo orientamento rispetto alla direzione del vento.

Il coefficiente d'attrito ci dipende dalla scabrezza della superficie sulla quale il vento esercita l'azione tangente.

Entrambi questi coefficienti, definiti coefficienti aerodinamici, possono essere ricavati da dati suffragati da opportuna documentazione o da prove sperimentali in galleria del vento.

3.3.9. COEFFICIENTE DINAMICO

Il coefficiente dinamico tiene conto degli effetti riduttivi associati alla non contemporaneità delle massime pressioni locali e degli effetti amplificativi dovuti alla risposta dinamica della struttura.

Esso può essere assunto cautelativamente pari ad 1 nelle costruzioni di tipologia ricorrente, quali gli edifici di forma regolare non eccedenti 80 m di altezza ed i capannoni industriali, oppure può essere determinato mediante analisi specifiche o facendo riferimento a dati di comprovata affidabilità.

3.3.10. AVVERTENZE PROGETTUALI

Le azioni del vento sui ponti lunghi, sugli edifici alti e più in generale sulle costruzioni di grandi dimensioni o di forma non simmetrica, possono dare luogo a forze trasversali alla direzione del vento e a momenti torcenti di notevoli intensità. Tali azioni possono essere ulteriormente amplificate dalla risposta dinamica della struttura.

Agli ultimi piani degli edifici alti, le azioni del vento possono causare oscillazioni (soprattutto accelerazioni di piano) le cui conseguenze variano, nei riguardi degli occupanti, dalla non percezione sino al fastidio e, in alcuni casi, all'intollerabilità fisiologica.

Per strutture o elementi strutturali snelli di forma cilindrica, quali ciminiere, torri di telecomunicazioni o singoli elementi di carpenteria si deve tenere conto degli effetti dinamici indotti al distacco alternato dei vortici dal corpo investito dal vento. Tali effetti possono essere particolarmente severi quando la frequenza di distacco dei vortici uguaglia una frequenza propria della struttura, dando luogo a un fenomeno di risonanza. In questa situazione le vibrazioni sono tanto maggiori quanto più la struttura è leggera e poco smorzata. L'occorrenza di fenomeni di risonanza in corrispondenza di velocità del vento relativamente piccole e quindi frequenti richiede particolari attenzioni nei riguardi della fatica.

Per strutture particolarmente deformabili, leggere e poco smorzate, l'interazione del vento con la struttura può dare luogo ad azioni aeroelastiche, i cui effetti modificano le frequenze proprie e/o lo smorzamento della struttura sino a causare fenomeni di instabilità, fra i quali il galoppo, la divergenza torsionale ed il flutter. Il galoppo è tipico di cavi ghiacciati o percorsi da rivoli d'acqua, di elementi di carpenteria e più in generale di elementi strutturali di forma non circolare. La divergenza torsionale è tipica in generale di lastre molto sottili. Il flutter è tipico di ponti sospesi o strallati o di profili alari.

Per strutture o elementi strutturali ravvicinati e di analoga forma, ad esempio edifici alti, serbatoi, torri di refrigerazione, ponti, ciminiere, cavi, elementi di carpenteria e tubi, possono manifestarsi fenomeni di interferenza tali da modificare gli effetti che il vento causerebbe se agisse sulle stesse strutture o elementi strutturali isolati. Tali effetti possono incrementare le azioni statiche, dinamiche e aeroelastiche del vento in modo estremamente severo.

In tutti i casi sopra citati si raccomanda di fare ricorso a dati suffragati da opportuna documentazione, o ricavati per mezzo di metodi analitici, numerici e/o sperimentali adeguatamente comprovati.

3.4. AZIONI DELLA NEVE

3.4.1. CARICO DELLA NEVE SULLE COPERTURE

Il carico provocato dalla neve sulle coperture sarà valutato mediante la seguente espressione:

$$q_s = q_{sk} \cdot \mu_i \cdot C_E \cdot C_t$$
 [3.4]

dove:

q_{sk} è il valore di riferimento del carico della neve al suolo, di cui al § 3.4.2;

 μ_i è il coefficiente di forma della copertura, di cui al § 3.4.3;

 C_E è il coefficiente di esposizione di cui al § 3.4.4;

C_t è il coefficiente termico di cui al § 3.4.5.

Si assume che il carico della neve agisca in direzione verticale e lo si riferisce alla proiezione orizzontale della superficie della copertura.

3.4.2. VALORE DI RIFERIMENTO DEL CARICO DELLA NEVE AL SUOLO

Il carico della neve al suolo dipende dalle condizioni locali di clima e di esposizione, considerata la variabilità delle precipitazioni nevose da zona a zona.

In mancanza di adeguate indagini statistiche e specifici studi locali, che tengano conto sia dell'altezza del manto nevoso che della sua densità, il carico di riferimento della neve al suolo, per località poste a quota inferiore a 1500 m sul livello del mare, non dovrà essere assunto minore di quello calcolato in base alle espressioni riportate nel seguito, cui corrispondono valori associati ad un periodo di ritorno pari a 50 anni per le varie zone indicate nella Fig. 3.4.1. Tale zonazione non tiene conto di aspetti specifici e locali che, se necessario, devono essere definiti singolarmente.

Fig. 3.4.1 – Zone di carico della neve

Nelle espressioni seguenti, l'altitudine di riferimento a_s (espressa in m) è la quota del suolo sul livello del mare nel sito dove è realizzata la costruzione.

