Лекции по введению в топологию

Лектор: Миллионщиков Д.В. Авторы конспекта: Ваня Коренев, Никита Ким, Глеб Собко

2курс, 2 поток. Осенний семестр 2024 г. 23января 2025 г.

^{*}tg: @gallehus

Содержание

1	Лекция 1 1.1 Основные понятия топологии.	3 3
2	Лекция 2	4
3	Лекция 3 3.1 Связность и линейная связность.	6 7
4	Лекция 4 4.1 Компактность.	8 8
5	Лекция 5	10
6	Лекция 6 6.1 Функциональная отделимость. 6.2 Связь компактности и нормальности.	12 12 13
7	Лекция 7 7.1 Разбиение единицы	13 13
8	Лекция 8 8.1 Кривые Пеано	15 15
9	Лекция 9 9.1 Теорема Титца о продолжении непрерывной функции	16 17
10	Лекций 10	18
11	Лекция 11 11.1 Тихоновская топология и теорема Тихонова 11.2 Фактор-топология 11.3 Склейка пространств 11.4 Одноточечная компактификация	19 19 19 19 20
12	Лекция 12 12.1 Алгебраическая топология. Теория гомотопий	20 20
13	Лекция 13 13.1 Фундаментальная группа	21 21
14	Лекция 14 14.1 Накрытие	22 22
15	Лекция 15	23

1.1 Основные понятия топологии.

Читателю рекомендуется повторить определения окрестности точки, открытого множества, замкнутого множества, непрерывной функции, компакта, связности.

Определение 1.1. Метрическое пространство — это пара (X, ρ) , где X — множество, а $\rho : X \times X \to \mathbb{R}$ — функция, удовлетворяющая следующим аксиомам:

- 1. $\forall x, y \in X : \rho(x, y) = 0 \Leftrightarrow x = y;$
- 2. $\forall x, y \in X : \rho(x, y) \ge 0$;
- 3. $\forall x, y \in X : \rho(x, y) = \rho(y, x);$
- 4. $\forall x, y, z \in X : \rho(x, z) \le \rho(x, y) + \rho(y, z)$.

 Φ ункция ρ называется метрикой (функцией расстояния). Часто метрическим пространством называют само множество X, если функция ρ очевидно подразумевается.

Утверждение 1.1. $(\mathbb{R}^1, \rho = |x - y|)$ является метрическим пространством.

Определение 1.2. Топологическое пространство — это пара (X, \mathcal{T}) , где X — множество, а $\mathcal{T} \subseteq 2^X$ — набор подмножеств X, удовлетворяющий следующим аксиомам:

- 1. $\varnothing, X \in \mathcal{T}$;
- 2. $\bigcap_{i=1}^{n} U_i \in \mathcal{T}$, $\varepsilon \partial e U_i \in \mathcal{T} \quad \forall i = 1, \ldots, n$;
- 3. $\bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}$, где $U_{\alpha} \in \mathcal{T} \ \forall \alpha \in A \ (A произвольное индексирующее множество);$

Множество $\mathcal T$ называется топологией на X, а элементы $\mathcal T$ — открытыми подмножествами X.

Пример 1.1. 1. Антидискретная (тривиальная) топология на любом множестве $X: \mathcal{T} = \{\emptyset, X\}.$

- 2. Дискретная топология на любом множестве $X: \mathcal{T} = 2^X$.
- 3. На $X = \{1,2\}$, можно задать 4 топологии: антидискретную (в таком случае пространство X называется слипиимся двоеточием), дискретную (в таком случае пространство X называется простым или несвязным двоеточием) и две другие: $\mathcal{T}_1 = \{X, \varnothing, \{1\}\}$, $\mathcal{T}_2 = \{X, \varnothing, \{2\}\}$. Простраство X с топологиями \mathcal{T}_1 и \mathcal{T}_2 называется связным двоеточием.

Определение 1.3. Пусть (X, ρ) — метрическое пространство. Открытый шар в X с центром x_0 и радиусом r — это множество $O_r(x_0) = \{x \in X \mid \rho(x, x_0) < r\}$. Открытые шары также называют открытыми окрестностями точек, которые они содержат, в метрическом пространстве.

Определение 1.4. Пусть X — метрическое пространство. Подмножество $U \subset X$ называется открытым, если $\forall x \in U$ существует открытый шар (= открытая окрестность точки x), содержащий x и лежащий x U.

Замечание 1.1. Любое метрическое пространство является топологическим, если определить топологию на нём через открытые шары (т.е. считать открытые шары открытыми множествами). Доказательство этого факта см. в теореме (T. 2.1) на стр. (5).

Определение 1.5. Пусть X — топологическое пространство. Подмножество $U \subseteq X$ называется замкнутым, если $X \backslash U$ открыто.

Задача 1.1. Доказать, что топология может быть определена через понятие замкнутых множеств.

Пример 1.2. Топология Зарисского: Рассмотрим множество \mathbb{C}^1 и назовём в нём замкнутыми подмножествами любые конечные наборы точек: $\{z_1,\ldots,z_n\}$ (пустой набор точек также считается конечным). Топологию Зарисского можно обобщить на произвольное множество X: будем считать замкнутыми любые конечные подмножества $U\subseteq X$.

Задача 1.2. Доказать, что топология Зарисского действительно является топологией.

Определение 1.6. База $\mathfrak B$ топологии $\mathcal T$ на X — это подмножество $\mathfrak B\subseteq \mathcal T$ такое, что $\forall U\in \mathcal T$ можно выразить в виде объединения элементов базы $\mathfrak B$, т.е. $U=\bigcup_{\alpha\in A}B_{\alpha}$, где $B_{\alpha}\in \mathfrak B$.

База топологии позволяет уменьшить количество изначально задаваемых открытых множеств, определяющих топологию.

Лемма 1.2 (Достаточное условие на базу топологии). Пусть $\mathfrak{B} \subseteq 2^X$ - набор подмножеств X. Тогда если выполняются следующие условия:

1. $\forall x \in X \ \exists B_x \in \mathfrak{B}: \ x \in B_x$,

2.
$$\forall B_1, B_2 \in \mathfrak{B}$$
: $(x \in B_1 \cap B_2 \Rightarrow \exists B_3 \in \mathfrak{B} : x \in B_3 \subset B_1 \cap B_2)$,

то \mathfrak{B} является базой некоторой топологии.

Доказательство. Рассмотрим всевозможные $U_{\alpha} = \bigcup_{\gamma} B_{\gamma}^{(\alpha)}$. Проверим все свойства из определения топологии.

Легко проверить, что выполняются первое свойство из определения топологии. В качество Ø можно взять объединение пустого числа множеств, а в качестве X - объединение всех элементов базы, оно будет равно X, т.к. для каждого $x \in X$ существует элемент базы, содержащий его.

Докажем выполнение второго свойства. Благодаря принципу математической индукции достаточно доказать, что k=2.

$$U_1 \cap U_2 = \bigcup_{\alpha \in A_1} B_{\alpha}^{(1)} \cap \bigcup_{\alpha \in A_2} B_{\alpha}^{(2)} = \bigcup_{\alpha_1 \in A_1, \alpha_2 \in A_2} B_{\alpha_1}^{(1)} \cap B_{\alpha_2}^{(2)} = \bigcup_{\alpha_1 \in A_1, \alpha_2 \in A_2} \bigcup_{x \in B_{\alpha_1}^{(1)} \cap B_{\alpha_2}^{(2)}} B_{3,x}^{(\alpha_1, \alpha_2)}.$$

Тут $B_{3,x}^{(\alpha_1,\alpha_2)}$ существует из-за пункта 2. В итоге мы получили, что $U_1 \cap U_2$ можно выразить в виде объединения элементов базы.

Докажем выполнение третьего свойства.

$$\bigcup_{\alpha \in A} U_{\alpha} = \bigcup_{\alpha \in A} \bigcup_{\gamma \in \Gamma} B_{\gamma}^{(\alpha)} = \bigcup_{(\alpha, \gamma) \in A \times \Gamma} B_{\gamma}^{(\alpha)}.$$

Опять получили объединения элементов базы.

Итак, всевозможные объединения элементов $\mathfrak B$ задают топологию на X, значит, $\mathfrak B$ является базой этой топологии.

Задача 1.3. Повторить доказательство для базы метрического пространства.

Определение 1.7. Предбаза Π топологии $\mathcal T$ на X — это множество $\Pi \subset \mathfrak B \subset \mathcal T$, где $\mathfrak B$ — база $\mathcal T$, такое, что: $\forall U \in \mathfrak B$: U есть конечное пересечение элементов предбазы, т.е. $\forall U \in \mathfrak B$: $U = \bigcap_{i=1}^k P_i$, где $P_i \in \Pi, k \in \mathbb N$. Иначе говоря: предбаза Π топологии $\mathcal T$ на X — это множество $\Pi \subset \mathfrak B \subset \mathcal T$, где $\mathfrak B$ — база $\mathcal T$, такое, что: $\forall U \in \mathcal T$: U есть объединение конечных пересечений элементов предбазы, т.е.

$$\forall U \in \mathcal{T}: \ U = \bigcup \bigcap_{i=1}^k P_i, \, \imath \partial e \ P_i \in \Pi, k \in \mathbb{N}.$$

Предбаза топологии позволяет ещё уменьшить количество изначально задаваемых открытых множеств, определяющих топологию.

Замечание 1.2. Любое множество задает предбазу некоторой топологии.

Пример 1.3. Пусть $X = \{1, 2, 3, 4, 5\}.$

Пусть
$$\Pi = \{\{1,2,3\},\{2,3,4\},\{3,4,5\}\} - npedbasa.$$
 Тогда $\mathfrak{B} = \{\underbrace{\{1,2,3\},\{2,3,4\},\{3,4,5\},}_{\text{Элементы Π}}$ Все конечные пересечения элементов Π $\mathcal{T} = \{\underbrace{\{1,2,3\},\{2,3,4\},\{3,4,5\},\{2,3\},\{3,4\},\{3\},\underbrace{\emptyset,\{1,2,3,4\},\{2,3,4,5\},\{1,2,3,4,5\}}_{\text{Элементы \mathfrak{B}}}\}$ — топология на X .

$$\mathcal{T} = \{\underbrace{\{1,2,3\},\{2,3,4\},\{3,4,5\},\{2,3\},\{3,4\},\{3\}}_{\text{пология на }X},\underbrace{\varnothing,\{1,2,3,4\},\{2,3,4,5\},\{1,2,3,4,5\}}_{\text{пология на }X}\} - \textit{mononorus на }X$$

2 Лекция 2

Литература:

- 1. Федорчук В.В., Филиппов В.В. Общая топология. Основные конструкции.
- 2. Виро О.Я., Иванов О.А., Нецветаев Н.Ю., Харламов В.М. Элементарная топология.

Определение 2.1. Пусть (X, \mathcal{T}) — топологическое пространство. Если топология \mathcal{T} на X может быть порождена некоторой метрикой ρ на X, то пространство (X,\mathcal{T}) называется метризуемым.

Замечание 2.1. Существует ряд критериев метризуемости топологических пространств: см. Критерий метризуемости Нагаты - Ю.М.Смирнова, 1950-1951.

Определение 2.2. Пусть (X, ρ) — метрическое пространство. Открытый шар радиуса $\varepsilon > 0$ с центром в точке x_0 — это множество $O_{\varepsilon}(x_0) = \{x \in X : \rho(x, x_0) < \varepsilon\}.$

Теорема 2.1. Пусть (X, ρ) — метрическое пространство. Тогда шары $O_{\varepsilon}(x)$ образуют базу топологии, порождённой на X метрикой ρ .

Доказательство. Рассмотрим множество $\mathfrak B$ всех открытых шаров в пространстве X: $\mathfrak B = \{O_{\varepsilon}(x) \mid x \in X, \ \varepsilon > 0\}$. Проверим для $\mathfrak B$ оба пункта достаточного условия на базу:

- 1. Очевидно, $\forall x \in X \ \exists O_{\varepsilon}(x) : x \in O_{\varepsilon}(x)$
- 2. Обозначим: $B_1 = O_{\varepsilon_1}(x_1), \ B_2 = O_{\varepsilon_2}(x_2)$ и покажем, что $\forall x \in B_1 \cap B_2 \ \exists B_3 = O_{\varepsilon}(x) \in \mathfrak{B} : B_3 \subset B_1 \cap B_2$. По определению открытых шаров B_1 и B_2 : $\rho(x,x_1) < \varepsilon_1, \ \rho(x,x_2) < \varepsilon_2$. Положим $\varepsilon = \min \{\varepsilon_1 \rho(x_1,x), \varepsilon_2 \rho(x_2,x)\}$. Тогда: $\forall y \in O_{\varepsilon}(x)$:

$$\rho(y, x_1) \le \rho(y, x) + \rho(x, x_1) < \varepsilon + \rho(x, x_1) \le \varepsilon_1 - \rho(x, x_1) + \rho(x, x_1) = \varepsilon_1.$$

Значит, $y \in O_{\varepsilon_1}(x_1)$. Аналогично: $\rho(y,x_2) < \varepsilon_2 \Rightarrow y \in O_{\varepsilon_2}(x_2)$. Т.к. это верно $\forall y \in O_{\varepsilon}(x)$, то: $O_{\varepsilon}(x) \subset B_1 \cap B_2$, т.е. $B_3 \subset B_1 \cap B_2$. Т.о. по достаточному условию на базу топологии: открытые шары в метрическом пространстве образуют базу топологии, порождённой метрикой этого пространства.

