Matrix Algebra: Appendix A, B Ronald Christensen

Hakbae Lee

The Department of Statistics and Data Science, Yonsei University

Definition A.1. A set $\mathcal{M} \subset \mathbf{R}^n$ is a vector space if, for any $x,y,z\in M$ and scalars α,β , operations of vector addition and scalar multiplication are defined such that:

- (1) (x + y) + z = x + (y + z).
- (2) x + y = y + x.
- (3) There exists a vector $0 \in \mathcal{M}$ such that x + 0 = x = 0 + x for any $x \in \mathcal{M}$.
- (4) For any $x \in \mathcal{M}$, there exists y = -x such that x + y = 0 = y + x.
- (5) $\alpha(\mathbf{X} + \mathbf{y}) = \alpha \mathbf{X} + \alpha \mathbf{y}$.
- (6) $(\alpha + \beta)x = \alpha x + \beta x$.
- (7) $(\alpha\beta)x = \alpha(\beta x)$.
- (8) There exists a scalar $\xi = 1$ such that $\xi x = x$.

Definition A.2. Let \mathcal{M} be a vector space, and let \mathcal{N} be a set with $\mathcal{N} \subset \mathcal{M}$. \mathcal{N} is a subspace of \mathcal{M} if and only if \mathcal{N} is a vector space.

Theorem A.3. Let \mathcal{M} be a vector space, and let \mathcal{N} be a nonempty subset of \mathcal{M} . If \mathcal{N} is closed under vector addition and scalar multiplication, then \mathcal{N} is a subspace of \mathcal{M} .

Theorem A.4. Let \mathcal{M} be a vector space, and let $x_1, \ldots, x_r \in \mathcal{M}$. Then $\{v | v = \alpha_1 x_1 + \ldots + \alpha_r x_r, \alpha_i \in \mathbf{R}^n\} \subset \mathcal{M}$

Definition A.5. The set of all linear combinations of x_1, \ldots, x_r is called the *space spanned* by x_1, \ldots, x_r . If $\mathcal N$ is a subspace of M, and $\mathcal N$ equals the space spanned by by x_1, \ldots, x_r , then $\{x_1, \ldots, x_r\}$ is called a spanning set for $\mathcal N$.

Consider an $n \times p$ matrix A

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ip} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix} = \begin{pmatrix} R_1^T \\ R_2^T \\ \vdots \\ R_n^T \end{pmatrix}$$

$$= \begin{pmatrix} C_1 & C_2 & \dots & C_p \end{pmatrix}$$

where

$$egin{array}{lll} R_i^T &=& i\text{-th 1} imes p ext{ row vector, } i=1,\ldots,n \ C_j &=& j\text{-th } n imes 1 ext{ column vector, } j=1,\ldots,p \ \mathcal{C} &=& ext{Span}\{C_1,\ldots,C_p\} = ext{column space} \subset \mathbf{R}^n \ \mathcal{R} &=& ext{Span}\{R_1,\ldots,R_p\} = ext{row space} \subset \mathbf{R}^p \end{array}$$

Definition A.6. Let $x_1, \ldots, x_r \in \mathcal{M}$. If there exist scalars $\alpha_1, \ldots, \alpha_r$ not all zero so that $\sum_i \alpha_i x_1 = 0$, then x_1, \ldots, x_r are linearly dependent. If such α s do not exist, x_1, \ldots, x_r are linearly independent.

Definition A.7. If $\mathcal{N} \subset \mathcal{M}$ and if $\{x_1,...,x_r\}$ is a linearly independent spanning set for \mathcal{N} , then $\{x_1,...,x_r\}$ is called a basis for \mathcal{N} .

Theorem A.8. If $\mathcal{N} \subset \mathcal{M}$, all bases for \mathcal{N} have the same number of vectors.

Theorem A.9. If $v_1,...,v_r$ is a basis for $\mathcal N$, and $x\in\mathcal N$, then the characterization $x=\sum_{i=1}^r\alpha_1v_i$ is unique.

Definition A.10.

 $r(\mathcal{N}) \equiv \text{rank of } \mathcal{N} = \text{No of vectors in a basis of } \mathcal{N}$

Definition A.11.

