

Falls $\|\cdot\|$ all die Eigenschaften einer Norm erfüllt außer

$$||x|| = 0 \Rightarrow x = 0,$$

dann heißt $\|\cdot\|$ Halbnorm.

4 Antwort

Eine Folge (x_n) des normierten Raums X konvergiert gegen ein $x \in X$, falls

$$||x_n - x|| \xrightarrow[n \to \infty]{} 0.$$

Sei X ein Vektorraum über $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Eine Abbildung $\|\cdot\| \colon X \to \mathbb{R}_+$ heißt **Norm**, falls

$$(N1) \quad \|x\| \geq 0, \quad \|x\| = 0 \iff x = 0$$

$$(N2) \quad \|\lambda x\| = |\lambda\|x\|$$

$$(N3) ||x+y|| \le ||x|| + ||y||$$

3

Antwort

Die Menge $U_X = \{x \in X : ||x|| \le 1\}$ heißt **Einheitskugel**.

Lin. Op. auf BR	<u># 5</u>	2 - Normierte Räume	Lin. Op. auf BR	<u># 6</u>	2 - Normierte Räume
umge	ekehrte Dreiecksungle	ichung		äquivalente Normen	
Lin. Op. auf BR	# <u>7</u>	2 - Normierte Räume	Lin. Op. auf BR	# 8	2 - Normierte Räume
	Normen + endlich d Vektorraum			Normen + unendlich vektorraum	

Zwei Normen $\|\cdot\|_1, \|\cdot\|_2$ heißen **äquivalent** auf X, falls es $0 < m, M < \infty$ gibt, so dass für alle $x \in X$ gilt:

 $m||x||_2 \le ||x||_1 \le M||x||_2$

8 Antwort

Im unendlich dimensionalen Fall sind die Normen $\|\cdot\|_p$ auf $\mathbb F$ nicht äquivalent.

Sei z.B. o.B.d.A. p > q und setze

$$x_n := \sum_{j=2^n+1}^{2^{n+1}} j^{-\frac{1}{p}} e_j, \ e_j = (\delta_{ij})_{i \in \mathbb{N}}$$

Für zwei Elemente $x,y\in (X,\|\cdot\|)$ in normierten Räumen gilt auch die **umgekehrte Dreiecksungleichung**

$$(|||x|| - ||y||| \le ||x - y||)$$

7 Antwort

Auf einem endlich dimensionalen Vektorraum sind alle Normen äquivalent.

Wir definieren den Folgenraum mittels

$$\mathbb{F} = \{(x_n) \in \mathbb{K}^{\mathbb{N}} : x_i = 0 \text{ bis auf endlich viele } n \in \mathbb{N} \}$$

und $e_j = (0, \dots, 0, 1, 0, \dots, 0)$ der j-te Einheitsvektor in \mathbb{F} , wobei die 1 an j-ter Stelle steht.

12

Antwort

Hölder-Ungleichung mit $\frac{1}{p} + \frac{1}{p'} = 1$ gilt;

$$\sum_{i=1}^{\infty} |x_i| |y_i| \le \left(\sum_{i=1}^{\infty} |x_i|^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{\infty} |y_i|^{p'} \right)^{\frac{1}{p'}}$$

Für zwei Normen $\|\cdot\|_1, \|\cdot\|_2$ auf X sind äquivalent:

- a) $\|\cdot\|_1, \|\cdot\|_2$ sind äquivalent
- b) Für alle $(x_n)_n \subset X$, $x \in X$ gilt $||x_n x||_1 \to 0 \iff ||x_n x||_2 \to 0$
- c) Für alle $(x_n)_n \subset X$ gilt $||x_n||_1 \to 0 \iff ||x_n||_2 \to 0$
- d) Es gibt Konstanten $0 < m, M < \infty$, so dass

$$mU_{(X,\|\cdot\|_1)} \subseteq U_{(X,\|\cdot\|_2)} \subseteq MU_{(X,\|\cdot\|_1)}$$

11

Antwort

 ${\bf Minkowski-Ungleichung:}$

$$\left(\sum_{i=1}^{\infty} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{\infty} |y_i|^p\right)^{\frac{1}{p}}$$

Lin. Op. auf BR	<u># 13</u>	2 - Normierte Räume	Lin. Op. auf BR	<u># 14</u>	2 - Normierte Räume
äquivalente Norm	en + unendlich din	nensionale Räume	Raum der besch	ränkten, m-fach stet Funktionen	ig differenzierbaren
Lin. Op. auf BR	<u># 15</u>	2 - Normierte Räume	Lin. Op. auf BR	<u># 16</u>	3 - Beschr. und lin. Op.
	Quotientenraum			Beschränkte Meng	je

Antwort

Definiere

$$C_b^m(\Omega) := \{ f \colon \Omega \to \mathbb{R} : D^{\alpha} f \text{ sind für alle } \alpha \in \mathbb{N}^n \text{ stetig}$$
 und beschränkt auf $\Omega, |\alpha| \le m \}.$

und versehen ihn mit der Norm

$$||f||_{C_b^m} := \sum_{|\alpha| \le m} ||D^{\alpha} f||_{\infty}$$

Äquivalent dazu ist die Norm

$$||f||_0 = \sum_{i=0}^{m-1} |f^{(i)}(0)| + ||f^{(m)}||_{\infty}$$

16 Antwort

Eine Teilmenge V eines normieren Raums $(X, \|\cdot\|)$ heißt **beschränkt**, falls $c \coloneqq \sup_{x \in V} \|x\| < \infty$, und damit auch $V \subset cU_{(X, \|\cdot\|)}$.