Zona I - Alpina

Aosta, Belluno, Bergamo, Biella, Bolzano, Brescia, Como, Cuneo, Lecco, Pordenone, Sondrio, Torino, Trento, Udine, Verbano-Cusio-Ossola, Vercelli, Vicenza:

$$q_{sk} = 1,50 \text{ kN/m}^2 \qquad \qquad a_s \le 200 \text{ m}$$

$$q_{sk} = 1,39 \left[1 + (a_s/728)^2\right] \text{ kN/m}^2 \qquad \qquad a_s > 200 \text{ m}$$

Zona I - Mediterranea

Alessandria, Ancona, Asti, Bologna, Cremona, Forlì-Cesena, Lodi, Milano, Modena, Monza Brianza, Novara, Parma, Pavia, Pesaro e Urbino, Piacenza, Ravenna, Reggio Emilia, Rimini, Treviso, Varese:

$$q_{sk} = 1,50 \text{ kN/m}^2$$

$$a_s \le 200 \text{ m}$$

$$q_{sk} = 1,35 \left[1 + (a_s/602)^2\right] \text{ kN/m}^2$$

$$a_s > 200 \text{ m}$$

Zona II

Arezzo, Ascoli Piceno, Avellino, Bari, Barletta-Andria-Trani, Benevento, Campobasso, Chieti, Fermo, Ferrara, Firenze, Foggia, Frosinone, Genova, Gorizia, Imperia, Isernia, L'Aquila, La Spezia, Lucca, Macerata, Mantova, Massa Carrara, Padova, Perugia, Pescara, Pistoia, Prato, Rieti, Rovigo, Savona, Teramo, Trieste, Venezia, Verona:

$$q_{sk} = 1,00 \; kN/m^2 \qquad \qquad a_s \le 200 \; m$$

$$[3.4.4]$$

$$q_{sk} = 0,85 \; [1 + (a_s/481)^2] \; kN/m^2 \qquad \qquad a_s > 200 \; m$$

Zona III

Agrigento, Brindisi, Cagliari, Caltanissetta, Carbonia-Iglesias, Caserta, Catania, Catanzaro, Cosenza, Crotone, Enna, Grosseto, Latina, Lecce, Livorno, Matera, Medio Campidano, Messina, Napoli, Nuoro, Ogliastra, Olbia-Tempio, Oristano, Palermo, Pisa, Potenza, Ragusa, Reggio Calabria, Roma, Salerno, Sassari, Siena, Siracusa, Taranto, Terni, Trapani, Vibo Valentia, Viterbo:

$$q_{sk} = 0.60 \ kN/m^2 \qquad \qquad a_s \le 200 \ m$$

$$[3.4.5]$$

$$q_{sk} = 0.51 \ [1 + (a_s/481)^2] \ kN/m^2 \qquad \qquad a_s > 200 \ m$$

Per altitudini superiori a 1500 m sul livello del mare si deve fare riferimento alle condizioni locali di clima e di esposizione utilizzando comunque valori di carico neve non inferiori a quelli previsti per 1500 m.

Per un'opera di nuova realizzazione in fase di costruzione o per le fasi transitorie relative ad interventi sulle costruzioni esistenti, il periodo di ritorno dell'azione può essere ridotto come di seguito specificato:

- per fasi di costruzione o fasi transitorie con durata prevista in sede di progetto non superiore a tre mesi, si assumerà T_R ≥ 5 anni;
- per fasi di costruzione o fasi transitorie con durata prevista in sede di progetto compresa fra tre mesi d un anno, si assumerà $T_R \ge 10$ anni.

3.4.3. COEFFICIENTE DI FORMA DELLE COPERTURE

3.4.3.1 GENERALITÀ

I coefficienti di forma delle coperture dipendono dalla forma stessa della copertura e dall'inclinazione sull'orizzontale delle sue parti componenti e dalle condizioni climatiche locali del sito ove sorge la costruzione.

In assenza di dati suffragati da opportuna documentazione, i valori nominali del coefficiente di forma μ_1 delle coperture ad una o a due falde possono essere ricavati dalla Tab. 3.4.II, essendo α , espresso in gradi sessagesimali, l'angolo formato dalla falda con l'orizzontale.

Tab. 3.4.II – Valori del coefficiente di forma

Coefficiente di forma	0°≤ α ≤ 30°	30° < α < 60°	α≥60°
μ1	0,8	$0.8 \cdot \frac{(60 - \alpha)}{30}$	0,0

Si assume che alla neve non sia impedito di scivolare. Se l'estremità più bassa della falda termina con un parapetto, una barriera od altre ostruzioni, allora il coefficiente di forma non potrà essere assunto inferiore a 0.8 indipendentemente dall'angolo α .

Per coperture a più falde, per coperture con forme diverse, così come per coperture contigue a edifici più alti o per accumulo di neve contro parapetti o più in generale per altre situazioni ritenute significative dal progettista si deve fare riferimento a normative o documenti di comprovata validità.

3.4.3.2 COPERTURA AD UNA FALDA

Nel caso delle coperture ad una falda, si deve considerare la condizione di carico riportata in Fig. 3.4.2.

Fig. 3.4.2 - Condizioni di carico per coperture ad una falda

3.4.3.3 COPERTURA A DUE FALDE

Nel caso delle coperture a due falde, si devono considerare le tre condizioni di carico alternative, denominate Caso I, Caso II e Caso III in Fig. 3.4.3.

