(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINŲ CENTRAS

2009

MATEMATIKA

Valstybinio brandos egzamino užduotis

Pagrindinė sesija

2009 m. gegužės 27 d.

Egzamino trukmė – 3 val. (180 min.)

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2009 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

Valstybinio brandos egzamino formulės

Trikampis. $S = \sqrt{p(p-a)(p-b)(p-c)} = rp = \frac{abc}{4R}$; čia a, b, c – trikampio kraštinės, p – pusperimetris,

 \boldsymbol{r} ir \boldsymbol{R} – įbrėžtinio ir apibrėžtinio apskritimų spinduliai, \boldsymbol{S} – trikampio plotas.

Skritulio išpjova. $S = \frac{\pi R^2}{360^{\circ}} \cdot \alpha$, $l = \frac{2\pi R}{360^{\circ}} \cdot \alpha$; čia α – centrinio kampo didumas laipsniais,

S – išpjovos plotas, l – išpjovos lanko ilgis, R – apskritimo spindulys.

Nupjautinis kūgis. $S=\pi(R+r)\cdot l$, $V=\frac{1}{3}\pi H(R^2+Rr+r^2)$; čia R ir r-kūgio pagrindų spinduliai,

S – šoninio paviršiaus plotas, V – tūris, H – aukštinė, l – sudaromoji.

Nupjautinės piramidės tūris. $V = \frac{1}{3}H(S_1 + \sqrt{S_1S_2} + S_2)$; čia S_1 , S_2 – pagrindų plotai, H – aukštinė.

Rutulys. $S = 4\pi R^2$, $V = \frac{4}{3}\pi R^3$; čia S – rutulio paviršiaus plotas, V – tūris, R – spindulys.

Rutulio nuopjovos tūris. $V = \frac{1}{3}\pi H^2(3R - H)$; čia R – spindulys, H – nuopjovos aukštinė.

Vektorių skaliarinė sandauga. $\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2 + z_1 z_2 = |\vec{a}| \cdot |\vec{b}| \cos \alpha$;

čia α – kampas tarp vektorių $\vec{a}(x_1; y_1; z_1)$ ir $\vec{b}(x_2; y_2; z_2)$.

Geometrinė progresija. $b_n = b_1 q^{n-1}$, $S_n = \frac{b_1 (1 - q^n)}{1 - q}$.

Begalinė nykstamoji geometrinė progresija. $S = \frac{b_1}{1-q}$

Trigonometrinės funkcijos. $1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$, $1 + ctg^2 \alpha = \frac{1}{\sin^2 \alpha}$, $2\sin^2 \alpha = 1 - \cos 2\alpha$,

 $2\cos^2\alpha = 1 + \cos 2\alpha, \ \sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta, \ \cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta,$

 $\sin \alpha \pm \sin \beta = 2 \sin \frac{\alpha \pm \beta}{2} \cos \frac{\alpha \mp \beta}{2}, \cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2},$

 $\cos\alpha - \cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}, \ tg\left(\alpha\pm\beta\right) = \frac{tg\alpha\pm tg\beta}{1\mp tg\alpha\cdot tg\beta}.$

 $\begin{cases} \sin x = a, -1 \le a \le 1, & \text{ftg} x = a, \\ x = (-1)^k \arcsin a + \pi k, k \in \mathbb{Z}; \end{cases} \begin{cases} \cos x = a, -1 \le a \le 1, & \text{ftg} x = a, \\ x = \pm \arccos a + 2\pi k, k \in \mathbb{Z}; \end{cases} \begin{cases} \tan x = a, -1 \le a \le 1, & \text{ftg} x = a, \\ x = \arctan a + \pi k, k \in \mathbb{Z}. \end{cases}$

Deriniai. $C_n^k = C_n^{n-k} = \frac{n!}{k!(n-k)!}$.

Tikimybių teorija. Atsitiktinio dydžio X matematinė viltis yra $\mathbf{E}X = x_1p_1 + x_2p_2 + ... + x_np_n$,

dispersija $\mathbf{D} X = (x_1 - \mathbf{E} X)^2 p_1 + (x_2 - \mathbf{E} X)^2 p_2 + ... + (x_n - \mathbf{E} X)^2 p_n$.

