Task 1:

What are the most commonly used words (top 100) in the collection, the most commonly used words (top 100) in the real news and most commonly used words (top 100) in the fake news?

True:

('said', 99024), ('trump', 54238), ('would', 31524), ('reuters', 28412), ('president', 26386), ('state', 19726), ('government', 18285), ('new', 16743), ('house', 16513), ('states', 16506), ('also', 15946), ('united', 15575), ('republican', 15346), ('people', 15126), ('told', 14244), ('could', 13709), ('one', 12670), ('last', 12612), ('party', 12434), ('washington', 12238), ('two', 11619), ('election', 11474), ('year', 10968), ('former', 10601), ('campaign', 10554), ('donald', 10447), ('security', 10071), ('percent', 9936), ('north', 9868), ('clinton', 9453), ('white', 9443), ('court', 9404), ('senate', 9204), ('obama', 9197), ('country', 8685), ('minister', 8660), ('china', 8561), ('first', 8546), ('officials', 8474), ('since', 8332), ('tuesday', 8263), ('democratic', 8237), ('week', 8217), ('foreign', 8196), ('administration', 8191), ('national', 8184), ('including', 8119), ('presidential', 8011), ('wednesday', 8008), ('military', 7996), ('russia', 7821), ('may', 7811), ('law', 7796), ('tax', 7776), ('years', 7742), ('political', 7698), ('thursday', 7661), ('statement', 7562), ('friday', 7331), ('korea', 7235), ('support', 7135), ('monday', 7092), ('group', 7010), ('bill', 6898), ('vote', 6877), ('time', 6791), ('republicans', 6749), ('many', 6721), ('say', 6681), ('office', 6522), ('congress', 6473), ('federal', 6446), ('million', 6394), ('committee', 6385), ('made', 6201), ('department', 6163), ('according', 6142), ('official', 6101), ('police', 6054), ('called', 6047), ('saying', 5982), ('news', 5973), ('deal', 5818), ('trade', 5812), ('policy', 5678), ('leader', 5648), ('russian', 5551), ('iran', 5479), ('make', 5389), ('next', 5386), ('secretary', 5379), ('city', 5365), ('public', 5356), ('month', 5274), ('whether', 5270), ('countries', 5239), ('democrats', 5221), ('take', 5214), ('rights', 5192), ('south', 5108)

Fake:

('trump', 74038), ('said', 31125), ('people', 25997), ('president', 25591), ('would', 23457), ('one', 22881), ('clinton', 18074), ('obama', 17865), ('like', 17643), ('donald', 16188), ('also', 15243), ('new', 14173), ('us', 13914), ('even', 13666), ('hillary', 13549), ('news', 13406), ('time', 12782), ('white', 12762), ('state', 12532), ('via', 11348), ('media', 11050), ('get', 10705), ('america', 10613), ('campaign', 10561), ('house', 10559), ('know', 10287), ('could', 10223), ('first', 10016), ('american', 9937), ('going', 9745), ('many', 9695), ('image', 9622), ('states', 9522), ('make', 9143), ('told', 9103), ('republican', 8928), ('right', 8896), ('country', 8684), ('made', 8666), ('government', 8600), ('police', 8564), ('say', 8551), ('way', 8457), ('back', 8397), ('think', 8358), ('two', 8308), ('years', 8259), ('video', 8068), ('election', 8019), ('united', 7974), ('last', 7771), ('may', 7628), ('political', 7546), ('party', 7459), ('black', 7454), ('see', 7305), ('want', 7285), ('women', 7165), ('national', 7075), ('well', 7013), ('former', 7010), ('says', 6968), ('world', 6962), ('republicans', 6944), ('much', 6931), ('law', 6880), ('take', 6698), ('go', 6665), ('year', 6579), ('public', 6535), ('man', 6326), ('according', 6278), ('never', 6184), ('another', 6180), ('really', 6179), ('bill', 6145), ('americans', 6120), ('day', 6095), ('fact', 6012), ('every', 6002), ('since', 5974), ('show', 5888), ('support', 5846), ('2016', 5733), ('still', 5723), ('presidential', 5689), ('security', 5603), ('fbi', 5568), ('called', 5547), ('story', 5546), ('washington', 5527), ('group', 5503), ('administration', 5502), ('vote', 5476), ('department', 5438), ('office', 5332), ('good', 5313), ('federal', 5312), ('russia', 5311), ('saying', 5109)

By reading the preprocessed textual data, can you easily tell the difference between the real news and fake news? What does the strongest feature set (for machine learning) look like?

