## Supplementary Material For

## Ability of Density Functional Theory Methods to Accurately Model the Reaction Energy Pathways of the Oxidation of CO on Gold Cluster: A Benchmark Study

Saumya Gurtu,<sup>†</sup> Sandhya Rai,<sup>†</sup> Masahiro Ehara,<sup>‡</sup> and U. Deva Priyakumar\*,<sup>†</sup>

Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India, and Research Center for Computational Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan

E-mail: deva@iiit.ac.in

<sup>\*</sup>To whom correspondence should be addressed

<sup>&</sup>lt;sup>†</sup>Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India

<sup>&</sup>lt;sup>‡</sup>Research Center for Computational Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan

## List of Tables

| SI              | Energies of the doublet and quartet spin states and the energy differences of                            |   |
|-----------------|----------------------------------------------------------------------------------------------------------|---|
|                 | the important stationary points along the LH and ER pathways                                             | 3 |
| S2              | The reaction energy ( $E_{\rm reaction}$ ) and the barrier height ( $E_{\rm activation}$ ) for the gold- |   |
|                 | less oxidation of CO to CO $_2$ calculated at all the levels of theory using 6-31+G*                     |   |
|                 | basis set. These values are compared with the experimentally reported NIST                               |   |
|                 | data                                                                                                     | 3 |
| S3              | Absolute electronic energy values (in Hartrees) of all the intermediates in-                             |   |
|                 | volved in the reaction                                                                                   | 5 |
|                 |                                                                                                          |   |
| $\mathbf{List}$ | of Figures                                                                                               |   |
|                 |                                                                                                          |   |
| S1              | Root mean square deviation (RMSD)/Å with respect to all the functionals                                  |   |
|                 | for Int.1 (upper two) and Int.2 (lower two) via both ER and LH mechanisms.                               | 4 |
| S2              | Different geometries obtained for $\mathrm{Au_3-O}$ on optimizing it using different DFT                 |   |
|                 | functionals.                                                                                             | 5 |

Table S1: Energies of the doublet and quartet spin states and the energy differences of the important stationary points along the LH and ER pathways.

| Complexes | E <sub>Doublet</sub> (Hartree) | E <sub>Quartet</sub> (Hartree) | Difference (kcal/mol) |
|-----------|--------------------------------|--------------------------------|-----------------------|
| ER Int.1  | -520.4360912                   | -520.2853716                   | -94.58                |
| ER T.S.   | -670.5690663                   | -670.544833                    | -15.21                |
| ER Int.2  | -482.2699342                   | -482.2294996                   | -25.37                |
| LH Int.1  | -670.6233453                   | -670.5816781                   | -26.15                |
| LH T.S.   | -670.5848718                   | -670.5211016                   | -40.02                |
| LH Int.2  | -670.6787896                   | -670.6112357                   | -42.39                |

Energies of the quartet states were calculated using the PBE0 method based on the optimized geometries of the doublet states.

Table S2: The reaction energy ( $E_{\rm reaction}$ ) and the barrier height ( $E_{\rm activation}$ ) for the goldless oxidation of CO to CO<sub>2</sub> calculated at all the levels of theory using 6-31+G\* basis set. These values are compared with the experimentally reported NIST data.

| Functional                             | E <sub>reaction</sub> (kcal/mol) | E <sub>activation</sub> (kcal/mol) |
|----------------------------------------|----------------------------------|------------------------------------|
| NIST data                              | -7.8                             | _                                  |
| CCSD(T)                                | -7.1                             | 60.6                               |
| B2PLYP-D                               | -9.3                             | 57.3                               |
| $\omega B97x-D$                        | -8.7                             | 61.4                               |
| cam-B3LYP                              | -7.5                             | 62.8                               |
| lc-BLYP                                | -5.0                             | 68.9                               |
| $\mathrm{lc}	ext{-}\omega\mathrm{PBE}$ | -6.7                             | 68.0                               |
| O3LYP                                  | -6.4                             | 55.7                               |
| X3LYP                                  | -8.6                             | 56.5                               |
| HSE1PBE                                | -12.1                            | 56.5                               |
| MPW1K                                  | -12.2                            | 57.9                               |
| B3PW91                                 | -10.3                            | 55.3                               |
| B3P86                                  | -9.3                             | 52.8                               |
| BHandHLYP                              | -18.1                            | 75.1                               |
| PBE0                                   | -11.5                            | 57.0                               |
| BP86                                   | -2.3                             | _                                  |
| PBE                                    | -3.0                             | 36.6                               |
| BLYP                                   | -1.4                             | 43.6                               |
| M06-L                                  | -16.5                            | 49.6                               |
| TPSSh                                  | -11.0                            | 51.0                               |
| VSXC                                   | -7.7                             | 54.2                               |

Using Hess law and enthalpy of formation at 0 K from NIST data, enthalpy of goldless reaction:  $CO + O_2 \rightarrow CO_2 + [O]$  is the difference of the enthalpy of formation of products and reactants, i.e., =(-393.1+246.8)-(-113.8+0.0) = -32.5 kJ/mol  $\sim$  -7.8 kcal/mol.



