Exercises on Cryptographic Boolean functions

Anne Canteaut, March 2025

Exercise 1. (Walsh spectrum of quadratic functions).

- 1. Let f be a Boolean function of n variables. For any $a \in \mathbf{F}_2^n$, the derivative of f with respect to a is the n-variable Boolean function $D_a f: x \mapsto f(x+a)+f(x)$. The set $\mathsf{LS}(f)$ of all $a \in \mathbf{F}_2^n$ such that $D_a f$ is constant is named the linear space of f. It can be decomposed into $\mathsf{LS}_0(f) = \{a \in \mathsf{LS}(f) : D_a f = 0\}$ and $\mathsf{LS}_1(f) = \{a \in \mathsf{LS}(f) : D_a f = 1\}$.
 - Prove that LS(f) is a linear subspace of \mathbb{F}_2^n .
 - Prove that the subset $\mathsf{LS}_0(f)$ is a linear subspace of $\mathsf{LS}(f)$.
 - Prove that $LS_1(f)$ is either empty or is of the form $\alpha + LS_0(f)$ for some $\alpha \in \mathbf{F}_2^n$.
- 2. Let f be a Boolean function of n variables. Prove that, for any $a \in \mathbf{F}_2^n$,

$$\mathcal{E}^2(f + \varphi_a) = \sum_{b \in \mathbf{F}_2^n} (-1)^{a \cdot b} \mathcal{E}(D_b f) . \tag{1}$$

- 3. Let f a Boolean function of n variables with degree 2.
 - Using (1), prove that f is balanced if and only if there exists $\alpha \in \mathbf{F}_2^n$ such that $D_{\alpha}f = 1$.
 - Prove that, for any $a \in \mathbf{F}_2^n$,

$$\mathcal{E}(f+\varphi_a) \in \{0, \pm 2^{\frac{n+k}{2}}\}\$$

where k is the dimension of LS(f).

Exercise 2. (Linear approximation table of a 5-bit Sbox)

The following table is the linear approximation table of a 5-bit Sbox S. Its entry at Row a and Column b is the value $\mathcal{E}(S_b + \varphi_a)$.

 $\frac{32}{0}$ 0 16 -16 16 16 0 -16 0 0 -8 -16 0 8 0 8 0 0 0 0 0 -8 0 -8 0 0 0 0 0 16 0 0 16 16 -16 0 16 0 0 0 0 0 0 $0 \\ 0$ $_{0}^{0}$ 8 0 -8 0 -8 0 0 -8 0 0 0 0 -8 0 0 0 0 0 0 0 0 0 0 -16 16 16 0 0 -8 -8 16 16 16 0 8 0 -8 0 0 0 0 0 $\begin{array}{c}
 8 \\
 8 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0
 \end{array}$ -8 0 -8 0 -8 8 0 0 16 -8 0 8 0 $0\\0\\8$ 0 16 0 -16 -8 8 0 0 16 -16 16 16 $_{0}^{0}$ $_{0}^{0}$ 16 0 16 0 0 0 -16 0 16 -8 8 -8 0 -8 -8 8 8 -8 0 0 -8 0 0 -8 0 0 0 8 0 0 0 0 -8 0 -8 0 $\frac{0}{16}$ $\begin{array}{c}
 8 \\
 0 \\
 0 \\
 0 \\
 0
 \end{array}$ -8 0 0 -16 8 0 -8 0 8 16 0 8 -8 0 0 8 8 8 0 0 8 -8 0 -8 16 0 0 0 0 0 -8 -8 0 8 8 8 0 -8 0 -8 8 8 0 -8 0 -8 8 0 0 -8 8 0 0 -8 0 -8 0 8 0 0 -8 0 -8 -8 0 8 0 0 -8 8 -8 8 0 -8 0 -8 8 -8 0 0 $\begin{matrix} 0 \\ 0 \\ 0 \end{matrix}$ -8 $_{0}^{0}$ -8 -8

- 1. Is S a permutation?
- 2. Is S a power function?
- 3. Find a lower bound on the degree of S.
- 4. Prove that S^{-1} has degree 2. More generally, prove that if all Walsh coefficients of a Boolean function f are divisible by 2^{ℓ} , then deg $f \leq (n+1) \ell$.

Exercise 3. (Degree of the composition of Sboxes)

1. Let us consider the 4-bit Sbox defined by the following table:

x	0	1	2	3	4	5	6	7	8	9	a	b	\mathbf{c}	d	e	\mathbf{f}
$\overline{S(x)}$	f	e	b	c	6	d	7	8	0	3	9	a	4	2	1	5
$S_1(x)$	1	0	1	0	0	1	1	0	0	1	1	0	0	0	1	1
$S_2(x)$	1	1	1	0	1	0	1	0	0	1	0	1	0	1	0	0
$S_3(x)$	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1
$S_4(x)$	1	1	1	1	0	1	0	1	0	0	1	1	0	0	0	0

All its coordinates have degree 3:

$$S_1(x_1, \dots, x_4) = 1 + x_1 + x_3 + x_4 + x_2x_3 + x_2x_4 + x_3x_4 + x_1x_3x_4 + x_2x_3x_4$$

$$S_2(x_1, \dots, x_4) = 1 + x_4 + x_1x_2 + x_1x_3 + x_1x_4 + x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4$$

$$S_3(x_1, \dots, x_4) = 1 + x_2 + x_4 + x_1x_2 + x_2x_3 + x_2x_4 + x_3x_4 + x_1x_2x_4 + x_1x_3x_4$$

$$S_4(x_1, \dots, x_4) = 1 + x_3 + x_4 + x_1x_3 + x_2x_4 + x_3x_4 + x_1x_3x_4 + x_2x_3x_4.$$

- Give an upper bound on the degree of the 4-variable Boolean function corresponding to the product (S_1S_2) .
- Give an upper bound on the degree of the 4-variable Boolean function $(S_1S_2S_3)$.
- Let δ_k denote the maximal degree of the product of k coordinates of S. Give an upper bound for each δ_k , $1 \le k \le 4$.
- Prove that, for any *n*-bit bijective Sbox, $\delta_k = n$ if and only if k = n.
- 2. Give an upper bound on the degree of the following 2-round function

Hint: first consider the degree of an 8-variable Boolean function

$$h(x_1,\ldots,x_8):=g(S(x_1,x_2,x_3,x_4),S(x_5,x_6,x_7,x_8))$$

where g is an 8-variable Boolean function whose ANF consists of a single monomial of degree 3. More generally, it can be proved that, if F is an n-bit function defined by $F := (S, S, \ldots, S)$ with S an m-bit bijective Sbox, then, for any $G : \mathbf{F}_2^n \to \mathbf{F}_2^n$,

$$\deg(G \circ F) \le n - \frac{n - \deg G}{m - 1} \ .$$

3. Let us consider a cipher operating on 64-bit blocks, whose round function is defined as follows, where a_i and b_i denote 4-bit elements, S is a 4-bit Sbox and L an 8-bit linear function.

2

How many rounds are needed until the cipher reaches the highest possible degree?

Exercise 4. (Power permutations on \mathbf{F}_{2^n} , n even) Let n be an even integer, and s be an integer between 1 and $2^n - 1$.

1. Let α be a primitive element of \mathbf{F}_{2^n} and $\beta = \alpha^{(2^n-1)/3}$. Prove that β is a solution of

$$(x+1)^s + x^s = 1$$

unless $s \mod 3 = 0$.

2. Deduce that there is no power permutation on \mathbf{F}_{2^n} when n even.