TEMA 6: SUPPORT VECTOR MACHINES

ANÁLISIS MULTIVARIANTE (Grado en Estadística)

Separación Lineal

• Datos "separables linealmente": Suponer que estamos con n datos $x_i \in \mathbb{R}^p$, tenemos dos clases $y_i \in \{-1,1\}$ y que existe un hiperplano $\{x: \beta_0 + \beta' x = 0\}$ que los "separa" perfectamente:

- El LDA y la regresión logística buscan hiperplanos separantes lineales pero se puede ver que no siempre encuentran un hiperplano que separa perfectamente los grupos aunque éstos sí sean "linealmente separables".
- **Objetivo:** Si los datos son separables linealmente vamos a buscar un hiperplano que mejor los "separe" en el sentido de un mayor "margen"...

- La distancia del punto x a $\{x: \beta_0 + \beta' x = 0\}$ es $\pm \frac{1}{\|\beta\|} (\beta_0 + \beta' x)$
- Si tomamos $||\beta|| = 1$ y los datos son separables linealmente entonces la "distancia del punto x_i al hiperplano separante" será $y_i(\beta_0 + \beta' x_i)$ (en transparencia anterior vimos que esa distancia era siempre positiva).
- Usaremos una regla $G(x) = \text{sign}\{\beta_0 + \beta' x\} \in \{-1, 1\}$ para β_0 y β que separen con mayor "margen" los grupos.

• Mayor margen M resolviendo el problema:

$$\max_{\beta_0,\beta \text{ con } \|\beta\|=1} M$$
 sujeto a $y_i(\beta_0+\beta'x_i)\geq M$

(distancia de todos los x_i al hiperplano mayores que el margén M...)

• En lugar de tomar $\|\beta\|=1$ podemos tomar un β tal que la restricción $y_i(\beta_0+\beta'x_i)\geq M$ simplifique a $y_i(\beta_0+\beta'x_i)\geq 1$. En ese caso, se puede ver que la distancia de las observaciones en los "margenes" es $M=1/\|\beta\|$. Luego maximizar $M(=1/\|\beta\|)$ es equivalente minimizar $\|\beta\|$ y el problema puede reescribirse como

$$\min_{\beta_0,\beta} \frac{1}{2} \|\beta\|^2$$
 sujeto a $y_i(\beta_0 + \beta' x_i) \geq 1$

Karush-Kuhn-Tucker (extensión multiplicadores de Lagrange para restricciones con " \geq "...)

$$L(\beta_0, \beta, \alpha_1, ..., \alpha_n) = \frac{1}{2} \|\beta\|^2 - \sum_{i=1}^n \alpha_i (y_i (\beta_0 + \beta' x_i) - 1).$$

Derivando e igualando a 0 vemos que $0=\sum_{i=1}^n\alpha_iy_i$ y $\beta=\sum_{i=1}^n\alpha_iy_ix_i$. Las condiciones Karush-Kuhn-Tucker implican $\alpha_i(y_i(\beta_0+\beta'x_i)-1)=0,...$

- Se puede probar que:
 - $\diamond \beta = \sum_{i=1}^{n} \alpha_i y_i x_i$
 - $\diamond \alpha_i \geq 0$
 - $\diamond \alpha_i > 0$ solo para los puntos verificando $y_i(\beta_0 + \beta' x_i) = 1 \Rightarrow \text{Las}$ únicas observaciones que contribuyen a calcular β son aquellas que están exactamente en los "margenes"
 - ⇒ Puntos soporte (Support Vector Machines)
- Nótese que los Support Vector Machines (SVM) ponen todo su esfuerzo clasificatorio centrandose en las observaciones "fronterizas" entre grupos (≈ puntos soporte). El LDA, QDA y logística usan todas las observaciones en las clases aunque éstas fueran fácilmente separables...

El problema se reescribe de nuevo (...) en

$$\max_{\alpha_1,\dots,\alpha_n} \left\{ \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{k=1}^n \alpha_i \alpha_k y_i y_k x_i' x_k \right\} \text{ sujeto a } \alpha_i \geq 0$$

y se debe verificar $\alpha_i(y_i(\beta_0 + \beta'x_i) - 1) = 0$ para i = 1, ..., n.

