Serie 7

Bemerkung: Meine Lösung für 1(b) stimmte nicht ganz, weshalb ich sie hier auslasse.

Aufgabe 1

Es seien (X, \mathfrak{M}, μ) ein Massraum und $f, f_n, n \in \mathbb{N}$ messbare Abbildungen $X \to \mathbb{R}$. Man sagt, $(f_n)_{n \in \mathbb{N}}$ konvergiert im Mass gegen f, wenn für alle $\delta > 0$

$$\lim_{n \to \infty} \mu(\{x \in X : |f_n(x) - f(x)| \ge \delta\}) = 0.$$

Beweise:

(a) Falls $(f_n)_{n\in\mathbb{N}}$ gegen f im Mass konvergiert, dann gibt es eine Teilfolge von $(f_n)_{n\in\mathbb{N}}$, die fast überall gegen f konvergiert.

Beweis. $(f_n)_{n\in\mathbb{N}}$ konvergiert im Mass gegen f. Also existiert für alle $k\in\mathbb{N}_{\geq 1}$ ein $n_k\in\mathbb{N}$, sodass für alle $n\geq n_k$ gilt:

$$\mu\left(\left\{x \in X : \underbrace{|f_n(x) - f(x)|}_{=:q_n(x)} \ge \frac{1}{k}\right\}\right) < \frac{1}{2^k}.$$

Folglich finden wir $n_1 < n_2 < n_3 < \dots$, sodass

$$\mu\left(\underbrace{\left\{x \in X : g_{n_k}(x) \ge \frac{1}{k}\right\}}_{=:A_k}\right) < \frac{1}{2^k}.$$

Definiere

$$\bigcap_{\ell>1} \bigcup_{k>\ell} A_k =: A.$$

Dann

$$\mu(A) = \mu \left(\lim_{\ell \to \infty} \bigcup_{k \ge \ell} A_k \right) = \lim_{\ell \to \infty} \mu \left(\bigcup_{k \ge \ell} A_k \right)$$

$$\leq \lim_{\ell \to \infty} \sum_{k = \ell}^{\infty} \mu(A_k) \leq \lim_{\ell \to \infty} \frac{1}{2^{\ell}} \sum_{j = 0}^{\infty} \frac{1}{2^j}$$

$$= \lim_{\ell \to \infty} \frac{1}{2^{\ell - 1}} = 0.$$

 $x \in A$ heisst: $\forall \ell \in \mathbb{N}_{\geq 1} \exists k \geq \ell : g_{n_k}(x) \geq 1/k$.

Also heisst $x \in A^c$: $\exists \ell \in \mathbb{N}_{\geq 1} \forall k \geq \ell : g_{n_k}(x) < 1/k$.

Also gilt für alle $x \in A^c$: $g_{n_k}(x) \to 0, k \to \infty$.

Also $f_{n_k} \to f$ fast überall, $k \to \infty$.

- (b) Falls $\mu(X) < \infty$, dann sind äquivalent:
 - (i) $(f_n)_{n\in\mathbb{N}}$ konvergiert im Mass gegen f.
 - (ii) Jede Teilfolge von $(f_n)_{n\in\mathbb{N}}$ hat eine Teilfolge, die fast überall gegen f konvergiert.

Lösung fehlt.

Die Äquivalenz gilt nicht, falls $\mu(X) < \infty$ nicht vorausgesetzt ist.

Beispiel. Definiere für alle $n \in \mathbb{N}$

$$f_n : \mathbb{R} \to \mathbb{R},$$

$$x \mapsto \begin{cases} 1, & x > n, \\ 0, & x \le n. \end{cases}$$

Die Funktionenfolge konvergiert punktweise gegen die Nullfunktion. Aber für jedes Folgenglied gilt mit $\delta = 1/2$:

$$m(\{x \in \mathbb{R} : |f_n(x)| \ge 1/2\}) = m((n, \infty)) = \infty.$$

Also konvergiert die Folge im Mass nicht zur Nullfunktion.

Aufgabe 2

Es sei $\alpha \in \mathbb{R}$. Zeige, dass folgende Funktion Lebesgue-messbar ist:

$$f: (-1,1) \to \mathbb{R},$$

$$x \mapsto \begin{cases} x^{-1}, & x \in (-1,1) \setminus \{0\}, \\ \alpha, & x = 0. \end{cases}$$

Beweis. Fall 1: Sei $U \subset \mathbb{R}$ offen mit $\alpha \notin U$. Dann ist $f^{-1}(U)$ offen, da f auf $(-1,1) \setminus \{0\}$ stetig ist. Dann $f^{-1}(U) \in \mathfrak{B}$. Also ist $f^{-1}(U)$ eine Lebesgue-messbare Menge.