Im unendlich dimensionalen Fall sind die Normen $\|\cdot\|_p$ auf $\mathbb F$ nicht äquivalent.

Bsp.: sei o.B.d.A. p > q und setze

13

$$x_n := \sum_{j=2^{n+1}}^{2^{n+1}} j^{-\frac{1}{p}} e_j, e_j = (\delta_{ij})_{i \in \mathbb{N}}$$

15

Antwort

Sei $(X, \|\cdot\|)$ ein normierter Raum und $M \subset X$ sei abgeschlossener (d.h. für alle $(x_n) \in M, \|x_n - x\| \to 0 \Rightarrow x \in M$), linearer Unterraum. Definiere $\hat{X} := X/M$, dann ist $\hat{x} \in X/M$:

$$\hat{x} = \{ y \in X : y - x \in M \} = x + M$$

Dabei gilt unter anderem $\hat{x}_1 + \hat{x}_2 = \widehat{x_1 + x_2}$ und $\lambda \hat{x}_1 = \widehat{\lambda x_1}$; \hat{X} bildet somit einen Vektorraum.

Definieren wir eine Norm für die Äquivalenzklassen mittels

$$\|\hat{x}\|_{\hat{X}} := \inf\{\|x - y\|_X : y \in M\} =: d(x, Y)$$

 $(\hat{X}, \|\cdot\|_{\hat{X}})$ ein normierter Raum.

Seien $X,\,Y$ normierte Räume. Für einen linearen Operator $S:X\to Y$ sind äquivalent:

- a) T stetig, d.h. $x_n \to x$ impliziert $Tx_n \to Tx$
- b) T stetig in 0
- c) $T(U_{(X,\|\cdot\|)})$ ist beschränkt in Y
- d) Es gibt ein $c < \infty$ mit $||Tx|| \le c||x||$

20

Antwort

Seien X, Y normierte Vektorräume und $T: X \to Y$ linear.

T heißt **Isometrie**, falls

$$||Tx||_Y = ||x||_X, \ \forall x \in X$$

Eine konvergente Folge $(x_n)\in X, x_n\to x$ ist beschränkt, denn $x_m\in\{y:\|x-y\|\le 1\}$ für fast alle m.

19

Antwort

Seien X,Y normierte Räume. Mit B(X,Y) bezeichnen wir den **Vektorraum** der beschränkten, linearen Operatoren $T:X\to Y$. Ist X=Y schreiben wir auch kurz

$$B(X) := B(X, X)$$

 $(B(X,Y),\|\cdot\|)$ ist ebenfalls ein normierter Raum und für X=Y gilt für $S,T\in B(X)$:

$$S \cdot T \in B(X)$$
 und $||S \cdot T|| \le ||S|| ||T||$

Seien X, Y normierte Vektorräume und $T: X \to Y$ linear.

T heißt isomorphe Einbettung, falls T injektiv ist und ein c > 0 existiert mit

$$\frac{1}{c} \|x\|_{X} \le \|Tx\|_{Y} \le c \|x\|_{x}$$

In diesem Fall identifizieren wir oft X mit dem Bild von T in $Y, X \cong T(X) \subset Y$

24 Antwort

Sei X ein normierter Vektorraum. Der Raum

$$X' = B(X, \mathbb{K})$$

heißt **Dualraum** von X oder Raum der linearen Funktionalen.

Seien X, Y normierte Vektorräume und $T: X \to Y$ linear.

T heißt stetige Einbettung, falls T stetig und injektiv ist.

23 Antwort

Seien X,Y normierte Vektorräume und $T:X\to Y$ linear.

Theißt Isomorphismus, falls Tbijektiv und stetig ist und $T^{-1}:Y\to X$ ebenfalls stetig ist.

d.h. falls
$$\exists c > 0 : \frac{1}{c} ||x||_X \le ||Tx||_Y \le c ||x||_X$$

daraus folgt auch für $T^{-1}:Y\to X$ aus der ersten Ungl.:

$$||T^{-1}y||_X \le c||T(T^{-1}y)||_Y = c||y||_Y$$
, d.h. T^{-1} ist stetig.)

In diesem Fall identifizieren wir $X \cong Y$ und sagen X und Y sind isomorph.

Eine Folge $(x_n)_{n\geq 1}\subset M$ konvergiert gegen $x\in M$, falls

$$d(x_n, x) \to 0$$
 für $n \to \infty$

Notation: $x = \lim_{n \to \infty} x_n$ (in M)

28 Antwort

Sei (M,d) ein metrischer Raum. Eine Teilmenge $A\subset M$ heißt **abgeschlossen** (in M), falls für alle in M konvergenten Folgen $(x_n)_{n\geq 1}\subset A$ der Grenzwert von (x_n) in A liegt

Sei M eine nichtleere Menge. Eine Abbildung $d\colon M\times M\to \mathbb{R}$ heißt **Metrik** auf M, falls $\forall x,y,z\in M$:

$$(M1)$$
 $d(x,y) \ge 0$, $d(x,y) = 0 \iff x = y$ (positive Definitheit)

$$(M2)$$
 $d(x,y) = d(y,x)$ (Symmetrie)

(M3)
$$d(x,z) \le d(x,y) + d(y,z)$$
 (Dreiecksungleichung)

