# Problemas lineares Problema de fluxo máximo

Fundamentos em Pesquisa Operacional Marcelo Antonio Marotta



Departamento de Ciência da Computação Universidade de Brasília



#### Exercício da última aula

#### Implementar no ORTools o problema de transporte

#### Grafo Bipartido



$$\min \sum_{i \in M} \sum_{j \in N} A_{ij} x_{ij}$$

s.t.

$$egin{aligned} \sum_{j \in N} x_{ij} &= P_i; & orall i \in M \ \sum_{i \in M} x_{ij} &= S_j; & orall j \in N \ 0 &\leq x_{ij} &\leq min(P_i; S_j); \ orall i &\in M; orall j \in N \end{aligned}$$

M=4

N=5

Producao(Pi): [ 3. 9. 7. 11.]

Armazens(Sj): [9. 5. 7. 1. 8.]

Custo de escoamento R\$/Kg (Aij):

[ 0.50 0.95 0.16 0.14 0.31 ]

[ 0.04 0.08 0.04 0.28 0.84 ]

[ 0.84 0.46 0.01 0.89 0.07 ]

[ 0.21 0.23 0.63 0.15 0.89 ]



#### Livro

- Problema de fluxo máximo
- Exemplo 1.3
  - Capítulo 3 (Max-flow problem)
  - Capítulo 4 (Min cost flow problem)

# Network Optimization: Continuous and Discrete Models

Dimitri P. Bertsekas

Massachusetts Institute of Technology

WWW site for book information and orders http://www.athenasc.com



Athena Scientific, Belmont, Massachusetts



#### **Problemas lineares**

#### Problemas lineares inteiros binários

- The assignment problem (problema de associação)
- The shortest path (problema do menor caminho)

#### **Problemas lineares**

- The transportation problem (problema de transporte)
- The max-flow problem (problema de máximo fluxo)



#### The max-flow problem - Exemplo 1.3 (Bertsekas, 1998)

O problema de máximo fluxo é importante em muitos contextos práticos

- Cálculo da vazão máxima para sistemas hídricos
- Calcula da vazão máxima para sistemas de redes de computadores
- Cálculo da velocidade máxima em sistemas rodoviários



#### The max-flow problem - Exemplo 1.3 (Bertsekas, 1998)

Balanceamento de carga - Problema de fluxo máximo

Dada uma rede de computadores, onde o computador de origem irá encaminhar vários arquivos para um computador destino. Balanceie o tráfego de rede entre os nodos intermediários para maximizar a vazão entre os nodos.

Temos um grafo (N, A) com limites de fluxo xij ∈ [b ij, c ij] para cada arco (i, j), e dois nós especiais S e T. Queremos maximizar a divergência de S sobre todos os vetores de fluxo de capacidade viável, tendo divergência zero para todos os nós, exceto S e T.





#### Grafo conectado







 $N = \text{conjunto de nodos} - \{1,...,N\}$  N = número de nodos = 6 $i,j = \text{índices} = \{i,j \in N\}$ 



 $N = \text{conjunto de nodos} - \{1,...,N\}$  N = número de nodos = 6  $i,j = \text{indices} = \{i,j \subseteq N\}$  T = 6S = 1



Matriz de conectividade (ou conexão)













































#### Matriz de conectividade (ou conexão)

|             | 4 |   | 6 |   |   |   |  |
|-------------|---|---|---|---|---|---|--|
| 4           |   | 5 |   |   |   | 2 |  |
|             | 5 |   | 5 | 3 | 6 | ω |  |
| 6           |   | 5 |   | 8 |   | 4 |  |
|             |   | 3 | 8 |   | 4 | Q |  |
|             |   | 6 |   | 4 |   | ၈ |  |
| 1 2 3 4 5 6 |   |   |   |   |   |   |  |





c<sub>ij</sub> = Matriz de conectividade (ou conexão) ou Matriz de capacidade máxima

|             | 4 |   | 6 |   |   |     |  |
|-------------|---|---|---|---|---|-----|--|
| 4           |   | 5 |   |   |   | 2   |  |
|             | 5 |   | 5 | 3 | 6 | ω   |  |
| 6           |   | 5 |   | 8 |   | 4   |  |
|             |   | 3 | 8 |   | 4 | QI  |  |
|             |   | 6 |   | 4 |   | တ ` |  |
| 1 2 3 4 5 6 |   |   |   |   |   |     |  |





