Politopos

August 6, 2023

Índice

Ír	ndice	1
1	El cubo de Roli	2
2	Resumen: Quiral polyhedra from a PC construction 2.1 Definiciones 2.2 La construcción de Petrie-Coxeter 2.3 Halving operation 2.4 2-Hole 2.5 Los quiralitos	3 3 4 5 5 6
3	Quiralitos estrellados 3.1 Del convexo al estrellado	7 8
4	En busca de otros poliedros quirales 4.1 Definiciones y resultados	9 9 11

1 El cubo de Roli

En 2014, J. Bracho, I. Hubard y D. Pellicer encontraron un 4-politopo quiral en \mathbb{R}^4 . Es el único ejemplo conocido de un 4-politopo en \mathbb{R}^4 .

Mostramos una construcción muy sencilla de este cubo. Comenzamos con dos coloraciones de las aristas del 4-cubo:

En cada vértice de cualquiera de las coloraciones inciden cuatro aristas de colores distintos.

En el 4-cubo normal, las caras son 4-ciclos de aristas de dos colores que van alternando. Definamos en el 4-cubo de la derecha que las caras sean los 8-ciclos de aristas de dos colores que van alternando. Aquí están las caras verde-rojo:

Ahora las facetas: en ambos cubos definamos las facetas como las componentes conexas

de tres colores. Aquí están las facetas verde-rojo-azul:

El cubo de la derecha se llama Cubo de Roli. Como dijimos, es un 4-politopo quiral. Parece que tiene la mitad de caras y la mitad de facetas de lo que tiene el 4-cubo. Las facetas son poliedros quirales (combintorialmente regulares). Esta construicción se pudo generalizar para crear otros poliedros quirales, como mostramos en la siguiente sección.

2 Resumen: Quiral polyhedra from a PC construction

Dado un 4-politopo regular \mathcal{T} , la construcción central es:

- 1. Calcular el poliedro de Petrie-Coxeter $PC_{\alpha}(\mathcal{T})$. Resulta ser regular o de clase $2_{\{0,2\}}$.
- 2. Aplicar la halving operation para obtener $PC_{\alpha}(\mathcal{T})^{\eta}$.
- 3. Aplicar la operación de 2-facetting (2-hole) para obtener $(PC_{\alpha}(\mathcal{T})^{\eta})^{\phi} := H_{\alpha}(\mathcal{T})$. Éste es un poliedro regular o quiral.

Cuando comenzamos con el 4-cubo, para ciertos valores de α (creo que 1 o 2) obtenemos las facetas del Cubo de Roli.

A continuación desglosaremos este proceso.

2.1 Definiciones

Definición. Un poliedro $\mathcal P$ es

- regular (resp. combinatoriamente regular) si su grupo de simetrías $G(\mathcal{P})$ (resp. grupo de automorfismos $\Gamma(\mathcal{P})$) actúa transitivamente en las banderas .
- quiral (resp. combinatoriamente quiral) si $G(\mathcal{P})$ (resp. $\Gamma(\mathcal{P})$) induce dos órbitas en las banderas con la propiedad de que dos banderas adyacentes están en órbitas diferentes.

2.2 La construcción de Petrie-Coxeter

La construcción de Petrie-Coxeter y los valores de α .

Dado un 4-politopo regular \mathcal{T} , mostraremos cómo constuir un poliedro regular o quiral $PC(\mathcal{T})$. Suponemos por el resto del texto que \mathcal{T} tiene caras planas.

Se escoge número α entre 0 y 1. Para un vértice v de \mathcal{T} y una cara que contiene a v, definimos el punto $(v,c)_{\alpha}$ sobre el segmento que une v con c a distancia $d\alpha$ desde v, donde d es la distancia entre ellos. Estos puntos serán los vértices del poliedro $PC_{\alpha}(\mathcal{T})$.

Las aristas son (1) los segmentos que unen $(v,c)_{\alpha}$ con $(v',c)_{\alpha}$, donde v y v' son vértices en una misma arista de \mathcal{T} ; y (2) los semgentos que unen $(v,c)_{\alpha}$ con $(v,c')_{\alpha}$ donde c y c' son facetas que comparten una cara conde está v.

