

VIGNAN INSTITUTE OF TECHNOLOGY AND SCIENCE

Vignan Hills, Deshmukhi(V), Pochampally(M), YadadriBhuvanagiri (Dist.) – 508284.

Course				Year: I	& Seme	ster: I
Subjec	t: Mat	rices and Calculus (UNIT-1)				
S.NO		QUESTIONS	Marks	cos	POS	BTL
1.	a)	Define Rank of the matrix.	[1M]	1	1,2,3	1
	b)	Find the Value of k such that the rank of $\begin{bmatrix} 1 & 2 & 3 \\ 2 & k & 7 \\ 3 & 6 & 10 \end{bmatrix}$ is 2.	[1M]	1	1,2,3	1
	c)	Find the rank of matrix $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix} \text{ by reducing to}$ echelon form.	[5M]	1	1,2,3	1,5
	d)	Discuss for what values of λ , μ the simultaneous equations $x + y + z = 6$, $x + 2y + 3z = 10$, $x + 2y + \lambda z = \mu$ have (i) no solution (ii) a unique solution (iii) an infinite number of solutions.	[5M]	1	1,2,3	1,6
2.	a)	Define echelon form	[1M]	1	1,2,3	1
	b)	Find the rank of matrix $A = \begin{bmatrix} 2 & 3 & 7 \\ 3 & -2 & 4 \\ 1 & -3 & -1 \end{bmatrix}$ by reducing to echelon form	[1M]	1	1,2,3	1
	c)	Find the rank of \[\begin{bmatrix} 1 & 4 & 3 & -2 & 1 \\ -2 & -3 & -1 & 4 & 3 \\ -1 & 6 & 7 & 2 & 9 \\ -3 & 3 & 6 & 6 & 12 \end{bmatrix} \] reducing to	[5M]	1	1,2,3	1
	d)	Find whether the following systems of equations are consistent. If so solve them. $x + 2y + 2z = 2$; $3x - 2y - z = 5$; $2x - 5y + 3z = -4$; $x + 4y + 6z = 0$	[5M]	1	1,2,3	1,3

3.	a)	Solve the system of equations $2x + 3y = 0$	[1M]	1	1,2,3	1,6
		3x-2y = 0.				
	b)	Define Normal form	[1M]	1	1,2,3	1,2
	c)	Find the rank of matrix A $ \begin{bmatrix} 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2 \end{bmatrix} $ by reducing it to canonical form.	[5M]	1	1,2,3	1,2
	d)	Find whether the following equations are consistent, if so solve them $x + y + 2z = 4$, $2x - y + 3z = 9$, $3x - y - z = 2$.	[5M]	1	1,2,3	1,2
4.	a)	Define Homogeneous system of equations.	[1M]	1	1,2,3	1,2
	b)	Define matrix with example.	[1M]	1	1,2,3	1,6
	c)	Determine whether the following equations will have a non-trivial solution if so solve them. $4x + 2y + z + 3w = 0$, $6x + 3y + 4z + 7w = 0$, $2x + y + w = 0$.	[5M]	1	1,2,3	1,6
	d)	Use the Gauss Elimination method to solve $x +2y-3z = 9, 2x-y+z = 0, 4x-y+z = 4.$	[5M]	1	1,2,3	1.3
5	a)	When given system of equations are consistent and it has unique solution?	[1M]	1	1,2,3	1
	b)	Define a diagonal matrix.	[1M]	1	1,2,3	1
	c)	Find the rank of matrix A = $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$ by reducing it to normal form.	[5M]	1	1,2,3	1,5
	d)	Find the values of 'a' and 'b' for which the equations $x + y + z = 3$, x + 2y + 3z = 6, $x + 9y + az = b$ have (i) No Solution (ii) A unique solution (iii) Infinite number of solutions.	[5M]	1	1,2,3	
6	a)	Find the inverse of the matrix $\begin{bmatrix} 1 & 3 \\ 1 & 6 \end{bmatrix}$	[1M]	1	1,2,3	1,6
	b)	When given system of equations are	[1M]	1	1,2,3	1

		consistent and it has infinite number of solutions?				
	c)	Compute the inverse of the matrix $A = \begin{bmatrix} 0 & 1 & 2 & 2 \\ 1 & 1 & 2 & 3 \\ 2 & 2 & 2 & 3 \\ 2 & 3 & 3 & 3 \end{bmatrix}$ by using elementary operations.	[5M]	1	1,2,3	1,5
	d)	Solve the system of equations $x + 3y - 2z = 0$; $2x - y + 4z = 0$; $x - 11y + 14z = 0$.	[5M]	1	1,2,3	1,6
7	a)	When given system of equations are inconsistent and it has no solution?	[1M]	1	1,2,3	1,6
	b)	When given system of equations are consistent and it has non-trivial solution?	[1M]	1	1,2,3	1,6
	c)	Solve the system of equations $3x + y + 2z = 3$, $2x - 3y - z = -3$, $x + 2y + z = 4$ using Gauss elimination method.	[5M]	1	1,2,3	1,6
	d)	Solve the system of equations $26x_1 + 2x_2 + 2x_3 = 12.6$, $3x_1 + 27x_2 + x_3 = -14.3$, $2x_1 + 3x_2 + 17x_3 = 6.0$ using Gauss Siedel method.	[5M]	1	1,2,3	1,6
8	a)	Find the value of "k" such that the rank of $A = \begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & -1 & k & -1 \\ 3 & 1 & 0 & 1 \end{bmatrix}$ is 2.	[1M]	1	1,2,3	1,5
	b)	When given system of equations are consistent and it has unique solution?	[1M]	1	1,2,3	1,6
	c)	Solve the system of equations $2x + 3y + 2z = 0$; $2x + y + 5z = 0$; $2x + 11y + 15z = 0$.	[5M]	1	1,2,3	1,6
	d)	Solve the system of equations $5x_1 - 2x_2 + 3x_3 = -1$, $-3x_1 + 9x_2 + x_3 = 2$, $2x_1 - x_2 - 7x_3 = 3$ using Gauss Siedel method.	[5M]	1	1,2,3	1,6

Extra IMP questions: (1 MARKS):-

- 1) Find the value of "x" such that the matrix A is singular where A = $\begin{bmatrix} 3-x & 2 & 2 \\ 2 & 4-x & 1 \\ -2 & -4 & -(1+x) \end{bmatrix}$.
- 2) Find the value of A^2 4A + 9I, where A = $\begin{bmatrix} 1 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2 \end{bmatrix}$.
- 3) Find the inverse of the matrix $A = \begin{bmatrix} a+ib & c+id \\ -c+id & a-ib \end{bmatrix}$, if $a^2+b^2+c^2+d^2=1$.
- 4) Find the rank of the matrix $A = \begin{bmatrix} 1 & 0 & 5 \\ 2 & 1 & 6 \\ 3 & 4 & 0 \end{bmatrix}$.
- 5) Find the inverse of the matrix diag[a, b, c]. Where $a \neq 0$, $b \neq 0$, $c \neq 0$.

Extra IMP questions: (5 MARKS):-

- 1) Find the rank of matrix $A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$ by reducing it to normal form.
- 2) Apply rank test to find whether the following system has any solution other than x = y = z = w = 0, x + 2y + 3z + 4w = 0, 5x + 6y + 8z + w = 0, 8x + 3y + 7z + 2w = 0.
 - 3) Solve by Gauss Elimination method 5x y 2z = 142, x 3y z = -30, 2x y 3z = -5.
 - 4) Find the inverse of the matrix A by using Gauss-Jordan method $A = \begin{bmatrix} 1 & 0 & 5 \\ 2 & 1 & 6 \\ 3 & 4 & 0 \end{bmatrix}$.
 - Show that the only real number for which the system $x + 2y + 3z = \lambda x$; $3x + y + 2z = \lambda y$; $2x + 3y + z = \lambda z$ has non-zero solution is 6 and solve them, when $\lambda = 6$.

