ENVOLVENT INJECTIU SOBRE COSSOS RESIDUALS

JORDI CARDIEL

Índex

1	Inje	ectivitat
	1.1	Mòduls injectius
	1.2	Extensió essencial
	1.3	Envolvent injectiu
2	Env	volvent injectiu sobre cossos residuals
	2.1	Resultats sobre anells artinians locals
	2.2	Resultats sobre anells noetherians locals
	23	p-grup de Prüfer

La motivació principal d'aquest treball és demostrar l'isomorfisme \mathbb{Z}_p amb el conjunt d'endomorfismes del p-grup de Prüfer. El p-grup de Prüfer és defineix com la unió ascendent dels grups

$$\mathbb{Z}/(p) \subset \mathbb{Z}/(p^2) \subset \mathbb{Z}/(p^3) \subset \dots$$

És a dir, el p-grup de Prüfer és $\varinjlim \mathbb{Z}/(p^n)$. L'objectiu és desenvolupar unes eines (que són resultat de la teoria de Matlis per a injectius indescomponibles sobre un anell commutatiu noetherià) per tal de demostrar aquest isomorfisme en un context més general i veure com s'aplica al p-grup de Prüfer.

1 Injectivitat

En aquesta secció introduïm tota la maquinària d'àlgebra commutativa per arribar als resultats que desitgem.

1.1 Mòduls injectius

Recordem que I R-mòdul és injectiu si per tot monomorfisme de R-mòduls $g:A\to B$ i per tot morfisme de R-mòduls $h:A\to I$ existeix un morfisme de R-mòduls $h':B\to I$ tal que el següent diagrama

$$\begin{array}{c}
I \\
h \\
\uparrow \\
0 \\
\longrightarrow A \\
\stackrel{g}{\longleftrightarrow} B
\end{array}$$

és commutatiu.

La injectivitat de I es pot expressar com a una propietat del functor contravariant $\operatorname{Hom}_R(-,I):\operatorname{Mod}_R\to\operatorname{Mod}_R$, on Mod_R denota la categoria de R-mòduls. En general, si

$$0 \longrightarrow A \stackrel{g}{\longrightarrow} B \stackrel{f}{\longrightarrow} C \longrightarrow 0$$

és una successió exacta curta en Mod_R , aleshores, per tot I R-mòdul

$$0 \longrightarrow \operatorname{Hom}_R(C,I) \xrightarrow{\operatorname{Hom}_R(f,I)} \operatorname{Hom}_R(B,I) \xrightarrow{\operatorname{Hom}_R(g,I)} \operatorname{Hom}_R(A,I)$$

és exacte. La condició d'injectivitat ens diu que $\operatorname{Hom}_R(g,I)$ és exhaustiu, és a dir, que la successió curta

$$0 \longrightarrow \operatorname{Hom}_R(C,I) \xrightarrow{\operatorname{Hom}_R(f,I)} \operatorname{Hom}_R(B,I) \xrightarrow{\operatorname{Hom}_R(g,I)} \operatorname{Hom}_R(A,I) \longrightarrow 0$$

és exacte. Deduïm que I R-mòdul sigui injectiu és equivalent a que $\operatorname{Hom}_R(-,I)$ és exacte (és a dir, que la darrera successió curta és exacte).

Lema 1.1. Sigui $R \to S$ un morfisme d'anells. Si E és un R-mòdul injectiu, aleshores $\operatorname{Hom}_R(S, E)$ és un S-mòdul injectiu.

Demostració. Sigui S-mòdul M i, M_R , M pensat com a R-mòdul. Tenim la correspondència

$$\operatorname{Hom}_R(M_R, E) \longleftrightarrow \operatorname{Hom}_S(M, \operatorname{Hom}_R(S, E)),$$

donada per

$$\alpha \longmapsto (m \mapsto (s \mapsto \alpha(sm)))$$

amb inversa

$$\beta \longmapsto (m \mapsto \beta(m)(1_S))$$

Com E és R-mòdul injectiu, $Hom_R(-, E)$ és exacte. Per la correspondència,

$$\operatorname{Hom}_R(-, E) = \operatorname{Hom}_S(-, \operatorname{Hom}_R(S, E)),$$

d'on deduïm que $\operatorname{Hom}_S(-, \operatorname{Hom}_R(S, E))$ és exacte i, per tant, $\operatorname{Hom}_R(S, E)$ és S-mòdul injectiu.

