

Mitchell Herbert CSE Department

Edern Le Goc UPS / ext

Team 12

Eric RasmussenMAE Department

ECE / MAE 148

What We Promised

- Staying between lines
- Stopping at stop signs
- Wait for user input
- Autonomously traverse intersection

Nice to Haves

- Handling right-of-way
- Obstacle detection

How is it different

We combine autonomous lane-finding and traffic sign recognition to stop at an intersection and await user input.

Demo Video

What Worked

- Staying between lines
- Staying in the right lane (mostly)
- Stop sign recognition
- Stopping at the line
- Traversing the intersection

It's harder than it looks

- Glare
- Daytime vs Nighttime
- Narrow camera FOV
- Inaccurate depth perception

Staying in the Lines

Initial Attempts

- Canny and HoughLines
 - Managed 2 laps
 - Easily ruined by glare/shadows
- White filtering + Canny and HoughLines
 - Narrow camera FOV
 - Can't differentiate left vs right lines
- Blue-green filtering
 - Filter for greens and blues
 - Count green/blue pixels
- Red-green filtering
 - Blue difficult to filter at night
 - Objects are red too (people, stop signs)

Credit to Team 7 for the image above

How Blue-Green Filter Worked

Steps

- 1. Filter for blues and greens
- 2. Crop the image
- 3. Count blue and green pixels
- 4. Subtract the the two
- 5. Center/clip the range

Benefits

- Easily filters out glare
 - Cropping
 - Blue/green filter
- Can handle lanes

Right turn

Stop Sign Detection

Initial Attempts

- Tiny-Yolo (on OAKD)
 - Off-center bounding-boxes
 - Multiple boxes for same object
 - Can't average boxes (multiple signs)
- Size of Bounding Box
 - Distance using bounding box area
 - O Boxes on edge of frame
 - O Boxes not on a stop sign (Tiny-Yolo)
- OAKD Depth from Tiny-Yolo
 - Bounding boxes not centered
 - O Where to sample depth?
- OAKD Depth from Cascade Classifier
 - Trained using XML file from internet
 - Drew perfect bounding boxes

Stop Sign Detection

How it Worked

- 1. Read depth map from OAKD
- 2. Run cascade classifier on RGB frame
- 3. Compute center of bounding boxes
- 4. Average depth in a radius around center
- 5. Select closest stop-sign

Benefits

- Handles multiple stop signs
- Usually returned good depths

Problem

- Stop signs occasionally returned bad depths
 - Early stopping
- VESC flicking back and forth
 - VESC crashes
 - Bad for stop sign detection

Solution

- Use the average of the last n values
 - Stop sign distance
 - Servo angle

Problem

What happens after seeing the sign?

Initial Attempt

- Keep going in the same direction for a second
 - Sharp corrections caused crashes

Accepted Solution

- Continue line following for n seconds
 - Works well most of the time
 - Fails if a *major* correction occurs at the end
- Reset VESC's running average once stopped

Traversing the Intersection

Problems

- Cross intersection where there are no lines
- Turns happened too fast
 - Running over stop sign
 - Turning into wrong lane

Solutions

- Hard coded parameters
 - Throttle
 - Servo angle
 - Move in time
 - Turn time
- Move into intersection first, then turn

Proposed Changes

Test lidar obstacle detection

- Identify other cars
- Handle right of way

White line detection for stopping

- Detect white lines
- Stop perpendicular to the line

Thanks for Listening