Cloud Computing
Workflow & Workflow Scientifique
Ordonnancement Des Workflow Scientifiques Sur Cloud
Conception De Notre Approche
Implémentation, Simulation & Discussion
Conclusion

Ordonnancement Des Workflows Scientifiques Sur Le Cloud Avec Optimisation De L'énergie

H.A.CHERIEF A.C.TOUHAMI

Devant les membres de jury Président : GUERID Hachem Encadrant : BENDOUKHA Hayat Examinateur : BELAID Mohamed Said

Invitee : SI LARBI Samia

11 juin 2023

Sommaire

- Cloud Computing
- 2 Workflow & Workflow Scientifique
- 3 Ordonnancement Des Workflow Scientifiques Sur Cloud
- 4 Conception De Notre Approche
- 5 Implémentation, Simulation & Discussion

Définition Du Cloud Computing

Définition

Cloud Computing est un modèle pour permettre un omniprésent, commode, accès à la demande à un parc partagé de ressources informatiques configurables (Réseaux, serveur, stockage, applications et services) qui peuvent être mis rapidement a disposition et libère avec une intervention et interaction minimale du fournisseur de services[6, 3].

- Cloud privé.
- Cloud communautaire.
- Cloud publique
- Cloud hybride.
- Multi-Cloud Computing.

- Cloud privé.
- Cloud communautaire.
- Cloud publique
- Cloud hybride.
- Multi-Cloud Computing.

- Cloud privé.
- Cloud communautaire.
- Cloud publique.
- Cloud hybride.
- Multi-Cloud Computing.

- Cloud privé.
- Cloud communautaire.
- Cloud publique.
- Cloud hybride.
- Multi-Cloud Computing.

- Cloud privé.
- Cloud communautaire.
- Cloud publique.
- Cloud hybride.
- Multi-Cloud Computing.

Modèles De Services

Figure – Les modèles des services Cloud quisted.net

Définition Du Workflow

Définition

Le workflow est la séquence de tâches, d'étapes et de décisions qui doivent être suivies pour mener à bien un processus spécifique. On peut le considérer comme un ensemble d'instructions qui décrit comment un processus doit être effectué, y compris l'ordre dans lequel les tâches doivent être effectuées, qui est responsable de l'exécution de chaque tâche et ce qui doit se passer ensuite en fonction du résultat de chaque tâche[7].

Définition Des Workflow Scientifiques

Définition

Les workflows scientifiques sont des applications gourmandes en données représentant des sources de données distribuées et des calculs complexes dans divers domaines, à savoir l'astronomie, la bio-informatique... Dans les environnements distribués, divers capteurs et processus expérimentaux génèrent un grand volume de données qui doivent être collectées et traitées dans des délais spécifiques[4].

Cycle De Vie Des Workflows Scientifiques

Figure – Cycle de vie des workflow scientifiques[2]

Ordonnancements Des Workflow Scientifiques

- La planification des tâches du workfow scientifique est extrêmement importante.
- Les algorithmes de planification sont fondés sur des politiques appropriées pour déployer le workflow scientifique aux machines virtuelles.
- Étant donné que les nœuds physiques sont hétérogènes et que leur état d'exécution change de façon dynamique au fil du temps, et que les ressources système requises par les utilisateurs et les types de demandes d'utilisateurs sont différentes.

Ordonnancement Des Workflow Scientifiques

Une mauvaise planification peut entraîner :

- une baisse des performances du système
- une longue période de rétroaction des demandes
- une baisse de la satisfaction des utilisateurs

Donc l'objectif est :

- optimiser l'allocation des ressources
- minimiser le temps d'exécution
- minimiser les coûts d'exploitation
- maximiser la satisfaction des utilisateurs

Représentation De Workflow

- Les applications sont définies par des graphes acycliques dirigés (DAG). Un workflow comprend un ensemble de tâches interdépendantes qui sont liées entre elles par des données ou des dépendances fonctionnelles[5].
- Nous considérons le workflow W comme un graphique G =
 (T, D), où T = { T₀, T₁, ..., T_n} indique n tâches et indique
 les dépendances de flux de données entre elles. La dépendance
 (T_i, T_j) signifie que la tâche T_i est un prédécesseur immédiat
 de la tâche T_j et que la tâche T_j est un successeur immédiat
 de la tâche T_i.

