Math122 Review Problems for Midterm - Summer 2011 (Sec 8.1 - 8.7, 8.9, H.1, H.2, 9.1 - 9.7)

Exam 2 (Midterm), Friday, Julu 1, 8:00 - 10:00 am.

Review the Concept Check problems: Page 631/1 - 11, Page 690/1 - 20

PART 1: True-False Problems

Ch.8. Page 632 True-False Quiz Problems 1 – 18.

Ch.9. Page 691 True-False Quiz Problems 1 – 16.

Additional True-False Problems.

- 1. If the series $\sum a_n$ converges, then the sequence $\{a_n\}$ converges.
- 2. If $\lim_{n\to\infty} |a_n| = 0$, then $\sum a_n$ converges.
- 3. If $\sum a_n$ converges, then $\sum |a_n|$ converges.
- 4. If $\{a_n\}$ converges, then $\{|a_n|\}$ converges.
- 5. If $\{|a_n|\}$ converges, then $\{a_n\}$ converges.
- 6. If $\{a_n\}$ converges but $\{b_n\}$ diverges, then $\{a_n+b_n\}$ diverges.
- 7. If $\{a_n\}$ converges but $\{b_n\}$ diverges, then $\{a_nb_n\}$ diverges.
- 8. If $0 \le a_n \le b_n$ for $n \ge 1$ and $\{b_n\}$ converges, then $\{a_n\}$ converges.
- 9. If $1 \le a_n \le b_n$ for $n \ge 1$ and $\lim_{n \to \infty} b_n = 1$, then $\lim_{n \to \infty} a_n$ converges.
- 10. If $\{a_n\}$ is bounded then $\{a_n\}$ is convergent.
- 11. If $0 \le a_n \le b_n$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- 12. If $\sum a_n$ converges, then $\lim_{n\to\infty} e^{a_n} = 1$.
- 13. If $\sum a_n$ is absolutely convergent, then $\sum a_n^3$ converges.
- 14. If $f(x) = 1 3(x-1)^2 + 5(x-1)^3 + \cdots$ converges for all x, then f''(1) = -3.
- 15. If $\sum_{n=0}^{\infty} c_n(x-1)^n$ is the Taylor series of $f(x) = \ln x$ at a = 1, then $c_2 = -1$.
- 16. The points $\left(1, \frac{4\pi}{3}\right)$ and $\left(-1, \frac{\pi}{3}\right)$ represent the same point in the polar coordinate system.
- 17. For any vectors \mathbf{u} and \mathbf{v} in V_3 , $\mathbf{u} \cdot \mathbf{v}$ is a vector.

- 18. For any vectors \mathbf{u} and \mathbf{v} in V_3 , $\mathbf{u} \times \mathbf{v}$ is a vector.
- 19. For any vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in V_3 , $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ is a vector.
- 20. If $|\mathbf{u}|^2 + |\mathbf{v}|^2 = |\mathbf{u} + \mathbf{v}|^2$, then $\mathbf{u} \cdot \mathbf{v} = 0$.
- 21. For any \mathbf{u} in V_3 , $\mathbf{u} \cdot \mathbf{u} = 0$.
- 22. For any \mathbf{u} in V_3 , $\mathbf{u} \times \mathbf{u} = \mathbf{0}$.
- 23. If two lines are perpendicular to a third line, then they are parallel.
- 24. If two lines are parallel to a third line, then they are parallel.
- 25. If two planes are perpendicular to a line, then they are parallel.
- 26. If two planes are parallel to a line, then they are parallel.

