Modern Cryptography

Mathematical Prerequisites (For the students with no mathematics backgrounds)

Aug 20, 2025

Shashank Singh

Integer Arithmetic

Integer Arithmetic

Integer Arithmetics: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

Addition (+), For all $a, b, c \in \mathbb{Z}$	Multiplication (·), $\forall a, b, c \in \mathbb{Z}$
$\bullet \ a+b=c\in \mathbb{Z}.$	$\bullet \ a \cdot b = c \in \mathbb{Z}.$
$\bullet (a+b) + c = a + (b+c)$	$\bullet (a \cdot b) \cdot c = a \cdot (b \cdot c)$
$\bullet \ \exists 0 \in \mathbb{Z}, a+0=0+a=a$	$\bullet \ \exists 1 \in \mathbb{Z}, a \cdot 1 = 1 \cdot a = a$
$\bullet \ \exists (-a) \in \mathbb{Z}, a + (-a) = 0$	
$\bullet \ a+b=b+a$	$\bullet \ a \cdot b = b \cdot a$

- $rac{1}{2}$ (\mathbb{Z} , +) is an Abelian group.
- \blacksquare (\mathbb{Z} , ·) is a semi-group with (multiplicative) identity 1.

Group

Consider a set G and an operation $\star : G \times G \to G$ defined on G. Then (G, \star) is called a group if the following hold:

- 1. Closure of *G* under \star : $\forall x, y \in G$, $x \star y \in G$.
- 2. Associativity: $\forall x, y, z \in G$, $(x \star y) \star z = x \star (y \star z)$
- 3. Identity element: $\exists e \in G : x \star e = e \star x = x \forall x \in G$.
- 4. Inverse element: $\forall x \in G, \exists y \in G : x \star y = y \star x = e$, where *e* is the identity element.

If additionally $\forall x, y \in G, x \star y = y \star x$, then (G, \star) is called an Abelian group (or a commutative group).

Examples: $(\mathbb{Z}, +), (\mathbb{Q}^*, \cdot)$ are groups. (\mathbb{Z}, \cdot) is not a group (why?).

Clock Arithmetics

Clock Arithmetics

Consider the set $\mathbb{Z}_{12} = \{1, 2, 3, ..., 11, 0 (= 12)\}.$

- Define a binary operation $\oplus: \mathbb{Z}_{12} \times \mathbb{Z}_{12} \to \mathbb{Z}_{12}$, such that $a \oplus b = b$ hours after a o'clock
- **▶** Is $(\mathbb{Z}_{12}, \oplus)$ a group?

Clock Arithmetics..

$$\mathbb{Z}_{12} = \{0, 1, 2, 3, ..., 11\}.$$

For $a, b \in \mathbb{Z}_{12}$, define

$$a \oplus b = \text{remainder when } (a + b) \text{ is divided by } 12$$

 $\equiv (a + b) \mod 12.$ (Notation)

Similarly,

$$a \odot b = \text{remainder when } (a \cdot b) \text{ is divided by } 12$$

 $\equiv (a \cdot b) \mod 12.$ (Recall the Notation)

Question: Does $(\mathbb{Z}_{12}, \oplus)$ form a group?

What about (\mathbb{Z}_{12}, \odot) ?

Modular Arithmetics

Modular Arithmetic

Let $n \in \mathbb{N}$. Define,

$$\mathbb{Z}_n = \{0, 1, 2, 3, ..., n-1\}.$$

For $a, b \in \mathbb{Z}_n$, define

$$a \oplus b \coloneqq (a+b) \bmod n$$

$$a \odot b := (a \cdot b) \mod n$$
.

Exercise:

- 1. Show that (\mathbb{Z}_n, \oplus) is an Abelian group.
- 2. Show that (\mathbb{Z}_n, \odot) is a semi-group. Note that a set together with a binary operation is called a semi-group if the binary operation is associative.

