ACKNOWLEDGEMENT

By utilizing this website and/or documentation, I hereby acknowledge as follows:

Effective October 1, 2012, QUALCOMM Incorporated completed a corporate reorganization in which the assets of certain of its businesses and groups, as well as the stock of certain of its direct and indirect subsidiaries, were contributed to Qualcomm Technologies, Inc. (QTI), a whollyowned subsidiary of QUALCOMM Incorporated that was created for purposes of the reorganization.

Qualcomm Technology Licensing (QTL), the Company's patent licensing business, continues to be operated by QUALCOMM Incorporated, which continues to own the vast majority of the Company's patent portfolio. Substantially all of the Company's products and services businesses, including QCT, as well as substantially all of the Company's engineering, research and development functions, are now operated by QTI and its direct and indirect subsidiaries ¹. Neither QTI nor any of its subsidiaries has any right, power or authority to grant any licenses or other rights under or to any patents owned by QUALCOMM Incorporated.

No use of this website and/or documentation, including but not limited to the downloading of any software, programs, manuals or other materials of any kind or nature whatsoever, and no purchase or use of any products or services, grants any licenses or other rights, of any kind or nature whatsoever, under or to any patents owned by QUALCOMM Incorporated or any of its subsidiaries. A separate patent license or other similar patent-related agreement from QUALCOMM Incorporated is needed to make, have made, use, sell, import and dispose of any products or services that would infringe any patent owned by QUALCOMM Incorporated in the absence of the grant by QUALCOMM Incorporated of a patent license or other applicable rights under such patent.

Any copyright notice referencing QUALCOMM Incorporated, Qualcomm Incorporated, QUALCOMM Inc., Qualcomm Inc., Qualcomm or similar designation, and which is associated with any of the products or services businesses or the engineering, research or development groups which are now operated by QTI and its direct and indirect subsidiaries, should properly reference, and shall be read to reference, QTI.

¹ The products and services businesses, and the engineering, research and development groups, which are now operated by QTI and its subsidiaries include, but are not limited to, QCT, Qualcomm Mobile & Computing (QMC), Qualcomm Atheros (QCA), Qualcomm Internet Services (QIS), Qualcomm Government Technologies (QGOV), Corporate Research & Development, Qualcomm Corporate Engineering Services (QCES), Office of the Chief Technology Officer (OCTO), Office of the Chief Scientist (OCS), Corporate Technical Advisory Group, Global Market Development (GMD), Global Business Operations (GBO), Qualcomm Ventures, Qualcomm Life (QLife), Quest, Qualcomm Labs (QLabs), Snaptracs/QCS, Firethorn, Qualcomm MEMS Technologies (QMT), Pixtronix, Qualcomm Innovation Center (QuIC), Qualcomm iskoot, Qualcomm Poole and Xiam.

Modem Power Consumption
Debugging Methods

80-N9858-1 Rev. A

Qualcomm Confidential and Proprietary

Qualcomm Confidential and Proprietary

Restricted Distribution. Not to be distributed to anyone who is not an employee of either Qualcomm or a subsidiary of Qualcomm without the express approval of Qualcomm's Configuration Management.

Not to be used, copied, reproduced in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm.

Qualcomm reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed for any damages arising directly or indirectly by their use or application. The information provided in this document is provided on an "as is" basis.

This document contains Qualcomm confidential and proprietary information and must be shredded when discarded.

QUALCOMM is a registered trademark of QUALCOMM Incorporated in the United States and may be registered in other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners. CDMA2000 is a registered certification mark of the Telecommunications Industry Association, used under license. ARM is a registered trademark of ARM Limited.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

> QUALCOMM Incorporated 5775 Morehouse Drive San Diego, CA 92121-1714 U.S.A. Copyright © 2012 QUALCOMM Incorporated. All rights reserved.

Revision History

Revision	Date	Description	
А	March 2012	Initial release	

Contents

- Test Conditions and Environments
- Debugging and Optimization Methods
- How to Acquire F3 Log/Dump Files
- Appendix 1 Power Consumption Case Study
- References
- Questions?

Test Conditions – Test Setup

- Measurement
 - For additional information, see [Q2].
 - Some setting values of the test equipment can be different, according to standby/talk or CDMA/GSM/WCDMA/LTE mode.
 - To be compared/debugged properly, customers must measure the current in the same test conditions that are used by Qualcomm.
 - The standby/talk current numbers can be affected by some specific parameters.

