Econometrics Lecture 1 EC2METRIE

Dr. Anna Salomons

Utrecht School of Economics (U.S.E.)

14 November 2016

Econometrics

- Econometrics = using data to measure causal effects.
- Economic theory suggests important relationships (cause-and-effect), often with policy implications.
 - However, there is only so much we can learn from theorizing: we need empirical evidence to test our models.
 - E.g. economic theory almost never suggests quantitative magnitudes of these causal effects.
- Conclusion: we need to test these relationships in the real world, using data.
- ▶ Note that econometric techniques are used in other social sciences as well: political science, sociology, psychology.

Examples of questions that econometrics can help you answer:

- By how much does a university degree increase your lifetime earnings?
- What is the effect of replacing scholarships with student loans on college attainment rates?
- ▶ What is the impact of TV watching on children's cognitive development?
- What is the quantitative effect of reducing class size on student achievement?
- Does increasing the minimum wage cause employment to fall among low-skilled workers?
- ▶ What is the impact of voters' trust in government on sympathy for extreme right-wing parties?
- ▶ Does foreign aid positively contribute to the growth of an economy?

Using data to measure causal effects

- Ideally, we would like an experiment (randomization) to answer these questions
 - What would be an experiment to estimate the effect of class size on test scores?
- But almost always we only have observational (=non-experimental) data.
 - Returns to education
 - Inflation & consumer confidence
 - Foreign aid & growth
 - Minimum wages & unemployment
 - TV watching & cognitive development
 - **.**..

Aims of this course

- Learn to apply the basic econometric tools used for testing economic theories, and interpret the estimation results.
- ► Focus on applications theory is used only as needed to understand the why's of the methods.
- We also deal with difficulties arising from using observational instead of experimental data to estimate causal effects
 - confounding effects (omitted variables)
 - "correlation does not imply causation"

We cannot always perform experiments

THE LIMITATIONS OF BLIND TRIALS

Place in the curriculum

- ► Follow-up on Statistics: further develops regression analysis and testing economic hypotheses
- Further develops Stata skills (started in Statistics & Macroeconomics)
- ▶ Needed for **Bachelor thesis** and other empirical projects
- ► Masters in Economics requires knowledge of Econometrics

Course materials

- ▶ Lecture slides. Note that these may contain additional material not covered in Studenmund.
- Studenmund, A.H. (2013), Using Econometrics. A Practical Guide, 6th edition. Pearson Publishing. ISBN 9781292021270 (or ISBN 9780131379985).
- ► Course manual (available on Blackboard).

Course set-up: meetings

- ▶ **Lecture**: weeks 1-8, Mondays, 3.15-5.00 PM, Ruppert Blauw and Rood.
- ► Tutorial: weeks 1-8, Thursdays; individual schedule available in Osiris
- Project group: meeting in weeks 2, 4, 5 and 7,
 Tuesdays/Thursdays, meetings of half an hour per group
 - Schedule posted on Blackboard on Monday 21 November: first meetings are on Tuesday 22 November for most groups, but there may be a few on Thursday 24 November too.

Coordinator and tutorial teachers: contact information

- Course coordinator:
 - Sergei Hoxha, econometrics.use@uu.nl
- Tutorial teachers:
 - ► Tea Elezi, t.elezi@uu.nl
 - Wilfred de Graaf, j.w.degraaf@uu.nl
 - Yolanda Grift, y.grift@uu.nl
 - Sergei Hoxha, s.hoxha@uu.nl
- ▶ Project advisors: see course manual

Project

- Write empirical research paper in groups of 5 students, formed during the first tutorial.
 - Attendance of the first tutorial is mandatory; only students present in the first tutorial can choose their own project group!
- Supervised by a project advisor: your tutorial teacher or additional teaching staff (see course manual).
- Apply the econometric analyses discussed in each week of the course: a to do list for the project paper is provided at the end of each lecture
- ▶ Datasets (cross-sectional for weeks 1-5, timeseries for weeks 6-7) are on Blackboard: you can choose your own cross-sectional dataset during the first tutorial, else one is assigned to you. (The time-series dataset can be chosen in week 6.)

Course set-up: examination

- ▶ Note: **no midterm** exam- i.e. classes throughout weeks 1-8
- ▶ Individual written exam, week 9: 60% of final grade. See tutorial exercises & sample exams posted on Blackboard.
- ► **Project paper**, deadline = 20 January 2017: **40%** of final grade
 - ► Group grade
- ► See course manual for honor course, repeaters course & exam retake information.

Course set-up: effort requirement

- Participation in at least 5 out of 8 tutorials.
- ▶ Participation in all 4 project group meetings.
- Preliminary draft of project paper (deadline: 23 December 2016) of satisfactory level.
- No effort requirement for course repeaters.

Course set-up: topics by week

```
Week 1: Statistics refresher (+overview of regression analysis)
```

- Week 2: Mechanics of the regression model
- Week 3: t-test, F-test, specification
- Week 4: Functional form and dummy variables
- Week 5: Heteroskedasticity and multicollinearity
- Week 6: Serial correlation
- Week 7: Time-series models
- Week 8: Linear probability model (note: this week is not part of the
 - project paper but it is included in the written exam)

This class

Statistics refresher:

- Random variables, population, probability distribution
- Univariate analysis: expected value, variance
- Bivariate analysis: joint distribution, marginal distribution, conditional distribution, independence, conditional expectation, correlation, covariance

Regression analysis

► A first introduction to terminology, and causality- more in following weeks.

Topics in italics are not discussed in Studenmund.

