# Catalanimals: a walk through the zoo of shuffle theorems

George H. Seelinger (University of Michigan)

ghseeli@umich.edu

joint with Jonah Blasiak, Mark Haiman, Jennifer Morse, and Anna Pun University of Pennsylvania Mathematics Colloquium

December 10th, 2024

Symmetric polynomials







 $f(z_1, \ldots, z_n)$  symmetric if swapping variables does not change f.

 $f(z_1,\ldots,z_n)$  symmetric if swapping variables does not change f.

•  $f(z_1, z_2, z_3) = z_1 + z_2 + z_3$ 

 $f(z_1, \ldots, z_n)$  symmetric if swapping variables does not change f.

- $f(z_1, z_2, z_3) = z_1 + z_2 + z_3$
- $f(z_1, z_2, z_3) = z_1z_2 + z_1z_3 + z_2z_3$

 $f(z_1, \ldots, z_n)$  symmetric if swapping variables does not change f.

- $f(z_1, z_2, z_3) = z_1 + z_2 + z_3$
- $f(z_1, z_2, z_3) = z_1 z_2 + z_1 z_3 + z_2 z_3$
- $f(z_1, z_2, z_3) = z_1 z_2 z_3$

 $f(z_1, \ldots, z_n)$  symmetric if swapping variables does not change f.

- $f(z_1, z_2, z_3) = z_1 + z_2 + z_3$
- $f(z_1, z_2, z_3) = z_1 z_2 + z_1 z_3 + z_2 z_3$
- $f(z_1, z_2, z_3) = z_1 z_2 z_3$

#### **Facts**

•  $e_d = \text{sum of degree } d \text{ square-free monomials.}$ 

 $f(z_1, \ldots, z_n)$  symmetric if swapping variables does not change f.

- $f(z_1, z_2, z_3) = z_1 + z_2 + z_3 = e_1$
- $f(z_1, z_2, z_3) = z_1 z_2 + z_1 z_3 + z_2 z_3 = e_2$
- $f(z_1, z_2, z_3) = z_1 z_2 z_3 = e_3$

#### **Facts**

•  $e_d = \text{sum of degree } d \text{ square-free monomials.}$ 

 $f(z_1, \ldots, z_n)$  symmetric if swapping variables does not change f.

- $f(z_1, z_2, z_3) = z_1 + z_2 + z_3 = e_1$
- $f(z_1, z_2, z_3) = z_1 z_2 + z_1 z_3 + z_2 z_3 = e_2$
- $f(z_1, z_2, z_3) = z_1 z_2 z_3 = e_3$

#### **Facts**

- $e_d = \text{sum of degree } d \text{ square-free monomials.}$
- Symmetric polynomials are an algebra generated by  $e_d$ 's.

 $f(z_1, \ldots, z_n)$  symmetric if swapping variables does not change f.

- $f(z_1, z_2, z_3) = z_1 + z_2 + z_3 = e_1$
- $f(z_1, z_2, z_3) = z_1z_2 + z_1z_3 + z_2z_3 = e_2$
- $f(z_1, z_2, z_3) = z_1 z_2 z_3 = e_3$

#### **Facts**

- $e_d = \text{sum of degree } d \text{ square-free monomials.}$
- Symmetric polynomials are an algebra generated by  $e_d$ 's.
- A basis: products  $e_{\lambda_1} \cdots e_{\lambda_n}$  for  $\lambda_1 \geqslant \cdots \geqslant \lambda_n \geqslant 0$ .

 $f(z_1, \ldots, z_n)$  symmetric if swapping variables does not change f.

- $f(z_1, z_2, z_3) = z_1 + z_2 + z_3 = e_1$
- $f(z_1, z_2, z_3) = z_1z_2 + z_1z_3 + z_2z_3 = e_2$
- $f(z_1, z_2, z_3) = z_1 z_2 z_3 = e_3$

#### **Facts**

- $e_d = \text{sum of degree } d \text{ square-free monomials.}$
- Symmetric polynomials are an algebra generated by  $e_d$ 's.
- A basis: products  $e_{\lambda_1} \cdots e_{\lambda_n}$  for  $\lambda_1 \geqslant \cdots \geqslant \lambda_n \geqslant 0$ .

#### Natural occurrence

$$x^{n} + a_{n-1}x^{n-1} + \cdots + a_{0} = \prod_{i=1}^{n} (x - \lambda_{i})$$

 $f(z_1, \ldots, z_n)$  symmetric if swapping variables does not change f.

- $f(z_1, z_2, z_3) = z_1 + z_2 + z_3 = e_1$
- $f(z_1, z_2, z_3) = z_1z_2 + z_1z_3 + z_2z_3 = e_2$
- $f(z_1, z_2, z_3) = z_1 z_2 z_3 = e_3$

#### **Facts**

- $e_d = \text{sum of degree } d \text{ square-free monomials.}$
- Symmetric polynomials are an algebra generated by  $e_d$ 's.
- A basis: products  $e_{\lambda_1} \cdots e_{\lambda_n}$  for  $\lambda_1 \geqslant \cdots \geqslant \lambda_n \geqslant 0$ .

#### Natural occurrence

$$x^n + a_{n-1}x^{n-1} + \dots + a_0 = \prod_{i=1}^n (x - \lambda_i)$$
  
 $a_i = \text{symmetric polynomial in } \lambda_1, \dots, \lambda_n$ 

 $f(z_1, \ldots, z_n)$  symmetric if swapping variables does not change f.

- $f(z_1, z_2, z_3) = z_1 + z_2 + z_3 = e_1$
- $f(z_1, z_2, z_3) = z_1z_2 + z_1z_3 + z_2z_3 = e_2$
- $f(z_1, z_2, z_3) = z_1 z_2 z_3 = e_3$

#### **Facts**

- $e_d = \text{sum of degree } d \text{ square-free monomials.}$ 
  - Symmetric polynomials are an algebra generated by  $e_d$ 's.
- A basis: products  $e_{\lambda_1} \cdots e_{\lambda_n}$  for  $\lambda_1 \geqslant \cdots \geqslant \lambda_n \geqslant 0$ .

#### Natural occurrence

$$x^n + a_{n-1}x^{n-1} + \cdots + a_0 = \prod_{i=1}^n (x - \lambda_i)$$
  
 $a_i = \text{symmetric polynomial in } \lambda_1, \dots, \lambda_n = \pm e_{n-1}(\lambda_1, \dots, \lambda_n).$ 



# Setup

Group  $G \curvearrowright V \cong \mathbb{C}^n$ .

Setup

Group  $G \curvearrowright V \cong \mathbb{C}^n$ . What are the G-invariant subspaces?

#### Setup

Group  $G \curvearrowright V \cong \mathbb{C}^n$ . What are the *G*-invariant subspaces?

#### Traces

•  $\operatorname{tr}(G \curvearrowright V)$ 

#### Setup

Group  $G \curvearrowright V \cong \mathbb{C}^n$ . What are the *G*-invariant subspaces?

#### Traces

- $\operatorname{tr}(G \curvearrowright V)$
- $\operatorname{tr}(G \curvearrowright U \oplus W) = \operatorname{tr}(G \curvearrowright U) + \operatorname{tr}(G \curvearrowright W)$ .

#### Setup

Group  $G \curvearrowright V \cong \mathbb{C}^n$ . What are the *G*-invariant subspaces?

#### Traces

- $\operatorname{tr}(G \curvearrowright V)$ 
  - $\operatorname{tr}(G \curvearrowright U \oplus W) = \operatorname{tr}(G \curvearrowright U) + \operatorname{tr}(G \curvearrowright W)$ .

