

Amendments to the Claims:

Please cancel claims 2-8, amend claims 1, 9, 10 and 11, and add claims 12-32 as shown in the following listing of claims. This listing of claims will replace all prior versions, and listings, of claims in the application.

1 1. (currently amended) An omni-directional image and 3-Dimensional data
2 acquisition apparatus, comprising:

3 a plurality of multi-camera modules positioned along the direction of
4 height, each of the a-multi-camera module modules including multiple constructed in
5 a manner comprising a plurality of cameras that are symmetrically arranged with a
6 specific point in a plane such that the optical centers of the multiple cameras are in a
7 plane, the multiple cameras of the multi-camera modules being further arranged such
8 that the optical axis of at least one of the multiple cameras from a first multi-camera
9 module of the multi-camera modules at a first height is pointing in the same direction
10 as the optical axis of at least one of the multiple cameras from a second multi-camera
11 module of the multi-camera modules at a second height such that the optical axes are
12 parallel; and, each of the cameras taking charge of each of divided angles such that
13 the camera module can take an omni-directional continuous panoramic photograph of
14 surrounding objects with the specific point;

15 a vision computer system operatively connected to each of the multiple
16 cameras of the multi-camera modules, the vision computer system being configured
17 to process and store images acquired by the multiple cameras.

18 first frame grabbers each of which is electrically connected to each of
19 the cameras of the multi-camera module, to grab photographed images by frames;
20 an exposure calculator electrically connected to the first frame
21 grabbers, to calculate exposure of each camera, based on the grabbed images by
22 frames;

23 an exposure signal generator electrically connected to each camera, to
24 transmit information about the exposure as a signal on the basis of the exposure
25 calculated by the exposure calculator;
26 storage means electrically connected to the each first frame grabber, to
27 store images photographed by the cameras according to photographing location and
28 photographing time;
29 a GPS sensor to sense the photographing location and photographing
30 time;
31 an annotation entering unit electrically connected to the GPS sensor to
32 calculate location and time corresponding to each frame based on sensed data of the
33 GPS sensor, the annotation entering unit being electrically connected to the storage
34 means to enter the calculated location and time in each frame as annotation; and
35 a trigger signal generator electrically connected the storage means, the
36 exposure signal generator, the annotation entering unit, the trigger signal generator
37 selectively transmits a trigger signal to the exposure signal generator or the annotation
38 entering unit in order that the cameras start to photograph the objects according to the
39 trigger signal; and wherein the multi-camera module are vertically stacked and
40 formed in at least two layers in the direction of height.

- 1 2. (canceled).
- 1 3. (canceled).
- 1 4. (canceled).
- 1 5. (canceled).
- 1 6. (canceled).
- 1 7. (canceled).

1 8. (canceled).

1 9. (currently amended) A method for acquiring 3-dimensional data, the method
2 comprising the steps of:

3 acquiring first images using a multi-camera module comprising
4 multiple cameras, including using at least some of the multiple cameras with the
5 optical centers in a first plane at a first height to acquire the first images;
6 acquiring second images using the multi-camera module, including
7 using at least some of the multiple cameras with the optical centers in a second plane
8 at a second height to acquire the second images, the second plane being parallel to the
9 first plane;

10 searching for corresponding points in one of the first images and in
11 one of the second images each image;

12 extracting for distance information for the corresponding points using
13 trigonometry; and

14 acquiring for 3-dimensional data based on the distance information.

1 10. (currently amended) A method for extending dynamic range of images,
2 comprising the steps of:

3 acquiring for multi multiple images of an object, the multi multiple
4 images being photographed by the cameras of a multi-camera module which have
5 different exposure amounts amount each other, wherein the cameras the multi-camera
6 module comprising a plurality of cameras which are symmetrically arranged at a
7 specific point in a plane, and which take charge of each allocating viewing angle
8 calculated by 360° divided by the number of the cameras;

9 selectively extracting for regions in the multi multiple images, wherein
10 the regions are included within the dynamic range of the cameras camera; and

11 acquiring for images of dynamic range extension, which are generated
12 by composing the extracting regions.

1 11. (currently amended) An omni-directional image and 3-Dimensional data
2 acquisition apparatus, comprising:

3 a multi-camera module including constructed in a manner comprised
4 of a plurality of multiple cameras that are symmetrically arranged with a specific
5 point in a plane such that the optical centers of the cameras are in a plane, each of the
6 cameras taking charge of each of divided angles such that the camera module can take
7 an omni-directional continuous panoramic photograph of surrounding objects with
8 the specific point;

9 an elevator for elevating the multi-camera module vertically; and
10 a vision computer system operatively connected to each of the multiple
11 cameras of the multi-camera modules, the vision computer system being configured
12 to process and store images acquired by the multiple cameras.