Определение 2.3. Пусть на множестве X заданы две топологии \mathcal{T}_1 и \mathcal{T}_2 . Говорят, что \mathcal{T}_2 сильнее \mathcal{T}_1 (\mathcal{T}_1 слабее \mathcal{T}_2) и пишут $\mathcal{T}_1 \leq \mathcal{T}_2$, если $\mathcal{T}_1 \subseteq \mathcal{T}_2$, т.е. если любое открытое в \mathcal{T}_1 множество будет открытым в \mathcal{T}_2 .

Такой способ сравнения топологий на множестве X относительно прост. Введённое отношение сравнения является отношением частичного порядка и образует на множестве всех топологий на X структуру частично упорядоченного множества (ЧУМа).

Пример 2.1. Рассмотрим антидискретную и дискретную топологии на множестве X:

$$\mathcal{T}_1 = \{\varnothing, X\} \subset \mathcal{T}_2 = 2^X.$$

В некотором смысле это два полюса сравнения: антидискретная топология на X является слабейшей, а дискретная — сильнейшей, т.е. для любой топологии \mathcal{T} на X: $\mathcal{T}_1 \leq \mathcal{T} \leq \mathcal{T}_2$. Тем не менее введённый порядок на X является частичным, и нетривиальные топологии могут быть несравнимы.

Задача 2.1. Метризумы ли тривиальные топологии (= антидискретная и дискретная)? Ответ:

- 1. Рассмотрим дискретную метрику: $\rho_D(x,y) = \begin{cases} 1, & \text{если } x \neq y, \\ 0, & \text{если } x = y. \end{cases}$ Дискретная метрика порождает дискретную топологию.
- 2. Антидискретная топология неметризуема.

Определение 2.4 (Индуцированной топологии подространства). Пусть (X, \mathcal{T}) - топологическое пространство, $Y \subset X$. Тогда Y образует топологическое пространство c топологией, называемой индуцированной (c пространства X) топологией (c пространичения) $\mathcal{T}|_{Y} = \{Y \cap U \mid U \in \mathcal{T}\}.$

Задача 2.2. Проверить, что индуцированная топология действительно является топологией на множестве Y, m.e. удовлетворяет аксиомам из определения топологии.

Пример 2.2. $X = \mathbb{R}^2$ - метрическое пространство с евклидовой метрикой, $Y \subset X$. Базой топологии, порождённой метрикой на пространстве X, являются открытые шары, а базой индуцированной топологии на Y являются всевозможные пересечения открытых шаров в X с Y.

Определение 2.5. Окрестность точки x в топологическом пространстве — это любое открытое множество этого пространства (т.е. элемент топологии), содержащее x.

Замечание 2.2. Из определений топологии и окрестности точки очевидно следует, что:

- 1. Пересечение конечного числа окрестностей точки является её окрестностью,
- 2. Объединение (произвольного числа) окрестностей точки является её окрестностью.

Утверждение 2.2. Пусть (X, \mathcal{T}) — топологическое пространство. Тогда $A \subseteq X$ - открыто \Leftrightarrow для каждой точки $x \in A$ существует её окрестность, лежащая в A.

Доказательство. (\Leftarrow): По условию: $\forall x \in A \ \exists \ O(x) \in \mathcal{T} : x \in O(x), \ O(x) \subseteq A$. Рассмотрим $C = \bigcup_{x \in A} O(x)$: $C \in \mathcal{T}$. Очевидно, что $A \subseteq C$, а т.к. для каждого $x \in A$ верно $O(x) \subseteq A$, то $C \subseteq A$. Получаем, что A = C, значит, $A \in \mathcal{T}$. (\Rightarrow): Раз A открыто, то A является окрестностью любой своей точки.

Определение 2.6. Пусть $x \in X$. Если $\{x\} \in \mathcal{T}$, то x называется изолированной точкой пространства X.

Замечание 2.3. В дискретной топологии на любом пространстве все точки являются изолированными.

Определение 2.7. Пусть $x \in X$, $A \subset X$. Тогда x называется точкой прикосновения множества A, если для любой $e\ddot{e}$ окрестности O(x) выполняется $O(x) \cap A \neq \emptyset$.

Определение 2.8. Пусть $x \in X$, $A \subset X$. Тогда x называется внутренней точкой множества A, если существует $e\ddot{e}$ окрестность O(x): $O(x) \subset A$.

Определение 2.9 (A1). Замыкание множества A — это множество всех точек прикосновения A. Обозначение: \overline{A} .

Определение 2.10 (B1). Внутренность множества A — это множество всех внутренних точек A. Обозначение: Int(A).

Задача 2.3. Показать, что: $\operatorname{Int}(A) \subset A \subset \overline{A}$.

Определение 2.11 (A2). Замыкание \overline{A} множества A — это пересечение всех замкнутых множеств, содержащих A. Иными словами, \overline{A} — это наименьшее по включению замкнутое множество, содержащее A.

Определение 2.12 (B2). Внутренность Int(A) множества A- это объединение всех открытых множеств, лежащих в A. Иными словами, Int(A)- это наибольшее по включению открытое множество, лежащее в A.

Теорема 2.3. Определение A1 эквивалентно определению A2; Определение B1 эквивалентно определению B2.

Доказательство. Доказательство эквивалентности определений A1 и A2 остаётся в качестве упражнения читателю. Докажем эквивалентность определений B1 и B2.

Пусть $Int_1(A)$ - множество внутренних точек A в смысле определения B1, а $Int_2(A)$ — в смысле определения B2. Покажем, что эти множества равны:

- (⊆): Если $x \in \text{Int}_1(A)$, то существует его окрестность $O(x) \subset A$. Но O(x) открыто, а значит, $O(x) \subset \text{Int}_2(A)$, и $x \in \text{Int}_2(A)$. Получаем, что $\text{Int}_1(A) \subseteq \text{Int}_2(A)$.
- (\supseteq) : Если $x \in \operatorname{Int}_2(A)$, то x принадлежит какому-то открытому $V \subset A$. Но тогда мы можем взять V в качестве окрестности точки x. Получаем, что $x \in \operatorname{Int}_1(A)$, а значит, $\operatorname{Int}_1(A) \supseteq \operatorname{Int}_2(A)$. Итак, $\operatorname{Int}_1(A) = \operatorname{Int}_2(A)$, а значит, определения В1 и В2 эквивалентны. □

Определение 2.13. Пусть $x \in X$, $A \subset X$. Тогда x называется граничной точкой множества A, если x является точкой прикосновения A, но не является внутренней точкой A, т.е. если $x \in \overline{A}$, $x \notin \operatorname{Int}(A)$.

Определение 2.14. Граница множества A — это множество всех граничных точек A. Обозначение: $\mathrm{Bd}(A)$ или ∂A . По определению: $\mathrm{Bd}(A) = \overline{A} \setminus \mathrm{Int}(A)$.

Определение 2.15 (Понятия непрерывного отображения). Пусть $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$ — топологические пространства, $f: X \to Y$. Отображение f называется непрерывным в точке $x_0 \in X$, если для любой окрестности $O(f(x_0)) \in \mathcal{T}_Y$ существует такая окрестность $U(x_0) \in \mathcal{T}_X$, что $f(U(x_0)) \subset O(f(x_0))$.

Отображение f называется непрерывным (непрерывным отображением топологических пространств), если оно непрерывно во всех $x \in X$.

Утверждение 2.4. Следующие условия эквивалентны:

- 1. Отображение топологических пространств $f: X \to Y$ непрерывно.
- 2. Прообраз любого открытого множества под действием f является открытым, т.е. $U \in \mathcal{T}_Y \Rightarrow f^{-1}(U) \in \mathcal{T}_X$.
- 3. Прообраз любого замкнутого множества под действием f является замкнутым.
- 4. Для любого $A \subseteq X$: $f(\overline{A}) \subseteq \overline{f(A)}$ (На лекции утверждалось не включение, а равенство, но это неверно).

Доказательство. Доказательство эквивалентности условий 1, 3 и 4 остаётся в качестве упражнения читателю. Докажем $(1) \Leftrightarrow (2)$:

- (⇒): Пусть $V \subset Y$ открыто. Рассмотрим $\forall x \in f^{-1}(V)$: Т.к. $V \in \mathcal{T}_Y$ и $f(x) \in V$, то $\exists O(f(x)) \subset V$ окрестность f(x). Т.к. f непрерывно, то для найденной $O(f(x)) \exists U(x) \in \mathcal{T}_X$ окрестность $x: f(U(x)) \subset O(f(x)) \subset V$. Значит, $U(x) \subset f^{-1}(V)$. Получаем, что любая точка из $f^{-1}(V)$ входит в это множество вместе с некоторой своей окрестностью, а значит, $f^{-1}(V)$ открыто. Итак, прообраз любого открытого множества под действием f открыт.
- (\Leftarrow) : Пусть $x \in X$. Рассмотрим $\forall O(f(x)) \in \mathcal{T}_Y$ окрестность f(x). Т.к. O(f(x)) открыто, то $f^{-1}(O(f(x)))$ открыто в X выберем это множество в качестве окрестности x. Получаем, что $\forall x \in X \ \forall O(f(x)) \in \mathcal{T}_Y \ \exists U(x) \in \mathcal{T}_X : f(U(x)) \subset O(f(x))$, т.е. f непрерывно.

3 Лекция 3

Замечание 3.1. Проверять непрерывность отображения топологических пространств удобно на уровне базы или предбазы: Пусть $\mathfrak{B} \subset \mathcal{T}_Y$ — база (или предбаза) топологии на Y. Тогда отображение $f: X \to Y$ непрерывно \Longleftrightarrow прообраз любого элемента базы (предбазы) открыт: $f^{-1}(U) \subset \mathcal{T}_X$, $U \in \mathfrak{B}$.

Пример 3.1. 1. $f: \mathbb{R} \to \mathbb{R}$ — непрерывные функции одной переменной ("функции из математического анализа").

- 2. $f(x) = e^{2\pi i x} = \cos(2\pi x) + i\sin(2\pi x)$ (Эта функция представляет собой пример накрытия $f: \mathbb{R}^1 \to S^1$. Определение накрытия смотри (возможно) дальше в курсе).
- 3. Тривиальный пример: постоянное отображение $f(x)\equiv y_0,\ r\partial e\ f:X o Y\ u\ y_0\in Y.$
- 4. Композиция непрерывных отображений является непрерывным отображением: Пусть $X \xrightarrow{f} Y \xrightarrow{g} Z$; f, g непрерывные отображения. Тогда $g \circ f$ непрерывное отображение.
- 5. Пусть (X, \mathcal{T}) топологическое пространство, $Z \subset X$, на Z индуцирована топология $\mathcal{T}_Z = \mathcal{T}|_Z$. Рассмотрим отображение включения: $i: Z \to X$, i(x) = x. Тогда i непрерывно в индуцированной топологии \mathcal{T}_Z .
- 6. Пусть в дополнение к предыдущему пункту: существует $f: X \to Y$ непрерывное отображение. Рассмотрим отображение ограничения: $f|_Z: Z \to Y$. Оно непрерывно, т.к. является композицией непрерывных отображений: $f|_Z = f \circ i$.
- 7. Непрерывность в метрических пространствах:

Определение 3.1 (Непрерывности отображения метрических пространств по Коши). Пусть $(X, \rho_X), (Y, \rho_Y)$ — метрические пространства, $f: X \to Y$. Тогда отображение f называется непрерывным в точке $x_0 \in X$, если $\forall \varepsilon > 0 \; \exists \; \delta > 0 \; : f(O_\delta(x_0)) \subset O_\varepsilon(f(x_0)), \; \varepsilon$ оде O_δ и O_ε — открытые шары в пространствах X и Y соответственно.

Отображение f называется непрерывным (непрерывным отображением метрических пространств), если оно непрерывно во всех $x \in X$.

Определение 3.2 (Непрерывности отображения метрических пространств по Гейне). Пусть $(X, \rho_X), (Y, \rho_Y)$ — метрические пространства, $f: X \to Y$. Тогда отображение f называется непрерывным в точке $x_0 \in X$, если для любой последовательности $\{x_n\}_{n=1}^{\infty}$ элементов X, сходящейся κ x_0 , последовательность $\{f(x_n)\}_{n=1}^{\infty}$ сходится κ $f(x_0)$.

Отображение f называется непрерывным (непрерывным отображением метрических пространств), если оно непрерывно во всех $x \in X$.

Задача 3.1. Доказать эквивалентность определений непрерывности отображения метрических пространств по Коши и по Гейне.

Теорема 3.1 (Кривая Пеано). Существует непрерывное отображение $f:[0,1] \to [0,1] \times [0,1]$.

Доказательство этой теоремы смотри дальше в курсе.

Определение 3.3. Пусть X, Y- топологические пространства, $f: X \to Y$. Тогда отображение f называется гомеоморфизмом, если: 1) f- биекция, 2) f непрерывно, 3) f^{-1} непрерывно.

Eсли между пространствами X и Y существует гомеоморфизм, то эти пространства называются гомеоморфными.

Замечание 3.2. Свойство "быть гомеоморфными" очевидно является отношением эквивалентности на множестве топологических пространств, а значит, разбивает это множество на классы эквивалентности.

Чтобы доказать, что пространства не являются гомеоморфными, можно найти топологические свойства этих пространств, которые должны сохраняться при любом гомеоморфизме, но у этих пространств отличаются.

Пример 3.2. $f(x) = \text{tg}(x) : \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \xrightarrow{f} (-\infty, +\infty) = \mathbb{R}$ — гомеоморфизм.

3.1 Связность и линейная связность.

Определение 3.4. Топологическое пространство X называется несвязным, если его можно представить в виде объединения двух непустых непересекающихся открытых подмножеств.

 $\it Ecли$ же пространство $\it X$ так разбить нельзя, то оно называется связным.

- Пример 3.3. 1. Любое пространство с дискретной топологией несвязно, если содержит более одного элемента.
 - 2. Любое пространство с антидискретной топологией связно.

