Análisis por ecuaciones en diferencia

Justificación:

La ecuación de la convolución sugiere la forma de realizar cualquier sistema discreto.

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

- Para un sistema **FIR**, la realización a través de la convolución implica un número finito de sumadores, de multiplicadores y de posiciones de memoria.
- Una implementación práctica **IIR** basada en la convolución es imposible, ya que se requeriría un número infinito de componentes.
- La descripción de sistemas **IIR** con ecuaciones de diferencia, permite la realización de un familia importante de sistemas IIR de forma práctica y eficiente, desde un punto de vista computacional.

Sistemas LTI Caracterizados por Ecuaciones de Diferencia con Coeficientes Constantes (edcc)

- Ecuación de diferencia
 - Descripción matemática de la relación entrada/salida de un sistema discreto.
 - Forma general de la edcc para un sistema recursivo:

$$y(n) = -\sum_{k=1}^{N} a_k \ y(n-k) + \sum_{k=0}^{M} b_k \ x(n-k)$$

donde, N orden de la ecuación o del sistema; y(n-k) condiciones iniciales.

- La respuesta y(n) es el resultado de la condición inicial del sistema y de la repuesta del sistema a la señal de entrada.
- **♦** Respuesta en estado nulo (forzada)
 - Respuesta del sistema a la entrada x(n) con condiciones iniciales iguales a cero.

$$y_{zs}(n) = \sum_{k=0}^{M} b_k \ x(n-k)$$

- **♦** Respuesta con entrada nula (natural)
 - Respuesta del sistema con condiciones iniciales diferentes de cero y entrada x (n)=0.

$$y_{zi}(n) = -\sum_{k=1}^{N} a_k \ y(n-k)$$

Linealidad

- Un sistema es lineal si satisface los tres requisitos siguientes:
 - $y(n) = y_{zi}(n) + y_{zs}(n)$
 - ▶ Si el principio de superposición se aplica a la respuesta en estado nulo
 - ▶ Si el principio de superposición se aplica a la respuesta a la entrada nula

♦ Invarianza en el tiempo

Un sistema recursivo descrito por una ecuación en diferencia lineal de *coeficientes* constantes es lineal e invariante en el tiempo.

Estabilidad

Un sistema es estable si y sólo si para toda entrada acotada y toda condición inicial acotada la respuesta total del sistema es acotada.

Observación

Los sistemas descritos por edcc son una subclase de sistemas recursivos y no recursivos.

Solución de Ecuaciones de Diferencia con Coeficientes Constantes

Objetivo

- Encontrar una forma explícita de la salida *y*(*n*) de un sistema LTI dada una ecuación de diferencia con coeficientes constantes lineal como relación de entrada/salida del mismo.
- Existen dos técnicas principales

Método directo : Solución homogénea más particular

Método indirecto : Transformada z

Método directo

La solución y(n) es dada por la suma de dos partes:

$$y(n) = y_h(n) + y_p(n)$$

donde, $y_h(n)$ solución homogénea; $y_p(n)$ solución particular

La ecuación general puede escribirse como:

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k) \quad con \ a_0 \equiv 1 \quad y \quad n \ge 0$$

Solución homogénea de la ecuación de diferencia

Procedimiento

- Considerar x(n)=0, por lo que se obtiene: $\sum_{k=0}^{N} a_k y(n-k) = 0$
- Suponer que la solución homogénea $y_h(n)$ es exponencial, es decir: $y_h(n) = \lambda^n$
- Sustituir y_h(n) en la ecuación anterior y formar el *polinomio característico* del sistema.

$$\sum_{k=0}^{N} a_k \lambda^{n-k} = 0 \iff \lambda^{n-N} (\lambda^{N} + a_1 \lambda^{N-1} + a_2 \lambda^{N-2} + \dots + a_{N-1} \lambda + a_N) = 0$$

- Calcular las N raíces λ del polinomio característico.
- Expresar la solución de $y_h(n)$ como:
 - Sin raices repetidas: $y_n(n) = C_1 \lambda_1^n + C_2 \lambda_2^n + ... C_N \lambda_N^n$
 - Con raices repetidas:

$$y_h(n) = C_1 \lambda_1^n + C_2 n \lambda_1^n + C_3 n^2 \lambda_1^n + \dots + C_m n^{m-1} \lambda_1^n + \dots + C_{N-1} \lambda_{N-1}^n + C_N \lambda_N^n$$

Determinar los coeficientes de ponderación C_i a partir de las condiciones iniciales.

