Autour de codes définis à l'aide de polynômes tordus.

avec Willi Geiselmann et Felix Ulmer

D. Boucher, IRMAR, Université Rennes 1

JNCF, 4-8 février 2019

Première partie I

Généralités sur les codes modules tordus.

F corps fini

Définition

C, code linéaire de longueur n et de dimension k: sev de F^n de dimension k.

Matrice génératrice
$$G \in M_{k,n}(F)$$
, rang $(G) = k$

$$C = \{m \times G \mid m \in F^k\}$$

Distance minimale de C:

$$d:=\min_{x,y\in\mathcal{C},x\neq y}d_H(x,y)=\min_{x\in\mathcal{C},x\neq 0}d_H(x,0)$$

où
$$d_H(x,y) := \#\{i \mid x_i \neq y_i\}$$

notation $[n, k, d]_q$

Théorème de la borne de Singleton : $d \le n - k + 1$

Définition

Soit $C \subset F^n$. Le dual C^{\perp} de C est :

$$C^{\perp} := \{ x \in F^n \mid \forall c \in C, \langle x, c \rangle = 0 \}$$

où $\forall x, y \in F^n$,

$$< x, y > := \sum_{i=0}^{n-1} x_i y_i.$$

Matrice de contrôle H de C: matrice génératrice de C^{\perp}

$$C = \{x \in F^n \mid H \times^t x = 0\}$$

Exemples de familles de codes :

- Codes MDS : d = n k + 1ex : codes de Reed-Solomon, Reed-Solomon généralisés, codes de Gabidulin
- Codes auto-duaux : $C = C^{\perp}$ ex : codes auto-duaux de Sloane, Thompson; Gaborit, Otmani; Harada, etc

But de ce cours : présentation de quelques travaux réalisés avec Willi Geiselmann et Felix Ulmer sur les codes tordus :

codes cycliques tordus autoduaux codes d'évaluation tordue MDS

Définition (codes θ -cycliques, [BGU 2007]-)

- F, corps fini; $n \in \mathbb{N}^*$; $\theta \in Aut(F)$
- $C \subset F^n$, code linéaire
- C est un $code\ \theta$ -cyclique si $\forall (c_0, c_1, \ldots, c_{n-2}, c_{n-1}) \in F^n$,

$$(c_0,c_1,\ldots,c_{n-2},c_{n-1})\in C\Rightarrow (\theta(c_{n-1}),\theta(c_0),\theta(c_1),\ldots,\theta(c_{n-2}))\in C$$

- Si $\theta = Id$, alors C est un code cyclique.
- Si $F = \mathbb{F}_{q^n}$ et $\theta : a \mapsto a^q$, alors C est un code q-cyclique de Gabidulin (1985).

• $R = F[X; \theta]$ anneau des polynômes tordus (Ore, 1933) défini par

$$\forall a \in F, X \cdot a = \theta(a)X.$$

- R est un anneau euclidien à droite et à gauche.
 existence de lcrm, lclm, gcld, gcrd
- Soit $F^{\theta} = Fix(\theta)$ et soit $m = ord(\theta)$. Les éléments de $F^{\theta}[X^m]$ sont *centraux* :

$$\forall a \in F, X^m \cdot a = \theta^m(a)X^m = aX^m$$

$$R = F[X]$$

$$X \cdot a = \theta(a)X$$

$$R = F[X; \theta]$$
, $\theta \in Aut(F)$

g unitaire

$$R/R(X^n-1)$$
 R -module à gauche \leftrightarrow F^n \cup $Rg/R(X^n-1)$ R -sous-module à gauche \leftrightarrow $C=(g)_{n,\theta,c}$ code θ -cyclique $g|_rX^n-1$

Codes $[2,1]_4$ cycliques et θ -cycliques

$$\mathbb{F}_4 = \mathbb{F}_2(a), a^2 + a + 1 = 0, \theta : x \mapsto x^2, R = \mathbb{F}_4[X; \theta]$$

• Les facteurs de degré 1 de X^2-1 dans $\mathbb{F}_4[X]$:

$$X^2 - 1 = (X+1)(X+1) \in \mathbb{F}_4[X]$$

• Les facteurs à droite de degré 1 de $X^2 - 1$ dans R:

$$X^{2}-1 = (X+1) \cdot (X+1)$$

= $(X+a^{2}) \cdot (X+a)$
= $(X+a) \cdot (X+a^{2})$

11/86

Codes $[4,2]_4$ cycliques et θ -cycliques.

$$\mathbb{F}_4 = \mathbb{F}_2(a), a^2 + a + 1 = 0, \theta : x \mapsto x^2, R = \mathbb{F}_4[X; \theta]$$

• Les facteurs de degré 2 de X^4-1 dans $\mathbb{F}_4[X]$:

$$X^4 - 1 = (X^2 + 1)(X^2 + 1) \in \mathbb{F}_4[X]$$

• Les facteurs à droite de degré 2 de $X^4 - 1$ dans R:

$$X^{4} - 1 = (X^{2} + 1) \cdot (X^{2} + 1)$$

$$= (X^{2} + aX + a^{2}) \cdot (X^{2} + aX + a)$$

$$= (X^{2} + a^{2}X + a) \cdot (X^{2} + a^{2}X + a^{2})$$

$$= (X^{2} + X + a) \cdot (X^{2} + X + a^{2})$$

$$= (X^{2} + X + a^{2}) \cdot (X^{2} + X + a)$$

$$= (X^{2} + a^{2}X + a^{2}) \cdot (X^{2} + a^{2}X + a)$$

$$= (X^{2} + aX + a) \cdot (X^{2} + aX + a^{2})$$

12/86

Codes $[10, 5]_4$ cycliques et θ -cycliques.

$$\mathbb{F}_4 = \mathbb{F}_2(a), a^2 + a + 1 = 0, \theta : x \mapsto x^2, R = \mathbb{F}_4[X; \theta]$$

• Les facteurs à droite de degré 5 de $X^{10}-1$ dans $\mathbb{F}_4[X]:X^{10}-1$

$$= (X^5 - 1)(X^5 - 1)$$

$$= (X^5 + X^4 + a^2X^3 + a^2X^2 + X + 1)(X^5 + X^4 + aX^3 + aX^2 + X + 1)$$

$$= (X^5 + X^4 + aX^3 + aX^2 + X + 1)(X^5 + X^4 + a^2X^3 + a^2X^2 + X + 1)$$

• Les facteurs à droite de degré 5 de $X^{10}-1$ dans R :

$$X^{10} - 1 = (X^5 - 1) \cdot (X^5 - 1)$$

= $(X^5 + a) \cdot (X^5 + a^2)$
= :

51 facteurs à droite

Deux polynômes g_1 et g_2 de R sont dits similaires $(g_1 \sim g_2)$ si les modules à gauche (ou à droite) $R/(g_1)$ et $R/(g_2)$ sont isomorphes ([Jacobon 1943]).

Théorème (Ore, Jacobson)

Soient $h=h_1\cdots h_m=g_1\cdots g_n$ deux décompositions en produits d'irréductibles de R. Alors m=n et $\exists \sigma\in S_n, g_{\sigma(i)}\sim h_i$.

Factorisation des polynômes sur R:

[Ore, 1933], [Jacobson, 1943], [Giesbrecht, 1998], [Odoni, 1999], [Coulter, Havas, Henderson, 2004], [Caruso, Leborgne, 2012], . . .

$$R = F[X; \theta], \ \theta \in Aut(F)$$

$$R/R(X^n+1)$$
 R -module à gauche \leftrightarrow F^n \cup $Rg/R(X^n+1)$ R -sous-module à gauche \leftrightarrow $C=(g)_{n,\theta,nc}$ θ -négacyclique $g|_rX^n+1$ g unitaire

$$R = F[X; \theta], \ \theta \in Aut(F)$$

g unitaire

16 / 86

$$R = F[X; \theta], \ \theta \in Aut(F)$$

g unitaire, $g_0 \neq 0$

$$R/Rf$$
, $\deg(f) = n$ R -module à gauche \leftrightarrow F^n \cup Rg/Rf R -sous-module à gauche \leftrightarrow $C = (g)_{n,\theta}$ θ -code module g

Définition (θ -codes modules)

- F, corps fini; $n \in \mathbb{N}^*$; $\theta \in Aut(F)$ et $C \subset F^n$
- C est un θ -code module si $\exists g(X) \in R = F[X; \theta]$ tel que

$$(c_0,\ldots,c_{n-1})\in C\Leftrightarrow g(X)\mid_r c_0+\cdots+c_{n-1}X^{n-1}.$$

• Une matrice génératrice de C est

$$\begin{pmatrix} g_0 & \cdots & g_{n-k} & 0 & \cdots & 0 \\ 0 & \theta(g_0) & \cdots & \theta(g_{n-k}) & \ddots & \vdots \\ \vdots & \ddots & \ddots & & \ddots & 0 \\ 0 & \cdots & 0 & \theta^{k-1}(g_0) & \cdots & \theta^{k-1}(g_{n-k}) \end{pmatrix}$$

θ -code module

$$C=(g)_{n,\theta},\ g_0\neq 0$$

θ -constacyclique

 $\exists a \in F, g|_r X^n - a$

$$C = (g)_{n,\theta}^a$$

θ -cyclique raccourci

 $\exists N \in \mathbb{N}, g|_r X^N - 1$ (notion de borne)

$$C = rac((g)_{N,\theta}^1)$$

19/86

Définition

Soit $h = \sum_{i=0}^{n} h_i X^i \in R$. Le polynôme réciproque (tordu) de h est

$$h^* = \sum_{i=0}^k X^{k-i} \cdot h_i.$$

Le polynôme réciproque (tordu) unitaire de h est

$$h^{\natural} = \frac{1}{\theta^k(h_0)} \sum_{i=0}^k X^{k-i} \cdot h_i.$$

Exemple dans $\mathbb{F}_4[X;\theta]$ avec $\theta: x \mapsto x^2 \in Aut(\mathbb{F}_4)$

$$h = X^{2} + aX + a$$
 $h^{*} = 1 + X \cdot a + X^{2} \cdot a = 1 + a^{2}X + aX^{2}$
 $h^{\sharp} = X^{2} + aX + a^{2}$

20 / 86

Proposition

Le dual d'un code θ -constacyclique est un code θ -constacyclique.

