試験名:学群編入学試験 【情報学群 情報科学類・情報メディア創成学類】

区 分	標 準 的 な 解 答 例 又 は 出 題 意 図
問題1 (数学1)	出 題意図 数の基本性質と数列の極限に関する知識と理解を問う.
	解答例 $(1) \ a>b>0 から,$ $b_1=\sqrt{ab}>0, a_1-b_1=\frac{1}{2}\left(\sqrt{a}-\sqrt{b}\right)^2>0.$
	$a_n > b_n > 0$ とすると $b_{n+1} = \sqrt{a_n b_n} > 0$, $a_{n+1} - b_{n+1} = \frac{1}{2} \left(\sqrt{a_n} - \sqrt{b_n} \right)^2 > 0$
v 9	となる.よって,数学的帰納法からすべての n に対して次の不等式が成り立つ:
	$a_{n+1} > b_{n+1} > 0.$ (A) (A) $\geq a_0 > b_0 > 0 \approx \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	$a_{n+1} = \frac{a_n + b_n}{2} < \frac{a_n + a_n}{2} = a_n, b_{n+1} = \sqrt{a_n b_n} > \sqrt{b_n b_n} = b_n.$ (B)
± 1 30 ± 2 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1	(A) と (B) から以下が得られる:
	$a_n>a_{n+1}>b_{n+1}>b_n.$ (2) $(2-1)\ a_n\to \alpha\ (n\to\infty)\ とならなければ、任意の自然数 N に対し、ある n\ge N で$
	$a_n - \alpha \ge \epsilon$, すなわち $\alpha + \epsilon \le a_n$ (C)
	となる $\epsilon>0$ が存在する.ところが $a_0>a_1>\cdots>a_N>\cdots>a_n$
	なので、 (C) はすべての n に対して成り立つ.このことは α よりも大きな下界が $\{a_n\}$ に存在することを意味し, α が下限であることに矛盾する.同様に, $b_n \to \beta$ $(n \to \infty)$ とならなければ, $\{b_n\}$ に β よりも小さな上界が存在することになって 矛盾が生じる.
20 m m m m m m m m m m m m m m m m m m m	$(2-2)$ 漸化式 $a_{n+1}=rac{a_n+b_n}{2}$
	の両辺で $n \to \infty$ とすれば $\alpha = \frac{1}{2}(\alpha + \beta)$ が成り立ち、これより $\alpha = \beta$ が得られる.

試験名:学群編入学試験 【情報学群 情報科学類・情報メディア創成学類】

区分	標 準 的 な 解 答 例 又 は 出 題 意 図
問題2 (数学2)	出 題意図 行列の積,逆行列,固有値,固有ベクトルに関する知識を問う.
	解答例 (1)
	$q_{j(k+1)} = p_{j1}q_{1k} + p_{j2}q_{2k} + p_{j3}q_{3k}$ なので、 $q_{k+1} = Aq_k$ と表される.
	(2)
	$(A \mid E_3) \xrightarrow{1 \text{ fill & 2 fill b bill}} \begin{pmatrix} 0.5 & 0.3 & 0 & 1 & 0 & 0 \\ 0 & 0.1 & 0.5 & -1 & 1 & 0 \\ 0 & 0.3 & 0.5 & 0 & 0 & 1 \end{pmatrix}$
	$ \frac{2 \text{行目を 3 倍して 3 行目から引く}}{0.50.3} $ $ \begin{pmatrix} 0.5 & 0.3 & 0 & 1 & 0 & 0 \\ 0 & 0.1 & 0.5 & -1 & 1 & 0 \\ 0 & 0 & -1 & 3 & -3 & 1 \end{pmatrix} $
	$ \frac{3 \text{ 行目を } 0.5 $
	$ \frac{2 \text{ 行目を 3 倍して 1 行目から引く}}{0.50000000000000000000000000000000000$
	$\frac{1 行目を 2 任, 2 行目を 10 任, 3 行目を (-1) 任する}{0 1 0 5 -5 5} \begin{pmatrix} 1 0 0 -1 3 -3 \\ 0 1 0 5 -5 5 \\ 0 0 1 -3 3 -1 \end{pmatrix} = (E_3 \mid A^{-1})$ (3)
	$oldsymbol{q}_{k-1} = A^{-1} \cdot {}^t \Big(0.35 0.45 0.2 \Big) = {}^t \Big(0.4 0.5 0.1 \Big)$ である.
	• $q_1 + q_3 = \frac{6}{5}q_2$ • $q_3 = \frac{3}{5}q_2$
	が得られる.また,状態 s_1, s_2, s_3 のいずれかを必ずとることから,
	• $q_1 + q_2 + q_3 = 1$
	である.これより, $q_2=rac{5}{11}, q_1=q_3=rac{3}{11}$ となる.