Over 
$$\mathbb{C}$$
,  $G \curvearrowright V \cong \bigoplus$ Irreducibles  $\iff \operatorname{tr}(G \curvearrowright V) = \sum \operatorname{tr}(G \curvearrowright \operatorname{Irreducible})$ 

$$\mathit{GL}_2(\mathbb{C}) \curvearrowright \mathsf{Sym}^2(\mathbb{C}^2) \cong \mathbb{C}^3$$

$$GL_2(\mathbb{C}) \curvearrowright \operatorname{\mathsf{Sym}}^2(\mathbb{C}^2) \cong \mathbb{C}^3$$

Restrict to 
$$\begin{pmatrix} z_1 & 0 \\ 0 & z_2 \end{pmatrix} . v$$

$$\mathit{GL}_2(\mathbb{C}) \curvearrowright \mathsf{Sym}^2(\mathbb{C}^2) \cong \mathbb{C}^3$$

Restrict to 
$$\begin{pmatrix} z_1 & 0 \\ 0 & z_2 \end{pmatrix}$$
  $v = \begin{pmatrix} z_1^2 & 0 & 0 \\ 0 & z_1 z_2 & 0 \\ 0 & 0 & z_1^2 \end{pmatrix} v$ 

$$\mathit{GL}_2(\mathbb{C}) \curvearrowright \mathsf{Sym}^2(\mathbb{C}^2) \cong \mathbb{C}^3$$

Restrict to 
$$\begin{pmatrix} z_1 & 0 \\ 0 & z_2 \end{pmatrix}$$
  $v = \begin{pmatrix} z_1^2 & 0 & 0 \\ 0 & z_1 z_2 & 0 \\ 0 & 0 & z_1^2 \end{pmatrix} v$ 

Trace =  $z_1^2 + z_1 z_2 + z_2^2$  is symmetric!

$$\mathit{GL}_2(\mathbb{C}) \curvearrowright \mathsf{Sym}^2(\mathbb{C}^2) \cong \mathbb{C}^3$$

Restrict to 
$$\begin{pmatrix} z_1 & 0 \\ 0 & z_2 \end{pmatrix}$$
  $v = \begin{pmatrix} z_1^2 & 0 & 0 \\ 0 & z_1 z_2 & 0 \\ 0 & 0 & z_1^2 \end{pmatrix} v$ 

Trace =  $z_1^2 + z_1 z_2 + z_2^2$  is symmetric!

Integer partitions 
$$\mu = (\mu_1 \geqslant \cdots \geqslant \mu_n) \longleftrightarrow \text{Irreducible (polynomial) } GL_n(\mathbb{C})$$
 
$$\mu_i \in \mathbb{Z}_{\geqslant 0}$$
 representations  $V^{\mu}$ 

$$\mathit{GL}_2(\mathbb{C}) \curvearrowright \mathsf{Sym}^2(\mathbb{C}^2) \cong \mathbb{C}^3$$

Restrict to 
$$\begin{pmatrix} z_1 & 0 \\ 0 & z_2 \end{pmatrix}$$
  $v = \begin{pmatrix} z_1^2 & 0 & 0 \\ 0 & z_1 z_2 & 0 \\ 0 & 0 & z_1^2 \end{pmatrix} v$ 

Trace =  $z_1^2 + z_1 z_2 + z_2^2$  is symmetric!

$$\begin{array}{c} \text{Integer partitions} \\ \mu = (\mu_1 \geqslant \cdots \geqslant \mu_n) \\ \mu_i \in \mathbb{Z}_{\geqslant 0} \end{array} \qquad \begin{array}{c} \text{Irreducible (polynomial)} \ \textit{GL}_n(\mathbb{C}) \\ \text{representations} \ \textit{V}^{\mu} \end{array}$$

Symmetric "Schur polynomial"  $s_{\mu}$ 

$$GL_2(\mathbb{C}) \curvearrowright \operatorname{\mathsf{Sym}}^2(\mathbb{C}^2) \cong \mathbb{C}^3$$

Restrict to 
$$\begin{pmatrix} z_1 & 0 \\ 0 & z_2 \end{pmatrix}$$
  $v = \begin{pmatrix} z_1^2 & 0 & 0 \\ 0 & z_1 z_2 & 0 \\ 0 & 0 & z_1^2 \end{pmatrix} v$ 

Trace =  $z_1^2 + z_1 z_2 + z_2^2$  is symmetric!

$$\begin{array}{c} \text{Integer partitions} \\ \mu = (\mu_1 \geqslant \cdots \geqslant \mu_n) \\ \mu_i \in \mathbb{Z}_{\geqslant 0} \end{array} \qquad \begin{array}{c} \text{Irreducible (polynomial) } \textit{GL}_n(\mathbb{C}) \\ \text{representations } V^{\mu} \\ \end{array}$$

Symmetric "Schur polynomial"  $s_{\mu}$ 

$$s_{(2,0)}(z_1,z_2)=z_1^2+z_1z_2+z_2^2.$$

$$GL_n(\mathbb{C}) \curvearrowright V \xrightarrow{\mathsf{Trace}} \mathsf{Symmetric} \ \mathsf{polynomial}$$

$$GL_n(\mathbb{C}) \curvearrowright V \xrightarrow{\mathsf{Trace}} \mathsf{Symmetric\ polynomial}$$
?

#### Example

$$f = z_1^2 + z_2^2$$
 the trace of some  $GL_2(\mathbb{C})$  representation?

$$GL_n(\mathbb{C}) \curvearrowright V \xrightarrow{\mathsf{Trace}} \mathsf{Symmetric\ polynomial}$$

#### Example

$$f = z_1^2 + z_2^2$$
 the trace of some  $GL_2(\mathbb{C})$  representation?

#### Approach

 $\{s_{\mu}\}$  is a basis of symmetric polynomials.

$$GL_n(\mathbb{C}) \curvearrowright V \xrightarrow{\mathsf{Trace}} \mathsf{Symmetric} \mathsf{ polynomial}$$

#### Example

$$f = z_1^2 + z_2^2$$
 the trace of some  $GL_2(\mathbb{C})$  representation?

#### Approach

 $\{s_{\mu}\}$  is a basis of symmetric polynomials.

$$f = s_{(2,0)} - s_{(1,1)}$$

$$GL_n(\mathbb{C}) \curvearrowright V \xrightarrow{\mathsf{Trace}} \mathsf{Symmetric\ polynomial}$$
?

#### Example

$$f = z_1^2 + z_2^2$$
 the trace of some  $GL_2(\mathbb{C})$  representation?

#### Approach

 $\{s_{\mu}\}$  is a basis of symmetric polynomials.

$$f = s_{(2,0)} - s_{(1,1)}$$

f not "Schur-positive"  $\Longrightarrow$  not the trace of a  $GL_2$ -representation!

$$GL_n(\mathbb{C}) \curvearrowright V \xrightarrow{\mathsf{Trace}} \mathsf{Symmetric} \mathsf{ polynomial}$$

#### Example

$$f = z_1^2 + z_2^2$$
 the trace of some  $GL_2(\mathbb{C})$  representation?

### Approach

 $\{s_{\mu}\}$  is a basis of symmetric polynomials.

$$f = s_{(2.0)} - s_{(1.1)}$$

f not "Schur-positive"  $\Longrightarrow$  not the trace of a  $GL_2$ -representation!

#### Guiding principle

Positive integer sums of Schurs  $\Longrightarrow$  representation-theoretically meaningful.



$$GL_n(\mathbb{C}) \curvearrowright V^\mu \ iggr| Trace$$
 Schur polynomial  $s_\mu$ 

Semistandard Young Tableaux SSYT( $\mu$ )

$$GL_n(\mathbb{C}) \curvearrowright V^{\mu}$$
  $igg|$   $\mathsf{Trace}$   $\mathsf{Schur}$   $\mathsf{polynomial}$   $s_{\mu}$ 

Semistandard Young Tableaux SSYT
$$(\mu)$$
  $\mu = (4,3,1,1) 
ightarrow \Box$ 

$$GL_n(\mathbb{C}) \curvearrowright V^{\mu}$$
  $igg|$   $\mathsf{Trace}$   $\mathsf{Schur}$   $\mathsf{polynomial}$   $s_{\mu}$ 

Semistandard Young Tableaux SSYT(
$$\mu$$
) 
$$\mu = (4,3,1,1) \rightarrow \qquad \rightarrow T =$$

$$GL_n(\mathbb{C}) \curvearrowright V^{\mu}$$
  $igg|$  Trace  $igg|$  Schur polynomial  $s_{\mu}$ 

Semistandard Young Tableaux SSYT(
$$\mu$$
) 
$$\mu = (4,3,1,1) \rightarrow \qquad \rightarrow T =$$

$$GL_n(\mathbb{C}) \curvearrowright V^\mu$$
  $igg|$   $\mathsf{Trace}$   $\mathsf{Schur}$  polynomial  $s_\mu$ 

