Algorithms

Chap 2: Asymptotic Notations

Outline

Review of last lecture

Order of growth

- Asymptotic notations
 - Big O, big Ω , Θ

How to express algorithms?

Increasing precision

English
Pseudocode

Real programming languages

Ease of expression

Describe the *ideas* of an algorithm in English.

Use pseudocode to clarify sufficiently tricky details of the algorithm.

Efficiency

- Correctness alone is not sufficient
 - Brute-force algorithms exist for most problems
 - E.g. use permutation to sort
 - Problem: too slow!
- How to measure efficiency?
 - Accurate running time is not a good measure
 - It depends on input, computer, and implementation, etc.

Machine-independent

- A generic uniprocessor random-access machine (RAM) model
 - No concurrent operations
 - Each simple operation (e.g. +, -, =, *, if, for) takes 1 step.
 - Loops and subroutine calls are not simple operations.
 - All memory equally expensive to access
 - Constant word size
 - Unless we are explicitly manipulating bits

```
InsertionSort(A, n) {
  for j = 2 to n \{
     key = A[j]
     i = j - 1;
     while (i > 0) and (A[i] > key) {
           A[i+1] = A[\frac{1}{4}]
           i = i - 1
     A[i+1] = key
                             How many times will
                             this line execute?
```

```
InsertionSort(A, n) {
  for j = 2 to n \{
     key = A[j]
     i = j - 1;
     while (i > 0) and (A[i] > key) {
          A[i+1] = A[i]
           i = i - 1
     A[i+1] = key
                            How many times will
                            this line execute?
```

Statement	cost	time
<pre>InsertionSort(A, n) {</pre>		
for j = 2 to n {	C ₁	n
key = A[j]	C_2	(n-1)
i = j - 1;	c_3	(n-1)
while $(i > 0)$ and $(A[i] > key)$ {	C ₄	S
A[i+1] = A[i]	C ₅	(S-(n-1))
i = i - 1	C ₆	(S-(n-1))
}	0	
A[i+1] = key	C ₇	(n-1)
}	0	
1		

 $S = t_2 + t_3 + ... + t_n$ where t_j is number of while expression evaluations for the j^{th} for loop iteration

Analyzing Insertion Sort

•
$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 S + c_5 (S - (n-1)) + c_6 (S - (n-1)) + c_7 (n-1)$$

= $c_8 S + c_9 n + c_{10}$

- What can S be?
 - Best case -- inner loop body never executed
 - $t_i = 1 \rightarrow S = n 1$
 - T(n) = an + b is a linear function

- Worst case -- inner loop body executed for all previous elements
 - $t_i = j \rightarrow S = 2 + 3 + ... + n = n(n+1)/2 1$
 - $T(n) = an^2 + bn + c$ is a quadratic function

$$\Theta$$
 (n²)

- Average case
 - Can assume that on average, we have to insert A[j] into the middle of A[1..j-1], so t_j = j/2
 - $S \approx n(n+1)/4$
 - T(n) is still a quadratic function

 Θ (n²)

Statement	cost	time			
InsertionSort(A, n) {					
for j = 2 to n {	C ₁	n			
key = A[j]	c_2	(n-1)			
i = j - 1;	c_3	(n-1)			
while $(i > 0)$ and $(A[i] > key)$ {	C_4	S			
A[i+1] = A[i]	c ₅	(S-(n-1))			
i = i - 1	c_6	(S-(n-1))			
}	0				
A[i+1] = key	C ₇	(n-1)			
}	0				
}					

What are the basic operations (most executed lines)?

Statement	cost	time
<pre>InsertionSort(A, n) {</pre>		
for j = 2 to n {	C ₁	n
key = A[j]	C_2	(n-1)
i = j - 1;	C_3	(n-1)
while $(i > 0)$ and $(A[i] > key)$ {	C ₄	S
A[i+1] = A[i]	c ₅	(S-(n-1))
i = i - 1	c ₆	(S-(n-1))
}	0	
A[i+1] = key	C ₇	(n-1)
}	0	
}		

Statement	cost	time
<pre>InsertionSort(A, n) {</pre>		
for j = 2 to n {	C ₁	n
key = A[j]	C_2	(n-1)
i = j - 1;	C_3	(n-1)
while $(i > 0)$ and $(A[i] > key)$ {	C_4	S
A[i+1] = A[i]	C ₅	(S-(n-1))
i = i - 1	C ₆	(S-(n-1))
}	0	
A[i+1] = key	C ₇	(n-1)
}	0	
}		

What can S be?