There are some words that show up on the fake dataset a lot more than the true dataset. For example "people" is the third most common word in the fake dataset, but the 14 most common

words in the true dataset. If it has the words clinton, obama, hillary it is most likely fake news. Comparing the true vs fake news it is pretty easy to get a good feel for which words are most likely to be in true news or in fake news.

Task 2:
Please report the performance of different algorithms in the following table:

ML Model	Filter	Precision	Recall	Accuracy
SVC	Unfiltered	0.99440601588 02738	0.99444099425 17028	0.99443207126 94877
LinearSVC	Unfiltered	0.99653794238 18262	0.99654679869 0362	0.99654788418 70824
SGDClassifier	Unfiltered	0.99423582795 72523	0.99395882291 56833	0.99409799554 5657
Perceptron	Unfiltered	0.99521725242 26757	0.99519045891 97971	0.99521158129 17595
PassiveAggress iveClassifier	Unfiltered	0.99461275607 63967	0.99468195571 2774	0.99465478841 87082
MLPClassifier	Unfiltered	0.99486059906 55202	0.99487820267 59142	0.99487750556 79288
MultinomialNB	Unfiltered	0.95597872521 74787	0.95616140940 09747	0.95612472160 35634
RandomForest Classifier	Unfiltered	0.98761507505 51755	0.98762377221 4411	0.98763919821 82628
KNeighborsCla ssifier	Unfiltered	0.89923505689 8619	0.89954763832 92677	0.89832962138 08464
DecisionTreeCl assifier	Unfiltered	0.99631657091 77896	0.99610934185 22733	0.99621380846 32517
AdaBoostClassi fier	Unfiltered	0.99601192596 2202	0.99595780938 70636	0.99599109131 40312
GradientBoostin gClassifier	Unfiltered	0.99594311317 75552	0.99602935258 37527	0.99599109131 40312
BaggingClassifi er	Unfiltered	0.99769958118 95611	0.99761746250 19252	0.99766146993 31848

SVC	Stop words removed	0.99394668562 76766	0.99378940465 13014	0.99387527839 64365
LinearSVC	Stop words removed	0.99629784184 63472	0.99634160882 76356	0.99632516703 78619
SGDClassifier	Stop words removed	0.99514849400 96116	0.99503867804 07101	0.99510022271 71493
Perceptron	Stop words removed	0.99403590097 4811	0.99414662380 69923	0.99409799554 5657
PassiveAggress iveClassifier	Stop words removed	0.99487811780 56754	0.99486031687 6742	0.99487750556 79288
MLPClassifier	Stop words removed	0.99461275607 63967	0.99468195571 2774	0.99465478841 87082
MultinomialNB	Stop words removed	0.95511486278 13753	0.95522439225 5449	0.95523385300 66815
RandomForest Classifier	Stop words removed	0.98998728660 21229	0.99017597639 07452	0.99008908685 96882
KNeighborsCla ssifier	Stop words removed	0.82358527623 22429	0.82332805039 82074	0.82182628062 3608
DecisionTreeCl assifier	Stop words removed	0.99726319107 90997	0.99716236827 85415	0.99721603563 47439
AdaBoostClassi fier	Stop words removed	0.99508366679 22602	0.99510127833 7813	0.99510022271 71493
GradientBoostin gClassifier	Stop words removed	0.99593540115 18847	0.99603829548 33389	0.99599109131 40312
BaggingClassifi er	Stop words removed	0.99710895466 86001	0.99709107349 57297	0.99710467706 01336
LogisticRegress ion	Stop words removed	0.99686820860 61814	0.99688588363 30032	0.99688195991 09131
SVC	TF-IDF	0.99265232262 1699	0.99258429025 16626	0.99265033407 57238
LinearSVC	TF-IDF	0.99435368850 65074	0.99416589591 62964	0.99428359317 00075
SGDClassifier	TF-IDF	0.98951577935	0.98961050715	0.98960653303

