# 习题 1.1

1.对一组整数进行四则运算,所得结果是什么数

**解** (1)整数相加得到整数;(2)整数相减得到整数;(3)整数相乘得到整数;(4)整数相除得到的是有理数。所以对一组整数进行四则运算得到的是有理数。

2. 写出 4 个数码 1.2.3.4 的所有 4 阶排列.

**分析** 4 阶排列是指由 1, 2, 3, 4 构成的有序的数组, 共有 4! 个, 每个数字必须出现且只能出现一次, 具体做法可以是先确定排在第一位的数, 比如为 1, 然后排第二位的数分别为 2, 3, 4, 接着排第三位、第四位的数.

解 1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

3. 分别计算下列四个 4 阶排列的逆序数, 然后指出奇排列是( A )

- (A) 4312:
- (B) 4132:
- (C) 1342:
- (D) 2314

分析 计算排列逆序数的方法有两种:

**方法一**  $\tau(i_1i_2\cdots i_n) = \tau_1(i_1$ 后面比 $i_1$ 小的数的个数)

+τ,(¿后面比¿小的数的个数)

 $+ \cdots$ 

 $+\tau_{n-1}(i_{n-1}$ 后面比 $i_{n-1}$ 小的数的个数)

**方法二** 1 前面比 1 大的数的个数+2 前面比 2 大的数的个数+  $\cdots$  + (n-1) 前面比 n-1 大的数的个数.

逆序数是奇数的称为奇排列, 逆序数是偶数的成为偶排列.

**解** 按方法一计算: 
$$\tau(4312) = 3 + 2 = 5$$
 奇排列

$$\tau(4132) = 3 + 1 = 4$$
 偶排列

$$\tau(1342) = 1 + 1 = 2$$
 偶排列

$$\tau(2314) = 1 + 1 = 2$$
 偶排列 故选 A.

- 4. 计算以下各个排列的逆序数, 并指出它们的奇偶性:
- (1) 314265; (2)314265789; (3) 542391786;
- (4) 987654321; (5) 246813579; (6)  $n(n-1)\cdots 21$ .

解 按习题 3 分析中的方法一计算:

(1) 
$$\tau(314265) = 2 + 1 + 1 = 4$$

偶排列

(2)  $\tau(314265789) = 2 + 1 + 1 = 4$ 

偶排列

(3)  $\tau(542391786) = 4 + 3 + 1 + 1 + 4 + 1 + 1 = 15$ 

奇排列

偶排列

(4)  $\tau(987654321) = 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 36$ 

(5)  $\tau(246813579) = 1 + 2 + 3 + 4 = 10$ 

偶排列

(6)  $\tau(n(n-1)\cdots 21) = (n-1) + (n-2) + \cdots + 2 + 1 = \frac{1}{2}n(n-1)$ ,这表明该排列的逆序数与 n 有关,故要对 n 进行讨论:

当 n=4k,4k+1 时  $\frac{1}{2}n(n-1)$  为偶数,此时排列  $n(n-1)\cdots 21$ .为偶排列;

当 n = 4k + 2, 4k + 3时  $\frac{1}{2}$  n(n-1) 为奇数,此时排列 n(n-1) ··· 21.为奇排列.

- 5. 在由 1, 2, 3, 4, 5, 6, 7, 8, 9 组成的下述 9 阶排列中, 选择 *i*与 *j* 使得:
- (1) 2147/95/8为偶排列;
- (2) 1i25 j4896为奇排列;
- (3) 412/5769/偶排列;
- (3) 13142 1786奇排列.

均要求说明理由.

**分析** 排列 1/25/4896中的两个未知数 /与/ 据排列的定义只能取 3 或 7. 因而只有两种情况: 1°132574896与 2°172534896,然而我们只需计算上述的一个排列就可得知结果,因为 1°与 2°是 3 和 7 作一次对换得到的,而作一次对换必改变排列的奇偶性,也就是说若 1°为偶排列,则 2°必为奇排列. 其余题解法也类似.

- **解** (1) 取 i=3, j=6 有  $\tau(214739568)=1+1+2+2=6$  为偶排列,符合题目要求.
- (2) 取 i=3, j=7 有  $\tau$ (132574896) = 1+1+2+1+1=6为偶排列, 故取 i=7, j=3时 172534896为奇排列, 符合题目要求.
  - (3) 取 i=3, j=8 有  $\tau$ (412357698)=3+1+1=5 为偶排列,符合题目要求.
- (4) 取 i=5, j=9 有  $\tau(531429786)=4+2+1+3+1+1=12$  为偶排列. 故取 i=9, j=5 时 931425786 为奇排列, 符合题目要求.

6.写出全体形如 5\*\*2\* 及 2\*5\*3 的 5 阶排列.总结一下,有 k 个位置数码给定的 n(n>k) 阶排列有多少个?

**分析** 形如 5\*\*2\* 的 5 阶排列中 5 和 2 的位置已经确定,3 个 \* 位置只能取数字 1, 3, 4 中的某一个. **解** 形如 5\*\*2\* 的 5 阶排列中第一个 \* 可取 1, 3, 4 中的任何一个,故有 3 种取法,第二个 \* 可取剩下数字当中的任一个,有两种取法,最后一个 \* 只能取余下的那一个数,据乘法原理共有  $3\times2\times1=3!$  种取

法,即形如5\*\*2\*的阶排列有(5-2)! 个. 同理形如2\*5\*3的阶排列共有(5-3)! 个. 因而,有k个位置数码给定的n(n>k)阶排列有(n-k)!个.

# 习题1.2

1. 按行列式定义,计算下列行列式(要求写出过程):

(1) 
$$\begin{vmatrix} a & b \\ a^2 & b^2 \end{vmatrix}$$
; (2)  $\begin{vmatrix} 1 & \log_b a \\ \log_a b & 1 \end{vmatrix}$ ; (3)  $\begin{vmatrix} \tan \theta & \sin \theta \\ 1 & \cos \theta \end{vmatrix}$ ;

$$\begin{vmatrix} 0 & a & 0 \\ b & 0 & c \\ 0 & d & 0 \end{vmatrix}; \qquad (5) \begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{vmatrix}; \qquad (6) \begin{vmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & d & e \end{vmatrix}.$$

分析 计算 2 阶行列式和 3 阶行列式可用对角线法则.

$$\mathbf{R} \quad (1) \begin{vmatrix} a & b \\ a^2 & b^2 \end{vmatrix} = ab^2 - ba^2;$$

(2) 
$$\begin{vmatrix} 1 & \log_b a \\ \log_a b & 1 \end{vmatrix} = 1 - \log_b a \log_a b = 1 - 1 = 0;$$

(3) 
$$\begin{vmatrix} \tan \theta & \sin \theta \\ 1 & \cos \theta \end{vmatrix} = \tan \theta \cdot \cos \theta - \sin \theta = 0;$$

(4) 
$$\begin{vmatrix} 0 & a & 0 \\ b & 0 & c \\ 0 & d & 0 \end{vmatrix} = 0 \times 0 \times 0 + ac \cdot 0 + 0 \cdot bd - 0 \times 0 \times 0 - ab \cdot 0 - 0 \cdot cd = 0;$$

(5) 
$$\begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{vmatrix} = 1 \times 1 \times 1 + (-1) \times (-1) \times (-1) + 1 \times 1 \times 1 - 1 \times 1 \times (-1)$$

$$-(-1)\times 1\times 1 - 1\times (-1)\times 1 = 1 - 1 + 1 + 1 + 1 + 1 = 4;$$

(6) 
$$\begin{vmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & d & e \end{vmatrix} = abe + 0c0 + 00d - 0b0 - cda - 00e = abe - acd$$

2.  $ilde{a}$ 6 阶行列式  $\left|a_{ij}\right|$  中,下列项应该取什么符号?为什么?

(1) 
$$a_{23}a_{31}a_{42}a_{56}a_{14}a_{65}$$
; (2)  $a_{32}a_{43}a_{54}a_{11}a_{66}a_{25}$ ;

(3) 
$$a_{21}a_{53}a_{16}a_{42}a_{65}a_{34}$$
; (4)  $a_{51}a_{13}a_{32}a_{44}a_{26}a_{65}$ .

**解** (1) 因
$$\tau$$
(234516)+ $\tau$ (312645)=4+4=8, 所以取正号;

另一种方法是:  $a_{23}a_{31}a_{42}a_{56}a_{14}a_{65} = a_{14}a_{23}a_{31}a_{42}a_{56}a_{65}$ , 因 $\tau(431265) = 6$ , 所以取正号. (2), (3), (4) 也可这样做, 不再列出.

- (2) 因 $\tau(345162) + \tau(234165) = 7 + 4 = 11$ , 所以取负号;
- (3) 因 $\tau$ (251463)+ $\tau$ (136254)=6+5=11, 所以取负号;
- (4) 因 $\tau$ (513426)+ $\tau$ (132465)=6+2=8, 所以取正号.
- 3. 当 i=\_\_\_\_, k=\_\_\_时  $a_{1i}a_{32}a_{4k}a_{25}a_{53}$  成为 5 阶行列式  $|a_{ij}|$  中一个取负号的项,为什么?
- 解 i和 k 只能取 1,4 或者 4,1.不妨先假设 i = 1, k = 4,则  $a_{1,}a_{32}a_{4k}a_{25}a_{53} = a_{11}a_{32}a_{44}a_{25}a_{53}$ ,这个项的符号就是  $(-1)^{r(13425)+r(12453)}$  =  $(-1)^4$  = +1,不符合要求.那么当 i = 4, k = 1 时  $a_{1i}a_{32}a_{4k}a_{25}a_{53} = a_{14}a_{32}a_{41}a_{25}a_{53}$ ,它和  $a_{11}a_{32}a_{44}a_{25}a_{53}$  相比就是交换了列指标 1 和 4 的位置,因  $\tau$ (12453) 与  $\tau$ (42153) 相比改变了奇偶性,所以  $a_{14}a_{32}a_{41}a_{25}a_{53}$ 的符号为负.故应填 i = 4, k = 1.
- 4. 若 $(-1)^{\Gamma(4k1i5)+\Gamma(12345)}$  $a_{41}a_{k2}a_{13}a_{i4}a_{55}$ 是 5 阶行列式  $|a_{ij}|$  中的一项,则当 i=\_\_\_,k=\_\_\_时该项的符号为页,为什么?
- 解 此问和问题 3 类似,i和 k 只能取 2,3 或者 3,2. 不妨先假设 i=2,k=3,则符号为  $(-1)^{\mathfrak{r}(43125)+\mathfrak{r}(12345)}=(-1)^5=(-1)$ ,所以取的是负号. 那么由问题 3 的分析可知当 i=3,k=2时符号取正. 所以当 i=3,k=2时该项的符号为正,当 i=2,k=3时该项的符号为负.
  - 5. 写出 4 阶行列式  $|a_{ij}|$  中包含因子  $a_{42}a_{23}$  的项,并指出正负号.
- 解 参照习题 1.1 的第 6 题知, 4 阶行列式  $|a_{ij}|$  中包含因子  $a_{42}a_{23}$  的项有  $a_{11}a_{23}a_{34}a_{42}$  和  $a_{14}a_{23}a_{31}a_{42}$ . 由于 $\tau(1342)=2$ ,故  $a_{11}a_{23}a_{34}a_{42}$  取正号;  $\tau(4312)=5$ ,故  $a_{14}a_{23}a_{31}a_{42}$  取负号.
  - 6. 写出 4 阶行列式  $a_{ij}$  中所有取负号且包含因子  $a_{23}$  的项.
  - 解 类似于第5题可推知,4阶行列式中包含 $a_2$ ,的项为

$$a_{11}a_{23}a_{32}a_{44}$$
  $\tau(1324)=1$  取负号;

 $a_{11}a_{23}a_{34}a_{42}$   $\tau(1342) = 2$  取正号; (也可由(1)取负号推知(2)取正号)

 $a_{12}a_{23}a_{34}a_{41}$   $\tau(2341)=3$  取负号;

 $a_{12}a_{23}a_{31}a_{44}$   $\tau(2314) = 2$  取正号; (也可由(3)取负号推知(4)取正号)

$$a_{14}a_{23}a_{31}a_{42}$$
  $\tau(4312)=5$  取负号;

$$a_{14}a_{23}a_{32}a_{41}$$
  $\tau(4321)=6$  取正号. (也可由(5)取负号推知(6)取正号)

所以所求的项为 $a_{11}a_{23}a_{32}a_{44}$ ,  $a_{12}a_{23}a_{34}a_{41}$ ,  $a_{14}a_{23}a_{31}a_{42}$ .

7. 按行列式定义, 计算下列行列式((4)中n>1, 并均要求写出计算过程):

$$\begin{vmatrix} -1 & 0 & 1 \\ a & -2 & 0 \\ 0 & b & -3 \end{vmatrix}; \qquad (2) \begin{vmatrix} a & 0 & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & c & 0 & 0 \\ 0 & 0 & 0 & d \end{vmatrix}; \\ \begin{vmatrix} a_1 & a_2 & a_3 & a_4 & a_5 \\ b_1 & b_2 & b_3 & b_4 & b_5 \end{vmatrix} \qquad \begin{vmatrix} a_{11} & a_{12} & \cdots \\ a_{21} & a_{22} & \cdots \end{vmatrix}$$

(3) 
$$\begin{vmatrix} a_1 & a_2 & a_3 & a_4 & a_5 \\ b_1 & b_2 & b_3 & b_4 & b_5 \\ c_1 & c_2 & 0 & 0 & 0 \\ d_1 & d_2 & 0 & 0 & 0 \\ e_1 & e_2 & 0 & 0 & 0 \end{vmatrix}; \qquad (4) \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1,n-1} & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2,n-1} & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n-1,1} & a_{n-1,2} & \cdots & 0 & 0 \\ a_{n1} & 0 & \cdots & 0 & 0 \end{vmatrix}$$

**解** (1)由对角线法则, 
$$\begin{vmatrix} -1 & 0 & 1 \\ a & -2 & 0 \\ 0 & b & -3 \end{vmatrix} = (-1) \times (-2) \times (-3) + 0 \times 0 \times 0 + 1 \cdot ab - 1 \times (-2) \times 0$$

$$-(-1)\times 0\cdot b - 0\cdot a\cdot (-3) = (-6) + ab = ab - 6$$
;

(2) 根据定义 
$$|a_{ij}|_{4\times 4} = \sum_{j_1j_2j_3j_4} (-1)^{r(j_1j_2j_3j_4)} a_{1j_1} a_{2j_2} a_{3j_3} a_{4j_4}$$
.

在行列式 
$$\begin{vmatrix} a & 0 & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & c & 0 & 0 \\ 0 & 0 & 0 & d \end{vmatrix}$$
 的通项中,只有 $a_{11}a_{23}a_{32}a_{44}$ 这一项的因子中不含零,所以

原式= $(-1)^{\tau(1324)}a_{11}a_{23}a_{32}a_{44}=-a_{11}a_{23}a_{32}a_{44}=-abcd$ .

(3) 根据定义 
$$|a_{ij}|_{5\times 5} = \sum_{j_1j_2j_3j_4j_5} (-1)^{\tau(j_1j_2j_3j_4j_5)} a_{1,j_1} a_{2,j_2} a_{3,j_3} a_{4,j_4} a_{5,j_5}.$$

在行列式 
$$\begin{vmatrix} a_1 & a_2 & a_3 & a_4 & a_5 \\ b_1 & b_2 & b_3 & b_4 & b_5 \\ c_1 & c_2 & 0 & 0 & 0 \\ d_1 & d_2 & 0 & 0 & 0 \\ e_1 & e_2 & 0 & 0 & 0 \end{vmatrix}$$
 的通项中每一个项  $a_{1,i}a_{2,i}a_{3,i}a_{4,i}a_{5,i}$  中最后三个因子  $a_{3,i},a_{4,i},a_{5,i}$  分别

取值于行列式最后三行的不同列的三个数,而行列式最后三行中均只有二个数不为零,所以这三个因子中至少一个取零.这样行列式的每一项中都含有因子零,所以每项都为零,从而行列式为零.

(4) 根据定义  $\left|a_{ij}\right|_{n\times n} = \sum_{j_1,j_2\cdots j_n} (-1)^{\mathsf{r}(j_1,j_2\cdots j_n)} a_{1j_1} a_{2j_2} \cdots a_{nj_n}$ ,该展开式通项  $a_{1,j_1} a_{2,j_2} \cdots a_{nj_n}$  取自

的行列式展开式中的那一项一定为零,求和时可不考虑. 因此只要考虑  $j_n=1$  的项. 同样对于行列式的第n-1 行中除了  $a_{n-1,1}$  和  $a_{n-1,2}$  外其余元素都为零,且因  $j_n=1$ ,从而  $j_{n-1}$  只能取 2 了. 依次类推,行列式展开式的所有项中除去列指标  $j_1j_2\cdots j_n=n(n-1)\cdots 1$  对应的项外都为零. 又因为  $\tau(n(n-1)\cdots 1)=\frac{1}{2}n(n-1)$ ,所以原式= $(-1)^{\frac{1}{2}n(n-1)}a_{1n}a_{2n-1}\cdots a_{n-1}a_{n-1}$ 

8. 
$$\Box$$
 
$$\begin{vmatrix} a_{11} & 0 & 0 & a_{14} \\ 0 & a_{22} & a_{23} & 0 \\ 0 & a_{32} & a_{33} & 0 \\ a_{41} & 0 & 0 & a_{44} \end{vmatrix} = a_{11}a_{22}a_{33}a_{44} - a_{14}a_{23}a_{32}a_{41}$$

为什么错? 正确答案是什么?

**解**错,原因在于没有搞清楚 4 阶行列式定义而把 2,3 阶行列式的对角线法则误认为对 4 阶行列式也成立. 4 阶和 4 阶以上的行列式没有对角线法则. 正确答案为:

$$a_{11}a_{22}a_{33}a_{44} + a_{14}a_{23}a_{32}a_{41} - a_{14}a_{23}a_{34}a_{44} - a_{14}a_{22}a_{33}a_{41}$$

具体解法可参考习题 1.4 第 5 题之(3).

- 9. 若n阶行列式  $D=\left|a_{ij}\right|$ 中元素  $a_{ij}$   $(i,j=1,2,\cdots,n)$ 均为整数,则 D必为整数,这结论对不对?为什么?
- **解** 对. 行列式的值是行列式中取自所有不同行不同列的元素乘积的代数和, 而整数经加,减,乘之后仍然为整数.

10. 计算
$$n(n>1)$$
阶行列式 
$$\begin{vmatrix} 0 & 0 & \cdots & 0 & -1 \\ 0 & 0 & \cdots & -1 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & -1 & \cdots & 0 & 0 \\ -1 & 0 & \cdots & 0 & 0 \end{vmatrix}$$

解 方法一 该行列式的展开式只有一项不为零,即  $a_{1n}a_{2,n-1}\cdots a_{n1}$ ,而该项带有的符号为

$$(-1)^{\operatorname{r}(n(n-1)\cdots 1)} = (-1)^{\frac{n(n-1)}{2}}, \ \operatorname{所以原式} = (-1)^{\frac{n(n-1)}{2}} \cdot (-1)^n = (-1)^{\frac{n(n+1)}{2}}.$$

**方法二** 直接利用第 7 题第(4)小题的结论得: 原式= $(-1)^{\frac{n(n-1)}{2}} \cdot (-1)^n = (-1)^{\frac{n(n+1)}{2}}$ .

# 习题1.3

1. 设 
$$D=\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}=a\neq 0$$
,据此计算下列行列式(要求写出计算过程):

(1) 
$$\begin{vmatrix} a_{31} & a_{32} & a_{33} \\ a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{31} \end{vmatrix};$$
 (2) 
$$\begin{vmatrix} 2a_{11} & 3a_{13} - 5a_{12} & a_{12} \\ 2a_{21} & 3a_{23} - 5a_{22} & a_{22} \\ 2a_{31} & 3a_{33} - 5a_{32} & a_{32} \end{vmatrix}.$$

**分析** 利用行列式得性质找出所求行列式与已知行列式的关系.

$$\mathbf{R} (1) \begin{vmatrix} a_{31} & a_{32} & a_{33} \\ a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{31} \end{vmatrix} \underbrace{\frac{R_{13}}{1}}_{=} - \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = -a.$$

(4) 方法一 
$$\begin{vmatrix} 2a_{11} & 3a_{13} - 5a_{12} & a_{12} \\ 2a_{21} & 3a_{23} - 5a_{22} & a_{22} \\ 2a_{31} & 3a_{33} - 5a_{32} & a_{32} \end{vmatrix} \xrightarrow{C_2 + 5C_3} \begin{vmatrix} 2a_{11} & 3a_{13} & a_{12} \\ 2a_{21} & 3a_{23} & a_{22} \\ 2a_{31} & 3a_{33} & a_{32} \end{vmatrix}$$

**方法二** 注意到该行列式的第二列均为 2 个数的和, 可用行列式的性质 5 将该行列式分成 2 个行求和, 结果与方法一相同.

2. 用行列式性质计算下列行列式(要求写出计算过程):

(1) 
$$\begin{vmatrix} 1998 & 1999 & 2000 \\ 2001 & 2002 & 2003 \\ 2004 & 2005 & 2006 \end{vmatrix}$$
; (2)  $\begin{vmatrix} a & b+c & 1 \\ b & c+a & 1 \\ c & a+b & 1 \end{vmatrix}$ ; (3)  $\begin{vmatrix} x_1y_1 & x_1y_2 & x_1y_3 \\ x_2y_1 & x_2y_2 & x_2y_3 \\ x_3y_1 & x_3y_2 & x_3y_3 \end{vmatrix}$ ;

$$\begin{vmatrix}
1 & 0 & 0 & -1 \\
0 & 2 & 2 & 0 \\
0 & -3 & 3 & 0 \\
4 & 0 & 0 & 4
\end{vmatrix}; (5) \begin{vmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 4 & 10 & 20 \\
4 & 0 & 0 & 4
\end{vmatrix}; (6) \begin{vmatrix}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{vmatrix};$$

$$\begin{vmatrix}
2 & 1 & -1 \\
4 & -1 & 1 \\
201 & 102 & -99
\end{vmatrix}; (8) \begin{vmatrix}
a-b-c & 2a & 2a \\
2b & b-c-a & 2b \\
2c & 2c & c-a-b
\end{vmatrix}.$$

**分析** 第(1)至第(4)小题可利用行列式性质求解;第(5)至第(9)小题是采用归结化简为上(下)三角行列式求解.

(2) 
$$\begin{vmatrix} a & b+c & 1 \\ b & c+a & 1 \\ c & a+b & 1 \end{vmatrix} = \underbrace{\begin{bmatrix} C_2 - C_1 \\ b & a+b+c & 1 \\ c & a+b+c & 1 \end{bmatrix}}_{c} \underbrace{\begin{bmatrix} a & a+b+c & 1 \\ b & a+b+c & 1 \\ c & a+b+c & 1 \end{bmatrix}}_{c} \underbrace{\underbrace{\begin{subarray}{c} \underline{\begin{subarray}{c} \underline{\begin{sub$$

(3) 
$$\begin{vmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 \\ x_2 y_1 & x_2 y_2 & x_2 y_3 \\ x_3 y_1 & x_3 y_2 & x_3 y_3 \end{vmatrix} \xrightarrow{\text{Experior} \text{Experior}} x_1 x_2 x_3 \begin{vmatrix} y_1 & y_2 & y_3 \\ y_1 & y_2 & y_3 \\ y_1 & y_2 & y_3 \end{vmatrix} \xrightarrow{\text{Experior}} 0$$
;

$$(5) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 10 & 20 \\ 4 & 0 & 0 & 4 \end{vmatrix} \underbrace{ \begin{tabular}{c} \underline{4} \ \underline{1} \ 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 10 & 20 \\ 1 & 0 & 0 & 1 \end{vmatrix}}_{R_4 - R_1} \underbrace{ \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ R_3 - R_1 & 4 \\ 0 & 3 & 9 & 19 \\ 0 & -1 & -1 & 0 \end{vmatrix} }_{R_4 - R_1}$$

$$\frac{R_3 - 3R_2}{R_4 + R_2} 4 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 3 & 10 \\ 0 & 0 & 1 & 3 \end{vmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 3 & 10 \\ 0 & 0 & 0 & -\frac{1}{3} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 3 & 10 \\ 0 & 0 & 0 & -\frac{1}{3} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 3 & 10 \\ 0 & 0 & 0 & -\frac{1}{3} \end{bmatrix}$$

注 做到(\*)处也可以按第一列展开,再按第一列展开得:

原式 = 
$$4\begin{vmatrix} 3 & 10 \\ 1 & 3 \end{vmatrix}$$
 =  $4 \times (9 - 10) = -4$ .

$$\frac{R_4 + R_3}{=} \begin{vmatrix}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 3
\end{vmatrix}$$
上三角形
 $1 \times 1 \times 1 \times 3 = 3$ ;

(8) 
$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} \xrightarrow{R_1 + R_2 + R_3} \begin{vmatrix} a+b+c & a+b+c & a+b+c \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}$$

$$\frac{$$
 提取公因子  $(a+b+c)$   $\begin{vmatrix} 1 & 1 & 1 \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}$ 

$$\frac{R_2 - (2b)R_1}{R_3 - (2c)R_1} (a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ 0 & -b-c-a & 0 \\ 0 & 0 & -c-a-b \end{vmatrix} = (a+b+c)^3.$$

**注记** 行列式的计算可有多种解法,限于篇幅仅列出一种(未必是最简的),下面题目也一样,不再说明.

3. 用行列式性质计算下列 n(n>1) 阶行列式(要求写出计算过程):

$$\begin{vmatrix} 1 & a_1 & a_2 & \cdots & a_{n-1} \\ 1 & a_1 + b_1 & a_2 & \cdots & a_{n-1} \\ 1 & a_1 & a_2 + b_2 & \cdots & a_{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & a_1 & a_2 & \cdots & a_{n-1} + b_{n-1} \end{vmatrix}; \quad (2) \begin{vmatrix} -a_1 & a_1 & 0 & \cdots & 0 & 0 \\ 0 & -a_2 & a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -a_{n-1} & a_{n-1} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{vmatrix}.$$

分析 把行列式归结化简为上(下)三角形行列式来求解.

$$_{\underline{-}}$$
 上三角形  $b_1b_2\cdots b_{n-1}$ ;

$$\begin{vmatrix}
-a_{1} & a_{1} & 0 & \cdots & 0 & 0 \\
0 & -a_{2} & a_{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -a_{n-1} & a_{n-1} \\
1 & 1 & 1 & \cdots & 1 & 1
\end{vmatrix} \underbrace{\frac{C_{i+1} + C_{i}}{i}}_{i = 1, 2, \cdots, n-1}$$

$$\begin{vmatrix} -a_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & -a_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -a_{n-1} & 0 \\ 1 & 2 & 3 & \cdots & n-1 & n \end{vmatrix}$$
 下三角形  $(-1)^n na_1 a_2 \cdots a_{n-1};$ 

4. 证明: 
$$\begin{vmatrix} a^2 & (a+1)^2 & (a+2)^2 & (a+3)^2 \\ b^2 & (b+1)^2 & (b+2)^2 & (b+3)^2 \\ c^2 & (c+1)^2 & (c+2)^2 & (c+3)^2 \\ d^2 & (d+1)^2 & (d+2)^2 & (d+3)^2 \end{vmatrix} = 0.$$

分析 行列式的证明题是给出结果的计算题,所以从左端开始计算,推出右端即可。

证 左端 
$$\frac{C_i - C_{i-1}}{i = 4, 3, 2}$$
  $\begin{vmatrix} a^2 & 2a+1 & 2a+3 & 2a+5 \\ b^2 & 2b+1 & 2b+3 & 2b+5 \\ c^2 & 2c+1 & 2c+3 & 2c+5 \\ d^2 & 2d+1 & 2d+3 & 2d+5 \end{vmatrix}$   $\frac{C_4 - C_3}{C_3 - C_2}$   $\begin{vmatrix} a^2 & 2a+1 & 2 & 2 \\ b^2 & 2b+1 & 2 & 2 \\ c^2 & 2c+1 & 2 & 2 \\ d^2 & 2d+1 & 2 & 2 \end{vmatrix}$   $= 0 = 右端$ .

5. 求下列多项式的根(要求写出计算过程):

5. 求下列多项式的根(要求写出计算过程):
$$(1) f(x) = \begin{vmatrix} 1 & 1 & 2 & 3 \\ 1 & 2 - x^2 & 2 & 3 \\ 2 & 2 & 6 & 5 \\ 2 & 2 & 6 & 9 - x^2 \end{vmatrix}; \quad (2) f(x) = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 - x & 1 & \cdots & 1 & 1 \\ 1 & 1 - x & 1 & \cdots & 1 & 1 \\ 1 & 1 & 2 - x & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 & n - 1 - x \end{vmatrix} \quad (n > 1).$$

解 (1)方法一 
$$\begin{vmatrix} 1 & 1 & 2 & 3 \\ 1 & 2-x^2 & 2 & 3 \\ 2 & 2 & 6 & 5 \\ 2 & 2 & 6 & 9-x^2 \end{vmatrix} \xrightarrow{R_2-R_1} \begin{vmatrix} 1 & 1 & 2 & 3 \\ 0 & 1-x^2 & 0 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 2 & 3-x^2 \end{vmatrix} = 2(1-x^2)(4-x^2).$$

所以多项式 f(x) 的根为  $x=\pm 1$  和  $x=\pm 2$ .

方法二 f(x) 是 x 的 4 次多项式,且可直接验证 f(1) = f(-1) = f(2) = f(-2) = 0,所以 f(x) 的 根为 $x=\pm 1$ 和 $x=\pm 2$ .

(2)方法一 
$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1-x & 1 & \cdots & 1 & 1 \\ 1 & 1 & 2-x & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 1 & n-1-x \end{vmatrix}$$
$$\frac{R_{i}-R_{1}}{i=2,\cdots,n} \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 0 & -x & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1-x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & n-2-x \end{vmatrix}$$
$$=-x(1-x)(2-x)\cdots(n-2-x).$$

所以多项式的根为 $x=0, x=1, \dots, x=n-2$ .

**方法二** f(x)是x的n-1次多项式,且可直接验证 $f(0)=f(1)=\cdots=f(n-2)=0$ ,所以f(x)的根为 $x=0,x=1,\cdots,x=n-2$ .

6. 由 n(n>1) 阶行列式

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{vmatrix} = 0,$$

来说明n!个不同的n阶排列中奇排列和偶排列各占一半.

证 根据行列式的定义 
$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 \end{vmatrix} = \sum_{j_1, j_2 \cdots j_n} (-1)^{\tau(j_1 j_2 \cdots j_n)} a_{1, j_1} a_{2, j_2} \cdots a_{nj_n} \stackrel{a_{ij}}{=} 1$$

$$\sum_{j_1, j_2 \cdots j_n} (-1)^{\tau(j_1 j_2 \cdots j_n)} = 0.$$

所以上式中(-1)的个数和(+1)的个数一样多, (-1)是由奇排列产生的, 而(+1)是由偶排列产生的. 同时根据行列式的定义这里包括了所有的 n 阶排列, 故可以得到全体 n 阶排列中奇排列的个数与偶排列的个数一样多, 各占一半.

# 习题1.4

1. 计算下列行列式(要求写出计算过程):

$$(4) \begin{vmatrix} a_1 & 0 & 0 & \cdots & 0 & 1 \\ 0 & a_2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} & 0 \\ 1 & 0 & 0 & \cdots & 0 & a_n \end{vmatrix}; \quad (5) \begin{vmatrix} 1 & 1 & 0 & 0 & 0 & 1 \\ x_1 & x_2 & 0 & 0 & 0 & x_3 \\ a_1 & b_1 & 1 & 1 & 1 & c_1 \\ a_2 & b_2 & x_1 & x_2 & x_3 & c_2 \\ x_1^2 & x_2^2 & 0 & 0 & 0 & x_3^2 \\ a_3 & b_3 & x_1^2 & x_2^2 & x_3^2 & c_3 \end{vmatrix};$$

(6) 
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -2 & x \\ 1 & 4 & 4 & x^{2} \\ 1 & 8 & -8 & x^{3} \end{vmatrix}$$
; (7) 
$$\begin{vmatrix} a & b & c \\ a^{2} & b^{2} & c^{2} \\ b+c & c+a & a+b \end{vmatrix}$$

分析 第(1)至第(4)题可用降阶法解, 第(5)至第(8)题可化为范德蒙行列式解.

**解** (1) 
$$\begin{vmatrix} x & a & b & 0 & c \\ 0 & y & 0 & 0 & d \\ 0 & e & z & 0 & f \\ g & h & k & u & l \\ 0 & 0 & 0 & 0 & v \end{vmatrix}$$
 接第5行展开  $v \begin{vmatrix} x & a & b & 0 \\ 0 & y & 0 & 0 \\ 0 & e & z & 0 \\ g & h & k & u \end{vmatrix}$   $v u \begin{vmatrix} x & a & b \\ 0 & y & 0 \\ 0 & e & z \end{vmatrix}$ 

$$\frac{\overline{gg1列展开}}{\overline{gg}} xuv \begin{vmatrix} y & 0 \\ e & z \end{vmatrix} = xyzuv;$$

(2) 
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix} \xrightarrow{R_{i} - R_{i-1}} \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 0 \\ 1 & 1 & -3 & 1 \\ 1 & -3 & 1 & 1 \end{vmatrix} \xrightarrow{R_{i} - R_{i}} \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & -4 & 0 \\ 0 & -4 & 0 & 0 \end{vmatrix}$$

$$+(-1)^{5+1}e$$
  $\begin{vmatrix} b & c & d & e \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{vmatrix}$   $\frac{$ 第2个行列式按第4列展开

$$a^{2} + e(-1)^{4+1}e\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = a^{2} - e^{2};$$

方法二 逐次均按第2列展开可得同样结果, 具体解法可参见下例.

(4)逐次按第 2 行展开 
$$\begin{vmatrix} a_1 & 0 & 0 & \cdots & 0 & 1 \\ 0 & a_2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} & 0 \\ 1 & 0 & 0 & \cdots & 0 & a_n \end{vmatrix} = a_2 \begin{vmatrix} a_1 & 0 & \cdots & 1 \\ 0 & a_3 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 1 & 0 & \cdots & a_n \end{vmatrix} = \cdots =$$

$$a_2 a_3 \cdots a_{n-1} \begin{vmatrix} a_1 & 1 \\ 1 & a_n \end{vmatrix} = a_2 a_3 \cdots a_{n-1} (a_1 a_n - 1);$$

$$(5) \begin{vmatrix} 1 & 1 & 0 & 0 & 0 & 1 \\ x_1 & x_2 & 0 & 0 & 0 & x_3 \\ a_1 & b_1 & 1 & 1 & 1 & c_1 \\ a_2 & b_2 & x_1 & x_2 & x_3 & c_2 \\ x_1^2 & x_2^2 & 0 & 0 & 0 & x_3^2 \\ a_3 & b_3 & x_1^2 & x_2^2 & x_3^2 & c_3 \end{vmatrix} = - \begin{vmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ x_1 & x_2 & x_3 & 0 & 0 & 0 \\ a_1 & b_1 & c_1 & 1 & 1 & 1 \\ a_2 & b_2 & c_2 & x_2 & x_3 & x_1 \\ x_1^2 & x_2^2 & x_3^2 & 0 & 0 & 0 \\ a_3 & b_3 & c_3 & x_2^2 & x_3^2 & x_1^2 \end{vmatrix} \underbrace{\mathbb{R}_{35}}_{\underline{45}}$$

$$\begin{vmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ x_1 & x_2 & x_3 & 0 & 0 & 0 \\ x_1^2 & x_2^2 & x_3^2 & 0 & 0 & 0 \\ a_2 & b_2 & c_2 & x_2 & x_3 & x_1 \\ a_1 & b_1 & c_1 & 1 & 1 & 1 \\ a_3 & b_3 & c_3 & x_2^2 & x_3^2 & x_1^2 \end{vmatrix} = - \begin{vmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ x_1 & x_2 & x_3 & 0 & 0 & 0 \\ x_1^2 & x_2^2 & x_3^2 & 0 & 0 & 0 \\ a_1 & b_1 & c_1 & 1 & 1 & 1 \\ a_2 & b_2 & c_2 & x_2 & x_3 & x_1 \\ a_3 & b_3 & c_3 & x_2^2 & x_3^2 & x_1^2 \end{vmatrix}$$

$$=-D(x_1,x_2,x_3)^2=-(x_3-x_1)^2(x_3-x_2)^2(x_2-x_1)^2;$$

(6) 
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -2 & x \\ 1 & 4 & 4 & x^2 \\ 1 & 8 & -8 & x^3 \end{vmatrix} = D(1, 2, -2, x) = (x+2)(x-2)(x-1)(-2-2)(-2-1)(2-1)$$

$$=12(x-1)(x^2-4)$$
;

(7) 
$$\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ b+c & c+a & a+b \end{vmatrix} = \frac{R_3 + R_1}{a^2} \begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a+b+c & a+b+c & a+b+c \end{vmatrix}$$
 提取公因子

$$(a+b+c)\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ 1 & 1 & 1 \end{vmatrix} \xrightarrow{C_{32}} (a+b+c)\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (a+b+c)D(a,b,c)$$

$$=(a+b+c)(b-a)(c-b)(c-a)$$

2. 计算下列 n(n>1)阶行列式(要求写出计算过程):

解 (1) 
$$\begin{vmatrix} x & y & 0 & \cdots & 0 & 0 \\ 0 & x & y & \cdots & 0 & 0 \\ 0 & 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & y \\ v & 0 & 0 & \cdots & 0 & x \end{vmatrix}$$

$$\begin{vmatrix} x & y & 0 & \cdots & 0 \\ 0 & x & y & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x \end{vmatrix} + (-1)^{n+1} y \begin{vmatrix} y & 0 & \cdots & 0 & 0 \\ x & y & \cdots & 0 & 0 \\ 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & x & y \end{vmatrix}$$

$$= x^n + (-1)^{n+1} y^n;$$

(3) 
$$\begin{vmatrix} 1 + x_1 y_1 & 1 + x_1 y_2 & \cdots & 1 + x_1 y_n \\ 1 + x_2 y_1 & 1 + x_2 y_2 & \cdots & 1 + x_2 y_n \\ \vdots & \vdots & & \vdots \\ 1 + x_n y_1 & 1 + x_n y_2 & \cdots & 1 + x_n y_n \end{vmatrix}$$

$$\frac{R_{i} - R_{1}}{i = 2, 3, \dots, n} \begin{vmatrix}
1 + x_{1}y_{1} & 1 + x_{1}y_{2} & \cdots & 1 + x_{1}y_{n} \\
(x_{2} - x_{1})y_{1} & (x_{2} - x_{1})y_{2} & \cdots & (x_{2} - x_{1})y_{n} \\
\vdots & \vdots & & \vdots \\
(x_{n} - x_{1})y_{1} & (x_{n} - x_{1})y_{2} & \cdots & (x_{n} - x_{1})y_{n}
\end{vmatrix}$$

$$=(x_{2}-x_{1})(x_{3}-x_{1})\cdots(x_{n}-x_{1})\begin{vmatrix}1+x_{1}y_{1} & 1+x_{1}y_{2} & \cdots & 1+x_{1}y_{n}\\y_{1} & y_{2} & \cdots & y_{n}\\\vdots & \vdots & & y_{n}\\y_{1} & y_{2} & \cdots & y_{n}\end{vmatrix},$$

据此当n=2时, 原式= $(x_2-x_1)(y_2-y_1)$ ; 当n>2时, 原式=0.

3. 求下列多项式的根(要求写出计算过程):

(1) 
$$f(x) = \begin{vmatrix} x-5 & 1 & -3 \\ 1 & x-5 & 3 \\ -3 & 3 & x-3 \end{vmatrix}$$
; (2)  $f(x) = \begin{vmatrix} x-1 & -2 & -2 \\ -2 & x-1 & -2 \\ -2 & -2 & x-1 \end{vmatrix}$ .  
(1)  $\begin{vmatrix} x-5 & 1 & -3 \\ 1 & x-5 & 3 \\ -3 & 3 & x-3 \end{vmatrix} = \begin{vmatrix} x-4 & x-4 & 0 \\ 1 & x-5 & 3 \\ -3 & 3 & x-3 \end{vmatrix} = \begin{vmatrix} x-4 & 0 & 0 \\ 1 & x-6 & 3 \\ -3 & 6 & x-3 \end{vmatrix}$ 

$$=(x-4)\begin{vmatrix} x-6 & 3 \\ 6 & x-3 \end{vmatrix} = \frac{R_2 + R_1}{(x-4)} (x-4)\begin{vmatrix} x-6 & 3 \\ x & x \end{vmatrix}$$

$$\frac{C_1 - C_2}{2} (x - 4) \begin{vmatrix} x - 9 & 3 \\ 0 & x \end{vmatrix} = x(x - 4)(x - 9)$$

所以原多项式的根为 $x_1 = 0, x_2 = 4, x_3 = 9$ .

$$\begin{vmatrix} x-1 & -2 & -2 \\ -2 & x-1 & -2 \\ -2 & -2 & x-1 \end{vmatrix} \xrightarrow{R_1 + R_2 + R_3} \begin{vmatrix} x-5 & x-5 & x-5 \\ -2 & x-1 & -2 \\ -2 & -2 & x-1 \end{vmatrix} = (x-5) \begin{vmatrix} 1 & 1 & 1 \\ -2 & x-1 & -2 \\ -2 & -2 & x-1 \end{vmatrix}$$

$$\frac{R_2 + 2R_1}{R_3 + 2R_1} (x-5) \begin{vmatrix} 1 & 1 & 1 \\ 0 & x+1 & 0 \\ 0 & 0 & x+1 \end{vmatrix} = (x+1)^2 (x-5)$$

所以原多项式的根为 $x_1 = x_2 = -1, x_3 = 5$ .

4. 计算下列行列式(要求写出计算过程):

$$\begin{vmatrix}
7 & 6 & 5 & 4 & 3 & 2 \\
9 & 7 & 8 & 9 & 4 & 3 \\
7 & 4 & 9 & 7 & 0 & 0 \\
5 & 3 & 6 & 1 & 0 & 0 \\
0 & 0 & 5 & 6 & 0 & 0 \\
0 & 0 & 6 & 8 & 0 & 0
\end{vmatrix}, (2) \begin{vmatrix}
1 & 2 & 2 & 1 \\
0 & 1 & 0 & 2 \\
2 & 0 & 1 & 1 \\
0 & 2 & 0 & 1
\end{vmatrix}, (3) \begin{vmatrix}
a & 0 & 0 & 1 \\
0 & b & 2 & 0 \\
0 & 3 & c & 0 \\
4 & 0 & 0 & a
\end{vmatrix}.$$

分析 利用行列式分块的性质(例 1.4.5 及思考题 2)求解.

解 (1) 
$$\begin{vmatrix} 7 & 6 & 5 & 4 & \vdots & 3 & 2 \\ 9 & 7 & 8 & 9 & \vdots & 4 & 3 \\ \dots & \dots & \dots & \vdots & \dots & \dots \\ 7 & 4 & 9 & 7 & \vdots & 0 & 0 \\ 5 & 3 & 6 & 1 & \vdots & 0 & 0 \\ 0 & 0 & 5 & 6 & \vdots & 0 & 0 \\ 0 & 0 & 6 & 8 & \vdots & 0 & 0 \end{vmatrix}$$
再分块  $(-1)^{2\times4}\begin{vmatrix} 3 & 2 \\ 4 & 3 \end{vmatrix}$ . 
$$\begin{vmatrix} 7 & 4 & \vdots & 9 & 7 \\ 5 & 3 & \vdots & 6 & 1 \\ \dots & \dots & \vdots & \dots & \dots \\ 0 & 0 & \vdots & 5 & 6 \\ 0 & 0 & \vdots & 6 & 8 \end{vmatrix}$$

$$= \begin{vmatrix} 3 & 2 \\ 4 & 3 \end{vmatrix} \cdot \begin{vmatrix} 7 & 4 \\ 5 & 3 \end{vmatrix} \cdot \begin{vmatrix} 5 & 6 \\ 6 & 8 \end{vmatrix} = 4;$$

$$(2) \begin{vmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & 0 & 2 \\ 2 & 0 & 1 & 1 \\ 0 & 2 & 0 & 1 \end{vmatrix} \underbrace{C_{23}}_{23} \begin{vmatrix} 1 & 2 & 2 & 1 \\ 0 & 0 & 1 & 2 \\ 2 & 1 & 0 & 1 \\ 0 & 0 & 2 & 1 \end{vmatrix} \underbrace{R_{23}}_{23} \begin{vmatrix} 1 & 2 & \vdots & 2 & 1 \\ 2 & 1 & \vdots & 0 & 1 \\ \vdots & \ddots & \ddots & \vdots & \ddots & \ddots \\ 0 & 0 & \vdots & 1 & 2 \\ 0 & 0 & \vdots & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} \cdot \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = 9;$$

$$\begin{vmatrix}
a & 0 & 0 & 1 \\
0 & b & 2 & 0 \\
0 & 3 & c & 0 \\
4 & 0 & 0 & d
\end{vmatrix} \xrightarrow{R_{12}} \begin{vmatrix}
0 & b & 2 & 0 \\
a & 0 & 0 & 1 \\
0 & 3 & c & 0 \\
4 & 0 & 0 & d
\end{vmatrix} \xrightarrow{R_{23}} \begin{vmatrix}
0 & b & 2 & 0 \\
0 & 3 & c & 0 \\
a & 0 & 0 & 1 \\
4 & 0 & 0 & d
\end{vmatrix} \xrightarrow{C_{13}} \xrightarrow{C_{13}} \stackrel{2}{0} \stackrel{1}{0} \stackrel{1}{$$

$$= \begin{vmatrix} 2 & b \\ c & 3 \end{vmatrix} \cdot \begin{vmatrix} a & 1 \\ 4 & d \end{vmatrix} = (6 - bc)(ad - 4).$$

#### 5. 解本节的思考题 2.

证 (1) 将第r+1 列与r列交换,由将新的r列与r-1列交换,如此继续,直到将第r+1 列交换到第1 列,这样共交换r次;再将第r+2 列如上方法交换至第2 列,也交换了r次,如此继续直到将r+s 列交换至第s 列.于是交换了rs 次后得到

$$\begin{vmatrix} a_{11} & \cdots & a_{1r} & c_{11} & \cdots & c_{1s} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{r1} & \cdots & a_{rr} & c_{r1} & \cdots & c_{rs} \\ 0 & \cdots & 0 & b_{11} & \cdots & b_{1s} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & b_{s1} & \cdots & b_{ss} \end{vmatrix} = (-1)^{rs} \begin{vmatrix} c_{11} & \cdots & c_{1rs} & a_{11} & \cdots & a_{1r} \\ \vdots & & \vdots & \vdots & & \vdots \\ c_{r1} & \cdots & c_{rs} & a_{r1} & \cdots & a_{rr} \\ b_{11} & \cdots & b_{1s} & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ b_{s1} & \cdots & b_{ss} & 0 & \cdots & 0 \end{vmatrix}$$

将所得行列式的第r+1 行依次与第r行, r-1 行, r-1 行, r-1 行交换. 交换 r次后, r+1 行交换至第 1 行. 类似 地交换 r次后将 r+2 行交换至第 2 行, r-1 行交换至第 r-1 行交换至 r-1 行交换系列 r-1 行交换系列 r-1 行交

$$(-1)^{rs}(-1)^{rs}\begin{vmatrix}b_{11} & \cdots & b_{1rs} & 0 & \cdots & 0\\ \vdots & & \vdots & \vdots & & \vdots\\ b_{r1} & \cdots & b_{rs} & 0 & \cdots & 0\\ c_{11} & \cdots & c_{1s} & a_{11} & \cdots & a_{1r}\\ \vdots & & \vdots & & \vdots\\ c_{s1} & \cdots & c_{ss} & a_{r1} & \cdots & a_{rr}\end{vmatrix} \xrightarrow{\boxed{b|1.4.5}} \begin{vmatrix}a_{11} & \cdots & a_{1r}\\ \vdots & & \vdots\\ a_{r1} & \cdots & a_{rr}\end{vmatrix} \cdot \begin{vmatrix}b_{11} & \cdots & b_{1s}\\ \vdots & & \vdots\\ b_{s1} & \cdots & b_{ss}\end{vmatrix}$$

(2),(3) 思路与(1)类似,证明过程略去.

# 习题1.5

1. 试用克拉默法则解下列方程组:

(1) 
$$\begin{cases} x_1 + x_2 - 2x_3 = -3, \\ 5x_1 - 2x_2 + 7x_3 = 22, \\ 2x_1 - 5x_2 + 4x_3 = 4; \end{cases}$$
 (2) 
$$\begin{cases} bx_1 - ax_2 = -2ab, \\ -2cx_2 + 3bx_3 = bc, & \text{ if } \Rightarrow abc \neq 0; \\ cx_1 + ax_3 = 0, & \text{ if } \Rightarrow abc \neq 0; \end{cases}$$

$$(2x_{1} - 5x_{2} + 4x_{3} = 4; cx_{1} + ax_{3} = 0,$$

$$(3)\begin{cases}
2x_{1} - x_{2} + 3x_{3} + 2x_{4} = 6, \\
3x_{1} - 3x_{2} + 3x_{3} + 2x_{4} = 5, \\
3x_{1} - x_{2} - x_{3} + 2x_{4} = 3, \\
3x_{1} - x_{2} + 3x_{3} - x_{4} = 4;
\end{cases}$$

$$(4)\begin{cases}
x_{1} - 3x_{3} - 6x_{4} = 9, \\
2x_{1} - 5x_{2} + x_{3} + x_{4} = 8, \\
-x_{1} + 2x_{2} + 2x_{4} = -5, \\
x_{1} - 7x_{2} + 4x_{3} + 6x_{4} = 0;
\end{cases}$$

(5) 
$$\begin{cases} x+y+z=1, \\ x+\varepsilon y+\varepsilon^2 z=\varepsilon, & \text{其中 $\varepsilon$为三次原根, 即 $\varepsilon$} \neq 1, 且 $\varepsilon^3$=1的复数. \\ x+\varepsilon^2 y+\varepsilon z=\varepsilon^2, & \end{cases}$$

**解** (1) 因为系数行列式 
$$D = \begin{vmatrix} 1 & 1 & -2 \\ 5 & -2 & 7 \\ 2 & -5 & 4 \end{vmatrix} \frac{R_2 - 5R_1}{R_3 - 2R_1} \begin{vmatrix} 1 & 1 & -2 \\ 0 & -7 & 17 \\ 0 & -7 & 8 \end{vmatrix}$$

$$R_3 - R_2$$
 $\begin{vmatrix} 1 & 1 & -2 \\ 0 & -7 & 17 \\ 0 & 0 & -9 \end{vmatrix}$  =63 ≠ 0,根据克拉默法则知,有唯一解. 再计算得

$$D_{1} = \begin{vmatrix} -3 & 1 & -2 \\ 22 & -2 & 7 \\ 4 & -5 & 4 \end{vmatrix} = 63, D_{2} = \begin{vmatrix} 1 & -3 & -2 \\ 5 & 22 & 7 \\ 2 & 4 & 4 \end{vmatrix} = 126, D_{3} = \begin{vmatrix} 1 & 1 & -3 \\ 5 & -2 & 22 \\ 2 & -5 & 4 \end{vmatrix} = 189.$$

所以方程组(1)的唯一解为 
$$x_1 = \frac{D_1}{D} = 1, x_2 = \frac{D_2}{D} = 2, x_3 = \frac{D_3}{D} = 3.$$

(2) 因为系数行列式 
$$D = \begin{vmatrix} b & -a & 0 \\ 0 & -2c & 3b \\ c & 0 & a \end{vmatrix} = -5abc \neq 0$$
,根据克拉默法则知,有唯一解. 再计算得

$$D_{1} = \begin{vmatrix} -2ab & -a & 0 \\ bc & -2c & 3b \\ 0 & 0 & a \end{vmatrix} = 5a^{2}bc, \qquad D_{2} = \begin{vmatrix} b & -2ab & 0 \\ 0 & bc & 3b \\ c & 0 & a \end{vmatrix} = -5ab^{2}c,$$

$$D_3 = \begin{vmatrix} b & -a & -2ab \\ 0 & -2c & bc \\ c & 0 & 0 \end{vmatrix} = -5abc^2,$$

所以方程组(2)的唯一解为  $x_1 = \frac{D_1}{D} = -a, x_2 = \frac{D_2}{D} = b, x_3 = \frac{D_3}{D} = c.$ 

(3) 因为系数行列式 
$$D = \begin{vmatrix} 2 & -1 & 3 & 2 \\ 2 & -3 & 3 & 2 \\ 3 & -1 & -1 & 2 \\ 3 & -1 & 3 & -1 \end{vmatrix} = \underbrace{\begin{vmatrix} R_i - R_{i-1} \\ i = 4, 3, 2 \end{vmatrix}}_{i = 4, 3, 2} \begin{vmatrix} 2 & -1 & 3 & 2 \\ 1 & -2 & 0 & 0 \\ 0 & 2 & -4 & 0 \\ 0 & 0 & 4 & -3 \end{vmatrix} = \underbrace{\begin{vmatrix} C_2 - 2C_1 \\ C_2 - 2C_1 \end{vmatrix}}_{i = 4, 3, 2}$$

$$\begin{vmatrix} 2 & 3 & 3 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 4 & -3 \end{vmatrix}$$

$$\frac{第二行展开}{(-1)}\begin{vmatrix} 3 & 3 & 2 \\ 2 & -4 & 0 \\ 0 & 4 & -3 \end{vmatrix} = -(54+16)=-70 \neq 0, \quad 根据克拉默法$$

则知,有唯一解.再计算得

$$D_{1} = \begin{vmatrix} 6 & -1 & 3 & 2 \\ 5 & -3 & 3 & 2 \\ 3 & -1 & -1 & 2 \\ 4 & -1 & 3 & -1 \end{vmatrix} = -70, \qquad D_{2} = \begin{vmatrix} 2 & 6 & 3 & 2 \\ 2 & 5 & 3 & 2 \\ 3 & 3 & -1 & 2 \\ 3 & 4 & 3 & -1 \end{vmatrix} = -70,$$

$$D_{3} = \begin{vmatrix} 2 & -1 & 6 & 2 \\ 2 & -3 & 5 & 2 \\ 3 & -1 & 3 & 2 \\ 3 & -1 & 4 & -1 \end{vmatrix} = -70, \qquad D_{4} = \begin{vmatrix} 2 & -1 & 3 & 6 \\ 2 & -3 & 3 & 5 \\ 3 & -1 & -1 & 3 \\ 3 & -1 & 3 & 4 \end{vmatrix} = -70,$$

所以方程组(3)的唯一解为  $x_1 = \frac{D_1}{D} = 1, x_2 = \frac{D_2}{D} = 1, x_3 = \frac{D_3}{D} = 1, x_4 = \frac{D_4}{D} = 1.$ 

注意 D的第 2,3,4 列加到第 1 列可得  $D_1$ ; D的第 1,3,4 列加到第 2 列可得  $D_2$ ; D的第 1,2,3 列加到第 4 列可得  $D_4$ . 从而  $D_2$ =  $D_1$ =-70,  $D_3$ =  $D_1$ =-70,  $D_4$ =  $D_1$ =-70.