6) Find the values of 'p' and 'q' for which the equations

$$2x + 3y + 5z = 9$$
, $7x + 3y + 2z = 8$, $2x + 3y + pz = q$ have

- (i) No Solution (ii) a unique solution (iii) Infinite number of solutions.
- 7) Reduce the matrix A to normal form and hence find its rank

$$A = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6 \end{bmatrix}$$

- 8) Show that the equations 3x + 4y + 5z = a, 4x + 5y + 6z = b and 5x + 6y + 7z = c do not have a solution unless a + c = 2b.
- 9) Express the following system in matrix form and solve by Gauss Elimination method. $2x_1 + x_2 + 2x_3 + x_4 = 6$;

$$6x_1 - 6x_2 + 6x_3 + 12x_4 = 36;$$

 $4x_1 + 3x_2 + 3x_3 - 3x_4 = -1;$

$$2x_1 + 2x_2 - x_3 + x_4 = 10.$$

- 10) Solve the system of equations 2x + y + z = 5, 3x + 5y + 2z = 15, 2x + y + 4z = 8 using Gauss Siedel method.
- 11) Express the following system in matrix form and solve by Gauss Elimination method.

$$x_1-x_2+x_3+x_4=2$$
; $x_1+x_2-x_3+x_4=-4$; $x_1+x_2+x_3-x_4=4$; $x_1+x_2+x_3+x_4=0$.

- 12) Determine b such that the system of homogeneous equations 2x + y + 2z = 0, x + y + 3z = 0, 4x + 3y + bz = 0 has trivial and non trivial solutions. Find the Non trivial solution.
- 13) Find the inverse of the matrix A using elementary operations

$$A = \begin{bmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{bmatrix}$$

Objective-PART-A (Choose the Correct Answer)

1) The Rank of a null matrix is -[

]

a)0 b) 1 c) 2 d) n

b) 1 c) 3

a)0

- 2) The rank of a unit matrix of order "n" is-] ſ
- a)0 b) 1 c) 2 d) n
- 3) The rank of the non-singular matrix of order "n" is ---]
- a)0 b) 1 c) n d) none
- 4) The rank of a matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ is -]
- a)0 b) 1 c) 2

d) 2

- 5) The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \end{bmatrix}$ is -[]
- 6) The system of equations AX = B is said to be inconsistent if]

b) $\rho(A) \neq \rho(A/R)$

- $a) \, \rho(A) = \rho(A/B)$ c) $\rho(A) = \rho(A/R) < n$ d) $\rho(A) = \rho(A/R) = n$
- 7) The system of equations AX = B is said to have Unique if ---]
- - b) $\rho(A) \neq \rho(A/B)$ a) $\rho(A) = \rho(A/R)$
 - c) $\rho(A) = \rho(A/B) < n$ d) $\rho(A) = \rho(A/B) = n$
- 8) The system of equations AX = B is said to have infinite solutions if---]

$$a)\rho(A) = \rho(^A/_B)$$

b)
$$\rho(A) \neq \rho(A/B)$$

c)
$$\rho(A) = \rho(A/B) < n$$
 d) $\rho(A) = \rho(A/B) = n$

d)
$$\rho(A) = \rho(A/B) = n$$

9) Which of the following method is known as Diagonally dominant system

a) Gauss — elemination method

b) Gauss – jordan method

1

]

c) Gauss - Seidal method

- d) none
- 10) The system of equations AX = B is said to be Trivial solutions if ---

 $a) \rho(A) = n$

b)
$$\rho(A) \neq n$$

c) $\rho(A) < n$

d) none

Objective- PART-B (Fill in the Blanks)

11) The rank of a unit matrix of order '9' is -----

12) The rank of the matrix $A = \begin{bmatrix} 5 & 10 & 10 \\ 1 & 0 & 2 \\ 3 & 6 & 6 \end{bmatrix}$ is ------

13) If $A = \begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix}$, Find $A^{-1} = \cdots$

14) If A = $\begin{bmatrix} a & c & b \\ b & a & c \\ c & b & a \end{bmatrix}$ is singular matrix, then $a^3 + b^3 + c^3 = \cdots$

15) The maximum value of the rank of a 4×5 matrix is ------

17) The System of equations Ax = B is said to be Non-Homogeneous then -----------

18) The rank of a singular matrix of order 3 is ------

19) The rank of 3×3 matrix whose all elements are equal to 2 is -----

20) If $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$ then x = -- and y = --

Answers

Objective

1) A

2) D

3) C

4) B

5) D

6) B

7) D

8) C

9) C

10) A

Fill in the blanks:

11) 9

12)2

$$13)\begin{bmatrix} 7 & -2 \\ -3 & 1 \end{bmatrix}$$

14)3abc

15)4

16)1

 $17)B \neq 0$

 $18) \le 2$

20)
$$X = 4$$
 and $Y = -5$.

VIGNAN INSTITUTE OF TECHNOLOGY AND SCIENCE

Vignan Hills, Deshmukhi(V), Pochampally(M), YadadriBhuvanagiri (Dist.) – 508284.

Course: B. Tech	Branch: Common to All	Year: I & Semester: I
Subject: Matrices	and Calculus (UNIT-2)	_

S.NO		QUESTIONS	Mar ks	CO S	PO S	BTL
1	a)	Define latent roots and latent vectors.	[1M]	2	1-6	1,4
	b)	Find the quadratic form corresponding to the matrix $\begin{bmatrix} a & h & a \end{bmatrix}$	[1M]	2	1-6	4,5,6
		$A = \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}.$				
	c)	Determine the Eigen values and Eigen vectors of the	[5M]	2	1-6	4,6
		following matrix. $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$				
	d)	Verify Cayley –Hamilton theorem of the matrix	[5M]	2	1-6	5,6
		$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ and also find its inverse.				
2.	a)	Find the quadratic form corresponding to the matrix	[1M]	2	1-6	1,5,6
		$diag[\lambda_1, \lambda_2, \lambda_3 \dots \lambda_n].$				
	b)	Find the Product of the Eigen values of matrix $\begin{bmatrix} 2 & 3 & -2 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}.$	[1M]	2	1-6	1,6
	c)	Diagonalize the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$.	[5M]	2	1-6	1,5
	d)	Reduce the following quadratic form to canonical form	[5M]	2	1-6	1,6
		by orthogonal transformation and also find the (i)rank				
		(ii) index (iii) nature (iv) signature. where $Q = 2xy +$				

