482/805 DWPI - (C) Derwent

AN - 1985-300422 [48]

XA - C1985-130085

XP - N1985-223609

TI - Mandrel alloy for drilling and expanding seamless steel pipe - comprises carbon, chromium, nickel, molybdenum and tungsten, cobalt, copper, titanium and/or zirconium, silicon and/or magnesium

DC - M27 P51 P52

PA - (SANY-) SANYO TOKUSHU SEIKO KK

- (HOKO-) SHIN HOKOKU SEITETSU KK

NP - 2

NC - 1

PN - JP60208458 A 19851021 DW1985-48 9p *

AP: 1984JP-0064475 19840331

- JP89007147 B 19890207 DW1989-09

PR - 1984JP-0064475 19840331

AB - JP60208458 A

Mandrel alloy consists (by wt.) of C 0.14-0.18%, Cr 1-3%, Ni 1-9%, Mo and/or W 0.3-3% in total, Co 1-2%, Cu 1-2%, Ti and/or Zr 0.2-0.5% in total, Ni/Cr=1-3, and Si below 1.5% and/or Mn below 1.5% as deoxidising agent, and balance Fe and incidental impurities.

- ADVANTAGE - Increased durability. (0/6)

⑪日本国特許庁(JP)

①特許出願公開

四公開特許公報(A)

昭60-208458

@Int_Cl.4	識別記号	厅内整理番号	•	公開	昭和60年(1	985)	10月21日
C 22 C 38/52 B 21 B 25/00 B 21 C 3/02 C 22 C 38/52		7147—4K 7819—4E 6778—4E 7217—4K	客査請求	有	発明の数	1 (全 9 頁)

公発明の名称 維目なし鋼管の穿孔および拡管用芯金合金

②特 顧 昭59-64475 ②出 顧 昭59(1984)3月31日

砂発 明 者 国 阿 三 郎 川越市仙波町1丁目3番13号 砂発 明 者 川 ロ ー 男 埼玉県比企郡小川町大字原川320番地の10

砂発 明 者 吉 井 勝 姫路市飾唐区中島宇一文字3007香地 山陽特殊製鋼株式会

社内

创出 照 人 新報園製鉄株式会社 川越市新宿町5丁目13番地1 別出 願 人 山陽特殊製鋼株式会社 姫路市飾唐区中島宇一文字3007番地

砂代 理 人 弁理士 鈴江 武彦 外2名

m #1 #1

1. 発明の名称

能目なし側管の穿孔かよび拡管用芯金合金 2.特許訥求の範囲

1. 頂景でCがQ.1 ないしQ.2 5 %、Crが 1 ないし3 %、NIが1ないし9 %、Mo およびW のいずれか1 様または2 種合計でQ.3 ないし3 %、Co が1 ないし2 %、Cu が1ないし2 %、TI および 2r のいずれか1 種もしくは2 種合計がQ.2 ないしQ.5 %、残部 Fo および不可避的な報量不 純物からなり、且つ NI/Cr の重量比の値が1か 53 である難目なし頻質穿孔および拡管用合金。

2 さらに必要に応じて脱酸剤として Blが重 載で 1.5 が以下、 Ma が 1.5 が以下の例れかまた は両者を含有することを特徴とする特許請求の 範別 8.1 以配収の基金合金。

3. 発明の評価な政明

この発明は中央丸型増片から越目なし頻繁を 製造する際に用いられる穿孔かよび弦響用芯金 形成のための合金材料に関するものであって、 特顧昭 5 9 - 1 1 8 9 9 号 (特別昭 60-号) 発明になる合金をさらに改良したものであ る。

上配先出級明細書にも記載されているように、一般に離目なし飼管穿孔用の芯金は、領料圧延ロールによって回転かよび前進する、かよそ1200でに加熱された中央丸形倒片に縦方向に圧入されて、とれによって側管の輸力内の穿孔が行われる。またとのようにして穿孔された側管は、同様に傾射圧延ロールによって回転かよび前進する拡管用の別の芯金が、かよそ1000でに加熱された側管の穿孔内に圧入されることによって、その拡管が行われる。

その結果、穿孔かよび拡管用の芯金の表面に 高温かよび高圧力が作用して、芯金の表面には 摩耗、芯金材の最性視動によるしわ、部分的な 溶融損傷、あるいは管材との焼付きによるかじ りや割れが発生し、これらによって起る芯金の 変形かよび損傷が進行して、比較的短使用題数 のうちに芯金の寿命が誰きてその使用が不可能 Ł 4 8.

穿孔別(または拡智用)芯金の表面に生ずる とれらの損傷を防止するために、芯金を形成す る合金に要求される特性は損傷の種類によって 次のように異なる。

- (I) 以純シよびしわの発生防止のためには、 合金の高温及にかける機械的強度が高いことが 必要である。
- (2) 制れ発生防止のためには、常盛にかける 合金の機械的強度と伸展性が高いことが必要で ある。
- (3) 部分的な耐敏損傷の発生防止のためには、 な金合金の組成のうち、地金への容解度の小さ い合金元素の能加をできるだけ少なくして、候 関制者や粒針折出によってこれらの合金元素が 粒界に場析して、部分的な眼点低下シよび粒界 能化の生ずることを防止することが必要である。
- (4) 始付きによるかじりや割れの発生を防止 するためには、スケール付け処理によって、芯 金の表面に断熱性と負荷性とを有する触音なス

ケールが適度の厚さK形成されることが必要で ある。

既述の特額的59-11899号発明の目的は、地金への存解度が少なく、粒界場がして部分的な溶解機器の原因となるCと、スケール付け処理の原に形成されるスケール場をあくするCrとをできるだけ少なくし、NI。MoシよびWの固治体硬化により常温かよび高温度にかける機械的強度を高めることによって、耐用度が従来のものよりも特象に使れた穿孔用芯金を得ることにあった。

との目的は、重量ででが 0.1 ないし 0.2 5 %、Cr が 1 ないし 3 %、Ni が 1 ないし 9 %、Mo かよび W のい ずれか 1 独もしくは 2 独合計で 0.3 ないし 3 %、表部が Fo かよび不可避的な 殺量不純物からなり、且つ Ni/Cr の 産量比の値が 1 ないし 3 の組成を有する合金を用いることによって達成された。

本発明の目的は、上配件減昭59-11899 号発明の合金をさらに改良して、穿孔用芯金の

耐用皮をさらに向上させ得るような合金を得る ことにある。

との目的は、上記既発明にかける合金の成分 組成のものに、さらに重量で Co を1 ないし2 が、 Cu を1 ないし2 が、かよび Ti かよび 2r のいずれ か 1 様もしくは 2 値の合計を C 2 ないし C 5 が の割合で追加能加するととによって連成された。

なか、前野既出顧発明の場合と同様に、上記の本発明にかける合金組成のものに、必要に応じて通常の説改剤として 1.5 多以下の 81、もしくは 1.5 多以下の Ma、あるいはこの両者をさらに追加系加し得るものとする。

次化、本発明化なる合金化かける各成分の組成処別限定理由について、併願昭59 - 11899 号 明細帯かよび関面化かける配送と一部重複させながら説明をする。

Cは、地金に図辞し、あるいは図辞機以上のCは無処理によって様々な競様を示すことによって、合金の常鑑かよび高値での機械的強度を向上させるので、合金の強度向上に最も有効な

元素である。しかしながら、Cがわまり多くなると、とくにCrと共存する場合には、Crの数化物が粒界に析出して粒界能化をひき起したり、またとの数化物はMe 中Wを地金よりもよく固層数収するので、Me 中Wの転加による地金の固層強化効果を載するなどの逆効果をも併せて持つものである。

本発明になる芯金用合金は、芯金の部分的な 都被損傷を防止する見始から、従来のこの機合 金と異なり、常報および高温度における侵域的 強度を主として固溶体硬化によることにしているので、この含有量はできるだけ低い方が設ま しい。しかしながらあまりこの含有量が低い NICs 有量を高める必要を生じ、これでは経済的にコ スト高となる。またこ含有量があまりにも低い と都島の流動性が減少し、従ってその鋳造性が 悪化する。

本発明になる芯金用合金においては、C含有量の下級値は、上記の経済性と的遺性との観点 ·

.

