LUNDS TEKNISKA HÖGSKOLA MATEMATIK

1

TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B1 2015-08-22, 8-13

INGA HJÄLPMEDEL. För att bli godkänd krävs minst 0.8 av 1.0 på uppgift 1 samt minst 3.0 på skrivningen totalt. Lösningarna skall vara försedda med ordentliga och tydliga motiveringar.

	nedanstående 10 deluppgifter skall endast svar anges. S så långt som möjligt.	${ m varen~ska~vara~f\"{o}renk} \ (0.1/{ m styck})$
a)	Förenkla $\frac{a^{-1/15}}{a^{-1/5}}$ till en potens av a . Svara med expone	enten.
	Svar:	
b)	Lös ekvationen $\sqrt{-5x-4} = \sqrt{-x+7}$.	
	Svar:	
c)	Kvadratkomplettera $x^2 - 6x + 11$.	
	Svar:	
d)	Ange värdet av $\cos(300^{\circ})$.	
	Svar:	
e)	I en rätvinklig triangel är en katet 1 cm, och vinkeln n hypotenusan är 60° grader. Hur lång är den andra kat	
	Svar:	
$\mathbf{f})$	Lös ekvationen $\sqrt{3x^2 - 2x - 15} = x + 1$.	
	Svar:	
$\mathbf{g})$	Lös ekvationen $\ln(x-7) - 2\ln(x-1) = -2\ln 5$.	
	Svar:	
h)	Lös ekvationen $9^x - 4 \cdot 3^x + 3 = 0$.	
	Svar:	
i)	Förenkla $^5\log 25$ så långt som möjligt. Logaritmuttryc	k får ej ingå i svaret.
	Svar:	
$\mathbf{j})$	Lös olikheten $(x+3)(x-5) < 0$.	
	Svar:	
Nai	mn:	
Per	sonnummer:	
	<u>'</u>	

- **2** a) Lös ekvationen $\sin(2x) = -\cos(x)$. (0.5)
 - b) Använd definitionen av derivata för att härleda derivatan av funktionen $f(x) = x^2$. (0.5)
- **3** a) Skissera kurvan till ekvationen $2x^2 y^2 4(x + y) 3 = 0$, och ange alla asymptoter. (0.5)
 - b) Använd räknelagar för potenser för att bevisa logaritmlagen

$$\ln a + \ln b = \ln ab, \qquad a, b > 0.$$
 (0.5)

- **4** a) Beräkna gränsvärdet $\lim_{x\to\infty} \frac{\arctan 2x}{3x}$. (0.3)
 - **b)** Beräkna gränsvärdet $\lim_{x\to 0} \frac{\arctan 2x}{3x}$. (0.3)
 - c) Låt s vara ett godtyckligt reellt tal. Beräkna gränsvärdet $\lim_{x\to 1} \frac{x^s-1}{\ln x}$. (0.4)
- 5 a) Skissera grafen till funktionen $f(x) = x^4 2x^3 + x^2 1$. Ange funktionens värdemängd samt eventuella lokala extrempunkter och asymptoter. (0.5)
 - b) Tolv likformiga rätvinkliga trianglar är placerade runt origo såsom figuren visar. Varje triangel är placerad så att hörnet med den minsta vinkeln är placerat i origo. Den största triangelns hypotenusa har längden 1. Beräkna trianglarnas sammanlagda area.

6 En partikel rör sig i planet. Partikeln rör sig längs en rät linje från punkten A: (-1,0) till punkten P på enhetscirkeln med farten 1, och sedan vidare längs en rät linje till punkten B: (2,0) med farten 3. Punkten P ligger så att sträckan PB inte har någon del innanför enhetscirkeln.

- a) Låt (x, y) vara koordinaterna för P. Vilka värden kan x anta? (Tänk på att sträckan PB inte får ha någon del innanför enhetscirkeln.) (0.3)
- **b)** Hur ska punkten P väljas för att partikelns förflyttning ska gå så fort som möjligt? (0.7)

LYCKA TILL!