

ANALYTICS SUPPORTS DATA-DRIVEN DECISIONS

PROCESS - DECISIONS - PROCESS - REPORTS - DISCUSSION - TECHNOLOGY DECISIONS - TARGETS - PLAN - COMMUNICATION

EXAMPLE DECISION: SIGNING FREE AGENT CENTER

INFORMATION

- LAST 3 SEASONS METRICS
- SCOUTING REPORTS
- "WE NEED A PLAY DRIVING CENTER THAT IS RESPONSIBLE DEFENSIVELY"
- "WE ARE IN A WIN NOW MODE"

PROCESS

- SUMMARY REPORT OF METRICS AND SCOUTING OPINIONS FOR AVAILABLE PLAYERS
- ROUNDTABLE MEETING TO DISCUSS AND RANK PLAYERS
- APP OR SPREADSHEET TO PRESENT DATA, RECORD OPINIONS AND RANKINGS

DECISION

 "WE WILL TRY TO SIGN THE TOP RANKED PLAYERS IN ORDER, IF WE GET TO A PART OF THE LIST WHERE AGREEMENT WAS NOT COMPLETE WE WILL RECONVENE."

Good processes allow for unbiased and friction-minimal assimilation of information.

Some traits of good processes are:

- Some traits of good processes are:
 - Structure

- Some traits of good processes are:
 - Structure
 - Conflict Resolution

- Some traits of good processes are:
 - Structure
 - Conflict Resolution
 - Transparency

- Some traits of good processes are:
 - Structure
 - Conflict Resolution
 - Transparency
 - Measurability

- Some traits of good processes are:
 - Structure
 - Conflict Resolution
 - Transparency
 - Measurability
 - Evolving with Feedback

PLAYER METRICS

 We use broadcast/web play-by-play data streams for detailed box score events including who was on the ice and where events happened.

- We use broadcast/web play-by-play data streams for detailed box score events including who was on the ice and where events happened.
- The most common "advanced" stat is shot differential while on ice (Corsi).
 This is a useful statistic because it is predictive of future scoring.
 Eg. Corsi% = Shots For WOI/(Shots For WOI+Shots Against WOI)

- We use broadcast/web play-by-play data streams for detailed box score events including who was on the ice and where events happened.
- The most common "advanced" stat is shot differential while on ice (Corsi).
 This is a useful statistic because it is predictive of future scoring.
 Eg. Corsi% = Shots For WOI/(Shots For WOI+Shots Against WOI)
- Counting/rate stats are biased by linemates, luck, opportunity.
 To understand these effects: WOWY, PDO%, zone start %

- We use broadcast/web play-by-play data streams for detailed box score events including who was on the ice and where events happened.
- The most common "advanced" stat is shot differential while on ice (Corsi).
 This is a useful statistic because it is predictive of future scoring.
 Eg. Corsi% = Shots For WOI/(Shots For WOI+Shots Against WOI)
- Counting/rate stats are biased by linemates, luck, opportunity.
 To understand these effects: WOWY, PDO%, zone start %
- Performance relative to team or linemates can indicate who drives play.
 Eg. Shot Share = Shots/Shots For WOI

WE ARE UP TO PICK AT THE DRAFT AND WE NEED TO DECIDE BETWEEN 2 USHL PLAYERS, WHO DO YOU WANT?

A

Stat	Value	League %	Team %
Goals	14	73.4	79.2
Assists	40	98.2	96.8
Corsi %	56.5	86.6	82.1
Shot Share	17.6	68.3	69.9
OZ Start %	72	91.6	98.3

Stat	Value	League %	Team %
Goals	23	92.9	88.4
Assists	29	90.6	93.2
Corsi %	50.9	66.8	60.2
Shot Share	28.7	93.4	95.5
OZ Start %	49	48.2	50

WE ARE UP TO PICK AT THE DRAFT AND WE NEED TO DECIDE BETWEEN 2 USHL PLAYERS, WHO DO YOU WANT?

