L.S.Menzel Hayat	Série14	Afli Ahmed
27Février 2013	Arithmétiques*E. fonction (ln)	4sc.i

*** EXERCICE 1:**

La courbe (C f) , ci-contre , est la représentation graphique (C_f) dans le repère orthonormé R (O ,i ,j) d'une fonction f définie sur [0 ; + ∞ [. (C_f) admet aux points d'abscisses 2 et 4 des tangentes horizontales . La tangente (T) à (C_f) au point O passe par le point A (1 , 8) .

- 1) a) Déterminer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$
- b) Donner les valeurs de f'(2), f'(4) et f'(0).
- c)Donner une équation cartésienne de la droite (T)

- 2)On suppose que pour tout $x \in [0; +\infty[, f'(x)] = \frac{ax^2+bx+c}{x+1}$ En utilisant les résultats de la question 1) b) Déterminer les valeurs de a , b et c .
- 3) On prend pour la suite : a = 1, b = -6 et c = 8.
- a) Vérifier que pour tout x de [0; + ∞ [, f'(x) = x 7 + $\frac{15}{x+1}$
- b)Déduire alors l'expression de f (x) en fonction de x.

EXERCICE 2:

Dans la feuille annexe ci-jointe, on a représenté dans un repère orthonormé (0, ,j)la courbe représentative (C) de la fonction logarithme népérien (ln).

- 1) Placer sur la courbe C les points d'abscisses eet.
- 2) Soit f la fonction définie sur 0, $+\infty$ par : $f(x) = (\ln x)^2 \ln x + 1$

On note (C_f) sa courbe représentative dans le repère O, j.

a/ Montrer que $\lim_{x\to 0^+} f(x) = +\infty \text{etlim}_{x\to +\infty} f(x)$. b/ Calculer $\lim_{x\to +\infty} \frac{f(x)}{x}$. Interpréter géométriquement le résultat.

c/ Montrer que, pour tout $x \in]0$, $+\infty[$, $f'(x) = \frac{2lnx-1}{x}$.

d/ Calculer f'(\sqrt{e}), en déduire le tableau de variations de f.

3) a/ Etudier la position relative des courbes (C_f) et (C).

b/Tracer (C_f) dans l'annexe ci-jointe. Préciser f(1).

* EXERCICE 3:

- 1) Monterque 13 divise $3^{n} + 3^{n+1} + 3^{n+2}$
- 2)érifierque $3^4 \equiv 1[5]$
- b) $Montrerque3^{4p+r} \equiv 3^{r}[5] pourp \in INetr \in IN$
- c) Endéduireles restes de la divisione uclidienne de 3ⁿ modulo 5 avecn∈IN
- d) $Endéduireque 3^{2012} + 3^{2014} est multiple par 5$

*** EXERCICE4:**

- 1) En utilisant l'algorithme d'Euclide, montrer que les nombres 87 et 31 sont premiers entre eux.
- 2) On considère l'équation (E) : 87x + 31y = 2, où x et y sont deux entiers relatifs.
- a/ Dire pourquoi cette équation admet des solutions.
- b/ Vérifier que le couple (a; b)=(10; -28) est solution de (E).
- 3) Soit l'équation E': 87x + 31y = 0, où x et y sont deux entiers relatifs.
- a/ Démontrer l'équivalence :(x;y) est solution de (E) si, et seulement si (x-a;y-b) est solution de E'.
- b/ Résoudre l'équation E'.
- c/ En déduire l'ensemble des solutions de (E).

* EXERCICE 5:

- 1.) On considère l'équation (E) : 5x + 8y = 1; $(x, y) \in \mathbb{Z} \times \mathbb{Z}$
 - a. / Donner une solution particulière de (E)
 - b. / Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E)
- 2.) Soit p un entier naturel tel qu'il existe un couple (a , b) d'entiers tels que
 - P = 5a + 2
 - P= 8b+1
 - a. / Montrer que le couple (-a , b) est solution de (E).
 - b. / Montrer que $P \equiv 17[40]$.

Q.O.M.H

3./ un groupe de touriste entre dans un magasin et dépense 100 pièces de monnaie . Les femmes ont dépensé 5 pièces chacune et les hommes 8 pièces chacun .

Combien pouvait-il avoir d'hommes et de femmes dans ce groupe ?