Intervals, Transformations, and Slope Solution (version 5)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-8, -5) \cup (-3, 3)$
Negative	$(-10, -8) \cup (-5, -3)$
Increasing	$(-10, -6) \cup (-4, -2)$
Decreasing	$(-6, -4) \cup (-2, 3)$
Domain	(-10,3)
Range	(-9,9)

Intervals, Transformations, and Slope Solution (version 5)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=34$ and $x_2=54$. Express your answer as a reduced fraction.

\overline{x}	g(x)
34	97
54	62
62	34
97	54

$$\frac{g(54) - g(34)}{54 - 34} = \frac{62 - 97}{54 - 34} = \frac{-35}{20}$$

The greatest common factor of -35 and 20 is 5. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-7}{4}$$

2