Task 01

```
# Importing data into dataframe using pandas
         import pandas as pd
         df = pd.read_csv("data/WaterAtlas-OneLake.csv")
In [ ]:
         df.head()
                                       DataSource StationID StationName Actual_StationID Actual_Latitude Actual_Longitude DEP_WBID SampleDate ... DepthUnits Parameter Characteristic Sample_Fraction Resul
            WBodyID
                     WaterBodyName
Out[]:
                       Okaloacoochee
                                                                                                                                  5/18/2020
         0 2003889
                                    WIN_21FLSFWM
                                                     32275
                                                               CRFW09
                                                                                 32275
                                                                                              26.7629
                                                                                                              -81.4001
                                                                                                                         32350
                                                                                                                                                                         Nitrogen
                                                                                                                                                                                            Total
                                                                                                                                                             TN_ugl
                                                                                                                                 11:11:00 AM
                             Branch
                       Okaloacoochee
                                                                                                                                  5/18/2020
                                                                                                                                                                         Nitrogen,
           2003889
                                                                                                                                                       m NH3_N_ugl
                                    WIN_21FLSFWM
                                                     32275
                                                               CRFW09
                                                                                 32275
                                                                                              26.7629
                                                                                                              -81.4001
                                                                                                                         32350
                                                                                                                                                                                        Dissolved
                             Branch
                                                                                                                                 11:11:00 AM
                                                                                                                                                                     ammonia as N
                                                                                                                                                                         Nitrogen,
                       Okaloacoochee
                                                                                                                                  5/18/2020
                                                                                                                                                                    Nitrite (NO2) +
         2 2003889
                                    WIN_21FLSFWM
                                                     32275
                                                               CRFW09
                                                                                 32275
                                                                                              26.7629
                                                                                                              -81.4001
                                                                                                                         32350
                                                                                                                                                                                        Dissolved
                                                                                                                                                            NOx_ugl
                                                                                                                                 11:11:00 AM
                             Branch
                                                                                                                                                                     Nitrate (NO3)
                                                                                                                                                                            as N
                       Okaloacoochee
                                                                                                                                  5/18/2020
                                                                                                                                                                     Phosphorus as
         3 2003889
                                    WIN_21FLSFWM
                                                     32275
                                                               CRFW09
                                                                                 32275
                                                                                              26.7629
                                                                                                              -81.4001
                                                                                                                         32350
                                                                                                                                                              TP_ugl
                                                                                                                                                                                            Total
                             Branch
                                                                                                                                 11:11:00 AM
                                                                                                                                                                      Phosphorus,
                       Okaloacoochee
                                                                                                                                  5/18/2020
         4 2003889
                                    WIN_21FLSFWM
                                                     32275
                                                               CRFW09
                                                                                 32275
                                                                                              26.7629
                                                                                                              -81.4001
                                                                                                                                                                        phosphate
                                                                                                                                                                                        Dissolved
                                                                                                                         32350
                                                                                                                                                             OP_mgl
                                                                                                                                                       m
                             Branch
                                                                                                                                 11:11:00 AM
                                                                                                                                                                        (PO4) as P
        5 rows × 21 columns
In [ ]:
         # Data has 21 columns and the column names are printed down
         len(df.columns), df.columns
Out[]: (21,
          Index(['WBodyID', 'WaterBodyName', 'DataSource', 'StationID', 'StationName',
                 'Actual_StationID', 'Actual_Latitude', 'Actual_Longitude', 'DEP_WBID',
                 'SampleDate', 'ActivityDepth', 'DepthUnits', 'Parameter',
                 'Characteristic', 'Sample_Fraction', 'Result_Value', 'Result_Unit',
                 'QACode', 'Result_Comment', 'Original_Result_Value',
                 'Original_Result_Unit'],
                dtype='object'))
In [ ]:
         df.describe()
                WBodyID Actual_Latitude Actual_Longitude ActivityDepth Result_Value Original_Result_Value
Out[ ]:
                  2289.0
                            2289.000000
                                            2289.000000 2289.000000
                                                                     2289.000000
                                                                                         2179.000000
         count
               2003889.0
                              26.759472
                                              -81.399168
                                                            0.331355
                                                                       203.284873
                                                                                            72.951471
         mean
                     0.0
                               0.003488
                                               0.000987
                                                            0.161500
                                                                       733.434420
                                                                                          177.903803
           std
               2003889.0
                              26.751830
                                              -81.400100
                                                            0.100000
                                                                        0.002000
                                                                                            0.002000
           min
                              26.756020
          25% 2003889.0
                                             -81.400000
                                                            0.152439
                                                                         3.570000
                                                                                            0.255000
          50% 2003889.0
                               26.762710
                                             -81.400000
                                                            0.300000
                                                                        21.000000
                                                                                            6.000000
               2003889.0
          75%
                              26.762778
                                             -81.398360
                                                            0.500000
                                                                       89.600000
                                                                                           30.250000
          max 2003889.0
                              26.762900
                                             -81.394680
                                                            0.500000 10600.000000
                                                                                         2240.000000
         \# Listing the number of 'NaN' values for all the columns present in the dataframe.
         for i in df.columns:
             count_nan = df[i].isnull().sum()
             print(i,count_nan)
         WBodyID 0
         WaterBodyName 0
         DataSource 0
        StationID 0
        StationName 0
         Actual_StationID 0
         Actual_Latitude 0
        Actual_Longitude 0
         DEP_WBID 0
         SampleDate 0
         ActivityDepth 0
        DepthUnits 0
        Parameter 0
         Characteristic 0
         Sample Fraction 554
         Result_Value 0
        Result_Unit 0
         QACode 1961
         Result Comment 1984
         Original_Result_Value 110
        Original_Result_Unit 110
In [ ]:
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 2289 entries, 0 to 2288
         Data columns (total 21 columns):
                                      Non-Null Count Dtype
             Column
                                      -----
         0
              WBodyID
                                      2289 non-null int64
                                      2289 non-null
              WaterBodyName
                                                       object
              DataSource
                                      2289 non-null
                                                       object
              StationID
                                      2289 non-null
                                                       object
             StationName
                                      2289 non-null
                                                       object
             Actual_StationID
                                      2289 non-null
         5
                                                       object
          6
              Actual Latitude
                                      2289 non-null
                                                       float64
              Actual Longitude
                                      2289 non-null
                                                       float64
              DEP_WBID
                                      2289 non-null
         8
                                                       object
                                      2289 non-null
              SampleDate
                                                       object
             ActivityDepth
                                      2289 non-null
                                                       float64
          10
          11 DepthUnits
                                      2289 non-null
                                                       object
          12 Parameter
                                      2289 non-null
                                                       object
          13 Characteristic
                                      2289 non-null
                                                       object
          14 Sample Fraction
                                      1735 non-null
                                                       object
          15
             Result Value
                                      2289 non-null
                                                       float64
             Result_Unit
                                      2289 non-null
          16
                                                       object
         17 QACode
                                      328 non-null
                                                       object
          18 Result Comment
                                      305 non-null
                                                       object
          19 Original Result Value 2179 non-null
                                                       float64
          20 Original_Result_Unit 2179 non-null
         dtypes: float64(5), int64(1), object(15)
         memory usage: 375.7+ KB
```

```
date = df.SampleDate.values.tolist()
          set_date = list(set(date))
In [ ]:
          # Extracting parameter and their characterstic values from dataframe
          parameter = df.Parameter.values.tolist()
          characteristic = df.Characteristic.values.tolist()
          # there are a total of 72 different parameters and 61 charactersctic
          # Hence, there are 11 paramters with no descriptions or multiple parameters with similar description
          len(set(parameter)), len(set(characteristic))
Out[]: (72, 61)
          # As the parameter's name itself is not very informative, adding characterstic description adds to it.
          pairvalue = [i+" "+j for i,j in zip(parameter, characteristic)]
          len(set(pairvalue))
Out[]: 72
          # All the unique set pairvalues (72)
