Hálózati biztonság

Egy számítógépes hálózat N csomópontot tartalmaz. Bizonyos csomópont-párokat kétirányú adatátvitelt biztosító közvetlen kommunikációs csatorna köt össze. Két u és v csomópontra azt mondjuk, hogy szomszédosak, ha van közöttük közvetlen kommunikációs csatorna. Csomópontok egy S halmazát tartalmazó részhálózatra azt mondjuk, hogy K-biztonságos, ha bármely pES csomópontnak van legalább K szomszédja S-ben.

Készíts programot, amely kiszámítja, hogy hány csomópontot tartalmaz a legnagyobb K-biztonságos részhálózat! A program adja meg ennek a részhálózatnak a csomópontjait is!

Bemenet

A standard bemenet első sorában a csomópontok száma ($1 \le N \le 100000$), a közvetlen kommunikációs csatornák száma ($1 \le M \le 200000$), és a K értéke ($1 \le K \le N$) van. A további M sor egy-egy csatorna két végpontját tartalmazza ($1 \le u \ne v \le N$). Bármely két csomópont között legfeljebb egy csatorna van kiépítve.

Kimenet

A standard kimenet első sorába a legnagyobb K-biztonságos részhálózat csomópontjainak számát kell írni! A második sorba kell kiírni a részhálózat csomópontjait, növekvő sorrendben!

Példa

Ве	Bemenet						K	Kimenet				
8	12 7 3 3 5								4	2	3	7
2	1											
2	7											
2	3											
4	6											
4	7											

Korlátok

Időlimit: 0.2 mp.

Memórialimit: 32 MiB

Pontozás

A pontok 20%-a szerezhető olyan tesztekre, ahol N≤100.

A pontok további 40%-a szerezhető olyan tesztekre, ahol N≤1000.

Előző és következő ülés sorrend

Egy teremben N szék található, amelyekre M diák szeretne leülni. Egyetlen szabályt tartanak be: nagyobb sorszámú diák csak nagyobb sorszámú székre ülhet.

A legelső lehetséges szabályos sorrendet a legutolsó előzi meg, a legutolsó pedig a legelső követi – pl. N=6, M=3 esetén a 1 2 3 előzője a 4 5 6.

Készíts programot, amely egy ülés sorrendre megadja a lexikografikus sorrendben előző és következő lehetséges szabályos ülés sorrendet!

Bemenet

A standard bemenet első sorában a székek száma ($1 \le N \le 100$) és a diákok száma ($1 \le M < N$) van. A második sorban egy helyes ülés sorrend szerepel ($1 \le A_i < A_{i+1} \le N$).

Kimenet

A standard kimenet első sorába az előző szabályos ülés sorrendet kell írni, a második sorba pedig a következőt!

Példa

Bemenet						Kimenet						
6	4								1	2	4	5
1	2	4	6						1	2	5	6

Korlátok

Időlimit: 0.2 mp.

Memórialimit: 32 MB

Ládapakolás raktárban

Egy raktárban egyetlen hosszú sorban ládák vannak. Minden láda kocka alakú, de méretük különböző lehet. A ládák egymásra rakásával akarnak helyet felszabadítani. A raktár magassága azonban korlátozza az egymásra tehető ládák össz méretét. A biztonsági előírás szerint több ládát is lehet egymásra rakni, de minden ládát csak nála nagyobbra lehet helyezni. Az i-edik helyen lévő ládát csak akkor lehet rárakni a j-edik helyen lévő torony tetejére, ha az i-edik és j-edik helyek között már nincs láda (j lehet akár kisebb, akár nagyobb, mint i). Minden ládát legfeljebb egyszer lehet mozgatni.

Készíts programot, amely megadja, hogy maximum mennyi helyet szabadíthatunk fel!

Bemenet

A standard bemenet első sorában a ládák száma (1≤N≤100 000) és a raktár belső magassága (1≤M≤1000) van (a ládák legfeljebb ilyen magasságig pakolhatók egymásra). A következő sorban az egyes ládák magassága szerepel (1≤L₁≤M).

Kimenet

A standard kimenet első sorába a felszabadítható helyek maximális számát kell írni!

Példa

Bemenet Kimenet

12 16

1 3 5 4 2 | 6 8 | 7 6 | 5 3 | 4 Magyarázat: a szomszédos, azonos színnel jelölt ládák rakhatók egymásra.

Korlátok

Időlimit: 0.2 mp.

Memórialimit: 32 MB

Pontozás

A pontok 30%-a szerezhető olyan tesztekre, ahol N≤1000.

Leggyorsabb pénzkeresés

Zoli bohóc az idei nyáron vándorcirkuszokban lép fel. Szeretne P forintot keresni. Tudja, hogy a vándorcirkusz melyik napra mekkora fizetést ajánl.

Készíts programot, amely megadja a legrövidebb folyamatos időszakot, ami alatt Zoli bohóc legalább P forintot tud keresni!

