JogginGo!

Relatório Final

Mestrado Integrado em Engenharia Informática e Computação

Paradigmas de Programação

Luís Dias - 080509094 - ei08094@fe.up.ptLuís Gomes - 080509169 - ei08169@fe.up.pt

Faculdade de Engenharia da Universidade do Porto Rua Roberto Frias, sn, 4200-465 Porto, Portugal

27 de Maio de 2013

Conteúdo

1	Resumo	3
2	Introdução 2.1 Objectivo	
3	Descrição do Sistema Desenvolvido	5
J	3.1 Descrição Conceptual	5 5
4	Implementação 4.1 Ambiente de desenvolvimento	7
5	Conclusão	8
6	Melhoramentos	8
7	3	8 8
A	Apêndice A.1 Manual de Utilização	9

1 Resumo

Com uma interface limpa e amiga do utilizador, o Joggin
Go! é uma aplicação Web que permite a gestão de todas as corridas feitas por qualquer utilizador registado. Cada corrida é um tratada como um conjunto de coordenadas GPS ($Global\ Positioning\ System$) recolhidas com recurso aos sensores de um dispositivo móvel Android. A cada minuto, intervalo de tempo definido, é recolhida a posição em que o atleta se encontra, e o conjunto de pontos é assim representado visualmente na interface web.

2 Introdução

Este projecto insere-se no âmbito da unidade curricular de Paradigmas de Programação, do 4º ano do Mestrado Integrado em Engenharia Informática e Computação da Faculdade de Engenharia da Universidade do Porto. Tendo em conta o conteúdo programático da unidade curricular, era esperado realizar um projecto que envolvesse mais do que um paradigma de programação e que as diferentes partes desenvolvidas interagissem entre si, de forma a criar um produto único e funcional.

2.1 Objectivo

O objectivo deste trabalho era criar uma plataforma *mobile* de controlo de corridas de um determinado atleta. Do ponto de vista de utilização, foi necessário criar uma plataforma que permitisse a qualquer utilizador registar-se e visualizar todas suas corridas. Assim, desenvolvemos também um *webservice* que preenchesse essa lacuna. Para além disso, é o *webservice* o responsável por receber, tratar e armazenar os dados enviados pelo dispositivo móvel.

2.2 Motivação

A motivação principal deste projecto foi o desafio da integração de diferentes linguagens e paradigmas na criação de um produto único e funcional aplicado a um cenário real. Para além da componente académica, o desenvolvimento de um produto útil e enquadrado no mundo actual, com possibilidades de ser usado por qualquer atleta nas suas corridas, foi outra das motivações fulcrais. Achamos que o produto por nós desenvolvido responde às necessidades do público-alvo.

3 Descrição do Sistema Desenvolvido

3.1 Descrição Conceptual

3.1.1 Funcionalidades

Java (Android):

As tarefas disponibilizadas pela componente Java estão relacionadas com a aplicação Android. Esta é a responsável pela ligação com a parte funcionalmente mais importante do sistema, que é a captura de coordenadas durante a corrida de um utilizador. Assim que este termina a corrida e informa a aplicação que deseja sincronizar os dados, estes são enviados para a plataforma web.

- GPSTracker: Permite obter as coordenadas actuais do dispositivo móvel do utilizador. É, assim, responsável por comunicar estas alterações à aplicação, com um intervalo definido de 1 minuto, para que estas coordenadas possam ser guardadas para futura sincronização;
- DatabaseHandler Responsável por guardar as coordenadas obtidas e adicioná-las a uma pista, correspondente à corrida actual do utilizador. Estas são guardadas numa base de dados temporária SQLite, que guarda os dados da corrida até que o utilizador faz a sincronização com a plataforma ou decide descartá-la.
- MapWithStats Depois de terminar a corrida, o utilizador poderá ver um mapa, recorrendo à API do Google Maps, com o percurso efectuado. Poderá também ver um conjunto de estatísticas referentes à corrida, como velocidade média, distância percorrida e tempo total.

