

UM6116-2/-3 Series

2K×8 CMOS SRAM

Features

- Single +5 volt power supply
- Access times: 90/120 ns (max.)
- Current:

for UM6116-3/-3T Operating: 100 mA (max.)

Standby: 100 µA (max.)

for UM6116-2/-2T Operating: 100 mA (max.)

Standby: 50 µA (max.)

for UM6116-3L/-2L/-3LT/-2LT

Operating: 50 mA (max.) . Standby: $1 \mu A$ (max.)

- Fully static operation, no clock or refreshing required
- Directly TTL compatible: All inputs and outputs

Common I/O using three-state output

- Pin compatible with standard 16K EPROM/Mask ROM
- UM6116-2/-3 is the standard version of UM6116-
 - 2/-3 series
- UM6116-2L/-3L is the low power version of
 - UM6116-2/-3 series
- UM6116-2T/-3T is the wide temperature version
 - of UM6116-2/-3 series
- UM6116-2LT/-3LT is the low power, wide temperature version of UM6116-2/-3 series
- Available in 24 pin DIP, SOP, or Skinny DIP packages (See ordering information)

General Description

The UM6116-2/-3 series is a 16,384-bit static random access memory organized as 2,048 words by 8 bits and operates on a single 5-volt supply. It is built with UMC's high performance CMOS process. Six-transistor full CMOS me-

mory cell provides low standby current and high reliability. Inputs and three-state outputs are TTL compatible and allow for direct interfacing with common system bus structures.

Pin Configuration

Block Diagram

UM6116-2/-3 Series

Pin Description

Designation	Description
A ₀ - A ₁₀	Address Input
WE	Write Enable
ŌĒ	Output Enable
<u>cs</u>	Chip Select
I/O ₁ - I/O ₈	Data Input/Output
V _{cc}	Power Supply (+5V)
GND	Ground

Recommended DC Operating Conditions

 $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C \text{ for UM6116-2/-3, UM6116-2L/-3L}$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C \text{ for UM6116-2T/-3T, UM6116-2LT/3LT})$

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{cc}	Supply Voltage	4.5	5.0	5.5	٧
GND	Ground	.0	0	0	>
V _{IH}	Input High Voltage	2.2	3.5	V _{CC} + 0.5V	V
V _{IL}	Input Low Voltage	-0.3	0	0.8	٧
CL	Output Load	-	_	100	рF
TTL	Output Load	_	_	1	_

Absolute Maximum Ratings *

V _{CC} to GND	0.5V to +7.0V
IN, IN/OUT Volt to GND	$-0.5V$ to $V_{CC} + 0.5V$
Operating Temperature, Topr 0)°C to +70°C (Note 1)
Storage Temperature, T _{stg}	55°C to +125°C
Temperature Under Bias, T _{bias} 10)°C to +85°C (Note 1)
Power Dissipation, P _T	1.0W/SOP 0.7W
Soldering temp. & time	260°C, 10 sec

Note 1: for UM6116-2T/-3T, UM6116-2LT/-3LT T_{opr} : -40°C to 85°C , T_{blas} : -50°C to 95°C

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics $(T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}, V_{CC} = 5\text{V} \pm 10\%, \text{GND} = 0\text{V}, T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C for T version})$

			UM6116-3/ UM6116-3T		UM6116-2/ UM6116-2T		UM6116-3L/ UM6116-2L, UM6116-3LT/ UM6116-2LT		Test Conditions
Symbol	ltem	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Test Conditions
_L	Input Leakage Current	1	10	1	10	_	1	μΑ	V _{IN} = GND to V _{CC}
ll _{LO} l	Output Leakage Current	_	10	-	10	_	1	μА	$\overline{CS} = V_{IH} \text{ or } \overline{OE} = V_{II}$ or $\overline{WE} = V_{IL}$, $V_{I/O} = \text{GND to } V_{CC}$
¹ cc	Active Power Supply Current	_	100	_	100	_	50	mA	CS = V _{IL} , I _{I/O} = 0 mA
I _{CC1}	Dynamic Operating Current	-	100	-	100	-	50	mA	Min. Cycle, duty = 100%, CS = V _I I _{1/O} = 0 mA
I _{SB}	_	_	1	_	1	-	1	mA	CS = V _{IH}
I _{SB1}	Standby Power Supply Current	_	100	-	50	-	1	μΑ	$ \begin{array}{c c} \overline{\text{CS}} \geqslant \text{V}_{\text{CC}} - 0.2\text{V}, \\ \text{V}_{\text{IN}} \geqslant \text{V}_{\text{CC}} - 0.2\text{V} \\ \text{or V}_{\text{IN}} \leqslant 0.2\text{V} \end{array} $
V _{OL}	Output Low Voltage	-	0.4		0.4	-	0.4	٧	I _{OL} = 4 mA
V _{OH}	Output High Voltage	2.4	-	2.4	_	2.4	-	V	I _{OH} = -1.0 mA

