2022-2023 MP2I

DM 7, corrigé

PROBLÈME UNE ÉQUATION FONCTIONNELLE

Partie I. Solutions deux fois dérivables.

1) Un calcul nous permet de vérifier ceci. Les fonctions cos et ch sont bien continues sur \mathbb{R} . De plus, pour $x, y \in \mathbb{R}$, on a :

$$\cos(x+y) + \cos(x-y) = \cos(x)\cos(y) - \sin(x)\sin(y) + (\cos(x)\cos(y) + \sin(x)\sin(y))$$
$$= 2\cos(x)\cos(y).$$

La fonction cos est dans E. On a également :

$$\operatorname{ch}(x+y) + \operatorname{ch}(x-y) = \frac{e^{x+y} + e^{-x-y}}{2} + \frac{e^{x-y} + e^{y-x}}{2}$$

$$= \frac{e^x e^y + e^{-x} e^{-y} + e^x e^{-y} + e^{-x} e^y}{2}$$

$$= \frac{e^x (e^y + e^{-y}) + e^{-x} (e^{-y} + e^y)}{2}$$

$$= (e^x + e^{-x}) \operatorname{ch}(y)$$

$$= 2\operatorname{ch}(x) \operatorname{ch}(y).$$

La fonction che st donc dans E.

2) Soit $f \in E$.

a) Soit $\alpha \in \mathbb{R}$. La fonction f_{α} est continue comme composée de fonctions continues sur \mathbb{R} . On a de plus pour $x, y \in \mathbb{R}$:

$$f_{\alpha}(x+y) + f_{\alpha}(x-y) = f(\alpha x + \alpha y) + f(\alpha x - \alpha y)$$

$$= 2f(\alpha x)f(\alpha y) \qquad (\text{car } f \text{ est dans } E.)$$

$$= 2f_{\alpha}(x)f_{\alpha}(y).$$

La fonction f_{α} est donc bien dans E.

- b) En évaluant la relation vérifiée par f en x = y = 0, on obtient $2f(0) = 2f(0)^2$. On en déduit que f(0)(1 f(0)) = 0, ce qui entraine que f(0) ne peut valoir que 0 ou 1.
- c) Supposons f(0) = 0. En évaluant la relation en x quelconque et en y = 0, on obtient 2f(x) = 2f(x)f(0). Ceci entraine que pour tout $x \in \mathbb{R}$, f(x) = 0. f est donc la fonction nulle.
- d) Supposons à présent f(0) = 1. En appliquant la propriété en x = 0 et y quelconque, on obtient f(y) + f(-y) = 2f(0)f(y). On a donc f(-y) = f(y) pour tout y dans \mathbb{R} . La fonction f est donc paire.
- 3) On suppose dans cette question uniquement que f est une fonction de E deux fois dérivable.
 - a) Fixons $x \in \mathbb{R}$. On peut alors dériver la relation vérifiée par f par rapport à y (en considérant que x est fixé et donc constant). Toutes les fonctions qui apparaissent sont deux fois dérivables comme composées de fonctions deux fois dérivables. On a alors pour tout $y \in \mathbb{R}$:

$$f'(x+y) - f'(x-y) = 2f(x)f'(y)$$

$$f''(x+y) + f''(x-y) = 2f(x)f''(y)$$

On a donc bien la relation voulue.

