Compléter un tableau

Les acides sont rangés par force relative croissante, donc par valeur de pK_a décroissante.

Acide du couple	Base du couple	K _a	p <i>K</i> _a
C ₂ H ₅ OH	C ₂ H ₅ O ⁻	10 ⁻¹⁸	$-\log(10^{-18}) = 18$
CH ₃ NH ₃ ⁺	CH₃NH₂	$2,5 \times 10^{-11}$	$-\log(2.5 \times 10^{-11}) = 10.6$
C ₂ H ₅ COOH	C ₂ H ₅ COO ⁻	1,3 × 10 ⁻⁵	$-\log(1.3\times10^{-5})=4.9$
НСООН	HCOO-	$10^{-3.8} = 1.6 \times 10^{-4}$	3,8
H₃O ⁺	H ₂ O	10 ⁻⁰ = 1	0
HI	 -	10 ¹⁰	$-\log(10^{10}) = -10$

Les élèves doivent pouvoir généraliser la notion de force relative initialement définie pour des acides faibles.

Utiliser le critère d'évolution spontanée

- a. L'équation de la réaction modélisant la dissolution totale du chlorure d'ammonium dans l'eau s'écrit : $NH_4Cl(s) \rightarrow NH_4^+(aq) + Cl^-(aq)$.
- b. La base associée à l'ion ammonium est obtenue en retirant un ion hydrogène à l'ion ammonium. Ainsi, B est l'ammoniac NH3, dont le schéma de Lewis s'écrit :

Un doublet non liant sur l'atome d'azote est en effet nécessaire pour respecter la règle de l'octet.

c. L'équation de la réaction modélisant la transformation de l'ion ammonium avec l'eau s'écrit : $NH_4^+(aq) + H_2O(\ell) \rightleftharpoons NH_3(aq) + H_3O^+(aq)$. À l'état initial, le quotient de réaction vaut donc :

$$Q_{r,i} = \frac{\frac{[NH_3]_i}{c^{\circ}} \times \frac{[H_3O^+]_i}{c^{\circ}}}{\frac{[NH_4^+]_i}{c^{\circ}}} = 0$$

Puisque $Q_{\rm r,i} = 0 < Q_{\rm r,eqb} = K_{\rm a} = 6.3 \times 10^{-10}$, le système évolue dans le sens de formation de B.

Calculer une constante d'acidité

a. L'équation de la réaction modélisant la transformation de l'acide nitreux avec l'eau s'écrit :

$$HNO_{2}(aq) + H_{2}O(\ell) \rightleftharpoons NO_{2}(aq) + H_{3}O^{+}(aq)$$

- b. On déduit de l'équation précédente que la concentration en quantité de base formée à partir de l'acide nitreux est égale à celle de l'ion oxonium : $[NH_2^-]_f = [H_3O^+]_f = 3.1 \times 10^{-4} \text{ mol} \cdot L^{-1}$.
- c. La constante d'acidité du couple HNO₂ / NO₂ est égale au quotient de réaction à l'état d'équilibre, donc :

$$K_{a}(HNO_{2}/NO_{2}^{-}) = Q_{r,\acute{e}qb} = \frac{\frac{[NO_{2}^{-}]_{f}}{c^{\circ}} \times \frac{[H_{3}O^{+}]_{f}}{c^{\circ}}}{\frac{[HNO_{2}]_{f}}{c^{\circ}}}.$$

$$A. N. : K_{a}(HNO_{2}/NO_{2}^{-}) = \frac{\frac{3,1 \times 10^{-4} \text{ mol} \cdot L^{-1}}{1 \text{ mol} \cdot L^{-1}} \times \frac{3,1 \times 10^{-4} \text{ mol} \cdot L^{-1}}{1 \text{ mol} \cdot L^{-1}}}{\frac{1,9 \times 10^{-4} \text{ mol} \cdot L^{-1}}{1 \text{ mol} \cdot L^{-1}}}$$

$$= 5,1 \times 10^{-4}.$$

Valider un taux d'avancement

Le tableau d'avancement s'écrit, pour un système de volume $V_0 = 1 \, L$:

Équation	AH(aq)	+ H ₂ O(ℓ) =	<i>A</i> ⁻(aq)	+ H ₃ O ⁺ (aq)	
État	Quantités de matière				
initial	$n_0 = cV_0$	_	0	0	
final = équilibre	$n_0 - x_f$	_	X_{f}	X_{f}	

Ce tableau est réécrit en faisant intervenir le taux d'avancement

final
$$\tau = \frac{X_f}{X_{max}} = \frac{X_f}{n_0}$$
:

Équation	AH(aq)	+ H ₂ O(ℓ) =	<i>A</i> ⁻(aq)	+ H ₃ O ⁺ (aq)	
État	Quantités de matière				
initial	$n_0 = cV_0$	_	0	0	
final = équilibre	$n_0 - n_0 \tau$	_	$n_0 \tau$	$n_0\tau$	

La constante d'acidité du couple AH / A- doit être égale au quotient de réaction à l'état d'équilibre.

$$\text{Or}: Q_{r, \text{\'eqb}} = \frac{ \frac{[A^{-}]_{f}}{c^{\circ}} \frac{[H_{3}O^{+}]_{f}}{c^{\circ}}}{\frac{[AH]_{f}}{c^{\circ}}} = \frac{\frac{n_{0}\tau}{c^{\circ}V_{0}} \times \frac{n_{0}\tau}{c^{\circ}V_{0}}}{\frac{n_{0}(1-\tau)}{c^{\circ}V_{0}}} = \frac{n_{0}\tau^{2}}{c^{\circ}V_{0}(1-\tau)} = \frac{c\tau^{2}}{c^{\circ}(1-\tau)}$$

$$\textbf{A. N.}: Q_{r, \text{\'eqb}} = \frac{0.10 \text{ mol} \cdot L^{-1} \times 0.095^{2}}{1.0 \text{ mol} \cdot L^{-1} \times (1-0.095)} = 1.0 \times 10^{-3}.$$

A. N.:
$$Q_{\text{r,éqb}} = \frac{0.10 \text{ mol} \cdot \text{L}^{-1} \times 0.095^2}{1.0 \text{ mol} \cdot \text{L}^{-1} \times (1 - 0.095)} = 1.0 \times 10^{-3}$$

Cette valeur est compatible avec celle de la constante d'acidité $K_a(AH/A^-) = 10^{-pK_a} = 10^{-3.0}$.