教材习题答案

第一章 空间向量与 立体几何

1.1 空间向量及其运算

1.1.1 空间向量及其运算

练习A

- 1.解析 (1)共面.
 - (2)共面.
 - (3)不共面.
- 2.解析 $\frac{1}{2}(a+2b-3c)+5\left(\frac{2}{3}a-\frac{1}{2}b+\frac{2}{3}a-\frac{1}{2}b+\frac{3}{2}a-\frac{1}{2}b+\frac{3}{2}a-\frac{1}{2}a-\frac{1}{2}a-\frac{1}{2}a-\frac{1}{2}a+\frac{1}{2}a-\frac{$
 - $\frac{2}{3}c$) $-3(a-2b+c) = \frac{5}{6}a + \frac{9}{2}b \frac{7}{6}c$.
- **3**.解析 (1)90°.(2)45°.
- 4.解析 不能.否则,三个向量共面.
- **5.**解析 (1)恒成立.(2)恒成立.(3)恒成立.

练习B

- **1.解析** 成立. 当 a 与 b 方向相反时, 左 边等号成立; 当 a 与 b 方向相同时, 右 边等号成立.
- **2.**解析 (1) \overrightarrow{AD} . (2) \overrightarrow{MN} .
- **3**.解析 $(1)\overrightarrow{AC}(\vec{x}\overrightarrow{A'C'})$.
 - (2) \overrightarrow{DB} (或 $\overrightarrow{D'B'}$).
 - $(3)\overrightarrow{DB'}$.
 - $(4)\overrightarrow{BD}'$.
 - $(5)\overrightarrow{AC'}$.
- **4.**解析 (1) $\overrightarrow{AB} \cdot \overrightarrow{B'C'} = 0$.
 - $(2)\overrightarrow{AB} \cdot \overrightarrow{D'C'} = |\overrightarrow{AB}| \cdot |\overrightarrow{D'C'}| \cos \langle \overrightarrow{AB},$ $\overrightarrow{D'C'} \rangle = 1 \times 1 \times 1 = 1.$
 - $(3)\overrightarrow{AB} \cdot \overrightarrow{A'C'} = 1.$
 - $(4)\overrightarrow{B'D} \cdot \overrightarrow{AB} = (\overrightarrow{B'B} + \overrightarrow{BA} + \overrightarrow{AD}) \cdot \overrightarrow{AB}$ $= \overrightarrow{B'B} \cdot \overrightarrow{AB} + \overrightarrow{BA} \cdot \overrightarrow{AB} + \overrightarrow{AD} \cdot \overrightarrow{AB} = -1.$
- **5.**解析 等式两边同时平方,得|a|²-2a · b+|b|²=|a|²+2a · b+|b|², ∴ a · b=0.
- **6.**解析 $|a| \cdot \cos \langle a, e \rangle = -2.$

1.1.2 空间向量基本定理

练习A

- 1.解析 是.
- 2.解析 是.
- 3.解析 是.
- **4.**解析 x=1, y=-3.
- **5.** 解析 x = 3, y = -2, z = 1.

练习B

- 1.解析 不一定.
- **2.**解析 $\overrightarrow{OE} = \overrightarrow{OA} + \overrightarrow{AE} = \overrightarrow{OA} + \frac{1}{2} \overrightarrow{AD} = \overrightarrow{OA} +$

- $\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{BD}) = \overrightarrow{OA} + \frac{1}{2}(\overrightarrow{OB}-\overrightarrow{OA}) + \frac{1}{4}\overrightarrow{BC}$ $= \overrightarrow{OA} + \frac{1}{2}(\overrightarrow{OB}-\overrightarrow{OA}) + \frac{1}{4}(\overrightarrow{OC}-\overrightarrow{OB})$ $= \frac{1}{2}\overrightarrow{OA} + \frac{1}{4}\overrightarrow{OB} + \frac{1}{4}\overrightarrow{OC} = \frac{1}{2}a + \frac{1}{4}b + \frac{1}{4}c.$
- 3.解析

- **4.**解析 (1) $x=1.(2)x=y=\frac{1}{2}$.
- 5. 解析 $\overrightarrow{AB_1} \cdot \overrightarrow{BC_1} = (\overrightarrow{AB} + \overrightarrow{BB_1}) \cdot (\overrightarrow{BC} + \overrightarrow{CC_1}) = \overrightarrow{AB} \cdot \overrightarrow{BC} + \overrightarrow{BB_1} \cdot \overrightarrow{BC} + \overrightarrow{AB} \cdot \overrightarrow{CC_1} + \overrightarrow{BB_1} \cdot \overrightarrow{CC_1} = -1 + 0 + 0 + 1 = 0.$

1.1.3 空间向量的坐标与 空间直角坐标系

练习A

- 1. 解析 $(1) p = (-1, 1, -2) \cdot (2) q = (1, -1, 0) \cdot (3) r = (0, 2, 3)$.
- **2.** 解析 (1)a+2b=(13,-4,3).
 - $(2)a \cdot b = 15 6 2 = 7.$
 - (3): 2a+b=(6,4,-2)+(5,-3,2)=
 - (11,1,0), a-3b=(3,2,-1)-(15,-9,
 - $6) = (-12, 11, -7), \therefore (2a+b) \cdot (a-$
 - 3b) = $11 \times (-12) + 1 \times 11 + 0 = -121$.
- 3.解析 (1)平行.(2)平行.
- 4.解析 (1)垂直.(2)垂直.
- 5.解析 (1)第 \mathbb{I} 卦限: $\{(x,y,z) \mid x < 0, y > 0, z > 0\}$
 - 第Ⅲ卦限:{(x,y,z) | x<0,y<0,z>0},
- 第VI卦限: $\{(x,y,z) | x<0,y>0,z<0\}$,
- 第\$**证**卦限: $\{(x,y,z) | x<0, y<0, z<0\}$,
- 第個卦限: $\{(x,y,z) | x>0, y<0, z<0\}$.
- (2) y $\text{ in } \bot : \{(x, y, z) \mid x = 0, z = 0, y \in$
- xOy 平面上: $\{(x,y,z) | z=0, x, y \in \mathbf{R}\}$, yOz 平面上: $\{(x,y,z) | x=0, y, z \in \mathbf{R}\}$.
- **6.**解析 $OM = \sqrt{x^2 + y^2 + z^2}$.
- **7.**解析 $(2,3,\frac{7}{2})$.
- 8.解析 (1)设x = (a,b,c),

则
$$\begin{cases} 4a-2=2, \\ 4b+10=14, \therefore \\ 4c+2=-2, \end{cases} \begin{cases} a=1, \\ b=1, \\ c=-1. \end{cases}$$

- x = (1, 1, -1).
- (2) 由已知可得 3x = (6,10,4) (3,7,1) = (3,3,3),所以 x = (1,1,1).

9.解析 $(1)\overrightarrow{AB} = (-8,8,4)$. $(2)\overrightarrow{AB} = (-6,-9,-2)$.

练习 B

- **1.**解析 $\langle a,b \rangle \in [0,\pi]$,
 - $\therefore (1) \langle \boldsymbol{a}, \boldsymbol{b} \rangle = 0.$
 - $(2)\langle a,b\rangle = \pi.$
 - $(3)\langle a,b\rangle = \frac{\pi}{2}$
- $(4)\langle a,b\rangle = \frac{\pi}{2}$
- $(5)\langle a,b\rangle = \frac{5\pi}{6}$
- $(6)\langle a,b\rangle = \frac{\pi}{4}$
- **2**.解析 $(1)a \cdot (b+c) = 9$.
 - (2) 易得 a+6b = (14,-3,19), a-6b = (-10,-3,-17),
- $\therefore (a+6b) \cdot (a-6b) = -140+9-323 = -454$
- 3.解析 $(1)\frac{1}{2}.(2)\frac{\sqrt{6}}{3}.$
- **4.**解析 (1) $\cos \langle a, b \rangle = \frac{2\sqrt{145}}{145}$
 - $(2)\cos\langle \boldsymbol{a},\boldsymbol{b}\rangle = \frac{\sqrt{10}}{25}.$
- **5.**解析 :: $a/\!/b$,:: $\frac{-3}{5} = \frac{y}{-2} = \frac{1}{x}$.
 - $\therefore x = -\frac{5}{3}, y = \frac{6}{5}.$
- **6.** 解析 $\because a \perp b, \therefore a \cdot b = 16 + xy = 0,$ ∴ xy = -16.
- 7. 解析 $|a+b|^2 = 307$; $|a-b|^2 = 107$.
- 8. 解析 $: a \lambda b = (-2 + \lambda, 1 2\lambda, 3 \lambda),$ $a \perp (a - \lambda b),$
- $\therefore \mathbf{a} \cdot (\mathbf{a} \lambda \mathbf{b}) = 4 2\lambda + 1 2\lambda + 9 3\lambda = 0,$ $\therefore \lambda = 2.$
- 9.解析 $n=k(1,1,1)(k\neq 0)$.

◆习题 1-1A

- 1. B $\overrightarrow{BD_1} = \overrightarrow{BD} + \overrightarrow{DD_1} = \overrightarrow{BA} + \overrightarrow{AD} + \overrightarrow{DD_1} = -\overrightarrow{AB}$ $+\overrightarrow{AD} + \overrightarrow{AA_1} = -a + b + c.$
- 2. 解析 (1) $\cos \langle a, b \rangle = \frac{a \cdot b}{|a| \cdot |b|} =$

$$\frac{-1}{\sqrt{35} \times \sqrt{13}} = -\frac{\sqrt{455}}{455}.$$

$$(2)\cos\langle c,d\rangle = \frac{33}{\sqrt{35}\times\sqrt{153}} = \frac{11\sqrt{595}}{595}.$$

3. 解析
$$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right),$$
 $\left(-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right), \left(\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right),$

$$\left(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}\right), \left(-\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}\right),$$

$$\left(-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}\right), \left(\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}\right).$$

- **4.**解析 (1)0.(2)1.(3)1.(4) $\sqrt{3}$.
- **5.** 解析 $\overrightarrow{AB} = (0,1,0), \overrightarrow{AC} = (-4,1,4)$
 - $|\overrightarrow{AB}| = 1, |\overrightarrow{AC}| = \sqrt{(-4)^2 + 1 + 4^2}$ = $\sqrt{33}$.
- 6. 解析 (1) | a | = $\sqrt{2^2 + (-3)^2 + 5^2}$ = $\sqrt{38}$,
 - :. 与 a 方向相同的单位向量为 a

$$= \left(\frac{\sqrt{38}}{19}, -\frac{3\sqrt{38}}{38}, \frac{5\sqrt{38}}{38}\right).$$

- (2) $|a| = \sqrt{0^2 + (-3)^2 + 4^2} = 5$,
- :. 与 a 方向相同的单位向量为 a | a |

$$=\left(0,-\frac{3}{5},\frac{4}{5}\right).$$

7.答案 ④

解析 点 P 关于 x 轴的对称点是 $P_1(x, -y, -z)$, 故错误;

点 P 关于 yOz 平面的对称点是 $P_2(-x, y, z)$,故错误;

点 P 关于 y 轴的对称点是 $P_3(-x, y, -z)$, 故错误;

④正确.

8. 解析 $AB = \sqrt{(1-1)^2 + (5-2)^2 + (1-1)^2}$ = 3,

$$AC = \sqrt{(1-1)^2 + (2-2)^2 + (7-1)^2} = 6$$
,
 $AD = \sqrt{(3-1)^2 + (2-2)^2 + (1-1)^2} = 2$,
体对角线长: $\sqrt{3^2 + 6^2 + 2^2} = 7$.

- 9.解析 图略.
 - $(1)a+\frac{1}{2}b=\overrightarrow{AM}(M 为 BC$ 的中点).
 - (2) $\frac{1}{2}$ a+ $\frac{1}{2}$ b+ $\frac{1}{2}$ c= \overrightarrow{AM} (M 为 AC'的中点).
 - (3) $\frac{1}{2}$ a+ $\frac{1}{2}$ b+c= \overrightarrow{AM} (M 为 A'C'的中

◆习题 1-1B

- 1. 解析 $(1)\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{AD} = 2\overrightarrow{AG}$. $(2)\overrightarrow{AD} - \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}) = \overrightarrow{AD} - \overrightarrow{AM} = \overrightarrow{MD}$.
- **2.**解析 $\langle 2a, -3b \rangle = \frac{3\pi}{4}$.
- 3. 解析 $: |a+3b|^2 = |a|^2 + 6a \cdot b + 9|b|^2$ = $1+6\times1\times1\times\frac{1}{2}+9=13$,
 - ∴ $|a+3b| = \sqrt{13}$.
- 4.解析 不一定,因为a,b,c可能共面.
- **5.**解析 由题可知, A_1C , B_1D , AC_1 , BD_1 的中点均为 M.

- $A_1(-1,-2,0), B_1(3,-1,-2), C_1(4,1,-1), D_1(0,0,1).$
- 6. 解析 $\overrightarrow{MN} = \overrightarrow{MB} + \overrightarrow{BB}_1 + \overrightarrow{B}_1 \overrightarrow{N}$ $= \frac{1}{2} \overrightarrow{A_1B} + \overrightarrow{DD_1} + \frac{1}{2} \overrightarrow{B_1D_1}$ $= \frac{1}{2} \overrightarrow{D_1C} + \overrightarrow{DD_1} - \frac{1}{2} \overrightarrow{DB}$ $= \frac{1}{2} (\overrightarrow{DC} - \overrightarrow{DD_1}) + \overrightarrow{DD_1} - \frac{1}{2} (\overrightarrow{DA} + \overrightarrow{DC})$ $= -\frac{1}{2} \overrightarrow{DA} + \frac{1}{2} \overrightarrow{DD_1}$ $= -\frac{1}{2} a + \frac{1}{2} c.$
- 7.解析 (1): $\cos\langle a,b\rangle = \frac{a \cdot b}{|a||b|} = -1$,
 - $\therefore \langle a, b \rangle = \pi.$
 - (2): $|a-b|^2 = |a|^2 2a \cdot b + |b|^2 = |a|^2 |a|^2 = |b|^2$.
 - $\therefore 2\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}|^2.$
 - $\mathbb{E}[2|a|^2 \cdot \cos\langle a,b\rangle = |a|^2,$
 - $\therefore \cos\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \frac{1}{2},$
 - $\therefore \langle a, b \rangle = \frac{\pi}{3}.$
 - (3): $|a+b|^2 = |a|^2 + 2a \cdot b + |b|^2 = |a|^2 + |a|^2 = |b|^2$, $2a \cdot b = -|a|^2$,
 - $\mathbb{E}[2|a|^2\cos\langle a,b\rangle = -|a|^2,$
 - $\therefore \cos\langle \boldsymbol{a}, \boldsymbol{b} \rangle = -\frac{1}{2},$
 - $\therefore \langle a,b \rangle = \frac{2\pi}{3}.$
 - (4)等式两边同时平方得
 - $|a|^2 + 2a \cdot b + |b|^2 = |a|^2 2a \cdot b + |b|^2$
 - $\therefore \boldsymbol{a} \cdot \boldsymbol{b} = 0, \therefore \langle \boldsymbol{a}, \boldsymbol{b} \rangle = \frac{\pi}{2}.$
- 8.解析 (1)证明:::i=(1,0,0),j=(0,1,0),k=(0,0,1),
 - $\therefore \mathbf{a} \cdot \mathbf{i} = a_1, \mathbf{a} \cdot \mathbf{j} = a_2, \mathbf{a} \cdot \mathbf{k} = a_3.$
 - $(2)\cos\langle a,i\rangle = \frac{a_1}{\sqrt{a_1^2 + a_2^2 + a_3^2}},$
 - $\cos\langle \boldsymbol{a}, \boldsymbol{j}\rangle = \frac{a_2}{\sqrt{a_1^2 + a_2^2 + a_3^2}},$
 - $\cos\langle \boldsymbol{a}, \boldsymbol{k} \rangle = \frac{a_3}{\sqrt{a_1^2 + a_2^2 + a_3^2}}.$
- **9**.解析 设点 P 的坐标为(x,y,z),
- $B(1,1,0), D_1(0,0,1),$
- $\therefore \overrightarrow{BP} = (x-1, y-1, z), \overrightarrow{BD_1} = (-1, -1, 1).$
- $\nabla : \overrightarrow{BP} = \frac{1}{3} \overrightarrow{BD_1},$

$$\begin{cases} x-1 = -\frac{1}{3}, & x = \frac{2}{3}, \\ y-1 = -\frac{1}{3}, & y = \frac{2}{3}, \\ z = \frac{1}{3}, & z = \frac{1}{3}. \end{cases}$$

- \therefore 点 P 的坐标为 $\left(\frac{2}{3},\frac{2}{3},\frac{1}{3}\right)$.
- **10.**解析 $\overrightarrow{AB} = (6, -5, 5), \overrightarrow{AC} = (1, -3, -3)$
 - 6),假设存在实数 x,使 \overrightarrow{AB} 与 \overrightarrow{AB} +x \overrightarrow{AC} 垂直.
 - 則 $6 \times (6+x) 5 \times (-5-3x) + 5 \times (5+6x)$ = 0,
 - 解得 $x = -\frac{86}{51}$.
 - ∴ 存在实数 x, 使 \overrightarrow{AB} 与 \overrightarrow{AB} +x \overrightarrow{AC} 垂直, 此时 $x = -\frac{86}{51}$.
- **11**.解析 设点 D(x,y,z).
 - : 四边形 ABCD 是平行四边形,
 - $\overrightarrow{AB} = \overrightarrow{DC}$.
 - A(4,1,3), B(2,-5,1), C(-3,7,-5), D(x,y,z),
 - \overrightarrow{AB} (2)
 - $\vec{AB} = (-2, -6, -2), \vec{DC} = (-3 x, 7 y, -5 z),$
 - $\therefore (-2, -6, -2) = (-3-x, 7-y, -5-z),$ $\exists \mathbb{I} -2 = -3-x, -6 = 7-y, -2 = -5-z.$
 - $\mathbb{R}[J-2=-3-x, -6=7-y, -2=-5-z]$
 - 解得 x=-1, y=13, z=-3,
 - 故点 D(-1,13,-3).
- 12.解析 (1): \overrightarrow{AB} = (0,3,3), \overrightarrow{AC} = (-1, 1,0), \overrightarrow{AB} · \overrightarrow{AC} = 3, $|\overrightarrow{AB}|$ = $3\sqrt{2}$, $|\overrightarrow{AC}|$ = $\sqrt{2}$,
 - $\therefore \cos\langle \overrightarrow{AB}, \overrightarrow{AC} \rangle = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AB}| |\overrightarrow{AC}|} = \frac{3}{3\sqrt{2} \times \sqrt{2}}$
 - $=\frac{1}{2}$.
 - $\therefore \langle \overrightarrow{AB}, \overrightarrow{AC} \rangle = \frac{\pi}{3}.$
 - $(2)\overrightarrow{AC}$ 在 \overrightarrow{AB} 上的投影的数量为 $|\overrightarrow{AC}|$
 - $\cdot \cos\langle \overrightarrow{AB}, \overrightarrow{AC} \rangle = \frac{\sqrt{2}}{2}.$
- **13**.解析 设 $\overrightarrow{AB} = a$, $\overrightarrow{AD} = b$, $\overrightarrow{AA'} = c$,

则|a| = |c| = 2, |b| = 4, $a \cdot b = b \cdot c = c$ · a = 0.

- $(1)\overrightarrow{BC} \cdot \overrightarrow{ED'} = \mathbf{b} \cdot \left[\frac{1}{2}(\mathbf{c} \mathbf{a}) + \mathbf{b}\right] =$
- $|\boldsymbol{b}|^2 = 4^2 = 16.$
- $(2)\overrightarrow{BF}\cdot\overrightarrow{AB'} = \left(c-a+\frac{1}{2}b\right)\cdot(a+c) =$
- $|c|^2 |a|^2 = 0.$
- $(3) \overrightarrow{EF} \cdot \overrightarrow{FC'} = \left[\frac{1}{2}(c-a) + \frac{1}{2}b\right] \cdot$
- $\left(\frac{1}{2}\boldsymbol{b}+\boldsymbol{a}\right) = \frac{1}{2} \left(-\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}\right) \cdot$
- $\left(\frac{1}{2}\boldsymbol{b}+\boldsymbol{a}\right) = -\frac{1}{2}|\boldsymbol{a}|^2 + \frac{1}{4}|\boldsymbol{b}|^2 = 2.$
- ◆习题 1-1C
- **1.**解析 向量 a,b,c —定共面. 因为存在 不全为 0 的 x,y,z 满足 xa+yb+zc=0,

所以不妨设 $x \neq 0$,则 $\mathbf{a} = -\frac{y}{x}\mathbf{b} - \frac{z}{x}\mathbf{c}$,

所以a,b,c共面.

- **2.**解析 假设 $p \setminus q \setminus r$ 三个向量共面,则这三个向量必线性相关,即存在实数x,y,使p = xq + yr,
- 即 a+b=x(a+c)+y(b-c)=xa+yb+(x-y)c,从而有 x=y=1,x-y=0,即存在 x=y=1,使 $p \setminus q \setminus r$ 线性相关. ∴ $p \setminus q \setminus r$ 三个向量共面.
- 3.解析 向量 \overrightarrow{OA} , \overrightarrow{OB} 都与 \overrightarrow{OA} + \overrightarrow{OB} 和 \overrightarrow{OA} - \overrightarrow{OB} 共面, 只有 \overrightarrow{OC} 满足要求.
- **4.**解析 若 $\overrightarrow{OP} = x \overrightarrow{OA} + y \overrightarrow{OB} + z \overrightarrow{OC}$ 且 x + y + z = 1

由共面向量定理可知, \overrightarrow{AP} , \overrightarrow{AB} , \overrightarrow{AC} 三个向量共面,

所以点 P 在平面 ABC 内.

反之,如果点P在平面ABC内,类似地可以证明存在 $x,y,z \in \mathbf{R}$, $\overrightarrow{OP} = x$ $\overrightarrow{OA} + y$ $\overrightarrow{OB} + z$ \overrightarrow{OC} 且x + y + z = 1,方法同上.

- 5.解析 由已知得该四面体为正四面体. (1) $\overrightarrow{AB} \cdot \overrightarrow{AC} = |\overrightarrow{AB}| \cdot |\overrightarrow{AC}| \cos\langle \overrightarrow{AB}, \overrightarrow{AC}\rangle$ $= a \times a \times \frac{1}{2} = \frac{a^2}{2}$.
 - $(2)\overrightarrow{AD}\cdot\overrightarrow{DB}=-\frac{1}{2}a^2.$

$$(3)\overrightarrow{GF}\cdot\overrightarrow{AC} = -\frac{1}{2}|\overrightarrow{AC}|^2 = -\frac{a^2}{2}.$$

$$(4)\overrightarrow{EF} \cdot \overrightarrow{BC} = \frac{1}{2}\overrightarrow{BD} \cdot \overrightarrow{BC} = \frac{1}{2} \times \frac{a^2}{2} = \frac{a^2}{4}.$$

$$(5)\overrightarrow{FG} \cdot \overrightarrow{BA} = -\frac{1}{2}\overrightarrow{AC} \cdot \overrightarrow{AB} = -\frac{1}{2} \times \frac{a^2}{2} =$$

$$-\frac{a^2}{4}$$
.

(6)
$$\overrightarrow{GE} \cdot \overrightarrow{GF} = (\overrightarrow{GF} + \overrightarrow{FE}) \cdot \overrightarrow{GF} = |\overrightarrow{GF}|^2 - \overrightarrow{EF} \cdot \overrightarrow{GF} = \frac{a^2}{4} - 0 = \frac{a^2}{4}$$
.

1.2 空间向量在立体 几何中的应用

1.2.1 空间中的点、 直线与空间向量

练习A

- 1.解析 (1,-1,0)(答案不唯一).
- **2.**解析 (1):: $v_2 = -3v_1$,且 $l_1 与 l_2$ 不重合, $\therefore l_1/\!/l_2$.
- (2): $\mathbf{v}_2 = 3\mathbf{v}_1$,且 l_1 与 l_2 不重合, ∴ $l_1/\!/l_2$.
- 3. 解析 $:: v_1 \cdot v_2 = -2 + 6 4 = 0$, $:: v_1 \perp v_2$,

- \therefore 直线 l_1, l_2 所成角的大小为 $\frac{\pi}{2}$.
- **4.**解析 设 C(x, y, z), $\overrightarrow{BC} = 2 \overrightarrow{OA}$,
 - $\overrightarrow{OC} = 2 \overrightarrow{OA} + \overrightarrow{OB}$.

把坐标代入上式得(x,y,z)= 2(3,4,5)+(3,4,0)=(9,12,10),

- x = 9, y = 12, z = 10,
- :. 点 C 的坐标为(9,12,10).
- **5**.解析 是.

练习 B

- 1.解析 是.理由如下:
- $v_1/l, v_2/l,$
- $\therefore v_1 /\!/ v_2$,又 v_1,v_2 为非零向量,
- ∴ 存在非零实数 λ ,使得 $\nu_2 = \lambda \nu_1$.
- **2**.解析 设P(x,y,z),

 $\overrightarrow{MAP} = (x+2, y-3, z), \overrightarrow{PB} = (1-x, 3-y, 2$ -z).