c<sub>ij</sub> = Matriz de conectividade (ou conexão) ou Matriz de capacidade máxima

|             | 4 |   | 6 |   |   |          |  |
|-------------|---|---|---|---|---|----------|--|
| 4           |   | 5 |   |   |   | (N)      |  |
|             | 5 |   | 5 | 3 | 6 | $\omega$ |  |
| 6           |   | 5 |   | 8 |   | 4        |  |
|             |   | 3 | 8 |   | 4 | QJ       |  |
|             |   | 6 |   | 4 |   | ( o      |  |
| 1 2 3 4 5 6 |   |   |   |   |   |          |  |

Assim como existe uma matriz de capacidade máxima, pode existir uma matriz de capacidade mínima





 $b_{ij}$  = Matriz de capacidade mínima

|   | 1 |     | 0 |     |   |        |
|---|---|-----|---|-----|---|--------|
| 0 |   | 0.5 |   |     |   | 2      |
|   | 0 |     | 2 | 2   | 1 | ω      |
| 0 |   | 0   |   | 1.2 |   | 4      |
|   |   | 0   | 0 |     | 2 | ر<br>ص |
|   |   | 0   |   | 0   |   | ် တ    |
| 1 | 2 | 3   | 4 | 5   | 6 |        |











O que seria uma solução válida para o problema?





O que seria uma solução válida para o problema?

Qualquer valor de vazão orientada entre S e T, contanto que não violem as capacidades das arestas (conexões)







Qualquer valor de vazão entre S e T, contanto que não violem as capacidades das arestas (conexões)

Utilizaremos uma matriz de variáveis numéricas para representar os valores de vazão

 $X_{N\times N}$ 

|   | 4 |   | 6 |   |   | <u></u>  |
|---|---|---|---|---|---|----------|
| 0 |   | 4 |   |   |   | N        |
|   | 0 |   | 0 | 0 | 6 | $\omega$ |
| 0 |   | 2 |   | 4 |   | 4        |
|   |   | 0 | 0 |   | 4 | QI       |
|   |   | 0 |   | 0 |   | ( တ )    |
| 1 | 2 | 3 | 4 | 5 | 6 |          |





Nesse exemplo: x12=4; x14=6; x23=4; x36=6; x43=2; x45=4; x56=4;

|             | 4 |   | 6 |   |   |     |  |
|-------------|---|---|---|---|---|-----|--|
| 0           |   | 4 |   |   |   | N   |  |
|             | 0 |   | 0 | 0 | 6 | ω   |  |
| 0           |   | 2 |   | 4 |   | 4   |  |
|             |   | 0 | 0 |   | 4 | QI  |  |
|             |   | 0 |   | 0 |   | ( o |  |
| 1 2 3 4 5 6 |   |   |   |   |   |     |  |







Nesse exemplo: x12=4; x14=6; x23=4; x36=6; x43=2; x45=4; x56=4;

O segredo está em analisar cada tipo de nodo e verificar sua divergência



Logo:

$$x_{43} + x_{45} - x_{14} = 0$$

- Utilizando os índices para generalizar o nodo analisado
- Vamos assumir que o índice i seja o nodo 4  $x_{i3} + x_{i5} - x_{1i} = 0$ ;  $\forall i \in N$



Nesse exemplo: x12=4; x14=6; x23=4; x36=6; x43=2; x45=4; x56=4;

O segredo está em analisar cada tipo de nodo e verificar sua divergência



Logo:

$$x_{43} + x_{45} - x_{14} = 0$$

- Utilizando os índices para generalizar o nodo analisado
- Vamos assumir que o índice i seja o nodo 4  $x_{i3} + x_{i5} - x_{1i} = 0$ ;  $\forall i \in N$



Nesse exemplo: x12=4; x14=6; x23=4; x36=6; x43=2; x45=4; x56=4;

