Dia 2 - hands on!

Módulo 1 – Introdução ao formato e lógica de arquivos RNA-seq

Objetivos:

- Conhecer os principais arquivos utilizados na análise de RNA-seq.
- Entender a estrutura dos dados de entrada e saída.
- Interpretar uma matriz de contagens (input para DESeq2).

Formatos importantes

Tipo de arquivo	E x tensã o	Fun ão
Sequência crua	.fastq(.gz)	Armazena leituras com qualidade
Alinhamento	.sam , .bam	Mapeamento das leituras no genoma
Anotação	.gtf, .gff3	Coordenadas de genes, éxons, etc.
Contagens	.txt , .tsv , .csv	Matriz com contagem de reads por gene

Leitura recomendada:

https://www.ebi.ac.uk/training/materials/introduction-to-rna-seq-materials/intro-fundamentals/rna-seq-file-formats/

title: "Controle de Qualidade com FastQC e MultiQC" output: html_document

@ Objetivo

Avaliar a qualidade de dados RNA-seq brutos usando FastQC e MultiQC, e aprender a interpretar os gráficos para decidir sobre o pré-processamento (como trimming de adaptadores).

O **FastQC** é uma ferramenta de QC que analisa arquivos `.fastq` e gera relatórios gráficos com os seguintes indicadores:

1. **Per base sequence quality**

- Mostra a qualidade de cada base ao longo da leitura (Phred Score).
- Valores acima de 28 são considerados bons.
- Uma queda de qualidade nas últimas bases é comum.

8 2. **GC content**

- Avalia a distribuição de conteúdo GC.
- Deve ser aproximadamente normal e próxima ao valor esperado do organismo (ex: ~50% em humanos).
- Um pico secundário pode indicar contaminação.

S 3. **Adapter content**

- Detecta a presença de adaptadores (sequências técnicas).
- Presença alta indica a necessidade de *trimming* com ferramentas como Trimmomatic ou fastp.

🔄 Rodando FastQC e MultiQC no Galaxy

Etapas:

- 1. **Acesse:** https://usegalaxy.org
- 2. **Importe arquivos .fastq.gz** do seu experimento.
- 3. **Procure por "FastQC"** na barra de ferramentas à esquerda.
- 4. **Execute FastQC** para cada amostra (pode selecionar várias de uma vez).
- 5. Após completar, **rode o "MultiQC"** para compilar todos os relatórios em um só.

@ Como interpretar os resultados

- Se a **qualidade por base** for boa (>28) até o final, **não é necessário trimming**.
- Ose houver **queda acentuada nas últimas bases**, **recomenda-se trimming das extremidades 3'**.
- 1 Se houver **presença de adaptadores (>10-15%)**, **trimming com adaptador é essencial**.
- III Se o **GC Content** tiver dois picos ou desvio do esperado, verifique contaminação.

Exemplo de saída do MultiQC

"\"{r echo=FALSE, out.width="90%"}

knitr::include_graphics("multiqc_example.png")

Conclusão

- FastQC + MultiQC são ferramentas rápidas e visuais para QC de RNA-seq.
- Sempre revise os gráficos antes de iniciar o alinhamento.
- Dados de baixa qualidade devem ser tratados com trimming apropriado para evitar viés nos resultados downstream.

SEGUIR EMENDA + EXERCÍCIOS DO GITHUB https://github.com/Kur1sutaru/transcriptomics_rsg_course