Démonstration.

Soit
$$g = \sum_{i=0}^{n-k} g_i X^i \in R$$
 unitaire et soit $C = (g)_{n,\theta}^a$

$$\exists h \in F[X; \theta], \qquad \Theta^n(h) \cdot g = X^n - a \qquad \Leftrightarrow \qquad \boxed{C = (g)_{n,\theta}^a}$$

deg(h) = k

$$g \cdot h = X^{n} - \theta^{-k}(a) \qquad \Longrightarrow \qquad C^{\perp} = (h^{*})_{n,\theta}$$

$$-\frac{1}{a}\Theta^{k-n}(g^*)\cdot h^* = X^n - \frac{1}{a} \quad \Rightarrow \quad (h^*)_{n,\theta} = \left| (h^*)_{n,\theta}^{1/a} = C^{\perp} \right|$$

$$(*) < X^i \cdot g, X^j \cdot h^* >= \theta^i \left((g \cdot h)_\ell \right)$$

θ -code module)

$$C=(g)_{n,\theta}, g_0\neq 0$$

θ -constacyclique

$$C = (g)_{n,\theta}^{a}$$
dual

θ -constacyclique

$$C^{\perp} = (h^*)_{n,\theta}^{1/a}$$

θ -cyclique raccourci

 θ -cyclique poinçonné

Proposition

Un θ -code module auto-dual est ou bien θ -cyclique ou bien θ -négacyclique.

Démonstration.

$$C = (g)_{n,\theta}$$
 auto-dual

$$\Rightarrow (g)_{n,\theta}^{a} = C = C^{\perp} = (h^{*})_{n,\theta}^{1/a}$$

$$\Rightarrow g|_{r}X^{n} - a \text{ et } g|_{r}X^{n} - \frac{1}{a}$$

$$\Rightarrow a = \frac{1}{a}$$

$$\Rightarrow a = 1 \text{ ou } a = -1$$

Deuxième partie II

Codes auto-duaux θ -cycliques.

But de la partie II :

- Donner une inteprétation polynomiale des codes θ -cycliques auto-duaux : équation auto-duale dans R
- Existence de solutions de l'équation auto-duale
- Construction et énumération sur \mathbb{F}_{p^2} en dimension p^s
- Construction et énumération sur \mathbb{F}_{p^2} en dimension quelconque

- Equation auto-duale.
- Existence des solutions
 - Existence solutions binomiales.
 - Existence solutions polynomiales.
- 3 Construction et énumération sur \mathbb{F}_{p^2} en dimension p^s .
- lacktriangle Construction et énumération sur \mathbb{F}_{p^2} en dimension non divisible par p.
- Construction et énumération sur \mathbb{F}_{n^2} en dimension quelconque.

Lemme technique

Soit
$$\theta: x \mapsto x^p \in Aut(\mathbb{F}_{p^m})$$
 et soit $\ell = \operatorname{pgcd}(n, m)$.

$$\left\{ \begin{array}{l} h|_rX^n-1 \\ h \in \mathbb{F}_{p^m}[X;\theta] \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} h|_rX^n-1 \\ h \in \mathbb{F}_{p^\ell}[X;\theta] \end{array} \right.$$

Conséquence

Sans perte de généralité, on peut supposer que m divise n = 2k. On note

$$2k = m \times p^s \times t, p / t$$

Equation auto-duale.

Le code θ -cyclique $(g)_{n=2k}^{\theta}$ est auto-dual si et seulement si $g=h^{\natural}$ où $h=X^k+\cdots+\alpha$ unitaire vérifie :

$$h^{
abla} \cdot h = h \cdot h^{
abla} = X^{2k} - 1$$
 : équation auto-duale

et
$$h^{
atural} := \frac{1}{\theta^k(\alpha)} h^*$$
.

Codes $[4,2]_4$ θ -cycliques auto-duaux

$$F = \mathbb{F}_4 = \mathbb{F}_2(a), a^2 + a + 1 = 0, \theta : x \mapsto x^2$$

Les factorisations de X^4-1 en produits de deux polynômes tordus de degré 2:

$$X^{4} - 1 = (X^{2} + 1) \cdot (X^{2} + 1)$$

$$= (X^{2} + aX + a^{2}) \cdot (X^{2} + aX + a)$$

$$= (X^{2} + a^{2}X + a) \cdot (X^{2} + a^{2}X + a^{2})$$

$$= (X^{2} + X + a) \cdot (X^{2} + X + a^{2})$$

$$= (X^{2} + X + a^{2}) \cdot (X^{2} + X + a)$$

$$= (X^{2} + a^{2}X + a^{2}) \cdot (X^{2} + a^{2}X + a)$$

$$= (X^{2} + aX + a) \cdot (X^{2} + aX + a^{2})$$

Codes $[10,5]_4$ θ -cycliques auto-duaux

$$F = \mathbb{F}_4 = \mathbb{F}_2(a), a^2 + a + 1 = 0, \theta : x \mapsto x^2$$

$$X^{10} - 1$$

$$= (X^5 + 1) \cdot (X^5 + 1)$$

$$= (X^5 + X^4 + a^2X^3 + a^2X^2 + X + 1) \cdot (X^5 + X^4 + a^2X^3 + aX^2 + X + 1)$$

$$= (X^5 + X^4 + aX^3 + aX^2 + X + 1) \cdot (X^5 + X^4 + aX^3 + a^2X^2 + X + 1)$$

$$= (X^5 + aX^4 + aX^3 + aX^2 + aX + 1) \cdot (X^5 + a^2X^4 + aX^3 + a^2X^2 + aX + 1)$$

$$= (X^5 + a^2X^4 + a^2X^3 + a^2X^2 + a^2X + 1) \cdot (X^5 + aX^4 + a^2X^3 + aX^2 + a^2X + 1)$$

$$= (X^5 + a) \cdot (X^5 + a^2)$$

ightarrow 5 codes heta-cycliques auto-duaux [10, 5]₄.

Codes θ -cycliques auto-duaux de dimension 1 sur \mathbb{F}_{p^m} avec $\theta: x \mapsto x^p$.

$$\underbrace{(X+1/\theta(\alpha))}_{h^\natural} \cdot \underbrace{(X+\alpha)}_{h} = X^2 - 1 \Leftrightarrow \alpha^2 = -1 \text{ et } \alpha^{p-1} = -1$$

- p = 2 : 1 solution X + 1
- $p \equiv 3 \pmod{4}$ et m pair : 2 solutions $X + \alpha, \alpha^2 = -1$
- $p \equiv 3 \pmod{4}$ et m impair : 0 solution
- $p \equiv 1 \pmod{4}$: 0 solution

Codes θ -cycliques auto-duaux de dimension k fixée.

•
$$C = (g)_{2k,\theta}$$
 avec $\deg(g(X)) = k$

•
$$C = C^{\perp} \Leftrightarrow h^{\natural} \cdot h = X^{2k} - 1, \ h^{\natural} = g$$

$$\rightarrow \left| \frac{k}{2} \right| + 1$$
 équations polynomiales et inconnues

Codes θ -cycliques auto-duaux sur \mathbb{F}_4 de longueur ≤ 50

longueur	nbr	meilleure dist.	nbr	meilleure dist.	meilleure
	cyc.	cyc.	θ -cyc.	θ -cyc.	dist. connue
4	1	2	3	3	3
6	3	3	3	3	3
8	1	2	3	4	4
10	1	2	5	4	4
12	5	4	21	6	6
14	3	4	11	6	6
16	1	2	3	4	6
18	9	4	27	6	6
20	1	2	63	8	8
22	3	6	33	8	8
24	9	4	93	7	8
26	1	2	65	8	8
28	5	4	279	9	9
30	27	6	285	10	10
32	1	2	3	4	10
34	1	2	289	10	10
36	25	6	1 533	11	11
38	3	8	513	11	11
40	1	2	1 023	12	12
42	81	10	2 211	12	12
44	5	6	3 171	14	14
46	3	8	2 051	14	14
48	17	4	1 533	12	14
50	1	2	5 125	14	14

Codes θ -cycliques auto-duaux sur \mathbb{F}_9 de longueur ≤ 30

longueur	nbr	meilleure dist.	meilleure
_	θ -cyc.	θ -cyc.	dist. connue
4	0		3
6	8	4	4
8	0		5
10	20	5	6
12	0		6
14	56	6	6
16	0		8
18	242	8	8
20	0		10
22	492	9	9
24	0		10
26	1800	10	10
28	0		12
30	6560	11	12

Codes θ -cycliques auto-duaux sur \mathbb{F}_{25} de longueur ≤ 30

Pas de code!