A

Stat	Value	League %	Team %
Goals	14	73.4	79.2
Assists	40	98.2	96.8
Corsi %	56.5	86.6	82.1
Shot Share	17.6	68.3	69.9
OZ Start %	72	91.6	98.3

Stat	Value	League %	Team %
Goals	23	92.9	88.4
Assists	29	90.6	93.2
Corsi %	50.9	66.8	60.2
Shot Share	28.7	93.4	95.5
OZ Start %	49	48.2	50

 Non-shot events, can create similar count and rate stats as with box scores: puck recoveries, dz exits, oz entries, passes, possession time

- Non-shot events, can create similar count and rate stats as with box scores: puck recoveries, dz exits, oz entries, passes, possession time
- Tracked manually, with computer vision or from hardware

- Non-shot events, can create similar count and rate stats as with box scores: puck recoveries, dz exits, oz entries, passes, possession time
- Tracked manually, with computer vision or from hardware
- Usually provided by 3rd parties.
 Data quality, quantity and event definitions will vary. Be wary!

- Non-shot events, can create similar count and rate stats as with box scores: puck recoveries, dz exits, oz entries, passes, possession time
- Tracked manually, with computer vision or from hardware
- Usually provided by 3rd parties.
 Data quality, quantity and event definitions will vary. Be wary!
- Can evaluate decisions to create metrics for player tendencies,
 Eg. Entry Tendency = entries/(dump-ins+entries)

- Non-shot events, can create similar count and rate stats as with box scores: puck recoveries, dz exits, oz entries, passes, possession time
- Tracked manually, with computer vision or from hardware
- Usually provided by 3rd parties.
 Data quality, quantity and event definitions will vary. Be wary!
- Can evaluate decisions to create metrics for player tendencies,
 Eg. Entry Tendency = entries/(dump-ins+entries)
- This data helps us answer how players play and why they are worthwhile.

- Non-shot events, can create similar count and rate stats as with box scores: puck recoveries, dz exits, oz entries, passes, possession time
- Tracked manually, with computer vision or from hardware
- Usually provided by 3rd parties.
 Data quality, quantity and event definitions will vary. Be wary!
- Can evaluate decisions to create metrics for player tendencies,
 Eg. Entry Tendency = entries/(dump-ins+entries)
- This data helps us answer how players play and why they are worthwhile.
- New advancements collect spatial data creating non-puck events. Eg. Screening a goalie.
 Some spatial metrics are not event based like player fitness or space occupied.

IT IS THE TRADE DEADLINE, WE WANT A SCORING WINGER TO COMPLIMENT OUR PLAY DRIVING CENTER.

A

Stat	Value	League %	Team %
Slot Shots	3.93	84.3	88.9
Passes	11.86	44.4	50.1
Slot Shot Tendency	76.2	86.1	92.3
Defensive Touches	5.43	31.6	37.4
Possession Time	66.6	73.6	78.9

Stat	Value	League %	Team %
Slot Shots	2.19	51.7	50
Passes	17.3	80.2	81.4
Slot Shot Tendency	48.5	49.7	47.6
Defensive Touches	9.65	76.9	79.1
Possession Time	74.6	87.4	87.8

IT IS THE TRADE DEADLINE, WE WANT A SCORING WINGER TO COMPLIMENT OUR PLAY DRIVING CENTER.

A

Stat	Value	League %	Team %
Slot Shots	3.93	84.3	88.9
Passes	11.86	44.4	50.1
Slot Shot Tendency	76.2	86.1	92.3
Defensive Touches	5.43	31.6	37.4
Possession Time	66.6	73.6	78.9

Stat	Value	League %	Team %
Slot Shots	2.19	51.7	50
Passes	17.3	80.2	81.4
Slot Shot Tendency	48.5	49.7	47.6
Defensive Touches	9.65	76.9	79.1
Possession Time	74.6	87.4	87.8

We can model the probability of success of events given the situation they occur.
 Eg. XPG = P(goal | location, shot type, defenders, puck movement, etc.)

