VoIP et Asterisk

François Deppierraz francois@ctrlaltdel.ch

GULL

2 octobre 2007

VoIP et Asterisk

- Introduction
- 2 Principes de base
- 3 Protocole SIP
- 4 Asterisk

Plan

- Introduction
 - Histoire
 - Téléphone gratuit?
 - VoIP sucks?

Téléphone manuel

- Première utilisation commerciale vers 1877
- Routage manuel des appels
- Technologie simple
- Routage = connexion de câbles
- Sensibilité au bruit

Téléphone automatique

- Invention du commutateur automatique
 - par Almon Strowger
 - entrepreneur de pompes funèbres
 - en 1891
- Diminution du personnel (!)
- Routage électro-mécanique

Téléphone numérique

- ISDN
- Avantages
 - Services supplémentaires
 - Insensible au bruit
 - Routage = copie de bits
- Inconvénients
 - Complexité accrue
 - Des extensions non-standard sont apparues
- Types de liaisons
 - PCM
 - ATM
 - SDH

Téléphone mobile

- 1950 : Début de la téléphonie mobile
 - ressemblait plus à des talkie-walkies qu'à un iPhone!
- 1990 : Les premières spécifications de la norme GSM sont publiées

- "Pourquoi pas utiliser le même réseau pour tout?"
- Réseau IP utilisé (presque) partout
 - Internet
 - Réseaux mobiles 3ème génération
 - Transmissions radio et télévision
 - Machines à café?
 - etc...
- Bénéficie (ou subit ?) de 130 ans d'évolution
- Avantages
 - Convergence
 - Scalability
- Inconvénients
 - Best effort
 - Réseau souvent partagé avec d'autres applications

Pourquoi IP?

Téléphone gratuit?

- Ca dépend...
- A quel endroit la VoIP est-elle utilisée?
 - Last mile
 - Cablecom/Citycable Digital Phone
 - Providers SIP (habituellement)
 - Interco entre opérateurs
 - De bout en bout
 - Adressage SIP (type email)
 - Skype (pas SkypeOut)
- VoIP de bout en bout − > téléphone "gratuit"

VoIP sucks?

- NAT
 - Dans le temps les réseaux IP offraient une connectivité end-to-end...
 - Dû au mangue d'adresses IPv4
 - Mais IPv6 est bientôt là!
 - Vraiment?
- Qualité du réseau
 - Packet loss
 - litter
 - Délai
- Disponibilité
 - Réseau téléphonique 99,999¹ %
 - Réseau IP typique 99,9² %
- ... mais grâce à la téléphonie mobile les gens sont habitués!

¹5 minutes/an d'indisponibilité

²8.7 heures/an d'indisponibilité

VoIP sucks? (bis)

Sécurité

- Authentification des communications
- Encryption des communications
- Attaques DoS
- Spam
 - SPIT (Spam over Internet Telephony)
 - Problème encore peu existant
 - ...mais toutes les conditions nécessaires sont là

Plan

- 2 Principes de base
 - Bases
 - Signalisation
 - Données audio
 - Adressage
 - Réseau IP

Signalisation et Transmission des données audio

- Une communication nécessite
 - signalisation
 - transmission de données audio
- Les deux peuvent être
 - multiplexés
 - cas typique : numérotation par pulse ou tonalité
 - séparés
 - courant dans les réseau numérique
 - ... et en VoIP (souvent)

Signalisation

- Etablissement d'une communication.
- Terminaison d'une communication
- Gestion des erreurs
 - Numéros non valables
 - Occupé
 - Lignes surchargées
 - Etc...
- Facturation

Transmission des données audio - Schéma

Transmission des données audio

- Conversion A/D puis échantillonage
- Compression
 - Limitations de l'oreille humaine
- Packetisation
 - Ex : G.711 (aLaw ou μ Law)
 - échantillon de 20 ms
 - 50 paquets/secondes
 - Sans overhead : 64 kbit/s
 - Avec overhead IP/UDP/RTP: 95.2 kbit/s

