Testing

Contents

ata	2
Raw Data	2
Cleaning The Data	
Daily Data	2
lots	3
Total	
Per Day	10
ime Series Analysis	13
olatility	18
JPR Formula	18
Garman and Klass (1980) Formula	22

Data

Raw Data

```
#political shocks
#raw_truths <- read.csv(here("data/political_data", "trump_all_truths.csv"))
#raw_tweets <- read.csv(here("data/political_data", "tweets.csv"))

#market prices
raw_ONEQ <- read.csv(here("data/market_data", "ONEQ.csv"))
raw_SMI <- read.csv(here("data/market_data", "SMI.csv"))
raw_SPY <- read.csv(here("data/market_data", "SPY.csv"))
raw_SPY2425 <- read.csv(here("data/market_data", "SPY_24_25.csv"))
raw_SPY2021_01 <- read.csv(here("data/market_data", "SPY-2021-01.csv"))
raw_VTHR <- read.csv(here("data/market_data", "VTHR.csv"))
raw_VTI <- read.csv(here("data/market_data", "VTI.csv"))
raw_VGK <- read.csv(here("data/market_data", "VGK.csv"))
raw_DAX <- read.csv(here("data/market_data", "DAX.csv"))
raw_ASHR <- read.csv(here("data/market_data", "ASHR.csv"))
#yahoo</pre>
```

Cleaning The Data

```
#political shocks
truths <- 1
tweets <- 1

#market prices #only cleaning dates for the time being
raw_ONEQ$timestamp = as.POSIXct(raw_ONEQ$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "EST")
raw_SMI$timestamp = as.POSIXct(raw_SMI$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "EST")
raw_SPY$timestamp = as.POSIXct(raw_SPY$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "EST")
raw_VTHR$timestamp = as.POSIXct(raw_VTHR$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "EST")
raw_VTI$timestamp = as.POSIXct(raw_VTI$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "EST")
raw_VGK$timestamp = as.POSIXct(raw_VGK$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "UCT")
raw_DAX$timestamp = as.POSIXct(raw_DAX$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "UCT")
raw_ASHR$timestamp = as.POSIXct(raw_ASHR$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "UCT") #fix time</pre>
```

Daily Data

```
#market prices
day_SPY_0409 = filter(raw_SPY, str_detect(timestamp, "^2025-04-09")) #9th of april
day_SPY_0409$timestamp = as.POSIXct(day_SPY_0409$timestamp,
```

Plots

Total

SPY Price Over Time


```
#ONEQ
ggplot(raw_ONEQ, aes(x = timestamp, y = close)) +
  geom_point(color = "blue", size = 0.01) +
```

ONEQ Price Over Time

SMI Price Over Time

VTHR Price Over Time

ASHR Price Over Time

#Get Truths April 9th

Per Day

SPY alpha Price April 9th

6.275 6.250 6.200 Fine April 9th 6.275 6.200 Time

Warning: Removed 3 rows containing missing values or values outside the scale range
('geom_point()').

Time Series Analysis

acf(log(day_SPY_0409\$close))

Series log(day_SPY_0409\$close)

pacf(log(day_SPY_0409\$close))

Series log(day_SPY_0409\$close)

acf(log(raw_SPY\$close))

Series log(raw_SPY\$close)

pacf(log(raw_SPY\$close))

Series log(raw_SPY\$close)


```
AR1 = arima(day_SPY_0409$close,c(1,0,0),method="ML")

AR2 = arima(day_SPY_0409$close,c(2,0,0),method="ML")

AR3 = arima(day_SPY_0409$close,c(3,0,0),method="ML")

table1 = export_summs(AR1,AR2,AR3, model.names = c("AR1","AR2","AR3"), digits = 4)

## Warning in FUN(X[[i]], ...): tidy() does not return p values for models of

## class data.frame; significance stars not printed.

## Warning in FUN(X[[i]], ...): tidy() does not return p values for models of

## class data.frame; significance stars not printed.

## Warning in FUN(X[[i]], ...): tidy() does not return p values for models of

## class data.frame; significance stars not printed.

huxtable::caption(table1) <- "AR Estimations"

huxtable::set_width(table1, 0.8)
```

```
AR1res = as.numeric(AR1$residuals)

AR1res_lagged <- lag(AR1res, 1)

iidcheck1 = lm(AR1res ~ AR1res_lagged)

AR2res = as.numeric(AR2$residuals)

AR2res_lagged <- lag(AR2res, 1)

iidcheck2 = lm(AR2res ~ AR2res_lagged)

AR3res = as.numeric(AR3$residuals)

AR3res_lagged <- lag(AR3res, 1)

iidcheck3 = lm(AR3res ~ AR3res_lagged)
```

