

Module: Merise, UML et SGBD

CM3: SGBD et SQL

Systèmes de Gestion de Base de Données et Langage SQL

Base de données

- Une base de données est une collection organisée de données structurées qui sont stockées et accessibles électroniquement.
- Elle permet de stocker, gérer et manipuler des informations de manière efficace.
- Les bases de données facilitent la recherche, la récupération et la mise à jour des données, ce qui en fait un outil essentiel pour de nombreux domaines, tels que l'informatique, les affaires et les sciences.
- Une base de données est constituée de tables, qui sont des structures de données organisées en lignes et colonnes.

Langage SQL

- SQL (Structured Query Language, en français langage de requête structurée).
- C'est un langage informatique normalisé servant à gérer et exploiter des bases de données relationnelles.
- Il permet de définir, rechercher, ajouter, modifier ou supprimer des données dans les bases de données relationnelles.
- Il est créé en 1974, normalisé depuis 1986, le langage est reconnu par la grande majorité des systèmes de gestion de bases de données relationnelles (abrégé SGBDR).

Langage SQL

- Les instructions SQL couvrent quatres domaines :
 - Langage de définition de données,
 - Langage de manipulation de données,
 - Langage de contrôle de données,
 - Langage de contrôle des transactions.

Langage de définition de données

- C'est le langage de manipulation des métadonnées : description de la structure, l'organisation et les caractéristiques de la base de données.
- Utilise les mots-clés CREATE, ALTER, DROP, RENAME, COMMENT ou TRUNCATE qui correspondent aux opérations d'ajouter, modifier, supprimer, renommer, commenter ou vider une métadonnée.
- Ces mots clés sont immédiatement suivis du type de métadonnée à manipuler - TABLE, VIEW, INDEX...

! Dans ce cours, on se focalise sur la définition des TABLES

Langage de manipulation de données

- C'est le langage de manipulation du contenu de la base de données
- Utilise les mots clés SELECT, UPDATE, INSERT ou DELETE qui correspondent respectivement aux opérations de recherche de contenu, modification, ajout et suppression.
- Divers autres mots-clés tels que FROM, JOIN et GROUP BY permettent d'indiquer les opérations d'algèbre relationnelle à effectuer en vue d'obtenir le contenu à manipuler.

SELECT nom, service FROM employe WHERE statut = 'stagiaire' ORDER BY nom;

Langage de contrôle des transactions et des données

- C'est le langage de programmation et un sous-ensemble de SQL pour contrôler l'accès aux données d'une base de données, et celui utilisé pour le contrôle transactionnel dans une base de données, c'est-àdire les caractéristiques des transactions, la validation et l'annulation des modifications.
- Exemples des mots-clés LCD et LCT:
 - COMMIT, SAVEPOINT, ROLLBACK, SET TRANSACTION...
 - Les mots clés GRANT et REVOKE permettent d'autoriser des opérations à certaines personnes, d'ajouter ou de supprimer des autorisations.
 - Les mots clés COMMIT et ROLLBACK permettent de confirmer ou annuler l'exécution de transactions.

Langage de contrôle de données

- On distingue typiquement six types de commandes SQL de contrôle de données :
 - GRANT: autorisation d'un utilisateur à effectuer une action;
 - DENY: interdiction à un utilisateur d'effectuer une action;
 - REVOKE : annulation d'une commande de contrôle de données précédente ;
 - COMMIT : validation d'une transaction en cours ;
 - ROLLBACK: annulation d'une transaction en cours;
 - LOCK : verrouillage sur une structure de données.

Les transactions ACID

- Les transactions ACID (Atomicité, Cohérence, Isolation, Durabilité) sont des propriétés fondamentales des bases de données qui garantissent l'intégrité et la fiabilité des opérations.
- Atomicité signifie que toutes les modifications d'une transaction sont effectuées avec succès ou pas du tout.
- Cohérence assure que chaque transaction maintient la cohérence globale de la base de données.
- Isolation garantit que chaque transaction est exécutée de manière isolée, sans interférence avec d'autres transactions.
- Durabilité garantit que les modifications effectuées lors d'une transaction sont permanentes et ne peuvent pas être perdues, même en cas de panne du système.

Principe des échanges avec le serveur de bases de données

- L'internaute (1) se connecte (via 2, 3, 4 sur la page WEB hébergée (5).
- Les instructions php contenues dans la page WEB nécessite des demandes de données contenues dans le serveur de base de données (6).
- La demande et la réception des données s'effectuent à l'aide d'une requête SQL. Les donnéees récupérées sont utilisées pour mettre à jour la page WEB qui est envoyée à l'utilisateur.

