

Welcome to Maths Meets Image

Hackathon as part of the Math+ Thematic Einstein Semester on Mathematics of Imaging in Real-World Challenges

Who are we?

Young Academy committee

Felix Ambellan (ZIB)

Robert Beinert (TU Berlin)

Christoph Kolbitsch (PTB)

Kostas Papafitsoros (WIAS)

Christoph von Tycowicz (FU Berlin, ZIB)

What is Math+?

- DFG-funded Cluster of Excellence
- "Transforming the World through Mathematics"
- sustainable energy supply, individualized medicine, analyzing social processes...
- cross-institutional and interdisciplinary (TU, HU, FU, WIAS, ZIB)

What is TES?

Thematic Einstein Semester on

MATHEMATICS OF IMAGING IN REAL-WORLD CHALLENGES

Berlin, Winter Semester 2021/22

Organizers

Hans-Christian Hege (ZIB)

Michael Hintermüller (HU Berlin, WIAS)

Tobias Schäffter (TU Berlin, PTB)

Gabriele Steidl (TU Berlin)

	Dates	Event
	6-8 October 2021	Kick-off Workshop, PTB
	November 2021 - January 2022	Three tandem talks
_	October 2021 - February 2022	Three tandem tutorials
	17-19 March 2022	Hackathon event
	22-25 March 2022	SIAM Conference on Imaging Science, TU Berlin

https://mathplus.de/topic-development-lab/tes-winter-2021-22/

Maths Meets Image

Hackathon as part of the Math+ Thematic Einstein Semester on Mathematics of Imaging in Real-World Challenges

Solve challenges Learn something Great food Have tun Meet new people Exciting science

Time table

0	17 March	18 March	19 March
9am –	Welcome	Welcome	Welcome
	Introduction	Team work	Team work
11am-	Break	Break	Break
110111	Team discussion	Team work	Presentation
1pm –	Task overview	Update	of results
1pm	Lunch	Lunch	Lunch
3pm –	Team work	Team work	Closing session
	Break	Break	
5pm –	Team work	Team work	
6pm –	Wrap-up	Wrap-up	

Groups

P1	P2	P3	P4	P5
Temporally dependent TV/TGV regularisation	Cardiac motion estimation using heart models	Morphological Scoring of Disease States	for quantitative analysis of stone tool reduction	Estimation of displacements and mechanical tissue properties from MRE
Andreas Kofler	Simone Hufnagel	Florian Beier	Leonard Schmitz	Alfonso Caiazzo
Clemens Sirotenko	David Sommer	Samira Kabri	Marian Berg	Felipe Galarce
Felix Zimmermann	Darian Viezzer	Christian Wald	Tim Roith	Matthias Anders
Evangelos Papoutsellis	Benedikt Schmitt	Julius Mayer	Nikolas Tapia	Vanessa Guarino
David Schote	Chiara Manini	Nicolas Klenert	Tom Neumann	Adriano Schlief
Fatima Antarou Ba	Constance Gatefait	Paul Hagemann	Felix Herter	
Katja Degenhardt	Lorenz Kuger	Janina Schütte	Giovani Fogalli	
Johannes Mayer	Felix Peppert			
Fabian Altekrüger				

Data acquisition

$$y = Ax + e$$

Acquisition model

Start with:

$$\min ||x - y|| + \lambda TV(x)$$
$$y = x + e$$

Image reconstruction

$$\min \|Ax - y\|$$

$$\min ||Ax - y|| + \lambda TV(x)$$

P2 - Cardiac motion estimation using heart models

Alzheimer's and (right) hippocampal shape

P4 - Geometric DL for quantitative analysis of stone tool reduction sequences

https://sites.google.com/site/lithictools/

P5 - Estimation of displacements and mechanical tissue properties from MRE

shear wave speed [m/s]

Images provided by Simone Hufnagel

Repository

https://github.com/MATHplus-Young-Academy

STFC Cloud

Science and Technology Facilities Council

Scientific Computing

Synergistic SyneRBI Reconstruction for Biomedical Imaging

https://training.jupyter.stfc.ac.uk/hub/home

https://training.jupyter.stfc.ac.uk/hub/home

plugged.stardom.steps

0 SciML GPU environment This configuration gives you 4 CPUs, 7GB of RAM, and a GPU, Tensorflow environment **Training School for SIRF and CIL GPU** For small jobs and prototyping: 10 CPUs, 60GB RAM and GPU. For Training School for SIRF and CIL 0 **Dev Training School for SIRF and CIL GPU** For small jobs and prototyping: 10 CPUs, 60GB RAM and GPU. Development For Training School for SIRF and CIL Training School for SIRF and CIL no GPU 0 For small jobs and prototyping: 12 CPUs, 60GB RAM and no GPU. For Training School for SIRF and CIL

Start

Git/Github basics

Once:

On stfc-cloud you still need to set-up your git name:

git config --global user.name "Christoph Kolbitsch" git config --global user.email christoph.kolbitsch@ptb.de git config --list

Clone repo(s): git clone https://github.com/MATHplus-Young-Academy/P2-Cardiac-Motion.git

Again and again:

Data share

On the STFC cloud: /mnt/materials/SIRF/MathPlusBerlin/DATA

https://ocloud.ptb.de/s/YRmS7AsTZ43pHWr PW: Hackathon2022

Licence and copyright

First version: 17th of March 2022

Author: Christoph Kolbitsch, Kostas Papafitsoros

Copyright 2022 Physikalisch-Technische Bundesanstalt.

Copyright 2022 Weierstrass Institute.

This software was developed during the Math+ "Maths meets Image" hackathon 2022.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Data protection

Photos

During the hackathon we would like to take some photos of you hard at work. We will use some of these photos for (internal) reporting such as in the final report sent to the funding agency and promotional purposes on the Math+ homepage. By attending the hackathon you agree to this use. If you have any more questions, please contact us.

Data

The data you will be working on during the hackathon is provided by different sources. You are all welcome to work freely with this data during the hackathon but you are not allowed to take a copy of any of the data with you after the event. If you would like to continue to use it after the hackathon, please contact us and we will get you in contact with the responsible person, usually there should be a way. By attending the hackathon you agree to this data policy.

Where can I get more information?

https://github.com/MATHplus-Young-Academy

https://github.com/SyneRBI/SIRF-Exercises

https://github.com/TomographicImaging/CIL-Demos

https://morphomatics.github.io/

Morphomatics: Geometric morphometrics in non-Euclidean shape spaces

Challenge

3 challenging challenges!

Maths Meets Image

Hackathon as part of the Math+ Thematic Einstein Semester on Mathematics of Imaging in Real-World Challenges