Semistandard Young Tableaux SSYT(
$$\mu$$
) 
$$\mu = (4,3,1,1) \rightarrow \square \qquad \rightarrow T = \begin{bmatrix} z_5 \\ z_3 \\ \hline \\ z_1 z_1 z_2 z_3 \end{bmatrix}$$

$$GL_n(\mathbb{C}) \curvearrowright V^{\mu}$$

$$\downarrow \mathsf{Trace}$$

$$\mathsf{Schur polynomial } s_{\mu}$$

$$\mathsf{s}_{\mu} = \sum_{T \in \mathsf{SSYT}(\mu)} \prod_{z_i \in T} z_i$$

$$\uparrow \mathsf{Sum of tableaux weights}$$

$$\mathsf{Semistandard Young Tableaux SSYT}(\mu)$$

$$\mu = (4,3,1,1) \to \qquad \to T = \begin{bmatrix} z_5 \\ z_3 \\ z_2 & z_3 & z_5 \end{bmatrix}$$

$$GL_n(\mathbb{C}) \curvearrowright V^{\mu}$$

$$\downarrow \mathsf{Trace}$$

$$Schur polynomial  $s_{\mu}$ 

$$s_{\mu} = \sum_{T \in \mathsf{SSYT}(\mu)} \prod_{z_i \in T} z_i$$

$$\uparrow \mathsf{Sum of tableaux weights}$$

$$\mathsf{Semistandard Young Tableaux SSYT}(\mu)$$

$$\mu = (4,3,1,1) \to \qquad \to T = \begin{bmatrix} z_5 \\ z_3 \\ \vdots \\ z_1 \\ z_1 \\ z_1 \\ z_2 \\ z_3 \end{bmatrix}$$$$

#### A combinatorial interpretation

dim  $V^{\mu}$  =number of semistandard Young tableaux of  $\mu$ .

•  $S_n \sim V$ 

- $S_n \cap V$
- Integer partition of  $n \leftrightarrow$  irreducible  $S_n$  representation  $V_\mu$

- $S_n \cap V$
- ullet Integer partition of  $n\leftrightarrow$  irreducible  $\mathcal{S}_n$  representation  $\mathcal{V}_\mu$

$$S_n \curvearrowright V_\mu$$

- $S_n \cap V$
- ullet Integer partition of  $n\leftrightarrow$  irreducible  $S_n$  representation  $V_\mu$



- $S_n \cap V$
- ullet Integer partition of  $n\leftrightarrow$  irreducible  $S_n$  representation  $V_\mu$



- $S_n \curvearrowright V$
- ullet Integer partition of  $n\leftrightarrow$  irreducible  $S_n$  representation  $V_\mu$













#### Shuffle Theorem Idea

 $\mathsf{Bigraded}\ \mathit{S_{n}}\ \mathsf{representation}\ \leftrightarrow\ \mathsf{Bigraded}\ \mathsf{combinatorial}\ \mathsf{formula}$ 



#### Shuffle Theorem Idea

Bigraded  $S_n$  representation  $\leftrightarrow$  Bigraded combinatorial formula

### Generalized Shuffle Theorem Idea (Blasiak, Haiman, Morse, Pun, S., 2023)

General family of symmetric polynomials with  $\mathbb{Q}(q,t)$  coefficients  $\leftrightarrow$  Bigraded combinatorial formula

Symmetric group  $S_n \curvearrowright \mathbb{C}[x_1,\ldots,x_n]$ 

$$S_n \curvearrowright \mathcal{R}_n = \mathbb{C}[x_1, \dots, x_n]/I$$

I =all positive degree symmetric polynomials

$$S_n \curvearrowright \mathcal{R}_n = \mathbb{C}[x_1, \dots, x_n]/I$$

$$I = \text{all positive degree symmetric polynomials} \qquad \cong \qquad H^*(Fl_n(\mathbb{C}))$$

$$S_n \curvearrowright \mathcal{R}_n = \mathbb{C}[x_1, \dots, x_n]/I$$

$$I = \text{all positive degree symmetric polynomials} \qquad \cong \qquad H^*(FI_n(\mathbb{C}))$$

$$\mathcal{R}_2 = \mathbb{C}[x_1, x_2]/\langle x_1 + x_2, x_1 x_2 \rangle$$

$$\begin{array}{c}
\downarrow \\
S_n \curvearrowright \mathcal{R}_n = \mathbb{C}[x_1, \dots, x_n]/I \\
I = \text{all positive degree symmetric polynomials}
\end{array}$$

$$\stackrel{\cong}{=} H^*(Fl_n(\mathbb{C}))$$

$$\mathcal{R}_2=\mathbb{C}[x_1,x_2]/\langle x_1+x_2,x_1x_2\rangle \Longrightarrow x_1=-x_2 \text{ and } x_1^2=x_2^2=0.$$

$$S_n \curvearrowright \mathcal{R}_n = \mathbb{C}[x_1, \dots, x_n]/I$$

$$I = \text{all positive degree symmetric polynomials} \qquad \qquad \cong \qquad H^*(Fl_n(\mathbb{C}))$$

$$\mathcal{R}_2=\mathbb{C}[x_1,x_2]/\langle x_1+x_2,x_1x_2\rangle \Longrightarrow x_1=-x_2 \text{ and } x_1^2=x_2^2=0.$$
 For  $\mathcal{S}_2 \curvearrowright \mathcal{R}_2$ ,  $\sigma=(1\leftrightarrow 2)$ ,

$$\sigma x_1 = x_2 = -x_1, \quad \sigma x_1 = 1$$

$$\begin{array}{c}
\downarrow \\
S_n \curvearrowright \mathcal{R}_n = \mathbb{C}[x_1, \dots, x_n]/I \\
I = \text{all positive degree symmetric polynomials}
\end{array}$$

$$\stackrel{\cong}{=} H^*(FI_n(\mathbb{C}))$$

$$\mathcal{R}_2 = \mathbb{C}[x_1, x_2]/\langle x_1 + x_2, x_1 x_2 \rangle \Longrightarrow x_1 = -x_2 \text{ and } x_1^2 = x_2^2 = 0.$$
 For  $S_2 \curvearrowright \mathcal{R}_2$ ,  $\sigma = (1 \leftrightarrow 2)$ ,

$$\sigma . x_1 = x_2 = -x_1, \quad \sigma . 1 = 1$$

$$\Longrightarrow \mathcal{R}_2 = \operatorname{span}\{x_1\} \oplus \operatorname{span}\{1\}.$$

Symmetric group 
$$S_n \curvearrowright \mathbb{C}[x_1,\ldots,x_n]$$

$$S_n \curvearrowright \mathcal{R}_n = \mathbb{C}[x_1, \dots, x_n]/I$$

$$I = \text{all positive degree symmetric polynomials} \qquad \qquad \cong \qquad H^*(Fl_n(\mathbb{C}))$$

$$\mathcal{R}_2=\mathbb{C}[x_1,x_2]/\langle x_1+x_2,x_1x_2\rangle \Longrightarrow x_1=-x_2 \text{ and } x_1^2=x_2^2=0.$$
 For  $S_2 \curvearrowright \mathcal{R}_2$ ,  $\sigma=(1\leftrightarrow 2)$ ,

$$\sigma x_1 = x_2 = -x_1, \quad \sigma x_1 = 1$$

$$\Longrightarrow \mathcal{R}_2 = \mathsf{span}\{x_1\} \oplus \mathsf{span}\{1\}.$$

#### Question

What are the irreducible ( $S_n$ -invariant) pieces of  $\mathcal{R}_n$ ?