Fig. 3.4.3 - Condizioni di carico per coperture a due falde

3.4.4. COEFFICIENTE DI ESPOSIZIONE

Il coefficiente di esposizione C_E tiene conto delle caratteristiche specifiche dell'area in cui sorge l'opera. Valori consigliati di questo coefficiente sono forniti in Tab. 3.4.I per diverse classi di esposizione. Se non diversamente indicato, si assumerà $C_E = 1$.

Tab. 3.4.I – Valori di C_E per diverse classi di esposizione

-		
Topografia	Descrizione	C _E
Battuta dai venti	Aree pianeggianti non ostruite esposte su tutti i lati, senza costruzioni o alberi più alti	0,9
Normale	Aree in cui non è presente una significativa rimozione di neve sulla costruzione prodotta dal vento, a causa del terreno, altre costruzioni o alberi	1,0
Riparata	Aree in cui la costruzione considerata è sensibilmente più bassa del circostante terreno o circondata da costruzioni o alberi più alti	1,1

3.4.5. COEFFICIENTE TERMICO

Il coefficiente termico tiene conto della riduzione del carico della neve, a causa dello scioglimento della stessa, causata dalla perdita di calore della costruzione. Tale coefficiente dipende dalle proprietà di isolamento termico del materiale utilizzato in copertura. In assenza di uno specifico e documentato studio, deve essere posto $C_t = 1$.

3.5. AZIONI DELLA TEMPERATURA

3.5.1. GENERALITÀ

Variazioni giornaliere e stagionali della temperatura esterna, irraggiamento solare e convezione comportano variazioni della distribuzione di temperatura nei singoli elementi strutturali.

La severità delle azioni termiche è in generale influenzata da più fattori, quali le condizioni climatiche del sito, l'esposizione, la massa complessiva della struttura e la eventuale presenza di elementi non strutturali isolanti.

3.5.2. TEMPERATURA DELL'ARIA ESTERNA

La temperatura dell'aria esterna, $T_{est'}$ può assumere il valore T_{max} o T_{min} , definite rispettivamente come temperatura massima estiva e minima invernale dell'aria nel sito della costruzione, con riferimento ad un periodo di ritorno di 50 anni.

Per un'opera di nuova realizzazione in fase di costruzione o per le fasi transitorie relative ad interventi sulle costruzioni esistenti, il periodo di ritorno dell'azione potrà essere ridotto come di seguito specificato:

- per fasi di costruzione o fasi transitorie con durata prevista in sede di progetto non superiore a tre mesi, si assumerà TR ≥ 5 anni:
- per fasi di costruzione o fasi transitorie con durata prevista in sede di progetto compresa fra tre mesi d un anno, si assumerà T_R ≥ 10 anni;

In mancanza di adeguate indagini statistiche basate su dati specifici relativi al sito in esame, T_{max} o T_{min} dovranno essere calcolati in base alle espressioni riportate nel seguito, per le varie zone indicate nella Fig. 3.5.1. Tale zonazione non tiene conto di aspetti specifici e locali che, se necessario, dovranno essere definiti singolarmente.

Fig. 3.5.1 – Zone della temperatura dell'aria esterna.

Nelle espressioni seguenti, T_{max} o T_{min} sono espressi in °C; l'altitudine di riferimento a_s (espressa in m) è la quota del suolo sul livello del mare nel sito dove è realizzata la costruzione.

Zona I

Valle d'Aosta, Piemonte, Lombardia, Trentino-Alto Adige, Veneto, Friuli-Venezia Giulia, Emilia Romagna:

$T_{\min} = -15 - 4 \cdot a_s / 1000$	[3.5.1]
$T_{max} = 42 - 6 \cdot a_s / 1000$	[3.5.2]

Zona II

Liguria, Toscana, Umbria, Lazio, Sardegna, Campania, Basilicata:

$$T_{min} = -8 - 6 \cdot a_s / 1000$$
 [3.5.3]
 $T_{max} = 42 - 2 \cdot a_s / 1000$ [3.5.4]

Zona III

Marche, Abruzzo, Molise, Puglia:

$$T_{min} = -8 - 7 \cdot a_s / 1000$$
 [3.5.5]
 $T_{max} = 42 - 0.3 \cdot a_s / 1000$ [3.5.6]

Zona IV

Calabria, Sicilia:

$$T_{\min} = -2 - 9 \cdot a_s / 1000$$
 [3.5.7]
 $T_{\max} = 42 - 2 \cdot a_s / 1000$ [3.5.8]

3.5.3. TEMPERATURA DELL'ARIA INTERNA

In mancanza di più precise valutazioni, legate alla tipologia della costruzione ed alla sua destinazione d'uso, la temperatura dell'aria interna, T_{int} , può essere assunta pari a 20 °C.

3.5.4. DISTRIBUZIONE DELLA TEMPERATURA NEGLI ELEMENTI STRUTTURALI

Il campo di temperatura sulla sezione di un elemento strutturale monodimensionale con asse longitudinale x può essere in generale descritto mediante:

- a) la componente uniforme $\Delta T_u = T T_0$ pari alla differenza tra la temperatura media attuale T e quella iniziale alla data della costruzione T_0 ;
- b) le componenti variabili con legge lineare secondo gli assi principali y e z della sezione, ΔT_{My} e ΔT_{Mz} .

Nel caso di strutture soggette ad elevati gradienti termici si dovrà tener conto degli effetti indotti dall'andamento non lineare della temperatura all'interno delle sezioni.

