K-Mean

Ngô Minh Nhựt

2021

Clustering

- Clustering is an unsupervised learning algorithm
- Dataset for training does not need to be labeled
- Used to recognized similar samples. For example:
 - Searching results,
 - Shopping habits, ...
- Clustering is useful when there is not much information about data

- Idea about clustering:
 - Gather similar samples into one group
 - Example: given two dimension samples

- Idea about clustering:
 - Gather similar samples into one group
 - Example: given two dimension samples

- Idea about clustering:
 - Gather similar samples into one group
 - Example: given two dimension samples

Similarity?

- Example: Euclide distance
- Clustering outcome depends on similarity caculation

K-mean

- K-mean is an unsupervised learning algorithm
- Used to cluster data: learn structure
- Based on Euclide distance: two samples have small distance will belong to one cluster

Source: Wikipedia

Application of clustering

- Computer science: image segmentation, recommender system, anomaly detection
- Social network analysis: clustering community, search result grouping
- Business marketing: dividing consumers into market segments

Original

Source: Andrew Ng, Wikipedia

Application of clustering

- Image segmentation
 - Goal: segment image into regions meaningful or similar in term of visual perception

Source: James Hayes

Application of clustering

- Cluster data representing gene
- Goal: figure out similar gene samples

Source: Eisen et al, PNAS 1998

K-mean algorithm

- □ Input: number of clusters K, m data samples
- Goal: figure out clusters so that distance between samples and centroid is smallest
- Step 1: initialize K centroids
- Step 2: distribute samples into the nearest cluster
- Step 3: recalculate centroids
- Loop until convergence

Algorithm

- □ Initialize randomly K centroids: μ_1 , μ_2 , ..., μ_K
- Loop until centroids do not change:
 - Loop i = 1 to m
 - $c^{(i)}$ = index of centroid which sample $x^{(i)}$ is nearest to
 - Loop k = 1 to K
 - μ_k = mean of samples clustered into cluster k

Cost function

- Given:
 - $c^{(i)}$: cluster of sample $\mathbf{x}^{(i)}$
 - $\mathbf{L}\mu_k$: centroid of cluster k
 - $\mathbf{P}_{c^{(i)}}$: centroid which $\mathbf{x}^{(i)}$ is assigned to
- Cost function:

$$J(c^{(1)}, ..., c^{(m)}, \mu_1, ..., \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

Goal:

$$\min_{c^{(1)},...,c^{(m)},\mu_1,...,\mu_K} J(c^{(1)},...,c^{(m)},\mu_1,...,\mu_K)$$

Algorithm

- □ Initialize randomly K centroids: μ_1 , μ_2 , ..., μ_K
- Loop until centroids do not change:
 - Loop i = 1 to m

- $\min_{c^{(i)}} J(...)$
- $c^{(i)}$ = index of centroid which sample $x^{(i)}$ is nearest to
- Loop k = 1 to K

 $\min_{\mu_k} J(...)$

• μ_k = mean of samples assigned to cluster k

Centroid initialization

- Loop i = 1 to 100
 - Initialize randomly K centroid
 - Run K-mean algorithm
 - Calculate cost

$$J(c^{(1)},...,c^{(m)},\mu_1,...,\mu_K)$$

Choose clusters having smallest cost

Choose number of centroids K

■ Elbow method: choose K at the point which cost does not change from

Other distances

Euclide distance

•
$$d(x,y) = \sqrt{\sum_{i=1}^{n} |x_i - y_i|^2}$$

- Manhattan distance
 - $d(x,y) = \sum_{i=1}^{n} |x_i y_i|$, n: number of features
- Maximum norm
 - $d(x,y) = \max_{1 \le i \le n} |x_i y_i|$, n: number of features
- Cosine distance
 - $d(x,y) = 1 \frac{x^T y}{\|x\| \|y\|}$, d is from 0 to 2
- Hamming distance
 - Number of different components between vectors x and y
 - Example: two vectors (0, 1, 1) and (0, 1, 0) have Hamming distance of 1

Example

Advantages of k-mean

- Find out clusters having small variance
- Simple and fast
- Easy to implement

Disadvantages of k-mean

- Need to identify parameter K
- Affected by outliers
- Prone to local minimals
- Highly dependent on clusters initialization
- Could be slow. Time complexity of each iteration is:
- O(Kmn), m is number of samples, n is number of features