铁磁共振数据处理

何金铭 PB21020660

1 测量微波信号频率

次数	1	2	3	4	5	6
波长表读数/mm	3.549	3.539	3.545	3.545	3.541	3.545
频率/MHz	8870.25	8870.45	8870.25	8870.25	8870.35	8870.25

表 1: 波长表和对应的频率表

测得波长表读数的平均值为 3.544mm, 频率的平均值为 8870.3MHz

2 *I-B* 曲线的处理

2.1 原始数据

I_1/A	1.201	1.251	1.300	1.354	1.401	1.450	1.501	1.551	1.600	1.610	1.620
$I_2/\mu A$	38.5	38.3	38.0	37.8	37.3	36.6	36.0	35.0	33.2	33.0	32.5
I_1/A	1.630	1.640	1.650	1.660	1.670	1.680	1.690	1.700	1.710	1.720	1.730
$I_2/\mu A$	32.2	31.8	31.2	30.5	30.0	29.2	28.2	27.2	26.1	25.5	24.0
I_1/A	1.740	1.750	1.760	1.770	1.784	1.790	1.800	1.811	1.821	1.831	1.840
$I_2/\mu A$	22.5	21.5	20.0	18.5	17.0	16.2	15.5	14.8	14.8	15.4	16.5
I_1/A	1.850	1.860	1.870	1.880	1.891	1.900	1.910	1.920	1.930	1.940	1.950
$I_2/\mu A$	18.2	20.0	22.5	25.5	28.0	30.5	32.5	34.2	36.5	38.0	39.5
I_1/A	1.960	1.970	1.980	1.990	2.000	2.050	2.100	2.150			
$I_2/\mu A$	40.5	41.5	42.3	43.0	43.5	45.5	46.2	46.5			

表 2: B 上升时的 I-B 曲线原始数据记录表

I_1/A	2.000	1.950	1.900	1.890	1.878	1.868	1.859	1.847	1.836	1.826
$I_2/\mu A$	45.0	42.5	36.5	34.0	32.0	29.5	26.5	23.5	20.5	18.5
I_1/A	1.816	1.807	1.797	1.786	1.776	1.765	1.756	1.742	1.735	1.725
$I_2/\mu A$	17.0	16.0	15.5	15.5	16.5	17.8	18.8	21.2	22.5	24.0
I_1/A	1.714	1.704	1.694	1.683	1.675	1.665	1.654	1.642	1.630	1.620
$I_2/\mu A$	25.8	27.5	29.0	30.5	31.5	32.5	33.5	34.5	35.5	36.5
I_1/A	1.609	1.596	1.584	1.571	1.518	1.468	1.412	1.369	1.315	1.265
$I_2/\mu A$	37.3	38.0	38.5	39.2	41.0	42.0	43.0	43.5	44.0	44.5

表 3: B 下降时的 I-B 曲线原始数据记录表

2.2 处理后数据

2.2.1 B 上升的情况

B/mT	191	199	207	214	222	230	238	245	253	254.6	256.2
$I/\mu A$	38.5	38.3	38.0	37.8	37.3	36.6	36.0	35.0	33.2	33.0	32.5
B/mT	257.8	259.4	261	262.6	264.2	265.8	267.4	269	270.4	271.8	273.2
$I/\mu A$	32.2	31.8	31.2	30.5	30.0	29.2	28.2	27.2	26.1	25.5	24.0
B/mT	274.6	276	277.6	279.2	280.8	282.4	284	285.4	286.8	288.2	289.6
$I/\mu A$	22.5	21.5	20.0	18.5	17.0	16.2	15.5	14.8	14.8	15.4	16.5
B/mT	291	292.6	294.2	295.8	297.4	299	300.4	301.8	303.2	304.6	306
$I/\mu A$	18.2	20.0	22.5	25.5	28.0	30.5	32.5	34.2	36.5	38.0	39.5
B/mT	307.6	309.2	310.8	312.4	314	321	329	336			
$I/\mu A$	40.5	41.5	42.3	43.0	43.5	45.5	46.2	46.5			

表 4: B 上升时的 I-B 曲线数据记录表

图 1: B 上升时的 I-B 曲线

 I_0 : 选取 I_0 为左右渐近线值的平均值, $I_0 = \frac{38.5 + 46.5}{2} \mu A = 42.5 \mu A$

 I_r : I_r 为峰谷对应的电流值, $I_r = 14.8 \mu A$

计算得 $I_{\frac{1}{2}}$ 为:

$$I_{\frac{1}{2}} = \frac{2I_0I_r}{I_0 + I_r} = \frac{2 \cdot 42.5 \cdot 14.8}{42.5 + 14.8} \mu A = 21.9546 \mu A \tag{1}$$