Studenmund:

- Chapter 1
- Sections 17.1 and 17.2

Review of statistical theory

We are working towards estimating a multivariate (or multiple) population model of the form:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + ... + \beta_k X_{ki} + \varepsilon_i$$

- ▶ This is called regression analysis- we discuss it in coming weeks
- ➤ To do so, we first revisit univariate analysis (summarizing one variable) and bivariate analysis (summarizing the relationship between 2 variables).
- Most of the material covered this week will be familiar from your Statistics course.

Motivation for research

Dutch newspapers reported that over the past 30 years:

- ► The number of students in tertiary education has increased with 84,000, but of those, only 10,000 were male students!
- ► The number of female students has increased 2.5-fold since 1980.
- ► Currently, in the Netherlands, there are 6,000 more female students than male students.
- ► This is in fact an international phenomenon. (proof on next slides)

Evidence for the US

18 / 95

Evidence for OECD countries

What about the gender wage gap?

- Documenting the gender wage gap and understanding its causes is still an important research topic among economists
- ► Two prominent scholars in this field are professors Francine Blau and Lawrence Kahn (both at Cornell University)
- Solution to the gender wage gap proposed by John Oliver (Last Week Tonight):

```
https://www.youtube.com/watch?v=T1p61WrVtEg.
```

- ▶ Do starting salaries of female economics graduates differ from those of male economics graduates?
 - $ightharpoonup H_0$: there is no difference in starting salaries
 - $ightharpoonup H_A$: there is a difference in starting salaries
- ► Note that the alternative hypothesis is based on economic theory. E.g., we may expect differences in econ graduates' starting salaries by gender due to (a combination of):

- ▶ Do starting salaries of female economics graduates differ from those of male economics graduates?
 - \blacktriangleright H_0 : there is no difference in starting salaries
 - $ightharpoonup H_A$: there is a difference in starting salaries
- Note that the alternative hypothesis is based on economic theory. E.g., we may expect differences in econ graduates' starting salaries by gender due to (a combination of):
 - Differences in human capital accumulation;

- ▶ Do starting salaries of female economics graduates differ from those of male economics graduates?
 - \blacktriangleright H_0 : there is no difference in starting salaries
 - $ightharpoonup H_A$: there is a difference in starting salaries
- Note that the alternative hypothesis is based on economic theory. E.g., we may expect differences in econ graduates' starting salaries by gender due to (a combination of):
 - ▶ Differences in human capital accumulation;
 - Differences in rewards of non-market activities;

- ▶ Do starting salaries of female economics graduates differ from those of male economics graduates?
 - \blacktriangleright H_0 : there is no difference in starting salaries
 - \blacktriangleright H_A : there is a difference in starting salaries
- Note that the alternative hypothesis is based on economic theory. E.g., we may expect differences in econ graduates' starting salaries by gender due to (a combination of):
 - Differences in human capital accumulation;
 - Differences in rewards of non-market activities;
 - Differences in job preferences between men and women;

- ▶ Do starting salaries of female economics graduates differ from those of male economics graduates?
 - \blacktriangleright H_0 : there is no difference in starting salaries
 - $ightharpoonup H_A$: there is a difference in starting salaries
- Note that the alternative hypothesis is based on economic theory. E.g., we may expect differences in econ graduates' starting salaries by gender due to (a combination of):
 - Differences in human capital accumulation;
 - Differences in rewards of non-market activities;
 - Differences in job preferences between men and women;
 - Labor market discrimination.

How to answer this research question

Do starting salaries of female economics graduates differ from those of male economics graduates?

- What is the random variable and the population?
- Numerically summarize the random variable: univariate analysis
- Analyse the relationship between the random variable and another random variable: bivariate analysis and regression analysis

Random variable

Note: at this stage we do not have any sample (i.e. dataset) yet!

Random variable (r.v.) X = a variable that takes on different values (these are denoted x_i) with a given probability for each outcome $(Pr(X = x_i))$.

- ▶ In our example, the r.v. is starting salaries of econ grads.
- Discrete r.v.: r.v. with a finite number of outcomes ("countable outcomes").
- Continuous r.v.: r.v. may take on any numerical value in an interval or collection of intervals ("outcomes from a measuring process").

Population & probability density function

Population: set of all possible outcomes of X- we think of populations as infinitely large.

▶ In our example, the population is all possible starting salaries of economics graduates.

Probability density function¹ **(pdf)** function containing the probabilities of different outcomes, denoted $f(x_i) = Pr(X = x_i)$.

- Discrete pdf: pdf for countable outcomes;
- Continuous pdf: pdf for non-countable outcomes

¹Also called the probability distribution function, or the probability function.

Example of a continuous pdf

Properties of the probability density function

Properties of discrete pdf for N possible outcomes for discrete r.v. X:

▶ All outcomes of X (denoted x_i) have a non-negative probability of occurring:

$$Pr(X = x_i) \ge 0 \text{ for } i = 1, 2, ..., N$$

▶ The sum of all probabilities is equal to 1:

$$\sum_{i=1}^{N} \Pr(X = x_i) = 1 \text{ or } \sum_{i=1}^{N} f(x_i) = 1$$

Properties of the probability density function

Properties of continuous pdf for all possible outcomes for continuous r.v. X:

▶ All outcomes of *X* (denoted *x_i*) have a non-zero probability of occurring:

$$\forall x: f(x_i) \geq 0$$

▶ The sum of all probabilities is equal to 1:

$$\int_{-\infty}^{+\infty} f(x_i) dx = 1$$

How to answer this research question

Do starting salaries of female economics graduates differ from those of male economics graduates?