O segredo está em analisar cada tipo de nodo e verificar sua divergência



Logo:

$$x_{43} + x_{45} - x_{14} = 0$$

- Utilizando os índices para generalizar o nodo analisado
- Vamos assumir que o índice i seja o nodo 4  $x_{i3} + x_{i5} - x_{1i} = 0$ ;  $\forall i \in N$





Nesse exemplo: x12=4; x14=6; x23=4; x36=6; x43=2; x45=4; x56=4;

O segredo está em analisar cada tipo de nodo e verificar sua divergência



Logo:

$$x_{43} + x_{45} - x_{14} = 0$$

- Utilizando os índices para generalizar o nodo analisado
- Vamos assumir que o índice i seja o nodo 4  $x_{i3} + x_{i5} - x_{1i} = 0$ ;  $\forall i \in N$



Nesse exemplo: x12=4; x14=6; x23=4; x36=6; x43=2; x45=4; x56=4;

O segredo está em analisar cada tipo de nodo e verificar sua divergência



$$\sum_{j \in N} x_{ij} - \sum_{j \in N} x_{ji} = 0 ; \forall i$$





Nesse exemplo: x12=4; x14=6; x23=4; x36=6; x43=2; x45=4; x56=4;

O segredo está em analisar cada tipo de nodo e verificar sua divergência



$$\sum_{j \in N} x_{ij} - \sum_{j \in N} x_{ji} = 0 ; \forall i$$

Infelizmente, a divergência não é sempre zero para todos os nodos, precisaremos avaliar cada tipo de nodo





Nesse exemplo: x12=4; x14=6; x23=4; x36=6; x43=2; x45=4; x56=4;

O segredo está em analisar cada tipo de nodo e verificar sua divergência



3 tipos podem ser detectados

- Origem
- Destino
- Intermediários

Agora precisaremos avaliar cada um deles em relação a sua divergência





Nesse exemplo: x12=4; x14=6; x23=4; x36=6; x43=2; x45=4; x56=4;

- Origem
  - Apenas arestas saindo
- Destino
  - Apenas arestas chegando
- Intermediários
  - Arestas saindo
  - Arestas chegando

Para podermos modelar esse relacionamento, vamos utilizar a mesma lógica do problema de menor caminho

- Tudo que sai de um nodo é positivo
- Tudo que entra em um nodo é negativo

Para o nodo intermediário temos:

$$\sum_{j \in N} x_{ij} - \sum_{j \in N} x_{ji} = 0; \forall i \in N \mid i \neq S,T$$





Nesse exemplo: x12=4; x14=6; x23=4; x36=6; x43=2; x45=4; x56=4;

- Origem
  - Apenas arestas saindo
- Destino
  - Apenas arestas chegando

Mas, e para a origem e o destino?

A soma do que sai ou do que entra não vai ser igual a 1 ou -1. E agora?





Nesse exemplo: x12=4; x14=6; x23=4; x36=6; x43=2; x45=4; x56=4;

- Origem
  - Apenas arestas saindo
- Destino
  - Apenas arestas chegando

Utilizaremos o conceito de aresta sintética ou abstrata





Nesse exemplo: x12=4; x14=6; x23=4; x36=6; x43=2; x45=4; x56=4;

- Origem
  - Apenas arestas saindo
- Destino
  - Apenas arestas chegando

Utilizaremos o conceito de aresta sintética ou abstrata





Nesse exemplo: x12=4; x14=6; x23=4; x36=6; x43=2; x45=4; x56=4;

- Origem
  - Apenas arestas saindo
- Destino
  - Apenas arestas chegando

Utilizaremos o conceito de aresta sintética ou abstrata



Nesse exemplo: x12=4; x14=6; x23=4; x36=6; x43=2; x45=4; x56=4;

- Origem
  - Apenas arestas saindo

$$\sum_{i \in N} x_{ii} - x_{TS} = 0 ; \forall i = S$$





Nesse exemplo: x12=4; x14=6; x23=4; x36=6; x43=2; x45=4; x56=4;

- Origem
  - Apenas arestas saindo

$$\sum_{j \in N} x_{ij} - x_{TS} = 0 ; \forall i = S$$

- Destino
  - Apenas arestas chegando

$$-\sum_{i\in N} x_{ii} + x_{TS} = 0 ; \forall i = T$$





Nesse exemplo: x12=4; x14=6; x23=4; x36=6; x43=2; x45=4; x56=4;

