

planetmath.org

Math for the people, by the people.

indefinite sum

Canonical name IndefiniteSum

Date of creation 2013-03-22 17:35:14 Last modified on 2013-03-22 17:35:14

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 20

Author CWoo (3771)
Entry type Definition
Classification msc 39A99
Related topic FiniteDifference

Recall that the finite difference operator Δ defined on the set of functions $\mathbb{R} \to \mathbb{R}$ is given by

$$\Delta f(x) := f(x+1) - f(x).$$

The difference operator can be thought of as the discrete version of the derivative operator sending a function to its derivative (if it exists). With the derivative operation, there corresponds an inverse operation called the antiderivative, which, given a function f, finds its antiderivative F so that the derivative of F gives f. There is also a discrete analog of this inverse operation, and it is called the *indefinite sum*.

The *indefinite sum* of a function $f: \mathbb{R} \to \mathbb{R}$ is the set of functions

$$\{F: \mathbb{R} \to \mathbb{R} \mid \Delta F = f\}.$$

This set is often denoted by $\Delta^{-1}f$ or Σf , and any element in $\Delta^{-1}f$ is called an indefinite sum of f.

Remark. Like the indefinite integral, the indefinite sum Δ^{-1} is shift invariant. This means that for any $F \in \Delta^{-1}f$, then $F + c \in \Delta^{-1}f$ for any $c \in \mathbb{R}$. But, unlike the indefinite integral, the indefinite sum is also invariant by a shift of a periodic real function of period 1. Conversely, the difference of two indefinite sums of a function f is a periodic real function of period 1.

In the following discussion, we consider the indefinite sum of a function as a function.

Basic Properties

- 1. $\Delta \Delta^{-1} f = f$, and $\Delta^{-1} \Delta f = f$ modulo a real function of period 1.
- 2. Modulo a real number, and treating Δ^{-1} as an operator taking a function into a function, we see that Δ^{-1} is linear, that is,
 - $\Delta^{-1}(rf) = r\Delta^{-1}f$ for any $r \in \mathbb{R}$, and
 - $\Delta^{-1}(f+g) = \Delta^{-1}f + \Delta^{-1}g$.
- 3. If $F(x) = \Delta^{-1}f(x)$, then $F(x+a) = \Delta^{-1}f(x+a)$.
- 4. If $F = \Delta^{-1}f$, then we see that

$$F(a+1) - F(a) = f(a),$$

$$F(a+2) - F(a+1) = f(a+1),$$

$$\vdots$$

$$F(x) - F(x-1) = f(x-1).$$

where x - a is a positive integer. Summing these expressions, we get

$$F(x) - F(a) = \sum_{i=1}^{x-a} f(a+i-1).$$

This is the discrete version of the fundamental theorem of calculus.

Below is a table of some basic functions and their indefinite sums (C is a real-valued periodic function with period 1):

f(x)	$\Delta^{-1}f(x)$	Comment
$r \in \mathbb{R}$	rx + C	
x	$\frac{x(x-1)}{2} + C$	
x^2	$\frac{x(x-1)(2x-1)}{6} + C$	
x^3	$\frac{x^2(x-1)^2}{4} + C$	
x^n	$T_n(x) + C$	See this http://planetmath.org/SumOfPowerslink for detail
a^x	$\frac{a^x}{a-1} + C$	$a \neq 1$
$(x)_n$	$\frac{(x)_n}{n+1} + C$	$(x)_n$ is the falling factorial of degree n
$\begin{pmatrix} x \\ n \end{pmatrix}$	$\binom{x}{n+1} + C$	$\binom{x}{n} := \frac{(x)_n}{n!}$
$\frac{1}{x}$	$\psi(x) + C$	$\psi(x)$ is the digamma function
$\ln x$	$\ln \Gamma(x) + C$	$\Gamma(x)$ is the gamma function
$\sin x$	$-\frac{\cos(x-1/2)}{2\sin(1/2)} + C$	
$\cos x$	$\frac{\sin(x - 1/2)}{2\sin(1/2)} + C$	

References

[1] C. Jordan. Calculus of Finite Differences, third edition. Chelsea, New York (1965)