Distributed Systems

Master of Science in Engineering in Computer
Science

AA 2017/2018

LECTURE 3 (PART 2): TIME IN DISTRIBUTED SYSTEMS

# Logical Time

### Logical clock

Physical clock synchronization algorithms try to coordinate distributed clocks to reach a common value

- Physical clock synchronization algorithms are based on the estimation of transmission delay but in several system it can be hard to find a good estimation.
- In several applications it is not important when things happened but in which order they happened

However in a Distributed System, each system has its own "logical clock"

 If clocks are not aligned it is not possible to order events generated by different processes

Reliable way of ordering events is required!

#### Notes:

- Two events occurred at some process p<sub>i</sub> happened in the same order as p<sub>i</sub> observes them
- □ When p<sub>i</sub> sends a message to p<sub>j</sub> the *send* event happens before the *receive* event
- Lamport introduces the happened-before relation that captures the causal dependencies between events (causal order relation)
  - $\square$  We note with  $\rightarrow_i$  the ordering relation between events in a process  $p_i$
  - $\square$  We note with  $\rightarrow$  the happened-before between any pair of events

### Happened-Before Relation: Definition

Two events e and e' are related by happened-before relation (e  $\rightarrow$  e') if:

- $\circ \exists p_i \mid e \rightarrow_i e'$
- $\circ$   $\forall$  message m send(m)  $\rightarrow$  receive(m)
  - send(m) is the event of sending a message m
  - receive(m) is the event of receipt of the same message m
- $\exists$  e, e', e'' | (e  $\rightarrow$  e'')  $\land$  (e''  $\rightarrow$  e') (happened-before relation is transitive)

### Happened-Before Relation

Using the three rules is possible to define a causal ordered sequence of events  $e_1, e_2, ..., e_n$ 

#### Notes:

- The sequence  $e_1$ ,  $e_2$ , ...,  $e_n$  may not be unique
- It may exists a pair of events  $\langle e_1, e_2 \rangle$  such that  $e_1$  and  $e_2$  are not in happened-before relation
- If  $e_1$  and  $e_2$  are not in happened-before relation then they are *concurrent* ( $e_1 | | e_2$ )
- For any two events  $e_1$  and  $e_2$  in a distributed system, either  $e_1 \rightarrow e_2$ ,  $e_2 \rightarrow e_1$  or  $e_1 | |e_2|$

### happened-before: example



 $e^{j}_{i}$  is j-th event of process  $p_{i}$ 

$$S_1 = \langle e_1^1, e_2^1, e_2^2, e_3^2, e_3^3, e_1^3, e_1^4, e_1^5, e_2^4 \rangle$$
  
 $S_2 = \langle e_3^1, e_1^2, e_1^3, e_1^4, e_3^5 \rangle$ 

Note:

e<sub>3</sub> and e<sub>2</sub> are concurrent

### Logical Clock

The Logical Clock, introduced by Lamport, is a software counting register monotonically increasing its value

Logical clock is not related to physical clock

Each process p<sub>i</sub> employs its logical clock L<sub>i</sub> to apply a *timestamp* to events

 $L_i(e)$  is the "logical" timestamp assigned, using the logical clock, by a process  $p_i$  to events e.

#### **Property**:

• If  $e \rightarrow e'$  then L(e) < L(e')

#### **Observation:**

• The ordering relation obtained through logical timestamps is only a partial order. Consequently timestamps could not be sufficient to relate two events

### Scalar Logical Clock: an implementation

Each process  $p_i$  initializes its logical clock  $L_i=0$  ( $\forall i=1...N$ )

p<sub>i</sub> increases L<sub>i</sub> of 1 when it generates an event (either send or receive)

When p<sub>i</sub> sends a message m

- creates an event send(m)
- increases L<sub>i</sub>
- timestamps m with t=L<sub>i</sub>

