Динамическое программирование по профилю

Б. Василевский

К большинству олимпиадных задач ограничения (по времени, по памяти) жюри подбирает по принципу «как можно больше». То есть чтобы любые разумные реализации правильного решения проходили, а всё остальное — нет.

Когда встречается задача с маленькими ограничениями (например, до 10), это означает, что либо автор намеренно сбивает Вас с правильного пути, либо действительно эта задача решается каким-то (оптимизированным) перебором.

Динамическое программирование по профилю — одна из таких оптимизаций. Часто в таких задачах дело происходит на прямоугольной таблице, одна из размерностей которой достаточно мала (не более 10). Требуется проверить существование, посчитать количество способов, стоимость и т.д. (как в обычном динамическом программировании). Асимптотика алгоритма, основанного на этой идее, является экспоненциальной только по одной размерности, а по второй — линейная или даже лучше.

Некоторые обозначения и определения

Mampuuей размера $n \times m$ называется прямоугольная таблица $n \times m$, составленная из чисел.

Обычно матрицы обозначают заглавными латинскими буквами. Элемент i-й строки j-го столбца матрицы A обозначают через a_{ij} или a[i,j] (соответствующая маленькая латинская буква с индексами).

Произведением двух матриц
, $_{n \times m}^{A}$ и $_{m \times k}^{B}$ называется матрица такая $_{n \times k}^{C}$, что

$$c_{ij} = \sum_{t=1}^{m} a_{it} b_{tj}. \tag{1}$$

В этом случае пишут: C = AB.

D в степени k (D^k), при условии, что D — квадратная (т. е. n=m) определяется следующим образом:

Динамическое программирование по профилю

101

• $D^0 = E$ (единичная матрица), где

$$E = \left(\begin{array}{ccccc} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{array}\right).$$

На диагонали у нее стоят единицы, в остальных клетках — нули. Она не зря называется единичной — при умножении на нее матрица не изменяется: AE = EA = A.

• $D^i = D^{i-1}D, i > 0.$

В приводимом коде будет использоваться функция $\mathtt{bit(x,i)}$, возвращающая единицу или ноль — i-й бит в двоичной записи числа x (нумерация битов с нуля).

```
// возвращает i-й бит числа x, нумерация c нуля function bit(x, i : integer) : integer; begin
   if (i < 0) then bit := 0 else
   if (x and (1 shl i) = 0) then bit := 0 else bit := 1; end;
```

Задача о замощении домино

Чтобы понять, что такое динамика по профилю, будем рассматривать разные задачи и разбирать их решения с помощью этого приема.

Для начала рассмотрим известную задачу: дана таблица $n \times m$, нужно найти количество способов полностью замостить ее неперекрывающимися костяшками домино (прямоугольниками 2×1 и 1×2). Считаем $n,m \leqslant 10$.

Заметим, что в процессе замощения каждая клетка таблицы будет иметь одно из двух состояний: покрыта какой-нибудь доминошкой или нет. Чтобы запомнить состояние клеток одного столбца, достаточно одной переменной P типа integer. Положим i-й бит P равным 1, если i-я сверху клетка данного столбца занята, 0 — если свободна. Будем говорить в таком случае, что P — битовая карта нашего столбца.

Теперь дадим определение базовой линии и профиля.

Базовой линией будем называть вертикальную прямую, проходящую через узлы таблицы.

Можно занумеровать все базовые линии, по порядку слева направо, начиная с нуля. Таким образом, базовая линия с номером i — это

прямая, отсекающая первые i столбцов от всех остальных (если такие имеются).

Б. Василевский

Отныне через b_i будем обозначать базовую линию с номером i.

Столбцы занумеруем так: слева от b_i будет столбец с номером i. Другими словами, столбец с номером i находится между b_{i-1} и b_i .

Рис. 1. Профиль будет таким: $100101_2 = 1 + 4 + 32 = 37$ (заняты первая + третья + шестая клетки).

 $\Pi poфилем$ для базовой линии с номером i (b_i) будем называть битовую карту для столбца с номером i при следующих дополнительных условиях:

- 1) все клетки слева от b_{i-1} уже покрыты;
- 2) в *i*-м столбце нет вертикальных доминошек;
- 3) считается, что справа от b_i нет покрытых клеток.

Первое условие возникает от желания считать количество способов постепенно, сначала рассматривая первый столбец, потом второй при условии, что первый уже заполнили и т. д. Второе и третье вводятся для того, чтобы один и тот же способ покрытия не был посчитан более одного раза. Точный смысл этих условий будет раскрыт ниже.

