Stochastic Optimal Control

How to navigate with noise

Hooman Zare

SUT

August 8, 2025

Motivation & Backstory

- Examples: autopilot in gusts, central bank under shocks, robotic navigation with noisy sensors.
- Core operational question: choose an adaptive policy to minimize expected cumulative cost.
- Two parallel historical strategies:
 - ① Dynamic Programming (Bellman) → HJB PDE.
 - ② Variational / Maximum Principle (Pontryagin) \rightarrow adjoint BSDEs.

Stochastic Optimal Control

Problem statement — dynamics and cost (precise)

Probability space: $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{0 \le t \le T}, \mathbb{P})$ with *m*-dim Brownian motion W_t .

State (SDE):

$$dX_s = b(s, X_s, u_s) ds + \sigma(s, X_s, u_s) dW_s, \qquad X_t = x.$$

Cost functional:

$$J(t,x;u) = \mathbb{E}\Big[\int_t^T f(s,X_s,u_s) ds + g(X_T)\Big],$$
$$V(t,x) := \inf_{u \in \mathcal{A}} J(t,x;u)$$

Definitions:

Hooman Zare (SUT)

- $b: [0,T] \times \mathbb{R}^n \times U \to \mathbb{R}^n$ (drift).
- $\sigma: [0, T] \times \mathbb{R}^n \times U \to \mathbb{R}^{n \times m}$ (diffusion).
- f running cost, g terminal cost.
- $U \subset \mathbb{R}^k$ control set; A admissible controls (progressively measurable, so Stochastic Optimal Control

August 8, 2025

3/52

Admissible controls vs Policies (Intuition)

- **Open-loop control:** any adapted process u_t may depend on other randomness.
- Policy / feedback: mapping $\pi:[0,T]\times\mathbb{R}^n\to U$, implement $u_t=\pi(t,X_t)$.

Why policies? Markov policies are attractive: closed-loop stability, implementability, DPP often yields Markov optimal policies.

Dynamic Programming Principle (DPP)

Theorem (DPP (informal))

For any stopping time au with $t \leq au \leq T$,

$$V(t,x) = \inf_{u \in \mathcal{A}} \mathbb{E} \Big[\int_t^\tau f(s, X_s^{t,x,u}, u_s) \, ds + V(\tau, X_\tau^{t,x,u}) \Big].$$

Intuition: optimal control splits: optimize on $[t,\tau]$ and then act optimally from τ onward. **Technical remarks:** requires measurability and

concatenation properties of admissible controls; see Fleming-Soner.

Itô's formula (reminder)

If $\phi \in \mathcal{C}^{1,2}([0,T] imes \mathbb{R}^n)$ then along SDE $dX_s = b\,ds + \sigma\,dW_s$,

$$d\phi(s, X_s) = (\phi_t + \mathcal{L}\phi)(s, X_s) ds + (\nabla_x \phi)^{\top} \sigma dW_s,$$

where

$$\mathcal{L}\phi = b \cdot \nabla_{\mathbf{x}}\phi + \frac{1}{2}\operatorname{tr}(\sigma\sigma^{\top}D_{\mathbf{x}}^{2}\phi).$$

Note: the stochastic integral has zero expectation (martingale) under standard integrability.

Derivation: DPP \Rightarrow HJB (step 1)

Start: for small h > 0 using DPP,

$$V(t,x) = \inf_{u \in \mathcal{A}} \mathbb{E} \Big[\int_t^{t+h} f(s,X_s,u_s) \, ds + V(t+h,X_{t+h}) \Big].$$

Apply Itô to $V(t+h, X_{t+h})$:

$$V(t+h,X_{t+h})-V(t,x)=\int_t^{t+h}\big(V_t+\mathcal{L}^{u_s}V\big)(s,X_s)\,ds+\int_t^{t+h}(\nabla_xV)^\top\sigma\,dW_s.$$

Take expectation: the martingale term disappears.

Derivation: DPP \Rightarrow HJB (step 2)

Divide by h, let $h \downarrow 0$, and use continuity to obtain (for classical V):

$$0 = \inf_{u \in U} \{ f(t, x, u) + V_t(t, x) + \mathcal{L}^u V(t, x) \}.$$

Rearranged (backward PDE):

$$-V_t(t,x) = \inf_{u \in U} \left\{ f + b \cdot \nabla_x V + \frac{1}{2} \operatorname{tr}(\sigma \sigma^\top D_x^2 V) \right\}.$$

This is the Hamilton-Jacobi-Bellman (HJB) PDE.

