Než začnete číst: Rovnou říkám, že nemám druhou polovinu čtvrté úlohy, protože jsem k ní do deadlinu nestihl nic vymyslet. A jsem si svými řešeními celkově docela nejistý – chyběl jsem totiž zrovna třetí a čtvrtý týden, takže mi toho dosti uniklo.

Tedy pokud se Vám to nezdá dost, klidně mě rovnou vyhoďte, nemám problém si předmět odchodit příští rok. V opačném případě budu samozřejmě "makat" na tom, abych v tom měl plně jasno i v těch částech, které jsem stále nestihl plně pochopit.

 $P\check{r}iklad$ (1. – Optimality of space $W^{1,2}(\Omega)$)

Consider $\Omega = B_1(0) \subset \mathbb{R}^2$ and $p \in (1,2)$ be arbitrary. Find an elliptic matrix $\mathbb{A}(x)$ and nontrivial $\hat{u} \in W_0^{1,p}(\Omega)$ such that

$$\int_{\Omega} \mathbb{A} \nabla \hat{u} \cdot \nabla \varphi = 0, \qquad \forall \varphi \in C_0^1(\Omega).$$

Řešení

Použijeme hint:

$$(\mathbb{A})_{ij} = \delta_{ij} + (a-1)\frac{x_i x_j}{|x|^2}, \quad a > 1.$$

Toto je jistě matice eliptického problému, neboť:

$$\mathbb{A}\xi \cdot \xi = \sum_{ij} \mathbb{A}_{ij} \xi_j \xi_i = \sum_{ij} (\delta_{ij} + (a-1) \frac{x_i x_j}{|x|^2}) \cdot \xi_j \cdot \xi_i = \sum_i \xi_i^2 + (a-1) \sum_{ij} \frac{x_i \xi_i}{|x|} \cdot \frac{x_j \xi_j}{|x|} =$$

$$= |\xi|^2 + (a-1) \left(\sum_i \frac{x_i \xi_i}{|x|} \right) \left(\sum_j \frac{x_j \xi_j}{|x|} \right) = |\xi|^2 + (a-1) \left(\sum_i \frac{x_i \xi_i}{|x|} \right)^2 \geqslant |\xi|^2.$$

Dále $\overline{u}(x) := x_1 |x|^{-1-\varepsilon}$ pro $x \in \mathbb{R}^n$ a $\varepsilon \in (0,1)$. Tedy

$$\partial_1 \overline{u}(x) = |x|^{-1-\varepsilon} + x_1 \cdot (-1-\varepsilon)|x|^{-2-\varepsilon} \cdot \frac{1}{2}|x|^{-1} \cdot 2x_1 = |x|^{-1-\varepsilon} + (-1-\varepsilon)x_1^2|x|^{-3-\varepsilon},$$

$$\partial_2 \overline{u}(x) = x_1 \cdot (-1-\varepsilon)|x|^{-2-\varepsilon} \cdot \frac{1}{2}|x|^{-1} \cdot 2x_2 = (-1-\varepsilon)x_1x_2|x|^{-3-\varepsilon}.$$

Integrovatelnost těchto derivací můžeme zjistit například převedením do polárních souřadnic:

$$\int_{\Omega} (\partial_1 \overline{u}(x))^p dx_1 dx_2 = \int_{\Omega} (|x|^{-1-\varepsilon} + (-1-\varepsilon)x_1^2|x|^{-3-\varepsilon})^p dx_1 dx_2 =$$

$$= \int_{\Omega} (r^{-1-\varepsilon} + (-1-\varepsilon)\cos^2(\varphi)r^2 \cdot r^{-3-\varepsilon})^p r dr d\varphi = \int_{\Omega} r^{-p \cdot (1-\varepsilon)+1} \cdot h_1(\varphi) dr d\varphi,$$

$$\int_{\Omega} (\partial_2 \overline{u}(x))^p dx_1 dx_2 = \int_{\Omega} ((-1-\varepsilon)x_1 x_2|x|^{-3-\varepsilon})^p dx_1 dx_2 =$$

$$= \int_{\Omega} ((-1-\varepsilon)\cos(\varphi)r \cdot \sin(\varphi)r \cdot r^{-3-\varepsilon})^p r dr d\varphi = \int_{\Omega} r^{p \cdot (-1-\varepsilon)+1} \cdot h_2(\varphi) dr d\varphi,$$

kde h_i je nějaká omezená funkce, která "nevynuluje integrál". Z toho už je jasně vidět (neboť $0 \in \Omega$), že pro integrovatelnsot $p(-1-\varepsilon)+1>-1$, tj. $p<\frac{2}{1+\varepsilon}$, tj. $\overline{u}\in W^{1,\frac{2}{1+\varepsilon}}(\Omega)$. Tedy vhodnou volbou $\varepsilon\in(0,1)$ dokážeme zařídit $\overline{u}\in W^{1,p}(\Omega)$ pro libovolné $p\in(1,2)$.