(4) 因为系数行列式 
$$D = \begin{vmatrix} 1 & 0 & -3 & -6 \\ 2 & -5 & 1 & 1 \\ -1 & 2 & 2 & 2 \\ 1 & -7 & 4 & 6 \end{vmatrix} = 27 \neq 0$$
,根据克拉默法则知,有唯一解.再计算得

$$D_{1} = \begin{vmatrix} 9 & 0 & -3 & -6 \\ 8 & -5 & 1 & 1 \\ -5 & 2 & 2 & 2 \\ 0 & -7 & 4 & 6 \end{vmatrix} = 81, \qquad D_{2} = \begin{vmatrix} 1 & 9 & -3 & -6 \\ 2 & 8 & 1 & 1 \\ -1 & -5 & 2 & 2 \\ 1 & 0 & 4 & 6 \end{vmatrix} = -27,$$

$$D_{3} = \begin{vmatrix} 1 & 0 & 9 & -6 \\ 2 & -5 & 8 & 1 \\ -1 & 2 & -5 & 2 \\ 1 & -7 & 0 & 6 \end{vmatrix} = -108, \quad D_{4} = \begin{vmatrix} 1 & 0 & -3 & 9 \\ 2 & -5 & 1 & 8 \\ -1 & 2 & 2 & -5 \\ 1 & -7 & 4 & 0 \end{vmatrix} = 27,$$

所以方程组(4)的唯一解为  $x_1 = \frac{D_1}{D} = 3$ ,  $x_2 = \frac{D_2}{D} = -1$ ,  $x_3 = \frac{D_3}{D} = -4$ ,  $x_4 = \frac{D_4}{D} = 1$ .

(5) 因
$$(1+\varepsilon+\varepsilon^2)(1-\varepsilon)=1-\varepsilon^3=0$$
,且 $1-\varepsilon\neq0$ 知, $1+\varepsilon+\varepsilon^2=0$ .据此系数行列式

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & \varepsilon & \varepsilon^2 \\ 1 & \varepsilon^2 & \varepsilon \end{vmatrix} = \frac{C_1 + C_2 + C_3}{0} \begin{vmatrix} 3 & 1 & 1 \\ 0 & \varepsilon & \varepsilon^2 \\ 0 & \varepsilon^2 & \varepsilon \end{vmatrix} = 3 \begin{vmatrix} \varepsilon & \varepsilon^2 \\ \varepsilon^2 & \varepsilon \end{vmatrix} = 3(\varepsilon^2 - \varepsilon) \neq 0.$$
根据克拉默法则知,有唯

一解. 再计算得

$$D_{1} = \begin{vmatrix} 1 & 1 & 1 \\ \varepsilon & \varepsilon & \varepsilon^{2} \\ \varepsilon^{2} & \varepsilon^{2} & \varepsilon \end{vmatrix} = 0, \quad D_{2} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & \varepsilon & \varepsilon^{2} \\ 1 & \varepsilon^{2} & \varepsilon \end{vmatrix} = 3(\varepsilon^{2} - \varepsilon), \quad D_{3} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & \varepsilon & \varepsilon \\ 1 & \varepsilon^{2} & \varepsilon^{2} \end{vmatrix} = 0,$$

所以方程组(6)的唯一解为  $x = \frac{D_1}{D} = 0, y = \frac{D_2}{D} = 1, z = \frac{D_3}{D} = 0.$ 

2. 当λ取何值时,线性方程组

$$\begin{cases} x_1 & +\lambda x_3 & = 0, \\ 2x_1 & -x_4 & = 0, \\ \lambda x_1 & +x_2 & = 0, \\ x_3 & 2x_4 & = 0, \end{cases}$$

一定只有零解, 为什么?

解 计算得 
$$D = \begin{vmatrix} 1 & 0 & \lambda & 0 \\ 2 & 0 & 0 & -1 \\ \lambda & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{vmatrix} = \frac{C_1 + C_4}{\lambda} \begin{vmatrix} 1 & 0 & \lambda & 0 \\ 0 & 0 & 0 & -1 \\ \lambda & 1 & 0 & 0 \\ 4 & 0 & 1 & 2 \end{vmatrix} = \frac{\cancel{\cancel{2}27}}{\cancel{\cancel{4}}} \underbrace{\cancel{\cancel{\cancel{4}}}}_{(-1)} \begin{vmatrix} 1 & 0 & \lambda \\ \lambda & 1 & 0 \\ 4 & 0 & 1 \end{vmatrix}$$

根据克拉默法则, 当  $D \neq 0$  时, 即  $\lambda \neq \frac{1}{4}$  时, 原方程组只有零解.

3. 证明: 对任意实数k, 线性方程组

$$\begin{cases} (k-1)x_1 + kx_2 = 0, \\ -2x_1 + (k-1)x_2 = 0, \end{cases}$$

只有零解.

**证** 因为  $D = \begin{vmatrix} k-1 & k \\ -2 & k-1 \end{vmatrix} = (k-1)^2 + 2k = k^2 + 1 \neq 0$ ,根据克拉默法则,该方程组只有零解.

# 习题 1.6

1. 计算下列行列式(要求写出计算过程):

**解** (1) 
$$\begin{vmatrix} 1 & 0 & a & 1 \\ 0 & -1 & b & -1 \\ -1 & -1 & c & -1 \\ -1 & 1 & d & 0 \end{vmatrix} \underbrace{\frac{R_3 + R_1}{R_4 + R_1}}_{\substack{1 \ 0 \ -1 \ 0 \ 1 \ a + d \ 1}} \begin{vmatrix} 1 & 0 & a & 1 \\ 0 & -1 & b & -1 \\ 0 & -1 & a + c & 0 \\ 0 & 1 & a + d & 1 \end{vmatrix} \underbrace{\frac{1}{8 \oplus 1 \text{ M}} \underbrace{\frac{1}{8 \oplus 1} \text{ M}}_{\substack{1 \ 0 \ 1 \ a + d \ 1}}}_{\substack{1 \ 0 \ 1 \ a + d \ 1}$$

$$\frac{R_{1} + R_{3}}{=} \begin{vmatrix}
0 & a+b+d & 0 \\
-1 & a+c & 0 \\
1 & a+d & 1
\end{vmatrix} \underbrace{\frac{1}{4} \pm \frac{1}{3} + \frac{1}{3}}_{\text{add}} = a+b+d.$$

(2) 
$$\begin{vmatrix} x+3 & 1 & 2 \\ x & x-1 & 1 \\ 3(x+1) & x & x+3 \end{vmatrix} = \begin{bmatrix} x+3 & 1 & 2 \\ x & x-1 & 1 \\ x & 0 & x \end{bmatrix} \underbrace{\begin{bmatrix} C_1 - C_2 - C_3 \\ x & 0 & x \end{bmatrix}}_{x}$$

$$\begin{vmatrix} x & 1 & 2 \\ x-1 & x-1 & 1 \\ 0 & 0 & x \end{vmatrix} \xrightarrow{C_1 - C_2} \begin{vmatrix} x-1 & 1 & 2 \\ 0 & x-1 & 1 \\ 0 & 0 & x \end{vmatrix} = x(x-1)^2.$$

2. 试用多种方法证明:  $a_i \neq 0$   $(i=1,2,\cdots,n)$ 时,

$$D_{n} = \begin{vmatrix} 1 + a_{1} & 1 & 1 & \cdots & 1 \\ 1 & 1 + a_{2} & 1 & \cdots & 1 \\ 1 & 1 & 1 + a_{3} & \cdots & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 1 & 1 & \cdots & 1 + a_{n} \end{vmatrix}$$

$$=a_1a_2\cdots a_n(1+\sum_{i=1}^n\frac{1}{a_i}).$$

证 方法一 归化

$$D_{n} = \begin{vmatrix} 1 + a_{1} & 1 & 1 & \cdots & 1 \\ 1 & 1 + a_{2} & 1 & \cdots & 1 \\ 1 & 1 & 1 + a_{3} & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 + a_{n} \end{vmatrix} \xrightarrow{\frac{R_{i} - R_{n}}{i}} i = 1, \dots, n-1$$

$$\begin{vmatrix} a_1 & 0 & 0 & \cdots & -a_n \\ 0 & a_2 & 0 & \cdots & -a_n \\ 0 & 0 & a_3 & \cdots & -a_n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 1 & 1 & \cdots & 1+a_n \end{vmatrix} \xrightarrow{R_n + \sum_{i=1}^{n-1} -\frac{1}{a_i}} \begin{bmatrix} a_1 & 0 & 0 & \cdots & -a_n \\ 0 & a_2 & 0 & \cdots & -a_n \\ 0 & 0 & a_3 & \cdots & -a_n \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1+a_n + a_n \sum_{i=1}^{n-1} \frac{1}{a_i} \end{bmatrix}$$

$$= a_1 a_2 \cdots a_n (1 + \sum_{i=1}^n \frac{1}{a_i}) = \overline{\Box} \stackrel{\text{th}}{=} 1.$$

#### 方法二 归纳法

当 
$$n=1$$
 时, $D_1=1+a_1=a_1(1+\frac{1}{a_1})$ . 结论成立.

假设
$$n-1$$
时结论成立,即有 $D_{n-1} = a_1 a_2 \cdots a_{n-1} (1 + \sum_{i=1}^{n-1} \frac{1}{a_i})$ .

则当n时,将  $D_n$ 的第n列看成  $1+0,1+0,\cdots$ , $1+a_n$ ,故  $D_n$  可表示为 2 个行列式之和,而第 2 个行列式 按第n列展开可算出为 $a_n D_{n-1}$ 从而

$$D_{n} = \begin{vmatrix} 1 + a_{1} & 1 & 1 & \cdots & 1 \\ 1 & 1 + a_{2} & 1 & \cdots & 1 \\ 1 & 1 & 1 + a_{3} & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 1 + a_{n} \end{vmatrix} = \begin{vmatrix} 1 + a_{1} & 1 & 1 & \cdots & 1 \\ 1 & 1 + a_{2} & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{vmatrix} + a_{n}D_{n-1}$$

$$\begin{vmatrix} 1 + a_{1} & 1 & 1 & \cdots & 1 \\ 1 & 1 + a_{2} & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{vmatrix} = \begin{vmatrix} a_{1} & 0 & 0 & \cdots & 0 \\ 0 & a_{2} & 0 & \cdots & 0 \\ 0 & 0 & a_{3} & \cdots & 0 \\ 0 & 0 & a_{3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{vmatrix} = a_{1}a_{2}\cdots a_{n-1}.$$

所以 
$$D_n = a_1 a_2 \cdots a_{n-1} + a_n D_{n-1} = a_1 a_2 \cdots a_{n-1} + a_n a_1 a_2 \cdots a_{n-1} (1 + \sum_{i=1}^{n-1} \frac{1}{a_i})$$

$$= a_1 a_2 \cdots a_n (1 + \sum_{i=1}^n \frac{1}{a_i}) = \overline{\Box} \stackrel{\text{id}}{=} .$$

#### 方法三 递推

由证明(二)可知 $D_n$ 与 $D_{n-1}$ 存在以下递推关系: $D_n = a_1 a_2 \cdots a_{n-1} + a_n D_{n-1}$ 

所以 
$$D_n = a_1 a_2 \cdots a_{n-1} + a_n D_{n-1} = a_1 a_2 \cdots a_n (\frac{1}{a_n} + \sum_{i=1}^n \frac{D_{n-1}}{a_i}) = \cdots = a_1 a_2 \cdots a_n (1 + \sum_{i=1}^n \frac{1}{a_i})$$

=右端.

#### 方法四 加边法

$$D_n = \begin{vmatrix} 1 + a_1 & 1 & 1 & \cdots & 1 \\ 1 & 1 + a_2 & 1 & \cdots & 1 \\ 1 & 1 & 1 + a_3 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 + a_n \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 + a_1 & 1 & \cdots & 1 \\ 1 & 1 & 1 + a_2 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 + a_n \end{vmatrix}_{n+1}$$

$$\frac{C_{i} - C_{1}}{i = 2, 3, \dots, n+1} \begin{vmatrix}
1 & -1 & -1 & \dots & -1 \\
1 & a_{1} & 0 & \dots & 0 \\
1 & 0 & a_{2} & \dots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
1 & 0 & 0 & \dots & a_{n}
\end{vmatrix}
\underbrace{R_{1} + \sum_{i=2}^{n+1} \frac{1}{a_{i}} R_{i}}_{I}$$

$$\begin{vmatrix} 1 + \sum_{i=1}^{n} \frac{1}{a_{i}} & 0 & 0 & \cdots & 0 \\ 1 & a_{1} & 0 & \cdots & 0 \\ 1 & 0 & a_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 0 & 0 & \cdots & a_{n} \end{vmatrix} = a_{1} a_{2} \cdots a_{n} (1 + \sum_{i=1}^{n} \frac{1}{a_{i}}) = \overline{\Box} \stackrel{\text{th}}{\searrow_{\overline{\Pi}}}.$$

3. 计算 
$$D_5 = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \\ 4 & 5 & 1 & 2 & 3 \\ 3 & 4 & 5 & 1 & 2 \\ 2 & 3 & 4 & 5 & 1 \end{vmatrix}$$

$$D_{5} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \\ 4 & 5 & 1 & 2 & 3 \\ 3 & 4 & 5 & 1 & 2 \\ 2 & 3 & 4 & 5 & 1 \end{vmatrix} \underbrace{C_{1} + \sum_{j=2}^{5} C_{j}}_{=2} \begin{vmatrix} 15 & 2 & 3 & 4 & 5 \\ 15 & 1 & 2 & 3 & 4 \\ 15 & 5 & 1 & 2 & 3 \\ 15 & 4 & 5 & 1 & 2 \\ 15 & 3 & 4 & 5 & 1 \end{vmatrix} \underbrace{\frac{R_{j} - R_{1}}{i}}_{i = 2,3,4,5}$$

$$D_{5} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \\ 4 & 5 & 1 & 2 & 3 \\ 3 & 4 & 5 & 1 & 2 \\ 2 & 3 & 4 & 5 & 1 \end{vmatrix} \underbrace{\begin{bmatrix} 15 & 2 & 3 & 4 & 5 \\ 15 & 1 & 2 & 3 & 4 \\ 15 & 5 & 1 & 2 & 3 \\ 15 & 4 & 5 & 1 & 2 \\ 15 & 3 & 4 & 5 & 1 \end{vmatrix}}_{|C_{1} + \sum_{i=2}^{5} C_{i}|} \underbrace{\begin{bmatrix} 15 & 2 & 3 & 4 & 5 \\ 15 & 5 & 1 & 2 & 3 \\ 15 & 4 & 5 & 1 & 2 \\ 15 & 3 & 4 & 5 & 1 \end{bmatrix}}_{|C_{1} + \sum_{i=2}^{5} C_{i}|} \underbrace{\begin{bmatrix} 15 & 2 & 3 & 4 & 5 \\ 0 & -1 & -1 & -1 & -1 \\ 0 & 3 & -2 & -2 & -2 \\ 0 & 2 & 2 & -3 & -3 \\ 0 & 1 & 1 & 1 & -4 \end{bmatrix}}_{|C_{1} + \sum_{i=2}^{5} C_{i}|} \underbrace{\begin{bmatrix} 15 & 2 & 3 & 4 & 5 \\ 0 & -1 & -1 & -1 & -1 \\ 0 & 0 & -5 & -5 & -5 \\ 0 & 0 & 0 & 0 & -5 & -5 \\ 0 & 0 & 0 & 0 & -5 & -5 \\ 0 & 0 & 0 & 0 & -5 \end{bmatrix}}_{|C_{1} + \sum_{i=2}^{5} C_{i}|} \underbrace{\begin{bmatrix} 15 & 2 & 3 & 4 & 5 \\ 0 & -1 & -1 & -1 & -1 \\ 0 & 0 & -5 & -5 & -5 \\ 0 & 0 & 0 & 0 & -5 & -5 \\ 0 & 0 & 0 & 0 & -5 & -5 \\ 0 & 0 & 0 & 0 & -5 & -5 \end{bmatrix}}_{|C_{1} + \sum_{i=2}^{5} C_{i}|} \underbrace{\begin{bmatrix} 15 & 2 & 3 & 4 & 5 \\ 0 & -1 & -1 & -1 & -1 \\ 0 & 0 & -5 & -5 & -5 \\ 0 & 0 & 0 & 0 & -5 & -5 \\ 0 & 0 & 0 & 0 & -5 & -5 \end{bmatrix}}_{|C_{1} + \sum_{i=2}^{5} C_{i}|} \underbrace{\begin{bmatrix} 15 & 2 & 3 & 4 & 5 \\ 0 & -1 & -1 & -1 & -1 \\ 0 & 0 & -5 & -5 & -5 \\ 0 & 0 & 0 & 0 & -5 & -5 \\ 0 & 0 & 0 & 0 & -5 & -5 \end{bmatrix}}_{|C_{1} + \sum_{i=2}^{5} C_{i}|} \underbrace{\begin{bmatrix} 15 & 2 & 3 & 4 & 5 \\ 0 & -1 & -1 & -1 & -1 \\ 0 & 0 & -5 & -5 & -5 \\ 0 & 0 & 0 & 0 & -5 & -5 \\ 0 & 0 & 0 & 0 & -5 & -5 \end{bmatrix}}_{|C_{1} + \sum_{i=2}^{5} C_{i}|} \underbrace{\begin{bmatrix} 15 & 2 & 3 & 4 & 5 \\ 0 & -1 & -1 & -1 & -1 \\ 0 & 0 & -5 & -5 & -5 \\ 0 & 0 & 0 & 0 & -5 & -5 \end{bmatrix}}_{|C_{1} + \sum_{i=2}^{5} C_{i}|} \underbrace{\begin{bmatrix} 15 & 2 & 3 & 4 & 5 \\ 15 & 3 & 4 & 5 & 1 \end{bmatrix}}_{|C_{1} + \sum_{i=2}^{5} C_{i}|} \underbrace{\begin{bmatrix} 15 & 2 & 3 & 4 & 5 \\ 0 & -1 & -1 & -1 & -1 \\ 0 & 0 & -5 & -5 & -5 \\ 0 & 0 & 0 & 0 & -5 & -5 \end{bmatrix}}_{|C_{1} + \sum_{i=2}^{5} C_{i}|} \underbrace{\begin{bmatrix} 15 & 2 & 3 & 4 & 5 \\ 0 & -1 & -1 & -1 & -1 \\ 0 & 0 & 0 & -5 & -5 & -5 \\ 0 & 0 & 0 & 0 & -5 & -5 \end{bmatrix}}_{|C_{1} + \sum_{i=2}^{5} C_{i}|} \underbrace{\begin{bmatrix} 15 & 2 & 3 & 4 & 5 \\ 0 & -1 & -1 & -1 & -1 \\ 0 & 0 & 0 & -5 & -5 & -5 \\ 0 & 0 & 0 & 0 & 0 & -5 \end{bmatrix}}_{|C_{1} + \sum_{i=2}^{5} C_{i}|} \underbrace{\begin{bmatrix} 15 & 2 & 3 & 4 & 5 \\ 0 & -1 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & -5 & -5 \\ 0 & 0 & 0 & 0 & 0 & -5 \end{bmatrix}}_{|C_{1$$

# 习题 2.1

1. 下列图(1)(2), 分别为某些地区的管道网, 并已经标明了流量和流向, 请列出确定各段流量  $x_1,x_2,\cdots,x_k$ 的线性方程组.



解 (1)根据各个结点上流进和流出的流量相等, 有

$$\begin{cases} x_1 - x_3 + x_4 = 40, \\ x_1 + x_2 = 50, \\ x_2 + x_3 + x_5 = 60, \\ x_4 + x_5 = 50. \end{cases}$$



(2)根据各个结点上流进和流出的流量相等,有

$$\begin{cases} x_1 + x_3 + x_5 = 50, \\ x_1 - x_2 = 25, \\ x_2 + x_4 + x_7 = 60, \\ x_5 + x_6 - x_7 = 40, \\ -x_3 + x_4 + x_6 = 75. \end{cases}$$

2. 写出下列线性方程组的系数矩阵 A和增广矩阵  $\overline{A}$ .

(1) 
$$\begin{cases} x_1 - x_2 = 1, \\ x_2 - x_3 = 1, \\ x_3 - x_4 = 1, \\ -x_1 + x_4 = -1. \end{cases}$$

(1) 
$$\begin{cases} x_1 - x_2 = 1, \\ x_2 - x_3 = 1, \\ x_3 - x_4 = 1, \\ -x_1 + x_4 = -1. \end{cases}$$
 (2) 
$$\begin{cases} x_4 + 2x_5 - 1 = 0, \\ x_1 - 3x_4 - 2 = 0, \\ x_1 + 2x_2 + 3x_3 - 2 = 0, \\ -2x_2 + 4x_3 - 3x_4 + x_5 - 1 = 0. \end{cases}$$

(1) 该方程组的系数矩阵为

$$A = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & 1 \end{bmatrix};$$

$$(2) \quad \text{$6$ } \text{$5$} \quad \text{$7$} \quad \text{$2$} \quad \text{$4$} \quad \text{$4$} \quad \text{$4$}$$

(2) 该方程组的系数矩阵为

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 & 2 \\ 1 & 0 & 0 & -3 & 0 \\ 1 & 2 & 3 & 0 & 0 \\ 0 & -2 & 4 & -3 & 1 \end{bmatrix};$$

为 矩

为

$$\overline{A} = \begin{bmatrix}
1 & -1 & 0 & 0 & \vdots & 1 \\
0 & 1 & -1 & 0 & \vdots & 1 \\
0 & 0 & 1 & -1 & \vdots & 1 \\
-1 & 0 & 0 & 1 & \vdots & -1
\end{bmatrix}.$$

$$\overline{A} = \begin{bmatrix}
0 & 0 & 0 & 1 & 2 & \vdots & 1 \\
1 & 0 & 0 & -3 & 0 & \vdots & 2 \\
1 & 2 & 3 & 0 & 0 & \vdots & 2 \\
0 & -2 & 4 & -3 & 1 & \vdots & 1
\end{bmatrix}.$$

$$\overline{A} = \begin{bmatrix} 0 & 0 & 0 & 1 & 2 & \vdots & 1 \\ 1 & 0 & 0 & -3 & 0 & \vdots & 2 \\ 1 & 2 & 3 & 0 & 0 & \vdots & 2 \\ 0 & -2 & 4 & -3 & 1 & \vdots & 1 \end{bmatrix}.$$

3. 只用初等行变换将下列矩阵化为约化阶梯形

$$(1) \begin{bmatrix} 1 & 7 & 2 & 8 \\ 0 & -5 & 3 & 6 \\ -1 & -7 & 3 & 7 \end{bmatrix} ; \qquad (2) \begin{bmatrix} 1 & 3 & 12 \\ 4 & 7 & 7 \\ 3 & 6 & 9 \\ 2 & -3 & 3 \end{bmatrix} ; \qquad (3) \begin{bmatrix} 1 & -1 & 3 & -1 \\ 2 & -1 & -1 & 4 \\ 3 & -2 & 2 & 3 \\ 1 & 0 & -4 & 5 \end{bmatrix} .$$

$$\begin{bmatrix}
1 & 3 & 12 \\
4 & 7 & 7 \\
3 & 6 & 9 \\
2 & -3 & 3
\end{bmatrix}
\xrightarrow{\substack{R_2 - 4R_1 \\ R_3 - 3R_1 \\ R_4 - 2R_1}}
\begin{bmatrix}
1 & 3 & 12 \\
0 & -5 & -41 \\
0 & -3 & -27 \\
0 & -9 & -21
\end{bmatrix}
\xrightarrow{\stackrel{1}{5}R_2}
\xrightarrow{\stackrel{1}{3}R_3}
\begin{bmatrix}
1 & 3 & 12 \\
0 & 1 & \frac{41}{5} \\
0 & 3 & 7
\end{bmatrix}
\xrightarrow{R_{23}}
\begin{bmatrix}
1 & 3 & 12 \\
0 & 1 & 9 \\
0 & 1 & \frac{41}{5} \\
0 & 3 & 7
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 3 & -1 \\
2 & -1 & -1 & 4 \\
3 & -2 & 2 & 3 \\
1 & 0 & -4 & 5
\end{bmatrix}
\xrightarrow{R_2 - 2rR_{\parallel}}
\begin{bmatrix}
1 & -1 & 3 & -1 \\
0 & 1 & -6 & 6 \\
0 & 1 & -7 & 6 \\
0 & 1 & -7 & 6
\end{bmatrix}
\xrightarrow{R_4 - R_3}
\begin{bmatrix}
1 & -1 & 3 & -1 \\
0 & 1 & -6 & 6 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

$$\xrightarrow{\begin{array}{c} -R_3 \\ R_1 - 3 R_3 \end{array}} \left. \begin{array}{ccccc} 1 & -1 & 0 & -1 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right] \xrightarrow{R_1 + R_2} \left[ \begin{array}{ccccc} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

- 4. 证明互换可通过连续施行若干次倍乘, 倍加而实现.
- 证 以行互换 R<sub>ii</sub>为例: 列互换可以同样证明.

$$\xrightarrow{R_{j}+R_{j}} j \begin{bmatrix} a_{j1} & a_{j2} & \cdots & a_{jn} \\ \cdots & \cdots & \cdots & \cdots \\ a_{j1}-a_{j1} & a_{j2}-a_{j2} & \cdots & a_{jn}-a_{jn} \end{bmatrix} \xrightarrow{R_{j}+(-1)R_{ji}} j \begin{bmatrix} a_{j1} & a_{j2} & \dots & a_{jn} \\ \cdots & \cdots & \cdots \\ -a_{j1} & -a_{j2} & \cdots & -a_{jn} \end{bmatrix}$$

$$\begin{array}{c}
 i \\
 -i \\
 a_{j_1} \quad a_{j_2} \quad \dots \quad a_{j_n} \\
 \cdots \quad \cdots \quad \cdots \quad \cdots \\
 j \quad a_{j_1} \quad a_{j_2} \quad \cdots \quad a_{j_n}
\end{array}$$
, 这相当于  $A$  中交换第  $i$  行和第  $j$  行,所以结论成立.

5. 设n 阶行列式

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} \neq 0.$$

证明: 用初等行变换能把n行n 列矩阵  $A=\begin{bmatrix} a_{11} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$  化为  $\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & & 1 \end{bmatrix}$  .

若用第三章知识,结论显<mark>然成立.</mark> 现用本节知识来证明. 因|A|≠0,说明 $a_{11}$   $a_{12}$  ...  $a_{1n}$  不全为零,故当某 个 $a_{k1} \neq 0$ ,通过适当的行互换,可使得 $a_{k1}$ 位于左上角,用 $a_{k1}^{-1}$ 来乘第一行,然后将其余行减去第一行的适当倍数,矩

等行变换化为 
$$\begin{bmatrix} 1 & a_{12}' & a_{13}' & \dots & a_{1n}' \\ 0 & 1 & a_{23}' & \dots & a_{2n}' \\ 0 & 0 & 1 & \dots & a_{3n}' \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}, 然后再将第 $n$ 行的 $-d_{in}$ 倍加到第 $i$ 行( $i$ =1,2,..., $n$ -1),再将第 $n$ -1行的$$

 $-d_{i(n-1)}$ 倍加到第i行(i=1,2,...,n-2),这样继续下去,一直到将第2行的 $-a_{12}$ 倍加到第1行,此时A就化为

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$
, 故所证结论成立.

#### 习题 2.2

- 1.设 $m \times n$ 矩阵 A的秩为 $r(r > 1, \exists r < m, r < n)$ ,问A中是否一定存在不为零的r 1阶子式? 是否存在为零的r + 1阶子式? 为什么?
- 解 A中一定存在不为零的r-1阶子式,否则秩(A) < r-1,与题设秩(A) = r矛盾、由秩(A) = r知,A中至少存在一个r阶子式不为零,这表明 A中的r阶子式只要有一个不为零即可,其余可以等于零,也可以不等于零。 A中一定不存在不为零的r+1阶子式,否则 A的秩至少是r+1,这也与题设秩(A) = r矛盾。

#### 2.求下列矩阵的秩

(1) 
$$\begin{bmatrix} 2 & 0 & 3 & 1 & 4 \\ 3 & -5 & 4 & 2 & 7 \\ 1 & 5 & 2 & 0 & 1 \end{bmatrix}$$
; (2)  $\begin{bmatrix} 0 & 1 & 1 & -1 & 2 \\ 0 & 2 & -2 & 2 & 0 \\ 0 & -1 & -1 & 1 & 1 \\ 1 & 1 & 0 & 1 & -1 \end{bmatrix}$ ;

(3) 
$$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix};$$
(4) 
$$\begin{bmatrix} 1 & -1 & 2 & 1 & 0 \\ 2 & -2 & 4 & -1 & 0 \\ 3 & 0 & 6 & -2 & 1 \\ 0 & 3 & 0 & 0 & 1 \end{bmatrix}.$$

分析 **求某个元素为已知矩阵的秩的方法是对矩阵** *A* 进行初等行变换, 初等列变换化为阶梯矩阵,则所得阶梯 形矩阵中不为零行的行数即为矩阵 *A* 的秩.

(2) 
$$\begin{bmatrix}
0 & 1 & 1 & -1 & 2 \\
0 & 2 & -2 & 2 & 0 \\
0 & -1 & -1 & 1 & 1 \\
1 & 1 & 0 & 1 & -1
\end{bmatrix}
\xrightarrow{R_{14}}
\begin{bmatrix}
1 & 1 & 0 & 1 & -1 \\
0 & 2 & -2 & -2 & 0 \\
0 & -1 & -1 & 1 & 1 \\
0 & 1 & 1 & -1 & 2
\end{bmatrix}
\xrightarrow{\frac{1}{2}R_2}
\begin{bmatrix}
1 & 1 & 0 & 1 & -1 \\
0 & 1 & -1 & -1 & 0 \\
0 & -1 & -1 & 1 & 1 \\
0 & 1 & 1 & -1 & 2
\end{bmatrix}$$

$$\xrightarrow{R_3+R_2} \left. \begin{array}{c}
1 & 1 & 0 & 1 & -1 \\
0 & 1 & -1 & -1 & 0 \\
0 & 0 & -2 & 0 & 1 \\
0 & 0 & 2 & 0 & 2
\end{array} \right] \xrightarrow{R_4+R_3} \left. \begin{array}{c}
1 & 1 & 0 & 1 & -1 \\
0 & 1 & -1 & -1 & 0 \\
0 & 0 & -2 & 0 & 1 \\
0 & 0 & 0 & 0 & 3
\end{array} \right], \text{ Figh}(A) = 4.$$

$$\frac{R_5 - R_4}{R_4 - \frac{1}{2}R_5} \rightarrow \begin{vmatrix}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{vmatrix}$$
**,** 所以秩(A) = 5; 本题也可以计算出该矩阵的行列式不为零, 得该矩阵秩为 5.

$$\xrightarrow{R_4-R_2} \begin{bmatrix}
1 & -1 & 2 & 1 & 0 \\
0 & 3 & 0 & -5 & 1 \\
0 & 0 & 0 & -3 & 0 \\
0 & 0 & 0 & 5 & 0
\end{bmatrix}
\xrightarrow{R_4+\frac{3}{5}R_3} \begin{bmatrix}
1 & -1 & 2 & 1 & 0 \\
0 & 3 & 0 & -5 & 1 \\
0 & 0 & 0 & -3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}, \text{ filth}(A) = 3.$$

解 因为初等变换不改变矩阵的秩,所以上述矩阵的秩即为矩阵A的秩,从而秩(A) = 3, 故应填 3.

$$\xrightarrow{R_3-R_2} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \text{ five}(B) = 2; C \xrightarrow{R_2-R_1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \text{ five}(C) = 2, \text{five}(B) + 2, \text{five}(B)$$

故应填D.

5.设 
$$a_i(i=1,2,...,m)$$
 不全为零, $b_j(j=1,2,...,n)$  不全为零,且  $A_{m\times n} = \begin{bmatrix} a_1b_1 & a_1b_2 & ... & a_1b_n \\ a_2b_1 & a_2b_2 & ... & a_2b_n \\ \vdots & \vdots & & \vdots \\ a_mb_1 & a_mb_2 & ... & a_mb_n \end{bmatrix}$ ,求矩阵  $A_{m\times n}$  的秩.

#### 解 不妨设 $a_i \neq 0$ ,则

$$A_{m \times n} \xrightarrow{\frac{1}{a_{i}} \aleph} \begin{bmatrix} a_{i}b_{1} & ab_{2} & \dots & ab_{n} \\ a_{2}b_{1} & a_{2}b_{2} & \dots & a_{2}b_{n} \\ \vdots & \vdots & \vdots & \vdots \\ b_{1} & b_{2} & \dots & b_{n} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \xrightarrow{R_{i}-a_{i}R} \mathring{\pi}_{j} \begin{bmatrix} 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ b_{1} & b_{2} & \dots & b_{n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 \end{bmatrix}, \mathbf{th} b_{1}, b_{2}, \dots, b_{n}$$
 不全为零知,秩 $(A_{m \times n}) = 1.$ 

6.设 
$$A = \begin{bmatrix} k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \\ 1 & 1 & 1 & k \end{bmatrix}$$
,计算A的秩.

所以当 $k \neq -4$  且 $k \neq 1$  时, 秩(A) = 4; k = 1 时 秩(A) = 1; k = -3 时, 秩(A) = 3.

# 习题 2.3

#### 1. 解下列线性方程组:

$$(1) \begin{cases} x_1 - x_2 + x_3 + 2x_4 = 1, \\ -2x_1 + 2x_2 - 3x_3 + 3x_4 = 2, \\ x_1 - x_2 + 2x_3 + 5x_4 = -1, \\ -x_1 + x_2 - 3x_3 + 2x_4 = 4; \end{cases}$$

(3) 
$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 = 1, \\ x_1 - 2x_2 + x_3 - x_4 = -1, \\ x_1 - 2x_2 + x_3 + 5x_4 = 5; \end{cases}$$

(2) 
$$\begin{cases} x_1 - x_2 + 3x_3 - 4x_4 = 4, \\ x_2 - x_3 + x_4 = -3, \\ x_1 + 3x_2 + x_4 = 1, \\ -7x_2 + 3x_3 + x_4 = -3; \end{cases}$$

$$\begin{cases} x_1 + x_2 - x_3 - x_4 = 1, \\ 2x_1 + x_2 + x_3 + x_4 = 4, \\ 4x_1 + 3x_2 - x_3 - x_4 = 6, \\ x_1 + 2x_2 - 4x_3 - 4x_4 = -1 \end{cases}$$

(5) 
$$\begin{cases} x_1 - 2x_2 + 3x_3 - 4x_4 = 0, \\ x_2 - x_3 + x_4 = 0, \\ x_1 + 3x_2 - 3x_4 = 0, \\ x_1 - 4x_2 + 3x_3 - 2x_4 = 0; \end{cases}$$
(6) 
$$\begin{cases} x_1 - x_3 + x_5 = 0, \\ x_2 - x_4 + x_6 = 0, \\ x_1 - x_2 + x_5 - x_6 = 0, \\ x_2 - x_3 + x_6 = 0, \\ x_1 - x_4 + x_5 = 0. \end{cases}$$

(1)解 将增广矩阵只用初等行变换化为约化阶梯形矩阵。

$$\overline{A} = \begin{bmatrix}
1 & -1 & 1 & 2 & \vdots & 1 \\
-2 & 2 & -3 & 3 & \vdots & 2 \\
1 & -1 & 2 & 5 & \vdots & -1 \\
-1 & 1 & -3 & 2 & \vdots & 4
\end{bmatrix}
\xrightarrow{\substack{R_2 + 2R_1 \\ R_3 - R_1 \\ R_4 + R_1}}
\begin{bmatrix}
1 & -1 & 1 & 2 & \vdots & 1 \\
0 & 0 & -1 & 7 & \vdots & 4 \\
0 & 0 & -2 & 4 & \vdots & 5
\end{bmatrix}
\xrightarrow{\substack{R_3 + R_2 \\ R_4 - 2R_2 \\ R_2 - 2R_2 \\ 0 & 0 & -2 & 4 & \vdots & 5
\end{bmatrix}}$$

$$\begin{bmatrix}
1 & -1 & 1 & 2 & \vdots & 1 \\
0 & 0 & -1 & 7 & \vdots & 4 \\
0 & 0 & 0 & 10 & \vdots & 2 \\
0 & 0 & 0 & 10 & \vdots & 2 \\
0 & 0 & 0 & 0 & \vdots & -1
\end{bmatrix},$$

故秩 $(A) = 3 \neq$ 秩 $(\overline{A}) = 4$ ,所以原方程组无解。

#### (2)解 将增广矩阵只用初等行变换化为阶梯形矩阵.

$$\frac{1}{A} = \begin{bmatrix}
1 & -2 & 3 & -4 & : 4 \\
0 & 1 & -1 & 1 & : -3 \\
1 & 3 & 0 & 1 & : 1 \\
0 & -7 & 3 & 1 & : -3
\end{bmatrix}
\xrightarrow{R_3 - R_1}$$

$$\frac{1}{0} = \begin{bmatrix}
1 & -2 & 3 & -4 & : 4 \\
0 & 1 & -1 & 1 & : -3 \\
0 & 5 & -3 & 5 & : -3 \\
0 & -7 & 3 & 1 & : -3
\end{bmatrix}
\xrightarrow{R_3 - 5 R_2 \atop R_4 + 7 R_2}$$

$$\begin{bmatrix}
1 & -2 & 3 & -4 & : 4 \\
0 & 1 & -1 & 1 & : -3 \\
0 & 0 & 2 & 0 & : 12 \\
0 & 0 & -4 & 8 & : -24
\end{bmatrix}$$

$$\frac{1}{2}R_3$$

$$\frac{1}{8}R_4$$

$$\begin{bmatrix}
1 & -2 & 3 & -4 & : 4 \\
0 & 1 & -1 & 1 & : -3 \\
0 & 0 & 1 & 0 & : 6 \\
0 & 0 & 0 & 1 & 0 & : 6 \\
0 & 0 & 0 & 1 & : 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & 0 & : -8 \\
0 & 1 & 0 & 0 & : 3 \\
0 & 0 & 1 & 0 & : 6 \\
0 & 0 & 0 & 1 & : 0
\end{bmatrix}$$

(A) =秩(A) = 4(未知量个数),从而方程组有唯一解:

$$x_1 = -8, x_2 = 3, x_3 = 6, x_4 = 0.$$

#### (3)解 将增广矩阵只用初等行变换化为阶梯形矩阵。

$$\overline{A} = \begin{bmatrix} 1 & -2 & 1 & 1 & \vdots & 1 \\ 1 & -2 & 1 & -1 & \vdots & -1 \\ 1 & -2 & 1 & 5 & \vdots & 5 \end{bmatrix} \xrightarrow{R_2 - R_1 \atop R_3 - R_1} \begin{bmatrix} 1 & -2 & 1 & 1 & \vdots & 1 \\ 0 & 0 & 0 & -2 & \vdots & -2 \\ 0 & 0 & 0 & 4 & \vdots & 4 \end{bmatrix} \xrightarrow{R_3 + 2 R_2} \begin{bmatrix} 1 & -2 & 1 & 1 & \vdots & 1 \\ 0 & 0 & 0 & -2 & \vdots & -2 \\ 0 & 0 & 0 & 0 & \vdots & 0 \end{bmatrix}, \quad \text{\textbf{bc}}(A) =$$

秩 $(\bar{A})=2$ <4 (未知量个数),从而方程组有无穷多个解,且有两个自由未知量。与原方程组同解的方程组为

$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 = 1, \\ x_4 = 1. \end{cases}$$
 从而解为 
$$\begin{cases} x_1 = 2t_1 - t_2, \\ x_2 = t_1, \\ x_3 = t_2, \\ x_4 = 1, \end{cases}$$
 其中  $t_1, t_2$  为任意常数.

#### (4)解 将增广矩阵只用初等行变换化为阶梯形矩阵:

$$\overline{A} = \begin{bmatrix}
1 & 1 & -1 & -1 & \vdots & 1 \\
2 & 1 & 1 & 1 & \vdots & 4 \\
4 & 3 & -1 & -1 & \vdots & 6 \\
1 & 2 & -4 & -4 & \vdots & -1
\end{bmatrix}
\xrightarrow{R_2 - 2R_1 \atop R_3 - 4R_1 \atop R_4 - R_1}
\begin{bmatrix}
1 & 1 & -1 & -1 & \vdots & 1 \\
0 & -1 & 3 & 3 & \vdots & 2 \\
0 & -1 & 3 & 3 & \vdots & 2 \\
0 & 1 & -3 & -3 & \vdots & -2
\end{bmatrix}$$

# 两个自由未知量. 与原方程组同解的方程组为 $\begin{cases} x_1 + x_2 - x_3 - x_4 = 1, \\ -x_2 + 3x_3 + 3x_4 = 2. \end{cases}$ 从而解为

$$\begin{cases} x_1 = 3 - 2t_1 - 2t_2, \\ x_2 = -2 + 3t_1 + 3t_2, \\ x_3 = t_1, \\ x_4 = t_2, \end{cases}$$
 其中  $t_1, t_2$  为任意常数.

#### (5)解 将增广矩阵只用初等行变换化为约化阶梯形矩阵:

$$A = \begin{bmatrix} 1 & -2 & 3 & \vdots -4 \\ 0 & 1 & -1 & \vdots & 1 \\ 1 & 3 & 0 & \vdots -3 \\ 1 & -4 & 3 & \vdots -2 \end{bmatrix} \xrightarrow{R_3 - R_1 \atop R_4 - R_1} \begin{bmatrix} 1 & -2 & 3 & \vdots -4 \\ 0 & 1 & -1 & \vdots & 1 \\ 0 & 5 & -3 & \vdots & 1 \\ 0 & -2 & 0 & \vdots & 2 \end{bmatrix} \xrightarrow{R_3 - 5R_2 \atop R_4 + 2R_2} \begin{bmatrix} 1 & -2 & 3 & \vdots -4 \\ 0 & 1 & -1 & \vdots & 1 \\ 0 & 0 & 2 & \vdots -4 \\ 0 & 0 & -2 & \vdots & 4 \end{bmatrix}$$

$$\xrightarrow{\stackrel{R_4+R_3}{\underline{1}_2R_3}} \xrightarrow{\stackrel{R_2+R_3}{\underline{1}_2R_3}} \xrightarrow{\stackrel{R_2+R_3}{\underline{1}_2R_3}} \xrightarrow{\stackrel{R_2+R_3}{\underline{1}_2R_3}} \xrightarrow{\stackrel{R_2+R_3}{\underline{1}_2R_3}} \xrightarrow{\stackrel{R_2+R_3}{\underline{1}_2R_3}} \xrightarrow{\stackrel{R_2+R_3}{\underline{1}_2R_3}} \xrightarrow{\stackrel{R_2+R_3}{\underline{1}_2R_3}} \xrightarrow{\stackrel{R_2+R_3}{\underline{1}_2R_3}} \xrightarrow{\stackrel{R_2+R_3}{\underline{1}_2R_3}} \xrightarrow{\stackrel{R_1+2}{\underline{1}_2R_2}} \xrightarrow{\stackrel{R_1+2}{\underline{1}_2R_2}}$$

#### 故秩(A)=3<4(未知量个数),从而方程组有无穷多解。与原方程组同解的方程组为

$$\begin{cases} x_1 = 0, \\ x_2 - x_4 = 0, \\ x_3 - 2x_4 = 0. \end{cases}$$
 而解为
$$\begin{cases} x_1 = 0, \\ x_2 = t, \\ x_3 = 2t, \\ x_4 = t, \end{cases}$$
 其中  $t$  为任意常数.

#### (6)解 将系数矩阵只用初等行变换化为阶梯形矩阵:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 1 & -1 & 0 & 0 & 1 & -1 \\ 0 & 1 & -1 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{\begin{array}{c} R_3 - R_1 \\ R_3 - R_1 \\ \end{array}} \begin{bmatrix} 1 & 0 & -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & -1 & 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 & 0 \end{bmatrix}$$

故秩(A)=3<6(未知量个数),从而方程组有无穷多解.

据此与原方程组同解的方程组为  $\begin{cases} x_1 - x_4 + x_5 = 0, \\ x_2 - x_4 + x_6 = 0, \\ x_3 - x_4 = 0. \end{cases}$ 

$$x_3 - x_4 = 0.$$
从而解为 
$$\begin{cases} x_1 = t_1 - t_2, \\ x_2 = t_1 - t_3, \\ x_3 = t_1, \\ x_4 = t_1, \\ x_5 = t_2, \\ x_6 = t_3, \end{cases}$$
其中  $t_1, t_2, t_3$  为任意常数.

2. 下列齐次线性方程组哪些不必通过计算直接判断有非零解? 为什么?

(1) 
$$\begin{cases} 2x_1 + 3x_2 - 4x_4 = 0, \\ x_1 + 2x_2 + 3x_3 = 0, \\ 3x_2 - 7x_3 + 8x_4 = 0; \end{cases}$$
 (2) 
$$\begin{cases} x_1 - 2x_2 + 5x_3 = 0, \\ 2x_1 - 3x_2 + 6x_3 = 0, \\ -x_1 + 2x_2 - 5x_3 = 0. \end{cases}$$

- (1) 解 因为系数矩阵 A 是  $3 \times 4$  矩阵,故秩( $A_{3\times 4}$ )  $\leq 3 < 4$ (未知量个数)所以必有非零解.
- (2) 解 由于第三个方程和第一个方程相同,所以它实际上是两个方程三个未知量的齐次线性方程组,同第
- (1) 题的理由,可知有非零解.

3. 
$$\lambda$$
 为何值时,齐次线性方程组 
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 0, \\ x_1 + \lambda x_2 - x_3 = 0, \mathbf{只有零解}. \\ 2x_1 - x_2 + x_3 = 0; \end{cases}$$

解 这是三个方程三个未知量的线性方程组可以用系数行列式来判断.

$$|A| = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 2 & -1 & 1 \end{vmatrix} \frac{R_2 - R_3}{R_1 - R_3} \begin{vmatrix} \lambda - 2 & 2 & 0 \\ -1 & \lambda + 1 & 0 \\ 2 & -1 & 1 \end{vmatrix} = (\lambda - 2)(\lambda + 1) + 2 = \lambda (\lambda - 1),$$

所以当 $\lambda \neq 0$ 且 $\lambda \neq 1$ 时,  $A \neq 0$ . 此时该方程组只有零解。

# 4. 若齐次线性方程组 $\begin{cases} \lambda x_1 + x_4 = 0, \\ x_1 + 2x_2 - x_4 = 0, \\ (\lambda + 2)x_1 - x_2 + 4x_4 = 0, \end{cases}$ 有非零解,则 $\lambda = 2x_1 + x_2 + 3x_3 + \lambda x_4 = 0;$

$$-3(-1)(-1)^{3+2}\begin{vmatrix} \lambda & 1 \\ 2\lambda + 5 & 7 \end{vmatrix} = -3(5\lambda - 5) ,$$

所以当 $\lambda=1$ 时|A|=0,此时有非零解,故应填1.

- 5. 解习题 2.1 第一题所列出的线性方程
- 解 (1) 由习题 2.1 的第(1)小题知,方程组为  $\begin{cases} x_1 x_3 + x_4 = 40, \\ x_1 + x_2 = 50, \\ x_2 + x_3 + x_5 = 60, \\ x_4 + x_5 = 50. \end{cases}$  将增广矩阵只用初等行变换化为阶梯形矩阵:

$$\overline{A} = \begin{bmatrix}
1 & 0 & -1 & 1 & 0 & \vdots 40 \\
1 & 1 & 0 & 0 & 0 & \vdots 50 \\
0 & 1 & 1 & 0 & 1 & \vdots 60 \\
0 & 0 & 0 & 1 & 1 & \vdots 50
\end{bmatrix}
\xrightarrow{R_2 - R_1}$$

$$\begin{bmatrix}
1 & 0 & -1 & 1 & 0 & \vdots 40 \\
0 & 1 & 1 & -1 & 0 & \vdots 10 \\
0 & 1 & 1 & 0 & 1 & \vdots 60 \\
0 & 0 & 0 & 1 & 1 & \vdots 50
\end{bmatrix}
\xrightarrow{R_3 - R_2}$$

$$\begin{bmatrix} 1 & 0 & -1 & 1 & 0 & \vdots 40 \\ 0 & 1 & 1 & -1 & 0 & \vdots 10 \\ 0 & 0 & 0 & 1 & 1 & \vdots 50 \\ 0 & 0 & 0 & 1 & 1 & \vdots 50 \end{bmatrix} \xrightarrow{R_4 - R_3} \begin{bmatrix} 1 & 0 & -1 & 1 & 0 & \vdots 40 \\ 0 & 1 & 1 & -1 & 0 & \vdots 10 \\ 0 & 0 & 0 & 1 & 1 & \vdots 50 \\ 0 & 0 & 0 & 0 & 0 & \vdots 0 \end{bmatrix} \xrightarrow{R_2 + R_3 \atop R_1 - R_2} \xrightarrow{R_2 + R_3 \atop R_1 - R_2}$$

$$\begin{bmatrix} 1 & 0 & -1 & 0 & -1 & \vdots -10 \\ 0 & 1 & 1 & 0 & 1 & \vdots & 60 \\ 0 & 0 & 0 & 1 & 1 & \vdots & 50 \\ 0 & 0 & 0 & 0 & \vdots & 0 \end{bmatrix}$$
, 故秩 (A) =秩 ( $\overline{A}$ ) =3<5(未知量个数),从而方程组有无穷多个解,且有2

# www.3che.com 三车资料库——学习资源共享专家 $(x_1 - x_3 - x_5 = -10,$

个自由未知量. 与原方程组同解的方程组为 
$$\begin{cases} x_2 + x_3 + x_5 = 60, \\ x_4 + x_5 = 50, & 注意到 \ x_i \ (i = 1, 2, 3, 4, 5) 为非负数,可得解为 \\ x_3 = t_1, \\ x_5 = t_2. \end{cases}$$

$$\begin{cases} x_1 &= t_1 + t_2 - 10, \\ x_2 &= 60 - t_1 - t_2, \\ x_3 &= t_1, & \mathbf{\sharp \mathbf{p}} \ t_1, t_2 \, \mathbf{\sharp \mathbf{E}} \, t_1 \ge 0, 0 \le t_2 \le 50, 0 \le t_1 + t_2 \le 60. \\ x_4 &= 50 - t_2, \\ x_5 &= t_2, \end{cases}$$

(2) 由习题 2.1 的第(2)小题知,方程组为  $\begin{cases} x_1 + x_3 + x_5 = 50, \\ x_1 - x_2 = 25, \\ x_2 + x_4 + x_7 = 60, \\ x_5 + x_6 - x_7 = 40, \\ -x_3 + x_4 + x_6 = 75. \end{cases}$  将增广矩阵只用初等行变换化为阶梯形矩阵:

$$\overline{\mathcal{A}} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 0 & \vdots & 50 \\ 1 & -1 & 0 & 0 & 0 & 0 & 0 & \vdots & 25 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & \vdots & 60 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1 & \vdots & 40 \\ 0 & 0 & -1 & 1 & 0 & 1 & 0 & \vdots & 75 \end{bmatrix} \xrightarrow{R_2 - R_1 \atop R_3 + R_2 \atop R_3 - R_4} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 0 & \vdots & 50 \\ 0 & -1 & -1 & 0 & -1 & 0 & 0 & \vdots & -25 \\ 0 & 0 & -1 & 1 & -1 & 0 & 1 & \vdots & 35 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1 & \vdots & 40 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \vdots & 0 \end{bmatrix},$$

由于秩(A)=秩( $\overline{A}$ )=4<7,从而方程组有无穷多个解,且有3个自由未知量,与原方程组同解的方程组

为 
$$\begin{cases} x_1 + x_3 + x_5 = 50, \\ -x_2 - x_3 - x_5 = -25, \\ -x_3 + x_4 - x_5 + x_7 = 35, \\ x_5 + x_6 - x_7 = 40. \end{cases}$$
注意到 $x_i(i=1,2,3,4,5)$ 为非负数,可得解为 
$$\begin{cases} x_1 = 85 - t_1 - t_3, \\ x_2 = 60 - t_1 - t_3, \\ x_3 = -75 + t_1 + t_2, \\ x_4 = t_1, \\ x_5 = 40 - t_2 + t_3, \\ x_6 = t_2, \\ x_7 = t_3, \end{cases}$$
其中 $t_1, t_2$ 满足

 $75 \le t_1 + t_2 \le 100, t_1 + t_3 \le 60, t_2 - t_3 \le 40$ .

$$\begin{bmatrix} 1 & -1 & 3 & 7 & 0 & 6 \\ 0 & 0 & 2 & 0 & \lambda & 2 \\ 0 & 0 & 0 & 3 & 0 & \lambda - 2 \\ 0 & 0 & 0 & 0 & \lambda - 1 & \lambda + 1 \end{bmatrix},$$

则当  $\lambda = _{\underline{\phantom{A}}}$ 时,方程组无解;当  $\lambda$  为\_\_\_\_时,方程组有无穷多解,且含有\_\_\_\_个自由未知量。

 $\mathbf{H}$  当  $\lambda \neq 1$  时,秩( $\mathbf{A}$ )=秩( $\mathbf{A}$ )=4,所以方程有解,含有自由未知量的个数为线性方程组的未知量个数(5)-增广矩阵的秩(4)=1;

当 $\lambda = 1$  时,秩(A)=3,秩( $\overline{A}$ )=4,秩(A) $\neq$  秩( $\overline{A}$ ),所以方程组无解.

