COUNTING SUBGROUPS OF $\mathbb{Z}/p^a\mathbb{Z} \times \mathbb{Z}/p^b\mathbb{Z}$

KEITH CONRAD

Fix a prime p. For nonnegative integers a, b, and d, we seek a formula for the number of subgroups of order p^d in $\mathbf{Z}/p^a\mathbf{Z}\times\mathbf{Z}/p^b\mathbf{Z}$. Set

$$N_{a,b,d} = \#\{H \subset \mathbf{Z}/p^a\mathbf{Z} \times \mathbf{Z}/p^b\mathbf{Z} : \#H = p^d\}.$$

This is symmetric in a and b $(N_{a,b,d} = N_{b,a,d})$, so when it is convenient we can limit attention to the case $a \le b$. Trivially $N_{a,b,d} = 0$ if d > a + b, so we may assume $0 \le d \le a + b$. For $1 \le a \le b$, and $a + b \ge d$, we will see that

$$N_{a.b.d} = 1 + p + p^2 + \dots + p^r,$$

where r = r(a, b) is a somewhat irregular function of a and b (the precise rule is given in Theorem 3).

We will develop a recursive formula for $N_{a,b,d}$ that requires knowing in advance how many cyclic subgroups there are of each size in $\mathbf{Z}/p^a\mathbf{Z}\times\mathbf{Z}/p^b\mathbf{Z}$. So first we work out a formula for the number of cyclic subgroups. Write it as

$$C_{a,b,d} = \#\{H \subset \mathbf{Z}/p^a\mathbf{Z} \times \mathbf{Z}/p^b\mathbf{Z} : \#H = p^d, H \text{ is cyclic}\}.$$

And abbreviate

$$G_{a,b} = \mathbf{Z}/p^a \mathbf{Z} \times \mathbf{Z}/p^b \mathbf{Z}.$$

Theorem 1. When $1 \le a \le b$,

$$C_{a,b,d} = \begin{cases} 1, & \text{if } d = 0, \\ p^{d-1} + p^d, & \text{if } 1 \le d \le a, \\ p^a, & \text{if } a + 1 \le d \le b \ \ (\text{if } a \ne b), \\ 0, & \text{if } b < d. \end{cases}$$

In particular, $C_{a,b,1} = 1 + p$.

Proof. The cases d=0 and d>b are clear. So we may assume $1 \le d \le b$. To count subgroups of order p^d we count elements of order p^d and then divide by $\varphi(p^d)$ (the number of generators a cyclic group of order p^d has). An element has order p^d when it's killed by p^d but not by p^{d-1} , so

$$C_{a,b,d} = \frac{\#G_{a,b}[p^d] - \#G_{a,b}[p^{d-1}]}{\varphi(p^d)}.$$

How large is $G_{a,b}[p^i]$? If $0 \le i \le a$,

$$G_{a,b}[p^i] = p^{a-i}\mathbf{Z}/p^a\mathbf{Z} \times p^{b-i}\mathbf{Z}/p^b\mathbf{Z} \Longrightarrow \text{ size is } p^{2i}.$$

If $a \leq i \leq b$,

$$G_{a,b}[p^i] = \mathbf{Z}/p^a\mathbf{Z} \times p^{b-i}\mathbf{Z}/p^b\mathbf{Z} \Longrightarrow \text{ size is } p^{a+i}.$$

If i > b,

$$G_{a,b}[p^i] = \mathbf{Z}/p^a\mathbf{Z} \times \mathbf{Z}/p^b\mathbf{Z} \Longrightarrow \text{ size is } p^{a+b}.$$

Putting this all together,

$$#G_{a,b}[p^{i}] = \begin{cases} p^{2i}, & \text{if } 0 \le i \le a, \\ p^{a+i}, & \text{if } a \le i \le b, \\ p^{a+b}, & \text{if } i \ge b. \end{cases}$$

(The overlapping cases are consistent at i = a and i = b.)

