ECE4634 Digital Communications Fall 2007

Instructor: R. Michael Buehrer Lecture #12: Eye Diagrams, Multipath and Equalization

Overview

- In this lecture we will discuss another way of viewing intersymbol interference or ISI - eye diagrams
- As we have discussed, ISI due to pulse shape and system bandwidth limitations can be effectively countered through proper pulse design.
- However, the channel can also introduce ISI through multipath
- We will discuss a receiver structure that mitigates the effect of multipath termed an equalizer
- What to read Section 6.6-6.8

- The impact of intersymbol interference (ISI) can be observed using "eye-patterns" or "eye diagrams"
- Eye patterns are time plots of consecutive symbols typically done on an analog oscilloscope but easily reproduced on a digital computer
- The larger the "eye", the less susceptible the receiver is to:
 - Noise
 - Sampling Error

Example: Square Pulses

Example: Raised Cosine Pulses

Example: Filtered Square Pulses

Example: Filtered Square Pulses

Bandwidth Restrictions - Summary

- Reducing the bandwidth of the transmit signal is desirable to improve spectral efficiency (i.e., get the most bits/sec in the smallest bandwidth)
- Reducing bandwidth indiscriminately will smear transmit pulses in time introducing ISI
- Intelligent pulse design can reduce bandwidth without this penalty
 - Nyquist Criterion
- Channel conditions can reduce bandwidth further resulting in channel-induced ISI
 - Requires an equalizer at the receiver to remove
 - Could also be solved by reducing the data rate (i.e., reducing the transmit bandwidth)
 - This channel induced ISI is termed multipath

Quiz

Multipath channel

- ISI can be introduced by transmission through a multipath channel that has impulse response $h(\tau)$. If the delay spread (a measure of the duration of the impulse response) of the channel is much smaller than the symbol duration, fading can occur but no ISI is observed.
- However, if the delay spread of the channel is larger than the symbol duration, ISI results.

Tap Delay Line Model of Multipath Channel

A common model for the channel impulse response is

$$h(t) = \sum_{k=0}^{L-1} a_k e^{j2\pi\theta_k} \delta(t - \tau_k)$$

• If the difference between consecutive values of τ_k is small relative to the symbol period T_s , we term this a *narrowband channel* and ISI does not occur

$$\left(\tau_{k}-\tau_{k-1}\right) << T_{s} \quad \forall \, k$$

- In a mobile environment, "fading" can still occur even if there is no ISI.
 (If no ISI occurs but fading does occur we call this "flat fading")
- If the difference between consecutive values of τ_k is comparable to the symbol period T_s , we term this a wideband channel and ISI does occur
 - This causes frequency distortion and thus requires an equalizer
 - This is termed "frequency selective fading" in a mobile environment

RM Buehrer Virginia Tech Fall 2007

Channel Impulse Response

Multipath
 Causes
 Inter-symbol
 Interference

Nyquist's Criteria for Zero ISI

Recall that for pulse shaping we chose pulses to insure that

$$f(kT_s) = \begin{cases} C, & k = 0 \\ 0, & k \neq 0 \end{cases}$$

- where k is an integer and T_s is one symbol duration
- This is equivalent to having a transfer function

$$F(f) = \begin{cases} \Pi\left(\frac{f}{2B_o}\right) + Y(f) & |f| < 2B_o \\ 0 & else \end{cases}$$

where $B_o = R_s/2$ (i.e., ½ the symbol rate) and Y(f) is a real function that is even symmetric about f=0 and odd symmetric about $f=B_o$.

$$Y(-f) = Y(f)$$
 | $f < 2B_o$
 $Y(-f + f_o) = -Y(f + f_o)$ | $f < B_o$

Nyquist Filters

How do we eliminate ISI?

F(f) = Nyquist Filter pulse shape with zero ISI

 I_n

F(f)

AWGN Channel

Multipath Channel

RM Buehrer Virginia Tech Fall 2007

 $H_e(f) = F(f)H(f)Q(f)$ must satisfy¹⁸ Nyquist criteria

Transversal Filter Equalizer

The impulse response of a transversal filter equalizer is simply a series of impulses with the tap coefficients as the weights of the impulses.

Example of Equalization: Transmitted Signal Pulse (Data Rate = 100 kbits/sec)

F(f)

Channel Impulse Response

$$h(t) = \delta(t) + 0.7\delta(t - 7\mu s) + 0.3\delta(t - 23\mu s)$$

Received Signal: r(t) = s(t)*h(t)

Equalization Filter:

Equalized Received Signal

Complicating factors

- The structure of the inverse filter can become very complicated to implement
- The multipath channel structure is not always known and sometimes must be estimated.
- The channel changes in real time so equalization must be adaptive.
- Further, completely eliminating the ISI may not provide the best bit error rate in the presence of AWGN
 - The minimum BER approach is not necessarily to "invert" the channel
 - Consider the noise gain in bands where the equalizer has peaks

Classes of Equalizer Structures

- Maximum Likelihood Sequence Estimation
 - Optimal equalizer in maximum likelihood sense
 - Viterbi Algorithm
- Linear Equalizers
 - Zero-forcing
 - MMSE
- Decision Feedback
 - Similar to interference cancellation

Conclusions

- Today we have discussed two additional aspects of intersymbol interference.
 - Eye-diagrams
 - Equalizers
- Eye-diagrams help us to visualize the impact of ISI on symbol decisions and timing error.
- Equalizers are receive filters which "equalize" the distortion caused by a multipath channel
- A common equalizer structure is the transversal filter