27

25

Antwort

Sei X ein Vektorraum und p_j für $j \in \mathbb{N}$ Halbnormen auf X mit der Eigenschaft, dass für jedes $x \in X \setminus \{0\}$ ein $K \in \mathbb{N}$ existiert mit $p_K > 0$. Dann definiert

$$d(x,y) := \sum_{j \ge 1} 2^{-j} \frac{p_j(x-y)}{1 + p_j(x-y)}, \quad x, y \in X$$

eine Metrik auf X mit

$$d(x_n, x) \to 0 \iff p_i(x_n - x) \to 0 \ (n \to \infty) \ \forall i \in \mathbb{N}$$

Wir benutzen die Bezeichnungen

- offene Kugel: $K(x,r) := \{y \in M : d(x,y) < r\}$
- abgeschlossene Kugel: $\bar{K}(x,r) := \{y \in M : d(x,y) \le r\}$

mit $x \in M, r > 0$. Man sieht leicht, dass K(x, r) offen und $\bar{K}(x, r)$ abgeschlossen ist.

32

Antwort

Für eine beliebige Familie von abgeschlossenen Mengen $(A_i)_{i\in I}$ sind

$$A := \bigcap_{i \in I} A_i$$
 und $A_{i_1} \cup \ldots \cup A_{i_N}$ $(i_1, \ldots, i_N \in I)$

abgeschlossen in M.

Für eine beliebige Familie offenere Mengen $(U_i)_{i \in I}$ sind

$$U \coloneqq \bigcup_{i \in I} U_i \quad \text{und} \quad U_{i_1} \cap \ldots \cap U_{i_N} \qquad (i_1, \ldots, i_N \in I)$$

offen in M.

Eine Teilmenge $U\subset M$ heißt **offen** (in M), falls zu jedem $x\in U$ ein $\epsilon>0$ existiert, sodass

$$\{y \in M : d(x,y) < \epsilon\} \subset U$$

 $A \subset M$ ist offen in M genau dann,

wenn $U = M \setminus Aabgeschlossenist$.

31

29

Antwort

Bezüglich der diskreten Metrik d aus Beispiel 4.2 b) ist $\{x\} \subset M$ offen für jedes $x \in M$, da

$$K(x,r) = \{x\} \subset \{x\} \text{ für } r \in (0,1]$$

Lin. Op. auf BR	<u># 33</u>	4 - Metrische Räume	Lin. Op. auf BR	<u># 34</u>	4 - Metrische Räume
	Abschluss, Innere und Ra	and		Dicht	
Lin. Op. auf BR	<u># 35</u>	4 - Metrische Räume	Lin. Op. auf BR	<u># 36</u>	4 - Metrische Räume
	Separabel			Stetige Abbildung	

Sei (M,d) ein metrischer Raum. Eine Menge $V \subset M$ heißt dicht in M, falls $\bar{V} = M$, d.h. jeder Punkt in M ist Grenzwert einer Folge aus V.

Sei (M,d) ein metrischer Raum und $V \subset M$. Dann heißt

33

 $\bar{V}\coloneqq\bigcap\{A\subset M:A\text{ ist abgeschlossen mit }V\subset A\}$

der **Abschluss** von V.

 $\mathring{V} := \bigcup \{ U \subset M : U \text{ ist offen mit } U \subset V \}$

das Innere von V

 $\partial V \coloneqq \bar{V} \setminus \mathring{V}$

 $\mathrm{der}\;\mathbf{Rand}\;\mathrm{von}\;V$

36Antwort

Seien $(M, d_M), (N, d_N)$ metrische Räume. Eine Abbildung $f: M \to N$ heißt stetig in $x_0 \in M$, falls für alle $(x_n) \subset M$ gilt

$$x_n \to x_0$$
 in $M \Rightarrow f(x_n) \to f(x_0)$ in N

$$d_M(x_n, x_0) \to 0 (n \to \infty) \Rightarrow d_N(f(x_n), f(x_0)) \to 0$$

Die Abbildung f heißt **stetig auf** M, falls f in jedem Punkt von M stetig ist.

35Antwort

Sei (M,d) ein metrischer Raum, M heißt **separabel**, falls es eine abzählbare Teilmenge $V \subset M$ gibt, die dicht in M liegt.

Die folgenden Aussagen sind äquivalent:

- (i) f ist stetig auf M
- (ii) Ist $U \subset N$ offen, so ist auch $f^{-1}(U)$ offen in M
- (iii) Ist $A \subset N$ abgeschlossen, so ist auch $f^{-1}(A)$ abgeschlossen in M.

Antwort# 40

Sei (M, d) ein metrischer Raum, dann heißt (M, d) vollständig, falls jede Cauchy-Folge $(x_n) \subset M$ einen Grenzwert in M hat:

$$\lim_{n \to \infty} x_n = x \quad x \in M$$

Ein normierter Raum $(X, \|\cdot\|)$ der vollständig ist bezüglich $d(x, y) = \|x - y\|$ heißt Banachraum.

Die Räume $\ell^p, p \in [1, \infty)$ und c_0 sind separabel, da

$$D = lin\{e_k, k \in \mathbb{K}\}$$
 dicht in allen Räumen liegt.