- ▶ We have described the random variable and the population, which can be seen from a probability density function.
- ► We now turn to numerically summarizing the random variable's population pdf: this is called univariate analysis
 - First moment of the pdf: **expected value** (mean) of X
 - Second moment of the pdf: variance of X

Expected value

- Consider a discrete random variable X, starting salaries of economics graduates.
- ▶ The **expected value** of *X* is its average value (i.e. the mean starting salary) in the population: calculated by weighting each value with the probability that it comes up.
- ▶ Hence, to calculate the expected value of X:

$$E(X) = EX = \mu_X = \sum_{i=1}^{N} \Pr(X = x_i) * x_i$$

Expected value: first moment of pdf

Expected value: numerical example for discrete random variable

The expected value of a roll of a fair die (in a population of infinitely many fair die rolls), E(X) = 3.5:

Xi	$f(x_i) = Pr(X = x_i)$	$f(x_i) * x_i$
1	1/6	1/6
2	1/6	2/6
3	1/6	3/6
4	1/6	4/6
5	1/6	5/6
6	1/6	1
		SUM = 3.5

Expected value: rules of calculation

1. When X is a constant with value c, e.g. the expected value of starting salaries when all econ graduates earn exactly the same starting salary:

$$E(c) = c$$
 (rule 1)

2. When a constant c is added to X, e.g. the expected value of starting salaries when economics graduates all receive the same fixed bonus c on top of a random component X:

$$E(X+c) = E(X) + c = \mu_X + c \qquad \text{(rule 2)}$$

Expected value: rules of calculation

3. When X is multiplied by constant c: e.g. economics graduates earn X euros or cX dollars, where c is a constant Euro-Dollar exchange rate

$$E(cX) = cE(X) = c\mu_X$$
 (rule 3)

Important: this rule tells us what happens to the expected value of X when the units of measurements of X are changed, e.g. measuring in Euros or thousands of Euros.

Expected value: rules of calculation

4. When random variables X₁ and X₂ are summed: e.g. the expected value of starting salaries when these are made up of two different income sources (say, baseline wages and overtime pay)

$$E(X_1 + X_2) = E(X_1) + E(X_2) = \mu_{X_1} + \mu_{X_2}$$
 (rule 4)

In general :
$$E \sum_{j} X_{j} = \sum_{j} E X_{j}$$

Note that independence between X_1 and X_2 (discussed later) is not required for this result!

Expected value: rules of calculation

Putting the rules together:

$$E(3X_1 + 2X_2 + 5) = 3E(X_1) + 2E(X_2) + 5$$

= $3\mu_{X_1} + 2\mu_{X_2} + 5$

Further practice of these rules in the tutorial.

Population variance and standard deviation

▶ The variance of the random variable X

$$Var(X) = E(X - EX)^{2} = \sum_{i=1}^{N} (x_{i} - \mu_{X})^{2} \operatorname{Pr}(X = x_{i})$$

$$= E(X^{2}) - \mu_{X}^{2} \text{ (click for proof)}$$
 (var)

Standard deviation of a random variable X

$$Sd(X) = \sqrt{Var(X)}$$
 (sd)

Notation:

$$Var(X) = \sigma_X^2$$

 $Sd(X) = \sigma_X$

Variance: second moment of pdf

Population var and sd: numerical example for discrete r.v.

The variance & standard deviation of a roll of a fair die can be calculated as follows (using the previous calculation of $\mu_X = 3.5$):

Xi	μ_X	$(x_i - \mu_X)$	$(x_i - \mu_X)^2$	$f(x_i)$	$(x_i - \mu_X)^2 * f(x_i)$
1	3.5	-2.5	6.25	1/6	6.25 * 1/6
2	3.5	-1.5	2.25	1/6	2.25 * 1/6
3	3.5	-0.5	0.25	1/6	0.25 * 1/6
4	3.5	0.5	0.25	1/6	0.25 * 1/6
5	3.5	1.5	2.25	1/6	2.25 * 1/6
6	3.5	2.5	6.25	1/6	6.25 * 1/6
				SUM:	$17.5 * \frac{1}{6} = 35/12 \approx 2.92$

Hence, $\sigma_X^2 \approx 2.92$ and $\sigma_X \approx \sqrt{2.92} \approx 1.71$.

1. When X is a constant with value c, e.g. the variance of starting salaries when all econ graduates earn exactly the same starting salary:

$$Var(c) = 0$$
 (rule 1)

2. When a constant c is added to X, e.g. the variance of starting salaries when econ graduates all receive the same fixed bonus c on top of a random component X:

$$Var(X+c) = Var(X)$$
 (rule 2)

3. When X is multiplied by a constant c, e.g. the variance of starting salaries when units of measurements are changed, e.g. economics graduates earn X euros or cX dollars, where c is a constant Euro-Dollar exchange rate

$$Var(cX) = c^2 Var(X)$$
 (rule 3)

Click for proof of rule 3 (Appendix).

4. When (pairwise) independent random variables are summed:

$$Var(X_1 + X_2) = Var(X_1) + Var(X_2)$$
 (rule 4)

In general :
$$Var\left(\sum_{j} X_{j}\right) = \sum_{j} Var(X_{j})$$

5. When dependent random variables are summed:

$$Var(X_1 + X_2) = Var(X_1) + Var(X_2) + 2Cov(X_1, X_2)$$
 (rule 5)

In general:

$$Var\left(\sum_{j}X_{j}\right) = \sum_{j}\sum_{k}Cov(X_{j},X_{k})$$

Note: when two dependent random variables are differenced:

$$Var(X_1 - X_2) = Var(X_1) + Var(X_2) - 2Cov(X_1, X_2).$$

Click for proof of rules 4 & 5 (Appendix).