 $\mathcal{R}_2 \cong \mathsf{span}\{x_1\} \oplus \mathsf{span}\{1\}$ 

$$\mathcal{R}_2 \cong \operatorname{span}\{x_1\} \oplus \operatorname{span}\{1\}$$
  
 $\cong V_{(1,1)} \oplus V_{(2)}$ 

$$\mathcal{R}_2\cong \operatorname{\mathsf{span}}\{x_1\}\oplus\operatorname{\mathsf{span}}\{1\}$$
 $\cong V_{(1,1)}\oplus V_{(2)}$ 
 $\Longrightarrow\operatorname{\mathsf{Frob}}(\mathcal{R}_2)=s_{(1,1)}+s_{(2)}$ 

$$\mathcal{R}_2\cong \operatorname{\mathsf{span}}\{x_1\}\oplus\operatorname{\mathsf{span}}\{1\}$$
  $\cong V_{(1,1)}\oplus V_{(2)}$   $\Longrightarrow\operatorname{\mathsf{Frob}}(\mathcal{R}_2)=s_{(1,1)}+s_{(2)}$ 

Identification ignores grading

$$\mathcal{R}_2\cong \operatorname{\mathsf{span}}\{x_1\}\oplus\operatorname{\mathsf{span}}\{1\}$$
 $\cong V_{(1,1)}\oplus V_{(2)}$ 
 $\Longrightarrow\operatorname{\mathsf{Frob}}(\mathcal{R}_2)=s_{(1,1)}+s_{(2)}$ 

 $\mbox{Identification ignores grading} \Longrightarrow \mbox{add coefficient parameter } q.$ 

$$\mathcal{R}_2\cong \operatorname{\mathsf{span}}\{x_1\}\oplus\operatorname{\mathsf{span}}\{1\}$$
 $\cong V_{(1,1)}\oplus V_{(2)}$ 
 $\Longrightarrow\operatorname{\mathsf{Frob}}(\mathcal{R}_2)=s_{(1,1)}+s_{(2)}$ 

Identification ignores grading  $\implies$  add coefficient parameter q.

$$\mathcal{R}_2 \cong \mathsf{span}\{x_1\} \oplus \mathsf{span}\{1\}$$

$$\mathcal{R}_2\cong \mathsf{span}\{x_1\}\oplus \mathsf{span}\{1\}$$
  $\cong V_{(1,1)}\oplus V_{(2)}$   $\Longrightarrow \mathsf{Frob}(\mathcal{R}_2)=s_{(1,1)}+s_{(2)}$ 

Identification ignores grading  $\implies$  add coefficient parameter q.

$$\mathcal{R}_2\cong\operatorname{\mathsf{span}}\{x_1\}\oplus\operatorname{\mathsf{span}}\{1\}$$

 $Frob_{q}(\mathcal{R}_{2}) = qs_{(1,1)} + s_{(2)}$ 

$$\mathcal{R}_2\cong \mathsf{span}\{x_1\}\oplus \mathsf{span}\{1\}$$

$$\cong V_{(1,1)} \oplus V_{(2)} \ \implies \mathsf{Frob}(\mathcal{R}_2) = s_{(1,1)} + s_{(2)}$$

Identification ignores grading  $\implies$  add coefficient parameter q.

$$\mathcal{R}_2\cong\operatorname{span}\{x_1\}\oplus\operatorname{span}\{1\}$$

 $Frob(\mathcal{R}_3) = s_{(1,1,1)} + 2s_{(2,1)} + s_{(3)}$ 

$$\mathcal{R}_2\cong \mathsf{span}\{x_1\}\oplus \mathsf{span}\{1\}$$
  $\mathsf{Frob}_q(\mathcal{R}_2)=qs_{(1,1)}+s_{(2)}$ 

$$\mathcal{R}_2\cong \mathsf{span}\{x_1\}\oplus \mathsf{span}\{1\}$$

 $\cong V_{(1,1)} \oplus V_{(2)}$ 

$$\Longrightarrow \operatorname{\mathsf{Frob}}(\mathcal{R}_2) = s_{(1,1)} + s_{(2)}$$

Identification ignores grading  $\Longrightarrow$  add coefficient parameter q.

$$\mathcal{R}_2\cong\operatorname{\mathsf{span}}\{x_1\}\oplus\operatorname{\mathsf{span}}\{1\}$$

$$\mathcal{R}_2\cong \mathsf{span}\{x_1\}\oplus \mathsf{span}\{1\}$$
  $\mathsf{Frob}_a(\mathcal{R}_2)=qs_{(1,1)}+s_{(2)}$ 

$$\mathsf{Frob}(\mathcal{R}_3) = s_{(1,1,1)} + 2s_{(2,1)} + s_{(3)}$$
  $\mathsf{Frob}_q(\mathcal{R}_3) = q^3 s_{(1,1,1)} + (q^2 + q) s_{(2,1)} + s_{(3)}$ 

$$\mathcal{R}_2\cong \operatorname{\mathsf{span}}\{x_1\}\oplus\operatorname{\mathsf{span}}\{1\}$$
 $\cong V_{(1,1)}\oplus V_{(2)}$ 
 $\Longrightarrow\operatorname{\mathsf{Frob}}(\mathcal{R}_2)=s_{(1,1)}+s_{(2)}$ 

Identification ignores grading  $\implies$  add coefficient parameter q.

$$\mathcal{R}_2\cong\operatorname{\mathsf{span}}\{x_1\}\oplus\operatorname{\mathsf{span}}\{1\}$$
  $\operatorname{\mathsf{Frob}}_q(\mathcal{R}_2)=qs_{(1,1)}+s_{(2)}$ 

Frob
$$(\mathcal{R}_3) = s_{(1,1,1)} + 2s_{(2,1)} + s_{(3)}$$
  
Frob $_q(\mathcal{R}_3) = q^3 s_{(1,1,1)} + (q^2 + q)s_{(2,1)} + s_{(3)}$ 

#### Combinatorial Interpretation

• What is  $\operatorname{Frob}_q(\mathcal{R}_n)$ ?

$$\mathcal{R}_2\cong \operatorname{\mathsf{span}}\{x_1\}\oplus\operatorname{\mathsf{span}}\{1\}$$
 $\cong V_{(1,1)}\oplus V_{(2)}$ 
 $\Longrightarrow\operatorname{\mathsf{Frob}}(\mathcal{R}_2)=s_{(1,1)}+s_{(2)}$ 

Identification ignores grading  $\implies$  add coefficient parameter q.

$$\mathcal{R}_2\cong\operatorname{\mathsf{span}}\{x_1\}\oplus\operatorname{\mathsf{span}}\{1\}$$
  $\operatorname{\mathsf{Frob}}_q(\mathcal{R}_2)=qs_{(1,1)}+s_{(2)}$ 

$$\mathsf{Frob}(\mathcal{R}_3) = s_{(1,1,1)} + 2s_{(2,1)} + s_{(3)}$$
 $\mathsf{Frob}_q(\mathcal{R}_3) = q^3 s_{(1,1,1)} + (q^2 + q)s_{(2,1)} + s_{(3)}$ 

#### Combinatorial Interpretation

• What is  $\operatorname{Frob}_q(\mathcal{R}_n)$ ? A "Hall-Littlewood polynomial."

$$\mathcal{R}_2\cong \operatorname{\mathsf{span}}\{x_1\}\oplus\operatorname{\mathsf{span}}\{1\}$$
 $\cong V_{(1,1)}\oplus V_{(2)}$ 
 $\Longrightarrow\operatorname{\mathsf{Frob}}(\mathcal{R}_2)=s_{(1,1)}+s_{(2)}$ 

Identification ignores grading  $\implies$  add coefficient parameter q.

$$\mathcal{R}_2\cong\operatorname{\mathsf{span}}\{x_1\}\oplus\operatorname{\mathsf{span}}\{1\}$$

 $Frob(\mathcal{R}_3) = s_{(1,1,1)} + 2s_{(2,1)} + s_{(3)}$ 

 $\mathsf{Frob}_q(\mathcal{R}_2) = q s_{(1,1)} + s_{(2)}$ 

$$\mathsf{Frob}_q(\mathcal{R}_3) = q^3 s_{(1,1,1)} + (q^2 + q) s_{(2,1)} + s_{(3)}$$

- Combinatorial Interpretation
  - What is  $\operatorname{Frob}_q(\mathcal{R}_n)$ ? A "Hall-Littlewood polynomial."
  - Combinatorics for coefficients?

$$\mathcal{R}_2\cong \operatorname{\mathsf{span}}\{x_1\}\oplus\operatorname{\mathsf{span}}\{1\}$$
  $\cong V_{(1,1)}\oplus V_{(2)}$   $\Longrightarrow\operatorname{\mathsf{Frob}}(\mathcal{R}_2)=s_{(1,1)}+s_{(2)}$ 

Identification ignores grading  $\implies$  add coefficient parameter q.

$$\mathcal{R}_2\cong\operatorname{\mathsf{span}}\{x_1\}\oplus\operatorname{\mathsf{span}}\{1\}$$

 $\mathsf{Frob}_q(\mathcal{R}_2) = qs_{(1,1)} + s_{(2)}$ 

Combinatorial Interpretation

$$\mathsf{Frob}_q(\mathcal{R}_3) = q^3 s_{(1,1,1)} + (q^2 + q) s_{(2,1)} + s_{(3)}$$

- What is Frob<sub>q</sub>( $\mathcal{R}_n$ )? A "Hall-Littlewood polynomial."
- Combinatorics for coefficients? Lascoux-Schützenberger, 1985

