1) (1,5 pontos) Converta os números contidos na tabela abaixo para sua representação nos demais sistemas numéricos.

		1 41-72			
01)0		Desimal	Banotus	octal	Hex
	Dec	3305, 31 25	1100 111 01001 0101000	6351,24	CE9,5
	B	531,6875	100001 0011 1011	1=0.0,04	213, 13
		591,0015	1111010010 10, 01110001	+512,342	F4A, 7
	00		1112010010 10,0111001	7754 A3	FEC 8
	Hex	4076,546	1111111701700 10001700	113113	1,15

2) (1 ponto) Resolva o sistema linear abaixo utilizando o Método de Jordan e exiba a matriz diagonal obtida após a aplicação do método. Se o sistema for compatível, forneça uma solução do sistema.

Caso contrário, indique que o sistema é incompatível.

$$-x1+x2-2x3=-9$$

$$x 1 - x 2 + 2x 3 = 9$$

$$3x 1 - 3x 2 + 3x 3 = 21$$

2)
$$-x_1 + x_2 - 2x_3 = -9$$
 $x_1 - x_2 + 2x_3 = 9$
 $3x_4 - 3x_2 + 3x_5 = 21$

$$= \begin{bmatrix} -1 & 1 & -2 & -9 \\ 1 & -1 & 2 & 9 \\ 3 & -3 & 3 & 21 \end{bmatrix} \xrightarrow{M_3 = 3}$$

$$= \begin{bmatrix} -1 & 1 & -2 & -9 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & -6 \end{bmatrix} \xrightarrow{M_4 = -\frac{2}{3}} = \begin{bmatrix} -1 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & -6 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 1 & -2 & -9 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & -6 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & -6 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & -6 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & -6 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & -6 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & -6 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & -6 \end{bmatrix}$$

3) (1 ponto) Resolva o sistema linear abaixo utilizando o Método da Pivotação Completa e exiba a matriz triangular obtida após a aplicação do método. Se o sistema for compatível, forneça uma

solução do sistema. Caso contrário, indique que o sistema é incompatível.

$$x 1 - x 2 + 5x 3 = 7$$

$$x 1 - x 2 + 2x 3 = 4$$

$$-x 1 + 6x 2 + 2x 3 = 10$$

4) (1,5 pontos) Resolva o sistema linear abaixo usando o Método de Jacobi e o Método de Gauss-Seidel. Em ambos os casos, utilize x i = 0 (i = 1, 2, 3) como solução inicial. Pare após calcular 4 soluções aproximadas. Calcule o determinante normalizado do sistema linear e diga se o sistema é bem condicionado.

$$4x 1 - x 2 - 2x 3 = 0$$

$$x 1 - 5x 2 + x 3 = 3$$

$$x 1 + 2x 2 + 6x 3 = 13$$

$31 + 4 \times 1 - 32 - 2 \times 3 = 0$ $11 - 5 \times 2 + 2 \times 3 = 3$ $11 + 2 \times 2 + 6 \times 3 = 13$ $21 - (2 + 2 \times 3) + 2 \times (3 - 2 \times 3) = 5$ $21 - (3 - 2 \times 3) = 5$ $21 - (3 - 2 \times 3) = 5$ $21 - (3 - 2 \times 3) = 5$		
*Jocoli=> X1 0 0,93333 1,1+166 1,04832	X2 0 -0.6 -0.6666 0.05999 0,041664	7.3 0 2.1.666 2.36666 2.06666 1.95639
* Grans Sandle 1 x 1 0 0 0 1.0333 1.0038 0.9992	0 0000,00 00 00 00 00 00 00 00 00 00 00	

5) (1 ponto) Usando a transformação explicada em sala de aula, a partir do sistema linear complexo abaixo obtenha um sistema linear com coeficientes reais, aplique o Método de Gauss para resolvê - lo e exiba a matriz triangular obtida após a aplicação do método. Em seguida, calcule a solução do sistema linear abaixo e exiba sua solução.

$$2x 1 + (1 - i)x 2 = 8$$

$$-x 1 + 4x 2 = 1 + 4i$$

$$5 = 2 \times 1 + (11) \times 2 = 8$$

$$-11 + 4 \times 1 = 1 + 4$$

$$M = \begin{bmatrix} 2 & 1 \\ -9 & + \end{bmatrix} \quad N = \begin{bmatrix} 0 & -\frac{1}{1} \\ 0 & 0 \end{bmatrix} \quad c = \begin{bmatrix} 8 \\ 1 \end{bmatrix} \quad ol = \begin{bmatrix} 0 \\ 4 \end{bmatrix} \quad in$$

