September 8, 2023

We go on to invent some $G^{-1} = \{(y,x) | (x,y) \in G\} \subseteq Y \times X$ gives a related $G^{-1}: Y \rightrightarrows X$ such that

Definition: Pre-image

$$G^{-1}(y) = \{x | (y, x) \in G^{-1}\}$$

$$= \{x | (y, x) \in G\}$$

$$= \{x | y \in G\}.$$

This is called the pre-image of y.

Now, define $dom(G) = \{x \in X | G(x) \neq \emptyset\}$. Extend this notation to inputs that are <u>sets</u>: if $A \subseteq X$

$$G(A) = \bigcup_{a \in A} G(a),$$

if $B \subseteq Y$,

$$G^{-1}(B) = \bigcup_{b \in B} G^{-1}(B)$$

= $\{ x \in X | G(x) \cap B \neq \phi \}.$

A set-valued map $G:X\rightrightarrows Y$ is a <u>mapping</u> or <u>function</u> when G(x) is a <u>singleton</u> (one-point set) for each $x\in X$ (this entails $\mathrm{dom}(G)=X$.) Indicate this by writing $G:X\to Y$, and simplifying $G(x)=\{y\}$ down to G(x)=y.

Note. A set G might give a function, but G^{-1} might not.

Example 1. Consider the equation $y=x^2$. Here, $X=\mathbb{R}$, $Y=\mathbb{R}$, and $X\times Y=\mathbb{R}^2$. The equation defines a set $G=\{(x,y)|\ y=x^2\}$ in the plane that is the graph of the function $G:\mathbb{R}\to\mathbb{R}$ defined by $G(t)=t^2$, $t\in\mathbb{R}$. Note that

$$G^{-1}(4) = \{x | G(x) = 4\}$$

=\{-2, +2\}.

Similarly,

$$G^{-1}(0) = \{x | G(x) = 0\}$$

= $\{-0, 0\} = 0.$

Also, $dom(G^{-1}) = \{y | y \ge 0\} = [0, \infty).$

Thus, we go on to define a function:

Definition: Function

Let $f: X \to Y$,

- (a) This f is one-to-one (injective), i.e., different inputs give different outputs, i.e.,
 - for all $x_1, x_2 \in X, x_1 \neq x_2$ if $f(x_1) \neq f(x_2)$.
 - We can also state the contrapositive: for all $x_1, x_2 \in X$, $f(x_1) = f(x_2) \implies x_1 = x_2$.
- (b) This f is onto (surjective) when f(X = Y, i.e.,
 - for all $y \in Y$, there exists $x \in X$: f(x) = y.
- (c) A function that is both one-to-one and onto is called bijective.

1 Countability

Recall that $\mathbb{N} = \{0, 1, 2, 3, \dots\}$, are defined to be the natural numbers.

Definition: Finite sets

A set \mathcal{A} is <u>finite</u> if either $\mathcal{A}=\phi$ or there exists n and a bijection $\varphi:\{1,2,\ldots,n\}\to\mathcal{A}$. Notation: $|\phi|=0$, $|\mathcal{A}|=n$.

This is more or less as expected, but countable sets are more interesting.

Definition: Countable

A set S is countable if there is a bijection $\varphi : \mathbb{N} \to S$. Here, $|S| = \aleph_0$.

Example 2. Consider

- (a) \mathbb{N} itself. $(\phi(x) = x)$
- (b) Hilbert's hotel; $S = \mathbb{N} \cup \{0\}$. Use $\phi(n) = n - 1$.
- (c) $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}.$ Use

$$\phi(n) = \begin{cases} -\frac{n}{2} & \text{if } n \text{ is even.} \\ \\ \frac{n-1}{2} & \text{if } n \text{ is odd.} \end{cases}$$