所以填入的答案为: 当 $\lambda = 1$ \_时,方程组无解; 当 $\lambda$ 为<u>不等于1的数</u>时,方程组有无穷多解,且含有1\_个自由未知量.

2.讨论下列线性方程组, 当λ取何值时方程组无解, 有惟一解, 有无穷多个解? 在有无穷多个解时写出其通解:

$$\begin{cases} x_1 + x_2 + \lambda x_3 = 2, \\ 3x_1 + 4x_2 + 2x_3 = \lambda, \\ 2x_1 + 3x_2 - x_3 = 1; \\ \lambda x_1 + x_2 + x_3 = 1, \\ x_1 + \lambda x_2 + x_3 = \lambda, \\ x_1 + x_2 + \lambda x_3 = \lambda^2. \end{cases}$$

$$(2) \begin{cases} (\lambda + 3)x_1 + x_2 + 2x_3 = \lambda, \\ \lambda x_1 + (\lambda - 1)x_2 + x_3 = \lambda, \\ 3(\lambda + 1)x_1 + \lambda x_2 + (\lambda + 3)x_3 = 3; \end{cases}$$

解 (1) 对线性方程组的增广矩阵 / 施行初等行变换化阶梯形:

$$\begin{bmatrix} 1 & 1 & \lambda & \vdots & 2 \\ 3 & 4 & 2 & \vdots & \lambda \\ 2 & 3 & -1 & \vdots & 1 \end{bmatrix} \xrightarrow{R_2 - 3R_1 \atop R_3 - 2R_1} \begin{bmatrix} 1 & 1 & \lambda & \vdots & 2 \\ 0 & 1 & 2 - 3\lambda & \vdots & \lambda - 6 \\ 0 & 1 & -1 - 2\lambda & \vdots & -3 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 1 & \lambda & \vdots & 2 \\ 0 & 1 & 2 - 3\lambda & \vdots & \lambda - 6 \\ 0 & 0 & -3 + \lambda & \vdots & 3 - \lambda \end{bmatrix},$$

当 $\lambda \neq 3$ 时,秩(A)=秩(A)=3=未知量个数,所以此线性方程组有唯一解;

当 $\lambda = 3$ 时,秩(A)=秩( $\overline{A}$ )=2<未知量个数,所以线性方程组有无穷多解。原方程组同解于

$$\begin{cases} x_1 + x_2 + 3x_3 = 2, \\ x_2 - 7x_3 = -3. \end{cases}$$

故通解为 
$$\begin{cases} x_1 = 5 - 10t, \\ x_2 = 7t - 3, \quad 其中 t 为任意常数. \\ x_3 = t, \end{cases}$$

(2) 计算该线性方程组的系数矩阵的行列式

$$\begin{vmatrix} \lambda+3 & 1 & 2 \\ \lambda & \lambda-1 & 1 \\ 3(\lambda+1) & \lambda & \lambda+3 \end{vmatrix} = \lambda^2(\lambda-1),$$

由克拉默法则可知,当  $\lambda \neq 1$  且  $\lambda \neq 0$  时,该线性方程组有唯一解. 下面只需讨论当  $\lambda = 1$  和  $\lambda = 0$  两种情况即可.

当  $\lambda = 1$  时,对线性方程组的增广矩阵A施行初等行变换化阶梯形:

$$\begin{bmatrix} 4 & 1 & 2 & \vdots & 1 \\ 1 & 0 & 1 & \vdots & 1 \\ 6 & 1 & 4 & \vdots & 3 \end{bmatrix} \xrightarrow{R_{12}} \begin{bmatrix} 1 & 0 & 1 & \vdots & 1 \\ 4 & 1 & 2 & \vdots & 1 \\ 6 & 1 & 4 & \vdots & 3 \end{bmatrix} \xrightarrow{R_{2}-4R_{1} \atop R_{3}-6R_{1}} \begin{bmatrix} 1 & 0 & 1 & \vdots & 1 \\ 0 & 1 & -2 & \vdots & -3 \\ 0 & 1 & -2 & \vdots & -3 \end{bmatrix}$$

#### 秩(A)=秩(A)=2<未知量个数,所以线性方程组有无穷多解. 原方程组同解于

$$\begin{cases} x_1 + x_3 = 1, \\ x_2 - 2x_3 = -3. \end{cases}$$

故通解为 
$$\begin{cases} x_1 = 1 - t, \\ x_2 = 2t - 3,$$
 其中  $t$ 为任意常数. 
$$x_3 = t,$$

当 $\lambda = 0$  时, 对线性方程组的增广矩阵A施行初等行变换化阶梯形:

$$\begin{bmatrix}
3 & 1 & 2 & \vdots & 0 \\
0 & -1 & 1 & \vdots & 0 \\
3 & 0 & 3 & \vdots & 3
\end{bmatrix}
\xrightarrow{R_3 - R_1}$$

$$\begin{bmatrix}
3 & 1 & 2 & \vdots & 0 \\
0 & -1 & 1 & \vdots & 0 \\
0 & -1 & 1 & \vdots & 3
\end{bmatrix}
\xrightarrow{R_3 - R_2}$$

$$\begin{bmatrix}
3 & 1 & 2 & \vdots & 0 \\
0 & -1 & 1 & \vdots & 0 \\
0 & 0 & 0 & \vdots & 3
\end{bmatrix}$$

秩 $(A) \neq$ 秩(A),所以此时该线性方程组无解.

# (3) 对线性方程组的增广矩阵 / 施行初等行变换化阶梯形:

$$\begin{bmatrix} \lambda & 1 & 1 & \vdots & 1 \\ 1 & \lambda & 1 & \vdots & \lambda \\ 1 & 1 & \lambda & \vdots & \lambda^2 \end{bmatrix} \xrightarrow{R_3} \begin{bmatrix} 1 & 1 & \lambda & \vdots & \lambda^2 \\ 1 & \lambda & 1 & \vdots & \lambda \\ \lambda & 1 & 1 & \vdots & 1 \end{bmatrix} \xrightarrow{R_2 - R_1 \atop R_3 - \lambda R_1} \begin{bmatrix} 1 & 1 & \lambda & \vdots & \lambda^2 \\ 0 & \lambda - 1 & 1 - \lambda & \vdots & \lambda - \lambda^2 \\ 0 & 1 - \lambda & 1 - \lambda^2 & \vdots & 1 - \lambda^3 \end{bmatrix} \xrightarrow{R_3 + R_2 \atop R_3 + R_2}$$

$$\begin{bmatrix} 1 & 1 & \lambda & \vdots & \lambda^2 \\ 0 & \lambda - 1 & -(\lambda - 1) & \vdots & -\lambda(\lambda - 1) \\ 0 & 0 & -(\lambda + 2)(\lambda - 1) & \vdots & (\lambda + 1)^2(\lambda - 1) \end{bmatrix}$$

当 $\lambda \neq 1$ ,且 $\lambda \neq -2$  时,秩(A)=秩(A)=3=未知量个数,所以此线性方程组有唯一解;

当 $\lambda = -2$  时,秩(A)=2,秩( $\overline{A}$ )=3,秩(A) $\neq$  秩( $\overline{A}$ ), 所以此线性方程组无解;

当  $\lambda = 1$  时,秩(A)=秩( $\overline{A}$ )=1<未知量个数,所以此线性方程组有无穷多解. 原方程组同解于

$$x_1 + x_2 + x_3 = 1$$
.

故通解为 
$$\begin{cases} x_1 = 1 - t_2 - t_1, \\ x_2 = t_2, \\ x_3 = t_1, \end{cases}$$
 其中  $t_1, t_2$  为任意常数.

#### 3.问 a,b 取何值时线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 1, \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 = a, \\ x_2 + 2x_3 + 2x_4 + 6x_5 = 3, \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 = b \end{cases}$$

有解?有解时,写出通解.

# 解 对线性方程组的增广矩阵 4 施行初等行变换化阶梯形:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & \vdots & 1 \\ 3 & 2 & 1 & 1 & -3 & \vdots & a \\ 0 & 1 & 2 & 2 & 6 & \vdots & 3 \\ 5 & 4 & 3 & 3 & -1 & \vdots & b \end{bmatrix} \xrightarrow{R_2 - 3 R_1 \atop R_4 - 5 R_1} \begin{bmatrix} 1 & 1 & 1 & 1 & \vdots & 1 \\ 0 & -1 & -2 & -2 & -6 & \vdots & a - 3 \\ 0 & 1 & 2 & 2 & 6 & \vdots & 3 \\ 0 & -1 & -2 & -2 & -6 & \vdots & b - 5 \end{bmatrix} \xrightarrow{R_3 + R_2 \atop R_4 - R_2}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & \vdots & 1 \\ 0 & -1 & -2 & -2 & -6 & \vdots & a - 3 \\ 0 & 0 & 0 & 0 & 0 & \vdots & a \\ 0 & 0 & 0 & 0 & 0 & \vdots & b - a - 2 \end{bmatrix},$$

当 $a \neq 0$ , 或者 $b-a-2 \neq 0$ 时, 秩(A)  $\neq$  秩(A), 此线性方程组无解;

仅当a=0并且b-a-2=0时,秩(A)=秩( $\overline{A}$ )=2,方程组有解. 即当a=0,b=2 时方程组有无穷多解. 原方程组同解于

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 1, \\ -x_2 - 2x_3 - 2x_4 - 6x_5 = -3. \end{cases}$$

#### 4 判别齐次线性方程组(n>1)

$$\begin{cases} x_2 + x_3 + \dots + x_{n-1} + x_n = 0, \\ x_1 + \dots + x_{n-1} + x_n = 0, \\ x_1 + x_2 + \dots + x_{n-1} + x_n = 0, \\ \dots \dots \dots \dots \\ x_1 + x_2 + x_3 + \dots + x_{n-1} = 0 \end{cases}$$

#### 是否有非零解.

#### 解 计算该线性方程组的系数矩阵对应的行列式:

$$\begin{vmatrix} 0 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 1 & 0 \end{vmatrix} \xrightarrow{C_1 + C_2 + \cdots + C_n} \begin{vmatrix} n-1 & 1 & 1 & \cdots & 1 & 1 \\ n-1 & 0 & 1 & \cdots & 1 & 1 \\ n-1 & 1 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ n-1 & 1 & 1 & \cdots & 1 & 0 \end{vmatrix} = (\mathbf{n-1}) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & 1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 1 & 0 \end{vmatrix}$$

$$\underbrace{\frac{R_i-R_1}{=2,3,\cdots,n}}_{i=2,3,\cdots,n} \textbf{(n-1)} \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 0 & -1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -1 \end{vmatrix} = \textbf{(n-1)} \neq 0, 根据克拉默法则该线性方程组不存在非零解.}$$

#### 5 设线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

#### 的系数矩阵 A 的秩等于矩阵 B 的秩, 其中

$$B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & b_n \\ b_1 & b_2 & \cdots & b_n & 0 \end{bmatrix}.$$

试证: (I)有解.

证 (I)的增广矩阵为 
$$\overline{A}$$
=
$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1,n} & b_{n-1} \\ a_{n1} & a_{n2} & \cdots & a_{nn} & b_n \end{bmatrix}$$

因为系数矩阵的秩不超过增广矩阵的秩, 所以有秩( $\overline{A}$ )  $\geq$  秩( $\overline{A}$ ).

观察可知,矩阵 B 其实就是在增广矩阵 A 下面加了一行,所以秩(B)  $\geq$  秩(A). 由题意知,秩(A)=秩(B),据此可得秩(A)  $\geq$  秩(A). 综上知,秩(A)=秩(A), 故(A)  $\in$  (A).

#### 6.写出线性方程组

$$\begin{cases} x_1 - x_2 & = b_1, \\ x_2 - x_3 & = b_2, \\ x_3 - x_4 & = b_3, \\ \dots & \dots & \dots \\ x_{n-1} - x_n = b_{n-1}, \\ -x_1 & + x_n = b_n \end{cases}$$

有解的充要条件. 在有解情况下, 写出通解.

#### 解 将增广矩阵只用初等行变换化为阶梯形矩阵:

$$\begin{bmatrix}
1 & -1 & & \vdots & b_1 \\
& 1 & -1 & & \vdots & b_2 \\
& & 1 & -1 & \vdots & b_3 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
& & & 1 & -1 & \vdots & b_{n-1} \\
-1 & & & 1 & \vdots & b_n
\end{bmatrix}
\xrightarrow{R_n + R_1 + \dots + R_{n-1}}$$

$$\begin{bmatrix} 1 & -1 & & \vdots & b_1 \\ 1 & -1 & & \vdots & b_2 \\ & 1 & -1 & \vdots & b_3 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ & & 1 & -1 & \vdots & b_{n-1} \\ & & 0 & \vdots & b_1 + b_2 + \dots + b_n \end{bmatrix}$$

当 $b_1 + b_2 + \cdots + b_n \neq 0$ 时,秩(A) $\neq$  秩( $\overline{A}$ ),所以此时线性方程组无解;

当  $b_1 + b_2 + \cdots + b_n = 0$  时,秩(A)=秩( $\overline{A}$ )<未知量个数,所以此时线性方程组有无穷多解。

原方程组同解于 
$$\begin{cases} x_1 - x_2 = b_1, \\ x_2 - x_3 = b_2, \\ x_3 - x_4 = b_3, \\ \vdots \\ x_{n-1} - x_n = b_{n-1} \end{cases}$$

$$\begin{cases} x_{n-1} = \mathcal{D}_{n-1} + t, \\ x_n = t, \end{cases}$$

7.已知 n 阶行列式  $D = \left| a_{ij} \right| \neq 0$ ,证明:线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1, n-1}x_{n-1} = a_{1n}, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2, n-1}x_{n-1} = a_{2n}, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{n, n-1}x_{n-1} = a_{nn} \end{cases}$$

无解.

该线性方程组的增广矩阵
$$\overline{A} = \begin{bmatrix} a_{11} & \cdots & a_{1,n-1} & \vdots & a_{1,n} \\ a_{21} & \cdots & a_{2,n-1} & \vdots & a_{2,n} \\ a_{31} & \cdots & a_{3,n-1} & \vdots & a_{3,n} \\ \vdots & & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{n,n-1} & \vdots & a_{nn} \end{bmatrix}$$
,由题意  $D = \begin{vmatrix} a_{ij} \end{vmatrix} \neq 0$ 知,秩( $\overline{A}$ )= $n$ . 但是系数矩阵

A是一个 $n \times (n-1)$  的矩阵,所以秩(A)  $\leq n-1$  <秩( $\overline{A}$ ). 据此秩(A)  $\neq$  秩( $\overline{A}$ ),所以该线性方程组无解.

8.下图是某地区的灌溉渠道网,流量及流向均已在图上标明.



- (1) 确定各段的流量 $x_1, x_2, x_3, x_4, x_5$ ;
- (2) 如 BC 段渠道关闭,那么 AD 段的流量保持在什么范围内,才能使所有段的流量不超过30?

#### 解 (1) 该问题可以归结为线性方程组

(I) 
$$\begin{cases} x_1 + x_4 = 55, \\ -x_1 + x_2 + x_3 = -20, \\ x_3 + x_5 = 15, \\ -x_2 - x_4 + x_5 = -20. \end{cases}$$

#### 为此将(I)的增广矩阵用初等行变换化为阶梯形:

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & \vdots & 55 \\ -1 & 1 & 1 & 0 & 0 & \vdots & -20 \\ 0 & 0 & 1 & 0 & 1 & \vdots & 15 \\ 0 & -1 & 0 & -1 & 1 & \vdots & -20 \end{bmatrix} \xrightarrow{R_{24}} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & \vdots & 55 \\ 0 & -1 & 0 & -1 & 1 & \vdots & -20 \\ 0 & 0 & 1 & 0 & 1 & \vdots & 15 \\ -1 & 1 & 1 & 0 & 0 & \vdots & -20 \end{bmatrix}$$

故与(I)同解的线性方程组为  $\left\{-x_2 - x_4 + x_5 = -20, \text{ 所以(I)} \right\}$  有无穷多个解,

通解为 
$$\begin{cases} x_1 = 55 - t_2, \\ x_2 = 20 + t_1 - t_2, \\ x_3 = 15 - t_1, \\ x_4 = t_2, \\ x_5 = t_1, \end{cases}$$

其中  $t_1, t_2$  为任意非负的常数,且要满足  $\begin{cases} 20 + t_1 - t_2 \ge 0, \\ 15 - t_1 \ge 0. \end{cases}$ 

(2) 当 BC 段美闭则 
$$x_3 = 15 - t_1 = 0$$
,即  $t_1 = 15$ .此时各段流量为 
$$\begin{cases} x_1 = 55 - t_2, \\ x_2 = 35 - t_2, \\ x_3 = 0, \\ x_4 = t_2, \\ x_5 = 15. \end{cases}$$

$$\begin{cases} x_1 = 55 - t_2 \le 30, \\ x_2 = 35 - t_2 \le 30, \\ x_3 = 0, \end{cases}$$
  **即要求**  $t_2$  满足 $15 \le t_2 \le 30$ **,据此必须要求 AD** 段的流量在

$$\begin{vmatrix} x_3 & 0, \\ x_4 = t_2 \le 30, \\ x_5 = 15. \end{vmatrix}$$

15到30之间.

9.图 2.7 所示是某地区的交通网,车流量及流向已在图上标明.



- (1) 求出各街道的车流量  $x_1, x_2, \cdots, x_7$ . 此时,EF 街道车流量应控制在什么范围内才能使所有街道车流量不超过 500?
  - (2) 若 DE 街道关闭,求出此时各街道的车流量.
- 解 (1) 该问题可以归结为线性方程组

$$\textbf{(I)} \begin{cases} x_1 - x_4 = -200, \\ x_2 - x_4 + x_5 = 100, \\ x_3 + x_5 = 700, \\ x_1 - x_6 = 100, \\ x_2 - x_6 + x_7 = 600, \\ x_3 + x_7 = 900. \end{cases}$$
 为此将(I)的增广矩阵用初等行变换化为阶梯形:

$$\begin{bmatrix} 1 & 0 & 0 & -1 & 0 & 0 & 0 & \vdots & -200 \\ 0 & 1 & 0 & -1 & 1 & 0 & 0 & \vdots & 100 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & \vdots & 700 \\ 1 & 0 & 0 & 0 & 0 & -1 & 0 & \vdots & 100 \\ 0 & 1 & 0 & 0 & 0 & -1 & 1 & \vdots & 600 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & \vdots & 900 \end{bmatrix} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} - R_{s} \\ R_{s} - R_{s} \\ \hline \end{array}} \xrightarrow{\begin{array}{c} R_{s} -$$

故与(I)同解的线性方程组为 
$$\begin{cases} x_1 - x_4 - x_4$$

 $x_1 - x_4 = -200$ ,  $x_1 - x_4 + x_5 = 100$ ,  $x_3 + x_5 = 700$ , 所以(I)有无穷多个解,  $x_4 - x_6 = 300$ ,  $-x_5 + x_7 = 200$ .

**運解为** 
$$\begin{cases} x_1 = 100 + t_2, \\ x_2 = 600 - t_1 + t_2, \\ x_3 = 900 - t_1, \\ x_4 = 300 + t_2, \\ x_5 = -200 + t_1, \\ x_6 = t_2, \\ x_7 = t_1, \end{cases}$$

 $600 - t_1 + t_2 \ge 0$ , 其中 1, 1, 为任意非负常数, 且同时满足。

 $0 \le 100 + t_2 \le 500$ ,  $0 \le 600 - t_1 + t_2 \le 500,$  $0 \le 900 - t_1 \le 500$ , 要使得所有路段车流量不超过500, 即要求  $0 \le 300 + t_2 \le 500$  $0 \le -200 + t_1 \le 500$ ,  $0 \le t_2 \le 500$ ,  $0 \le t_1 \le 500$ .

考虑到  $t_1, t_2$  为非负的,上述不等式化简为  $\begin{cases} 400 \le t_1 \le 500, \\ 0 \le t_2 \le 200, \end{cases}$  (1) (2). 并且当(1),(2)成立时(3)也必定成立,所

 $100 \le t_1 - t_2 \le 600. \tag{3}$ 

以只需要满足(1)和(2)即可. 据此要使所有街道车流量不超过500, 那么 EF 段的流量要求控制在 400 到 500 之间.

(2) DE 街道关闭即  $x_6 = t_7 = 0$ ,所以此时

$$\begin{cases} x_1 = 100, \\ x_2 = 600 - t_1, \\ x_3 = 900 - t_1, \\ x_4 = 300, \\ x_5 = -200 + t_1, \\ x_6 = 0, \\ x_7 = t_1, \end{cases}$$

$$\Rightarrow \mathbf{J} \mathbf{P} t_1 \mathbf{B} \mathbf{E} 200 \le t_1 \le 600.$$

10.一家服装厂共有3个加工车间,第一车间用一匹布能生产衬衣4件,长裤15条和3件外衣;第二车间用一匹 布能生产衬衣4件,长裤5条和9件外衣;第三车间用一匹布能生产衬衣8件,长裤10条和3件外衣,现该厂 接到一张定单,要求供应 2000 件衬衣, 3500 条长裤和 2400 件外衣. 问该厂应如何向 3 个车间安排加工任务, 以完成该定单?

(提示: 设安排第一车间 ҳ 匹布, 第二车间 ҳ 匹布, 第三车间 ҳ 匹布.)

解 设安排第一车间  $x_1$  匹布,第二车间  $x_2$  匹布,第三车间  $x_3$  匹布,根据题意该问题其实可以化为下面这个线性方程组.

$$\begin{cases} 4x_1 + 4x_2 + 8x_3 = 2000, \\ 15x_1 + 5x_2 + 10x_3 = 3500, \\ 3x_1 + 9x_2 + 3x_3 = 2400. \end{cases}$$

#### 求解该线性方程组:

$$\begin{bmatrix} 4 & 4 & 8 & \vdots & 2000 \\ 15 & 5 & 10 & \vdots & 3500 \\ 3 & 9 & 3 & \vdots & 2400 \end{bmatrix} \xrightarrow{\frac{1}{4}R_1} \begin{bmatrix} 1 & 1 & 2 & \vdots & 500 \\ \frac{1}{5}R_2}{\frac{1}{3}R_3} \rightarrow \begin{bmatrix} 1 & 1 & 2 & \vdots & 700 \\ 1 & 3 & 1 & \vdots & 800 \end{bmatrix} \xrightarrow{\frac{R_2 - 3R_1}{R_3 - R_1}} \begin{bmatrix} 1 & 1 & 2 & \vdots & 500 \\ 0 & -2 & -4 & \vdots & -800 \\ 0 & 2 & -1 & \vdots & 300 \end{bmatrix}$$

$$\xrightarrow{R_3+R_2} \begin{bmatrix} 1 & 1 & 2 & \vdots & 500 \\ 0 & -2 & -4 & \vdots & -800 \\ 0 & 0 & -5 & \vdots & -500 \end{bmatrix}$$

秩(A)=秩(A)=未知量个数,所以该线性方程组有唯一解。该解为:

$$\begin{cases} x_1 = 100, \\ x_2 = 200, \\ x_3 = 100. \end{cases}$$

所以第一车间应加工 100 匹布, 第二车间应加工 200 匹, 第三车间 100 匹.

11.某食品厂准备用原料  $A_1, A_2, A_3, A_4, A_5$  开发一种含脂肪 3%,碳水化合物 12.5%,蛋白质 15%的新产品 2000 公斤,已知原料含脂肪,碳水化合物,蛋白质的百分比如下表:

|          | $A_1$ | $A_2$ | $A_3$ | $A_4$ | $A_5$ |
|----------|-------|-------|-------|-------|-------|
| 脂肪(%)    | 2     | 2     | 4     | 6     | 8     |
| 碳水化合物(%) | 10    | 15    | 5     | 25    | 5     |
| 蛋白质(%)   | 20    | 10    | 30    | 5     | 15    |

问开发这种新产品有否可能?如果可以,那么有多少种配方可供选择?

解 设配置该新产品需使用 A 的量为  $x_1$  公斤,  $A_2$  为  $x_2$  公斤,  $A_3$  为  $x_3$  公斤,  $A_4$  为  $x_4$  公斤,  $A_5$  为  $x_5$  公斤. 根据题 意该问题可以化为下面这个线性方程组.

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 2000, \\ 0.02x_1 + 0.02x_2 + 0.04x_3 + 0.06x_4 + 0.08x_5 = 0.03 \times 2000, \\ 0.1x_1 + 0.15x_2 + 0.05x_3 + 0.25x_4 + 0.05x_5 = 0.125 \times 2000, \\ 0.2x_1 + 0.1x_2 + 0.3x_3 + 0.05x_4 + 0.15x_5 = 0.15 \times 2000. \end{cases}$$

为此将(I)的增广矩阵用初等行变换化为阶梯形:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & \vdots & 2000 \\ 0.02 & 0.02 & 0.04 & 0.06 & 0.08 & \vdots & 60 \\ 0.1 & 0.15 & 0.05 & 0.25 & 0.05 & \vdots & 250 \\ 0.2 & 0.1 & 0.3 & 0.05 & 0.15 & \vdots & 300 \end{bmatrix} \xrightarrow{\begin{smallmatrix} 50R_2 \\ 20R_3 \end{smallmatrix}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & \vdots & 2000 \\ 1 & 1 & 2 & 3 & 4 & \vdots & 3000 \\ 2 & 3 & 1 & 5 & 1 & \vdots & 5000 \\ 4 & 2 & 6 & 1 & 3 & \vdots & 6000 \end{bmatrix}$$

$$\begin{array}{c}
\xrightarrow{R_1-R_2} \\
\xrightarrow{\frac{1}{3}R_4} \\
\hline
\end{array}$$

$$\begin{array}{c}
1 & 0 & 2 & -2 & 2 & \vdots & 1000 \\
0 & 1 & -1 & 3 & -1 & \vdots & 1000 \\
0 & 0 & 1 & 2 & 3 & \vdots & 1000 \\
0 & 0 & 0 & 1 & -1 & \vdots & 0
\end{array}$$

$$\xrightarrow{R_1-2R_3} \xrightarrow{R_2+R_3}$$

$$\begin{array}{c}
1 & 0 & 0 & -6 & -4 & \vdots & -1000 \\
0 & 1 & 0 & 5 & 2 & \vdots & 2000 \\
0 & 0 & 1 & 2 & 3 & \vdots & 1000 \\
0 & 0 & 0 & 1 & -1 & \vdots & 0
\end{array}$$

秩(A)=秩(A)=4<未知量个数,所以该线性方程组有无穷多解. 据此可知可以开发该新产品,并且有无数中可供 选择的配方.解约化阶梯形矩阵对应方程组得:

$$\begin{cases} x_1 = -1000 + 10t, \\ x_2 = 2000 - 7t, \\ x_3 = 1000 - 5t, \\ x_4 = t, \\ x_5 = t, \end{cases}$$
 其中  $t$  为满足  $100 \le t \le 200$  的任意常数.

# 习题 3.1

- 1. A, B均为n阶方阵,则下述命题正确的是( ),并请说明理由.

  - (A) 若|A| = |B|,则必有A = B. (B) 若 $A \neq B$ ,则必有 $|A| \neq |B|$ .
  - (C) 若  $A \neq B$ , 则必有 A = |B|. (D) 若 A = B, 则必有 A = |B|.

解 (A) 错. 反例: 
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
,  $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ . (B) 错. 反例:  $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ ,  $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ .

(C) 显然错误. 反例: 
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
,  $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ . (D) 对. 两个矩阵相等,行列式必然相等.

**$$M$$**  $A-2B+3C=\begin{bmatrix} -10 & -1 & -1 \\ -1 & -13 & 3 \end{bmatrix}; 3A-2B=\begin{bmatrix} -5 & -9 & 6 \\ 5 & 2 & 4 \end{bmatrix}.$ 

3. 若矩阵X适合

$$\begin{bmatrix} 3 & -6 & 2 & 0 \\ 1 & 5 & -1 & 8 \\ 4 & 3 & 1 & 7 \end{bmatrix} + 2X = \begin{bmatrix} 5 & 4 & -4 & 2 \\ -7 & 1 & 9 & 4 \\ 6 & -1 & 3 & 9 \end{bmatrix}, \; \; \vec{x} \; X.$$

解 移项可得

$$2X = \begin{bmatrix} 5 & 4 & -4 & 2 \\ -7 & 1 & 9 & 4 \\ 6 & -1 & 3 & 9 \end{bmatrix} - \begin{bmatrix} 3 & -6 & 2 & 0 \\ 1 & 5 & -1 & 8 \\ 4 & 3 & 1 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 10 & -6 & 2 \\ -8 & -4 & 10 & -4 \\ 2 & -4 & 2 & 2 \end{bmatrix}, \quad \text{if } X = \begin{bmatrix} 1 & 5 & -3 & 1 \\ -4 & -2 & 5 & -2 \\ 1 & -2 & 1 & 1 \end{bmatrix}.$$

4. 
$$\[ \] A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \ B = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}, \ C = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}, \ \[ \] x \ AB; \ BA; CA; BCA. \]$$

解 按照矩阵乘法的定义运算

$$AB = \begin{bmatrix} 1 & -2 & 1 \\ 2 & -4 & 2 \\ 3 & -6 & 3 \end{bmatrix}; \quad BA = \begin{bmatrix} 1 \times 1 + 2 \times (-2) + 3 \times 1 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}; \quad CA = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix};$$

$$BCA = B(CA) = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \times (-1) + (-2) \times (-1) + 1 \times (-1) \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}.$$

5. 
$$\[ \] \mathcal{D} = \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \lambda_n \end{bmatrix}, \quad A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}.$$

解 (1) 由矩阵乘法运可得:

$$DA = \begin{bmatrix} \lambda_{1}a_{11} & \lambda_{1}a_{12} & \cdots & \lambda_{1}a_{1n} \\ \lambda_{2}a_{21} & \lambda_{2}a_{22} & \cdots & \lambda_{2}a_{2n} \\ \vdots & \vdots & & \vdots \\ \lambda_{n}a_{n1} & \lambda_{n}a_{n2} & \cdots & \lambda_{n}a_{nn} \end{bmatrix}; \quad AD = \begin{bmatrix} \lambda_{1}a_{11} & \lambda_{2}a_{12} & \cdots & \lambda_{n}a_{1n} \\ \lambda_{1}a_{21} & \lambda_{2}a_{22} & \cdots & \lambda_{n}a_{2n} \\ \vdots & \vdots & & \vdots \\ \lambda_{1}a_{n1} & \lambda_{2}a_{n2} & \cdots & \lambda_{n}a_{nn} \end{bmatrix}$$

(2) 与 D 乘法可换的矩阵 A满足 DA = AD. 故 DA与 AD的元素对应相等,利用(1)的结果,有  $\lambda_i a_{ij} = \lambda_j a_{ij}$ 从而  $(\lambda_i - \lambda_j) a_{ij} = 0$ 由于  $\lambda_i \neq \lambda_j$   $(i \neq j)$ ,可得:当  $i \neq j$ 时,  $a_{ij} = 0$ ,即 A为对角矩阵.

6. 用数学归纳法证明:

(1) 
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & n & C_n^2 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{bmatrix}, \ \mbox{$\sharp$ $p$ $t$ $p$ $C_n^2$ $h$ $n$ $p$ $p$ $2$ $n$ $d$ $d$ $d$ $b$ $3$;}$$

(2) 设 B= 
$$\begin{bmatrix} 1 & 4 & 2 \\ 0 & -3 & -2 \\ 0 & 4 & 3 \end{bmatrix}$$
, 则  $B'' = \begin{cases} E, & n$ 为偶数;  $B, & n$ 为奇数;

(3) 
$$\begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}^{n} = \begin{bmatrix} \cos n\varphi & -\sin n\varphi \\ \sin n\varphi & \cos n\varphi \end{bmatrix};$$

$$(4) \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}^{n} = \begin{bmatrix} a^{n} & 0 & 0 \\ 0 & b^{n} & 0 \\ 0 & 0 & c^{n} \end{bmatrix}.$$

证 (1) 数学归纳法: 当
$$n=2$$
时,计算得  $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ ,故结论成立.

假设当
$$n=k$$
时,结论成立,即有
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^k = \begin{bmatrix} 1 & k & C_k^2 \\ 0 & 1 & k \\ 0 & 0 & 1 \end{bmatrix},$$

则当n = k + 1时,

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^{k+1} = \begin{bmatrix} 1 & k & C_k^2 \\ 0 & 1 & k \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & k+1 & k+C_k^2 \\ 0 & 1 & k+1 \\ 0 & 0 & 1 \end{bmatrix}.$$

因 
$$C_k^2 + k = \frac{k(k-1)}{2} + k = \frac{k(k+1)}{2} = C_{k+1}^2$$
所以 
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^{k+1} = \begin{bmatrix} 1 & k+1 & C_{k+1}^2 \\ 0 & 1 & k+1 \\ 0 & 0 & 1 \end{bmatrix}, \quad \text{即当 } n = k+1 \text{ 时,结果}$$

成立. 由归纳法原理知,对任意大于 2 得正整数 n有  $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & n & C_n^2 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{bmatrix}.$ 

(2) 当n=1时,结果显然成立. 当n=2时,直接计算得  $B^2=E$ .

假设当n=k时,结果成立,即 $B^k=\begin{cases} E, & \text{k} 为 偶数; \\ B, & \text{k} 为 奇数; \end{cases}$ . 我们要证明当n=k+1时,结果也成立,即可完成证明.

第一种情况: k 为奇数,则  $B^{k+1} = B^k B = BB = E$ .

第二种情况: k 为偶数,则  $B^{k+1} = B^k B = EB = B$ .

综上: 
$$B^{k+1} = \begin{cases} E, & k+1 \text{ 为偶数;} \\ B, & k+1 \text{ 为奇数;} \end{cases}$$
 即当 $n = k+1$ 时,结论成立.

(3) 当n=1时,结论显然成立.

假设当n = k时,结论成立,即  $\begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}^k = \begin{bmatrix} \cos k\varphi & -\sin k\varphi \\ \sin k\varphi & \cos k\varphi \end{bmatrix}.$ 

则当n = k + 1时,

$$\begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}^{k+1} = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}^{k} \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} = \begin{bmatrix} \cos k\varphi & -\sin k\varphi \\ \sin k\varphi & \cos k\varphi \end{bmatrix} \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$$

$$= \begin{bmatrix} \cos k\varphi \cos \varphi - \sin k\varphi \sin \varphi & -\cos k\varphi \sin \varphi - \sin k\varphi \cos \varphi \\ \sin k\varphi \cos \varphi + \cos k\varphi \sin \varphi & -\sin k\varphi \sin \varphi + \cos k\varphi \cos \varphi \end{bmatrix}$$

$$= \begin{bmatrix} \cos k\varphi \cos \varphi - \sin k\varphi \sin \varphi & -\cos k\varphi \sin \varphi - \sin k\varphi \cos \varphi \\ \sin k\varphi \cos \varphi + \cos k\varphi \sin \varphi & -\sin k\varphi \sin \varphi + \cos k\varphi \cos \varphi \end{bmatrix}$$

$$= \begin{bmatrix} \cos(k\varphi + \varphi) & -\sin(\varphi + k\varphi) \\ \sin(\varphi + k\varphi) & \sin(\varphi + k\varphi) \end{bmatrix} = \begin{bmatrix} \cos(k+1)\varphi & -\sin(k+1)\varphi \\ \sin(k+1)\varphi & \sin(k+1)\varphi \end{bmatrix}.$$

$$\frac{\sin(k+1)\varphi}{\sin(k+1)\varphi} = \frac{\sin(k+1)\varphi}{\sin(k+1)\varphi} = \frac{\sin(k+1)\varphi}{\sin(k+$$

(4) 当n=1时,结论成立.

假设当
$$n = k$$
时,结论成立。即
$$\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}^k = \begin{bmatrix} a^k & 0 & 0 \\ 0 & b^k & 0 \\ 0 & 0 & c^k \end{bmatrix},$$

则当n=k+1时,

$$\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}^{k+1} = \begin{bmatrix} a^k & 0 & 0 \\ 0 & b^k & 0 \\ 0 & 0 & c^k \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} = \begin{bmatrix} a^{k+1} & 0 & 0 \\ 0 & b^{k+1} & 0 \\ 0 & 0 & c^{k+1} \end{bmatrix}$$
 结论成立

7. 计算下列矩阵:

$$\mathbf{A} \mathbf{F} \qquad (1) \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = E_3$$

$$(2) \begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{12} & a_{22} & b_2 \\ b_1 & b_2 & c \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}x + a_{12}y + b_1 & a_{12}x + a_{22}y + b_2 & b_1x + b_2y + c \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} (a_{11}x + a_{12}y + b_1)x + (a_{12}x + a_{22}y + b_2)y + b_1x + b_2y + c \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2b_2y + 2b_1x + c \end{bmatrix}$$

$$(4) \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}^2 = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

8. 设 $E_{ii}$ 为 n 阶方阵,它的第i行第j列元素为 1,其余元素均为零(称为**矩阵单位**).

$$A = [a_{ij}]_{n \times n}$$
, 计算 $AE_{ij}$ ,  $E_{ij}A$ ,  $E_{ik}E_{kj}$ .

$$AE_{ij} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} 0 & \dots & 0 & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & 1 & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & \dots & 0 \end{bmatrix} = \begin{bmatrix} 0 & \dots & 0 & a_{1i} & 0 & \dots & 0 \\ 0 & \dots & 0 & a_{2i} & 0 & \dots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \dots & 0 & a_{ni} & 0 & \dots & 0 \end{bmatrix};$$

$$E_{ij}A = \begin{bmatrix} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 1 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} i$$

$$E_{ik}E_{kj} = \hat{\pi}_{i}\hat{\tau}_{1}\begin{bmatrix} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 1 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{bmatrix}\begin{bmatrix} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 1 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{bmatrix} = E_{ij}.$$

- 9. 设A为n阶方阵,若A与所有n阶方阵乘法可换,则A一定是数量矩阵.
- 证 因为A与所有 n 阶方阵乘法可换,故与 $E_{ii}$ 乘法可换,利用第 8 题结果有

$$AE_{ij} = E_{ij}A, \quad \mathbb{P}\begin{bmatrix} 0 & \cdots & 0 & a_{1i} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & a_{2i} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & a_{ni} & 0 & \cdots & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} i$$

$$\Rightarrow \begin{cases} a_{ii} = a_{jj} \\ a_{ij} = 0 \end{cases}, \forall i, j = 1, 2, \dots n. \quad \text{if } a_{11} = \lambda, \quad \text{if } A = \begin{bmatrix} \lambda & 0 & \dots & 0 \\ 0 & \lambda & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \lambda \end{bmatrix} = \lambda E,$$

即 A 为数量矩阵.

10. 设A, B均为 n 阶方阵, 证明:

$$(A+B)(A-B) = A^2 - B^2 \Leftrightarrow AB = BA,$$
  
$$(A+B)^2 = A^2 + 2AB + B^2 \Leftrightarrow AB = BA.$$

**II** 
$$(A+B)(A-B) = A^2 - B^2 \iff A^2 + BA - AB - B^2 = A^2 - B^2 \iff AB = BA$$

$$(A+B)^2 = A^2 + 2AB + B^2 \Leftrightarrow A^2 + B^2 + AB + BA = A^2 + 2AB + B^2 \Leftrightarrow AB = BA.$$

11. n 阶方阵 
$$A = \left[a_{ij}\right]_{n \times n}$$
 主对角线上元素之和称为矩阵  $A$ 的迹,且记为  $\operatorname{tr} A = \sum_{i=1}^{n} a_{ii}$ . 设

A, B分别为 $m \times n$ 及 $n \times m$ 矩阵,证明: tr(AB) = tr(BA).

证 设 
$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$
,  $B = \begin{bmatrix} b_{11} & \dots & b_{1m} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nm} \end{bmatrix}$ , 则

$$\operatorname{tr}(AB) = a_{11}b_{11} + a_{12}b_{21} + \dots + a_{1n}b_{n1}$$

$$+a_{21}b_{12}+a_{22}b_{22}+\cdots+a_{2n}b_{n2}$$

$$+a_{21}b_{12} + a_{22}b_{22} + \dots + a_{2n}b_{n2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$+a_{m1}b_{1m} + a_{m2}b_{2m} + \dots + a_{mn}b_{nm} = \sum_{j=1}^{m} \sum_{i=1}^{n} a_{ji}b_{ij}$$

同理可得 
$$\operatorname{tr}(BA) = \sum_{j=1}^{n} \sum_{i=1}^{m} b_{ji} a_{ij}$$

由于 
$$\sum_{j=1}^{m} \sum_{i=1}^{n} a_{ji} b_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{m} b_{ji} a_{ij}$$
, 可得  $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ .

12. \*试证不存在 n 阶方阵 A, B满足 AB-BA=E.

提示 利用第 11 题结果,用反证法.

证 假如存在 n 阶方阵满足 AB-BA=E,则

$$AB = BA + E \Rightarrow \operatorname{tr}(AB) = \operatorname{tr}(BA + E) = \operatorname{tr}(BA) + n$$
.

由于 $n \neq 0$ ,可得  $\mathrm{tr}(AB) \neq \mathrm{tr}(BA)$ ,这与 11 题所得结果矛盾.所以假设不成立.即不存在 n 阶方阵 A, B满足 AB-BA=E.

解

$$f(A) = 3A^{2} - 2A + 5E = 3 \begin{bmatrix} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{bmatrix} \begin{bmatrix} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{bmatrix} - \begin{bmatrix} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 21 & -23 & 15 \\ -13 & 34 & 10 \\ -9 & 22 & 25 \end{bmatrix}.$$

14. 设  $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$ ,  $\alpha = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T$ , 且 A 的各行元素之和均为 k, 求  $A\alpha_{n \times 1}$ .

$$\mathbf{M} \quad A\alpha_{n \times 1} = \begin{bmatrix} \sum_{j=1}^{n} a_{1j} \\ \sum_{j=1}^{n} a_{2j} \\ \vdots \\ \sum_{j=1}^{n} a_{nj} \end{bmatrix} \underline{\underline{\mathbb{D}}} \underbrace{\mathbf{U}}_{k} \begin{bmatrix} k \\ k \\ \vdots \\ k \end{bmatrix} = k\alpha.$$

15. 设
$$A = [a_1 \quad a_2 \quad \cdots \quad a_n]$$
,则 $AA^T = \underline{\hspace{1cm}}$ , $A^T A = \underline{\hspace{1cm}}$  .

$$\mathbf{A}A^{T} = \left[ \sum_{i=1}^{n} a_{i}^{2} \right]; \quad A^{T}A = \begin{bmatrix} a_{1}^{2} & a_{1}a_{2} & a_{1}a_{3} & \cdots & a_{1}a_{n} \\ a_{2}a_{1} & a_{2}^{2} & a_{2}a_{3} & \cdots & a_{2}a_{n} \\ a_{3}a_{1} & a_{3}a_{2} & a_{3}^{2} & \cdots & a_{3}a_{n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n}a_{1} & a_{n}a_{2} & a_{n}a_{3} & & a_{n}^{2} \end{bmatrix}.$$

16. 设A, B都是对称矩阵, 证明: AB为对称矩阵  $\Leftrightarrow AB = BA$ .

证 因 
$$A$$
 ,  $B$  都是对称矩阵, 故  $(AB)^T = B^T A^T = BA$  , 从而

$$AB$$
 为对称矩阵  $\Leftrightarrow$   $(AB)^T = AB \Leftrightarrow BA = AB$ .

17. \*设 A是实数域上的矩阵,证明: 若  $A^T A = O$ ,则 A = O.

**提示**: 考虑  $A^T A$ 主对角线上元素.

证 设 
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$
,则  $A^T = \begin{bmatrix} a_{11} & \cdots & a_{m1} \\ \vdots & & \vdots \\ a_{1n} & \cdots & a_{mn} \end{bmatrix}$ .

由  $A^T A = O \Rightarrow A^T A$ 的主对角线上元素为零

$$\Rightarrow a_{1i}^2 + a_{2i}^2 + \dots + a_{mi}^2 = 0, \forall i = 1, 2, \dots, n, \quad \text{由 } a_{ij}$$
为实数知
$$\Rightarrow a_{1i} = 0, a_{2i} = 0, \dots, a_{mi} = 0, \forall i = 1, 2, \dots n$$
$$\Rightarrow A = O.$$

18. 已知
$$\alpha = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}_{1\times 3}$$
,  $\beta = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \end{bmatrix}_{1\times 3}$ , 设 $A = \alpha^T \beta$ , 求 $A''(n > 1)$ .

解 
$$\beta \alpha^T = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \end{bmatrix},$$

$$A^{n} = \underbrace{(\alpha^{T}\beta)(\alpha^{T}\beta)\cdots(\alpha^{T}\beta)}_{n\uparrow} = \alpha^{T}\underbrace{(\beta\alpha^{T})(\beta\alpha^{T})\cdots(\alpha^{T}\beta)}_{n\uparrow}\beta = \alpha^{T}\begin{bmatrix}3\end{bmatrix}^{n-1}\beta$$

$$= \alpha^{T} \left[ 3^{n-1} \right] \beta = 3^{n-1} \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ 2 & 1 & \frac{2}{3} \\ 3 & \frac{3}{2} & 1 \end{bmatrix}.$$

19. 证明奇数阶反对称行列式为零. 利用此结论计算下列行列式:

$$\begin{vmatrix} 0 & a & b & c & d \\ -a & 0 & e & f & g \\ -b & -e & 0 & h & i \\ -c & -f & -h & 0 & j \\ -d & -g & -i & -j & 0 \end{vmatrix} ; (2) \begin{vmatrix} 0 & 1 & 2 & 3 & -4 \\ -2 & 0 & -2 & 4 & 6 \\ -6 & 3 & 0 & -3 & 6 \\ -12 & -8 & 4 & 0 & 4 \\ 20 & -15 & 10 & -5 & 0 \end{vmatrix} .$$

证 设n阶反对称矩阵为A,其中n为奇数.

因 
$$A' = -A$$
知,  $|A| = |A'| = |-A| = (-1)^n |A| = -|A|$ , 故  $|A| = 0$ ,

即任音奇数阶反对称行列式为零

解 (1) 因 
$$\begin{vmatrix} 0 & a & b & c & d \\ -a & 0 & e & f & g \\ -b & -e & 0 & h & i \\ -c & -f & -h & 0 & j \\ -d & -g & -i & -j & 0 \end{vmatrix}$$
 是反对称行列式, 所以  $\begin{vmatrix} 0 & a & b & c & d \\ -a & 0 & e & f & g \\ -b & -e & 0 & h & i \\ -c & -f & -h & 0 & j \\ -d & -g & -i & -j & 0 \end{vmatrix}$  = 0.

20. 甲、乙、丙、丁四人语文、数学、外语的期中、期末、平时考试成绩如下表所示

期中考试

|      |           |    |      | ь. |
|------|-----------|----|------|----|
| #iH  | 末         | 3% | 4:   | T, |
| -557 | $\Lambda$ | 17 | - 12 | Lλ |

平时

|   | 语文 | 数学 | 外语 |   | 语文 | 数学 | 外语 | • |   | 语文 | 数学 | 外语  |
|---|----|----|----|---|----|----|----|---|---|----|----|-----|
| 甲 | 94 | 90 | 97 | 甲 | 90 | 86 | 95 |   | 甲 | 94 | 80 | 90  |
| Z | 85 | 85 | 76 | Z | 78 | 80 | 70 |   | Z | 80 | 80 | 70  |
| 丙 | 98 | 95 | 97 | 丙 | 92 | 93 | 96 |   | 丙 | 90 | 90 | 100 |
| 丁 | 60 | 70 | 72 | 丁 | 66 | 74 | 75 |   | 丁 | 70 | 80 | 80  |

- (1) 分别写出表示甲、乙、丙、丁四人的期中,期末,平时成绩的矩阵 A, B, C.
- (2) 学校规定学期成绩计算方法是期中考试成绩占 20%,期末考试成绩占 70% ,平时成绩占 10%,若把甲、乙、丙、丁四人期终成绩的矩阵记为 D,写出 A,B,C,D 之间的关系,并由此计算出 D(最后数字用四舍五入表示).

$$\mathbf{A} = \begin{bmatrix} 94 & 90 & 97 \\ 85 & 85 & 76 \\ 98 & 95 & 97 \\ 60 & 70 & 72 \end{bmatrix}, \quad B = \begin{bmatrix} 90 & 86 & 95 \\ 78 & 80 & 70 \\ 92 & 93 & 96 \\ 66 & 74 & 75 \end{bmatrix}, \quad C = \begin{bmatrix} 94 & 80 & 90 \\ 80 & 80 & 70 \\ 90 & 90 & 100 \\ 70 & 80 & 80 \end{bmatrix}$$

(2) 
$$D=0.2 A+0.7 B+0.1 C = \begin{bmatrix} 91 & 86 & 95 \\ 80 & 81 & 71 \\ 93 & 93 & 97 \\ 65 & 74 & 75 \end{bmatrix}$$

21. 某港口在某月份运到 I , II , III 三地的甲,乙两种货物的数量以及两种货物一个单位的价格,重量,体积如下表所示

| 出口量<br>货物 | I    | П    | Ш   | 单位<br>价格<br>(万元) | 单位<br>重量<br>(吨) | 单位<br>体积<br>(米³) |
|-----------|------|------|-----|------------------|-----------------|------------------|
| 甲         | 2000 | 1200 | 800 | 0.2              | 0.02            | 0.12             |
| Z         | 1200 | 1400 | 600 | 0.35             | 0.05            | 0.5              |

- (1) 分别写出表示运到三地货物数量的矩阵 A, 以及表示货物单位价格, 单位重量, 单位体积的矩阵 B.
- (2) 设表示运到三地的货物总价值,总重量,总体积的矩阵为 C,写出矩阵 A,B,C 的关系,并由此计算出 C.

$$\mathbf{A} = \begin{bmatrix} 2000 & 1200 \\ 1200 & 1400 \\ 800 & 600 \end{bmatrix}, \quad B = \begin{bmatrix} 0.2 & 0.02 & 0.12 \\ 0.35 & 0.05 & 0.5 \end{bmatrix}$$

(2) 
$$C = AB = \begin{bmatrix} 820 & 100 & 840 \\ 730 & 94 & 844 \\ 370 & 46 & 396 \end{bmatrix}$$
.

# 习题 3.2

1. 下列矩阵中可逆矩阵是(), 并说明理由.

(A) 
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{bmatrix}$$
. (B)  $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{bmatrix}$ . (C)  $\begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ . (D)  $\begin{bmatrix} 1 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ .

- 解 (A) 由矩阵的第一第二行对应成比例知,这个矩阵的行列式为零,所以不可逆;
  - (B) 矩阵不是方阵, 所以也不是可逆矩阵;
  - (C) 同(A) 矩阵的第一第二行对应成比例, 所以不可逆:

(D) 
$$\begin{vmatrix} 1 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$
  $\underbrace{R_2 - 2R_1}_{0} \begin{vmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1 \neq 0$ ,所以该矩阵是可逆矩阵.