Test Conditions – Sleep (Rock Bottom) Current

Definition

 The base current of low-power mode includes the leakage currents from every power source when the main clock (TCXO or XO) is turned off.

Measurement

 Sleep current can be measured when the main clock is turned off during standby mode or in airplane mode (the RF block is disabled).

Test Conditions – Standby Current

Definition

- Idle current average current consumed during the total awake time
 - Total awake time time interval between the TCXO warmup and the TCXO powerdown
 - PICH (PCH) awake time with RF chain active time interval for PICH (PCH) searching
 - Average current during the total awake time
- Standby current average current during standby mode
 - Includes the rock-bottom current and idle current for PICH (PCH) searching, SIM polling, and BCCH update
 - Can be approximately calculated with the following equation when ignoring SIM polling/BCCH

$$Standby current = \frac{rock-bottom current + idle current * total awake time}{DRX (MFRM) cycle}$$

DRx cycle/MFRM-to time conversion table

WCDMA		GSM				
DRx	Duration (ms)	MFRM	Duration (ms)	MFRM	Duration (ms)	
6	640	2	468	3	702	
7	1280	4	936	5	1170	
8	2560	6	1404	7	1638	
9	5129	8	1872	9	2106	

Definition (cont.)

- For additional information, see [Q2].
 - Describes how to load the software build and QCN file, and also how to set the NV items and call box
 - The standby/talk test procedure is included for DMA/GSM/WCDMA/LTE
- General call-box setting parameters in GSM mode
 - Network mode setting GSM-only through user-interface menu or NV setting
 - Paging multiframe rates (MFRM): 5 (=1.17 sec)
 - Neighbor cell searching parameter no neighbor cell
 - BCH parameters
 - Cell power: -45 dBm/cell band; PGSM/broadcast channel: 50
 - TCH parameters
 - Traffic band PGSM/traffic channel: 55
 - MS Tx level: 19 (5 dBm) for GSM PGSM talk current; 15 (5 dBm) for GSM DCS talk current

- General call-box setting parameters in WCDMA mode
 - Network mode setting WCDMA only, not Auto mode through user interface menu or NV setting
 - Periodic longer wakeup time at multiple DRX cycles, which was caused by Agilent 8960
 - For additional details, see [Q6].
 - DRx cycle length: 256 frames (DRx = 8, 2.56 sec)
 - Cell parameters
 - Cell power: -45 dBm
 - Channel type: 12.2k + RMC for standby and talk
 - Paging service: AMR voice for standby and talk
 - UE target power: 0 dBm
 - RLC re-establish: off/call limit state; off/call drop timer on
 - Security information/security parameters/security operations: none
 - AWGN power: off
 - Voice call/AMR setup
 - AMR radio access bearer: 12.2 k voice/AMR source echo
 - Speech echo loopback delay: 500.0 ms
 - RF in/out amplitude offset setup for the calculated cable loss

- General call-box setting parameters in CDMA mode
 - Network mode setting: CDMA only
 - Slot cycle index: 2 (5.12 sec)
 - Cell info/registration parameters
 - Timer-based registration off
 - Power UP registration state on
 - Others
 - Cell 1 power: -45 dBm/1.23 MHz
 - Protocol Rev: 6 (IS-2000-0)
 - Radio configuration: FWD3, RVS3; SO33+F-SCH
 - UE target power: 0 dBm
 - RLC re-establish: off/call limit state; off/call drop timer on
 - AWGN power off
 - RF in/out amplitude offset setup for the calculated cable loss

- General call-box setting parameters in LTE mode
 - Network mode setting LTE only
 - DRx cycle: 2.56 sec
 - No neighbor cell
 - By default, the phone assumes 255 neighbor cells and keeps searching.
 - To make sure no neighbors are present, add two blank hex files to \nv\item_files\modem\lte\ML1 through the EFS.
 - Two blank files can be created using any hex editor, or can be provided by request from Qualcomm.

Test Conditions – Talk Current

- Measurement
 - FFA is measured at the following Tx power level to exclude any external PA effect.
 - CDMA talk at 0 dBm
 - GSM talk at 5 dBm (PCL = 19 for PGSM/EGSM; PCL = 15 for DCS/PCS)
 - WCDMA talk at 0 dBm as UE target power
 - LTE talk Cat 3 / at 0 dBm / 10 MHz bandwidth
 - Need to check whether an actual Tx power level is correct as a desired value through The Measurement Selection button of the test equipment.
 - This is one of the key check points to ensure that RF calibration is correct, especially in GSM-mode Tx power.
 - RF calibration should be required, and RF cable loss should be calculated and reflected in the value.

