Chapter 4

- (Griffiths p.189) Book mentions that $\nabla \cdot \mathbf{D} = \rho_f$ and $\nabla \times \mathbf{D} = 0$ only when the space is entirely filled with a homogeneous dielectric can this argument be extended to say that within a homogeneous dielectric (that is large enough, but E field is nonzero outside), that the same equations hold true?
- (Griffiths p.189) How does $\mathbf{D} = \epsilon_0 \mathbf{E}_{\text{vac}}$ come from the two expressions above it?
- (Griffiths p.192) I thought that ρ_b had to do with polarization, which does not require the presence of free charge. Why must it be the case that if $\rho_f = 0$ then $\rho_b = 0$?
- (Griffiths p.193) Where does the $-E_0r\cos\theta$ term in Equation 4.45 come from? **Answer:** Comes from the fact that $\mathbf{E} = E_0\hat{z}$ so therefore using $V = -\int \mathbf{E} \cdot d\mathbf{l}$ you get that $V = -E_0z = -E_0r\cos\theta$, since $z = r\cos\theta$.
- (Griffiths p.195) When only given χ_e , should the approach always be to use $\sigma_b = \epsilon_0 \chi_e \mathbf{E}$, then use the \mathbf{E} field at the boundary (due to the bound charge) to solve for σ_b , which then allows us to find \mathbf{E} ?

Chapter 7

• (Griffiths p.304) Why is it true that if $\sigma = \infty$, then the net force on the charges equals zero? Is this because we require **J** to be finite and since $\mathbf{J} = \sigma \mathbf{f}$, then if $\sigma = \infty$ then in order for **J** to be finite then we require that $\mathbf{f} = 0$?

Chapter 8

 \bullet (Griffiths p. 359) Why is it that when $\frac{\mathrm{d}W}{\mathrm{d}t}=0,$ then we can conclude that

$$\int \frac{\partial u}{\partial t} d = -\oint \mathbf{S} \cdot d\mathbf{a}?$$