Der Raum ℓ^{∞} ist nicht separabel: Die Menge Ω der $\{0,1\}$ -wertigen Folgen ist überabzählbar. Für $x,y\in\Omega$ mit $x\neq y$ gilt $\|x-y\|_{\infty}=1$

39

#37

Antwort

Sei (M,d) ein metrischer Raum. $x_n \in M$ heißt Cauchy-Folge, falls es zu jedem $\epsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt, sodass $\forall m, n \geq n_0$ gilt:

$$d(x_n, x_m) \le \epsilon$$

Lin. Op. auf BR	<u># 41</u>	5 - Vollständigkeit	Lin. Op. auf BR	<u># 42</u>	5 - Vollständigkeit
Cauchy-	-Folge vs. konvergen	te Folge	Raum der Ab	bildungen zwischen Banachraum	metrischen und
Lin. Op. auf BR	<u># 43</u>	5 - Vollständigkeit	Lin. Op. auf BR	<u># 44</u>	5 - Vollständigkeit
Vollständ	igkeit vs. äquivalent	e Normen	Abg. Teilme	ngen von BR vs met	crische Räume

Antwort

Sei X ein metrischer Raum, Y ein Banachraum.

$$C(X,Y) = \{f \colon X \to Y : f \text{ stetig}\}, \ \|f\|_{\infty} = \sup_{x \in X} \|f(x)\|_{Y}$$

Dann ist C(X,Y) ein (linearer) Banachraum.

44

Antwort

Abgeschlossene Teilmengen von Banachräumen sind vollständige metrische Räume bezüglich

$$d(x,y) = \|x - y\|$$

Jede konvergente Folge in (M, d) ist eine Cauchy-Folge:

Sei
$$\lim_{n\to\infty} x_n = x$$
: $d(x_n, x_m) \le d(x_n, x) + d(x, x_m) \to 0$

Aber: nicht jede Cauchy-Folge eines normierten Raums X konvergiert in = C[0,2]:

$$||f||_1 = \int_0^2 |f(t)|dt, \ f_n(x) = \begin{cases} x^n & \text{für } x \in [0,1] \\ 1 & \text{für } x \in [1,2] \end{cases}$$

43

Antwort

Sind $\|\cdot\|_1$, $\|\cdot\|_2$ äquivalente Normen auf X und ist dann X bezüglich $\|\cdot\|_1$ vollständig, so auch bezüglich $\|\cdot\|_2$; da äquivalente Normen haben gleiche Cauchy-Folgen.

Bsp.: $C^1[0,1]$

$$|||f||| = |f(0)| + \sup_{t \in [0,1]} |f'(t)|$$

Früher: $\|\cdot\| \sim \|\cdot\|_{\infty} \Rightarrow (C[0,1], \|\cdot\|)$ ist vollständig.

Lin. Op. auf BR	<u># 45</u>	<u> 5 - Vollständigkeit</u>	Lin. Op. auf BR	<u># 46</u>	5 - Vollständigkeit
Raum der be	schränkten Operator	ren vollständig		Neumann'sche Reihe	
Lin. Op. auf BR	<u># 47</u>	<u> 5 - Vollständigkeit</u>	Lin. Op. auf BR	<u># 48</u>	5 - Vollständigkeit
J (surjektiver)) Isomorphismus, A $ A < J^{-1} ^{-1} $: $ J - A $	beschränkt mit	Fo	ortsetzung von Operatorer	1

Sei $A \in B(X)$, X ein Banachraum mit ||A|| < 1. Dann ist Id - A invertierbar und

$$(Id - A)^{-1} = \sum_{n=0}^{\infty} A^n$$

48 Antwort

Sei X ein normierter Raum, Y ein Banachraum und $D \subset X$ ein dichter Teilraum. Jeder linearere Operator $T: X \to Y$ mit

$$||Tx||_Y \le M||x||_X$$
, für alle $x \in D$

lässt sich zu einem eindeutig bestimmten Operator $\tilde{T} \in B(X,Y)$ mit $\|\tilde{T}\| \leq M$ fortsetzen.

Sei X ein normiert Raum, Y ein Banachraum. Dann ist B(X,Y) mit der Operatornorm vollständig.

Insbesondere: $X' = B(X, \mathbb{K})$ ist immer vollständig.

#~47

Antwort

Sei X ein Banachraum und $J: X \to X$ ein (surjektiver) Isomorphismus. Für $A \in B(X)$ und $||A|| < ||J^{-1}||^{-1}$ ist auch J - A ein Isomorphismus

Insbesondere: $G = \{T \in B(X) : T \text{ stetig und invertierbar}\}$ ist eine offene Menge in B(X).

Lin. Op. auf BR	<u># 49</u>	<u> 5 - Vollständigkeit</u>	Lin. Op. auf BR	<u># 50</u>	<u> 5 - Vollständigkeit</u>
Operator	grenzwert auf dichtei	· Menge	Äquivalenz zur V	ollständigkeit eines r	normierten Raums
Lin. Op. auf BR	<u># 51</u>	5 - Vollständigkeit	Lin. Op. auf BR	<u># 52</u>	5 - Vollständigkeit
Vollständ	digkeit des Quotiente	nraums		Lipschitz	

Für einen normierten Raum $(X, \|\cdot\|)$ sind äquivalent:

- a) X ist vollständig
- b) Jede absolut konvergente Reihe $\sum_{n>1} x_n$ mit $x_n \in X$ hat einen Limes in

52

Antwort

Sei X ein normierter Vektorraum, $M \subset X$ beliebig, $d(x,y) \coloneqq ||x-y||$, wobei $x, y \in M$ und damit (M, d) ein metrischer Raum. Eine Abbildung $f: M \to \mathbb{R}$ heißt **Lipschitz**, falls

$$\sup_{x,y\notin M,x\neq y}\frac{|f(x)-f(y)|}{d(x,y)}=\underbrace{\|f\|_L}_{\begin{subarray}{c}Lipschitz-\\Konstante\end{subarray}}<\infty$$

Dann ist $X = \{f : M \to \mathbb{R} : f \text{ Lipschitz und } f(x_0) = 0\}$ bezüglich $\|\cdot\|_L$ ein normierter Raum und $X' = B(X, \mathbb{R})$ ist vollständig.

