1.10 Medidas Separatrizes

São números reais que divides a sequência ordenada de dados em partes que contém a mesma quantidade de elementos. A mediana, por exemplo, que divide a sequência ordenada em dois grupos, cada um deles com 50% dos valores, é uma medida separatriz. Temos outras, como: *quartis*, *quintis*, *decis* e *percentis*.

Quartis: quatro partes, cada parte com 25% de seus elementos. (Q_i)

Quintis: cinco partes, cada parte com 20% de seus elementos. (K_i)

Decis: dez partes, cada parte com 10% de seus elementos. (D_i)

Percentis: cem partes, cada parte com 1% de seus elementos. (P_i)

Notemos que os quartis, quintis e decis são múltiplos dos percentis.

$$D_1 = P_{10}$$
 $Q_1 = P_{25}$
 $Q_2 = P_{50}$
 $Q_3 = P_{75}$
 $K_1 = P_{20}$
 $K_2 = P_{40}$
 $K_3 = P_{60}$
 $K_4 = P_{80}$
 $D_1 = P_{10}$
 $D_2 = P_{20}$
 $D_3 = P_{30}$
 $D_4 = P_{40}$
 $D_6 = P_{90}$

Cálculo das Medidas Separatrizes

1.10.1 Dados brutos ou Rol

Devemos inicialmente ordenar os elementos, caso sejam dados brutos, o que nos dá o Rol. Identificamos a medida que queremos com o percentil correspondente, P_i . Calculamos i% de $n = \frac{i \cdot n}{100}$, para localizar a posição do percentil i no Rol. Daí, identificamos o elemento que ocupa esta posição.

Notemos que temos duas possibilidades para $\frac{i \cdot n}{100}$:

- se for um número inteiro: P_i é um dos elementos da sequência ordenada.
- se não for um número inteiro: P_i é um elemento intermediário entre os elementos que ocupam as posições aproximadas por falta e por excesso do valor $\frac{in}{100}$. Neste caso, o P_i é definido como sendo a média dos valores que ocupam estas posições aproximadas.

Vamos aos exemplos:

Ex¹: Calcule Q_1 de X: 2,5,8,5,5,10,1,12,12,11,13,15

Rol X: 1,2,5,5,5,8,10,11,12,12,13,15

$$Q_1 = P_{25} \rightarrow \frac{25 \cdot 12}{100} = 13$$

Este valor indica a posição do P_{25} no Rol, ou seja, $Q_1 = P_{25}$ é o terceiro termo que é 5.

25% dos valores desta sequência são menores ou iguais a 5 e 75% são maiores ou iguais a 5.

Ex²: Calcule K_3 de X: 2,8,7,5,6,10,12,2,9

Rol X: 2,2,5,6,7,8,9,10,12

 $K_3 = P_{60} \rightarrow \frac{60.9}{100} = 5.4$ Este valor indica que P_{60} é um valor situado entre o quinto e o sexto elemento da sequência.

Observando a sequência, temos que o quinto e o sexto são 7 e 8:

$$K_3 = P_{60} = \frac{7+8}{2} = 7.5$$

 $K_3 = P_{60} = \frac{7+8}{2} = 7.5$ 60% dos valores são menores ou iguais a 7.5 e 40% dos valores são valores maiores ou iguais a 7.5.

"Nossas interpretações, podem não ser totalmente verdadeiras se o número de elementos de nossa sequência for menor que 100, pois alguns percentis podem coincidir em valores.".

Variável Discreta 1.10.2

Como eles estão na forma de uma variável discreta, eles já estão naturalmente ordenados. Vamos estudar com um exemplo.

Ex: Calcule D_4 , para a série:

x_i	f_i	F_i	$D_4 = P_{40} \rightarrow \frac{40.24}{100} = 9.6$ é a posição
2	3	3	P_{40} está entre o 9° e o 10° elemento.
4	5	8	O 9° elemento é 5 e o 10° também 5, logo:
5	8	16	$D_4 = P_{40} = \frac{5+5}{2} = 5$
7	6	22	40% dos valores são menores ou iguais a 5, e 60% são maiores ou iguais
10	2	24	a 5.

Variável Contínua 1.10.3

Se os dados estão na forma de variável contínua, eles já estão naturalmente ordenados e o número de elementos da série é $n = \sum f_i$.

