

# Gegenüberstellung von linearen Regressionsverfahren beim Methodenvergleich

Steffen Martens, Katy Klauenberg und Clemens Elster

AG 8.42 Datenanalyse und Messunsicherheit

9. VDI-Fachtagung Messunsicherheit 2019 Erfurt, 13.11.19



# Lineare Regressionsverfahren bei Errors-in-Variables (EIV) Modellen



Regression von lineare Zusammenhängen ist ein häufig auftretendes Problem in der Metrologie, z.B.

- Methodenvergleich gegenüber Goldstandard
- Kalibrierung

Abhängige <u>und</u> unabhängige Größen sind mit Unsicherheiten behaftet





Quelle: Bild B10 VDI/VDE 2600 Blatt 2 Kalibrierung eines Dehnungsmessstreifens

4

#### EIV bei Kalibrierung



$$x_i \xrightarrow{\xi_i} \boxed{\eta_i = \beta_0 + \beta_1 \xi_i} \Longrightarrow \bigcirc_{\sigma_{y,i}^2}^{y_i}$$

• N Paare  $(x_i, y_i)^T$  mit unabhängiger  $x_i$  und abhängiger Eingangsgröße  $y_i$ 

(1a) 
$$\xi_{i} = x_{i} + \epsilon_{x,i}$$
  
(1b)  $y_{i} = \beta_{0} + \beta_{1}\xi_{i} + \epsilon_{y,i}$ 



1) wahre Response  $\eta_i$  hängt linear von  $\xi_i$  ab

2) Störterme der i-ten Messung beschrieben durch multivariate, normal verteilte Zufallszahlen mit Mittelwert 0 und i-ten Kovarianz  $\Sigma_i$ 

3) Kovarianzen  $\Sigma_i$  sind bekannt



#### Zielstellung und offene Fragen



Ziel: Bestimmung der Schätzwerte und deren Unsicherheiten

$$\hat{\beta}_0, \hat{\beta}_1, \hat{\xi}_i, u_{\hat{\beta}_0}, u_{\hat{\beta}_1}, u_{\hat{\xi}_i}$$

- zahlreiche Methoden existieren
  - ➤ Methode der kleinsten Quadrate (LS)<sup>[1,2]</sup>
    - gewichtetes TLS (WTLS)
      - Deming Regression<sup>[3]</sup>
      - gewöhnliches LS (OLS)
  - Bayes'sche Regression<sup>[4,5]</sup>

- > Maximum likelihood Schätzer [4]
- ➤ Instrumentale Variablen<sup>[6]</sup>
- Momenten-Methode<sup>[7]</sup> und viele mehr

<sup>[1]</sup> Adcock The Analyst 4, 183 (1877); 5, 53 (1878), [2] Pearson Philos Mag. 2, 559 (1901)

<sup>[3]</sup> W. E. Deming "Statistical adjustment of data" (1943), [4] Zellner "An Introduction to Bayesian Inference Econometrics" (1971)

<sup>[5]</sup> Carroll et al. "Measurement errors in Nonlinear models" (2006), [6] 9 M. Y: Wong Biometrika 76, 141 (1989),

#### Zielstellung und offene Fragen



Ziel: Bestimmung der Schätzwerte und deren Unsicherheiten

$$\hat{\beta_0}, \hat{\beta_1}, \hat{\xi_i}, u_{\hat{\beta_0}}, u_{\hat{\beta_1}}, \iota$$

- zahlreiche Methoden existieren
  - Methode der kleinsten Quadrate (LS)
    - gewichtetes TLS (WTLS)
      - Deming Regression
      - gewöhnliches LS (OLS)
  - Bayes'sche Regression





- GUM Dokumente erlauben Unsicherheitsbestimmung nach
  - 1) Fortpflanzung der Unsicherheiten (GUM<sup>[1]</sup>, GUM-S2<sup>[2]</sup>)