Inner loop stops when A[i] <= key, or i = 0

i j

sorted Key

- $S = \sum_{j=1..n} t_j$
- Best case:
- Worst case:
- Average case:

Best case

Inner loop stops when $A[i] \le key$, or i = 0

- Array already sorted
- $S = \sum_{j=1..n} t_j$
- $t_j = 1$ for all j

•
$$S = n$$
. $T(n) = \Theta(n)$

Worst case

Inner loop stops when A[i] <= key

- Array originally in reverse order sorted
- $S = \sum_{j=1..n} t_j$
- $t_i = j$
- $S = \sum_{j=1..n} j = 1 + 2 + 3 + ... + n = n (n+1) / 2 = \Theta (n^2)$

Average case

Inner loop stops when A[i] <= key

- Array in random order
- $S = \sum_{j=1..n} t_j$
- $t_j = j / 2$ on average
- $S = \sum_{j=1..n} j/2 = \frac{1}{2} \sum_{j=1..n} j = n (n+1) / 4 = \Theta (n^2)$

What if we use binary search?

Asymptotic Analysis

- Running time depends on the size of the input
 - Larger array takes more time to sort
 - T(n): the time taken on input with size n
 - Look at **growth** of T(n) as $n \rightarrow \infty$.
 - "Asymptotic Analysis"
- Size of input is generally defined as the number of input elements
 - In some cases may be tricky

Asymptotic Analysis

- Ignore actual and abstract statement costs
- Order of growth is the interesting measure:
 - Highest-order term is what counts

As the input size grows larger it is the high order term that

dominates

Comparison of functions

	log ₂ n	n	nlog ₂ n	n ²	n ³	2 ⁿ	n!
10	3.3	10	33	10 ²	103	103	10 ⁶
10 ²	6.6	10 ²	660	104	10 ⁶	10 ³⁰	10158
10 ³	10	10 ³	104	10 ⁶	109		
104	13	104	10 ⁵	108	1012		
10 ⁵	17	10 ⁵	10 ⁶	1010	10 ¹⁵		
10 ⁶	20	10 ⁶	10 ⁷	1012	10 ¹⁸		

For a super computer that does 1 trillion operations per second, it will be longer than 1 billion years

Order of growth

 $1 << \log_2 n << n << n \log_2 n << n^2 << n^3 << 2^n << n!$

(We are slightly abusing of the "<<" sign. It means a smaller order of growth).

Exact analysis is hard!

 Worst-case and average-case are difficult to deal with precisely, because the details are very complicated

It may be easier to talk about upper and lower bounds of the function.

Asymptotic notations

- O: Big-Oh
- Ω: Big-Omega
- Θ: Theta
- o: Small-oh
- ω: Small-omega

Big O

- Informally, O (g(n)) is the set of all functions with a smaller or same order of growth as g(n), within a constant multiple
- If we say f(n) is in O(g(n)), it means that g(n) is an asymptotic upper bound of f(n)
 - Intuitively, it is like $f(n) \le g(n)$
- What is O(n²)?
 - The set of all functions that grow slower than or in the same order as n²

So:

```
n \in O(n^2)

n^2 \in O(n^2)

1000n \in O(n^2)

n^2 + n \in O(n^2)

100n^2 + n \in O(n^2)
```

But:

 $1/1000 \text{ n}^3 \notin O(n^2)$

Intuitively, O is like ≤

small o

- Informally, o (g(n)) is the set of all functions with a strictly smaller growth as g(n), within a constant multiple
- What is o(n²)?
 - The set of all functions that grow slower than n²

So:

```
1000n\,\in\,o(n^2)
```

But:

 $n^2 \notin o(n^2)$

Intuitively, o is like <

2/21/22 25

Big Ω

- Informally, Ω (g(n)) is the set of all functions with a larger or same order of growth as g(n), within a constant multiple
- f(n) ∈ Ω(g(n)) means g(n) is an asymptotic lower bound of f(n)
 - Intuitively, it is like $g(n) \le f(n)$

So:

```
n^2 \in \Omega(n)
 1/1000 n^2 \in \Omega(n)
```

But:

```
1000 n \notin \Omega(n^2)
```

Intuitively, Ω is like ≥

small ω

 Informally, ω (g(n)) is the set of all functions with a larger order of growth as g(n), within a constant multiple

So:

```
n^2 \in \omega(n)
1/1000 n^2 \in \omega(n)
n^2 \notin \omega(n^2)
```

Intuitively, ω is like >

Theta (Θ)

- Informally, Θ (g(n)) is the set of all functions with the same order of growth as g(n), within a constant multiple
- f(n) ∈ Θ(g(n)) means g(n) is an asymptotically tight bound of f(n)
 - Intuitively, it is like f(n) = g(n)
- What is $\Theta(n^2)$?
 - The set of all functions that grow in the same order as n²

So:

```
n^{2} \in \Theta(n^{2})

n^{2} + n \in \Theta(n^{2})

100n^{2} + n \in \Theta(n^{2})

100n^{2} + \log_{2}n \in \Theta(n^{2})
```

Intuitively, Θ is like =

But:

```
nlog<sub>2</sub>n \notin \Theta(n^2)
1000n \notin \Theta(n^2)
1/1000 n<sup>3</sup> \notin \Theta(n^2)
```

Tricky cases

How about sqrt(n) and log₂ n?

