General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

SATELLITE SERVICES SYSTEM ANALYSIS STUDY

volume 3A — service equipment requirements — Appe: dix

prepared for National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058

> by Grumman Aerospace Corporation Bethpage, N.Y. 11714

NAS9-16120 DRL T-1600 MA-834T LINE ITEM 4 REPORT CSS-SSS-RP009

AUGUST 1981

FOREWORD

This study was conducted for the Lyndon B. Johnson Space Center and directed by Contracting Officer's Representative (COR), Mssrs. Reuben Taylor and Gordon Rysavy. Grumman Aerospace Corporation's study manager was Mr. John Mockovciak Jr.

This final report is presented in seven volumes as follows:

Volume 1 - Executive Summary

Volume 2 - Satellite and Services User Model

Volume 2A - Satellite and Services User Model - Appendix

Volume 3 - Service Equipment Requirements

Volume 3A - Service Equipment Requirements - Appendix

Volume 4 - Service Equipment Concepts

Volume 5 - Programmatics

This Appendix to Volume 3 - Service Equipment Requirements contains the functional analyses of reference satellite missions (Appendix A), and level 1 on-orbit service mission scenarics (Appendix B). The data presented was used to identify the requirements and equipment needed for satellite services from the Orbiter.

Appendix A

Reference Satellite Missions - Functional Analysis

CONTENTS

Section			Page			
1.0	INT	RODUCTION	A1			
2.0	REF	ERENCE SATELLITE: X-RAY TIMING EXPLORER (XTE)	A 2			
	2.1	Spacecraft Description & Mission Sequence	A 2			
	2.2	X-Ray Timing Explorer Mission Operations Functional Analysis	A5			
	2.3	XTE Servicing Operations Functional Analysis	A6			
	2.4	Identification of XTE Servicing Requirements	A7			
	2.5	Description of Servicing Equipment	A14			
		2.5.1 XTE Crew Service Equipment/Usage	A14			
		2.5.2 Integrated Requirements for Servicing	A 15			
		2.5.3 XTE Service Equipment Requirements	A16			
3.0		ERENCE SATELLITE: UPPER ATMOSPHERIC RESEARCH ELLITE (UARS)	A18			
	3.1	Spacecraft Description & Mission Sequence	A18			
	3.2	UARS Mission Operations Functional Analysis	A 21			
	3.3 UARS Servicing Operations Functional Analysis					
	3.4	Identification of UARS Servicing Requirements	A 23			
	3.5	Description of Service Equipment	A32			
		3.5.1 UARS Crew Service Equipment/Usage	A32			
		3.5.2 UARS-Integration Requirements for Servicing	A 33			
		3.5.3 UARS Service Equipment Requirements	A 34			
4.0		ERENCE SATELLITE: ADVANCED X-RAY ROPHYSICS FACILITY (AXAF)	A 35			
	4.1	Spacecraft Description & Mission Sequence	A 35			
	4.2	Advanced X-Ray Astrophysics Facility Mission Operations Functional Analysis	A 39			
	4.3	AXAF Servicing Operations Functional Analysis	A 40			
	4.4	Identification of AXAF Servicing Requirements	A 41			

CONTENTS (CONT'D)

Section			Page		
	4.5	Description of Service Equipment	A 49		
		4.5.1 AXAF Craw Service Requirements/Usage	A49		
		4.5.2 AXAF Integration Requirement for Servicing	A51		
		4.5.3 AXAF Service Equipment Requirements	A53		
5.0		ERENCE SATELLITE: EARTH GRAVITY FIELD VEY MISSION (GRAVSAT)	A 5 5		
	5.1	Spacecraft Description and Mission Sequence	A55		
	5.2	GRAVSAT Mission Operations Functional Analysis	A59		
	5.3	GRAVSAT Servicing Operations Functional Analysis	A60		
	5.4	Identification of GRAVSAT Servicing Requirements	A61		
	5.5	Description of Service Equipment	A66		
		5.5.1 GRAVSAT Crew Service Requirement/Usage	A66		
		5.5.2 GRAVSAT Integration Requirements for Servicing	A66		
		5.5.3 GRAVSAT Service Equipment Requirements	A67		
6.0		ERENCE SATELLITE: ORBITING ASTRONOMICAL ERVATORY (OAO)	A68		
	6.1	Spacecraft Description and Mission Sequence	A68		
	6.2	Orbiting Astronomical Observatory Retrieval Mission			
	0.2	Operations Functional Analysis			
	6.3	- · · · · · · · · · · · · · · · · · · ·			
	6.4	Identification of OAO Retrieval Servicing Requirements	A72		
	6.5	Description of Service Equipment	A75		
		6.5.1 Crew Service Requirements/Usage	A75		
		6.5.2 Service Equipment Requirements	A76		
7.0		ERENCE SATELLITE MISSION SERVICE EQUIPMENT			
	GRO	UPS	A78		

APPENDIX A
REFERENCE SATELLITE MISSIONS — FUNCTIONAL ANALYSIS

1.0 INTRODUCTION

Servicing equipment is required for satellite deployment, examination, retrieval checkout, repair, maintenance, resupplying, reconfiguration, and earth return. Five satellite missions have been analyzed in depth to identify service functions, equipment, and related crew/satellite interfaces required to perform satellite servicing. The following missions were analyzed:

- X-Ray Timing Explorer (XTE)
- Upper Atmosphere Research Satellite (UARS)
- Advanced X-Ray Astrophysics Facility (..XAF)
- Earth Gravity Field Survey Mission (GRAVSAT)
- Orbiting Astronomical Observatory (OAO) Retrieval.

Satellite services equipment for the five missions have been grouped into common functions in a table at the end of this appendix.

2.0 REFERENCE SATELLITE:

X-RAY TIMING EXPLORER (XTE)

2.1 SPACECRAFT

DESCRIPTION AND

MISSION SEQUENCES

STATUS: Planned, two

spacecraft

LAUNCH DATE: 1986

LIFETIME: 2 years

LAUNCH & TRANSFER

VEHCILES: Orbiter launched & integrated

propulsion

OPERATIONAL LOCATION:

400 km, 28.5° inclination

MASS AT OPERATIONAL LOCATION: 1000 kg

AVERAGE OPERATIONAL POWER: 600 W

OBJECTIVES:

To perform X-ray astronomy timing studies not addressed by experiments aboard the High Energy Astronomy Observatory (HEAO) and the Advanced X-Ray Astrophysics Facility (AXAF).

MISSION DESCRIPTION:

The spacecraft will be inserted into a 300 km circular orbit at 28.5° inclination by the Space Shuttle and raised to and maintained at 400 km by its on-board propulsion system. This orbit will minimize interference from the radiation belts, while permitting easy deployment and retrieval. Communications for this mission will be via the Tracking and Data Relay Satellite System (TDRSS) Multiple Access System.

INSTRUMENTS:

A Large Area Proportional Counter (LAPC) and All-Sky Monitor (ASM) or Wide Field Camera will be used.

SERVICE NEEDS:

DEPLOYMENT	EXAMINATION	RETRIEVAL.			SUPPORT		EARTH
			C/O REPAIR	MAINTENANCE	RESUPPLY	RECONFIGURATION	RETURN
PLANNED	POTENTIAL	PLANNED	POTENTIAL	POTENTIAL	POTENTIAL	POTENTIAL	PLANNED

R81-0181-001A(T)

REFERENCES:

- X-Ray Timing Explorer, GSFC, July 1980
- NASA Space Systems Technology Model, OAST, May 1980, A-10

2.2 X-RAY TIMING EXPLORER MISSION OPERATIONS FUNCTIONAL ANALYSIS

ORIGINAL PAGE IS OF POOR QUALITY

1472-002(T)

Fig. 2.2 X-Ray Timing Explorer Mission Operations Functional Analysis

ORIGINAL PAGE 150 OF POOR QUALITY

1472-003(T)

Fig. 2.3 XTE Servicing Operating Functional Analysis

2.4 IDENTIFICATION OF XTE SERVICING REQUIREMENTS

ORBITER SERVICE EQUIPMENT		Attachment to cargo bay and XTE	Electrical interface to XTE and Orbiter power. Control from AFD to support fixture	Electrical interface from AFD to XTE. Controls & displays required for signal generation and verification	Provide means of data transfer	Provide means of data transfer	Provide means of data transfer	Provide means of data transfer
XTE SPACECRAFT		Interface attachment to orbiter support fixture	Accept Orbiter power & provide electrical interface to support fixture	Provide interface to support fixture, accept commands & provide data verification	Accept activation signal	Accept activation & test signals	Accept activation & test signals	Accept orbiter reference data
CREW			Initiate power to XTE	Initiate appendage extension/retraction	Initiate activation of C&D link	Initiate instrument activation, test & deactivation	Initiate subsystem activation & test	Initiate control reference data transfer
FUNCTION	1 СНЕСКОИТ	Position XTE to allow extension of appendages	Activate Systems	Extend & retract solar arrays and TDRS antennas	Activate RF command and data link	Verify health of instruments	Activate & verify health of subsystems	Transfer control alignment reference from Orbiter

2.4 IDENTIFICATION OF XTE SERVICING REQUIREMENTS (CONT'D)

FUNCTION	CREW	XTE SPACECRAFT	ORBITER SERVICE EQUIPMENT
DEPLOYMENT			
OPERATIONAL)			Owigant VTE if DMCtilized
Orient XTE to release attitude	Orient Orbiter and XTE to release attitude	1	Orient Alb ii rims utilized
Release XTE	Initiate XTE release	Provide passive half of release mechanism	Provide release mechanism and accept activation signal
Inertial attitude hold	!	Maintain attitude hold during Orbiter separation	!
Active attitude control	Initiate active attitude control	Respond to RF and/ or internal control commands	AFD C&D means of RF control from orbiter or POCC as applicable
Stand-off verification	Verify XTE operational status	Respond to RF commands	POCC or Orbiter data link confirm transfer burn or next event
3 EXAMINE (REMOTE NEAR ORBITER)			
Determine XTE stability	View XTE stability	! !	Provide remotely controlled TV or EVA maneuvering system

2.4 IDENTIFICATION OF XTE SERVICING REQUIREMENTS (CONT'D)

	1110	TO A COO A CO	TNAMATITE SERVICE FOLITAMENT
FUNCTION	CREW	Ale Stackoni	
Determine external configuration	View XTE external configuration remotely	t i	Provide remotely controlled TV or EVA maneuvering system
Determine subsystem configuration	Verify configuration with POCC	Respond to RF commands	
Provide illumination	Control illumination during dark side passes	!	Provide illumination for TV or EVA maneuvering system
4 RETRIEVAL			
Configure XTE for Orbiter rendezvous	Orbiter crew or POCC RF commands to reconfigure XTE	Implement reconfiguration	AFD command & display
Orbiter grapple XTE	Control remote grappling equipment	Provide stable fixture for grapple	Provide snare to grapple XTE
Berth XTE to cargo bay	Control remote equipment to berth XTE	Acquiescent during berthing maneuvers. Structural interface to berthing latches	Remotely controlled berthing equipment. Berthing structure scapture latches
Deactivate XTE	Initiate XTE deactivation	Electrical power, control and data connection to support equipment	Electrical power, control and data connection to XTE. Means of in plementing control from AFD

2.4 IDENTIFICATION OF XTE SERVICING REQUIREMENTS (CONT'D)

FUNCTION	CREW	XTE SPACECRAFT	ORBITER SERVICE EQUIFMENT
5 EXAMINE (ATTACHED)			
Provide illumination	Control illumina- tion during dark side passes	!	Provide illumination for remote TV or EVA
Examine external	View XTE external configuration and mechanism	!	Provide remotely controlled camera or EVA maneuver aids
6 REPAIR (UNCAGE APPENDAGES)			
Deactivate applicable subsystems	Initiate subsystems deactivation	Accept deactivation signal	AFD C&D means of transmitting signal & verifying operation
Manual/remote re- lease of affected appendage(s)	Release appendage storage mechanism EVA or remotely	Provide mechanism compatible with external release	Provide compatible tool(s) if required
7 MAINTENANCE (REPLACE S/S MODULE)			
Release S/S module from XTE	Control/operate removal equipment	Provide release mechanism & control interface disconnects	Interface equipment to activate module servicing mechanism. Means of mechanically holding module

2.4 IDENTIFICATION OF XTE SERVICING REQUIREMENTS (CONT'D)

1.

Γ.

1

4 IDENTIFICATION OF XTE SERVICING REQUIREMENTS (CONT'D)

ORBITER SERVICE EQUIPMENT	Interface & actuation of instru- ment to spacecraft servicing mechanism. Mechanical holding of instruments	Transport of instrument to storage. Stowage of instrument in cargo bay & means of retention	Stowage of instrument in cargo: bay & means of retention	Interface with instrument holding/latching	Provide protective covers/ shields as required
XTE SPACECRAFT	Provide release mechanism & control interface disconnects. Interface for holding mechanism	Interface for holding & transport of instrument	Interface for holding & transport of instrument	Provide attachment mechanism & control/ power interfaces	Provide for orbital storage configuration
CREW	Control/operate removal equipment	Control/operate transport and stowage equipment	Control/operate stowage release and transport equipment	Control/operate installation of equipment	Initiate instrument deactivation and configure for orbital storage
FUNCTION	RECONFIGURE (REPLACE INST MODULE) Remove old instrument	Stow instrument in cargo bay	Remove new instrument from stowage	Install new instrument	10 DEPLOYMENT (XTE NON- OPERATIONAL) Cor figure instruments for orbital storage

2.4 IDENTIFICATION OF XTE SERVICING REQUIREMENTS (CONT'D)

2.5 DESCRIPTION OF SERVICE EQUIPMENT

2.5.1 XTE Crew Service Equipment/Usage

Aft flight deck controls and displays are required to perform the following:

- Reposition service equipment in cargo bay for checkout, deployment, retrieval, and servicing
- Orient XTE to release attitude and initiate release
- Initiate activation/deactivation of XTE power busses and subsystems*
- Deployment/folding of XTE appendages (solar arrays and TDRS antennas)*
- Initiate transfer of orbiter control alignment reference to XTE
- Initiate activation/deactivation of XTE command and data link*
- Initiate activation/deactivation and test of instruments*
- Initiate activation/deactivation and test of subsystems*
- Initiate XTE release signal
- Initiate active attitude control of XTE*
- Determine operational status after XTE deployment*
- TV display for MTV free flyer remote camera
- Install stabilization equipment for orbital storage (optional operation)
- Control MTV remote free flyer
- Control payload bay illumination.

Controls and displays requirements are dependent on resolution of:

- XTE operational verification, orbiter or POCC
- Use of remote free flyer (MTV) to perform inspection.

Control/display functions noted with an asterisk, (*), could be satellite-user controlled from the ground via appropriate communication links provided for those purposes, either through the Orbiter or through the satellite's communication system.

EMU usage is required during EVA for the following functions:

- Replacement of XTE subsystems and instruments
- Stowage of XTE subsystems and instruments
- Transport of subsystems and instruments
- Repair of deployable appendages.

2.5.2 XTE - Integration Requirements for Servicing

XTE INTEGRATION REQUIREMENTS	ISSUES/RATIONALE
Structural interface attachment and release mechanism to orbiter support fixture	
Grapple fixture located accessible to RMS grapple and mounted on firm satellite structure	
Electrical power, control and data connection to orbiter support fixture	
Internal provisions to allow external control, test and status monitoring of appendages, subsystems and instruments	
Non-RCS attitude hold during Orbiter separation	
Provisions for safing propulsion and RCS system. This includes expending residue fuel and pressurants during revisits	
Provisions for (contingency) external means of folding appendages	If appendage design is not compatible with auto retraction, external release for folding is required.
Accept signals to permit transfer of Orbiter alignment reference to XTE	
Inhibit RCS operation during deployment and Orbiter separation. Provide other means of attitude hold	

2.5.2 XTE - Integration Requirements for Servicing (Cont'd)

XTE INTEGRATION REQUIREMENTS	ISSUES/RATIONALE
Provisions for orbital storage - accept environment protection covers/ shrouds as applicable - attachment for passive stabilization	
Attachments for subsystem, propulsion and instrument modules that permit removal and reinstallation	

2.5.3 XTE - Service Equipment Requirements

SERVICE EQUIPMENT REQUIREMENTS	ISSUES/RATIONALE/REMARKS
Provide structural attachment of XTE to the Orbiter cargo bay. This support fixture shall provide latches that allow release and berthing of the XTE. It shall permit deployment of appendages and replacement of instruments, sub- systems modules and propulsion	
Provide electrical power, command and data signal interface, as required, to the XTE via the Orbiter support fixture	
Provide means of command and data transfer from the AFD to the support fixture	
Provide covers, as necessary, to protect the XTE from the space environment during orbital storage	
Provide passive stabilization equipment to be attached to the XTE for orbital storage	
Provide tools, if required, to permit manual deployment or storage of appendages	
Provide an RMS snare to grapple the XTE	
Provide means of holding & transporting subsystem, propulsion, and instrument modules from the XTE to storage location	

H81-0181-003A(T)

2.5.3 XTE - Service Equipment Requirements (Cont'd)

SERVICE EQUIPMENT REQUIREMENTS	ISSUES/RATIONALE/REMARKS
Make provisions for stowing the new & used modules in the cargo bay	
Make provisions for stowing special tools required for servicing XTE	
Provide cargo bay lighting to permit servicing operations during dark side passes. This requires illumination of the XTE external surfaces	
Provide a remotely controlled TV camera, space maneuverable and/or EVA maneuvering system for XTE remote examination. Also provide lighting for remote operations	

- 3.0 REFERENCE SATELLITE: UPPER ATMOS-PHERIC RESEARCH SATELLITE (UARS)
- 3.1 SPACECRAFT DESCRIPTION & MISSION SEQUENCE

STATUS: Planned, two spacecraft

LAUNCH DATE: 1986

LIFETIME: 18 months

LAUNCH & TRANSFER VEHICLES: Orbiter

launched and MMS propulsion

OPERATIONAL LOCATION: 500 km,

56° inclination

TOTAL MASS AT OPERATIONAL

LOCATION: 3500 kg

AVERAGE OPERATIONAL POWER: 1050 W

OBJECTIVES:

The initial mission of the Upper Atmospheric Research Satellite will be to study the radiation, chemistry, and dynamics of the upper atmosphere at low, mid, and moderately high altitudes and the coupling between these properties in order to determine the seasonal correlations. Interaction and coupling between atmospheric regions and process will be emphasized on this mission.

MISSION DESCRIPTION:

The satellite will be placed in a 56° inclination orbit at an altitude of about 500 km, providing adequate geographic coverage for many of the scientific requirements. Processed scientific data will be transmitted to earth via TDRSS. The retrieval, reuse, and possible on-orbit refurbishment of the satellite will be accomplished by the Shuttle in conjunction with the spacecraft's on-board propulsion system.

INSTRUMENTS:

UV spectrometer, Doppler interferometer, modulated gas cell radiometer, filter radiometer, Nadir emission radiometer, emission radiometer, occulation radiometer, UV airglow emission extrometer, 1.27 micrometer-emmision spectrometer, far IR spectrometer, laser heterodyne radiometer, microwave limb sounder.

0181-037D

UPPER ATMOSPHERE RESEARCH SATELLITE

SERVICE NEEDS:

DEPLOYMENT	EXAMINATION	RETRIEVAL			SUPPORT		EARTH
L			C /O REPAIR	MAINTENANCE	RESUPPLY	RECONFIGURATION	URN
PLANNED	POTENTIAL	PLANNED	POTENTIAL	POTENTIAL	POTENTIAL	POTENTIAL	PLANNED

R8:-0181-002A(T)

REFERENCES:

- Upper Atmosphere Research Satellite Technical Report, GSFC, August 1979
- NASA Space Systems Technology Model, OAST, May 1986, E-7.