Qualcomm Key Debugging Strategy

- Customer provides the design differences from the schematic. Do a design review for power by filing a case in Salesforce.
 - Customer device design may not be the same as the FFA/MTP design.
 - Need to analyze additional power consumption from the extra components on the device.
 - Design review case select case-record type (design review).
 - Fill out each item such as case information and problem description (like a normal case).
- Power debugging with reference to Qualcomm's power dashboard
 - For information on the MSM8960, see [Q7].
- Measure the current with the same measurement procedure/conditions as described in [Q2].
- Customer-specific test cases to be taken after standard dashboard case optimization and debugging.
- If the customer has any problem with power debugging, (i.e., test conditions, how to acquire clock/GPIO dump files, etc.), contact Qualcomm via Salesforce and file a case of type software or hardware using the following problem codes:
 - Software type case: problem area 1 (board-support-package) / problem area 2 (power management) / problem area 3 - select the appropriate item from the dropdown list.
 - Hardware type case: problem area1 (digital baseband) / problem area 2 (power consumption) / problem area 3 (not applicable)

Sleep Current – Summary

- 1. Check if the TCXO/XO clock is turned off properly during sleep.
 - Check why TCXO is not turned off via the RPM log or NPA dump analysis.
- 2. Measure the power rails and the breakdown numbers.
 - Check the turn-on power rails and voltage level on the basis of FFA/MTP.
 - Check which devices are consuming higher current: either MSM or external devices.
- 3. Deep debugging from step 2
 - Step 3.1 from MSM device
 - VDD_CORE (VREG_S3) voltage level/current consumption
 - VDD minimization
 - Higher current consumption clock dump review
 - VDD_Mx (VREG_S1, VREG_L24, and VREG_L25) current consumption
 - Check/verify the current consumption data for the memory vendor during self-refresh mode.
 - VDD_PADx (VREG_S4) current consumption
 - GPIO configuration review during sleep
 - Step 3.2 from external devices
 - Analyze additional leakage current for other power sources and external devices.
 - Check whether each power source for PMIC and separate LDOs is turned off properly during sleep.

Sleep Current

- Check whether the TCXO/XO clock is turned off properly during sleep.
 - When viewing the VDD_AP_CORE (VDD_K0/K1) voltage, check if the AP blocks enter power collapse properly.
 - If not turned off, one or more major subsystems on the MSM are failing to go into their lowest power mode, and this is preventing XO shutdown:
 - Low-power audio subsystem (LPASS) is not going into power collapse.

- Applications subsystem (APSS) is not going into power collapse.
- Modem subsystem (Q6 software MSS) is not going into sleep.
- RIVA subsystem is not going into sleep.
- DSPS Sensor subsystem is not going to sleep.
- Modem subsystem (Q6 firmware MSS) is not going into sleep.
- Check which subsystem is preventing XO shutdown through RPM external logs, gpRPMFWMaster data structure, etc.

Sleep Current (cont.)

- The breakdown current and voltage level for each power source
 - VDD_CORE (VREG_S3), VDD_K0/K1 (VREG_S5/S6), VDD_PAD (VREG_S4), RF-related power sources, etc.
 - Measure target UE's breakdown numbers/voltage level
- VDD_CORE (VREG_S3) higher current consumption
 - Check whether VDD minimization is operating properly (e.g., 0.65 V for MSM8960)
 - Review the clock dump
 - Can view the operating clock frequency, and which clocks are turned on/off
 - Unused clocks should be turned off properly
 - Breakpoint for MSM8960, right before XO shut down at the clk_regime_swfi(); in RPM
- Higher current consumption on VDD_PADx (VREG_S4)

- GPIO configuration review during sleep mode
 - Background and guidance see [Q5]
 - How to debug and optimize solution: 15542
 - Same as VDD_CORE above: breakpoint

Sleep Current (cont.)

- Other debugging items
 - To analyze additional leakage current for other power sources and external devices:
 - Need to remove them one by one
 - LCD, camera, and third-party WiFi/Bluetooth/FM devices
 - Audio AMP, backlight IC
 - RF components (PAM/FEM module, etc.)
 - Check whether each power source for PMIC and separate LDOs is turned off properly during sleep
 - Unused power sources should be turned off.
 - Measure/subtract the charging current of the external coin-cell part.