Теорема 3.2. Отрезок I = [0,1] с топологией, индуцированной естественной топологией вещественной прямой (т.е. топологией, порождённой на \mathbb{R} евклидовой метрикой), связен.

Доказательство. Заметим, что в условиях теоремы открытыми подмножествами отрезка I считаются интервалы вида (a,b), где 0 < a < b < 1; полуинтервалы вида [0,a), где $0 < a \leq 1$; полуинтервалы вида (b,1], где $0 \leq b < 1$; сам отрезок I и \varnothing ; а также их всевозможные объединения и конечные пересечения.

Докажем теперь теорему от противного: пусть отрезок I связен, т.е. $I = A \cup B$, где: 1) $A, B \neq \emptyset$; 2) $A \cap B = \emptyset$; 3) A, B — открыты. Без ограничения общности можем считать, что $0 \in A$. Т.к. A открыто, то 0 лежит в A вместе с некоторой своей окрестностью. Тогда или эта окрестность нуля совпадает со всем отрезком: $I \subseteq A \Rightarrow I = A \Rightarrow B = \emptyset$ — получаем противоречие, или эта окрестность нуля представляет собой полуинтервал, т.е. $\exists \varepsilon, 0 < \varepsilon \leq 1 : [0, \varepsilon) \subseteq A$.

Множество таких ε ограниченно (0 < $\varepsilon \le$ 1), следовательно, существует его супремум. Обозначим это множество Ω ($\Omega \subseteq A$), а его супремум — ε_0 :

$$\sup_{\varepsilon \in (0,1]} \Omega = \sup_{\varepsilon \in (0,1]} \left\{ \varepsilon \mid [0,\varepsilon) \subseteq A \right\} = \varepsilon_0.$$

Докажем теперь, что тогда $[0, \varepsilon_0] \subseteq A$. Т.к. ε_0 — супремум множества Ω , то по одному из свойств супремума: $\forall \delta > 0 \; \exists \, \varepsilon > 0 : \; \varepsilon_0 - \delta < \varepsilon < \varepsilon_0 \; \Rightarrow \; \varepsilon \in \Omega, \; \text{ т.е. } [0, \varepsilon) \subset \Omega \subset A$. Значит, ε_0 является точкой прикосновения множества Ω , а значит, и точкой прикосновения множества A.

Т.к. A и B являются открытыми и дополняют друг друга до I, то в индуцированной топологии на I они являются одновременно открытыми и замкнутыми. Значит, $A=\overline{A}$, т.е. A содержит все свои точки прикосновения. Значит, $\varepsilon_0\in A$. Но т.к. A открыто, то $\exists\,U(\varepsilon_0)$ — окрестность $\varepsilon_0\colon\,U(\varepsilon_0)\subset A$. Но тогда или $\varepsilon_0=1$, а значит, $A=I\Rightarrow B=\varnothing$ — противоречие, или $\varepsilon_0\neq 1\Rightarrow \exists\,\delta>0:\,[0,\varepsilon_0+\delta)=[0,\varepsilon_0]\cup[\varepsilon_0,\varepsilon_0+\delta)\subset A\Rightarrow \varepsilon_0+\delta\in\Omega$ — противоречие с тем, что $\varepsilon_0=\sup_{\varepsilon\in(0,1]}\Omega$.

Во всех случаях получаем противоречия, значит, исходное предположение неверно, а значит, отрезок I в индуцированной топологии связен.

Утверждение 3.3. Непрерывный образ связного пространства связен, т.е. если X связно, $f: X \to Y$ — непрерывное отображение, то f(X) связно.

Доказательство. От противного: пусть $f(X) = A \cup B$, где 1) $A, B \neq \varnothing$; 2) $A \cap B = \varnothing$; 3) A, B — открыты в индуцированной с Y на f(X) топологии. Но тогда $X = f^{-1}(A) \cup f^{-1}(B)$, причём 1) $f^{-1}(A), f^{-1}(B) \neq \varnothing$, т.к. $A, B \neq \varnothing$; 2) $f^{-1}(A) \cap f^{-1}(B) = \varnothing$, т.к. $A \cap B = \varnothing$; 3) $f^{-1}(A), f^{-1}(B)$ — открыты в X, т.к. A, B — открыты в индуцированной с Y на f(X) топологии, а f — непрерывное отображение. Значит, X несвязно — противоречие. \square

Определение 3.5. Путь γ в топологическом пространстве X, соединяющий точки $x_0, y_0 \in X$ — это непрерывное отображение $\gamma: [0,1] \to X$ такое, что $\gamma(0) = x_0$, $\gamma(1) = y_0$. Точка x_0 называется началом пути γ , а точка y_0 — концом пути γ .

Замечание 3.3. Из доказанных теоремы и утверждения следует, что $\gamma([0,1])$ — связно в топологии, индуцированной с области значений.

Определение 3.6. Пространство X называется линейно связным, если для любых двух точек $x, y \in X$ существует путь γ , соединяющий их и лежащий в пространстве X, т.е. $\gamma([0,1]) \subset X$.

Теорема 3.4. Пусть X линейно связно. Тогда X связно.

Доказательство. От противного: Пусть $X = A \cup B$, где 1) $A, B \neq \varnothing$; 2) $A \cap B = \varnothing$; 3) A, B — открыты в топологии на X. Т.к. X линейно связно, то $\forall x_0 \in A$ и $\forall y_0 \in B$ можно соединить путём: существует непрерывное отображением $\gamma: [0,1] = I \to X$ такое, что $\gamma(0) = x_0, \gamma(1) = y_0, \gamma(I) \subset X$. Тогда получаем, что $\gamma(I) = (\gamma(I) \cap A) \cup (\gamma(I) \cap B)$, причём $(\gamma(I) \cap A)$ и $(\gamma(I) \cap B)$ непусты, не пересекаются и открыты в топологии, индуцированной с X на $\gamma(I)$. Значит, $\gamma(I)$ несвязно — противоречие.

Замечание 3.4. Обратное неверно. Пример: объединение графика функции $f(x) = \sin \frac{1}{x}, x > 0$ с отрезком $\{ (0,y) \mid -1 \leq y \leq 1 \}$. Это подмножество плоскости \mathbb{R}^2 связно, но не является линейно связным. Доказательство этого факта остаётся читателю в качестве упражнения.

4 Лекция 4

4.1 Компактность.

Определение 4.1. Пусть (X, \mathcal{T}) — топологическое пространство. Система $\{U_{\alpha}\}_{{\alpha}\in A}\subseteq \mathcal{T}$ открытых подмножеств в X называется (открытым) покрытием множества $Y\subseteq X$, если $Y\subseteq \bigcup_{{\alpha}\in A}U_{\alpha}$.

Определение 4.2. Топологическое пространство X называется компактным (иначе, компактом), если из любого его открытого покрытия можно выделить конечное подпокрытие.

Замечание 4.1. В устаревшей терминологии описанное выше свойство называлось бикомпактностью, а в определении компактности (иначе, счётно-компактности) требовалась счётность исходного покрытия.

Теорема 4.1. Отрезок [a,b] компактен.

Доказательство. Пусть $\{U_{\alpha}\}_{{\alpha}\in A}$ — открытое покрытие отрезка [a,b]. Рассмотрим множество

$$\Pi = \{x \in [a,b] \mid [a,x]$$
 покрывается конечным числом элементов покрытия $\{U_{\alpha}\}\}.$

Т.о. $\Pi\subseteq[a,b]$, причём $\Pi\neq\varnothing$, т.к. $\exists\,U_{\alpha_0}\in\{U_\alpha\}_{\alpha\in A}:a\in U_{\alpha_0}.$ Значит, Π — непустое ограниченное подмножество в \mathbb{R} , а значит, существует $\sup\Pi$. Обозначим $\varepsilon_0=\sup\Pi$. Т.к. $\Pi\subseteq[a,b]$, то $\varepsilon_0\in[a,b]$, значит, $\exists\,U_{\widetilde{\alpha}_0}\in\{U_\alpha\}_{\alpha\in A}:\varepsilon_0\in U_{\widetilde{\alpha}_0}.$ Но $U_{\widetilde{\alpha}_0}$ открыто, значит, $\exists\,\delta>0:(\varepsilon_0-\delta,\varepsilon_0+\delta)\subset U_{\widetilde{\alpha}_0}.$ Т.к. ε_0 — супремум множества Π , то по свойству супремума:

 $\exists x_{\delta} \in \Pi : x_{\delta} \in (\varepsilon_0 - \delta, \varepsilon_0]$. Но тогда по определению ε_0 : $[a, x_{\delta}]$ покрывается конечным набором элементов из $\{U_{\alpha}\}_{\alpha \in A}$. Этот набор с добавленным элементом $U_{\widetilde{\alpha}_0}$ является конечным покрытием отрезка $[a, \varepsilon_0]$, значит, $\varepsilon_0 \in \Pi$.

Предположим теперь, что $\varepsilon_0 < b$. Тогда ε_0 является внутренней точкой отрезка [a,b], а значит, $\exists \, \varepsilon' > 0 : (\varepsilon_0 - \varepsilon', \varepsilon_0 + \varepsilon') \subset [a,b]$. Тогда $[\varepsilon_0 - \frac{\varepsilon'}{2}, \varepsilon_0 + \frac{\varepsilon'}{2}] \subset [a,b]$. По определению $\varepsilon_0 : [a,\varepsilon_0 - \frac{\varepsilon'}{2}]$ покрывается конечным набором элементов из $\{U_\alpha\}$. Но тогда этот набор с добавленным элементом $(\varepsilon_0 - \varepsilon', \varepsilon_0 + \varepsilon')$ является конечным покрытием отрезка $[a,\varepsilon_0 + \frac{\varepsilon'}{2}]$, а значит, $\varepsilon_0 \neq \sup \Pi$ — противоречие. Получаем, что $\varepsilon_0 = b$, а значит, весь отрезок [a,b] покрывается конечным числом элементов из $\{U_\alpha\}_{\alpha \in A}$, т.е. является компактом.

Лемма 4.2 (о вложенных отрезках). Пусть дана система вложенных отрезков: $[a_1,b_1]\supset [a_2,b_2]\supset\ldots\supset [a_n,b_n]\supset\ldots$ Тогда их пересечение $\bigcap_{i=1}^{\infty}[a_i,b_i]\neq\varnothing$. При этом, если $(b_n-a_n)\to 0$ при $n\to\infty$, то их пересечние состоит из одной точки.

Доказательство. Данная лемма доказывается в курсе математического анализа, так что здесь её доказательство мы приводить не будем. Однако мы докажем обобщение этой леммы на случай топологических пространств. □

Определение 4.3. Система $\{X_{\alpha}\}_{{\alpha}\in A}$ подмножеств множества X называется центрированной, если пересечение любого конечного числа её элементов не пусто.

Лемма 4.3 (Обобщение леммы о вложенных отрезках для топологических пространств). Пусть X — топологическое пространство, $\{F_i\}_{i=1}^{\infty}$ — последовательность замкнутых непустых подмножеств X такая, что $X \supset F_1 \supset F_2 \supset \ldots \supset F_n \supset \ldots$ Тогда если X — компакт, то $\bigcap_{i=1}^{\infty} F_i \neq \varnothing$.

Доказательство. Данная лемма немедленно следует из следующей теоремы с тем лишь замечанием, что множество замкнуто тогда и только тогда, когда его дополнение открыто.

Теорема 4.4. Топологическое пространство X компактно \Leftrightarrow любая центрированная система замкнутых подмножеств в X имеет непустое пересечение.

Доказательство. (\Rightarrow) : Пусть $\{F_i\}_{i=1}^{\infty}$ — центрированная система замкнутых подмножеств в X и $\bigcap_{i=1}^{\infty} F_i = \varnothing$. Тогда множества $U_i = X \setminus F_i$ открыты в X. Рассмотрим $\bigcup_{i=1}^{\infty} U_i$:

$$\bigcup_{i=1}^{\infty} U_i = \bigcup_{i=1}^{\infty} (X \setminus F_i) = X \setminus \bigcap_{i=1}^{\infty} F_i = X.$$

Значит, система $\{U_i\}_{i=1}^{\infty}$ образует покрытие X. Т.к. X компактно, то из этого покрытия можно выбрать конечное подпокрытие $\{U_{i_j}\}_{j=1}^{n}$:

$$\bigcup_{j=1}^{n} U_{i_j} = X.$$

Но тогда $\bigcap_{j=1}^n F_{i_j} = \emptyset$, а значит, система $\{F_i\}_{i=1}^\infty$ не является центрированной — противоречие. Значит, $\bigcap_{i=1}^\infty F_i \neq \emptyset$. (\Rightarrow) : Доказательство этого утверждения остаётся читателю в качестве упражнения.

Определение 4.4. Топологическое пространство X называется локально компактным, если $\forall x \in X$ и для любой окрестности O(x) точки x существует окрестность V(x) такая, что замыкание $\overline{V(x)} \subset O(x)$ и $\overline{V(x)}$ — компакт.

Определение 4.5. Семейство $\{X_{\alpha}\}_{{\alpha}\in A}$ подмножеств в X называется локально конечным, если $\forall x\in X$ существует окрестность O(x) точки x, которая пересекается лишь c конечным числом множеств из семейства $\{X_{\alpha}\}_{{\alpha}\in A}$.

Определение 4.6. Говорят, что семейство V подмножеств множества X вписано в семейство U, если всякий элемент семейства V содержится в некотором элементе семейства U.

Определение 4.7. Топологичесоке пространство X называется паракомпактным, если в любое его открытое покрытие можно вписать локально конечное подпокрытие.

Пример 4.1. Пространства $\mathbb{R}^n, n \geq 1$ являются паракомпактными.