Řešení

Nakonec zjistíme, že \overline{u} řeší problém pro naše \mathbb{A} :

$$\begin{split} \int_{\Omega} \mathbb{A} \nabla \overline{u}(x) \cdot \nabla \varphi dS &= \int_{\Omega} \sum_{ij} \left(\delta_{ij} + (a-1) \frac{x_i x_j}{|x|^2} \right) \partial_j \overline{u}(x) \cdot \partial_i \varphi dS = \\ &= \int_{\Omega} \sum_{ij} \left(\delta_{ij} + (a-1) x_i x_j |x|^{-2} \right) \left((-1-\varepsilon) \cdot x_1 x_j \cdot |x|^{-3-\varepsilon} \right) \partial_i \varphi + \\ &\quad + \sum_i (\delta_{i1} + (a-1) x_i x_1 |x|^{-2}) (|x|^{-1-\varepsilon}) \cdot \partial_i \varphi dS = \\ &= \int_{\Omega} \sum_i (-1-\varepsilon) \cdot x_1 x_i \cdot |x|^{-3-\varepsilon} \partial_i \varphi + \sum_i (a-1) (-1-\varepsilon) x_1 x_i \left(\sum_j x_j^2 \right) |x|^{-5-\varepsilon} \partial_i \varphi + \\ &\quad + |x|^{-1-\varepsilon} \partial_1 \varphi + \sum_i (a-1) x_i x_1 |x|^{-3-\varepsilon} \partial_i \varphi dS = \\ &= \int_{\Omega} \sum_i x_1 x_i |x|^{-3-\varepsilon} \left((-1-\varepsilon) + (a-1) (-1-\varepsilon) + (a-1) \right) \partial_i \varphi + |x|^{-1-\varepsilon} \partial_1 \varphi dS = \\ &= -\int_{\Omega} \sum_i \partial_i \left(x_1 x_i |x|^{-3-\varepsilon} (-a\varepsilon-1) \right) \varphi + \partial_1 \left(|x|^{-1-\varepsilon} \right) \varphi dS + \int_{\partial\Omega} \dots \varphi \dots = \\ &= -\int_{\Omega} \sum_i \left(x_1 |x|^{-3-\varepsilon} + (-3-\varepsilon) x_1 x_i^2 |x|^{-5-\varepsilon} \right) \left(-a\varepsilon-1 \right) \varphi + x_1 |x|^{-3-\varepsilon} (-a\varepsilon-1) \varphi + \\ &\quad + (-1-\varepsilon) x_1 |x|^{-3-\varepsilon} \varphi dS + 0 = \\ &= -\int_{\Omega} 3 (-a\varepsilon-1) x_1 |x|^{-3-\varepsilon} \varphi + (-3-\varepsilon) (-a\varepsilon-1) x_1 |x|^{-3-\varepsilon} \varphi + (-1-\varepsilon) x_1 |x|^{-3-\varepsilon} \varphi dS = \\ &= -\int_{\Omega} (3 (-a\varepsilon-1) + (-3-\varepsilon) (-a\varepsilon-1) + (-1-\varepsilon)) x_1 |x|^{-3-\varepsilon} \varphi dS = \\ &= -\int_{\Omega} (-1+a\varepsilon^2) x_1 |x|^{-3-\varepsilon} \varphi dS. \end{split}$$

Tedy pokud dosadíme $a=\frac{1}{\varepsilon^2}$, tak pro naše A funkce \overline{u} řeší $\int A \nabla u \cdot \nabla \varphi$. Tím, že navíc dosadíme $\varepsilon < \frac{2}{p} - 1$ jsme splnili zadání.

Příklad (2.)

The goal is to show that maximal regularity cannot hold in Lipschitz domains or when changing the type of boundary conditions. Let $\varphi_0 \in (0, 2\pi)$ be arbitrary and consider $\Omega \subset \mathbb{R}^2$ given by

$$\Omega := \{ (r, \varphi) | r \in (0, 1), \varphi \in (0, \varphi_0) \}.$$

Denote $\Gamma_i \subset \partial\Omega$ in the following way $\Gamma_1 := \{(r,0)|r \in (0,1)\}, \ \Gamma_2 := \{(r,\varphi_0)|r \in (0,1)\}$ a $\Gamma_3 := \{(1,\varphi)|\varphi \in (0,\varphi_0)\}.$

Consider two functions

$$u_1(r,\varphi) := r^{\alpha_1} \sin\left(\frac{\varphi\pi}{\varphi_0}\right), \qquad u_2(r,\varphi) := r^{\alpha_2} \sin\left(\frac{\varphi\pi}{2\varphi_0}\right).$$

• Find the condition on α_i so that $u_i \in W^{1,2}(\Omega)$ – find an explicit formula for ∇u_i – and prove that it is really the weak derivative.