- 2. 下列命题正确的是(), 并说明理由.
  - (A) 若 A 是 n 阶方阵, 且  $A \neq O$ , 则 A 可逆.
  - (B) 若 A, B 都是 n 阶可逆方阵,则 A+B 也可逆.
  - (C) 若 AB=0, 且  $A \neq O$ , 则必有 B = O.
  - (D) 设 A 是 n 阶方阵,则 A 可逆  $A^T$  可逆,
- **解** (A) 可逆的充要条件是  $A \neq 0$  而不是  $A \neq O$ ,如  $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq O$ ,但 A不是可逆矩阵,所以选项(A) 是错误的.
  - (B) 设 A = E, B = -E, 显然 A, B都是可逆的,但是 A + B = O不是可逆矩阵,所以选项 (B) 是错误的.
  - (C) 设  $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ ,  $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ , 显然 AB = O且  $A \neq O$ , 但是  $B \neq O$ , 所以选项 (C) 也是错误的.
  - (D) 由A可逆知 $\left|A\right|\neq 0$ ,而 $\left|A'\right|=\left|A\right|$ ,故 $\left|A'\right|\neq 0$ ,从而A' 可逆,所以选项(D)正确. 综上所述应选填D.
- 3. 已知 $A^{-1} = \begin{bmatrix} 3 & 5 \\ -2 & -4 \end{bmatrix}$ ,则  $A = \underline{\qquad}$

解 因为 
$$A = (A^{-1})^{-1}$$
,所以  $A = \begin{bmatrix} 3 & 5 \\ -2 & -4 \end{bmatrix}^{-1} = -\frac{1}{2} \begin{bmatrix} -4 & -5 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 2 & \frac{5}{2} \\ -1 & -\frac{3}{2} \end{bmatrix}$ 

4. 求下列矩阵的逆矩阵:

$$(1) \begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}; \qquad (2) \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}.$$

解 (1) 
$$\begin{vmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{vmatrix} = 1 \neq 0$$
所以该矩阵是可逆的. 因为  $AA^{\dagger} = |A|E$ ,所以

$$A^* = |A|A^{-1} = A^{-1},$$

而 
$$A_{11} = 1$$
,  $A_{12} = 0$ ,  $A_{13} = 0$ ,  $A_{21} = -2$ ,  $A_{22} = 1$ ,  $A_{23} = 0$ ,  $A_{31} = 7$ ,  $A_{23} = -2$ ,  $A_{33} = 1$ , 所以

$$\vec{A} = \begin{bmatrix} 1 & -2 & 7 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}, 由此可得 
\vec{A}^{-1} = \begin{bmatrix} 1 & -2 & 7 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}.$$

(2) 
$$\begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{vmatrix} = -27 \neq 0$$
 所以该矩阵是可逆的. 因为  $AA^* = AE$ ,所以

$$A^* = |A|A^{-1} = -27A^{-1}$$

而 
$$A_{11} = -3, A_{12} = -6, A_{13} = -6, A_{21} = -6, A_{22} = -3, A_{23} = 6$$
 ,  $A_{31} = 6, A_{23} = 6, A_{33} = -3$  , 所以

$$\vec{A} = \begin{bmatrix} -3 & -6 & 6 \\ -6 & -3 & 6 \\ -6 & 6 & -3 \end{bmatrix}, 由此可得 \vec{A}^1 = -\frac{1}{27} \begin{bmatrix} -3 & -6 & 6 \\ -6 & -3 & 6 \\ -6 & 6 & -3 \end{bmatrix}.$$

5. 解下列矩阵方程:

$$(1)\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \mathbf{X} = \begin{bmatrix} 3 & 5 \\ 5 & 9 \end{bmatrix}; \qquad (2)\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{X} = \begin{bmatrix} 5 & 6 \\ 3 & 4 \\ 1 & 2 \end{bmatrix};$$

$$(3)\begin{bmatrix} 1 & 4 \\ -1 & 2 \end{bmatrix} \mathbf{X} \begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 0 & -1 \end{bmatrix}.$$

**解** (1) 因为 
$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = -1 \neq 0$$
 , 所以  $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$  可逆 , 等式 两 边 同 左 乘  $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$  可 得

$$X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 3 & 5 \\ 5 & 9 \end{bmatrix} = -1 \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 5 & 9 \end{bmatrix} = \begin{bmatrix} -2 & -2 \\ 4 & 6 \end{bmatrix}.$$

(2) 因为 
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 =  $1 \neq 0$ , 所以  $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$  是可逆的,等式两边同左乘  $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$  可得

$$X = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 5 & 6 \\ 3 & 4 \\ 1 & 2 \end{bmatrix}.$$

下面先用习题 4 中方法方法求解  $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^{-1}$  . 因为  $\emph{A}\emph{A}^{*} = |\emph{A}|\emph{E}$ ,所以

$$A^* = |A|A^{-1} = A^{-1},$$

而  $A_{11}=1, A_{12}=0, A_{13}=0, A_{21}=-1, A_{22}=1, A_{23}=0$  ,  $A_{31}=0, A_{23}=-1, A_{33}=1$  , 所以  $A=\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$  , 由此

可得
$$\mathcal{A}^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

据此可得 
$$X = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 5 & 6 \\ 3 & 4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 3 & 4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \\ 1 & 2 \end{bmatrix}$$

(3) 因为  $\begin{vmatrix} 1 & 4 \\ -1 & 2 \end{vmatrix} = 6 \neq 0$ ,  $\begin{vmatrix} 2 & 0 \\ -1 & 1 \end{vmatrix} = 2 \neq 0$  所以  $\begin{bmatrix} 1 & 4 \\ -1 & 2 \end{bmatrix}$ ,  $\begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix}$  都是可逆矩阵,在等式两边同左乘

$$\begin{bmatrix} 1 & 4 \\ -1 & 2 \end{bmatrix}^{-1}$$
 再 两 边 同 右 乘 
$$\begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix}^{-1}$$
 可 得

$$\mathcal{X} = \begin{bmatrix} 1 & 4 \\ -1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 3 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix}^{-1} = (\frac{1}{6} \begin{bmatrix} 2 & -4 \\ 1 & 1 \end{bmatrix}) \begin{bmatrix} 3 & 1 \\ 0 & -1 \end{bmatrix} (\frac{1}{2} \begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix}) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix}.$$

6. 解出满足下述条件的矩阵 X:

(1) 
$$(\mathbf{A} + 2\mathbf{E})\mathbf{X} = \mathbf{C}$$
,  $\sharp \oplus \mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ ,  $\mathbf{C} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ ;

(2) 
$$\mathbf{A}^{-1}\mathbf{X}\mathbf{A} = 6\mathbf{A} + \mathbf{X}\mathbf{A}$$
,  $\sharp \div \mathbf{A} = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{7} \end{bmatrix}$ ;

解 (1) 因为 
$$A+2E=\begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix}$$
, 可知  $|A+2E|=\begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix}=11\neq 0$ , 所以  $A+2E$ 可逆. 所以

$$X = (A + 2E)^{-1}C = \frac{1}{11} \begin{bmatrix} 4 & -1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 4 & 3 \\ -1 & 2 \end{bmatrix}$$

(2) 因为 A可逆,所以可在等式  $A^{-1}XA = 6A + XA$ 两边同右乘  $A^{-1}$  得到  $A^{-1}X = 6E + X$ ,再在两边同左乘 A 得到 X = 6A + AX,所以有 (E - A)X = 6A.

因为
$$|E-A| = \begin{bmatrix} \frac{2}{3} \\ \frac{3}{4} \\ \frac{6}{7} \end{bmatrix} \neq 0$$
,所以 $E-A$ 可逆,据此可得 $X = 6(E-A)^{-1}A$ 

代入可得

$$X = 6(E - A)^{-1}A = 6\begin{bmatrix} \frac{2}{3} & & \\ & \frac{3}{4} & \\ & & \frac{6}{7} \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{3} & & \\ & \frac{1}{4} & \\ & & \frac{1}{7} \end{bmatrix} = 6\begin{bmatrix} \frac{3}{2} & & \\ & \frac{4}{3} & \\ & & \frac{7}{6} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & & \\ & \frac{1}{4} & \\ & & \frac{1}{7} \end{bmatrix} = \begin{bmatrix} 3 & & \\ & 2 & \\ & & 1 \end{bmatrix}$$
(3)  $\Rightarrow$ 

$$A^2 + AX - X = E$$
可得 $(A - E)X = -(A - E)(E + A)$ . 而 $|A - E| = \begin{vmatrix} 0 & 0 & 2 \\ 0 & -4 & 0 \\ 1 & 0 & -1 \end{vmatrix} = 8 \neq 0$ , 所以 $A - E$ 是可逆的,

在等式两边同左乘
$$(A-E)^{-1}$$
可得  $X=-(E+A)=\begin{bmatrix} -2 & 0 & -2 \\ 0 & 2 & 0 \\ -1 & 0 & -1 \end{bmatrix}$ .

7. 设 A 为 n 阶方阵,存在某个正整数 k > 1,使 A = O (A 称为**幂零矩阵**),证明: E - A可逆,且其逆为  $E + A + A^2 + \dots + A^{k-1}$ .

证 计算  $(E-A)(E+A+A^2+\cdots+A^{k-1})=E-A^k$  ,由题意可知 A=O ,所以  $(E-A)(E+A+A^2+\cdots+A^{k-1})=E-A^k=E$  . 根据定理 3.2.1 的推论可知,E-A可逆且其逆为  $E+A+A^2+\cdots+A^{k-1}$ .

8. 设 $J_n$ 为所有元素全为 1 的 n(n>1)阶方阵,证明 $E-J_n$ 可逆,且其逆为

$$E - \frac{1}{n-1}J_n$$
证 计算 $(E - J_n)$   $(E - \frac{1}{n-1}J_n) = E^2 - J_n E - \frac{1}{n-1}EJ_n + \frac{1}{n-1}J_n^2$ 

$$= E - \frac{n}{n-1}J_n + \frac{1}{n-1}J_n^2 = E - \frac{1}{n-1}(nE - J_n)J_n$$
计算 $(nE - J_n)J_n = \begin{bmatrix} n-1 & -1 & -1 & \cdots & -1 \\ -1 & n-1 & -1 & \cdots & -1 \\ -1 & -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -1 & -1 & -1 & \cdots & n-1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix} = O$ 

据此  $(E-J_n)$   $(E-\frac{1}{n-1}J_n)=E-\frac{1}{n-1}(nE-J_n)J_n=E$ ,根据定理 3. 2. 1 的推论可知  $E-J_n$ 可逆且其逆为  $E-\frac{1}{n-1}J_n$ .

9. 设 A 为 n 阶方阵,适合  $a_m A^m + a_{m-1} A^{m-1} + \dots + a_1 A + a_0 E = O$ , 其中  $a_0 \neq 0$ , 求证: A 可逆,且求出其逆.

证 因为 $a_m A^m + a_{m-1} A^{m-1} + \dots + a_1 A + a_0 E = O$ , 所以有

 $A(a_m A^{m-1} + a_{m-1} A^{m-2} + \dots + a_1) = -a_0 E$ . 由题意可知  $a_0 \neq 0$ ,所以可在等式两边同时作数乘  $-\frac{1}{a_0}$ ,由此可得

$$-\frac{1}{a_0}A(a_mA^{m-1}+a_{m-1}A^{n-2}+\cdots+a_1)=E, \ \ \text{整理得} \ A[-\frac{1}{a_0}(a_mA^{n-1}+a_{m-1}A^{n-2}+\cdots+a_1)]=E, \ \text{根据定理 3. 2. 1}$$

的推论可知 A可逆且  $A^{-1} = -\frac{1}{a_0} (a_m A^{m-1} + a_{m-1} A^{m-2} + \dots + a_1)$ .

10. 已知 A 为 3 阶方阵,且 A = 3,求

(1) 
$$|A^{-1}|$$
; (2)  $|A^*|$ ; (3)  $|-2A|$ ; (4)  $|(3A)^{-1}|$ ;

(5) 
$$\left| \frac{1}{3} A^* - 4 A^{-1} \right|$$
; (6)  $(A^*)^{-1}$ .

**A** (1) 
$$|A^{-1}| = |A|^{-1} = \frac{1}{3}$$
;

(2) 由于  $AA^* = |A|E$ , 所以  $A^* = |A|A^{-1} = 3A^{-1}$ , 由此可得

$$|A'| = |3A^{-1}| = 3^3 |A^{-1}| = 27 \times \frac{1}{3} = 9;$$

(3) 
$$\left| -2A \right| = (-2)^3 \left| A \right| = -8 \times 3 = -24$$
;

$$(4) \left| (3A)^{-1} \right| = \left| 3A \right|^{-1} = (3^3 |A|)^{-1} = (3^3 \times 3)^{-1} = \frac{1}{81};$$

(5)由(2)中分析可知 $\vec{A} = 3A^{-1}$ ,所以

$$\left| \frac{1}{3} A^{*} - 4 A^{-1} \right| = \left| \frac{1}{3} (3 A^{-1}) - 4 A^{-1} \right| = \left| -3 A^{-1} \right| = (-3)^{3} \left| A^{-1} \right| = -27 \times \frac{1}{3} = -9;$$

(6) 由(2)中分析可知 
$$\mathring{A} = 3A^{-1}$$
,则  $(\mathring{A})^{-1} = (3A^{-1})^{-1} = \frac{1}{3}(A^{-1})^{-1} = \frac{1}{3}A$ .

11. 设 A,B 均为 n 阶可逆矩阵, $\vec{A}$ , $\vec{B}$  为其伴随矩阵,证明:  $(AB)^* = \vec{B} \vec{A}$ .

证 
$$A, B$$
都可逆, 故  $A' = |A| A^{-1}, B' = |B| B^{-1}$ , 且  $AB$ 可逆, 从而得到

$$B^*A^* = |A||B|B^{-1}A^{-1} = |AB|(AB)^{-1} = (AB)^*.$$

12. 设 A 是 n 阶方阵,若  $A^2 = A$ 且 A≠E,则 A 不是可逆矩阵.

证(反证) 假设 A是可逆矩阵,那么在等式  $A^2 = A$ 两边都左乘 A的逆矩阵  $A^1$ 可得 A = E,这与题设中  $A \neq E$ 矛盾! 所以 A不可逆.

13. 设 A 是 n 阶方阵,如有非零的  $n \times t$  矩阵 B 使 AB=0,则A=0.

证(反证) 若  $A \neq 0$ ,则 A是可逆矩阵,在等式 AB = O两边左乘  $A^{-1}$  得 B = O,这与题设矛盾,所以 A = 0.

14. 设 n 阶方阵 A 满足  $\hat{A} + A - 4E = O$ ,

证明: A及A-E都是可逆矩阵,且写出 $A^1$ 及 $(A-E)^{-1}$ .

证 (1) 由题 意  $A^2 + A - 4E = O$  可得:  $A[\frac{1}{4}(A+E)] = E$ , 根据 定理 3.2.1 的推论可知, A 可逆并且  $A^{-1} = \frac{1}{4}(A+E).$ 

(2) 由题意  $\hat{A}^2 + A - 4E = O$ 可得  $\hat{A}^2 + A - 2E = 2E$ ,而这个等式可化为 (A - E)(A + 2E) = 2E,即有  $(A - E)[\frac{1}{2}(A + 2E)] = E$ ,同样根据定理 3. 2. 1 的推论可知,A - E可逆并且 $(A - E)^{-1} = \frac{1}{2}(A + 2E)$ .

# 习题 3.3

1. 将矩阵适当分块后计算:

$$(1) \begin{bmatrix} -1 & 2 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 & 0 \\ 4 & -1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 3 & 4 \end{bmatrix}; \qquad (2) \begin{bmatrix} 2 & 0 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 & 1 \\ 0 & 0 & 2 & 2 & -1 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

**解** (1) 记 
$$A = \begin{bmatrix} -1 & 2 \\ 3 & 1 \end{bmatrix}$$
,  $B = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$ ,  $C = \begin{bmatrix} 1 & 3 \\ 4 & -1 \end{bmatrix}$ ,  $D = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$ , 则原式可以分块写成

$$\begin{bmatrix} A & O \\ O & B \end{bmatrix} \begin{bmatrix} C & O \\ O & D \end{bmatrix}, \text{ 利用分块矩阵的性质计算得} \begin{bmatrix} A & O \\ O & B \end{bmatrix} \begin{bmatrix} C & O \\ O & D \end{bmatrix} = \begin{bmatrix} AC & O \\ O & BD \end{bmatrix}.$$

而 
$$AB = \begin{bmatrix} -1 & 2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -5 & 0 \\ 1 & 7 \end{bmatrix}$$
 ,  $CD = \begin{bmatrix} 1 & 3 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 11 & 13 \\ 5 & 0 \end{bmatrix}$  , 据 此 可 得

$$\begin{bmatrix} A & O \\ O & B \end{bmatrix} \begin{bmatrix} C & O \\ O & D \end{bmatrix} = \begin{bmatrix} AC & O \\ O & BD \end{bmatrix} = \begin{bmatrix} -5 & 0 & 0 & 0 \\ 1 & 7 & 0 & 0 \\ 0 & 0 & 11 & 13 \\ 0 & 0 & 5 & 0 \end{bmatrix}.$$

(2) 记 
$$A=2E, B=\begin{bmatrix}1&0\\0&1\\2&-1\end{bmatrix}, C=\begin{bmatrix}1&4\\0&1\end{bmatrix}, D=\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}, G=\begin{bmatrix}0&1&0\\0&0&1\end{bmatrix}$$
则原式可以分块写成

$$\begin{bmatrix} A & B \\ O & C \end{bmatrix} \begin{bmatrix} D \\ G \end{bmatrix}, \quad \text{利用分块矩阵的性质计算得} \begin{bmatrix} A & B \\ O & C \end{bmatrix} \begin{bmatrix} D \\ G \end{bmatrix} = \begin{bmatrix} AD + BG \\ CG \end{bmatrix}.$$

$$\overrightarrow{\text{mi}} \ AD + BG = 2 \ ED + BG = 2 \ D + BG = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 2 \\ 2 & 2 & 3 \\ 2 & 4 & 1 \end{bmatrix},$$

$$CG = \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix},$$

据此可得
$$\begin{bmatrix} A & B \\ O & C \end{bmatrix} \begin{bmatrix} D \\ G \end{bmatrix} = \begin{bmatrix} AD + BG \\ CG \end{bmatrix} = \begin{bmatrix} 2 & 3 & 2 \\ 2 & 2 & 3 \\ 2 & 4 & 1 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}.$$

2. 设 A 为 n 阶可逆矩阵, 计算:

(1) 
$$A^{-1}[A \quad E_n];$$
 (2)  $\begin{bmatrix} A \\ E_n \end{bmatrix} A^{-1};$  (3)  $[A \quad E_n]^T[A \quad E_n];$ 

(4) 
$$\begin{bmatrix} \mathbf{A} & \mathbf{E}_n \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{E}_n \end{bmatrix}^{\mathrm{T}};$$
 (5)  $\begin{bmatrix} \mathbf{A}^{-1} \\ \mathbf{E}_n \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{E}_n \end{bmatrix}.$ 

**M** (1) 
$$A^{-1}[A \ E_n] = [A^{-1}A \ A^{-1}E_n] = [E_n \ A^{-1}];$$

(2) 
$$\begin{bmatrix} A \\ E_n \end{bmatrix} A^{-1} = \begin{bmatrix} AA^{-1} \\ E_n A^{-1} \end{bmatrix} = \begin{bmatrix} E_n \\ A^{-1} \end{bmatrix};$$

(3) 
$$\begin{bmatrix} A & E_n \end{bmatrix}^T \begin{bmatrix} A & E_n \end{bmatrix} = \begin{bmatrix} A \\ E_n \end{bmatrix} \begin{bmatrix} A & E_n \end{bmatrix} = \begin{bmatrix} A & A \\ A & E_n \end{bmatrix}$$

(4) 
$$\begin{bmatrix} A & E_n \end{bmatrix} \begin{bmatrix} A & E_n \end{bmatrix}^T = \begin{bmatrix} A & E_n \end{bmatrix} \begin{bmatrix} A \\ E_n \end{bmatrix} = A^2 + E_n;$$

(5) 
$$\begin{bmatrix} A^{-1} \\ E_n \end{bmatrix} \begin{bmatrix} A & E_n \end{bmatrix} = \begin{bmatrix} A^{-1}A & A^{-1}E_n \\ E_nA & E_n^2 \end{bmatrix} = \begin{bmatrix} E_n & A^{-1} \\ A & E_n \end{bmatrix}.$$

3. 设
$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
, 其中 A,B, C,D 均为 n (n>1) 阶方阵,则  $M^T = \underline{\hspace{1cm}}$ .

(A) 
$$\begin{bmatrix} A & C \\ B & D \end{bmatrix}$$
.

(B) 
$$\begin{bmatrix} A & C^{\mathrm{T}} \\ B^{\mathrm{T}} & D \end{bmatrix}$$

(C) 
$$\begin{bmatrix} \mathbf{A}^{\mathrm{T}} & \mathbf{C}^{\mathrm{T}} \\ \mathbf{B}^{\mathrm{T}} & \mathbf{D}^{\mathrm{T}} \end{bmatrix}.$$

$$(\mathbf{D}) \begin{bmatrix} \mathbf{A}^{\mathrm{T}} & \mathbf{B}^{\mathrm{T}} \\ \mathbf{C}^{\mathrm{T}} & \mathbf{D}^{\mathrm{T}} \end{bmatrix}$$

解 
$$M^T = \begin{bmatrix} A & B \\ C & D \end{bmatrix}^T = \begin{bmatrix} A^T & C^T \\ B^T & D^T \end{bmatrix}$$
, 故应选填  $C$ .

4. 设 A, B 分别为 r, t 阶方阵, 令

$$Q = \begin{bmatrix} O & A \\ B & O \end{bmatrix}.$$

- (1) 证明: Q 可逆 ⇔ A, B 均可逆;
- (2) 当 Q 可逆时,求出 $Q^{-1}$ .
- (1) 证 Q可逆  $\Leftrightarrow |Q| \neq 0$ , 而 $|Q| = \begin{vmatrix} O & A \\ B & O \end{vmatrix} = (-1)^{r} |A| B|$ , 所以 Q可逆  $\Leftrightarrow |A| \neq 0$ , 且 $|B| \neq 0 \Leftrightarrow A, B$ 均可 逆.

(2) 设
$$Q^{-1} = \begin{bmatrix} C & D \\ F & G \end{bmatrix}$$
, 则有 $QQ^{-1} = \begin{bmatrix} O & A \\ B & O \end{bmatrix} \begin{bmatrix} C & D \\ F & G \end{bmatrix} = \begin{bmatrix} E & O \\ O & E \end{bmatrix}$ .

而 
$$\begin{bmatrix} O & A \\ B & O \end{bmatrix}$$
  $\begin{bmatrix} C & D \\ F & G \end{bmatrix}$  =  $\begin{bmatrix} AF & AG \\ BC & BD \end{bmatrix}$ , 所以有  $\begin{cases} AF = E \\ AG = O \\ BC = O \end{cases}$  因为  $Q$ 可逆,由 (1) 知必有  $A, B$ 可逆,所以由  $BD = E$ 

AG=O , BC=O 可得 G=C=O . 而由 AF=E , BD=E 可得  $F=A^1,D=B^1$  . 所以

$$Q^{-1} = \begin{bmatrix} O & B^{-1} \\ A^{-1} & O \end{bmatrix}.$$

5. 利用矩阵分块求下列矩阵的逆:

$$(1) \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 7 \\ 0 & 0 & 1 & 3 \end{bmatrix};$$

$$(2) \begin{bmatrix} 0 & 0 & 3 & -2 \\ 0 & 0 & 5 & -3 \\ 3 & 4 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix};$$

$$(3) \begin{bmatrix} 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 2 & 3 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} ;$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 2 & 3 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix};$$

$$(4) \begin{bmatrix} 0 & a_1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & a_{n-1} \\ a_n & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}_{n \times n}$$

其中 
$$a_i \neq 0$$
 ( $i = 1, 2, \dots, n$ ).

**解** (1) 记 
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
,  $B = \begin{bmatrix} 2 & 7 \\ 1 & 3 \end{bmatrix}$ , 则原矩阵为 $\begin{bmatrix} A & O \\ O & B \end{bmatrix}$ . 而 $\begin{bmatrix} A & O \\ O & B \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & O \\ O & B^{-1} \end{bmatrix}$ .

因为 
$$A^{-1} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}, B^{-1} = \begin{bmatrix} 2 & 7 \\ 1 & 3 \end{bmatrix}^{-1} = -\begin{bmatrix} 3 & -7 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} -3 & 7 \\ 1 & -2 \end{bmatrix},$$
所以可得

$$\begin{bmatrix} A & O \\ O & B \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & O \\ O & B^{-1} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ 0 & 0 & -3 & 7 \\ 0 & 0 & 1 & -2 \end{bmatrix}.$$

因为 
$$A^{-1} = \begin{bmatrix} 3 & -2 \\ 5 & -3 \end{bmatrix}^{-1} = \begin{bmatrix} -3 & 2 \\ -5 & 3 \end{bmatrix}, B^{-1} = \begin{bmatrix} 3 & 4 \\ 1 & 1 \end{bmatrix}^{-1} = -\begin{bmatrix} 1 & -4 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 1 & -3 \end{bmatrix},$$
所以可得

$$\begin{bmatrix} O & A \\ B & O \end{bmatrix}^{-1} = \begin{bmatrix} O & B^{-1} \\ A^{-1} & O \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 & 4 \\ 0 & 0 & 1 & -3 \\ -3 & 2 & 0 & 0 \\ -5 & 3 & 0 & 0 \end{bmatrix}.$$

(3) 记 
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, 则原矩阵为 $\begin{bmatrix} O & A \\ B & O \end{bmatrix}$ . 而 $\begin{bmatrix} O & A \\ B & O \end{bmatrix}$  =  $\begin{bmatrix} O & B^{-1} \\ A^{-1} & O \end{bmatrix}$ .$$

因为 
$$A^{-1} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}, B^{-1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix},$$

所以可得
$$\begin{bmatrix} O & A \\ B & O \end{bmatrix}^{-1} = \begin{bmatrix} O & B^{-1} \\ A^{-1} & O \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 \\ -3 & 2 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 & 0 \end{bmatrix}$$

(4) 记 
$$A = \begin{bmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & & a_{n-1} \end{bmatrix}, B = \begin{bmatrix} a_n \end{bmatrix},$$
 则原矩阵为 $\begin{bmatrix} O & A \\ B & O \end{bmatrix}$ . 而 $\begin{bmatrix} O & A \\ B & O \end{bmatrix}$  =  $\begin{bmatrix} O & B^{-1} \\ A^{-1} & O \end{bmatrix}$ .

因为 
$$A^{-1} = \begin{bmatrix} a_1 & & & & \\ & a_2 & & & \\ & & \ddots & & \\ & & & a_{n-1} \end{bmatrix}^{-1} = \begin{bmatrix} a_1^{-1} & & & & \\ & a_2^{-1} & & & \\ & & \ddots & & \\ & & & & a_{n-1} \end{bmatrix}, B^{-1} = [a_n]^{-1} = [a_n^{-1}],$$

所以可得
$$\begin{bmatrix} O & A \\ B & O \end{bmatrix}^{-1} = \begin{bmatrix} O & B^{-1} \\ A^{-1} & O \end{bmatrix} = \begin{bmatrix} a_1^{-1} & & & & & a_n^{-1} \\ & a_2^{-1} & & & & \\ & & \ddots & & & \\ & & & a_{n-1}^{-1} & \end{bmatrix}$$
.

6. 考虑例 3. 3. 5 的一些变形. 仍设 A, B分别为 r 阶, s 阶方阵, 令

$$M_1 = \begin{bmatrix} A & C \\ O & B \end{bmatrix}$$
,  $M_2 = \begin{bmatrix} C & A \\ B & O \end{bmatrix}$ ,  $M_3 = \begin{bmatrix} O & A \\ B & C \end{bmatrix}$ .

分别写出 $M_1, M_2, M_3$ 可逆的充要条件,并加以证明.且在可逆时求出其逆.

 $\mathbf{M}$  (1) M 可逆的充要条件为 A B均可逆. 证明如下:

 $M_1$ 可逆  $\Leftrightarrow$   $|M_1| \neq 0$ ,而  $|M_1| = |A|B| \Leftrightarrow |A| \neq 0$ , $|B| \neq 0 \Leftrightarrow A, B$ 均可逆.

设
$$M_1 = \begin{bmatrix} K & D \\ F & G \end{bmatrix}$$
, 则有 $M_1 M_1^{-1} = \begin{bmatrix} C & A \\ B & O \end{bmatrix} \begin{bmatrix} K & D \\ F & G \end{bmatrix} = \begin{bmatrix} E \\ E \end{bmatrix}$ .

而 
$$\begin{bmatrix} C & A \\ B & O \end{bmatrix} \begin{bmatrix} K & D \\ F & G \end{bmatrix} = \begin{bmatrix} CK + AF & CD + AG \\ BK & BD \end{bmatrix}$$
,所以有  $\begin{cases} CK + AF = E \\ CD + AG = O \\ BK = O \end{cases}$ ,因为  $M_1$ 可逆,由(1)可知必有  $B$ 可  $BD = E$ 

逆, 所以由 BK = O可得 K = O; 而由 CK + AF = E, 可得  $F = A^{-1}$ ; 而由 BD = E, 可得  $D = B^{-1}$ ; 由

$$CD + AG = O$$
,可得  $G = -A^{-1}CB^{-1}$  所以  $M_1 = \begin{bmatrix} O & B^{-1} \\ A^{-1} & -A^{-1}CB^{-1} \end{bmatrix}$ .

(2)  $M_2$ 可逆的充要条件为  $A_2$  B均可逆. 证明如(1).

用类似(1)的方法可以解得
$$M_2^{-1} = \begin{bmatrix} O & B^{-1} \\ A^{-1} & -A^{-1}CB^{-1} \end{bmatrix}$$
.

(3)  $M_3$ 可逆的充要条件为A, B均可逆. 证明如(1).

用类似(1)的方法可以解得
$$M_2^{-1} = \begin{bmatrix} -B^{-1}CA^1 & B^{-1} \\ A^{-1} & O \end{bmatrix}$$
.

# 习题 3.4

1. 下列矩阵中,不是初等矩阵的是(),并说明理由.

$$\text{(A)} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} . \quad \text{(B)} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} . \quad \text{(C)} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} . \quad \text{(D)} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} .$$

- 解 (A) 由  $E \xrightarrow{R_1} (A)$  所以是初等矩阵;
  - (B) 由  $E \xrightarrow{R_{12}} (B)$  所以是初等矩阵;
  - (C) 不能由 E经过一次初等变换得到, 所以不是初等矩阵;
  - (D)由  $E \xrightarrow{R_2-2R_1} (D)$ 所以是初等矩阵.
- 2. 求下列可逆矩阵的逆矩阵:

$$(4) \begin{bmatrix} 1 & a & a^2 & a^3 & \cdots & a^n \\ 0 & 1 & a & a^2 & \cdots & a^{n-1} \\ 0 & 0 & 1 & a & \cdots & a^{n-2} \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \end{bmatrix}_{n \times n} ; (5)^* \begin{bmatrix} 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 1 & 1 & \cdots & 0 \end{bmatrix}_{n \times n} (n > 1).$$

分析 用初等行变换

$$\begin{bmatrix} A : E \end{bmatrix}$$
  $\longrightarrow \begin{bmatrix} E : A^1 \end{bmatrix}$ ,即可得到 $A^1$ .

所以 
$$A^{-1} = \begin{bmatrix} 1 & -4 & -3 \\ 1 & -5 & -3 \\ -1 & 6 & 4 \end{bmatrix}$$
.

所以 
$$A^{-1} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \\ \frac{1}{4} & -\frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & \frac{1}{4} \end{bmatrix}$$
.

(3) 
$$\begin{bmatrix} 2 & 1 & 0 & 0 & 0 & \vdots 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & \vdots 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & \vdots 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & \vdots 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & \vdots 0 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_{\ell}}_{i=1,2,3,4,5}$$

所以 
$$A^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{4} & \frac{1}{8} & -\frac{1}{16} & \frac{1}{32} \\ 0 & \frac{1}{2} & -\frac{1}{4} & \frac{1}{8} & -\frac{1}{16} \\ 0 & 0 & \frac{1}{2} & -\frac{1}{4} & \frac{1}{8} \\ 0 & 0 & 0 & \frac{1}{2} & -\frac{1}{4} \\ 0 & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}$$

所以 
$$A^{-1} = \begin{bmatrix} 1 & -a & 0 & \cdots & 0 & 0 \\ 0 & 1 & -a & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -a \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

所以 
$$A^{-1} = \begin{bmatrix} 1 & -a & 0 & \cdots & 0 & 0 \\ 0 & 1 & -a & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -a \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

$$(5) \begin{bmatrix} 0 & 1 & 1 & \cdots & 1 & \vdots & 1 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 1 & \cdots & 1 & \vdots & 0 & 1 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 1 & \vdots & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 0 & \vdots & 0 & 0 & 0 & \cdots & 1 \end{bmatrix} \xrightarrow{R_{j} - R_{n}} \xrightarrow{R_{n} + R_{1} + R_{2} + \cdots + R_{n-1}} \xrightarrow{R_{n} + R_{1} + R_{2} + \cdots + R_{n-1}}$$

所以 
$$A^{-1} = \begin{bmatrix} \frac{2-n}{n-1} & \frac{1}{n-1} & \frac{1}{n-1} & \cdots & \frac{1}{n-1} \\ \frac{1}{n-1} & \frac{2-n}{n-1} & \frac{1}{n-1} & \cdots & \frac{1}{n-1} \\ \frac{1}{n-1} & \frac{1}{n-1} & \frac{2-n}{n-1} & \cdots & \frac{1}{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{1}{n-1} & \frac{1}{n-1} & \frac{1}{n-1} & \cdots & \frac{2-n}{n-1} \end{bmatrix}$$

3. 解下列矩阵方程:

$$(2) \begin{bmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \\ 3 & 4 & 2 \end{bmatrix} \mathbf{X} \begin{bmatrix} 0 & 2 & -1 \\ 1 & 1 & -1 \\ -2 & -5 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 3 & -3 \\ 2 & 3 & -2 \\ 4 & 4 & -3 \end{bmatrix} ;$$

 $(3)^* AX = B,$ 其中

$$A = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 0 & 1 & 1 & \cdots & 1 & 1 \\ 0 & 0 & 1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}_{n \times n} , \quad B = \begin{bmatrix} 2 & 1 & 0 & \cdots & 0 & 0 \\ 1 & 2 & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 2 \end{bmatrix}_{n \times n}$$

求 X.

分析 对于矩阵方程 AX = C,当 A可逆时,只要对矩阵  $\begin{bmatrix} A & C \end{bmatrix}$  只作初等行变换化为  $\begin{bmatrix} E & A^{-1}C \end{bmatrix}$ ,即得到解  $X = A^{-1}C$ . 而对于矩阵方程 XA = C,当 A可逆时,只要对矩阵  $\begin{bmatrix} A & C \end{bmatrix}$  只作初等列变换化为  $\begin{bmatrix} E & C \\ CA^{-1} \end{bmatrix}$ ,即得到解  $X = CA^{-1}$  . 而对于矩阵方程 AXB = C,当 A,B都可逆时,只要先对矩阵  $\begin{bmatrix} A & C \end{bmatrix}$  只作初等列变换化为  $\begin{bmatrix} E & A^{-1}C \end{bmatrix}$ ,即得到解  $X = A^{-1}CB^{-1}$  。或者也可以分别求 出  $A^{-1},B^{-1}$ ,再作矩阵乘法得到解.

解 (1) 只用初等行变换 
$$\begin{bmatrix} 1 & -1 & 1 & \vdots 1 & 2 & 0 \\ 1 & 1 & 0 & \vdots 2 & 0 & 1 \\ 2 & 1 & 1 & \vdots 0 & -1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & \vdots & 5 & 3 & 1 \\ 0 & 1 & 0 & \vdots - 3 & -3 & 0 \\ 0 & 0 & 1 & \vdots - 7 & -4 & -1 \end{bmatrix},$$

所以解得 
$$X = \begin{bmatrix} 5 & 3 & 1 \\ -3 & -3 & 0 \\ -7 & -4 & -1 \end{bmatrix}$$

(2) 先只用初等行变换 
$$\begin{bmatrix} 1 & 3 & 1 & \vdots 4 & 3 & -3 \\ 2 & 2 & 1 & \vdots 2 & 3 & -2 \\ 3 & 4 & 2 & \vdots 4 & 4 & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & \vdots & 0 & 2 & -1 \\ 0 & 1 & 0 & \vdots & 2 & 2 & -2 \\ 0 & 0 & 1 & \vdots -2 & -5 & 4 \end{bmatrix},$$

再只用初等列变换
 
$$\begin{bmatrix}
 0 & 2 & -1 \\
 1 & 1 & -1 \\
 -2 & -5 & 4 \\
 \cdots & \cdots & \cdots \\
 0 & 2 & -1 \\
 2 & 2 & -2 \\
 -2 & -5 & 4
 \end{bmatrix}$$

$$\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 \cdots & \cdots & \cdots \\
 1 & 0 & 0 \\
 0 & 2 & 0 \\
 0 & 0 & 1
 \end{bmatrix}$$

所以解得 
$$X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

- 4. 若可逆矩阵  $\Lambda$  作下列变化,则  $A^{-1}$  相应地有怎样的变化?
- (1) A 中 *i* 行与 *j* 行互换;
- (2) A 中 *i* 行乘上非零数 *k*;
- (3) i < j时, A 中第 j行乘上数 k 加到第 i行.
- 解 (1) A 中 i 行与 j 行互 换相 当于用 初等 矩 阵 E(i,j) 左乘 A 得到 E(i,j)  $A \stackrel{i o b}{=} B$ ,则  $B^{-1} = (E(i,j)A)^{-1} = A^{-1}E(i,j)^{-1} = A^{-1}E(i,j)$ ,所以相当于  $A^{-1}$ 中的 i列与 j列互换.
  - (2) A 中 i 行乘上非零数 k 相当于用初等矩阵 E(i(k)) 左乘 A 得到 E(i(k))  $A \stackrel{i \to b}{=} B$ ,则

 $B^{-1} = (E(i(k))A)^{-1} = A^{-1}E(i(k))^{-1} = A^{-1}E(i(\frac{1}{k}))$ ,所以相当于  $A^{-1}$ 中 i列乘上非零数  $\frac{1}{k}$ .

(3) A 中第j行乘上数k加到第i行相当于用初等矩阵E(i+j(k),j)左乘A得到

$$E(i+j(k),j)$$
  $A \stackrel{\boxtimes \mathcal{H}}{=} B$ ,  $\emptyset$   $B^{-1} = (E(i+j(k),j)A)^{-1} = A^{-1}E(i+j(k),j)^{-1}$ 

 $=A^{-1}E(i+j(-k),j)$ ,所以相当于 $A^{-1}$ 中第j行乘上数-k加到第i行.

5. \*求满足关系式  $A(E-C^{-1}B)^TC^T=E$ 的矩阵 A, 其中

$$\boldsymbol{B} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \boldsymbol{C} = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 0 & 2 & 1 & 3 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

**解**由于  $A(E-C^{-1}B)^T C^T = E$ , 得  $A[C(E-C^{-1}B)]^T = E$ , 化简为  $A(C-B)^T = E$ ,  $A(C^T-B^T) = E$ .

而 
$$C^T - B^T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ 4 & 3 & 2 & 1 \end{bmatrix}$$
, 显然是可逆矩阵. 所以只需要求出 $(C^T - B^T)^{-1}$ 即得到  $A$ .

下面只用初等行变换把 $\left[C^{T}-B^{T}\right]$  : E 化为 $\left[E\right]$  化为 $\left[E\right]$  : A 即可.

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \vdots 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & \vdots 0 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 & \vdots 0 & 0 & 1 & 0 \\ 4 & 3 & 2 & 1 & \vdots 0 & 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & \vdots & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & \vdots & -2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & \vdots & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 1 & \vdots & 0 & 1 & -2 & 1 \end{bmatrix},$$

从而得到 
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$
.

6. 设

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} a_{11} + ka_{31} & a_{13} + ka_{33} & a_{12} + ka_{32} \\ a_{21} & a_{23} & a_{22} \\ a_{31} & a_{33} & a_{32} \end{bmatrix},$$

$$\mathbf{P}_1 = \begin{bmatrix} 1 & 0 & k \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{P}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{bmatrix}, \quad \mathbf{P}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad \mathbf{P}_4 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix},$$
则下列等式成立的提

( ),并说明理由.

(A) 
$$P_1AP_2 = B$$
. (B)  $P_1AP_3 = B$ . (C)  $P_2AP_3 = B$ . (D)  $P_2AP_4 = B$ .

解 由观察可知  $A \xrightarrow{R_1 + kR_3} \xrightarrow{C_2} B$ ,所以只要对 A左乘一个初等矩阵 E(1+3(k),3) 再右乘一个初等矩阵 E(2,3)就得到 B. 显然  $E(1+3(k),3)=P_1$ ,  $E(2,3)=P_3$ , 所以  $P_1AP_3=B$ , 故应选填 B.

# 习题 3.5

1. 设

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 6 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ -5 & 0 & 0 \end{bmatrix}, \mathbf{D} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

则在 B, C, D 中与 A 等价的矩阵为\_\_\_\_\_, 并说明理由.

**分析** 等价的充要条件是两个行列数相同的矩阵的秩相同. 由于 A是一个  $3\times3$  的秩为 2 的矩阵,所以只要在 B, C, D中找出同样是  $3\times3$  的秩为 2 的那个矩阵即是与 A等价的矩阵.

 $m{B}$  B  $\pm 3 \times 3$  的,但是它的秩为 1 所以不是; C  $\pm 3 \times 3$  的同时秩也是 2 所以与 A 等价; D 虽然秩是 2 但是是  $4 \times 3$  的矩阵,所以与 A 不等价.综上知应填 C.

- 2 下述命题正确的是( ),并说明理由.
- (A) 若 A 与 B 等价,则 A=B.
- (B) 若方阵 A 与方阵 B 等价,则 A = |B|.
- (C) 若 A 与可逆矩阵 B 等价,则 A 也是可逆矩阵.
- (D) 若 A, B, C, D 均为 n 阶方阵. 若 A 与 B 等价, C 与 D 等价, 则 A+C 与 B+D 等价.

**解** (A) 设  $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ ,  $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ , 由于秩(A)=秩(B), 所以他们必等价, 但是显然  $A \neq B$ . 据此(A)不正

(B) 
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
,  $B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ , 由于秩( $A$ )=秩( $B$ ),所以他们必等价,但是显然  $|A| = 1 \neq |B| = 2$ . 据此(B)

不正确.

确.

(C) B是可逆矩阵,因此 B是满秩的方阵.根据题意 A 与 B 等价,即有秩(A)=秩(B),所以 A也是满秩的方阵,因此 A 也是可逆矩阵.据此(C) 正确.

(D) 
$$\mbox{ }\mbox{ }$$

秩(C)=秩(D), 所以 A 与 B 等价,C 与 D 等价. 但是显然  $A+C=O,B+D=\begin{bmatrix}0&1\\1&0\end{bmatrix}$  不等价. 据此(D) 不正确. 综上知应填 C.

3. 已知 
$$\begin{bmatrix} -1 & 2 & 0 \\ 2 & -4 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 与  $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 2 & a & 6 \end{bmatrix}$  等价,则  $a =$ \_\_\_\_\_,为什么?

解 由于两个矩阵等价, 所以两者的秩必相等.

$$\begin{bmatrix} -1 & 2 & 0 \\ 2 & -4 & 0 \\ 0 & 0 & 3 \end{bmatrix} \xrightarrow{\frac{R_2+2R_1}{R_{23}}} \begin{bmatrix} -1 & 2 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}, \text{ 可知该矩阵的秩为 2, 因此} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 2 & a & 6 \end{bmatrix}$$
的秩也必须为 2. 对它作初

等行变换.

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 2 & a & 6 \end{bmatrix} \xrightarrow{\frac{R_2 - 2R_1}{R_3 - 2R_1}} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & a - 4 & 0 \end{bmatrix} \xrightarrow{\frac{R_3 - (a-4)R_2}{R_3 - (a-4)R_2}} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & -2(a-4) \end{bmatrix}, \text{ 所以要使得它的秩为 2, 则 } a = 4.$$

故应填 4.

4. 证明: 秩为 r 的矩阵可表示为 r 个秩为 1 的矩阵之和.

证 设 A 为秩为  $\mathbf{r}$  的  $m \times n$  矩阵,则它必与矩阵  $\begin{bmatrix} E_r & O \\ O & O \end{bmatrix}_{m \times n}$  等价,所以必存在两个可逆矩阵 P,Q 使得

$$A = P \begin{bmatrix} E_r & O \\ O & O \end{bmatrix}_{m \times n} Q$$
成立. 而 $\begin{bmatrix} E_r & O \\ O & O \end{bmatrix}_{m \times n}$  可以写成 r 个只有一个元素为 1 其余为零的  $m \times n$  矩阵的和的形式:

$$+ \begin{bmatrix} 0 & & & & & & \\ & 0 & & & & & \\ & & \ddots & & & & \\ & & & 1 & & & \\ & & & & 0 & & \\ & & & & O_{m-r,n-r} \end{bmatrix}_{m \times n} + \begin{bmatrix} 0 & & & & & & \\ & 0 & & & & \\ & & \ddots & & & \\ & & & 0 & & \\ & & & & 1 & \\ & & & & O_{m-r,n-r} \end{bmatrix}_{m \times n}$$

所以有 
$$A = P \begin{bmatrix} E_r & O \\ O & O \end{bmatrix}_{m \times n} Q$$



$$= P \begin{bmatrix} 1 & & & & & & \\ & 0 & & & & & \\ & & \ddots & & & & \\ & & & 0 & & & \\ & & & 0 & & & \\ & & & O_{m-r,n-r} \end{bmatrix}_{m \times n} Q + \dots + P \begin{bmatrix} 0 & & & & & \\ & 0 & & & & \\ & & \ddots & & & \\ & & & 0 & & \\ & & & & 1 & & \\ & & & & O_{m-r,n-r} \end{bmatrix}_{m \times n} Q$$

这样 A就表示成了  $\mathbf{r}$  个矩阵之和的形式. 而任一个  $\mathbf{p}$   $\mathbf{r}$   $\mathbf{r}$ 

只有一个元素非零,所以其秩为1,而P,Q可逆,所以三个矩阵的积的秩仍然为1. 这样A就表示成了r个秩为1的矩阵之和了.

5. 上题的逆命题"r个秩为1的矩阵之和的秩为r"是否成立?成立请证明,否则举反例.

证 设 
$$A_1 = \begin{bmatrix} 1 & & & & \\ & 0 & & & \\ & & \ddots & & \\ & & & O_{m-r,n-r} \end{bmatrix}_{m \times n}$$
  $A_2 = \begin{bmatrix} 1 & & & \\ & & \ddots & \\ & & & O_{m-r,n-r} \end{bmatrix}_{m \times n}$   $\cdots$   $A_r = \begin{bmatrix} 1 & & & \\ & 0 & & \\ & & \ddots & & \\ & & & O_{m-r,n-r} \end{bmatrix}_{m \times n}$ 

显然  $A_i(i=1,2,\cdots,r)$  的秩都是 1,但是他们的和  $A=\begin{bmatrix} r & & & & \\ & 0 & & & \\ & & \ddots & & \\ & & & O_{m-r,n-r} \end{bmatrix}_{m\times n}$  的秩是 1 而不是 r. 所以该逆命题

不成立.

- 6. 若将所有 n 阶方阵按等价分类,可分成几个等价类?每一类的标准形是什么?
- **解** 可以分成 n+1类,秩为 0 的一类,标准形为 O; 秩为 1 的一类,标准形为  $\begin{bmatrix} E_1 & O \\ O & O \end{bmatrix}$ ; 秩为 2 的一类,标准形为  $\begin{bmatrix} E_2 & O \\ O & O \end{bmatrix}$ , …, 秩为 n 的一类, 标准形为  $E_n$ .
- 7. 设 A 是 n (n>1) 阶方阵,A  $\neq$  0,则存在一个非零矩阵  $B_{n\times t}$ ,使得 AB=O的充要条件为 A=0.
- 证 对于必要性的证明同习题 3.2 的第 13 个习题,下面证明该命题的充分性.

若A=0则可知 A是一个不满秩的 n(n>1)阶方阵, 据此可知线性方程组 AX=O有非零解. 设

$$a_1$$
, …,  $a_n$  为一个非零解,则令  $B=\begin{bmatrix} a_1 & 0 & \cdots & 0 \\ a_2 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ a_n & 0 & \cdots & 0 \end{bmatrix}$  。显然  $B$ 是一个非零的  $n\times t$ 矩阵,并且满足  $AB=O$ .

所以存在这样的非零矩阵  $B_{rxt}$ , 使得 AB = O.

- 8. 设 A 是 m×n 矩阵,B 是 n×m 矩阵,若 m>n,则必有 |AB| = 0.
- 证 由于秩 (AB)  $\leq$  秩 (A), 而 A 是一个  $m \times n$  的矩阵且 m > n, 所以秩  $(A) \leq n$ . 据此可得秩  $(AB) \leq n$ . 由于A 是  $m \times n$  矩阵,B 是  $n \times m$  矩阵,所以 AB 是一个  $m \times m$  的方阵,由于秩  $(AB) \leq n < m$ ,因此 AB 是不满秩的,因此 |AB| = 0.

9. 设 
$$A = \begin{bmatrix} 2 & -2 & 7 \\ 0 & 3 & -6 \\ 0 & 0 & 0 \end{bmatrix}$$
,  $B$ 是秩为 1 的 3 × 5 矩阵,问矩阵 $(A - E)B$ 的秩为多少?

解 由 
$$A-E=\begin{bmatrix}1 & -2 & 7\\ 0 & 2 & -6\\ 0 & 0 & -1\end{bmatrix}$$
,可知 $|A-E|=-2\neq 0$ ,所以  $A-E$ 是可逆矩阵,因此

秩((A-E)B)=秩(B)=1.

10. 设 A 为 5 × 3 矩阵

(1) 秩(
$$AA^T$$
)必\_\_\_\_\_.  $|AA^T| =$ \_\_\_\_.

- (2) 齐次线性方程组( $AA^T$ ) X = O为().
- (A) 无解;
- (B) 有惟一解;
- (C) 有无穷多解;
- (D) 解不确定,可能有解,可能无解.
- **解** (1) A 为 5 × 3 矩阵,则  $\vec{A}$  即为一个 3×5 的矩阵,利用本节第 8 个习题可知  $|\vec{A}\vec{A}|$  = 0,所以秩( $\vec{A}\vec{A}$ ) 必 小于等于 3.
  - (2)由(1)知秩( $AA^{T}$ ) $\leq 3\langle$ 未知数个数,所以必有无穷多解,所以选填 C.

## 习题 3.6

1. 设 A, B 都是 n(n > 1) 阶方 阵, k ∈ P, 且 k ≠ 0. 判断下列结论成立的是( ), 且说明理由:

(1) 若
$$|A|=0$$
,则 $A=0$ .

$$(2) |kA| = k|A|.$$

$$(3) \left| \frac{1}{|A|} A \right| = 1.$$

(4) 
$$|A + B| = |A| + |B|$$
.

(5) 
$$|AB| = |A||B|$$
.

$$(6) |\mathbf{A}^{\mathrm{T}}| = |\mathbf{A}|.$$

(7) 
$$|(\boldsymbol{A}\boldsymbol{B})^{\mathrm{T}}| = |\boldsymbol{A}^{\mathrm{T}}| |\boldsymbol{B}^{\mathrm{T}}|.$$

**解** (1) 设 $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ , 易知|A| = 0, 但 $A \neq O$ , 所以(1)不一定成立.

(2) 设
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
,  $k = 2$ , 易得  $|kA| = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 4$ ,  $k|A| = 2 \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 2$ , 此时  $|kA| \neq k|A|$ , 所以(2) 不一定成

立.

(3) 设
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
, 易得 $\begin{vmatrix} 1 \\ |A| \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{vmatrix} = \frac{1}{2} \neq 1$ , 所以(3)不一定成立.

- (4) 设 A = E, B = -E, 易得 |A + B| = |O| = 0, |A| + |B| = 2, 此时  $|A + B| \neq |A| + |B|$ , 所以 (4) 不一定成立.
- (5) (6) 都是课本中提及的性质,是成立的.
- (7)  $|(AB)^T| = |B^TA^T| = |B^T||A^T| = |A^T||B^T|$ , 所以(7)成立.

综上所述应填(5)、(6)、(7).

2. 以下命题是正确的是(), 且说明理由:

- (1) 对任何矩阵 A, 均有 $\left|AA^T\right| = \left|A^TA\right|$ .
- (2) A, B, C, D均为 n(n>1)阶方阵, 若 $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ ,

则|M| = |A|D| - |B|C|.

(3) A, B, C, D均为n阶方阵,若
$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
, 则 $M^T = \begin{bmatrix} A & C \\ B & D \end{bmatrix}$ .

- (4) A, B 为 n (n>1) 阶方阵则  $\begin{bmatrix} O & A \\ B & O \end{bmatrix} = -|A||B|$ .
- (5) A, B 为可逆矩阵,则 AXB = C有惟一解  $X = A^{-1}CB^{-1}$ .

(6) 
$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ 2 & 2 & \cdots & 2 \\ \vdots & \vdots & & \vdots \\ n & n & \cdots & n \end{bmatrix}_{n \times n} \stackrel{\text{等价于}}{=} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}_{n \times n}.$$

**解** (1) 设
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
, 则

$$|AA^{T}| = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{vmatrix} 3 & 2 \\ 2 & 2 \end{vmatrix} = 2, |A^{T}A| = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \end{vmatrix} = 0$$

显然此时  $|AA'| \neq |A'A|$ , 所以该项不一定成立.

(2) 
$$\[ \[ \] \mathcal{U} A = C = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \[ B = D = \begin{bmatrix} 2 & 2 \\ 0 & 1 \end{bmatrix}, \[ \] \[ \] M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

计算得 $|A|D-|B|C=1\times 1-2\times 2=-3$ ,而M中由于第二第四两行相同,所以|M|=0.

因此此时 $M \neq A D - B C$ ,所以此项不一定正确.

(3) 
$$M^T = \begin{bmatrix} A^T & C^T \\ B^T & D^T \end{bmatrix}$$
, 所以  $M^T = \begin{bmatrix} A & C \\ B & D \end{bmatrix}$ 不正确.

(5) 因为 A,B 为可逆矩阵,所以方程两边同左乘  $A^{-1}$ ,再右乘  $B^{-1}$  即得  $X = A^{-1}CB^{-1}$ . 所以是正确的.

(6) 因为 
$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ 2 & 2 & \cdots & 2 \\ \vdots & \vdots & & \vdots \\ n & n & \cdots & n \end{bmatrix}_{M \times n}$$
  $\xrightarrow[i=2,3,\cdots,n]{R_i-iR_i}$   $\begin{bmatrix} 1 & 1 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}_{M \times n}$  据定义知这两个矩阵等价.

综上所述应填(6).

3. 已知 A 为 3 阶方阵,
$$|A|=a\neq 0$$
,记  $G=\begin{bmatrix}O&2A\\-A&A+A\end{bmatrix}$ ,求

(1) |G|; (2)  $(G^*)^{-1}$ .

$$|G| = \begin{vmatrix} O & 2A \\ -A^* & A+A^* \end{vmatrix} = (-1)^9 |2A| |-A^*| = (-1)^{12} |2^3| |A| |A^*| = 2^3 |AA^*|$$

因为 AA' = |A|E = aE, 所以  $|AA'| = |aE| = a^3$ , 据此  $|G| = 2^3 |AA'| = 8a^3$ .

(2) 因为 $GG^* = |G|E$ ,由(1)得 $|G| = 8a^3 \neq 0$ ,所以 $GG^* = 8a^3 E$ ,因此可得

$$(\frac{1}{8a^3}G)G^* = E$$
,根据定理 3. 2. 1 的推论可知, $G^*$ 可逆,且 $(G^*)^{-1} = \frac{1}{8a^3}G$ .

- 4. 设 A是 n 阶可逆方阵,将 A的第 i行和第 j行互换后得到的矩阵记为 B.
  - (1) 证明 B是可逆矩阵; (2) 求  $AB^{-1}$ .
- (1) **证** 由题意可知  $A \xrightarrow{R_y} B$ ,所以可得 B = E(i, j)A,因 A, E(i, j) 均为可逆矩阵,所以 B也是可逆的,且  $B^{-1} = (E(i, j)A)^{-1} = A^{-1}E(i, j)^{-1} = A^{-1}E(i, j)$

(2) **$$\mathbf{k}$$**  $AB^{-1} = AA^{-1}E(i, j) = E(i, j).$ 

- 5. 设 A 为 m×n 矩阵, B 为 n×m 矩阵. 当 m>n 时证明:
- (1) 秩(AB) <m; (2) AB 不可逆;
- (3) 齐次线性方程组(AB)X = O有非零解 .