How about log₂ n and log₁₀ n

How about 2ⁿ and 3ⁿ

How about 3ⁿ and n!?

Big-Oh

- Definition:

 There exist For all $O(g(n)) = \{f(n): \exists positive constants c and n_0 \text{ such that } 0 \le f(n) \le cg(n) \forall n > n_0 \}$
- $\lim_{n\to\infty} g(n)/f(n) > 0$ (if the limit exists.)
- Abuse of notation (for convenience):
 f(n) = O(g(n)) actually means f(n) ∈ O(g(n))

2/21/22 31

Big-Oh

- Claim: $f(n) = 3n^2 + 10n + 5 \in O(n^2)$
- Proof by definition

To prove this claim by definition, we need to find some positive constants c and n_0 such that $f(n) \le cn^2$ for all $n > n_0$.

(Note: you just need to find one concrete example of c and n0 satisfying the condition.)

$$3n^2 + 10n + 5 \le 10n^2 + 10n + 10$$

 $\le 10n^2 + 10n^2 + 10n^2, \forall n \ge 1$
 $\le 30 n^2, \forall n \ge 1$

Therefore, if we let c = 30 and $n_0 = 1$, we have $f(n) \le c n^2$, $\forall n \ge n_0$. Hence according to the definition of big-Oh, $f(n) = O(n^2)$.

Alternatively, we can show that

$$\lim_{n\to\infty} n^2/(3n^2 + 10n + 5) = 1/3 > 0$$

Big-Omega

Definition:

```
\Omega(g(n)) = \{f(n): \exists positive constants c and <math>n_0 such that 0 \le cg(n) \le f(n) \forall n > n_0\}
```

- $\lim_{n\to\infty} f(n)/g(n) > 0$ (if the limit exists.)
- Abuse of notation (for convenience):
 f(n) = Ω(g(n)) actually means f(n) ∈ Ω(g(n))

Big-Omega

• Claim: $f(n) = n^2 / 10 = \Omega(n)$

Proof by definition:

```
f(n) = n² / 10, g(n) = n

Need to find a c and a n₀ to satisfy the definition of f(n) ∈ \Omega(g(n)), i.e., f(n) ≥ cg(n) for n > n₀

n ≤ n² / 10 when n ≥ 10

If we let c = 1 and n₀ = 10, we have f(n) ≥ cn, \forall n ≥ n₀.

Therefore, according to definition, f(n) = \Omega(n).
```

Alternatively:

$$\lim_{n\to\infty} f(n)/g(n) = \lim_{n\to\infty} (n/10) = \infty$$

Theta

- Definition:
 - $-\Theta(g(n)) = \{f(n): \exists positive constants c₁, c₂, and n₀ such that 0 ≤ c₁ g(n) ≤ f(n) ≤ c₂ g(n), ∀ n ≥ n₀ \}$
- $\lim_{n\to\infty} f(n)/g(n) = c > 0$ and $c < \infty$
- f(n) = O(g(n)) and $f(n) = \Omega(g(n))$
- Abuse of notation (for convenience):
 f(n) = Θ(g(n)) actually means f(n) ∈ Θ(g(n))
 Θ(1) means constant time.

Theta

- Claim: $f(n) = 2n^2 + n = \Theta(n^2)$
- Proof by definition:
 - Need to find the three constants c₁, c₂, and n₀
 such that
 - $c_1 n^2 \le 2n^2 + n \le c_2 n^2$ for all $n > n_0$
 - A simple solution is $c_1 = 2$, $c_2 = 3$, and $n_0 = 1$
- Alternatively, $\lim_{n\to\infty} (2n^2+n)/n^2 = 2$

More Examples

- Prove $n^2 + 3n + \lg n$ is in $O(n^2)$
- Want to find c and n_0 such that $n^2 + 3n + \lg n \le cn^2$ for $n > n_0$
- Proof:

```
n^2 + 3n + \lg n <= 3n^2 + 3n + 3\lg n for n > 1

<= 3n^2 + 3n^2 + 3n^2

<= 9n^2

Or n^2 + 3n + \lg n <= n^2 + n^2 + n^2 for n > 10

<= 3n^2
```