Systèmes de Gestion de Base de Données

- Un SGBD (Système de Gestion de Base de Données) est un logiciel qui permet de gérer et d'organiser de manière efficace et structurée les données d'une base de données. Il fournit des fonctionnalités pour créer, stocker, modifier et récupérer les informations stockées dans la base de données.
- Un SGBD permet de garantir l'intégrité et la cohérence des données, d'assurer la sécurité des données, ainsi que d'optimiser les performances des opérations de manipulation de données. Il facilite également l'interaction avec la base de données en fournissant des langages de requête et des interfaces pour interagir avec les données.

Systèmes de Gestion de Base de Données

- Certains SGBDR (Systèmes de Gestion de Base de Données Relationnelles) populaires :
 - Oracle Database
 - Microsoft SQL Server
 - MySQL
 - PostgreSQL
 - IBM Db2
 - SQLite
 - MongoDB (SGBD orienté document)
 - MariaDB
 - SAP HANA
 - Amazon RDS (service de base de données managé)
- Ces SGBDR offrent une variété de fonctionnalités, de performances et de compatibilité avec différents systèmes d'exploitation, et sont utilisés dans diverses applications et environnements.

MySQL

- MySQL est un système de gestion de base de données relationnelle (SGBDR), mais il est développé par Oracle Corporation.
- MySQL est open source et largement utilisé, offrant une solution fiable et performante pour le stockage et la gestion des données.
- Il prend également en charge le langage SQL pour l'interaction avec la base de données, ainsi que des fonctionnalités telles que la réplication, la sécurité et la gestion des transactions.
- MySQL est souvent utilisé dans les applications web et est connu pour sa rapidité et sa flexibilité.

SQL Server

- SQL Server est un système de gestion de base de données relationnelle (SGBDR) développé par Microsoft.
- Il offre une plateforme complète pour stocker, gérer et manipuler de grandes quantités de données.
- SQL Server prend en charge le langage de requête SQL (Structured Query Language) pour interagir avec la base de données, ainsi que des fonctionnalités avancées telles que la sécurité, la réplication, la haute disponibilité et l'analyse de données.

Oracle Database

- Oracle Database est un système de gestion de base de données relationnelle développé par Oracle Corporation.
- Il est largement utilisé dans les entreprises et offre une gamme complète de fonctionnalités pour la gestion et l'analyse de grandes quantités de données.
- Oracle Database prend en charge le langage SQL ainsi que des fonctionnalités avancées telles que la haute disponibilité, la sécurité des données, la réplication et l'optimisation des performances.

PostgreSQL

- PostgreSQL est un système de gestion de base de données relationnelle open source.
- Il est reconnu pour sa fiabilité, sa stabilité et sa conformité aux normes SQL.
 PostgreSQL prend en charge les fonctionnalités avancées telles que les vues, les déclencheurs, les procédures stockées et les transactions ACID.
- Il offre également des extensions et une grande flexibilité pour personnaliser et étendre ses fonctionnalités de base.

MariaDB

- MariaDB est un système de gestion de base de données relationnelle open source, qui est une branche et une alternative compatible avec MySQL.
- MariaDB est conçu pour être une solution performante, évolutive et fiable.
- Il offre une compatibilité avec MySQL et prend en charge les fonctionnalités avancées telles que les transactions ACID, les vues, les déclencheurs et les procédures stockées.
- MariaDB est souvent utilisé dans les applications web et est apprécié pour sa facilité d'utilisation et sa compatibilité.

SQLite

- SQLite est un système de gestion de base de données relationnelle open source et sans serveur.
- Contrairement aux autres SGBDR, SQLite stocke la base de données sous forme d'un fichier unique sur le système de fichiers plutôt que d'un serveur distinct.
- Il est léger, rapide et facile à intégrer dans des applications, en particulier pour les applications mobiles et les systèmes embarqués.
- SQLite prend en charge les fonctionnalités de base SQL et est largement utilisé pour les petites et moyennes bases de données.

Révision

Base de données

- Une base de données est une collection organisée de données structurées qui sont stockées et accessibles électroniquement.
- Elle permet de stocker, gérer et manipuler des informations de manière efficace.
- Les bases de données facilitent la recherche, la récupération et la mise à jour des données, ce qui en fait un outil essentiel pour de nombreux domaines, tels que l'informatique, les affaires et les sciences.
- Une base de données est constituée de tables, qui sont des structures de données organisées en lignes et colonnes.

Table

- Une table est composée de lignes et de colonnes comme sur un tableau Excel :
 - Chaque ligne correspond à un enregistrement.
 - Un enregistrement est composé de plusieurs données, réparties dans plusieurs colonnes.
 - Chaque donnée correspond à un champ. Un enregistrement est donc composé de plusieurs champs.
 - Chaque colonne correspond à un attribut qui permet de classifier un champ.

