<u>Warmup</u>	in F^2, provisionally define:	take	e_1 =	1 e_2	· = -1
a reflection	to be a lin op that sends			ı	ı
	e_1, e_2 mapsto e_1, -e_2 for some basis e_1, e_2	graphing	g shows:	e_1, e_2	2 mapsto e_1, -e_2
		yields	0 1	in the sto	d basis
a shear	to be a lin op that sends		1 0		
	e_1, e_2 mapsto e_1, e_1 + be_2				
	for some basis e_1, e_2	<u>Ex</u>	M = 5/2	2 - 3/2	is a shear matrix
			3/2	2 –1/2	wrt e_1, e_2
e.g.,					
1 0 is a	a shear matrix that is not 1 b	Me_1 =	e_1 and		
c 1	0 1				
		M sends	s e_2 to	-4 =	-3 + -1
	lection matrix that is not diagonal? ear matrix that is not triangular?		_	-4 = -2	- 3 1

Idea have: qualitative defns of geometric ops and examples given by matrices want: matrix-independent defns

<u>Q</u> how to formalize "matrix-independent"?

fix linear map T: V to W

(v_1, ..., v_n) ordered basis of V, (v_1, ..., w_m) ordered basis of W M matrix of T wrt (v_i)_i, (w_j)_j

(e_1, ..., e_n) another ordered basis of V, (f_1, ..., f_m) another ordered basis of W matrix of T wrt (e_i)_i, (f_j)_j? in terms of M?

id_V T id_W
V to V to W to W
e_i v_i w_j f_j

A, B are invertible [since they represent iso's] the matrix of T wrt (e_i)_i, (f_j)_j is B • M • A

possibly confusing:
ith col of A expresses e_i as sum_j A_{k, i} v_k
ith col of B w_i as sum \(\ell B \) \(\ell \), i} f \(\ell \)

[id_V sends e_i to e_i; id_W sends w_j to w_j]

suppose
$$W = V$$
,
 $(w_{j})_{j} = (v_{i})_{i}$,
 $(f_{j})_{j} = (e_{i})_{i}$

here T is a linear op on V,

M is its matrix "from (v_i)_i to (v_i)_i"

A is the matrix of the id map "from e_i to v_i" B is the matrix of the id map "from v_i to e_i" so $A = B^{(-1)}$

Rem general case T: V to W also useful, but the statement is cumbersome – easier to rederive from picture of maps

Ex $V = \{p \text{ in } F[x] \mid p = 0 \text{ or deg } p \le 3\}$ T(p) = dp/dx $(v1, v2, v3, v4) = (1, x, x^2, x^3)$ $(e1, e2, e3, e4) = (1, x, x^2/2, x^3/6)$

[compute B^(-1)] [compute BMB^(-1)]

<u>Df</u>	matrices M, N are conjugate* iff,			
	for some matrix P,			
	P • M • P^(-1) is well-defined,			
	equals N			

* also say "M and N are conjugates of each other"

Rem almost always, we only use this notion in the context where M, N are <u>square</u>

<u>Df</u> a property of M is conjugation-invariant iff it is the same for all conjugates of M

Cor if M is the matrix of a lin op T, then any property of T is a conjugation-invariant property of M

and conversely!

any conjugation-invariant property of M
only depends on T

Ex entries of M are not conj-invariant

what are the conj-invariant functions Mat_2 to F?

for a 2×2 matrix M = P Q

tr(M) = P + S and det(M) = PS - QR are invariant [any others?]

Thm any invariant poly of the coord fns on Mat_2 must be a poly in tr and det

why this is hard:

a

P Q d -b R S -c a

 $aP + bR \ aQ + bS$ d -b $cP + dR \ cQ + dS$ -c a

adP + bdR - acQ - bcS -abP - bbR + aaQ + bbScdP + ddR - ccQ - cdS

...we will give a bettter proof later

-bcP - bdR + acQ + adS

Ex fix an integer k > 0

the property (M^k = 0_n) is conj-invariant because

 $(BMB^{(-1)})^k = BM^kB^{(-1)} = 0_n$

corresponds to having $T \circ ... \circ T = zero$ where T is iterated k times

<u>Ex</u> since nilpotence is conj-invariant, unipotence is conj-invariant:

 $B(I_n + M)B^{-1} = BI_nB^{-1} + BMB^{-1}$ = $I_n + BMB^{-1}$ above, used the left & right distributive properties for matrix multiplication

$$\underline{Ex}$$
 for fixed k > 0,
the property M^k = I_n is conj-invariant

M is called an involution iff M^2 = I_n

Rem reflections are involutions

observe that for any n, conjugacy is an equivalence relation on Mat_n

<u>Df</u> the conjugacy classes of Mat_n are the equivalence classes for conjugacy