Las caras son los cuadrados $(v,c)_{\alpha}$, $(v',c)_{\alpha}$, $(v,c')_{\alpha}$ y $(v',c')_{\alpha}$ donde c y c' son caras que contienen a la arista entre v y v'.

Tenemos algunos resultados sobre esta construcción:

Teorema. Para cualquier $\alpha \in (0,1)$ y cualquier politopo regular $\mathcal{T}, PC_{\alpha}(\mathcal{T})$ es un poliedro.

Observación. Para cualesquiera $\alpha \in (0,1)$, un 4-politopo regular \mathcal{T} y su dual \mathcal{T}^* , $PC_{\alpha}(\mathcal{T}) = PC_{1-\alpha}(\mathcal{T})$.

Teorema. Para cualesquiera $\alpha \in (0,1)$, un 4-politopo regular \mathcal{T} , el grupo de simetría de \mathcal{T} es isomorfo a un subgrupo de índice a lo más 2 de $G(PC_{\alpha}(\mathcal{T}))$. Además, $PC_{\alpha}(\mathcal{T})$ es regular o un poliedro de dos órbitas en la clase $2_{\{0,2\}}$.

2.3 Halving operation

Esta operación transforma un poliedro \mathcal{P} con caras cuadradas en otro poliedro \mathcal{P}^{η} , cuyos vértices son algunos de los vértices de \mathcal{P} , donde dos de ellos son adyacentes si y sólo si son vértices opuestos en una cara de \mathcal{P} . Las caras de \mathcal{P}^{η} con figuras de vértice de algunos de los vértices de \mathcal{P} .

Como $PC_{\alpha}(\mathcal{T})$ tiene caras cuadradas, le podemos aplicar esta operación. Y como además es regular o de clase $2_{\{0,2\}}$, cualquier de los resultados de aplicarle la operación Halving son isomorfos.

2.4 2-Hole

A 2-hole is constructed by traversing an edge to one of its endpoints, skipping the first edge on the left according to some local orientation, and then traversing a second edge. This procedure is repeated until an edge is traversed twice in the same direction.

La operación Facetting o 2-Hole convierte un poliedro $\mathcal P$ con vértices de grado al menos 5 en una estructura $\mathcal P^\phi$ cuyo 1-esqueleto está contenido en el 1-esqueleto de $\mathcal P$ y sus caras son un subconjunto de los 2-hoyos de $\mathcal P$.

Dados un vértice, arista y 2-hoyo incidentes, se va construyendo \mathcal{P}^{ϕ} por pasos de forma que el 1-esqueleto sea conexo y cada arista pertenezca a exactamente dos 2-hoyos. El resultado no siempre es un poliedro, pero en nuestro caso sí lo es. Esto es consecuencia del siguiente resultado:

Teorema. Cuando $PC_{\alpha}(\mathcal{T})^{\eta}$ es un poliedro, es regular o de clase $2_{\{1\}}$.

Construcción de un 2-hoyo

2.5 Los quiralitos

Finalmente podemos definir

$$H_{\alpha}(\mathcal{T}) = (PC_{\alpha}(\mathcal{T})^{\eta})^{\phi}$$

Para entender cómo construir los grupos de simetrías de los quiralitos, debemos recordar algunas cosas. Dado un poliedro \mathcal{P} regular o quiral, el subgrupo de automorfismos $\Gamma^+(\mathcal{P})$ está generado por dos rotaciones distinguidas: la de la cara, σ_1 y la del vértice σ_2 .

Cuando \mathcal{P} es plano (todas sus caras están en un plano, por ejemplo, el hemicubo en \mathbb{P}^2), es posible que haya más de una isometría que actúa como σ_1 y σ_2 . Sin embargo, si \mathcal{P} no es plano, son únicas.:

Teorema. Si \mathcal{P} es un poliedro regular o quiral con caras planas, existen únicas isometrías S_1 y S_2 que actúan como σ_1 y σ_2 con respecto a alguna bandera base Φ .

Y luego,

Proposición. Si $H_{\alpha}(\mathcal{T})$ es un poliedro, es regular o quiral.