HJB — Anatomy and meaning

- \bullet $-V_t$: how the minimal future cost changes moving backward in time.
- *f*: immediate running cost (infinitesimal).
- $b \cdot \nabla_x V$: deterministic drift's first-order effect on continuation value.
- $\frac{1}{2} \operatorname{tr}(\sigma \sigma^{\top} D_{x}^{2} V)$: diffusion's second-order (variance) effect curvature matters.
- $\inf_{u \in U} \{\cdots\}$: choose control that minimizes immediate + infinitesimal expected *change* in value.

Assumptions: what we used and why

- **1 Regularity of** $V: V \in C^{1,2}$ to apply Itô pointwise.
- **3 SDE well-posedness:** b, σ Lipschitz in x (uniform in u) \Rightarrow unique strong solution.
- Integrability: growth conditions to justify martingale expectation =
 0 and dominated convergence.
- Control set: U measurable; for pointwise minimization require continuity in u or measurable-selection.

Remark: if V not $C^{1,2}$ we use viscosity-solution framework (Part 3/4).

Next steps

- Classical Verification Theorem statement and detailed proof.
- Existence of optimal controls measurable selection, relaxed controls (Young measures).
- Stinear-Quadratic-Gaussian (LQG) problem: scalar matrix, Riccati ODE and ARE.

Verification Theorem (classical) — statement

Theorem (Verification – classical)

Suppose the following hold:

• $V \in C^{1,2}([0,T] \times \mathbb{R}^n)$ solves HJB:

$$-V_t(t,x)=\inf_{u\in U}\{f+\mathcal{L}^uV\},\qquad V(T,x)=g(x).$$

- **②** For each (t,x) there exists a measurable selector $\hat{u}(t,x) \in U$ achieving the infimum.
- **3** The closed-loop SDE under $\hat{u}(s, X_s) =: \hat{u}(s, X_s^{t,x})$ has a unique strong solution.

Then the feedback $\hat{u}(s, X_s)$ is optimal and $V(t, x) = J(t, x; \hat{u})$.

Verification — proof (step 1)

Goal: show $J(t, x; \hat{u}) = V(t, x)$ and $J(t, x; u) \ge V(t, x)$ for any $u \in A$.

Step 1: Ito on $V(s, X_s^{\hat{u}})$:

$$dV(s,X_s^{\hat{u}}) = (V_s + \mathcal{L}^{\hat{u}}V)(s,X_s^{\hat{u}}) ds + (\nabla_x V)^{\top} \sigma(\cdot) dW_s.$$

Use HJB equality at the minimizing control:

$$V_s + \mathcal{L}^{\hat{u}}V + f(\cdot, \hat{u}) = 0.$$

Integrate and take expectations to obtain $V(t, x) = J(t, x; \hat{u})$.

Verification — proof (step 2)

Step 2: For arbitrary $u \in \mathcal{A}$, apply Ito to $V(s, X_s^u)$:

$$V(T,X_T^u)-V(t,x)=\int_t^T \big(V_s+\mathcal{L}^uV\big)(s,X_s^u)\,ds+M_T-M_t.$$

Using HJB (infimum) yields $V_s + \mathcal{L}^u V + f \ge 0$. Taking expectation:

$$V(t,x) \leq \mathbb{E}\Big[\int_t^T f(s,X_s^u,u_s)\,ds + g(X_T^u)\Big] = J(t,x;u).$$

Conclude V is the minimal cost and \hat{u} optimal.

Remarks and caveats

- Smoothness $(C^{1,2})$ is strong often fails; viscosity theory handles nonsmooth V.
- Existence of measurable minimizer may require compactness/continuity; otherwise use measurable selection theorems.
- The martingale term expectation = 0 uses integrability (square-integrable gradients).
- Verification provides a certificate: if you can solve HJB, you can verify optimality.

Existence of optimal controls (I): measurable selection

Idea: if U compact and the Hamiltonian $\mathcal{H}(t,x,u)=f+\mathcal{L}^uV$ is continuous in u, then the argmin set is nonempty and has measurable selections.

Proposition (informal): If $(t,x) \mapsto \arg\min_{u \in U} \mathcal{H}(t,x,u)$ has closed nonempty values and measurable graph, there exists a measurable selector $\hat{u}(t,x)$.

