Quantum Toroidal Superalgebras

Luan Bezerra Joint work with Evgeny Mukhin

IUPUI

2019

Definition.

Vertex Representations

Evaluation Homomorphism.

Definition

Vertex Representations.

3 Evaluation Homomorphism.

Definition

Vertex Representations

3 Evaluation Homomorphism.

• It is an affinization of $U_q \widehat{\mathfrak{gl}}_{m|n}$ with $m,n \geq 1$ and $m \neq n$;

- It is an affinization of $U_q \widehat{\mathfrak{gl}}_{m|n}$ with $m, n \geq 1$ and $m \neq n$;
- Generators: $E_i(z)$, $F_i(z)$, $K_i^{\pm}(z)$, C, $i \in \hat{I}$;

- It is an affinization of $U_q \widehat{\mathfrak{gl}}_{m|n}$ with $m, n \ge 1$ and $m \ne n$;
- Generators: $E_i(z)$, $F_i(z)$, $K_i^{\pm}(z)$, C, $i \in \hat{I}$;

• Depends on two complex parameters: $q_1q_2q_3 = 1$, $q_2 = q^2$;

- It is an affinization of $U_q \widehat{\mathfrak{gl}}_{m|n}$ with $m, n \geq 1$ and $m \neq n$;
- Generators: $E_i(z)$, $F_i(z)$, $K_i^{\pm}(z)$, C, $i \in \hat{I}$;

- Depends on two complex parameters: $q_1q_2q_3 = 1$, $q_2 = q^2$;
- It has a vertical subalgebra $U_q^{ver}\widehat{\mathfrak{sl}}_{m|n}\cong U_q\widehat{\mathfrak{sl}}_{m|n}$ given in new Drinfeld realization,

- It is an affinization of $U_q \widehat{\mathfrak{gl}}_{m|n}$ with $m, n \geq 1$ and $m \neq n$;
- Generators: $E_i(z)$, $F_i(z)$, $K_i^{\pm}(z)$, C, $i \in \hat{I}$;

- Depends on two complex parameters: $q_1q_2q_3 = 1$, $q_2 = q^2$;
- It has a vertical subalgebra $U_q^{ver}\widehat{\mathfrak{sl}}_{m|n}\cong U_q\,\widehat{\mathfrak{sl}}_{m|n}$ given in new Drinfeld realization,
- and a horizontal subalgebra $U_q^{hor}\widehat{\mathfrak{sl}}_{m|n} \cong U_q\widehat{\mathfrak{sl}}_{m|n}$ given in Drinfeld-Jimbo realization.

Relations

$$K_{i}K_{j} = K_{j}K_{i}, \quad K_{i}E_{j}(z)K_{i}^{-1} = q^{A_{i,j}}E_{j}(z), \quad K_{i}^{\pm}(z)K_{j}^{\pm}(w) = K_{j}^{\pm}(w)K_{i}^{\pm}(z),$$

$$K_{i}^{\pm}(z)K_{j}^{\pm}(w) = K_{j}^{\pm}(w)K_{i}^{\pm}(z),$$

$$\frac{d^{M_{i,j}}C^{-1}z - q^{A_{i,j}w}}{d^{M_{i,j}}Cz - q^{A_{i,j}w}}K_{i}^{-}(z)K_{j}^{+}(w) = \frac{d^{M_{i,j}}q^{A_{i,j}}C^{-1}z - w}{d^{M_{i,j}}q^{A_{i,j}}Cz - w}K_{j}^{+}(w)K_{i}^{-}(z),$$

$$(d^{M_{i,j}}z - q^{A_{i,j}w})K_{i}^{\pm}(C^{-\frac{1\pm 1}{2}}z)E_{j}(w) = (d^{M_{i,j}}q^{A_{i,j}}z - w)E_{j}(w)K_{i}^{\pm}(C^{-\frac{1\pm 1}{2}}z),$$

$$[E_{i}(z), F_{j}(w)] = \frac{\delta_{i,j}}{q - q^{-1}}(\delta(C\frac{w}{z})K_{i}^{+}(w) - \delta(C\frac{z}{w})K_{i}^{-}(z)),$$

$$[E_{i}(z), E_{j}(w)] = 0, [F_{i}(z), F_{j}(w)] = 0 \qquad (A_{i,j}=0),$$

+ Serre relations.