La temperatura media attuale T può essere valutata come media tra la temperatura della superficie esterna $T_{\text{sup,est}}$ e quella della superficie interna dell'elemento considerato, $T_{\text{sup,int}}$.

Le temperature della superficie esterna, $T_{sup,est}$ e quella della superficie interna $T_{sup,int}$ dell'elemento considerato vengono valutate a partire dalla temperatura dell'aria esterna, T_{est} e di quella interna, T_{int} tenendo conto del trasferimento di calore per irraggiamento e per convezione all'interfaccia aria-costruzione e della eventuale presenza di materiale isolante (vedi Fig. 3.5.2).

In mancanza di determinazioni più precise, la temperatura iniziale può essere assunta T_0 =15 °C.

Per la valutazione del contributo dell'irraggiamento solare si può fare riferimento alla Tab. 3.5.I.

Fig. 3.5.2 - Andamento della temperatura all'interno di un elemento strutturale

Tab. 3.5.I - Contributo dell'irraggiamento solare

	88			
Stagione	Natura della superficie	Incremento di Temperatura		
		superfici esposte a Nord-Est	superfici esposte a Sud-Ovest od orizzontali	
Estate	Superficie riflettente	0 ℃	18 °C	
	Superficie chiara	2 °C	30 °C	
	Superficie scura	4 °C	42 °C	
Inverno		0 °C	0 °C	

3.5.5. AZIONI TERMICHE SUGLI EDIFICI

Nel caso in cui la temperatura non costituisca azione fondamentale per la sicurezza o per la efficienza funzionale della struttura è consentito tener conto, per gli edifici, della sola componente ΔT_u , ricavandola direttamente dalla Tab. 3.5.II.

Nel caso in cui la temperatura costituisca, invece, azione fondamentale per la sicurezza o per la efficienza funzionale della struttura, l'andamento della temperatura T nelle sezioni degli elementi strutturali deve essere valutato più approfonditamente studiando il problema della trasmissione del calore.

 $\textbf{Tab. 3.5.II} - Valori\ di\ \Delta T_{u}\ per\ gli\ edifici$

Tipo di struttura	$\Delta T_{\rm u}$
Strutture in c.a. e c.a.p. esposte	± 15 °C
Strutture in c.a. e c.a.p. protette	± 10 °C
Strutture in acciaio esposte	± 25 °C
Strutture in acciaio protette	± 15 °C

3.5.6. PARTICOLARI PRECAUZIONI NEL PROGETTO DI STRUTTURE SOGGETTE AD AZIONI TERMICHE SPECIALI

Strutture ed elementi strutturali in contatto con liquidi, aeriformi o solidi a temperature diverse, quali ciminiere, tubazioni, sili, serbatoi, torri di raffreddamento, ecc., devono essere progettati tenendo conto delle distribuzioni di temperatura corrispondenti alle specifiche condizioni di servizio.

3.5.7. EFFETTI DELLE AZIONI TERMICHE

Per la valutazione degli effetti delle azioni termiche, si può fare riferimento ai coefficienti di dilatazione termica a temperatura ambiente α_T riportati in Tab. 3.5.III.

Tab. 3.5.III - Coefficienti di dilatazione termica a temperatura ambiente

Materiale	α _T [10 ⁻⁶ /°C]	
Alluminio	24	
Acciaio da carpenteria	12	
Calcestruzzo strutturale	10	
Strutture miste acciaio-calcestruzzo	12	
Calcestruzzo alleggerito	7	
Muratura	6 ÷ 10	
Legno (parallelo alle fibre)	5	
Legno (ortogonale alle fibre)	30 ÷ 70	

3.6. AZIONI ECCEZIONALI

Le azioni eccezionali sono quelle che si presentano in occasione di eventi quali incendi, esplosioni ed urti.

E' opportuno che le costruzioni possiedano un grado adeguato di robustezza, in funzione dell'uso previsto della costruzione, individuando gli scenari di rischio e le azioni eccezionali rilevanti ai fini della sua progettazione, secondo quanto indicato al § 2.2.5.

Per le costruzioni in cui sia necessario limitare il rischio d'incendio per la salvaguardia dell'individuo e della collettività, nonché delle proprietà limitrofe e dei beni direttamente esposti al fuoco, devono essere eseguite verifiche specifiche del livello di prestazione strutturale antincendio.

Le strutture devono essere altresì verificate nei confronti delle esplosioni e degli urti per verosimili scenari di rischio o su richiesta del committente.

Le azioni eccezionali considerate nel progetto saranno combinate con le altre azioni mediante la regola di combinazione eccezionale di cui al § 2.5.3.

3.6.1. INCENDIO

3.6.1.1 DEFINIZIONI

Per incendio, si intende la combustione autoalimentata ed incontrollata di materiali combustibili presenti in un compartimento.

Ai fini della presente norma si fa riferimento ad un *incendio convenzionale di progetto* definito attraverso una *curva di incendio* che rappresenta l'andamento, in funzione del tempo, della temperatura media dei gas di combustione nell'intorno della superficie degli elementi strutturali.

La curva di incendio di progetto può essere:

nominale: curva adottata per la classificazione delle costruzioni e per le verifiche di resistenza al fuoco di tipo convenzionale;

naturale: curva determinata in base a modelli d'incendio e a parametri fisici che definiscono le variabili di stato all'interno del compartimento.