由题意得 $3\overrightarrow{AP} = 2\overrightarrow{PB}$, 所以 3(x+2, y-3, z) = 2(1-x, 3-y, 2-z),

解得
$$x = -\frac{4}{5}$$
, $y = 3$, $z = \frac{4}{5}$,

$$\therefore P\left(-\frac{4}{5},3,\frac{4}{5}\right).$$

- **3**.解析 (1) CD, C'D', BC, B'C'.
 - (2): $AA' \perp AB$, $|\overrightarrow{AA'}| = 1$, $|\overrightarrow{AB}| = \sqrt{3}$,
 - $\therefore \tan \langle \overrightarrow{BA'}, \overrightarrow{AA'} \rangle = \sqrt{3}$,
 - $\therefore \langle \overrightarrow{BA'}, \overrightarrow{AA'} \rangle = \frac{\pi}{3}, \mathbb{Z} \overrightarrow{CC'} = \overrightarrow{AA'},$
 - $\therefore \langle \overrightarrow{BA'}, \overrightarrow{CC'} \rangle = \frac{\pi}{2}$

易得 $\langle \overrightarrow{BA'}, \overrightarrow{B'A'} \rangle = \frac{\pi}{6}, \because \overrightarrow{D'C'} = -\overrightarrow{B'A'},$

$$\therefore \langle \overrightarrow{BA'}, \overrightarrow{D'C'} \rangle = \pi - \frac{\pi}{6} = \frac{5\pi}{6}.$$

$$\therefore \overrightarrow{BA'} \cdot \overrightarrow{B'C'} = (\overrightarrow{BB'} + \overrightarrow{B'A'}) \cdot \overrightarrow{B'C'}$$

$$= \overrightarrow{RB'} \cdot \overrightarrow{R'C'} + \overrightarrow{R'A'} \cdot \overrightarrow{R'C'} = 0$$

$$\therefore \overrightarrow{BA'} \perp \overrightarrow{B'C'}, \therefore \langle \overrightarrow{BA'}, \overrightarrow{B'C'} \rangle = \frac{\pi}{2}.$$

- **4.解析** 以 D 为原点, \overrightarrow{DA} , \overrightarrow{DC} , $\overrightarrow{DD_1}$ 的方向分别为 x 轴, y 轴, z 轴正方向, DD_1 的长度为单位长度,建立空间直角坐标系(图略).则 A(2,0,0), $D_1(0,0,1)$,B(2,2,0),D(0,0,0),
 - $\overrightarrow{AD_1} = (-2,0,1), \overrightarrow{BD} = (-2,-2,0),$ $\overrightarrow{AB} = (0.2.0).$

假设满足条件的 M, N 存在,且 $\overrightarrow{AM} = t \overrightarrow{AD_1} = (-2t, 0, t), \overrightarrow{BN} = s \overrightarrow{BD} = (-2s, -2s, 0),$

则 $\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AB} + \overrightarrow{BN} = -\overrightarrow{AM} + \overrightarrow{AB} + \overrightarrow{BN}$ = (2t-2s, 2-2s, -t).

- $\therefore MN \perp AD_1, MN \perp BD,$
- $\therefore \overrightarrow{MN} \perp \overrightarrow{AD}_{1}, \overrightarrow{MN} \perp \overrightarrow{BD}_{1}$

从而 $\left\{\overrightarrow{MN} \cdot \overrightarrow{AD_1} = 0, \atop \overrightarrow{MN} \cdot \overrightarrow{BD} = 0\right\}$ $\Leftrightarrow \begin{cases} -2(2t-2s) - t = 0, \\ -2(2t-2s) - 2(2-2s) = 0, \end{cases}$ 解得 $t = \frac{2}{2}, s = \frac{5}{6},$

因此,满足条件的 M,N 是存在的.

- **5.**证明 $\overrightarrow{AC} \cdot \overrightarrow{BD} = (\overrightarrow{AB} + \overrightarrow{BC}) (\overrightarrow{AD} \overrightarrow{AB})$
- $=\overrightarrow{AB} \cdot \overrightarrow{AD} + \overrightarrow{BC} \cdot \overrightarrow{AD} \overrightarrow{AB}^2 \overrightarrow{BC} \cdot \overrightarrow{AB}$
- $=\overrightarrow{AB} \cdot (\overrightarrow{AD} \overrightarrow{AB} \overrightarrow{BC})$
- $=\overrightarrow{AB}\cdot\overrightarrow{CD}=0$
- $\overrightarrow{AC} \perp \overrightarrow{BD}$.
- $\therefore AC \perp BD.$

1.2.2 空间中的平面与空间向量

练习A

- **1.**解析 (1):: $n_2 = -3n_1$,
- $\therefore \boldsymbol{n}_1/\!/\boldsymbol{n}_2,$
- $\therefore \alpha /\!/ \beta$.
- (2): $\mathbf{n}_2 = 3\mathbf{n}_1$,
- $\therefore \boldsymbol{n}_1/\!/\boldsymbol{n}_2,$
- $\therefore \alpha /\!/ \beta$.
- **2.**解析 $: n_1 \cdot n_2 = -6 4 + 10 = 0$,
- $\therefore \boldsymbol{n}_1 \perp \boldsymbol{n}_2$
- $\therefore \alpha \perp \beta$.
- 3.解析 是.

练习B

- 1.解析 是.理由如下:
 - $:: \boldsymbol{n}_1 \perp \alpha, \boldsymbol{n}_2 \perp \alpha,$
 - $\therefore \boldsymbol{n}_1/\!/\boldsymbol{n}_2.$

易知 n_1, n_2 为非零向量,

- : 存在非零实数 λ ,使得 n_2 = $λn_1$.
- **2.证明** 设两平面分别为 α, β, a, b 是平面 α 内的两条相交直线,且 $a//\beta, b//\beta$ β, n 是平面 β 的法向量,则 $n \perp a, n \perp b$. 若记表示 n 的有向线段所在的直线为 b.

则有 $l \perp a, l \perp b$,

又:: a,b 相交,

 $\therefore l \perp \alpha$,

 $\therefore \mathbf{n} \perp \alpha, \therefore \alpha // \beta.$

3.解析 易得 \overrightarrow{AB} = (-3,4,0), \overrightarrow{AC} = (-3,0), \overrightarrow{AC} = (-3,0).

设平面 ABC 的一个法向量为 n = (x, y, z),

 $\Rightarrow x = 20, \text{ M } y = 15, z = 12.$

n = (20, 15, 12).

4.证明 因为 $PA \perp$ 底面 AC, 所以 AB 为 PB 在底面 AC 内的射影.

又 $BC \perp PB$,所以由三垂线定理的逆定

理可得 BC LAB.

又因为底面 ABCD 是平行四边形, 所以四边形 ABCD 是矩形.

 5.解析 因为 AC = BC, D 为 AB 的中点, 所以 CD ⊥ AB,即 OC ⊥ AB.
 因为 PO ⊥ 平面 ABC,所以 OC 为 PC 在

因为 PO 上平面 ABC, 所以 OC 为 PC 在 平面 ABC 内的射影, 所以由三垂线定 理可得 $AB \perp PC$.

1.2.3 直线与平面的夹角

练习A

- **1**.解析 0°≤θ≤90°.
- **2**.解析 (1) $3\sqrt{3}$. (2) $5\sqrt{2}$.
- 3.解析

如图(1)所示,可以看出, $\theta = \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$. 如图(2)所示,可以看出, $\theta = \pi - \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$.

练习B

- 1.解析 对角线 BD_1 与平面 ABCD 所成的角为 $\angle DBD_1$, 与平面 ABB_1A_1 所成的角为 $\angle A_1BD_1$, 与平面 BCC_1B_1 所成的角为 $\angle C_1BD_1$, 这些角的余弦值都是 $\frac{\sqrt{6}}{3}$.
- **2.** 解析 设斜线与平面 α 所成的角为 θ ,根据三余弦定理可得

$$\cos 60^{\circ} = \cos 45^{\circ} \times \cos \theta$$
,

$$\mathbb{P}\frac{1}{2} = \frac{\sqrt{2}}{2} \times \cos \theta,$$

则
$$\cos \theta = \frac{\sqrt{2}}{2}$$
,

则 θ =45°.

故答案为 45°.

3.解析 以边 DA, DC, DD₁ 所在直线分别为 x 轴, y 轴, z 轴, 建立如图所示的空间直角坐标系,

设正方体的棱长为 2,则 A(2,0,0), $A_1(2,0,2)$, M(2,2,1), $C_1(0,2,2)$, $\overrightarrow{AM} = (0,2,1)$, $\overrightarrow{AC_1} = (-2,2,2)$, $\overrightarrow{A_1M} = (0,2,-1)$.

设平面 AMC_1 的一个法向量为 $\mathbf{n}_1 = (x_1, y_1, z_1)$,则 $\mathbf{n}_1 \perp \overrightarrow{AM}$, $\mathbf{n}_1 \perp \overrightarrow{AC}$,

$$\therefore \begin{cases} \boldsymbol{n}_1 \cdot \overrightarrow{AM} = 2y_1 + z_1 = 0, \\ \boldsymbol{n}_1 \cdot \overrightarrow{AC}_1 = -2x_1 + 2y_1 + 2z_1 = 0, \end{cases}$$

取 $x_1 = 1$,则 $n_1 = (1,-1,2)$.

设 A_1M 与平面 AMC_1 所成的角为 θ ,则

$$\sin \theta = |\cos \langle \mathbf{n}_1, \overrightarrow{A_1 M} \rangle| = \frac{|\mathbf{n}_1 \cdot \overrightarrow{A_1 M}|}{|\mathbf{n}_1| |\overrightarrow{A_1 M}|} =$$

$$\frac{4}{\sqrt{6}\times\sqrt{5}} = \frac{2\sqrt{30}}{15}$$
.

1.2.4 二面角

练习A

1.解析 $\therefore \frac{S_{\triangle ABP'}}{S_{\triangle ABP}} = \cos \frac{\pi}{6}$,

$$\therefore S_{\triangle ABP'} = S_{\triangle ABP} \cdot \cos \frac{\pi}{6} = 3 \times \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2}.$$

2.解析 因为 $AC \perp AB$, $BD \perp AB$, $AC \setminus BD$ 分别在二面角的两个半平面内,且二面角为 90° ,所以 $AC \perp BD$, 即 $\overrightarrow{AC} \cdot \overrightarrow{AB} = \overrightarrow{BD}$ $\cdot \overrightarrow{AB} = \overrightarrow{AC} \cdot \overrightarrow{BD} = 0$.

$$|\overrightarrow{CD}| = \sqrt{|\overrightarrow{CD}|^2} = \sqrt{(\overrightarrow{CA} + \overrightarrow{AB} + \overrightarrow{BD})^2}$$

$$= \sqrt{|\overrightarrow{CA}|^2 + |\overrightarrow{AB}|^2 + |\overrightarrow{BD}|^2} = 7\sqrt{2},$$
Figure 6.1 % \$\frac{1}{2} \cdot 7\sqrt{2}.

3.解析 $\cos \theta = |\cos\langle \mathbf{n}_1, \mathbf{n}_2 \rangle|$.

练习 B

1.解析 由题易得 $\overrightarrow{AB} = (-1,2,0), \overrightarrow{AC} = (-1,0,3).$ 设平面 ABC 的一个法向量为 n = (x,y,z),则 $n \cdot \overrightarrow{AB} = -x + 2y = 0, n$ $\cdot \overrightarrow{AC} = -x + 3z = 0,$ 令 x = 6,则 y = 3, z = 2.

所以平面 ABC 的一个法向量为 $\mathbf{n} = (6, 3, 2)$. 易得平面 xOy 的一个法向量 $\mathbf{n}_1 = (0, 0, 1)$,平面 yOz 的一个法向量 $\mathbf{n}_2 = (1, 0, 0)$,平面 xOz 的一个法向量 $\mathbf{n}_3 = (0, 1, 0)$,

$$\cos\langle \boldsymbol{n}, \boldsymbol{n}_1 \rangle = \frac{\boldsymbol{n} \cdot \boldsymbol{n}_1}{|\boldsymbol{n}| |\boldsymbol{n}_1|} = \frac{2}{7 \times 1} = \frac{2}{7},$$

同理可得 $\cos\langle \boldsymbol{n}, \boldsymbol{n}_2 \rangle = \frac{6}{7}, \cos\langle \boldsymbol{n}, \boldsymbol{n}_3 \rangle$

$$=\frac{3}{7}$$

所以平面 ABC 与平面 xOy, yOz, xOz 所成角的余弦值分别为 $\frac{2}{7}, \frac{6}{7}, \frac{3}{7}$.

2.解析 因为三个侧面在底面上的射影完全相同,都是底面正三角形面积的 $\frac{1}{3}$,且正三棱锥 S-ABC 的四个面面积

相同,由 $\cos \theta = \frac{S_{\text{射影}}}{S_{\text{spin}}}$ 知,侧面和底面所成二面角(显然为锐角)的余弦值为 $\frac{1}{3}$.

- **3.**解析 $:: PA \perp$ 平面 ABM, :: AM 为 PM 在平面 ABM 内的射影.
 - :: AB 为圆的直径,:: AM ⊥ BM.
 - $\therefore PM \perp BM.$
 - \therefore $\angle PMA$ 为二面角 A-BM-P 的平面角. $AM = AB \cdot \sin 30^{\circ} = 2$, $\therefore \tan \angle PMA = \sqrt{3}$,
 - $\therefore \angle PMA = \frac{\pi}{3}.$
- \therefore 二面角 A-BM-P 的大小为 $\frac{\pi}{3}$.

1.2.5 空间中的距离

练习A

- **1**.解析 0<*d*≤5.
- **2.**解析 是两个平行于平面 α 的平面,且 分别位于 α 的两侧.
- **3.** 解析 距离平面 α 和 β 都是 2 cm 的一个平面.
- **4**.解析 $\sqrt{2}$.
- 5.解析 连接 CD. : $OC \perp \alpha$, : $OC \perp AC$, $OC \perp BC$, $OC \perp CD$, 由勾股定理可得 OA = $6\sqrt{5}$ cm, $OB = 4\sqrt{13}$ cm, $CD = \frac{1}{2}AB =$

5 cm, OD = 13 cm.

练习B

1.解析 如图,连接 AN、BN.: N 是 CD 的中点,... $AN = BN = \frac{\sqrt{3}}{2}$.: M 是 AB 的中

点,
$$\therefore$$
 $MN \perp AB$, $BM = \frac{1}{2}$, \therefore $MN =$

$$\sqrt{BN^2 - BM^2} = \frac{\sqrt{2}}{2}.$$

- **2.**解析 连接 CO 并延长交 AB 于 D, : O 为正三角形 ABC 的中心, : $CD \perp AB$, 连接 PD.
 - ∵ PO⊥平面 ABC,
 - :. OD 为 PD 在平面 ABC 内的射影,
- $\therefore PD \perp AB, \therefore PD$ 的长为 P 到边 AB 的 距离.

$$OD = \frac{1}{3}CD = \frac{\sqrt{3}}{3} \text{ cm}, OP = 1 \text{ cm},$$

$$\therefore PD = \frac{2\sqrt{3}}{3} \text{ cm.}$$

同理可得 P 到 $BC \setminus AC$ 的距离均为 $\frac{2\sqrt{3}}{3}$ cm.

3.解析 : OA, OB, OC 两两垂直,且 OA

=OB=OC=2.

 $\therefore AB = AC = BC = 2\sqrt{2}$,

$$\therefore S_{\triangle ABC} = \frac{\sqrt{3}}{4} \times (2\sqrt{2})^2 = 2\sqrt{3}.$$

设0到平面ABC的距离为h,

则
$$\frac{1}{3}$$
× $\frac{1}{2}$ ×2×2×2= $\frac{1}{3}$ ×2 $\sqrt{3}$ × h ,

解得
$$h = \frac{2\sqrt{3}}{3}$$
.

 $\therefore 0$ 到平面 ABC 的距离为 $\frac{2\sqrt{3}}{3}$.

5), \overrightarrow{OA} =(2,2,0),设平面 ABC 的一个 法向量为 $\mathbf{n} = (x, y, z)$,则 $\mathbf{n} \cdot \overrightarrow{AB} = -x +$ 2y+2z=0, $n \cdot \overrightarrow{AC} = -2x-2y+5z=0$,

$$\therefore \mathbf{n} = \left(7, \frac{1}{2}, 3\right).$$

 $\therefore O$ 到面 ABC 的距离 $d = \frac{|\overrightarrow{OA} \cdot \mathbf{n}|}{|\mathbf{n}|} =$

$$\frac{15}{\frac{\sqrt{233}}{2}} = \frac{30\sqrt{233}}{233}.$$

5.解析 (1)以 D 为原点, \overrightarrow{DA} , \overrightarrow{DC} , $\overrightarrow{DD'}$ 的 方向分别为x轴、y轴、z轴正方向,建 立空间直角坐标系(图略),则D(0,0,

0), B(1,1,0), B'(1,1,1), B'B = (0, 0)

易知 $\overrightarrow{DB'}$ =(1,1,1)是平面 A'C'B 的一 个法向量.

$$\therefore \frac{|\overrightarrow{B'B} \cdot \overrightarrow{DB'}|}{|\overrightarrow{DB'}|} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3},$$

- $\therefore B'$ 到平面 A'C'B 的距离为 $\frac{\sqrt{3}}{2}$.
- (2)易得平面 A'C'B//平面 D'AC, 则直线 B'D 为平面 A'C'B 与平面 D'AC 的公垂线.

由(1)知 B'到平面 A'C'B 的距离为 $\frac{\sqrt{3}}{2}$

同理可得 D 到平面 D'AC 的距离为 $\frac{\sqrt{3}}{2}$.

又 $B'D = \sqrt{3}$,

:. 平面 A'C'B 与平面 D'AC 之间的距离

◆习题 1-2A

2.解析 由已知可得 $\overrightarrow{AB} = (-1, 1, -1), \overrightarrow{AC}$ =(-1,0,0).

设平面 ABC 的一个单位法向量为 n=

$$(x,y,z)$$
, \mathbb{M} $\begin{cases} n \cdot \overrightarrow{AB} = -x + y - z = 0, \\ n \cdot \overrightarrow{AC} = -x = 0, \\ n = \sqrt{x^2 + y^2 + z^2} = 1, \end{cases}$

解得 x=0, $|y|=|z|=\frac{\sqrt{2}}{2}$, 且 y=z.

所以 $n = \left(0, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ 是平面 ABC 的一 个单位法向量

3. 解析 $AB = \frac{3}{\cos \frac{\pi}{6}} = 2\sqrt{3}$.

- (1) AB, AC, BC, AD, BD, CD. (2)BC.
 - $(3) \triangle ABC, \triangle ACP, \triangle BCP, \triangle PCD,$ $\triangle ADC$, $\triangle BDC$, $\triangle ADP$, $\triangle BDP$.
- **5.**解析 \overrightarrow{BC} 是平面 \overrightarrow{ADM} 的一个法向量. 平面 $ADM \perp$ 平面 ABC, 平面 $ADM \perp$ 平 面 BCD.
- 6.解析 设直线 AB 和平面 α 所成的角为 θ , $\mathbb{N} \cos \theta = \frac{A'B'}{AB}$.
 - $(1)\cos\theta = \frac{1}{2}, : \theta = 60^{\circ}.$
 - $(2)\cos\theta = \frac{\sqrt{2}}{2}, \therefore \theta = 45^{\circ}.$
 - $(3)\cos\theta=1$... $\theta=0^{\circ}$.
 - $(4)\cos\theta=0$, $\theta=90^{\circ}$.
- 7.解析 以 D 为坐标原点, \overrightarrow{DA} , \overrightarrow{DC} , $\overrightarrow{DD'}$ 的方向分别为 x 轴、y 轴、z 轴正方向, 建立空间直角坐标系(图略).设正方体 的棱长为 1,则 A(1,0,0), C(0,1,0), $D(0,0,0), A'(1,0,1), \therefore \overrightarrow{DA'} = (1,0,1)$

$$D(0,0,0), A'(1,0,1), \therefore DA' = (1,0,1)$$

1),
$$\overrightarrow{AC} = (-1,1,0)$$
.

$$\therefore \cos\langle \overrightarrow{DA'}, \overrightarrow{AC} \rangle = \frac{\overrightarrow{DA'} \cdot \overrightarrow{AC}}{|\overrightarrow{DA'}| |\overrightarrow{AC}|} = \frac{-1}{\sqrt{2} \times \sqrt{2}} =$$

 $-\frac{1}{2}$, $\therefore \langle \overrightarrow{DA'}, \overrightarrow{AC} \rangle = 120^{\circ}$, \therefore 直线 DA'与直线 AC 所成角的大小为 60°.

8.解析 $\because \cos \frac{\pi}{4} = \frac{S_{\triangle ABP}}{S_{\triangle ABP'}}$

$$\therefore S_{\triangle ABP'} = \frac{5}{\cos \frac{\pi}{4}} = 5\sqrt{2}.$$

◆习题 1-2B

- **1.**解析 设v/l,则由 $\overrightarrow{A'A} \perp \alpha$,且 l/α 可 知 $\overrightarrow{A'A} \perp \mathbf{v}$. 即 $\overrightarrow{A'A} \cdot \mathbf{v} = 0$.
 - (1)若 $l \perp A'B$,则 $v \perp \overrightarrow{A'B}$, $v \cdot \overrightarrow{A'B} = 0$.
- $\therefore \overrightarrow{AB} = \overrightarrow{AA'} + \overrightarrow{A'B} = -\overrightarrow{A'A} + \overrightarrow{A'B} \therefore \overrightarrow{AB} \cdot \mathbf{v} =$ $(\overrightarrow{-A'A} + \overrightarrow{A'B}) \cdot v = \overrightarrow{-A'A} \cdot v + \overrightarrow{A'B} \cdot v = 0$
- $\therefore v \perp \overrightarrow{AB}$.
- $\therefore l \perp AB$.
- (2) 若 $l \perp AB$,则 $v \perp \overrightarrow{AB}$, $v \cdot \overrightarrow{AB} = 0$.

- $\therefore \overrightarrow{A'B} = \overrightarrow{A'A} + \overrightarrow{AB}$.
- $\therefore \overrightarrow{A'B} \cdot \mathbf{v} = (\overrightarrow{A'A} + \overrightarrow{AB}) \cdot \mathbf{v} = \overrightarrow{A'A} \cdot \mathbf{v} + \overrightarrow{AB}$ $\cdot \mathbf{v} = 0 \dots \mathbf{v} \perp \overrightarrow{A'B}$.
- $\therefore l \perp A'B.$
- **2.**解析 *AB* 与 *A*₁*D*₁, *AD* 与 *D*₁*C*₁, *A*₁*C*₁ 与 BD 的公垂线段分别为 AA, , DD, , EF(E 为 BD 的中点, F 为 A_1C_1 的中点).
- 3. 解析 (1): 在矩形 ABCD 中, AB
 - ∴ ∠PCD 为 PC 与 AB 所成的角.:: PD \bot 平面 ABCD,∴ $PD \bot CD$, $PC = \sqrt{34}$,
 - $\therefore \cos \angle PCD = \frac{5\sqrt{34}}{34}, \therefore PC \ni AB$ 所成

角的余弦值为 $\frac{5\sqrt{34}}{34}$.

- (2) :: $PD \perp$ 平 面 ABCD , $AB \subset$ 平 面 ABCD,: $PD \perp AB$,
- :. PD 与 AB 所成角的大小为 90°, 余弦 值为 0.
- (3): 在矩形 ABCD 中, AD // BC,
- ∴ ∠*PAD* 为 *PA* 与 *BC* 所成的角.
- $:: PD \perp$ 平面 ABCD, $:: PD \perp AD$, PA = 5,
- $\therefore \cos \angle PAD = \frac{4}{5}, \therefore PA 与 BC 所成角$

的余弦值为4

易得 CA, CB, CC₁ 两两互相 垂直.

以 C 为原点, \overrightarrow{CA} , \overrightarrow{CB} , \overrightarrow{CC} ,的方向分别为 x 轴、y 轴、z 轴正方向建立空间直角坐 标系(图略),则 C(0,0,0),A(3,0,0), $B(0,3,0), B_1(0,3,3), C_1(0,0,3),$

 $\overrightarrow{AC_1} = (-3,0,3), \overrightarrow{CB_1} = (0,3,3), \overrightarrow{CA}$ $=(3,0,0), \overrightarrow{AB}=(-3,3,0).$

易得 $AB = 3\sqrt{2}$, $\therefore \overrightarrow{AM} = \frac{1}{3}\overrightarrow{AB} = (-1, 1,$

0),则 $\overrightarrow{CM} = \overrightarrow{CA} + \overrightarrow{AM} = (2,1,0)$.

设平面 B_1MC 的一个法向量为 n = (x, y)

$$y,z)$$
, \emptyset $\begin{cases} \boldsymbol{n} \cdot \overrightarrow{CB_1} = 3y + 3z = 0, \\ \boldsymbol{n} \cdot \overrightarrow{CM} = 2x + y = 0, \end{cases}$

(1, -2, 2).

设直线 AC_1 与平面 B_1MC 所成的角

 $\mathbb{M} \sin \theta = |\cos \langle \overrightarrow{AC_1}, \boldsymbol{n} \rangle| = \frac{|\overrightarrow{AC_1} \cdot \boldsymbol{n}|}{|\overrightarrow{AC_1}| + |\boldsymbol{n}|}$

5.解析 (1)以 B 为坐标原点, \overrightarrow{BC} , \overrightarrow{BA} , \overrightarrow{BE} 的方向分别为 x 轴, y 轴, z 轴正方 向,建立空间直角坐标系 Bxyz(图略), 则 B(0,0,0), C(6,0,0), D(3,6,0), $E(0.0.6), \overrightarrow{CD} = (-3.6.0), \overrightarrow{CE} = (-6.6.0)$

- 0,6), $\overrightarrow{BC} = (6,0,0)$.设平面 CDE 的一个法向量为 n = (x,y,z),则 $n \cdot \overrightarrow{CD} = -3x+6y=0$, $n \cdot \overrightarrow{CE} = -6x+6z=0$,令 x=2,则 n=(2,1,2), ∴ 点 B 到平面 CDE 的距离 $d=\frac{|\overrightarrow{BC} \cdot n|}{|n|} = 4$.
- (2) 易知平面 ACD 的一个法向量为 \overrightarrow{BE} = (0,0,6),
- 由(1)知平面 CDE 的一个法向量为 n=

$$(2,1,2)$$
, $\therefore \cos \langle \overrightarrow{BE}, n \rangle = \frac{\overrightarrow{BE} \cdot n}{|\overrightarrow{BE}| |n|}$

 $=\frac{2}{3}$

易知二面角 A-CD-E 为锐二面角,

 \therefore 二面角 A–CD–E 的正切值为 $\frac{\sqrt{5}}{2}$.