Exercise: If $p \in \mathbb{N}$ is a prime, then $((\mathbb{Z}_p)^*, \odot)$ is an Abelian group.

Proof:

$$(\mathbb{Z}_p)^* = \{1, 2, ..., p-1\}$$

For $a, b \in (\mathbb{Z}_p)^*$, we have

1.
$$a \odot b = a \cdot b \pmod{p} \in (\mathbb{Z}_p)^*$$
.

2.
$$(a \odot b) \odot c = a \cdot b \pmod{p} \odot c$$

$$= (ab + pt) \odot c = (ab + pt)c \pmod{p}$$

$$= abc \pmod{p} = a \odot (b \odot c)$$

- 3. 1 is the identity element.
- 4. For $a \in (\mathbb{Z}_p)^*$, $\gcd(a, p) = 1 \Rightarrow ax + py \equiv 1 \mod p$, hence $a^{-1} = x \mod p$.

П

Exercise: Find $\frac{1}{5}$ in $(\mathbb{Z}_{17}^*, \odot)$.

Solution:

As 17 is a prime, gcd(5, 17) = 1. In fact, we compute the GCD as follows:

$$17 = 5 \times 3 + 2$$

 $5 = 2 \times 2 + 1$
 $2 = 1 \times 2 + 0.$ (1)

Thus,

$$1 = 5 - 2 \times 2$$

$$= 5 - (17 - 5 \times 3) \times 2$$

$$= 5 \times 7 + 17 \times (-2)$$

Hence $1 = 5 \times 7 \mod 17$, i.e., $5 \odot 7 = 1$ and so $\frac{1}{7} = 5$ in \mathbb{Z}_{17} .

Shashank Singh Modular Arithmetic 10 / 21

Order of an element in Finite Groups

We have now seen some examples of finite groups. Let (G, \cdot) be a group with |G| = n and $1 \in G$ is the identity element.

- The number of elements in the finite set G is called the <u>order of the group</u> (G, \cdot) . We represent it using o(G).
- For $g \in G$, we can define the order o(g) of the element g in the group (G, \cdot) as the smallest positive integer ℓ such that

$$g^{\ell} := \underbrace{g \cdot g \cdot g.....g \cdot g}_{\ell \text{ times}} = 1.$$

and we write $o(g) = \ell$. (Why does it even exit?)

Shashank Singh Modular Arithmetic 11 / 21

Consider the set $G' = \{g^i : 1 \le i \le o(G)\}$

- Note that $G' \subset G$.
- If all the elements in G' are distinct, G' = G and $1 \in G'$ and hence there is a t such that $g^t = 1$.
- If the elements in G' are not distinct, there exists $s > t \in \mathbb{N}$ such that $g^s = g^t$ implying $g^{s-t} = 1$.
- The smallest exponent ℓ such that $g^{\ell} = 1$ is called the order of g.

$$o(g) = \inf\{\ell : g^{\ell} = 1, \ell \in \mathbb{N}\}$$

Remark: Such an ℓ always exists in finite groups. In infinite groups such an ℓ may not exist, in that case, order of g is infinite.

Shashank Singh Modular Arithmetic 11 / 21

Cyclic Group

Let (G, \cdot) be finite group with o(G) = n. For $g \in G$, define

$$\langle g \rangle := \{ g^i \mid 1 \le i \le n \} \subset G.$$

Cyclic Group

Let (G, \cdot) be finite group with o(G) = n. For $g \in G$, define

$$\langle g \rangle := \{ g^i \mid 1 \le i \le n \} \subset G.$$

Exercise: Show that $(\langle g \rangle, \cdot)$ is group. The group $(\langle g \rangle, \cdot)$ is called a **cyclic subgroup** of the group (G, \cdot) generated by an element g of G.