1.2 Extensió essencial

Introduïm la següent definició que farem servir en aquesta secció.

Definició 1.2. Siguin $M \subset E$ R-mòduls. $M \subset E$ és una extensió essencial si tot R-submòdul no trivial d'E interseca M no trivialment.

Lema 1.3. Siguin $M \subset E$ R-mòduls. Són equivalents:

- 1. $M \subset E$ és una extensió essencial.
- 2. $\forall x (x \in E \{0\}) \Rightarrow \exists r (r \in R \land rx \in M \{0\})).$

Demostració. Suposem que $M \subset E$ és una extensió essencial. Sigui $x \in E - \{0\}$. Per essencialitat, $(x) \cap M \neq \{0\}$. Aleshores, $\exists r(r \in R \land rx \in M - \{0\})$.

Suposem que $\forall x(x \in E - \{0\}) \Rightarrow \exists r(r \in R \land rx \in M - \{0\}))$. Sigui $E' \subset E$ R-submòdul no trivial d'E. Sigui $x \in E' - \{0\}$ (existeix per no trivialitat). Com $E' \subset E$, $x \in E - \{0\}$, d'on $\exists r(r \in R \land rx \in M - \{0\}))$ per hipòtesi. Com $rx \in E' \cap M$ i $rx \neq 0$, deduïm que $E' \cap M \neq \{0\}$. Per tant, E és una extensió essencial.

Tenim el següent resultat sobre R-mòduls injectius i extensions essencials.

Lema 1.4. Sigui I R-mòdul injectiu, $E \subset I$ R-submòdul. Són equivalents:

- 1. E injectiu.
- 2. Per tot $E \subset E' \subset I$ amb $E \subset E'$ extensió essencial, E = E'.

Demostració. Suposem E injectiu. Sigui $E' \subset I$ amb $E \subset E'$ extensió essencial. Per injectivitat d'E,

Suposem que $\ker \alpha \neq \{0\}$. Com $E \subset E'$ és una extensió essencial i $\ker \alpha$ R-submòdul d'E' no trivial, $\ker \alpha \cap E \neq \{0\}$. Però, $\ker \alpha \cap E = \ker id_E$ i $\ker id_E = \{0\}$, contradicció. Per tant, $\ker \alpha = \{0\}$. Aleshores, $E' \cong E' / \ker \alpha \cong \operatorname{im} \alpha \subset E$, d'on deduïm que E = E' per doble inclusió (ja que $E \subset E'$). Suposem que per tot $E \subset E' \subset I$ amb $E \subset E'$ extensió essencial, E = E'. Siguin $M \subset N$ R-mòduls i $\varphi \in \operatorname{Hom}_R(M, E)$. Sigui

$$\mathcal{S} := \{ (M', \varphi') \in \mathrm{Obj}(\mathrm{Mod}_R) \times \mathrm{Hom}_R(M', J) : M \subset M' \subset N \wedge \varphi'|_M = \varphi \}$$

conjunt parcialment ordenat per l'ordre < definit per

$$(M', \varphi') \le (M'', \varphi'') : \iff M' \subset M'' \land \varphi''|_{M'} = \varphi'$$

 $\mathcal{S} \neq \emptyset$, ja que $(M, \varphi) \in \mathcal{S}$. Considerem una cadena $\{(M_i, \varphi_i) : i \in \mathscr{I}\}$ de \mathcal{S} . Tenim que $(\bigcup_{i \in \mathscr{I}} M_i, \varphi) \in \mathcal{S}$ és una cota superior de $\{(M_i, \varphi_i) : i \in \mathscr{I}\}$, on $\varphi \in \operatorname{Hom}_R(\bigcup_{i \in \mathscr{I}} A_i, J)$ ve definida per $\varphi(x) := \varphi_i(x)$ si $x \in M_i$. Aleshores, pel lema de Zorn, \mathcal{S} té un element maximal $(M', \varphi') \in \mathcal{S}$. Sigui $\iota : E \hookrightarrow I$ la inclusió. Per injectivitat d'I,

