Übungsblatt 4

Aufgabe 1.

- a) Überprüfen Sie, ob durch die Relation $\alpha^5 = \alpha^3 + \alpha^2 + \alpha + 1$ der Körper \mathbb{F}_{32} definiert werden kann.
- b) Überprüfen Sie, ob durch die Relation $\alpha^7 = \alpha^6 + \alpha^5 + \alpha^2 + 1$ der Körper \mathbb{F}_{128} definiert werden kann.

Aufgabe 2. Wir betrachten den Körper $k = \mathbb{F}_8$, gegeben durch die Relation $\alpha^3 = \alpha^2 + 1$ und stellen ein Element $a = r \cdot \alpha^2 + s \cdot \alpha + t \in \mathbb{F}_8$ durch das binäre Dreitupel $(r, s, t) \in \mathbb{F}_2^3$ dar. Berechnen Sie

$$a = (1, 1, 0) \cdot (1, 1, 1), \quad b = \frac{(0, 1, 1)}{(1, 1, 1)}, \quad c = \frac{(1, 0, 1)}{(1, 1, 0)}$$

und schreiben Sie das Ergebnis wieder als binäres Dreitupel.

Aufgabe 3. Wir betrachten den Körper \mathbb{F}_8 , gegeben durch die Relation $\alpha^3 = \alpha + 1$. Bestimmen Sie alle Lösungen $x_1, x_2, x_3, x_4 \in \mathbb{F}_8$ des linearen Gleichungssystems

$$\alpha \cdot x_1 + (\alpha + 1) \cdot x_2 + (\alpha + 1) \cdot x_3 + (\alpha^2 + \alpha) \cdot x_4 = 0$$

$$(\alpha^2 + \alpha) \cdot x_1 + (\alpha^2 + \alpha + 1) \cdot x_2 + (\alpha + 1) \cdot x_3 + \alpha^2 \cdot x_4 = 0$$

Aufgabe 4. Wir betrachten den Körper $k = \mathbb{F}_{256}$ mit der Relation

$$\alpha^8 = \alpha^4 + \alpha^3 + \alpha^2 + 1$$

(wie in der Vorlesung) und identifizieren ein Element

$$a = r_7 \cdot \alpha^7 + r_6 \cdot \alpha^6 + \dots + r_1 \cdot \alpha + r_0$$

mit dem Byte $a = (r_7, r_6, ..., r_1, r_0)$.

.Berechnen Sie

$$a = (1, 1, 0, 0, 0, 0, 1, 1) \cdot (0, 0, 1, 1, 1, 0, 0, 0)$$

und

$$b = (0, 1, 0, 1, 0, 1, 0, 1)^2$$

und

$$c = \frac{(0, 0, 0, 0, 0, 1, 1, 0)}{(1, 0, 0, 0, 1, 1, 0, 1)}$$

und stellen Sie das Ergebnis wieder als binäres Achttupel dar.