Řešení

Běžné derivace těchto funkcí jsou:

$$\nabla u_i = \begin{pmatrix} \frac{\partial u_i}{\partial r} \\ \frac{1}{r} \frac{\partial u_i}{\partial \varphi} \end{pmatrix} = \begin{pmatrix} \alpha_i r^{\alpha_i - 1} \sin \left(\frac{\varphi \pi}{i \cdot \varphi_0} \right) \\ \frac{\pi}{i \cdot \varphi_0} r^{\alpha_i - 1} \cos \left(\frac{\varphi \pi}{i \cdot \varphi_0} \right) \end{pmatrix}$$

Jelikož tyto derivace jsou spojité, tak pro ně platí per-partes (používám jen supp ψ , abych se vyhnul r=0, ψ i ψ' jsou na doplňku nulové, tedy i integrovaná funkce):

$$\int_{\Omega} u_i \partial_j \psi = \int_{\text{supp } \psi} u_i \partial_j \psi + 0 \stackrel{\text{p-p}}{=} - \int_{\text{supp } \psi} \psi \partial_j u_i + \int_{\partial \left(\overline{\text{supp } \psi}\right)} \psi u_i dS_j = - \int \dots + \int 0 = 0$$

$$= - \int_{\text{supp } \psi} \psi \partial_j u_i = - \int_{\Omega} \psi \partial_j u_i + 0.$$

Tedy jsou to slabé derivace. Že $u_i \in W^{1,2}(\Omega)$ platí, pokud jsou integrály druhých mocnin derivací konečné:

$$\int_{\Omega} \left(\alpha_i r^{\alpha_i - 1} \sin \left(\frac{\varphi \pi}{i \cdot \varphi_0} \right) \right)^2 = \int_{\Omega} \alpha_i^2 r^{2\alpha_i - 2} \left(\sin \left(\frac{\varphi \pi}{i \cdot \varphi_0} \right) \right)^2 < \infty,$$

$$\int_{\Omega} \left(\frac{\pi}{i \cdot \varphi_0} r^{\alpha_i - 1} \cos \left(\frac{\varphi \pi}{i \cdot \varphi_0} \right) \right)^2 = \int_{\Omega} \left(\frac{\pi}{i \cdot \varphi_0} \right)^2 r^{2\alpha_i - 2} \left(\cos \left(\frac{\varphi \pi}{i \cdot \varphi_0} \right) \right)^2 < \infty.$$

To bude zřejmě tehdy, když $\alpha_i > \frac{1}{2}$.

• Find the proper condition on α_i so that u_i solves the problem

a)
$$-\Delta u_1 = 0$$
 in Ω , b) $u_1 = 0$ on $\Gamma_1 \cup \Gamma_2$, c) $u_1 = \sin\left(\frac{\varphi\pi}{\varphi_0}\right)$ on Γ_3 ,

d)
$$-\Delta u_2 = 0$$
 in Ω , e) $u_2 = 0$ on Γ_1 , f) $u_2 = \sin\left(\frac{\varphi\pi}{2\varphi_0}\right)$ on Γ_3 ,

g)
$$\nabla u_2 \cdot n = 0$$
 on Γ_2 .

Řešení

Rovnice b, c, c, e, f splňují funkce z definice (když dosadíme r = 1, tak nám zbude pouze sin, když dosadíme $\varphi = 0$ nebo $\varphi = \varphi_0$, tak bude sin nulový).

Norma n je v Γ_2 kolmá na poloměr, tedy

$$\nabla u_2 \cdot n = \frac{\pi}{2\varphi_0} r^{\alpha_2 - 1} \cos\left(\frac{\varphi\pi}{2\varphi_0}\right) = \frac{\pi}{2\varphi_0} r^{\alpha_2 - 1} \cos\left(\frac{\varphi_0\pi}{2\varphi_0}\right) = \dots \cdot \cos\left(\frac{\pi}{2}\right) = \dots \cdot 0 = 0.$$

V polárních souřadnicích $\Delta f = \frac{\partial^2 f}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \varphi^2} + \frac{1}{r} \frac{\partial f}{\partial r}$. Tedy

$$\Delta u_i = \alpha_i \cdot (\alpha_i - 1) r^{\alpha_i - 2} \sin\left(\frac{\varphi \pi}{i \cdot \varphi_0}\right) - r^{-2} \left(\frac{\pi}{i \cdot \varphi_0}\right)^2 r^{\alpha_i} \sin\left(\frac{\varphi \pi}{i \cdot \varphi_0}\right) +$$

$$+r^{-1}\alpha_i r^{\alpha_i-1} \sin\left(\frac{\varphi\pi}{i\cdot\varphi_0}\right) = r^{\alpha_i-2}\cdot\sin\left(\frac{\varphi\pi}{i\cdot\varphi_0}\right)\cdot\left(\alpha_i\cdot(\alpha_i-1) - \left(\frac{\pi}{i\cdot\varphi_0}\right)^2 + \alpha_i\right).$$