Table

- Exemples:
 - Considérons une base de données d'une boutique en ligne. Celle-ci peut être composée de deux types de données :
 - Les données sur les différentes commandes du magasin : Nom du produit et prix
 - Les données sur les clients du magasin : Prénom, nom, adresse.

Table "Commande"

Produit	Prix
PC 16'	599
Souris	29
Lampe de bureau	30
Clavier	55

Table "Client"

Prenom	Nom	Adresse	
Jean	Bonneau	50 av St Marc	
Ambre	Cerna	13 Grande Rue	

La clé primaire

- La clé primaire d'une table est un attribut ou un ensemble d'attributs qui identifie de manière unique chaque enregistrement dans une table d'une base de données.
- Elle garantit l'unicité des données et permet un accès rapide et efficace aux enregistrements.
- La clé primaire est essentielle pour maintenir l'intégrité et la cohérence des données dans une base de données relationnelle.

Pourquoi utiliser une clé étrangère?

Table "Commande"

Produit	Prix
PC 16'	599
Souris	29
Lampe de bureau	30
Clavier	55

Table "Client"

Prenom	Nom	Adresse
Jean	Bonneau	50 av St Marc
Ambre	Cerna	13 Grande Rue

- Dans cet exemple, il faut trouver un moyen d'associer chaque commande à un client.
- Il faut mettre en relation les deux tables pour associer les clients Jean Bonneau et Ambre Cerna aux différentes commandes de la boutique.
- C'est ici que la clé étrangère entre en jeu!

La clé étrangère

- La clé étrangère met en relation deux tables au sein d'une BDD relationnelle.
- Elle permet d'assurer l'intégrité référentielle des données. Autrement dit, seules les valeurs devant apparaître dans la base de données sont permises.
- · La clé étrangère fait référence à la clé primaire d'une autre table.

La clé étrangère

- Exemple:
 - Reprenons l'exemple de la boutique en ligne.
 - Voici comment mettre en relation la table "Commande" avec la table "Client" :

Web/tech

Source: www.data-bird.co/blog/cle-etrangere

La clé étrangère

- Nous avons ajouté les clés primaires de chaque table et une clé étrangère dans la table « Commande »
- Dans la table « Commande », la clé étrangère est l'attribut « Id Client ». En effet, celle-ci référence la clé primaire « Id Client » de la table « Client ».

ld client	Prenom	Nom	Adresse
1	Jean	Bonneau	50 av St Marc
2	Ambre	Cerna	13 Grande Rue

Clé primaire

Table "Client"

- Maintenant que la colonne «Id Client» se trouve dans les deux tables, il est facile de retrouver les commandes effectuées par Ambre Cerna. Il nous suffit de ne garder que les commandes dont l'identifiant est 2. Idem pour Jean Bonneau, son identifiant est 1.
- La clé étrangère « Id client » met donc en relation la table « Commande » et la table « Client ».

Webitech nextgroup

Clé étrangère et intégrité référentielle de la BDD

- La clé étrangère est une contrainte qui s'assure du respect de l'intégrité référentielle de la base de données. → Concrètement, une donnée qui compose la clé étrangère d'une table A doit faire référence à une donnée existante dans la clé primaire d'une table B.
- L'intégrité référentielle est un concept clé dans les bases de données relationnelles. Il s'agit de la cohérence des relations entre les tables d'une base de données. L'intégrité référentielle est généralement définie à l'aide de contraintes qui garantissent que les relations entre les clés primaires et étrangères sont maintenues de manière correcte.

Clé étrangère et intégrité référentielle de la BDD

- Plus précisément, l'intégrité référentielle garantit que toutes les valeurs d'une clé étrangère (colonne référençant une autre table) existent dans la table référencée (table avec la clé primaire correspondante). Cela signifie qu'il ne peut y avoir aucune valeur dans une colonne de clé étrangère qui n'a pas de correspondance dans la table référencée.
- En utilisant des contraintes d'intégrité référentielle, telles que les clés étrangères et les actions de mise à jour ou de suppression en cascade, la base de données s'assure que les relations entre les tables restent cohérentes et maintient l'intégrité des données. Ainsi, l'intégrité référentielle garantit que les données sont correctement liées entre elles, évitant ainsi les incohérences et les données orphelines dans la base de données.

