

Customizing User Experience

SIC 6 | Team 6

The Learning Process is no longer linear and "One-Size Fits All"

Meet The Team

Supervised By Eng. Haneen

Yousef Albasel
Computer Science Student
Cairo University

Data Science Student Alexandria University

Ali Amr

Mahmoud Salama

Data Science Student

Alexandria University

Table of contents

Problem Statement

One-Size fits all learning style

Dataset Description
Explaining our

dataset

Address to each student needs

Goal

Analysis

EDA and Data manipulation

Solution

Personalized Learning path recommender

Implementing our

Modelling

solution

Problem Statement

Students enrolled in online distance education have diverse learning needs. Many online platforms doesn't address to these individual differences

Level Differences	Students are often left to navigate through content that is either too advanced or too basic		
Learning Pace	Some students move quickly through course material, while others need more time		
Retention Rates	Negative impact on retention rates and performance		
Competition	The education technology space is becoming increasingly competitive, with many platforms offering similar courses.		

Goal

Our goal is to understand each student's learning preferences and performance levels to tailor learning path based on these metrics

01

02

03

04

Improve learning outcomes

Increase retention rates

Enhancing user experience

Boosting business profitability

Solution

Develop a recommender system that evaluates student engagement and performance metrics to make recommendations on learning paths and material.

Data Collection and Analysis

Feature Engineering and Modelling

Recommender System

Dataset Description

The Open University, a major British university with the largest undergraduate student population in the UK, provides the dataset through its Online Learning Platform (VLE). This platform supports off-campus students by offering access to course materials, forums, assignments, assessments, and grades.

Code Presentation

Identification code of the presentation. February(B) and October(J)

Code Module

identification code of the module

Gender

Student's Gender

Region

Geographic region, where the student lived while taking the module-presentation.

Age

band of the student's age.

Highest Education

highest student education level on entry to the module presentation.

Disability

If a student is disabled

Final Result

student's final result in the module-presentation.

Number of Previous Attempts

the number times the student has attempted this module.

IMD Band

specifies the Index of Multiple Depravation band of the place where the student lived during the modulepresentation.

Activity Type

the role associated with the module material.

Date Registration

Date of student's registration on the module presentation, measured relative to the start of the module-presentation

Date Unregistration

Date of student unregistration from the module presentation, measured relative to the start of the module-presentation.

Score

The student's score in this assessment. The range is from 0 to 100. The score lower than 40 is interpreted as Fail.

o is interpreted as Faii.

Date Submitted

20

The date of student submission, measured as the number of days since the start of the module presentation.

100

Sum of Clicks

Total number of clicks each student clicked

Count of Clicks

The number of times a student interacted with a material

Samsung Innovation Campus

Student's Score increases as he interacts more with VLE

We can see that there is a positive correlation between score and sum of clicks for students, Interestingly there is a spike of scores at 0 where it looks like students with no clicks do better than some students with a number of clicks

Late Submission Negatively impacts student's score

As a student submits the assessment sooner he get a better score

Assessment weight doesn't seem to have that much effect on student's score

Analysis With Final Result

Analyzing the distribution of different categorical columns against the final result provides insights into the dominant categories, particularly those with scores above the 40% passing grade.

Different Ages Highest Education vs Final Result

The majority of students in both age groups (35+ and 0-35) pass, with younger students (0-35) showing a much higher overall results.

Highest Education

HE Qualification

Lower Than A Level

A Level or Equivalent

Final Result Distribution by Highest Education and Age Band

Use our OULAD Dashboard for further detailed analysis

Feature Engineering

Feature Engineering is a key part in our project. This will enable us to derive new features that can create a truly tailored learning experience for each student.

01

Using Data Description To Extract Features

Using the dataset description and domain knowledge

02

Deriving New Features

involves creating additional, more informative features from existing ones

1. Deriving Study_Status From Date_Unregsiteration

This column contained so many null values, we know that date_unregistered is null when a student doesn't complete his study

2. Binning withdrawal status based on previous analysis

We mentioned that only withdrawal status and a very few number of fails are present in date_unregisteration column, so we can create different bins to represent early-late withdrawals

3. Extracting Study Method Feature

student's preferred study method based on the types of activities they engage in

Poor Conditions:

Low activity across all types, indicating offline content consumption.

Interactive:

High engagement with quizzes, repeat activities, or questionnaires.

Resource-Based:

Heavy use of resources

Collaborative:

Active participation in group tools

Deriving more Interaction Features

Feature	Explaination		
submission_timeliness	The time difference between when the assessment was and the scheduled date of the assessment		
score_per_weight	The score normalized by the weight of the assessment.		
module_engagement_rate	The rate of engagement with the module, calculated as the ratio of sum of clicks		
repeat_student	A binary indicator (1 or 0) indicating if the student is repeating the module (1 for repeat, 0 for first attempt).		
weighted_engagement	The engagement score weighted by the assessment's weight		
improvement_rate	The consistency (standard deviation) of engagement scores (sum) for each student across all their assessments.		
learning_pace	The rate of score improvement for a student, calculated as the change in score between their first and last assessments divided by the number of assessments		

Modelling

Clustering

Based on engagement metrics, we cluster students into groups

Classification

Predicting learning preference for a student

Recommender **System**

Personalized Learning path recommender

1. Clustering

After scaling and encoding, we perform clustering on engagement-based features to group students according to their interactivity, engagement, and learning levels.

Team 6
OULAD Learning Path Recommender System

2. Classification

predict the most suitable learning style or content type for each student based on their cluster membership and other features.

	Model	Train Accuracy	Test Accuracy	Train F1score	Test F1score
0	SVM	0.945643	0.940451	0.944881	0.939814
7	GradientBoost	0.958437	0.939709	0.957764	0.938616
5	Random Forest	0.999936	0.922186	0.999936	0.917442
1	Logistic Regression	0.921966	0.914464	0.917899	0.910224
4	Decision Tree	1.000000	0.905108	1.000000	0.905161
2	KNN	0.872828	0.844075	0.864576	0.834189
6	AdaBoost	0.701483	0.698990	0.731436	0.727228
3	GaussianNB	0.414741	0.413276	0.481092	0.479899

Team 6
OULAD Learning Path Recommender System

3. Recommender System Deployed

The recommender system uses clustering and classification results to suggest personalized learning materials and pathways.

Conclusion

By integrating clustering, classification, and recommender systems, the project can effectively segment students into meaningful groups, predict their learning preferences, and provide personalized recommendations.

- customized plans per individual are not cost-effective and require more effort
- reducing the costs associated with high dropout rates and low completion rates.

Future Plan:

By integrating text classification into our model by analyzing students' feedbacks and reviews. Will help us to recognize students' preferences and suitable learning path for each. Gave us more intuitive idea about what will be useful for them. Participating them in the process of model learning. Will give more solid answers.

SAMSUNG

Together for Tomorrow! Enabling People

Education for Future Generations

©2020 SAMSUNG. All rights reserved.

Samsung Electronics Corporate Citizenship Office holds the copyright of book.

This book is a literary property protected by copyright law so reprint and reproduction without permission are prohibited.

To use this book other than the curriculum of Samsung innovation Campus or to use the entire or part of this book, you must receive written consent from copyright holder.