Protocoles

- Signalisation et données audio séparées
 - + Centralisation de la signalisation
 - + Décentralisation du transport de données
 - - Problèmes connectivité end-to-end non-existante
 - NAT!
- Signalisation et données audio multiplexées
 - + NAT
 - + Reduction de l'utilisation de bande passante
 - Trunking
- Signalisation
 - SIP
 - H.323
- Données audio
 - RTP
- Signalisation et données
 - IAX

- Inter-Asterisk Exchange protocol
- Protocole "propriétaire" à Asterisk
- UDP Port 4569
- Buts
 - Interconnexion de serveurs Asterisk
 - Notion de contextes
 - Authentication à clé partagée
 - Authentification à clés asymétriques (RSA)
 - Simplification firewall/NAT
 - grâce au multiplexage signalisation/données dans le même flux UDP
 - Diminution de la bande passante réseau utilisée
 - Groupage de plusieurs communications

- Basé sur Q.931 (ISDN)
- ITU
- Développement type "cathedral"
- Implémentation de la signalisation ISDN sur IP

- Session Initiation Protocol
- RFC 3261
- IETF
- Développement type "bazar"
- Transport
 - UDP
 - TCP (rare)
 - SCTP
- Port 5060

Session Description Protocol

- Description d'une session multi-média
 - Identifiant unique
 - Type de codec utilisé
 - Adresse IP et port
 - Méta-données
- 0=v=0

```
o=UserA 2890844526 2890844526 IN IP4 here.com
s=Session SDP
c=IN IP4 100.101.102.103
t=0 0
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000
```

- Real-time Transport Protocol
- RFC 3550
- Buts
 - Identification des données
 - Numéros de séquence
 - Marquage temporel
 - Monitoring

Codecs

- En téléphonie : algorithmes à perte de données
- But : garder les informations utiles à la communication
- Différence entre codecs
 - Qualité du son
 - Bande passante réseau
 - Complexité algorithmique
- Algorithmes usuels
 - G.711
 - GSM

Codec G.711

- 2 variantes
 - \bullet μ Law
 - Etats-Unis
 - aLaw
 - Le reste du monde
- 64 kbit/s
- Bonne qualité
- Complexité algorithmique faible
- Basé sur un quantification logarithmique

Codec G.711 - Quantification logarithmique

Figure 7-11. Five-bit companding

Codec GSM

- Codec utilisé par téléphones mobiles
- Half-rate 5.6 kbit/s
- Full-rate 13 kbit/s
- Qualité acceptable
- Complexité algorithmique assez elevée

Codecs - Choix pragmatiques

- Assez de bande passante réseau disponible
 - G.711 aLaw
- Bande passante disponible limitée
 - GSM
 - ou même iLBC

Adressage SIP

- Adressage standard
 - sip:francois@voip.saitis.net
 - Difficile à taper avec un clavier numérique
- DNS
 - Style adresses email
 - sip:francois@saitis.net
 - Enregistrements de type SRV
 - _sip._udp IN SRV priority weight port server

ENUM

- Numéros de téléphone dans le DNS
 - +41 21 234 56 78
 - 8.7.6.5.4.3.2.1.2.1.4.e164.arpa
- Enregistrements NAPTR
 - IN NAPTR 100 10 "u" "E2U+sip" "!^.*\$!sip:user@test.net!
- Nécessite des numéros E.164
- Différentes racines DNS
 - e164.arpa
 - Procédure administrative très complexe et/ou coûteuse
 - e164.org
 - enum.org

- "ENUM semble intéressant mais je n'ai pas ou peu de numéros E.164"
- Système
 - proposé le workgroup SIP.edu du projet Internet2
 - inspiré par le projet INOC-DBA
- Adresse numérique
 - sip:1000*638
- Résolution DNS basée sur le domaine freenum.org
 - ENUM avec plusieurs sous-arbres
 - indépendant de E.164
- Exemple
 - X.638.freenum.org -> sip:X@voip.saitis.net
 - Mapping plus complexes possibles

Network Address Translation

- Workarounds
 - STUN
 - Support NAT sur le serveur
 - Port forwarding sur le firewall
 - UPnP
 - Support "intelligent" des protocoles VoIP par le firewall