特局昭60-208458(3)

からとれず 0.1 ぎとし、上限観は穿孔用芯金の部分的辞机防止の観点からとれる 0.2 5 ぎとした。

81 以、一般の股股別として、合金の股股別並用化必要に応じて合金に添加されるが、 81 が多過ぎると合金の製性が低下するとともに、 穿孔用芯金の表面に断熱性と胸骨性を有する緻密なスケールを付着させるために施される一般のスケール付け処理時に、スケール中にファイヤライト(FeU-8102)を生成してスケールを能器にする。

よって BI 含有量の上限値を 1.5 がに定めた。 下限については別に制限はない。

Ma も一級の脱酸剤 として、合金の脱酸調整用 化必要に応じて合金に最加される。そして Ma が多過ると Bi の場合と同様にスケールを独特に する。

よって Mn 含有量の上限数を 1.5 % と足めた。 下限については別に制限はない。

Cr および Ni の成分範囲限定理由については、

両成分の比較が重要であるので、両者をまとめて設明をする。

Cr は地金化固符し、あるいはこと前合して以 化物を形成して、常識あるいは高級良にかける 機械的強度を高めるとともに、合金の耐限化性 を向上させるのに有効な元素である。然しなが ら Cr 含有量が高すぎると、耐酸化性が向上する と によってを全の表面に断熱性と調情性とを 有するスケールを付着させる一般のスケール付 け処理を施す類に、生成するスケール層の多っ、 が薄くなり、既述の芯金に生ずる損傷のうち、 管材との類付きによるかじりが多発する。また Cr 含有量が低くすぎると、常温かよび高温度にかけ る合金の機械的強度が低下し、芯金に強度する。 による摩託、しむ、あるいは割れが発生する。

Ni はCと数化物を形成することなく地金化全部固帯して、固得体硬化によって常温かよび高温度にかける機械的強度を高めるのに有効な元素である。然しながら、Ni は Cr に比べて高低であるので、Ni だけで常温かよび高温度にかける

合金の機械的強度を高めるとコスト高となり、 また Cr と共存する場合ほどには高い機械的強度 は初られない。また、 NI の添加は、 Cr 彩加の場 合に比べて、スケール付け処理による付着スケ ール板が再くなる条件ははるかに少ない。

そって、お金合金に十分な常温かよび高温度にかける根域的強度、かよび適度な厚さのスケール増を与え、さらに合金に経済性を持たせるために、スケール間を輝くすることなく機械的 強度を高めることのできるNIを主体とし、これ に許なし切る範囲のCrを原加して、常温かよび 高温度にかける機械的強度を構定するとともに、 NI 部加致を経載することにした。

上記の見場から、スケール層の取さを修くしないために Cr 含有似の上限を3 %とし、下限は 級体的列度を補充するためにこれを1 %とした。 また Ni は扱体的発展を高めるために、その含量 を Cr 含有效の1 倍から3 倍、すなわち Ni/Cr の 変彰比の値を1 ないし3 と定めた。

NI/Cr 比の気を1ないし3と足めた視路を前

1 図かよび第2 図の1 組の曲線図、ならびに乳3 図かよび第4 図の1 組の曲線図を用いて説明する。第1 図は Cr 含有量が1.4 % の場合の常温にかける合金の機械的強度に及ぼす Ni/Cr 比の影響を示す曲線図、第2 図は同温度 9 0 0 ℃にかける同様の影響曲線図、第3 図は Cr 含有量が2.8 % の場合の常温にかける同様の影響曲線図、第4 図は同温度 9 0 0 ℃にかける同様の影響曲線図である。

とれらの歯離図から利るように、穿孔用芯金の計用度の低下をもたらす損傷の一つである割れを防止するのに必要な常温の引張数さと伸び率は、Ni/Cr 比が1以下では引扱数さか45ないし60以/m²であって放度不足であり、Ni/Cr 比が3以上では伸び率が著しく低下して耐れの防止には不適当である。また損傷の他の一つであると会表面の摩耗かよびしわを防止するために必要な高温度にかける引張強さは、Ni/Cr 比が3以上では5.2ないし5.3 切/m²となっていて強度不足であるとともに、伸び率が寄しく低

科局昭60-208458(4)

下するのが刊る。

以上の結果から初断して、本発明になる芯金 合金中のNI/Cr 比の値を1 ないし3 の範囲で選 ぶことに定めた。

Mo かよびW社会金地金化関都し、あるいはでき続けて、現代物を形成して、とくに合金の高温取化かける機械的強度を高めるのに有効な元素である。反面、Mo かよびW含有量の増加はスケール付け処理により芯金製面に生成付済するスケールが変換がにする。本発明になる芯金合金の結晶放低域的性質に及ぼす Mo かよびW 彩加の影神の例が能 5 図に示されている。この曲線の影神の例が能 5 図に示されている。この曲線の影神の例が能 5 図に示されている。この曲線の影神の例が能 5 図に示されている。この曲線という有量が 2 8 9、Ni/Cr 比が 2 0 の場合、映画版が 9 0 0 での場合。W・または MoとWの合計量の変化が、合金の引張り強さかよび伸び率に及ばす影響を示するのである。

との自製図によると、Mo シ上びWの何れか1 強もしくは2 独合計の終加量が0.2 多までは高 無引張り致さの向上に効果がない。しかしなが 5、との終加針が0.3 多から1.5 多までは松加 量の増加とともに引張り強さは観やかに増加し、 添加量が1.5から2.0 多まででは引張り強さは 添加量の増加とともに急散に増加する。そして 2.0 多以上の添加では引張り強さは再び緩やか な増加に転ずるのを見るととができる。

本発明合金によって製作された恋金によって1200で近傍に加熱された中央丸形倒片を穿孔する場合で、穿孔される銀片の材質が単なる投業網であるならば、Me およびWのいずれか1程もしくは2値合計の影加量が1.5 手以下の本発明合金による穿孔用芯金で十分に従来の芯金の耐用度を上超ることができる。しかしながら、穿孔される網片の材質が1.3 手タロム網もしくは24 ラクロム網のような特殊側である場合には、Me およびWの何れか1 種もしくは2 複合計の影加量は1.5 手から3.0 手までであるととが必要である。

従って、本発明になる合金にかけるMoかよび Wのいずれか1種もしくは2種合計の系加量は、 とれを0.3ないし3.5と定めた。

Co は一般の現象側、 もしくは本発明に立る芯金合金のようを低合金側に添加される元素のうちで、側の輸入性を低下させる唯一の元素である。

穿孔用芯金は、1200で近傍に加熱された中 実丸形偶片中に圧入されるので、穿孔直接の穿 孔用芯金の袋面温度は1200でから1300で近傍に、袋師から約5m内部では800で近傍に、 そしてさらに内部では700で以下の温度となる。

とのような状態に加熱された恋金は、穿孔医 徒に数水によって常温にまで冷却されたのち、 再び新たな側片中に圧入され、こうして加熱を よび冷却が緑返される。との論返しによってた 金の表面に細かい亀甲状の割れが生じて、これ が被穿孔パイプの内面に圧延恢を発生させるも のである。との亀甲状の割れは主として加熱 のである。との亀甲状の割れは主として加熱 のである。との亀甲状の割れは主として加熱 のである。との亀甲状の割れは主として加熱 のである。との亀甲状の割れは主として加熱 のである。との亀甲状の割れは主として加熱

