

Course > Week 10 > Practic... > Q4: Val...

Q4: Value Functions

Problem 4: Value Functions

Consider a general search problem defined by:

- A set of states, **S**.
- A start state s_0 .
- A set of goal states G, with $G \subset S$.
- A successor function Succ(s) that gives the set of states s' that you can go to from the current state s.
- ullet For each successor $oldsymbol{s'}$ of $oldsymbol{s}$, the cost (weight) $oldsymbol{W}\left(oldsymbol{s},oldsymbol{s'}
 ight)$ of that action.

As usual, the search problem is to find a lowest-cost path from the start state s_0 to a goal $g \in G$. You may assume that each non-goal state has at least one successor, that the weights are all positive, and that all states can reach a goal state in a finite number of steps.

Define C(s) to be the *optimal cost* of the state s; that is, the cost of the lowest-cost path from s to any goal state. For $g \in G$, clearly C(g) = 0.

Part 1

0.0/4.0 points (ungraded)

Select the Bellman-style (one-step lookahead) equation that expresses $C\left(s\right)$ for a non-goal state s in terms of the optimal costs of other states.

$$igcup C\left(s
ight) = \sum_{s' \in \mathrm{Succ}\left(\mathrm{s}
ight)} W\left(s, s'
ight)$$

$$igcup C\left(s
ight) = \displaystyle{\min_{s' \in \operatorname{Succ}\left(s
ight)}} W\left(s, s'
ight)$$

$$igcup C\left(s
ight) = \sum_{s' \in \mathrm{Succ}\left(s
ight)} \left[W\left(s, s'
ight) + C\left(s'
ight)
ight]$$

$$ullet C\left(s
ight) = \min_{s' \in \mathrm{Succ}\left(\mathrm{s}
ight)} \left[W\left(s, s'
ight) + C\left(s'
ight)
ight] imes$$

$$\bigcirc \ \, C\left(s\right) = \max_{s' \in \operatorname{Succ}\left(s\right)} \left[W\left(s, s'\right) + C\left(s'\right)\right]$$

Submit

You have used 0 of 1 attempt

1 Answers are displayed within the problem

Part 2

0.0/2.0 points (ungraded)

Consider a heuristic function $h\left(s\right)$ with $h\left(s\right)\geq 0$. What relation must hold between $h\left(s\right)$ and $C\left(s\right)$ for $h\left(s\right)$ to be an admissible heuristic?

$$igcup h\left(s
ight) =C\left(s
ight) ,orall s\in S$$

$$ullet h\left(s
ight) \leq C\left(s
ight), orall s \in S$$

$$igoplus h\left(s
ight) \geq C\left(s
ight), orall s \in S$$

Submit

You have used 0 of 1 attempt

1 Answers are displayed within the problem Part 3 By analogy to value iteration, define $C_k\left(s
ight)$ to be the minimum cost of any plan starting from $m{s}$ that is either of length $m{k}$ or reaches a goal state in at most $m{k}$ actions. Define $C_0\left(s\right)=0$ for all s. $C\left(s\right)$ is defined as before to be the cost of the lowest-cost path from sto any goal state, without any restriction on the number of actions starting from \boldsymbol{s} . Suppose we use C and C_k as heuristic functions. Part 3.1 0.0/2.0 points (ungraded) Which of the following statements regarding the admissibility of $m{C}$ and $m{C_k}$ are true? Check all that apply. C_k might be inadmissible for any given value of k. C_k is admissible for all k. \checkmark lacksquare Let $oldsymbol{L}$ be the length of the longest path from a state to a goal. $oldsymbol{C_k}$ is only guaranteed to be admissible if $k \geq L$. $oldsymbol{C}$ is admissible. $oldsymbol{\checkmark}$ You have used 0 of 1 attempt Submit

1 Answers are displayed within the problem

Part 3.2

0.0/2.0 points (ungraded)

Which of the following statements regarding the consistency of $oldsymbol{C}$ and $oldsymbol{C_k}$ are true? Check all that apply.
$lacksquare C_k$ might be inconsistent for any given value of k .
$lacksquare$ Let $m{L}$ be the length of the longest path from a state to a goal. $m{C_k}$ is only guaranteed to be consistent if $m{k} \geq m{L}$.
$lacksquare$ C is consistent. \checkmark
Submit You have used 0 of 1 attempt
Answers are displayed within the problem
© All Rights Reserved