§5 Das Vollständigkeitsaxiom

Definition 1

Sei $M \subset \mathbb{R}$ nicht leer.

- i) $a \in \mathbb{R}$ heißt $\left\{ \begin{array}{l} obere \\ untere \end{array} \right\}$ Schranke von M, falls b $\left\{ \begin{array}{l} \leq \\ \geq \end{array} \right\}$ a für alle b \in M
- ii) $a^* \in \mathbb{R}$ heißt $\left\{ \begin{array}{c} obere \\ untere \end{array} \right\}$ Grenze von M, falls
 - a^* ist $\left\{\begin{array}{c} obere\\ untere \end{array}\right\}$ Schranke von M
 - Für jede $\left\{\begin{array}{c} obere \\ untere \end{array}\right\}$ Schranke a von M gilt a $\left\{\begin{array}{c} \geq \\ \leq \end{array}\right\}$ a*

$$a^*$$
 ist $\left\{\begin{array}{l} kleinste\ obere\ (Supremum) \\ grösste\ untere\ (Infimum) \end{array}\right\}$ Schranke

- iii) M heißt nach $\left\{ egin{array}{l} oben \\ unten \end{array} \right\}$ beschränkt, falls eine $\left\{ egin{array}{l} obere \\ untere \end{array} \right\}$ Schranke von M existiert.
- iv) M heißt beschränkt, wenn M nach oben und nach unten beschränkt ist.

Beispiel

Betrachte folgende Menge

$$M = (0,1] := \{x \in \mathbb{R} \mid 0 < x \le 1\}$$

Menge aller oberen Schranken

$$[1, +\infty) = \{x \in \mathbb{R} \mid x \ge 1\}$$

Menge aller unteren Schranken

$$(-\infty, 0] = \{x \in \mathbb{R} \mid x \le 0\}$$

und

obere Grenze
$$= 1 \& untere Grenze = 0$$

Bemerkung: Es existiert eine obere bzw. untere Grenze

Vollständigkeitsaxiom

Sei M $\neq 0$ und nach oben beschränkt. Dann existiert eine obere Grenze von M. Benutze folgende Schreibweise

 $\sup M$ (Supremum)

Lemma 1

Sei $M \neq 0$ und nach unten beschränkt. Dann existiert eine untere Grenze von M. Benutze folgende Schreibweise:

inf M (Infinum)

Der folgende Satz zeigt, dass das Vollständigkeitsaxiom sicher stellt, daß $\mathbb R$ "groß genug'ïst, um Wurzeln zu nehmen.

Satz 1

Zu c $\in \mathbb{R}$, c ≥ 0 und n $\in \mathbb{N}$ existiert genau ein a $\in \mathbb{R}$, a ≥ 0 mit $a^n = c$. Wir führen folgende Schreibweise ein

$$a = \sqrt[n]{c} = c^{\frac{1}{n}}$$

Der nächste Satz zeigt, dass $\mathbb R\,$ im Vergleich zu $\mathbb Q\,$ nicht "allzu groß "ist.

Satz 2

Seien $a,b \in \mathbb{R}$ mit a < b, dann existiert ein $c \in \mathbb{Q}$ mit a < c < b

Satz 3

- i) Q ist abzählbar
- ii) \mathbb{R} ist überabzählbar

Für den Beweis von Satz 2 benötigen wir:

Lemma 2 (Archimedisches Prinzip)

- i) Zu $a \in \mathbb{R}$ existiert ein $n \in \mathbb{N}$ mit n > a
- ii) Zu $a \in \mathbb{R}$ existiert ein $n \in \mathbb{Z}$ mit n < a
- iii) Zu $a \in \mathbb{R}$, a > 0 existiert ein $n \in \mathbb{N}$ mit $\frac{1}{n} < a$

Beweis Lemma 2

i) Angenommen, es gäbe ein $a \in \mathbb{R}$ mit a > n für alle $n \in \mathbb{N}$, dann ist a eine obere Schranke für $\mathbb{N} \subset \mathbb{R}$. Also existiert nach dem Vollständigkeitsaxiom eine obere Grenze a^* von \mathbb{N} . Nach Def. der oberen Grenze ist a^* -1 keine obere Schranke von \mathbb{N} . Nach Def. der oberen Schranke existiert daher ein $n \in \mathbb{N}$ mit

$$n > a * -1$$
, d.h. $n + 1 > a *$

Nach Def. der natürlichen Zahlen ist $n+1\in\mathbb{N}$, es existiert also

$$\tilde{n} \in \mathbb{N} \text{ mit } \tilde{n} > a^*$$

Daher ist a* keine obere Schranke. Aber eine obere Grenze ist insbesondere eine obere Schranke. Wiederspruch

ii) Betrachte $-a \in \mathbb{R}$. Gemäß i) gibt es ein $\tilde{n} \in \mathbb{N}$ mit

$$-a < \tilde{n}$$
, also $-\tilde{n} < a$

Setzte

$$-\tilde{n} =: n \in \mathbb{Z}$$

iii) Betrachte

$$\frac{1}{n} \in \mathbb{R} \quad (a > 0, \text{ also } a \neq 0)$$

Gemäß i) gibt es $\tilde{n} \in \mathbb{N}$ mit $\frac{1}{a} < \tilde{n}$. Wenn $\frac{1}{a} > 0$ (folgt aus a > 0) impliziert das $a > \frac{1}{n}$

Beweis Satz 2

Setze $\epsilon := b - a > 0$, gemäß Lemma 2 iii) gibt es ein $n \in \mathbb{N}$ mit $\epsilon > \frac{1}{n}$. Behauptung:

Wir können das gewünschte c
 von der Form $\frac{l}{n}, l \in \mathbb{Z}$ wählen. Gemäß Lemma 2 ii) existiert ein k
 $\in \mathbb{Z}$ mit k < a (1) Betrachte die Menge M :=
 $\left\{m \in \mathbb{N} \left| k + \frac{m-1}{n} \le a \right.\right\}$

Wir behaupten:

- $1 \in M$ folgt aus (1)
- $M \neq N$

Zur zweiten Behauptung (M \neq N): Nach Lemma 2 i) existiert ein m \in N mit

$$m > n(a-k) + 1 \Rightarrow k + \frac{m-1}{n} > a \Rightarrow m \notin M$$

Also nach dem Prinzip der voll. Induktion existiert ein m* $\in \mathbb{N}$, m* $\in \mathbb{M}$, m*+1 $\notin \mathbb{M}$ Behauptung: $c = k + \frac{m^*}{n} = \frac{n \cdot k + m^*}{n}$ leistet das Gewünschte

- aus m*+1 \notin M folgt $k + \frac{(m^*+1)-1}{n} = k + \frac{m^*}{n} = c > a$
- aus m* \in M folgt $c = k + \frac{m^*}{n} = k + \frac{m^*-1}{n} + \frac{1}{n} \le a + \frac{1}{n} < a + \epsilon = b$

Definition 2

- i) Eine nicht leere Menge M heißt abzählbar, falls es eine surjektive Abbildung $f:\mathbb{N}\to M$ gibt
- ii) M heißt überabzählbar, wenn M nicht abzählbar ist.

Lemma 3

- i) Jede Teilmenge \widetilde{M} einer abzählbaren Menge ist abzählbar.
- ii) Sei M abzählbar und $g: M \to \widetilde{M}$ surjektiv, dann ist auch \widetilde{M} abzählbar.
- iii) Sei Müberabzählbar und $g:\ M\ \to\ \widetilde{M}$ injektivdann ist auch \widetilde{M} überabzählbar.