Représentation De Workflow

Figure - CyberShake [confluence.pegasus.isi.edu]

Allocation Des Machines Virtuelles

Types de VM

$$\begin{cases} VM_{HEC} & (HEC_1), (HEC_2), (HEC_3), \dots, HEC_k \\ VM_{MEC} & (MEC_1), (MEC_2), (MEC_3), \dots, MEC_k \\ VM_{LEC} & (LEC_1), (LEC_2), (LEC_3), \dots, LEC_k \end{cases}$$

• Groupes des tâches

$$\begin{cases} \textit{HCT} & (\textit{HCT1}), (\textit{HCT2}), (\textit{HCT3}).......\textit{HCTn} \\ \textit{MCT} & (\textit{MCT1}), (\textit{MCT2}), (\textit{MCT3})......\textit{MCTn} \\ \textit{LCT} & (\textit{LCT1}), (\textit{LCT2}), (\textit{LCT3})........LCTn \end{cases}$$

État de l'art l

Algorithme	Année	Paramètres	Système	Mécanisme
Accelerated	2017	Probability of	HMC	DVFS
Search	2011	execution, EC,	111116	21.3
Jearen		ExecT		
Plain GA,	2014	EC	НС	
CA+GA				
PBHGA	2011	Pareto front	HVX	DVFS
NSGA-II,	2013	Pareto front	HC	DVFS
MOCell,				
IBEA				
EAH	2014	EC	HC	

État de l'art II

HCFS	2019	EC, ExecT,	HC	DVFS
		Reliability		
EAMD	2012	EC, ExecT	HC	
MMF-	2010	EC, ExecT	HC	DVFS
DVFS				
EASLA,	2017	EC, ExecT	HC	DVFS
Improved				
EASLA				
QHA	2015	EC, ExecT	HC	DVFS
EADAGS	2010	EC, ExecT	HC	DVFS
eFLS	2021	EC, ExecT	HC	DVFS

État de l'art III

VHEST,	2015	Performance,	HVC	
EASA		ExecT		
EDLS	2005	EC, ExecT	HC	DVFS
LESA	2020	ExecT, EC	HC	DVFS
EED,	2014	EC, ExecT	HC	DVFS
EEND				
RSMECC	2019	SartT, FinishT,	HC	DVFS
		ExecT, EC		
ECS, ECS	2009,	EC, ExecT	HC	DVFS
+ idle	2011			

État de l'art IV

ESPA	1996	EC, ExecT	НС	DVFS,
				DPM
GACSM	2019	EC, ExecT	НС	DVFS
EAD,	2011	EC, ExecT	HC	
PEBD				
WPEP	2021	fault-tolerance,	CC	DVFS
		EC		
RMREC	2020	EC	CC	DVFS
MW-	2018	Reliability, EC	CC	
HBDCS				

État de l'art V

MinD +	2016	EC, satisfiable	CC	DVFS
ED		level of tardiness		
EnReal	2015	EC, Performance	CC	
Method				
AVVMC	2014	EC, Performance	CC	
Adaptive	2016	EC, ExecT	HC	
GA				
Hybrid	2017	EC, ExecT	CC	
Cultural				
and ACO				

État de l'art VI

MPSO-	2017	EC, ExecT	HC	
FGA				
FOA-SA-	2017	Makespan, EC	HC	
LB				
REEWS	2019	Reliability, EC	CC	
HUA	2017	EC	CC	
MHRA	2018	EC, ExecT	CC	DVFS
EARES-D	2014	EC, completing	CC	DVFS
		time, Performance		
EViMA	2022	EC, ExecT, Cost	CC	

Comparaison

Après comparaison de ces approches, nous pouvons conclure que :

- Il existe une variété de formulations de problèmes et de types d'algorithmes correspondants qui s'attaquent au problème de la planification du workflow pour le Cloud :
 - l'apprentissage automatique (apprentissage supervisé)
 - la programmation dynamique
 - fuzzy logic
 - la programmation entière
 - algorithmes aléatoires
 - algorithmes évolutifs
 - programmation par contrainte et autres.

Comparaison

Après comparaison de ces approches, nous pouvons conclure que :

- La plupart des objectifs d'optimisation impliquent des mesures telles que le temps d'exécution/makespan et l'énergie. Un nombre limité de travaux tient compte les performances, la fiabilité et la tolérance aux pannes.
- La plupart des travaux utilisent le DVFS comme mécanisme de contrôle de la puissance/énergie des appareils informatiques, un seul combine le DVFS et le DPM.