- b) En appliquant la relation précédente en y=0, on obtient que 2f''(x)=2f(x)f''(0). En posant $\alpha=f''(0)$, on a alors bien que $\forall x\in\mathbb{R},\ f''(x)=\alpha f(x)$.
- c) L'équation différentielle $y'' \alpha y = 0$ est une équation différentielle linéaire à coefficients constants d'ordre 2. L'équation caractéristique associée est $X^2 \alpha = 0$. On en déduit que les solutions sont de la forme :
- Si $\alpha > 0$, de la forme $x \mapsto \lambda e^{\sqrt{\alpha}x} + \mu e^{-\sqrt{\alpha}x}$, $\lambda, \mu \in \mathbb{R}$. On peut changer un peu cette expression en remplacement les exponentielles en fonction de ch et sh pour trouver une expression de la forme $x \mapsto (\lambda + \mu) \operatorname{ch}(\sqrt{\alpha}x) + (\lambda \mu) \operatorname{sh}(\sqrt{\alpha}x)$.
- Si $\alpha = 0$, de la forme $x \mapsto \lambda x + \mu$, $\lambda, \mu \in \mathbb{R}$.
- Si $\alpha < 0$, de la forme $x \mapsto \lambda \cos(\sqrt{-\alpha}x) + \mu \sin(\sqrt{-\alpha}x), \ \lambda, \mu \in \mathbb{R}$.
- 4) Cherchons les solutions de E qui sont deux fois dérivables par analyse/synthèse.

Analyse: Soit f une solution de E deux fois dérivables. D'après la question précédente, on a la forme de f. Il faut alors vérifier parmi ces solutions lesquels vérifient bien l'équation de départ. Remarquons tout d'abord que si ces fonctions vérifient f(0) = 0, alors elles sont égales à la fonction nulle (d'après le 2.c). Supposons donc que ces fonctions vérifient f(0) = 1. Elles sont donc impaires d'après le 2.d.

- Si $\alpha > 0$, puisque l'on veut f(0) = 1, il faut $\lambda + \mu = 1$. Puisque l'on veut une fonction paire, il faut alors $\lambda \mu = 0$. On obtient donc une fonction de la forme $x \mapsto \operatorname{ch}(\sqrt{\alpha}x)$.
- Si $\alpha = 0$, alors puisque l'on veut f(0) = 1 et f paire, la seule fonction restante est la fonction constante égale à 1.
- Si $\alpha < 0$, puisque l'on veut f(0) = 1 et f paire, alors f est forcément de la forme $x \mapsto \cos(\sqrt{-\alpha}x)$ (même calcul que pour le premier cas).

Synthèse: Réciproquement, les fonctions nulles et constantes égale à 1 sont bien solution dans E (elles sont continues sur \mathbb{R} et vérifient la relation demandée). Les fonctions de la forme $x \mapsto \operatorname{ch}(\beta x)$ et $x \mapsto \cos(\beta x)$ pour β quelconque dans \mathbb{R} sont également dans E d'après la question 1 et la question 2.a. On a donc bien trouvé toutes les fonctions deux fois dérivables de E.

Partie II. Solutions qui s'annulent.

- 5) Puisque f est dans E et n'est pas la fonction nulle, alors $f(0) \neq 0$ d'après le I.2.a. On a alors automatiquement f(0) = 1 d'après le 2.b, ce qui entraine que f est paire. Puisque f s'annule au moins une fois sur \mathbb{R} , qu'elle ne s'annule pas en 0 (car f(0) = 1) et qu'elle est paire, cela entraine que f s'annule au moins une fois sur \mathbb{R}_+^* .
- 6)
- a) L'ensemble A est non vide d'après la question précédente et il est minoré. Il admet donc une borne inférieure a. Puisque a est le plus grand des minorants et que 0 minore A, on a aussi $0 \le a$.
- b) Par caractérisation séquentielle de la borne inférieure, il existe une suite (a_n) d'éléments de A qui tend vers a. Par continuité de f, on a donc $f(a_n) \to f(a)$ quand n tend vers l'infini. Or, par définition de la suite (a_n) , on a pour tout $n \in \mathbb{N}$, $f(a_n) = 0$. La limite de la suite $(f(a_n))$ est donc 0, ce qui entraine f(a) = 0.

Puisque f(0) = 1, on a $a \neq 0$. Puisque $a \geq 0$, on en déduit que a > 0.