 $(d^{M_{i,j}}z - q^{A_{i,j}}w)E_i(z)E_i(w) = (-1)^{|i||j|}(d^{M_{i,j}}q^{A_{i,j}}z - w)E_i(w)E_i(z)$

 $(A_{i,i}\neq 0),$

• Diagram isomorphism

$$\sigma: \mathcal{E}_{m|n}(q_1, q_2, q_3) \rightarrow \mathcal{E}_{m|n}(q_3, q_2, q_1), \quad \sigma(\mathcal{E}_i(z)) = \mathcal{E}_{m-i}(z);$$

Diagram isomorphism

$$\sigma: \mathcal{E}_{m|n}(q_1, q_2, q_3) \to \mathcal{E}_{m|n}(q_3, q_2, q_1), \quad \sigma(E_i(z)) = E_{m-i}(z);$$

• change of parity isomorphism

$$au: \mathcal{E}_{m|n}(q_1, q_2, q_3) \to \mathcal{E}_{n|m}(q_3^{-1}, q_2^{-1}, q_1^{-1}), \quad \tau(E_i(z)) = E_{-i}(z);$$

• Diagram isomorphism

$$\sigma: \mathcal{E}_{m|n}(q_1, q_2, q_3) \rightarrow \mathcal{E}_{m|n}(q_3, q_2, q_1), \quad \sigma(E_i(z)) = E_{m-i}(z);$$

• change of parity isomorphism

$$au: \mathcal{E}_{m|n}(q_1, q_2, q_3) \to \mathcal{E}_{n|m}(q_3^{-1}, q_2^{-1}, q_1^{-1}), \quad \tau(E_i(z)) = E_{-i}(z);$$

• it has a topological Hopf superalgebra structure:

$$\Delta E_i(z) = E_i(z) \otimes 1 + K_i^-(z) \otimes E_i(C \otimes z);$$

• Diagram isomorphism

$$\sigma: \mathcal{E}_{m|n}(q_1, q_2, q_3) \to \mathcal{E}_{m|n}(q_3, q_2, q_1), \quad \sigma(E_i(z)) = E_{m-i}(z);$$

• change of parity isomorphism

$$au: \mathcal{E}_{m|n}(q_1, q_2, q_3) \to \mathcal{E}_{n|m}(q_3^{-1}, q_2^{-1}, q_1^{-1}), \quad \tau(E_i(z)) = E_{-i}(z);$$

• it has a topological Hopf superalgebra structure:

$$\Delta E_i(z) = E_i(z) \otimes 1 + K_i^-(z) \otimes E_i(C \otimes z);$$

• it has a two dimensional center.

• Different parity choices yield isomorphic superalgebras;

• Different parity choices yield isomorphic superalgebras;

 Miki automorphism: interchanges the vertical and horizontal subalgebras.

Level 1 Modules - Vertex Operators

• The Frenkel-Kac construction of $U_q \, \widehat{\mathfrak{gl}}_n$ -modules was extended to the quantum toroidal (purely even) case [S]. We use the same technique to extend the construction of level 1 $U_q \, \widehat{\mathfrak{gl}}_{m|n}$ -modules [KSU] to $\mathcal{E}_{m|n}$ -modules.

Level 1 Modules - Vertex Operators

- The Frenkel-Kac construction of $U_q \, \widehat{\mathfrak{gl}}_n$ -modules was extended to the quantum toroidal (purely even) case [S]. We use the same technique to extend the construction of level 1 $U_q \, \widehat{\mathfrak{gl}}_{m|n}$ -modules [KSU] to $\mathcal{E}_{m|n}$ -modules.
- As in the affine case, the modules obtained are not irreducible.

