3. Linear regression with multiple regressors

CAUSAL RELATIONS BETWEEN CLASS SIZE & TEST SCORES

Omitted variables bias

Omitted Variables Bias (OVB) occurs if:

1. The omitted variable is correlated with the included regressor X.

AND

2. The omitted variable affects the dependent variable Y.

OMITTED VARIABLES BIAS (OVB)

Linear regression model:

$$TestScores_i = \beta_0 + \beta_1 STR + u_i$$

- Do these variables cause OVB?
 - 1. Financial resources of the school district.
 - 2. Outside temperature during the test.
 - 3. Average parking lot space.
 - 4. Percentage of English learners

RANDOMIZATION AS A SOLUTION

- Randomized Controlled Trials (RCTs).
- Random assignment of $X \rightarrow no OVB$ (& no reverse causality).
- X is purely random, so it's independent of other factors affecting Y.
- E(u) does not vary with $X \to corr(X, u) = 0$.

Controlling for omitted variables

- Observational data \rightarrow no guarantee that corr(X, u) = 0.
- But if we can observe the omitted variable Z that affects both Y and X, we can try to "control for" it.
- Include Z in the regression, so it's no longer part of u.
- Estimate the relation between X and Y, while keeping Z fixed.

Multiple regression model with 2 regressors

$$E(Y_i|X_1, X_2) = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i}$$

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + u_i$$

• How do you interpret β_1 ?

Multiple regression model with 2 regressors

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + u_i$$

- $\beta_1 = \frac{\Delta Y}{\Delta X_i}$, holding X_2 constant.
- Partial effect of X_1
- How do you interpret β_2 ? and β_0 ? and u_i ?

Multiple regression model with k regressors

$$E(Y_i|X_1, X_2, ..., X_n) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki}$$

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \dots + \beta_k X_{k,i} + u_i$$

OLS estimation of multiple regression

- Select $\hat{\beta}_1$, $\hat{\beta}_2$, ..., $\hat{\beta}_k$ to best fit the sample data.
- Best fit the data = minimize (squared) prediction errors:

$$\min_{b_0, b_1, \dots, b_k} \sum_{i=1}^{n} (Y_i - [b_0 + b_1 X_{i,1} + b_2 X_{i,2} + \dots + b_k X_{k,1}])^2$$

• OLS estimators $(\hat{\beta}_1, \hat{\beta}_2, ..., \hat{\beta}_k)$ = the values of $b_0, b_1, ..., b_k$ that minimize this expression

OLS estimation of multiple regression

$$Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{2i} + \dots + \hat{\beta}_k X_{ki} + \hat{u}_i$$

- Linear multiple regression model...
- ...but with sample OLS coefficients $\hat{\beta}_0$, $\hat{\beta}_1$,..., $\hat{\beta}_k$ as estimators of population coefficients β_0 , β_1 , ..., β_k .
- $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{2i} + \dots + \hat{\beta}_k X_{ki}$ = predicted value
- $\hat{u}_i = Y_i \hat{Y}_i$ = regression residual (estimator of error term u_i)

Multiple regression in STATA

```
reg testscr str pctel, robust
                             Number of obs = 420
Regression with robust standard errors
                                  F(2, 417) = 223.82
                                  Prob > F = 0.0000
                                  R-squared = 0.4264
                                  Root MSE = 14.464
                        Robust
   testscr | Coef. Std. Err. t P>|t| [95% Conf. Interval]
      str | -1.101296 .4328472 -2.54 0.011 -1.95213 -.2504616
    pctel | -.6497768 .0310318 -20.94 0.000 -.710775 -.5887786
     cons | 686.0322 8.728224 78.60 0.000 668.8754 703.189
```

 $TestScore = 686.0 - 1.10 \times STR - 0.65 \times PctEL$

Quant methods Daniele Girardi

Hypothesis tests & CIs for single coefficients in multiple regression

- 1. Specify $H_0 \& H_1$.
- 2. Estimate $\hat{\beta}_i$ and $SE(\hat{\beta}_i)$ from the multiple regression.
- 3. Compute t-statistics: $t = \frac{\widehat{\beta}_j \beta_{j,0}}{SE(\widehat{\beta}_j)}$
- 4. Compute p-value: $p = 2\Phi(-|t|)$.
- 5. Compute 95% CI: $\{\hat{\beta}_{j} \pm 1.96 \times SE(\hat{\beta}_{j})\}$.

Takeaway:

It's exactly the same as before, except that $\hat{\beta}_j$ and $SE(\hat{\beta}_j)$ are now estimated from a multiple regression.

