Predicate Logic, Syntax, and Semantics

<u>Exercise 1.</u> Translate the following sentences to WFFs in Predicate Logic. Define the predicates, functions, and constant symbols as appropriate. **(21 marks)**

- 1. Everybody has a mother and a father.
- 2. All users must enter passwords that include special characters.
- 3. Every prize was won by a girl.
- 4. No lunatics is fit to serve on a jury.
- 5. Every sane person can do logic.
- 6. No student has more than one student number.
- 7. Whoever contributes to the Times is a writer.

Exercise 2. Use induction to define the following for an arbitrary WFF ϕ : (10 marks)

- ForAll(ϕ): The set of universally quantified variables in ϕ .
- $Predicates(\phi)$: The set of predicates.

For example, if $\phi_1 = \forall x \exists y R(x,y)$ and $\phi_2 = (\forall x \exists y R(x,y) \land \forall y P(y))$, then $ForAll(\phi_1) = \{x\}$, $ForAll(\phi_2) = \{x,y\}$, $Predicate(\phi_1) = \{R\}$, and $Predicate(\phi_2) = \{R,P\}$.

Exercise 3. Consider a sentence $\phi = \forall x \ (Q(x) \lor \exists z \forall y \ ((P(f(x), z) \land Q(a)) \lor \forall x \ R(y, z, g(x)))).$

- 1. Draw its syntax tree. (5 marks)
- 2. List all the sub-formulas, terms, predicates, functions, and free variables in ϕ . (15 marks)
- 3. Specify a model for ϕ (a structure that satisfies ϕ). This consists of a universe and interpretations of the predicates and the functions in the signature of the model. **(15 marks)**

<u>Exercise 4.</u> Decide if the following sentences hold in the structure of natural numbers \mathbb{N} , the structure of integers \mathbb{Z} , and the structure of real numbers \mathbb{R} . **(20 marks)**

Note: Traditionally, natural numbers start with 1 ($\{1, 2, 3, ...\}$). In computer science, they often start from 0 ($\{0, 1, 2, ...\}$). Assume natural numbers start from 0 for this exercise.

- 1. $\forall x \forall y \ (x + y = x \rightarrow y = 0)$.
- 2. $\forall x \forall y \ (x \times y = x \rightarrow y = 1)$.
- 3. $\exists x \forall y \ (x \times y = x + y \rightarrow y = x).$
- 4. $\forall x \exists y \ (x \times y = x + y \rightarrow y = x)$.

Theories in Predicate Logic

<u>Exercise 5.</u> Answer the following questions about theories in Predicate Logic. Explain your answers. (18 marks)

- Group Theory is (finitely) axiomatizable.
- Group Theory is complete.
- {} (the empty set) is a theory.
- $\forall x P(x)$ is in $Cons(\{\})$.
- $\forall x (P(x) \lor \neg P(x))$ is in $Cons(\{\})$.
- $\forall x P(x)$ is in $Cons(\exists x (P(x) \land \neg P(x)))$.

Natural Deduction and Resolution

Exercise 6. Prove the following entailments using natural deduction and resolution. (30 marks)

- 1. $\forall x \forall y (R(x,y) \lor R(y,x)) \vdash \forall x R(x,x)$.
- 2. $\forall x (P(x) \lor Q(x)), \exists x (\neg P(x)) \vdash \exists x Q(x).$