		2xz-2yz.				
3.	a)	Define spectral matrix.	[1M]	2	1-6	1,5
	b)	Find the Eigen values of $\begin{bmatrix} 1 & -2 & 0 \\ 0 & 2 & -4 \\ 0 & 0 & 3 \end{bmatrix}$	[1M]	2	1-6	4,5,6
	c)	Find the diagonal matrix orthogonally similar to the following real symmetric matrix. Also obtain the transforming matrix. $A = \begin{bmatrix} 7 & 4 & -4 \\ 4 & -8 & -1 \\ -4 & -1 & -8 \end{bmatrix}$.	[5M]	2	1-6	1,6
	d)	If λ is an eigen value of a non-singular matrix A then	[5M]	2	1-6	4,5,6
		prove that λ^n is an eigen value of A^n .				
4.	a)	Express the following quadratic form to matrix notation	[1M]	2	1-6	1,2
		$2x^2 + 3y^2 - 5z^2 - 2xy + 6xz - 10yz.$				
	b)	Define nature of the quadratic form.	[1M]	2	1-6	1,5,6
	c)	Using Cayley-Hamilton theorem find the inverse and A^4 of the matrix	[5M]	2	1-6	1,2,6
	d)	$A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}.$				
		If λ is an eigen value of a non-singular matrix A then	[5M]	2	1-6	4,5
		prove that $\frac{ A }{\lambda}$ is an eigen value of adjA.				
5	a)	Define Modal matrix	[1M]	2	1-6	5,6
	b)	Find the quadratic form corresponding to the matrix	[1M]	2	1-6	4,6
		$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 3 & 1 \end{bmatrix}.$				
	c)	Find the diagonal matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3 \end{bmatrix}$ and also find	[5M]	2	1-6	1,6
		(i) A ⁴ (ii) A ⁸ .				

	d)	Show that the matrix satisfies Cayley Hamilton	[5M]	2	1-6	1,4,
		theorem and also find the value of the Matrix A^8 –				
		$5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I,$				
		Where $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$				
6	a)	Find the sum of the Eigen values of matrix $\begin{bmatrix} 2 & 3 & -2 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$	[1M]	2	1-6	1,5
	b)	Define Quadratic form	[1M]	2	1-6	1,4,6
	c)	Find the diagonal matrix orthogonally similar to the	[5M]	2	1-6	1,5
		following real symmetric matrix. A = $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$.				
	d)	Reduce the following quadratic form to canonical form	[5M]	2	1-6	1,6
		by orthogonal transformation $Q = x^2 + 2y^2 + 2z^2 -$				
		2xy + 2xz - 2yz.				
7	a)	Write the matrix realting to the quadratic form $ax^2 + 2hxy + by^2$.	[1M]	2	1-6	1,4
	b)	If $A = \begin{bmatrix} 5 & 2 & 3 \\ 0 & -1 & 4 \\ 0 & 0 & 6 \end{bmatrix}$, find eigen values of A^{T} and A^{-1} .	[1M]	2	1-6	6
	c)	Verify Cayley Hamilton theorem for $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and	[5M]	2	1-6	1,6
		hence find A^{-1} and				
		(i) find the value of $B = A^5 - 4A^4 - 7A^3 + 11A^2 - A - 10I$?. (ii) Find the eigen values of B, where $B = A^5 - 4A^4 - 7A^3 + 11A^2 - A - 10I$.				
	d)	Reduce the following quadratic form to canonical form	[5M]	2	1-6	4,6
		by orthogonal transformation $Q = 3x^2 + 5y^2 + 3z^2 -$				

		2xy - 2yz + 2xz.				
8	a)	Find the quadratic form corresponding to the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.	[1M]	2	1-6	5,6
	b)	State Cayley-Hamilton theorem and write its applications.	[1M]	2	1-6	1,6
	c)	For the matrix $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2 \end{bmatrix}$ find the eigen values of $3A^3 + 5A^2 - 6A + 2I$.	[5M]	2	1-6	4,6
	d)	Find the rank, index, nature and signature of quadratic form $x^2 - 2y^2 + 3z^2 - 4yz + 6zx$.	[5M]	2	1-6	4,6

IMPORTANT QUESTIONS

UNIT-II

SHORT ANSWER QUESTIONS (1 MARK)

- 1. Find the eigen values and eigen vectors of $\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$.
- 2. Find the sum and product of the eigen values of the matrix

$$A = \begin{bmatrix} 2 & 5 & 7 \\ 1 & 4 & 6 \\ 2 & -2 & 3 \end{bmatrix}$$

- 3. If λ is an eigen value of a non-singular matrix A then prove that λ^2 is an eigen value of A^2 .
- 4. If λ is an eigen values of an orthogonal matrix then $1/\lambda$ is also its eigen value.
- 5. Define Algebraic multiplicity of a Characteristic root.
- 6. Define Geometric multiplicity of a Characteristic root.
- 7. Write the matrix realting to the quadratic form 2xy+2yz+2zx.

LONG ANSWER QUESTIONS (5 MARKS)

- 1. Find the eigen values and eigen vectors $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$.
- 2. Diagonalize the matrix $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and find A^4 using modal matrix P?.
- 3. Find an orthogonal matrix that will diagonalize the real symmetric

 $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$. Also find the resulting diagonal matrix.

- 4. Reduce the quadratic form $2x^2 + 2y^2 + 2z^2 2xy 2yz 2zx$ to canonical form by an orthogonal transformation and hence find rank, index, signature and the nature of the quadratic form.
- 5. Discuss the nature of the Quadratic form, Find its Rank, Index, and Signature. x^2 + $4xy + 6xz - y^2 + 2yz + 4z^2$.

Objective (Choose the Correct Answer):

- 1) If 1,2,3 are the eigen values of A then the eigen values of A-1 are]
 - b) $1,\frac{1}{2},\frac{1}{2}$ c) 1,4,9a)1.2.3d) 1,8,27
- 2) If 1,2,3 are the eigen values of A then the eigen values of A^{T} are 1
 - b) $1,\frac{1}{2},\frac{1}{2}$ c) 1,4,9a)1.2.3d) 1,8,27
- 3) If 1,2,3 are the eigen values of A then the eigen values of A^2 are]
- b) $1,\frac{1}{2},\frac{1}{2}$ c) 1,4,9a)1.2.3
- 4) If 1,2,3 are the eigen values of A then the eigen values of A^3 are]
- b) $1,\frac{1}{2},\frac{1}{2}$ c) 1,4,9a)1.2.3d) 1,8,27
- 5) Diagonal matrix (D) formula = -----]
- b) PAP^{-1} c) $PD^{N}P^{-1}$ $a)P^{-1}AP$ d) PD^4P^{-1}
- 6) Find the value of $A^4 = - -$]
- - b) PAP^{-1} c) $PD^{N}P^{-1}$ $a)P^{-1}AP$ d) PD^4P^{-1}

7)	Quadratic for	m formula is	

]

$$a)XAX^{T}$$

b)
$$X^T A X$$

b)
$$X^T A X$$
 c) $X = P Y$

d)
$$Y^T DY$$

8) Canonical form formula is -----

ſ]

$$a)XAX^T$$

b)
$$X^T A X$$

b)
$$X^T A X$$
 c) $X = P Y$

d)
$$Y^T DY$$

9) Linear transformation formula is -----

[]

$$a)XAX^T$$

b)
$$X^T A X$$

b)
$$X^T A X$$
 c) $X = P Y$

d)
$$Y^T DY$$

The eigen values of $A_{3\times3}$ are 2,8 and sum is 12 find the 3rd eigen value is -----10) 1

a)0

Fill in the blanks:

11) Characteristic equation is _____

12) If
$$X_1 = \begin{bmatrix} a_1 \\ b_1 \\ c_1 \end{bmatrix}$$
 and $X_2 = \begin{bmatrix} a_2 \\ b_2 \\ c_2 \end{bmatrix}$ are pairwise orthogonal then ______

- 13) Every square matrix satisfies it's own______ equation.
- Find the Eigen values of matrix $I_{3\times 3}$ is ------14)
- The eigen values of $\begin{bmatrix} 2 & 1 \\ 4 & 5 \end{bmatrix}$ are_____ 15)

16) The quadratic form corresponding to the matrix
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 2 & 3 & 2 \end{bmatrix}$$
 is ______

- Write the matrix realting to the quadratic form $x_1^2 + 6x_1x_2 + 5x_2^2$. **17**)
- All eigen values are positive then nature of the quadratic form _____ 18)
- 19) Eigen values are $\lambda = 1,2,0$, find signature -----
- 20) Define Index -----

Answers

Objective

1) B

2) A

3) C

4) D

5) A

6) D

7) B

8) D

9) C

10) D

Fill in the blanks:

 $11) |A - \lambda I| = 0$

12) $a_1a_2 + b_1b_2 + c_1c_2 = 0$

13) Characteristic equation

14) 1,1,1

15) 1,6

16) $x^2 + y^2 + z^2 + 4zx + 6yz$.

