Espaços Vetoriais \mathbb{R}^2 e \mathbb{R}^3

Revisão de alguns conceitos preliminares para o cálculo com funções de várias variáveis:

- vetores em \mathbb{R}^2 e em \mathbb{R}^3 ;
- produto escalar, norma e distância;
- matrizes, determinantes e produto vetorial.

Vetores em \mathbb{R}^2 e em \mathbb{R}^3

1. Pontos no plano são representados por pares ordenados de números reais (a_1, a_2) . Os números a_1 e a_2 designam-se as coordenadas cartesianas.

Pontos no espaço são representados como triplos ordenados de números reais (a_1, a_2, a_3) .

- (a) Coordenadas cartesianas no plano
- (b) Coordenadas cartesianas no espaço

Figura 1: Representação geométrica do ponto (2,4,4) em coordenadas cartesianas.

2. Adição e multiplicação escalar são definidas por

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

 $\lambda(a_1, a_2) = (\lambda a_1, \lambda a_2)$

е

$$(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

 $\lambda(a_1, a_2, a_3) = (\lambda a_1, \lambda a_2, \lambda a_3)$

3. Um vetor é um segmento de reta orientado com uma extremidade inicial (por defeito, a origem do referencial) e uma extremidade final (indicada por uma seta).

Figura 2: Geometricamente, pensamos em vetores com a base na origem do referencial.

- 4. Os vetores são adicionadas usando a *regra do paralelogramo* e a multiplicação pelo escalar λ *estende* o comprimento do vetor por λ (na direção oposta se $\lambda < 0$).
- 5. A adição e multiplicação escalar de vetores (geométrica) correspondem às mesmas operações nas coordenadas (algébricas).

Figura 3: Geometria da adição de vetores.

Figura 4: Construção geométrica que mostra que a regra do parelelogramo (definição geométrica) coincide com a definição algébrica $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$.

Figura 5: A adição pode ser vista não só em termos de paralelogramos como também em termos de triângulos.

Figura 6: Alguns múltiplos escalares do vetor \overrightarrow{a} .

Figura 7: Geometria da subtração de vetores.

Figura 8: Multiplicação de (-1,1,2) por -2.

Figura 9: Determinação de $\overrightarrow{u} + \overrightarrow{v}$ e de $-2\overrightarrow{u}$.

6. Base canónica de \mathbb{R}^2 :

vetores unitários
$$\vec{i}=(1,0), \ \vec{j}=(0,1)$$
 $\overrightarrow{a}=(a_1,a_2)$ escreve-se

$$\overrightarrow{a} = a_1 \, \overrightarrow{i} + a_2 \, \overrightarrow{j}$$

Base canónica de \mathbb{R}^3 :

vetores unitários
$$\vec{i}=(1,0,0),\ \vec{j}=(0,1,0)$$
 e $\vec{k}=(0,0,1)$ $\overrightarrow{a}=(a_1,a_2,a_3)$ escreve-se

$$\overrightarrow{a} \equiv a_1 \vec{i} + a_2 \vec{i} + a_3 \vec{k}$$

Figura 10: Base canónica de \mathbb{R}^3 .

Figura 11: Representação de (2,3,2) em termos da base canónica.

7. O vetor que une dois pontos P=(x,y) e P'=(x',y') é o vetor $\overrightarrow{PP'}$, vetor de P para P', e tem coordenadas

$$\overrightarrow{PP'} = (x' - x, y' - y).$$

Figura 12: $\overrightarrow{PP'} = \overrightarrow{a'} - \overrightarrow{a}$.

8. A equação da reta que passa pelo ponto a (visto como um vetor com base na origem) e com direção do vetor \overrightarrow{v} (visto como um vetor com base em a) é

$$\ell(t) = a + t\overrightarrow{v}, \qquad t \in \mathbb{R}.$$

Em \mathbb{R}^3 , para $a=(a_1,a_2,a_3)$ e $\overrightarrow{v}=(v_1,v_2,v_3)$, as equações paramétricas da reta ℓ são

$$\begin{cases} x = a_1 + tv_1 \\ y = a_2 + tv_2, \\ z = a_3 + tv_3 \end{cases} \quad t \in \mathbb{R},$$

onde (x, y, z) é um ponto genérico da reta.

Figura 13: A reta ℓ tem a direção de \overrightarrow{v} e passa por a.

9. Em \mathbb{R}^3 , as equações paramétricas da reta que passa pelos pontos $P_1=(x_1,y_1,z_1)$ e $P_2=(x_2,y_2,z_2)$ são

$$\begin{cases} x = x_1 + t(x_2 - x_1) \\ y = y_1 + t(y_2 - y_1), & t \in \mathbb{R}, \\ z = z_1 + t(z_2 - z_1) \end{cases}$$

onde (x, y, z) é um ponto genérico da reta.