13 first frame grabbers each of which is electrically connected to each of
14 the cameras of the multi-camera module, to grab photographed images by frames;
15 an exposure calculator electrically connected to the first frame
16 grabbers, to calculate exposure of each camera, based on the grabbed images by
17 frames;

18 an exposure signal generator electrically connected to each camera, to
19 transmit information about the exposure as a signal on the basis of the exposure
20 calculated by the exposure calculator;

21 storage means electrically connected to the each first frame grabber, to
22 store images photographed by the cameras according to photographing location and
23 photographing time;

24 a GPS sensor to sense the photographing location and photographing
25 time;

26 an annotation entering unit electrically connected to the GPS sensor to
27 calculate location and time corresponding to each frame based on sensed data of the
28 GPS sensor, the annotation entering unit being electrically connected to the storage
29 means to enter the calculated location and time in each frame as annotation; and

30 ~~a trigger signal generator electrically connected to the storage means, the~~
31 ~~exposure signal generator, the annotation entering unit, the trigger signal generator~~
32 ~~selectively transmits a trigger signal to the exposure signal generator or the annotation~~
33 ~~entering unit in order that the cameras start to photograph the objects according to the~~
34 ~~trigger signal.~~

1 12. (new) The apparatus of claim 1, wherein the optical axes of the multiple
2 cameras of the first multi-camera module are in a first plane and the optical axes of
3 the multiple cameras of the second multi-camera module are in a second plane, the
4 first and second planes being parallel to each other and perpendicular to the direction
5 of height.

1 13. (new) The apparatus of claim 1, wherein each of the optical centers of the
2 multiple cameras of the first multi-camera module is vertically aligned with one of
3 the optical centers of the multiple cameras of the second multi-camera module.

1 14. (new) The apparatus of claim 13, wherein the optical axis of each of the
2 multiple cameras of the first multi-camera module is parallel to the optical axis of a
3 camera of the second multi-camera module that is vertically aligned with that
4 multiple camera of the first multi-camera module.

1 15. (new) The apparatus of claim 13, wherein the optical axes of the multiple
2 cameras of the first multi-camera module are in a first plane and the optical axes of
3 the multiple cameras of the second multi-camera module are in a second plane, the
4 first and second planes being parallel to each other and perpendicular to the direction
5 of height.

1 16. (new) The apparatus of claim 1, wherein the plurality of multi-camera module
2 includes a third multi-camera module at a third height.

1 17. (new) The method of claim 9, further comprising elevating the multi-camera
2 module so that the optical centers of at least some of the cameras of the multi-camera
3 module are moved from the first plane to the second plane to capture the first and
4 second images.

1 18. (new) The method of claim 17, wherein the acquiring the second images
2 includes acquiring the second images using cameras of the multi-camera module that
3 differ from cameras of the multi-camera module used to acquire the first images.

1 19. (new) The method of claim 9, wherein each of the optical centers in the first
2 plane is vertically aligned with one of the optical centers in the second plane.

1 20. (new) The method of claim 19, wherein the optical axis corresponding to each
2 of the optical centers in the first plane is parallel to the optical axis corresponding to
3 one of the optical centers in the second plane that is vertically aligned with that optical
4 center.

1 21. (new) The method of claim 9, wherein the optical axes corresponding to the
2 optical centers in the first plane are parallel to the optical axes corresponding to the
3 optical centers in the second plane.

1 22. (new) The method of claim 9, wherein the first plane and the second plane are
2 perpendicular to the direction of height.

1 23. (new) The method of claim 9, further comprising acquiring third images using
2 the multi-camera module, including using at least some of the multiple cameras with
3 the optical centers in a third plane at a third height to acquire the third images.

1 24. (new) The apparatus of claim 11, wherein the optical axes of the multiple
2 cameras of the multi-camera module are in the plane.

1 25. (new) The apparatus of claim 11, wherein the multiple cameras of the multi-
2 camera module are symmetrically arranged about a center point in the plane.

1 26. (new) A method for acquiring 3-dimensional data, the method comprising:
2 acquiring first images using a multi-camera module comprising
3 multiple cameras at a first location, the optical centers of the multiple cameras being
4 in a plane;
5 moving the multi-camera module from the first location to a second
6 location;
7 acquiring second images using the multi-camera module at the second
8 location;
9 searching corresponding points in at least one of the first images and in
10 at least one of the second images;
11 extracting distance information for the corresponding points using
12 trigonometry; and
13 acquiring 3-dimensional data based on the distance information.

1 27. The method of claim 26 wherein moving the multi-camera module includes
2 moving the multi-camera module along a horizontal direction.

1 28. The method of claim 26 wherein moving the multi-camera module includes
2 moving the multi-camera module along a vertical direction.

1 29. The method of claim 26 further comprising acquiring additional first images
2 using additional cameras of the multi-camera module at the first location, the optical
3 centers of the additional cameras being a different height than the optical centers of
4 the multiple cameras, and wherein searching the corresponding points further
5 includes searching the corresponding points in at least one of the additional first
6 images.