Для каждого профиля p_1 базовой линии b_i определим множество профилей p_2 базовой линии b_{i+1} , которые могут быть из него получены. На таблицу, соответствующую p_1 (то есть все клетки слева от b_{i-1} полностью покрыты, в i-м столбце клетки отмечены согласно p_1), можно класть доминошки только двух типов:

1) горизонтальные доминошки, которые пересекают b_i (то есть делятся ей пополам):

Рис. 2. $p_1=37,\; p_2=2;$ нетрудно заметить по рисунку, что из p_1 можно получить $p_2.$ Таким образом, d[37,2]=1.

2) вертикальные доминошки, которые лежат слева от b_i .

Также должны быть выполнены естественные дополнительные условия:

- 1) новые доминошки не должны перекрываться друг с другом;
- 2) они должны покрывать только незанятые клетки;
- 3) каждая клетка i-го столбца должна быть покрыта.

Битовая карта столбца i+1 и будет возможным профилем p_2 .

Очевидно, что полученный таким образом профиль p_2 действительно удовлетворяет всем условиям, накладываемым на профиль.

Пусть $d[p_1,p_2]$ – количество способов из профиля p_1 (для b_i) получить p_2 (для b_{i+1}). Очевидно, для данной задачи про доминошки это число может быть только единицей или нулем. Различные задачи будут отличаться в основном только значениями $d[p_1,p_2]$.

Заметим, что всего профилей 2^n : от $00\dots 0_2=0$ до $11\dots 1_2=2^n-1$. Поэтому в данном случае матрица D будет иметь размер $2^n\times 2^n$.

Пусть теперь a[i,p] — количество способов таким образом расположить доминошки, что p — профиль для b_i (таким образом, все клетки левее b_{i-1} покрыты).

Напишем рекуррентное соотношение.

• Начальные значения
$$(i = 1)$$
: $a[1,0] = 1$; $a[1,p_2] = 0, p_2 = 1, \ldots, 2^n - 1$

• Общая формула (i > 1):

$$a[i, p_1] = \sum_{p_2=0}^{2^n - 1} a[i - 1, p_2] d[t, p_1]$$
(2)

Заметим, что для базовой линии номер 1 существует единственный профиль (то есть битовая карта, удовлетворяющая условиям профиля) — карта незаполненного столбца.

Ответ на вопрос задачи будет записан в a[m+1,0]. Ошибкой бы было считать правильным ответом число $a[m,2^n-1]$, так как в этом случае не учитывается возможность класть вертикальные доминошки в последнем столбце (см. второй пример).

Обсудим «странные» условия на доминошки при получении одного профиля из другого. Казалось бы, забыт еще один тип доминошек, которые могут участвовать при формировании нового профиля, а именно полностью лежащие в столбце i+1. Дело в том, что если разрешить их, то некоторые способы замощения будут считаться более одного раза. Например, пусть n=2, m=2. Тогда d'[0][3]=2, так как можно положить либо две вертикальные доминошки, либо две горизонтальные. Аналогично, d'[3][3]=1 (можно положить одну вертикальную). В итоге

$$D' = \left(\begin{array}{cccc} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{array}\right), \qquad A' = \left(\begin{array}{cccc} 1 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 2 \end{array}\right)$$

Имеем неправильный ответ 3 (можно посчитать вручную, что на самом деле ответ 2).

Напротив, если следовать данному правилу получения из одного профиля другого, то можно убедиться в верности вычислений.

Упражнение. Доказать, что a[i,p] вычисляется правильно.

Вот какими будут D и A если n=2, m=4:

Таким образом, замостить доминошками таблицу 2×4 можно 5 способами, а таблицу 2×2 — двумя. Если смотреть $a[m, 2^n - 1]$, то получим 2 и 1. Очевидно, что таблицу 2×2 можно замостить двумя, а не одним способом: пропущен вариант, когда кладутся две вертикальные доми-

ношки. В случае 2×4 пропущены три замощения — все случаи, когда последний столбен покрыт вертикальной доминошкой.

Существует два способа для вычисления D. Первый заключается в том, чтобы для каждой пары профилей p_1 и p_2 проверять, можно ли из p_1 получить p_2 описанным способом.