UARS MISSION SEQUENCE

0181-097D 1472-004(T)

3.2 UARS MISSION OPERATIONS FUNCTIONAL ANALYSIS

FOLDOUT FRAME

William Service

Fig. 3.2 UARS Mission Operations Functional Analysis

Z FOLDOUT FRAME

1472-006(T)

FOLDOUT FRAME

Fig. 3.3 UARS Servicing Operations Functional Analysis

3.4 IDENTIFICATION OF UARS SERVICING REQUIREMENTS

FUNCTION	CREW	UARS SPACECRAFT	ORBITER SERVICE EQUIPMENT
1 CHECKOUT UARS			
Position UARS to allow extension of appendages	Initiate repositioning	Interface attachment to Orbiter support fixture	Attachment cargo bay & UARS. Provide means for extension. Control from AFD to support fixture
Activate subsystems	Initiate power to UARS	Accept Orbiter power & provide electrical interface to support fixture	Electrical interface to UARS & Orbiter power. Control from AFD to support fixture
Activate C&D link	Initiate activation of C&D link	Accept activation signal	Provide means of data transfer
Extend solar arrays			
Extend TDRS antenna	Initiate appendage deployment	Power, command, signal & data interface to support equipment	Electrical interface from AFD to UARS. Controls & displays required for signal generation and verification
Extend microwave scan antennas			
Transfer gyro refer- ence from Orbiter	Initiate gyro data transfer	Accept signals to gyro package	Provide means of data transfer
1472-052			

3.4 IDENTIFICATION OF UARS SERVICING REQUIREMENTS (CONT'D)

ORBITER SERVICE EQUIPMENT	Provide means of data transfer	Provide means of data transfer			Provide release mechanism a accept actuation signal		POCC or Orbiter data link confirm transfer burn or next event		Provide remotely controlled TV or EVA maneuvering system
UARS SPACECRAFT	Accept activation & test signals & transmit data to AFD	Accept activation & test signals			Provide passive half of release mechanisms	Maintain attitude hold during Orbiter separation	Respond to RF commands		1
CREW	Initiate instrument activation & test	Initiate S/S activation & test		Crew initiates release attitude	Crew initiates UARS release	! !	Verify operational status		View UARS stability condition
FUNCTION	Verify instrument health	Activate & verify health of S/S	2 DEPLOY UARS (OPERATIONAL)	Orbiter maneuvers to release attitude	Orbiter release UARS	UARS inertia wheel attitude hold	Stand-off verification	3 EXAMINE (REMOTE NEAR ORBITER)	Determine UARS stability

3.4 IDENTIFICATION OF UARS SERVICING REQUIREMENTS (CONT'D)

FUNCTION	CREW	UARS SPACECRAFT	ORBITER SERVICE EQUIPMENT
Determine UARS configuration	View UARS external configuration remotely	1	Provide remotely controlled TV or EVA maneuvering system
Provide illumination	Control illumination during dark passes	!!!	Provide illumination for TV or EVA maneuvering system
4 RETRIEVAL			
Configure UARS for Orbiter rendezvous	Orbiter crew or POCC RF commands to reconfigure UARS	Implement reconfiguration	AFD command and display
Grapple UARS	Control remote grappling equipment	Provide stable fixture for grapple	Provide snare to grapple UARS
Berth UARS to support fixture	Control remote berthing equipment	Acquiescent during berthing maneuvers. Structural interface to berthing latches	Remotaly controlled berthing equipment. Berthing structure & capture latches
Deactivate UARS	Initiate UARS deactivation	Electrical power, control & data con- nection to support equipment. Accept & implement instru- ment and subsystem shut-down signals	Electrical power, control and data connections to UARS Electrical interface from AFD to UARS
1472-053			

IDENTIFICATION OF UARS SERVICING REQUIREMENTS (CONT'D) 3.4

FUNCTION	CREW	UARS SPACECRAFT	ORBITER SERVICE EQUIPMENT
5/			
(ATTACHED)			
Examine external configuration	View UARS external configuration and mechanism	!	Provide remotely controlled camera or EVA
Provide illumination	Control illumination during dark side passes		Provide illumination for remote TV or EVA
6 REPAIR (UNCAGE APPENDAGES)			
Deactivate appli- cable subsystems	Initiate subsystem deactivation	Accept deactivation signal	AFD C&D means of transmitting signal & verifying operation
Manual/remote re- lease of affected appendage(s)	Release appendage stowage mechanism EVA or remotely	Provide mechanism compatible with external release	Provide compatible tools if required
7 MAINTENANCE (REPLACE S/S MODULE)			
Release S/S module from UARS	Control/operate removal equipment	Provide release mechanism & control interface disconnects. Interface for holding mechanism	Interface and actuation of S/S module to satellite servicing mechanism. Mechanical holding of S/S module
1472-054		mechanism	

3.4 IDENTIFICATION OF UARS SERVICING REQUIREMENTS (CONT'D)

ORBITER SERVICE EQUIPMENT	Transport of S/S module to stowage. Stowage of S/S module in cargo bay & means of retention	Stowage of S/S module in cargo bay and retention means. Trans- port of S/S module to UARS	Interface with S/S module holding/latching		Provide stowage of dewar in cargo bay and means of retention	Provide means of holding & transport of dewar to UARS	Provide means of controlling cryogenics flow	Provide means of holding & releasing dewar	Provide transport to stowage. Stowage of dewar in cargo bay & means of retention
UARS SPACECRAFT	Interface for holding transport equipment	Interface for holding transport equipment	Provide attachment mechanism & control interfaces		!	Provide fill port	1 1	!!!	!
CREW	Control/operate transport and stowage equipment	Control/operate stowage release and transport equipment	Control/operate installation equipment		Control/operate removal equipment	Control/operate in- stallation equipment	Control flow of cryogenics	Control/operate uncoupling	Control/operate transport and stowage equipment
FUNCTION	Stow S/S module in cargo bay	Remove S/S module from stowage	Attach S/S module to UARS	RESUPPLY (INSTRUMENT CRYOGENICS)	Remove dewar from stowage	Attach dewar to UAES tank(s)	Control flow of cryogenics	Uncouple dewar	Stow dewar

3.4 IDENTIFICATION OF UARS SERVICING REQUIREMENTS (CONT'D)

ORBITER SERVICE EQUIPMENT	Means of mechanically holding tank	Provide transport to stowage. Stowage of tank & means of retention	Provide stowage of tank in cargo bay & means of retention/release. Means of holding tank	Provide transport of tank to UARS. Means of installing tank a operating retention mechanism			Interface & actuation of PM I to satellite servicing mechan- ism. Mechanical holding of PM I	Transport of PM I to stowage. Stowage of PM I in cargo bay a means of retention	Stowage of PM II in cargo bay & means of retention. Transport PM II to UARS
UARS SPACECRAFT	Tank attachment release mechanism. Cryogenic/instrument interface coupling. Holding interface		!	Tank attachment mechanism. Cryogenic/instrument interface coupling			Provide release mechanism & control interface disconnects. Interface of holding mechanism	Interface for holding transport equipment	Interface for holding transport equipment
CREW	Control/operate removal equipment	Control/operate transport and stowage equipment	Control/operate removal equipment	Control/operate installation equipment			Control/operate removal equipment	Control/operate transport and stowage equipment	Control/operate stowage release & transport equipment
FUNCTION	Remove tank(s)	Tank stowage in cargo bay	Remove new tank from stowage	Install new tank	6	RECONFIGURATION	Release PM I from UARS	Stow PM I in cargo bay	Remove PM II from stowage

IDENTIFICATION OF UARS SERVICING REQUIREMENTS (CONT'D) 3.4

	CREW	UARS SPACECRAFT	ORBITER SERVICE LQUIPMENT
Attach PM II to UARS	Control/operate installation equipment	Provide attachment mechanism & control interfaces	Interface with PM II holding/ latching
10 DEPLOY UARS (NON- OPERATIONAL)			
Configure instru- ments for orbital storage	Initiate instrument deactivation & con- figure for orbital storage	Provide for orbival storage configuration	Provide protective covers/ shield as required
Stow external appendages	Initiate folding/ retraction of appendages	Provide retraction mechanisms	Provide equipment if remote means of retraction not available
Deactivate applicable S/S	Initiate subsystem deactivation	Accept deactivation signals	•
Provide S/C protection from orbital environment	Install covers as required	Accept covers	Covers that interface with the UARS
Install passive stabilization	Install stabiliza- tion equipment directly or by remote control	Accept stabilization equipment	Stabilization equipment
Orient UARS to to release attitude	Orient Orbiter and UARS to release attitude	!	Orient UARS if RMS utilized

INENTIFICATION OF UARS SERVICING REQUIREMENTS (CONT'D) 3.4

3.4 IDENTIFICATION OF UARS SERVICING REQUIREMENTS (CONT'D)

_	_						
ORBITER SEBUICE POLITICAL	CHELL SERVICE EQUIPMENT	Transport of PM I to stowage. Stowage of PM I in cargo av	& means of retention	Stowage of PM II in cargo bay	of PM II to UARS	Interface with PM II holding/	9
UARS SPACECRAFT		Interface for holding/transport	luəllidin hə	Interface for holding/ transport equipment	•	Provide attachment mechanism and con-	trol interfaces
CREW		Control/operate transport and stowage equipment	Trough and the second	Control/operate stowage release	and transport equipment	Control/operate in- stailation equipment	
FUNCTION		Stow P.M I in cargo bay		stowage		Attach PM II to UARS	

3.5 DESCRIPTION OF SERVICE EQUIPMENT

3.5.1 UARS Crew Service Equipment/Usage

Aft flight deck controls and displays are required to perform the following:

- Reposition service equipment in the cargo bay during checkout, deployment, retrieval and servicing
- Initiate activation/deactivation of UARS power busses and subsystems*
- Deployment/folding of UARS appendages (solar arrays, TDRS antenna, and microwave scanning antennas)*
- Initiate transfer of Orbiter alignment reference to UARS gyros
- Initiate activation/deactivation of UARS command and data link*
- Initiate activation/deactivation and test of instruments*
- Initiate UARS release signal
- Determination of operational status after UARS deployment*
- TV display for MTV free flyer remote camera
- Controls for MTV remote free flyer
- Controls and displays requirements are dependent on resolution of:
 - UARS release approach, RMS or flight support equipment
 - UARS operational verification, Orbiter or POCC
 - Use of remote free flyer (MTV) to perform inspection.

Control/display functions noted with an asterisk, (*), could be satellite-user controlled from the ground via appropriate communication links provided for those purposes, either through the Orbiter or through the satellite's communication system.

EMU usage is required during EVA for the following functions:

- Replacement of UARS subsystems and instruments
- Stowage of UARS subsystems and instruments
- Transport of subsystems and instruments
- Repair of deployable appendages.

3.5.2 UARS - Integration Requirements for Servicing

UARS INTEGRATION REQUIREMENTS	ISSUES/RATIONALE
Structural interface attachment to Orbiter support fixture	
Grapple fixture located accessible to grapple and mounted on firm satellite structure	
Electrical power, control and data con- nection to support fixture	
Internal provisions to allow external centrel and status monitoring of appendages subsystems and instruments	
Provisions for safing propulsion and RCS system. This includes expending residue fuel and pressurant during revisits	
Provisions for (contingency) external means of folding appendages	If appendage design is not compatible with auto retraction, external release for folding is required.
Accept signals to permit transfer of Orbiter alignment reference to UARS gyros	
Inhibit RCS operation during deployment and Orbiter separation. Provide other means of attitude hold	
Provisions for orbital storage accept environmental protection covers/shrouds as applicable attachment for passive stabilization	
Attachments for subsystem, propulsion and instrument modules that permit removal and reinstallation	

3.5.3 UARS Service Equipment Requirements

SUPPORT EQUIPMENT REQUIREMENTS

Provide structural attachment of UARS to the Orbiter cargo bay. This support fixture shall provide latches that allow release and berthing of the UARS. It shall permit deployment of appendages and replacement of instruments. subsystems, modules and propulsion. Equipment replacement may require the capability to rotate the UARS about its longitudinal axis

Provide electrical power, command and data signal interface as required to the UARS via the Orbiter support fixture

Provide means of command & data transfer from the AFD to the Orbiter support fixture

Provide covers, as necessary, to protect the UARS from the space environment during orbital storage

Provide passive stabilization equipment to be attached to the UARS for orbital storage

Provide remotely controlled camera or EVA maneuver aids

Provide tools, if required, to permit manual deployment or stowage of appendages

Provide an RMS snare to grapple the UARS

Provide means of holding & transporting subsystem, propulsion and instrument modules from the UARS to stowage location

Make provisions for stowing the new & used modules in the cargo bay

Make provisions for stowing special tools required for servicing UARS

Provide for stowage of (instrument) cryogenic dewar & transport to UARS

Provide for stowage of replacement cryogenic tanks & transport to UARS

ISSUES/RATIONALE/REMARKS

Reference documentation describes deployment of appendage while attached to the RMS and maneuvered clear of the cargo bay. Requirements for module exchange are not satisfied, therefore, a holding fixture is specified.

Depending on selection of approach to replenish instrument cryogenics, one requirement can be deleted.

R81-0181-004A(T)

- 4.0 REFERENCE SATELLITE: ADVANCED X-RAY ASTROPHYSICS FACILITY (AXAF)
- 4.1 SPACECRAFT DESCRIPTION & MISSION SEQUENCE

STATUS: Planned, one spacecraft

LAUNCH DATE: 1987

LIFETIME: 10-15 years

LAUNCH AND TRANSFER

VEHICLES: Shuttle plus one

OMS kit

OPERATIONAL LOCATION: 460 km

orbit, inclination 28.5°

TOTAL MASS AT OPERATIONAL

LOCATION: 10,000 kg

AVERAGE OPERATIONAL

POWER: 900 W

OBJECTIVES:

The Advanced X-Ray Astrophysics Facility (AXAF) will serve as an x-ray astrophysics facility to complement visual and radio observations made from the ground and from space observatories such as the Space Telescope. The basic objectives are to determine the positions of x-ray sources, their physical properties (ie: composition and structure) and the processes involved in x-ray photon production.

0181-100D

MISSION DESCRIPTION:

AXAF is a free-flying, Shuttle-launched spacecraft designed to view celestial x-ray sources. The facility has a 1.2 meter diameter Wolter type I mirror assembly which has a 0.5 arc sec resolution goal. Instruments using this mirror assembly are mounted in a rotating carousel at the focal plane. AXAF is being designed for on-orbit repair and instrument changeouts. Recovery for ground refurbishment and avionics redundance are planned to achieve a 10 to 15 year lifetime.

INSTRUMENTS:

High and low resolution x-ray imagers; high, medium, and low resolution dispersive spectrometers; x-ray polarimeter.

SERVICE NEEDS:

DEPLOYMENT	EXAMINATION	RETRIEVAL			SUPPORT		EARTH
			C/O REPAIR	MAINTENANCE	RESUPPLY	RECONFIGURATION	RETURN
PLANNED	POTENTIAL	PLANNED	POTENTIAL	POTENTIAL	POTENTIAL	POTENTIAL	PLANNED

R81-0181-005A(T)

REFERENCES:

- Advanced X-Ray Astrophysics Facility, MSFC, May 1978
- NASA Space Systems Technology Model, OAST, Ma; 1980, A-9.

A37/A38

4.2 ADVANCED X-RAY ASTROPHYSICS FACILITY MISSION OPERATIONS FUNCTIONAL ANALYSIS

FOLDOUT FRAME

Fig. 4.2 Advanced X-Ray Astrophysics Facility Mission Operations Functional Analysis

FOLDOUT FRAME

FOLDOUT ERAME

Fig. 4.3 Advanced X-Ray Astrophysics Facility (AXAF) Servicing Functional Analysis

2 FOLDOUT FRAME

4.4 IDENTIFICATION OF AXAF SERVICING REQUIREMENTS

4.4 IDENTIFICATION OF AXAF SERVICING REQUIREMENTS (CONT'D)

FUNCTION	CREW	AXAF SPACECRAFT	ORBITER SERVICE EQUIPMENT
Activate command & data link	Initiate command & data link	Accept activation command	AFD controls & displays & transmission to AXAF/support equipment
Verify health of instruments	Initiate instrument activation & test	Accept activation & test signals. Transmit data	Provide means of command & data transfer
Transfer control reference from Orbiter	Initiate data transfer	Accept signals to control package	Provide means of data transfer
DEPLOYMENT (AXAF OPERATIONAL)			
Orient AXAF to release attitude	Initiate release attitude (Orbiter/ support equipment)	!!!	Orient AXAF as required
Release AXAF	Initiate AXAF release	Provides passive half of release mechanism	Provide release mechanism and accept acctuation signal
Initiate active attitude control	Initiate active attitude control safe separation	Accept & process RF command	AFD C&D means of RF control or POCC as applicable
Stand-of! opera- tional verification	Verify operational status	Accept & process RF command	Orbiter or OCC data link confirm operational status

4.4 IDENTIFICATION OF AXAF SERVICING REQUIREMENTS (CONT'D)

FUNCTION	CREW	AXAF SPACECRAFT	ORBITER SUPPORT EQUIPMENT
EXAMINE (REMOTE NEAR ORBITER)			
Provide illumination	Activate remotely controlled .	!!!!	Provide illumination to AXAF. AFD C&D means of transmitting signal
Determine AXAF stability	View AXAF condition remotely	i !	Provide remotely controlled TV or EVA stability system
Determine external configuration	View AXAF config- uration remotely	!	Provide remotely controlled TV or EVA stability system to view external configuration
RETRIEVAL			
Configure orbiter to receive AXAF	Initiate support equipment configuration to receive AXAF		Provide non-contamination attitude control system. Accept command from AFD to configure fixture to receive AXAF. AFD C&D means of transmitting reconfiguration commands
Orbiter grapple/ dock AXAF	Centrol remote grappling equip- ment/orbiter	Provide sugger fixture for graph of king	Provide snare to grapple AXAF or docking interface
R81-0181-007A(T)			

4.4 IDENTIFICATION OF AXAF SERVICING REQUIREMENTS (CONT'D)

FUNCTION	CREW	AY.AF SPACECRAFT	ORBITER SUPPORT EQUIPMENT
Berth/secure AXAF to cargo bay	Control remote equipment to berth AXAF	Acquiesent during berthing/docking. Structural interface to berthing/docking latches	Berthing/docking structure & capture latches
Deactivate AXAF	Initinte AXAF deactivation	Electrical power, control & data connection to support equipment. Accept and implement subsystem shutdown signals	Electrical power, control and data connections to AXAF. AFD C'D to AXAF means of transmitting signals/data
5 EXAMINE (ATTACHED)			
Provide illumination	Activate cargo bay & AXAF illumination		Provide auxiliary cargo bay lighting for AXAF servicing operations
Examine external configuration	View AXAF external config- uration and mech- anism directly or remotely	!	Provide remotely controlled TV or EVA maneuvering system

֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜

4 IDENTIFICATION OF AXAF	F AXAF SERVICING ILEGOTIC		
FUNCTION	CREW	AXAF SPACECRAFT	ORBITER SUPPORT EQUIPMENT
8			
REPAIR (UNCAGE APPENDAGES)			
Deactivate applicable	Initiate subsystem deactivation	Accept deactivation signal	AFD C&D means of transmitting signal and verifying operations
subsystems Manual/remote release of affected appendage(s)	Release appendage stowage mechanism EVA or remotely	Provide mechanism compatible with external release	Provide compatible tool(s), if required
7 MAINTENANCE			
(REPLACE S/S MODULE)			
Provide access to S/S module	Initiate AXAF orientation	Design equipment clearance adequate for module replacement	Provide positioning equipment for AXAF
Provide S/S handling equipment	!	Design equipment with handling pads/ points as applicable	Means of attaching/holding S/S module
Release S/S modules from AXAF	Perform hands or/remote con- trol of module	Attachments designed for easy space removal	Means of releasing module attachments
	release		

IDENTIFICATION OF AXAF SERVICING REQUIREMENTS (CONT'D)

ORBITER SUPPORT EQUIPMENT	Transport of module to stowage. Stowage of module in cargo bay & means of retention	Stowage of new S/S module in cargo bay & means of retention. Transport of S/S module to AXAF	Interface with module holding and latching		Interface with access door latches, if required	Interface with carousel control and power. AFD C&D means of transmitting signals and verifying operations	Means of attaching/holding holding instrument modules	
AXAF SPACECRAFT		Interface for holding transport of equipment	Provide attachment mechanism & control interfaces		Design access doors for space operation	Provide external access to control and operate carousel	Design equipment with handling pads/ points as applicable	
CREW	Control/operate transport & stow- age equipment	Control/operate stowage release & transport of equipment	Control/operate in- stallation equipment		Initiate AXAF orientation. Control/operate access doors	Initiate & control carousel operation	!	
FUNCTION	Stow S/S module in cargo bay	Remove new S/S modulc from stowage	Attach new S/S modulc to AXAF	9 RECONFIGURATION (REPLACE INST MODULE)	Provide access to axial instruments	Rotate carousel to affected instrument	Provide instrument handling equip	

4.4 IDENTIFICATION OF AXAF SERVICING REQUIREMENTS (CONT'D)

T.

