Enhancing the CPS with Administrative Tax Data Machine Learning Meets Microsimulation

Nikhil Woodruff & Max Ghenis

PolicyEngine

Society of Government Economists April 4, 2025

Current Microsimulation Data: A Trade-off

- Current Population Survey March Supplement (CPS)
 - Rich demographics and program participation
 - Underreports income, especially at top
 - Limited tax information

- Current Population Survey March Supplement (CPS)
 - Rich demographics and program participation
 - Underreports income, especially at top
 - Limited tax information
- IRS Public Use File (PUF)
 - Accurate administrative tax data
 - No demographics or state ID
 - Restricted access

- More Accurate Policy Analysis
 - Taxes and benefits jointly affect household incentives
 - Need accurate data on both to model behavior
 - Many researchers lack access to key datasets

- More Accurate Policy Analysis
 - Taxes and benefits jointly affect household incentives
 - Need accurate data on both to model behavior
 - Many researchers lack access to key datasets
- Better Understanding of Economic Reality
 - CPS misses top incomes
 - PUF can't show demographic patterns
 - Both limit inequality measurement

Our Solution: An Open Enhanced CPS

- Machine learning to combine strengths of CPS and PUF:
 - Learn tax patterns from PUF
 - Preserve CPS demographics and program data
 - Optimize weights to match 570 administrative targets

Our Solution: An Open Enhanced CPS

- Machine learning to combine strengths of CPS and PUF:
 - Learn tax patterns from PUF
 - Preserve CPS demographics and program data
 - Optimize weights to match 570 administrative targets
- Result: First open dataset with:
 - Administrative-quality tax data
 - Rich demographics and program participation
 - Transparent, reproducible methodology

Two-Stage Approach: ML Imputation + Weight Optimization

Figure: Overview of dataset enhancement process

Quantile Regression Forests: Beyond Statistical Matchingne

- Standard approach: statistical matching or regression
- We use Quantile Regression Forests (QRF) for:
 - Imputing tax variables from PUF
 - Predicting housing costs from ACS
 - Estimating prior year earnings
- Benefits of QRF approach:
 - Captures full conditional distributions
 - Handles non-linear relationships
 - Preserves correlations between variables

QRF Outperforms Traditional Imputation Methods POLICY ENGINE

Figure: Average quantile loss by method, predicting net worth from covariates in SCF

- Standard approach: constrained optimization
- We use dropout-regularized gradient descent
- Optimizes against 570 targets:
 - IRS Statistics of Income by income bins
 - Tax expenditure reports
 - Program participation totals
 - Single-year age population counts
- Mathematics:

$$L(w) = \operatorname{mean}\left(\left(\frac{w^T M + 1}{t + 1} - 1\right)^2\right)$$

where w are weights, M is characteristics, t are targets

Table: Examples of calibration targets by source

Source	Example Targets	Count
IRS SOI Census CBO JCT Healthcare	AGI by bracket, employment income, capital gains Population by age, state populations SNAP benefits, Social Security, income tax SALT deduction (\$21.2B), charitable (\$65.3B) Medicare Part B premiums by age group	5,300+ 150+ 5 4 40+

- ECPS is best on qualified dividends and infant population
- PUF better on returns AGI 100-200k
- 567 other targets!

Validation II: ECPS Outperforms Both Source Data Sett Sengine

Figure: Error change from ECPS to better of CPS and PUF

- ECPS outperforms CPS on 63% of targets
- ECPS outperforms PUF on 71% of targets

Table: Tax unit-level distributional metrics

Metric	CPS	Enhanced CPS	PUF
Gini coefficient	[TBC]	[TBC]	[TBC]
Top 10% share		[TBC]	[TBC]
Top 1% share		[TBC]	[TBC]

- CPS inequality measures 12-45% lower than PUF
- ECPS inequality within 4% of PUF
- Unlike PUF, ECPS includes nonfilers
- Inequality measured as income after taxes and transfers

- Example: Biden's proposed top rate increase
- Would raise rate from 37% to 39.6% above \$400k

Table: Revenue projections from top rate increase (37% to 39.6%)

Dataset	Revenue Impact (\$B)	Affected Tax Units (M)	Avg Tax
CPS	[TBC]	[TBC]	[TBC]
Enhanced CPS	[TBC]	[TBC]	[TBC]
PUF	[TBC]	[TBC]	[TBC]

- Can analyze by demographics, geography, income
- Interactive results at policyengine.org

Unique Capability: Direct Demographic Analysis

- Direct race/ethnicity analysis without imputation
- Other models use complex methods:
 - CBO: Statistical matching with Census data
 - Tax Policy Center: Multiple copies with reweighting
 - ITEP: Probability assignment based on characteristics
- Our approach:
 - Uses observed demographics from CPS
 - Individual-level rather than tax unit only
 - Enables analysis of intersectional effects
 - Extends to disability, education, etc.

Local Area Matrix Optimization

- Standard approach: Optimize single weight per household
- For UK local analysis, we optimize a matrix of weights:
 - One weight per household per constituency
 - Allows different households to have different importance in different areas
 - Includes constituency-level targets in gradient descent

$$W = \begin{pmatrix} w_{1,1} & w_{1,2} & \cdots & w_{1,C} \\ w_{2,1} & w_{2,2} & \cdots & w_{2,C} \\ \vdots & \vdots & \ddots & \vdots \\ w_{H,1} & w_{H,2} & \cdots & w_{H,C} \end{pmatrix}$$

where $w_{h,c}$ is the weight of household h in constituency c

US State-Based Matrix Optimization

- Unlike UK local model, US requires different policy rules by state
- Our approach:
 - Perform calibration separately for each of 51 states (including DC)
 - Propagate national targets to individual states
 - Apply L0 penalty to prune household-state rows for computational efficiency
 - Results in 51 separate weight matrices rather than a single large matrix
 - Reassemble into a single matrix for analysis

$$W_{s} = \begin{pmatrix} w_{1,1} & w_{1,2} & \cdots & w_{1,D_{s}} \\ w_{2,1} & w_{2,2} & \cdots & w_{2,D_{s}} \\ \vdots & \vdots & \ddots & \vdots \\ w_{H,1} & w_{H,2} & \cdots & w_{H,D_{s}} \end{pmatrix}$$

where $w_{h,d}$ is the weight of household h in district d for state s

PolicyEngine: Interactive Policy Analysis

Figure: PolicyEngine's policy editor interface

PolicyEngine: Interactive Policy Analysis

Figure: PolicyEngine's policy impact interface

PolicyEngine: UK Parliamentary Constituency Choroptethine

Figure: PolicyEngine UK showing impact by parliamentary constituency

PolicyEngine: UK Local Area Dashboard

Figure: PolicyEngine UK local area validation dashboard

implementation. Open code una Growing osage

- Full codebase on GitHub
- Automatic validation dashboard
- Python package for programmatic access
- Web interface at policyengine.org
- Growing research applications:
 - Academic studies
 - Think tank analysis
 - Government agency use
 - Community contributions

- Geographic and data extensions:
 - Calibrate to states and Congressional districts
 - Integrate SCF and CE
- Making contributions more modular:
 - Creating a microimpute package (using quantile regression forests)
 - Developing a microreweight package (using gradient descent)
 - These packages can be used across different microdata files
 - Planning separate papers benchmarking these new methods against traditional approaches
- Prediction-oriented validation:
 - Backtest
 - Benchmark ML architectures

Thank You

- Paper: github.com/PolicyEngine/policyengine-us-data/paper
- Code: github.com/PolicyEngine/policyengine-us-data
- Web app: policyengine.org
- Contact: max@policyengine.org