          list_pair = list(set(pairvalue))
In [ ]:
          df['Parameter'] = pairvalue
          df.columns
Out[ ]: Index(['WBodyID', 'WaterBodyName', 'DataSource', 'StationID', 'StationName',
                 'Actual_StationID', 'Actual_Latitude', 'Actual_Longitude', 'DEP_WBID',
                 'SampleDate', 'ActivityDepth', 'DepthUnits', 'Parameter',
                 'Characteristic', 'Sample_Fraction', 'Result_Value', 'Result_Unit',
                 'QACode', 'Result_Comment', 'Original_Result_Value',
                 'Original_Result_Unit'],
               dtype='object')
In [ ]:
          #dropping the columns with similar values or the ones with repeatative / sparse data in them.
          df = df.drop(columns=['WBodyID', 'WaterBodyName', 'DataSource', 'StationID', 'StationName',
                  'Actual_StationID', 'Actual_Latitude', 'Actual_Longitude', 'DEP_WBID', 'DepthUnits',
                  'Characteristic', 'Sample_Fraction','QACode', 'Result_Comment', 'Original_Result_Value',
                  'Original_Result_Unit'])
          df.head()
                   SampleDate ActivityDepth
                                                                          Parameter Result_Value Result_Unit
Out[ ]:
         o 5/18/2020 11:11:00 AM
                                                                                       1280.000
                                       0.23
                                                                      TN_ugl Nitrogen
                                                                                                       ug/l
         1 5/18/2020 11:11:00 AM
                                       0.23
                                                      NH3_N_ugl Nitrogen, ammonia as N
                                                                                        203.000
                                                                                                       ug/l
                                       0.23 NOx_ugl Nitrogen, Nitrite (NO2) + Nitrate (NO3...
         2 5/18/2020 11:11:00 AM
                                                                                          9.000
                                                                                                       ug/l
         3 5/18/2020 11:11:00 AM
                                       0.23
                                                               TP_ugl Phosphorus as P
                                                                                         52.000
                                                                                                       ug/l
         4 5/18/2020 11:11:00 AM
                                       0.23
                                                 OP_mgl Phosphorus, phosphate (PO4) as P
                                                                                          0.002
                                                                                                       mg/l
         # Collecting data of all the parameters date wise in the variable final_list
          final_list=list()
          for d in set_date:
              top = {key:() for key in list_pair+['ActivityDepth']}
              for i,j in df.iterrows():
                  if(j[0]==d):
                       #print(j[1],j[2],j[3])
                       top[j[2]]=(j[3],j[4])
                       #print(top)
                       #raise KeyboardInterrupt
                       if(len(top['ActivityDepth'])==0):
                           top['ActivityDepth'] = [j[1]]
              final_list.append(top)
In [ ]:
          # creating varibale fdf with 103 rows, each for one unique date value, containing values for 73 different parameters
          fdf = pd.DataFrame(data=None, columns=["Date"])
In [ ]:
          fdf['Date'] = set date
In [ ]:
          # Adding data to the fdf data frame
          for i in list_pair + ['ActivityDepth']:
              top = list()
              for j in final_list:
                  top.append(j[i])
              fdf[i] = top
          fdf.head()
                                                                                                                                                                                        NOx_ugl
Out[ ]:
                                                                                                                                                           BOD5_mgl
                                                                                                                                                                                       Nitrogen,
                                                               NH3_N_ugl
                                                                                                                                   NO2_diss_ugl
                                                                                              Depth_bott_ft
                                                                                                                                                                BOD, MCPP_ugl
                                                                                                                                                                                          Nitrite
                                                                                                                                      Nitrogen,
                                                                 Nitrogen, Mn_diss_ugl Ag_ugl
                      Ni_ugl Sucralose_ug/l Cl_mgl Linuron_ugl
                                                                                                               Mn_ugl
                                                                                                                           Na_mgl
                                                                                                                                                  Cd_ugl
                                                                                                                                                                                Cu_ugl
                                                                                                     Depth,
                                                                                                                                                          Biochemical
                                                                                                                                                                     Mecoprop
                                                                                                                                                                                         (NO2) + Dichloroph
                      Nickel
                                 Sucralose Chloride
                                                       Linuron
                                                                 ammonia
                                                                           Manganese Silver
                                                                                                            Manganese
                                                                                                                          Sodium
                                                                                                                                   Nitrite (NO2)
                                                                                                                                                Cadmium
                                                                                                                                                                               Copper
                                                                                                    bottom
                                                                                                                                                              oxygen
                                                                                                                                                                       (MCPP)
                                                                                                                                                                                         Nitrate
                                                                     as N
                                                                                                                                           as N
                                                                                                                                                             demand
                                                                                                                                                                                        (NO3) as
                                                                                                                                                                                              Ν
            8/24/2020
                                                                                                                                                                                           (48.0,
             11:36:00
                          ()
                                                 ()
                                                            () (59.0, ug/l)
                                                                                                         ()
                                                                                                                    () ...
                                                                                                                                                       ()
                                                                                                                                                                  ()
                                                                                                                                                                            ()
                                        ()
                                                                                    ()
                                                                                           ()
                                                                                                                                ()
                                                                                                                                             ()
                                                                                                                                                                                    ()
                                                                                                                                                                                            ug/l)
            5/18/2020
             11:11:00
                          ()
                                        ()
                                                 ()
                                                            () (203.0, ug/l)
                                                                                    ()
                                                                                           ()
                                                                                                         ()
                                                                                                                    () ...
                                                                                                                                ()
                                                                                                                                             ()
                                                                                                                                                       ()
                                                                                                                                                                  ()
                                                                                                                                                                            ()
                                                                                                                                                                                    () (9.0, ug/l)
                  AM
              04-05-
                                                                                                                                                                                           (15.0,
                                                                                                         ()
                          ()
                                        ()
                                                 ()
                                                            () (303.0, ug/l)
                                                                                    ()
                                                                                           ()
                                                                                                                    () ...
                                                                                                                                ()
                                                                                                                                             ()
                                                                                                                                                       ()
                                                                                                                                                                  ()
                                                                                                                                                                            ()
                                                                                                                                                                                    ()
            2021 11:15
                                                                                                                                                                                            ug/l)
              03-12-
                          ()
                                                 ()
                                                                                                                    () ...
                                        ()
                                                            ()
                                                                       ()
                                                                                    ()
                                                                                           ()
                                                                                                         ()
                                                                                                                               ()
                                                                                                                                             ()
                                                                                                                                                       ()
                                                                                                                                                                  ()
                                                                                                                                                                            ()
                                                                                                                                                                                    ()
                                                                                                                                                                                             ()
            1979 0:00
            11/14/2017
                       (0.47,
                                                                                                                                                                                 (0.29,
                                              (62.0,
                                                                                         (0.01,
                                                                                                                             (44.1,
                                                                                                                                                    (0.02,
                                                                                                                                                                                          (200.0,
```

