# **Analyse 3**

AMAL Youssef

2018-2019

# Programme du cours

- **1** Topologie dans  $\mathbb{R}^n$
- Ponction de Plusieurs Variables
- Calcul Différentiel
- Calcul d'Intégrales Multiples
- Seconda d'Intégrales Curvilignes

### Références:

- Mathématiques 3, par E. AZOULAY
- Mathématiques, par Francine Delmer
- Site web: www.bibmath.net, exo7.emath.fr

**Note du Module:** CC 1 (50%) + CC 2 (50%).

Soit E un  $\mathbb{K}$ -espace vectoriel, où  $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ . Une application  $N : E \to \mathbb{R}$  est appelée norme, notée encore par  $\|\cdot\|$ , s.s.i. les trois propriétés sont vérifiées:

- $N(x) = 0 \Longrightarrow x = 0$ , pour  $x \in E$ .
- Soit  $\alpha \in \mathbb{K}$ ,  $N(\alpha x) = |\alpha| N(x)$ .
- $\bullet \ \forall (x,y) \in E^2, N(x+y) \leq N(x) + N(y).$

Un espace vectoriel muni d'une norme est appelé espace vectoriel normé.

### Remarque 1.2

• Soit N une norme définie sur l'e.v. E. Montrer que  $N(x) \ge 0$  pour tout  $x \in E$ .

#### Exercice 1.3

• Montrer que les applications suivantes  $N_1$ ,  $N_2$ ,  $N_\infty$  définies sur l'espace vectoriel réel  $\mathbb{R}^n$  par:

$$N_1(x_1,...,x_n) = \sum_{i=1}^n |x_i|, N_2(x_1,...,x_n) = \sqrt{\sum_{i=1}^n x_i^2},$$
  
 $N_{\infty}(x_1,...,x_n) = \max\{|x_i| | 1 \le i \le n\}$  sont des normes.

AMAL Youssef Analyse 3 2018-2019 3/37

Soit E un  $\mathbb{K}$ -espace vectoriel. Deux normes  $N_1$  et  $N_2$  sur E sont dites équivalentes s.s.i.  $\exists \alpha, \beta > 0$  telle que

$$\forall x \in E, \ \alpha N_1(x) \le N_2(x) \le \beta N_1(x).$$

# Exemple 1.5

• Les normes  $N_1$ ,  $N_2$  et  $N_\infty$  définies sur l'espace vectoriel réel  $\mathbb{R}^n$  sont équivalentes,

A vérifier que:  $N_{\infty} \leq N_1 \leq nN_{\infty}$  et  $N_{\infty} \leq N_2 \leq \sqrt{n}N_{\infty}$ .

### Exercice 1.6

• Les normes  $N_1$ ,  $N_2$  et  $N_\infty$  définies sur l'espace  $\mathbb{R}[X]$  des polynômes à coefficients réels et à degré quelconque par:

$$N_1(P) = \sum_{i \in \mathbb{N}} |a_i|, N_2(P) = \sqrt{\sum_{i \in \mathbb{N}} a_i^2}, N_{\infty}(P) = \sup_{i \in \mathbb{N}} |a_i| \text{ avec}$$

 $P = \sum_{i=0}^n a_i X^i$  et  $n \in \mathbb{N}$  , ne sont pas équivalentes

Soit (E, N) un espace vectoriel normé,  $a \in E$  et  $r \in ]0, +\infty[$ .

- La boule ouverte de centre a et de rayon r est :  $B(a,r) = \{x \in E | N(x-a) < r\}.$
- La boule fermée de centre a et de rayon r est :  $B_F(a,r) = \{x \in E | N(x-a) \le r\}$

- **1** Dans l'e.v.  $(\mathbb{R}, |.|)$ , on a: B(a, r) = ]a r, a + r[ et  $B_F(a, r) = [a r, a + r].$
- ② Dans  $\mathbb{R}^2$ , on a:  $B_{1,F}(O,1) \subset B_{2,F}(O,1) \subset B_{\infty,F}(O,1)$

Un ensemble A d'un e.v.n E est appelé ouvert si,  $\forall a \in A, \exists r > 0$  tq  $B(a,r) \subset A$ . L'ensemble des ouverts de E est noté par  $\mathcal{O}$ .

