- (a) Draw a picture of the region of integration of $\int_0^1 \int_x^{2x} dy dx$.
- (b) Exchange the order of integration to express the integral in part (a) in terms of integration in the order dx dy. Warning: your answer will have two pieces.

- (a) Find the mass M of the upper half of the annulus $1 < x^2 + y^2 < 9, y \ge 0$, with density $\delta = \frac{y}{x^2 + y^2}$.
- (b) Express the x-coordinate of the center of mass, \bar{x} , as an iterated integral. (Write explicitly the integrand and limits of integration.) Without evaluating the integral, explain why $\overline{x} = 0$.

- (a) Show that $\mathbf{F} = (3x^2 6y^2)\mathbf{i} + (-12xy + 4y)\mathbf{j}$ is conservative.
- (b) Find a potential function for \mathbf{F} .
- (c) Let C be the curve $x=1+y^3(1-y)^3,\, 0\leq y\leq 1.$ Calculate $\int_C {\bf F}\cdot d{\bf r}.$

- (a) Express the work done by the force field $\mathbf{F}=(5x+3y)\mathbf{i}+(1+\cos(y))\mathbf{j}$ on a particle moving counter-clockwise once around the unit circle centered at the origin in the form $\int_a^b f(t)\,dt$. (Do not evaluate the integral; don't even simplify f(t).)
- (b) Evaluate the line integral using Green's theorem.

Consider the rectangle R with vertices (0,0), (1,0), (1,4), and (0,4). The boundary of R is the curve C, consisting of C_1 , the segment from (0,0) to (1,0), C_2 , the segment from (1,0) to (1,4), C_3 , the segment from (1,4) to (0,4), and C_4 , the segment from (0,4) to (0,0). Consider the vector field

$$\mathbf{F} = (xy + \sin(x)\cos(y))\mathbf{i} - (\cos(x)\sin(y))\mathbf{j}.$$
 (1)

- (a) Find the flux of \mathbf{F} out of R through C. Show your reasoning.
- (b) Is the total flux out of R through C_1 , C_2 , and C_3 more than, less than, or equal to the flux out of R through C? Show your reasoning.

Find the volume of the region enclosed by the plane z=4 and the surface

$$z = (2x - y)^{2} + (x + y - 1)^{2}.$$
 (2)

Suggestion: change of variables.