Key Proofs

Bart Snapp and Brad Findell

December 6, 2018

Contents

End-of-Course Exam Proofs for Math 1									3
The Isosceles Triangle Theorem									4
Proofs for Inscribed Angles									6

End-of-Course Exam Proofs for Math 1

Proofs.

Problem 1 Adapted from Ohio's 2017 Geometry released item 13. Two pairs of parallel lines intersect to form a parallelogram as shown.

Complete the following proof that opposite angles of a parallelogram are congruent:

- (a) $\angle 1 \cong \angle 2$ as (opposite angles / alternate interior angles / corresponding angles) for parallel lines (m and n/k and l).
- (b) $\angle 3 \cong \angle 2$ as (opposite angles/ alternate interior angles/ corresponding angles) for parallel lines (m and n/k and l).
- (c) Then $\angle 1 \cong \angle 3$ because they are both congruent to $\angle 2$.

Author(s): Brad Findell

The Isosceles Triangle Theorem

Proofs.

Prove that the base angles of an isosceles triangle are congruent.

(a) Angle bisector; (b) Median

(c) Altitude; (d) Overspecified perpendicular bisector

Author(s): Brad Findell

(e) Using symmetry; (f) perpendicular bisector that misses vertex;

Inscribed Angles

 ${\it Proofs.}$

In the figure below, \overline{AB} is a diameter of a circle with center P. Natalia is trying to prove that $\angle B$ is a right angle.

Natalia draws \overline{PB} and marks the diagram to show segments that she knows to be congruent because each one is a $\boxed{?}$ of the circle.

Author(s): Brad Findell

Natalia sees that $\triangle APB$ and $\triangle BPC$ are ? triangles, so she marks the figure to show congruent angles.

In order to do some algebra with these congruent angles, Natalia labels their measures x and y, as shown in the following picture:

She writes an equation for the sum of the angles of $\triangle ABC$:

$$\boxed{?} = 180^{\circ}$$

Since $m \angle B = \boxed{?}$, she concludes that $m \angle B = 90^{\circ}$.