Лемма 4.5 (о наследовании компактностей). Пусть X — топологическое пространство, $X \supset A$ и A — замкнуто. Тогда:

- 1. X компактно \Rightarrow A компактно;
- 2. X локально компактно \Rightarrow A локально компактно;
- 3. X паракомпактно $\Rightarrow A$ паракомпактно.

Задача 4.1. Доказать лемму выше.

Утверждение 4.6. Пусть $f: X \to Y$ — непрерывное отображение топологических пространств. Тогда если X компактно, то $f(X) \subset Y$ тоже компактно.

Доказательство. Пусть $\{V_{\alpha}\}_{\alpha\in A}$ — открытое покрытие f(X). Рассмотрим семейство $\{f^{-1}(V_{\alpha})\}_{\alpha\in A}$: в силу непрерывности f оно состоит из открытых множеств и является покрытием X, а значит, в силу компактности X из него можно выбрать конечное подпокрытие $\{f^{-1}(V_{\alpha_i})\}_{i=1}^n$. Но тогда семейство $\{V_{\alpha_i}\}_{i=1}^n$ будет конечным покрытием f(X), а значит, f(X) — компакт.

Задача 4.2. Рассмотреть аналогичные утверждения о локальной компактности и паракомпактности.

Определение 4.8 (Аксиомы отделимости). Пусть X — топологическое пространство. Тогда говорят, что X удовлетворяет аксиоме отделимости T_i тогда и только тогда, когда:

- 1. T_0 (аксиома Колмогорова): $\forall x, y \in X, x \neq y$: существует окрестность O(x) точки x такая, что $y \notin O(x)$ или существует окрестность O(y) точки y такая, что $x \notin O(y)$.
- 2. T_1 (аксиома Тихонова): $\forall x,y \in X, x \neq y$: найдутся окрестности O(x) точки x и O(y) точки y такие, что $y \notin O(x)$ и $x \notin O(y)$.
- 3. T_2 (аксиома Хаусдорфа): $\forall x,y \in X, x \neq y$: найдутся окрестности O(x) точки x и O(y) точки y такие, что $O(x) \cap O(y) = \varnothing$.
- 4. T_3 : для любой точки x из X и для любого замкнутого подмножества $F \subset X$, не содержащего x, существуют непересекающиеся окрестности O(x) и O(F) (где окрестность O(F) это любое такое подмножество $A \subset X$, что $A \supset F$ и $A \in \mathcal{T}$).
- 5. T_4 : для любых F_1, F_2 замкнутых подмножеств в X таких, что $F_1 \cap F_2 = \emptyset$, существуют непересекающиеся окрестности $O(F_1)$ и $O(F_2)$.

Пример 4.2. 1. Любое пространство с антидискретной топологией не удовлетворяет аксиоме отделимости T_0 .

- 2. Связное двоеточие удовлетворяет аксиоме отделимости T_0 .
- 3. Любое пространство с дискретной топологией удовлетворяет аксиоме отделимости T_1 .
- 4. Любое пространство с антидискретной топологией удовлетворяет аксиоме отделимости T_3 .
- 5. Любое пространство с антидискретной топологией удовлетворяет аксиоме отделимости T_4
- 6. Рассмотрим пространство $(\mathbb{R}, \mathcal{T})$, где $\mathcal{T} = \{[a, +\infty)_{a \in \mathbb{R}}, \mathbb{R}, \varnothing\}$. Оно не удовлетворяет аксиоме отделимости T_3 , но удовлетворяет аксиоме отделимости T_4 , т.к. все замкнутые множества в нём имеют вид $\mathbb{R}, \varnothing, F_a = (-\infty, a)$, $a \in \mathbb{R}$, и для любого замкнутого множества F_a существует единственная окрестность $O(F_a) = \mathbb{R}$, а значит, $\forall b > a$: отделить b и F_a нельзя. При этом не существует таких замкнутых множеств F_a и F_b , что $F_a \cap F_b = \varnothing$.

5 Лекция 5

Рассмотрим полезную характеристику T_1 -пространства:

Утверждение 5.1. X является T_1 -пространством тогда и только тогда, когда для любого $x \in X$ множество $\{x\}$ замкнуто.

Доказательство. (\Rightarrow): Пусть X является T_1 -пространством. Если мы возьмём $y \neq x$, то существуют их окрестности O(x) и O(y), т.ч. $y \notin O(x)$ и $x \notin O(y) \Longrightarrow y$ не является точкой прикосновения множества $\{x\}$. Значит, в $X \setminus \{x\}$ нет точек прикосновения множества $\{x\}$. Таким образом, x — единственная точка прикосновения множества $\{x\}$, значит, это множество замкнуто.

 (\Leftarrow) : Пусть $x \neq y$ и множества $\{x\}$ и $\{y\}$ замкнуты, тогда $X \setminus \{x\}$ и $Y \setminus \{y\}$ открыты, а значит, мы можем взять их в качестве окрестностей: $y \in X \setminus \{x\}, x \in X \setminus \{y\}$. Получаем, что X является T_1 -пространством.

 прикосновения распадается на множество предельных точек и множество изолированных точек. Если Х является T_1 -пространством, то понятия предельной точки и точки накопления равносильны.

Обо всём этом лектор решил не говорить, и употреблял термины "предельная точка" и "точка прикосновения", по-видимому, как равносильные.

Утверждение 5.2. $T_2 \Rightarrow T_1 \Rightarrow T_0$, но, вообще говоря, из T_3 не следует T_0 (а значит, не следуют и T_1 , и T_2).

Доказательство. Импликации очевидны. Приведём контрпример для T_3 -пространства: пусть $X=\{x,y\}$ и $\mathcal{T}=\{x,y\}$ $\{\emptyset,X\}$. Рассмотрим точку x, тогда любое замкнутое подмножество $F\subset X$, не содержащее x, является пустым. Берём в качестве окрестностей: $O(F) = \varnothing$, O(x) = X. Тогда X является T_3 -пространством, но не является T_0 пространством.

Определение 5.1. Пространство X называется регулярным, если оно удовлетворяет аксиомам отделимости T_3 $u T_0$.

Замечание 5.2 (Примечание редактора). В разной литературе регулярные пространства определяются или как T_3, T_0 -пространства, или как T_3, T_1 -пространства. Эти определения равносильны, что моментально следует из следующего утверждения.

Утверждение 5.3. $T_3 \ u \ T_0 \Rightarrow T_2$.

Доказательство. Возьмём x и y, такие что $x \neq y$. Без ограничения общности: по T_0 существует O(x): $y \notin O(x)$. Рассмотрим множество $F = X \setminus O(x)$. F замкнуто и $y \in F$. По аксиоме T_3 существуют окрестности O(x) и O(F): $O(x) \cap O(F) = \emptyset$. При этом существует такая окрестность O(y) точки y, что $O(y) \subset O(F)$, так как $y \in O(F)$ и O(F)открыто. Таким образом, $\widetilde{O}(x) \cap O(y) = \emptyset$, значит, X является T_2 -пространством.

Пример 5.1. Если X — метрическое пространство, то X хаусдорфово.

Рассмотрим полезную характеристику T_2 -пространства:

Утверждение 5.4. $X-T_2$ -пространство $\Leftrightarrow \forall x \in X: \bigcap \overline{O}(x) = \{x\}$, где пересечение берётся по всем окрестностям $mоч \kappa u \ x.$

Доказательство. \Rightarrow Очевидно, $x \in \bigcap \overline{O}(x)$, где пересечение берётся по всем окрестностям точки x. Докажем методом от противного: пусть существует $y \in \bigcap \overline{O}(x)$. Тогда $\forall \overline{O}(x): y \in \overline{O}(x)$. Т.к. Так как X является T_2 -пространством, то существуют окрестности U(x) и U(y): $U(x) \cap U(y) = \emptyset$. Но $y \in \overline{O}(x) \Leftrightarrow \forall V(y) \ \forall O(x) : \ V(y) \cap O(x) \neq \emptyset$. Получаем противоречие, значит, $\{x\} = \bigcap \overline{O}(x)$.

← Доказательство остаётся в качестве упражнения читателю.

Утверждение 5.5. Из T_4 не следует ни T_3 , ни T_0 (а значит, не следуют и T_1 , и T_2).

Доказательство. Приведём оба контрпримера:

- 1) Пусть $X=\mathbb{R},\,\mathcal{T}=\{\{(a,+\infty),\,\,a\in\mathbb{R}\},\varnothing,\mathbb{R}\}.$ Замкнутые множества имеют вид $F=(-\infty,a]$, или X, или \varnothing . Так как в X нет двух непустых замкнутых непересекающихся множеств, то X является T_4 -пространством. Возьмем закнутое множество $F = (-\infty, a]$ и точку $b \notin F$. Единственной окрестностью F является всё пространство $X = \mathbb{R}$, а значит, любая окрестность точки b будет иметь непустое пересечение с любой окрестностью F. Получаем, что X не является
- 2) Рассмотрим связное двоеточие: $X = \{x, y\}$ и $\mathcal{T} = \{\emptyset, X\}$. Замкнутых множеств всего два $\{\emptyset, X\}$. Можем взять $F_1 = \varnothing, \, F_2 = X$ или $F_1 = \varnothing, \, F_2 = \varnothing$ — очевидно, X является T_4 -пространством, но не является T_0 -пространством. \square

Утверждение 5.6. $T_4 + T_1 \Rightarrow T_3$.

Доказательство. Т.к. $X-T_1$ -пространство, то: $\forall x \in X$: множество $\{x\}$ замкнуто. Пусть $F_1=\{x\}, F-$ любое другое замкнутое подмножество в X, не содержащее x. По T_4 : существуют непересекающиеся окрестности $O(\{x\})$ и O(F)этих множеств. Но $O({x}) = O(x)$, а значит, X является T_3 -пространством.

Определение 5.2. Пространство X называется нормальным, если оно удовлетворяет аксиомам отделимости T_4 $u T_1$.

Лемма 5.7. Пусть в метрическом пространстве (X, ρ) множества F_1, F_2 замкнуты и не пересекаются. Тогда $\forall x \in F_1 \ \exists \varepsilon > 0 : \ O_{\varepsilon}(x) \cap F_2 = \varnothing.$

Доказательство. Предположим противное: пусть такую окрестность найти нельзя, то есть $\forall \varepsilon > 0: O_{\varepsilon}(x) \cap F_2 \neq \varnothing$. Тогда $x \in \overline{F_2}$, но $\overline{F_2} = F_2 \Longrightarrow x \in F_1 \cap F_2 \Longrightarrow F_1 \cap F_2 \neq \emptyset$ — противоречие.

Теорема 5.8. Метрическое пространство нормально.

Доказательство. Метрическое пространство хаусдорфово, то есть выполняется аксиома T_2 , из которой следует аксиома T_1 . Докажем T_4 . Пусть F_1, F_2 — замкнутые непересекающиеся множества. Возьмём точку $x_1 \in F_1$ и рассмотрим окрестность $O_{\varepsilon(x_1)}(x_1): O_{\varepsilon(x_1)}(x_1) \cap F_2 = \emptyset$. Аналогично для $x_2 \in F_2$. Тогда рассмотрим окрестности

$$V(F_1) = \bigcup_{x_1 \in F_1} O_{\frac{arepsilon(x_1)}{2}}(x_1)$$
 и $W(F_2) = \bigcup_{x_2 \in F_2} O_{\frac{arepsilon(x_2)}{2}}(x_2).$

Докажем, что $V(F_1) \cap W(F_2) = \varnothing$. Предположим противное: $\exists w \in V(F_1) \cap W(F_2)$. Тогда $\exists x_1 \in F_1 : w \in O_{\frac{\varepsilon(x_1)}{2}}(x_1)$ и $\exists x_2 \in F_2 : w \in O_{\frac{\varepsilon(x_2)}{2}}(x_2)$. Заметим, что $\rho(x_1,w) < \frac{\varepsilon(x_1)}{2}$ и $\rho(x_2,w) < \frac{\varepsilon(x_2)}{2}$, тогда по неравенству треугольника $\rho(x_1,x_2) < \max\{\varepsilon(x_1),\varepsilon(x_2)\}$. Без ограничения общности: $\varepsilon(x_2) > \varepsilon(x_1)$. Тогда $x_1 \in O_{\varepsilon(x_2)}(x_2)$, а также $x_1 \in F_1$, но $O_{\varepsilon(x_2)}(x_2)$ построена так, что она не пересекается с F_1 — противоречие. Значит, метрические пространства являются T_1, T_4 -пространствами, т.е. являются нормальными.

6 Лекция 6

На прошлой лекции была доказано теорема

Теорема 6.1. Метрическое пространство является нормальным, то есть удовлетворяет аксиомам T4 + T1.

Вопрос: что нужно добавить для нормального пространства, чтобы оно стало метризуемым?

6.1 Функциональная отделимость.

Определение 6.1 (Функциональная отделимость). Два подмножесства $A, B \subset X$ топологического пространства X называются функционально отделимыми в X, если существует такая определенная на всём пространстве вещественная ограниченная непрерывная функция $f: X \to \mathbb{R}$, которая принимает во всех точках множества A одно значение a, a во всех точках множества B — некоторое отличное от a значение b.

Определение 6.2. Подмножество $A \subset X$ топологического пространства X называется всюду плотным в X, если $\overline{A} = X$.

Пример 6.1. *Множество* \mathbb{Q} *всюду плотно* в \mathbb{R} .

Утверждение 6.2 (Характеризация хаусдорфова пространства). $X - xayc \partial op \phi o so n p o cmp a h cm so \iff \forall x, y \in X, x \neq y : существует окрестность <math>O(x) : y \notin \overline{O}(x)$.