Sleep Current – Case Study

- MSM8255-0 project based on Android platform
 - Rock-bottom current
 - Measurement for each power source in PM8058

First me	easured current	Voltage during sleep	Measurement	Final measurement
	VBAT	3.7 V	11.6 mA	1.6 mA
	SMPS0 - MSMC1	0.75 V	1.5 mA	1.4 mA
Drookdows	SMPS1 – MSMC2	0,000	0	0
Breakdown numbers	SMPS2 – MSMA1	0	0	0
	SMPS3 – MSME	1.8 V	8.8 mA (4.7 mA at VBAT)	250 μΑ
	SMPS4 – MSMA2	0	0	0

Sleep Current - Case Study (cont.)

- MSM8255-0 project based on Android Platform (cont.)
 - Rock-bottom current (cont.)
 - Debugging results

Items	VBAT	Reduction	Remarks
Initial current number	11.6 mA	_	
Bluetooth/WiFi device (third-party) – removal	3.9 mA	7.7 mA	VBAT – 6.6 mA MSME – 1.1 mA
Analog switch device – removal	3.2 mA	0.7 mA	0.7 mA at LDO8
Unused LDOs in PM8058 – off	2.9 mA	0.3 mA	Total 10 LDOs
GPIO configuration	1.6 mA	1.3 mA	

Standby Current – Summary

- 1. Measure the awake time and average current.
 - Measure the waveform during awake.
 - Analyze the awake duration to check whether abnormal awake is happening.
- 2. Deep debugging from the waveform analysis
 - Step 2.1 longer W-PICH (G-PCH, C-QPCH, L-PCCH) awake time
 - NV items
 - F3 log analysis
 - RAM dump analysis
 - Step 2.2 higher awake average current
 - Measure the voltage level, especially VDD_CORE (VREG_S3)
 - Clock dump review/comparison

Standby Current

- Measure the awake time and average current.
 - Confirm the setting parameters of the test equipment.
 - Monitor the awake waveforms for a few minutes through the software tool.
 - Need to check abnormal awake waveform on customer target.

Standby Current (cont.)

- Longer PICH (PCH) awake time
 - NV items check
 - Four NV Items 1027, 1892, 1895, and 1962 = 0x0 (disabled)
 - NV_DIAG_DEBUG_DETAIL_I and NV_DIAG_DEBUG_DETAIL_I for saving F3 log
 - These should be set to 0x00.
 - F3 log analysis
 - Use the QXDM tool to acquire F3 log for around 5 min on each CDMA/GSM/WCDMA/LTE mode.
 - Example:
 - Longer awake time happened every 5 sec on both 2G and 3G.
 - Using the F3 log analysis, determined that the ADC block is working every 5 sec.

```
03-03-50.780 sec_drv_task.c 202 H ====Voltage [4002]mV, Current [358]mA 03-03-50.780 sec_drv_task.c 203 H ====SOC = [68], State = [3], res = [1] 03-03-55.813 sec_drv_task.c 202 H ====Voltage [4001]mV, Current [359]mA 03-03-55.813 sec_drv_task.c 203 H ====SOC = [68], State = [3], res = [1] 03-04-00.846 sec_drv_task.c 202 H ====Voltage [4002]mV, Current [358]mA 03-04-00.846 sec_drv_task.c 203 H ====SOC = [68], State = [3], res = [1] 03-04-05.879 sec_drv_task.c 203 H ====SOC = [68], State = [3], res = [1]
```

- RAM dump analysis
 - Can acquire various details from RAM dump analysis such as sleep-controller timelines

Standby Current (cont.)

- Higher PICH (PCH) awake average current
 - Measure the voltage level for each power source during idle.
 - VDD_CORE, VDD_K0/K1, etc.
 - VDD_CORE higher voltage level
 - Call stack analysis (or NPA dump analysis)
 - Check which clock voting affects the VDD_CORE voltage during awake.
 - Assume that VDD_CORE voltage is a specific number, such as 1.20 V (vs. MTP = 1.10 V).
 - Breakpoint refer to Power Consumption Measurement Procedure for Android-based Devices (80-N6837-1).
 - Qualcomm will provide this breakpoint information for each device.
 - Examples:
 - By MDP clock frequency
 - By GRP (graphic) clock frequency
 - Clock dump analysis
 - To optimize the awake average current for internal blocks, unused clocks should be properly turned off.
 - Breakpoint refer to [Q2].
 - Qualcomm will provide this breakpoint information for each device.