- **1** Dans l'e.v.n E,  $\emptyset$  et E sont des ouverts de E.
- **②** Soit a, b deux réels tels que a < b. L'intervalle ]a, b[ est un ouvert dans  $\mathbb{R}$ .
- 3 Dans l'e.v.n E, une boule ouverte est un ouvert.

Un ensemble A d'un e.v.n E est appelé fermé si son complémentaire  $A^c$  est ouvert. L'ensemble des fermés de E est noté par  $\mathcal{F}$ .

- **1** Dans l'e.v.n E,  $\emptyset$  et E sont des fermés de E.
- ullet Soit a,b deux réels tels que a < b. L'intervalle [a,b] est un fermé dans  $\mathbb{R}$ .
- 3 Dans l'e.v.n E, une boule fermée est un fermé.

#### Théorème 1.13

Deux normes équivalentes sur un e.v.n E définies mêmes parties ouvertes de E.

### Théorème 1.14

Toutes les normes définies sur un espace vectoriel de dimension finie sont équivalente.

# Exemple 1.15

- **1** les normes de l'e.v  $\mathbb{R}^n$  sont équivalentes.
- 2 Les normes de l'e.v  $\mathbb{R}[X]$  ne sont pas forcément équivalentes.

# Remarque 1.16

Si A est un ouvert pour une norme  $N_1$  de  $\mathbb{R}^n$  alors A est aussi ouvert pour tout autre norme  $N_2$  définie sur  $\mathbb{R}^n$ .

### Propriété 1.17

Soit (E, N) un espace vectoriel normé.

- lacksquare  $\emptyset$  et E sont à la fois des ouverts et des fermés de E.

- Si  $\forall i \in I, B_i \in \mathcal{F} Alors \bigcap_{i \in I} B_i \in \mathcal{F}.$
- $Si \ \forall i \in \{1,...,n\}, \ B_i \in \mathcal{F} \ Alors \bigcup_{i=1}^n B_i \in \mathcal{F}.$

### Exercice 1.18

Soit la famille des ouverts  $(A_n)_{n\in\mathbb{N}^*}$  avec  $A_n=]-1/n,1/n[$ . Montrer que  $\bigcap A_n\notin\mathcal{O}$ .

AMAL Youssef Analyse 3 2018-2019 9/37

Soit  $(E, \| . \|)$ , un espace vectoriel normé, et  $a \in E$ . On dit que V est un **voisinage** de a s'il existe r > 0 tel que  $B(a, r) \subset V$ . L'ensemble des voisinages de a est noté par  $\mathcal{V}(a)$ .

- $\bullet$  [0, 1] est un voisinage de 1/2.
- ②  $B_F(O,1) \in \mathcal{V}((-1/2,0))$ , par contre  $B_F(O,1) \notin \mathcal{V}((0,1))$ .
- toute partie ouverte est voisinage de chacun de ses points

Soit  $(E, \| . \|)$ , un espace vectoriel normé, A un ensemble de E et  $a \in E$ . On dit que a est **intérieur** à A ssi A est voisinage de a:

 $\exists r>0$  tel que  $B(a,r)\subset A$ . L'ensemble des points intérieurs à A est appelé l'intérieur de A est noté par  $\mathring{A}$  ou int(A).

# Exemple 1.22

- int([0,1[)=]0,1[.
- $int(]0,1[\cup\{2\})=?.$

# Propriété 1.23

Soit A, un sous-ensemble d'un espace vectoriel normé E.

- Å est un ouvert.
- ②  $\mathring{A}$  est le plus grand ouvert inclus dans A.
- **3** A est ouvert si et seulement si  $A = \mathring{A}$ .

Soit  $(E, \| \cdot \|)$ , un espace vectoriel normé, A un sous ensemble de E et  $a \in E$ . On dit que a est **adhérent** à A ssi  $\forall r > 0$  tel que  $B(a, r) \cap A \neq \emptyset$ . L'adhérence de A, notée  $\overline{A}$ , est l'ensemble des adhérents de A.

- $\overline{ [0,1[\cup\{2\}]} = ?.$

# **Proposition 1.26**

Soit A, un sous-ensemble d'un espace vectoriel normé E. Alors  $(\overline{A})^c = (\mathring{A}^c)$ .

# Propriété 1.27

Soit A, un sous-ensemble d'un espace vectoriel normé E.

