

Lecture:

Exploratory Data Analysis Visualization of 1D/2D Data

DATA ANALYSIS & VISUALIZATION FALL 2021

Dr. Muhammad Faisal Cheema FAST NU

Outline

- EDA
- Visualization / Analysis
 - One variable
 - Two variables
 - More than two variables
 - Other types of data
 - Dimension reduction

EDA and Visualization

- Exploratory Data Analysis (EDA) and Visualization are very important steps in any analysis task.
- get to know your data!
 - distributions (symmetric, normal, skewed)
 - data quality problems
 - outliers
 - correlations and inter-relationships
 - subsets of interest
 - suggest functional relationships
- Sometimes EDA or viz might be the goal!

Exploratory Data Analysis (EDA)

- Goal: get a general sense of the data
 - means, medians, quantiles, histograms, boxplots
 - You should always look at every variable you will learn something!
- data-driven (model-free)
- Think interactive and visual
 - Humans are the best pattern recognizers
 - You can use more than 2 dimensions!
 - x,y,z, space, color, time....
- Especially useful in early stages of data mining
 - detect outliers (e.g. assess data quality)
 - test assumptions (e.g. normal distributions or skewed?)
 - identify useful raw data & transforms (e.g. log(x))
- Bottom line: it is always well worth looking at your data!

Summary Statistics

- not visual
- sample statistics of data X
 - mean: $\mu = \sum_{i} X_{i} / n$
 - mode: most common value in X
 - median: $\mathbf{X} = \operatorname{sort}(\mathbf{X})$, median = $\mathbf{X}_{n/2}$ (half below, half above)
 - quartiles of sorted **X**: Q1 value = $\mathbf{X}_{0.25n}$, Q3 value = $\mathbf{X}_{0.75n}$
 - interquartile range: value(Q3) value(Q1)
 - $max(X) min(X) = X_n X_1$ • range:
 - variance: $\sigma^2 = \sum_i (X_i \underline{\mu})^2 / n$
 - skewness: $\sum_{i} (X_{i} \mu)^{3} / [(\sum_{i} (X_{i} \mu)^{2})^{3/2}]$

• zero if symmetric; right-skewed more common (what kind of data is right skewed?)

Don't need to report all of these: Bottom line...do these numbers make sense???

Positive Skew

Univariate (1D) Analysis / Single Variable Visualizations

ID: Nominal

Expressive? Effective?

Origin

ID: Quantitative

Expressive? Effective?

Histograms – A popular viz for 1D data analysis

- Shows center, variability, skewness, modality,
- outliers, or strange patterns.
- Bin width and position matter
- Beware of real zeros

Issues with Histograms

- For small data sets, histograms can be misleading.
 - Small changes in the data, bins, or anchor can deceive
- For large data sets, histograms can be quite effective at illustrating general properties of the distribution.
- Histograms effectively only work with 1 variable at a time
 - But 'small multiples' can be effective

Smoothed Histograms - Density Estimates

• Kernel estimates smooth out the contribution of each datapoint over a local neighborhood of that point.

$$\hat{F}(x) = \frac{1}{nh} \sum_{i=1}^{n} K(\frac{x - x_i}{h})$$
b is the kernel width

• Gaussian kernel is common:

$$Ce^{-\frac{1}{2}\left(\frac{x-x(i)}{h}\right)^2}$$

Bandwidth choice is an art

Usually want to try several

Boxplots – Another popular viz for 1D data analysis

- Shows a lot of information about a variable in one plot
 - Median
 - IQR
 - Outliers
 - Range
 - Skewness
- Negatives
 - Overplotting
 - Hard to tell distributional shape
 - no standard implementation in software (many options for whiskers, outliers)

Bivariate (2D) Analysis / Visualizations

2D: Quantitative x Quantitative

2D: Nominal x Nominal

2D: Nominal x Quantitative

Two Continuous Variables

• For two numeric variables, the scatterplot is the obvious choice

2D Scatterplots

- standard tool to display relation between 2 variables
 - e.g. y-axis = response, x-axis = suspected indicator

- useful to answer:
 - x,y related?
 - linear
 - quadratic
 - other
 - variance(y) depend on x?
 - outliers present?

Scatter Plot: No apparent relationship

Scatter Plot: Linear relationship

Scatter Plot: Quadratic relationship

Scatter plot: Homoscedastic

Why is this important in classical statistical modelling?

Scatter plot: Heteroscedastic

variation in Y differs depending on the value of X e.g., Y = annual tax paid, X = income

Two variables - continuous

• Scatterplots

- But can be bad with lots of data

Figure 3.7: A scatterplot of 96,000 cases, with much overprinting. Each data point represents an individual applicant for a loan. The vertical axis shows the age of the applicant, and the horizontal axis indicates the day on which the application was made.

Two variables - continuous

- What to do for large data sets
 - Contour plots

Separate, Order, and Align: Categorical Regions

- Categorical: =, !=
- Spatial position can be used for categorical attributes
- Use regions, distinct contiguous bounded areas, to encode categorical attributes
- Three operations on the regions:
 - Separate (use categorical attribute)
 - Align (use some other ordered attribute)
 - Order
- Alignment and order can use same or different attribute

List Alignment: Bar Charts

- Data: one quantitative attribute, one categorical attribute
- Task: lookup & compare values
- How: line marks, vertical position (quantitative), horizontal position (categorical)
- What about length?
- Ordering criteria: alphabetical or using quantitative attribute
- Scalability: distinguishability
 - bars at least one pixel wide
 - hundreds

Dot and Line Charts

- Data: one quantitative attribute, one ordered attribute
- Task: lookup values, find outliers and trends
- How: point mark and positions
- Line Charts: add connection mark (line)
- Similar to scatterplots but allow ordered attribute

Proper Use of Line and Bar Charts

Two Variables - one categorical

Side by side boxplots are very effective in showing differences in a quantitative variable across factor levels

tips data

do men or women tip better

orchard sprays

measuring potency of various orchard sprays in repelling honeybees

Barcharts and Spineplots

stacked barcharts can be used to compare continuous values across two or more categorical ones.

spineplots show proportions well, but can be hard to interpret

Stacked Bar Charts

Grouped Bar Chart

Stacked Bar Charts

- Data: multidimensional table: one quantitative, two categorical
- Task: lookup values, part-to-whole relationship, trends
- How: line marks: position (both horizontal & vertical), subcomponent line marks: length, color
- Scalability: main axis (hundreds like bar chart), bar classes (<12)
- Orientation: vertical or horizontal (swap how horizontal and vertical position are used.

In short

Visualization of Tables

- Items and attributes
- For now, attributes are not known to be positions
- Keys and values
 - key is an independent attribute that is unique and identifies item
 - value tells some aspect of an item
- Keys: categorical/ordinal
- Values: +quantitative
- Levels: unique values of categorical or ordered attributes

→ Multidimensional Table

[Munzner (ill. Maguire), 2014]

Arrange Tables

[Munzner (ill. Maguire), 2014]

Univariate Data

Representations

Bivariate Data

Representations

Trivariate Data

Representations

Some more points

Anything in common? (in the trends below)

Multiscale Banking

IMPORTANT: Aspect Ratio

- Trends in line charts are more apparent because we are using angle as a channel
- Perception of angle (and the relative difference between angles) is important
- Initial experiments found people best judge differences in slope when angles are around 45 degrees (Cleveland et al., 1988, 1993)

Multiscale Banking

Task

Study different data visualization plots and diagrams at

www.datavizcatalogue.com