### **Op-Amp Circuits: Feedback**

#### S. Lodha

References: L. Bobrow's book and Prof. M. B. Patil's slides

#### What is feedback?



- Output of circuit/system returned back to input
- Four possible connections
  - Above is an example of series-parallel feedback
  - Output of feedback in series with input of amp, input of feedback in parallel with output of amp
  - Most beneficial for voltage amplification applications

# Example of series-parallel feedback



Negative feedback

$$v_1 = v_{in} \bigcirc v_f$$

$$A_F = \frac{v_o}{v_{in}} = 1 + \frac{R_2}{R_1}$$

$$B = \frac{v_f}{v_o} = \frac{R_1}{R_1 + R_2} = \frac{1}{A_F}$$

For Ideal Op-Amp

- -Infinite gain
- -Infinite Input Resistance
- -Zero Output Resistance



## Feedback with non-ideal Op Amp

Assume A is finite, but  $R_{in}=\infty$  and  $R_{o}=0$ 



$$v_f = Bv_o$$

$$v_o = A(v_{in} - v_f) = Av_{in} - ABv_o$$

$$A_F = \frac{v_o}{v_{in}} = \frac{A}{1 + AB}$$

$$A_F = \frac{A}{1 + AB} \approx \frac{A}{AB} = \frac{1}{B} = 1 + \frac{R_2}{R_1}$$

For large A

Trade-off gain with increase in stability!

A=200000, R<sub>1</sub>=1 kΩ, R<sub>2</sub>=100 kΩ 
$$\rightarrow$$
 A<sub>F</sub>=100.959

$$\rightarrow$$
 A<sub>F</sub>=100.959

Suppose A changes by 10% to 220,000 
$$\rightarrow$$
 A<sub>F</sub>=100.964 Only 0.005% change!

$$\rightarrow$$
 A<sub>F</sub>=100.964

# Feedback effect on input R

Assume A and R<sub>in</sub> are both finite, but R<sub>o</sub>=0



Negative feedback can be used to increase the input resistance of an amplifier.

# Feedback effect on output R

Assume A, R<sub>in</sub> and R<sub>o</sub> are all finite



Negative feedback can be used to decrease the output resistance of an amplifier.

# Example

• A=200000,  $R_{in}$ =2 M $\Omega$ ,  $R_{o}$ =75  $\Omega$ ,

$$R_1$$
= 1 k $\Omega$ ,  $R_2$ = 100 k $\Omega$ 

- $-B=R_1/R_1+R_2=0.0099$
- $-R_{iF}$ =(1+AB) $R_{in}$ =3960 MΩ
- $-R_{oF}=R_{o}/1+AB=0.038 \Omega$



#### Frequency Response

$$\mathbf{A} = \frac{A}{1 + j\omega/\omega_H}$$

 $\mathbf{A} = \frac{A}{1 + i\omega/\omega_{H}}$  A is called the "open-loop" gain (frequency dependent), A is the dc gain

$$\mathbf{A}_{\mathsf{F}} = \frac{\mathbf{A}}{1 + \mathbf{A}B} = \frac{\left[\frac{A}{1 + j\omega/\omega_{H}}\right]}{1 + \left[\frac{A}{1 + j\omega/\omega_{H}}\right]B}$$
 For the example, A<sub>F</sub>=A/1+AB

$$\mathbf{A}_{\mathsf{F}} = \frac{A}{1 + AB} \frac{1}{1 + j \left[\frac{\omega}{(1 + AB)\omega_{H}}\right]} = \frac{A_{F}}{1 + j\omega/\omega_{HF}}$$

$$\omega_{HF} = (1 + AB)\omega_{H}$$
 Upper cut-off frequency

- Lower cut-off frequency is 0
- Internal transistor capacitances determine upper cut-off frequency
  - Acts like a low-pass filter
- With feedback, upper-cut off frequency multiplied by (1+AB)
  - Large increase in bandwidth

#### Gain-Bandwidth Product

$$f_T = A f_H$$

Product of dc gain with upper cut-off frequency in Hz

$$f_{HF} = A_F f_{HF} = \frac{A}{1 + AB} (1 + AB) f_H = A f_H = f_T$$

- Addition of feedback does not change the gain-bandwidth product
  - Feedback amplifier and op-amp have the same product
  - What you lose in gain is made up in bandwidth

# Feedback: Inverting Amplifier



$$V_{o} = A_{V}(V_{+} - V_{-})$$
 Eq. 1
$$V_{-} = V_{i} \frac{R_{2}}{R_{1} + R_{2}} + V_{o} \frac{R_{1}}{R_{1} + R_{2}}$$
 Eq. 2
$$V_{i} \uparrow \longrightarrow V_{-} \uparrow \longrightarrow V_{o} \downarrow \longrightarrow V_{-} \downarrow$$