Išvestinių skaičiavimo taisyklės. $(Cu)' = Cu'; (u \pm v)' = u' \pm v'; (uv)' = u'v + uv'; \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2};$

čia u ir v – diferencijuojamos funkcijos, C – konstanta. $(a^x)' = a^x \ln a$, $(\log_a x)' = \frac{1}{x \ln a}$.

Sudėtinės funkcijos h(x) = g(f(x)) išvestinė h'(x) = g'(f(x))f'(x).

Funkcijos grafiko liestinės taške $(x_0; f(x_0))$ lygtis. $y = f(x_0) + f'(x_0)(x - x_0)$.

Logaritmo pagrindo keitimo formulė. $\log_a b = \frac{\log_c b}{\log_c a}$.

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2009 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

Kiekvienas teisingas 1–6 uždavinio atsakymas vertinamas 1 tašku.

- **1.** "Kalbų namuose" į prancūzų kalbos kursus užsiregistravo 117 žmonių. Visus, norinčius lankyti kursus, reikia suskirstyti į grupes po 4 ir 7 žmones. Dauguma užsiregistravusiųjų pageidavo mokytis grupėse po 4 žmones. Koks gali būti didžiausias grupių po 4 žmones skaičius ?
 - **A** 14
- **B** 17
- **C** 21
- **D** 24
- **E** 27
- **2.** Atkarpos^{III} *AB* ir *CD* susikerta taške^{IV} *O*. Remdamiesi paveiksle pateiktais duomenimis, nurodykite, kuris iš žemiau pateiktų teiginių **nėra** teisingas^V.

- **A** $\angle AOC = \angle DOB$
- **B** $\triangle AOC$ ir $\triangle BOD$ yra panašūs VI
- $\mathbf{C} \quad AC = 2BD$
- **D** $\angle ACO = \angle DBO$
- **E** $S_{\Delta AOC} = 4 \cdot S_{\Delta BOD}$

- **3.** Funkcijos $f(x) = e^x + 1$ pirmykštė funkcija VII, kurios grafikas VIII eina per tašką (0; 2), yra:
 - **A** $F(x) = e^x$
 - **B** $F(x) = e^x + 1$
 - **C** $F(x) = e^x + x + 1$
 - **D** $F(x) = e^x + x e^2 2$
 - $\mathbf{E} \ F(x) = e^x + x$

NEPAMIRŠKITE pasirinktus atsakymus žyminčių raidžių įrašyti lentelėje, esančioje paskutiniame šio sąsiuvinio puslapyje.

I didžiausias – największy – наибольший

II skaičius – liczba – число

III atkarpa – odcinek – отрезок

IV susikerta taške – przecinają się w punkcie – пересекаются в точке

teiginys nėra teisingas – zdanie nie jest prawdziwe – высказывание не является истинным

VI panašus – podobny – подобный

vii pirmykštė funkcija – funkcja pierwotna – первообразная

VIII grafikas – wykres – график

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2009 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

- **4.** Jei lygiakraščio trikampio ABC kraštinės ilgis lygus 4, tai skaliarinė sandauga $\overrightarrow{BA} \cdot \overrightarrow{BC} =$
 - $\mathbf{A} \quad 0$
- **B** 8
- **C** $8\sqrt{2}$ **D** $8\sqrt{3}$
- **E** 16
- **5.** Paveiksle pavaizduotas funkcijos y = f(x) išvestinės grafikas^{IV}.

Nustatykite, kuris iš žemiau pateiktų teiginių apie **funkciją** y = f(x) yra **teisingas**^V.

- x = 3 yra funkcijos y = f(x) minimumo taško abscisė^{VI}. Α
- Funkcijos y = f(x) reikšmės mažėja VII, kai $x \in (-1; 3)$. В
- x = -1 yra funkcijos y = f(x) maksimumo taško abscisė^{VIII}. C
- D Funkcija y = f(x) neturi ekstremumo taškų^{IX}.
- x = -1 yra funkcijos y = f(x) minimumo taško abscisė. Ε
- **6.** Europos Komisiją sudaro 27 eurokomisarai (po vieną iš kiekvienos valstybės narės): pirmininkas, du jo pavaduotojai ir 24 komisijos nariai. Komisijos pirmininkas posėdžio metu sėdi jam skirtoje vietoje prie apskrito stalo. Keliais skirtingais būdais^X prie to paties stalo gali susėsti kiti Europos Komisijos nariai, jei pavaduotojai turi atsisėsti prie pirmininko iš dešinės ir iš kairės?
 - **A** 26!
- **B** 2.25!
- **C** 3!·24!
- **D** 2.24!
- **E** 24!