#### Zielstellung und offene Fragen



**Ziel**: Bestimmung der Schätzwerte und deren Unsicherheiten

$$\hat{\beta}_0, \hat{\beta}_1, \hat{\xi}_i, u_{\hat{\beta}_0}, u_{\hat{\beta}_1}, \iota$$

- zahlreiche Methoden existieren
  - Methode der kleinsten Quadrate (LS)
    - gewichtetes TLS (WTLS)
      - Deming Regression
      - gewöhnliches LS (OLS)
  - Bayes'sche Regression



intercept  $\beta_0$ 

0.5

- GUM Dokumente erlauben Unsicherheitsbestimmung nach
  - Fortpflanzung der Unsicherheiten (**GUM**<sup>[1]</sup>, GUM-S2<sup>[2]</sup>)
  - Fortpflanzung von Verteilungen (GUM-S1<sup>[3]</sup>, GUM-S2<sup>[2]</sup>)
- GUM Dok. geben keine direkte Hilfestellung für Regressionsprobleme

#### Normen zur Regression von EIV Modellen



z.B. ISO/TS 28037:2010 & DIN EN ISO 6143:2004 empfehlen WTLS

$$\begin{pmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\xi}} \end{pmatrix} = \underset{\boldsymbol{\beta}, \boldsymbol{\xi}}{\operatorname{argmin}} \sum_{i=1}^{N} \mathbf{v}_{i}^{\top} \boldsymbol{\Sigma}_{i}^{-1} \mathbf{v}_{i} \quad \text{with } \mathbf{v}_{i} = \begin{pmatrix} x_{i} - \xi_{i} \\ y_{i} - \beta_{0} - \beta_{1} \xi_{i} \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} \beta_{0} \\ \beta_{1} \end{pmatrix}$$

- o im Allgemeinen, <u>nichtlineares</u> Funktional nur numerisch minimierbar<sup>[1,2]</sup>
  - → Algorithmen sind kostenlos erhältlich
  - → Unsicherheiten der Schätzwerte<sup>[2,3]</sup>
- Liefert eine Unsicherheitsbestimmung nach die gleichen Ergebnisse für die Schätzwer
- **oft**: bekannte Unsicherheiten der Referenzr werden <u>ignoriert</u> (" $\sigma_{x.i}$  ist klein im Verhält



- stand. Messunsicherheit  $\sigma_{\!x,i}$
- stand. Messunsicherheit  $\sigma_{u,i}$
- Korrelation zwischen beiden  $\rho_i$

gewöhnliche Methode der kleinsten Quadrate (OLS)



z.B. ISO/TS 28037:2010 & DIN EN ISO 6143:2004 empfehlen WTLS

$$\begin{pmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\xi}} \end{pmatrix} = \underset{\boldsymbol{\beta}, \boldsymbol{\xi}}{\operatorname{argmin}} \sum_{i=1}^{N} \mathbf{v}_{i}^{\top} \boldsymbol{\Sigma}_{i}^{-1} \mathbf{v}_{i} \quad \text{with } \mathbf{v}_{i} = \begin{pmatrix} x_{i} - \xi_{i} \\ y_{i} - \beta_{0} - \beta_{1} \xi_{i} \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} \beta_{0} \\ \beta_{1} \end{pmatrix}$$

- o im Allgemeinen, <u>nichtlineares</u> Funktional nur numerisch minimierbar<sup>[1,2]</sup>
  - → Algorithmen sind kostenlos erhältlich
  - → Unsicherheiten der Schätzwerte<sup>[2,3]</sup>
- Liefert eine Unsicherheitsbestimmung nach GUM und GUM-S1 die gleichen Ergebnisse für die Schätzwerte?
- oft: bekannte Unsicherheiten der Referenzmethode oder des –signals werden <u>ignoriert</u> (" $\sigma_{x,i}$  ist klein im Verhältnis zu  $\sigma_{y,i}$ "[5])

gewöhnliche Methode der kleinsten Quadrate (OLS)



