Recent Results in Web Security Content Sniffing Attacks, Insider Attacks, and Botnet Detection

Conrad Stansbury and Dennis Wang

Stanford University

December 1, 2014

Outline

State of Web Security

Server Side Content Sniffing Detection

Hybrid Schemes for Insider Attack Detection

Differentiating Botnets from Flash Crowds

Future Prospects and Challenges

Attacks Originating Outside the Network

State of the Art

- ▶ We have seen many techniques exist in ML for intruder detection
- Hybridized schemes allow the construction of strong IDS/IPS with acceptable FP rates
- High stakes game means lots of research (from the perspective of both detection and anti-detection advocates!)

Challenges

- Security is largely a reactionary field
- Intruders just have to evade whatever particular defenses are in use at their target
- In many cases, intruders just have to make their traffic look like typical traffic to get by, and there is a wide diversity of types of traffic and flow patterns

Attacks Originating Inside the Network

State of the Art

- ► Signature based schemes as well as anomaly detection schemes
- ► Today we will see a hybridized scheme that successfully bridges gaps in signature and models and HMMs

Challenges

- More and more attacks are insider attacks
- Difficult to defend because insiders often have increased privileges relative to outside connections—established trust
- Most security techniques defend against inbound traffic
 - High volume of attack from exterior
 - Unwanted disturbances of workflow not well tolerated

Outline

State of Web Security

Server Side Content Sniffing Detection

Hybrid Schemes for Insider Attack Detection

Differentiating Botnets from Flash Crowds

Future Prospects and Challenges

Background

Content Sniffing Attacks

- Type of cross site scripting (XSS) attack
- ▶ User uploads non-HTML file with malicious HTML or JavaScript
- Browser mistakenly renders as HTML and the malicious code is executed
 - Ex: Content-Type header not set or set as text/html

The Problem

Current Detection Method

- Browsers employ content sniffing algorithms
- Detect file content types and renders accordingly

Limitations

- ▶ File contents are only checked for a fixed amount of initial bytes
- No way of assessing malicious impact of payload

Detection Scheme Overview

Detection Steps

- MIME Resolver determines MIME from file extension and magic header
- 2. Policy Checker ensure MIME type is legitimate and whitelisted
- 3. Encoding Normalizer normalize encoding to UTF-8
- Parser-Based Analyzer look for tags indicating JavaScript or HTML
- 5. Mock Download Tester emulate browser and force render as HTML

Detection Scheme Flow

Outline

State of Web Security

Server Side Content Sniffing Detection

Hybrid Schemes for Insider Attack Detection

Differentiating Botnets from Flash Crowds

Future Prospects and Challenges

Inspiration

Signature-Based Detection

- Analyze packets for blacklisted signatures
- Signatures are generally manually compiled

Anomaly-Based Detection

- Analyze packet features for anomalous behavior
- ▶ Implemented with an ML algorithm

Insider vs. Intruder Attack

Insider vs. Intruder Attack

Intruder Attack

- ► Attempts to gain access privileges through security loopholes
- Detected by analyzing inbound traffic to server
- ▶ Hybrid signature and anomaly-based detection schemes are used

Insider Attack

- Already has access privileges, attempts to spread confidential information
- Detected by analyzing outbound traffic from server
- No hybrid schemes are used

Detection Scheme Overview

Two-step Hybrid Approach

Signature-based

- ▶ Used open souce system called Snort
- Created 107 rules to detect predefined signatures

Anomaly-based

- Used Hidden Markov Model (HMM)
- ▶ Learns structure on a normal behavior model
- Generates the probability of observed sequences

Detection Scheme Flow

Outline

State of Web Security

Server Side Content Sniffing Detection

Hybrid Schemes for Insider Attack Detection

Differentiating Botnets from Flash Crowds

Future Prospects and Challenges

The Problem

Detecting Botnets in Light of Similar Signals

- Flagging malicious traffic on the basis of volume is insufficient
- ► Legitimate traffic often spikes
 - World events
 - Link aggregators and "virality"
- ▶ If we can't separate attack traffic from these natural surges we can't stop DDoS-blocking real traffic is a DoS