NEPAMIRŠKITE pasirinktus atsakymus žyminčių raidžių įrašyti lentelėje, esančioje paskutiniame šio sąsiuvinio puslapyje.

- lygiakraštis trikampis trójkąt równoboczny равносторонний треугольник
- Π kraštinės ilgis – długość boku – длина стороны
- Ш skaliarinė sandauga – iloczyn skalarny – скалярное произведение
- IV išvestinės grafikas – wykres pochodnej – график производной
- V teisingas – prawdziwe – истинное
- VI minimumo taško abscisė – odcięta punktu minimum – абсцисса точки минимум
- VII reikšmės mažėja – wartości zmniejszają się – значения уменьшаются
- VIII maksimumo taško abscisė – odcięta punktu maksimum – абсцисса точки максимум
- IXekstremum - точка экстремума
- X keliais skirtingais būdais – na ile różnych sposobów – сколькими различными способами

RIBOTO NAUDOJIMO

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2009 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

JUODRAŠTIS

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2009 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

		. т
7	Ičamnoalrita	lyratial.
1.	Išspręskite	IVELIS
	100014011100	-,, 5,

7.1. $\log_3 x = 2$.

7.2. $\log_2(x-3) - \log_2(x-1) = 3$.

	Čia rašo vertintojai				
	I	II	III		
(1 taškas)					
(3 taškai)					

Taškų suma		

JUODRAŠTIS

-

^I išspręskite lygtis – rozwiąż równania – решите уравнения

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2009 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

Q	Sekos bendrojo nario formulė $a_n = 3n - 4$.			šo vertir	ntojai
٥.	Serios delidiojo liario formule $u_n = 3n = 4$.		I	II	III
	8.1. Apskaičiuokite a_1 ir a_2 .				
	8.2. Įrodykite ^{II} , kad ši seka yra aritmetinė progresija ^{III} .	škas)			
	(1 tas	škas)			
	8.3. Apskaičiuokite šios progresijos pirmųjų dviejų šimtų narių sumą ^{IV} . (2 ta.	škai)			
	·			'	
	Taškų s	suma			

JUODRAŠTIS

-

sekos bendrojo nario formulė – wzór na wyraz ogólny сіągu – формула общего члена прогрессии

II irodykite – udowodnij – докажите

агіtmetinė progresija – ciąg arytmetyczny – арифметическая прогрессия

pirmųjų dviejų šimtų narių suma – suma dwustu początkowych wyrazów ciągu – сумма двухсот первых членов прогрессии

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2009 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

9.	sklyp	s pirko namų valdos žemės sklypą ir ūkio paskirties sklypą. Už abu bus jis sumokėjo 225 000 litų. Po 2 metų jis juos pardavė, gaudamas pelno ^I .	Čia ro I	ašo verti II	ntojai III
	9.1.	Už kiek litų Tadas pardavė abu žemės sklypus? (1 taškas)			
	92	Už kiek litų Tadas pardavė namų valdos žemės sklypą, jei iš jo gavo 50%		<u> </u>	
	J.Z.	pelno, o iš ūkio paskirties sklypo – 25 % pelno?			
		(2 taškai)	l	l	l
		Taškų suma			

JUODRAŠTIS

ī

I pelnas – zysk, dochód – прибыль, доход

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2009 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

10. Stačiojo gretasienio aukštinė^I lygi 12 cm. Pagrindo^{II} ABCD kraštinės, kurių ilgiai AB = 7 cm ir $AD = 3\sqrt{2}$ cm, sudaro 45° kampą. Apskaičiuokite šio gretasienio įstrižainės^{III} B_1D ilgį.

