PHYSICS CLASS 12 BATCH

Electric Charges and Field

DPP-02

- 1. Two identical charges repel each other with a force equal to 10 g-wt when they are 0.6 m apart in air. $(g = 10 \text{ ms}^{-2})$ The value of each charge is:
 - (1) 2mC
- (2) $2 \times 10^{-7}C$
- (3) 2nC
- (4) 2μ C
- 2. Two charges each of 1μ C are at a distance 1 cm apart in vacuum, the force between them is:
 - (1) $9 \times 10^3 \text{ N}$
- (2) 90 N
- (3) $1.1 \times 10^{-4} \,\mathrm{N}$
- $(4) 10^4 \text{ N}$
- 3. +2C and +6C two charges are repelling each other with a force of 12 N. If each charge is given -2C of charge, then the value of force will be:
 - (1) 4N (Attractive)
- (2) 4N (Repulsive)
- (3) 8N (Repulsive)
- (4) Zero
- **4.** Two charges placed in air repel each other by a force of 10^{-4} N. When oil is introduced between the charges, the force on the charge becomes 2.5×10^{-5} N. The dielectric constant of oil is:
 - (1) 2.5
- (2) 0.25
- (3) 2.0
- (4) 4.0
- 5. The charges on two spheres are $+7\mu$ C and -5μ C respectively. They experience a force F. If each of them is given additional charge of -2μ C, the new force of attraction will be:
 - (1) F
- (2) F/2
- (3) $F/\sqrt{3}$
- (4) 2F

- 6. Two spherical conductors *B* and *C* having equal radii and carrying equal charges in them repel each other with a force *F* when kept apart at some distance. *A* third spherical conductor having same radius as that of *B* but uncharged is brought in contact with *B*, then brought in contact with *C* and finally removed away from both. The new force of repulsion between *B* and *C* is:
 - $(1) \qquad \frac{F}{4}$
- $(2) \qquad \frac{3H}{4}$
- $(3) \quad \frac{F}{8}$
- (4) $\frac{3F}{8}$
- 7. Two positive ions, each carrying a charge q, are separated by a distance d. If F is the force of repulsion between the ions, the number of electrons missing from each ion will be (e being the charge on an electron)
 - $(1) \qquad \frac{4\pi\varepsilon_0 Fd^2}{e^2}$
- (2) $\sqrt{\frac{4\pi\varepsilon_0 Fe^2}{d^2}}$
- (3) $\sqrt{\frac{4\pi\varepsilon_0 Fd^2}{e^2}}$
- $(4) \qquad \frac{4\pi\varepsilon_0 Fd}{e^2}$
- 8. A charge q_1 exerts some force on a second charge q_2 . If third charge q_3 is brought near, the force that q_1 exerts on q_2 and net force on q_2 respectively
 - (1) decreases, increases
 - (2) increases, increases
 - (3) remains unchanged, may increase or decrease
 - (4) remains unchanged, remains unchanged

ANSWER KEY

- 1. (4)
- 2. (2)
- 3. (4)
- 4. (4)
- **5.** (1)
- 6. (4)
- 7. (3)
- 8. (3)