Now we feed the above formula for $\#G_{a,b}[p^i]$ at i=d and i=d-1 into the formula for $C_{a,b,d}$. If $1 \leq d \leq a$,

$$C_{a,b,d} = \frac{p^{2d} - p^{2(d-1)}}{p^{d-1}(p-1)} = \frac{p^{2d-2}(p^2 - 1)}{p^{d-1}(p-1)} = p^{d-1}(p+1) = p^{d-1} + p^d.$$

If a < b and $a + 1 \le d \le b$,

$$C_{a,b,d} = \frac{p^{a+d} - p^{a+d-1}}{p^{d-1}(p-1)} = \frac{p^{a+d-1}(p-1)}{p^{d-1}(p-1)} = p^a.$$

Theorem 2. For $1 \le a \le b$, we have

 $N_{a,b,0} = 1$

and

$$N_{a,b,1} = C_{a,b,1} = 1 + p.$$

If $d \geq 2$ then

$$N_{a,b,d} = C_{a,b,d} + N_{a-1,b-1,d-2}$$

Proof. A group of order p is cyclic, so

$$N_{a,b,1} = C_{a,b,1} = 1 + p.$$

Now take $d \geq 2$. We can distinguish cyclic from noncyclic subgroups of $G_{a,b}$ using p-torsion. The p-torsion in $G_{a,b}$ is

$$G_{a,b}[p] = p^{a-1}\mathbf{Z}/p^a\mathbf{Z} \times p^{b-1}\mathbf{Z}/p^b\mathbf{Z},$$

which has order p^2 , so

$$G_{a,b}/G_{a,b}[p] \cong \mathbf{Z}/p^{a-1}\mathbf{Z} \times \mathbf{Z}/p^{b-1}\mathbf{Z} \cong G_{a-1,b-1}.$$

For any nontrivial subgroup $H \subset G_{a,b}$, if H is cyclic then H[p] has order p, while if H is noncyclic then $H \cong \mathbf{Z}/p^j\mathbf{Z} \times \mathbf{Z}/p^k\mathbf{Z}$ for some positive integers j and k, so H[p] has order p^2 . Since $H[p] \subset G_{a,b}[p]$ and $G_{a,b}[p]$ has order p^2 , $H[p] = G_{a,b}[p]$. So

$$H$$
 not cyclic $\Longrightarrow G_{a,b}[p] \subset H \subset G_{a,b}$.

The converse is true as well, since $G_{a,b}[p] \cong (\mathbf{Z}/p\mathbf{Z})^2$ contains more than one subgroup of order p, so it can't lie inside a cyclic group. So for $2 \leq d \leq a + b$,

$$\#\{H \subset G_{a,b} : \#H = p^d, H \text{ not cyclic}\} = \#\{\overline{H} \subset G_{a,b}/G_{a,b}[p] : \#\overline{H} = p^{d-2}\}\$$

= $N_{a-1,b-1,d-2}$,

which leads to a recursive formula: $N_{a,b,d}$ is the number of cyclic subgroups of $G_{a,b}$ with order p^d (which is $C_{a,b,d}$) plus the number of noncyclic subgroups of $G_{a,b}$ with order p^d (which we just showed is $N_{a-1,b-1,d-2}$ if $d \ge 2$).

Using Theorems 1 and 2 (and sometimes the equation $N_{a,b,d} = N_{a,b,a+b-d}$, which follows from duality theory for finite abelian groups), the following formulas for $N_{a,b,d}$ are found when $1 \le a \le b$ and $1 \le d \le 5$:

$$N_{a,b,1} = 1 + p,$$

$$N_{a,b,2} = \begin{cases} 1, & \text{if } a = b = 1, \\ 1 + p, & \text{if } a = 1, b \ge 2, \\ 1 + p + p^2, & \text{if } a \ge 2, \end{cases}$$