Demostración. Basta mostrar que existe la rotación de la cara S_1 y la rotación del vértice S_2 . ¿Por qué? Si el grupo de simetrías del poliedro está generado por estas dos simetrías, tenemos que deducir que hay una o dos órbitas en banderas.

Se hizo este procedimiento para cada uno de los 4-politopos regulares (6 convexos y 10 estrellados). Veamos cómo analizar los poliedros resultantes.

De la regularidad de \mathcal{T} podemos estudiar la simetría de $H_{\alpha}(\mathcal{T})$. Mientras que $G(\mathcal{T}) = \langle R_0, R_1, R_2, R_3 \rangle$ como en la construcción Wythoff, resulta que $G(H_{\alpha}(\mathcal{T})) \leq \langle S_1, S_2 \rangle$, donde

$$S_1 = R_0 R_1 R_3 R_2$$
$$S_2 = R_2 R_1$$

Aquí, S_1 es un tornillo y S_2 una rotación, dando lugar a la notación $\left\{\frac{p}{p_1,p_2},q\right\}$ donde q es el orden de la rotación y los enteros p,p_1 y p_2 caracterizan al tornillo. Esto sugiere qué clase de poliedro es $H_{\alpha}(\mathcal{T})$: tiene caras helicoidales, q en cada vértice.

Se encontraron los siguientes Quiralitos o Halving-2-Holes:

	4-politopo ${\cal T}$	Quiralito $H_{\alpha}(T)$	#(G)	$[G:\Gamma^+]$	Colapsa cuando $\alpha = (0,1)$
S	{3,3,3}	$\{\frac{5}{1.2}, 3\}$	60	1	(4,4)
exc	{4,3,3}	$\left\{\frac{8}{1,3},3\right\}$	48	4	(1,2)
Convexos	{3,4,3}	$\left\{\frac{12}{1.5}, 4\right\}$	192	3	(2,2)
C	{5,3,3}	$\{\frac{30}{1,11},3\}$	1440	5	(1,4)
.0	{3,5,5/2}	$\{\frac{20}{1,9},5\}$	1200	6	(2,2)
Estrellados	{5,5/2,5}	$\{\frac{15}{1,4}, 5/2\}$	7200	1	(12,12)
ella	{5,3,5/2}	$\{\frac{12}{1.5}, 3\}$	144	50	(1,1)
stre	{3,3,5/2}	$\left\{\frac{30}{7,13},3\right\}$	1440	5	(4,1)
田	{3,5/2,5}	$\{\frac{20}{3,7}, 5/2\}$	1200	6	(2,2)
	{5/2,5,5/2}	$\{\frac{15}{2,7},5\}$	7200	1	(12,12)

Donde G es el grupo de simetrías del quiralito.

Distintos valores de α en la construcción de Petrie-Coxeter dan lugar a distintos poliedros. Hay ciertos valores para los cuales las simetrías que generan $H_{\alpha}(\mathcal{T})$ son simetrías de \mathcal{T} . Cuando $\alpha=0$, los vértices de $PC_{\alpha}(\mathcal{P})$ son los vértices de \mathcal{P} .

Cuando $\alpha=0,1$, es posible que algunos de los vértices en la construcción "colapsen". Eso quiere decir que algunos vértices terminan siendo el mismo, y el resultado puede no ser un poliedro. Si, en cambio, aparece el valor 1, leemos que "la cantidad de vértices que colapsan es 1" (para $\alpha=0$ si el 1 está a la izquierda, y respectivamente $\alpha=1$ derecha). Es decir, no hay colapso.

Conviene entonces estudiar los casos donde no hay colapso para $\alpha=0$ pues en este caso la construcción de Petrie-Coxeter nos devuelve una estructura cuyos vértices son los mismos vértices del 4-politopo. Así, podremos usar las simetrías del 4-politopo original.

3 Quiralitos estrellados

Aquí comienza nuestro trabajo, basado en la siguiente sospecha: así como el cubo de Roli es la faceta de un 4-politopo quiral,

hay tres de los quiralitos que son las facetas de ciertos 4-politopos quirales.