Suposem que $\psi(N) \not\subset E$. Tenim $E \subsetneq E + \psi(N) \subset I$, d'on $E \subset E + \psi(N)$ no és essencial. Aleshores, existeix $K \subset E + \psi(N)$ no trivial tal que $K \cap E = \{0\}$. Com $M' \subset \psi^{-1}(E) \subsetneq \psi^{-1}(E + K)$,

$$\pi \circ \psi|_{\psi^{-1}(E+K)} : \psi^{-1}(E+K) \to E+K \twoheadrightarrow E$$

és tal que $(\pi \circ \psi|_{\psi^{-1}(E+K)})|_{M'} = \varphi'$ i $\psi^{-1}(E+K) \subset N$. Aleshores, $(M',\varphi') \leq (\psi^{-1}(E+K),\pi \circ \psi|_{\psi^{-1}(E+K)}) \in \mathcal{S}$, contradicció amb la maximalitat de (M',φ') . Per tant, $\psi(N) \subset E$. Tenim que $\psi: N \to \psi(N) \hookrightarrow E$ i $\psi|_M = (\iota \circ \varphi')|_M = \varphi'|_M = \varphi$, d'on deduïm que E és injectiu $(\psi \in \operatorname{Hom}_R(N,E))$ estén $\varphi \in \operatorname{Hom}_R(M,E)$).

Recordem que un R-mòdul M és noetherià si i només si tot R-submòdul de M és finitament generat. Denotem per $(0:_R x)$ l'aniquil·lador de $x \in R$; similarment, $(0:_R I)$ és l'aniquil·lador de $I, I \subset R$ ideal.

Lema 1.5. Siqui R anell noetherià, I R-mòdul injectiu.

1. Sigui $f \in R$. Aleshores, $\bigcup_{n>0} (0:_I f^n)$ R-submòdul injectiu de I.

Demostració. Sigui $E' \subset I$ amb $\bigcup_{n>0} (0:_I f^n) \subset E'$ extensió essencial. Suposem que $\bigcup_{n>0} (0:_I f^n) \subseteq E'$ i volem arribar a contradicció. Aleshores, $\exists x (x \in E' - \bigcup_{n>0} (0:_I f^n))$. Considerem l'ideal $\bigcup_{n>0} (0:_R f^n x) \subset R$. Com R és noetherià,

$$\exists g_1 \dots \exists g_t \Big(g_1, \dots, g_t \in R \land \bigcup_{n>0} (0 :_R f^n x) = (g_1, \dots, g_t) \Big)$$

Com $g_1, \ldots, g_t \in \bigcup_{n>0} (0:_R f^n x), \exists n_1 \ldots \exists n_t (n_1, \ldots, n_t > 0 \land \forall i (g_i f^{n_i} x = 0)).$ Definim

$$x' := f^{\max\{n_i\}} x \in E' - \bigcup_{n>0} (0:_I f^n)$$

Sigui $r \in (g_1, \ldots, g_t)$. Aleshores, $\exists a_1 \ldots \exists a_t (a_1, \ldots, a_t \in R \land r = \sum_{i=1}^t a_i g_i)$. Per tant,

$$rx' = \sum_{i=1}^{t} a_i (g_i f^{\max\{n_i\}} x)$$
 (Per definició de x')

$$= \sum_{i=1}^{t} a_i 0 (= 0)$$
 ($\forall i (g_i f^{n_i} x = 0)$)

Per tant, $r \in (0:_R x')$ i $(g_1, \ldots, g_t) \subset (0:_R x')$. Com

$$(0:_R x') = (0:_R f^{\max\{n_i\}} x)$$
 (Per definició de x')

$$\subset \bigcup_{n>0} (0:_R f^n x)$$
 (max $\{n_i\} > 0$)

deduïm per doble inclusió que

$$(0:_R x') = \bigcup_{n>0} (0:_R f^n x)$$

Sigui $r \in (g_1, \ldots, g_t)$. Aleshores, $\exists a_1 \ldots \exists a_t (a_1, \ldots, a_t \in R \land r = \sum_{i=1}^t a_i g_i)$, d'on

$$r(f^{n}x') = \sum_{i=1}^{t} a_{i}g_{i}f^{n}f^{\max\{n_{i}\}}x = 0 \implies r \in \bigcap_{n>0} (0:_{R} f^{n}x') \subset \bigcup_{n>0} (0:_{R} f^{n}x')$$