一般に携入性が低く、焼入変態のない場合の 倒体の熱心力は、関体の表面では圧縮応力が、 例体の中心部では引張応力が発生する。とれに 対して、焼入性が高く、焼入安康が生ずる場合の倒体の熱応力は、その表面では引援応力が、その中心部では圧離応力が発生する。すなわち両者の場合に熱応力の分布が逆転するのである。そして、一般に表面が圧郁応力となる焼入安康のない加熱冷却の繰返しの方が亀甲割れの発生が少ない。

施入性の大小は、丸物側片を水焼入れしたのち、その断面硬度を側定し、硬度がロックウェルでスケール 4 0以上になる硬化層の厚さると丸物の半径 r との此事 d/r を以てこれを扱わすことができる。すなわち d/r 値が小さくなる程焼入性が低下することを表わす。

本発明合金による半径 2.5 mm の丸御を水焼入れした場合の d/r値に及ばす Co 成分含有量の影響の一例が新 6 図の曲額図に示されている。 C の曲線図から、 Co が 1.7 5 % までは焼入性の低下が顕著であるが、 Co が 1.7 5 % を越えるとその効果が少ないととが刺る。

よって本発明合金の Co 松加量の下限は、蛇入

性低下の効果の見地から1 がとし、上膜は、経 病的にコスト高となる前には焼入性低下の効果 があまり得られない見地からとれを2 がとした。

Cu は地金中に数額に折出して、常価の引張強さを高めるのに有効な元素である。また既述した断熱性と調得性とを有するスケール付けの処理の際に、スケール進下の地金中に富化されて、スケールの地金への告着性を改善するのにも有効な元素である。しかしながら、緩加量が1 が以下では常温の引張強さの向上は少なく、緩加量が多過ぎると、スケール流下に富化されたCuが高温度で地金の結晶粒界に及興して、芯金の表別都を競響にする。

よって本発明合金における Ca の抵加量下級を 1 まとし、上版を2まとした。

TI および Zr は Cr よりも優先して C と結合して 代化物を形成する。 そして TI および Zr の 供化物は Cr の 供化物とはちがって、 地金中 K 均 かするとと、 および 高温度 K おける 地金中への 溶解 皮が Cr の 供化物 K 比べて 紙 めて 小 さい

ととから、粒界の部分的な融点低下かよび粒界の能化を軽減するとともに、高温度にかける引張強さを高めるのに有効な元素である。さらに、Cr よりも優先して炭化物を形成するのでCr の設化物量が減少する結果、Cr 炭化物中に吸収されるCr, WかよびMoが減少し、従ってとれらの元素の地金中の装度が高くなって、固溶体硬化によって合金の高温度にかける引張強さが向上する。しかしながら、Tl および Zr の影加量が多過ぎると、合金を大気中で溶解する場合に、着しく溶過の流動性が減ぜられ、芯金製作の際に検強性を害するととになる。

よって本発明合金にかけるTi かよび 2000 1 組むるいは 2 組合計の設加量の上版を 0.5 %、下限を 0.2 % と定めた。

以上、離日なし側管の穿孔用芯金合金ドついて述べたが、同拡管用芯金合金ドついても会く 穿孔用芯金合金と同様であるからその説明を名略する。

次に実施例について説明をする。

本発明になる非孔用芯金合金の実施時例の組成を約1表に示す。第1表には先発明である特額的59-11899号発明になる合金、シよび従来公知のこの復合金の組成をも併配してある。

別1 後に示された組成の各合金を素材として、JIS - Z - 2201 の規定による1 0 号常温引張試験片、JIS-G-0567 号の規定による高値度引張試験片、かよび直径が6 9 m/m、7 2 m/m、かよび7 5 m/mのサッセルミル用導孔芯金をそれぞれ設作した。高温度引張り試験は鑑度9 0 0 でで個分5 多の歪速度でかとなわれた。これらのご金を用いて、実際にJIS の BUJ 2 植(C 的 1 多、Cr 約1.5)のペアリング傾材(いわゆる高炭素クロム軸受け倒材)をアッセルミルを用いて浮孔試験を行った。これらの離試験の結果が都2 投に示されている。芯金の耐用度は穿孔用ご金1 勧告りの平均穿孔本数で扱わされている。

新2般に見られるように、本発明になる合金 の常数および高額度における機械的強度は、従 来公知のとの複合金の1.5倍ないし3倍、特額的59-11899号発明合金のそれらとはほぼ同等もしくは扱らか大きいことが判る。そして、本発明合金で裁作された芯金の前用度は、公知の合金のものの2ないし5倍、特別的59-11899号発明合金のものの1.5ないし2倍となっているのを見る。との本発明合金による芯金の前用度が増大しているのは、合金のCo 能加による芯金表面の亀甲割れの減少、 Cu 添加によるスケールの告帯、 Ti および Zr の添加によるスケールの告帯、 Ti および Zr の添加に

別1 数 仓金の組成表 (重量を)

			C	81	Ma	Cr	NI	Mo	W	P	8	C.	Cu	TI	Zr	NK.	F.
-	_	A 1	0.18	0.68	0.6 2	1.58	3.0 6	0.4 2	-	0.0 2 6	0.0 1 8	1.0 2	1.1 4	0.24	-	1.94	费袋
		• 2	0.1 8	0.6 2	0.6 4	1.58	3.1 0	0.48	-	0.0 2 7	0.0 2 0	1.18	1.10	0.2 6	0.2 2	1.96	-
		4 3	0.16	0.7 1	0.7 1	1.52	3.1 0	0.4 4	-	0.024	0.018	1.1 2	1.84		0.28	2.04	
•		• 4	0.17	0.6 4	0.6 8	1.54	3.0 8	0.43	-	0.024	0.022	1.0 8	1.8 7	0.18	026	2.00	,
H		• 5	0.1 7	0.6 2	0.5 9	254	5.98	0.5 0	0.73	0.026	0.016	1.5 6	1.0 6	0.32	-	235	
9		• 6	0.1 5	0.6 2	0.5 7	249	5.9 6	0.48	0.76	0.024	0.016	1.68	1.0 6	-	0.29	239	,
2		• 7	0.1 8	0.66	0.60	2.5 2	5.9 5	0.4 6	0.7 6	0.0 2 6	0.0 2 0	1.70	1.5 4	0.2 5	0.1 8	2.3 6	,
		• 8	0.1 6	0.58	0.5 6	252	5.96	0.48	0.7 4	0.0 2 5	0.018	1.48	1.46	0.1 7	0.18	2.3 7	,
.		. 9	0.24	0.6 9	0.7 2	251	5.9 4	0.5 2	0.7 5	0.026	0.019	1.5 2	1.9 4	0.2 3	0.20	237	,
	7	. # 1	0.17	0.6 2	0.6 8	1.34	3.9 0	0.4 2	-	0.030	0.024	-	-		-	2.9 1	,
	配孔	2	0.1 7	0.5 8	0.6 2	2.56	6.2 3	0.4 8	-	0.0 2 8	0.018	-	-	-	-	2.4 3	,
- 1	7	3	0.1 4	0.6 0	0.5 4	2.85	5.8 3	0.4 2	•	0.028	0.018	-	-	-	-	2.0 4	,
	=	. 4	0.1 6	0.60	0.5 2	2.5 2	3.8 7	0.40	•	0.0 2 6	0.020	-	-	-	-	1.4 8	,
Ħ	슀	5	0.17	0.68	0.5 4	1.39	1.4 6	0.43	•	0.0 2 6	0.0 1 8	-	-	-	-	1.0 5	,
8	九九岁	- 6	0.18	0.7 0	0.6 8	2.58	6.2 1	0.4 0	0.3 2	0.0 2 4	0.016	•	•	-	-	2.3 2	
R	発明	7	0.1 5	0.5 7	0.6 2	1.7 5	2.84	0.5 0	0.7 3	0.0 2 6	0.0 2 0	-		-		1.6 2	,
- 1	台金	8	0.1 5	0.5 6	0.64	1.5 5	2.7 5	0.4 7	1.6 2	0.0 2 8	0.0 2 2	-	-	-	-	1.77	,
		9	0.2 5	0.6 4	0.6 6	1.55	2.6 8	0.60	2.0 2	0.0 2 4	0.016	-		-	-	1.73	•
- 1	公知	3Cr-1NI	0.32	0.74	0.6 2	3.0 5	1.02	-	-	0.0 2 6	0.0 2 0	-	-	-	-	0.3 3	,
	合金	1.5Cr-0.75N1	0.2 3	0.6 1	0.6 8	1.64	0.6 8	0.1 2	-	0.0 2 8	0.016	1.2 6	1.0 8	-	-	0.4 1	,