La capacità di compartimentazione in caso di incendio è l'attitudine di un elemento costruttivo a conservare, sotto l'azione del fuoco, oltre alla propria stabilità, un sufficiente isolamento termico ed una sufficiente tenuta ai fumi ed ai gas caldi della combustione, nonché tutte le altre prestazioni se richieste.

La capacità portante in caso di incendio è l'attitudine di una struttura, di una parte della struttura o di un elemento strutturale a conservare una sufficiente resistenza meccanica sotto l'azione del fuoco con riferimento alle altre azioni agenti.

La *resistenza al fuoco* riguarda la capacità portante in caso di incendio per una struttura, per una parte della struttura o per un elemento strutturale nonché la capacità di compartimentazione rispetto all'incendio per gli elementi di separazione sia strutturali, come muri e solai, sia non strutturali , come porte e tramezzi.

Per *compartimento antincendio* si intende una parte della costruzione delimitata da elementi costruttivi idonei a garantire, sotto l'azione del fuoco e per un dato intervallo di tempo, la capacità di compartimentazione.

Per carico di incendio si intende il potenziale termico netto della totalità dei materiali combustibili contenuti in uno spazio, corretto in base ai parametri indicativi della partecipazione alla combustione dei singoli materiali.

Per carico d'incendio specifico si intende il carico di incendio riferito all'unità di superficie lorda.

Per carico di incendio specifico di progetto si intende il carico di incendio specifico corretto in base ai parametri indicatori del rischio di incendio del compartimento e dei fattori relativi alle misure di protezione presenti.

I valori del carico d'incendio specifico di progetto ($q_{f,d}$) sono determinati mediante la relazione:

$$q_{f,d} = q_f \cdot \delta_{q1} \cdot \delta_{q2} \cdot \delta_n \tag{3.6.1}$$

 $\begin{array}{lll} \mbox{dove:} \\ q_f & \mbox{\dot{e} il valore nominale del carico d'incendio [MJ/m^2].} \\ \delta_{q1} \geq 1,00 & \mbox{\dot{e} un fattore che tiene conto del rischio di incendio in relazione alla superficie del compartimento} \\ \delta_{q2} \geq 0,80 & \mbox{\dot{e} un fattore che tiene conto del rischio di incendio in relazione al tipo di attività svolta nel compartimento} \\ \delta_n = \prod_{i=1}^{10} \delta_{ni} \geq 0,20 & \mbox{\dot{e} un fattore che tiene conto delle differenti misure di protezione dall'incendio (sistemi automatici di estinzione, rivelatori, rete idranti, squadre antincendio, ecc.)} \\ \end{array}$

Qualora nel compartimento siano presenti elevate dissimmetrie nella distribuzione dei materiali combustibili il valore nominale q_f del carico d'incendio è calcolato anche con riferimento all'effettiva distribuzione dello stesso. Per distribuzioni molto concentrate del materiale combustibile si può fare riferimento all'incendio localizzato, valutando, in ogni caso, se si hanno le condizioni per lo sviluppo di un incendio generalizzato. Le indicazioni per il calcolo del carico di incendio specifico di progetto sono fornite nel decreto del Ministro dell'Interno 9 marzo 2007 e ss.mm.ii.

Per *incendio localizzato* deve intendersi un focolaio d'incendio che interessa una zona limitata del compartimento antincendio, con sviluppo di calore concentrato in prossimità degli elementi strutturali posti superiormente al focolaio o immediatamente adiacenti

Nel caso di presenza di elementi strutturali lignei è possibile considerare solo una quota parte del loro contributo alla determinazione del carico di incendio, da definire con riferimento a riconosciute normative o documenti di comprovata validità.

3.6.1.2 RICHIESTE DI PRESTAZIONE

Le prestazioni richieste alle strutture di una costruzione, in funzione degli obiettivi definiti al § 2.2.3, sono individuate in termini di livello nella Tab. 3.5.IV.

Tab. 3.5.IV - Livelli di prestazione in caso di incendi

Livello I	Nessun requisito specifico di resistenza al fuoco dove le conseguenze del collas- so delle strutture siano accettabili o dove il rischio di incendio sia trascurabile;
Livello II	Mantenimento dei requisiti di resistenza al fuoco delle strutture per un periodo sufficiente a garantire l'evacuazione degli occupanti in luogo sicuro all'esterno della costruzione;
Livello III	Mantenimento dei requisiti di resistenza al fuoco delle strutture per un periodo congruo con la gestione dell'emergenza;
Livello IV	Requisiti di resistenza al fuoco delle strutture per garantire, dopo la fine dell'incendio, un limitato danneggiamento delle strutture stesse;
Livello V	Requisiti di resistenza al fuoco delle strutture per garantire, dopo la fine dell'incendio, il mantenimento della totale funzionalità delle strutture stesse.

I livelli di prestazione comportano classi di resistenza al fuoco, da stabilire per i diversi tipi di costruzioni. In particolare, per le costruzioni nelle quali si svolgono attività soggette al controllo del Corpo Nazionale dei Vigili del Fuoco, oppure disciplinate da specifiche regole tecniche di prevenzione incendi, i livelli di prestazione e le connesse classi di resistenza al fuoco sono stabiliti dalle disposizioni emanate dal Ministero dell'Interno ai sensi del D. Lgs. 8 marzo 2006, n. 139 e successive modificazioni e integrazioni.

I livelli di prestazione e le connesse classi di resistenza al fuoco sono individuati in relazione alla destinazione d'uso dell'edificio, al tipo e al quantitativo di materiale combustibile in esso presente, alla sua estensione/altezza, al massimo affollamento ipotizzabile e alle misure di protezione antincendio presenti nell'opera.

