کوئیز اول درس پیچیدگی محاسبات _ ترم بهار ۱۳۹۳

مسئله اول: ماشین تورینگی طراحی کنید که رشته هایی از \circ و ۱ را بپذیرد که حرف اول و آخر آن رشته ها یکی باشد. فرض کنید ماشین تورینگ شما دو حالت خاص با نام q_{accept} و q_{accept} دارد که خروجی ندارند. می گوییم یک ماشین یک ورودی را می پذیرد اگر و فقط اگر با گرفتن آن ورودی به حالت q_{accept} وارد شود. فرض کنید در ابتدا ورودی به صورت q_{accept} در روی تنها نوار حافظه ماشین قرار دارد.

مسئله دوم: فرض کنید M_i ماشین تورینگی باشد که توصیفش با تبدیل عدد i به یک رشته به دست می آید. هم چنین فرض کنید تابع M_i کو چکترین j را می دهد که رفتار M_i با رفتار M_i یکی باشد، یعنی اگر M_i روی رشته M_i کنید تابع M_i کنید دارد (و یا متوقف نشد)، آنگاه M_i نیز روی همان M_i همان خروجی M_i را دارد (و یا متوقف نشد)، آنگاه M_i نیز روی همان M_i همان خروجی M_i را محاسبه کند. می توانید فرض کنید توصیف ماشین های کنید ماشین و رودی های آنها از حروف M_i و ۲ تشکیل شده اند.

کوئیز اول درس پیچیدگی محاسبات _ ترم بهار ۱۳۹۳

مسئله اول: ماشین تورینگی طراحی کنید که رشته هایی از \circ و ۱ را بپذیرد که حرف اول و آخر آن رشته ها یکی باشد. فرض کنید ماشین تورینگ شما دو حالت خاص با نام q_{reject} و q_{accept} دارد که خروجی ندارند. می گوییم یک ماشین یک ورودی را می پذیرد اگر و فقط اگر با گرفتن آن ورودی به حالت q_{accept} وارد شود. فرض کنید در ابتدا ورودی به صورت q_{accept} در روی تنها نوار حافظه ماشین قرار دارد. q_{accept} در روی تنها نوار حافظه ماشین قرار دارد.

مسئله دوم: فرض کنید M_i ماشین تورینگی باشد که توصیفش با تبدیل عدد i به یک رشته به دست می آید. هم چنین فرض کنید تابع (i) کوچکترین j را می دهد که رفتار M_i با رفتار M_i یکی باشد، یعنی اگر M_i روی رشته m_i کنید تابع m_i کنید ماشین تورینگی وجود ندارد که در زمان متنهای بتواند تابع m_i را محاسبه کند. می توانید فرض کنید توصیف ماشین های تورینگی و ورودی های آن ها از حروف m_i و ۲ تشکیل شده اند.

کوئیز اول درس پیچیدگی محاسبات _ ترم بهار ۱۳۹۳

مسئله اول: ماشین تورینگی طراحی کنید که رشته هایی از \circ و ۱ را بپذیرد که حرف اول و آخر آن رشته ها یکی باشد. فرض کنید ماشین تورینگ شما دو حالت خاص با نام q_{accept} و q_{accept} دارد که خروجی ندارند. می گوییم یک ماشین یک ورودی را می پذیرد اگر و فقط اگر با گرفتن آن ورودی به حالت q_{accept} وارد شود. فرض کنید در ابتدا ورودی به صورت q_{accept} در روی تنها نوار حافظه ماشین قرار دارد. q_{accept} در روی تنها نوار حافظه ماشین قرار دارد.

مسئله دوم: فرض کنید M_i ماشین تورینگی باشد که توصیفش با تبدیل عدد i به یک رشته به دست می آید. هم چنین فرض کنید تابع f(i) کوچکترین f(i) می دهد که رفتار f(i) با رفتار f(i) یکی باشد، یعنی اگر f(i) روی رشته f(i) کوچکترین f(i) می دهد که رفتار f(i) با رفتار f(i) یکی باشد، یعنی اگر آولید کند (و یا متوقف نشود). ثابت خروجی f(i) ماشین تورینگی وجود ندارد که در زمان متنهای بتواند تابع f(i) را محاسبه کند. می توانید فرض کنید توصیف ماشین های تورینگ و ورودی های آن ها از حروف f(i) و f(i) تشکیل شده اند.