$$\begin{bmatrix} 2 & 1 & 0 & 1 & 8 \\ -1 & 4 & 0 & 0 & 1 \\ 0 & -1 & 2 & 1 & 0 \\ 0 & 0 & -1 & 4 & 4 \end{bmatrix} \quad M_2 = V_2 \quad \begin{cases} 2 & 1 & 0 & 1 & 8 \\ 0 & 9/2 & 0 & N/2 & 5 \\ 0 & -1 & 2 & 1 & 0 \\ 0 & 0 & -1 & 4 & 4 \end{bmatrix} \quad M_3 = 0 = \begin{bmatrix} 2 & 1 & 0 & 1 & 8 \\ 0 & 9/2 & 0 & N/2 & 5 \\ 0 & 0 & -1 & 4 & 4 \end{bmatrix} \quad M_4 = V_2$$

$$\begin{bmatrix} 2 & 1 & 0 & 1 & 8 \\ 0 & 9/2 & 0 & N/2 & 5 \\ 0 & 0 & -1 & 4 & 4 \end{bmatrix} \quad M_4 = 1/2$$

$$\begin{bmatrix} 2 & 1 & 0 & 1 & 8 \\ 0 & 9/2 & 0 & N/2 & 5 \\ 0 & 0 & -1 & 4 & 4 \end{bmatrix} \quad M_4 = 1/2$$

$$\begin{bmatrix} 2 & 1 & 0 & 1 & 8 \\ 0 & 9/2 & 0 & 0 & 5 \\ 0 & 0 & 2 & 1 & 1/4 \\ 0 & 0 & 0 & 1 & 1/4 \end{bmatrix} \quad S_1 = 3; S_2 = 1; T_1 = 0; T_2 = 1$$

$$\begin{cases} 31 & 52 & 71 & 72 & 1 \\ 0 & 0 & 2 & 1 & 1/4 \\ 0 & 0 & 0 & 1 & 1/4 \end{bmatrix} \quad X_1 = 3$$

$$\begin{cases} 31 & 52 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1/4 \\ 0 & 0 & 0 & 1 & 1/4 \end{bmatrix} \quad X_2 = 1 + i$$

6) (0,5 pontos) Seja f(x) = x 4 - 6x 3 + 3x 2 + 2x + 9. Calcule f(2) usando o Método de Briot-Ruffini. Em seguida, coloque f na Forma de Horner e calcule f(3).

06 or
$$\xi(x) = x^2 - 6x^3 + 3x^2 + 2x - 9$$

 $1 : -6 : 3 : 2 : 9$
 $2 : 2 : 3 : 2^2 : 48$
 $1 : -4 : -5 : -8$ Loyo $f(2) = -\frac{1}{2}$
 $f(3) = [((x-6)x+3)x+2]x+9$
 $f(3) = [((-9+3)3+2)3+9$
 $f(3) = ((-6)3+2)3+9$
 $f(3) = -(6\cdot3+9)$
 $f(3) = -48+9$
 $f(3) = -39$

07) (1 ponto) Esboce o gráfico de q(x) = 2 x - 5x - 15 no intervalo [-8, 8], isole uma raiz real positiva de q

obtendo um intervalo cujas extremidades sejam números inteiros e calcule uma aproximação para a raiz de q contida nesse usando o método da bisseção. Execute cinco iterações.

Α	В	m	Q(A)	Q(B)	F(M)	Erro maximo
-3	-2	-2,5	0,049787068	-4,86466472	-2,41792	0,5
-3	-2,5	-2,75	0,049787068	-2,417915	-1,18607	0,25
-3	-2,75	-2,875	0,049787068	-1,18607214	-0,56858	0,125
-3	-2,875	-2,9375	0,049787068	-0,56858386	-0,2595	0,0625
-3	-2,9375	-2,96875	0,049787068	-0,25950194	-0,10488	0,03125
-3	-2,96875	-2,98438	0,049787068	-0,10488252	-0,02755	0,015625

8) (2 pontos) Usando o Teorema de Lagrange, determine um intervalo para as raízes reais negativas

e um intervalo para as raízes reais positivas de $p(x) = x^4 + 5x^3 - 7x^2 - 3x - 9$. Usando a Regra de Sinais de Descartes, estime o número de raízes reais positivas e negativas de p. Calcule uma aproximação para uma raiz de p usando o método de Newton, utilizando x = 2. Execute cinco Iterações.

LIMITE INFERIOR:1,189

LIMITE SUPERIOR:2,7

UMA RAIZ POSITIVA E DUAS NEGATIVAS

Limit information
$$P(x): x^4 + 5x^3 - 7x^2 - 3x - 9$$

$$P(x): x^4 + 5x^3 - 7x^2 + 5x + 1 \qquad (-1)$$

$$P(x): -9x^4 - 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x): 9x^4 + 3x^3 + 7x^2 = 5x - 1$$

$$P(x)$$

9)(0,5 pontos) Calcule uma aproximação para a raiz cúbica de 125 utilizando o Método de Newton.

Execute oito iterações do método.

A RAIZ CUBICA DE 125 = RAIZ QUADRADA DE 25,LOGO :

c=	25			
i	xi		Isaac Freitas	
0	25			
1	13	<	=(B19+B\$17/B19)/2	
2	7,461538			
3	5,406027			
4	5,015248			
5	5,000023			
6	5			
7	5			
8	5			