Source: www.data-bird.co/blog/cle-etrangere

Clé étrangère et intégrité référentielle de la BDD

• Exemples:

- Dans la boutique en ligne, la contrainte est qu'une commande doit nécessairement être associée à un « Id Client» qui est déjà référencé dans la table « Client ». Sinon, la clé étrangère pointe vers du vide et la mise en relation est impossible!
- Pour faire cela, nous avons défini une clé étrangère dans la table « Commande » : « Id Client». Ainsi, la table « Commande » n'accepte que des « Id Client» qui existe dans la table « Client ».
- De cette manière, on s'assure que la table « Commande » contient uniquement des informations sur des clients existants dans la table « Client ».
- En définissant une clé étrangère, nous avons donc respecté l'intégrité référentielle dans la base de données de la boutique en ligne!

Clé étrangère

ld commande	Produit	Prix	ld client

Clé primaire

Sarah Malaeb

Source: www.data-bird.co/blog/cle-etrangere

Limitation et contraintes de la clé étrangère

- La clé étrangère doit suivre une série de contraintes :
 - La clé étrangère ne peut faire référence qu'à une colonne (ou des colonnes) au sein de la même base de données, sur le même serveur.
 - La colonne de la clé étrangère et celle qu'elle référence doivent être de même type (INT, VARCHAR etc...).
 - Une clé étrangère ne peut pas être appliquée dans des tables temporaires.
 - Fais donc bien attention à respecter ces contraintes quand tu manipules une clé étrangère!

Exploitation de la clé étrangère avec une jointure

- Comment exploiter cet outil de référencement grâce à une technique très connue : les jointures?
- Une jointure SQL permet de fusionner tout ou partie de plusieurs tables afin d'extraire les informations que tu souhaites analyser. Pour y arriver, il faut donc utiliser la ou les clés étrangères à ta disposition.

Exploitation de la clé étrangère avec une jointure

• Exemple:

- Sur cette base de données on peut effectuer des analyses ciblées pour mieux connaître notre clientèle.
- Par exemple, on veut connaître la liste de toutes les commandes effectuées par Jean Bonneau avec ses informations de livraison.
- Pour cela on va réaliser une jointure sur les trois tables. Cette jointure va utiliser les clés étrangères « Livraison ID » et « Id Client » qui mettent en relation les tables.

	Clé primaire	-	Table "C	commande" Clé ét	rangère		
	Id commande	Produit	Prix	ld client	Livrais	on ID	
	100	PC 16'	599	1	200		
	101	Souris	29	2	201		
	102	Lampe de bureau	30	2	202		
	103	Clavier	55	2	203		
	104	Bureau	300	3	204		
	105	Chaise Gar	ming 159	3	205		
	106	PC Bureau	899	1	206		
CI	á primairo	PC Bureau	899	Clé Prima	aire	,	
CI d client	á primairo		Adresse	Clé Prima	aire	r	
<u>*</u>	é primaire Table	"Client"		Clé Prima Livraison II	aire		Table "Livraison" Numéro de colis 22223958
<u>*</u>	é primaire Table	"Client"	Adresse	Clé Prima Livraison II	aire Livreu		Numéro de colis
<u></u>	é primaire Table Prenom Jean	"Client" Nom Bonneau	Adresse 50 av St Marc	Clé Prima Livraison II 200 201 202	Colissi DHL DHL	mo	Numéro de colis 22223958 44490009 22009877
<u></u>	é primaire Table	"Client"	Adresse 50 av St Marc 13 Grand	Clé Prima Livraison II 200 201 202 203	Colissi DHL DHL Chrono	mo	Numéro de colis 22223958 4449009 22009877 33466771
d client	é primaire Table Prenom Jean Ambre	"Client" Nom Bonneau Cerna	Adresse 50 av St Marc 13 Grand Rue	Clé Prima Livraison II 200 201 202 203 204	Colissi DHL DHL Chrono FedEx	mo	Numéro de colis 22223958 44490009 22009877 33466771 4499008
<u></u>	é primaire Table Prenom Jean	"Client" Nom Bonneau	Adresse 50 av St Marc 13 Grand	Clé Prima Livraison II 200 201 202 203	Colissi DHL DHL Chrono	ppost	Numéro de colis 22223958 44490009 22009877 33466771

Id commande	Produit	Prix	Livreur	Numéro de colis
100	PC 16'	599	Colissimo	22223958
106	PC Bureau	899	Colissimo	112440

Grâce à la **clé étrangère**, nous avons réussi à associer plusieurs **tables** et à filtrer les données pour n'avoir que les commandes associées à un client!