		97193	95371	63771
Perceptron	TF-IDF	0.99112917004 40843	0.99128019014 60517	0.99123979213 06607
PassiveAggress iveClassifier	TF-IDF	0.99355940997 2769	0.99332126805 39414	0.99346696362 28656
MLPClassifier	TF-IDF	0.99178895921 4907	0.99180816697 29926	0.99183370452 8582
MultinomialNB	TF-IDF	0.94004199283 34367	0.93914629782 65337	0.93986636971 04677
RandomForest Classifier	TF-IDF	0.98649090134 9717	0.98667703195 18974	0.98663697104 67706
KNeighborsCla ssifier	TF-IDF	0.79235855387 84901	0.69677575228 22886	0.71477357089 82925
DecisionTreeCl assifier	TF-IDF	0.99699843126 98743	0.99703716568 50665	0.99703043801 03935
AdaBoostClassi fier	TF-IDF	0.99666300131 76441	0.99677807045 61451	0.99673348181 14328
GradientBoostin gClassifier	TF-IDF	0.99590143983 53867	0.99620978574 47187	0.99606533036 37713
BaggingClassifi er	TF-IDF	0.99725934456 47596	0.99737455186 67709	0.99732739420 93541
LogisticRegress ion	TF-IDF	0.98582437806 67695	0.98584335286 67342	0.98589458054 9369

Please provide error analysis for the best performed results (top 2) by using "Test Confusion Matrix". Please explain this outcome.

The best model is the BaggingClassifier unfiltered with an accuracy of 0.997661. Confusion matrix:

Confusion matrix	True Positive	True Negative
Predicted Positive	4293	17
Predicted Negative	9	4661

The second best result BaggingClassifier TF-IDF with an accuracy of 0.997327. Confusion matrix:

Confusion matrix	True Positive	True Negative
Predicted Positive	6286	7
Predicted Negative	22	7155

The third best DecisionTreeClassifier Stop words removed with an accuracy of 0.997216.

Confusion matrix:

Confusion matrix	True Positive	True Negative
Predicted Positive	4290	20
Predicted Negative	8	4662

It looks like a bagging classifier is the best model for this dataset. It got the top two spots. The second best model is the DecisionTreeClassifier.

- True Positive
 - Data that is labeled positive in the dataset
- True Negative
 - Data that is labeled negative in the dataset
- Predicted Positive
 - Data that the model predicts to be positive
- Predicted Negative
 - Data that the model predicts to be negative

Part 3:

Did you witness the performance improvement (compared with the result from task 2)? Why?

The models seemed to perform worse after applying POS tagging which is quite interesting. I was not expecting the result to be the models getting worse after removing the tags. I was expecting that the models would get better because there would be less unneeded words. It seems though that the model likes all of the data it can get and is able to filter though the data it doesn't need.

Please report the performance of different algorithms in the following table:

ML Model	Feature	Filter	Precision	Recall	Accuracy
SVC	Nouns	Stop Words	0.94286024 23488577	0.94172281 41142735	0.94253897 55011135
LinearSVC	Nouns	Stop Words	0.94826112 84667446	0.94668641 84526107	0.94766146 99331849
SGDClassifi er	Nouns	Stop Words	0.94744523 86251494	0.94548599 40784496	0.94662212 32368226
Perceptron	Nouns	Stop Words	0.94605197 75065843	0.94614681 7544728	0.94632516 7037862
PassiveAggr essiveClassi fier	Nouns	Stop Words	0.94282105 2232125	0.94232443 22616204	0.94283593 17000743
MLPClassifi er	Nouns	Stop Words	0.95379879 3683873	0.95327988 49973212	0.95374907 20118782
Multinomial NB	Nouns	Stop Words	0.91778361 30165402	0.91871894 61293814	0.91841128 43355605
RandomFor estClassifier	Nouns	Stop Words	0.94817449 68603016	0.94952232 88742104	0.94877505 56792873
KNeighbors Classifier	Nouns	Stop Words	0.74257635 95964823	0.74330061 5936801	0.74105419 45063103
DecisionTre eClassifier	Nouns	Stop Words	0.90047172 55838333	0.89875144 30742962	0.90007423 90497402
AdaBoostCl assifier	Nouns	Stop Words	0.87227403 8248214	0.87152511 10813781	0.87253155 15961396
GradientBoo stingClassifi er	Nouns	Stop Words	0.89530993 66720174	0.89694088 72973172	0.89569413 51150706
BaggingCla ssifier	Nouns	Stop Words	0.91972946 53600421	0.92114682 9168809	0.92034149 96288047
LogisticRegr ession	Nouns	Stop Words	0.95398797 99547938	0.95270878 83653622	0.95352635 48626578