(Kuratowski–Ryll-Nardzewski measurable selection theorem)

Existence of optimal controls (II): relaxed controls

Problem: minimizing sequences of controls may oscillate; no pointwise limit in U.

Solution: allow controls to be probability measures on U at each time: $\mu_t \in \mathcal{P}(U)$. The dynamics use averages:

$$b^{\mu}(t,x)=\int_{U}b(t,x,u)\,\mu(du),\quad f^{\mu}(t,x)=\int_{U}f(t,x,u)\,\mu(du).$$

Theorem (informal): in many settings minimizing relaxed controls exist; under convexity one can recover ordinary controls.

Relaxed controls — intuition

- View a relaxed control as randomized instantaneous action the law of the control is chosen adaptively.
- Compactness: space of probability measures on compact U is compact (Prokhorov).
- Lower semi-continuity of cost yields existence by direct method in calculus of variations.
- If Hamiltonian is convex in *u*, the barycenter of the measure is admissible and optimality can be recovered.

Why LQG? A solvable core

- LQG (Linear dynamics + Quadratic costs + Gaussian noise) is the canonical exactly-solvable model.
- It illustrates HJB \rightarrow Riccati reduction, PMP equivalence, and gives explicit feedback.
- Provides intuition about stability, certainty-equivalence, and role of noise.

Scalar LQG: model and cost

Dynamics (scalar):

$$dX_t = aX_t dt + bu_t dt + \sigma dW_t, \qquad X_0 = x.$$

Quadratic cost:

$$J(u) = \mathbb{E}\Big[SX_T^2 + \int_0^T (QX_t^2 + Ru_t^2) dt\Big],$$

with constants $Q \ge 0$, R > 0, $S \ge 0$.

Ansatz:
$$V(t, x) = P(t)x^2 + r(t)$$
.

Riccati derivation (scalar) — main steps

- Compute $V_t = P'x^2 + r'$, $V_x = 2Px$, $V_{xx} = 2P$.
- Generator:

$$\mathcal{L}^{u}V = (ax + bu)2Px + \frac{1}{2}\sigma^{2}2P = 2aPx^{2} + 2bPxu + P\sigma^{2}.$$

- HJB minimization in u yields first-order condition $2Ru + 2bPx = 0 \Rightarrow u^* = -\frac{bP}{R}x$.
- Riccati ODE:

$$-P' = Q + 2aP - \frac{b^2}{R}P^2$$
, $P(T) = S$.

Matrix LQG and matrix Riccati ODE

Dynamics:

$$dX_t = AX_t dt + Bu_t dt + \sum dW_t, \qquad X \in \mathbb{R}^n.$$

Cost:

$$J(u) = \mathbb{E}\Big[X_T^\top S X_T + \int_0^T (X_t^\top Q X_t + u_t^\top R u_t) dt\Big],$$

with $Q, S \succeq 0$, $R \succ 0$.

Matrix Riccati ODE:

$$-\dot{P} = Q + A^{\top}P + PA - PBR^{-1}B^{\top}P, \quad P(T) = S,$$

and optimal feedback $u^* = -R^{-1}B^{\top}P(t)X_t$.

LQG intuition and demo placeholders

- P(t) measures marginal cost-per-unit quadratic state: bigger $P \Rightarrow$ stronger control.
- Closed-loop drift becomes $A BR^{-1}B^{\top}P$; ensure stability.
- Graph in my pc

Next steps

- Viscosity solutions: motivation, definition, and proof that value function is a viscosity solution (DPP ⇒ viscosity).
- Omparison principle (sketch) and uniqueness; consequences.
- Numerics: monotone schemes and Barles-Souganidis theorem (semi-Lagrangian).
- Stochastic Pontryagin Maximum Principle (PMP): full derivation, adjoint BSDE, stationarity, sufficiency, FBSDE.
- BSDE
 → PDE connections (Pardoux-Peng) and limits for fully nonlinear HJB.

Why viscosity solutions?

- HJB is fully nonlinear, second-order; classical $C^{1,2}$ solutions may not exist.
- Value functions often have kinks (nonsmooth) due to control switching, boundaries, or degeneracy.
- Viscosity theory gives:
 - a robust weak solution notion,
 - stability under uniform limits,
 - a comparison principle \Rightarrow uniqueness.