()

ug/l)

() ...

mg/l)

()

ug/l)

()

ug/l)

ug/l)

5 rows × 74 columns

1:50:00

ΡМ

ug/l)

() (150.0, ug/l)

mg/l)

```
In [ ]: | # copying fdf to fdf_values as python creates pointers
           fdf_values = fdf.copy()
In [ ]:
           fdf_values
                                                                                                                                                                                                                 NOx_ugl
Out[ ]:
                                                                                                                                                                                BOD5_mgl
                                                                                                                                                                                                                Nitrogen,
                                                                                                                                                     NO2_diss_ugl
                                                                         NH3_N_ugl
                                                                                                                                                                                     BOD, MCPP_ugl
                                                                                                            Depth_bott_ft
                                                                                                                                                                                                                   Nitrite
                                                                                                                                                         Nitrogen,
                                                                                                                                                                                                       Cu_ugl
                           Ni_ugl Sucralose_ug/l Cl_mgl Linuron_ugl
                                                                           Nitrogen, Mn_diss_ugl Ag_ugl
                                                                                                                               Mn_ugl
                                                                                                                                            Na_mgl
                                                                                                                                                                      Cd_ugl
                                                                                                                                                                                                                 (NO2) + Dichlore
                     Date
                                                                                                                                                                               Biochemical Mecoprop
                                                                                                                   Depth,
                           Nickel
                                        Sucralose Chloride
                                                                Linuron
                                                                            ammonia
                                                                                       Manganese Silver
                                                                                                                           Manganese
                                                                                                                                            Sodium
                                                                                                                                                      Nitrite (NO2)
                                                                                                                                                                    Cadmium
                                                                                                                                                                                                       Copper
                                                                                                                   bottom
                                                                                                                                                                                              (MCPP)
                                                                                                                                                                                                                  Nitrate
                                                                                                                                                                                   oxygen
                                                                                as N
                                                                                                                                                              as N
                                                                                                                                                                                   demand
                                                                                                                                                                                                                 (NO3) as
                                                                                                                                                                                                                       Ν
                8/24/2020
                                                                                                                                                                                                                    (48.0,
            0
                 11:36:00
                                ()
                                               ()
                                                         ()
                                                                      () (59.0, ug/l)
                                                                                                ()
                                                                                                         ()
                                                                                                                        ()
                                                                                                                                     () ...
                                                                                                                                                  ()
                                                                                                                                                                ()
                                                                                                                                                                            ()
                                                                                                                                                                                         ()
                                                                                                                                                                                                    ()
                                                                                                                                                                                                             ()
                                                                                                                                                                                                                     ug/l)
                      AM
                 5/18/2020
                                ()
                                                                      () (203.0, ug/l)
                                                                                                         ()
                                                                                                                        ()
                                                                                                                                                  ()
                                                                                                                                                                ()
                                                                                                                                                                                         ()
                  11:11:00
                                               ()
                                                         ()
                                                                                                ()
                                                                                                                                     () ...
                                                                                                                                                                            ()
                                                                                                                                                                                                    ()
                                                                                                                                                                                                             () (9.0, ug/l)
                      ΑM
                   04-05-
                                                                                                                                                                                                                    (15.0,
                                                                                                                                                                 ()
                                                                                                                                                                                                             ()
                                ()
                                               ()
                                                         ()
                                                                      () (303.0, ug/l)
                                                                                                ()
                                                                                                         ()
                                                                                                                        ()
                                                                                                                                     () ...
                                                                                                                                                  ()
                                                                                                                                                                           ()
                                                                                                                                                                                         ()
                                                                                                                                                                                                    ()
                2021 11:15
                                                                                                                                                                                                                     ug/l)
                   03-12-
                                ()
                                                         ()
                                                                                                         ()
                                                                                                                        ()
                                                                                                                                     () ...
                                                                                                                                                  ()
                                                                                                                                                                ()
                                                                                                                                                                           ()
                                                                                                                                                                                         ()
                                                                                                                                                                                                    ()
                                                                                                                                                                                                             ()
                                                                                                                                                                                                                       ()
                                               ()
                                                                      ()
                                                                                  ()
                                                                                                ()
                 1979 0:00
                11/14/2017
                             (0.47,
                                                      (62.0,
                                                                                                      (0.01,
                                                                                                                                              (44.1,
                                                                                                                                                                        (0.02,
                                                                                                                                                                                                         (0.29,
                                                                                                                                                                                                                   (200.0,
                                                                                                                                                                 ()
                                                                                                                        ()
                                                                                                                                                                                         ()
                                                                                                                                                                                                    ()
                   1:50:00
                                                                      () (150.0, ug/l)
                                                                                                ()
                                                                                                                                     () ...
                                                                                                       ug/l)
                                                                                                                                               mg/l)
                             ug/l)
                                                      mg/l)
                                                                                                                                                                         ug/l)
                                                                                                                                                                                                          ug/l)
                                                                                                                                                                                                                     ug/l)
                      РΜ
                 9/16/1980
                                                                                                                                                                                                                    (10.0,
                 12:00:00
                                ()
                                               ()
                                                         ()
                                                                                  ()
                                                                                                ()
                                                                                                         ()
                                                                                                                        ()
                                                                                                                                     () ...
                                                                                                                                                  ()
                                                                                                                                                          (4.0, ug/l)
                                                                                                                                                                           ()
                                                                                                                                                                                         ()
                                                                                                                                                                                                    ()
                                                                                                                                                                                                            ()
                                                                                                                                                                                                                     ug/l)
                      ΑM
                 4/24/2017
                            (1.78,
                                                                                                                                                                                                         (0.32,
                                                      (49.0,
                                                                                                                                              (42.5,
                                                                                                                                                                        (0.02,
                                                                                                                                                                                                                    (40.0,
                                                                                                      (0.01,
                                                                      () (120.0, ug/l)
           99
                 10:50:00
                                               ()
                                                                                                ()
                                                                                                                        ()
                                                                                                                                     () ...
                                                                                                                                                                ()
                                                                                                                                                                                         ()
                                                                                                                                                                                                    ()
                             ug/l)
                                                      mg/l)
                                                                                                       ug/l)
                                                                                                                                               mg/l)
                                                                                                                                                                         ug/l)
                                                                                                                                                                                                          ug/l)
                                                                                                                                                                                                                     ug/l)
                      ΑM
                 5/19/1980
          100
                 12:00:00
                                ()
                                                                                                         ()
                                                                                                                        ()
                                                                                                                                     () ...
                                                                                                                                                  ()
                                                                                                                                                                ()
                                                                                                                                                                           ()
                                                                                                                                                                                         ()
                                                                                                                                                                                                    ()
                                                                                                                                                                                                            ()
                                                                                                                                                                                                                       ()
                                               ()
                                                         ()
                                                                                  ()
                                                                                                ()
                      ΑM
                 8/28/2017
                                                                                                                                                                                                                    (47.0,
                            (0.56,
                                                      (70.0,
                                                                                                      (0.01,
                                                                                                                                              (51.4,
                                                                                                                                                                        (0.02,
                                                                                                                                                                                                          (0.2,
                                                                                                                                                                ()
                                                                                                                        ()
                                                                                                                                     () ...
                                                                                                                                                                                         ()
                                                                                                                                                                                                    ()
          101
                 11:00:00
                                                                      () (200.0, ug/l)
                                                                                                       ug/l)
                                                                                                                                               mg/l)
                                                                                                                                                                         ug/l)
                                                                                                                                                                                                          ug/l)
                             ug/l)
                                                      mg/l)
                                                                                                                                                                                                                    ug/l)
                      ΑM
               10/19/2020
                                                                                                                                                                                                                   (107.0,
                                                                                                                                                                 ()
                                                                                                                                                                                         ()
                                                                                                                                                                                                             ()
                  12:16:00
                                ()
                                                         ()
                                                                      () (40.0, ug/l)
                                                                                                ()
                                                                                                         ()
                                                                                                                        ()
                                                                                                                                     () ...
                                                                                                                                                  ()
                                                                                                                                                                           ()
                                                                                                                                                                                                    ()
                                                                                                                                                                                                                    ug/l)
                      РΜ
         103 \text{ rows} \times 74 \text{ columns}
           \# value_extract function extracts the num value from the tuples present in the fdf variable
           \# as the unit ug/l and mg/l are used in different and similar columns at the same time
           # this function converts all the values into ug/l.
           def value_extract(top):
               unit = list()
                #print(top)
                #raise KeyboardInterrupt
               for i in top:
                    try:
                         unit.append(i[1])
                    except:
                         unit.append("")
               check = list(set(unit))
                #print(check)
                #raise KeyboardInterrupt
                if('ug/l' in check and 'mg/l' in check):
```

```
ntop = list()
        for i in top:
           try:
                if(i[1].count("mg/l")>0):
                    ntop.append(i[0]*1000)
                else:
                    ntop.append(i[0])
            except:
               ntop.append("na")
   elif("mg/l" in check):
        ntop = list()
        for i in top:
            try:
                ntop.append(i[0]*1000)
            except:
                ntop.append("na")
   else:
        return False, list()
    return True, ntop
# updating fdf_values dataframe with just num values in the column.
for i in list_pair + ['ActivityDepth']:
    #print(fdf_values[i])
   flag, temp = value_extract(fdf_values[i])
    #print(flag, temp)
    #raise KeyboardInterrupt
   if(flag):
        fdf_values[i] = temp
   else:
        temp = list()
        for j in fdf_values[i]:
            try:
                temp.append(j[0])
            except:
                temp.append("na")
        #print(temp)
        #raise KeyboardInterrupt
        fdf_values[i] = temp
        #print(fdf_values)
        #raise KeyboardInterrupt
```

```
In [ ]:
         list_pair[0]
Out[ ]: 'Ni_ugl Nickel'
In [ ]:
          fdf_values
                                                                                                                                                                                        NOx_ugl
Out[ ]:
                                                                                                                                                            BOD5_mgl
                                                                                                                                                                                        Nitrogen,
                                                                 NH3_N_ugl
                                                                                                                                   NO2_diss_ugl
                                                                                                                                                               BOD, MCPP_ugl Cu_ugl
                                                                                               Depth_bott_ft
                                                                                                                                                                                          Nitrite
```