- OLS Punktschätzer sind nicht erwartungstreu und inkonsistent
- bei konstanter Messunsicherheit ( $\sigma_x = \sigma_{x,i}$ ,  $\sigma_y = \sigma_{y,i}$ ,  $\rho = \rho_i$ ), Punktschätzer ist asymp. normal verteilt<sup>[1]</sup>

$$E\left(\hat{\beta_1}^{\text{OLS,EIV}}\right) = \beta_1 + \frac{\sigma_x^2}{\sigma_\xi^2} \frac{\rho \sigma_y / \sigma_x - \beta_1}{1 + \sigma_x^2 / \sigma_\xi^2},$$

$$\operatorname{Var}\left(\hat{\beta_{1}}^{\operatorname{OLS,EIV}}\right) = \frac{\sigma_{y}^{2}}{N\sigma_{\xi}^{2}} \left[ 1 - 2\rho \frac{\sigma_{x}}{\sigma_{y}} E\left(\hat{\beta_{1}}^{\operatorname{OLS,EIV}}\right) + \left(\frac{\sigma_{x}}{\sigma_{y}} E\left(\hat{\beta_{1}}^{\operatorname{OLS,EIV}}\right)\right)^{2} \right]$$

• bester linearer erwartungstreuer Schätzer (BLUE) aber nur, wenn  $\sigma_x/\sigma_y \to 0, \sigma_x/\sigma_\xi \to 0$  und  $\mathcal{E}_{u.i}$  unkorreliert sind



#### Kann man OLS trotzdem anwenden?



#### Bedingungen für die Nutzung von OLS:

1. Abweichung vom wahren Wert muss mit der Unsicherheit des Schätzers verträglich sein.

(2a) 
$$\operatorname{Var}\left(\hat{\beta_1}^{\text{OLS,EIV}}\right) \gg \left(E\left(\hat{\beta_1}^{\text{OLS,EIV}}\right) - \beta_1\right)^2$$



#### Kann man OLS trotzdem anwenden?



#### Bedingungen für die Nutzung von OLS:

1. Abweichung vom wahren Wert muss mit der Unsicherheit des Schätzers verträglich sein.

(2a) 
$$\operatorname{Var}\left(\hat{\beta_1}^{\text{OLS,EIV}}\right) \gg \left(E\left(\hat{\beta_1}^{\text{OLS,EIV}}\right) - \beta_1\right)^2$$

Die Unsicherheit des Schätzers darf nicht unterschätzt werden.

(2b) 
$$\sqrt{\operatorname{Var}\left(\hat{\beta_1}^{\text{OLS,EIV}}\right)} \leq u_{\hat{\beta_1}^{\text{OLS}}}$$

















Abweichungsbedingung (2a) erfüllt



Varianzbedingung (2b) erfüllt





- $\blacktriangleright$  " $\sigma_{x,i}$  ist klein im Vergleich zu  $\sigma_{y,i}$ " ist nicht ausreichend
- > OLS kann für EIV Modelle **nicht** empfohlen werden im Besonderen, wenn  $\operatorname{sgn}(\rho\beta_1) = -1$



z.B. ISO/TS 28037:2010 & DIN EN ISO 6143:2004 empfehlen WTLS

$$\begin{pmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\xi}} \end{pmatrix} = \underset{\boldsymbol{\beta}, \boldsymbol{\xi}}{\operatorname{argmin}} \sum_{i=1}^{N} \mathbf{v}_{i}^{\top} \boldsymbol{\Sigma}_{i}^{-1} \mathbf{v}_{i} \quad \text{with } \mathbf{v}_{i} = \begin{pmatrix} x_{i} - \xi_{i} \\ y_{i} - \beta_{0} - \beta_{1} \xi_{i} \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} \beta_{0} \\ \beta_{1} \end{pmatrix}$$