On a donc montré que a était le minimum de A (il appartient à A d'après ce que l'on vient de vérifier).

c) Soit $x \in [0, a[$. On a f(0) = 1 > 0. De plus, par définition de a, on a aussi $f(x) \neq 0$. Supposons par l'absurde que f(x) < 0. La fonction f est alors continue sur [0, x] et change de signe. D'après le théorème des valeurs intermédiaires, il existe $y \in [0, x]$ tel que f(y) = 0. On a alors y > 0 (car $f(0) \neq 0$) et $y \leq x < a$. Ceci entraine que $y \in A$ et y < a ce qui contredit la définition du minimum! Ceci entraine que pour tout $x \in [0, a[$, f(x) > 0.

7)

a) Soit $q \in \mathbb{N}$. En utilisant la relation vérifiée par f en x = y, on obtient que $f(2x) + f(0) = 2f(x)^2$. Puisque f(0) = 1, on en déduit que $f(2x) + 1 = 2f(x)^2$ pour tout $x \in \mathbb{R}$. En appliquant cette propriété en $x = \frac{a}{2^{q+1}}$, on obtient :

$$f\left(\frac{a}{2^q}\right) + 1 = 2\left(f\left(\frac{a}{2^{q+1}}\right)\right)^2.$$

- b) Montrons par récurrence sur $q \in \mathbb{N}$ la propriété $\mathcal{P}(q)$: « $f\left(\frac{a}{2^q}\right) = g\left(\frac{a}{2^q}\right)$ ».
- La propriété est vraie au rang q = 0. En effet, on a f(a) = 0 et $g(a) = \cos(\frac{\pi}{2a} \times a) = \cos(\frac{\pi}{2}) = 0$.
- Soit $q \in \mathbb{N}$. Supposons la propriété vraie au rang q. En utilisant le résultat de la question précédente, on obtient que :

$$\left(f\left(\frac{a}{2^{q+1}}\right)\right)^2 = \frac{f\left(\frac{a}{2^q}\right) + 1}{2}.$$

Or, on peut passer à la racine carrée car le terme de droite est positif (on a montré que f est positive sur [0,a] et $\frac{a}{2^q} \in [0,a]$. Puisque l'on a aussi $\frac{a}{2^{q+1}} \in [0,a]$, on a aussi $f\left(\frac{a}{2^{q+1}}\right) \geq 0$. Ceci entraine que :

$$f\left(\frac{a}{2^{q+1}}\right) = \sqrt{\frac{f\left(\frac{a}{2^q}\right) + 1}{2}}.$$

Or, la fonction g est dans E d'après la partie I. Elle vérifie donc la même relation que la fonction f. Puisqu'elle est positive sur [0, a], avec le même raisonnement, on obtient :

$$g\left(\frac{a}{2^{q+1}}\right) = \sqrt{\frac{g\left(\frac{a}{2^q}\right) + 1}{2}}.$$

En utilisant l'hypothèse de récurrence, on obtient alors $f\left(\frac{a}{2^{q+1}}\right) = g\left(\frac{a}{2^{q+1}}\right)$, ce qui est la propriété au rang q+1.

- La propriété étant initialisée et héréditaire, elle est vraie pour tout $q \in \mathbb{N}$.
 - c) On va faire une récurrence sur $p \in \mathbb{N}$ pour montrer $\mathcal{P}(p)$: « $\forall q \in \mathbb{N}, \ f\left(\frac{pa}{2^q}\right) = g\left(\frac{pa}{2^q}\right)$ ».
- La propriété est vraie au rang p = 0 car f(0) = g(0) = 1 et vraie au rang 1 d'après la question ci-dessus.
- Soit $p \in \mathbb{N}^*$. Supposons la propriété vraie jusqu'au rang p (récurrence forte). Fixons $q \in \mathbb{N}$. On a alors, en utilisant que $f \in E$ en $x = \frac{pa}{2^q}$ et $y = \frac{a}{2^q}$:

$$\begin{array}{lcl} f\left(\frac{(p+1)a}{2^q}\right) & = & f\left(\frac{pa}{2^q} + \frac{a}{2^q}\right) \\ & = & 2f\left(\frac{pa}{2^q}\right)f\left(\frac{a}{2^q}\right) - f\left(\frac{(p-1)a}{2^q}\right). \end{array}$$