When  $p_i$  receives a message m with timestamp t

- Updates its logical clock L<sub>i</sub> = max(t, L<sub>i</sub>)
- Produces an event receive(m)
- Increases L<sub>i</sub>

### Scalar Logical Clock: example



- e<sup>j</sup><sub>i</sub> is j-th event of process p<sub>i</sub>
- L<sub>i</sub> is the logical clock of p<sub>i</sub>
- Note:
  - $e^1_1 \rightarrow e^2_1$  and timestamps reflect this property
  - $e_1^1 \mid \mid e_3^1$  and respective timestamps have the same value
  - $e_2^1 \mid e_3^1$  but respective timestamps have different values

### Limits of Scalar Logical Clock

Scalar logical clock can guarantee the following property

• IF  $e \rightarrow e'$  then L(e) < L(e')

But it is not possible to guarantee

• IF L(e) < L(e') then  $e \rightarrow e'$ 

#### **Consequently:**

• It is not possible to determine, analyzing only scalar clocks, if two events are concurrent or correlated by the happened-before relation.

Mattern [1989] and Fridge [1991] proposed an improved version of logical clock where events are timestamped with local logical clock and node identifier

Vector Clock

#### **Vector Clock: definition**

Vector Clock for a set of N processes is composed by an array of N integer counters

Each process p<sub>i</sub> maintains a Vector Clock V<sub>i</sub> and timestamps events by mean of its Vector Clock

Similarly to scalar clock, Vector Clock is attached to message m (in this case we attach an array of integer)

Vector Clock allows nodes to order events in happens-before order based on timestamps

- Scalar clocks:  $e \rightarrow e'$  implies L(e) < L(e')
- Vector clocks: e → e' iff L(e) < L(e')</li>

### Vector Clock : an implementation

Each process p<sub>i</sub> initializes its Vector Clock V<sub>i</sub>

•  $V_i[j]=0 \ \forall \ j=1... \ N$ 

p<sub>i</sub> increases V<sub>i</sub>[i] of 1 when it generates an event

V<sub>i</sub>[i]=V<sub>i</sub>[i]+1

When p<sub>i</sub> sends a message m

- Creates an event send(m)
- Increases V<sub>i</sub>
- timestamps m with t=V<sub>i</sub>

When  $p_i$  receives a message m containing timestamp t

- Updates it logical clock V<sub>i</sub>[j] = max(t[j], V<sub>i</sub>[j]) ∀ j = 1... N
- Generates an event receive(m)
- Increases V<sub>i</sub>

### Vector Clock: properties

#### A Vector Clock V<sub>i</sub>

- V<sub>i</sub>[i] represents the number of events produced by p<sub>i</sub>
- $V_i[j]$  with  $i \neq j$  represents the number of events generated by  $p_i$  that  $p_i$  can known

V = V' if and only if

 $V \le V'$  if and only if

V < V' therefore the event associated to V happened before the event associated to V' if and only if

- $\circ$   $V \leq V' \wedge V \neq V'$ 
  - ∘ ∀ i = 1...N V' [ i ] ≥ V [ i ]
  - $^{\circ} \quad \exists \ i \in \{1 \ ... \ N\} \ \big| \ V' \ \big[ \ i \ \big] > V \ \big[ \ i \ \big]$

# Vector Clock: an example



### A comparison of Vector Clocks



Differently from Scalar Clock, Vector Clock allows to determine if two events are concurrent or related by an happened-before relation

# Logical Time and Distributed Algorithms

### Logical clock in distributed algorithms

We have seen two mechanisms to represent logical time

- Scalar Clock
- Vector Clock

Each mechanism can be used to solve different problems, depending on the problem specification

- Scalar Timestamp → Lamport's Mutual Exclusion
- Vector Timestamp → Causal Broadcast

# The Mutual Exclusion abstraction

#### Specification

- Mutual Exclusion: at every time t at most one process p is in critical section
- No-Deadlock: there always exists a process p able to enter the critical section.
- No-Starvation: every process p requesting the critical section eventually gets in.



