Sub-string/Pattern Matching in Sub-linear Time Using a Sparse Fourier Transform Approach

Krishna R. Narayanan Joint work with Nagaraj T. Janakiraman, Avinash Vem & J.F. Chamberand

> Department of Electrical and Computer Engineering Texas A&M University

Problem Statement

- Database/String: $\underline{x} = [x[0], x[1], \cdots, x[N-1]]$ (length N)
- Query/Substring: $\underline{y} = [y[0], y[1], \cdots, y[M-1]]$ (length $M = N^{\mu}$)
- Signal Model: x[i]'s are i.i.d r.v. from $\mathcal{A} = \{+1, -1\}$ (extensions possible)

Problem Statement

- Database/String: $\underline{x} = [x[0], x[1], \cdots, x[N-1]]$ (length N)
- Query/Substring: $\underline{y} = [y[0], y[1], \cdots, y[M-1]]$ (length $M = N^{\mu}$)
- $\bullet \ \, {\sf Signal \ \, Model} \colon \, x[i] \text{'s are i.i.d} \quad \text{r.v. from} \, \, \mathcal{A} = \{+1,-1\} \, \, (\text{extensions possible})$

Determine all the L locations $\underline{\tau} = [\tau_1, \tau_2, \cdots \tau_L]$ with high probability where

- **1** Exact Matching: \underline{y} appears exactly in \underline{x}
 - $-y := \underline{x}[\tau : \tau + M 1]$

Problem Statement

- Database/String: $\underline{x} = [x[0], x[1], \dots, x[N-1]]$ (length N)
- Query/Substring: $y=[y[0],y[1],\cdots,y[M-1]]$ (length $M=N^{\mu}$)
- Signal Model: x[i]'s are i.i.d r.v. from $\mathcal{A} = \{+1, -1\}$ (extensions possible)

Determine all the L locations $\tau = [\tau_1, \tau_2, \cdots \tau_L]$ with high probability where

- Exact Matching: y appears exactly in \underline{x}
 - $-y := x[\tau : \tau + M 1]$
 - 2 Approximate Matching: y is a noisy substring of \underline{x}
 - $y := \underline{x}[\tau : \tau + M 1] \odot \underline{b}$
 - \underline{b} is a noise sequence with $d_H(y,\underline{x}[\tau:\tau+M-1])\leq K$

Notation

Symbol	Meaning
N	Size of the string or database in symbols
$M = N^{\mu}$	Length of the query in symbols
$L = N^{\lambda}$	Number of matches
K	$\max_{\tau} d_H(\underline{x}[\tau : \tau + M - 1], \underline{y})$
η	$\frac{K}{M}$

Probabilistic recovery

$$\mathbb{P}(\hat{\underline{\tau}} \neq \underline{\tau}) \to 0 \text{ as } N \to \infty$$

Main Result

Symbol	Meaning
N	Size of the string or database in symbols
$M = N^{\mu}$	Length of the query in symbols
$L = N^{\lambda}$	Number of matches
K	$\max_{\tau} d_H(\underline{x}[\tau : \tau + M - 1], \underline{y})$
η	$\frac{K}{M}$

Theorem 1

Assume that a sketch of \underline{x} can be precomputed and stored. Then for the exact pattern matching and approximate pattern matching (with $K=\eta M,\ 0\leq \eta\leq 1/6$) problems, our algorithm has

- Sketching complexity: $O(\frac{N}{M}\log N) = O(N^{1-\mu}\log N)$ samples
- Computational complexity: $O(\max(N^{1-\mu}\log^2 N, N^{\mu+\lambda}\log N))$
- a decoder for which $\mathbb{P}(\hat{\mathcal{T}} \neq \mathcal{T}) \to 0$ as $N \to \infty$

Main Result

Symbol	Meaning
N	Size of the string or database in symbols
$M = N^{\mu}$	Length of the query in symbols
$L = N^{\lambda}$	Number of matches
K	$\max_{\tau} d_H(\underline{x}[\tau : \tau + M - 1], \underline{y})$
η	$\frac{K}{M}$

Theorem 1

Assume that a sketch of \underline{x} can be precomputed and stored. Then for the exact pattern matching and approximate pattern matching (with

$$K = \eta M, \ 0 \le \eta \le 1/6$$
) problems, our algorithm has

- Sketching complexity: $O(\frac{N}{M}\log N) = O(N^{1-\mu}\log N)$ samples
- Computational complexity: $O(\max(N^{1-\mu}\log^2 N, N^{\mu+\lambda}\log N))$
- a decoder for which $\mathbb{P}(\hat{\mathcal{T}} \neq \mathcal{T}) \to 0$ as $N \to \infty$

Note

Particularly when L=O(1) or $L<\frac{N}{M}$ (i.e. $\lambda<1-\mu$) our algorithm has a sub-linear time and space complexity.