Standby Current – Case Study

Standby current

MSM8255-0 VBAT = 3.7 V			Initial values	NV item ¹	WCDMA only ²
Total standby current		3.78 mA	3.05 mA	_	
GSM standby	Rock-bottom current		1.65 mA		_
(MRFS = 5)	PCH	Avg. current	2 Md. off_	42 mA	_
	awake	Avg. time	Lethi	37 ms	_
	Total standby current		3.5 mA	3.3 mA	3.1 mA
WCDMA standby	Rock-bottom current		1.65 mA		
(DRx = 7)	PICH awake	Avg. current	_	54 mA	_
		Avg. time	_	36 ms	_

Notes:

- 1. Abnormal awake events happen every 9.4 sec → NV items change
- 2. WCDMA mode only longer wakeup time by only Agilent 8960 MSMC1 voltage – MDP clock fix through clock-dump file analysis

Talk Current – Summary

- 1. Measure the talk current between target UE.
 - Confirm the setting parameters of the Tx power level.
- 2. Compare the voltage level of VDD_CORE (VREG_S3).
 - Call stack analysis (or NPA dump analysis)
- 3. Higher talk current
 - F3 log analysis
 - Clock-dump review/comparison

Talk Current

- Measure the talk current on target UE
 - Refer to the Current Consumption Application Note (e.g., 80-N1622-11 for MSM8960) for the current consumption data for each device.
 - Confirm the setting parameters of the test equipment.
 - GSM
 - PGSM, Tx = +5 dBm (PCL = 19)
 - DCS, Tx = +5 dBm (PCL = 15)
 - CDMA/WCDMA/LTE: Tx = 0 dBm

Talk Current (cont.)

- Higher talk current
 - Compare the voltage level for each power source during idle.
 - VDD_CORE (VREG_S3), VDD_K0/K1 (VREG_S5/S6, usually turn-off), etc.
 - VDD_CORE (VREG_S3) higher voltage level
 - Call stack analysis (or NPA dump analysis)
 - F3 log analysis
 - Use the QXDM to acquire F3 log for around 5 min on CDMA/GSM/WCDMA/LTE for further debugging.
 - Clock dump analysis
 - Breakpoint any points during the talk state

Talk Current – Case Study

Talk current

	Talk current	Test conditions	Initial values	Clocks-off (intermediate)	Final values
GSM		PGSM, Tx = +5 dBm	99.7 mA	91.2 mA	88.2 mA
	WCDMA	Tx = 0 dBm	146.5 mA	144.2 mA	130.8 mA

Debugging results

- Through the clock dump review, these talk numbers were optimized after turning off the unused clocks.
 - Global/DDR performance level
 - I2C, MDP, UART1DM, USB, VPE, etc.

How to Acquire F3 Log Using QXDM

- Acquiring F3 log files using QXDM
 - Open the QXDM Professional tool.
 - Check whether the target UE enters the proper test scenario.
 - Menu option File/Load Configuration → Select the *.dmc file.

- All the proper viewers are being displayed. Automatically, logging begins.
- Wait for the logging time.
- Menu option File/Save Item → Save the log file (*.isf) with a specific filename.

How to Acquire Clock Dump

- Test environment
 - Hardware MSM8960 Customer Development Platform (CDP)
 - Main meta-build software— M8960AAAAANLYDxxxxxxx
 - Dynamic_Krait_c0_usb shortcut @ <meta-build>\common\t32\t32_standalone
 - MPSS software M8960AAAAANAAMxxxxxxx
 - testclock.cmm @ <modem
 build>\modem_proc\core\systemdrivers\hal\clk\chipset\msm8960\tools
- Run clockdump in TRACE32 (T32):
 - 1. Connect JTAG to target device.
 - 2. Run test scenario.
 - 3. Launch Dynamic_Krait_c0_usb shortcut T32 shortcut.
 - 4. Clear EnReset of Option @SYSTEM.VIEW dialog box.
 - 5. Run *Up* of Mode @SYSTEM.VIEW dialog box. The application stops.
 - 6. cd \\<modem build>\modem_proc\core\systemdrivers\hal\clk\chipset\msm8960\tools.
 - 7. Run testclock.cmm.
 - 8. Type *all* and press the [Enter] key when the window for taking clock dumps appears.

```
Type ? for help
<supported modules>
top_all (system clocks) // lpass_all (low power audio clocks) //
mmss all (multimedia clocks) // apcs all (Apps clocks)
```