新 2 表 路 · 特 性

			常量の概	核的性質	900.04	R核的性質	~ ~ ~ ~	
			引張強さ	仲び率	引製費を	神び事	穿孔蜂材	耐用度
			(≒/≓)	(59	(4/4)	69	の材質	(穿孔本畝/1個)
	١	A6 6 1	1 2 5.6	5.6	7.8	1 2.4	ペアリング第	20~ 70
哭		. 2	1 2 5.0	5.8	7.8	1 0.8	,	20~ 70
_		4 3	1 2 6.0	5.6	7.4	1 4.6	,	20~ 70
×		• 4	1 2 6.8	5.4	7.6	1 1.8	•	20~ 70
Ħ		a 5	1 2 8.4	4.8	8.2	8.6	,	50~120
4	.	a 6	1 2 7.8	4.6	8.2	8.4	,	50~120
	.	• 7	1 2 8.6	4.6	8.G	7.8	•	50~120
ŝ	ļ		1 2 9.0	4.2	8.7	7.2	,	50~120
		. 9	1 2 8.0	4.2	8.4	7.8	,	50~120
	49	K 1	1 0 1.0	2 0.0	7.9	3 1.2	•	20~ 50
比	N.	_2	1252	5.4	7.3	1 2.0	•	20~ 50
	九	3	1 2 1.6	7.0	7.8	9.2	•	20~ 50
•	-	4	1 2 4.2	7.2	7.2	1 1.4	,	20~ 50
Ħ	조	5	6 0.2	2 9.5	7.0	5 8.0	,	20~ 50
*	ኢ	6	1369	4.8	8.0	8.5	,	30~ 50
	号轮	7	1 1 7.0	1 0.2	8.5	7.5	, .	30~ 60
œ	對合	8	110.4	1 0.9	1 5.0	7.0	,	30~ 60
	金	9	1 2 3.0	6.8	1 6.0	6.0	,	30~ 60
	公知	3Cr-1NI 組 無	6 3.0	1 6.0	5.2	4 8.2	,	10~ 30
	合金	1.5Cr -0.75N1	6 1.8	2 1.6	5.8	5 2.6	,	13~ 35

4.図面の前外な説明

犯 1 図は本発明台至の Cr 含有量が 1.4 多の場合の常規競技的性質に及はす NI/Cr 監査比の影響を示す商品図。

和3 附は本務明台会の Cr 含有量が2 8 多の場合の電影機械的性質に及ぼす NI/Cr 直転比の影響を示する解例。

制 4 図は本張明合金のでr 含有量が2.8 多の場合の過度900でにかける機械的性質に及ぼす Ni/でr 収録比の影響を示す曲線図。

割6図は本発明合金の婦人性に及ぼす Co 級加の影響を示す角形的である。

特別場60-208458(B)

手 続 補 正 瞢

mr. a. 6,0,0,13 a.

特許庁長官 志 督 学 殿

1. 水件の表示

移動化59-6.4475₩

2. 発學の名称

鞋目なし制管の罪孔および拡製用芯金合金

3. 糖正をする者

事件との関係 特許出知人

新報證整數株式全社

(ほか1名)

4. 代 难, 人

| 作。人 | 作所 東京都権民党/門17日20月5号 第17世で入産を登場 | 〒105 - 東京 03 (502) 3 1 8 1 (大代表) 世紀 3 | 氏名 (5047) 分別に 鈴 江 武 全日正上。

5. 自免协正

60.2.14

6. 福正の対象

1000

明 和7. 独正の円料

(I) 特許以次の範囲。別都省全交を別紙の通り訂正する。

- (1) 明都哲中、下記の打正を行います。
 - 4 4月下から9行。「Cが0.1ないし0.25 %、」を「Cが0.14ないし0.18%。」と 打正。
 - の 6 買最下行、「観点」を「実験的見地」と 訂正。
 - へ 7月1行。「0.1%」を「0.14%」と好 正。
 - ニ 関系2行。「独点」を「実験的見地」と訂正。同行「0.25%」を「0.18%」と訂正。
 - 応 阅点3行。「た。」の次に「(後担実施例 参級)」を挿入。
 - ~ 19月かよび20月のそれぞれ第1表かよ び第2表を別紙のとかり訂正。

第 1 者 合分の組成者 (倉誉も)

		C	81	Mn	Cr	NI	No	₩	P	8	Co	Cu	TI	Z.	NL/Cr	P
	A • 1	0.18	0.68	0.62	1.58	3.0 6	0.42	-	0.026	0.0 1 8	1.02	1.1 4	0.24		1.0 4	费
		0.18	0.62	0.64	1.5 8	3.10	0.48		0.0 2 7	0.0 2 0	3.1 8	1.10	0.26	0.22	1.96	-
1	• 3	0.1.6	0.71	0.7 1	1.52	3.10	0.44	·	0.024	0.018	1.1 2	1.84		0.2 8	2.04	٦.
		0.17	0.64	0.68	1.5 4	3.0 8	0.4 3	-	0.024	0.0 2 2	1.08	1.87	0.18	0.26	200	١,
		0.17	0.62	0.59	254	5. 9 8	0.50	0.7 8	0.0 2 6	0016	1.56	1.0 6	0.82	-	2.3 5	١.
	4 6	0.15	0.62	0.57	249	5.96	0.48	0.76	0.0 2 4	0.016	1.68	1.06		0.29	239	١
	. • 7	0.18	0.66	0.60	2.52	5. v 5	0.4 6	0.76	0.026	0.0 2 0	1.70	1.54	0.2 5	0.18	2.3 6	١.
L	8	0.16	0.58	0.56	2.5 2	5.96	0.48	0.74	0.0 2 5	0.018	1.4 8	1.4 6	0.17	0.18	2.3 7	١
特集	A 1	0.17	0.62	0.68	1.34	3.90	0.42	•	0.030	0.024	-	-	-	-	291	
弘		0.17	0.58	0.62	256	6.23	0.4 B	-	0.0 2 8	0.018	-			-	2.4 3	
71	3	0.14	0.60	0. 5 4	2.85	5. 8 3	0.42	-	0.0 2 8	0.0 1 8		-		· · · ·	204	ŀ
7		0.16	0.60	0.52	2.62	3.8 7	0.40	-	0.0 2 6	0.0 2 0	-	-		····	1.48	
允	1 5	0.17	0.68	0.54	1.3 9	1.4 6	0.43	-	0.026	0.018					1.05	
Đ.		0.18	0.70	0.68	2.68	6.21	0.4 0	0.32	0.0 2 4	0.0 1 6	-			· · ·-·	2.3 2	۱
中台	1 7	0.15	0.57	0.6 2	1.75	2.8 4	0.50	0.78	0.026	0.020		-		.	1.62	
•		0.15	0.56	0.64	1.5 5	2.75	0.47	1.62	0.0 2 8	0.0 2 2					1.77	-
公知		0.32	0.74	0.62	3.0 5	1.02	-	-	0.026	0.0 2 0	_				0.33	١.
6		0.23	0.61	0.68	1.64	0.68	0.1 2	-	0.0 2 8	0.016	1.2 6	1.0 8			0.41	

