

IIC1253 — Matemáticas Discretas — 1' 2019

PAUTA TAREA 7

Pregunta 1

Pregunta 1

Una posible solución consistía en utilizar inducción simple. Por lo tanto:

Caso base: Tenemos que P(0) = 0 y por lo tanto se cumple con k = 0 y $e_0 = 0$.

Hipótesis de inducción: El número n se puede expresar como $\sum_{i=0}^k e_i \cdot 3^i$.

Paso Inductivo: Para expresar n+1, por hipótesis tenemos que

$$n+1 = \sum_{i=0}^{k} e_i \cdot 3^i + 1$$

Luego, se identifican dos casos:

1. $e_0 \le 0$. En este caso, n+1 queda simplemente como $\sum_{i=1}^k e_i \cdot 3^i + e_0'$ donde $e_0' = e_0 + 1$.

2. $e_0 = 1$. Se tienen dos sub-casos:

a) $e_i = 1 \ \, \forall i \leq k.$ En este caso, n+1 queda de la forma $3^{k+1} + \sum\limits_{i=0}^k -1 \cdot 3^i$

b) $\exists i \leq k, e_i \neq 1$. Sea h el menor número tal que $e_h \neq 1$. Tenemos que n+1 queda de la forma $\sum_{i=h+1}^k e_i \cdot 3^i + (e_h+1)3^h + \sum_{i=0}^{u-1} -1 \cdot 3^i.$

Dado lo anterior, el puntaje asignado es el siguiente:

- (4 puntos) Demostrar correctamente usando inducción simple o fuerte
- (3 puntos) Por tener el caso 2.b correcto y tener pequeños errores en los casos base u olvidar otros casos en el paso inductivo.
- (0 puntos) Otros casos.

Pregunta 2

Pregunta 2.1 PD: Si gcd(a, b) = 1 y $a \mid bc$, entonces $a \mid c$. Solución:

Caso 1: a = 1Si $a = 1 \Rightarrow a \mid c$.

Caso 2: a > 1

Por la primera hipótesis sabemos que $\exists s, t$ enteros tales que qcd(a,b) = 1 = sa + tb (Identidad de Bézout). La segunda hipótesis nos dice que $a \cdot k = bc$, para algun entero k.

Como $ak = bc \Leftrightarrow ak \cdot t = bc \cdot t$ (multiplicamos el t de la identidad).

Usando la identidad de Bézout, $kt = \frac{(1-sa)c}{a} = \frac{c-csa}{a} = \frac{c}{a} - cs$ Como kt + cs es entero, nos queda que $\frac{c}{a}$ también.

Con esto concluimos que $a \mid c$.

Pregunta 2.2 PD: Si p es primo y $p \mid ab$, entonces $p \mid a$ o $p \mid b$. Solución:

Caso 1: gcd(p,b) = 1

Por la pregunta 2.1 concluimos que $p \mid a$.

Caso 2: gcd(p, a) = 1

Por la pregunta 2.1 concluimos que $p \mid b$.

Caso 3: $gcd(p, b) \neq 1$

Como p es primo, se cumple que $b \mid p$ o $p \mid b$.

Esto equivale a que p = b o $b = k \cdot p$ respectivamente (, k un entero).

De esto podemos concluir que $p \mid b$.

Caso 4: $qcd(p, a) \neq 1$

Análogo al caso 3, concluimos que $p \mid a$.

Pregunta 2.3 PD: la descomposición en primos de todo número natural n > 1 es única.

Supongamos que existen números naturales mayores a 1 que tienen más de una descomposición en primos. Sea c el menor de estos números. Luego $c = p_1 \cdot p_2 \cdot \dots \cdot p_m = q_1 \cdot q_2 \cdot \dots \cdot q_n$, con n, m naturales y p_i, q_i primos $(\geq 2) \ \forall i.$

Como $p_1 \mid c \Rightarrow p_1 \mid (q_1 \cdot q_2 \cdot \ldots \cdot q_n)$. Por 2.2, $p_1 \mid q_j$ para algún $j \in \{1, ..., n\}$. Como p_1 y q_j son ambos primos, nos queda que $p_1 = q_j$. Luego $p_2 \cdot \dots \cdot p_m = q_1 \cdot \dots \cdot q_{j-1} \cdot q_{j+1} \cdot \dots \cdot q_n$, pero este sería un número menor a ccon dos descomposiciones distintas en primos, que contradice nuestra hipótesis.

El desglose de puntaje es de 0,3,4 para cada inciso. Con 4 puntos para correcto, 3 para correcto con errores menores y 0 si está incorrecto