How to Acquire GPIO Dump

- Test environment
 - Hardware MSM8960 CDP
 - - Dynamic_Krait_c0_usb shortcut @ <meta-build>\common\t32\t32_standalone
 - MPSS software M8960AAAAANAAMxxxxxxx
 - tlmm_gpio_8x60.cmm @ <modem build>\ modem_proc\core\systemdrivers\tlmm\t32
- Run tlmm_gpio_8x60.cmm in T32:
 - 1. Connect JTAG to the target device.
 - 2. Run the test scenario.
 - 3. Launch Dynamic_Krait_c0_usb shortcut T32 shortcut.
 - 4. Clear *EnReset* of Option @SYSTEM.VIEW dialog box.
 - 5. Run *Up* of Mode @SYSTEM.VIEW dialog box. The application stops.
 - 6. cd \\<modem build>\modem_proc\core\systemdrivers\tlmm\t32.
 - 7. Run tlmm_gpio_8x60.cmm.

Case Study 1

- MSM8255-0 (512 MB LPDDR2) + QTR8200 with Android Platform
 - Rock-bottom current
 - Measurement for each power source in PM8058

First measured current		Voltage during sleep	Measurement	Final measurement
	VBAT	3.7 V	11.6 mA	1.6 mA
	SMPS0 - MSMC1	0.75 V	1.5 mA	1.4 mA
	SMPS1 – MSMC2	20 KIRLINI O	0	0
Breakdown numbers	SMPS2 – MSMA1	0	0	0
	SMPS3 – MSME	1.8 V	8.8 mA (4.7 mA at VBAT)	250 μΑ
	SMPS4 – MSMA2	0	0	0

- MSM8255-0 (512 MB LPDDR2) + QTR8200 with Android Platform (cont.)
 - Rock bottom current (cont.)
 - Debugging results

Item	VBAT (mA)	Reduction (mA)	Remarks
The initial current number	11.6 mA	_	
Bluetooth/WiFi device (3rd party) – removal ¹	3.9 mA	7.7 mA	VBAT – 6.6 mA MSME – 1.1 mA
Analog switch device – removal ²	3.2 mA	0.7 mA	0.7 mA at LDO8
Unused LDOs in PM8058 – off	2.9 mA	0.3 mA	Total 10 LDOs
GPIO configuration ³	1.6 mA	1.3 mA	

Note:

- 1. Finally, optimized the power-down mode of the Bluetooth/WiFi device.
- 2. Finally, its power source was turned off and GPIO was configured properly for non-operating mode.
- 3. Finally, optimized through GPIO configuration review during sleep mode.

- MSM8255-0 (512 MB LPDDR2) + QTR8200 with Android Platform (cont.)
 - Standby current
 - Measurement

VBAT = 3.7 V			Initial values	NV Item *	WCDMA only **
Total star		ndby current	3.78 mA	3.05 mA	_
GSM standby	Rock-bo	ttom current	1.65 ו	mA	_
(MRFS = 5)	PCH	Avg. current		42 mA	-
	awake	Avg. time	-	37 ms	-
	Total sta	ndby current	3.5 mA	3.3 mA	3.1 mA
WCDMA standby	Rock-bo	ttom current		1.65 mA	
(DRx = 7)	PICH	Avg. current		54 mA	
	awake	Avg. time	_	36 ms	

Note:

For details on * and ** - see the next slide.

- MSM8255-0 (512 MB LPDDR2) + QTR8200 with Android Platform (cont.)
 - Standby current (cont.)
 - Debugging results
 - * NV items change

	NV item	Description	Setting values
1027	Enable MDSP logging	MDSP memory dump enable	0
1892	Enable logging	Diag debug control	0
1895	Enable logging	Diag debug detail	0
1962	Enable logging	Trace files saved EFS	0

- Abnormal awake events (longer awake time and higher average current) can happen every 9.4 sec.
- After changing these NV items, the standby current was improved.
- ** WCDMA-only mode longer wakeup time by only Agilent 8960
 - Unlike other test equipment, the UE will show the periodic longer wakeup time at every specific cycle only on Agilent 8960.
 - The UE should be set to WCDMA mode only, or other test equipment should be used.
 - Around 0.2 mA can be improved.