FUNCTION	CREW	AXAF SPACECRAFT	ORBITER SUPPORT EQUIPMENT
Release instrument modules from AXAF	Perform hands on/remote control of module release	Attachments designed for easy space removal	Means of releasing module attachments
Stow instrument module in cargo bay	Control/operate transport & stowage equipment	; 1 ! ! ! ;	Transport of module to stowage. Stowage of module in cargo bay means of retention
Remove new instru- ment from stowage	Control/operate release & trans- port of equipment	Interface for holding/ transport of equipment	Stowage of new S/S module in cargo bay & means of retention. Transport of S/S module to AXAF
Attach new instrument module to AXAF	Control/operate in- stallation equipment	Provide attachment mechanism & control interfaces	Interface with module holding and latching
10 DEPLOYMENT (NON- OPERATIONAL)			
Configure instrument for orbital storage	Initiate deactiva- tion & configure instruments	Provide for orbital storage configuration	Covers/shields, as required
Stow external appendages	Initiate folding/ retraction of appendages	Provide retraction mechanism	Provide equipment if remote means of retraction not available
Deactivate appii- cable subsystem	Initiate subsystem deactivation	Accept deactivation signals	AFD C&D means of data transfer

4.4 IDENTIFICATION OF AXAF SERVICING REQUIREMENTS (CONT'D)

ORBITER SUPPORT EQUIPMENT	Covers/protection equipment that interface with AXAF	Stabilization equipment	Orient AXAF as required	Provide release mechanism and accept actuation signal		Provide compatible tools, if required	Provide stowage mechanism. AFD C&D means of routing command to stowage mechanism
AXAF SPACECRAFT	Provide integral pro- tection/accept covers	Accept stabilization equipment		Provides passive half of release mechanism		Provide mechanism to permit retraction of appendages	
CREW	Initiate/install covers as required	Install stabilization equipment directly or by remote control	Initiate release attitude (Orbiter/ support equipment	Initiate AXAF release		Retract appendages remotely or automatically. Deactivate subsystems & instruments	Control stowage mechanism
FUNCTION	Provide protection from space environment	Install passive stabilization	Orient AXAF to release attitude	Release AXAF	11 EARTH RETURN	Configure AXAF for stowage	Stow AXAF in cargo bay

4.5 DESCRIPTION OF SERVICE EQUIPMENT

4.5.1 AXAF Crew Service Requirements/Usage

Aft flight deck controls and displays are required to perform the following functions:

- Reposition service equipment in the cargo bay for checkout, deployment, retrieval and servicing
- Initiate activation/deactivation of AXAF power busses, subsystems and instruments*
- Deploy/fold AXAF appendages, i.e., solar arrays, TDRS antenna
 and aperture door (if not constrained by contamination requirements)*
- Control rotation of axial instruments carousel*
- Control and monitor parasitic heat load*
- Initiate transfer of orbiter alignment reference to AXAF
- Initiate activation/deactivation of AXAF command and data link*
- Initiate verification tests of instruments and subsystems*
- Initiate AXAF release signal
- Determine operational status after AXAF deployment*
- Initiate RCS attitude control at safe separation distance (200 feet)*
- Initiate deployment, activation, deactivation and retraction of noncontaminating ACG system
- Initiate Orbiter support fixture for AXAF retrieval
- Activate supplementary cargo bay illumination
- Control maneuvering of MTV remote free flyer
- TV display for MTV free flyer remote camera.

Control and display requirements are dependant on resolution of:

- AXAF release approach; RMS or flight support fixture
- AXAF operational verification; orbiter or POCC
- Use of remote free flyer for inspection
- Need for orbiter non-contaminating ALS to minimize AXAF contamination of optical surfaces.

Control/display functions noted with an asterisk, (*) could be satellite-user controlled from the ground via appropriate communication links provided for those purposes, either through the Orbiter or through the satellite's communication system.

EMU usage is required during EVA for the following functions:

- Replacement of AXAF subsystems and instruments
- Stowage of AXAF subsystems and instruments
- Transportation of AXAF subsystems and instruments
- Repair of deployable appendages.

4.5.2 AXAF Integration Requirements for Servicing

AXAF INTEGRATION REQUIREMENTS	ISSUES/RATIONALE/REMARKS
Structural and electrical attachment to Orbiter support fixture	
Electrical power, control and data connection to support fixture interface	
Internal provisions to allow external control and status monitoring of appendages, subsystems and instruments	
Provisions for (contingency) external means of folding appendages	If appendage design is not compatible with auto retraction, external release for deployment/folding is required.
Accept test signals and provide data to permit analysis of instrument operation	
Accept external input for carousel rotation	
Accept Orbiter alignment reference	
Grapple fixture located accessible to RMS grapple and mounted on firm satellite structure	
Provide means of non-RCS attitude hold during Orbiter separation. Accept and process RCS operational activation signal	
Accept and process RF operational verification commands and provide operational data	
Provisions for safing RCS/propulsion as applicable (expend residue fuel and pressurant) during revisits	
Equipment modules access for replacement	Doors, if required.

4.5.2 AXAF Integration Requirements for Servicing (Contid)

AXAF INTEGRATION REQUIREMENTS	ISSUES/RATIONALE/REMARKS
Attachments for subsystem and instru- ment modules that permit removal and reinstallation	
Provisions for attaching orbital storage equipment - accept environmental covers/shrouds - attachment for passive stabilization	

4.5.3 AXAF Service Equipment Requirements

SERVICE EQUIPMENT REQUIREMENTS	ISSUES/RATIONALE/REMARKS
Provide structural attachment of the AXAF to the Orbiter cargo bay. This support fixture shall provide latches that allow release and berthing of the AXAF. It shall permit deployment of appendages and replacement of instruments and subsystem modules. Equipment replacement may require the capability to rotate the AXAF about its longitudinal axis and tilt to be within crew/RMS reach	
Provide electrical power, command and data signal interface as required to the AXAF via the Orbiter support fixture	
Provide means of command and data transfer from the AFD to the Orbiter support fixture	
Provide control panel/displays in the AFD to allow crew control of the support equipment and AXAF while attached to the Orbiter	
Provide cargo bay lighting to permit servicing operations during dark side passes. This requires illumination of the AXAF external surfaces and inside the AXAF instrument and subsystem access areas	
Provide a non-contamination attitude control system for Orbiter use when contamination sensitive instruments are serviced	
Provide covers/shields as necessary to protect the AXAF from the space environment during orbital storage	
Provide passive stabilization equipment to be attached to the AXAF for Orbital storage	
Provide a remotely controlled TV camera and/or EVA maneuvering aids for AXAF examination while attached to the cargo bay	

4.5.3 AXAF Service Equipment Requirements (Cont'd)

SERVICE EQUIPMENT REQUIREMENTS	ISSUES/RATIONALE/REMARKS
Provide tools, if required, to permit manual deployment or stowage of appendages	
Provide an RMS snare to grapple the AXAF	
Provide a remotely controlled TV camera (MTV), space maneuverable and/or EVA maneuvering system for AXAF examination remotely from the Orbiter. Also, provide lighting for remote operations	
Provide means of holding and trans- porting subsystem and instrument mod- ules from the AXAF to storage	
Make provisions for stowing new and used modules in the cargo bay	
Make provisions for stowing special tools required for servicing AXAF	

ORIGINAL PAGE IS OF POOR QUALITY

5.0 REFERENCE SATELLITE: Earth Gravity Field Survey Mission (GRAVSAT)

5.1 SPACECRAFT DESCRIPTION AND MISSION SEQUENCE

STATUS: Planned, 2 spacecraft

LAUNCH DATE: 1985

LIFETIME: 7 months

LAUNCH AND TRANSFER VEHICLES: Orbiter and integral prop

OPERATIONAL LOCATION: 160 km, 90° inclination

MASS AT OPERATIONAL LOCATION: 1600 kg

AVERAGE OPERATIONAL POWER: 210 W

0181-039D

GRAVSAT ORBIT CONFIGURATION

OBJECTIVES:

A dedicated Earth Gravity Field Survey Mission (GRAVSAT) will sense the gravity field fine structure and thus provide knowledge and understanding of (1) the origin and structure of geological features on the Earth's surface, (2) the mechanical properties of the Earth's lithospheric plates and the forces which drive their motion, and (3) the large-scale circulation of the oceans and major current systems by the determination of an improved ocean geoid.

MISSION DESCRIPTION:

The mission plan is to release two free flying satellites from the Orbiter in a 300 km polar orbit. They will transfer to the same low altitude (approximately 160 km) circular, for a 6-month period. The tracking of one satellite following another in this low orbit about the Earth yields Doppler data which, after analysis, provides information about the Earth's gravitational field.

INSTRUMENTS:

GRAVSAT is unusual in that the spacecraft is the instrument itself; as such, there is no separate instrument module. The spacecraft reacts to normal orbital body forces (gravity) and the surface forces associated with a low altitude spacecraft (drag and solar pressure). Within the spacecraft, at the center of its mass, is a sensing system which includes a free-floating ball that reacts only to body forces. The system senses motion between the ball and the rest of the spacecraft and provides a signal to a propulsion system that accelerates the spacecraft in a manner so that the spacecraft closely approximates a zero surface force orbit.

SERVICE NEEDS:

DEPLOYMENT	EXAMINATION	RETRIEVAL			SUPPORT		EARTH
			C/O REPAIR	MAINTENANCE	RESUPPLY	RECONFIGURATION	RFTURN
PLANNED	POTENTIAL	POTENTIAL	POTENTIAL		POTENTIAL		POTENTIAL

R81-0181-008A(T)

REFERENCES:

- Preliminary Execution Phase Project Plan for Gravity Satellite, GSFC, November 1980
- NASA Space Systems Technology Model, OAST, May 1980, R-4.

0181-104D 1472-010(T)

**

Ţ Į.

5.2 GRAVSAT MISSION OPERATIONS FUNCTIONAL ANALYSIS

EOLDOUT FRAME

1472-011(1)

Fig. 5.2 GRAVSAT Mission Operations Functional Analysis

FOLDOUT FRAME

Fig. 5.3 GRAVSAT Servicing Operations Functional Analysis

5.4 IDENTIFICATION OF GRAVSAT SERVICING REQUIREMENTS

AFT ORBITER SERVICE EQUIPMENT				1	ļ <u>.</u>		Provide support cradle for two S/C interfaces with cargo bay & mounting for grapple fixture
GRAVSAT SPACECRAFT		!			!		
CREW		Maneuver Orbiter	Verify POCC test operations	Maneuver Orbiter as required by POCC test sequences	Verify POCC test operations	Verify POCC test operations	Operate RMS, grapple S/C cradle & remove from cargo bay
FUNCTION	1 CHECKOUT (C/O)	Position Orbiter to allow S-Band LOS to TDRSS	Activate & C/O Doppler systems	Activate & C/O Discos by Orbiter maneuver	Activate & C/O gyros, horizon & alt sensors	Verify C&DH OBC & power	DEPLOYMENT RMS grapple and removal of S/C cradle from cargo bay

5.4 IDENTIFICATION OF GRAVSAT SERVICING REQUIREMENTS (CONT'D)

ORBITER SERVICE EQUIPMENT		l 1	!!!		Provide cradle release mechanism to interface with S/C	Cradle interface alignment & mating pins to longeron capture latches	Provide illumination for TV or EVA maneuvering system
GRAVSAT SPACECRAFT	1	-	-				
CREW	Maneuver Orbiter & RMS for LOS to TDRS	Verify POCC test operations	Verify POCC test operations	Maneuver S/C via RMS per intruc- tions from POCC	Confirm S/C release	Maneuver cradle with RMS to cargo bay stowage & operate latching	Control illumination remotely during dark side passes
FUNCTION	Orient S/C to TDRSS	POCC activate attitude control	Verify S/S operational	Orient S/C to release attitude	POCC command S/C release from cradle	Stow cradle	3 EXAMINE (REMOTE) Provide illumination

5.4 IDENTIFICATION OF GRAVSAT SERVICING REQUIREMENTS (CONT'D)

FUNCTION	CREW	GRAVSAT SPACECRAFT	ORBITER SERVICE EQUIPMENT
Determine GRAVSAT stability	View GRAVSAT stability condition or receive informa- tion from POCC	1	Provide remotely controlled TV or EVA maneuvering system
Determine GRAVSAT external configuration A RETRIEVAL	View GRAVSAT stability condition		Provide remotely controlled TV or EVA maneuvering system
Prepare cradle for GRAVSAT	Remotely or via EVA open or verify cradle latches open	Attachment compatible with cradle retention	Latches/retention mechanism provided to accept GRAVSAT
Safe S/C for retrieval	Verify POCC safing	Provide remotely controlled prop	!
Grapple GRAVSAT	Control remote grap- pling equipment	Provide stable fixture for grapple	Provide snare to grapple GRAVSAT
Berth GRAVSAT	Control remote equipment to berth GRAVSAT	Acquiescent during berthing maneuvers. Structural interface to berthing latches	Remotely controlled berthing equipment. Berthing structure & capture latches
Deactivate GRAVSAT	Maneuver Orbiter S/C LOS to TDRS. Verify POCC S/C deactivation		

5.4 IDENTIFICATION OF GRAVSAT SERVICING REQUIREMENTS (CONT'D)

FUNCTION	CREW	GRAVSAT SPACECRAFT	ORBITER SERVICE EQUIPMENT
5 EXAMINE (ATTACHED)			
Provide illumination	Control illumination during dark side passes	<u> </u>	Provide illumination for remote TV or EVA
Examine external configuration	View GRAVSAT external configuration & attach-ment mechanism	!	Provide remotely controlled camera or EVA maneuver aids
6 C/O REPAIR (S/C CRADLE RELEASE MECH)			
Stow cradle	Maneuver cradle to cargo bay stowage & confirm latching		Cradle interface alignment & mating pins to Longeron capture latches
Determine cause of malfunction	Conduct mech- anical functioning and/or circuit test remotely or EVA	Interfaces to permit inspection & test	Provide tools and/or test equipment
Effect repair	Perform EVA repair procedures	Provisions for EVA repair	Provide tools

5.4 IDENTIFICATION OF GRAVSAT SERVICING REQUIREMENTS (CONT'D)

T ORBITER SERVICE EQUIPMENT		Provide stowage of tank in cargo bay & means of retention	Provide means of holding & transporting dewar to GRAVSAT	Provide means of controlling hypergolic	Provide means of holding & releasing tank coupling	Provide transportation to stowage. Stowage of dewar in cargo bay a means of retention	Provide clamps/fittings	
GRAVSAT SPACECRAFT			Provide fill port	!	1		Accept clamps/ fittings	
CREW		Control/operate removal equipment	Control/operate installation equip	Control flow of hypergolics	Control/operate uncoupling	Control/operate transportation and stoyage equipment	Install hold down clamps/ fittings	
FUNCTION	7 RESUPPLY PROPULSION	Remove supply tank from stowage	Attach tank to propulsion tank(s)	Control flow to hypergolics	Uncouple tank	Stow tank	Secure GRAVSAT to	

5.5 DESCRIPTION OF SERVICE EQUIPMENT

5.5.1 GRAVSAT Crew Service Requirements/Usage

Aft flight deck controls and displays are required to perform the following:

- Cargo bay cradle latching/release
- Control cargo bay auxiliary lighting for berthing and examining GRAVSAT and stowing cradle
- TV display for MTV free flyer remote camera
- Controls for remote free flyer.

EMU interfaces are required for the following:

- Test equipment and tools required for repair activities.
- 5.5.2 GRAVSAT Integration Requirements for Servicing

GRAVSAT INTEGRATION REQUIREMENTS	ISSUES/RATIONALE/REMARKS
Structural interface attachments to cradle fixture	
Interfaces to permit inspection/repair	
Fill port to replenish propellant	
Provisions for safing propulsion/RCS system. This includes expending residual fuel and pressurant during a revisit	
Grapple fixture accessible to RMS grapple and mounted on firm satellite structure	

5.5.3 GRAVSAT - Service Equipment Requirements

SERVICE EQUIPMENT REQUIREMENTS	ISSUES/RATIONALE/REMARKS
Provide structural attachment of GRAVSAT cradle to the Orbiter cargo bay. This cradle shall be provided with interfaces to cargo bay latches to permit removal and reinstallation during orbital operations. It shall also provide a grapple fixture for RMS attachment. Attachment and interfaces for 2 GRAVSAT satellites shall be provided. Mechanisms shall be provided for reinstallation of the GRAVSATS	
Provide cargo bay illumination for cradle stowage, S/C berthing, examination and repair operations	
Provide an RMS end effector to grapple the GRAVSAT	
Provide signal interfaces between support equipment and AFD	
Provide a remotely controlled camera (MTV) or EVA maneuver aids for cargo bay examination operations	
Provide tools, as required, for servicing operations	
Provide a remotely controlled free flyer (MTV) with a TV camera and lights for remote examination	
Provide stowage of propellant supply tank in cargo bay	Propellant resupply is dependent on Orbiter retrieval operations at low alti-
Provide transport for the supply tank from storage to the spacecraft	tude (160 km) or the GRAVSAT trans- ferring to a higher orbit acceptable to Orbiter operations.
Provide controls for transfer of pro- pellant and attachment of supply to the GRAVSAT	

ORIGINAL OF POOR Q. Y

6.0 REFERENCE SATELLITE: ORBITING ASTRONOMICAL OBSERVATORY (OAO)

6.1 SPACECRAFT DESCRIPTION AND MISSION SEQUENCE

STATUS: Uncooperative spacecraft

NORAD catalogue satellite Number 2142

LAUNCH DATE: 1966

LIFETIME: Undetermined

LAUNCH & TRANSFER VEHICLE:

Atlas Centaur

OPERATIONAL LOCATION: 800 km

35° inclination

MASS AT OPERATIONAL LOCATION:

1900 kg

AVERAGE OPERATIONAL POWER:

Not applicable

OBJECTIVES: Not applicable

MISSION DESCRIPTION: Not applicable

INSTRUMENTS: Not applicable

SERVICE NEEDS: Retrieval and earth return

REFERENCES:

Systems Design Manual OAO Spacecraft 4, GAC, October 1971

ORIGINAL PAGE :

OAO RETRIEVAL MISSION SEQUENCE

0181-107D 1472-013(T)

ORBITING ASTRONOMICAL OBSERVATORY-RETRIEVAL MISSION 6.2

. 10 54

· 10 14

6.4 IDENTIFICATION OF ACA - RETRIEVAL SERVICING REQUIREMENTS

FUNCTION	CREW	VSS SPACECRAFT	ORBITER SUPPORT EQUIPMENT
CHECKOUT VSS			
Position Orbiter to allow S-Band LOS to TDRS	Maneuver Orbiter	!!!	
Activate & C/O subsystems	Initiate power to S/S and verify	Accept remote activation	Provide power to TMS and interface between VSS and AFD
Activate Command & Data link	Initiate C&D activation	Accept activation signal	Provide interface between Orbiter & VSS
Transfer state vector to VSS	Initiate state vector transfer	Accept state vector data	Provide interface between Orbiter & VSS
2 DEPLOY VSS			
RMS grapple and remove VSS from cargo bay	Operate RMS, grapple VSS & remove from cargo bay	Provide grapple fixturঃ	Provide support fixture for VSS interface with cargo bay
Orient VSS to TDRS	Maneuver Orbiter & RMS for VSS to TDRS		
POCC activate attitude control	Verify POCC test operations		

6.4 IDENTIFICATION OF OAO - RETRIEVAL SERVICING REQUIREMENTS (CONT'D)

S IDENTIFICATION F.O.			
FUNCTION	CREW	VSS SPACECRAFT	ORBITER SUPPORT EQUIPMENT
Orient VSS to release attitude	Maneuver S/C via RMS to release attitude		
Release VSS	Initiate release via RMS	1	l !
Verify VSS separation	Observe separation operations	 	
3 VSS/O. D MANEUVER TO ORBITER VSS/OAO to RMS reach distance 4 ORBITER RETRIEVAL VSS/OAO	Operate VSS close proximity controls	VSS accep antrol signals fro. Orbiter	Provide AFD controls & displays for close proximity flight control of VSS
Prepare cradle for VSS/OAO	Remotely or EVA open or verify structure latches open	Attachment compatible with support	Latches/retention mechanism provided to accept VSS
Safe VSS for retrieval	Verify POCC safing	Provide remotely controlled prop	

IDENTIFICATION OF OAO - RETRIEVAL SERVICING REQUIREMENTS (CONT'D) 6.4

SUPPORT EQUIPMENT	Provide snare to grapple VSS	Provide latching structure and latches. Remotely controlled berthing equipment			Provide auxiliary cargo bay lighting for OAO operations	Tools to release appendage for folding and cutters. Holding a transportation equipment for appendages	Stowage equipment for appendages & OAO	Provide equipment to secure OAU for earth return & landing
ORBITER	Provide s	Provide l latches. berthing			Provide lighting	Tools to rel folding and transportati appendages	Stowage equi dages & OAO	Provide for earth
VSS SPACECRAFT	Provide stable fixture for grapple	VSS acquiescent during berthing maneuvers. Struc- tural interface to berthing latches			!	!	!	!
CREW	Control remote grappling equipment	Control remote equipment to berth VSS/OAO	Maneuver Orbiter for S/C LOS to TDRS. Verify POCC S/C deactivation		Activate cargo bay lighting	EVA appendage removal/folding (sun shades, booms, solar arrays)	Control of trans- portation equipment & stowage operations	Control remotely or operate EVA
FUNCTION	Grapple VSS/OAO	Berth VSS/0AO	Deactivate VSS	5 EARTH RETURN	Cargo bay illumination	Remove/fold VSS/ OAO appendages	Stow appendages & OAO/VSS	Secure VSS/OAO for earth return

6.5 DESCRIPTION OF SERVICE EQUIPMENT

6.5.1 Crew Service Requirements/Usage

Aft flight deck controls and displays are required to perform the following functions:

- Close proximity flight operations controls for VSS
- Controls for cargo bay holding fixture if operation is not performed EVA
- Controls for cargo bay stowage equipment if operation is not performed EVA
- Remote controls for grapple equipment
- Remote controls for berthing equipment
- Controls for cargo bay auxiliary lighting.