Putting some rules of calculation together

▶ Rules 3 & 4: the variance of the sum of aX_1 and bX_2 (where a and b are constants) if X_1 and X_2 are independent:

$$Var(aX_1 + bX_2) = a^2 Var(X_2) + b^2 Var(X_2)$$

▶ Rules 3 & 5: the variance of the sum of aX_1 and bX_2 (where a and b are constants) if X_1 and X_2 are dependent:

$$Var(aX_1 + bX_2) = a^2 Var(X_1) + b^2 Var(X_2) + 2abCov(X_1, X_2)$$

Variance: rules of calculation - examples

$$Var(2) = 0$$

 $Var(-2X_1 + 6) = Var(-2X_1) + Var(6)$
 $= 4Var(X_1) + 0$
 $= 4Var(X_1)$

For independent variables X_1 and X_2 ,

$$Var(3X_1 + 2X_2 + 3) =$$

= $Var(3X_1) + Var(2X_2) + Var(3)$
= $9Var(X_1) + 4Var(X_2)$

More examples in tutorial.

How to answer this research question

Do starting salaries of female economics graduates differ from those of male economics graduates?

- What is the random variable and the population?
- Numerically summarize the random variable: univariate analysis
- ► Analyze the relationship between the random variable and another random variable: bivariate analysis and regression analysis

Bivariate analysis

- ► We now start considering the **relationship between the** random variable *X* and another random variable *G*:
 - X= starting salary of econ grads;
 - ► *G*= dummy variable for gender
 - ightharpoonup G = 0 for male econ grad
 - G = 1 for female econ grad.
- ➤ To do this, we need the concepts of joint, marginal and conditional distributions.

Joint distribution

- ▶ Joint distribution of two discrete random variables X and G = the probability that the random variables take on certain values, x_i and g_j , simultaneously. It is denoted $f(x_i, g_j)$ or $Pr(X = x_i, G = g_j)$.
- Properties of discrete joint pdf of X and G:
 - Any joint event has a non-negative probability of occurring:

$$f(x_i, g_j) = \Pr(X = x_i, G = g_j) \ge 0 \text{ for } i = 1, 2, ..., n$$

The sum of all joint probabilities is 1:

$$\sum_{i=1}^{N} \sum_{j=1}^{2} f(x_i, g_j) = \sum_{i=1}^{N} \sum_{j=1}^{2} \Pr(X = x_i; G = g_j) = 1$$

Marginal distribution

► Marginal distribution of a random variable is the same as its probability density function (pdf):

$$Pr(X = x_i) = Pr(X = x_i, G = 0) + Pr(X = x_i, G = 1)$$

same thing, alternative notation;

$$f(x_i) = \sum_{j=1}^{2} f(x_i, g_j)$$

▶ In bivariate analysis, we call the pdf the marginal distribution to more clearly distinguish it from the joint distribution.

Joint distribution: numerical example

This table shows the joint income (X = low, medium or high) distribution of male (G = 0) and female (G = 1) economics graduates:

	G=0	G=1
X = low	0.12	0.13
X = medium	0.27	0.23
X = high	0.18	0.07

E.g.
$$Pr(X = low, G = 0) = 0.12$$
, $Pr(X = high, G = 1) = 0.07$.

Note that the joint probabilities sum to 1.

Joint and marginal distributions: numerical example

It is straightforward to calculate the two marginal probability distributions by summing the joint probabilities:

	G=0	G=1	$Pr(X = x_i)$
X = low	0.12	0.13	0.25
X = medium	0.27	0.23	0.50
X = high	0.18	0.07	0.25
$Pr(G = g_j)$	0.57	0.43	

The marginal distributions are
$$f(x_i) = \Pr(X = x_i)$$
 and $f(g_j) = \Pr(G = g_j)$. Note that $\sum_{i=1}^3 f(x_i) = \sum_{j=1}^2 f(g_j) = 1$

Conditional distribution

Conditional distribution is the distribution of a random variable X conditional on a specific value of another random variable G. It is defined as the ratio of the joint distribution over the marginal distribution:

$$f(X|G) = \frac{f(x_i, g_j)}{f(g_j)}$$

For instance, the conditional income distribution for male econ grads is:

$$Pr(X = x_i | G = 0) = \frac{Pr(X = x_i, G = 0)}{Pr(G = 0)}$$

Similarly, the conditional income distribution for female econ grads is:

$$\Pr(X = x_i | G = 1) = \frac{\Pr(X = x_i, G = 1)}{\Pr(G = 1)}$$

Conditional distribution: numerical example

We can calculate the **conditional income distributions for male and female econ graduates** in our example:

	G=0	G=1	$Pr(X = x_i)$
X = low	0.12	0.13	0.25
X = medium	0.27	0.23	0.50
X = high	0.18	0.07	0.25
$Pr(G = g_j)$	0.57	0.43	

	$\Pr\left(X=x_i G=0\right)$	$\Pr\left(X=x_{i} G=1\right)$
X = low	$\frac{0.12}{0.57} \approx 0.21$	$\frac{0.13}{0.43} \approx 0.30$
X = medium	$\frac{0.27}{0.57} \approx 0.47$	$\frac{0.23}{0.43} \approx 0.53$
X = high	$\frac{0.18}{0.57} \approx 0.32$	$\frac{0.07}{0.43} \approx 0.16$

Independence

Two r.v.'s (X and G) are **independent** if the distribution of each variable is unaffected by any particular outcome the other variable takes on²: the **joint distribution is equal to product of marginal distributions**

$$\Pr(X = x_i, G = g_j) = \Pr(X = x_i) * \Pr(G = g_j)$$

Consequences of independence:

The conditional distribution is equal to marginal distribution

$$\Pr(X = x_i | G = g_j) = \Pr(X = x_i)$$

▶ The covariance and correlation between the random variables is zero: Cov(X, G) = Corr(X, G) = 0.

