Distributed Data Mining: Current Pleasures and Emerging Applications

Hillol Kargupta

University of Maryland, Baltimore County and AGNIK www.cs.umbc.edu/~hillol

Acknowledgements: Wes Griffin, Souptik Datta, Kanishka Bhaduri, Kamalika Das, Ran Wolff, Chris Giannella

Roadmap

- Distributed Data Mining: Why Bother?
- Some Emerging Applications
- Local Algorithms
 - Exact Local Algorithms
 - Approximate Local Algorithms
- Resources

Data Mining and Distributed Data Mining

- Data Mining: Scalable analysis of data by paying careful attention to the resources:
 - computing,
 - communication,
 - storage, and
 - human-computer interaction.
- Distributed data mining (DDM): Mining data using distributed resources.

Data Mining for Distributed and Ubiquitous Environments: Applications

- Mining Large Databases from distributed sites
 - Grid data mining in Earth Science, Astronomy, Counter-terrorism, Bioinformatics
- Monitoring Multiple time critical data streams
 - Monitoring vehicle data streams in real-time
 - Monitoring physiological data streams
- Analyzing data in Lightweight Sensor Networks and Mobile devices
 - Limited network bandwidth
 - Limited power supply
- Preserving privacy
 - Security/Safety related applications
- Peer-to-peer data mining
 - Large decentralized asynchronous environments

Private & Secure Data Mining from Multi-Party Distributed Data

- Compute global patterns without direct access to the multi-party raw distributed data
- Minimize communication cost
- Must come with provably correct guarantees with respect to a given privacy model
- Must be scalable with respect to
 - number of data sites
 - size of the data
- Privacy-preserving data mining
 - Blends in "pattern-preserving" transformations with data analysis

How PURSUIT Works for the User

- Need to have your own sensor such as SNORT, MINDS
- Download PURSUIT plug-in for the sensor and install
- PURSUIT plug-in offers
 - A stand-alone interface for processing your alerts from the sensor and cross-domain analysis
 - Web account for detailed cross-domain statistics
 - Optional distributed collaboration management module for managing the threats and archiving forensics

Peer-to-peer (P2P) Networks

- Relies primarily on the computing resources of the participants in the network rather than a relatively low number of servers.
- P2P networks are typically used for connecting nodes via largely ad hoc connections.
- No central administrator/coordinator
- Peers simultaneously function as both "clients" and "servers"
- Privacy is an important issue in most P2P applications

Where do we find P2P Networks?

- Applications:
 - File-sharing networks: KaZAa, Napster, Gnutella
 - P2P network storage, web caching,
 - P2P bio-informatics,
 - P2P astronomy,
 - P2P Information retrieval
- P2P Sensor Networks?
- P2P Mobile Ad-hoc NETwork (MANET)?
- Next Generation:
 - P2P Search Engines, Social Networking, Digital libraries, P2P "YouTube"?

Useful Browser Data

- Web-browser history
- Browser cache
- Click-stream data stored at browser (browsing pattern)
- Search queries typed in the search engine
- User profile
- Bookmarks
- Challenges
 - Indexing, clustering, data analysis in a decentralized asynchronous manner
 - Scalability
 - Privacy

P2P NASA Astronomy Data Mining

- Virtual Observatories
 - Client-server architecture
 - Consider Sloan Digital Sky Survey:
 - 2M hits per month
 - traffic is doubling every 15 months
 - Need better scalability
- MyDB: Download and locally manage your data
- Network of such databases
- Searching, clustering, and outlier detection in P2P virtual observatory data network.
- NASA AIST Project at UMBC

DDM Applications: Typical Characteristics

- Distributed computing environment
- Heterogeneous communication links with bandwidth constraints
- Distributed data
- Continuous data streams
- Multi-party data, sometimes privacy sensitive (difficult to centralize)
- Server-free networks
- Resource constraints (e.g. energy consumption)

Data Communication

- <u>Case I:</u> Participating nodes are connected by high speed networks and efficient redistribution of data is possible.
- <u>Case II:</u> Nodes are connected by low speed networks and data redistribution is difficult to support.
- <u>Case III:</u> Combination of I and II.