Nitrogen, Mn_diss_ugl Ag_ugl

ammonia

as N

Linuron

Manganese Silver

Ni_ugl Sucralose_ug/l Cl_mgl Linuron_ugl

Sucralose Chloride

Date

Nickel

Biochemical Mecoprop Copper

oxygen

demand

(MCPP)

(NO2) + Dichlore

Nitrate

(NO3) as Ν

Nitrogen,

Nitrite (NO2) Cadmium

as N

Cd_ugl

Na_mgl

Sodium

Depth, Manganese ...

bottom

	Date	Ni_ugl Nickel	Sucralose_ug/l Sucralose		Linuron_ugl Linuron	NH3_N_ugl Nitrogen, ammonia as N	Mn_diss_ugl Manganese		Depth_bott_ft Depth, bottom	Manganese	•••	Na_mgl Sodium	NO2_diss_ugl Nitrogen, Nitrite (NO2) as N	Cd_ugl Cadmium	BOD5_mgl BOD, Biochemical oxygen demand	Macanran	Cu_ugl Copper	Nox_ugi Nitrogen, Nitrite (NO2) + Nitrate (NO3) as	Dichlor
0	8/24/2020 11:36:00 AM	na	na	na	na	59.0	na	na	na	na		na	na	na	na	na	na	48.0	
1	5/18/2020 11:11:00 AM	na	na	na	na	203.0	na	na	na	na		na	na	na	na	na	na	9.0	
2	04-05- 2021 11:15	na	na	na	na	303.0	na	na	na	na		na	na	na	na	na	na	15.0	
3	03-12- 1979 0:00	na	na	na	na	na	na	na	na	na		na	na	na	na	na	na	na	
4	11/14/2017 1:50:00 PM	0.47	na	62000.0	na	150.0	na	0.01	na	na	•••	44100.0	na	0.02	na	na	0.29	200.0	
•••		•••		•••				•••	•••		•••		•••				•••		
98	9/16/1980 12:00:00 AM	na	na	na	na	na	na	na	na	na	•••	na	4.0	na	na	na	na	10.0	
99	4/24/2017 10:50:00 AM	1.78	na	49000.0	na	120.0	na	0.01	na	na	•••	42500.0	na	0.02	na	na	0.32	40.0	
100	5/19/1980 12:00:00 AM	na	na	na	na	na	na	na	na	na		na	na	na	na	na	na	na	
101	8/28/2017 11:00:00 AM	0.56	na	70000.0	na	200.0	na	0.01	na	na		51400.0	na	0.02	na	na	0.2	47.0	
102	10/19/2020 12:16:00 PM	na	na	na	na	40.0	na	na	na	na		na	na	na	na	na	na	107.0	

NOx_ugl

103 rows × 74 columns

```
in [ ]: !pip install matplotlib
```

•PIP INSCAIL MacPlotlin

Collecting matplotlib
Downloading matplotlib-3.4.3-cp37-cp37m-macosx_10_9_x86_64.whl (7.2 MB)

| The state of the

Collecting pillow>=6.2.0
Downloading Pillow-8.3.2-cp37-cp37m-macosx_10_10_x86_64.whl (3.0 MB)

3.0 MB 13.5 MB/s

Requirement already satisfied: python-dateutil>=2.7 in /Users/oldxchange/anaconda3/envs/kgconst/lib/python3.7/site-packages (from matplotlib) (2.8.1)
Requirement already satisfied: pyparsing>=2.2.1 in /Users/oldxchange/anaconda3/envs/kgconst/lib/python3.7/site-packages (from matplotlib) (2.4.7)
Collecting kiwisolver>=1.0.1

Downloading kiwisolver-1.3.2-cp37-cp37m-macosx_10_9_x86_64.whl (61 kB)

Collecting cycler>=0.10

Downloading cycler-0.10.0-py2.py3-none-any.whl (6.5 kB)

Requirement already satisfied: six in /Users/oldxchange/anaconda3/envs/kgconst/lib/python3.7/site-packages (from cycler>=0.10->matplotlib) (1.15.0)

Installing collected packages: pillow, kiwisolver, cycler, matplotlib Successfully installed cycler-0.10.0 kiwisolver-1.3.2 matplotlib-3.4.3 pillow-8.3.2

import datetime
date_str = '09/12/2017' # The date - 29 Dec 2017
format str = '%m/%d/%Y' # The format

datetime_obj = datetime.datetime.strptime(date_str, format_str)

print(datetime_obj.date())

2017-09-12

In []: # converting date values to date format to sort the columns based on the date.

import datetime

temp = fdf_values.Date.values.tolist()
temp = [i.split(" ")[0].replace("-" "/"

temp = [i.split(" ")[0].replace("-","/") for i in temp]

In []: format_str = '%m/%d/%Y'

temp = [datetime.datetime.strptime(str(i), format_str) for i in temp]

In []: fdf_values['nDate'] = temp

fdf_values = fdf_values.sort_values(by=['nDate'])

In []: fdf_values.head()

Out[]:

] .	Date	Ni_ugl • Nickel	Sucralose_ug/l Sucralose		Linuron_ugl Linuron	NH3_N_ugl Nitrogen, ammonia as N			Depth_bott_ft Depth, bottom	Mn_ugl Manganese	•••	NO2_diss_ugl Nitrogen, Nitrite (NO2) as N	Cd_ugl Cadmium	BOD5_mgl BOD, Biochemical oxygen demand	MCPP_ugl Mecoprop (MCPP)	Curual	NOx_ugl Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	24D_ugl 2 Dichlorophenoxyace acid (2,4
7	01-11- 1 1978 0:00	3 na	na	na	na	na	16.0	na	na	na		na	na	na	na	na	24.0	
6	1/20/1978 8 12:00:00 AM) na	na	na	na	na	na	na	na	na		10.0	na	na	na	na	49.0	
1	02-08- 9 1978 0:00	3 na	na	na	na	na	18.0	na	na	na		na	na	na	na	na	21.0	
9	03-08- 1 1978 0:00	3 na	na	na	na	na	19.0	na	na	na		na	na	na	na	na	6.0	
1	04-04- 3 1978 0:00	3 na	na	na	na	na	na	na	na	na		na	na	na	na	na	na	

5 rows × 75 columns

plt.xlabel("Date")

```
In []: # plotting all the 73 parameters.
# First drop all the rows with na values in them for that specific parameter

import matplotlib.pyplot as plt

df_new = fdf_values[fdf_values['NH3_N_diss_ugl Nitrogen, ammonia as N']!="na"]

plt.figure(figsize=(10,5))

plt.plot(df_new['Date'], df_new['NH3_N_diss_ugl Nitrogen, ammonia as N'])

plt.xticks(rotation = 90)
```

```
col = fdf_values.columns
In [ ]:
         df_new = fdf_values[fdf_values[col[2]]!="na"]
         plt.figure(figsize=(10,5))
         plt.plot(df_new['Date'], df_new[col[2]])
         plt.xticks(rotation = 90)
         plt.xlabel("Date")
         plt.ylabel(col[2])
         plt.show()
```


Date

```
df_new = fdf_values[fdf_values[col[3]]!="na"]
plt.figure(figsize=(15,10))
plt.plot(df_new['Date'], df_new[col[3]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[3])
plt.show()
```



```
In [ ]:
         df_new = fdf_values[fdf_values[col[3]]!="na"]
         plt.figure(figsize=(15,10))
         plt.plot(df_new['Date'], df_new[col[3]])
         plt.xticks(rotation = 90)
         plt.xlabel("Date")
         plt.ylabel(col[3])
         plt.show()
```



```
df_new = fdf_values[fdf_values[col[4]]!="na"]
plt.figure(figsize=(15,10))
plt.plot(df_new['Date'], df_new[col[4]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[4])
plt.show()
```



```
df_new = fdf_values[fdf_values[col[5]]!="na"]
plt.figure(figsize=(15,10))
plt.plot(df_new['Date'], df_new[col[5]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[5])
plt.show()
```



```
df_new = fdf_values[fdf_values[col[6]]!="na"]
plt.figure(figsize=(15,10))
plt.plot(df_new['Date'], df_new[col[6]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[6])
plt.show()
```



```
In [ ]:
    df_new = fdf_values[col[7]]!="na"]
    plt.figure(figsize=(15,10))
    plt.plot(df_new['Date'], df_new[col[7]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[7])
    plt.show()
```



```
df_new = fdf_values[fdf_values[col[8]]!="na"]
plt.figure(figsize=(15,10))
plt.plot(df_new['Date'], df_new[col[8]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[8])
plt.show()
```



```
df_new = fdf_values[fdf_values[col[9]]!="na"]
plt.figure(figsize=(15,10))
plt.plot(df_new['Date'], df_new[col[9]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[9])
plt.show()
```

```
37.0 - 36.5 - 36.0 - 37.0 - 37.5 - 37.0 - 37.5 - 37.0 - 37.5 - 37.0 - 37.5 - 37.0 - 37.5 - 37.0 - 37.5 - 37.0 - 37.5 - 37.0 - 37.5 - 37.0 - 37.5 - 37.0 - 37.5 - 37.0 - 37.5 - 37.0 - 37.5 - 37.0 - 37.5 - 37.0 - 37.5 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37.0 - 37
```

```
df_new = fdf_values[fdf_values[col[10]]!="na"]
plt.figure(figsize=(15,10))
plt.plot(df_new['Date'], df_new[col[10]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[10])
plt.show()
```



```
df_new = fdf_values[fdf_values[col[11]]!='na']
plt.figure(figsize=(15,10))
plt.plot(df_new['Date'], df_new[col[11]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[11])
plt.show()
```



```
df_new = fdf_values[fdf_values[col[12]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[12]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[12])
plt.show()
```



```
df_new = fdf_values[fdf_values[col[13]]!='na']
    plt.figure(figsize=(15,10))
    plt.plot(df_new['Date'], df_new[col[13]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[13])
    plt.show()
```



```
In []:
    df_new = fdf_values[fdf_values[col[14]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[14]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[14])
    plt.show()
```



```
In []:
    df_new = fdf_values[fdf_values[col[15]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[15]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[15])
    plt.show()
```



```
In [ ]:
    df_new = fdf_values[fdf_values[col[16]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[16]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[16])
    plt.ylabel(col[16])
    plt.show()
```



```
df_new = fdf_values[fdf_values[col[17]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[17]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[17])
    plt.show()
```



```
df_new = fdf_values[fdf_values[col[18]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[18]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[18])
plt.show()
```



```
In []:
    df_new = fdf_values[fdf_values[col[19]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[19]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[19])
    plt.show()
```



```
df_new = fdf_values[fdf_values[col[20]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[20]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[20])
plt.show()
```



```
In []:
    df_new = fdf_values[fdf_values[col[21]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[21]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[21])
    plt.show()
```



```
In []:
    df_new = fdf_values[fdf_values[col[22]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[22]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[22])
    plt.show()
```



```
In [ ]:
    df_new = fdf_values[fdf_values[col[23]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[23]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[23])
    plt.ylabel(col[23])
```



```
df_new = fdf_values[fdf_values[col[24]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[24]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[24])
plt.show()
```



```
df_new = fdf_values[fdf_values[col[25]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[25]])
plt.xticks(rotation = 90)
plt.xtlabel("Date")
plt.ylabel(col[25])
plt.show()
```



```
In []:
    df_new = fdf_values[fdf_values[col[26]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[26]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[26])
    plt.show()
```



```
In []:
    df_new = fdf_values[fdf_values[col[27]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[27]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[27])
    plt.show()
```



```
In []:
    df_new = fdf_values[fdf_values[col[28]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[28]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[28])
    plt.show()
```



```
In []:
    df_new = fdf_values[fdf_values[col[29]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[29]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[29])
    plt.show()
```



```
df_new = fdf_values[fdf_values[col[30]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[30]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[30])
plt.show()
```



```
In [ ]:
    df_new = fdf_values[fdf_values[col[31]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[31]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[31])
    plt.show()
```



```
In [ ]:
    df_new = fdf_values[fdf_values[col[32]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[32]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[32])
    plt.show()
```



```
In [ ]:
    df_new = fdf_values[fdf_values[col[33]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[33]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[33])
    plt.show()
```



```
val = 34
df_new = fdf_values[fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 35
    df_new = fdf_values[fdf_values[col[val]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[val]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[val])
    plt.show()
```



```
val = 36
df_new = fdf_values[fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 37
    df_new = fdf_values[fdf_values[col[val]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[val]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[val])
    plt.show()
```



```
val = 38
    df_new = fdf_values[fdf_values[col[val]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[val]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[val])
    plt.show()
```



```
val = 39
df_new = fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xtlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 40
df_new = fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 41
df_new = fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new('Date'), df_new[col[val]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 42
df_new = fdf_values[fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 43
df_new = fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 44
df_new = fdf_values[cdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 45
df_new = fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 46
    df_new = fdf_values[fdf_values[col[val]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[val]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[val])
    plt.show()
```



```
val = 47
    df_new = fdf_values[fdf_values[col[val]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[val]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[val])
    plt.show()
```



```
val = 48
df_new = fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 49
df_new = fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xtlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 50
    df_new = fdf_values[fdf_values[col[val]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[val]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[val])
    plt.show()
```



```
val = 51
df_new = fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 52
    df_new = fdf_values[fdf_values[col[val]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[val]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[val])
    plt.show()
```



```
val = 53
    df_new = fdf_values[fdf_values[col[val]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[val]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[val])
    plt.show()
```



```
val = 54
df_new = fdf_values[fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 55
df_new = fdf_values[fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xtlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 56
df_new = fdf_values[fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 57
    df_new = fdf_values[fdf_values[col[val]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[val]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[val])
    plt.show()
```



```
val = 58
    df_new = fdf_values[fdf_values[col[val]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[val]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[val])
    plt.show()
```



```
val = 59
    df_new = fdf_values[fdf_values[col[val]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[val]])
    plt.xlabel(roate')
    plt.xlabel("Date")
    plt.ylabel(col[val])
    plt.show()
```



```
In []:
    val = 60
    df_new = fdf_values[col[val]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[val]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[val])
    plt.show()
```



```
val = 61
df_new = fdf_values[fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 62
df_new = fdf_values[fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 63
df_new = fdf_values[fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xlabel(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 64
df_new = fdf_values[fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 65
    df_new = fdf_values[fdf_values[col[val]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[val]])
    plt.xlabel("Totation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[val])
    plt.show()
```



```
val = 66
df_new = fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['bate'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 67
df_new = fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xlabel("Date")
plt.ylabel(col[val])
plt.show()
```



```
val = 70
    df_new = fdf_values[col[val]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[val]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[val])
    plt.show()
```



```
val = 71
    df_new = fdf_values[fdf_values[col[val]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[val]])
    plt.xlabel(roate')
    plt.xlabel("Date")
    plt.ylabel(col[val])
    plt.show()
```



```
val = 72
    df_new = fdf_values[fdf_values[col[val]]!='na']
    plt.figure(figsize=(20,10))
    plt.plot(df_new['Date'], df_new[col[val]])
    plt.xticks(rotation = 90)
    plt.xlabel("Date")
    plt.ylabel(col[val])
    plt.show()
```



```
val = 73
df_new = fdf_values[col[val]]!='na']
plt.figure(figsize=(20,10))
plt.plot(df_new['Date'], df_new[col[val]])
plt.xticks(rotation = 90)
plt.xtlabel("Date")
plt.ylabel(col[val])
plt.show()
```


