MIE524 Data Mining Recommender Systems: The Netflix Prize

Slides adapted from:

Leskovec, Rajaraman, Ullman (http://www.mmds.org), Dimitris Sacharidis, Alex Smola

Netflix Prize: Competition Structure

BellKor Recommender System

- The winner of the Netflix Challenge!
- Multi-scale modeling of the data: Combine top level, "regional" modeling of the data, with a refined, local view:
 - Global:
 - Overall deviations of users/movies
 - Regional:
 - Addressing "regional" effects
 - Collaborative filtering:
 - Extract local patterns

Modeling Local & Global Effects

Global:

- Mean movie rating: 3.7 stars
- The Sixth Sense is 0.5 stars above avg.
- Joe rates 0.2 stars below avg.
 - ⇒ Baseline estimation:

 Joe will rate The Sixth Sense 4 stars

Local neighborhood (CF):

- Joe didn't like related movie Signs
- → Final estimate:
 Joe will rate The Sixth Sense 3.8 stars

Modeling Biases and Interactions

Baseline predictor

- Separates users and movies
- Benefits from insights into user's behavior
- Among the main practical contributions of the competition

User-Movie interaction

- Characterizes the matching between users and movies
- Attracts most research in the field
- Benefits from algorithmic and mathematical innovations
- μ = overall mean rating
- \mathbf{b}_{x} = bias of user \mathbf{x}
- **b**_i = bias of Landovile jaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Baseline Predictor

 We have expectations on the rating by user x of movie i, even without estimating x's attitude towards movies like i

- Rating scale of user x
- Values of other ratings user gave recently (day-specific mood, anchoring, multi-user accounts)

(Recent) popularity of movie i

Putting It All Together

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x$$

Mean rating user x

Bias for movie i

Moverall Bias for movie i

Interaction

• Example:

- Mean rating: $\mu = 3.7$
- You are a critical reviewer: your ratings are 1 star lower than the mean: $b_x = -1$
- Star Wars gets a mean rating of 0.5 higher than average movie: $b_i = +0.5$
- Predicted rating for you on Star Wars:

$$= 3.7 - 1 + 0.5 = 3.2$$

Fitting the New Model

Solve:

$$\min_{\mathcal{Q},P} \sum_{(x,i)\in R} (r_{xi} - (\mu + b_x + b_i + q_i \ p_x))^2$$
 goodness of fit
$$+ \left(\lambda_1 \sum_i \|q_i\|^2 + \lambda_2 \sum_x \|p_x\|^2 + \lambda_3 \sum_x \|b_x\|^2 + \lambda_4 \sum_i \|b_i\|^2 \right)$$
 regularization
$$\lambda \text{ is selected via grid-search on a validation set}$$

- Stochastic gradient decent to find parameters
 - Note: Both biases b_x , b_i as well as interactions q_i , p_x are treated as parameters (we estimate them)

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91

Latent factors: 0.90

Latent factors+Biases: 0.89

Grand Prize: 0.8563

Using implicit feedbacks

- Implicit Feedback:
 - Information about items the user has clicked, liked, purchased, etc.

• Intuition: a user's preferences are also conveyed by her/his clicks

- Learn additional k-dimensional latent vector for each item y_i
- Represent each user's implicit preferences by $\sum_{j \in N(u)} y_j$
 - Where N(u) is the set of items user u has interacted with (e.g., clicked)

Using implicit feedbacks

- User's preferences are representation by a combination of:
 - Latent user vector
 - Sum of the latent item feature vectors for the items they interacted with
- Putting this together:

$$\hat{r}_{ui} = \frac{\mu + b_u + b_i}{\text{baseline stimate}} + \frac{q_i^\mathsf{T}}{q_i^\mathsf{T}} \left(p_u + |N(u)|^{-\frac{1}{2}} \sum_{j \in N(u)} y_j \right)$$

- Where $|N(u)|^{\frac{1}{2}}$ is just normalizing the sum of latent item feature vectors
- This model is called SVD++

Factor models: Error vs. #parameters

Temporal Biases Of Users

- Sudden rise in the average movie rating (early 2004)
 - Improvements in Netflix
 - GUI improvements
 - Meaning of rating changed
- Ratings increase with the movie age at the time of the rating

Temporal Biases & Factors

Original model (not including implicit feedback):

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x$$

Add time dependence to biases:

$$r_{xi} = \mu + b_x(t) + b_i(t) + q_i \cdot p_x$$

- Make parameters b_x and b_i to depend on time
- (1) Parameterize time-dependence by linear trends
 - (2) Each bin corresponds to 10 consecutive weeks

$$b_i(t) = b_i + b_{i,\operatorname{Bin}(t)}$$

- Add temporal dependence to factors
 - $p_x(t)$... user preference vector on day t

Global average: 1.1296

User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

Basic Collaborative filtering: 0.94

Collaborative filtering++: 0.91

Latent factors: 0.90

Latent factors+Biases: 0.89

Latent factors+Biases+Time: 0.876

Still no prize!
Getting desperate.

Try a "kitchen sink" approach!

