PARTITIONING AN INTEGER

ALEXANDER M. KASPRZYK

ABSTRACT. We present a generating function for the number of ways of partitioning a positive integer n into distinct positive integers $\lambda_1 > \ldots > \lambda_r > 0$ such that $\lambda_1 \leq k$, for fixed k. A way of rapidly tabulating the number of such partitions for fixed m is then given. Finally, we write down a generating function for the number of partitions of n for fixed k and fixed k.

Definition 1. A partition of a positive integer n is a finite nonincreasing sequence of positive integers $\langle \lambda_1, \lambda_2, \dots, \lambda_r \rangle$ such that $\sum_{i=1}^r \lambda_i = n$. The λ_i are called the parts of the partition.

Definition 2. Let \mathcal{P} denote the set of all partitions. Let $\mathcal{D} \subset \mathcal{P}$ be the set of all partitions with distinct parts. Let $\mathcal{D}_k \subset \mathcal{D}$ be the set of all partitions with distinct parts such that $\lambda_1 \leq k$.

Definition 3. Let p(S, n) denote the number of partitions of n that belong to a subset S of the set \mathcal{P} of all partitions.

Some immediate observations are that $p(\mathcal{D}_n, n) = p(\mathcal{D}_{n-1}, n) + 1$ and that

$$p(\mathcal{D}_m, n) = \begin{cases} 0 & \text{if } m(m+1) < 2n \\ p(\mathcal{D}, n) & \text{if } m \ge n \end{cases}$$

Example 1. The distinct partitions of n=10 are $\langle 4,3,2,1 \rangle$, $\langle 5,3,2 \rangle$, $\langle 5,4,1 \rangle$, $\langle 6,3,1 \rangle$, $\langle 7,2,1 \rangle$, $\langle 6,4 \rangle$, $\langle 7,3 \rangle$, $\langle 8,2 \rangle$, $\langle 9,1 \rangle$ and $\langle 10 \rangle$. Hence $p(\mathcal{D},10)=10$ and the $p(\mathcal{D}_i,10)$ are given by

The following interesting results concerning $p(\mathcal{D}, n)$ are well known (see (Hardy & Wright 1979) ppg.276-7).

Theorem 1. The generating function of $p(\mathcal{D}, n)$ is given by

$$\prod_{i=1}^{\infty} (1+x^i)$$

Theorem 2. Let \mathcal{O} be the set of all partitions whose parts are odd integers. Then $p(\mathcal{D}, n) = p(\mathcal{O}, n)$.

Let $\mathcal{O}_k \subset \mathcal{O}$ be the set of all partitions with odd parts such that $\lambda_1 \leq k$. Then $\mathcal{O}_{2k} = \mathcal{O}_{2k+1}$ and hence $p(\mathcal{O}_{2k}, n) = p(\mathcal{O}_{2k+1}, n)$. Thus the obvious analogue of Theorem 2 is false.

We shall now prove a result, similar to Theorem 1, giving the generating function of $p(\mathcal{D}_k, n)$.

Theorem 3. Given some fixed $k \in \mathbb{N}$ the generating function of $p(\mathcal{D}_k, n)$ is given by

$$\prod_{i=1}^{k} (1+x^i)$$

Proof. This is essentially immediate since the product (and hence all the sums involved) is finite. We simply observe the following:

$$\prod_{i=1}^{k} (1+x^{i}) = \sum_{a_{1} \in \{0,1\}} \dots \sum_{a_{k} \in \{0,1\}} x^{\sum_{i=1}^{k} a_{i} i}$$
$$= \sum_{j=1}^{k} p(\mathcal{D}_{k}, j) x^{j}$$

A consequence of Theorem 3 is that it allows us to tabulate the values of $p(\mathcal{D}_k, n)$ by using induction on column vectors.

Let us fix k and let $\triangle_k = \frac{k(k+1)}{2} + 1$.

Let
$$A_0 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in M_{\triangle_k \times 1}$$
 and let $S = \begin{pmatrix} 0 & & & & \\ 1 & 0 & & & \\ & \ddots & \ddots & & \\ & & 1 & 0 \end{pmatrix} \in M_{\triangle_k}$.

Make the recursive definition

$$A_{i+1} = A_i + S^{i+1}A_i$$

Then the value of $p(\mathcal{D}_k, n)$ is given by the $(n+1)^{th}$ -entry in the column vector A_k (or is 0 if $n \geq \Delta_k$).