Definition: viscosity sub-/supersolution

Let F(t, x, p, X) denote the PDE operator. For HJB,

$$-V_t + F(t, x, \nabla V, D^2 V) = 0, \qquad F(t, x, p, X) = \sup_{u \in U} \left\{ -f - b \cdot p - \frac{1}{2} \operatorname{tr}(\sigma \sigma^\top X) \right\}$$

Definition

V is a viscosity subsolution if whenever $\phi \in C^{1,2}$ and $V-\phi$ has a local maximum at (\bar{t},\bar{x}) ,

$$-\phi_t(\bar{t},\bar{x})+F(\bar{t},\bar{x},\nabla\phi,D^2\phi)\leq 0.$$

Analogous definition for *supersolution* (with local minimum and ≥ 0). If both, V is a viscosity solution.

Proof sketch: DPP $\Rightarrow V$ is viscosity subsolution

Idea: take test function ϕ touching V from above at (t_0, x_0) . Use DPP on a short interval $[t_0, t_0 + h]$, replace V by ϕ (since $\phi \geq V$ nearby), apply Itô to ϕ , divide by h, let $h \downarrow 0$ and obtain the inequality.

Key points:

- Need local maximum and control of exit times from neighborhood.
- Martingale term expectation disappears.
- Justifies the viscosity inequality (no classical derivatives of V required).

$\mathsf{DPP} \Rightarrow V$ is viscosity supersolution (sketch)

Similar argument but use ε -optimal controls and test functions touching from below. Carefully build concatenation using ε -optimal controls to get the opposite inequality.

Comparison principle — statement and sketch

Theorem (Comparison (informal))

Let u be bounded upper-semicontinuous viscosity subsolution and w bounded lower-semicontinuous viscosity supersolution of the HJB. Under standard structure/continuity conditions, $u \le w$ on $[0, T] \times \mathbb{R}^n$.

Sketch of proof:

- Consider $\Phi_{\varepsilon}(t,x,s,y) = u(t,x) w(s,y) \frac{|x-y|^2}{2\varepsilon} \frac{|t-s|^2}{2\varepsilon}$.
- Let maximum occur at $(\bar{t}, \bar{x}, \bar{s}, \bar{y})$ and use Crandall–Ishii lemma to obtain jets.
- Use sub- and supersolution inequalities and send $\varepsilon \downarrow 0$.

(Technical details in Crandall-Ishii-Lions.)

Consequences

- By DPP we know V is a viscosity solution; comparison gives uniqueness ⇒ V is the unique viscosity solution.
- Numerical methods that converge to the unique viscosity solution are meaningful.
- Comparison requires structural conditions e.g., continuity of coefficients, properness (degenerate ellipticity).

Numerical schemes Barles-Souganidis theorem

Barles-Souganidis (1991, informal): a numerical scheme that is consistent, stable, and monotone converges uniformly (on compacts) to the unique viscosity solution of the PDE.

Implications for control:

- Semi-Lagrangian schemes are monotone consistent for HJB (good for diffusion).
- Finite-difference schemes must be constructed carefully (upwind, monotone interpolation).

Semi-Lagrangian scheme (idea)

For small Δt ,

$$V(t,x) \approx \min_{u \in U} \Big\{ f(t,x,u) \Delta t + \mathbb{E} \big[V(t+\Delta t, X_{t+\Delta t}^{t,x,u}) \big] \Big\}.$$

Approximate expectation by quadrature and use interpolation for the off-grid points. This yields a monotone update and (by Barles–Souganidis) converges to viscosity solution.

Transition to stochastic PMP

- Viscosity theory gives existence/uniqueness of V even when nonsmooth.
- PMP yields necessary conditions via adjoint processes (BSDEs) constructive and useful for high-dimensional or model-based control.
- We now derive the stochastic maximum principle via first variations.

PMP setup: first variation (notation)

Fix an admissible control u^* and corresponding state X^* . Consider a variation $u^\varepsilon=u^*+\varepsilon\delta u$ (admissible). Let X^ε be the perturbed state. Define the variational state

$$Y_t := \left. \frac{d}{d\varepsilon} X_t^{\varepsilon} \right|_{\varepsilon=0}.$$

The linearized (variational) SDE will involve derivatives b_x , b_u , σ_x , σ_u evaluated at (t, X_t^*, u_t^*) .

Variational equation for Y

Under smoothness,

$$dY_t = \left(b_x(t)Y_t + b_u(t)\delta u_t\right)dt + \left(\sigma_x(t)Y_t + \sigma_u(t)\delta u_t\right)dW_t, \qquad Y_0 = 0.$$
(Shorthand $b_x(t) = \partial_x b(t, X_t^*, u_t^*)$, etc.)