On a alors $p-1 \ge 0$. Puisque l'on sait que la propriété est vraie au rang 0, 1 et que l'on fait une récurrence forte, on en déduit que :

$$f\left(\frac{(p+1)a}{2^q}\right) = 2g\left(\frac{pa}{2^q}\right)g\left(\frac{a}{2^q}\right) - g\left(\frac{(p-1)a}{2^q}\right).$$

Puisque g est également dans E, en reprenant le calcul effectué sur f pour g, on obtient alors $f\left(\frac{(p+1)a}{2^q}\right)=g\left(\frac{(p+1)a}{2^q}\right)$ ce qui prouve la propriété au rang p+1.

- La propriété étant intialisée et hérédiaire, elle est vraie pour tout $p \in \mathbb{N}$.
 - d) Les fonctions f et g sont paires. On peut donc étendre la propriété précédente à $p \in \mathbb{Z}$.
- 8) On pose $D = \left\{ \frac{pa}{2q}, \ p \in \mathbb{Z}, \ q \in \mathbb{N} \right\}.$
 - a) Soit $x \in \mathbb{R}$. On a $\frac{\lfloor y \rfloor}{y} \to 1$ quand y tend vers l'infini (ceci ce montre en utilisant le théorème des gendarmes et en encadrant $\lfloor y \rfloor$ entre y-1 et y). Ceci entraine que :

$$\lim_{n \to +\infty} \frac{\lfloor 2^n x \rfloor}{2^n x} = 1,$$

ce qui en multipliant par x donne le résultat voulu. On a en fait ici pour avoir le droit de divisé par x supposé que $x \neq 0$. On remarque que le résultat demandé s'obtient directement si x = 0.

- b) La question ci-dessus montre exactement la caractérisation séquentielle de la densité pour l'ensemble D. En effet, si on fixe $x \in \mathbb{R}$, alors la suite précédente tend vers x quand n tend vers l'infini et si l'on pose $p = \lfloor 2^n x \rfloor \in \mathbb{Z}$ et $q = n \in \mathbb{N}$, on remarque que $\frac{\lfloor 2^n x \rfloor}{2^n x} \in D$. On a donc bien une suite d'éléments de D qui tend vers x. L'ensemble D est donc dense dans \mathbb{R} .
- c) f et g sont deux fonctions continues égales sur un ensemble dense. Elles sont donc égales sur \mathbb{R} tout entier. En effet, si on fixe $x \in \mathbb{R}$, par définition de D est dense dans \mathbb{R} , il existe une suite (x_n) d'éléments de D telle que $x_n \to x$ quand n tend vers l'infini. Or, on a démontré a la question 3 que pour tout $n \in \mathbb{N}$, $f(x_n) = g(x_n)$. En passant à la limite quand n tend vers l'infini, puisque f et g sont continues, on obtient f(x) = g(x), ce qui prouve le résultat voulu.
- 9) On a montré que si f était dans E et s'annulait, alors f est la fonction nulle ou f est de la forme $x \mapsto \cos(\beta x)$ avec $\beta \in \mathbb{R}$. Réciproquement, toutes ces fonctions sont solutions d'après le I.

Partie III. Solutions qui ne s'annulent pas.

On suppose dans cette partie que $f \in E$ et ne s'annule pas.

