Initialization & Library Loading

```
In[1]:= Quiet[Remove["Global`*"]];
    Quiet[Remove["SpecialRelativity`*"]];
    SetDirectory[NotebookDirectory[]];
    Get["SpecialRelativity`"]
```

Hyperbolic Motion Worldline

In[5]:= SetAttributes[
$$\alpha$$
, Constant];
\$Assumptions = $\alpha > 0 \&\& t > 0 \&\& \lambda > 0 \&\& \tau > 0$;

HyperbolicMotion[α _] := $\tau \mapsto \mathsf{mkFourVector}[1/\alpha * \mathsf{Sinh}[\alpha \tau], 1/\alpha * (\mathsf{Cosh}[\alpha \tau] - 1)]$;

In[8]:= HyperbolicMotion[α][λ]

Out[8]= FourVector $\left[\frac{\mathsf{Sinh}[\alpha \lambda]}{\alpha}, \frac{-1 + \mathsf{Cosh}[\alpha \lambda]}{\alpha}, 0, 0\right]$

Proper Time

The motion as defined is already parametrized by proper time

```
In[9]:= Dtau[HyperbolicMotion[\alpha]][\lambda] // Simplify
```

Out[9]= $Dt[\lambda]$

$$In[10]:=$$
 ProperTime[HyperbolicMotion[α]][λ] // Simplify

Out[10]= λ

In[11]:= ProperTimeToFrameTime[HyperbolicMotion[α]][τ] // Simplify

Out[11]=
$$\left\{\frac{\sinh[\alpha \ \tau]}{\alpha}\right\}$$

In[12]:= FrameTimeToProperTime[HyperbolicMotion[α]][t] // Simplify

Out[12]=
$$\left\{\frac{\operatorname{ArcSinh}[t \alpha]}{\alpha}\right\}$$

Frame Properties

In[13]:= FrameVelocity[HyperbolicMotion[α]][τ]
Out[13]= {Tanh[α τ], 0, 0}

In[14]:= FrameAcceleration[HyperbolicMotion[α]][τ] // Simplify

Out[14]= $\{\alpha \operatorname{Sech}[\alpha \tau]^3, 0, 0\}$

Velocity and Acceleration

In[15]:= FourVelocity[HyperbolicMotion[α]][λ]

Out[15]= FourVector[Cosh[$\alpha \lambda$], Sinh[$\alpha \lambda$], 0, 0]

In[16]:= ProperVelocity[HyperbolicMotion[α]][λ] // Simplify

Out[16]= 1

ln[17]:= FourAcceleration[HyperbolicMotion[α]][λ]

Out[17]= FourVector[α Sinh[α λ], α Cosh[α λ], 0, 0]

In[18]:= ProperAcceleration[HyperbolicMotion[α]][λ] // Simplify

Out[18]= $i \alpha$

Frame Time Parametrization

ln[19]:= FrameTimeHyperbolicMotion[α] := t \mapsto FrameTimeParametrization[HyperbolicMotion[α]][t][[1]]

In[20]:= FrameTimeHyperbolicMotion[α][t]

Out[20]= FourVector
$$\left[t, \frac{-1+\sqrt{1+t^2\alpha^2}}{\alpha}, 0, 0\right]$$

In[21]:= Dtau[FrameTimeHyperbolicMotion[α]][t]

Out[21]=
$$\frac{1}{1+t^2\alpha^2} Dt[t]$$

In[22]:= ProperTime[FrameTimeHyperbolicMotion[α]][t]

Out[22]=
$$\frac{ArcSinh[t \alpha]}{a}$$

α

Time relationship stays the same irrespective of parametrization:

In[23]:= ProperTimeToFrameTime[FrameTimeHyperbolicMotion[α]][τ] // Simplify

Out[23]=
$$\left\{\frac{\sinh[\alpha \ \tau]}{\alpha}\right\}$$

ln[24]:= FrameTimeToProperTime[FrameTimeHyperbolicMotion[α]][t] // Simplify

Out[24]=
$$\left\{\frac{\operatorname{ArcSinh}[t \, \alpha]}{\alpha}\right\}$$

In[25]:= FourVelocity[FrameTimeHyperbolicMotion[lpha]][t] // Simplify

Out[25]= FourVector
$$\left[+ t^2 \alpha^2, t\alpha, 0, 0 \right]$$

In[26]:= FourAcceleration[FrameTimeHyperbolicMotion[α]][t]