 $Frob(\mathcal{R}_3) = s_{(1,1,1)} + 2s_{(2,1)} + s_{(3)}$ 

Symmetric group  $S_n \curvearrowright \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n]$ 

Symmetric group  $S_n \curvearrowright \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ 

$$S_n \curvearrowright D\mathcal{R}_n = \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n]/I$$

 $I = \text{all positive degree polynomials symmetric in } x_i$ 's and in  $y_i$ 's

Symmetric group  $S_n \curvearrowright \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ 

$$\downarrow S_n \curvearrowright D\mathcal{R}_n = \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n]/I$$

 $S_n \curvearrowright D\mathcal{R}_n = \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n]/I$  $I = \text{all positive degree polynomials symmetric in } x_i$ 's and in  $y_i$ 's

$$D\mathcal{R}_2 = \operatorname{span}\{x_1\} \oplus \operatorname{span}\{y_1\} \oplus \operatorname{span}\{1\}$$
  
 $\cong V_{(1,1)} \oplus V_{(1,1)} \oplus V_{(2)}$ 

Symmetric group 
$$S_n \curvearrowright \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]$$

$$S_n \curvearrowright D\mathcal{R}_n = \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n]/I$$
  
 $I = \text{all positive degree polynomials symmetric in } x_i$ 's and in  $y_i$ 's

$$D\mathcal{R}_2 = \operatorname{span}\{x_1\} \oplus \operatorname{span}\{y_1\} \oplus \operatorname{span}\{1\}$$
  
$$\cong V_{(1,1)} \oplus V_{(1,1)} \oplus V_{(2)}$$

Identification ignores bigrading  $\Longrightarrow$  add coefficient parameters q, t.

Symmetric group 
$$S_n \curvearrowright \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]$$

$$S_n \curvearrowright D\mathcal{R}_n = \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n]/I$$
 $I = \text{all positive degree polynomials symmetric in } x_i$ 's and in  $y_i$ 's

$$\cong V_{(1,1)} \oplus V_{(1,1)} \oplus V_{(2)}$$

Identification ignores bigrading  $\Longrightarrow$  add coefficient parameters q,t.

 $D\mathcal{R}_2 = \operatorname{span}\{x_1\} \oplus \operatorname{span}\{y_1\} \oplus \operatorname{span}\{1\}$ 

$$D\mathcal{R}_2 = \operatorname{\sf span}\{x_1\} \oplus \operatorname{\sf span}\{y_1\} \oplus \operatorname{\sf span}\{1\}$$

Symmetric group 
$$S_n \curvearrowright \mathbb{C}[x_1,\ldots,x_n,y_1,\ldots,y_n]$$

$$S_n \curvearrowright D\mathcal{R}_n = \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n]/I$$

$$I = \text{all positive degree polynomials symmetric in } x_i\text{'s and in } y_i\text{'s}$$

$$egin{aligned} \mathcal{DR}_2 &= \mathsf{span}\{x_1\} \oplus \mathsf{span}\{y_1\} \oplus \mathsf{span}\{1\} \ &\cong V_{(1,1)} \oplus V_{(1,1)} \oplus V_{(2)} \end{aligned}$$

 $\mbox{Identification ignores bigrading} \Longrightarrow \mbox{add coefficient parameters } q,t.$ 

$$D\mathcal{R}_2 = \mathsf{span}\{x_1\} \oplus \mathsf{span}\{y_1\} \oplus \mathsf{span}\{1\}$$
  $\mathsf{Frob}_{q,t}(D\mathcal{R}_2) = qs_{(1,1)} + ts_{(1,1)} + s_{(2)}$ 

Symmetric group 
$$S_n \curvearrowright \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]$$

$$S_n \curvearrowright D\mathcal{R}_n = \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n]/I$$
  
 $I = \text{all positive degree polynomials symmetric in } x_i$ 's and in  $y_i$ 's

$$D\mathcal{R}_2 = \operatorname{span}\{x_1\} \oplus \operatorname{span}\{y_1\} \oplus \operatorname{span}\{1\}$$
  
 $\cong V_{(1,1)} \oplus V_{(1,1)} \oplus V_{(2)}$ 

 $\mbox{Identification ignores bigrading} \Longrightarrow \mbox{add coefficient parameters } q,t.$ 

$$D\mathcal{R}_2 = \operatorname{\mathsf{span}}\{x_1\} \oplus \operatorname{\mathsf{span}}\{y_1\} \oplus \operatorname{\mathsf{span}}\{1\}$$
  $\operatorname{\mathsf{Frob}}_{q,t}(D\mathcal{R}_2) = qs_{(1,1)} + ts_{(1,1)} + s_{(2)}$ 

#### Foundational unsolved question

What are the combinatorics for this expression?

Symmetric group 
$$S_n \curvearrowright \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]$$

$$S_n \curvearrowright D\mathcal{R}_n = \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n]/I$$
 $I = \text{all positive degree polynomials symmetric in } x_i$ 's and in  $y_i$ 's

$$D\mathcal{R}_2 = \operatorname{span}\{x_1\} \oplus \operatorname{span}\{y_1\} \oplus \operatorname{span}\{1\}$$
$$\cong V_{(1,1)} \oplus V_{(1,1)} \oplus V_{(2)}$$

Identification ignores bigrading  $\Longrightarrow$  add coefficient parameters q, t.

$$D\mathcal{R}_2 = \operatorname{\mathsf{span}}\{x_1\} \oplus \operatorname{\mathsf{span}}\{y_1\} \oplus \operatorname{\mathsf{span}}\{1\}$$
  $\operatorname{\mathsf{Frob}}_{a,t}(D\mathcal{R}_2) = qs_{(1,1)} + ts_{(1,1)} + s_{(2)}$ 

### Foundational unsolved question

What are the combinatorics for this expression?

$$\mathsf{Frob}_{q,t}(\mathcal{DR}_3) = (q^3 + q^2t + qt^2 + t^3 + qt)s_{111} + (q^2 + qt + t^2 + q + t)s_{21} + s_3$$

What do the following objects have in common?

What do the following objects have in common?

• Dyck paths in an  $n \times n$  grid.



What do the following objects have in common?

• Dyck paths in an  $n \times n$  grid.



• Triangulations of an (n+2)-gon



What do the following objects have in common?

• Dyck paths in an  $n \times n$  grid.



• Triangulations of an (n+2)-gon



• The number of  $2 \times n$  rectangle standard Young tableaux

|   |   |   | _ |   |   |  |   |   |   |  |   |   |   |  |   |   |   |  |
|---|---|---|---|---|---|--|---|---|---|--|---|---|---|--|---|---|---|--|
| 4 | 5 | 6 | 3 | 4 | 6 |  | 3 | 5 | 6 |  | 2 | 5 | 6 |  | 2 | 4 | 6 |  |
| 1 | 2 | 3 | 1 | 2 | 5 |  | 1 | 2 | 4 |  | 1 | 3 | 4 |  | 1 | 3 | 5 |  |

What do the following objects have in common?

• Dyck paths in an  $n \times n$  grid.



• Triangulations of an (n+2)-gon



• The number of  $2 \times n$  rectangle standard Young tableaux

• Number of terms in coefficient of  $s_{(1,...,1)}$  in  $\operatorname{Frob}_{q,t}(D\mathcal{R}_n)$ ?

$$(q^3 + q^2t + qt^2 + t^3 + qt)s_{111} + \cdots$$

What do the following objects have in common?

• Dyck paths in an  $n \times n$  grid.



• Triangulations of an (n+2)-gon



• The number of  $2 \times n$  rectangle standard Young tableaux

| 4 | 5 | 6 | 3 | 4 | 6 | 3 | 5 | 6 | 2 | 5 | 6 | 2 | 4 | 6 | 1 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 1 | 2 | 5 | 1 | 2 | 4 | 1 | 3 | 4 | 1 | 3 | 5 | ĺ |

• Number of terms in coefficient of  $s_{(1,...,1)}$  in  $\text{Frob}_{q,t}(D\mathcal{R}_n)$ ?

$$(q^3 + q^2t + qt^2 + t^3 + qt)s_{111} + \cdots$$

Catalan numbers!

$$C_0 = 1$$
 and  $C_n = \sum_{i=1}^{n} C_{i-1} C_{n-i}$ 

$$C_0 = 1$$
 and  $C_n = \sum_{i=1}^{n} C_{i-1} C_{n-i}$ 

 $1, 1, 2, 5, 14, 42, 132, \dots$ 

$$C_0 = 1$$
 and  $C_n = \sum_{i=1}^{n} C_{i-1} C_{n-i}$ 

1, 1, 2, 5, 14, 42, 132, . . .





$$C_0 = 1$$
 and  $C_n = \sum_{i=1}^{n} C_{i-1} C_{n-i}$ 

1, 1, 2, 5, 14, 42, 132, . . .







$$C_0 = 1$$
 and  $C_n = \sum_{i=1}^{n} C_{i-1} C_{n-i}$ 

1, 1, 2, 5, 14, 42, 132, . . .









