PhysiCell Essentials Short Course:

Hands-on Modeling (Part 1)

Paul Macklin, Ph.D.

Intelligent Systems Engineering Indiana University

Updated: 2025.02.16

PhysiCell Curriculum

- PhysiCell Essentials Short Course (this short course)
 - Prerequisites:
 - o Basic knowledge of cell biology, concepts of mathematical functions
 - Software requirements:
 - o Web browser access, OR installation of PhysiCell Studio
 - Curriculum:
 - Introduction
 - o Optional: Desktop Installation of PhysiCell Studio
 - o Hands-on work Part 1: Getting Started, and Villager/Zombie Model (this session)
 - o Hands-on work Part 2: Cancer Chemotherapy & Immunology Models
 - o Optional: Notes and Tips on Parameter Estimates
- Integration of Boolean Networks with PhysiBoSS
 - Learn how to integrate Boolean signaling networks into PhysiCell Models
- Advanced PhysiCell Modeling
 - Learn about creating non-standard model components and visualization in C++
 - Learn about C++ extensions for ODE models, ECM fibers, and more.
- PhysiCell for Developers
 - Learn about PhysiCell core C++ structure, and contributing to PhysiCell core and extensions

Session Goals

- Introduce key cell behaviors, phenotype, and signals
- Further explore response functions
- Introduce PhysiCell Studio
- Discuss typical modeling process
- First hands-on model (live modeling)

Key built-in cell behaviors

Built-in Reference Cell Behaviors

- PhysiCell has built-in reference models for key cell processes
 - Cycling (and division)
 - Asymmetric Division
 - Apoptotic and necrotic death
 - Volume changes
 - Secretion and uptake
 - Cell-cell adhesion and "repulsion"
 - Migration
 - Type changes / differentiation
 - Phagocytosis
 - Fusion
 - Effector attack
 - Cell integrity

The key modeling work in PhysiCell is choosing which behaviors to modulate.

PhysiCell Community

Cycling

- Transition between cycle phases
- Divide into two cells at end of last phase
- Key parameter(s):
 - o cycle entry (rate of moving from phase 0 to phase 1) (1/min)

· A bit more detail:

- Each exit rate r_i is the transition rate to the next phase $r_{i,i+1}$
- The mean duration T_i of a phase is related to the exit rate by $T_i = \frac{1}{r_i}$

Several built-in cycle models are available:

- "Live" (single-phase)
- Quiescent → Cycling
- $G0/G1 \rightarrow S \rightarrow G2/M$
- $G0/G1 \rightarrow S \rightarrow G2 \rightarrow M$
- Ki67⁻ → Ki67⁺
- Ki67 \rightarrow Ki67+ (pre-mitotic) \rightarrow Ki67+ (post-mitotic)

- Asymmetric division (from parent type A to daughters A and B)
 - At division, randomly select one daughter cell of type A
 - Key parameter(s):
 - Asymmetric division probabilities (dimensionless)
 - o **Example:** For cell type A, **asymmetric division to cell type B** is the probability that division yields one daughter cell of type A, and one of type B
- Apoptosis (prototypical non-inflammatory death)
 - Gradually shrink, get removed. Relatively short time scale.
 - Key parameter(s):
 - o apoptotic death rate (rate of starting apoptosis) (1/min)
- Necrosis (prototypical inflammatory death)
 - First swell, burst, then shrink. Relatively long time scale
 - Key parameter(s):
 - necrotic death rate (rate of starting necrosis) (1/min)

secretion, uptake, and export

- cells can secrete, uptake (consume), and export diffusible substrates
- Key parameter(s):
 - o secretion rates (1/min)
 - secretion targets (substrate/micron^3)
 - o uptake rates (1/min)
 - (net) export rates (substrate/min)

$$\frac{\partial \rho}{\partial t} = D\nabla^2 \rho - \lambda \rho + \sum_{\text{cells } i} \left(\delta(\mathbf{x} - \mathbf{x}_i) V_i \left[\underbrace{\widetilde{S_i(\rho_i^* - \rho)}}_{\text{otherwise}} - \underbrace{\widetilde{U_i \rho}}_{\text{otherwise}} \right] + \delta(\mathbf{x} - \mathbf{x}_i) \stackrel{\text{export}}{\widetilde{E_i}} \right)$$

motility

- biased random walk:
 - o Move some time along a bias direction, then resample, move again
- Key parameter(s):
 - migration speed (micron/min)
 - o persistence time (min)
 - bias (directedness) (dimensionless)

chemotaxis

- bias direction is a weighted sum of chemical gradients
- Key parameter(s):
 - o weights (-1 to 1) for each chemical gradient (dimensionless)
 - » positive (> 0) weight: movement along this gradient
 » negative (< 0) weight: movement against this gradient
 - » zero (0) weight: no migration along this gradient