- o im Allgemeinen, <u>nichtlineares</u> Funktional nur numerisch minimierbar<sup>[1,2]</sup>
  - → Algorithmen sind kostenlos erhältlich
  - → Unsicherheiten der Schätzwerte<sup>[2,3]</sup>
- Liefert eine Unsicherheitsbestimmung nach GUM und GUM-S1 die gleichen Ergebnisse für die Schätzwerte?
- oft: bekannte Unsicherheiten der Referenzmethode oder des –signals werden <u>ignoriert</u> (" $\sigma_{x,i}$  ist klein im Verhältnis zu  $\sigma_{y,i}$ "[5])

gewöhnliche Methode der kleinsten Quadrate (OLS)

[5] ISO 11095:1996

### Vergleich GUM von GUM-S1 für WTLS



- umfangreiche numerische Untersuchungen durchgeführt
- "synthetische Daten" gemäß statist. Model (1a) (1b) erzeugt

| N         | $ ho_{ m i}$ | $\sigma_0^2/\sigma_{\xi}^2$ | MU Designs |
|-----------|--------------|-----------------------------|------------|
| {10, 100} | {-0.8,0,0.8} | $\{1.2\%,\ 4.6\%,\ 9.4\%\}$ | 6          |



für jede Parameterkombination:

 $N_{\rm rep}$  =1000 Datensätze +  $N_{\rm S1}$  = 5  $10^4$  S1 sub-samples (Monte-Carlo)

#### Vergleich GUM von GUM-S1 für WTLS



- ISO<sup>[1]</sup> Implementierung wendet LPU auf linearisiertes Problem an
- 1) Überdeckungsintervalle und –wahrscheinlichkeit
  - 95% Überdeckungsintervall nach GUM liefert
     95% frequentistische Überdeckungswk.
  - GUM-S1 führt zu etwas längeren Intervallen
    - $\circ$  Effekt wird für große Messunsicherheiten ( $\sigma_{x,i,}$   $\sigma_{y,i}$ ) verstärkt

#### 2) <u>Schätzwerte:</u>

- GUM: Punktschätzer ist erwartungstreu
- GUM-S1 schätzt Anstieg  $eta_1$  etwas größer und  $eta_0$  etwas kleiner
  - $\circ$  Unterschied zwischen GUM und GUM-S1 nimmt mit N ab

#### Vergleich GUM von GUM-S1 für WTLS



- ISO<sup>[1]</sup> Implementierung wendet LPU auf linearisiertes Problem an
- 1) Überdeckungsintervalle und –wahrscheinlichkeit
  - 95% Überdeckungsintervall nach GUM liefert
     95% frequentistische Überdeckungswk.
    - ➤ befürworten die Nutzung der ISO 28037:2010 WTLS-Implementierung
    - empfehlen die einfachere Unsicherheitsbestimmung nach Fortpflanzung der Unsicherheiten (GUM)
  - GUM-S1 schätzt Anstieg  $\beta_1$  etwas größer und  $\beta_0$  etwas kleiner
    - Unterschied zwischen GUM und GUM-S1 nimmt mit N ab



- GUM und GUM-S1 ermöglichen nicht die Berücksichtigung von Vorwissen
- Bayes'sche Regression ist allgemein anwendbar und flexibler
- nach Bayes Theorem, Posterior für Messgrößen  $\theta = (\beta_0, \beta_1, \boldsymbol{\xi}^\top)$

$$p(\boldsymbol{\theta}|\mathrm{data}) \propto \pi_0(\boldsymbol{\theta}) \, \mathcal{L}(\boldsymbol{\theta};\mathrm{data})$$
  
mit Prior  $\pi_0(\boldsymbol{\theta})$  und  
likelihood  $\mathcal{L}(\boldsymbol{\theta};\mathrm{data})$ 

■ Wann und ob überhaupt hat Bayes'sche Regression mit Prior-Wissen Vorteile im Vergleich mit GUM-S1?