Per tant, $(g_1, \ldots, g_t) \subset \bigcup_{n>0} (0:_R f^n x')$. Com

$$\bigcup_{n>0} (0:_R f^n x') = \bigcup_{n>0} (0:_R f^{n+\max\{n_i\}} x)$$

$$\subset \bigcup_{n>0} (0:_R f^n x)$$

deduïm que

$$\bigcup_{n>0} (0:_R f^n x) = \bigcup_{n>0} (0:_R f^n x')$$

Per transitivitat de =,

$$(0:_R x') = \bigcup_{n>0} (0:_R f^n x')$$

Sigui $y \in (x') \cap \bigcup_{n>0} (0:_I f^n)$. Aleshores, $\exists n(n>0 \land yf^n=0)$ i $\exists r'(r' \in R \land r'x'=y)$, d'on

$$r'f^nx' = yf^n \qquad (r'x' = y)$$
$$= 0 \qquad (yf^n = 0)$$

Aleshores,

$$r' \in \bigcup_{n>0} (0:_R f^n x') \implies r' \in (0:_R x')$$

$$\implies y = r' x' = 0$$

$$(0:_R x') = \bigcup_{n>0} (0:_R f^n x')$$

$$(r' x' = y)$$

Per tant, $(x') \cap \bigcup_{n>0} (0:_I f^n) = \{0\}$, d'on deduïm que $\bigcup_{n>0} (0:_I f^n) \subset E'$ no és una extensió essencial, contradicció. Per tant, $\bigcup_{n>0} (0:_I f^n) = E'$ i, per 1.4, $\bigcup_{n>0} (0:_I f^n)$ és R-submòdul injectiu de I.

2. Sigui $J \subset R$ ideal. Aleshores, $\bigcup_{n>0} (0:I J^n)$ R-submòdul injectiu de I.

Demostració. Com R és noetherià, $\exists f_1 \dots \exists f_t (f_1, \dots f_t \in R \land J = (f_1, \dots, f_t))$. Aleshores, com

$$\bigcup_{n>0} (0:_I J^n) = \bigcup_{n>0} (0:_{\bigcup_{n>0} (0:\dots_{(\bigcup_{n>0} (0:_{(\bigcup_{n>0} (0:_I f_1^n) f_2^n)})}\dots f_{t-1}^n)} f_t^n)$$

ens reduïm al cas anterior i procedim per inducció.

1.3 Envolvent injectiu

Introduïm la noció d'envolvent injectiu, que utilitzarem en la següent secció. La idea és barrejar les dos nocions anteriors.

Definició 1.6. Siguin $M \subset I$ R-mòduls. Direm que I és l'envolvent injectiu de M si I és injectiu i $M \subset I$ és una extensió essencial.

Enunciem el següent resultat sense demostració, el qual dona altres caracteritzacions i la unicitat llevat isomorfisme de l'envolvent injectiu.

Proposició 1.7. Sigui $M \subset I$ R-mòduls. Són equivalents:

- 1. $M \subset I$ és l'extensió essencial maximal.
- 2. I és injectiu i $M \subset I$ és una extensió essencial.
- 3. I és injectiu minimal sobre M.

A més, tot R-mòdul té un envolvent injectiu i donats I, I' envolvents injectius de M, existeix un isomorfisme $g: I \to I'$ tal que $g|_M = id_M$.

Demostració. Veure [Lam99], 3.29., 3.30. i 3.32.

Escriurem per $E_R(M)$ l'envolvent injectiu del R-mòdul M. Necessitarem el següent resultat per la següent resultat per la següent secció.

Lema 1.8. Sigui R anell, \mathfrak{a} ideal de R i M R-mòdul tal que $\mathfrak{a}M = \{0\}$. Aleshores, $E_{R/\mathfrak{a}}(M) \cong (0 :_E \mathfrak{a})$.

Demostració. Tenim que $\mathfrak{a}M$, $\mathfrak{a}(0:_E\mathfrak{a})=\{0\}$. Aleshores, considerem M i $(0:_{E_R(M)}\mathfrak{a})$ com R/\mathfrak{a} -mòduls. Com $M\subset E_R(M)$ i $\mathfrak{a}M=\{0\}$, deduïm que $M\subset (0:_{E_R(M)}\mathfrak{a})$. Com tot R/\mathfrak{a} -submodul de $(0:_{E_R(M)}\mathfrak{a})$ és R-submòdul de $E_R(M)$, necessàriament $M\subset (0:_{E_R(M)}\mathfrak{a})$ és una extensió essencial. Veiem que podem completar el diagrama de R/\mathfrak{a} -mòduls

En efecte, si els pensem com R-mòduls, per injectivitat de $E_R(M)$ tenim que

commuta. De la commutativitat es comprova que im $(\iota \circ h') \subset (0:_{E_R(M)} \mathfrak{a})$, d'on deduïm que $(0:_{E_R(M)} \mathfrak{a})$ és injectiu.