- Origem
  - Apenas arestas saindo

$$\sum_{j \in N} x_{ij} - x_{TS} = 0 ; \forall i = S$$

- Destino
  - Apenas arestas chegando

$$-\sum_{j\in N} x_{ji} + x_{TS} = 0; \forall i = T$$

Se fizermos algumas manipulações matemáticas e substituirmos i por S e T, teremos:

$$\sum_{j \in N} x_{Sj} = \sum_{j \in N} x_{jT} = x_{TS}$$





Nesse exemplo: x12=4; x14=6; x23=4; x36=6; x43=2; x45=4; x56=4;

- Origem
  - Apenas arestas saindo

$$\sum_{j \in N} x_{ij} - x_{TS} = 0 ; \forall i = S$$

- Destino
  - Apenas arestas chegando

$$-\sum_{j\in N} x_{ji} + x_{TS} = 0 ; \forall i = T$$

- Intermediários
  - Arestas saindo
  - Arestas chegando

$$\sum_{j \in N} X_{ij} - \sum_{j \in N} X_{ji} = 0; \forall i \in N \mid i \neq S,T$$





Nesse exemplo: x12=4; x14=6; x23=4; x36=6; x43=2; x45=4; x56=4;

Não esqueça das restrições de capacidade máxima e mínima

Logo:

$$b_{ij} \le x_{ij} \le c_{ij};$$
  
$$\forall i,j \subseteq N \mid i \ne T \in j \ne S$$

$$0 <= x_{TS} <= \infty$$



# Função objetivo



#### Modelando o problema - Função objetivo



Nesse exemplo: x12=4; x14=6; x23=4; x36=6; x43=2; x45=4; x56=4;

Se analisarmos a variável

X<sub>TS</sub>

verificaremos que ela será idêntica ao máximo fluxo de saída da origem, que será igual ao máximo fluxo de entrada no destino Logo, a função objetivo será:

max x<sub>TS</sub>



# Modelagem final



#### Modelagem final do problema





#### Implemente um problema de fluxo máximo no ORTools

Para validar seu modelo considere a instância:

```
#[Parametros]
N = 7
S = 0
T = 6
bij = np.zeros((N,N))
cij = np.zeros((N,N))
```

```
Solucao:

Valor objetivo = 9.0

X[0,1]=5 de MAX_CAP: 5.00

X[0,2]=4 de MAX_CAP: 7.00

X[1,4]=5 de MAX_CAP: 7.00

X[2,3]=2 de MAX_CAP: 2.00

X[2,5]=2 de MAX_CAP: 2.00

X[3,6]=2 de MAX_CAP: 3.00

X[4,6]=5 de MAX_CAP: 8.00

X[5,6]=2 de MAX_CAP: 5.00

X[T,S]=9 de MAX_CAP: -1.00
```

```
cij[0][1] = 5; cij[0][2] = 7; cij[1][3] = 5; cij[1][4] = 7; cij[2][3] = 2; cij[2][5] = 2; cij[3][6] = 3; cij[4][6] = 8; cij[5][6] = 5;
```



#### Implemente um problema de fluxo máximo no ORTools

Para validar seu modelo considere a instância:

```
Solucao:

Valor objetivo = 9.0

X[0,1]=5 de MAX_CAP: 5.00

X[0,2]=4 de MAX_CAP: 7.00

X[1,4]=5 de MAX_CAP: 7.00

X[2,3]=2 de MAX_CAP: 2.00

X[2,5]=2 de MAX_CAP: 2.00

X[3,6]=2 de MAX_CAP: 3.00

X[4,6]=5 de MAX_CAP: 8.00

X[5,6]=2 de MAX_CAP: 5.00

X[T,S]=9 de MAX_CAP: -1.00
```



```
cij[0][1] = 5; cij[0][2] = 7; cij[1][3] = 5; cij[1][4] = 7; cij[2][3] = 2; cij[2][5] = 2; cij[3][6] = 3; cij[4][6] = 8; cij[5][6] = 5;
```