Table 1: AR Estimations

	AR1	AR2	AR3
ar1	0.9983	1.0884	1.0919
	(0.0020)	(0.0504)	(0.0506)
intercept	517.4887	516.8318	517.3178
	(19.5350)	(18.7930)	(19.1239)
ar2		-0.0902	-0.1336
		(0.0505)	(0.0746)
ar3			0.0399
			(0.0506)
nobs	390	390	390
sigma	1.2932	1.2880	1.2869
\log Lik	-656.5286	-654.9411	-654.6302
AIC	1319.0572	1317.8822	1319.2604
BIC	1330.9556	1333.7468	1339.0912
nobs.1	390.0000	390.0000	390.0000

^{***} p < 0.001; ** p < 0.01; * p < 0.05.

Volatility

JPR Formula

$$v_t = \frac{1}{N} \sum_{i=1}^{N} (\Delta p_{t,i})^2$$

where Δp_t is the difference in price (open - close) and i represents every minute

```
#extract a particular day
day_SPY_0402 = day_selector(raw_SPY,2025,04,02) #april 2nd 2025
```

Table 2: Checking Residuals

	AR1 Residuals	AR2 Residuals	AR3 Residuals
(Intercept)	0.1102	0.1092	0.1135
	(0.0655)	(0.0655)	(0.0654)
AR1res_lagged	0.0799		
	(0.0506)		
$AR2res_lagged$		-0.0054	
		(0.0508)	
AR3res_lagged			-0.0078
			(0.0508)
N	389	389	389
R2	0.0064	0.0000	0.0001

^{***} p < 0.001; ** p < 0.01; * p < 0.05.

#let's plot it
day_plotter(day_SPY_0402,"SPY Price on April 2nd 2025")

#quick
quickplot = function(x){day_plotter(day_selector(raw_SPY,2025,04,x),"SPY Price 2025")}
quickplot(9)


```
delta_price = day_SPY_0402$close - day_SPY_0402$open
delta_price_sqr = delta_price^2
day_SPY_0402 = cbind(day_selector(raw_SPY,2025,04,02),delta_price_sqr)
v_t = sum(delta_price_sqr) / length(delta_price)
#or is it like this??
#realized volatility method2
p_t = day_SPY_0402$close
p_t_1 \leftarrow lag(p_t, 1)
delta_price2 = p_t_1 - p_t
v_t2 = sum((na.omit(delta_price2))^2) / length(na.omit(delta_price2))
#simplify notation
data = raw_SPY2021_01
#find all days excluding weekends etc
days = unique(format(as.Date(data$timestamp,
                      format = "%Y-%m-%d %H:%M:%S"),format="%d"))
months = unique(format(as.Date(data$timestamp,
                      format = "%Y-%m-%d %H:%M:%S"),format="%m"))
years = unique(format(as.Date(data$timestamp,
                      format = "%Y-%m-%d %H:%M:%S"),format="%Y"))
r_vol = c(1:length(days))
for (i in 1:length(days)){
```

```
daydata = day_selector(data,2021,01,as.numeric(days[i])) #selects data for each day
   r_vol[i] = r.vol(daydata) #computes realized volatility for each day
   r_vol
}

plot(r_vol)
```


Garman and Klass (1980) Formula

Note that this formula uses open-high-low-close information. $\$ This model is based on the assumption that price returns follow a Wiener process with zero drift and constant infinitesimal variance. It's constructed by minimizing the variance of a quadratic estimator subject to the constraints of price and time symmetry and scale invariance of volatility. Source: https://assets.bbhub.io/professional/sites/10/intraday_volatility-3.pdf

$$V_{ohlc} = 0.5[log(H) - log(L)]^{2} - [2log(2) - 1][log(C) - log(O)]^{2}$$

```
#extract a particular day
day_SPY_0402 = day_selector(raw_SPY,2025,04,02) #april 2nd 2025

#variables
C = day_SPY_0402$close
0 = day_SPY_0402$open
H = day_SPY_0402$high
L = day_SPY_0402$low
```

```
#realized volatility
V_ohlc = 0.5*(log(H)-log(L))^2 - (2*log(2)-1)*(log(C)-log(0))^2
v_ohlc = sqrt(V_ohlc)
day_SPY_0402 = cbind(day_selector(raw_SPY,2025,04,02),V_ohlc)
avg = sum(V_ohlc) / length(V_ohlc)
```