Gateaux derivative of the cost

The first variation of cost is

$$\left. \frac{d}{d\varepsilon} J(u^{\varepsilon}) \right|_{\varepsilon=0} = \mathbb{E} \Big[\int_0^T \big(f_{\mathsf{x}}(t) \cdot Y_t + f_{\mathsf{u}}(t) \cdot \delta u_t \big) \, dt + g_{\mathsf{x}}(X_T^*) \cdot Y_T \Big].$$

We will remove Y by duality (introduce adjoint p and q).

Adjoint BSDE

Define adjoint pair (p_t, q_t) satisfying backward SDE

$$dp_t = -\left(b_x(t)^\top p_t + \sigma_x(t)^\top q_t + f_x(t)^\top\right) dt + q_t dW_t, \qquad p_T = g_x(X_T^*).$$

Using integration by parts one can express the Y-terms in the variation through p,q and obtain stationarity condition.

Stationarity condition (PMP)

The first-order optimality condition is (pointwise in time)

$$f_u(t) + b_u(t)^{\top} p_t + \sigma_u(t)^{\top} q_t = 0,$$

or equivalently

$$u_t^* = \arg\min_{u \in U} \mathcal{H}(t, X_t^*, u, p_t, q_t),$$

where $\mathcal{H}(t, x, u, p, q) = f + p \cdot b + \operatorname{tr}(q^{\top} \sigma)$.

Sufficiency under convexity

If the Hamiltonian $\mathcal{H}(t,x,u,p,q)$ is convex in (x,u) (or convex in u with appropriate conditions) and the pair (X^*,p,q) satisfies the FBSDE + stationarity, then u^* is optimal. Convexity turns the necessary condition into a global minimum.

Forward-Backward SDEs (FBSDE) and solvability

The optimality system is a coupled FBSDE:

$$\begin{cases} dX_t = b(t, X_t, u_t) dt + \sigma(t, X_t, u_t) dW_t, \\ dp_t = -H_x(t, X_t, u_t, p_t, q_t) dt + q_t dW_t, \\ \text{stationarity } H_u(t, X_t, u_t, p_t, q_t) = 0, \\ X_0 = x, \quad p_T = g_x(X_T). \end{cases}$$

Solvability: existence/uniqueness for nonlinear FBSDEs is delicate; monotonicity (Pardoux–Peng) or contraction arguments are used.

BSDEs ↔ PDEs (Pardoux–Peng)

For semilinear PDEs of form

$$-Y_t = \mathcal{L}Y + F(t, x, Y, \nabla Y\sigma),$$

solutions can be represented via BSDEs: the pair (Y_t, Z_t) solves a BSDE with driver F. This is the nonlinear Feynman–Kac formula (Pardoux–Peng, 1990).

Caveat: fully nonlinear HJB (control enters diffusion nonlinearly) generally requires second-order BSDEs (2BSDEs) or other techniques.

Final Steps

- Worked nonlinear example (1D): HJB, PMP, numerical solution.
- Semi-Lagrangian scheme algorithm and practical tips.
- Policy iteration Howard's algorithm (pseudo-code).
- FBSDE numerical method for PMP (overview).
- Exercises with solution sketches.
- Final recommendations and slide bundle export instructions.

Worked example: 1D nonlinear control (problem)

Model:

$$dX_t = u_t dt + \sigma dW_t, \qquad X_0 = x.$$

Cost:

$$J(u) = \mathbb{E}\Big[\int_0^T \left(x_t^4 + u_t^2\right) dt + SX_T^2\Big].$$

HJB (backward):

$$-V_t = \inf_{u \in [-U,U]} \{ x^4 + u^2 + uV_x + \frac{1}{2}\sigma^2 V_{xx} \}, \qquad V(T,x) = Sx^2.$$

PMP stationarity (formal):

$$2u + V_x = 0$$
 \Rightarrow $u_{PMP}(t,x) = -\frac{1}{2}V_x(t,x)$.

Semi-Lagrangian scheme (idea)

$$V(t,x) \approx \min_{u \in U} \Big\{ f(x,u) \Delta t + \mathbb{E} \big[V(t+\Delta t, X_{t+\Delta t}^{t,x,u}) \big] \Big\}.$$

- compute $\mu = x + u\Delta t$,
- approximate $\mathbb{E}[V(\mu + \sigma\sqrt{\Delta t}Z)]$ with quadrature (e.g., two-point symmetric),
- interpolation for off-grid values must be monotone (linear).