Task 03

```
In []:
# fdf_values contain values of all the parameters for 103 days.
# Extracting list of the parameters with maximum number of not 'na' values in their column.

col = fdf_values.columns
col = list(col)
sane_value = list()
for name in col:
    df_new = fdf_values[fdf_values[name]!="na"]
    #print(name, len(df_new))
    sane_value.append(len(df_new))
temp_df = pd.DataTrame(data= None, columns=['col','val'])
temp_df['col'] = col
temp_df['val'] = sane_value
temp_df = temp_df.sort_values(by=['val'], ascending=False)
temp_df = temp_df.sort_values(by=['val'], ascending=False)
temp_df.head(20)
```

Out[]:	col	val
0	Date	103
73	ActivityDepth	103
74	nDate	103
38	Cond_umhocm Specific conductance	97
58	DO_mgl Dissolved oxygen (DO)	97
63	TempW_F Temperature, water	95
55	TempW_C Temperature, water	95
72	рН рН	95
35	TP_ugl Phosphorus as P	94
15	OP_mgl Phosphorus, phosphate (PO4) as P	80
70	NOx_ugl Nitrogen, Nitrite (NO2) + Nitrate (NO3	73
41	Fe_ugl Iron	72
27	TN_ugl Nitrogen	72
52	Color_true_pcu True Color	68
16	TKN_ugl Nitrogen, Kjeldahl	67
23	K_mgl Potassium	57
62	F_mgl Fluorides	53
5	NH3_N_ugl Nitrogen, ammonia as N	50
44	Cl_diss_mgl Chloride	44
32	Pheo_ugl Pheophytin-a	40

In []: | fdf_values

Out[]:

]:	ı		Ni_ugl Nickel	Sucralose_ug/l Sucralose		Linuron_ugl Linuron	NH3_N_ugl Nitrogen, ammonia as N	Mn_diss_ugl Manganese	Ag_ugl Silver	Depth_bott_ft Depth, bottom	Mn_ugl Manganese	•••	NO2_diss_ugl Nitrogen, Nitrite (NO2) as N	Cd_ugl Cadmium	BOD5_mgl BOD, Biochemical oxygen demand	MCPP_ugl Mecoprop (MCPP)	Cu_ugl Copper	NOx_ugl Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	24D_ugl 2 Dichlorophenoxyacı acid (2,4
7	71 0′ 1978	1-11- 0:00	na	na	na	na	na	16.0	na	na	na		na	na	na	na	na	24.0	
6	1/20/ 6 8 12:0	1978 0:00 AM	na	na	na	na	na	na	na	na	na		10.0	na	na	na	na	49.0	
1	9 1978	-08- 0:00	na	na	na	na	na	18.0	na	na	na		na	na	na	na	na	21.0	
ç	03 1978	-08- 0:00	na	na	na	na	na	19.0	na	na	na		na	na	na	na	na	6.0	
1	04 1978	-04- 0:00	na	na	na	na	na	na	na	na	na		na	na	na	na	na	na	
	•••																		
3	2/22/2 30 10:5		na	na	na	na	15.0	na	na	na	na		na	na	na	na	na	5.0	

```
BOD5_mgl
                                                                                                                                                                                    Nitrogen,
                                                                                                                            NO2_diss_ugl
                                                            NH3_N_ugl
                                                                                             Depth_bott_ft
                                                                                                                                                           BOD, MCPP_ugl
                                                                                                                                                                                       Nitrite
                                                                                                                                                                                                       24D_ugl 2
               Ni_ugl Sucralose_ug/l
                                                             Nitrogen, Mn_diss_ugl Ag_ugl
                                                                                                                                            Cd_ugl
                                     Cl_mgl Linuron_ugl
                                                                                                                Mn_ugl
                                                                                                                                Nitrogen,
                                                                                                                                                    Biochemical
                                                                                                                                                                 Mecoprop
                                                                                                                                                                                      (NO2) + Dichlorophenoxyaco
         Date
                                                                                                    Depth,
               Nickel
                           Sucralose Chloride
                                                   Linuron
                                                             ammonia
                                                                        Manganese Silver
                                                                                                            Manganese
                                                                                                                            Nitrite (NO2) Cadmium
                                                                                                                                                                   (MCPP)
                                                                                                    bottom
                                                                                                                                                         oxygen
                                                                                                                                                                                      Nitrate
                                                                                                                                                                                                        acid (2,4
                                                                  as N
                                                                                                                                    as N
                                                                                                                                                                                     (NO3) as
                                                                                                                                                        demand
                                                                                                                                                                                           Ν
     3/22/2021
     11:34:00
                  na
                                  na
                                           na
                                                        na
                                                                  44.0
                                                                                 na
                                                                                         na
                                                                                                        na
                                                                                                                    na
                                                                                                                                      na
                                                                                                                                                na
                                                                                                                                                             na
                                                                                                                                                                        na
                                                                                                                                                                                 na
                                                                                                                                                                                          5.0
          ΑМ
       04-05-
         2021
                                                                 303.0
                                                                                                                                                                                         15.0
                  na
                                  na
                                           na
                                                        na
                                                                                                        na
                                                                                                                                      na
                                                                                                                                                na
                                                                                                                                                             na
                                                                                 na
                                                                                         na
                                                                                                                    na ...
                                                                                                                                                                        na
                                                                                                                                                                                na
         11:15
     4/19/2021
      10:21:00
                                                                  70.0
                                                                                                                                                                                          7.0
                  na
                                  na
                                           na
                                                        na
                                                                                 na
                                                                                         na
                                                                                                        na
                                                                                                                    na ...
                                                                                                                                      na
                                                                                                                                                na
                                                                                                                                                             na
                                                                                                                                                                        na
                                                                                                                                                                                na
          ΑM
       05-03-
 92
         2021
                                                                  61.0
                                                                                                                                                                                          7.0
                   na
                                  na
                                           na
                                                        na
                                                                                 na
                                                                                         na
                                                                                                        na
                                                                                                                    na
                                                                                                                                      na
                                                                                                                                                na
                                                                                                                                                             na
                                                                                                                                                                        na
                                                                                                                                                                                na
        10:54
103 rows × 75 columns
```