17) $\begin{bmatrix} 1 & 3 \\ 3 & 5 \end{bmatrix}$

18) Positive definite nature.

20) Number of positive terms in canonical form (or) normal form (or) eigen values.

VIGNAN INSTITUTE OF TECHNOLOGY AND SCIENCE

Vignan Hills, Deshmukhi(V), Pochampally(M), Yadadri Bhuvanagiri (Dist.) – 508284.

Course		Fech Branch: Common to trices and Calculus (UNIT-3)	All	Year:	Year: I & Semester:				
S.NO		QUESTIONS	Marks	cos	POS	ВТ			
1.	a)	State Lagrange 's Mean Value Theorem.	[1M]	3	1-6	5,			
	b)	Evaluate $\int_{0}^{1} (1-x)^{3} dx$.using β and ρ functions	[1M]	3	1-6	6			
	c)	Verify Rolle's Theorem for the functions $\log \left(\frac{x^2 + ab}{x(a+b)}\right) \text{ in [a, b], a > 0, b > 0.}$	[5M]	3	1-6	4,5			
	d)	Prove that $\beta(m,n)=rac{\gamma(m).\gamma(n)}{\gamma(m+n)}$	[5M]	3	6	5,			
2.	a)	State Cauchy's Mean Value Theorem.	[1M]	3	1-6	5,			
	b)	Evaluate $\int_0^\infty e^{-x} x^4 dx$	[1M]	3	1-6	6			
	c)	Verify Rolle's theorem for the function $f(x) = e^{-x}$ $\sin x$ on $[0, \pi]$.	[5M]	3	1-6	6			
	d)	Find the Volume of solid generated by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) about major axis.	[5M]	3	1-6	5,			
3.	a)	State Rolles Mean Value Theorem.	[1M]	3	1-6	5,			
	b)	State Taylors theorem.	[1M]	3	1-6	5			

	c)	If $a < b \text{ P.T } \frac{b-a}{1+b^2} < \text{Tan}^{-1}b - \text{Tan}^{-1}a < \frac{b-a}{1+a^2}$	[5M]	3	1-6	6
		using Lagrange's Mean value Theorem. Deduce				
		the following.				
		i). $\frac{\pi}{4} + \frac{3}{25} < Tan^{-1} \frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$				
		ii). $\frac{5\pi + 4}{20} < Tan^{-1}2 < \frac{\pi + 2}{4}$				
	d)	Find the Volume formed by the revolution of loop	[5M]	3	1-6	6
		of the curve $y^2(a+x) = x^2(3a-x)$ about the x-				
		axis.				
4.	a)	Give an example which not satisfies Rolle 's Theorem	[1M]	3	1-6	3,4
	b)	Evaluate $\Gamma\left(\frac{9}{2}\right)$	[1M]	3	1-6	6
	c)	Verify Cauchy's Mean value theorem for $f(x) = e^x$	[5M]	3	1-6	6
	.1\	& $g(x) = e^{-x}$ in [3,7] & find the value of c				
	(d)	Prove that $\log(1 + e^{x}) = \log 2 + \frac{x}{2} + \frac{x^{2}}{8} + \frac{x^{4}}{192} + & \\ \text{hence deduce that} \frac{e^{x}}{e^{x} + 1} = \frac{1}{2} + \frac{x}{4} - \frac{x^{3}}{48} +$	[5M]	3	1-6	6
5	a)	Give an example which not satisfies Lagrange's Mean Value Theorem.	[1M]	3	1-6	4,5
	b)	Find the volume of the sphere of radius is "a".	[1M]	3	1-6	6
	c)	Write Taylor's series for $f(x) = (1-x)^{5/2}$ with	[5M]	3	1-6	4,5,6
		Lagrange's form of remainder upto 3 terms in the				
		interval [0,1].				

	d)	Evaluate $\int_{0}^{1} x^{5} (1-x^{3})^{10} dx$	[5M]	3	1-6	6
6	a)	Define Beta function.	[1M]	3	1-6	1
	b)	Expand $f(x) = e^x$	[1M]	3	1-6	3,4
	c)	Expand $e^x \sin x$ in powers of x	[5M]	3	1-6	3,6
	d)	S.T $\int_{a}^{b} (x-a)^{m} (b-x)^{n} dx = (b-a)^{m+n+1} \beta(m+1,n+1)$	[5M]	3	1-6	6
7	a)	Define Gamma function.	[1M]	3	1-6	2
	b)	Verify rolles theorem for $f(x) = Tanx$ in $[0, \pi]$.	[1M]	3	1-6	6
	c)	Find the area of the surface generated by revolving arc of the catenary $y = c \cosh\left(\frac{x}{c}\right)$ from x=0 to x=c about the x-axis.	[5M]	3	1-6	6
	d)	To P.T $\rho(n)\rho(1-n) = \frac{\pi}{\sin n\pi}$ and Also S.T $\rho\left(\frac{1}{2}\right) = \sqrt{\pi}$.	[5M]	3	1-6	6
8	a)	Establish relation between beta and gamma functions.	[1M]	3	1-6	5
	b)	Write surface area formula.	[1M]	3	1-6	2
	c)	Prove that $\frac{\pi}{3} - \frac{1}{5\sqrt{3}} > \cos^{-1}\frac{3}{5} > \frac{\pi}{3} - \frac{1}{8}$ using Lagrange's mean value theorem.	[5M]	3	1-6	6

d)	Prove that	[5M]	3	1-6	6
	$\int_{0}^{1} \frac{x^{2}}{\sqrt{(1-x^{4})}} dx \times \int_{0}^{1} \frac{1}{\sqrt{(1+x^{4})}} dx = \frac{\pi}{4\sqrt{2}}.$				

Extra IMP questions: (1 MARKS):-

1.
$$\rho\left(\frac{1}{2}\right) = \sqrt{\pi}$$
.

- **2.** To P.T $\beta(m,n) = \beta(n,m)$..
- **3.** Verify rolles theorem for $f(x) = 2x^3 + x^2 4x 2$ in $[-\sqrt{3}, \sqrt{3}]$.
- **4.** Verify rolles theorem for $f(x) = x^3$ in [1, 3].
- **5.** Expand Sin x in powers of "x".
- **6.** To P.T $\beta(m,n) = \beta(m+1,n) + \beta(m,n+1)$.
- **7.** Find the value of $\rho\left(\frac{-7}{2}\right)$.
- **8.** P.T $\int_0^{\pi/2} \sin^2 \theta \, \cos^4 \theta \, d\theta = \frac{\pi}{32}$.
- **9.** P.T $\int_0^\infty \frac{x^8(1-x^6)}{(1+x)^{24}} dx = 0$ using β and ρ functions.

Extra IMP questions: (5 MARKS):-

- 1) Verify Rolle's theorem for the function $f(x) = (x-a)^m(x-b)^n$ where m,n are positive integers in [a,b].
- 2) Verify Rolle's theorem for the function $f(x) = e^x (\sin x \cos x)$ on $[\pi/4, 5\pi/4]$
- 3) Verify Lagrange's mean value theorem for f(x) = x (x-1) (x-2) in [0, 1/2]
- 4) Verify Lagrange's mean value theorem for f(x) = (x-1)(x-2)(x-3) on [0,4]
- 5) Show that x > 0, $1 + x < e^x < 1 = xe^x$.
- 6) Using Mean value theorem prove that Tan x > x in $0 < x < \pi/2$.

