Exercícios MA719-Monitorias

PED

8 de Setembro de 2022

Email PED: k200608@dac.unicamp.br

Exercício 1: Considere o espaço vetorial $V = \mathbb{C}^4$ sobre \mathbb{C} .

- a) Exiba uma base de V sobre $\mathbb C$ e calcule sua dimensão.
- b) O espaço V pode ser considerado um espaço vetorial sobre \mathbb{R} ? Se sim, exiba uma base deste e calcule sua dimensão.
- c) Assumindo V um \mathbb{C} espaço vetorial, construa um operador linear $T:V\to V$ de modo que dim Ker(T)=2, e o vetor $v_1=(1,i,0,0)$ pertence a imagem de V.
 - d) Refaça o item anterior considerando V um espaço vetorial sobre \mathbb{R} .

Exercício 2: a) Se $M_2(\mathbb{F})$ denota o espaço vetorial das matrizes 2×2 sobre um corpo \mathbb{F} , encontre uma base $\mathcal{A} = \{A_1, A_2, A_3, A_4\}$ de $M_2(\mathbb{F})$ tal que

$$A_i^2 = A_j, \quad j \in \{1, 2, 3, 4\}.$$

b) Considere o espaço vetorial $V = \mathbb{R}$ sobre \mathbb{Q} . Mostre que $\dim_{\mathbb{Q}} V = \infty$.

Exercício 3: Julgue os itens a seguir em relação a sua veracidade.

- () Seja V um espaço vetorial com dim V=10. É possível que exista um operador linear cuja dimensão da imagem é 5 e a dimensão do núcleo é 3.
 - () Se dim V=4, todo operador linear $T\in End_{\mathbb{Q}}(V)$ possui autovalor.
- () Se $P:V\to V$ é um operador de projeção num espaço vetorial de dimensão finita V, então

$$V = Im(P) \oplus Ker(P)$$
.

() Se V é um espaço vetorial de dimensão finita sobre \mathbb{R} e $T \in End(V)$, então o conjunto

$$\mathcal{A}(T) := \{ g \in \mathbb{R}[x] : g(T) \equiv 0 \}$$

é não vazio.

() Nas mesmas condições do item anterior, se dim $V=\infty$, então

$$\mathcal{A}(T) := \{ g \in \mathbb{R}[x] : g(T) \equiv 0 \}$$

é não vazio.

- () Se todo autovalor de uma matriz A tiver multiplicidade algébrica igual a 1 então A é diagonalizável.
- () Seja A uma matriz 5×5 cujo polinômio característico é $p(x) = x^3(x-1)^2$. Se posto(A) = 4, então A não pode ser diagonalizável.
 - () Toda matriz triangular superior é diagonalizável.
- () Seja B uma matriz 6×6 cujo polinômio característico é $p(x) = x(x-3)(x-4)^2(x-6)$. Então pode-se afirmar que B não é invertível.
- () Se uma matriz quadrada $n \times n$ possui n autovalores distintos, então esta é diagonalizável.
- () Seja A uma matriz 4×4 cujos autovalores são $\lambda_1 = 1, \lambda_2 = 3, \lambda_3 = 4$. Se todos os autoespaços associados a estes tem dimensão 1 pode-se concluir que A não é diagonalizável.
 - () Se V é um espaço vetorial de dimensão finita n, e $T \in End(V)$ é tal que

$$TS = ST$$
 , para todo $S \in End(V)$

então, existe $\lambda \in \mathbb{F}$.

Exercício 4: Considere o espaço vetorial $V = \mathbb{R}^4$ e

$$f_1 = x_1 + 2x_2 - x_4$$
, $f_2 = x_2 + x_4$, $f_3 = x_1 + 3x_2$, $f_4 = x_3 + x_4$

funcionais em V^* .

Encontre o espaço W anulado por tais funcionais. Faça o caminho inverso, isto é, considerando uma base de W, encontre W^0 e tire algumas conclusões a respeito dos funcionais acima. Estes formam uma base de W^0 ?

Exercício 5: Seja $V = \mathcal{P}_2(\mathbb{R})$ e sejam $f_1, f_2, f_3 \in V^*$ definidos por

$$f_1(p) = \int_0^1 p(x)dx$$
, $f_2(p) = \int_0^2 p(x)dx$, $f_3(p) = \int_0^{-1} p(x)dx$.

- a) Mostre que $\{f_1, f_2, f_3\}$ é uma base de V^* .
- b) Encontre base de V^* dual a $\{f_1, f_2, f_3\}$.
- c) Considerando a base encontrada no item b), faça o processo inverso, isto é, digamos que a base encontrada no exercício b) foi $\{h_1, h_2, h_3\}$, então encontre uma base de V^* dual a esta.

Exercício 6: Sejam W_1, W_2 subespaços de um espaço V de dimensão finita n. Mostre que

a)

$$(W_1 + W_2)^0 = W_1^0 \cap W_2^0$$
.

b)

$$(W_1 \cap W_2)^0 = W_1^0 + W_2^0.$$

Exercício 7: Seja V um espaço vetorial sobre \mathbb{F} , e $f,g\in V^*$. Mostre que se Ker(f)=Ker(g), então f e g não podem fazer parte de uma base de V^* .

Exercício 8: Mostre que se $V_1, V_2, ..., V_k$ são espaços vetoriais sobre \mathbb{F} tais que

$$V = V_1 \oplus \cdots V_k$$

então

$$V^* \cong V_1^* \oplus \cdots V_k^*$$
.

Exercício 9: Sejam V um espaço vetorial de dimensão infinita e $\mathcal{B} = \{u_i\}_{i \in I}$ uma base de V. Mostre que é possível construir um conjunto linearmente independente $\mathcal{B}^* = \{f_i\}_{i \in I}$ tal que

$$f_i(u_j) = \delta_{ij}$$
, para quaisquer $i, j \in I$

porém, \mathcal{B}^* não é uma base de V^* .

Exercício 10: Mostre que se V é um espaço vetorial de dimensão finita n e $T \in End(V)$ possui um autovetor associado a um autovalor λ , então T^t também possui um autovetor associado a λ .

Exercício 11: Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ descrito por

$$T(e_1) = 6e_1 + e_2, \quad T(e_2) = e_2 - 2e_1, \quad T(e_3) = e_1 - e_2$$

encontre uma base para $Im(T^t)$ e $Ker(T^t)$.