Measure the distort of the wave through AD/DA converter

Group 2: 林宜廷、張家菖

Content

Purpose

Step of convert

expected

schedule

total harmonic distortion, THD

Purpose

To understand more about the principle of the AD/DA converter and find some solution that may lead to distort.

How does the wave convert through AD/DA?

sampling

quantizing

encoding

Sampling Theorem -relation between F_s and B

Sampling Theorem -relation between F_S and B

conclusion

$$F_s - B \ge B$$

$$\Rightarrow F_s \ge 2B$$

sampling

quantizing

encoding

sampling

quantizing

encoding

How does the wave convert through AD/DA?

ADC0804LCN

Resolution: 8 bit

Sampling Rate: 10 kS/s

Operating Supply Voltage: 5 V

R2R DA convertor

$$Vout = \underbrace{Rf \ Vref}_{2R} \ N$$

Circuit diagram

Total Harmonic Distortion, THD

Ratio of the RMS amplitude of a set of higher harmonic frequencies

to the RMS amplitude of the first harmonic.

$$ext{THD}_{ ext{F}} \, = \, rac{\sqrt{V_2^2 + V_3^2 + V_4^2 + \cdots}}{V_1}$$

Use Fourier analysis to decompose the signal into fundamental frequency and harmonic components. And calculate the ratio of each harmonic to the fundamental frequency.

expected

1.We expected that the conversion of the waveform will have a relatively large difference at the peak than others.

2.We expected when the signal frequency is above 5KHz, the value of THD will increase significantly.

schedule

Week1

Set up AD and DA and test them

Week2

Switch the various frequency and do FET

Week3

Analyze experimental data

Week4

Do unfinished things