Pumping Lemma for Context-Free Languages

Let L = L(G), G a CFG.

Then $\exists k > 0$ s.t. $\forall w \in L$ with $|w| \ge k$,

w can be **decomposed** as:

w = uvxyz

where

 $vy \neq \lambda$

and

 $|vxy| \leq k$

s.t. $\forall i \geq 0$,

$$w_i = uv^i x y^i z \in L$$

Proof: By Chomsky's Theorem (p. 6-6) we can construct a CFG G^C in CNF for $L\setminus\{\lambda\}$.

Let n = # of non-terminals in G^C .

Let $k = 2^{n+1}$.

Let $w \in L$, $|w| \ge k$.

Let **PT** be a parse tree in G^C for w.

Then (from p. 6-13) **PT** has **depth** $\geq n + 1$

and the **longest path** in PT has length $\geq n + 1$.

Therefore, it contains $\geq n+1$ occurrences of non-terminals.

Therefore by the PHP, some **non-terminal** X of G^C is **repeated** on this path.

Let T =subtree of PT rooted at an **upper** occ. of X

Let t = subtree of PT rooted at a lower occ. of X

Then we can write:

$$w = uvxyz$$

where

 $m{x}$ is the substring generated by $m{t}$ (i.e. lower occ. of $m{X}$) $m{vxy}$ is the substring generated by $m{T}$ (i.e. upper occ. of $m{X}$)

[E.g. for our example (p.) $n=4, \ k=2^5$ we can take $w=a^kb^4$]

In this way, get parse trees in G^C for

$$w_i = uv^i x y^i z$$
 $(i = 0, 1, 2, ...)$

which are all distinct, since $vy \neq \lambda$

Example: Extended parse tree in G^C for $w = a^4b^4$

We can take

$$u = aa$$

$$v = a$$

$$x = ab$$

$$y = b$$

$$z = bb$$

$$6 - 16$$

Then get words in L:

$$w_i = uv^i x y^i z$$
 $(i = 0, 1, 2, ...)$

 $w_2=uv^2xy^2z$ formed from w by replacing t by T $w_3=uv^3xy^3z$ formed from w_2 by replacing t by T $w_0=uv^0xy^0z$ formed from w by replacing T by t, etc.

We have been using the set $\{a^nb^n \mid n \ge 0\}$ with the grammar G^C as a running example.

Returning to the general case:

Recall $k = 2^{n+1}$ where n = # of non-terminals.

Suppose $|w| \ge k$

Then by the *Conclusion* on p. 6-13:

A parse tree for w has w at level $\geq n+1$.

Then by PHP, some non-terminal X, occurs twice on this path.

Take the **two lowest occurrences** of any **repeating non-terminal** X **on this path**.

Let T be the tree under the higher X

Let *t* be the tree under lower *X*

Now the **height** of the **higher** X on this path is **at most** n+1, by PHP (since otherwise there would be a lower repeating pair).

Hence $|vxy| \leq \Box$

Examples: (1) $L = \{a^n b^n a^n \mid n \ge 0\}$ is **not** a CFL.

Proof: By contradiction:

Suppose it is.

Let G^{C} be a Chomsky grammar that generates:

$$L\backslash\{\lambda\} = \{a^n b^n a^n \mid n \ge 0\}$$

Suppose G^C has n non-terminals.

Let $k = 2^{n+1}$.

Let $w = a^k b^k a^k \in L$

By PL for CFL's:

 $\exists u, v, x, y, z$:

w = uvxyz

 $vy \neq \lambda$,

and

 $|vxy| \leq k$

and $\forall i \geq 0$

$$w_i = uv^i x y^i z \in L \setminus \{\lambda\}.$$

Represent w as:

$$w = \underbrace{\begin{array}{c|cccc} k & a's & & k & b's & & k & a's \\ \hline a & \dots & a & & b & \dots & b & & \hline a & \dots & a \\ \hline \text{Region 1} & \text{Region 2} & \text{Region 3} \end{array}$$

Boundary 1 Boundary 2

Now where is v?

Assume $v \neq \lambda$.

There are a **number of possibilities**:

Possibility 1: v lies in Region 1, so $v \preceq a^k$.

Since $|vxy| \leq k$,

vxy is completely in Regions 1 and 2.

Consider $w_2 = uv^2xy^2z \in L'$

 $In w_2 = uv^2...,$

so Region 1 has $> k \ a's$.

But Region 3 has only k a's,

since $|vxy| \le k$, and so vxy does not reach Region 3.

Therefore $w_2 \notin L$.

Possibility 2: *v* crosses Boundary 1.

so $v = a^i b^j$ for some i, j > 0.

Therefore

$$w_2 = uv^2...$$

= ... $a^i b^j a^i b^j...$

So w_2 has > 3 regions!

Therefore $w_2 \notin L$

Possibility 3: v lies in Region 2, so $v \leq b^k$.

Therefore, $w_2 = uv^2...$

So Region 2 has > k b's

but Region 1 has only k a's since v^2 does not touch Region 1.

Therefore $w_2 \notin L$.

Possibility 4: v crosses Boundary 2, so $v = a^i b^j$ for some i, j > 0. Then, (just as in **Possibility 2**)

$$w_2$$
 has > 3 regions!

Therefore $w_2 \notin L$.

Possibility 5: v lies in Region 3, so $v \leq a^k$.

Then, (just as in **Possibility 1**)

In $w_2 = uv^2$...

Region 3 has $> k \ a's$.

Further, since v lies in Region 3, vxy does not touch Region 1.

Therefore, in w_2 , Region 1 has only k a's.

Hence $w_2 \notin L$.

Therefore, by all cases $w_2 \notin L$

Note: We have assumed $v \neq \lambda$.

But if $v = \lambda$, then $y \neq \lambda$.

So use **exactly** the same argument with y, proceeding $R \to L$ on w_2 .

Other examples of Non-CFL's:

$$\{a^nb^nc^n \mid n \ge 0\},$$
 $\{a^nb^{2n}c^{3n} \mid n \ge 0\},$ etc., etc.

Similar proofs for both.

BUT

$$\{a^nb^na^k \mid n,k \ge 0\},\$$

$$\{a^n b^k a^k \mid n, k \ge 0\},\$$

$${a^nb^kc^{2k} \mid n, k \ge 0}$$
, etc.

— with k "independent of n" — ARE CFL's

But, e.g.:

$$\{a^n b^k a^n \mid k \ge n \text{ (or } k < n)\}, \text{ etc., etc.}$$

— where k "depends on" n — are NOT CFL's

Another Example of a non-CFL:

$$(2) \Sigma = \{a, b\},$$

$$L = \{uu \mid u \in \Sigma^*\}$$

Proof: Consider $u = a^k b^k$ for k "big".

Similar to (1).