2 Envolvent injectiu sobre cossos residuals

Recordem que un anell R és local si només té un ideal maximal \mathfrak{m} . En aquest cas, diem que R/\mathfrak{m} és el cos residual de R.

2.1 Resultats sobre anells artinians locals

Sigui M R-mòdul (R no necessàriament local). Definim la longitud de M com

$$\ell_R(M) := \sup\{n \in \mathbb{N} : \exists (0 \subsetneq M_1 \subsetneq \ldots \subsetneq M_n = M)\}\$$

Es pot comprovar que ℓ_R és una funció additiva, és a dir, donada una successió exacta curta a Mod_R

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

tenim que $\ell_R(B) = \ell_R(A) + \ell_R(C)$.

Considerarem en aquesta secció anells artinians locals. D'aquestes condicions, es dedueix que l'anell artinià local és noetherià i té R té longitud finita com a R-mòdul.

Lema 2.1. Sigui (R, \mathfrak{m}) anell artinià local, M R-mòdul finitament generat. Aleshores,

$$\ell_R(M) = \ell_R(\operatorname{Hom}_R(M, E_R(R/\mathfrak{m})))$$

Demostració. Tenim que

$$\operatorname{Hom}_R(R/\mathfrak{m}, E_R(R/\mathfrak{m})) \cong E_{R/\mathfrak{m}}(R/\mathfrak{m})$$
 (Isomorfisme via $\varphi \mapsto \varphi(1_R + \mathfrak{m})$)
 $\cong R/\mathfrak{m}$ (Tot mòdul sobre un cos és injectiu i R/\mathfrak{m} és minimal)

Aleshores,

$$\ell_R(R/\mathfrak{m}) = \ell_R(\operatorname{Hom}_R(M, E_R(R/\mathfrak{m})))$$

Procedim per inducció en $\ell_R(M)$, M R-mòdul finitament generat. Tenim que existeix $\pi: M \twoheadrightarrow R/\mathfrak{m}$ morfisme de R-mòduls exhaustiu. Considerem la successió exacta curta

$$0 \longrightarrow \ker \pi \stackrel{\iota}{\longrightarrow} M \stackrel{\pi}{\longrightarrow} R/\mathfrak{m} \longrightarrow 0$$

Com $E_R(R/\mathfrak{m})$ és injectiu, obtenim la successió exacta curta

$$0 \longrightarrow \operatorname{Hom}_R(R/\mathfrak{m}, E_R(R/\mathfrak{m})) \stackrel{\pi_*}{\longrightarrow} \operatorname{Hom}_R(M, E_R(R/\mathfrak{m})) \stackrel{\iota_*}{\longrightarrow} \operatorname{Hom}_R(\ker \pi, E_R(R/\mathfrak{m})) \longrightarrow 0$$

De les darreres successions exactes curtes, deduïm que

$$\ell_R(\operatorname{Hom}_R(M, E_R(R/\mathfrak{m})))$$

$$=\ell_R(\operatorname{Hom}_R(R/\mathfrak{m}, E_R(R/\mathfrak{m}))) + \operatorname{Hom}_R(\ker \pi, E_R(R/\mathfrak{m})) \qquad (\text{Per additivitat de } \ell_R)$$

$$=\ell_R(R/\mathfrak{m}) + \ell_R(\ker \pi) \qquad (\text{Hipòtesi d'inducció})$$

$$=\ell_R(M) \qquad (\text{Per additivitat de } \ell_R)$$

com volíem veure. \Box

Corol·lari 2.2. Sigui (R, m) anell artinià local, M R-mòdul finitament generat. Aleshores,

$$M \cong \operatorname{Hom}_R(\operatorname{Hom}_R(M, E_R(R/\mathfrak{m})), E_R(R/\mathfrak{m}))$$

En particular, $R \cong \operatorname{Hom}_R(E_R(R/\mathfrak{m}), E_R(R/\mathfrak{m})).$

