M2

ymonbru

April 9, 2024

Definition 0.1. If $A_0^{\bullet} \to ... \to A_n^{\bullet}$ is a sequence of maps of complex such that the composition of two consecutive maps is 0, then let's denote $[A_0^{\bullet} \to ... \to A_n^{\bullet-n}]$ the total complex of this double complex, defined by: TODO

Presheaves and sheaves

Let X be a locally compact Hausdorf space.

1.1 Sheaves

Definition 1.1. A presheave on X is a contravariant functor from the category of open sets of X to abélian groups.

Definition 1.2. If \mathcal{F} is a presheaf on X and $p \in X$ then the stalk of \mathcal{F} at p is the abelian group $\mathcal{F}_p := \varinjlim_{p \in U} \mathcal{F}(U)$.

Definition 1.3. If \mathcal{F} is a presheaf on X, it is said to be a sheaf if for any $U \subset X$ open and any covering family of $U(U_a)_{a \in A}$ one has the exact sequence:

$$0 \to \mathcal{F}(U) \to \prod_{a \in A} \mathcal{F}(U_a) \to \prod_{a,b \in A} F(U_a \cap U_b) \tag{1.1}$$

1.2 \mathcal{K} -sheaves

Definition 1.4. A K-presheave on X is a contravariant functor from the category of compact sets of X to abélian groups.

Definition 1.5. If \mathcal{F} is a \mathcal{K} -presheaf on X and $p \in X$ then the stalk of \mathcal{F} at p is the abelian group $\mathcal{F}_p := \varinjlim_{p \in K \ compact} \mathcal{F}(K) = \mathcal{F}(\{p\}).$

Definition 1.6. If \mathcal{F} is a \mathcal{K} -presheaf on X, it is said to be a \mathcal{K} -sheaf if the following conditions are satisfied:

$$\mathcal{F}(\emptyset) = 0 \tag{1.2}$$

• For K_1 and K_2 two comapets of X the following sequence is exact:

$$0 \to \mathcal{F}(K_1 \cup K_2) \to \mathcal{F}(K_1) \bigoplus \mathcal{F}(K_2) \to \mathcal{F}(K_1 \cap K_2) \tag{1.3}$$

• For any compact K of X, the following natural morphism is an isomorphism

$$\lim_{K \subset U \text{ open } \underset{relatively \text{ compact}}{\longmapsto} \mathcal{F}(\overline{U}) \to \mathcal{F}(K) \tag{1.4}$$

Remark 1.7. (1.4) is well defined because if K is a compact subset of X, then for $x \in K$ let U_x be an open neighborhood relatively compact (wich exists by local compactness), the family $(u_x)_{x\in K}$ covers K then one can extract a finite cover of it: $U_1, ... U_n$ and then $\bigcup_{i=1}^n U_i$ is an open neighborhood, and a finite union of relatively compact, then it's relatively compact. $(\overline{\bigcup_{i=1}^n \overline{U_i}})$

1.3 Technical lemmas

Lemma 1.8. If $K_1, ... K_n$ are comapets of X then $\{U_1 \cap ... \cap U_n\}_{U_i \supset K_i \text{ open in } X}$ is a cofinal system of neighborhoods of $K_1 \cap ... K_n$.

Lemma 1.9. If \mathcal{C} and \mathcal{D} are two categories, $F:\mathcal{C}\to\mathcal{D}$ and $G:\mathcal{D}\to\mathcal{C}$ two functors such that (F,G) is an adjoint pair. Then for (F,G) to be an equivalence of category, it's enough to have that thes canonical naturals transformations $id_{\mathcal{D}}\Rightarrow F\circ G$ and $G\circ F\Rightarrow id_{\mathcal{D}}$ are isomorphisms.

$$Proof.$$
 TODO

Lemma 1.10. If $(K_a)_{a \in A}$ is a filtered directed system of comapets substes of X, and \mathcal{F} a \mathcal{K} -presheaf satisfying(1.4), then

$$\varinjlim_{a\in A}\mathcal{F}(K_a)\to\mathcal{F}(\bigcap_{a\in A}K_a)$$

is an isomorphism.

Proof. TODO

1.4 Equivalence of category

Definition 1.11.

• If \mathcal{F} is a presheaf then let $\alpha^*\mathcal{F}$ ne the \mathcal{K} -presheaf:

$$K \mapsto \varinjlim_{K \subset U \ open} \mathcal{F}(U)$$

• If $\mathcal G$ is a $\mathcal K$ -presheaf then let $\alpha_*\mathcal G$ ne the presheaf:

$$U \mapsto \varprojlim_{U \supset K \xleftarrow{compact}} \mathcal{F}(K)$$

Proposition 1.12. The pair (α^*, α_*) is an adjonit pair.