- We can model the probability of success of events given the situation they occur.
 Eg. XPG = P(goal | location, shot type, defenders, puck movement, etc.)
- It is useful to treat the probabilities as weights, which we can add or average just like their original counts.
 - Eg. iXG = sum of XPG for shots by a player, can be a rate or total

- We can model the probability of success of events given the situation they occur.
 Eg. XPG = P(goal | location, shot type, defenders, puck movement, etc.)
- It is useful to treat the probabilities as weights, which we can add or average just like their original counts.
 - Eg. iXG = sum of XPG for shots by a player, can be a rate or total
- Another useful tool is to examine the residuals of these models.
 Eg. A2E = is_Goal XPG, over last 4 seasons Ovechkin is #1.

- We can model the probability of success of events given the situation they occur.
 Eg. XPG = P(goal | location, shot type, defenders, puck movement, etc.)
- It is useful to treat the probabilities as weights, which we can add or average just like their original counts.
 - Eg. iXG = sum of XPG for shots by a player, can be a rate or total
- Another useful tool is to examine the residuals of these models.
 Eg. A2E = is_Goal XPG, over last 4 seasons Ovechkin is #1.
- These models can get quite complicated,
 It is important to understand how a model works before using it for player evaluation!
 Eg. expected possession value: EPV = P(goal in possession | current state)

IT IS THE TRADE DEADLINE, WE WANT A SCORING WINGER TO COMPLIMENT OUR PLAY DRIVING CENTER.

A

Stat	Value	League %	Team %
XPGF	0.964	61	55.5
XPGA	0.973	43.1	32.3
XPG%	49.8	53.6	48.9
iXG	0.429	85.9	93.9
A2E	0.175	85	94.5

Stat	Value	League %	Team %
XPGF	1.23	94.3	100
XPGA	0.878	67.9	69.9
XPG%	62.9	84.6	80
iXG	0.286	59.7	48.7
A2E	-0.197	17.5	35

IT IS THE TRADE DEADLINE, WE WANT A SCORING WINGER TO COMPLIMENT OUR PLAY DRIVING CENTER.

A

Stat	Value	League %	Team %
XPGF	0.964	61	55.5
XPGA	0.973	43.1	32.3
XPG%	49.8	53.6	48.9
iXG	0.429	85.9	93.9
A2E	0.175	85	94.5

Stat	Value	League %	Team %
XPGF	1.23	94.3	100
XPGA	0.878	67.9	69.9
XPG%	62.9	84.6	80
iXG	0.286	59.7	48.7
A2E	-0.197	17.5	35

 All-in-one metrics are closely aligned with your true goal and account for as many sources of variance as you can measure.

- All-in-one metrics are closely aligned with your true goal and account for as many sources of variance as you can measure.
- As analysis methods evolved these metrics improved.
 ie. points < shot differential < xg% < ... < WAR < ...

- All-in-one metrics are closely aligned with your true goal and account for as many sources of variance as you can measure.
- As analysis methods evolved these metrics improved.
 ie. points < shot differential < xg% < ... < WAR < ...
- The most common is Wins-Above-Replacement (WAR).
 Ideal versions of this account for the player's situation providing a team agnostic value.

- All-in-one metrics are closely aligned with your true goal and account for as many sources of variance as you can measure.
- As analysis methods evolved these metrics improved.
 ie. points < shot differential < xg% < ... < WAR < ...
- The most common is Wins-Above-Replacement (WAR).
 Ideal versions of this account for the player's situation providing a team agnostic value.
- Can be either descriptive or predictive.
 Eg. xRank = average public Draft Rank vs NHLe = E(Points in NHL Y1 | data in draft year)

- All-in-one metrics are closely aligned with your true goal and account for as many sources of variance as you can measure.
- As analysis methods evolved these metrics improved.
 ie. points < shot differential < xg% < ... < WAR < ...
- The most common is Wins-Above-Replacement (WAR).
 Ideal versions of this account for the player's situation providing a team agnostic value.
- Can be either descriptive or predictive.
 Eg. xRank = average public Draft Rank vs NHLe = E(Points in NHL Y1 | data in draft year)
- They are good at initial player identification.