#### q, t Catalan "numbers"

Write  $\operatorname{Frob}_{q,t}(D\mathcal{R}_n) = C_n(q,t)s_{(1,\ldots,1)} + \cdots$ 

$$C_0 = 1$$
 and  $C_n = \sum_{i=1}^n C_{i-1} C_{n-i}$ 

1, 1, 2, 5, 14, 42, 132, . . .









#### q, t Catalan "numbers"

Write 
$$\operatorname{Frob}_{q,t}(D\mathcal{R}_n) = C_n(q,t)s_{(1,\ldots,1)} + \cdots$$
  
 $C_n(q,t) \in \mathbb{N}[q,t]$  and  $C_n(1,1) = C_n$ .

$$C_0 = 1$$
 and  $C_n = \sum_{i=1}^{n} C_{i-1} C_{n-i}$ 

1, 1, 2, 5, 14, 42, 132, . . .









#### q, t Catalan "numbers"

Write 
$$\operatorname{Frob}_{q,t}(D\mathcal{R}_n) = C_n(q,t)s_{(1,\ldots,1)} + \cdots$$
  
 $C_n(q,t) \in \mathbb{N}[q,t]$  and  $C_n(1,1) = C_n$ .

 $Frob_{q,t}(D\mathcal{R}_n) = Sum$  controlled by Catalan-many objects?

#### Special case

 $\mathsf{Frob}_{q,t}(D\mathcal{R}_n)|_{q=1} = \sum_{\lambda \in DP_n} (t \; \mathsf{monomial}) (\mathsf{product} \; \mathsf{of} \; e_i \ \mathsf{'s})$ 

#### Special case

 $\mathsf{Frob}_{q,t}(D\mathcal{R}_n)|_{q=1} = \sum_{\lambda \in DP_n} (t \; \mathsf{monomial}) (\mathsf{product} \; \mathsf{of} \; e_i \ \mathsf{'s})$ 

$$\lambda$$
 (t monomial)(product of  $e_i$ 's)

#### Special case

 $\operatorname{Frob}_{q,t}(D\mathcal{R}_n)|_{q=1} = \sum_{\lambda \in DP_n} (t \text{ monomial}) (\operatorname{product of } e_i \text{'s})$ 



#### Special case

 $\operatorname{Frob}_{q,t}(D\mathcal{R}_n)|_{q=1} = \sum_{\lambda \in DP_n} (t \text{ monomial}) (\operatorname{product of } e_i \text{'s})$ 



#### Special case

## $\operatorname{Frob}_{q,t}(D\mathcal{R}_n)|_{q=1} = \sum_{\lambda \in DP_n} (t \text{ monomial})(\operatorname{product of } e_i \text{'s})$



#### Special case

 $\operatorname{Frob}_{q,t}(D\mathcal{R}_n)|_{q=1} = \sum_{\lambda \in DP_n} (t \text{ monomial})(\operatorname{product of } e_i \text{'s})$ 

$$\lambda$$
 ( $t$  monomial)(product of  $e_i$ 's)
$$e_1e_1e_1$$

$$t^1e_2e_1$$

$$t^2e_2e_1$$

$$t^3e_3$$

$$\Rightarrow \operatorname{Frob}_{a,t}(D\mathcal{R}_n)|_{a=1} = e_1^3 + (2t+t^2)e_2e_1 + t^3e_3$$

### The Shuffle Theorem

The Shuffle Theorem (Carlsson-Mellit, 2018)

 $\operatorname{Frob}_{q,t}(D\mathcal{R}_n) =$ 

### The Shuffle Theorem (Carlsson-Mellit, 2018)

 $\mathsf{Frob}_{q,t}(\mathcal{DR}_n) = \sum_{\lambda \in \mathcal{DP}_n} (q, t \; \mathsf{monomial}) (\mathsf{LLT} \; \mathsf{polynomial})$ 

### The Shuffle Theorem (Carlsson-Mellit, 2018)

 $Frob_{q,t}(D\mathcal{R}_n) = \sum_{\lambda \in DP_n} (q, t \text{ monomial})(LLT \text{ polynomial})$ 

• LLT polynomial = Symmetric polynomial with  $\mathbb{N}[q]$  coefficients (Lascoux, Leclerc, Thibon, 1997).

### The Shuffle Theorem (Carlsson-Mellit, 2018)

 $Frob_{q,t}(D\mathcal{R}_n) = \sum_{\lambda \in DP_n} (q, t \text{ monomial})(LLT \text{ polynomial})$ 

- LLT polynomial = Symmetric polynomial with  $\mathbb{N}[q]$  coefficients (Lascoux, Leclerc, Thibon, 1997).
- Conjectured by (Haglund, Haiman, Loehr, Remmel, Ulyanov, 2005).

### The Shuffle Theorem (Carlsson-Mellit, 2018)

 $\operatorname{Frob}_{q,t}(D\mathcal{R}_n) = \sum_{\lambda \in DP_n} (q, t \text{ monomial}) (\operatorname{LLT polynomial})$ 

- LLT polynomial = Symmetric polynomial with  $\mathbb{N}[q]$  coefficients (Lascoux, Leclerc, Thibon, 1997).
- Conjectured by (Haglund, Haiman, Loehr, Remmel, Ulyanov, 2005).
- LLT polynomial Schur expansion coefficients in  $\mathbb{N}[q]$  (Grojnowski, Haiman, 2007).

### The Shuffle Theorem (Carlsson-Mellit, 2018)

 $\mathsf{Frob}_{q,t}(\mathcal{DR}_n) = \sum_{\lambda \in \mathit{DP}_n} (q,t \; \mathsf{monomial}) (\mathsf{LLT} \; \mathsf{polynomial})$ 

- LLT polynomial = Symmetric polynomial with  $\mathbb{N}[q]$  coefficients (Lascoux, Leclerc, Thibon, 1997).
- Conjectured by (Haglund, Haiman, Loehr, Remmel, Ulyanov, 2005).
- LLT polynomial Schur expansion coefficients in  $\mathbb{N}[q]$  (Grojnowski, Haiman, 2007).

# Special Case (Garsia, Haglund, 2001+2002)

$$C_n(q,t) = \sum_{\lambda \in DP_n} (q,t \text{ monomial})$$

LHS of Shuffle Theorem: Frob<sub>q,t</sub>( $D\mathcal{R}_k$ ).

LHS of Shuffle Theorem: Frob<sub>q,t</sub>( $D\mathcal{R}_k$ ).

#### Theorem (Haiman, 2002)

For operator  $e_k^{(1,1)}$  on symmetric polynomials,  $e_k^{(1,1)}(1) = \operatorname{Frob}_{q,t}(D\mathcal{R}_k)$ .

LHS of Shuffle Theorem: Frob<sub>q,t</sub>( $D\mathcal{R}_k$ ).

#### Theorem (Haiman, 2002)

For operator  $e_k^{(1,1)}$  on symmetric polynomials,  $e_k^{(1,1)}(1) = \operatorname{Frob}_{q,t}(D\mathcal{R}_k)$ .



Shuffle Theorem

LHS of Shuffle Theorem: Frob<sub>q,t</sub>( $D\mathcal{R}_k$ ).

#### Theorem (Haiman, 2002)

For operator  $e_k^{(1,1)}$  on symmetric polynomials,  $e_k^{(1,1)}(1) = \operatorname{Frob}_{q,t}(D\mathcal{R}_k)$ .



LHS of Shuffle Theorem: Frob<sub>q,t</sub>( $D\mathcal{R}_k$ ).

#### Theorem (Haiman, 2002)

For operator  $e_k^{(1,1)}$  on symmetric polynomials,  $e_k^{(1,1)}(1) = \operatorname{Frob}_{q,t}(D\mathcal{R}_k)$ .