- $\bullet$   $\overline{A}$  est un fermé.
- ②  $\overline{A}$  est le plus petit fermé contenant A.
- **3** A est fermé si et seulement si  $A = \overline{A}$ .

**Exercice:** Soit  $(E, \| . \|)$ , un espace vectoriel normé, et  $a \in E$ . Soit r > 0. Alors:

- $B_F(a,r) = B(a,r).$

Soit  $(E, \| . \|)$ , un espace vectoriel normé, A un sous ensemble de E. On appelle frontière de A et on note Fr(A), l'ensemble  $\overline{A} \setminus \mathring{A}$ .

# Exemple 1.29

- **2**  $B_F(O,1) \setminus B(O,1/2)$

# Propriété 1.30

Fr(A) est une partie fermée de E.

Une partie A de  $\mathbb{R}^n$  est une partie bornée de  $\mathbb{R}^n$  si:  $\exists r > 0, \forall x \in A$  on a  $\parallel x \parallel \leq r$ .

**Exemple:** Toute boule est bornée dans  $\mathbb{R}^n$ .

### **Définition 1.32**

On dit qu'une partie A de  $\mathbb{R}^n$  est compacte de  $\mathbb{R}^n$  si A est à la fois fermée et bornée.

**Exemple:**  $[0,1] \times [-2,0]$  est un compacte de  $\mathbb{R}^2$ .

On appelle suite à valeurs dans  $\mathbb{R}^n$  toute application de  $\{p_0,p_0+1,...\}$  dans  $\mathbb{R}^n$ , une telle suite est dite définie à partir du rang  $p_0$ . On la note  $(U_p)_{p\geq p_0}$ . Le vecteur  $U_p=(U_{1,p},...,U_{n,p})\in\mathbb{R}^n$  est appelé terme générale de la suite.

#### **Définition 1.34**

Une suite  $(U_p)_{p\in\mathbb{N}}$  dans  $\mathbb{R}^n$  a pour limite le vecteur  $l\in\mathbb{R}^n$  si:  $\forall \ \varepsilon>0 \ \exists N\in\mathbb{N} \ \text{tel que} \parallel U_p-l \parallel < \varepsilon$  et on écrit  $\lim_{p\to +\infty} U_p=l$ .

#### **Exercice:**

Soit  $N_1$  et  $N_2$  deux normes définies sur  $\mathbb{R}^n$  et soit  $(U_p)_p$  une suite dans  $\mathbb{R}^n$  et  $l \in \mathbb{R}^n$  tels que  $\lim_{p \to +\infty} N_1(U_p - l) = 0$ . Montrer qu'on a aussi:  $\lim_{p \to +\infty} N_2(U_p - l) = 0$ .

### **Exemple:**

• La suite de terme générale  $U_p = (1/p, -1)$  converge vers l = ? dans  $\mathbb{R}^2$ .

2 La suite de terme générale  $U_p = (0, p)$  définie dans  $\mathbb{R}^2$  ...?.

### Propriété 1.35

Soient  $(U_p)_p$ ,  $(V_p)_p$  deux suites de  $\mathbb{R}^n$ ,  $(l, l') \in \mathbb{R}^n \times \mathbb{R}^n$  et  $\alpha \in \mathbb{R}$ .

- Si  $\lim_{n \to +\infty} U_p = l$  alors l est unique.
- ② Si  $\lim_{p\to +\infty} U_p = l$  alors pour toute suite extraite  $(U_{\phi(p)})_p$  de  $(U_p)_p$  (  $\phi$  est une application strictement croissante de  $\mathbb{N}$  dans  $\mathbb{N}$  ) on a  $\lim_{n\to+\infty} U_{\phi(p)} = l$ .
- $\circ$  Si  $\lim_{n \to +\infty} U_p = l$  et  $\lim_{p \to +\infty} V_p = l'$  alors  $\lim_{p\to +\infty} U_p + V_p = \lim_{p\to +\infty} U_p + \lim_{p\to +\infty} V_p = l + l'.$

- $\forall i=1,\ldots,n.$

### **Exemple:**

Calculer les limites suivantes:

- $\bullet \lim_{n \to +\infty} (\cos(1/n), \arctan(n)).$

# **Proposition 1.36**

Une partie A de  $\mathbb{R}^n$  est fermée s.s.i.  $\forall (U_p)_p \subset A$  telle que  $\lim_{p \to +\infty} U_p = l$  alors  $l \in A$ .

