Варианты к заданиям лабораторной работы 5

Задание 1

№ варианта	Задача
1	Случайная величина X задана плотностью вероятностей $f(x) = \frac{1}{4\sqrt{2\pi}}e^{-\frac{(x+1)^2}{32}}.$
	Для пункта 4.2) — 40% -ный квантиль; $P(-2 < X < 3)$.
	Случайная величина X задана функцией распределения x
2	$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\pi} e^{-\frac{(t+4)^2}{2}} dt.$
	Для пункта 4.2) — квантиль порядка 0.3 ; $P(-5.5 < X < -4.5)$.
3	Математическое ожидание и дисперсия нормально распределенной случайной величины X соответственно равны 10 и 4 .
	Для пункта 4.2) — 90%-ный квантиль; вероятность того, что в результате испытания случайная величина X примет значение, заключенное в интервале (12; 14).
4	Текущая цена акции представляет собой нормально распределенную случайную величину <i>X</i> со средней ценой 100 у.е. и средним квадратическим отклонением 16 у.е. Для пункта 4.2) – медиана; вероятность того, что цена случайно выбранной акции будет находиться в пределах от 90 до 120 у.е.
5	Случайная величина X задана плотностью вероятностей $f(x) = \frac{1}{2\sqrt{2\pi}} e^{-\frac{(x-5)^2}{8}}.$
	Для пункта 4.2) — квантиль порядка 0.55 ; $P(-1.5 \le X \le 4)$. Случайная величина X задана функцией распределения
6	$F(x) = \frac{1}{0.5\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{-(t-9)^2}{0.5}} dt.$
7	Для пункта 4.2) — 45% -ный квантиль; $P(9 \le X \le 10)$. Случайная величина X имеет нормальный закон распределения, причем ее
	математическое ожидание равно 3, а дисперсия – 0,09. Для пункта 4.2) — третий квартиль; вероятность попадания значений случайной величины в отрезок [1,5; 4].
8	Станок-автомат изготавливает валики, контролируя их диаметр X .
	Случайная величина Х распределена нормально с математическим
	ожиданием 20 мм и средним квадратическим отклонением 0,1 мм.
	Для пункта 4.2) – первый квартиль; вероятность того, что диаметр случайным образом отобранного валика составит от 19,8 мм до 19,95 мм.

№ варианта	Задача
9	Случайная величина X задана плотностью вероятностей $f(x) = \frac{1}{1,5\sqrt{2\pi}}e^{\frac{-(x-2)^2}{4,5}}.$
10	Для пункта 4.2) — 65% -ный квантиль; $P(-1 \le X < 2,5)$. Случайная величина X задана функцией распределения
	$F(x) = \frac{1}{3\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(t+1)^2}{18}} dt.$ Here we were 4.2) where we are set of 0.5 to P(-0.5 V < 1).
11	Для пункта 4.2) — квантиль порядка 0.95 ; $P(-6 \le X < 1)$. Математическое ожидание и дисперсия нормально распределенной
	случайной величины X соответственно равны -1 и 4. Для пункта 4.2) — квантиль порядка 0,9; вероятность того, что в результате испытания случайная величина X примет значение, заключенное в интервале (-3 ; 1,5).
12	Расход удобрений на один гектар пашни является нормально распределенной случайной величиной X , при этом известно, что средний расход удобрений на один гектар пашни составляет $80~\rm kr$, а среднее квадратическое отклонение расхода равно $5~\rm kr$. Для пункта $4.2)$ — второй квартиль; вероятность того, что расход удобрений
	на одном случайно выбранном гектаре пашни будет находиться в пределах от 68 до 91 кг.
13	Случайная величина X задана плотностью вероятностей $f(x) = \frac{1}{4\sqrt{2\pi}}e^{-\frac{x^2}{32}}.$ Для пункта 4.2) — 20% -ный квантиль; $P(-11 < X \le 11)$.
14	Случайная величина X задана функцией распределения $F(x) = \frac{1}{3,5\sqrt{2\pi}} \int\limits_{-\infty}^{x} e^{-\frac{(t-10)^2}{24,5}} dt.$ Для пункта 4.2) — квантиль порядка $0,1$; $P(12 < X \le 17)$.
	Случайная величина X имеет нормальный закон распределения, причем ее
15	математическое ожидание равно 20, а дисперсия – 25. Для пункта 4.2) – первый квартиль; вероятность попадания значений случайной величины в отрезок [13; 27].
16	Рост людей в некоторой популяции представляет собой нормально распределенную случайную величину <i>X</i> со средним ростом 166 см и средним квадратическим отклонением 4 см. Для пункта 4.2) — третий квартиль; вероятность того, что рост человека будет находиться в пределах от 168 до 172 см.