Sei X ein normierter Banachraum, $D \subset X$ dicht in X und sei eine Folge $T_n \in$ B(X,Y), wobei (T_nx) eine Cauchy-Folge für jedes $x \in D$ sei. Dann gibt es genau einen Operator $T \in B(X,Y)$ mit

$$\lim_{n \to \infty} T_n x = T x$$

51

49

Antwort

Sei X ein Banachraum und $M \subset X$ ein abgeschlossener, linearer Teilraum. Dann $\hat{X} = X/M$ ist vollständig.

Lin. Op. auf BR	<u># 53</u>	5 - Vollständigkeit	Lin. Op. auf BR	# 54	<u> 5 - Vollständigkeit</u>
	che Einbettung in den F Lipschitz-Funktionen	Raum der		Vervollständigung	
Lin. Op. auf BR	<u># 55</u>	5 - Vollständigkeit	Lin. Op. auf BR	<u># 56</u>	6 - Kompakte Mengen
Exist	enz einer Vervollständig	gung	kompakt, f	olgenkompakt und rel	ativ kompakt

Antwort

Sei (M, d) ein metrischer Raum. Ein vollständiger metrischer Raum (\hat{M}, \hat{d}) heißt **Vervollständigung** von (M, d), falls es eine Einbettung $J: M \to \hat{M}$ gibt mit:

- i) $\hat{d}(J(x), J(y)) = d(x, y)$ für alle $x, y \in M$ (Isometrie)
- ii) J(M) ist dicht in \hat{M}

56 Antwort

Sei (M, d) ein metrischer Raum. Eine Menge $K \subseteq M$ heißt (folgen-)kompakt, falls es in jeder Folge $(x_n) \subset M$ eine Teilfolge (x_{n_k}) und ein $x \in K$ gibt, so dass

$$\lim_{k \to \infty} x_{n_k} = x$$

 $K \subseteq M$ heißt **relativ kompakt**, falls \overline{K} in M kompakt ist.

Sei (M,d) ein metrische Raum, $x_0 \in M$ fest, X definiert wie in 5.15:

Zu $x \in M$ definiere $F_x \in X'$ durch $F_x(f) = f(x)$ für $f : M \to \mathbb{R}$ in X. Dann ist $x \in M \to F_x \in X'$ eine Abbildung, die eine isometrische Einbettung von M nach X' gibt, d.h.

$$d(x,y) = ||F_x - F_y||_{X'}$$

55

Zu jedem metrischen Raum (M,d) gibt es eine Vervollständigung, die bis auf Isometrie eindeutig bestimmt ist.

Antwort

Lin. Op. auf BR	<u># 57</u>	6 - Kompakte Mengen	Lin. Op. auf BR	<u># 58</u>	<u>6 - Kompakte Mengen</u>
	Kompaktheit der Einheitsl	tugel		Satz von Riesz	
Lin. Op. auf BR	<u># 59</u>	6 - Kompakte Mengen	Lin. Op. auf BR	<u># 60</u>	6 - Kompakte Mengen
	Äquivalenzen zur Kompak	theit	4x abgesch	ılossene bzw. kompak	te Mengen

Sei Y ein abgeschlossener Teilraum von X und $X \neq Y$. Zu $\delta \in (0,1)$ existiert ein $x_{\delta} \in X \setminus Y$, sodass

$$||x|| = 1$$
, $||x_{\delta} - y|| \ge 1 - \delta$ für alle $y \in Y$

60 Antwort

Sei (M, d) ein metrischer Raum.

- a) Eine kompakte Teilmenge $K\subset M$ ist immer vollständig und abgeschlossen in M.
- b) Eine abgeschlossene Teilmenge eine kompakten Raums ist kompakt.
- c) Jede kompakte Menge in M ist separabel.
- d) Eine kompakte Teilmenge eines normierten Raums ist beschränkt.

Sei X ein normierter Vektorraum. Dann ist

#57

$$\overline{U_x} = \{ x \in X : ||x|| \le 1 \}$$

genau dann kompakt, wenn $dim X < \infty$.

59 Antwort

Sei (M,d) ein metrischer Raum. Für $k\subset M$ sind folgende Aussagen äquivalent zu K ist (folgen-)kompakt:

- a) K ist vollständig und total beschränkt, d.h. für alle $\epsilon > 0$ gibt es endlich viele $x_1, \ldots, x_m \in M$ so dass $K \subset \bigcup_{j=1}^m K(x_j, \epsilon)$
- b) Jede Überdeckung von K durch offene Mengen $U_j, j \in J$ mit $K \subset \bigcup_{j \in J} U_j$ besitzt eine endliche Teilüberdeckung, d.h. j_1, \ldots, j_m mit $K \subset \bigcup_{k=1}^m U_{j_k}$

Sei X ein Banachraum. Für $K \subseteq X$ sind äquivalent

- a) K relativ kompakt (d.h. \overline{K} ist kompakt)
- b) Jede Folge $(x_k) \subseteq K$ hat eine Cauchy-Teilfolge
- c) $\forall \epsilon > 0 \ \exists y_1, \dots, y_m \in K \ \text{mit} \ K \subseteq K(y_1, \epsilon) \cup \dots \cup K(y_m, \epsilon)$

64

Antwort

K(X,Y) = Raum der linearen, kompakten Operatoren von X nach Y.

