	Cunt	100	L IV	رادان	200	15/6	3 500	-05	to as mississission as it
1	Solve 8-Queen problem by Hill climbing & any one of its								
	Variants comment on the rusults of both.								
->	- In 8-Queen puoblem, by moving a single queen to								
	another square we have 8x7=56 possible states as								
	we can move any queen in column. In this publish								
odi	For we defines heuristic function, has number of								
	pair of queens that are attacking each other Global								
MOM	minimum of this function is o , which occurs only at								
	perfect solution.								
	- Ret's	env	sicl	er	init	ial	sta	ite.	as willing the MAM-MEMA &
	18	12	14	13	13	(2)	14	14	- here awarently h= 17,
Service .	14	16	13	15	(2)	14	(2)	16	- Queen can move columnwise
	14	(2)	18	13	15	0	14	14	- Then each block represent
-	15	14	14	Q	13	16	13	16	possible heuristic value
		14	1000	15		14	16	16	for column-wise movement
		Q	1000	18		3/6	15	Q	- Here best possible value
		14	1000000	15			-	16	of h=12, so movement
	14	14	13	17.	(12)	14	(12)	18	is done.
	- Hill dimbing is a greedy algorithm, it tries to minimize								
- 33	value of h								
	HOUNS	331- 3		0	G				re h=1, now here value of h
MANGE	a will increase by any movement								
15	- Variant of hill climbing:								
	Random sustant hill climbeng:								
	then expected number of restarts required is 1/2.								
Des	- For 8 quan instance, with no-sideway moves allower pro. 4,								
	n=7, iteration to find a goal. Here coast will be 22 steps in all.								
	For 8-queen problem, nandom sustant vill dimbing es								
	1	1		-					

very effective as it can find solution for three million queen in a minute.

Hill climbing is not optimal & complete whereas trandom sustant hill climbing is complete as well as optimal.

Find the best path of tree by MIN-MAX algorithm. Also explain now or pruning nelps in adversarial.

2 Find the best path of tule by MIN-MAX algorithm. Also explain now or-B purning news en adversarial search? (Consider Nocle A as MAX, subsequent mode as MIN then MAX-MIN. Subsequently).

MAX MIN-MAX Algorithm: max (2,4,5)

min(2,6)= 2 min(8,5) min(0,6)= 4 max(6,2) max(6,2) max(5,2) max(2,6)= 2 max(8,3) max(8,3) max(8,3) max(8,3) max(8,3)

huvistic (h) of node C = max(8h(6), h(E)) = max(2,1) = 2h of E = max(6,1) = 6 h(J) = max(8,3) = 8 X-B purning is a technique h(M) = max(5,2) = 5 used to optimize the MIN-MAX

h(Q) = max(3,4)=4 algorithm by reducing the h(t) = max(2,6)=6 no. of nodes that needed to

be evaluated. It works by pruning the min (2,6)=2 branches of the search tree

(1) = min(8,5)=5 that are guaranteed to lead (0) = min(4,0)=4. to worse autcome than priviously

evaluated branch as shown

en next figure

h(s) = min(2,6) = 2 h(s) = min(8,5) = 5 h(0) = min(4,6) = 4h(A) = max(2,4,5) = 5 - X-B peuning

(i) Unary

variables.

setwen failure.

MAX

MIN

This algorithm solves CSP by local search. The initial State may be choosen evandomly or by a greedy assignment process that chooses a minimum conflict value for each variable in twen. The CONFLICTS function counts the number of constraints violated by a particular value given the rest of the current assignment.

1 0, Q1 Q1 Q2 O2 -> Q2 Q2 Q2 Q2 Q2

A one step solution using minimum conflicts. At each stage a queen is choosen for reassignment in its column. The mo of conflicts is shown in each square. The algorithm moves the queen to min-conflicts square, brushing ties randomly

5. Solve the following using constraint satisfaction problem:
Class Scheduling. There is a fixed number of professors & classrooms, a list of classes to be offered, & a list of possible time stats for classes. Each professor has a set of classes that he are she can teach. Also explain cut-set conditioning & Sub-true CSP.

>- There are four variables in this puoblems and

Puofessoss, classrooms, list of classes to be offered it

Fig represents a purofessor in class room i at time j & Sig supresents a subject being taught in class room i at time j - Domain of each Pij variable is the set of professors
& Bij is the set of subjects.
The constraints are:

which denotes that no professor is assigned to
two classes which take place at the same time.
There is a construint between every Pij & Tij,
denoted by (ij (&p.s). that ensures that if professor
p is assigned to Pij then Sij is assigned a value from
P(p) where D(p) denotes the set of subjects that
professor named p can teach.

: (&Pij, Sij) = {(p.s)| professor p can teach subject 53.

Cut set conditioning is a technique used in CSPs to Solve a problem by decomposing it into smaller subproblem. A cut set is a subset of variables that when sumoved from the original CSP, sessuts in a Set of smaller, independent CSPs. Each smaller CSP can be solved independently & solutions can be combined to obtain solution for original problem.

Sub-tree CSP is a technique used in CSPs to solve a problem by exploring only a subset of the search space. It envolves selecting a subset of variables from the CSP & fixing their values, becating a sub-tree of the search space. This sub-tree is then explored to find solutions for the CSP.

20/3/23