№ варианта	Задача	
17	Случайная величина X задана плотностью вероятностей $f(x) = \frac{1}{2,5\sqrt{2\pi}}e^{\frac{(x+10)^2}{12,5}}.$	
	Для пункта 4.2) — квантиль порядка 0.7 ; $P(-9 \le X < -7)$.	
18	Случайная величина X задана функцией распределения $F(x) = \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{x} e^{-\frac{(t-5)^2}{2}} dt.$ Для пункта 4.2) — 1%-ный квантиль; $P(4 < X < 7)$.	
19	Математическое ожидание и дисперсия нормально распределенной случайной величины X соответственно равны 6 и 9. Для пункта 4.2) — квантиль порядка 0.35 ; вероятность того, что в результате испытания случайная величина X примет значение, заключенное в отрезке $[3;7]$.	
20	Размер выплаты клиентам банка является нормально распределенной случайной величиной <i>X</i> , при этом известно, что средний размер выплаты составляет 5000 у.е., а среднее квадратическое отклонение равно 2000 у.е. Для пункта 4.2) – медиана; вероятность того, что размер выплаты случайно выбранному клиенту будет находиться в пределах от 6000 до 8000 у.е.	
21	Случайная величина X задана плотностью вероятностей $f(x) = \frac{1}{2\sqrt{2\pi}}e^{-\frac{(x+3)^2}{8}}.$ Для пункта 4.2) – 99%-ный квантиль; $P(-6 \le X \le -2.5)$.	
22	Случайная величина X задана функцией распределения $F(x) = \frac{1}{1,5\sqrt{2\pi}} \int\limits_{-\infty}^{x} e^{-\frac{(t+9)^2}{4,5}} dt.$	
23	Для пункта 4.2) – квантиль порядка $0,15$; $P(-11 \le X \le -8)$. Случайная величина X имеет нормальный закон распределения, причем ее математическое ожидание равно 6 , а дисперсия – 16 . Для пункта 4.2) – 55% -ный квантиль; вероятность попадания значений случайной величины в интервал $(1;4)$.	
24	Доля расходов бюджета домохозяйств на продукты питания представляет собой нормально распределенную случайную величину <i>X</i> со средней долей 0,45 и средним квадратическим отклонением 0,15. Для пункта 4.2) — медиана; вероятность того, что случайно выбранное домохозяйство тратит на продукты питания от 55% до 90% своего бюджета.	
25	Случайная величина X задана плотностью вероятностей	

№ варианта	Задача
	$f(x) = \frac{1}{0.5\sqrt{2\pi}}e^{-\frac{(x+6)^2}{0.5}}.$
	Для пункта 4.2) — квантиль порядка 0.6 ; $P(-6.5 \le X < -5)$.
26	Случайная величина X задана функцией распределения
	$F(x) = \frac{1}{3\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{18}} dt.$
	Для пункта 4.2) — 5%-ный квантиль; $P(1,5 \le X < 5,5)$.
27	В результате социологического исследования было установлено, что продолжительность жизни мужчин в городе <i>N</i> имеет нормальное распределение, причем средний возраст жизни составляет 69 лет, а среднее квадратическое отклонение равно 5 годам. Для пункта 4.2) — первый квартиль; вероятность того, что положительность жизни случайно выбранного мужчины будет находиться в границах от 75 до 85 лет.
28	Случайная величина X задана плотностью вероятностей $f(x) = \frac{1}{3,5\sqrt{2\pi}}e^{\frac{(x+1)^2}{24,5}}.$ Для пункта 4.2) — 60% -ный квантиль; $P(0,5 < X < 4,5)$.
29	Случайная величина X задана функцией распределения $F(x) = \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^x e^{-\frac{(t-3)^2}{2}} dt.$ Для пункта 4.2) — квантиль порядка 0.85 ; $P(1 < X < 4)$.
30	В результате социологического исследования было установлено, что время, проводимое сотрудниками организации N на работе, имеет нормальное распределение, причем среднее время оказалось равно 7,5 часам при среднем квадратическом отклонении 0,5 часа. Для пункта 4.2) — третий квартиль; вероятность того, что случайно выбранный сотрудник проведет на работе от 6 до 7 часов.

Задание 2

№ варианта	Закон распределения
1	показательный закон, $\lambda=2,6$
2	равномерный закон, $a = 0, b = 3$
3	показательный закон, $\lambda = 0.6$
4	равномерный закон, $a = 7, b = 14$
5	показательный закон, $\lambda=1,1$
6	равномерный закон, $a = -8$, $b = 2$
7	показательный закон, $\lambda=1,4$
8	равномерный закон, $a = -10$, $b = -5$
9	показательный закон, $\lambda=2,9$
10	равномерный закон, $a = -7$, $b = -3$
11	показательный закон, $\lambda=2,7$
12	равномерный закон, $a = -2$, $b = 2$
13	показательный закон, $\lambda=0.4$
14	равномерный закон, $a = -1$, $b = 5$
15	показательный закон, $\lambda=2,8$
16	равномерный закон, $a = 0$, $b = 9$
17	показательный закон, $\lambda=1,9$
18	равномерный закон, $a = 2$, $b = 7$
19	показательный закон, $\lambda=0.8$
20	равномерный закон, $a = -9$, $b = 1$
21	показательный закон, $\lambda=0$,3
22	равномерный закон, $a = -3$, $b = 5$
23	показательный закон, $\lambda=2,2$
24	равномерный закон, $a = 3$, $b = 12$
25	показательный закон, $\lambda=1$,8
26	равномерный закон, $a = 1$, $b = 5$
27	показательный закон, $\lambda=0$,5
28	равномерный закон, $a = 9$, $b = 19$
29	показательный закон, $\lambda=1$,5
30	равномерный закон, $a = 10$, $b = 13$