### **Exercice:**

Montrer que  $A=\{(x,y)\in\mathbb{R}^2|\ x^2+y>1\}$  n'est pas une partie fermée de  $\mathbb{R}^2$ .

# Théorème 1.37 (Bolzano-Weierstrass)

Une partie A de  $\mathbb{R}^n$  est compacte s.s.i. toute suite  $(U_p)_p$ , à valeurs dans A, admet une sous-suite  $(U_{\phi(p)})_p$  qui converge vers une limite  $l \in A$ .

### Exercice:

Soit K une partie compacte de  $\mathbb{R}^2$  et soit X une partie fermée de  $\mathbb{R}^2$  telles que  $K\cap X=\emptyset$ . Montrer que la distance entre K et X est non nulle: il existe  $\delta>0$  tel que  $\parallel k-x\parallel\geq \delta$  pour tout  $(k,x)\in K\times X$ .

#### **Fonction scalaire**

#### **Définition 2.1**

Une fonction réelle, dite aussi fonction scalaire, de p variables réelles est une application d'une partie D de  $\mathbb{R}^p$  à valeurs dans  $\mathbb{R}$ , notée par:

$$\begin{split} f: D \subset \mathbb{R}^p &\longrightarrow \mathbb{R} \\ (x_1, ..., x_p) &\mapsto z = f(x_1, ..., x_p) \end{split}$$

où D est l'ensemble de définition de f, constitué de tout vecteur de  $\mathbb{R}p$  dont l'image par f existe dans  $\mathbb{R}$ .

### **Exemple:**

La fonction

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
  
 $(x,y) \mapsto f(x,y) = \sqrt{1 - x^2 - y^2}$ 

est définie pour les valeurs de x et y telles que  $x^2 + y^2 \le 1$ . Dans un repère orthonormé,  $D_f = B_F(O, 1)$ .

### Graphe

- $\bullet$   $f: \mathbb{R}^2 \to \mathbb{R}$
- $\bullet \ S = \{(x,y,z) \in \mathbb{R}^3 \mid \ z = f(x,y)\}.$
- S est le graphe de la fonction f.



#### **Fonction vectorielle**

#### **Définition 2.2**

Une fonction vectorielle de p variables réelles est une application d'une partie  $D \subset \mathbb{R}^p$  à valeurs dans  $\mathbb{R}^q$ , noté par:

$$\begin{split} f: D \subset \mathbb{R}^p &\longrightarrow \mathbb{R}^q \\ (x_1, ..., x_p) &\mapsto (f_1(x_1, ..., x_p), ..., f_q(x_1, ..., x_p)) \end{split}$$

où D est l'ensemble de définition de f, constitué de tout vecteur de  $\mathbb{R}^p$  dont l'image par f existe dans  $\mathbb{R}^q$ . Les  $f_i$  sont appelées fonctions coordonnées de f.

Remarque: Le domaine de définition de la fonction vectorielle f est:

$$D_f = \bigcap_{i=1}^q D_{f_i}.$$

### **Exemple:**

Déterminer le domaine de définition de la fonction vectorielle suivante:

$$\begin{split} f: \mathbb{R}^2 &\longrightarrow \mathbb{R}^3 \\ (x,y) &\mapsto f(x,y) = (\sqrt{1-x^2-y^2}, xy, \frac{1}{x-y}) \end{split}$$

### Fonction partielle

### **Définition 2.3**

Soit  $f: D \subset \mathbb{R}^p \longrightarrow \mathbb{R}^q$ . Soit  $a = (a_1, ..., a_p) \in D$ . Pour i = 1, ..., p, on appelle i-ème fonction partielle de f en a définie sur le domaine  $D_i = \{x \in \mathbb{R} \mid (a_1, ..., a_{i-1}, x, a_{i+1}, ..., a_p) \in D\}$  la fonction suivante :

$$f_{a,i}: D_i \subset \mathbb{R} \longrightarrow \mathbb{R}^q$$
  
  $x \mapsto f(a_0, ..., a_{i-1}, x, a_{i+1}, ..., a_p)$ 

### **Exemple:**

Donner les expressions de la 1-ère et de la 2-ème fonction partielle en a=(1/2,1) de la fonction suivante:

$$f: B_2(O,2) \longrightarrow \mathbb{R}$$
  
 $(x,y) \mapsto f(x,y) = \sqrt{4 - x^2 - y^2}$ 

Soit f une fonction de  $D \subset \mathbb{R}^p$  dans  $\mathbb{R}^q$  et  $l \in \mathbb{R}^q$ . Soit  $a \in D$ . On dit que  $\lim_{x \to a} f(x) = l$  si  $\forall \varepsilon > 0 \; \exists \alpha > 0$  tels que  $\forall x \in D$  et  $0 < \parallel x - a \parallel < \alpha$  impliquent  $\parallel f(x) - l \parallel < \varepsilon$ .

