

UFPEL

Microcontroladores

Aula 9 – Comunicação serial

Prof. Dr. Alan Carlos Junior Rossetto

Introdução

- O periférico de comunicação serial é um componente de extrema importância em computadores, pois possibilita a comunicação bidirecional entre dispositivos utilizando apenas dois fios;
- Permite também, por meio de um modem (modulador/demodulador), transferir e receber dados via um sistema de comunicação tradicional (e.g., telefonia), sendo vital nas aplicações de comunicação cotidianas;
- Recebe o nome de serial o tipo de comunicação na qual a informação (geralmente em bytes) é particionada (geralmente em bits), transmitida em uma sequência pré-estabelecida por uma única via, recebida e recomposta na sua forma original;
- Esta se opõe conceitualmente à transmissão em paralelo, onde toda a informação é transmitida de uma única vez, mas ao custo de uma conexão com mais vias;
- Alguns exemplos de comunicação serial são os protocolos ethernet,
 I2C, SPI, UART, CAN, USB, entre outros.

Introdução

- Além da informação propriamente dita (codificada em ASCII), também são transmitidos pelo canal serial alguns bits para o controle da transmissão / recepção. Estes bits sinalizam ao receptor / transmissor, por exemplo, o ponto de início e o ponto de término da transmissão / recepção da informação;
- Um requisito fundamental é que a frequência utilizada durante a comunicação seja a mesma tanto para o transmissor quanto para o receptor. Esta frequência é chamada de baudrate;
- No contexto do µC 8051, a comunicação serial em questão é a universal asynchronous receiver / transmitter ou UART, podendo também ser chamada de serial communication interface (SCI);

Introdução

- No contexto do μC 8051, a comunicação serial em questão é a universal asynchronous receiver / transmitter ou UART, podendo também ser chamada de serial communication interface (SCI);
- Ela é do tipo full duplex, i.e., o μC 8051 pode transmitir informação por uma via (TX) enquanto recebe informação por outra (RX), e fazer isso de maneira síncrona ou assíncrona;
- Além da informação propriamente dita (codificada em ASCII), também são transmitidos pelo canal serial alguns bits para o controle da transmissão / recepção:
 - Bit inicial (start bit): sincroniza o transmissor e receptor indicando que a transmissão do dado vai começar através de uma transição 1 → 0;
 - *Bit* de paridade: indica a paridade do *byte* transmitido / recebido, sendo 0 para número par de '1's e 1 para número ímpar de '1's;
 - Bit de parada (stop bit): indica que a transmissão foi concluída.

SFRs envolvidos

- A operação do canal serial do μC 8051 faz uso dos seguintes registradores de função especial:
 - SBUF ou serial buffer: buffer de dados recebidos (SBUF in) ou a serem transmitidos (SBUF out);
 - SCON ou serial control: registrador de controle do modo de operação do canal serial;
 - **PCON** ou *power control*: registrador de gerenciamento energético, mas que é utilizado para modificar a taxa de transmissão de dados através da flag **SMOD** (*serial mode*);

Fluxo de comunicação

- O fluxo de comunicação serial no μC 8051 se dá da seguinte forma:
 - Para o envio:
 - Habilitação da flag REN;
 - Limpeza da flag TI;
 - Escrita no **SBUF**;
 - Transmissão do dado;
 - Para a recepção:
 - Habilitação da flag REN;
 - Limpeza da flag RI;
 - Recebimento do dado no SBUF.