Observación:

Se puede utilizar la **solución homogénea** para obtener la respuesta a la entrada nula del sistema, $y_{i}(n)$.

Ejemplo 1: Determine el orden y la respuesta $y_h(n)$ del siguiente sistema:

$$y(n)+a_1y(n-1)=x(n)$$
 [ec.1]

- *Orden*: 1 Solución tentativa: $y_h(n) = \lambda^n$ con x(n) = 0
 - entonces, $\lambda^n + a_1 \lambda^{n-1} = 0$ $\rightarrow \lambda^{n-1} (\lambda + a_1) = 0 \rightarrow \lambda = -a_1$

Luego $\mathbf{y_h}(\mathbf{n}) = \mathbf{C} \ \lambda^n = C(-a_1)^n$ [ec.2]

- **Ejemplo 2:** Determine la respuesta a la entrada nula, $y_{zi}(n)$, del sistema anterior.
 - De [ec.1] con x(n)=0 y n=0, $y(0)=-a_1y(-1)$
 - De [ec.2] con x(n)=0 y n=0, $y_h(0)=C$
 - ▶ Igualando los dos resultados anteriores: C=-a₁y(-1)
 - Reemplazando la expresión de C en la solución homogénea: $y_{zi}(n) = (-a_1)^{n+1} y(-1)$

♦ **Ejemplo 3:** Determine la repuesta a la entrada nula del sistema descrito por la ecuación de diferencia homogénea de segundo orden:

$$y(n)-3y(n-1)-4y(n-2)=0$$
 [ec.1]

- Solución: determinar la solución homogénea
 - Considerando: $y_h(n) = \lambda^n$ [ec.2]
 - Reemplazando [ec.2] en [ec.1] se obtiene la ecuación característica:

$$\lambda^{n}-3 \lambda^{n-1}-4 \lambda^{n-2}=0$$
 $\lambda^{n-2} (\lambda^{2}-3 \lambda-4)=0 \Rightarrow \lambda_{1}=-1, \lambda_{2}=4.$

Por lo que la solución homogénea es de la forma:

$$y_h(n) = C_1 \lambda_1^n + C_2 \lambda_2^n$$

= $C_1 (-1)^n + C_2 (4)^n$ [ec.3]

La **respuesta del sistema a la entrada nula** se puede obtener a partir de $y_h(n)$ evaluando las constantes en [ec.3], dadas las condiciones y(-1), y(-2).

De [ec.1]
$$\Rightarrow$$
 y(0) =3 y (-1) + 4 y (-2)
y(1) =3y (0) +4 y (-1)
=13 y (-1) +12 y (-2)
De [ec.3] \Rightarrow y(0) = C₁ + C₂
y(1) = - C₁ +4C₂

Igualando estos dos conjuntos de relaciones, resulta

$$C_1 + C_2 = 3y(-1) + 4y(-2)$$

- $C_1 + 4C_2 = 13y(-1) + 12y(-2)$

De donde

$$C_1 = -\frac{1}{5}y(-1) + \frac{4}{5}y(-2)$$

$$C_2 = \frac{16}{5}y(-1) + \frac{16}{5}y(-2)$$

$$\Rightarrow y_{zi}(n) = \left[-\frac{1}{5}y(-1) + \frac{4}{5}y(-2) \right] (-1)^n + \left[\frac{16}{5}y(-1) + \frac{16}{5}y(-2) \right] 4^n \qquad n \ge 0$$