# Remarque:

- La notion de limite ne dépend pas des normes utilisées.
- 2 La limite si elle existe est unique.

# **Proposition 2.5**

Soit 
$$f$$
 une fonction de  $D \subset \mathbb{R}^p$  dans  $\mathbb{R}^q$  et  $l \in \mathbb{R}^q$ . Soit  $a \in \overline{D}$ . Alors  $\lim_{x \to a} f(x) = l$  ssi  $\forall (x_n)_n \subset D \setminus \{a\}$  tel que  $\lim_{n \to +\infty} x_n = a$  implique  $\lim_{n \to +\infty} f(x_n) = l$ 

### **Exemple:**

On considère la fonction suivante:

$$f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$$
$$(x,y) \mapsto \frac{xy}{x^2 + y^2}$$

Étudier la limite de f en (0,0)?

# Propriété 2.6

Soient f et g deux fonctions sur  $D \subset \mathbb{R}^p$  à valeurs dans  $\mathbb{R}^q$  telles que  $\lim_{x \to a} f(x) = l_1$  et  $\lim_{x \to a} g(x) = l_2$ , alors

- Pour tout  $(\alpha, \beta) \in \mathbb{R}^2$  on  $a \lim_{x \to a} \alpha f(x) + \beta g(x) = \alpha l_1 + \beta l_2$ .
- $\lim_{x \to a} \langle f(x), g(x) \rangle = \langle l_1, l_2 \rangle.$
- **3** Dans le cas où q=1, si  $l_1 \neq 0$  alors  $\lim_{x\to a} f(x)/g(x) = l_1/l_2$ .

Calculer 
$$\lim_{(x,y)\to(0,0)} \frac{(1+x^2y^2)\sin(y)}{y}$$
.

### Théorème 2.7 (Théorème des Gendarmes)

Soit  $a \in \mathbb{R}^p$  et soient f, g et h trois fonctions définies sur  $D \subset \mathbb{R}^p$  à valeurs dans  $\mathbb{R}$  vérifiant les deux propriétés suivantes:

- ② Il existe  $\alpha > 0$  tel que pour tout  $x \in D$ ,  $0 < \|x a\| < \alpha$  on a  $f(x) \le h(x) \le g(x)$ . Alors  $\lim_{x \to a} h(x) = l$ .

Calculer 
$$\lim_{(x,y)\to(0,0)} x^2 \sin(\frac{1}{x^2+y^2}).$$

### **Proposition 2.8**

Soient 
$$f: D_f \subset \mathbb{R}^n \to \mathbb{R}^p$$
 et  $g: D_g \subset \mathbb{R}^m \to \mathbb{R}^n$ . Supposons que  $g(D_g) \subset D_f$ ,  $\lim_{t \to a} g(t) = b$  et que  $\lim_{x \to b} f(x) = l$ . Alors,  $\lim_{t \to a} f \circ g(t) = l$ .

• Calculer 
$$\lim_{(x,y)\to(0,0)} (x+y) \ln(x+y)$$
.

Chaque point P(x,y) du plan  $\mathbb{R}^2$  peut être déterminée par les coordonnées polaires qui sont la coordonnée radiale  $r = \parallel \overrightarrow{OP} \parallel$  et la coordonné angulaire  $\theta$ , suivant l'application suivante:

$$\begin{split} \mathbb{R}_+^* \times [0, 2\pi[ \to \mathbb{R}^2 \setminus (0, 0) \\ (r, \theta) \mapsto (x, y) = (r \cos(\theta), r \sin(\theta)), \end{split}$$

dont l'application réciproque est l'application suivante:

$$\mathbb{R}^2 \setminus (0,0) \to \mathbb{R}_+^* \times [0,2\pi[(x,y) \mapsto (r,\theta),$$

$$\text{où } r = \sqrt{x^2 + y^2} \text{ et } \theta \text{ est d\'efini comme suit: } \theta = \left\{ \begin{array}{ll} \arctan(y/x) & \text{si } x > 0 \text{ et } y \geq 0, \\ \arctan(y/x) + 2\pi & \text{si } x > 0 \text{ et } y < 0, \\ \arctan(y/x) + \pi & \text{si } x < 0, \\ \pi/2 & \text{si } x = 0 \text{ et } y > 0, \\ 3\pi/2 & \text{si } x = 0 \text{ et } y < 0. \end{array} \right.$$