◆习题 1-2C

- 1.解析 易得 $\overrightarrow{AB} = (-3,3,-3)$,设点 $C(x,y,z) 满足\overrightarrow{AC} = \lambda \overrightarrow{AB}, 且 PC \perp AB,$ 由 $\overrightarrow{AC} = \lambda \overrightarrow{AB}$ 得 $(x-3,y-3,z-3) = (-3\lambda,3\lambda,-3\lambda),$ $\begin{pmatrix} x = 3-3\lambda, \\ y = 3+3\lambda, \\ z = 3-3\lambda \end{pmatrix}$
- 即 $C(3-3\lambda,3+3\lambda,3-3\lambda)$,
- $\therefore \overrightarrow{PC} = (3-3\lambda, 3+3\lambda, -3-3\lambda).$

又 $:: PC \perp AB$,

- ∴ $\overrightarrow{PC} \cdot \overrightarrow{AB} = 0$, \mathbb{P}
- $-3(3-3\lambda)+3(3+3\lambda)-3(-3-3\lambda)=0$,

解得
$$\lambda = -\frac{1}{3}$$
,

因此 $\overrightarrow{PC} = (4,2,-2)$,

从而可知点 P 到直线 l 的距离为 $|\overrightarrow{PC}|$ = $\sqrt{4^2+2^2+(-2)^2}$ = $2\sqrt{6}$.

- **2.**解析 (1)以D为原点, \overrightarrow{DA} , \overrightarrow{DC} , $\overrightarrow{DD'}$ 的方向分别为x轴,y轴,z轴正方向,正方体的棱长为单位长度,建立空间直角坐标系(图略),则A'(1,0,1),D'(0,0,0)
- 1), $F\left(0, \frac{1}{2}, 0\right)$, $B\left(1, 1, 0\right)$, $E\left(1, \frac{1}{2}, 1\right)$,

$$\therefore \overrightarrow{D'A'} = (1,0,0), \overrightarrow{D'F} = \left(0,\frac{1}{2},-1\right),$$

 $\overrightarrow{BE} = \left(0, -\frac{1}{2}, 1\right)$. 设平面 A'FD'的一个

法向量为 $\mathbf{n} = (x, y, z),$ $(\mathbf{n} \cdot \overrightarrow{D'A'} = x = 0)$

$$\begin{cases}
 \mathbf{n} \cdot D'A' = x = 0, \\
 \mathbf{n} \cdot \overrightarrow{D'F} = \frac{1}{2}y - z = 0,
 \end{cases}$$

- $\therefore \overrightarrow{BE} \cdot \boldsymbol{n} = 0$,
- $\vec{BE} \perp n$

又:: 点 B 显然不在平面 A'FD'内,

- ∴ BE // 平面 A'FD'.
- (2)结合(1)可得 $\overrightarrow{A'E} = \left(0, \frac{1}{2}, 0\right)$,

$$\therefore \frac{|\overrightarrow{A'E} \cdot \boldsymbol{n}|}{|\boldsymbol{n}|} = \frac{\sqrt{5}}{5},$$

- $\therefore BE$ 到平面 A'FD'的距离为 $\frac{\sqrt{5}}{5}$.
- 3.解析 由题可知 $\overrightarrow{AB} = (2,1,-1), \overrightarrow{BC} = (-2,0,1), \overrightarrow{BD} = (-1,-1,0).$ 设平面 β 的一个法向量为n = (x,y,z),则 $\begin{cases} n \cdot \overrightarrow{BC} = -2x + z = 0, \\ n \cdot \overrightarrow{BD} = -x - y = 0, \\ + \infty = 1, \text{则} \end{cases}$
 - \therefore α与 β之间的距离为 $\frac{|\overrightarrow{AB} \cdot n|}{|n|} = \frac{\sqrt{6}}{6}$.
- **4.**解析 如图,以A为原点,在平面 ABC内过A作 CB的平行线为x轴,AB所在直线为y轴,AS所在直线为z轴建立空间直角坐标系,

则 A(0,0,0), S(0,0,4), B(0,4,0), C(-3,4,0), E(0,2,0), F(-1,4,0), $\overrightarrow{AE} = (0,2,0)$, $\overrightarrow{SE} = (0,2,-4)$, $\overrightarrow{EF} = (-1,2,0)$.

设平面 SEF 的一个法向量为 $\mathbf{n} = (x, y, z)$

则
$$\begin{cases}
\mathbf{n} \cdot \overrightarrow{SE} = 2y - 4z = 0, \\
\mathbf{n} \cdot \overrightarrow{EF} = -x + 2y = 0,
\end{cases}$$

$$\Leftrightarrow x = 4, 得 \mathbf{n} = (4, 2, 1).$$

$$\because \frac{|\overrightarrow{AE} \cdot \mathbf{n}|}{|\mathbf{n}|} = \frac{4}{\sqrt{4^2 + 2^2 + 1}} = \frac{4\sqrt{21}}{21},$$

 \therefore 点 A 到平面 SEF 的距离为 $\frac{4\sqrt{21}}{21}$.

复习题

A组

 $3\sqrt{6}$.

1. 解析 (1) a+b+c = (-3,2,5)+(1,-3,0)+(7,-2,1)=(5,-3,6).(2): a+b = (-2,-1,5),... $(a+b) \cdot c = (-2,-1,5) \cdot (7,-2,1)=-7.$ (3) $|a+b+c|^2 = 5^2 + (-3)^2 + 6^2 = 70.$ (4): $|a| = \sqrt{38}$, $|b| = \sqrt{10}$, |c| =

- $|a| + |b| + |c| = \sqrt{38} + \sqrt{10} + 3\sqrt{6}$.
- **2**.解析 : a 与 b 为共线向量,
 - .: 存在实数 λ 使得 $a = \lambda b$,

$$\therefore \begin{cases} 2x = \lambda, \\ 1 = -2\lambda y, \\ 3 = 9\lambda, \end{cases}$$

解得
$$x = \frac{1}{6}, y = -\frac{3}{2}$$
.

- 3. 解析 易得 $\overrightarrow{AB} = (-2, -1, 3), \overrightarrow{CA} = (-1, 3, -2),$
 - $\therefore \cos\langle \overrightarrow{AB}, \overrightarrow{CA} \rangle$ $= \frac{(-2) \times (-1) + (-1) \times 3 + 3 \times (-2)}{\sqrt{14} \times \sqrt{14}}$

$$=-\frac{7}{14}=-\frac{1}{2}$$
,

- $\therefore \langle \overrightarrow{AB}, \overrightarrow{CA} \rangle = 120^{\circ}.$
- 4.解析 设 P(x,y,z) , $\therefore \overrightarrow{AP} = (x-1,y-2,z-1)$, $\overrightarrow{PB} = (-1-x,3-y,4-z)$. 由 $\overrightarrow{AP} = 2 \overrightarrow{PB}$, 得 点 P 坐 标为 $\left(-\frac{1}{3},\frac{8}{3},3\right)$.

$$\mathbb{Z}[D(1,1,1), \therefore |\overrightarrow{PD}| = \frac{\sqrt{77}}{3}.$$

- **5.**解析 (-2,-1,-4), (-2,1,-4), (2,-1,-4).
- **6.D** $|\overrightarrow{AB}| = \sqrt{29}$, $|\overrightarrow{AC}| = 2\sqrt{29}$, $|\overrightarrow{BC}| = \sqrt{29}$,所以 $|\overrightarrow{AB}| + |\overrightarrow{BC}| = |\overrightarrow{AC}|$,所以A、B、C 三点共线,构不成三角形.
- 7.解析 设 P(x,y,z) 为满足条件的任一点,则由题意得 $|\overrightarrow{PA}| = |\overrightarrow{PB}|$.
 - $|\overrightarrow{PA}| = \sqrt{(x-2)^2 + (y-3)^2 + (z-0)^2},$ $|\overrightarrow{PB}| = \sqrt{(x-5)^2 + (y-1)^2 + (z-0)^2},$
 - .. 平方后化简得 6x-4y-13=0.
 - ∴ 6x-4y-13=0 即为所求点所满足的条件.
- 8.解析 设 P(0,0,z),由 PA=PB,可得 1 +4+ $(z-1)^2$ = 4+4+ $(z-2)^2$,解得 z=3, 故点 P 的坐标为(0,0,3).
- 9.解析 :: A(0,0,0), B(2,5,0), C(1,3,5).
 - $\overrightarrow{AC} = (1,3,5), \overrightarrow{AB} = (2,5,0),$ $|\overrightarrow{AB}| = \sqrt{2^2 + 5^2 + 0^2} = \sqrt{29}.$ $\overrightarrow{AB} \cdot \overrightarrow{AC} = 1 \times 2 + 3 \times 5 + 5 \times 0 = 17.$
 - $\therefore \overrightarrow{AC} \times \overrightarrow{AB} \perp$ 投影的数量为 $\frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AB}|}$

$$=\frac{17\sqrt{29}}{29}$$
.

- **10**.解析 \overrightarrow{BD}_1 .
- **11**.解析 过三角形外心且垂直于三角形 所在平面的一条直线.
- 12.解析 如图,以 D 为原点建立空间直

角坐标系.

设正方体的棱长为 2,则 E(2,1,0), F(0,2,1),B(2,2,0), $D_1(0,0,2)$,

$$\therefore \overrightarrow{EF} = (-2,1,1), \overrightarrow{BD_1} = (-2,-2,2),$$

$$\therefore |\cos\langle \overrightarrow{EF}, \overrightarrow{BD_1} \rangle| = \left| \frac{\overrightarrow{EF} \cdot \overrightarrow{BD_1}}{|\overrightarrow{EF}| |\overrightarrow{BD_1}|} \right|$$

$$= \left| \frac{(-2) \times (-2) + 1 \times (-2) + 1 \times 2}{\sqrt{(-2)^2 + 1^2 + 1^2} \times \sqrt{(-2)^2 + (-2)^2 + 2^2}}$$

$$= \frac{\sqrt{2}}{3},$$

 \therefore 直线 EF 与 BD_1 所成角的余弦值为 $\frac{\sqrt{2}}{3}$.

B 组

- **1.A** $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} + \overrightarrow{PD} = \overrightarrow{PG} + \overrightarrow{GA} + \overrightarrow{PG} + \overrightarrow{GB} + \overrightarrow{PG} + \overrightarrow{GC} + \overrightarrow{PG} + \overrightarrow{GD} = 4 \overrightarrow{PG} + (\overrightarrow{GA} + \overrightarrow{GC}) + (\overrightarrow{GB} + \overrightarrow{GD})$. 因为四边形 ABCD 是正方形, G 是它的中心, 所以 $\overrightarrow{GA} + \overrightarrow{GC} = \overrightarrow{GB} + \overrightarrow{GD} = \mathbf{0}$. 故原式 = $4\overrightarrow{PG}$.
- 2.解析 因为 a = (1,1,0), b = (-1,0,2),所以 ka+b=k(1,1,0)+(-1,0,2)=(k-1,k,2), 2a-b=(3,2,-2),又 ka+b与 2a-b 互相垂直,所以 3(k-1)+2k-4=0,解得 $k=\frac{7}{5}$.
- 3. 解析 $\overrightarrow{OG} = \overrightarrow{OM} + \overrightarrow{MG} = \overrightarrow{OM} + \frac{2}{3}\overrightarrow{MN}$ $= \frac{1}{2}\overrightarrow{OA} + \frac{2}{3}(\overrightarrow{MO} + \overrightarrow{OC} + \overrightarrow{CN})$ $= \frac{1}{2}a + \frac{2}{3}\left[-\frac{1}{2}a + c + \frac{1}{2}(b c)\right]$ $= \frac{1}{2}a \frac{1}{3}a + \frac{2}{3}c + \frac{1}{3}b \frac{1}{3}c$ $= \frac{1}{6}a + \frac{1}{3}b + \frac{1}{3}c.$
- 4.解析 以 D 为原点, \overrightarrow{DA} , \overrightarrow{DC} , $\overrightarrow{DD'}$ 的方向分别为 x 轴, y 轴, z 轴正方向, 建立空间直角坐标系(图略),则 D(0,0,0), A(1,0,0), B(1,1,0), D'(0,0,1), B'(1,1,1), C'(0,1,1),

$$\therefore \overrightarrow{BD'} = (-1, -1, 1), \overrightarrow{AD} = (-1, 0, 0),
\overrightarrow{AC'} = (-1, 1, 1), \overrightarrow{DB'} = (1, 1, 1).$$

 $\therefore \overrightarrow{BD'} \cdot \overrightarrow{AD} = 1,$

$$\cos\langle \overrightarrow{AC'}, \overrightarrow{DB'} \rangle = \frac{\overrightarrow{AC'} \cdot \overrightarrow{DB'}}{|\overrightarrow{AC'}| |\overrightarrow{DB'}|} = \frac{1}{3}.$$

5.解析 |a| = |b| = |a+b| = 1.

 $|a+b|^2 = |a|^2 + 2a \cdot b + |b|^2 = 1.$

 $\therefore 2\boldsymbol{a} \cdot \boldsymbol{b} = -1.$

 $||a-b||^2 = |a|^2 - 2a \cdot b + |b|^2 = 3.$

 $\therefore |a-b| = \sqrt{3}.$

6.解析 设点 D(x,y,z).

: 四边形 ABCD 是平行四边形,

 $\therefore \overrightarrow{AB} = \overrightarrow{DC}.$

A(3,4,0), B(2,5,5), C(0,3,5), D(x,y,z),

 $\overrightarrow{AB} = (-1.1.5) \overrightarrow{DC} = (-x.3-y.5-z)$.

 $\therefore (-1,1,5) = (-x,3-y,5-z),$

 $\mathbb{R}[1-1=-x, 1=3-y, 5=5-z,$

解得 x=1, y=2, z=0,

故点 D 的坐标为(1,2,0).

7.证明 以 D 为原点, \overrightarrow{DA} , \overrightarrow{DC} , $\overrightarrow{DD_1}$ 的方向分别为 x 轴、y 轴、z 轴正方向,正方体的棱长的单位长度,建立空间直角坐标系(图略),则 D(0,0,0),B(1,1,0), $M\left(1,1,\frac{1}{2}\right)$, $N\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$,∴ $\overrightarrow{MN} = \left(-\frac{1}{2},-\frac{1}{2},0\right)$, $\overrightarrow{BD} = (-1,-1,0)$,

易得 MN//BD,且 $MN = \frac{1}{2}BD$.

8.解析 由题意可设点 D 的坐标为(x, 0,z),

则 $\overrightarrow{BD} = (x-2,-2,z)$, $\overrightarrow{CA} = (0,-2,5)$.

 $\therefore BD/\!\!/ CA, \therefore \begin{cases} x-2=0, \\ z=5, \end{cases} \therefore \begin{cases} x=2, \\ z=5, \end{cases}$

:. 点 D 的坐标为(2,0,5).

9. 解析 因为 ∠AOB = ∠BOC = ∠AOC = 60°,

所以可得 A 在平面 OBC 的射影在 $\triangle BOC$ 的角平分线上,设射影是 P,连接 OP, $\triangle AOP$ 就是直线 OA 与平面 BOC 所成角,

作 $PD \perp OB$ 于 D,连接 AD,

设 OD = 1,则 AO = 2, $AD = \sqrt{3}$, $PD = \frac{\sqrt{3}}{3}$,

$$PO = \frac{2\sqrt{3}}{3},$$

所以 $\cos \angle AOP = \frac{PO}{AO} = \frac{\sqrt{3}}{3}$.

故直线 OA 与平面 BOC 所成角的余弦 值为 $\frac{\sqrt{3}}{3}$.

10.解析 (1)作 *AO* ⊥ *BC* 于点 *O*,连接 *DO*,易得 *OD*, *OC*, *OA* 两两互相垂直. 以 *O* 为原点, *oD*, *oC*, *oA*的方向分别 为 *x* 轴 ,*y* 轴 ,*z* 轴正方向,建立如图所示的空间直角坐标系.

设AB=1,则O(0,0,0), $D(\frac{\sqrt{3}}{2},0,0)$,

$$B\left(0,\frac{1}{2},0\right), C\left(0,\frac{3}{2},0\right), A\left(0,0,\frac{3}{2},0\right)$$

 $\frac{\sqrt{3}}{2}$),

1) 为平面 BCD 的一个法向量,

$$\therefore \mid \cos \langle \overrightarrow{AD}, \mathbf{n}_1 \rangle \mid = \left| \frac{-\frac{\sqrt{3}}{2}}{\sqrt{\frac{3}{2}} \times 1} \right| =$$

$$\left| -\frac{\sqrt{2}}{2} \right| = \frac{\sqrt{2}}{2}$$

:. 直线 AD 与平面 BCD 所成角的大小为 $90^{\circ}-45^{\circ}=45^{\circ}$.

$$(2) \overrightarrow{AD} \cdot \overrightarrow{BC} = \left(\frac{\sqrt{3}}{2}, 0, -\frac{\sqrt{3}}{2}\right) \cdot (0, 1, 1)$$

 $0) = 0, \therefore \overrightarrow{AD} \perp \overrightarrow{BC},$

:. AD 与 BC 所成角的大小为 90°.

(3)设平面 ABD 的一个法向量为 n_0 =

$$(x,y,1)$$
, $y(x,y,1) \cdot \overrightarrow{AB} = (x,y,1)$

$$\cdot \left(0, \frac{1}{2}, -\frac{\sqrt{3}}{2}\right) = 0,$$

$$(x \quad x \quad 1) \quad \cdot \overrightarrow{AD} = (x \quad x \quad 1)$$

$$(x, y, 1) \cdot \overrightarrow{AD} = (x, y, 1) \cdot \left(\frac{\sqrt{3}}{2}, 0, -\frac{\sqrt{3}}{2}\right) = 0,$$

解得 $x=1, y=\sqrt{3}$,

则 $n_2 = (1, \sqrt{3}, 1)$.

设二面角 A-BD-C 的大小为 θ ,则

$$|\cos \theta| = \frac{|\boldsymbol{n}_1 \cdot \boldsymbol{n}_2|}{|\boldsymbol{n}_1| |\boldsymbol{n}_2|} = \frac{\sqrt{5}}{5}.$$

$$\therefore \sin \theta = \frac{2\sqrt{5}}{5}.$$

∴ 二面角 A-BD-C 的正弦值为 $\frac{2\sqrt{5}}{5}$.

11.解析 作 $BD \perp$ 平面 α , 垂足为 D, $CE \perp$ 平面 α , 垂足为 E, 连接 AE, AD, DE, 则 $\angle BAD = 30^{\circ}$, $\angle CAE = 60^{\circ}$, $\angle EAD = 90^{\circ}$.

易得 BD = 3, AE = 4, $CE = 4\sqrt{3}$, $DE = \sqrt{43}$.

 $\overrightarrow{BC} = \overrightarrow{BD} + \overrightarrow{DE} + \overrightarrow{EC}$

 $\therefore |\overrightarrow{BC}|^2 = (\overrightarrow{BD} + \overrightarrow{DE} + \overrightarrow{EC})^2 = |\overrightarrow{BD}|^2 +$

 $|\overrightarrow{DE}|^2 + |\overrightarrow{EC}|^2 + 2 \overrightarrow{BD} \cdot \overrightarrow{DE} + 2 \overrightarrow{BD} \cdot \overrightarrow{EC} + 2 \overrightarrow{DE} \cdot \overrightarrow{EC} = 3^2 + (\sqrt{43})^2 + (4\sqrt{3})^2 \pm 2 \times 3 \times 4\sqrt{3} = 100 \pm 24\sqrt{3}.$

- $\therefore |\overrightarrow{BC}| = \sqrt{100 \pm 24\sqrt{3}}$,即 BC 的长为 $\sqrt{100 \pm 24\sqrt{3}}$ cm.
- 12.解析 过点 A 作 $AD \perp OC$ 于 D,根据三余弦定理可得

$$\cos \angle AOD = \cos 60^{\circ} \times \cos 30^{\circ} = \frac{\sqrt{3}}{4},$$

$$\therefore \sin \angle AOD = \frac{\sqrt{13}}{4}.$$

$$AO = 6$$
, $AD \perp OC$,

$$\therefore AD = OA \times \sin \angle AOD = 6 \times \frac{\sqrt{13}}{4}$$
$$= \frac{3\sqrt{13}}{2},$$

即点 A 到直线 OC 的距离为 $\frac{3\sqrt{13}}{2}$.

C 组

- 1.证明 设 $a = \lambda b + \mu c (\lambda, \mu \in \mathbf{R})$,则 i-2j $+k = (-\lambda - 3\mu)i + (3\lambda + 7\mu)j + 2\lambda k$.
 - :: 向量 *i*,*j*,*k* 不共面,

$$\therefore \begin{cases} -\lambda - 3\mu = 1, \\ 3\lambda + 7\mu = -2, \text{解得} \\ 2\lambda = 1, \end{cases} \lambda = \frac{1}{2},$$

故存在实数 $\lambda = \frac{1}{2}, \mu = -\frac{1}{2}$, 使得 **a** =

$$\frac{1}{2}\boldsymbol{b}-\frac{1}{2}\boldsymbol{c}$$
,

故向量 a,b,c 共面.

2.解析 共面.理由如下:

假设存在实数 λ μ , 使 $p = \lambda q + \mu r$, 则 $a + b - c = (2\lambda - 7\mu) a + (-3\lambda + 18\mu) b + (-5\lambda + 22\mu) c$,

∵ a,b,c 不共面,

$$\therefore \begin{cases} 2\lambda - 7\mu = 1, \\ -3\lambda + 18\mu = 1, \\ -5\lambda + 22\mu = -1, \end{cases} \lambda = \frac{5}{3},$$

$$\mu = \frac{1}{3},$$

即存在实数 $\lambda = \frac{5}{3}, \mu = \frac{1}{3}$,

使 $p = \lambda q + \mu r$,故 $p \ q \ r$ 共面.

3.解析 以 BC 所在直线为 x 轴,以 BC 边上的高所在直线为 y 轴,建立如图所示的平面直角坐标系,

则 $A(0,\sqrt{3})$,设 P(x,y) ,则 $\overrightarrow{PB}+\overrightarrow{PC}=2\overrightarrow{PO}=(-2x,-2y),\overrightarrow{PA}=(-x,\sqrt{3}-y),$

$$\therefore \overrightarrow{PA} \cdot (\overrightarrow{PB} + \overrightarrow{PC}) = 2x^2 + 2y^2 - 2\sqrt{3}y,$$

$$= 2x^2 + 2\left(y - \frac{\sqrt{3}}{2}\right)^2 - \frac{3}{2}.$$

∴ $\stackrel{.}{=}$ x = 0, $y = \frac{\sqrt{3}}{2}$ $\stackrel{.}{=}$ $\overrightarrow{PA} \cdot (\overrightarrow{PB} + \overrightarrow{PC})$ $\stackrel{.}{=}$

得最小值 $-\frac{3}{2}$.

4.解析 (1)如图,作 PO⊥平面 ABCD,
 垂足为点 O.连接 OB、OA、OD,设 OB 与
 AD 交于点 E,连接 PE.

 $\therefore AD \perp PB$, $\therefore AD \perp OB$.

 $\therefore PA = PD, \therefore OA = OD,$

于是 OB 平分 AD,点 E 为 AD 的中点, $\therefore PE \perp AD$.由此知 $\angle PEB$ 为面 PAD 与 面 ABCD 所成二面角的平面角,

 $\therefore \angle PEB = 120^{\circ}, \angle PEO = 60^{\circ},$

由已知可求得 $PE = \sqrt{3}$,

$$\therefore PO = PE \cdot \sin 60^\circ = \sqrt{3} \times \frac{\sqrt{3}}{2} = \frac{3}{2},$$

即点 P 到平面 ABCD 的距离为 $\frac{3}{2}$.

(2)如图建立空间直角坐标系,

则
$$P\left(0,0,\frac{3}{2}\right), B\left(0,\frac{3\sqrt{3}}{2},0\right), A\left(1,\frac{3\sqrt{3}}{2},0\right)$$

$$\left(\frac{\sqrt{3}}{2},0\right)$$
, $C\left(-2,\frac{3\sqrt{3}}{2},0\right)$, PB 中点 G 的

坐标为
$$\left(0,\frac{3\sqrt{3}}{4},\frac{3}{4}\right)$$
.连接 AG,

$$\overrightarrow{GA} = \left(1, -\frac{\sqrt{3}}{4}, -\frac{3}{4}\right), \overrightarrow{PB} =$$

$$\left(0,\frac{3\sqrt{3}}{2},-\frac{3}{2}\right),\overrightarrow{BC}=(-2,0,0).$$

于是有 $\overrightarrow{GA} \cdot \overrightarrow{PB} = 0$, $\overrightarrow{BC} \cdot \overrightarrow{PB} = 0$,

 $\therefore \overrightarrow{GA} \perp \overrightarrow{PB}, \overrightarrow{BC} \perp \overrightarrow{PB}, \therefore \overrightarrow{GA}, \overrightarrow{BC}$ 的夹角 θ 等于所求二面角的平面角,

于是
$$\cos \theta = \frac{\overrightarrow{GA} \cdot \overrightarrow{BC}}{|\overrightarrow{GA}||\overrightarrow{BC}|} = -\frac{2\sqrt{7}}{7}.$$

 \therefore 面 *APB* 与面 *CPB* 所成二面角的余弦值为 $-\frac{2\sqrt{7}}{7}$.

5.解析 (1)证明:因为 $\triangle PAB$ 是等边三角形,所以 PA=PB,又 PC=PC, $\triangle PAC=$ $\triangle PBC=90^{\circ}$,所以 $Rt \triangle PBC \cong Rt \triangle PAC$, 所以 AC=BC.

如图,取 AB 中点 D,连接 PD,CD,则 $PD \perp AB$, $CD \perp AB$,又 $PD \cap CD = D$,所以 $AB \perp$ 平面 PDC,所以 $AB \perp PC$.

(2)作 $BE \perp PC$,垂足为 E,连结 AE. 因为 $Rt \triangle PBC \cong Rt \triangle PAC$,所以 $AE \perp PC$,AE = BE.易得 $PC \perp PE$ ABE. 因为平面 $PAC \perp PBC$,所以 $\triangle AEB = 90^\circ$.