通过差值的方法计算得 $\Delta B = 17.62mT$,并且观察得 $B_r = 286.1mT$ 计算得朗德因子 g 为:

$$g = \frac{\gamma \hbar}{\mu_B} = \frac{2\pi \nu}{B_r} \cdot \frac{\hbar}{\mu_B} = \frac{2\pi \cdot 8870.3MHZ}{286.1mT} \cdot \frac{1.054 \times 10^{-34} J \cdot s}{9.274 \times 10^{-24} J \cdot T^{-1}} = 2.214 \tag{2}$$

I_1/A	322	314	306	304.6	302.92	301.52	300.26	298.52	296.76	295.16
$I_2/\mu A$	45.0	42.5	36.5	34.0	32.0	29.5	26.5	23.5	20.5	18.5
I_1/A	293.56	292.12	290.52	288.76	287.16	285.4	283.96	281.88	280.9	279.5
$I_2/\mu A$	17.0	16.0	15.5	15.5	16.5	17.8	18.8	21.2	22.5	24.0
I_1/A	277.96	276.56	275.04	273.28	272	270.4	268.64	266.72	264.8	263.2
$I_2/\mu A$	25.8	27.5	29.0	30.5	31.5	32.5	33.5	34.5	35.5	36.5
I_1/A	261.44	259.36	257.44	255.36	246.88	238.88	229.92	223.04	215.1	207.4
$I_2/\mu A$	37.3	38.0	38.5	39.2	41.0	42.0	43.0	43.5	44.0	44.5

表 5: B 下降时的 I-B 曲线数据记录表

图 2: B 上升时的 I-B 曲线

 I_0 : 选取 I_0 为左右渐近线值的平均值, $I_0 = \frac{45.0 + 44.5}{2} \mu A = 44.75 \mu A$

 I_r : I_r 为峰谷对应的电流值, $I_r = 15.5 \mu A$

计算得 $I_{\frac{1}{2}}$ 为:

$$I_{\frac{1}{2}} = \frac{2I_0I_r}{I_0 + I_r} = \frac{2 \cdot 44.75 \cdot 15.5}{44.75 + 15.5} \mu A = 23.0249 \mu A \tag{3}$$

通过差值的方法计算得 $\Delta B = 17.09mT$,并且观察得 $B_r = 289.64mT$ 计算得朗德因子 g 为:

$$g = \frac{\gamma \hbar}{\mu_B} = \frac{2\pi \nu}{B_r} \cdot \frac{\hbar}{\mu_B} = \frac{2\pi \cdot 8870.3MHZ}{289.64mT} \cdot \frac{1.054 \times 10^{-34} J \cdot s}{9.274 \times 10^{-24} J \cdot T^{-1}} = 2.187 \tag{4}$$

2.2.3 总结

综上:

$$\Delta B = \frac{\Delta B_1 + \Delta B_2}{2} = \frac{17.62 + 17.09}{2} mT = 17.36 mT \tag{5}$$

$$g = \frac{g_1 + g_2}{2} = \frac{2.214 + 2.187}{2} = 2.201 \tag{6}$$

3 共振波形图

图 3: 用示波器观察的共振波形图

X 轴代表的是随时间左右震荡的电流信号,反映了 B 的变化; Y 轴代表的是另一个随时间左右震荡的电流信号,反映了 I 的变化。和上面画的 I-B 曲线类似。

4 思考题

4. 能否从试验结果曲线,取曲线高度一半处对应的磁场差作为 ΔB ? 为什么?

不能。因为在实际测量中测的是 I-B 曲线,而不是 μ'' -B 曲线。而检波电流 I 在一定条件下与输出功率 P_{out} 成正比,而 P_{out} 表征的是品质因数 Q_L 的变化,进而反映 μ'' 的变化。而这几个量之间并不是线性关系,由下式易得:

$$\Delta(\frac{1}{Q_L}) = 4A\mu' \tag{7}$$

$$P_{out}(\omega_0) = \frac{4P_{in}(\omega_0)}{Q_{e1}Q_{e2}} \cdot Q_L^2 \tag{8}$$

故不能取曲线高度一半处对应的磁场差作为 ΔB 。