Hastings Math.com

Cambridge International AS & A Level

Cambric	Ige International AS & A Level	Anna	stated by	Tam
CANDIDATE NAME				
CENTRE NUMBER		NDIDATE MBER		

MATHEMATICS 9709/11

Paper 1 Pure Mathematics 1

October/November 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages.

Solve the equation $3x + 2 = \frac{2}{x - 1}$.	[3]
$(3\chi+2)(\chi-1)=2$	
$3\chi^{2} + 2\chi - 3\chi - 2 = 2$	
$3x^2 - x - 4 = 0$	
(3x-4)(x+1)=0	
3x-4=0 or $541=0$	
x=4 or $x=-1$	
3	

- 2 The equation of a curve is such that $\frac{dy}{dx} = 12(\frac{1}{2}x 1)^{-4}$. It is given that the curve passes through the point P(6, 4).
 - (a) Find the equation of the tangent to the curve at P. [2] $\frac{dy}{dx} = m \text{ of } tangent$
 - $M = 12(\frac{1}{2}(6)-1)^{-4}$ M = 3 43 44 44

 - $y = \frac{3}{4}x \frac{1}{2}$
 - (b) Find the equation of the curve. [4] $\int 12\left(\frac{1}{2}X 1\right)^{-4} dt$
 - $y = 12\left(\frac{1}{2}x 1\right)$ $\frac{1}{2}x 3$
 - $= 12 \times \frac{2}{3} \left(\frac{1}{2} x_{-1} \right)^{-3}$
 - $y = -8\left(\frac{1}{2}\chi 1\right)^{-3} + C$
 - $\begin{array}{l} \text{SUB } P(6|4) \\ 4 = -8(\frac{1}{2}(6) 1)^{-3} + C \\ C 5 \end{array}$
 - C = 5 $\therefore y = -8(\frac{1}{2}x - 1)^{-3} + 5$

Find th	حر e y-coordina	ate of P						
Tilla til	C y-coordina							
				•••••				
SP!	ay .	CO						
••••	$\overline{d} \chi$				• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
					···~			
	. di	y :	5 9X	, 2 _	2 -			
•••••	7	<u>حــ</u> ک		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••
	٠, ٠)V		•••••				
SU	bx:	= 9						
			···/······			••••••		•••••
	<u> </u>	g(9)	2 - 2	z = 0)			
	2	'(')		2		-	12	
•••••	•••••		×.		·			•••••
				6				
··········		10 5	フ .	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
		$ 2x^{\frac{1}{2}}$	一乙又					
.Su	b x=	. 9	١					
)	12(9)		/a \	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••
	<u>y</u> =	12(9)						
	=	18						
•••••	•••••		••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		••••••
							/	
•	U Cad	rdinat	eat 1	0-18				
		• • • • • • • • • • • • • • • • • • • •				•••••	•••••	•••••
•••••				•••••		•••••		
		,						
••••			•••••					
			,					
	•••••			•••••			•••••	

