LOW - ROWK APPROXIMATION:

RANK(x) = dim (span of the columns) = dim (span of the rows)

- Why rank as a notion of simplicity?

-> Probabilistic/Statistical models

parameters needed to write
$$u, v = n \cdot n \cdot n \cdot n \cdot d$$

= $(n+d)n$.

2. QUANTIFYING APPROXIMATION:

Squared Error (RMSF):

$$\left(\sum_{i=1}^{n} \frac{d}{j^{2}} \left(x_{ij} - \tilde{x}_{ij} \right)^{2} \right)^{\gamma_{z}}$$

$$||A||_{F} = \left(\xi_{i,j} A_{i,j}^{2} \right)^{1/2}$$

"FROBENIUS NORM"

LOW- RANK APPROXIMATION PROBLEM:

rank(x) < k

NETFLIX CHALLENGE:

	MOVIES (17K)				
	*	4	5		3
Users					
500k)					

* - not rated

Good: press wissing entries

Score: Average RMSE on holdout entries.

CHALLENDE: First team to do 10% better than their baseline gets \$1 Million.

Step 1: Preprocess the data: (enter the scores/normalizing. Step 2: Put 0 for the missing entries to get a matrix \times . Step 3: Find the best low-rank approximation \tilde{x} to x (for some x)

Step 4: Predict according to x.

Experiments: If you run this with k = 30, you beat their baseline by 4%.

SINGULAR VALUE DECOMPOSITION:

THEOREM: Any Matrix X

- 1. Columns of U are Orthonormal (UTU = II)
- 2. (plumps of V are orthonormal ($V^TV = II_{\mathcal{A}}$)
- 3. & is a diagonal matrix with non-negative entries.

(Remark : Some take & to be a dxd matrix with zeroes)

Examples:

3. Orthonormal matrix

$$x: has (olumbs)$$
 $x = x \cdot II \cdot II$

that are orthonormal

TWO MADICAL PROPERTIES OF SVD:

THEOREM 1: Vi is the ith_Right Singular vector of x.

is a solution to best rank k approximation.

Proof:

$$x \cdot v_i = \begin{pmatrix} x_i & x_i & x_i & x_i \\ x_i & x_i & x_$$

THEOREM: Can compute full sup directly in time $O(n \cdot d^2)$.

Sook 17k

n.d = & bB in memory)

Question: What if I want to compute just the top k=30 singular vectors?

POWER ITERATION:

How can we compute the first right singular vector (vi)?

Idea: $X = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + ... + \sigma_9 u_9 v_9^T$ $= U \leq_1 V^T$ $y = x^T x$ $= (V \leq_2 V^T) (V \leq_2 V^T)$ $= V \leq_2^2 V^T$ $Y^2 = (V \leq_2^2 V^T) (V \leq_2^2 V^T)$ $= V \leq_3^4 V^T$

EXAMPLE:

Suppose
$$\sigma_{1} = 1$$
, $\sigma_{2} = 1/2$, $\sigma_{3} \in 1/2$,...

$$y^{1} = 1 \cdot y_{1} \cdot y_{2}^{T} + \left(\frac{1}{2}\right)^{2} y_{2}^{2} \cdot y_{2}^{T} + \sigma_{3}^{2} \cdot y_{3}^{2} \cdot y_{3}^{T} + \dots$$

$$= y_{1} y_{1}^{T} + \sum_{i=2}^{n} \sigma_{i}^{2} y_{i} \cdot y_{i}^{T}$$

$$As $l \to \infty$

$$y_{1}, y_{2}, y_{3} = y_{3}^{T} + y_{3}^{T} +$$$$

IDEA:

$$\overline{V} = \left(y, \left(y, \left(y , \left($$

POWER ITERATION:

- Dutput
$$\frac{\overline{v}_t}{\|\overline{v}_t\|}$$
 \rightarrow bives first Rsv.