Comparaison

Après comparaison de ces approches, nous pouvons conclure que :

- La plupart des objectifs d'optimisation impliquent des mesures telles que le temps d'exécution/makespan et l'énergie. Un nombre limité de travaux tient compte les performances, la fiabilité et la tolérance aux pannes.
- La plupart des travaux utilisent le DVFS comme mécanisme de contrôle de la puissance/énergie des appareils informatiques, un seul combine le DVFS et le DPM.

Notre Approche
Affectation Des Tâches Aux Machines Virtuelles
L'emplacement Et La Consolidation Des Machines Virtuelles
MOCS-OVIC

Objectives

- Notre algorithme considère les métriques suivantes :
 - Consommation de l'énergie
 - Coût
 - Maskespan
- Notre algorithme considère les contraintes suivantes :
 - Les dépendances entre les tâches
 - Délai

Notre Approche
Affectation Des Tâches Aux Machines Virtuelles
L'emplacement Et La Consolidation Des Machines Virtuelles
MOCS-OVIC

Objectives

- Notre algorithme considère les métriques suivantes :
 - Consommation de l'énergie
 - Coût
 - Maskespan
- Notre algorithme considère les contraintes suivantes :
 - Les dépendances entre les tâches
 - Délai

Notre Approche Affectation Des Tâches Aux Machines Virtuelles L'emplacement Et La Consolidation Des Machines Virtuelles

Description

Notre approche consiste à proposer un nouvel algorithme MOCS-OViC (Multi-Objective Cloud Scheduler with Optimized Virtual Machines Consolidation for Scientific Workflows) qui considère deux étapes principales pour la planification :

- affecter des tâches aux machines virtuelles (VM) appropriées. Pour cette étape, nous appliquons l'algorithme EViMA.
- appliquer certaines stratégies de migration de VM au cours de l'étape d'exécution, pour éviter le problème des machines physiques (PMs) sous-chargées ou surchargées qui consomment plus d'énergie.

Notre Approche Affectation Des Tâches Aux Machines Virtuelles L'emplacement Et La Consolidation Des Machines Virtuelles MOCS OVIC

Description

Notre approche consiste à proposer un nouvel algorithme MOCS-OViC (Multi-Objective Cloud Scheduler with Optimized Virtual Machines Consolidation for Scientific Workflows) qui considère deux étapes principales pour la planification :

- affecter des tâches aux machines virtuelles (VM) appropriées. Pour cette étape, nous appliquons l'algorithme EViMA.
- appliquer certaines stratégies de migration de VM au cours de l'étape d'exécution, pour éviter le problème des machines physiques (PMs) sous-chargées ou surchargées qui consomment plus d'énergie.

Implémentation, Simulation & Discussion

Affectation Des Tâches Aux Machines Virtuelles

Algorithme EViMA

```
Algorithm 4.1 EViMA
```

```
Require: Workflow, set of VMs and set of VM types (VM_{HEC}, VM_{MEC}, VM_{LEC})
 1: wt_{ReadyPool} = clustered(wt_1, wt_2, wt_3, ..., wt_n)
2: while wt_{ReadyPool} \neq \phi do
       Compute EFT of each tasks
3.
       Group Tasks \Rightarrow HCT, MCT, LCT
4:
5:
       Group VMs \Rightarrow (VM_{HEC}, VM_{MEC}, VM_{LEC})
6:
       for each wt in wt_{ReaduPool} do
7:
           if wt_i in HCT and wt_i in LCT then
              apply algorithm 2 to execute HCT
8:
g.
              apply algorithm 3 to execute LCT
           else
10:
              if EFT of wt_i = Dl of wt_i then
                  wt_i \mapsto VM_{MEC}
12:
13:
                  Update wt Ready Pool
14:
              else
                  if EFT of wt_i < ST then
15:
16:
                      apply algorithm 5
                  else
                      apply algorithm 4 to save mood the idle VM
18:
                      Update wt_{ReaduPool}
19:
20:
                  end if
              end if
21:
           end if
22:
       end foreach
24: end while
```

L'emplacement Et La Consolidation Des Machines Virtuelles

- Détection des hôtes sous-chargés : boxplot
- Détection des hôtes surchargés : boxplot
- Sélectionner une machine virtuelle : Minimum Energy Cost Migration (MECM).
- Sélectionner un hôte de destination : algorithme glouton

L'emplacement Et La Consolidation Des Machines Virtuelles

- Détection des hôtes sous-chargés : boxplot
- Détection des hôtes surchargés : boxplot
- Sélectionner une machine virtuelle : Minimum Energy Cost Migration (MECM).
- Sélectionner un hôte de destination : algorithme glouton