	Nouns and Verbs	Stop Words	0.94716856 54758555	0.94620504 86549709	0.94691907 94357832
	Nouns and Verbs	Stop Words	0.94968260 64319757	0.94748560 16937592	0.94870081 66295472
	Nouns and Verbs	Stop Words	0.95160278 55788249	0.94885074 48301458	0.95025983 66740905
	Nouns and Verbs	Stop Words	0.94928309 97305404	0.94762144 84530352	0.94862657 7579807
1 33 1	Nouns and Verbs	Stop Words	0.94564136 95372794	0.94382493 50529386	0.94491462 50927988
	Nouns and Verbs	Stop Words	0.95205530 26360234	0.95063205 22053638	0.95152190 05196733
	Nouns and Verbs	Stop Words	0.95510690 09674772	0.95396046 94012012	0.95471417 96585004
	Nouns and Verbs	Stop Words	0.92082579 11533219	0.92182973 83888772	0.92145508 53749072
	Nouns and Verbs	Stop Words	0.95410755 11901049	0.95503580 75938725	0.95463994 06087602
	Nouns and Verbs	Stop Words	0.73435936 28261785	0.73503832 99087315	0.73526354 86265776
	Nouns and Verbs	Stop Words	0.89678146 90287522	0.89458934 67932957	0.89613956 94135115
	Nouns and Verbs	Stop Words	0.87747372 48265938	0.87480992 13678528	0.87668893 83815887
	Nouns and Verbs	Stop Words	0.87977318 78647508	0.87965979 79123637	0.87579806 97847068
- 55 5	Nouns and Verbs	Stop Words	0.91762177 6504298	0.91887320 3218759	0.91826280 62360801
	Nouns and Verbs	Stop Words	0.95438244 92470058	0.95281013 92806234	0.95374907 20118782
SVC	Nouns and	Stop Words	0.95380903	0.95327009	0.95374907

	Adjectives		43103969	86282234	20118782
LinearSVC	Nouns and Adjectives	Stop Words	0.95299390 94967315	0.95149741 5214009	0.95241276 91165553
SGDClassifi er	Nouns and Adjectives	Stop Words	0.95670870 94863007	0.95550176 71813493	0.95627319 97030438
Perceptron	Nouns and Adjectives	Stop Words	0.95477542 31640677	0.95329664 58149843	0.95419450 63103192
PassiveAggr essiveClassi fier	Nouns and Adjectives	Stop Words	0.95612188 45795015	0.95463872 89888925	0.95553080 92056422
MLPClassifi er	Nouns and Adjectives	Stop Words	0.96061481 26454077	0.95976405 19695168	0.96035634 74387528
Multinomial NB	Nouns and Adjectives	Stop Words	0.92768921 76890567	0.92858162 45509977	0.92828507 79510022
RandomFor estClassifier	Nouns and Adjectives	Stop Words	0.95964519 15917832	0.96078929 59086046	0.96020786 93392725
KNeighbors Classifier	Nouns and Adjectives	Stop Words	0.75772541 68348495	0.75876736 34155544	0.75820341 49962881
DecisionTre eClassifier	Nouns and Adjectives	Stop Words	0.90584624 40317684	0.90468224 84408842	0.90571640 68299925
AdaBoostCl assifier	Nouns and Adjectives	Stop Words	0.88562670 00561289	0.88443240 19949934	0.88559762 43504083
GradientBoo stingClassifi er	Nouns and Adjectives	Stop Words	0.88944257 60405869	0.88987546 09252534	0.88634001 484781
BaggingCla ssifier	Nouns and Adjectives	Stop Words	0.93169613 8334696	0.93316569 71113007	0.93229398 6636971
LogisticRegr ession	Nouns and Adjectives	Stop Words	0.96127552 51315364	0.96004504 47528224	0.96080178 17371938
SVC	Adjectives	Stop Words	0.90732478 91195408	0.90731680 76394611	0.90772086 1172977
LinearSVC	Adjectives	Stop Words	0.91296203 16472402	0.91134605 72811238	0.91254639 94060876