Fall 2: Sei $\alpha \in U \subset \mathbb{R}$, U offen. Dann ist auch $U \setminus \{\alpha\} = U \cap (\mathbb{R} \setminus \{\alpha\})$ offen. Also

$$f^{-1}(U) = \underbrace{f^{-1}(U \setminus \{\alpha\})}_{\text{offen}} \sqcup \underbrace{f^{-1}(\{\alpha\})}_{\text{h\"{o}chstens zwei Punkte,}}_{\text{also abgeschlossen}}$$

Offene und abgeschlossene Mengen sind Borelmengen. Ihre Vereinigung auch. Also ist $f^{-1}(U)$ eine Lebesguemessbar Menge.

Also ist f Lebesgue-messbar.

Ist f Lebesgue-integrierbar?

Antwort. Für $[a,b] \subset (-1,1)$ stimmen das Lebesgue- und das Riemann-Integral überein. Da $\{0\},\{1\}$ Nullmengen sind, gilt

$$\int_{(-1,1)} |f| \, \mathrm{d} m = 2 \lim_{t \to 0^+} \int_t^1 x^{-1} \, \mathrm{d} x$$
$$= 2 \lim_{t \to 0^+} (\ln(x))|_t^1$$
$$= \infty.$$

Somit gilt $f \notin L_1((-1,1))$.

Aufgabe 3

Es seien X = [0, 1] und m das Lebesgue-Mass auf X. Beweise, dass die Folge $(f_n)_{n \in \mathbb{N}}$ definiert durch

$$f_n := \chi_{\left[\frac{j}{2^k}, \frac{j+1}{2^k}\right]},$$

 $n=2^k+j, j\in\{0,1,\ldots,2^k-1\}, k\in\mathbb{N}$, im Mass konvergiert, aber für kein $x\in X$ die Folge $(f_n(x))_{n\in\mathbb{N}}$ konvergiert.

Beweis. Für kein $x \in X$ konvergiert $(f_n(x))_{n \in \mathbb{N}}$: Seien $x \in X, k \in \mathbb{N}_{\geq 2}$. Dann existieren $i, j \in \{0, 1, \dots, 2^k - 1\}$, sodass $x \in [i/2^k, (i+1)/2^k], x \notin [j/2^k, (j+1)/2^k]$. Also hat die Folge $(f_n(x))_{n \in \mathbb{N}}$ zwei Häufungspunkte (0 und 1). Also konvergiert sie nicht.

 $\underline{(f_n)_{n\in\mathbb{N}}}$ konvergiert im Mass: Da $f_n(x)>0$ genau dann, wenn ein $j\in\{0,1,\ldots,2^k-1\}$ existiert mit $x\in[j/2^k,(j+1)/2^k]$, gilt

$$\lim_{n \to \infty} m(\{x \in [0, 1] : f_n(x) > 0\}) = \lim_{n \to \infty} m(\left[\frac{j}{2^k}, \frac{j+1}{2^k}\right])$$

$$= \lim_{n \to \infty} \frac{1}{2^k}$$

$$= 2 \lim_{n \to \infty} \frac{1}{2^{k+1}}.$$

Da $n = 2^k + j \le 2^{k+1}$:

$$0 \le \lim_{n \to \infty} \frac{1}{2^{k+1}} \le \lim_{n \to \infty} \frac{1}{2^n} = 0.$$

Folglich konvergiert $(f_n)_{n\in\mathbb{N}}$ im Mass, und zwar gegen die Nullfunktion.

Aufgabe 4

Es seien \mathfrak{M} die σ -Algebra der Lebesgue-messbaren Mengen in \mathbb{R} und m das Lebesgue-Mass. Zeige, dass zu jedem $A \in \mathfrak{M}$ mit m(A) > 0 ein $B \in \mathfrak{M}$ existiert mit

$$B \subset A$$
, $m(A \setminus B) > 0$, $m(B) > 0$.

Man sagt daher "Das Lebesgue-Mass hat keine Atome."

Beweis. Wegen Satz 5.3 existieren abgeschlossene $A_i \subset A$ mit $m(\bigcup_{i=1}^{\infty} A_i) = m(A)$. Für mindestens ein $i \in \mathbb{N}$ gilt $0 < m(A_i) =: c$. Definiere nun für alle $z \in \mathbb{Z}$

$$B_z = \left[\frac{z}{2}c, \frac{z+1}{2}c \right].$$

Dann $m(B_z)=c/2$. Die B_z sind abgeschlossen, also Borelmengen. Also $A_i\cap B_z\in\mathfrak{B}\subset\mathfrak{M}$ für alle $z\in Z$. Da $A_i=A_i\cap\bigcup_{z\in\mathbb{Z}}B_z$, müssen $z,z'\in\mathbb{Z},z\neq z'$, bestehen mit

$$c/2 \ge m(A_i \cap B_z) > 0, \quad c/2 \ge m(A_i \cap B_{z'}) > 0.$$

Definiere $B := A_i \cap B_z$. Dann $B \subset A_i \subset A$, 0 < m(B) < m(A)/2. Folglich $m(A \setminus B) > m(A)/2$.