Global Function Computation

- **Each** vertex v in a graph holds an input X_{v_i}
- Compute some global function $f(X_{v_1}, X_{v_2},, X_{v_n})$

Locality Sensitive Computation

- Global vs. Local
- Main problems of the global algorithms:
 - Every node needs to maintain information about the entire network
 - Maintaining this information is resource intensive for large networks

Data Mining as Function Computation

- Most data mining problems can be viewed as function computations
- Examples
 - Classification
 - Predictive modeling
 - Clustering
 - Outlier detection

DDM: Defining the Problem

- Let G=(V, E) be a graph
- Let Ω_k be the set of all neighboring nodes of the k-th node $v_k \in V$
- $_{-}$ Need a decomposable representation where f(V) can be computed from "locally" computed functions $\Phi_k(\Omega_k)$

$$f(V) = \sum_{k} w_{k} \Phi_{k}(\Omega_{k})$$

Homogeneous Data Sites

Account Number	Amount	Location	History	Earning
11992346	99.84	Seattle	Good	High
12999333	29.33	Seattle	Good	High
45633341	34.89	Portland	Okay	Low
55567999	980	Spokane	Good	Low

Account Number	Amount	Location	History	Earning
87992364	20	Chicago	Good	Low
67845921	447	Urbana	Good	Low
85621341	19.78	Chicago	Okay	High
95345998	800	Peoria	bad	High

Different sites observe same features for different events

leterogei	neous	s Si	ites				
3.3.393.	115531	<i>J</i>					
G	. .				D. C	<u> </u>	
State	Movie				Rating	g Reveni	ue
WA	Hyper !	Spac	e		A+	6M	
ID	Once U	pon	a Time		B-	2M	
BC	The Ki	ng ar	nd the L	iar	B+	8M	
CA	The Sh	_			A-	10M	
Ci		State				Teen pop.	
		ID	Small	Low		5K	
	ookane		Medium			30K	
		WA		High		250K	
		OR		High		200K	
Va	ancouver	BC	Medium	Medi	um	199K	
20100		п		12.00	. e		
Differe	ent sites	obse	erving (liffe	rent fe	ature set	S

Locality Sensitive Distributed Algorithms

- Global algorithms: Know everything about the entire network
 - Every node needs to maintain information about the entire network
 - Maintaining this information is resource intensive for large networks
- Local algorithms: Communicate only with the local neighborhood.
- Does locality imply efficiency?

Bounded Communication Local Algorithms

- ullet Every node communicates with its local neighborhood bounded by path-length of lpha
- \blacksquare In addition, the total amount of communication with its neighbors is also bounded by some γ
- (α, γ) Local algorithms

Approaches

- Functions computation through decomposable representations
 - Approximations
 - Randomized techniques
 - Sampling-based approximations
 - Variational approximations
 - Exact decompositions
 - Deterministic techniques

Approximation

- Estimate $\Phi_k(\Omega_k)$
 - Cardinal sampling
 - Ordinal relaxation
 - Interested in constructing an ordering
 - Find the ones that rank high

Sampling in Distributed Environments

- Uniform data sample often good representative of data
- Collecting uniform sample in asynchronous networks is challenging
 - Varying degrees of nodes
 - Skewed data distribution

Challenges

- How to collect random-uniform sample of data from an asynchronous network?
- How to make sampling communication efficient and fast?
- Asynchronous algorithms

Varying Degrees of Connectivity in Large Communication Networks

Fig. 17. Left: Topology of the Gnutella network as of February 16, 2001 (1771 peers); Middle: Topology of the Gnutella network after a random 30% of the nodes are removed; Right: Topology of the Gnutella network after the highest-degree 4% of the nodes are removed

Source: Stefan Sarolu, Kristina P. Gummadi, and Steven D. Gribble. Measuring and analyzing the characteristics of napster and gnutella hosts. Multimedia Syst., 2003

Problem Definition: Uniform Data Sampling

- Data is homogeneously distributed among peers $X = X^{1}U X^{2}U...U X^{n}$
- Data distribution is non-uniform

$$|X^i| \neq |X^j|$$
 for $i \neq j$

- Uniform sampling of peers results in biased data sampling
- Problem: How to collect a uniform-random sample x of total data X from the network?