SGDClassifi er	Adjectives	Stop Words	0.88956638 27543937	0.89110794 5621708	0.89005196 73348181
Perceptron	Adjectives	Stop Words	0.90149853 60256321	0.89672150 21430045	0.89918337 04528582
PassiveAggr essiveClassi fier	Adjectives	Stop Words	0.87739851 34583124	0.87894741 88794691	0.87780252 41276912
MLPClassifi er	Adjectives	Stop Words	0.92075687 43859067	0.92006751 66475105	0.92078693 39272458
Multinomial NB	Adjectives	Stop Words	0.90186694 49012877	0.90236066 48540333	0.90244988 86414254
RandomFor estClassifier	Adjectives	Stop Words	0.92260208 55895565	0.92386384 18482015	0.92323682 25686711
KNeighbors Classifier	Adjectives	Stop Words	0.74402238 06008006	0.74203877 21330528	0.73734224 20193022
DecisionTre eClassifier	Adjectives	Stop Words	0.85357650 4834174	0.85310152 95275679	0.85404602 82108389
AdaBoostCl assifier	Adjectives	Stop Words	0.81414296 36059903	0.81061737 35373612	0.80519673 34818114
GradientBoo stingClassifi er	Adjectives	Stop Words	0.82880923 6725293	0.82477169 58544387	0.81915367 48329621
BaggingCla ssifier	Adjectives	Stop Words	0.87743620 93097248	0.87906882 96372704	0.87743132 88789903
LogisticRegr ession	Adjectives	Stop Words	0.91408601 94907874	0.91301225 3043356	0.91395694 13511507
SVC	Nouns	TF-IDF	0.97068498 62680036	0.97071253 02566524	0.97082405 34521159
LinearSVC	Nouns	TF-IDF	0.96616449 5275594	0.96553827 54305388	0.96599851 52190051
SGDClassifi er	Nouns	TF-IDF	0.95546272 43336813	0.95535429 63411312	0.95560504 82553823
Perceptron	Nouns	TF-IDF	0.95862918	0.95800280	0.95850037

			83303295	44368387	11952487
PassiveAggr essiveClassi fier	Nouns	TF-IDF	0.96438309 35870881	0.96360087 3254099	0.96414253 89755011
MLPClassifi er	Nouns	TF-IDF	0.96398242 07243082	0.96284780 99379072	0.96354862 65775798
Multinomial NB	Nouns	TF-IDF	0.92845389 5516794	0.92924893 53614971	0.92902746 84484039
Random Forest Accuracy	Nouns	TF-IDF	0.96393732 4587038	0.96440568 03363128	0.96429101 70749814
K-Nearest Neighbor Accuracy	Nouns	TF-IDF	0.76118744 55100262	0.63266153 96867933	0.65515961 39569413
DecisionTre eClassifier	Nouns	TF-IDF	0.92120496 95920663	0.92051487 77054799	0.92123236 82256867
AdaBoostCl assifier	Nouns	TF-IDF	0.90684351 10914641	0.90548889 32349421	0.90660727 54268746
GradientBoo stingClassifi er	Nouns	TF-IDF	0.92005215 33949324	0.92174612 24999675	0.92048997 77282851
BaggingCla ssifier	Nouns	TF-IDF	0.93947987 30126666	0.94085261 32738457	0.94008908 68596882
LogisticRegr ession	Nouns	TF-IDF	0.95484383 11292194	0.95432372 74659164	0.95478841 87082405
SVC	Nouns and Verbs	TF-IDF	0.97372892 16065776	0.97378417 70397566	0.97386785 44914625
LinearSVC	Nouns and Verbs	TF-IDF	0.96970903 52791329	0.96874179 46442922	0.96933927 24573126
SGDClassifi er	Nouns and Verbs	TF-IDF	0.95990389 46271332	0.95926543 42498697	0.95976243 50408315
Perceptron	Nouns and Verbs	TF-IDF	0.96310531 81643054	0.96307803 31638793	0.96325167 03786191

