AV01 CR2032 仕様書

1 概要

CR2032コイン電池ホルダーを実装し、3Vの電池電圧を昇圧電源回路により3.3Vに変換し、3.3Vを各リーフに供給するリーフである。3.3Vをオン/オフするためのスイッチを実装している。また、電池電圧をモニターするためのADコンバーターを実装している。

2リーフ仕様

2.1 ブロック図

図 2.1 ブロック図

2.2 電源仕様

Symbol	Parameter	Condition	Min.	Тур.	Max.
Vbatt	Battery Voltage	_	0.7V	-	3.8V
Vout	Output Voltage	_	3.23V	3.3V	3.37V
Ilim	Current limit	_	0.8A	1A	1.25A

2.3 電池電圧モニター機能

電池リーフには8bitADコンバータ(ADC081C027CIMK)を実装し、電池電圧をI2Cでモニター可能にするような機能が搭載されている。ADコンバーターのリファレンス電圧は3.3Vで8bit分解能であり、ADコンバーターの入力で電圧を1/2にしている。よって3.3V/2^8*2=26mVがADコンバーター読み値の1LSBとなる。

電池の種類による典型的な放電特性は以下の通り。ただし、負荷がある場合は、ない場合と比べて、電池電圧は低下する点は注意を要する。

参照先

http://biz.maxell.com/ja/primary_batteries/images/i_lineup00108.gif https://industrial.panasonic.com/cdbs/www-data/pdf2/AAC4000/AAC4000CJ31.pdf https://industrial.panasonic.com/cdbs/www-data/pdf2/ACA4000/ACA4000CJ284.pdf

図 2.3 電池電圧モニター機能

2.4 テスターによる物理的な電池電圧測定手法

電池電圧を測定するパッドが、外観図のように各々の電池リーフ上に用意されているので、テスターで直接測定可能になっている。

2.5 主要部品

部品番号	部品名	型番	ベンダー名	備考
IC281	昇圧電源 IC	TPS61099YFFR	Texas Instruments	_
IC283	AD コンバーター	ADC081C027CIMK	Texas Instruments	電池電圧モニター用 I2C アドレス: 0x50(チップ抵 抗の付け替えによって 0x51、0x52 に変更可能)。

※I2Cアドレスは7bitで表記

2.6 外観

2.7 ピンアサイン

Name	Function
SCL	I2C 通信クロック
SDA	I2C 通信データ
3V3	3.3V 出力
GND	GND

3 昇圧電源 IC(TPS61099YFFR)仕様

3.1 概要

項目	内容
制御方式	PWM/PFM 自動切替制御
最大出力電流	300mA @3.3V to 5V
Protection circuit	過電流制限/サーマルシャットダウン

3.2 電気的特性

3.2.1 最大定格

Parameter	Value
Operating Temperature	-40°C to +150°C
Maximum Operation Voltage	Vin 6.0V

3.2.2 定格

Symbol	Parameter	Condition	Min.	Тур.	Max.
Vin	Operating Voltage	_	0.7V	-	5.5V
Vout	Output Voltage	lout =30mA	1.8V	-	5.5V
Iq	Quiescent Current	IC enabled, no Load, no Switching, Tj=-40°C to 85°C	-	0.6uA	1.5uA
Isd	Shutdown current	IC disabled, Vin=3.7V, Vout=0V	-	0.5uA	1.6uA
Ttso	Thermal Shutdown	-	-	150℃	-
Ilim	Current Limit	-	0.8A	1A	1.25A

3.3 効率

図 3.3 効率

3.4 データシートリンク先

4 AD コンバーター(ADC081C027CIMK)仕様

4.1 概要

項目	内容
Resolution	8bit
Reference voltage	Vdd(3.3V)
Maximum Sample Rate	188.9kSPS
Interfaces	I2C

4.2 電気的特性

4.2.1 最大定格

Parameter	Value
Operating Temperature	-40°C to +105°C
Maximum Operation Voltage	6.5V

4.2.2 定格

Symbol	Parameter	Condition	Min.	Тур.	Max.
Vdd	supply voltage	Internal Oscillator	2.7V	-	5.5V
Idd	Automatic Conversion Mode	Vdd=2.7V to 3.6V	-	0.41mA	0.59mA
	Power down mode	PD1	-	0.1uA	0.2uA
		PD2, fscl=400kHz	-	13uA	45uA

4.3 データシートリンク先

http://www.tij.co.jp/product/jp/adc081c027

4.4 レジスタ

Name	D7	D6	D5	D4	D3	D2	D1	D0
Address Pointer	0	0	0	0	0	Register Select		ct

Address Pointer Field Descriptions

D2	D1	D0	REGISTER
0	0	0	Conversion Result (read only)
0	0	1	Alert Status (read/write)
0	1	0	Configuration (read/write)
0	1	1	Low Limit (read/write)
1	0	0	High Limit (read/write)
1	0	1	Hysteresis (read/write)
1	1	0	Lowest Conversion (read/write)
1	1	1	Highest Conversion (read/write)