Výraz před závorkou je na vnitřku Ω nenulový, tedy musí být nulová závorka:

$$0 = \alpha_i \cdot (\alpha_i - 1) - \left(\frac{\pi}{i \cdot \varphi_0}\right)^2 + \alpha_i = \alpha_i^2 - \left(\frac{\pi}{i \cdot \varphi_0}\right)^2 \implies \alpha_i = \pm \frac{\pi}{i \cdot \varphi_0}.$$

• Find all p's for which $u_i \in W^{2,p}(\Omega)$. What is the criterium on α_i so that $u_i \in W^{2,2}(\Omega)$.

Řešení

Je to podobné jako v prvním bodě, jen chceme druhé derivace, tedy r bude v mocnině $p \cdot (\alpha_i - 2)$, tedy chceme, aby $p \cdot (\alpha_i - 2) > -1$. Tedy kritérium pro α_i je $\alpha_i > 1.5$.

• With the help of the above computation, find $f_i \in L^2(\Omega)$ such that the problems with homogeneous boundary conditions, i.e.,

$$-\Delta v_1 = f_1 \text{ in } \Omega, \qquad v_1 = 0 \text{ on } \partial \Omega,$$
$$-\Delta v_2 = f_2 \text{ in } \Omega, \qquad v_2 = 0 \text{ on } \Gamma_1 \cup \Gamma_3, \qquad \nabla v_2 \cdot n = 0 \text{ on } \Gamma_2$$

poses unique weak solutions $v_i \in W^{1,2}(\Omega)$ but $v_1 \notin W^{2,2}(\Omega)$ if $\varphi_0 > \pi$ and $v_2 \notin W^{2,2}(\Omega)$ for $\varphi_0 > \frac{\pi}{2}$.

 $\check{R}e\check{s}en\acute{\imath}$

 \Box

Když zadefinujeme $v_i = u_i - \sin\left(\frac{\varphi\pi}{i\cdot\varphi_0}\right)$, dostaneme splněné okrajové podmínky tohoto problému, neboť v Γ_3 jsme odečetli přesně hodnotu, v Γ_1 jsou právě tyto siny nulové a v Γ_2 je v prvním případě také nulový a v druhém chceme, aby byla druhá část gradientu, což je ale příslušný kosinus, který je přesně v $\nabla u_2 \cdot n$ a je též nulový.

Zbývají f_1 a f_2 :

$$f_i = -\Delta v_i = -\Delta u_i + \Delta \sin\left(\frac{\varphi \pi}{i \cdot \varphi_0}\right) =$$

$$= 0 + \left(0 + \frac{1}{r^2} \cdot \left(\frac{\pi}{i \cdot \varphi_0}\right)^2 \cdot \sin\left(\frac{\varphi \pi}{i \cdot \varphi_0}\right) + \frac{1}{r} \cdot 0\right) = \left(\frac{\pi}{r \cdot i \cdot \varphi_0}\right)^2$$

 $P\check{r}iklad$ (3. – Fredholm alternative vs Lax-Milgram lemma vs minimum principe) Consider $\Omega \subset \mathbb{R}^d$ a Lipschitz domain. Let $\mathbb{A}: \Omega \to \mathbb{R}^d$ be an elliptic matrix. Assume that $\mathbf{c} \in L^{\infty}(\Omega, \mathbb{R}^d)$ and $b \geq 0$. Consider the problem

$$-\operatorname{div}(\mathbb{A}\nabla u) + bu + \mathbf{c} \cdot \nabla u = f \text{ in } \Omega, \qquad u = u_0 \text{ on } \partial\Omega.$$

a) Consider the case b = 0, $\mathbf{c} = \mathbf{o}$ and $f \in L^2(\Omega)$ fulfilling $f \ge 0$. Let $u_0 \in W^{1,2}(\Omega)$ and denote $m := \operatorname{essinf}_{\partial\Omega} u_0$. Show that the unique weak solution u satisfies $u \ge m$ almost everywhere in Ω .

Důkaz

Jak nám napovídá hint, definujeme $\varphi(x):=(u(x)-m)_-$. Jelikož Ω je omezené a $u\in W^{1,2}$, tak

$$||\varphi||_2^2 = \int_{\Omega} (u(x) - m)_-^2 dx \le \int_{\Omega} (u(x) - m)^2 dx = ||u(x) - m||_2^2 \le (||u(x)||_2 + ||m||_2)^2 < \infty$$

Zároveň $u_0 = u \ge m$ na $\partial \Omega$, tedy φ je na $\partial \Omega$ nulové.

$$\forall \psi \in C_0^{\infty}(\Omega) : \int_{\Omega} (\nabla \varphi(x)) \psi(x) dx = \int_{\Omega} \nabla ((u(x) - m)_{-}) \psi(x) dx =$$

$$= \int_{u(x) > m} \nabla (u(x) - m) \psi(x) dx + \int_{u(x) \le m} 0 \psi(x) dx = \int_{u(x) > m} (\nabla u(x)) \psi(x) dx =$$

$$= \int_{\Omega} (\nabla \chi_{u(x) > m} u(x)) \cdot \psi(x) dx.$$

Tedy $\nabla \varphi = \nabla u \chi_{u(x)>m}$, tedy $||\nabla \varphi||_2 < ||\nabla u||_2 < \infty$, tj. $\varphi \in W_0^{1,2}$.