NOx_ugl

```
In [ ]:
         # Taking the parameters with 70 or more non-na values in their columns.
         col_corr = temp_df['col'].values.tolist()
         col_corr = col_corr[:13]
         del temp_df
In [ ]:
         # dropping irrelevant column name
         col_corr.pop(1)
        'nDate'
Out[ ]:
In [ ]:
         # list of all the paramters
         col_corr
Out[ ]: ['ActivityDepth',
          'Cond_umhocm Specific conductance',
          'DO mgl Dissolved oxygen (DO)',
          'TempW_F Temperature, water',
          'TempW_C Temperature, water',
          'pH pH',
          'TP_ugl Phosphorus as P',
          'OP_mgl Phosphorus, phosphate (PO4) as P',
          'NOx_ugl Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N',
          'Fe_ugl Iron',
          'TN_ugl Nitrogen']
In [ ]:
         # creating a dataframe to calculate correlation from.
         correlation = fdf_values[col_corr]
         # making a copy of the dataframe, as without copy python creates a pointed which
         # essentially draws back changes all the way back to the source variable
         correlation = correlation.copy()
In [ ]:
```

len(correlation)

Out[]: 38

In []: !pip install seaborn

Collecting seaborn

Downloading seaborn-0.11.2-py3-none-any.whl (292 kB) 292 kB 2.8 MB/s

removing all the rows with 'na' value in them.

correlation = correlation[correlation[col]!='na']

for col in correlation.columns:

Requirement already satisfied: scipy=1.0 in /Users/oldxchange/anaconda3/envs/kgconst/lib/python3.7/site-packages (from seaborn) (1.7.0) Requirement already satisfied: matplotlib>=2.2 in /Users/oldxchange/anaconda3/envs/kgconst/lib/python3.7/site-packages (from seaborn) (3.4.3) Requirement already satisfied: numpy>=1.15 in /Users/oldxchange/anaconda3/envs/kgconst/lib/python3.7/site-packages (from seaborn) (1.21.0) Requirement already satisfied: pandas>=0.23 in /Users/oldxchange/anaconda3/envs/kgconst/lib/python3.7/site-packages (from seaborn) (1.3.1) Requirement already satisfied: cycler>=0.10 in /Users/oldxchange/anaconda3/envs/kgconst/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0) Requirement already satisfied: pillow>=6.2.0 in /Users/oldxchange/anaconda3/envs/kgconst/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (8.3.2) Requirement already satisfied: pyparsing>=2.2.1 in /Users/oldxchange/anaconda3/envs/kgconst/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.7) Requirement already satisfied: kiwisolver>=1.0.1 in /Users/oldxchange/anaconda3/envs/kgconst/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.3.2) Requirement already satisfied: python-dateutil>=2.7 in /Users/oldxchange/anaconda3/envs/kgconst/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.8.1) Requirement already satisfied: six in /Users/oldxchange/anaconda3/envs/kgconst/lib/python3.7/site-packages (from cycler>=0.10->matplotlib>=2.2->seaborn) (1.15.0) Requirement already satisfied: pytz>=2017.3 in /Users/oldxchange/anaconda3/envs/kgconst/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2021.1) Installing collected packages: seaborn Successfully installed seaborn-0.11.2

correlation

64

0.30

649.0

5200.0

75.56

Out[]:

	ActivityDepth	Cond_umhocm Specific conductance	DO_mgl Dissolved oxygen (DO)	TempW_F Temperature, water	TempW_C Temperature, water		TP_ugl Phosphorus as P	OP_mgl Phosphorus, phosphate (PO4) as P	NOx_ugl Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Fe_ugl Iron	TN_ugl Nitrogen
19	0.50	720.0	7800.0	60.62	15.9	7.61	19.0	2.0	21.0	250.0	1301.0
84	0.50	542.0	11000.0	86.9	30.5	7.59	35.0	4.0	5.0	130.0	765.0
27	0.50	378.0	8200.0	85.46	29.7	7.5	25.0	7.0	8.0	220.0	978.0
50	0.50	618.0	13400.0	68.36	20.2	7.41	13.0	3.0	10.0	200.0	2670.0
62	0.50	389.0	9200.0	64.04	17.8	7.57	56.0	31.0	27.0	490.0	1907.0
67	0.50	354.0	10100.0	80.24	26.8	7.38	34.0	6.0	15.0	200.0	765.0
93	0.50	563.0	5000.0	82.22	27.9	7.45	26.0	22.0	82.0	370.0	842.0
43	0.50	410.0	2800.0	80.6	27.0	6.95	222.0	165.0	10.0	1170.0	1860.0
51	0.50	469.0	8100.0	75.92	24.4	7.56	34.0	14.0	125.0	490.0	2025.0
24	0.50	556.0	10600.0	61.52	16.4	8.02	19.0	20.0	55.0	130.0	1415.0
46	0.50	642.0	9200.0	64.94	18.3	7.85	36.0	10.0	6.0	310.0	746.0
44	0.50	253.0	2700.0	80.96	27.2	7.0	44.0	9.0	5.0	410.0	1095.0
98	0.50	452.0	4700.0	81.68	27.6	7.23	131.0	68.0	10.0	370.0	1660.0
25	0.50	488.0	6700.0	76.46	24.7	7.4	35.0	36.0	7.0	270.0	2367.0
54	0.50	546.0	3200.0	74.84	23.8	7.22	27.0	14.0	9.0	130.0	899.0
79	0.30	658.0	12200.0	84.38	29.1	7.7	44.0	19.0	6.0	450.0	856.0
9	0.30	525.0	5000.0	83.3	28.5	7.3	180.0	110.0	52.0	1200.0	1252.0
18	0.30	418.0	3300.0	82.4	28.0	7.2	170.0	130.0	110.0	1010.0	1210.0
34	0.30	650.0	11300.0	82.76	28.2	7.2	95.0	57.0	250.0	730.0	1350.0