- cell-cell adhesion (basic)
 - Use potential functions for an attractive force
 - Key parameter(s):
 - adhesive affinityadhesion strength(dimensionless)(micron/min)
 - o max (relative) adhesion distance (dimensionless; a multiple of cell's effective radius)
- cell-cell adhesion (elastic / advanced)
 - form and break spring links to contacting cells
 - Key parameter(s):
 - o adhesive affinity (dimensionless)
 - o elastic constant (1/min)
 - o attachment rate (1/min)
 - o detachment rate (1/min)
 - o maximum number of adhesions (dimensionless)

PhysiCell Community

- resistance to deformation and overlap
 - Use potential function as a "repulsive" force
 - Key parameter(s):
 - o repulsive strength (micron/min)
- transition / transformation (type change)
 - Transition from type *i* to type *j* (1/min)
 - o Differentiation, Transdifferentiation, mutation, ...
 - Key parameter(s):
 - o transition rates
 - o *Example:* For cell type A, transition to cell type B is the rate at which the type can transform into cell type B
- fusion
 - cells i and j combine volumes, re-center position
 - Key parameter(s):
 - o fusion rates (type *i* to type *j*) (1/min)
 - o Example: For cell type A, fuse to cell type B is the rate at which the cell can fuse with a cell of type B

phagocytosis

- Cell i consumes cell j (and acquires its volume)
- Cell i uses its built-in volume model to return to its original volume
- Key parameter(s):
 - o rates of phagocytosing dead cells (1/min)
 - » (separate rates for apoptotic, necrotic, and other dead cells)
 - o rates of phagocytosing live cell types (1/min)

effector attack

- Cell i attacks (damages) cell i
 - rate of initiating attack is a function of attack rate of i on j and immunogenicity of j to i
 - the attack increases damage of j
 - o cells form (spring) adhesion during attack.
 - Attack has stochastic duration
 - o requires an additional hypothesis to cause death in cell j

Key parameters:

o attack rates (one per live cell type) (1/min)

o immunogenicities (dimensionless)

o attack damage rate (1/min)

o attack duration (min)

cell integrity

- Cell i can undergo and repair (generic) damage
 - o damage rate (e.g., from a drug or alpha particles)
 - » Can use to increases cell death, increase mutations, block cell cycle, ...
 - damage repair rate
- Key parameter(s):
 - damage rate (1/min)damage repair rate (1/min)

$$\frac{d[Damage]}{dt} = [damage rate] + [damage from effector attack] - [damage repair rate][Damage]$$

reference behavior models in development

- Polarized cell adhesion and division.
- ECM interactions
- Spontaneous variation
- (and also built-in lineage tracking)

Cell Phenotype

Cell Phenotype

- The cell's key parameters are organized according to these processes:
 - Cycle
 - Death
 - Volume (and Geometry)
 - Mechanics
 - Motility
 - Secretion (and Uptake)
 - Interactions
 - Transformations
 - Integrity
- Think of it as a vector of phenotypic properties p(t) that can vary in time.
- Each cell has a "base" phenotype \mathbf{p}_0 (inherited from its cell definition)

Key built-in cell signals

Signal Dictionary

- Based on the cell types and diffusible substrates in a simulation, we can auto-generate dictionaries of available signals
- With standardized access, it's much easier to write cell rules

 This allows for a controlled vocabulary (an ontology)

Signal name

{substrate X}
intracellular {substrate X}
{substrate X} gradient
pressure
volume
contact with {cell type X}
contact with live cell
contact with dead cell
contact with basement membrane

damage dead total attack time

iotai attack time

time custom:{X}

Biophysical meaning

extracellular concentration of chemical factor X intracellular concentration of chemical factor X slope of the extracellular concentration field of factor X mechanical pressure (from other cells in close proximity) the cell's current total volume number of cells of type X that are in physical contact number of live cells that are in physical contact number of dead cells that are in physical contact 1 if in contact with basement membrane. 0 otherwise amount of damage (of any type)

1 if the cell is dead (or dying). 0 otherwise.
total amount of time the cell has been attacked.

current simulation time

use a custom variable or symbol X to drive cell behavior

For current "dictionaries"

• Since language is evolving, you can easily get a current dictionary.

- 1. Build a model, and briefly run it.
- 2. Look for dictionaries.txt in your output directory
- 3. See a list of valid signals and behavioral parameters
 - o These lists depend upon the names of diffusing factors & cell types in your simulation.