PassiveAggr essiveClassi fier	Nouns and Verbs	TF-IDF	0.96773806 50734395	0.96696097 43734183	0.96748329 62138085
MLPClassifi er	Nouns and Verbs	TF-IDF	0.96684053 73817373	0.96528615 46501825	0.96614699 33184855
Multinomial NB	Nouns and Verbs	TF-IDF	0.92846925 5560925	0.92920000 35160077	0.92902746 84484039
RandomFor estClassifier	Nouns and Verbs	TF-IDF	0.96808544 40297596	0.96825577 52142755	0.96829992 57609503
KNeighbors Classifier	Nouns and Verbs	TF-IDF	0.74741920 40208054	0.59373636 73055476	0.61922791 38827023
DecisionTre eClassifier	Nouns and Verbs	TF-IDF	0.92834507 86676629	0.92770201 37402836	0.92835931 70007424
AdaBoostCl assifier	Nouns and Verbs	TF-IDF	0.91093376 51341205	0.91003846 99512305	0.91091314 0311804
GradientBoo stingClassifi er	Nouns and Verbs	TF-IDF	0.90668782 58315979	0.90671162 47739586	0.90282108 38901262
BaggingCla ssifier	Nouns and Verbs	TF-IDF	0.94344196 43374867	0.94447645 92544633	0.94402375 64959169
LogisticRegr ession	Nouns and Verbs	TF-IDF	0.95843555 1821613	0.95804078 7505136	0.95842613 21455085
SVC	Nouns and Adjectives	TF-IDF	0.97797831 21138792	0.97819674 45886748	0.97817371 9376392
LinearSVC	Nouns and Adjectives	TF-IDF	0.97517473 30050227	0.97430817 95380706	0.97483296 21380847
SGDClassifi er	Nouns and Adjectives	TF-IDF	0.96933988 59826262	0.96906474 48245219	0.96933927 24573126
Perceptron	Nouns and Adjectives	TF-IDF	0.97160567 90856069	0.97157789 32652975	0.97171492 20489978
PassiveAggr essiveClassi	Nouns and Adjectives	TF-IDF	0.97751628 12333865	0.97729572 33279208	0.97750556 79287306

fier					
MLPClassifi er	Nouns and Adjectives	TF-IDF	0.97393173 86367752	0.97288780 54113794	0.97349665 92427617
Multinomial NB	Nouns and Adjectives	TF-IDF	0.93141688 38182727	0.93228027 42601156	0.93199703 04380104
RandomFor estClassifier	Nouns and Adjectives	TF-IDF	0.96965716 6656187	0.97017127 98363311	0.97000742 3904974
KNeighbors Classifier	Nouns and Adjectives	TF-IDF	0.76518917 12938224	0.60109219 64312035	0.62650334 07572383
DecisionTre eClassifier	Nouns and Adjectives	TF-IDF	0.92882460 14665003	0.92797205 77463971	0.92873051 22494433
AdaBoostCl assifier	Nouns and Adjectives	TF-IDF	0.91693562 54767159	0.91569758 17992665	0.91670378 61915367
GradientBoo stingClassifi er	Nouns and Adjectives	TF-IDF	0.93334027 75413553	0.93513527 03155668	0.93370452 85820341
BaggingCla ssifier	Nouns and Adjectives	TF-IDF	0.94944889 5964714	0.95094154 05928073	0.95003711 95248701
LogisticRegr ession	Nouns and Adjectives	TF-IDF	0.96741978 43782819	0.96710660 75017922	0.96740905 71640683
SVC	Adjectives	TF-IDF	0.93584328 11989412	0.93611428 36241653	0.93622865 62731997
LinearSVC	Adjectives	TF-IDF	0.92503430 20803268	0.92386867 9679984	0.92479584 26132146
SGDClassifi er	Adjectives	TF-IDF	0.91313007 42981119	0.91247216 50311289	0.91321455 0853749
Perceptron	Adjectives	TF-IDF	0.91077214 82321678	0.91053989 95914102	0.91106161 84112843
PassiveAggr essiveClassi fier	Adjectives	TF-IDF	0.89294733 34572957	0.89415837 01541781	0.89361544 1722346
MLPClassifi er	Adjectives	TF-IDF	0.91422481 55692692	0.91317115 97651103	0.91410541 94506311