EMU interfaces are required for the following functions:

- Positioning and operation of holding fixture/clamping mechanism
- Preparation and operation of OAO stowage
- Folding/removal operations of appendages
- Securing/stowage of appendages
- Transport of equipment.

6.5.2 Service Equipment Requirements

SERVICE EQUIPMENT REQUIREMENTS	ISSUES/RATIONALE/REMARKS
Provide Versatile Service Stage (VSS) with a capability to retrieve the OAO and transport it to Orbiter	
Grapple fixture mounted on VSS and located accessible to grappler	
Electrical power control, and data connection on VSS to interface with support fixture	
Internal provisions to allow VSS retraction of TDRS antenna and control of subsystems	
VSS accept signal to permit trans (a) (Compared to the Compared to the Compare	
VSS rendezvous capability with an uncooperative satellite	
Means of VSS grappling on unstable OAO and holding it securely for transportation to Orbiter	Sticky pads could attach to polished aluminum outer skin panels.
Provision for safing VSS propulsion (i.e., venting)	
VSS attached structure compatible with cargo bay support structure	
VSS acquiescent during deployment and berthing operations	
Provide support fixture to hold the VSS in the cargo bay during launch, on orbit and earth return	During retrieval, the OAO is attached to the VSS; a means of holding the combined VSS/OAO is therefore required.
Provide mechanical latching mechanism, guides, etc., to permit release and berthing of the VSS	The OAO could subsequently be removed and stowed in another fixture.
Provide electrical interfaces on the support fixture for power, signal and data transfer	

6.5.2 Service Equipment Requirements (Cont'd)

SERVICE EQUIPMENT REQUIREMENTS	ISSUES/RATIONALE/REMARKS
Provide a snare (RMS) to grapple the VSS and remotely controlled berthing equipment	
Provide auxiliary cargo bay lighting as required for berthing and stowing operations	
Provide means of dumping OAO pneumatic system nitrogen	
Provide retention of the OAO during Earth return and landing	If OAO structural attachment points not available, may require containment inside a "casket".
Provide stowage for appendages and tools	•
Provide tools for releasing appendage deployment mechanism or cutters as required	
Provide for transportation of appendages to stowage	

7.0 REFERENCE SATELLITE MISSIONS-SERVICE EQUIPMENT GROUPS

The following table identifies the service functions/equipment surfaced for the five reference satellite missions, in terms of equipment groupings.

SERVICE EQUIPMENT GROUPS	XTE VARS AXAF GRAVSAT
STRUCTURAL SUPPORT	
Deployment Fixture	
Spin Table	
Berthing Fixture	
Docking Module	
Debris Stowage	•
Replacement Module Stowage	• • •
Tool Stowage	
• End Effectors Stowage	• •
REMOTE CONTROL FREE FLYER	
Inspection	• • • •
Satellite Stabilization	•
• Retrieval	
• Farth Entry	
• 'nstrumentation Platform	
MANNED FLEE FLYER	
Inspection	
• Repair	
• Equipment Transport	
• Assembly	

SERVICE EQUIPMENT GROUPS (CONT'D)	XTE UARS AXAF GRAVSAT
RMS END EFFECTORS	
Equipment Transport	
• Equipment Exchange	• • •
Personnel Transport	• • •
 Satellite Retrieval/Deployment 	
• RMS Extender	
Dexterous Manipulator	
CONTROL AND DIAGNOSTIC EQUIPMENT	
Aft Flight Deck	• • • •
Payload Bay	
EVA SUPPORT	
Work Site Restraints	
• Traverse Aids	• • • •
FLUID/GASES REPLACEMENT/TRANSFER	
Solid Cryogenic Methane and Ammonia	•
Solid Cryogenic Neon, Nitrogen and Liquid Helium	•
Solid Cryogenic Neon/Ammonia	•
Solid Cryogenic Hydrogen	•
Solid Cryogenic Ammonia/Carbon Dioxide	•
• Fluids Xenon, Propane, Carbon Dioxide and Argon	•
Hypergolic Propellant	•
ORBITAL STORAGE	
• Passive Stabilization	• • •
• Thermal Protection	• •

APPENDIX B
LEVEL 1 ON-ORBIT OPERATIONS SCENARIOS

CONTENTS

Deployment Scenarios		Page
D1	Nominal Deployment Sequence - Direct Delivery Payload Class - Multiple Payloads - RMS Usage	B-1
D2	RMS Inoperative Deployment Sequence - Direct Delivery Payload Class - Multiple Payloads	B-3
D3	Alternate Deployment Sequence - Direct Delivery Payload Class - Multiple Payloads - RMS/HPA Usage	B-5
D4	RMS Inoperative Deployment Sequence - Direct Delivery Payload Class - Multiple Payloads - HPA Usage	B-7
D5	Nominal Deployment Sequence - Direct Delivery Payload Class - Large Payloads - RMS/Tilt Table Usage	B-9
D6	RMS Inoperative Deployment Sequence - Direct Delivery Payload Class - Large Payloads - Tilt Table Usage	B-11
D7	Alternate Deployment Sequence - Direct Delivery Payload Class - Large Payloads - RMS/HPA Usage	B-13
D8	RMS Inoperative Deployment Sequence - Direct Delivery Payload Class - Large Payloads - HPA Usage	B-15
D9	Nominal Deployment Sequence - LEO/Propulsion Payload Class - Versatile Service Stage - RMS/Tilt Table Usage - Stage/Satellite Mated on Ground	B-17
D10	Alternate Deployment Sequence - LEO/Propulsion Payload Class - Versatile Service Stage - RMS/HPA Usage - Stage/Satellite Mated on Ground	B-19
D11	Nominal Deployment Sequence - LEO Propulsion Payload Class - Versatile Service Stage - RMS/Tilt Table Usage - Stage/Satellite Mated On-Orbit	R-21
D12	Alternate Deployment Sequence - LEO/Propulsion Payload Class - Versatile Service Stage - RMS/HPA Usage - Stage/Satellite Mated On-Orbit	B-23
D13	Nominal Deployment Sequence - LEO/Propulsion Payload Class - Integral Propulsion - RMS/Tilt Table Usage	B-25
D14	Alternate Deployment Sequence - LEO Propulsion Payload Class - Integral Propulsion - RMS/HPA Usage	B - 27
D15	Nominal Deployment Sequence - GFO/Propulsion Payload Class - IUS SRM - RMS/Tilt Table Usage	B-29
D16	Alternate Deployment Sequence - GEO/Propulsion Payload Class - IUS SRM - RMS Usage	B-31

CONTENTS (CONT'D)

Deployment Scenarios		Page
D17	Nominal Deployment Sequence - GEO/Propulsion Payload Class - PAM A SRM - RMS/Tilt Table/Spin Table Usage	B-33
D18	Nominal Deployment Sequence - GEO/Propulsion Payload Class - PAM D SRM - RMS/Spin Table Usage	B-35
D19	Alternate Deployment Sequence - GEO/Propulsion Payload Class - SRM Spinner - RMS/HPA Usage	B-37
Revisit S	<u>cenarios</u>	
R1	Nominal Revisit Sequence - Direct Delivery Payload Class - MMS-Type Satellites - RMS/Tilt Table Usage	B-39
R2	Nominal Revisit Sequence, RMS Inoperative - Direct Delivery Payload Class - MMS-Type Satellites - Tilt Table Usage	B-41
R3	Alternate No. 1 Revisit Sequence - Direct Delivery Payload Class - MMS-Type Satellites - RMS/HPA Usage	B-43
R4	Alternate No. 1 Revisit Sequence - RMS Inoperative - Direct Delivery Payload Class - MMS Type Satellites - HPA Usage	B-45
R5	Nominal Revisi Sequence - Direct Delivery Pavload Class - Contamination Sensitive Satellite - RMS/Tilt Table Usage	B-47
R6	Alternate No. 3 Revisit Sequence - Direct Delivery Payload Class - Contamination Sensitive Satellite - RMS/HPA Usage	B-49
R7	Nominal Revisit Sequence - LEO/Propulsion Payload Class - Versatile Service Stage/Nominal Payload - RMS Tilt Table Usage	B-51
R8	Alternate No. 1 Revisit Sequence - LEO/Propulsion Payload Class - Versatile Service Stage/Contamination Sensitive	B-31
	Satellite - RMS/HPA Usage	E-53
Earth Re	turn Scenarios	
ER1	Nominal Earth Return Sequence - Direct Delivery Payload Class - Cooperative MMS-Type Satellites - RMS Usage	B-55
ER2	Nominal Earth Return Sequence - Direct Delivery Payload Class - Cooperative MMS-Type Satellites - RMS Inoperative	B-57
ER3	Alternate No. 1 Earth Return Sequence - Direct Delivery Payload Class - Cooperative MMS-Type Satellites - RMS/HPA Usage	B-59
ER4	Alternate No. 1 Earth Return Sequence - Direct Delivery Payload Class - Cooperative MMS-Type Satellites-RMS Inoperative - HPA Usage	B-61

CONTENTS - (CONT'D)

Earth Re	Earth Return Scenarios	
ER5	Alternate No. 2 Earth Return Sequence - Direct Delivery Payload Class - Cooperative Nominal (MMS-Type) Payloads - RMS/HPA Usage - Manned Retrieval of Satellites at 1000 ft Separation	B-63
ER6	Alternate No. 2 Direct Delivery Payload Class - Cooperative Large Satellites - RMS/HPA Usage - Manned Retrieval of Satellites at 1000 ft Separation	B-65
ER7	Alternate No. 3 Earth Return Sequence - Direct Delivery Payload Class - Cooperative Contamination Sensitive Satellite RMS/HPA Usage - Unmanned Retrieval of Satellites at 1000 ft Separation	B-67
ER8	Alternate No. 3 Earth Return Sequence - Direct Delivery Payload Class - Cooperative Contamination Sensitive Satellite - HPA Usage - RMS Inoperative - Unmanned Retrieval of Satellites at 1000 ft Separation	B-69
ER9	Alternate No. 1 Earth Return Sequence - LEO/Propulsion Payload Class - Cooperative Nominal Payload - RMS/HPA Usage - Versatile Service Stage Application	B-71
ER10	Alternate No. 1 Earth Return Sequence - LEO/Propulsion Payload Class - Noncooperative Nominal Payload - RMS/EPA Usage - Versatile Service Stage Application	B-73
ER11	Alternate No. 1 Earth Return Sequence - Debris Deorbit Payload Class - Noncooperative Large Debris - RMS/HPA Usage - Versatile Service Stage Application	B-75
ER12	Alternate No. 1 Earth Return Sequence - Debris Return Payload Class - Noncomperative Small Debris Salellite - RMS/HPA Usage - Versatile Service Stage Application	B-77
Orbital S	Storage Scenarios	
OS1	Orbital Storage Option - RMS/HPA Usage - Satellites < 15 ft Length	B-79
OS2	Orbital Storage Option - HPA Usage - RMS Inoperative - Satellites < 15 ft Length	B-81
OS3	Orbital Storage Option - RMS/HPA Usage - Satellites > 15 ft Length	B-83
OS4	Orbital Storage Option - HPA Usage - RMS Inoperative Satellites > 15 ft Length	B-85

RMS elevates payload within view of AFD/payload

Retention system latches/umbilical released

Activation of selected satellite subsystems via

bay TV cameras

ground link (comm via satellite)

PAYLOAD DEPLOYMEN'S

- Status/health checks via umbilical in retuntion structure (comm via orbiter S-Band)

Satellites stowed in retention structures

- RMS attaches to satellite
 - State vector transfer
- Transfer payload to internal priver

- Satellite appendages deployed by ground command and verified by orbiter crew
 - Final status/health check prior to deployment (comm via satellite)

BACKUP FOR RETENTION LATCH HANGUP

- RMS releases satellite in preferred attitude at ~ 1 ft/sec velocity
 - Satellite activation of RCS at > 200 ft

BACKUP FOR APPENDAGE HANGUP

MFR/RMS deployed for manual release

MMU/WRU with stabilizer deployed for manual assist

FOLDOUT FRAME

ar er

 RMS releases satellite in preferred attitude at ~ 1 ft/sec velocity

Satellite appendages deployed by ground command

Final status/health check prior to deployment

(comm via setellite)

and verified by orbiter crew

Satellite activation of RCS at > 200 ft

BACKUP FOR RETENTION LATCH HANGUP

BACKUP FOR APPENDAGE HANGUP

MMU/WRU with stabilizer deployed for manual assist

(unlocked) to enable RMS attachment EVA via handrails employed Retention latches in closed position

D1 Nominal Deployment Sequence - Direct Delivery Payload Class - Multiple Payloads -- RMS Usage

881-0181-128(T) 0181-0770

(§

B-1

OF POOR QUALITY

Activation of satellite ACS/selected subsystems via MMU/WRU translates satellite above payload bay within view of AFD/payload bay TV cameras

ground link (comm via satellite)

Retention system latches/umbilical released

- Satellites stowed in retention structures
- Status/health checks via umbilical in retention structure (comm via orbiter S-Band)
 - State vector transfer
- Transfer payload to internal power
- MMU/WRU with RMS end-effector attaches to satellite

- MMU/WRU releases satellite in nominally-preferred
 - Satellite activation of RCS at > 200 ft attitude at ~ 1 ft/sec velocity

BACKUP FOR APPENDAGE HANGUP

- First MMU/WRU maintains stability/position of satellite
- Second MMU/WRU with stabilizer deployed for manual assist

- Satellite appendages deployed by ground command MMU/WRU maintains stability/position of satellite
 - and verified by orbiter crew
- Final status/health check prior to deployment (comm via satellite)

BACKUP FOR RETENTION LATCH HANGUP

B-3

- MMU/WRU with stabilizer deployed for manual release
- EVA via handrails employed

(E)

- MMU/WRU releases satellite in nominally-preferred attitude at ~ 1 ft/sec velocity
 - Satellite activation of RCS at > 200 ft

Satellite appendages deployed by ground command MMU/WRU maintains stability/position of satellite

Final status/health check prior to deployment

(comm via satellite)

and verified by orbiter crew

BACKUP FOR RETENTION LATCH HANGUP

BACKUP FOR APPENDAGE HANGUP

First MMU/WRU maintains stability/position of satellite
 Second MMU/WRU with stabilizer deployed for manual

assist

MMU/WRU with stabilizer deployed for manual release

EVA via handrails employed

D2 RMS Inoperative Deployment Sequence - Direct Delivery Psyload Class - Multiple Payloads

R81-0181-129(T) (gA)

B-3

FOLDOUT FRAME

ORIGINAL PAGE IS OF POOR QUALITY

PAYLOAD DEPLOYMENT

- Satellites stowed in retention structures
- Status/heaith checks via umbilical in retention structure (comm via orbiter S-Band)
 - RMS attaches to satellite

①

 HPA releases satellite in preferred attitude at ~ 1 ft/sec velocity

Satellite appendages deployed by ground command

and verified by orbiter crew

State vector transfer

Final status/health check prior to deployment

(comm via satellite)

BACKUP FOR RETENTION LATCH HANGUP

Transfer payload to internal power

Satellite activation of RCS at > 200 ft

MFR/RMS deployed for manual assist

BACKUP FOR APPENDAGE HANGUP

. Work station on HPA is utilized

- MFR/RMS deployed for manual release
- Retention latches in closed position (unlocked) EVA via handrails employed to enable RMS attachment

R81-0181-130(T) ٩

D3 Alternate Deployment Sequence — Direct Delivery Payload Class — Multiple Payloads — RMS/HPA Usage

ORIGINAL PAGE IS OF POOR QUALITY

PAYLOAD DEPLOYMENT

- Stellites stowed in retention structures Status/health checks via umbilical in retention structure (comm via orbiter S-Band)
- MMU/WRU with RMS end-effector attaches to satellite

- Retention system latches/umbilical released
 - MMU/WRU translates satellite and berths to
- Activation of selected satellite subsystems via ground link (comm via satellite)

- HPA releases satellite in preferred attitude
 - Satellite activation of RCS at > 200 ft at ~ 1 ft/sec velocity

Satellite appendages deployed by ground command and verified by orbiter crew

- State vector transfer
- Transfer payload to internal power Final status/health check prior to deployment (comm via satellite)

B-7

BACKUP FOR APPENDAGE HANGUP

BACKUP FOR RETENTION LATCH HANGUP

MMU/WRU with stabilizer deployed for manual release

MMU/WRU with stabilizer deployed for manual assist

Work station on HPA is utilized

D4 RMS Inoperative Deployment Sequence -- Direct Delivery Payload Class -- Multiple Payloads -- HPA Usage

EVA via handrails employed

R81-0181-131(T) 0181-020D (a)

ORIGINAL PAGE IS OF POOR QUALITY

PAYLOAD DEPLOYMENT

- Satellite stowed in cargo bay Status/health checks via umbilical in tilt table (comm via orbiter S-Band)

(C)

- Retention latches released
- Satellite rotated out of payload bay via tilt table
- Activation of selected satellite subsystems via ground link (comm via satellite)

- RMS releases satellite in preferred attitude at
 - Satellite activation of RCS at > 200 ft ~ 1 ft/sec velocity

(-

①

- Satellite appendages deployed by ground command and verified by orbiter crew
 - State vector transfer
- Transfer payload to internal power
- Final status/health check prior to deployment (comm
 - via satellite)
- RMS attaches to satellite
- Satellite released from tilt table/umbilical

BACKUP FOR RETENTION LATCH HANGUP

PRECEDING PAGE BLANK NOT FILMED

Satellite activation of RCS at > 200 ft

BACKUP FOR RETENTION LATCH HANGUP

Final status/health check prior to deployment (comm

Transfer payload to internal power

Satellite released from tilt table/umbilical

RMS attaches to satellite

via satellite)

Satellite appendages deployed by ground command

and verified by orbiter crew

State vector transfer

BACKUP FOR APPENDAGE HANGUP

MFR/RMS deployed for manual assist Work Station on tilt table is utilized

0181-021D R61-0181-132(T)

D5 Nominal Deployment Sequence — Direct Delivery Payload Class — Larga Psyloads — RMS/Tilt Table Usage

(g)

BLANK NOT FILMED

B-9

FOLDOUT FRAME

PAYLOAD DEPLOYMENT

- Satellite stowed in cargo bay
- Status/health checks via umbilical in tilt table (comm via orbiter S-Band)

©

- Retention latches released
- Satellite rotated out of payload bay via tilt table
 - Activation of selected satellite subsystems via ground link (comm via satellite)

- MMU/WRU releases satellite in preferred attitude at
 - ~ 1 ft/sec velocity
- ullet Satellite activation of RCS at > 200 ft

①

- Satellite appendages deployed by ground command and verified by orbiter crew

 - State vector transfer
- Transfer payload to internal power
- Final status/health check prior to deployment (comm via satellite)
- MMU/WRU with RMS end effector attaches to satellite
 - Satellite released from tilt table/umbilical

BACKUP FOR RETENTION LATCH HANGUP

BACKUP FOR APPENDAGE HANGUP

B-11

EOLDOUT FRAME

(c)