# 证 (1) 秩 $(AB) \le$ 秩 $(A_{m \times n}) \le n \le m$ .

- (2) 由于 A 是 m×n 矩阵,B 是 n×m 矩阵,所以 AB 是一个  $m \times m$  的方阵,由于秩  $(AB) \le n \le m$ ,因此 AB 是不满秩的,因此 AB 不可逆.
  - (3)由(1)知秩(AB)<m,而该线性方程组未知量的个数为m,所以必有非零解.
- 6. 设秩(*A<sub>m×n</sub>*)=r, 证明:

- (1) 存在  $B_{m \times n}$ ,  $C_{n \times n}$ , 秩 (B)=秩(C)=r, 使 A=BC;
- (2) 存在 $D_{m\times m}$ ,  $F_{m\times n}$ , 秩(D)=秩(F)=r, 使A=DF;
- (3) 存在 $R_{m\times r}$ ,  $S_{r\times n}$ , 秩(R)=秩(S)=r, 使A=RS.

证 (1) 因为秩 ( $A_{m\times n}$ )=r, 所以 A与  $\begin{bmatrix} E_r & O \\ O & O \end{bmatrix}_{m\times n}$  等价, 即存在两个可逆矩阵  $P_{m\times m}$ ,  $Q_{n\times n}$  使得

$$A = P_{m \times m} \begin{bmatrix} E_r & O \\ O & O \end{bmatrix}_{m \times n} \mathcal{Q}_{n \times n}, \quad \diamondsuit \quad B = P_{m \times m} \begin{bmatrix} E_r & O \\ O & O \end{bmatrix}_{m \times n}, \quad C = \begin{bmatrix} E_r & O \\ O & O \end{bmatrix}_{n \times n} \mathcal{Q}_{n \times n}, \quad B \rightarrow P_{m \times m}, \mathcal{Q}_{n \times n}$$
是可逆的而

 $\begin{bmatrix} E_r & O \\ O & O \end{bmatrix}_{m \times n}$ ,  $\begin{bmatrix} E_r & O \\ O & O \end{bmatrix}_{n \times n}$  的秩都为r, 所以秩 (B)=秩(C)= $\mathbf{r}$ . 并且B是 $m \times n$ 的,C是 $n \times n$ 的. 而且计算

可得

$$BC = P_{m \times m} \begin{bmatrix} E_r & O \\ O & O \end{bmatrix}_{m \times n} \begin{bmatrix} E_r & O \\ O & O \end{bmatrix}_{m \times n} \mathcal{Q}_{n \times n} = P_{m \times m} \begin{bmatrix} E_r & O \\ O & O \end{bmatrix}_{m \times n} \mathcal{Q}_{n \times n} = A.$$

(2) 只需令  $D = P_{m \times m} \begin{bmatrix} E_r & O \\ O & O \end{bmatrix}_{m \times m}$ ,  $F = \begin{bmatrix} E_r & O \\ O & O \end{bmatrix}_{m \times n}$  同 (1) 分析可知这样构造得到的  $D_{m \times m}$ ,  $F_{m \times n}$  即

为所需的两个矩阵.

(3) 只需令 
$$R = P_{m \times m} \begin{bmatrix} E_r \\ O \end{bmatrix}_{m \times r}$$
,  $S = \begin{bmatrix} E_r & O \end{bmatrix}_{r \times n} Q_{n \times n}$ , 同(1)分析可知这样构造得到的  $R_{m \times r}$ ,  $S_{r \times n}$  即为所需的

两个矩阵.

7. 设 C 为可逆矩阵,试问秩 (ACB) 与秩 (AB) 是否一定相等?或证明,或举反例.

解 设
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

计算得 
$$AB = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = O, ACB = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

显然秩(ACB)=1, 秩(AB)=0, 两者不相等. 所以秩(ACB)与秩(AB)不一定相等.

8. 设 A, B为 n 阶方阵,且秩(A)+秩(B) $\leq$ n. 证明:存在可逆矩阵 M 使 AMB=O

证 设秩(A)=r, 秩(B)=r2, 则存在四个可逆矩阵  $P_1,Q_1,P_2,Q_2$ 使得

$$A = P_1 \begin{bmatrix} E_{r_1} & O \\ O & O \end{bmatrix} \mathcal{Q}_1, \quad B = P_2 \begin{bmatrix} O & O \\ O & E_{r_2} \end{bmatrix} \mathcal{Q}_2 \text{ 成立.} \text{ 由 } r_1 + r_2 \leq n \text{ 知}, \begin{bmatrix} E_{r_1} & O \\ O & O \end{bmatrix} \begin{bmatrix} O & O \\ O & E_{r_2} \end{bmatrix} = O, \text{ 取 } M = \mathcal{Q}_1^{-1} P_2^{-1}, \text{ 则}$$

M为可逆矩阵,且

$$AMB = P_1 \begin{bmatrix} E_{r_1} & O \\ O & O \end{bmatrix} Q_1 Q_1^{-1} P_2^{-1} P_2 \begin{bmatrix} O & O \\ O & E_{r_2} \end{bmatrix} Q_2$$

$$=P_1\begin{bmatrix} E_{r_1} & O \\ O & O \end{bmatrix}\begin{bmatrix} O & O \\ O & E_{r_2} \end{bmatrix}Q_2=P_1OQ_2=O.$$

故存在可逆矩阵 M 使得 AMB = O.

## 习题 4.1

1. 设
$$\alpha = [1, -1, 0, 5]^T$$
,  $\beta = [2, 0, 7, -3]^T$ .

(1) 计算 
$$3\alpha + 2\beta$$
 及  $2\alpha - 3\beta$  ; (2) 若  $5\alpha + \gamma = 3\beta$  , 则  $\gamma =$ \_\_\_\_\_\_ ; (3) 若  $3\alpha - 2\beta + \gamma = O$  , 则  $\gamma =$ \_\_\_\_\_ ;

**A** (1) 
$$3\alpha + 2\beta = 3[1, -1, 0, 5]^T + 2[2, 0, 7, -3]^T = [7, -3, 14, 9]^T;$$
  
 $2\alpha - 3\beta = 2[1, -1, 0, 5]^T - 3[2, 0, 7, -3]^T = [-4, -2, -21, 19]^T.$ 

(2) 因为
$$5\alpha + \gamma = 3\beta$$
,所以

$$\gamma = 3\beta - 5\alpha = 3[2, 0, 7, -3]^{T} - 5[1, -1, 0, 5]^{T} = [1, 5, 21, -34]^{T}$$

(3) 因为
$$3\alpha - 2\beta + \gamma = 0$$
, 所以

$$\gamma = 2\beta - 3\alpha = 2[2, 0, 7, -3]^T - 3[1, -1, 0, 5]^T = [1, 3, 14, -2]^T$$

2. 设 
$$3\alpha + 4\beta = [2, 1, 1, 2]^T$$
,  $2\alpha + 3\beta = [-1, 2, 3, 1]^T$ ,则  $\alpha = ______$ ;  $\beta = ______$ ;

$$\mathbf{A}\mathbf{A}\mathbf{B} = \begin{bmatrix} 2, & 1, & 1, & 2 \end{bmatrix}^T \tag{1}$$

$$2\alpha + 3\beta = \begin{bmatrix} -1, & 2, & 3, & 1 \end{bmatrix}^T$$
 (2)

(1) 
$$\times 2^{-}(2) \times 3$$
  $\beta - \beta = 2[2, 1, 1, 2]^{T} - 3[-1, 2, 3, 1]^{T} = [7, -4, -7, 1]^{T}$ 

所以
$$\beta = \begin{bmatrix} -7, 4, 7, -1 \end{bmatrix}^T$$
. 把 $\beta$ 代入(1)式可得

$$3\alpha = \begin{bmatrix} 2 & 1 & 1 \\ 2 \end{bmatrix}^T - 4\begin{bmatrix} -7 & 4 & 7 & -1 \end{bmatrix}^T = \begin{bmatrix} 30 & -15 & -27 & 6 \end{bmatrix}^T$$

所以 $\alpha = [10, -5, -9, 2]^T$ .

3. 没
$$\varepsilon_1 = \begin{bmatrix} 1, & 0, & 0, & \cdots, & 0 \end{bmatrix}^T$$
,  $\varepsilon_2 = \begin{bmatrix} 0, & 1, & 0, & \cdots, & 0 \end{bmatrix}^T$ ,  $\cdots$ ,

$$\boldsymbol{\varepsilon}_{n-1} = \begin{bmatrix} 0, & 0, & \cdots, & 1, & 0 \end{bmatrix}^T, \quad \boldsymbol{\varepsilon}_n = \begin{bmatrix} 0, & 0, & \cdots, & 0, & 1 \end{bmatrix}^T,$$

$$\vec{x} a_1 \varepsilon_1 + a_2 \varepsilon_2 + \dots + a_{n-1} \varepsilon_{n-1} + a_n \varepsilon_n.$$

**M** 
$$a_1\varepsilon_1 + a_2\varepsilon_2 + \cdots + a_{n-1}\varepsilon_{n-1} + a_n\varepsilon_n$$

$$= a_1 \begin{bmatrix} 1, & 0, & 0, & \cdots, & 0 \end{bmatrix}^T + a_2 \begin{bmatrix} 0, & 1, & 0, & \cdots, & 0 \end{bmatrix}^T + \cdots + a_n \begin{bmatrix} 0, & 0, & \cdots, & 0, & 1 \end{bmatrix}^T$$

$$= \begin{bmatrix} a_1, & 0, & 0, & \cdots, & 0 \end{bmatrix}^T + \begin{bmatrix} 0, & a_2, & 0, & \cdots, & 0 \end{bmatrix}^T + \cdots + \begin{bmatrix} 0, & 0, & \cdots, & 0, & a_n \end{bmatrix}^T$$

$$= \begin{bmatrix} a_1, & a_2, & a_3, & \cdots, & a_n \end{bmatrix}^T$$

4. 证明: 性质 4.1.1.

证 (1) 设
$$\alpha = [a_1, a_2, \cdots, a_n]^T$$
,则

$$0\alpha = 0[a_1, a_2, \cdots a_n]^T = [0a_1, 0a_2, \cdots 0a_n]^T = [0, 0, \cdots 0]^T = O$$

(2) 
$$kO = k[0, 0, \cdots, 0]^T = [k0, k0, \cdots, k0]^T = O$$

(3) 设
$$\alpha = [a_1, a_2, \cdots, a_n]^T$$
,则

$$(-k)\alpha = (-k)[a_1, a_2, \cdots a_n]^T = [(-k)a_1, (-k)a_2, \cdots (-k)a_n]^T$$

$$= \begin{cases} k[(-1)a_1, & (-1)a_2, & \cdots & (-1)a_n]^T = k(-\alpha), \\ (-1)[ka_1, & ka_2, & \cdots & ka_n]^T = (-1)(k\alpha). \end{cases}$$

(4) 设
$$\alpha = [a_1, a_2, \cdots, a_n]^T$$
, 若  $k\alpha = 0$ , 即有

$$k\alpha = k[a_1, a_2, \cdots, a_n]^T = [ka_1, ka_2, \cdots, ka_n]^T = O$$

根据向量相等的定义得

$$\begin{cases} k\alpha_1 = 0, \\ k\alpha_2 = 0, \\ \vdots \\ k\alpha_n = 0. \end{cases}$$
 显然当  $k = 0$  时等式都成立,若  $k \neq 0$  则必有 
$$\begin{cases} \alpha_1 = 0, \\ \alpha_2 = 0, \\ \vdots \\ \alpha_n = 0. \end{cases}$$
 即  $\alpha = O$ .

- 5. 对任意的 n 元向量 $\alpha$ ,  $\beta$ , 数域 P 中任意的数 k, 证明
- (1)  $k(\alpha \beta) = k\alpha k\beta$ ;
- (2)  $(k-t)\alpha = k\alpha t\alpha$ .

证 (1) 设
$$\alpha = [a_1, a_2, \cdots, a_n]^T, \beta = [b_1, b_2, \cdots, b_n]^T, 则$$

$$k(\alpha - \beta) = k([a_1, a_2, \cdots, a_n]^T - [b_1, b_2, \cdots, b_n]^T)$$

$$= k([a_1 - b_1, a_2 - b_2, \dots, a_n - b_n]^T) = [k(a_1 - b_1), k(a_2 - b_2), \dots, k(a_n - b_n)]^T$$

$$= \begin{bmatrix} ka_1 - kb_1, & ka_2 - kb_2, & \dots, & ka_n - kb_n \end{bmatrix}^T$$

$$= [ka_1, ka_2, \dots, ka_n]^T - [kb_1, kb_2, \dots, kb_n]^T$$

$$= k[a_1, a_2, \dots, a_n]^T - k[b_1, b_2, \dots, b_n]^T = k\alpha - k\beta.$$

(2) 
$$(k-t)\alpha = (k-t)[a_1, a_2, \dots, a_n]^T = [(k-t)a_1, (k-t)a_2, \dots, (k-t)a_n]^T$$
  

$$= [ka_1 - ta_1, ka_2 - ta_2, \dots, ka_n - ta_n]^T = [ka_1, ka_2, \dots, ka_n]^T - [ta_1, ta_2, \dots, ta_n]^T$$

$$= k[a_1, a_2, \dots, a_n]^T - t[a_1, a_2, \dots, a_n]^T = k\alpha - t\alpha.$$

## 习题 4.2

- 1. 指出下述论断正确的是( ), 并说明理由.
- (A) 如果当  $k_1 = k_2 = \cdots = k_r = 0$ 时, $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_r\alpha_r = 0$ ,则  $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性无关.
- (B) 若 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性相关,则存在全不为零的数 $k_1, k_2, \cdots, k_r$ ,使得  $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_r\alpha_r = O$ .
- (C) 若 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性无关, $\beta_1, \beta_2, \dots, \beta_s$ 线性无关,则 $\alpha_1, \alpha_2, \dots, \alpha_r, \beta_1, \beta_2, \dots, \beta_s$ 线性无关.
- (D) 若 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性无关,则其中每一个向量都不是其余向量的线性组合.

**解** (A) 设 
$$\alpha_1 = \begin{bmatrix} 1, & 0 \end{bmatrix}^T, \alpha_2 = \begin{bmatrix} 2, & 0 \end{bmatrix}^T$$
 , 显 然  $k_1\alpha_1 + k_2\alpha_2 = 0\alpha_1 + 0\alpha_2 = O$  , 但 是  $-2\alpha_1 + \alpha_2 = -2\begin{bmatrix} 1, & 0 \end{bmatrix}^T + \begin{bmatrix} 2, & 0 \end{bmatrix}^T = O$ ,说明  $\alpha_1, \alpha_2$  是线性相关的,所以该结论不正确.

- (B) 根据线性相关的定义,只要求存在不全为零的数  $k_1,k_2,\cdots,k_r$ ,使得  $k_1\alpha_1+k_2\alpha_2+\cdots+k_r\alpha_r=O$ . 所以该选项也是不正确的.
  - (C) 设 $\alpha_1 = \begin{bmatrix} 1, & 0 \end{bmatrix}^T$ ,  $\alpha_2 = \begin{bmatrix} 0, & 1 \end{bmatrix}^T$ , 显然 $\alpha_1, \alpha_2$ 线性无关.

再设  $\beta_1 = \begin{bmatrix} 2, & 0 \end{bmatrix}^T$ ,  $\beta_2 = \begin{bmatrix} 0, & 2 \end{bmatrix}^T$ , 显然  $\beta_1$ ,  $\beta_2$  也是线性无关的. 但是对于  $\alpha_1$ ,  $\alpha_2$ ,  $\beta_1$ ,  $\beta_2$  有  $-2\alpha_1 - 2\alpha_2 + \beta_1 + \beta_2 = O$ 成立,所以  $\alpha_1$ ,  $\alpha_2$ ,  $\beta_1$ ,  $\beta_2$  线性相关. 该选项也不正确.

(D) 正确 . (反证)假设  $\alpha_i$  能被  $\alpha_1,\alpha_2,\cdots\alpha_{i-1},\alpha_{i+1},\cdots\alpha_r$  线性表示,则存在不全为零的数组  $k_1,\cdots,k_{i-1},k_{i+1},\cdots,k_r$  使得 $\alpha_i=k_1\alpha_1+\cdots+k_{i-1}\alpha_{i-1}+k_{i+1}\alpha_{i+1}+\cdots+k_r\alpha_r$ 成立,这样就有

 $k_1\alpha_1+\cdots+k_{i-1}\alpha_{i-1}+k_{i+1}\alpha_{i+1}+\cdots+k_r\alpha_r-\alpha_i=O$ ,所以 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 线性相关,而这与题设矛盾,所以向量组线性无关时其中每一个向量都不是其余向量的线性组合这个结论是正确的.

综上所述应选填D.

2. 试将向量  $\beta$  表示成向量  $\alpha_1,\alpha_2,\alpha_3,\alpha_4$  的线性组合:

(1) 
$$\beta = \begin{bmatrix} 1, & 2, & 1, & 1 \end{bmatrix}^T$$
,  $\alpha_1 = \begin{bmatrix} 1, & 1, & 1, & 1 \end{bmatrix}^T$ ,  $\alpha_2 = \begin{bmatrix} 1, & 1, & -1, & -1 \end{bmatrix}^T$ ,  $\alpha_3 = \begin{bmatrix} 1, & -1, & 1, & -1 \end{bmatrix}^T$ ,  $\alpha_4 = \begin{bmatrix} 1, & -1, & -1, & 1 \end{bmatrix}^T$ ;

(2) 
$$\beta = \begin{bmatrix} 0, & 2, & 0, & -1 \end{bmatrix}^T$$
,  $\alpha_1 = \begin{bmatrix} 1, & 1, & 1, & 1 \end{bmatrix}^T$ ,  $\alpha_2 = \begin{bmatrix} 1, & 1, & 1, & 0 \end{bmatrix}^T$ ,  $\alpha_3 = \begin{bmatrix} 1, & 1, & 0, & 0 \end{bmatrix}^T$ ,  $\alpha_4 = \begin{bmatrix} 1, & 0, & 0, & 0 \end{bmatrix}^T$ .

**解** (1) 向量  $\beta$  表示成向量组的线性组合的表达式系数即为线性方程组  $\left[\alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4}\right]X = \beta$  的解,所以 先求解该线性方程组. 为此用初等行变换化系数矩阵为阶梯形:

求得解为 
$$\begin{cases} x_1 = \frac{5}{4}, \\ x_2 = \frac{1}{4}, \\ x_3 = -\frac{1}{4}, \\ x_4 = -\frac{1}{4}, \end{cases}$$
 所以表达式为  $\beta = \frac{5}{4}\alpha_1 + \frac{1}{4}\alpha_2 - \frac{1}{4}\alpha_3 - \frac{1}{4}\alpha_4.$ 

(2) 向量  $\beta$  表示成向量组的线性组合的表达式系数即为线性方程组  $\left[\alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4}\right]X = \beta$  的解,所以先求解该线性方程组.为此用初等行变换化系数矩阵为阶梯形:

$$\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \beta \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 2 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -2 \end{bmatrix},$$

求得解为 
$$\begin{cases} x_1 = -1, \\ x_2 = 1, \\ x_3 = 2, \\ x_4 = -2, \end{cases}$$
 所以表达式为  $\beta = -\alpha_1 + \alpha_2 + 2\alpha_3 - 2\alpha_4.$ 

问 a=\_\_\_\_\_\_时,  $\beta$  可经  $\alpha_1,\alpha_2,\alpha_3$  线性表示? 为什么? a 取值为\_\_\_\_\_\_时,  $\beta$  不能经  $\alpha_1,\alpha_2,\alpha_3$  线性表示? 为什么?

**分析** 判断 向量  $\beta$  是否能 被 向量组  $\alpha_1,\alpha_2,\alpha_3$  线性表示  $\Leftrightarrow$   $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix} X = \beta$  是否有解  $\Leftrightarrow$  矩阵  $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix}$ 的秩是否与矩阵 $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \beta \end{bmatrix}$ 的秩相同.

**解** 对矩阵 $[\alpha_1 \ \alpha_2 \ \alpha_3 \ \beta]$ 作初等行变换化为阶梯形:

$$\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \beta \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 & \vdots & 7 \\ 3 & 7 & -6 & \vdots -2 \\ 5 & 8 & 1 & \vdots & a \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & -1 & \vdots & 1 \\ 0 & 1 & -3 & \vdots & -5 \\ 0 & 0 & 0 & \vdots a - 15 \end{bmatrix}.$$

当a=15时,秩( $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix}$ )=秩( $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \beta \end{bmatrix}$ )=2,所以 $\beta$ 能被向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性表示;

当  $a \neq 15$  时,秩  $([\alpha_1 \quad \alpha_2 \quad \alpha_3])$  = 2,秩  $([\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \beta])$  = 3,两者不相等,所以  $\beta$  不能被向量组  $\alpha_1,\alpha_2,\alpha_3$  线性表示.

综上知第1空格填15,第2空格填不等于15.

4. \*
$$\ \beta = [1, 1, b+3, 5]^T, \ \alpha_1 = [1, 0, 2, 3]^T, \ \alpha_2 = [1, 1, 3, 5]^T,$$

$$\alpha_3 = [1, -1, a+2, 1]^T, \alpha_4 = [1, 2, 4, a+8]^T.$$

- (1) a,b 为何值时, $\beta$  不能经 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$  线性表示?
- (2) a,b 为何值时,  $\beta$  能经  $\alpha_1,\alpha_2,\alpha_3,\alpha_4$  线性表示? 并写出该线性表示式.

**解** (1) 如上题解分析知,可对矩阵 $\left[\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4 \quad \beta\right]$ 作初等行变换化为阶梯形:

$$\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \beta \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & \vdots & 1 \\ 0 & 1 & -1 & 2 & \vdots & 1 \\ 2 & 3 & a+2 & 4 & \vdots b+3 \\ 3 & 5 & 1 & a+8 & \vdots & 5 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & \vdots & 1 \\ 0 & 1 & -1 & 2 & \vdots & 1 \\ 0 & 0 & a+1 & 0 & \vdots & b \\ 0 & 0 & 0 & a+1 & \vdots & 0 \end{bmatrix}$$

(1) 当a = -1时, $b \neq 0$ ,则秩( $\left[\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4\right]$ )=2,

秩 $([\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4 \quad : \beta])$ =3, 两者不相等, 所以此时不能线性表示.

(2) 当a=-1 时,b=0,秩( $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix}$ )=2=秩( $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \beta \end{bmatrix}$ ),所以此时能线性表示,表达式系数即为线性方程组 $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix}$  $X=\beta$ 的解。由方程组得解为

$$\begin{cases} x_1 = t_1 - 2t_2, \\ x_2 = 1 - 2t_1 + t_2, \\ x_3 = t_2, \\ x_4 = t_1. \end{cases}$$
 (其中  $t_1, t_2$  为任意常数)

故表达式为  $\beta = (t_1 - 2t_2)\alpha_1 + (1 - 2t_1 + t_2)\alpha_2 + t_2\alpha_3 + t_1\alpha_4$  (其中  $t_1, t_2$  为任意常数).

当
$$a \neq -1$$
时,秩( $\left[\alpha_{1} \ \alpha_{2} \ \alpha_{3} \ \alpha_{4}\right]$ )=4=秩( $\left[\alpha_{1} \ \alpha_{2} \ \alpha_{3} \ \alpha_{4} \ \beta\right]$ ),所以也能线性表示。表达式系数 
$$\begin{cases} x_{1} = \frac{-2b}{a+1}, \\ x_{2} = 1 + \frac{b}{a+1}, \\ x_{3} = \frac{b}{a+1}, \\ x_{4} = 0. \end{cases}$$
 的解,由方程组解为

$$\beta = \frac{-2b}{a+1}\alpha_1 + (1 + \frac{b}{a+1})\alpha_2 + \frac{b}{a+1}\alpha_3.$$

5. 指出下列向量组线性相关的是(), 并说明理由.

(1) 
$$\alpha_1 = \begin{bmatrix} 2 & 2 & 7 & -1 \end{bmatrix}^T$$
,  $\alpha_2 = \begin{bmatrix} 3 & -1 & 2 & 4 \end{bmatrix}^T$ ,  $\alpha_3 = \begin{bmatrix} 1 & 1 & 3 & 1 \end{bmatrix}^T$ ;

(2) 
$$\alpha_1 = \begin{bmatrix} 4 & 3 & -1 & 1 \\ & -1 \end{bmatrix}^T$$
,  $\alpha_2 = \begin{bmatrix} 2 & 1 & -3 & 2 & -5 \end{bmatrix}^T$ ,

$$\alpha_3 = \begin{bmatrix} 1, & -3, & 0, & 1, & -2 \end{bmatrix}^T, \quad \alpha_4 = \begin{bmatrix} 1, & 5, & 2, & -2, & 6 \end{bmatrix}^T.$$

**分析** 判断向量组是否线性相关只需要看由该向量组构成的矩阵的秩是否小于向量的个数.

对矩阵  $[\alpha_1 \quad \alpha_2 \quad \alpha_3]$  作初等变换求秩:

$$\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 \\ 2 & -1 & 1 \\ 7 & 2 & 3 \\ -1 & 4 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & 3 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

这表明该矩阵的秩为 3 与向量个数相同, 所以该向量组线性无关.

(2) 对矩阵  $[\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4 ]$  作初等变换求秩:

$$\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 1 & 1 \\ 3 & 1 & -3 & 5 \\ -1 & -3 & 0 & 2 \\ 1 & 2 & 1 & -2 \\ -1 & -5 & -2 & 6 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 1 & -2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

该矩阵的秩为3小于向量的个数4, 所以该向量组线性相关 综上知应填(2).

6. 设 $\alpha_1 = \begin{bmatrix} 1, & 2, & 3 \end{bmatrix}^T$ ,  $\alpha_2 = \begin{bmatrix} 2, & 1, & 6 \end{bmatrix}^T$ ,  $\alpha_3 = \begin{bmatrix} 3, & 4, & a \end{bmatrix}^T$ . 问a =\_\_\_\_\_\_时 $\alpha_1, \alpha_2, \alpha_3$ 线性相关? a取值为. 时 $\alpha_1,\alpha_2,\alpha_3$ 线性无关? 为什么?

$$\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 6 & a \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -2 \\ 0 & 0 & a - 9 \end{bmatrix}$$

当a≠9时,该矩阵的秩为3与向量个数相同,所以向量组线性无关; 当a=9时,该矩阵的秩为2小于向量个数3,所以向量组线性相关; 综上所述第1空格填9,第2空格填不等于9.

7. \* 设
$$\alpha_1 = [4, a_1, 0, 0]^T, \alpha_2 = [4, a_2, 4, 0]^T$$

$$\alpha_3 = [4, a_3, 4, 4]^T, \alpha_4 = [4, a_4, 0, 4]^T.$$

在 $a_1, a_2, a_3, a_4$ 可任意选取时,下列结论正确的是( ),并说明理由.

- (A)  $\alpha_1,\alpha_2,\alpha_3$  必线性相关.
- (B)  $\alpha_1, \alpha_2, \alpha_3$  必线性无关.
- (C)  $\alpha_1, \alpha_2, \alpha_3, \alpha_4$  必线性无关. (D)  $\alpha_1, \alpha_2, \alpha_3, \alpha_4$  必线性相关.

**解** 如第 5 题分析,计算矩阵 $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ 0 & 4 & 4 \\ 0 & 0 & 4 \end{bmatrix}$ 的秩,因为该矩阵的第一第三第四行第一第二第三

列交叉元素构成的 3 阶子式  $\begin{vmatrix} 4 & 4 & 4 \\ 0 & 4 & 4 \\ 0 & 0 & 4 \end{vmatrix} = 64 \neq 0$ ,所以这个矩阵的秩至少为 3,同时考虑到该矩阵列数为 3,因此

该矩阵的秩为 3 等于向量组中向量的个数,因此 $\alpha_1,\alpha_2,\alpha_3$ 必线性无关. 因此(B)是正确的,而(A)是错误的.

再计算矩阵, 
$$\left[\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4\right] = \begin{bmatrix} 4 & 4 & 4 & 4 \\ a_1 & a_2 & a_3 & a_4 \\ 0 & 4 & 4 & 0 \\ 0 & 0 & 4 & 4 \end{bmatrix}$$
的秩,

该矩阵的秩和  $a_1, a_2, a_3, a_4$  的取值有关,当  $a_1 = a_2 = a_3 = a_4 = 0$  时秩为 3,当  $a_1 = a_2 = a_3 = 0, a_4 = 1$  时秩为 4.而 当秩为3时矩阵的秩小于向量个数,此时向量组线性相关;而当秩为4时矩阵的秩等于向量的个数,此时向量组 线性无关. 因此选项(C),(D)都不正确.

综上所述应选填B.

8. 设 $\alpha_1,\alpha_2,\alpha_3$ 是线性无关的向量组,判断下述 $\beta_1,\beta_2,\beta_3$ 是线性相关,还是线性无关:

(1) 
$$\beta_1 = \alpha_1 - \alpha_2$$
,  $\beta_2 = \alpha_2 - \alpha_3$ ,  $\beta_3 = \alpha_3 - \alpha_1$ ;

(2) 
$$\beta_1 = \alpha_1 + \alpha_2$$
,  $\beta_2 = \alpha_2 + \alpha_3$ ,  $\beta_3 = \alpha_3 - \alpha_1$ ;

(3) 
$$\beta_1 = \alpha_1 - \alpha_2$$
,  $\beta_2 = \alpha_2 - \alpha_3$ ,  $\beta_3 = \alpha_3 - t\alpha_1$ .

**解** (1) 设 $k_1, k_2, k_3$ 满足 $k_1\beta_1 + k_2\beta_2 + k_3\beta_3 = O$ ,则有

$$k_1(\alpha_1 - \alpha_2) + k_2(\alpha_2 - \alpha_3) + k_3(\alpha_3 - \alpha_1) = O$$

因为  $\alpha_1,\alpha_2,\alpha_3$  线性无关,所以必有  $\begin{cases} k_1-k_3=0\\ k_2-k_1=0 \end{cases}$  又因为该齐次线性方程组的系数矩阵的行列式  $k_3-k_2=0$ 

$$\begin{vmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{vmatrix} = 0$$
,所以方程组有非零解,即存在不全为零的  $k_1, k_2, k_3$  满足  $k_1 \beta_1 + k_2 \beta_2 + k_3 \beta_3 = O$ , 因此

 $\beta_1$ , $\beta_2$ , $\beta_3$ 线性相关.

(2) 设 $k_1, k_2, k_3$ 满足 $k_1\beta_1 + k_2\beta_2 + k_3\beta_3 = O$ ,则有

$$k_1(\alpha_1 + \alpha_2) + k_2(\alpha_2 + \alpha_3) + k_3(\alpha_3 - \alpha_1) = 0$$
,

因为  $\alpha_1,\alpha_2,\alpha_3$  线性无关,所以必有  $\begin{cases} k_1-k_3=0,\\ k_2+k_1=0, \end{cases}$  又因为该齐次线性方程组的系数矩阵的行列式  $k_2+k_3=0.$ 

$$\begin{vmatrix} 1 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = 0$$
,所以方程组有非零解,即存在不全为零的  $k_1,k_2,k_3$  满足  $k_1\beta_1+k_2\beta_2+k_3\beta_3=O$ , 因此

 $\beta_1,\beta_2,\beta_3$ 线性相关.

(3) 设 $k_1, k_2, k_3$ 满足 $k_1\beta_1 + k_2\beta_2 + k_3\beta_3 = O$ ,则有

$$k_1(\alpha_1 - \alpha_2) + k_2(\alpha_2 - \alpha_3) + k_3(\alpha_3 - t\alpha_1) = O,$$

因为  $\alpha_1,\alpha_2,\alpha_3$  线性无关,所以必有  $\begin{cases} k_1-tk_3=0\\ k_2-k_1=0 \end{cases}$  ,又因为该齐次线性方程组的系数矩阵的行列式  $k_3-k_2=0$ 

此时  $\beta_1,\beta_2,\beta_3$  线性无关. 当 t=1 时, 方程组有非零解, 故此时  $\beta_1,\beta_2,\beta_3$  线性相关.

9. 判断向量组 $\alpha_1 = \begin{bmatrix} 1, & 1, & 1 \end{bmatrix}^T$ ,  $\alpha_2 = \begin{bmatrix} a, & b, & c, & d \end{bmatrix}^T$ ,

$$\alpha_3 = \begin{bmatrix} a^2, & b^2, & c^2, & d^2 \end{bmatrix}^T, \alpha_4 = \begin{bmatrix} a^3, & b^3, & c^3, & d^3 \end{bmatrix}^T.$$

线性相关还是线性无关,要求说明理由(其中a,b,c,d为互异的数).

解 如第 5 题分析,计算矩阵  $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix}$ 的秩,因为  $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix}^T = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix}^T = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix}^T = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix}^T = 0$ . 因此  $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix}^T = 0$ . 因此  $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix}^T = 0$ . 据此可知  $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix}$ 是满秩的,即秩为 4,与向量个数相同,所以该向量组线性无关.

## 习题 4.3

1. 求下列向量组的秩与一个极大线性无关组:

(1) 
$$\alpha_1 = \begin{bmatrix} 2 & 1 & 3 & -1 \end{bmatrix}^T$$
,  $\alpha_2 = \begin{bmatrix} 3 & -1 & 2 & 0 \end{bmatrix}^T$ ,  $\alpha_3 = \begin{bmatrix} 1 & 3 & 4 & -2 \end{bmatrix}^T$ ,  $\alpha_4 = \begin{bmatrix} 4 & -3 & 1 & 1 \end{bmatrix}^T$ .

(2) 
$$\alpha_1 = \begin{bmatrix} 1, & 1, & 1 \end{bmatrix}^T$$
,  $\alpha_2 = \begin{bmatrix} 1, & 1, & -1, & -1 \end{bmatrix}^T$ ,  $\alpha_3 = \begin{bmatrix} 1, & -1, & -1, & 1 \end{bmatrix}^T$ ,  $\alpha_4 = \begin{bmatrix} -1, & -1, & -1, & 1 \end{bmatrix}^T$ .

(3) 
$$\alpha_1 = \begin{bmatrix} 1, & -1, & 2, & 4 \end{bmatrix}^T$$
,  $\alpha_2 = \begin{bmatrix} 0, & 3, & 1, & 2 \end{bmatrix}^T$ ,  $\alpha_3 = \begin{bmatrix} 3, & 0, & 7, & 14 \end{bmatrix}^T$ ,  $\alpha_4 = \begin{bmatrix} 1, & -1, & 2, & 0 \end{bmatrix}^T$ ,  $\alpha_5 = \begin{bmatrix} 2, & 1, & 5, & 6 \end{bmatrix}^T$ .

**分析** 向量组的秩等于该向量组构成的矩阵的秩,所以求向量组的秩可以转化为求矩阵的秩. 先把向量构成矩阵通过矩阵的初等行变换成阶梯形, 通过阶梯形便可得到矩阵的秩, 它也就是该向量组的秩, 而阶梯形的阶梯头所在的列对应的向量便构成该向量组的一个极大线性无关组.

所以该向量组的秩为 2,且 $\alpha_1$ , $\alpha_2$ 为它的一个极大线性无关组.

所以该向量组的秩为 4,且 $\alpha_1$ , $\alpha_2$ , $\alpha_3$ , $\alpha_4$ 为它的一个极大线性无关组.

$$(3) \ \left[\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4 \quad \alpha_5\right] = \begin{bmatrix} 1 & 0 & 3 & 1 & 2 \\ -1 & 3 & 0 & -1 & 1 \\ 2 & 1 & 7 & 2 & 5 \\ 4 & 2 & 14 & 0 & 6 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 3 & 1 & 2 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

所以该向量组的秩为 3,且 $\alpha_1$ , $\alpha_2$ , $\alpha_4$ 为它的一个极大线性无关组.

2. 计算下列向量组的秩,并判断该向量组是否线性相关.

(1) 
$$\alpha_1 = \begin{bmatrix} 1, & -1, & 2, & 3, & 4 \end{bmatrix}^T$$
,  $\alpha_2 = \begin{bmatrix} 3, & -7, & 8, & 9, & 13 \end{bmatrix}^T$ ,  $\alpha_3 = \begin{bmatrix} -1, & -3, & 0, & -3, & -3 \end{bmatrix}^T$ ,  $\alpha_4 = \begin{bmatrix} 1, & -9, & 6, & 3, & 6 \end{bmatrix}^T$ .

(2) 
$$\beta_1 = \begin{bmatrix} 1, & -3, & 2, & -1 \end{bmatrix}^T$$
,  $\beta_2 = \begin{bmatrix} -2, & 1, & 5, & 3 \end{bmatrix}^T$ ,  $\beta_3 = \begin{bmatrix} 4, & -3, & 7, & 1 \end{bmatrix}^T$ ,  $\beta_4 = \begin{bmatrix} -1, & -11, & 8, & -3 \end{bmatrix}^T$ ,  $\beta_5 = \begin{bmatrix} 2, & -12, & 30, & 6 \end{bmatrix}^T$ .

所以该向量组的秩为 2, 小于向量的个数 4, 所以线性相关.

$$(2) \begin{bmatrix} \beta_1 & \beta_2 & \beta_3 & \beta_4 & \beta_5 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 4 & -1 & 2 \\ -3 & 1 & -3 & -11 & -12 \\ 2 & 5 & 7 & 8 & 30 \\ -1 & 3 & 1 & -3 & 6 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -2 & 4 & -1 & 2 \\ 0 & 1 & 5 & -4 & 8 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

所以该向量组的秩为3,小于向量的个数5,所以线性相关。

3. 
$$\[ \[ \] \] \alpha_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \alpha_2 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \quad \alpha_3 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \quad \alpha_3 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}, \quad \alpha_4 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

- (1)  $\lambda$ 取何值时 $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$ 线性相关?  $\lambda$ 取何值时 $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$ 线性无关? 为什么?
- (2)  $\lambda$  取何值时 $\alpha$ ,能经 $\alpha_1$ ,  $\alpha_2$ 线性表示? 且写出表达式.

$$\mathbf{R} \quad (1) \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & \lambda \\ -1 & \lambda & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & \lambda + 2 & 2 \\ 0 & 0 & \lambda - 2 \end{bmatrix}$$

当 $\lambda \neq 2$ 且 $\lambda \neq -2$ 时,矩阵的秩为3与向量个数相同,所以此时该向量组线性无关. 当 $\lambda = 2$ 或 $\lambda = -2$ 时,矩阵的秩为2小于向量个数,所以此时向量组线性相关.

(3) 当 $\lambda = 2$ 时,秩( $\begin{bmatrix} \alpha_1 & \alpha_2 \end{bmatrix}$ )=秩( $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix}$ )=2,此时 $\alpha_3$ 能经 $\alpha_1$ , $\alpha_2$ 线性表示.

表达式的系数为方程组 $\begin{bmatrix} \alpha_1 & \alpha_2 \end{bmatrix} X = \alpha_3$ 的解,而此时该方程组的解为  $\begin{cases} x_1 = 0, \\ x_2 = \frac{1}{2}. \end{cases}$ 

所以表达式为 $\alpha_3 = \frac{1}{2}\alpha_2$ .

当 $\lambda = -2$ 时,秩( $\begin{bmatrix} \alpha_1 & \alpha_2 \end{bmatrix}$ )=1,秩( $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix}$ )=2,两者不相等,所以不能线性表示.

当 $\lambda \neq 2$ 且 $\lambda \neq -2$ 时,秩( $\begin{bmatrix} \alpha_1 & \alpha_2 \end{bmatrix}$ )=2,秩( $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix}$ )=3,两者不相等,所以不能线性表示.

- 4. 下述结论不正确的是(), 且说明理由.
- (A) 秩为 4 的 4 × 5 矩阵的行向量组必线性无关.
- (B) 可逆矩阵的行向量组和列向量组均线性无关.
- (C) 秩为 r(r < n)的  $m \times n$  矩阵的列向量组必线性相关.
- (D) 凡行向量组线性无关的矩阵必为可逆矩阵.
- **解** (A) 正确. 如果行向量组线性相关则行向量组的秩必小于行向量的个数 4, 即矩阵的行秩小于 4, 而矩阵的行秩等于矩阵的秩, 因此矩阵的秩小于 4, 这与矩阵的秩为 4 矛盾! 所以行向量组必线性无关.
- (B) 正确. 可逆矩阵必为满秩矩阵,即 $n \times n$ 的可逆矩阵的秩为n,而矩阵的秩等于行秩和列秩,所以矩阵的行秩=列秩=n,因此行向量组的秩和所含向量个数相同,据此可知该行向量组必线性无关;同理列向量组也必线性无关.
- (C) 正确. 列向量组含有n个向量,又由于列向量组的秩(即列秩)等于矩阵的秩r,而r < n,即列向量组的秩小于向量组所含向量的个数、据此列向量组必线性相关.
  - (D) 设  $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ , 易知该矩阵的行向量组线性无关,但是它不是方阵,所以不是可逆矩阵. 所以该选

项不正确.

综上所述应选 D.

# 习题 4.4

- 1. 下述命题正确的是(), 且说明理由.
- (A) 凡行向量组线性相关的矩阵,它的列向量组也线性相关.
- (B) 秩为r(r < n)的n阶方阵的任意r个行向量均线性无关.

- (C) 若 $m \times n$ 矩阵 A的秩 r(r < n), 则非齐次线性方程组 AX = b必有无穷多个解.
- (D) 若 $m \times n$ 矩阵 A的秩 r(r < n),则齐次线性方程组 AX = O必有无穷多个解,且基础解系有 n r 个线性无 关解向量组成.
- (A) 设  $A = \begin{vmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{vmatrix}$ , 行向量是线性相关的,但是列向量线性无关,所以(A)不正确.
  - (B) 设 $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ , 则秩(A)=2, 但是显然第二第三行两个向量线性相关,所以该项不正确.
  - (C) 设  $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ ,  $b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ , A的秩为 2<3, 但是系数矩阵的秩 2 不等于增广矩阵的秩 3, 方程无解,所

以该项不正确.

- (D) 根据定理 2.3.2 直接可以得到该选项是正确的.
- 2. 将习题 2. 3 第 1 题中的齐次线性方程组的通解用基础解系表示, 将该题有解的非齐次线性方程组的通解用其导 出组的基础解系来表示.

(1) 无解. 解

(2) 方程组有唯一解, 
$$x_1 = -8, x_2 = 3, x_3 = 6, x_4 = 0.$$

所以通解为
$$\eta = [-8, 3, 6, 0]^T$$
.

(3) 解为 
$$\begin{cases} x_1 = 2t_1 - t_2, \\ x_2 = t_1, \\ x_3 = t_2, \\ x_4 = 1, \end{cases}$$
 其中 $t_1, t_2$ 为任意常数.

所以通解为  $\eta = \begin{bmatrix} 0, & 0, & 1 \end{bmatrix}^T + t_1 \begin{bmatrix} 2, & 1, & 0, & 0 \end{bmatrix}^T + t_2 \begin{bmatrix} -1, & 0, & 1, & 0 \end{bmatrix}^T$  (其中 $t_1, t_2$ 为任意常数).

(4) 解为 
$$\begin{cases} x_1 = 3 - 2t_1 - 2t_2, \\ x_2 = -2 + 3t_1 + 3t_2, \\ x_3 = t_1, \\ x_4 = t_2, \end{cases}$$
 其中  $t_1, t_2$  为任意常数.

所以通解为  $\eta = \begin{bmatrix} 3, & -2, & 0, & 0 \end{bmatrix}^T + t_1 \begin{bmatrix} -2, & 3, & 1, & 0 \end{bmatrix}^T + t_2 \begin{bmatrix} -2, & 3, & 0, & 1 \end{bmatrix}^T$  (其中  $t_1, t_2$  为任意常数).

(5) 解为 
$$\begin{cases} x_1 = 0, \\ x_2 = t, \\ x_3 = 2t, \\ x_4 = t, \end{cases}$$
 其中  $t$  为任意常数.

所以通解为  $\eta = t[0, 1, 2, 1]^T$  (其中 t 为任意常数).

(6) 解为 
$$\begin{cases} x_1 = t_1 - t_2, \\ x_2 = t_1 - t_3, \\ x_3 = t_1, \\ x_4 = t_1, \\ x_5 = t_2, \\ x_6 = t_3, \end{cases}$$
 其中  $t_1, t_2, t_3$  为任意常数.

所以通解为  $\eta = t_1[1, 1, 1, 1, 0, 0]^T + t_2[-1, 0, 0, 1, 0]^T + t_3[0, -1, 0, 0, 1]^T$ (其中 t1, t2, t3 为任意常数).

3. 已知 $\xi_1, \xi_2, \dots, \xi_\ell$ 均是非齐次线性方程组 AX = b的解, $k_1, k_2, \dots, k_\ell$ 是一组常数,且 $k_1 + k_2 + \dots + k_\ell = 1$ ,求证:  $k_1\xi_1 + k_2\xi_2 + \cdots + k_r\xi_r$ 也是 AX = b的一个解.

证 把 $X = k\xi_1 + k\xi_2 + \cdots + k\xi_s$ 代入AX = b的左边得

$$A(k_1\xi_1 + k_2\xi_2 + \dots + k_t\xi_t) = k_1A\xi_1 + k_2A\xi_2 + \dots + k_tA\xi_t$$

根据题意 $\xi_1, \xi_2, \dots, \xi_t$ 均是非齐次线性方程组 AX = b的解,所以有  $A\xi_i = b$   $(i = 1, 2, \dots, t)$ .

因此

 $A(k_1\xi_1 + k_2\xi_2 + \dots + k_{\xi_\ell}) = k_1A\xi_1 + k_2A\xi_2 + \dots + k_{\xi_\ell}A\xi_{\ell} = k_1b + k_2b + \dots + k_{\xi_\ell}b = (k_1 + k_2 + \dots + k_{\ell})b$  X B Y $k_1 + k_2 + \dots + k_r = 1$ ,  $\forall A(k_1\xi_1 + k_2\xi_2 + \dots + k_r\xi_r) = b$ .  $\forall \xi_1 + k_2\xi_2 + \dots + k_r\xi_r$   $\forall \xi_1 + k_2\xi_2 + \dots + k_r\xi_r$   $\forall \xi_1 + k_2\xi_2 + \dots + k_r\xi_r$ 

4. 设 $\xi_1,\xi_2,\xi_3$ 是齐次线性方程组AX=O的一个基础解系,则该方程的基础解系还有( ).

(A) 
$$\xi_1 + \xi_2$$
,  $\xi_2 + \xi_3$ ,  $\xi_3 + \xi_1$ . (B)  $\xi_1 + \xi_2$ ,  $\xi_2 + \xi_3$ ,  $\xi_3 - \xi_1$ .

(B) 
$$\xi_1 + \xi_2$$
,  $\xi_2 + \xi_3$ ,  $\xi_3 - \xi_1$ .

(C) 
$$\xi_1 - \xi_2$$
,  $\xi_2 - \xi_3$ ,  $\xi_3 - \xi_1$ .

(C) 
$$\xi_1 - \xi_2$$
,  $\xi_2 - \xi_3$ ,  $\xi_3 - \xi_1$ . (D)  $\xi_1 + 2\xi_2$ ,  $2\xi_2 + 3\xi_3$ ,  $3\xi_3 - \xi_1$ .

解 因为 $\xi_1,\xi_2,\xi_3$ 是齐次线性方程组 AX=O的一个基础解系,所以 $\xi_1,\xi_2,\xi_3$ 线性无关,并且 AX=O的基础 解系由三个线性无关的解向量组成.因为所有选项都是由三个向量组成的,并且每个向量都是AX = O的解的 线性组合, 从而都是 AX = O的解, 所以只要找出线性无关的一组即为所求的选项. 类似习题 4.2的第8题的方法 可推知, 当 $\xi_1$ , $\xi_2$ , $\xi_3$ 线性无关时选项(A)中的三个向量线性无关, (B)、(C)、(D)中的三个向量均线性相关, 所以应选填A.

5. \*已知 5 × 4 矩阵 A 的秩为 3,非齐次线性方程组 AX = b有 3 个解向量 $\xi_1, \xi_2, \xi_3$ ,且

$$\xi_1 = \begin{bmatrix} 1, & 2, & 3, & 4 \end{bmatrix}^T, \ \xi_2 + \xi_3 = \begin{bmatrix} 2, & 3, & 4, & 5 \end{bmatrix}^T,$$

求 AX = b的通解.

**解** 因为 A是  $5 \times 4$  的矩阵,所以 AX = b的未知数的个数为 4,又因为秩(A)=3,因此 AX = b的导出组的基础解系含有 4–3=1 个线性无关的解向量组成.

由于  $\xi_1,\xi_2,\xi_3$  是 AX=b三个解,所以  $A(\xi_2+\xi_3-2\xi_1)=b+b-2b=O$ ,这表明  $\xi_2+\xi_3-2\xi_1$  是导出组 AX=O的解,并且因为

$$\boldsymbol{\xi}_{2} + \boldsymbol{\xi}_{3} - 2\boldsymbol{\xi}_{1} = \begin{bmatrix} 2, & 3, & 4, & 5 \end{bmatrix}^{T} - 2\begin{bmatrix} 1, & 2, & 3, & 4 \end{bmatrix}^{T} = \begin{bmatrix} 0, & -1, & -2, & -3 \end{bmatrix}^{T} \neq \boldsymbol{O},$$

所以 $\xi_2 + \xi_3 - 2\xi_1$ 又是线性无关的,据此知 $\xi_2 + \xi_3 - 2\xi_1$ 可以作为 AX = O的一个基础解系.由于 AX = b的通解是由 AX = b的一个特解加上导出组的基础解系的线性组合构成,所以 AX = b的通解为  $\eta = \xi_1 + t(\xi_2 + \xi_3 - 2\xi_1) = \begin{bmatrix} 1, & 2, & 3, & 4 \end{bmatrix}^T + t \begin{bmatrix} 0, & -1, & -2, & -3 \end{bmatrix}^T$  (其中 t 为任意数).

- 6. 设 A 是 n 阶方阵, B 为 n×s 矩阵, 且秩 (B)=n, 证明:
- (1) 若 AB = O, 则 A = O;
- (2) 若 AB = B, 则 A = E.
- 证 (1) 因为 AB = O, 所以秩(A)+秩(B)  $\leq n$ , 由于秩(B)=n, 所以秩(A)  $\leq 0$ , 由此 秩(A)=0, 即得 A = O.
  - (2) 由题意知 AB = B, 所以 (A E)B = O, 利用 (1) 可知 A E = O, 因此 A = E.
- 7. 证明: 矩阵  $[a_{ij}]_{m\times n}$  的秩为 1 的充分必要条件为存在 m 个不全为零的数  $a_1, a_2, \cdots, a_m$  及 n 个不全为零的数  $b_1, b_2, \cdots, b_n$  使  $a_{ij} = a_i b_j$  ( $i=1, 2, \cdots, m$ ;  $j=1, 2, \cdots, n$ ).
- **证** 先证必要性,根据习题 3. 6 的第 6 个习题的 (3) 可知存在矩阵  $R_{m\times 1}$  ,  $S_{1\times n}$  ,秩 (R) =秩 (S) =1,使 A = RS . 令  $a_1, a_2, \cdots, a_m$  为 R 的 m 个分量,  $b_1, b_2, \cdots, b_n$  为 S 的 n 个分量, 则因为秩 (R) =秩 (S) =1 所以  $a_1, a_2, \cdots, a_m$  和  $b_1, b_2, \cdots, b_n$ 都不全为零。同时因为 A = RS 即得  $a_{ij}$  = a  $b_j$  (i =1, 2,  $\cdots$ , m ; j =1, 2,  $\cdots$ , n) 成立.

再证充分性,根据题意存在 m 个不全为零的数  $a_1, a_2, \cdots, a_m$  及 n 个不全为零的数  $b_1, b_2, \cdots, b_n$  使  $a_{ij} = a_i b_j$  (  $i=1,2,\cdots,m$  :  $j=1,2,\cdots,n$  ). 只需令  $B=\begin{bmatrix} a_1,&a_2,&\cdots,&a_m \end{bmatrix}^T$ , $C=\begin{bmatrix} b_1,&b_2,&\cdots,&b_n \end{bmatrix}$ ,则  $\begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n} = BC$ . 因为

秩( $\begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$ )  $\leq$  秩(B)  $\leq$  1,又由于  $a_1, a_2, \cdots, a_m$  和  $b_1, b_2, \cdots, b_n$  都不全为零,所以  $\begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$  中必有一非零元素,因此秩( $\begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$ )>0,据此可得秩( $\begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$ )=1.

- 8. \*设 A 为 n(n≥2) 阶方阵, 证明:
- (1) 当秩(A)=n 时, 秩( $A^{*}$ )=n;
- (2) 当秩(A) < n-1 时, 秩(A) =0;

- (3) 当秩(A)=n-1 时,秩(A)=1.
- (1) 由于秩 (A)=n, 所以  $|A| \neq 0$ , 而 AA' = |A|E, 在等式两边同乘  $\frac{1}{|A|}$  可得  $(\frac{1}{|A|}A)A' = E$ , 据此可知 A'是可逆的,所以秩( $\mathbf{A}^{*}$ )=n.
- (2) 秩(A) < n-1 时,根据矩阵秩的定义可知 A的所有 n-1阶子式都为 0, 而 A 的元素就是 A的所有 n-1阶子式, 所以 A 的元素都是 0, 即 A = O, 所以秩( A )=0.
- (3) 当秩 (A)=n-1 时,A不是满秩的,所以 |A|=0. 又因为 AA'=|A|E,所以 AA'=O,据此可知秩 (A)+秩 $(A^*) \le n$ , 而秩(A)=n-1, 所以秩 $(A^*) \le 1$ . 同时由于
- 秩(A)=n-1,根据矩阵秩的定义可知A至少有一个n-1阶子式不为零,而A 的元素就是A的所有n-1阶子式, 所以 A 中至少有一个元素不为零. 由此可知秩  $(A) \ge 1$ .

综上所述秩( $A^*$ )=1.

1. 解第二组的 4 道题.

1. 解第二组的 4 道题.

(1) 讨论矩阵 
$$A = \begin{bmatrix} 1 & 1 & 3 & 2 & 1 \\ 1 & 3 & 1 & 6 & 3 \\ 1 & -5 & 10 & -10 & b \\ 3 & -1 & 15 & -2a & 3 \end{bmatrix}$$
的秩.

