XỬ LÝ ẢNH LÝ THUYẾT

- Câu 1.1: Mô hình mầu là gì? Liệt kê một vài mô hình mầu thông dụng?
- Câu 1.2: Mô hình màu CMY là gì? CMY khác RGB ở chỗ nào? <1>
- Câu 1.3: Tại sao ngươi ta phát triển nên hệ màu HSV và HSL? Nêu ý nghĩa từng chữ cái thể hiện một thành phần của HSV và HSL?
- Câu 1.4: Mô hình lưu trữ raster là gì? Mô hình raster khác mô hình vector ở điểm nào? Trong trường hợp nào thì dùng raster và trong trường hợp nào thì dùng vector?
- Câu 1.5: Tại sao kỹ thuật nửa cường độ (halftone) được dùng trong in ấn? và ý tưởng cơ bản của kỹ thuật nửa cường độ là gì? <3>
- Câu 1.6: Điểm ảnh đa cấp xám với chỉ mực mầu đen cần sử dụng kỹ thuật gì? Khuếch tin lỗi hỗ trợ được gì cho kỹ thuật này? Khuếch tán lỗi hơn gì tách ngưỡng thông thường? $\langle 4 \rangle$
- Câu 1.7: Khuếch tán lỗi là gì? Khuếch tán lỗi một chiều khác gì khuếch tán lỗi hai chiều? Khuếch tán lỗi hai chiều khắc phục được điểm yếu gì của khuếch tán lỗi một chiều?
- Câu 1.8: Với ảnh đa mức xám thì tăng giảm độ sáng của ảnh như thế nào? Chúng ta phải sử dụng toán tử loại nào đề thực hiện phép toán này?
- Câu 1.9: Cân bằng tần suất là gì? Tại sao phải cân bằng tần suất? (5)
- Câu 1.10: Biến đổi cửa sổ di chuyển hay còn gọi là biến đổi cuộn là biến đổi sử dụng toán từ gì? Ý tưởng cơ bản cần biến đổi này là gì?
- Câu 1.11: Mô hình nhiễu là gì? Tại sao phải sử dụng mô hình nhiễu. Viết công thức giai thích mô hình nhiễu rời rạc
- Câu 1.12: Biên là gì? Phát hiện trực tiếp là gì? Nêu một vài ví dụ về cách phát hiện biên trực tiếp? 67

XỬ LÝ ẢNH LÝ THUYẾT

- Câu 2.1: Phối màu cộng là gì? Phối màu trừ là gì? Trong trường hợp nào thì sử dụng phối màu cộng trong trường hợp nào thì sử dụng phối màu trừ?
- Câu 2.2: Mô hình màu CMY là gì? Tại sao sử dụng hệ màu CMY? Làm thế nào để chuyển từ hệ màu RGB sang hệ màu CMY? 〈ʔ〉
- Câu 2.3: Mô hình lưu trữ vector là gì? Mô hình vector khác mô hình cơ bản ở điểm nào? Nếu ảnh vector có nhiều ưu điểm tại sao không sử dụng vector mà vẫn phải sử dụng ảnh raster?
- Câu 2.4: Lọc trung vị khác với lọc trung bình khác với lọc trung bình k giá trị gần nhất như thế nào? Nên chọn từng phép lọc trong từng trường hợp như thế nào?
- Câu 2.5; Phát hiện biên bằng đạo hàm dựa trên nguyên lý gì? Ma trận (-1 1) có ý nghĩa gì?
- Câu 2.6: Phát hiện biên bằng đạo hàm dựa trên nguyên lý gì? Nêu ba loại ma trận nhân chập có thể tìm biên. Với mỗi ma trận hãy nêu nguyên lý và các bước tiếp theo nếu có để có biên rõ ràng (M)
- Câu 2.7: Canny có mấy bước, là những bước gì? Bước nào trong Canny là quan trọng nhất, tại sao?
- Câu 2.8: Phân vùng dùng thuật toán đối xứng nền là kỹ thuật gì? Dựa vào điều gì trong các bức ảnh đầu vào cho phép thuật toán trả về kết quả đúng nhất?
- Câu 2.9: Phân vùng sử dụng thuật toán tam giác là gi? Ý tưởng cơ bản của thuật toán này là gì? Trong trường hợp nào thì thuật toán này không nên sử dụng?
- Câu 2.10: Kỹ thuật tách cây tứ phân và hợp cũng như tách- hợp trong phân vùng dựa vào ý tưởng gì? Yếu tố gì đánh giá tính chính xác cũng như tính thống nhất của thuật toán?

XỬ LÝ ẢNH LÝ THUYẾT

•
Câu 2.11: Kỹ thuật K mean là kỹ thuật gì, ý tưởng cơ bản là gì? Yết tố gì có ảnh hưởng rất lớn tới hiệu quả của k trung bình?
Câu 2.12; Kỹ thuật K láng giềng là gì? K láng giềng thường được sư dụng để làm gì? Ý tưởng căn bản nhất của K láng giềng là gì? (16)
Câu 2.13: Mạng Hopfield là gì? Mạng Hopfield có cấu tạo như thế nào? Mô tả sơ bộ hoạt động của mạng Hopfield
Cân 2.14: Mạng Kohonen có tên gọi khác là gì? Tại sao chúng ta gọ mạng Kohonen như vậy? Ý tưởng cơ bản của mạng Kohonen là gì? Ở khía cạnh nào mạng Kohonen mô phỏng não người?
Câu 2.15: Mã hóa loạt dài RLC là gì? Trong trường họp nào mã hóa loạt dài sẽ tăng kích thước dữ liệu được mã hóá?
Câu 2.16: Biến đổi Cosin trong nén JPEG nhằm mục đích gì? Và bước không trong nén JPEG sẽ làm cho quá trình nén ảnh là không

(20)

bảo toàn?

•		
		•
		1
		Į.

PHẦN LÝ THUYẾT

Câu 1.1:

Một mô hình màu (hay hệ màu, không gian màu) là một hệ thống có quy tắc để tạo ra tất cả các màu sắc từ một nhóm nhỏ các màu cơ bản Một vài mô hình màu thông dụng:

- + RGB (red, green, blue) cho các màn hình màu và camera video màu
- + CMY (cyan, magenta, yellow) và CMYK (Cyan, magenta, yellow, black) cho in màu.
- + HSV (Hue, saturation, value) và HSL (hue, saturation, lightness)

Câu 1.2:

CMY là hệ màu trừ, sử dụng trong in ấn, sử dụng mực để hiển thị màu, màu là kết quả của ánh sáng bị phản xạ dựa trên việc trộn màu Cyan + Magenta + Yellow = Black

- Sự khác nhau:
 - CMY:
 - + 3 màu này là phần bù tương ứng của 3 màu gốc RGB
 - + Hệ màu này sử dụng phương pháp phối màu trừ thay vì phối màu công
 - + Ưu điểm: Biểu diễn được mọi màu trong phổ nhìn thấy
 - + Nhược điểm: Phức tạp vì cần phải nhớ mối quan hệ giữa 2 không gian
 - RGB (Red, Green, Blue)
 - + Dựa vào phương pháp phối màu cộng

- + Ưu điểm: đơn giản nên được sử dụng rộng rãi, đầy đủ các ứng dụng cho máy tính thường sử dụng cho màn hình máy tính vi tính
- + Nhược điểm: không thể biểu diễn mọi mầu trên phổ nhìn thấy

Câu 1.3:

- Vì dễ hình hình dung hơn và mô tả 1 cách chính xác hơn giá trị của màu
- Ý nghĩa:
 - + HSV: (H : Hue là độ màu, S : Saturation là độ bão hòa, V : Value là giá trị cường độ sáng)
 - + HSL (H : Hue là độ màu, S : Saturation là độ bão hòa, L : Lightness là độ sáng)

Câu 1.4:

Mô hình lưu trữ raster là sử dụng các mạng lưới các ô hình vuông (ma trận) để thể hiện các đối tượng của thế giới thực

Mô hình raster	Mô hình vector
vuông(ma trận) để thể hiện thế giới thực như: điểm (1 pixel),	-Lưu trữ cặp tọa độ của các đối tượng thể hiện các đối tượng như: Điểm (1 cặp tọa độ), đường (1 chuỗi các cặp tọa độ), vùng (1 chuỗi các cặp tọa độ và có thêm cặp tọa độ đầu và tọa độ cuối trùng nhau)

-Kích cỡ không nhỏ(phụ thuộc	-Không phụ thuộc vào kích cỡ,
kích cỡ)	zoom tùy ý
-Thuận lợi in ấn	- Thuận lợi lưu trữ và thiết kế

- Dùng raster trong các trường hợp biểu diễn bề mặt, nén ảnh BMP, TIF
- Dùng vector để mô tả vị trí và phạm vi của các đối tượng trong không gian, phổ biến trong đồ họa động

Câu 1.5:

Kỹ thuật nửa cường độ là một quá trình mô phỏng các sắc thái của màu xám bằng cách thay đổi kích thojớc của chấm đen nhỏ sắp xếp theo một mô hình chung.

Kỹ thuật Halftone được dửng trong in ấn vì: kỹ thuật halftone tiết kiệm hơn khi sử dụng dải màu mà vẫn cho kết quả như nhau. Vì mắt thường không thể phân biệt sự khác nhau giữa 2 điểm ảnh nếu đi xa.

Ý tưởng cơ bản:

- Kỹ thuật halftone lợi dụng nguyên lý thu nhận ảnh của vật ở xa của mắt. Lúc này mắt chúng ta không nhìn được các điểm ảnh 1 cách cụ thể mà chỉ thấy cường độ trung bình của vùng ảnh.
- Ánh được tạo bởi các điểm ảnh. Mỗi điểm ảnh là 1 hình vuông trắng bao quanh 1 chấm đen.
- Tùy vào kích thước của chấm đen và số lượng chấm đen mà vùng ảnh có màu trắng đen hoặc xám.

Câu 1.6:

Điểm ảnh đa cấp xám ta sử dụng kỹ thuật Halftone.

Khuếch tán lỗi giúp cho việc chuyển các điểm ảnh đa cấp xám về các điểm ảnh đen trắnb, từ đó ta có bức ảnh đen trắng có thể in được.

Khuếch tán lõi hơn tách ngưỡng thông thường ở chỉ: Khuếch tán lỗi để giảm thiểu lỗi do quá trình tách ngưỡng gây ra (vì mực chỉ in được đen trắng). Khi tách ngưỡng giá trị điểm ảnh bị làm tròn và mất đi, khuếch tán giữ lại một phần giá trị này để đảm bảo bức ảnh không bị khác đi quá nhiều.

Câu 1.7:

Khuếch tán lỗi là một dạng của kỹ thuật nửa cường độ được sử dụng đi chuyển ảnh mẫu liên tục sang dạng nửa cường độ đề vận chuyển và in ấn. Khuếch tán lỗi có xu hướng tăng cường các cạnh trong ảnh nên giúp ảnh dễ đọc hơn so với các kỹ thuật nửa cường độ khác.

Khuếch tán lỗi một chiều quét ảnh lần lượt từng dòng và từng điểm ảnh, phần dư sĩ bị bỏ đi khi hết dòng. Đối với khuếch tán lỗi hai chiều, phần dư sẽ có một phần bị khuếch tán xuống cả dòng dưới.

Khuếch tán lỗi một chiều thường để lại những đường thẳng dọc không mong muốn, khuếch tán lỗi hai chiều giúp giảm các lỗi đặc trung này.

Câu 1.8:

Với ảnh đa mức xám, ta tăng giảm độ sáng của ảnh bằng cách tăng/giảm một giá trị c tại mỗi điểm trong ảnh. Nếu gía trị thay đổi < 0 thì ta án nó bằng 0, nếu giá trị thay đổi > 255 thì ta gán nó bằng 255. Toán tử sử dụng: toán tử điểm (là những phép toán không phụ thuộc vị trí điểm ảnh)

Câu 1.9

Ảnh I gọi là cân bằng "lý tưởng" nếu với mọi mức xám g, g' thì ta có h(g) = h(g')

Trong đó h(g) là biểu đồ tần suất của mức xám g

Cân bằng tần suát là xác định hàm f: g => f(g) sao cho

Tại sao cần cân bằng tần suất:

- Đối với ảnh tối màu thì biểu đồ tập trung ở vùng xám thấp
- Đối với ảnh sáng thì biểu đồ tập trung ở vùng xám cao
- Đối với những ảnh có độ tương phản thấp thì biểu đồ tập trung ở vùng xám giữa
- Cân bằng tần suất giúp phân bố đều các mức xám

Câu 1.10:

16

- Ý tưởng:
 - + Cửa sổ di chuyển là công cụ đi áp dụng các phép toán 1 cách cục bộ, với đầu vào là các điểm lân cận trong phạm vi cửa sổ. Giá trị điểm ảnh kết quả chỉ phụ thuộc vào giá trị các điểm ảnh lân cận và phép toán được áp dụng.

 $- h^{\varepsilon}$

+ Cửa sổ di chuyển được dùng như 1 phép trung gian nhằm thực hiện nâng cao chất lượng ảnh hoặc áp dụng 1 thuật toán lên cả bức ảnh (lọc, nhân chập,...).

Câu 1.11:

- Mô hình nhiễu là mô hình biểu thị sự liên quan giữa ảnh bị nhiễu với ảnh gốc và thành phần nhiễu
- Vì từ mô hình nhiễu ta có thể khôi phục được ảnh gốc.

- Mô hình nhiễu rời rạc:

$$g'[m,n] = h[m,n] * g[m,n] + \eta[m,n]$$

g'[m, n]: ma trận bị nhiễu

h[m,n] * g[m,n] : ma trận gốc

 $\eta[m,n]$: thành phần nhiễu

Câu 1.12:

 Chưa có định nghĩa chính xác về biện, nhưng có thể hiểu là sự thay đổi đột ngột của mức xám. Tập hợp các điểm biên gọi là đường biên bao quanh đối tượng

- Phát hiện biên trực tiếp là làm nổi biên dựa vào sự biên thiên

của cấp xám, kết quả thu được là ảnh biên

- Ví dụ:

+ Nếu lấy đạo hàm bậc nhất của ảnh ta có phương pháp Gradient

$$\begin{cases} A = (-1 & 1) \\ B = {\binom{-1}{1}} \end{cases}$$

 \mathring{A} nh biên = $I \otimes A + I \otimes B$

+ Nếu lấy đạo hàm bậc 2 ta có kỹ thuật Laplace

$$H = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Ånh biên = I ⊗H

Câu 2.1:

Phối màu cộng là việc tạo nên các màu sắc bằng cách chồng vào nhau ánh sáng phát ra từ vài nguồn sáng. Hai tia cùng cường độ thuộc hai trong ba màu gốc nói trên chồng lên nhau sẽ tạo nên màu thứ cấp;

Đỏ + Lục = Vàng, Đỏ + Lam = Hồng sẫm; Lam + Lục = Xanh Lo

Ba tia sáng thuộc 3 màu gốc cùng cường độ chồng lên nhau sẽ tạo nên tạo nên màu trắng. Thay đổi cường độ ánh sáng của các nguồn sẽ tạo đủ gam màu của ba màu gốc

- Phối màu trừ là việc tạo nên các màu sắc bằng cách trộn màu như các loại sơn, thuốc nhuộm, mực, các chất màu tự nhiên...

Pha ba màu gốc theo phương pháp này gồm đỏ, vàng, lam, cho kết quả như sau:

 $\rm D\acute{o} + V\grave{a}ng = Da$ cam, $\rm D\acute{o} + Lam = T\acute{i}m$, $\rm Lam + V\grave{a}ng = Luc$, $\rm D\acute{o} + Lam + Luc = Den$

- Mô hình RGB dựa vào phương pháp phối màu cộng . Mô hình CMY dựa vào phương pháp phối màu trừ.

Câu 2.2:

15

Mô hình màu CMY:

- Hệ màu trừ
- Sử dụng trong in ấn
- Sử dụng mực để hiển thị màu
- Màu là kết quả của ánh sáng bị phản xạ

- Cyan + Mangenta+ Yellow = Black
- * Lý do để sử dụng hệ màu CMY:
- Nguyên lý làm việc: Hệ màu trừ hiển thị màu như là kết quả của ánh sáng bị hấp thụ (bị trừ) bởi mực in nên khi thêm vào càng nhiều mực in thì ánh sáng bị phản xạ (từ bề mặt trắng) sẽ được coi là màu trắng
- => Để nhìn thấy màu sắc của vật thể, chúng ta sử dụng hệ màu CMY Chuyển từ hệ màu RGB sang CMY

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Câu 2.3:

- Mô hình vector lưu trữ cặp tọa độ của các đối tượng, thể hiện các đối tượng như: Điểm (1 cặp tạo độ), đường(1 chuỗi các cặp tọa độ), vừng (1 chuỗi các cặp tọa độ và có thêm cặp tọa độ đầu và tọa độ cuối trùng nhau)

Sự khác nhau

Mô hình raster	Mô hình vector
vuông(ma trận) để thể hiện thế giới thực như: điểm (1 pixel),	-Lưu trữ cặp tọa độ của các đối tượng thể hiện các đối tượng như: Điểm (1 cặp tọa độ), đường (1 chuỗi các cặp tọa độ), vùng (1 chuỗi các cặp tọa độ và

-Kích cỡ không nhỏ(phụ thuộc kích cỡ)	có thêm cặp tọa độ đầuvà tọa độ cuối trùng nhau)
-Thuận lợi in ấn	-Không phụ thuộc vào kích cỡ, zoom tùy ý
	- Thuận lợi lưu trữ và thiết kế

- Anh vector có nhiều ưu điểm nhưng không sử dụng nhiều vì:
- + Bắt buộc phải sử dụng ảnh thật để có thể tính toán ra tỉ lệ vector rồi mới có thể tạo ra ảnh vector
 - + Việc tính toán các tỉ lệ vector là phức tạp

Câu 2.4:

- Phép lọc- trung vị là phép lọc cửa sổ di chuyển nhằm biến đối giá trị của điểm ảnh đang xét dựa vào phần tử trung vị trong số các điểm ánh lân cận của điểm đang xét (đã sắp xếp tăng dần) và một ngưỡng:
- Nếu độ lệch giữa điểm ảnh đang xét với điểm ánh trung vị vượt quá ngưỡng thì nó sẽ được gần bằng giá trị điểm ảnh trung vị.
- Nếu không thì giữ nguyên.

Như vậy phép lọc này sẽ biển đổi điểm ảnh dựa theo "số đông". Ví dụ nếu có nhiều điểm ảnh có giá trị thấp (chiếm vị trí trung vị) thì điểm, ảnh đang xét sẽ được gán về giá trị đó mặc dù nó cao.

=> Dùng trong trường hợp muốn quan tâm xem "phần lớn" các điểm ảnh xung quanh nó như thế nào.

- Phép lọc trung bình là phép lọc cửa sổ di chuyển, làm biến đổi giá trị của điểm ảnh đang xét dựa vào giá trị trung bình cộng của các điểm ảnh lân cận và một ngưỡng:
- Nếu độ lệch giữa điểm ảnh đang xét với giá trị trung bình cộng vượt quá ngưỡng thì nó sẽ được gán bằng trung bình cộng.
- Nếu không giữ nguyên.

Như vậy phép lọc này sẽ biến đổi điểm ảnh dựa vào việc "cào bằng". Điểm ảnh đang xét sẽ là trung bình của tất cả các điểm ảnh xung quanh nó.

- => Dùng trong trường hợp muốn quan tâm đến tất cả các điểm ảnh xung quanh (trung bình).
 - Phép lọc trung bình theo k giá trị gần nhất cũng tương tự như phép lọc trung bình nhưng thay vì so với trung bình cộng của tất cả các điểm ảnh lân cận thì nó lại so với trung bình cộng của k phần tử có giá tri gần nhất với nó.
 - + Nếu k lớn hơn kích thước cửa sổ thì nó sẽ là phép lọc trung bình.
 - + Nếu k = 1 thì ảnh không đổi.

Nên ảnh kết quả sẽ phụ thuộc vào k.

Như vậy phép lọc sẽ biến đổi điểm ảnh dựa theo việc có bao nhiều điểm ảnh khác có giá trị gần với nó.

=> Dùng trong trường hợp muốn quan tâm đến các điểm ảnh "cùng loại" (có giá trị gần nhất).

Câu 2.5;

2

- Quá trình biến đổi về giá trị các độ sáng của các điểm ảnh, tại điểm biên sẽ có sự biến đổi đột ngột về các mức xám. Dựa vào cực đại của đạo hàm, ta có các kĩ thuật đò biên cục bộ.
- Ý nghĩa ma trận (-1-1):
- Theo định nghĩa Gradient là một vecto có các thành phần biểu thị tốc độ thay đổi giá trị của điểm ảnh, ta có:

$$\begin{cases} \frac{\partial f(x,y)}{\partial x} = fx \approx \frac{f(x+dx,y) - f(x,y)}{dx} \\ \frac{\partial f(x,y)}{\partial y} = fy \approx \frac{f(x,y+dy) - f(x,y)}{dy} \end{cases}$$

Với dx = dy = 1(dx, dy là khoảng cách theo hương x,y) ta có:

$$\begin{cases} \frac{\partial f}{\partial x} = fx \approx f(x+1,y) - f(x,y) \\ \frac{\partial f}{\partial y} = fy \approx f(x,y+1) - f(x,y) \end{cases}$$

=> ma trận (-1 1) là ma trận nhân chập theo hướng x

Câu 2.6:

Quá trình biến đổi về giá trị các độ sáng của các điểm ảnh, tại điểm biên sẽ có sự biến đổi đột ngột về các mức xám. Dựa vào cực đại của đạo hàm, ta có các kĩ thuật dò biên cực bộ

Ba loại ma trận nhân chập có thể tìm biên là:

Kỹ thuật Prewit
 Nguyên lí: sử dụng 2 mặt nạ nhập chập xấp xỉ đạo hàm theo 2
 hướng x và y là

$$\mathbf{H}_{\mathbf{x}} = \begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix} \qquad \qquad \mathbf{H}_{\mathbf{x}} = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Các bước tính toán, với I là ảnh đầu vào:

- + Bước 1: Tính I ⊗Hx và I ⊗ Hy
- + Bước 2: Tính I ⊗Hx + I ⊗ Hy
 - Kỹ thuật Sobel

Nguyên lý: sử dụng 2 mặt nạ nhập chập xấp xỉ đạo hàm theo 2 hướng x và y

$$H_x = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} \qquad \qquad H_x = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

Các bước tính toán:

- + Bước 1: Tính I ⊗Hx và I ⊗ Hy
- + Bước 2: Tính I ⊗Hx + I ⊗ Hy
 - Kỹ thuật Frie Chen

Nguyên lý được thiết kế xấp xỉ đạo hàm Gradient rời rạc, mặt nạ xử lý có dạng:

$$\mathbf{H_x} = \begin{bmatrix} 1 & 0 & -1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 1 & 0 & -1 \end{bmatrix} \qquad \qquad \mathbf{H_x} = \begin{bmatrix} -1 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & \sqrt{2} & -1 \end{bmatrix}$$

Các bước tính toán:

+ Bước 1: : Tính I ⊗Hx và I ⊗ Hy

+ Bước 2: Tính I \otimes Hx + I \otimes Hy

Câu 2.7:

Canny có 5 bước, đó là:

- + Bước 1: làm tron ảnh(ma trận Gaussian)
- + Bước 2: Tính gradient bằng ma trận Prewitt
- + Bước 3: Tính gradient hướng tại mỗi điểm (i,j)
- + Bước 4: Loại bỏ những điểm không phải là cực đại để xóa bỏ những điểm không phải là biên
- + Bước 5: Phân ngưỡng để tìm biên

Câu 2.8:

Đối xứng nền là kỹ thuật dựa trên sự giả định là tồn tại phân biệt trong lược đồ nằm đối xứng nhau qua đỉnh có giá trị lớn nhất trong phần lược đồ thuộc về các điểm ảnh nền.

Thuật toán muốn lấy p% nền ra khỏi đối tượng, tuy nhiên khi lấy a lại chỉ có cách tính cả đối tượng => nếu đối tượng lớn thì p% sẽ bị sai số gây ảnh hưởng tới ngưỡng (ngưỡng quá sâu vào nền và đối tượng sau khi tách thì quá to). Nên ảnh đầu vào dựa vào các điều sau thì thuật toán cho KQ đúng nhất

- Phân phối nền là rất lớn so với phân phối đối tượng
- Cả phân phối nền và phân phối đối tượng đều đối xứng.

Câu 2.9:

- Tìm ranh giới giữa phân phối của nền và đối tượng dựa vào khoảng cách của lược đồ histogram tới đường thẳng nối điểm có số điểm ảnh lớn nhát và nhỏ nhất.
- Ý tưởng: Tìm ngưỡng b sao cho: kẻ một đường Δ từ đỉnh có số điển ảnh bằng max tới điểm có số điểm ảnh là min. Vị trí ngưỡng xám b là khoảng cách từ Δ đến H_b là max
- Vì thuật toán dựa vào giả định là chỉ có 1 đỉnh hiện rõ còn đinh, còn lại bị đuôi của đỉnh lớn che khuất (đối tượng rất nhỏ so với nền) -> không nên sử dụng thuật toán khi đỉnh nằm rất gần giữa hoặc có nhiều đỉnh.