L'emplacement Et La Consolidation Des Machines Virtuelles

- Détection des hôtes sous-chargés : boxplot
- Détection des hôtes surchargés : boxplot
- Sélectionner une machine virtuelle : Minimum Energy Cost Migration (MECM).
- Sélectionner un hôte de destination : algorithme glouton

Notre Approche Affectation Des Täches Aux Machines Virtuelles L'emplacement Et La Consolidation Des Machines Virtuelles MOCS-OVIC

L'emplacement Et La Consolidation Des Machines Virtuelles

- Détection des hôtes sous-chargés : boxplot
- Détection des hôtes surchargés : boxplot
- Sélectionner une machine virtuelle : Minimum Energy Cost Migration (MECM).
- Sélectionner un hôte de destination : algorithme glouton

MOCS-OVIC

MOCS-OViC

Algorithm 4.6 MOCS-OViC Require: Workflow, set of VMs and set of VM types (VMHEC, VMMEC, VMLEC), PMs

- 1: $wt_{ReadyPool} = clustered(wt_1, wt_2, wt_3, ...wt_n)$
- 2: Apply algorithm EViMA
- Sort PMs based on capacity /availability in descending order
- 4: $VM_{candidateList} = \phi$
- Add all VMs that are in under-loaded PMs to VMcandidateList
- Add all VMs that are in over-loaded PMs to VM_{candidateList}
- 7: j=08: while $VM_{candidateList} \neq \phi$ and j < size(PMs) do
- pick PM_i 9:
- $VM_{selected}$ which results minimum energy is selected 10:
- 11: if requirements $(VM_{selected}) \le available Capacity (PM_i)$ then
- place $VM_{selected}$ on PM_i 12:
- Update VM_{candidateList} 13:
- 14: end if j=j+115:
- 16: end whileUntil no more VM or no more available capacities on PMs
- 17: Migrate all VMs
- 18: foreach pm in PMs do
- if pm is not used then 19:
- put pm on power save mode 20:
- end if 21:
- 22: end foreach

Applications Workflow Évaluation De La Consommation D'énergie Évaluation De Makespan Évaluation Du Coût

Applications Workflow

Figure – Les Workflows utilisés [confluence.pegasus.isi.edu] 🖫 📱 🔊 🥸

Les Workflows De Petite Taille

Figure – La consommation d'énergie dans les workflow de petite taille

Les Workflows De Taille Moyenne

Figure – La consommation d'énergie dans les workflow de taille moyenne

Les Workflows De Grande Taille

Figure – La consommation d'énergie dans les workflow de grande taille

Les Workflows De Très Grande Taille

Figure – La consommation dans les workflows de très grande taille

Évaluation De La Consommation D'énergie

Comparaison

Figure – La comparaison de la consommation de l'énergie

Discussion

Avantage

Notre approche MOCS-OViC consomme moins d'énergie que les algorithmes ERES et EERS à tout moment sauf en 2 cas.

Inconvénient

MOCS-OViC peut économiser plus d'énergie que EViMA lorsque CyberShake et Inspiral sont exécutés pour toutes tailles et pour Epigenomics de très grande taille.

Les Workflows De Petite Taille

Figure – Le Makespan dans les workflow de petite taille

Les Workflows De Taille Moyenne

Figure – Le Makespan dans les workflow de taille moyenne

Les Workflows De Grande Taille

Figure – Le Makespan dans les workflow de grande taille

Les Workflows De Très Grande Taille

Figure – Le Makespan dans les workflows de très grande taille

Évaluation De Makespan

Comparaison

Figure - La comparaison du Makespan

Applications Workflow Évaluation De La Consommation D'énergie Évaluation De Makespan Évaluation Du Coût

Discussion

Avantage

Notre approche produit des plans d'exécution les plus courts pour CyberShake, Epigenomics et Sipht dans presque toutes les tailles parce que ces 3 workflows sont des applications gourmandes en CPU et MOCS-OViC équilibre bien les charges entre les hôtes.

Inconvénient

MOCS-OViC génère les pires plannings lorsque Montage et Inspiral sont exécutés. En effet, Inspiral nécessite beaucoup de mémoire, donc les migrations de VMs prennent plus de temps. Le montage est gourmand en transfert des données, MOCS-OViC ne considère pas le temps de transfert dans la génération des plans d'exécutions.