固有方程式を解くと,

$$|xE_3 - A| = 0$$

$$\begin{vmatrix} x - 0.5 & -0.3 & 0 \\ -0.5 & x - 0.4 & -0.5 \\ 0 & -0.3 & x - 0.5 \end{vmatrix}$$

$$= (x - 0.5) \begin{vmatrix} x - 0.4 & -0.5 \\ -0.3 & x - 0.5 \end{vmatrix} + 0.5 \begin{vmatrix} -0.3 & 0 \\ -0.3 & x - 0.5 \end{vmatrix}$$

$$= (x - 0.5)\{(x - 0.4)(x - 0.5) - 0.15\} + 0.5 \cdot (-0.3(x - 0.5))$$

$$= (x - 0.5)(x^2 - 0.9x + 0.2 - 0.15 - 0.15)$$

$$= (x - 0.5)(x + 0.1)(x - 1) = 0$$

となり、固有値 x = -0.1, 0.5, 1 となる.各固有値に対する最初の成分が 1 である固有ベクトルは、

• x = -0.1 のとき,

$$\begin{pmatrix} -0.6 & -0.3 & 0 \\ -0.5 & -0.5 & -0.5 \\ 0 & -0.3 & -0.6 \end{pmatrix} \begin{pmatrix} 1 \\ a \\ b \end{pmatrix} = \mathbf{0}$$

より、-0.6-0.3a=0, -0.5-0.5a-0.5b=0, -0.3a-0.6b=0 なので、求める固有ベクトルは、 $^t\begin{pmatrix}1&-2&1\end{pmatrix}$ である.

• x = 0.5 obs,

$$\begin{pmatrix} 0 & -0.3 & 0 \\ -0.5 & 0.1 & -0.5 \\ 0 & -0.3 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ a \\ b \end{pmatrix} = \mathbf{0}$$

より、-0.3a=0, -0.5+0.1a-0.5b=0 なので、求める固有ベクトルは、 $t\begin{pmatrix} 1 & 0 & -1 \end{pmatrix}$ である.

• x = 1 のとき.

$$\begin{pmatrix} 0.5 & -0.3 & 0 \\ -0.5 & 0.6 & -0.5 \\ 0 & -0.3 & 0.5 \end{pmatrix} \begin{pmatrix} 1 \\ a \\ b \end{pmatrix} = \mathbf{0}$$

より、 0.5-0.3a=0, -0.5+0.6a-0.5b=0, -0.3a+0.5b=0 なので、求める固有ベクトルは、 $^t \begin{pmatrix} 1 & \frac{5}{3} & 1 \end{pmatrix}$ である.

試験名:編入学試験

【情報学群 情報科学類・情報メディア創成学類】

区	分	標 準 的 な 解 答 例 又 は 出 題 意 図
問題3 (情報1)	u al	出 題意図 データを圧縮・解凍(符号化・復号化)するアルゴリズムによって、情報学の基礎である情報量に関しての知識と理解を問う。
		解答例
		(1) 全部で 7。出現回数は A=2、B=4、C=1。A \sim C の出現確率を $P_0\sim P_2$ とすると、 P_0
	O.	$=2/7$, $P_1 = 4/7$, $P_2 = 1/7$
	2 c	$\log_2 P_0 = \log_2 2 - \log_2 7 = 1 - 2.8 = -1.8$
	-	$\log_2 P_1 = \log_2 4 - \log_2 7 = 2 - 2.8 = -0.8$
		$\log_2 P_2 = \log_2 1 - \log_2 7 = 0 - 2.8 = -2.8$
	x ^e	
	a a	$E = -\left(\frac{2}{7} * (-1.8) + \frac{4}{7} * (-0.8) + \frac{1}{7} * (-2.8)\right)$
	,	$=\frac{3.6+3.2+2.8}{7}=1.37=1.4$
		(2)
		(2) B
	- 4	
		(3) 01 1 01 001 1 1 1
		(4) 1.6
	2	(5) 出現頻度の高いシンボルに少ないビット数を割り当てるため
		(6) CABDE
	*	$(7) \qquad \frac{1}{2}n(n-1)$
		(8) ① $j++;$ ② $j = 0;$
	9	
	<u>~</u>	

試験名:編入学試験

【情報学群 情報科学類・情報メディア創成学類】

区	分	標 準 的 な 解 答 例 又 は 出 題 意 図
問題4 (情報2)	8 2	出題意図 整数論の問題を配列を使って扱うプログラムを題材とし、問題文からプログラムの仕様を理解できるか、C言語プログラムコードの動作を理解できるか、求められた動作をする C言語プログラムコードを作成できるかを問う問題として作成した。
		(1) while (a[k] == 1) { r++; k; }
		(2) {2, 1, 1, 1, 1, 0, 0}, 2
		(3) if (a[i++] % 2 != 1) return 0;
		(4) if (check[a[i]-1] != 0) return 0; check[a[i++]-1] = 1;
		(5) if (a[i] == a[i+1]) { a[i] *= 2; j = i + 1; while (a[j] != 0) {
		a[j] = a[j+1]; j++; }
		<pre>if (i > 0 && a[i-1] == a[i]) { i; } else { i++;</pre>
		}