- The (Euclidean) inner product between two vectors x and y in \mathbf{R}^n is x^Ty .
- Two vectors x and y are orthogonal, $x \perp y$ if $x^T y = 0$.
- Two subspaces \mathcal{N}_1 and \mathcal{N}_2 are orthogonal if $x \in \mathcal{N}_1$ and $y \in \mathcal{N}_2$ imply that $x^T y = 0$.
- $\{x_1, \ldots, x_r\}$ is an orthogonal basis for a space \mathcal{N} if $\{x_1, \ldots, x_r\}$ is a basis for \mathcal{N} and for $i \neq j, x_i^T x_j = 0$.
- $\{x_1, \ldots, x_r\}$ is an orthonormal basis for \mathcal{N} if $\{x_1, \ldots, x_r\}$ is an orthogonal basis and $x_i^T x_1 = 1$ for $i = 1, \ldots r$.
- The terms orthogonal and perpendicular are used interchangeably.
- The length of a vector x is $||x|| \equiv \sqrt{x^T x}$. The distance between two vectors x and y is the length of their difference, i.e., ||x y||.

Definition A.12. The **Gram - Schmidt (Orthogonalization) Theorem.**

Let $\mathcal N$ be a space with basis $\{x_1,\ldots,x_r\}$. There exists an orthonormal basis for $\mathcal N$, say $\{y_1,\ldots,y_r\}$, with y_s in the space spanned by $\{x_1,\ldots,x_s,s=1,\ldots r\}$.

Definition A.13. Let $\mathcal{N} \subset \mathcal{M}$.

$$egin{array}{lcl} \mathcal{N}_{\mathcal{M}}^{\perp} &\equiv & \{y \in \mathcal{M} | y \perp \mathcal{N}\} \ &= & ext{orthogonal complement of } \mathcal{N} ext{ with respect to } \mathcal{M} \end{array}$$

Theorem A.14. Let $\mathcal{N} \subset \mathcal{M}$. Then $\mathcal{N}_{\mathcal{M}}^{\perp} \subset \mathcal{M}$: in other words, if $x \in \mathcal{M}$, x can be written uniquely as $x = x_0 + x_1$ with $x_0 \in \mathcal{N}$ and $x_1 \in \mathcal{N}_{\mathcal{M}}^{\perp}$ and $r(\mathcal{M}) = r(\mathcal{N}) + r(\mathcal{N}_{\mathcal{M}}^{\perp})$.

Definition A.15. Let \mathcal{N}_1 and \mathcal{N}_2 be vector subspaces. Then

$$\mathcal{N}_1 + \mathcal{N}_2 = \{x | x = x_1 + x_2, x_j \in \mathcal{N}_j, j = 1, 2\}$$

Theorem A.16. $\mathcal{N}_1 + \mathcal{N}_2$ is a vector space and $\mathcal{C}(A, B) = \mathcal{C}(A) + \mathcal{C}(B)$.

pp.415-416

Basic Idea of Matrix

Definition B.1. Square Matrix $p \times p$ matrix A

Definition B.2. Transpose of $A = [a_{ij}]; A^T = [a_{ji}]$

Definition B.3. Symmetric matrix; $A = A^T$

Definition B.4. Diagonal matrix of a square $A \equiv \text{diag}(\lambda_j)$

Definition B.5. Let A; $r \times c$ and B; $s \times d$.

 $\textit{A} \otimes \textit{B} \equiv \text{Kronecker product of } \textit{A} \text{ and } \textit{B} = \left(\textit{a}_{\textit{ij}}\textit{B}\right) : \textit{rs} \times \textit{cd}$

Definition B.6. Let $A = (A_1, \ldots, A_c)$; $r \times c$.

$$[\operatorname{vec}(A)]^T = (A_1^T, A_2^T, \dots, A_c^T)$$

Basic Idea of Matrix

Definition B.8. $A: n \times n$ is nonsingular if $A^{-1}A = AA^{-1} = I_n$ where A^{-1} is inverse of A

Theorem B.9 $A : n \times n$ is nonsingular if and only if r(A) = n.

Corollary B.10. $A: n \times n$ is singular if and only if there exists $x \neq 0$ such that Ax = 0.

Definition B.11.

$$\mathcal{N}(A) \equiv \{x | Ax = 0\} = \text{ Null space of } A$$

Theorem B.12. Let A be $n \times n$ and r(A) = r. Then $r(\mathcal{N}(A)) = n - r$.

