7CCMCS00 - Foundations of Complex Systems Modelling

21131620

September 27, 2021

Contents

1	Wee	e k 1	
	1.1	Linear	Algebra
		1.1.1	Fields
		1.1.2	Matrices: definitions
			Matrix operations
		1.1.4	Linear Systems
		1.1.5	The determinant
		1.1.6	Geometric interpretation of the determinant
			Properties of the determinant
		1.1.8	Inverse of a square matrix
		1.1.9	Trace of a square matrix
		1.1.10	Vector spaces

1 Week 1

1.1 Linear Algebra

1.1.1 Fields

A field is a set \mathbb{F} endowed with two binary operations, a multiplication \bullet and an addition +. Both these operations map an ordered pair of elements of \mathbb{F} to another element of \mathbb{F} , $\mathbb{F} \times \mathbb{F} \to \mathbb{F}$. For each triplet $a, b, c \in \mathbb{F}$:

- Associativity: For both $\circ = +$ and $\circ = \bullet$, then $a \circ (b \circ c) = (a \circ b) \circ c$.
- Commutativity: For both $\circ = +$ and $\circ = \bullet$, then $a \circ b = b \circ a$.
- Identities: There exists two special elements in \mathbb{F} , zero (0) and one (1), such that a + 0 = a and $a \bullet 1 = a$.
- **Inverse:** For each $a \in \mathbb{F}$ there is an element, denoted by $-a \in \mathbb{F}$, such that a + (-a) = 0. Similarly for each $a \in \mathbb{F} \setminus 0$, there is an element $\frac{1}{a} \in \mathbb{F}$ such that $a \bullet \frac{1}{a} = 1$.
- **Distributivity:** $a \bullet (b+c) = a \bullet b + a \bullet c$ shows distributivity of over +.

1.1.2 Matrices: definitions

A matrix **A** is an $m \times n$ -array of scalars $A_{ij} \equiv [\mathbf{A}]_{ij}$ from a given field \mathbb{F} , with $i = 1, \ldots, n$ and $j = 1, \ldots, m$.

$$\mathbf{A} = \begin{pmatrix} A_{11} & \cdots & A_{1m} \\ \vdots & \ddots & \vdots \\ A_{n1} & \cdots & A_{nm} \end{pmatrix} \in \mathcal{M}_{n \times m}(\mathbb{F}). \tag{1}$$

- Given **A**, its transpose matrix \mathbf{A}^T is such that $[\mathbf{A}^T]_{ij} = A_{ji}$.
- If n = m then **A** is a square matrix.
- If $\mathbb{F} = \mathbb{R}$ and $\mathbf{A}^T = \mathbf{A}$, the matrix \mathbf{A} is real symmetric.

- If $\mathbb{F} = \mathbb{C}$, its Hermitian transpose \mathbf{A}^{\dagger} has $[\mathbf{A}^{\dagger}]_{ij} = \overline{A}_{ji}$.
- If $\mathbb{F} = \mathbb{C}$ and $\mathbf{A}^{\dagger} = \mathbf{A}$, the matrix \mathbf{A} is Hermitian.
- We call vector matrices $\mathbf{v} \in \mathcal{M}_{n \times 1}(\mathbb{F}) \equiv \mathbb{F}^n$.

As an example:

$$\mathbf{A} = \begin{pmatrix} 1 & -i & 2 \\ 3i & 5 & 8i \end{pmatrix} \to \mathbf{A}^T = \begin{pmatrix} 1 & 3i \\ -i & 5 \\ 2 & 8i \end{pmatrix} \to \mathbf{A}^{\dagger} = \begin{pmatrix} 1 & -3i \\ i & 5 \\ 2 & -8i \end{pmatrix}. \tag{2}$$

A square matrix **A** is diagonal if $A_{ij} = 0$, $i \neq j$.

$$\mathbf{A} = \begin{pmatrix} A_{11} & 0 & \cdots & 0 \\ 0 & A_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & A_{nn} \end{pmatrix} = \operatorname{diag}(A_{11}, A_{22}, \dots, A_{nn}).$$
(3)

The matrix $\mathbf{I}_n = \operatorname{diag}(A_{11}, A_{22}, \dots, A_{nn})$ is special and called the identity matrix.

