Proposé par : Fridhi Zied

Lycée Ahmed NourEddine Sousse

3^{ème}Sciences Informatiques 1

Durée : 2 H

Corrigé-Devoir De Synthèse n°2

Avril 2023

Algorithmique & Programmation

Exercice $n^{\bullet}1$: (3.75 points):

Les algorithmes correspondants aux fonctions F1, F2, F3 et F4 permettent de :

- F1 et F2, convertir un nombre décimal vers son équivalent en base B
- F3, convertir un nombre d'une base B quelconque vers son équivalent décimal
- F4, convertir un nombre d'une base B inférieure à 10 vers son équivalent décimal

Réponses aux questions : Mettre V si la proposition est correcte et F sinon

N [•] question :		Ré	ponse	
1	F	V	F	
2	V	F	F	
3	V	V	F	F
4	F	F	F	V
5	F	F	V	F

Exercice $n^{\bullet}2$: (2.5 points)

Algorithme d'un module permettant de vérifier la divisibilité d'un nombre N par 19.

Fonction Divis 19(N: Entier): Booléen

Début

Répéter

$$N \leftarrow (N \text{ div } 10) + 2*(N \text{ mod } 10)$$

Jusqu'à (N < 38)

Retourner ((N=0) OU (N=19))

Fin

T.D.O		
О	T/N	
-	-	

<u>Exercice $n^{\bullet}3$ </u>: (2.5 points)

Soit la formule suivante :

$$\mathbf{e} = \mathbf{1} + \frac{1}{1} + \frac{1}{1 \times 2} + \frac{1}{1 \times 2 \times 3} + \frac{1}{1 \times 2 \times 3 \times 4} + \frac{1}{1 \times 2 \times 3 \times 4 \times 5} + \dots = \sum_{0}^{n} \frac{1}{n!}$$

Ecrire un algorithme d'un module permettant de calculer une valeur approchée de e à 10⁻⁵ près.

Fonction e_app (epsilon : réel) : réel

Début

$$S1 \leftarrow 1$$
, $i \leftarrow 1$
Répéter
 $S2 \leftarrow S1$
 $S1 \leftarrow S2 + 1/Fact(i)$
 $i \leftarrow i + 1$

Jusqu'à (ABS(S1 - S2) < epsilon)

Retourner S1

T.D.O :

O	T/N
S1, S2	Réel
i	Entier
Fact	Fonction

Fonction fact(n: entier): entier

Début $F \leftarrow 1$ Pour i de 2 à n faire $F \leftarrow F^*i$ Fin

Retourner F

Fin

Exercice $n^{\bullet}4$: (3.75 points)

Exemple: pour n = 4

Algorithme d'un module permettant de calculer et afficher le PGCD de N entier positifs.

Procédure Remplir (n : entier, @ M : Mat)

Début

Pour j de 0 à n-1 faire $M[0,j] \leftarrow Aléa (10,100)$ Pour i de 1 à n-j-1 faire $M[i,j] \leftarrow PGCD(M[i-1,j],M[i-1,j+1])$ Fin pour

T.D.O:

0	T/N
i,j	Entier
PGCD	Fonction

Fin pour

Ecrire("Le PGCD est: ", M[n-1,0])

Fin

⇒ *Proposer un algorithme solution de la fonction PGCD (méthode de différence ou de division euclidienne)*

Exercice $n^{\bullet}5:(7.5 \text{ points})$

Algorithme du programme principal

Algorithme calculette Début

> Saisir(n) Remplir (n,T, M) Afficher (n,M)

TDNT:

Type TAB = tableau de 10 chaines MAT=Tableau de n*3 chaines TDO:

0	T/N
N	Entier
T	TAB
M	MAT
Saisir	Procédure
Remplir	Procédure
Afficher	Procédure

Fin

2) Algorithmes des sous-programmes :

Procédure Saisir(@n:entier)

Début

Répéter

Ecrire ("donner le nombre de lignes : ") Lire (n) Jusqu'à (n > 2)

Fin

0	T/N
-	-

Procédure afficher (n : entier, M : mat) Début

Pour i de 0 à n-1 faire Pour j de 0 à 2 faire Ecrire (M[i,j], "|") Fin pour

Fin pour

Fin

Procédure remplir (n : entier, T : TAB, @ M : MAT)

Début

Pour i de 0 à n-1 faire $M[i,2] \leftarrow Addition(M[i,0], M[i,1], T)$

Fin pour

Fin

O	T/N
i,j	Entier

0	T/N
i	Entier
Addition	Fonction

Fonction Addition (ch1,ch2 : chaine, T : TAB) : chaine Début

> $X \leftarrow \text{équivalent(ch1,T)}$ Y ← équivalent(ch2,T) Ch \leftarrow somme(x, y, T)

Retourner ch

Fin

Fonction équivalent (ch: chaine, T: TAB) : entier Début

 $X \leftarrow 0$ Tantque (ch <> "") faire Ch1 \leftarrow sous-chaine (ch, 0, 7) i ← Recherche(ch1, T) $X \leftarrow X*10 + i$ Effacer (ch, 0, 7) Fin tq

Retourner X

Fin

Fonction Somme (x, y: Entier, T: TAB): chaine Début

> $A \leftarrow x + y$ Res **←** "" Tantque (A <>) faire Res \leftarrow T[A mod] + res $A \leftarrow A \text{ div}$ Fin **Retourner Res**

Fonction Recherche (ch : chaine , T : TAB) : Entier

Début

Fin

i **←** -1 Tant que (T[i+1] <> ch) faire i **←** i + 1 fin tq retourner i

Fin

0	T/N
X, Y	Entier
Ch	chaine
Equivalent	Fonction
Somme	Fonction

0	T/N
X, i	Entier
Ch1	chaine
Recherche	Fonction

O	T/N
A	Entier
Res	chaine

0	T/N
i	Entier