

TMA4183

Optimisation II Spring 2020

Norwegian University of Science and Technology Department of Mathematical Sciences

Exercise set 5

Assume that $\vec{b} \in C^1(\bar{\Omega}; \mathbb{R}^d)$ is a continuously differentiable, divergence free vector field on Ω (that is, div $\vec{b} = 0$ in Ω) and that $f \in L^2(\Omega)$. Consider the PDE

$$\operatorname{div}(\vec{b}u) - \Delta u = f \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \Gamma.$$
(1)

a) Provide a weak formulation of this PDE and show that it has a unique solution in $H_0^1(\Omega)$.

Hint: Recall the Poincaré inequality $||u||_{H^1} \leq C_{\Omega} ||\nabla u||_{L^2}$ for $u \in H_0^1(\Omega)$.

- **b)** Assume that $f_k \rightharpoonup f$ in $L^2(\Omega)$ and denote by u_k the solution of (1) with right hand side f_k , and by u the solution of (1) with right hand side f. Show that $u_k \rightharpoonup u$ in $H^1(\Omega)$.
- 2 We now consider the same basic PDE (1) but add a non-linear sink term: We assume that $g \in L^2(\Omega)$ with $g(x) \geq 0$ for a.e. x and consider the PDE

$$g \arctan u + \operatorname{div}(\vec{b}u) - \Delta u = f \quad \text{in } \Omega,$$

 $u = 0 \quad \text{on } \Gamma.$ (2)

- a) Provide a weak formulation of this PDE and show that it has a unique solution in $H_0^1(\Omega)$.
- **b)** Assume that $g_k(x) \geq 0$ for a.e. $x \in \Omega$ and that $g_k \rightharpoonup g$ in $L^2(\Omega)$. Denote by u_k the solution of (2) with sink term g_k arctan u, and by u the solution of (2) with sink term g arctan u. Show that $u_k \rightharpoonup u$ in $H^1(\Omega)$.

Hint: At some point it might help to verify that the convergence $u_k \to u$ weakly in $H^1(\Omega)$ implies that $\arctan u_k \to \arctan u$ strongly in $L^q(\Omega)$ for every $1 \le q < \infty$.