Response functions

Using a response function

- If signal S increases / decreases behavior B
 - lacktriangle Vary behavioral parameter p with base value p_0 and maximal response value $p_{
 m M}$

$$p(s) = p_0 + (p_M - p_0)R(s) = (1 - R(s)) \cdot p_0 + R(s) \cdot p_M$$

We generally use Hill response functions:

$$R(s) = \frac{s^h}{s_{\text{half}}^h + s^h} = \frac{\left(\frac{s}{s_{\text{half}}}\right)^h}{1 + \left(\frac{s}{s_{\text{half}}}\right)^h} \text{ if } s \ge 0, \quad \text{and } H(s) = 0 \text{ if } s < 0.$$

Hill response functions

 A widespread sigmoidal response curve in PKPD and systems biology

■ Varies from 0 (at signal=0) to 1 (as signal → infinity)

- Completely characterized by:
 - o half-maximum: Input value where curve reaches half of max effect
 - o Hill power: How steeply it approaches 1

$$H(s; s_{\text{half}}, h) = \frac{s^h}{s_{\text{half}}^h + s^h} = \frac{\left(\frac{s}{s_{\text{half}}}\right)^h}{1 + \left(\frac{s}{s_{\text{half}}}\right)^h} \text{ if } s \ge 0, \quad \text{and } H(s) = 0 \text{ if } s < 0.$$

PhysiCell Community

Celebrating 10 years! (2015-2025)

@PhysiCell.bsky.social

Approximating a linear response with a Hill response

PhysiCell Studio

PhysiCell Studio Desktop

- Preferred method less latency
 - Does not require a compiler
 - Does not require C++ or coding experience
- Make sure you have installed Python
 - Use anaconda if you're unsure: https://www.anaconda.com/download/success
- Follow the PhysiCell Studio Desktop installation instructions here:
 - https://github.com/physicell-training/institut-curie-2024/blob/main/PhysiCell-Studio-Setup.md

PhysiCell Studio Cloud

- Alternate method (just in case)
 - Fully runs in a web browser
 - No installation required
 - But ... more latency ...
 - May lack some features of the Desktop edition
- Login to nanohub.org
- Go to:
 - https://nanohub.org/tools/pcstudio
- Click the blue "run tool" button

PhysiCell Studio: Overview

A graphical user interface (GUI) application to make it easier to build and explore PhysiCell models

• Config basics: Domain size, simulation duration, output

• Microenvironment: Diffusing substrates, boundary conditions

Cell types: Define cell types and their base phenotypes

User params: Model-specific parameters

Rules: Hypothesis-based cell behaviors

• ICs: Initial cell positions

• Run: Use this to start executing the model

Plot: Plot cells and diffusible substrates

Cloud-based backup: https://nanohub.org/tools/pcstudio

https://nanohub.org/tools/pcstudio

Loading a (blank) project

- Let's get the (blank) template project
 - File → Load user project
 - Choose studio_template
 - This loads all the files into the right place
- Next let's load it into the studio:
 - File → open
 - Browse to config
 - Load PhysiCell_settings.xml

Modeling Steps

Key modeling steps

- 1. Plan the modeling problem.
 - What are the important things we want to learn?
 - What cell types are important?
 - O What are their key behaviors?
 - What diffusible factors drive their behaviors?
 - o Any other important interactions?
 - Can we estimate parameters (at least to order of magnitude)?
 - Can we build the model sequentially? (Add components one at a time?)
- 2. Set up diffusing factors.
- Set up cell types.
- Add rules.
- Simulate and assess.
- 6. Iterate and improve.

Sample Problem:

Villagers and Zombies

Plan the problem (1)

- What are the important things we want to learn?
 - How do the behaviors of zombies and villagers affect their population dynamics?
- What cell types are important?
 - Villagers
 - Zombies
- What are their key behaviors?
 - Villagers:
 - o Aggregate
 - Reproduce
 - o Flee from Zombies
 - o Either die or transform into zombies after attack
 - Zombies:
 - Chase villagers
 - o Attack villagers
 - Move away from other Zombies (optional)

Plan the problem (2)

- What diffusible factors drive their behaviors?
 - Let's use a quorum factor for villager aggregation
 - Let's use a "zombie" factor to help locate zombies
- Any other important interactions?
 - We might want to let villagers counter-attack. Stretch goal
- Can we estimate parameters?
 - Not a huge focus for this problem.
 - We'll choose decay and diffusion parameters based on diffusion length scale

Plan the problem (3)

- Can we build the model sequentially?
 - First, let's build a model of villagers:
 - o Aggregation with a quorum factor
 - Proliferation based on contact
 - Test: aggregation and proliferation
 - Next, let's add zombies
 - Zombies chase villagers
 - Villagers flee from zombies (need to add diffusing zombie factor)
 - Test: chasing and avoidance
 - Zombies attack villagers
 - Damage causes villagers to die
 - Test: Villager death
 - Damage causes villagers to transform to zombies
 - Test: Villagers
 - Add Zombies avoid Zombies
 - Test: Zombies get spaced out more evenly.