4	The coefficient of x^2 in the expansion of	$\left(1+\frac{2}{n}x\right)^5$	$+(1+px)^6$ is 70.
	~~~~	(p)	~~~

 $\frac{S_{C}r\times(1)^{S-r}\times\left(\frac{2}{p}x\right)^{r}+S_{C}r\times\left(1\right)^{S-r}\times\left(px\right)^{r}}{for x^{2}:r=2}$ 

 $S_{2} \times (1)^{3-2} \times (\frac{2}{p}x)^{2} + S_{2} \times (1)^{6-2} \times (px)^{2}$ 

 $10 \times 1 \times \overline{p^2} \chi^2 + 15 \times 1 \times p^2 \chi^2 = 70 \chi^2$ 

 $\frac{1}{p^2} + 15p^2 = 70$ 

 $\frac{40}{p^2} + \frac{|SP^4|}{p^2} = \frac{70}{p^2} LOp^2$ 

 $15p^4 - 70p^2 + 40 = 0$ 

 $p^{2}=-(-70)\pm\sqrt{(-70)^{2}-4(15)(40)}$ 

2-(IS)

 $p^2 = 4$  or  $p^2 = \frac{2}{3}$ 

 $p=\pm 2$  or  $p=\pm \left(\frac{2}{3}\right)$ 



The diagram shows a sector OAB of a circle with centre O. The length of the arc AB is 8 cm. It is given that the perimeter of the sector is 20 cm.



$$p = AB + ArCAB$$
  
=  $AB + 8cm$ 

$$OA = OB$$
 (radii)

$$\frac{1.20 - 8}{2} = 0A = 0B = 6$$

$$\hat{A}\hat{O}B = \frac{8}{6} = \frac{4}{3}$$

$$AB^2 = 6^2 + 6^2 - 2(6)(6)\cos\frac{4}{3}$$

$$AB = 7.420437637$$

$$P = 8+7.420437637$$

© UCLES 2022

۸	ea of the shaded seg	gment.	$=\frac{1}{2}(9)(1$	sin C
ASHA	10ED =	1 r 20	- 2 Y 2	sin AOB
	$A = \frac{1}{2}$	$\times (6)^2 \left(\frac{4}{3}\right)$	- 1 (6	) $2\sin(\frac{4}{3})$
	(A =	6.5 cm	2	(2 dee f

6	(a)	Show	that the	equation
-	()			

$$\frac{1}{\sin\theta + \cos\theta} + \frac{1}{\sin\theta - \cos\theta} = 1$$

may be expressed in the form  $a \sin^2 \theta + b \sin \theta + c = 0$ , where a, b and c are constants to be found.

LCO: (sino+coso)(sino-coso)

 $\frac{1(\sin \theta - \cos \theta) + 1(\sin \theta + \cos \theta)}{(\sin \theta - \cos \theta)} = (\sin \theta + \cos \theta)(\sin \theta - \cos \theta)}$ (sin \theta - \cos \theta) (\sin \theta + \cos \theta) (\sin \theta - \cos \theta)

 $510^{0} - 950 + 5100 + 9050 = 510^{0} - 605^{0}$ 

: sin20 - 25in0 - cos20 =0

 $-. \sin^2 \theta - 2\sin \theta - (1-\sin^2 \theta) = 0$ 

Sin 20 - 25in 0 - 1+ Sin 20 = 0

251026	$rac{1}{2}$ - 25100	f - 1 = 0	
			••••••
	•••••••••••		 •••••••

(b) Hence solve the equation $\frac{1}{\sin \theta + \cos \theta} + \frac{1}{\sin \theta - \cos \theta} = 1 \text{ for } 0^{\circ} \leqslant \theta \leqslant 360^{\circ}.$ $2 \sin^{2} \theta - 2 \sin^{2} \theta - 1 = 0$	[3]
$Sin\theta = -(-2) + \sqrt{(-2)^2 - 4(2)(-1)}$	
2(2) $5\ln 0 = \frac{1+\sqrt{3}}{2}$ or $5\ln 0 = \frac{1-\sqrt{3}}{2}$	3
$0 \neq \sin^{-1}\left(\frac{1+\sqrt{2}}{2}\right)  \text{or}  0 = \sin^{-1}(E) =$	21.470
:. RA = 21. 4707 S	A
7.0 = 180 + 21.4707 $7 = 201.4707$	
ok 0 = 360 - 21.4707 = 338.5293	
:. 0 = 201.5 or 338.5 (10	Lec pl)

A tool for putting fence posts into the ground is called a 'post-rammer'. The distances in millimetres that the post sinks into the ground on each impact of the post-rammer follow a geometric progression. The first three impacts cause the post to sink into the ground by 50 mm, 40 mm and 32 mm respectively.
(a) Verify that the 9th impact is the first in which the post sinks less than 10 mm into the ground.  [3]
$M_1 = av^0 = 50 = 0$ $M_2 = 50v^1 = 40$
: r = 40 = 4
<u>5</u> 9 S
$U_9 = qr^8 = So(\frac{4}{5})^8$
= 8.39 mm (2 dec P1)
8.39 < 10 9th impact
$\underline{CHECK} \ U_8: \alpha r^7 = SO\left(\frac{c_4}{5}\right)^7$
= 10.49 (2 dec P)_
10.4970

	•				-	_	nd after 2		ts.
		q(1	<u>-</u> r n	<u>)</u>	50	( ) _	(4)	20	
	•					$\frac{C_1}{C_1}$	(5)		
••••••	•••••	•	<i>Y</i>			 1 <i>—</i>	生	•••••	•••••
•••••						. <b></b>	S		•••••
			L mm	/	<i>[</i>		············	······	
520	= 2	47	Lmm				neo	ivest.	mm
•••••		••••••			•••••	••••••	•••••		••••••
							•••••	•••••	
••••••	•••••	••••••	•••••	••••••	••••••	••••••	••••••	•	•••••
								•••••	
Find the	rantact to	tal denth in	the ground	which co	uld theoret	ically l	a achiev	ad	
•	~~~	~~~	the ground		ould theoret	ically l	e achiev	ed.	
•	~~~	~~~			ould theoret	ically l	e achiev	ed.	
		VC	<del> </del>		wild theoret	ically l	oe achiev	ed.	
		~~~	<del> </del>		wild theoret	ically I	oe achiev	ed.	
		VC	 		wild theoret	ically l	oe achiev	ed.	
	Z Sos	VC	 		wild theoret	ically I	oe achiev	ed.	
		VC	 		wild theoret	ically l	oe achiev	ed.	
	Z Sos	VC	 		wild theoret	ically l	oe achiev	ed.	
	Z Sos	exis	 		could theoret	ically l	oe achiev	ed.	
	Z Sos	VC	 		could theoret	ically l	oe achiev	ed.	
	Z SB =	exis	75		could theoret	ically l	oe achiev	ed.	
	Z SB =	exis	75		Could theoret	ically l	oe achiev	ed.	
	Z SB =	exis	75		buld theoret	ically l	oe achiev	ed.	
	S6 =	exis	75		buld theoret	ically l	oe achiev	ed.	