LHS of Shuffle Theorem: Frob<sub>q,t</sub>( $D\mathcal{R}_k$ ).

#### Theorem (Haiman, 2002)

For operator  $e_k^{(1,1)}$  on symmetric polynomials,  $e_k^{(1,1)}(1) = \operatorname{Frob}_{q,t}(D\mathcal{R}_k)$ .



LHS of Shuffle Theorem: Frob<sub>q,t</sub>( $D\mathcal{R}_k$ ).

#### Theorem (Haiman, 2002)

For operator  $e_k^{(1,1)}$  on symmetric polynomials,  $e_k^{(1,1)}(1) = \operatorname{Frob}_{q,t}(D\mathcal{R}_k)$ .



$$\mathcal{E} = \begin{array}{l} \text{Hall algebra of Coherent sheaves on} \\ \text{an elliptic curve over a finite field} \end{array}$$

$$\mathcal{E} = \begin{array}{l} \text{Hall algebra of Coherent sheaves on} \\ \text{an elliptic curve over a finite field} \end{array}$$

$$\mathcal{E} \cong egin{array}{l} \mathsf{central} & \oplus igoplus igoplus$$



$$\mathcal{E} \cong rac{\mathsf{central}}{\mathsf{subalgebra}} \oplus igoplus_{m,n} igoplus_{\mathsf{coprime}} oldsymbol{\Lambda}^{(m,n)}$$



Algebra  $\mathcal{E} \curvearrowright \Lambda = \text{symmetric polynomials}$ 

$$\mathcal{E} = \begin{array}{l} \text{Hall algebra of Coherent sheaves on} \\ \text{an elliptic curve over a finite field} \end{array}$$



LHS of Shuffle Theorem =  $e_{\nu}^{(1,1)} \in \Lambda^{(1,1)}$  acting on  $1 \in \Lambda$ .

Algebra  $\mathcal{E} \curvearrowright \Lambda = \text{symmetric polynomials}$ 

$$\mathcal{E} = \begin{array}{l} \text{Hall algebra of Coherent sheaves on} \\ \text{an elliptic curve over a finite field} \end{array}$$

$$\mathcal{E} \cong { ext{central} top ext{subalgebra}} \oplus igoplus_{m,n ext{ coprime}} igwedge^{(m,n)}$$



LHS of Shuffle Theorem =  $e_{\nu}^{(1,1)} \in \Lambda^{(1,1)}$  acting on  $1 \in \Lambda$ .

#### Question

What can we say about  $e_{\iota}^{(m,n)} \in \Lambda^{(m,n)}$  acting on  $1 \in \Lambda$ ?

$$e_k^{(m,n)} \cdot 1 = \sum (q,t \text{ monomial}) \text{(LLT polynomial)}$$

### Rational Shuffle Theorem (Mellit, 2021)

$$e_k^{(m,n)} \cdot 1 = \sum (q, t \text{ monomial}) (LLT \text{ polynomial})$$

• Sum over  $km \times kn$  Dyck paths



$$e_k^{(m,n)} \cdot 1 = \sum (q, t \text{ monomial}) (LLT \text{ polynomial})$$

- Sum over  $km \times kn$  Dyck paths
- Conjectured by (F. Bergeron, Garsia, Sergel Leven, Xin, 2016)



$$e_k^{(m,n)} \cdot 1 = \sum (q, t \text{ monomial}) (LLT \text{ polynomial})$$

- Sum over  $km \times kn$  Dyck paths
- Conjectured by (F. Bergeron, Garsia, Sergel Leven, Xin, 2016)



$$e_k^{(m,n)} \cdot 1 = \sum (q, t \text{ monomial}) (LLT \text{ polynomial})$$

- Sum over  $km \times kn$  Dyck paths
- Conjectured by (F. Bergeron, Garsia, Sergel Leven, Xin, 2016)



#### Definition (Neguț, 2014)

$$r,s\in\mathbb{R}_{>0} o D^{(r,s)}\in\mathcal{E}$$
 such that  $D^{(km,kn)}=\mathrm{e}_k^{(m,n)}.$ 

Definition (Neguţ, 2014)

$$r,s\in\mathbb{R}_{>0} o D^{(r,s)}\in\mathcal{E}$$
 such that  $D^{(km,kn)}=e_k^{(m,n)}$ .

Theorem (Blasiak, Haiman, Morse, Pun, S., 2023)

$$D^{(r,s)} \cdot 1 = \sum (q, t \text{ monomial}) (LLT \text{ polynomial})$$

#### Definition (Neguț, 2014)

$$r, s \in \mathbb{R}_{>0} \to D^{(r,s)} \in \mathcal{E}$$
 such that  $D^{(km,kn)} = e_k^{(m,n)}$ .

Theorem (Blasiak, Haiman, Morse, Pun, S., 2023)

$$D^{(r,s)} \cdot 1 = \sum (q, t \text{ monomial}) (LLT \text{ polynomial})$$



#### Definition (Neguț, 2014)

$$r, s \in \mathbb{R}_{>0} \to D^{(r,s)} \in \mathcal{E}$$
 such that  $D^{(km,kn)} = e_k^{(m,n)}$ .

### Theorem (Blasiak, Haiman, Morse, Pun, S., 2023)

$$D^{(r,s)} \cdot 1 = \sum (q, t \text{ monomial})(LLT \text{ polynomial})$$



#### Definition (Neguț, 2014)

$$r, s \in \mathbb{R}_{>0} \to D^{(r,s)} \in \mathcal{E}$$
 such that  $D^{(km,kn)} = e_k^{(m,n)}$ .

### Theorem (Blasiak, Haiman, Morse, Pun, S., 2023)

$$D^{(r,s)} \cdot 1 = \sum (q, t \text{ monomial})(LLT \text{ polynomial})$$



Theorem (Blasiak, Haiman, Morse, Pun, S., 2023)

$$D^{(r,s)} \cdot 1 = \sum_{\lambda} (q, t \text{ monomial}) (LLT \text{ polynomial})$$

# Theorem (Blasiak, Haiman, Morse, Pun, S., 2023)

$$D^{(r,s)} \cdot 1 = \sum_{\lambda} (q, t \text{ monomial}) (LLT \text{ polynomial})$$

Sum over all Dyck paths lying below the line  $y = -\frac{s}{c}x + s$ .

#### Consequences

Second uniform proof of shuffle and rational shuffle theorems.

# Theorem (Blasiak, Haiman, Morse, Pun, S., 2023)

$$D^{(r,s)} \cdot 1 = \sum_{\lambda} (q, t \text{ monomial}) (LLT \text{ polynomial})$$

Sum over all Dyck paths lying below the line  $y = -\frac{s}{c}x + s$ .

#### Consequences

- Second uniform proof of shuffle and rational shuffle theorems.
- Quantity is q, t symmetric, but not clear combinatorially.

# Theorem (Blasiak, Haiman, Morse, Pun, S., 2023)

$$D^{(r,s)} \cdot 1 = \sum_{\lambda} (q, t \text{ monomial}) (LLT \text{ polynomial})$$

Sum over all Dyck paths lying below the line  $y = -\frac{s}{c}x + s$ .

#### Consequences

- Second uniform proof of shuffle and rational shuffle theorems.
- Quantity is q, t symmetric, but not clear combinatorially.
- Schur expansion coefficients in  $\mathbb{N}[q,t]$  (i.e., "Schur-positive").

### Theorem (Blasiak, Haiman, Morse, Pun, S., 2023)

$$D^{(r,s)} \cdot 1 = \sum_{\lambda} (q, t \text{ monomial}) (LLT \text{ polynomial})$$

Sum over all Dyck paths lying below the line  $y = -\frac{s}{r}x + s$ .

#### Consequences

- Second uniform proof of shuffle and rational shuffle theorems.
- Quantity is q, t symmetric, but not clear combinatorially.
- Schur expansion coefficients in  $\mathbb{N}[q,t]$  (i.e., "Schur-positive").

#### **Technique**

Theory of "Catalanimals" bridging algebra and combinatorics.