Sarah Malaeb

Source: www.data-bird.co/blog/cle-etrangere

Types de données

- Les principaux types de données en SQL sont :
 - CHARACTER (ou CHAR) : chaine de charactères de longueur fixe.
 - VARCHAR (ou CHARACTER VARYING) chaine de charactères de longueur maximale fixée.
 - TEXT : suite longue de caractères (sans limite de taille).
 - BOOLEAN (ou LOGICAL) : vrai/faux
 - DATE : date du calendrier grégorien.
 - NUMERIC, INTEGER (ou INT), DECIMAL, FLOAT, REAL : des nombres réels avec des tailles et précisions variables.

!! Il est important de noter que les caractéristiques exactes de ces types de données peuvent varier selon le système de gestion de base de données (SGBD) utilisé, donc il est préférable de consulter la documentation spécifique du SGBD pour des détails précis.

Types de données

- Les principaux types de données SQL numériques:
 - **NUMERIC**: Utilisé pour stocker des nombres décimaux avec une précision fixe. La précision totale et la scale (nombre de chiffres après la virgule) doivent être spécifiées.
 - **INTEGER** (ou **INT**) : Utilisé pour stocker des nombres entiers sans décimales, avec une taille de stockage fixe.
 - **DECIMAL** : Un autre nom pour le type de données NUMERIC. Utilisé pour représenter des nombres décimaux avec une précision fixe, en spécifiant à la fois la précision totale et la scale.
 - **FLOAT**: Un type de données à virgule flottante qui permet de stocker des nombres réels avec une précision variable. Il peut stocker une plus large gamme de valeurs que le type DECIMAL, mais il peut également être moins précis.
 - **REAL**: Un autre nom pour le type de données FLOAT. Utilisé pour stocker des nombres réels avec une précision variable, généralement de 32 bits.

Opérateurs SQL

D'opérateurs logiques

- AND
- OR
- NOT

De comparateurs de chaîne :

- IN
- BETWEEN
- LIKE

D'opérateurs arithmétiques :

- +
- •
- 3
- /
- %
- . .
- |
- -

Et de comparateurs arithmétiques :

- =
- !=
- . >
- . <
- >=
- ~=
- . !>
- !<

Webitech

L'instruction SELECT

Projection

studno	name	hons	tutor	year
s1	jones	ca	bush	2
s2	brown	cis	kahn	2
s3	smith	cs	goble	2
s4	bloggs	ca	goble	1
s5	jones	CS	zobel	1
s6	peters	ca	kahn	3

studno	name	hons	tutor	year
s1	jones	ca	bush	2
s2	brown	cis	kahn	2
s3	smith	cs	goble	2
s4	bloggs	ca	goble	1
s5	jones	cs	zobel	1
s6	peters	ca	kahn	3

select *
from student;

Selection

STAFF	
lecturer	roomno
kahn	IT206
bush	2.26
goble	2.82
zobel	2.34
watson	IT212
woods	IT204
capon	A14
lindsey	2.10
barringer	2.125

tutor bush kahn goble goble zobel kahn

select tutor
from student;

La clause WHERE

studno	name	hons	tutor	year
s1	jones	ca	bush	2
s2	brown	cis	kahn	2
s3	smith	cs	goble	2
s5	jones	CS	zobel	1

lecturer	roomno		
kahn	IT206		
bush	2.26		
goble	2.82		
zobel	2.34		
watson	IT212		
woods	IT204		
capon	A14		
lindsey	2.10		
barringer	2.125		

studno	name	hons	tutor	year	lecturer	roomno
s1	jones	ca	bush	2	bush	2.26
s2	brown	cis	kahn	2	kahn	IT206
s3	smith	cs	goble	2	goble	2.82
s5	jones	cs	zobel	1	zobel	2.34

select * from student, staff
where tutor = lecturer;

tutor

bush zobel

select tutor from student
 where name = 'jones';

Les opérateurs AND & OR

CustomerID	CustomerName	ContactName	Address	City	PostalCode	Country
1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berlin	12209	Germany
2	Ana Trujillo Emparedados y helados	Ana Trujillo	Avda. de la Constitución 2222	México D.F.	05021	Mexico
3	Antonio Moreno Taquería	Antonio Moreno	Mataderos 2312	México D.F.	05023	Mexico
4	Around the Horn	Thomas Hardy	120 Hanover Sq.	London	WA1 1DP	UK
5	Berglunds snabbköp	Christina Berglund	Berguvsvägen 8	Luleå	S-958 22	Sweden
25	Frankenversand	Peter Franken	Berliner Platz 43	München	80805	Germany

SELECT * FROM Customers
WHERE Country='Germany'
AND City='Berlin';

CustomerII	O CustomerName	ContactName	Address	City	PostalCode	Country
1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berlin	12209	Germany

SELECT * FROM Customers WHERE City='Berlin' OR City='München';

CustomerID	CustomerName	ContactName	Address	City	PostalCode	Country
1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berlin	12209	Germany
25	Frankenversand	Peter Franken	Berliner Platz 43	München	80805	Germany

