PRACTICE PROBLEM - MODULE - 4

Solve the following using laplace transform:

1.
$$y'' + 4y = f(t)$$
; $y(0) = 1$, $y'(0) = 0$, with

$$f(t) = \begin{cases} 0 & \text{for } 0 \le t < 4\\ 3 & \text{for } t \ge 4 \end{cases}$$

2.
$$y'' - 2y' - 3y = f(t)$$
; $y(0) = 1$, $y'(0) = 0$, with

$$f(t) = \begin{cases} 0 & \text{for } 0 \le t < 4\\ 12 & \text{for } t \ge 4 \end{cases}$$

3.
$$y'' + 5y' + 6y = f(t)$$
; $y(0) = y'(0) = 0$, with

$$f(t) = \begin{cases} -2 & \text{for } 0 \le t < 3\\ 0 & \text{for } t \ge 3 \end{cases}$$

4.
$$y^{''} - 4y^{'} + 4y = f(t); \ y(0) = -2, y^{'}(0) = 1, \ with$$

$$f(t) = \begin{cases} t & \text{for } 0 \le t < 3\\ t+2 & \text{for } t \ge 3 \end{cases}$$

5.
$$y'' + 5y' + 6y = 3\delta(t-2) - 4\delta(t-5)$$
; $y(0) = y'(0) = 0$

6.
$$y'' - 4y' + 13y = 4\delta(t-3)$$
; $y(0) = y'(0) = 0$

7.
$$y'' + 16y' = 12\delta(t - 5\pi/8)$$
; $y(0) = 3$, $y'(0) = 0$

8.
$$y'' + 5y' + 6y = B\delta(t)$$
; $y(0) = 3$, $y'(0) = 0$

9. $y^{''} - 3y^{'} + 2y = u_1(t), \ y(0) = 1, \ y^{'}(0) = 1$, where $u_1(t)$ is unit step function and $u_1(t) = u(t-1)$.

10.
$$y'' + 5y' + 6y = 1 - tu_3(t) - t^2u_5(t), \ y(0) = 0, \ y'(0) = 0.$$

11.
$$y''' = \delta(t-5)$$
, $y(0) = y'(0) = y''(0) = 0$, where δ is impulse function.

12.
$$y^{''} + 4y^{'} + 3y = f(t)$$
; $y(0) = 0, y^{'}(0) = 1$, where

$$f(t) = \begin{cases} -1 & \text{for } 0 \le t < 3\\ 0 & \text{for } t \ge 3 \end{cases}$$

13.
$$y'' - 3y' + 2y = e^{3t}$$
; $y(0) = 1, y'(0) = 0$.

14.
$$y'' - 10y' + 9y = 5t$$
; $y(0) = -1, y'(0) = 2$.

15.
$$y^{"} + 25y = 10\cos 5t$$
 given that $y(0) = 2, y^{'}(0) = 0$.

16.
$$y'' - 6y' + 15y = 2\sin 3t$$
, $y(0) = -1$, $y'(0) = -4$.

17.
$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 5y = e^{-t}\sin t$$
, where $y(0) = 0$ and $y'(0) = 1$.