Level 1 Modules - Vertex Operators

- The Frenkel-Kac construction of $U_q \, \widehat{\mathfrak{gl}}_n$ -modules was extended to the quantum toroidal (purely even) case [S]. We use the same technique to extend the construction of level 1 $U_q \, \widehat{\mathfrak{gl}}_{m|n}$ -modules [KSU] to $\mathcal{E}_{m|n}$ -modules.
- As in the affine case, the modules obtained are not irreducible.
- It is conjectured the irreducible modules are the kernel (or cokernel) of some screening operators.

Theorem

Fix $u \in \mathbb{C}^{\times}$. We have a surjective homomorphism of superalgebras $\operatorname{ev}_u : \mathcal{E}_{m|n} \to \widetilde{U}_q \, \widehat{\mathfrak{gl}}_{m|n}$ with $\mathbf{c}^2 = \mathbf{q}_3^{m-n}$. In particular, any admissible $U_q \, \widehat{\mathfrak{gl}}_{m|n}$ -module on which the central element c acts as an arbitrary scalar α can be lifted to an $\mathcal{E}_{m|n}$ -module choosing \mathbf{q}_3 satisfying $\alpha^2 = \mathbf{q}_3^{m-n}$.

Theorem

Fix $u \in \mathbb{C}^{\times}$. We have a surjective homomorphism of superalgebras $\operatorname{ev}_u: \mathcal{E}_{m|n} \to \widetilde{U}_q \, \widehat{\mathfrak{gl}}_{m|n}$ with $\mathbf{c}^2 = \mathbf{q}_3^{m-n}$. In particular, any admissible $U_q \, \widehat{\mathfrak{gl}}_{m|n}$ -module on which the central element c acts as an arbitrary scalar α can be lifted to an $\mathcal{E}_{m|n}$ -module choosing \mathbf{q}_3 satisfying $\alpha^2 = \mathbf{q}_3^{m-n}$.

• Generators with index $i \in I$ $(U_q^{ver} \widehat{\mathfrak{sl}}_{m|n})$ are mapped to generators;

Theorem

Fix $u \in \mathbb{C}^{\times}$. We have a surjective homomorphism of superalgebras $\operatorname{ev}_u: \mathcal{E}_{m|n} \to \widetilde{U}_q \, \widehat{\mathfrak{gl}}_{m|n}$ with $\mathbf{c}^2 = \mathbf{q}_3^{m-n}$. In particular, any admissible $U_q \, \widehat{\mathfrak{gl}}_{m|n}$ -module on which the central element c acts as an arbitrary scalar α can be lifted to an $\mathcal{E}_{m|n}$ -module choosing \mathbf{q}_3 satisfying $\alpha^2 = \mathbf{q}_3^{m-n}$.

- Generators with index $i \in I$ $(U_q^{ver}\widehat{\mathfrak{sl}}_{m|n})$ are mapped to generators;
- Generators corresponding to the node 0 are mapped to "dressed" currents:

$$E_0(z)\mapsto u^{-1}$$

$$E_0(z) \mapsto u^{-1}$$
 $X^-(z)$

$$\mathsf{X}^{-}(z) = \left[\prod_{i=1}^{m+n-2} \left(1 - \frac{z_{i+1}}{z_{i}} \right) \right] x_{1}^{-}(q^{-1}c^{-1}z_{1}) \cdots x_{m}^{-}(q^{-m}c^{-1}z_{m}) \times \\ \times \cdots x_{m+i}^{-}(q^{-m+i}c^{-1}z_{m+i}) \cdots x_{m+n-1}^{-}(q^{-m+n-1}c^{-1}z_{m+n-1}) \right|_{z_{1}=\cdots=z_{m+n-1}=z} \\ x_{i}^{-}(z) \text{ are current generators of } U_{a}\widehat{\mathfrak{gl}}_{m|n}.$$

$$E_0(z) \mapsto u^{-1}$$
 $X^-(z)$

 $\mathcal K$ is in the weight lattice of $U_q\widehat{\mathfrak g}{\mathfrak l}_{m|n}$,

$$X^{-}(z) = \left[\prod_{i=1}^{m+n-2} \left(1 - \frac{z_{i+1}}{z_i} \right) \right] x_1^{-}(q^{-1}c^{-1}z_1) \cdots x_m^{-}(q^{-m}c^{-1}z_m) \times \\ \times \cdots x_{m+i}^{-}(q^{-m+i}c^{-1}z_{m+i}) \cdots x_{m+n-1}^{-}(q^{-m+n-1}c^{-1}z_{m+n-1}) \Big|_{z_1 = \cdots = z_{m+n-1} = z},$$