		お似の様	被的性質	9000	以城的性質	20 Tr 20 LA	
		引强强性	仲び単	引强强力	件び単	穿孔管材	附用度
		(Kg/m²)	80	(Kg/=d)	(%)	の対策	(穿孔本数/1 個)
*	# • 1	1 2 5.6	5. 6	7.8	1 2 4	ペアリング側	20~ 70
~	a 2	1 2 5,0	5.8	7.8	1 0.8		20~ 70
	a 3	1 2 6.0	5. 6	7.4	1 4.6		20~ 70
_ _	. 4	1 2 6.8	5. 4	7.6	1 1.8	•	20~ 70
Pa .	a 5	1 2 8.4	4.6	8. 2	8. 6		50~120
6	a 6	1 2 7.8	4.6	8. 2	8.4	•	50~120
Ĩ	a 7	1 2 8.6	4.6	8. 6	7.8		50~120
2	a 8	1 2 9.0	4.2	8. 7	7. 2	•	50~120
Ė	K 1	1 0 1.0	2 0.0	7. 9	3 1.2	•	20~ 50
A 183	2	1 2 5.2	5. 4	7. 3	120		20~ 50
九	8	1 2 1.6	7.0	7.8	9. 2	"	20~ 50
× -	4	1 2 4.2	7. 2	7.2	1 1.4	•	20~ 50
» 允	5	6 0.2	2 9. 5	7.0	5 8.0	······································	20~ 50
1	6	1 3 6.9	4.8	8.0	8. 5		30~ 50
6 9	7	1 1 7.0	1 0.2	8. 5	7.5	,	30~ 60
	8	1 1 0.4	1 0.9	1 5.0	7. 0	•	30~ 60
公知	3Cr-1Ni 邮 例	6 3.0	1 6.0	5. 2	4 8.2	,	10~ 30
&	1.5 Cr - 0.7 5 N I 约 纳	6 1.8	2 1.6	5. 8	5 2.6	•	13~ 35

2. 特許請求の殺罪

1. 単版ででが 0.1 4 ないし 0.1 8 %. Cr が 1 ないし 3 %。 Ni が 1 ないし 9 %。 Moかよび W のいずれか 1 種または 2 組合計で 0.3 ないし 3 %、 Coが 1 ないし 2 %。 Coが 1 ないし 2 %。 Ti かよび2rのいずれか 1 組もしくは 2 組合計が 0.2 ないし 0.5 %。 提郎Peかよび不可避的な 微計不純物からなり。 且つ Ni/Cr の 取 量比の値が 1 から 3 である 雑目 なし 飼管の穿孔かよび拡管用合金。

2. さらに必要に応じて脱酸剤として81が良 計で 1.5 等以下、Naが 1.5 等以下の何れかまた は両者を含有することを特徴とする特許請求の 報酬額 1 項配赦の志金合金。

(19) Japan Patent Office (JP)

(11) Japanese Unexamined Patent Application Publication S60-208458 (12) Japanese Unexamined Patent Application Publication (A)

		Classification	Internal Office	
(51) Int	t Cl. ⁴ :	Symbols:	Registration Nos.:	: (43) Disclosure Date: 21 October 1985
Č220	C 38/52	•	7147-4K	• •
B211	B 25/00		7819-4E	
B210	C 3/02		6778-4E	•
C22	C 38/52		7217-4K	•
	Request for	r Examination: Subi	nitted Numb	er of Claims/Inventions: 1 (Total of 9 pages)
(54) (72)	(21) (22) Inventor:) Japanese Paten) Filing Date: 31 Saburo Kuniok	t Application S59- March 1984 a	1-3-13 Sembamachi, Kawagoe City
(72)	Inventor:	Kazuo Kawagu	chi _.	320 banchi-10 Harakawa Oaza, Ogawamachi, Hikigun, Saitama Prefecture
(72)	Inventor:	Katsu Yoshii		c/o Sanyo Special Steel Co., Ltd., 3007- banchi Nakashima-aza Ichimoji, Shikama- ku, Himeji City
(71)	Applicant:	Shinhokoku Sto	el Co., Ltd.	5-13-1 Arajuku-machi, Kawagoe City
(71)	Applicant:	Sanyo Special	Steel Co., Ltd.	3007-banchi Nakashima-aza Ichimoji, Shikama-ku, Himeji City
(74)	Agent:	Takehiko Suzu	e, Patent Attorney	(and two others)

SPECIFICATIONS

1. Title of the Invention

Core Metal Alloy for Piercing or Expanding Seamless Steel Pipe

2. Scope of Patent Claims

- 1. A core metal alloy for piercing or expanding [insertion] a [end insertion] seamless steel pipe made from, by weight, 0.1 to 0.25% C, 1 to 3% Cr, 1 to 9% Ni, 0.3 to 3% of a total of one or two types of Mo and W, 1 to 2% of Co, 1 to 2% of Cu, 0.2 to 0.5% of a total of one or two types of Ti and Zr, and the balance Fe with inevitable trace quantities of impurities, and a weight ratio value for Ni/Cr of between 1 and 3.
- 2. A core metal alloy recited in Claim 1 characterized by the fact of further containing, by weight, according to need 1.5% or less of Si and/or 1.5% or less of Mn and as a deoxidizer.

3. Detailed Description of the Invention

The present invention relates to an alloy material for forming a core metal for piercing or expansion when manufacturing seamless steel pipes from solid round billets, and further improves the alloy in the Patent Application S59-11899 [i.e., 1984-11899] (Unexamined Patent Application Gazette Number S60 [i.e., 1985]) invention.

As recited in the Specification of the aforementioned antedated application, generally, a core metal for piercing a seamless metal pipe is pressed lengthwise by a solid round steel billet heated to approximately 1200°C that advances and rotates due to an oblique rolling roll, and piercing is thereby made in the axial direction of the steel pipe. A pierced steel pipe pierced in this manner can be expanded

by a separate core metal for expansion that advances and rotates similarly due to an oblique rolling roll being pressed in the pierce hole of the steel pipe heated to approximately 1000°C.

As a result, high temperature and a high stress act on the surface of the core metal for piercing or expansion, abrasion on the surface of the core metal, wrinkling due to plastic flow of the core metal material, partial melting damage, or galling or cracks due to seizures with the pipe material occur, deformation or damage to the core metal occurring thereby proceed, the life with the number of uses of the core metal is comparatively shortened, and the use becomes impossible.

The properties demanded of an alloy to form a core metal in order to prevent such damage that occurs on the surface of core metal for piercing (or expansion) differ as follows according to the type of damage.

- (1) In order to prevent the occurrence of abrasion or wrinkling, the mechanical strength of the alloy needs to be high at high temperatures.
- (2) In order to prevent the occurrence of cracks, the mechanical strength and extensibility of the alloy need to be high at ordinary temperatures.
- (3) In order to prevent the occurrence of partial melting damage, it is necessary to prevent partial lowering of the melting point and grain boundary embrittlement from occurring by adding as few alloy elements with a low melting point to the bare metal as possible in the composition of the core metal alloy, and segregating these alloy elements by grain boundary using solidification segregation and grain boundary separation.
- (4) In order to prevent the occurrence of galling and cracks due to seizures, a fine scale needs to be formed with an appropriate thickness having thermal insulation and lubrication on the surface of the core metal due to scale attachment.

The object of the Patent Application Number S59-11899 [i.e., 1984-11899] invention described above was to obtain a core metal for piercing markedly superior in duration compared to conventional core metals by increasing the mechanical strength and ordinary and high temperatures using solid solution hardening of Ni, Mo and W, grain boundary segregating and decreasing as much as possible the quantity of C which is a cause of partial solution damage and the quantity of Cr which thins the scale layer formed during scale attachment, and decreasing the solubility in the bare metal.

