Teoria de Comunicações (FGA - 203815) Segunda Prova 05/novembro/2015

Prova **sem** consulta.

Nome:	Matrícula:
None	Matricula.

Questão	1	2	3	4	5	Total
Pontos	25	25	10	20	20	100
Nota						

(Adaptado, Haykin). Um aluno, em um laboratório, gera um sinal FM com portadora de 200 KHz, amplitude 10V e sinal modulante senoidal, com frequência de 1 KHz. O desvio de frequência usado é desconhecido, e o aluno realiza o seguinte experimento:

- Fixa a amplitude do sinal modulante A_m em 0 V e observa, em um analisador de espectro, a amplitude da raia correspondente à frequência da portadora. Descreva qualitativamente o que o aluno deveria observar quando aumenta gradualmente A_m , em termos da largura de banda do sinal modulado.
- ullet Se o aluno observa que a amplitude portadora é nula para $A_m=2{
 m V}$, determine k_f em Hz/V;
- ullet Para que amplitude de A_m o aluno observa pela segunda vez a anulação da frequência da portadora?
- Estime a amplitude necessária para que a raia em 201 KHz se anule.

Dado o transmissor Armstrong mostrado na figura, preencha a tabela com as características dos sinais FM (frequência e desvio de frequência) nos pontos assinalados. Especifique exatamente qual a frequência central do filtro passa-bandas e sua largura de banda mínima para acomodar o sinal de entrada, sabendo que há uma restrição: os filtros passa-bandas disponíveis para uso têm frequência central acima de $30~\mathrm{MHz}$.

Ponto	Frequência (MHz)	$\Delta f (KHz)$	Ponto	Frequência (MHz)	$\Delta f (KHz)$
\mathbf{A}	21	0.7	D		
В			E		
$\overline{\mathbf{C}}$			F		

Em um sistema de transmissão digital em banda-base, utilizam-se pulsos retangulares RZ com sinalização polar. Para aumentar a robustez da transmissão, os bits são agrupados sequencialmente em blocos de 5 bits, da seguinte forma: os primeiros 4 fazem parte da sequência original de bits e adiciona-se, após o quarto bit, um quinto que é uma réplica do primeiro. Os 5 bits são transmitidos, e o processo se repete para os próximos 4 bits da sequência original. Nestas condições, calcule a DEP do trem de pulsos transmitido.

Um sinal de telemetria analógico deve ser convertido em um sinal PCM com sinalização binária polar, utilizando pulsos cosseno levantado com fator de roll-off de 50%. O sinal deve ser transmitido em banda-base em um canal de faixa estreita, limitado em 4 KHz. Suponha que o quantizador PCM seja linear e tenha 16 níveis.

- (5)(a) Se o sinal puder ser representado por uma senóide que percorra toda a faixa dinâmica do conversor A/D, qual o valor da relação sinal-ruído de quantização?
- (5)(b) Qual a taxa máxima de transmissão permitida pelo sistema, sem introduzir IES?
- (5)(c) Qual a frequência máxima do sinal de telemetria analógico?
- (5)(d) Repita o item anterior, caso a transmissão seja feita usando 4-PAM ao invés de binária.

No esquema duobinário modificado, as amostras dos pulsos $p_{DM}(t)$ satisfazem a seguinte relação:

$$p_{DM}(kT_b) = egin{cases} 1 & ext{se } k=0, \\ 0 & ext{se } k=1, \\ -1 & ext{se } k=2, \\ 0 & ext{case contrário.} \end{cases}$$

Considere uma transmissão de pulsos duobinários modificados, usando sinalização polar.

- (10)(a) Quais as amostras do sinal transmitido, correspondente à sequência de bits 0 1 1 0 0 1 1 1 1 0 1 0?
- (10)(b) Expresse um pulso $p_{DM}(t)$ em função de pulsos que satisfazem o primeiro critério de Nyquist $p_{1C}(t)$ e encontre a fórmula de seu espectro. Faça uma comparação qualitativa do esquema duobinário modificado com o duobinário, com base no módulo da expressão obtida.

Formulário

Funções de Bessel

β	J_0	J_1	J_2	J_3	J_4	J_5	J_6	J_7	J_8	J_9	J_{10}	J_{11}	J_{12}
0,25	0,98	0,12	0,01	0	0	0	0	0	0	0	0	0	0
0,5	0,94	0,24	0,03	0	0	0	0	0	0	0	0	0	0
0,8	0,85	0,37	0,07	0,01	0	0	0	0	0	0	0	0	0
1,0	0,77	0,44	0,11	0,02	0	0	0	0	0	0	0	0	0
1,5	0,51	0,56	0,23	0,06	0,01	0	0	0	0	0	0	0	0
2,0	0,22	0,58	0,35	0,13	0,03	0,01	0	0	0	0	0	0	0
2,40	0	0,52	0,43	0,20	0,065	0.016	0	0	0	0	0	0	0
3,0	-0,26	0,34	0,49	0,31	0,13	0,04	0,01	0	0	0	0	0	0
4,0	-0,4	-0,07	0,36	0,43	0,28	0,13	0,05	0,02	0	0	0	0	0
5,0	-0,18	-0,33	0,05	0,36	0,39	0,26	0,13	0,05	0,02	0,01	0	0	0
5,52	0	-0,34	-0,123	0,25	0,40	0,32	0,19	0,09	0,03	0,01	0	0	0
6,0	0,15	-0,28	-0,24	0,11	0,36	0,36	0,25	0,13	0,06	0,02	0,01	0	0
7,0	0,3	0	-0,3	-0,17	0,16	0,35	0,34	0,23	0,13	0,06	0,02	0,01	0
8,0	0,17	0,23	-0,11	-0,29	-0,11	0,19	0,34	0,32	0,22	0,13	0,06	0,03	0,01
8,65	0	0,27	0,062	-0,243	-0,23	0,03	0,27	0,34	0,29	0,18	0,1	0,05	0,02

Modulação Analógica PM, FM

$$\varphi_{\rm PM}(t) = A_c \cos(2\pi f_c t + k_P \, m(t)) \qquad \qquad B_T = 2 \, B_m(\beta + 1) = 2 \, (\Delta f + B_m)$$

$$\varphi_{\rm FM}(t) = A_c \cos\left(2\pi f_c t + 2\pi k_F \int_{-\infty}^t m(\alpha) d\alpha\right) \qquad \qquad \beta_{\rm FM} = \frac{k_F \, m_{\rm P}}{B_m}$$

$$e^{j\beta \sin(2\pi f_m t)} = \sum_{n=-\infty}^{+\infty} J_n(\beta) e^{-j2\pi n f_m t} \qquad \qquad \beta_{\rm PM} = \frac{k_P \, \dot{m}_{\rm P}}{2\pi B_m}$$

Quantização e Codificação de Linha

$$R_x(\tau) = \frac{1}{T_b} \sum_{n=-\infty}^{n=+\infty} R_n \delta(\tau - nT_b)$$

$$R_n = \lim_{T \to \infty} \frac{T_b}{T} \sum_k a_k a_{k+n}$$

$$\left(\frac{S}{N}\right)_{\text{QUANT}}^{\text{PCM}} = 3 \cdot 2^{2n} \cdot \frac{P_m}{m_p^2}$$

$$\Delta V = \frac{2m_p}{L}$$

$$S_y(f) = \frac{|P(f)|^2}{T_b} \left[\sum_{n=-\infty}^{n=+\infty} R_n \, e^{-j2\pi n f T_b}\right]$$

$$E > \frac{2\pi A f_0}{f_s} \text{ (senóide)}$$