Proof. TODO

Lemma 1.13.

- α^* send sheaves to \mathcal{K} -sheaves
- α^* send K-sheaves to sheaves
- The reistrictions obtained still form an adjoint pair.

The previous adjoint pair give rise to an adjoint pair between shaeves and $\mathcal K$ -sheaves

Proof. TODO □

Lemma 1.14. The previous adjoint pair give rise to an equivalence of category between shaeves and \mathcal{K} -sheaves

Proof.

Homotopy sheaves

Definition 2.1. Let \mathcal{F}^{\bullet} be complex of \mathcal{K} -presheaves then taking the cohomology defines a \mathcal{K} -presheaf denoted $H^{\bullet}\mathcal{F}^{\bullet}$.

Definition 2.2. A morphisme of complex of \mathcal{K} -presheave $\mathcal{F}^{\bullet} \to \mathcal{G}^{\bullet}$ if it induces isomorphisms $H^{i}\mathcal{F}^{\bullet} \to H^{i}\mathcal{G}^{\bullet}$ for all i.

Definition 2.3. A complex of K-presheaves \mathcal{F}^{\bullet} is said to be a Homotopy-K-sheave if the following conditions are satisfied:

$$\mathcal{F}^{\bullet}(\emptyset)$$
 is an acyclic complex (2.1)

• For K_1 and K_2 two comapets of X the following complex is acyclic:

$$[\mathcal{F}^{\bullet}(K_1 \cup K_2) \to \mathcal{F}^{\bullet-1}(K_1) \bigoplus \mathcal{F}^{\bullet-1}(K_2) \to \mathcal{F}^{\bullet-2}(K_1 \cap K_2)] \tag{2.2}$$

• For any compact K of X, the following natural morphism is a quasi-isomorphism

$$\lim_{K \subset U \text{ open relatively compact}} \mathcal{F}^{\bullet}(\overline{U}) \to \mathcal{F}^{\bullet}(K)$$
 (2.3)

Lemma 2.4. Let \mathcal{F}^{\bullet} be a complex of \mathcal{K} -presheaves. If \mathcal{F}^{\bullet} has a finite filtration whose associated graded is a Homotopy- \mathcal{K} -sheaf, then \mathcal{F}^{\bullet} is a Homotopy- \mathcal{K} -sheaf.

Lemma 2.5. If \mathcal{F}^{\bullet} is a homotopy- \mathcal{K} -sheaf, and $H^{-1}\mathcal{F}^{\bullet} = 0$ then $H^0\mathcal{F}^{\bullet}$ is a \mathcal{K} -sheaf

Proof. TODO
$$\Box$$

Pushforward, exceptional pushforward, and pullback

Čech cohomology

4.1 **Definition 4.1.** Let \mathcal{F}^{\bullet} be a complex of \mathcal{K} -presheaves on a compact space X then we define the Čech cohomology $\check{H}(X; \mathcal{F}^{\bullet})$ by TODO**Remark 4.2.** By using the inclusion of K-presheaves into complexes of K-presheave, one get's a definition of Čech cohomology for K-presheave. **Lemma 4.3.** If $\mathcal{F}^{\bullet} \to \mathcal{G}^{\bullet}$ is a quasi-isomorphism then the induced maps $\check{H}^i\mathcal{F}^{\bullet} \to \check{H}^i\mathcal{G}^{\bullet}$ are isomorphims.Proof. TODO **Proposition 4.4.** If \mathcal{F}^{\bullet} be a complex of \mathcal{K} -presheaves that verify $\ref{eq:proposition}$ and $\ref{eq:proposition}$ then the canonical map $H^{\bullet}\mathcal{F}^{\bullet} \to \check{H}^{\bullet}(X; \mathcal{F}^{\bullet})$ is an isomorphism. Proof. Čech cohomology is determined by stalks Lemma 4.5. TODO Proof. **Lemma 4.6.** *TODO* Proof. Proposition 4.7. TODO Proof.

Purehomotopy \mathcal{K} -sheaves

Poincaré–Lefschetz duality

Definition 6.1.	
Lemma 6.2.	
Proof.	
Lemma 6.3.	
Proof. uses tout les poussé en avatn, tiré en arière et tout ça, la cohomologie à support e	compact

Homotopy colimits

7.1 Homotopy colimits

Definition 7.1.

Definition 7.2.

7.2 Homotopy colimits of pure homotopy \mathcal{K} -sheaves

Lemma 7.3.

Proof.

Lemma 7.4.

Steenrod homology