Ciu ru		mojai
I	II	III
1		***
1	:	
	:	
		l
		l
		l
· ——		' ——

(3 taškai)

JUODRAŠTIS

stačiojo gretasienio aukštinė – wysokość równoległościanu prostego – высота прямого параллелепипеда

праgrindas – podstawa – основание

istrižainė – przekątna – диагональ

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2009 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

	- 1·		4		I
11.	Raskite ne	lygybiu	sprendiniu	ı ıntervalı	us':

11.1.
$$(x-2)(x+2) > 5$$
.

11.2.
$$|2x - 3| \le 4$$
.

	Čia rašo vertintojai					
	I II III					
(3 taškai)						
(3 taškai)						

Taškų suma		

JUODRAŠTIS

nelygybės sprendinių intervalas – przedział rozwiązań nierówności – интервал решений неравенства

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2009 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

		(-	Čia ra	šo verti	ntojai
12.	12.1.	Parodykite, kad $2\cos^2(\pi - x) + 3\cos(\frac{\pi}{2} + x) - 2 = -2\sin^2 x - 3\sin x$.	I	II	III
	12.2	Parodykite, kad $2\cos^2(\pi - x) + 3\cos\left(\frac{\pi}{2} + x\right) - 2 = -2\sin^2 x - 3\sin x$. (2 taškai) Išspręskite lygtį $2\sin^2 x + 3\sin x = 0$.	—		
		Išspręskite lygtį $2\sin^2 x + 3\sin x = 0$. (3 taškai)			

Taškų suma		

JUODRAŠTIS

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2009 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

13. Lošimo ratas suskirstytas į 3 vienodo dydžio^I sektorius, iš kurių vienas pažymėtas skaičiumi 10, kitas – skaičiumi 6, o trečias – skaičiumi 2 (žr. pav.). Lošimo rato rodyklė sukama du kartus^{II}. Atsitiktinis dydis^{III} X – laimėjimo dydis litais (skaičių, ant kurių sustoja rodyklė, suma). (Laikykite, kad ant

sektoriaus ribos rodyklė sustoti negali.)

13.1. Visų lošimo baigčių aibė gali būti užrašyta, pavyzdžiui, taip: $\{(2;2),(2;6),(6;2),...\}$. Tokiu pačiu būdu užrašykite įvykiui^{IV} X=12 palankių baigčių aibę^V.

(1 taškas)

13.2. Parodykite, kad

$$P(X=12)=\frac{1}{3}.$$

13.3. Baikite pildyti atsitiktinio dydžio X skirstinio lentelę^{VI}.

X	4	8	12	16	20
D	1	2	1		1
1	9	9	3		9

13.4. Ar verta^{VII} žaisti šį žaidimą, jei bilieto kaina 13 Lt? Atsakymą pagrįskite remdamiesi matematine viltimi^{VIII}.

(1	taškas)
(1	iusnusj

(1 taškas)	 	
(2 taškai)		

Čia rašo vertintojai

Taškų suma		

vienodas dydis – jednakowa wielkość – одинаковая величина

du kartai – dwa razy – два раза

atsitiktinis dydis – zmienna losowa – случайная величина

IV ivykis – zdarzenie – событие

V palankių baigčių aibė – zbiór wyników sprzyjających – множество благоприятных исходов

VI skirstinio lentelė – tabela rozkładu – таблица распределения

VII ar verta – czy warto – стоит ли

will matematinė viltis – nadzieja matematyczna – математическое ожидание

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

JUODRAŠTIS			
JUODRAŠTIS			

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2009 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

14. 14.1. Duotoje koordinačių sistemoje^I nubraižykite^{II} funkcijų $f(x) = 2^x$ ir $g(x) = -x^2 + 2x + 3$ grafikus. (Brėžinyje aiškiai pažymėkite grafikų susikirtimo su x ir y ašimis^{III} taškus.)

x ir Čia rašo vertintojai I II III fikų

(2 taškai)

14.2. Kiek teigiamų sprendinių turi lygtis $2^x = -x^2 + 2x + 3$?

Tašku suma		

I koordinačių sistema – układ współrzędnych – система координат

пubraižykite – narysuj, sporządź – нарисуйте, постройте

III ašis – oś – ось

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

JUODRAŠTIS		

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2009 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

15. Taškai D, E ir F priklauso^I trikampio ABC kraštinėms (žr. pav.). AD yra trikampio ABC pusiaukampinė^{II}. DE statmena AC, o DF statmena AB.