Figura 14: Reta que contém os pontos (0,0,1) e (-1,1,0).

10. O plano que passa pela origem e contém os vetores \overrightarrow{v} e \overrightarrow{w} consiste em todos os pontos da forma

$$s\overrightarrow{v} + t\overrightarrow{w}, \qquad s, t \in \mathbb{R}.$$

Figura 15: Plano gerado pelos vetores \overrightarrow{w} e \overrightarrow{v} e que contém a origem.

O plano paralelo que passa pelo ponto a tem equação

$$a + s\overrightarrow{v} + t\overrightarrow{w}, \qquad s, t \in \mathbb{R}.$$

Figura 16: Os três planos coordenados.

Produto escalar, norma e distância

1. O produto escalar (ou interno) entre os vetores $\overrightarrow{a} = (a_1, a_2, a_3)$ e $\overrightarrow{b} = (b_1, b_2, b_3)$ é definido por $\overrightarrow{a} \cdot \overrightarrow{b} = a_1b_1 + a_2b_2 + a_3b_3$.

A notação $\langle \overrightarrow{a}, \overrightarrow{b} \rangle$ é também usual.

Permite-nos calcular o ângulo θ entre os vetores \overrightarrow{d} e \overrightarrow{b} .

Figura 17: θ é o ângulo entre os vetores \overrightarrow{a} e \overrightarrow{b}

2. A norma ou comprimento de $\overrightarrow{d}=(a_1,a_2,a_3)$ é definida por

$$\|\overrightarrow{a}\| = \sqrt{\overrightarrow{a} \cdot \overrightarrow{a}} = \sqrt{a_1^2 + a_2^2 + a_3^2}.$$

3. Para normalizar um vetor não nulo \overrightarrow{a} , formamos o vetor unitário (ou versor)

$$\frac{\overrightarrow{a}}{\|\overrightarrow{a}\|}$$

Figura 18: Comprimento do vetor \overrightarrow{a} é dado por $\sqrt{a_1^2 + a_2^2 + a_3^2}$.

7. Propriedades algébricas

Se \overrightarrow{a} , \overrightarrow{b} e \overrightarrow{c} são vetores em \mathbb{R}^3 e $\lambda \in \mathbb{R}$, então

- a. $\overrightarrow{a} \cdot \overrightarrow{a} = ||\overrightarrow{a}||^2$
- b. $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$
- c. $\overrightarrow{a} \cdot (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c}$
- $\mathsf{d.}\ (\lambda\overrightarrow{a})\cdot\overrightarrow{b}=\lambda(\overrightarrow{a}\cdot\overrightarrow{b})=\overrightarrow{a}\cdot(\lambda\overrightarrow{b})$
- e. $\|\lambda \overrightarrow{a}\| = |\lambda| \|\overrightarrow{a}\|$

Facilmente se provam estas propriedades usando a definição de produto escalar e norma.

4. A distância entre dois pontos P e Q é dada por $\|\overrightarrow{PQ}\|$.

Figura 19: Distância entre os pontos P e Q.

5. No plano definimos o vetor $\overrightarrow{i_{\theta}} = (\cos \theta) \vec{i} + (\sin \theta) \vec{j}$, vetor unitário formando um ângulo θ com o eixo do xx.

Figura 20: Vetor unitário porque $\|\mathbf{i}_{\theta}\| = \cos^2 \theta + \sin^2 \theta = 1$.

6. O ângulo $0 \le \theta \le \pi$ entre entre os vetores $\overrightarrow{a} \in \overrightarrow{b}$ satisfaz $\overrightarrow{a} \cdot \overrightarrow{b} = \|\overrightarrow{a}\| \|\overrightarrow{b}\| \cos \theta$.

Figura 21: Ângulo entre os vetores \overrightarrow{a} e \overrightarrow{b} .

Segue que se
$$\overrightarrow{a}$$
 e \overrightarrow{b} são não nulos, $\theta = \arccos\left(\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\|\overrightarrow{a}\| \|\overrightarrow{b}\|}\right)$.

7. Desigualdade de Cauchy-Schwarz

Para quaisquer vetores \overrightarrow{a} e \overrightarrow{b} temos

$$\left| \overrightarrow{a} \cdot \overrightarrow{b} \right| \le \left\| \overrightarrow{a} \right\| \left\| \overrightarrow{b} \right\|,$$

verificando-se a igualdade se \overrightarrow{a} é um múltiplo escalar de \overrightarrow{b} ou um dos vetores é nulo.

8. Dizemos que dois vetores \overrightarrow{a} e \overrightarrow{b} são ortogonais quando $\overrightarrow{a} \cdot \overrightarrow{b} = 0$.

9. Desigualdade triangular

Para vetores \overrightarrow{a} em \overrightarrow{b} tem-se

$$\|\overrightarrow{a} + \overrightarrow{b}\| \le \|\overrightarrow{a}\| + \|\overrightarrow{b}\|.$$

Figura 22: Desigualdade triangular.