Satellite appendages deployed by ground commend

 \bullet Satellite activation of RCS at > 200 ft

* 1 ft/sec velocity

and verified by orbiter crew

State vector transfer Transfer payload to internal power

Final status/health check prior to deployment (comm via satellite)

MMU/WRU with RMS end effector attaches to satellite

Satellite released from tilt table/umbilical

BACKUP FOR RETENTION LATCH HANGUP

BACKUP FOR APPENDAGE HANGUP

MMU/WRU with stabilizer deployed for manual release

Work Station on tilt table is utilized

 MMU/WRU with stabilizer deployed for manual release or

Work Station on ti

EVA via handrails employed 0181-022D

D6 RMS Inoperative Deployment Sequence — Direct Delivery Payload Class — Large Payloads — Tilt Table Utage

B-11

KOMBOUN ENGLIS

(<u>a</u>

PAYLOAD DEPLOYMENT PRECEDING PAGE BLANK NOT FILMED

- Satellite stowed in retention structure
- Status/health checks via umbilical in retention structure (comm via orbiter S-Band)
 - Retention system latches/umbilical released
 - PIDA elevates satellite above payload bay
 - RMS attaches to satellite

- PIDA releases satellite
- RMS translates satellite & berths to HPA
- Activation of selected satellite subsystem via ground link (comm via satellite)

- HPA releases satellite in preferred attitude
 - Satellite activation of RCS at > 200 ft at ~ 1 ft/sec velocity

- Satellite appendages deployed by ground command & verified by orbiter crew

 - State vector transfer
- Final status/health check prior to deployment Transfer payload to internal power

(comm via satellite)

BACKUP FOR RETENTION LATCH HANGUP

BACKUP FOR APPENDAGE HANGUP

FOLDOUT I AME

- State vector transfer
- Transfer payload to internal power Final status/health check prior to deployment
 - (comm via satellite)

HPA releases satellite in preferred attitude at ~ 1 ft/sec velocity

Satellite activation of RCS at > 200 ft

BACKUP FOR RETENTION LATCH HANGUP

MFR/RMS deployed for manual assist

Work station on HFA is utilized

EVA via handrails employed Retention latches in closed position but unlocked to retain satellite

R81-0181-134(T) 0.81-0230

D7 Alternate Deployment Sequence — Direct Delivery Psyload Cless — Large Psyloads —RMS/HPA Usage

(§)

PAYLOAD DEPLOYMENT

Satellite stowed in retention structure

PRECEDING PAGE BLANK NOT FILMED

FOLDOUT FRAME

- Status/health check via umbilical in retention structure (comm via orbiter S-Band)
 - Retention system latches/umbilical released
 - PIDA elevates satellite above payload bay
- MMU/WRU with RMS end effector attaches to satellite

- PIDA releases satellite
- MMU/WRU translates satellite and berths to HPA
- Activation of selected satellite subsystems via ground link (comm via satellite)

- HPA releases satellite in preferred attitude at ~ 1 ft/sec velocity
 - Satellite activation of RCS ${\rm at} > 200~{\rm ft}$

①

- Satellite appendages deployed by ground command & verified by orbiter crew
 - State vector transfer
- Final health/status chank mior to deployment (comm Transfer payload to internal power
 - via satellite)

BACKUP FOR APPENDAGE HANGUP

BACKUP FOR RETENTION LATCH HANGUP

(

Satellite appendages deployed by ground command & verified by orbiter crew

 \bullet HPA releases satellite in preferred attitude at $\sim 1~{\rm ft/sec}$ velocity

ullet Satellite activation of RCS at $> 200 \ \mathrm{ft}$

- State vector transfer
- Transfer payload to internal power Final health/status check prior to deployment (comm via satellite)

BACKUP FOR RETENTION LATCH HANGUP

BACKUP FOR APPENDAGE HANGUP

● MMU☆☆U with stabilizer deployed for manual assist

Work station on HPA is utilized

MMU/WRU with stabilizer deployed for manual release

EVA via handrails employed

D8 RMS Inoperative Deployment Sequence — Direct Delivery Payloed Cleas — Large Payloeds — HPA Usage

0181-024D R81-0181-135(T)

B-15

FOLDOUT FRAME

PAYLOAD DEPLOYMENT

- Satellite/VSS stowed in retention structure
- Status/health checks via umbilicai in :etention structure (comm via orbiter S-Band)

•

Payload rotated via tilt table RMS attaches to payload

State vector transfer

- Satellite/VSS appendages deployed by ground
 - Final status/health check prior to deployment command and verified by orbiter crew (comm via satellite/VSS)

- Transfer payload to internal power
- Payload released from tilt table/umbilical
- Satellite/VSS elevated within view of AFD/payload by TV cameras
 - Activation of selected subsystems of satellite/VSS via ground link (comm viz satellite/propuision

FOLDOUT FRAME

ORIGINAL PAGE IS OF POOR QUALITY

■ RMS releases payload at ~ 1 ft/sec velocity

(

VSS activation of RCS at > 200 ft separation

MTV DEPLOYMENT

Orbiter/MTV rendezvous

VSS activates propulsion system at > 2700 ft separation

MTV deployed to view VSS firing

FOLDOUT FRAME

MTV retrieved by RMS and stowed in payload bay

VSS delivers satellite to operational orbit

Returns to orbiter

VSS RETRIEVAL

ම

Return

Delivery

Separation

(2)

VSS berthed to tilt table

VSS inactivated

VSS ACS active (RCS disabled, propellent vented)

RMS attaches to VSS

Orbiter/VSS rendezvous (VSS active)

VSS rotated to stowed position Retention latches locked

ORIGINAL PAGE IS OF POOR QUALITY

Orbiter/VSS rendezvous (VSS active) VSS ACS active (RCS disabled, propellent vented) RMS attaches to VSS

VSS berthed to tilt table
VSS inactivated
VSS rotated to stowed position
Retention latches locked

BACKUP FOR APPENDAGE HANGUP

- BACKUP FOR RETENTION LATCH HANGUP

MMU/WRU with stabilizer deployed for manual assist

MFR/RMS deployed for manual release

Retention latches in closed position (unlocked) to enable RMS attachment EVA via handrails employed

0181-025D 1472-016(T)

D9 Nominal Deployment Sequence — LEO/Propulsion Payload Class — Versatile Service Stage — RMS/Tilt Table Usage — Stage/Satellite Mated on Ground

(2)

CRIGINAL PAGE IS OF POOR QUALITY

PAYLOAD DEPLOYMENT

- Satellite/VSS stowed in retention structure
- Status/health checks via umbilical in retention structure
 - (comm via orbiter S-Band)
 - RMS attaches to payload

- Retention latches/umbilical released
- RMS translates payload and berths to HPA/umbilicals
 - Activation of selected subsystems via ground link
 - (comm via satellite/VSS)

■ HPA releases payload at ~ 1 ft/sec velocity

Satellite/VSS appendages deployed by ground

command, and verified by orbiter crew

Final status/health check prior to deployment

(comm via satellite/VSS)

Transfer payload to internal power

State vector transfer

VSS activation of RCS at > 200 ft separation

MTV DEPLOYMENT

- MTV deployed to view VSS firing
- VSS activates propulsion system at > 2700

- Orbiter/MTV rendezvous
- MTV retrieved by RMS and stowed in

ORIGINAL PAGE IS OF POOR QUALITY

(G)

- VSS activates propulsion system at > 2700 ft separation MTV deployed to view VSS firing
- Orbiter/MTV rendezvous
- MTV retrieved by RMS and stowed in payload bay

VSS berthed to HPA
 VSS inactivated/checked out for leturn

Orbiter/VSS rendezvous (VSS active)

- VSS ACS active (RCS disabled, propellant vented)
 RMS attaches to VSS (2)
- RMS transfers VSS to retention structure Retention latches locked

BACKUP FOR RETENTION LATCH HANGUP

BACKUP FOR APPENDAGE HANGUP

FOLDOUT FUNCT

VSS RETRIEVAL

9

B-19

RMS transfers VSS to retention structure

Retention latches locked

BACKUP FOR RETENTION LATCH HANGUP

BACKUP FOR APPENDAGE HANGUP

MFR/RMS deployed for manual assist

Work station on HPA is utilized

enable RMS attachment

Retention latches in closed position (unlocked) to

EVA via handrails employed

MFR/RMS deployed for manual release

0818-026D R81-0181-137(T)

(AAD)

D10 Alternate Deployment Sequence - LEO/Propulsion Payload Class - Versatile Service Stage - RMS/HPA Usage - Stage/Satellite Mated on Ground

B-19

ORIGINAL PAGE IS OF POOR QUALITY

PAYLOAD DEPLOYMENT

- Satellite and VSS stowed in retention structure
- Status/health checks via umbilical in retention structures (comm via orbiter S-Band)

- VSS retention latches released
- VSS rotated to satellite mating position via tilt table
 - RMS attaches to satellite
- Satellite retention latches/umbilical released

- VSS released from tilt table/umbilical
- Satellite/VSS elevated within view of AFD/payload
 - Activation of selected subsystems of satellite/VSS via ground link (comm via satellite/VSS) bay TV cameras

- $\bullet \quad \text{RMS releases payload at} \sim 1 \text{ ft/sec velocity} \\ \bullet \quad \text{VSS activation of RCS at} > 200 \text{ ft separation}$
 - and verified by orbiter crew

- Satellite/VSS appendages deployed by ground command
 - Final status/health check prior to deployment (comm via satellite/stage)

Satellite status/health check via mating VSS umbilical

Satellite mated to VSS

Transfer payload to internal power

State vector transfer

ORIGINAL PAGE IS OF POOR QUALITY

MTV DEPLOYMENT

RMS releases payload at ~ 1 ft/sec velocity
 VSS activation of RCS at > 200 ft separation

Satellite/VSS appendages deployed by ground command

and verified by orbiter crew

Final status/health check prior to deployment (comm

via satellite/stage)

FOLDOUT FRAME

 VSS activates propulsion system at > 2700 ft separation MTV deployed to view stage firing

- Orbiter/MTV rendezvous
- MTV retrieved by RMS and stowed in payload bay

Returns to orbiter

(P)

VSS RETRIEVAL

(2)

Return

(

- VSS berthed to tilt table
- VSS inactivated/checked out for return

VSS ACS active (RCS disabled, propellents vented)

RMS attaches to VSS

Orbiter/VSS rendezvous (VSS active)

- VSS rotated to stowed position Retention latches locked

BACKUP FOR RETENTION LATCH HANGUP

GRUMMAN

- VSS inactivated/checked out for return VSS berthed to tilt table

Orbiter/VSS rendezvous (VSS active)
 VSS ACS active (RCS disabled, propellents vented)

RMS attaches to VSS

- VSS rotated to stowed position Retention latches locked

BACKUP FOR RETENTION LATCH HANGUP

BACKUP FOR APPENDAGE HANGUP

MMU/WRU with stabilizer deployed for manual assist

MFR/RMS deployed for manual release

EVA via handrails employed Retention latches in closed position (unlocked) to

enable RMS attachment

0181-027D 1472-017(T)

D11 Nominal Deployment Sequence — LEO/Propulsion Payload Class — Versatile Service Stage — RMS/Tilt Table Usage — Stage/Satellite Mated On-Orbit

(A A O

B-21

CONTRACTOR

PAYLOAD DEPLOYMENT

- Satellite and VSS stowed in retention structures
- Status/health checks via umbilical in retention structure
 - (comm via orbiter S-Band) RMS attaches to VSS

- VSS retention latches/umbilical released
- RMS translates VSS and berths to HPA/umbilicals, umbilical connections verified

- Satellite/VSS appendages deployed by ground command and verified by orbiter crew
 - State vector transfer
- Transfer payload to internal power

RMS translates satellite and mates to VSS Activation of selected subsystems of satellite/VSS

via ground link (comm via satellite/VSS)

Satellite retention latches/umbilical released

RMS attaches to satellite

Final status/health check prior to deployment (comm via satellite/VSS)

ullet HPA releases payload at \sim 1 ft/sec velocity

(F)

ullet VSS activation of RCS at > 200 ft separation

PRECEDING PAGE BLANK NOT FILMED

- HPA release; payload at ≈ 1 ft/sec velocity
- ullet VSS activation of RCS at > 200 ft separation

MTV DEPLOYMENT

FOLDOUT TRANS

MTV deployed to view stage firing
 VSS activates propulsion system at > 2700 ft separation

- Orbiter/MTV rendezvous
- MTV retrieved by RMS and stowed in payload bay

Returns to orbiter

(

<u>ф</u>

e, er a e en Milati

Return

VSS RETRIEVAL

- VSS berthed to HPA
 VSS inactivated/checked out for return

VSS ACS active (RCS disabled, propellents vented)

RMS attaches to VSS

Orbiter/VSS rendezvous (VSS active)

(

- RMS transfers VSS to retention structure
 - Retention latches locked

Orbiter/VSS rendezvous (VSS active)

VSS inactivated/checked out for return

VSS berthed to HPA

- VSS ACS active (RCS disabled, propellents vented)
 RMS attaches to VSS

- RMS transfers VSS to retention structure
 - Retention latches locked

BACKUP FOR RETENTION LATCH HANGUP

BACKUP FOR APPENDAGE HANGUP

 MFR/RMS deployed for manual assist and/or

Work station on HPA is utilized

MFR/RMS deployed for manual release

EVA via handrails employed

Retention latches in closed position (unlocked) to enable RMS attachment

0181-028D 1472-018(T)

D12 Alternate Deployment Sequence - LEO/Propulsion Payload Class - Versatile Service Stage - RMS/HPA Usage - Stage/Satellite Mated On-Orbit

(Od R)

B-23

PAYLOAD DEPLOYMENT

- Satellite/propulsion stage stowed in retention structure
- Status/health checks via umbilical in retention structure
 - (comm via orbiter S-Band)

- Retention system latches released
 - Payload rotated via tilt table
 - RMS attaches to payload
 - State vector transfer

- Satellite/stage appendages deployed by ground command and verified by orbiter crew
 - Final status health check prior to deployment (comm via satellite/stage)

- Transfer payload to internal power
- Payload released from tilt table/umbilical
- Satellite/propulsion stage elevated within view of AFD/payload bay TV cameras
 - Activation of selected subsystems of satellite/ propulsion stage via ground link (comm via satellite/propulsion stage)

(c)

- RMS releases payload at ~ 1 ft/sec velocity
- Stage activation of RCS at > 200 ft separation

MTV DEPLOYMENT

MMU/WRU with stabilizer deployed for manual assist

 \odot

Stage activation of RCS at ≥ 200 ft separation ■ RMS releases payioad at ~ 1 ft/sec velocity

MTV DEPLOYMENT

(

- 0
- MTV retrieved by RMS and stowed in payload bay Orbiter/MTV rendezvous

- Propulsion stage activates propulsion system at MTV deployed to view stage firing
 - > 2700 ft separation

BACKUP FOR RETENTION LATCH HANGUP

BACKUP FOR APPENDAGE HANGUP

- MFR/RMS deployed for manual release
- EVA via handrails employed
- Retention latches in closed swaition (unlocked) to enable RMS attachment

R81-0181-140(T) 0181-029D

D13 Nominal Deployment Sequence - LEO/Propulsion Payload Class - Integral Propulsion - RMS/Tilt Table Usage

B - 25

EMANUEL HAME

FOLDOUT FRAME

PAYLOAD DEFLOYMENT

(-)

Retention latches, umbilical released

RMS translates payload and berths to HPA/ umbilicals

Status/health checks via umbilical in retention structure Satellite/propulsion stage stowed in retention structure

(comm via orbiter S-Band)

RMS attaches to payload

Activation of selected subsystems via ground link (comm

via satellite/propulsion stage)

 $oldsymbol{\circ}$ Stags activation of RCS at > 200 ft separation HPA releases payload at ~ 1 ft/sec velocity

(T)

Satellite/stage appendages deployed by ground conimand, and verified by orbiter crew

State vector transfer

 Final status/health check prior to deployment Transfer payload to internal power

(comm via satellite/stage)

MTV deployed to view stage firing

MTV DEPLOYMENT

(E)

PRECEDING PAGE BLANK NOT FILMED

ullet Propulsion stage activates propulsion system at > 2700

MTV retrieved by RMS and stowed in payload bay

Orbiter/MTV rendezvous

State vector transfer

command, and varified by orbital crew

- Transfer payload to internal power Final status/health check prior to deployment (comm via satellite/stage)

MTV DEPLOYMENT

MTV deployed to view stage firing

Orbiter/MTV rendezvous
 MTV retrieved by RMS and stowed in payload bay

BACKUP FOR APPENDAGE HANGUP

Propulsion stage activates propulsion system at $> 2700\,$ ft separation

BACKUP FOR RETENTION LATCH HANGUP

FOLDOUT FRAME

 MFR/RMS deployed for manual assist Work station on HPA is utilized

Retention larches in closed position (unlocked) to

enable RMS attachment

EVA via handrails employed

MFR/RMS deployed for manual release

D14 Alternate Deployment Sequence - LEO/Propulsion Payload Class - Integral Propulsion - RMS/HPA Usage

0181-030D 1472-019(T)

(A A)

PAYLOAD DEPLOYMENT

Payload stowed in til: table/retention structure

FOLDOUT FRAME

PRECEDING PAGE BLANK NOT FILMED

- Status,health checks via umbilical in tilt table/retention structure (comm via orbiter S-Band) State vector transfer

A. C. Barre

- Tilt table elevates payload to deployment attitude
 - Transfer payload to internal power
- Retention latches/umbilical released
- Activation of selected payload subsystems via ground link (comm via satellite/prop stage)

Final status/health check prior to deployment (comm via payload)

- Tilt table/spring separation mechanism releases
 - satellite ~ 2 ft/sec velocity
- IUS RCS activation at > 200 ft

MTV DEPLOYMENT & ORBITER SEPARATION BURN

- MTV deployed to view IUS stage firing
- hazard envelope. At $\sim 80~\text{nm}\text{i}$ separation, orbiter OMS separation burn to assure orbiter exit of assumes damage limit attitude

Orbiter/MTV rendezvous

MTV retrieved by RMS and stowed in payload bay

- Tilt table/spring separation mechanism releases (comm via payload)
 - satellite ~ 2 ft/sec velocity
 IUS RCS activation at > 200 ft

MTV DEPLOYMENT & ORBITER SEPARATION BURN

- MTV retrieved by RMS and stowed in payload bay Orbiter/MTV rendezvous

- hazard envelope. At $\sim 80~\text{nm}$ separation, orbiter MTV deployed to view IUS stage firing
 OMS separation burn to assure orbiter axit of assumes damage limit attitude
 - IUS propulsion stage activated ~ 45 min after payload deployment

BACKUP FOR TILT TABLE HANGUP

B-29

MFR/RMSdeployed for manual release

EVA via handrails employed

0181-031D 1472-020(T)

D15 Nominal Deployment Sequence -- GEO/Propulsion Payload Class -- IUS SRM -- RMS/Tilt Table Usage

FOLDOUT FRAME

(§

in rand I

PAYLOAD DEPLOYMENT

- Payload stowed in retention structure
- Status/health checks via umbilicals in retention structure (comm via orbiter S-Band)

RMS elevates payload within view of AFD/payload

Retention latches/umbilical released Transfer payload to internal power

Activation of selected payload subsystems by ground link (comm via payload)

bay TV cameras

- RMS attaches to payload State vector transfer

(c)

- Final status/health check prior to deployment
 - RMS releases satellite in preferred attitude at (comm via payload)
 - ~ 1 ft/sec velocity
- IUS RCS activation at > 200 ft

MTV DEPLOYMENT & ORBITER SEPARATION BURN

PRECEDING PAGE BLANK NOT FILMED

ORIGINAL PAGE IS

OF POOR QUALITY

Final status/health check prior to deployment

RMS releases satellite in preferred attitude at

(comm via payload) ~ 1 ft/sec velocity

IUS RCS activation at > 200 ft

MTV DEPLOYMENT & ORBITER SEPARATION BURN

hazard envelope. At ~ 80 nmi separation, orbiter OMS separation burn to assure orbiter exit of assumes damage limit attitude

IUS propulsion stage activated ~ 45 min after payload deployment

Orbiter/MTV rendezvous
 MTV retrieved by RMS and stowed in payload bay

BACKUP FOR RETENTION LATCH HANGUP

MFR/RMS deployed for manual release

EVA via handrails employed

Retention latches in closed position (unlocked) to enable RMS attachment

0181-032D 1472-021(T)