- 10) Puisque f ne s'annule pas, on a f(0) = 1. Par l'absurde, si il existait $x \in \mathbb{R}$ tel que $f(x) \le 0$, alors puisque f est continue et que f(0) > 1, on obtiendrait un zéro de f en utilisant le théorème des valeurs intermédiaires. Ceci entraine que f est strictement positive sur \mathbb{R} .
- 11)
- a) Soit $n \in \mathbb{N}$. En appliquant la relation vérifiée par f en $x = y = 2^n$, on obtient exactement $u_{n+1} = 2u_n^2 1$.
- b) On pose $h: x \mapsto 2x^2 1 x$. f est dérivable sur [0,1] et pour tout $x \in [0,1]$, h'(x) = 4x 1. On a donc h' négative sur $[0,\frac{1}{4}]$ et positive sur $[\frac{1}{4},1]$. Ceci entraine que g est décroissante sur $[0,\frac{1}{4}]$ et positive sur $[0,\frac{1}{4}]$ et posi
- $[0, \frac{1}{4}]$ et croissante sur $[\frac{1}{4}, 1]$. Or, h(0) = -1 et h(1) = 0. Ceci entraine que h est négative sur [0, 1].

On remarque que pour $n \in \mathbb{N}$, on a $h(u_n) = 2u_n^2 - 1 - u_n = u_{n+1} - u_n$. Montrons alors par récurrence la propriété $\mathcal{P}(n)$: « $0 \le u_{n+1} \le u_n < 1$ ».

- Pour n = 0, la propriété est vraie puisque $u_0 = f(1) < 1$ et $0 \le u_0$ car la suite (u_n) est positive. On a alors $h(u_0) = u_1 u_0 \le 0$. Puisque $0 \le u_1$ (car la suite (u_n) est positive), on en déduit que $1 \le u_1 \le u_0 < 1$.
- Si la propriété est vraie au rang $n \in \mathbb{N}$ fixé, alors on a comme ci-dessus $h(u_n) = u_{n+1} u_n \le 0$ car $u_n \in [0, 1[$. Puisque l'on a aussi $0 \le u_{n+1}$ (car la suite (u_n) est positive), on en déduit que $1 \le u_{n+1} \le u_n < 1$.

- On a donc montré en particulier que pour tout $n \in \mathbb{N}$, $u_{n+1} \leq u_n$. La suite (u_n) est donc décroissante.
 - c) La suite (u_n) est décroissante minorée. Elle converge donc vers $l \in [0,1[$. On a alors $u_{n+1} u_n \to 0$ quand n tend vers l'infini. On en déduit que $2l^2 1 l = 0$. On a donc l = 1 ou $l = -\frac{1}{2}$. Puisque la suite (u_n) est positive, elle tend doit tendre vers 1 sauf qu'elle est décroissante et $u_0 = f(1) < 1$. On a donc une absurdité.
- 12) D'après la question précédente, on a $f(1) \ge 1$. Puisque $\operatorname{ch} : \mathbb{R}_+ \to [1, +\infty[$ est bijective (on peut le montrer avec le théorème de la bijection car ch est continue, strict croissante sur \mathbb{R}_+ et vérifie $\operatorname{ch}(0) = 1$ et $\lim_{x \to +\infty} \operatorname{ch}(x) = +\infty$). Il existe donc $\alpha \in \mathbb{R}_+$ tel que $f(1) = \operatorname{ch}(\alpha)$.
- 13) On pose alors $g: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \operatorname{ch}(\alpha x) \end{array} \right.$

On a toujours $\forall q \in \mathbb{N}, \ f\left(\frac{1}{2^q}\right) + 1 = 2\left(f\left(\frac{1}{2^{q+1}}\right)\right)^2$ car pour le montrer, on a utilisé uniquement que $f \in E$ et que f était positive (ce qui est encore vrai ici).

Le fait que $\forall q \in \mathbb{N}, \ f\left(\frac{1}{2^q}\right) = g\left(\frac{1}{2^q}\right)$ est encore vrai car elle est vraie en q=0 et la récurrence marche de la même façon car f et g sont toutes les deux dans E (d'après la fin du I pour g). La récurrence de la question suivante marche de la même façon (on utilisait seulement le fait que f et g vérifient la relation donnée), on peut encore étendre la propriété à \mathbb{Z} car les deux fonctions sont encore paires.