- 7) If a < b P.T $\frac{b-a}{\sqrt{1+a^2}} < \sin^{-1} b \sin^{-1} a < \frac{b-a}{\sqrt{1+b^2}}$ using Lagrange's Mean value Theorem.
- 8) P.T $\frac{b-a}{b} < \log\left(\frac{b}{a}\right) < \frac{b-a}{a}$ for 0<a<b. Hence deduce that $\frac{1}{4} < \log\left(\frac{4}{3}\right) < \frac{1}{3}$.
- 9) Verify Rolle's theorem for $f(x) = x (x+3) e^{(-x/2)}$ on [-3, 0]
- 10) Find c of Cauchy's mean value theorem for $f(x) = \sqrt{x}$ & $g(x) = \frac{1}{\sqrt{x}}$
- Verify Cauchy's Mean value theorem for $f(x) = (1/x^2)$, g(x) = (1/x) on [a, b]; a, b > 0
- Verify mean value theorem for f(x) and $f^{1}(x)$ in (1,e) given that $f(x) = \log x$
- 13) Expand $\frac{\sin^{-1} x}{\sqrt{1-x^2}}$ in powers of x.
- 14) Evaluate $\int_{0}^{1} x^{m} (\log x)^{m} dx$.
- 15) Evaluate $\int_{0}^{\infty} a^{-bx^2} dx$.
- 16) Prove that $\beta(m,n) = \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx$
- 17) Evaluate $\int_{0}^{\pi/2} \sqrt{\operatorname{Tan}\theta} d\theta$
- 18) Evaluate $\int_{c}^{\infty} \frac{x^{c}}{c^{x}} dx$.

Objective-PART-A (Choose the Correct Answer)

- 1) The value of "c" of Rolles theorem for $f(x) = \frac{\sin x}{e^x}$ in $(0, \pi)$ is
 - $a) \pi$
- b) $\frac{\pi}{4}$
- c) $\frac{\pi}{2}$ d) $\frac{\pi}{2}$

]

]

2) The value of "c" of Cauchys theorem for $f(x) = e^x$ and $g(x) = e^{-x}in[a,b]is$

	$a)\sqrt{ab}$	b) $\frac{a-b}{2}$	c) $\frac{a+b}{2}$	d) $\frac{2ab}{a+b}$		
3)	The value of "c" of C	auchys theorem	$m for f(x) = \sqrt{2}$	\sqrt{x} and $g(x) = \frac{1}{\sqrt{x}}in[a,b]is$	[]
	$a)\sqrt{ab}$	b) $\frac{a-b}{2}$	c) $\frac{a+b}{2}$	d) $\frac{2ab}{a+b}$		
4)	The value of "c" of C	auchys theore	m for f(x) = s	$\sin x$ and $g(x) = \cos x$ in $\left[0, \frac{\pi}{2}\right]$ is]]
	<i>a</i>) π	b) $\frac{\pi}{4}$	c) $\frac{\pi}{3}$	d) $\frac{\pi}{2}$		
5)	Find the Volume of s	olid generated	by revolving th	e ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) about mi	nor axis	;.
	a) $\frac{2}{3}\pi a^2 b$	b) $\frac{2}{3}\pi ab^2$	c) $\frac{4}{3}\pi a^2 b$	d) $\frac{4}{3}\pi ab^2$]]
6)	If the circle $x^2 + y^2$	$= r^2$ is rotated	about its diame	ter, the volume so generated is	[]
	a) $\frac{4}{3}\pi r^3$	b) $\frac{2}{3}\pi r^3$	c) $4 \pi r^3$	d) $2\pi r^3$		
7)	The value of $\beta(1,2)$ - a) 0		c) 2	d) 3	[]
8)	$\Gamma(n+1) = \underline{} \text{if n is}$	positive real 1	number		[]
	a) n!	b) $(n-1)!$	c)(n + 1)	d) n		
9)	$\Gamma(3/4)$ $\Gamma(1/4)$ =				[]
	$a)\pi\sqrt{2}$	b) $\pi\sqrt{3}$	c) $\pi\sqrt{4}$	d) none		
10)) The value of $\Gamma\left(-\frac{1}{2}\right)$	$\left(\frac{1}{2}\right) =$	_]]
	$a)-\sqrt{\pi}$	b) -2	$2\sqrt{\pi}$			
	c) $-3\sqrt{\pi}$	d) 2√	$\overline{\pi}$			

Objective- PART-B (Fill in the Blanks)

11) Geometrical interpretation of rolles theorem is ------

12) T	he value of "c"= of lagranges mean value theorem for $f(x) = x^2$ in [1,5]
13) T	he value of "c" of Cauchys theorem for $f(x) = x^2$ and $g(x) = x^3$ in [1,2] is
14) T	he value of $\Gamma(4) =$
15)	Expand cos x in powers of "x"

- 16) The vaule of $\int_0^\infty e^{-x^2} dx = -----$
- 17) The value of $\beta\left(\frac{1}{2},\frac{1}{2}\right) =$ ------
- 18) In terms of β function $\int_0^{\frac{\pi}{2}} cos^n \theta \ d\theta =$
- 19) Write the relation between beta and gamma functions -----
- 20) The value of $\Gamma\left(\frac{5}{2}\right) = ----$

Answers

Objective

1) B

2) C

3) A

4) B

5) C

6) A

7) B

8) A

9) A

10) B

Fill in the blanks:

- 11) There is at least one point on the curve, where the tangent is parallel to X-axis.
- 12) 3
- 13) $\frac{14}{9}$
- 14) 6
- 15) $1 \frac{x^2}{2!} + \frac{x^4}{4!} \frac{x^6}{6!} + \dots$ etc
- $16) \quad \frac{\sqrt{\pi}}{2}$
- 17) π
- $18) \quad \frac{1}{2}\beta\left(\frac{1}{2},\frac{n+1}{2}\right)$
- 19) $\beta(m,n) = \frac{\gamma(m).\gamma(n)}{\gamma(m+n)}$
- $20) \quad \frac{3}{4}\sqrt{\pi}$

VIGNAN INSTITUTE OF TECHNOLOGY AND SCIENCE

Vignan Hills, Deshmukhi(V), Pochampally(M), Yadadri Bhuvanagiri (Dist.) – 508284.