 $x_i^-(z)$ are current generators of $U_q\widehat{\mathfrak{gl}}_{m|n}$.

$$E_0(z) \mapsto u^{-1} \exp(A^-(z)) X^-(z) \exp(A^+(z)) \mathcal{K},$$

 ${\mathcal K}$ is in the weight lattice of $U_q\widehat{\widehat{\mathfrak gl}}_{m|n}$,

$$A^{\pm}(z) = \sum_{r>0} A_{\pm r} z^{\mp r}$$
,

$$X^{-}(z) = \left[\prod_{i=1}^{m+n-2} \left(1 - \frac{z_{i+1}}{z_i} \right) \right] x_1^{-}(q^{-1}c^{-1}z_1) \cdots x_m^{-}(q^{-m}c^{-1}z_m) \times \\ \times \cdots x_{m+i}^{-}(q^{-m+i}c^{-1}z_{m+i}) \cdots x_{m+n-1}^{-}(q^{-m+n-1}c^{-1}z_{m+n-1}) \Big|_{z_1 = \cdots = z_{m+n-1} = z},$$

 $x_i^-(z)$ are current generators of $U_q\widehat{\mathfrak{gl}}_{m|n}$.

$$E_0(z) \mapsto u^{-1} \exp(A^-(z)) X^-(z) \exp(A^+(z)) \mathcal{K},$$

 ${\mathcal K}$ is in the weight lattice of $U_q\widehat{\widehat{\mathfrak gl}}_{m|n}$,

$$A^{\pm}(z) = \sum_{r>0} A_{\pm r} z^{\mp r}$$
,

$$A_r = -\frac{q-q^{-1}}{c^r-c^{-r}} \left(\tilde{h}_{0,r} + \sum_{i=1}^m (c^2 q^i)^r h_{i,r} + \sum_{j=m+1}^{m+n-1} (c^2 q^{2m-j})^r h_{j,r} \right),$$

$$X^{-}(z) = \left[\prod_{i=1}^{m+n-2} \left(1 - \frac{z_{i+1}}{z_i} \right) \right] x_1^{-}(q^{-1}c^{-1}z_1) \cdots x_m^{-}(q^{-m}c^{-1}z_m) \times \\ \times \cdots x_{m+i}^{-}(q^{-m+i}c^{-1}z_{m+i}) \cdots x_{m+n-1}^{-}(q^{-m+n-1}c^{-1}z_{m+n-1}) \Big|_{z_1 = \cdots = z_{m+n-1} = z},$$

 $x_i^-(z)$ are current generators of $U_q\widehat{\mathfrak{gl}}_{m|n}$.

References

- K. Kimura, J. Shiraishi, and J. Uchiyama, A level-one representation of the quantum affine superalgebra $U_q(\widehat{\mathfrak{sl}}(M+1|N+1))$, Comm. Math. Phys. **188** (1997), no. 2, 367—378
- K. Miki, Toroidal braid group action and an automorphism of toroidal algebra $U_q(\mathfrak{sl}_{n+1,tor})$ $(n \ge 2)$, Lett. Math. Phys. **47** (1999), no. 4, 365–378
- Y. Saito, *Quantum toroidal algebras and their vertex representations*, Publ. Res. Inst. Math. Sci. **34** (1998), no. 2, 155—177
- H. Yamane, On defining relations of affine Lie superalgebras and affine quantized universal enveloping superalgebras, Publ. RIMS, Kyoto Univ. **35** (1999), 321–390

Thank you!

Happy Birthday, Prof. Tarasov and Prof. Varchenko!