Aucun changement dans la question 4, les fonctions f et g sont égales sur un ensemble dense et continues. Elles sont donc égales sur \mathbb{R} .

14) Les fonctions f de E ne s'annulant pas sont donc de la forme $x \mapsto \operatorname{ch}(\alpha x)$ où $\alpha \in \mathbb{R}_+$. Or, ces fonctions appartiennent toutes à E d'après la partie I.

Les fonctions présentes dans l'ensemble E sont donc exactement les fonctions trouvées dans la partie I.

PROBLÈME Résolution d'une équation diophantienne

Partie I. Étude de $\mathbb{Z}[\sqrt{2}]$

1) La loi + est bien associative, commutative. L'élément neutre pour cette loi est 0 qui est bien dans $\mathbb{Z}[\sqrt{2}]$ (on prend a=b=0). ($\mathbb{Z}[\sqrt{2}],+$) est stable par addition et par passage à l'opposé (car on considère $a,b\in\mathbb{Z}$). Il s'agit donc d'un groupe commutatif. De plus, la loi × est bien associative, distributive par rapport à l'addition. L'élément neutre pour la loi × est 1 qui est bien dans $\mathbb{Z}[\sqrt{2}]$ (on prend a=1 et b=0). Il reste à montrer que $\mathbb{Z}[\sqrt{2}]$ est bien stable pour cette loi. Si $a+b\sqrt{2}$ et $a'+b'\sqrt{2}$ sont dans $\mathbb{Z}[\sqrt{2}]$, alors, on a :

$$(a+b\sqrt{2})(a'+b'\sqrt{2}) = (aa'-2bb') + (ab'+a'b)\sqrt{2}$$

On a alors $aa' - 2bb' \in \mathbb{Z}$ et $ab' + a'b \in \mathbb{Z}$. On a donc bien $(a + b\sqrt{2})(a' + b'\sqrt{2}) \in \mathbb{Z}[\sqrt{2}]$.

On a donc montré que $(\mathbb{Z}[\sqrt{2}], +, \times)$ est un anneau (commutatif).

2) Soit $x \in \mathbb{Z}[\sqrt{2}]$. Il existe alors $(a,b) \in \mathbb{Z}^2$ tels que $x = a + b\sqrt{2}$. Supposons qu'il existe $(a',b') \in \mathbb{Z}^2$ tels que $x = a' + b'\sqrt{2}$. On a alors :

$$(a - a') = \sqrt{2}(b - b').$$

Supposons par l'absurde $b \neq b'$. On a alors $\sqrt{2} = \frac{a-a'}{b-b'} \in \mathbb{Q}$. Ceci est absurde puisque $\sqrt{2}$ est irrationnel. On a donc b=b', ce qui implique a=a'. On a donc montré l'unicité de l'écriture de x.

- 3) Un calcul direct permet de vérifier cette question.
- 4)
- a) Soit $x = a + b\sqrt{2} \in \mathbb{Z}[\sqrt{2}]$. On a alors $N(x) = a^2 2b^2 \in \mathbb{Z}$ car a et b sont entiers.
- b) Soient $x, x' \in \mathbb{Z}[\sqrt{2}]$. On a :

$$N(xx') = xx'\overline{xx'}$$

$$= xx'\overline{x}\overline{x'}$$

$$= x\overline{x} \times x'\overline{x'}$$

$$= N(x)N(x').$$

- c) On va procéder par double implication.
- (\Rightarrow) Soit $x \in \mathbb{Z}[\sqrt{2}]$ inversible. Il existe donc $y \in \mathbb{Z}[\sqrt{2}]$ tel que xy = 1. On a alors N(xy) = 1 et donc N(x)N(y) = 1. Puisque N(x) et N(y) sont entiers, on en déduit que N(x) divise 1. On a alors $N(x) = \pm 1$.
- (\Leftarrow) Soit $x \in \mathbb{Z}[\sqrt{2}]$ tel que $N(x) = \pm 1$. On a alors $x\overline{x} = \pm 1$. On en déduit que $\pm \overline{x}$ est l'inverse de x (puisque son produit avec x vaut 1). On a donc montré que x était inversible.

