Homework 4, 12/21/2021

Due Jan/4/2022 9:00AM, to new E3

1. (40%) Find the shortest encoded bit string of the following source sequence:

Source sequence: NCTUNCTUNYCUNCTUNYCU

- (a) (10%) Calculate the entropy of the source sequence.
- (b) (10%) Use Huffman coding to encode the string. You first calculate probability distribution, develop a binary tree for it, and perform the encoding.
- (c) (10%) Use extended Huffman coding to encode the string where k=2. You first calculate probability distribution, develop a binary tree for it, and perform the encoding.
- (d) (10%) Using arithmetic coding. For this case, you can ignore the termination issue in a decoder, and output the shortest bit string of the first 2 symbols only, while the probability distribution is based on the whole sequence.
- (30%) For the 4x4 pixel values given below, calculate the first level of the <u>2D Haar wavelet transform</u> and the second level of the 2D Haar wavelet transform on the LL band of the first-level transformed coefficients. Write the details of the procedures and the final 4x4 output.

120	20	20	15	
40	30	08	12	
30	20	84	126	
20	20	120	110	

3. (30%) For the final 4x4 output of Question 2, what are <u>coded significance map</u> and the outputs of the <u>subordinate passes</u> for the <u>first round</u> of EZW coding?

Introduction to

1. (40%) Find the shortest encoded bit string of the following source sequence:

Source sequence: NCTUNCTUNYCUNCTUNYCU

- (a) (10%) Calculate the entropy of the source sequence.
- (b) (10%) Use Huffman coding to encode the string. You first calculate probability distribution, develop a binary tree for it, and perform the encoding.
- (c) (10%) Use extended Huffman coding to encode the string where k=2. You first calculate probability distribution, develop a binary tree for it, and perform the encoding.
- (d) (10%) Using arithmetic coding. For this case, you can ignore the termination issue in a decoder, and output the shortest bit string of the first 2 symbols only, while the probability distribution is based on the whole sequence.

2. (30%) For the 4x4 pixel values given below, calculate the first level of the <u>2D Haar wavelet transform</u> and the second level of the 2D Haar wavelet transform on the LL band of the first-level transformed coefficients. Write the details of the procedures and the final 4x4 output.

120	0 20 20		15	
40	30	08	12	
30	20	84	126	
20	20	120	110	

2.	
70 17.5 50 2.5	52.5 13.75 2.75 0.25
35 10 5 -2	22.5 110 2.5 -8
25 105 5 -21	17.5 3.75 22.5 2.25
20 115 70 5	2.5 -5 2.5 -13
St NW IZ \$	St col 12 \$
33.125 19.375 275 0.25	49.6875 -12.1875 275 0.25
66.25 -43.95 2.5 -8	-16.5625 31.5625 2.5 -8
17,5 3,75 22.5 2,25	17.5 3.75 22.5 2.25
2.5 -5 2.5 -13	2.5 -5 2.5 -13
2nd how 12 1	2,2 60 12 47
	final output

3. (30%) For the final 4x4 output of Question 2, what are <u>coded significance map</u> and the outputs of the <u>subordinate passes</u> for the <u>first round</u> of EZW coding?

	_		EZW coding.			
3						
	lid (SNE) SNE		subband	coefficient value	symbol	reconstruted value
	49.6875 -12.1875	2 7 5 25	LL	49.6895	P	48
	-16.5625 31.5625	2,7 -8	HL2	-12.18n5	ZTR	0
	17.5 3.28	22 5 2,25	LH2	-16,5625	Z TR	0
			HHZ	31.5625	ZTR	D
		2,8				
			T 6 =	64 = 32		
			31—	48	64	
			76		max	
			2 (=	boodinate output	:	