Bemerkung:

- a) $T \in K(X,Y) \iff$ jede beschränkte Folge $(x_n) \subset X$ besitzt eine Teilfolge (x_{n_k}) mit $T(x_{n_k})$ ist Cauchy-Folge in Y.
- b) $K(X,Y) \subset B(X,Y)$, da die kompakte Menge $\overline{T(U_X)}$ beschränkt in Y ist.

Sei (S,d) ein kompakter, metrischer Raum. Definiere $C(S) := \{d \colon S \to \mathbb{K} \text{ stetig}\}$, $\|f\|_{\infty} = \sup_{s \in S} |f(s)|$. Eine Teilmenge $M \subset C(S)$ ist kompakt, genau dann wenn gilt

- a) M ist beschränkt in C(S),
- b) M ist abgeschlossen in C(S) und
- c) M ist gleichgradig stetig, d.h.

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in M : d(s,t) < \delta \Rightarrow |x(s) - x(t)| < \epsilon$$

63

Antwort

Sei X ein normierter Raum, Y ein Banachraum. Ein linearer Operator $T: X \to Y$ heißt kompakt, falls $T(U_X)$ relativ kompakt ist in Y.

Lin. Op. auf BR	<u># 65</u>	7 - Kompakte Op.	Lin. Op. auf BR	<u># 66</u>	7 - Kompakte Op.
	2x Eigenschaften von $K(X, Y)$	7)	Folge endlich din	nensionaler beschrä	nkter Operatoren
Lin. Op. auf BR	<u># 67</u>	7 - Kompakte Op.	Lin. Op. auf BR	<u># 68</u>	8 - Approx. von L^p Fkt
Fo	olge der Approximationseigens	chaft	Beschränkter Ke	ern definiert beschr	änkten Operator

Seien X, Y Banachräume, $T \in B(X, Y)$.

Falls es endlich dimensionale Operatoren $T_n \in B(X,Y)$ gibt, dann ist $T \in$ K(X,Y).

Beweis: Bemerkung nach 7.1, 7.5 a)

68

Antwort

Sei $k \colon \Omega \times \Omega \to \mathbb{K}$ messbar und

$$\sup_{u \in \Omega} \int_{\Omega} |k(u, v)| dv \le C_1 < \infty \text{ und}$$

$$\sup_{v \in \Omega} \int_{\Omega} |k(u, v)| du \le C_2 < \infty$$

Dann wird durch (*) ein beschränkter Operator $T: L^p(\Omega) \to L^p(\Omega)$ mit

$$||T||_{L^p \to L^p} \le C_1^{\frac{1}{p'}} C_1^{\frac{1}{p}}, \quad \frac{1}{p'} + \frac{1}{p} = 1$$

und $1 \le p \le \infty$.

65

Antwort

Seien X, Y und Z Banachräume.

- a) K(X,Y) ist ist ein linearer, abgeschlossener Teilraum von B(X,Y).
- b) Seien $T \in B(X,Y), S \in B(Y,Z)$ und entweder T oder S kompakt. Dann ist $S \circ T \in K(X, Z)$. Insbesondere: K(X) = K(X, X) ist ein Ideal in B(X).

#67

Antwort

Seien X, Y Banachräume und X habe die **Approximationseigenschaft** (d.h. es existieren endlich dimensionale Operatoren $S_n \in B(X): S_n x \to x, \forall x \in$ X).

Dann gilt: $K(X,Y) = \overline{F(X,Y)}$ in der Operatornorm, wobei $F(X,Y) = \{T \in$ $B(X,Y): \dim T(X) < \infty$ \.

Sei $\mathcal{A}_m = \{A_{n,m} : n = 1, \dots, m_n\}$ eine Zerlegung von $\Omega \cap K(0, r_m), \Omega \subset \mathbb{R}^d$. Es gelte $r_m \to \infty$ und $\mathcal{A}_m \subset \mathcal{A}_{m+1}, r_m \to \infty$

$$d_m = \sup\{|t - s| : s, t \in A_{m,n}, n = 1, \dots, m_n\}$$

'Feinheit der Zerlegung'

Dann gilt für alle $f \in L^p(\Omega), 1 \le p < \infty$

$$\|\mathbb{E}_{\mathcal{A}_m} f - f\|_{L^p} \to 0 \text{ für } m \to \infty$$

72

Antwort

Sei $\phi \in L^1(\mathbb{R}^d)$ mit $\phi \geq 0$ und $\int_{\mathbb{R}^d} \phi(u) du = 1$. Dann heißt $\phi_{\epsilon}(u) = \epsilon^{-d} \phi(\epsilon^{-1}u), \epsilon > 0$ 0, approximative Einst

Notation: $\phi_{\epsilon} * f(u) = \int \phi_{\epsilon}(u-v)f(v)dv$.

Bsp: $\phi(u) = \frac{1}{|B(0,1)|} \cdot \mathbb{1}_{B(0,1)}(u), \phi \ge 0, \int \phi du = 1$

$$\phi_{\epsilon} * f(u) = \frac{1}{|B(u,\epsilon)|} \int \mathbb{1}_{B(u,\epsilon)} (u-v) f(v) dv$$
$$= \frac{1}{|B(u,\epsilon)|} \int_{(u,\epsilon)} f(v) dv$$

Vermutung: $\phi_{\epsilon} * f(u) \xrightarrow{\epsilon \to 0} f(u)$. Sinne jedoch noch unklar.