PART II. Multiple-Choice Problems

1. Exactly one of the following sequences diverges. Which is it?

(A)
$$\left\{\frac{\sqrt{n^4+1}}{n^2}\right\}$$
 (B) $\left\{\frac{n^2}{3^n}\right\}$ (C) $\left\{\frac{2^n}{n!}\right\}$ (D) $\left\{\frac{n}{(\ln n)^2}\right\}$ (E) $\left\{\cos\frac{1}{\sqrt{n}}\right\}$

2. Exactly one of the following sequences diverges. Which is it?

(A)
$$\left\{\sin\frac{1}{\sqrt{n}}\right\}$$
 (B) $\left\{\cos\frac{1}{\sqrt{n}}\right\}$ (C) $\left\{n\sin\frac{1}{n}\right\}$ (D) $\left\{e^{\frac{1}{\sqrt{n}}}\right\}$ (E) $\left\{\frac{(-1)^n\sqrt{n+1}}{\sqrt{n}}\right\}$

3. Exactly one of the following series diverges. Which is it?

(A)
$$\sum_{n=1}^{\infty} \frac{1}{(-2)^n}$$
 (B) $\sum_{n=1}^{\infty} \frac{1}{n^4}$ (C) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^3}$ (D) $\sum_{n=1}^{\infty} \frac{n^3 + n^2}{n^4 + 1}$ (E) $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n}$

4. Exactly one of the following series diverges. Which is it?

(A)
$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$
 (B) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ (C) $\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n}$ (D) $\sum_{n=2}^{\infty} \sin \frac{1}{n \ln n}$ (E) $\sum_{n=1}^{\infty} \frac{n^5}{n!}$

5. The series $\sum_{n=1}^{\infty} (-r)^n$ for 0 < r < 1 converges to

(A)
$$\frac{1}{1-r}$$
 (B) $\frac{1}{1+r}$ (C) $\frac{r}{1-r}$ (D) $\frac{r}{1+r}$ (E) None of the above is true.

- 6. The sum of the geometric series $\sum_{i=1}^{\infty} (-\pi)^{n-1} 2^{-2n}$ is
 - (A) $\frac{1}{4-\pi}$ (B) $\frac{1}{4+\pi}$ (C) $-\frac{\pi}{4+\pi}$ (D) $\frac{1}{2+\pi}$ (E) $\frac{\pi}{4+\pi}$
- 7. The series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges to
 - (A) $\frac{1}{2}$ (B) 1 (C) $\frac{1}{3}$ (D) ∞ (E) None of the above is true.
- 8. The sum of the series $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} \frac{1}{\sqrt{n+2}} \right)$ is
 - (A) $1 + \frac{1}{\sqrt{3}}$ (B) $1 \frac{1}{\sqrt{3}}$ (C) $1 + \frac{1}{\sqrt{2}}$ (D) $1 \frac{1}{\sqrt{2}}$ (E) ∞
- 9. The sum of the series $\sum_{n=0}^{\infty} \frac{1}{n!}$ is
 - (A) $\sqrt{2}$ (B) π (C) e (D) $\ln 2$ (E) ∞
- 10. The sum of the series $\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n+1}}{(2n+1)!6^{2n+1}}$ is
 - (A) 0 (B) 1/2 (C) $\pi/6$ (D) $\sqrt{3}/2$ $(E) \infty$
- 11. The radius of convergence of the series $\sum_{n=0}^{\infty} \frac{2 \ln n}{3n+1} x^n$ is
 - (A) $\frac{1}{3}$ (B) $\frac{2}{3}$ (C) 1 (D) 0 (E) ∞
- 12. The interval of convergence of the series $\sum_{n=1}^{\infty} \frac{3^n}{n} (x-1)^n$ is
 - (C) (2/3, 4/3]
 - (A) [2/3, 4/3] (B) (2/3, 4/3) (D) [2/3, 4/3) (E) None of the above is true.

