Lab03: SVM and Kernel Intuition

Today

- 1. Recall SVM when linearly separable
- 2. SVM when not linearly separable (we'll want to use a kernel)
- 3. SVM in R

Recall

Recall SVM find the hyperplane (a line in two dimensions) that best separates the data

```
set.seed(0406)
x <- c(rnorm(5, 2, .5), rnorm(5, 5, .5))
y <- c(rnorm(5, 2, .5), rnorm(5, 5, .5))
plot(x = x, y = y, col = c(rep("hotpink", 5), rep("blue", 5)), pch = 16</pre>
```


Which line?

```
plot(x = x, y = y, col = c(rep("hotpink", 5), rep("blue", 9
abline(11,-2, lwd = 2)
abline(15,-3, col = "grey", lwd = 2)
```


Of course, data aren't usually this friendly

- Our classes aren't usually linearly separable
- ▶ But in this case, its obvious they ought to be easily separable

```
set.seed(0406)
ang <- 2*pi*rnorm(30) #random angle</pre>
r <- c(2*rnorm(15, 2, 1), 10*rnorm(15, 5, 1)) #random radius (different
x \leftarrow r * cos(ang) ## x coord
y \leftarrow r * sin(ang) ## y coord
plot(x = x, y = y, col = c(rep("hotpink", 15), rep("blue", 15)), pch =
  4
  20
  -20
  4
             -40
                          -20
                                                   20
```

Add another dimension

Let's add
$$z = \sqrt{x^2 + y^2}$$

► The hyperplane is now parallel to x/y axis at a certain value of z.

```
z <- sqrt(x^2 + y^2)
par(mfrow = c(1,2))
plot(x = x, y = z, col = c(rep("hotpink", 15), rep("blue", 15)), pch =
abline(h = 17, col = "grey", lwd = 2)
plot(x = y, y = z, col = c(rep("hotpink", 15), rep("blue", 15)), pch =
abline(h = 17, col = "grey", lwd = 2)</pre>
```


Now what?

We need to map our separating hyperplane back into the dimensions of the data

```
plot(x = x, y = y, col = c(rep("hotpink", 15), rep("blue",
radius <- 17
theta <- seq(0, 2*pi, length = 200)
lines(x = radius * cos(theta), y = radius * sin(theta))</pre>
```


The key point of kernels for SVM

- We've seen we can classify nonlinear data by mapping our space into a higher dimension
- But, this can be computationally expensive for every vector in the data
- SVM doesn't need the actual vectors transformed to the higher dimensional space to find the optimal hyperplane, it only needs their dot product, bypassing expensive calculations of the new dimensions

Dot product intuition

Recall from lecture, the kernel $k(\mathbf{x}_i, \mathbf{x}_j)$ (function that gives the inner product in the higher dimensional space) is a part of our optimization problem:

$$L(\lambda_i) = \sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i,j}^{N} \lambda_i \lambda_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j)$$

Recall λ_i 's are positive, and $L(\lambda)$ will be maximized if we give nonzero values to λ_i 's that correspond to the support vectors.

So how does the kernal/inner product matter?

Dot product intuition

$$L(\lambda_i) = \sum_{i=1}^{N} \lambda_i - \frac{1}{2} \sum_{i,j}^{N} \lambda_i \lambda_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j)$$

Consider cosine similarity $k(\mathbf{x}_i, \mathbf{x}_j) = \frac{\mathbf{x}_i^T \mathbf{x}_j}{||\mathbf{x}_i|| ||\mathbf{x}_j||}$

- 1. If $\mathbf{x}_i, \mathbf{x}_j$ are **orthogonal/perpendicular**, their cosine similarity is $0 \rightarrow$ should not contribute to L
- 2. If x_i, x_j are **identical**, their cosine similarity is 1:
 - ▶ Could happen if both $\mathbf{x}_i, \mathbf{x}_j$ predict the same class $(y_i = y_j = 1)$ \rightarrow detract from $L \rightarrow$ algorithm downgrades similar vectors that make the same prediction
 - ▶ Could happen if both $\mathbf{x}_i, \mathbf{x}_j$ predict the different classes (e.g., $y_i = 1y_j = -1$) \rightarrow add to L (subtracting negative second term, thus adding to the total sum) \rightarrow algorithm searches for similar vectors that make opposite predictions

In R

Predict whether a cancer is malignant or benign from biopsy details

```
library(mlbench)
data(BreastCancer)
table(BreastCancer$Class)
```

```
## benign malignant
## 458 241
```

In R

Let's first try linear separation, then other kernels.

```
library(e1071)
set.seed(0406)
BreastCancer <- BreastCancer[complete.cases(BreastCancer), ]
train_idx <- sample(1:nrow(BreastCancer), 400)
test_idx <- (1:nrow(BreastCancer))[-train_idx]
d <- BreastCancer[train_idx, c(2,3,11)]
d[,1] <- as.numeric(d[,1])
d[,2] <- as.numeric(d[,2])
mod <- sym(Class ~ ., data = d, kernel = 'linear')
#str(mod)</pre>
```

Plot results

Note

Drawn from James Le's tutorial on datacamp

https://www.datacamp.com/community/tutorials/ support-vector-machines-r

and Robert Berwick's slides

http://web.mit.edu/6.034/wwwbob/svm.pdf