Multinomial NB	Adjectives	TF-IDF	0.90677749 24873386	0.90765468 09255097	0.90742390 49740164
RandomFor estClassifier	Adjectives	TF-IDF	0.92859583 03904891	0.92891619 88121695	0.92902746 84484039
KNeighbors Classifier	Adjectives	TF-IDF	0.75371986 08266289	0.64186766 78756966	0.66310319 22791388
DecisionTre eClassifier	Adjectives	TF-IDF	0.84982034 2770101	0.84853586 72973664	0.84996288 04751299
AdaBoostCl assifier	Adjectives	TF-IDF	0.81952999 92380158	0.81502777 12578369	0.81811432 81365999
GradientBoo stingClassifi er	Adjectives	TF-IDF	0.85676235 86856752	0.85707933 43081472	0.85746102 44988864
BaggingCla ssifier	Adjectives	TF-IDF	0.88291721 23405951	0.88455062 44334507	0.88314773 5708983
LogisticRegr ession	Adjectives	TF-IDF	0.91250562 31715822	0.91190504 27277967	0.91262063 84558277

Part 4:

Please tell me what you plan to do in the future if you want to further enhance the performance of the machine learning models, e.g., enhancing learning models? Or investigating novel features?

BERT! Ever since BERT came out a couple of years ago it has taken over. Everyone seems to be using it these days. In the future I think we could get better results if BERT was fine-tuned along with adding a classifier in at the end. It would probably make sense to use a couple of fully connected layers and a sigmoid function as the classifier. Using this model should give us a better understanding of the context of the words in the sentence.

Another thing that could be done is to add a satire label to the model. Sometimes people are making fun of people who believe the fake information. It is hard to classify this as true or fake information because it really isn't either. Hence why there should be a satire label. Given only true and fake labels it would be hard for a model to be able to classify satire text snippets correctly

It would be interesting to do a combination of fact checking and classification. For each of the statements in the text snippets fact checking could be done to make sure that the information is true. From there it would be simple to classify it as true vs false just based on if the whole statement is true. If the fact check is unsure the text could be classified based on the wording using a classifier. If the fact checker determines that something is false the statement could then be passed into a context classifier to determine if it is satire or not.

Try an LSTM. It would be interesting seeing the results of an LSTM classifying the text snippets. Using an LSTM would allow for more contextual understanding.

It would also be interesting to use a genetic optimizer. I am personally obsessed with this type of machine learning. It is the part of machine learning I would like to do a lot of research in the future.

This isn't strictly about machine learning, but it would be interesting to get a crowd sourced dataset of people on the internet voting whether or not a statement is false. Then given that dataset it would be interesting to compare it to the classification of several different machine learning models. It would be most interesting to look at the ones that mess up both humans and computers and figure out why. There may be a way to phrase or put a statement that makes it look believable even if the information is not.

It would be interesting to fact check inside the same statement. The model would be checking for consistency in the statement. For example it would check to make sure that the ball that was thrown through the window doesn't go from green to red in the same statement. If facts are changing throughout the statement then it would seem that the statement is trying to be deceptive. This approach would probably work less for written text and more for speech since written text can be proof read. It could be applied to such things as verbal questions and answers and videos. I'm not sure how to go about building a model to do such a thing, but it would be interesting to work on.

Try a standard RNN. It would be interesting almost just as a baseline to compare the other models.