- Equation auto-duale
- 2 Existence des solutions.
 - Existence solutions binomiales.
 - Existence solutions polynomiales.
- 3 Construction et énumération sur \mathbb{F}_{p^2} en dimension p^s .
- 4 Construction et énumération sur \mathbb{F}_{p^2} en dimension non divisible par p.
- 6 Construction et énumération sur \mathbb{F}_{σ^2} en dimension quelconque.

- Equation auto-duale.
- Existence des solutions.
 - Existence solutions binomiales.
 - Existence solutions polynomiales.
- 3 Construction et énumération sur \mathbb{F}_{p^2} en dimension p^s .
- 4 Construction et énumération sur \mathbb{F}_{p^2} en dimension non divisible par p.
- **6** Construction et énumération sur \mathbb{F}_{p^2} en dimension quelconque.

Solutions binomiales: motivation

- Les binômes sont plus simples!
- Si p = 2

$$(X^k + 1)^{\natural} \cdot (X^k + 1) = (1 + X^k) \cdot (X^k + 1)$$

= $X^{2k} + 1$

 \rightarrow il existe un code θ -cyclique auto-dual de dimension k sur \mathbb{F}_{2^m} (pour tout θ).

• Si p est impair et $\theta = id$

$$(X^k + \alpha)^{\natural} \cdot (X^k + \alpha) = (X^k + \frac{1}{\alpha}) \cdot (X^k + \alpha)$$

$$\neq X^{2k} - 1$$

ightarrow il n'existe pas de code cyclique "binomial" auto-dual de dimension k sur \mathbb{F}_{p^m} avec p impair.

Que dire si p est impair et $\theta: x \mapsto x^p$?

On suppose que p est impair.

Soit $k \in \mathbb{N}^*$.

Soit
$$h = X^k + \alpha \in R$$
 tel que $\alpha \neq 0$ et $h^{\natural} \cdot h = X^{2k} - 1$.

$$h^* = X^{k-k} \cdot 1 + X^{k-0} \cdot \alpha = 1 + \theta^k(\alpha)X^k$$

$$h^{\natural} = X^k + \frac{1}{\theta^k(\alpha)}$$

$$h^{\natural} \cdot h = \left(X^{k} + \frac{1}{\theta^{k}(\alpha)} \right) \cdot \left(X^{k} + \alpha \right)$$

$$= X^{2k} + X^{k} \cdot \alpha + \frac{1}{\theta^{k}(\alpha)} X^{k} + \frac{\alpha}{\theta^{k}(\alpha)}$$

$$= X^{2k} + \left(\theta^{k}(\alpha) + \frac{1}{\theta^{k}(\alpha)} \right) X^{k} + \frac{\alpha}{\theta^{k}(\alpha)}$$

On suppose que *p* est impair.

Soit $k \in \mathbb{N}^*$.

Soit
$$h = X^k + \alpha \in R$$
 tel que $\alpha \neq 0$ et $h^{\natural} \cdot h = X^{2k} - 1$.

$$h^* = X^{k-k} \cdot 1 + X^{k-0} \cdot \alpha = 1 + \theta^k(\alpha)X^k$$

$$h^{\natural} = X^k + \frac{1}{\theta^k(\alpha)}$$

$$h^{\natural} \cdot h = \left(X^{k} + \frac{1}{\theta^{k}(\alpha)} \right) \cdot \left(X^{k} + \alpha \right)$$

$$= X^{2k} + X^{k} \cdot \alpha + \frac{1}{\theta^{k}(\alpha)} X^{k} + \frac{\alpha}{\theta^{k}(\alpha)}$$

$$= X^{2k} + \left(\theta^{k}(\alpha) + \frac{1}{\theta^{k}(\alpha)} \right) X^{k} + \frac{\alpha}{\theta^{k}(\alpha)}$$

On suppose que *p* est impair.

Soit $k \in \mathbb{N}^*$, $\alpha \in \mathbb{F}_q \setminus \{0\}$ et $h = X^k + \alpha \in R$.

$$h^{\natural} \cdot h = X^{2k} - 1 \quad \Leftrightarrow \quad \theta^{k}(\alpha) + \frac{1}{\theta^{k}(\alpha)} = 0 \text{ et } \frac{\alpha}{\theta^{k}(\alpha)} = -1$$

$$\Leftrightarrow \quad \alpha + \frac{1}{\alpha} = 0 \text{ et } 1 = -\theta^{k}(\alpha)/\alpha$$

$$\Leftrightarrow \quad \alpha^{2} = -1 \text{ et } 1 = -\alpha^{p^{k} - 1}$$

$$\Leftrightarrow \quad \alpha^{2} = -1 \text{ et } 1 = (-1)^{\frac{\rho^{k} + 1}{2}}$$

$$\Leftrightarrow \quad \alpha^{2} = -1, p^{k} \equiv 3 \pmod{4}$$

Conditions d'existence de codes auto-duaux "binomiaux" θ -cycliques de dimension $k \in \mathbb{N}^*$ sur $\mathbb{F}_{q=p^m}$ avec p nombre premier impair et $\theta : x \mapsto x^p$.

$$p \equiv 3 \pmod{4}, m \equiv 0 \pmod{2}, k \equiv 1 \pmod{2}$$

- Equation auto-duale.
- Existence des solutions.
 - Existence solutions binomiales.
 - Existence solutions polynomiales.
- 3 Construction et énumération sur \mathbb{F}_{p^2} en dimension p^s .
- 4 Construction et énumération sur \mathbb{F}_{p^2} en dimension non divisible par p.
- **6** Construction et énumération sur \mathbb{F}_{p^2} en dimension quelconque.

$$h^{
abla} \cdot h = X^{2k} - 1$$
 : équation auto-duale

Point de vue insipiré de

- Sloane et Thompson (codes cycliques auto-duaux)
- et de Giesbrecht (factorisation des polynômes tordus)

- → écriture des solutions sous forme de ppcm à droite (lcrm)
- → conditions nécessaires et suffisantes d'existence

Théorème [Sloane, Thompson, 1983], [Jia, Ling, Xing, 2011]

Soit s tel que $p^{s+1}||n=2k$ et soit T(n) le nombre de polynômes $f=g\times g^{\natural}$ tels que $g^{\natural}\neq g$ soit irréductible et divise X^n-1 dans $\mathbb{F}_{p^m}[X]$. Le nombre de codes cycliques auto-duaux de longueur n=2k sur \mathbb{F}_{p^m} est

$$\left\{ \begin{array}{ccc} (2^{s+1}+1)^{T(n)} & \text{si} & p=2 \\ 0 & \text{si} & p \text{ impair.} \end{array} \right.$$

Preuve

Soit s tel que $p^{s+1}||2k$.

$$X^{2k} - 1 = \prod_{f_i = f_i^{\natural}, \ f_i \ irr} f_i(X)^{p^{s+1}} \prod_{f_i = g_i g_i^{\natural}, g_i \neq g_i^{\natural} \ irr} f_i(X)^{p^{s+1}} \in \mathbb{F}_q[X]$$

$$h^{\natural} \cdot h = X^{2k} - 1 \quad \Leftrightarrow \quad h = \prod_i h_i$$

$$h^{\natural}_i \cdot h_i = f_i(X)^{p^{s+1}}$$

$$\Leftrightarrow \quad h_i = f_i(X)^{2^s} \qquad \text{si} \quad f_i \quad \text{irréductible}$$

$$h_i = g_i(X)^{\beta_i} (g_i^{\natural}(X))^{2^{s+1} - \beta_i} \quad \text{sinon}$$

Théorème [Sloane, Thompson, 1983], [Jia, Ling, Xing, 2011]

Soit s tel que $p^{s+1}||n=2k$ et soit T(n) le nombre de polynômes $f=g\times g^{\natural}$ tels que $g^{\natural}\neq g$ soit irréductible et divise X^n-1 dans $\mathbb{F}_{p^m}[X]$. Le nombre de codes cycliques auto-duaux de longueur n=2k sur \mathbb{F}_{p^m} est

$$\left\{ \begin{array}{ccc} (2^{s+1}+1)^{T(n)} & \text{si} & p=2 \\ 0 & \text{si} & p \text{ impair.} \end{array} \right.$$

Preuve

Soit s tel que $p^{s+1}||2k$.

$$X^{2k} - 1 = \prod_{f_i = f_i^{\natural}, \ f_i \ irr} f_i(X)^{p^{s+1}} \prod_{f_i = g_i g_i^{\natural}, g_i \neq g_i^{\natural} \ irr} f_i(X)^{p^{s+1}} \in \mathbb{F}_q[X]$$

$$h^{\natural} \cdot h = X^{2k} - 1 \quad \Leftrightarrow \quad h = \prod_i h_i = \underset{h_i}{\operatorname{ppcm}(h_i)} h_i^{\natural} \cdot h_i = f_i(X)^{p^{s+1}}$$

$$h_i^{\natural} \cdot h_i = f_i(X)^{p^{s+1}} \quad \Leftrightarrow \quad h_i = f_i(X)^{2^s} \qquad \text{si} \quad f_i \quad \text{irréductible}$$

$$h_i = g_i(X)^{\beta_i} (g_i^{\natural}(X))^{2^{s+1} - \beta_i} \quad \text{sinon}$$

Nombres de codes cycliques auto-duaux sur \mathbb{F}_2 , \mathbb{F}_4 , \mathbb{F}_8 et \mathbb{F}_{16} .