Доказательство. (\Leftarrow): $y \notin \overline{O}(x) \Leftrightarrow y \in X \setminus \overline{O}(x)$ — открыто, значит, существует окрестность O(y): $O(y) \subset X \setminus \overline{O}(x) \Leftrightarrow O(y) \cap \overline{O}(x) = \emptyset$. Тогда $O(y) \cap \overline{O}(x) = \emptyset$, а значит, X хаусдорфово.

 (\Rightarrow) : От противного: пусть для любой окрестности $O(x):y\in \overline{O}(x)$. Тогда для любой окрестности $V(y):V(y)\cap O(x)\neq\varnothing$ — противоречие с хаусдорфовостью X. Значит, существует окрестность $O(x):y\notin \overline{O}(x)$.

Теорема 6.3 (Лемма Урысона). Пусть X - нормальное пространство, A, B — два замкнутых непересекающихся подмножества X. Тогда A u B функционально отделимы, т.е. существует непрерывная функция $F: X \to [0,1] \subset \mathbb{R}$, такая, что F(A) = 0 u F(B) = 1.

Доказательство. Для доказательства этой леммы будет использовать двоично-рациональные числа, т.е. множество

$$S = \left\{q = \frac{m}{2^n} \mid m \in \mathbb{Z}, n \in \mathbb{N}\right\}$$

Двоично-рациональные числа всюду плотны в \mathbb{R} — доказательство этого факта остаётся читателю в качестве упражнения.

Стандартное доказательство:

Будем строить по индукции семейство открытых множеств U_q , которые мы заиндексируем двоично-рациональными числами $q \in S \cap [0,1]$:

- 1. $U_1 = X \setminus B$.
- 2. U_0 должно удовлетворять требованию: $A \subset U_0 \subset \overline{U}_0 \subset U_1$.
- 3. $U_{\frac{1}{2}}$ должно удовлетворять требованию: $\overline{U}_0 \subset U_{\frac{1}{2}} \subset \overline{U}_{\frac{1}{2}} \subset U_1$.
- 4. $U_{\frac{1}{4}}$ и $U_{\frac{3}{4}}$ должны удовлетворять требованиям: $\overline{U}_0 \subset U_{\frac{1}{4}} \subset \overline{U}_{\frac{1}{4}} \subset U_{\frac{1}{2}}, \quad \overline{U}_{\frac{1}{2}} \subset U_{\frac{3}{4}} \subset \overline{U}_{\frac{3}{4}} \subset U_1.$
- 5. Индуктивный переход: на n-ом шаге берём $q=\frac{2k+1}{2^n}$. Рассматриваем соседние с q двоично-рациональные числа: $\frac{k}{2^{n-1}}$ и $\frac{k+1}{2^{n-1}}$. Тогда U_q должно удовлетворять требованию:

$$\overline{U}_{\frac{k}{2^{n-1}}} \subset U_{\frac{2k+1}{2^n}} \subset \overline{U}_{\frac{2k+1}{2^n}} \subset U_{\frac{k+1}{2^{n-1}}}.$$

Заметим, что все данные множества существуют в силу нормальности пространства X. Поясним это подробнее: Характеризация T_3 и T_4 -пространств:

 T_3): Если $x_0 \in X$, $F \subset X$ — замкнуто и не содержит точку x_0 , то существует окрестность $O(x_0)$: $\overline{O}(x_0) \cap F = \varnothing$, T_4): Если F_1, F_2 — замкнутые непересекающиеся подмножества X, то существует окрестность $O(F_1): \overline{O}(F_1) \cap F_2 = \varnothing$. Доказательства этих утверждений аналогичны доказательству утверждения о характеризации хаусдорфова пространства.

Тогда: на первом шаге: $U_1 = X \setminus B$. В замкнуто, значит, U_1 открыто. Пользуясь приведёнными утверждениями,

положим $U_0=O(A):\overline{U_0}\cap B=\varnothing$. Тогда $\overline{U_0}\subset X\setminus B=U_1$. В индукционном переходе: положим $P=\overline{U}_{\frac{k}{2^{n-1}}},\ Q=X\setminus U_{\frac{k+1}{2^{n-1}}}$. Тогда: существует такая окрестность O(P), что $\overline{O}(P)\cap Q=\varnothing$. Значит, $\overline{O}(P)\subset X\setminus Q=U_{\frac{k+1}{2n-1}}$. Окрестность $O(P)=O(\overline{U}_{\frac{k}{2n-1}})$ мы и берём в качестве множества $U_{\frac{2k+1}{2n}}$ - оно удовлетворяет требованиям, указанным в построении. Т.о. все строящиеся множества существуют.

Итак, мы построили систему открытых множеств $\{U_q\}$, причём она естественно упорядочена по включению: если $q,r \in S \cap [0,1]$ и q < r, то $\overline{U}_q \subset U_r$. Теперь определим функцию $F: X \to [0,1]$:

$$F(x) = \begin{cases} \inf \left\{ q \mid x \in U_q \right\}, & x \notin B, \\ 1, & x \in B. \end{cases}$$

Очевидно, $F|_A \equiv 0$ и $F|_B \equiv 1$. Проверим непрерывность. По замечению (3.3.1) на стр. (6) достаточно проверить, что $F^{-1}(O_{\alpha})$ — открытое множество, где O_{α} — элементы предбазы топологии отрезка [0,1]. Т.о. достаточно рассмотреть O_{α} равными $[0,\alpha)$ или $(\alpha,1]$ для всех $\alpha \in [0,1]$.

- 1) Рассмотрим $x \in F^{-1}([0,a)) \Leftrightarrow F(x) < a \Leftrightarrow \inf \{q \mid x \in U_q\} < a \Leftrightarrow \exists \, \widetilde{q} : x \in U_{\widetilde{q}}, \,\, \widetilde{q} < a.$ Тогда $F^{-1}([0,a)) = I_{\widetilde{q}}$ $\bigcup_{\widetilde{a} < a} U_{\widetilde{q}}$ — открыто как объединение открытых.
- $(2)^{3}$ Заметим, что данное выше определение F равносильно следующему:

$$F(x) = \begin{cases} \sup \left\{ r \mid x \notin U_r \right\}, & x \notin B, \\ 1, & x \in B. \end{cases}$$

Тогда: при $x \notin B$: $F(x) = \sup\{r \mid x \notin U_r\} = \sup\{r \mid x \notin \overline{U}_r\} = \sup\{r \mid x \in X \setminus \overline{U}_r\}$, множество $X \setminus \overline{U}_r$ открыто. Рассмотрим $x \in F^{-1}((b,1]) \Leftrightarrow F(x) > b \Leftrightarrow \sup\{r \mid x \in X \setminus \overline{U}_r\} > b \Leftrightarrow \exists \, \widetilde{r} : x \in X \setminus \overline{U}_{\widetilde{r}}, \,\, \widetilde{r} > b$. Тогда $F^{-1}((b,1]) = \sum_{i=1}^{n} (b_i + 1)^{-i} ($ $\bigcup_{\widetilde{r}>b} (X\setminus \overline{U}_{\widetilde{r}})$ — открыто как объединение открытых. Т.о. построили функцию F, удовлетворяющую условиям теоремы.

Связь компактности и нормальности.

Утверждение 6.4. Замкнутое подмножество компакта — компакт. Обратное, вообще говоря, неверно.

Доказательство. Доказательство данного утверждения было оставлено в качестве упражнения в лекции 4.

Задача 6.1. Доказать, что $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Лемма 6.5. B хаусдорфовом топологическом пространстве X компактное подмножество F является замкнутым.

Доказательство. Пусть F не замкнуто. Тогда $\exists x_0 \in \overline{F} : x_0 \notin F$. Пусть $y \in F$. Т.к. X хаусдорфово, то существует окрестность: $O(y): x \notin \overline{O}(y)$. Рассмотрим открытое покрытие $\bigcup_{y \in F} O(y)$ множества F такими окрестностями. Т.к. F— компакт, то существует конечное подпокрытие $\bigcup_{i=1}^n O(y_i) \supset F$. Тогда

$$\overline{\bigcup_{i=1}^{n} O(y_i)} \supset \overline{F} \iff \bigcup_{i=1}^{n} \overline{O(y_i)} \supset \overline{F}.$$

Ho $\forall i \in \{1,\dots,n\}: x_0 \notin \overline{O(y_i)}$, значит, $x_0 \notin \bigcup_{i=1}^n \overline{O(y_i)}$, при этом $x_0 \in \overline{F} \subset \bigcup_{i=1}^n \overline{O(y_i)}$ — противоречие. Значит, Fзамкнуто.

Лекция 7

Разбиение единицы.

Пемма 7.1 (об ужатии). Пусть X — нормальное пространство с конечным покрытием, то есть $X \subset \bigcup_{i=1}^N U_i$, где U_i — открытые множества. Тогда существует набор открытых множеств $V_i,\ i=1,\ldots,N$ таких, что: 1) $\forall i : \overline{V}_i \subset U_i,$ 2) $X \subset \bigcup_{i=1}^N V_i.$

Доказательство. Доказательство проведём по индукции: будем последовательно рассматривать U_1, \dots, U_k . База индукции при k=1: рассмотрим U_1 и множества

$$A = X \setminus (U_2 \cup U_3 \cup \ldots \cup U_N)$$
 и $B = X \setminus U_1$.

Очевидно, что $A\subset U_1$ и что множества A и B замкнуты. Т.к. X нормально, то существует окрестность $O(A):\overline{O}(A)\cap B=\varnothing$, тогда $\overline{O}(A)\subset U_1$. Положим $V_1=O(A)$. Получаем: $\overline{V_1}\subset U_1$.

Докажем, что $V_1 \cup U_2 \cup \dots U_N$ — покрытие X. Пусть $x \in X$. Тогда или $x \in A \implies x \in O(A) = V_1$, или $x \in U_2 \cup U_3 \cup \dots \cup U_N$. Получаем, что $\forall x \in X : x \in V_1 \cup U_2 \cup U_3 \cup \dots \cup U_N$, значит, данное объединение является покрытием X. При этом $\overline{V_1} \subset U_1$.

Индукционный переход: рассмотрим $1 < k \le N$. Пусть построены $V_1, \ldots, V_k, U_{k+1}, \ldots U_N$. Рассмотрим множество

$$A = X \setminus (V_1 \cup \dots V_k \cup U_{k+1} \cup \dots U_N).$$

Далее повторяем рассуждения из случая k=1. Строгое доказательство остаётся читателю в качестве упражнения. $\ \square$

Определение 7.1. Пусть $f: X \to \mathbb{R}$. Носитель функции f -это множество $\mathrm{supp}\, f = \overline{\{x \in X : f(x) \neq 0\}},$ т.е. носитель является замыканием множества тех $x \in X$, на которых функция f не равна нулю.

Определение 7.2. Пусть X — топологическое пространство, U_1, \ldots, U_N — его конечное покрытие. Тогда набор непрерывных функций $f_i: X \to \mathbb{R}, \ i=1,\ldots,N$ называется разбиением единицы, подчинённым покрытию U_1,\ldots,U_N , если:

- 1. $\forall i : \text{supp } f_i \subset U_i$,
- 2. $\sum_{i=1}^{N} f_i \equiv 1$ на X.

Теорема 7.2 (о разбиении единицы). Пусть X — нормальное пространство, U_1, \ldots, U_N — его конечное покрытие. Тогда существует разбиение единицы, подчинённое покрытию U_1, \ldots, U_N .

 \mathcal{A} оказательство. По лемме об ужатии: $\forall i=1,\ldots,N$: в U_i можно вписать V_i такое, что $\overline{V_i}\subset U_i$, при этом набор V_i , $i=1,\ldots,N$ будет являться покрытием X. По лемме Урысона для $A=\overline{V_i},\ B=X\setminus U_i$ будет существовать непрерывная функция $\varphi_i:X\to\mathbb{R}$ такая, что $\varphi_i|_A\equiv 1$ и $\varphi_i|_B\equiv 0$. Рассмотрим функцию f_i , определённую следующим образом:

$$f_i = \frac{\varphi_i}{\sum_{i=1}^N \varphi_i}.$$

Т.к. $\forall x \in X \ \exists \overline{V_i}: x \in \overline{V_i}$, то $\exists \varphi_i: \varphi_i(x) = 1$, значит, знаменатель дроби не равен 0, т.е. функция f корректно определена. Очевидно, что $\sum_{i=1}^N f_i \equiv 1$ на X. При этом $\overline{V_i} \subset \operatorname{supp} f_i = \operatorname{supp} \varphi_i \subset U_i$. Т.о. получено разбиение единицы на X.

Задача 7.1. Доказать, что если f — непрерывное отображение, то supp f — замкнутое множество.

Определение 7.3. Множество A называется всюду плотным в топологическом пространстве X, если $\overline{A} = X$.

Определение 7.4. Подмножество A в топологическом пространстве X называется нигде не плотным, если $\operatorname{Int} \overline{A} = \varnothing$, т.е. если для каждого непустого открытого U существует открытое $V \subset U$ такое, что $V \cap A = \varnothing$.

Пример 7.1. 1. Множество \mathbb{Q} всюду плотно в \mathbb{R} .

- 2. Множество \mathbb{Z} нигде не плотно в \mathbb{R} .
- 3. Множество \mathbb{R}^1 нигде не плотно в \mathbb{R}^2 .

Задача 7.2. Доказать, что не существует одновременно и всюду плотное, и нигде не плотное множество в одном пространстве X.

Определение 7.5. Топологическое пространство X называется сепарабельным, если в нём содержится счётное всюду плотное подмножество.