La clause ORDER BY

${\tt SELECT*FROM}\ \textit{Table}\ {\tt ORDER}\ {\tt BY}\ \textit{NomChamps}\ [{\tt ASC\mid DESC}];$

SELECT * FROM Customers
ORDER BY Country;

CustomerID	CustomerName	ContactName	Address	City	PostalCode	Country
1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berlin	12209	Germany
2	Ana Trujillo Emparedados y helados	Ana Trujillo	Avda. de la Constitución 2222	México D.F.	05021	Mexico
3	Antonio Moreno Taquería	Antonio Moreno	Mataderos 2312	México D.F.	05023	Mexico
5	Berglunds snabbköp	Christina Berglund	Berguvsvägen 8	Luleå	S-958 22	Sweden
4	Around the Horn	Thomas Hardy	120 Hanover Sq.	London	WA1 1DP	UK

Les expressions arithmétiques

Opérateurs arithmétiques						
Symbole	Signification	Exemple	Résultat			
):=	Soustraction	10 - 5	5			
+	Addition	12+12	24			
*	Multiplication	4*7	28			
/	Division	125/25	5			
^	Exposant	12^2	144			
%	Pourcentage	25%	0,25			

SELECT last_name, salary, salary + 300 FROM employees;

	LAST_NAME	SALARY	SALARY+300
1	King	24000	24300
2	Kochhar	17000	17300
3	De Haan	17000	17300
4	Hunold	9000	9300
5	Ernst	6000	6300
6	Lorentz	4200	4500
7	Mourgos	5800	6100
8	Rajs	3500	3800
9	Davies	3100	3400
10	Matos	2600	2900

L'opérateur de concatenation

```
2 Employees
SELECT
           last name | | job id AS "Employees"
                                                                           1 AbelSA_REP
           employees;
FROM
                                                                            2 DaviesST_CLERK
                                                                           3 De HaanAD_VP
SELECT
           CONCAT (last name, job id AS "Employees")
                                                                            4 ErnstIT_PROG
           employees;
FROM
                                                                           5 FayMK_REP
                                                                            Employee Details
SELECT last name | | is a | | job_id
                                                                          1 Abel is a SA_REP
         AS "Employee Details"
                                                                          2 Davies is a ST_CLERK
                                                                          3 De Haan is a AD_VP
         employees;
FROM
                                                                          4 Ernst is a IT_PROG
                                                                          5 Fay is a MK_REP
```


L'opérateur BETWEEN

```
SELECT last_name, salary
FROM employees
WHERE salary BETWEEN 2500 AND 3500;
```


L'opérateur IN

```
SELECT employee_id, last_name, salary, manager_id FROM employees
WHERE manager_id IN (100, 101, 201);
```

	EMPLOYEE_I	LAST_NAME	SALARY	MANAGER_ID
1	10	1 Kochhar	17000	100
2	10	2 De Haan	17000	100
3	12	4 Mourgos	5800	100
4	14	9 Zlotkey	10500	100
5	20	1 Hartstein	13000	100
6	20	0 Whalen	4400	101
7	20	5 Higgins	12000	101
8	20	2 Fay	6000	201

L'opérateur LIKE

- Effectuer des recherches de valeurs de chaîne de caractères
- % représente zéro ou plusieurs caractères
- _ représente un seul caractère

```
SELECT last_name
FROM employees
WHERE last_name LIKE '_0%';
```


L'opération Alias

SELECT CustomerName AS Customer FROM Customers;

Customer

Alfreds Futterkiste

Ana Trujillo Emparedados y helados

Antonio Moreno Taquería

Around the Horn

Berglunds snabbköp

SELECT CustomerName, CONCAT(Address,', ',City,', ',PostalCode,', ',Country) AS Address FROM Customers;

CustomerName	Address
Alfreds Futterkiste	Obere Str. 57, Berlin, 12209, Germany
Ana Trujillo Emparedados y helados	Avda. de la Constitución 2222, México D.F., 05021, Mexico
Antonio Moreno Taquería	Mataderos 2312, México D.F., 05023, Mexico
Around the Horn	120 Hanover Sq., London, WA1 1DP, UK
Berglunds snabbköp	Berguvsvägen 8, Luleå, S-958 22, Sweden

La clause DISTINCT

SELECT City FROM Customers;

Berlin

México D.F.

London

Luleå

City

Berlin

México D.F.