Solución particular de la ecuación de diferencia

Procedimiento

- Se considera que la solución particular $y_p(\mathbf{n})$ es de la misma forma que la señal de entrada x (\mathbf{n}) escalada por una constante \mathbf{K} :
- En caso que la solución homogénea $y_h(n)$ presente en algunos de sus términos la misma forma de x(n), entonces la solución particular se trata de igual forma que el caso para raíces múltiples.
- Determinar los factores de escala **K** a partir de la ecuación de diferencia para valores de **n**> **orden del sistema.**
- **Ejemplo:** Detemine el orden y la solución particular de la ecuación $y(n)+a_1 y(n-1)=x(n)$ con x(n)=u(n)
 - Orden: 1. Solución tentativa : $y_p(n) = K u(n)$
 - Evaluando la ecuación de diferencia para $n \ge 1$, (ningún término se anula)

$$K + a_1 K = 1$$
, de $donde$ $K = \frac{1}{1 + a_1}$
Luego: $y_p(n) = \frac{1}{1 + a_1} u(n)$

Ejemplo: Derminar la solución particular de la ecuación de diferencia

$$y(n) = \frac{5}{6}y(n-1) - \frac{1}{6}y(n-2) + x(n)$$

Cuando la entrada $x(n) = 2^n u(n)$

Solución:

- Consideración: $y_p(n) = K 2^n u(n)$
- Al sustituir, se obtiene:

$$K2^{n}u(n) = \frac{5}{6}K 2^{n-1}u(n-1) - \frac{1}{6}K2^{n-2}u(n-2) + 2^{n}u(n)$$

Para determinar el valor de K, se evalúa para $n \ge 2$ donde ningún término se anula

$$4K = \frac{5}{6}(2K) - \frac{1}{6}K + 4$$

$$\Rightarrow K = \frac{8}{5}$$

La solución particular es: $y_p(n) = \frac{8}{5}2^n$ $n \ge 0$

Solución total de la ecuación de diferencia

Observación

La propiedad de linealidad de las ecuaciones en diferencias con coeficientes constantes permite obtener la solución total $y_t(n)$ como:

$$y_t(n) = y_h + y_p(n)$$

- La respuesta en estado nulo $\mathbf{y}_{zs}(\mathbf{n})$ puede obtenerse a partir de la solución total $y_t(n)$, conociendo $y_{zi}(n)$, ya que $y_{zs}(n)=y_t(n)-y_{zi}(n)$. Y determinando las constantes Ci al evaluar $\mathbf{y}_t(\mathbf{n})$ con condiciones iniciales iguales a cero.
- **Ejemplo 1:** Determine la solución total del sistema $y(n)+a_1 y(n-1)=x(n)$ para n ≥ 0 , cuando x(n)=u(n)
 - De los ejemplos anteriores, se tiene:

$$y_h(n) = C\lambda^n = C(-a_1)^n$$
 $y_p(n) = \frac{1}{1+a_1}u(n)$

Luego:

$$y_t(n) = C(-a_1)^n + \frac{1}{1+a_1}u(n)$$
 $n \ge 0$

donde C se determina para satisfacer la condición inicial y(-1) al evaluar las dos expresiones para valores de n.

$$y_t(-1) = y(-1) = C(-a_1)^{-1} + \frac{1}{1+a_1}u(-1)$$
 \Rightarrow $C = y(-1)(-a_1)$

Ejemplo 2.

- Calcular la respuesta en <u>estado nulo</u> $y_{zs}(n)$ (Condiciones iniciales consideradas cero) del sistema del ejemplo anterior, cuando x(n)=u(n).
- Se tiene:

$$y(n) + a_1 y(n-1) = x(n) [ec.1]$$

$$y_t(n) = C(-a_1)^n + \frac{1}{1+a_1} u(n) n \ge 0 [ec.2]$$

- Evaluando la [ec.1] para y(-1) = 0 y n = 0, se obtiene, y (0)=1
- Evaluando [ec.2] para n=0, se obtiene $y_t(0) = C + \frac{1}{1+a_1}$
- Igualando los dos resultados anteriores, $C = \frac{a_1}{1 + a_1}$
- Para obtener $y_{zs}(n)$, se reemplaza C en [ec.2],