- La condition sur les deux variables  $(x,y) \to 0$  devient une condition sur une seule variable  $r \to 0$ .
- Si on étudie une limite quand  $(x,y) \to (a,b)$ , on ramène le problème en (0,0) par translation des
- $\begin{array}{l} \text{variables, } x=a+h, y=b+k \text{ avec } (h,k) \xrightarrow{\rightarrow} (0,0). \\ \bullet \text{ Calculer les limites suivantes: } \lim_{(x,y)\rightarrow(0,0)} \frac{x^3}{x^2+y^2}, \lim_{(x,y)\rightarrow(0,0)} \frac{x^2-y^2}{x^2+y^2} \text{ et } \lim_{(x,y)\rightarrow(0,0)} \frac{x^2+y^2}{x}. \end{array}$

Une fonction  $f:D\subset\mathbb{R}^p\to\mathbb{R}^q$  est continue en  $a\in D$  ssi  $\lim_{x\to a}f(x)=f(a)$ . On dit que f est continue sur D si elle est continue en tout point de D.

# **Proposition 2.11**

Une fonction  $f: D \subset \mathbb{R}^p \to \mathbb{R}^q$  est continue en  $a \in D$  ssi pour toute suite  $(x_n)_n \subset D$  telle que  $\lim_{n \to +\infty} x_n = a$ , on  $a \lim_{x \to a} f(x_n) = f(a)$ .

### **Proposition 2.12**

Soit  $f: D \subset \mathbb{R}^p \to \mathbb{R}^q$  une fonction continue au point  $a = (a_1, ..., a_p)$  alors les p fonctions partielles  $f_{a,i}$  de f sont continues en  $a_i$  pour tout i = 1, ..., p.

**Exemple:** Soit 
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
,  $\forall (x,y) \neq (0,0)$  et  $f(0,0) = 0$ .

- Étudier la continuité des fonctions partielles  $f_{O,1}$  et  $f_{O,2}$  de la fonction f au point (0,0).
- ② Que peut dire de la continuité de la fonction f au point (0,0).

# Propriété 2.13

Soient f et g deux fonctions définies sur  $D \subset \mathbb{R}^p$  à valeurs dans  $\mathbb{R}^q$  et continues en a, alors:

- **1** Pour tout  $(\alpha, \beta) \in \mathbb{R}^2$ , la fonction  $\alpha f + \beta g$  est continue en a.
- ② de même < f, g > et  $\parallel f \parallel$  sont continues en a.
- **3** Dans le cas où q = 1, si  $g \neq 0$  au voisinage de a alors la fonction f/g est continue en a.
- la composée de fonctions continues est continue.

# **Exemples:** les fonctions suivantes sont continues:

- ②  $f: \mathbb{R}^p \to \mathbb{R}$  avec  $f(x_1, ..., x_p) = ax_1^{i_1} x_2^{i_2} ... x_p^{i_p}, a \in \mathbb{R}$  et  $i_1, ..., i_p \in \mathbb{N}$ .
- $\bullet$  les fonctions polynômes définis sur  $\mathbb{R}^p$ .
- **1** les applications linéaires définies sur  $\mathbb{R}^p$  dans  $\mathbb{R}^q$  (même lipschitzienne).

Soit  $f: D \subset \mathbb{R}^p \to \mathbb{R}^q$ . Soit  $a \in \overline{D} \setminus D$ . Si f a une limite l lorsque x tend vers a, on peut étendre le domaine de définition de f à  $D \cup \{a\}$  en posant f(a) = l. Et on dit que f est prolongeable par continuité au point a.

**Exemple:** Pour quel paramètre  $\alpha > 0$  la fonction  $f:(x,y) \mapsto \frac{x^{\alpha}y}{x^2 + y^2}$  est-elle prolongeable par continuité au point (0,0)?

