PRUEBAS DE HIPÓTESIS

	Hipótesis nula	Estadístico de prueba
6.01	H₀: $\mu = \mu_0$ $\sigma^2 conocida$	$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$
6.02	H₀: $\mu = \mu_0$ $\sigma^2 desconocida$	$t = \frac{\overline{x} - \mu_0}{\sqrt[S]{n}}$
6.03	H₀: $\mu_1 = \mu_2$ σ_1^2 y σ_2^2 conocidas	$z = \frac{\left(\overline{x}_1 - \overline{x}_2\right)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$
6.04	H₀: $\mu_1 = \mu_2$ $\sigma_1^2 = \sigma_2^2 \text{ desconocidas}$	$t = \frac{\left(\bar{x}_1 - \bar{x}_2\right)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} siendo S_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$
6.05	H₀: $\mu_1 = \mu_2$ $\sigma_1^2 \neq \sigma_2^2 \text{ desconocidas}$	$t = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$
6.06	H₀: $p = p_0$	$z = \frac{\hat{P} - p_0}{\sqrt{\frac{p_0 q_0}{n}}}$
6.07	H₀: $p_1 = p_2$	$z = \frac{(\hat{p}_{1} - \hat{p}_{2})}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}} siendo \hat{p} = \frac{x_{1} + x_{2}}{n_{1} + n_{2}}$
6.08	$\mathbf{H_0:} \ \boldsymbol{\sigma}^2 = \boldsymbol{\sigma}_0^2$	$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$
6.09	H ₀ : $\sigma_1^2 = \sigma_2^2$	$f = \frac{s_1^2}{s_2^2}$

Fórmulas 16

6.10	Tamaño de muestra dados α y β	Para pruebas sobre una media $n = \frac{(z_{\alpha} + z_{\beta})^{2}.\sigma^{2}}{\delta^{2}}$ para pruebas unilaterales $n = \frac{(z_{\alpha/2} + z_{\beta})^{2}.\sigma^{2}}{\delta^{2}}$ para pruebas bilaterales Para pruebas sobre dos medias
		$n = \frac{(z_{\alpha} + z_{\beta})^{2} \cdot (\sigma_{1}^{2} + \sigma_{2}^{2})}{\delta^{2}}$ para pruebas unilaterales con $n = n_{1} = n_{2}$
6.11	Estadístico de prueba para Bondad de Ajuste y Pruebas de Independencia	$\chi_o^2 = \sum_i \frac{(o_i - e_i)^2}{e_i}$

Fórmulas 17