Eq. 2 Eq. 1 Eq. 2

Stable equilibrium is reached



$$V_{+} = V_{i} \frac{R_{2}}{R_{1} + R_{2}} + V_{o} \frac{R_{1}}{R_{1} + R_{2}}$$
 Eq. 3
$$V_{i} \uparrow \rightarrow V_{+} \uparrow \rightarrow V_{o} \uparrow \rightarrow V_{+} \uparrow$$
Eq. 3 Eq. 1 Eq. 3

V<sub>o</sub> rises (or falls) indefinitely till saturation → positive feedback

# Feedback: Non-Inverting Amplifier





 $V_{+} = V_{o} \frac{R_{1}}{R_{1} + R_{2}}$ 

$$V_{o} = A_{V}(V_{+} - V_{-})$$

$$V_{-} = V_{o} \frac{R_{1}}{R_{1} + R_{2}}$$

$$V_i \uparrow \longrightarrow V_o \uparrow \longrightarrow V_- \uparrow \longrightarrow V_o \downarrow$$

Eq. 1 Eq. 2 Eq. 1

V<sub>o</sub> rises (or falls) indefinitely till saturation → positive feedback

Eq. 3

Stable equilibrium is reached

#### Feedback

Inverting amplifier with  $+ \longleftrightarrow V_{i} \stackrel{\nearrow}{\longleftarrow} R_{1}$   $\stackrel{\nearrow}{\longleftarrow} R_{1}$ 

Noninverting amplifier with  $+ \longleftrightarrow -$ 



- Both circuits exhibit positive feedback
- Output is limited by saturation, i.e. V<sub>o</sub>=±V<sub>sat</sub>

### **Inverting Schmitt Trigger**





 $V_o$  is either +10V ( $V_+>V_-$ ) or -10V ( $V_+<V_-$ ) because of positive feedback

Case 1

 $V_i=5V$ , Assume  $V_o=10V$ ,  $V_+=1V \rightarrow V_+-V_-=1-5=-4 V \rightarrow V_o=-10V$  Inconsistent!

Case 2

 $V_i$ =5V, Assume  $V_o$ =-10V,  $V_+$ =-1V  $\rightarrow$   $V_+$ - $V_-$ =-1-5=-6 V  $\rightarrow$   $V_o$ =-10V consistent!

# **Inverting Schmitt Trigger**





For decreasing values of  $V_i$ ,  $V_o = -10V$  and  $V_+ = -1V$  till  $V_i$  goes below -1V

When  $V_i = V_- < V_+ = -1V$   $V_o = +V_{sat} = 10V$   $V_+$  becomes +1V

Decreasing  $V_i$  further does not change  $V_o$ , since  $V_+-V_-=1-V_i>0$ 

Coming back (increasing  $V_i$ ) threshold voltage for flipping is +1V.

# Inverting Schmitt trigger





- The threshold (tripping) voltages  $V_{TL}$  and  $V_{TH}$  are  $\pm \left(\frac{R_1}{R_1 + R_2}\right) V_{sat}$
- Tripping point depends on position on V<sub>o</sub> axis → MEMORY!
- $\Delta V_T = V_{TH} V_{TL}$  is called hysteresis width

#### Non-inverting Schmitt Trigger



 $V_o$  is either +10V ( $V_+>V_-$ ) or -10V ( $V_+<V_-$ ) because of positive feedback

#### Case 1

 $V_i$ =5V, Assume  $V_o$ =-10V,  $V_+$ =( $R_2/R_1+R_2$ ) $V_i+V_o$ ( $R_1/R_1+R_2$ )=3.5V  $\rightarrow$   $V_+-V_-$ =3.5-0=3.5 V  $\rightarrow$   $V_o$ =-10V Inconsistent!

#### Case 2

 $V_i$ =5V, Assume  $V_o$ =+10V,  $V_+$ =5.5V  $\rightarrow$   $V_+$ - $V_-$ =5.5-0=5.5 V  $\rightarrow$   $V_o$ =+10V consistent!

#### Non-inverting Schmitt Trigger



$$V_{+} = \frac{R_{2}}{R_{1} + R_{2}} V_{i} + \frac{R_{1}}{R_{1} + R_{2}} V_{o} = \frac{9}{10} V_{i} + \frac{1}{10} V_{sat}$$

As  $V_i$  decreases and till  $V_+>0$   $V_o=V_{sat}$ For  $V_+=0$ V,  $V_i=-(R_1/R_2)V_{sat}=-1.11$  V,  $V_o=-V_{sat}$ 

$$V_{+} = \frac{R_{2}}{R_{1} + R_{2}} V_{i} + \frac{R_{1}}{R_{1} + R_{2}} V_{o} = \frac{9}{10} V_{i} - \frac{1}{10} V_{sat}$$