设
$$AB = PA = PB = a$$
,则 $AE = \frac{\sqrt{2}}{2}a$.

在 Rt $\triangle PAC$ 中,由 $PA \cdot AC = PC \cdot AE$ 得

$$a \cdot \sqrt{16-a^2} = 4 \times \frac{\sqrt{2}}{2} a$$
, 解得 $a = 2\sqrt{2}$, AC

$$=\sqrt{16-(2\sqrt{2})^2}=2\sqrt{2}=PA$$
.

可得 E 为 PC 中点.

由 PC=4,得 AE=BE=2,所以 $S_{\triangle AEB}=2$.

所以三棱锥 P-ABC 的体积 $V=\frac{1}{3}\times$

$$S_{\triangle AEB} \times PC = \frac{8}{3}$$
.

6.解析 (1)如图,连接 BD,AC,设 AC 交 BD 于 O,连接 SO,由题易知 SO \bot 平面 ABCD.

以 O 为坐标原点, \overrightarrow{OB} , \overrightarrow{OC} , \overrightarrow{OS} 的方向分别为 x 轴、y 轴、z 轴正方向, 建立空间直角坐标系 Oxyz,

设底面边长为 a,则 $SO = \frac{\sqrt{6}}{2}a$,

于是
$$S\left(0,0,\frac{\sqrt{6}}{2}a\right), D\left(-\frac{\sqrt{2}}{2}a,0,0\right),$$
 $C\left(0,\frac{\sqrt{2}}{2}a,0\right), \overrightarrow{OC} = \left(0,\frac{\sqrt{2}}{2},0\right), \overrightarrow{SD} = \left(-\frac{\sqrt{2}}{2}a,0,-\frac{\sqrt{6}}{2}a\right), \overrightarrow{OC} \cdot \overrightarrow{SD} = 0, 所以\overrightarrow{OC}$

 $\bot \overrightarrow{SD}$, 从而 $AC \bot SD$.

(2)由题设知,平面 PAC 的一个法向量

为
$$\overrightarrow{DS} = \left(\frac{\sqrt{2}}{2}a, 0, \frac{\sqrt{6}}{2}a\right)$$

平面 DAC 的一个法向量为 \overrightarrow{OS} = $\left(0,0,\frac{\sqrt{6}}{2}a\right)$,

设所求二面角为 θ ,则

$$\cos \theta = \frac{\overrightarrow{OS} \cdot \overrightarrow{DS}}{|\overrightarrow{OS}| |\overrightarrow{DS}|} = \frac{\sqrt{3}}{2}, \text{ Figure } \theta = 30^{\circ}.$$

即二面角 P-AC-D 的大小为 30°.

(3)假设在棱 SC 上存在一点 E 使 BE //平面 PAC.

由(2)知 \overrightarrow{DS} 是平面 PAC 的一个法向量.

$$\overrightarrow{CS} = \left(0, -\frac{\sqrt{2}}{2}a, \frac{\sqrt{6}}{2}a\right),$$

$$\overrightarrow{BC} = \left(-\frac{\sqrt{2}}{2}a, \frac{\sqrt{2}}{2}a, 0\right),$$

设 $\overrightarrow{CE} = t \overrightarrow{CS}$,

 $\square \overrightarrow{BE} = \overrightarrow{BC} + \overrightarrow{CE} = \overrightarrow{BC} + t \overrightarrow{CS}$

$$=\left(-\frac{\sqrt{2}}{2}a\,,\frac{\sqrt{2}}{2}a(\,1{-}t)\;,\frac{\sqrt{6}}{2}at\right).$$

易得 $\overrightarrow{BE} \cdot \overrightarrow{DS} = 0$,所以 $t = \frac{1}{3}$,

即当 SE: EC=2:1 时,BE//平面 PAC. 综上所述,侧棱 SC 上存在一点 E,使得 BE//平面 PAC,此时 SE: EC=2:1.

第二章 平面解析几何

2.1 坐标法

习题 2-1A

- 1.解析 |AB| = |10-(-2)| = 12, AB 的中点记为 C,则 C(4).
- 2.解析 $|AB| = \sqrt{(3-0)^2 + (0+4)^2} = 5$, AB的中点坐标为 $\left(\frac{3}{2}, -2\right)$.
- 3. 证明 : $|AB| = \sqrt{(3+1)^2 + (3-3)^2} = 4$, $|BC| = \sqrt{(3-1)^2 + (3-2\sqrt{3}-3)^2} = 4$, $|AC| = \sqrt{(1+1)^2 + (2\sqrt{3}+3-3)^2} = 4$,
 - $\therefore \ |AB| = |AC| = |BC| \ ,$
 - ∴ △ABC 为等边三角形.
- 4.解析 设 AB, BC, AC 的中点分别为 D, E, F, 则由中点公式可得 D(0,2), E(-1,1), F(1,0), 所以三条中线的长分别为 $|CD| = \sqrt{(0-0)^2 + (-1-2)^2} = 3$, $|AE| = \sqrt{(2+1)^2 + (1-1)^2} = 3$, $|BF| = \sqrt{(-2-1)^2 + (3-0)^2} = 3\sqrt{2}$.
- **5.**解析 由|AB| = |BC|知,C(5).

习题 2-1B

1.解析 易知|PA| = 2|PB|,设P(x), 则|x-(-9)| = 2|x-(-3)|,

- $\therefore x = 3 \stackrel{\cdot}{o} x = -5, \therefore P(3) \stackrel{\cdot}{o} P(-5).$
- **2.** 解析 $|AB| = \sqrt{(a-0)^2 + (0-10)^2} = 17$... $a = \pm 3\sqrt{21}$.
- 3.解析 设 P(0,b), $\therefore PA \perp PB$, $\therefore |PA|^2 + |PB|^2 = |AB|^2$,
 - $\therefore (3-0)^2 + (1-b)^2 + (0+2)^2 + (b-2)^2 = (3+2)^2 + (1-2)^2.$
 - ∴ $b^2 3b 4 = 0$, ∴ b = -1 或 b = 4,
 - $\therefore P(0,-1)$ 或 P(0,4) 即为所求.
- 4.证明 设|AB|=a,|AD|=b,以A为坐标原点,AB所在直线为x轴,AD所在直线为y轴,建立平面直角坐标系,如图所示,则A(0,0),B(a,0),C(a,b),D(0,b).设任一点M(x,y),则 AM^2 = x^2 + y^2 , CM^2 = $(x-a)^2$ + $(y-b)^2$, AM^2 + CM^2 = $2x^2$ + $2y^2$ -2ax-2by+ a^2 + b^2 .又 BM^2 = $(a-x)^2$ + $(0-y)^2$, DM^2 = x^2 + $(y-b)^2$, BM^2 + DM^2 = $2x^2$ + $2y^2$ -2ax-2by+ a^2 + b^2 ,故 AM^2 + CM^2 = BM^2 + DM^2 .

5.解析 设所求函数的图像上任一点 P(x,y),且 P(x,y)关于 M(2,0) 对称

的点为
$$P_0(x_0, y_0)$$
, 所以
$$\begin{cases} \frac{x+x_0}{2} = 2, \\ \frac{y+y_0}{2} = 0, \end{cases}$$

 $\begin{cases} x_0 = 4 - x, \\ y_0 = -y. \end{cases}$ 因为 $P_0(x_0, y_0)$ 在函数 $y = x^2$ +1 的图像上,所以 $-y = (4 - x)^2 + 1$,故所求函数的解析式为 $y = f(x) = -(x - 4)^2$

-1.

习题 2-1C

1.解析 (1)证明:如图①~⑤,*d*(*A*,*B*) = |*AB*|

d(A,C) = |AC|.

d(B,C) = |BC|.

图①⑤中,|AB|<|AC|+|BC|;

图②③④中、|AB| = |AC| + |BC|、

 $\therefore d(A,B) \leq d(A,C) + d(B,C).$

(2)设 C 的坐标为 x,则当 $-3 \le x \le 2$

时,d(A,B) = d(A,C) + d(B,C); 当 x < -3 或 x > 2 时,d(A,B) < d(A,C) + d(B,C).

- 2.解析 (1)证明:设 $A(x_1, y_1), B(x_2, y_2), C(x_3, y_3),$ 则 $d(A, C) + d(B, C) = |x_1 x_3| + |y_1 y_3| + |x_2 x_3| + |y_2 y_3|,$ $d(A, B) = |x_1 - x_2| + |y_1 - y_2|,$
 - $\therefore |x_1 x_3| + |y_1 y_3| + |x_2 x_3| + |y_2 y_3|$ $\ge |x_1 x_2| + |y_1 y_2|,$
 - $\therefore d(A,B) \leq d(A,C) + d(B,C).$
 - (2)(1)中不等式等号成立时,点 C 的 横坐标介于 x_1 和 x_2 之间(包含 x_1 , x_2),且点 C 的纵坐标介于 y_1 和 y_2 之间 (包含 y_1 , y_2),否则,等号不成立.

2.2 直线及其方程

2.2.1 直线的倾斜角与斜率

练习A

- **1.** 解析 (1) 90°. (2) 0°. (3) 45°. (4) 135°.
- 2.解析 (1)存在,斜率为0.
 - (2)存在,斜率为√3.
 - (3)不存在.
 - (4)存在,斜率为 $-\frac{\sqrt{3}}{3}$.
- **3.**解析 直线 l 的一个方向向量 \overrightarrow{AB} = (-3, 3),

斜率
$$k = \frac{3-0}{-5-(-2)} = -1$$
, 倾斜角 θ = 135°.

4. 解析 : $k_{AB} = \frac{-1 - (-3)}{0 - (-1)} = 2$, $k_{BC} =$

$$\frac{2-(-1)}{1-0} = 3, k_{AB} \neq k_{BC}, \therefore A, B, C 不共线.$$

 $\therefore k_{BD} = \frac{5 - (-1)}{3 - 0} = 2, k_{AB} = k_{BD}$,且直线

AB 与直线 BD 有一个公共点 B, $\therefore A$ 、 B $\downarrow D$ 三点共线.

5.解析 真命题.

维国 F

1.解析 $(1)\theta \in \left[0, \frac{\pi}{2}\right)$, 当 θ 增大时, 直线的斜率 k 也增大;

 $\theta \in \left(\frac{\pi}{2}, \pi\right)$, 当 θ 增大时, 斜率 k 也增大.

- (2)不能,因为 $k = \tan \theta \left(\theta \neq \frac{\pi}{2}\right)$,如图,
- $k \, \text{te} \left[0, \frac{\pi}{2}\right) \, \text{ne} \left(\frac{\pi}{2}, \pi\right) \, \text{Le} \, \text$

- **2.**解析 (1)存在,k=0, $\alpha=0$ °.
 - (2) 存在, $k = -\sqrt{3}$, $\alpha = 120^{\circ}$.
 - (3) 存在, $k = \frac{3-\sqrt{2}}{\sqrt{2}+3} = 1$, $\alpha = 45^{\circ}$.
 - (4)直线的斜率不存在, $\alpha=90^\circ$.
- **3**.解析 $k_1 = -1$,
 - $\alpha_1 = 135^{\circ}$.
 - $\therefore \alpha_2 = \alpha_1 30^\circ = 105^\circ$
 - :. $k_2 = \tan 105^{\circ} = -2 \sqrt{3}$.
- **4.**解析 由题意得 $k_{AB} = \frac{a+1-(-1)}{2-a} = 3$, $\therefore a = 1.$
- **5.**解析 :: $|k| = \frac{\sqrt{3}}{2}$,

$$\therefore k = \pm \frac{\sqrt{3}}{3},$$

 \therefore α = 30° \equiv α = 150°.

2.2.2 直线的方程

- **1.**解析 $A \setminus C$ 在直线上, B 不在直线上.
- **2**. 解析 将两点分别代入,得 1 = -3a + 1, $b = -3 \times (-1) + 1 = 4$.

 $\therefore a = 0, b = 4.$

3. 解析 (1)y-5=4(x-2).

$$(2)y-2=\frac{\sqrt{3}}{3}(x+2).$$

- **4.** 解析 $(1)y = \frac{\sqrt{3}}{2}x 2.(2)y = -x + 3.$
- **5.** 解析 $(1) l_1 : y = -2x 1. (2) y = -1.$ (3)x = 1.
- **6.** 解析 $(1)y = -\frac{4}{3}x 2.(2)y = -\frac{2}{3}x + 2.$
- 7. 解析 (1) $\begin{cases} k=1, \\ b=3. \end{cases}$ (2) $\begin{cases} k=\sqrt{3}, \\ b=-2\sqrt{3}-4. \end{cases}$

(3) $\begin{cases} k = -4, \\ b = 3. \end{cases}$

- 1.解析 (1)真.(2)真.(3)真.
- 2.解析 直线 l, 的倾斜角为 120°.
- **3.**解析 不是直线方程.:: $x \neq 3$.:. 取不
- 4.解析 如图.斜率分别为 k 和-k 的两条 直线的倾斜角互补.

5.解析 (1)k=−2,∴l:y+2=−2(x+1), 即 l: y = -2x - 4.

$$(2)k = \frac{v}{u}, \therefore l: y - y_0 = \frac{v}{u}(x - x_0),$$

$$\exists I : y = \frac{v}{u} x - \frac{v}{u} x_0 + y_0.$$

6.解析 (1)k=3,∴ l:y-3=3(x-1), 即 $l \cdot v = 3x$.

(2)
$$k = -\frac{u}{v}$$
, ∴ $l: y - y_0 = -\frac{u}{v} (x - x_0)$, 即

$$y = -\frac{u}{v}x + \frac{u}{v}x_0 + y_0.$$

2.2.3 两条直线的位置关系

- 1.解析 (1)平行.(2)平行.(3)平行. (4) 不平行.
- 2.解析 (1)不相交.
 - (2)相交.交点 $\left(-\frac{5}{4}, \frac{1}{4}\right)$.
- **3.** 解析 (1)x-3y+10=0.(2)x+5y+22=0. (3) 2x+y-7=0.
- 4.解析 (1)垂直.(2)不垂直.
- **5.** 解析 (1)5x-y-23=0.(2)x-y-8=0.(3)x-y+1=0.

练习 B

- **1.**解析 易知 2(1-a)-3=0, $a=-\frac{1}{2}$.
- 2.解析 平行.如图:

3.解析 易知 $a \neq 8$.设交点为 P,

$$\mathfrak{K} \stackrel{\cdot}{\supseteq} \left\{ \begin{cases} 2x + ay - 1 = 0, \\ x + 4y - 2 = 0 \end{cases} \Rightarrow P\left(\frac{4 - 2a}{8 - a}, \frac{3}{8 - a}\right),$$

- :. 所求直线方程为 4x-3y-6=0.
- **5**.解析 ∵ 两直线垂直 ∴ a×2+2×(-3) = 0, : a = 3.
- **6.**解析 $: k_{AB} = -1, ::$ 所求直线的斜率 k=1.又:: 所求直线过C(1,5),
 - ∴ 所求直线方程为 y-5=x-1,即 x-y+4

2.2.4 点到直线的距离

- **1.**解析 (1) $d = \frac{|10|}{\sqrt{4^2 + 3^2}} = 2.$ (2) d = $\frac{|2-3-1|}{\sqrt{1^2+1^2}} = \sqrt{2}$.
- **2.**解析 $d = \frac{|m+n-1|}{\sqrt{1^2+1^2}} = 0, \therefore m+n=1.$
- **3.**解析 $d = \frac{|5-(-8)|}{\sqrt{2^2+(-3)^2}} = \frac{13}{\sqrt{13}} = \sqrt{13}$.

练习 B

- **1.**解析 P到x=a的距离为 $|x_0-a|$,P到 $\gamma = b$ 的距离为 $|\gamma_0 - b|$.
- **2.**解析 直线方程为 3x-y+6=0, d= $\frac{|3m-6+6|}{\sqrt{3^2+(-1)^2}} = 3, \therefore m = \pm \sqrt{10}.$
- **3.**解析 $\frac{7\sqrt{13}}{26}$.
- 4. 解析 $|AB| = \sqrt{(2-1)^2 + (1-3)^2} =$

 $\sqrt{5}$, l_{AB} : 2x+y-5=0, 点 C 到直线 AB 的

距离
$$d = \frac{|2 \times (-1) + 0 - 5|}{\sqrt{2^2 + 1^2}} = \frac{7\sqrt{5}}{5}$$
,

$$\therefore S_{\triangle ABC} = \frac{1}{2} |AB| \cdot d = \frac{1}{2} \times \sqrt{5} \times \frac{7\sqrt{5}}{5}$$
$$= \frac{7}{2}.$$

- **1.解析** 易知 $k_{AB} = \frac{7-3}{3-1} = 2$, $k_{AC} = \frac{9-3}{4-1} = 2$, $:: k_{AB} = k_{AC}$ 且直线 AB 与直线 AC 有公共
- **2.**解析 (1) α = 60°. (2) α = 150°. (3) α = 90° . (4) $\alpha = 0^{\circ}$.
- **3.**解析 (1) $y=2.(2)x=-\frac{1}{2}.(3)9x-2y+$ 6 = 0
- **4.** 解析 (1)3x-y-13=0.(2)3x+y+5=0.
- **5.** 解析 $k_{AB} = \frac{1-0}{3-(-1)} = \frac{1}{4}$,

点A,::A,B,C 三点共线.

∴
$$l_{AB}$$
: $y = \frac{1}{4}(x+1)$, $\exists I_{AB}$: $x-4y+1=0$.

$$k_{BC} = \frac{5-1}{0-3} = -\frac{4}{3}$$
, $\therefore l_{BC} : y-1 = -\frac{4}{3} (x-1)$

 $l_{AC}:5x-y+5=0.$

6.解析 (1)相交,交点(3,5).(2)相交, 交点(3,0).

7.解析 (1)
$$d = \frac{|-5|}{\sqrt{3^2 + 4^2}} = 1$$
.

$$(2) d = \frac{|1-3-1|}{\sqrt{1^2+1^2}} = \frac{3\sqrt{2}}{2}.$$

$$(3) d = \frac{|3|}{\sqrt{9+1}} = \frac{3}{10} \sqrt{10}.$$

$$(4) d = \frac{|2-7|}{\sqrt{0^2+1^2}} = 5.$$

8.解析 设所求点的坐标为(0,b),

则
$$5 = \frac{|0+4b+5|}{\sqrt{3^2+4^2}}$$
, ... $4b+5=25$ 或 $4b+5=$

$$-25$$
,∴ $b=5$ 或 $b=-\frac{15}{2}$,

:: 所求点的坐标为
$$(0,5)$$
或 $\left(0,-\frac{15}{2}\right)$.

9.解析 如图,AC=8,BD=6,

A(-4,0), B(0,-3), C(4,0), D(0,3),

:.
$$l_{AB}$$
: $3x+4y+12=0$,

$$l_{BC}: 3x-4y-12=0$$
,

$$l_{DC}:3x+4y-12=0$$

$$l_{AD}: 3x-4y+12=0.$$

10. 解析 直线 3x-4y-5=0 关于 x 轴对称的直线方程为 3x+4y-5=0,

关于 y 轴对称的直线方程为 3x+4y+5 = 0.

11.解析 A(1,3)关于 l:y=x-3 的对称 点为 B(6,-2),点 B 到 l 的距离 d=

$$\frac{|6+2-3|}{\sqrt{1^2+(-1)^2}} = \frac{5\sqrt{2}}{2}.$$

12. 解析 如图, $l_1:x+y+3=0$,

 $l_2: x-y+3=0.$

习题 2-2B

1. 解析 (1) $\alpha = 0^{\circ}$. (2) $\alpha = 90^{\circ}$. (3) $k = \frac{b+c-(c+a)}{b-a} = 1$, $\alpha = 45^{\circ}$.

2.解析 $: A,B,C \equiv$ 点共线,: 直线 $AC \setminus BC$ 的斜率存在,且 $k_{AC} = k_{BC}$,

$$\therefore k_{AC} = \frac{2-a}{-1+2} = 2-a, k_{BC} = \frac{3-2}{a+1+1} = \frac{1}{a+2},$$

$$\therefore 2-a=\frac{1}{a+2}, \therefore a=\pm\sqrt{3}.$$

3.解析 都过点(-1,1).

4.解析 直线 $y = \frac{\sqrt{3}}{3}x$ 的倾斜角为 30°,则

l的倾斜角为 60° , $h_{i} = \sqrt{3}$,

:.
$$l: y+3=\sqrt{3}(x-2)$$
,

:.
$$l:\sqrt{3}x-y-2\sqrt{3}-3=0$$
.

5.解析 AB 中点坐标为(-1,-1), $k_{AB} = \frac{2+4}{-3-1} = -\frac{3}{2}$, : 所求直线斜率 $k = \frac{2}{3}$,

:. 所求方程为 $y+1=\frac{2}{3}(x+1)$,即 2x-3y-1=0.

6.解析 设直线为 y=kx 或 $\frac{x}{a}+\frac{y}{a}=1$,

:: 直线过 A(3,2),

$$\therefore l: y = \frac{2}{3}x \implies x+y-5 = 0.$$

7. 解析 $k_{AB} = \frac{2-1}{-1-2} = -\frac{1}{3}, k_{BC} = \frac{4-1}{0-2} = -\frac{3}{2}, k_{AC} = \frac{4-2}{0-(-1)} = 2,$

.. 直线 AB 边上的高所在直线方程为

3x-y+4=0, 直线 *BC* 边上的高所在直线方程为 y-2

 $=\frac{2}{3}(x+1)$, $\mathbb{R}^{3}2x-3y+8=0$,

直线 AC 边上的高所在直线方程为 y-1 = $-\frac{1}{2}(x-2)$, 即 x+2y-4=0.

8. 解析 $: l_1 \perp l_2, ... (m+2) \times 3 + [-(m-2)] \times m = 0, ... m = -1 或 m = 6.$

9. 解析 $d=\sqrt{5}=\frac{|c-2|}{\sqrt{2^2+(-1)^2}}=\frac{|c-2|}{\sqrt{5}}$,

 $\therefore c=7$ 或 c=-3.

10.解析 (1) C = 0. (2) A, B 均不为 0. (3) A = 0, 且 C≠0. (4) B = 0, 且 C≠0. (5) B = 0. (6) A = 0.

11.解析 是.

12.解析 $(1)k=2, \therefore l:y+5=2(x-3)$,即 l:2x-y-11=0.

(2)
$$k = -\frac{4}{3}$$
, $l: y-5 = -\frac{4}{3}x$, $l! l: 4x + 2$

3y - 15 = 0

13. 解析 (1) $k = \frac{3}{4}$, $\therefore l: y-2 = \frac{3}{4} (x-1)$

1), $\mathbb{P} l: 3x-4y+5=0$.

(2)
$$k = -\frac{3}{4}$$
, ∴ $l: y-2 = -\frac{3}{4}(x+1)$, 即

l:3x+4y-5=0

习题 2-2C

1.解析 设 l_2 与 $l_1: x-3y-5=0$ 平行,且 $l_2: x-3y+c_1=0$ $(c_1 \neq -5)$.: G 到 l_1 的距离等于 G 到 l_2 的距离,

$$\therefore d = \frac{|-1-5|}{\sqrt{1+9}} = \frac{|-1+c_1|}{\sqrt{1+9}}, \therefore c_1 = 7,$$

:. $l_2: x-3y+7=0$.

设 l_3 与 l_1 垂直,且 $l_3:3x+y+c_2=0$,同

理,
$$d = \frac{|-3+c_2|}{\sqrt{1+9}} = \frac{|-1-5|}{\sqrt{1+9}}$$
,

∴ $c_2 = -3$ 或 $c_2 = 9$, ∴ $l_3 : 3x + y - 3 = 0$ 或 3x + y + 9 = 0.

综上,这个正方形其他三条边所在直线的方程分别为 x-3y+7=0,3x+y-3=0, 3x+y+9=0.

2.解析 由题知,l的斜率存在,设l:y-1=k(x-2),∴l:kx-y-2k+1=0.

:: A, B 到 l 的距离相等,

$$\therefore \frac{|2k-3-2k+1|}{\sqrt{k^2+1}} = \frac{|4k+5-2k+1|}{\sqrt{k^2+1}}$$

∴ k = -2 或 k = -4, ∴ l: 2x + y - 5 = 0 或 4x + y - 9 = 0.

3.解析 (0.4).

2.3 圆及其方程

2.3.1 圆的标准方程

练习A

1.解析 $(1)x^2+y^2=4.(2)x^2+(y-1)^2=4.$ (3) $(x+2)^2+(y-1)^2=3.$

2.解析 (1) C(0,0), $r=\sqrt{5}$.

(2)C(3,0), r=2.

 $(3) C(0,-1), r=\sqrt{2}.$

 $(4) C(-2,1), r = \sqrt{3}.$

3.解析 ∵ 1²+1²<4,∴ *A* 在圆内; ∵ 1²+3=4,∴ *B* 在圆上; ∵ 1²+2²=5>4,∴ *C* 在圆外.

4.解析 :: 点 C(3,4) 到 O(0,0) 距离 |CO| = 5 = r,:: 圆的方程: $(x-3)^2 + (y-4)^2 = 25$.

5.解析 $x^2 + y^2 = r^2$.

练习B

1.解析 (1) AB 中点记为 C.则 C(3.6)

为圆心, $r = \frac{1}{2} |AB| = \sqrt{10}$,∴ 圆 C: (x - 1)

 $3)^{2}+(y-6)^{2}=10.$

(2)设 $C:(x-a)^2+(y-b)^2=1.$ 将点(0,

1)和(0,3)代人 C,得 a=0,b=2.

2.解析 设圆心 C(a,-a).设 $C:(x-a)^2+(y+a)^2=r^2(r>0)$,将 A(1,0),B(0,1)代入 C,得 a=0,r=1,∴ 圆 $C:x^2+y^2=1$ 即为所求.

3.解析 圆 $(x-2)^2 + (y-3)^2 = 1$ 中,C(2,3) 为圆心,r=1.

 $|PC| = \sqrt{(2+1)^2 + (3+1)^2} = 5$, ∴ |PO|的最大值为|PC| + r = 6.