3.6.1.3 CLASSI DI RESISTENZA AL FUOCO

Le *classi* di resistenza al fuoco sono: 15, 20, 30, 45, 60, 90, 120, 180, 240 e 360; esse esprimono il tempo, in minuti primi, durante il quale la resistenza al fuoco deve essere garantita.

Le classi di resistenza al fuoco sono riferite all'incendio convenzionale rappresentato dalle curve di incendio nominali.

3.6.1.4 CRITERI DI PROGETTAZIONE

La progettazione delle strutture in condizioni di incendio deve garantire il raggiungimento delle prestazioni indicate al § 3.6.1.2. La sicurezza del sistema strutturale in caso di incendio si determina sulla base della resistenza al fuoco dei singoli elementi strutturali, di porzioni di struttura o dell'intero sistema costruttivo.

3.6.1.5 PROCEDURA DI ANALISI DELLA RESISTENZA AL FUOCO

L'analisi della resistenza al fuoco può essere così articolata:

- individuazione dell'incendio di progetto appropriato alla costruzione in esame;
- analisi della evoluzione della temperatura all'interno degli elementi strutturali;
- analisi del comportamento meccanico delle strutture esposte al fuoco;
- verifiche di sicurezza.

3.6.1.5.1 Incendio di progetto

Secondo l'incendio convenzionale di progetto adottato, l'andamento delle temperature viene valutato con riferimento a una delle due seguenti condizioni:

- curva nominale d'incendio, da individuare tra quelle indicate successivamente, per l'intervallo di tempo di esposizione pari alla classe di resistenza al fuoco prevista, senza alcuna fase di raffreddamento,
- curva naturale d'incendio, da individuare tenendo conto dell'intera durata dello stesso, compresa la fase di raffreddamento fino al ritorno alla temperatura ambiente.

Nel caso di incendio di materiali combustibili prevalentemente di natura cellulosica, la curva di incendio nominale di riferimento è la curva di incendio nominale standard definita come segue:

$$\theta_{g} = 20 + 345 \log_{10} (8t + 1) [^{\circ}C]$$
 [3.6.2]

dove θ_g è la temperatura dei gas caldi, espressa in °C, e t è il tempo espresso in minuti primi.

Nel caso di incendi di quantità rilevanti di idrocarburi o altre sostanze con equivalente velocità di rilascio termico, la curva di incendio nominale standard può essere sostituita con la *curva nominale degli idrocarburi* seguente:

$$\theta_g = 1080 (1 - 0.325 \cdot e^{-0.167t} - 0.675 \cdot e^{-2.5t}) + 20 [\degree C]$$
 [3.6.3]

Nel caso di incendi sviluppatisi all'interno del compartimento, ma che coinvolgono strutture poste all'esterno, per queste ultime la curva di incendio nominale standard può essere sostituita con la *curva nominale esterna* seguente:

$$\theta_g = 660 (1 - 0.687 \cdot e^{-0.32t} - 0.313 \cdot e^{-3.8t}) + 20 [\circ C]$$
 [3.6.4]

Gli incendi convenzionali di progetto vengono generalmente applicati ad un compartimento dell'edificio alla volta.

Sono ammesse altresì specifiche curve nominali, per descrivere particolari scenari di incendio (tunnel curve, slow heating curve, ecc.), purché di comprovata validità.

3.6.1.5.2 Analisi dell'evoluzione della temperatura

Il campo termico all'interno dei componenti della struttura viene valutato risolvendo il corrispondente problema di propagazione del calore, tenendo conto del trasferimento di calore per irraggiamento e convezione dai gas di combustione alla superficie esterna degli elementi e considerando l'eventuale presenza di materiali protettivi.

3.6.1.5.3 Analisi del comportamento meccanico

Il comportamento meccanico della struttura viene analizzato tenendo conto della riduzione della resistenza meccanica dei componenti dovuta al danneggiamento dei materiali per effetto dell'aumento di temperatura.

L'analisi del comportamento meccanico deve essere effettuata per lo stesso periodo di tempo impiegato nell'analisi dell'evoluzione della temperatura.

Si deve tener conto della presenza delle azioni permanenti e di quelle azioni variabili che agiscono contemporaneamente all'incendio secondo la combinazione eccezionale.

Non si prende in considerazione la possibilità di concomitanza dell'incendio con altre azioni eccezionali e con le azioni sismiche.

Si deve tener conto, ove necessario, degli effetti delle sollecitazioni indirette dovute alle dilatazioni termiche contrastate, ad eccezione dei seguenti casi:

- è riconoscibile a priori che esse sono trascurabili o favorevoli;
- sono implicitamente tenute in conto nei modelli semplificati e conservativi di comportamento strutturale in condizioni di incendio

Le sollecitazioni indirette, dovute agli elementi strutturali adiacenti a quello preso in esame, possono essere trascurate quando i requisiti di sicurezza all'incendio sono valutati in riferimento alla curva nominale d'incendio e alle classi di resistenza al fuoco.

3.6.1.5.4 Verifiche di sicurezza

La verifica della resistenza al fuoco viene eseguita controllando che la resistenza meccanica venga mantenuta per il tempo corrispondente alla classe di resistenza al fuoco della struttura con riferimento alla curva nominale di incendio.

Nel caso in cui si faccia riferimento a una curva naturale d'incendio, le analisi e le verifiche devono essere estese all'intera durata dell'incendio, inclusa la fase di raffreddamento.