wählen nicht informativen Prior für ξ und bivariat normal verteilten

Prior für 
$$\beta$$
 mit  $(\mu_{\beta_0}, \mu_{\beta_1})^{\top} = (0, 1)^{\top}$  und  $(\sigma_{\beta_0}^2, \sigma_{\beta_1}^2)^{\top} = q (u_{\hat{\beta_0}^{\text{WLS}}}^2, u_{\hat{\beta_1}^{\text{WLS}}}^2)^{\top}$ 



| 95% CI             | least squares Schätzer |  | Bayes'sche Regression mit Normal Prior |  |  |
|--------------------|------------------------|--|----------------------------------------|--|--|
|                    | WLS - S1               |  |                                        |  |  |
| $oldsymbol{eta}_0$ | (-0.03,0.55)           |  |                                        |  |  |
| $oldsymbol{eta}_1$ | (0.64,1.03)            |  |                                        |  |  |



• wählen nicht informativen Prior für  $\xi$  und bivariat normal verteilten

Prior für 
$$\beta$$
 mit  $(\mu_{\beta_0}, \mu_{\beta_1})^{\top} = (0, 1)^{\top}$  und  $(\sigma_{\beta_0}^2, \sigma_{\beta_1}^2)^{\top} = q (u_{\hat{\beta_0}^{\text{WLS}}}^2, u_{\hat{\beta_1}^{\text{WLS}}}^2)^{\top}$ 



| 95% CI             | least squares Schätzer |              | Bayes'sche F | Regression mit Normal Prior |  |  |
|--------------------|------------------------|--------------|--------------|-----------------------------|--|--|
|                    | WLS - S1               | ISO - S1     |              |                             |  |  |
| $oldsymbol{eta}_0$ | (-0.03,0.55)           | (-0.48,0.64) |              |                             |  |  |
| $oldsymbol{eta}_1$ | (0.64,1.03)            | (0.58,1.34)  |              |                             |  |  |



wählen nicht informativen Prior für ξ und bivariat normal verteilten

Prior für 
$$\beta$$
 mit  $(\mu_{\beta_0}, \mu_{\beta_1})^{\top} = (0, 1)^{\top}$  und  $(\sigma_{\beta_0}^2, \sigma_{\beta_1}^2)^{\top} = q (u_{\hat{\beta_0}^{\text{WLS}}}^2, u_{\hat{\beta_1}^{\text{WLS}}}^2)^{\top}$ 



| 95% CI             | least squares Schätzer |              | Bayes'sche Regression mit Normal Prior |              |  |
|--------------------|------------------------|--------------|----------------------------------------|--------------|--|
|                    | WLS - S1               | ISO - S1     |                                        | q=1          |  |
| $oldsymbol{eta}_0$ | (-0.03,0.55)           | (-0.48,0.64) |                                        | (-0.19,0.33) |  |
| $oldsymbol{eta}_1$ | (0.64,1.03)            | (0.58,1.34)  |                                        | (0.85,1.13)  |  |



• wählen nicht informativen Prior für  $\xi$  und bivariat normal verteilten

$$\text{Prior für } \boldsymbol{\beta} \, \text{mit } (\mu_{\beta_0}, \mu_{\beta_1})^\top = (0, 1)^\top \, \text{ und } (\sigma_{\beta_0}^2, \sigma_{\beta_1}^2)^\top = q \, (u_{\hat{\beta_0}}^2{_{\text{WLS}}}, u_{\hat{\beta_1}}^2{_{\text{WLS}}})^\top$$



| 95% CI             | least squares Schätzer |              | Bayes'sche Regression mit Normal Prior |              |  |
|--------------------|------------------------|--------------|----------------------------------------|--------------|--|
|                    | WLS - S1               | ISO - S1     | q=0.01                                 | q=1          |  |
| $oldsymbol{eta}_0$ | (-0.03,0.55)           | (-0.48,0.64) | (-0.03,0.04)                           | (-0.19,0.33) |  |
| $oldsymbol{eta}_1$ | (0.64,1.03)            | (0.58,1.34)  | (0.98,1.03)                            | (0.85,1.13)  |  |