$$y_{zs}(n) = \frac{1 - (-a_1)^{n+1}}{1 + a_1} \qquad n \ge 0$$

- **Ejemplo 3:** Calcular la solución total que incluya la respuesta en estado nulo y la respuesta a la entrada nula del sistema $y(-1) \neq 0$, con x(n) = u(n).
 - Sistema: $y(n) + a_1 y (n-1) = x(n)$ [ec.1] $n = 0 \Rightarrow y(0) + a_1 y(-1) = 1$ $y(0) = -a_1 y(-1) + 1$
 - Solución total: $y(n) = C(-a_1)^n + \frac{1}{1+a_1}$ $n \ge 0$ [ec.2] $n = 0 \implies y(0) = C + \frac{1}{1+a_1}$
 - **Igualando se obtiene** $C = -a_1 y(-1) + \frac{a_1}{1 + a_1}$
 - Al sustituir este valor de C en [ec.2]

$$y(n) = (-a_1)^{n+1} y(-1) + \frac{1 - (-a_1)^{n+1}}{1 + a_1} \qquad n \ge 0$$
$$= y_{zi}(n) + y_{zs}(n)$$

Respuesta Impulsional de un Sistema Recursivo LTI

- ightharpoonup h(n) a partir de $y_{zs}(n)$
 - La respuesta al impulso, h(n), de un sistema LTI recursivo es igual a la respuesta de estado cero cuando la entrada $x(n) = \delta(n)$ (sistema inicialmente en reposo)
 - La respuesta de estado cero, $y_{zs}(n)$ en términos de convolución se expresa como

$$y_{zs}(n) = \sum_{k=0}^{n} h(k)x(n-k) \qquad n \ge 0$$

y cuando la entrada $x(n) = \delta(n)$ se obtiene,

$$y_{zs}(n) = h(n)$$

- **♦** h(n) a partir de la ecuación de diferencias con coeficientes constantes
 - La respuesta del sistema está dada por

$$y_{total}(n) = y_h(n) + y_p(n)$$

Puesto que $x(n) = \delta(n)$, entonces $y_p(n) = 0$ para n>0

Por consiguiente, h(n) es determinada por la solución de la ecuación homogénea con los parámetros $\{C_k\}$ calculados a partir de las condiciones iniciales impuestas por el impulso.

- ◆ **Ejemplo:** Determinar h(n)
 - Ecuación de diferencias: y(n) 3y(n-1) 4y(n-2) = x(n) + 2x(n-1) [1]
 - Solución homogénea: $y_h(n) = C_1(-1)^n + C_2(4)^n \qquad n \ge 0$ [2]
 - Puesto que $x(n) = \delta(n)$, entonces $y_p(n) = 0$ para n > 0, y con condiciones iniciales cero la respuesta h(n) está dada por

$$h(n) = y_h(n)|c_k \rightarrow x(n) = \delta(n)$$

Con n=0 y n=1, de [1] se obtiene,

$$\begin{cases} y(0) = 1 \\ y(1) = 3y(0) + 2 = 5 \end{cases}$$

Con n=0 y n=1, de [2] se obtiene,

$$\begin{cases} y_h(0) = C_1 + C_2 \\ y_h(1) = -C_1 + 4C_2 \end{cases}$$

Resolviendo para C_1 y C_2 , se llega a:

$$C_1 = -\frac{1}{5}, \qquad C_2 = \frac{6}{5}$$

Por lo tanto, la respuesta impulsional es: $h(n) = \left| -\frac{1}{5} (-1)^n + \frac{6}{5} (4)^n \right| u(n)$

Estabilidad de un Sistema IIR Causal a partir de la Ecuación de Diferencias

La solución de la ecuación homogénea para un sistema lineal de orden N cuando las raíces λ_k del polinomio característico son distintas es:

$$y_h(n) = \sum_{k=1}^{N} C_k \lambda_k^n$$

Por lo tanto, la respuesta impusional presenta la misma forma, es decir,

$$h(n) = \sum_{k=1}^{N} C_k \lambda_k^n$$

donde los C_k se determinan haciendo las condiciones iniciales iguales a cero.