Dimension	\mathbb{F}_2	\mathbb{F}_4	\mathbb{F}_8	\mathbb{F}_{16}
2 ^s	1	1	1	1
$2^s \times 3$	1	$1+2^{s+1}$	1	$1 + 2^{s+1}$
$2^s \times 5$	1	1	1	$(1+2^{s+1})^2$
$2^s \times 7$	$1 + 2^{s+1}$	$1+2^{s+1}$	$(1+2^{s+1})^3$	$1 + 2^{s+1}$
$2^s \times 9$	1	$(1+2^{s+1})^2$	1	$(1+2^{s+1})^2$

Codes cycliques autoduaux [10, 5] sur \mathbb{F}_4 .

$$X^{10} - 1 = (\underbrace{X - 1}_{irr})^2 \left(\underbrace{X^2 + aX + 1}_{f = f^{\ddagger}, irr}\right)^2 \left(\underbrace{X^2 + a^2X + 1}_{f = f^{\ddagger}, irr}\right)^2 \in \mathbb{F}_4[X]$$

 $(1+2)^0=1$ code autodual cyclique engendré par h^{\natural} où

$$h = (X+1)(X^2 + aX + 1)(X^2 + a^2X + 1) = X^5 + 1.$$

Proposition

Soit $R = \mathbb{F}_{p^m}[X; \theta]$ avec $\theta : x \mapsto x^p$.

On suppose $n = 2k = m \times p^s \times t$, $p \nmid t$ et on considère

$$X^{2k}-1=((X^m)^t-1)^{p^s}=\prod_{f_i=f_i^{
atural},\ f_i\ irr}f_i(X^m)^{p^s}\prod_{f_i=g_ig_i^{
atural},g_i
eq g_i^{
atural}\ irr}f_i(X^m)^{p^s}\in\mathbb{F}_p[X^m]$$

$$h^{
abla} \cdot h = X^{2k} - 1 \in R \quad \Leftrightarrow \quad h = \operatorname{lcrm}(h_i) \\ h_i^{
abla} \cdot h_i = f_i(X^m)^{p^s} \in R$$

Preuve

 $h = \operatorname{lcrm}(h_i)$ avec $h_i = \operatorname{gcld}(h, f_i(X^m)^{p^s})$ (d'après [Giesbrecht, 1998])

Conséquence

S'il existe un code θ -cyclique auto-dual alors $\exists H \in R, H^{\natural} \cdot H = (X^m - 1)^{p^s}$.

$$H^{\natural} \cdot H = X^{2K} - 1 = (X^m - 1)^{p^s}.$$

alors $m \equiv 0 \pmod{2}$.

- $\alpha/\theta^K(\alpha) = -1$
 - $H = (X + \alpha_1) \cdots (X + \alpha_K), \alpha_i \in \mathbb{F}_q$
 - $N_{2K}(\alpha_i) = 1$ ([Lam 86]) avec $N_{2K}(x) := \theta^{2K-1}(x) \cdots \theta^2(x) \theta(x) x$
 - $N_{2K}(\alpha) = 1$

$$H^{
abla} \cdot H = X^{2K} - 1 = \underbrace{\left(X^m - 1\right)}_{deg \ 1 \in \mathbb{F}_p[X^m]}^{p^s}$$

alors $m \equiv 0 \pmod{2}$.

- $\alpha/\theta^K(\alpha) = -1$
- $H = (X + \alpha_1) \cdots (X + \alpha_K), \alpha_i \in \mathbb{F}_q$
- $N_{2K}(\alpha_i) = 1$ ([Lam 86]) avec $N_{2K}(x) := \theta^{2K-1}(x) \cdots \theta^2(x) \theta(x) x$
- $N_{2K}(\alpha) = 1$

$$H^{\natural} \cdot H = X^{2K} - 1 = (X^m - 1)^{p^s}.$$

alors $m \equiv 0 \pmod{2}$.

- $\alpha/\theta^K(\alpha) = -1$
 - $H = (X + \alpha_1) \cdots (X + \alpha_K), \alpha_i \in \mathbb{F}_q$
 - $N_{2K}(\alpha_i) = 1$ ([Lam 86]) avec $N_{2K}(x) := \theta^{2K-1}(x) \cdots \theta^2(x) \theta(x) x$
 - $N_{2K}(\alpha) = 1$

$$H^{\natural} \cdot H = X^{2K} - 1 = (X^m - 1)^{p^s}.$$

alors $m \equiv 0 \pmod{2}$.

- $\alpha/\theta^K(\alpha) = -1$
- $H = (X + \alpha_1) \cdots (X + \alpha_K), \alpha_i \in \mathbb{F}_q$
- $N_{2K}(\alpha_i) = 1$ ([Lam 86]) avec $N_{2K}(x) := \theta^{2K-1}(x) \cdots \theta^2(x) \theta(x) x$
- $N_{2K}(\alpha) = 1$

On a donc $N_K(\alpha)^{p-1}=-1$ et $N_K(\alpha)^2=(-1)^K$ d'où $-1=(-1)^{\frac{p-1}{2}\times K}$ donc

$$p \equiv 3 \pmod{4}$$
 et $m/2 \equiv 1 \pmod{2}$.

Proposition

Il existe un code θ -cyclique auto-dual de dimension k sur \mathbb{F}_{p^m} si et seulement si p=2 ou $(m\equiv 0\pmod 2), k\equiv 1\pmod 2$ et $p\equiv 3\pmod 4$).

Preuve (p impair)

On a $n = 2k = m \times p^s \times t$ avec $p \nmid t$.

ullet S'il y a un code heta-cyclique auto-dual alors

$$\exists H \in R, H^{\natural} \cdot H = (X^m - 1)^{p^s}$$

donc $m \equiv 0 \pmod{2}$, $m/2 \equiv 1 \pmod{2}$, $p \equiv 3 \pmod{4}$. De plus

$$\forall H \in R, H^{\natural} \cdot H \neq (X^m + 1)^{p^s}$$

donc $t \equiv 1 \pmod{2}$ donc $k \equiv 1 \pmod{2}$.

• Réciproquement, soit $\alpha \in \mathbb{F}_q$ tel que $\alpha^2 = -1$. On a

$$(X^k + \alpha)^{\natural} \cdot (X^k + \alpha) = X^{2k} + \left(\theta^k(\alpha) + \frac{1}{\theta^k(\alpha)}\right)X^k + \frac{\alpha}{\theta^k(\alpha)} = X^{2k} - 1.$$

- Equation auto-duale
- Existence des solutions
 - Existence solutions binomiales.
 - Existence solutions polynomiales.
- 3 Construction et énumération sur \mathbb{F}_{p^2} en dimension p^s .
- 4 Construction et énumération sur \mathbb{F}_{p^2} en dimension non divisible par p.
- 6 Construction et énumération sur \mathbb{F}_{p^2} en dimension quelconque.

Dimension $k = p^s$:

Motivation

- Conjectures sur \mathbb{F}_4 et \mathbb{F}_9
 - 3 codes θ -cycliques auto-duaux sur \mathbb{F}_4 de dimension 2^s 3^s-1 codes θ -cycliques auto-duaux sur \mathbb{F}_9 de dimension 3^s

$$\bullet X^n - 1 = \underbrace{(X^2 - 1)}_{\text{deg } 1 \in \mathbb{F}_p[X^2]}^{p^n}$$

donc h est un produit de facteurs unitaires linéaires

→ degré 1 plus facile que degré quelconque

Principaux outils

- un lemme d'unicité de factorisation ;
- un partitionnement

On suppose que $R = \mathbb{F}_{p^2}[X; \theta]$ avec $\theta : x \mapsto x^p \in Aut(\mathbb{F}_{p^2})$. On veut résoudre sur R

$$h^{\natural} \cdot h = X^{2p^s} - 1 = (X^2 - 1)^{p^s}$$

Rappel (s = 0):

$$h^{\natural} \cdot h = X^2 - 1 \Leftrightarrow h = X + \alpha \text{ avec } \alpha^2 = -1 \text{ et } \alpha^{p-1} = -1$$

- p = 2 : 1 solution X + 1
- $p \equiv 3 \pmod{4}$: 2 solutions $X + \alpha, \alpha^2 = -1$
- $p \equiv 1 \pmod{4}$: 0 solution

Code θ -cyclique [4, 2]₄ auto-dual

$$X^{4} - 1 = \underbrace{(X^{2} + aX + a^{2})}_{h^{1}} \cdot \underbrace{(X^{2} + aX + a)}_{h}$$

$$X^{4} - 1 = \underbrace{(X + a^{2}) \cdot (X + 1)}_{\text{unique fact. de } h^{1}} \cdot \underbrace{(X + 1) \cdot (X + a)}_{\text{unique fact. de } h}$$

$$\underbrace{X^{4} - 1}_{(X^{2} - 1)^{2}} = \underbrace{(X + a^{2}) \cdot \underbrace{(X + 1) \cdot (X + 1)}_{X^{2} - 1}} \cdot (X + a)$$

$$X^{2} - 1 = \underbrace{(X + a^{2}) \cdot (X + a)}_{X^{2} - 1}$$

Lemme

Soit $\theta: x \mapsto x^p \in Aut(\mathbb{F}_{p^2})$ et soit $R = \mathbb{F}_{p^2}[X; \theta]$.