wählen nicht informativen Prior für ξ und bivariat normal verteilten

Prior für 
$$\pmb{\beta}$$
 mit  $(\mu_{\beta_0}, \mu_{\beta_1})^{\top} = (0, 1)^{\top}$  und  $(\sigma_{\beta_0}^2, \sigma_{\beta_1}^2)^{\top} = q \, (u_{\hat{\beta_0}^{\text{WLS}}}^2, u_{\hat{\beta_1}^{\text{WLS}}}^2)^{\top}$ 



| 95% CI             | least squares Schätzer |              | Bayes'sche Regression mit Normal Prior |              |              |
|--------------------|------------------------|--------------|----------------------------------------|--------------|--------------|
|                    | WLS - S1               | ISO - S1     | q=0.01                                 | q=1          | q=1000       |
| $oldsymbol{eta}_0$ | (-0.03,0.55)           | (-0.48,0.64) | (-0.03,0.04)                           | (-0.19,0.33) | (-0.24,0.71) |
| $oldsymbol{eta}_1$ | (0.64,1.03)            | (0.58,1.34)  | (0.98,1.03)                            | (0.85,1.13)  | (0.51,1.14)  |

#### Zusammenfassung



- ✓ untersuchten lineare Regressionsverfahren bei Errors-in-Variables (EIV) Modellen
- ☑ Gültigkeit des OLS Punktschätzers
  - " $\sigma_{x,i}$  ist klein im Vergleich zu  $\sigma_{y,i}$ " ist nicht ausreichend
  - OLS kann für EIV Modelle **nicht** empfohlen werden im Besonderen  $\mathrm{sgn}(\rho\beta_1)=-1$



- ☑ Unsicherheitsbestimmung nach GUM oder GUM-S1 für WTLS Punktschätzer
  - empfehlen die einfachere Unsicherheitsbestimmung nach GUM
  - Nutzung der ISO 28037:2010 WTLS-Implementierung
- ☑ Bayes'sche Regression mit informativen Prioren
  - bevorzugen, wenn ausreichende Vorkenntnisse vorhanden sind

#### Zusammenfassung



- ✓ untersuchten lineare Regressionsverfahren bei Errors-in-Variables (EIV) Modellen
- ☑ Gültigkeit des OLS Punktschätzers
  - " $\sigma_{x,i}$  ist klein im Vergleich zu  $\sigma_{y,i}$ " ist nicht ausreichend
  - · Ol Skann für EIV Madalla nicht amnfahlan warden

ir Straight line regression in errors-in-variables models

Comparison between the application of the GUM with its supplements and Bayesian analyses

Steffen Martens<sup>1</sup>, Katy Klauenberg<sup>1</sup>, Maurice G. Cox<sup>2</sup>, Alen Bošnjaković<sup>3</sup>, John Greenwood<sup>4</sup>, Adriaan M. H. van der Veen<sup>5</sup>, and Clemens Elster<sup>1</sup>

submitted to Metrologia

Bay

• DEVOIZUGEII, WEITH AUSTEICHEHUE VOIKEHHUHISSE VOIHAHUEH SIHU

#### Zusammenfassung



- ✓ untersuchten lineare Regressionsverfahren bei Errors-in-Variables (EIV) Modellen
- ☑ Gültigkeit des OLS Punktschätzers
  - " $\sigma_{x,i}$  ist klein im Vergleich zu  $\sigma_{y,i}$ " ist nicht ausreichend



The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Arbeit ist Teil des **E**xamples of **M**easurement **U**ncertainty **E**valuation Projekts und hat Mittel aus dem von den Teilnehmerstaaten kofinanzierten EMPIR-Programm und aus dem Forschungs- und Innovationsprogramm der Europäischen Union Horizon 2020 erhalten

# Vielen Dank für Ihre Aufmerksamkeit!



#### **Dr. Steffen Martens**

Physikalisch-Technische Bundesantalt Braunschweig und Berlin AG 8.42 Datenanalyse und Messunsicherheit

Abbestraße 2-12 10587 Berlin