²Intuitively, "independent" means that the occurrence of one event makes it neither more nor less probable that the other event occurs- in the case of random variables, this has to hold for all events (=outcomes) captured by the random variables.

Independence condition: example

X and G independent if joint distribution = product of marginal distributions:

	G=0	G=1	$Pr(X = x_i)$
X = low	0.12	0.13	0.25
X = medium	0.27	0.23	0.50
X = high	0.18	0.07	0.25
$Pr\left(G=g_{j}\right)$	0.57	0.43	

$$Pr(X = low, G = 0) \stackrel{?}{=} Pr(X = low) * Pr(G = 0)$$

 $0.12 \stackrel{?}{=} 0.25 * 0.57$
 $0.12 \neq 0.14$

Hence X and G are **not independent.**

Independence consequence: example

Consequence: conditional distribution \neq marginal distribution since X and G are dependent:

	G=0	G=1	$Pr(X = x_i)$	$\Pr\left(X=x_{i} G=0\right)$
X = low	0.12	0.13	0.25	$\frac{0.12}{0.57} \approx 0.21$
X = medium	0.27	0.23	0.50	$\frac{0.27}{0.57} \approx 0.47$
X = high	0.18	0.07	0.25	$\frac{0.18}{0.57} \approx 0.32$
$Pr(G = g_j)$	0.57	0.43		

e.g.
$$\Pr(X = low | G = 0) \stackrel{?}{=} \Pr(X = low)$$

 $0.21 \neq 0.25$

Conditional expectations

Just like we can summarize the pdf by its expectation E(X), we can summarize the conditional distribution by the conditional expectation E(X|G).

Recall the general formula of the **expectation**:

$$E(X) = \sum_{i=1}^{N} \Pr(X = x_i) * x_i$$

The conditional expectation E(X|G) is the same, but using the conditional instead of the marginal distribution:

$$E(X|G) = \sum_{i=1}^{N} \Pr(X = x_i|G = g_j) * x_i$$

Conditional expectations

The conditional expectation of income for males:

$$E(X|G=0) = \sum_{i=1}^{N} \Pr(X=x_i|G=0) * x_i$$

The conditional expectation of income for females:

$$E(X|G=1) = \sum_{i=1}^{N} \Pr(X=x_i|G=1) * x_i$$

If X and G are independent, it follows that the conditional expectations equal the (unconditional) expectation.

$$E(X|G = 0) = E(X|G = 1) = E(X)$$

Conditional expectation: numerical example

Assume the low hourly wage is EUR 10, the medium is EUR 15 and the high is EUR 20: calculate the expected income conditional on G=0 (i.e. for males):

Xi	$\Pr\left(X=x_{i} G=0\right)$	$\Pr\left(X=x_{i}\middle G=0\right)*x_{i}$
X = 10	$\frac{0.12}{0.57} \approx 0.21$	0.21*10=2.10
X = 15	$\frac{0.27}{0.57} \approx 0.47$	0.47*15 = 7.05
X=20	$\frac{0.18}{0.57} \approx 0.32$	0.32 * 20 = 6.40
	SUM	15.55

Hence
$$E(X|G = 0) = 15.55$$
.

Conditional expectations: rules of calculation

In addition to the already discussed rules for expectations, we have:

1. When X is multiplied by a constant with value c, the conditional expectation is:

$$E(cX|G = 0) = cE(X|G = 0)$$
 (rule 1)
 $E(cX|G = 1) = cE(X|G = 1)$

Click for proof

2. When X is multiplied by a function of G, h(G), the conditional expectation is (where h(0) denotes the function h(G) evaluated at G=0; and h(1) evaluated at G=1):

$$E(h(G)X|G = 0) = h(0)E(X|G = 0)$$
 (rule 2)
 $E(h(G)X|G = 1) = h(1)E(X|G = 1)$

Conditional expectations: examples of rules of calculation

$$E[5X|X = 3] =$$
 $= 5E[X|X = 3]$
 $= 5 * 3 = 15$

$$E[2Y + 4XY + 5X|X = 2] =$$

$$= E[2Y|X = 2] + E[4XY|X = 2] + E[5X|X = 2]$$

$$= 2E[Y|X = 2] + 4E[XY|X = 2] + 5E[X|X = 2]$$

$$= 2E[Y|X = 2] + 4 * 2E[Y|X = 2] + 10$$

$$= 10E[Y|X = 2] + 10$$

Covariance

The **covariance between X and G** is a measure of linear association between X and G:

$$Cov(X, G) = \sigma_{XG} = E(X - EX)(G - EG)$$

= $E(XG) - E(X)E(G)$ (for proof: see stats course)

- ightharpoonup Cov(X,G) > 0: X and G are positively linearly associated
- ightharpoonup Cov(X,G) < 0: X and G are negatively linearly associated
- ightharpoonup Cov(X,G)=0: X and G are not *linearly* associated
- ▶ When two variables are independently distributed, their covariance is 0. But the converse need not be true: a covariance of 0 does not necessarily imply independence as the association may be non-linear!