Definition B.13. λ is an eigenvalue of A if $A - \lambda I$ is singular. λ is an eigenvalue of multiplicity s if $r = (\mathcal{N}(A - \lambda I)) = s$. A nonzero vector x is an eigenvector of A corresponding to λ if $Ax = \lambda x$. Eigenvalues are also called singular values and characteristic roots. ; pp. 421-422

Theorem B.14. Let A be is a symmetric matrix. Then there exists a basis for $\mathcal{C}(A)$ consisting of eigenvectors of nonzero eigenvalues. If λ is a nonzero eigenvalue of multiplicity s, then the basis will contain s eigenvectors for λ .

Theorem B.15. If A is symmetric, there exists an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A.

Definition B.16. A square matrix P is orthogonal if $P^T = P^{-1}$.

Theorem B.17. $P_{n \times n}$ is orthogonal if and only if the columns of P form an orthonormal basis for \mathbb{R}^n .

Corollary B.18. $P_{n \times n}$ is orthogonal if and only if the rows of P form an orthonormal basis for \mathbb{R}^n .

Theorem B.19. If A is an $n \times n$ symmetric matrix, then there exists an orthogonal matrix P such that $P^TAP = \text{Diag}(\lambda_i)$, where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A.

proof: p.423

Spectral Decomposition(SD)

=Singular Value Decomposition(SVD) for a symmetric matrix

Corollary B.20.

$$A = PD(\lambda_i)P^T$$

Definition B.21. A symmetric matrix A is positive (nonnegative) definite, p.d(n.d) if, for any nonzero vector $v \in \mathbf{R}^n$, $v^T A v > 0 (\geq 0)$.

Theorem B.22. A is nonnegative definite(n.d) if and only if there exists a square matrix Q such that $A = QQ^T$.

PROOF; p.424

Corollary B.23. *A* is positive definite(p.d) if and only if *Q* is nonsingular for any choice of *Q*.

PROOF; p.424

Theorem B.24. If A is an $n \times n$ nonnegative definite matrix with nonzero eigenvalues $\lambda_1, \ldots, \lambda_r$, then there exists an $n \times r$ matrix $Q = Q_1 Q_2^{-1}$ such that Q_1 has orthonormal columns, $\mathcal{C}(Q1) = \mathcal{C}(A)$, Q_2 is diagonal and nonsingular, and $Q^T A Q = I_r$.

Corollary B.25. Let $W = Q_1 Q_2$. Then $W^T W = A$.

Corollary B.26. $AQQ^TA = A$ and $QQ^TAQQ^T = QQ^T$.

Definition B.27. Let $A = [a_{ij}]$ be an $n \times n$ matrix. The trace of A is $tr(A) = \sum_{i=1}^{n} a_{ii}$.

Theorem B.28. For matrices $A_{r \times s}$ and $B_{s \times r}$, tr(AB) = tr(BA).

Theorem B.29. Let A be a symmetric matrix. Then $tr(A) = \sum_{i=1}^{n} \lambda_i$ where $\lambda_1, \dots, \lambda_n$ are the eigenvalues of A.

Theorem B.30. Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. then $tr(A) = \sum_{i=1}^n \lambda_i$ and $det(A) = \prod_{i=1}^n \lambda_i$.

Orthogonal(perpendicular) projection operator: opo (ppo)

Definition B.31. M is a perpendicular(orthogonal) projection operator(matrix) onto C(X) if and only if

- (i) $v \in C(X)$ implies Mv = v; projecton
- (ii) $w \perp C(X)$ implies Mw = 0; perpendicularity

Proposition B.32. If M is opo(ppo) onto C(X), then C(M) = C(X).

Theorem B.33. M is opo(ppo) onto C(X) if and only if MM = M and $M^T = M$.

PROOF; p.427

Proposition B.34. Perpendicular(orthogonal) projection operators are unique.

Theorem B.35. Let o_1, \ldots, o_r be an orthonormal basis for $\mathcal{C}(X)$, and let $O = [o_1, \ldots, o_r]$. Then $OO^T = \sum_{i=1}^r o_i o_i^T$ is the perpendicular projection operator onto $\mathcal{C}(X)$.

Definition B.36. A generalized inverse of a matrix A is any matrix G such that AGA = A. The notation A^- is used to indicate a generalized inverse of A.

Theorem B.37. If A is nonsingular, the unique generalized inverse of A is A^{-1} .

Theorem B.38. For any symmetric matrix *A*, there exists a generalized inverse of *A*.