# Some applications

Generalized q, t Catalan numbers

#### Generalized q, t Catalan numbers

 Generalized Shuffle Theorem proof gives single generating function for all "Generalized q, t Catalan numbers" of (Gorsky, Hawkes, Schilling, Rainbolt, 2020)

#### Generalized q, t Catalan numbers

- Generalized Shuffle Theorem proof gives single generating function for all "Generalized q, t Catalan numbers" of (Gorsky, Hawkes, Schilling, Rainbolt, 2020)
- $D^{(r,s)} \cdot 1 = C^{(r,s)}(q,t)s_{(1,\ldots,1)} + \cdots$

#### Generalized q, t Catalan numbers

- Generalized Shuffle Theorem proof gives single generating function for all "Generalized q, t Catalan numbers" of (Gorsky, Hawkes, Schilling, Rainbolt, 2020)
- $D^{(r,s)} \cdot 1 = C^{(r,s)}(q,t)s_{(1,\ldots,1)} + \cdots \quad (C^{(k,k)}(q,t) = C_k(q,t))$

#### Generalized q, t Catalan numbers

- Generalized Shuffle Theorem proof gives single generating function for all "Generalized q, t Catalan numbers" of (Gorsky, Hawkes, Schilling, Rainbolt, 2020)
- $D^{(r,s)} \cdot 1 = C^{(r,s)}(q,t)s_{(1,...,1)} + \cdots (C^{(k,k)}(q,t) = C_k(q,t))$

KR-homology (generalizes Jones and Alexander polynomial)

#### Generalized q, t Catalan numbers

- Generalized Shuffle Theorem proof gives single generating function for all "Generalized q, t Catalan numbers" of (Gorsky, Hawkes, Schilling, Rainbolt, 2020)
- $D^{(r,s)} \cdot 1 = C^{(r,s)}(q,t)s_{(1,\ldots,1)} + \cdots (C^{(k,k)}(q,t) = C_k(q,t))$

## KR-homology (generalizes Jones and Alexander polynomial)

(Capran, González, Hogancamp, Mazin, 2024+) use Generalized Shuffle Theorem formula to give KR homology of family of "Coxeter knots."

 $D^{(C)} \in \mathcal{E}$  for convex curve C between (0, s) and (r, 0).



 $D^{(C)} \in \mathcal{E}$  for convex curve C between (0, s) and (r, 0).

Conjecture (Blasiak, Haiman, Morse, Pun, S., 2023)

 $D^{(C)} \cdot 1$  is Schur-positive (coefficients in  $\mathbb{N}[q,t]$ ).



 $D^{(C)} \in \mathcal{E}$  for convex curve C between (0,s) and (r,0).

# Conjecture (Blasiak, Haiman, Morse, Pun, S., 2023)

 $D^{(C)} \cdot 1$  is Schur-positive (coefficients in  $\mathbb{N}[q, t]$ ).



 $D^{(C)} \in \mathcal{E}$  for convex curve C between (0, s) and (r, 0).

### Conjecture (Blasiak, Haiman, Morse, Pun, S., 2023)

 $D^{(C)} \cdot 1$  is Schur-positive (coefficients in  $\mathbb{N}[q,t]$ ).



•  $S_n$ -module?

 $D^{(C)} \in \mathcal{E}$  for convex curve C between (0, s) and (r, 0).

## Conjecture (Blasiak, Haiman, Morse, Pun, S., 2023)

 $D^{(C)} \cdot 1$  is Schur-positive (coefficients in  $\mathbb{N}[q,t]$ ).



- $S_n$ -module?
- $s_{(1,...,1)}$  coefficient appears in context of "positroid varieties" (Galashin, Lam, 2024).

Common theme:  $\mathcal{E} \curvearrowright \Lambda = \mathsf{Combinatorial} \ \mathsf{sum}$ 

Common theme:  $\mathcal{E} \curvearrowright \Lambda =$  Combinatorial sum



Shuffle Theorem (2018)

Common theme:  $\mathcal{E} \curvearrowright \Lambda = \mathsf{Combinatorial} \ \mathsf{sum}$ 



Shuffle Rational
Theorem Shuffle Theorem
(2018) (2021)

Common theme:  $\mathcal{E} \curvearrowright \Lambda = \mathsf{Combinatorial} \ \mathsf{sum}$ 



Shuffle Theorem (2018) Rational Shuffle Theorem (2021) Generalized Shuffle Theorem (2023)

Common theme:  $\mathcal{E} \curvearrowright \Lambda =$  Combinatorial sum



Theorem (2018)

Shuffle Theorem (2021)

Shuffle Theorem (2023)

Conjecture (Open)

Common theme:  $\mathcal{E} \curvearrowright \Lambda =$  Combinatorial sum



Shuffle Theorem (2018) Rational Shuffle Theorem (2021) Generalized Shuffle Theorem (2023) Convex Curve Conjecture (Open)

#### Question

What about  $s_{\mu}^{(m,n)} \in \Lambda^{(m,n)} \subseteq \mathcal{E}$ ?

# Theorem (BHMPS, 2021+)

$$s_{\mu}^{(m,n)} \cdot 1 = \pm \sum (q,t \; ext{monomial}) ext{(LLT polynomial)}$$

## Theorem (BHMPS, 2021+)

$$s_{\mu}^{(m,n)} \cdot 1 = \pm \sum (q,t \; ext{monomial}) ext{(LLT polynomial)}$$

Sum over "dens" in a "nest."

## Theorem (BHMPS, 2021+)

$$s_{\mu}^{(m,n)} \cdot 1 = \pm \sum (q,t \; ext{monomial}) ext{(LLT polynomial)}$$

Sum over "dens" in a "nest."



#### Theorem (BHMPS, 2021+)

$$s_{\mu}^{(m,n)} \cdot 1 = \pm \sum (q,t \; ext{monomial}) ext{(LLT polynomial)}$$

Sum over "dens" in a "nest."



#### Loehr-Warrington Conjecture (2008)

$$s_{\mu}^{(m,1)} \cdot 1 = \pm \sum (q, t \text{ monomial}) (LLT \text{ polynomial})$$

Sum over "nested Dyck paths"

Common theme:  $\mathcal{E} \curvearrowright \Lambda =$  Combinatorial sum

Common theme:  $\mathcal{E} \curvearrowright \Lambda =$  Combinatorial sum

Bridge: Catalanimals

Common theme:  $\mathcal{E} \curvearrowright \Lambda = \text{Combinatorial sum}$ 

Bridge: Catalanimals

- Catalanimal = symmetric multivariate Laurent series.
- Governed by 3 sets of pairs  $(i < j) \in \mathbb{N}^2_+$  and  $\gamma \in \mathbb{Z}^n$ .

Common theme: 
$$\mathcal{E} \curvearrowright \Lambda =$$
 Combinatorial sum Bridge: Catalanimals

- Catalanimal = symmetric multivariate Laurent series.
- Governed by 3 sets of pairs  $(i < j) \in \mathbb{N}^2_+$  and  $\gamma \in \mathbb{Z}^n$ .

Symmetrization of 
$$\left(\frac{z_1z_2z_3(1-qtz_1/z_3)}{\prod_{1\leq i< j\leq 3}(1-qz_i/z_j)(1-tz_i/z_j)}\right)$$

Common theme: 
$$\mathcal{E} \curvearrowright \Lambda =$$
 Combinatorial sum Bridge: Catalanimals

- Catalanimal = symmetric multivariate Laurent series.
- Governed by 3 sets of pairs  $(i < j) \in \mathbb{N}^2_+$  and  $\gamma \in \mathbb{Z}^n$ .

Symmetrization of 
$$\left(\frac{z_1z_2z_3(1-qtz_1/z_3)}{\prod_{1\leq i< j\leq 3}(1-qz_i/z_j)(1-tz_i/z_j)}\right)$$
  
=  $s_{111}+(q+t+q^2+qt+t^2)s_{21}+(qt+q^3+q^2t+qt^2+t^3)s_3$ 

Common theme: 
$$\mathcal{E} \curvearrowright \Lambda =$$
 Combinatorial sum Bridge: Catalanimals

- Catalanimal = symmetric multivariate Laurent series.
- Governed by 3 sets of pairs  $(i < j) \in \mathbb{N}^2_+$  and  $\gamma \in \mathbb{Z}^n$ .

Symmetrization of 
$$\left(\frac{z_1z_2z_3(1-qtz_1/z_3)}{\prod_{1\leq i< j\leq 3}(1-qz_i/z_j)(1-tz_i/z_j)}\right)$$
  
=  $s_{111}+(q+t+q^2+qt+t^2)s_{21}+(qt+q^3+q^2t+qt^2+t^3)s_3$   
+  $\cdots$ 

Thank you!