Week 9: Auditing, Testing and monitoring

Ayman El Hajjar

6COSC002W - Security and Forensics

Email: a.elhajjar@westminster.ac.uk
Twitter: @azelhajjar

15 March 2021

Session Overview

- 1 Auditing and testing
- 2 Security Monitoring
- 3 Testing
- 4 Honeypots

Auditing, Testing, and Monitoring

- A security audit is a crucial type of evaluation to avoid a data breach
- Auditing a computer system involves checking to see how its operation has met security goals
- Audit tests may be manual or automated
- Before you can determine whether something has worked, you must first define how it's supposed to work
 - Known as assessing a system

Security Auditing and Analysis

Are security policies sound and appropriate for the business or activity?

Are there controls supporting your policies?

Is there effective implementation and upkeep of controls?

Security Controls Address Risk

Determining What Is Acceptable

- Define acceptable and unacceptable actions
- Create standards based on those developed or endorsed by standards bodies
- Communications and other actions permitted by a policy document are acceptable
- Communications and other actions specifically banned in your security policy are unacceptable

Areas of Security Audits

Large in scope and cover entire departments or business functions

Narrow and address only one specific system or control

Purpose of Audits

Appropriateness of controls

 Is the level of security control suitable for the risk it addresses?

Correct installation of controls

 Is the security control in the right place and working well?

Address purpose of controls

 Is the security control effective in addressing the risk it was designed to address?

Service Organization Control (SOC) Reports

Report	Contents	Audience
SOC 1	Internal controls over fi-	Users and auditors Orga-
	nancial reporting	nizations that must com-
		ply with the law
SOC 2	Security (confidentiality,	Management, regulators,
	integrity, availability) and	stakeholders Service
	privacy controls	providers, hosted data
		centres, managed cloud
		computing providers
SOC 3	Security (confidentiality,	Public Customers of SOC
	integrity, availability) and	2 service providers
	privacy controls	

Defining Your Audit Plan

Define objectives; determine which systems or business processes to review

Define which areas of assurance to check

Identify personnel who will participate in the audit

Defining the Scope of the Plan

Audit Scope and the Seven Domains of the IT Infrastructure

Auditing Benchmarks

Benchmark—The standard to which your system is compared to determine whether it is securely configured

- ISO 27002—ISO 27002
- NIST Cybersecurity Framework (CSF)
- ITIL (Information Technology Infrastructure Library)
 - Control Objectives for Information and related Technology (COBIT)
 - o Committee of Sponsoring Organizations (COSO)

Audit Data Collection Methods

Areas Included in Audit Plan

Area	Audit Goal
Antivirus software	Up-to-date, universal applica-
	tion
System access policies	Current with technology
Intrusion detection and event	Log reviews
monitoring systems	
System-hardening policies	Ports, services
Cryptographic controls	Key management, usage (net-
	work encryption of sensitive
	data)
Contingency planning	Business continuity plan (BCP),
	disaster recovery plan (DRP),
	and continuity of operations
	plan (COOP)

Areas Included in Audit Plan (cont.)

Area	Audit Goal
Hardware and software mainte-	Maintenance agreements, ser-
nance	vicing, forecasting of future needs
Physical security	Doors locked, power supplies
	monitored
Access control	Need to know, least privilege
Change control processes for	Documented, no unauthorized
configuration management	changes
Media protection	Age of media, labeling, storage,
	transportation

Audit questions: Control Checks and Identity Management

- Approval process: Who grants approval for access requests?
- Authentication mechanisms: What mechanisms are used for specific security requirements?
- Password policy and enforcement: Does the organization have an effective password policy and is it uniformly enforced?
- Monitoring: Does the organization have sufficient monitoring systems to detect unauthorized access?
- Remote access systems: Are all systems properly secured with strong authentication?

