CvxOpt Homework #1

姓名	学号
杨思远	3120210063

2.2 Show that a set is convex if and only if its intersection with any line is convex. Show that a set is affine if and only if its intersection with any line is affine.

First we proof a set is convex iff. its intersection with any line is convex.

- \Rightarrow Proof: Let set C is convex, then if the intersection of a line l and C, $l\cap C$, only contains one point, then it is obvoiusly convex; otherwise, assume $l\cap C$ has at least two points. Then for any two points A,B in $l\cap C$, because the convexity of C, for any θ with $0\leq \theta\leq 1$ we have $\theta A+(1-\theta)B\in C$. Also because point $\theta A+(1-\theta)B$ belongs to l, so point $\theta A+(1-\theta)B\in C$. So the intersection of the set and any line is convex.
- \Leftarrow Proof: Let set C satisfies that for any line $l,l\cap C$ is convex, then if C contains only one point it is obviously convex; otherwise, assume C has at least two points. Then for any two points A,B in C, the intersection of line AB and C, let it be D, is convex, so for any θ with $0 \le \theta \le 1$, we have $\theta A + (1-\theta)B \in D$. Plus we have $D \subseteq C$, so $\theta A + (1-\theta)B \in C$, which indicates the convexity of C.

Then we proof a set is affine iff. its intersection with any line is affine.

- \Rightarrow Proof: Let set C is affine, then if the intersection of a line l and $C, l \cap C$, only contains one point, then it is obvoiusly affine; otherwise, assume $l \cap C$ has at least two points. Then for any two points A, B in $l \cap C$, because the affinity of C, for any $\theta \in \mathbf{R}$ we have $\theta A + (1-\theta)B \in C$. Also because point $\theta A + (1-\theta)B$ belongs to l, so point $\theta A + (1-\theta)B \in l \cap C$. So the intersection of the set and any line is affine.
- \Leftarrow Proof: Let set C satisfies that for any line $l,l\cap C$ is affine, then if C contains only one point it is obviously affine; otherwise, assume C has at least two points. Then for any two points A,B in C, the intersection of line AB and C, let it be D, is affine, so for any $\theta\in\mathbf{R}$ we have $\theta A+(1-\theta)B\in D$. Plus we have $D\subseteq C$, so $\theta A+(1-\theta B)\in C$, which indicates the affinity of C.
 - **2.10** Solution set of a quadratic inequality. Let $C \subseteq \mathbf{R}^n$ be the solution set of a quadratic inequality,

$$C = \{x \in \mathbf{R}^n \mid x^T A x + b^T x + c \le 0\},\$$

with $A \in \mathbf{S}^n$, $b \in \mathbf{R}^n$, and $c \in \mathbf{R}$.

(a) Show that C is convex if $A \succ 0$.

Proof: If C only has one element then it is obviously convex; otherwise assume C has at least two elements. Then for any two elements $x_1, x_2 \in C$ and any θ with $0 \le \theta \le 1$, we proof $\theta x_1 + (1 - \theta)x_2 \in C$.

Because $x_1, x_2 \in C$ we have

$$\begin{cases} x_1^T A x_1 + b^T x_1 + c \le 0 \\ x_2^T A x_2 + b^T x_2 + c \le 0 \end{cases}$$

then we get

$$\theta(x_1^T A x_1 + b^T x_1 + c) + (1 - \theta)(x_2^T A x_2 + b^T x_2 + c) \le 0$$

then

$$\begin{aligned} &\theta(x_1^TAx_1 + b^Tx_1 + c) + (1 - \theta)(x_2^TAx_2 + b^Tx_2 + c) \\ &- ((\theta x_1 + (1 - \theta)x_2)^TA(\theta x_1 + (1 - \theta)x_2) + b^T(\theta x_1 + (1 - \theta)x_2) + c) \\ &= &\theta x_1^TAx_1 + (1 - \theta)x_2^TAx_2 - (\theta x_1 + (1 - \theta)x_2)^TA(\theta x_1 + (1 - \theta)x_2) \\ &= &\theta x_1^TAx_1 + (1 - \theta)x_2^TAx_2 - \theta^2x_1^TAx_1 - (1 - \theta)\theta x_2^TAx_1 - \theta(1 - \theta)x_1^TAx_2 - (1 - \theta)^2x_2^TAx_2 \\ &= &\theta(1 - \theta)(x_1^TAx_1 + x_2^TAx_2 - x_2^TAx_1 - x_1^TAx_2) \\ &= &\theta(1 - \theta)(x_1 - x_2)^TA(x_1 - x_2) \\ > &0 \end{aligned}$$

The last step is because the semidefiniteness of A, so that $(x_1-x_2)^TA(x_1-x_2)\geq 0$.

