Recopilación de preguntas tipo test de Pilar y Bullejos:

- **1.-** Sea $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^2 3x + 1$, y sea R_f la relación de equivalencia en \mathbb{R} definida por dicha aplicación. Sea $\alpha \in \mathbb{R}$, con $\alpha \geq 2$, y sea $\overline{\alpha}$ su clase de equivalencia. Entonces:
- (a) ā tiene 3 elementos
- (b) ā tiene infinitos elementos
- (c) ā tiene 2 elementos
- **2.-** En el anillo \mathbb{Z}_5 la suma del elemento 4 consigo mismo 48 veces vale:
- (a) 1
- (b) 3
- (c) 2
- **3.-** Sean $p(x), q(x) \in \mathbb{Z}_7$ dos polinomios no nulos. ¿Cúal de los siguientes enunciados es verdadero?
- (a) Existen polinomios no nulos para los que grd(p(x)q(x)) es estrictamente mayor que grd(p(x)) + grd(q(x)).
- (b) grd(p(x)q(x)) es siempre igual a grd(p(x)) + grd(q(x)).
- (c) Existen polinomios no nulos para los que grd(p(x)q(x)) es estrictamente menor que grd(p(x)) + grd(q(x)).
- **4.-** Sea $f: X \to Y$ una aplicación y $A, B \in P(X)$. Entonces:
- (a) $f_*(A) f_*(B) \subseteq f_*(A B)$
- (b) $f_*(A B) = f_*(A) f_*(B)$
- (c) $f_*(A B) \subseteq f_*(A) f_*(B)$
- **5.** Sea $f: \mathbb{Z}_3 \to \mathbb{Z}_3$ dada por $f(x) = x^2 + 2x + 1$. Para cada $n \ge 2$ sea $g_n: \mathbb{Z}_3 \to \mathbb{Z}_3$ dada por $g_n(x) = \left(x^2 + 2x + 1\right)^n$. Entonces:
- (a) $f \neq g_{3k}$ para todo $k \geq 1$.
- (b) Para todo $n \ge 2$ se tiene que $f = g_n$.
- (c) Existe un $n \ge 2$ para el que $f \ne g_n$.
- 6.- ¿Cúal de las siguientes afirmaciones es verdadera?
- (a) El anillo \mathbb{Z}_7 tiene 4 unidades.
- (b) El anillo producto cartesiano $\mathbb{Z} \times \mathbb{Z}$ tiene 2 unidades.
- (c) El anillo producto cartesiano $\mathbb{Q} \times Z$ tiene infinitas unidades.
- 7.- Sea R una relación de equivalencia en un conjunto X y X/R el conjunto cociente. Entonces:
- (a) $X/R \in P(X)$
- (b) $X/R \subseteq P(X)$
- (c) $X/R \subseteq X$
- **8**.- Considérese el anillo \mathbb{Z}_{10} de enteros módulos 10 y el conjunto $U(\mathbb{Z}_{10})$ de unidades de dicho anillo. Entonces:
- (a) $U(\mathbb{Z}_{10}) = \{1, 3, 9\}$
- (b) $U(\mathbb{Z}_{10}) = \{2,4,8\}$
- (c) $U(\mathbb{Z}_{10}) = \{1, 3, 7, 9\}$
- **9.-** Sea X un conjunto con 4 elementos $y \in X$ un subconjunto suyo con 2 elementos. Sea $f: P(X) \to P(X)$ la aplicación definida por $f(Y) = Y \cap S$, para $Y \in P(X)$. El cardinal del conjunto cociente $P(X)/R_f$ es
- (a) 2
- (b) 4
- (c) 8
- **10.-** En un anillo A un elemento $\alpha \in A$ se dice idempotente si $\alpha^2 = \alpha$. Entonces:

- (a) El anillo \mathbb{Z}_6 tiene sólo 2 elementos idempotentes
- (b) El anillo $\mathbb Z$ tiene sólo 2 elementos idempotentes
- (c) El anillo producto cartesiano $\mathbb{Z} \times \mathbb{Q}$ tiene sólo 2 elementos idempotentes
- **11.** Sean $\alpha_1 = 2120$, $\alpha_2 = 4825$ y b = 19. Entonces el resto de dividir $(-\alpha_1)\alpha_2$ entre b es:
- (a) 11
- (b) 8
- (c) 18
- **12.-** Sean A, B subconjuntos de un conjunto X con |A| = n y |B| = m. Entonces:
- (a) $|A \cap B| = n m$
- (b) $|A \cap B| = m n$
- (c) $|A \cup B| + |A \cap B| = n + m$
- **13.-** Sean A,B subconjutos de un conjunto X y consideremos su diferencia simétrica $A \triangle B = (A B) \cup (B A)$. Entonces:
- (a) $A \triangle B = \emptyset \Leftrightarrow A \neq B$
- (b) $A \triangle B = X \Leftrightarrow A = B$
- (c) $A \triangle B = \emptyset \Leftrightarrow A = B$
- **14.-** Un subanillo A de un anillo B se dice propio si $\{0\} \subseteq A \subseteq B$. Seleccione el enunciado correcto:
- (a) El conjunto $A = \{5k \mid k \in \mathbb{Z}\}$ es un subanillo propio de \mathbb{Z}
- (b) El anillo \mathbb{Z} no tiene subanillos propios
- (c) El cuerpo Q no tiene subanillos propios
- **15.-** Sea \mathbb{N} el conjunto de los números naturales y sea $g : \mathbb{N} \to P(\mathbb{N})$ la aplicación dada por $g(n) = \{x \in \mathbb{N} \mid x \geq n\}$. Entonces:
- (a) g es sobreyectiva
- (b) g es inyectiva
- (c) g es biyectiva
- **16.-** Si $X = \{a, b, c\}$ e $Y = \{1, 2, 3\}$, entonces:
- (α) Hay exactamente 9 aplicaciones biyectivas de X en Y
- (b) Hay exactamente 3 aplicaciones biyectivas de X en Y
- (c) Hay exactamente 6 aplicaciones biyectivas de X en Y
- 17.- El elemento $2 + \sqrt{3}$
- (a) no es una unidad en $\mathbb{Z}\Big(\sqrt{3}\,\Big)$ ya que este no es un cuerpo
- (b) no es una unidad en $\mathbb{Z}(\sqrt{3})$ ya que su inverso sería su conjugado y al ser real coincide con el mismo pero

$$(2+\sqrt{3})(2+\sqrt{3})=(2+\sqrt{3})^2=4+3+8\sqrt{3}\neq 1$$

- (c) es una unidad en $\mathbb{Z}(\sqrt{3})$ y su inverso es $2-\sqrt{3}$.
- **18.-** Si A es un anillo y $B \subseteq A$ es un subanillo. Entonces:
- (a) B hereda la estructura de A por tanto si A es un cuerpo B también tiene que ser un cuerpo.
- (b) puede ser B un cuerpo aunque no lo sea A y puede ser A un cuerpo y no serlo B
- (c) si A no es cuerpo, como la estructura de B es heredada de la de A, no puede tener una estructura mas rica y por tanto B no puede ser un cuerpo.
- **19**.- Las unidades del anillo \mathbb{Z}_5 son.
- (a) $U(\mathbb{Z}_5) = \{1, -1\}$
- (b) $U(\mathbb{Z}_5) = \{1\}$
- (c) $U(\mathbb{Z}_5) = \{1, 2, 3, 4\}$
- **20**.- La aplicación $f: A[x] \to A$ que asocia a cada polinomio su término independiente (es decir el

coeficiente que acompaña a x^0)

- (α) es un morfismo de anillos sobreyectivo pero no inyectivo
- (b) es un morfismo de anillos inyectivo pero no sobreyectivo.
- (c) no es morfismo de anillos
- **21**.- La aplicación $f: \mathbb{Z}_6 \to \mathbb{Z}_3$ definida como f(n) = resto de dividir n entre 3, para n = 0, 1, 2, 3, 4, 5
- (α) Está bien definida pero no es un morfismo de anillos
- (b) Es un morfismo de anillos
- (c) No está bien definida.
- 22.- La inclusión $\mathbb{Z}_n \to \mathbb{Z}$; $i \to i$
- (α) No está bien definida por tanto no tiene sentido preguntarse si es un morfismo de anillos
- (b) Está bien definida, lleva el 0 en el 0, el 1 en el 1 y es un morfismo de anillos
- (c) Está bien definida pero no es un morfismo de anillos
- **23**.- La aplicación norma $N : \mathbb{Z}[i] \to \mathbb{Z}$; $N(\alpha + bi) = \alpha^2 + b^2$
- (α) es morfismo de anillos sobreyectivo pero no inyectivo
- (b) es morfismo de anillos inyectivo pero no sobreyectivo
- (c) no es morfismo de anillos
- **24**.- El conjunto $\mathbb{Z}[x]^*$ de los polinomios no nulos de $\mathbb{Z}[x]$
- (a) Es cerrado para la suma, producto y opuestos y por tanto es un subanillo de $\mathbb{Z}[x]$
- (b) Es cerrado para suma, producto y opuestos, pero no es un subanillo de $\mathbb{Z}[x]$
- (c) Depende de la definición de subanillo, podría ser o no ser subanillo de $\mathbb{Z}[x]$
- **25.** La aplicación $f: \mathbb{Z}_9 \to \mathbb{Z}_6$ definida como f(n) = resto de dividir n entre 6, para n = 0, 1, 2, 3, 4, 5, 6, 7, 8
- (α) Está bien definida pero no es un morfismo de anillos
- (b) Está bien definida y es un morfismo de anillos
- (c) No está bien definida
- **26**.- Considerar los anillos $\mathbb{Z}[i]$ y $\mathbb{Q}[i]$
- (a) $\mathbb{Z}[i]$ no es un cuerpo sólo tiene 4 unidades, pero $\mathbb{Q}[i]$ si que es un cuerpo
- (b) Ambos $\mathbb{Z}[i]$ y $\mathbb{Q}[i]$ son cuerpos
- (c) Ni $\mathbb{Z}[i]$ ni $\mathbb{Q}[i]$ son cuerpos, sólo tienen cuatro unidades, 1,-1,i y -i
- **27**.- En el anillo $\mathbb{Z} \times \mathbb{Z}$ definimos la siguiente relación:

$$(a,b)\sim(c,d)\Leftrightarrow a-c$$
 es múltiplo de 2 y $b=d$

- (α) es una relación de equivalencia pero no es una congruencia
- (b) es una congruencia
- (c) no es de equivalencia y por tanto no puede ser congruencia
- **28**.- En el anillo $\mathbb Q$ definimos la siguiente relación

$$a \sim b \Leftrightarrow a - b \in \mathbb{Z}$$

- (α) no es de equivalencia y por tanto no puede ser congruencia
- (b) es congruencia
- (c) es de equivalencia pero no es una congruencia
- **29.** Considera el morfismo $E_1: \mathbb{Z}[x] \to \mathbb{Z}$, que evalua cada polinomio en 1, $E_1(f(x)) = f(1)$ y sea $I = \langle x 1 \rangle \leq \mathbb{Z}[x]$ el ideal generado por x 1. Entonces:
- (α) ninguna de las otras opciones es correcta
- (b) $I \subseteq \ker(E_1) \ y \mathbb{Z}[x]/\ker(E_1) \cong \mathbb{Z}$
- (c) $I \subseteq \ker(E_1) \ y \ \mathbb{Z}[x] / \ker(E_1) \cong \operatorname{Im}(E_1) \neq \mathbb{Z}$
- **30**.- En el anillo de los polinomios $\mathbb{Z}[x]$ considera el conjunto P con elementos los polinomios de grado par, notar que los polinomios constantes tienen grado cero que es par

- (a) P no es un ideal pero si es un subanillo
- (b) P no es ideal y tampoco es un subanillo
- (c) P es un ideal pero no es un subanillo
- 31.- El cuerpo de los números complejos
- (a) aunque es infinito, solo tiene un número finito de ideales y número finito de subanillos
- (b) es infinito y tiene infinitos ideales e infinitos subanillos
- (c) solo tiene dos ideales, que son el trivial y el total, pero tienen infinitos subanillos
- 32.- Sea A un anillo
- (a) todo ideal de A tiene el cero y puede haber ideales que tienen al 1 sin que sean el propio anillo
- (b) todo ideal de A tiene el cero y el único ideal que tiene al 1 es el propio anillo
- (c) todo ideal de A tiene al cero y al 1
- **33**.- Dados dos ideales $I, J \leq A$
- (α) la intersección $I \cap J$ no es un ideal pero la unión $I \cup J$ sí lo es
- (b) ni la intersección $I \cap J$ ni la unión $I \cup J$ son ideales
- (c) la intersección $I \cap J$ es un ideal pero la unión $I \cup J$ no lo es
- 34.- Elige la correcta
- (a) Todos los ideales de $\mathbb Z$ son principales pero hay ideales de $\mathbb Q$ que no lo son
- (b) Todos los ideales de $\mathbb Q$ son principales pero hay ideales de $\mathbb Z$ que no son principales
- (c) Todos los ideales de \mathbb{Z} y de \mathbb{Q} son principales
- **35.** Considera la aplicación $T: \mathbb{Z}[x] \to \mathbb{Z}$ que asocia a cada polinomio su término independiente (aquel que no tiene x) y el ideal $I = \langle x \rangle \leq \mathbb{Z}[x]$ generado por x
- (a) es un morfismo de anillos que además induce un morfismo $\overline{T}: \mathbb{Z}[x]/I \to \mathbb{Z}$, tal que $\overline{T}(\overline{f(x)}) = T(f(x))$
- (b) es un morfismo de anillos que no induce un morfismo $\overline{T}: \mathbb{Z}[x]/I \to \mathbb{Z}$, tal que $\overline{T}(\overline{f(x)}) = T(f(x))$
- (c) no es morfismo
- **36.** En el anillo $\mathbb{Z}[i]$ considera el ideal *I* generado por el elemento *i*, entonces:
- (a) $I = \{ ni : n \in \mathbb{Z} \}$
- (b) ninguna de las otras opciones es cierta
- (c) $I = \mathbb{Z}[i]$
- 37.- ¿Cuál de las siguientes afirmaciones es verdadera?
- a) Existen $n \in \mathbb{Z}$ tal que 6 no es un divisor de $n^3 n$
- b) 6 | $n^3 n$ para todo $n \in \mathbb{Z}$
- c) 6 | $n^3 n$ unicamente para $n \in \mathbb{N}$
- **38**.- El anillo $\mathbb{Z}_{4} \times \mathbb{Z}_{7}$ tiene
- a) 27 unidades
- b) 12 unidades
- c) 14 unidades
- **39**.- Sea A un anillo conmutativo. Elegir la respuesta correcta:
- a) $U(A[x]) \subseteq U(A)$
- b) U(A[x]) = U(A)
- c) $U(A[x]) \supseteq U(A)$
- **40**.- Sea $X = \left\{ p(x) = \sum_{i=0}^n \alpha_i x^i \in \mathbb{Z}[x] : \alpha_0 \in 2\mathbb{Z} \right\}$. ¿Cuál de las siguientes afirmaciones es
- verdadera?
- a) X es un ideal de Z[x]
- b) X no es subanillo ni ideal de Z[x]