Câu 2.10:

Các kỹ thuật tách cây tứ phân và hợp cũng như tách-hợp trang phân vùng dựa vào ý tưởng:

- Phân vùng ảnh dựa trên thuộc tính quan trọng nào đó của miền. Yếu tố đánh giá tính chính xác cũng như tính thẳng nhất của thuật toán:
 - Mỗi thuộc tính khi sử dụng thì có một tiêu chuẩn phân đoạn tương ứng (mức xám, màu sắc, kết cấu ...)
 - Mức độ hiệu quả thường phụ thuộc vào việc đánh giá độ thuần nhất, tháng thường là trung bình và độ lệch chuẩn.

Câu 2.11:

Kỹ thuật K-mean là một kỹ thuật phân cụm dữ liệu.

Ý tưởng: tìm- cách phân nhóm các đối tượng đã cho vào K cụm (K là số các cụm được xác định trước, K nguyên dương) sao cho tổng bình phương khoảng cách giữa các đối tượng đến tâm nhóm là nhỏ nhất

Thuật toán K-Means được mô tạ như sau

Thuật toán K-Means thực hiện qua các bước sau:

- Chọn ngẫu nhiên K tâm cho K cụm. Mỗi cụm được đại diện bằng các tâm của cụm
- 2. Tính khoảng cách giữa các đối tượng đến K tâm
- 3. Nhóm các đối tượng vào nhóm gần nhất

- 4. Xác định lại tâm mới cho các nhóm
- 5. Thực hiện lại bước 2 cho đến khi không có sự thay đổi nhóm nào của đối tượng

Uu nhược điểm: Thuật toán K – Means có ưu điểm là đơn giản, dễ hiểu và cài đặt. Tuy nhiên một số hạn chế của K -means là hiệu quả của thuật toán phụ thuốc vào việc chọn số nhóm K (phải xác định trước) và chi phí cho thực hiện vòng lặp tính toán khoảng cách lớn khi cụm số K và dữ liệu phân cụm lớn

Câu 2.12:

Kỹ thuật K láng giềng là kỹ thuật dùng để phân lớp các đối tượng.

Mục đích:

K láng giềng được sử dụng rất phổ biến trong lĩnh vực Data mining, K láng giềng là phương pháp để phân lớp các đối tượng dựa vào khoảng cách gần nhất giữa đối tượng cần xếp lớp (Query point) và tất cả các đối tượng trong Training Data.

Một đối tượng được phân lớp dựa vào k láng giềng của nó. K là số nguyên dương được xác định trước khi thực hiện thuật toán. Người ta thường dùng khaorng cách Euclidean để tính khoảng cách giữa các đối tượng.

Ý tưởng:

Trong hình dưới đây, training Data được mô tả bởi dấu (+) và dấu (-), đối tượng cần được xác định lớp cho nó (Query point) là hình tròn đỏ. Ý tưởng của thuật toán K láng giềng là làm thế nào đi ước lượng lớp của Query point dựa vào việc lựa chọn số K láng giềng gần nhất với nó.

Nói cách khách với k láng giềng thì chúng ta sẽ biết liệu Query point sẽ được phân vào lớp (+) hay lớp (-)

Ta thấy rằng:

- 1. Kết quả là + (Query Point được xếp vào lớp dấu +)
- 2. Không xác định lớp cho Query Point vì số láng giềng gần nhất với nó là 2 trong đó 1 là lớp + và 1 là lớp (không có lớp nào có số đối tượng nhiều hơn lớp kia)
- 5. kết quả là (Query Point được xếp vào lớp dấu vì trong 5 láng giềng gần nhất với nó thì có 3 đối tượng thuộc lớp nhiều hơn lớp + chỉ có 2 đối tượng)

Uu nhược điểm:

Thuật toán K-NN có ưu diễm là đơn giản, dễ hiểu, dễ cài đặt. Tuy nhiên kết quả bài toán phụ thuộc rất lớn vào việc chọn tham số K (số láng giềng gần nhất)

Câu 2.13:

Mạng Hopfield là mạng noron, ánh xạ dữ liệu tín hiệu vào sang tín hiệu ra theo kiểu tự kết hợp. Mạng Hopfield mô phỏng khả năng hồi tưởng của não người

Cấu tạo của mạng Hopfield:

- + Có một lớp ra có kích thước bằng kích thước tín hiệu vào, liên kết noron là đầy đủ
- + Yêu cầu tín hiệu vào có giá trị lưỡng cực -1 và 1

Hoạt động của mạng Hopfield:

- + Giả sử có p
 mẫu học tương ứng với các vector tín hiệu vào $\mathbf{X_s},\,\mathbf{s}=1...$ p
- + Định bộ trọng số W sao cho $X_s = f(X_s, W)$ với mọi s = 1 ...p
- + Ta xây dựng ma trận trọng số W như sau:

$$W_{ij} = \begin{cases} \sum_{s=1}^{p} x_{sj} x_{si} & i \neq j \\ 0, i = j \end{cases}$$

- + Giả sử đưa vào mạng vector tín hiệu X
- + Việc tính toán đầu ra Y cho tín hiệu X là quá trình lặp lại:
 - Đặt X₀ = X

- + W không thay đổi trong quá trình tính Y

Câu 2.14:

- Mạng Kohonen có tên gọi khác là bản đồ Kohonen hoặc bản đồ tự tổ chức. Chúng ta gọi như thế vì mạng Kohonên tập trung vào mối liên hệ có tính cấu trúc trong các vùng lân cận hoặc trong toàn thể không gian mẫu. Trong mạng Kohonen các vector tín hiệu vào gần nhau sẽ được ánh xa sang các noron trong mạng lân cận nhau.
- Ý tưởng cơ bản của mạng Kohonen là:
 - + Mạng Kohonen gần với mạng sinh học về cấu tạo lẫn cơ chế học.
 - + Sử dụng mạng noron có liên kết với nhau.

Khía cạnh của mạng Kohonen mô phỏng não người là:

- + Mạng Kohonen rất gần với mạng sinh học về cấu tạo lẫn cơ chế học.
- + Mạng Kohonen có một lớp kích hoạt là các noron được phân bố trong mặt phẳng hai nhiều kiểu lưới vuông hoặc lục giác.
- + Phân bố này làm cho mỗi nơron có cùng số nơron trong từng lớp láng giềng và các đầu vào tương tự nhau sẽ kích hoạt các noron gần nhau.
- + Các noron trên lớp kích hoạt chỉ nối với các lớp lân cận nên khi có tín hiệu đầu vào sẽ chỉ tạo ra kích hoạt địa phương.

Câu 2.15:

Là phương pháp phát hiện một loạt các bít lặp lại, thí dụ như một loạt các bít 0 nằm giữa hai bít 1, hay ngược lại, một loạt bít 1 nằm giữa hai bit 0. Phương pháp này chi có hiệu quả khi chiều dài dãy lặp lớn hớn một ngưỡng nào đó. Phương pháp RLC được sử dụng trong việc mã hóa lưu trữ các ảnh Bitmap theo dạng PCX, BMP. Nếu mã hóa các gía trị đó lớn hơn cả dữ liệu gốc thì sẽ làm tăng kích thước dữ liệu. VD: mã hóa 00000 thành 0x5 mà x5 lại mã hóa thành 1 byte ~ 8 bit => tăng từ 5 lên 9 bit

Câu 2.16:

Biến đổi Cosin nhằm chuyển ảnh tử miền không gian (spartill domain) sang miền tần số (frequency domain). Việc biến đổi này nhằm giúp việc tách và lọai bỏ những biến đổi không cần thiết cho mắt người dễ dàng hơn (Mắt người thường không tốt trong nhận biết thay đổi có tần số lớn nên ta có thể tách và loại những thay đổi này)

Trong các bước thì kể cả bước biến đổi Cosin cũng là bảo toàn (với điều kiện II không có sai số trong tính toán dấu châm động). Nhưng khi lượng từ hóa thì các giá trị tần số cao sẽ tiến tới $0 \Rightarrow D$ ữ liệu bị mất. Như vậy:

- + Trên lý thuyết có 1 bước không bảo toàn là Lượng tử hóa
- + Trên thực tế có 2 bước không bảo toàn là Lượng tử hòa và biến đổi Cosin

Câu 3.1: a, Tính biểu đồ tần suất h(g) cho bức ảnh I sau:

$$I = \begin{bmatrix} 1 & 2 & 1 & 3 & 2 & 1 \\ 4 & 4 & 3 & 2 & 4 & 0 \\ 6 & 9 & 2 & 3 & 2 & 1 \\ 6 & 2 & 0 & 5 & 3 & 0 \\ 3 & 4 & 0 & 5 & 1 & 5 \\ 5 & 6 & 8 & 9 & 3 & 6 \end{bmatrix}$$

b, h'(g) là biểu đồ tần suất của ảnh I' biến đổi từ ảnh I bằng hàm f(g) sau. Hãy tính h'(g)

$$f(g) = |g - 4|$$

Câu 3.2: a, Tính biểu đồ tần suất h(g) cho bức ảnh I sau:

$$I = \begin{bmatrix} 1 & 2 & 1 & 3 & 2 & 1 \\ 4 & 4 & 3 & 2 & 4 & 0 \\ 6 & 9 & 2 & 3 & 2 & 1 \\ 6 & 2 & 0 & 5 & 3 & 0 \\ 3 & 4 & 0 & 5 & 1 & 5 \\ 5 & 6 & 8 & 9 & 3 & 6 \end{bmatrix}$$

b, h'(g) là biểu đồ tần suất của ảnh I' biến đổi từ ảnh I bằng hàm f(g) sau. Hãy tính h'(g)

$$f(g) = |2g - 9|$$

Câu 3.3(c) a. Tính biểu đồ tần suất h(g) cho bức ảnh I sau: (2)

$$I = \begin{bmatrix} 1 & 2 & 1 & 3 & 2 & 1 \\ 4 & 4 & 3 & 2 & 4 & 0 \\ 6 & 9 & 2 & 3 & 2 & 1 \\ 6 & 2 & 0 & 5 & 3 & 0 \\ 3 & 4 & 0 & 5 & 1 & 5 \\ 5 & 6 & 8 & 9 & 3 & 6 \end{bmatrix}$$

b, Thực hiện làm trơn biểu đồ tần suất tính được ở trên với W = 3 và W = 5

Câu 3.4(C)a. Thực hiện cân bằng tần suất cho ảnh I, được biết ảnh gốc và ảnh kết quả cùng là ảnh cấp 6 cấp xám 44>

$$I = \begin{bmatrix} 3 & 1 & 4 & 4 & 2 & 3 \\ 3 & 2 & 2 & 0 & 5 & 1 \\ 1 & 2 & 3 & 1 & 0 & 1 \\ 4 & 1 & 0 & 2 & 4 & 4 \\ 3 & 1 & 0 & 1 & 0 & 1 \\ 2 & 1 & 3 & 2 & 1 & 3 \end{bmatrix}$$

b, Thế nào là cân bằng lý tưởng? Sau khi cân bằng của ảnh đã là cân bằng lý tưởng hay chưa?

Câu 3.5 (C): a. Thực hiện cân bằng tần suất cho ảnh I thành ảnh I', được biết ảnh I và I' cùng là ảnh 6 cấp xám 5

$$I = \begin{bmatrix} 3 & 4 & 1 & 1 & 4 & 3 \\ 3 & 4 & 4 & 5 & 0 & 4 \\ 4 & 4 & 3 & 4 & 5 & 4 \\ 1 & 4 & 5 & 4 & 0 & 2 \\ 3 & 4 & 5 & 4 & 5 & 4 \\ 2 & 4 & 3 & 4 & 2 & 3 \end{bmatrix}$$

b. Thế nào là ảnh cân bằng lý tưởng? Sau khi cân bằng thì ảnh đã là cân bằng lý tưởng chưa?

Câu 3.6 (B) a. Thực hiện khuếch tán lỗi một chiều với ảnh I sử dụng ngưỡng 127, được biết ảnh này là ảnh 256 mức xám với mức nhỏ nhất là 0 và lớn nhất là 255

$$I = \begin{bmatrix} 1 & 23 & 156 & 22 & 45 \\ 133 & 13 & 12 & 12 & 212 \\ 12 & 232 & 127 & 32 & 21 \end{bmatrix}$$

b, Kỹ thuật khuếch tán lỗi được sử dụng để làm gì, ảnh thu được sau khuếch tán lỗi hơn gì ảnh tách ngưỡng thông thường?

Câu 3.7(B): a. Thực hiện khuếch tán lỗi một chiều với ảnh I sử dụng ngưỡng 127, được biết ảnh này là ảnh 256 mức xám với mức nhỏ nhất là 0 và lớn nhất là 255

$$I = \begin{bmatrix} 11 & 23 & 156 & 2 & 45 \\ 12 & 133 & 32 & 12 & 112 \\ 12 & 232 & 127 & 32 & 128 \end{bmatrix}$$

b, Kỹ thuật khuếch tán lỗi được sử dụng để làm gì, ảnh thu được sau khuếch tán lỗi hơn gì ảnh tách ngưỡng thông thường?

Câu 3.8: (D) Thực hiện mã hóa sau bằng thuật toán Huffman. Được biết ảnh được biết ảnh được chia làm các khối kích thước 2x2 để làm đơn vị mã hóa (Mã khối này sẽ như là một chữ cái của bức ảnh)

Câu 3.9(D) Thực hiện mã hóa sau bằng thuật toán Huffman. Được biết ảnh được biết ảnh được chia làm các khối kích thước 2x2 để làm đơn vị mã hóa (Mã khối này sẽ như là một chữ cái của bức ảnh)

I = $\overline{1}$ Õ ō 1 | 1

Câu 3.10: Thực hiện phép co và dãn hình X với một phần tử cấu trúc B sau để được hai hình X1 và X2

$$X = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$V\acute{o}i B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$C\hat{a}u \ 3 \ 11(D) \text{ Thurc hiện phép co và dãn hình X với một 1}$$

Câu 3.11(D) Thực hiện phép co và dãn hình X với một phần tử cấu trúc B sau để được hai hình X_1 va X_2 $\langle 12 \rangle$

$$X = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} v \acute{o} i B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Câu 4.1: Cho ảnh I như sau:

a, Thực hiện nhân chập ảnh I với ma trận Hx và Hy rồi cộng với nhau để được ảnh I_1

<13)

$$H_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad \text{và } H_{y} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

b, Thực hiện nhân chập ảnh I ở trên với H_z dưới đây để được I_2 :

$$H_{\mathbf{z}} = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Ånh I_1 , I_2 đã là ảnh biên chưa? Cần phải làm thêm những gì để có ảnh biên? (nên sử dụng kết quả trên để minh họa)

a, Thực hiện nhân chập ảnh I với ma trận Hx và Hy rồi cộng với nhau để được ảnh I_1

$$H_{x} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \qquad \text{và } H_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

b, Thực hiện nhân chập ảnh I ở trên với H_z dưới đây để được I_2 :

$$H_z = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

c, Ảnh I_1 , I_2 đã là ảnh biên chưa? Cần phải làm thêm những gì để có ảnh biên? (nên sử dụng kết quả trên để minh họa)

Câu 4.3(D) Cho ảnh I_1 và I_2 cùng H_x và H_y như sau: $\langle 15 \rangle$

a. Thực hiện nhân chập ảnh
$$I_1$$
 với các ma trận H_x và H_y rồi cộng với nhau để được ảnh ${I_1}^\prime$

b, Thực hiện nhân chập ảnh I_2 với các ma trận H_x và H_y rồi cộng với nhau để được ảnh $I_2{}'$

c, Ånh I_1' , I_2' khác gì nhau?

Câu 4.
$$\mathbf{q}(D)$$
 Cho ảnh I_1 và I_2 cùng H_x và H_y như sau:

$$H_{x} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \qquad \text{và } H_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

- a. Thực hiện nhân chập ảnh l_1 với các ma trận H_x và H_y rồi cộng với nhau để được ảnh I_1'
- b, Thực hiện nhân chập ảnh I_2 với các ma trận H_x và H_y rồi cộng với nhau để được ảnh ${I_2}^\prime$
- c, Ånh I'_1 , I_2' khác gì nhau?
- Câu 4.5: a Sử dụng thuật toán tìm ngưỡng tự động để tách ngưỡng ảnh I, được biết ảnh có 10 mức xám <197
- b. Có lúc nào chúng ta có thể tìm được nhiều ngưỡng không? Trong trường hợp như vậy thì ta nên xử lý như thế nào?

à

$$I = \begin{bmatrix} 1 & 4 & 1 & 1 & 2 & 3 & 2 & 3 \\ 3 & 2 & 3 & 2 & 5 & 2 & 6 & 2 \\ 2 & 3 & 8 & 2 & 3 & 2 & 5 & 6 \\ 4 & 5 & 2 & 4 & 2 & 9 & 1 & 4 \\ 2 & 4 & 3 & 2 & 0 & 1 & 2 & 1 \\ 3 & 5 & 7 & 1 & 2 & 4 & 5 & 6 \end{bmatrix}$$

Câu 4.6(C): a.Sử dụng thuật toán tìm ngưỡng tự động để tách ngưỡng ảnh I, được biết ảnh có 10 mức xám $\langle 2 \rangle$ b. Có lúc nào chúng ta có thể tìm được nhiều ngưỡng không? Trong trường hợp như vậy thì ta nên xử lý như thế nào?

$$I = \begin{bmatrix} 1 & 4 & 1 & 1 & 2 & 3 & 2 & 3 \\ 3 & 2 & 3 & 2 & 5 & 2 & 6 & 2 \\ 2 & 1 & 8 & 2 & 3 & 2 & 5 & 6 \\ 2 & 5 & 2 & 4 & 2 & 9 & 1 & 4 \\ 2 & 2 & 3 & 2 & 0 & 1 & 2 & 1 \\ 1 & 5 & 7 & 1 & 2 & 4 & 5 & 6 \end{bmatrix}$$

Câu 4.7: a, Thực hiện tìm ngưỡng tự động với thuật toán đằng điệu cho bức ảnh I có biểu đồ tần suất sau: < 237

g	0	1	2	3	4	5	6	7	8	9
h(g)	27	45	33	22	22	36	45	34	23	13

Mô tả từng bước cho đến khi tìm được ngưỡng mong muốn. Được biết ảnh có 10 mức xám

b.thực hiện tìm ngưỡng tự động với thuật toán đối xứng nền cho bức ảnh I' có biểu đồ tần suất sau:

0	n	1 1	2	3	4	5	6	/	8	9
5	١	+	-	-					ì	·!
	<u> </u>	L	L		L		<u> </u>			

	$h(\sigma)$	2	2	1	T			·				
	**(6)	_	3	4	15	ļ. /	8	12	47	10	2	
1		_,									- 1	
į	Piraa	hià+ dia	3 al. (1.		λ	7					1	

Được biết độ chính xác cần tính là 88%

Với hai biểu đồ tần suất như trên thì việc chọn phương pháp đã đúng chưa? Nếu được chọn lại thì bạn chọn như thế nào, tại sao?

Câu 4.8:a, Thực hiện tìm ngưỡng tự động với thuật toán đằng điệu cho bức ảnh I có biểu đồ tần suất sau:

a		1	1	T				 _		
6	0	1	2	3	4	5	6	7	8	9
h/~\	20:	- -	 	├	├				-	-
h(g)	20	40	30	50	70	60	120	120	100	20
<u></u>	/[â tả	1	L	1 16					100	20

Mô tả từng bước cho đến khi tìm được ngưỡng mong muốn. Được biết ảnh có 10 mức xám

b.thực hiện tìm ngưỡng tự động với thuật toán đối xứng nền cho bức ảnh I' có biểu đồ tần suất sau:

g	0	1	2	3	4	5	6	7	8	9
h(g)	39	45	53	72	40	112	25	34	23	13
	Juran	: Á4 +A	-1-71	 _		<u></u>		Ĺ		

Được biết độ chính xác cần tính là 88%

Với hai biểu đồ tần suất như trên thì việc chọn phương pháp đã đúng chưa? Nếu được chọn lại thì bạn chọn như thế nào, tại sao?

Câu 4.9D: Thực hiện mã hóa ảnh sau bằng kỹ thuật LZW. Được biết ảnh được chia làm các khối kích thước 1x2 để làm đơn vị mã hóa. Và từ điển gốc bao gồm 4 đơn vị mã hóa sau 00, 01, 10, 11 tương đương với giá trị từ 0 đến 2, từ điển sẽ được xây dựng tiếp theo từ giá trị 4. Bức ảnh sẽ được đọc từ trái qua phải và từ trên xuống dưới.

a. Thực hiện mã hóa và giải mã ảnh trên với LWZ. Coi từ điển là đủ lớn để không thiếu chỗ

b. Ý tưởng cơ bản của mã hóa LZW là ở đâu? LZW có vấn đề và có cách nào để giải quyết nó không?

$$I = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

BÀI TẬP

Câu 3.1:

a, Biểu đồ tần suất h(g) cho ảnh I:

g	0	1	2	3	4	5	6	8	9
h(g)	4	5	6	6	4	4	4	1	2
					L				l i

$$h(q=0) = h(g=4) = 4$$

$$h(q=1) = h(g=3) + h(g=5) = 10$$

$$h(q=2) = h(g=2) + h(g=6) = 10$$

$$h(q=3) = h(g=1) = 5$$

$$h(q=4) = h(g=0) + h(g=8) = 5$$

$$h(q=5) = h(g=9) = 2$$

q	0	1	2	3	4	5
h'(g)	4	10	10	5	5	2

Câu 3.2:

a,

h(g) 4 5 6 6 4 4 4 1 2	g	0	1	2	3	4	5	6	8	9
	h(g)	4	5	6	6	4	4	4	1	2

$$f(0) = 9$$
 $f(1) = 7$ $f(2) = 5$ $f(3) = 3$ $f(4) = 1$ $f(5) = 1$

$$f(8) = 7 f(9) = 9$$

$$h'(g = 1) = h(g = 4) + h(g = 5) = 8$$

$$h'(g = 3) = h(g = 3) + h(g = 6) = 10$$

$$h'(g = 5) = h(g = 2) = 6$$

$$h'(g = 7) = h(g = 1) + h(g = 8) = 6$$

$$h'(g = 9) = h(g = 0) + h(g = 9) = 6$$

g	1	3	5	7	9
h'(g)	g) 8	10	6	6	6

Câu 3.3: a, Biểu đồ tần suất h(g) cho bức ảnh I là:

g	0	1	2	3	4	5	6	8	9
h(g)	4	5	6	6	4	4	4	1	2

b, Ta có: hsmooth(g) =
$$\frac{1}{W} \sum_{W=-\frac{(W-1)}{2}}^{\frac{W-1}{2}} h(g-W)$$

$$V \acute{o} i W = 3$$

$$hsmooth(0) = \frac{1}{3}\sum_{-1}^{1}h(0-w) = \frac{1}{3}[h(-1) + h(0) + h(1)] = 3$$

hsmooth(1) =
$$\frac{1}{3}$$
[h(0) + h(1) + h(2)] = 5

hsmooth(2) =
$$\frac{1}{3}$$
[h(1) + h(2) + h(3)] = 6

$$hsmooth(3) = \frac{1}{3}[h(2) + h(3) + h(4)] = 5$$

hsmooth(4) =
$$\frac{1}{3}$$
[h(3) + h(4) + h(5)] = 5

hsmooth(5) =
$$\frac{1}{3}$$
[h(4) + h(5) + h(6)] = 4
hsmooth(6) = $\frac{1}{3}$ [h(5) + h(6) + h(7)] = 3
hsmooth(8) = $\frac{1}{3}$ [h(7) + h(8) + h(9)] = 1
hsmooth(9) = $\frac{1}{3}$ [h(8) + h(9) + h(10)] = 1

g	0	1	2	3	4	5	6	8	9
hsmooth(g)	3	5	6	5	5	4	3	1	1

$$V \acute{o} i W = 5$$

hsmooth(0) =
$$\frac{1}{5}\sum_{-2}^{2}h(0-w) = \frac{1}{5}[h(-2) + h(-1) + h(0) + h(1) + h(2)] = 3$$

hsmooth(0) =
$$\frac{1}{5}$$
[h(-1) + h(0) + h(1) + h(2) + h(3)] = 4

hsmooth(0) =
$$\frac{1}{5}$$
[h(0) + h(1) + h(2) + h(3) + h(4)] = 5

hsmooth(0) =
$$\frac{1}{5}$$
[h(1) + h(2) + h(3) + h(4) + h(5)] = 5

hsmooth(0) =
$$\frac{1}{5}$$
[h(2) + h(3) + h(4) + h(5) + h(6)] = 5

hsmooth(0) =
$$\frac{1}{5}$$
[h(3) + h(4) + h(5) + h(6) + h(7)] = 4

hsmooth(0) =
$$\frac{1}{5}$$
[h(4) + h(5) + h(6) + h(7) + h(8)] = 3

hsmooth(0) =
$$\frac{1}{5}$$
[h(6) + h(7) + h(8) + h(9) + h(10)] = 1

hsmooth(0) =
$$\frac{1}{5}$$
[h(7) + h(8) + h(9) + h(10) + h(11)] = 1

hsmooth(g) 3 4 5 5 5 4 3 1 1	g	0	1	2	3	4	5	6	8	9
	hsmooth(g)	3	4	5	5	5	4	3	1	1

Câu 3.4

Số điểm ảnh TB của mỗi mức xám của ảnh cân bằng là:

$$TB = \frac{6.6}{6} = 6$$

Số điểm ảnh có mức xám << = g là:

$$t(0) = 5$$

$$t(1) = \sum_{i=0}^{1} h(0) + h(1) = 16$$

$$t(2) = \sum_{i=0}^{2} h(0) + h(1) + h(2) = 23$$

$$t(3) = \sum_{i=0}^{3} h(0) + h(1) + h(2) + h(3) = 30$$

$$t(4) = \sum_{i=0}^{4} h(0) + h(1) + h(2) + h(3) + h(4) = 35$$

$$t(5) = \sum_{i=0}^{5} h(0) + h(1) + h(2) + h(3) + h(4) + h(5) = 36$$

$$f(0) = \max\{0, \text{ round } (\frac{5}{6}) - 1\} = 0$$

$$f(1) = \max\{0, \text{ round } (\frac{16}{6}) - 1\} = 2$$

$$f(2) = \max\{0, \text{ round } (\frac{23}{6}) - 1\} = 3$$

$$f(3) = \max\{0, \text{ round } (\frac{30}{6}) - 1\} = 4$$

$$f(4) = \max\{0, \text{ round } (\frac{35}{6}) - 1\} = 5$$

$$f(5) = \max\{0, \text{ round } (\frac{36}{6}) - 1\} = 5$$

$$I_{kq} = \begin{bmatrix} 4 & 2 & 5 & 5 & 3 & 4 \\ 4 & 3 & 3 & 0 & 5 & 2 \\ 2 & 3 & 4 & 2 & 0 & 2 \\ 5 & 2 & 0 & 3 & 5 & 5 \\ 4 & 2 & 0 & 2 & 0 & 2 \\ 3 & 2 & 4 & 3 & 2 & 4 \end{bmatrix}$$

b, - Ảnh I được gọi là cân bằng lý tưởng nếu mọi mức xám g, g' ta có h(g) = h(g')