Course			A11	Year: I	& Sem	ester:
Subject	t: Ma	trices and Calculus (UNIT-4)				
S.NO		QUESTIONS	Marks	cos	POS	B 7
1.	a)	Evalute $\lim_{\substack{x \to 1 \\ y \to 2}} \frac{2x^2y}{x^2+y^2+1}$.	[1M]	4	1-6	(
	b)	If $f(x, y) = x^2 + y^2$, then $\frac{\partial^2 f}{\partial x \partial y}$.	[1M]	4	1-6	3
	c)	Find three positive members whose sum is 100 and whose product is maximum.	[5M]	4	1-6	5
	d)	If $u = x + y + z$; $uv = y + z$; $uvw = z$, then evaluate $\frac{\partial(x,y,z)}{\partial(u,v,w)}$.	[5M]	4	1-6	(
2.	a)	Verify the continuity of $f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$	[1M]	4	1-6	(
	b)	Find the degree of the homogeneous functions $Z = \frac{\sqrt{x} + \sqrt{y}}{x + y}.$	[1M]	4	1-6	
	c)	If $u = xy + yz + zx$, $v = x^2 + y^2 + z^2$, $w = x + y + z$ then show that the functions are functionally dependent and hence find the relation between them.	[5M]	4	1-6	(
	d)	Find the volume of the greatest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$	[5M]	4	1-6	
3.	a)	Find first and second order pattial derivatives of $ax^2 + 2hxy + by^2$.	[1M]	4	1-6	,
	b)	If $u = \tan^{-1} \frac{y}{x}$ then find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.	[1M]	4	1-6	
	c)	Find the extreme values of $f(x, y) = sinx. siny. sin(x + y)$.	[5M]	4	1-6	
	d)	If $x = e^r sec\theta$, $y = e^r tan\theta$ then prove that	[5M]	4	1-6	

		$JJ^{I}=1.$				
4.	a)	Define a Homogeneous function.	[1M]	4	1-6	4
	b)	If $x = r \cos\theta$, $y = r \sin\theta$ then find $\frac{\partial(r,\theta)}{\partial(x,y)}$	[1M]	4	1-6	5
	c)	Find the extreme values $u(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$.	[5M]	4	1-6	6
	d)	Verify Euler's theorem for $u = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$.	[5M]	4	1-6	6
5	a)	Find the maximum and minimum values of the function $f(x) = x^5 + 3x^4 + 5$.	[1M]	4	1-6	5
	b)	State Euler's theorem on homogeneous function in x and y.	[1M]	4	1-6	6
	c)	A rectangular box open at the top is to have volume of 32 cubic ft. Find the dimensions of the box requiring least material for its construction.	[5M]	4	1-6	6
	d)	If $u = \log(x^3 + y^3 + z^3 - 3xyz)$ then prove that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{(x+y+z)^2}$.	[5M]	4	1-6	6
6	a)	If $U = \frac{x^2y^2}{x+y}$, then find $x \frac{\partial U}{\partial x} + y \frac{\partial U}{\partial y}$.	[1M]	4	1-6	6
	b)	Find the stationary points of $x^4 + y^4 - 2x^2 + 4xy - 2y^2$.	[1M]	4	1-6	5
	c)	If $x = r \cos\theta$ and $y = r \sin\theta$, show that $\frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} = \frac{1}{r} \left[\left(\frac{\partial r}{\partial x} \right)^2 + \left(\frac{\partial r}{\partial y} \right)^2 \right].$	[5M]	4	1-6	5,6
	d)	Find the minimum values of $(x^2 + y^2 + z^2)$, given that $xyz = a^3$	[5M]	4	1-6	6
7	a)	If $x = u(1 + v)$, $y = v(1 + u)$ then find $\frac{\partial(x,y)}{\partial(u,v)}$.	[1M]	4	1-6	5
	b)	Define i) Saddle point and ii) Stationary point.	[1M]	4	1-6	2
	c)	Find the maximum and minimum distance of the points (3, 4, 12) from the sphere	[5M]	4	1-6	6

		$x^2 + y^2 + z^2 = 1.$				
	d)	If $u = \frac{yz}{x}$, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$, show that $\frac{\partial(u,v,w)}{\partial(x,y,z)} = 4$	[5M]	4	1-6	6
8	a)	Define functionally dependent.	[1M]	4	1-6	2
	b)	Write the sufficient condition's for the existence of maxima & minimam of $f(x, y)$.	[1M]	4	1-6	6
	c)	If $f(x,y) = \log(x^2 + y^2) + \tan^{-1}\left(\frac{y}{x}\right)$ then prove that $f_{xx} + f_{yy} = 0$.	[5M]	4	1-6	6
	d)	Find the minimum value of $x^2 + y^2 + z^2$ Given $x + y + z = 3a$.	[5M]	4	1-6	6

Extra IMP questions: (1 MARKS):-

- 1. Define functionally Independent.
- 2. Define continuity.

3. Verify the continuity of
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

4. If
$$u = e^x$$
, find $\frac{\partial^2 u}{\partial y \partial x}$

5. If
$$x = \frac{u^2}{v}$$
, $y = \frac{v^2}{u}$ find $\frac{\partial(u,v)}{\partial(x,y)}$.

6. If
$$x = uv$$
, $y = \frac{u}{v}$ then find $\frac{\partial(x,y)}{\partial(u,v)}$.

7. If
$$u = log\left(\frac{x^2 + y^2}{x + y}\right)$$
 prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 1$

8. If
$$u = Sin^{-1} \left(\frac{x^2 + y^2}{x + y} \right)$$
 prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = tanu$.

Extra IMP questions: (5 MARKS):-

1. If
$$u = x^2 - 2y$$
, $v = x + y + z$, $w = x - 2y + 3z$ then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.

2. If
$$u = f(r)$$
 and $x = r\cos\theta$, $y = r\sin\theta$ prove that $\frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$.

3. If
$$x = r \sin\theta \cos\phi$$
, $y = r \sin\theta \sin\phi$, $z = r \cos\theta$ then find $\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)}$.

- 4. Verify Euler's theorem for the function xy + yz + zx.
- 5. Verify Euler's theorem for the function $u = \sin^{-1} \frac{x}{y} + \tan^{-1} \frac{y}{x}$.
- 6. If u = x + y + z, $v = x^2 + y^2 + z^2 2xy 2yz 2zx$, $w = x^3 + y^3 + z^3 3xyz$ then show that the functions are functionally related.
- 7. If $u = \frac{x+y}{1-xy}$, $v = \tan^{-1} x + \tan^{-1} y$, then show that the functions are functionally dependent and find the relation between them.
- 8. Show that the rectangular solid of maximum volume that can be inscribed in a sphere is a cube.
- 9. Divide 24 into three parts such that the continued product of the first, square of the second and cube of the third is maximum.
- 10. The temperature T at any point (x, y, z) in the space $T = 400xyz^2$. Find the highest temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$.
- 11. Find the maxima & minima of the function $f(x) = x^3y^2$ (1-x-y).
- 12. Find the maxima and minima of the function $f(x) = 2(x^2 y^2) x^4 + y^4$
- 13. Find the maxima & minima of the function $f(x) = x^4 + y^4 2x^2 2y^2 + 4xy$
- 14. Find the maximum & minimum distances of the point origin from the sphere $x^2 + y^2 + z^2 = 4$

Objective-PART-A (Choose the Correct Answer)

1) The degree of the homogeneous function
$$z = \frac{\sqrt{x} + \sqrt{y}}{x + y}$$
 is ---- []

a)
$$\frac{1}{2}$$
 b) 1 c) $\frac{-1}{2}$ d) -1

2) If
$$u = \frac{xy}{x+y}$$
 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = ---$
a) 2u b) u c) 0 d) 1

- 3) The function f(x, y) has maximum value for ----- [
 - a) $ln m^2 = 0$ b) $ln m^2 < 0$ c) $ln m^2 > 0$, l > 0 d) $ln m^2 > 0$, l < 0
 - 4) The function f(x, y) has minimum value for ----a) $ln m^2 = 0$ b) $ln m^2 < 0$ c) $ln m^2 > 0$, l > 0 d) $ln m^2 > 0$, l < 0

5) The function f(x, y) is not an extreme value for -----

1

a)
$$ln - m^2 = 0$$
 b) $ln - m^2 < 0$ c) $ln - m^2 > 0$, $l > 0$ d) $ln - m^2 > 0$, $l < 0$

6) The function f(x, y) has no conclusion for -----

a)
$$ln - m^2 = 0$$
 b) $ln - m^2 < 0$ c) $ln - m^2 > 0$, $l > 0$ d) $ln - m^2 > 0$, $l < 0$

