

#### Universidad "Máximo Gómez Báez"

### Facultad de Informática y Ciencia Exacta

# Tarea Final Matemática I

# Licenciatura en Informática

Tipo de Curso: CPE

Año:  $1^{er}$  Año Periodo:  $1^{ro}$ 

#### Elaborado por:

Lic. Juan Cruz Oduardo Profesor Instructor

#### Aprobado por:

Dr. C. Juan Antonio Martin Jefe de Dpto. Matemática

January 21, 2025

## **Indicaciones**

• => Deben confeccionar un documento de nivel universitario, con la respuesta de el ejercicio que le corresponde a cada uno, ya sea escrito o en formato digital, es preferible que sea digital y en .PDF para guardar la integridad de dicho documento.

Fecha de Tope: 31/01/2025

# Sistema de Ejercicios

# Lógica Matemática

### Andy Luis Galán Velázquez

- 1. Halle los valores de verdad de las siguientes fórmulas para cada una de sus interpretaciones y clasifíquelas en Tautologías, Contradicciones o Contingencias:
  - (a)  $[p \lor \neg q] \lor [\neg p \land q]$
  - (b)  $[p \land q] \Rightarrow [\neg[\neg p \lor \neg q]]$
  - (c)  $[p \Rightarrow q] \Longleftrightarrow [\neg [p \land \neg q]]$
  - (d)  $[p \lor q] \Rightarrow [\neg[\neg p \land \neg q]]$

#### Luis Anthony Galán Velázquez

- 2. Para cada una de las siguientes estructuras deductivas, determine si es correcta o no:
  - (a)  $p \Rightarrow q, \neg q \Vdash p$
  - (b)  $p \Rightarrow r, p \Rightarrow q \vdash p \Rightarrow q \vdash p \Rightarrow r, p \Rightarrow q$
  - (c)  $p \Rightarrow [q \Rightarrow r], q \Rightarrow [p \Rightarrow r] \vdash p \lor q \Rightarrow r$
  - (d)  $[p \Rightarrow q] \land [r \Rightarrow s], p \lor r \vdash q \lor s, r$

# Teoría Conjuntos

## Miguel C. Flores Rodríguez

3. Sean los conjuntos  $F = \{4,2,0,5,7\}, \ G = \{3,9,0,8,6\}, \ H = \{1,3,6,7\}$  y Conjunto Universo  $U = \{x|0 \le x \le 10\}$ 

1

Determine:

- (a)  $G \cap H$
- (b)  $H \setminus G$
- (c) P(F)
- (d)  $F \times H$
- (e)  $[F \cup H]^c$

#### Daisel Valdes Castillo

4. Sean los conjuntos A =  $\{1\}$ , B =  $\{1, 3\}$ , C =  $\{1, 2, 3\}$ , D =  $\{3, 4\}$  y E =  $\{1, 2, 3\}$ .

Marque verdadero o falso. Transforme las falsas en verdaderas:

- (a)  $A \subset C$
- (b)  $\_\_B \subseteq D$
- (c)  $\_\_D \nsubseteq E$
- (d)  $\_\_\phi \nsubseteq E$
- (e)  $\_\_B \nsubseteq D$
- (f)  $_{1} = 1 \in D$
- (g) \_\_\_\_ Los conjuntos C y D son disjuntos.

### Sistemas de Numeración

- 5. Efectua:
  - (a)  $11101_2 + 111_2$
  - (b)  $1010101_2 + 10101_2$
  - (c)  $1010_2 \cdot 101_2$
  - (d)  $10101_2 \cdot 111_2$
- 6. Exprese en el sistema de numeración octal
  - (a)  $123_{10}$
  - (b) 10000000110<sub>2</sub>
  - (c)  $456_8 + 654_8$
  - (d)  $777_8 + 2_8$

# Algebra Lineal

7. Dada las matrices:

$$A = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 5 & -1 \\ 0 & -2 & 4 \end{pmatrix}$$
y 
$$B = \begin{pmatrix} -1 & 0 & 2 \\ -2 & 4 & -1 \\ 3 & 2 & 0 \end{pmatrix}$$
Calcular:

- A+B
- B-A
- 3(2A + B)
- 8. Calcular el rango de cada una de las siguientes matrices. En caso de ser posible, calcular el determinante:

(a) 
$$\begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$$

(b) 
$$\begin{pmatrix} 1 & -2 & 3 \\ -2 & 5 & 0 \\ 3 & 0 & -4 \end{pmatrix}$$

9. Encuentre la inversa de las siguientes matrices:

$$A = \left(\begin{array}{ccc} 1 & 2 & 0 \\ 2 & 0 & 3 \\ 0 & -3 & 1 \end{array}\right)$$

$$B = \left(\begin{array}{ccc} 5 & 4 & 2 \\ 2 & 2 & 3 \\ 7 & 6 & 6 \end{array}\right)$$