Ruby on Rails:

A componente Ruby on Rails é a responsável pela plataforma *online* da aplicação. É, no fundo, a interface de comunicação com o utilizador, e é onde este se liga à vertente social da aplicação, onde pode competir de forma amigável pelos melhores tempos.

- Signup Permite ao utilizador registar-se na aplicação para poder usufruir das funcionalidades da aplicação.
- Login O utilizador entra na sua conta para poder ver os seus dados, corridas efectuadas e competir contra outros utilizadores.
- Logout Permite ao utilizador terminar a sessão actual.
- Test your limits Funcionalidade de competição amigável entre utilizadores, em que para determinado percurso o utilizador é desafiado a tentar obter o melhor tempo possível para ficar no ranking dos melhores tempos.
- *MyStats* Permite que o utilizador veja os melhores tempos efectuados por ele, assim como distâncias mais longas e velocidades médias atingidas.
- AddTrack Permite ao utilizador adicionar novas pistas para serem avaliadas como sendo passíveis de ser adicionadas às corridas do Test your Limits, para que outros possam competir.

3.1.2 Estrutura do Programa

Este projecto ficou dividido em 2 módulos distintos: Webservice e terminal Android. Relativamente ao Webservice, e tal como referido ao longo deste documento, é o responsável pela autenticação do utilizador, assim como pelo tratamento de toda a informação recebida do dispositivo móvel. Após receber a informação, o webservice analiza-a e guarda-a na base de dados, para mais tarde proceder à sua representação recorrendo a API do Google Maps. De notar que o dispositivo móvel apenas transmite ao webservice os percursos que ainda não tenham sido sincronizados.

Figura 1: Estrutura do programa

O segundo módulo, ou seja, o terminal Android, trata da recolha das coordenadas GPS e do seu correcto armazenamento, numa base de dados SQLite, até que seja feita a sincronização com o *Webservice*. Para além da recolha, é também da sua responsabilidade a criação de um documento JSON utilizado como base para a comunicação com o terminal web.

3.1.3 Linguagens de Programação

Java:

Para o JogginGo! foi utilizada a linguagem Java para o desenvolvimento da aplicação Android, utilizando o SDK existente para o efeito. É responsável, assim, pela obtenção de coordenada GPS do dispositivo móvel, pela criação de uma base de dados relacional SQLite e pela comunicação REST com o webservice.

A linguagem Java é multi-paradigma, e para este projecto foi utilizada principamente como linguagem mobile e orientada a objectos. O principal factor para a escolha do Java foi o seu excelente comportamento na programação Android, assim como a facilidade de criação de uma base de dados SQLite utilizando objectos. Para além disto, contou muito a familiarização com a linguagem, o que permitiu maior agilidade de desenvolvimento e menos tempo perdido na resolução de problemas.

Ruby:

Para o desenvolvimento do webservice da aplicação, que ao mesmo tempo é a plataforma online, foi utilizado Ruby, principalmente devido à framework Ruby on Rails que permite prototipagem rápida e eficiente. Esta framework tem uma estrutura MVC (Model-View-Controller) que permite facilmente separar a lógica do servidor (back-end) da interface com o utilizador (Front-End). Foi assim utilizada para todo o desenvolvimento de todas as funcionalidades da plataforma online e para criação da base de dados.

A linguagem Ruby também é multi-paradigma, e aqui foram usadas várias vertentes da mesma (orientada a objetos, scripting e reflexiva), tanto através da utilização de classes, do embeber de partes do código dentro de HTML ou Javascript e da utilização e carregamento de plugins (com novas classes) em tempo de execução . Para o desenvolvimento da plataforma foi equacionada a utilização de Python com a framework Django, mas depois de alguma pesquisa foi seleccionado o Ruby (on Rails) devido à facilidade com que se manipula a base de dados, à existência de inúmeros plugins que nos podem ajudar a melhorar a plataforma e também porque o Django é mais indicado para uma prototipagem rápida de ferramentas de administração, e menos de componentes com muitos utilizadores (como redes sociais) e muitas funcionalidades distintas.