(2)讨论方程组

方程组
$$\begin{cases} x_1 + x_2 + 3x_3 + 2x_4 = 1, \\ x_1 + 3x_2 + x_3 + 6x_4 = 3, \\ x_1 - 5x_2 + 10x_3 - 10x_4 = b, \\ 3x_1 - x_2 + 15x_3 - 2ax_4 = 3, \end{cases}$$

a,b取何值时无解,有解?有解时何时有惟一解,何时有无穷多个解?且写出这些解.

(3) 设 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$  如第一组第 (4) 题所设, $\beta = \begin{bmatrix} 1, & 3, & b, & 3 \end{bmatrix}^T$ . 问a,b取何值时, $\beta$ 不能经 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性表示; a,b取何值时,  $\beta$ 能经  $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性表示. 进而何时表法惟一? 何时表法无穷? 且写出这些表示 式.

- (4) 讨论 $\alpha_1$ , $\alpha_2$ , $\alpha_3$ , $\alpha_4$ , $\beta$ 的秩,并写出一个极大线性无关组.
- (1)仅用初等行变换将 $\mathbf{A}$ 化为阶梯形:

$$\begin{bmatrix} 1 & 1 & 3 & 2 & 1 \\ 1 & 3 & 1 & 6 & 3 \\ 1 & -5 & 10 & -10 & b \\ 3 & -1 & 15 & -2a & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 3 & 2 & 1 \\ 0 & 1 & -1 & 2 & 1 \\ 0 & 0 & 1 & 0 & b+5 \\ 0 & 0 & 0 & 1-a & -b-3 \end{bmatrix}$$
 (\*)

当a ≠ 1时, 矩阵的秩为 4; 当a = 1, b ≠ -3时, 矩阵的秩为 4; 当a = 1, b = -3时秩为 3.

(2) 该线性方程组的增广矩阵恰好是(1)中的矩阵A, 所以由(1)的(\*)可得

当 
$$a \ne 1$$
时,秩  $(A)$  = 秩  $(A)$  = 4=未知数个数,所以此时方程组有唯一解 
$$\begin{cases} x_1 = -4b - 20, \\ x_2 = b + 6 + 2\frac{b + 3}{1 - a}, \\ x_3 = b + 5, \\ x_4 = \frac{-b - 3}{1 - a}. \end{cases}$$
 当  $a = 1, b \ne -3$ 时,秩  $(A)$  = 3,而秩  $(A)$  = 4,所以此时方程组无解.

当 $a=1,b\neq -3$ 时,秩(A)=3,而秩(A)=4,所以此时方程组无解。

当a=1,b=-3时,秩(A)=秩(A)=3 $\langle$ 未知数个数,所以此时方程组有无穷多解

$$\begin{cases} x_1 = -8, \\ x_2 = 3 - 2t, \\ x_3 = 2, \\ x_4 = t, \end{cases}$$
 (其中  $t$ 是任意常数).

(3) 由于 $\alpha_1$ , $\alpha_2$ , $\alpha_3$ , $\alpha_4$  恰好是(2)的线性方程组系数矩阵的列向量组, 所以由(2)的结果可得:

当  $a \neq 1$  时,秩 (A)=秩 (A)=4=未知数个数,所以此时  $\beta$  能经  $\alpha_1$  ,  $\alpha_2$  ,  $\alpha_3$  ,  $\alpha_4$  线性表示,且表示方法唯一  $\beta = (-4b - 20)\alpha_1 + (b + 6 + 2\frac{b+3}{1-a})\alpha_2 + (b+5)\alpha_3 + (\frac{-b-3}{1-a})\alpha_4.$ 

当 $\alpha=1,b\neq -3$ 时,秩(A)=3,而秩 $(\overline{A})=4$ ,所以此时 $\beta$ 不能经 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性表示.

当a=1,b=-3时,秩(A)=秩(A)=3<未知数个数,此时 $\beta$ 能经 $\alpha_1$ , $\alpha_2$ , $\alpha_3$ , $\alpha_4$ 线性表示,且表示方法有无 穷多种:

$$\beta = -8\alpha_1 + (3-2t)\alpha_2 + 2\alpha_3 + t\alpha_4$$
 (其中  $t$ 是任意常数).

(4) 由于 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \beta$ 构成的矩阵恰好就是(1)中的矩阵 $\overline{A}$ , 所以由(1)的(\*)可得 当 $\alpha$ ≠1时,秩为4, $\alpha$ <sub>1</sub>, $\alpha$ <sub>2</sub>, $\alpha$ <sub>3</sub>, $\alpha$ <sub>4</sub>就是它的一个极大线性无关组;

当 $\alpha$ =1, $b\neq$ -3时, 秩为4,  $\alpha_1$ , $\alpha_2$ , $\alpha_3$ , $\beta$ 就是它的一个极大线性无关组;

当a=1,b=-3时,秩为 3, $\alpha_1,\alpha_2,\alpha_3$ 就是它的一个极大线性无关组.

- 2. 设 A, B分别为  $m \times n$ ,  $t \times n$  矩阵, 证明:
- (1) 若 AX = O的解均为 BX = O的解,则秩(A)  $\geqslant$  秩(B);
- (2) 若 AX = O与 BX = O同解,则秩(A)=秩(B);
- (3) 若 AX = O的解均为 BX = O的解,且秩(A)=秩(B),则 AX = O与 BX = O同解;
- (4) 若秩(A)=秩(B), 问是否能导出 AX = O与 BX = O同解?
- 解 (1) 因为 AX = O的解均为 BX = O的解,所以 AX = O的基础解系中的解也都是 BX = O的解,所以 BX = O的基础解系中所含的向量的个数不少于 AX = O的基础解系中所含向量的个数. 而 BX = O的基础解系中所含的向量的个数为 n-秩(B), AX = O的基础解系中所含向量的个数为 n-秩(A), 因此 n-秩(A), 所以 秩(A)  $\geq$  秩(B).
- (2) 因为 AX = O与 BX = O同解,所以 AX = O的基础解系也就是 BX = O的基础解系,所以两者的基础解系所含向量个数相同,因此 n-秩(B)= n-秩(A),即有秩(A)=秩(B).
- (3) 因为秩(A)=秩(B), 所以 n-秩(B)= n-秩(A), 据此可知 AX = O和 BX = O的基础解系所含向量的个数相同. 因为 AX = O的解均为 BX = O的解,所以 AX = O的某一基础解系 $\xi_1, \xi_2, \dots, \xi_t$  (t = n-秩(A))也是 BX = O的基础解系,因此 AX = O与 BX = O同解.
  - (4) 设  $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ ,  $B = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$ , 显然满足 秩(A)=秩(B), 但是 $\begin{cases} x_1 = 1, \\ x_2 = -1. \end{cases}$  是 AX = O的一个解,但是不是

BX = O的解. 所以不能导出 AX = O与 BX = O同解.

- 3. \*设 A, B, C均为 n 阶矩阵, 且秩(A)=秩(BA), 证明: 秩(AC)=秩(BAC).
- 证 设 是 AX = O的任意一个解,则有  $A\xi = O$ ,所以  $BA\xi = B(A\xi) = BO = O$ ,所以  $\xi$  也一定是 BAX = O的解,据此可得 AX = O的解都是 BAX = O的解.又因为秩(A)=秩(BA),根据本节第 2 个习题(3)可知 AX = O和 BAX = O同解.和证明 AX = O的解都是 BAX = O的解类似的过程可得 ACX = O的解一定是 BACX = O的解.另一方面,设  $\eta$  是 BACX = O的任意一个解则有  $BAC\eta = O$ ,即  $BA(C\eta) = O$ ,可知  $C\eta$  是 BAX = O的一个解,已经证明 AX = O和 BAX = O同解,所以  $C\eta$  也一定是 AX = O的解,即有  $AC\eta = O$ ,所以  $\eta$  也就是 ACX = O的解,据此可得 BACX = O的解也一定是 ACX = O的解,所以 BACX = O和 ACX = O同解.根据本节第 2 个习题(2)可得秩(AC)=秩(BAC).
- 4. \*设A,B,C分别为 $m \times n$ , $n \times s$ , $s \times m$ 矩阵,且秩(CA)=秩(A),证明:秩(CAB)=秩(AB).
- 证 类似于本节习题 3 中方法可证明 AX = O的解都是 CAX = O的解,又因为秩(CA)=秩(A)根据根据本节第 2 个习题(3)可知 AX = O和 CAX = O同解。同样易证 ABX = O的解都是 CABX = O的解。另一方面,设 $\eta$  是 CABX = O的任意一个解则有  $CAB\eta = O$ ,即  $CA(B\eta) = O$ ,可知  $B\eta$  是 CAX = O的一个解,已经证明

AX = O和 CAX = O同解,所以  $B\eta$  也一定是 AX = O的解,即有  $AB\eta = O$ ,所以  $\eta$  也就是 ABX = O的解,据此可得 CABX = O的解也一定是 ABX = O的解,所以 CABX = O和 ABX = O同解.根据本节第 2 个习题 (2)可得秩(CAB)=秩(AB).

## 习题 5.2

1. 下列向量组中,( )是 P 的一组基,为什么?

(A) 
$$\begin{bmatrix} 1, & 1, & 0 \end{bmatrix}^T$$
,  $\begin{bmatrix} 0, & 1, & 1 \end{bmatrix}^T$ ,  $\begin{bmatrix} 1, & 0, & 1 \end{bmatrix}^T$ ; (C)  $\begin{bmatrix} 1, & 1, & 0 \end{bmatrix}^T$ ,  $\begin{bmatrix} 0, & 1, & 1 \end{bmatrix}^T$ ,  $\begin{bmatrix} -1, & 0, & 1 \end{bmatrix}^T$ ;

(B) 
$$\begin{bmatrix} 1, & -1, & 0 \end{bmatrix}^T$$
,  $\begin{bmatrix} 0, & 1, & -1 \end{bmatrix}^T$ ,  $\begin{bmatrix} -1, & 0, & 1 \end{bmatrix}^T$ ; (D)  $\begin{bmatrix} 1, & 2, & 0 \end{bmatrix}^T$ ,  $\begin{bmatrix} 0, & 2, & 1 \end{bmatrix}^T$ ,  $\begin{bmatrix} -1, & 0, & 1 \end{bmatrix}^T$ .

**分析**  $P^3$  中的基应该是三个线性无关的 3 元向量、所以只要找出线性无关的一组即为所需的选项。

**解** (A) 
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
  $\xrightarrow{R_3-R_1}$   $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$   $\xrightarrow{R_3+R_2}$   $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ , 秩为 3, 所以该向量组线性无关.

(B) 
$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$$
  $\xrightarrow{R_3 + R_1}$   $\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}$   $\xrightarrow{R_3 + R_2}$   $\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$ , 秩为 2, 所以该向量组线性相关.

(C) 
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
  $\xrightarrow{R_3+R_1}$   $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$   $\xrightarrow{R_3-R_2}$   $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ , 秩为 2, 所以该向量组线性相关.

(D) 
$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
  $\xrightarrow{R_3 + R_1}$   $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 1 \\ 0 & 2 & 1 \end{bmatrix}$   $\xrightarrow{R_3 - R_2}$   $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$  ,秩为 2, 所以该向量组线性相关.

综上所述应填 A.

2. 当 k取值为\_\_\_\_时, $\alpha_1,\alpha_2,\alpha_3$ 是 P 的一组基(要说明理由),其中

$$\alpha_1 = \begin{bmatrix} 1, & 1, & 3 \end{bmatrix}^T, \quad \alpha_2 = \begin{bmatrix} 2, & 1, & 6 \end{bmatrix}^T, \quad \alpha_3 = \begin{bmatrix} 3, & 4, & k \end{bmatrix}^T$$

**分析** 当这三个向量线性无关时,该向量组即为P 的一组基.

解 
$$\begin{bmatrix} 1 & 1 & 3 \\ 2 & 1 & 6 \\ 3 & 4 & k \end{bmatrix}$$
  $\longrightarrow$   $\begin{bmatrix} 1 & 1 & 3 \\ 0 & -1 & 0 \\ 0 & 0 & k-9 \end{bmatrix}$ , 当 $k \neq 9$ 时,秩为 3,此时该向量组线性无关,即为 $P$  的一组基,故

应填 € ≠ 9.

3. 设 $\alpha_1, \alpha_2, \alpha_3$ 是P的一组基,则( )也是P的一组基,且说明理由

(A) 
$$\alpha_1 + \alpha_2 + \alpha_3$$
,  $2\alpha_1 + 2\alpha_2 + 2\alpha_3$ ,  $\alpha_1 + 2\alpha_2 + 3\alpha_3$ . (B)  $\alpha_1 + \alpha_2 + \alpha_3$ ,  $2\alpha_1 + 2\alpha_2 + \alpha_3$ ,  $\alpha_3$ .

(C) 
$$\alpha_1 + \alpha_2 + \alpha_3$$
,  $\alpha_1 + \alpha_2$ ,  $\alpha_1$ .

(D) 
$$\alpha_1 + \alpha_2 + \alpha_3$$
,  $\alpha_1 + \alpha_2$ ,  $\alpha_3$ .



**分析**  $\alpha_1, \alpha_2, \alpha_3$ 是一组基, 所以 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, 只要找出向量组线性无关的选项即为所需.

解 因为 
$$\left[\alpha_1 + \alpha_2 + \alpha_3 \quad \alpha_1 + \alpha_2 \quad \alpha_1\right] = \left[\alpha_1 \quad \alpha_2 \quad \alpha_3\right] \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix}$$
,而  $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix}$  是可逆矩阵,所以

 $\begin{bmatrix} \alpha_1 + \alpha_2 + \alpha_3 & \alpha_1 + \alpha_2 & \alpha_1 \end{bmatrix}$ 的秩和 $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix}$ 的秩相同,由于 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,所以 $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix}$ 的秩为 3. 据此可知 $\begin{bmatrix} \alpha_1 + \alpha_2 + \alpha_3 & \alpha_1 + \alpha_2 & \alpha_1 \end{bmatrix}$ 的秩也是 3,由此可得 $\alpha_1 + \alpha_2 + \alpha_3$ , $\alpha_1 + \alpha_2$ , $\alpha_1$  线性无关. 类似方法可证明选项(A) 、(B) 、 (D)的向量组线性相关,综上所述应选填 C.

4.\* 设  $\alpha_1, \alpha_2, \alpha_3, \alpha_4$  是  $P^4$  的一组基, 若  $\beta_1 = \alpha_1 + 2\alpha_2 - \alpha_3 - \alpha_4$ ,  $\beta_2 = \alpha_1 + 3\alpha_2 - 2\alpha_3 - \alpha_4$ ,  $\beta_3 = \alpha_1 + 4\alpha_2 - 3\alpha_3 + k\alpha_4$ 则当 k取何值时  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$ 线性无关; k取何值时  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$ 线性相关,均需说明理由.

**解** 设  $k_1, k_2, k_3$  满足  $k_1\beta_1 + k_2\beta_2 + k_3\beta_3 = O$ ,

整理得  $(k_1 + k_2 + k_3)\alpha_1 + (2k_1 + 3k_2 + 4k_3)\alpha_2 + (-k_1 - 2k_2 - 3k_3)\alpha_3 + (-k_1 - k_2 + kk_3)\alpha_4 = O$ .

由于
$$\alpha_1,\alpha_2,\alpha_3,\alpha_4$$
线性无关,所以必有(I) 
$$\begin{cases} k_1+k_2+k_3=0,\\ 2k_1+3k_2+4k_3=0,\\ -k_1-2k_2-3k_3=0,\\ -k_1-k_2+kk_3=0. \end{cases}$$

因为  $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ -1 & -2 & -3 \\ -1 & -1 & k \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & k+1 \\ 0 & 0 & 0 \end{bmatrix}, \text{ 所以当 } k = -1 \text{ 时,秩为 2, 此时 (I)} 有非零解,即存在不全为零$ 

的  $k_1, k_2, k_3$  满足  $k_1\beta_1 + k_2\beta_2 + k_3\beta_3 = O$ , 因此此时  $\beta_1, \beta_2, \beta_3$  线性相关; 当  $k \neq -1$  时, 秩为 3,此时 ( I )只有零解,即不存在不全为零的  $k_1, k_2, k_3$  满足  $k_1\beta_1 + k_2\beta_2 + k_3\beta_3 = O$ , 因此此时  $\beta_1, \beta_2, \beta_3$  线性无关.

5. 证明: 向量组

$$\alpha_1 = \begin{bmatrix} 1, & 2, & -1, & -2 \end{bmatrix}^T, \quad \alpha_2 = \begin{bmatrix} 2, & 3, & 0, & 1 \end{bmatrix}^T, \quad \alpha_3 = \begin{bmatrix} 1, & 3, & -1, & 1 \end{bmatrix}^T,$$

 $\alpha_4 = \begin{bmatrix} 1, & 2, & 1, & 3 \end{bmatrix}^T$  是  $P^4$  中的一组基,并求向量  $\alpha = \begin{bmatrix} 7, & 14, & -1, & -2 \end{bmatrix}^T$  在该基下坐标.

解 
$$\left[\alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4}\right] = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & 3 & 2 \\ -1 & 0 & -1 & 1 \\ -2 & 1 & 1 & 3 \end{bmatrix} \xrightarrow{\eta $= 750$} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & -3 \end{bmatrix}$$

可得秩 $([\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4])$ =4,这四个向量线性无关,所以该向量组是P4中的一组基.

$$\left[ \alpha_{\scriptscriptstyle 1} \quad \alpha_{\scriptscriptstyle 2} \quad \alpha_{\scriptscriptstyle 3} \quad \alpha_{\scriptscriptstyle 4} \quad \vdots \quad \alpha \, \right] \xrightarrow{ \overline{\eta} \ni f \uparrow \underbrace{\circ \psi} } \begin{bmatrix} 1 & 2 & 1 & 1 & \vdots & 7 \\ 0 & -1 & 1 & 0 & \vdots & 0 \\ 0 & 0 & 1 & 1 & \vdots & 3 \\ 0 & 0 & 0 & 1 & \vdots & 4 \end{bmatrix},$$

可知方程组 $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix}$   $X = \alpha$  的解为  $\begin{cases} x_1 = 6, \\ x_2 = -1, \\ x_3 = -1, \end{cases}$  所以向量 $\alpha$  在该基下的坐标为 $\begin{bmatrix} 6, & -1, & -1, & 4 \end{bmatrix}^T$ .  $x_4 = 4$ .

6. 在向量空间 P 中,取两组基

(I): 
$$\alpha_1 = \begin{bmatrix} 1, & 0, & 1 \end{bmatrix}^T$$
,  $\alpha_2 = \begin{bmatrix} 1, & 1, & 0 \end{bmatrix}^T$ ,  $\alpha_3 = \begin{bmatrix} 0, & 1, & 1 \end{bmatrix}^T$ ;

(II): 
$$\alpha'_1 = \begin{bmatrix} 1, & 0, & 3 \end{bmatrix}^T$$
,  $\alpha'_2 = \begin{bmatrix} 2, & 2, & 2 \end{bmatrix}^T$ ,  $\alpha'_3 = \begin{bmatrix} -1, & 1, & 4 \end{bmatrix}^T$ 

- (1) 求基(I)到基(II)的过渡矩阵.
- (2) 设 $\alpha$  在基(I)下坐标为[1, 1, 3] $^{T}$ , 求 $\alpha$  在(II)下的坐标.

解 (1) 记基( I ) 到基( II ) 的过渡矩阵为 M,则  $M = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix}^{-1} \begin{bmatrix} \alpha_1' & \alpha_2' & \alpha_3' \end{bmatrix}$ ,利用习题 3.2 第 5 题的方法可求出 M .

$$\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \vdots & \alpha_1' & \alpha_2' & \alpha_3' \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & \vdots & 1 & 2 & -1 \\ 0 & 1 & 1 & \vdots & 0 & 2 & 1 \\ 1 & 0 & 1 & \vdots & 3 & 2 & 4 \end{bmatrix} \xrightarrow{\text{idiffity}} \begin{bmatrix} 1 & 0 & 0 & \vdots & 2 & 1 & 1 \\ 0 & 1 & 0 & \vdots & -1 & 1 & -2 \\ 0 & 0 & 1 & \vdots & 1 & 1 & 3 \end{bmatrix},$$

所以从基(I)到基(II)的过渡矩阵为 $M = \begin{bmatrix} 2 & 1 & 1 \\ -1 & 1 & -2 \\ 1 & 1 & 3 \end{bmatrix}$ .

(2) 
$$X' = M^{-1}X = \begin{bmatrix} 2 & 1 & 1 \\ -1 & 1 & -2 \\ 1 & 1 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} \\ \frac{5}{3} \\ \frac{2}{3} \end{bmatrix}$$
, 所以坐标为 $\left[ -\frac{2}{3}, \frac{5}{3}, \frac{2}{3} \right]^{T}$ .

7. 设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 为向量空间P'的一组基,求这个基到基 $\alpha_2,\cdots,\alpha_n,\alpha_1$ 的过渡矩阵.

解 因为
$$\alpha_2 = 0\alpha_1 + 1\alpha_2 + 0\alpha_3 + \dots + 0\alpha_n$$
;  $\alpha_3 = 0\alpha_1 + 0\alpha_2 + 1\alpha_3 + \dots + 0\alpha_n$ ; ······;

$$\alpha_n = 0\alpha_1 + 0\alpha_2 + 0\alpha_3 + \dots + 1\alpha_n$$
;  $\alpha_1 = 1\alpha_1 + 0\alpha_2 + 0\alpha_3 + \dots + 0\alpha_n$ .

所以从基
$$\alpha_1,\alpha_2,\cdots,\alpha_n$$
到基 $\alpha_2,\cdots,\alpha_n,\alpha_1$ 的过渡矩阵为 $\begin{bmatrix} 0&0&\cdots&0&1\\1&0&\cdots&0&0\\0&1&\cdots&0&0\\ \vdots&\vdots&&\vdots&\vdots\\0&0&\cdots&1&0 \end{bmatrix}$ .

8. \*在向量空间 $P^4$ 中,取

$$\alpha_1 = \begin{bmatrix} 2, & 1, & -1, & 1 \end{bmatrix}^T, \quad \alpha_2 = \begin{bmatrix} 0, & 3, & 1, & 0 \end{bmatrix}^T, \quad \alpha_3 = \begin{bmatrix} 5, & 3, & 2, & 1 \end{bmatrix}^T, \quad \alpha_4 = \begin{bmatrix} 6, & 6, & 1, & 3 \end{bmatrix}^T.$$

证明:  $\alpha_1,\alpha_2,\alpha_3,\alpha_4$  可作为  $P^4$  的一组基,且在  $P^4$  中求一个非零向量  $\alpha$  ,使它在基  $\alpha_1,\alpha_2,\alpha_3,\alpha_4$  下的坐标与在常用基下的坐标相同.

$$m{k}$$
  $\begin{bmatrix} 2 & 0 & 5 & 6 \\ 1 & 3 & 3 & 6 \\ -1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \end{bmatrix}$   $\xrightarrow{\eta \oplus fro \phi h}$   $\begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ , 所以秩  $(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = 4$ , 故  $\alpha_1, \alpha_2, \alpha_3, \alpha_4$  可作为  $P^4$  的一

组基,且从常用基到基 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的过渡矩阵为 $\alpha_1$   $\alpha_2$   $\alpha_3$   $\alpha_4$ .

设所求向量  $\alpha = [a, b, c, d]^T$ ,则它在常用基下的坐标为  $[a, b, c, d]^T$ ,  $\alpha$  在基  $\alpha_1, \alpha_2, \alpha_3, \alpha_4$  下坐

标为 
$$\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix}^{-1} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$
 ,从而  $\alpha$  应满足  $\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix}^{-1} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$  ,即

$$\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} , \quad \text{$\emptyset$ $\vec{\Pi}$ $\#$ $([\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4] - E)$} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = O \quad . \quad \text{$\vec{\pi}$ $\#$ $\vec{\pi}$ $\#$ $4}$$

$$\begin{bmatrix} 2 & 0 & 5 & 6 \\ 1 & 3 & 3 & 6 \\ -1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \end{bmatrix} - E)X = O$$
得解为:  $X = \begin{bmatrix} k, & k, & k, & -k \end{bmatrix}^T$ ,所以所求的向量  $\alpha = \begin{bmatrix} k, & k, & k, & -k \end{bmatrix}^T$ ( $k$ 

可取任意非零常数).

## 习题 5.3

- 1. 下述  $R^3$  的非空子集为  $R^3$  的子空间的是(),并说明理由.
- (A)  $W_1 = \left\{ \begin{bmatrix} x, & y, & 1 \end{bmatrix}^T \middle| x, y \in R \right\}.$  (B)  $W_2 = \left\{ \begin{bmatrix} x, & y, & 0 \end{bmatrix}^T \middle| x, y \in R \right\}.$
- (C)  $W_3 = \left\{ \begin{bmatrix} x, & y, & x^2 \end{bmatrix}^T \middle| x, y \in R \right\}.$  (D)  $W_3 = \left\{ \begin{bmatrix} x, & 1, & 0 \end{bmatrix}^T \middle| x \in R \right\}.$
- **解** (A) 取  $W_1$  中的两个元素  $\begin{bmatrix} 1, & 1, & 1 \end{bmatrix}^T$ ,  $\begin{bmatrix} 0, & 1, & 1 \end{bmatrix}^T$ , 则两者之和为  $\begin{bmatrix} 1, & 2, & 2 \end{bmatrix}^T \notin W_1$ , 所以  $W_1$  不是子空间.
- (C) 取  $W_3$  中的两个元素  $\begin{bmatrix} 1, & 1, & 1 \end{bmatrix}^T$ ,  $\begin{bmatrix} 1, & 2, & 1 \end{bmatrix}^T$ , 则两者之和为  $\begin{bmatrix} 2, & 3, & 2 \end{bmatrix}^T$ , 不满足第三个分量是第一个分量的平方,所以  $\begin{bmatrix} 2, & 3, & 2 \end{bmatrix}^T \notin W_3$ ,因此  $W_3$  不是子空间.
  - (D) 取 $W_4$ 中的两个元素 $\begin{bmatrix} 1, & 1, & 0 \end{bmatrix}^T$ ,  $\begin{bmatrix} 0, & 1, & 0 \end{bmatrix}^T$ , 则两者之和为 $\begin{bmatrix} 1, & 2, & 0 \end{bmatrix}^T \notin W_4$ , 所以 $W_4$ 不是子空间.
  - (B) 可以容易验证  $W_2$  关于数乘和加发是封闭的,所以它是  $R^2$  的子空间. 综上所述应选填 B.
- 2. 设 A是数域 P上  $m \times n$ 矩阵,问非齐次线性方程组 AX = b的解向量的全体是否是 P' 的子空间?为什么?
- 解 设 $\xi_1, \xi_2$ 是 AX = b的两个解向量,但是由于  $A(\xi_1 + \xi_2) = A\xi_1 + A\xi_2 = b + b = 2b$ ,故 $\xi_1 + \xi_2$ 不是 AX = b的解向量,即 AX = b的解向量的全体关于加法不是封闭的,所以不是 P''的子空间.
- 3. 求下列齐次线性方程组的解空间的维数和一组基

$$\begin{cases}
x_1 + x_2 + 2x_3 + 4x_4 = 0, \\
3x_1 + x_2 + 6x_3 + 2x_4 = 0, \\
-x_1 + x_2 - 2x_3 + x_4 = 0.
\end{cases} (2) \begin{cases}
x_1 - 2x_2 + x_3 + x_4 - x_5 = 0, \\
2x_1 + x_2 - x_3 - x_4 + x_5 = 0, \\
x_1 + 7x_2 - 5x_3 - 5x_4 + 5x_5 = 0, \\
3x_1 - x_2 - 2x_3 + x_4 - x_5 = 0.
\end{cases}$$

(3) 
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0, \\ 3x_1 + 2x_2 + x_3 + x_4 = 0, \\ +x_2 + 2x_3 + 2x_4 = 0, \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 = 0. \end{cases}$$

**分析** 齐次线性方程组的一个基础解系即为解空间的一组基,而基础解系所含线性无关向量个数 n – 秩(A)即为解空间的维数.

**解** (1) 
$$\begin{bmatrix} 1 & 1 & 2 & 4 \\ 3 & 1 & 6 & 2 \\ -1 & 1 & -2 & 1 \end{bmatrix}$$
  $\xrightarrow{\text{初等行变换}}$   $\begin{bmatrix} 1 & 1 & 2 & 4 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ , 因此方程组的解为  $\begin{cases} x_1 = -2t, \\ x_2 = 0, \\ x_3 = t, \\ x_4 = 0. \end{cases}$  (*t*任意取值) 改写成

向量形式为  $X=t\begin{bmatrix} -2\\0\\1\\0 \end{bmatrix}$  (*t*任意取值). 所以该解空间的一组基为 $\begin{bmatrix} -2&0&1&0 \end{bmatrix}^T$ , 维数为 1.

$$(2) \begin{bmatrix} 1 & -2 & 1 & 1 & -1 \\ 2 & 1 & -1 & -1 & 1 \\ 1 & 7 & -5 & -5 & 5 \\ 3 & -1 & -2 & 1 & -1 \end{bmatrix} \xrightarrow{\eta \ni f \circ _{\phi +}} \begin{bmatrix} 1 & -2 & 1 & 1 & -1 \\ 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & -1 & 1 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}, \text{ 因此方程组的}$$

 $\begin{bmatrix} 0, & 0, & 0, & 1, & 1 \end{bmatrix}^T$ , 维数为 1.

(3) 解 
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 3 & 2 & 1 & 1 \\ 0 & 1 & 2 & 2 \\ 5 & 4 & 3 & 3 \end{bmatrix} \xrightarrow{\eta \neq f \neq p} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$
 因此方程组的解为 
$$\begin{cases} x_1 = t_1 + t_2, \\ x_2 = -2t_1 - 2t_2, \\ x_3 = t_1, \\ x_4 = t_2, \end{cases}$$

向量 形式 为  $X=t_1\begin{bmatrix}1\\-2\\1\\0\end{bmatrix}+t_2\begin{bmatrix}1\\0\\1\end{bmatrix}$  (  $t_1,t_2$  任意 取值). 所以该解空间的一组基为

 $\begin{bmatrix} 1, & -2, & 1, & 0 \end{bmatrix}^T$ ,  $\begin{bmatrix} 1, & -2, & 0, & 1 \end{bmatrix}^T$ , 维数为 2.

 $4^*$ . 设 A 为  $m \times n$  矩阵,若任意一个 n 元向量  $\alpha$  都是齐次线性方程组 **AX=0** 的解,则  $A = O_{m \times n}$ 

证 因为任意一个n元向量 $\alpha$ 都是齐次线性方程组AX=0的解,所以AX=0的解空间就是P''. 因此解空间的维数为n,从而有n—秩(A)=n,即得秩(A)=0,所以 $A=O_{m\times n}$ .

# 习题 5.4

1. 在欧氏空间  $R^4$  中,设  $\alpha = \begin{bmatrix} 1, & 2, & 3, & 4 \end{bmatrix}^T$ , $\beta = \begin{bmatrix} -1, & 1, & -2, & -6 \end{bmatrix}^T$ . 求

$$(\alpha, \beta)$$
;  $(3\alpha + 2\beta, 3\alpha - 2\beta)$ ;  $\|\alpha\|$ ;  $\|\alpha + \beta\| \mathcal{B} \|\alpha - \beta\|$ .

**Proof:** 
$$(\alpha, \beta) = 1 \times (-1) + 2 \times 1 + 3 \times (-2) + 4 \times (-6) = -29$$
;

$$(3\alpha + 2\beta, 3\alpha - 2\beta) = 9(\alpha, \alpha) - 4(\beta, \beta) = 270 - 168 = 102$$
;

$$\|\alpha\| = \sqrt{(\alpha, \alpha)} = \sqrt{30} : \|\alpha + \beta\| = \sqrt{(\alpha + \beta, \alpha + \beta)} = \sqrt{14} : \|\alpha - \beta\| = \sqrt{(\alpha - \beta, \alpha - \beta)} = \sqrt{130}.$$

2. 在欧氏空间  $R^4$  中,取  $\alpha = \begin{bmatrix} 1, & -2, & 1, & -1 \end{bmatrix}^T$ ,  $\beta = \begin{bmatrix} -1, & 3, & k, & 2 \end{bmatrix}^T$ ,则 k =\_\_\_\_时  $\alpha, \beta$  正交,为什么? 分析  $\alpha \perp \beta \Leftrightarrow (\alpha, \beta)$  .

解 
$$(\alpha, \beta) = 1 \times (-1) + (-2) \times 3 + 1 \times k + (-1) \times 2 = k - 9 = 0 \Leftrightarrow k = 9$$
. 因此当  $k = 9$  时  $\alpha, \beta$  正交.

3. 在欧氏空间 R''中,若  $\beta$ 与  $\alpha_1,\alpha_2,\cdots,\alpha_m$  均正交,则  $\beta$ 与  $\alpha_1,\alpha_2,\cdots,\alpha_m$  的任一线

性组合 $\sum_{i=1}^{m} k_i \alpha_i$ 都正交.

证 因 $\beta$ 与 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 均正交,所以 $(\beta,\alpha_i)=0$ , $i=1,2,\cdots,m$ .

因此
$$(\beta, \sum_{i=1}^{m} k_i \alpha_i) = \sum_{i=1}^{m} k_i (\beta, \alpha_i) = 0$$
,所以 $\beta = \alpha_1, \alpha_2, \dots, \alpha_m$ 的线性组合 $\sum_{i=1}^{m} k_i \alpha_i$ 都正交.

4. 在欧氏空间  $R^4$  中, 求一单位向量  $\alpha$  , 使其与

$$\alpha_1 = \begin{bmatrix} 1, & 1, & -1, & 1 \end{bmatrix}^T$$
, $\alpha_2 = \begin{bmatrix} 1, & -1, & -1, & 1 \end{bmatrix}^T$ ,  $\alpha_3 = \begin{bmatrix} 2, & 1, & 1, & 3 \end{bmatrix}^T$ 都正交.

解 设 $\alpha = [x_1, x_2, x_3, x_4]^T$ ,根据题意 $\alpha$  为单位向量可知 $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1$ . (1)

同时
$$\alpha$$
与 $\alpha_1, \alpha_2, \alpha_3$ 都正交,据此可得 
$$\begin{cases} (\alpha, \alpha_1) = x_1 + x_2 - x_3 + x_4 = 0, \\ (\alpha, \alpha_2) = x_1 - x_2 - x_3 + x_4 = 0, \\ (\alpha, \alpha_3) = 2x_1 + x_2 + x_3 + 3x_4 = 0. \end{cases}$$
 从而可解得

$$\begin{cases} x_1 = -\frac{4}{3}t, \\ x_2 = 0, \\ x_3 = -\frac{1}{3}t, \\ x_4 = t. \end{cases}$$
 (其中  $t$  为任意取值). 又因为条件 (1) 可知  $t = \pm \frac{3}{\sqrt{26}}$ ,

所以
$$\alpha = [x_1, x_2, x_3, x_4]^T = \pm \frac{1}{\sqrt{26}} [4, 0, 1, -3]^T.$$

5. 已知欧氏空间 R<sup>4</sup> 中向量

$$\alpha_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1, & 1, & 0, & 0 \end{bmatrix}^T, \ \alpha_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0, & 0, & 1, & 1 \end{bmatrix}^T, \ \alpha_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1, & 1, & -1, & 1 \end{bmatrix}^T,$$

$$\alpha_4 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1, & -1, & -1, & 1 \end{bmatrix}^T, \quad \beta = \begin{bmatrix} 1, & 1, & 1, & 1 \end{bmatrix}^T$$

(1)  $\alpha_1, \alpha_2, \alpha_3, \alpha_4$  是否是  $R^4$  的一组标准正交基; (2) 若  $\alpha = \alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4$ , 求:  $\|\alpha\|$ ,  $(\alpha, \beta)$ .

解 (1) 
$$\begin{bmatrix} (\alpha_1,\alpha_1) & (\alpha_1,\alpha_2) & (\alpha_1,\alpha_3) & (\alpha_1,\alpha_4) \\ (\alpha_2,\alpha_1) & (\alpha_2,\alpha_2) & (\alpha_2,\alpha_3) & (\alpha_2,\alpha_4) \\ (\alpha_3,\alpha_1) & (\alpha_3,\alpha_2) & (\alpha_3,\alpha_3) & (\alpha_3,\alpha_4) \\ (\alpha_4,\alpha_1) & (\alpha_4,\alpha_2) & (\alpha_4,\alpha_3) & (\alpha_4,\alpha_4) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad 所以 \alpha_1,\alpha_2,\alpha_3,\alpha_4 \in \mathbb{R}^4 \text{ 的一组标准正交}$$

基.

(2) 
$$\|\alpha\| = \sqrt{(\alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4, \alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4)} = \sqrt{30}$$
;

 $\alpha$  在 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 下的坐标为[1, 2, 3, 4]<sup>T</sup>, 而  $\beta$  在 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 下的坐标为

6. 已知  $\alpha_1 = \begin{bmatrix} 1, & 2, & 1 \end{bmatrix}^T$ ,  $\alpha_2 = \begin{bmatrix} 2, & 3, & 3 \end{bmatrix}^T$ ,  $\alpha_3 = \begin{bmatrix} 3, & 7, & 1 \end{bmatrix}^T$ 是欧氏空间  $R^3$  的一组基,将它改造成为  $R^3$  的一组标准正交基.

解 先进行正交化得到  $\beta_1 = \alpha_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ ,  $2 \begin{bmatrix} 1 \end{bmatrix}^T$ ;

$$\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = \begin{bmatrix} 2, & 3, & 3 \end{bmatrix}^T - \frac{11}{6} \begin{bmatrix} 1, & 2, & 1 \end{bmatrix}^T = \begin{bmatrix} \frac{1}{6}, & -\frac{2}{3}, & \frac{7}{6} \end{bmatrix}^T;$$

$$\beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)} \beta_2 = \left[ \frac{3}{11}, -\frac{1}{11}, -\frac{1}{11} \right]^T.$$

再进行单位化得到  $\gamma_1 = \frac{\beta_1}{\|\beta_1\|} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1, & 2, & 1 \end{bmatrix}^T$ ;

$$\gamma_2 = \frac{\beta_2}{\|\beta_2\|} = \frac{1}{\sqrt{66}} [1, -4, 7]^T;$$

$$\gamma_3 = \frac{\beta_3}{\|\beta_3\|} = = \frac{1}{\sqrt{11}} [3, -1, -1]^T.$$

 $\gamma_1, \gamma_2, \gamma_3$  即为所求的标准正交基.

7. 已知 $\alpha_1 = \begin{bmatrix} 1, & 1, & 0, & 0 \end{bmatrix}^T$ , $\alpha_2 = \begin{bmatrix} 1, & 0, & 1, & 0 \end{bmatrix}^T$  , $\alpha_3 = \begin{bmatrix} -1, & 0, & 0, & 1 \end{bmatrix}^T$ 是线性无关向量组,求与此向量组等价的两两正交的单位向量组.

**解** 先进行正交化得到  $\beta_1 = \alpha_1 = \begin{bmatrix} 1, & 1, & 0, & 0 \end{bmatrix}^T$ ;

$$\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = \begin{bmatrix} \frac{1}{2}, & -\frac{1}{2}, & 1, & 0 \end{bmatrix}^T;$$

$$\beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)} \beta_2 = \begin{bmatrix} -\frac{1}{3}, & \frac{1}{3}, & \frac{1}{3}, & 1 \end{bmatrix}^T$$

在进行单位化得到 $\gamma_1 = \frac{\beta_1}{\|\beta_1\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1, & 1, & 0, & 0 \end{bmatrix}^T$ ;

$$\gamma_2 = \frac{\beta_2}{\|\beta_2\|} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1, & -1, & 2, & 0 \end{bmatrix}^T;$$

$$\gamma_3 = \frac{\beta_3}{\|\beta_3\|} = \frac{1}{2\sqrt{3}} \begin{bmatrix} -1, & 1, & 3 \end{bmatrix}^T.$$

 $\gamma_1, \gamma_2, \gamma_3$  就是所求的两两正交的单位向量组.

# 习题 5.5

1. 设向量组 $\alpha_1,\alpha_2,\cdots,\alpha_t$ 与向量组 $\beta_1,\beta_2,\cdots,\beta_s$ 等价,令

$$W = \{k_1\alpha_1 + k_2\alpha_2 + \dots + k_i\alpha_i | k_1, k_2, \dots, k_i \in P\},\$$

$$V = \{ l_1 \beta_1 + l_2 \beta_2 + \dots + l_s \beta_s | l_1, l_2, \dots, l_s \in P \},$$

其中P为数域,证明:W=V

证 因为向量组 $\alpha_1,\alpha_2,\cdots,\alpha_t$ 与向量组 $\beta_1,\beta_2,\cdots,\beta_s$ 等价,所以存在矩阵 $A_{sxt},B_{rxs}$ 使得

$$\begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_t \end{bmatrix} = \begin{bmatrix} \beta_1 & \beta_2 & \cdots & \beta_s \end{bmatrix} A \quad (1) ;$$

$$\begin{bmatrix} \beta_1 & \beta_2 & \cdots & \beta_s \end{bmatrix} = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_t \end{bmatrix} B \quad (2) .$$

任取 W 中元 素  $\alpha = k_1\alpha_1 + k_2\alpha_2 + \dots + k_r\alpha_r$  , 则即有  $\alpha = \begin{bmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_r \end{bmatrix} \begin{vmatrix} k_1 \\ k_2 \\ \vdots \\ k_r \end{vmatrix}$  , 由 (1) 式得

$$egin{align*} & egin{align*} & egin{align*} & eta & = \left[ lpha_1 & lpha_2 & \cdots & lpha_t 
ight] \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_t \end{bmatrix} = \begin{bmatrix} eta_1 & eta_2 & \cdots & eta_s \end{bmatrix} (egin{align*} & A & k_2 \\ \vdots \\ k_t \end{bmatrix} ), 从而可知  $lpha$  也可以表示成  $eta_1, eta_2, \cdots, eta_s$  的线性组  $\vdots$$$

合的形式, 所以 $\alpha \in V$ , 因此可得 $W \subset V$ .

类似的任取 W中元素  $\beta = \langle \beta_1 + \zeta_2 \beta_2 + \dots + \zeta_s \beta_s$ ,则即有  $\beta = \begin{bmatrix} \beta_1 & \beta_2 & \dots & \beta_s \end{bmatrix}$  ,由 (2) 式得  $\zeta_s$ 

$$eta = \begin{bmatrix} eta_1 & eta_2 & \cdots & eta_s \end{bmatrix} \begin{bmatrix} eta_1 \\ eta_2 \\ \vdots \\ eta_s \end{bmatrix} = \begin{bmatrix} lpha_1 & lpha_2 & \cdots & lpha_t \end{bmatrix} (B \begin{bmatrix} eta_1 \\ eta_2 \\ \vdots \\ eta_s \end{bmatrix}), 从而可知  $eta$  也可以表示成  $lpha_1, lpha_2, \cdots, lpha_t$  的线性组合$$

的形式, 所以  $\beta \in W$ , 因此可得  $V \subseteq W$ .

综上可知V = W.

- 2. 设: (I)  $\alpha_1, \alpha_2, \dots, \alpha_n$ 与(II):  $\beta_1, \beta_2, \dots, \beta_n$ 是向量空间  $P^n$ 的两组基
- (1) 证明在基(I),基(II)下坐标完全相同向量的全体组成的集合 W 是 P' 的一个子空间
- (2)\*设基(I)到基(II)的过渡矩阵为M,若秩(E-M)=r,则 $\dim(W)=n-r$ .
- 证 (1)设 $\alpha$ ,  $\beta$  是 W中任意两个向量, 且

$$\alpha = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix} = \begin{bmatrix} \beta_1 & \beta_2 & \cdots & \beta_n \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix};$$

$$\beta = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix} \begin{bmatrix} l_1 \\ l_2 \\ \vdots \\ l_n \end{bmatrix} = \begin{bmatrix} \beta_1 & \beta_2 & \cdots & \beta_n \end{bmatrix} \begin{bmatrix} l_1 \\ l_2 \\ \vdots \\ l_n \end{bmatrix}.$$

$$\mathbb{P}[\alpha] = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix} + \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix} = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix} \begin{bmatrix} k_1 + k_1 \\ k_2 + k_2 \\ \vdots \\ k_n + k_n \end{bmatrix}$$

$$= \begin{bmatrix} \beta_1 & \beta_2 & \cdots & \beta_n \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix} + \begin{bmatrix} \beta_1 & \beta_2 & \cdots & \beta_n \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix} = \begin{bmatrix} \beta_1 & \beta_2 & \cdots & \beta_n \end{bmatrix} \begin{bmatrix} k_1 + k_1 \\ k_2 + k_2 \\ \vdots \\ k_n + k_n \end{bmatrix}$$

所以 $\alpha + \beta \in W$ .

$$k\alpha = k \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix} = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix} \begin{bmatrix} kk_1 \\ kk_2 \\ \vdots \\ kk_n \end{bmatrix}$$
$$= k \begin{bmatrix} \beta_1 & \beta_2 & \cdots & \beta_n \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix} = \begin{bmatrix} \beta_1 & \beta_2 & \cdots & \beta_n \end{bmatrix} \begin{bmatrix} kk_1 \\ kk_2 \\ \vdots \\ kk_n \end{bmatrix}$$

所以 $k\alpha \in W$ .

(2) 由题意可知

$$W = \left\{ k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_n \alpha_n \left[ \alpha_1 \quad \alpha_2 \quad \dots \quad \alpha_n \right] \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix} = \left[ \beta_1 \quad \beta_2 \quad \dots \quad \beta_n \right] \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix} \right\}$$

设基(I)到基(II)的过渡矩阵为M,则有

$$[\beta_1 \quad \beta_2 \quad \cdots \quad \beta_n] = [\alpha_1 \quad \alpha_2 \quad \cdots \quad \alpha_n] M.$$

所以
$$k_1, k_2, \dots, k_n$$
满足 $\begin{bmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix} = \begin{bmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \end{bmatrix} M \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix},$ 

即要求
$$\begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix}$$
 $(E-M)$  $\begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix}$  $= O$ ,又因为 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 是一组基,所以 $\begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{bmatrix}$ 是一个

可逆矩阵,因此 $k_1,k_2,\cdots,k_n$ 即为满足(E-M)  $\begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix} = O$ 的数组,

由此可知 W中向量在基  $\alpha_1,\alpha_2,\cdots,\alpha_n$ 下的坐标全体就是方程组 (E-M)X=O的解向量的全体. 因为秩 (E-M)=r,所以坐标向量组的极大线性无关组含有的向量个数为 n-r,从而可得  $\dim(W)=n-r$ .

3. 设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是n维欧氏空间R''的一组基,证明:若R''中向量 $\beta_1,\beta_2$ 满足

$$(\beta_1, \alpha_i) = (\beta_2, \alpha_i), i = 1, 2, \dots, n, \mathbb{I} \beta_1 = \beta_2.$$

**证** 根据题意  $(\beta_1, \alpha_i) = (\beta_2, \alpha_i)$ ,  $i = 1, 2, \dots, n$ , 即有  $(\beta_1 - \beta_2, \alpha_i) = 0$ ,  $i = 1, 2, \dots, n$ ,

利用课本例题例 5.5.1 可知  $\beta_1 - \beta_2 = O$ ,所以有  $\beta_1 = \beta_2$ .

## 习题 6.1

- 1. 设 A, B均为 n阶方阵,则下述命题正确的是( ),且说明理由.
- (A) 若 A与 B等价,则 A与 B必相似. (B) 若 A与 B相似,则 A与 B必等价.

**解** (A) 设
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
,  $B = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$ , 因为秩( $A$ )=秩( $B$ )所以 $A$ 与 $B$ 等价; 但是由于 $|A| \neq |B|$ , 所以 $A$ 与

B不相似. 因此(A)不正确. (B) A与 B相似,即存在可逆矩阵 P使得  $P^{-1}AP = B$ ,所以秩 (A)=秩(B),因此 A与 B等价. (B)是正确的.因此该题应选(B).

- 2. 已知 $\xi_1, \xi_2$ , 是线性方程组AX = O的一个基础解系, 求A的一个特征值和特征向量.
- 解  $\xi_1, \xi_2$  是线性方程组 AX = O的一个基础解系,所以有  $A\xi_i = O = 0$   $\xi_i$  (i = 1, 2),因此可知  $\xi_1, \xi_2$  是 A的特征 值为 0 的特征向量.
- 3. 设 A, B均为 n阶方阵, 试证: 若 A可逆, 则 AB与 BA相似.
- 证 因为 A可逆、令 P = A,则有  $P^{-1}(AB)P = A^{-1}ABA = BA$ ,所以 AB与 BA相似。
- 4. 设A与B相似,C与D相似,试证:

$$\begin{bmatrix} A & O \\ O & C \end{bmatrix} = \begin{bmatrix} B & O \\ O & D \end{bmatrix}$$
相似.

证 因为 A与 B相似,所以存在可逆矩阵 P使得  $P^1AP=B$ . 又因为 C与 D相似,所以同样存在可逆矩阵 Q使

得 $Q^{-1}CQ = D$ . 下面令 $G = \begin{bmatrix} P & O \\ O & Q \end{bmatrix}$ , 因为P, Q可逆, 所以G也是可逆的并且有 $G^{-1} = \begin{bmatrix} P^{-1} & O \\ O & Q^{-1} \end{bmatrix}$ . 则有

$$G^{-1}\begin{bmatrix} A & O \\ O & C \end{bmatrix}G = \begin{bmatrix} P^{-1} & O \\ O & Q^{-1} \end{bmatrix}\begin{bmatrix} A & O \\ O & C \end{bmatrix}\begin{bmatrix} P & O \\ O & Q \end{bmatrix} = \begin{bmatrix} P^{-1}AP & O \\ O & Q^{-1}CQ \end{bmatrix} = \begin{bmatrix} B & O \\ O & D \end{bmatrix}$$

由此可得 $\begin{bmatrix} A & O \\ O & C \end{bmatrix}$ 与 $\begin{bmatrix} B & O \\ O & D \end{bmatrix}$ 相似.

5. 设  $A = \xi \eta^T$ , 其中 $\xi = [x_1, x_2, \dots, x_n]^T \neq O$ ,  $\eta = [y_1, y_2, \dots, y_n]^T \neq O$ . 求证:  $\xi \in A$ 的特征向量,并指出其对应的特征值.

证 因为  $A = \xi \eta^T$ ,所以  $A \xi = \xi \eta^T \xi = \xi (\eta^T \xi)$ ,而  $\eta^T \xi = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$ ,所以

 $A\xi = \xi(\eta^T \xi) = (\eta^T \xi)\xi = (x_1y_1 + x_2y_2 + \dots + x_ny_n)\xi$ ,根据特征向量的定义可得  $\xi$  是 A 的特征向量并且对应的特征值为  $\eta^T \xi = x_1y_1 + x_2y_2 + \dots + x_ny_n$ .

 $6^*$ 设  $\lambda_0$  是 n 阶方阵 A 的一个特征值. 记 A 的属于  $\lambda_0$  的特征向量的全体及零向量为  $W_{\lambda_0} = \left\{ \xi \in P' \, \middle| \, A\xi = \lambda_0 \xi \right\}$ . 证明: (1) 若  $\xi_1, \xi_2 \in W_{\lambda_0}$  ,则  $\xi_1 + \xi_2 \in W_{\lambda_0}$  ;

- (2) 若 $\xi_1 \in W_{\lambda_0}$ ,则对任意的 $k \in P$ 有 $k\xi_1 \in W_{\lambda_0}$ ;
- (3) 由(1),(2)导出  $W_{\lambda_0}$  为 P' 的一个子空间,称为属于  $\lambda_0$  的特征子空间.特征子空间  $W_{\lambda_0}$  中任意非零向量都是 A 的属于  $\lambda_0$  的特征向量.
- **证** (1)  $\xi_1, \xi_2 \in W_{\lambda_0}$ ,所以有  $A\xi_1 = \lambda_0 \xi_1$ , $A\xi_2 = \lambda_0 \xi_2$ ,

而  $A(\xi_1 + \xi_2) = A\xi_1 + A\xi_2 = \lambda_0 \xi_1 + \lambda_0 \xi_2 = \lambda_0 (\xi_1 + \xi_2)$ ,所以 $\xi_1 + \xi_2 \in W_{\lambda_0}$ .

- (2)  $\xi_1 \in W_{\lambda_0}$ , 所以  $A\xi_1 = \lambda_0 \xi_1$ , 而  $A(k\xi_1) = kA\xi_1 = k\lambda_0 \xi_1 = \lambda_0 (k\xi_1)$ , 因此  $k\xi_1 \in W_{\lambda_0}$ .
- (3) 由(1),(2)可知非空集合  $W_{\lambda_0} = \left\{ \xi \in P' \middle| A\xi = \lambda_0 \xi \right\}$  中元素符合加法和数乘的封闭性,所以构成一个子空间.

# 习题 6.2

1. 若方阵 A有一个特征值为-1,则 | A+E | =\_\_\_\_\_\_,且说明理由.

解 方阵 A 的特征值  $\lambda$  满足  $|\lambda E - A| = 0$ , 所以有 |-E - A| = 0. 从而  $|E + A| = (-1)^n |-E - A| = 0$ .

2. 命题: "若 $\frac{1}{2}$  不是方阵 A 的特征值,则 E-2A 为可逆矩阵"对不对?为什么?

解 对,因为 $\frac{1}{2}$ 不是方阵 A 的特征值,所以 $\left|\frac{1}{2}E-A\right|\neq 0$ ,从而 $\left|E-2A\right|=2''\left|\frac{1}{2}E-A\right|\neq 0$ .故 E-2A为可逆矩阵.

3. 求出下列矩阵的全部特征值和特征向量

$$(1) \begin{bmatrix} 1 & 0 & 0 \\ -2 & 5 & -2 \\ -2 & 4 & -1 \end{bmatrix}; \qquad (2) \begin{bmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{bmatrix}; \qquad (3) \begin{bmatrix} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{bmatrix};$$

$$(4) \begin{bmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{bmatrix}; \qquad (5) \begin{bmatrix} 5 & 3 & 1 & 1 \\ -3 & -1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix}; \qquad (6) \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

**解** (1) 
$$\begin{vmatrix} \lambda E - \begin{bmatrix} 1 & 0 & 0 \\ -2 & 5 & -2 \\ -2 & 4 & -1 \end{bmatrix} = \begin{vmatrix} \lambda - 1 & 0 & 0 \\ 2 & \lambda - 5 & 2 \\ 2 & -4 & \lambda + 1 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 3)$$
, 所以特征值为 1,1,3.

