MATH 4400/6400 – Homework #7

posted April 22, 2022; due May 2, 2022

MATH 4400/6400 problems.

1. Show that \mathcal{I} is a subring of \mathbb{H} .

Hint. The tricky part is closure under multiplication. For this, let $\delta = \frac{1}{2}(1+i+j+k)$ and argue that $\mathcal{I} = \{A+Bi+Cj+D\delta: A,B,C,D\in\mathbb{Z}\}$. Then verify that the product of any pair of $1,i,j,\delta$ belongs to \mathcal{I} .

- 2. (a) Show that the units of \mathcal{I} are precisely the elements of \mathcal{I} of norm 1.
 - (b) Show that the units in \mathcal{I} are precisely $\pm 1, \pm i, \pm j, \pm k$ and $\frac{\pm 1 \pm i \pm j \pm k}{2}$.
- 3. Suppose that $\alpha \in \mathcal{I}$. Show that one can find a unit ϵ of \mathcal{I} for which $\alpha \cdot \epsilon \in \mathcal{L}$.

Hint. If $\alpha \in \mathcal{L}$, take $\epsilon = 1$. Otherwise, $\alpha = \frac{1}{2}(a + bi + cj + dk)$ for odd integers a, b, c, d. Try $\epsilon = \frac{1}{2}(A - Bi - Cj - Dk)$ where A, B, C, D are all ± 1 , with the signs chosen to make $A \equiv a$, $B \equiv b$, $C \equiv c$, $D \equiv d \pmod{4}$.