PhysiCell Community

Diffusion length scale

- For any diffusing factor we should choose:
 - Diffusion coefficient (D) and decay rate (λ)
- We use the **diffusion length scale** from physics / applied mathematics:
 - Penetration into a tissue is competition between effects:
 - o Diffusion (D) increases spread
 - \circ Uptake (U) and decay (λ) tend to halt spread

$$L = \sqrt{\frac{D}{U + \lambda}}$$

- For our signaling factors:
 - Suppose they linger for ~10 min. That gives λ ~ 0.1 min⁻¹
 - If we want $L \sim 100 \, \mu \text{m}$, then: $D \sim 10^3 \, \mu \text{m}^2/\text{min}$

Villager model: Diffusing Factor

- Go to microenvironment tab
- Double-click on substrate
- Rename it to quorum factor
- Set the diffusion coefficient to 1e3
- Set the decay rate to 0.1

Villager model: Villagers (1)

- Go to cell types tab
- Double-click on default
- Rename it to villager
- Let's turn off (baseline) cycling and death
 - In the Cycle tab, choose the live cells model
 - Choose the transition rate description
 - Set the transition rate to 0
 - In the death tab, set the apoptosis rate to 0

Villager model: Villagers (2)

- Let's turn off (baseline) adhesion
 - Go to the Mechanics tab
 - Set the cell-cell adhesion strength to 0
- And let's set the cell-cell max adhesion distance to 1.5 cell radii
 - Set relative max adhesion distance to 1.5
- Let's turn on secretion of quorum factor
 - Go to Secretion tab
 - Choose quorum factor in the drop-down
 - Set secretion rate to 10 (strong forcing)
 - Make sure target is 1

Villager model: Villagers (3)

- Let's make sure chemotaxis is ready
 - Go to the motility tab
 - Set the speed to 1 (micron/min)
 - o Keep persistence time at 1 min
 - Set migration bias a bit higher to 0.75
 - Make sure the enable motility
 - Then, make sure that we use chemotaxis for that motility
 - Choose enabled under motility
 - o chose the quorum factor and choose towards

Villager model: Villager rules

- Let's make these villagers reproduce
 - Villagers need to be in contact with other villagers to reproduce
 - o Rule: contact with villager increases cycle entry
 - We'll use a max rate of 0.001
 - We'll use a half-max of 0.5 and a steep hill power
- Go to rules tab
 - Add rule:
 - o select villager as type
 - select quorum factor as signal
 - o choose cycle entry as behavior, and increases as response
 - Choose saturation value is 0.001
 - Choose half-max of 0.5
 - Choose Hill power of 50
 - View the response function
 - Click add rule
 - Save the rules
 - Make sure to enable the rules

PhysiCell.org

Celebrating 10 years! (2015-2025)

Villager model: Initial conditions

- Go to the ICs tab
 - Choose villager from the drop-down
 - choose box centered at (0,0), and radii 440
 - Place 250 cells with the plot button
 - Click save
- Make sure this config is used
 - Go to config basics
 - Click enable under "initial conditions of cells (x,y,z, type)

Villager model: Initial conditions (2)

- Let's disable the default random cell seeding
 - Go to User Params
 - Set number_of_cells to 0

Villager model: run!

- Go to the Run tab
- Click run simulation

Villager model: Visualize

- Go to the Plots tab
- Make sure cells is checked
 - Use the svg visualization for no
- Plot the substrates
 - Choose quorum factor
 - Let it auto-range
- Click population plot to see growth curves
- What we should see:
 - Aggregates of villagers
 - Highest q of quorum factor around villagers

Zombie model: Diffusing Factor

- Go to microenvironment tab
- Click on quorum
- Click on copy
- Rename it to zombie factor

Zombie model: Zombies (1)

- Go to cell types tab
 - Click on villager
 - Copy it, and rename to zombie
- Let's make sure secretion is right
 - Go to the secretion tab
 - Choose quorum factor from the drop-down
 - Set its secretion rate to 0.0
 - Choose zombie factor from the drop-down
 - Set its secretion rate to 10.0

