## 5. Náhodná veličina

**Poznámka:** Pro vytvoření matematického modelu náhodného pokusu přejdeme od jeho fyzikální reality k číselnému ohodnocení výsledků. Tímto matematickým modelem je t.zv. *náhodná veličina*, zhruba řečeno "reálná funkce," která nabývá "náhodných hodnot." Její hodnoty odpovídají číselnému ohodnocení jednotlivých výsledků - náhodných jevů.

## 5.1. Příklad:

1. Házíme mincí a sledujeme horní stranu.

Náhodná veličina, která odpovídá pokusu má dvě hodnoty 0 a 1. Přiřadíme třeba rubu 0 a líci 1.

Je vidět, že stejné schema pro pravděpodobnost má každý dvouhodnotový náhodný pokus.

2. Házíme hrací kostkou dokud nepadne šestka.

Náhodná veličina nabývá hodnot z posloupnosti  $\{1, 2, 3, \ldots\}$ .

- 3. Opakujeme pokus a sledujeme výskyt daného jevu v serii určitého počtu pokusů. Náhodná veličina nabývá hodnot  $\{0,1,2,\ldots,n\}$  kde n je počet opakování. (Bernoulliho schema.)
- 4. Náhodně volíme bod v intervalu (0,1).

Náhodná veličina je souřadnice vybraného bodu.

**5.2. Definice: Náhodná veličina.** Nechť  $\mathscr S$  je jevové pole,  $U \in \mathscr S$  je jev jistý a P je pravděpodobnost na jevovém poli  $\mathscr S$ . Reálnou funkci  $X:U\to \mathbf R$ , pro kterou je množina

$$\{E; E \subset U, X(E) < x\} \in \mathscr{S}$$

pro každou hodnotu  $x \in \mathbf{R}$  nazýváme náhodnou veličinou.

**Úmluva značení:** V dalším textu budeme náhodnou veličinu označovat velkými písmeny např.  $X, Y, Z, S, T, R_i$ , ale nebudeme zatím používat písmena U a V, která jsou rezervována pro jistý a nemožný jev.

**5.3. Definice: Distribuční funkce.** Je-li X náhodná veličina na pravděpodobnostním poli  $(U, \mathcal{S}, P)$ , pak její *distribuční funkcí* nazýváme reálnou funkci reálné proměnné  $F: \mathbf{R} \to \langle 0, 1 \rangle$ , která je definována předpisem

$$F(x) = P(X \le x), \ x \in \mathbf{R}.$$

**Poznámka:** Hodnoty distribuční funkce náhodné veličiny jsou pravděpodobnosti náhodných jevů, které jsou znázorněny na obrázku Obr. 5.1.

$$X \le x$$
 $x$ 
Obr. 5.1.

Distribuční funkce náhodných veličin budeme obvykle značit velkými písmeny, např.  $F,\ G,\ H,\Phi$  a pod.

- 5.4. Věta: Vlastnosti distribuční funkce. Pro distribuční funkci F náhodné veličiny X platí;
- a) Pro všechny hodnoty  $x \in \mathbf{R}$  je  $0 \le F(x) \le 1$ .
- b) Funkce F je neklesající, je spojitá zprava v  ${\pmb R}$  a  $\lim_{x\to -\infty} F(x)=0, \quad \lim_{x\to \infty} F(x)=1.$
- c) Pro  $x_1 < x_2$  je  $P(x_1 < X \le x_2) = F(x_2) F(x_1)$ .
- d) P(X = x) = F(x) F(x-).
- e)  $P(X > x) = 1 F(x), P(X < x) = F(x-), P(X \ge x) = 1 F(x-).$
- f) Pro  $x_1 < x_2$  je

$$P(x_1 \le X \le x_2) = F(x_2) - F(x_1 -), \ P(x_1 < X < x_2) = F(x_2 -) - F(x_1),$$
  
$$P(x_1 \le X < x_2) = F(x_2 -) - F(x_1 -).$$

 $D\mathring{u}kaz$ : a) Každá hodnota funkce F je pravděpodobnost nějakého náhodného jevu.

b) 
$$x_1, x_2 \in \mathbf{R}, x_1 \le x_2 \Rightarrow (X \le x_1) \subset (X \le x_2), \text{ tedy}$$

$$F(x_1) = P(X \le x_1) \le P(X \le x_2) = F(x_2)$$
. Funkce F je tudíž neklesající v **R**.