При втором способе для каждого профиля p_1 пытаемся его замостить, кладя при этом только домоношки разрешенных двух типов. Для всех профилей p_2 (и только для них), которые при этом получались в следующем столбце, положим $d[p_1,p_2]=1$. В большинстве случаев этот способ более экономичный, так что логично использовать именно его.

Ниже приведен код рекурсивной процедуры, которая заполняет строку d[p], то есть находит все профили, которые можно получить из p:

```
procedure go(n, profile, len : integer);
   // n - из условия задачи
   // profile - текущий профиль
   // len - длина profile
   if (len = n) then begin
        // как только profile получился длины n, выходим
        d[p][profile] := 1;
        exit:
   end;
   if (bit(p, len) = 0) then begin
        // текущая ячейка в p (с номером len + 1) не занята
        go(p, profile + (1 shl len), len + 1);
        // положили горизонтальную доминошку
       if (len < n - 1) then
            if (bit(p, len + 1) = 0) then begin
                // не занята еще и следующая ячейка
                go(p, profile, len + 2);
                // положили вертикальную доминошку
            end;
    end else begin
        go(p, profile, len + 1);
        // текущая ячейка занята, ничего положить не можем
    end;
end;
```

```
procedure determine_D;
var p : integer;
begin
  for p := 0 to (1 shl n) - 1 do
     go(p, 0, 0); // запускать надо именно с такими параметрами
end;
```

Алгоритм вычисления D и A работает за $O(2^{2n})$ (вычисление D) $+O(2^{2n}m)$ (вычисление A) $=O(2^{2n}m)$.

Задача о симпатичных узорах

Рассмотрим еще одну задачу с прямоугольной таблицей.

Дана таблица $n \times m$, каждая клетка которой может быть окрашена в один из двух цветов: белый или черный. Симпатичным узором называется такая раскраска, при которой не существует квадрата 2×2 , в котором все клетки одного цвета. Даны n и m. Требуется найти количество симпатичных узоров для соответствующей таблицы.

Рис. 3. Первые два узора симпатичные; у третьего и четвертого есть полностью черный и, соответственно, белый квадратик 2×2 .

Будем считать профилем для b_i битовую карту i-го столбца (единицей будет кодировать черную клетку, а нулем — белую). При этом узор, заключенный между нулевой и i-й базовыми линиями, является симпатичным.

Из профиля p_1 для b_i можно получить p_2 для b_{i+1} , если и только если можно так закрасить (i+1)-й столбец, что его битовая карта будет соответствовать p_2 , и между b_{i-1} и b_{i+1} не будет полностью черных либо белых квадратиков 2×2 .

Сколькими же способами из одного профиля можно получить другой? Понятно, что закрасить нужным образом либо можно, либо нельзя (так как раскрашивать можно единственным образом — так, как закодировано в p_2). Таким образом, $d[p_1,p_2] \in \{0,1\}$.

Вычислять D можно либо проверяя на «совместимость» (то есть наличие одноцветных квадратов 2×2) все пары профилей, либо генерируя все допустимые профили для данного. Ниже приведен код, реализующий первую идею:

Рис. 4. На левом рисунке $p_1=1+4+32=37,\ p_2=2+8+16=26;$ так как между b_{i-1} и b_{i+1} не встречаются одноцветные квадратики 2×2 , то p_2 может быть получен из p_1 . На рисунке справа p_1 также равно 37, а $p_2=1+2+4=7.$

```
// можно ли из р1 получить р2
function can(p1, p2 : integer) : boolean;
var i : integer;
    b : arrray[1..4] of byte;
begin
   for i := 0 to n - 2 do begin
        b[1] := bit(p1, i);
        b[2] := bit(p1, i + 1);
        b[3] := bit(p2, i):
        b[4] := bit(p2, i + 1);
        if (b[1] = 1) and (b[2] = 1) and (b[3] = 1)
                               and (b[4] = 1) then begin
            // квадрат в строках і и і + 1 черный
            can := false;
            exit;
        end;
        if (b[1] = 0) and (b[2] = 0) and (b[3] = 0)
                               and (b[4] = 0) then begin
            // квадрат в строках і и і + 1 белый
            can := false;
            exit;
        end;
    end;
    can := true;
```

108

```
procedure determine_D;
var p1, p2 : integer;
begin
    for p1 := 0 to (1 shl n) - 1 do
        for p2 := 0 to (1 shl n) - 1 do
        if can(p1, p2) then d[p1, p2] :=1
        else d[p1, p2] := 0;
end;
```

После того, как вычислена матрица D, остается просто применить формулу (2) (так как расуждения на этом этапе не изменяются).