Demostració. Per tot $m \in M - \{0\}$, existeix un morfisme de R-mòduls no trivial $h_m : (m) \to R/\mathfrak{m}$. Com $E_R(R/\mathfrak{m})$ injectiu i $R/\mathfrak{m} \subset E_R(R/\mathfrak{m})$,

Per tant, el morfisme $M \to \operatorname{Hom}_R(\operatorname{Hom}_R(M, E_R(R/\mathfrak{m})), E_R(R/\mathfrak{m}))$ definit via $m \mapsto ((\iota' \circ h_m)' \mapsto (\iota' \circ h_m)'(m))$ esta ben definit i és injectiu (ja que per construcció té nucli trivial). A més, com

$$\ell_R(\operatorname{Hom}_R(\operatorname{Hom}_R(M, E_R(R/\mathfrak{m})), E_R(R/\mathfrak{m}))) = \ell_R(\operatorname{Hom}_R(M, E_R(R/\mathfrak{m})))$$

$$= \ell_R(M)$$
(Per 2.1)

deduïm que és isomorfisme. El darrer isomorfisme resulta de

$$\begin{split} R &\cong \operatorname{Hom}_R(\operatorname{Hom}_R(R, E_R(R/\mathfrak{m})), E_R(R/\mathfrak{m})) \\ &\cong \operatorname{Hom}_R(E_R(R/\mathfrak{m}), E_R(R/\mathfrak{m})) \\ &\qquad \qquad (E_R(R/\mathfrak{m}) \cong \operatorname{Hom}_R(R, E_R(R/\mathfrak{m}))) \end{split}$$

on el darrer isomorfisme és general per tot R-mòdul.

2.2 Resultats sobre anells noetherians locals

Volem aplicar 1.8 al ideal \mathfrak{m}^n .

Proposició 2.3. Sigui (R, \mathfrak{m}) un anell noetherià local. Aleshores,

1. $E_{R/\mathfrak{m}^n}(R/\mathfrak{m}) \cong (0:_{E_R(R/\mathfrak{m})} \mathfrak{m}^n).$

Demostració. \mathfrak{m}^n és un ideal de R i $\mathfrak{m}^n(R/\mathfrak{m}) = \{0\}$. Per 1.8, $E_{R/\mathfrak{m}^n}(R/\mathfrak{m}) \cong (0:_{E_R(R/\mathfrak{m})} \mathfrak{m}^n)$.

2. $E_R(R/\mathfrak{m}) = \bigcup_{n>0} (0:_{E_R(R/\mathfrak{m})} \mathfrak{m}^n).$

Demostraci'o. Com R és noetherià i $E_R(R/\mathfrak{m})$ és un R-mòdul injectiu, $\bigcup_{n>0} (0:_{E_R(R/\mathfrak{m})} \mathfrak{m}^n)$ és un R-submòdul injectiu d' $E_R(R/\mathfrak{m})$ per 1.5. Fixem-nos que

$$R/\mathfrak{m} \subset (0:_{E_R(R/\mathfrak{m})} \mathfrak{m}^n) \subset E_R(R/\mathfrak{m})$$

Com $E_R(R/\mathfrak{m})$ és l'envolvent injectiu de R/\mathfrak{m} , $E_R(R/\mathfrak{m})$ és l'injectiu més petit que conté R/\mathfrak{m} , d'on resulta $E_R(R/\mathfrak{m}) \subset \bigcup_{n>0} (0:_{E_R(R/\mathfrak{m})} \mathfrak{m}^n)$ i, per tant, $E_R(R/\mathfrak{m}) = \bigcup_{n>0} (0:_{E_R(R/\mathfrak{m})} \mathfrak{m}^n)$.

Corol·lari 2.4. Sigui (R, \mathfrak{m}) anell noetherià local. Aleshores, $\lim_{R \to \mathfrak{m}^n} E_{R/\mathfrak{m}^n}(R/\mathfrak{m}) \cong E_R(R/\mathfrak{m})$.