More Examples

- Prove $n^2 + 3n + \lg n$ is in $\Omega(n^2)$
- Want to find c and n_0 such that $n^2 + 3n + \lg n >= cn^2$ for $n > n_0$

$$n^2 + 3n + \lg n >= n^2 \text{ for } n > 0$$

$$n^2 + 3n + \lg n = O(n^2)$$
 and $n^2 + 3n + \lg n = \Omega(n^2)$
=> $n^2 + 3n + \lg n = \Theta(n^2)$

$O, \Omega, and \Theta$

The definitions imply a constant n₀ beyond which they are satisfied. We do not care about small values of n.

Using limits to compare orders of growth

•
$$\lim_{n\to\infty} f(n) / g(n) = \begin{cases} 0 \\ c > 0 \end{cases}$$
 $f(n) \in O(g(n))$ $f(n) \in O(g(n))$ $f(n) \in O(g(n))$

logarithms

compare log₂n and log₁₀n

- $log_ab = log_cb / log_ca$
- $\log_2 n = \log_{10} n / \log_{10} 2 \sim 3.3 \log_{10} n$
- Therefore $\lim(\log_2 n / \log_{10} n) = 3.3$
- $\log_2 n = \Theta (\log_{10} n)$

Compare 2ⁿ and 3ⁿ

- $\lim_{n\to\infty} 2^n / 3^n = \lim_{n\to\infty} (2/3)^n = 0$
- Therefore, $2^n \in o(3^n)$, and $3^n \in \omega(2^n)$

• How about 2^n and 2^{n+1} ?

$$2^{n} / 2^{n+1} = \frac{1}{2}$$
, therefore $2^{n} = \Theta(2^{n+1})$

L' Hopital's rule

$$\lim_{n\to\infty} f(n) / g(n) = \lim_{n\to\infty} f(n)' / g(n)'$$

$$\lim_{n\to\infty} f(n) / g(n)'$$
If both lim f(n) and lim g(n) are ∞ or 0

 You can apply this transformation as many times as you want, as long as the condition holds

- Compare n^{0.5} and log n
- $\lim_{n \to \infty} n^{0.5} / \log n = ?$
- $(n^{0.5})' = 0.5 n^{-0.5}$
- $(\log n)' = 1 / n$
- $\lim_{n \to 0.5} / 1/n = \lim_{n \to 0.5} = \infty$
- Therefore, $\log n \in o(n^{0.5})$
- In fact, $\log n \in o(n^{\epsilon})$, for any $\epsilon > 0$

Stirling's formula

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n = \sqrt{2\pi} n^{n+1/2} e^{-n}$$

 $n! \approx \text{(constant) } n^{n+1/2} e^{-n}$

Compare 2ⁿ and n!

$$\lim_{n\to\infty} \frac{n!}{2^n} = \lim_{n\to\infty} \frac{c\sqrt{n}n^n}{2^n e^n} = \lim_{n\to\infty} c\sqrt{n} \left(\frac{n}{2e}\right)^n = \infty$$

- Therefore, $2^n = o(n!)$
- Compare nⁿ and n!

$$\lim_{n\to\infty}\frac{n!}{n^n}=\lim_{n\to\infty}\frac{c\sqrt{n}n^n}{n^ne^n}=\lim_{n\to\infty}\frac{c\sqrt{n}}{e^n}=0$$

46

• Therefore, $n^n = \omega(n!)$

How about log (n!)?

$$\log(n!) = \log \frac{c\sqrt{n}n^n}{\ell^n} = C + \log n^{n+1/2} - \log(e^n)$$

$$= C + n\log n + \frac{\ell}{2}\log n - n$$

$$= C + \frac{n}{2}\log n + (\frac{n}{2}\log n - n) + \frac{1}{2}\log n$$

$$= \Theta(n\log n)$$

More advanced dominance ranking

$$n! \gg c^n \gg n^3 \gg n^2 \gg n^{1+\epsilon} \gg n \log n \gg n \gg \sqrt{n} \gg \log^2 n \gg \log n \gg \log n / \log \log n \gg \log \log n \gg \alpha(n) \gg 1$$

Asymptotic notations

- O: Big-Oh
- Ω: Big-Omega
- Θ: Theta
- o: Small-oh
- ω: Small-omega
- Intuitively:

```
O is like \leq \Omega is like \geq \Theta is like = o is like < \omega is like >
```