Remark: The cyclic subgroup generated by an element $g \in G$, can be defined for infinite groups as well.

$$\langle g \rangle := \{ g^i \mid i \in \mathbb{Z} \} \subset G.$$

Example. Consider the set

$$(\mathbb{Z}_{13})^* = \{1, 2, ..., 12\}$$

and a binary operation ⊙, which is <u>multiplication modulo</u> 13.

$$\langle 4 \rangle = \{4, 3, 12, 9, 10, 1\}$$

$$\langle 5 \rangle = \{5, 12, 8, 1\}$$

Cyclic Group..

Definition: A group (G, \cdot) is said to be cyclic group if there exists a $g \in G$ such that $G = \langle g \rangle$.

Example. Consider the set $(\mathbb{Z}_{13})^* = \{1, 2, ..., 12\}$ and a binary operation \odot , which is <u>multiplication modulo</u> 13.

$$\langle 2 \rangle = \{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, \}$$

Thus $(\mathbb{Z}_{13})^*$ is a cyclic group generated by 2.

- In a finite cyclic group $G = \langle g \rangle$, every element of G can be written as some power of the generator g.
- $g^{o(G)} = 1$ in a finite cyclic group $G = \langle g \rangle$. (Proof?)

Exercise: Show that $g^{o(G)} = 1$ in a finite cyclic group $G = \langle g \rangle$..

Shashank Singh Modular Arithmetic 13 / 21

Discrete Logarithm Problem

Definition: Let $(G, \cdot) = \langle g \rangle$ be a finite cyclic group of order n, i.e. o(G) = n, and $h \in G$. We can write h as

$$h = g^e = \underbrace{g \cdot g \cdot g.....g \cdot g}_{e \text{ times}},$$

for some $e \in \mathbb{Z}_n$. We call e the discrete logarithm of h to the base g and

write $e = \log_g h$.

Remark: We also use the notation \mathbb{Z}_n for \mathbb{Z}_n , use simple \cdot to represent the binary op \odot and often write ab to mean $a \cdot b$.

Exercise: In the group (\mathbb{Z}_{13}^* , ·), calculate $\log_2 5$?

Shashank Singh Modular Arithmetic 14 / 21

Example of a cyclic group

Theorem: If $p \in \mathbb{Z}^+$ is a prime, the (\mathbb{Z}_p^*, \cdot) is a cyclic group of order (p-1).

Example of a cyclic group

Theorem: If $p \in \mathbb{Z}^+$ is a prime, the (\mathbb{Z}_p^*, \cdot) is a cyclic group of order (p-1).

Let

p = 12462036678171878406583504460810659043482037465167 88057548187888832896668011882108550360395702725087 47509864768438458621054865537970253930571891217684 31828636284694840530161441643046806687569941524699 3185704183030512549594371372159029285303,

$$\left(\mathbb{Z}_p^{\star},\cdot\right) = \langle 5 \rangle$$

Finte Ring and Finite Field

- Recall, $(\mathbb{Z}, +)$ is an Abelian group and (\mathbb{Z}^*, \cdot) is a semi-group.
 - ► Multiplication can be performed in **Z**, but division (<u>inverse of multiplication</u>) is not always possible, i.e., when we divide an integer by another, the result is not always an integer.
 - ▶ In other words $\frac{1}{a} \notin \mathbb{Z} \ \forall a \in \mathbb{Z}$, however this is true for rationals.
- The structure $(\mathbb{Q}, +, \cdot)$, where addition, inverse of addition (subtraction), multiplication and division (inverse of multiplication), all can be performed, and \cdot is distributive over +, is termed a Field. Similarly, $(\mathbb{Z}, +, \cdot)$ is an example of a Ring.
- More precise mathematical definitions of Ring and Field are presented below.