1. Covariance between X and a constant c:

$$Cov(X, c) = 0$$
 (rule 1)

2. Covariance between aX and bG where a and b are constants:

$$Cov(aX, bG) = abCov(X, G)$$
 (rule 2)

3. The covariance between X and X:

$$Cov(X, X) = E(X - EX)^2 = Var(X)$$
 (rule 3)

Click for proof of rules 1 & 2.

Correlation

The **correlation between X and G** is a scale-invariant measure of linear association between X and G:

$$\mathit{Corr}(X,G) = \rho_{XG} = \frac{\mathit{Cov}(X,G)}{\sqrt{\mathit{Var}(X)}\sqrt{\mathit{Var}(G)}} = \frac{\mathit{Cov}(X,G)}{\mathit{sd}(X)\mathit{sd}(G)}$$

- ▶ $-1 \le Corr(X, G) \le 1$
- Corr(X, G) = 1: perfect linear positive relationship between X and G
- ► Corr(X, G) = -1: perfect linear negative relationship between X and G
- ightharpoonup Corr(X,G)=0: no linear relationship between X and G

Correlation or covariance of 0 does not imply independence

Rules of calculation: examples

$$Cov(-2X_1 + 3, 2X_2 + 4) =$$

= $Cov(-2X_1, 2X_2)$
= $-4Cov(X_1, X_2)$

$$Var(-2X_1 + 2X_2 + 4) =$$

$$= Var(-2X_1 + 2X_2)$$

$$= Var(-2X_1) + Var(2X_2) + 2Cov(-2X_1 + 2X_2)$$

$$= 4VarX_1 + 4Var(X_2) - 8Cov(X_1 + X_2)$$

Rules of calculation: examples

$$Var(2X_{1} + 4) = \\ = Var(2X_{1}) \\ = 4Var(X_{1})$$

$$Corr(X_{1}, 2X_{1} + 4) = \\ = Corr(X_{1}, 2X_{1}) \\ = \frac{Cov(X_{1}, 2X_{1})}{\sqrt{Var(X_{1})}\sqrt{Var(2X_{1})}} \\ = \frac{2Cov(X_{1}, X_{1})}{\sqrt{Var(X_{1})}\sqrt{4Var(X_{1})}} = 1 \\ = \frac{2Var(X_{1})}{\sqrt{Var(X_{1})}2\sqrt{Var(X_{1})}} = 1$$

How to answer this research question

Do starting salaries of female economics graduates differ from those of male economics graduates?

- ▶ We have summarized the population of r.v. X, as well as its relationship with r.v. G
- However, the population is always unobserved
- Hence we need to use a sample to infer about the population
 - List sample estimators of the population parameters (mean, variance, covariance, correlation) discussed so far
 - For proofs of the unbiasedness of these estimators: see Statistics course.
 - More on sampling distributions & inference next week.

Random sampling

- We will assume a random sample: randomly selected subset of the population.
- As such, $x_1, x_2, x_3...x_n$ denotes a random sample of size n from the population (which has population mean μ_X and variance σ_X^2), where x_i =value of x for the i^{th} individual (or other entity, e.g. firm, household) sampled.
- ▶ We can then use the sample to infer about the population by using estimators = procedures for constructing an estimate of a population parameter.

Sample estimators of population parameters

▶ The sample mean \overline{x} is an unbiased estimator of the population mean μ_X

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $E(\overline{x}) = \mu_X$

The sample mean has a variance (across different samples: the sampling distribution) which is decreasing in the sample size n

$$Var(\overline{x}) = \frac{\sigma_X^2}{n}$$

Sample estimators of population parameters

▶ The sample variance s_X^2 is an unbiased estimator of the population variance σ_X^2

$$s_X^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$

$$E(s_X^2) = \sigma_X^2$$

Sample estimators of population parameters

▶ **Sample covariance** between X and G, s_{XG} , is unbiased estimator of population covariance σ_{XG}

$$s_{XG} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}) (g_j - \overline{g})$$

$$E(s_{XG}) = \sigma_{XG}$$

▶ Sample correlation coefficient between X and G, r_{XG} , is unbiased estimator of population correlation coefficient ρ_{XG}

$$r_{XG} = \frac{s_{XG}}{\sqrt{s_X^2}\sqrt{s_G^2}}$$

$$E(r_{XG}) = \rho_{XG}$$

Metrics Lecture 1

Application to a sample

Result for our example question

Marginal distribution function

Sample means

. describe starting wage female

variable name variable label

. sum starting wage female

Variable	Obs	Mean	Std.	Dev.	Min	Max
starting_w~e	629	17.73411	12.04	1007	6.041697	104.0769
female	629	.4737679	.4997	1088	0	1

$$\overline{x} = 17.73$$
 $\overline{g} = 0.47$

Mean starting wage in this sample is EUR 17.73, and 47% of the sampled graduates are female.

Metrics Lecture 1

Application to a sample

Result for our example question

Conditional distribution functions (conditional on gender)

Conditional sample means (for men and women)

. sum starting_wage if female==0

Variable	Obs	Mean	Std. Dev.	Min	Max
starting_w~e	331	19.86311	14.07225	6.088898	104.0769

. sum starting_wage if female==1

Variable	Obs	Mean	Std. Dev	. Min	Max
starting_w~e	298	15.36936	8.707941	6.041697	65.84978

Average hourly salary for a male econ graduate in this sample is EUR 19.86, versus EUR 15.37 for a female econ graduate.