On a donc montré l'équivalence voulue.

- d) Soit $H = \{x \in \mathbb{Z}[\sqrt{2}] / N(x) = \pm 1\}.$
- H contient 1 (car N(1) = 1).
- Si $x, y \in H$, on a alors $N(xy) = N(x)N(y) = \pm 1$. On a donc $xy \in H$. H est donc stable par produit.
- Si $x \in H$, alors on a $N(x) = \pm 1$ et donc d'après la question précédente, il existe $y \in \mathbb{Z}[\sqrt{2}]$ tel que xy = 1. On a $y \in H$ car N(x)N(y) = 1 et $N(x) = \pm 1$ et donc $N(y) = \pm 1$. On en déduit que x admet un inverse dans H.

On en déduit que (H, \times) est un groupe.

Partie II. Étude de H

- 5) Soit $x = a + b\sqrt{2} \in H$.
 - a) Supposons que $a \geq 0$ et $b \geq 0$. Si a = b = 0, on a alors x = 0 donc N(x) = 0 ce qui est absurde (puisque $x \in H$, on a $N(x) = \pm 1$). On en déduit que soit a, soit b est supérieur ou égal à 1 (puisqu'ils sont entiers). Puisque $\sqrt{2} \geq 1$ (et que a et b sont tous les deux positifs), on a alors $x = a + b\sqrt{2} \geq 1$.
 - b) Supposons que $a \le 0$ et $b \le 0$. De la même manière que ci-dessus, on ne peut pas avoir a = b = 0. On en déduit que soit a, soit b est inférieur ou égal à -1 (puisqu'ils sont entiers). Puisque $\sqrt{2} \ge 1$ et que a et b sont tous les deux négatifs, on a alors $x = a + b\sqrt{2} \le -1$.

c) Supposons que $ab \leq 0$ (c'est à dire a et b de signes opposés). On a alors que a et -b sont de même signe. Puisque $\overline{x} = a - b\sqrt{2}$, on déduit des questions précédentes (appliquées à \overline{x}) que $|\overline{x}| \geq 1$. Or, on a $x\overline{x} = N(x) = \pm 1$, ce qui implique en prenant la valeur absolue que :

$$|x| \times |\overline{x}| = 1.$$

Puisque $|\overline{x}| \ge 1$ et que $|x| = \frac{1}{|\overline{x}|}$, on en déduit que $|x| \le 1$.

- 6) Posons $H_+ = \{x \in H / x > 1\}.$
 - a) Soit $x = a + b\sqrt{2} \in H_+$. On a alors x > 1. D'après les questions précédentes, si on avait $a \le 0$ et $b \le 0$, on aurait alors une absurdité (car cela implique que $x \le -1$). De même si a et b étaient de signe opposé, on aurait $|x| \le 1$ ce qui contredirait également le fait que x > 1. On en déduit que a et b sont tous les deux strictements positifs (puisque si l'un des deux était nul, on aurait $ab \le 0$ et donc $|x| \le 1$). On en déduit que a > 0 et b > 0.
 - b) Soit $x = a + b\sqrt{2} \in H_+$. D'après la question précédente, a > 0 et b > 0. Puisqu'ils sont entiers, on a donc $a \ge 1$ et $b \ge 1$. On a donc $x \ge 1 + \sqrt{2}$. On en déduit que u est un minorant de H_+ .