En particular, tenim la filtració $\{E_{R/\mathfrak{m}^n}(R/\mathfrak{m}): n \in \mathbb{N}\}$. Els endomorfismes preserven la filtració, ja que

$$\operatorname{im}\left(\varphi:\left(0:_{E_{R}(R/\mathfrak{m})}\mathfrak{m}^{n}\right)\to\bigcup_{n>0}\left(0:_{E_{R}(R/\mathfrak{m})}\mathfrak{m}^{n}\right)\right)\subset\left(0:_{E_{R}(R/\mathfrak{m})}\mathfrak{m}^{n}\right)$$

En efecte, de forma heurística, tenim que $f((0:_{E_R(R/\mathfrak{m})}\mathfrak{m}^n))\mathfrak{m}^n = f((0:_{E_R(R/\mathfrak{m})}\mathfrak{m}^n)\mathfrak{m}^n) = f(\{0\}) = \{0\},$ d'on es dedueix la inclusió. Aquesta preservació simplifica la demostració del resultat següent.

Teorema 2.5. Sigui (R, \mathfrak{m}) anell noetherià local. Aleshores, $\operatorname{Hom}_R(E_R(R/\mathfrak{m}), E_R(R/\mathfrak{m})) \cong \lim_{n \to \infty} R/\mathfrak{m}^n$.

Demostració. Tenim que

$$\operatorname{Hom}_{R}(E_{R}(R/\mathfrak{m}), E_{R}(R/\mathfrak{m}))$$

$$\cong \operatorname{Hom}_{R}(\varinjlim E_{R/\mathfrak{m}^{n}}(R/\mathfrak{m}), \varinjlim E_{R/\mathfrak{m}^{n}}(R/\mathfrak{m})) \qquad (\operatorname{Per 2.4})$$

$$\cong \operatorname{Hom}_{R}(\varinjlim E_{R/\mathfrak{m}^{n}}(R/\mathfrak{m}), E_{R/\mathfrak{m}^{n}}(R/\mathfrak{m})) \qquad (\operatorname{Endomorfismes preserven la filtració})$$

$$\cong \varprojlim \operatorname{Hom}_{R}(E_{R/\mathfrak{m}^{n}}(R/\mathfrak{m}), E_{R/\mathfrak{m}^{n}}(R/\mathfrak{m})) \qquad (\operatorname{Hom preserva els colímits})$$

$$\cong \varprojlim R/\mathfrak{m}^{n} \qquad (\operatorname{Per 2.2})$$

com volíem veure.

2.3 p-grup de Prüfer

Considerem $\mathbb{Z}[\frac{1}{p}]/\mathbb{Z}$. Es una comprovacó rutinària veure que $\mathbb{Z}[\frac{1}{p}]/\mathbb{Z} \cong \varinjlim \mathbb{Z}/(p^n)$. Amb 2.5, serà suficient veure que $\mathbb{Z}[\frac{1}{p}]/\mathbb{Z}$ és l'envolvent injectiu de $\mathbb{Z}/(p)$ sobre \mathbb{Z} .

Definició 2.6. Un \mathbb{Z} -mòdul G és divisible si $\forall x \forall n ((x \in G \land n \in \mathbb{N}) \Rightarrow \exists y (y \in G \land ny = x)).$

Proposició 2.7. Tot \mathbb{Z} -mòdul J divisible és injectiu.

Demostració. Siguin $A \subset B$ \mathbb{Z} -mòduls i $\varphi \in \operatorname{Hom}_{\mathbb{Z}}(A, J)$. Volem estendre φ a un element de $\operatorname{Hom}_{\mathbb{Z}}(B, J)$. Sigui

$$\mathcal{S} := \{ (A', \varphi') \in \mathrm{Obj}(\mathrm{Mod}_{\mathbb{Z}}) \times \mathrm{Hom}_{\mathbb{Z}}(A', J) : A \subset A' \subset B \wedge \varphi'|_{A} = \varphi \}$$

conjunt parcialment ordenat per l'ordre \leq definit per

$$(A', \varphi') \le (A'', \varphi'') : \iff A' \subset A'' \land \varphi''|_{A'} = \varphi'$$

 $\mathcal{S} \neq \emptyset$, ja que $(A, \varphi) \in \mathcal{S}$. Considerem una cadena $\{(A_i, \varphi_i) : i \in \mathscr{I}\}$ de \mathcal{S} . Tenim que $(\bigcup_{i \in \mathscr{I}} A_i, \varphi) \in \mathcal{S}$ és una cota superior de $\{(A_i, \varphi_i) : i \in \mathscr{I}\}$, on $\varphi \in \operatorname{Hom}_{\mathbb{Z}}(\bigcup_{i \in \mathscr{I}} A_i, J)$ ve definida per $\varphi(x) := \varphi_i(x)$ si $x \in A_i$. Aleshores, pel lema de Zorn, \mathcal{S} té un element maximal $(A', \varphi') \in \mathcal{S}$.

