The Association of Crime Occurrence on Rates of Suspensions and Expulsions in Chicago Public Schools Using Double Hurdle Models

Nicholas Fox, John Cote, Dr. Earvin Balderama Department of Mathematics & Statistics, Loyola University Chicago, Chicago, IL, USA

Motivation

- ► Goal:
 - ▶ To gain a better understanding of factors that may influence student explusion
- **▶** Steps:
 - Investigate potential factors leading to student expulsion
 - Analyze the effects of the amount of violent crime in a school attendance boundary
 - Examine spatial effects of school attendance boundaries

Model

Priors for Beta and Alpha Parameters

 $eta_{j}\sim Normal(0,100)$ (1 $lpha_{j}\sim Normal(0,1000)$

Negative Binomial and Generalized Pareto Distribution Double Hurdles Models

p = P(zero-count)

 $logit(\mathbf{p}) = log(School.Pop) + \mathbf{X}\boldsymbol{\gamma} + \mathbf{V}\boldsymbol{\alpha}$

 μ = mean of typical-count distribution.

 $\log(\mu) = \log(School.Pop) + X\beta + V\alpha$

q = P(large-count | nonzero-count)

 $\mathsf{logit}(\mathbf{q}) = \mathbf{log}(School.Pop) + \mathbf{X}\boldsymbol{\delta}$

Data

- Chicago Data Portal
 - Chicago Crime Records for the year 2015
 - Shapefiles for CPS attendance boundaries
- Chicago Public School Data from the CPS Website
 - Attendance records
 - Education quality scores
 - Standardized test scores
 - Suspension, expulsion, and misconduct information

Model Variables and Results

Response data:

Expulsions

— Expulsions counts for each Chicago Public School

Model Covariates covariates:

- Common Covariates
 - $\mathbf{x}_1 \mathbf{x}_3 =$ Ethnicity counts for schools; White, African American, Hispanic respectively
 - $\mathbf{x}_4 = \mathsf{Number}$ of misconducts per school
- Unique Elementary School Covariates
 - x_5 = School quality score
 - $\mathbf{x}_6 = \mathsf{PARCC}$ average math score
 - $\mathbf{x}_7 = \mathsf{PARCC}$ English Language Arts average score
 - \mathbf{x}_8 = Crime counts based on school attendance boundary
- Unique High School Covariates
 - \mathbf{x}_5 = Average ACT composite score per school
 - \mathbf{x}_6 = Crime counts based on school attendance boundary
 - $\mathbf{x}_7 = School quality score$
- ► Spatial Random Effects are included for each model

Crime Regression Coefficients for Elementary School Models

Figure: Expulsion Models for Elementary Schools

Figure: Suspension Models for Elementary Schools

Crime Regression Coefficients for High School Models

Figure: Expulsion Models for High Schools

Figure: Suspension Models for High Schools

Model Diagnostics

Model		DIC	СРО	PPO	Model		DIC	СРО	PPO
	1	189.0624	0.906428	0.910272				0.009427	
				0.909889				0.008998	
Extreme		187.1526	0.90624	0.910572	Extrem	e	3891.117	0.009428	0.009446

Figure: Elemetary School Expulsion Diagnostic (left) and Suspension Diagnostics (right)

Model		DIC	СРО	PPO	Model		DIC	СРО	PPO
	1	399.6648	0.425075	0.445602		1	1140.971	0.010367	0.010546
9	5	370.6124	0.422647	0.449454	9	95	1045.549	0.045831	0.060184
Extreme		371.3801	0.430773	0.455491	Extreme		1135.263	0.015739	0.01652

Figure: High School Expulsion Diagnostic (left) and Suspension Diagnostics (right)

Discussion of Results

- Demographics
 - □ These factors were mostly insignificant
 - A couple were barely significant in a couple models, however overall not very important
- ► Test Scores
 - ▶ Test scores were used to look at student performance and were used as a proxy for student motivation
 - ▶ Most significant when modelling the mean number of non-zero expulsion counts
- Misconducts
 - The number of misconducts was significant in the majority of the models run. This is expected, as with the more misconducts we expect more suspensions and expulsions.
- Quality Scores
- A quality score provided by CPS for each school
- Violent Crime Frequency
 - ▶ Crime frequency was found to be significant for both suspensions and expulsions for most of the models
 - ▶ For most cases, it was found to be a positive relationship between the amount violent crime and the number of suspension and expulsions
- Spatial Random Effects
 - This variable examined whether the occurance of a crime in one school boundary influenced crime in a neighboring school boundary

Future Considerations

- Consider temporal factors as potentially affecting suspensions and expulsions
- Consider more types of crime than just violent crime
- Consider physical distances of crimes to a school

Acknowledgements

- ► Software Used: (www.r-project.org)
- Data obtained from the Chicago Data Portal and Chicago Public Schools Data Page
- Special thanks to the Loyola University Chicago Department of Mathematics and Statsitics