De plus, on a N(u) = 1 - 2 = -1. On a donc $N(u) = \pm 1$ et on a u > 1 car $\sqrt{2} > 0$. On en déduit que $u \in H_+$. C'est donc bien le minimum de H_+ .

- 7) Soit $x \in H_+$.
 - a) Posons $A = \{p \in \mathbb{N}^* \mid u^p \leq x\}$. A est non vide (il contient toujours 1 puisque u est le minimum de H_+). De plus, puisque la suite $(u^p)_{p \in \mathbb{N}^*}$ tend vers $+\infty$ (car u > 1), il existe $N \in \mathbb{N}$ tel que $u_N > x$. Puisque la suite $(u^p)_{p \in \mathbb{N}^*}$ est strictement croissante (on multiplie à chaque étape par u > 1), on en déduit que pour tout $p \geq N$, $u^p > x$. Ceci implique que N est un majorant de A.

A est une partie de $\mathbb N$ non vide majorée. Elle admet donc un maximum n. Cet entier vérifie $u^n \leq x$ et $u^{n+1} > x$ (car $n+1 \notin A$). On a donc bien construit un entier $n \in \mathbb N^*$ (puisque $1 \in A$, on a $n \geq 1$) comme demandé.

b) Supposons que $x > u^n$. On a alors $1 < \frac{x}{u^n} < u$ (puisque $u^n > 0$, on ne change pas le signe des inégalités). Or, on a $\frac{x}{u^n} \in H$ puisque H est un groupe pour la loi \times . Puisque $1 < \frac{x}{u^n}$, on en déduit que $\frac{x}{u^n} \in H_+$. Ceci est absurde puisque cet élément est strictement plus petit que u, le minimum de H_+ !

On en déduit que $x \leq u^n$, ce qui implique, puisque $u^n \leq x$, que $x = u^n$.

c) Notons $B = \{\pm u^n, n \in \mathbb{Z}\}$. On va procéder par double inclusion. Puisque H est un groupe pour la loi \times et que $u \in H$, on a que $\{u^n, n \in \mathbb{Z}\} \subset H$. De plus, si $x \in H$, on a également $-x \in H$ (car on a $-x \in \mathbb{Z}[\sqrt{2}]$ et que N(-x) = N(-1)N(x) = N(x)). On a donc que $B \subset H$.

Réciproquement, soit $x \in H$.

- Si x > 1, alors d'après la question précédente, il existe $n \in \mathbb{N}^*$ tel que $x = u^n$. On a donc $x \in B$. Si x < -1, on a alors -x > 1 et on a alors $-x \in H_+$ (toujours puisque H est stable par passage à l'opposé). Il existe donc $n \in \mathbb{N}^*$ tel que $-x = u^n$. On a donc $x = -u^n$ et donc $x \in B$.
- Si x = 1 ou x = -1, alors, on a $x = u^0$ ou $x = -u^0$ et on a encore $x \in B$.
- Supposons à présent que |x| < 1. On a alors $\left| \frac{1}{x} \right| > 1$ et $\frac{1}{x} \in H$ (puisque H est un groupe pour la loi \times). On a alors, en appliquant le premier point à $\frac{1}{x}$, on a que $\frac{1}{x} \in B$. Puisque B est stable

par passage à l'inverse (puisque l'on autorise les puissances à être dans \mathbb{Z}), on en déduit que $x \in B$

Dans tous les cas, on a montré que $x \in B$. On a donc $H \subset B$. On a bien montré que $H = \{\pm u^n, n \in \mathbb{Z}\}$.

Ceci décrit alors l'ensemble des solutions de l'équation proposée comme les $\pm (1+\sqrt{2})^n$ avec $n \in \mathbb{Z}$. En développant cette expression avec le binôme de Newton (en séparant les termes pairs et impairs pour faire apparaître des entiers et des entiers multipliés par $\sqrt{2}$), on peut trouver une expression explicite des couples d'entiers solutions.