Sample (co)variances & sample correlation

```
. corr starting wage female, cov
(obs=629)
```

	starti~e	female
starting_w~e female	(144.963) (-1.12213)	.249709

	starti~e	female
starting_w~e female	1.0000 -0.1865	1.0000

$$s_{\rm x}^2 = 144.96$$

$$s_{XG} = -1.12$$

$$s_C^2 = 0.25$$

$$s_X^2 = 144.96$$
 $s_{XG} = -1.12$ $s_G^2 = 0.25$ $r_{XG} = -0.19$

Hypothesis test about sample correlation

. pwcorr starting_wage female, sig

	starti~e	female
starting_w~e	1.0000	
female	(0.0000)	1.0000

$$H_0 : \rho_{XG} = 0$$

 H_A : $\rho_{XG} \neq 0$

P-value is 0.00 < 0.05, hence reject H_0 : starting wages are significantly correlated with gender.

How to answer economic research questions

- ► This week, we just introduce the **terminology of the population regression model**
- In coming weeks, we will see how we can use a sample to infer on the population parameters from such multiple regression models.

Terminology of the multiple regression model

Population regression model, in general form:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + ... + \beta_{k}X_{ki} + \varepsilon_{i}$$

- Y: dependent variable (or explained variable, endogenous variable, regressand)
- ► X₁, X₂, ..X_k: **independent variables** (or explanatory variables, exogenous variables, regressors)
- ϵ : **error term** (or disturbance)- captures all other influences on Y (i.e. other than the influences of X_1 , X_2 , ... X_k)

Terminology of the multiple regression model

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + ... + \beta_{k}X_{ki} + \varepsilon_{i}$$

- Regression of Y on X
- ▶ Models the effect of the X's (independent) on Y (dependent)
- ▶ The regression equation is linear in parameters β_0 , β_1 , β_2 ... β_k
- Subscript i indexes individual population observations (1 through N):

$$Y_{1} = \beta_{0} + \beta_{1}X_{11} + \beta_{2}X_{21} + \dots + \beta_{k}X_{k1} + \varepsilon_{1}$$

$$Y_{2} = \beta_{0} + \beta_{1}X_{12} + \beta_{2}X_{22} + \dots + \beta_{k}X_{k2} + \varepsilon_{2}$$
...

$$Y_N = \beta_0 + \beta_1 X_{1N} + \beta_2 X_{2N} + \dots + \beta_k X_{kN} + \varepsilon_N$$

4 D > 4 P > 4 E > 4 E > E

Terminology of the multiple regression model

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + ... + \beta_k X_{ki} + \varepsilon_i$$

- \triangleright $\beta_0, \beta_1, \beta_2...\beta_k$: the **population parameters** (or coefficients)
- ▶ β_0 : **intercept** (or constant) expected value of Y when $X_1 = X_2 = ... = X_k = 0$.
- β_1 , β_2 .. β_k : **slope** parameters
- ▶ β_1 : expected effect of a one-unit change in X_1 on Y, holding constant $X_2, X_3, ... X_k$.
 - When can β_1 be interpreted as a causal effect of X_1 on Y, ceteris paribus? As we will now show in an example, when $E(\varepsilon_i|X_1,X_2..X_k)=0$.

Causality in the multiple regression model: example

$$W_i = \beta_0 + \beta_1 G_i + \beta_2 A_i + \varepsilon$$

This model informs us about how starting wages (W) relate to the gender (G) and age (A) of graduates.

We can then write the expected wage for a female graduate aged 25 as:

$$E(W|G=1, A=25) = E[(\beta_0 + \beta_1 G_i + \beta_2 A_i + \varepsilon) | (G=1, A=25)]$$

Causality in the multiple regression model: example

Expected wage for a female graduate aged 25:

$$E(W|G = 1, A = 25) = E[(\beta_0 + \beta_1 G_i + \beta_2 A_i + \varepsilon) | (G = 1, A = 25)]$$

We can work out the expectation (using rules of calculation):

$$= E[(\beta_0 + \beta_1 G_i + \beta_2 A_i + \varepsilon) | (G = 1, A = 25)]$$

$$= \begin{cases} E[\beta_0 | (G = 1, A = 25)] + E[\beta_1 G_i | (G = 1, A = 25)] \\ + E[\beta_2 A_i | (G = 1, A = 25)] + E[\varepsilon | (G = 1, A = 25)] \end{cases}$$

$$= \beta_0 + \beta_1 * 1 + \beta_2 * 25 + E[\varepsilon | (G = 1, A = 25)]$$

Causality in the multiple regression model: example

Expected wage for female graduate aged 25:

$$E(W|G = 1, A = 25) = \beta_0 + \beta_1 + 25\beta_2 + E[\varepsilon|(G = 1, A = 25)]$$

Similarly, expected wage for female graduate aged 26:

$$E(W|G = 1, A = 26) = \beta_0 + \beta_1 + 26\beta_2 + E[\varepsilon|(G = 1, A = 26)]$$

The difference between the two is the causal impact of being one year older on wages, ceteris paribus on gender (since gender is held constant)-this is given by β_2 ONLY IF $E[\varepsilon|(G,A)]=0$:

$$\beta_2 = E\left(W|G=1,A=25\right) - E\left(W|G=1,A=26\right)$$
 iff $E[\varepsilon|(G,A)] = 0$

In general, $E[\varepsilon|X_1,X_2..X_k]=0$ is known as the **conditional mean** assumption and we will get back to it in later weeks.