Los sospechosos son $H_1\{5,3,5/2\}$, $H_0\{5,3,5/2\}$ y $H_1\{3,3,5/2\}$. Se trata de los quiralitos obtenidos a partir de los 4-politopos estrellados "Gran 120-celda" y "Gran 600-celda", resp. Dos de ellos están escogidos para valores de $\alpha=1$, de forma que en estos dos casos estaremos trabajando con los 4-politopos duales, el $\{5/2,5,3\}$ "Pequeño 120-celda estelado" y el $\{5/2,3,3\}$, "Gran gran 120-celda estelada".

El primer paso es obtener los grupos de estos dos 4-politopos.

3.1 Del convexo al estrellado

Comenzamos con el grupo del {5,3,5/2}, la gran 120-celda. El grupo se denota [5,3,5/2]. La idea es tomar el grupo de simetrías de alguno de los convexos y expresar las relaciones del estrellado en términos de aquéllas.

En nuestro caso, partimos de que el grupo de la 120-celda, [5,3,3], está generado por R_0, R_1, R_2 y R_3 como Wythoff, queremos expresar el grupo en términos de cuatro generadores T_0, T_1, T_2 y T_4 .

Comenzemos en dimensión 3, intentando expresar el [5/3,3] a partir del grupo del dodecaedro. Después de muchos intentos logramos esto:

Es decir:

$$T_0 = R_2, T_2 = R_0, T_1 = (R_0 R_1)^2 R_2 (R_0 R_1)^{-2}$$

ya que T_1 es rotar R_2 en sentido antihorario con centro en el centro de la cara base

Ahora para encontrar la reflexión T_3 recordemos que la composición T_2T_3 es la rotación en la arista de orden 3. Aunque esta intuición es correcta, **no es claro cómo encontrar** T_3 **en términos de las** R_i **con esta información.** ¿Y luego qué pasó?

En los notebooks, resulta que el grupo $[5/2,3,3] = [3,3,5/2] := \langle T_i \rangle$ está dado en términos del grupo $[5,3,5/2] := \langle P_i \rangle$ de acuerdo a:

$$T_0 = P_3, T_1 = (P_2 P_1 P_0) P_1 (P_2 P_1 P_0)^{-1}, T_2 = P_0, T_3 = (P_1 P_0) P_1 (P_1 P_0)^{-1}$$

¿Qué podemos hacer? Decir cómo están dadas las P_i en términos de las R_i y habríamos terminado. Bueno, de hecho,

$$P_0 = R_0,$$
 $P_1 = (R_1 R_2) R_3 (R_1 R_2)^{-1},$ $P_2 = R_3 R_2 R_3,$ $P_3 = R_2$

Así que a la mera hora:

$$T_0 = R_2, \qquad T_2 = R_0,$$

$$T_{1} = ((R_{3}R_{2}R_{3})((R_{1}R_{2})R_{3}(R_{1}R_{2})^{-1}))(R_{0})(R_{1}R_{2})R_{3}(R_{1}R_{2})^{-1}(R_{3}R_{2}R_{3})((R_{1}R_{2})R_{3}(R_{1}R_{2})^{-1}))^{-1},$$

$$T_{3} = ((R_{1}R_{2})R_{3}(R_{1}R_{2})^{-1})(R_{0}))((R_{1}R_{2})R_{3}(R_{1}R_{2})^{-1})((R_{1}R_{2})R_{3}(R_{1}R_{2})^{-1})(R_{0}))^{-1}$$

Antes de pasar a estudiar las T_i , hicimos esta cuenta con las P_i . Tenemos las presentaciones de los grupos:

$$[3,3,5] = \langle R_i | R_i^2 = (R_0 R_1)^3 = (R_1 R_2)^3 = (R_2 R_3)^5 = 1$$
$$(R_0 R_2)^2 = (R_0 R_3)^2 = (R_1 R_3)^2 = 1 \rangle$$

$$[5, 3, 5/2] = \langle P_i | P_i^2 = (P_0 P_1)^5 = (P_1 P_2)^3 = (P_2 P_3)^5 = 1$$
$$(P_0 P_2)^2 = (P_0 P_3)^2 = (P_1 P_3)^2 = 1$$

Así que hay que checar que las P_i satisfagan eso. Se comprobaron todas excepto que $(P_1P_2)^3=1$.