Further reduction of  $V_i$  does not change  $V_o$ =- $V_{sat}$ , since  $V_+$ <0  $V_o$  again flips to + $V_{sat}$  when  $V_+$ =0 $V_o$ , when  $V_i$ =1.11 $V_o$ 

# Non-inverting Schmitt Trigger





- The threshold (tripping) voltages  $V_{TL}$  and  $V_{TH}$  are  $\pm \left(\frac{R_1}{R_2}\right)V_{sa}$
- Tripping point depends on position on V<sub>o</sub> axis → MEMORY!
- $\Delta V_T = V_{TH} V_{TL}$  is called hysteresis width

#### Schmitt Triggers



#### Schmitt Trigger: Application -> Astable multivibrator



- With a suitable RC circuit, Schmitt trigger can be made to freely oscillate between L<sup>+</sup> and L<sup>-</sup>
  - Called an "astable multivibrator" (oscillator, wave-form generator)
- Produces oscillations where the frequency is controlled by component values (f<sub>max</sub>~10 kHz)
- Other vibrator circuits
  - Monoshot (Timer)
  - Bistable (Flip-flop)

#### Astable MV



At t=0, 
$$V_o = L^+$$
 and  $V_c = 0$ 

Capacitor starts charging towards L<sup>+</sup> As  $V_c$  (= $V_i$ ) crosses  $V_{TH}$ ,  $V_o$  flips to L<sup>-</sup>

Capacitor starts discharging towards L<sup>-</sup> As  $V_c(=V_i)$  crosses  $V_{TL}$ ,  $V_o$  flips to L<sup>+</sup>

Circuit oscillates on its own.

Also called a "relaxation oscillator".





# What is T (=1/f)?



$$V_c(t)=A_1e^{-t/ au}+B_1$$
  $V_c(0)=V_{TL},V_c(\infty)=L^\dagger$  Find  $A_1$  and  $B_1$   $V_{TH}=A_1e^{-t_1/ au}+B_1$  Find  $t_1$ 



$$V_c(t)=A_2e^{-(t-t_1)/ au}+B_2$$
  $V_c(t_1)=V_{TH}$  ,  $V_c(\infty)=L^ op$  Find A $_2$  and B $_2$   $V_{TL}=A_2e^{-(t_2-t_1)/ au}+B_2$  Find t $_2$ 

$$L^{+}=L, L^{-}=-L, V_{TH}=V_{T}, V_{TL}=-V_{T}$$

$$T=2RC\ln\left(\frac{L+V_{T}}{L-V_{-}}\right)$$

#### Astable MV





$$V_{o1} = -\frac{1}{RC} \int V_{o2} dt$$

 $V_{o2} = L^+ \rightarrow V_{o1}$  Decreases linearly

 $V_{a2} = L^{-} \rightarrow V_{a1}$  Increases linearly

• Plot 
$$V_{o2}$$
 and  $V_{o1}$  vs t

$$T_{1} = \frac{V_{TH} - V_{TL}}{L^{+} / RC} = RC \frac{V_{TH} - V_{TL}}{L^{+}}$$
 $T_{2} = \frac{V_{TH} - V_{TL}}{-L^{-} / RC} = RC \frac{V_{TH} - V_{TL}}{-L^{-}}$ 

#### Vibrator Circuit: Examples



- Astable multivibrator
  - No stable state
  - Keeps oscillating

## Vibrator Circuit: Examples



- Monostable multivibrator
  - No stable state
  - Produce a pulse with a trigger input

### Vibrator Circuit: Examples





- Bistable multivibrator
  - Two stable states
  - Trigger/switch needed to move from one to another state

#### Comparators



- Width of the linear region ~0.1 mV can be neglected
  - High gain in linear region
- "Compare" V<sub>+</sub> with V<sub>-</sub>

#### Comparator



- An analog signal can be converted into digital signal (high/low) for further processing by digital circuits
- Also called a level detector if the reference voltage is not zero
- Zero-crossing detector if reference voltage is zero (above)

# Schmitt Trigger based Comparator

- Output flips at V<sub>TH</sub> and V<sub>TL</sub> crossing, not zero
- Input signal noise will not affect output





# Sinusoidal (Linear) Oscillators



If AB>0,  $A_F < A \rightarrow$  negative (degenerative) feedback

If  $A_F > A \rightarrow$  positive (regenerative) feedback

### Barkhausen Condition (Oscillation)



- Feedback network allows maintaining original input voltage and same output voltage
- Non-zero output without external input → oscillator
- Loop gain  $\rightarrow$  product of individual gains around loop  $\frac{v_o}{\sqrt{v_f}} \times \frac{v_f}{\sqrt{v_f}} = A \times B \times -1 = -AB$ without external input
- Condition for oscillation  $\rightarrow$  -AB=1 (Barkhausen condition)
  - Unity loop gain
  - $-A_F \rightarrow$  infinite (non-zero output with no input)

$$\frac{v_o}{v_1} \times \frac{v_f}{v_o} \times \frac{v_1}{v_f} = A \times B \times -1 = -AB$$