Shashank Singh Modular Arithmetic 16 / 21

Definition: (RING)

A ring $(R, +, \cdot)$ is a set R, which is CLOSED under two operations + and \cdot , and satisfying the following properties:

- (R, +) is an Abelian group.
- The binary operation \cdot is assiciative in R i.e., $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in R$
- The operation \cdot is distributive over + i.e.,

$$(a+b) \cdot c = (a \cdot c) + (b \cdot c)$$
$$a \cdot (b+c) = (a \cdot b) + (b \cdot c) \quad \forall a, b, c \in \mathbb{Z}.$$

- $(\mathbb{Z}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$ and $(\mathbb{C}, +, \cdot)$ are very common examples of a Ring.
- The set of all $n \times n$ matrices with entries from a ring (or even a field) forms a ring under matrix addition and matrix multiplication.
- $(\mathbb{Z}_n, \oplus, \odot)$ forms a ring as well. (prove it)

Field

Definition: (FIELD)

A field $(F, +, \cdot)$ is a ring with multiplicative identity, where every non-zero element of F has a multiplicative inverse.

- $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$ and $(\mathbb{C}, +, \cdot)$ are fields.
- $(\mathbb{Z}, +, \cdot)$ is not a field and so is $(\mathbb{Z}_n, \oplus, \odot)$.

Question: Is there a field with finitely many elements?

Shashank Singh Modular Arithmetic 18 / 21

Finite Fields

- $(\mathbb{Z}_n, \oplus, \odot)$, where *p* is a prime, is a field.
 - ► Compute $\frac{1}{7}$, i.e., 7^{-1} in $(\mathbb{Z}_7, \oplus, \odot)$. What is the value of $\frac{3}{7}$ in \mathbb{Z}_7 ?

Example: Let $F_4 = \{0, 1, x, 1 + x\}$, with two binary operations + and \cdot , defined as follows:

+	a	b	С	\overline{d}
a	a b c d	b	C	\overline{d}
b	b	a	d	C
c	c	d	a	b
d	d	c	b	a

•	a	b	С	d
a	a	a	a	a
b	a	b	c	d
c	a	c	d	c
d	a	a b c d	c	b

Show that $(F_4, +, \cdot)$ is a field. Note that, it has 4 elements.

Question: Is there a field consisting of 6 elements? Justify your answer.

Finite Field of Order p^n

- Let F_p be a finite field $(\mathbb{Z}_p, +, \cdot)$ and $f(x) \in F_p[x]$ be a monic irreducible polynomial of degree n.
- Let $F_{p^n} = \{g(x) \in F_p[x] : \deg(g(x)) \le n-1\}$, define binary operations \oplus and \odot on F_{p^n} as follows:

$$g_1(x) \oplus g_2(x) = g_1(x) + g_2(x) \mod f(x)$$

 $g_1(x) \odot g_2(x) = g_1(x) \cdot g_2(x) \mod f(x)$

• (F_{p^n}, \oplus, \odot) , as described above forms a finite field of order p^n .

Remarks:

- The number of elements in any finite field is equal to p^n for some prime p and positive integer n.
- Two finite fields of the same order are isomorphic, i.e., they behave in the same fashion modulo a mapping of elements.

Shashank Singh Modular Arithmetic 20 / 21

Example: Let $F_4 := \frac{F_2[x]}{\langle x^2 + x + 1 \rangle} = \{0, 1, x, 1 + x\}$, with two binary operations + and \cdot , defined modulo $x^2 + x + 1$ as follows:

+	0	1	X	1+x
0	0	1	$\boldsymbol{\mathcal{X}}$	1+x
1	1	0	1 + x	\boldsymbol{x}
$\boldsymbol{\mathcal{X}}$	$\boldsymbol{\mathcal{X}}$	x + 1	0	1
1+x	1+x	$\boldsymbol{\mathcal{X}}$	1	0

•	0	1	$\boldsymbol{\mathcal{X}}$	1+x
0	0	0	0	0
	0	1	$\boldsymbol{\mathcal{X}}$	1 + x
$\boldsymbol{\mathcal{X}}$	0	X	1 + x	$\boldsymbol{\mathcal{X}}$
1+x	0	1 + x	$\boldsymbol{\mathcal{X}}$	1