Post-Audit Activities

- Exit interview
- Data analysis
- Generation of audit report
 - Findings
 - Recommendations
 - Timeline for implementation
 - Level of risk
 - Management response
 - Follow-up

Monitoring and Testing Security Systems

Common risks are:

- Attackers who come in from outside, with unauthorized access, malicious code, Trojans, and malware
- Sensitive information leaking from inside the organization to unauthorized people who can damage your organization

Monitoring

Monitor traffic with an IDS, which identifies abnormal traffic for further investigation

Use an IPS to actively block malicious traffic

Security Monitoring

Security Monitoring for Computer Systems

Real-time monitoring

- Host IDS
- System integrity monitoring
- Data loss prevention (DLP)

Non-real-time monitoring

- Application logging
- System logging

Log activities

- · Host-based activity
- · Network and network devices

HIDS

- Software processes or services designed to run on server computers
- Intercept and examine system calls or specific processes for patterns or behaviors that should not normally be allowed
- HIDS daemons can take a predefined action such as stopping or reporting the infraction
- Detect inappropriate traffic that originates inside the network
- Recognize an anomaly that is specific to a particular machine or user

Types of Log Information to Capture

Event logs

 General operating system and application software events

Access logs

Access requests to resources

Security logs

Security-related events

Audit logs

 Defined events that provide additional input to audit activities

Types of Log Information

IDS as a Firewall Complement

Basic NIDS as a Firewall Complement

Analysis Methods

Pattern- or signature-based IDSs

Rule-based detection

 Rely on pattern matching and stateful matching

Anomaly-based IDSs

Profile-based systems

Common methods of detecting anomalies

- Statistical-based methods
- · Traffic-based methods
- Protocol patterns

Layered Defense: Network Access Control

Using NIDS Devices to Monitor Outside Attacks

Host Isolation and the DMZ

System Hardening

- Turn off or disable unnecessary services; protect ones that are still running
- Secure management interfaces and applications
- Protect passwords through aggressive password policies
- Disable unnecessary user accounts
- Apply the latest software patches available
- Secure all computers/devices from unauthorized changes
- Disable unused network interfaces
- Disable unused application service ports
- Use MAC filtering to limit device access
- Implement 802.1x, PNAC

Testing

Security Testing Road Map

Establishing Testing Goals and Reconnaissance Methods

- Establish testing goals
 - Identify vulnerabilities and rank them according to how critical they are to your systems
 - Document a point-in-time (snapshot) test for comparison to other time periods
 - Prepare for auditor review
 - Find the gaps in your security
- Reconnaissance methods
 - Social engineering
 - Whois service
 - Zone transfer

Network Mapping

Network Mapping with ICMP (Ping)

Network Mapping with TCP/SYN Scans

Target

Target

Operating System Fingerprinting

What port mappers "think":

- 10.5.5.5 looks like Windows Server 2003 based on the way its TCP/IP communications are structured....
- 10.5.5.6 looks like Windows Server 2008 because it did not respond with an RST when I sent a FIN and it runs IIS 5 according to the http banner....
- 10.5.5.7 looks like Linux because it did send back an RST in response to my FIN and its TCP/IP communications behave like Linux....

Testing Methods

Black-box testing

 Uses test methods that aren't based directly on knowledge of a program's architecture or design

White-box testing

 Is based on knowledge of the application's design and source code

Gray-box testing

 Lies somewhere between black-box testing and whitebox testing

Covert versus Overt Testers

Security Testing Tips and Techniques

Honeypots

- Decoy systems designed to:
 - Lure a potential attacker away from critical systems
 - Collect information about the attacker's activity
 - Encourage the attacker to stay on the system long enough for administrators to respond
 - Systems are filled with fabricated information that a legitimate user of the system wouldn't access
 - Resources that have no production value
 - Therefore incoming communication is most likely a probe, scan, or attack
 - Initiated outbound communication suggests that the system has probably been compromised

Honeypot Classifications

- Low interaction honeypot
- Consists of a software package that emulates particular IT services or systems well enough to provide a realistic initial interaction, but does not execute a full version of those services or systems
- Provides a less realistic target
- Often sufficient for use as a component of a distributed IDS to warn of imminent attack
- High interaction honeypot
- A real system, with a full operating system, services and applications, which are instrumented and deployed where they can be accessed by attackers
- Is a more realistic target that may occupy an attacker for an extended period

Honeypot example

Summary

- Practices and principles of security audits
- Ways to monitor systems
- Capturing and analyzing log data
- Assessing an organization's security compliance
- Monitoring and testing security systems