- Quality of Service
- Gestion de la queue de sortie d'une interface réseau
- Méthodes plus ou moins complexes
 - intserv
 - diffserv
- Sous Linux
 - Utilitaire tc
 - HTB
 - CBQ

- 3 Protocole SIP
 - Fonctionnement
 - SIP avec Asterisk
 - Softphones
 - Hardphones

Schéma

INVITE sip:UserB@there.com SIP/2.0

Message SIP : Requête

```
Via: SIP/2.0/UDP here.com:5060
From: BigGuy <sip:UserA@here.com>;tag=123
To: LittleGuy <sip:UserB@there.com>
Call-ID: 12345600@here.com
CSeq: 1 INVITE
Subject: Happy Christmas
Contact: BigGuy <sip:UserA@here.com>
Content-Type: application/sdp
Content-Length: 147
\Omega = \nabla r
o=UserA 2890844526 2890844526 IN IP4 here.com
s=Session SDP
c=IN IP4 100.101.102.103
t = 0 0
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000
```

Message SIP : Réponse

```
SIP/2.0 200 OK
Via: SIP/2.0/UDP here.com:5060
From: BigGuy <sip:UserA@here.com>;tag=123
To: LittleGuy <sip:UserB@there.com>;tag=65a35
Call-ID: 12345600@here.com
CSeq: 1 INVITE
Subject: Happy Christmas
Contact: LittleGuy <sip:UserB@there.com>
Content-Type: application/sdp
Content-Length: 134
\Omega = \nabla r
o=UserB 2890844527 2890844527 IN IP4 there.com
s=Session SDP
c=IN IP4 110.111.112.113
t = 0 0
m=audio 3456 RTP/AVP 0
```

a=rtpmap:0 PCMU/8000

SIP!= Simple Initiation Protocol

SIP avec Asterisk

- Asterisk
 - n'est pas un proxy SIP
 - connecte différents channels
 - 2 sessions SIP indépendantes
- Proxy SIP
 - une seule session SIP forwardée
 - Champ Via : des headers

Registration

Session Initiation directe

Session Initiation avec media proxy

Softphones

- Libres
 - Ekiga
 - linphone
 - twinkle
- Non-libres
 - SJPhone
 - Gizmo Project

Ekiga

Gizmo Project

Hardphones

- Avantages
 - Moins de délai lors de l'encodage/décodage
 - Fonctionne avec un ordinateur éteint!
- Nombreux fabricants
 - Snom
 - Cisco
 - Grandstream
 - Siemens
 - etc...

Snom 360

Cisco 7960

Siemens C450IP

- Asterisk
 - Introduction
 - Architecture
 - Use Cases
 - Configuration

Introduction

- "Pourquoi utiliser du hardware spécifique pour faire de la téléphonie?"
- Central téléphonique logiciel
 - Multi protocoles
 - Interfaces avec le PSTN
 - Modulaire
 - Extensible
 - Dialplan scripting
 - AGI
 - Manager API
- Initialement développé pour GNU/Linux
- Multiple ports existants
 - FreeBSD
 - OpenBSD
 - MacOS X
 - Windows (!)

Inconvénients

- Très lié au hardware
- Droits cédés à Digium pour toutes contributions
- A connu certains problèmes de stabilité
 - Logiciel monolithique
 - Multi threads
 - mais pas multi processus

Historique

- Développé initialement par Mark Spencer
 - Version 0.1.0 sortie en 1999
- Création de la société Digium par Mark Spencer
 - Cartes PCI avec ports analogiques
 - Cartes PCI ISDN T1/E1/J1
 - Systèmes embarqués
 - Support
- Digium utilise la méthode de dual-licensing
 - GPL
 - License propriétaire
- Fork : Callweaver
 - Basé sur Asterisk 1.2
 - GPL uniquement
 - Pas besoin de céder son copyright

Installation

- Sources disponibles sur http://www.asterisk.org
- Packages binaires
 - .deb
 - .rpm
- Installation automatique
 - AsteriskNOW
 - trixbox

Introduction Principes de base Protocole SIP Asterisk Introduction Architecture Use Cases Configuration