### Théorème 2.15

Soit f une fonction continue sur  $D \subset \mathbb{R}^p$  à valeurs dans  $F \subset \mathbb{R}^q$ . Les propriétés suivantes sont équivalentes:

- f est continue en tout point de D,
- ② pour tout ouvert U de F,  $f^{-1}(U) = \{x \in D \mid f(x) \in U\}$  est un ouvert de D.
- pour tout fermé V de F,  $f^{-1}(V)$  est un fermé de D.

**Exemple:** Montrer que l'ensemble  $A = \{(x, y) \in \mathbb{R}^2 \mid y^2 = x(1 - 2x)\}$  est fermé de  $\mathbb{R}^2$ .

#### Théorème 2.16

Soit f une fonction continue sur  $D \subset \mathbb{R}^p$  à valeurs dans  $\mathbb{R}^q$ . Soit A un compact de  $\mathbb{R}^p$  tel que  $A \subset D$ . Alors f(A) est un compact de  $\mathbb{R}^q$ .

### Corollaire 2.17

Soit A un compact de  $\mathbb{R}^p$ . Soit f une fonction continue sur  $A \subset \mathbb{R}^p$  à valeurs dans  $\mathbb{R}$ . Alors f est bornée et atteint ses bornes sur A.

**Exercice:** Soit  $C = \{(x,y) \in \mathbb{R}^2; x+y=1, x \geq 0, y \geq 0\}$ . et Soit  $f: C \to \mathbb{R}^{+*}$  une fonction continue. Démontrer que  $\inf_{x \in C} f(x) > 0$ .

Soit  $A \subset \mathbb{R}^n$ , avec  $n \geq 1$ . Une séparation de A est une paire (O, O') d'ouverts non vides de  $\mathbb{R}^n$  tels que:

# **Exemple:**

• Dans  $\mathbb{R}$ , le paire (]-1,1[,]1/2,2[) est une séparation de l'ensemble  $[0,1/2[\cup]1,3/2]$ .

Soit  $A \subset \mathbb{R}^n$ , avec  $n \ge 1$ . A est dit connexe si A n'admet aucune séparation.

# **Exemple:**

• l'ensemble  $[0, 1/2[\cup]1, 3/2]$  n'est pas un connexe.

### **Proposition 2.20**

Dans  $\mathbb{R}$ , tout ensemble est connexe si seulement s'il est un intervalle.

Soient x et y sont deux points de  $\mathbb{R}^n$ , avec  $n \geq 1$ , on appelle chemin d'origine x et d'extrémité y toute application continue  $\gamma:[0,1] \to \mathbb{R}^n$  telle que  $\gamma(0) = x$  et  $\gamma(1) = y$ .

### **Définition 2.22**

Une partie A de  $\mathbb{R}^n$  est dite connexe par arcs si tout couple de points de A est relié par un chemin restant dans A.

### **Définition 2.23**

Soit  $A \subset \mathbb{R}^n$ , avec  $n \ge 1$ . A est dit convexe si pour tout a et b de A, le segment  $[a,b] = \{(1-t)a + tb; \ t \in [0,1]\}$  est contenu dans A.

- Dans  $\mathbb{R}^n$ , toute partie convexe est connexe par arcs
- Un cercle est un connexe par arcs.

#### Théorème 2.24

Soit  $p, q \in \mathbb{N}^*$ . Soit A une partie connexe (respectivement connexe par arcs) de  $\mathbb{R}^p$ . Soit  $f: A \to \mathbb{R}^q$  une application continue. Alors f(A) est aussi connexe (respectivement connexe par arcs).

### Corollaire 2.25

Si  $A \subset \mathbb{R}^p$ , avec  $p \in \mathbb{N}^*$ , est connexe par arc alors A est connexe.

# **Exemple:**

• Tout ensemble convexe est connexe.

### **Définition 2.26**

Une partie A de  $\mathbb{R}^p$  est dite étoilée s'il existe  $a \in A$  tel que  $[a, x] \subset D$  pour tout  $x \in A$ .

### **Exercice:**

- Toute partie convexe est une partie étoilé dans  $\mathbb{R}^p$ . La réciproque n'est pas en générale vraie.
- $A = ([0,1] \times [0,1]) \cup ([1,2] \times [0,2])$  est étolé mais non convexe.

AMAL Youssef Analyse 3 2018-2019 37/37