Introduction to Reinforcement Learning

- A type of machine learning where an **agent** learns by interacting with the environment.
- Uses a system of rewards and punishments to guide decision-making.
- Inspired by behavioral psychology.

Key Elements of RL

- **1. Agent** Learner or decision-maker.
- **2. Environment** The world where the agent interacts.
- 3. State (S) A representation of the environment.
- **4. Action (A)** Possible moves the agent can take.
- 5. Reward (R) Feedback from the environment.
- **6. Policy** (π) Strategy to choose actions based on the state.
- 7. Value Function (V) Expected long-term reward for being in a state.
- **8. Q-Value (Q)** Expected reward for taking a specific action in a given state.

Types of RL

1. Active RL

- The agent actively explores and takes actions to learn optimal policies.
- Uses trial and error to maximize rewards.
- Examples: Q-learning, Deep Q Networks (DQN).
- Example Scenario: A robot trying different paths in a maze to maximize rewards.

2. Passive RL

- The agent follows a fixed policy and evaluates it.
- Learns the value of states under the given policy without exploring alternatives.
- Example Algorithms: Policy Evaluation, Monte Carlo Methods.
- Example Scenario: A self-driving car following a preset route while estimating travel time.

3. Model-Free RL

- The agent learns directly from interactions without a model of the environment.
- Examples: **Q-learning, SARSA**.
- Use Case: Video game AI improving through trial and error.

4. Model-Based RL

- The agent builds a model of the environment and plans actions based on it.
- Examples: **Dynamic Programming, Policy Iteration**.
- Use Case: A robot simulating possible moves before taking action.

5. Online RL

- The agent updates its knowledge continuously as it interacts with the environment.
- Example: Stock trading AI learning in real time.

6. Offline RL

- The agent learns from a pre-collected dataset without real-time interactions.
- Example: Training autonomous cars on past driving data.

Q-learning

- A model-free, off-policy reinforcement learning algorithm.
- Updates Q-values based on the highest possible future reward.
- Uses the Bellman equation:
- Q(s, a) \leftarrow Q(s, a) + α [r + γ max Q(s', a') Q(s, a)]
- where:
 - α = learning rate
 - **y** = discount factor
 - \mathbf{r} = reward
 - max Q(s', a') = maximum future reward estimate
- Example Use Case: Game AI improving performance by learning optimal moves.

SARSA (State-Action-Reward-State-Action)

- A model-free, on-policy RL algorithm.
- Learns action-value function based on the agent's own policy.
- Update rule:
- Q(s, a) \leftarrow Q(s, a) + α [r + γ Q(s', a') Q(s, a)]
- Difference from Q-learning: Uses the next action a' from the same policy instead of the max Q-value.
- Example Use Case: Learning in a safe driving AI, where it avoids risky actions based on its current policy.

Feature	Active RL	Passive RL
Policy	Learns optimal policy	Follows a fixed policy
Exploration	Yes	No
Decision-Making	Learns from actions taken	Evaluates given actions
Example	Q-learning	Policy Evaluation

Applications of RL

•Gaming: AlphaGo, Dota 2 Al.

•Robotics: Autonomous robots learning to walk.

•Finance: Stock trading strategies.

•Healthcare: Personalized treatment recommendations.

•Self-driving Cars: Learning to navigate safely.