Fermo restando il rispetto delle disposizioni legislative emanate ai sensi del D.Lgs. 139/2006, nel caso in cui i requisiti di resistenza al fuoco delle strutture debbano essere mantenuti per un periodo limitato (ad esempio, livello di prestazione II di Tab. 3.5.IV), la verifica della capacità portante delle strutture potrà essere limitata a un tempo di esposizione all'incendio naturale congruente con il livello di prestazione scelto.

3.6.2. ESPLOSIONI

3.6.2.1 GENERALITÀ

Gli effetti delle esplosioni possono essere tenuti in conto nella progettazione di quelle costruzioni in cui possono presentarsi miscele esplosive di polveri o gas in aria o in cui sono contenuti materiali esplosivi.

Sono escluse da questo capitolo le azioni derivanti da esplosioni che si verificano all'esterno della costruzione.

3.6.2.2 CLASSIFICAZIONE DELLE AZIONI DOVUTE ALLE ESPLOSIONI

Le azioni di progetto dovute alle esplosioni sono classificate, sulla base degli effetti che possono produrre sulle costruzioni, in tre categorie, come indicate in Tab. 3.6.I.

Tab. 3.6.I - Categorie di azione dovute alle esplosioni

Categoria di azione	Possibili effetti
1	Effetti trascurabili sulle strutture
2	Effetti localizzati su parte delle strutture
3	Effetti generalizzati sulle strutture

3.6.2.3 MODELLAZIONE DELLE AZIONI DOVUTE ALLE ESPLOSIONI

Le esplosioni esercitano sulle costruzioni onde di pressione. Per le costruzioni usuali, è ammesso che tali onde di pressione siano convenzionalmente ricondotte a distribuzioni di pressioni statiche equivalenti, purché comprovate da modelli teorici adeguati.

Per esplosioni di Categoria 1 non è richiesto alcun tipo di verifica.

Per esplosioni di Categoria 2, ove negli ambienti a rischio di esplosione siano presenti idonei pannelli di sfogo, si può utilizzare la pressione statica equivalente nominale, espressa in kN/m^2 , data dal valore maggiore fra quelli forniti dalle espressioni:

$$p_d = 3 + p_v$$
 [3.6.5a]
 $p_d = 3 + p_v / 2 + 0.04 / (A_v / V)^2$ [3.6.5b]

dove:

 p_v è la pressione statica uniformemente distribuita in corrispondenza della quale le aperture di sfogo cedono, in kN/m^2

A_v è l'area delle aperture di sfogo, in m²

V è il volume dell'ambiente, in m³

Il rapporto fra l'area dei componenti di sfogo e il volume da proteggere deve soddisfare la relazione:

$$0.05 \text{ m}^{-1} \le A_v / V \le 0.15 \text{ m}^{-1}$$
. [3.6.6]

Queste espressioni sono valide in ambienti o in zone di edifici il cui volume totale non superi 1.000 m³.

La pressione dovuta all'esplosione è intesa agire simultaneamente su tutte le pareti dell'ambiente o del gruppo di ambienti considerati.

Comunque, tutti gli elementi chiave e le loro connessioni devono essere progettati per sopportare una pressione statica equivalente con valore di progetto p_d = 20 kN/m², applicata da ogni direzione, insieme con la reazione che ci si attende venga trasmessa direttamente alle membrature dell'elemento chiave da ogni elemento costruttivo, ad esso collegato, altresì soggetto alla stessa pressione.

Per esplosioni di Categoria 3 devono essere effettuati studi più approfonditi.

3.6.2.4 CRITERI DI PROGETTAZIONE

Sono considerati accettabili i danneggiamenti localizzati, anche gravi, dovuti ad esplosioni, a condizione che ciò non esponga al pericolo l'intera struttura o che la capacità portante sia mantenuta per un tempo sufficiente affinché siano prese le necessarie misure di emergenza.

Possono essere adottate, nella progettazione, opportune misure di protezione quali:

- la introduzione di superfici in grado di collassare sotto sovrappressioni prestabilite;
- la introduzione di giunti strutturali allo scopo di separare porzioni di edificio a rischio di esplosione da altre;
- la prevenzione di crolli significativi in conseguenza di cedimenti strutturali localizzati.

3.6.3. URTI

3.6.3.1 GENERALITÀ

Nel seguito vengono definite le azioni dovute a:

- urti da traffico veicolare;
- urti da traffico ferroviario;
- urti da imbarcazioni ed aeromobili.

Non vengono prese in esame le azioni eccezionali dovute a fenomeni naturali, come la caduta di rocce, le frane o le valanghe.

3.6.3.2 CLASSIFICAZIONE DELLE AZIONI DOVUTE AGLI URTI

Le azioni di progetto dovute agli urti sono classificate, sulla base degli effetti che possono produrre sulle costruzioni, in tre categorie, come indicato nella Tab. 3.6.II.

Tab. 3.6.II - Categorie di azione

Categoria di azione	Possibili effetti
1	Effetti trascurabili sulle strutture
2	Effetti localizzati su parte delle strutture
3	Effetti generalizzati sulle strutture

Le azioni dovute agli urti devono essere applicate a quegli elementi strutturali, o ai loro sistemi di protezione, per i quali le relative conseguenze appartengono alle categorie 2 e 3.

