Particle spectrograph

Wave operator and propagator

C		$\sigma_{1}^{\#2}\alpha_{\beta}$	$\tau_{1}^{\#1}$	$\sigma_{1}^{\#1}{}_{lpha}$	$\sigma_{1}^{\#2}$	$ au_{1}^{\#1}$	$t_1^{\#_2}$
$\sigma_1^{\#1} + \alpha \beta$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2(t_1-2t_2)}}{3(1+k^2)t_1t_2}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0
$J_1^{\#2} + \alpha \beta$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$\frac{t_1 + 4t_2}{3(1 + k^2)^2 t_1 t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\tau_1^{\#1} + \alpha \beta$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#1} +^{lpha}$	0	0	0	$\frac{6}{(3+4k^2)^2t_1}$	$\begin{vmatrix} 6\sqrt{2} \\ (3+4k^2)^2 t_1 \end{vmatrix}$	1 0	$\frac{12ik}{(3+4k^2)^2t_1}$
$\sigma_1^{\#2} +^{\alpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\begin{bmatrix} & 12 \\ & (3+4k^2)^2 t_1 \end{bmatrix}$	0 1	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1} +^{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{\#2} +^{\alpha}$	0	0	0	$-\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
	$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\omega_1^{\#_2^2}$	$f_{1}^{\#1}_{\alpha\beta}$	$\omega_{1^{\bar{-}}\alpha}^{\#1}$	$\omega_{1^{-}\alpha}^{\#2}$	$f_{1^{ ext{-}}}^{\#1}{}_{lpha}$	$f_{1^-}^{\#2}$
$ u_1^{\#1} + \alpha \beta $	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0
$\nu_1^{\#2} + \alpha \beta$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$\frac{1}{3}\overline{l}k(t_1+t_2)$	0	0	0	0
$f_1^{\#1} + \alpha \beta$	$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0
$\omega_{1^{-}}^{\#1} +^{\alpha}$	0	0	0	6 6	$\frac{t_1}{3\sqrt{2}}$	0	<i>ikt</i> 1 3
$\omega_{1}^{\#2} +^{lpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t1</u> 3	0	$\frac{1}{3}$ i $\sqrt{2}$ kt ₁
$f_{1}^{\#1} +^{\alpha}$	0	0	0	0	0	0	0
$f_1^{\#2} +^{\alpha}$	0	0	0	$-\frac{1}{3}\bar{l}kt_1$	$-\frac{1}{3}$ i $\sqrt{2}$ kt_1	0	$\frac{2k^2t_1}{3}$
			Ó		(Ú

3	$\omega_{0^{+}}^{#1}$ †	6 L	2 _{r-}	0	0		0				
		$\frac{6 k^2 r_3}{0}$									
	$f_{0+}^{#1}$ †				0 0 0						
	$f_{0+}^{#2}$ †	(0	0	0	0					
	$\omega_{0}^{#1}$ †	$\omega_{0}^{#1}$ †		0	0	$k^2 r$	$k^2 r_2 + t_2$				
			$\omega_{2}^{#1}$	<u>α</u> β ·	$f_{2}^{\#1}_{\alpha_{l}}$	ω_2^{\sharp}	‡1 ! αβχ				
2	$\omega_{2}^{\#1}$ †	_αβ	$\frac{t_1}{2}$		$-\frac{ikt_1}{\sqrt{2}}$		0				$\sigma_0^{\!\#}$
0	$f_{2}^{\#1}\dagger^{\alpha\beta}$				$k^2 t_1$		0				$ au_0^{\#}$
	$\omega_2^{#1}$ † $^{\circ}$				0		<u>t</u> 1 2				$\sigma_{0}^{\#}$ $ au_{0}^{\#}$ $ au_{0}^{\#}$ $ au_{0}^{\#}$
		L						ı			$\sigma_0^{\scriptscriptstyle \#}$
	tors	S									Š
	neral	Multiplicities									J_{2}^{*1}
	ger	tipli									0
	Source constraints/gauge generators	Mu.		1	ω	m	3	3	2	19	$t_{\gamma+}^{\#1}$ $d_{\gamma}^{\#1}$
	s/gs				0 =			0 =:	0 ==		1
	aint				<u>-</u> 1α=			$\frac{1}{5}\alpha\beta$	$^{t_1}_{+}\alpha\beta$	nts:	ď
	nstr	Sd			$\tau_{1}^{\#2\alpha} + 2ik \ \sigma_{1}^{\#1\alpha} == 0$		$==\sigma_1^{\#2}\alpha$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\tau_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta = 0$ 5	Total constraints:	$\sigma_{2+\infty}^{\#1}$
	e co	irre	0	0	+2 į	0 ==	0 ==	+ 1/1	- 2 į	con	
1	ourc	SO(3) irreps	0 == +	$\tau_{0}^{\#1} == 0$	έ2α	$\tau_{1}^{\#1}{}^{\alpha} := 0$	$\sigma_{1}^{\#1}{}^{lpha}$:	$^{t_1}_{+}\alpha\beta$	$^{t_1}_{+}\alpha\beta$	otal	
	S I) 	τ ₀ [#] =	1 0	$ au_1^{\#}$	$\tau_1^{\#}$	[,D,	$\tau_1^{\#}$	τ2	1	

 $\omega_{0^{+}}^{\#1}$ $f_{0^{+}}^{\#1}$ $f_{0^{+}}^{\#2}$

	_	$\sigma_0^{\#}$	1	$\tau_{0}^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\!\scriptscriptstyle \#}$
$\sigma_{0^{+}}^{\#1}$ †		$\frac{1}{6 k^2}$	 r ₃	0	0	σ_0^{\sharp}
$ au_{0^{+}}^{\#1}$ †		0		0	0	0
$ au_{0^{+}}^{\#1}$ † $ au_{0^{+}}^{\#2}$ †		0		0	0	O
$\sigma_0^{\#1}$	†	0		0	0	$\frac{1}{k^2 r_2}$
$\sigma_{2^{-}}^{\#1} a eta_{\chi}$		0		0	<u>2</u> t ₁	•
$\tau_{2}^{\#1}{}_{\alpha\beta}$	4 C/ 11 C	$-\frac{1}{(1+2k^2)^2t_1}$	4 k ²	$(1+2k^2)^2t_1$	0	
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	2	$(1+2k^2)^2t_1$	2 i √2 k	``	0	
	200	$\sigma_{2}^{*+} + \tau^{\alpha \beta}$	#1 . O.B	τ_2'' + τ_2''	$\sigma_{2^{-}}^{#1} +^{\alpha\beta\chi}$	_

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_2} > 0$$
Polarisations: 1
Square mass: $-\frac{t_2}{r_2} > 0$
Spin: 0
Parity: Odd

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$