Theorem 4. Using notation as above, $p(\mathcal{D}_k, n) = p(\mathcal{D}_k, \triangle_k - n - 1)$ for all n and k > 1.

Proof. It is sufficient to show that A_k is symmetrical about the $\left\lfloor \frac{\triangle_k}{2} \right\rfloor^{th}$ -entry. We proceed by induction on k. The result is true for k=1. Assume it is true for k=m. Then A_{m+1} is constructed by adding A_m to a copy of A_m whose entries have been shifted down m+1 places. Hence the resulting vector will be symmetrical about

$$\left\lfloor \frac{\triangle_m}{2} \right\rfloor + \left\lfloor \frac{m+1}{2} \right\rfloor = \left\lfloor \frac{m(m+1)+2}{4} \right\rfloor + \left\lfloor \frac{m+1}{2} \right\rfloor$$
$$= \left\lfloor \frac{(m+1)(m+2)+2}{4} \right\rfloor$$
$$= \left\lfloor \frac{\triangle_{m+1}}{2} \right\rfloor$$

Corollary 1. $p(\mathcal{D}_k, n) = p(\mathcal{D}_{k-1}, n) + p(\mathcal{D}_{k-1}, n-k)$.

Proof. The result follows immediately from the observation that

$$\prod_{i=1}^{k} (1+x^i) - \prod_{i=1}^{k-1} (1+x^i) = x^k \prod_{i=1}^{k-1} (1+x^i).$$

Example 2. Using these results it is possible to swiftly calculate (by hand) the values of $p(\mathcal{D}_k, n)$ for $k \leq 10$ and $n \leq \left| \frac{\triangle_k}{2} \right|$

k											
		1	2	3	4	5	6	7	8	9	10
	1	1									
	2		1								
	3		1	2							
	4			1	2						
	5			1	2	3					
	6			1	2	3	4				
	6 7				$\frac{2}{2}$	3	4	5			
	8				1	3	4	5	6		
	9				1	3 3	5	6	7	8	
	10				1	3	5	7	8	9	10
	11					2	5	7	9	10	11
	12					$\frac{2}{2}$	5	8	10	12	13
	13					1	4	8	11	13	15
n	14					1	4	8	12	15	17
	15					1	4	8	13	17	20
	16						3	8	13	18	22
	17						2	7	13	19	24
	18						3 2 2 1	7	14	21	27
	19						1	6	13	21	29
	20						1	5	13	22	31
	21						1	5	13	23	33
	22							4	12	23	35
	23							3	11	23	36
	24							$\frac{2}{2}$	10	23	38
	25							2	9	22	39
	26							1 1	8	22	39
	27							1	8 7	21	40

The C source code for a computer program which uses the above technique to calculate the values of $p(\mathcal{D}_k, n)$ for all n and arbitrary k is available from

 $\verb|http://www.maths.bath.ac.uk/~mapamk/code/PartGenFun.c|$

Definition 4. Let $\mathcal{D}_{k,m} \subset \mathcal{D}_k$ be the set of all partitions with distinct parts such that $\lambda_1 \leq k$ and r = m (with notation as in Definition 1).

Definition 5. Let $S_{k,m}$ be the set

$$S_{k,m} := \{(a_1, \dots, a_m) \in \{1, \dots, k\}^m \mid a_1 < \dots < a_m\}.$$

For $\sigma = (a_1, \ldots, a_m) \in S_{k,m}$ we regard it as a map $\sigma : \mathbb{N} \to \mathbb{N}$ via

$$\sigma i = \begin{cases} a_i & \text{if } 1 \le i \le m \\ i & \text{otherwise} \end{cases}$$

Clearly $|S_{k,m}| = \binom{k}{m}$.

Theorem 5. Given some fixed $k, m \in \mathbb{N}$ with $m \leq k$, the generating function of

$$p(\mathcal{D}_{k,m},n) - p(\mathcal{D}_{k-1,m},n)$$

is given by

$$\sum_{\sigma \in S_{k-1,m-1}} \prod_{i=1}^{m-1} (x^k + x^{\sigma i}).$$

It is an immediate consequence that that generating function for $p(\mathcal{D}_{k,m}, n)$ is given by

$$\sum_{j=m}^{k} \sum_{\sigma \in S_{j-1,m-1}} \prod_{i=1}^{m} (x^{j} + x^{\sigma i}).$$

References

Hardy, G. H. & Wright, E. M. (1979), An Introduction to the Theory of Numbers, Oxford Science Publications, fifth edn, Oxford University Press.