2.3.2 圆的一般方程

练习A

- **1.**解析 (1) 圆心为(3,0),r=3.(2) 圆心为(1,-2), $r=\frac{\sqrt{10}}{2}$.
- **2.**解析 (1)不是圆的方程,圆的半径 r > 0,它表示原点.
 - (2)圆心(1,-2), $\sqrt{11}$ 为半径.
 - (3) 圆心(1,1), 半径 $r=\sqrt{5}$.
- 3.解析 将 A(0,0) 代入圆的方程得-4<0,: A 在圆内;将 B(-1,5) 代入圆的方程,得 1+25-2-20-4=0,: B 在圆上;将 C(1,-2) 代入圆的方程,得 1+4+2+8-4>0,: C 在圆外.

练习B

- **1.**解析 原方程可化为 $(x^2+2ax+a^2)+y^2=a^2+b^2$,当a=b=0时, $x^2+y^2=0$,不是圆的方程,它表示原点;
 - 当a,b不同时为零时,表示圆心为(-a,
- 0), 半径为 $\sqrt{a^2+b^2}$ 的圆.
- **2.** 解析 $(x+1)^2 + \left(y \frac{a}{2}\right)^2 = 5 + \frac{a^2}{4} = 9$,

 $\therefore a = \pm 4$

- 3. 解析 $\left(x+\frac{3}{4}\right)^2 + \left(y-\frac{a}{4}\right)^2 = \frac{9+a^2}{16}$,
- **4.**解析 \because (0,0) 不在圆的内部,∴ 将 (0,0)代人圆的方程,得 $a-1 \ge 0$,∴ $a \ge 1$.
- **5.**解析 设圆 $M: x^2 + y^2 + Dx + Ey + F = 0$,将 A, B, C 代入 M 得

$$\begin{cases} F=0, \\ 4-2D+F=0, \dots \\ 4+2E+F=0, \\ +2x-2y=0. \end{cases} \begin{cases} F=0, \\ D=2, \dots \boxtimes M: x^2+y^2 \\ E=-2, \end{cases}$$

2.3.3 直线与圆的位置关系

练习A

- **1.** 解析 (1) $d = \frac{|2 \times 1 2 5|}{\sqrt{2^2 + 1^2}} = \sqrt{5}$. (2) 因
 - 为 $d = \sqrt{5}$, $r = \sqrt{6}$, d < r, 所以直线与圆相交.
- **2.**解析 因为圆心到直线的距离 $d = \frac{1}{\sqrt{2}} < \sqrt{13}$,所 以 直 线 与 圆 相 交. 由 $\begin{cases} x-y-1=0, \\ x^2+y^2=13, \end{cases}$ 可得交点为(3,2)和(-2, 2)
- 3.解析 (1)因为圆心到直线的距离 $d = \frac{|4 \times 4 3 \times (-1) + 6|}{\sqrt{4^2 + (-3)^2}} = 5 = r$, 所以直线与

- 圆相切. (2) 因为圆心到直线的距离 $d = \frac{12 \times 2 0 + 51}{\sqrt{2^2 + 1}} = \frac{9\sqrt{5}}{5} > r = 1$,所以直线与圆相离.
- **4.** 解析 C(0,0), $r = \frac{|-1|}{\sqrt{16+4}} = \frac{1}{\sqrt{20}}$,
 - $C : C : x^2 + y^2 = \frac{1}{20}$.
- 5. 解析 l: mx-y+4=0, C(0,0), r=2= $\frac{|4|}{\sqrt{m^2+1}}, \therefore m=\pm\sqrt{3}.$

练习 B

- **1.解析** (1) 易知所求切线的斜率存在. 设 l:y-1=k(x+1), $\therefore kx-y+k+1=0$, $r=\sqrt{2}=\frac{|k+1|}{\sqrt{2}+1}$,
 - $\therefore k=1, \therefore l: x-y+2=0.$
 - (2)证明:假设所求切线的斜率存在.设 $l: y-y_0 = k(x-x_0)$ 为圆的切线, $\therefore l: kx-y-kx_0+y_0=0$.
 - 圆心 (0,0) 到 l 的距离 $d = r = \frac{|-kx_0+y_0|}{\sqrt{1+k^2}}$, $\therefore (ky_0+x_0)^2 = 0$,
 - $\therefore k = -\frac{x_0}{y_0}, 代人 l 得 yy_0 y_0^2 = -x_0 x + x_0^2,$
 - $\therefore x_0 x + y y_0 = x_0^2 + y_0^2 = r^2.$
 - 易证明当斜率不存在时也成立.
- 2.解析 把 y=x-C 代入圆 $x^2+y^2=4$,得 $2x^2-2Cx+C^2-4=0$, $\Delta=4C^2-8(C^2-4)=32-4C^2$.当 $\Delta>0$,即 $-2\sqrt{2}< C< 2\sqrt{2}$ 时,有 两个公共点;当 $\Delta=0$,即 $C=\pm 2\sqrt{2}$ 时,有 一个公共点;当 $\Delta<0$,即 $C>2\sqrt{2}$ 或 $C<-2\sqrt{2}$ 时,无公共点.
- 3.解析 设所求直线方程为 y = 2x + b,代 人 $x^2 + y^2 2y 4 = 0$,整理,得 $5x^2 + 4bx 4x + b^2 2b 4 = 0$.由 $\Delta = 0$,得 $(4b 4)^2 20(b^2 2b 4) = 0$,所以 $b^2 2b 24 = 0$,解得 b = 6 或 b = -4.故所求直线方程为 y = 2x + 6 或 y = 2x 4.
- 4. 解析 $k_{AB} = 1$, $C: (x-2)^2 + (y-1)^2 = 5 m$. C(2,1), $r = \sqrt{5-m}$.
 - (1)线段 AB 的垂直平分线方程为 l:y-1=-(x-2), $\therefore l:x+y-3=0$.
 - (2) C 到 l_{AB} 的距离 $d = \frac{|2-1+1|}{\sqrt{1^2+(-1)^2}}$

 $=\sqrt{2}$.

- $r^2 = 2 + 2 = 5 m$, m = 1.
- (3) $C_1(x-2)^2 + (y-1)^2 = 4$, 易知 P 在 圆外. ①当所求切线的斜率存在时, 设过 P 的圆 C 的切线方程为 $l_1y-4=k(x-4)$, $l_2kx-y-4k+4=0$.
- C(2, 1) 到 l 的距离 $d = r = 2 = \frac{|2k-1-4k+4|}{\sqrt{k^2+1}}$: $k = \frac{5}{12}$,

- l:5x-12y+28=0.
- ②当所求切线的斜率不存在时,切线方程为x=4.
- 综上,所求切线方程为 x = 4 或 5x-12y+28=0.
- **5.**解析 圆心 $\left(\frac{1}{2}, -1\right)$ 关于 x-y+1=0 对称的点为 $\left(-2, \frac{3}{2}\right)$,
 - ∴ 对称圆的方程为 $(x+2)^2 + \left(y-\frac{3}{2}\right)^2$ $= \frac{5}{4}.$

2.3.4 圆与圆的位置关系

练习A

- **1.解析** 由 $\begin{cases} x^2 + y^2 2x 3 = 0, \\ x^2 + y^2 4x + 2y + 3 = 0, \end{cases}$ 得交点 坐标为(1,-2),(3,0).
- 2.解析 (1) 因为圆心分别为 $C_1(2,3)$, $C_2(-6,-3)$,半径分别为 $r_1=2$, $r_2=8$,所 以 圆 心 距 | C_1C_2 | = $\sqrt{(2+6)^2+(3+3)^2}=10=r_1+r_2$,所以两圆外切. (2) 因为圆心分别为 $C_1(-1,1)$, $C_2(2,3)$,半径分别为 $r_1=2$, $r_2=4$,所 以 圆 心 距 | C_1C_2 | = $\sqrt{(2+1)^2+(3-1)^2}=\sqrt{13}$,因为 $r_2-r_1<|C_1C_2|< r_2+r_1$,所以两圆相交.
- 3.解析 设圆 C_1 : $(x-3)^2 + (y-4)^2 = r_1^2$, 圆 C_2 : $x^2 + y^2 = 1$... $C_2(0,0)$, $r_2 = 1$. C_1 与 C_2 外切,... $|C_1C_2| = r_1 + r_2$,
 - $\therefore \sqrt{3^2+4^2} = r_1+1, \therefore r_1=4.$
 - $C_1: (x-3)^2 + (y-4)^2 = 16.$
- **4.**解析 设 $C_1(0,0)$, 半径为 r_1 , C(2,0), r=3.
- $\therefore C_1$ 与 C 内切, $\therefore |CC_1| = |r-r_1|$, $\therefore 2$ = $|3-r_1|$, $\therefore r_1 = 5$ 或 $r_1 = 1$,
- $\therefore x^2 + y^2 = 25$ 或 $x^2 + y^2 = 1$ 为所求.
- **5.**解析 $C_1(0,0)$, $r_1 = 1$, $C_2(-a,-a)$, $r_2 = 1$, $C_1 与 C_2$ 外切, $C_1 = 1$, $C_2 = 1$, $C_2 = 1$, $C_3 = 1$, $C_4 = 1$, $C_5 = 1$, $C_7 = 1$, C_7

练习B

- **1.** 解析 $C_1: x^2 + y^2 + 4x 6y + 12 = 0$,
 - $C_1(-2,3), r_1=1,$
- $C_2: x^2 + y^2 2x 14y + k = 0, \therefore C_2(1,7), r_2$ = $\sqrt{50 - k} > 0, \therefore k < 50,$
- $|C_1C_2| = \sqrt{(1+2)^2 + (7-3)^2} = 5.$
- (1) C_1 与 C_2 外离, \therefore $|C_1C_2| > r_1 + r_2$, \therefore 5
- $>1+\sqrt{50-k}$... 34<k<50.
- $(2)C_1$ 与 C_2 外切,:. $|C_1C_2|=r_1+r_2$,
- $\therefore 5 = 1 + \sqrt{50 k}$,
- $\therefore k = 34.$
- (3) C_1 与 C_2 相交, $\therefore |r_1 r_2| < |C_1 C_2| < r_1 + r_2$, $\therefore |1 \sqrt{50 k}| < 5 < 1 + \sqrt{50 k}$,

- ∴ 14<*k*<34.
- (4) C_1 与 C_2 内切 ... $|C_1C_2| = |r_1-r_2|$. $\therefore 5 = |1 - \sqrt{50 - k}| \dots k = 14.$
- (5) C_1 与 C_2 内含, $\therefore |C_1C_2| < |r_1-r_2|$, $\therefore |1-\sqrt{50-k}| > 5, \therefore k < 14.$
- **2**. 解析 因为圆心分别为 $C_1(0,0)$, $C_2(-4,a)$, 半径分别为 $r_1=1, r_2=5$, 所 以 $|C_1C_2| = \sqrt{16+a^2}$.①若两圆外切,则 $|C_1C_2| = r_1 + r_2$,即 $\sqrt{16 + a^2} = 1 + 5$,解得 $a=\pm 2\sqrt{5}$.②若两圆内切,则 $|C_1C_2|=r$, $-r_1$,即 $\sqrt{4^2+a^2}=5-1$,解得a=0. 综上, $a=\pm 5$ 或 a=0.
- **3.**解析 $C_1(0,0), C_2(2,0), \therefore l_{c.c.}: y=0.$ 联立 $\begin{cases} x^2 + y^2 = 2, \\ x^2 - 4x + y^2 = 4, \end{cases}$ 整理得 $l_{AB}: x = -\frac{1}{2},$ $\therefore \begin{cases} l_{C_1C_2} : y = 0, \\ l_{AB} : x = -\frac{1}{2}, \end{cases}$
- **4.**解析 联立 $\begin{cases} x^2 + y^2 + 6x = 0, \\ x^2 + y^2 + 6y = 0, \end{cases}$ 整理得公共 弦所在直线 l 的方程为 x-y=0, C_1 的圆 心为(-3,0),其到 l 的距离 $d = \frac{|-3-0|}{\sqrt{2}}$

 $\therefore AB$ 中点坐标为 $\left(-\frac{1}{2},0\right)$.

 $=\frac{3\sqrt{2}}{2}$,圆 C_1 的半径为 3, $\therefore |AB|=$ $2\sqrt{9-\frac{9}{2}}=3\sqrt{2}$.

- **1.**解析 $C(1,0), r = \frac{1}{2}, |CO| = 1.P$ 到原 点的距离的最大值为 $|CO|+r=\frac{3}{2},P$ 到 原点的距离的最小值为 $|CO|-r=\frac{1}{2}$.
- **2.** 解析 $(x^2+2x+1)+(y^2-2ay+a^2)=5+$ a^2 ... $(x+1)^2 + (y-a)^2 = 5+a^2$. $\therefore r^2 = 5 + a^2, \therefore a = 0$ 时, r 取得最小值, 为5.
- **3.**解析 由圆 $(x-4)^2+(y+1)^2=25$ 得圆 心坐标为(4,-1),r=5,因为圆心到直 线 4x-3y+6=0 的距离 $d=\frac{|16+3+6|}{5}=$ 5,所以 d=r,所以直线与圆相切.
- **4.**解析 C(3,0)到 l:x-y+1=0 的距离 d $=\frac{|3+1|}{\sqrt{2}}=2\sqrt{2}$, 圆的半径 r=1.
 - $\therefore P$ 到 l:x-y+1=0 距离的最大值为 $2\sqrt{2}+1$,最小值为 $2\sqrt{2}-1$.
- **5.**解析 3x-4y+12=0.
- 6. 解析 (1) $(400-\pi\times36\times2)$ ÷ 2 = $(200-\pi\times36\times2)$
 - (2)建立如图所示的平面直角坐标系, 7.解析 设圆心为(3t,t),半径为r=|3t|,

则当 $0 \le x \le 36$ 时, f(x) = $\sqrt{-(x-36)^2+36^2} = \sqrt{-x^2+72x} : \stackrel{4}{=} 36 <$ $x < 236 - 36\pi$ 时,f(x) = 36;当 236 - 36 π < $x < 272 - 36\pi$ 时, f(x) $=\sqrt{-(x-236+36\pi)^2+36^2}$

习题 2-3B

- **1**.解析 设所求圆的方程为 $(x-a)^2+(y-a)$ $(a)^2 = a^2$,将(8,1)代人,得(8-a)²+(1- $(a)^2 = a^2$,解得 (a) = 13 或 (a) = 5.故所求圆 的方程为 $(x-13)^2+(y-13)^2=169$ 或 $(x-13)^2=169$ $-5)^{2}+(y-5)^{2}=25.$
- 2.解析 易知切线的斜率存在,设切线方 程为 y-8=k(x-6), 即 kx-y+8-6k=0, 因为直线与圆相切,所以 $\frac{|3k-4+8-6k|}{\sqrt{k^2+1}}$
 - =5,所以 $k=-\frac{3}{4}$,所以所求切线方程为 3x+4y-50=0
- **3.**解析 $C_1:(x-a)^2+(y-1)^2=16, C_1(a,$ 1), $r_1 = 4$; $C_2: (x-2a)^2 + (y-1)^2 = 1, C_2(2a,1), r_2$ = 1, $|C_1C_2| = \sqrt{(2a-a)^2 + (1-1)^2} =$ $\sqrt{a^2} = |a| = a(a > 0).$
 - (1)两圆外离时, $|C_1C_2| > r_1 + r_2$,: a > 5.
 - (2)两圆外切时, $|C_1C_2| = r_1 + r_2$, $\therefore a$
 - (3)两圆相交时, $|r_1-r_2| < |C_1C_2| < r_1+$ r_2 ... 3 < a < 5.
 - (4)两圆内切时, $|C_1C_2| = |r_1-r_2|$,: a
 - (5)两圆内含时, $|C_1C_2| < |r_1 r_2|$,∴ 0<
- **4**.解析 设圆心为(0,r),则半径为r, $(-2-0)^2 + (2-r)^2 = r^2$ r = 2. ∴ 圆的方程: $x^2 + (y-2)^2 = 4$.
- **5.**解析 圆心 C(2,0), A(1,1), $k_{AC} = \frac{1-0}{1-2}$ =-1,:: 所求直线的斜率 k=1, 又其过 点A(1.1).
 - ∴ x-y=0 即为所求.
- **6.证明** 设 P(x,y) 为圆上一动点, 则 $|PA|^2 = (x-x_1)^2 + (y-y_1)^2, |PB|^2 =$ $(x-x_2)^2+(y-y_2)^2$, $|AB|^2=(x_2-x_1)^2+$ $(y_2-y_1)^2$.因为 $|PA|^2+|PB|^2=|AB|^2$, 所以代入,化简得 $(x-x_1)(x-x_2)+(y-x_3)$ y_1) $(y-y_2) = 0$.

圆心到 y=x 的距离 $d=\frac{|3t-t|}{\sqrt{2}}=|\sqrt{2}t|$,

$$\therefore \left(\frac{2\sqrt{7}}{2}\right)^2 = r^2 - d^2, \therefore 9t^2 - 2t^2 - 7 = 0,$$

- ∴ 圆心为(3,1),r=3 或圆心为(-3, -1),半径为3,
- ∴ 圆 C 的方程为 $(x-3)^2+(y-1)^2=9$ 或 $(x+3)^2+(y+1)^2=9$.

习题 2-3C

1.解析 设 BC = x, AC = 2x, 易得 1 < x < 3, 则 $\cos B = \frac{9-3x^2}{6x}$,

$$\sin B = \sqrt{1 - \frac{9x^4 - 54x^2 + 81}{36x^2}},$$

$$\therefore S_{\triangle ABC} = \frac{1}{2} |BC| \cdot |AB| \cdot \sin B$$

$$= \frac{1}{4} \sqrt{-9x^4 + 90x^2 - 81}$$

- $=\frac{1}{4}\sqrt{-9(x^2-5)^2+144}$, ∴ 当 $x=\sqrt{5}$ 时, $S_{\land ABC}$ 有最大值,为 3.
- 2.证明 如图:

设 $\triangle ABC$ 的外接圆的一般方程为 x^2+y^2 +Dx+Ey+F=0,则圆心的横坐标为 $-\frac{D}{2}$

$$= \frac{m+n}{2}, 即 D = -m-n,$$

$$\therefore x^2 + y^2 + (-m-n)x + Ey + F = 0.$$
将 $B(0,p), C(n,0)$ 代入可得
$$\begin{cases} p^2 + Ep + F = 0, \\ n^2 + (-m-n)n + F = 0, \end{cases}$$

$$F = mn, E = -p - \frac{mn}{n},$$

$$\therefore x^2 + y^2 - (m+n)x + \left(-p - \frac{mn}{p}\right)y + mn = 0.$$

$$\therefore R^{2} = \left(-\frac{m+n}{2}\right)^{2} + \left(-\frac{p + \frac{mn}{p}}{2}\right)^{2} - mn$$

$$= \frac{m^{2} + n^{2} + p^{2} + \frac{m^{2}n^{2}}{p^{2}}}{4},$$

$$\therefore 16R^2S^2 = 16 \cdot \frac{m^2 + n^2 + p^2 + \frac{m^2n^2}{p^2}}{4} \cdot \frac{1}{4} \cdot (n - m)^2 \cdot p^2 = (n - m)^2 \cdot \dots$$

$$p^2 \left(m^2 + n^2 + p^2 + \frac{m^2 n^2}{p^2} \right)$$

= $(n-m)^2(p^2m^2+p^2n^2+p^4+m^2n^2)$

$$= (n-m)^{2}(p^{2}+n^{2})(m^{2}+p^{2}),$$

 $\therefore a = \sqrt{p^2 + n^2}, b = n - m, c = \sqrt{m^2 + p^2},$

 $\therefore a^2b^2c^2 = (n-m)^2(p^2+n^2)(m^2+p^2),$

 $\therefore 16R^2S^2 = a^2b^2c^2,$

 $\therefore 4RS = abc, \therefore R = \frac{abc}{4S}.$

2.4 曲线与方程

习题 2-4A

- 1.解析 P在曲线上, O不在曲线上.
- **2**.解析 $r^2 = 5$.
- 3.解析 不是,因为到两坐标轴距离相等的点的轨迹是两条直线 l_1 和 l_2 (如图所示),其中 $l_1:y=x,l_2:y=-x$,直线 l_1 上 所有点的坐标都是方程 y=x 的解,但是直线 l_2 上的点(原点除外)的坐标都不是方程 y=x 的解,因此它不是要求的轨迹方程.

4.解析 由直线 2x+5y-15=0 和曲线 $y=-\frac{10}{x}$ 联立,得 $\begin{cases} 2x+5y-15=0, \\ y=-\frac{10}{x}, \end{cases}$ 消去 y 并

整理,得 $2x^2-15x-50=0$,解得 x=10 或 $x=-\frac{5}{2}$,分别代入直线方程得 y=-1 或 x=4

:. 直线与曲线的交点坐标为(10,-1) 或 $\left(-\frac{5}{2},4\right)$.

5.解析 : AB 中点坐标为(1,3), $k_{AB} = \frac{-1-7}{-1-3} = 2$, : 线段 AB 的垂直平分线的斜率为 $k = -\frac{1}{2}$,

∴ 线段 AB 的垂直平分线方程是 $y-3 = -\frac{1}{2}(x-1)$, 即 x+2y-7=0.

6.解析 x=4或 x=-4.

习题 2-4B

1.解析 设 M(x,y) 是曲线上的任意一点,则 M 满足条件 $\frac{|MA|}{|MB|} = \sqrt{2}$, $\therefore |MA|$ = $\sqrt{2} |MB|$.

$$\therefore \quad \sqrt{(x+1)^2 + (y-2)^2} \quad = \quad \sqrt{2} \quad \cdot$$

 $\sqrt{(x-3)^2 + (y-2)^2}$, $\therefore x^2 + y^2 - 14x - 4y + 21 = 0$,

即满足题意的点的轨迹方程为 $(x-7)^2$ + $(y-2)^2$ = 32.

2.解析 以线段 AB 所在直线为 x 轴,线段 AB 的垂直平分线为 y 轴,建立平面直角坐标系,则 A(-3,0), B(3,0).设 M(x,y),则 $\overrightarrow{MA} = (-3-x,-y)$, $\overrightarrow{MB} = (3-x,-y)$,∴ $\overrightarrow{MA} \cdot (2 \overrightarrow{MB}) = 2(-3-x)(3-x)+2y^2 = -1$,化简整理得 $x^2 + y^2 = \frac{17}{2}$,

:. 点 *M* 的轨迹方程为 $x^2 + y^2 = \frac{17}{2}$.

3. 解析 设 M(x, y). 由 题 意 得 $\sqrt{(x-a)^2+y^2} = 2\sqrt{(x-b)^2+y^2},$ $\therefore 3x^2 + (2a-8b)x + 3y^2 + 4b^2 - a^2 = 0, 即$ $\left(x + \frac{a-4b}{3}\right)^2 + y^2 = \frac{4(a-b)^2}{9}(a \neq b).$ $\therefore M 是 圆 心 为 \left(\frac{4b-a}{3}, 0\right), 半 径 为$ $\frac{2|a-b|}{3} 的 ...$

4.解析 设 M(x,y),则点 M 到 x 轴的距离为 d = |y|, $|MF| = \sqrt{x^2 + (y-4)^2}$,点 M 的集合 $P = \{M \mid |MF| = d\}$,

 $\therefore \sqrt{x^2 + (y-4)^2} = |y|$,两边平方,得 $x^2 + y^2 - 8y + 16 = y^2$,即 $x^2 = 8y - 16$, \therefore 方程的曲线关于 y 轴对称, $x^2 = 8y - 16 \ge 0$, $\therefore y \ge 2$, \therefore 曲线在直线 y = 2 的非下方.

5.解析 设顶点 A 的坐标为(x,y), \therefore AC $\bot AB$, $\overrightarrow{AC} \cdot \overrightarrow{AB} = 0$, $\overrightarrow{AC} = (3-x,2-y)$, $\overrightarrow{AB} = (-2-x,1-y)$, \therefore $(3-x) \cdot (-2-x)$ +(2-y)(1-y) = 0, 即 $x^2 + y^2 - x - 3y - 4 = 0$. 又点 A = BC 不共线, \therefore (-2,1), (3,2) 两点应剔除, \therefore 直角顶点 A 的轨迹方程为 $x^2 + y^2 - x - 3y - 4 = 0$ (除去(-2,1), (3,2) 两点).

6.解析 轨迹方程为 $x^2 + y^2 = k$,表示以 (0,0)为圆心, \sqrt{k} 为半径的圆.(以两条 互相垂直的直线为坐标轴,建立平面直角坐标系)

7.解析 易知所求圆的方程为 $(x-2)^2$ + $(y-2)^2$ =9.

习题 2-4C

1.证明 两圆 C_1 , C_2 的交点坐标同时满足方程 $x^2+y^2+6x-16=0$ 和 $x^2+y^2-4x-5=0$,

∴ 满足 $x^2+y^2+6x-16+\lambda(x^2+y^2-4x-5)$ = $0(\lambda \neq -1)$,变形,得 $(1+\lambda)(x^2+y^2)+(6-4\lambda)x-(16+5\lambda)=0$.

 $: \lambda \neq -1, :$ 该式表示圆, 所以该式是通过两个已知圆交点的圆的方程.

2.解析 设A(-3,0),B(3,0),P(x,y), |PA| = $\sqrt{(x+3)^2+y^2}$, | PB | $=\sqrt{(x-3)^2+y^2}$.

(1)存在.理由如下:

 $∴ |PA| + |PB| = 6, ∴ \sqrt{(x+3)^2 + y^2} + \sqrt{(x-3)^2 + y^2} = 6, \& @ # y = 0 (-3 \le x \le 3).$

:. P 的轨迹是线段 AB.

(2)存在.当|PA|-|PB|=6时,P在以B为端点向右的射线上.

(3) 存在. 当|PB| - |PA| = 6 时, P 在以 A 为端点向左的射线上.

(4) 不存在.

(5)不存在.

