Chapter 4

Homework 21935004 谭焱

4.1 第七次作业

Exercise 4.1. 证 φ 是自然, 即 $h:(X,x_0)\to (Y,y_0)$ 连续, 则有交换图表

$$\begin{array}{ccc} \pi_1(X, x_0) & \stackrel{\varphi}{\longrightarrow} & H_1(X) \\ \downarrow h_* & & \downarrow h_* \\ \pi_1(Y, y_0) & \stackrel{\varphi}{\longrightarrow} & H_1(Y) \end{array}$$

Solution. 今 $f: I \to X$ 是 X 中 x_0 处一条闭道路, $\eta: \Delta^1 \to I$ 是同胚 $(1-t)e_0 + te_1 \mapsto t$. 则

$$\varphi \circ h_*([f]) = \varphi([h \circ f]) = \operatorname{cls} h \circ f \circ \eta$$
$$h_* \circ \varphi([f]) = h_*(\operatorname{cls} f \circ \eta) = \operatorname{cls} h \circ f \circ \eta$$

所以交换图表成立.

Exercise 4.2. 如果 $f \in X$ 上一条道路, f^{-1} 是逆道路, 则存在 $\zeta \in S_2(X)$

使
$$\partial \zeta = f \circ \eta + f^{-1} \circ \eta$$

Solution. 定义 $\Delta^2 \to X$ 上的 σ 满足 $\sigma(1-t,t,0) = f(t), \sigma(0,1-t,t) = f^{-1}(t), \sigma(1-t,0,t) = (f*f^{-1})(t).$ 然后在 Δ 任一点定义 σ , 令 σ 在点 a = a(t) = (1-t,t,0) 和点 b = b(t) = ((2-t)/2,0,t/2) 之间是常数, 在点 c = c(t) = (0,1-t,t) 和点 d = d(t) = ((1-t)/2,0,(1+t)/2) 之间是常数. 因为 $f(1) = f^{-1}(0)$,可以检验如此定义的 $\sigma: \Delta^2 \to X$ 是连续的, 所以 $\sigma \in S_2(X)$. 并且由于 $[f*f^{-1}] = [i_p](p$ 是路径f的终点),因此令 $\zeta = \sigma$

$$\partial \zeta = \zeta \varepsilon_0 - \zeta \varepsilon_1 + \zeta \varepsilon_2 = f \circ \eta + f^{-1} \circ \eta - i_n \circ \eta = f \circ \eta + f^{-1} \circ \eta$$

Exercise 4.3. 设 X 是拓扑空间, α, β 是两道路且 $\alpha(1) = \beta(0), \alpha(0) = \beta(1), 则 <math>\varphi([a * \beta]) = \operatorname{cls}(\alpha \circ \eta + \beta \circ \eta).$

Solution. 类似 Exercise 4.2 定义 $\sigma: \Delta^2 \to X$, 使得 $\sigma(1-t,t,0) = \alpha(t), \sigma(0,1-t,t) = \beta(t), \sigma(1-t,0,t) = (\alpha*\beta)(t)$. 并且令 σ 在点 a=a(t)=(1-t,t,0) 和点 b=b(t)=((2-t)/2,0,t/2) 之间是常数, 在点 c=c(t)=(0,1-t,t) 和点 d=d(t)=((1-t)/2,0,(1+t)/2) 之间是常数. 因为 $\alpha(1)=\beta(0)$, 验证可得 σ 连续. 取边界 $\partial \sigma = \sigma \varepsilon_0 - \sigma \varepsilon_1 + \sigma \varepsilon_2 = \alpha \circ \eta - (\alpha*\beta) \circ \eta + \beta \circ \eta$. 又因为 $\partial \sigma \in B_1(X)$ 和 $\alpha(0)=\beta(1),\beta(0)=\alpha(1)$ 可得 $\alpha*\beta$ 是 X 上闭道路, 即 $[\alpha*\beta] \in \pi_1(X,x_0), x_0=\alpha(0)$. 综上

$$\varphi([\alpha*\beta]) = \varphi([\alpha*\beta]) + \partial\sigma = \operatorname{cls}\left((\alpha*\beta) \circ \eta + \alpha \circ \eta - (\alpha*\beta) \circ \eta + \beta \circ \eta\right) = \operatorname{cls}\left(\alpha \circ \eta + \beta \circ \eta\right)$$

4.2 第八次作业

Exercise 4.4. 若

$$\cdots \to C_{n+1} \to A_n \stackrel{h_n}{\to} B_n \to C_n \to A_{n-1} \stackrel{h_{n-1}}{\to} B_{n-1} \to C_{n-1} \to \cdots$$

是 Abel 群正合序列, 且 $\forall n, h_n$ 是同构, 则 C_n 是平凡群.