Random Walk and Markov Chain

 Random walk on Graph: visits nodes in a sequence where at each step, the next destination node is selected using transition probability of current node

 Markov process

$$\pi(t+1)^T = \pi(t)^T P$$

- P = Transition Probability Matrix
- \mathbf{n} π (t) = Probability Distribution of State at t
- i^{th} element of stationary distribution $\pi_i = d_i/2m$
- Mixing-time of Markov Chain: Length of walk to converge to stationary distribution [Sinclair, 1992]

$$\tau = O\left(\log\left(n\right)/(1-|\lambda_2|)\right)$$

- Aperiodic graphs

Uniform Sampling of Peers in P2P

- Random walk with degree correction helps uniform sampling of peers
 - Maximum Degree
 - Metropolis-Hasting
 - Random-weight Distribution
- Metropolis-Hasting:

$$p_{ij}^{mh} = \begin{cases} 1/Max(d_i, d_j) & \text{if } i \neq j \text{ and } j \in \Gamma^{(i)} \\ 1 - \sum_{j \in \Gamma^{(i)}} p_{ij}^{mh} & \text{if } i = j \\ 0 & \text{otherwise,} \end{cases}$$

- Source node applies modified r.w. of length L_{walk} to pick-up one peer uniformly
 - Walk-length $L_{\text{walk}} = O(\log \text{(Total Network Size)})$

Metropolis-Hasting on Virtual Graph

■ To achieve uniformity, P should meet the following conditions on virtual graph

$$P\mathbf{1} = \mathbf{1}, \mathbf{1}^T = \mathbf{1}^T P, P \ge 0, P = P^T,$$

Symmetric, Non-negative, Double-stochastic

■ Transition probability between data-tuple *K* and *L* on virtual graph:

$$p_{KL}^{V} = \begin{cases} 1/Max((n_{i,K \in V_{N_i}} - 1 + \sum_{g \in \Gamma^{(i)},K \in V_{N_i}} n_g), \\ (n_{j,L \in V_{N_j}} - 1 + \sum_{h \in \Gamma^{(j)},L \in V_{N_j}} n_h)) \\ \text{if } L \neq K \text{ and } \overline{E}_{KL} \in \overline{E} \\ 1 - \sum_{\hat{L} \in \bar{\Gamma}^{(K)}} p_{K\hat{L}}^{V} \text{ if } L = K \\ 0 \text{ Otherwise}, \end{cases}$$

Algorithm

- Initialization: Each node N₁ knows
 - $\hfill\Box$ Immediate neighborhood : $\Gamma^{(i)}$
 - Total data-size of neighbors: $\sum_{j \in \Gamma^{(i)}} n_{j}$
- \blacksquare Transition Probability on real graph at N_i

Performance Analysis

- \blacksquare Arbitrarily selected 'source-node' (N $_{\! \rm S}$) launches s random walks
- Random-walk terminates after L_{walk} steps

$$L_{\text{walk}} = O(\log(\text{Datasize})/1 - |\lambda_2|)$$

- lacksquare The data-tuple t_i on which walk terminates marked as a uniform random sample
- t_i sent back to N_S

Estimating Random-walk length

- $L_{\text{walk}} = O (\log(\text{Datasize})/(\text{spectral gap}))$
 - Spectral gap = $(1-|\lambda_2|)$
- Source-node can over-estimate datasize
 - Logarithmic effect on the walk-length
- Computing 'spectral-gap' exactly is communication and computation intensive.
- A lower-bound of spectral-gap gives upper-bound of walk-length

Bounding the Spectral-gap

- Neighbor data ratio is important $\rho_i = \frac{\sum_{j \in \Gamma^{(i)}} n_j}{n_i}$
- For a network of size n, lower bound of spectral gap

$$|1-|\lambda_2| \ge 2 - \sum_{i=1}^n \frac{1}{1+\rho_i}$$

■ For each node, if $\rho_1 \ge \rho_T$, a universal threshold value:

$$\frac{1}{1 - \left| \lambda_2 \right|} \le \frac{1}{2 - \frac{n}{1 + \rho_T}}$$

• If $\rho_i = O(n)$ for all nodes, then

$$\frac{1}{1-|\lambda_2|} = O(1)$$

• Hence, $L_{\text{walk}} = O(\log(\text{Datasize}))$

Effect on Communication Topology

- For all nodes N_i in the network, $\rho_i = O(n)$ implies : Total Data Contained by Neighbors $(n_j \text{ in } \Gamma_i) \ge O(n)$ times local data
- Real world network data distribution often follows power-law ("Measuring and Analyzing the Characteristics of Napster and Gnutella hosts" by Stefan Saroiu et. al., 2003)
 - Majority of the data content by few peers forming a 'datahub'
- Peers with small amount of local data connecting to 'data-hub' achieves O (n) neighbor data ratio
 - Communication topology: A central hub consisting of few peers sharing most of the data, and rest of the peers sharing few data are directly connected to this hub.