O modo de operação do canal serial do μC 8051 é definido pelo SFR SCON. Nele está contido também o 9º bit da informação (RB8), o qual indica a paridade do byte recebido, além de outras flags que indicam a situação de operação desta interface.

bit	7	6	5	4	3	2	1	0
(SCON) =	SM0	SM1	SM2	REN	TB8	RB8	TI	RI

SM0	SM1	Modo	Descrição	Baud rate			
0	0	0	Registrador de deslocamento	fosc./12			
0	1	1	UART de 8 bits	programável pelo timer/contador 1			
1	0	2	UART de 9 bits	f _{osc.} /64 ou f _{osc.} /32			
1	1	3	UART de 9 bits	programável pelo timer/contador 1			
Símbolo			Nome e significado				
SM2	e cas	so SM2=1, RI não	ca de comunicação entre múltiplos microco o será ativado se o nono <i>bit</i> de dado recebio o ativado se um <i>stop bit</i> válido não for receb	lo for igual a 0. No modo 1,			
REN	Bit habitador da recepção serial. Setado/limpado por software para habilitar ou desabilitar a recepção serial.						
TB8	É o nono <i>bit</i> de dado que será transmitido no modo 2 e 3. Setado ou limpo por <i>software</i> . Geralmente ele é usado para transmitir a paridade do <i>byt</i> e.						
RB8	No modo 2 e 3, é o nono <i>bit</i> , geralmente usado quando se transmite a paridade do <i>byte</i> . No modo 1, se SM2=0, RB8 é o <i>stop bit</i> que foi recebido. No modo 0, RB8 não é usado.						
TI	É o <i>flag</i> de interrupção de transmissão. Setado por <i>hardware</i> no final do tempo do 8º <i>bit</i> transmitido no modo 0 ou no início do <i>stop bit</i> em outros modos, em qualquer tipo de transmissão serial. Deve ser limpo por <i>software</i> . Ele sinaliza que um dado serial foi transmitido pelo SBUF _{out} .						
RI	É o <i>flag</i> de interrupção de recepção. Setado por <i>hardware</i> no final do tempo do 8º bit no modo 0 ou na metade do tempo do <i>stop bit</i> em outros modos, em qualquer tipo de recepção serial. Deve ser limpo por <i>software</i> . Ele sinaliza que um dado serial acabou de ser montado no SBUF _{in} .						

- No Modo 0, os dados serializados entram e saem pelo pino RX
 (P3.0), sendo o primeiro bit a ser transmitido ou recebido é o menos
 significativo (LSB);
- O pino TX (P3.1) é usado para a transmissão do sinal de *clock* de transmissão (i.e., *baudrate*). Nesse modo, o *baudrate* é fixo em 1/12 da frequência do oscilador do μC;
- Neste modo, a comunicação é dita síncrona;

- Para que ocorra a recepção, é preciso ter REN = 1 e RI = 0;
- A transmissão é iniciada por qualquer instrução que usa SBUF como um registrador de destino e finalizada quando TI = 1.

Modo 0

Início de transmissão: SBUF ← Dados (SW)

TB8 ← 1 (**HW**)

Fim de transmissão: TI ← 1 (HW)

Início de recepção: REN ← 1 (SW)

RI ← 0 (SW) TB8, TI, REN e RI são bits do SCON

Fim de recepção: RI ← 1 (HW)

- No Modo 1, a comunicação é dita assíncrona, e o baudrate é programável, como será visto em seguida. Ademais, a informação transmitida pelo TX (P3.1) e recebida pelo RX (P3.0) é composta de 10 bits, a saber:
 - Um bit de sincronização (start bit) em 0 lógico, uma vez que o sinal em TX inicialmente está em 1 lógico;
 - Oito bits de dados, sendo o primeiro o LSB e o último o MSB;
 - Um bit de sincronização (stop bit) em 0 lógico sinalizando o fim da transmissão pelo TX ou a recepção pelo RX.