Theorem B.39. If G_1 and G_2 are generalized inverses of A, then so is G_1AG_2 .

Corollary B.41. For a symmetric matrix A, there exists A^- such that $A^-AA^- = A^-$ and $(A^-)^T = A^-$.

Definition B.42. A generalized inverse A^- for a matrix A that has the property $A^-AA^- = A^-$ is said to be reflexive.

Lemma B.43. If G and H are generalized inverses of (X^TX) , then

- (i) $XGX^TX = XHX^TX = X$
- (ii) $XGX^T = XHX^T$

Theorem B.44. $X(X^TX)^-X^T$ is the perpendicular projection operator onto $\mathcal{C}(X)$.

Theorem B.45. Let M_1 and M_2 be perpendicular projection matrices on \mathbf{R}^n . $(M_1 + M_2)$ is the perpendicular projection matrix onto $\mathcal{C}(M_1, M_2)$ if and only if $\mathcal{C}(M_1) \perp \mathcal{C}(M_2)$.

Theorem B.46. Let M_1 and M_2 be symmetric. Then $\mathcal{C}(M_1) \perp \mathcal{C}(M_2)$, and $(M_1 + M_2)$ is a perpendicular projection matrix, then M_1 and M_2 are perpendicular projection matrices.

Theorem B.47. Let M and M_0 be perpendicular projection matrices with $\mathcal{C}(M_0) \subset \mathcal{C}(M)$. Then $M-M_0$ is a perpendicular projection matrix.

Theorem B.48. Let M and M_0 be perpendicular projection matrices with $\mathcal{C}(M_0) \subset \mathcal{C}(M)$. Then $\mathcal{C}(M-M_0)$ is the orthogonal complement of $\mathcal{C}(M_0)$ with respect to $\mathcal{C}(M)$, i.e., $\mathcal{C}(M-M_0) = \mathcal{C}(M_0)^{\perp}_{\mathcal{C}(M)}$.

Corollary B.49. $r(M) = r(M_0) + r(M - M_0)$.

Definition B.50.

- (a) If A is a square matrix with $A^2 = A$, then A is called idempotent.
- (b) Let $\mathcal N$ and $\mathcal M$ be two spaces with $\mathcal N\cap\mathcal M=\{0\}$ and $r(\mathcal N)+r(\mathcal M)=n$. The square matrix A is a projection operator onto $\mathcal N$ along $\mathcal M$ if 1) Av=v for any $v\in\mathcal N$, and 2) Aw=0 for any $w\in\mathcal M$.

Miscellaneous Results

Proposition B.51. For any matrix X, $C(XX^T) = C(X)$.

Corollary B.52. For any matrix X, $r(XX^T) = r(X)$.

Corollary B.53. If $X_{n \times p}$ has r(X) = p, then the $p \times p$ matrix $X^T X$ is nonsingular.

Proposition B.54. If *B* is nonsingular, C(XB) = C(X).

Theorem B.55. For any matrix X, there exists a generalized inverse X^- .

Proposition B.56. When all inverses exist,

$$[A + BCD]^{-1} = A^{-1} - A^{-1}B[C^{-1} + DA^{-1}B]^{-1}DA^{-1}$$

Properties of Kronecker Products and Vec Operators

- 1. $[A \otimes (B+C)] = [A \otimes B] + [A \otimes C]$
- 2. $[(A+B)\otimes C]=[A\otimes C]+[B\otimes C]$
- 3. $ab[A \otimes B] = [aA \otimes bB]$ for $a, b \in \mathbf{R}$
- 4. $[A \otimes B][C \otimes D] = [AC \otimes BD]$
- $5. \ [A \otimes B]^T = [A^T \otimes B^T]$
- 6. $[A \otimes B]^- = [A^- \otimes B^-]$
- 7. $\operatorname{Vec}(vw^T) = w \otimes v$ for two vectors v, w
- 8. $\operatorname{Vec}(AWB^T) = [B \otimes A]\operatorname{Vec}(W)$
- 9. $Vec(A)^T Vec(B) = tr(A^T B)$
- 10. $E\{Vec(W)\} = Vec\{E(W)\}\$ for a random matrix W Vec(A + B) = Vec(A) + Vec(B) $Vec(\phi A) = \phi Vec(A)$ for $\phi \in \mathbf{R}$
- 11. Let A and B be positive definite. Then $A \otimes B$ is positive definite.