Sau khi cân bằng tầ suất:

g	0	2	3	4	5
h'(g)	5	11	7	7	6

Để thấy h'(0) \neq h'(2) => Ảnh I_{kq} không là cân bằng lý tưởng Câu 3.5

a,

g	0	1	2	3	4	5
h(g)	2	3	3	7	16	5

- Số điểm ảnh trung bình của mỗi mức xám khi cân bằng là: $TB = \frac{6*6}{6} = 6$
- Số điểm ảnh có mức xám $\leq g$ là: $t(g) = \sum_{i=0}^g h(i)$

$$t(0) = h(0) = 2$$

$$t(1) = h(0) + h(1) = 5$$

$$t(2) = h(0) + h(1) + h(2) = 8$$

$$t(3) = h(0) + h(1) + h(2) + h(3) = 15$$

$$t(4) = h(0) + h(1) + h(2) + h(3) + h(4) = 31$$

$$t(5) = h(0) + h(1) + h(2) + h(3) + h(4) + h(5) = 36$$

$$f(g) = \max\{0, round\left(\frac{t(g)}{TB}\right) - 1\}$$

$$f(0) = \max\{0, round\left(\frac{2}{6}\right) - 1\}$$

$$f(1) = \max\{0, round\left(\frac{5}{6}\right) - 1\}$$

$$f(2) = \max\{0, round\left(\frac{8}{6}\right) - 1\}$$

$$f(3) = \max\{0, round\left(\frac{15}{6}\right) - 1\}$$

$$f(4) = \max\{0, round\left(\frac{31}{6}\right) - 1\}$$

$$f(5) = \max\{0, round\left(\frac{36}{6}\right) - 1\}$$

$$= I_{kq} = \begin{bmatrix} 2 & 4 & 0 & 0 & 4 & 2\\ 2 & 4 & 4 & 5 & 0 & 4\\ 4 & 4 & 2 & 4 & 5 & 4\\ 0 & 4 & 5 & 4 & 0 & 0\\ 2 & 4 & 5 & 4 & 5 & 4 \end{bmatrix}$$

b. Ảnh I được gọi là cân bằng lý tưởng nếu mọi mức xám g, g' ta có h(g) = h(g')

Sau khi cân bằng tần suất:

544 1111	U			
g	0	2	4	5
h'(g)	8	7	16	5

Dễ thấy h'(0) $\neq h'(2) =>$ Ảnh I_{kq} không là cân bằng lý tưởng

<u>Câu 3.6 (B)</u>

a,
$$\theta = 127$$
, $r_k = [0, 255]$
 $u_{11} = I_{11} = 1 < \theta = 127 => b_{11} = 0$, $e_{11} = b_{11} - u_{11} = -1$

$$u_{12} = I_{12} - e_{11} = 24 < \theta = 127 => b_{12} = 0, e_{12} = b_{12} - u_{12} = -24$$

Turong tự, $b_{13} = 255$, $b_{14} = 0$, $b_{15} = 0$

$$u_{21} = I_{21} = 133 > \theta = 127 => b_{21} = 255, e_{21} = b_{21} - u_{21} = 122$$

$$u_{22} = I_{22} - e_{21} = -109 < \theta = 127 => b_{22} = 0, e_{22} = b_{22} - u_{22} = 109$$

Turong tự,
$$b_{23} = 0$$
, $b_{24} = 0$, $b_{25} = 255$

$$u_{31} = I_{31} = 12 < \theta = 127 => b_{31} = 0, e_{31} = b_{31} - u_{31} = -12$$

$$u_{32} = I_{32} - e_{31} = 234 < \theta = 127 => b_{32} = 0, e_{32} = b_{32} - u_{32} = 21$$

Turong tu,
$$b_{33} = 0$$
, $b_{34} = 255$, $b_{35} = 0$

$$I_{kq} = \begin{bmatrix} 0 & 0 & 255 & 0 & 0 \\ 255 & 0 & 0 & 0 & 255 \\ 0 & 255 & 0 & 255 & 0 \end{bmatrix}$$

- b, Khuếch tán lỗi cho phép giảm thiểu mức độ mất cho tiết của ảnh khi tách ngưỡng bằng cách phân tán lỗi do lượng tử hóa ra các điểm xung quanh (bên phải và bên dưới pixel hiện thời)
 - Ảnh thu được sau khuếch tán lỗi hơn ảnh tách ngưỡng thông thường: tổng giá trị điểm ảnh của một vùng nhỏ được giữ tương đối gần với giá trị trên ảnh gốc.

Câu 3.7(B):

a,
$$\theta = 127$$
, $r_k = [0, 255]$

$$u_{11} = I_{11} = 11 < \theta = 127 => b_{11} = 0, e_{11} = b_{11} - u_{11} = -11$$

$$u_{12} = I_{12} - e_{11} = 34 < \theta = 127 => b_{12} = 0, e_{12} = b_{12} - u_{12} = -34$$

Turong tự,
$$b_{13}=255, b_{14}=0, b_{15}=0$$

$$u_{21}=I_{21}=12>\theta=127=>b_{21}=0, e_{21}=b_{21}-u_{21}=-12$$

$$u_{22}=I_{22}-e_{21}=145>\theta=127=>b_{22}=255, e_{22}=b_{22}-u_{22}=110$$
 Tương tự, $b_{23}=0, b_{24}=0, b_{25}=0$

Turing
$$t\psi$$
, $b_{23} = 0$, $b_{24} = 0$, $b_{25} = 0$
 $u_{31} = I_{31} = 12 < \theta = 127 => b_{31} = 0$, $e_{31} = b_{31} - u_{31} = -12$

$$u_{32} = I_{32} - e_{31} = 244 < \theta = 127 => b_{32} = 0, e_{32} = b_{32} - u_{32} = 11$$

Turong tự, $b_{33} = 0$, $b_{34} = 255$, $b_{35} = 0$

$$I_{kq} = \begin{bmatrix} 0 & 0 & 255 & 0 & 0 \\ 0 & 255 & 0 & 0 & 0 \\ 0 & 255 & 0 & 255 & 0 \end{bmatrix}$$

b, Khuếch tán lỗi cho phép giảm thiểu mức độ mất cho tiết của ảnh khi tách ngưỡng bằng cách phân tán lỗi do lượng tử hóa ra các điểm xung quanh (bên phải và bên dưới pixel hiện thời)

 - Ảnh thu được sau khuếch tán lỗi hơn ảnh tách ngưỡng thông thường: tổng giá trị điểm ảnh của một vùng nhỏ được giữ tương đối gần với giá trị trên ảnh gốc.

Câu 3.8:

Bảng tuần suất:

Ký tự	A	В	С	D	Е	F	G	Н
n	7	5	5	3	2	2	3	3
p	$\frac{7}{30}$	$\frac{5}{30}$	$\frac{5}{30}$	$\frac{3}{30}$	$\frac{2}{30}$	$\frac{2}{30}$	$\frac{3}{30}$	$\frac{3}{30}$

Tiến hành mã hóa Huffman B 5/30 3/30 7/30 A: 00 B: 010 C: 011 D: 100 E: 1010 13/30 F: 1011 G: 110 H: 111 4

+ Số bit trước khi mã hóa:
$$N_1 = 4 * 10 * 3 = 120 bit$$

+ Số bit sau khi mã hóa:
$$N_2 = 2 * 7 + 3 * (5 + 5 + 3 + 3 + 3) + 4 * (2 + 3) = 97.1 \text{ for } 1 = 12.2 \text{ for } 1 = 12.$$

$$4*(2+2) = 87$$
 bit

+ Tỷ lệ nén:
$$\frac{N_1}{N_2} = \frac{120}{87} = 1.38$$

Câu 3.9

$$\begin{array}{l} \text{Dăt A} = \frac{1}{1} \quad \frac{1}{1}; \ B = \frac{1}{0} \quad \frac{0}{1}; \ C = \frac{1}{1} \quad \frac{1}{0}; \ D = \frac{1}{1} \quad \frac{0}{0}; \ E = \frac{0}{0} \quad \frac{1}{1}; \ F = \\ \frac{1}{0} \quad \frac{1}{0}; \ G = \frac{0}{1} \quad \frac{0}{1}; \ H = \frac{0}{0} \quad 0 \\ \Rightarrow I = \begin{bmatrix} A & B & A & A & F & D & A & C & D & E \\ B & B & C & F & D & E & C & G & A & H \\ F & A & A & C & A & B & G & B & H & A \end{bmatrix}$$

Bảng tuần suất:

Ký tự	A	В	C ·	D	E	F	G	Н
n	9	5	4	3	2	3	2	2
p	9 30	5 30	$\frac{4}{30}$	$\frac{3}{30}$	$\frac{2}{30}$	$\frac{3}{30}$	$\frac{2}{30}$	$\frac{2}{30}$

+ Số bit trước khi mã hóa: $N_1 = 4 * 10 * 3 = 120 \ bit$

+ Số bit sau khi mã hóa:
$$N_2 = 2 * (9 + 5) + 3 * (4 + 3) + 4 * (2 + 3 + 2 + 2) = 85 bit$$

+ Tỷ lệ nén:
$$\frac{N_1}{N_2} = \frac{120}{85} = 1.4$$

Câu 3.10:

+ Phép co: Phép co ảnh f bởi SE s được biểu diễn bởi phép toán f s. Giả sử SE s đang ở vị trí (x,y). Pixel mới sau khi thực hiện phép toán có giá trị như sau:

$$g(x,y) = \begin{cases} 1 & \text{if s fits f} \\ 0 & \text{otherwise} \end{cases}$$

vì vậy =>

Phép giãn: Phép giãn ảnh f bởi cấu trúc s được biểu diễn bởi phép toán f + s. giả sử cấu trúc s đang ở vị trí (x,y) của ảnh gốc. Pixel mới sau khi thực hiện phép giãn có giá trị như sau:

$$g(x,y) = \begin{cases} 1 & \text{if s hits f} \\ 0 & \text{otherwise} \end{cases}$$

Câu 3.11(D)

Phép co $X \ominus B$

$$X_{1}(x,y) = \begin{cases} 1 \text{ n\'eu } B \text{ fits } X \\ 0 \text{ n\'eu } ng \text{w\'oc } lai \end{cases} \quad X_{2}(x,y) = \begin{cases} 1 \text{ n\'eu } B \text{ fits } X \\ 0 \text{ n\'eu } ng \text{w\'oc } lai \end{cases}$$

Phép giãn $X \oplus B$

<u>Câu 4.1</u>

Nhân chập I với H_x và H_y

$$I \times H_{x} = \begin{bmatrix} 4 & 0 & 0 & 0 & 0 & 0 & -4 \\ 6 & 13 & 13 & 0 & -13 & -13 & -13 \\ 6 & 24 & 23 & 3 & -23 & -27 & -6 \\ 6 & 37 & 36 & 3 & -36 & -40 & -6 \\ 6 & 24 & 23 & 3 & -23 & -27 & -6 \\ 6 & 13 & 13 & 0 & -13 & -13 & -6 \\ 4 & 0 & 0 & 0 & 0 & 0 & -4 \end{bmatrix}$$

$$I \times H_y = \begin{bmatrix} 4 & 6 & 6 & 6 & 6 & 6 & 4 \\ 0 & 13 & 26 & 39 & 26 & 13 & 0 \\ 0 & 11 & 21 & 35 & 24 & 14 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -11 & -21 & -35 & -24 & -14 & 0 \\ 0 & -13 & -26 & -39 & -26 & -13 & 0 \\ 4 & -6 & -6 & -6 & -6 & -6 & 4 \end{bmatrix}$$

$$I \times H_y = \begin{bmatrix} 6 & 13 & 13 & 0 & -13 & -13 & -6 \\ 4 & 0 & 0 & 0 & 0 & 0 & -4 \end{bmatrix}$$

$$I \times H_y = \begin{bmatrix} 4 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\ 0 & 13 & 26 & 39 & 26 & 13 & 0 \\ 0 & 11 & 21 & 35 & 24 & 14 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -11 & -21 & -35 & -24 & -14 & 0 \\ 0 & -13 & -26 & -39 & -26 & -13 & 0 \\ 4 & -6 & -6 & -6 & -6 & -6 & 4 \end{bmatrix}$$

$$II = I \times H_x + I \times H_y = \begin{bmatrix} 8 & 6 & 6 & 6 & 6 & 6 & 0 \\ 6 & 26 & 39 & 26 & 13 & 0 & -6 \\ 6 & 35 & 44 & 38 & 1 & -13 & -6 \\ 6 & 37 & 36 & 3 & -36 & -40 & -6 \\ 6 & 37 & 36 & 3 & -36 & -40 & -6 \\ 6 & 0 & -13 & -39 & -39 & -26 & -6 \\ 0 & -6 & -6 & -6 & -6 & -6 & -6 & -8 \end{bmatrix}$$
a. Nhân chập ảnh I với H_z

a. Nhân chập ảnh I với Hz

$$I2 = I \times H_z = \begin{bmatrix} 10 & 6 & 6 & 6 & 6 & 6 & 10 \\ 6 & -13 & -26 & -39 & -26 & -13 & 6 \\ 6 & -24 & 70 & 53 & 67 & -27 & 6 \\ 6 & -37 & 56 & -23 & 80 & -40 & 6 \\ 6 & -24 & 70 & 53 & 67 & -27 & 6 \\ 6 & -13 & -26 & -39 & -26 & -13 & 6 \\ 10 & 6 & 6 & 6 & 6 & 6 & 10 \end{bmatrix}$$

Câu 4.2(D)

a, Với
$$I(11) = 2 \Rightarrow I_x(11) = 1.0 + 0.0 + (-1).0 + 2.0 + 0.2 + (-2).2 + 1.0 + 0.2 + (-1).2 = -6$$

Turong tự có
$$I_x = \begin{bmatrix} -6 & 0 & 0 & 0 & 0 & 6 \\ -8 & -13 & -13 & 0 & 13 & 13 & 8 \\ -8 & -37 & -36 & -3 & 36 & 40 & 8 \\ -8 & -48 & -46 & -6 & 46 & 54 & 8 \\ -8 & -37 & -36 & -3 & 36 & 40 & 8 \\ -8 & -13 & -13 & 0 & 13 & 13 & 8 \\ -6 & 0 & 0 & 0 & 0 & 0 & 6 \end{bmatrix}$$

Với
$$I(11) = 2 \Rightarrow I_y(11) = 1.0 + 2.0 + 1.0 + 0.0 + 0.2 + (-1).0 + (-2).2 + (-1).2 = -6$$

Turong tur có
$$I_y = \begin{bmatrix} -6 & -8 & -8 & -8 & -8 & -8 & -6 \\ 0 & -13 & -39 & -52 & -39 & -13 & 0 \\ 0 & -11 & -32 & -45 & -38 & -14 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 11 & 32 & 45 & 38 & 14 & 0 \\ 0 & 13 & 39 & 52 & 39 & 13 & 0 \\ 6 & 8 & 8 & 8 & 8 & 8 & 6 \end{bmatrix}$$

Vái
$$I_y(11) = -6I_y(11) = -6 \Rightarrow I_1(11) = I_x(11) = I_y(11) =$$

Với
$$I_x(11) = -6, I_y(11) = -6 => I_1(11) = |I_x(11)| + |I_y(11)| = 12$$

$$|I_{y}(11)| = 12$$

$$Turong tự có I_{1} = \begin{bmatrix} 12 & 8 & 8 & 8 & 8 & 12 \\ 8 & 26 & 52 & 52 & 52 & 26 & 8 \\ 8 & 48 & 58 & 48 & 74 & 54 & 8 \\ 8 & 48 & 46 & 6 & 46 & 54 & 8 \\ 8 & 48 & 68 & 48 & 74 & 54 & 8 \\ 8 & 26 & 52 & 52 & 52 & 26 & 8 \\ 12 & 8 & 8 & 8 & 8 & 12 \end{bmatrix}$$

$$b. Với I(11) = 2 \Rightarrow I_{2}(11) = 0.0 + (-1).0 + 0.00$$

b, Với
$$I(11) = 2 \Rightarrow I_2(11) = 0.0 + (-1).0 + 0.0 + (-1).0 + 4.2 + (-1).2 + 0.0 + (-1).2 + 0.2 = 4$$

Turong tự có
$$I_2 = \begin{bmatrix} 4 & 2 & 2 & 2 & 2 & 2 & 4 \\ 2 & 0 & -13 & -13 & -13 & 0 & 2 \\ 2 & -13 & 28 & 16 & 25 & -13 & 2 \\ 2 & -11 & 8 & -11 & 20 & -14 & 2 \\ 2 & -13 & 28 & 16 & 25 & -13 & 2 \\ 2 & 0 & -13 & -13 & -13 & 0 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 & 4 \end{bmatrix}$$
Câu 43(D)

Câu 4.3(D)

a, Với
$$I(11) = 5 \Rightarrow I_x(11) = (-1).0 + 0.0 + 1.0 + (-1).0 + 0.5 + 1.5 + (-1).0 + 0.4 + 1.5 = 10$$

Turong tự có
$$I_x = \begin{bmatrix} 10 & 1 & 0 & 0 & 0 & 0 & -10 \\ 14 & 3 & 1 & 0 & 0 & 0 & -15 \\ 12 & 4 & 3 & 1 & 0 & 0 & -14 \\ 10 & 3 & 4 & 2 & 0 & 0 & -14 \\ 9 & 1 & 3 & 2 & 0 & 0 & -12 \\ 9 & 0 & 1 & 1 & 0 & 0 & -10 \\ 6 & 0 & 0 & 0 & 0 & 0 & -6 \end{bmatrix}$$

Với
$$I(11) = 5 \Rightarrow I_y(11) = (-1).0 + (-1).0 + (-1).0 + 0.0 + 0.5 + 0.5 + 1.0 + 1.4 + 1.5 = 9$$

Turong tự có
$$I_y = \begin{bmatrix} 9 & 14 & 15 & 15 & 15 & 15 & 10 \\ -3 & -3 & -1 & 0 & 0 & 0 & 0 \\ -3 & -4 & -3 & -1 & 0 & 0 & 0 \\ -1 & -3 & -4 & -4 & -3 & -3 & -2 \\ 0 & -1 & 32 & 45 & 38 & 14 & -4 \\ 0 & 0 & -1 & -2 & -3 & -3 & -2 \\ -6 & -9 & -9 & -9 & -9 & -9 & -6 \end{bmatrix}$$

Với
$$I_x(11) = 10, I_y(11) = 9 => I_1'(11) = |I_x(11)| + |I_y(11)| = 19$$

Turong tự có
$$I_1' = \begin{bmatrix} 19 & 15 & 15 & 15 & 15 & 20 \\ 17 & 6 & 2 & 0 & 0 & 0 & 15 \\ 15 & 8 & 6 & 2 & 0 & 0 & 15 \\ 11 & 6 & 8 & 6 & 3 & 3 & 16 \\ 9 & 2 & 6 & 7 & 6 & 6 & 16 \\ 9 & 0 & 2 & 3 & 3 & 3 & 12 \\ 12 & 9 & 9 & 9 & 9 & 9 & 12 \end{bmatrix}$$

b, Với $I(11) = 5 \Rightarrow I_x(11) = (-1).0 + 0.0 + 1.0 + 0.5 + 1.5 + 0.5 + 1.5 + 0.$ (-1).0 + 0.14 + 1.5 = 10

Turong tự có
$$I_x = \begin{bmatrix} 10 & -9 & 0 & 0 & 0 & 0 & -10 \\ 24 & -7 & -9 & 0 & 0 & 0 & -15 \\ 22 & 4 & -7 & -9 & 0 & 0 & -15 \\ 20 & 13 & 4 & 2 & 0 & 0 & -24 \\ 9 & 11 & 13 & 2 & 0 & 0 & -22 \\ 9 & 0 & 11 & 11 & 0 & 0 & -20 \\ 6 & 0 & 0 & 0 & 0 & 0 & -6 \end{bmatrix}$$

Với
$$I(11) = 5 \Rightarrow I_y(11) = (-1).0 + (-1).0 + (-1).0 + 0.0 + 0.5 + 0.5 + +1.0 + 1.14 + 1.5 = 19$$

Tương tự có

$$I_{y} = \begin{bmatrix} 19 & 24 & 15 & 15 & 15 & 15 & 10 \\ 7 & 7 & 9 & 0 & 0 & 0 & 0 \\ -13 & -4 & 7 & 9 & 0 & 0 & 0 & 0 \\ -11 & -13 & -4 & 16 & 27 & 27 & 18 \\ 0 & -11 & -13 & -15 & -6 & -6 & -4 \\ 0 & 0 & -11 & -22 & -33 & -33 & -22 \\ -6 & -9 & -9 & -9 & -9 & -9 & -6 \end{bmatrix}$$

$$I_{x}(11) = 10.I_{y}(11) = 19 \Rightarrow I_{1}'(11) = |I_{x}(11)|$$

Với
$$I_x(11) = 10, I_y(11) = 19 => I_1'(11) = |I_x(11)| + |I_y(11)| = 29$$

Turong tự có
$$I_2' = \begin{bmatrix} 29 & 33 & 15 & 15 & 15 & 20 \\ 31 & 14 & 18 & 0 & 0 & 0 & 15 \\ 15 & 8 & 14 & 18 & 0 & 0 & 15 \\ 31 & 26 & 8 & 18 & 27 & 27 & 42 \\ 9 & 22 & 26 & 17 & 6 & 6 & 26 \\ 9 & 0 & 22 & 33 & 33 & 33 & 42 \\ 12 & 9 & 9 & 9 & 9 & 9 & 12 \end{bmatrix}$$
Câu 4.4(D)

Câu 4.4(D)

Giải:

a, Với
$$I(11) = 5 \Rightarrow I_x(11) = 1.0 + 0.0 + (-1).0 + 2.0 + 0.5 + (-2).5 + 1.0 + 0.5 + (-1).5 = -15$$

Turong tu có
$$I_x = \begin{bmatrix} -15 & 0 & 0 & 0 & 0 & 0 & 15 \\ -20 & 0 & 0 & 0 & 0 & 0 & 20 \\ -20 & 0 & 0 & 0 & 0 & 0 & 20 \\ -20 & 0 & 1 & 1 & 0 & 0 & 19 \\ -19 & 1 & 3 & 3 & 0 & 0 & 16 \\ -16 & 3 & 3 & 3 & 0 & 0 & 13 \\ -10 & 3 & 1 & 1 & 0 & 0 & 9 \end{bmatrix}$$

Với
$$I(11) = 5 \Rightarrow I_y(11) = 1.0 + 2.0 + 2.0 + 0.0 + 0.5 + 0.5 + +(-1).0 + (-2).5 + (-1).5 = -15$$

Tương tự có

Với
$$I_x(11) = -15, I_y(11) = -15 => I_1'(11) = |I_x(11)| + |I_y(11)| = 30$$

Turong tự có
$$I_1' = \begin{bmatrix} 30 & 20 & 20 & 20 & 20 & 20 & 30 \\ 20 & 0 & 0 & 0 & 0 & 0 & 20 \\ 20 & 0 & 0 & 0 & 0 & 0 & 20 \\ 20 & 0 & 2 & 4 & 4 & 4 & 22 \\ 20 & 4 & 8 & 10 & 8 & 8 & 22 \\ 20 & 10 & 10 & 8 & 4 & 4 & 16 \\ 24 & 20 & 16 & 14 & 12 & 12 & 18 \end{bmatrix}$$

b, Với $I(11) = 5 \Rightarrow I_x(11) = 1.0 + 0.0 + (-1).0 + 2.0 + (-2).5 + 1.0 + 0.5 + (-1).5 = -15$

Turong tự có
$$I_x = \begin{bmatrix} -15 & 0 & 0 & 0 & 0 & 0 & 15 \\ -20 & 0 & 0 & 0 & 0 & 0 & 20 \\ -20 & 0 & 0 & 0 & 0 & 0 & 20 \\ -20 & 0 & -9 & -9 & 0 & 0 & 29 \\ -29 & -9 & -7 & -7 & 0 & 0 & 36 \\ -36 & -7 & 13 & 13 & 0 & 0 & 23 \\ -20 & 13 & 11 & 11 & 0 & 0 & 9 \end{bmatrix}$$