求解方程组 
$$(E - \begin{bmatrix} 1 & 0 & 0 \\ -2 & 5 & -2 \\ -2 & 4 & -1 \end{bmatrix})X = O$$
,得属于特征值 1 的特征向量为

 $\xi_1 = k_1 \begin{bmatrix} 2, & 1, & 0 \end{bmatrix}^T + k_2 \begin{bmatrix} -1, & 0, & 1 \end{bmatrix}^T$  (其中 $k_1, k_2$ 为不同时为零的任意数).

求解方程组 
$$(3E - \begin{bmatrix} 1 & 0 & 0 \\ -2 & 5 & -2 \\ -2 & 4 & -1 \end{bmatrix})X = O$$
,得属于特征值 3 的特征向量为

 $\xi_2 = k_3 [0, 1, 1]^T$  (其中  $k_3$  为不为零的任意数).

(2) 
$$\begin{vmatrix} \lambda E - \begin{bmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{vmatrix} = \begin{vmatrix} \lambda - 4 & 5 & -2 \\ -5 & \lambda + 7 & -3 \\ -6 & 9 & \lambda - 4 \end{vmatrix} = \lambda^2 (\lambda - 1), \text{ 所以特征值为 0,0,1.}$$

求解方程组
$$(E-\begin{bmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{bmatrix})X=O$$
,得属于特征值 1 的特征向量为

 $\xi_1 = k_1 \begin{bmatrix} 1, & 1, & 1 \end{bmatrix}^T$  (其中 $k_1$ 为不为零的任意数).

求解方程组 
$$(0E - \begin{bmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{bmatrix})X = O$$
,得属于特征值  $0$  的特征向量为

 $\xi_2 = k_2 \begin{bmatrix} 1, & 2, & 3 \end{bmatrix}^T$  (其中  $k_2$  为不同时为零的任意数).

(3) 
$$\begin{vmatrix} \lambda E - \begin{bmatrix} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{bmatrix} = \begin{vmatrix} \lambda - 1 & 3 & -4 \\ -4 & \lambda + 7 & -8 \\ -6 & 7 & \lambda - 7 \end{vmatrix} = \lambda^3 - \lambda^2 - 5\lambda - 3 = (\lambda + 1)^2 (\lambda - 3), \text{ fill by fixed by -1,-1,3.}$$

求解方程组 
$$(3E-\begin{bmatrix}1 & -3 & 4\\4 & -7 & 8\\6 & -7 & 7\end{bmatrix})X=O$$
,得属于特征值  $3$  的特征向量为

 $\xi_1 = k_1 \begin{bmatrix} 1, & 2, & 1 \end{bmatrix}^T$  (其中 $k_1$ 为不为零的任意数).

求解方程组
$$(-E-\begin{bmatrix} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{bmatrix})X=O$$
,得属于特征值-1 的特征向量为

 $\xi_2 = k_2 \begin{bmatrix} 1, & 2, & 2 \end{bmatrix}^T$  (其中  $k_2$  为不为零的任意数).

(4) 
$$\begin{vmatrix} \lambda E - \begin{bmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{vmatrix} = \begin{vmatrix} \lambda + 1 & -3 & 1 \\ 3 & \lambda - 5 & 1 \\ 3 & -3 & \lambda - 1 \end{vmatrix} = \lambda^3 - 5\lambda^2 + 8\lambda - 4 = (\lambda - 1)(\lambda - 2)^2,$$

所以特征值为 1,2,2.

求解方程组 
$$(1E - \begin{bmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{bmatrix})X = O$$
,得属于特征值  $1$  的特征向量为

 $\xi_1 = k_1 \begin{bmatrix} 1, & 1, & 1 \end{bmatrix}^T$  (其中 $k_1$ 为不为零的任意数).

求解方程组
$$(2E-\begin{bmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{bmatrix})X=O$$
,得属于特征值 2 的特征向量为

 $\xi_2 = k_2 \begin{bmatrix} 1, & 1, & 0 \end{bmatrix}^T + k_3 \begin{bmatrix} 1, & 0, & -3 \end{bmatrix}^T$  (其中  $k_2, k_3$  为不为零的任意数).

(5) 
$$\begin{vmatrix} \lambda E - \begin{bmatrix} 5 & 3 & 1 & 1 \\ -3 & -1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 2 \end{vmatrix} = \begin{vmatrix} \lambda - 5 & -3 & -1 & -1 \\ 3 & \lambda + 1 & -1 & 1 \\ 0 & 0 & \lambda - 1 & 0 \\ 0 & 0 & -2 & \lambda - 2 \end{vmatrix}$$

$$= \lambda^4 - 7\lambda^3 + 18\lambda^2 - 20\lambda + 8 = (\lambda - 1)(\lambda - 2)^3,$$

所以特征值为 1,2,2,2.

求解方程组(1
$$E$$
- $\begin{bmatrix} 5 & 3 & 1 & 1 \\ -3 & -1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix}$ ) $X=O$ ,得属于特征值 1 的特征向量为

 $\xi_1 = k_1 \begin{bmatrix} 7, & -9, & 1, & -2 \end{bmatrix}^T$  (其中  $k_1$  为不为零的任意数).

求解方程组 
$$(2E - \begin{bmatrix} 5 & 3 & 1 & 1 \\ -3 & -1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 2 \end{bmatrix})X = O$$
,得属于特征值 2 的特征向量为

 $\xi_2 = k_2 \begin{bmatrix} -1, & 0, & 0, & 3 \end{bmatrix}^T + k_3 \begin{bmatrix} -1, & 1, & 0, & 0 \end{bmatrix}^T$  (其中 $k_2, k_3$ 为不为零的任意数).

(6) 
$$\begin{vmatrix} \lambda E - \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = \begin{vmatrix} \lambda & 0 & 0 & -1 \\ 0 & \lambda & -1 & 0 \\ 0 & -1 & \lambda & 0 \\ -1 & 0 & 0 & \lambda \end{vmatrix} = \lambda^4 - 2\lambda^2 + 1 = (\lambda + 1)^2 (\lambda - 1)^2,$$

所以特征值为-1,-1,1,1.

求解方程组 
$$(E - \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}) X = O$$
,得属于特征值 1 的特征向量为

 $\xi_1 = k_1 \begin{bmatrix} 1, & 0, & 0, & 1 \end{bmatrix}^T + k_2 \begin{bmatrix} 0, & 1, & 1, & 0 \end{bmatrix}^T$  (其中 $k_1, k_2$ 为不全为零的任意数).

求解方程组
$$(-E-\begin{bmatrix}0&0&0&1\\0&0&1&0\\0&1&0&0\\1&0&0&0\end{bmatrix})X=O$$
,得属于特征值-1 的特征向量为

 $\xi_2 = k_3 \begin{bmatrix} 0, -1, 1, 0 \end{bmatrix}^T + k_4 \begin{bmatrix} -1, 0, 0, 1 \end{bmatrix}^T$  (其中 $k_3, k_4$ 为不为零的任意数).

4. 判断上题中哪些矩阵可以对角化,对那些可对角化的矩阵 A,写出可逆矩阵 P 使  $P^{-1}AP$ 

为对角矩阵,并写出该对角矩阵.

**解** (1) 3 阶矩阵有 3 个线性无关的特征向量,所以能对角化。可逆矩阵可取  $P=\begin{bmatrix} 2 & -1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ ,相应对角矩阵为

$$P^{-1}AP = \begin{bmatrix} 1 & & \\ & 1 & \\ & & 3 \end{bmatrix}.$$

- (2) 3 阶矩阵最多只有 2 个线性无关的特征向量,少于 3 个,所以不能对角化.
- (3) 3 阶矩阵最多只有 2 个线性无关的特征向量,少于 3 个,所以不能对角化.
- (4) 3 阶矩阵有 3 个线性无关的特征向量,所以能对角化. 可逆矩阵可取  $P=\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -3 \end{bmatrix}$ ,相应对角矩阵为

$$P^{-1}AP = \begin{bmatrix} 1 & & \\ & 2 & \\ & & 2 \end{bmatrix}.$$

- (5) 4 阶矩阵最多只有 3 个线性无关的特征向量,少于 4 个,所以不能对角化.

阵为 
$$P^{-1}AP = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & -1 & \\ & & & -1 \end{bmatrix}$$
.

5. 设 3 阶方阵 A 有特征值-1,1,2,它们所对应的特征向量分别为  $\xi_1,\xi_2,\xi_3$ ,令  $P = \begin{bmatrix} \xi_1 & \xi_2 & \xi_3 \end{bmatrix}$ ,则  $P^1AP$ 为( ),且说明理由.

(A) 
$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
. (B)  $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ . (C)  $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ . (D)  $\begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ .

**解**  $\xi_1$  是属于特征值-1 的特征向量,所以对角矩阵主对角线上第一个元素为-1;同理第二个元素是 1,第三个为

2, 因此 
$$P^{-1}AP = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
, 故应选填 A.

6. 设上三角矩阵

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix},$$

它的主对角线上元素互异,证明: A能与对角矩阵相似.

$$\mathbf{iE} \quad |\lambda E - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ 0 & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda - a_{nn} \end{vmatrix} = (\lambda - a_{11})(\lambda - a_{22})\cdots(\lambda - a_{nn}),$$

因为A的主对角线上元素互异、所以A有n个互异的特征值。因此A能与对角矩阵相似

7. 设 A 为 n 阶方阵,证明: A 与  $A^T$  有相同的特征多项式.

证 
$$A^T$$
的特征多项式为 $\left|\lambda E - A^T\right| = \left|((\lambda E)^T - A)^T\right| = \left|(\lambda E - A)^T\right| = \left|\lambda E - A\right|$ ,

而  $\lambda E - A$  是 A 的特征多项式,所以 A 与 A 有相同的特征多项式.

8\*. 设 $\xi_1, \xi_2$  分别是方阵 A 的属于  $\lambda_1, \lambda_2$  的特征向量,若  $\lambda_1 \neq \lambda_2$  ,证明:  $\xi_1 + \xi_2$  不可能是 A 的特征向量.

 $\mathbf{ii}$ (反证) 假设 $\xi_1 + \xi_2$ 是A的属于特征值 $\lambda$ 的特征向量,则有 $A(\xi_1 + \xi_2) = \lambda(\xi_1 + \xi_2)$ ,又因为 $\xi_1, \xi_2$ 分别是A的属于 $\lambda_1, \lambda_2$ 的特征向量,所以有 $A\xi_1 = \lambda_1\xi_1, A\xi_2 = \lambda_2\xi_2$ . 又因为 $A(\xi_1 + \xi_2) = A\xi_1 + A\xi_2$ ,由此可知 $\lambda_1\xi_1 + \lambda_2\xi_2 = \lambda\xi_1 + \lambda\xi_2$ ,即有 $(\lambda - \lambda_1)\xi_1 + (\lambda - \lambda_2)\xi_2 = O$ ,因为 $\lambda_1 \neq \lambda_2$ ,所以 $(\lambda - \lambda_1)$ 和 $(\lambda - \lambda_2)$ 不全为零,这表明 $\xi_1, \xi_2$ 线性相关,这与属于不同特征值的特征向量必线性无关矛盾!所以假设不成立,即有 $\xi_1 + \xi_2$ 不是A的特征向量.

9\*. 已知 3 阶矩阵 A 的特征值为 1, 2, 2, 且 A 不能与对角矩阵相似,则秩(E-A)=\_\_\_\_\_\_; 秩(2E-A)=\_\_\_\_\_,并说明理由。

解 因为 1 是 A 的一重根,所以(E-A)X=O 的基础解系含有 1 个向量,因此 3-秩(E-A)=1,从而可知秩(E-A)=2. 又 因为 2 是 A 的二重根,所以(2E-A)X=O 的基础解系含有向量的个数为 1 或 2,由于 A 不能与对角矩阵相似,则可知 A 的线性无关的特征值个数小于 3,所以(2E-A)X=O 的基础解系含有向量的个数只能为 1,故有 3-秩(2E-A)=1,所以秩(2E-A)=2.

$$10*$$
.已知  $A = \begin{bmatrix} 0 & 0 & 1 \\ x & 1 & 2x - 3 \\ 1 & 0 & 0 \end{bmatrix}$ 能与对角矩阵相似,求  $x$ .

解 
$$|\lambda E - A| = \begin{vmatrix} \lambda & 0 & -1 \\ -x & \lambda - 1 & 3 - 2x \\ -1 & 0 & \lambda \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda & -1 \\ -1 & \lambda \end{vmatrix} = (\lambda - 1)^2 (\lambda + 1), A$$
的特征值为-1, 1, 1. 因为  $A$ 与对角

矩阵相似,所以要求特征根的重数  $n_i$ 与 $(\lambda_i E - A)X = O$ 的基础解系所含向量个数  $r_i$ 相等. -1 是一重根所以一定满足;要 2 重特征值 1 满足,也就是要(E - A)X = O的基础解系含有 2 个向量,由此可知 n-秩(E - A)=2,因此秩(E - A)=1.

$$E-A = \begin{bmatrix} 1 & 0 & -1 \\ -x & 0 & -2x+3 \\ -1 & 0 & 1 \end{bmatrix} \xrightarrow{\frac{R_2+xR_1}{R_3+R_1}} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & -3x+3 \\ 0 & 0 & 0 \end{bmatrix}, 所以当且仅当  $x=1$  时秩( $E-A$ )=1,从而所求  $x=1$ .$$

### 习题 6.3

1. 设矩阵 
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{bmatrix}$$
与矩阵  $B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & y & 1 \\ 0 & 0 & -1 \end{bmatrix}$ 相似. 求  $x,y$ 

解 因为矩阵 
$$A$$
与矩阵  $B$ 相似,所以 tr  $A$ =tr  $B$ , $A$ = $B$ ,从而有  $\begin{cases} 2+x=2+y+1, \\ -2=-2y, \end{cases}$  解得  $x=0,y=1$ .

则下述结论正确的是(),且说明理由.

- (A) A 与 B 等价, 且 A 与 B 相似.
- (B) A 与 B 等价,但 A 与 B 不相似.
- (C) A 与 B 不等价, 且 A 与 B 不相似.
- (D) A 与 B 不等价, 但 A 与 B 相似.

**解** 因为秩(A)=1=秩(B),所以A与B等价. 又因为  $\operatorname{tr} A$ =4,  $\operatorname{tr} B$ =1,即有  $\operatorname{tr} A$  ≠  $\operatorname{tr} B$ ,所以A与B不相似. 综上可知(B) 是正确的,故应选填 B.

3. 已知 3 阶矩阵 A 的特征值为-1,1,2,求(1) 矩阵  $A^2 + A - 2E$ 的特征值; (2)  $| A^2 + A - 2E |$ .

**解** (1) 取 
$$f(x) = x^2 + x - 2$$
, 则  $A^2 + A - 2E = f(A)$ ,

所以  $f(A) = A^2 + A - 2E$  的特征值为 f(-1) = 2, f(1) = 0, f(2) = 2.

(2) 
$$|A^2 + A - 2E| = f(-1)f(1)f(2) = 2 \times 0 \times 2 = 0.$$

4. 设 3 阶方阵 A 的行列式 |A| =-2,A\*有一个特征值为 6,则 A<sup>1</sup>必有一个特征值为\_\_\_\_; A必有一个特征值为\_\_\_

**解** (1) 由 AA = |A|E可得  $A^{-1} = -\frac{1}{2}A'$ , A\*有一个特征值为 6, 所以  $A^{-1}$ 必有一个特征值为  $-\frac{1}{2} \times 6 = -3$ .

(2) 
$$A = (A^{-1})^{-1}$$
, 所以  $A$ 必有一个特征值为  $\frac{1}{-3} = -\frac{1}{3}$ .

(3) 
$$5A^{-1} - 3A^* = 5 \times (-\frac{1}{2}A^*) - 3A^* = -\frac{11}{2}A^*$$
,所以必有一个特征值为 $-\frac{11}{2} \times 6 = -33$ .

(4) 取  $f(x) = x^2 + x$ , 则  $A(E + A) = A^2 + A = f(A)$ , 因 A有一个特征值为  $-\frac{1}{3}$ , 所以 f(A) 必有一个特征值为  $f(-\frac{1}{3}) = (-\frac{1}{3})^2 - \frac{1}{3} = -\frac{2}{9}$ .

(5) 
$$5A^{-1} - 3A = 5A^{-1} - 3(A^{-1})^{-1}$$
,所以必有一个特征值为  $5 \times (-3) - 3 \times (-3)^{-1} = -14$ .

5. 
$$\[ \text{$\psi$} \] A = \begin{bmatrix} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{bmatrix}$$
. (1)  $\[ \text{$\psi$} \] A^{\ell} \] (k>1); (2) \[ \text{$\psi$} \] A^{\ell} + 3A^{\ell} - 24A + 28E. \]$ 

解 (1) 
$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & 2 & -2 \\ 2 & \lambda + 2 & -4 \\ -2 & -4 & \lambda + 2 \end{vmatrix} = \lambda^3 + 3\lambda^2 - 24\lambda + 28 = (\lambda - 2)^2(\lambda + 7)$$
, 所以特征值为 2, 2, -7.

求解方程组  $(2E-\begin{bmatrix}1&-2&2\\-2&-2&4\\2&4&-2\end{bmatrix})X=O$ ,得到属于 2 的线性无关的特征向量为

$$\xi_1 = \begin{bmatrix} 2, & 0, & 1 \end{bmatrix}^T, \xi_2 = \begin{bmatrix} -2, & 1, & 0 \end{bmatrix}^T.$$

求解方程组 
$$(-7E - \begin{bmatrix} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{bmatrix})X = O$$
,得到属于-7 的线性无关的特征向量为  $\xi_3 = \begin{bmatrix} -\frac{1}{2}, & -1, & 1 \end{bmatrix}^T$ .

 $\xi_1,\xi_2,\xi_3$  线性无关,故 A 能对角化. 取  $P=[\xi_1,\xi_2,\xi_3]$ 则 P 为可逆矩阵,且

$$P^{-1}AP = \begin{bmatrix} 2 \\ 2 \\ -7 \end{bmatrix}$$
 记为  $\Lambda$ . 求得  $A = P\Lambda P^{-1}$ , 从而  $A^k = (P\Lambda P^{-1})^k = P\Lambda^k P^{-1}$ 

$$A^{k} = \begin{bmatrix} 2 & -2 & -\frac{1}{2} \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2^{k} \\ 2^{k} \\ (-7)^{k} \end{bmatrix} \begin{bmatrix} 2 & -2 & -\frac{1}{2} \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} 2^{k+3} + (-7)^{k} & -2^{k+1} + 2(-7)^{k} & 2^{k+1} - 2(-7)^{k} \\ -2^{k+1} + 2(-7)^{k} & 5 \cdot 2^{k+1} + 4(-7)^{k} & 2^{k+1} - 4(-7)^{k} \\ 2^{k+1} - 2(-7)^{k} & 2^{k+2} - 4(-7)^{k} & 5 \cdot 2^{k+1} + 4(-7)^{k} \end{bmatrix}.$$

(2) 取 
$$f(x) = x^3 + 3x^2 - 24x + 28$$
 , 则  $A^2 + 3A^2 - 24A + 28E = f(A)$  的 特 征 值 为  $f(2) = 0, f(2) = 0, f(-7) = 0$ , 所以  $A^2 + 3A^2 - 24A + 28E = POP^{-1} = O$ .

6. 设 n 阶方阵 A 的 n 个特征值为 1 , 2 ,  $\cdots$  , n , |x| |A+E| .

解 方阵 A的 n 个特征值为 1 , 2 , … , n , 所以 A+E 的特征值为 2 , … … , n , n+1 . 所以 |A+E|=(n+1)! .

7. 已知 3 阶方阵 A 的特征值为 0, 1, 2, 所对应的特征向量分别为

$$\begin{bmatrix} 1, & 1, & 1 \end{bmatrix}^T$$
,  $\begin{bmatrix} 1, & 1, & 0 \end{bmatrix}^T$ ,  $\begin{bmatrix} 1, & 0, & 0 \end{bmatrix}^T$ 

求(1)  $A^k$ , 其中 k 为任意正整数; (2)  $A^3 + A^2 - 4A + 2E$ ; (3)  $A^3 + A^2 - 4A + 2E$ .

**分析** 本题与第 5 题类似, 故解法相同, 下面仅列出简要解答.

解 (1) 由方阵 A 的特征值为 0, 1, 2, 所对应的特征向量分别为  $\begin{bmatrix} 1, & 1, & 1 \end{bmatrix}^T$ ,  $\begin{bmatrix} 1, & 1, & 0 \end{bmatrix}^T$ ,  $\begin{bmatrix} 1, & 0, & 0 \end{bmatrix}^T$ , 可

知 
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 & & \\ & 1 & \\ & & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix},$$
所以

$$\mathcal{A}^{k} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}^{-1} \cdots \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 & & & \\ & 1 & & \\ & & 2^{k} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 2^{n} & 1 - 2^{n} & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

(2) 取  $f(x) = x^3 + x^2 - 4x + 2$ , 方阵 A 的特征值为 0, 1, 2, 所以  $f(A) = A^3 + A^2 - 4A + 2E$  的特征值为 f(0) = 2, f(1) = 0, f(2) = 6. 因此  $A^3 + A^2 - 4A + 2E = f(0)$ , f(1), f(2) = 0.

$$(3) \quad \mathring{A} + \mathring{A}^2 - 4 \mathring{A} + 2 E = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2 & 0 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 6 & -6 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{bmatrix}.$$

8\*. 设矩阵 
$$A = \begin{bmatrix} a & -1 & c \\ 5 & b & 3 \\ 1-c & 0 & -a \end{bmatrix}$$
,  $|A| = -1$ ,  $A$ \*有一个特征值  $\lambda_0$ , 属于  $\lambda_0$  的特征向量为  $\xi = \begin{bmatrix} -1, & -1, & 1 \end{bmatrix}^T$ , 求

a,b,c和  $\lambda_0$  的值.

解 由题设知, $A^{\xi} = \lambda_0 \xi$ ,两边左乘 A,利用  $AA^{\xi} = A = E = E$  可得: $A\xi = -\frac{1}{\lambda_0} \xi$  即有

$$\begin{bmatrix} a & -1 & c \\ 5 & b & 3 \\ 1-c & 0 & -a \end{bmatrix} \begin{bmatrix} -1, & -1, & 1 \end{bmatrix}^T = -\frac{1}{\lambda_0} \begin{bmatrix} -1, & -1, & 1 \end{bmatrix}^T.$$
 由此可得

$$\begin{cases} -a+1+c=\frac{1}{\lambda_0}, & (1) \\ -5-b+3=\frac{1}{\lambda_0}, & (2), \quad \text{利用 (1)} 和 (3) 可知  $2=2\frac{1}{\lambda_0}, \quad \text{从而得到 } \lambda_0=1, \text{ 由此可得 } \begin{cases} c=a, \\ b=-3. \end{cases}$  再根据  $|A|=-1,$   $c-1-a=-\frac{1}{\lambda_0}.$  (3)$$

可得 |A| = a - 3 = -1, 即有 a = 2. 综上可得  $a = 2, b = -3, c = 2, \lambda_0 = 1$ .

9. 设 A 为 n 阶方阵, 证明:

A = 0 ⇔ 零是 A 的一个特征值.

证  $\Rightarrow |A| = 0$ 所以 |0E - A| = 0, 因此零是 A 的一个特征值.

⇐零是A的一个特征值,所以|0E-A|=0即有|A|=0.

10. 设 n(n>1)阶上三角矩阵

$$A = \begin{bmatrix} a & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & a \end{bmatrix}$$

若  $A \neq aE$ ,则A不能与对角矩阵相似.

证 
$$|\lambda E - A| = \begin{bmatrix} \lambda - a & -a_{12} & -a_{13} & \cdots & -a_{1n} \\ 0 & \lambda - a & -a_{23} & \cdots & -a_{2n} \\ 0 & 0 & \lambda - a & \cdots & -a_{3n} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & \lambda - a \end{bmatrix} = (\lambda - a)^n$$
,所以  $a \in A$ 的  $n$  重根. 如果  $A$ 能与对角矩阵相似,则

必有 (aE - A)X = O的基础解系含有 n个向量,

即 n-秩(aE - A)=n, 也就是秩(aE - A)=0, 从而得到此时 aE - A = O, 即 A = aE, 这与条件  $A \neq aE$ 矛盾! 所以 A 不能与对角矩阵相似.

11\*. 设 n 阶方阵 A 满足  $A^2 + 4A + 4E = O$ ,证明: A 的特征值仅为-2.

证 设  $\lambda$  为 A 的任 意 一 个 特 征 值 ,  $\xi$  是 A 的属 于  $\lambda$  的特 征 向 量 , 则有  $A\xi = \lambda \xi$  , 所以  $(A^2 + 4A + 4E)\xi = \lambda^2 \xi + 4\lambda \xi + 4\xi = O\xi = O , \, \pm \xi \neq O$ 可得  $\lambda^2 + 4\lambda + 4 = (\lambda + 2)^2 = 0$ ,即得  $\lambda = -2$ ,所以 A 的特征值仅为-2.

# 习题 6.4

- 1. 实对称矩阵是矩阵能对角化的充分条件,还是必要条件?为什么?
- 解 因为实对称矩阵一定能对角化,所以充分性是成立的,但是设矩阵  $A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$  不是实对称矩阵,但是我们

知道他有三个互异的特征值 1,2,3 所以它一定能对角化. 因此可知必要性不成立. 所以实对称矩阵是矩阵能对角化的充分但不必要条件.

2. 求可逆矩阵  $P \notin P^{-1}AP$ 为对角阵,且写出这对角阵:

$$(1) A = \begin{bmatrix} 5 & -1 & 3 \\ -1 & 5 & -3 \\ 3 & -3 & 3 \end{bmatrix}; (2) A = \begin{bmatrix} 3 & 1 & 0 & -1 \\ 1 & 3 & -1 & 0 \\ 0 & -1 & 3 & 1 \\ -1 & 0 & 1 & 3 \end{bmatrix};$$

$$(3) A = \begin{bmatrix} 2 & -1 & -1 & 1 \\ -1 & 2 & 1 & -1 \\ -1 & 1 & 2 & -1 \\ 1 & -1 & -1 & 2 \end{bmatrix}.$$

**解** (1) 
$$|\lambda E - A| = \begin{vmatrix} \lambda - 5 & 1 & -3 \\ 1 & \lambda - 5 & 3 \\ -3 & 3 & \lambda - 3 \end{vmatrix} = \lambda^3 - 13\lambda^2 + 36\lambda = \lambda(\lambda - 4)(\lambda - 9)$$
,所以特征值为 0,4,9.

解线性方程组  $(0E - \begin{bmatrix} 5 & -1 & 3 \\ -1 & 5 & -3 \\ 3 & -3 & 3 \end{bmatrix}) X = O$ ,得属于特征值 0 的线性无关的一个特征向量为 $\begin{bmatrix} -1 & 1 & 2 \end{bmatrix}^T$ .

解线性方程组  $(4E - \begin{bmatrix} 5 & -1 & 3 \\ -1 & 5 & -3 \\ 3 & -3 & 3 \end{bmatrix})X = O$ ,得属于特征值 4 的线性无关的一个特征向量为  $\begin{bmatrix} 1, & 1, & 0 \end{bmatrix}^T$ .

解线性方程组  $(9E - \begin{bmatrix} 5 & -1 & 3 \\ -1 & 5 & -3 \\ 3 & -3 & 3 \end{bmatrix})X = O$ ,得属于特征值 9 的线性无关的一个特征向量为  $\begin{bmatrix} 1, & -1, & 1 \end{bmatrix}^T$ .

所以 
$$P = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix}$$
,对角矩阵为  $\begin{bmatrix} 0 & & \\ & 4 & \\ & 9 \end{bmatrix}$ 

所以 
$$P = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix}$$
, 对角矩阵为  $\begin{bmatrix} 0 \\ 4 \end{bmatrix}$ .

(2)  $|\lambda E - A| = \begin{bmatrix} \lambda - 3 & -1 & 0 & 1 \\ -1 & \lambda - 3 & 1 & 0 \\ 0 & 1 & \lambda - 3 & -1 \\ 1 & 0 & -1 & \lambda - 3 \end{bmatrix} = \lambda^4 - 12\lambda^3 + 50\lambda^2 - 84\lambda + 45$ 

 $=(\lambda-1)(\lambda-3)^2(\lambda-5)$ , 所以特征值为 1,3,3,5.

解线性方程组 (3E-  $\begin{vmatrix} 3 & 1 & 0 & -1 \\ 1 & 3 & -1 & 0 \\ 0 & -1 & 3 & 1 \\ \vdots & 0 & 1 & 2 \end{vmatrix}$  )X=O,得属于特征值 3 的两个线性无关的特征向量为

 $\begin{bmatrix} 1, & 0, & 1, & 0 \end{bmatrix}^T, \begin{bmatrix} 0, & 1, & 0, & 1 \end{bmatrix}^T.$ 

解线性方程组 
$$(5E-\begin{bmatrix}3&1&0&-1\\1&3&-1&0\\0&-1&3&1\\-1&0&1&3\end{bmatrix})X=O$$
,得属于特征值 5 的一个线性无关的特征向量为

$$\begin{bmatrix} 1, & 1, & -1, & -1 \end{bmatrix}^T$$
.

解线性方程组 
$$(E - \begin{bmatrix} 3 & 1 & 0 & -1 \\ 1 & 3 & -1 & 0 \\ 0 & -1 & 3 & 1 \\ -1 & 0 & 1 & 3 \end{bmatrix})X = O$$
,得属于特征值 1 的一个线性无关的特征向量为

 $\begin{bmatrix} 1, & -1, & -1, & 1 \end{bmatrix}^T$ .

所以 
$$P = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \\ 1 & 0 & -1 & -1 \\ 0 & 1 & -1 & 1 \end{bmatrix}$$
, 对角矩阵为  $\begin{bmatrix} 3 & & & \\ & 3 & & \\ & & 5 & \\ & & & 1 \end{bmatrix}$ .

(3) 
$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & 1 & 1 & -1 \\ 1 & \lambda - 2 & -1 & 1 \\ 1 & -1 & \lambda - 2 & 1 \\ -1 & 1 & 1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)^3 (\lambda - 5), \text{ 所以特征值为 1,1,1,5.}$$

解线性方程组 
$$(E-\begin{bmatrix} 2 & -1 & -1 & 1 \\ -1 & 2 & 1 & -1 \\ -1 & 1 & 2 & -1 \\ 1 & -1 & -1 & 2 \end{bmatrix})X=O$$
,得属于特征值 1 的三个线性无关的特征向量为

 $\begin{bmatrix} 1, & 1, & 0, & 0 \end{bmatrix}^T$ ,  $\begin{bmatrix} 1, & 0, & 1, & 0 \end{bmatrix}^T$ ,  $\begin{bmatrix} 1, & 0, & 0, & -1 \end{bmatrix}^T$ .

解线性方程组 (5
$$E$$
- $\begin{bmatrix} 2 & -1 & -1 & 1 \\ -1 & 2 & 1 & -1 \\ -1 & 1 & 2 & -1 \\ 1 & -1 & -1 & 2 \end{bmatrix}$ ) $X = O$ ,得属于特征值 5 的一个线性无关的特征向量为

 $\begin{bmatrix} 1, & -1, & -1, & 1 \end{bmatrix}^T$ .

所以 
$$P = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$
, 对角矩阵为  $\begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 5 \end{bmatrix}$ .

- 3. 求正交矩阵  $U \in U^{-1}AU$ 为对角阵,且写出这对角阵,这里 A 即第 2 题中的 A.
  - (1) 把三个属于不同特征值的特征向量单位化.

$$\frac{\begin{bmatrix} -1, & 1, & 2 \end{bmatrix}^T}{\left\| \begin{bmatrix} -1, & 1, & 2 \end{bmatrix}^T \right\|} = \frac{1}{\sqrt{6}} \begin{bmatrix} -1, & 1, & 2 \end{bmatrix}^T, \qquad \frac{\begin{bmatrix} 1, & 1, & 0 \end{bmatrix}^T}{\left\| \begin{bmatrix} 1, & 1, & 0 \end{bmatrix}^T \right\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1, & 1, & 0 \end{bmatrix}^T, 
\frac{\begin{bmatrix} 1, & -1, & 1 \end{bmatrix}^T}{\left\| \begin{bmatrix} 1, & -1, & 1 \end{bmatrix}^T \right\|} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1, & -1, & 1 \end{bmatrix}^T.$$

由此得到 
$$U = \begin{bmatrix} -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \end{bmatrix}$$
, 对角矩阵为  $\begin{bmatrix} 0 & & \\ & 4 & \\ & & 9 \end{bmatrix}$ .

(2) 因为四个线性无关的特征向量已经两两正交了, 所以只要对他们单位化即可.

$$\frac{\begin{bmatrix} 1, & 0, & 1, & 0 \end{bmatrix}^T}{\|[1, & 0, & 1, & 0]^T\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1, & 0, & 1, & 0 \end{bmatrix}^T, \frac{\begin{bmatrix} 0, & 1, & 0, & 1 \end{bmatrix}^T}{\|[0, & 1, & 0, & 1]^T\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0, & 1, & 0, & 1 \end{bmatrix}^T, 
\frac{\begin{bmatrix} 1, & 1, & -1, & -1 \end{bmatrix}^T}{\|[1, & 1, & -1, & -1]^T\|} = \frac{1}{2} \begin{bmatrix} 1, & 1, & -1, & -1, & 1 \end{bmatrix}^T, \frac{\begin{bmatrix} 1, & -1, & -1, & 1 \end{bmatrix}^T}{\|[1, & -1, & -1, & 1]^T\|} = \frac{1}{2} \begin{bmatrix} 1, & -1, & -1, & 1 \end{bmatrix}^T$$
由此得到  $U = \frac{1}{2} \begin{bmatrix} \sqrt{2} & 0 & 1 & 1 \\ 0 & \sqrt{2} & 1 & -1 \\ \sqrt{2} & 0 & -1 & -1 \end{bmatrix}$ , 对角矩阵为  $\begin{bmatrix} 3 & 3 & 3 \\ 5 & 1 & 1 \end{bmatrix}$ .

(3) 先对属于特征值 1 的三个特征向量进行正交化.

$$\xi_1 = \begin{bmatrix} 1, & 1, & 0, & 0 \end{bmatrix}^T, \xi_2 = \begin{bmatrix} 1, & 0, & 1, & 0 \end{bmatrix}^T, \xi_3 = \begin{bmatrix} 1, & 0, & 0, & -1 \end{bmatrix}^T.$$

$$\eta_1 = \xi_1 = \begin{bmatrix} 1, & 1, & 0, & 0 \end{bmatrix}^T;$$

$$\eta_2 = \xi_2 - \frac{(\xi_2, \eta_1)}{(\eta_1, \eta_1)} \eta_1 = \begin{bmatrix} 1, & 0, & 1, & 0 \end{bmatrix}^T - \frac{1}{2} \begin{bmatrix} 1, & 1, & 0, & 0 \end{bmatrix}^T = \begin{bmatrix} \frac{1}{2}, & -\frac{1}{2}, & 1, & 0 \end{bmatrix}^T;$$

$$\eta_3 = \xi_3 - \frac{(\xi_3, \eta_1)}{(\eta_1, \eta_1)} \eta_1 - \frac{(\xi_3, \eta_2)}{(\eta_2, \eta_2)} \eta_2 = \frac{1}{3} \begin{bmatrix} 1, & -1, & -1, & -3 \end{bmatrix}^T.$$

再对向量进行单位化,得到三个正交单位向量,从而得到四个两两正交的单位向量:

$$\frac{1}{\sqrt{2}}[1, 1, 0, 0]^T, \frac{1}{\sqrt{6}}[1, -1, 2, 0]^T, \frac{\sqrt{3}}{6}[1, -1, -1, -3]^T, \frac{1}{2}[1, -1, -1, 1]^T. 由此得到$$

$$U = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{1}{\sqrt{6}} & \frac{\sqrt{3}}{6} & \frac{1}{2} \\ \frac{\sqrt{2}}{2} & -\frac{1}{\sqrt{6}} & -\frac{\sqrt{3}}{6} & -\frac{1}{2} \\ 0 & \frac{2}{\sqrt{6}} & -\frac{\sqrt{3}}{6} & -\frac{1}{2} \\ 0 & 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}, \text{ 对角矩阵为} \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 5 \end{bmatrix}.$$

4\*. 设 A, B 均为 n 阶实对称矩阵,证明:

A与 B相似  $\Leftrightarrow$  A, B有相同的特征多项式.

证 ⇒ 显然成立.

 $\leftarrow A, B$ 有相同的特征多项式,则A, B必有相同的特征根(包括重数). 不妨设这些根为 $\lambda_1, \lambda_2, \cdots, \lambda_n$ ,因为A, B

均为
$$n$$
阶实对称矩阵,所以存在可逆矩阵 $P,Q$ 使得 $P^{-1}AP=\begin{bmatrix}\lambda_1&&&&\\&\lambda_2&&&\\&&\ddots&&\\&&&\lambda_n\end{bmatrix},$  $Q^{-1}BQ=\begin{bmatrix}\lambda_1&&&\\&\lambda_2&&\\&&\lambda_2&&\\&&&\lambda_n\end{bmatrix}$ .由

此可知  $P^{-1}AP = Q^{-1}BQ$ , 所以有  $A = (QP^{-1})^{-1}BQP^{-1}$ , 其中  $QP^{-1}$ 是可逆的, 因此 A = B相似.

5. 已知 1, 1, -1 是 3 阶实对称矩阵 A 的 3 个特征值,

向量
$$\xi_1 = \begin{bmatrix} 1, & 1, & 1 \end{bmatrix}^T$$
,  $\xi_2 = \begin{bmatrix} 2, & 2, & 1 \end{bmatrix}^T$ 

是 A 的属于  $\lambda_1 = \lambda_2 = 1$  的特征向量.

- (1) 求 A 的属于特征值-1 的特征向量;
- (2) 求出矩阵 A.

**解** (1) 设 A的属于-1 的特征向量为  $\xi_3 = [a, b, c]^T$ ,则  $\xi_3$ 和  $\xi_1 = [1, 1, 1]^T$ ,  $\xi_2 = [2, 2, 1]^T$ 均正交,所

以有
$$\begin{cases} a+b+c=0, \\ 2a+2b+c=0. \end{cases}$$
 从而得到 $\xi_3=t[1, -1, 0]^T$ ( $t$ 为任意非零常数).

(2) 对 $\xi_1 = [1, 1, 1]^T$ ,  $\xi_2 = [2, 2, 1]^T$ 进行正交化得到

$$\eta_1 = \xi_1 = \begin{bmatrix} 1, & 1 \end{bmatrix}^T, \quad \eta_2 = \xi_2 - \frac{(\xi_2, \eta_1)}{(\eta_1, \eta_1)} \eta_1 = \begin{bmatrix} \frac{1}{3}, & \frac{1}{3}, & -\frac{2}{3} \end{bmatrix}^T$$

再对三个向量进行单位化得到正交单位向量组:

$$\frac{1}{\sqrt{3}} \begin{bmatrix} 1, & 1, & 1 \end{bmatrix}^T, \frac{\sqrt{6}}{2} \begin{bmatrix} \frac{1}{3}, & \frac{1}{3}, & -\frac{2}{3} \end{bmatrix}^T, \frac{1}{\sqrt{2}} \begin{bmatrix} 1, & -1, & 0 \end{bmatrix}^T.$$

曲此可得 
$$U = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{\sqrt{6}}{6} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{\sqrt{6}}{6} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{\sqrt{6}}{3} & 0 \end{bmatrix}$$
, 对角矩阵为  $\Lambda = \begin{bmatrix} 1 & & \\ & 1 & \\ & & -1 \end{bmatrix}$ ,

| 因此 
$$A = U \Lambda U^T = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{\sqrt{6}}{6} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{\sqrt{6}}{6} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{\sqrt{6}}{3} & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{\sqrt{6}}{6} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{\sqrt{6}}{6} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{\sqrt{6}}{3} & 0 \end{bmatrix}^T$$

$$= \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

6\*. 设矩阵  $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ ,矩阵  $B = (kE + A)^2$ ,其中  $k \in R$ ,求一个对角矩阵  $\Lambda$ ,使得 B 与  $\Lambda$  相似.

解 由 
$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & 0 & -1 \\ 0 & \lambda - 2 & 0 \\ -1 & 0 & \lambda - 1 \end{vmatrix} = \lambda(\lambda - 2)^2$$
 知,  $A$  的特征值为 0, 2, 2. 所以实对称矩阵  $A$ 与对角阵

$$\begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$$
 相似. 记  $f(x) = x^2 + 2kx + k^2$ , 则  $B = (kE + A)^2 = k^2 E + 2kA + A^2 = f(A)$ , 所以  $B$  的特 征 值 为

$$f(0)=k^2$$
,  $f(2)=k^2+4k+4$ ,  $f(2)=k^2+4k+4$ . 从而实对称矩阵  $B$ 与对角矩阵

$$\Lambda = \begin{bmatrix} f(0) & & \\ & f(2) & \\ & & f(2) \end{bmatrix} = \begin{bmatrix} k^2 & & \\ & k^2 + 4k + 4 & \\ & & k^2 + 4k + 4 \end{bmatrix}$$
相似.

# 习题6.5

- 1.n 阶方阵 A 有 n 个互异的特征值是 A 能与对角矩阵相似的( ).
- (A) 充分必要条件.
- (B) 充分而非必要条件.
- (C) 必要而非充分条件. (D) 既非充分也非必要条件.

**解** 
$$A$$
 有  $n$  个互异的特征值,则  $A$  一定能与对角矩阵相似. 但实对称矩阵  $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$  有相同的特征值

 $\lambda_1 = \lambda_2 = 5$ ,但 A 能与对角矩阵相似. 综上应该选(B)

2. 设 A, B 为 n 阶方阵,且 A 与 B 相似,则下述结论正确的是( ),且说明理由.

- (A)  $\lambda E A = \lambda E B$ .
- (B) A与 B有相同的特征值和特征向量.
- (C) A 与 B 都能与一个对角矩阵相似.
- (D) 对任意常数 k, kE A 与 kE B 相似.

**解** 设 
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
,取可逆矩阵  $P = E(1,2)$ ,构作  $B = P^{-1}AP = E(1,2)AE(1,2) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ ,则  $A = B$ 相似但

$$\lambda E - A = \begin{bmatrix} \lambda - 1 & -1 \\ 0 & \lambda - 1 \end{bmatrix}$$
与  $\lambda E - B = \begin{bmatrix} \lambda - 1 & 0 \\ -1 & \lambda - 1 \end{bmatrix}$ 不相等,故(A)不正确。解  $(E - A)X = O$ 可得  $A$ 的属于  $1$  的特

征向量为  $k[1, 0]^T$ ,其中 k 为任意非零常数. 解 (E-B)X=O 可得 B 的属于 1 的特征向量为  $t[0, 1]^T$ ,其中 t 为任意常数. 这表明 A,B属于 1 的特征向量不相同. 故(B)不正确. 同时也说明 A,B的线性无关的特征向量最多只有 1 个,所以 A,B不能对角化,故(C)不正确. 下证(D)正确. 因 A 与 B 相似,所以存在可逆矩阵 P 使得  $P^1AP=B$ . 对任意常数 k有  $P^1(kE-A)P=P^1(kE)P-P^1AP=kE-P^1AP=kE-B$ ,所以 kE-A与 kE-B 相似. 综上所述应选填 D.

3. 下列矩阵中不能对角化的矩阵是\_\_\_\_, 且说明理由.

(A) 
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$
. (B)  $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 5 \end{bmatrix}$ . (C)  $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ . (D)  $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$ .

**解** (A)中矩阵为实对称矩阵,所以能对角化.(B)中矩阵有3个相异特征值1,2,5 所以能对角化,(C)中矩阵有2重根0 对应的齐次线性方程组的基础解系由2个线性无关的特征向量组成,所以能对角化.根据习题6.3的第10题可知 n(n)

>1)阶上三角矩 
$$A = \begin{bmatrix} a & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a \end{bmatrix}$$
 . 若  $A \neq aE$ ,则  $A$ 不能与对角矩阵相似. 选项(D) 中的矩阵是一个

对角线相同的非数量矩阵的上三角矩阵,所以该矩阵不能对角化. 因此选填  $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ .

4. 设

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 3 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 2 & 3 \end{bmatrix}$$

问 A, B中哪一个矩阵可以对角化?为什么?

解 两个矩阵都有一个两重特征根 0, 0E-A=-A的秩为 1, 即  $n_0=n-$ 秩(-A)=2

所以能对角化. 而0E-B=-B的秩为 2, 即 $n_0'=n-$ 秩(-B)=1 所以不能对角化.

5.6为任意实数时,问矩阵

$$A = \begin{bmatrix} 0 & b & b & \cdots & b \\ b & 0 & b & \cdots & b \\ b & b & 0 & \cdots & b \\ \vdots & \vdots & \vdots & & \vdots \\ b & b & b & \cdots & 0 \end{bmatrix}$$

能否对角化?为什么?若能对角化,请写出与 A 相似的对角矩阵.

解  $|\lambda E - A| = \begin{vmatrix} \lambda & -b & -b & \cdots & -b \\ -b & \lambda & -b & \cdots & -b \\ -b & -b & \lambda & \cdots & -b \\ \vdots & \vdots & \vdots & & \vdots \\ -b & -b & -b & \cdots & \lambda \end{vmatrix}$ 、根据例 1. 3. 5 可知该行列式的值为  $|\lambda E - A| = [\lambda - (n-1)b](\lambda + b)^{n-1}$ ,

所以 A 的特征值为一个一重特征值 (n-1)b 和一个 n-1 重特征值 -b. 秩( [(n-1)bE-A] )= n-1,所以  $n_1=n-(n-1)=1$ 与重数相同.

秩([-bE-A])=1, 所以  $n_2=n-1$ 与重数相同. 所以 A 能对角化,与其相似的对角矩阵为 -b ...

6. 设 n阶方阵 A适合  $A^2 = E$ , 证明 A 的特征值或为 1, 或为-1.

证 设  $\lambda$  为 n 阶方阵 A 的任意一个特征值,  $\xi$  为 A 的属于  $\lambda$  的特征向量,则有  $A\xi = \lambda \xi$ . 所以  $A^2\xi = \lambda^2\xi = \xi$ ,即有  $\lambda^2 = 1$ ,因此 A 的特征值或为 1,或为-1.

7. 设矩阵 A 与 B 相似,其中

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & a \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{bmatrix}.$$

- (1) 求 a,b 的值;
- (2) 求可逆矩阵 P, 使  $P^{-1}AP = B$ .
- **解** (1) 矩阵 A = B 相似,所以 tr A = tr B, $\left| A \right| = \left| B \right|$ ,由此可以得到  $\begin{cases} 5 + a = 4 + b, \\ 6a 6 = 4b. \end{cases}$ ,从而可知 a = 5, b = 6. (2) A = B 相似,所以 A 的特征值为 2,2,6.

求解方程组  $(2E-\begin{bmatrix}1 & -1 & 1\\2 & 4 & -2\\-3 & -3 & 5\end{bmatrix})X=O$ ,得到属于 2 的线性无关的特征向量为

 $[1, 0, 1]^T, [-1, 1, 0]^T.$ 

$$1$$
]', $[-1, 1, 0]$ '. 求解方程组  $(6E - \begin{bmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{bmatrix})X = O$ ,得到属于  $6$  的线性无关的特征向量为 $\left[\frac{1}{3}, -\frac{2}{3}, 1\right]^T$ .

所以 
$$P = \begin{bmatrix} 1 & -1 & \frac{1}{3} \\ 0 & 1 & -\frac{2}{3} \\ 1 & 0 & 1 \end{bmatrix}$$
.

8. 己知矩阵

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ a & 1 & 0 & 0 \\ 2 & 3 & 2 & 0 \\ 2 & 3 & c & 2 \end{bmatrix},$$

问 a与 c取何值时 A能与对角矩阵相似?为什么?

解 
$$|\lambda E - A|$$
 =  $\begin{vmatrix} \lambda - 1 & 0 & 0 & 0 \\ -a & \lambda - 1 & 0 & 0 \\ -2 & -3 & \lambda - 2 & 0 \\ -2 & -3 & -c & \lambda - 2 \end{vmatrix}$  =  $(\lambda - 1)^2 (\lambda - 2)^2$  ,所以  $A$ 有一个两重特征值 1 和一个两重特征值 2.

 $n_1 = n -$ 秩(E - A),  $n_2 = n -$ 秩(2E - A), A能与对角矩阵相似的充要条件为  $n_1 = 2, n_2 = 2$ . 因此要求秩(E - A)= 秩(2E-A)=2

$$2E - A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -a & 1 & 0 & 0 \\ -2 & -3 & 0 & 0 \\ -2 & -3 & -c & 0 \end{bmatrix} \xrightarrow{\eta \ni f \uparrow \underbrace{\phi \nmid \psi}} \begin{bmatrix} 1 & -a & -2 & -2 \\ 0 & 1 & -3 & -3 \\ 0 & 0 & 0 & -c \\ 0 & 0 & 0 & 0 \end{bmatrix}, \ \ \text{要使得秩} (2E - A) = 2, \ \text{\wideta} f \ c = 0 \ . \ \ \text{$\%$L $a = 0$} \ ,$$

c=0.

9. 已知矩阵

$$A = \begin{bmatrix} 2 & 2 & 0 \\ 8 & 2 & a \\ 0 & 0 & 6 \end{bmatrix}$$

相似于对角矩阵  $\Lambda$ , 试确定常数 a 的值; 并求可逆矩阵 P 使  $P^{-1}AP = \Lambda$ .

解  $|\lambda E - A| = \begin{bmatrix} \lambda - 2 & -2 & 0 \\ -8 & \lambda - 2 & -a \\ 0 & 0 & \lambda - 6 \end{bmatrix} = (\lambda + 2)(\lambda - 6)^2$ ,特征值为 -2,6,6. 因为 A 相似于对角矩阵,所以秩

求解线性方程组  $(-2E - \begin{bmatrix} 2 & 2 & 0 \\ 8 & 2 & 0 \\ 0 & 0 & 6 \end{bmatrix})X = O$ ,得到属于-2 的线性无关的特征向量 $\begin{bmatrix} 0, & 0, & 1 \end{bmatrix}^T$ .

求解线性方程组  $(6E - \begin{bmatrix} 2 & 2 & 0 \\ 8 & 2 & 0 \\ 0 & 0 & 6 \end{bmatrix})X = O$ ,得到属于 6 的线性无关的特征向量  $\begin{bmatrix} 1, & 2, & 0 \end{bmatrix}^T$ , $\begin{bmatrix} 1, & -2, & 0 \end{bmatrix}^T$ .

所以得到 
$$P = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 2 & -2 \\ 1 & 0 & 0 \end{bmatrix}$$
.

10\*. 附录三中例 3. 1 已阐明了对  $n \times m$ 矩阵 A,  $m \times n$ 矩阵 B而言,若  $\lambda \neq 0$ 有  $\left|\lambda E_n - AB\right| = \lambda^{n-m} \left|\lambda E_m - BA\right|$ . 利用此说明矩阵 AB与矩阵 BA特征值之间的关系.

 $m{R}$  AB与 BA的特征多项式只差因子  $\lambda^{n-m}$ ,从而它们有相同的非零特征值,特别地当 A,B都是 n 阶方阵时,AB与 BA有相同的特征多项式.

# 习题 7.1

- 1. 用配方法化下列二次型为标准形,并写出非退化的线性替换:
- (1)  $f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 2x_2^2 + 4x_2x_3 + 5x_3^2$ ;
- (2)  $f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 2x_1x_3 + 2x_2^2$ ;
- (3)  $f(x_1, x_2, x_3) = 2x_1^2 4x_1x_2 + x_2^2 4x_2x_3$ ;
- (4)  $f(x_1, x_2, x_3) = x_1x_2 + x_2x_3 + x_1x_3$ .

$$\mathbf{M} \quad (1) \quad f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 2x_2^2 + 4x_2x_3 + 5x_3^2 = (x_1 + x_2)^2 + (x_2 + 2x_3)^2 + x_3^2,$$

令 
$$\begin{cases} y_1 = x_1 + x_2, \\ y_2 = x_2 + 2x_3, \\ y_3 = x_3. \end{cases}$$
 则 
$$\begin{cases} x_1 = y_1 - y_2 + 2y_3, \\ x_2 = y_2 - 2y_3, \\ x_3 = y_3. \end{cases}$$
 因为 
$$\begin{vmatrix} 1 & -1 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{vmatrix} = 1 \neq 0, \text{ 所以线性替换是非退化的. 从而得}$$

到标准形  $y_1^2 + y_2^2 + y_3^2$ .

(2) 
$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 - 2x_1x_3 + 2x_2^2 = 2(\frac{1}{2}x_1 + x_2)^2 + \frac{1}{2}(x_1 - 2x_3)^2 - 2x_3^2$$
,

令 
$$\begin{cases} y_1 = \frac{1}{2}x_1 + x_2, \\ y_2 = x_1 - 2x_3, \\ y_3 = x_3. \end{cases}$$
 则 
$$\begin{cases} x_1 = y_1 - y_2 + 2y_3, \\ x_2 = y_2 - y_3, \\ x_3 = y_3. \end{cases}$$
 因为 
$$\begin{vmatrix} 1 & -1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{vmatrix} = 1 \neq 0, \text{ 所以线性替换是非退化的. 从而得}$$

到标准形  $2y_1^2 + \frac{1}{2}y_2^2 - 2y_3^2$ .

(3) 
$$f(x_1, x_2, x_3) = 2x_1^2 - 4x_1x_2 + x_2^2 - 4x_2x_3 = 2(x_1 - x_2)^2 - (x_2 + 2x_3)^2 + 4x_3^2$$

令 
$$\begin{cases} y_1 = x_1 - x_2, \\ y_2 = x_2 + 2x_3, \\ y_3 = x_3. \end{cases}$$
 风 
$$\begin{cases} x_1 = y_1 - y_2 - 2y_3, \\ x_2 = y_2 - 2y_3, \\ x_3 = y_3. \end{cases}$$
 因为 
$$\begin{cases} 1 & 1 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{cases}$$
 用以线性替换是非退化的. 从而得

到标准形  $2y_1^2 - y_2^2 + 4y_3^2$ .

