POWERED EN Dialog

IMPLANTING PART FOR ORGANISM AND ITS MANUFACTURE

Publication Number: 08-056963 (JP 8056963 A), March 05, 1996

Inventors:

- MOOTAMEDO EKUTESABI ARI
- TSUBOI YOICHI

Applicants

- MOOTAMEDO EKUTESABI ARI (An Individual), IR (Iran)
- TSUBOI YOICHI (An Individual), JP (Japan)

Application Number: 06-186930 (JP 94186930), August 09, 1994

International Class (IPC Edition 6):

- A61C-008/00
- A61F-002/28
- A61L-027/00
- C23C-014/06
- C23C-014/24
- C23C-014/46

JAPIO Class:

- 28.2 (SANITATION--- Medical)
- 12.6 (METALS--- Surface Treatment)

JAPIO Keywords:

• R003 (ELECTRON BEAM)

JAPIO

© 2004 Japan Patent Information Organization. All rights reserved. Dialog® File Number 347 Accession Number 5101463

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-186930

(43)公開日 平成6年(1994)7月8日

(51)Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

G 0 9 G 3/32

7335-5G

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号

特願平4-335732

(22)出願日

平成 4年(1992)12月16日

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72)発明者 古野 健一

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72) 発明者 平 弘雪

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 小鍜治 明 (外2名)

(54)【発明の名称】 LED表示装置の点灯方法

(57) 【要約】

【日的】 LED表示装置において、LEDの点滅で電流量が変動することに起因して発生する電源ラインのスパイクノイズ及び不要輻射を低減する。

【構成】 緑色LED用の消灯信号Genと赤色LED用の消灯信号Renを定め、消灯信号Genの発生時刻を消灯開始信号Enの発生時刻と同期させ、消灯信号Renの発生時刻を消灯開始信号Enの終了時刻と同期させる。これにより消灯信号GenとRenの発生時刻がずれて、消灯信号と同時に変動する電流量の変動時刻が分散し、一時刻に変動する電流量が低減する。

【効果】 一時刻に変動する電流量が従来の2分の1になり、電流量変動に起因して発生する電源ラインのスパイクノイズの振幅も2分の1に減少して、品質が向上する。

【特許請求の範囲】

【請求項1】 複数個のLEDをマトリックス状に配置した多色発光可能なLED表示装置を点灯するに際して、発光色毎に消灯時間を制御する消灯信号を定め、かつ、全ての消灯信号の消灯開始時刻が一致しないことを特徴とするLED表示装置の点灯方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はLEDを点灯させて情報を表示するLED表示装置に関する。

[0002]

【従来の技術】LED表示装置は、LEDの光を用いて 文字や図形を表示する情報表示盤に組み込まれるもので あり、複数個のLED表示装置を平面的に配置して大画 面の情報表示盤を構成するものである。

【0003】LED表示装置の構成を図3を用いて説明する。図3は、一般的なLED表示装置の正面・側面の略図である。1はLEDであり、本例では16×16のマトリックス状に256個のLED1が表示用基板3に並べられており、外装ケース2がはめられて表示画面をなす。表示画面の裏面には、LEDの表示を制御する回路素了が配置された駆動川基板4が取り付けられた構造となっている。

【0004】LED表示装置にはLEDの点灯方法により、マトリックスの一列もしくは一行毎に点灯不点灯を繰り返すダイナミック点灯タイプと、 画面毎に点灯不点灯を行うスタティック点灯タイプがある。ダイナミック点灯タイプの場合、図3のY1行のLEDが点灯しているとき他のY2~Y16行のLEDは消灯し、次にY1行が消灯すると同時にY2行が点灯する。このように 30点灯行が次々とスキャンしY16行まで点灯が移行するとY1行へもどるという点灯順序で画像を表示する。

