CONDICIONES SUFICIENTES DE SEGUNDO ORDEN

APLICACIONES MATEMÁTICAS PARA ECONOMÍA Y NEGOCIOS (EAF200A)

FELIPE DEL CANTO

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

PRIMER SEMESTRE DE 2021

lacksquare Sabemos que los candidatos a solución deben ser puntos críticos de \mathcal{L} .

■ Pero necesitamos aún asegurar que esos candidatos sean soluciones.

- Partiremos mirando condiciones globales.
 - Es decir, que aseguren que exista solución del problema.

Teorema (Condiciones de suficiencia global)

Sean f y g funciones bivariadas con derivadas parciales continuas y $c \in \mathbb{R}$. Consideremos los problemas

con candidato a solución (x^*, y^*, λ^*) . Consideremos la función

$$\tilde{\mathcal{L}}(x,y) = \mathcal{L}(x,y,\lambda^*) = f(x,y) - \lambda^* [g(x,y) - c]$$

que es la función lagrangiana con λ^* fijado. Entonces

- Si $\tilde{\mathcal{L}}(x,y)$ es cóncava, (x^*,y^*) resuelven el problema de maximización.
- Si $\tilde{\mathcal{L}}(x,y)$ es convexa, (x^*,y^*) resuelven el problema de minimización.

Ejemplo (Condiciones de suficiencia global)

En el ejemplo de la sección anterior teníamos

$$\mathcal{L}(K, L, \lambda) = \sqrt{K} + L - \lambda \left[K + 20L - 500 \right]$$

con solución $(K^*, L^*, \lambda^*) = \left(100, 20, \frac{1}{20}\right)$. Luego

$$\tilde{\mathcal{L}}(K,L) = \sqrt{K} + L - \frac{1}{20} [K + 20L - 500]$$

Esta función tiene matriz Hessiana

$$H_{\tilde{\mathcal{L}}}(K,L) = \begin{pmatrix} -\frac{1}{4K^{3/2}} & 0\\ 0 & 0 \end{pmatrix}$$

Ejemplo (Condiciones de suficiencia global)

Notar que el menor principal dominante de orden 2 es o y por lo tanto para determinar concavidad o convexidad necesitamos los menores principales no dominantes.

Los dos menores principales no dominantes de orden 1 son $-\frac{1}{4K^{3/2}}$ y 0, es decir, son no positivos.

El menor principal no dominante de orden 2, que es el determinante de $H_{\mathcal{L}}$, vale 0.

Así, $H_{\tilde{\mathcal{L}}}$ es semidefinida negativa y, por lo tanto, $\tilde{\mathcal{L}}$ es cóncava, mostrando que el punto encontrado es solución del problema.

Ejercicio (Condiciones de suficiencia global)

Compruebe si se cumplen las condiciones de suficiencia global para los ejercicios de la sección anterior.

Ejercicio (Condiciones de suficiencia global)

"Demuestre" el teorema anterior. (Ayuda: revise la sección de concavidad y convexidad y revise qué sucede con los puntos que verifican la restricción.)

- \blacksquare A veces hay formas "fáciles" para determinar la concavidad/convexidad de $\tilde{\mathcal{L}}$.
 - ► Gracias a que λ^* está fijo.

■ Notar que

$$\tilde{\mathcal{L}}(x,y) = f(x,y) - \lambda^* [g(x,y) - c]$$

 \blacksquare Y por lo tanto la concavidad/convexidad depende de f y g.

■ A continuación vemos algunos ejemplos:

$\underline{\hspace{1cm}}$	8	λ^*	$ ilde{\mathcal{L}}$
cóncava	convexa	≥ 0	cóncava
cóncava	cóncava	≤ 0	cóncava
cóncava	lineal	cualquiera	cóncava
convexa	cóncava	≥ 0	convexa
convexa	convexa	≤ 0	convexa
convexa	lineal	cualquiera	convexa

- ;IMPORTANTE! No se aprendan esta tabla de memoria.
 - ► Sigan la lógica de suma de funciones y concavidad/convexidad.

- A pesar del teorema anterior, puede que sigamos en problemas.
 - Es decir, pueden haber casos donde no podamos asegurar óptimo a priori.

- En esos casos, se puede intentar clasificar los candidatos de manera más débil.
 - Cómo máximos o mínimos locales.

■ Antes de dar ese resultado necesitamos una pequeña definición.

■ Llame $\tilde{H}(x,y,\lambda)$ a la matriz

$$\tilde{H}(x,y,\lambda) = \begin{pmatrix} 0 & g_x(x,y) & g_y(x,y) \\ g_x(x,y) & f_{xx}(x,y) - \lambda g_{xx}(x,y) & f_{xy}(x,y) - \lambda g_{xy}(x,y) \\ g_y(x,y) & f_{xy}(x,y) - \lambda g_{xy}(x,y) & f_{yy}(x,y) - \lambda g_{yy}(x,y) \end{pmatrix}$$

lacksquare Esta matriz es la matriz Hessiana de $\tilde{\mathcal{L}}$ ampliada por el gradiente de g.

Teorema (Condiciones de suficiencia local)

Sean f y g funciones bivariadas con derivadas parciales continuas y $c \in \mathbb{R}$. Consideremos los problemas

$$\begin{array}{ccccc} \max\limits_{x,y} & f(x,y) & & \min\limits_{x,y} & f(x,y) \\ \text{s.a.} & g(x,y) = c & & \text{s.a.} & g(x,y) = c \end{array}$$

con candidato (x^*, y^*, λ^*) que verifica el teorema de Lagrange. Considere $\tilde{H}^* = \tilde{H}(x^*, y^*, \lambda^*)$ la matriz Hessiana definida antes. Llame D al determinante de \tilde{H}^* . Entonces

- Si D > 0, (x^*, y^*) es un máximo local de f entre los puntos que cumplen la restricción.
- Si D < 0, (x^*, y^*) es un mínimo local de f entre los puntos que cumplen la restricción.

Ejemplo (Condiciones de suficiencia local)

En el ejemplo de la sección anterior teníamos

$$f(K,L) = \sqrt{K} + L$$
 y $g(K,L) = K + 20L - 500$

con solución $(K^*,L^*,\lambda^*)=\left(100,20,\frac{1}{20}\right)$.Luego

$$\tilde{H}(K,L,\lambda) = \begin{pmatrix} 0 & 1 & 20 \\ 1 & -\frac{1}{4K^{3/2}} & 0 \\ 20 & 0 & 0 \end{pmatrix}$$

٧

$$D = 20 \cdot \left(1 \cdot 0 + \frac{1}{4(K^*)^{3/2}} \cdot 20\right) = \frac{100}{1000} = \frac{1}{10} > 0$$

Mostrando que (100,20) es un máximo local.

Ejercicio (Condiciones de suficiencia local)

Compruebe si se cumplen las condiciones de suficiencia local para los ejercicios de la sección anterior.

Ejercicio (Condiciones de suficiencia local)

Considere la función f(x,y)=xy sujeta a x+4y=16. Clasifique los puntos críticos de esta función restringida como máximos locales o mínimos locales, cuando sea posible.