EXPERIMENT 6B

o b)Implementation of Bellman Ford Algorithm

Bellman-Ford Algorithm

- Dijkstra's doesn't work when there are negative edges:
 - Intuition we can not be greedy any more on the assumption that the lengths of paths will only increase in the future
- Bellman-Ford algorithm detects negative cycles (returns false) or returns the shortest path-tree

NEGATIVE-WEIGHT CYCLES

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist

NEGATIVE-WEIGHT CYCLES

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist

Bellman-Ford algorithm: Finds all shortest-path lengths from a **source** $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

BELLMAN-FORD ALGORITHM

```
d[s] \leftarrow 0
for each v \in V - \{s\}
do \ d[v] \leftarrow \infty
initialization
d[s] \leftarrow 0
for i \leftarrow 1 to |V| - 1
    do for each edge (u, v) \in E
        do if d[v] > d[u] + w(u, v)

then d[v] \leftarrow d[u] + w(u, v)

relaxation

step
for each edge (u, v) \in E
    do if d[v] > d[u] + w(u, v)
             then report that a negative-weight cycle exists
At the end, d[v] = \delta(s, v), if no negative-weight cycles.
Time = O(VE).
```


Initialization.

Order of edge relaxation.

End of pass 1.

End of pass 2 (and 3 and 4).

VIVA

- Write the relax algorithm.
- List the drawbacks of Bellman Ford algorithm.
- Identify the path that has minimum cost to travel from node a to node f.

- o Can Bellman ford algorithm be solved by using greedy algorithm.
- Differentiate between bellman ford and dijkstra's algorithm.
- Reference

APPLICATIONS

Bellman-Ford in Practice

- Distance-vector routing protocol
 - Repeatedly relax edges until convergence
 - Relaxation is local!
- On the Internet:
 - Routing Information Protocol (RIP)
 - Interior Gateway Routing
 Protocol (IGRP)