Связь ДП по профилю и линейной алгебры

Рекуррентное соотношение (2) будет встречаться нам не только в задаче о замощении или симпатичном узоре, но и во многих других задачах, решаемых динамикой по профилю. Поэтому логично, что существует несколько способов вычисления A, используя уже вычисленную D (а не только наивно по (2)). В этом пункте мы рассмотрим способ, основанный на возведении в степень матрицы:

- 1) a[i] можно считать матрицей 1×2^n ;
- 2) D матрица $2^{n} \times 2^{n}$;
- 3) a[i] = a[i-1]D. Если расписать эту формулу по определению произведения, то получится в точности (2).

Следуя определению степени матрицы, получаем

$$a[m] = a[0]D^m \tag{3}$$

Вспомним, как возвести действительное число a в натуральную степень b за $O(\log b)$ (считаем, что два числа перемножаются за O(1)). Представим b в двоичной системе счисления: $b=2^{i_1}+2^{i_2}+\ldots+2^{i_k}$, где $i_1< i_2<\ldots< i_k$. Тогда $k=O(\log b)$. Заметим, что a^{2^i} получается из $a^{2^{(i-1)}}$ возведением последнего в квадрат. Таким образом, за O(k) можно вычислить все a^{p_t} , $p_t=2^{i_t}$, $t=1,\ldots,k$. Перемножить их за линейное время тоже не представляет труда.

Логично предположить, что аналогичный алгоритм сгодится и для квадратных матриц. Единственное нетривиальное утверждение — $A^{2^i}=(A^{2^{i-1}})^2$, ведь по определению $A^{2t}=\underbrace{A(A(\ldots A)\ldots)}$, а мы хотим

приравнять его к $(A^t)(A^t)$. Его истинность следует из ассоциативности умножения матриц (AB)C = A(BC). Само свойство можно доказать непосредственно, раскрыв скобки в обеих частях равенства.

Приведем код процедуры возведения в степень (функция **mul** перемножает две квадратные матрицы размера $w \times w$):

```
function mul(a, b : tmatr) : tmatr;
var res : tmatr;
   i, j, t : integer;
begin
   for i := 1 to w do begin
       for j := 1 to w do begin
            res[i][i] := 0;
            for t := 1 to w do begin
                res[i][j] := res[i][j] + a[i][t]*b[t][j];
            end:
        end;
    end;
   mul := res;
end;
function power(a : tmatr; b : integer) : tmatr;
var i, j : integer;
   res, tmp : tmatr;
   res := E; // единичная матрица
   tmp := a;
   while (b > 0) do begin
        if (b mod 2 = 1) then res := mul(res, tmp);
       b := b div 2:
        tmp := mul(tmp, tmp);
   end:
   power := res;
end;
```

Как уже говорилось, будет сделано $O(\log b)$ перемножений. В данном случае, на каждое перемножение тратится n^3 операций (где n — размерность матрицы). Так что этот алгоритм будет работать за $O(n^3 \log b)$.

Вернемся к (3). Матрицу D мы умеем вычислять за $O((2^n)^2n) = O(4^nn)$ (как в рассмотренных задачах). Вектор a[m] сумеем найти за $O((2^n)^3\log b) = O(8^n\log m)$. В итоге получаем асимптотику $O(8^n\log m)$. При больших m (например, 10^{100}) этот способ вычисления A несравнимо лучше наивного.

Задача о расстановке королей

Дана шахматная доска $n \times m$ и число k. Нужно посчитать количество способов размещения на этой доске k королей так, чтобы они не били друг друга.

Профилем опять будет битовая карта столбца слева от базовой линии. В данном случае удобно запоминать расположение королей. Таким образом, единица будет означать наличие короля на соответствующей позиции. При переходе от одного профиля к другому ставим королей справа от b_i так, чтобы они не били друг друга и предшествующих им.

Заметим, что снова $d_{ij} \in \{0,1\}$. Отличие этой задачи от предыдущих заключается в следующем. Количество «настоящих» профилей сильно отличается от 2^n : если в позиции j есть король, то в позициях j-1 и j+1 его заведомо нет. То есть, в двоичной записи профиля не должно встречатся двух подряд идущих единиц. Пусть f(n) — количество возможных профилей длины n.