Nyní použijeme φ jako testovací funkci:

$$\int_{\Omega} -\operatorname{div}(\mathbb{A}\nabla u)\varphi = \int_{\Omega} f\varphi$$

$$\underbrace{\int_{\Omega} \mathbb{A}\nabla u \nabla \varphi}_{\geqslant C_1 |\nabla u|^2 \geqslant 0} = \int_{\Omega} \underbrace{f}_{\geqslant 0} \underbrace{\varphi}_{\geqslant 0}$$

Tedy levá strana ≥ 0 , pravá ≤ 0 , tudíž se rovnají nule. Aby se pravá strana rovnala nule (f je nenulové), tak musí být $\varphi = 0$ skoro všude, tedy $u \geq m$ skoro všude na Ω .

b) Consider b > 0 and **c** arbitrary. Prove that for any $u_0 \in W^{1,2}(\Omega)$ and any $f \in L^2(\Omega)$ there exists a weak solution.

 $D\mathring{u}kaz$

Nejprve si podle hintu převedeme úlohu na důkaz tvrzení, že

$$-\operatorname{div}(\mathbb{A}\nabla u) + bu + \mathbf{c} \cdot \nabla u = 0 \ \text{v} \ \Omega$$

má pouze jedno řešení $u \in W_0^{1,2}(\Omega), u = 0.$

Převedení bych moc rád udělal tak, že místo f na pravé straně použiji $f - bu_0 - \mathbf{c} \cdot \nabla u_0 + \operatorname{div}(\mathbb{A}\nabla u)$, protože to k tomu hrozně nabádá, navíc mě nenapadá nic jiného, co by šlo použít, než Fredholmova alternativa a nenapadá mě žádný jiný postup, jak se dostat z FA na boundary value problém. Jenže div $(\mathbb{A}\nabla u)$ prostě nemusí být v L^2 . Asi mi něco jednoduchého uniká, ale bohužel už nemám moc času do deadlinu. Takže řekněme, že nová pravá strana je v L^2 .

Potom z Fredholmovy alternativy a z tvrzení (pokud tedy platí, což si dokážeme dále) plyne, že problém

$$-\operatorname{div}(\mathbb{A}\nabla u) + bu + \mathbf{c} \cdot \nabla u = f - bu_0 - \mathbf{c} \cdot \nabla u_0 + \operatorname{div}(\mathbb{A}\nabla u) \vee \Omega, \qquad u = 0 \text{ na } \partial\Omega,$$

má (právě jedno) řešení $u \in W_0^{1,2}(\Omega)$. Pokud tedy zvolíme $\tilde{u} = u + u_0$, pak \tilde{u} je slabé řešení problému

$$-\operatorname{div}(\mathbb{A}\nabla \tilde{u}) + b\tilde{u} + \mathbf{c} \cdot \nabla \tilde{u} = f \text{ v } \Omega, \qquad \tilde{u} = u_0 \text{ na } \partial \Omega,$$

neboť "všechno" je zde lineární, takže "přičtením" u_0 k u na levé straně se přičtou odpovídající členy na pravé.

 $D\mathring{u}kaz$

Mějme u řešící $-\operatorname{div}(\mathbb{A}\nabla u) + bu + \mathbf{c} \cdot \nabla u = 0 \text{ v } \Omega.$

Nyní dokážeme, že pro nějaké M je |u| < M skoro všude, tedy $u \in L^{\infty}(\Omega)$ a $||u||_{L^{\infty}} \le M$. Pokud d=1, tak je z věty o vnoření u spojité, takže se omezenost může "rozbíjet" pouze na hranici Ω , ale my víme, že tru=0. Pro tuto část důkazu tedy předpokládejme d>1.

Ať M>0 a $\varphi_M:=(u-M)_+$. Protože je $u\in W^{1,2}_0(\Omega)$, tak $\varphi_M\in W^{1,2}(\Omega)$ ze stejných důvodů jako v a), $\nabla\varphi_M=\nabla u\cdot\chi_{u\geqslant M}$, a navíc $\varphi_M\in W^{1,2}_0$, neboť u zůstává 0 tam, kde 0 bylo.

