UMMUL QURA HIGH SCHOOL

AROWONA BUS-STOP, AMULOKO-AKANRAN ROAD, IBADAN. 2020/2021 SECOND TERM EXAMINATION

SUBJECT: Chemistry DURATION: 2hrs: 30mins

CLASS: SS 2

INSTRUCTION: Answer *all* questions from part **A** and any *four* from part **B**

PART A

- A basic postulate of kinetic theory of gases is that the molecules of gases move in a straight line before collision. this *implies* that
 - A. Collisions are perfectly elastic
 - B. Forces of repulsion exist
 - C. Forces repulsion and attraction are in equilibrium
 - D. Collisions are inelastic
- 2. Which of the following gases diffuse *fastest* under similar conditions?
 - A. C_2H_6
 - B. CH₄
 - C. CO₂
 - D. NO₂
- According to kinetic theory, an increase in temperature causes the kinetic energy of particles to
 - A. Decrease
 - B. Increase
 - C. Be zero
 - D. Remain constant
- 4. A *separating funnel* is used in separating a mixture of
 - A. liquids with different boiling points
 - B. sediments in a liquid
 - C. liquids with different colours
 - D. liquids that are immiscible
- 5. If the pressure of 100cm³ of a sample of air is halved at constant

- temperature, what will be its *new* volume?
- A. 1000cm³
- B. 200cm³
- C. 100cm³
- D. 50cm³
- 6. The initial volume of a gas at 27°C was 220cm³. Determine its temperature in *Kelvin*, when the volume became **250cm³**
 - A. 183k
 - B. 264k
 - C. 300k
 - D. 341k
- 7. $P_{TOTAL} = P_1 + P_2 + P_3 + ... + P_n$ where P_{TOTAL} is the pressure of a *mixture* of gases. The equation above is an expression of
 - A. Graham's LAW
 - B. Dalton's law
 - C. Avogadro's law
 - D. Gay- Lussac's law
- 8. Equal volume of CO and CO₂ at **s.t.p** have the same
 - A. Mass
 - B. Density
 - C. Rate of diffusion
 - D. Number of molecules
- 9. Consider the *reaction* represented by the equation below:

 $xNH_{3(g)} + yCl_{2(g)} \longrightarrow zHCl_{(g)} + N_{2(g)}$

the values of x, y, and z are respectively

- A. 2, 4 and 6
- B. 3, 2 and 4
- C. 2, 3 and 6
- D. 3, 2 and 6
- 10. A given volume of *methane* (CH₄) diffuse in 20seconds. How long will it take the same volume of sulphur(IV)oxide (SO₂) under the same conditions?
 - A. 5 seconds
 - B. 60 seconds
 - C. 40 seconds
 - D. 20 seconds
- 11. Alums are classified as
 - A. simple salts
 - B. basic salts
 - C. double salts
 - D. complex salts
- 12. Citric *acid* is said to be a *weak acid* because
 - A. It is derived from fruits
 - B. It is not corrosive
 - C. It ionizes slightly in water
 - D. Forms acid salts with bases
- 13. The **pH** of a solution of 0.1 moldm⁻³ of H₂SO₄ solution is
 - A. 2.5
 - B. 0.5
 - C. 2.7
 - D. 0.7
- 14. Sodiumhydroxide *pellets* are
 - A. Deliquescent
 - B. Hygroscopic
 - C. Efflorescent
 - D. Hydrated
- 15. The **pH** of four solutions W, X, Y and Z are 4, 6, 7 and 10 respectively, therefore

- A. None of these solutions is acidic
- B. The pH of Y is made more acidic by addition of distilled water
- C. Z is the most acidic solution
- D. W is the most acidic solution
- 16. One *source* of ascorbic acid is
 - A. Beans
 - B. Vinegar
 - C. Orange
 - D. Banana
- 17. The product formed when acid anhydride *reacts* with water is
 - A. Acid
 - B. Base
 - C. Salt
 - D. Acid salt
- 18. A reaction between ammonium salts and alkali *produce* a salt, water and
 - A. CO_2
 - B. HCl
 - C. NH₃
 - D. SO₂
- 19. The method chosen for preparing a particular salt *depends* largely on
 - A. Vaporization and evaporation
 - B. Solubility and heat stability
 - C. Solubility and evaporation
 - D. Vaporization and heat stability
- 20. Ammonia *cannot* be dried using concentrated H₂SO₄ because ammonia
 - A. has a pungent smell
 - B. has a high rate of diffusion
 - C. reacts with the acid
 - D. is a colourless gas
- 21. The *basicity* of CH₃COOH is
 - A. 3
 - B. 4
 - C. 2
 - D. 1

- 22. Which of the following substances is *NOT* a salt?
 - A. Sodiuntrioxocarbonate(iv)
 - B. Zinc chloride
 - C. Aluminium oxide
 - D. Sodium hydrogen tetraoxosulphate
- 23. All common *gases* are dried using P₂O₅ *Except*
 - A. NO₂
 - B. NH₃
 - C. SO₂
 - D. H₂S
- 24. A solid substance with high melting and boiling points is *likely* to be a/an
 - A. Covalent compound
 - B. Dative covalent compound
 - C. Electrovalent compound
 - D. Non-metal
- 25. Two examples of strong bases are
 - A. CaO and CaCO₃
 - B. K₂CO₃ and (NH₄)₂CO₃
 - C. Ca(OH)₂ and CaO
 - D. KOH and NaOH
- 26. $2Pb (NO_3)_2 \longrightarrow 2PbO + zNO_2 + O_2$

What is the value of Z in the equation above?