69

Antwort

Sei $\mathcal{A} = \{A_n\}_{n \in \mathbb{N}}$ eine Partition von Ω in paarweise disjunkte, messbare Mengen $A_n \text{ mit } 0 < \mu(A_n) < \infty. \text{ Setze}$

$$\mathbb{E}_{\mathcal{A}}(f)(s) = \sum_{n} \left[\frac{1}{\mu(A_n)} \int_{A_n} f(t)dt \right] \mathbb{1}_{A_n}(s)$$

- Für jede Partition $\mathcal{A} = \{A_n\}$ von Ω ist $\mathbb{E}_{\mathcal{A}} \in B(L^p(\Omega))$ für alle $1 \leq p \leq \infty$ $\min \|\mathbb{E}_{\mathcal{A}}\|_{L^p \to L^p} = 1.$
- Bild $\mathbb{E}_{\mathcal{A}} = \mathbb{E}_{\mathcal{A}}(L^p)$ ist isometrisch zu $\ell_m^p \cong (\mathbb{K}^m, \|\cdot\|_p)$, mit m = card(A).

71

Antwort

Für $X = L^p(\Omega), 1 gilt:$

$$K(X,X) = \overline{\mathcal{F}(X,X)}$$

= Abschluss der endl. dim. Operatoren

Lin. Op. auf BR	<u># 73</u>	8 - Approx. von L^p Fkt	Lin. Op. auf BR	<u># 74</u>	8 - Approx. von L^p Fkt
Konvergenz	der Approxima	ativen Eins		Young	
Lin. Op. auf BR	<u># 75</u>	8 - Approx. von L^p Fkt	Lin. Op. auf BR	<u># 76</u>	8 - Approx. von L^p Fkt
Die	chte Menge in	L^p		Korollar 8.10	

Für $k \in L^1(\mathbb{R}^d)$ setze für $f \in L^p(\mathbb{R}^d)$

$$(k * f)(u) = \int_{\mathbb{R}^d} k(u - v) f(v) dv \quad (*)$$

k * f heißt **Faltung** von k und f.

Dann definiert (*) einen beschränkten Operator Tf = k * f von $L^p(\mathbb{R}^d)$ nach $L^p(\mathbb{R}^d)$ für $1 \le p \le \infty$ und $||T||_{L^p \to L^p} \le ||k||_{L^1}$.

76

Antwort

Sei $\Omega \subseteq \mathbb{R}^d$ offen. Sei $f \in L^p(\Omega), p \in [1, \infty)$ mit

$$\int f(u)g(u)du = 0 \text{ für alle } g \in C_c^{\infty}(\Omega)$$

Dann ist f = 0.

Antwort

Sei $(\phi_{\epsilon})_{\epsilon>0}$ eine approximative Eins. Dann gilt für alle $f \in L^p(\mathbb{R}^d), 1 \leq p < \infty$

$$||f - \phi_{\epsilon} * f||_{L^p} \xrightarrow[\epsilon \to 0]{} 0$$

- i) $\int \phi_{\epsilon}(u)du = 1$
- ii) $\int_{\mathbb{R}^d \setminus B(0,r)} \phi_{\epsilon}(u) du \xrightarrow{\epsilon \to 0} 0$
- iii) $\operatorname{supp}(\phi) \subset B(0,r) \Rightarrow \operatorname{supp}(\phi_{\epsilon}) \subset B(0,\epsilon)$
- iv) $\|\phi_{\epsilon} * f\|_{L^p} \le 1 \|f\|_{L^p}$ (nach Young)

#75

Antwort

Sei $\Omega \subseteq \mathbb{R}^d$ offen. Dann liegt

 $C_c^{\infty}(\Omega) = \{f : f \text{ ist unendlich oft differenzierbar}\}$ und supp(f) ist kompakt.}

dicht in $L^p(\Omega)$.

Eine Teilmenge L eines metrischen Raums M heißt **nirgends dicht**, falls \overline{L} keine inneren Punkte enthält.

Ist L nirgends dicht, dann ist $M \setminus \overline{L}$ dicht in M.

in M.

Dann ist $\bigcap U_n$ dicht in M.

 $n{\in}\mathbb{N}$

Sei (M,d) ein vollständiger metrischer Raum und seien $(U_n)_{n\geq 1}$ offen und dicht

80

Antwort

L heißt von 2. Kategorie, falls L nicht von 1. Kategorie ist.

<u># 79</u>

Antwort

Eine Teilmenge L, die sich als Vereinigung von einer Folge von nirgends dichten Mengen L_n darstellen lässt, d.h. $L = \bigcup_{n \in \mathbb{N}} L_n$ heißt von **1. Kategorie**.

 $E=\{x\in C[0,1]: x \text{ ist in keinem Punkt von } [0,1] \text{ differenzierbar}\}$ ist dicht in $(C[0,1],\|\cdot\|_{\infty}).$

Insbesondere:

- $E \neq \emptyset$
- $C^1[0,1]$ ist von 1. Kategorie in C[0,1], also liegt

$$C[0,1] \setminus C^{1}[0,1]$$
 dicht in $C[0,1]$

84 Antwort

Eine Abbildung zwischen metrischen Räumen heißt **offen**, wenn offene Mengen auf offene Mengen abgebildet werden.