7) If
$$u = xy$$
, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = ----$

a) u b) 2u c) 0 d) none

8) If
$$u = log(x^3 + y^3 + z^3 - 3xyz)$$
 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = ---$

a) 4u b) 3u c) 2u d) u

9) The stationary points of
$$x^4 + y^4 - 2x^2 + 4xy - 2y^2$$
 is [

a) $(\sqrt{2}, -\sqrt{2})$ b) $(\sqrt{2}, \sqrt{2})$ c) $(-\sqrt{2}, \sqrt{2})$ d) $(\sqrt{2}, 0)$

10) If
$$u = e^{x/y}$$
 then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = ---$

a) 0 b) 1 c) 2 d) none

Objective- PART-B (Fill in the Blanks)

11) The degree of the homogeneous function $f = ax^2 + 2hxy + by^2$ is ------

12) If
$$r^2 = x^2 + y^2 + z^2$$
 and $u = r^m$ then $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = ----$

13) If
$$u = x^2y, v = xy^2$$
 then $\frac{\partial(u,v)}{\partial(x,y)} = -----$

14) The minimum value of $x^2 + y^2 + z^2$ given that x + y + z = 3a is ----

15) The stationary points of $x^3y^2(1-x-y)$ are -----

16) If
$$x = r \cos\theta$$
, $y = r \sin\theta$, then $\frac{\partial x}{\partial r} = ----$ and $\frac{\partial y}{\partial \theta} = -----$

17) The rectangular parallelepiped of maximum volume that can be inscribed in a sphere is a ------

18)
$$\frac{\partial(u,v)}{\partial(x,y)} \times \frac{\partial(x,y)}{\partial(u,v)} = -----$$

19) Two functions u and v are said to be functionally dependent if $\frac{\partial(u,v)}{\partial(x,y)} = ----$

20) If u is a homogeneous function of x and y of degree n then

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = ----$$

Answers

Objective

- 2) B
- 3) D
- 4) C
- 5) B
- 6) A
- 7) B
- 8) B
- 9) A
 - 10) A

Fill in the blanks:

$$12) \quad m(m+1)r^{m-2}$$

$$13) \quad 5x^2y^2$$

14)
$$3a^2$$

16)
$$cos\theta, rcos\theta$$

- 18) 1
- 19) 0
- 20) n(n-1)u.

VIGNAN INSTITUTE OF TECHNOLOGY AND SCIENCE

Vignan Hills, Deshmukhi(V), Pochampally(M), Yadadri Bhuvanagiri (Dist.) – 508284.

Course Subject		Tech Branch: Common t trices and Calculus (UNIT-5)	o All	Year: I	& Seme	ester:
S.NO		QUESTIONS	Marks	cos	POS	ВТ
1.	a)	Evaluate $\int_{0}^{1} \int_{1}^{2} xy dx dy$	[1M]	5	1-6	6
	b)	Evaluate $\int_0^1 \int_0^1 \int_0^1 dx dy dz$.	[1M]	5	1-6	6
	c)	By changing the order of integration evaluate $\int_0^1 \int_{x^2}^{2-x} xy dx dy$.	[5M]	5	1-6	6
	d)	Change into polar coordinates and evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dy dx.$ Hence show that $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$	[5M]	5	1-6	6
2.	a)	Evaluate $\int_{1}^{2} \int_{0}^{3} xy(1+x+y) dx dy.$	[1M]	5	1-6	6
	b)	Evaluate $\int_0^1 \int_1^2 \int_2^3 xyz dx dy dz$.	[1M]	5	1-6	6
	c)	By changing the order of integration evaluate $\int_0^{4a} \int_{x^2/4a}^{2\sqrt{ax}} y^2 dx dy.$	[5M]	5	1-6	6
	d)	Evaluate $\int_0^a \int_0^x \int_0^{x+y} e^{x+y+z} dz dy dx$.	[5M]	5	1-6	6
3.	a)	Evaluate $\int_0^2 \int_0^x e^{x+y} dx dy$.	[1M]	5	1-6	6
	b)	Evaluate $\int_0^1 dx \int_0^2 dy \int_0^2 x^2 yz dz$.	[1M]	5	1-6	6

	c)	x^2 y^2 z^2	[5M]	5	1-6	6
		Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.	[OIVI]	Ö		O
	d)	Evaluate $\iint r^3 dr d\theta$ over the area included between	[5M]	5	1-6	6
		the circles $r = 2\sin\theta$ and $r = 4\sin\theta$.				
4.	a)	Evaluate $\int_0^{\pi} \int_0^{a\cos\theta} dr d\theta$.	[1M]	5	1-6	6
	b)	Evaluate $\int_0^1 \int_y^1 \int_0^{1-x} x dz dy dx$.	[1M]	5	1-6	6
	c)	$\int_0^1 \int_x^{\sqrt{2-x^2}} \frac{x^2}{\sqrt{x^2+y^2}} dy dx.$	[5M]	5	1-6	6
	d)	Evaluate $\int_0^2 \int_0^{\sqrt{2x-x^2}} (x^2 + y^2) dx dy$ by changing into polar coordinates.	[5M]	5	1-6	6
5	a)	Write formula of Area in double integral (Cartesian form).	[1M]	5	1-6	6
	b)	30 30 30 3	[1M]	5	1-6	6
	c)	Evaluate $\int_0^{\pi} \int_0^{a(1+\cos\theta)} r^2 \cos\theta dr d\theta$.	[5M]	5	1-6	6
	d)	Find the area bounded between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$.	[5M]	5	1-6	6
6	a)	Write Area formula of polar form in double integral.	[1M]	5	1-6	5
	b)	Evaluate $\int_{-1}^{1} \int_{-2}^{2} \int_{-3}^{3} dx dy dz$.	[1M]	5	1-6	6

	c)	Evaluate $\iint_R y dx dy$ where R is the region bounded	[5M]	5	1-6	6
		by the parabolas $y^2 = 4x$ and $x^2 = 4y$.				
	d)	Find the volume of the ellipsoid $x^2 + y^2 + z^2 = a^2$.	[5M]	5	1-6	5
7	a)	Write formula of Volume in double integral (Cartesian form).	[1M]	5	1-6	5
	b)	Evaluate $\int_1^3 \int_0^1 xy^2 dx dy$.	[1M]	5	1-6	6
	c)	Find the value of $\iint xydxdy$ taken over the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.	[5M]	5	1-6	6
	d)	Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} \frac{dxdydz}{\sqrt{1-x^2-y^2-z^2}}$.	[5M]	5	1-6	6
8	a)	Write formula of Volume in triple integral.	[1M]	5	1-6	3
	b)	Evaluate $\int_1^2 \int_0^x (x+y^2) dy dx$.	[1M]	5	1-6	6
	c)	Evaluate $\iint r^2 \sin\theta dr d\theta$, over the cardiod $r = a(1+\cos\theta)$ above the initial line.	[5M]	5	1-6	6
	d)	Evaluate $\iiint xy^2z dx dy dz$ taken through the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$.	[5M]	5	1-6	6

Extra IMP questions: (1 MARKS):-

- 1. Evaluate $\int_{x=0}^{a} \int_{y=0}^{b} (x^2 + y^2) dy dx$.
- 2. Evaluate $\int_0^3 \int_0^2 (4 y)^2 \, dy \, dx$.
- 3. Find the area of the circle using double integral.
- 4. Evaluate $\iint (x^2 + y^2) dx dy$, over the region in the positive quadrant for which $x + y \le 1$.
- 5. Evaluate $\iint x^2 dxdy$ over the region bounded by hyperbola xy = 4, y = 0, x = 1, x = 4.
- 6. Evaluate $\int_0^{\pi} \int_0^{a \sin \theta} r \, dr \, d\theta$.
- 7. Evaluate $\int_0^{\frac{\pi}{2}} \int_0^{\infty} \frac{r \, dr \, d\theta}{(r^2 + a^2)^2}.$
- 8. Evaluate $\iiint (x + y + z) dx dy dz$, taken over the volume bounded by the planes x = 0, x = 1, y = 0, y = 1 and z = 0, z = 1.