- A. 1
- B. 2
- C. 3
- D. 4
- 27. A hydrocarbon contained 14.3% hydrogen, and the remaining percentage for carbon. The empirical formula for the *hydrocarbon* would

be
$$(C = 12, H = 1)$$

- A. CH
- B. CH₂
- C. CH₃

- D. CH₄
- 28. A balanced chemical equation is based on the *law* of
 - A. Periodicity
 - B. Constant composition
 - C. Multiple proportion
 - D. Conservation of mass
- 29. Which of the following hydroxides is *not* readily soluble in water?
 - A. NH₄OH
 - B. Ca(OH)₂
 - C. KOH
 - D. NaOH
- 30. Which of the following *separation techniques* is applied in the *petroleum industry*?
 - A. Fractional crystallization
 - B. Chromatography
 - C. Filtration
 - D. Fractional distillation
- 31. A student who was stung by an insect felt better on putting some *vinegar* on the sting. The conclusion that could be *drawn* about the insect sting is that it is
 - A. acidic
 - B. alkaline
 - C. amphoteric
 - D. neutral
- 32. 30cm^2 of hydrogen at **s.t.p** combine with 20cm^3 of oxygen to form steam according to the following equation

$$2H_{2(g)} + O_{2(g)} \longrightarrow \qquad 2H_2O_{(g)}$$

Calculate the actual volume of the gaseous mixture at the *end* of the reaction

- A. 50cm³
- B. 35cm³
- C. 30cm³
- D. 25cm³

- 33. A solution of **pH 7** is
 - A. Acidic
 - B. Neutral
 - C. Basic
 - D. Saturated
- 34. What volume of oxygen will be required to *burn* 30cm³ of methane *completely* according to the equation?

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$

- A. 60cm³
- B. 30cm³
- C. 100cm³
- D. 90dm³
- 35. Tetraoxosulphate(VI)acid is described as a strong acid *because* it is highly
 - A. corrosive
 - B. concentrated
 - C. soluble in water
 - D. ionized in water
- 36. Water in crystalline salts *provides*
 - A. hydrated bonds and colour
 - B. colour and solubility base
 - C. colour and shape
 - D. shape and crystal lattice
- 37. All the following acids are monobasic *Except*
 - A. Hydrochloric acid
 - B. Trioxonitrate(V)acid
 - C. Tetraoxophosphate(V)acid
 - D. Ethanoic acid
- 38. A *mixture* of NaCl and NH₄Cl is *best* separated by
 - A. dissolution followed by filtration
 - B. sublimation
 - C. dissolution followed by evaporation
 - D. dissolution followed by sublimation

- 39. Sodium chloride crystals can be obtained from sea water *by*
 - A. Decantation
 - B. Condensation
 - C. Evaporation
 - D. Neutralization
- 40. Two atoms of an element **X** are represented as indicated below: $^{39}_{19}X$ and $^{40}_{19}X$

This shows that **X** exhibits

- A. Isomerism
- B. Isotopy
- C. Allotropy
- D. Radioactivity
- 41. Which of the following methods is *suitable* for the preparation of an insoluble salt?
 - A. Action of an acid on a metal
 - B. Double decomposition
 - C. Neutralization
 - D. Action of an acid on a trioxocarbonate(iv)
- 42. Which of the following is *not* a covalent compound?
 - A. Water
 - B. Oxygen molecule
 - C. Magnesium chloride
 - D. Carbon(iv)oxide
- 43. A substance which changes *directly* from the solid state to the gaseous state without forming a liquid substance is *said* to
 - A. condense
 - B. sublime
 - C. evaporate
 - D. precipitate
- 44. Calculate the percentage composition of *carbon* in Ca(HCO₃)₂

$$[Ca = 40, H = 1, C = 12, O = 16]$$

- A. 7.4
- B. 14.8
- C. 22.2
- D. 3.7
- 45. Which of these *chemical reactions* is/are balanced?
- I. $C_2H_5OH + 3O_2 \longrightarrow 2CO_2 + 2H_2O$
- II. $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$
- III. $NH_3 + 2O_2 \longrightarrow HNO_3 + H_2O$
 - A. I only
 - B. III only
 - C. I and II only
 - D. II and III only
- 46. Which of the following *compounds* would form a solution on exposure to the atmosphere?
 - A. CuSO₄.5H₂O
 - B. FeCl₂
 - C. NaNO₃
 - D. Na₂SO₄ . 10H₂O
- 47. Which of the following separation techniques would show that *ink* is a mixture of chemical compounds?
 - A. Chromatography
 - B. Crystallization
 - C. Filtration