【0005】ここで情報表示盤は多数のLED表示装置の集合体で一画面を成すわけであるので、画面上は輝度が均一であることが条件となる。そのため一台のLED表示装置内に取り付けるLEDは同ランク輝度のものを使用するが、多色のLEDを使用して構成するLED表示装置の場合、色による輝度の差が生じるため、色毎に点灯時間を変更することによって、色間の輝度及び情報表示盤を構成する各LD表示装置間の輝度を揃えている。

【0006】ダイナミック点灯タイプにおける赤色と緑色の二色発光のLED情報表示装置を例にして、点灯時間制御及び輝度調整について説明する。図2は従来のLED表示装置のタイミング図である。Enは消灯開始を示す信号で消灯開始信号Enの立ち上がりから次の立ち上がりまでが一行もしくは一列の点灯周期となる。またRenは赤色用の消灯信号、Genは緑色用の消灯信号であり、前述の色毎の点灯時間間御を行う信号である。
消灯信号がHの時LEDは消灯し、Lの時LEDは点灯 50 目的とする。

するように構成されている。そして一周期の中で日期間が短くなれば点灯時間が長くなり輝度は上昇し、日期間が長くなれば点灯時間が短くなり輝度は低下する。二色間の輝度調整は、輝度の低い色の消灯信号の日期間を短くしてLEDの点灯時間を長くし、逆に輝度の高い方の消灯信号の日期間を長くしLEDの点灯時間を短くして

両色の輝度が同等になるように制御する。

【0007】次に前記多色のLED表示装置のLED点灯に要する電流に着日する。図2で赤色LEDに流れる 10 電流量をIr,緑色LEDに流れる電流量をIgとし、電流量の変動を時間経過に沿って説明する。時刻t0で消灯開始信号Enが1パルス入り、時刻t1でEnがLに戻ると同時に消灯信号Gen,RenがHになる。それまで電源ラインに流れる電流量Iは、Ig+Irであったのが、赤緑共に消灯することで一気にI=0に変化する。次に時刻t2でGenがLとなり緑色LEDが点灯して電源ラインにI=Igが流れ、時刻t3でRenがLとなり赤色LEDが点灯してIrが加算されたI=Ig+Irが流れる。そして時刻t0'で消灯開始信号 20 Enのパルスが入ることによって一周期が終わる。

[0008]

【発明が解決しようとする課題】通常電流量Iは多数個のLEDを点灯する量であり、数アンペアから数十アンペアという値であるため、それが一気に変動すると電圧ラインVnにスパイクノイズを発生してしまう。

【0009】ここでスパイクノイズの発生メカニズムを 説明する。図4は16×16ドットのLED表示装置の 等価回路である。Lは電源ラインのインダクタンス成分 を示す。図4の等価回路よりノイズの電圧は近似的に数 1で示される。

[0010]

【数1】

$$V n = L \frac{d I}{d t} (V)$$

【0011】実際のLED表示装置ではIr, Igはほぼ等しく、また電流が流れ出す瞬間よりも切れる瞬間の方がノイズの最大振幅が大きいことから電源ラインに流れる電流がI=Ir+1gからI=Ir+1gからI=Ir+1gからI=Ir+1gからI=Ir+1gからこれを示したのが図2のr0

【0012】前述のメカニズムから、LEDの点灯・消灯の瞬間の電流変動時に、電圧に2種類の振幅の大きいスパイクノイズが発生するわけである。振幅の大きい方のノイズは、ロジック系駆動回路等に悪影響を及ぼし誤動作や表示のちらつきの要因となっている。

【0013】木発明は前記課題を解決するもので、電流 変動時に電源ラインに発生するスパイクノイズの低減を 目的とする。 3

[0014]

【課題を解決するための手段】本発明は前記目的を達成するために、発光色毎に消灯時間を制御する消灯信号を定め、全ての消灯信号の消灯開始時刻が 致しないように制御し、消灯信号と連動して変動する各発光色の電流の変動時刻を分散するものである。

[0015]

【作用】 上記手段により電流変動時刻が分散されるので、一時刻に発生する電流変動量は、発光色数分の1となり、これにより電流変動時に発生するスパイクノイズ 10の振幅も従来の発光色数分の1になる。