So we have

$$((\theta x_1 + (1 - \theta)x_2)^T A(\theta x_1 + (1 - \theta)x_2) + b^T (\theta x_1 + (1 - \theta)x_2) + c)$$

 $\leq \theta (x_1^T A x_1 + b^T x_1 + c) + (1 - \theta)(x_2^T A x_2 + b^T x_2 + c)$
 ≤ 0

Which indicates $\theta x_1 + (1-\theta)x_2 \in C$, so C is convex.

- **2.24** Supporting hyperplanes.
 - (a) Express the closed convex set $\{x \in \mathbf{R}^2_+ \mid x_1 x_2 \geq 1\}$ as an intersection of halfspaces.

Let $C = \{x \in \mathbf{R}^2_+ | x_1 x_2 \ge 1\}$, then $\mathbf{bd}C = \{x \in \mathbf{R}^2_+ | x_1 x_2 = 1\}$, the for any point $x = (t, \frac{1}{t})$ in $\mathbf{bd}C$, the supporting hyperplane is

$$\{x \in \mathbf{R}^2 | rac{x_1}{t^2} + x_2 \geq rac{2}{t} \}$$

then C can be expressed as

$$C = igcap_{t>0} \{x \in \mathbf{R}^2 | rac{x_1}{t^2} + x_2 \geq rac{2}{t} \}$$

2.32 Find the dual cone of $\{Ax \mid x \succeq 0\}$, where $A \in \mathbf{R}^{m \times n}$.

The dual cone can be expressed as

$${y|Ay \succeq 0}$$

2.35 Copositive matrices. A matrix $X \in \mathbf{S}^n$ is called copositive if $z^T X z \geq 0$ for all $z \succeq 0$. Verify that the set of copositive matrices is a proper cone. Find its dual cone.

Let the set of all *copositive* matrices be K in \mathbb{S}^n . So K can be expressed as infinite halfspaces defined by

$$z^TXz = \sum_i \sum_j z_i z_j X_{ij} \geq 0,$$

so K is closed convex cone. K has nonempty interior because it includes \mathbf{S}^n_+ . K is pointed because $z^TXz \geq 0$ and $z^T(-X)z \geq 0$ gives $z^TXz = 0$ for all $z \succeq 0$, hence X = 0. Hence K is a proper cone.

The dual cone of K is the set of normal vectors of all halfspaces supporting K. It can be expressed as

$$K = \{zz^T|z\succeq 0\}$$

- **3.6** Functions and epigraphs. When is the epigraph of a function a halfspace? When is the epigraph of a function a convex cone? When is the epigraph of a function a polyhedron?
- a) When is the epigraph of a function a halfspace?

Let the epigraph of $f: \mathbf{R}^n \to \mathbf{R}$ be $E = \{s = (x,t) | f(x) \le t\}$. Because E is a halfspace, so $\exists A = (a,a^*)$ and b, where $a \in \mathbf{R}^n$, $a^* \in \mathbf{R}$, and $b \in \mathbf{R}$, s.t.

$$egin{aligned} E &= \{s|A^T s \leq b\} \ &= \{(x,t)|a^T x + a^* t \leq b\} \ &= \{(x,t)|a^T x - b \leq -a^* t\} \end{aligned}$$

Because E has the form of epigraph, so the coefficient of t must be positive, i.e., $-a^* > 0$.

So
$$f(x) = \dfrac{a^T}{-a^*}x + \dfrac{b}{a^*}$$
 , which is a affine function.

b) When is the epigraph of a function a convex cone?

Let the epigraph of $f: \mathbf{R}^n \to \mathbf{R}$ be $E = \{s = (x,t) | f(x) \le t\}$. By definition for any $x \in \mathbf{R}^n$ and any $\alpha \in \mathbf{R}^+$, $(x,f(x)) \in E$ and $(\alpha x,f(\alpha x)) \in E$. Then because E is a cone, $(\alpha x,\alpha f(x)) \in E$ and $(\frac{1}{\alpha}(\alpha x),\frac{1}{\alpha}f(\alpha x)) \in E$, which indicates

$$\begin{cases} f(\alpha x) \leq \alpha f(x) \\ f(\frac{1}{\alpha}(\alpha x)) \leq \frac{1}{\alpha} f(\alpha x) \end{cases}$$

which is $f(\alpha x) \leq \alpha f(x)$ and $f(\alpha x) \geq \alpha f(x)$. So $f(\alpha x) = \alpha f(x)$. In addition, because the epigraph E of f(x) is convex, f(x) is convex function.

So, f(x) is a convex function which holds the property of positively homogeneous, i.e., for any $x \in \mathbf{R}^n$ and $\alpha \in \mathbf{R}^+$, $f(\alpha x) = \alpha f(x)$.

c) When is the epigraph of a function a polyhedron?