London

Luleå

La condition NULL

```
SELECT last_name, manager_id
FROM employees
WHERE manager_id IS NULL;
```


Les opérateurs booléens

Opéra Français		Effet		Résultats	Taille des résultats	Relie
ET	AND	AB =	Croiser	A et B	Diminue	Les concepts
ou	OR	A B =	Associer	A, B, A et B	Augmente	Les synonymes, termes équivalents, traductions
SAUF	NOT	A B =	Exclure	A sans B	Diminue	Les concepts

Exemple d'équation de recherche

(AORa) AND (BORBORb) NOT (C)

NB: Le langage peut être adapté en fonction de la base de données

© Cellule de Développement Pédagogique – Secteur des Sciences de la Santé - UCLouvain

• Exemples:

• Exemples:

Responsable Commercial

Commercial NOT Représentant

Responsable Représentant

Sarah Malaeb

L'opérateur NOT

```
SELECT last_name, job_id

FROM employees

WHERE job_id

NOT IN ('IT_PROG', 'ST_CLERK', 'SA_REP');
```


Interrogation de plusieurs tables

- Jointures
 - INNER JOIN
 - OUTER LEFT JOIN
 - OUTER RIGHT JOIN
 - FULL JOIN
- Opérateurs d'ensemple
 - UNION
 - INTERSECT
 - MINUS
- Sous-requêtes
 - une instruction SELECT à l'intérieur d'une autre instruction SELECT

Dans ce cours on va se focaliser sur INNER JOIN

Dans ce cours on va se focaliser sur INNER JOIN

La clause JOIN

- La clause JOIN en SQL est utilisée pour combiner les lignes de deux tables ou plus, en se basant sur un champ commun entre elles.
- Il existe 4 types d'opérations JOIN :
 - **INNER JOIN** retourne tous les enregistrements lorsqu'il y a au moins une correspondance dans les deux tables.
 - LEFT JOIN retourne tous les enregistrements de la table de gauche (première table) et les valeurs correspondantes des enregistrements de la table de droite (deuxième table).
 - Le résultat est NULL du côté droit lorsqu'il n'y a aucune valeur correspondante pour les enregistrements de la deuxième table.
 - RIGHT JOIN retourne tous les enregistrements de la table de droite (deuxième table) et les valeurs correspondantes des enregistrements de la table de gauche (première table).
 - **FULL JOIN** retourne toutes les lignes lorsqu'il y a une correspondance dans UNE des tables.

Webite

Sarah Malaeb

Dans ce cours on va se focaliser sur INNER JOIN

La clause JOIN

Exemples:

INNER JOIN

• Sélectionnez tous les départements qui ont au moins un employé qui y est affecté.

LEFT JOIN

- Sélectionnez tous les départements, y compris ceux qui n'ont aucun employé qui y est affecté.
- (Départements (gauche) et Employés (droite))

RIGHT JOIN

• Sélectionnez tous les employés, y compris ceux qui ne sont pas affectés à un département.

FULL JOIN

• Sélectionnez tous les départements et employés, même si le département n'a aucun employé qui lui est affecté et si l'employé n'est affecté à aucun département.

Sarah Malaeb

RIGHT JOIN

La clause JOIN

• Exemple:

- on veut connaître la liste de toutes les commandes effectuées par Jean Bonneau avec ses informations de livraison.
- Pour cela on va réaliser une jointure sur les trois tables. Cette jointure va utiliser les clés étrangères « Livraison ID » et « Id Client » qui mettent en relation les tables.

SELECT IdCommande, produit, prix, livreur, numero_de_colis
FROM (Commande INNER JOIN Client ON Commande.IdClient = Client.IdClient)
INNER JOIN Livraison ON Commande.LivraisonId = Livraison.LivraisonId
WHERE IdClient = 1

				"Comma				
	Id commande	Produit	P	Prix	ld client	Livraison ID		
	100	PC 16'	5	599	1	200		
	101	Souris	2	29	2	201		
	102	Lampe de bureau	3	30	2	202		
	103	Clavier	5	55	2	203		
	104	Bureau	3	300	3	204		
	105	Chaise Gar	mina 1	159	3	205		
			9	100				
	106	PC Bureau		399	1	206		arion 100 and
Clé	106	_			Clé Primaire		Table	"Livraison"
	106	PC Bureau		399	1 Clé Primaire	206	Table	
V 8512	primaire Table	PC Bureau "Client" Nom	Adres	899 8se	1 Clé Primaire	206	Table	Numéro de
	106 primaire Table	PC Bureau	Adres	sse St	Clé Primaire	206	Table	Numéro de colis
V 8512	primaire Table Prenom Jean	PC Bureau "Client" Nom Bonneau	Adres 50 av Marc	sse St	Clé Primaire Livraison ID	206 Livreur Colissimo	Table	Numéro de colis 22223958
	primaire Table	PC Bureau "Client" Nom	Adres 50 av Marc 13 Gra	sse St	Clé Primaire Livraison ID 200 201	Livreur Colissimo	Table	Numéro de colis 22223958 44490009
d client	primaire Table Prenom Jean Ambre	PC Bureau "Client" Nom Bonneau Cerna	Adres 50 av Marc 13 Gra Rue	sse St rande	Clé Primaire Livraison ID 200 201 202	Livreur Colissimo DHL DHL	Table	Numéro de colis 22223958 4449009 22009877
Clé d client	primaire Table Prenom Jean	PC Bureau "Client" Nom Bonneau	Adres 50 av Marc 13 Gra	sse St rande	Clé Primaire Livraison ID 200 201 202 203	Livreur Colissimo DHL DHL Chronopost	Table	Numéro de colis 22223958 4449009 22009877 33466771