Matrizes, determinantes e produto vetorial

1. Chama-se matriz do tipo $m \times n$ sobre $\mathbb R$ a um quadro que se obtém dispondo mn números segundo m linhas e n colunas,

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

Por exemplo, matrizes do tipo 2×2 e 3×3 têm, respetivamente, a forma geral

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \qquad \mathsf{e} \qquad \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}.$$

2. O determinante de uma matrix 2×2 é o número real dado por

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

e de uma matriz 3×3 .

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

3. Trocar linhas ou colunas resulta numa troca de sinal no determinante; se multiplicarmos uma linha (ou coluna) por um escalar, o determinante é também multiplicado por esse escalar; substituir uma linha (ou coluna) pela soma com um múltiplo escalar de outra linha (ou coluna) não altera o determinante.

4. Produto vetorial (ou produto externo)

Dados $\overrightarrow{a}=a_1\overrightarrow{i}+a_2\overrightarrow{j}+a_3\overrightarrow{k}$ e $\overrightarrow{b}=b_1\overrightarrow{i}+b_2\overrightarrow{j}+b_3\overrightarrow{k}$ dois vetores de \mathbb{R}^3 , o produto vetorial de \overrightarrow{a} e \overrightarrow{b} , denotado por $\overrightarrow{a}\times\overrightarrow{b}$, é definido como sendo o vetor

$$\overrightarrow{a} \times \overrightarrow{b} = (a_2b_3 - a_3b_2)\overrightarrow{i} - (a_1b_3 - a_3b_1)\overrightarrow{j} + (a_1b_2 - a_2b_1)\overrightarrow{k}$$

$$= \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \overrightarrow{k}$$

ou, simbolicamente (mnemónica),

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.$$

5. O vetor $\overrightarrow{a} \times \overrightarrow{b}$ é ortogonal a qualquer vetor do plano gerado por \overrightarrow{a} e \overrightarrow{b} , em particular a \overrightarrow{a} e a \overrightarrow{b} .

Ou seja, se \overrightarrow{c} é combinação linear de \overrightarrow{d} e \overrightarrow{b} , temos

$$\overrightarrow{c} \cdot (\overrightarrow{a} \times \overrightarrow{b}) = 0$$

Chamamos a um produto destes um produto misto.

6. O comprimento de $\overrightarrow{a} \times \overrightarrow{b}$ é

$$\|\overrightarrow{a}\times\overrightarrow{b}\|=\|\overrightarrow{a}\|\|\overrightarrow{b}\|\operatorname{sen}\theta,$$

onde $0 \le \theta \le \pi$ é o ângulo entre os vetores \overrightarrow{a} e \overrightarrow{b} , e é igual à área do paralelogramo definido por \overrightarrow{a} e \overrightarrow{b} .

Como consequência, podemos concluir que os vetores \overrightarrow{a} e \overrightarrow{b} são paralelos se e somente se $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$.

Figura 23: $\|\overrightarrow{a} \times \overrightarrow{b}\|$ é a área do paralelogramo gerado por \overrightarrow{a} e \overrightarrow{b} .

7. Propriedades algébricas

- a. $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$ se e só se \overrightarrow{a} e \overrightarrow{b} são paralelos ou um dos vetores é o vetor nulo.
- b. $\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$
- c. $\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}$
- d. $(\overrightarrow{a} + \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c}$
- e. $(\alpha \overrightarrow{a}) \times \overrightarrow{b} = \alpha (\overrightarrow{a} \times \overrightarrow{b})$

Figura 24: $\overrightarrow{n_1}$ e $\overrightarrow{n_2}$ são dois possíveis vetores ortogonais a \overrightarrow{a} e a \overrightarrow{b} e com norma $||\overrightarrow{a}||||\overrightarrow{b}||$ sen θ .

O triplo $\left(\overrightarrow{a},\overrightarrow{b},\overrightarrow{a}\times\overrightarrow{b}\right)$ obedece à regra de mão direita

Figura 25: Regra da mão direita para determinar em que direção aponta o vetor $\overrightarrow{a} \times \overrightarrow{b}$.

9. A equação do plano que passa no ponto $P_0 = (x_0, y_0, z_0)$ e é perpendicular ao vetor $\overrightarrow{n} = A \vec{i} + B \vec{j} + C \vec{k}$ é dada por

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0,$$

ou seja,

$$Ax + By + Cz + D = \mathbf{0},$$

onde
$$D = -(Ax_0 + By_0 + Cz_0)$$
.

Figura 26: $\overrightarrow{P_0P}$ e \overrightarrow{n} são perpendiculares e satisfazem $\overrightarrow{P_0P} \cdot \overrightarrow{n} = 0$.