Tedy ho můžeme použít jako testovací funkci: $\int \mathbb{A} \nabla u \cdot \nabla \varphi_M + bu \varphi_M + \mathbf{c} \cdot \nabla u \varphi_M = \int 0 \cdot \varphi_M$. První a třetí člen už je na u < M stejně nulový, tedy můžeme psát

$$\int \mathbb{A} \nabla \varphi_M \cdot \nabla \varphi_M + bu \varphi_M = -\int \mathbf{c} \cdot \nabla \varphi_M \varphi_M.$$

Levou stranu můžeme zezdola odhadnout pomocí toho, že $b>0,\ \varphi_M\geqslant 0$ a tam, kde $\varphi_M\neq 0,\ u\geqslant M>0$. Navíc A je eliptické, takže

$$c_1 \|\nabla \varphi_M\|_2^2 = \int c_1 \|\nabla \varphi_M\|_{\mathbb{R}^d}^2 \leqslant \int \mathbb{A} \nabla \varphi_M \cdot \nabla \varphi_M + bu\varphi_M = -\int \mathbf{c} \cdot \nabla \varphi_M \varphi_M.$$

Levou část můžeme shora odhadnout pomocí dvakrát použité Hölderovy nerovnosti:

$$-\int \mathbf{c} \cdot \nabla \varphi_M \varphi_M \leqslant \|c\|_{\infty} \cdot \|\nabla \varphi_M\|_2 \cdot \|\varphi_M\|_2.$$

Nyní znovu použijeme Hölderovu nerovnost, tentokrát na $\|\varphi_M\|_2$. Protože ψ je na u < M nulové, můžeme psát (jak bylo na přednášce)

$$\|\varphi_M\|_2 = \sqrt{\int \varphi_M^2} = \sqrt{\int \varphi_M^2 \chi_{u \geqslant M}} \leqslant \sqrt{\left(\int \varphi_M^{2p}\right)^{\frac{1}{p}} \cdot \left(\int \chi_{u \geqslant M}^q\right)^{\frac{1}{q}}} = \|\varphi_M\|_{2p} \cdot \left(\int \chi_{u \geqslant M}\right)^{\frac{1}{2q}},$$

kde $\frac{1}{p} + \frac{1}{q} = 1$, avšak musíme použít správné $p \neq 1$ (p = 1 nám nedává nic nového), aby $\varphi_M \in L^{2p}$. To můžeme z věty o vnoření Sobolevových prostorů: pokud d = 2, tak $W^{1,2}(\Omega) \hookrightarrow L^r$ pro r jakékoliv, takže není co řešit. Pokud d > 2, tak můžeme vybrat $2p = r = \frac{d \cdot 2}{d-2} = \frac{2}{1-(2/d)} > 2$ (p > 1).

Nakonec $\infty > \int u \geqslant \int_{u>M} u \geqslant \int_{u>M} M$, tedy míra $\{u>M\}$ se musí pro rostoucí M zmenšovat k nule. Takže můžeme zvolit libovolně malé $(\int \chi_{u\geqslant M})^{\frac{1}{2q}}$ v nerovnosti:

$$c_1 \cdot C \cdot \|\nabla \varphi_M\|_2 \cdot \|\varphi_M\|_{2p} \lesssim c_1 \|\nabla \varphi_M\|_2^2 \leqslant -\int \mathbf{c} \cdot \nabla \varphi_M \varphi_M \leqslant \|c\|_{\infty} \cdot \|\nabla \varphi_M\|_2 \cdot \|\varphi_M\|_{2p} \left(\int \chi_{u \geqslant M}\right)^{\frac{1}{q}}$$

tedy $\|\nabla \varphi_M\|_2 = 0$ (nebo $\|\varphi_M\|_2 = 0$, ale to bychom byli hotovi). Tudíž se nám celá rovnost s testovací funkcí φ_M stala $\int b \cdot u \cdot \varphi_M = 0$, ale b > 0, u > 0 (kde $\varphi_M \neq 0$), takže musí být $\varphi_M = 0$ skoro všude, tedy $u \leq M$ skoro všude.

Důkaz

Úplně stejně dostaneme $u \ge -M'$ pro nějaké M' > 0 z $\varphi_{M'} = (u + M)_-$, jelikož pak

$$\int \mathbb{A} \nabla \varphi_{M'} \cdot \nabla \varphi_{M'} + b(-u)(-\varphi_{M'}) = -\int \mathbf{c} \cdot \nabla \varphi_{M'} \varphi_{M'}.$$

má úplně stejné vlastnosti jako rovnice výše, jelikož v prvním členu je druhá mocnina, v druhém je to zase kladné a vpravo omezujeme vlastně absolutní hodnotu (víme, že pravá strana je nezáporná, takže i levá musí být) normami, takže na znamínkách nezáleží.

