M378K: September	814, 2025.
	Distributions [cont'd].
Geometric Dist'u	
success probabili	by @ until the first success.
failures until 7	independently Bernoulli friels w/ the same ity a until the first success. It which denotes the number of the first success is called geometric.
We write Y~g	
Set 9=1-p.	
	2 k
Pr(y) P 9.P	9 ² ·P ···· 9 ^k ·P
Q: P[Y>2] =	
	1-P[Y=0]-P[Y=1]-P[Y=2]
=	1-P-7-P-92P
=	$\frac{9}{7}$ $\frac{-9^2}{7}$
=	9 (1-P-9P)
	7
3	$9 \cdot (9 - 9p) = 9 \cdot 9 \cdot (1-p) = 9^3$

Problem 3.2. Source: Sample P exam, Problem #462.

Each person in a large population independently has probability p of testing positive for diabetes where 0 . People are tested for diabetes, one person at a time, until a test is positive. Individual tests are independent. Determine the probability that <math>m or fewer people are tested, given that n or fewer people are tested, where $1 \le m \le n$.

The total of people tested

i.e., $Y=Y'-1 \sim g(p)$ $P[Y' \leq m \mid Y' \leq n] = P[Y+1 \leq m \mid Y+1 \leq n]$ $= P[Y \leq m-1 \mid Y \leq n-1]$ $= P[Y \leq m-1]$ $= P[Y \leq m-1]$ $= P[Y \leq m-1]$ $= P[Y \leq m-1]$ $= \frac{1-P[Y > m-1]}{1-P[Y > m-1]} = \frac{1-q^m}{1-q^n}$

Task: Google the memoryless property of the geometric.

Poisson Distribution. The Poisson distribution is No valued and has the pmf: $p_k = P_r(k) = e^{-\lambda} \frac{\lambda^k}{k!}$ for $k \in \mathbb{N}_0$ where λ is a positive parameter.

Problem 3.3. Source: Sample P exam, Problem #355.

The number of calls received by a certain emergency unit in a day is modeled by a Poisson distribution with parameter 2. Calculate the probability that on a particular day the unit receives at least two calls.

Y... # ext calls

Y ~ Poisson (
$$\lambda=2$$
) ~ P(2)

P[Y>2] = 1-P[Y<1]

= 1-P[Y=0] - P[Y=1]

= 1- e^{-\lambda} - e^{-\lambda} \cdot \lambda

= 1- e^{-2} - e^{-2} 2

= 1-3e^{-2}

Expectation. Defin. For a discrete r.v. Y w/ support Sy = TR

and w/ pmf py,

we define its expectation

(or expected value, or mean) as E[Y]= \(\sum_{y\infty}(y)\) If the sum exists Theorem. Let Y, and Y, be two r.v.s on the same 12, both w/ finite expectations. Let ox and 15 be two constants. Then, $\mathbb{E}\left[\alpha x_1 + \beta x_2\right]$ also exists, and E[X 1, + B 12] = X E[1,] + B E [1] Linearity of Expection.

M378K Introduction to Mathematical Statistics Problem Set #4

Expectation and variance: the discrete case.

Problem 4.1. Source: Sample P exam, Problem #481.

The number of days required for a damage control team to locate and repair a leak in the hull of a ship is modeled by a discrete random variable N. N is uniformly distributed on $\{1, 2, 3, 4, 5\}$.

The cost of locating and repairing a leak is $N^2 + N + 1$.

Calculate the expected cost of locating and repairing a leak in the hull of the ship.

$$E[N^{2}+N+1] = E[N^{2}] + E[N] + 1$$

$$Linearty$$

$$E[N] = \frac{1}{5} \cdot 1 + \frac{1}{5} \cdot 2 + \frac{1}{5} \cdot 3 + \frac{1}{5} \cdot 4 + \frac{1}{5} \cdot 5 = \frac{1}{5} \cdot 15 = 3$$

$$E[N^{2}] = \frac{1}{5} \cdot 1^{2} + \frac{1}{5} \cdot 2^{2} + \frac{1}{5} \cdot 3^{2} + \frac{1}{5} \cdot 4^{2} + \frac{1}{5} \cdot 5^{2} = \frac{1}{5} \cdot (1 + 2^{2} + 3^{2} + 4^{2} + 5^{2}) = \frac{1}{5} \cdot \frac{5 \cdot 6 \cdot (2 \cdot 5 + 4)}{6} = 14$$

$$Answer: 14 + 3 + 4 = 15$$

П

Task:
$$\frac{\text{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^{2}]}{\mathbb{E}[(X - a)^{2}]} \xrightarrow{a} \min$$