Bemenet

A standard bemenet első sorában a napok száma ($1 \le N \le 100000$) és a megkeresni szándékozott pénz ($1 \le P \le 1000000$) van. A következő sorban vannak az egyes napok fizetései ($1 \le F_i \le 10000$).

Kimenet

A standard kimenet első sorába azon legrövidebb folyamatos időszak napjai számát kell írni, ami alatt Zoli bohóc legalább P forintot kereshet!

2

Példa

Bemenet Kimenet

8 11

3 6 4 2 3 7 **2 9**

Korlátok

Időlimit: 0.2 mp.

Memórialimit: 32 MB

Növekvő részsorozatokra bontás

Készíts programot, amely egy N elemű számsorozatot felbont minimális számú, nem feltétlen egymás utáni elemekből álló, növekvő részsorozatra!

Bemenet

A standard bemenet első sorában a sorozat hossza van (1≤N≤100 000). A következő sorban vannak a sorozat egyes tagjai (1≤A_i≤1 000 000).

Kimenet

A standard kimenet első sorába a növekvő részsorozatok minimális számát kell írni!

Példa

Bemenet	Kimenet
8	3
3 6 2 7 4 8 7 3	Lehetséges megoldás: 3 4 7 6 7 8
	2 3

Korlátok

Időlimit: 0.5 mp.

Memórialimit: 32 MB

Pontozás

A pontok 30%-a szerezhető olyan esetekre, ahol N≤1 000.

A sárkány feladványa

A kincses barlang bejárata előtt egy sárkánnyal találod szemben magad. A sárkány a következő találós kérdést teszi fel: "Beengedlek téged, ha tudsz mondani egy olyan négyjegyű pozitív egész számot, ami osztható 2-vel és 7-tel!" Te rávágod, hogy 1400. A sárkány így szól: "Hm, és olyan kétjegyű pozitív számot tudsz mondani, ami 11-gyel és 26-tal is osztható?" Kis gondolkodás után közlöd vele, hogy nincs ilyen. A sárkány harmadszorra is meg fog adni neked egy A és B számot, és egy N-jegyű pozitív számot kér, amely mindkettővel osztható. Vigyázz, lehet, hogy nagyon sokjegyű számot kér!

Készíts programot, amely megválaszolja a sárkány három feladványát!

Bemenet

A standard bemenet pontosan három sort tartalmaz, a sárkány három feladványának leírását. Mindegyik sorban a két egész szám ($1 \le A_i$, $B_i \le 100000$) és az eredményül várt szám számjegyei száma ($1 \le N_i \le 1000$) van.

Kimenet

A standard kimenet pontosan három sort tartalmazzon, a három feladvány megoldását! Ha nincs megoldás, akkor arra a feladványra -1-et kell kiírni! Több megoldás esetén bármelyik megadható.

Példa

Bemenet	Kimenet
2 7 4	1400
26 11 2	-1
3 9 22	99999999999999999999

Korlátok

Időlimit: 0.2 mp.

Memórialimit: 32 MiB

Pontozás

A pontok 30%-a szerezhető olyan tesztekre, ahol N_i≤5.

A pontok további 30%-a szerezhető olyan tesztekre, ahol N₁≤15.

Társaság

Egy titkos társaságnak N tagja van. A társaság vezetőjét kivéve minden emberről tudjuk, hogy ki a közvetlen főnöke, és hogy mennyi idő alatt tud elküldeni neki egy üzenetet. A gyorsabb kommunikáció érdekében a társaság vezetője szeretne kijelölni magán kívül K db embert, akik a hozzájuk beérkezett üzeneteket már nem küldik tovább a közvetlen főnöküknek, hanem ők maguk teszik meg a szükséges intézkedéseket. Egy ember várakozási ideje az az idő, amíg egy tőle indult üzenet eljut egy kijelölt emberhez.

Készíts programot, amely úgy jelöl ki a vezetőn kívül K db tagot, hogy a legnagyobb várakozási idő a lehető legkisebb legyen!

Bemenet

A standard bemenet első sorában a társaság létszáma (1≤N≤10 000), és a vezetőn kívül kijelölendő tagok száma (1≤K≤N-1) van. A társaság vezetője az 1-es sorszámú tag. A következő N-1 sor két számot tartalmaz: Az i. sor első száma megadja, hogy ki az i+1. tag közvetlen főnöke $(1 \le P_i \le N)$, a második, hogy mennyi idő alatt tud neki egy üzenetet elküldeni $(1 \le T_i \le 10^9)$.

Kimenet

A standard kimenet első sorába a legnagyobb várakozási idő lehetséges legkisebb értékét kell írni, ami K ember kijelölésével elérhető.

Példa

Bemenet	Kimenet
5 1	4
1 5	Magyarázat
1 2	Magyarazat

zat: A 2-es sorszámú tag kijelölése esetén lesz minimális a legnagyobb várakozási idő.

Korlátok Időlimit: 0.4 mp.

Memórialimit: 32 MB

