# 基于 SVM 的水稻叶病识别

# 目录

| 基 | 于 SVM 的水稻叶病识别 | . 1 |
|---|---------------|-----|
| 1 | 观察数据集         | . 2 |
| 2 | 分类预测的初步思路     | . 2 |
| 3 | 数据预处理         | . 3 |
| 4 | 实验过程          | . 5 |
| 5 | 结果            | . 7 |
| 6 | 结论            | . 8 |
| 附 | ·录(关于此次实验)    | . 9 |

# 1 观察数据集

数据集来源:

http://archive.ics.uci.edu/ml/datasets/Rice+Leaf+Diseas

es

共有三类疾病:

- 1. Bacterial leaf blight (细菌性叶枯病)
- 2. Brown spot (褐斑病)
- 3. Leaf smut (叶黑穗病)

每类疾病 40 张 jpg 图片, 且大部分尺寸为 3081x897, 但不全是, 所以在训练和测试过程中需要 resize。

因为数据集较小,所以神经网络算法并不适用。选择 SVM 进行多分类。

# 2 分类预测的初步思路

- 1. 数据预处理
- 2. 提取若干特征
- 3. 将数据集分为训练集和测试集。训练集为每类的前 32 张图,测试集为每类的后 8 张图。
- 4. 训练 SVM 进行多分类

### 3 数据预处理

将数据集文件夹及其文件批量重命名为序号形式,以便批量输入到模型中进行训练和预测。具体地将数据集子文件夹重命名为1、2、3,并分别将其内图片重命名为"DIR\_NUM (PIC\_NUM).jpg"。样例如图所示。



图 数据集子文件夹1内图片重命名样例

对图像进行分割,得到患病部分图像,然后将所有患病部分图像 resize 成统一大小。

如:

将下图通过一些图形学处理:



图 水稻叶病样例图

得到分割后的患病部分图像:



图 分离的水稻叶病

然后 resize 成统一大小。

# 4 实验过程



图 思维导图

- 1. 观察每种疾病的图片大致特征
- 2. 提取患病部位的图像:
  - 1. 将图像从 RGB 转成 YCbCr, 这种颜色模式更适合叶子患病部位的分离。
  - 2. 利用 Cr 通道筛选出初步的患病部分。
  - 3. 将患病部分转成 bw 二制图。

- 4. 对 bw 进行腐蚀膨胀开闭运算等一系列形态学操作,以更好地提取患病部分。
- 5. 根据新提取的患病部分重建 RGB 原图得到患病部分的 RGB 图。
- 6. resize 患病部分的 RGB 图。
- 3. 对患病部分的 RGB 图进行一些特征的提取,得到特征向量(13个特征)

通过患病部分 RGB 图的灰度共生矩阵 (GLCM),得到:

Contrast (对比度)

Correlation (互相关)

Energy (能量)

Homogeneity (同质性)

Mean(均值)

Standard Deviation (标准差)

Entropy (熵)

Root Mean Square (均方根)

Variance (方差)

Smoothness (平滑度)

#### Kurtosis (峰度)

### Skewness (偏度)

Inverse Difference Moment (逆差矩, 测量图像的局部均匀性)

- 4. 在训练集中, 使用特征向量训练 SVM 进行多分类
- 5. 在测试集中, 提取特征向量并使用训练好的 SVM 进行预测
- 6. 计算准确率。

# 5 结果

测试集准确率: 75% (18/24)。

#### 表 正确预测的类别分布

| 类别      | 名称           | 准确占比 | 同类占比 |
|---------|--------------|------|------|
| Class 1 | Bacterial    | 7/18 | 7/8  |
|         | leaf blight  |      |      |
|         | (细菌性叶枯       |      |      |
|         | 病)           |      |      |
| Class 2 | Brown spot   | 5/18 | 5/8  |
|         | (褐斑病)        |      |      |
| Class 3 | Leaf smut (中 | 6/18 | 6/8  |
|         | 黑穗病)         |      |      |

| Total |  |  | 18/24 (75%) |
|-------|--|--|-------------|
|-------|--|--|-------------|

test accuracy: 75%

Correctly predicted class distribution:

Total right/Total number: 18/24

Class 1: Bacterial leaf blight (细菌性叶枯病), right: 7/18

Class 2: Brown spot (褐斑病), right: 5/18 Class 3: Leaf smut (叶黑穗病), right: 6/18

#### 图 运行结果

#### 6 结论

- 1. 总体来说, 预测的准确率还能接受, 75%。还有很大的提升空间(在优化患病部位图像提取的情况下)。
- 可以看出对于第一类患病图像,预测准确率高达 7/8。这是因为在分割患病图像阶段,该类的患病部位提取较为简单且精确。
- 3. 而第二、三类的预测准确率并不是很高,是因为这两类患病图像特征并不是很好提取,在数据集中可以发现,患病图像的差异较大。

#### 4. 不足:

### 图像处理阶段:

对于第一类患病图像,分割较容易,但对于后两种患病图像,一些图像的分割效果并不理想,所以影响了准确率。

### 特征提取阶段:

因为对图像特征的了解有限, 选取的特征中有些可能并不

适合本实验,不合适的特征也影响了准确率。

# 附录 (关于此次实验)

此次实验是本学期我们学的数据挖掘课程的最后一个综合 实验的选题 1。