Soit $h = (X + \alpha_1) \cdots (X + \alpha_k) \in R$ avec $\alpha_i^{p+1} = 1 (X + \alpha_i | X^2 - 1)$.

Les assertions suivantes sont équivalentes :

- (i) La factorisation de h en produit de facteurs linéaires unitaires est unique.
- (ii) $X^2 1 / h$.
- (iii) $\forall i \in \{1, ..., k-1\}, (X + \alpha_i) \cdot (X + \alpha_{i+1}) \neq X^2 1 \text{ i.e. } \alpha_i \alpha_{i+1} \neq -1.$

Preuve (k = 2)

Soit $h = (X + \alpha_1) \cdot (X + \alpha_2) \in R$ avec $X + \alpha_i | X^2 - 1$.

Supposons $\exists \beta_2 \neq \alpha_2, X + \beta_2|_r h$.

Soit $H = \operatorname{lclm}(X + \alpha_2, X + \beta_2)$.

$$deg(H) = 2$$

$$H|_{r}h$$

$$H|_{r}X^{2} - 1$$

donc $H = h = X^2 - 1$.

$$h^{\natural} \cdot h = (X^{2} - 1)^{k}, X^{2} - 1 \not| h$$

$$(X + \tilde{\alpha}_{k}) \cdots (X + \tilde{\alpha}_{1}) \cdot (X + \alpha_{1}) \cdots (X + \alpha_{k}) = (X^{2} - 1)^{k}$$

avec

$$\begin{cases} \alpha_i^{p+1} = 1 \\ \alpha_i \alpha_{i+1} \neq -1 \end{cases}$$

$$\tilde{\alpha}_i = \begin{cases} \alpha_i (\alpha_1 \cdots \alpha_{i-1})^2 \text{ si } i \text{ impair;} \\ \frac{1}{\alpha_i (\alpha_1 \cdots \alpha_{i-1})^2} \text{ si } i \text{ pair.} \end{cases}$$

$$h^{\natural} \cdot h = (X^{2} - 1)^{k}, X^{2} - 1 \not| h$$

$$\downarrow \downarrow \qquad \qquad \downarrow \qquad$$

avec
$$\begin{cases} \alpha_i^{p+1} = 1 \\ \alpha_i \alpha_{i+1} \neq -1 \end{cases}$$

$$\begin{cases} \tilde{\alpha}_i = \begin{cases} \alpha_i (\alpha_1 \cdots \alpha_{i-1})^2 \text{ si } i \text{ impair;} \\ \frac{1}{\alpha_i (\alpha_1 \cdots \alpha_{i-1})^2} \text{ si } i \text{ pair.} \end{cases}$$

$$\alpha_1 \tilde{\alpha}_1 = -1 \text{ donc } \alpha_1^2 = -1$$

$$h^{\natural} \cdot h = (X^{2} - 1)^{k}, X^{2} - 1 \not| h$$

$$\downarrow \downarrow$$

$$(X + \tilde{\alpha}_{k}) \cdots \underbrace{(X + \tilde{\alpha}_{2}) \cdot (X + \alpha_{2})}_{=X^{2} - 1} \cdots (X + \alpha_{k}) = (X^{2} - 1)^{k-1}$$

$$\begin{cases} \alpha_i^{p+1} = 1 \\ \alpha_i \alpha_{i+1} \neq -1 \end{cases}$$

$$\begin{cases} \tilde{\alpha}_i = \begin{cases} \alpha_i (\alpha_1 \cdots \alpha_{i-1})^2 \text{ si } i \text{ impair;} \\ \frac{1}{\alpha_i (\alpha_1 \cdots \alpha_{i-1})^2} \text{ si } i \text{ pair.} \end{cases}$$

$$\alpha_1 \tilde{\alpha}_1 = -1 \text{ donc } \alpha_1^2 = -1$$

$$\alpha_2 \tilde{\alpha}_2 = -1$$

$$h^{\natural} \cdot h = (X^{2} - 1)^{k}, X^{2} - 1 \not| h$$

$$\downarrow \downarrow$$

$$(X + \tilde{\alpha}_{k}) \cdots \underbrace{(X + \tilde{\alpha}_{3}) \cdot (X + \alpha_{3})}_{=X^{2} - 1} \cdots (X + \alpha_{k}) = (X^{2} - 1)^{k - 2}$$

avec
$$\left\{ \begin{array}{l} \alpha_i^{p+1} = 1 \\ \alpha_i \alpha_{i+1} \neq -1 \end{array} \right.$$

$$\left\{ \begin{array}{l} \tilde{\alpha}_i = \left\{ \begin{array}{l} \alpha_i (\alpha_1 \cdots \alpha_{i-1})^2 \, \mathrm{si} \, \, i \, \, \mathrm{impair}; \\ \frac{1}{\alpha_i (\alpha_1 \cdots \alpha_{i-1})^2} \, \mathrm{si} \, \, i \, \, \mathrm{pair}. \end{array} \right.$$

$$\left\{ \begin{array}{l} \alpha_1 \tilde{\alpha}_1 = -1 \, \, \mathrm{donc} \, \alpha_1^2 = -1 \\ \alpha_2 \tilde{\alpha}_2 = -1 \\ \alpha_3 \tilde{\alpha}_3 = -1 \, \, \mathrm{donc} \, (\alpha_2 \alpha_3)^2 = 1 \end{array} \right.$$

$$h^{\natural} \cdot h = (X^{2} - 1)^{k}, X^{2} - 1 \not| h$$

$$\updownarrow$$

$$h = (X + \alpha_{1}) \cdot (X + \alpha_{2}) \cdots (X + \alpha_{k})$$

avec

$$\begin{cases} \alpha_i^{p+1} = 1\\ \alpha_i \alpha_{i+1} \neq -1\\ \alpha_1^2 = -1\\ \alpha_i \alpha_{i+1} = 1 \text{ si } i \text{ pair.} \end{cases}$$

Nombre de solutions.

$$p=2$$

k > 2: 0 solution k = 2:2 solutions

k = 1:1 solution

$$p \equiv 3 \pmod{4}$$

$$p \equiv 1 \pmod{4}$$

$$2p^{\lfloor (k-1)/2 \rfloor}$$
 solutions

0 solution

Lemme

Le nombre de codes θ -cycliques auto-duaux de dimension p^s sur \mathbb{F}_{p^2} avec s>0 est :

$$\left\{ \begin{array}{ccc} 3 & \text{si} & p=2 \\ \\ 2\frac{p^{(\rho^s+1)/2}-1}{p-1} & \text{si} & p\equiv 3 \pmod 4 \\ 0 & \text{si} & p\equiv 1 \pmod 4 \end{array} \right.$$

Preuve

$$h^{\natural} \cdot h = (X^{2} - 1)^{p^{s}} \Leftrightarrow \exists i \in \{0, \dots, \lfloor p^{s}/2 \rfloor\}, \\ h = (X^{2} - 1)^{i} \cdot H \\ H^{\natural} \cdot H = (X^{2} - 1)^{p^{s} - 2i}, X^{2} - 1 \not| H$$

$$\sum_{i=0}^{(p^{s} - 1)/2} 2p^{(p^{s} - 1 - 2i)/2} = 2\frac{p^{(p^{s} + 1)/2} - 1}{p - 1}$$

- Equation auto-duale
- Existence des solutions
 - Existence solutions binomiales.
 - Existence solutions polynomiales.
- 3 Construction et énumération sur \mathbb{F}_{p^2} en dimension p^s .
- 4 Construction et énumération sur \mathbb{F}_{p^2} en dimension non divisible par p.
- 6 Construction et énumération sur \mathbb{F}_{p^2} en dimension quelconque.

$\frac{\mathsf{Dimension}\;k\;\mathsf{non\;divisible\;par\;}p}{\mathsf{Rappel}\;:}$

Soit
$$R = \mathbb{F}_{p^2}[X; \theta]$$
 avec $\theta : x \mapsto x^p$.

$$X^{2k}-1=\prod_{f_i=f_i^{
atural},\ f_i\ irr}f_i(X^2)\prod_{f_i=g_ig_i^{
atural},g_i
eq g_i^{
atural}\ irr}f_i(X^2)\in\mathbb{F}_{
ho}[X^2]$$

$$h^{\natural} \cdot h = X^{2k} - 1 \in R \quad \Leftrightarrow \quad h = \operatorname{lcrm}(h_i)$$

 $h_i^{\natural} \cdot h_i = f_i(X^2) \in R$

Outils : une paramétrisation des irréductibles de R.

$$f(X^2) = X^2 - \epsilon, \epsilon^2 = 1$$

$$f(X^2) \text{ irr, } d > 1$$

$$f(X^2) = X^2 - \epsilon, \epsilon^2 = 1$$

$$f(X^2) \text{ irr, } d > 1$$

$$f(X^2) \text{ irr$$

$$f(X^2) = X^2 - \epsilon, \epsilon^2 = 1$$

$$f(X^2) = x^2 - \epsilon, \epsilon^2 = 1$$

$$f(X^2) \text{ irr, } d > 1$$

$$f(X^2) = x^2 - \epsilon \pmod{4}$$

$$0 \text{ si } p \equiv \epsilon \pmod{4}$$

$$1 \text{ si } p = 2$$

$$f(X^2) \text{ irr, } d > 1$$

[Odoni, 1999]