Напишем для f(n) рекуррентную формулу. Количество профилей, у которых на n-м месте стоит 1, равно f(n-2), так как на (n-1)-м не может стоять 0, на остальные ячейки ограничений нет. Если же на n-м месте стоит 0, то количество будет равно f(n-1). Тогда $f(n)=f(n-1)+f(n-2);\ f(1)=2,\ f(2)=3$. Получили, что f(n)-(n+2)-е число Фибоначчи. Известно, что $f(n)<(1,62)^{n+2}$. При n=10 имеем f(n)=144 против количества битовых карт 1024, уменьшение более чем в 7 раз!

Использовать это наблюдение можно по-разному.

1) Будем рассматривать только настоящие профили (при вычислении D и A), используя рекурсию:

```
if (profile mod 2 = 0) then
go(len + 1, profile*2 + 1);
// приписать единицу можно только если рядом ноль
end;

procedure print_all_true_profiles;
begin
go(1, 0); //запускать надо именно с такими параметрами
end;
```

- 2) Занумеруем все настоящие профили так, чтобы быстро получать по номеру профиль. Тогда чтобы перебрать все настоящие профили, нужно будет пустить цикл по номеру с 1 до их количества f(n), и каждый раз находить профиль по текущему номеру. Например, можно брать номера в лексикографически упорядоченном списке профилей (чтобы сказать, какой из двух профилей больше лексикографически, достаточно сравнить их как числа).
- 3) Пусть p настоящий ненулевой профиль. Если заменить в нем произвольную единичку (в двоичной записи) на нолик, то получится тоже настоящий профиль. Другими словами, если убрать короля, то ничего плохого не будет. Аналогично, если в p заменить 0 на 1, чтобы не возникло двух подряд идущих единиц, результатом будет настоящий профиль.

На этом основан еще один способ получения всех настоящих профилей: «поиском в ширину». Из настоящих профилей, в котоых ровно i королей, получаем всевозможные настоящие профили из i+1 королей.

```
var use : array[0..(1 shl n) - 1] of byte;
  // use[p] = 1, если р - в очереди
  q : array[1..(1 shl n)] of integer; // очередь
  r : integer; // итоговое количество настоящих профилей

procedure determine_all_true_profiles;
var i, l, x, y : integer;
begin
  l := 0;
  r := 1;
  for i := 1 to (1 shl n) - 1 do use[i] := 0;
  use[0] := 1;
```

Б. Василевский

После завершения работы процедуры в очереди q будут содержаться все настоящие профили.

В итоге при использовании нашего наблюдения получаем асимптотику $O(m(f(n))^2)$

Задача о расстановке коней

На этот раз на шахматной доске $n \times n$ нужно подсчитать количество способов расставить k коней так, чтобы они не били друг друга.

Мы уже привыкли, что профиль — битовая карта столбца левее b_i . Но здесь этой информации мало, так как кони могут прыгать сразу через два столбца. Поэтому профиль должен описывать два соседних столбца.

Для двух профилей $pr_1 = \langle p_1, p_2 \rangle$ $(p_1 - bитовая карта первого столбца, <math>p_2 - второго)$ и $pr_2 = \langle p_1', p_2' \rangle$ положим $d[pr_1, pr_2] = 1$ если и только если

- a) $p_2 = p_1'$;
- б) кони не бъют друг друга.

В противном случае $d[pr_1, pr_2] = 0$.

Таким образом, переходов на порядок меньше, чем количество профилей. Всего профилей 4^n , а из каждого профиля получается менее 2^n новых за счет совпадения p_2 и p_1' . Другими словами, матрица D сильно разрежена (имееет много нулевых элементов).

Поэтому в задаче о расстановки коней можно добиться значительного ускорения (по сравнению с шаблонным алгоритмом), если хранить D в виде «списков смежности»: $D'[pr_1]$ — список всех таких pr_2 , из которых можно получить pr_1 , то есть $d[pr_2][pr_1] = 1$. В этом случае формула (2) будет выглядеть так:

Динамическое программирование по профилю

$$a[i, p] = \sum_{t \in D'[p]} a[i - 1, t] d[t, p].$$

Суммарное время вычисления a[i] равно количеству всевозможных переходов, то есть количество ненулевых элементов в D. В нашем случае (задаче о конях) их не более $4^n \times 2^n = 8^n$, то есть время работы алгоритма с такой оптимизацией будет $O(8^n m)$ — это в 2^n раз меньше, чем время стандартного алгоритма.