Villager model: Zombies (2)

- Let's adjust chemotaxis
 - go to the **motility** tab
 - Set migration speed to 1.5
 - uncheck enabled for chemotaxis
 - check enabled for advanced chemotaxis
 - choose quorum factor from the drop-down
 - o Set sensitivity to 1.0
 - choose zombie factor from the drop-down
 - Set sensitivity to -1.0

Villager model: Adjust Villagers

- Let's adjust chemotaxis on villagers
- Select villagers on the far-left drop-down
 - go to the motility tab
 - uncheck enabled for chemotaxis
 - check enabled for advanced chemotaxis
 - choose quorum factor from the drop-down
 - Set sensitivity to 1.0
 - choose zombie factor from the drop-down
 - Set sensitivity to -10.0

Zombie model: Initial conditions

- Go to the ICs tab
 - Choose **zombie** from the drop-down
 - choose box centered at (0,0), and radii 440
 - Place 1 cells with the plot button
 - Click save

Villager model: run!

- Go to the Run tab
- Click run simulation

Villager model: Visualize

- Go to the Plots tab
- Make sure cells is checked
 - Use the svg visualization for no
- Plot the substrates
 - Choose quorum factor
 - Let it auto-range
- Click population plot to see growth curves
- What we should see:
 - Aggregates of villagers
 - Concentration of zombie factor near the zombie
 - Zombie chases villagers, who steer clear

Zombie model: Adjust Zombies (1)

- Let's add the effector attack
 - Go to cell types tab
 - Click on zombie
 - Go to the interactions tab
 - Choose villager and set the attack rate to 1
 - Leave the attack damage rate at 1
 - Leave the attack duration at 0.1 min

Zombie model: Add villager rule (1)

- Let's make these villagers die from damage
- Go to rules tab
 - Add rule:
 - o select villager as type
 - o select damage as signal
 - choose apoptosis as behavior, and increases as response
 - Choose saturation value is 0.05
 - Choose half-max of 0.5
 - Choose Hill power of 4
 - View the response function
 - o Click add rule
 - o Save the rules

Villager model: run!

- Go to the Run tab
- Click run simulation

Villager model: Visualize

- Go to the Plots tab
- Make sure cells is checked
 - Use the svg visualization for no
- Plot the substrates
 - Choose quorum factor
 - Let it auto-range
- Click population plot to see growth curves
- What we should see:
 - Aggregates of villagers
 - Concentration of zombie factor around the zombie
 - Zombie chases villagers, who steer clear
 - Some villagers are killed.

Zombie model: Add villager rule (2)

- Let's make sure damage makes some villagers turn to zombies
- Go to rules tab
 - Add rule:
 - o select villager as type
 - o select **damage** as signal
 - choose transform to zombie as behavior, and increases as response
 - o Choose saturation value is 0.01
 - Choose half-max of 0.5
 - Choose Hill power of 4
 - View the response function
 - o Click add rule
 - Save the rules

Villager model: run!

- Go to the Run tab
- Click run simulation

Villager model: Visualize

- Go to the Plots tab
- Make sure cells is checked
 - Use the svg visualization for no
- Plot the substrates
 - Choose quorum factor
 - Let it auto-range
- Click population plot to see growth curves
- What we should see:
 - Aggregates of villagers
 - Concentration of zombie factor around the zombie
 - Zombie chases villagers, who steer clear
 - Some villagers are killed.
 - Many villagers turn to zombies
 - Eventually all villagers wiped out
 - Zombies evenly space themselves

Celebrating 10 years! (2015-2025)

PhysiCell Curriculum: Next Steps

PhysiCell Essentials Short Course (this short course)

- Prerequisites:
 - Basic knowledge of cell biology, concepts of mathematical functions
- Software requirements:
 - o Web browser access, OR installation of PhysiC
- Curriculum:
 - Introduction
 - Optional: Desktop Installation of PhysiCell Studio
 - Hands-on work Part 1: Getting Started, and Villager/Zombie Model
 - Hands-on work Part 2: Cancer Chemotherapy & Immunology Models
 - o Optional: Notes and Tips on Parameter Estimates
- Integration of Boolean Networks with PhysiBoSS
 - Learn how to integrate Boolean signaling networks into PhysiCell Models
- Advanced PhysiCell Modeling
 - Learn about creating non-standard model components and visualization in C++
 - Learn about C++ extensions for ODE models, ECM fibers, and more.
- PhysiCell for Developers
 - Learn about PhysiCell core C++ structure, and contributing to PhysiCell core and extensions