# Électif finance de marché Pricing et hedging de dérivés : principes

### P. Heinrich

(Département de mathématiques, ULille)

École Centrale Lille G2

2018-2019

# Plan (6h cours)

Séance 1 : 2h ; séance 2 : 2h ; séance 3 : 2h.

- Modélisation mathématique d'un marché financier (temps discret)
  - Actif risqué, non risqué
  - AOA : absence d'opporunité d'arbitrage
  - Ortefeuille autofinancé ; actif replicable ; marché complet
  - Probabilité risque-neutre
- Modèle binomial
  - Sur 1 période, 2 périodes et N périodes
  - Pricing et hedging
  - Modèle de Cox-Ross-Rubinstein (CRR)
- Ou temps discret au temps continu : passage à la limite dans CRR
  - "Rappels" : convergence en loi
  - Théorème central limite pour les tableaux triangulaires
  - Formule de Black-Scholes
- Élaboration d'un pricer (sous réserve)



### Définition

Un actif contingent (ou conditionnel) est une variable aléatoire, notons-là H, qui est  $\mathcal{F}_T$ -mesurable.

Exemple classique :  $H = \max(S_T - K, 0)$ , le payoff d'une option d'achat européenne (european call), où  $S_T$  est la valeur de l'actif sous-jacent à la maturité T et K le prix d'exercice.

### Définition

Un actif contingent H est réplicable (ou simulable) s'il existe une stratégie autofinancée  $\Phi$  telle que, à l'échéance T, on ait

$$V_T^{\Phi} = H$$
.

 $\Phi$  est alors appelé stratégie de réplication de H.

#### Définition

Une marché financier est dit <u>complet</u> si tout actif contingent est réplicable.

Soit un actif contingent H réplicable et notons  $\Phi$  une stratégie autofinancée telle que  $V_T^{\Phi}=H$ . Supposons qu'il y ait une autre stratégie autofinancée  $\Psi$  telle que  $V_T^{\Psi}=H$ . On sait alors que dans le cas d'un marché AOA, pour tout t, on a  $V_t^{\Phi}=V_t^{\Psi}$ .

# Définition (prix de non-arbitrage)

Dans un marché AOA et complet, le <u>prix</u> (de non-arbitrage) à la date t d'un actif contingent H, notons-le  $\pi_t^H$ , est la valeur à la date t d'un portefeuille autofinancé  $\Phi$  répliquant H :  $\boxed{\pi_t^H = V_t^\Phi}$ . Cette valeur est unique.

# Les problématiques fondamentales

- Modéliser les cours des actifs risqués ;
- <u>Pricing</u>: trouver, dans un modèle donné, le prix d'un actif contingent;
- <u>Hedging</u>: produire la richesse nécessaire à la livraison de l'actif.

Nous avons jusqu'à présent abordé une partie de la problématique du pricing.

### On se donne des réels :

- ullet s>0 : valeur initiale d'un actif risqué  $S^1_t$ ,
- r: taux d'intérêt simple d'un actif sans risque  $S_t^0$ ,
- d : rendement bas (down) de l'actif risqué,
- *u* : rendement haut (up) de l'actif risqué.

# On suppose 0 < d < u. Le modèle se décrit par :

- $\Omega = \{u, d\}$ ,  $\mathcal{F} = \mathcal{P}(\Omega) = \{\text{toutes les parties de }\Omega\}$ , **P** une mesure de probabilité telle que  $\mathbf{P}(\{u\}) \in ]0,1[$ ;
- Dynamique des actifs (exo : réprésentez-les) :

$$S_t^0(\omega) = (1+r)^t$$
 pour tout  $\omega \in \Omega$ ,  
 $S_t^1(\omega) = \begin{cases} su^t & \text{si } \omega = u, \\ sd^t & \text{si } \omega = d. \end{cases}$ 

## **Proposition**

Dans ce modèle, l'AOA équivaut à d < 1 + r < u.

Démonstration. On va montrer  $OA \iff 1 + r \notin ]d, u[$ .