Spojitost zprava: Je-li  $\{x_n; n \in \mathbb{N}\}$  klesající posloupnost a  $x_n \setminus x$  pak náhodné jevy

 $(X \le x_n)$  tvoří klesající posloupnost a  $\bigcap_{n=1}^{\infty} (X \le x_n) = (X \le x)$ . Ze spojitosti pravděpodobnosti (věta 2.29) plyne, že

$$\lim_{n \to \infty} P(X \le x_n) = \lim_{n \to \infty} F(x_n) = P(X \le x) = F(x).$$

Limity funkce F v bodech  $\pm \infty$ . Pro  $n \in \mathbb{N}$  je:

$$\bigcap_{n=1}^{\infty} (X \le -n) = V \text{ a posloupnost jevů je klesajicí;}$$

 $\bigcup_{n=1}^{\infty} (X \leq n) = U$  a posloupnost jevů je rostoucí. Viz obrázek Obr. 5.2.

$$X \le -n$$

$$X \le n$$

$$-n$$

$$0 \text{ Obr. 5.2.}$$

Ze spojitosti pravděpodobnosti (věta 2.29) dostaneme:

$$\lim_{x \to -\infty} F(x) = \lim_{n \to \infty} F(-n) = \lim_{n \to \infty} P(X \le -n) = P(V) = 0;$$

$$\lim_{x \to \infty} F(x) = \lim_{n \to \infty} F(n) = \lim_{n \to \infty} P(X \le n) = P(U) = 1.$$

c) Je-li  $x_1 < x_2$ , pak pro náhodné jevy platí:

$$(X \le x_1) \subset (X \le x_2)$$
 a  $(X \le x_2) - (X \le x_1) = (x_1 < X \le x_2)$ , tedy

$$P(x_1 < X \le x_2) = P(X \le x_2) - P(X \le x_1) = F(x_2) - F(x_1)$$

Situace je znázorněna na obrázku Obr. 5.3.

$$x_1 < X \le x_2$$

$$x_1 \qquad x_2$$
Obr. 5.3.

d) Je-li  $x \in \mathbf{R}$  a  $\{x_n; n \in \mathbf{N}\}$  je rostoucí posloupnost taková, že  $x_n \nearrow x$ , pak je posloupnost náhodných jevů  $(x_n < X \le x)$  klesající a její průnik  $\bigcap_{n=1}^{\infty} (x_n < X \le x) = (X = x)$ . Ze spojitosti pravděpodobnosti (věta 2.29) dostaneme

$$P(X = x) = \lim_{n \to \infty} P(x_n < X \le x) = \lim_{n \to \infty} (F(x) - F(x_n)) = F(x) - F(x - x).$$

e) Náhodné jevy (X > x) a  $(X \le x)$  jsou opačné. Je tedy

$$P(X > x) = 1 - P(X \le x) = 1 - F(x).$$

Další vlastnosti dokážeme pomocí vlastností c) a d). Je totiž:

$$P(X < x) = P(X \le x) - P(X = x) = F(x) - (F(x) - F(x-1)) = F(x-1);$$
  
$$P(X \ge x) = P(X > x) + P(X = x) = 1 - F(x) + F(x) - F(x-1) = 1 - F(x-1).$$

f) Obdobně pomocí vlastností c), d) a e) dokážeme zbývající identity. Je pro  $x_1 < x_2$ :

$$P(x_{1} \leq X \leq x_{2}) = P(x_{1} < X \leq x_{2}) + P(X = x_{1}) = F(x_{2}) - F(x_{1}) + F(x_{1}) - F(x_{1}-) =$$

$$= F(x_{2}) - F(x_{1}-);$$

$$P(x_{1} < X < x_{2}) = P(x_{1} < X \leq x_{2}) - P(X = x_{2}) = F(x_{2}) - F(x_{1}) - (F(x_{2}) - F(x_{2}-)) =$$

$$= F(x_{2}-) - F(x_{1});$$

$$P(x_{1} \leq X < x_{2}) = P(x_{1} < X \leq x_{2}) + P(X = x_{1}) - P(X = x_{2}) =$$

$$= F(x_{2}) - F(x_{1}) + F(x_{1}) - F(x_{1}-) - (F(x_{2}) - F(x_{2}-)) = F(x_{2}-) - F(x_{1}-).$$

**5.5. Příklad: Alternativní rozdělení.** Konáme náhodný pokus, ve kterém náhodný jev A nastává s pravděpodobností  $P(A) = p, \ 0 . Náhodná veličina <math>X$  nabývá hodnoty 0, jestliže náhodný jev A nastane a nabývá hodnoty 1, jestliže náhodný jev A nastane. Určete její distribuční funkci.

*Řešení*: Definice distribuční funkce je  $F(x) = P(X \le x), x \in \mathbf{R}$ . Vzhledem k tomu, že náhodná veličina X nabývá pouze hodnot  $\{0, 1\}$ , bude se hodnota funkce F měnit pouze v bodech 0 a 1.