1 30. (new) An omni-directional image and 3-Dimensional data acquisition
2 apparatus, comprising:
3 a plurality of multi-camera modules, each multi-camera module
4 constructed in a manner comprising a plurality of cameras that are symmetrically
5 arranged with a specific point in a plane, each of the cameras taking charge of each of
6 divided angles such that each multi-camera module can take an omni-directional
7 continuous panoramic photograph of surrounding objects with the specific point;
8 first frame grabbers each of which is electrically connected to each of
9 the cameras of each multi-camera module, to grab photographed images by frames;
10 an exposure calculator electrically connected to the first frame
11 grabbers, to calculate exposure of each camera, based on the grabbed images by
12 frames;
13 an exposure signal generator electrically connected to each camera, to
14 transmit information about the exposure as a signal on the basis of the exposure
15 calculated by the exposure calculator;
16 a plurality of light intensity sensors electrically connected to the
17 exposure calculator to allow the exposure calculator to be able to calculate the
18 exposure amount of the each camera based on external light intensity;
19 storage means electrically connected to the each first frame grabber, to
20 store images photographed by the cameras according to photographing location and
21 photographing time;
22 a GPS sensor to sense the photographing location and photographing
23 time;
24 an annotation entering unit electrically connected to the GPS sensor to
25 calculate location and time corresponding to each frame based on sensed data of the
26 GPS sensor, the annotation entering unit being electrically connected to the storage
27 means to enter the calculated location and time in each frame as annotation; and
28 a trigger signal generator electrically connected the storage means, the
29 exposure signal generator, the annotation entering unit, the trigger signal generator
30 selectively transmits a trigger signal to the exposure signal generator or the annotation

31 entering unit in order that the cameras start to photograph the objects according to the
32 trigger signal; and wherein the multi-camera modules are vertically stacked and
33 formed in at least two layers in the direction of height.

1 31. (new) An omni-directional image and 3-Dimensional data acquisition
2 apparatus, comprising:

3 a plurality of multi-camera modules, each multi-camera module
4 constructed in a manner comprising a plurality of cameras that are symmetrically
5 arranged with a specific point in a plane, each of the cameras taking charge of each of
6 divided angles such that each multi-camera module can take an omni-directional
7 continuous panoramic photograph of surrounding objects with the specific point;

8 first frame grabbers each of which is electrically connected to each of
9 the cameras of each multi-camera module, to grab photographed images by frames;

10 an exposure calculator electrically connected to the first frame
11 grabbers, to calculate exposure of each camera, based on the grabbed images by
12 frames;

13 an exposure signal generator electrically connected to each camera, to
14 transmit information about the exposure as a signal on the basis of the exposure
15 calculated by the exposure calculator;

16 storage means electrically connected to the each first frame grabber, to
17 store images photographed by the cameras according to photographing location and
18 photographing time;

19 a video camera electrically connected to the storage means via a
20 second frame grabber for grabbing photographed moving pictures by frames, to the
21 storage means a unique video clip corresponding to each image or image group to be
22 stored in the storage means;

23 a GPS sensor to sense the photographing location and photographing
24 time;

25 an annotation entering unit electrically connected to the GPS sensor to
26 calculate location and time corresponding to each frame based on sensed data of the

27 GPS sensor, the annotation entering unit being electrically connected to the storage
28 means to enter the calculated location and time in each frame as annotation; and
29 a trigger signal generator electrically connected to the storage means, the
30 exposure signal generator, the annotation entering unit, the trigger signal generator
31 selectively transmits a trigger signal to the exposure signal generator or the annotation
32 entering unit in order that the cameras start to photograph the objects according to the
33 trigger signal; and wherein the multi-camera modules are vertically stacked and
34 formed in at least two layers in the direction of height.

1 32. (new) An omni-directional image and 3-Dimensional data acquisition
2 apparatus, comprising:

3 a plurality of multi-camera modules, each multi-camera module
4 constructed in a manner comprising a plurality of cameras that are symmetrically
5 arranged with a specific point in a plane, each of the cameras taking charge of each of
6 divided angles such that each multi-camera module can take an omni-directional
7 continuous panoramic photograph of surrounding objects with the specific point;

8 first frame grabbers each of which is electrically connected to each of
9 the cameras of each multi-camera module, to grab photographed images by frames;

10 an exposure calculator electrically connected to the first frame
11 grabbers, to calculate exposure of each camera, based on the grabbed images by
12 frames;

13 an exposure signal generator electrically connected to each camera, to
14 transmit information about the exposure as a signal on the basis of the exposure
15 calculated by the exposure calculator;

16 storage means electrically connected to the each first frame grabber, to
17 store images photographed by the cameras according to photographing location and
18 photographing time;

19 a distance sensor and a direction sensor for respectively sensing the
20 distance and direction of the image photographed by each camera;

21 a GPS sensor to sense the photographing location and photographing
22 time;
23 an annotation entering unit electrically connected to the GPS sensor to
24 calculate location and time corresponding to each frame based on sensed data of the
25 GPS sensor, the annotation entering unit being electrically connected to the storage
26 means to enter the calculated location and time in each frame as annotation; and
27 a trigger signal generator electrically connected the storage means, the
28 exposure signal generator, the annotation entering unit, the trigger signal generator
29 selectively transmits a trigger signal to the exposure signal generator or the annotation
30 entering unit in order that the cameras start to photograph the objects according to the
31 trigger signal; and wherein the multi-camera modules are vertically stacked and
32 formed in at least two layers in the direction of height.