 $\Longrightarrow$  Soit  $\Phi_t = (\Phi_t^0, \Phi_t^1)$  une stratégie d'arbitrage ; elle vérifie

$$\Phi_t^0 + \Phi_t^1 s = 0, \Phi_1^0(1+r) + \Phi_1^1 S_1^1 \ge 0, \mathbf{P}(\Phi_1^0(1+r) + \Phi_1^1 S_1^1 > 0) > 0.$$

De la première égalité, on tire  $\Phi_1^1 = -\Phi_1^0/s$  et on injecte dans la seconde inégalité de sorte que

$$\Phi_1^0\left[(1+r)-(u\mathbf{1}_{\{u\}}+d\mathbf{1}_{\{d\}})\right]\geq 0.$$

Or  $\Phi_1^0$  est  $\mathcal{F}_0$ -mesurable avec  $\mathcal{F}_0 = \{\emptyset, \Omega\}$  (prévisibilité) et donc ne dépend pas de  $\omega$ ; de plus  $\Phi_1^0$  ne peut être nul (pourquoi ?). On déduit  $(1+r-u)\times(1+r-d)\geq 0$ .



Si  $1+r \leq d$ : la stratégie statique  $\Phi_t = (-s,1)$  est une stratégie d'arbitrage. Si  $1+r\geq u$  : exo. Soit H un actif contingent. Notant x la prime (le prix) de H à la date t=0, cherchons  $\Phi_t=(\Phi^0_t,\Phi^1_t)$  autofinancé répliquant H. Ayant vendu H au prix x, on aimerait avoir

$$\Phi_1^0(1+r) + \Phi_1^1 S_1^1 = H \leftarrow \text{valeur à l'échéance}$$
 (1)  
 $\Phi_1^0 + \Phi_1^1 s = x \leftarrow \text{condition d'autofinancement}$  (2)

On résout (1) - constitué de 2 équations ! - et on obtient :

$$\Phi_1^1 = \underbrace{\frac{H(u) - H(d)}{su - sd}}_{\text{Delta de couverture}}, \quad \Phi_1^0 = \frac{1}{1+r} \cdot \frac{uH(d) - dH(u)}{u - d}, \quad (3)$$

et en reportant dans la troisième équation (2), il vient

$$x = \frac{1}{1+r} \left[ \frac{1+r-d}{u-d} H(u) + \frac{u-(1+r)}{u-d} H(d) \right]. \tag{4}$$

Sous la condition d'AOA d < 1 + r < u, l'unicité des valeurs de portefeuille implique alors que le prix de non-arbitrage  $\pi_0^H$  de l'actif contingent H est précisément la prime x exprimée par (4).

Soit une probabilité  $\mathbf{P}_* = p_*\delta_u + (1-p_*)\delta_d$  telle que

$$p_* = \frac{1+r-d}{u-d} > 0$$
 et donc  $1-p_* = \frac{u-(1+r)}{u-d} > 0$ .

On note  $\mathbf{E}_{\mathbf{P}_*}$  ou  $\mathbf{E}_*$  l'espérance associée.

Avec ces notations, on constate que la prime de H vaut

$$x = \pi_0^H = \frac{1}{1+r} \mathbf{E}_*(H)$$
 (5)

### Définition

Sur  $(\Omega, \mathcal{F})$ , une probabilité  $\mathbf{Q}$  est dite <u>équivalente</u> à  $\mathbf{P}$  si pour tout événement A, on a

$$\mathbf{Q}(A) = 0 \iff \mathbf{P}(A) = 0.$$

La probabilité  $P_*$  précédemment définie est équivalente à P (exo).

# Théorème (admis)

Dans un modèle de marché  $\underline{AOA}$  et complet, il existe une unique probabilité  $\mathbf{P}_*$  équivalente à la probabilité de marché  $\mathbf{P}$  telle que le prix (de non-arbitrage) d'un actif contingent soit égal à l'espérance sous  $\mathbf{P}_*$  de sa valeur finale actualisée.

La probabilité  $\mathbf{P}_*$  est dite risque-neutre (ou martingale).

Exercice :  $\pi_0^H$  est bien le prix de non-arbitrage

Notons  $\pi^H_{\mathrm{march\acute{e}}}$  le prix de marché de l'actif H au temps 0 et supposons  $\pi^H_{\mathrm{march\acute{e}}} > \pi^H_0$ . Montrer qu'il y a contradiction avec l'AOA.

### Indication:

- Au temps initial,
  - Vendre H au prix du marché  $\pi_{\text{marché}}^H$ ,
  - Acheter Φ<sup>1</sup><sub>1</sub> unités d'actif risqué avec Φ<sup>1</sup><sub>1</sub> défini par le delta de couverture (3),
  - Acheter  $\pi_{\text{march\'e}}^{H} \Phi_1^1 s$  unités d'actif sans risque.
- ② Calculer la valeur de ce portefeuille aux temps 0 et 1 et conclure.