Project Thesis Bananas and Troika

Isak Hammer March 5, 2022

1 Introduction

This guy [1] has done a good job.

2 Cahn Hilliard Equation on a Closed Membrane

Let c_0 and c_1 indicate the concentration profile of the substances in a 2-phase system such that $c_0(\mathbf{x},t): \Omega \times [0,\infty] \to [0,1]$ and similarly $c_1(\mathbf{x},t): \Omega \times [0,\infty] \to [0,1]$, where \mathbf{x} is a element of some surface Ω and t is time. However, in the 2 phase problem will we will restrict ourself so that $c_0(t,\mathbf{x})+c_1(t,\mathbf{x})=1$ at any \mathbf{x} at time t. A property of the restriction is that we now can express c_0 using c_1 , with no loss of information. Hence, let us now define $c=c_0$ so $c(\mathbf{x},t):\Omega \times [0,\infty] \to [0,1]$. It has been shown that 2 phase system if thermodynamically unstabl can be evolve into a phase seperation described by a evolutional differential equation [2] using a model based on chemical energy of the substances. However, further development has been done [3] to solve this equation on surfaces. Now assume model that we want to describe is a phase-seperation on a closed membrane surface Γ , so that $c(\mathbf{x},t):\Gamma \times [0,T] \to [0,1]$. Then is the surface Cahn Hilliard equation described such that

$$\rho \frac{\partial c}{\partial t} - \nabla_{\Gamma} \left(M \nabla_{\Gamma} \left(f_0' - \varepsilon^2 \nabla_{\Gamma}^2 c \right) \right) = 0 \quad \text{on } \Gamma.$$
 (1)

We define here the tangential gradient operator to be $\nabla_{\Gamma}c = \nabla c - (\mathbf{n}\nabla c)\mathbf{n}$ applied on the surface Γ restricted to $\mathbf{n} \cdot \nabla_{\Gamma}c = 0$.

Lets define ε to be the size of the layer between the substances c_1 and c_2 . The density ρ is simply defined such that $\rho = \frac{m}{S_{\Gamma}}$ is a constant based on the total mass divaded by the total surface area of Γ . Here is the mobility M often derived such that is dependent on c and is crucial for the result during a possible coarsering event [3]. However, the free energy per unit surface $f_0 = f_0(c)$ is derived based on the thermodynamical model and should according to [3] be nonconvex and nonlinear.

A important observation is that equation (1) is a fourth order equation which makes it more challenging to solve using conventional FEM methods. This clear when writing the equation on the equivalent weak form and second order equations arise.

3 C^0 Interior Penalty Method

In this section do we want to establish a numerical method to fourth order equations. Instead of embarking on the special case of surface PDE described in (1) can weestablish a general numerical theory on \mathbb{R}^2 which we can then later generalize on manifolds later.

Assume that we restrict ourself to a surface $\Omega \in \mathbb{R}^2$ and let $f \in L_2(\Omega)$ We want to solve the equation on the form

$$\Delta^2 u = f \quad \text{in } \Omega \tag{2}$$

$$u = \frac{\partial u}{\partial n} = 0 \tag{3}$$

3.1 Weak Formulation

The weak formulation of (2) has the form

$$a(u,v) = \int_{\mathcal{O}} fv dx \quad u,v \in V. \tag{5}$$

where

$$a(w,v) = \int_{\Omega} \nabla^2 w : \nabla^2 v dx. \tag{6}$$

Here do we define $\nabla^2 w : \nabla^2 v$ to be the inner product of the Hessian matrix of w and v, and V is a closed subspace of the sobolev space $H^2(\Omega)$.

3.2 The general C^0 Interior Penalty Method

 C^0 Interior penalty method says that

$$a_{h}(w,v) = \sum_{T \in \mathfrak{T}_{h}} \int_{T} \left(\nabla^{2} w : \nabla^{2} v \right) dx + \sum_{e \in \mathfrak{E}_{h}^{i}} \int_{e} \left\{ \left\{ \frac{\partial w}{\partial n_{e}} \right\} \right\} \left[\left[\frac{\partial v}{\partial n_{e}} \right] \right] ds + \sum_{e \in \mathfrak{E}_{h}^{i}} \int_{e} \left\{ \left\{ \frac{\partial^{2} v}{\partial n_{e}} \right\} \right\} \left[\left[\frac{\partial w}{\partial n_{e}} \right] \right] + \sum_{e \in \mathfrak{E}_{h}^{i}} \int_{e} \left[\left[\frac{\partial w}{\partial n_{e}} \right] \right] \left[\left[\frac{\partial v}{\partial n_{e}} \right] \right] ds.$$

where

$$\begin{bmatrix} \frac{\partial v}{\partial n_e} \end{bmatrix} = -n_e \nabla \nu_T, \quad \nu_T = \nu|_T$$

$$\begin{cases} \frac{\partial^2 u}{\partial n_e^2} \end{cases} = \frac{\partial^2 u}{\partial n_e^2}$$

$$\begin{cases} \frac{\partial w}{\partial n_e^2} \end{cases} = \frac{1}{2} \left(\frac{\partial^2 w_-}{\partial n_e^2} + \frac{\partial^2 w_+}{\partial n_e^2} \right)$$

$$\begin{cases} \frac{\partial^2 w}{\partial n_e^2} \end{cases} = \frac{\partial^2 w}{\partial n_e^2}, \quad \text{on edges.}$$

4 Appendix

4.1 $L_2(\Omega)$ space

Using the definition from [4] and we let Ω be a an open set in \mathbb{R}^d and $p \in \mathbb{R}$ such that $p \geq 1$. Then we denote $L^p(\Omega)$ to be the set of measurable function $u: \Omega \to \mathbb{R}$ such that it is equipped in a finite Banach space

$$||u||_{L^p(\Omega)} = \left(\int_{\Omega} |u|^p\right)^{\frac{1}{p}}.$$

Now let $u, v: \Omega \to \mathbb{R}$. Then is $L_2(\Omega)$ a Hilbert space when the inner product is finite such that this exists

$$(u,v)_{L^p(\Omega)} = \int_{\Omega} uv.$$

References

- [1] Edmund Brekke. Fundamentals of Sensor Fusion. Not published. Third edition, August 2, 2021.
- [2] John W. Cahn and John E. Hilliard. "Free Energy of a Nonuniform System. I. Interfacial Free Energy". In: *The Journal of Chemical Physics* 28.2 (1958), pp. 258–267. DOI: 10.1063/1.1744102. eprint: https://doi.org/10.1063/1.1744102.
- [3] Vladimir Yushutin et al. "A computational study of lateral phase separation in biological membranes". In: International Journal for Numerical Methods in Biomedical Engineering 35.3 (2019). e3181 cnm.3181, e3181. DOI: https://doi.org/10.1002/cnm.3181. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cnm.3181. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.3181.
- [4] A. Manzoni, A. Quarteroni, and S. Salsa. Optimal Control of Partial Differential Equations: Analysis, Approximation, and Applications. Applied Mathematical Sciences. Springer International Publishing, 2021. ISBN: 9783030772253. URL: https://books.google.no/books?id=V3NpzgEACAAJ.