Với
$$I(11) = 5 \Rightarrow I_y(11) = 1.0 + 2.0 + 1.0 + 0.0 + 0.5 + 0.5 + (-1).0 + (-2).5 + (-1).5 = -15$$

Tương tự có

Với
$$I_x(11) = -15, I_y(11) = -15 => I_1'(11) = |I_x(11)| + |I_y(11)| = 30$$

Turong tự có
$$I_2' = \begin{bmatrix} 30 & 20 & 20 & 20 & 20 & 20 & 30 \\ 20 & 0 & 0 & 0 & 0 & 0 & 20 \\ 20 & 0 & 0 & 0 & 0 & 0 & 20 \\ 20 & 0 & 18 & 36 & 36 & 36 & 56 \\ 38 & 36 & 32 & 10 & 8 & 8 & 42 \\ 52 & 10 & 30 & 48 & 44 & 44 & 56 \\ 44 & 60 & 56 & 34 & 12 & 12 & 18 \end{bmatrix}$$

<u>Câu 4.5:</u>

a, Momon quán tính TB có mức xám \leq g là:

i	0	1	2	3	4	5	6	7	8	9
h(i)	1	7	15	8	6	5	3	1	1	1

$$t(0) = \sum_{i=0}^{0} h(0) = 1$$

$$t(1) = t(0) + h(1) = 8$$

$$t(2) = t(1) + h(2) = 23$$

$$t(3) = t(2) + h(3) = 31$$

$$t(4) = t(3) + h(4) = 37$$

$$t(5) = t(4) + h(5) = 42$$

$$t(6) = t(5) + h(6) = 45$$

$$t(7) = t(6) + h(7) = 46$$

$$t(8) = t(7) + h(8) = 47$$

$$t(9) = t(8) + h(8) = 48$$

$$m(0) = \frac{1}{t(g)} \sum_{i=0}^{g} i * h(i) = 1.0 * h(i) = 0$$

$$m(1) = \frac{1}{8} \sum_{i=0}^{1} (0 + 1 * 7) = \frac{7}{8}$$

$$m(2) = \frac{1}{23} \sum_{i=0}^{2} (0 + 1 * 7 + 2 * 15) = \frac{37}{23}$$

$$m(3) = \frac{1}{31} \sum_{i=0}^{3} (0 + 1 * 7 + 2 * 15 + 3 * 8) = \frac{61}{31}$$

$$m(4) = \frac{1}{37} \sum_{i=0}^{4} (0 + 1 * 7 + 2 * 15 + 3 * 8 + 4 * 6) = \frac{85}{37}$$

$$m(5) = \frac{1}{42} \sum_{i=0}^{5} (0 + 1 * 7 + 2 * 15 + 3 * 8 + 4 * 6 + 5 * 5) = \frac{110}{42}$$

$$m(6) = \frac{1}{45} \sum_{i=0}^{6} (0 + 1 * 7 + 2 * 15 + 3 * 8 + 4 * 6 + 5 * 5 + 6 * 3) = \frac{128}{42}$$

$$m(7) = \frac{1}{46} \sum_{i=0}^{7} (0 + 1 * 7 + 2 * 15 + 3 * 8 + 4 * 6 + 5 * 5 + 6 * 3 + 7 * 1) = \frac{135}{46}$$

$$m(8) = \frac{1}{47} \sum_{i=0}^{8} (0 + 1 * 7 + 2 * 15 + 3 * 8 + 4 * 6 + 5 * 5 + 6 * 3 + 7 * 1 + 8 * 1) = \frac{143}{47}$$

$$m(9) = \frac{1}{48} \sum_{i=0}^{9} (0 + 1 * 7 + 2 * 15 + 3 * 8 + 4 * 6 + 5 * 5 + 6 * 3 + 7 * 1 + 8 * 1 + 9 * 1) = \frac{152}{48}$$

$$+) f(g) = \frac{t(g)}{m * n - t(g)} [m(g) - m(G - 1)]^2$$

$$=> f(0) = \frac{1}{48 - 1} \left[0 - \frac{152}{48} \right]^2 = 0.21$$

$$f(1) = 1.05; f(2) = 2.24; f(3) = 2.62; f(4) = 2.54; f(5) = 2.1; f(6) = 1.56; f(7) = 1.24; f(8) = 0.72; f(9) = \infty$$

$$=> f(\theta) = \max_{0 \le g \le G - 1} \{f(g)\} = \max_{0 \le g \le 9} \{f(3)\} = 3$$

Câu 4.6(C):

0 1 0 0 0 0													_
i 0 1 2 3 4 5 6 7 8 9	[i	0	1	2	3	4	5	6	7	8	9	

	$\overline{n_i}$	1	9	17	6	4	5	3	1	1	1	
L				L		L	<u> </u>]	_	

Trung bình cường độ toàn cục $m_G = \sum_{i=0}^{L-1} i. p_i = \frac{144}{48}$

Với
$$i = 0 \Rightarrow p_0 = \frac{n_0}{MN} = \frac{1}{48}$$

Tổng tích lũy
$$P_1(k) = \sum_{i=0}^k p_i$$
; $P_1(0) = p_0 = \frac{1}{48}$

Trung bình tích lũy đến mức k m(k) = $\sum_{i=0}^k i. p_i$; m(0) = 0

Phương sai giữa các nhóm
$$\sigma_B^2(k) = \frac{[m_G.P_1(k)-m(k)]^2}{P_1(k)[1-P_1(k)]}; \ \sigma_B^2(0) = \frac{[m_G.P_1(0)-m(0)]^2}{P_1(0)[1-P_1(0)]} = 0,21$$

Tương tự ta có bảng sau:

		E		
i	p_i	$p_1(k)$	m(k)	$\sigma_B^2(k)$
0	$\frac{1}{48}$, 1/48	0	0,19
1	$\frac{9}{48}$	<u>-</u>	$\frac{9}{48}$	1,16
2			_	2,55
3	$\frac{6}{48}$			2,92
4	$\frac{4}{48}$			2,84
5	$\frac{5}{48}$		$\frac{102}{48}$	2,29
6	$\frac{3}{48}$		$\frac{120}{48}$	1,67

7	1 48		127 48	1,32
8	$\frac{1}{48}$		$\frac{\overline{135}}{48}$	0,77
9	$\frac{1}{48}$	1	$\frac{144}{48}$	0,00

Vậy ngưỡng T = 3 với $\sigma_B^2(k)$ = 2,92

Câu 4.7:

a, Chọn ngưỡng
$$t_0 = 5$$

$$t_1 = \frac{1}{2} \left(\frac{0.27 + 1.45 + 2.33 + 3.22 + 4.22 + 5.36}{27 + 45 + 33 + 22 + 22 + 36} + \frac{6.45 + 7.34 + 8.23 + 9.13}{45 + 34 + 23 + 13} \right) = 4.72$$

$$t_2 = \frac{1}{2} \left(\frac{0.27 + 1.45 + 2.33 + 3.22 + 4.22}{27 + 45 + 33 + 22 + 22 +} + \frac{5.36 + 6.45 + 7.34 + 8.23 + 9.13}{45 + 34 + 23 + 13 + 36} \right) = 4.16$$

$$t_3 = \frac{1}{2} \left(\frac{0.27 + 1.45 + 2.33 + 3.22 + 4.22 + 5.36}{27 + 45 + 33 + 22 + 22 + 36} + \frac{5.36 + 6.45 + 7.34 + 8.23 + 9.13}{36 + 45 + 34 + 23 + 13} \right) =$$

4.16

b,
$$maxp = 7$$

$$\sum pixel = 100 \Rightarrow S\acute{o}$$
 pixel từ $0 \Rightarrow p$ là 88 pixel

$$=> p = 7$$

$$\Rightarrow$$
 Nguồng $T = maxp - (p - maxp) = 7$

Câu 4.8:

a, Chọn ngưỡng
$$t_0 = 5$$

$$t_1 = \frac{1}{2} \left(\frac{0.20 + 1.40 + 2.30 + 3.50 + 4.70 + 5.60}{20 + 40 + 30 + 50 + 70 + 60} + \frac{6.120 + 7.250 + 8.100 + 9.20}{120 + 250 + 100 + 20} \right) = 5.06$$

$$t_2 = \frac{1}{2} \left(\frac{0.20 + 1.40 + 2.30 + 3.50 + 4.70 + 5.60}{20 + 40 + 30 + 50 + 70 + 60} + \frac{6.120 + 7.250 + 8.100 + 9.20}{120 + 250 + 100 + 20} \right) = 5,06$$

$$=> L \text{ fay ngu\"{o}ng } T = 5$$
b, maxp = 5
$$\sum pixel = 456 \implies S \text{ fo pixel từ } 0 \implies p \text{ là } 401 \text{ pixel}$$

$$=> p = 6$$

$$=> \text{Ngu\"{o}ng } T = \text{maxp} - (p - \text{maxp}) = 4$$

Câu 4.9D:

a. Mã hóa

$$I = 10 - 00 - 11 - 00 - 11 - 10 - 01 - 11 - 11 - 00 - 11 - 01 - 01 - 11 - 10 - 00$$

Input	Output	Dictionary 10 – 00 : 4		
2	10			
0	00	00-11:5		
3	11	11-00:6		
5	00 – 11	00 – 11 – 10 :7		
2	10	10 - 01 :8		
1	01	01 – 11 :9		
3	11	11 – 11 : 10		
6	11 – 00	11 - 00 - 11 : 11		
3	11	11-01:12		

1	01	01 – 01 : 13
9	01 – 11	01 – 11 – 10 : 14
4	10 – 00	

$$\Rightarrow I_{kq} = 2 - 0 - 3 - 5 - 2 - 1 - 3 - 6 - 3 - 1 - 9 - 4$$

• Giải mã

Input	Output	Dictionary		
2	10	10 - 00 : 4		
0	00	00 – 11 : 5		
3	11	11 – 00 : 6		
5	00 – 11	00 - 11 - 10 :7		
2	10	10-01:8		
1	01	01 – 11 :9		
3	11	11 – 11 : 10		
6	11 – 00	11 - 00 - 11 : 11		
3	11	11 – 01 : 12		
1	01	01 - 01 : 13		
9	01 – 11	01 - 11 - 10:14		
4	10 – 00			

$$\Rightarrow I = 10 - 00 - 11 - 00 - 11 - 10 - 01 - 11 - 11 - 00 - 11 - 01 - 01 - 11 - 10 - 00$$

Ъ.

* Ý tưởng: tạo ra từ điển (1 bảng) các chuỗi được sử dụng trong phiên truyền thông

- * Vấn đề của LZW: bộ mã hóa và giải mã LZW cùng xây dựng một bộ từ điển trong quá trình nhận dữ liệu
- * Cách giải quyết: Nếu cả bên gửi và bên nhận đều có bản copy của cuốn từ điển (dictionary) thì các chuỗi đã gặp trước đó sẽ được thay thế bằng mục lục của chúng để làm giảm lượng thông tin cần truyền

XỬ LÝ ẢNH

NÂNG CAO CHÁT LƯỢNG

- 1. Cân bằng xác suất
- I: kích thước m x n

New_level: số mức xám mới của ảnh sau cân bằng, thông thường giá trị này có thể bằng đúng số mức xám của ảnh gốc.

 $TB = \frac{m \times n}{new_level}$: số điểm ảnh trung bình của mỗi mức xám của ảnh sau khi cận bằn

 $\mathsf{t}(\mathsf{g}) = \sum_{i=0}^g h(i)$: số điểm ảnh có mức xám $\leq \mathsf{g}$ trên ành gốc

Cần xác định hàm f: $g \rightarrow f(g)$ sao cho:

$$f(g) = \max \{0, \text{ round } (\frac{t(g)}{TB}) - 1\}$$

2. Cân bằng lược đồ xám

 r_k : mức xám đầu vào

$$s_k$$
: mức xám đầu ra

 n_j : tần suất của cường độ sáng j

n: tổng số điểm ảnh

L': số mức xám ở ảnh đầu ra

(thông thường bằng số mức xám đầu vào)

- 3. Bậ loc rung bính I(P) = AV(P)
- 4. Bộ ọc trung bình k giá trị gần nhất

Cho ảnh I, pixel P, cửa số W(P), ngưỡng θ , giá trị k

Thuật toán:

Bước I: Tìm k giá trị nằm trong cửa số W(P) gần với giá trị pixel P nhất

Bước 2: Tính trung bình của k giá trị này

$$AV_k(P) = (\sum_{i=1}^k P_i)/k$$

Bước 3: Gán giá trị

$$I(P) = \begin{cases} I(P)n\hat{\otimes}u \mid I(P) - AV_k(P) \mid \leq \theta \\ AV_k(P) n\hat{\otimes}u nguọc lai \end{cases}$$

5. Bộ lọc trung vị

Giả sử $A = \{ a_1, a_2 a_3, \dots a_k \}$ là các giá trị pixel láng giềng với $a_1 \le a_2 \le a_3 \le \dots \le a_k$

$$\operatorname{median}(A) = \left\{ \begin{matrix} a_{k/2} \ n \'{e}u \ k \ c h \~{a}n \\ a_{(k+1)/2} \ n \'{e}u \ k \ le \end{matrix} \right.$$

NÉN ẢNH

Mã hóa Huffman

Thuật toán:

Bước 1: Sắp xếp xác xuất các ký hiệu theo thứ tu

Bước 2: Gộp 2 xác xuất thấp nhất

Bước 3: Lặp lại bước 2 cho đến khi tổng các xác suất bằng 1

Bước 4: Ân định từ mã cho ký tự cáng cách đọc dường dẫn từ gốc đến ký tự đó

- * Mã hóa LZW
- Ý tướng: tạo ra tự điển (1 bang) các chuỗi được sử dụng trong phiên truyền thông
- LZW sử dụng các từ mã chiều dài cố định để biểu diễn các chuỗi ký tự chiều dài thay đổi thường vày ta cùng nhau, ví dụ các từ trong đoạn văn bản
- Bo mã hóa và giải mã LZW cùng xây dựng một bộ từ điển trong quá trình nhận dữ liệu
- Nếu cấ bên gửi và bên nhận đều có bản copy của cuốn từ điển thì các chuỗi đã gặp trước đó sẽ được thay thế bằng mục lục của chúng để làm giảm lượng thông tin cần truyền.
- * Chuẩn nén ảnh JPEG

Cách biến đổi DCT rút gọn:

Bước 1: Tính ma trận T:

$$T_{i,j} = \begin{cases} \frac{1}{\sqrt{N}} n \acute{e}u \ i = 0 \\ \sqrt{\frac{2}{N}} \cos \frac{(2j+1)i\pi}{2N} \ n \acute{e}u \ i > 0 \end{cases}$$

Nếu I là ma trận 2 x 2
$$\Rightarrow$$
 T = T' =
$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix}$$

Bước 2: Biến đổi DCT = T * I * T'

Trong đó: T ma trận tính ở bước 1

I ma trận cần chuyển đổi

T': ma trận chuyển vị của ma trận T

Lượng tử hóa:

$$F^q(u,v) = \left| \frac{F(u,v)}{Q(u,v)} \right|$$

• Mã hóa DC; Diff = $DC_i - DC_{i-1}$

Mã DC được biểu diễn từ cặp s1 + s2

Trong đó : s1 được tra trong bảng cátegor

s2 Diff < 0 : chuyển Diff sang chi phân

Diff > 0: Chuyển (Diff 1) sang nhị phân

Viết số dương ở dạng nhi phân => Lấy phủ => Cộng với 1 => Số âm ở dạng nhị phân

Mã hóa AČ

T(m,n)

Mà AC được biểu diễn bởi cặp s1 + s2

255

Trong đó: s1 Mã hóa (RUN, CAT)

RUN:số số 0 dứng trước hệ số AC Mã category của hệ số AC

s2

AC>0:chuyển Diff sang nhị phân AC<0:Chuyển (Diff = 1) sang nhị phân

PHÁT HIỆN BIÊN

Phương pháp Gradient

Độ lớn
$$|G| = \sqrt{G_x^2 + G_y^2} = |G_x| + |G_y|$$

$$\operatorname{G\acute{o}c}: \theta = \tan^{-1}(\frac{G_{y}}{G_{x}})$$

- Toán tử Roberts

$$G_{x} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \qquad G_{y} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$G_{y} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

- Toán tử Prewitt:

$$G_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$G_{y} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

- Toán từ Sobel

$$G_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Code tính nhân chập

```
public static void main(String() area) (
   Scanner ace new Scanner (System. . 1;
   ant A[][] = new ant[100][100];
   ine P()() - new int(100)(100);
   int [][] = new int[200][200];
   feriant 4-1: 1-m 7: 10-) (
      fortiss j=2: 20= 7: 3++1{
          1(1)(5) = sc.next(nt();
   gor(inc s=1; ad= 3; k+e) (
       for (int 5=1: 50= 3: 5+-1)
          P(x)(c) = sc.newtInt();
    for [and a=1; ad= 7; a=+] {
       ror (and 1944 3/4 7; 34-) (
         5[1][2] * A[1-1][3-1]*F(1)[1] * A[1-1][1]*F(1)[2] * A[1-1][1-1]*F(1)[1] * A[1)[(-1]*E[2][1]
          System, . tt.paintin()/
```

Làm trơn luợc đồ xám

$$h_{smooth}(b) = \frac{1}{w} \cdot \sum_{w=-(W-1)/2}^{(W-1)/2} h_{raw}(b-w)$$

· Tách ngưỡng toàn cục

$$g(x, y) = \begin{cases} 1 & \text{n\'eu} \ f(x, y) > T \\ 0 & \text{n\'eu} \ ng \text{w\'oc} \ lai \end{cases}$$

- Phân ngưỡng sử dụng thuật toán Otsu
- 1. Tính lược đồ xám chuẩn hóa của ảnh đầu vào. Tính các giá trị $p_i = n_i/\mathit{MN}$
- 2. Tinh tổng tích lũy $P_1(k)$ theo công thức: $P_1(k) = \sum_{l=0}^k p_l$
- 3. Tính trung bình tích lũy đến mức k là m(k): m(k) = $\sum_{i=0}^{k} i. p_i$
- 4. Tính trung bình cường độ toàn cục $m_{\mathcal{G}} \colon m_{\mathcal{G}} = \sum_{i=0}^{L-1} i \cdot p_i$
- 5. Tính phương sai giữa các nhóm $\sigma_B^2(k)$: $\sigma_B^2(k) = \frac{[m_G P_1(k) m(k)]^2}{P_1(k)[1 P_1(k)]}$
- 6. ngưỡng Otsu k* là giá trị k thỏa mãn điều kiện $\sigma_B^2(k)$ cực Φ

Nếu cực đại không duy nhất thì k* được tính là trung bình các giatri k tương ứng với các cục đại k tìm thấy được

* Phân ngưỡng sử dụng thuật toán đẳng liệu

- 1. Chọn giá trị ước lượng ban đầu cho $T=t_0$ thống thường là mức xám tring bình trong bức ảnh)
- 2. Phân vùng bức ảnh sử dụng t_k để tạo ~ 2 nhơm pixel:
- G_1 gồm các pixel với mức xám $\leq t$
- G₂ gồm các pixel với mức xám
- 3. Tính mức xám trung lình của các pixel trong G_1 là $\mu_1(t_k) = \frac{\sum_{i=0}^{t_k} i.p_i}{\sum_{i=0}^{t_k} p_i}$

$$G_2$$
 là $\mu_2(t_k) \neq \frac{\sum_{l=0}^{L-1} i.p_l}{\sum_{l=t_k-1}^{L} p_l}$

4. Tính giá trị ng rồng mới

$$t_{k+1} = \frac{1}{2} \cdot \left(\mu_1(t_k) + \mu_2(t_k) \right)$$

- 5. Lặp kại các bước từ 2-4 cho đến khi sự khác nhau giữa các T trong các vòng lặp liên tiếp nhỏ hơn một giá trị giới hạn định trước ΔT hay $|t_{k+1}-t_k| \leq \Delta T$
- Phân ngưỡng sử dụng thuật toán đối xứng nền
- Giá trị maxp được xác định bằng cách tìm giá trị mức xám có tần suất xuất hiện cực
- Tìm điểm a sao cho $\sum_{i=0}^{a} p_i = p\%$
- Tính được ngưỡng theo công thức T = maxp (a maxp)

- * Phân ngưỡng sử dụng thuật toán tam giác
- Vẽ một đường thẳng Δ nối hai diễm trên lược đồ xám (điểm có giá trị cường độ sáng lớn nhất b_{max} và điểm có cường độ sáng nhỏ nhất b_{min})
- Tại mỗi giá trị $\mathbf{b}=b_{min}$ đến $\mathbf{b}=b_{max}$, tính khoảng cách d giữa đường thẳng Δ và lược đồ xám h[b]
- Giá trị b_0 nào cho d
 lớn nhất sẽ được coi là ngưỡng hay T = b_0

XỬ LÝ HÌNH THÁI

Các SE – phần từ cấu trúc là các mảng (ma trận) có cấu trúc được tạc bởi 2 múc xám 0 và 1

Thông thường SE có dạng đối xứng với trọng tâm ở giữa

Fit: Fit xảy ra khi tất cả pixel của SE trùng với các pixel của bu ảnh

Hit: Hit xảy ra khi bất kỳ pixel nào của SE trùng yới kixel của ánh

Cho bức ảnh f và SE s

Phép co:

 $\mathbf{f} \ominus \mathbf{s} = \begin{cases} 1 \text{ n\'eu s fits } \mathbf{f} \\ 0 \text{ n\'eu ngược lai} \end{cases}$

Phép dãn:

 $f \oplus s = \begin{cases} 1 \text{ n\'eu } s \text{ hits } f \\ 0 \text{ n\'eu } ng \text{ grợc } lai \end{cases}$

 $3.10(\mathrm{D})$ Thực hiện phép co và dẫn hình X với một phần từ cấu trúc B sau để được hai hình X_1 và X_{2i}

$$X = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\vec{\mathbf{w}} B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Phép co X ⊖ B

Phóp giản X ⊕ B

$$X_1(x, y) = \begin{cases} 1 \text{ new B fits } X \\ 0 \text{ new newoclai} \end{cases}$$

$$X_{z}(x, y) = \begin{cases} 1 \text{ new } B \text{ hits } X \\ 0 \text{ new newor la} \end{cases}$$

Phép mở:

$$f \circ g = (f \ominus g) \oplus g$$

* Thanh toán tách biá

$$\beta(f) = f - (f \ominus s)$$

$$E = R U$$

Phép đóng

$$f \cdot s = (f \oplus s) \ominus s$$

Bải tập úp dụng: Cho bức ảnh sau A. Thục hiện phép co ảnh bởi phần từ cấu trúc có dạng 3x3. Tách biên của đối tượng trong ảnh A

$$s = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Thanh toán là đầy vùng

Công thức của thuật toán:

$$X_k = (X_{k-1} \oplus s) \cap f^c \quad k = 1, 2, 3....$$

Trong đó: X_0 là điểm bắt đầu trong vùng

s là phần tử cấu trúc

 f^c là phần bù của f

Phương trình được lặp cho đến khi

Kết quả cuối cùng là $X_k \cup f$

Bải tập áp dụng: Cho bức ảnh sau (Thực hiện các bước làm đầy vùng cho đối tượng trong ảnh A bởi phần tử cấu trúc B

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A^{c} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$Vay A' = X_5 \cup A = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- * Thuật toán trích xuất các phần từ kết nối
- Công thức của thuật toán:

$$X_k = (X_{k-1} \oplus s) \cap f$$
 $k = 1, 2, 3, \dots$

Trong đó: X_0 là đeểm bắt đầu trong λ ng

- S là phần tử cấu trúc
 - Phương trình được lặp họ đến khi $X_k = X_{k-1}$

Thuật toán hit or price transformation

$$A \otimes B = A - (A \otimes B) \wedge A \cap (A \otimes B)^{c}$$

BÀI TẬP NÂNG CAO CHẤT LƯỢNG ẢNH

Cho vực ảnh I. Hãy vẽ lược đồ xám và thực hiện cân bằng lược đồ xám. Tìm ảnh I' sau khi là cân bằng lược đồ xám.

$$I = \begin{pmatrix} 1 & 2 & 0 & 4 \\ 1 & 0 & 0 & 7 \\ 2 & 2 & 1 & 0 \\ 4 & 1 & 2 & 1 \\ 2 & 0 & 1 & 1 \end{pmatrix}$$

r_k	0	1	2	4	7
$p(r_k)$	5 20	$\frac{7}{20}$	5 20	2/20	1/20

Tương tự có:

$$s_1 = 4.\frac{12}{20} = 2.4 \rightarrow 2$$

$$s_2 = 4.\frac{17}{20} = 3.4 \rightarrow 3$$

$$s_3 = 4.\frac{19}{20} = 3.8 - \frac{1}{2}$$

$$S_4 = 4$$

$$V_{3}^2 T_{3} = \begin{bmatrix} 2 & 3 & 1 & 4 \\ 1 & 1 & 4 \\ 2 & 3 & 2 & 1 \\ 2 & 2 & 3 & 2 \\ 3 & 1 & 2 & 2 \end{bmatrix}$$

Cân bằng tần suất:

- Số điểm ảnh trung bình của mỗi mức xám sau cân bằng là:

$$TB = \frac{M*N}{L_1} = \frac{5*4}{5} = 4$$

- Số điểm ảnh của mức xám \leq g là: $T(r_k) = \sum_{l=0}^k n(r_l)$ $T(r_0) = \sum_{l=0}^0 n(r_0) = n(r_0) = 5$

Turong tực có:
$$T(r_1) = 12$$
, $T(r_2) = 17$, $T(r_3) = 19$, $T(r_4) = 20$

$$s_k = \max\left\{0, round\left(\frac{T(r_k)}{TB}\right) - 1\right\}$$

$$s_0 = \max\left\{0, round\left(\frac{T(r_0)}{TB}\right) - 1\right\} = \max\left\{0, round\left(\frac{5}{4}\right) - 1\right\} = 0$$

Turong tự có: $s_1 = 2$, $s_2 = 3$, $s_3 = 4$, $s_0 = 4$

$$\mathbf{V}\mathbf{\hat{a}}\mathbf{y}\;I_{kq} = \begin{bmatrix} 2 & 3 & 0 & 4 \\ 2 & 0 & 0 & 4 \\ 3 & 3 & 2 & 0 \\ 4 & 2 & 3 & 2 \\ 3 & 0 & 2 & 2 \end{bmatrix}$$

* Bộ lọc trung bình có trọng số

$\frac{1}{16}$	<u>2</u> 16	$\frac{1}{16}$
$\frac{2}{16}$	$\frac{4}{16}$	$\frac{2}{16}$
$\frac{1}{16}$	$\frac{2}{16}$	$\frac{1}{16}$

$$V \acute{o}i I_{11} = 1$$

$$I_{kq\,11} = 0.\frac{1}{16} + 0.\frac{2}{16} + 0.\frac{1}{16} + 0.\frac{2}{16} + 0.\frac{2}{16} + 2\frac{2}{16} + 0.\frac{1}{16} + 0.\frac{1}{16} + 0.\frac{1}{16}$$

$$I_{kq \, 11} = 0.625 \rightarrow 1$$

$$Vay I_{kq} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Bộ lọc trung bình k giá trị gần nhất

Cut sô W(3,3)

Ngưỡng
$$\theta = 1, k = 3$$

Với
$$I_{11} = 1$$

 ${\bf k}=3$ giá trị nằm trong cửa số W
 $I_{11})$ gần nhất với $I_{11}=1$ nhất: 1, 1, 0

$$\Rightarrow AV_{11} = (1+1+0)/3 = 2/3 \Rightarrow L_{ay}^2$$

$$\Rightarrow I_{kq} (11) = 1 \text{ do } AV_{11} - I_{11} < \theta = 1$$

Turong tự có
$$I_{kq} = \begin{bmatrix} 1 & 2 & 0 & 4 \\ 1 & 0 & 0 & 4 \\ 2 & 2 & 1 & 0 \\ 4 & 1 & 2 & 1 \\ 2 & 0 & 1 & 1 \end{bmatrix}$$

* Bộ lọc trung vị: Cửa số W(3x3)

Với $I_{11} = 1$ có A = $\{0, 0, 0, 0, 0, 0, 1, 1, 2\} \Rightarrow \text{median}(A) = a_s = 0$

Turong tự có
$$I_{kq} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 0 \end{bmatrix}$$

* Mā hóa Huffman

Câu 3.8: (D) Thực hiện mã hóa sau bằng thuật toán kuffman. Được biết ảnh được biết ảnh được chia làm các khối kích thước 2x2 để làm đơn vị mã hóa (Mã khối này sẽ như là một chữ cái của bức ảnh)

Đặt
$$A = \frac{1}{1}, \frac{1}{1}, E = 0$$
, $C = \frac{1}{1}, \frac{1}{0}$; $D = \frac{1}{1}, \frac{0}{0}$; $E = \frac{0}{0}, \frac{1}{1}$; $F = \frac{1}{0}, \frac{1}{0}$; $G = \frac{0}{0}, \frac{0}{1}$;

Bảng tuần suất:

				ъ	Б	E	G	Η
Ký tự	A	В	l C	ען	L	1		
n	7	5	5	3	2	2	3	3
p	$\frac{7}{30}$	5 30	<u>5</u> 30	3 30	2 30	$\frac{2}{30}$	$\frac{3}{30}$	$\frac{3}{30}$

Tiến hành mã hóa Huffman

+ Số bit trước khi mã hóa: $N_1 = 4 * 10 * 3 = 120$ bit

+ Số bit sau khi mã hóa: $N_2 = 2 * 7 + 3 * (5 + 5 + 3 + 3) + 4 * (2 + 2) = 87$ bit

+ Tỷ lệ nén:
$$\frac{N_2}{N_1} = \frac{87}{120} = 0,725$$

* Mã hóa LZW

- 4.9D: Thực hiện mã hóa ảnh sau bằng kỳ thuật LZW. Được biết ảnh được chia làm các khối kích thước 1x2 để làm do. Vị mã hóa. Và từ điển gốc bao gồm 4 đơn vị mã hóa sau 00, 01, 10, 11 tược g đương với giá trị từ 0 đến 2, từ điển sẽ được xây dựng tiếp theo từ giá trị 4. Bức ảnh 3 được đọc từ trái qua phải và từ trên xuống dưới.
- a. Thực hiện mã hòa và ghá mã ảnh trên với LWZ. Coi từ điển là đủ lớn để không thiếu chỗ
- b. Ý tưởng có bản của mã hóa LZW là ở đầu? LZW có vấn đề và có cách nào để giải quyết xố không?

$$I = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

a. Mã hóa

$$I = 10 - 00 - 11 - 00 - 11 - 10 - 01 - 11 - 11 - 00 - 11 - 01 - 01 - 11 - 10 - 00$$

Input	Output	Dictionary
2	10	10-00:4

0	00	00 – 11 : 5
3	11	11-00:6
5	00-11	00 - 11 - 10 :7
2	10	10-01:8
1	01	01 – 11 :9
3	11	11-11:10
6	11-00	11-00-11:11
3	11	11-01:12
1	01	01 - 01 .13
9	01 – 11	6 - 1 - 1 : 14
4 .	10 – 00	
$\Rightarrow I_{kq} = 2 - 6$ • Giải mã	0-3-5-2-1-3-6-	
Input	Output	Dictionary
2	10	10-00:4

Input	Output	Dictionary
2	10	10-00:4
0	PR	00 – 11 : 5
3	11	11 - 00 : 6
5	0 -11	00 - 11 - 10 :7
2	10	10-01:8
1	01	01 – 11 :9
3	11	11 - 11 : 10
6	11 – 00	11 - 00 - 11 : 11
3	11	11-01:12
1	01	01-01:13
9	01 – 11	01 - 11 - 10 : 14
4	10-00	

$$\Rightarrow I = 10 - 00 - 11 - 00 - 11 - 10 - 01 - 11 - 11 - 00 - 11 - 01 - 01 - 11 - 10 - 00$$

- * Ý tưởng: tạo ra từ điển (1 bảng) các chuỗi được sử dụng trong phiên truyền thông
- * Vấn đề của LZW: bộ mã hóa và giải mã LZW cùng xây dựng một bộ từ điển trong quá trình nhận dữ liệu
- * Cách giải quyết: Nếu cả bên gửi và bên nhận đều có bản copy của cuốn từ điển (dictionary) thì các chuỗi đã gặp trước đó sẽ được thay thế bằng mục lục của chúng để làm giảm lượng thông tin cần truyền
- * Chuẩn nén ảnh JPEG

 $Q = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \qquad DC_{i-1} = 15$

C Cat	Prediction Errors	Category (C.	ATX Codeword
	0	0	
	-1, 1	1 4	810
	-3, -2, 2, 3	2	011
	-7, -6, -5, -4, 4, 5, 6, 7,	3	100
	-15,, -8, 8,, 15		101
	-31,, -16, 16,, 31	8	110
	-63,, -32, 32,,	6	1110
.		7	11110
	70	8	111110
		9	1111110
, ^		10	11111110
1	Δ	11	111111110

Run/ Cat	Sase codeword	Run/ Cat	Base codeword	7	Run/ Cat	Base codeword
EOB	1010	-	-	ļ	ZRL	1111 1111 001
0/1	00	1/1	1100	 	18/1	1111 1111 1111 0101
0/2	01	1/2	11011	†	15/2	1111 1111 1111 0110
0/3	100	1/3	1111001	1	15/3	1111 1111 1111 0111

0/4	1011	1/4	111110110	 15/4	1111 1111 111 1000
0/5	11010	1/5	1111110110	 15/5	1111 1111 1111 1001
			111	 •••	

$$T_{0,0} = T_{0,1} = \frac{1}{\sqrt{2}}$$

$$T_{1,0} = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

$$T_{1,1} = \cos\frac{3\pi}{4} = \frac{-1}{\sqrt{2}}$$

$$I_{DCT} = T * I * T' = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 10 & 8 \\ 6 & 4 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 14 & 2 \\ 4 & 0 \end{bmatrix}$$

$$I_Q = \begin{bmatrix} 14 & 0 \\ 4 & 0 \end{bmatrix} = > 14, 0, 4, 0$$

$$\begin{cases} DC_i = 14 \\ DC_{i-1} = 15 \end{cases} => Diff = DC_i - DC_{i-1} = -$$

Tra bang category => s1: 010

" Cần biểu diễn -2 ở dạng nhị phân

2:10 => Phủ: 01 => Cộng 1 -> So âm thì 1 ở đầu không có ý nghĩa nên bỏ 1 =>

- 2: 0"

s2:0

=> 0100

DC: 14

AC: 0, 4,7

s1: (TUN CAY) = (1,3) " 4 tra bảng category là 3" => Tra bảng: 1111001

s2: 100

=> 1111001100

EOB: 1010 " còn lại là số 0".

PHÁT HIỆN BIÊN

Câu 3.3(c) a. Tính biểu đổ tần suất h(g) cho bức ảnh I sau:

$$I = \begin{bmatrix} 1 & 2 & 1 & 3 & 2 & 1 \\ 4 & 4 & 3 & 2 & 4 & 0 \\ 6 & 9 & 2 & 3 & 2 & 1 \\ 6 & 2 & 0 & 5 & 3 & 0 \\ 3 & 4 & 0 & 5 & 1 & 5 \\ 5 & 6 & 8 & 9 & 3 & 6 \end{bmatrix}$$

b, Thực hiện làm tron biểu đồ tần suất tính được ở trên với W=3 và W= Giải

a, Biểu đồ tần suất h(g) cho bức ảnh I là:

g	0	1	2	3	4	5	6)8 <u> </u>	9
h(g)	4	5	6	6	4	4	4	1	2

b, Ta có: hsmooth(g) =
$$\frac{1}{W} \sum_{W=-\frac{(W-1)}{2}}^{\frac{W-1}{2}} h(g-V)$$

$$\Rightarrow \text{ hsmooth}(0) = \frac{1}{3} \sum_{-1}^{1} h(0 - w) + \frac{1}{2} [h(-1) + h(0) + h(1)] = 3$$

hsmooth(1) =
$$\frac{1}{3}$$
 [h(0) + h(1) + h(2)] = 5

hsmooth(2) =
$$\frac{1}{3}$$
[h(1) + h(2) + h(3)] = 6

hsmooth(3) =
$$\frac{1}{3}$$
 [h(2) + h(3) + h(4)] = 5

hsmooth(4) =
$$\frac{1}{3}$$
(h(3) + h(4) + h(5)] = 5

hardooth(5) =
$$\frac{1}{3}$$
[h(4) + h(5) + h(6)] = 4

hsmooth(6) =
$$\frac{1}{3}$$
[h(5) + h(6) + h(7)] = 3

hsmooth(8) =
$$\frac{1}{3}$$
[h(7) + h(8) + h(9)] = 1

hsmooth(9) =
$$\frac{1}{3}$$
[h(8) + h(9) + h(10)] = 1

g	0	1	2	3	4	5	6	8	9
hsmooth(g)	3	5	6	5	5	4	3	1	1

$$V \acute{o} i W = 5$$

$$\Rightarrow \text{ hsmooth}(0) = \frac{1}{5} \sum_{-2}^{2} h(0 - w) = \frac{1}{5} [h(-2) + h(-1) + h(0) + h(1) + h(2)] = 3$$

hsmooth(0) =
$$\frac{1}{5}$$
 [h(-1) + h(0) + h(1) + h(2) + h(3)] = 4

$$hsmooth(0) = \frac{1}{5}[h(0) + h(1) + h(2) + h(3) + h(4)] = 5$$

hsmooth(0) =
$$\frac{1}{5}$$
[h(1) + h(2) + h(3) + h(4) + h(5)] = 5

hsmooth(0) =
$$\frac{1}{5}$$
[h(2) + h(3) + h(4) + h(5) + h(6)] = 5

hsmooth(0) =
$$\frac{1}{5}$$
[h(3) + h(4) + h(5) + h(6) + h(7)] = 4

hsmooth(0) =
$$\frac{1}{5}$$
[h(4) + h(5) + h(6) + h(7) + h(8)] = 3

hsmooth(0) =
$$\frac{1}{5}$$
[h(6) + h(7) + h(8) + h(9) \pm [h(0)]

hsmooth(0) =
$$\frac{1}{5}$$
 [h(7) + h(8) + h(9) + h(10) + h(1)] = 1

g	0	1	2	3	4	5	6	8	9
hsmooth(g)	3	4	3	3	5	4	3	1	1

Câu 4.1: Cho ảm I như sau:

Thực hiện nhân chập ảnh I với ma trận H_x và H_y rồi cộng với nhau để được ảnh I_1

$$H_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \quad \text{và } H_{y} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Thực hiện nhân chập ảnh I ở trên với $H_z\;$ dưới đây để được l_2 :

$$H_{z} = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Ánh I_1,I_2 đã là ảnh biên chưa? Cần phải làm thêm những gì để có ảnh biên? (nên sử dụng kết quả trên để minh họa)

Giải:

a. Nhân chập I với
$$H_x$$
 và H_y

$$Ix \dot{H_x} = \begin{bmatrix} 4 & 0 & 0 & 0 & 0 & 0 & -4 \\ 6 & 13 & 13 & 0 & -13 & -13 & -13 \\ 6 & 24 & 23 & 3 & -23 & -27 & -6 \\ 6 & 37 & 36 & 3 & -36 & -40 & -6 \\ 6 & 24 & 23 & 3 & -23 & -27 & -6 \\ 6 & 13 & 13 & 0 & -13 & -13 & -6 \\ 4 & 0 & 0 & 0 & 0 & 0 & -4 \end{bmatrix}$$

$$Ix \dot{H_y} = \begin{bmatrix} 4 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\ 0 & 13 & 26 & 39 & 26 & 13 & 4 \\ 0 & 11 & 21 & 35 & 24 & 14 & 0 \\ 0 & -13 & -26 & -39 & -26 & -14 & 0 \\ 0 & -13 & -26 & -39 & -26 & -3 & 26 \\ 0 & 33 & 44 & 38 & 1 & -13 & -6 \\ 0 & 37 & 36 & 3 & -36 & -40 & -6 \\ 6 & 38 & 44 & 38 & 1 & -13 & -6 \\ 6 & 37 & 36 & 3 & -36 & -40 & -6 \\ 6 & 13 & 2 & -32 & -47 & -41 & -6 \\ 0 & -13 & -39 & -39 & -26 & -6 \\ 0 & -6 & -6 & -6 & -6 & -6 & -6 & -6 \end{bmatrix}$$
b. Uhập hập anh I với H_x

$$I_2 = Ix \dot{H_z} = \begin{bmatrix} 10 & 6 & 6 & 6 & 6 & 6 & 10 \\ 6 & -24 & 70 & 53 & 67 & -27 & 6 \\ 6 & -24 & 70 & 53 & 67 & -27 & 6 \\ 6 & -24 & 70 & 53 & 67 & -27 & 6 \\ 6 & -24 & 70 & 53 & 67 & -27 & 6 \\ 6 & -13 & -26 & -39 & -26 & -13 & 6 \\ 10 & 6 & 6 & 6 & 6 & 6 & 6 & 10 \end{bmatrix}$$

Câu 4.5: a.Sử dụng thuật toán tìm ngưỡng tự động để tách ngưỡng ảnh I, được biết ảnh có 10~mức xám

b. Có lúc nào chúng ta có thể tìm được nhiều ngưỡng không? Trong trường hợp như vậy thì ta nên xử lý như thế nào?

$$I = \begin{bmatrix} 1 & 4 & 1 & 1 & 2 & 3 & 2 & 3 \\ 3 & 2 & 3 & 2 & 5 & 2 & 6 & 2 \\ 2 & 3 & 8 & 2 & 3 & 2 & 5 & 6 \\ 4 & 5 & 2 & 4 & 2 & 9 & 1 & 4 \\ 2 & 4 & 3 & 2 & 0 & 1 & 2 & 1 \\ 3 & 5 & 7 & 1 & 2 & 4 & 5 & 6 \end{bmatrix}$$

Giải:

a, Momon quán tính TB có mức xám ≤ g là:

a, Moi	mon qı	ian ilini	IB CO III	luc xan	. ≥ g .u							
i	0	1	2	3	4	5	6	74			9	
h(i)	1	7	15	8	6	5	3	N		Y	1	
	1								$\overline{}$			

$$t(0) = \sum_{i=0}^{0} h(0) = 1$$

$$t(1)=t(0)+h(1)=8$$

$$t(2)=t(1)+h(2)=23$$

$$t(3)=t(2)+h(3)=31$$

$$t(4)=t(3)+h(4)=37$$

$$t(5)=t(4)+h(5)=42$$

$$t(6)=t(5)+h(6)=45$$

$$t(7)=t(6)+h(7)=46$$

$$t(8)=t(7)+h(8)=47$$

$$t(9)=t(8) + h(8) = 48$$

$$m(0) = \frac{1}{t(t)} \sum_{i=0}^{t} i * h(i) = 1.0 * h(i) = 0$$

$$m(1) = \sum_{i=0}^{1} (0 + 1 * 7) = \frac{7}{8}$$

$$m(2) = \frac{1}{23} \sum_{i=0}^{2} (0 + 1 * 7 + 2 * 15) = \frac{37}{23}$$

$$m(3) = \frac{1}{31} \sum_{i=0}^{3} (0 + 1 * 7 + 2 * 15 + 3 * 8) = \frac{61}{31}$$

$$m(4) = \frac{1}{37} \sum_{i=0}^{4} (0 + 1 * 7 + 2 * 15 + 3 * 8 + 4 * 6) = \frac{65}{37}$$

$$m(5) = \frac{1}{42} \sum_{i=0}^{5} (0 + 1 * 7 + 2 * 15 + 3 * 8 + 4 * 6 + 5 * 5) = \frac{110}{42}$$

$$m(6) = \frac{1}{45} \sum_{i=0}^{6} (0 + 1 * 7 + 2 * 15 + 3 * 8 + 4 * 6 + 5 * 5 + 6 * 3) = \frac{128}{42}$$

$$m(7) = \frac{1}{46} \sum_{i=0}^{7} (0 + 1 * 7 + 2 * 15 + 3 * 8 + 4 * 6 + 5 * 5 + 6 * 3 + 7 * 1) = \frac{135}{46}$$

$$m(8) = \frac{1}{47} \sum_{i=0}^{8} (0 + 1 * 7 + 2 * 15 + 3 * 8 + 4 * 6 + 5 * 5 + 6 * 3 + 7 * 1 + 8 * 1) = \frac{143}{47}$$

$$m(9) = \frac{1}{48} \sum_{i=0}^{9} (0+1*7+2*15+3*8+4*6+5*5+6*3+7*1+8*1+9*1) = \frac{152}{48}$$

+)
$$f(g) = \frac{t(g)}{m*n-t(g)} [m(g) - m(G-1)]^2$$

$$\Rightarrow$$
 f(0) = $\frac{1}{48-1} \left[0 - \frac{152}{48} \right]^2 = 0.21$

$$f(1) = 1,05$$
; $f(2) = 2,24$; $f(3) = 2,62$; $f(4) = 2,54$; $f(5) = 2,1$; $f(5) = 1,56$; $f(7) = 1,24$; $f(8) = 0,72$; $f(9) = \infty$

$$=> f(\theta) = \max_{0 \le g \le G-1} \{f(g)\} = \max_{0 \le g \le g} \{f(3)\}$$

b, Ngưỡgn Otsu k* là giá trị thỏa mãn điều tiên ở (k) đạt cực đại

Nếu cực đại không duy nhất thì k*được tính là trung bình các giá trị k tương ứng với các cực đại tìm thấy được.

Câu 4.7: a, Thực hiện tìm ngưỡng tự đồng với thuật toán đằng điệu cho bức ảnh I có biểu đồ tần suất sau:

<u></u>	Τ	T ₁ = -								
В	10	i 🖊	K .	3	4	5	6	7	8	9
h(g)	27	45	33	22	22	36	45	34	23	13
			lacksquare		L			L		

Mô tả từ ng burc chơ đến khi tìm được ngưỡng mong muốn. Được biết ảnh có 10 mức xám

b.Îlà c hiện min nguồng tự động với thuật toán đối xứng nền cho bức ảnh I' có biểu đồ tần sua sau:

g	0	1	2	3	4	5	6	7	8	9
h(g)	2	3	4	5	7	8	12	47	10	2

Được biết độ chính xác cần tính là 88%

Giải:

a, Chọn ngưỡng $t_0 = 5$

$$t_1 = \frac{1}{2} \left(\frac{0.27 + 1.45 + 2.33 + 3.22 + 4.22 + 5.36}{27 + 45 + 33 + 22 + 22 + 36} + \frac{6.45 + 7.34 + 8.23 + 9.13}{45 + 34 + 23 + 13} \right) = 4.72$$

$$t_2 = \frac{1}{2} \left(\frac{0.27 + 1.45 + 2.33 + 3.22 + 4.22}{27 + 45 + 33 + 22 + 22 +} + \frac{5.36 + 6.45 + 7.34 + 8.23 + 9.13}{45 + 34 + 23 + 13 + 36} \right) = 4.16$$

$$t_3 = \frac{1}{2} \left(\frac{0.27 + 1.45 + 2.33 + 3.22 + 4.22 + 5.36}{27 + 45 + 33 + 22 + 22 + 36} + \frac{5.36 + 6.45 + 7.34 + 8.23 + 9.13}{36 + 45 + 34 + 23 + 13} \right) = 4.16$$

=> Lấy ngưỡng T = 4

b, maxp = 7

 $\sum pixel = 100 \Rightarrow$ Số pixel từ $0 \Rightarrow$ p là 88 pixel

=> p = 7

 \Rightarrow Ngưỡng T = maxp - (p - maxp) = 7

KHUĖCH TÁN LÕI MỘT CH

- Ảnh được duyệt từ trái qua phải, từ trên xuống dưới
- Tại mỗi điểm ảnh, giá trị điểm ảnh được taki Heonguồng có sẵn
- Phần dư do lượng từ hóa được chuyển sang đồm ảnh tiếp theo trên cùng dòng
 Các bước được lặp lại cho đến hết dòng, phần dư của điểm ảnh cuối cùng sẽ được loại bỏ.

PHẦN LÝ THUYẾT

Câu 1.1: Mô hình mầu là gì? Liệt kê một vài mô hình mầu thông dụng? Một mô hình màu (hay hệ màu, không gian màu) là một hệ thống có quy tắc để tạo ra tất cả các màu sắc từ một nhóm nhỏ các màu cơ bản

Một vài mô hình màu thông dụng:

- + RGB (red, green, blue) cho các màn hình màu và camera video màu
- + CMY (cyan, magenta, yellow) và CMYK (Cyan, magenta, yellow, black) cho in màu.
- + HSV (Hue, saturation, value) và HSL (hue, saturation, lightags)

Câu 1.2: Mô hình màu CMY là gì? CMY khác RÇB ở có nà?

CMY là hệ màu trừ, sử dụng trong in ấn, sử dụng xurc để hiến thị màu, màu là kết quả của ánh sáng bị phản xạ dựa trên việc trốn thất Cyan + Magenta + Yellow = Black

- Sự khác nhau:
 - CMY:
 - + 3 màu này là phần bù tương tụng của 3 màu gốc RGB
 - + Hệ màu này sử dụng phùo sápháp phối màu trừ thay vì phối màu công
 - + Ưu điểm: Biểu nế, được họi màu trong phổ nhìn thấy
 - + Nhược điểm Pước tạp vì cần phải nhớ mối quan hệ giữa 2 không gian
 - RGK (Ned, Green, Blue)
 - + I wa va phương pháp phối màu cộng
 - + Từ ciếm: đơn giản nên được sử dụng rộng rãi, đầy đủ các ứng dụng cho này lính thường sử dụng cho màn hình máy tính vi tính
 - + Nhược điểm: không thể biểu diễn mọi mầu trên phổ nhìn thấy

Câu 1.3: Tại sao ngươi ta phát triển nên hệ màu HSV và HSL? Nêu ý nghĩa từng chữ cái thể hiện một thành phần của HSV và HSL?

- Vì dễ hình hình dung hơn và mô tả 1 cách chính xác hơn giá trị của màu
- Ý nghĩa:
 - + HSV: (H : Hue là độ màu, S : Saturation là độ bão hòa, V : Value là giá trị cường độ sáng)

+ HSL (H: Hue là độ màu, S: Saturation là độ bão hòa, L: Lightness là độ sáng)

Câu 1.4: Mô hình lưu trữ raster là gì? Mô hình raster khác mô hình vector ở điểm nào? Trong trường hợp nào thì dùng raster và trong trường hợp nào thì dùng vector?