Postupně dostaneme:

x<0:  $F(x)=P(X\leq x<0)=P(V)=0$ , neboť X nemůže nabývat záporných hodnot;  $0\leq x<1$ :  $F(x)=P(X\leq x<1)=P(X=0)=1-p$ , protože uvedenou podmínku splní pouze hodnota X=0;

$$x \ge 1$$
:  $F(x) = P(X \le x) = P(X \in \{0, 1\}) = P(X = 0 \cup X = 1) =$ 

= P(X=0) + P(X=1) = 1 - p + p = 1, podmínku splní obě hodnoty 0 a 1 a tyto hodnoty se navzájem vylučují.

Průběh funkce je znázorněn na obrázku Obr. 5.5.



**5.6. Příklad: Binomické rozdělení.** Konáme n- krát náhodný pokus, ve kterém nastává náhodný jev A s pravděpodobností  $P(A) = p, \ 0 . Náhodná veličina <math>X$  je počet výskytů náhodného jevu A v serii n pokusů.

 $\check{R}e\check{s}eni$ : Náhodná veličina X nabývá hodnot z množiny  $\{0, 1, 2, \ldots, n\}$ . Její distribuční funkce bude mít podobný charakter jako v příkladě 5.5. Funkce bude po úsecích konstantní, skoky bude mít v bodech  $0, 1, 2, \ldots, n$ . Je tedy:

x<0:  $F(x)=P(X\leq x<0)=0$ ;  $0\leq x<1$ :  $F(x)=P(X\leq x)=P(X=0)=(1-p)^n$ ;  $1\leq x<2$ :  $F(x)=P(X\leq x)=P(X=0)+P(X=1)=(1-p)^n+np(1-p)^{n-1}$ ; v každém z dalších intervalů tvaru  $k\leq x< k+1,\ k< n$ , přidáme k předchozí hodnotě další pravděpodobnost  $P_n(k)=P(X=k)$  z Bernoulliho schematu z věty 4.2; pro  $x\geq n$  je F(x)=1, neboť podmínce  $(X\leq x)$  vyhovují všechny možné hodnoty náhodné veličiny X.

- **5.7. Definice: Binomické rozdělení.** Rozdělení pravděpodobnosti náhodné veličiny z příkladu 5.6 se nazývá binomické rozdělení a budeme jej značit symbolem Bi(n;p). Poznamenejme, že rozdělení Bi(1;p) je alternativní rozdělení z příkladu 5.5.
- **5.8. Příklad: Geometrické rozdělení.** Provádíme náhodný pokus, ve kterém nastává náhodný jev A s pravděpodobností  $P(A) = p, \ 0 , dokud nenastane náhodný jev <math>A$ . Náhodná veličina X je počet provedených pokusů.

 $\check{R}e\check{s}eni$ : Náhodná veličina nabývá hodnot z množiny přirozených čísel  $X \in \{1, 2, 3, \ldots\}$ . Distribuční funkce bude obdobně jako v příkladech 5.5 a 6 po úsecích konstantní a bude mít skoky v bodech 1, 2, 3, .... Pro její hodnoty dostaneme:

x < 1:  $F(x) = P(X \le x < 1) = 0$ , neboť 1 je nejmenší hodnotou náhodné veličiny X;

 $1 \le x < 2$ :  $F(x) = P(X \le x) = P(X = 1) = p$ , neboť náhodná veličina nabývá hodnoty 1, jestliže v prvním pokusu nastane jev A;

 $2 \le x < 3$ :  $F(x) = P(X \le X) = P(X \le 2) = P(X = 1 \cup X = 2) = P(X = 1 \cup X = 2)$ 

= P(X=1) + P(X=2) = p + p(1-p), neboť X=2 pokud jev A nastane až ve druhém pokusu, tedy poprvé nenastane a podruhé nastane;

 $n \le x < n+1$ :  $F(x) = P(X \le x) = P(X \le n) = P(X \in \{1, 2, ..., n\}) = P(X = 1) + P(X = 2) + ... + P(X = n) = p + p(1-p) + ... + p(1-p)^{n-1} = p\frac{1-(1-p)^n}{1-(1-p)} = 1 - (1-p)^n$ , jestliže použijeme vzorec pro částečný součet geometrické řady s kvocientem (1-p).

**5.9. Příklad: Rovnoměrné rozdělení (spojité).** Volíme náhodně bod v intervalu  $\langle a,b\rangle$  tak, že je každá volba stejně pravděpodobná. Náhodná veličina X se rovná souřadnici x zvoleného bodu. Určete distribuční funkci dané náhodné veličiny.