3.解析 设A(-3,0),B(3,0),P(x,y). (1):: $|PA|^2 + |PB|^2 = 36$,... $(x+3)^2 + y^2 + (x-3)^2 + y^2 = 36$,... $x^2 + y^2 = 9$, : P的轨迹是以(0,0)为圆心 3为半

 $\therefore P$ 的轨迹是以(0,0) 为圆心,3 为半 径的圆.

(2) :: $|PA|^2 + |PB|^2 = 10$, .: $(x+3)^2 + y^2 + (x-3)^2 + y^2 = 10$, .: $x^2 + y^2 = -4$, .: P 的轨迹不存在.

2.5 椭圆及其方程

2.5.1 椭圆的标准方程

练习A

1. 解析 $|PF_1| + |PF_2| = 2a = 2\sqrt{2}$.

2. 解析 $:: |MF_1| + |MF_2| = 10, :: M$ 到 F, 的距离为 6.

3.解析 $(1)\frac{x^2}{3}+y^2=1.(2)\frac{x^2}{9}+\frac{y^2}{16}=1.$

4.解析 (1)(4,0),(-4,0).

$$(2)\left(\frac{1}{2},0\right),\left(-\frac{1}{2},0\right).$$

5.解析 可添加的条件为①*a*=5;②*b*=3; ③椭圆上一点的坐标为(5,3).

练习B

1.解析 (1) $c = 5, 2a = 26, \therefore a = 13, b = 12, \therefore$ 椭圆方程: $\frac{x^2}{169} + \frac{y^2}{144} = 1$.

(2) $c = 2\sqrt{3}$,设椭圆方程为 $\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$,

 $a^2 = b^2 + c^2 = b^2 + 12$.

 $\therefore \frac{y^2}{b^2 + 12} + \frac{x^2}{b^2} = 1, \because$ 椭圆过点($-\sqrt{6}$,

 $\sqrt{5}$),:. $b^4+b^2-72=0$,:. $b^2=8$ 或 $b^2=-9$ (舍去),

 $\therefore a^2 = 20, \therefore$ 椭圆方程: $\frac{y^2}{20} + \frac{x^2}{8} = 1.$

2. 解析 4a.

3.解析 易知 a = 3, b = 2, ∴ 椭圆标准方 程为 $\frac{x^2}{9} + \frac{y^2}{4} = 1$.

4.解析 椭圆 $4x^2+9y^2=36$ 的标准方程为 $\frac{x^2}{9} + \frac{y^2}{4} = 1$,其焦点坐标为 $(\pm\sqrt{5},0)$.

又所求椭圆经过点(3,-2),则有 2a= $|PF_1| + |PF_2| = \sqrt{(3-\sqrt{5})^2 + (-2)^2} +$ $\sqrt{(3+\sqrt{5})^2+(-2)^2} = 2\sqrt{15}$

$$\therefore a = \sqrt{15}, c = \sqrt{5}, \therefore b^2 = a^2 - c^2 = 10,$$

:. 椭圆:
$$\frac{x^2}{15} + \frac{y^2}{10} = 1$$
 为所求.

5.解析 设点 M 的坐标为(x,y), P 坐标 为 (x_0, y_0) , :: M 是线段 PP'的中点,

$$\therefore$$
 由中点坐标公式得 $x=x_0, y=\frac{y_0}{2}$,

$$\mathbb{E}^{1}\begin{cases} x_{0} = x, \\ y_{0} = 2y, \\ 2 \end{cases}$$

$$P(x_0, y_0)$$
在圆 $x^2 + y^2 = 4$ 上,

:. 将①②代入圆的方程得
$$x^2 + 4y^2 = 4$$
,

$$\therefore \frac{x^2}{4} + y^2 = 1, \therefore M \text{ 点的轨迹是一个椭}$$

圆,其方程为
$$\frac{x^2}{4}+y^2=1$$
.

2.5.2 椭圆的几何性质

练习A

1.解析 (1) $2a = 18, 2b = 6, F_1(-6\sqrt{2},$

0),
$$F_2(6\sqrt{2},0)$$
, $A_1(-9,0)$, $A_2(9,0)$,

$$B_1(0,-3), B_2(0,3), e = \frac{2\sqrt{2}}{3}.$$

$$(2)2a = 10, 2b = 6, F_1(0, -4), F_2(0, -4)$$

4),
$$A_1(0,-5)$$
, $A_2(0,5)$, $B_1(-3,0)$,

$$B_2(3,0), e = \frac{4}{5}$$
.

$$(3)2a=1,2b=\frac{2\sqrt{5}}{5},F_1\left(-\frac{\sqrt{5}}{10},0\right),$$

$$F_2\left(\frac{\sqrt{5}}{10},0\right), A_1\left(-\frac{1}{2},0\right), A_2\left(\frac{1}{2},0\right),$$

$$B_1\left(0, -\frac{\sqrt{5}}{5}\right), B_2\left(0, \frac{\sqrt{5}}{5}\right), e = \frac{\sqrt{5}}{5}.$$

2.解析
$$(1)\frac{x^2}{16} + \frac{y^2}{9} = 1.(2)\frac{x^2}{34} + \frac{y^2}{25} = 1.$$

3. 解析
$$\begin{cases} a-c=2, \\ a+c=14 \end{cases} \Rightarrow \begin{cases} a=8, \\ c=6, \end{cases} \therefore a^2 = 64, b^2$$

:. 椭圆标准方程:
$$\frac{x^2}{64} + \frac{y^2}{28} = 1$$
 或 $\frac{y^2}{64} + \frac{x^2}{28}$

4.解析 由 $\triangle FB_1B_2$ 是等边三角形得

4. 脾析 田
$$\triangle FB_1B_2$$
 是等型三用形侍 $|FB_1| = |B_1B_2| = 2b = \frac{|OF|}{\sin 60^\circ} = 4\sqrt{3}$, ∴ $a = 4\sqrt{3}$, $b = 2\sqrt{3}$,

$$\therefore \frac{x^2}{48} + \frac{y^2}{12} = 1$$
 为所求.

1. 解析
$$(1)\frac{x^2}{45} + \frac{y^2}{36} = 1.(2)\frac{x^2}{100} + \frac{y^2}{64} = 1.$$

2.解析 (1)无数个,如
$$\frac{x^2}{5} + \frac{y^2}{10} = 1, \frac{x^2}{6} + \frac{y^2}{10}$$

 $\frac{y^2}{11}$ =1(答案不唯一).(2)一个.设椭圆

的方程为 $\frac{x^2}{b^2} + \frac{y^2}{c^2} = 1(a > b > 0)$,由条件

得
$$\left\{ \frac{a^2 - b^2 = 5}{\frac{16}{b^2} + \frac{5}{a^2} = 1} \Rightarrow \begin{cases} a^2 = 25, \\ b^2 = 20 \end{cases} \right.$$
 (负值舍去).

故椭圆的方程为 $\frac{x^2}{20} + \frac{y^2}{25} = 1$.

3.解析 : P 是椭圆 $\frac{x^2}{4} + \frac{y^2}{36} = 1$ 上一点,

:.
$$|PA|^2 = (2\cos \theta - 0)^2 + (6\sin \theta - 5)^2 =$$

$$4\cos^2\theta + 36\sin^2\theta - 60\sin\theta + 25 = 32\sin^2\theta -$$

60sin
$$\theta + 29 = 32 \left[\sin^2 \theta - \frac{15}{8} \sin \theta + \right]$$

$$\left(\frac{15}{16}\right)^2 \left] -32 \times \left(\frac{15}{16}\right)^2 +29$$

$$=32\left(\sin \theta - \frac{15}{16}\right)^2 + \frac{7}{8}, \ \ \ \ \ \ \ \sin \theta = \frac{15}{16}$$

时,
$$|PA|_{\min} = \sqrt{\frac{7}{8}} = \frac{\sqrt{14}}{4}$$
;

4.解析
$$\frac{x^2}{\frac{1}{m^2}} + \frac{y^2}{\frac{1}{4m^2}} = 1$$
, $\therefore a = \frac{1}{m}$, $b = \frac{1}{2m}$, c^2

$$=\frac{3}{4m^2}, c=\frac{\sqrt{3}}{2m},$$

$$\therefore F_1\left(-\frac{\sqrt{3}}{2m},0\right), F_2\left(\frac{\sqrt{3}}{2m},0\right), e = \frac{c}{a} = \frac{\sqrt{3}}{2}.$$

5.解析 设
$$M(x,y)$$
,由题意得 $\frac{|MF|}{\left|x-\frac{9}{2}\right|}$ =

$$\frac{2}{3}$$
, $\therefore 3\sqrt{(x-2)^2+y^2}=2\left|x-\frac{9}{2}\right|$,

化简得 $\frac{x^2}{9} + \frac{y^2}{5} = 1$.

1.解析 |AB| = 10 = 2c, ∴ c = 5, |PA| +|PB| = 14 = 2a > 2c, a = 7,

$$\therefore b^2 = a^2 - c^2 = 49 - 25 = 24, \quad C: \frac{x^2}{49} + \frac{y^2}{24} =$$

2.解析
$$2a = 8, 2b = 5, F_1\left(0, -\frac{\sqrt{39}}{2}\right)$$
,

$$F_2\left(0,\frac{\sqrt{39}}{2}\right),A_1\left(0,-4\right),A_2\left(0,4\right),$$

$$B_1\left(-\frac{5}{2},0\right), B_2\left(\frac{5}{2},0\right).$$

3.解析 $: a^2 = 45, b^2 = 20, : c^2 = 25, : 以$ 原点为圆心,5 为半径的圆的方程为 x²

+
$$y^2 = 25$$
, $\Re \implies \begin{cases} x^2 + y^2 = 25, \\ \frac{x^2}{45} + \frac{y^2}{20} = 1, \end{cases}$ $\Re = 3$

2.解析 (1) 无数个,如
$$\frac{x^2}{5} + \frac{y^2}{10} = 1, \frac{x^2}{6} + \begin{cases} x^2 = 9, \\ x^2 = 16 \end{cases}$$
 ∴ P 的坐标为 $(-3, -4)$ 或

(-3,4)或(3,-4)或(3,4).

4.解析 易得椭圆为 $\frac{x^2}{4} + \frac{y^2}{2} = 1$,

则A(-2.0)是百角顶点,易知两百角边 的斜率分别是 1 和-1,不妨设直线 AB

$$\therefore \begin{cases} l_{AB} : y = x + 2, \\ \frac{x^2}{4} + \frac{y^2}{2} = 1 \end{cases} \Rightarrow 3x^2 + 8x + 4 = 0, \therefore x = 0$$

$$-\frac{2}{3}$$
或 $x=-2($ $),$

$$\therefore y = -\frac{2}{3} + 2 = \frac{4}{3}$$

∴椭圆交点
$$B\left(-\frac{2}{3},\frac{4}{3}\right)$$
, $|AB| =$

$$\sqrt{\left(-2+\frac{2}{3}\right)^2+\left(0-\frac{4}{3}\right)^2}=\frac{4\sqrt{2}}{3}$$
,

 $\therefore |BC| = \sqrt{2} |AB| = \frac{8}{3}, \therefore$ 斜边 BC 的长

5.解析 设椭圆方程为 $mx^2 + ny^2 = 1$ (m > $0,n>0,m\neq n$),将P,Q代入得

程为
$$\frac{x^2}{15} + \frac{y^2}{5} = 1$$
.

6.解析 以椭圆的长轴,短轴各自所在的 直线分别为x轴和y轴,建立如图所示 的平面直角坐标系,

- :: 矩形 ABCD 的各顶点都在椭圆上,而 矩形是中心对称图形,
- \therefore 矩形 ABCD 关于原点 O 及 x 轴, y 轴

已知椭圆长轴长 2a = 100(m),短轴长

:. 椭圆方程为
$$\frac{x^2}{50^2} + \frac{y^2}{30^2} = 1$$
,设 $A(x_0, y_0)$

$$(x_0>0,y_0>0)$$

$$\iiint \frac{x_0^2}{50^2} + \frac{y_0^2}{30^2} = 1 , \therefore y_0^2 = \frac{30^2}{50^2} (50^2 - x_0^2).$$

由矩形的对称性,得矩形 ABCD 的面积

$$\therefore x_0^2 y_0^2 = x_0^2 \times \frac{30^2}{50^2} \times (50^2 - x_0^2)$$

$$=\frac{30^2}{50^2}(-x_0^4+50^2x_0^2)$$

 $:: S = 4x_0y_0$ 也取得最大值, 此时 $x_0 = 25\sqrt{2}$, $y_0 = 15\sqrt{2}$, 矩形 *ABCD* 的周长为 $4(x_0 + y_0) = 4 \times (25\sqrt{2} + 15\sqrt{2}) = 160\sqrt{2}$ (m).

∴ 在椭圆形溜冰场的两侧分别画一条与短轴平行且与短轴相距 $25\sqrt{2}$ m 的直线,这两条直线与椭圆的交点就是所划定的矩形区域的顶点,这个矩形区域的周长为 $160\sqrt{2}$ m(约 226.27 m).

习题 2-5B

- **1.解析** $c = 2\sqrt{2}$, 4a = 12, a = 3, b = 1, $\frac{x^2}{9} + y^2 = 1$ 为所求.
- 2. 解析 $\therefore a = 3, b = \sqrt{5}, \therefore c = 2,$ $\cos \angle F_1 P F_2 = \frac{|PF_1|^2 + |PF_2|^2 |F_1 F_2|^2}{2|PF_1| |PF_2|}$ $= \frac{36 2|PF_1| |PF_2| 16}{2|PF_1| |PF_2|} = \frac{1}{2},$ $\therefore |PF_1| \cdot |PF_2| = \frac{20}{3},$ $\therefore S_{\Delta F, PF_2} = \frac{1}{2} |PF_1| |PF_2| \sin \angle F_1 P F_2 = \frac{1}{2} \times \frac{20}{3} \times \frac{\sqrt{3}}{2} = \frac{5\sqrt{3}}{3}.$
- **3.**解析 F(-c,0),设P(x,y).

$$y^{2} = \left(1 - \frac{x^{2}}{a^{2}}\right) \cdot b^{2}$$

$$= \left(1 - \frac{x^{2}}{a^{2}}\right) (a^{2} - c^{2}),$$

$$\therefore \frac{|PF|}{\left|x + \frac{a^{2}}{c}\right|} = \frac{\sqrt{(x + c)^{2} + y^{2}}}{\left|x + \frac{a^{2}}{c}\right|}$$

$$\sqrt{(x + c)^{2} + \left(1 - \frac{x^{2}}{a^{2}}\right) (a^{2} - c^{2})}$$

$$\begin{vmatrix} x + \frac{a}{c} \\ \end{vmatrix}$$

$$= \frac{\sqrt{\frac{c^2}{a^2}x^2 + 2cx + a^2}}{\begin{vmatrix} x + \frac{a^2}{c} \\ \end{vmatrix}} = \frac{\begin{vmatrix} \frac{c}{a}x + a \\ \end{vmatrix}}{\begin{vmatrix} x + \frac{a^2}{c} \\ \end{vmatrix}}$$

$$= \frac{\frac{c}{a} \left| x + \frac{a^2}{c} \right|}{\left| x + \frac{a^2}{c} \right|}$$

 $=\frac{c}{a}=e$,

 $\therefore P$ 到 F 的距离与 P 到直线 l 的距离 之比为 e.

习题 2-5C

1.解析 设 M(x,y) ,则 $\frac{|MF|}{\left|x+\frac{a^2}{c}\right|} = \frac{c}{a}$,

$$\therefore \sqrt{(x+c)^2 + y^2} = \frac{c}{a} \left| x + \frac{a^2}{c} \right|,$$

$$\therefore (x+c)^2 + y^2 = \frac{c^2}{a^2} \left(x + \frac{a^2}{c} \right)^2, \therefore \frac{a^2 - c^2}{a^2} x^2 +$$

 $y^2 = b^2$, ... $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 为所求.

结论:椭圆上的动点 M 到左焦点的距离与它到直线 $l: x = -\frac{a^2}{c}$ 的距离之比为 e.

书 2.5.2 一节例 3 中, $|PF| = e \left| x + \frac{a^2}{c} \right|$ 也是应用这个结论.

- 2.解析 设 A 点坐标为(x,y),则 $\frac{y}{x-6}$. $\frac{y}{x+6} = -\frac{4}{9} \Rightarrow \frac{x^2}{36} + \frac{y^2}{16} = 1(x \neq \pm 6), \therefore \text{ in } A$ 的轨迹方程为 $\frac{x^2}{36} + \frac{y^2}{16} = 1(x \neq \pm 6)$,是去掉长轴两个端点的椭圆.
- 3.解析 记 F_2 为椭圆的右焦点,则 $|PF_1|$ $+|PA| = (2a |PF_2|) + |PA| = 2a (|PF_2| |PA|) \geqslant 2a |AF_2| = 6 \sqrt{2}$ (当且仅当 F_2 , P, A 共线且点 A 位于点 P, F_2 之间时取等号). $|PF_1| + |PA| = (2a |PF_2|) + |PA| \leqslant 2a + |AF_2| = 6 + \sqrt{2}$ (当且仅当 P, F_2 , A 共线且 F_2 位于 F_2 之间时取等号).

2.6 双曲线及其方程

2.6.1 双曲线的标准方程

练习A

- **1.**解析 $(1)F_1(0,-6),F_2(0,6).(2)$ 16.
- **2.**解析 $(1)\frac{x^2}{9} \frac{y^2}{16} = 1.(2)\frac{y^2}{20} \frac{x^2}{16} = 1.$
- 3. 解析 椭圆的焦点为 $(2\sqrt{3},0)$, $(-2\sqrt{3},0)$, $\therefore 2m=12, m=6$.
- **4.**解析 $: a^2 = 144, b^2 = 25, : c^2 = a^2 + b^2 = 169, : a = 12, b = 5, c = 13, : 焦点 <math>F_1(-13,0), F_2(13,0),$ 过 F_2 作 直线 l 垂直于 x 轴,交双曲线于 A,B,不 妨 设 A 在 第 一 象 限,联 立

$$\begin{cases} x = 13, \\ \frac{x^2}{144} - \frac{y^2}{25} = 1, & \therefore y_A = \frac{25}{12}, & \therefore |AF_2| = \frac{25}{12}, \end{cases}$$

由双曲线定义得, $|AF_1|-|AF_2|=2a$,

 $\therefore |AF_1| = 24 + \frac{25}{12} = \frac{313}{12}, \therefore$ 交点到右、左

焦点的距离分别为 $\frac{25}{12}$, $\frac{313}{12}$

5.解析 $\frac{x^2}{9} - \frac{y^2}{16} = 1$ 或 $\frac{y^2}{9} - \frac{x^2}{16} = 1$.

练习B

1.解析 由题意可得双曲线的顶点为

(±5,0),焦点为(±7,0),:
$$\frac{x^2}{25} - \frac{y^2}{24} = 1$$
.

2. 解析
$$\frac{x^2}{\frac{1}{m}} - \frac{y^2}{\frac{3}{m}} = 1, \therefore c^2 = \frac{4}{m} = 4, \therefore m$$

3.解析 设双曲线的标准方程为 $\frac{x^2}{a^2} - \frac{y^2}{b^2}$

=1,:: 其经过
$$P(4,2)$$
, $Q(2\sqrt{6},2\sqrt{2})$,

$$\therefore \begin{cases} \frac{16}{a^2} - \frac{4}{b^2} = 1, \\ \frac{24}{a^2} - \frac{8}{b^2} = 1, \end{cases} \therefore \begin{cases} \frac{1}{a^2} = \frac{1}{8}, \\ \frac{1}{b^2} = 4, \end{cases} \therefore \frac{x^2}{8} - \frac{y^2}{4} = 1$$

1 为所求

= 1.

4.解析 以线段 AB 的中点为坐标原点, \overrightarrow{AB} 方向为 x 轴的正方向,建立平面直角坐标系 xOy.由题意可得, $|PB|-|PA|=340\times4=1~360(m)$,即 $2a=1~360\Rightarrow a=680$, $2c=1~400\Rightarrow c=700$,所以 $b^2=27~600$,所以方程为 $\frac{x^2}{462~400}-\frac{y^2}{27~600}=1$ ($x\leqslant -680$).

2.6.2 双曲线的几何性质

练习A

- **1.**解析 : $a^2 = 1, b^2 = 24, ..., c^2 = 25, 2a = 2, 2b = 4\sqrt{6}$,焦点坐标为(±5,0),渐近线方程为 $y = \pm 2\sqrt{6}x$.
- 2.解析 | PF | min = 1.
- **3.**解析 ①若焦点在 x 轴上,则 $\frac{b}{a} = \frac{3}{4}$,

$$e^2 = 1 + \frac{b^2}{a^2} = 1 + \frac{9}{16} = \frac{25}{16}, \therefore e = \frac{5}{4};$$

②若焦点在 y 轴上,则 $\frac{a}{b} = \frac{3}{4}$, $\therefore \frac{b}{a} = \frac{3}{4}$

$$\frac{4}{3}$$
, $e^2 = 1 + \frac{16}{9} = \frac{25}{9}$, $e = \frac{5}{3}$. $\frac{42}{5}$, $e = \frac{5}{4}$

练习 B

- 1.解析 $2a = 18, 2b = 6, F(0, \pm 3\sqrt{10}), e$ = $\frac{\sqrt{10}}{3}$, 渐近线方程为 $y = \pm 3x$.
- **2.解析** 由焦点坐标得 c = 5 且焦点在 x 轴上,由 3x 4y = 0,可得 $\frac{b}{a} = \frac{3}{4}$,则 $\begin{cases} a^2 + b^2 = 25, \\ \frac{b}{a} = \frac{3}{4}, \end{cases}$ 解得 $\begin{cases} a = 4, \text{ by } \text{ by } \text{ by } \text{ by } \text{ both } \text{ by }$

准方程为 $\frac{x^2}{16} - \frac{y^2}{9} = 1$,离心率 $e = \frac{5}{4}$.

- 3.解析 这些双曲线的共同点是有相同 的渐近线。
- **4.** 解析 2a=6, ∴ a=3, ∴ 2c=12, ∴ c=6, ∴ $b^2=c^2-a^2=36-9=27$.

$$\therefore \frac{x^2}{9} - \frac{y^2}{27} = 1 \text{ ind } \frac{y^2}{9} - \frac{x^2}{27} = 1.$$

5.证明 设双曲线的焦点为 F(c,0), 渐 近线方程为 $bx\pm ay=0$,

$$\therefore$$
 F 到渐近线的距离 $d = \frac{|bc+0|}{\sqrt{a^2+b^2}} = \frac{bc}{c}$

=b.

习题 2-6A

1.解析 $2c = 10, 2a = 6, \therefore a = 3, c = 5, b = 4, \therefore$ 曲线的形状为双曲线.

2. 解析 (1)
$$2a = \frac{8}{3}$$
, $2b = 4$,

$$F_1\left(-\frac{2\sqrt{13}}{3},0\right), \quad F_2\left(\frac{2\sqrt{13}}{3},0\right),$$
 $A_1\left(-\frac{4}{3},0\right), A_2\left(\frac{4}{3},0\right),$ 渐近线方程
为 $\gamma = \pm \frac{3}{2}x$.

$$\begin{split} &(2)2a=4,2b=2\sqrt{m}\;,F_{1}(-\sqrt{4+m}\;,0)\;,\\ &F_{2}(\;\sqrt{4+m}\;,0)\;,A_{1}(\;-2\;,0)\;,A_{2}(\;2\;,0)\;,\\ &\text{渐近线方程为}\;y=\pm\frac{\sqrt{m}}{2}x. \end{split}$$

3.解析 双曲线的焦点为($\pm\sqrt{10}$,0),设 双曲线方程为 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a>0,b>0)$,

则
$$a^2 + b^2 = 10$$
, 易知 $\frac{b}{a} = \frac{3}{4}$, ∴ $a = \frac{3}{4}$

$$\frac{4\sqrt{10}}{5}, b = \frac{3\sqrt{10}}{5}, \therefore \frac{5x^2}{32} - \frac{5y^2}{18} = 1.$$

4.解析 设双曲线方程为 $9x^2 - 4y^2 = \lambda (\lambda \neq 0)$,又 $F_1(-4,0)$,∴ $\lambda > 0$,

$$\therefore \frac{x^2}{\frac{\lambda}{9}} - \frac{y^2}{\frac{\lambda}{4}} = 1, \therefore \frac{\lambda}{9} + \frac{\lambda}{4} = 16, \therefore \lambda =$$

$$\frac{16\times36}{13}, \therefore \frac{13x^2}{64} - \frac{13y^2}{144} = 1.$$

4.解析 $a = 2\sqrt{3}$, $\therefore a^2 = 12$. 双曲线 $\frac{x^2}{16} - \frac{y^2}{4}$ = 1 的焦点为(±2 $\sqrt{5}$,0), $\therefore c^2 = 20$, $b^2 = 8$, \therefore 双曲线标准方程: $\frac{x^2}{12} - \frac{y^2}{8} = 1$.

习题 2-6B

1.解析
$$(1)\frac{x^2}{9} - \frac{y^2}{25} = 1, y^2 - \frac{25x^2}{9} = 1$$
(答案不唯一). $(2)\frac{9y^2}{56} - \frac{25x^2}{56} = 1$.

2. 解析 设 $P(x_0, y_0)$. $|PA| = \sqrt{(x_0-3)^2 + y_0^2} = \sqrt{(x_0-3)^2 + 3x_0^2 - 3} = \sqrt{4\left(x_0 - \frac{3}{4}\right)^2 + \frac{15}{4}},$ $\therefore x_0 \ge 1$ 或 $x_0 \le -1$, \therefore 当 $x_0 = 1$ 时, $|PA|_{\min} = 2$.