Let the epigraph of $f: \mathbf{R}^n \to \mathbf{R}$ be $E=\{s=(x,t)|f(x)\leq t\}$. Because E is a polyhedron, so $\exists A_j=(a_j,a_j^*)$ and $b_j(j=1,\ldots,m)$, where $a_j\in \mathbf{R}^n$, $a_j^*\in \mathbf{R}$, and $b\in \mathbf{R}$, s.t.

$$egin{aligned} E &= \{s | A_j^T s \leq b_j, j = 1, \ldots, m\} \ &= \{(x,t) | a_j^T x + a_j^* t \leq b_j, j = 1, \ldots, m\} \ &= \{(x,t) | a_j^T x - b_j \leq -a_j^* t, j = 1, \ldots, m\} \end{aligned}$$

Because E has the form of epigraph, so the coefficient of t must be positive, $i.\,e.$, $-a_j^*>0$ for $j=1,\ldots,m$. So

$$E = \{(x,t) | rac{a_j^T}{-a_j^*} x + rac{b_j}{a_j^*} \leq t, j = 1, \ldots, m \} \ = \{(x,t) | \max_{j=1,\ldots,m} \left(rac{a_j^T}{-a_j^*} x + rac{b_j}{a_j^*}
ight) \leq t \}$$

So $f(x) = \max_{j=1,\dots,m} \left(rac{a_j^T}{-a_j^*}x + rac{-b_j}{-a_j^*}
ight)$, which is a piecewise affine function.

- **3.20** Composition with an affine function. Show that the following functions $f: \mathbf{R}^n \to \mathbf{R}$ are convex.
 - (a) f(x) = ||Ax b||, where $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$, and $|| \cdot ||$ is a norm on \mathbf{R}^m .
 - (b) $f(x) = -(\det(A_0 + x_1A_1 + \dots + x_nA_n))^{1/m}$, on $\{x \mid A_0 + x_1A_1 + \dots + x_nA_n > 0\}$, where $A_i \in \mathbf{S}^m$.
 - (c) $f(X) = \operatorname{tr}(A_0 + x_1 A_1 + \dots + x_n A_n)^{-1}$, on $\{x \mid A_0 + x_1 A_1 + \dots + x_n A_n \succ 0\}$, where $A_i \in \mathbf{S}^m$. (Use the fact that $\operatorname{tr}(X^{-1})$ is convex on \mathbf{S}^m_{++} ; see exercise 3.18.)

Using the conclusion of:

- **3.18** Adapt the proof of concavity of the log-determinant function in §3.1.5 to show the following.
 - (a) $f(X) = \mathbf{tr}(X^{-1})$ is convex on $\mathbf{dom} f = \mathbf{S}_{++}^n$.
 - (b) $f(X) = (\det X)^{1/n}$ is concave on $\operatorname{dom} f = \mathbf{S}_{++}^n$.
- a) f(x) is a composition of a norm and an affine function, hence convex;
- b) f(x) is a composition of a convex function in 3.18 b) and an affine transformation, hence convex;
- c) f(X) is a composition of a convex function in 3.18 a) and an affine transformation, hence convex.
 - **3.21** Pointwise maximum and supremum. Show that the following functions $f: \mathbf{R}^n \to \mathbf{R}$ are convex.
 - (a) $f(x) = \max_{i=1,...,k} ||A^{(i)}x b^{(i)}||$, where $A^{(i)} \in \mathbf{R}^{m \times n}$, $b^{(i)} \in \mathbf{R}^m$ and $||\cdot||$ is a norm on \mathbf{R}^m .
 - (b) $f(x) = \sum_{i=1}^{r} |x|_{[i]}$ on \mathbf{R}^n , where |x| denotes the vector with $|x|_i = |x_i|$ (i.e., |x| is the absolute value of x, componentwise), and $|x|_{[i]}$ is the ith largest component of |x|. In other words, $|x|_{[1]}, |x|_{[2]}, \ldots, |x|_{[n]}$ are the absolute values of the components of x, sorted in nonincreasing order.
- a) Let $f(x) = \max_{i=1,...,k} f_i(x)$. By 3.20 a) we get $f_i(x) = \|A^{(i)}x b^{(i)}\|$ is convex. Hence as pointwise maximum of k convex function, f(x) is also convex.
- b) Write f(x) as

$$f(x) = \sum_{i=1}^r |x|^{[i]} = \max_{1 \leq i_1 < i_2 < \dots < i_r \leq n} |x_{i_1}| + |x_{i_2}| + \dots + |x_{i_r}|$$

which is the pointwise maximum of n!/r!(n-r)! convex functions, hence convex.