Пример 7.2 (Канторово множество). *Канторово множество* — это множество

$$K = \left\{ x \in [0, 1] \mid x = \sum_{i=1}^{\infty} \frac{a_i}{3^i}, \ a_i = 0 \ unu \ 2 \right\}.$$

Рассмотрим функцию $f: K \to [0,1]$, определённую по следующему правилу:

$$f\left(\sum_{i=1}^{\infty} \frac{a_i}{3^i}\right) = \sum_{i=1}^{\infty} \frac{\widetilde{a}_i}{2^i}, \ \widetilde{a}_i = \begin{cases} 0, & \textit{ecan } a_i = 0, \\ 1, & \textit{ecan } a_i = 2. \end{cases}$$

Задача 7.3. Доказать, что Канторово множество К замкнуто, а приведённая функция f непрерывна.

Определение 7.6. Топологическое пространство X называется совершенным, если в нём нет изолированных точек.

Задача 7.4. Доказать, что Канторово множество совершенно.

8.1 Кривые Пеано

Определение 8.1. Кривая в топологическом пространстве X — это непрерывное отображение $\gamma:[0,1] \to X$.

Определение 8.2. Кривая Пеано — общее название для непрерывных сюр π екций $\gamma: I \to I^2$, где I = [0,1], т.е. для кривых, заполняющих квадрат.

Теорема 8.1 (Кривая Пеано). Кривая Пеано существует.

Замечание 8.1. Первыми построили примеры кривых Пеано сам Джузеппе Пеано и Давид Гильберт. Оба построения были рекурсивными и состояли в последовательном делении квадрата на несколько частей с последующим определением поведения кривой в каждой части. В построении Пеано квадрат делился на 9 частей, а в построении Гильберта — на 4. Мы построим кривую иным способом, сначала отобразив отрезок [0,1] непрерывно и сюръективно в треугольник, а затем отобразив треугольник в квадрат.

Доказательство. Мы построим кривую в два этапа, сначала отобразив отрезок [0, 1] непрерывно и сюръективно в треугольник, а затем отобразив треугольник в квадрат.

Пусть Δ — прямоугольний равнобедренный треугольник с катетами длины 1 и I=[0,1]. На первом шаге разобъём исходные треугольник и отрезок пополам, а на каждом следующем шаге будем разбивать пополам полученные ранее подтреугольники и подотрезки. На n-ом шаге будем иметь 2^n треугольников и отрезок, разбитый на столько же частей. На каждом шаге будем нумеровать треугольники и части отрезка двоичными кодами.

Будем иметь следующую нумерацию: $\Delta_{i_1...i_n}$ и $I_{i_1...i_n}$. При этом: $I = I_0 \cup I_1 = I_{00} \cup I_{01} \cup I_{10} \cup I_{11} = ... = \bigcup_{i_1,...,i_n \in \{0,1\}} I_{i_1...i_n}$. То же для Δ . Определим соседние элементы как подтреугольники, у которых есть общая сторона (для разбиения треугольников) и подотрезки, у которых есть общая точка (для разбиения отрезка). Так же мы имеем цепочку вложенных отрезков (треугольников).

$$I_{i_1} \supset I_{i_1 i_2} \supset I_{i_1 i_2 i_3} \supset \dots$$

 $\Delta_{i_1} \supset \Delta_{i_1 i_2} \supset \Delta_{i_1 i_2 i_3} \supset \dots$

Из элементарных геометрических соображений можем найти значения диаметров этих множеств (т.е. длины наибольших отрезков, лежащих в множествах: для отрезков это длины самих отрезков, а для треугольников — длины их гипотенуз, т.к. все треугольники в разбиении прямоугольные и равнобедренные). Т.о.: Видим, что диаметр множеств стремится к 0 с ростом n.

$$\operatorname{diam}(I_{i_1 i_2 \dots i_n}) = \left(\frac{1}{2}\right)^n$$
$$\operatorname{diam}(\Delta_{i_1 \dots i_n}) = \left(\frac{1}{\sqrt{2}}\right)^{n-1}$$

Очевидно, что все подтреугольники и подотрезки являются компактами (т.к. они являются замкнутыми и ограниченными подмножествами полного метрического пространства \mathbb{R}^2). Начнём строить отображение $f:I\to \Delta$ пошагово. Приведём сначала неполное построение, в котором могут возникнуть неоднозначности, а затем уточним его.

Рассмотрим $t \in I = [0, 1]$. Существует последовательность вложенных отрезков, стягивающаяся к t:

$$I_{i_1} \supset I_{i_1 i_2} \supset I_{i_1 i_2 i_3} \supset \ldots \ni t.$$

Т.к. t может лежать на границе отрезков, то последовательность может быть определена неоднозначно. Возьмем последовательность треугольников с теми же индексами. Это будет последовательность вложенных компактов, причём их диаметры стремятся к 0. Т.о. пересечение этих треугольников будет состоять из одной точки, и эту единственную точку мы положим значением f(t).

У этого рассуждения есть недостаток: t может принадлежать двум множествам $I_{i_1...i_n}$ и $I_{j_1...j_n}$, а значит, f(t) может быть определено неоднозначно. Дополним рассуждения, убрав неоднозначность: Рассмотрим новое множество $J_{i_1...i_n}$, соответствующее точке $t \in I$, такое что:

$$J_{i_1...i_n} = \begin{cases} I_{i_1...i_n}, & \text{если } t \text{ не лежит на границе } I_{i_1...i_n}, \\ I_{i_1...i_n} \cup I_{j_1...j_n}, & \text{если } t \text{ лежит на границе } I_{i_1...i_n} \text{ и } I_{j_1...j_n}. \end{cases}$$

Также определим соответствующее множество

$$P_n(t) = \begin{cases} \Delta_{i_1 \dots i_n}, & \text{если } t \text{ не лежит на границе } I_{i_1 \dots i_n}, \\ \Delta_{i_1 \dots i_n} \cup \Delta_{j_1 \dots j_n}, & \text{если } t \text{ лежит на границе } I_{i_1 \dots i_n} \text{ и } I_{j_1 \dots j_n}. \end{cases}$$

Получим новую последовательность компактов:

$$P_1(t) \supset P_2(t) \supset \dots$$

Утверждение 8.2.

$$\operatorname{diam} P_n(t) \le \left(\frac{1}{\sqrt{2}}\right)^{n-2}$$

Значит, $P_n(t)$ образуют последовательность вложенных компактов, причём их диаметры стремятся к 0. Значит, их пересечение состоит из одной точки, и эту точку мы положим значением f(t). При данном построении неоднозначности уже не возникает, а значит, получено корректное отображение $f: I \to \Delta$.

Докажем, что f сюръективно. Рассмотрим точку x_0 из треугольника Δ . Эта точка будет лежать в некоторой последовательности вложенных треугольников $\Delta_{i_1} \supset \Delta_{i_1 i_2} \supset \Delta_{i_1 i_2 i_3} \supset \dots$ Рассмотрим последовательность подотрезков с теми же индексами: в пересечении этих подотрезков будет лежать одна единственная точка t_0 . Остается доказать, что это точка — прообраз точки x_0 . По t_0 однозначно строится последовательность $\{P_n(t_0)\}$, сходящаяся к одной точке $y \in \Delta$. Но $\forall n: P_n(t_0)$ содержат $\Delta_{i_1...i_n}$, значит, последовательность вложенных отрезков $\{\Delta_{i_1...i_n}\}$ также сходится к точке y. Но тогда: $x_0 = y$, т.е. t_0 является прообразом точки x_0 , а значит, отображение f сюръективно.

Докажем, что f непрерывно. Рассмотрим точку x_0 из треугольника Δ . Покажем, что $\forall \varepsilon > 0 \; \exists \, \delta > 0 : \; f(U_\delta(t_0)) \subset O_\varepsilon(x_0)$, где $f(t_0) = x_0$. Т.к. diam $P_n(t_0) \longrightarrow 0$ при $n \longrightarrow \infty$, то $\exists N \in \mathbb{N} : \forall n > N : P_n(t_0) \subset O_\varepsilon(x_0)$.

Если $P_N(t_0)$ — это один треугольник $\Delta_{i_1...i_N}$ начального разбиения, то рассмотрим соответствующий ему отрезок $I_{i_1...i_N}$, содержащий t_0 , и положим значение δ равным наименьшему расстоянию от t_0 до концов отрезка $I_{i_1...i_N}$. Если $P_N(t_0)$ — это объединение двух треугольников $\Delta_{i_1...i_N} \cup \Delta_{j_1...j_N}$ начального разбиения, то рассмотрим соответствующие им отрезки $I_{i_1...i_N}$ и $I_{j_1...j_N}$: t_0 лежит в их пересечении, т.е. является граничной точкой обоих отрезков. Положим в этом случае значение δ равным половине длины отрезка $I_{i_1...i_N}$.

Т.о. получили $\delta = \delta(\varepsilon)$, причём в силу оценки на диаметр множеств $P_n(t)$: $\forall t \in U_\delta(t_0) \, \forall n \in \mathbb{N} : P_n(t) \subset P_n(t_0)$, при этом $f(t) = \lim_{n \to \infty} P_n(t)$. Значит, $f(t) \in O_\varepsilon(x_0) \, \forall t \in U_\delta(t_0)$, а значит, отображение f непрерывно.

Остаётся отобразить треугольник непрерывно и сюръективно на квадрат. Это будет сделано в следующем лекции.

Определение 8.3. Пусть X — топологическое пространство, $f_n: X \to \mathbb{R}$ — последовательность функций. Говорят, что f_n равномерно сходится κ функции $f: X \to \mathbb{R}$ на X и пишут $f_n \rightrightarrows f$, если для любого $\varepsilon > 0$ существует $N \in \mathbb{N}$ такое, что для любого $n \geq N$ и для любого $x \in X$ выполняется $|f_n(x) - f(x)| < \varepsilon$.

Теорема 8.3. Предел равномерно сходящейся последовательности непрерывных функций является непрерывной функцией.

Доказательство. Доказательство теоремы остаётся читателю в качестве упражнения.

9 Лекция 9

Завершение доказательства теоремы о существовании кривой Пеано. Построим теперь непрерывное сюръективное отображение $g: \Delta \to I^2$ треугольника на квадрат:

$$g(x,y) = \begin{cases} (x+y,2y), & x > y \\ (2x,2x), & x = y \\ (2x,x+y), & x < y \end{cases}$$

Другими словами, $g(x,y) = (x + \min(x,y), y + \min(x,y)).$

Задача 9.1. Доказать, что построенное отображение д непрерывно и, более того, является гомеоморфизмом.

Теперь мы можем завершить доказательство: искомой кривой Пеано будет являться, например, композиция построенных отображений $g \circ f$.

9.1 Теорема Титца о продолжении непрерывной функции

Теорема 9.1 (Титца о продолжении непрерывной функции). Пусть X - нормальное топологическое пространство. $F \subset X$ - замкнутое подмножество. $\varphi : F \to \mathbb{R}$ - непрерывная ограниченная(т.е. $\|\varphi\| = \sup_{x \in F} |\varphi(x)| < \infty$) функция. Тогда существует $\Phi : X \to \mathbb{R}$ - непрерывное продолжение функции φ , которое сохраняет норму $\|\Phi\| = \sup_{y \in X} |\Phi(y)| = \|\varphi\|$

Доказательство. Будем строить две последовательности функций.

1. $\Phi_n: X \to \mathbb{R}$

2. $\varphi_n: F \to \mathbb{R}$

Замечание 9.1. Пусть $f_n(x): Y \to \mathbb{R}$ - фундаментальная последовательность, тогда существует $f(y) = \lim_{n \to \infty} f_n(y)$ **Задача 9.2.** Доказать, что фундаментальная последовательность равномерно сходится.

Алгоритм построения последовательностей.

1. $\varphi_0 = \varphi$, так как φ - ограниченная функция, то выполняется $\|\varphi\| = \|\varphi_0\| = M_0 < +\infty$ Определим два замкнутых множества в X

$$A_0 = \left\{ x \in F : \varphi(x) = \varphi_0(x) \le -\frac{M_0}{3} \right\}$$
$$B_0 = \left\{ x \in F : \varphi(x) = \varphi_0(x) \ge \frac{M_0}{3} \right\}$$

Очевидно, что эти множества являются замкнутыми и непересек.

Применим лемму Урысона к отрезку $\left[-\frac{M_0}{3}, \frac{M_0}{3}\right]$, получим функцию $\Phi_0(x)$, которая на A_0 тождественна $-\frac{M_0}{3}$, на B_0 тождественна $\frac{M_0}{3}$.

Рассмотрим "номру" функции Φ_0 : $\|\Phi_0\| \leq \frac{M_0}{3}$.

- 2. определим функции $\varphi_1 = \varphi_0 \Phi_0$ на множестве F. Эта функция непрерывна. Рассмотрим норму введеной функции на 3-ех участках.
 - (a) $\varphi_0 \ge \frac{M_0}{3}$; $\Phi_0 = \frac{M_0}{3}$
 - (b) $-\frac{M_0}{3} \le \varphi_0 \le \frac{M_0}{3}; -\frac{M_0}{3} \le \Phi_0 \le \frac{M_0}{3}$
 - (c) $\varphi_0 \le -\frac{M_0}{3}$; $\Phi_0 = -\frac{M_0}{3}$

Из этих неравенств видно, что

$$\|\varphi_1\| \le \frac{2M_0}{3}$$

3. Примени тоже построение, что и в предыдущем пункте, счетное число раз и получим две последовательности функций.