APPLICATION: STR & TEST SCORES

$$\widehat{TestScore} = 686.0 - 1.10 \times STR - 0.650 \times PctEL.$$
(8.7) (0.43) (0.031)

- 1. Null hypothesis: $H_0: \beta_1 = 0$
- 2. t-statistic: $t = \frac{-1.10-0}{0.43} = -2.54$
- 3. p-value: $2\Phi(-2.54) = 0.011 = 1.1\%$.
- 4. 95% confidence interval for β_1 :

$$-1.10 \pm 1.96 \times 0.43 = (-1.95, -0.26)$$

IN STATA

```
reg testscr str pctel, robust
Regression with robust standard errors
                                         Number of obs = 420
                                   F(2, 417) = 223.82
                                   Prob > F = 0.0000
                                   R-squared = 0.4264
                                   Root MSE = 14.464
                        Robust
   testscr | Coef. Std. Err. t P>|t| [95% Conf. Interval]
      str | -1.101296 .4328472 -2.54 0.011 -1.95213 -.2504616
     pctel | -.6497768 .0310318 -20.94 0.000 -.710775 -.5887786
     cons | 686.0322 8.728224 78.60 0.000 668.8754 703.189
```

R² & adjusted R² in multiple regression

•
$$R^2 = \frac{ESS}{TSS} = 1 - \frac{SSR}{TSS}$$

Always increases if you add regressors.

• Adjusted
$$R^2$$
 (or \bar{R}^2) = $1 - \frac{n-1}{n-k-1} \frac{SSR}{TSS}$

R² & adjusted R² in multiple regression

reg testscr str pctel, robust											
Regression with robust standard errors				Number of of Prob > F = R-squared = Root MSE =		= 223.82 = 0.0000 = 0.4264	420	. est tab, stats(r2 r2_a)			
testscr		Coef.	Robust Std. Err.	t	P> t	[95%		Variab	le	Active	-
str pctel _cons		6497768	.4328472 .0310318 8.728224	-20.94	0.011 0.000 0.000	-1.95 710 668.8	07	s el_p _co		-1.1012959 64977678 686.03225	
									r2 _a	.42643136 .42368043	

Quant methods

Daniele Girardi

King's College London

Assumptions for causal inference in multiple regression

1. The regressors X_s are independent of the error term u_i

$$E(u_i|X_{1i}, X_{2i}, ... X_{ki}) = 0$$

- 2. $(Y_i, X_{1i}, X_{2i}, ..., X_{ki}), i = 1,..., n$, are i.i.d.
- 3. Large outliers are rare.
- 4. No perfect multicollinearity (no regressor is an exact linear function of other regressors).

HYPOTHETICAL EXAMPLE

$$Y_i = \beta_0 + \beta_1 X_{1i} + u_i$$

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

• Hypothetical example: Class size X_1 uncorrelated with the error term *only* after controlling for financial resources X_2 .

The CIA

- Another way to see assumption 1, when you are mainly interested in the effect of one particular regressor.
- X = regressor (or "treatment") of interest.
- W_1 , W_2 , ..., W_k = control variables.
- Conditional Independence Assumption (CIA):

$$E(u_i|X, W_1, ..., W_k) = E(u_i|W_1, ..., W_k)$$

In words: u and X are uncorrelated, after controlling for the W_s

Control variables: good and bad

- Not all variables are suitable as control variables.
- Bad controls: variables that are affected by the X of interest.
 - By "holding them fixed", you create bias.
- Good controls are pre-determined with respect to the X of interest.
- In estimating the effect of class size on test scores, the amount of learning by students (if observable) would be a bad control.

EXAMPLE OF BAD CONTROL VARIABLE

- We are after the effect of class size on test scores.
- Don't control for *learning!* we don't want to hold learning fixed
- Similarly, don't control for grades! Doesn't make sense to hold them fixed, when class size affects them through learning.
- "Learning" and grades are bad controls.
- Don't control for anything that is affected by the regressor of interest!

Quant methods

Module convenors:

Dr Maia King and Professor Jonathan Portes

Data Analysis Lab (5SSPP267)

This module enables students to develop their **skills and confidence in data analysis in Excel**, and in presenting this analysis in **clear and accessible written reports**.

They will explore data sources and applications that are relevant for the study of **current topics in economics and social sciences.**

Students will practise their skills in **interactive weekly workshops**, **exploring data sourcing**, **analysis and visualisation** on a variety of relevant topics.

During these sessions, they will have the chance to develop and deploy their **critical thinking skills** in relation to data analysis practices in economics and social sciences, and **how data is used in public debate**.

Students will also develop important **employability skills** like communication skills, report writing, and clearly explaining complex findings.

The module **does not cover regression or other causal methods**, and therefore does not overlap with 5SSPP213 or 5SSPP241.

Teaching arrangement:

- 6 hours of lectures
- 10 weekly computer workshops of 1 hour each

Assessment:

- **1,500-word data analysis report** (40%)
 due in Reading Week
- **1,500-word data analysis report** (60%)
 due after teaching ends

Thank you for your attention