This object was achieved using an alloy having, by weight, {A}¹ 0.1 to 0.25% C, 1 to 3% Cr, 1 to 9% Ni, 0.3 to 3% of a total of one or two types of Mo and W, and the balance Fe with inevitable trace quantities of impurities, and a composition with a weight ratio value for Ni/Cr of between 1 and 3.

The object of the present invention is to further improve the alloy in the aforementioned Patent Application Number S59-11899 [i.e., 1984-11899] invention, and obtain an alloy for piercing whose durability is further improved.

This object was achieved by adding to the component composition of the alloy of the aforementioned invention additives in a ratio of, by weight, 1 to 2% Co, 1 to 2% Cu, and 0.2 to 0.5% of a total of one or two types of Ti and Zr.

Similar to the aforementioned antedated application invention, the additives of either 1.5% or less of Si and 1.5% or less or Mn or both may be added as ordinary deoxidizers according to need to the alloy composition of the present invention mentioned above.

Next is a description, which duplicates some of the above description, of the Specification and Drawings of Patent Application Number S59-11899 [i.e., 1984-11899] for the range limitations of the composition of each component in an alloy of the present invention.

C is an effective element for improving the strength of an alloy because it increases the mechanical strength of alloys at ordinary and high temperatures by exhibiting various aspects when C is melted in bare metal or undergoes heat treatment above the solution point. However, if there is too much C, and particularly when co-existing with Cr, the Cr carbide separates at the grain boundary, causing

¹ [Translator's note: Braces indicate sections subject to the amendment following the patent added by the translator for ease of reference.]

grain boundary embrittlement, and the carbide dissolves and absorbs more Mo and W than the bare metal, so the reverse effects such as solution strengthening effects of the bare metal due to adding Mo and W are caused.

An alloy for a core metal according to the present invention differs from this sort of conventional alloys from a perspective of preventing partial melting damage to the core metal, and solid solution hardening is mainly used for mechanical strength at ordinary and high temperatures, so it is desirable to have as little contained C as possible. Nevertheless, when the quantity of contained C is too little, a need arises to increase the quantity of the contained Ni to maintain the required mechanical strength, and this is economically costly. Also, if the quantity of contained C is too little, the liquid fluidity decreases, and the castability thereby worsens.

For an alloy for core metal according to the present invention, the lower limit value of the quantity of contained C was set to {C} 0.1% from the aforementioned {B} perspective of economy and castability, and the upper limit value was set to {D} 0.25% from the {D} perspective of preventing partial melting damage to the core metal for piercing. {E}

Si is added as a general deoxidizer to alloys according to need to adjust the deoxidation of the alloy, but if there is too much Si, the toughness of the alloy decreases, and fayalite (FeO·SiO₂) is generated in the scale, embrittling it during general scale attachment performed to cause a fine scale having heat insulation and lubrication to attach to the surface of the core metal for piercing.

Thus, the upper limit value for the quantity of contained Si was fixed at 1.5%. There is no particular limitation on the lower limit.

Mn is also added to alloys as a general deoxidizer according to need to adjust the deoxidation of the alloy. When there is too much Mn, the scale is embrittled as with the case of Si.

Thus, the upper limit value for the quantity of contained Mn was fixed at 1.5%. There is no particular limitation on the lower limit.

The comparative rhythm [sic]² of Cr and Ni is important, so the reason for the range limitation of the Cr and Ni components is given together.

Cr is an effective element for increasing the mechanical strength at ordinary and high temperatures as well as increasing the resistance to oxidation of an alloy when it is melted in the bare metal or combined with C to form a carbide. Nevertheless, when the quantity of contained Cr is too high, the thickness of the scale layer generated during general scale attachment to cause a scale having heat insulation and lubrication to attach to the surface of the core metal become thinner due to an increase in the oxidation resistance, and, of the damage described above which is caused to the core metal, galling due to seizure of the pipe material occurs frequently. Further, if the quantity of contained Cr is too low, the mechanical strength of the alloy at ordinary and high temperatures is decreased, and abrasion, wrinkles and cracks occur due to insufficient strength in the core metal.

Ni is a useful element for dissolving entirely in the bare metal without forming a carbide with C, and increasing the mechanical strength at ordinary and high temperatures due to solid solution hardening. However, the price of Ni is high compared to Cr, so increasing the mechanical strength of the alloy at ordinary and high temperatures with only Ni is costly, and a mechanical strength cannot be obtained that is as high as when coexisting with Cr. The adverse effects of the attachment scale layer becoming thinner due to scale attachment are far less with adding Ni than with adding Cr.

Accordingly, adequate mechanical strength at ordinary and high temperatures as well as a scale layer with an appropriate thickness was given to the core metal alloy, and in order to maintain economy for the alloy, the mechanical strength at ordinary and high temperatures was supplemented and the quantity of added Ni was reduced by making Ni which can increase the mechanical strength without thinning the scale layer the main component and adding thereto Cr within the tolerable limit.

From the aforementioned perspective, the upper limit of the quantity of contained Cr was set to 3% so as to not thin the thickness of the scale layer, and the lower limit was set to 1% to supplement the

² [Translator's note: "comparative rhythm" is a typographical error for "proportion" in the Japanese source.]

mechanical strength. The quantity of contained Ni was fixed at three times the quantity of Cr, or in other words, the value of the ratio of Ni/Cr was 1 to 3, in order to increase the mechanical strength.

The basis for fixing the Ni/Cr ratio value of 1 to 3 is next described using the set of curved line drawings Fig. 1 and Fig. 2 and the set of drawings Fig. 3 and Fig. 4. Fig. 1 is a curved line drawing indicating the effects of the Ni/Cr ratio on the mechanical strength of an alloy at ordinary temperature when the quantity of contained Cr is 1.4%; Fig. 2 is a curved line drawing similarly with the effects at the same temperature of 900° C; Fig. 3 is a curved line diagram similarly with the effects at ordinary temperature when the quantity of contained Cr is 2.8%; and Fig. 4 is a curved line diagram similarly with the effects at the same temperature of 900°C.

As can be seen from these curved line diagrams, the pulling strength and elongation percentage at the ordinary temperature needed to prevent cracking, one of the damages causing lowering of the duration of core metal for piercing, is ill-suited for preventing cracks when the Ni/Cr ratio is less than 1 as the pulling strength is inadequate at 45 to 50 kg/mm², and when the Ni/Cr ratio is more than 3 as the elongation percentage is lowered markedly. Also, it can be seen that the pulling strength at high temperatures necessary for preventing abrasion and wrinkles on the surface of the core metal, another type of damage, is inadequate at 5.2 or 5.3 kg/mm² when the Ni/Cr ratio is more than 3, and the elongation percentage is markedly decreased.

A determination was made from the above results to fix the selection of the value of the Ni/Cr ratio in a core metal alloy according to the present invention to a range of 1 to 3.

Mo and W are effective elements for increasing the mechanical strength of alloys particularly at high temperatures by being dissolved in an alloy bare metal or being combined with C to form a carbide. On the other hand, increasing the quantity of contained Mo and W makes the scale layer generated so as to be attached to the surface of the core metal through scale attachment fragile. An example of the effects of adding Mo and W on the high temperature mechanical properties of a core metal alloy according to the present invention is shown in Fig. 5. This curved line drawing indicates the effect on the pulling strength and elongation percentage of the alloy caused by a change in the total quantity of Mo, W or both at a testing temperature of 900°C with a Ni/Cr ratio of 2.0 and a CR volume of 2.8%.

According to this curved line diagram, there is no effect of increasing the high temperature pulling strength until the total additive quantity of either one or two of Mo and W is 0.2%. However, with an additive quantity of 0.3% to 1.5%, the pulling strength gradually increases with the increase in the additive quantity, and with an additive quantity of 1.5 to 2.0%, the pulling strength increases rapidly with the increase in the additive quantity. At more than 2.0%, it can be seen that the pulling strength once again changes to a gradual increase.