- c) X es un subanillo de Z[x]
- **41**.- El resto de dividir 12³⁹ entre 13 es
- a) 12
- b) 0
- c) 13
- **42**.- Sea $\alpha = \sqrt{2} + \sqrt{5}$ e Y = { $p(x) \in \mathbb{Q}[x] : p(\alpha) = 0$ } Entonces:
- a) Y es un ideal no nulo de $\mathbb{Q}[x]$
- b) Y = 0
- c) $Y \neq \emptyset$, pero no es un ideal de $\mathbb{Q}[x]$
- **43**.- En el anillo $\mathbb{Z}_5[x]$ el máximo común divisor de los polinomios $x^3 + x^2 + x + 1$ y $2x^2 + 3$ tiene grado
- a) 2
- b) 1
- c) 0
- **44.** En el anillo $\mathbb{Z}_3[x]$ sea I el ideal generado por el polinomio $x^3 + 2x^2 + x + 1$ ¿Cuál de las siguientes afirmaciones es verdadera?
- a) $(x^2 + 2x + 2) + I$ es una unidad de $\mathbb{Z}_3[x]/I$ con inverso $(x^2 + 2) + I$
- b) $(x^2 + 2x + 2) + I$ no es una unidad de $\mathbb{Z}_3[x]/I$
- c) $(x^2 + 2x + 2) + I$ es una unidad de $\mathbb{Z}_3[x]/I$ con inverso $(x^2 + 1) + I$
- **45**.- Sea A un D.I. y $\alpha \in A$ un elemento con $\alpha \neq 0$ y $\alpha \neq 1$ ¿Cuál de las siguientes afirmaciones es verdadera?
- a) Si el conjunto $\{\alpha^n/n \in \mathbb{N}\}$ es finito, entonces A es un cuerpo
- b) Siempre las potencias α^n , con $n \in \mathbb{N}$, son distintas entre sí
- c) Si $\alpha^n = \alpha^m$ para $n, m \ge 1$, con $m \ne n$, entonces existe $r \in \mathbb{N}$, no nulo tal que $\alpha^r = 1$
- **46**.- El número de soluciones enteras en el intervalo [-1000, 1000] del sistema

$$x \equiv 11 \mod 15$$

$$x \equiv 6 \mod 35$$

es

- a) 19
- b) 20
- c) 18
- **47**.- Sea $f: \mathbb{Z}[i]/2\mathbb{Z}[i] \to \mathbb{Z}_2$ definida por $f((\alpha+bi)+2\mathbb{Z}[i])=(\alpha-b)+2\mathbb{Z}$ ¿Cuál de las siguientes afirmaciones es verdadera?
- a) f está bien definida pero no es un homomorfismo de anillos
- b) f no es una aplicación bien definida
- c) f está bien definida y es un homomorfismo de anillos
- **48**.- La ecuación $2x \equiv i \mod(2+i)$
- a) Tiene una única solución en ${\mathbb Z}$
- b) Tiene infinitas soluciones en ${\mathbb Z}$
- c) No tiene solución en ${\mathbb Z}$