(4) 
$$f(x_1, x_2, x_3) = x_1 x_2 + x_2 x_3 + x_1 x_3$$
  $\Leftrightarrow$ 

$$\begin{cases}
x_1 = y_1 - y_2, \\
x_2 = y_1 + y_2, \\
x_3 = y_3.
\end{cases}$$

则 
$$f(x_1, x_2, x_3) = x_1x_2 + x_2x_3 + x_1x_3 = y_1^2 - y_2^2 + 2y_1y_3 = (y_1 + y_3)^2 - y_2^2 - y_3^2$$

令 
$$\begin{cases} z_1 = y_1 + y_3, \\ z_2 = y_2, \\ z_3 = y_3. \end{cases}$$
  $\begin{cases} x_1 = z_1 + z_2 - z_3, \\ x_2 = z_1 - z_2 - z_3, \\ x_3 = z_3. \end{cases}$  因为  $\begin{vmatrix} 1 & 1 & -1 \\ 1 & -1 & -1 \\ 0 & 0 & 1 \end{vmatrix} = -2 \neq 0$ ,所以线性替换是非退化的. 从而得到

标准形  $z_1^2 - z_2^2 - z_3^2$ 

2. 用配方法化二次型为标准形时,应如何配方才能保证使用的是非退化的线性替换?下述两小题中所用的配方合适吗?正确的配方应如何做?

(1) 
$$f(x_1, x_2, x_3) = 4x_1^2 - 4x_1x_2 + 6x_2^2 = 2x_1^2 + 2(x_1 - x_2)^2 + 4x_2^2 = 2y_1^2 + 2y_2^2 + 4y_3^2$$

其中线性替换为 
$$\begin{cases} y_1 = x_1, \\ y_2 = x_1 - x_2, \\ y_3 = x_2. \end{cases}$$

(2) 
$$f(x_1, x_2, x_3) = 2x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 - 2x_2x_3 + 2x_3^2 = (x_1 - x_2)^2 + (x_2 - x_3)^2 + (x_3 + x_1)^2$$

$$= y_1^2 + y_2^2 + y_3^2$$

其中线性替换为 
$$\begin{cases} y_1 = x_1 + x_2, \\ y_2 = x_2 - x_3, \\ y_3 = x_3 + x_1. \end{cases}$$

**解** (1) 错,因为 
$$\begin{vmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{vmatrix} = 0$$
,所以线性替换  $\begin{cases} y_1 = x_1, \\ y_2 = x_1 - x_2, \\ y_3 = x_2. \end{cases}$ 

正确的为  $f(x_1, x_2, x_3) = 4x_1^2 - 4x_1x_2 + 6x_2^2 = (2x_1 - x_2)^2 + 5x_2^2 = y_1^2 + 5y_2^2$ ,

其中线性替换为 
$$\begin{cases} y_1 = 2x_1 - x_2, \\ y_2 = x_2, \\ y_3 = x_3. \end{cases} \quad \bigvee \begin{cases} x_1 = y_1 - \frac{1}{2}y_2, \\ x_2 = y_2, \\ x_3 = y_3. \end{cases} \quad \boxtimes b \quad 0 \quad 1 \quad 0 = 1 \neq 0, \text{ 所以该线性替换是非}$$

退化的.

(2) 错,因为 
$$\begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & -1 & 1 \end{vmatrix}$$
 = 0,所以线性替换  $\begin{cases} y_1 = x_1 + x_2, \\ y_2 = x_2 - x_3,$ 是退化的,所以错.  $y_3 = x_3 + x_1.$ 

正确的为 
$$f(x_1, x_2, x_3) = 2x_1^2 + 2x_1x_2 + 2x_1x_3 + 2x_2^2 - 2x_2x_3 + 2x_3^2$$

$$=2(x_1+\frac{1}{2}x_2+\frac{1}{2}x_3)^2+\frac{3}{2}(x_2-x_3)^2=2y_1^2+\frac{3}{2}y_2^2$$

其中线性替换为 
$$\begin{cases} y_1 = x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3, & \\ y_2 = x_2 - x_3, & \\ y_3 = x_3. & \end{cases}$$
 
$$\begin{cases} x_1 = y_1 - \frac{1}{2}y_2 - y_3, & \\ x_2 = y_2 + y_3, & \\ x_3 = y_3. & \end{cases}$$
 因为 
$$\begin{vmatrix} 1 & -\frac{1}{2} & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 1 \neq 0, \text{ 所以该线}$$

性替换是非退化的.

## 习题 7.2

1. 二次型 
$$f(x_1, x_2, x_3) = 2x_1^2 + x_1x_2 - 2x_1x_3 + 3x_2^2 + 4x_2x_3$$
 的矩阵为 ( ).

(A) 
$$\begin{bmatrix} 2 & 1 & -2 \\ 0 & 3 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$
. (B)  $\begin{bmatrix} 2 & \frac{3}{2} & -1 \\ \frac{1}{2} & 3 & 2 \\ -1 & 2 & 1 \end{bmatrix}$ . (C)  $\begin{bmatrix} 2 & \frac{1}{2} & -1 \\ \frac{1}{2} & 3 & 2 \\ -1 & 2 & 0 \end{bmatrix}$ . (D)  $\begin{bmatrix} 2 & 1 & -1 \\ 0 & 3 & 2 \\ -1 & 2 & 0 \end{bmatrix}$ .

解 二次型的矩阵为 
$$\begin{bmatrix} a_{11} & \frac{1}{2}a_{12} & \cdots & \frac{1}{2}a_{1n} \\ \frac{1}{2}a_{12} & a_{22} & \cdots & \frac{1}{2}a_{2n} \\ \vdots & \vdots & & \vdots \\ \frac{1}{2}a_{1n} & \frac{1}{2}a_{2n} & \cdots & a_{nn} \end{bmatrix}, \quad \text{所以上述二次型的矩阵为} \begin{bmatrix} 2 & \frac{1}{2} & -1 \\ \frac{1}{2} & 3 & 2 \\ -1 & 2 & 0 \end{bmatrix}. \quad \text{所以选填 C.}$$

2. 写出下列二次型的矩阵表示和二次型的矩阵:

(1) 
$$f(x_1, x_2, x_3) = x_1^2 + x_1 x_2 - 2x_1 x_3 + 2x_2^2 + 3x_2 x_3 - 3x_3^2$$
;

(2) 
$$f(x_1, x_2, x_3) = x_1^2 + \sqrt{2}x_1x_2 + 4x_1x_3 - 5x_2^2$$
;

(3) 
$$f(x_1, x_2, x_3) = (a_1x_1 + a_2x_2 + a_3x_3)^2$$
;

(4) 
$$f(x_1, x_2, \dots, x_n) = x_1 x_2 + x_2 x_3 + \dots + x_{n-1} x_n = \sum_{i=1}^{n-1} x_i x_{i-1}$$
.

解 (1) 
$$f(x_1, x_2, x_3) = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2} & -1 \\ \frac{1}{2} & 2 & \frac{3}{2} \\ -1 & \frac{3}{2} & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
, 所以该二次型的矩阵为 
$$\begin{bmatrix} 1 & \frac{1}{2} & -1 \\ \frac{1}{2} & 2 & \frac{3}{2} \\ -1 & \frac{3}{2} & -3 \end{bmatrix}$$
.

(2) 
$$f(x_1, x_2, x_3) = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 1 & \frac{\sqrt{2}}{2} & 2 \\ \frac{\sqrt{2}}{2} & -5 & 0 \\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
, 所以该二次型的矩阵为  $\begin{bmatrix} 1 & \frac{\sqrt{2}}{2} & 2 \\ \frac{\sqrt{2}}{2} & -5 & 0 \\ 2 & 0 & 0 \end{bmatrix}$ .

$$f(x_1, x_2, x_3) = a_1^2 x_1^2 + 2a_1 a_2 x_1 x_2 + 2a_1 a_3 x_1 x_3 + a_2^2 x_2^2 + 2a_2 a_3 x_2 x_3 + a_3^2 x_3^2$$

$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} a_1^2 & a_1 a_2 & a_1 a_3 \\ a_1 a_2 & a_2^2 & a_2 a_3 \\ a_1 a_3 & a_2 a_3 & a_3^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix},$$

所以该二次型的矩阵为 
$$\begin{bmatrix} a_1^2 & a_1a_2 & a_1a_3 \\ a_1a_2 & a_2^2 & a_2a_3 \\ a_1a_3 & a_2a_3 & a_3^2 \end{bmatrix}$$
.

(4) 
$$f(x_1, x_2, \dots, x_n) = x_1 x_2 + x_2 x_3 + \dots + x_{n-1} x_n$$

$$= \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \frac{1}{2} \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 1 & 0 & 1 & \cdots & 0 & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & 0 & \cdots & 1 & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} , \quad \text{ff} \;\; \text{$\mathbb{Q}$ is $\Xi$ in $\Xi$$$

$$\frac{1}{2} \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 & 0 & 0 \\
1 & 0 & 1 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 \\
0 & 0 & 0 & \cdots & 1 & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 1 & 0
\end{bmatrix}$$

3. 设二次型 
$$f(x_1, x_2, x_3)$$
 的矩阵  $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ 则  $f(x_1, x_2, x_3) = \underline{\qquad}$ .

**M** 
$$f(x_1, x_2, x_3) = 2x_1x_3 + x_2^2$$

4. 用正交线性替换化下列实二次型为标准形,并写出正交线性替换:

(1) 
$$f(x_1, x_2, x_3) = 2x_1^2 + 3x_2^2 + 4x_2x_3 + 3x_3^2$$
;

(2) 
$$f(x_1, x_2, x_3) = x_1^2 - 4x_1x_2 + 4x_1x_3 - 2x_2^2 + 8x_2x_3 - 2x_3^2$$
;

(3) 
$$f(x_1, x_2, x_3, x_4) = 2x_1x_2 - 2x_3x_4$$
;

(4) 
$$f(x_1, x_2, x_3, x_4) = 2x_1x_2 + 2x_1x_3 - 2x_1x_4 - 2x_2x_3 + 2x_2x_4 + 2x_3x_4$$
.

$$\mathbf{R} \quad (1) \quad f(x_1, x_2, x_3) = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{vmatrix} 2 & 0 & 0 & x_1 \\ 0 & 3 & 2 & x_2 \\ 0 & 2 & 3 & x_3 \end{vmatrix}$$

计算特征多项式 
$$\begin{vmatrix} \lambda E - \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{vmatrix} = \begin{vmatrix} \lambda - 2 & 0 & 0 \\ 0 & \lambda - 3 & -2 \\ 0 & -2 & \lambda - 3 \end{vmatrix} = (\lambda - 1)(\lambda - 2)(\lambda - 5)$$
,得到特征值为

1, 2, 5.

解方程
$$(E-\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{bmatrix})X=O$$
,得到属于 1 的 1 个线性无关的特征向量为 $\begin{bmatrix} 0, & -1, & 1 \end{bmatrix}^T$ .

解方程
$$(2E-\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{bmatrix})X=O$$
,得到属于 2 的 1 个线性无关的特征向量为 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 7.

解方程(5
$$E$$
- $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{bmatrix}$  $X = O$ , 得到属于 5 的 1 个线性无关的特征向量为 $\begin{bmatrix} 0, & 1, & 1 \end{bmatrix}^T$ .

三个向量已经两两正交, 所以只要单位化即可得到单位正交向量组:

$$\frac{1}{\sqrt{2}}\begin{bmatrix}0, & -1, & 1\end{bmatrix}^T, \begin{bmatrix}1, & 0, & 0\end{bmatrix}^T, \frac{1}{\sqrt{2}}\begin{bmatrix}0, & 1, & 1\end{bmatrix}^T.$$

所以 
$$U = \begin{bmatrix} 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$
, 因此正交变换为  $X = \begin{bmatrix} 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$   $Y$ , 而标准型为

 $f(y_1, y_2, y_3) = y_1^2 + 2y_2^2 + 5y_3^2$ .

(2) 
$$f(x_1, x_2, x_3) = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

计算特征多项式 
$$\begin{vmatrix} \lambda E - \begin{bmatrix} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{bmatrix} = \begin{vmatrix} \lambda - 1 & 2 & -2 \\ 2 & \lambda + 2 & -4 \\ -2 & -4 & \lambda + 2 \end{vmatrix} = (\lambda + 7)(\lambda - 2)(\lambda - 2)$$
,得到特征值

为-7, 2, 2.

解方程  $(-7E - \begin{bmatrix} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{bmatrix})X = O$ ,得到属于 -7 的 1 个线性无关的特征向量为

$$\left[-\frac{1}{2}, -1, 1\right]^{T}$$
, 单位化得到 $\frac{1}{3}[-1, -2, 2]^{T}$ .

解方程  $(2E-\begin{bmatrix} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{bmatrix})X=O$ ,得到属于 2 的 2 个线性无关的特征向量为

 $\begin{bmatrix} 2, & 0, & 1 \end{bmatrix}^T$ ,  $\begin{bmatrix} -2, & 1, & 0 \end{bmatrix}^T$ . 把这两个向量通过施密特正交化得到 $\frac{1}{\sqrt{5}}\begin{bmatrix} 2, & 0, & 1 \end{bmatrix}^T$ ,  $\frac{1}{3\sqrt{5}}\begin{bmatrix} -2, & 5, & 4 \end{bmatrix}^T$ .

所以 
$$U = \begin{bmatrix} -\frac{1}{3} & \frac{2}{\sqrt{5}} & -\frac{2}{3\sqrt{5}} \\ -\frac{2}{3} & 0 & \frac{5}{3\sqrt{5}} \\ \frac{2}{3} & \frac{1}{\sqrt{5}} & \frac{4}{3\sqrt{5}} \end{bmatrix}$$
, 因此正交变换为  $X = \begin{bmatrix} -\frac{1}{3} & \frac{2}{\sqrt{5}} & -\frac{2}{3\sqrt{5}} \\ -\frac{2}{3} & 0 & \frac{5}{3\sqrt{5}} \\ \frac{2}{3} & \frac{1}{\sqrt{5}} & \frac{4}{3\sqrt{5}} \end{bmatrix}$   $Y$ , 而标准型为

 $f(y_1, y_2, y_3) = -7y_1^2 + 2y_2^2 + 2y_3^2$ 

(3) 
$$f(x_1, x_2, x_3, x_4) = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

计算特征多项式  $\lambda E = \begin{bmatrix} 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{bmatrix} = \begin{vmatrix} \lambda & 1 & 0 & 0 \\ 1 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 1 & \lambda \end{vmatrix} = (\lambda + 1)^2 (\lambda - 1)^2$ ,得到特征值为-1, -1, 1, 1.

解方程 
$$(-E-\begin{bmatrix} 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$
  $X=O$ ,得到属于  $-1$  的  $2$  个线性无关的特征向量为

 $\begin{bmatrix} 0, & 0, & 1, & 1 \end{bmatrix}^T, \begin{bmatrix} 1, & 1, & 0, & 0 \end{bmatrix}^T.$ 

解方程 
$$(E - \begin{bmatrix} 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{bmatrix})X = O$$
,得到属于 1 的 2 个线性无关的特征向量为

$$\begin{bmatrix} 0, & 0, & -1, & 1 \end{bmatrix}^T, \begin{bmatrix} -1, & 1, & 0, & 0 \end{bmatrix}^T.$$

四个向量都已经是两两正交, 所以对四个向量进行单位化得到单位正交向量组:

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 0, & 0, & 1, & 1 \end{bmatrix}^T, \frac{1}{\sqrt{2}} \begin{bmatrix} 1, & 1, & 0, & 0 \end{bmatrix}^T, \frac{1}{\sqrt{2}} \begin{bmatrix} 0, & 0, & -1, & 1 \end{bmatrix}^T, \frac{1}{\sqrt{2}} \begin{bmatrix} -1, & 1, & 0, & 0 \end{bmatrix}^T$$

所以
$$U = \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$
, 因此正交变换为

(4) 
$$f(x_1, x_2, x_3, x_4) = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

计算特征多项式 
$$\lambda E = \begin{bmatrix} 0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & 1 & 0 \end{bmatrix} = \begin{vmatrix} \lambda & -1 & -1 & 1 \\ -1 & \lambda & 1 & -1 \\ -1 & 1 & \lambda & -1 \\ 1 & -1 & -1 & \lambda \end{vmatrix} = (\lambda + 3)(\lambda - 1)^3$$
,得到特征值为一

3, 1, 1, 1.

解方程 
$$(-3E - \begin{bmatrix} 0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & 1 & 0 \end{bmatrix})X = O$$
,得到属于  $-3$  的  $1$  个线性无关的特征向量为

$$[1, -1, -1, 1]^T$$
. 单位化得到 $\left[\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}\right]^T$ 

解方程  $(E - \begin{bmatrix} 0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & 1 & 0 \end{bmatrix})X = O$ ,得到属于 1 的 3 个线性无关的特征向量为

 $\begin{bmatrix} -1, & 0, & 0, & 1 \end{bmatrix}^T$ ,  $\begin{bmatrix} 1, & 0, & 1, & 0 \end{bmatrix}^T$ ,  $\begin{bmatrix} 1, & 1, & 0, & 0 \end{bmatrix}^T$ . 对这三个向量进行施密特正交化得到  $\frac{1}{\sqrt{2}} \begin{bmatrix} -1, & 0, & 0, & 1 \end{bmatrix}^T$ ,  $\frac{1}{\sqrt{6}} \begin{bmatrix} 1, & 0, & 2, & 1 \end{bmatrix}^T$ ,  $\frac{1}{2\sqrt{3}} \begin{bmatrix} 1, & 3, & -1, & 1 \end{bmatrix}^T$ .

所以
$$U = \begin{bmatrix} \frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{2\sqrt{3}} \\ -\frac{1}{2} & 0 & 0 & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & 0 & \frac{2}{\sqrt{6}} & -\frac{1}{2\sqrt{3}} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{2\sqrt{3}} \end{bmatrix}$$

因此正交变换为 $X = \begin{bmatrix} \frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{2\sqrt{3}} \\ -\frac{1}{2} & 0 & 0 & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & 0 & \frac{2}{\sqrt{6}} & -\frac{1}{2\sqrt{3}} \end{bmatrix} Y$ ,而标准型为

$$f(y_1, y_2, y_3, y_4) = -3y_1^2 + y_2^2 + y_3^2 + y_4^2$$
.

1, 4, -2.

5. 在习题 7.1 第 1 题(3)中已用配方法化二次型

$$f(x_1, x_2, x_3) = 2x_1^2 - 4x_1x_2 + x_2^2 - 4x_2x_3$$

为标准形. 现要求用正交线性替换化该二次型为标准形,并写出正交线性替换. 请对比一下两种方法所得的标准形是否相同.

$$\begin{aligned}
\mathbf{R} \quad f(x_1, x_2, x_3) &= \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \end{aligned}$$

计算特征多项式  $\begin{vmatrix} \lambda E - \begin{bmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{bmatrix} = \begin{vmatrix} \lambda - 2 & 2 & 0 \\ 2 & \lambda - 1 & 2 \\ 0 & 2 & \lambda \end{vmatrix} = (\lambda - 1)(\lambda - 4)(\lambda + 2)$ ,得到特征值为

解方程( $E = \begin{bmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{bmatrix}$ )X = O, 得到属于1的1个线性无关的特征向量为 $\begin{bmatrix} -2, & -1, & 2 \end{bmatrix}^T$ ,单

位化得到 $\frac{1}{3}[-2, -1, 2]^T$ .

解方程  $(4E - \begin{bmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{bmatrix})X = O$ ,得到属于 4 的 1 个线性无关的特征向量为  $\begin{bmatrix} 2, & -2, & 1 \end{bmatrix}^T$ ,单

位化得到 $\frac{1}{3}[2, -2, 1]^T$ .

解方程  $(-2E - \begin{bmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{bmatrix})X = O$ ,得到属于 -2 的 1 个线性无关的特征向量为  $\begin{bmatrix} 1, & 2, & 2 \end{bmatrix}^T$ ,

单位化得到 $\frac{1}{3}[1, 2, 2]^T$ .

所以 
$$U = \begin{bmatrix} -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ -\frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$
 , 因此 正交变换为  $X = \begin{bmatrix} -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ -\frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \end{bmatrix}$   $Y$  , 而标准型为

 $f(y_1,y_2,y_3) = y_1^2 + 4y_2^2 - 2y_3^2$ . 所以两者所得标准型不相同.

6. (1) 设 A 是一个 n 阶对称矩阵,若对任意的  $X = \begin{bmatrix} x_1, & x_2, & \cdots, & x_n \end{bmatrix}^T$ ,有  $X^T A X = O$ ,求证: A = O (2) 利用(1)证明性质 7. 2. 1.

 $X^{T}AX = a_{ii} = 0 \ (i = 1, 2, \dots, n),$ 

再 令  $X = X_{ij}(i, j = 1, 2, \dots, n, i \neq j)$  (  $X_{ij}$  满 足  $x_i = 1, x_j = 1, x_s = 0, s \neq i, s \neq j$  ),则 有  $X_{ij}^T A X_{ij} = a_{ij} + a_{ii} + a_{ij} = 0$  ( $i, j = 1, 2, \dots, n$ ),因为  $a_{ii} = 0, a_{jj} = 0$  ( $i, j = 1, 2, \dots, n$ ),并且由于 A是一个 n 阶 对 称 矩 阵 所 以 有  $a_{ij} = a_{ji}$ , 所 以 由  $a_{ij} + a_{ji} + a_{ji} + a_{jj} = 0$  ( $i, j = 1, 2, \dots, n$ ) 可 得  $a_{ij} = 0$  ( $i, j = 1, 2, \dots, n$ ),因此 A = O.

(2) 若存在两个对称矩阵 A, B使得  $f(x_1, x_2, x_3) = X^T AX$ ,  $f(x_1, x_2, x_3) = X^T BX$ , 则两式相减得  $X^T (A-B)X = O$ 对任意 X成立。由于 A, B都是对称矩阵,所以两者的差 A-B也是对称矩阵,根据 (1) 可知 A-B=O,从而得到 A=B.

#### 7. 证明性质 7.2.2.

- 证 (1) A,B合同,则存在一个可逆矩阵 C满足 C AC=B,因为 C可逆,所以 C 也是可逆的,因此秩(A)=秩(B).
  - (2) A 对称,则  $A^T = A$ ,所以  $B^T = (C^T A C)^T = C^T A^T C = C^T A C = B$ ,由此可得 B 是对称矩阵.

#### 习题7.3

- 1. 求出习题 7.1 第 1 题中的二次型的秩和正惯性指数.
- **解** (1) 标准形为  $y_1^2 + y_2^2 + y_3^2$ , 所以秩为 3, 正惯性指数为 3.
  - (2) 标准形为 $2y_1^2 + \frac{1}{2}y_2^2 2y_3^2$ , 所以秩为 3, 正惯性指数为 2.
  - (3) 标准形为 $2y_1^2 y_2^2 + 4y_3^2$ , 所以秩为 3, 正惯性指数为 2
  - (4) 标准形为  $z_1^2 z_2^2 z_3^2$ , 所以秩为 3, 正惯性指数为 1.
- 2.  $\[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[ \] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[\] \[$
- (1) 用配方法将该二次型化为标准形,求出其秩和正惯性指数.
- (2) 用正交线性替换将该二次型化为标准形,求出其秩的正惯性指数.
- (3) 比较两种方法所得标准形是否相同?
- (4) 若要求该二次型的秩和正惯性指数用哪种方法简便.

$$\mathbf{W} \quad (1) \quad f(x_1, x_2, x_3) = 2x_1^2 + 8x_1x_2 - 12x_1x_3 + 2x_2^2 - 12x_2x_3 - 15x_3^2$$
$$= 2(x_1 + 2x_2 - 3x_3)^2 - 6(x_2 - x_3)^2 - 27x_3^2,$$

所以标准型为 $2y_1^2-6y_2^2-27y_3^2$ , 秩为 3, 正惯性指数为 1.

$$(2) f(x_1, x_2, x_3) = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 2 & 4 & -6 \\ 4 & 2 & -6 \\ -6 & -6 & -15 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix},$$

$$\begin{vmatrix} \lambda E - \begin{bmatrix} 2 & 4 & -6 \\ 4 & 2 & -6 \\ -6 & -6 & -15 \end{bmatrix} = \begin{vmatrix} \lambda - 2 & -4 & 6 \\ -4 & \lambda - 2 & 6 \\ 6 & 6 & \lambda + 15 \end{vmatrix} = (\lambda + 2)(\lambda + 18)(\lambda - 9), 求得特征值为-2,-18,9. 所以标$$

准型为 $-2v^2-18v_3^2+9v_3^2$ , 秩为 3, 正惯性指数为 1.

- (3)不相同.
- (4)配方法.
- 3. 任何一个n阶对称的可逆实矩阵必定与n阶单位矩阵\_\_\_\_\_\_,且说明理由.

  - (A) 合同. (B) 相似.
- (C) 等价.
- (D) 以上都不对.
- $\mathbf{k}$  一个 $\mathbf{n}$  阶可逆矩阵一定能通过初等变化变为一个单位矩阵,也就是说它与单位矩阵等价,所以选项 $(\mathbf{C})$

成立. 至于(A),(B)只要令 
$$A = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
即可得到  $A$ 是一个  $n$  阶对称的可逆实矩阵但是它与  $E$  不相似,与

E不合同. 综上所述应选填 C.

- 4. 设 A, B 均为 n 阶实对称矩阵,则 A, B 合同的充要条件是( ), 且说明理由.
- (A) A, B均为可逆矩阵.
- (B) A. B 有相同的秩.
- (C) A, B 有相同的正惯性指数,相同的负惯性指数.
- (D) A, B 有相同的特征多项式.
- 解 根据课本定理 7.3.3 可知 A,B 合同的充要条件是 A,B 有相同的秩和相同的正惯性指数. 而因为负惯性 指数=秩-正惯性指数, 所以这也等价于 A, B 有相同的正惯性指数, 相同的负惯性指数. 所以选项(C)是正确

的. 对于选项 (A)和 (B) 只要令 
$$A = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$ 即可知是错误的. 对于 (D) 只要令

$$A = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 \end{bmatrix}$$
  $B = \begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \end{bmatrix}$  可知  $A, B$ 有相同的秩和相同的正惯性指数,所以合同,但是  $A, B$ 的特征

多项式不同. 所以选项(D)不是充要条件.

综上所述应选填D.

5. 设

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix},$$

则下列矩阵中与A合同的是(),且说明理由.

$$(A) \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} . \quad (B) \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} . \quad (C) \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} . \quad (D) \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} .$$

解 
$$|\lambda E - A| = \begin{bmatrix} \lambda - 1 & -2 & 0 \\ -2 & \lambda - 2 & 0 \\ 0 & 0 & \lambda + 1 \end{bmatrix} = (\lambda + 1)(\lambda^2 - 3\lambda - 2)$$
,所以它的特征值为 $-1$ , $-\frac{3 \pm \sqrt{17}}{2}$ ,所以  $A$ 

的秩为 3,正惯性指数为 1,上述选项中只有(C)中矩阵的秩为 3,正惯性指数为 1,所以与 A 合同的是(C) 中矩阵. 故应选填 C.

6\*. 如果把 n阶实对称矩阵按合同分类,即两个 n 阶实对称矩阵属于同一类当且仅当它们在实数域上合同,问共有几类?每一类中最简单的矩阵是什么?

7\*. 设 A, B, C, D 均为 n 阶实对称矩阵,在实数域上 A 与 B 合同, C 与 D 合同. 问下述结论是否正确,为什么?

(1) A+C与 B+D 合同;

$$(2) \begin{bmatrix} A & O \\ O & C \end{bmatrix} = \begin{bmatrix} B & O \\ O & D \end{bmatrix}$$
合同.

解 (1) 不正确,

令 
$$A = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
,  $B = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ ,  $C = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$ ,  $D = \begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix}$ , 显然  $A \ni B \Leftrightarrow \exists D \in \mathbb{Z}$ ,  $C \ni D$ 

合同,但是 A+C=O, $B+D=\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$ ,两者秩不同所以不合同. 所以(1)不正确.

(2) 正确, A = B 合同, C = D 合同, 所以存在两个可逆矩阵 F, G满足  $F^T AF = B$ ,  $G^T CG = D$ . 令

$$K = \begin{bmatrix} F \\ G \end{bmatrix}$$
 ,因为 $F, G$ 可逆,所以 $K$ 也可逆.又有

$$K^{T} \begin{bmatrix} A & O \\ O & C \end{bmatrix} K = \begin{bmatrix} F^{T} & & & & & & & & & & & \\ & G^{T} & & & & & & & & \end{bmatrix} \begin{bmatrix} A & O \\ O & C \end{bmatrix} \begin{bmatrix} F & & & & & & & \\ & G \end{bmatrix} = \begin{bmatrix} F^{T}AF & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \end{bmatrix} = \begin{bmatrix} B & & & & & & & \\ & & & & & & & \\ & & & & & & & & \end{bmatrix} , \quad$$
所以  $\begin{bmatrix} A & O \\ O & C \end{bmatrix}$  与

$$\begin{bmatrix} B & O \\ O & D \end{bmatrix}$$
 合同. 因此(2)是正确的.

$$A = \begin{bmatrix} a_1 & & & \\ & a_2 & & \\ & & a_3 \end{bmatrix}, B = \begin{bmatrix} a_3 & & & \\ & a_2 & & \\ & & a_1 \end{bmatrix},$$

则取 C=\_\_\_\_\_\_\_,就有  $C^TAC=B$ . 从而 A 与 B 合同.

解 显然有
$$A \xrightarrow{R_3} B$$
, 所以  $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$   $A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = B$ , 而  $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$   $= \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ , 所以

只要令 
$$C=\begin{bmatrix} & & 1\\ & 1 & \\ 1 & & \end{bmatrix}$$
就有  $C^TAC=B$ .

9. 证明:矩阵  $diag[\lambda_1, \lambda_2, \dots, \lambda_n]$ 与  $diag[\lambda_{i_1}, \lambda_{i_2}, \dots, \lambda_{i_n}]$ 合同,其中  $i_1, i_2, \dots, i_n$ 是  $1, 2, \dots, n$ 的一个排列.

 $\mathbf{k}$   $i_1, i_2, \cdots, i_n$  是  $1, 2, \cdots, n$  的一个排列,所以  $i_1, i_2, \cdots, i_n$  可以通过若干次互换变成  $1, 2, \cdots, n$ .

而每次互换就相当于交换 $\lambda_{i_s}$ , $\lambda_{i_t}$ 的位置,由第8个习题可知这就相当于同时左乘右乘同一个互换得到的初

等 矩 阵 
$$E(i_s,i_t)$$
 . 由 此 可 知

$$E(i_{s_m}, i_{t_m}) \cdots E(i_{s_2}, i_{t_2}) E(i_{s_1}, i_{t_1}) diag[\lambda_1, \lambda_2, \dots, \lambda_n] E(i_{s_1}, i_{t_1}) E(i_{s_2}, i_{t_2}) \cdots E(i_{s_m}, i_{t_m})$$

$$= diag \left[ \lambda_{i_1}, \lambda_{i_2}, \dots, \lambda_{i_n} \right].$$

设 
$$C = E(i_{s_1}, i_{t_1}) E(i_{s_2}, i_{t_2}) \cdots E(i_{s_m}, i_{t_m}),$$

$$\mathbb{M} C^{T} = E(i_{s_{m}}, i_{t_{m}})^{T} \cdots E(i_{s_{2}}, i_{t_{2}})^{T} E(i_{s_{1}}, i_{t_{1}})^{T} = E(i_{s_{m}}, i_{t_{m}}) \cdots E(i_{s_{2}}, i_{t_{2}}) E(i_{s_{1}}, i_{t_{1}})$$

所以得到 
$$C^T diag[\lambda_1, \lambda_2, \dots, \lambda_n]C = diag[\lambda_i, \lambda_i, \dots, \lambda_{i_n}]$$
 ,因此矩阵  $diag[\lambda_1, \lambda_2, \dots, \lambda_n] = diag[\lambda_i, \lambda_i, \dots, \lambda_{i_n}]$ 合同.

# 习题7.4

1. 下列矩阵中,正定矩阵是(),且说明理由.

(A) 
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 3 \\ 1 & 3 & 0 \end{bmatrix}$$
 (B)  $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 5 & 3 \\ 0 & 0 & 3 \end{bmatrix}$  (C)  $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 7 & 10 \end{bmatrix}$  (D)  $\begin{bmatrix} 1 & 2 & -1 \\ 2 & 5 & -2 \\ -1 & -2 & 6 \end{bmatrix}$ 

**解** (A) 
$$\begin{vmatrix} 1 & 2 & 1 \\ 2 & 5 & 3 \\ 1 & 3 & 0 \end{vmatrix} = -2 < 0$$
,所以(A)不是正定的.

(B) 不是对称矩阵所以不是正定的.

(C) 
$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 7 & 10 \end{vmatrix} = 0$$
,所以(C)不是正定的.

(D)的顺序主子式 
$$|1| > 0$$
,  $\begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = 1 > 0$ ,  $\begin{vmatrix} 1 & 2 & -1 \\ 2 & 5 & -2 \\ -1 & -2 & 6 \end{vmatrix} = 5 > 0$ ,所以是正定的.

2. 若矩阵

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & m & n+2 \\ 0 & m-1 & m \end{bmatrix}$$

为正定矩阵,则 m必定满足(),且说明理由.

$$(A) m > \frac{1}{2}.$$

(B) 
$$m < \frac{2}{3}$$

(C) 
$$m > -2$$

子式都大于零. 所以要求 
$$|1|=1>0$$
,  $\begin{vmatrix} 1 & 0 \\ 0 & m \end{vmatrix} = m>0$ ,  $\begin{vmatrix} 1 & 0 & 0 \\ 0 & m & m-1 \\ 0 & m-1 & m \end{vmatrix} = 2m-1>0$ . 因此要求  $m>\frac{1}{2}$ , 所

以应选填A

3. 使实二次型

$$f(x_1, x_2, x_3) = \begin{bmatrix} x_1, & x_2, & x_3 \end{bmatrix} \begin{bmatrix} k & k & 1 \\ k & k & 0 \\ 1 & 0 & k^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

正定的 &存在吗?为什么?

要求正定即要求所有顺序主子式都大于零,但是该二次型的矩阵的二阶顺序主子式为 $\begin{vmatrix} k & k \\ k & k \end{vmatrix} = 0$ ,所

以不存在使其正定的 k.

4. 用定理 7. 4. 1(3)来判断下列二次型是否正定:

(1) 
$$f(x_1, x_2, x_3) = 2x_1^2 + 4x_1x_2 - 4x_1x_3 + 5x_2^2 - 8x_2x_3 + 5x_3^2$$
;

(2) 
$$f(x_1, x_2, x_3) = 2x_1^2 - 4x_1x_2 + x_2^2 - 4x_2x_3$$
;

(3) 
$$f(x_1, x_2, x_3) = 3x_1^2 + 2x_1x_2 + 2x_1x_3 + 3x_2^2 + 2x_2x_3 + 3x_3^2$$
.

**解** (1) 
$$f(x_1, x_2, x_3) = 2x_1^2 + 4x_1x_2 - 4x_1x_3 + 5x_2^2 - 8x_2x_3 + 5x_3^2$$
 的矩阵为 
$$\begin{bmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{bmatrix}$$
 求解特征多项

式 
$$\lambda E = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{bmatrix}$$
, 可以得到特征值为 1,1,10, 都大于零, 所以正定.

(2) 
$$f(x_1, x_2, x_3) = 2x_1^2 - 4x_1x_2 + x_2^2 - 4x_2x_3$$
 的矩阵为 
$$\begin{bmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{bmatrix}$$
. 求解特征多项式

$$\lambda E - \begin{bmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{bmatrix}$$
, 可以得到特征值为-2,1,4, 不全大于零, 所以不是正定的.

(3) 
$$f(x_1, x_2, x_3) = 3x_1^2 + 2x_1x_2 + 2x_1x_3 + 3x_2^2 + 2x_2x_3 + 3x_3^2$$
 的矩阵为 
$$\begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$
, 求解特征多项式

$$\lambda E - \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$
, 可以得到特征值为 2,2,5, 都大于零, 所以正定.

5. 判断下列二次型是否正定:

(1) 
$$f(x_1, x_2, x_3) = 5x_1^2 + 4x_1x_2 - 4x_1x_3 + 5x_2^2 - 2x_2x_3 + 5x_3^2$$
;

(2) 
$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_3 + x_2^2 + 2x_2x_3 + 2x_3^2$$

(3) 
$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n x_i^2 + \sum_{i=1}^{n-1} x_i x_{i+1}$$
.

**解** (1) 
$$f(x_1, x_2, x_3) = 5x_1^2 + 4x_1x_2 - 4x_1x_3 + 5x_2^2 - 2x_2x_3 + 5x_3^2$$
 的矩阵为  $\begin{bmatrix} 5 & 2 & -2 \\ 2 & 5 & -1 \\ -2 & -1 & 5 \end{bmatrix}$ , 顺序主子式为

$$|5| = 5 > 0$$
,  $\begin{vmatrix} 5 & 2 \\ 2 & 5 \end{vmatrix} = 21 > 0$ ,  $\begin{vmatrix} 5 & 2 & -2 \\ 2 & 5 & -1 \\ -2 & -1 & 5 \end{vmatrix} = 88 > 0$ , 所以此二次型是正定的.

(2) 
$$f(x_1,x_2,x_3) = x_1^2 + 2x_1x_3 + x_2^2 + 2x_2x_3 + 2x_3^2$$
 的矩阵为  $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ , 顺序主子式为

$$|1|=1>0, \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}=1>0, \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{vmatrix}=0$$
, 所以此二次型不是正定的.

$$(3) \ f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n x_i^2 + \sum_{i=1}^{n-1} x_i x_{i+1} \text{ 的矩阵为} \begin{bmatrix} 1 & \frac{1}{2} & 0 & \cdots & 0 \\ \frac{1}{2} & 1 & \frac{1}{2} & \cdots & 0 \\ 0 & \frac{1}{2} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}, \ D_i 表示第 i 个顺序主子式,$$

利用行列式按行展开公式对最后一行展开可以得到递推关系式  $D_i = D_{i-1} - \frac{1}{4} D_{i-2}$ , 因为

$$D_1 = |\mathbf{1}| = 1, D_2 = \begin{vmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{vmatrix} = \frac{3}{4}$$
,利用递推关系用数学归纳法可以证明  $D_i = \frac{i+1}{2^i} > 0$ ,由此可知所有顺序主

子式都大于零, 因此此二次型是正定的.

6. t取何值时下列二次型是正定的:

(1) 
$$f(x_1, x_2, x_3) = x_1^2 + 2tx_1x_2 - 2x_1x_3 + x_2^2 + 4x_2x_3 + 5x_3^2$$
;

(2) 
$$f(x_1, x_2, x_3, x_4) = t(x_1^2 + x_2^2 + x_3^2) + x_4^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$$

**解** (1) 
$$f(x_1, x_2, x_3) = x_1^2 + 2tx_1x_2 - 2x_1x_3 + x_2^2 + 4x_2x_3 + 5x_3^2$$
 的矩阵为  $\begin{bmatrix} 1 & t & -1 \\ t & 1 & 2 \\ -1 & 2 & 5 \end{bmatrix}$ ,要求二次型正

定即要求所有顺序主子式

$$|1|=1>0$$
,  $\begin{vmatrix} 1 & t \\ t & 1 \end{vmatrix} = 1-t^2 > 0$ ,  $\begin{vmatrix} 1 & t & -1 \\ t & 1 & 2 \\ -1 & 2 & 5 \end{vmatrix} = -t(5t+4) > 0$ , 由此可得 $-\frac{4}{5} < t < 0$  时此二次型正定.

(2) 
$$f(x_1, x_2, x_3, x_4) = t(x_1^2 + x_2^2 + x_3^2) + x_4^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$$
 的矩阵为 
$$\begin{bmatrix} t & 1 & 1 & 0 \\ 1 & t & -1 & 0 \\ 1 & -1 & t & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
, 要求

二次型正定即要求所有顺序主子式

$$|t| = t > 0, \begin{vmatrix} t & 1 \\ 1 & t \end{vmatrix} = t^2 - 1 > 0, \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{vmatrix} = (t+1)^2(t-2) > 0, \begin{vmatrix} t & 1 & 1 & 0 \\ 1 & t & -1 & 0 \\ 1 & -1 & t & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = (t+1)^2(t-2) > 0. \quad \text{th}$$

此可得 t>2 时此二次型正定.

7. 已知  $A = \left[a_{ij}\right]_{n \times n}$  是正定矩阵,求证:  $a_{ii} > 0$ ,  $i = 1, 2, \dots, n$ .

证  $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{n \times n}$  是正定矩阵,所以  $f(x_1, x_2, \dots, x_n) = X^T A X$  是正定二次型,所以对于任意非零向量 X 都有  $f(x_1, x_2, \dots, x_n) = X^T A X > 0$  . 现令  $X = X_i \ (i = 1, 2, \dots, n) \ (X_i \ 满足 \ x_i = 1, x_j = 0, j \neq i)$ ,则有  $X^T A X = a_{ii} > 0 \ (i = 1, 2, \dots, n)$  .

8\*. 已知 A 为  $m \times n$  实矩阵, 求证:

 $A^{T}A$ 为正定矩阵  $\Leftrightarrow$  秩(A)=n.

证  $\Rightarrow$  因为  $A^T A$  为正定矩阵,所以对任意的 n 维非零 向量 X 都有  $X^T (A^T A) X > 0$ ,即有  $(AX)^T (AX) > 0$ ,所以不存在非零向量使得 AX = O,因此可得秩(A) = n.

 $\leftarrow$  首先显然  $A^TA$ 是一个对称矩阵,现取任意一个 n 维非零向量  $\xi$  ,不妨设  $A\xi = [a_1 \quad a_2 \quad \cdots \quad a_m]^T$ 

则 
$$\xi^T(A^TA)\xi = (A\xi)^TA\xi = \begin{bmatrix} a_1 & a_2 & \cdots & a_m \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} = \sum_{i=1}^m a_i^2 \ge 0$$
 , 并 且 当 且 仅 当

 $A\xi = \begin{bmatrix} a_1 & a_2 & \cdots & a_m \end{bmatrix}^T = O$ 时取到 0. 又因为秩(A) = n 所以 AX = O只有零解,而 $\xi$  是非零向量,所以  $A\xi = \begin{bmatrix} a_1 & a_2 & \cdots & a_m \end{bmatrix}^T \neq O$ ,因此 $\xi^T (A^T A)\xi > 0$ ,由此可得  $A^T A$ 为正定矩阵.

9\*. 设 A 为 n 阶正定矩阵, P 为  $n \times m$  实矩阵, 求证:

 $P^{T}AP$ 为正定矩阵  $\Leftrightarrow$  秩(P)=m.

证  $\Rightarrow$  假设秩(P)<m,则PX = O有非零解 $\xi$ ,由此可知 $\xi^T(P^TAP)\xi = (P\xi)^TA(P\xi) = O^TAO = 0$ ,这与 $P^TAP$ 为正定矩阵矛盾。所以假设不成立,因此秩(P)=m.

 $\leftarrow$  首先因为 $(P^TAP)^T = P^TAP$ ,所以 $P^TAP$ 是对称矩阵. 现取任意一个n维非零向量 $\xi$ ,因为秩(P)=m,所以PX = O只有零解,由此可知 $P\xi \neq O$ . 又因为A为n阶正定矩阵,所以 $(P\xi)^TA(P\xi) > 0$ ,即有 $\xi^T(P^TAP)\xi = (P\xi)^TA(P\xi) > 0$ ,所以 $P^TAP$ 为正定矩阵.

#### 10. 证明性质 7.4.1.

证 A正定, 所以性质中的矩阵显然都是对称矩阵.

- (1) A正定,则 A的所有特征值  $\lambda_1, \lambda_2, \cdots, \lambda_n$  都大于零,因为 kA的所有特征值为  $k\lambda_1, k\lambda_2, \cdots, k\lambda_n$ ,k 为正数,所以这些特征值也都大于零,因此 kA 正定.
  - (2) 因为  $A^{-1}$  的所有特征值为  $\lambda_1^{-1}, \lambda_2^{-1}, \dots, \lambda_n^{-1}$ , 所以这些特征值也都大于零,因此  $A^{-1}$  正定.
- (3) 因为  $\vec{A} = |A|A^{-1}$ ,所以  $\vec{A}$  的所有特征值为  $|A|\lambda_1^{-1}$ , $|A|\lambda_2^{-1}$ ,…, $|A|\lambda_n^{-1}$ ,由于 A 正定,所以 |A| > 0,所以这些特征值也都大于零,由此可得  $\vec{A}$  正定.
  - (4) 因为  $A^k$  的所有特征值为  $\lambda_1^k$  ,  $\lambda_2^k$  ,  $\cdots$  ,  $\lambda_n^k$  , 所以这些特征值也都大于零,因此  $A^k$  正定.
  - (5) 因为C是可逆矩阵,即有秩(C)=n,根据本节第9个习题可知C $^TAC$ 是正定矩阵.
- 11. A, B为正定矩阵,证明 $\begin{bmatrix} A & O \\ O & B \end{bmatrix}$ 为正定矩阵.

证 首先因为
$$\begin{bmatrix} A & O \\ O & B \end{bmatrix}^T = \begin{bmatrix} A & O \\ O & B \end{bmatrix} = \begin{bmatrix} A & O \\ O & B \end{bmatrix}$$
,所以 $\begin{bmatrix} A & O \\ O & B \end{bmatrix}$ 是对称矩阵. 又因为  $A, B$ 都正定,所以

他 们 的 特 征 值 都 大 于 零 .  $\begin{bmatrix}A&O\\O&B\end{bmatrix}$  的 特 征 多 项 式 为

$$\begin{vmatrix} \lambda E_{2n} - \begin{bmatrix} A & O \\ O & B \end{bmatrix} = \begin{bmatrix} \lambda E & O \\ O & \lambda E \end{bmatrix} - \begin{bmatrix} A & O \\ O & B \end{bmatrix} = \begin{vmatrix} \lambda E - A \\ \lambda E - B \end{vmatrix} = \begin{vmatrix} \lambda E - A \\ \lambda E - B \end{vmatrix} = \begin{vmatrix} \lambda E - A \\ \lambda E - B \end{vmatrix}, \quad \text{MU} \begin{bmatrix} A & O \\ O & B \end{bmatrix} \text{ in } \text{MI}$$

有特征值为 A, B的所有特征值,因此都大于零,由此可知  $\begin{bmatrix} A & O \\ O & B \end{bmatrix}$  是正定的.

1. 写出二次型  $f(x_1,x_2,x_3) = x_1x_2 + 6x_2^2$  的矩阵.

$$\mathbf{AF} \begin{bmatrix}
0 & \frac{1}{2} & 0 \\
\frac{1}{2} & 6 & 0 \\
0 & 0 & 0
\end{bmatrix}.$$

2. 已知二次型  $x_1^2 + 4x_1x_2 + x_2^2 + 6x_2x_3 + ax_3^2$  的秩为 2,则  $a = _____$ ,为什么?

解 该二次型的矩阵为  $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 3 \\ 0 & 3 & a \end{bmatrix}$ , 由题意知,秩(A)=2, 将 A用初等变换化为阶梯形

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 3 \\ 0 & 3 & a \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 0 \\ 0 & -3 & 3 \\ 0 & 0 & a+3 \end{bmatrix}, 因秩(A)=2, 所以 a=-3.$$

3. 设

$$A = \begin{bmatrix} 2 - a & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & a + 3 \end{bmatrix}$$

是正定矩阵,则a的取值是\_\_\_\_\_,且说明理由.

**解**  $A = \begin{bmatrix} 2-a & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & a+3 \end{bmatrix}$  正定,所以它的顺序主子式都大于零,即有

$$|2-a|=2-a>0,$$
  $\begin{vmatrix} 2-a & 1 \\ 1 & 1 \end{vmatrix} = 1-a>0,$   $\begin{vmatrix} 2-a & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & a+3 \end{vmatrix} = (1-a)(3+a)>0.$  所以  $a$  的取值为  $-3 < a < 1$ .

4. 设  $f(x_1, x_2, x_3) = X^T A X$  经正交替换化为标准形  $3y_1^2 + 5y_2^2$ ,求 A 的特征值及 |A|.

解  $f(x_1,x_2,x_3) = X^T A X$ 经正交替换化为标准形  $3y_1^2 + 5y_2^2$ ,所以 A 的特征值为 3, 5, 0.

因此  $|A| = 3 \times 5 \times 0 = 0$ .

5. 若实对称矩阵 A 与矩阵

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix}$$

合同,求二次型 $f(x_1,x_2,x_3)=X^TAX$ 的规范形.

**解** 因为 A,B合同,所以 A,B有相同的规范形.因为  $\left|\lambda E-B\right| = \begin{vmatrix} \lambda-1 & 0 & 0 \\ 0 & \lambda & -2 \\ 0 & -2 & \lambda \end{vmatrix} = (\lambda-1)(\lambda-2)(\lambda+2)$ ,

所以B的所有特征值为-3, 1, 2,因此B的标准形为 $-3y_1^2+y_2^2+2y_3^2$ ,规范形为:  $z_1^2+z_2^2-z_3^2$ . 由此可知A的规范形也为 $z_1^2+z_2^2-z_3^2$ .

6. 设

$$A = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & & 1 \end{bmatrix}, \quad B = \begin{bmatrix} & & & 1 \\ & & 1 & \\ & 1 & & \\ 1 & & & \end{bmatrix}.$$

- (1) A与B是否等价?为什么?
- (2) A与B是否相似?为什么?
- (3) A与B是否在实数域上合同?为什么?
- **解** (1) 秩(A)=秩(B), 所以 A与 B等价.
  - (2) trA=4, 但是 trB=0, 两者不相等, 所以 A 与 B 不相似.
- (3)  $|\lambda E A| = (\lambda 1)^4$ ,所以 A的所有的特征值为 1, 1, 1, 1, 秩为 4,正惯性指数为 4. 但是  $|\lambda E B| = (\lambda 1)^2 (\lambda + 1)^2$ ,所以 B的所有特征值为-1, -1, 1, 1, 秩为 4,正惯性指数为 2. 两者的正惯性指数不想等,所以不合同.
- $7^*$ . 设 A 是 n 阶 正 定 矩 阵 ,  $\alpha_1,\alpha_2,\cdots,\alpha_n$  均 为 n 元 非 零 的 实 的 列 向 量 , 且 满 足  $\alpha_i^T A a_i = 0$   $(i \neq j,i,j = 1,2,\cdots,n)$  . 证明:  $\alpha_1,\alpha_2,\cdots,\alpha_n$  线性无关.
- 证 设存在一组数  $k_1, k_2, \cdots, k_n$  满足  $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n = O$ ,取任意一个  $\alpha_i$ ,在等式两边同左乘  $\alpha_i^T A$ 得到  $\alpha_i^T A k_1\alpha_1 + \cdots + \alpha_i^T A k_i\alpha_i + \cdots + \alpha_i^T A k_n\alpha_n = 0$  (\*),根据题意  $\alpha_i^T A a_j = 0$  ( $i \neq j, i, j = 1, 2, \cdots, n$ ),所以 (\*) 式可化为  $k_1\alpha_i^T A \alpha_1 + \cdots + k_n\alpha_i^T A \alpha_i + \cdots + k_n\alpha_i^T A \alpha_n = k_n\alpha_i^T A \alpha_i = 0$ ,又因为 A 是 n 阶正定矩阵,所以对于非零向量  $\alpha_i$  必有  $\alpha_i^T A \alpha_i \neq 0$ ,由此可得  $k_i = 0$  ( $i = 1, 2, \cdots, n$ ),所以  $\alpha_1, \alpha_2, \cdots, \alpha_n$  线性无关.

8\*. 已知

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & t \end{bmatrix}, \ B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 3 & 3 \end{bmatrix}, \ C = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & 5 \end{bmatrix}, \ D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

问:

- (1) t 取值在什么范围时, A 为正定矩阵?为什么?
- (2) t取何值时, A与B等价?为什么?
- (3) t 取何值时, A与 C相似?为什么?
- (4) t取何值时, A与D合同?为什么?

**解** (1) 
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & t \end{bmatrix}$$
 正定  $\Leftrightarrow A$  的所有顺序主子式都大于零,即有

$$|2| = 2 > 0$$
,  $\begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 3 > 0$ ,  $\begin{vmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & t \end{vmatrix} = 3t > 0$ . 所以要求  $t > 0$ 即可.

(2) 
$$A 与 B$$
等价充要条件是秩 ( $A$ )=秩( $B$ ), 因为  $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 3 & 3 \end{bmatrix} \xrightarrow{qreptage} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{bmatrix}$ , 所以

秩(B)=2, 所以要求秩(A)=2.
 而 
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & t \end{bmatrix}$$
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 $0$ 
 <

所以当t=0时 A与 B等价.

(3) A = C 相似,则必有 tr A = tr C,所以有 t + 4 = 9,从而得到 t = 5. 所以  $t \neq 5$  时 A = C 不相似,当 t = 5 时, A = C 都能与对角矩阵相似,且  $|\lambda E - A| = |\lambda E - C| = (\lambda - 1)(\lambda - 3)(\lambda - 5)$ , 所以 A = C 相似(参见习题 6.4 的第 4 题).

$$(4)$$
  $A$  与  $D$  合同则要求秩相等并且有相同的正惯性指数.  $D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ , 所以

秩 (D)=3, 又由于  $|\lambda E-D|=(\lambda-2)(\lambda^2-2\lambda-1)$  , 所以 D 的正惯性指数为 2. 而

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & t \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & 1 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & t \end{bmatrix} \exists |\lambda E - A| = (\lambda - t)(\lambda - 1)(\lambda - 3), \text{ 所以要秩为 3 则 } t \neq 0, \text{ 要正惯性}$$

指数为 2, 则要求  $t \le 0$ , 因此当 t < 0时  $A \ne D$ 合同.

