"Sparknotes" for $Principles\ of\ Mathematical$ $Analysis\ {\it by\ Walter\ Rudin}$

Muthu Chidambaram

Last Updated: May 28, 2019

Contents

L	The	Real an	a	U	0	m	ιp	16	X	1	NΙ	ur.	nı	Э	er.	5	y	St	eı	m	S							
	1.1	Exercise	1																									
	1.2	Exercise	2																									
	1.3	Exercise	4																									
	1.4	Exercise	5																									
	1.5	Exercise	6																									
	1.6	Exercise	7																									
	1.7	Exercise	8																									
	1.8	Exercise	9																									
	1.9	Exercise	10																									
	1.10	Exercise	11																									
	1.11	Exercise	12																									
	1.12	Exercise	13																									

About

"A modern mathematical proof is not very different from a modern machine, or a modern test setup: the simple fundamental principles are hidden and almost invisible under a mass of technical details." - Hermann Weyl

These notes contain short summaries of (my) proof ideas for exercises and some theorems from the book *Principles of Mathematical Analysis* by Walter Rudin. I have tried to make the summaries as brief as possible, sometimes only one line or one equation. My hope is that the summaries will give enough information to reconstruct a full proof without bogging the reader down with details. In many cases, I am sure that I inadvertently sacrificed clarity in an attempt to obtain brevity, and would greatly appreciate any feedback.

Also, I like when people include (what they presume to be) relevant quotes in their notes, so I have to ask you to forgive my haughtiness in starting these notes with a quote from Hermann Weyl.

1 The Real and Complex Number Systems

1.1 Exercise 1

If rx = q or r + x = q for some rational q, then substracting r from q or dividing q by r yields x rational, which is a contradiction.

1.2 Exercise 2

We can first show that $\sqrt{3}$ is irrational by seeing that $\frac{a^2}{b^2} = 3 \implies 3|a,3|b$. Then, since $12 = 3 * 2^2$, we have that $\sqrt{12}$ is irrational as well.

1.3 Exercise 4

If $\alpha > \beta$ then α would be an upper bound as well.

1.4 Exercise 5

 $\forall x \in A, -x \leq \sup -A \text{ and } \forall \epsilon \in \mathbb{R}, \exists x \in A \mid \sup -A + \epsilon < -x \leq \sup -A.$ Negating the last inequality gives inf $A = -\sup -A$.

1.5 Exercise 6

- (a) Follows from $m = \frac{np}{q}$.
- (b) Put $r = \frac{m}{n}$, $s = \frac{p}{q}$. Then $b^r b^s = b^{\frac{mq}{nq}} b^{\frac{np}{nq}}$. Pulling out $\frac{1}{nq}$ gives the desired result
- (c) b^r is an upper bound since b > 1, and if it were not the supremum we could choose t < r such that $b^t > b^r$. This is not possible since again, b > 1.
- (d) Every element in B(x+y) can be expressed as $b^{s+t} = b^s b^t s \le x$, $t \le y$. If $\sup B(x+y) = \alpha < \sup B(x) \sup B(y)$, then $b^s b^t \le \alpha \implies B(x) \le \alpha b^{-t} \implies B(y) \le \frac{\alpha}{B(x)} \implies B(x)B(y) \le \alpha$.

1.6 Exercise 7

- (a) $b^n 1 = (b-1)(b^{n-1} + b^{n-2} + \dots + 1) \ge n(b-1)$ since b > 1.
- (b) Plug $b^{\frac{1}{n}}$ into (a).
- (c) Plug $n > \frac{b-1}{t-1}$ into (b).
- (d) Using (c) gives that we can choose n such that $b^{\frac{1}{n}} < y\dot{b}^{-w} \implies b^{w+\frac{1}{n}} < y$.
- (e) We can take the reciprocal of (c) and do the same as in (d).
- (f) If $b^x > y$ we can apply (e) for a contradiction, if $b^x < y$ we can apply (d) for a contradiction.

(g) Supremum is unique.

1.7 Exercise 8

Suppose (0,1) < (0,0). Then (0,-1) < (0,0) after multiplying by (0,1) twice yields a contradiction. Similarly, assuming the opposite yields (-1,0) > (0,0).

1.8 Exercise 9

Does exhibit least upper-bound property since you can take (sup a_i , sup b_i).

1.9 Exercise 10

Exception is 0.

1.10 Exercise 11

Take $w=\frac{1}{|z|}z$ and r=|z| when $|z|\neq 0.$ w and r are not uniquely determined; take z=0 for example.

1.11 Exercise 12

By strong induction:

$$|z_1 + \dots + z_{n+1}| \le |z_1 + \dots + z_n| + |z_{n+1}|$$

 $\le |z_1| + \dots + |z_{n+1}|$

1.12 Exercise 13

$$|x - y|^2 = x\bar{x} - 2|x||y| + y\bar{y}$$

 $\ge (|x| - |y|)^2$

2 Numerical Sequences and Series

Definition 3.5

Since $\{p_n\} \to p \implies \forall \epsilon, \exists N | n \geq N \implies |p_n - p| < \epsilon$, we can choose $k | n_k \geq N \implies \{p_{n_k}\} \to p$. The reverse direction can be shown via contradiction of $\{p_n\} \to p$.

Examples 3.18

- (a) Density of rationals in reals.
- (b) $|s_n| < 1$, take n odd to get -1 and even to get 1.
- (c) Every subsequential limit has to converge to s.

Theorem 3.19

For all $\{n_k\}$, we have $\exists K | k \geq K \implies n_k \geq N \implies \lim_{k \to \infty} t_{n_k} - s_{n_k} \geq 0$.

Theorem 3.26

 $s_n = 1 + x + \dots + x^n \implies x s_n = x + x^2 + \dots + x^{n+1} \implies (1 - x) s_n = 1 - x^{n+1}.$

Examples 3.40

- (a) Root test: $n \to \infty$.
- (b) Ratio test: $\frac{1}{n+1} \to 0$.
- (c) $1 \rightarrow 1$.
- (d) Ratio test: $\frac{n}{n+1} \to 1$. z = 1 leads to harmonic series.
- (e) Ratio test: $\frac{n^2}{(n+1)^2} \to 1$.

Example 3.53

 $\sum_{k=1}^{\infty} \frac{1}{4k-3} + \frac{1}{4k-1} - \frac{1}{2k} < \frac{5}{6} + \sum_{k=2}^{\infty} \frac{1}{4k-4} + \frac{1}{4k-4} - \frac{1}{2k}.$ The RHS converges since $\frac{1}{4k-4} + \frac{1}{4k-4} - \frac{1}{2k} = \frac{1}{2k^2-2k}$.