La búsqueda por la bandera Se logró identificar cómo está situada la bandera del {5,3,5/2} con respecto a la bandera del {3,3,5}.

La idea de Roli es pensar que el icosaedrito de los no-vértices del $\{5/2,3\}$ es la figura de vértice del $\{3,3,5\}$. Podemos tomar un tetraedro de los 20 que conforman ese icosaedrito, y dentro de él una bandera básica que genere al $\{3,3,5\}$. Entonces, R_0 bisecta una de las aristas del $\{5/2,3\}$, así que podemos escoger esa arista para formar una bandera del $\{5/2,3,5\}$ y tenemos que $R_0 = P_0$.

4 En busca de otros poliedros quirales

Esta sección es una transcripción del trabajo de Bris.

4.1 Definiciones y resultados

Damos algunas definiciones, explicamos el método básico para construir poliedros usando la construcción de Wythoff y mostramos un par de teoremas.

Definición. Un polígono (geométrico) en \mathbb{R}^d es:

- Un conjunto discreto de puntos llamados vértices
- Un conjunto de segmentos que los unen llamados aristas

tales que la gráfica resultante es 2-regular.

Definición. Un **poliedro (geométrico)** en R^d es un conjunto de polígonos llamados **caras** tal que:

- Los vértices son un conjunto discreto
- Cada arista pertenece exactamente a dos caras.
- La gráfica determinada por los vértices y las aristas es conexa.
- La figura de vértice en cada vértice es un polígono.

Definición (Banderas). • Una **bandera** de un poliedro es un vértice, una arista y una cara mutualmente incidentes.

• Si Φ es una bandera, Φ^i es la bandera que difiere de Φ sólo por en la cara $i \in \{0,1,2\}$ y se llama la i-bandera adyacente.

Definición. Un poliedro \mathcal{P} es **(geométricamente) quiral** si $G(\mathcal{P})$ induce dos órbitas en banderas y las banderas adyacentes están en órbitas distintas.

Observación. Un poliedro geométricamente quiral puede ser combinatoriamente quiral o regular.

Construcción de Wythoff para poliedros regulares. Sean R_0 , R_1 y R_2 isometrías en \mathbb{R}^n que queremos usar para construir un poliedro regular \mathcal{P} y sea $G = \langle R_0, R_1, R_2 \rangle$. Ahora

- Escogemos un vértice v que será el **vértice base** de \mathcal{P} tal que $v \in \operatorname{Fix} R_1 \cap \operatorname{Fix} R_2$ y $v \notin \operatorname{Fix} R_0$.
- La **arista base** es el segmento de línea que une v con vR_0 .
- La **cara base** es la órbita de v y e bajo $\langle R_1, R_1 \rangle$.

Luego,

$$V := \{vR : R \in G\}$$
 son los vértices de \mathcal{P} . $E := \{eR : R \in G\}$ son las aristas de \mathcal{P} . $F := \{fR : R \in G\}$ son las caras de \mathcal{P} .

Esta estructura se nota por \mathcal{P} o $\mathcal{P}(R_0, R_1, R_2; v)$

Construcción de Wythoff para poliedros quirales. Sean S_1 y S_2 isometrías en \mathbb{R}^n que queremos usar para construir un poliedro quiral \mathcal{P} y sea $G = \langle S_1, S_2 \rangle$. Ahora

- Necesitamos suponer que $(S_1S_2)^2 = 1$.
- Escogemos un vértice v que será el **vértice base** de \mathcal{P} tal que $v \in \operatorname{Fix} S_2$ y $v \notin \operatorname{Fix} S_1$.
- La **arista base** es el segmento de línea que une v con $vS_1^{-1} = vS_2^{-1}S_1^{-1} = vS_1S_2$. Necesitamos suponer que $eS_1 \neq e$ y $eS_2 \neq e$.
- La cara base es $\{vS, eS : S \in \langle S_1 \rangle\}$. Necesitamos suponer que $fS_2 \neq f$.

Luego,

```
V:=\{vR:R\in G\} son los vértices de \mathcal{P}. E:=\{eR:R\in G\} son las aristas de \mathcal{P}. F:=\{fR:R\in G\} son las caras de \mathcal{P}.
```

Esta estructura se nota por \mathcal{P} o $\mathcal{P}(S_1, S_2; v)$.