Out[26]= FourVector
$$\left[t\alpha^2, \alpha + t^2\alpha^2, 0, 0\right]$$

ln[27]:= ProperAcceleration[FrameTimeHyperbolicMotion[α]][t] // Simplify

Out[27]= $\boldsymbol{i} \alpha$

ln[28]:= ProperTimeParametrization[FrameTimeHyperbolicMotion[α]][τ] // Simplify

Out[28]=
$$\left\{ \text{FourVector} \left[\frac{\sinh[\alpha \ \tau]}{\alpha}, \frac{-1 + \cosh[\alpha \ \tau]}{\alpha}, 0, 0 \right] \right\}$$

Local Frame:

In[29]:= FrameVelocity[FrameTimeHyperbolicMotion[α]][t]

Out[29]=
$$\left\{\frac{t \alpha}{1+t^2 \alpha^2}, 0, 0\right\}$$

In[30]:= FrameAcceleration[FrameTimeHyperbolicMotion[α]][t] // Simplify

Out[30]=
$$\left\{ \frac{\alpha}{(1+t^2 \alpha^2)^{3/2}}, 0, 0 \right\}$$

Hyperbolic Motion As Solution of Equation of Motion with Constant Acceleration

 $In[31]:= Generic1DMotion[x_] := t \mapsto mkFourVector[t, x[t]]$

In[32]:= ProperAcceleration[Generic1DMotion[x]][t] // Simplify

Out[32]=
$$x''[t]^2$$

ln[33]:= sols = DSolve[{ProperAcceleration[Generic1DMotion[x]][t] == $\bar{l} \alpha$, x[0] == 0}, x[t], t]

Out[33]=
$$\left\{\left\{x[t] \rightarrow \begin{array}{c} 1 - c_1^2 - \sqrt{1 + t^2 \alpha^2 - 2 i t \alpha c_1 - c_1^2} \\ x[t] \rightarrow \end{array}\right\},$$

$$\left\{x[t] \rightarrow \begin{array}{c} \alpha \\ -\sqrt{1 - c_1^2 + \sqrt{1 + t^2 \alpha^2 - 2 i t \alpha c_1 - c_1^2}} \\ x[t] \rightarrow \end{array}\right\},$$

$$\left\{x[t] \rightarrow \begin{array}{c} \alpha \\ -\sqrt{1 - c_1^2 - \sqrt{1 + t^2 \alpha^2 + 2 i t \alpha c_1 - c_1^2}} \\ x[t] \rightarrow \end{array}\right\},$$

$$\left\{x[t] \rightarrow \begin{array}{c} \alpha \\ -\sqrt{1 - c_1^2 + \sqrt{1 + t^2 \alpha^2 + 2 i t \alpha c_1 - c_1^2}} \\ x[t] \rightarrow \end{array}\right\},$$

In[34]:= ConstantAccelerationSolutions =

Function[t, (mkFourVector[t, x[t]]) /. # & /@ (sols /. $\{C[1] \rightarrow 0\}$)];

In[35]:= ConstantAccelerationSolutions[t]

Out[35]=
$$\left\{ \text{FourVector} \left[t, \frac{1 - \sqrt{1 + t^2 \alpha^2}}{\sqrt{1 + t^2 \alpha^2}}, 0, 0 \right], \text{ FourVector} \left[t, \frac{-1 + \sqrt{1 + t^2 \alpha^2}}{\sqrt{1 + t^2 \alpha^2}}, 0, 0 \right], \right.$$

$$\left[\text{FourVector} \left[t, \frac{1 - \sqrt{1 + t^2 \alpha^2}}{\sqrt{1 + t^2 \alpha^2}}, 0, 0 \right], \text{ FourVector} \left[t, \frac{-1 + \sqrt{1 + t^2 \alpha^2}}{\sqrt{1 + t^2 \alpha^2}}, 0, 0 \right] \right]$$