Para obtermos uma fórmula geral para o cálculo dos percentis, vamos generalizar a fórmula da mediana:

$$m_d = l_{md} + \frac{n/2 + F_{ant}}{f_{md}} \cdot h$$

Identificamos $m_d = P_{50}$, podemos obter a fórmula particular para o P_{50} . Notamos que a classe que contém a mediana é a mesma classe que contém o P_{50} . Portanto identicamos l_{md} como o limite inferior da classe que contém o $P_{50}(l_{50})$. O termo $\frac{n}{2}$ pode ser representado como $\frac{50 \cdot n}{100}$, $f_{lm} \to f_{50}$, $F_{ant} \to F_{ant}$.

O que nos dá:

$$P_{50} = l_{50} + \frac{\frac{50 \cdot n}{100} - F_{ant}}{f_{50}} \cdot h$$

substituindo 50 por *i* ficamos com:

$$P_i = l_i + \frac{\frac{i \cdot n}{100} - F_{ant}}{f_i} \cdot h$$

Ex: Calcule Q_3 da série:

	Int. Classe			
1	0 10	16	16	$Q_3 = P_{75} \leftarrow i = 75$
2	10 20	18	34	$P_{75} = l_{75} + \frac{\frac{75 \cdot 105}{100} - 58}{35} \cdot 10$
3	20 —— 30	24	58	
4	30 —— 40	35	93	$P_{75} = 30 + \frac{20,75}{35} \cdot 10 \approx 3$
5	0 — 10 10 — 20 20 — 30 30 — 40 40 — 50	12	105	

"75% dos valores da série são menores ou iguais a 35,93 e 25% dos valores da série são maiores ou iguais a 35,93."

Exercícios Propostos

- 1. Em uma série ordenada, qual é o percentual de elementos que ficam à esquerda de cada uma das medidas separatrizes:
 - a) D_1
- b) Q_1 c) K_1
- d) D_2
- e) *K*₃

- f) Q_3
- g) *K*₄
- h) Q_2 i) D_8 j) P_{70}
- 2. Em uma série ordenada, qual é o percentual de elementos que ficam à direita de cada uma das medidas separatrizes:
 - a) D_4
- b) P_{80}
- c) Q_3
- d) K_2

- e) P_{20}
- f) D_5
- g) Q_1
- h) P_2
- 3. Qual é o percentual de elementos de uma série ordenada que se situam entre:
 - a) Q_1 e Q_3
- b) P_{10} e P_{90}
- c) D_2 e D_6

- d) Q_1 e K_3
- e) *D*₃ e *K*₄
- f) K_2 e D_8
- 4. Se uma série ordenada possui 180 elementos, dê o número aproximado de elementos que se situam:
 - a) Acima de P_{20}
- b) Abaixo de K_3
- c) Acima de Q_3

- d) Abaixo de P_{90}
- e) Entre P_{10} e P_{80}
- f) Entre Q_1 e Q_3
- 5. Dada a série X: 3,15,6,9,10,4,12,15,17,20,29, calcule:
 - a) Q_1
- b) *K*₂
- c) D_4
- d) Q_3
- e) P_{90}
- 6. A distribuição de frequência abaixo representa idade de 50 alunos de uma classe de primeiro ano de uma Faculdade.

Idade	N° de Alunos			
17	3	Calcule:		
18	18		1. \ <i>V</i>	a) D
19	17	a) Q_1	b) <i>K</i> ₃	c) D_1
20	8	d) Q_3	e) P_{95}	
21	4			

7. A distribuição de freqência abaixo representa o consumo por 54 notas fiscais emitidas durante um dia em uma loja de departamentos.

Classe	Consumo por nota US\$	N° de notas			
1	0 50	10			
2	50 100	28	Calcule:		
3	100 150	12	a) Q_1	b) <i>K</i> ₂	c) D_3
4	150 200	2	d) Q_3	e) <i>D</i> ₇	f) <i>P</i> ₉₈
5	200 250	1			
6	250 300	1			

- 8. Interprete os valores obtidos no problema anterior.
- 9. Tomando como amostra a tabela do problema 7, o gerente desta loja de departamentos decidiu premiar a nível promocional com um brinde, 10% dos fregueses que mais consumirem, nos próximos 30 dias. A partir de qual valor de consumo da nota fiscal os clientes seriam premiados?

dibetao@gmail.com 15 Gestão Empresarial