Laporan Praktikum Sistem Digital Semester Genap

Universitas Muhammadiyah Surakarta

Modul 2: Pengenalan Sinyal

Nama: Aqshal Fatwa Ibrahim

NIM: L200184040

Percobaan 1. Latihan Jenis-Jenis Sinyal

1. Buat rangkaian pada Gambar 2.3 dan edit properties masing-masing komponen sebagaimana terlihat pada Tabel 1.

Tabel 1. Komponen pada rangkaian

No	Device	Information
1	Alternator	V=5 Volt, f=100Hz
2	Cell	V=5 Volt
3	Clock	f=100Hz
4	Ground	Pick from Terminals
5	Oscilloscope	Pick from Instrument

- 2. Simulasikan! Kemudian akan muncul oscilloscope window
- 3. Coba pahami tentang *trigger source*, *signal type*, *volt/div*, *signal position*, dan *time/div* dengan mengatur tiap *switch*. Kemudian atur switch sebagaimana di Gambar 2.4.
- 4. Simulasi akan menunjukkan pada kita garis sinyal dari Baterai, *Clock* dan Alternator. Gambarlah hasil simulasi anda!

Vpp/div = 5Time/div = 5

Dan berikan penjelasan!

- a. Sinyal dari A (clock) membentuk sinyal berbentuk kotak, dengan batas atas = 5Volt dan batas bawah = 0Volt
- b. Sinyal dari B (cell) membentuk sinyal yang stabil pada tegangan 5Volt
- c. <u>Sinyal dari C (alternator) membentuk sinyal berbentuk gelombang,</u> dengan batas atas = 5Volt dan batas bawah = -5Volt

5. Matikan simulasi! Kemudian edit komponen anda sebagaimana pada Tabel 2 berikut. Tabel 2. Properties komponen

No	Device	Information
1	Alternator	V=7 Volt, f=50Hz
2	Cell	V=7 Volt
3	Clock	f=200Hz

6. Jalankan simulasi! Gambarlah hasil simulasi anda!

Vpp/div = 5 Time/div = 5

Dan berikan penjelasan!

- d. Sinyal dari A (clock) membentuk sinyal berbentuk kotak, dengan batas atas = 5Volt dan batas bawah = 0Volt
- e. Sinyal dari B (cell) membentuk sinyal yang stabil pada tegangan 7Volt
- f. Sinyal dari C (alternator) membentuk sinyal berbentuk gelombang, dengan batas atas = 10Volt dan batas bawah = -10Volt
- 7. Jawab pertanyaan-pertanyaan ini!
 - a. Apa perbedaan antara sinyal analog dan digital?

Sinyal analog menyerupai bentuk yang menyerupai sebuah gelombang Sinyal digital memiliki bentuk berupa pulsa yang memiliki besaran 0 dan 1

b. Bagaimana karakter sinyal pada masing-masing komponen?

1. Sinyal dari Alternator: (<u>Analog</u>/digital) Karena <u>memiliki bentuk seperti</u> gelombang

2. Sinyal dari Battery: (Analog/digital) Karena stabil di satu nilai

3. Sinyal dari Clock Source: (Analog/digital)

Karena memiliki bentuk seperti pulsa

yang memiliki nilai 0 dan 1

- 8. Buat kesimpulan berdasarkan pengamatan anda pada percobaan macam-macam sinyal
 - a. <u>Sinyal dari Alternator membentuk sinyal berbentuk kotak, dengan batas atas = 10Volt</u> dan batas bawah = -10Volt, (sinyal digital)
 - b. <u>Sinyal dari Battery/Cell membentuk sinyal yang stabil pada tegangan 7Volt (sinyal analog)</u>
 - c. <u>Sinyal dari Alternator membentuk sinyal berbentuk gelombang,</u> dengan batas atas = 10Volt dan batas bawah = -10Volt (sinyal analog

Catatan:

- 1. Parameter Digital mempunyai nilai discrete yang tetap
- 2. Parameter Analog mempunyai range nilai yang continuous

Percobaan 2. Latihan Range Sinyal Digital

1. Buat rangkaian simulasi Proteus 8 seperti pada Gambar 2.5. Tabel 3. Komponen untuk rangkaian

No	Device	Information
1	Cell	Edit to 10V
2	SW-SPST	
3	POT-HG	
4	Logicprobe	
5	Ground	Pick from Terminals
6	DC Voltmeter	Pick from Instrument

2. Jalankan simulasi seperti Gambar 2.6!

- 3. Klik SW1! Berdasarkan simulasi anda, isi titik-titik di bawah ini!
 - a. Voltmeter DC 1
- :<u>10</u>Volt
- b. Voltmeter DC 2
- :5Volt
- c. Logicprobe 1 menunjukkan kondisi logika : $\underline{\mathbf{1}}$
- d. Logicprobe 2 menunjukkan kondisi logika: 1
- 4. Klik komponen RV1 (resistor variable/POT-HG) naik dan turun! Dan kemudian isi titik-titik di bawah ini!
 - a. Logicprobe 2 menunjukkan kondisi logika <u>1 (**High)**,</u> jika Voltmeter DC 2:+3.60 Volts sampai +10.00 Volts
 - b. Logicprobe 2 menunjukkan kondisi logika <u>0 (Low)</u>, jika Voltmeter DC 2: <u>0.00</u> Volts sampai <u>+3.00</u> Volts

- 5. Buat kesimpulan berdasarkan analisis anda di latihan range sinyal digital!
 - a. <u>Ketika POT-HG berada di posisi 0%-30%, maka akan membuat Logicprobe 2</u> menunjukkan kondisi logika 0 (Low)
 - b. <u>Ketika POT-HG berada di posisi 36%-100%, maka akan membuat Logicprobe 2 menunjukkan kondisi logika 1 (High)</u>

Catatan:

- 1. Logicprobe menunjukkan apakah suatu tegangan termasuk dalam range tegangan digital.
- 2. Hanya dua kondisi tegangan yang diperbolehkan pada tegangan digital yaitu <u>0 Volt</u> dan <u>5 Volt</u>! (dengan toleransi)
- 3. Sinyal digital tidak diperkenankan melalui tegangan batas (seperti pada Logicprobe 1)