

WHAT IS CLAIMED IS:

Sub Q!

5

1. A coding device comprising:
 coding means for coding an external input signal in a macroblock unit;
 first storing means for storing a code output from said coding means;
 second storing means for storing an output from said first storing means; and
 code volume control means for controlling transfer of said code stored in said
 first storing means to said second storing means based on a code volume of said code
 obtained by said coding means such that a length of a video packet constituted by said
 code is a predetermined length or less.

10

2. The coding device according to claim 1, wherein
 said code volume control means controls storage of a stuffing in said second
 storing means based on a minimum code volume obtained for each unit image constituted
 by a video packet which is required for coding said unit image.

15

3. The coding device according to claim 2, wherein
 said code volume control means determines a minimum code volume T_{min} to
 satisfy a following equation:

$$T_{min} \geq 2 \cdot R_p - B$$

20

$$R_p = R / F$$

wherein a bit count read from said second storing means in a unit image is represented by R_p , an occupancy in said second storing means is represented by B , a bit rate read from said second storing means is represented by R , and a rate of a unit image to be coded is represented by F .

25

4. The coding device according to claim 3, wherein
said bit rate R read from said second storing means is variable.

5. The coding device according to claim 2, wherein
said code volume control means determines a minimum code volume T_{min} to
satisfy a following equation:

$$T_{min} \geq vbv_bits + 2 \cdot R_p - vbv_bs$$

$$R_p = R / F$$

wherein a bit count read from said second storing means in a unit image is represented by
10 R_p , an occupancy of a VBV buffer in a last unit image is represented by vbv_bits , a size
of said VBV buffer is represented by vbv_bs , a bit rate read from said second storing
means is represented by R , and a rate of a unit image to be coded is represented by F .

15 6. The coding device according to claim 5, wherein
said bit rate R read from said second storing means is variable.

7. The coding device according to claim 2, wherein
said code volume control means determines a minimum code volume T_{min}
based on a following equation or a value having a result equivalent to a result of said
20 equation:

$$T_{min} = \max(2 \cdot R_p - B, vbv_bits + 2 \cdot R_p - vbv_bs)$$

$$R_p = R / F$$

wherein a bit count read from said second storing means in a unit image is represented by
Rp, an occupancy in said second storing means is represented by B, an occupancy of a
25 VBV buffer in a last unit image is represented by vbv_bits , a size of said VBV buffer is

represented by vbv_bs, a bit rate read from said second storing means is represented by R, and a rate of a unit image to be coded is represented by F.

8. The coding device according to claim 7, wherein said bit rate R read from
5 said second storing means is variable.

9. The coding device according to claim 2, wherein
said code volume control means inserts a stuffing into a video packet until a
first relationship is not satisfied, when a present code volume of a unit image including a
10 last coded macroblock constituting said unit image is smaller than said minimum code
volume Tmin of said unit image and a number M of macroblocks to be coded
subsequently to said last coded macroblock, a predetermined length VPlen of said video
packet, said minimum code volume Tmin and said present code volume Sc have said first
relationship:

15 $M \cdot VPlen < Tmin - Sc,$

said code volume control means constitutes a video packet next to said video
packet by a macroblock next to said last coded macroblock without inserting a stuffing
into said video packet, when said first relationship is not established and said number M
of macroblocks, said length VPlen of a video packet, said minimum code volume Tmin
20 and said present code volume Sc have a second relationship:

$$(M - 1) \cdot VPlen < Tmin - Sc.$$

10. A coding method comprising the steps of:

(a) coding an external input signal in a macroblock unit;

25 (b) storing a code obtained at said step (a);

(c) controlling an output of said code stored at said step (b) such that a length of a video packet constituted by said code obtained at said step (a) is a predetermined length or less based on a code volume of said code; and

(d) storing said output controlled by said step (c).

5

11. The coding method according to claim 10, wherein
said step (c) serves to control storage of a stuffing at said step (d) based on a minimum code volume obtained for each unit image constituted by a video packet which is required for coding said unit image.

10

12. The coding method according to claim 11, wherein
said step (c) serves to determine a minimum code volume T_{min} to satisfy a following equation:

$$T_{min} \geq 2 \cdot R_p - B$$

15

$$R_p = R / F$$

wherein a bit count read by said step (d) in a unit image is represented by R_p , an occupancy in said step (d) is represented by B , a bit rate read by said step (d) is represented by R , and a rate of a unit image to be coded is represented by F .

20

13. The coding method according to claim 12, wherein
said bit rate R at which a code stored at said step (d) is read is variable.

25

14. The coding method according to claim 11, wherein
said step (c) serves to determine a minimum code volume T_{min} to satisfy a following equation:

$$T_{min} \geq vbv_bits + 2 \cdot R_p - vbv_bs$$

$$R_p = R / F$$

wherein a bit count read by said step (d) in a unit image is represented by R_p , an occupancy of a VBV buffer in a last unit image is represented by vbv_bits , a size of said

5 VBV buffer is represented by vbv_bs , a bit rate read by said step (d) is represented by R , and a rate of a unit image to be coded is represented by F .

10 15. The coding method according to claim 14, wherein

said bit rate R at which a code stored at said step (d) is read is variable.

16. The coding method according to claim 11, wherein

15 said step (c) determines a minimum code volume T_{min} based on a following equation or a value having a result equivalent to a result of said equation:

$$T_{min} = \max (2 \cdot R_p - B, vbv_bits + 2 \cdot R_p - vbv_bs)$$

$$R_p = R / F$$

wherein a bit count read by said step (d) in a unit image is represented by R_p , an occupancy in said step (d) is represented by B , an occupancy of a VBV buffer in a last unit image is represented by vby_bits , a size of said VBV buffer is represented by vbv_bs , a bit rate read by said step (d) is represented by R , and a rate of a unit image to be coded

20 is represented by F .

17. The coding method according to claim 16, wherein

said bit rate R at which a code stored at said step (d) is read is variable.

25 18. The coding method according to claim 11, wherein

said step (c) serves to insert a stuffing into a video packet until a first relationship is not satisfied, when a present code volume of a unit image including a last coded macroblock constituting said unit image is smaller than said minimum code volume T_{min} of said unit image and a number M of macroblocks to be coded
5 subsequently to said last coded macroblock, a predetermined length $VPlen$ of said video packet, said minimum code volume T_{min} and a present code volume S_c have a first relationship: $M \cdot VPlen < T_{min} - S_c$,

said code volume controlling step serves to constitute a video packet next to said video packet by a macroblock next to said last coded macroblock without inserting a
10 stuffing into said video packet, when said first relationship is not established and said number M of macroblocks, said length $VPlen$ of a video packet, said minimum code volume T_{min} and said present code volume S_c have a second relationship: $(M - 1) \cdot VPlen < T_{min} - S_c$.