

Project Initialization and Planning Phase

Date	4 June 2024	
Team ID	SWTID1720109344	
Project Title	Rice Type Classification Using CNN	
Maximum Marks	3 Marks	

Project Proposal (Proposed Solution)

This project proposal outlines a solution to address a specific problem. With a clear objective, defined scope, and a concise problem statement, the proposed solution details the approach, key features, and resource requirements, including hardware, software, and personnel.

Project Overview			
Objective	 Develop a Convolutional Neural Network (CNN) based model to classify 5 different rice varieties. Evaluate the model's performance using relevant metrics to assess its accuracy and reliability 		
Scope	 Developing a CNN model specifically tailored for rice grain classification. Collecting and preprocessing a high-quality dataset of rice grain images. Implementing and testing the model to ensure high accuracy and reliability. Integrating the model into a user-friendly application for use by rice mills and quality control managers. 		
Problem Statement			
Description	Current rice classification methods are often manual, time-consuming, and prone to errors, which leads to inefficiencies and inconsistencies in quality. An autonomous solution is required to classify the rice grains. It should be reliable, accurate and efficient.		
Impact	 Solving the problem of rice classification has a range of benefits: - Improve the accuracy and efficiency of rice classification. Reduce labor costs and human error in the classification process. 		

Enhance the overall quality control in rice production, leading to higher market standards and customer satisfaction. Proposed Solution				
Approach	 Data Collection: Gathering a large dataset of rice grain images. This is taken from the Kaggle dataset mentioned below Data Preprocessing: Cleaning, augmenting, denoising, labelling the dataset. Model Development: Designing and training a CNN model for rice classification. Model Optimization and Fine Tuning: Fine tuning the model to improve it's performance. Model Evaluation: Testing the model for accuracy and reliability. Application Integration: Developing a user-friendly interface using Flask for deploying the model in real-world scenarios. 			
Key Features	 High Accuracy: Leveraging CNN's capabilities to ensure precise classification. Efficiency: Automating the classification process to save time and reduce manual labor. User-Friendly Interface: Providing an easy-to-use application for non-technical users. 			

Resource Requirements

Resource Type	Description	Specification/Allocation		
Hardware				
Computing Resources	CPU/GPU specifications, number of cores	T4 GPU		
Memory	RAM specifications	8 GB		
Storage	Disk space for data, models, and logs	1 TB SSD		

Software				
Frameworks	Python frameworks	Flask		
Libraries	Additional libraries	tensorflow, numpy, pandas, keras, scikit-learn, cv2, matplotlib		
Development Environment	IDE, version control	Jupyter Notebook		
Data				
Data	Source, size, format	Kaggle dataset. This dataset contains 75,000 images of 5 types of rice – Arborio, Basmati, Ipsala, Jasmine, Karacadag 230MB		