Matrix operations

If $\mathbf{A}, \mathbf{B} \in \mathcal{M}_{n \times m}(\mathbb{F})$, their sum $\mathbf{C} = \mathbf{A} + \mathbf{B}$ is an element-wise operation. For example:

$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} A_{11} & \cdots & A_{1m} \\ \vdots & \ddots & \vdots \\ A_{n1} & \cdots & A_{nm} \end{pmatrix} + \begin{pmatrix} B_{11} & \cdots & B_{1m} \\ \vdots & \ddots & \vdots \\ B_{n1} & \cdots & B_{nm} \end{pmatrix}$$

$$= \begin{pmatrix} A_{11} + B_{11} & \cdots & A_{1m} + B_{1m} \\ \vdots & \ddots & \vdots \\ A_{n1} + B_{n1} & \cdots & A_{nm} + B_{nm} \end{pmatrix} \equiv \mathbf{C} \in \mathcal{M}_{n \times m}(\mathbb{F}). \tag{5}$$

$$= \begin{pmatrix} A_{11} + B_{11} & \cdots & A_{1m} + B_{1m} \\ \vdots & \ddots & \vdots \\ A_{n1} + B_{n1} & \cdots & A_{nm} + B_{nm} \end{pmatrix} \equiv \mathbf{C} \in \mathcal{M}_{n \times m}(\mathbb{F}).$$
 (5)

The product C = AB is instead much more involved. If $A \in \mathcal{M}_{n \times m}(\mathbb{F})$, $B \in \mathcal{M}_{m \times n'}(\mathbb{F})$.

$$\mathbf{AB} = \begin{pmatrix} A_{11} & \cdots & A_{1m} \\ \vdots & \ddots & \vdots \\ A_{n1} & \cdots & A_{nm} \end{pmatrix} \begin{pmatrix} B_{11} & \cdots & B_{1m} \\ \vdots & \ddots & \vdots \\ B_{n1} & \cdots & B_{nm} \end{pmatrix}$$
(6)

$$= \begin{pmatrix} \sum_{k} A_{1k} B_{k1} & \cdots & \sum_{k} A_{1k} B_{kn'} \\ \vdots & \ddots & \vdots \\ \sum_{k} A_{nk} B_{k1} & \cdots & \sum_{k} A_{nk} B_{kn'} \end{pmatrix} \equiv \mathbf{C}.$$
 (7)

Observe that if C = AB, the matrix BA is not defined unless A and B are both squared of the same dimension. Even in this case, however, $AB \neq BA$ in general. If $\mathbf{A} \in \mathcal{M}_{n \times m}(\mathbb{F})$, we have that $\mathbf{I}_n \mathbf{A} = \mathbf{A} \mathbf{I}_m = \mathbf{A}$.

1.1.4 Linear Systems

Suppose we have to solve:

$$\begin{cases}
A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n = b_1 \\
A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n = b_2 \\
\vdots & \vdots \\
A_{n1}x_1 + A_{n2}x_2 + \dots + A_{nn}x_n = b_n
\end{cases}$$
(8)

This can be written as:

$$\begin{pmatrix} A_{11} & \cdots & A_{1m} \\ \vdots & \ddots & \vdots \\ A_{n1} & \cdots & A_{nm} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ v_n \end{pmatrix}. \tag{9}$$

1.1.5 The determinant

Definition 1 Given a matrix $\mathbf{A} \in \mathcal{M}_{\backslash \times \backslash}(\mathbb{F})$, its determinant is given by the so-called Laplace expansion along any row i:

$$det\mathbf{A} = \sum_{j=1}^{n} (-1)^{i+j} A_{ij} det\mathbf{A}^{(\mathbf{i}'\mathbf{j}')}.$$
(10)

Here, the matrix $\mathbf{A}^{(i'j')}$ is the $(n-1) \times (n-1)$ -matrix obtained by removing the ith row and jth column from \mathbf{A} , and $\det \mathbf{A}^{(i'j')}$ -minor of \mathbf{A} .

If $\det \mathbf{A} = 0$ then \mathbf{A} is singular.

1.1.6 Geometric interpretation of the determinant

It is easily seen that the absolute value of the determinant of \mathbf{A} is the volume of an n-dimensional parallelepid built from the column vectors of the matrix \mathbf{A} .