Placeholder: show numerical plot of V(0,x) and comparison of HJB control vs PMP control.

Semi-Lagrangian pseudo-code

Inputs: grid x_i , time steps t_n , control grid u_j , terminal $V_i^N = Sx_i^2$.

For $n = N - 1 \to 0$:

- For each i and each u_j compute $\mu = x_i + u_j \Delta t$.
- 2 Compute quadrature nodes $y_k = \mu + \sigma \sqrt{\Delta t} z_k$ and weights w_k .
- **3** Interpolate V^{n+1} at y_k (monotone interpolation).
- **1** Set $cost_j = (x_i^4 + u_j^2)\Delta t + \sum_k w_k V^{n+1}(y_k)$.

Output: V_i^0 and policy table.

Practical tips for semi-Lagrangian

- Use monotone (piecewise linear) interpolation to preserve convergence.
- Control grid: refine near expected optimal region; allow adaptive control discretization.
- Quadrature: 2-point symmetric often sufficient for small Δt ; Gauss–Hermite for higher accuracy.
- Domain truncation: choose $x \in [x_{\min}, x_{\max}]$ wide enough so probability of leaving is negligible.
- Time step: CFL not strict for SL, but Δt affects consistency and error.

Policy iteration (Howard) — pseudo-code

Inputs: initial policy $u^0(t_n, x_i)$.

Repeat until convergence:

- **Operation:** For fixed u^k , solve linear equation for V^k (backward in time or linear system).
- **2 Policy improvement:** For each (t_n, x_i) set

$$u^{k+1}(t_n, x_i) = \arg\min_{u} \{f(x_i, u)\Delta t + \mathbb{E}[V^k(t_{n+1}, X^u_{t_{n+1}})]\}.$$

Remarks: often converges faster than value iteration; evaluation step may be linear solve.

FBSDE / PMP numerical approach (overview)

- Solve forward SDE for X with guessed control u.
- Solve backward BSDE for (p, q) given X (e.g., backward regression Monte Carlo).
- Update control via stationarity $u = \arg \min \mathcal{H}(\cdot, p, q)$ (or gradient step).
- Iterate until convergence (policy update loop).

Remarks: regression basis or neural nets are commonly used to represent conditional expectations in high dimension.

Worked numerical experiment (recommended parameters)

Example parameters (recommended):

$$\sigma = 0.8, \quad S = 1.0, \quad T = 0.6, \quad x \in [-3, 3], \quad N_x = 401, \quad N_t = 120, \quad u \in [-3, 3],$$

Diagnostics to show:

- V(0,x) plot,
- HJB-derived discrete policy vs PMP $u = -\frac{1}{2}V_x$ plot,
- simulation under both policies: empirical cost comparison.

Placeholder: include earlier computed plots here.

Exercises (with solution sketches)

Derive the scalar Riccati ODE for LQG and show how PMP gives the same feedback via $p_t = 2P(t)X_t$. Implement the semi-Lagrangian scheme for the 1D example; show convergence as $\Delta t, \Delta x \to 0$. Using PMP, set up the FBSDE system for the 1D example and sketch a numerical iteration scheme to solve it.

Solutions (sketches)

Ex 1 (Riccati): (Sketch) plug $V = P(t)x^2 + r(t)$ into HJB, minimize in u, get $-P' = Q + 2aP - (b^2/R)P^2$. PMP: adjoint $p_t = 2P(t)X_t$ satisfies adjoint BSDE; stationarity yields same u^* .

Ex 2 (SL implementation): (Sketch) use grids, interpolation, 2-point quadrature, compute V^n backward; check monotone interpolation and decrease Δt , Δx .

Ex 3 (FBSDE): (Sketch) forward simulate X with guessed u; backward regression to estimate p, q; update u via stationarity; iterate.

Final recommendations and slide bundle

- Combine Parts 1–4 into one Beamer file or keep as four modules.
- Replace placeholder images with plotted PNGs (generated by your code).
- For handout: export as PDF and include code appendix (Jupyter notebook).
- For a 90–120 min lecture pick selections: prefer live derivation + one numerical demo.

References and further reading: Fleming & Soner; Yong & Zhou; Crandall–Lions; Pardoux–Peng; Barles–Souganidis.