Extra IMP questions: (5 MARKS):-

- 1) Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} (x^2 + y^2) \, dx \, dy$.
- 2) Evaluate $\int_0^1 \int_0^{\sqrt{1+x^2}} \frac{dx \, dy}{1+x^2+y^2}$.
- 3) Evaluate $\int_0^{\pi} \int_0^{x^2} x(x^2 + y^2) dx dy$.
- 4) Evaluate the following integral by transforming into polar coordinates.

$$\int_0^a \int_0^{\sqrt{a^2 - x^2}} y \sqrt{x^2 + y^2} \ dx \ dy.$$

5) Evaluate the following integral by transforming into polar coordinates.

$$\int_0^a \int_0^{\sqrt{a^2 - y^2}} (x^2 + y^2) \ dx \ dy.$$

- 6) Evaluate $\int_0^{4a} \int_{y^2/4a}^y \frac{x^2-y^2}{x^2+y^2} dx dy$ by changing to polar coordinates.
- 7) By changing into polar coordinates evaluate the integral $\int_0^\infty \int_0^\infty \frac{x^2}{(x^2+y^2)^{3/2}} dx dy$.
- 8) Find the limits after changing the order of integration for $\int_0^b \int_0^{a\sqrt{b^2-y^2}/b} xy \, dx \, dy$.

- 9) Change the order of integration and solve $\int_0^a \int_{x^2/a}^{2a-x} xy^2 dy dx$.
- 10) Find $\iint (x+y)^2 dxdy$ over the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
 - 11) Evaluate $\iint (x^2 + y^2) dxdy$ over the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 12) Find the value of $\iint (x+y) dxdy$ over the region in the positive quadrant bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 13) Evaluate $\int_0^{\frac{\pi}{4}} \int_0^{a \sin \theta} \frac{r \, dr \, d\theta}{\sqrt{a^2 r^2}}$.
- 14) Evaluate $\iint r \sin\theta \, dr \, d\theta$ over the cardioid $r = a(1 \cos\theta)$ above the initial line.
- 15) Evaluate $\iint r \sin\theta \, dr \, d\theta$ over the cardioid $r = a(1 + \cos\theta)$ above the initial line.
- 16) Find the area bounded by the curves y = x, $y = x^2$.
- 17) Find the area of the loop of the curve $r = a(1 + \cos\theta)$.
- 18) Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} dx dy dz$
- 19) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} xyz \, dx dy dz$
- 20) Evaluate $\int_0^1 \int_0^{1-x} \int_0^{1-x-y} dx \, dy \, dz$.
- 21) Evaluate $\int_0^{\log 2} \int_0^x \int_0^{x+\log y} e^{x+y+z} dz dy dx$.
- 22) Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$.
- 23) Find the volume of the solid bounded by the planes x = 0, y = 0, x + y + z = a and z = 0.
- 24) Evaluate $\iiint xyz \, dx \, dy \, dz$ taken through the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$.
- 25) Evaluate $\iiint (x^2 + y^2 + z^2) dx dy dz$ taken over the volume enclosed by the sphere $x^2 + y^2 + z^2 = 1$, By transforming into spherical polar coordinates.

Objective-PART-A (Choose the Correct Answer)

1.
$$\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} e^{x+y+z} dx dy dz =$$

(a)
$$(e-1)^2$$
 (b) $e-1$

2.
$$\int_{0}^{2} \int_{0}^{x^2} x(x^2 + y^2) dx dy = ---$$
(a)
$$\frac{3^2}{3}$$
 (b)
$$\frac{6^4}{3}$$
3.
$$\int_{0}^{\pi} \int_{0}^{a\cos\theta} r \sin\theta dr d\theta = ----$$
(a)
$$\frac{a^2}{2}$$
 (b)
$$\frac{a^2}{3}$$
4.
$$\int_{0}^{1} dx \int_{0}^{x} e^{y/x} dy =$$
(a) $e-1$ (b)
$$\frac{e-1}{2}$$
5.
$$\iiint_{V} dv =$$
(a)
$$\iiint_{V} dx dy dz$$
 (b)
$$\iiint_{V} dy dx dz$$

(c)
$$(e-1)^3$$

(d) e+1

(c)
$$\frac{84}{3}$$

(d) none

(c)
$$\frac{a^3}{3}$$

(d) $\frac{a^3}{4}$

$$\int_{0}^{1} dx \int_{0}^{x} e^{y/x} dy =$$

1

a) e-1 (b)
$$\frac{e-1}{2}$$

(c) $\frac{e^{-1}}{3}$

(d)none

(a)
$$\iiint dxdydz$$
 (b) $\iiint dydxdz$ (c) $\iiint dzdxdy$ (d)All the above

6. The iterated integral with the order of integration reversed for $\int_{0}^{1} \int_{1}^{2} dy dx =$

(a)
$$\int_{0}^{1} \int_{1}^{e^{y}} dxdy$$
 (b) $\int_{1}^{e} \int_{\log x}^{1} dxdy$ (c) $\int_{1}^{1} \int_{0}^{\log y} dxdy$ (d)none

7.
$$\int_{-1}^{1} \int_{-2}^{2} \int_{-3}^{3} dx dy dz =$$

(d)54

The volume of the tetrahedron bounded by x = 0,y = 0,z = 0 and x + y + z = 1 is

(a) 1/2

(b) 1/3 1/4

(d)1/6

$$9. \qquad \int\limits_{0}^{2} \int\limits_{0}^{x} (x+y) dx dy =$$

(b) 2

(c) 3 (d)4

The area enclosed by the parabolas x^2 = y and y^2 = x

1

- (a)1/3 Sq.units
- (b) 1/4 Sq.units
- (c) 1/2 Sq.units

(d) 1/5 Sq.units

$$\iint_{A} dxdy$$
represents ______

$$22) \qquad \int_0^1 \int_1^2 xy dy dx \underline{\qquad}$$

$$\int_{0}^{a} \int_{0}^{\sqrt{ay}} xy dx dy = \underline{\qquad}$$

$$\int_{0}^{1} \int_{x}^{\sqrt{x}} xy dx dy = \underline{\qquad}$$

27)
$$\iiint_{V} dx dy dz \text{ represents} = \underline{\qquad}$$

29) The iterated integral for $\int_{0}^{1} \int_{x}^{\sqrt{x}} f(x, y) dx dy$ after changing the order of integration is _____

30) The volume of the tetrahedron bounded by the surfaces x = 0, y = 0, z = 0 and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ is _____.

Answers

Objective

- 1) C
- 2) B
- 3) C
- 4) B
- 5) D

- 6) B
- 7) C
- 8) D
- 9) D
 - 10) A

Fill in the blanks:

- 11) Area of the surface
- 12) $\frac{3}{4}$
- 13) $a^{\frac{4}{6}}$
- 14)
- 15) $\frac{(e-1)^2}{2}$
- 16) $\frac{1}{24}$
- 17) Volume
- 18) 1
- $19) \qquad \int_0^1 \int_{y^2}^y dx dy$
- 20) $\frac{abc}{6}$