ALL-IN-ONE METRICS

- All-in-one metrics are closely aligned with your true goal and account for as many sources of variance as you can measure.
- As analysis methods evolved these metrics improved.
 ie. points < shot differential < xg% < ... < WAR < ...
- The most common is Wins-Above-Replacement (WAR).
 Ideal versions of this account for the player's situation providing a team agnostic value.
- Can be either descriptive or predictive.
 Eg. xRank = average public Draft Rank vs NHLe = E(Points in NHL Y1 | data in draft year)
- They are good at initial player identification.
- It is important to remember team/role fit for player recommendations.

WE ARE UP TO PICK AT THE DRAFT AND WE NEED TO DECIDE BETWEEN 2 USHL PLAYERS, WHO DO YOU WANT?

A

Stat	Value	League %	Team %
WAR	1.73	85.1	79.6
EPV	0.42	71.7	74.7
NHLe	7.82	95.4	95.8
xRank	85.6th	5th	1st

Stat	Value	League %	Team %
WAR	1.16	74.2	73.1
EPV	0.53	86.2	83.6
NHLe	8.14	96.6	96.1
xRank	58.4th	4th	1st

WE ARE UP TO PICK AT THE DRAFT AND WE NEED TO DECIDE BETWEEN 2 USHL PLAYERS, WHO DO YOU WANT?

A

Stat	Value	League %	Team %
WAR	1.73	85.1	79.6
EPV	0.42	71.7	74.7
NHLe	7.82	95.4	95.8
xRank	85.6th	5th	1st

Stat	Value	League %	Team %
WAR	1.16	74.2	73.1
EPV	0.53	86.2	83.6
NHLe	8.14	96.6	96.1
xRank	58.4th	4th	1st

CONSIDERATIONS

When making recommendations it is key to consider the context of the decision, including:

- When making recommendations it is key to consider the context of the decision, including:
 - Team lifecycle
 Eg. A rebuilding team would rather trade for future value so longer term predictive models are preferred.

- When making recommendations it is key to consider the context of the decision, including:
 - Team lifecycle
 Eg. A rebuilding team would rather trade for future value so longer term predictive models are preferred.
 - Team culture/strategy
 Eg. A team focused on defensive responsibility and toughness will have a harder time creating success from a smaller high skill player

- When making recommendations it is key to consider the context of the decision, including:
 - Team lifecycle
 Eg. A rebuilding team would rather trade for future value so longer term predictive models are preferred.
 - Team culture/strategy
 Eg. A team focused on defensive responsibility and toughness will have a harder time creating success from a smaller high skill player
 - Team needs
 Eg. If your team needs a bottom pair defenseman, don't only offer top pair players that are available (even if they are better).

- Test your metrics for:
 - Reliability
 - Stability
 - Sensitivity

- Test your metrics for:
 - Reliability
 - Stability
 - Sensitivity
- Are your metrics actionable?
 Eg. Successful Dump-outs over expected for ranking forwards

- Test your metrics for:
 - Reliability
 - Stability
 - Sensitivity
- Are your metrics actionable?
 Eg. Successful Dump-outs over expected for ranking forwards
- Is the metric valid? aka Do they impact your primary objective?
 Eg. NZ Hit Rate

- Test your metrics for:
 - Reliability
 - Stability
 - Sensitivity
- Are your metrics actionable?
 Eg. Successful Dump-outs over expected for ranking forwards
- Is the metric valid? aka Do they impact your primary objective?
 Eg. NZ Hit Rate
- Are the results logical?
 Eg. OZ Possession % does not correlate with higher iXG

BEPREPARED

The greatest skill we can have as data analysts is to be prepared for (almost) everything!