Irreductibles de $\mathbb{F}_p[X^2]$ de degré d en X^2

Irréductibles de $\mathbb{F}_{p^2}[X;\theta]$ de degré d

$$\mathbb{F}_{p^2}[X;\theta]/(f(X^2))$$
 \sim $M_2(\mathbb{F}_{p^d})$ $h(X)$ diviseur de zéro à gauche \leftrightarrow idéal à gauche maximal

Soit
$$f(X^2) \in \mathbb{F}_p[X^2]$$
, irréductible, $\deg_{X^2} f(X^2) = d$.
Soit $h = A(X^2) + X \cdot B(X^2) \in R$.

irréd produit de 2 irréductibles degré
$$d$$
 $1 + p^d$ facteurs à droite (Odoni, 1999)

⇕

$$B = 0 \text{ et } A(X^2)|f(X^2) \in \mathbb{F}_{p^2}[X^2]$$

$$\frac{A}{B} \equiv P \pmod{f} \in \mathbb{F}_{p^2}(X) \ (\leftarrow \text{ interpolation de Cauchy})$$

$$\text{avec}$$

$$P\Theta(P) \equiv X \pmod{f} \in \mathbb{F}_{p^2}[X]$$

Paramétrisation des $h(X) \in R$ tels que $h^{\natural}(X) \cdot h(X) = f(X^2)$ avec $f = f^{\natural}$, $\deg_{X^2} f(X^2) = d = 2\delta$.

Soit $\alpha \in \mathbb{F}_{p^d}$ tel que $f(\alpha) = 0$.

$$h(X) = A(X^2) + X \cdot B(X^2) \mid_{r} f(X^2)$$

$$\updownarrow$$

$$\begin{cases} B = 0 \\ A(X^2)|f(X^2) \end{cases} \quad \text{ou} \quad \begin{cases} B \neq 0 \\ \frac{A}{B} \equiv P \pmod{f} \end{cases}$$

où $P \in \mathbb{F}_{p^2}[X]_{\leq d}$ est défini par $\left\{ \begin{array}{l} P(\alpha) = u \\ P(\alpha^p) = \alpha^p/u^p \end{array} \right.$ avec $u \in \mathbb{F}_{p^d} \setminus \{0\}$.

Soit
$$f(X^2) \in \mathbb{F}_p[X^2]$$
, irréductible, $\deg_{X^2} f(X^2) = d = 2\delta, f = f^{\natural}$.
Soit $h = A(X^2) + X \cdot B(X^2) \in R$.

Paramétrisation des $h(X) \in R$ tels que $h^{\sharp}(X) \cdot h(X) = f(X^2)$ avec $f = f^{\sharp}$, $\deg_{X^2} f(X^2) = d = 2\delta$ avec δ impair.

Soit $\alpha \in \mathbb{F}_{p^d}$ tel que $f(\alpha) = 0$.

$$h(X) = A(X^2) + X \cdot B(X^2)$$
 solution de $h^{\natural}(X) \cdot h(X) = f(X^2)$
 \updownarrow

$$\begin{cases} B = 0 \\ A(X^2)|f(X^2) \end{cases} \quad ou \quad \begin{cases} B \neq 0 \\ \frac{A}{B} \equiv P \pmod{f} \end{cases}$$

où $P \in \mathbb{F}_{p^2}[X]_{\leq d}$ est défini par $\left\{ \begin{array}{l} P(\alpha) = u \\ P(\alpha^p) = \alpha^p/u^p \end{array} \right.$ avec $u \in \mathbb{F}_{p^d}^*, u^{p^\delta - 1} = -\frac{1}{\alpha}.$

Paramétrisation des $h(X) \in R$ tels que $h^{\natural}(X) \cdot h(X) = f(X^2)$ avec $f = f^{\natural}$, $\deg_{X^2} f(X^2) = d = 2\delta$ avec δ pair.

Soit $\alpha \in \mathbb{F}_{p^d}$ tel que $f(\alpha) = 0$.

$$h(X) = A(X^2) + X \cdot B(X^2)$$
 solution de $h^{\natural}(X) \cdot h(X) = f(X^2)$

$$\begin{cases} B \neq 0 \\ \frac{A}{B} \equiv P \pmod{f} \end{cases}$$

où P est défini par $\left\{ \begin{array}{ll} P(\alpha) = u \\ P(\alpha^p) = \alpha^p/u^p \end{array} \right.$ avec $u \in \mathbb{F}_{p^d}^*, u^{p^\delta+1} = -1.$

Résolution de $h^{\natural} \cdot h = X^8 + X^6 + X^4 + X^2 + 1$ dans $R = \mathbb{F}_4[X; \theta]$.

$$h=A(X^2)+X\cdot B(X^2)\in R$$
 avec
$$\frac{A}{B}\equiv P_u\ (\mathrm{mod}\ f)\in \mathbb{F}_4(X)\ \mathrm{et}\ u\in \mathbb{F}_{16}=\mathbb{F}_2(b), u^5=1.$$

и	$P_u(X)$	A(X)	B(X)	$h = A(X^2) + X \cdot B(X^2)$
1	$X^3 + a^2X + a$	$X^2 + a$	$a^2X + a^2$	$X^4 + aX^3 + aX + a$
<i>b</i> ³	$X^3 + aX + a^2$	$X^2 + a^2$	aX + a	$X^4 + a^2X^3 + a^2X + a^2$
<i>b</i> ⁶	$a^2X^3 + X^2 + aX + a$	$X^2 + 1$	$a^2X + a$	$X^4 + aX^3 + a^2X + 1$
b^{12}	$aX^3 + X^2 + a^2X + a^2$	$X^2 + 1$	$aX + a^2$	$X^4 + a^2X^3 + aX + 1$
<i>b</i> ⁹	X ³	$X^2 + X + 1$	X+1	$X^4 + X^3 + X^2 + X + 1$

$$a^2 + a + 1 = 0$$
 et $b^4 + b + 1 = 0$

$$f(X^2) = X^2 - \epsilon, \epsilon^2 = 1$$

$$f(X^2) = x^2 - \epsilon, \epsilon^2 = 1$$

$$f(X^2) \text{ irr, } d > 1$$

$$f(X^2) = x^2 - \epsilon \pmod{4}$$

$$0 \text{ si } p \equiv \epsilon \pmod{4}$$

$$1 \text{ si } p = 2$$

$$f(X^2) \text{ irr, } d > 1$$

$$f(X^2) = X^2 - \epsilon, \epsilon^2 = 1$$

$$f(X^2) = x^2 - \epsilon, \epsilon^2 = 1$$

$$f(X^2) \text{ irr, } d > 1$$

$$f(X^2) = x^2 - \epsilon \pmod{4}$$

$$0 \text{ si } p \equiv \epsilon \pmod{4}$$

$$1 \text{ si } p = 2$$

$$(1 + p^{d/2})$$

$$(3 + p^{d/2})$$

Proposition

On suppose $p \nmid k$.

$$X^{2k}-1=\prod_{f_i=f_i^{\natural},\;f_i\;irr}f_i(X^2)\prod_{f_i=g_ig_i^{\natural},g_i
eq g_i^{\natural}\;irr}f_i(X^2)\in \mathbb{F}_p[X^2]$$

Le nombre de codes θ -cycliques auto-duaux sur \mathbb{F}_{p^2} de dimension k est

$$N \times \prod_{f=f^{\natural}, irr, deg>1} (p^{d/2}+1) \times \prod_{f=gg^{\natural}} (p^{d/2}+3)$$

avec
$$d := \deg_{X^2}(f(X^2))$$
 et

$$N = \begin{cases} 1 & \text{si} & p = 2 \\ 2 & \text{si} & p \equiv 3 \pmod{4} \text{ et } k \equiv 1 \pmod{2} \\ 0 & \text{sinon.} \end{cases}$$

Codes θ -cycliques autoduaux de longueur 10 sur \mathbb{F}_4 .

$$X^{10}-1=(X^2+1)(X^8+X^6+X^4+X^2+1)\in \mathbb{F}_2[X^2]$$
 $h^{\natural}\cdot h=X^{10}-1\Leftrightarrow h=\mathrm{lcrm}(h_1,h_2)$

avec

$$\left\{\begin{array}{cc} h_1^{\natural}\cdot h_1=X^2-1 & \text{: 1 solution} \\ h_2^{\natural}\cdot h_2=X^8+X^6+X^4+X^2+1 & \text{: } 1+2^2 \text{ solutions} \end{array}\right.$$

ightarrow 5 codes heta-cycliques de longueur 10 autoduaux sur \mathbb{F}_4 .

- Equation auto-duale
- Existence des solutions
 - Existence solutions binomiales.
 - Existence solutions polynomiales.
- 3 Construction et énumération sur \mathbb{F}_{p^2} en dimension p^s .
- 4 Construction et énumération sur \mathbb{F}_{p^2} en dimension non divisible par p.
- **6** Construction et énumération sur \mathbb{F}_{p^2} en dimension quelconque.

Lemme

Soient p un nombre premier, θ l'automorphisme de Frobenius sur \mathbb{F}_{p^2} ,

$$R = \mathbb{F}_{p^2}[X; \theta].$$

Soit $f(X^2)$ in $\mathbb{F}_p[X^2]$ irréductible.