Grand Prize: 0.8563

The big picture solution of BellKor's Pragmatic Chaos

Standing on June 26th 2009

June 26th submission triggers 30-day "last call"

The Last 30 Days

Ensemble team formed

- Group of other teams on leaderboard forms a new team
- Relies on combining their models
- Quickly also get a qualifying score over 10%

BellKor

- Continue to get small improvements in their scores
- Realize that they are in direct competition with Ensemble

Strategy

- Both teams carefully monitoring the leaderboard
- Only sure way to check for improvement is to submit a set of predictions
 - This alerts the other team of your latest score

24 Hours from the Deadline

- Submissions limited to 1 a day
 - Only 1 final submission could be made in the last 24h
- 24 hours before deadline...
 - BellKor team member in Austria notices (by chance) that Ensemble posts a score that is slightly better than BellKor's
- Frantic last 24 hours for both teams
 - Much computer time on final optimization
 - Carefully calibrated to end about an hour before deadline
- Final submissions
 - BellKor submits a little early (on purpose), 40 mins before deadline
 - Ensemble submits their final entry 20 mins later
 -and everyone waits....

NETFLIX

Netflix Prize

Home

Rules

Leaderboard

Update

Download

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 ‡ leaders.

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time
Grand Prize - RMSE = 0.8567 - Winning Teams BellKorle Progratic Chace				
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.0082	0.00	071;1;1
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries!	0.8591	9.81	2009-07-10 00:32:20
	<u>PragmaticTheory</u>	0.8594	9.77	2009-06-24 12:06:56
	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
	Dace_	0.8612	9.59	2009-07-24 17:18:43
	Feeds2	0.8622	9.48	2009-07-12 13:11:51
0	BigChaos	0.8623	9.47	2009-04-07 12:33:59
1	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
2	BellKor	0.8624	9.46	2009-07-26 17:19:11
Progre	ess Prize 2008 - RMSE = 0.8627 - W	inning Team: BellKo	r in BigChaos	
3	xiangliang	0.8642	9.27	2009-07-15 14:53:22
4	Gravity	0.8643	9.26	2009-04-22 18:31:32
5	Ces	0.8651	9.18	2009-06-21 19:24:53
6	Invisible Ideas	0.8653	9.15	2009-07-15 15:53:04
7	Just a guy in a garage	0.8662	9.06	2009-05-24 10:02:54
8	J Dennis Su	0.8666	9.02	2009-03-07 17:16:17
9	Craig Carmichael Leskovec, A. Raj	0.8666	n. Mining of Mas	2009-07-25 16:00:54
0	acmehill Datase	0.8668 ets, http://www.m		2009-03-21 16:20:50

Million \$ Awarded Sept 21st 2009

Regularization in MF

$$\min_{Q,P} \sum_{(x,i) \in R} (r_{xi} - (\mu + b_x + b_i + q_i p_x))^2$$
 goodness of fit
$$+ \left(\lambda_1 \sum_i \|q_i\|^2 + \lambda_2 \sum_x \|p_x\|^2 + \lambda_3 \sum_x \|b_x\|^2 + \lambda_4 \sum_i \|b_i\|^2 \right)$$
 regularization
$$\lambda \text{ is selected via grid-search on a validation set}$$

- Why are the regularization weights hyperparameters?
- How to decide their value?

Hyperparameters

- Hyperparameters are tunable aspects of the model that need to be specified before learning can happen, set outside the training procedure
 - Decision tree: max depth, purity criterion, etc.
 - NN: optimizer, learning rate, regularization, etc.

Threefold split

- Pros: fast, simple
- Cons: high variance, inefficient use of data

Scikit-learn threefold implementation

```
X trainval, X test, y trainval, y test = train test split(X, y)
X_train, X_val, y_train, y_val = train_test_split(X_trainval, y_trainval)
val_scores = []
 neighbors = np.arange(1, 15, 2)
 for i in neighbors:
     knn = KNeighborsClassifier(n neighbors=i)
    knn.fit(X train, y train)
    val_scores.append(knn.score(X_val, y_val))
 print("best validation score: {:.3f}".format(np.max(val scores)))
 best n neighbors = neighbors[np.argmax(val scores)]
 print("best n neighbors:", best n neighbors)
knn = KNeighborsClassifier(n_neighbors=best_n_neighbors)
 knn.fit(X trainval, y trainval)
 print("test-set score: {:.3f}".format(knn.score(X test, y test)))
best validation score: 0.991
best n neighbors: 11
test-set score: 0.951
```

Cross validation

- Pros: more stable, use more data
- Cons: slower
- Stratified cross validation: ensures relative class frequencies in each fold reflect relative class frequencies on the whole dataset

Cross validation w/ Test set

https://amueller.github.io/ml-training-intro/slides/03-cross-validation-grid-search.html

Scikit-learn cross validation implementation

```
from sklearn.model selection import cross val score
X_train, X_test, y_train, y_test = train_test_split(X, y)
cross val scores = []
for i in neighbors:
    knn = KNeighborsClassifier(n neighbors=i)
    scores = cross_val_score(knn, X_train, y_train, cv=10)
    cross_val_scores.append(np.mean(scores))
print("best cross-validation score: {:.3f}".format(np.max(cross val scores)))
best n neighbors = neighbors[np.argmax(cross val scores)]
print("best n neighbors:", best n neighbors)
knn = KNeighborsClassifier(n neighbors=best n neighbors)
knn.fit(X train, y train)
print("test-set score: {:.3f}".format(knn.score(X test, y test)))
best cross-validation score: 0.967
best n neighbors: 9
test-set score: 0.965
```

Cross validation workflow

