Estrategias algorítmicas

Backtracking

Algoritmos Codiciosos

Programación dinámica

Estrategias algorítmicas

Backtracking

Algoritmos Codiciosos

Programación dinámica

Tres problemas en grafos con costos

- a) Grafos no direccionales:
 - encontrar el árbol de cobertura de costo mínimo
- b) Grafos direccionales:
 - encontrar la ruta más corta desde un vértice a todos los otros
- c) Grafos direccionales:
 - encontrar las rutas más cortas entre todos los pares de vértices

El desastre

- Un terremoto ha devastado la Región del Maule
- Se han caído puentes y destruido caminos enteros
- Hay demasiado que reparar para hacerlo todo de una vez
- Lo prioritario es restaurar la conectividad vial

¿Cuál es la forma más barata de hacer esto?

MST: Minimum spanning tree

Es un árbol: sus aristas no forman ciclos

Es de cobertura: el grafo es conexo

Es mínimo: no existe otro árbol de cobertura con menor costo total

MSTs, cortes y aristas que cruzan el corte

Cortemos (particionemos) el grafo en dos conjuntos de vértices V_1 y V_2

Una arista cruza el corte si un extremo está en V_1 y el otro en V_2

¿Qué podemos afirmar respecto a estas aristas y los MST?

Buscando un MST

Si para cada corte la arista de menor costo está en un MST

... ¿cómo podemos encontrar un MST?

... ¿podremos construirlo una arista a la vez?

El plan general

¿Cuál debería ser el siguiente nodo a revisar?

Algoritmo de Prim

Para un grafo G(V, E), y un nodo inicial x

- 1. Sean $R = \{x\}$, $\overline{R} = V R$, los nodos revisados y los que no.
- 2. Sea e la arista de menor costo que cruza de R a \overline{R}
- 3. Sea u el nodo de e que pertenece a \overline{R}
- 4. Agregar e al MST. Eliminar u de R y agregarlo a R
- 5. Si quedan elementos en \overline{R} , volver a 2.

```
prim(G(V,E),x):
T \leftarrow \emptyset, H \leftarrow una cola de prioridades únicamente con x
x. key \leftarrow 0, \quad x. parent \leftarrow \emptyset,
while H \neq \emptyset:
           u \leftarrow extraer el vértice de H con menor clave, y pintarlo
           if u.parent \neq \emptyset, agregar la arista (u.parent, u) a T
           foreach vecino no pintado \boldsymbol{v} de \boldsymbol{u}:
                      if v \notin H, insertar v en H
                      if w(u, v) < v. key:
                                 v.key \leftarrow w(u,v), \quad v.parent \leftarrow u
```

return T

Corrección

¿Cómo demostramos que Prim es correcto?

¿Cuál es su complejidad?

Algoritmos codiciosos

Esta estrategia algorítmica es conocida como codiciosa

En cada paso, el algoritmo escoge un óptimo local

... con la esperanza de llegar al óptimo global

Optimalidad codiciosa

Los algoritmos *greedy* son muy veloces

Pero no siempre sirven para encontrar el óptimo

¿Qué debe cumplirse en un problema para esto?