 Mô hình lưu trữ raster là sử dụng các mạng lưới các ô hình vuông (ma trận) để thể hiện các đối tượng của thế giới thực

Mô hình raster	Mô hình vector
-Sử dụng mạng lưới các ô hình vuông(ma trận) để thể hiện thế giới thực như: điểm (1 pixel), đường (1 chuỗi các pixel) vùng (1 nhóm các pixel) -Kích cỡ không nhỏ(phụ thuộc kích cỡ) -Thuận lợi in ấn	-Lưu trữ cặp tọa độ của các đểi tượng thể hiện các đối tượng như: Điểm (1 cặp tọa độ), dường (1 chuỗi các cặp tọa độ), vùng (1 chuỗi các cặp tọa độ và) có thêm cặp tọa độ đầu và tọa độ cuối trùng nhau) -Không phụ thuộc vào kích cỡ, zoom tùy ý - Thuận vị lưu trữ và thiết kế

- Dùng raster trong các trường trợp điều diễn bề mặt, nén ảnh BMP, TIF

 Dùng vector để mô tả vị trí và nham vi của các đối tượng trong không gian, phổ biến trong đồ họa động

Câu 1.5: Tại sao kể thi ất nữn cường độ (halftone) được dùng trong in ấn? và ý tưởng cơ bản của kỳ thuật nửa cường độ là gì?

Kỹ thuật nửa cojong độ tá một quá trình mô phòng các sắc thái của màu xám bằng cách thay tổi kích thytớc của chấm đen nhỏ sắp xếp theo một mô hình chung.

Kỹ thuật Malitene được dùng trong in ấn vì: kỹ thuật halftone tiết kiệm hơn khi sử dựng di mày mà vẫn cho kết quả như nhau. Vì mắt thường không thể phân biệt sự khác nhay giữa 2 điểm ảnh nếu đi xa.

Ý tưởng cơ bản:

- Kỹ thuật halftone lợi dụng nguyên lý thu nhận ảnh của vật ở xa của mắt. Lúc này mắt chúng ta không nhìn được các điểm ảnh 1 cách cụ thể mà chỉ thấy cường độ trung bình của vùng ảnh.
- Ánh được tạo bởi các điểm ảnh. Mỗi điểm ảnh là 1 hình vuông trắng bao quanh
 1 chẩm đen.

 Tùy vào kích thước của chấm đen và số lượng chấm đen mà vùng ảnh có màu trắng đen hoặc xám.

Câu 1.6: Điểm ảnh đa cấp xám với chỉ mực mầu đen cần sử dụng kỹ thuật gì? Khuếch tin lỗi hỗ trợ được gì cho kỹ thuật này? Khuếch tán lỗi hơn gì tách ngưỡng thông thường?

Điểm ảnh đa cấp xám ta sử dụng kỹ thuật Halftone.

6.60

9 %

Khuếch tán lỗi giúp cho việc chuyển các điểm ảnh đa cấp xám về các điểm ảnh đen trắnb, từ đó ta có bức ảnh đen trắng có thể in được.

Khuếch tán lỗi hơn tách ngưỡng thông thường ở chỉ: Khuếch tán lỗi để giảm thiểu lỗi do quá trình tách ngưỡng gây ra (vì mực chỉ in được đen trắng). Khi tách ngưỡng giá trị điểm ảnh bị làm tròn và mất đi, khuếch tán giữ lại một phần giá trị này để đảm bảo bức ảnh không bị khác đi quá nhiều.

Câu 1.7: Khuếch tán lỗi là gì? Khuếch tán lỗi mộ chiều khác gì khuếch tán lỗi hai chiều? Khuếch tán lỗi hai chiều khắc phục được tiếm yếu gì của khuếch tán lỗi một chiều?

Khuếch tán lỗi là một dạng của kỹ thuật nửa cường độ được sử dụng đi chuyển ảnh mẫu liên tục sang dạng nửa cường độ để vậc chuyển và in ấn. Khuếch tán lỗi có xu hướng tăng cường các cạnh trong ánh nên giún ảnh dễ đọc hơn so với các kỹ thuật nửa cường độ khác.

Khuếch tán lỗi một chiều quốt ảnh hần lượt từng dòng và từng điểm ảnh, phần dư si bị bỏ đi khi hết dòng. Đơi với khuếch tán lỗi hai chiều, phần dư sẽ có một phần bị khuếch tán xuống ca dòng duới.

Khuếch tán lỗi mọ chiết thường để lại những đường thẳng dọc không mong muốn, khuếch tám lỗi vại chiều giúp giảm các lỗi đặc trung này.

Cán 18: với ảnh đa mức xám thì tăng giảm độ sáng của ảnh như thế nào? Chúng tạ phải sử dụng toán tử loại nào để thực hiện phép toán này?

Với ảnh đa mức xám, ta tăng giảm độ sáng của ảnh bằng cách tăng/giảm một giá trị c tại mỗi điểm trong ảnh. Nếu gia trị thay đổi < 0 thì ta án nó bằng 0, nếu giá trị thay đổi > 255 thì ta gán nó bằng 255. Toán từ sử dụng: toán từ điểm (là những phép toán không phụ thuộc vị trí điểm ảnh)

Câu 1.9: Cân bằng tần suất là gì? Tại sao phải cân bằng tần suất? Ảnh I gọi là cân bằng "lý tưởng" nếu với mọi mức xám g, g' thì ta có h(g) = h(g')

Trong đó h(g) là biểu đồ tần suất của mức xám g

Cân bằng tần suát là xác định hàm f: g => f(g) sao cho

Tại sao cần cân bằng tần suất:

- Đối với ảnh tối màu thì biểu đồ tập trung ở vùng xám thấp
- Đối với ảnh sáng thì biểu đồ tập trung ở vùng xám cao
- Đối với những ảnh có độ tương phản thấp thì biểu đồ tập trung vùng xám giữa
- Cân bằng tần suất giúp phân bố đều các mức xám

Câu 1.10: Biến đổi cửa sổ di chuyển hay còn gọi là biến đổi cuộn là biến đổi sử dụng toán tử gì? Ý tưởng cơ bản cần biến đổi này là gì?

- Biển đổi cửa số di chuyển là biến đổi sử dụng toán là không gian.
- Ý tưởng:
 - + Cửa số di chuyển là công cụ đi áp dụng tác phío toán 1 cách cục bộ, với đầu vào là các điểm lân cận trong phạm vị cửa số. Giá trị điểm ảnh kết quả chỉ phụ thuộc vào giá trị các điểm ảnh lận cận và phép toán được áp dụng.
 - + Cửa sổ di chuyển được dùng nhữ phép trung gian nhằm thực hiện nâng cao chất lượng ảnh hoặc áp dụng k thuật toán lên cả bức ảnh (lọc, nhân chập,...).

Câu 1.11: Mô hình nhiễu gì? Fại sao phải sử dụng mô hình nhiễu. Viết công thức giai thích mô bình nhiều rời rạc

- Mô hình nhiều là mà hình biểu thị sự liên quan giữa ảnh bị nhiễu với ảnh gốc và thành phần nhiễu
- Vì từ nô hình nhiều ta có thể khôi phục được ảnh gốc.
- Mố vình chiết rời rạc:

$$g'[m, n] = h[m, n] * g[m, n] + \eta[m, n]$$

g'[m,]: ma trận bị nhiễu

h[m,n] * g[m,n] : ma trận gốc

η[m, n]: thành phần nhiễu

Câu 1.12: Biên là gì? Phát hiện trực tiếp là gì? Nêu một vài ví dụ về cách phát hiện biên trực tiếp?

- Chưa có định nghĩa chính xác về biên, nhưng có thể hiểu là sự thay đổi đột ngột của mức xám. Tập hợp các điểm biên gọi là đường biên bao quanh đối tượng
- Phát hiện biên trực tiếp là làm nổi biên dựa vào sự biên thiên của cấp xám, kết quả thu được là ảnh biên
- Ví du:

+ Nếu lấy đạo hàm bậc nhất của ảnh ta có phương pháp Gradient

Anh biên = $I \otimes A + I \otimes B$

+ Nếu lấy đạo hàm bậc 2 ta có kỹ thuật Laplace

$$H = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Ånh biên = I ⊗H

100

Câu 2.3: Mô hình hưu trữ vector là gọc Mô bình vector khác mô hình cơ bản ở điểm nào? Nếu ảnh vector có nhiều ưu tiếm tại sao không sử dụng vector mà vẫn phải sử dụng ảnh raster?

- Mô hình vector lưu trữ cặp tạt độ của các đối tượng, thể hiện các đối tượng như: Điểm (1 cặp tạt độ), dường(1 chuỗi các cặp tọa độ), vùng (1 chuỗi các cặp tọa độ và aó tiêm cặp tọa độ đầu và tọa độ cuối trùng nhau)
- Su kház mhau

Mô hình riste	Mô hình vector
-Sử dụng cáng dơi các ô hình vuông(ma trạnh di thể kiện thế giới thực như; điểm (1 pix 1), đường (1 chuỗi các pixel) vùng (1 nhóm các pixel) -Kích cỡ không nhỏ(phụ thuộc kích cỡ)	hiện các đối tượng phy: Điểm (1)
-Thuận lợi in ấn	-Không phụ thuộc vào kích cỡ, zoom tùy ý
	- Thuận lợi lưu trữ và thiết kế

- Ảnh vector có nhiều ưu điểm nhưng không sử dụng nhiều vì:
 - + Bắt buộc phải sử dụng ảnh thật để có thể tính toán ra tỉ lệ vector rồi mới có thể tạo ra ảnh vector
 - + Việc tính toán các tỉ lệ vector là phức tạp

Câu 2.4: Lọc trung vị khác với lọc trung bình khác với lọc trung bình k giá trị gần nhất như thế nào? Nên chọn từng phép lọc trong từng trường hợp như thế nào?

Phép lọc- trung vị là phép lọc cửa sổ di chuyển nhằm biến đối giá vị của tiềm ảnh đang xét dựa vào phần tử trung vị trong số các điểm ánh lần (a). đang xét (đã sắp xếp tăng dần) và một ngưỡng:

- Nếu độ lệch giữa điểm ảnh đang xét với điểm ánh trung vị V quá ngưỡng thì

nó sẽ được gần bằng giá trị điểm ảnh trung vị.

Nếu không thì giữ nguyên.

Ví dụ nếu có nhiều Như vậy phép lọc này sẽ biển đổi điểm ảnh dựa theo "số a ảnh đang xét sẽ được gán về điểm ảnh có giá trị thấp (chiếm vị trí trung vị) thể điể giá trị đó mặc dù nó cao.

- => Dùng trong trường hợp muốn quan tâm xơn phần lớn" các điểm ảnh xung quanh nó như thế πào.
 - Phép lọc trung bình là phép lọc cửa số di chuyển, làm biến đổi giá trị của điểm thung bình cộng của các điểm ảnh lân cận và một ảnh đang xét dựa vào già ngưỡng:

Nếu độ lệch giữa dien ảnh dang xét với giá trị trung bình cộng vượt quá ngưỡng thì nơ sẽ trợc gắn bằng trung bình cộng.

Nếu không giữ nguyên.

Như vậy phés lọc hay sẽ biến đổi điểm ảnh dựa vào việc "cào bằng". Điểm ảnh đang xét sẽ là trong lình của tất cả các điểm ảnh xung quanh nó.

ong xrường hợp muốn quan tâm đến tất cả các điểm ảnh xung quanh (trung

- Phép lọc trung bình theo k giá trị gần nhất cũng tương tự như phép lọc trung bình nhưng thay vì so với trung bình cộng của tất cả các điểm ảnh lân cận thì nó lại so với trung bình cộng của k phần tử có giá tri gần nhất với nó.
 - + Nếu k lớn hơn kích thước cửa sổ thì nó sẽ là phép lọc trung bình.
 - + Nếu k = 1 thì ảnh không đổi.

Nên ảnh kết quả sẽ phụ thuộc vào k.

Như vậy phép lọc sẽ biến đổi điểm ảnh dựa theo việc có bao nhiều điểm ảnh khác có giá trị gần với nó.

=> Dùng trong trường hợp muốn quan tâm đến các điểm ảnh "cùng loại" (có giá trị gần nhất).

Câu 2.5; Phát hiện biên bằng đạo hàm dựa trên nguyên lý gì? Ma trận (-1 1) có ý nghĩa gì?

- Quá trình biến đổi về giá trị các độ sáng của các điểm ảnh, tại điểm biên sẽ có sự biến đổi đột ngột về các mức xám. Dựa vào cực đại của đạo hàm, ta có các kĩ thuật dò biên cực bộ.
- Ý nghĩa ma trận (-1 1):

160

855

- Theo định nghĩa Gradient là một vecto có các thành phần biểu thị ốc độ hay đổi giá trị của điểm ảnh, ta có:

$$\begin{cases} \frac{\partial f(x,y)}{\partial x} = fx \approx \frac{f(x + dx, y) - f(x, y)}{dx} \\ \frac{\partial f(x,y)}{\partial y} = fy \approx \frac{f(x, y + dy) - f(x, y)}{dy} \end{cases}$$

Với dx = dy = 1(dx, dy là khoảng cách theo krong vy) ta có:

$$\begin{cases} \frac{\partial f}{\partial x} = fx \approx f(x, y) \\ \frac{\partial f}{\partial y} = fy \approx f(x, y) + 1 - f(x, y) \end{cases}$$

=> ma trạn (-1 1) là ma trận nhật, thip neo hướng x

Câu 2.6: Phát hiện hiện bằng đạo hàm dựa trên nguyên lý gì? Nêu ba loại ma trận nhân chập to thể tim biến. Với mỗi ma trận hãy nêu nguyên lý và các bước tiếp theo nếu cơ tế có hiện rõ ràng.

Quá trình biết đổi v giá trị các độ sáng của các diễm ảnh, tại điểm biên sẽ có sự biến đổi đột ngột về tác mức xám. Dựa vào cực đại của đạo hàm, ta có các kĩ thuật đỏ biên cục bấ

 $_{i}^{1},$

Ba loại ma trận nhân chập có thể tìm biên là:

Kỹ thuật Prewit
 Nguyên lí: sử dụng 2 mặt nạ nhập chập xấp xi đạo hàm theo 2 hướng x và y là

$$\mathbf{H_x} = \begin{pmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix} \qquad \qquad \mathbf{H_x} = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Các bước tính toán, với I là ảnh đầu vào:

+ Bước 1: Tính Í ⊗Hx và I ⊗ Hy

- + Bước 2: Tính I ⊗Hx + I ⊗ Hy
 - Kỹ thuật Sobel

Nguyên lý: sử dụng 2 mặt nạ nhập chập xấp xỉ đạo hàm theo 2 hướng x và y

$$\mathbf{H_x} = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}$$

$$H_{x} = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

Các bước tính toán:

- + Bước 1: Tính I ⊗Hx và I ⊗ Hy
- + Bước 2: Tính I ⊗Hx + I ⊗ Hy
 - Kỹ thuật Frie Chen

Nguyên lý được thiết kế xấp xi đạo hàm Gradient rời rạc, mặt na xử lý có dạng:

$$\mathbf{H_x} = \begin{bmatrix} 1 & 0 & -1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 1 & 0 & -1 \end{bmatrix}$$

Các bước tính toán:

- + Bước 1: : Tính I ⊗Hx và I ⊗ Hy
- + Bước 2: Tính I ⊗Hx + I ⊗ Hx

Câu 2.7: Canny có mày bước là những bước gì? Bước nào trong Canny là quan trọng nhất, tại sạo:

Canny có 5 bước, đó là

- + Bước 1. Ametron ảnh (ma trận Gaussian)
- + Bucc Tinh gradient bằng ma trận Prewitt
- + Bucc 3: Tinh gradient hướng tại mỗi điểm (i,j)
- + Bước 4: Loại bỏ những điểm không phải là cực đại để xóa bỏ những điểm không phải là biên
- + Bước 5: Phân ngưỡng để tlm biên

Câu 2.8: Phân vùng dùng thuật toán đối xứng nền là kỹ thuật gi? Dựa vào điều gì trong các bức ảnh đầu vào cho phép thuật toán trả về kết quả đúng nhất? Đối xứng nền là kỹ thuật dựa trên sự giả định là tồn tại phân biệt trong lược đồ nằm đối xứng nhau qua đinh có giá trị lớn nhất trong phần lược đồ thuộc về các điểm ảnh nền.

Thuật toán muốn lấy p% nền ra khỏi đối tượng, tuy nhiên khi lấy a lại chỉ có cách tính cả đối tượng => nếu đối tượng lớn thì p% sẽ bị sai số gây ảnh hưởng tới ngưỡng (ngưỡng quá sâu vào nền và đối tượng sau khi tách thì quá to). Nên ảnh đầu vào dựa vào các điều sau thì thuật toán cho KQ đúng nhất

- Phân phối nền là rất lớn so với phân phối đối tượng

Cả phân phối nền và phân phối đối tượng đều đối xưng

Câu 2.9: Phân vùng sử dụng thuật toán tam giác là gi? Ý vớng có bản của thuật toán này là gi? Trong trường hợp nào thi thuật toán này không nên sử dụng?

 Tìm ranh giới giữa phân phối của nền và đôi tượng dựa vào khoảng cách của lược đồ histogram tới đường thẳng nối đồim có vố điểm ảnh lớn nhát và nhỏ nhất.

- Ý tưởng: Tìm ngưỡng b sao cho: kẻ một đường Δ từ đỉnh có số điển ảnh bằng max tới điểm có số điểm ảnh là min. V trí nhưỡng xám b là khoảng cách từ Δ đến H_b là max

- Vì thuật toán dựa vào giả đạnh là chỉ có 1 đỉnh hiện rõ còn đỉnh, còn lại bị đuôi của đỉnh lớn che khuất (đối trọng tắt nhỏ so với nền) -> không nên sử dụng thuật toán khi đỉnh nằm rất gần định hoặc có nhiều đỉnh.

Câu 2.10 Kỹ thuật tách cây tứ phân và hợp cũng như tách- hợp trong phân vùng dựa và vý thếng gi? Yếu tố gì đánh giá tính chính xác cũng như tính thống nhất của thuật cán?

Các vớ thuật tách cây tứ phân và hợp cũng như tách-hợp trang phân vùng dựa vào ý tưởng:

Phân vùng ảnh dựa trên thuộc tính quan trọng nào đó của miền.

Yếu tố đánh giá tính chính xác cũng như tính thẳng nhất của thuật toán:

- Mỗi thuộc tính khi sử dụng thì có một tiêu chuẩn phân đoạn tương ứng (mức xám, màu sắc, kết cấu ...)
- Mức độ hiệu quả thường phụ thuộc vào việc đánh giá độ thuần nhất, tháng

(E.S.)

thường là trung bình và độ lệch chuẩn.

Câu 2.11: Kỹ thuật K mean là kỹ thuật gì, ý tưởng cơ bản là gì? Yếu tố gì có ảnh hưởng rất lớn tới hiệu quả của k trung bình?

Kỹ thúật K-mean là một kỹ thuật phân cụm dữ liệu.

Ý tưởng: tìm- cách phân nhóm các đối tượng đã cho vào K cụm (K là số các cụm được xác định trước, K nguyên dương) sao cho tổng bình phương khoảng cách giữa các đối tượng đến tâm nhóm là nhỏ nhất

Thuật toán K-Means được mô tá như sau

Thuật thán k Means thực hiện qua các bước sau:

Chọn ngẫu nhiên K tâm cho K cụm. Mỗi cụm được đại diện bằng các tâm của

- 2. Tính khoảng cách giữa các đối tượng đến K tâm
- 3. Nhóm các đối tượng vào nhóm gần nhất
- 4. Xác định lại tâm mới cho các nhóm
- 5. Thực hiện lại bước 2 cho đến khi không có sự thay đổi nhóm nào của đối tượng Ưu nhược điểm: Thuật toán K – Means có ưu điểm là đơn giản, dễ hiểu và cải đặt. Tuy nhiên một số hạn chế của K -means là hiệu quả của thuật toán phụ thuốc vào việc

chọn số nhóm K (phải xác định trước) và chi phí cho thực hiện vòng lặp tính toán khoảng cách lớn khi cụm số K và dữ liệu phân cụm lớn

Câu 2.12: Kỹ thuật K láng giếng là gì? K láng giếng thường được sử dựng để làm gì? Ý tưởng căn bản nhất của K láng giếng là gì?
Kỹ thuật K láng giếng là kỹ thuật dùng để phân lớp các đối tượng.

Mục đích:

K láng giềng được sử dụng rất phổ biến trong lĩnh vực Dan mining, K láng giềng là phương pháp để phân lớp các đối tượng dựa vào khoảng cách gần nhất giữa đối tượng cần xếp lớp (Query point) và tất cả các đối tượng trong Tráining Data.

Một đối tượng được phân lớp dựa vào k làng giống của nó. K là số nguyên dương được xác định trước khi thực hiện thười toán. Người ta thường dùng khaorng cách Euclidean để tính khoảng cách giữa các đời tượng.

Ý tưởng:

Trong hình dưới dây, tráining Data được mô tả bởi dấu (+) và dấu (-), đối tượng cần được xác định lớp cho nh (Quely point) là hình tròn đỏ. Ý tưởng của thuật toán K láng giềng là làm thế tiáo ti ước tượng lớp của Query point dựa vào việc lựa chọn số K láng giềng gần nhất với lợc.

Nói cách khách với k láng giềng thì chúng ta sẽ biết liệu Query point sẽ được phân vào lớp (+) nà, lớp (-)

Ta thấy rằng:

Kết quả là + (Query Point được xếp vào lớp dấu ◄

 Không xác định lớp cho Query Point vì số láng giềng cần nhất với nó là 2 trong đó 1 là lớp + và 1 là lớp - (không có lớp não có số dôi tượng nhiều hơn lớp kia)

5. kết quả là -- (Query Point được xếp và; top Vấu vì trong 5 láng giềng gần nhất với nó thì có 3 đối tượng thuộc lớp a nhiều hợn lớp + chỉ có 2 đối tượng)

Uu nhược điểm:

Thuật toán K-NN có ưu diễm là dou giản, dễ hiểu, dễ cài đặt. Tuy nhiên kết quả bài toán phụ thuộc rất lớn vào tác chọi tham số K (số láng giềng gần nhất)

Câu 2.13: Mạng Hopfield là gì? Mạng Hopfield có cấu tạo như thế nào? Mô tả sơ bộ hoạt động của naug Hopfield

Mạng Horfier! là mạng noron, ánh xạ dữ liệu tín hiệu vào sang tín hiệu ra theo kiểu tự kết họn (Marc Hopfield mô phỏng khả năng hồi tưởng của não người

Cá tại của mạng Hopfield:

- + Có my lớp ra có kích thước bằng kích thước tín hiệu vào, liên kết noron là đầy đủ
- + Yêu cầu tín hiệu vào có giá trị lưỡng cực -1 và 1

Hoạt động của mạng Hopfield:

- + Giả sử có p mẫu học tương ứng với các vector tín hiệu vào X_s , s=1...p
- + Định bộ trọng số W sao cho $X_s = f(X_s, W)$ với mọi s = 1...p

+ Ta xây dựng ma trận trọng số W như sau:

$$W_{ij} = \begin{cases} \sum_{s=1}^{p} x_{sj} x_{si} & i \neq j \\ 0, i = j \end{cases}$$

- + Giả sử đưa vào mạng vector tín hiệu X
- + Việc tính toán đầu ra Y cho tín hiệu X là quá trình lặp lai:
 - Đặt $X_0 = X$
 - Tính Y_t là tín hiệu đầu ra tương ứng với X_t lan truyền trong mang nó
- + W không thay đổi trong quá trình tính Y

Cân 2.14: Mạng Kohonen có tên gọi khác là gì? Kai sau chúng ta gọi mạng Kohonen như vậy? Ý tưởng cơ bản của mạng Kohonen là gi? Ở khía cạnh nào mạng Kohonen mô phỏng não người? '

- Mạng Kohonen có tên gọi khác là bản đổ cho cón hoặc bản đổ tự tổ chức. Chúng ta gọi như thế vì mạng Kohonên tạp trong vào mối liên hệ có tính cấu trúc trong các vùng lân cận hoặc trong toàn thể không gian mẫu. Trong mạng Kohonen các vector tín hiệu vào gai phai sẽ được ánh xạ sang các nơron trong mạng lân cận nhau.
- Ý tưởng cơ bản của mạng Kohonen là:
 - + Mạng Kohonen gần với viện sính học về cấu tạo lẫn cơ chế học.
 - + Sử dụng mạng norox có liên kết với nhau.

Khía cạnh của mạng Koh gen mô phỏng não người là:

- + Mạng Kô onen ất gần với mạng sinh học về cấu tạo lẫn cơ chế học.
- + Many Kohomen có một lớp kích hoạt là các noron được phân bố trong mặt khẳng vai nhiều kiểu lưới vuông hoặc lục giác.
- Phận bố này làm cho mỗi nơron có cùng số nơron trong từng lớp láng giềng và các đầu vào tương tự nhau sẽ kích hoạt các nơron gần nhau.
- *Các nơron trên lớp kích hoạt chỉ nối với các lớp lân cận nên khi có tín hiệu đầu vào sẽ chỉ tạo ra kích hoạt địa phương.

Câu 2.15: Mã hóa loạt dài RLC là gì? Trong trường hợp nào mã hóa loạt dài sẽ tăng kích thước dữ liệu được mã hóá?