- D. Sublimation
- 48. Consider the *neutralization* reaction represented by the following equation:

$$Na_2CO_3 + 2HNO_3 \longrightarrow 2NaNO_3 + H_2O + CO_2$$

The stoichiometric ratio of acid to base is

- A. 2:2
- B. 2:1
- C. 1:1
- D. 1:2
- 49. If 60cm³ of a gas is heated from 27°C to 50°C. What is the *new volume* of gas at constant pressure?
 - A. 32.4cm³
 - B. 55.7cm³
 - C. 64.6cm³
 - D. 111.1cm³
- 50. Dative bond is also *known* as
 - A. Vander waal forces
 - B. Ionic bond
 - C. Coordinate covalent bond
 - D. Hydrogen bnd

PART B

Instruction: Answer FOUR questions from this part

Question 1

- (a) Define *each* of the following
 - (i) An acid
 - (ìí) An acid anhydride
 - (iii) Basicity of an acid

- (b) List *three* physical properties and two chemical properties of acids
- (c) Name the *acid* that is found in each of the following:
 - (i) Grape fruit
 - (ìí) Vinegar
 - (iii) Lime
 - (iv) Ant or bee
 - (v) Milk
- (d) State two uses of acids

Question 2

- a(i) Define **pH** of a solution
 - (ii) What is the relationship between **pH** and **pOH** of an aqueous solution?
 - (iii) Determine **pH** of a solution containing 0.05moldm⁻³ H₂SO₄
 - (v) State *two* importance of **pH**
- (b) State the following gas laws
 - (i) Avogadro's law
 - (ìí) Gay Lussac's law
- (c) 25cm³ of *ethane* is mixed with 60cm³ of oxygen. The mixture is ignited forming *carbon(iv)* oxide and water according to the equation below:

$$C_2H_6 + 3O_2 \longrightarrow 2CO_2 + 2H_2O.$$

Calculate the *volume* of the gas left at the end of the reaction.

(d) **Balance** the following chemical equations

(ií)
$$C_4H_{10} + O_2 \longrightarrow H_2O + CO_2$$

(iii)
$$Ca(OH)_2 + HCl \longrightarrow CaCl_2 + H_2O$$

(iv)
$$KClO_3 \longrightarrow KCl + O_2$$

(v) $Na_2CO_3 + HC1 \longrightarrow NaC1 + H_2O + CO_2$

Question 3

- a(i) What is an *alkali*?
 - (ii) Is calcium oxide an acid, a base or salt? Give *three* reasons for your answer.
- (b). What do you understand by the following terms? Give *two* examples of compounds in each case.
 - (i) Hygroscopy
 - (ii) Deliquescence
 - (iii) Efflorescence
- c(i) What drying *agent* is particularly suitable for *ammonia gas*?
- (ii) 7.60g of blue copper (ii) tetraoxosulphate(vi) crystals, CuSO₄. H₂O, were heated to a constant mass, first at a temperature of **100**⁰C and then at **120**⁰C. The residue that was obtained at 100⁰C weighed **5.40g** and that obtained at 120⁰C weighed **4.85g**. *Calculate* the stages of dehydration reached at 100⁰C and 120⁰C respectively.

Question 4

- a(i) Distinguish between a strong acid and a concentrated acid
 - (ii) Give *two* methods of preparation for acids in the laboratory
- (b) State these gas laws
 - (i) Boyle's law
 - (ii) Graham's law of diffusion
- (c) If the volume of a given mass of gas at 25°C and a pressure 205.2 x 10³Nm⁻² is 2.12dm³, what is the volume at **s.t.p**?
- (Standard pressure = $101.3 \times 10^3 \text{Nm}^{-2}$ and standard temperature =273 K)
- (d)(i) State any *three* of the postulates of the kinetic theory of gases.
- (ii) Mention *two* natural phenomena that support the kinetic theory of matter.

Question 5

- a(i) What is a *salt*?
 - (ii) List three methods of preparing soluble salts
 - (iii) Give two methods for measuring pH of solutions
- b(i) State the type of salt represented by each of the following compounds
 - (i) NaHSO₄
 - (ii) K₃Fe(CN)₆
 - (iii)K2SO4
 - (iv) (NH₄)₂FeSO₄.6H₂O
 - (v) Mg(OH) NO₃
- (d) 80cm^3 of chlorine gas diffuses through a porous pot in **60** seconds, while it takes **90** seconds for the same volume of an unknown gas to diffuse through the same pot. Calculate the relative molecular mass of the unknown gas. (Cl = 35. 5)