#### Sinusoidal (Linear) Oscillators



In general, Barkhausen condition for loop gain βA states that the oscillator will sustain steady-state oscillations only for those frequencies for which:

$$|\beta A| = 1$$
  
 $\angle \beta A = 2\pi n, n = 0,1,2,...$ 

#### Sinusoidal Oscillators



- Gain limiting circuit needed to limit amplitude of oscillations
  - Op-Amps (+/-  $V_{sat}$ )
  - Diode resistor networks
- Upto ~100 kHz, op-amps and RC feedback networks are ok
- For high frequencies, gain and slew rate limitations
  - Transistor amplifiers, LC feedback

# Wein-bridge Oscillator



$$H(j\omega) = \frac{V_2(j\omega)}{V_1(j\omega)} = \frac{j\omega RC}{-(\omega RC)^2 + 3j\omega RC + 1}$$



- The condition that  $\angle \beta A = 2\pi n, n = 0,1,2,...$  is satisfied at only one frequency  $\omega_o = 1/RC$ , i.e.  $f_o = 1kHz$
- For this frequency,  $\beta(j\omega_0)=H(j\omega_0)=1/3$

# Wein-bridge Oscillator





β network

35

Assuming  $R_{in} = \infty$  for the amplifier ( $\beta$ -network not loaded by amplifier)

$$A(s)\beta(s) = A\frac{Z_2}{Z_1 + Z_2} = A\frac{R \| (1/sC)}{R + (1/sC) + R \| (1/sC)} = A\frac{sRC}{(sRC)^2 + 3sRC + 1}$$

For  $|A\beta| = 1$  (and with A equal to a real positive number)

$$\frac{j\omega RC}{-(\omega RC)^2 + 3j\omega RC + 1}$$

Must be real and and equal to 1/A

$$\Rightarrow \omega_o = 1/RC, |\beta(j\omega_o)| = \frac{1}{3} \Rightarrow A = 3$$

S. Lodha

#### Wein-bridge Oscillator



- Frequency  $\omega_0 = 1/RC$ , i.e.  $f_0 = 1kHz$
- For amplifier gain A=3,  $1+R_2/R_1=3 \rightarrow R_2=2R_1$
- For limiting gain, diodes are used. When one of the two conducts,  $R_2 \rightarrow R_2 | |R_3|$  and gain reduces



10/13/2014



$$R_1 = R_2 = R$$
,  $C_1 = C_2 = C_3 = C$ 

$$sC(V_A - V) + GV_A + sC(V_A - V_B) = 0$$
 (1)

$$sC(V_R - V_A) + GV_R + sCV_R = 0$$
 (2)

Solving (1) and (2)

$$I = \frac{1}{R} \frac{(sRC)^{3}}{3(sRC)^{2} + 4sRC + 1}V$$



$$\beta(j\omega) = \frac{I(j\omega)}{V(j\omega)} = \frac{1}{R} \frac{(j\omega RC)^3}{3(j\omega RC)^2 + 4j\omega RC + 1}$$

For  $\beta(j\omega)$  to be a real number, denominator should be purely imaginary

$$-3(\omega RC)^2 + 1 = 0 \Rightarrow \omega \equiv \omega_o = \frac{1}{\sqrt{3}} \frac{1}{RC}$$

$$\beta(j\omega_o) = \frac{1}{R} \frac{(j/\sqrt{3})^3}{4j/\sqrt{3}} = -\frac{1}{12R}$$



$$R_1 = R_2 = R = 10k$$
,  $C_1 = C_2 = C_3 = C = 16nF$ 

Phase angle=180 deg= $\pi$  at  $\omega_o$ 



Note that virtual ground of the op-amp provides the ground of the  $\beta$ -network on the left

$$A\beta(j\omega) = R_f \frac{I(j\omega)}{V(j\omega)} = -\frac{R_f}{R} \frac{(j\omega RC)^3}{3(j\omega RC)^2 + 4j\omega RC + 1}$$
Phase angle=180 deg= $\pi$ ,  $\angle \beta A = \pi + \pi = 2\pi$ 

For the circuit to oscillate at  $\omega_0$  (phase is  $2\pi$ )

$$|A\beta(j\omega_o)| = 1 \Rightarrow R_f \times \frac{1}{12R} = 1 \Rightarrow R_f = 12R$$

10/13/2014 S. Lodha 39

#### **Block Diagram**





#### Output



$$\omega_o = \frac{1}{\sqrt{3}} \frac{1}{RC} \Rightarrow f_o = 574 Hz$$