Discrete Mathematics Exercises

Week 1

1. Reduce as much as possible

(a)
$$\frac{3}{4} + \frac{5}{4}$$
 (f) $\frac{7}{3} \cdot \frac{3}{7}$ (b) $\frac{3}{2} + \frac{5}{3} + \frac{2}{6}$ (g) $\frac{\left(\frac{3}{4}\right)}{\left(\frac{5}{4}\right)}$ (d) $\frac{7}{3} - \frac{3}{7}$ (e) $\frac{3}{4} \cdot \frac{5}{4}$ (f) $\frac{7}{3} \cdot \frac{3}{7}$ (h) $\frac{\left(\frac{7}{3}\right)}{\left(\frac{3}{7}\right)}$

2. Express each of the following in the form $2^m 3^n a^r b^s$, where m, n, r, and s are positive integers

(a)
$$8a^2b^3(27a^4)(2^5ab)$$

(b)
$$3^2(2ab)^3(16a^2b^5)(24b^2a)$$

(c)
$$(3^2ab)^2(18a^3b)(16ab^3)$$

3. Put the following fractions in lowest form

(a)
$$\frac{10}{25}$$
 (d) $\frac{50}{15}$
 (g) $\frac{16}{40}$

 (b) $\frac{3}{9}$
 (e) $\frac{45}{9}$

 (c) $\frac{30}{25}$
 (f) $\frac{33}{25}$
 (h) $\frac{23}{46}$

4. State if the following is true or false

(a)
$$\frac{16}{20} = \frac{8}{10}$$
 (d) $\frac{15}{16} \le \frac{3}{4}$ (b) $\frac{33}{110} = \frac{3}{10}$ (c) $\frac{36}{16} = \frac{34}{14}$ (e) $\frac{8}{14} \le \frac{7}{9}$

5. Solve for x in the following equations:

(a)
$$\frac{3}{5}x = \frac{23}{7}$$

(e)
$$\frac{4(1-3x)}{7} = \frac{2}{3}x - 1$$

(f) $\frac{2-x}{3} = \frac{7}{8}x$

(b)
$$\frac{3}{5}x + \frac{8}{9} = \frac{7}{11}$$

(f)
$$\frac{2-x}{3} = \frac{7}{8}x$$

(c)
$$2x - \frac{3}{7} = \frac{x}{5} + 1$$

(g)
$$x^2 + 4x - 5 = 0$$

(d)
$$\frac{-2}{13}x = 3x - 1$$

(h)
$$x^2 = x + 6$$

6. Solve for x and y in the following equations:

(a)
$$y = 2x$$

(c)
$$2y + 4 = 2x$$

$$x + 2 = 3$$

$$2x + 2y = 4$$

(b)
$$\frac{4x + 3y}{2} = 5$$

(d)
$$\frac{2y}{x} - \frac{1}{3} = -1$$

$$4x - 2 = y$$

$$\begin{array}{c}
x & 3 \\
2y + 4 = x - 1
\end{array}$$

- 7. Show that $\frac{1}{x-y} + \frac{1}{x+y} = \frac{2x}{x^2-y^2}$
- 8. Find all possible numbers x such that

(a)
$$|x-1|=2$$

(d)
$$|3x+1|=2$$

(b)
$$|x| = 5$$

(c)
$$|x-3|=4$$

(e)
$$|4x - 5| = 6$$

- 9. Which of the following numbers is rational
 - (a) π
 - (b) $\frac{\sqrt{9}}{2}$
 - (c) $\frac{\sqrt{4}}{\sqrt{2}}$