 $D\mathring{u}kaz$

Nyní máme tedy dokázáno, že u je "omezená skoro všude", tedy $u \in L^{\infty}$. Tedy i $u^k \in L^{\infty}$ pro $k \in \mathbb{N}$, navíc $\nabla u^k = k \cdot u^{k-1} \nabla u$, protože $\nabla (u \cdot \ldots \cdot u) = u \nabla (u \cdot \ldots \cdot u) + (\nabla u)(u \cdot \ldots \cdot u)$ a $u^{k-1} \in L^{\infty}$, tedy $u^k \in W^{1,2}(\Omega)$. Nakonec tr $u^k|_{\partial\Omega} = 0$, neboť

$$\operatorname{tr} u^k|_{\partial\Omega} = u^k|_{\partial\Omega} = (u|_{\partial\Omega})^k = (\operatorname{tr} u|_{\partial\Omega})^k = 0^k = 0.$$

Tedy $u^k \in W_0^{1,2}$.

Použijme u^k pro k liché jako testovací funkci:

$$\int \mathbb{A} \nabla u \cdot \nabla u^k = \int k \cdot u^{k-1} \mathbb{A} \nabla u \cdot \nabla u = \int -bu \cdot u^k - u^k \mathbf{c} \cdot \nabla u.$$

Na levou stranu můžeme použít elipticitu \mathbb{A} (u^{k-1} je sudé), napravo je $-bu^{k+1}$ určitě záporné, tedy ji můžeme zvětšit přidáním absolutní hodnoty do části s \mathbf{c} :

$$\int c_1(\nabla u)^2 \cdot k \cdot u^{k-1} \le -\int bu^{k+1} + \int |\mathbf{c} \cdot \nabla u| \cdot |u^{(k-1)/2}| \cdot |u^{(k+1)/2}|.$$

Chtěli bychom se zbavit integrálu s \mathbf{c} , tedy rozdělíme výraz jako výše a použijeme Yangovu nerovnost pro koeficienty p=q=2, tj. $\left(|\mathbf{c}\cdot\nabla u|\cdot|u^{(k-1)/2}|\right)\cdot|u^{(k+1)/2}|\leqslant\frac{|\mathbf{c}\cdot\nabla u|^2\cdot u^{k-1}}{2}+\frac{u^{k+1}}{2}$:

$$\int (c_1 \cdot k - |c|/2)(\nabla u)^2 \cdot u^{k-1} \le \int (-b + |c|/2)u^{k+1}.$$

Hölderovou nerovností (pro $1, \infty$) (a tím, že na levé straně vytýkáme kladnou a zmenšujeme zápornou část a na pravé vytýkáme zápornou a zvětšujeme kladnou)

$$(c_1 \cdot k - ||c||_{\infty}/2) \int (\nabla u)^2 \cdot u^{k-1} \le (-b + ||c||_{\infty}/2) \int u^{k+1},$$

$$\int (\nabla u)^2 \cdot u^{k-1} \leqslant \frac{-b + \|c\|_{\infty}/2}{c_1 \cdot k - \|c\|_{\infty}/2} \|u^{\frac{k+1}{2}}\|_2^2.$$

Teď už stačí jen $\int (\nabla u)^2 \cdot u^{k-1} \geqslant \text{konst} \|u\|_{k+1}$. Takže konstantu na pravé straně můžeme libovolně zmenšit, takže $\|u\|_{k+1} = 0$, tedy u = 0 skoro všude.

Příklad (4. – Lax-Milgram lemma vs Fredholm alternative II)

Consider $\Omega \subset \mathbb{R}^d$ a Lipschitz domain. Let $a, b, c, d \in \mathbb{R}$. Consider the problem: For given $\mathbf{f} = (f_1, f_2, f_3) \in (L^2(\Omega))^3$ find $\mathbf{u} = (u_1, u_2, u_3) \in (W_0^{1,2}(\Omega))^3$ solving

$$-\Delta u_1 + au_3 = f_1 \quad \text{in } \Omega,$$

$$-\Delta u_2 + bu_3 = f_2 \quad \text{in } \Omega,$$

$$-\Delta u_3 + cu_1 + du_2 = f_3 \quad \text{in } \Omega,$$

$$u_1 = u_2 = u_3 = 0 \quad \text{on } \partial\Omega.$$

Under which conditions on a, b, c, d the system has for any \mathbf{f} a weak solution?