3.6.3.3 URTI DA TRAFFICO VEICOLARE

3.6.3.3.1 Traffico veicolare sotto ponti o altre strutture

Le azioni da urto hanno direzione parallela a quella del moto del veicolo al momento dell'impatto. Nelle verifiche si possono considerare, non simultaneamente, due azioni nelle direzioni parallela $(F_{d,x})$ e ortogonale $(F_{d,y})$ alla direzione di marcia normale, con

$$F_{d,y} = 0.50F_{d,x}$$
 [3.6.7]

In assenza di determinazioni più accurate e trascurando la capacità dissipativa della struttura, si possono adottare le forze statiche equivalenti riportate in Tab. 3.6.III.

Tab. 3.6.III – Forze statiche equivalenti agli urti di veicoli

Tipo di strada	Tipo di veicolo	Forza F _{d,x} [kN]
Autostrade, strade extraurbane	-	1000
Strade locali	1	750
Strade urbane	-	500
A d:d	Automobili	50
Aree di parcheggio e autorimesse	Veicoli destinati al trasporto di merci, aventi massa massima superiore a 3,5 t	150

Per urti di automobili su membrature verticali, la forza risultante di collisione F deve essere applicata sulla struttura 0,5 m al di sopra della superficie di marcia. L'area di applicazione della forza è pari a 0,25 m (in altezza) per il valore più piccolo tra 1,50 m e la larghezza della membratura (in larghezza).

Per urti sulle membrature verticali, la forza risultante di collisione F deve essere applicata sulla struttura 1,25 m al di sopra della superficie di marcia. L'area di applicazione della forza è pari a 0,5 m (in altezza) per il valore più piccolo tra 1,50 m e la larghezza della membratura (in larghezza).

Nel caso di urti su elementi strutturali orizzontali al di sopra della strada, la forza risultante di collisione F da utilizzare per le verifiche dell'equilibrio statico o della resistenza o della capacità di deformazione degli elementi strutturali è data da:

$$F = r F_{d,x}$$
 [3.6.8]

dove il fattore r è pari ad 1,0 per altezze del sottovia fino a 5 m, decresce linearmente da 1,0 a 0 per altezze comprese fra 5 e 6 m ed è pari a 0 per altezze superiori a 6 m. La forza F è applicata sulle superfici verticali (prospetto dell'elemento strutturale).

Sull'intradosso dell'elemento strutturale si devono considerare gli stessi carichi da urto F di cui sopra, con un'inclinazione rispetto all'orizzontale di 10° verso l'alto.

L'area di applicazione della forza è assunta pari a 0,25 per 0,25 m.

Nelle costruzioni dove sono presenti con regolarità carrelli elevatori si può considerare equivalente agli urti accidentali un'azione orizzontale statica, applicata all'altezza di 0,75 m dal piano di calpestio, pari a

$$F = 5 W$$
 [3.6.9]

essendo W il peso complessivo del carrello elevatore e del massimo carico trasportabile.

3.6.3.3.2 Traffico veicolare sopra i ponti

In assenza di specifiche prescrizioni, nel progetto strutturale dei ponti si può tener conto delle forze causate da collisioni accidentali sugli elementi di sicurezza attraverso una forza orizzontale equivalente di collisione pari a 100 kN. Essa rappresenta l'effetto dell'impatto da trasmettere ai vincoli e deve essere considerata agente trasversalmente ed orizzontalmente 100 mm sotto la sommità dell'elemento o 1,0 m sopra il livello del piano di marcia, a seconda di quale valore sia più piccolo.

Le azioni da considerare nelle verifiche locali dell'impalcato dovranno essere definite in accordo al § 5.1.3.10.

Le forze di collisione da veicoli sugli elementi strutturali eventualmente presenti al disopra del livello di carreggiata sono quelle specificate nel § 3.6.3.3.1

3.6.3.4 URTI DA TRAFFICO FERROVIARIO

Al verificarsi di un deragliamento può esservi il rischio di collisione fra i veicoli deragliati e le strutture adiacenti la ferrovia. Queste ultime dovranno essere progettate in modo da resistere alle azioni conseguenti ad una tale evenienza.

Dette azioni devono determinarsi sulla base di una specifica analisi di rischio, tenendo conto della presenza di eventuali elementi protettivi o sacrificali (respingenti) oppure di condizioni di impianto che possano ridurre il rischio di accadimento dell'evento (marciapiedi, controrotaie, ecc.). Queste azioni non si applicano sui sostegni di tettoie o di pensiline di impianti ferroviari.

In mancanza di specifiche analisi di rischio possono assumersi le seguenti azioni statiche equivalenti, in funzione della distanza d degli elementi esposti dall'asse del binario:

- per d ≤ 5 m:
 - 4000 kN in direzione parallela alla direzione di marcia dei convogli ferroviari;
 - 1500 kN in direzione perpendicolare alla direzione di marcia dei convogli ferroviari;
- per 5 m < $d \le 15$ m:
 - 2000 kN in direzione parallela alla direzione di marcia dei convogli ferroviari;
 - 750 kN in direzione perpendicolare alla direzione di marcia dei convogli ferroviari;
- per d > 15 m pari a zero in entrambe le direzioni.

Queste forze dovranno essere applicate a 1,80 m dal piano del ferro e non dovranno essere considerate agenti simultaneamente.

3.6.3.5 URTI DI IMBARCAZIONI ED AEROMOBILI

Le azioni derivanti da urti di imbarcazioni ed aeromobili vanno valutate sulla base delle indicazioni riportate in documenti di comprovata validità, di cui al Cap. 12.