BEPREPARED

- The greatest skill we can have as data analysts is to be prepared for (almost) everything!
- Writing notes while reviewing data helps keep our opinions well founded and unbiased.

BEPREPARED

- The greatest skill we can have as data analysts is to be prepared for (almost) everything!
- Writing notes while reviewing data helps keep our opinions well founded and unbiased.
- People can contribute quickly with an opinion. To be involved in the conversation you need fast data recall.

Objective: Minimize effort others require to understand your point.

- Objective: Minimize effort others require to understand your point.
- Tips:

- Objective: Minimize effort others require to understand your point.
- Tips:
 - Figures are not always better than tables

- Objective: Minimize effort others require to understand your point.
- Tips:
 - Figures are not always better than tables
 - Keep things consistent

- Objective: Minimize effort others require to understand your point.
- Tips:
 - Figures are not always better than tables
 - Keep things consistent
 - Plot captions can drive your point

- Objective: Minimize effort others require to understand your point.
- Tips:
 - Figures are not always better than tables
 - Keep things consistent
 - Plot captions can drive your point
 - Be cognizant of accessibility: color blind friendly palettes and alt text are key!

FITTING

Many people involved in hockey decisions are experientially trained.
 Eg. An estimated 70% of scouts played Jr. hockey or higher.

FITTINGIN

- Many people involved in hockey decisions are experientially trained.
 Eg. An estimated 70% of scouts played Jr. hockey or higher.
- When meetings with non-data people and those less familiar with our metrics, it is important to frame the data for success.

FITTINGIN

- Many people involved in hockey decisions are experientially trained.
 Eg. An estimated 70% of scouts played Jr. hockey or higher.
- When meetings with non-data people and those less familiar with our metrics, it is important to frame the data for success.
 - Ask questions when the data is notable

FITTINGIN

- Many people involved in hockey decisions are experientially trained.
 Eg. An estimated 70% of scouts played Jr. hockey or higher.
- When meetings with non-data people and those less familiar with our metrics, it is important to frame the data for success.
 - Ask questions when the data is notable
 - Avoid unnecessary technical details

- Many people involved in hockey decisions are experientially trained.
 Eg. An estimated 70% of scouts played Jr. hockey or higher.
- When meetings with non-data people and those less familiar with our metrics, it is important to frame the data for success.
 - Ask questions when the data is notable
 - Avoid unnecessary technical details
 - Use examples of who/what the player describes.
 Note: Examples are dangerous in predictive models. Eg. Draft Comps

- Many people involved in hockey decisions are experientially trained.
 Eg. An estimated 70% of scouts played Jr. hockey or higher.
- When meetings with non-data people and those less familiar with our metrics, it is important to frame the data for success.
 - Ask questions when the data is notable
 - Avoid unnecessary technical details
 - Use examples of who/what the player describes.
 Note: Examples are dangerous in predictive models. Eg. Draft Comps
 - Lean on technology

In the process of player evaluation there is good feedback to be had.

- In the process of player evaluation there is good feedback to be had.
- When data != reality, ask why and determine how to update the metrics accordingly.

- In the process of player evaluation there is good feedback to be had.
- When data != reality, ask why and determine how to update the metrics accordingly.
- Sometimes there are questions we cannot answer. Keep a record to guide future research.

- In the process of player evaluation there is good feedback to be had.
- When data != reality, ask why and determine how to update the metrics accordingly.
- Sometimes there are questions we cannot answer. Keep a record to guide future research.
- Always keep looking for new methods or data that can help.
 Lucky all you smart young people continue to push the envelope!

THANK YOU FOR PARTICIPATING AND ENJOY THE REST OF MSAM 2021!

TWO ROLES CURRENTLY OPEN FOR APPLICATIONS: <u>DEVELOPER</u> <u>DATA ENGINEER</u>

GOOGLE SEARCH "BRUINS JOBS" FOR LINKS TO APPLY.