### Time stamp based algorithm: Lamport

Difference from concurrent system

When a process wants to enter the CS sends a request message to all the other

An history of the operations is maintained by using a counter (time stamp)

Each transmission and reception event is relevant to the computation:

- The counter is incremented for each send and receive event
- The counter is incremented also when a message, not directly related to the mutual exclusion computation, is sent or received.

### Lamport's algorithm: implementation

#### Local data structures to each process pi

- ck
  - Is the counter for process pi
- ° Q
  - Is a queue maintained by pi where CS access requests are stored

#### Algorithm rules for a process pi

- Access the CS
  - pi sends a request message, attaching ck, to all the other processes
  - pi adds its request to Q
- Request reception from a process pj
  - pi puts pj request (including the timestamp) in its queue
  - pi sends back an ack to pj

### Lamport's algorithm: implementation

#### Algorithm rules for a process pi

- p<sub>i</sub> enters the CS iff
  - p<sub>i</sub> has, in its queue, a request with timestamp t
  - t is the small timestamp in the queue
  - p<sub>i</sub> has already received an ack with timestam t' from any other process and t'>t
- Release of the CS
  - p<sub>i</sub> sends a RELEASE message to all the other processes
  - p<sub>i</sub> deletes its request from the queue
- Reception of a release message from a process pj
  - $\circ$  p<sub>i</sub> deletes p<sub>j</sub>'s request from the queue













### Lamport's algorithm: safety proof

#### Let us suppose by contradiction that both p<sub>i</sub> and p<sub>i</sub> enter the CS

- $\circ$   $\Rightarrow$  both the processes have received an ack from any other process and, to enter the CS, the timestamp has to be the smallest in the queue
  - t<sub>i</sub> < t<sub>i</sub> < ack<sub>i</sub>.ts
  - t<sub>i</sub> < t<sub>i</sub> < ack<sub>j</sub>.ts



p<sub>j</sub> ack arrives before p<sub>j</sub> request then p<sub>i</sub> enters the CS without any problem

Both processes receive the ack when the two requests are in the queue but ME is guaranteed by the total order on the timestamps

p<sub>j</sub>'s ack arrives after p<sub>j</sub>'s request but before p<sub>i</sub>'s ack then p<sub>i</sub> enters the CS without any problem and sends its ack after executing the CS

## Lamport's algorithm: properties

<u>Fairness is satisfied</u>: different requests are satisfied in the same order as they are generated

- Such order comes from the happened-before relation:
  - ☐ If two requests are in happened-before relation then they are satisfied in the same order.
  - □ If two request are concurrent with respect to the happended before relation then the access can happen in any order

### Lamport's algorithm: performances

Lamport's algorithm needs 3(N-1) messages for the CS execution

- N-1 requests
- N-1 acks
- N-1 releases

In the best case (none is in the CS and only one process ask for the CS) there is a delay (from the request to the access) of 2 messages

# Ricart-Agrawala's algorithm: implementation

#### Local variables

- #replies (initially 0)
- State ∈ {Requesting, CS, NCS} (initially NCS)
- Q pending requests queue (initially empty)
- Last Req
- Num

#### Algorithm

#### begin

- 1. State=Requesting
- 2. Num=num+1; Last Reg=num
- 3.  $\forall$  i=1...N send REQUEST(num) to pi
- 4. Wait until #replies=n-1
- 5. State=CS
- 6. CS
- 7.  $\forall$  r  $\in$  Q send REPLY to r
- 8.  $Q = \emptyset$ ; State=NCS; #replies=0

#### Upon receipt REQUEST(t) from pj

- If State=CS or (State=Requesting and {Last\_Req,i}<{t,j})</li>
- 2. Then insert in Q{t, j}
- 3. Else send REPLY to pi
- 4. Num=max(t,num)

#### **Upon receipt of REPLY from pj**

1. #replies=#replies+1

