$$N_{a,b,3} = \begin{cases} 1, & \text{if } a = 1, b = 2, \\ 1 + p, & \text{if } a = 1, b \ge 3; a = 2, b = 2, \\ 1 + p + p^2, & \text{if } a = 2, b \ge 3, \\ 1 + p + p^2 + p^3, & \text{if } a \ge 3, \end{cases}$$

$$N_{a,b,4} = \begin{cases} 1, & \text{if } a = 1, b = 3; a = 2, b = 2, \\ 1 + p, & \text{if } a = 1, b \ge 4; a = 2, b = 3, \\ 1 + p, & \text{if } a = 1, b \ge 4; a = 2, b = 3, \\ 1 + p + p^2, & \text{if } a = 2, b \ge 4; a = 3, b = 3, \\ 1 + p + p^2 + p^3, & \text{if } a = 3, b \ge 4, \\ 1 + p + p^2 + p^3 + p^4, & \text{if } a \ge 4, \end{cases}$$

and

$$N_{a,b,5} = \begin{cases} 1, & \text{if } a = 1, b = 4; a = 2, b = 3, \\ 1+p, & \text{if } a = 1, b \geq 5; a = 2, b = 4; a = 3, b = 3, \\ 1+p+p^2, & \text{if } a = 2, b \geq 5; a = 3, b = 4, \\ 1+p+p^2+p^3, & \text{if } a = 3, b \geq 5; a = 4, b = 4, \\ 1+p+p^2+p^3+p^4, & \text{if } a = 4, b \geq 5, \\ 1+p+p^2+p^3+p^4+p^5, & \text{if } a \geq 5. \end{cases}$$

Examine these according to the constraints on a and b for each formula for $N_{a,b,d}$. The pattern of cases where inequalities on b appear is obvious: $a=1, b \geq d$, then $a=2, b \geq d$, then $a=3, b \geq d$, and so on as a increases up to d-1. The remaining cases where a and b both have specified values are organized according to increasing values of a+b for $1 \leq a \leq b \leq d-1$. We are led to the following general theorem.

Theorem 3. If $1 \le a \le b$, then

$$N_{a,b,d} = \begin{cases} 1 + p + \dots + p^d, & \text{if } 0 \le d \le a, \\ 1 + p + \dots + p^a, & \text{if } a \le d \le b, \\ 1 + p + \dots + p^{a+b-d}, & \text{if } b \le d \le a+b, \\ 0, & \text{if } a+b < d. \end{cases}$$

Therefore when $0 \le d \le a+b$, $N_{a,b,d} = 1+p+\cdots+p^r$ where $0 \le r \le d$.

Proof. Use induction on b.

Example 4. When a = b,

$$N_{a,a,d} = \begin{cases} 1 + p + \dots + p^d, & \text{if } 0 \le d \le a, \\ 1 + p + \dots + p^{2a - d}, & \text{if } a \le d \le 2a. \end{cases}$$

Theorem 3 says that as d increases from 0 to a+b, $N_{a,b,d}$ starts out as $1, 1+p, 1+p+p^2, \ldots$, increasing by the next power of p each time until reaching $1+p+\cdots+p^a$ at d=a. Then $N_{a,b,d}$ stays at this value until d reaches b, after which the highest power of p is removed for each successive value of d until $N_{a,b,d}$ reaches $N_{a,b,a+b}=1$.

Corollary 5. Suppose $1 \le a \le b$.

- 1. If $1 \le d \le a$ then $N_{a,b,d} = N_{a,b,d-1} + p^d$.
- 2. If $a < d \le b$ then $N_{a,b,d} = N_{a,b,d-1}$.
- 3. If $b < d \le a + b$ then $N_{a,b,d} = N_{a,b,d-1} p^{d-1}$.

In particular, $N_{a,b,d} \equiv N_{a,b,d-1} \mod p^d$ if $1 \le d \le b$ but not if $b < d \le a + b$.

Proof. From the description of how $N_{a,b,d}$ rises, plateaus, and then falls, this is obvious. \Box