(a)

D16 Alternate Deployment Sequence -- GEO/Propulsion Payload Class -- IUS SRM -- RMS Usage

PRECEDING PAGE BLANK NOT FILMED

PAYLOAD DEPLOYMENT

- Payload stowed in tilt table/retention structure
- Status/health checks via umbilical in tilt table/ retention structure (comm via orbiter S-Band)
 - State vector transfer

- Orbiter maneuvers to deployment attitude (Pitch = $135^{\rm O}$)
 - Tilt table elevates payload to deployment attitude
 - Transfer payload to internal power
- Retention latches/umbilical released
- Activation of selected subsystems via ground link (comm via satellite/prop stage)

 \odot

POUR

- Final status/health check prior to deployment (comm via payload)
 - Payload spun-up on tilt table
- Spring separation mechanism releases payload ~ 2 ft/sec velocity
 - PAM-A RCS activation at > 200 ft

MTV DEPLOYMENT & ORBITER SEPARATION BURN

- MTV deployed to view PAM-A stage firing
- hazard envelope. At ~ 25 nmi separation, orbiter OMS separation burn to assure orbiter exit of assumes damage limit attitude
 - PAM-A propulsion stage activated ~ 45 min after

- Orbiter/MTV rendezvous
- MTV retrieved by RMS and stowed in payload bay

FOLDOUT FRAME

ORIGINAL PAGE IS OF POOR QUALITY

- Final status/health check prior to deployment (comm via payload)
 - Payload spun-up on tilt table
- Spring separation mechanism releases payload ~ 2 ft/sec velocity
 - PAM.A RCS activation at > 200 ft

MTV DEPLOYMENT & ORBITER SEPARATION BURN

- MTV deployed to view PAM-A stage firing
- hazard envelope. At ~ 25 nmi separation, orbiter OMS separation burn to assure orbiter exit of
 - assumes damage limit attitude PAM.A propulsion stage activated \sim 45 min after deployment

MTV retrieved by RMS and stowed in payload bay

Orbiter/MTV rendezvous

BACKUP FOR TILT TABLE HANGUP

- MFR/RMS deployed for manual release
- EVA via handraits employed

0181-633D 1472-022(T) (IRAD)

D17 Nominal Deployment Sequence - GEO/Propulsion Payload Class - PAM-A SRM -- RMS/Tilt Table/Spin Table Usage

B 33

FOLDOUT FRAME

PAYLOAD DEPLOYMENT

- Payload stowed in retention structure
- Status/health checks via umbilicals in retention
- Sun shield opens to provide ground comm status structure (comm via orbiter S-Band)
 - check; sun shields closed
 - State vector transfer

MTV DEPLOYMENT & ORBITER SEPARATION BURN

- MTV deployed to view PAM-D stage firing
- hazard envelope. At ~ 25 nmi separation, orbiter OMS separation burn to assure orbiter exit of assumes damage limit attitude
 - PAM-D propulsion stage activated $\sim 45~\text{min}$ after payload deployment

BACKUP FOR SUN SHIELD HANGUP

ORIGINAL PAGE IS OF POOR QUALITY

- Orbiter maneuvers to deployment attitude (Pitch = 90°)
 - Sun shield opens, final status/health check prior to deployment (comm via orbiter S-Band)
 - Transfer payload to internal power
- Payload spun-up, spring mechanism releases payload ~ 6 ft/sec velocity
 - PAM-D RCS activation at > 200 ft

- Orbiter/MTV rendezvous
- MTV retrieved by RMS and stowed in payload bay

2 - 2 - 10 12 22 23

· + 10 15

(C)

- MTV deployed to view PAM-D stage firing
- hazard envelope. At ~ 25 nmi separation, orbiter OMS separation burn to assure orbiter exit of
 - assumes damage limit attitude • PAM.D propulsion stage activated ~ 45 min after payload deployment

- Orbiter/MTV rendezvous
- MTV retrieved by RMS and stowed in payload bay

BACKUP FOR SUN SHIELD HANGUP

MFR/RMS deployed for manual release

EVA via handrails employed

1472-023(T) 0181-034D

(QA G

D18 Nominal Deployment Sequence — GEO/Propulsion Payload Class — PAM-D SRM — RMS/Spin Table Usage

B - 35

CHOMAL PAGE IS Of Poor Quality

PRECEDING PAGE BLANK NOT FILMED

PAYLOAD DEPLOYMENT

0

- Status/health checks via unibilical in retention Payload stowed in retention structure structure (comm via orbiter S-Band) RMS attaches to payload

- Retention latches/umbilical released RMS translates payload and berths to HPA.
 - Umbilical connections verified
- Activation of selected subsystems via ground link Orbiter maneuvers to deployment attitude
 - Transfer payload to internal power State vector transfer (comm via satellite/prop stage)

- Final status/health check prior to deployment (comm via payload)
- Payload spun-up on HPA Spring separation mechanism releases payload
 - SRM RCS activation at > 200 ft ~ 2 to 6 ft/tec velocity

MTV DEPLOYMENT & ORBITER SEPARATION BURN

ORIGINAL PAGE IS OF POOR QUALITY

EOLDOUT FRAME

MTV DEPLOYMENT & ORBITER SEPARATION BURN

• MIV retrieved by RMS and stowed in payload bay

Orbiter/MTV rendezvous

- OMS separation burn to assure orbiter exit of hazard envelope. At \sim 25 nmi separation, orbiter assumes damage limit attitude
- SRM propulsion stage activated ~ 45 min after payload deployment

· -- --

BACKUP FOR RETENTION LATCH HANGUP

MFR/RMS deployed for manual release

EVA via handraits employed

Retention latches in closed position (unlocked) to enable RMS attachment

0181-035D 1472-024(T) (Q)

D19 Alternat: Deployment Sequence — GEO/Propulsion Payload Class — SRM Spinner — RMS/HPA Usage

B-37

URIGINAL PAGE 13 OF POOR QUALITY

PRECEDING PAGE BLANK NOT FILMED

MTV retrieved by RMS and stowed in

payload bay

Orbiter/MTV rendezvous

CRIGINAL FAGE IS OF POOR QUALITY

2 44 412 122 222

MTV DEPLOYMENT/PAYLOAD EXAMINATION

- Orbiter randezvous with satellite to within ~ 1000 ft separation distance
 - MTV is deployed to examine satellite

RETRIEVAL/SERVICING

- Satellite safing, propellent venting, preparations for rendezvous
 - Satellite ACS is active to maintain stability

Deactivate satellite by ground command

Satellite appendages retracted

- Orbiter rendezvous with satellite to within RMS reach distance, satellite examined via RMS TV or visual crew observation
 - RMS attaches to satellite

ORIGINAL PAGE IS OF POOR QUALITY

- Satellite berthed to payload bay tilt table and umbilical connections verified
- Transfer satellite to orbiter power to maintain thermal control

PAYLOAD REDEPLOYMENT

- RMS attaches to satellite
 - State vector transfer
- Transfer satellite to internal power

- Satellite appendages deployed by ground command and verified by orbiter crew
 - Final status/health check prior to deployment (comminial satellite)

- Checkout status/health via umbilical in tilt table (comm via satellit.
 - Implement servicing runctions via tilt table work platform/OCP/RMS

Examine, repair, maintenance, resupply, reconfigure

 Checkout/verify status of on-orbit services performed (comm via satellite)

- Tilt table latches/umbilicals released
- RMS elevates payload within view of AFD and payload bay TV cameras
- Activation of selected subsystems via ground link (comm via satellite)

(2)

- RMS releases satellite in preferred attitude at ~ 1 ft/sec velocity
 - Satellite activation of RCS at > 200 ft

- Satellite appendages deployed by ground command
 - Final status/health check prior to deployment and verified by orbiter crew (comm via satellite)

 RMS releases sate!lite in preferred attitude at \sim 1 ft/sec velocity Satellite activation of RCS at > 200 ft

BACKUP FOR RETENTION LATCH OR TILT TABLE HANGUP

BACKUP FOR APPENDAGE HANGUP

 MMU/WRU with stabilizer deployed for manual assist

MFR/RMS deployed for manual release

EVA via handrails employed Latches in closed position (unlocked) to enable RMS attachment

R81-0181-148(T)

(a)

POUR QUALITY

R1 Nominal Revisit Sequence - Direct Delivery Payload Class - MMS-Type Satellites - RMS/Tilt Table Usage

B - 39

PRECEDING PAGE BLANK NOT FILMED

FOLDOUT FRANK

- Orbiter/MTV rendezvous
- MTV retrieved by MMU/WRU and stowed in payload bay

- - Orbiter rendezvous with satellite to within \sim 1000 ft separation distance

MTV is deployed by MMU/WRU with RMS

end effector to examine satellite

- Satellite safing, propellent venting, preparations for rendezvous
 - Satellite ACS is active to maintain stability
- Orbiter rendezvous with satellite to within view of AFD/payload bay TV cameras, satellite examined via MMU/WRU or visual crew observation
 - MMU/WRU with RMS end effector attaches to satellite

MTV DEPLOYMENT/PAYLOAD EXAMINATION

(<u>国</u>

- Satellite appendages retracted
 Deactivate satellite by ground command

9

- Transfer satellite to orbiter power to maintain umbilical connections verified

thermal control

Satellite berthed to payload bay tilt table and

Checkout status/health via umbilical in tilt table

Implement servicing functions via OCP/Work

(comm via satellite)

Station on tilt table

Examine, repair, maintenance, resupply,

MMU/WRU with payload handling capability Checkout/verify status of on-orbit services

performed (comm via satellite)

Transport packages to work station via

reconfigure

PAYLOAD REDEPLOYMENT

MMU/WRU attaches to satellite

MMU/WRU elevates payload within view of AFD

Tilt table latches/umbilicals released

Activation of selected subsystems via ground

link (comm via satellite)

and payload bay TV cameras

- State vector transfer
- Transfer satellite to internal power

(2)

- MMU/WRU releases satellite in nominally preferred attitude at \sim 1 ft/sec velocity
 - Satellite activation of RCS at > 200 ft

BACKUP FOR APPENDAGE HANGUP

- (F)
- Final status/haalth check prior to deployment Satellite appendages deployed by ground command and verified by orbitor crew

(comm via satellite)

ORIGINAL PAGE OF POOR QUALITY

(F)

- MMU/WRU releases satellite in nominally preferred
 - attitude at \sim 1 ft/sec velocity Satellite activation of RCS at > 200 ft

Final status/health check prior to deployment Satellite appendages deployed by ground command and verified by orbiter crew

(comm via satellite)

BACKUP FOR TILT TABLE HANGUP

BACKUP FOR APPENDAGE HANGUP

First MMU/WRU maintains stability/position.

MMU/WRU with stabilizer deployed for manual release

EVA via handrails employed

of satellite Second MMU with stabilizer deployed for manual assist

R2 Nominal Revisit Sequence — RMS Inoperative — Direct Delivery Payload Class — MMS-Type Satellites — Tilt Table Usege

0181-010D 1472-025(T)

(ARD)

B-41

FOOR QUALITY

MTV DEPLOYMENT/PAYLOAD EXAMINATION

<u>_</u>

- Orbiter rendezvous with satellite to within
 - ~ 1000 ft separation distance MTV is deployed to examine satellite

G. Siter/MTV rendezvous
 MTV retrieved by RMS and stowed in payload bay

(C)

- Satellite safing, propellent venting, preparations for
 - rendezvous

 Satellite ACS is active to maintain stability
- Satellite ACS is active to maintain stability
 Orbiter rendezvous with satellite to within RMS reach distance, satellite examined via RMS TV or visual crew observation
 - RMS attaches to satellite

(F)

- Satellite berthed to Handling & Positioning Aid (HPA)
 - and umbitical connections verified

 Transfer satellite to orbiter power to maintain thermal control

0

Satellite appendages retracted
 Deactivate satellite by ground command

(D)

- Checkout status/health via umbilical in HPA (comm via satellite)
 - Implement servicing functions via HPA/ RMS/OCP

OCCP Examine, repair, maintenance, resupply, reconfigure

PRECEDING PAGE BLANK NOT FILMED

9

- Satellite berthed to Handling & Positioning Aid (HPA)
 - Transfer satellite to orbiter power to maintain and umbilical connections verified thermal control

- Checkout status/health via umbilical in HPA (comm via satellite)
- Implement servicing functions via HPA/ RMS/OCP
- Examine, repair, maintenance, resupply,
 - Checkout/verify status of on-orbit services performed (comm via satellite) reconfigure
- Activation of selected subsystems via ground link

PAYLOAD REDEPLOYMENT

- HPA releases satellite at ~ 1 ft/sec velocity

Satellite activation of RCS at > 200 ft separation

- Satellite appendages deployed by ground command and verified by orbiter crew
 - State vector transfer
- Transfer satellite to internal power Final status/health check prior to deployment (comm via satellite)
- BACKUP FOR RETENTION LATCH HANGUP

BACKUP FOR APPENDAGE HANGUP

- Work station on HPA is utilized
- MFR/RMS deployed for manual assist
- R3 Alternate No. 1 Revisit Sequence Direct Delivery Payloed Class MMS-Type Satellites RMS/HPA Usage

MFR/RMS deployed for manual release

or R81-0181-150(T) EVA via handrails employed 1472-026(T)

(AR)

EOLDOUT FRAME

B-43

ORIGINAL PAGE IS OF POOR QUALITY

MTV DEPLOYMENT/PAYLOAD EXAMINATION

 \odot

Orbiter rendezvous with satellite to within \sim 1000 ft separation distance

MTV retrieved by MMU/WRU and stowed

in payload bay

Orbiter/MTV rendezvous

MTV is deployed by MMU/WRU (with RMS end-effector) to examine satellite

RETRIEVAL/SERVICING

- Satellite safing, propellent venting, preparations
 - Satellite ACS is active to maintain stability for rendezvous
- Orbiter rendezvous with satellite to within view of AFD/payload bay TV cameras, satellite examined via MMU/WRU or visual crew observation
 - MMU/WRU (with RMS end-effector) attaches to satellite

Deactivate satellite by ground command

- Satellite berthed to HPA and umbilical
- Transfer satellite to orbiter power to maintain connections verified thermal control

- Checkout status/health via umbilical in HPA (comm via satellite)
 - Examine, repair, maintenance, resupply, Implement servicing functions via HPA
- fransport packages to work station via MMU/WRU with payload handling capability reconfigure
 - Checkout/verify status of on-orbit services performed (comm via satellite)
- Activation of selected subsystems via ground link

PAYLOAD REDEPLOYMENT

©

Satellite appendages deployed by ground command and verified by orbiter crew

Satellite activation of RCS at > 200 ft separation

ullet HPA releases satellite at \sim 1 ft/sec velocity

- State vector transfer
- Transfer satellite to internal power
- Final status/health check prior to deployment
 - (comm via satellite)

BACKUP FOR RETENTION LATCH HANGUP

BACKUP FOR APPENDAGE HANGUP

FOIDOUI ERAME

· +# 15

(9)

- Satellite appendages deployed by ground command and verified by orbiter crew
 - State vector transfer
- Transfer satellite to internal power
- Final status/health check prior to deployment (comm via satellite)

 $\bullet \ \ \mathsf{HPA} \ \mathsf{releases} \ \mathsf{satellite} \ \mathsf{at} \sim 1 \ \mathsf{ft/sec} \ \mathsf{velocity}$ $\bullet \ \ \mathsf{Satellite} \ \mathsf{activation} \ \mathsf{of} \ \mathsf{RCS} \ \mathsf{at} > 200 \ \mathsf{ft} \ \mathsf{separation}$

BACKUP FOR RETENTION LATCH HANGUP

BACKUP FOR APPENDAGE HANGUP

Work station on HPA is utilized

MMU/WRU with stabilizer deployed for manual release

EVA via handrails employed

R4 Alternate No. 1 Revisit Sequence - RMS Inoperative - Direct Delivery Payload Class - MMS-Type Satellites - HPA Usage

0181-012D 1472-027(T) (AAD)

B - 45

LINE LEWINE

PRECEDING PAGE BLANK NOT FILMED

POM-MTV DEPLOYMENT/PAYLOAD RETRIEVAL

- Satellite safing, propellant venting, preparations
- Satellite ACS is active to maintain stability for rendezvous
- Orbiter rendezvous with satellite to 1000 ft separation distance

- umbilical and elevated within view of AFD/pay-POM-MTV released from retention structure/ load bay TV cameras
 - Activation of selected POM subsystems via ground link (comm via POM)

- Proximity Ops Module (POM-MTV)
- Status/health checks via umbilical in retention structure adaptation stowed in retention structure
 - (comm via orbiter S-Band)

 - RMS attaches to POM-MTV

 Transfer POM-MTV to internal power

- POM appendages deployed by ground command
 - Final status/health checks prior to deployment and verified by orbiter crew (comm via POM)

FOLDOUT FRAME

(J

 ■ RMS releases POM at ~ 1 ft/sec velocity to manned POM deployment is alternate)

- POM transports satellite to orbiter within RMS reach distance
 - RMS attaches to satellite and POM (PCM ACS active)
 - Deactivate satellite by ground command

- and elevates within view of AFD/payload bay
- POM inactivated, checked out for stowage

9

- TV cameras
 - POM appendages retracted
- and return

- POM docks to satellite
- Satellite appendages retracted Satellite ACS inactivated

(-)

The transfer framework as the said

- Satellite berthed to payload bay tilt table and umbilical
 - Transfer satellite to orbiter power to maintain connections verified

thermal control

Activate orbiter's non-contaminating ACS package: or place orbiter in free drift

(2)

- POM stowed in retention structure, retention latches locked

(E)

- Checkout satellite status/health via umbilical in tilt table (comm via satellite)
 - Examine, repair, maintenance, resupply, Implement servicing functions via OCP/RMS & OCP/Work Platform on tilt table reconfigure

Land Table

Checkout/verify status of on-orbit services performed (comm via satellite)

PAYLOAD REDEPLOYMENT

- RMS attaches to satellite
 - State vector transfer
- Transfer satellite to internal power

- Tilt table latches/umbilicals released
- RMS elevates payload within view of AFD and payload bay TV cameras
 - Activation of selected subsystems via ground link (comm via satellite)

- RMS releases satellite in preferred attituce at
 - \sim 1 ft/sec velocity Satellite activation of RCS at > 200 ft

Final status/health check prior to deployment (comm

Satellite appendages deployed by ground command

and verified by orbiter crew

via satellite)

(2)

- RMS releases satellite in preferred attitude at
 - $\sim 1 \, \text{ft/sec}$ velocity Satellite activation of RCS at $> 200 \, \, \text{ft}$

Final status/health check prior to deployment (comm

via satellite)

Satellite appendages deployed by ground command

and verified by orbiter crew

BACKUP FOR RETENTION LATCH/TILT TABLE HANGUP

BACKUP FOR APPENDAGE HANGUP

 MMU/WRU with stabilizer deployed for manual assist

 MFR/RMS deployed for manual release EVA via handrails employed

R5 Nominal Revisit Sequence - Direct Delivery Payload Class - Contamination Sensitive Satellite - RMS/Tilt Table Usage

GRUMMAN

-47 1B

0181-013U 1472-028(T) (RAD)

POM-MTV DEPLOYMENT/PAYLOAD RETRIEVAL

- Satellite safing, propellant venting, preparations
 - for rendezvous
- Satellite ACJ is active to maintain stability Orbiter rendezvous with satellite to 1000 ft separation distance

- RMS berths POM MTV to HPA and umbilicals verified
 - Transfer POM-MTV to orbiter power to maintain
 - therma! control

(C)

- Proximity Operations Module MTV adaptation (POM-MTV) stowed in retention structure
- Status/health checks via umbilical in retention structure (comm via orbiter S-Band) RMS attaches to POM-MTV

- Activation of selected POM-MTV subsystems via
 - POM-MTV appendages deployed by ground command and verified by orbiter crew ground link (comm via POM-MTV)
- Final status/health checks prior to deployment (comm via POM-MTV)

PRECEDING PAGE BLANK NOT FILMED

FOLDOUT ERAME

- Transfer POM-MTV to internal power
- HPA releases POM MTV at $\sim 1~\text{ft/sec}$ velocity to examine and retrieve satellite (MMU/WRU manned POM deployment is alternate)

- FOM-MTV transports satellite to orbiter within RMS
- RMS attaches to satellite and POM-MTV (POM-MTV ACS reach distance
 - Deactivate satellite by ground command active)

(E)

- RMS attaches to POM-MTV, releases from satellite and elevates within view of AFD/payload bay
- POM-MTV appendage, retracted
- POM-MTV inactivated, checked out for strwage