Solution. 令序列中 C_{n+1} 到 A_n 的映射为 i_n , 类似定义 $B_n \to C_n$ 为 p_n , 如下所示.

$$\dots \stackrel{p_{n+1}}{\to} C_{n+1} \stackrel{i_n}{\to} A_n \stackrel{h_n}{\to} B_n \stackrel{p_n}{\to} C_n \stackrel{i_{n-1}}{\to} A_{n-1} \stackrel{h_{n-1}}{\to} B_{n-1} \stackrel{p_{n-1}}{\to} C_{n-1} \stackrel{i_{n-2}}{\to} \dots$$

因为 h_n 是同构, 并且这是正合序列, 所以 $\ker p_n = \operatorname{im} h_n = B_n$, 即 $\operatorname{im} p_n = 0$, 由正合序列可知 $\ker i_{n-1} = 0$. 另一方面, 由于 h_{n-1} 是同构得 $\operatorname{im} i_{n-1} = \ker h_{n-1} = 0$. 因此 $\dim C_n = \ker i_{n-1} + \operatorname{im} i_{n-1} = 0$, 即 C_n 是平凡群对任意 n 成立.

Exercise 4.5. 若 $U_* \subset T_* \subset S_*$ 是链子复形, 那么存在一个链复形的短正合序列

$$0 \to T_*/U_* \xrightarrow{i} S_*/U_* \xrightarrow{p} S_*/T_* \to 0.$$

其中 $i_n: t_n + U_n \mapsto t_n + U_n, p_n(s_n + U_n) = s_n + T_n.$

Solution. 增加定义映射 f,h 如下所示

$$0 \xrightarrow{f} T_*/U_* \xrightarrow{i} S_*/U_* \xrightarrow{p} S_*/T_* \xrightarrow{h} 0.$$

只需验证 f, i, p, h 满足正合条件.

• $\operatorname{im} f = \ker i$

$$i(f(0)) = i(0) = 0 \Rightarrow \operatorname{im} f \subset \ker i,$$

$$t_n + U_n \in \ker i, i(t_n + U_n) = t_n + U_n = U_n \Rightarrow t_n \in U_n \Rightarrow t_n + U_n = 0 + U_n = f(0), \ \mathbb{H} \ker i \subset \operatorname{im} f.$$

• $\operatorname{im} i = \ker p$

$$t_n \in T_*, p(i(t_n + U_n)) = p(t_n + U_n) = t_n + T_n = 0 + T_n \Rightarrow \operatorname{im} i \subset \ker p,$$

 $s_n + U_n \in \ker p, p(s_n + U_n) = s_n + T_n = T_n \Rightarrow s_n \in T_n \Rightarrow s_n + U_n \in T_n \Rightarrow s_n + U_n = i(s_n + U_n), \text{ } \exists I \text{ } \ker p \subset \operatorname{im} i.$

• $\operatorname{im} p = \ker h$

$$s_n \in S_*, h(p(s_n + U_n)) = h(s_n + T_n) = 0 \Rightarrow \operatorname{im} p \subset \ker h,$$

$$s_n + T_n \in \ker h, h(s_n + T_n) = 0, p(s_n + U_n) = s_n + T_n \Rightarrow \ker h \subset \operatorname{im} p.$$

Exercise 4.6. 若 f,g 是从链复形 (S'_*,∂') 到 (S_*,∂) 的链映射, 且 $f \simeq g$, 而 p,q 是从 (S_*,∂) 到 (S''_*,∂'') 的链映射, 且 $p \simeq q$. 则 $p \circ f \simeq q \circ g$.

Solution.

由书上 Theorem 5.3 $f \simeq g \Leftrightarrow H_n(f) = H_n(g), p \simeq q \Leftrightarrow H_n(p) = H_n(q)$,并且只需证 $H_n(p \circ f) = H_n(q \circ g)$. 因为 $H_n(f) = H_n(g), H_n(p) = H_n(q) \Rightarrow H_n(p) \circ H_n(f) = H_n(q) \circ H_n(g)$. 而又有函子性质和 $p, q \in \text{Hom}(S'_*, S_*), f, g \in \text{Hom}(S_*, S''_*)$,所以 $H_n(p \circ f) = H_n(p) \circ H_n(f) = H_n(q) \circ H_n(g) = H_n(q \circ g)$. 结合 Theorem 5.3 $p \circ f \simeq q \circ g$.