Таким образом получили, что

$$\varphi_{n+1} = \varphi_n - \Phi_n$$
 на множестве F

И

$$\|\Phi_{n+1}\| \le \frac{M_0}{3} \qquad \|\varphi_{n+1}\| \le \frac{2M_0}{3} \tag{1}$$

Следовательно

$$\|\Phi_{n+1}\| \le \frac{1}{3} \left(\frac{2}{3}\right)^{n-1} M_0$$
 $\|\varphi_{n+1}\| \le \left(\frac{2}{3}\right)^n M_0$ (2)

Рассмотрим ряд $\sum_{i=0}^{\infty} \Phi_i$. Докажем, что последовательность частичных сумм $S_n = \sum_{i=0}^n \Phi_i$ будет фундаментольной.

$$||S_n - S_m|| = ||S_{m+1} + \ldots + S_n|| \le \sum_{i=0}^{\infty} |\Phi_i| \le \frac{M_0}{3} \left(\frac{2}{3}\right)^{n+1} \sum_{l=0}^{\infty} \left(\frac{2}{3}\right)^l = M_0 \left(\frac{2}{3}\right)^{n+1} < \varepsilon$$

Таким образом она сходится и $S_n \rightrightarrows \Phi$

Докажем, что Φ совпадает с φ на F.

$$\left\| \varphi - \sum_{i=0}^{n} \Phi_i \right\| = \|\varphi_{n+1}\| \le \left(\frac{2}{3}\right)^n M_0$$

Припредельном переходе получим $\varphi = \Phi$ на множестве F.

10 Лекций 10

Определение 10.1. (Вторая аксиома счетности) Говорят, что топологическое пространство X удовлетворяет второй аксиоме счётности (II-AC), если у него есть счётная база.

Определение 10.2. Локальная база (база окрестностей) пространства X в точке $x_0 \in X$ — это набор \mathfrak{B}_{x_0} окрестностей $O_{\alpha}(x_0)$ точки x_0 такой, что для любой окрестности $U(x_0)$ точки $x_0 \exists \alpha : O_{\alpha}(x_0) \subset U$.

Определение 10.3. (Первая аксиома счетности) Говорят, что топологическое пространство X удовлетворяет первой аксиоме счётности (I-AC), если $\forall x_0 \in X$ в точке x_0 существует счётная локальная база X.

Утверждение 10.1. Если (X, ρ) — метрическое пространство, то X удовлетворяет первой аксиоме счётности.

Доказательство. Для любой точки $x_0 \in X$ система $O_r(x_0), r \in \mathbb{Q}_{>0}$ является счётной локальной базой в этой точке.

Утверждение 10.2. Если пространство Х удовлетворяет второй аксиоме счётности, то оно сепарабельно.

Утверждение 10.3. Из второй аксиомы счётности следует первая аксиома счётности.

Доказательство. Утверждение очевидно.

Вопросы:

- Пример неметризуемого пространства, удовлетворяющей первой аксиоме счетности.
- Пример неметризуемого пространства, удовлетворяющей второй аксиоме счетности.
- Пример метризуемого пространства без второй аксиомы счетности. (Это $\mathbb R$ с дискретной метрикой).
- Пример не сепарабельного пространства.

Теорема 10.4 (Линделёфа). Если X удовлетворяет второй аксиоме счетности, то из любого его открытого покрытия можно выбрать не более чем счетное подпокрытие.

Доказательство. Введем $\Omega \subset \{U_{\alpha}\}$, где $\{U_{\alpha}\}$ – покрытие. Имеем счетную базу $\{O_1, O_2, ..., O_n, ...\}$. Тогда $\Omega = \{O_i \mid \exists \alpha(i) : O_i \in U_{\alpha_i}\}$. Так как $\Omega \subset \{O_1, O_2, ..., O_n, ...\}$, Ω счетное (не более чем счетное).

Утверждение 10.5. U_{α_i} образуют счетное подмножество.

Теорема 10.6. Сепарабельное метрическое пространство удовлетворяет второй аксиоме счетности.

Доказательство. Счетная база $O_q(s), s \in S$ – счетное, всюду плотное множество, $q \in \mathbb{Q}_{>0}$.

Пример 10.1. Прямая Зоргенфрея = стрелка \mathbb{R} , база $\{[a,b), a,b \in \mathbb{R}\}$. Она сепарабельна, удовлетворяет первой аксиоме счетности, но не удовлетворяет второй аксиоме счетности.

Определение 10.4. (Непрерывность по Kowu) $f: X \mapsto Y$. Пусть $f(x_0) = y_0, \forall O(y_0) \exists U(x_0): f(U(x_0)) \subset O(y_0)$

Определение 10.5. (Непрерывность по Гейне) $f: X \mapsto Y$. $\{x_n\} \mapsto x_0 \in X$, при $n \mapsto +\infty$, если $\forall O(x_0) \; \exists N \in \mathbb{R} : \forall n \geq N \; x_n \in O(x_n)$.

Теорема 10.7. В метрическом пространстве данные определения эквивалентны.

Теорема 10.8. (Урысона о достаточном условии метризуемости) Нормированное пространство, удовлетворяющее второй аксиоме счетности метризуемо.

Определение 10.6. Несвязная сумма – это топологическое пространство $X \sqcup Y = \{a_x \in X, \ a_y \in Y\}, \ \tau_{X \sqcup Y} = \{u_X, u_Y\}$

Определение 10.7. Декартово произведение топологических пространств – это $\{(x,y), \ x \in X, y \in Y\}$ с топологией $\tau_{X \times Y} = \{u_X \times u_Y \mid u_X \in \tau_X, u_Y \in \tau_Y\}$ – топология прямого произведения.

Определение 10.8. (Топология Тихонова) $\pi_1: X \times Y \mapsto X \ u \ \pi_2: X \times Y \mapsto Y$ – проекции. Тогда предбаза топологии Тихонова: $\pi_1^{-1}(u_x) \ u \ \pi_2^{-1}(u_x)$ прообразы открытых в $X \ u \ Y$ множеств.

Замечание 10.1. Топология Тихонова полезна в случае счетного произведения топологических пространств: $X_1 \times X_2 \times ... \times X_n \times ..., \ \pi_i^{-1}(u_i)$ – предбаза топологий.

11.1 Тихоновская топология и теорема Тихонова

Определение 11.1. Тихоновская топология - топология на произведение топологических пространств таким образом, что координатные функции непрерывны.

Замечание 11.1. В конечномерной ситуации Тихоновоская топология совпадает с топологией произведения. В бесконечномерном случае это не так.

Теорема 11.1 (Тихонов). $\Pi_{\alpha}X_{\alpha}$, где X_{α} - компактное пространство. $\Pi_{\alpha}X_{\alpha}$ - компактно в Тихоновской топологии.

Доказательство. Возможно будет потом.

Пример 11.1. Пусть $\{0,1\}$ - несвязное двоеточие. Рассмотрим $\{0,1\}^{\mathbb{N}} = \{0,1\} \times \{0,1\} \times \{0,1\} \times \dots$ В топологии Тихонова это гомеоморфно Канторову множеству. Можно задать следующим образом

$$f(x_1, x_2, \dots) = \sum_{k=1}^{+\infty} \frac{2x_k}{3^k}$$

Задача 11.1. Доказать, что это гомеоморфзим в Тихоновской топологии.

B топологии произвеедения получится $\tau = 2^{\{0,1\}^{\mathbb{N}}}$.

Пример 11.2. Гильбертов куб(кирпич) = пространство $[0,1]^{\mathbb{N}}$ с тихоновской топологией. Он компактен по теореме

Гильбертов куб гомеоморфен следующему прострнаству

$$[0,1] \times \left[0,\frac{1}{2}\right] \times \left[0,\frac{1}{3}\right] \times \dots$$

A это ряды, причем $x_n \leq \frac{1}{n}$. Причем $\sum_{n=1}^{\infty} (x_n)^2 < \infty$.

11.2 Фактор-топология

Пусть (X,τ) - топологическое пространство. Пусть на X определено отношение эквивалентности . И тогда X/ классы эквивалентности. Если x лежит в X, то [x] - его класс эквивалентности в X/. Определим топологию τ на X/по следуюущему правилу:

$$U \in \tau \Leftrightarrow \pi^{-1}(U) \in \tau_X$$

Пример 11.3. Пусть $X = \mathbb{R}^1$, $x \ y = x - y \in 2\pi Z$.

Тогда $R^1/\to S^1$

Аналогично $T^2 = \mathbb{R}^2$

Пример 11.4. $X = [0,1] \subset \mathbb{R}$, если $x \ y = y - x \in \mathbb{Q}$

Задача 11.2. Доказать, что пространство X/ не хаусдорфовою.

Как понять, что $f: X/ \to Y$ непрерывно?

$$\widetilde{f}(x) = f(\pi(x))$$

Теорема 11.2. f непрерывно тогда и только тогда, когда \widetilde{f} - непрерывна

 \mathcal{A} оказательство. (\Leftarrow) : Пусть \widetilde{f} - непрерывна, тогда $\widetilde{f}^{-1}(U)$ - открыто в X. Из коммутативности диаграммы(формулы выше), следует, что $\pi^{-1}(f^{-1}(U))$ открыто в X. Необходимо доказать, что $V = f^{-1}(U)$ открыто в Y, оно открыто в силу определения фактор топологии.

 (\Rightarrow) : композиция непрерывных.

11.3 Склейка пространств

Рассматриваем $X \mid Y \mid X_0 \in X, y_0 \in Y$.

Определение 11.2. *Букет:* $X | |Y/x_0| y_0$

Kohyc: Cone(X) - стягиваем основание конуса.

Надстройкка: ???

11.4 Одноточечная компактификация

Определение 11.3. Компактификация пространства X = вложение $i \ X$ в CX, где CX - компакт, u топология X индуцирована вложением i.

Определение 11.4 (отдноточечтная компактификация Александрова, введена в 1924 году). Пусть $CX = X \bigsqcup N$, где N - точка, со следующией топологией.

$$\tau_{CX} = \begin{cases} U \subset X - \textit{открыто} \\ W = V \bigsqcup N, V \subset X, V = X \setminus K, K - \textit{замкнуто компактно} \end{cases}$$

Следующее утверждение не дописано.

Теорема 11.3. CX с определенной топологией явялется компактным пространством.

Доказательство. Рассмотрим K - компакт. Пусть $\widetilde{U}_{\alpha} = \left\{ U_{\widetilde{\alpha}}, W_{\widetilde{\beta}} \right\}$ - покрытие CX, в это покрытие точно входит одно $W_{\beta_0} = V_{\beta_0} \bigsqcup N$. $V_{\beta_0} = X \setminus K_{\beta_0}$ - дополнение к компакту.

12 Лекция 12

12.1 Алгебраическая топология. Теория гомотопий

Рассматриваем отображения $f_0: X \to Y$ и $f_2: X \to Y$, $f_i \in C(X,Y)$ - пространство непрерывных функций. Пусть $t \in [0,1] = I$, $f_t(x) = F(x,t)$.

$$F: X \times I \to Y$$

Т.е. F - отображения из цилиндра в пространство Y.

Определение 12.1. Гомотопия – это непрерывное отображение $F: X \times I \mapsto Y$, такое что $F(x,0) = f_0$, $F(x,1) = f_1$.

Утверждение 12.1. Гомотопность отображений $f: X \mapsto Y$ является отношением эквивалентности.

Доказательство. Рефлексивнось $(f \sim f)$: F(x,t) = f(x,t). Симметричность $(f \sim g \Rightarrow g \sim f)$: $\exists F(x,t) \Rightarrow \exists \widetilde{F}(x,t) = F(x,1-t)$. Транзитивность $(f \sim g, \gamma \sim h \Rightarrow g \sim h)$: $\exists F(x,t) \text{ и } G(x,t) \Rightarrow G(x,t) \Rightarrow G(x,t)$

$$\exists \Phi(x,t) = \begin{cases} F(x,2t), \ t \in [0,\frac{1}{2}] \\ G(x,2t-1), \ t \in (\frac{1}{2},1] \end{cases}$$

 $\Phi(x,t)$ непрерывна при $t \neq \frac{1}{2}$. Рассмотрим $\lim_{t \mapsto \frac{1}{2}-} F(x,t) =: F(x,\frac{1}{2}) = g$. G непрерывна, тогда $\lim_{t \mapsto \frac{1}{2}+} G(x,t) = G(x,\frac{1}{2}) = g$. Таким образом $\lim_{t \mapsto \frac{1}{2}} \Phi(x,t) = g$ и g непрерывна. \square

Задача 12.1. f(x,y) непрерывно по аргументам в отдельности. Тогда f непрерывно.

Обозначение: количество гомотопических классов $\pi(X,Y) := C(X,Y) / \sim$. Класс $f: [f] \in \pi(X,Y)$.

Определение 12.2. Топологические пространства X и Y называются гомотопически эквивалентными $X \sim Y$, если $\exists f: X \mapsto Y \ u \ \exists g: X \mapsto Y, \ \textit{где} \ f \ u \ g$ непрерывны, такие что $f \circ g: Y \mapsto Y, \ g \circ f: X \mapsto X \ u \ f \circ g \sim Id_Y, \ g \circ f \sim Id_X$.

Пример 12.1. $\mathbb{R}^n \sim \{\overline{0}\}$. Рассмотрим $f: \mathbb{R}^n \mapsto \{\overline{0}\}$, по правилу $f(x) = \overline{0} \, \forall x \, u \, g: \{\overline{0}\} \mapsto \mathbb{R}^n$, по правилу $f(\overline{0}) = \overline{0}$. Заметим, что f,g непрерывны. $f \circ g(\overline{0}) = f(\overline{0}) = \overline{0} \Rightarrow f \circ g = Id_{\{\overline{0}\}}$. Также $g \circ f(x) = g(\overline{0}) = \overline{0}$. $F(\overrightarrow{x},t) = t\overrightarrow{x}$. При $t = 1: F(\overrightarrow{x},1) = Id_{\mathbb{R}^n}$. При $t = 0: F(\overrightarrow{x},0) = 0$. Таким образом $g \circ f(x) \equiv \overline{0}(x) \sim Id_{\mathbb{R}^n}$.