(e)

- POM-MTV docks to satellite
- Satellite appendages retracted
 Satellite ACS in activated

(E)

- Satellite berthed to HPA and umbilical connections verified
 - Transfer satellite to orbiter power to maintain thermal control
 - Activate orbiter's non-contaminating ACS package or place orbiter in free drift

(2)

 POM-MTV stowed in retention structure, retention latches locked

SERVICING

(

- Checkout status/health via umbitical in HPA (comm via satellite)
 - Implement servicing functions via HPA/RMS/OCP Examine, repair, maintenance, resupply,
- reconfigure

 Checkout/verify status of on-orbit services performed (comm via satellite)
 - Activation of selected subsystems via ground link

Edi Barren 200 Delig

PAYLOAD REDEPLOYMENT

(2)

(2)

 Satellite appendages deployed by ground command and verified by orbiter crew

HPA releases satellite at ~ 1 ft/sec velocity
 Satellite activation of RCS at > 200 ft separation

- State vector transfer
- Transfer satellite to internal power
- Final status/health check prior to deployment (comm via satellite)

BACKUP FOR RETENTION LATCH HANGUP

- Satellite appendages deployed by ground command and verified by orbiter crew
 - State vector transfer
- Transfer satellite to internal power
- Final status/health check prior to deployment (comm via satellite)

■ HPA releases satellite at ~ 1 ft/sec velocity

Satellite activation of RCS at > 200 ft separation

BACKUP FOR RETENTION LATCH HANGUP

BACKUP FOR APPENDAGE HANGUP

Work station on HPA is utilized

MFR/RMS deployed for manual assist

MFR/RMS deployed for manual release

EVA via handrails employed

R6 Alternate No. 3 Revisit Sequence — Direct Delivery Payload Class — Contamination Sensitive Satellite — RMS/HPA Usage

EOLDOUT FRAME

VSS DEPLOYMENT

- VSS with rendezvous/docking capability stowed in retention structure/tilt table
 - Status/health checks via umbilicals in tilt table (comm via orbiter S-Band)

Transfer VSS to internal power

 VSS rotated to horiz position RMS attaches to VSS State vector transfer

 VSS released from tilt table/umbilical and elevated within view of AFD/payload bay TV cameras

 VSS appendages deployed by ground command and verified by orbiter crew Final status/health check prior to deployment

(comm via VSS)

Activation of selected VSS subsystems by ground link (comm via VSS)

- RMS releases VSS at ~ 1 ft/sec velocity
- VSS activation of RCS at > 200 ft separation

MTV DEPLOYMENT

MTV DEPLOYMENT

- <u>-</u>

- MTV deployed to view VSS firing
- ullet VSS activates propulsion system at > 2700 ft separation

Orbiter/MTV rendezvous (MTV active)
 MTV retrieved by RMS and stored in payload bay

(E)

1

Orbiter and VSS/satellite rendezvous (VSS active) within RMS reach distance and are examined by RMS TV or

VSS ACS is active to maintain stability

visual crew observation

RMS attaches to satellite/VSS

- VSS appendages retracted
 Deactivate VSS and satellite by ground command
 For contamination sensitive payloads, activate
 - For contamination sensitive payloads, actival orbiter's non-contaminating ACS package or place orbiter in free drift
- Satellite/VSS berthed to payload bay tilt table and umbilical connections verified
- Transfer satellite/VSS to orbiter power to maintain thermal control

SERVICING

- Checkout status/health via umbilical in tilt table (comm via satellite)
- Implement servicing functions via OCP/RMS and OCP work platform on tilt table examine, repair, maintenance,
- resupply, reconfigure
 Checkout/verify status of on-orbit services performed (comm via satellite/VSS)

PAYLOAD REDEPLOYMENT

- RMS attaches to satellite/VSS
 - State vector transfer
- Transfer satellite/VSS to internal power

- Satellite/VSS appendages deployed by ground command and verified by orbiter crew
- Final status/health check prior to deployment (comm via satellite/VSS)

(E)

- Tilt table latches/umbilicals released
- RMS elevates payload within view of AFD and payload by TV cameras
- Activation of selected subsystems via ground link (comm via satellite/VSS)

(3)

MTV REDEPLOYMENT

- MTV depioyed to view VSS firing
- VSS stage activates propulsion system at > 2700 ft separation

VSS RETRIEVAL

(2)

- Orbiter/VSS stage rendezvous (VSS active)
- VSS ACS active (RCS disabled, propellants vented)
 - RMS attaches to VSS

BACKUP FOR RETENTION LATCH HANGUP

- MFR/RMS deployed for manual release
- Latches in closed position (unlocked) to enable RMS attachment **EVA** via dandrails deployed

- Orbiter/MTV rendezvous (MTV active)
- MTV retrieved by RMS and stored in payload bay

- VSS berthed to tilt table
- VSS inactivated, checked out for return
 - VSS rotated to a stowed position Retention latches locked

BACKUP FOR APPENDAGE HANGUP

 MMU/WRU with stabilizer deployed for manual assist

- Orbiter/VSS stage rendezvous (VSS active)
- VSS ACS active (RCS disabled, propellants vented)
 - RMS attaches to VSS

BACKUP FOR RETENTION LATCH HANGUP

BACKUP FOR APPENDAGE HANGUP

VSS inactivated, checked out for return
VSS rotated to a stowed position
Retention latches locked

VSS berthed to tilt table

(2)

(2)

 MMU/WRU with stabilizer deployed for manual assist

- MFR/RMS deployed for manual release
- Latches in closed position (unlocked) **EVA via dandrails deployed**

to enable RMS attachment

0181-015D 1472-030(T) OAR)

R7 Nominal Revisit Sequence — LEO/Propulsion Payload Class — Versatile Service Stage/ Nominal Payload — RMS/Tilt Table Usage

VSS DEPLOYMENT

 VSS with rendezvous/docking capability stowed in retention structure

VSS retention latches/umbilical released RMS translates VSS and berths to HPA, umbilical

connections verified

- Status/health checks via umbilical in retention structure (comm via orbiter S-Band)
 - RMS attaches to VSS

ullet VSS activation of RCS at > 200 ft separation HPA releases VSS at ~ 1 ft/ser velocity

- A. tivation of selected VSS subsystem by ground link (comm via VSS)
 - VSS appendages deployed by ground command and verified by orbiter crew
 - Final status/health check prior to deployment
 - (comm via VSS)
- Transfer VSS to internal power State vector transfer

PRECEDING PAGE BLAT" NOT FILMED

- Orbiter/MTV rendezvous (MTV active)
 MTV retrieved by RMS and stowed in
 - payload bay

 \bullet VSS activated propulsion system at ~ 2700 ft separation

MTV deployed to view VSS firing

- VSS appendages retracted
- Deactivate VSS and satellite by ground command
- orbiter's non-contaminating ACS package or place For contamination sensitive payloads, activate orbiter in free drift
 - Satellite/VSS berthed to HPA and umbilical connections verified
- Transfer satellite/VSS to orbiter power to maintain thermal control

- Orbiter/VSS rendezvous (VSS active) within RMS reach distance, and examined by RMS TV or
 - VSS ACS is active to maintain stability visual crew observation
 - RMS attaches to satellite/VSS

(2)

- Checkout status/health via umbilical in HPA
- Implement servicing functions via HPA/RMS/OCP Examine, repair, maintenance, resupply, (comm via satellite/VSS)

(comm via satellite/VSS)

 Implement servicing functions via HPA/RMS/OCP Examine, repair, maintenance, resupply, reconfigure Checkout/verify status of on-orbit services performed (comm via satellite)

Activation of selected subsystems via ground link (comm via satellite/VSS)

PAYLOAD REDEPLOYMENT

Satellite/VSS appendages deployed by ground command and verified by orbiter crew

State vector transfer

Transfer satellite/VSS to internal power

Final status/health check prior to deployment (comm via satellite/VSS)

MTV DEPLOYMENT

- MITV deployed to view VSS firing
- VSS stage activates propulsion system at $> 2700\,$ ft separation

- Orbiter/MTV rendezvous (MTV active)
- MTV retrieved by RMS and stowed in payload bay

ft separation

VSS RETRIEVAL

- Orbiter/VSS stage rendezvous (VSS active)
- VSS ACS active (RCS disabled, propellents vented)
 - RMS attaches to VSS

- VSS berthed to HPA
 VSS inactivated/checked out for return

- RMS transfers VSS to retention structure
 - Retention latches locked

BACKUP FOR RETENTION LATCH HANGUP

BACKUP FOR APPENDAGE HANGUP

MFR/RMS deployed for manual assist Work station on HPA is utilized and/or

MFR/RMS deployed for manual release

 Latches in closed position (unlocked) to EVA via handrails employed

R81-0181-155(T)

1472-031(T)

(JRAD)

0181-0160

Satellite - RMS/HPA Usage

R8 Alternate No. 1 Revisit Secuence – LEO/Propulsion Payload Class – Versatile Service Stage/Contamination Sensitive enable RMS attachment

MTV DEPLOYMENT/PAYLOAD EXAMINATION

Free de dies Flore explications

- Orbiter rendezvous with satellite to within ~ 1000 ft separation distance
 - MTV is deployed to examine satellite

RETRIEVAL/STOWAGE

(C)

- Satellite safing, propellent venting, preparations for rendezvous
 - Satellite ACS is active to maintain stability
 - Orbiter rendezvous with satellite to within RMS reach distance, satellite examined via RMS TV or visual crew observation
 - RMS attaches to satellite

- RMS transfers satellite to retention structure
 - Retention latches locked

 MTV retrieved by RMS and stowed in payload bay Orbiter/MTV rendezvous (MTV active)

- Satellite appendages retracted
 Deactivate satellite by ground command

9

- Umbilical connection verified
- Transfer satellite to orbiter power to maintain thermal control

RMS reach distance, satellite examined via RMS TV or visual crew observation

RMS attaches to satellite

(J

- RMS transfers satellite to retention structure
 Retention latches locked

OPTION

- Umbilical connection verified
- Transfer satellite to orbiter power to maintain thermal control

BACKUP FOR APPENDAGE HANGUP

BACKUP FOR RETENTION LATCH HANGUP

MMU/WRU with stabilizer deployed for manual assist

MMU/WRU with stabilizer deployed for manual assist

EVA via handrails employed

MFR/RMS deployed for manual assist

EVA via handrails employed

R81-0181-156(T) 01#1-005D

(g)

ER1 Nominal Earth Return Sequence - Direct Delivery Payload Class - Cooperative MMS-Type Satellites - RMS Usage

MTV DEPLOYMENT/PAYLOAD EXAMINATION

(2)

- Orbiter rendezvour with satellite to within ~ 1000 ft separation distance
- MTV is deployed by MMU/WRU with RMS end effector to examine satellite

RETRIEVAL/STOWAGE

- Satellite safing, propellant venting, preparations for rendezvous
- Orbiter rendezvous with satellite to within view of AFD/payload bay TV cameras, satellite Satellite ACS is active to maintain stability
- MMU/WRU with RMS end-effector attaches to satellite examined via MMU/WRU or visual crew observation

- Umbilical connection verified
 Transfer satellite to orbiter power to maintain

- Orbiter/MTV rendezvous (MTV active)
- MTV retrieved by MI/U/WRU and stowed in payload bay

- Satellite appendages retracted
- Deactivate satellite by ground command

©

(C)

- Satellite appendages retracted
- Deactivate satellite by ground command
- Satellite safing, propellant venting, preparations

for rendezvous

examined via MMU/WRU or visual crew observation Orbiter rendezvous with satellite to within view Satellite ACS is active to maintain stability of AFD/payload bay TV canieras, satellite

MMU/WRU with RMS end-effector attaches to satellite

- MMU/WRU transfers satellite to retention structure
 - Fretention latches locked

- Umbilical connection verified
- Transfer satellite to orbiter power to maintain thermal control

BACKUP FOR APPENDAGE HANGUP

BACKUP FOR RETENTION LATCH HANGUP

- First MMU/WRU maintains stability/position of satellite in payload bay
- Second MMU with stabilizer deployed for manual release

ŏ

01#1-006D 1472-032(T)

JAAD)

ER2 Nominal Earth Return Sequence - Direct Delivery Payload Class - Cooperative MMS-Type Satellites - RMS Inoperative

- First MMU/WRU maintains stability/position
- Second MMU with stabilizer deployed for manual assist of satellite

MTV DEPLOYMENT/PAYLOAD EXAMINATION

.

- Orbiter rendezvous with satellite to within ~ 1000 ft separation distance

 - MTV is deployed to examine satellite

RETRIEVAL/STOWAGE

<u>ල</u>

- Satellite safing, propellent venting, preparations
 - for rendezyous
- Satellite ACS is active to maintain stability Orbiter rendezvous with satellite to within RMS reach distance, satellite examined via
 - RMS TV or visual crew observation RMS attaches to satellite

(D)

- Satellite appendages retracted by ground command
 - Satellite inactivated by ground command and checked-out for return and verified by orbiter crew

0

- Orbiter/MTV rendezvous (MTV active)
- MTV retrieved by RMS and stowed in payload bay

①

Satellite berthed to HPA

- Umbilical connections verified
- Transfer satellite to orbiter power to maintain thermal control

(e)

 Implement manual removal/stowage of selected equipment via HPA work station and RMS/OCP, if required

- Satellite appendages retracted by ground command
 - Satellite inactivated by ground command and checked-out for return and verified by orbiter crew

(-)

- RMS transfers satellite to retention structure
 - Retention atches locked

- OPTION
- Transfer satellite to orbiter power to maintain Umbilical connection verified thermal control

BACKUP FOR APPENDAGE HANGUP

BACKUP FOR RETENTION LATCH HANGUP

 MMU/WRU with stabilizer deployed for manual assist

EVA via handrails employed ö

MFR/RMS deployed for manual assist Work station on HPA is utilized ō

MFR/RMS deployed for manual assist

EVA via handrails employed

0181-007D 1472-033(T)

ER3 Alternate No. 1 Earth Retuin Sequence — Direct Delivery Payload Class — Cooperative MMS-Type Satellites — RMS/HPA Usage

PRECEDING PAGE BLANK NOT FILMED

MTV DEPLOYMENT/PAYLOAD EXAMINATION

<u>國</u>

- Orbiter rendezvous with satellite to within ~ 1000 ft separation distance
- MTV is deployed by MMU/WRU with RMS end effector to examine satellite

RETRIEVAL/STOWAGE

(m)

- Satellite safing, propellent venting, preparations for rendezvous
 - Satellite ACS is active to maintain stability
- Orbiter rendezvous with satellite to within view of AFD/payload bay TV cameras, satellite examined via MMU/WRU or visual crew observation
 - MMU/WRU with RMS end effector attaches to satellite

- Orbiter/MTV rendezvous (MTV active)
- MTV retrieved by MMU/WRU and stowed in payload bay •

(

Satellite berthed to HPA

- Umbilical connection verified
- Transfer satellite to orbiter power to maintain thermal control

 Orbiter rendezvous with satellite to within view of AFD/payload bay T'V cameras, satellite examined via MMU/WRU or visual crew observation

Transfer satellite to orbiter power to maintain

thermal control

Umbilical connection verified

MMU/WRU with RMS end effector attaches to satellite

Satellite inactivated by ground command and checked-out for return

 Implement manual removal/storage of selected equipment via HPA work station, if required

MMU/WRU transfers satellite to retention structure

Retention latches locked

•

Limbilical connection verified

 Transfer satellite to orbiter power to maintain thermal control

BACKUP FOR RETENTION LATCH HANGUP

First MMU/WRU maintains stability/position of satellite

in payload bay Second MMU with stabilizer deployed for manual release

EVA via handrails employed

0181-008D 1472-034(T)

(A A D

ER4 Alternate No. 1 Earth Return Sequence — Direct Delivery Payload Class — Cooperative MMS-Type Satellites — RMS Inoperative — HPA Usage

BACKUP FOR APPENDAGE HANGUP

Work station on HPA is utilized

B-61

PRECEDING PAGE BLANK NOT FILMED

POM-MMU/WRU DEPLOYMENT/PAYLOAD RETRIEVAL

Satellité ACS is active to maintain stability

Orbiter rendezvous with satellite to within 1006 ft

separation distance

Status/health checks via umbilical in retention structure (comm via orbiter S-Band)

EVA crewman mounts POM-MMU/WRU

Activation/checkout of POM-MMU/WRU

مگ

POM-MMU/WRU docks to satellite grapple fitting

Satellite appendages retracted

Satellite ACS deactivated

POM-MMU/WRU initiates closure maneuver

to examine and retrieve satellite

POM-MMU/WRU released from retention

structure/umbilical

EOLDOUT FRAME

POM-MMU/WRU transports satellite to orbiter within RMS reach distance

Satellite berthed to HPA and umbilical connection

Transfer satellite to orbiter power to maintain

structure (AESA), retention latches locked

POM-MMU/WRU stowed in retention

thermal control

- P MS attaches to satellite and POM (POM ACS arrive)
- Deactivate satellite by ground command POM-MMU/WRU separates from satellite

SATELLITE STOWAGE

 Satellite inactivated by ground command and checkedout for return

3

 Implement manual removal/stowage of selected equipment via HPA and RMS/OCP, if required

- Umbilical connection verified
- Transfer satellite to orbiter power to maintain thermal control

BACKUP FOR RETENTION LATCH HANGUP

B-63

MMU/WRU with stabilizer deployed for manual assist

EVA via handrails employed

BACKUP FOR APPENDAGE HANGUP

Work Station on HPA is utilized or or MFR/RMS deployed for manual assist

ER5 Alternate No. 2 Earth Return Sequence — Direct Delivery Payload Class — Cooperative Nominal (MMS - Type) Payloads RMS/HPA Usage — Mannad Retrieval of Satellites at 1000 ft Separation

0181-041D 1472-035(T)

(BAD)

GRUM

FOLDOUE ERANM

RMS transfers satellite to retention structure

Retention latches locked

MANNED-POM DEPLOYMENT/PAYLOAD RETRIEVAL

- Satellite safing, propellant venting, preparations for rendezvous
 - Satellite ACS is active to maintain stability Orbiter rendezvous with satellite to 1000 ft
 - separation distance

- POM released from retention structure/umbilical
- RMS berths POM to HPA and umbilicals verified
 - Transfer POM to orbiter power to maintain thermal control

POM docks to satellite grapple fitting

Satellite appendages retracted
 Satellite ACS inactivated

- HPA releases Manned POM to examine and retrieve satellite
 - POM initiates closure maneuver

- Manned POM transports satellite to orbiter
 - RMS attaches to Satellite (POM ACS within RMS reach distance
- Deactive satellite by ground command
 - POM separates from satellite

(D)

- RMS attaches to Manned POM and elevated within
 - view of AFD/payload bay TV cameras
- POM appendages retracted POM inactivated, checked out for stowage and return

FOLDOUI FRAME

- Satellite berthed to HPA and umbilical connections verified
 - Transfer satellite to orbiter power to maintain thermal control

(2)

 POM stowed in retention structure, retention latches locked

SATELLITE STOWAGE

(E)

 Satellite inactivated by ground command and checked-out for return

 Implement manual removal/stowage of selected equipment via HPA and RMS/OCP, if required

(3)

(E)

- Umbilical connection verified
- Transfer satellite to orbiter power to maintain thermal control

BACKUP FOR RETENTION LATCH HANGUP

FOLDOUT FRAME

PIDA lowers satellite in retention structure

Retention latches locked

RMS transfers satellite to PIDA

 MMU/WRU with stabilizer deployed for manual assist

B-65

 MFR/RMS deployed for manual assist **EVA via handrails employed**

0181-042U 1472-036(T)

(A A C)

ER6 Alternate No. 2 Earth Return Sequence — Direct Delivery Payload Class — Cooperative Large Satellites — RMS/HPA Usage — Manned Retrieval of Satellites at 1000 ft Separation

- Satellite safing, propellent venting, preparations for rendezvous

 - Satellite ACS is active to maintain stability Orbiter rendezvous with satellite to 1000 ft separation distance

- POM-MTV raleased from retention
- RMS berths POM-MTV and umbilicals structure/umbilical

verified

Transfer POM-MTV to orbiter power to maintain thermal control

Transfer POM-MTV to internal power HPA releases POM-MTV at ~ 1 ft/sec satellite (MMU/WRU manned POM velocity to examine and retrieve deployment is alternate)

 Proximity Operations Module – MTV adaptation (POM-MTV) stowed in

The Phase Frederick Martin Comme

- Status/health checks via umbilical in retention structure (comm via orbiter S-Band) retention structure
 - RMS attaches to POM-MTV