1.1.7 Properties of the determinant

- 1. If $\mathbf{A} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ then $\det \mathbf{A} = \prod_{i=1}^n \lambda_i$.
- 2. $\det \mathbf{A} = \det \mathbf{A}^T$.
- 3. $\det c\mathbf{A} = c^n \det \mathbf{A}$.
- 4. If $A_{ik} = \lambda U_k + V_k$;

$$\det \mathbf{A} = \det \begin{pmatrix} A_{11} & \cdots & A_{1k} & \cdots & A_{1n} \\ \vdots & & \vdots & & \vdots \\ A_{n1} & \cdots & A_{nk} & \cdots & A_{nn} \end{pmatrix}$$

$$(11)$$

$$= \lambda \det \begin{pmatrix} A_{11} & \cdots & U_1 & \cdots & A_{1n} \\ \vdots & & \vdots & & \vdots \\ A_{n1} & \cdots & U_n & \cdots & A_{nn} \end{pmatrix} + \det \begin{pmatrix} A_{11} & \cdots & V_k & \cdots & A_{1n} \\ \vdots & & \vdots & & \vdots \\ A_{n1} & \cdots & V_n & \cdots & A_{nn} \end{pmatrix}. \tag{12}$$

It is said that the determinant is multilinear.

- 5. $\det \mathbf{AB} = \det \mathbf{A} \det \mathbf{B}$.
- 6. If we swap two columns (or rows) the determinant gets a minus sign: the determinant is alternating. This also means if $\det \mathbf{A}$ has two identical columns then $\det \mathbf{A} = 0$.

1.1.8 Inverse of a square matrix

A square matrix $\mathbf{A} \in \mathcal{M}_{n \times n}(\mathbb{C})$ is invertible if there exists a matrix $\hat{\mathbf{A}}$ such that

$$\hat{\mathbf{A}}\mathbf{A} = \mathbf{A}\hat{\mathbf{A}} = \mathbf{I}_n. \tag{13}$$

We denote $\mathbf{B} = \mathbf{A}^{-1}$. If it exists, this inverse is unique. Moreover,

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}.\tag{14}$$

Theorem 1 Inverse of a square matrix: Let $\mathbf{A} \in \mathcal{M}_{n \times n}(\mathbb{F})$ and let \mathbf{C} its matrix of cofactors. Then, if $det(\mathbf{A}) \neq 0$, the inverse of \mathbf{A} exists and is given by

$$\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \mathbf{C}^T. \tag{15}$$

Use n = 2 as a simple example.

1.1.9 Trace of a square matrix

For a square matrix we define its trace by

$$\operatorname{tr} \mathbf{A} = \sum_{i=1}^{n} A_{ii}, \, \mathbf{A} \in \mathcal{M}_{n \times n}(\mathbb{F}).$$
 (16)

Theorem 2 Trace and determinant: Let $A \in \mathcal{M}_{n \times n}(\mathbb{C})$. Then

$$det\left(e^{\mathbf{A}}\right) = e^{tr\mathbf{A}}.\tag{17}$$

In this expression,

$$e^{\mathbf{A}} = \sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^k. \tag{18}$$

1.1.10 Vector spaces

Let us assume that $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$ and let us focus on vectors $\mathbf{v} \in \mathbb{F}^n \equiv V$.

The set V is a vector space over \mathbb{F} i.e., is a set of elements such that, given $\mathbf{u}, \mathbf{v} \in \mathbb{F}^n$, then $\alpha \mathbf{v} + \beta \mathbf{u} \in \mathbb{F}$ for any $\alpha, \beta \in \mathbb{F}$. In particular, V contains the zero vector.

Given a set of K vectors $\{\mathbf{v}_k\}_{k=1,\ldots,K}$, its span is the set

$$\operatorname{Span}[\{\mathbf{v}_k\}_k] = \left\{ \sum_{k=1}^K \alpha_k \mathbf{v}_k : \alpha_k \in \mathbb{F} \,\forall k \right\}. \tag{19}$$

The set of K vectors $\{\mathbf{v}_k\}_{k=1}^K$ is said to be linearly independent if the equation

$$\sum_{k} \alpha_{k} \mathbf{v}_{k} = \mathbf{0} \implies \alpha_{k} = 0 \,\forall k \tag{20}$$

holds true.

A basis is a set $\{e_k\}_k$ of linearly independent vectors which is maximal. This also means that

$$V = \operatorname{Span}[\{\mathbf{e}_k\}_k]. \tag{21}$$

The cardinalities of a basis V is the dimension of V, and all basis have the same cardinality (if finite).