UM6116-2/-3 Series

Truth Table

Mode*	CS	ŌĒ	WE	I/O Operation	Supply Current
Standby	Н	X	X	High Z	I _{SB} , I _{SB1}
Output Disabled	L	Н	Н	High Z	I _{CC} , I _{CC1}
Read	Ļ	L	Н	D _{OUT}	lcc, lcc1
Write	L	X	L	D _{IN}	Icc, Icci

Note: X:H or L

Capacitance $(T_A = 25^{\circ}C, f = 1.0 \text{ MHz})$

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
C _{IN} *	Input Capacitance		. 6	ρF	V _{IN} = 0V
C _{1/0} *	Input/Output Capacitance		8	pF	V _{I/O} = 0V

AC Characteristics $(T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}, V_{CC} = 5\text{V} \pm 10\%, \text{ for UM6116-2/-3, UM6116-2L/-3L})$ $T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C for UM6116-2T/-3T, UM6116-2LT/-3LT})$

	Parameter	UM6116-3/-3L/ UM6116-3T/ UM6116-3LT		UM6116-2/-2L/ UM6116-2T/ UM6116-2LT		
Symbol		Min.	Max.	Min.	Max.	Unit
READ CYC	LE	• . ,				
t _{RC}	Read Cycle Time	90		120		ns
t _{AA}	Address Access Time	-	90		120	ns
t _{ACS}	Chip Select Access Time	-	90		120	ns
t _{OE}	Output Enable to Output Valid	-	50	_	50	ns
t _{CLZ}	Chip Selection to Output in Low Z	5	-	10	-	ns
t _{OLZ}	Output Enable to Output in Low Z	5	-	10	-	ns
tCHZ	Chip Deselection to Output in High Z	0	40	0	40	ns
t _{OHZ}	Output Disable to Output in High Z	0	40	0	40	ns
t _{OH}	Output Hold from Address Change	5		10	_	ns
WRITE CY	CLE		·			
twc	Write Cycle Time	90	_	120	_	ns
t _{CW}	Chip Selection to End of Write	55		70	_	ns
t _{AS}	Address Set-up Time	.0	-	0	_	ns
t _{AW}	Address Valid to End of Write	80	_	85	_	ns
t _{WP}	Write Pulse Width	55	_	70	-	ns
t _{WR}	Write Recovery Time	0	-	0	_	ns
tonz	Output Disable to Output in High Z	0	40	0	40	ns

T-46-23-12 UM6116-2/-3 Series

AC Electrical Characteristics (Continued)

0 1 1		UM61	16-3/-3L 16-3T/ 16-3LT	UM611 UM61 UM61		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t _{WHZ}	Write to Output in High Z	0	50	0	50	ns
t _{DW}	Data to Write Time Overlap	30	_	35		ns
t _{DH}	Data Hold from Write Time	0	_	0	-	ns
t _{ow}	Output Active from End of Write	0	_	5	_	ns

Notes: t_{CHZ} , t_{OHZ} and t_{WHZ} are defined as the time at which the outputs achieve the open circuit condition and are not referred to output voltage levels.

Timing Waveforms

READ CYCLE 1 (1)

READ CYCLE 2 (1,2,4)

READ CYCLE 3 (1,3,4)

Notes:

- 1. WE is High for Read Cycle.
- Device is continuously selected, \$\overline{CS}\$ = V_{1L}.
 Address Valid prior to or coincident with \$\overline{CS}\$ transition Low.
- 4. $\overline{OE} = V_{IL}$.
- 5. Transition is measured ±500mv from steady state. This parameter is sampled and not 100% tested.