Modo 1

Início de transmissão: SBUF ← Dados (SW)

TB8 ← 1 (HW)

Fim de transmissão: TI ← 1 (HW)

Início de recepção: REN ← 1 (SW)

RXD ↓ (HW)

Fim de Recepção: RB8 ← 1 (Stop Bit)

RI ← 1 (HW)

TB8, RB8, TI, REN e RI são bits do SCON

- No Modo 2, a comunicação também é assíncrona, porém o baudrate é programável somente para 1/32 ou 1/64 da frequência de clock.
- A informação transmitida pelo TX (P3.1) e recebida pelo RX (P3.0)
 é composta de 11 bits, a saber:
 - Um bit de sincronização (start bit) em 0 lógico;
 - Oito bits de dados, sendo o primeiro o LSB e o último o MSB;
 - Um bit de controle (tipicamente a paridade do byte);
 - Um bit de sincronização (stop bit) em 0 lógico.
- A recepção se inicia quando é detectada uma borda de descida em RX, e finalizada quando se detecta o stop bit. Neste momento é setada a flag RI;
- Na transmissão com 9 bits de informação, o 9º bit fica armazenado no RB8 do registrador SCON.

Modo 2

Início de transmissão: SBUF ← Dados (SW)

TB8 ← Paridade, segundo stop bit (SW)

Nono bit \leftarrow TB8 (HW)

Fim de transmissão: TI ← 1 (HW)

Início de recepção: REN ← 1 (SW)

RXD ↓ (HW)

Fim de Recepção: RB8 ← Nono Bit

 $RI \leftarrow 1 (HW)$

TB8, RB8, TI, REN e RI são bits do SCON

- No Modo 3, a comunicação também é dita assíncrona e o baudrate programável, tal como no Modo 1. Contudo, a informação transmitida pelo TX e recebida pelo RX é composta de 11 bits, tal como no Modo 2;
- No contexto desta disciplina, trabalharemos com o Modo 1 e o Modo 3.

Modo 3

Início de transmissão: SBUF ← Dados (SW)

TB8 ← Paridade, segundo stop bit (SW)

Nono bit ← TB8 (HW)

Fim de transmissão: TI ← 1 (HW)

Início de recepção: REN ← 1 (SW)

RXD ↓ (HW)

Fim de Recepção: RB8 ← Nono Bit

RI ← 1 (HW)

TB8, RB8, TI, REN e RI são bits do SCON

Cálculo do baudrate

O baudrate da comunicação está associado à frequência de clock do μC. Nos Modos 1 e 3, este ainda depende da flag SMOD do registrados PCON e da taxa de estouro do timer / contador 1, o qual é utilizado justamente para definir o baudrate.

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
SMOD		-	-	GF1	GF0	PD	IDL

SMOD: *bit* que habilita a dupla taxa de transmissão/recepção (*baud rate*) do canal de comunicação serial. Quando igual a 1 lógico, o *baud rate* é dobrado, ou seja, a frequência de transmissão e recepção do canal de comunicação serial é dobrada, quando a programação do canal de comunicação serial estiver nos modos 1, 2, ou 3.

GF1: *flag* de uso de propósito geral.

GF0: flag de uso de propósito geral.

PD: *bit* de baixa potência (*power down*). Fazendo esse *bit* igual a 1 lógico, ativa-se o modo de baixa potência.

IDL: bit de Modo Idle. Fazendo esse bit igual a 1 lógico, ativa-se o modo Idle.

 Obs: para a comunicação serial, somente o SMOD é utilizado. As demais opções dizem respeito ao gerenciamento energético do μC.

Cálculo do baudrate

- O baudrate da comunicação está associado à frequência de clock do μC. Nos Modos 1 e 3, este ainda depende da flag SMOD do registrados PCON e da taxa de estouro do timer / contador 1, o qual é utilizado justamente para definir o baudrate;
- Dessa forma, para estes modos, o baudrate é calculado pela seguinte expressão:

Taxa de baudrate =
$$\frac{2^{SMOD}}{32} \cdot \frac{f_{CLK}}{12 \cdot (256 - TH1)} \text{ [bits/s]}$$

 Importante: em razão da exclusividade, a utilização da comunicação serial compromete o uso do T/C 1 para outras temporizações dentro do programa.