Figure S1: Root mean square deviation (RMSD)/Å with respect to all the functionals for Int.1 (upper two) and Int.2 (lower two) via both ER and LH mechanisms.



Figure S2: Different geometries obtained for  $\mathrm{Au_3-O}$  on optimizing it using different DFT functionals.

Table S3: Absolute electronic energy values (in Hartrees) of all the intermediates involved in the reaction.

|                     | Uncomplexed Reactants |              | ER           |              |              | LH           |              |              |               |               |
|---------------------|-----------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|
| Functional          | $Au_3$                | CO           | $O_2$        | Int1         | T.S.         | Int2         | $CO_2$       | Int1         | T.S.          | Int2          |
| CCSD(T)             | -404.854024           | -113.045637  | -149.9698704 | -517.944137  | -667.866123  | -479.8394025 | -188.124129  | -667.928161  | -667.881061   | -667.98059768 |
| B2PLYP-D            | -406.3676837          | -113.2244915 | -150.207979  | -519.640275  | -669.803847  | -481.4705256 | -188.4367903 | -669.8599429 | -669.8186439  | -669.9091178  |
| $\omega B97x-D$     | -407.3847158          | -113.2772846 | -150.2772809 | -520.7110916 | -670.9436562 | -482.5226926 | -188.5269446 | -671.001301  | -670.9599207  | -671.0530562  |
| cam-B3LYP           | -407.0599492          | -113.2733199 | -150.2820864 | -520.3818662 | -670.6180029 | -482.201628  | -188.5228294 | -670.676503  | -670.632845   | -670.7310691  |
| lc-BLYP             | -406.5003067          | -113.0596811 | -150.0486128 | -519.6163654 | -669.62449   | -481.5310328 | -188.1950785 | -669.6844557 | -669.64753764 | -669.7367868  |
| $lc$ - $\omega PBE$ | -407.2328029          | -113.2377448 | -150.2409456 | -520.5244736 | -670.719007  | -482.3562354 | -188.4682583 | -670.7782555 | -670.7151499  | -670.8269254  |
| O3LYP               | -407.7197109          | -113.2820634 | -150.2888812 | -521.0403058 | -671.2836825 | -482.8503136 | -188.5369596 | -671.337352  | -671.2950333  | -671.379766   |
| X3LYP               | -407.1854904          | -113.2752901 | -150.278709  | -520.507084  | -670.7462689 | -482.316501  | -188.5241703 | -670.7992258 | -670.7584648  | -670.8462014  |
| HSE1PBE             | -407.1890641          | -113.1982818 | -150.1877397 | -520.4418235 | -670.5895864 | -482.274463  | -188.4071801 | -670.6433423 | -670.6046809  | -670.6890666  |
| MPW1K               | -407.3916345          | -113.2810415 | -150.2867838 | -520.7257068 | -670.970213  | -482.5266713 | -188.5381727 | -671.0246044 | -670.9849222  | -671.0711137  |
| B3PW91              | -407.4912033          | -113.2663668 | -150.2683576 | -520.8101322 | -671.0376585 | -482.6161291 | -188.5141646 | -671.0914379 | -671.0516885  | -671.1348751  |
| B3P86               | -408.6762124          | -113.5545291 | -150.6021343 | -522.2867729 | -672.8531282 | -483.9697112 | -188.9715878 | -672.9057815 | -672.8685595  | -672.9479507  |
| BHandHLYP           | -406.7939246          | -113.2597819 | -150.2513636 | -520.0903712 | -670.2890925 | -481.9169772 | -188.4913887 | -670.3448535 | -670.3220987  | -670.4111245  |
| PBE0                | -407.340179           | -113.1914025 | -150.1743354 | -520.4360912 | -670.5690663 | -482.2699342 | -188.3899077 | -670.6233453 | -670.5848718  | -670.6787896  |
| BP86                | -407.649568           | -113.3149416 | -150.337576  | -521.0261788 | -671.3419783 | -482.825687  | -188.5988213 | -671.3894423 | -671.3535953  | -671.4266142  |
| PBE                 | -407.1932425          | -113.1878814 | -150.1886804 | -520.5952742 | -670.7635344 | -482.4411984 | -188.4031968 | -670.8101319 | -670.775426   | -670.8479266  |
| BLYP                | -407.1745601          | -113.3036675 | -150.3251372 | -520.5277167 | -670.828111  | -482.3422829 | -188.5749337 | -670.8750751 | -670.8367901  | -670.9173049  |
| M06-L               | -407.4809367          | -113.3015214 | -150.3118331 | -520.835649  | -671.1255219 | -482.6442809 | -188.58159   | -671.1723893 | -671.1359907  | -671.2318257  |
| TPSSh               | -407.0873448          | -113.315368  | -150.3283739 | -520.4603312 | -670.7593016 | -482.2505935 | -188.590844  | -670.8105677 | -670.7709796  | -670.8477495  |
| VSXC                | -407.7915025          | -113.3539642 | -150.3692628 | -521.1934062 | -671.5372062 | -482.9816933 | -188.6502293 | -671.5840956 | -671.5482109  | -671.6399523  |