Communication Topology

Communication Complexity

- Communication cost
 - 1. Discover a uniform sample
 - 2. Transport sampled data to N_8
- Assumption: Network protocol takes care of the peer-to-peer communication between two nodes
- P2P-Sampling Initialization Cost: 2×|E| integer bytes
- Communication to discover one sample

$$α \times L_{walk} \times (d+2)$$
 integer bytes

- □ d = Average degree of connectivity = Constant
- $\dot{\alpha}=$ Average probability of going to a different node in one step of random walk ($1\geq\dot{\alpha}\geq0$)

Experimental Setup

- Network topology generated by
 - BRITE (Boston University Representative Internet Topology Generator)
- Router level Barabasi-Albert model for power-law topology
- P2P network with 1,000 and higher nodes
- Total data = 40×network size
- Arbitrarily selected node conducts P2P-Sampling
- Data distribution: Non-uniformly distributed

Ordinal Relaxation

- Let X be a continuous random variable
- Let ξ_p be the population percentile of order p, i.e. $\Pr\{x \leq \xi_p\} = p$
- Let x₁<x₂<...<x_N be N independent samples from X
- We have

$$\Pr\{x_N > \xi_p\} > q \Rightarrow N \ge \left| \frac{\log(1-q)}{\log p} \right|$$

- Example:
 - \bullet c₁=95% and p =80% \rightarrow N=14
 - \blacksquare If we took 14 independent samples from any distribution, we can be 95% confident that 80% of the population would below x_{14}

Ordinal Inner Product Computation

- Each node has a vector X_i
- Compute the Inner Product Matrix
 - Every node needs X_i from every node.
- How about finding just the top-k entries of the inner product matrix?

Majority Vote Computation Algorithm

- Each node has a number
- Check if the summation of the numbers at all nodes is greater than or equal to 0.
- Another variant: Check if the sum is greater than a certain threshold.

One-dimensional Example: Majority Vote

- Input to P_i: a real number (S_i)
- Goal: Find if $\Sigma S_i > 0$
- Output: 1 if $\mathcal{K}_i > 0$, 0 otherwise
- Simple stopping rule:
 - If $(\mathcal{A}_{ij} > 0$ and $\mathcal{A}_{ij} > \mathcal{K}_i) \Rightarrow$ Communicate
 - □ If $(\mathcal{A}_{ij} < 0$ and $\mathcal{A}_{ij} < \mathcal{K}_i) \Rightarrow$ Communicate
- If communicate

Applications: L2 Norm Monitoring

- Initial setup: each peer has
 - A data vector
- Monitoring Problem:
 - is $||G|| < \epsilon$?

Local L2 Norm Monitoring Algorithm

- Initial setup: each peer has
 - A data vector
 - Some global pattern vector
- Monitoring Problem:
 - \blacksquare is the L2 norm of the distance between the average data vector and the pattern vector greater than a given constant ϵ
- Applications:
 - Centroid monitoring
 - Eigenvector monitoring

Theorem

- If for every peer and each of its neighbours both the agreement and the withheld knowledge are in a convex shape (here a circle) - then so is the global average
- Wolff, Bhaduri, Kargupta, 2005

L2 Experimental Setup

- Simulator
 - Distributed Data Mining Toolkit (DDMT)
- Topology
 - BRITE Internet Topology generator
 - Realistic edge delays
- Input data
 - Mixture of correlated Gaussians in Rd with 10% noise
- Epoch change: Change of the means of Gaussians at fixed time intervals

L2 Experimental Setup

- Quality: Percentage of peers correctly computing alert –
 - \blacksquare $||\mathcal{K}|| < \epsilon$ when $||\mathcal{G}|| < \epsilon$
 - $||\chi||>\epsilon$ when $||G||>\epsilon$
- Cost: Messages per peer per unit of leaky bucket

Resources

- DDMWiki (http://www.umbc.edu/ddm/wiki/)
- DDMBib (http://www.cs.umbc.edu/~hillol/DDMBIB/)
- Full DDM Course Web Site (http://www.cs.umbc.edu/~hillol/CLASSES/DDM)