Chapter 18: Contingency chi-square, Fisher's and McNemar's tests

TXCL7565/PHSC7565

What This Lecture Covers

- Contingency chi-square test (traditional)
- Fisher's exact test (small expected counts)
- McNemar's test (paired data)

CONTINGENCY CHI-SQUARE TEST

Goodness of fit vs contingency

- Goodness of fit determines whether there is a convincing discrepancy between observed and theoretical proportions.
- Contingency determines whether there is a convincing difference between one set of observed proportions and another set of observed proportions.

Contingency tables

A table where both the columns and rows are based upon categorization.

	Control design	Test design
Not expelled	1732 (86.6%)	1778 (88.9%)
expelled	268 (13.4%)	222 (11.1%)

Table 18.1 A contingency table showing the effect of IUD design upon the number of cases where the device was expelled.

Contingency chi-square test

Figure 18.1 Summary of the circumstances in which a contingency chi-square test is appropriate.

Re-orienting contingency tables

	Control design	Test design
Not expelled	1732 (86.6%)	1778 (88.9%)
expelled	268 (13.4%)	222 (11.1%)

	Not expelled	expelled
Control	1732	268
design	(49.3%)	(54.7%)
Test	1778	222
design	(50.7%)	(45.3%)

Influences on contingency chi-square test outcome

Likelihood of significance with a contingency chi-square test

- Most likely A large difference between the proportions in the two groups being compared, large sample sizes, and all categories reasonably well represented.
- Least likely A small difference between the proportions in the two groups being compared, small sample sizes, and rarity of one of the categories within the samples.

CONTINGENCY CHI-SQUARE IN GRAPHPAD

Welcome to GraphPad Prism

Contingency tables: Each row defines a treatment or exposure outcome, and each value is an exact count of objects or event

-	Table format	A	В
-	Contingency	Cases	Control
		Υ	Υ
1	Smoked		
2	Never smoked		

Cases
Control
Smoked Never smoked

2.Select 'Start with an empty data table' from Enter/import data:

? Learn more

Column Growned

Contingency

Survival

Parts of Whole

Existing file

Open a File

Clone a Graph Graph Portfolio

LabArchives

Enter/import data: Start with an empty data table

Use tutorial data: Chi-square test of prospective data (aspirin and MI)

Fishers exact test of retrospective data (smoking and cancer)

Sensitivity and specificity (HIV)

Chi-square test for trend

3.Click 'Create'

Prism Tips

Cancel

Enter count information into the table. It does not matter which variable is used to define the columns and which variable is used to describe the rows.

Methods:

A contingency Chi-square test was used to determine the difference in the proportion of patients whose IUD was expelled between the group of patients that received the control design and the group of patients that received the test design. All statistical analyses were conducted in GraphPad Prism (v7.0a).

Results:

There was a significantly higher proportion (chi-square=4.92, df=1, p=0.0265) of patients whose IUD was expelled in the patients that received the control design (13.4% of patients with the control design) compared to the patients that received the test design (11.1% of patients with the test design).

P value and statistical significance	
Test	Chi-square
Chi-square, df	4.921, 1
z	2.218
P value	0.0265
P value summary	*
One- or two-sided	Two-sided
Statistically significant (P < 0.05)?	Yes

1.Click 'Yates' continuity corrected chisquare test' to get the chisquare test with the continuity correction.

P value and statistical significance	
Test	Chi-square with Yates' correction
Chi-square, df	4.71, 1
z	2.17
P value	0.0300
P value summary	*
One- or two-sided	Two-sided
Statistically significant (P < 0.05)?	Yes

Often, analysts use a continuity correction when they are analyzing a 2 by 2 table. In this case, the two tests yield similar results.

Larger contingency tables

	None	Verbal emphasis	Letter	Phone call
Attended	49 (65.3%)	53 (71.6%)	61 (83.6%)	65 (86.7%)
Did not attend	26 (34.7%)	21 (28.4%)	12 (16.4%)	10 (13.3%)

Table 18.3 Attendance at a diabetes clinic following various additional reminders (with column percentages).

- Can often make interpretation difficult because the p-value is that any of the proportions across a row (column proportions) or across a column (row proportions) are different
- Can sub-divide large tables to ask specific hypothesis but this is a slippery slope with respect to multiple testing
- Keep it simple, keep it clear

Planning experimental size

Figure 18.3 Calculation of necessary sample size for a contingency chi-square test

Generic output of sample size calculation

Sample Size for Contingency chi-square test	
Assumed proportion for group 1:	0.15
Target proportion for group 2:	0.11
Target power:	0.90
Sample size (each group):	1484
Achieved power:	0.9001

FISHER'S EXACT TEST

The problem of low expected frequencies

- The calculation of the contingency chi-square test involves some approximations that work satisfactorily for large counts but biases can creep in with lower expected counts.
- Low counts are not a problem, only low 'expected' counts.