13. The Maclaurin series for $\cos(x^2)$ is

(A)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

(A)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$
 (B) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ (C) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+2}}{(2n+1)!}$ (D) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ (E) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n}}{(2n)!}$

(C)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+2}}{(2n+1)}$$

(D)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

(E)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n}}{(2n)!}$$

14. The Maclaurin series for e^{-2x} is

(A)
$$\sum_{n=0}^{\infty} (-1)^n \frac{2^n x^n}{n}$$
 (B) $\sum_{n=0}^{\infty} \frac{2^n x^n}{n!}$ (C) $\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{(2n)!}$ (D) $\sum_{n=0}^{\infty} (-1)^n \frac{2^n x^n}{n!}$ (E) $\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!}$

(B)
$$\sum_{n=0}^{\infty} \frac{2^n x^n}{n!}$$

(C)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{(2n)}$$

(D)
$$\sum_{n=0}^{\infty} (-1)^n \frac{2^n x^n}{n!}$$

(E)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!}$$

15. The 2nd degree Taylor polynomial of the function $f(x) = \ln x$ at a = 1 is

(A)
$$x-1-\frac{1}{2}(x-1)^2$$
 (B) $x-1-(x-1)^2$ (C) $x-x^2$ (D) $x-\frac{1}{2}x^2$

(B)
$$x-1-(x-1)^2$$

(C)
$$x - x^2$$

(D)
$$x - \frac{1}{2}x^2$$

$$(E) 1-x$$

16. The 3rd degree Taylor polynomial of the function $f(x) = \sin x$ at a = 0 is

(A)
$$x$$
 (B) $x - \frac{x^3}{3!}$ (C) $x - \frac{x^3}{3!} + \frac{x^5}{5!}$ (D) $1 - \frac{x^2}{2!}$ (E) $1 + x - x^3$

(C)
$$x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

(D)
$$1 - \frac{x^2}{2!}$$

(E)
$$1 + x - x^2$$

- 17. The polar equation for the curve of the Cartesian equation $x^2 + xy = 1$ is

- (A) $\sin^2 \theta + \sin \theta \cos \theta = 0$ (B) $r(\sin^2 \theta + \sin \theta \cos \theta) = 1$ (C) $r^2(\sin^2 \theta + \sin \theta \cos \theta) = 1$ (D) $r(\cos^2 \theta + \sin \theta \cos \theta) = 1$ (E) $r^2(\cos^2 \theta + \sin \theta \cos \theta) = 1$
- 18. The Certesian equation of the polar equation $r = \frac{1}{\cos \theta \sin \theta}$ is
 - (A) y = x (B) y x = 1 (C) x y = 1 (D) $x^2 + y^2 = \frac{1}{x y}$ (E) $x^2 + y^2 = \frac{1}{y x}$
- 19. The slope of the line tangent to the polar curve $r = \sin \theta$ at $\theta = \frac{\pi}{6}$ is

(A)
$$\sqrt{3}$$

(B)
$$\frac{\sqrt{3}}{3}$$

(C)
$$-\sqrt{3}$$

(A)
$$\sqrt{3}$$
 (B) $\frac{\sqrt{3}}{3}$ (C) $-\sqrt{3}$ (D) $-\frac{\sqrt{3}}{3}$

- 20. The slope of the line tangent to the polar curve $r = \theta$ at $\theta = \pi$ is

- (A) 0 (B) -1 (C) 1 (D) $-\pi$
- $(E) \pi$

PART III. Essay Problems

1. Determine whether the sequence converges. Find the limit if it is convergent.

(a)
$$a_n = \frac{n^2 - n}{2n^2 - 3}$$
 (b) $a_n = \frac{\ln(2n + 1)}{n}$ (c) $a_n = \frac{2^{2n}}{e^{n+2}}$

(d)
$$a_n = \frac{n\cos(n)}{e^n}$$
 (e) $a_n = \ln(n^2 + 1) - \ln(2n^2 - n)$ (f) $a_n = (1 + 2/n)^{2n}$

2. Let the sequence $\{a_n\}$ satisfy

$$a_1 = 10, \quad a_{n+1} = \sqrt{6 + a_n}, \qquad n \ge 1.$$

- (a) (optional) Show that $a_n > 0$ and $a_n \ge a_{n+1}$ for $n \ge 1$. (Hence $\{a_n\}$ has a limit since it is decreasing and bounded below.)
- (b) Find the limit.
- 3. Determine whether the series is convergent, or divergent, or absolutely convergent.