Anti-detection

- Attackers would like to disguise their traffic by making it look like a flash crowd
- Flash crowd aware systems might accept attack traffic if it is sufficiently similar

Differing Signatures Between Botnets and Flash Crowds

Key Observations

- Studies indicate that attack tools/dispatch scripts are homogeneous inside a single botnet
- Fewer bots than real users
- If an aggregate attack flow is composed of attack flows from many similar bots, it has a similar flow standard deviation to that of one bot
- ▶ We should expect that attack traffic has low standard deviation

Differing Signatures Between Botnets and Flash Crowds

Detection Scheme Overview

What is a flow?

$$r_{X_i,X_j}[k] = \frac{1}{N} \sum_{n=1}^{N} x_i[n] x_j[n+k].$$

$$\rho_{X_i,X_j}[k] = \frac{r_{X_i,X_j}[k]}{\frac{1}{N} \Big[\sum_{n=1}^{N-1} x_i^2[n] \sum_{n=1}^{N-1} x_j^2[n] \Big]^{1/2}}$$

Exploit Flow Correlations

- Flow is network exterior node traffic to a particular destination
- Compute pairwise correlation of discretized flow for different offsets of the flow vectors
- Choose correlation to be maximum among these
- Similarity measure: correlation coefficient

Detection Scheme Overview

Correlation Coeffient Cutoff for IDing Traffic

- Following premise that botnet traffic has higher correlation coefficient, choose some cutoff parameter δ
- ▶ Correlation at nodes i, j flagged as malicious $(I_{X_i, X_j} = 1)$ if

$$\max_{k}(\rho_{X_i,X_j}\left[k\right]) > \delta$$

not malicious $(I_{X_i,X_i}=0)$ otherwise

- lacktriangle Another independent parameter δ' is used to determine whether an attack is ongoing based on the I's
- Being attacked when

$$\frac{\sum_{i \neq j} I_{X_i, X_j}}{\binom{M}{2}} > \delta'$$

Results

- ▶ Real traffic shows low flow correlation coefficient
- Attack traffic generally much higher correlation coefficient

 Caveat: flows coming from different distributions of requests show very low correlation coefficient

Results: '98 World Cup

Results: General Flash Crowds

Results: Attacks with Delays

Results: Aggregate Attack Merging

Method Conclusions

Strong Theoretical Guarantees

- Subject to assumptions of uniform signature, get resilience against delay + aggregation of flows
- ▶ For the time being this seems to be a somewhat realistic scenario

Disadvantages and Anti-detection

- Individual bots can randomly generate attack signatures
- Large botnets don't satisfy uniformity requirements, individual bots can start to more like individual agents

Outline

State of Web Security

Server Side Content Sniffing Detection

Hybrid Schemes for Insider Attack Detection

Differentiating Botnets from Flash Crowds

Future Prospects and Challenges

Where is the Field Headed?

Web Security Shows Promise...

- Attacks are being addressed systematically by new methodologies
- ▶ Progress being made on traditionally hard problems: insider attacks
- Hybrid approaches, which exist in the wild, are being studied carefully
 - Only so much of our computer resources can go to security
 - Understanding these systems helps to maximize coverage subject to real world constraints

...But Initiative Still Lies with Attackers

- Security efforts are reactionary
- Hard to anticipate where attack efforts will lie, and only finite resources to devote to these theoretical topics

Questions?

References

- Shui Yu and Wanlei, J. et al. 2012, Parallel and Distributed Systems IEEE. Discriminating DDoS Attacks from Flash Crowds Using Flow Correlation Coefficient
- Byungha Choi and Kyungsan Cho. 2012. Detection of Insider Attacks to the Web Server
- Barua, A. and Shahriar, H. and Zulkernine, M. 2011, Software Reliability Engineering IEEE. Server Side Detection of Content Sniffing Attacks