(E)

- Activation of selected POM-MTV subsystems via ground link (comm via POM-MTV)
 - POM-MTV appendages deployed by ground command and verified by orbiter crew
- Final status/health checks prior to deployment (comm via POM-MTV)

(e)

- POM-MTV docks to satellite grapple fitting
 - Satellite appendages retracted
 - Satellite ACS inactivated

 HPA releases POM-MTV at ~ 1 ft/sec velocity to examine and retrieve sate lite (MMU/WRU manned POM deployment is alternate)

Satellite appendages retracted
 Satellite ACS inactivated

- POM-MTV transports satellite to orbiter within RMS reach distance
 - RMS attaches to satellite (POM ACS active)
 - Deactivate satellite by ground command

(D)

- Satellite berthed to HPA and umbilical connections verified
- Transfer satellite to orbiter power to maintain thermal control
 - ACS package or place orbiter in free drift Activate orbiter's non-contaminating
- (2)

 POM-MTV stowed in retention structure, retention latches locked

(P)

- satellite, and elevates within view of AFD/ RMS attaches to POM-MTV, releases from payload bay TV cameras
 - POM-MTV inactivated, checked out for POM-MTV appendages retracted

FOLDOUT FRAME

stowage and return

SATELLITE STOWAGE

 Satellite inactivated by ground command and checkedout for return

(2)

 Implement manual removal/stowage of selected equipments via HPA and RMS/OCP if required

(2)

- RMS transfers satellite to retention structure
 - Retention latches locked

 Implement manual removal/stowage of selected equipments via HPA and RMS/OCP if required

(3)

- Transfer satellite to orbiter power to maintain Umbilical connection rerified thermal control

BACKUP FOR APPENDINGE HANGUP

BACKUP FOR RETENTION LATCH HANGUP

MMU/WRU with stabilizer deployed for manual

EVA via handrails employed ō

MFR/RMS deployed for manual assist Work Station on HPA is utilized

MFR/RMS deployed for manual assist

EVA via handrails employed

('81-043D)

ER7 Alternate No. 3 Earth Return Sequence — Direct Delivery Payload Class — Cooperative Contamination Sensitive Satellite — RMS/HPA Usage — Unmanned Retrieval of Satellites at 1000 ft Separation

PRECEDING PAGE BLANK NOT FILMED

POM-MTV DEPLOYMENT/PAYLOAD RETRIEVAL

Satellit : ACS is active to maintain stability

Orbite andezvous with satellite to 1003 ft separation distance

POM-MTV released from retention structure/

MMU/WRU berths POM-MTV to HPA and umbilical

Transfer POM-MTV to orbiter power to umbilical verified

maintain thermal control

 \odot

Status/health checks via umbilical in retention structure (comm via orbiter S-Band) retention structure

MMU/WRU with RMS end-effector attaches to POM-MTV

subsystems via ground link (comm Activation of selected POM-MTV via POM-MTV)

POM-MTV appendages deployed by ground command and verified by crbiter crew

Final status/health checks prior to deployment (comm via POM-MTV)

9

- Transfer POM-MTV to internal power
- velocity to examine and retrieve satellite (MMU/WRU manned POM deployment HPA releases POM-MTV at ~ 1 ft/sec is alternate)

within view of AFD/payload bay TV cameras POM-MTV transports satellite to orbiter

FOUNDUT FRAME

- MMU/WRU attaches to satellite (POM ACS active)
 - Deactivate satellite by ground command

- MMU/WRU attaches to POM-MTV, einases from satellite and elevates within view o. AFD/payload bay TV cameras
 - POM-MTV appendages retracted
- POM-MTV inactivated, checked out for stowage and return

SATELLITE STOWAGE

- POM-MTV docks to satellite grapple fitting
 - Satellite appendages retractedSatellite ACS inactivated

9

- Satellite berthed to HPA and umbilical connections
- Transfer satellite to orbiter power to maintain thermal control
- Activate orbiter's non-contaminating ACS package or place orbiter in free drift

(2)

 POM-MTV stowed in retention structure, retention latches locked

Implement manual removal/stowers of selected

upd command and chack

Satellite inactivated by ground command and checked-

out for return

- MMU/WRU transfers satellite to retention structure
 - Retention latches locked

 Implement manual removal/stowage of selected equipments via HPA, if required

- Transfer satellite to orbiter power to maintain Umbilical connection verified thermal control

BACKUP FOR APPENDAGE HANGUP

BACKUP FOR RETENTION LATCH HANGUP

Work station on HPA is utilized

MMU with stabilizer deployed for manual release

Firm MMU/WRU maintains stability/position of satellite

in באין ספסן באין Second MMU with stabilizer deployed for manual

EVA via handraits employed

0181-044U 1472-038(T)

ER8 Alternate No. 3 Earth Return Sequence — Direct Delivery Payload Class — Cooperative Contamination Sensitive Satellite — HPA Usage — RMS Inoperative — Unmanned Retrieval of Satellites at 1000 ft Separation

(PAD)

BHLIMMAN

· + 10 10

VSS DEPLOYMENT

EOLDOUT FRAME

- VSS with docking/rendezvous capability stowed in retention structure
 - Status/health checks via umbilical in retention structure (comm via orbiter S-Band)
 - RMS attaches to VSS

- Activation of selected VSS subsystem by ground link (comm via VSS)
 - VSS appendages deployed by ground command and verified by orbiter crew
 - Final status/health check prior to deployment (con1m via VSS)

 - State vec' ir transfer
- Transfer 1 37 to internal power

MTV DEPLOY:MENT

- MTV deployed to view VSS firing
- VSS ectivates propylation system at > 2700 (Leoperation.

- RMS translates VSS and berths to HPA, umbilical VSS retention latches/umbilical released connections verified

- HPA releases VSS at ~ 1 ft/sec velocity
- VSS activation of RCS at > 200 ft separation

(e)

- MTV deployed to view VSS firing
- ullet VSS activates propulsion system at > 2700 ft separation
- Orbiter/MTV rendezvous (MTV active)
 MTV retrieved by RMS and stowed in payload bay

- VSS appendages retracted

Orbiter/VSS rendezvous (VSS active) within RMS

STANCT ELECT

reach distance and examined by RMS TV or

VSS ACS is active to maintain stability

visual crew observation

RMS attaches to satellite/VSS

- Deactivate VSS and satellite by ground command
 - For contamination sensitive payloads, activate orbiter's non-contaminating ACS package, or place orbiter in free drift
 - Satellite/VSS berthed to HPA and umbilical connections verified
- Transfer satellite/VSS to orbiter power to maintain thermal control

SATELLITE STOWAGE

(2)

(

 Implement manual removal/stowage of selected equipment via HPA and RMS/OCP, if required

- RMS transfers satellite to retention structure
 Retention latches locked

- Umbilical connection verified
 Transfer satellite to orbiter power to maintain thermal control

VSS STOWAGE

Marie Told The State

- VSS checked out for earth return
 P.MS attaches to VSS

BACKUP FOR RETENTION LATCH HANGUP

- MMU/WRU with stabilizer deplcyed for manual assist

EVA via handrails employed

MFR/RMS deployed for manual assist

VisitS transfers VSS to retention structure in tention latches locked

BACKUP FOR APPENDAGE HANGUP

MFR/RMS deployed for manual assist Work Station on HPA is utilized

FULDOUT FRAME

MFR/RMS deployed for manual assist

Work Station on HPA is utilized

MMU/WRU with stabilizer deployed for manual

EVA via handrails employed

MFR/RMS deployed for manual assist

EVA via handrails employed

MFR/RMS deployed for manual assist

ER9 Alternate No. 1 Earth Return Sequence — LEO/Propulsion Payload Class — Cooperative Nominal Payload — RMS/HPA Usage — Versatile Service Stage Application EVA via handrails employed

> 018:-045D 1472-039(T) (JARD)

RMS translates VSS and berths to HPA, umbilical

connections verified

VSS retention latches/umbilical released

VSS DEPLOYMENT

- VSS with docking/rendezvous capability stowed in retention structura
 - Status/health checks via umbilical in retention structure (comm via orbiter S-Band)
 - RMS attaches to VSS

①

- Activation of selected VSS subsystem by ground link (comm via VSS)
 - VSS appendages deployed by ground command and verified by orbiter crew
 - Final status/health check prior to deployment (comm via VSS)
 - State vector transfer
- Transfer VSS to internal power

MTV CEPLOYMENT

MTV denloved to view VSS firing

(E)

- MTV deployed to view VSS firing
- VSS activates propulsion system at > 2700 ft separation
- Orbiter/MTV rendezvous (MTV active)
- MTV retrieved by RMS and stowed in payload bay

Dock

EOLIGUE FRAME

- **VSS** appendages retracted
- Deactivate VSS and satellite by ground command

reach distance, and examined by RMS TV or visual Orbiter/VSS rendezvous (VSS active) within RMS

VSS ACS is active to maintain stability

crew observation

RMS attaches to satellite/VSS

- orbiter's non-contaminating ACS package, or place For contamination sensitive payloads, activate orbiter in free drift
 - Satellite/VSS berthed to HPA and umbilical connections verified
- Transfer satellite/VSS to orbiter power to maintain thermal control

SATELLITE STOWAGE

(2)

- Implement manual removal/stowage of selected equipments via HPA and RMS/OCP, if required
- RMS transfer satellite to retention structure
 - Retention latches locked

(2)

- Umbilical connection verified
 Transfer satellite to orbiter power to maintain thermal control

VSS STOWAGE

- VSS checked out for earth returnRMS attaches to VSS

BACKUP FOR RETENTION LATCH HANGUP

- MMU/WRU with stabilizer deployed for manual
- **EVA** via handrails employed

- RMS transfers VSS to retention structure
 - Retention latches locked

BACKUP FOR APPENDAGE HANGUP

- Work Station on HPA is utilized
- MFR/RMS deployed for manual assist

MFR/RMS deployed for manual assist Work Station on HPA is utilized

MMU/WRU with stabilizer deployed for manual

EVA via handrails employed

MFR/RMS deployed for manual assist

EVA via handrails employed

MFR/RMS deployed for manual assist

EVA via handrails employed

ER10 Alternate No. 1 Earth Return Sequence — LEO/Propulsion Payload Class — Noncooperative Nominal Payload — RMS/HPA Usage — Versatile Service Stage Application

0181-045[1472-040(T) (AAD)

VSS with debris capture capability stowed in

EOLDOUT FRAME

- Status/health checks via umbilicals in retention structure (comm via orbiter S-Band) retention structure
 - RMS attaches to VSS

- Activation of selected VSS subsystems by ground ink (commivia VSS)
- by ground command and verified by orbiter crew VSS appendages and manipulator arms deployed
 - Final status/health check prior to deployment
 - (comm via VSS)
- State vector transfer
- Transfer VSS to internal power

MIV DEPLOYMENT

VSS retention latches/umbilical released

 RMS translates VSS and berths to HPA, umbilical connection verified

THE SIME

- HPA releases VSS at ~ 1 ft/sec velocity
- \bullet VSS activation of RCS at > 200 ft separation

(e)

rises by BMS and stoned in peyload bay Oribter/MTV rendezvous (MTV active)

MT./ deployed to view VSS firing

- MTV deployed to view VSS firing
 VSS activates propulsion system at > 2700 ft separation
- Oribter/MTV rendezvous (MTV active)
 MTV retrieved by RMS and stowed in payload bay

VSS RETRIEVAL/STOWAGE

- VSS berthed to HPA
- VSS manipulator arms and appendages retracted VSS inactivated/checked out for return

VSS ACS active (RCS disabled, propellents vented)

 9MS attaches to VSS VSS ACS inactivated

Orbiter/VSS rendezvous (VSS active)

- RMS attaches to VSS

- RMS transfers VSS to retention structure Retention latches locked

BACKUP FOR RETENTION LATCH HANGUP

BACKUP FOR APPENDAGE HANGUP

FOLDOUT FLANE

- RMS transfers VSS to retention structure
 Retention latches locked

BACKUP FOR RETENTION LATCH HANGUP

BACKUP FOR APPENDAGE HAMGUP

MFR/RMS deployed for manual assist

EVA via handrails employed

MFR/RMS deployed for manual assist

Work Station on HPA is utilized

MFR/RMS deployed for manual assist

EVA via nandrails employed

н81-0181-166(T)

(O A C)

ER11 Alternate No. 1 Earth Return Sequence — Debris Deorbit Payload Class — Noncooperative Large Debris — RMS/HPA Usage — Versatile Service Stage Application

Ь-75

VSS DEPLOYMENT

- VSS with debris capture capability stowed in retention structure
- Status/health checks via umbilical in retention structure (comm via orbiter S-Band)
 - RMS attaches to VSS

- VSS retention latches/umbilical released
 - RMS translates VSS and berths to HPA, umbilical connections verified

- HPA releases VSS at ~ 1 ft/sec velocity
- VSS activation of RCS at > 200 ft separation

- Activation of selected VSS subsystems by ground link (comm via VSS)
 - VSS appendages and manipulator arms deployed by ground commend and verified by orbitar crew
- Final status/health check prior to deployment (comm via VSS)

 - State vector transfer Transfer VSS to internal power

FOLDOUT FRAME

VSS activates propulsion system at > 2700 ft separation

MTV deployed to view VSS firing

- Orbiter/MTV rendezvous (MTV active)
 MTV retrieved by RMS and stowed in payload bay

(<u>-</u>)

KOLDOUT FRAME

Rendezvous

Capture/Stabilize

- Debris satellite/VSS berthed to HPA and umbilical connections verified
- VSS appendages retracted except manipulator arms

reach distance and examined by RMS TV or visual Orbiter/VSS rendezvous (VSS active) within RMS

VSS ACS is active to maintain stability

crew observation

RMS attaches to VSS VSS ACS deactivated

Transfer VSS to orbiter power to maintain debris capture and VS3 thermal control

DEBRIS SATELLITE STOWAGE

- Remove appendages/solar arrays from debris satellite via HPA and RMS/OCP

 - Attach grapple fitting to debris satellite

- RMS attaches to debris satellite
- RMS transfers satellite to special retention structure
 - Retention latches locked

VSS STOWAGE

- VSS manipulator arms retracted
 VSS checked out for earth return
 RMS attaches to VSS

BACKUP FOR RETENTION LATCH HANGUP

 MMU/WRU with stabilizer deployed for manual assist **EVA** via handrails employed

 MFR/RMS deployed for manual assist EVA via handrails employed

- RMS transfers VSS to retention structure
 Retention latches locked

BACKUP FOR APPENDAGE HANGUP

MFR/RMS deployed for manual assist Work Station on HPA is utilized

Work Station on HPA is utilized

MFR/RMS deployed for manual assist

MFR/RMS deployed for manual assist

EVA via handrails employed

MFR/RMS deployed for manual assist

EVA via handrails employed

0181-048D 1472-041(T)

ER12 Alternate No. 1 Earth Return Sequence — Debris Return Payload Class — Noncooperative Small Debris Satellite — RMS/HPA Usage — Versatile Service Stage Application

(JA P

Payload stowed in thermal enclosure on-orbit

- Checkout/preparation for deployment indicates malfunction precluding operational deployment

 - Prepare spacecraft for orbital storage Satellite on orbiter power to maintain thermal

①

- Satellite appendages retracted by ground command
 - Satellite inactivated by ground command and and verified by orbiter view
 - RMS attaches to thermal enclosure checked out for storage

- Satellite released from HPA
- RMS elevates satellite/thermal enclosure Thermal moderning activited to conclude service

 RMS/OCP deployed to attach additional grapple fixture Original grapple fixture utilized if applicable

Thermal enclosure retention latches released
 RMS transfers thermal enclosure over satellite and

EULDOUT FRAME

Thermal enclosure activated to envelop satellite Gravity stabilization boom deployed from thermal enclosure Satellite released from HPA RMS elevates satellite/thermal enclosure

(

Thermal enclosure retention latches released
 FMS transfers thermal enclosure over satellite and attaches to grapple fixture

OS1 Orbital Storage Option - RMS/HPA Usage - Satellites < 15 ft Length ullet :3MS releases satellite at \sim 1 ft/sec velocity

0181-001D 1472-042(T)

(JAR)

B-79

EOLDOUT FRAME

Payload stored in thermal enclosure on-orbit

Checkout/preparation for deploymen* indicates mal-

Satellite on orbiter power to maintain thermal control

Satellite appendages retracted by ground command and verified by orbiter crew

Satellite inactivated by ground command and checked out for storage

MMU/WRU with RMS end effector attaches to thermal enclosure

Satellite released from HPA

MMU/WRU elevates satellite/thermal enclosure

Thermal enclosure activated to envelop satellite Gravity stabilization boom deployed from

thermal enclosure

(F)

(e)

 Thermal enclosure reterition latches released MMU/WRU transfers thermal enclosure over satellite and attaches to grapple fixture

Original grapple fixture utilized if applicable additional grapple fixture

FOLDOUT FRAME

Thermal enclosure activated to envelop satellite Gravity stabilization boom deployed from thermal enclosure MMU/WRU elevates satellite/thermal enclosure

Satellite released from HPA

 Thermal enclosure retention latches released MMU/MRU transfers thermal enclosure over satellite and attaches to grapple fixture

(D)

©

OS2 Orbital Storage Option — HPA Usage — RMS Inoperative — Sctellites < 15 ft Length

MMU/WRU releases satellite at ~ 1 ft/sec velocity

1472-043(T)' 0181-002D

B-81

(A AC)

FOLLOUT FRAME

Payload stowed in thermal enclosure on orbit

- Checkout/preparation for deployment indicates malfunction precluding operational deployment
 - Prepare spacecraft for orbital storage
- Satellite on orbiter power to maintain thermal control

①

- Satellite inactivated by ground command and
 - checked out for storage

 RMS attaches to thermal enclosure

(

- Thermal enclosure activates to envelop satellite
 Gravity stabilization boom deployed from thermal enclosure

<u>ල</u>

- Satellite appendages retracted by ground command and verified by orbiter crew
 - RMS/OCP deployed to attach additional grapple fixture

(D)

- HPA work platform's RMS end effector attached to satellite grapple fixture
- - Satellite released from HPA
 HPA work platform (via grapple attachment) elevates satellite
 - Thermal enclosure retention latches

· *** ***

- Thermal enclosure activates to envelop satellit
 Gravity stabilization boom deployed from
 - thermal enclosure

(J

 HPA work platform's RMS end effector attached to satellite grapple fixture

 Satellite released from HPA
 HPA work platform (via grapple attachment) elevates satellite

 RMS transfers thermal enclosure over satellite Thermal enclosure retention latches released

and attaches to grapple fixture

RMS releases satellite at ~ 1 ft/sec velocity

OS3 Orbital Storage Option - RMS/HPA Usage -- Stellites > 15 ft Length

0181-003D 1472-044(T)

B-83

2 FULLUUT ERAME

- Checkout/preparation for deployment indicates malfunction precluding operational deployment
 - Prepare spacecraft for orbital storage
- Satellite on orbiter power to maintain thermal control

- Satellite inactivated by ground command and checked out for storage
- MMU/WRU with RMS end effector attaches to thermal enclosure

©

- Thermal enclosure activates to envelop satellite
- Gravity stabilization boom deployed from thermal enclosure

- Satellite appendages retracted by ground command and verified by orbiter crew
- MMU/WRU with stabilizer deployed to attach additional grapple fixture

(C)

(D)

- HPA work piatform's RMS end effector attached to satellite grapple fixture
 - Satellite released from HPA
- HPA work platform (via grapple attachment)
 - Thermal enclosure retention latches released elevates satellite

Payload stowed in thermal enclosure on orbit

- Satellite appendages retracted by ground command and verified by orbiter crew
- MMU/WRU with stabilizer deployed to attach additional grapple fixture

MMU/WRU with RMS end effector attaches to

therma! enclosure

checked out for storage

Satellite inactivated by ground command and

- Satellite released from HPA
- HPA work platform (via grapple attachment)
 - elevates satellite
- satellite and atteches to grapple fixture

ullet MMU/WRU releases satellite at \sim 1 ft/sec velocity

0181-004D 1472-045(T)

() ()

OS4 Orbital Storage Option — HPA Usage-RMS Inc.erative — Satellites > 15 ft Length

FOLDOUT FIGURES

Thermal enclosure activates to envelop satellite
 Gravity stabilization boom deployed from thermal enclosure

- Thermal enclosure retention latches released MMU/WRU transfers thermal enclosure over