3. 解析 设
$$M(x,y)$$
 , $\therefore \frac{\sqrt{(x-3)^2+y^2}}{\left|x-\frac{4}{3}\right|} =$

4.解析 易知 F(-c,0), 设 P(x,y),

$$\therefore \frac{|PF|}{\left|x+\frac{a^2}{c}\right|} = \frac{\sqrt{(x+c)^2 + y^2}}{\left|x+\frac{a^2}{c}\right|} = \frac{\sqrt{(x+c)^2 + b^2\left(\frac{x^2}{a^2} - 1\right)}}{\left|x+\frac{a^2}{c}\right|} = \frac{\sqrt{\left(\frac{c}{a}x+a\right)^2}}{\left|x+\frac{a^2}{a^2}\right|}$$

$$=\frac{c}{a}$$

5. 解析 | | | MF₁ | - | MF₂ | | = 2a = 6, ∴ (| MF₁ | - | MF₂ |)² = 36. \mathbb{Z} | MF₁ |² + | MF₂ |² = (2c)² = 100,∴ | MF₁ | | MF₂ | = 32,∴ $S_{\triangle MF,F_1} = \frac{1}{2} \times 32 = 16$.

1.解析 (1)设点 M 的坐标为(x,y),则

习题 2-6C

 $\frac{y}{x+6} \cdot \frac{y}{x-6} = a$, ... 点 M 的轨迹方程为 $\frac{x^2}{36}$ $-\frac{y^2}{36a} = 1(x \neq \pm 6)$. (2) 由 (1) 可知轨迹 方程为 $\frac{x^2}{36} - \frac{y^2}{36a} = 1(x \neq \pm 6)$, 当 a > 0 时,曲线表示焦点在 x 轴上,除去顶点的双曲线;当-1<a < 0 时,曲线表示焦点在 x 轴上,除去 x 轴上的顶点的椭圆;当 a = -1 时,曲线表示以原点为圆心,6 为半径的圆,除去点(± 6 ,0);当 a < -1 时,曲线表示焦点在 y 轴上,除去 x 轴上的顶

2.解析 由题意可得
$$\frac{|MF|}{\left|x+\frac{a^2}{c}\right|} = \frac{c}{a}$$
,
 $\therefore \sqrt{(x+c)^2 + (y-0)^2} = \frac{c}{a} \left|x+\frac{a^2}{c}\right|$, 化
简得 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$,

 $\therefore M$ 的轨迹方程是 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$

结论:双曲线上的点到左焦点的距离与它到直线 $l: x = -\frac{a^2}{c}$ 的距离之比为 $\frac{c}{a}$.书中2.6.2 一节中的例 3 应用了此结论.

2.7 抛物线及其方程

2.7.1 抛物线的标准方程

练习A

1.解析 M 到抛物线的准线的距离为 3.

2.解析 $(1)y^2 = 8x.(2)y^2 = 6x.$

3.解析 F(a,0).

练习E

1.解析 $y^2 = 24x$.

2.解析 (1) $F\left(0, \frac{1}{8}\right)$, 准线方程: $y = -\frac{1}{8}$.

$$(2)F(0,\frac{1}{4a})$$
,准线方程: $y = -\frac{1}{4a}$

3.解析 设抛物线方程为 $y^2 = 2px$, : 其 过 M(2,-4), : $16 = 2p \times 2$, : 2p = 8, : $y^2 = 8x$ 为所求.

4.解析 点 M 到焦点的距离等于它到准线的距离,设 $M(x_M, y_M)(x_M > 0)$,准线方程为 x = -3,.: $|x_M + 3| = 9$, $x_M = 6$, .: $y_M = \pm 6\sqrt{2}$,.: $M(6, 6\sqrt{2})$ 或 $M(6, 6\sqrt{2})$

5.解析 由题意知,点 M 到直线 x+4=0 的距离与到点 F(4,0) 的距离相等,所以点 M 的轨迹是以(4,0)为焦点,x=-4 为准线的抛物线,所以 p=8,所以点 M 的轨迹方程为 $y^2=16x$.

2.7.2 抛物线的几何性质

练习A

1. 解析 $x^2 = \frac{1}{4}y$ 的焦点为 $\left(0, \frac{1}{16}\right)$,准线方程为 $y = -\frac{1}{16}$, ∴ M 到焦点的距离 = $1 + \frac{1}{16} = \frac{17}{16}$.

2.解析 焦点为 F(2,0), 其到 $x-\sqrt{3}y=0$ 的距离 $d=\frac{|2|}{\sqrt{1+3}}=1$.

3.解析 椭圆的右焦点 F(2,0) ... p=4.

4.解析 因为正三角形 AOB 的顶点 A, B 在抛物线上,所以 A, B 关于 x 轴对称,设 $A(6t^2,6t)$,则 $B(6t^2,-6t)$.由题意得 |OA| = |AB|,所以 $\sqrt{(6t^2)^2 + (6t)^2} = \sqrt{(6t^2-6t^2) + (-6t-6t)^2}$,解得 $t = \pm \sqrt{3}$,所以 $\triangle AOB$ 的边长为 $12\sqrt{3}$.

5. 解析
$$(1)\left(\frac{3}{2},0\right), x = -\frac{3}{2}.(2)\left(0,\frac{5}{2}\right), y = \frac{5}{2}.(3)\left(0,\frac{2}{3}\right), y = -\frac{2}{3}.$$

$$(4)\left(-\frac{a}{4},0\right), x = \frac{a}{4}.$$

6. 解析 在 $y^2 = 8x$ 中, $\frac{p}{2} = 2$, ∴ |PF| = 4+2=6.

练习B

1.解析 $y^2 = -4x$ 或 $x^2 = \sqrt{2}y$.

2.解析 由定义,点 M 到准线的距离也是 2p,设 $M(x_0, y_0)$,则 M 到准线的距离 $d=x_0+\frac{p}{2}$,

$$\therefore x_0 + \frac{p}{2} = 2p, x_0 = \frac{3}{2}p, y_0 = \pm \sqrt{3}p,$$

$$\therefore M\left(\frac{3}{2}p, \pm \sqrt{3}p\right).$$

- 3.解析 设点 $M(x_0, y_0)$ 为抛物线上任一点,过点 M 向 x 轴作垂线,垂足为 H,设垂线 段 MH 的 中点 为 N(x, y),则 $\begin{cases} x = x_0, \\ y = \frac{y_0}{2}, \end{cases} \cdot \begin{cases} x_0 = x, \\ y_0 = 2y, \end{cases}$ 代人 $y^2 = 2px$ 中得 $4y^2 = 2px, \therefore y^2 = \frac{p}{2}x, \therefore$ 垂线段中点的 轨迹方程为 $y^2 = \frac{p}{2}x(p>0)$,它是顶点 在原点,焦点为 $\left(\frac{p}{8},0\right)$,开口向右的抛物线.
- 4.解析 由题意,设抛物线方程为 $y^2 = 2px(p>0)$,点 $A(2,y_0)$,则 $F(\frac{p}{2},0)$, 从而 $\overrightarrow{FA} = \left(2-\frac{p}{2},y_0\right)$, $\overrightarrow{OA} = (2,y_0)$,故 $\overrightarrow{FA} \cdot \overrightarrow{OA} = 4-p+y_0^2 = 16$.又 $y_0^2 = 4p$,所以 p = 4,所以抛物线方程为 $y^2 = 8x$.
- 5. 解析 设 $M(x_0, y_0)$, $|MA| = \sqrt{(x_0-4)^2 + y_0^2} = \sqrt{(x_0-4)^2 + 16x_0} = \sqrt{(x_0+4)^2} = |x_0+4|(x_0 \ge 0)$,

 $\therefore x_0 = 0$ 时, $|MA|_{\min} = 4$,此时 M(0,0).

$$\therefore |MF| = x_0 + \frac{p}{2}.$$

结论:对于 $y^2 = -2px(p>0)$, $|MF| = \frac{p}{2}$ $-x_0$;

对于
$$x^2 = 2py(p>0)$$
, $|MF| = y_0 + \frac{p}{2}$;

对于
$$x^2 = -2py(p>0)$$
 , $|MF| = \frac{p}{2} - y_0$.

习题 2-7A

- 1.解析 所得曲线为抛物线.
- **2**. 解析 $y^2 = 8x$.
- 3.解析 双曲线 $x^2-y^2=1$ 的焦点为($\pm\sqrt{2}$, 0), $\therefore y^2=2px$ 的准线方程为 $x=-\sqrt{2}=-\frac{p}{2}$, $\therefore p=2\sqrt{2}$.
- **4.** 解析 $x^2 = \frac{1}{4}y + |FM| = 1 = y_0 + \frac{p}{2} = y_0 + \frac{1}{16}, \therefore y_0 = \frac{15}{16}.$
- 5.解析 解法一:以题图中水面所在的直 线为 x 轴,这座抛物线型拱桥的对称轴

为 y 轴, 建系, 设抛物线方程为 $y = ax^2 + k$, 其过(0,4), $\therefore k = 4$. 又过(6,0), $\therefore 0$ = 36a + 4, $\therefore a = -\frac{1}{9}$, $\therefore y = -\frac{1}{9}x^2 + 4$, 当水位上升 1 m 时, 令 $1 = -\frac{1}{9}x^2 + 4$, 得 $x = 3\sqrt{3}$ 或 $x = -3\sqrt{3}$,

∴ 此时水面宽度为 6√3 m.

系,设抛物线方程为 $x^2 = -2py(p>0)$,过点(6,-4),所以 $p = \frac{9}{2}$,所以抛物线方程为 $x^2 = -9y$,若水位上升 1 m,即当 y = -3 时, $x = \pm 3\sqrt{3}$,所以此时水面宽度为 $6\sqrt{3}$ m ≈ 10.4 m.

解法二:建立如图所示的平面直角坐标

- **6.**解析 $F\left(\frac{1}{4},0\right)$, $\therefore A(x_0,y_0)$ 是 C 上一点, $|AF| = \frac{5}{4}x_0 = x_0 + \frac{1}{4}$, $\therefore x_0 = 1$.
- 7.证明 如图, $|AA_1| = |AF|$, 故 $\angle 1 = \angle 2$, 又 $\therefore AA_1 // x$ 轴, $\therefore \angle 1 = \angle 3$, 从而 $\angle 2 = \angle 3$, 同理可证 $\angle 4 = \angle 6$,
 - $\therefore \angle A_1 F B_1 = \angle 3 + \angle 6 = \frac{\pi}{2}.$

习题 2-7

- **1.**解析 设 Q 到 l 的距离为 d ,则 |QF| = d , $\therefore \overrightarrow{FP} = 4 \overrightarrow{FQ}$, $\therefore |PQ| = 3d$,由三角形相似易知 $x_q = 1$,代入 $y^2 = 8x$ 中得 $y = \pm 2\sqrt{2}$... $|QF| = \sqrt{(1-2)^2 + (2\sqrt{2})^2} = 3$.
- 2.解析 $F\left(\frac{1}{4},0\right)$,准线方程为 $x = -\frac{1}{4}$, 设 $A(x_1,y_1)$, $B(x_2,y_2)$, $\therefore |AF| + |BF| = x_1 + \frac{1}{4} + x_2 + \frac{1}{4} = 3$, $\therefore x_1 + x_2 = \frac{5}{2}$, \therefore 线段 AB 中点的横坐标为 $\frac{5}{4}$,

- ∴线段 AB 的中点到 y 轴的距离为 $\frac{5}{4}$.
- 3.解析 记 A(0,2), : 以 MF 为直径的 圆过点 A(0,2), : 点 M 在第一象限, 由 $|MF| = x_M + \frac{p}{2} = 5$ 得 $M\left(5 \frac{p}{2}\right)$

$$\sqrt{2p\left(5-\frac{p}{2}\right)}$$
), 从而以 MF 为直径的圆的圆心 N 的坐标 $5\left(\frac{5}{2},\frac{1}{2}\sqrt{2p\left(5-\frac{p}{2}\right)}\right)$,

又圆的直径 d=5.

- : N 的横坐标恰好等于圆的半径,
- ∴ 圆与 y 轴切于点 A(0,2),∴ 2 =

$$\frac{1}{2}\sqrt{2p\left(5-\frac{p}{2}\right)},$$

- ∴ $p^2 10p + 16 = 0$, ∴ p = 2 或 p = 8, ∴ $y^2 = 4x$ 或 $y^2 = 16x$.
- **4.** 解析 设 $x^2 = 2y$ 上任意一点 $P\left(x, \frac{1}{2}x^2\right)$,

由 |
$$PM$$
 | = $\sqrt{x^2 + \left(\frac{1}{2}x^2 - 2\right)^2}$ =

$$\sqrt{\frac{1}{4}(x^2-2)^2+3}$$
 , $\therefore x^2 = 2$ 时 , $\mid PM \mid$ 最小.

此时, $x = \pm \sqrt{2}$, $\gamma = 1$,: $P(\pm \sqrt{2}, 1)$.

- 5.解析 因为 P 在抛物线 $y=x^2$ 上,所以可设 P 点坐标为 $(t,t^2)(t \in \mathbf{R})$,由点到直线的距离公式,得 P 到直线 2x-y-4=0 的距离 $d=\frac{|2t-t^2-4|}{\sqrt{5}}=\frac{(t-1)^2+3}{\sqrt{5}}$,
 - 因此,当 t=1 时,d 取得最小值,故点 P 的坐标为(1,1).

习题 2-7C

$$\mathcal{H}\left(\frac{9}{4},3\right).$$

$$B \qquad P \qquad A$$

$$O \qquad F \qquad x$$

(2) 设点 P 的坐标为 $(t^2, 2t)$ $(t \in \mathbb{R})$,则 $|PM|^2 = (t^2 - m)^2 + (2t - 0)^2$. 令 $t^2 = u(u \ge 0)$,则 $|PM|^2 = u^2 + (4 - 2m)u + m^2 = [u + (2 - m)]^2 + m^2 - (2 - m)^2$. ①当 m < 2 时,

该函数在 $[0,+\infty)$ 上为增函数,当u=0时, $|PM|_{min} = |m|$,此时点 P 的坐标为 (0,0);②当 $m \ge 2$ 时,该函数在[0,m-2]上为减函数,在[m-2,+∞)上为增 函数,所以 u = m - 2 时, $|PM|_{min} =$ $2\sqrt{m-1}$,此时点 P 的坐标为(m-2, $\pm 2\sqrt{m-2}$).

- **2.**解析 $:: F(-3,0), :: y^2 = -12x,$ 设 $M(x,y)(x\leq 0)$,
 - $|AM|^2 = (x-a)^2 + y^2 = x^2 (2a+12)x$
 - ∴ $\bigcirc a+6 \ge 0$, 即 $a \ge -6$ 时, $|AM|^2$ 随 x的增大而减小, $\therefore x=0$ 时, $|AM|_{min}^2=a^2$, 此时,f(a) = |a|:
 - ②a+6<0. $\mathbb{H} \ a<-6 \mathbb{H} \ |AM|^2 = x^2-(2a)$ $+12)x+a^2 = (x-a-6)^2-12a-36$
 - ∴ 当 x = a + 6 时, $|AM|_{min}^2 = -12a 36$, 此 时 $f(a) = \sqrt{-12a-36}$.

2.8 直线与圆锥曲线 的位置关系

习题 2-8A

- 1. 解析 $\begin{cases} y = -2x + 4, \\ y^2 = 4x \end{cases} \Rightarrow y^2 + 2y 8 = 0,$ $\therefore \begin{cases} y=2, \\ x=1 \end{cases}$ 或 $\begin{cases} y=-4, \\ x=4, \end{cases}$. 记公共点坐标为 A(1, 2), B(4, -4), |AB| =
- $\sqrt{(4-1)^2+(-4-2)^2}=\sqrt{45}=3\sqrt{5}$. 2. 解析 $\begin{cases} x-2y+2=0, \\ x^2+4y^2=4 \end{cases} \Rightarrow \begin{cases} x=0, \\ y=1 \end{cases}$

 $\begin{cases} x = -2, \\ y = 0. \end{cases}$: 不妨令 A(0,1), B(-2,0),

- $\therefore |AB| = \sqrt{5}$.
- **3.**解析 例如 $y^2 = 4x$ 与直线 y = 1 只有一 个公共点,但它们相交
- 由题意, 联立 $\begin{cases} y = kx + 2, \\ \frac{x^2}{2} + \frac{y^2}{2} = 1, \end{cases}$ 消去

y, $\{(2+3k^2)x^2+12kx+6=0, \Delta=144k^2-144k^2-144k^2\}$ $24(2+3k^2) = 72k^2-48.(1)$ 当 $\Delta > 0$,即 k $>\frac{\sqrt{6}}{3}$ 或 $k<-\frac{\sqrt{6}}{3}$ 时,直线与椭圆有两个公 共点.

- (2) 当 $\Delta = 0$, 即 $k = \frac{\sqrt{6}}{3}$ 或 $k = -\frac{\sqrt{6}}{3}$ 时, 直 线与椭圆只有一个公共点.
- (3)当 Δ <0,即 $-\frac{\sqrt{6}}{3}$ <k< $\frac{\sqrt{6}}{2}$ 时,直线与椭 圆没有公共点
- **5.** 解析 $\begin{cases} y = kx 1, \\ x^2 y^2 = 4 \end{cases} \Rightarrow (1 k^2) x + 2kx 5 =$

$$\therefore \begin{cases} 1-k^2 \neq 0 \\ \Delta < 0 \end{cases}, \therefore k > \frac{\sqrt{5}}{2} \vec{\boxtimes} k < -\frac{\sqrt{5}}{2}.$$

6.解析 $\frac{x^2}{4} - \frac{y^2}{3} = 1$ 的渐近线方程为 y = $\pm \frac{\sqrt{3}}{2}x$, : l 过原点且与双曲线交于两

7.解析 抛物线 $y^2 = 2x$ 的准线方程为 x = $-\frac{1}{2}$,设圆心 (x_0, y_0) ,由题知 $, x_0 + \frac{1}{2} =$ $|y_0| (1), y_0^2 = 2x_0 (2),$

由①②得 $\begin{cases} x_0 = \frac{1}{2}, \\ y_0 = \pm 1, \end{cases}$

- :. 所求方程为 $\left(x-\frac{1}{2}\right)^2+(y\pm 1)^2=1$.
- 8. 解析 F(1,0), 联立 $\begin{cases} y=x-1, \\ v^2=4x \end{cases}$ \Rightarrow $\begin{cases} x^2 - 6x + 1 = 0, \\ y^2 - 4y - 4 = 0 \end{cases} \Rightarrow \begin{cases} x_1 x_2 = 1, \\ y_1 y_2 = -4, \\ \vdots \quad \overrightarrow{OA} \cdot \overrightarrow{OB} \end{cases}$
- 9.证明 设 $\begin{cases} l: x = my + \frac{p}{2}, \text{ 消去 } x, \text{ 得 } y^2 \\ C: y^2 = 2px, \end{cases}$

 $2mpy-p^2=0, :: \gamma_1\gamma_2=-p^2.$

习题 2-8B

 $-2. 联立 \begin{cases} l_{AB} : y = 2(x-2), \\ C : y^2 = 8x, \end{cases}$ 得 $x^2 - 6x + 4 =$

$$-2.4 \times \underline{M} \left\{ C: y^2 = 8x - \frac{1}{2} \left\{ C: y^2 = 8x - \frac{1}{2} \left\{ x_A + x_B = 6, x_A - x_B = 4, x_A - x_B = 4, x_A + x_B + p \right\} \right\}$$

$$\therefore |AB| = x_A + x_B + p$$

- $\therefore |AB| = x_A + x_B + p = 8.$

得
$$\begin{cases} x^2 + 8x - 24 = 0, \\ y^2 + 14y + 9 = 0, \end{cases}$$

$$\begin{cases} x_1 + x_2 = -8, \\ x_1 x_2 = -24, \\ y_1 y_2 = 9, \\ y_1 + y_2 = -14, \end{cases}$$

- $(1) |AB| = \sqrt{1+k^2} \sqrt{(x_1+x_2)^2 4x_1x_2} =$ $\sqrt{2} \times \sqrt{64+4\times24} = 8\sqrt{5}$,
- ∴ 线段 AB 的中点坐标为(-4,-7).
- $(2) \stackrel{\longrightarrow}{\text{h}} \overrightarrow{OA} \cdot \overrightarrow{OB} = x_1 x_2 + y_1 y_2 = -24 + 9 \neq 0$ 可知 \overrightarrow{OA} 不垂直于 \overrightarrow{OB} .
- 设 $\begin{cases} l: y = \frac{b}{a} x + m, \\ C: \frac{x^2}{2} \frac{y^2}{2} = 1, \end{cases}$ 化 简 得 -

 $2mabx = a^2m^2 + a^2b^2$, $B[2mabx = -a^2b^2]$

- $\therefore m=0$ 时, l 与双曲线 C 无公共点; m≠0 时, l 与双曲线 C 有一个公共点.
- **4.**解析 易知 y=p 或 x=0 成立, 当斜率 k存在时,设直线方程为y=kx+p,

联立 $\begin{cases} y = kx + p, \\ y^2 = 2px, \end{cases}$ 得 $k^2x^2 + (2kp - 2p)x + p^2$:: 只有一个公共点,:: $\Delta = 0$, $\mathbb{E}[\Delta = (2kp - 2p)^2 - 4k^2 \cdot p^2 = 0, ... k]$ $\therefore y = \frac{1}{2}x + p.$

综上,y=p 或 x=0 或 $y=\frac{1}{2}x+p$ 为所求.

- **5.**解析 设 $A(x_1, y_1), B(x_2, y_2)$, 直线 l的方程为 y=2x+b.代入 $y^2=4x$.得 $4x^2+$ $(4b-4)x+b^2=0$, 所以 $x_1+x_2=1-b$, x_1x_2 $=\frac{b_2}{4}$, 所以 $|AB| = \sqrt{1+k^2} |x_1-x_2| = \sqrt{5}$ • $\sqrt{(x_1+x_2)^2-4x_1x_2} = \sqrt{5}\sqrt{(1-b)^2-b^2}$ =5,解得b=-2,即直线l的方程为 $\gamma=$
- 6. 解析 $F(2,0), A(8,8), k_{AB} = \frac{8}{8-2} =$ $\frac{4}{3}$, 联立 $\begin{cases} l_{AB}: y = \frac{4}{3}(x-2), \\ C \cdot y^2 = 8x. \end{cases}$ 得 $2x^2 - 17x$ $\therefore \begin{cases} x_1 + x_2 = \frac{17}{2},$ 准线方程为 x = -2, ∴ 线
- 段 AB 的中点到准线距离为 $\frac{17}{4}$ +2= $\frac{25}{4}$.
- 7. 解析 设 l_{AB} : x = a(a > 0), $A(x_1, y_1)$, $B(x_2, y_2)$,所以 $y_1 = 2\sqrt{a}$, $y_2 = -2\sqrt{a}$, 所 以 $|AB| = |\gamma_1 - \gamma_2| = 4\sqrt{a} = 4\sqrt{3}$,所以 a =3.即直线 AB 的方程为 x=3.
- 8.证明 不妨设抛物线的方程为 v^2 = 2px,则抛物线的焦点为 $F\left(\frac{p}{2},0\right)$.设过

点 F 的直线 PQ 的方程为 $x = my + \frac{p}{2}$, 代入抛物线方程得 $y^2 - 2pmy - p^2 = 0$. 设 $P(x_1, y_1), Q(x_2, y_2), 则 y_1y_2 = -p^2.$ 设点 M 的坐标为 $\left(-\frac{p}{2}, y'\right)$,直线 OP 的方程

为
$$y = \frac{y_1}{x_1}x$$
, 当 $x = -\frac{p}{2}$ 时, $y = -\frac{py_1}{2x_1} = -\frac{py_1}{2 \times \frac{y_1^2}{2p}} = -\frac{p^2}{y_1}$

所以 $M\left(-\frac{p}{2}, y_2\right)$, 所以直线 MQ 的方 程为 $\gamma = \gamma_2$,所以MQ平行于此抛物线 的对称轴,即x轴.

9.证明 设抛物线方程为 $y^2 = 2px(p>0)$, $\therefore F\left(\frac{p}{2},0\right)$,准线方程为 $x=-\frac{p}{2}$. 设 $P_1(x_1,y_1)$, $P_2(x_2,y_2)$,

- \therefore 以 P_1P_2 为直径的圆的半径 $r=\frac{|P_1P_2|}{2}$,圆心为 P_1P_2 中点,
- $\mathbb{Z}|FP_1| = x_1 + \frac{p}{2}, |FP_2| = x_2 + \frac{p}{2},$
- $\therefore |P_1 P_2| = |FP_1| + |FP_2| = x_1 + x_2 + p,$ $\therefore r = \frac{x_1 + x_2 + p}{2},$
- 又 P_1P_2 中点到准线的距离 $d = \frac{x_1 + x_2}{2} +$
- $\frac{p}{2} = r$,
- \therefore 以 P_1P_2 为直径的圆与该抛物线的准线相切。
- **10.**解析 F(1,0),联立 $\begin{cases} l: y=x-1, \\ C: y^2 = 4x, \end{cases}$ 得

$$\begin{cases} x^2 - 6x + 1 = 0, & \text{for } \begin{cases} x_1 + x_2 = 6, \\ y^2 - 4y - 4 = 0, \end{cases} & \text{for } \begin{cases} x_1 + x_2 = 6, \\ x_1 + x_2 = 1, \\ y_1 + y_2 = 4, \end{cases} \therefore |AB| =$$

- $x_1 + x_2 + p = 8 = 2r$
- $\therefore AB$ 的中点到准线的距离为 $\frac{x_1+x_2}{2}$ +
- $\frac{p}{2}$ =4=r,且圆心坐标为(3,2),
- ∴ 所求方程为(x-3)²+(y-2)²=16.