Volem veure que A' = B. Suposem que $A' \subsetneq B$. Sigui $x \in B - A'$. Suposem que $\forall n (n \in \mathbb{Z} \Rightarrow nx \notin A')$. Definim $\varphi'' \in \operatorname{Hom}_{\mathbb{Z}}(A' + \mathbb{Z}x, J)$ per $\varphi''(a + nx) := \varphi(a)$. Tenim que $(A', \varphi') \leq (A' + \mathbb{Z}x, \varphi'') \in \mathcal{S}$, contradicció amb la maximalitat de (A', φ') . Suposem que $\exists n (n \in \mathbb{Z} \land nx \in A')$ A més, imposem que n sigui mínima. Per divisibilitat de J, $\forall x (x \in A' \Rightarrow \exists y (y \in J \land ny = \varphi(nx)))$. Considerem $\varphi'' \in \operatorname{Hom}_{\mathbb{Z}}(A' \oplus \mathbb{Z}, J)$ definit per $\varphi''(a, m) := \varphi(a) + mny$. Considerem $\varphi_0 \in \operatorname{Hom}_{\mathbb{Z}}(A' \oplus \mathbb{Z}, B)$ definit per $\varphi_0(a, m) := a + mnx$. Si $(a, m) \in \ker \varphi_0$, $\varphi''(a, m) = \varphi(a) + mny = \varphi(a) + m\varphi(nx) = \varphi(a + mnx) = \varphi(0) = 0$. Per tant, $\ker \varphi_0 \subset \ker \varphi''$, d'on tenim la factorització

 $\overline{\varphi}_0 \in \operatorname{Hom}_{\mathbb{Z}}(A'+x(n),J) \text{ definida per } \overline{\varphi}_0(a+mnx) := \varphi(a)+mnz. \text{ Obtenim } (A',\varphi') \leq (A'+x(n),\overline{\varphi}_0) \in \mathcal{S},$ contradicció amb la maximalitat de (A',φ') . Per tant, A'=B.

El recíproc també és cert. És fàcil veure que $\mathbb{Z}[\frac{1}{p}]/\mathbb{Z}$ és p-divisible i, per tant, divisible. Com $\mathbb{Z}[\frac{1}{p}]/\mathbb{Z}$ és un \mathbb{Z} -mòdul, deduïm que $\mathbb{Z}[\frac{1}{p}]/\mathbb{Z}$ és injectiu per 2.7.

A més, $\mathbb{Z}[\frac{1}{p}]/\mathbb{Z}$ és essencial sobre $\mathbb{Z}/(p)$ ($\cong \mathbb{Z}_{(p)}/(p)\mathbb{Z}_{(p)}$) ja que (recordem 1.3)

$$p\left(\sum_{j=0}^{i} a_j p^{-j} + \mathbb{Z}\right) = \sum_{j=0}^{i-1} a_{j-1} p^{-j} + (p^i) \in \mathbb{Z}/(p)$$

Per tant,

$$\begin{aligned} \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[\frac{1}{p}]/\mathbb{Z},\mathbb{Z}[\frac{1}{p}]/\mathbb{Z}) &= \operatorname{Hom}_{\mathbb{Z}_{(p)}}(\mathbb{Z}[\frac{1}{p}]/\mathbb{Z},\mathbb{Z}[\frac{1}{p}]/\mathbb{Z}) & \quad \text{(Hom-sets coincideixen)} \\ &\cong \varprojlim \mathbb{Z}_{(p)}/\big((p)\mathbb{Z}_{(p)}\big)^n & \quad ((\mathbb{Z}_{(p)},\mathbb{Z}_{(p)}/(p)\mathbb{Z}_{(p)}) \text{ anell noetherià local i 2.5)} \\ &\cong \varprojlim \mathbb{Z}/(p^n) & \quad (\mathbb{Z}_{(p)}/\big((p)\mathbb{Z}_{(p)}\big)^n \cong \mathbb{Z}/(p^n)) \\ &\simeq \mathbb{Z}. \end{aligned}$$

d'on resulta l'isomorfisme.