With a core metal manufactured according to an alloy of the present invention, when piercing a solid round steel billet heated to approximately 1200°C, if the billet material being pierced is simply carbon steel, a core metal for piercing according to an alloy of the present invention having an additive quantity of less than 1.5% of a total of one or two of Mo and W adequately exceeds the durability of a conventional core metal. However, for a special steel such as when the material of the steel billet to be pierced is 13% chrome steel or 24% chrome steel, an additive quantity of a total of one or two of Mo and W of 1.5% to 3.0% is required.

Accordingly, the additive quantity of a total of one or two of Mo and W in an alloy according to the present invention was fixed at 0.3 to 3%.

Co is an element added to low alloy steels such as a core metal alloy according to the invention or a general carbon steel which is unique for lowering the hardenability of steel.

A core metal for piercing is pressed in a solid round billet heated to approximately 1200°C, so the surface temperature of the core metal for piercing immediately after piercing becomes approximately 1200°C to 1300°C, from the surface to approximately 5 mm inside becomes approximately 800°C, and the inside becomes less than 700°C.

A core metal heated to such a state is cooled to ordinary temperature with water immediately after piercing, and is then pressed again in a new billet; such heating and cooling is repeated in this manner. Through such repetitions, thin tortoise shell type cracks occur in the surface of the core metal, and this causes rolling marks to occur on the inside surface of the pierced pipe. Such tortoise shell type cracks originate in heat stress caused mainly due to the repeated heating and cooling.

In general, the heat stress of a steel body with a low hardenability and no quenching abnormalities causes compression stress at the surface of the steel body and pulling stress at the center of the steel body. In contrast to this, the heat stress of a steel body with a high hardenability and with quenching abnormalities causes pulling stress in the surface and compression stress at the center. In other words, the distribution of the heat stress switches. In general, repeatedly heating and cooling without compression stress becoming quenching abnormalities in the surface leads to less tortoise shell cracks.

The cross-section hardness of a round bar steel billet is measured after it is quenched in water, and the size of the hardenability can be expressed as the ratio d/r where d is the thickness of the hardened layer whose hardness is 40 or higher on the Rockwell C scale and r is the radius of the round bar. In other words, the smaller the d/r value, the lower the hardenability.

An example of the effect the quantity of the contained Co component has on the d/r value when a round bar with a radius of 25 mm according to an alloy of the present invention is quenched in water is shown in a curved line diagram of Fig. 6. From this curved line diagram, it can be seen that the lowering of the hardenability is remarkable until Co reaches 1.75%, and that the effects decrease when Co exceeds 1.75%.

Thus, the lower limit of the additive quantity of Co in an alloy of the present invention was set at 1% from the viewpoint of the effects of hardenability lowering, and the upper limit was set to 2% from a perspective that little hardening lowering effects are obtained for the economic increase in cost.

Cu is an effective element for being minutely separated in bare metal and increasing the pulling strength at ordinary temperatures. It is also an effective element for improving the adhesion to bare metal for the scale, enriched by the bare metal directly under the scale during attachment of a scale having heat insulation and lubrication as described above. If the additive quantity is below 1%, however, the improvement of the pulling strength at ordinary temperatures is low, and if the additive quantity is too high, the Cu enriched directly under the scale permeates into the crystal grain boundary of the bare metal at high temperatures, making the surface layer of the core metal fragile.

Thus, the lower limit of the additive quantity of Cu for an alloy of the present invention was set to 1%, and the upper limit was set to 2%.

With a preference over Cr, Ti and Zr are combined with C to form a carbide. Unlike a Cr carbide, a Ti and Zr carbide has a uniform distribution in the bare metal, and the solubility in bare metal at high temperatures is extremely low compared to a Cr carbide, so Ti and Zr are effective elements for lowering the partial melting point of the grain boundary and reducing the embrittlement of the grain boundary as well as increasing the pulling strength at high temperatures. Further, as a result of the decrease in the quantity of Cr carbide because precedence is made for Ti and Zr over Cr in forming the carbide, the Cr, W and Mo absorbed in the Cr carbide is decreased, the concentrations of these elements in the bare metal are accordingly increased, and the pulling strength of the alloy at high temperatures due to solid solution hardening improves. Nevertheless, if the additive quantity of Ti and Zr is too large, the liquid fluidity is markedly decreased when dissolving the alloy in air, and the castability when manufacturing the core metal is impaired.

Thus, the upper limit of the additive quantity of a total of either one or two types of Ti and Zn [illegible, r?] for an alloy of the present invention was fixed at 0.5% and the upper limit at 0.2%.

A core metal alloy for piercing a seamless pipe was described above; because a description for a core metal alloy for such expansion is exactly the same as that for a core metal alloy for piercing, it has been omitted.

Next, an embodiment is described.

The compositions of embodiments of core metal alloys for piercing according to the prevent invention are indicated in Table 1. The compositions of alloys according to the antecedent Patent Application Number S59-11899 [i.e., 1984-11899] invention as well as conventionally known types of alloys are also given alongside.

A number 10 ordinary temperature pulling test piece according to specification number JIS-Z-2201, a high temperature pulling test piece according to specification number JIS-G-0567, as well as piercing core metals for an Assel mill with diameters of 69 m/m, 72 m/m and 75 m/m were manufactured as raw materials for the alloys of the compositions indicated in Table 1. High temperature pulling tests were performed with a 5% strain rate every minute at a temperature of 900°C. Using these core metals, piercing tests of two types (C approximately 1% and Cr approximately 1.5%) of actual JIS SUJ bearing steel material (so-called high carbon chrome bearing steel material) were performed using the Assel mill. The results of these tests are indicated in Table 2. The durability of the core metal is indicated with the average number of piercing holes per core metal for piercing.

As seen in Table 2, the mechanical strength at ordinary and high temperatures of alloys according to the present invention is between 1.5 and 3 times that of conventionally known types of alloys, and it can be seen that it is equivalent or somewhat higher than that of the alloys in the Patent Application Number S59-11899 [i.e., 1984-11899] invention. The durability of a core metal manufactured with the alloy of the present invention is sent to be between 2 and 5 times that of a known alloy and from between 1.5 and 2 times that of the alloys of the Patent Application Number S59-11899 [i.e., 1984-11899] invention. The increase in the durability of the core metals according to alloys of the present invention is due to the effects of the tortoise shell cracks in the surface of the core metal decreasing due to the addition of Co to the alloy, the adhesion of a scale due to the addition of Cu, and the prevention of grain boundary separation of the carbide due to the addition of Ti and Zr.

Table 1. Alloy Composition Table (Weight Percent)

[see original for figures] C Si Mn Cr Ni Mo W P S Со Cu Ti Zr Ni/Cr Fe No. al a2 Same Embodiment alloys a3 Same a4 Same a5 Same a6 Same a7 Same a8 Same a9 Same No. Patent Application S59-11899 invention alloys Same Same Comparative alloys Same Same Same Same Same Same 9 Same Same

Same

[*1 Well-known alloys]
[*2 3 Cr-1 Ni cast copper]
[*3 1.5 Cr-0.75 Ni cast copper]
[*4 Remainder]

Table 2. Properties

			Mechanical ordinary ten	properties at	Mechanical 900° C	properties at	Material for piercing	Durability (number of	
			Pulling strength (kg/mm²)	Elongation percentage (%)	Pulling strength (kg/mm²)	Elongation percentage (%)	tube	pierces per)	
	No. al						Bearing copper		
1 8	a2		1	<u> </u>			Same		
Embodiment alloys	a3					·	Same		
ដូ	a4						Same		
<u>.</u> <u>.</u>	a5						Same		
8	a6		ĺ				Same		
E	a7						Same		
"	a8						Same		
<u></u>	a9						Same		
	2- S	No. 1					Same		
	SSS	2					Same		
8	no la	3					Same		
읔	ati ior	4					Same		
ě	olic ent	5					Same		
at:	P vii	6					Same		
Comparative alloys	Patent Application S59- 11899 invention alloys	7					Same		
E	ate 18	8					Same		
Ŭ		9					Same		
	-	-2					Same		
(*)		*3					Same		

[* Well-known alloys]

4. Brief Description of the Figures

Fig. 1 is a curved line diagram indicating effects of a Ni/Cr weight ratio on mechanical properties at ordinary temperatures when the quantity of Cr contained in an alloy of the present invention is 1.4%.

