

SM402 Basic Computational Topology

26.04.2022

Group-3

Ayyappa Koppuravuri, IMT2020555 T. Akhil, IMT2020124 Sai Teja, IMT2020538 S. Leelavamsi Krishna, IMT2020111

Problem Statement

Given any input simplicial complex (up to 3-dimensional), compute $\beta 2$ using the boundary matrix method.

Theory

Betti numbers are used to distinguish topological figures on the basis of the connectivity of the n-dimensional simplicial complexes. A *p*th Betti number refers to the number of *p*th dimensional holes.

- $0 \Rightarrow$ Number of connected components.
- $1 \Rightarrow$ Number of tunnels (One-Dimensional holes).
- $2 \Rightarrow$ Number of voids (Two-Dimensional holes).

$$\begin{split} Hp(K) &= Ker(\partial p) \ / \ Im(\partial (p+1)) \\ p &= dim(Hp(K)) = dim(Ker(\partial p)) \ - \ dim(Im(\partial (p+1))) \end{split}$$

Algorithm

- 1. $H2(K) = Ker(\partial 2) / Im(\partial 3)$
- 2. The formula used to calculate 2 is:

$$2 = \dim(H2(K)) = \dim(Ker(\partial 2)) - \dim(Im(\partial 3))$$

3. We take the values of the vertices, edges, faces, and tetrahedrons from the given ".gts" file and compute the $\partial 2$ and $\partial 3$ matrices.

- 4. We then compute the rank of 32 and 33 matrices. These are the values of dim(Im(32)) and dim(Im(33)) respectively.
- 5. From the Rank Nullity theorem, we know that $\dim(C2(K)) = \dim(Ker(\partial 2)) + \dim(Im(\partial 2))$. So from this, we get the $\dim(Ker(\partial 2))$ value, and then we can find the value of 2 for the given figure using the formula mentioned in (2).

Implementation

- 1. Extract the number of vertices, edges, faces, and tetrahedrons. And then extract the edges, faces, and tetrahedrons from the given ".gts" file.
- 2. Compute the 32 and 33 matrices using the vertices, edges, faces, and tetrahedrons data obtained in step-I.
- 3. Find the ranks of $\partial 2$ and $\partial 3$ matrices.
- 4. Compute the value of 2 using the formula.

System Requirements

Pre-installed *numpy* and *python3* are required to run the program.

To install the required libraries, execute the following command in the terminal

• pip3 install numpy

Steps To Run The Program

To run the program, execute the following command in the terminal

• python3 betti2.py

Then enter the name of the ".gts" file that is to be taken as the input.

Output

• Single Tetrahedron:

Double Tetrahedron:

Cone

Cube

```
Enter the filename: cube.gts
no of vertices are: 8
no of edges are: 18
no of faces are: 12
no of tetrahedrons are: 0

Image of betti_2 = 11
Kernel of betti_2 = 1
Image of betti_3 = 0

+-----+
|betti_2 = 1 |
+-----+
execution time: 0.0013797283172607422
```

• Sphere5

Icosa

References

- 1. http://gts.sourceforge.net/samples.html
- 2. https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_rank.html#:
 ~:text=Rank%20of%20the%20array%20is,that%20are%20greater%20than%20tol.&te
 xt=Input%20vector%20or%20stack%20of%20matrices.&text=Threshold%20below%2
 0which%20SVD%20values,tol%20is%20set%20to%20S.
- 3. https://en.wikipedia.org/wiki/Rank%E2%80%93nullity_theorem#:~:text=The%20rank%E2%8