Name	Pointer	D15	D14	D13	D12	D11	D10	D9	D8
		Alert Flag	Flag Reserved			Conversion Result [7:4]			
Conversion	00h	D7	D6	D5	D4	D3	D2	D1	D0
Result		Conversion Result [3:0]				Reserved			

Conversion Result Register Field Descriptions

Field	Description
D15	Alert Flag.
	This bit indicates when an alert condition has occurred. When the Alert Bit Enable is set in the
	Configuration Register, this bit will be high if either alert flag is set in the Alert Status Register.
	Otherwise, this bit is a zero. The I2C controller will typically read the Alert Status register and other data
	registers to determine the source of the alert.
D[14:12]	Reserved.
	Always reads zeros.
D[11:4]	Conversion Result.
	The Analog-to-Digital conversion result. The Conversion result data is a 8-bit data word in straight binary
	format. The MSB is D11.
D[3:0]	Reserved.
	Always reads zeros.

Name	Pointer	D7	D6	D5	D4	D3	D2	D1	D0
Alert Status	01h			Rese	erved			Over Range	Under Range

Alert Status Register Field Descriptions

Field	Description
D[7:2]	Reserved.
D[1.2]	Always reads zeros. Zeros must be written to these bits.
	Over Range Alert Flag.
	Bit is set to 1 when the measured voltage exceeds the VHIGH limit stored in the programmable VHIGH limit
	register. Flag is reset to 0 when one of the following two conditions is met: (1) The controller writes a one to
D1	this bit. (2) The measured voltage decreases below the programmed VHIGH limit minus the programmed
	VHYST value . The alert will only self-clear if the Alert Hold bit is cleared in the Configuration register. If the
	Alert Hold bit is set, the only way to clear an over range alert is to write a one to this bit.
	Under Range Alert Flag.
	Bit is set to 1 when the measured voltage falls below the VLOW limit stored in the programmable VLOW
	limit register. Flag is reset to 0 when one of the following two conditions is met: (1) The controller writes a
D0	one to this bit. (2) The measured voltage increases above the programmed VLOW limit plus the
	programmed VHYST value. The alert will only self-clear if the Alert Hold bit is cleared in the Configuration
	register. If the Alert Hold bit is set, the only way to clear an under range alert is to write a one to this bit.

Name	Pointer	D7	D6	D5	D4	D3	D2	D1	D0
Configuration	02h	C	volo Timo (2)	.01	Alert Hold	Alert Flag	Alert Pin	0	Dolority
Configuration	0211		ycle Time [2:	.0]	Alert Hold	Enable	Enable	U	Polarity

Configuration Register Field Descriptions

Field	Description
D[7:5]	Cycle Time.
	Configures Automatic Conversion mode. When these bits are set to zeros, the automatic conversion mode
	is disabled. This is the case at power-up.
	When these bits are set to a non-zero value, the ADC will begin operating in automatic conversion mode.
	The Cycle Time table shows how different values provide various conversion intervals.
D4	Alert Hold.
	0: Alerts will self-clear when the measured voltage moves within the limits by more than the hysteresis
	register value.
	1: Alerts will not self-clear and are only cleared when a one is written to the alert high flag or the alert low
	flag in the Alert Status register.
D3	Alert Flag Enable.
	0: Disables alert status bit [D15] in the Conversion Result register.
	1: Enables alert status bit [D15] in the Conversion Result register.
D2	Alert Pin Enable.
	*This bit does not apply to the ADC081C027.
D1	Reserved.
	Always reads zeros. Zeros must be written to these bits.
D0	Polarity.
	*This bit does not apply to the ADC081C027.

Cycle Time Field Descriptions

D7	D6	D5	Conversion Interval	Typical fconvert[ksps]
0	0	0	Mode Disabled	0
0	0	1	Tconvert x 32	27
0	1	0	Tconvert x 64	13.5
0	1	1	Tconvert x 128	6.7
1	0	0	Tconvert x 256	3.4
1	0	1	Tconvert x 512	1.7
1	1	0	Tconvert x 1024	0.9
1	1	1	Tconvert x 2048	0.4

4.5 省電力制御

使用している電源IC(TPS61099YFFR)は、低負荷時でも、比較的高効率が保たれるものを使用している。

実装されているADコンバータ(ADC081C027CIMK)は、Activeモード(Automatic operation mode)は使わない方が低電力化を達成できる。Normal modeでは、測定後、自動的にPower-downモードに移行するため低電力化が可能である。Automatic operation modeからPower-downモードに移行するためには、自動変換モードを無効にする(Address:02h D7-D5:000)。

Rev A1.0: 2019年8月初版