Soit $h = h_1 \cdots h_k \in R$ avec h_i irréductible dans R, unitaire et divisant $f(X^2)$.

Les assertions suivantes sont équivalentes :

- (i) La factorisation de *h* n'est pas unique.
- (ii) $f(X^2)$ divise h.
- (iii) Il existe i dans $\{1, \ldots, k-1\}$ tel que $h_i \cdot h_{i+1} = f(X^2)$.

Proposition

On suppose $k = p^s \times t$, $p \nmid t$.

$$X^{2k}-1=\prod_{f_i=f_i^{\natural},\;f_i\;irr}f_i(X^2)^{
ho^s}\prod_{f_i=g_ig_i^{\natural},g_i
eq g_i^{\natural}\;irr}f_i(X^2)^{
ho^s}\in\mathbb{F}_{
ho}[X^2]$$

Le nombre de codes θ -cycliques auto-duaux sur \mathbb{F}_{p^2} de dimension k est

$$\textit{N} \times \prod_{\textit{f} = \textit{f}^{\natural}, \; \textit{irr}, \textit{deg} > 1} \frac{p^{\delta(\textit{p}^{\textit{s}} + 1)} - 1}{p^{\delta} - 1} \times \prod_{\textit{f} = \textit{gg}^{\natural}} \frac{\left(p^{\delta(\textit{p}^{\textit{s}} + 1)} - 2\textit{p}^{\textit{s}} - 3\right)\left(1 + p^{\delta}\right) + 4\textit{p}^{\textit{s}} + 4}{\left(p^{\delta} - 1\right)^{2}}$$

avec $\delta := \deg_{X^2}(f(X^2))/2$ et

$$N = \begin{cases} 1 & \text{si} & s = 0, p = 2\\ 3 & \text{si} & s > 0, p = 2\\ 2\frac{p^{(p^s+1)/2} - 1}{p - 1} & \text{si} & p \equiv 3 \pmod{4} \text{ et } k \equiv 1 \pmod{2} \\ 0 & \text{sinon.} \end{cases}$$

65 / 86

Troisième partie III

Codes d'évaluation tordue.

6 Evaluation des polynômes tordus (d'après Lam & Leroy, 1988).

Code d'évaluation tordue.

B Décodage.

Evaluation

Pour f dans R et α dans K il existe un unique q dans R et un unique a dans K tels que $f = q \cdot (X - \alpha) + a$. L'application $f : \left\{ \begin{array}{ccc} K & \to & K \\ \alpha & \mapsto & a \end{array} \right.$ est associée à cette division à droite et on note $a = f(\alpha)$.

Si
$$f = \sum a_i X^i$$
 alors

$$f(\alpha) = \sum a_i N_i(\alpha)$$

où $N_i(\alpha)$ est définie par :

$$N_i(x) := x\theta(x)\cdots\theta^{i-1}(x)$$

θ -classes de conjugaison

Soient $a,b \in K$, a et b sont θ -conjugués s'il existe y dans K^* tel que $b=a^y$ où

$$a^y = \theta(y)ay^{-1}$$

Ceci définit une relation d'équivalence sur K.

• Sur $K = \mathbb{F}_{2^m}$, avec $\theta : x \mapsto x^2$, il y a deux θ -classes de conjugaison :

$$\{0\}$$
 et K^* .

• Sur $K = \mathbb{F}_{3^m}$, avec $\theta : x \mapsto x^3$, il y a trois θ -classes de conjugaison :

$$\{0\}, \{\theta(y)y^{-1} = y^2, y \in K^*\} \text{ et } \{\alpha\theta(y)y^{-1} = \alpha y^2, y \in K^*\}$$

où $\alpha \in K$ est générateur de K^* .

Formule du produit

Soient f et g dans R et soit α dans K.

- Si $g(\alpha) = 0$ alors $(f \cdot g)(\alpha) = 0$.
- Si $g(\alpha) \neq 0$, alors

$$(f \cdot g)(\alpha) = f(\alpha^{g(\alpha)})g(\alpha)$$

Démonstration.

$$g(X) = q_1(X) \cdot (X - \alpha) + g(\alpha)$$
 et $f(X) = q_2(X) \cdot (X - \alpha^{g(\alpha)}) + f(\alpha^{g(\alpha)})$

$$f(X) \cdot g(X) = f(X) \cdot q_1(X) \cdot (X - \alpha) + q_2(X) \cdot \underbrace{(X - \alpha^{g(\alpha)}) \cdot g(\alpha)}_{\theta(g(\alpha)) \cdot (X - \alpha)} + f(\alpha^{g(\alpha)})g(\alpha)$$

$$= (f(X) \cdot q_1(X) + q_2(X) \cdot \theta(g(\alpha))) \cdot (X - \alpha) + f(\alpha^{g(\alpha)})g(\alpha)$$

Soit $n \in \mathbb{N}^*$. Soit $\underline{\alpha} = (\alpha_1, \dots, \alpha_n) \in K^n$.

P-indépendance

On dit que $\alpha_1, \ldots, \alpha_n$ sont P-indépendants si

$$\deg(\operatorname{lclm}_{1\leq i\leq n}(X-\alpha_i))=n.$$

Matrice de Vandermonde $(k \le n)$

$$V_{k,n}^{\theta}(\underline{\alpha}) = \begin{pmatrix} 1 & 1 & \cdots & \cdots & 1 \\ N_1(\alpha_1) & N_1(\alpha_2) & \cdots & \cdots & N_1(\alpha_n) \\ N_2(\alpha_1) & N_2(\alpha_2) & \cdots & \cdots & N_2(\alpha_n) \\ \vdots & \vdots & & & \vdots \\ N_{k-1}(\alpha_1) & N_{k-1}(\alpha_2) & \cdots & \cdots & N_{k-1}(\alpha_n) \end{pmatrix}$$

Propriété

$$\operatorname{rang}(V_{n,n}^{\theta}(\underline{\alpha})) = \operatorname{deg}(\operatorname{lclm}_{1 \leq i \leq n}(X - \alpha_i))$$

Les résultats qui précèdent se déclinent dans un contexte plus général :

K corps non nécessairement commutatif (« division ring » ou « skew field »),

 $\theta \in End(K)$,

δ : θ-dérivation : ∀a, b ∈ K,

$$\delta(a+b) = \delta(a) + \delta(b)$$

$$\delta(ab) = \delta(a)b + \theta(a)\delta(b)$$

 $R = K[X; \theta, \delta]$, anneau de polynômes tordus :

$$\forall a \in K, X \cdot a = \theta(a)X + \delta(a)$$

R euclidien à droite (existence de lclm, gcrd)

Si $K = \mathbb{F}_q$, alors la seule dérivation possible est $\delta = \beta(\theta - id)$ où $\beta \in \mathbb{F}_q$. Par un changement de variable, on peut se ramener à $\delta = 0$.

$$\mathcal{H}: \left\{ \begin{array}{ccc} K[X;\theta,\delta] & \to & K[Z;\theta] \\ X & \mapsto & Z-\beta \end{array} \right. \text{ isomorphisme d'anneaux (Hilbert twist)}$$

$$\mathcal{H}(\mathbf{X}\cdot\mathbf{a}) & = & \mathcal{H}(\theta(a)X+\delta(a)) \\ & = & \theta(a)(Z-\beta)+\beta\theta(a)-\beta a \\ & = & Z\cdot a-\beta a \\ & = & \mathcal{H}(\mathbf{X})\cdot\mathcal{H}(\mathbf{a})$$

On a donc $f(\alpha) = \mathcal{H}(f)(\alpha + \beta)$ \rightarrow la dérivation n'apportera rien ici. 6 Evaluation des polynômes tordus (d'après Lam & Leroy, 1988).

Ode d'évaluation tordue.

8 Décodage.

Code d'évaluation tordue

Soient $k \leq n$ dans \mathbb{N}^* , soient $\alpha_1, \ldots, \alpha_n$ P-indépendants dans K. Le code d'évaluation tordue de support $\underline{\alpha} = (\alpha_1, \ldots, \alpha_n)$ est défini par

$$C_{k,n}^{\theta}(\underline{\alpha}) = \{(f(\alpha_1), \dots, f(\alpha_n)) \mid f \in R, \deg(f) < k\}$$

Remarques:

- $C_{k,n}^{\theta}(\underline{\alpha}) = \{m \times V_{k,n}^{\theta}(\underline{\alpha}) \mid m \in \mathbb{F}_q^k\}$
- $C_{k,n}^{\theta}(\underline{\alpha})$ est de dimension k.

Proposition

Soit $k \leq n \in \mathbb{N}^*$. Soient $\alpha_1, \ldots, \alpha_n$ P-indépendants dans \mathbb{F}_q . $\mathcal{C}_{k,n}^{\theta}(\underline{\alpha})$ est un code MDS (d = n - k + 1).

Démonstration.

On montre que le code ne possède pas de mot non nul de poids < n - k + 1.

Soit $c = (f(\alpha_1), \dots, f(\alpha_n))$ avec $\deg(f) < k$ et $w_H(c) \le n - k$.

Soit $I = \{i \in \{1, \dots, n\} \mid f(\alpha_i) = 0\}$ et soit $S(X) = \operatorname{lclm}_{i \in I}(X - \alpha_i)$.

Alors $\#I \ge k$, $\deg(S) = \#I$ car $(\alpha_i)_{i \in I}$ sont P-indépendants et S(X) divise f(X) à droite;

donc f = 0 et c = 0.