Some Prior Work

Exact Matching

- Boyer and Moore 1977: First occurrence of the match (only τ_1)
 - Average complexity $O(N^{1-\mu} \log N)$ (sublinear)
 - Worst case complexity $O(N \log N)$
- Goodrich, Atallah, and Tamassia 2005: BWT, suffix-arrays based indexing
 - Time complexity O(M+L) (sublinear)
 - Storage Complexity $O(N H_k(X) \log^{\epsilon} N) + o(N)$ bits (linear)
 - Read alignment in Bio-informatics community [li2009fast; li2010fast]

Approximate Matching

- Chang and Marr 1994: Generalization of Boyer and Moore 1977
 - Average time complexity $O(NK/M\log N)$ (sub-linear only when $K\ll M$)
- zhang2003approximate: Approximate Matching using BWT
 - Worst case time complexity: $O(\min\{M(M-K)|\mathcal{A}|^k\log\frac{N}{|\mathcal{A}|},NM\log\frac{N}{|\mathcal{A}|}\})$
 - Complexity grows with $|\mathcal{A}|$ and K
- Andoni et al. 2013: $O(N/M^{0.359})$ (sub-linear even when K = O(M))
 - Combinatorial in nature

Some Prior Work

Sparse Fourier Transform Approach

- Pawar and Ramchandran 2014: Robust Sparse Fourier Transform
 - Sparse graph code approach
 - Computational complexity : $O(N \log N)$
- Hassanieh et al. 2012: Faster GPS receiver
 - Exploited sparsity in Correlation function R_{XY}

Motivation

• Cross-correlation (<u>r</u>):

$$r[m] = (\underline{x} * \underline{y})[m] \triangleq \sum_{i=0}^{M-1} x[m+i]y[i], \quad 0 \le m \le N-1$$

- Naive implementation: $O(MN) = O(N^{1+\mu})$ (super-linear complexity)
- Fourier Transform Approach: $O(N \log N)$ complexity

$$\underline{r} = \mathcal{F}_N^{-1} \{ \mathcal{F}_N \{ \underline{x} \} \odot \mathcal{F}_N \{ \underline{y}' \} \}, \quad \underline{y}' = \underline{y}^* [-n]$$

Key Observation

• r is Sparse with some noise.

$$r[m] \ = \left\{ \begin{array}{cc} & M, & \text{if } m \in \mathcal{T} \\ & n_m, & m \in [N] - \mathcal{T} \end{array} \right.$$

Example

Sparse Fourier Transform Approach

$$\underline{\underline{r}} = \mathcal{F}_N^{-1} \left\{ \mathcal{F}_N \{ \underline{\underline{x}} \} \odot \ \mathcal{F}_N \{ \underline{\underline{y}}' \} \right\}$$

- 1. Sketch of \underline{x} : Assume $\underline{X}[l] = \mathcal{F}\{\underline{x}\}$ is precomputed at positions $l \in \mathcal{S}$.
- 2. Sketch of \underline{y} : Compute $\underline{Y}'[l] = \mathcal{F}\{\underline{y}'\}$ for $l \in \mathcal{S}$.
 - Only M non-zero values in \underline{y}' Efficient computation (folding and adding)
- 3. Sparse \mathcal{F}^{-1} :
 - Robust Sparse Inverse Fourier Transform (RSIDFT)
 - Efficient Implementation- sublinear time and sampling complexity

Robust Sparse Inverse Fourier Transform(RSIDFT)

Main Idea

- Sub-sampling in frequency corresponds to aliasing in time
- CRT guided sub-sampling induces a code good for Peeling decoder
- R-FFAST- proposed by Pawar and Ramchandran 2014

Key modifications

- Optimized for the induced noise model
- Correlation peak is always positive
- Take advantage in decoding algorithm sub-linear time complexity

Aliasing and Sparse Graph Codes

Aliasing and Sparse Graph Codes

RSIDFT Framework

RSIDFT Framework

RSIDFT-Decoding (Peeling Decoder)

Observations:

$$\underline{z}_{i,k} = \begin{bmatrix} r_{i,1}[k] \\ r_{i,2}[k] \\ \vdots \\ r_{i,B}[k] \end{bmatrix}^T$$

Decoding- 3 steps

- Bin Classification
- Position Identification
- Peeling Process

Decoder

Bin Classification

- Classify each check-node Zero-ton / Single-ton / Multi-ton
- Threshold constraints on first observation $z_{i,k}[1] = z$
- Threshold varies with η
 - different for $exact(\eta = 0)$ and approximate matching

$$\widehat{\mathcal{H}}_{i,j} = \begin{cases} \mathcal{H}_z & z/M < \gamma_1 \\ \mathcal{H}_s & \gamma_1 < z/M < \gamma_2 \\ \mathcal{H}_d & \gamma_2 < z/M < \gamma_3 \\ \mathcal{H}_m & z/M > \gamma_3 \end{cases}$$

where
$$(\gamma_1,\gamma_2,\gamma_3)=(\frac{1-2\eta}{2},\frac{3-4\eta}{2},\frac{5-6\eta}{2})$$