Утверждение 12.2. Гомотопность топологических пространств является отношением эквивалентности.

Замечание 12.1. Гомотопность пространств X и Y слабее гомеоморфности, то есть из гомеоморфности следует гомотопность. $\exists f, f^{-1} | \varphi^{-1} = Id_Y, f^{-1} f = Id_X.$

Определение 12.3. Пусть задан гомотопический класс пространства X. [X] называется его гомотопическим ти-

Определение 12.4. Топологическое пространство X называется стягиваемым, если оно гомотопически эквивалентно точке.

Задача 12.2. I = [0,1] стягиваем.

Утверждение 12.3. Пусть $f, g: X \mapsto I = [0, 1]$ непрерывны. Тогда $f \sim g$.

Утверждение 12.4. Пусть $f,g:X\mapsto Y$, где Y - стягиваемо. Тогда $f\sim g$.

Определение 12.5. Пусть $A \subseteq X$, (X,τ) – топологическое пространство. Тогда ретракция (сильная) – это $\Gamma: X \mapsto A$ – непрерывная, такая что $\Gamma|_A \equiv Id_A$ и A – (сильный) ретракт. Ретракция (слабая) – это $\Gamma: X \mapsto A$ – непрерывная, такая что $\Gamma|_A \equiv Id_A$ и A – (слабый) ретракт.

Пример 12.2. Кольцо $\overline{D_1^2} \ D_2^2$

Определение 12.6. Деформация пространства X в подпространство $A \subset X$ – это гомотопия $D: X \times I \mapsto X$, такая что $D(x,0) = x \ \forall x \in X \ u \ D(x,1) \in A \ \forall x \in X$.

Определение 12.7. Если дополнительно $D(x,t) \in A \ \forall x \in A, \forall t \in I, \ mo \ A$ – сильный деформационный ретракт.

13 Лекция 13

13.1 Фундаментальная группа

Пусть X - топологическое пространство, выберем в нем две точки x_0, x_1 . Рассмотрим множество путей из x_0 в x_1 .

Определение 13.1. Пусть - непрерывное отображение $\gamma: [0,1] \to X$.

Определение 13.2 (гомотопия путей - связная гомотопия). Гомотопия, сохраняющее точки на граница отрезка, для отображений - $\gamma_0, \gamma_1 : [0,1] \to X, \gamma_i(0) = x_0, \gamma_i(1) = x_1$.

Определение 13.3. Пространство путей из x_0 в $x_1 = \{\gamma: [0,1] \to X: \ \gamma(0) = x_0, \gamma(1) = x_1\}$. Обозначается $\Omega(x_0,x_1)$.

Замечание 13.1. Отношение гомотопности - отношение эквивалентности.

Определение 13.4. $\pi^x(x_0,x_1)=\Omega(x_0,x_1)/_{\sim}$ - множество гомотопических классов путей

Умножение путей. Можем умножать пути, у которых начало первого и нонец второго совпадают, т.е $\gamma_1(1) = \gamma_2(0)$, где γ_1 - путь от x_0 до x_1 , γ_2 - путь от x_1 до x_2 .

$$\gamma_1 \gamma_2 = \begin{cases} \gamma_1(2t), & 0 \le t \le \frac{1}{2} \\ \gamma_2(2t-1), & \frac{1}{2} < t \le 1 \end{cases}$$
 (3)

Видно, что операция не ассоциативна, но $\gamma_1(\gamma_2\gamma_3) \sim (\gamma_1\gamma_2)\gamma_3$. Докажем это.

Доказательство. Построим гомотопию.

$$H(t,s) = \begin{cases} \gamma_1(\frac{4}{s+1}t) & 0 \le t < t_1 = \frac{s+1}{4} \\ \gamma_2(4t - 4t_1) & t_1 \le t < t_2 = \frac{s+2}{4} \\ \gamma_3(???) & t_2 \le t \le 1 \end{cases}$$
(4)

Таким образом умножение путей ассоциативно с точностью до гомотопии.

Определение 13.5. Петля c фиксированный началом = замкнутый путь, т.е. $\gamma(0) = \gamma(1) = x_0 \in X$.

Определение 13.6. Рассмотрим $\Omega(x_0, x_0) /_{\sim} c$ операцией умножения путей. Это фундаментальная группа, обозначается $\pi_1(X, x_0)$

Замечание 13.2. Умножение классов эквивалентности $[\gamma_1][\gamma_2] = [\gamma_1 \gamma_2].$

Теорема 13.1. Это действительно группа.

Доказательство. Проверим корректность. Пусть $\gamma_i, \gamma_i' \in [\gamma_i]$, необходимо доказать, что $[\gamma_1][\gamma_2] = [\gamma_1'][\gamma_2']$ - очевидно. Ассоциативность уже доказана.

Существование нейтрального элемента $e = [\gamma : [0, 1] \to x_0]$

Обратный элемент $[\gamma]^{-1} = [\gamma(1-t)]$

Зависимость π_1 от начальной точки. Выберем две различные точки в пространстве X - x_0 и x_1 . И между этими точками существует путь $\tilde{\gamma}$.

Петле(классу гомотопической эквивалентности) из $[\gamma] \in \Omega(x_0) / \sim$ сопоставляем путь $[\tilde{\gamma}\gamma\tilde{\gamma}^{-1}]$, т.е. мы задали отображнение из $\pi_1(X, x_1)$ в $\pi_1(X, x_2)$, обозначим его $[\gamma]^*$.

Утверждение 13.2. $[\gamma]^*$ изоморфизм групп

Доказательство. Очевидно.

Tаким образом, если X - линейно связно, то фундаментальная группа не зависит от выбора точки.

Определение 13.7. Если фундаментальная группа тривиально, то пространство называется односвязным.

Замечание 14.1. Даты досрочного экзамена: 16, 17. email: dmitry.millionschikov@math.msu.ru

Определение 14.1. Пространство X называется односвязным, если любые два пути c общими началамии концом гомотопны (гомотопия связанная).

Теорема 14.1. Если X линейное свзяное, то X односвязно тогда и только тогда, когда $\pi_1(x) = \{0\}$

Доказательство. (\Rightarrow :) Пусть $gamma_1$ - петля с началом в точек x_0 . $\gamma_0 = \{\gamma_1(t) = x_0 \forall t\}$. В силу односвязности $\gamma_1 \sim \gamma_0 = const$, следовательно тривиальная $\pi_1(X, x_0) \simeq \pi_1(X)$;

 $(\Leftarrow:)$ Петля $\gamma_0 \gamma_1^{-1}$ с началом в точке x_0 и $\pi_1(X, x_0) = \{0\}$, следовательно $\gamma_0 \gamma^P - 1_1 \sim const(x_0) = \{0\}$

$$\gamma_1 \sim (\gamma_0 \gamma_1^{-1}) \gamma_1 \sim \gamma_0 (\gamma_1^{-1} \gamma_1) \sim \gamma_0$$

14.1 Накрытие

Пусть $p: \tilde{X} \to X$ - непрерывное отображение между двумя линейно связными пространствами.

Определение 14.2. p - накрытие, если для $x \in X$ существует окрестность U = U(x) и $p^{-1}(U) = \bigsqcup_{i \in D \subset \mathbb{N}} V_i$, где $p : V_i \to U$ - сужжение p на V_i - гомеоморфизм.

Пример 14.1. $\tilde{X} = X \times \mathbb{N} \to X$ - тривиальный пример.

Пример 14.2. $\tilde{X} = \mathbb{R} \to X = S^q \subset \mathbb{R}^2$, где $p(t) = (\cos t, \sin t)$, т.е. $t \mapsto e^{2\pi i t}$

Пример 14.3. Пусть \tilde{X}, X - две окружености. $p(z) = z^n$

Пример 14.4. $\mathbb{R} \times \mathbb{R} \to S^1 \times S^1$, $p = (p_{o\kappa p}, p_{o\kappa p})$

Пример 14.5. $\tilde{X} = S^2 \to \mathbb{R}P^2$ - отождествялем противоположные относительно центра точки.

Пемма 14.2 (Лебега). Пусть X - компактное метрическое пространство c метрикой ρ , $\{U_{\alpha}\}$ - покрытие, тогда существует r>0 (число Лебега покрытия) такое, что любой шар $O_r(x)\subset U_{\tilde{\alpha}}$ для некоторого $\tilde{\alpha}$

Доказательство. Т.к. есть покрытие у пространства X, то у каждой точки $x \in X$ существует r_x такой, что $O_{r_x} \subset U_i$ для некоторого i.

Утверждение 14.3. $\{O_{\frac{1}{2}r_x}(x)\}$ - покрытие X.

Т.к. $\{O_{\frac{1}{2}r_x}(x)\}$ - компакт, то будет существовать конечное подпокрытие.

Определим Лебегово число $\tilde{r} = \min_i \frac{1}{2} r_{x_i}$

Сдвинем шар так, чтобы выполнялось $y \in O_{\frac{1}{2}r_{x_i}}(x_i) \Leftrightarrow x_i \in O_{\frac{1}{2}r_{x_i}}(y)$

$$O_r(y) \subset O_{\frac{1}{2}r_{x_i}}(y) \subset O_{\frac{1}{2}r_{x_i}}(x_i) \subset U_{\tilde{\alpha}}$$

Теорема 14.4 (Следствие). $f: X \to Y, X$ - компакт в метрическом пространстве, Y. Если $\{U_{\alpha}\}$ - покрытие Y существует r > 0 такое, что любой шар $O_r(x) \subset U_{\alpha}$.

Теорема 14.5 (о накрывающем пути). $p: \tilde{X} \to X$ - накрытие. $\gamma: I \to X$ - непрерывный путь, $\gamma(0) = x_0 \in X$, $\tilde{x}_0 \in p^{-1}(x_0)$. Тогда существует единственное $\tilde{\gamma}$ такое, что $p\tilde{\gamma} = \gamma$

Доказательство. Будет потом.

Докажем единственность.

Утверждение 14.6. Накрывающий путь единств.

Утверждение 14.7. $f_0, f_1: Y \to \tilde{X}, Y$ - связное, $p: \tilde{X} \to X$ - накрытие, $pf_0 = pf_1$. Тогда $Y' = \{y \in Y: f_0(y) = f_1(y)\}$. Тогда из связности Y следует, что Y' = Y или $Y' = \emptyset$.

Задача 14.1. Доказать утверждения выше.

Теорема 14.8 (о накрывающей гомотопии).

22

Все пространства хаусдорфовы.

Определение 15.1. Функция $k(x) = 0 \cup \mathbb{N} \cup \{+\infty\}$ - число $p^{-1}(x)$, число прообразов. - число листов накрытия.

Задача 15.1. Из определения k следует, что это локольно постоянная функция.

Задача 15.2. X - связно, k(x), $X \to D$ - локально постоянно, тогда k(x) = const.

Определение 15.2 (топологическое действие). Дополнительное требуем, что бы при фиксированном элементы группы отображения было гомеоморфизмом.

Определение 15.3. Вполне разрываное действие - дейстиве такое, что для каждой точки $x \in X$ существует окрестность U(x), такая что, при действиее $gU \cup g'U = \emptyset$ при $g \neq g'$.

Теорема 15.1. Пусть \tilde{X} - связное, локальное линейное свзяное(из этого следуте, что оно линейное связное), \tilde{X} - односвязное. На \tilde{X} действует свободное и вполне разрывано действует дискретное не более, чем счетная группа Γ .

Тогда
$$p: \tilde{X} o \tilde{X}_{\Gamma}$$
 - накрытие и $\Gamma \cong \pi_1(\tilde{X}_{\Gamma})$

Доказательство. $p: \tilde{X} \to \tilde{X}_{\Gamma}$ - факторпространство или пространство орбит. Пусть $U \subset \tilde{U}$. Рассмотрим p(U) -почему открыто?

$$p^{-1}(p(U)) = \bigcup_{g \in \Gamma} gU$$

- оно открыто, т.о. отображение p - открытое.

Надо доказать, что ограничение p на произвольный лист gU - это $gU \to p(U)$ - биекция. Нужно вязть u такоим образом, что $gU \cap g'U = \emptyset$. Пусть $y_1, y_2 \in gU$ и $p(gy_1) = p(gy_2)$. Второе $\Leftrightarrow gy_1 \sim gy_2 \Leftrightarrow$ существует $g' \in \Gamma gy_1 = g'(gy_2) = (g'g)y_2$, тогда $gU = g'gU \neq \emptyset$ - противоречие, следовательно $g' = e \in \Gamma$.

Остается доказать, что обратное тоже непрерывно. - самостоятельно.

Докажем изоморфизм групп. Построи отображение $\psi: \Gamma \to \pi_1(X_{\Gamma})$

$$g \in \Gamma \longmapsto [\gamma_q????????]$$

Остается проверить, что это гомоморфизм.

Определение 15.4. *Накрытие называется называется универсальным, если* \tilde{X} *- односвязно.*

Действие непрерывных отображений на π_1 . f - непрерывное отображение - индуцирует $f_*: \pi(X,x_0) \to \pi_1(y,f(x_0)),$ $g_*: \pi(Y,f(x_0)) \to \pi_1(Z,z_0),$ тогда $(gf)_*=g_*f_*$

Задача 15.3. $z: X \to A$ - ретракция, i - вложение A в X, тогда $ri = \mathrm{id}_A$, $r^*i^* = \mathrm{id}_{*A}$

Задача 15.4. $\pi_1(X) \cong \pi_1(Y)$, тогда они гомотопически эквивалентны.

Теорема 15.2 (Брауэр). $f: D^2 \to D^2$ - непрерывное отображение, то существует неподвижная точка.

Доказательство. Очевидно.