ДП по изломанному профилю

Другое название этому методу — «быстрая динамика по профилю». Идея в том, чтобы добиться как можно меньшего числа переходов (от одного профиля к другому).

Рис. 5. Изображение профиля (33, 2) $(33 = 2^0 + 2^5)$.

Еще раз используем в качестве примера задачу о замощении. Базовая линия теперь будет ломаной: при прохождении через i-ю горизонталь сверху вниз, она переходит на предыдущую вертикаль и спускается до низу (см. рис. 5).

Профилем будет пара $\langle p,i\rangle$, в p будет информация о n+1 маленьком квадратике слева от базовой линии, имеющем с ней общие точки; i обозначает номер горизонтали, на которой произошел излом. Квадратики профиля будут нумероваться сверху вниз, так что угловой будет иметь номер i+1. Горизонтали будем нумеровать нуля, так что i пробегает значения 0..n-1.

Для двух профилей $pr_1 = \langle p_1, i_1 \rangle$ и $pr_2 = \langle p_2, i_2 \rangle$ положим $d[pr_1][pr_2] = 1$ если и только если:

- a) $ecnu\ i < n-1$, $mo\ i_1 + 1 = i_2$; $uhave\ i_2 = 0$;
- б) можно так положить доминошку, накрывающую (i+1)-й квадратик, что после этого в р2 будет храниться в точности информация о соответствующих квадратиках.

Проще говоря, доминошку можно класть только двумя способами как показано на рисунках (на (i+1)-й квадратик можно положить не более одной вертикальной и горизонтальной доминошки). То, что потом получается после сдвига вниз излома, и будет новым профилем. Заметим, что если (i+1)-я клетка занята, то доминошку уже не надо класть, и $\langle p,i \rangle$ логично отождествить с $\langle p,i+1 \rangle$ («i+1» пишется условно, нужно всегда иметь в виду возможность i = n - 1).

Легко заметить, что количество профилей увеличилось в 2n раз (добавилось число от 1 до n и еще один бит). Но зато количество переходов резко сократолсь с 2^n до двух!

В нижеприведенном куске кода для профиля $\langle p,i \rangle$ выводятся все переходы из него (напомним, что нумерация горизонталей начинается с нуля и i = 0..n - 1):

```
procedure print_all_links(p, i : integer);
begin
   if (bit(p, i + 1) = 0) then begin
        if (i = n - 1) then begin
            writeln('<', (p - (2 shl i)) shl 1, ', ', 0, '>');
        end else begin
            writeln('<', p - (2 shl i), ', ', i + 1, '>');
        end;
    end else begin
        if (bit(p, i) = 0) then begin
            if (i = n - 1) then begin
                writeln('<', p shl 1, ', ', 0, '>');
            end else begin writeln('<', p + (1 shl i), ', ',</pre>
                            (i + 1) mod n, '>');
        end:
        if (i < n - 1) and (bit(p, i + 2) = 0) then begin
            writeln('<', p + (4 shl i), ', ', i + 1, '>');
        end;
    end:
end;
```

При такой реализации существует немало профилей только с одним переходом (например, у которых (i+1)-й бит равен единице).

Отождествим все профили с один переходом с теми, кто их них получается. Это будет выглядеть так: пусть pr_2 (и только он) получается из pr_1 , который, в свою очередь, получается из pr_0 . Тогда имеются такие соотношения: $d[pr_0, pr_1] = 1$, $d[pr_1, pr_2] = 1$. Отождествить pr_1 и pr_2 — это, по сути, заменить эти два соотношение на одно, то есть теперь $d[pr_0, pr_1] = 0$ и $d[pr_1, pr_2] = 0$, но $d[pr_0, pr_2] = 1$, и так далее.

Таким образом, возможно сокращение профилей не менее чем вдвое. Дальнейшие оптимизации мы оставляем читателю.

В итоге получаем асимптотику $2^{n}n$ (количество переходов, то есть время на вычисление a[i]) умножить на m равно $O(2^n nm)$. Она значительно лучше всего, что мы получали до сих пор, и это серьезный повод использовать изломанный профиль вместо обычного.

Рис. 6. Возможные переходы.

Задачи, на которых можно потренироваться

- 1) Сайт http://acm.sgu.ru, задачи 131, 132, 197, 223, 225.
- 2) Московская олимпиада по информатике, 2004 год, заочный тур, задача J («Узор»),

http://www.olympiads.ru/moscow/2004/zaoch/problems.shtml