Decoder

Position Identification

Observation:

$$\underline{z}_{i,k} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ \omega^{ks_2} & \omega^{(k+f_i)s_2} & \dots & \omega^{(k+(g_i-1)f_i)s_2} \\ \vdots & \vdots & \ddots & \vdots \\ \omega^{ks_B} & \omega^{(k+f_i)s_B} & \dots & \omega^{(k+(g_i-1)f_i)s_B} \end{bmatrix} \times \begin{bmatrix} r[k+(0)f_i] \\ r[k+(1)f_i] \\ \vdots \\ r[k+(g_i-1)f_i] \end{bmatrix}$$

Column that gives maximum correlation with the observation

$$\hat{k} = \underset{k \in \{j+lf_i\}}{\arg \max} \ \underline{z}_{i,j}^{\dagger} \mathbf{W}[:,l]$$

Decoder

Peeling Process:

Exact Matching

 Remove a decoded variable node's contribution from all participating bin nodes

Approximate Matching

- Remove a decoded variable node's contribution only from neighboring single-tons and double-tons
- Avoid error propagation

Error Analysis

Error Events

- \mathcal{E}_1 -Bin Classification: Bin is wrongly classified
- \mathcal{E}_2 -Pos. Identification: Position of singleton is identified wrongly, given a singleton
- \mathcal{E}_3 -Peeling Process: Peeling process fails to recover the L significant correlation coefficients, given $\mathbb{P}(\mathcal{E}_1) = \mathbb{P}(\mathcal{E}_2) = 0$

\mathcal{E}_1 -Bin Classification

Error Analysis

\mathcal{E}_2 -Pos. Identification

- $\underline{z}_{i,j} = r[j_p] \ \underline{w}_{j_p} + \sum_{k \neq p} n_k \underline{w}_{j_k}$
- Mutual Incoherence property to bound the cross-correlation(noise) term
 - $\log N$ measurements (shifts) suffices

\mathcal{E}_3 -Peeling Process

- Tools from Coding theory to analyze Sparse Graph Codes
- Density Evolution to quantify Error Probability
- # of check-nodes is a function of sparsity (query length)

Error Analysis

Error Events

- \mathcal{E}_1 -Bin Classification: Bin is wrongly classified
- \mathcal{E}_2 -Pos. Identification: Position of singleton is identified wrongly, given a singleton
- \mathcal{E}_3 -Peeling Process: Peeling process fails to recover the L significant correlation coefficients, given $\mathbb{P}(\mathcal{E}_1) = \mathbb{P}(\mathcal{E}_2) = 0$

Error Probability

$$\begin{split} \mathbb{P}(\mathcal{E}_{\mathsf{total}}) \leq & \mathbb{P}(\mathcal{E}_1) + \mathbb{P}(\mathcal{E}_2) + \mathbb{P}(\mathcal{E}_3) \\ \leq & 6e^{-\frac{N^{\mu+\alpha-1}(1-6\eta)^2}{16}} + 2e^{-N^{\mu+\alpha-1} c_1(\eta)} + e^{-c_3N^{c_4\alpha}} \\ \hline \mathbb{P}(\mathcal{E}_{\mathsf{total}}) \to 0 \ \ \text{if} \ \ \alpha > 1-\mu \end{split}$$

Complexity Analysis

Sample Complexity

Total # of samples required (S) = $O(dBN^{\alpha}) = O(N^{1-\mu} \log N)$

Computational Complexity

$$\underline{r} = \mathcal{F}_N^{-1} \left\{ \mathcal{F}_N \{ \underline{x} \} \odot \ \mathcal{F}_N \{ \underline{y}' \} \right\}$$

Sketch of Query:

$$C_{I} \ = \ dB \ (\underbrace{N^{\mu}}_{\mathsf{Folding}} + \ \underbrace{N^{\alpha} \ \log N^{\alpha}}_{\mathsf{Shorter} \ \mathsf{FFTs}}) = O(\max(N^{1-\mu} \log^2 N, N^{\mu} \log N))$$

• RSIDFT:

$$C_{II} = dB \left(\underbrace{O(N^{\alpha} \log N^{\alpha})}_{\text{Shorter IFFTs /block/stage}} + \underbrace{L \ N^{1-\alpha}}_{\text{Correlations}} \right) = O(\max(N^{1-\mu} \log^2 N, N^{\mu+\lambda} \log N))$$

$$C_{\mathsf{total}} = \max(C_{\mathsf{I}}, C_{\mathsf{II}}) = O(\max(N^{1-\mu}\log^2 N, N^{\mu+\lambda}\log N))$$

Simulation Results

Figure: Plot of Probability of Missing a Match vs. Sample Gain for Exact Matching of a substring of length $M=10^5$ from a equiprobable binary $\{+1,-1\}$ sequence of length $N=10^{12}$, divided into $G=10^5$ blocks each of length $\tilde{N}=10^7$. The substring was simulated to repeat in $L=10^6$ locations uniformly at random.

Simulation Results

Figure: Plot of Probability of Missing a Match vs. Sample Gain for Exact Matching of a substring of length $M=10^3$ from a equiprobable binary $\{+1,-1\}$ sequence of length $N=10^{12}$, divided into $G=10^6$ blocks each of length $\tilde{N}=10^6$. The substring was simulated to repeat in $L=10^6$ locations uniformly at random.

Questions?

Thank you!