复习题

A 组

- **1.**解析 $(1)k = \frac{3-(-2)}{2-(-1)} = \frac{5}{3}$,
 - :. l:5x-3y-1=0.
 - $(2)y = \frac{5}{4}x$, $\therefore l:5x-4y=0$.
 - $(3)\frac{x}{-2} + \frac{y}{-5} = 1, \therefore l:5x + 2y + 10 = 0.$
 - $(4)\frac{x}{-\frac{1}{2}} + \frac{y}{-\frac{1}{2}} = 1, \dots l: 2x + 2y + 1 = 0.$
- **2.**解析 x+3y-5=0, 3x-y-5=0.
- 3. 解析 设 $l: x-y+c = 0 (c \neq -2), d = \frac{|c+2|}{\sqrt{2}} = 2\sqrt{2}, \therefore c=2 \text{ gi } c=-6,$
 - ∴ l: x-y+2=0 或 x-y-6=0.
- **4.**解析 假命题.反例: 当 $a,b \neq 0$ 时,l: $\frac{x}{a} + \frac{y}{b} = 1, \therefore y = b \frac{b}{a}x, \therefore k = -\frac{b}{a}.$
- 6.解析 设所求圆的方程为 $(x-a)^2+(y-b)^2=25$,由题意可得|b|=5且 $(1-a)^2+(2-b)^2=25$,
 - $\therefore \begin{cases} a = -3, \\ b = 5 \end{cases} \begin{cases} a = 5, \\ b = 5, \end{cases}$
 - :. 所求圆的方程为 $(x+3)^2+(y-5)^2=25$ 或 $(x-5)^2+(y-5)^2=25$.
- 7. 解析 A, C 在曲线上, B, D 不在曲

线上

- **8.**解析 不是.中线 AO 的方程是 $x = 0(0 \le y \le 3)$,中线是线段.
- 9.解析 设C(x,y),则|AC| = |AB|
 - $\therefore \sqrt{(x-4)^2 + (y-2)^2}$
 - $=\sqrt{(3-4)^2+(5-2)^2}=\sqrt{10},$
 - $(x-4)^2 + (y-2)^2 = 10$
 - l_{AB} : 3x + y 14 = 0 ②, 由 ① ② 可 得 $\begin{cases} x = 3, \\ y = 5 \end{cases}$ 或 $\begin{cases} x = 5, \\ y = -1, \end{cases}$ ∴ 点 C 的轨迹方程为 $(x-4)^2 + (y-2)^2 = 10$ (除去点(3,5),
- **10.A** $x_1 = 2 \sqrt{3}, x_2 = 2 + \sqrt{3}, \because x_1 = 2 \sqrt{3}$ $\in (0, 1), x_2 = 2 + \sqrt{3} \in (1, +\infty)$, 故

11.B

(5,-1)).

- **12.B** 设动圆的圆心为 P, 半径为 r, 而 x^2 + y^2 = 1 的圆心为 O(0,0), 半径为 1, $x^2+y^2-8x+12=0$ 的圆心为 F(4,0), 半径为 2.
 - ∴ |PF| = 2+r, |PO| = 1+r, |PO| = 1+r
 - :: P 的轨迹是双曲线的一支.
- **13**.解析 :: |BC| = 2,
 - |AB| + |CA| = 2|BC| = 4 > 2
 - ∴ 点 A 的轨迹为椭圆,且 a = 2, c = 1, $b^2 = 3$.
 - 又:: |AB| > |CA|,:: A 位于椭圆右半部分,且 A 不能与 B, C 在同一直线(x 轴)上,:: $\triangle A$ 的轨迹方程是 $\frac{x^2}{4} + \frac{y^2}{2} =$
 - 1(0 < x < 2).
- **14.**解析 方程可化为 $(3-a)x^2+(a+1)y^2$ =-(a+1)(a-3),若a=-1,则方程为x=0;若a=3,则方程为y=0;

若 $a \neq -1$ 且 $a \neq 3$,则方程可化为 $\frac{x^2}{a+1}$

$$\frac{y^2}{a-3} = 1$$
,

- ∴ 此方程表示双曲线条件是(*a*+1)(*a* -3)>0,∴ *a*>3 或 *a*<-1.
- **15**.解析 双曲线的离心率 $\frac{c}{a} = \frac{\sqrt{5}}{2}$,椭圆

焦点($\pm\sqrt{5}$,0),∴ $c=\sqrt{5}$,a=2,b=1,

- :. 双曲线的方程为 $\frac{x^2}{4} y^2 = 1$.
- **16.**解析 双曲线 $\frac{x^2}{8} \frac{y^2}{8} = 1$,焦点为(±4,
 - 0).:. c=4.又椭圆经过点 P(4.6).
 - $\therefore 2a = \sqrt{(4+4)^2 + 36} + \sqrt{(4-4)^2 + 36}$ $= 16, \therefore a = 8, b^2 = a^2 c^2 = 48,$
 - :. 椭圆的方程为 $\frac{x^2}{64} + \frac{y^2}{48} = 1$.
- **17.**解析 c=2,由椭圆的定义得 $2a=\frac{10}{3}$ ×

- $\frac{1}{2} + \sqrt{4^2 + \left(\frac{10}{3} \times \frac{1}{2}\right)^2} = \frac{5}{3} + \frac{13}{3} = 6,$ $\therefore a = 3... b^2 = a^2 c^2 = 9 4 = 5...$ 椭圆的标准方程为 $\frac{x^2}{9} + \frac{y^2}{5} = 1.$
- **18.**解析 由 $\begin{cases} y = kx + 2, \\ x^2 + 2y^2 = 2 \end{cases}$ 得 $(1 + 2k^2) x^2 + 2x^2 + 2x^2$

8kx+6=0,: 直线与椭圆交于不同两占

- ∴ $\Delta = 64k^2 24(1 + 2k^2) = 16k^2 24 > 0$, ∴ $k < -\frac{\sqrt{6}}{2}$ $\exists \vec{k} \ k > \frac{\sqrt{6}}{2}$.
- 19.解析 若直线 l 的斜率不存在,则显然不符合题意,故直线 l 的斜率存在,设直线 l 的斜率为 k.①当 k=0 时,符合题意,直线 l 的方程为 y=4.②当 $k \neq 0$ 时,由 $\begin{cases} y^2 = 8x, \\ y-4=k(x-2), \end{cases}$ 消去 x,得 $ky^2 8y + 32 16k = 0$,由 $\Delta = 0$,得 k=1,所以方程为 x-y+2=0.综上,直线 l 的 方程为 y=4 或 x-y+2=0.

B 组

- **1.**解析 由 $\begin{cases} 4x+3y=10, \\ 2x-y=10 \end{cases}$ 得 $\begin{cases} x=4, \\ y=-2, \end{cases}$ 代人 mx+2y+8=0 得 m=-1.
- **2.**解析 易得 $l_3 /\!\!/ l_4$, l_1 与 l_3 的交点为 A(0,1), l_2 与 l_3 的交点为 B(0,-5), l_1 与 l_4 的交点为 D(3,7), l_2 与 l_4 的交点为 C(3,-8),
- ∴ 四边形 *ABCD* 是梯形, 高是 3, 上底 *AB*=6, 下底 *CD*=15,

$$\therefore S = \frac{(6+15) \times 3}{2} = 31.5.$$

- 3.解析 (1)由题意得 $\begin{cases} \frac{3}{a-1} = 1, \\ \frac{5}{a-1} \neq 0, \end{cases}$ $\therefore a = 4.$
 - (2) 由题意得 2(a-4)+3=0, $a=\frac{5}{2}$.
- **4.**解析 由 $\begin{cases} 2x+y-4=0, \\ 3x-2y+1=0 \end{cases}$ 得 $\begin{cases} x=1, \\ y=2. \end{cases}$ 不论 λ 为何值,直线 $(2x+y-4)+\lambda(3x-2y+1)=0$ 恒过定点(1,2).
- 5.解析 真命题.
- **6.**解析 : M(-2,3)关于 x 轴的对称点 为 N(-2,-3), : 根据反射定律可得 P,N 两点都在反射光线所在直线上,
 - :. 反射光线所在直线方程为 x-y-1=0.
- 7. 解析 $k_{AB} = \frac{2-1}{-3-4} = -\frac{1}{7}$, l_{AB} : $y-1 = -\frac{1}{7}$

 $\times (x-4)$ 与 y 轴交点 $D\left(0,\frac{11}{7}\right)$,设 $C(0,\frac{11}{7})$

- m), $\therefore CD = \left| m \frac{11}{7} \right|$, $\therefore S_{\triangle ABC} = \frac{1}{2}CD \times \frac{1}{2}$
- $(4+3) = \frac{7}{2}CD = 12,$

$$\therefore CD = \frac{24}{7} = \left| m - \frac{11}{7} \right|, \therefore m = 5 \implies m = -\frac{13}{7}, \therefore C(0,5) \implies \left(0, -\frac{13}{7} \right).$$

- 8.解析 $C_1: x^2 + y^2 8x + 6y = 0$ 可化为 $(x 4)^2 + (y + 3)^2 = 25$,所以圆心的坐标为(4, -3),半径为 5.
 - :: PA, PB 是圆的两条切线,
 - $\therefore P,A,B,C_1$ 四点共圆,

∴ 圆心
$$C_2\left(\frac{8+4}{2}, \frac{6-3}{2}\right) = \left(6, \frac{3}{2}\right)$$
.

$$| PC_1 | = 2R = \sqrt{(8-4)^2 + (6+3)^2}$$

= $\sqrt{97}$.

$$\therefore R^2 = \frac{97}{4},$$

$$\therefore C_2: (x-6)^2 + (y-\frac{3}{2})^2 = \frac{97}{4},$$

由 $C_1 - C_2$ 得 l_{AB} : 4x + 9y - 14 = 0.

- 9.解析 曲线上的点到点 A(0,2) 的距离 减去它到 x 轴的距离的差都是 2,则曲 线上面的每个点到点 A(0,2) 的距离都 等于它到直线 y=-2 的距离, ... 曲线轨 迹是以 A 点为焦点,直线 y=-2 为准线的抛物线, ... 曲线的方程为 $y^2=8x$.
- 10.解析 (1) 若方程 $\frac{x^2}{4-k} + \frac{y^2}{9-k} = 1$ 为椭 圆,则 $\left\{ \frac{9-k>0}{4-k>0}, \dots k<4.$ 此时焦点坐标为 $\left(0,-\sqrt{5}\right)$ 和 $\left(0,\sqrt{5}\right)$.

此时焦点坐标为 $(0,\sqrt{5})$ 和 $(0,-\sqrt{5})$.

11.证明 设 $A(x_1, y_1)$, $B(x_2, y_2)$, 则点 A, B 到 x 轴的距离之积为 $|y_1|$ $|y_2|$ = $|y_1y_2|$, 由题意可设直线方程为 x = my

$$+\frac{p}{2}$$
, 联立
$$\begin{cases} x = my + \frac{p}{2},$$
 消去 x , 得 $y^2 - y^2 = 2px$,

 $2pmy-p^2 = 0$, ∴ $y_1y_2 = -p^2$, ∴ $|y_1y_2| = p^2$. 故这两个交点到 x 轴的距离的乘积积为 p^2 , 是一个常数.

- 12.证明 不妨设抛物线的方程为 $y^2 = 2px(p>0)$,弦 AB 与抛物线的对称轴交于 C(x,0), $A(x_1,y_1)$, $B(x_2,y_2)$,因为 A, B, C 三点共线,所以得到 $x = \frac{x_1y_2-x_2y_1}{y_2-y_1}(*)$.将 $x_1 = \frac{y_1^2}{2p}$, $x_2 = \frac{y_2^2}{2p}$ 代人 (*)式,得 $x = -\frac{1}{2p}y_1y_2$,因为 $OA \perp OB$,所以 $x_1x_2 + y_1y_2 = 0$,所以 $y_1y_2 = -4p^2$,所以 x = 2p. 故 C 点坐标为 (2p,0),即弦 AB 与抛物线的对称轴相交于定点 (2p,0).
- **13**.解析 易知直线 *l* 的斜率存在且不为

零.设
$$A(x_1, y_1)$$
, $B(x_2, y_2)$, $\therefore x_1 + x_2 = 8$, $y_1 + y_2 = 4$. $x_1^2 + 4y_1^2 = 36$ ①, $x_2^2 + 4y_2^2 = 36$ ②, ① $-$ ②可得 $\frac{y_1 - y_2}{x_1 - x_2} = -\frac{1}{2}$, 即直线 l 的斜率为 $-\frac{1}{2}$, \therefore 直线 l 的方程为 $y - 2 = -\frac{1}{2}(x - 4)$, 即 $x + 2y - 8 = 0$.

- 14.解析 设直线 $l: x = t(|t| \le 2)$,不妨设 P 点坐标为 $\left(t, \sqrt{\frac{4-t^2}{2}}\right)$,Q 点坐标为 $\left(t, -\sqrt{\frac{4-t^2}{2}}\right)$,则 $l_{AP}: y = \sqrt{\frac{4-t^2}{2}} \cdot \frac{x+2}{t+2}$ ①, $l_{BQ}: y = -\sqrt{\frac{4-t^2}{2}} \cdot \frac{x-2}{t-2}$ ②,由①② 得 $t = \frac{4}{x}$ ③,将③代入①化简整理,得 $x^2 2y^2 = 4$,即 $\frac{x^2}{4} \frac{y^2}{2} = 1$,所以点 M 的 轨迹为双曲线 $\frac{x^2}{4} \frac{y^2}{2} = 1$.
- 16.解析 设 A, B 两点的坐标为 $A(x_1, y_1), B(x_2, y_2), \cdots OA \perp OB, \therefore x_1x_2 + y_1y_2 = 0, \therefore x_1x_2 + (ax_1+1)(ax_2+1) = 0,$ 即 $(a^2+1)x_1x_2 + a(x_1+x_2) + 1 = 0.$ 由 $\begin{cases} y = ax + 1, \\ 3x^2 y^2 = 1 \end{cases}$ 消去 y, 得 $3x^2 (ax + 1)^2 = 1,$ 即 $(3-a^2)x^2 2ax 2 = 0, \therefore x_1 + x_2 = \frac{2a}{3-a^2}, x_1x_2 = \frac{2}{a^2-3}, \therefore (a^2+1) \cdot \frac{2}{a^2-3} + a$ $\cdot \frac{2a}{3-a^2} + 1 = 0, \therefore 2(a^2+1) 2a^2 + a^2 3$ = 0, 即 $a^2 = 1, \therefore a = 1$ 或 a = -1.
- 17.解析 设抛物线 C 的方程为 $y^2 = 2px$ $(p \neq 0)$,由 $\begin{cases} y^2 = 2px, \\ y = 2x+1 \end{cases}$ 消去 y,得 $4x^2 + (4-2p)x+1=0, x_1+x_2=\frac{p-2}{2}, x_1x_2=\frac{1}{4},$ $\therefore |PQ| = \sqrt{1+k^2} \cdot |x_1-x_2| = \sqrt{1+k^2} \cdot \sqrt{(x_2+x_2)^2-4x_1x_2} = \sqrt{5} \cdot \sqrt{\left(\frac{p-2}{2}\right)^2-1} = \sqrt{15}$,解得 p=6 或 p=-2,∴ 抛物线 C 的方程为 $y^2 = 12x$ 或 $y^2 = -4x$.
- **18**.解析 易得直线 AB 的方程为 y=x-

$$\frac{p}{2}, 由 \begin{cases} y = x - \frac{p}{2}, \\ y^2 = 2px \end{cases}$$

$$= 0. 设 A, B 的 坐 标 分 别 为 A(x_1, y_1), \\ B(x_2, y_2), 则 y_1 + y_2 = 2p, y_1 y_2 = -p^2, \\ \therefore \frac{y_1}{y_2} + \frac{y_2}{y_1} = -6, 即 \frac{y_1}{-y_2} + \frac{-y_2}{y_1} - 6 = 0, \diamondsuit t$$

$$= \frac{|AF|}{|BF|} = \frac{y_1}{-y_2} \stackrel{\text{I}}{=} t > 1, 则 t^2 - 6t + 1 = 0,$$

$$\therefore t = 3 + 2\sqrt{2}, 即 \frac{|AF|}{|BF|} = 3 + 2\sqrt{2}.$$

- 19.解析 由双曲线的方程可知双曲线的 实轴长为 2,当直线 l 的斜率存在时,设直线 l 的方程为 $y = k(x-\sqrt{3})$,联立 $\begin{cases} y = k(x-\sqrt{3}),$ 消去 y,得 $(2-k^2)x^2 + (2x^2-y^2) = 2, \\ 2\sqrt{3}k^2x-3k^2-2=0.$ 设 $P(x_1,y_1), Q(x_2,y_2)$,则 $x_1+x_2=\frac{-2\sqrt{3}k^2}{2-k^2}, x_1x_2=\frac{-3k^2-2}{2-k^2}, \\ \therefore |PQ| = \sqrt{1+k^2} \cdot \sqrt{(x_1+x_2)^2-4x_1x_2} = \sqrt{1+k^2}$ $\cdot \sqrt{\left(\frac{-2\sqrt{3}k^2}{2-k^2}\right)^2-4\cdot\frac{-3k^2-2}{2-k^2}} = \frac{4(1+k^2)}{|2-k^2|} = 4, \therefore k = \pm \frac{\sqrt{2}}{2}.$ 当直线 l 的斜率不存在时,直线 l 的方程为 $x = \sqrt{3}$,此时 |PQ| = 4,符合题意. 综上所述,直线 l 的方程为 $y = \pm \frac{\sqrt{2}}{2}(x-\sqrt{3})$ 或 $x = \sqrt{3}$.
- 20.解析 设点 M 为(x,y),则有距离乘积的值 $A = \frac{|bx-ay|}{\sqrt{a^2+b^2}} \cdot \frac{|bx+ay|}{\sqrt{a^2+b^2}} = \frac{|b^2x^2-a^2y^2|}{a^2+b^2}$,又点 M 在双曲线上,由 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$,即 $b^2x^2 a^2y^2 = a^2b^2$,所以 $A = \frac{a^2b^2}{a^2+b^2}$,为定值.所以第一问的值为16.
- 21.解析 由双曲线定义得 $\begin{cases} |AF_2| |AF_1| = 2a \textcircled{1}, \textcircled{1} + \textcircled{2} \end{cases}$ $\begin{cases} |BF_2| |BF_1| = 2a \textcircled{2}, \textcircled{1} + \textcircled{2} \end{cases}$ $|AF_2| + |BF_2| (|AF_1| + |BF_1|) = 4a,$ $\mathbb{P}|AF_2| + |BF_2| |AB| = 4a.$ $\therefore |AF_2| + |BF_2| = 2|AB|,$ $\therefore 2|AB| |AB| = 4a, \therefore |AB| = 4a.$ 22. 解析 易得直线 AB 的斜率存在 设百
- 22.解析 易得直线 AB 的斜率存在.设直线 AB 的方程为 y = k(x-1),由 $\begin{cases} y^2 = 4x, \\ y = k(x-1) \end{cases}$ 消去 y, 得 $k^2x^2 (2k^2 + 4)x$ $+k^2 = 0$,由弦长公式 $|AB| = \sqrt{1+k^2} |x_1 x_2| = 20$,得 $k = \pm \frac{1}{2}$,所以直线 AB 的

选择性必修·第一册

方程为 x-2y-1=0 或 x+2y-1=0.

23.解析 *AB* 与 *OM* 不能垂直,理由如 下:设 $A(x_1, y_1)$, $B(x_2, y_2)$,M(m, n), 则 $x_1 + x_2 = 2m$, $y_1 + y_2 = 2n$, 由

$$\begin{cases} \frac{x_{1}^{2}}{a^{2}} + \frac{y_{1}^{2}}{b^{2}} = 1 \; , \\ \frac{x_{2}^{2}}{a^{2}} + \frac{y_{2}^{2}}{b^{2}} = 1 \; , \end{cases} \not = \frac{\Pi}{4\pi} \frac{(x_{1} - x_{2})(x_{1} + x_{2})}{a^{2}} \; +$$

$$\frac{(y_1-y_2)(y_1+y_2)}{b^2}$$
=0,因为 $\frac{y_1-y_2}{x_1-x_2}$ =1,所

以
$$\frac{y_1 + y_2}{x_1 + x_2} = -\frac{b^2}{a^2}$$
,即 $\frac{n}{m} = -\frac{b^2}{a^2}$. 假设 $AB \perp$

$$OM$$
,则 $k_{AB} \cdot k_{OM} = -1$,得 $\frac{n}{m} = -1$,

所以 $a^2 = b^2$, 这与已知矛盾, 所以 AB与 OM 不能垂直.

24. 解析 设 $A\left(x_{1}, \frac{2\sqrt{5}}{5}x_{1}\right)$, $B\left(x_{2}, \frac{2\sqrt{5}}{5}x_{1}\right)$

$$-\frac{2\sqrt{5}}{5}x_2$$
), $P(x,y)$.由 $|\overrightarrow{AB}| = 2\sqrt{5}$,得

$$(x_1-x_2)^2 + \frac{4}{5}(x_1+x_2)^2 = 20. \pm \overrightarrow{OP} =$$

$$\overrightarrow{OA} + \overrightarrow{OB}$$
, $\overrightarrow{\Box}$ $\cancel{\boxtimes}$ $x = x_1 + x_2$, $y = \frac{2\sqrt{5}}{5}$ ($x_1 -$

$$(x_2)$$
,所以 $\frac{5}{4}y^2 + \frac{4}{5}x^2 = 20$,化简得点 P

的轨迹方程为 $\frac{x^2}{25} + \frac{y^2}{16} = 1$.

25.解析 (1)由已知易得 $b = \sqrt{2}$,由 | OF | =2|FM|可得 c=2 或 $c=\frac{2\sqrt{15}}{3}$. 故椭圆

的方程为
$$\frac{x^2}{6} + \frac{y^2}{2} = 1$$
, 离心率为 $\frac{\sqrt{6}}{3}$; 或

椭圆的方程为 $\frac{3x^2}{26} + \frac{y^2}{2} = 1$, 离心率

为
$$\frac{\sqrt{130}}{13}$$

(2)略.(设出 PQ 的方程,与椭圆方程 联立组成方程组,利用韦达定理求解 即可)

1.解析 设 l:y=ax+2 与线段相交于 P,y=ax+2 过定点 C(0,2),则 $k_{RC} \leq k_{CP}$ $\leq k_{CA}$.

2.解析 设 l与直线 3x+y-2=0 的交点 为 $A(x_1,y_1)$,与直线x+5y+10=0的交 点为 $B(x_2,y_2)$.:: P(2,-3)是线段 AB

$$\therefore \begin{cases} \frac{x_1 + x_2}{2} = 2, \\ \frac{y_1 + y_2}{2} = -3, \end{cases} \therefore \begin{cases} x_2 = 4 - x_1, \\ y_2 = -6 - y_1. \end{cases}$$

 \therefore 点 B 在直线 x+5y+10=0 的上, $\therefore x_2+$ $5y_2 + 10 = 0$.

 $\therefore 4-x_1+5(-6-y_1)+10=0$, $\exists x_1+5y_1+$

由
$$\begin{cases} 3x_1+y_1-2=0, \\ x_1+5y_1+16=0, \end{cases}$$
解得 $\begin{cases} x_1=\frac{13}{7}, \\ y_1=-\frac{25}{7}. \end{cases}$

 $\therefore A\left(\frac{13}{7}, -\frac{25}{7}\right)$. 又直线 l 过 A, P 两点,

$$\therefore l: \frac{y+3}{-\frac{25}{7}+3} = \frac{x-2}{\frac{13}{7}-2},$$

3.证明 (1)设B(m,n), A,B 关于 $l:\gamma$ =x+b 对称,

$$\therefore \begin{cases} k_{AB} \cdot k_l = -1, \\ \frac{y_0 + n}{2} = \frac{x_0 + m}{2} + b, \end{cases}$$

$$\text{ED} \begin{cases} k_{AB} = -1 = \frac{y_0 - n}{x_0 - m}, \text{ } \\ y_0 + n = x_0 + m + 2b, \text{ } 2 \end{cases}$$

$$\therefore \begin{cases} m = y_0 - b \\ n = x_0 + b \end{cases}$$

$$B(y_0-b,x_0+b).$$

(2) 设 B(p,q), A, B 中点坐标

为
$$\left(\frac{x_0+p}{2},\frac{y_0+q}{2}\right)$$
.

: A, B 关于 l: y = -x + b 对称,

$$\therefore \begin{cases} k_{AB} \cdot k_{l} = -1, \\ \frac{y_{0} + q}{2} = -\frac{x_{0} + p}{2} + b, \end{cases}$$

$$\therefore \begin{cases} \frac{y_0 - q}{x_0 - p} = 1, \\ y_0 + q = -x_0 - p + 2b, \end{cases}$$
$$\therefore \begin{cases} p = -y_0 + b, \\ q = -x_0 + b, \end{cases} \therefore B(-y_0 + b, -x_0 + b).$$

4.解析 设 B(m,n),则 A,B 中点坐标为

$$\left(\frac{2+m}{2},\frac{n+1}{2}\right)$$
 $\neq l \perp , :: k_{AB} = \frac{n-1}{m-2},$

$$k_{l} = -\frac{3}{2}, :: \begin{cases} \frac{n-1}{m-2} \times \left(-\frac{3}{2}\right) = -1, \\ 3 \times \frac{2+m}{2} + 2 \times \frac{n+1}{2} + 5 = 0, \end{cases}$$

- B(-4.-3).
- **5.**解析 设圆心 C(a,b), 半径为 R, 由题

意,得
$$\left\{a^2 = R^2 - 1^2, \atop b^2 = \left(\frac{\sqrt{2}}{2}R\right)^2 = \frac{R^2}{2},$$
消去 R ,得 a^2

$$-2b^2+1=0(*)$$
.又由已知,得 $\frac{|a-2b|}{\sqrt{5}}=$

 $\frac{\sqrt{5}}{\varepsilon}$,可知 a-2b=1 或 a-2b=-1.分别代 入(*)式,解得 a=-1,b=-1 或 a=1,b=1.即圆心坐标为(1,1)或(-1,-1).由 $a^2 = R^2 - 1$, 得 $R^2 = 2$. 所以所求圆的方程 为 $(x-1)^2+(y-1)^2=2$ 或 $(x+1)^2+(y+1)^2$ $1)^2 = 2$.

6.解析 不妨设 F 为右焦点,记 F 为椭 圆的左焦点,如图.由椭圆定义知|PF|+ $|PF_1| = 2a$,由对称性知 $|QF| = |PF_1|$,

- $\therefore |PF| + |QF| = 2a, \overrightarrow{|m|} |PQ|_{\min} = 2b,$
- ∴ $\triangle PFQ$ 周长的最小值为 2a+2b.