(a)
$$\sum_{n=1}^{\infty} \frac{\sin^n n}{2^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{2^n \cos(n\pi)}{e^n}$ (c) $\sum_{n=1}^{\infty} \frac{(-1)^n (\ln n)^2}{n}$

(d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2 + e^{-n}}{2n^2 + 1}$$
 (e)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n!}{1 \cdot 3 \cdot 5 \cdots (2n+1)}$$
 (f)
$$\sum_{n=1}^{\infty} \frac{(n+1)2^n}{n^3 (-3)^n}$$

- 4. Use the partial sum s_5 to estimate the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^3}$, and estimate the error in using s_5 as an approximation to the sum of the series.
- 5. Use the partial sum s_5 to estimate the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^3}$, and estimate the error in using s_5 as an approximation to the sum of the series.
- 6. Find the radius of convergence and interval of convergence of the power series.

(a)
$$\sum_{n=0}^{\infty} \frac{(1-x)^n}{2n+1}$$
 (b) $\sum_{n=1}^{\infty} \frac{(x+2)^n}{n3^n}$ (c) $\sum_{n=1}^{\infty} \frac{x^n}{n^23^n}$ (d) $\sum_{n=0}^{\infty} \frac{3^{n+1}(x-3)^n}{n!}$

7. Find the Taylor series of the function at a=0.

(a)
$$\frac{1}{1-x^2}$$
 (b) $\frac{1}{(1-x)^2}$ (c) $\ln(1+x)$ (d) $\sin x^2$ (e) x^2e^{-x} .

- 8. Find the Maclaurin series of e^{-x^2} and approximate $\int_0^{0.1} e^{-x^2} dx$ correct to within an error of 10^{-5} .
- 9. Find the Taylor polynomial $T_3(x)$ of the function $e^{\sin x}$ at a=0.
- 10. Let $T_3(x)$ be the degree 3 Taylor polynomial of e^{x^2} at a=0. Using the Taylor inequality to find a bound for

$$|R_3(x)| = \left| e^{x^2} - T_3(x) \right|$$
 for $x \in [0, 0.1]$.

11. Find the Cartesian coordinates of the point given in polar coordinates.

(a)
$$\left(2, \frac{\pi}{6}\right)$$
 (b) $\left(4, \frac{3\pi}{4}\right)$ (c) $\left(0, \frac{\pi}{5}\right)$ (d) $\left(5, -\frac{\pi}{2}\right)$ (e) $\left(3, -\frac{\pi}{3}\right)$

12. Find the polar coordinates (r, θ) with $r \ge 0$ and $0 \le \theta < 2\pi$ of the point given in the Certesian coordinates.

(a)
$$(1,0)$$
 (b) $(3,\sqrt{3})$ (c) $(-2,2)$ (d) $(-1,\sqrt{3})$ (e) $(0,-2)$

13. Find the slope of the line tangent to the polar curve at the point specified by the value of θ .

(a)
$$r = \sin \theta + \cos \theta$$
, $\theta = \frac{\pi}{6}$ (b) $r = 1 + \theta^2$, $\theta = \frac{\pi}{2}$ (c) $r = 4\cos 3\theta$, $\theta = \frac{\pi}{6}$

14. Find the points on the given curve where the tangent line is horizontal or vertical.

(a)
$$r = 1 + \cos \theta$$
, (b) $r^2 = \cos 2\theta$

15. Find the area of the region that is bounded by the given curve and lies in the specified sector.

(a)
$$r = 1 - \cos \theta$$
, $0 \le \theta \le \frac{\pi}{2}$ (b) $r = 3 - \theta$, $0 \le \theta \le 3$

16. Find the area of the region enclosed by one loop of the curve.

(a)
$$r = 2\sin\theta$$
 (b) $r^2 = \cos 2\theta$

- 17. Find the area of the region that lies inside $r = \sqrt{2}\cos\theta$ and outside r = 1.
- 18. Find the exact length of the polar curve.

(a)
$$r = \theta^2$$
, $0 \le \theta \le \pi$ (b) $r = 2\cos\theta$, $0 \le \theta \le \frac{\pi}{2}$