AsteriskNOW

Schéma d'architecture

Introduction Architecture Use Cases Configuration

Sous-systèmes

- Channels
- Dialplan
- Applications

Channels

- VoIP
 - SIP
 - Configuration dans sip.conf
 - IAX
 - MGCP
 - H.323
- PSTN
 - Zaptel
 - MISDN
- Spéciaux
 - Alsa
 - OSS

Dialplan

- Routage des appels
- Contextes
 - Groupes d'extensions
 - Gestion des autorisations
 - Ex : appels internationaux
 - Un appel entrant arrive dans un contexte défini
 - Configuré dans le channel
 - Zaptel: context=pstn-incoming
 - Compte SIP : context=sip-incoming
- Extensions
 - exten => extension, priority, application extension numéro appelé ou extension spéciale priority ordre d'éxecution, à la Basic
 - application application à éxecuter

Applications

- Opérations effectuées dans le dialplan
- Nombreuses applications
 - 161 incluses avec Asterisk 1.2.13
- Exemples
 - Answer()
 - Hangup()
 - Dial()
 - MP3Player()
 - Playback()
 - System()
 - VoiceMail()

Asterisk Gateway Interface

- CGI de la téléphonie
 - Indépendant du language
 - Communication par STDIN, STDOUT et STDERR
- Scripts exécutés par Asterisk
 - AGI()
 - EAGI()
 - DeadAGI()
 - FastAGI()
- Bilbliothèques disponibles pour
 - Python
 - Perl
 - PHP
 - Ruby
 - ... et certainement d'autres

- Service de téléphone pour un réseau associatif
- Communications uniquement internes au début
- Peerings avec d'autre réseaux en IAX
- Fonctionnalités spéciales
 - Streaming radio
 - Réveil matin
 - Salle de conférence

PBX d'entreprise

- Téléphones hardware SIP connectés sur le LAN
- Interconnexion avec une succursale français en IAX à travers **OpenVPN**
- Fonctionnalités spéciales
 - Click2Dial integré avec la base LDAP
 - Routage "intelligent" des appels
 - Groupes d'appels
 - Réception de fax
 - retranmis par email

Convertisseur de protocoles

- Conversion de SIP en IAX
- Raisons
 - Passer à travers un firewal NAT
 - Utilisation d'un téléphone hardware
 - supportant uniquement SIP
 - sans les fonctionnalités nécessaire au NAT
- Asterisk installé sur un access-point WRT54G avec OpenWRT

Applications avancées

- Paging
 - Mode interphone
 - Dépendant du client SIP
- TTS Text to Speech
 - Plusieurs moteurs disponibles
 - Qualité variable
- Call spool
 - Appels automatiques
 - Utilisation
 - Réveil matin
 - VoIP Spam...

[1000] type=friend username=1000 secret=mypassword host=dynamic mailbox=1000@internal canreinvite=no context=incoming nat=no qualify=1000

Hello World

```
[incoming]
exten => s,1,Answer()
exten => s,2,Playback(hello-world)
exten => s,3,Hangup()
```

```
[incoming]
; Le 1er août, c'est ferié
exten => s,1,GotoIfTime(*,*,1,aug?closed,s,1)
; Heures de travail
exten => s,2,GotoIfTime(09:00-13:00,mon-fri,*,*?open,s,1)
exten => s,n,GotoIfTime(14:00-18:00,mon-fri,*,*?open,s,1)
: Sinon c'est fermé
exten => s.4.Goto(closed.s.1)
[closed]
exten => s,1,Playback(we-are-closed)
exten => s,1,Hangup()
[open]
```

Voicemail

```
exten => 123,1,Dial(SIP/francois,30,r)
exten => 123,2,VoiceMail(u123@default)
exten => 123,102,VoiceMail(b123@default)
```

Fin

Références

- http://www.voip-info.org
- Asterisk: The future of telephony, http://www.asteriskdocs.org
- "La Voix sur IP", Olivier Hersent, David Gurle et Jean-Pierre Petit
- SIP Tutorial, http://www.iptel.org/tutorial