15.1. Irodykite, kad DE = DF.

(2 taškai)

15.2. Remdamiesi trikampių ACD ir ABD plotų santykiu i įrodykite, kad

$$\frac{AC}{AB} = \frac{CD}{BD}$$

	-	
/ -		
(7) () ()		
1 / 1/15/2/111		
(2 taškai)		
(= 0000.0000)		
,		

Tašku suma		

priklauso – należy – принадлежит

приsiaukampinė – dwusieczna – биссектриса

statmenas – prostopadły – перпендикулярный

IV plotų santykis – stosunek pól – отношение площадей

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

		_
JUODRAŠTIS		

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

 $\uparrow y(m)$

2009 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

16. Tilto apsauginį skydą apriboja dvi parabolės^I

$$y = 40 - \frac{1}{30}x^2$$
 ir $y = 25 - \frac{1}{60}x^2$ (žr. pav.).

Apskaičiuokite skydo plotą. (Laikykite, kad vienetinę atkarpą koordinačių sistemoje atitinka 1 m.)

(4 taškai)

Čia rašo vertintojai I II III

parabolė – parabola – парабола

vienetinė atkarpa – odcinek jednostkowy – единичный отрезок

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

JUODRAŠTIS		_

2009 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

17. Sakykime, reikia pagaminti uždarą 300 cm³ talpos^I ritinio^{II} formos dėžutę produktams laikyti.

17.1. Parodykite, kad šios dėžutės viso paviršiaus ploto $^{\rm III}$ S cm 2 priklausomybe^{IV} nuo jos pagrindo spindulio ilgio^V x cm galima užrašyti taip:

$$S(x) = 2\left(\frac{300}{x} + \pi x^2\right), x > 0.$$

(2 taškai)

Čia rašo vertintojai

Parodykite, kad šios uždaros ritinio formos dėžutės viso paviršiaus plotas yra mažiausias^{VI}, kai $x = \sqrt[3]{\frac{150}{\pi}}$ cm.

(3 taškai)

Nustatyta, kad žinomos talpos uždaro ritinio formos dėžutės viso 17.3. paviršiaus plotas yra mažiausias, kai dėžutės aukščio VII ir pagrindo spindulio santykis lygus pastoviam skaičiui^{VIII} C (t. y. C reikšmė nepriklauso^{IX} nuo dėžutės talpos).

Remdamiesi 17.1 ir 17.2 užduočių duomenimis, apskaičiuokite skaičiaus C reikšmę.

12	taškai)
(4	iuskuij

Taškų suma		

talpa – pojemność – вместимость

Π ritinys – walec – цилиндр Ш

viso paviršiaus plotas – pole powierzchni całkowitej – площадь полной поверхности ΙV

priklausomybė – zależność – зависимость

pagrindo spindulio ilgis – długość promienia podstawy – длина радиуса основания VI

mažiausias – najmniejszy – наименьший

aukštis – wysokość – высота

pastovus skaičius – liczba stała – постоянное число

reikšmė nepriklauso – wartość nie należy – значение не принадлежит

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

JUODRAŠTIS		

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2009 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

18.	Dviejų irkluotojų greičiai ^I stovinčiame vandenyje yra lygūs. Jie treniruojasi taip: Jonas iš bazės nuplaukia 5 km upe prieš srovę ir grįžta atgal į ją, o Domas iš kitos bazės nuplaukia 5 km ežeru (stovinčiame vandenyje) ir grįžta atgal į ją. Kuris irkluotojas sugaišta mažiau laiko ^{II} treniruotėje? (Nekreipkite dėmesio į laiką sugaištą apsigręžiant.)	Čia ro I	išo verti II	ntojai III
	(4 taškai)			

sugaišta mažiau laiko – traci mniej czasu – тратит меньше времени

greitis – prędkość – скорость

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)

2009 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

JUODRAŠTIS

RIBOTO NAUDOJIMO

(iki teisėtai atskleidžiant vokus, kuriuose yra valstybinio brandos egzamino užduoties ar jos dalies turinys)