Student Information

Full Name: Talha Eroğlu

Id Number: 2380392

Q. 1

1. $\neg (p \land q) \leftrightarrow (\neg q \rightarrow p)$

 $2. \equiv (\neg p \vee \neg q) \leftrightarrow (\neg q \to p) \longrightarrow \text{ Using De Morgans' second law for left hand side proposition}$ $3. \equiv (\neg p \vee \neg q) \leftrightarrow (p \vee q) \longrightarrow \text{Using definition of implication and Commutative law}$

 $4. \equiv ((\neg p \vee \neg q) \to (p \vee q)) \wedge ((p \vee q) \to (\neg p \vee \neg q) \longrightarrow \text{ Using definition of double implication}$ $5. \equiv ((p \wedge q) \vee (p \vee q)) \wedge ((\neg p \wedge \neg q) \vee (\neg p \vee \neg q) \to \text{ Using def. of implication and De Morgan's law}.$

 $6. \equiv \left[((p \land q) \lor p) \lor ((p \land q) \lor q) \right] \land \left[((\neg p \land \neg q) \lor \neg p) \lor ((\neg p \land \neg q) \lor \neg q) \right] \longrightarrow \text{Using Distributive law}$

7. $\equiv (p \lor q) \land (\neg p \lor \neg q) \longrightarrow$ Using Absorption law for all 4 compound proposition

8. As can be seen from statement 7, the first proposition given is equal to the second.

Q. 2

2.a)
$$\forall a, b, z, y (a \neq b) [(I(a, y) \land I(b, y)) \rightarrow (E(a, z) \land \neg E(b, z))]$$

2.b)
$$\exists x \forall y \forall z (z \neq x) (I(x,y) \land S(x,x) \land \neg S(x,z))$$

$$\begin{aligned} &2.\mathbf{b}) \ \exists x \forall y \forall z \big(z \neq x\big) \big(I(x,y) \wedge S(x,x) \wedge \neg S(x,z)\big) \\ &2.\mathbf{c}) \ \forall k, t (\mathbf{t} = \mathbf{medicine}) \neg \exists (x,y,z) \big[I(x,t) \wedge I(y,t) \wedge I(z,t) \wedge A(x,J(k,t)) \wedge A(y,J(k,t)) \wedge A(z,J(k,t)) \wedge A(z,J(k,t)) \big] \end{aligned}$$

$$x \neq y \land y \neq z \land x \neq z]$$

Q. 3

Proof 1 for first question: $\neg p, p \lor q \vdash q$

1.
$$\neg p$$
 premise
2. $p \lor q$ premise

3.
$$p$$
assumption4. \bot $\neg e \ 1,3$ 5. q $\bot e \ 4$

$$\mid$$
 6. q assumption

7.
$$q \lor e 2, 3-5, 6-6$$

Proof2 for first question: $\neg p, p \lor \neg q \vdash \neg q$

1.
$$\neg p$$
premise2. $p \lor \neg q$ premise

6.
$$\neg q$$
 assumption

7.
$$\neg q$$
 $\forall e \ 2, \ 3-5, \ 6-6$

1.

$$p \vee \neg q, p \vee r \vdash (r \to q) \to p$$

1. $p \vee \neg q$	premise
$2. p \vee r$	premise
$\mid 3. \neg p \mid$	assumption
4. r	proof $12,3$
$ 5. \neg q$	proof $21,3$
$ \begin{array}{c c} 4. & r \\ 5. & \neg q \\ 6. & (r \land \neg q) \end{array} $	$\wedge i$ 4,5
7. $\neg p \to (r \land \neg q)$	$\rightarrow i 3-6$
$8. r \rightarrow q$	assumption
$\begin{vmatrix} & & & & & & & & & & & & & & & & & & &$	assumption
$ \ \ \ 10. \ r \wedge \neg q$	$\rightarrow e 7.9$
	$\wedge e \ 10$
$ \ \ \ 12. \ q$	$\rightarrow e$ 8,11
$ \ \ \ 13. \ \neg q$	$\wedge e \ 10$
│	$\neg e \ 12,13$
15. p	$\neg i$ 9-14
16. $(r \to q) \to p$	$\rightarrow i$ 8-15

2.

$$\vdash ((q \to p) \to q) \to q$$

	assumption
$2. q \lor \neg q$	lemma
$\begin{array}{ c c c c c c }\hline & 3. & q \\ & 4. & q \\ \hline \end{array}$	assumption
$ \ \ \ 4. \ q$	copy 3
	assumption
6. q 7. ± 8. p	assumption
│	$\neg e 5,6$
8. p	$\perp e \ 7$
$\begin{array}{ c c c c c }\hline 9. & q \to p\\ \hline 10. & q\\ \hline\end{array}$	$\rightarrow i 6-8$
	$\rightarrow e 1,9$
11. q	$\vee e \ 2, \ 3\text{-}4, \ 5\text{-}10$
12. $((q \rightarrow p) \rightarrow q) \rightarrow q$	$\rightarrow i$ 1-11

Q. 4

1.

$$\forall x (P(x) \to Q(x)) \vdash \exists x (P(x) \land \neg Q(x))$$

1. $\neg \forall x (P(x) \to Q(x))$	premise
$2. \neg \exists x (P(x) \land \neg Q(x))$	assumption
$\begin{vmatrix} & & & & & & & & & & & & & & & & & & &$	fresh name
	assumption
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	assumption
$ \begin{array}{ c c c c } \hline & 6. & \neg Q(x_0) \\ \hline & 7. & P(x_0) \land \neg Q(x_0) \\ \hline & 8. & \bot \\ \hline \end{array} $	assumption $\land i \ 4,5$ $\neg e \ 3,6$
$\begin{array}{ c c c c c c } \hline & 9. & \neg \neg Q(x_0) \\ \hline & 10. & Q(x_0) \\ \hline \end{array}$	$\neg i 5-7$ $\neg \neg e 9$
	$\rightarrow i$ 5-10
	copy 11
$\begin{array}{ c c c c }\hline 13. \ \forall x (P(x) \to Q(x))\\ 14. \ \bot \\ \end{array}$	$\forall i \ 3\text{-}12$ $\neg e \ 1,13$
15. $\neg \neg \exists x (P(x) \land \neg Q(x))$ 16. $\exists x (P(x) \land \neg Q(x))$	$\neg i \ 2\text{-}14$ $\neg \neg e \ 15$