Things to do for your project paper this week (I)

- ► Look at the different cross-sectional datasets available and see which one(s) you find interesting.
- When you form a paper group in the first tutorial, also indicate your preferred dataset to your tutorial teacher.
 - If you do not indicate a preference in the first tutorial, a dataset will be assigned to you.
- Find out what information your dataset contains:
 - Examine what variables are in the dataset and what the main unit of observation is (individual, firm, country, ...).
 - Construct summary statistics for a number of different variables that interest you (univariate analysis): means, standard deviations, minimum & maximum.

Things to do for your project paper this week (II)

- ► Choose a **dependent variable** for your regression analysis: you want to understand variation in this variable (e.g. wage, economic growth, sales, crime rate, student test score, human trafficking, sympathy for extreme right-wing parties, ..).
- Choose the main independent variable on which the analysis is focused: you want to examine the economic effect of this variable on the dependent variable.
- ► Formulate research question related to these two variables (e.g. what is the impact of workers' physical attractiveness on their wages?)
- ► Then, start exploring the **bivariate relationship** between these two variables: correlation + simple OLS.
- See Appendix 1 of course manual for details on the final lay-out of the paper.

A note on appendix slides

Note: you are only very exceptionally required to perform proofs on the exam for this course, meaning it is not necessary for passing or even for obtaining a good grade. These proofs are included here to make it easier to understand where the various rules of calculation come from

Expected value: Caution!

In general,

$$E[g(X)] \neq g[E(X)]$$

For example, take $g(X) = X^2$:

$$EX^{2} = E(X^{2}) \neq [E(X)]^{2}$$

Proof of alternative variance formula

$$\begin{aligned} Var(X) &= E \left(X - EX \right)^2 \\ &= E \left(X - \mu_X \right)^2 \\ &= E \left[\left(X - \mu_X \right) \left(X - \mu_X \right) \right] \\ &= E(X^2 - 2X\mu_X - \mu_X^2) \\ &= E(X^2) - 2E(X\mu_X) + E(\mu_X^2) \\ &= E(X^2) - 2\mu_X E(X) + \mu_X^2 \\ &= E(X^2) - 2\mu_X \mu_X + \mu_X^2 \\ &= E(X^2) - 2\mu_X^2 + \mu_X^2 \\ &= E\left(X^2 \right) - \mu_X^2 \end{aligned}$$

Proof of variance rules 1 & 2

Proof of rule 1:

$$Var(c) = E(c^2) - c^2 = c^2 - c^2 = 0$$
 (proof)

Proof of rule 2:

$$Var(X+c) = E(X+c-E[X+c])^{2}$$
 (proof)

$$= E(X+c-E[X]-c)^{2}$$

$$= E(X-E[X])^{2}$$

$$= Var(X)$$

Proof of variance rule 3

$$Var(cX) = E((cX)^{2}) - (c\mu_{X})^{2}$$
 (proof)

$$= E(c^{2}X^{2}) - c^{2}\mu_{X}^{2}$$

$$= c^{2}E(X^{2}) - c^{2}\mu_{X}^{2}$$

$$= c^{2}[E(X^{2}) - \mu_{X}^{2}]$$

$$= c^{2}Var(X)$$

Proof of variance rules 4 & 5

Proof of rule 5:

$$Var(X_1 + X_2) = E([X_1 + X_2] - E[X_1 + X_2])^2$$
 (proof)

$$= E([X_1 - EX_1] + [X_2 - EX_2])^2$$

$$= E([X_1 - EX_1] + [X_2 - EX_2])^2$$

$$= E\left(\frac{[X_1 - EX_1]^2 + [X_2 - EX_2]^2}{+2[X_1 - EX_1][X_2 - EX_2]}\right)$$

$$= E[X_1 - EX_1]^2 + E[X_2 - EX_2]^2$$

$$+2E[X_1 - EX_1][X_2 - EX_2]$$

$$= Var(X_1) + Var(X_2) + 2Cov(X_1, X_2)$$

If X_1 and X_2 are independent, then $Cov(X_1, X_2) = 0$ and the formula simplifies to rule 4.

Proof of conditional expectation rule 1

$$E(cX|G = 0) = \sum_{i=1}^{N} \Pr(X = x_i|G = 0) * cx_i$$
 (proof)
= $c \sum_{i=1}^{N} \Pr(X = x_i|G = 0) * x_i$
= $cE(X|G = 0)$

An example of a conditional expected value (xkcd.com)

THE ANNUAL DEATH RATE AMONG PEOPLE WHO KNOW THAT STATISTIC IS ONE IN SIX.

Proof of covariance rules 1 & 2

Rule 1:

$$\begin{array}{lcl} \mathit{Cov}(X,c) & = & E(X-\mu_X)(c-\mu_c) \\ & = & E(X-\mu_X)(c-c) \\ & = & 0 \end{array} \tag{proof}$$

Rule 2:

$$\begin{array}{lll} \textit{Cov}(\mathsf{a}X, \mathsf{b}G) &=& E(\mathsf{a}X - E(\mathsf{a}X))(\mathsf{b}G - E(\mathsf{b}G)) \text{ (proof)} \\ &=& E(\mathsf{a}X - \mathsf{a}E(X))(\mathsf{b}G - \mathsf{b}E(G)) \\ &=& E(\mathsf{a}X - \mathsf{a}\mu_X)(\mathsf{b}G - \mathsf{b}\mu_G) \\ &=& \mathsf{a}\mathsf{b}E(X - \mu_X)(G - \mu_G) \\ &=& \mathsf{a}\mathsf{b}\mathsf{Cov}(X, G) \end{array}$$