Fisher's exact test

Figure 18.4 Summary of the circumstances in which a Fisher's test is appropriate.

What is a 'low' expected frequency

- No consensus on what 'low' stands for.
- Many statistical packages use an expected count of less than 5 in any cell or two cells.
- Prior to powerful computers, the Fisher's test was computationally intensive to calculate, but now, it is not a problem. Therefore, if in doubt, use Fisher's exact test.

Comparison of all three methods for IUD no low expected frequencies

Statistical Test	Chi-Square	p-value
Uncorrected chi- square	4.921	0.027
Yates' corrected chi- square	4.170	0.030
Fisher's exact test		0.030

Comparison of all three methods with low expected frequencies

	Placebo	Vitamin C
No cold	1 (25.0%) [2]	3 (75.0%) [2]
Cold	3 (75.0%) [2]	1 (25.0%) [2]

Statistical Tests

	chi-square	p-value
uncorrected chi-square	2.00	0.157
Yates' corrected chi-square	0.50	0.480
Fisher's Exact test		0.486

FISHER'S EXACT TEST IN GRAPHPAD

P value and statistical significance		
Test	Fisher's exact test	
P value	0.0299	
P value summary	*	
One- or two-sided	Two-sided	
Statistically significant (P < 0.05)?	Yes	

	P value and statistical significance	
Chi-square with Yates' correction	Test	Fisher's exact test
4.71, 1		
2.17	P value	0.0299
0.0300	P value summary	*
*	One- or two-sided	Two-sided
Two-sided	Statistically significant (P < 0.05)?	Yes
Yes	i i i i i i i i i i i i i i i i i i i	
	4.71, 1 2.17 0.0300 * Two-sided	Chi-square with Yates' correction 4.71, 1 2.17 0.0300 P value P value summary One- or two-sided Two-sided Statistically significant (P < 0.05)?

P value and statistical significance	
Test	Fisher's exact test
P value	0.0299
P value summary	*
One- or two-sided	Two-sided
Statistically significant (P < 0.05)?	Yes

P value and statistical significance	
Test	Chi-square
Chi-square, df	4.921, 1
Z	2.218
P value	0.0265
P value summary	*
One- or two-sided	Two-sided
Statistically significant (P < 0.05)?	Yes

McNEMAR'S TEST

McNemar's test

Figure 18.5 Use of McNemar's test for categorical outcomes with a *paired* data structure.

		Pre-training	
		Unsatisfactory	Satisfactory
Unsatisfactory Post-training Satisfactory	Unsatisfactory	9	1
	7	8	

Table 18.7 Effects of training on the quality of inhaler use among asthma patients.

Table 18.8 Calculation of the McNemar test for the effect of training on inhaler technique

	Unsatisfactory changing to satisfactory	Satisfactory changing to unsatisfactory
Observed	7	1
Expected	(7+1)/2 = 4	(7+1)/2 = 4
Obs - Exp	7 - 4 = 3	1 - 4 = -3
Obs - Exp (Yates corr)	2.5	-2.5
(Obs - Exp) ²	6.25	6.25
(Obs - Exp) ² / Exp	1.5625	1.5625

Chi-square

$$1.5625 + 1.5625 = 3.125$$

McNEMAR'S TEST IN GRAPHPAD

GraphPad will not calculate a McNemar's test using a chisquare statistics.

However, you can get 'trick' it to run a binomial version of the McNemar's test.

Enter the discordant number of observations only.

1.Select
'Percentages'
from Enter
expected
values as

McNEMAR'S TEST IN R

```
asthma = matrix(c(9,1,7,8),nrow=2,byrow=TRUE)
mcnemar.test(asthma)
```

McNemar's Chi-squared test with continuity correction

data: asthma McNemar's chi-squared = 3.125, df = 1, p-value = 0.0771

What did we learn?

- A contingency table presents data that is based entirely upon categorization.
- Contingency chi-square test is used to determine whether the proportion of individuals falling into a particular category changes according to circumstances.
- Yates correction should be applied to the contingency chisquare test when the contingency table is 2 by 2.
- When expected counts are low, use Fisher's exact test.
- Use McNemar's test when data are paired.