Javascript:

Foi utilizado Javascript principalmente para uma melhor interacção do utilizador com a plataforma. A sua escolha deveu-se a ser, até ao momento, a única linguagem que permite a realização das suas funcionalidades na web e porque possui a biblioca JQuery que é também a mais utilizada na framework (Ruby on Rails) utilizada para o desenvolvimento da plataforma, que permite alterações ao Domain Objec Model (DOM) das páginas em tempo-real, sem necessidade de fazer novos pedidos ao servidor. Apesar de ser multi-paradigma, foi utilizada como linguagem de *scripting*, já que permite que o seu código esteja embebido noutras linguagens e não requerer qualquer tipo de compilação, sendo o seu código totalmente *client-side*, ou seja, executado na máquina do utilizador.

4 Implementação

4.1 Ambiente de desenvolvimento

Para os diferentes módulos, foram usadas diferentes tecnologias e ambientes.

O Webservice foi desenvolvido em utilizando a tecnologia Ruby on Rails, com a ajuda da API do Google Maps, programado no editor de texto Sublime Text, recorrendo a um servidor local (localhost). Mais tarde, fizemos a migração da plataforma para o sistema de cloud, Heroku.

Relativamente ao terminal móvel, foi desenvolvida em Java (Android), recorrendo ao IDE Eclipse.

Ambos os modelos foram desenvolvidos em computadores portáteis utilizando o sistema operativo Linux (Ubuntu).

5 Conclusão

As conclusões deste projecto são positivas em vários níveis. O facto de utilizarmos diferentes linguagens de programação e paradigmas para o desenvolvimento de um projecto torna-se um desafio e a maior motivação de desenvolvimento.

O facto de ser uma aplicação com um factor de utilidade real bastante elevado fez com que a satisfação pessoal fosse outro dos factores de grande motivação.

Foi também um bom desafio o desenvolvimento da aplicação Android que fosse capaz de recolher as coordenadas *GPS* ao longo duma corrida, já que não era algo que nenhum dos elementos tivesse experimentado. Para além disso, conseguir ligar estas coordenadas e a um mapa e ao mesmo tempo extrair informações tal como velocidade média, tempo e distâncias percorridas tornou-se bastante positivo.

Para desenvolvimento futuro, seria interessante o desenvolvimento de algumas funcionalidades que desejávamos ter implementado e que permitissem algum destaque face às diferentes aplicações semelhantes existentes no mercado, e ao mesmo tempo adicionar mais funcionalidades da plataforma *online* à aplicação Android e melhorar a sua usabilidade e potencial.

6 Melhoramentos

Há alguns melhoramentos que tínhamos em vista, no caso de ter existido mais tempo para a sua implementação. Dos mais importante, destacaríamos o melhoramento da interface gráfica, que neste momento se encontra pouco cuidada pois decidimos dar mais ênfase às funcionalidades do que à usabilidade.

Outro dos melhoramentos que achamos que traría mais valor ao nosso projecto, era a inclusão da funcionalidade "Test your Limits", que permitiria a um qualquer atleta registado, competir num percurso pré-definido pela plataforma.

7 Bibliografia

7.1 Publicações

7.2 URLs

- Storage Options, http://developer.android.com/guide/topics/data/data-storage.html, Maio 2013
- Google Developers, https://developers.google.com/maps/, Maio 2013
- Latitude and Longitude of a Point, http://itouchmap.com/latlong.html, Maio 2013
- GMaps4Rails, https://github.com/apneadiving/Google-Maps-for-Rails, Maio 2013
- Stack Overflow, http://stackoverflow.com, Maio 2013
- Android GPS, http://www.androidhive.info/2012/07/android-gps-location-manager-tutorial/, Maio 2013
- Google Maps Android API V2, https://developers.google.com/maps/documentation/android/start_the_g Maio 2013

A Apêndice

A.1 Manual de Utilização