

# **ENGINEERING MATHEMATICS - I Extremas of a function**

**Dr. Anitha**Science and Humanities



**UNIT 2: Partial Differentiation** 

Session: 11

**Sub Topic:** Maxima and Minima of a Function of Two Variables

Dr. Anitha

Department of Science and Humanities

### Maxima and Minima for a Function of Two Variables



### **Problems:**

1. The temperature T at any point (x, y, z) in space is  $400xyz^2$ . Find the highest temperature on the surface of the unit sphere  $x^{2} + y^{2} + z^{2} = 1$ .

### Solution:

Solution:  

$$z^2 = 1 - y^2 - x^2$$
  
 $f(x,y) = 400xy(1 - y^2 - x^2)$   
 $f_x$ =0 implies  $y = 0$  or  $1 - 3x^2 - y^2 = 0$   
 $f_y$ =0 implies  $y = 0$  or  $1 - x^2 - 3y^2 = 0$   
On solving, we get  $x = \pm \frac{1}{2}$ ;  $y = \pm \frac{1}{2}$ 

### Maxima and Minima for a Function of Two Variables



### Solution:

The stationary points are 
$$(0,0)$$
,  $(\frac{1}{2},\frac{1}{2})$ ,  $(\frac{1}{2},-\frac{1}{2})$ ,  $(-\frac{1}{2},\frac{1}{2})$ ,  $(-\frac{1}{2},-\frac{1}{2})$ 

At (0,0), 
$$rt - s^2 = -1600 < 0$$
(saddle point)

At 
$$(\frac{1}{2}, \frac{1}{2})$$
,  $rt - s^2 = 356000 > 0$  (maximum point)

At 
$$(-\frac{1}{2}, -\frac{1}{2})$$
,  $rt - s^2 = 356000 > 0$  (maximum point)

T is maximum at  $(\frac{1}{2}, \frac{1}{2})$ ,  $(-\frac{1}{2}, -\frac{1}{2})$  and the maximum value is 50.

### Maxima and Minima for a Function of Two Variables



2. A Container with an open top is to have 10 m<sup>3</sup> capacity and be made of thin sheet metal. Calculate the dimensions of the box if it is to use the minimum possible amount of metal.

### Solution:

Let x, y and z ft. be the edges of the box and A be its surface.

Then 
$$A = 2xy + 2yz + xz$$
....(1)

$$xyz = 10....(2)$$

Substitute (2) in (1)

$$A = 2xy + 10\left(\frac{2}{x} + \frac{1}{y}\right)$$

$$A_{x} = 0 \text{ gives } 2y - \frac{20}{x^{2}} = 0 \text{ and } y = \frac{10}{x^{2}}$$



### Maxima and Minima for a Function of Two Variables



# Contd.....

$$A_y = 0$$
 gives  $2x - \frac{20}{y^2} = 0$  and  $x = \frac{10}{y^2}$ 

*Solving we get* 
$$x = \sqrt[3]{10}$$
,  $y = \sqrt[3]{10}$ ,  $z = \sqrt[3]{10}$ 

$$A_{\chi\chi} = \frac{40}{\chi^3}$$

$$A_{yy} = \frac{40}{v^3}$$

$$A_{xy} = 2$$

$$A_{xx}A_{yy} - (A_{xy})^2 > 0 \text{ and } A_{xx} > 0$$

Therefore it is minimum and the dimensions of the box are  $x = \sqrt[3]{10}$ ,  $y = \sqrt[3]{10}$ ,  $z = \sqrt[3]{10}$ 





## Dr. Anitha

Department of Science and Humanities

nanitha@pes.edu

Extn 730