[0016]

【実施例】本発明の一実施例を以下に説明する。図1は 木発明の一実施例である赤・緑色の2色発光のLED表 示装置のタイミング図である。図1で、Enは消灯開始 信号、Genは緑色用の消灯信号、Renは赤色用の消 灯信号である。木例では、電流値を同じにしたとき赤色 LEDより緑色LEDの方が輝度が低いため、緑色LE Dと赤色LEDの輝度が等しくなるようにGenのH期 間が知く設定されている。また木例ではGenはEnの 20 立ち上がりと同時にH期間となり、RenはEnの立ち 下がりと同時にH期間となり、同時刻にH期間にならな いように設定されている。ここで図1を時間経過に沿っ て説明する。時刻tOの時EnがHになると同時にGc nもHになる。するとそれまでIg+Irであった電流 Iは、緑色LEDが消灯するため、Igだけ少なくなり Irとなる。次に時刻t1で、En信号がLとなり、か つ、RenがHとなり赤色LEDが消灯する。そのため 電流量 | は | r だけ減少し0となる。このときの電流変 動量はIrである。そして、GcnがH期間を過ぎ、時 30 刻t2で緑色LEDが点灯してI=Igとなる。さらに 時刻 t 3 でR e n が消灯のH期間を過ぎ赤色LEDが点 灯してIrが加算されI=Ig+Irとなる。

【0017】このときの一時刻に変動する電流量は、時刻 t 0、t 2での l g もしくは時刻 t 1, t 3での l r すなわち I g + I r の約半量であり、従来のように一度に I g + I r が変動することはない。そのため、電流変助時に発生していた V n のスパイクノイズも最大振幅が半分になる。

【0018】以上のようにEnの立ち上がりと立ち下が 40 りを利用して消灯信号Renと消灯信号GenのH期間 への変動時刻を異ならせることにより、一時刻に変動す

る電流量を従来の半分程度に出来、従って電流量変動時に発生するVnのスパイクノイズの最大振幅を半分程度にすることが出来る。

【0019】ここでEnの立ち上がり、立ち下がり時刻にRcn、Gcnの変動タイミングを合わせたが、それ以外の時刻に設定しても構わない。また、上記では2色のLEDを搭載したLED表示装置の例を説明したが、3色以上のLEDを用いたマルチカラーLED表示装置の場合でも、各色に応じた消灯信号を消灯開始信号Enからある一定時間遅延させて順次発生させるように消灯開始信号生成回路を制御すれば、同等の効果が得られることはいうまでもない。さらに2色のLED表示装置でも、各色を2グループに分ける等LEDグループの分割数を増やし一変動でオンオフするLEDの数を減らせば、さらに効果が上がるものである。

【0020】なお、本実施例ではダイナミック点灯タイプのLED表示装置について説明したが、スタティック点灯タイプのLED表示装置についても同様に実現できる。

0 [0021]

【発明の効果】各色の消灯信号の消灯開始時刻を異ならせ、電流変動を分散させることで、電圧ラインVnに発生するスパイクノイズの最大振幅を従来の半分に削減できるので、スパイクノイズによるロジック系駆動回路の誤動作が防げ、また表示のちらつきも防止でき、品質が高く信頼性に富んだLED表示装置を提供できる。さらに、品質の向上によりEMCに関する法的規制への適合も可能になる。

【図面の簡単な説明】

② 【図1】本発明の一実施例のLED表示装置のタイミング図

【図2】従来のLED表示装置のタイミング図

【図3】 LED表示装置の概略図

【図4】16×16ドットのLED表示装置の等価回路 【符号の説明】

En 消灯開始信号

Ren 赤色LED用消灯信号

Gen 緑色LED用消灯信号

Ir 赤色LEDの電流量

O Ig 緑色LEDの電流量

I 総電流量

Vn 電圧ライン

-3-

【図3】

【図4】