24.2 7.6

64.0

19.0

240.0 630.0

420.0

	ActivityDepth	Cond_umhocm Specific conductance	DO_mgl Dissolved oxygen (DO)	TempW_F Temperature, water	TempW_C Temperature, water	pH pH	TP_ugl Phosphorus as P	OP_mgl Phosphorus, phosphate (PO4) as P	NOx_ugl Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Fe_ugl Iron	TN_ugl Nitrogen
99	0.15	737.0	5000.0	79.52	26.4	8.0	71.0	14.0	40.0	560.0	1050.0
33	0.20	834.0	2600.0	82.4	28.0	7.5	86.0	31.0	54.0	770.0	1014.0
38	0.20	834.0	2600.0	82.4	28.0	7.5	86.0	31.0	54.0	770.0	1014.0
101	0.15	673.0	4300.0	81.14	27.3	8.0	64.0	34.0	47.0	590.0	1047.0
49	0.20	592.0	5200.0	85.1	29.5	7.3	170.0	130.0	98.0	1190.0	1698.0
4	0.10	665.0	7000.0	80.24	26.8	7.4	90.0	70.0	200.0	720.0	1400.0
12	0.15	573.0	6200.0	68.9	20.5	7.5	56.0	24.0	86.0	440.0	876.0
66	0.15	711.0	7600.0	65.12	18.4	7.9	55.0	19.0	76.0	580.0	916.0
5	0.15	672.0	7800.0	82.04	27.8	7.2	35.0	15.0	36.0	340.0	716.0
53	0.15	732.0	2200.0	80.618	27.01	7.4	72.0	30.0	28.0	950.0	898.0
55	0.20	724.0	5970.0	85.622	29.79	7.1	82.0	31.0	64.0	750.0	954.0
21	0.10	477.5	6140.0	89.78	32.1	6.79	49.0	29.0	83.0	860.0	1053.0
88	0.20	665.0	7700.0	69.404	20.78	7.5	130.0	30.0	150.0	2240.0	1150.0
78	0.20	667.0	1450.0	76.64	24.8	7.34	83.0	32.0	10.0	620.0	950.0
77	0.10	810.0	3880.0	81.5	27.5	7.51	82.0	31.0	12.0	670.0	1112.0
14	0.15	681.0	3030.0	86.0	30.0	7.11	100.0	46.0	34.0	1080.0	1234.0
58	0.10	668.0	5390.0	86.09	30.05	7.42	86.0	36.0	73.0	1050.0	1373.0
85	0.10	760.0	4360.0	78.8	26.0	7.32	82.0	28.0	29.0	560.0	1029.0

In []: # converting all the values to num

for col in correlation.columns: temp = correlation[col].values.tolist()

temp = [float(i) for i in temp] correlation[col] = temp

importing library for plotting the heatmap and calculating correlation

import seaborn as sns %matplotlib inline import numpy as np

corr = correlation.corr()

In []:

Out[]:

	ActivityDepth	Cond_umhocm Specific conductance	DO_mgl Dissolved oxygen (DO)	TempW_F Temperature, water	TempW_C Temperature, water	рН рН	TP_ugl Phosphorus as P	OP_mgl Phosphorus, phosphate (PO4) as P	NOx_ugl Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	Fe_ugl Iron	TN_ug Nitrogei
ActivityDepth	1.000000	-0.649079	0.375597	-0.330009	-0.330009	0.038809	-0.278471	-0.109821	-0.299982	-0.504908	0.33201
Cond_umhocm Specific conductance	-0.649079	1.000000	-0.152869	-0.030690	-0.030690	0.334919	-0.018467	-0.188248	0.147833	0.199683	-0.26710
DO_mgl Dissolved oxygen (DO)	0.375597	-0.152869	1.000000	-0.327614	-0.327614	0.326464	-0.456975	-0.353580	0.088947	-0.349182	0.21641
TempW_F Temperature, water	-0.330009	-0.030690	-0.327614	1.000000	1.000000	-0.514004	0.329162	0.296924	0.033915	0.222477	-0.19925
TempW_C Temperature, water	-0.330009	-0.030690	-0.327614	1.000000	1.000000	-0.514004	0.329162	0.296924	0.033915	0.222477	-0.19925
рН рН	0.038809	0.334919	0.326464	-0.514004	-0.514004	1.000000	-0.377476	-0.403626	-0.024143	-0.267522	-0.13376
TP_ugl Phosphorus as P	-0.278471	-0.018467	-0.456975	0.329162	0.329162	-0.377476	1.000000	0.916089	0.205477	0.735634	0.14897
OP_mgl Phosphorus, phosphate (PO4) as P	-0.109821	-0.188248	-0.353580	0.296924	0.296924	-0.403626	0.916089	1.000000	0.190320	0.536218	0.29748
NOx_ugl Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	-0.299982	0.147833	0.088947	0.033915	0.033915	-0.024143	0.205477	0.190320	1.000000	0.383348	-0.08135
Fe_ugl Iron	-0.504908	0.199683	-0.349182	0.222477	0.222477	-0.267522	0.735634	0.536218	0.383348	1.000000	0.02483
TN_ugl Nitrogen	0.332015	-0.267100	0.216412	-0.199251	-0.199251	-0.133760	0.148973	0.297481	-0.081355	0.024838	1.00000

In []:

#creating a triangle heat map, for better interpretation of the values.

mask = np.triu(np.ones_like(corr, dtype=bool)) f, ax = plt.subplots(figsize=(11, 9)) cmap = sns.diverging_palette(230, 20, as_cmap=True) sns.heatmap(corr, mask=mask, cmap=cmap, square=True)

Out[]: <AxesSubplot:>

The correlated parameter pairs are:

Parameter 01	Parameter 02
1. ActivityDepth;	Fe_ugl Iron
Cond_umhocm Specific conductance;	ActivityDepth
TempW_F Temperature, water;	рН рН
4. TempW_C Temperature, wate;	рН рН
5. TP_ugl Phosphorus as P; OP_mgl Phosphorus,	phosphate (PO4) as P
6. Fe_ugl Iron;	TP_ugl Phosphorus as P
7. OP_mgl Phosphorus, phosphate (PO4) as P;	Fe_ugl Iron

Task 04

Yes, this data can answer these questions.

- 1. Most of the values which is required to obtain the quality of drinking water are directly present as a parameter or can be derieved from the calculated parameters present in the dataset. [https://www.ag.ndsu.edu/publications/environment-natural-resources/drinking-water-quality-testing-and-interpreting-your-results#section-6]
- 2. Most of the values which is required to obtain the quality of swimming water are directly present as a parameter or can be derieved from the calculated parameters present in the dataset. [https://www.betterhealth.vic.gov.au/health/healthyliving/swimming-pools-water-quality]
- 3. Most of the values which is required to obtain the quality of irrigation water are directly present as a parameter or can be derieved from the calculated parameters present in the dataset. [https://extension.psu.edu/interpreting-irrigation-water-tests]

Example of parameters: ActivityDepth; Cond_umhocm Specific conductance; DO_mgl Dissolved oxygen (DO); TempW_F Temperature, water; TempW_C Temperature, water; pH pH; TP_ugl Phosphorus as P; OP_mgl Phosphorus, phosphate (PO4) as P; NOx_ugl Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N; Fe_ugl Iron; TN_ugl Nitrogen

Drawback: The values of all the parameters mentioned above are not collected for all the mentioned 103 different dates.