UM6116-2/-3 Series

WRITE CYCLE 1

Standard SRAM

WRITE CYCLE 2 (5)

Notes:

- 1, A write occurs during the overlap (tWP) of a low CS and a low WE.
- 2. tWR is measured from the earlier of CS or WE going high to the end of write cycle.
- 3. During this period, I/O pins are in the output state so the input signals of opposite phase to the outputs must not be applied.
- 4. If the CS low transition occurs simultaneously with the WE low transitions or after the WE transition, outputs remain in a high impedance state.
- 5. \overline{OE} is continuously low ($\overline{OE} = V_{IL}$).
- 6. DOUT is the same phase of write data in this write cycle,
- 7. $D_{\mbox{\scriptsize OUT}}$ is the read data of next address.
- 8. If \overline{CS} is low during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them,
- 9. $t_{\mbox{AS}}$ is measured from the address valid to the beginning of write,
- 10. Transition is measured ±500 mV from steady state, this parameter is sampled and not 100% tested.

T-46-23-12. UM6116-2/-3 Series

AC Test Conditions

Input Pulse Levels	0.8V to 2.2V
Input Rise and Fall Times	5 ns
Input and Output	
Timing Reference Levels	1,5V
Output Load	See Fig. 1, 2

*Including scope and jig.

*Including scope and jig.

Figure 1. Output Load

Figure 2. Output Load for t_{CLZ}, t_{OLZ}, t_{CHZ}, and t_{OW}

Data Retention Characteristics

L versions only ($T_A = 0^{\circ}$ C to +70°C for UM6116-2L/UM6116-3L $T_A = -40^{\circ}$ C to +85°C for UM6116-2LT/UM6116-3LT)

Symbol	Parameter	Min.	Max	Unit	Test Conditions
V _{DR}	V _{CC} for Data Retention	2.0		V	CS ≥ V _{CC} -0.2V
ICCDR	Data Retention Current	_	20	μΑ	$V_{CC} = 3.0V, \overline{CS} \ge V_{CC} - 0.2V$
^t CDR	Chip Deselect to Data Retention Time	0	_	ns	See Retention
t _R	Operation Recovery Time	tRC*	_	ns	Waveform

^{*}t_{RC} = Read Cycle Time

Timing Waveform Low Vcc Data Retention Waveform

UM6116-2/-3 Series

Characteristic Curves

UM6116-2/-3 Series

Ordering Information

Part No.	Access Time (ns)	Operating Current Max. (mA)	Standby Current Max. (mA)	Temperature Range	Package
UM6116-2	120 ns	100	0.05	0°C to 70°C	24L DIP
UM6116-3	90 ns	100	0.1	0 0 10 70 0	24L DIP
UM6116M-2	120 ns	100	0.05	0°C to 70°C	24L SOP
UM6116M-3	90 ns	100	0.1	00.0700	24L SOP
UM6116K-2	120 ns	100	0.05	0°C to 70°C	24L Skinny DIP
UM6116K-3	, 90 ns	100	0.1	0010700	24L Skinny DIP
UM6116-2T	120 ns	100	0.05	-40°C to 85°C	24L DIP
UM6116-3T	90 ns	100	0.1		24L DIP
UM6116M-2T	120 ns	100	0.05	-40°C to 85°C	24L SOP
UM6116M-3T	90 ns	100	0.1	-40 0 10 00 0	24L SOP
UM6116K-2T	120 ns	100	0.05	-40°C to 85°C	24L Skinny DIP
UM6116K-3T	90 ns	100	0.1		24L Skinny DIP
UM6116-2L	120 ns	50.	0.001	0°C to 70°C	24L DIP
UM6116-3L	90 ns	60	0.001		24L DIP
UM6116M-2L	120 ns	50	0.001	0°C to 70°C	24L SOP
UM6116M-3L	90 ns	50	0.001		24L SOP
UM6116K-2L	120 ns	50	0.001	0°C to 70°C	24L Skinny DIP
UM6116K-3L	90 ns	50	0.001		24L Skinny DIP
UM6116-2LT	120 ns	50	0.001	-40°C to 85°C	24L DIP
UM6116-3LT	90 ns	50	0.001		24L DIP
UM6116M-2LT	120 ns	50	0.001	-40°C to 85°C	24L SOP
UM6116M-3LT	90 ns	50	0.001		24L SOP
UM6116K-2LT	120 ns	50	0,001	-40°C to 85°C	24L Skinny DIP
UM6116K-3LT	90 ns	50	0.001	.5 5 .5 5	24L Skinny DIP