ld commande	Produit	Prix	Livreur	Numéro de colis
100	PC 16'	599	Colissimo	22223958
106	PC Bureau	899	Colissimo	112440

La clause JOIN

Le type de jointure le plus courant est : SQL INNER JOIN (jointure simple).

OrderID	CustomerID	EmployeeID	OrderDate	ShipperID
10308	2	7	1996-09-18	3
10365	3	3	1996-11-27	2

CustomerID	CustomerName	ContactName	Address	City	PostalCode	Country
1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berlin	12209	Germany
2	Ana Trujillo Emparedados y helados	Ana Trujillo	Avda. de la Constitución 2222	México D.F.	05021	Mexico
3	Antonio Moreno Taquería	Antonio Moreno	Mataderos 2312	México D.F.	05023	Mexico

SELECT Orders.OrderID, Customers.CustomerName, Orders.OrderDate FROM Orders INNER JOIN Customers ON Orders.CustomerID=Customers.CustomerID;

OrderID	CustomerName	OrderDate
10308	Ana Trujillo Emparedados y helados	1996-09-18
10365	Antonio Moreno Taquería	1996-11-27

La clause JOIN

 Table loan (Prêt individuel)

loan-number	branch-name	amount
L-170	Downtown	3000
L-230	Redwood	4000
L-260	Perryridge	1700

• Table borrower (Emprunteur de prêt individuel pour véhicule)

customer-name	loan-number
Jones	L-170
Smith	L-230
Hayes	L-155

INNER JOIN

loan-number	branch-name	amount	customer-name	loan-number
L-170	Downtown	3000	Jones	L-170
L-230	Redwood	4000	Smith	L-230

SELECT * FROM loan

INNER JOIN borrower

ON loan.loan-number = borrower.loan-number;

loan-number	branch-name	amount
L-170	Downtown	3000
L-230	Redwood	4000
L-260	Perrvridge	1700

customer-name	loan-number
Jones	L-170
Smith	L-230
Hayes	L-155

LEFT OUTER JOIN

loan-number	branch-name	amount	customer-name	loan-number
L-170	Downtown	3000	Jones	L-170
L-230	Redwood	4000	Smith	L-230
L-260	Perryridge	1700	null	null

SELECT * FROM loan

LEFT OUTER JOIN borrower

ON loan.loan-number = borrower.loan-number;

loan-number	branch-name	amount
L-170	Downtown	3000
L-230	Redwood	4000
L-260	Perryridge	1700

customer-name	loan-number
Jones	L-170
Smith	L-230
Hayes	L-155

RIGHT OUTER JOIN

loan-number	branch-name	amount	customer-name	loan-number
L-170	Downtown	3000	Jones	L-170
L-230	Redwood	4000	Smith	L-230
L-155	null	null	Hayes	L-155

SELECT * FROM loan

RIGHT OUTER JOIN borrower

ON loan.loan-number = borrower.loan-number;

Mari	JOHN
table1) table2

RIGHT IOIN

loan-number	branch-name	amount
L-170	Downtown	3000
L-230	Redwood	4000
L-260	Perrvridge	1700

customer-name	loan-number
Jones	L-170
Smith	L-230
Hayes	L-155

FULL JOIN

loan-number	branch-name	amount	customer-name	loan-number
L-170	Downtown	3000	Jones	L-170
L-230	Redwood	4000	Smith	L-230
L-260	Perryridge	1700	null	L-260
L-155	null	null	Hayes	L-155

FULL OUTER JOIN

SELECT * FROM loan

FULL OUTER JOIN borrower

ON loan.loan-number = borrower.loan-number;

loan-number	branch-name	amount
L-170	Downtown	3000
L-230	Redwood	4000
L-260	Perryridge	1700

customer-name	loan-number
Jones	L-170
Smith	L-230
Hayes	I -155