 $\check{R}e\check{s}eni$ : Ze zadání vyplývá, že náhodná veličina X nabývá pouze hodnot z intervalu  $\langle a,b\rangle$ . Pro hodnoty její distribuční funkce dostaneme:

x < a:  $F(x) = P(X \le x < a) = 0$ , neboť a je nejmenší hodnotou náhodné veličiny X;

 $x \ge b$ :  $F(x) = P(X \le x) = P(X \le b) = P(U) = 1$ , neboť každá hodnota náhodné veličiny X je menší nebo rovna b.

Pro určení hodnot distribuční funkce v intervalu  $\langle a, b \rangle$  použijeme geometrickou pravděpodobnost z odstavce 2.24. Znázorníme si situaci na obrázku Obr. 5.8.

$$\begin{array}{ccc}
X \leq x \\
& & & \\
\hline
a & & x & b \\
Obr. 5.8.
\end{array}$$

Potom pro  $x \in \langle a, b \rangle$  je  $P(X \leq x)$  rovna poměru délek úseček  $\langle a, x \rangle$  a  $\langle a, b \rangle$ . Je tedy

$$F(x) = P(X \le x) = \frac{x - a}{b - a}, \quad a \le x \le b.$$

Na obrázku Obr. 5.9a je znázorněn průběh distribuční funkce F spojitého rovnoměrného rozdělení v intervalu (0,1) a na obrázku Obr. 5.9b je průběh hustoty f tohoto rozdělení.



**Poznámka:** Všimneme si, že v tomto případě je distribuční funkce spojitá v  $\mathbf{R}$  a lineární v intervalu  $\langle a, b \rangle$ . Rozdělení uvedeného typu nazýváme rovnoměrné rozdělení v intervalu  $\langle a, b \rangle$ . Podle vlastnosti d) z věty 5.4 je z důvodu spojitosti funkce F

$$P(X = x) = F(x) - F(x) = F(x) - F(x) = 0, \quad x \in \mathbf{R}.$$

Z toho důvodu je lhostejné, zda pro definici náhodné veličiny uvedeného typu zvolíme otevřený či polouzavřený interval.

 ${f 5.10.}$  Příklad: Smíšené rozdělení. Máme domluvenou schůzku mezi 12 a 13 hodinou. Jdeme náhodně na schůzku a čekáme nejdéle 15 minut. Náhodná veličina X je doba čekání. Určete její distribuční funkci.

*Řešení:* K řešení úlohy použijeme geometrickou pravděpodobnost. Náhodná veličina X nabývá hodnot z intervalu  $\langle 0, \frac{1}{4} \rangle$ . Znázorníme si  $t_1$ , resp.  $t_2$ , okamžik příchodu 1., resp., 2. účastníka schůzky po 12 hodině. Bod  $(t_1, t_2) \in \langle 0, 1 \rangle \times \langle 0, 1 \rangle$  odpovídá nastalé situaci. Náhodnému jevu  $(X \leq x \leq \frac{1}{4})$ , který znamená, že se účastníci sejdou za kratší dobu než je  $0 \leq x < \frac{1}{4}$ , odpovídají body, pro které platí  $|t_1 - t_2| \leq x < \frac{1}{4}$ . To jsou body pásu kolem diagonály čtverce. Pravděpodobnost  $P(X \leq x)$  setkání za dobu menší než x je rovna poměru obsahu pásu a čtverce, tedy

$$F(x) = P(X \le x) = \frac{1 - (1 - x)^2}{1} = 2x - x^2, \quad 0 \le x < \frac{1}{4}.$$

Pro x < 0 je  $F(x) = P(X \le x < 0) = 0$  a pro  $x \ge \frac{1}{4}$  je  $F(x) = P(X \le x) = P(X \le \frac{1}{4}) = 1$ , neboť déle než čtvrt hodiny nečekáme.

Všimneme si, že distribuční funkce F je spojitá v intervalech  $(-\infty, \frac{1}{4})$  a  $(\frac{1}{4}, \infty)$ . V bodě  $\frac{1}{4}$  má skok velikosti

 $P\left(X=\frac{1}{4}\right)=F\left(\frac{1}{4}\right)-F\left(\frac{1}{4}-\right)=1-2\cdot\frac{1}{4}+\left(\frac{1}{4}\right)^2=\frac{9}{16}=0,5625.$  Je to pravděpodobnost toho, že jsme se nesetkali. Pravděpodobnost setkání je pak rovna  $1-\frac{9}{16}=\frac{7}{16}=0,4375.$