Exercises on Markov matrices; Fourier series

Problem 24.1: (6.4 #7. *Introduction to Linear Algebra:* Strang)

- a) Find a symmetric matrix $\begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix}$ that has a negative eigenvalue.
- b) How do you know it must have a negative pivot?
- c) How do you know it can't have two negative eigenvalues?

Problem 24.2: (6.4 #23.) Which of these classes of matrices do *A* and *B* belong to: invertible, orthogonal, projection, permutation, diagonalizable, Markov?

$$A = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right] \quad B = \frac{1}{3} \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right].$$

Which of these factorizations are possible for A and B: LU, QR, $S\Lambda S^{-1}$, or $Q\Lambda Q^T$?

24.1

a) Set
$$b = 2$$
.
 $0 = (1 - \lambda)^2 - 2$
 $\lambda = -1, 3$

b) The number of positive Pivots = number of Positive Positive eigenvalues (pg. 333).

c) same answer as part b.

24.2

	A,	B
invertible		. X .
orthogonal		X
Projection	. X	
permutation		X
diagonalizable		
Lu		
QR		
QAQT		

Both A and B are Markov (forgot to put in the table).

Problem 24.3: (8.3 #11.) Complete A to a Markov matrix and find the steady state eigenvector. When A is a symmetric Markov matrix, why is $\mathbf{x}_1 = (1, ..., 1)$ its steady state?

$$A = \left[\begin{array}{ccc} .7 & .1 & .2 \\ .1 & .6 & .3 \\ -- & -- \end{array} \right].$$

24.3

$$A = \begin{bmatrix} .7 & .1 & .2 \\ .1 & .6 & .3 \\ .2 & .3 & .5 \end{bmatrix}$$

The eigenvector X, with $\lambda=1$ is the steady State.

If A is a symmetric markov matrix, then since the columns add to must also add to l (Symmetry) and the rows of A-I add to D. Then for (1, x) with 1=1, (A-I)x = Ax - x = x - x = 0has the solution $\chi = (1, 1, \dots, 1)'.$