- Grupos no separables linealmente: Para grupos no separables podemos:
 - 1) Permitir observaciones mal-clasificadas e introducir variables de "holgura" ξ_i 's (slack variables)
 - 2) Llevar los datos a dimensiones mayores $(x_i \mapsto \phi(x_i))$ donde los grupos estén separados.
 - 3) Combinar 1) y 2)
- **Ejemplo de 2):** G1 = "dentro bola B((2,3)',1)" y G2 = "fuera bola"

G1 y G2 no separables linealmente con $\{x_1,x_2\}$ y sí con $\{x_1,x_2,x_1^2,x_2^2\}$

• Admitir "mal-clasificados": Permitimos observaciones x_i en lados no verificando los "margenes" y penalizando el tamaño de esa "mala-clasificación" con un "coste" dado por C:

$$\min_{\beta_0,\beta} \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i \text{ sujeto a } \xi_i \geq 0 \text{ y } y_i(\beta_0 + \beta' x_i) \geq 1 - \xi_i$$

Computacionalmente (...) se añade la restricción $0 \le \alpha_i \le C$

• Trabajar en dimensiones mayores y uso de nucleos (kernels): Llevar los datos a un espacio de dimensión mayor

 $x_i \in \mathbb{R}^p$ (data space) $\mapsto \Phi(x_i) = (\Phi_1(x_i), ..., \Phi_r(x_i))' \in \mathbb{R}^r$ (feature space) con $r \geq p$ donde sí son separables.

• Realizamos un SVM basado en $\{(\Phi(x_i), y_i)\}_{i=1}^n$. Dado un nuevo $x \in \mathbb{R}^p$

$$G(x) \leftarrow G_{\text{aux}}(\Phi(x)) = \text{sign}\{\beta_0 + \beta'\Phi(x)\}$$

y tendremos un $\beta = \sum_{i=1}^n \alpha_i y_i \Phi(x_i)$ (ahora con $\beta \in \mathbb{R}^r$) tal que:

$$G_{\text{aux}}(x) = \operatorname{sign}\left\{\beta_0 + \sum_{i=1}^n \alpha_i y_i \Phi(x_i)' \Phi(x)\right\} =$$

$$= \operatorname{sign} \left\{ \beta_0 + \sum_{i=1}^n \alpha_i y_i \langle \Phi(x_i), \Phi(x) \rangle \right\} \in \{-1, 1\}$$

• Kernels: Para simplificar el coste computacional y evitar tener que fijar explicitamente las funciones $\Phi_1(\cdot),...,\Phi_r(\cdot)$ se usan **nucleos**:

$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle.$$

Así, la regla anterior se convierte en:

$$G(x) = \operatorname{sign} \left\{ \beta_0 + \sum_{i=1}^n \alpha_i y_i K(x_i, x) \right\}$$

- Kernels más usados:
 - \diamond Polinómico: $K(x, x') = (1 + \langle x, x' \rangle)^{\mathbf{d}}$
 - \Leftrightarrow Bases radiales: $K(x, x') = \exp(-\gamma ||x x'||^2)$

Nótese que la función objetivo también se expresa en terminos de evaluaciones del nucleo K ya que la nueva función objetivo $\sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{k=1}^n \alpha_i \alpha_k y_i y_k \Phi(x_i)' \Phi(x_k)$ se escribe como $\sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{k=1}^n \alpha_i \alpha_k y_i y_k K(x_i, x_k) \dots$

• **Ejemplo:** Kernel polinómico con d=2:

$$K(x, x') = (1 + \langle x, x' \rangle)^2 = (1 + x_1 x_1' + x_2 x_2')^2$$
$$= 1 + 2x_1 x_1' + 2x_2 x_2' + (x_1 x_1')^2 + (x_2 x_2')^2 + 2x_1 x_1' x_2 x_2'.$$

Luego para $x = (x_1, x_2)'$ podemos tomar

$$\Phi(x) = (\Phi_1(x), \Phi_2(x), ..., \Phi_6(x))' = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)'$$

con lo que $K(x,x')=\langle \Phi(x),\Phi(x')\rangle$ y la dimensión del "feature space" es r=6(>p=2).

- Los parametros C (coste mal-clasificación) y d (nucleo polinómico) o γ (bases radiales) se eligen por **validación cruzada** (elegir (C,d) o (C,γ) minimizando ese error):
 - ⋄ C mayor lleva a mayor sobreajuste
 - ⋄ d mayor lleva a mayor sobreajuste
 - \diamond γ mayor lleva a mayor sobreajuste

- La librería e1071 en R ajusta SVM y realiza esa validación cruzada
- No es invariante frente a transformaciones de escala por lo que hay que escalar los datos
- El problema de q>2 clases se aborda, por ejemplo, realizando q(q-1)/2 problemas SVM de dos clases y realizando una votación...
- Existen nucleos $K(\cdot,\cdot)$ especialmente adaptados a problemas muy diferentes como, por ejemplo, en "text mininig"...