Exemples

- $K = \mathbb{F}_q$, $\theta = id$, $\alpha_1, \dots, \alpha_n$ distincts deux à deux : code GRS (Generalized Reed Solomon)
- $K = \mathbb{F}_q$, $\theta = id$, $\alpha_i = \alpha^{i-1}$ avec α racine primitive n^e de 1 : code RS (Reed Solomon)

• $K = \mathbb{F}_q = \mathbb{F}_{p^m}$, $\theta : x \mapsto x^p$, $\alpha_1, \dots, \alpha_n$ P-indépendants et conjugués à 1 ($\forall i, \alpha_i = \theta(y_i)/y_i$) : code équivalent à un code de Gabidulin de support (y_1, \dots, y_n) .

$$V_{k,n}^{\theta}(\underline{\alpha}) = \begin{pmatrix} y_1 & y_2 & \cdots & \cdots & y_n \\ \theta(y_1) & \theta(y_2) & \cdots & \cdots & \theta(y_n) \\ \vdots & \vdots & & & \vdots \\ \theta^{k-1}(y_1) & \theta^{k-1}(y_2) & \cdots & \cdots & \theta^{k-1}(y_n) \end{pmatrix} \times \begin{pmatrix} 1/y_1 & 0 & \cdots & \cdots & 0 \\ 0 & 1/y_2 & \cdots & \cdots & 0 \\ \vdots & & \cdots & & \cdots & 0 \\ 0 & 0 & \cdots & & \cdots & 1/y_n \end{pmatrix}$$

76 / 86

6 Evaluation des polynômes tordus (d'après Lam & Leroy, 1988).

Code d'évaluation tordue.

8 Décodage.

Soit C un code $[n, k, d]_q$.

Soit τ un entier, soit $c \in C$. Soit r = c + e avec $w_H(e) \le \tau$.

On veut déterminer

$$\mathcal{D}(r) = \{\tilde{c} \in C \mid w_H(\tilde{c} - r) \le \tau\}$$

c'est à dire l'ensemble des \tilde{c} de C tels que $\tilde{c}_i = r_i$ pour au moins $n - \tau$ valeurs de i.

Soit $t = \lfloor \frac{d-1}{2} \rfloor$ (capacité de correction du code).

Si $\tau \leq t$, on a un décodage unique $(\mathcal{D}(r) = \{c\})$, sinon on parle de décodage en liste.

Ici
$$d = n - k + 1$$
 (code MDS) et $c = (f(\alpha_1), \dots, f(\alpha_n))$ avec $f \in R_{\leq k}$.

On veut trouver tous les polynômes g de degré < k tels que $g(\alpha_i) = r_i$ pour au moins $n - \tau$ valeurs de i

→ problème de « reconstruction polynomiale »

- Cas commutatif (code RS/GRS) :
 Berlekamp Welch (1960) pour le décodage unique;
 Sudan (1999) et Guruswami (2002) pour le décodage en liste.
- Cas des codes de Gabidulin :
 Loidreau (2007) et Robert (2016) pour le décodage unique avec la métrique rang.

Principe du décodage (Berlekamp-Welch)

[D. Augot, JNCF 2010, chap.4]

C, code GRS $[n, k, n - k + 1]_q$ de support $\underline{\alpha} = (\alpha_1, \dots, \alpha_n)$ avec $\alpha_1, \dots, \alpha_n$ distincts deux à deux.

$$c = (f(\alpha_1), \dots, f(\alpha_n)) \in C$$
, $r = c + e$ avec $w_H(e) \le t := \lfloor (n - k)/2 \rfloor$.

• Soit $E(X) = \prod_{i \mid e_i \neq 0} (X - \alpha_i)$ (polynôme localisateur d'erreurs). Alors

$$\forall i \in \{1,\ldots,n\}, f(\alpha_i) = r_i \text{ ou } E(\alpha_i) = 0$$

donc $E(f - r_i) = Ef - Er_i$ s'annule en α_i pour tout i:

$$(Ef)(\alpha_i) - E(\alpha_i)r_i = 0$$

De plus $\deg(E) \le t$ et $\deg(f) \le k - 1$

• Soient $Q_0(X)$ et $Q_1(X) \in \mathbb{F}_q[X]$ sont tels que $Q_0 + Q_1 r_i$ s'annule en α_i pour tout i de $\{1, \ldots, n\}$:

$$(*) Q_0(\alpha_i) + Q_1(\alpha_i)r_i = 0$$

avec $\deg(Q_1) \le t$ et $\deg(Q_0) \le t + k - 1$, alors $f = -Q_0/Q_1$.

En effet

 Q_0+Q_1f s'annule en au moins n-t points distincts; $\deg(Q_0+Q_1f)\leq t+k-1\leq n-t-1$ donc $Q_0+Q_1f=0$.

Remarque : nombre d'inconnues : $(t+1)+(t+k) \ge n+1$ donc (*) a une solution.

C un code d'évaluation tordue $[n,k,n-k+1]_q$ de support $\underline{\alpha}=(\alpha_1,\ldots,\alpha_n)$ avec α_1,\ldots,α_n P-indépendants.

$$c = (f(\alpha_1), \dots, f(\alpha_n)) \in C, r = c + e \text{ avec } w_H(e) \le t := |(n - k)/2|.$$

• Soit $E(X) = \text{lclm}_{i|e_i \neq 0}(X - \alpha_i^{e_i})$ (polynôme tordu localisateur d'erreurs). Alors

$$\forall i \in \{1, \dots, n\}, f(\alpha_i) = r_i \text{ ou } E(\alpha_i^{f(\alpha_i) - r_i}) = 0$$

$$\text{donc } E \cdot (f - r_i) = E \cdot f - E \cdot r_i \text{ s'annule en } \alpha_i \text{ pour tout } i :$$

$$\begin{cases} (E \cdot f)(\alpha_i) - E(\alpha_i^{r_i})r_i = 0 & \text{si } r_i \neq 0 \\ (E \cdot f)(\alpha_i) = 0 & \text{si } r_i = 0 \end{cases}$$

• Soient $Q_0(X)$ et $Q_1(X) \in R$ sont tels que pour tout i, $Q_0 + Q_1 \cdot r_i$ s'annule en α_i :

$$(*) \left\{ \begin{array}{ll} Q_0(\alpha_i) + Q_1(\alpha_i^{r_i})r_i = 0 & \text{si } r_i \neq 0 \\ Q_0(\alpha_i) = 0 & \text{si } r_i = 0 \end{array} \right.$$

avec $\deg(Q_1) \le t$ et $\deg(Q_0) \le k-1$, alors f est le reste de la division à droite de $-Q_0$ par Q_1 .

En effet

$$(Q_0+Q_1\cdot f)(lpha_i)=0$$
 si $r_i=f(lpha_i)$ i.e. $e_i=0$; $\mathrm{lclm}_{i|e_i=0}(X-lpha_i)$ divise $Q_0+Q_1\cdot f$ à droite; $\mathrm{deg}\, \mathrm{lclm}_{i|e_i=0}(X-lpha_i)\geq n-t$ car les $lpha_i$ sont P-indépendants; $\mathrm{deg}(Q_0+Q_1f)\leq t+k-1\leq n-t-1$; $\mathrm{donc}\, Q_0+Q_1\cdot f=0$.

Algorithme

Entrée: r = c + e avec $c = (f(\alpha_1), \dots, f(\alpha_n)), f \in \mathbb{F}_q[X; \theta], \deg(f) < k, e \in \mathbb{F}_q^n$ et $w_H(e) \le t = (n - k - 1)/2$

Sortie: f

1 : Trouver Q_0 de degré $\leq k+t$, Q_1 de degré $\leq t$ tels que pour tout i dans $\{1,\ldots,n\}$

$$(*) \left\{ \begin{array}{ll} Q_0(\alpha_i) + Q_1(\alpha_i^{r_i})r_i = 0 & \text{si } r_i \neq 0 \\ Q_0(\alpha_i) = 0 & \text{si } r_i = 0 \end{array} \right.$$

- 2 : $f(X) \leftarrow$ quotient dans la division à gauche de $Q_0(X)$ par $-Q_1(X)$ dans $\mathbb{F}_a[X;\theta]$
- 3: rendre f

83 / 86

Une observation . . .

Dans le cas commutatif,

$$E(X) = \prod_{e_i \neq 0} (X - \alpha_i)$$

a un degré égal au poids $w_H(e)$ de e.

• Dans le cas non commutatif,

$$E(X) = \operatorname{lclm}_{e_i \neq 0} (X - \alpha_i^{e_i})$$

a un degré inférieur ou égal à $w_H(e)$ (car les $\alpha_i^{e_i}$ ne sont pas nécessairement P-indépendants).

84 / 86

... une nouvelle métrique.

Considérons

$$w_{\underline{\alpha}}(e) = \left\{ egin{array}{ll} \deg \operatorname{lclm}_{e_i
eq 0} (X - \alpha_i^{e_i}) & ext{si } e
eq 0 \\ 0 & ext{sinon} \end{array}
ight.$$

- + On montre que $w_{\underline{\alpha}}$ est le poids de la métrique tordue définie dans [U. Martínez-Peñas, 2018]
- + Avec cette métrique, les codes d'évaluation tordue sont MDS.
- + L'algorithme de décodage précédent reste valide.

Décodage.

Merci pour votre attention!