PROBLEM STATEMENT

A Real state agent want help to predict the house price for region in the USA.He gave you the dataset to work on and you decided to use the linear regression model.create a model that will help him to estimate of what the house would sell for

DATA COLLECTION

The dataset contains 7 columns and 5000 rows with.CSV extension The data contains the following columns: 'Avg.Area Income'-Avg.The Income of the householder of the city house is located,'Avg.Area House Age'-Avg.Area of Houses in the same city;'Avg-Area number of rooms'-Avg.Number of Rooms for Houses in the same city;'Avg.Area Number of Bedrooms'-Avg.Number of Bedrooms for Houses in the same city;'Area population'-population of the city;'pric

In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [2]:

df=pd.read_csv(r"C:\Users\shaha\Downloads\USA_Housing.csv")
df

Out[2]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Michae 674\nLau
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	188 Johr Suite Kath
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	912 Stravenue\nE \
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	USS Barnet
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	USNS Raym
4995	60567.944140	7.830362	6.137356	3.46	22837.361035	1.060194e+06	USNS Willi AP 3
4996	78491.275435	6.999135	6.576763	4.02	25616.115489	1.482618e+06	PSC 8489\nAPO
4997	63390.686886	7.250591	4.805081	2.13	33266.145490	1.030730e+06	4215 Tra Suite 076\nJ
4998	68001.331235	5.534388	7.130144	5.44	42625.620156	1.198657e+06	USS Wallace
4999	65510.581804	5.992305	6.792336	4.07	46501.283803	1.298950e+06	37778 Geo Apt. 509\n
5000 rows × 7 columns							

In [3]:

df.head()

Out[3]:

Aı	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Fe 674\nLaurabı	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnsor Suite 079 Kathleer	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Eli Stravenue\nDani WI 0	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nF	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymonc AE	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4
•							4

In [4]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [5]:

df.describe()

Out[5]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [6]:

df.columns

Out[6]:

EXPLORATORY

In [7]:

sns.pairplot(df)

Out[7]:

<seaborn.axisgrid.PairGrid at 0x1539deeece0>

In [10]:

sns.displot(df['Price'])

Out[10]:

<seaborn.axisgrid.FacetGrid at 0x153cece3b20>

In [12]:

```
sns.displot(df['Area Population'])
```

Out[12]:

<seaborn.axisgrid.FacetGrid at 0x153d6804550>

In [24]:

In [25]:

```
sns.heatmap(Housedf.corr())
```

Out[25]:

<Axes: >

TO TRAIN THE MODEL

We are going to train Linear Regression model.we need to first split up our data into a x list that contain the features to train on, and a y list with the target variable, In this case, the price column.we will ignore the Address column because it only has test which is not useful for linear Regression modelling

In [31]:

In [36]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=101)
```

In [38]:

```
from sklearn.linear_model import LinearRegression
lm=LinearRegression()
lm.fit(x_train,y_train)
```

Out[38]:

```
LinearRegression
LinearRegression()
```

In [39]:

```
print(lm.intercept_)
```

-2641372.6673013885

In [42]:

```
coeff_df=pd.DataFrame(lm.coef_,x.columns,columns=['coefficient'])
coeff_df
```

Out[42]:

	coefficient
Avg. Area Income	21.617635
Avg. Area House Age	165221.119872
Avg. Area Number of Rooms	121405.376596
Avg. Area Number of Bedrooms	1318.718783
Area Population	15.225196

In [43]:

predictions=lm.predict(x_test)
plt.scatter(y_test,predictions)

Out[43]:

<matplotlib.collections.PathCollection at 0x153d74d4220>

In [44]:

```
sns.displot((y_test-predictions),bins=50);
```


In [48]:

```
from sklearn import metrics
print('MAE:',metrics.mean_absolute_error(y_test,predictions))
print('MSE:',metrics.mean_squared_error(y_test,predictions))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,predictions)))
```

MAE: 81257.55795855928 MSE: 10169125565.897568 RMSE: 100842.0823163503