

Theoretische Informatik Sommersemester 2021

Übung 1

- **A1**. Betrachten Sie die Mengen $A = \{a, b, c\}$ und $B = \{a, x, y, z\}$
 - (a) Welche Elemente enthalten $A \cup B, A \cap B, A B, B A$?
 - (b) Geben Sie die Potenzmenge $\mathcal{P}(A)$ an.
 - (c) Geben Sie das kartesiche Produkt $A \times (A B)$ an.

LÖSUNG

(a)

$$A \cup B = \{a, b, c, x, y, z\}$$
$$A \cap B = \{a\}$$
$$A - B = \{bc\}$$
$$B - A = \{x, y, z\}$$

- (b) Die Potenzmenge $\mathcal{P}(A) = \{T \mid T \subseteq A\}$ ist die Menge aller Teilmengen aus A $\mathcal{P}(A) = \mathcal{P}(\{a,b,c\}) = \{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{c,b\},\{a,b,c\}\}$
- (c) $A \times (A B) = \{a, b, c\} \times \{b, c\} = \{(a, b), (a, c), (b, b), (b, c), (c, b), (c, c)\}$

A2. Gegeben seien die folgenden Alphabete:

$$\Sigma_1 := \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$\Sigma_2 := \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$\Sigma_3 := \{A, B, C, D, E, F\}$$

$$\Sigma_4 := \{8, 9\}$$

Geben Sie die umgangsprachliche Beschreibung für die folgenden Sprachen an:

- (a) $\Sigma_2 \mid \Sigma_1 \Sigma_2^*$
- (b) $(\Sigma_2 \cup \Sigma_3) \mid (\Sigma_1 \cup \Sigma_3)(\Sigma_2 \cup \Sigma_3)^*$
- (c) $(\Sigma_2 \Sigma_4) \mid (\Sigma_1 \Sigma_4)(\Sigma_2 \Sigma_4)^*$

$L\ddot{O}SUNG$

- (a) Menge aller Ziffernfolgen, die Dezimalzahlen repräsentieren.
- (b) Menge aller Ziffernfolgen, die Hexadezimalzahlen repräsentieren.
- (c) Menge aller Ziffernfolgen, die Oktalzahlen repräsentieren.

A3. Gegeben seien die folgenen Mengen:

$$L_1 := \{aa, bb\}$$

$$L_2 := \{a\}^+$$

$$L_3 := \{b\}^+$$

Erzeugen Sie die folgenden Sprachen:

- (a) $L_1 \cup L_2$
- (b) $L_1 \cup L_3$
- (c) $L_1^* \cap L_2$
- (d) $L_1^* \cap L_3$

$L\ddot{O}SUNG$

(a)
$$L_1 \cup L_2 = \{bb, a, aa, aaa, aaaa, \dots\}$$

(b)
$$L_1 \cup L_3 = \{aa, b, bb, bbb, bbb, \dots\}$$

(c)
$$L_1^* \cap L_2 = \{aa, aaaa, aaaaaa, \dots\}$$

(d)
$$L_1^* \cap L_3 = \{bb, bbbb, bbbbbb, \dots\}$$