Là phương pháp phát hiện một loạt các bít lặp lại, thí dụ như một loạt các bít 0 nằm giữa hai bít 1, hay ngược lại, một loạt bít 1 nằm giữa hai bit 0. Phương pháp này chỉ

có hiệu quả khi chiều dài dãy lặp lớn hớn một ngưỡng nào đó. Phương pháp RLC được sử dụng trong việc mã hóa lưu trữ các ảnh Bitmap theo dạng PCX, BMP. Nếu mã hóa các gía trị đó lớn hơn cả dữ liệu gốc thì sẽ làm tăng kích thước dữ liệu. VD: mã hóa 00000 thành 0x5 mà x5 lại mã hóa thành 1 byte ~ 8 bit => tăng từ 5 lên 9 bit

Câu 2.16: Biến đổi Cosin trong nén JPEG nhằm mục đích gì? Và bước ko trong nén JPEG sẽ làm cho quá trình nén ănh là không bảo toàn?

Biến đổi Cosin nhằm chuyển ảnh từ miền không gian (spartill domain) sang miền tần số (frequency domain). Việc biến đổi này nhằm giúp việc tách và lọai bở nhữ to biến đổi không cần thiết cho mắt người để dàng hơn (Mắt người thường Không tốt t ông nhận biết thay đổi có tần số lớn nên ta có thể tách và loại những thay đổi này)

Trong các bước thì kể cả bước biến đổi Cosin cũng là bảo toàr (với điều kiện II không có sai số trong tính toán dấu châm động). Nhưng khi lượng hà họ thì dác giá trị tần số cao sẽ tiến tới $0 \Rightarrow D$ ữ liệu bị mất. Như vậy:

- + Trên lý thuyết có 1 bước không bảo toàn là Lượng ở hóa
- + Trên thực tế có 2 bước không bảo toàn là Lượng và hòa và biến đổi Cosin

Câu 3.1: a, Tính biểu đồ tần suất hiệ cho bức ảnh i sau:

$$I = \begin{bmatrix} 1 & 2 & 1 & 3 & 2 & 1 \\ 4 & 4 & 3 & 2 & 4 & 1 \\ 6 & 9 & 2 & 3 & 2 & 1 \\ 6 & 2 & 0 & 5 & 3 & 1 \\ 3 & 4 & 0 & 5 & 5 & 5 \\ 5 & 6 & 8 & 9 & 6 \end{bmatrix}$$

b, h'(r) là biến đồ tần suất của ảnh I' biến đổi từ ảnh I bằng hàm f(g) sau. Hãy tính

$$f(g) = |g - 4|$$

Giải:

a, Biểu đồ tần suất h(g) cho ảnh I:

					1	-	6	0	a
g	0	1 '	. 2	3	4)	0		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							4		2
h(g)	4	5	6	6	4	4	4	1	4
11(6)	•				L				

b,
$$f(0) = 1$$
; $f(1) = 3$; $f(2) = 2$; $f(3) = 1$; $f(4) = 0$; $f(5) = 1$; $f(6) = 2$; $f(8) = 4$; $f(9) = 5$

$$h(q=0) = h(g=4) = 4$$

$$h(q=1) = h(g=3) + h(g=5) = 10$$

$$h(q=2) = h(g=2) + h(g=6) = 10$$

$$h(q=3) = h(g=1) = 5$$

$$h(q=4) = h(g=0) + h(g=8) = 5$$

$$h(q=5) = h(g=9) = 2$$

			,		
q	1.0	1	2	3	
	છે.	-	-	1	4 ~ \
h'(g)	4	10	10	+	
(8)	891	10	10	13	
				<u> </u>	

Câu 3.2: a, Tính biểu đồ tần suất h(g) cho bức ảnh I say

$$I = \begin{bmatrix} 1 & 2 & 1 & 3 & 2 & 1 \\ 4 & 4 & 3 & 2 & 4 & 0 \\ 6 & 9 & 2 & 3 & 2 & 1 \\ 6 & 2 & 0 & 5 & 3 & 0 \\ 3 & 4 & 0 & 5 & 1 & 5 \\ 5 & 6 & 8 & 9 & 3 & 6 \end{bmatrix}$$

b, h'(g) là biểu đồ tần suất của ảnh l biển đổi từ ảnh I bằng hàm f(g) sau. Hãy tính h'(g)

$$f(g) = |2g - 9|$$

Giải:

a,

· 海市

		y						
g 0	V	2	3	4	5	6	8	9
h(g)	5	6	6	4	4	4	1	2.
h	,					<u> </u>	L	

$$f(0) = 9$$
 $f(1) = 7$ $f(2) = 5$ $f(3) = 3$ $f(4) = 1$ $f(5) = 1$ $f(6) = 3$

$$f(8) = 7$$
 $f(9) = 9$

$$h'(g = 1) = h(g = 4) + h(g = 5) = 8$$

$$h'(g = 3) = h(g = 3) + h(g = 6) = 10$$

$$h'(g=5) = h(g=2) = 6$$

$$h'(g=7) = h(g=1) + h(g=8) = 6$$

$$h'(g = 9) = h(g = 0) + h(g = 9) = 6$$

g	1	3	5	7	9
h'(g)	8	10	6	6	6

Câu 3.3(c) a. Tính biểu đồ tần suất h(g) cho bức ảnh I sau:

$$I = \begin{bmatrix} 1 & 2 & 1 & 3 & 2 & 1 \\ 4 & 4 & 3 & 2 & 4 & 0 \\ 6 & 9 & 2 & 3 & 2 & 1 \\ 6 & 2 & 0 & 5 & 3 & 0 \\ 3 & 4 & 0 & 5 & 1 & 5 \\ 5 & 6 & 8 & 9 & 3 & 6 \end{bmatrix}$$

b, Thực hiện làm trơn biểu đồ tần suất tính được ở trận vớ W=3 và W=5

Giải

a, Biểu đồ tần suất h(g) cho bức ảnh I là:

σ	0	1	2	3	1	5 ₹	6	8	9
15				L ,		<u> </u>			
h(g)	4	5	6	6	4 >	4	4	[¹	2
- 10/	1	1	1	∡		<u> </u>	L.—		

b, Ta có: hsmooth(g) =
$$\frac{1}{W} \sum_{g=0}^{W-1} h(g-W)$$

$$\Rightarrow hsmooth(0) = \frac{1}{3} \sum_{i=1}^{3} h(0 - w) = \frac{1}{3} [h(-1) + h(0) + h(1)] = 3$$

$$hsmooth(1) = [h(0) + h(1) + h(2)] = 5$$

$$hsmooth(2) = \frac{1}{3}[h(1) + h(2) + h(3)] = 6$$

hsmoot)(3) =
$$\frac{1}{3}$$
[h(2) + h(3) + h(4)] = 5

hsmooth(4) =
$$\frac{1}{3}$$
[h(3) + h(4) + h(5)] = 5

hsmooth(5) =
$$\frac{1}{3}$$
[h(4) + h(5) + h(6)] = 4

hsmooth(6) =
$$\frac{1}{3}$$
[h(5) + h(6) + h(7)] = 3

hsmooth(8) =
$$\frac{1}{3}$$
[h(7) + h(8) + h(9)] = 1

hsmooth(9) = $\frac{1}{a}$ [h(8) + h(9) + h(10)] = 1

g	0	1	2	3	4	5	6	8	9
hsmooth(g)	3	5	6	5	5	4	3	1	1

 $V \acute{o} i W = 5$

9615

$$\Rightarrow \text{ hsmooth}(0) = \frac{1}{5} \sum_{-2}^{2} h(0 - w) = \frac{1}{5} [h(-2) + h(-1) + h(0) + h(1) + h(2)] = 3$$

$$hsmooth(0) = \frac{1}{5}[h(-1) + h(0) + h(1) + h(2) + h(3)] = 4$$

hsmooth(0) =
$$\frac{1}{5}$$
 [h(0) + h(1) + h(2) + h(3) + h(4)] = 5

hsmooth(0) =
$$\frac{1}{5}$$
[h(1) + h(2) + h(3) + h(4) + h(5)] = $\frac{1}{5}$

hsmooth(0) =
$$\frac{1}{5}$$
 [h(2) + h(3) + h(4) + h(5) + h(6)]

hsmooth(0) =
$$\frac{1}{5}$$
[h(3) + h(4) + h(5) + h(6) + h(7)]

hsmooth(0) =
$$\frac{1}{5}$$
 [h(4) + h(5) + h(6) + h(7) + h(8)] = 3

hsmooth(0) =
$$\frac{1}{5}$$
 [h(6) + h(7) + h(8) h(9) + h(10)] = 1
hsmooth(0) = $\frac{1}{5}$ [h(7) + h(9) + h(9) + h(10) + h(11)] = 1

hsmooth(0) =
$$\frac{1}{5}$$
[h(7) + h(9) + h(9) + h(10) + h(11)] = 1

Or .	04	t . →	10	1-0	 .				
6	X `		1 2	3	4	5	6	8	9
			·I	L	L		1	~	
hsmooth(g)	3	4	15	5	5	4	2	1	-
			1	-	-		J	ļ. <u>†</u>	Ţ
	1					<u>'</u>		L	

hực hiện cân bằng tần suất cho ảnh I, được biết ảnh h kết quả cùng là ảnh cấp 6 cấp xám

$$I = \begin{bmatrix} 3 & 1 & 4 & 4 & 2 & 3 \\ 3 & 2 & 2 & 0 & 5 & 1 \\ 1 & 2 & 3 & 1 & 0 & 1 \\ 4 & 1 & 0 & 2 & 4 & 4 \\ 3 & 1 & 0 & 1 & 0 & 1 \\ 2 & 1 & 3 & 2 & 1 & 3 \end{bmatrix}$$

b, Thế nào là cân bằng lý tưởng? Sau khi cân bằng của ảnh đã là cân bằng lý tưởng hay chua?

Giải

Số điểm ảnh TB của mỗi mức xám của ảnh cân bằng là:

$$TB = \frac{6 \cdot 6}{6} = 6$$

Số điểm ảnh có mức xám << = g là:

$$t(0) = 5$$

$$t(1) = \sum_{i=0}^{1} h(0) + h(1) = 16$$

$$t(2) = \sum_{i=0}^{2} h(0) + h(1) + h(2) = 23$$

$$t(3) = \sum_{i=0}^{3} h(0) + h(1) + h(2) + h(3) = 30$$

$$t(4) = \sum_{i=0}^{4} h(0) + h(1) + h(2) + h(3) + h(4) = 35$$

$$t(5) = \sum_{i=0}^{5} h(0) + h(1) + h(2) + h(3) + h(4) + h(5) = 3$$

$$f(0) = \max\{0, \text{ round } (\frac{5}{6}) - 1\} = 0$$

$$f(1) = \max\{0, \text{ round } (\frac{16}{6}) - 1\} = 2$$

$$f(2) = \max\{0, \text{ round } (\frac{23}{6}) - 1\} = 3$$

$$f(3) = \max\{0, \text{ round } (\frac{30}{6}) - 1\} = 4$$

$$f(4) = \max\{0, \text{ round } (\frac{3}{6}, -1)\} = 5$$

$$f(5) = \max\{0 \text{ round } (\frac{3}{6} - 1) = 5$$

b, - Ảnh I được gọi là cân bằng lý tưởng nếu mọi mức xám g, g' ta có h(g) = h(g') Sau khi cân bằng tầ suất:

		-				
ſ	g	0	2	3	4	5
	h'(g)	5	11	7	7	6
- 1						

Để thấy h'(0) $\neq h'(2) => {\rm \dot{A}}{\rm nh}~{\rm I}_{\rm kq}$ không là cân bằng lý tưởng

Câu 3.5 (C): a. Thực hiện cân bằng tần suất cho ảnh I thành ảnh I', được biết ảnh I và I' cùng là ảnh 6 cấp xám

$$I = \begin{bmatrix} 3 & 4 & 1 & 1 & 4 & 3 \\ 3 & 4 & 4 & 5 & 0 & 4 \\ 4 & 4 & 3 & 4 & 5 & 4 \\ 1 & 4 & 5 & 4 & 0 & 2 \\ 3 & 4 & 5 & 4 & 5 & 4 \\ 2 & 4 & 3 & 4 & 2 & 3 \end{bmatrix}$$

b. Thế nào là ảnh cân bằng lý tưởng? Sau khi cân bằng thì ảnh đặ là cặn bằng lý tưởng chưa?

a,

- 1					- N		-		
	g	0	1	2	13,	V	4	5	
	h(g)	7	2		- 1		<u>~</u> "		
		2	3	3	$\Delta \Delta$	J 1	16	5	
						y			

- Số điểm ảnh trung bình của mỗi mức sớn khi can bằng là: $TB = \frac{6*6}{6} = 6$
- Số diểm ảnh có mức xám $\leq q$ là: $(g) \sum_{i=0}^{g} h(i)$

$$t(0) = h(0) = 2$$

$$t(1) = h(0) + h(1) = 5$$

$$t(2) = h(0) + h(1) + h(2) = 8$$

$$t(3) = h(0) + h(1) + h(3) = 15$$

$$t(4) = h(0) + h(1) + h(2) + h(3) + h(4) = 31$$

$$t(5) = h(0) + h(1) + h(2) + h(3) + h(4) + h(5) = 36$$

$$f(g) = \max\{0, round\left(\frac{t(g)}{TB}\right) - 1\}$$

$$f(0) = \max\{0, round\left(\frac{2}{6}\right) - 1\}$$

$$f(1) = \max\{0, round\left(\frac{5}{6}\right) - 1\}$$

$$f(2) = \max\{0, round\left(\frac{8}{6}\right) - 1\}$$

$$f(3) = \max\{0, round\left(\frac{15}{6}\right) - 1\}$$

$$f(4) = \max\{0, round\left(\frac{31}{6}\right) - 1\}$$

$$f(5) = \max\{0, round\left(\frac{36}{6}\right) - 1\}$$

$$\Rightarrow I_{kq} = \begin{bmatrix} 2 & 4 & 0 & 0 & 4 & 2 \\ 2 & 4 & 4 & 5 & 0 & 4 \\ 4 & 4 & 2 & 4 & 5 & 4 \\ 0 & 4 & 5 & 4 & 0 & 0 \\ 2 & 4 & 5 & 4 & 5 & 4 \\ 0 & 4 & 2 & 4 & 0 & 2 \end{bmatrix}$$

b. Ảnh I được gọi là cân bằng lý tưởng nếu mọi mức xám g, g' ta có h

Sau khi cân bằng tần suất:

g	0	2	4)5 ×
h'(g)	8	7	16	5

Dễ thấy $h'(0) \neq h'(2) => Anh I_{kq}$ không là cân bằng lý tươn c

Câu 3.6 (B) a. Thực hiện khuếch tán lỗi một chiều với ảnh I sử dụng ngưỡng 127, được biết ảnh này là ảnh 256 mức xám với mức nhỏ nhất là 0 và lớn nhất là 255

$$I = \begin{bmatrix} 1 & 23 & 156 & 22 & 45 \\ 133 & 13 & 12 & 12 & 212 \\ 12 & 232 & 127 & 32 & 21 \end{bmatrix}$$

Turong tự, $b_{33} = 0$, $b_{34} = 255$, $b_{35} = 0$

b, Kỹ thuật khuếch tán lỗi được ở dụng để làm gì, ảnh thu được sau khuếch tán lỗi hơn gì ảnh tách ngưỡng thông thường?

Giải:

a,
$$\theta = 127$$
, $r_k = [0, 155]$

$$u_{11} = I_{11} = \{ \theta = 127 => b_{11} = 0, e_{11} = b_{11} - u_{11} = -1 \}$$

$$u_{12} = b_{12} - c_{11} - 24 < \theta = 127 => b_{12} = 0, e_{12} = b_{12} - u_{12} = -24 \}$$
Tuong tu, $v_{13} = 255$, $b_{14} = 0$, $b_{15} = 0$

$$u_{21} = b_{11} = 133 > \theta = 127 => b_{21} = 255$$
, $e_{21} = b_{21} - u_{21} = 122$

$$u_{22} = I_{22} - e_{21} = -109 < \theta = 127 => b_{22} = 0$$
, $e_{22} = b_{22} - u_{22} = 109$
Tuong tu, $b_{23} = 0$, $b_{24} = 0$, $b_{25} = 255$

$$u_{31} = I_{31} = 12 < \theta = 127 => b_{31} = 0$$
, $e_{31} = b_{31} - u_{31} = -12$

$$u_{32} = I_{32} - e_{31} = 234 < \theta = 127 => b_{32} = 0$$
, $e_{32} = b_{32} - u_{32} = 21$

$$I_{kq} = \begin{bmatrix} 0 & 0 & 255 & 0 & 0 \\ 255 & 0 & 0 & 0 & 255 \\ 0 & 255 & 0 & 255 & 0 \end{bmatrix}$$

b, Khuếch tán lỗi cho phép giảm thiểu mức độ mất cho tiết của ảnh khi tách ngưỡng bằng cách phân tán lỗi do lượng từ hóa ra các điểm xung quanh (bên phải và bên dưới pixel hiện thời)

 Ảnh thu được sau khuếch tán lỗi hơn ảnh tách ngưỡng thông thường: tổng giá trị điểm ảnh của một vùng nhỏ được giữ tương đối gần với giá trị trên ảnh gốc.

Câu 3.7(B): a. Thực hiện khuếch tán lỗi một chiều với ảnh I sử dụng ngường 127, được biết ảnh này là ảnh 256 mức xám với mức nhỏ nhất là 0 và lớn nhất là 255

$$I = \begin{bmatrix} 11 & 23 & 156 & 2 & 45 \\ 12 & 133 & 32 & 12 & 112 \\ 12 & 232 & 127 & 32 & 128 \end{bmatrix}$$

b, Kỹ thuật khuếch tán lỗi được sử dụng để làm gì, ảnh thu được sau khuếch tán lỗi hơn gì ảnh tách ngưỡng thông thường?

Giài:

$$a, \theta = 127, r_k = [0, 255]$$

$$u_{11} = I_{11} = 11 < \theta = 127 \Rightarrow b_{11} = 0, e_{11} \Rightarrow b_{11} - u_{11} = -11$$

$$u_{12} = I_{12} - e_{11} = 34 < \theta = 127 \Rightarrow b_{12} = 0, e_{12} = b_{12} - u_{12} = -34$$
Tuong tu, $b_{13} = 255, b_{14} = 0, k_{15} = 0$

$$u_{21} = I_{21} = 12 > \theta = 127 \Rightarrow b_{20} = 0, e_{21} = b_{21} - u_{21} = -12$$

$$u_{22} = I_{22} - e_{21} = 145 \text{ a. } \theta = 127 \Rightarrow b_{22} = 255, e_{22} = b_{22} - u_{22} = 110$$
Tuong tu, $b_{23} = 0, b_{24} = 0, b_{25} = 0$

$$u_{31} = I_{31} = 12 < \theta = 127 \Rightarrow b_{31} = 0, e_{31} = b_{31} - u_{31} = -12$$

$$u_{32} = I_{32} \Rightarrow e_{31} = 244 < \theta = 127 \Rightarrow b_{32} = 0, e_{32} = b_{32} - u_{32} = 11$$
Tuong tu, $b_{33} = 0, b_{34} = 255, b_{35} = 0$

$$I_{kq} = \begin{bmatrix} 0 & 255 & 0 & 0 \\ 0 & 255 & 0 & 0 &$$

b, Khuếch tán lỗi cho phép giảm thiểu mức độ mất cho tiết của ảnh khi tách ngưỡng bằng cách phân tán lỗi do lượng từ hóa ra các điểm xung quanh (bên phải và bên dưới pixel hiện thời)

 Ảnh thu được sau khuếch tán lỗi hơn ảnh tách ngưỡng thông thường; tổng giá trị điểm ảnh của một vùng nhỏ được giữ tương đối gần với giá trị trên ảnh gốc.

Câu 3.8: (D) Thực hiện mã hóa sau bằng thuật toán Huffman. Được biết ảnh được biết ảnh được chia làm các khối kích thước 2x2 để làm đơn vị mã hóa (Mã khối này sẽ phụ là một chữ cái của bức ảnh)

như là một chữ cái của bức ảnh) $\text{Dăt A} = \frac{1}{1}, \frac{1}{1}; B = \frac{1}{0}, \frac{0}{1}; C = \frac{1}{1}, \frac{1}{0}; D = \frac{1}{1}, \frac{0}{0}; E = \frac{0}{0}, \frac{1}{1}; F = \frac{1}{0}, \frac{1}{0}; C = \frac{1}{1}, \frac{1}{0}; C = \frac{1}{1},$ $H = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $\Rightarrow \ \mathbf{I} = \begin{bmatrix} A & B & A & A & C & D & A & C & D \\ B & B & C & F & D & E & C & G & G \\ F & B & A & C & A & B & G & H & H \end{bmatrix}$ Bảng tuần suất: Η G \overline{c} $\overline{\mathtt{D}}$ В A Ký tự 5 5 п 2 5 30 30 30 30 30 30 0 В 0 Tiến hành mã hóa Huffman 5/30 3/30 5/30 A: 00 B: 010 C: 011 D: 100 E: 1010 G: 110 H: 111 $\Rightarrow I_{kq} = \begin{bmatrix} 00 & 010 & 00\\ 010 & 010 & 011\\ 1011 & 010 & 11 \end{bmatrix}$ 100 1010] 00 011 00 011 100 110 111 1011 1010 011 110 100 00 111 111 010 110 011 00

⁺ Số bit trước khi mã hóa: $N_1 = 4 * 10 * 3 = 120$ bit

+ Số bit sau khi mã hóa:
$$N_2 = 2 * 7 + 3 * (5 + 5 + 3 + 3 + 3) + 4 * (2 + 2) = 87$$
 bit

+ Tỷ lệ nén:
$$\frac{N_1}{N_2} = \frac{120}{87} = 1.38$$

Câu 3.9(D)) Thực hiện mã hóa sau bằng thuật toán Huffman. Được biết ảnh được biết ảnh được chia làm các khối kích thước 2x2 để làm đơn vị mã hóa (Mã khối này sẽ như là một chữ cái của bức ảnh)

$$H = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\Rightarrow I = \begin{bmatrix} A & B & A & A & F & D & A & C & P & E \\ B & B & C & F & D & E & C & G & A & H \\ F & A & A & C & A & B & G & C & H & A \end{bmatrix}$$

Bảng tuần suất:

Ry tir A B C D E F G H n 9 5 3 2 3 2 2 p 9 5 4 3 2 3 2	Tr	т.—-	,	-					
$\frac{9}{30}$ $\frac{5}{30}$ $\frac{4}{30}$ $\frac{3}{30}$ $\frac{2}{30}$ $\frac{3}{30}$ $\frac{2}{30}$ $\frac{2}{30}$ $\frac{3}{30}$ $\frac{2}{30}$	Ký tự	A	В	C	1 TV	E	F	G	H
	n	9	5	\	3	2	3	2	2
	p	9	5	4	3		3		-
30 30 30 30 30 30		30	No.	30	30	30	30	$\frac{2}{30}$	$\frac{2}{30}$

вж

C: 010

D: 011

E: 1100

F: 1101

G: 1110

H: 1111

- + Số bit trước khi mã hóa: $N_1 = 4 * 10 * 3 = 120 bit$
- + Số bit sau khi mã hóa: $N_2 = 2 * (9 + 5) + 3 * (4 + 3) + 4 * (2 + 3 + 2 + 2) = 85 bit$

+ Tỷ lệ nén:
$$\frac{N_1}{N_2} = \frac{120}{85} = 1.4$$

Câu 3.10: Thực hiện phép co và dãn hình X với một phần từ tăn mù B sau để được hai hình X1 và X2

$$X = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} v \acute{o}i \ B =$$

Giải:

 \Rightarrow

+ Phép co: Phép co ảnh f bởi E s tược biểu diễn bởi phép toán f-s. Giả sử E s đang ở vị trí (x,y). Pixel mới sau khi thực hiện phép toán có giá trị như sau:

Phép giãn: Phép giãn ảnh f bởi cấu trúc s được biểu diễn bởi phép toán f + s. giả sử cấu trúc s đang ở vị trí (x,y) của ảnh gốc. Pixel mới sau khi thực hiện phép giãn có giá trị như sau:

$$g(x,y) = \begin{cases} 1 & \text{if s hits f} \\ 0 & \text{otherwise} \end{cases}$$

<u>Câu 3.11(D)</u> Thực hiện phép co và dãn hình X với một phần từ cấu trúc B sau để được hai hình X_1 va X_2

$$X = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} \text{ v\'ot } B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Phép co $X \cap B$

U.S.

$$X_{1}(x,y) = \begin{cases} 1 \text{ n\'eu B fits X} \\ 0 \text{ n\'eu ngược lai} \end{cases}$$

a, Thực hiện nhân chập ảnh I với ma trận Hx và Hy rồi cộng với nhau để được ảnh I_1

$$H_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad \text{và } H_{y} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

1 nếu B fits X

b, Thực hiện nhân chập ảnh I ở trên với $H_{\mathbf{z}}$ dưới đây để được I_2 :

$$H_z = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Ảnh I_1 , I_2 đã là ảnh biên chưa? Cần phải làm thêm những g
l để có ảnh biên? (nên sử dụng kết quả trên để minh họa)

Giải:

Câu 4.2(D) Cho ảnh I như sau:

a, Thực hiện nhân chập ảnh I với ma trận Hx và Hy rồi cộng với nhau để được ảnh I_1

$$H_{x} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \quad \text{và } H_{y} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}.$$

b, Thực hiện nhân chập ảnh I ở trên với H_z dưới đây để được \clubsuit :

$$H_{\mathbf{z}} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

c, Ánh I_1 , I_2 đã là ảnh biên chưa? Cần phải làm them những gì để có ảnh biên? (nên sử dụng kết quả trên để minh họa)

a, Với
$$I(11) = 2 \Rightarrow I_x(11) = 1.0 + 0.0 + (-1). + 2.0 + 0.2 + (-2).2 + 1.0 + 0.2 + (-1).2 = -6$$

Turong tụ có
$$I_x = \begin{bmatrix} -6 & 0 & 0 & 0 & 0 & 6 \\ -8 & -13 & -11 & 0 & 13 & 13 & 8 \\ -8 & -37 & -36 & 3 & 36 & 40 & 8 \\ -8 & -48 & -48 & -6 & 46 & 54 & 8 \\ -8 & -31 & -36 & -3 & 36 & 40 & 8 \\ -8 & -13 & -13 & 0 & 13 & 13 & 8 \\ 6 & 0 & 0 & 0 & 0 & 6 \end{bmatrix}$$

Voi
$$I(11) = 2 \Rightarrow V(11) = 1.0 + 2.0 + 1.0 + 0.0 + 0.2 + (-1).0 + (-2).2 + (-1).2 = -4$$

Turong or có
$$I_y = \begin{bmatrix} -6 & -8 & -8 & -8 & -8 & -8 & -6 \\ 0 & -13 & -39 & -52 & -39 & -13 & 0 \\ 0 & -11 & -32 & -45 & -38 & -14 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 11 & 32 & 45 & 38 & 14 & 0 \\ 0 & 13 & 39 & 52 & 39 & 13 & 0 \\ 6 & 8 & 8 & 8 & 8 & 8 & 8 \\ 0 & 13 & 14 & 14 & 14 & 14 & 14 \\ 0 & 13 & 14 & 14 & 14 & 14 & 14 \\ 0 & 13 & 14 & 14 & 14 & 14 & 14 \\ 0 & 13 & 14 & 14 & 14 & 14 & 14 \\ 0 & 13 & 14 & 14 & 14 & 14 & 14 \\ 0 & 13 & 14 & 14 & 14 & 14 & 14 \\ 0 & 13 & 14 & 14 & 14 & 14 & 14 \\ 0 & 13 & 14 & 14 & 14 & 14 \\ 0 & 14 & 14 & 14 & 14 & 14 \\ 0 & 15 & 14 & 14 & 14 \\ 0 & 15 & 14 & 14 & 14 \\ 0 & 15 & 14 & 14 & 14 \\ 0 & 15 & 14 & 14 & 14 \\ 0 & 15 & 14 & 14 & 14 \\ 0 & 15 & 14 & 14 & 14 \\ 0 & 15 & 14 & 14 & 14 \\ 0 & 15 & 14 & 14 & 14 \\ 0 & 15 & 14 & 14 & 14 \\ 0 & 15 & 14 & 14 & 14 \\ 0 & 15 & 14 \\ 0 & 15 &$$

Với
$$I_x(11) = -6$$
, $I_y(11) = -6 => I_1(11) = |I_x(11)| + |I_y(11)| = 12$

Turong tự có
$$I_1 = \begin{bmatrix} 12 & 8 & 8 & 8 & 8 & 8 & 12 \\ 8 & 26 & 52 & 52 & 52 & 26 & 8 \\ 8 & 48 & 58 & 48 & 74 & 54 & 8 \\ 8 & 48 & 46 & 6 & 46 & 54 & 8 \\ 8 & 48 & 68 & 48 & 74 & 54 & 8 \\ 8 & 26 & 52 & 52 & 52 & 26 & 8 \\ 12 & 8 & 8 & 8 & 8 & 8 & 12 \end{bmatrix}$$

b, Với
$$I(11) = 2 \Rightarrow I_2(11) = 0.0 + (-1).0 + 0.0 + (-1).0 + 4.2 + (-1).2 + 0.0 + (-1).2 + 0.2 = 4$$

Turong tự có
$$I_2 = \begin{bmatrix} 4 & 2 & 2 & 2 & 2 & 2 & 4 \\ 2 & 0 & -13 & -13 & -13 & 0 & 2 \\ 2 & -13 & 28 & 16 & 25 & -13 & 2 \\ 2 & -11 & 8 & -11 & 20 & -14 & 2 \\ 2 & -13 & 28 & 16 & 25 & -13 & 2 \\ 2 & 0 & -13 & -13 & -13 & 0 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 & 2 \end{bmatrix}$$

Câu 4.3(D) Cho ảnh I_1 và I_2 cùng H_x và H_y như sạu.

$$H_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad \text{an } H_{y} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

- a. Thực hiện phân chập ảnh I_1 với các ma trận H_x và H_y rồi cộng với nhau để được ảnh ${I_1}^\prime$
- b, Thự hiện châp ảnh I_2 với các ma trận $H_{\mathbf{x}}$ và $H_{\mathbf{y}}$ rồi cộng với nhau để được ảnh I_2
- c, Ant I', I2 khác gì nhau?

Giải:

a, Với
$$I(11) = 5 \Rightarrow I_x(11) = (-1).0 + 0.0 + 1.0 + (-1).0 + 0.5 + 1.5 + (-1).0 + 0.4 + 1.5 = 10$$

```
Turong tự có I_x = \begin{bmatrix} 10 & 1 & 0 & 0 & 0 & 0 & -10 \\ 14 & 3 & 1 & 0 & 0 & 0 & -15 \\ 12 & 4 & 3 & 1 & 0 & 0 & -14 \\ 10 & 3 & 4 & 2 & 0 & 0 & -14 \\ 9 & 1 & 3 & 2 & 0 & 0 & -12 \\ 9 & 0 & 1 & 1 & 0 & 0 & -10 \end{bmatrix}
   Với I(11) = 5 \Rightarrow I_{\gamma}(11) = (-1).0 + (-1).0 + (-1).0 + 0.0 + 0.5 + 0.5 + +1.0 +
   1.4 + 1.5 = 9
 Turong tu có I_y = \begin{bmatrix} 9 & 14 & 15 & 15 & 15 & 15 \\ -3 & -3 & -1 & 0 & 0 & 0 \\ -3 & -4 & -3 & -1 & 0 & 0 \\ -1 & -3 & -4 & -4 & -3 & -3 \\ 0 & -1 & 32 & 45 & 38 & 14 \\ 0 & 0 & -1 & -2 & -3 & -3 \\ -6 & -9 & -9 & -9 & -9 & -9 \end{bmatrix}
                                                                                                      107
 Với I_x(11) = 10, I_y(11) = 9 \Rightarrow I_1'(11) = |I_x(11)|
                                    Γ19 15 15 15 15
Turong tự có I_1' = \begin{vmatrix} 17 & 0 \\ 15 & 8 \\ 11 & 6 \\ 9 & 2 \\ 9 & 0 \end{vmatrix}
b, Với I(11) = 5 \Rightarrow x(1)
                                                          = (\stackrel{>}{>} 1).0 + 00 + 1.0 + 0.5 + 1.5 + (-1).0 + 0.14 +
1.5 = 10
                                                       4 2 0 0 -24
                                                                                                                                      11 13 2 0 0 -22
                                            0
                                                       11 11 0 0
```

Với $I(11) = 5 \Rightarrow I_y(11) = (-1).0 + (-1).0 + (-1).0 + 0.0 + 0.5 + 0.5 + +1.0 + 1.14 + 1.5 = 19$

0

0

$$\text{Turong tu có } I_y = \begin{bmatrix} 19 & 24 & 15 & 15 & 15 & 15 & 10 \\ 7 & 7 & 9 & 0 & 0 & 0 & 0 \\ -13 & -4 & 7 & 9 & 0 & 0 & 0 \\ -11 & -13 & -4 & 16 & 27 & 27 & 18 \\ 0 & -11 & -13 & -15 & -6 & -6 & -4 \\ 0 & 0 & -11 & -22 & -33 & -33 & -22 \\ -6 & -9 & -9 & -9 & -9 & -9 & -6 \end{bmatrix}$$

Với
$$I_x(11) = 10, I_y(11) = 19 => I_1'(11) = |I_x(11)| + |I_y(11)| = 29$$

Turong tự có
$$I_2$$
' =
$$\begin{bmatrix} 29 & 33 & 15 & 15 & 15 & 20 \\ 31 & 14 & 18 & 0 & 0 & 0 & 15 \\ 15 & 8 & 14 & 18 & 0 & 0 & 15 \\ 31 & 26 & 8 & 18 & 27 & 27 & 42 \\ 9 & 22 & 26 & 17 & 6 & 6 & 26 \\ 9 & 0 & 22 & 33 & 33 & 33 & 42 \\ 12 & 9 & 9 & 9 & 9 & 9 & 12 \end{bmatrix}$$

Câu 4.3(D) Cho ảnh I1 và I2 cùng H, và H, như sau:

$$H_{\alpha} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

a. Thực hiện nhất chấp ảnh I_1 với các ma trận H_x và H_y rồi cộng với nhau để được ảnh ${I_1}^\prime$

b, Thực hỗn khân chập ảnh I_2 với các ma trận H_x và H_y rồi cộng với nhau để được ảnh I_2

c, Anh 1, I2 khác gl nhau?

Giải:

a, Với
$$I(11) = 5 \Rightarrow I_x(11) = 1.0 + 0.0 + (-1).0 + 2.0 + 0.5 + (-2).5 + 1.0 + 0.5 + (-1).5 = -15$$

```
Turong tu có I_x = \begin{bmatrix} -20 & 0 & 0 & 0 & 0 & 120 \\ -20 & 0 & 0 & 0 & 0 & 0 & 20 \\ -20 & 0 & 0 & 0 & 0 & 0 & 20 \\ -20 & 0 & 1 & 1 & 0 & 0 & 19 \\ -19 & 1 & 3 & 3 & 0 & 0 & 16 \\ -16 & 3 & 3 & 3 & 0 & 0 & 13 \end{bmatrix}
                                               9 1
 Với I(11) = 5 \Rightarrow I_y(11) = 1.0 + 2.0 + 2.0 + 0.0 + 0.5 + 0.5 + +(-1).0 +
 (-2).5 + (-1).5 = -15
                   r-15 -20 -20 -20 -20
Với I_x(11) = -15, I_y(11) = -15 => I_1'(11) = I_2'
                   r30 20 20 20 20 2€
Tương tự có I_1' = 20 0
                               2
                         20
                                                    18
b, Với I(11) = 5 => I_x(1)
                               (-1).5 = -15
                                 0
                                            0 0 20
                                            0 0 20
                           0 -9 -9 0 0 29
                               ~7
```

接线

Với $I(11) = 5 \Rightarrow I_y(11) = 1.0 + 2.0 + 1.0 + 0.0 + 0.5 + 0.5 + (-1).0 + (-2).5 + (-1).5 = -15$

0 0

9 J

13

11

13

11

-7

13

Với
$$I_x(11) = -15$$
, $I_y(11) = -15 = I_1'(11) = |I_x(11)| + |I_y(11)| = 30$

Tuơng tự có
$$I_2' = \begin{bmatrix} 30 & 20 & 20 & 20 & 20 & 20 & 30 \\ 20 & 0 & 0 & 0 & 0 & 0 & 20 \\ 20 & 0 & 0 & 0 & 0 & 0 & 20 \\ 20 & 0 & 18 & 36 & 36 & 36 & 56 \\ 38 & 36 & 32 & 10 & 8 & 8 & 42 \\ 52 & 10 & 30 & 48 & 44 & 44 & 56 \\ 44 & 60 & 56 & 34 & 12 & 12 & 18 \end{bmatrix}$$

Câu 4.5: a.Sử dụng thuật toán tìm ngưỡng tự động để ách ngưỡng ảnh I, được biết ảnh có 10 mức xám

b. Có lúc nào chúng ta có thể tìm được nhiều agurag không? Trong trường hợp như vậy thì ta nên xử lý như thế nào?

$$I = \begin{bmatrix} 1 & 4 & 1 & 1 & 2 & 3 & 2 & 3 \\ 3 & 2 & 3 & 2 & 5 & 2 & 6 & 2 \\ 2 & 3 & 8 & 2 & 3 & 2 & 5 & 6 \\ 4 & 5 & 2 & 4 & 2 & 9 & 1 & 1 \\ 2 & 4 & 3 & 2 & 0 & 1 & 2 & 1 \\ 3 & 5 & 7 & 1 & 2 & 4 & 9 & 6 \end{bmatrix}$$

Giải:

a, Momon quán tính TR có mức xám ≤ g là:

u, Allohida 4	7							
: 10/ 11	1 2	3	4	5	6	17	8	9
	1 2		·					
1(1)	15	8	6	5	3	1	1	1
n(1)	1.5		i		<u> </u>		<u> </u>	ì

$$t(0) = \sum_{i=0}^{\infty} h(0) = 1$$

$$t(1)=t(0)+h(1)=8$$

$$t(2)=t(1)+h(2)=23$$

$$t(3)=t(2)+h(3)=31$$

$$t(4)=t(3)+h(4)=37$$

$$t(5)=t(4)+h(5)=42$$

$$t(6)=t(5)+h(6)=45$$

$$t(7)=t(6)+h(7)=46$$

$$t(8)=t(7)+h(8)=47$$

$$t(9)=t(8)+h(8)=48$$

$$m(0) = \frac{1}{t(g)} \sum_{i=0}^{g} i * h(i) = 1.0 * h(i) = 0$$

$$m(1) = \frac{1}{8} \sum_{i=0}^{1} (0 + 1 * 7) = \frac{7}{8}$$

$$m(2) = \frac{1}{23} \sum_{i=0}^{2} (0 + 1 * 7 + 2 * 15) = \frac{37}{23}$$

$$m(3) = \frac{1}{31} \sum_{i=0}^{3} (0 + 1 * 7 + 2 * 15 + 3 * 8) = \frac{61}{31}$$

$$m(4) = \frac{1}{37} \sum_{i=0}^{4} (0 + 1 * 7 + 2 * 15 + 3 * 8 + 4 * 6) = \frac{85}{374}$$

$$m(5) = \frac{1}{42} \sum_{i=0}^{5} (0 + 1 * 7 + 2 * 15 + 3 * 8 + 4 * 6 + (5 * 5))$$

$$m(6) = \frac{1}{45} \sum_{i=0}^{6} (0 + 1 * 7 + 2 * 15 + 3 * 8 + 4 * 6 * 5 * * + 6 * 3) = \frac{128}{42}$$

$$m(7) = \frac{1}{46} \sum_{i=0}^{7} (0+1*7+2*15+3*8+4*6+5*5+6*3+7*1) = \frac{135}{46}$$

$$m(8) = \frac{1}{47} \sum_{i=0}^{8} (0 + 1 * 7 + 2 * 15) * 3 * 8 + 4 * 6 + 5 * 5 + 6 * 3 + 7 * 1 + 8 * 1) = \frac{143}{47}$$

$$m(9) = \frac{1}{48} \sum_{i=0}^{9} (0+1)^{i} + 7 + 2 + 15 + 3 + 8 + 4 + 6 + 5 + 5 + 6 + 3 + 7 + 1 + 8 + 1 + 9 + 1) = \frac{152}{48}$$

+)
$$f(g) = \frac{t(g)}{m \cdot n \cdot t(g)} [n \cdot (g)] m(G-1)]^2$$

$$=> f(0) = \frac{52}{48-1} \left[0 - \frac{52}{48}\right]^2 = 0.21$$

$$f(1) = 0.05$$
; $f(2) = 2.24$; $f(3) = 2.62$; $f(4) = 2.54$; $f(5) = 2.1$; $f(6) = 1.56$; $f(7) = 1.24$; $f(8) = 72$; $f(9) = \infty$

$$=> f(\theta) = \max_{0 \le g \le G-1} \{f(g)\} = \max_{0 \le g \le 9} \{f(3)\} = 3$$

$\underline{\text{Câu 4.6(C)}}$: a.Sử dụng thuật toán tìm ngưỡng tự động để tách ngưỡng ảnh I, được biết ảnh có 10 mức xám

b. Có lúc nào chúng ta có thể tìm được nhiều ngưỡng không? Trong trường hợp như vậy thì ta nên xử lý như thế nào?

$$I = \begin{bmatrix} 1 & 4 & 1 & 1 & 2 & 3 & 2 & 3 \\ 3 & 2 & 3 & 2 & 5 & 2 & 6 & 2 \\ 2 & 1 & 8 & 2 & 3 & 2 & 5 & 6 \\ 2 & 5 & 2 & 4 & 2 & 9 & 1 & 4 \\ 2 & 2 & 3 & 2 & 0 & 1 & 2 & 1 \\ 1 & 5 & 7 & 1 & 2 & 4 & 5 & 6 \end{bmatrix}$$

i	0	1	2	3	4	5	6	7	8	9
n_i	1	9	17	6	4	5	3	1		1

Trung bình cường độ toàn cục $m_G = \sum_{i=0}^{L-1} i. \, p_i = \frac{144}{48}$

Với
$$i = 0 \Rightarrow p_0 = \frac{n_0}{MN} = \frac{1}{48}$$

Tổng tích lũy $P_1(k) = \sum_{i=0}^k p_i$; $P_1(0) = p_0 = \frac{1}{48}$

Trung bình tích lũy đến mức k m(k) = $\sum_{i=0}^{k} i \cdot p_i$ m(0) = 0

Phương sai giữa các nhóm $\sigma_B^2(k) = \frac{[m_G.P_1(k) - m(k)]}{P_1(k)[1 - P_1(k)]}, \sigma_B^2(0) = \frac{[m_G.P_1(0) - m(0)]^2}{P_1(0)[1 - P_1(0)]} = 0.21$

Tương tự ta có bảng sau:

Tuong th ta co or	8			
i	p_i	p(k)	m(k)	$\sigma_B^2(k)$
0	$\frac{1}{48}$	$\frac{1}{48}$	0	0,19
1	1 9 1 1 1 1 1 1 1 1 1 1	$\frac{10}{48}$	$\frac{9}{48}$	1,16
2	17 48	27 48	43 48	2,55
	$\frac{6}{48}$	$\frac{33}{48}$	61 48	2,92
*	4 48	37 48	77 48	2,84
5	5 48	42 48	$\frac{102}{48}$	2,29
6	3 48	45 48	120 48	1,67
7	1 48	46 48	127 48	1,32

8	1 48	47 48	135 48	0,77
9	. 48	1	144	0,00

Vậy ngưỡng T = 3 với $\sigma_B^2(k) = 2.92$

Câu 4.7: a, Thực hiện tìm ngưỡng tự động với thuật toán đẳng điệu cho bức ảnh I có biểu đồ tần suất sau:

·		<u> </u>					4			~	
g	0	1	2	3	4	5	6	7	√	$\overline{}$) —¬
 		<u> </u>		<u> </u>		•	٠ .	l		\checkmark	·]
h(g)	27	45	33	22	22	36	45	7 8	22	1.0	
L				:	,		173	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	K23 .	13	٠. ا
							' - ,		¥.		

Mô tả từng bước cho đến khi tìm được ngưỡng mong much cc biết ảnh có 10 mức xám

b.thực hiện tìm ngưỡng tự động với thuật toán n cho bức ảnh I' có biểu đồ tần suất sau:

				_		7			
g	0	1	2	3	4 5	6	T7	8	70 7
h(g)	+,	2	 	 		ļ	_	⊥]]
(6)		,	4] 3 /	8	12	47	10	2
Duoc	biết đô c	hính x	ác cần ti	nt 13 0 0		L			

Được biết độ chính xác cần tính

a. Với hai biểu đổ tần suất như trên thì việc chọn phương pháp đã đúng chưa? Nếu được chọn lại thì ban chọn như thế nào, tại sao?

Giải:

a, Chọn ngưỡng to

$$t_1 = \frac{1}{2} \left(\frac{0.23 + 1.4 + 2.33 + 3.22 + 4.22 + 5.36}{2.4 + 45 + 33 + 22 + 22 + 36} + \frac{6.45 + 7.34 + 8.23 + 9.13}{45 + 34 + 23 + 13} \right) = 4.72$$

$$t_2 \left(\frac{10.23 + 1.43 + 2.33 + 3.22 + 4.22}{27445 + 33 + 22 + 22 +} + \frac{5.36 + 6.45 + 7.34 + 8.23 + 9.13}{45 + 34 + 23 + 13 + 36} \right) = 4.16$$

$$t_3 = \frac{1}{2} \left(\frac{27 + 1.45 + 2.33 + 3.22 + 4.22 + 5.36}{27 + 45 + 33 + 22 + 22 + 36} + \frac{5.36 + 6.45 + 7.34 + 8.23 + 9.13}{36 + 45 + 34 + 23 + 13} \right) = 4.16$$

=> Lấy ngưỡng T = 4

$$b, maxp = 7$$

 $\sum pixel = 100 \implies$ Số pixel từ 0 => p là 88 pixel

$$=> p = 7$$

$$\Rightarrow$$
 Nguồng $T = maxp - (p - maxp) = 7$

Câu 4.8:a, Thực hiện tìm ngưỡng tự động với thuật toán đằng điệu cho bức ảnh I có biểu đồ tần suất sau:

										$\overline{}$
Ø	0	1	2	3	4	5	6	7	8	9
5	-						ļ		100	
h(g)	20	40	30	50	70	60	120	120	100	20
11(6)	- °	, , ,		l			L			

Mô tả từng bước cho đến khi tìm được ngưỡng mong muốn. Được biết ảnh có 10 mức xám

b.thực hiện tìm ngưỡng tự động với thuật toán đối xứng nền cho bức ảnh là có blù đồ tần suất sau:

g	0	1	2	3	4	5	6	8	9
h(g)	39	45	53	72	40	112	25	23	13

Được biết độ chính xác cần tính là 88%

Với hai biểu đồ tần suất như trên thì việc chọn phương pháp đã dúng chưa? Nếu được chọn lại thì bạn chọn như thế nào, tại sao?

a, Chọn ngưỡng $t_0 = 5$

$$t_1 = \frac{1}{2} \left(\frac{0.20 + 1.40 + 2.30 + 3.50 + 4.70 + 5.60}{20 + 40 + 30 + 50 + 70 + 60} + \frac{6.10 + 7.250 + 8.100 + 9.20}{120 + 2.3 + 100 + 20} \right) = 5,06$$

$$t_2 = \frac{1}{2} \left(\frac{0.20 + 1.40 + 2.30 + 3.50 + 4.70 + 5.60}{20 + 2.23 + 8.100 + 9.20} + \frac{0.20 + 2.23 + 8.100 + 9.20}{120 + 2.25 + 100 + 20} \right) = 5,06$$

b,
$$maxp = 5$$

 $\sum pixel = 456 \implies So ixel tù 0 \implies p là 401 pixel$

$$\Rightarrow$$
 Ngs \tilde{o} ng \tilde{o} = maxp - $(p - maxp) = 4$

Ca. 4. D. Thực hiện mã hóa ảnh sau bằng kỹ thuật LZW. Được biết ảnh được chia làm cóc khối kích thước 1x2 để làm đơn vị mã hóa. Và từ điển gốc bao gồm 4 đơn vị mã hóa sau 00, 01, 10, 11 tương đương với giá trị từ 0 đến 2, từ điển sẽ được xây dựng tiếp theo từ giá trị 4. Búc ảnh sẽ được đọc từ trái qua phải và từ trên xuống dưới.

a. Thực hiện mã hóa và giải mã ảnh trên với LWZ. Coi từ điển là đủ lớn để không thiếu chỗ

b. Ý tưởng cơ bản của mã hóa LZW là ở đâu? LZW có vấn đề và có cách nào để giải quyết nó không?

 $I = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$

a. Mã hóa

I = 10 - 00 - 11 - 00 - 11 - 10 - 01 - 11 - 11 - 00 - 11 - 01 - 01 - 11 - 10 - 00

Input	Output	Dictionary
2	10	10-00:4
0	00	00-11:5
3	. 11	11-06:6
5	00 – 11	00-11-10:7
2	10	10-01:8
1	01	01 11:9
3	11	11-11:10
6	11-00	11-00-11:11
3	11	11-01:12
1	01	01 - 01 : 13
)	01 11	01-11-10:14
ļ	0-00	

 $\Rightarrow I_{kq} = 2 - 3 - 2 - 5 - 2 - 1 - 3 - 6 - 3 - 1 - 9 - 4$

Giải mã

Input	Output	Dictionary
2	10	10 – 00 : 4
0	00	00 – 11 : 5
3	11	11 – 00 : 6
5	00 – 11	00 – 11 – 10 :7
2	10	10-01:8
1	01	01 – 11 :9
3	11	11-11:10

6	11 – 00	11-00-11:11
3	11 -	11 - 01 : 12
1	01	01 - 01 : 13
9	01-11	01 – 11 – 10 : 14
4	10 - 00	

$$\Rightarrow I = 10 - 00 - 11 - 00 - 11 - 10 - 01 - 11 - 11 - 00 - 11 - 01 - 01 - 11 - 10 - 00$$

b.

- * Ý tưởng: tạo ra từ điển (1 bảng) các chuỗi được sử dụng trong phiên tuyên thông
- * Vấn đề của LZW: bộ mã hóa và giải mã LZW cùng xây tựng một bộ từ điển trong quá trình nhận dữ liệu
- * Cách giải quyết: Nếu cả bên gửi và bên nhận đề có bằn copy của cuốn từ diễn (dictionary) thì các chuỗi đã gặp trước đó sẽ được thay hế bằng mục lục của chúng để làm giảm lượng thông tin cần truyền