- a) In einem vollständigen metrischen Raum (M,d) liegt das Komplement einer Menge L von 1. Kategorie stets dicht. Insbesondere:
- b) Ein vollständig metrischer Raum ist von 2. Kategorie
- c) Sei (M,d) vollständig und $(M_n)_{n\geq 1}$ eine Folge abgeschlossener Mengen mit $M=\bigcup_{n\in\mathbb{N}}M_n$. Dann enthält mindestens ein M_n eine Kugel

83

Antwort

Sei X ein Banachraum, Y ein normierter Raum, I eine Indexmenge und $(T_i)_{i\geq 1}\in B(X,Y)$. Falls:

$$\sup_{i \in I} ||T_i x|| = c(x) < \infty, \quad \forall x \in X$$

dann ist auch

$$\sup_{i \in I} ||T_i|| = \sup_{i \in I} \sup_{\|x\| < 1} ||T_i x|| < \infty.$$

Elem. der Op.Theo.	#~85	10 - offenen Abbildung	Elem. der Op.Theo.	<u># 86</u>	10 - offenen Abbildung
Äquivaler	nzen zu offenem (Operator	Satz voi	n der offenen Al	obildung
Elem. der Op.Theo.	<u># 87</u>	10 - offenen Abbildung	Elem. der Op.Theo.	<u># 88</u>	10 - offenen Abbildung
${ m Bijektive}$	er beschränkter O	perator	Beschränkte Ein	bettung zwische	en Banachräumen

Seien X, Y Banachräume und $T \in B(X, Y)$, dann gilt:

T surjektiv $\iff T$ offen

88 Antwort

Sei X ein Vektorraum der sowohl mit $\|\cdot\|$ als auch mit $\|\cdot\|$ ein Banachraum ist. Gilt

$$\exists c > 0 : ||x|| \le c \cdot |||x|||, \ \forall x \in X,$$

dann sind die Normen äquivalent, d.h. $\exists \hat{c}$ mit

$$\hat{c} \cdot |||x||| \le ||x|| \ \forall x \in X \le c \cdot |||x|||$$

Seien X,Ynormierte Räume und $T:X\to Y$ ein linearer Operator, dann sind äquivalent:

- a) T ist offen
- b) $\exists \epsilon > 0 : K_Y(0, \epsilon) \subset T(K_X(0, 1))$

87

Antwort

Seien X,Y Banachräume und $T\in B(X,Y)$ bijektv, dann ist $T^{-1}\in B(Y,X)$

89

Antwort

Sind X, Y Banachräume, dann ist auch $X \oplus Y$ ein Banachraum mit $\|(x,y)\|_{X \oplus Y} =$ $||x||_X + ||y||_Y \ \forall x \in X, y \in Y$

Sei X ein Banachraum. $P: X \to X$ heißt **Projektion**, wenn P linear und $P^2 = P$ ist.

Sei X ein Vektorraum, $M \subset X$ ein Untervektorraum. Es gibt nach dem Basisergänzungssatz eine lineare Projektion

$$P \colon X \to X, P(X) = M$$

92 Antwort

Sei X ein Banachraum, D(A) ein dichter Untervektorraum und $A:D(A)\to X$ linear

Gilt $||Ax|| \le c||x|| \ \forall x \in D(A)$, so lässt sich A zu einem beschränkten Operator fortsetzen $A \in B(X)$

91

Antwort

Sei X ein BR, $M \subset X$ ein abg. UVR. Dann sind äquivalent:

- a) \exists stetige Projektion $P: X \to X, P(X) = M$
- b) Es gibt einen abg. UVR $N \subset X : X = M \oplus N$.
- c) \exists abg. Untervekottraum $N \subset X$ und $J: M \oplus N \to X$, J(x,y) = x + y ist ein Isomorphismus, insbesondere $\exists c > 0 \ \forall x \in M, y \in N : c(\|x\| + \|y\|) \le$ $||x + y|| \le ||x|| + ||y||$

M heißt komplementierter Raum, N = Kern(P) Komplementärraum.

Elem. der Op.Theo.	<u># 93</u>	12 - Abg. Operatoren	Elem. der Op.Theo.	<u># 94</u>	12 - Abg. Operatoren	
	Graphennorm		Abg	geschlossener Ope	rator	
Elem. der Op.Theo.	<u># 95</u>	12 - Abg. Operatoren	Elem. der Op.Theo.	<u># 96</u>	12 - Abg. Operatoren	
Abgeschlossener vs. stetiger Operator			Satz vom abgeschlossenen Graphen			

Es sind äquivalent

a) $(D(A), \|\cdot\|_A)$ ist ein Banachraum

b) graph $(A) = \{(x, Ax) : x \in D(A)\} \subset X \times X$ ist abgeschlossen

c) Wenn
$$(x_n)_n \subset D(A)$$
: $\begin{cases} x_n \xrightarrow{n \to \infty} x & \text{in } X \\ Ax_n \xrightarrow{n \to \infty} y & \text{in } X \end{cases}$, so ist $x \in D(A), Ax = y$

A heißt abgeschlossen, wenn a) – c) aus 12.3 erfüllt sind

96

Antwort

Ist A abgeschlossen und D(A) = X, so ist A stetig auf X.

Auf D(A) definieren wir die **Graphennorm**

93

$$||x||_A \coloneqq ||x|| + ||A|| \quad \forall x \in D$$

Insbesondere: $A:(D(A),\|\cdot\|_A)\to X$ stetig, denn

$$||X|| \le ||x|| + ||Ax|| = ||x||_A$$

#~95

$$A \text{ stetig: } x_n \xrightarrow{n \to \infty} x \Rightarrow Ax \xrightarrow{n \to \infty} y, Ax = y$$

$$A \text{ abgeschlossen: } x_n \xrightarrow{n \to \infty} x, Ax_n \xrightarrow{n \to \infty} y \Rightarrow Ax = y$$

Antwort