Řešení

Chtěli bychom použít Lax-Milgram. K tomu potřebujeme, aby na levé straně byl eliptický bilineární operátor. Operátor si definujeme přímočaře (tak aby odpovídal představě slabého řešení). Pro $V=(W_0^{1,2}(\Omega))^3$ definujme $B:V\times V\to \mathbb{R}$ jako

$$B(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \nabla u_1 \cdot \nabla v_1 + au_3v_1 + \nabla u_2 \cdot \nabla v_2 + bu_3v_2 + \nabla u_3 \cdot \nabla v_3 + cu_1v_3 + du_2v_3.$$

Zřejmě je lineární. Také je "V-bounded", neboť ($\|\cdot\|_2 = \|\cdot\|_{L^2(\Omega)}$, $\|\cdot\|_{1,2} = \|\cdot\|_{(W^{1,2}(\Omega))^3} = \|\cdot\|_V$)

$$\begin{split} B(\mathbf{u},\mathbf{v}) &= \int_{\Omega} \nabla u_{1} \cdot \nabla v_{1} + au_{3}v_{1} + \nabla u_{2} \cdot \nabla v_{2} + bu_{3}v_{2} + \nabla u_{3} \cdot \nabla v_{3} + cu_{1}v_{3} + du_{2}v_{3} \leqslant \\ &\leqslant \sum_{ij} \left| \int_{\Omega} \partial_{j} u_{i} \partial_{j} v_{i} \right| + |a| \cdot \left| \int_{\Omega} u_{3}v_{1} \right| + |b| \cdot \left| \int_{\Omega} u_{3}v_{2} \right| + |c| \cdot \left| \int_{\Omega} u_{1}v_{3} \right| + |d| \cdot \left| \int_{\Omega} u_{2}v_{3} \right| \overset{\text{H\"{o}lder}}{\leqslant} \\ &\leqslant \sum_{ij} \|\partial_{j} u_{i}\|_{2} \|\partial_{j} v_{i}\|_{2} + |a| \cdot \|u_{3}\|_{2} \|v_{1}\|_{2} + |b| \cdot \|u_{3}\|_{2} \|v_{2}\| + |c| \cdot \|u_{1}\|_{2} \|v_{3}\|_{2} + |d| \cdot \|u_{2}\|_{2} \|v_{3}\|_{2} \leqslant \\ &= \max(1, |a|, |b|, |c|, |d|) \left(\sum_{i} \left(\sum_{j} \|\partial_{j} u_{i}\|_{2} + \|u_{i}\|_{2} \right) \right) \cdot \left(\sum_{i} \left(\sum_{j} \|\partial_{j} v_{i}\|_{2} + \|v_{i}\|_{2} \right) \right) \overset{*}{\leqslant} \\ &\leqslant (3d+1)^{2} \cdot \max(1, |a|, |b|, |c|, |d|) \|\mathbf{v}\|_{1,2} \cdot \|\mathbf{u}\|_{1,2}. \end{split}$$

*:
$$\sum_{i} \alpha_{i} \leq n \cdot \max_{i} \alpha_{i} = n \cdot \sqrt{\left(\max_{i} \alpha_{i}\right)^{2}} \leq n \cdot \sqrt{\sum_{i} \alpha_{i}^{2}}, \qquad i \in [n] = \{1, \dots, n\}, \alpha_{i} \geq 0.$$

Aby byl "V-coercive", potřebujeme, aby $B(\mathbf{u}, \mathbf{u}) \ge c_1 ||u||_V^2$:

$$B(\mathbf{u}, \mathbf{u}) = \int_{\Omega} \nabla u_1 \cdot \nabla u_1 + au_3 u_1 + \nabla u_2 \cdot \nabla u_2 + bu_3 u_2 + \nabla u_3 \cdot \nabla u_3 + cu_1 u_3 + du_2 u_3 =$$

$$= \int_{\Omega} \sum_{ij} (\partial_j u_i)^2 + (a+c)u_3 u_1 + (b+d)u_3 u_2.$$

Kdyby (a+c) nebylo 0, pak můžeme zvolit např. $\pm u_1 = u_3 = e^{\sqrt{\frac{a+c}{2}}t}$, $u_2 = 0$ (znamínko podle toho, zda je (a+c) záporné nebo kladné), pak $B(\mathbf{u},\mathbf{u}) = 0 \geqslant c_1 \|u\|_V^2$. Obdobně pro (b+d). Tedy dostáváme podmínky a+c=0, b+d=0. Jakmile ale máme tuto podmínku, tak

$$B(\mathbf{u}, \mathbf{u}) = \int_{\Omega} \sum_{ij} (\partial_j u_i)^2 = \sum_{ij} \int_{\Omega} (\partial_j u_i)^2 = \|\nabla u\|_{(L^2(\Omega))^{3d}}^2$$

Z Poincarého nerovnosti máme $||u||_2 \leqslant C \cdot ||\nabla u||_2$, tj. $\frac{1}{C^2+1} (||u||^2 + ||\nabla u||^2) \leqslant ||\nabla u||_{1,2}$, tedy $B(\mathbf{u}, \mathbf{u}) \geqslant c_1 ||u||_V$.

Tedy pokud a+c=0=b+d, tak je operátor B eliptický bilineární operátor a tedy podle Lax-Milgram existuje pro každé $\mathbf{f} \in (L^2\Omega)^3$ právě jedno slabé řešení problému ze zadání.