¿Cómo podemos estar seguros de que esta construcción nos da un poliedro?

Teorema. Sea $G = \langle S_1, S_2 \rangle$ un grupo discreto, donde S_1 y S_2 son isometrías de \mathbb{R}^n tales que $(S_1S_2)^2 = 1$ y sea $\mathcal{P} = \mathcal{P}(S_1, S_2; v)$. Supongamos que se satisfacen las siguientes condiciones:

- $\langle S_1 \rangle \cap \langle S_2 \rangle = \{1\}.$
- S_1 y S_2 son de orden mayor estricto que 2.
- $\operatorname{Stab}_G v = \langle S_2 \rangle$, $\operatorname{Stab}_G e = \langle S_1 S_2 \rangle$ y $\operatorname{Stab}_G f = \langle S_1 \rangle$.

Entones $\mathcal P$ es un poliedro geométrico regular o quiral cuyo grupo de simetrías "es G como un subgrupo de índice 2 en $G(\mathcal P)$ ".

Teorema (Bracho, Hubard, Pellicer). \mathcal{P} es un poliedro quiral en \mathbb{S}^3 si y sólo si se satisface alguna de las siguientes condiciones:

- \mathcal{P} tiene caras holanes y figuras de vértices holanes.
- P tiene caras helicoidales y figuras de vértice planas, y el plano que contiene a la figura de vértice de v no contiene a v.

Observación. En el segundo caso, si el vértice está en la figura de vértice, el poliedro es regular.

4.2 Looking for chiral polyhedra

El trabajo de Bris está planteado de la siguiente manera:

Sean $\mathcal{T} = \{p, q, r\}$ un 4-politopo regular esférico y R_0, R_1, R_2 y R_3 las isometrías que generan a \mathcal{T} con respecto a Φ . Denotaremos $[p, q, r] := \langle R_0, R_1, R_2, R_3 \rangle$.

Escogemos un vértice v y una arista e de \mathcal{T} para construir un poliedro usando el método de Wythoff, es decir, queremos que v y e estén en $\mathcal{P}(S_1, S_2; v)$.

Definimos $S_1 = R_0 R_1 R_2 R_3$ (recordemos que Stab $f = \langle S_1 \rangle$ en el teorema). La arista e es el segmento de línea que une v con vS_1^{-1} . Luego, la cara $f = \{v, e\} \langle S_1 \rangle$ es un **polígono de petrie**.

El objetivo es encontrar una S_2 con figuras de vértice planas, y tales que contienen al vértice del cual son la figura de vértice. Como queremos usar el teorema, tendremos que $v \in \operatorname{Fix} S_2$, así que debemos buscar S_2 en $\langle R_1, R_2, R_3 \rangle$.

Se obtuvieron los siguientes resultados:

Poliedros quirales con caras Petrie							
4-politopo $\mathcal T$	Poliedro $\mathcal P$	S_1	S_2	$ \langle S_1, S_2 \rangle $			
${3,3,3}$	_		_				
${3,3,4}$	$\{8,4\}$		$R_3R_2R_1R_2$	32			
{4, 3, 3}	{8,3}	$R_0R_1R_2R_3$	$R_3R_2R_1R_3$	48			
	(0,0)		$R_3R_2R_1R_2$				
${3,4,3}$				_			
${3,3,5}$							
{5,3,3}	{30,3}		$R_3R_2R_1R_3$ $R_3R_2R_1R_2$	1440			

Después de esto hubo una búsqueda por poliedros quirales con caras helicoidales:

Poliedros quirales con caras helicoidales								
4-politopo $\mathcal T$	Poliedro \mathcal{P}	S_1	S_2	$ \langle S_1, S_2 \rangle $				
${3,3,3}$		_	_					
${3,3,4}$	_	_	_	_				
${3,3,5}$	{12,3}	$(R_1R_2R_3)^3R_0$	$R_2R_3(R_2R_3R_1)^2R_2R_1 R_3R_2R_3R_1R_2R_3R_2R_1$	144				