

"Experimental Data Processing"

Introduction to the course

Tatiana Podladchikova
Term 1B, October 2018
t.podladchikova@skoltech.ru

Useful knowledge and hidden regularities

Useful knowledge and hidden regularities

The essence of phenomena

Experimental data

Useful knowledge and hidden regularities

Control and forecasting

What regularities are visible?

What regularities are visible?

SILSO graphics (http://sidc.be/silso) Royal Observatory of Belgium 2018 October 1

11-year sunspot cycle

What regularities are visible?

SILSO graphics (http://sidc.be/silso) Royal Observatory of Belgium 2018 October 1

11-year sunspot cycle

The ascent phase is shorter than the decent one

What regularities are visible?

SILSO graphics (http://sidc.be/silso) Royal Observatory of Belgium 2018 October 1

11-year sunspot cycle

The ascent phase is shorter than the decent one

Stronger cycles grow faster in the beginning of ascent phase compared to weaker cycles

What regularities are visible?

SILSO graphics (http://sidc.be/silso) Royal Observatory of Belgium 2018 October 1

11-year sunspot cycle

The ascent phase is shorter than the decent one

Stronger cycles grow faster in the beginning of ascent phase compared to weaker cycles

Any regularities to forecast the peak of next cycle 25?

What do we need to accomplish these goals?

What do we need to accomplish these goals?

Find the best technique!

The essence of a phenomena

How?

Control and forecasting

Useful knowledge and hidden regularities

Open a book, chose a method, and you are done...

What do we need to accomplish these goals?

Find the best technique!

Is it enough?
Any problems?

How?

The essence of a phenomena

Useful knowledge and hidden regularities

Control and forecasting

Open a book, chose a method, and you are done...

or not?

Distortion of information due to random errors

How to extract the useful information from noise?

SILSO graphics (http://sidc.be/silso) Royal Observatory of Belgium 2018 September 1

SILSO graphics (http://sidc.be/silso) Royal Observatory of Belgium 2018 September 1

Noise reduction for experimental data is needed

Man-made satellite

Case 1: valid

How to determine the satellite position?

Man-made satellite

Navigation satellite

Case 1: valid

Navigation satellite 1 measures the distance to man-made satellite

Man-made satellite

Navigation satellite

Case 1: valid

Man-made satellite is somewhere on a circle

Man-made satellite

Navigation satellite

Case 1: valid

Measurements of distance to man made satellite have errors

Man-made satellite

Navigation satellite

Case 1: valid

Navigation satellite 2 also measures the distance to man-made satellite

Man-made satellite

Navigation satellite

Case 1: valid

The position of a satellite is at the intersecting points of circles

Man-made satellite

Navigation satellite

Case 2: Not valid:
Il-conditioned problem

Satellite position is undefined!

Methods of accuracy estimation

Optimal methods usually provide the accuracy of estimation

Methods of accuracy estimation

Optimal methods usually provide the accuracy of estimation

Alternative ways to estimate the accuracy are needed due to great uncertainty and non-optimal estimation

Parker Solar Probe Launch, 12 August 2018 A mission to touch the Sun!

- ✓ High costs
- ✓ Sometimes impossible

"Practice is the criterion of truth"

Simple non-optimal methods can solve difficult problems

Simple non-optimal methods are often used in conditions of high uncertainty

Simple methods are easy to apply

Simplicity of use without proper analysis may be a trap leading to false conclusions

Problem 3: no proper analysis

"Experimental data processing course" is dedicated to the solution of problems mentioned above

Main topics of the course

Main topics of the course **Standard Statistical** non-optimal methods based methods Data on state-space processing models methods **Capacity to** solve difficult **Individual** problems customizations

Main topics of the course

Standard Statistical non-optimal methods based methods Data on state-space processing models methods **Capacity to** solve difficult **Individual 3** problems customizations **Identification** of key parameters

Unexpected approaches

Applications

Navigation
Solar physics
Geomagnetism
Space weather
Biomedicine

Assignments and laboratory works

Laboratory works in class
Assignments
Final project
Exam

What do you need for laboratory works?

Laptop
Matlab, Python
Inspiration