Cálculo do baudrate

 Tabela de configuração do baudrate através da programação do timer/contador 1 para diferentes modos de operação e frequências de clock:

				Timer '	1	
Baud rate (bits/seg)	Frequência do oscilador (Cristal) (MHz)	SMOD	C/T	Modo	Valor da recarga	
Modo 0 Máx: 1 MHz	12	Х	Х	X	Х	
Modo 2 Máx: 375 K	12	1	X	Х	Х	
Modo 1, 3: 62,5 K	12	1	0	2	FFh	
19,2 K	11,059	1	0	2	FDh	
9,6 K	11,059	0	0	2	FDh	
4,8 K	11,059	0	0	2	FAh	
2,4 K	11,059	0	0	2	F4 _h	
1.2 K	11,059	0	0	2	E8h	
137,5	11,059	0	0	2	1D _h	
110	6	0	0	2	72 _h	
110	12	0	0	1	FEEB _h	

Exemplo 1

 Usando a placa de desenvolvimento V0.8, escreva um programa para enviar uma string via porta serial sem paridade utilizando um baudrate de 9600 bps e clock de 11,0592 MHz. Na inicialização do programa este deve ler o pino P1.0 para, se em nível lógico alto, a string permaneça sendo enviada continuamente.

Exemplo 2

- Usando a placa de desenvolvimento V0.8, escreva um programa que receba um número via serial por interrupção e escreva ele no display BCD / 7 segmentos ligado utilizando um baudrate de 1200 bps e clock de 6 MHz.
- Calculando o valor de recarga do T/C 1 para o baudrate estipulado com SMOD = 0:

$$Taxa\ de\ baudrate = \frac{2^{SMOD}}{32} \cdot \frac{f_{CLK}}{12 \cdot (256 - TH1)}\ [bits/s]$$

$$1200 = \frac{2^0}{32} \cdot \frac{6 \cdot 10^6}{12 \cdot (256 - TH1)}$$

$$256 - TH1 = \frac{6 \cdot 10^6}{32 \cdot 12 \cdot 1200}$$

$$256 - TH1 = 13,021$$

$$TH1 = 256 - 13,021 \approx 243d\ ou\ 0F3h$$

Referências

- NICOLOSI, D. E. C. Microcontrolador 8051 detalhado. 9ª ed., São Paulo: Érica, 2013.
- NICOLOSI, D. E. C.; BRONZERI, R. B. Microcontrolador 8051 com linguagem C prático e didático: família AT89S8252 Atmel. 2ª ed., São Paulo: Érica, 2009.
- GIMENEZ, S. P. *Microcontroladores 8051: teoria e prática*. São Paulo: Érica, 2010.

Tabela ASCII

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	4
1	1	[START OF HEADING]	33	21	1	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	[END OF TRANSMISSION]	36	24	5	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	δı.	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	q
8	8	[BACKSPACE]	40	28	(72	48	Н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	1
10	A	[LINE FEED]	42	2A		74	4A	1	106	6A	1
11	В	[VERTICAL TAB]	43	28	+	75	48	K	107	6B	k
12	C	IFORM FEEDI	44	2C		76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	E	ISHIFT OUT!	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	IDEVICE CONTROL 11	49	31	1	81	51	0	113	71	a
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	IDEVICE CONTROL 31	51	33	3	83	53	S	115	73	5
20	14	(DEVICE CONTROL 4)	52	34	4	84	54	T	116	74	t
21	15	INEGATIVE ACKNOWLEDGE	53	35	5	85	55	U	117	75	u
22	16	(SYNCHRONOUS IDLE)	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	٧
26	1A	ISUBSTITUTEI	58	3A.		90	5A	Z	122	7A	z
27	18	[ESCAPE]	59	3B		91	58	1	123	7B	4
28	1C	IFILE SEPARATORI	60	3C	<	92	5C	1	124	7C	1
29	10	[GROUP SEPARATOR]	61	3D		93	5D	1	125	7D	1
30	1E	(RECORD SEPARATOR)	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F		127	7F	[DEL]