Dado que la estabilidad BIBO de un sistema exige que h(n) sea absolutamente sumable, se tiene para un sistema causal,

$$\left| \sum_{n=0}^{\infty} \left| h(n) \right| = \sum_{n=0}^{\infty} \left| \sum_{k=1}^{N} C_k \lambda_k^n \right| \le \sum_{k=1}^{N} \left| C_k \left| \sum_{n=0}^{\infty} \left| \lambda_k^n \right| \right|$$

Por lo tanto, para que el sistema sea sumable debe cumplirse que $|\lambda_k| < 1$.

- Un sistema IIR causal descrito por una e.d.l.c.c. es estable si todas las raíces del polinomio característico son menores que 1 en valor absoluto.
- Condición igualmente válida para el caso de raíces con multiplicidad m.

Implementación de Sistemas Discretos

♦ Introducción

- Estructuras para la realización de sistemas LTI recursivos descritos mediante ecuaciones de diferencia de coeficientes constantes.
- Ecuación general,

$$y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k x(n-k)$$

♦ Forma directa I

La ecuación anterior puede descomponerse en dos sub-sistemas en serie: Un sistema *no recursivo* y un *sistema recursivo*:

$$v(n) = \sum_{k=0}^{M} b_k x(n-k) \qquad y(n) = -\sum_{k=1}^{N} a_k y(n-k) + v(n)$$

▶ Requerimientos : M+N retardadores y N+M+1 multiplicaciones.

Forma directa II o Canónica

Se obtiene invirtiendo el orden de los dos sub-sistemas de la forma I.

$$w(n) = -\sum_{k=1}^{N} a_k w(n-k) + x(n) \qquad y(n) = \sum_{k=0}^{M} b_k w(n-k)$$

▶ Requerimientos: max{N,M} ratardadores y N+M+1 multiplicaciones.

Implementación de Sistemas Discretos

Forma Directa I

Forma Directa II

Ejemplo:

Dbtenga la realización en forma canónica I y II del sistema de primer orden:

$$y(n) = -a_1 y(n-1) + b_0 x(n) + b_1 x(n-1)$$

Solución:

Forma canónica I

$$v(n) = b_0 x(n) + b_1 x(n-1)$$
 no recursivo

$$y(n) = -a_1 y(n-1) + v(n)$$
 recursivo

Forma canónica II

Se intercambia el orden de los sistemas recursivos y no recursivos:

$$\begin{cases} w(n) = -a_1 w(n-1) + x(n) \\ y(n) = b_0 w(n) + b_1 w(n-1) \end{cases}$$

Implementación de Sistemas FIR Recursivos y No Recursivos

Introducción

- Los sistemas FIR siempre pueden implementarse como sistemas no recursivos.
- Manipulando la ecuación de diferencia de un sistema FIR siempre es posible llegar a una implementación recursiva.

♦ Ejemplo

Dobtener la implementación no-recursiva y recursiva del siguiente sistema FIR,

$$y(n) = \frac{1}{M+1} \sum_{k=0}^{M} x(n-k)$$

 \blacktriangleright Evidentemente, h(n) está dado por

$$h(n) = \frac{1}{M+1} \qquad 0 \le n \le M$$

Implementación no recursiva:

Implementación recursiva:

Para obtener la forma recursiva, debe manipularse la ecuación del sistema, con lo que se obtiene:

$$y(n) = \frac{1}{M+1} \sum_{k=0}^{M} x(n-1-k) + \frac{1}{M+1} [x(n) - x(n-1-M)]$$
$$= y(n-1) + \frac{1}{M+1} [x(n) - x(n-1-M)]$$