Les Workflows De Petite Taille

Figure – Le coût de l'exécution des workflow de petite taille

Les Workflows De Taille Moyenne

Figure – Le coût de l'exécution des workflow de taille moyenne

Les Workflows De Grande Taille

Figure – Le coût de l'exécution des workflow de grande taille

Les Workflows De Très Grande Taille

Figure – Le coût de l'exécution des workflows de très grande taille

Comparaison

Figure – La comparaison des coûts de tous les algorithmes

Évaluation Du Coût

Discussion

Avantages

Notre approche produit des solutions moins coûteuses pour CyberShake, Epigenomics et Sipht dans presque toutes les tailles. En effet, notre algorithme génère une meilleure durée ordonnancement, de sorte que l le temps d'utilisation des machines virtuelles est moins.

Inconvénient

MOCS-OViC génère les pire solutions en termes de coût lorsque Montage et Inspiral sont exécutés. En effet, MOCS-OViC est un algorithme non sensible aux données et il génère un grand makespan, de sorte que l'utilisation des machines virtuelles est plus importante.

- Nombreux travaux de recherche étudient le problème de la planification des workflows scientifiques sur le Cloud.
- On a étudié dans ce travail le problème d'optimisation du coût, du makespan et de l'énergie.
- Nous proposons notre approche MOCS-OViC qui :
 - se base sur EViMA pour affecter les tâches aux VMs.
 - utilise certaines politiques de placement et de consolidation des VMs pour optimiser la consommation d'énergie :
 - ① détermine quelles VMs à migrer depuis la source PM et quand.
 - 2 le PM de destination est sélectionné pour placer la VM.

- Nombreux travaux de recherche étudient le problème de la planification des workflows scientifiques sur le Cloud.
- On a étudié dans ce travail le problème d'optimisation du coût, du makespan et de l'énergie.
- Nous proposons notre approche MOCS-OViC qui :
 - se base sur EViMA pour affecter les tâches aux VMs.
 - utilise certaines politiques de placement et de consolidation des VMs pour optimiser la consommation d'énergie :
 - 1 détermine quelles VMs à migrer depuis la source PM et quand.
 - 2 le PM de destination est sélectionné pour placer la VM.

- Nombreux travaux de recherche étudient le problème de la planification des workflows scientifiques sur le Cloud.
- On a étudié dans ce travail le problème d'optimisation du coût, du makespan et de l'énergie.
- Nous proposons notre approche MOCS-OViC qui :
 - se base sur EViMA pour affecter les tâches aux VMs.
 - utilise certaines politiques de placement et de consolidation des VMs pour optimiser la consommation d'énergie :
 - détermine quelles VMs à migrer depuis la source PM et quand.
 - le PM de destination est sélectionné pour placer la VM.

- Nous avons évalué notre algorithme :
 - en exécutant des expériences et en comparant les résultats avec certains algorithmes existants.
 - en utilisant 5 workflows scientifiques de différents tailles.
- Les résultats sont satisfaisants lorsque des workflows intensifs en CPU sont exécutés.
- Le délai d'acquisition et de terminaison d'instance ne sont pas pris en compte.

- Nous avons évalué notre algorithme :
 - en exécutant des expériences et en comparant les résultats avec certains algorithmes existants.
 - en utilisant 5 workflows scientifiques de différents tailles.
- Les résultats sont satisfaisants lorsque des workflows intensifs en CPU sont exécutés.
- Le délai d'acquisition et de terminaison d'instance ne sont pas

- Nous avons évalué notre algorithme :
 - en exécutant des expériences et en comparant les résultats avec certains algorithmes existants.
 - en utilisant 5 workflows scientifiques de différents tailles.
- Les résultats sont satisfaisants lorsque des workflows intensifs en CPU sont exécutés.
- Le délai d'acquisition et de terminaison d'instance ne sont pas pris en compte.

- Nous avons l'intention d'appliquer ce travail dans un environnement Fog Computing :
 - réduire la consommation d'énergie et les coûts opérationnels et l'impact environnemental.
 - réduire du makespan pour améliorer QoS et l'expérience utilisateur des applications Fog.
 - améliorer la fiabilité et la scalabilité et éviter la congestion du réseau.

Références

Katharina Görlach, Mirko Sonntag, Dimka Karastoyanova, Frank Leymann, and Michael Reiter.
Conventional workflow technology for scientific simulation.

Guide to e-Science: Next Generation Scientific Research and Discovery, pages 323–352, 2011.

- Hachem Guerid.
 Introduction au cloud computing, 3 2022.
- Mandeep Kaur and Rajni Aron.
 An energy-efficient load balancing approach for scientific workflows in fog computing.

Wireless Personal Communications 125(4) 2022