Fig. 2 is a curved line diagram indicating effects of a Ni/Cr weight ratio on mechanical properties at a temperature of 900°C when the quantity of Cr contained in an alloy of the present invention is 1.4%.

Fig. 3 is a curved line diagram indicating effects of a Ni/Cr weight ratio on mechanical properties at ordinary temperatures when the quantity of Cr contained in an alloy of the present invention is 2.8%.

Fig. 4 is a curved line diagram indicating effects of a Ni/Cr weight ratio on mechanical properties at a temperature of 900°C when the quantity of Cr contained in an alloy of the present invention is 2.8%.

Fig. 5 is a curved line diagram indicating effects of adding Mo and W on mechanical properties at a temperature of 900°C when the quantity of Cr contained in an alloy of the present invention is 2.8% and the Ni/Cr weight ratio is 2.0.

^{[2 3} Cr-1 Ni cast copper]

^{[*3 1.5} Cr-0.75 Ni cast copper]

Fig. 6 is a curved line diagram indicating effects of adding Co on the hardenability of an alloy of the present invention.

Fig. 1
Pulling strength (kg/mm²)
Elongation percentage (%)
[upper label] Pulling strength
[lower label] Elongation percentage

Fig. 2
Pulling strength (kg/mm²)
Elongation percentage (%)
[upper label] Elongation percentage
[lower label] Pulling strength

Fig. 3
Pulling strength (kg/mm²)
Elongation percentage (%)
[upper label] Pulling strength
[lower label] Elongation percentage

Fig. 4
Pulling strength (kg/mm²)
Elongation percentage (%)
[upper label] Pulling strength
[lower label] Elongation percentage

Fig. 5
Pulling strength (kg/mm²)
Elongation percentage (%)
[upper label] Pulling strength
[lower label] Elongation percentage

Fig. 6
Co additive quantity (%)

Procedural Amendment

13 February 1985

To Director-General Manabu Shiga of the Patent Office

1. Case identification

Patent Application Number S59-64475 [i.e., 1984-64475]

2. Title of the Invention

Core Metal Alloy for Piercing or Expanding Seamless Steel Pipe

3. Party amending

Relation to the case Patent applicant Shinhokoku Steel Co., Ltd.

(and one other)

4. Agent

Address

Number 17 Building, 1-chome 26-5, Tora-no-mon, Minato-ku, Tokyo 105 Tel.

03 (502) 3181 [impression of a seal]

Name

(5847) Takehiko Suzue, Patent Attorney

5. Voluntary amendment

[impression of a seal, mostly illegible] 2 [= Feb?] 1985

6. Object of the amendment

Specification

- 7. Details of the amendment
 - (1) Correct the entire specification of the Scope of Claims as follows.
 - (2) Make the below corrections in the Specification.
 - A. 9 lines from the bottom of page 4, correct "0.1 to 0.25% C" to "0.14 to 0.18% C".
 - B. The last line on page 6, correct "perspectives" to "experimental perspectives".
 - C. Page 7 line 1, correct "0.1%" to "0.14%".
 - D. Same page line 2, correct "perspective" to "experimental perspective." Correct "0.25%" in that same line to "0.18%".
 - E. Same page line 3, insert "(refer to the embodiments given below)" after "piercing."
 - F. Correct Table 1 and Table 2 on pages 19 and 20 as in the attached pages.

Table 1. Alloy Composition Table (Weight Percent)

[See original for figures]

		1		G:													
	ļ	<u> </u>	C	Si	Mn	Cr	Ni	Mo	W	P	S	Co	Cu	Ti	Zr	Ni/Cr	Fe
	No.	<u>al</u>	<u> </u>	<u> </u>													74
Embodiment alloys	a2													 -		<u> </u>	Same
_ ≝	a3			•								1					Same
Ħ	a4										 		 				
. je	a5									<u> </u>		 					Same
ij	a6				-						<u> </u>						Same
ĕ			\vdash														Same
E	a7																Same
ш	a8		Ll		i i												
	a9										-						Same
		No.															Same
ş	Patent	1												٠			Same
Comparative allovs	Patent ication S	3															Same
a de	Pat	3	$\vdash \vdash$														Same
$\bar{\mathcal{S}}$	ilac	5															Same
-	Ą	6															Same
		<u> </u>															Same

		7								Same
1		8						l		Same
1		9								Same
1	-	2								Same
		*3								Same.

[* Well-known alloys]
[*2 3 Cr-1 Ni cast copper]
[*3 1.5 Cr-0.75 Ni cast copper]

⁴ Remainder

Table 2. Properties

[see original for figures]

		_	Mechanical ordinary ten	properties at	Mechanical 900° C	properties at	Material for piercing	Durability (number of
			Pulling strength (kg/mm²)	Elongation percentage (%)	Pulling strength (kg/mm²)	Elongation percentage (%)	tube	pierces per)
	No. a1						Bearing	
8	a2		†		· · · · · · · · · · · · · · · · · · ·		copper Same	
Embodiment alloys	a3		 	 			Same	
12	a4		 				Same	ļ
E	a5		 					
g	a6		-				Same	·
[윤	a7					-	Same	
교	a8						Same	
•	a9		 				Same	
	T	No. 1	 				Same	
	1 6 x	No. 1					Same	
,,	S S						Same	76/1-1-1-1-1-1
5	ior	3					Same	
all	Et. ca	4					Same	
\$	ig g	5					Same	
ati	A ii	6			<u> </u>		Same	
<u>B</u> .	9 ii	7	·				Same	
Comparative alloys	Patent Application S59- 11899 invention alloys	8					Same	
Ö	<u> </u>	9					Same	
	-	-2					Same	·
	ell-knowr	*3					Same	

2. Claims

1. A core metal alloy for piercing or expanding [insertion] a [end insertion] seamless steel pipe made from, by weight, 0.14 to 0.18% C, 1 to 3% Cr, 1 to 9% Ni, 0.3 to 3% of a total of one or two types of Mo and W, 1 to 2% of Co, 1 to 2% of Cu, 0.2 to 0.5% of a total of one or two types of Ti and Zr, and the balance Fe with inevitable trace quantities of impurities, and a weight ratio value for Ni/Cr of between 1 and 3.

^{[*1} Well-known alloys] [*2 3 Cr-1 Ni cast copper] [*3 1.5 Cr-0.75 Ni cast copper]

2. A core metal alloy recited in Claim 1 characterized by the fact of further containing, by weight, according to need 1.5% or less of Si and/or 1.5% or less of Mn and as a deoxidizer.

AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following patents from Japanese to English:

2000-162192

102875

ATLANTA BOSTON

BRUSSELS CHICAGO

DALLA5 DETROIT FRANKFURT HOUSTON NCDNOJ

LOS ANGELES

NEW YORK

WASHINGTON, DC

MIAMI MINNEAPOLIS

PARIS PHILADELPHIA SAN DIEGO SAN FRANCISCO SEATTLE

60-208458

2000-94068

2000-107870

TransPerfect Translations, Inc. 3600 One Houston Center

1221 McKinney Houston, TX 77010

Sworn to before me this 23rd day of January 2002.

Signature, Notary Public

MARIA . NOTE OF PUBLIC

Stamp, Notary Public

Harris County

Houston, TX

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.