Final rock-bottom/standby current values

VDAT _ 2.7 V			MSM8255-0 project		
VBAT = 3.7 V		Initial number	Final number		
Total standby current		andby current	3.78 mA	2.45 mA	
GSM standby	Rock-be	ottom current	1.65 mA	1.28 mA	
(MRFS = 5) F	PCH	Avg. current	-62 Mind	34 mA	
	awake	Avg. time	CIII. TIE	37 ms	
	Total sta	andby current	3.5 mA	2.65 mA	
WCDMA standby	Rock-bottom current		1.65 mA	1.25 mA	
(DRx = 7)	PICH	Avg. current	_	44 mA	
	awake Avg. time		_	40 ms	

Qualcomm Confidential and Proprietary

Case Study 2

- MSM8255-0 (512 MB LPDDR2) + QTR9215
 - Rock-bottom current
 - Measurement for each power source in PM8058

First measured current		Voltage during sleep	Measurement	Final measurement
	VBAT	3.7 V	2 mA	1.4 mA
	SMPS0 - MSMC1	0.75 V	1.5 mA	1.5 mA
Breakdown	SMPS1 – MSMC2	0.00 110	0	0
numbers	SMPS2 – MSMA1	Charling 0	0	0
	SMPS3 – MSME	1.8 V	1.4 mA	300 μΑ
	SMPS4 – MSMA2	0	0	0

- Debugging result
 - GPIO configuration review during sleep
 - Rock-bottom number is approximately 1.4 mA

PAGE 42

- Standby current
 - Measurement

VBAT = 3.7 V (Software – 1035)			Initial values ¹	MSMC1 (1.1 V) and others ²	Final
Total standby current		5.42 mA	2.93 mA	2.71 mA ³	
GSM standby	Rock-be	ottom current	1.47 mA	1.58 mA	1.28 mA
(MRFS = 5)	PCH	Avg. current	60 mA	44 mA	42 mA
(awake	Avg. time	38 ms	31 ms	31 ms
Total standby		andby current	8.06 mA	2.51 mA	2.12 mA
WCDMA standby	Rock-be	ottom current	1.47 mA	1.54 mA	1.28 mA
(DRx = 8)	PICH	Avg. current	65 mA	55 mA	50 mA
	awake	Avg. time	36 ms	35 ms	35 ms

Notes:

PAGE 43

- 1. These values were provided by the customer.
- 2. See the next slide.
- 3. Had two kinds of abnormal longer PCH awake every 30 sec.

- Standby current (cont.)
 - Debugging results
 - MSMC1 voltage = 1.2 V vs. FFA = 1.1 V
 - Through call-stack review, determined that CLKRGM_MSMC_CLIENT_GRP sets MSMC1 to 1.2 V.
 - GPU core clock 245 MHz in operation → 0 MHz when there is no operation (during awake)
 - It affects other power-consumption reduction for LCD on state, MP3 playback, etc.
 - Some unused clocks on
 - Through clock-dump review/comparison, some unused blocks (USB, UART, etc.) were turned on during awake.
 - Abnormal awake
 - UE showed longer awake time every 5 sec.
 - Through F3 log review, determined that the battery ADC block was operating.

- Talk current
 - Measurement

Talk current	Test conditions	Initial values	Clocks-off (intermediate)	Final values
GSM	PGSM, Tx = +5 dBm	99.7 mA	91.2 mA	88.2 mA
WCDMA	Tx = 0 dBm	146.5 mA	144.2 mA	130.8 mA

- Debugging results
 - Through the clock-dump review, these talk numbers were optimized after turning off the unused clocks.

Qualcomm Confidential and Proprietary

References

Ref.	Document	
Qualco	mm	
Q1	Application Note: Software Glossary for Customers	CL93-V3077-1
Q2	Power Consumption Measurement Procedure for Android-Based Devices	80-N6837-1
Q3	Power Consumption Optimization and Debugging Guide for MSM8660 Devices	80-N6923-1
Q4	Presentation: MSM8960 Power Management and Optimization Guide	80-N5232-1
Q5	Configuration of Input Pins During Device Sleep	80-VN499-7
Q6	Standby Current Optimization on the MSM6K/7K Mobile Station Modem Series Troubleshooting Guide	80-VE263-8
Q7	AMSS 8960 Current Consumption Data for Linux Android	80-N1622-11

Qualcomm Confidential and Proprietary