8	The function f is defined by $f(x) = 2 - \frac{1}{4x - p}$ for $x > \frac{1}{4}$, where p is a constant.
	(a) Find $f'(x)$ and hence determine whether f is an increasing function, a decreasing function

)	Find $f'(x)$ and hence determine whether f is an increasing function, a decreasing function or neither.
	$f(x) = -3(4x-p)^{-1} + 2$
	$f'(x) = 3(ux-p)^{-2} \times 4$
	$f'(\alpha) = 12$ $(42 + p)^2$
	$(42-p)^2$
	f(a) >0 : increasing function

(b) Express $f^{-1}(x)$ in the form $\frac{p}{a} - \frac{b}{cx - d}$, where a, b, c and d are integers. [4]

f(x) = -3 f(4) = -3

x-2 = -3 44-p

4y-p=-3 x-2

4y = -3 + p

 $y = -3 + \rho$ 4x - 8 + 4

 $\int_{0}^{1} -1(x) = \frac{1}{4} - \frac{3}{4x-8}$

(c) Hence state the value of p for which $f^{-1}(x) \equiv f(x)$. [1]

 $\frac{p}{4}=2$

:.P=8

9	Functions	f and g	are both	defined	for $x \in \mathbb{R}$	and are	given	by

$$f(x) = x^2 - 4x + 9,$$

$$g(x) = 2x^2 + 4x + 12.$$

(a)	Express	f(x)	in th	e form	(x-a)	$(1)^2 +$	b
()		- ()			(. , .	

a	\ . L-
$f(x) = x^2 - 4x + 4 + 9 - 4 = 0$	1-4)2
$= (x-2)^2 + S$	(2)
	$=(-2)^{2}$
	\ /

•••••	• • • • • • • • • • • • • • • • • • • •	

(b) Express g(x) in the form $2[(x+c)^2+d]$.

•••••

	Express $g(x)$ in the form $kf(x+h)$, where k and h are integers. [1]					
	$f(x) = (x-2)^2 + 5$					
	$g(x) = 2((x+1)^2 + 5)$					
	$\frac{1}{100} = \frac{1}{100} = \frac{1}$					
l)						
	to the graph of $y = g(x)$.	[4]				
) , , , , , .		[4]				
	to the graph of $y = g(x)$. The following the graph of $y = g(x)$ to the graph of $y = g(x)$.	[4]				
	to the graph of $y = g(x)$. The following the graph of $y = g(x)$ to the graph of $y = g(x)$.	[4]				
	to the graph of $y = g(x)$. The following the graph of $y = g(x)$ to the graph of $y = g(x)$.	[4]				
	to the graph of $y = g(x)$. The following the graph of $y = g(x)$ to the graph of $y = g(x)$.	[4]				

Curves with equations $y = 2x^{\frac{1}{2}} + 1$ and $y = \frac{1}{2}x^2 - x + 1$ intersect at A(0, 1) and B(4, 5), as shown in the diagram.

[5]

(a) Find the area of the region between the two curves.

 $A = \int_{0}^{4} (2x^{\frac{1}{2}}+1) - (\frac{1}{2}x^{2}-x+1) dx$ $\int_{0}^{4} 2x^{\frac{1}{2}}+1 - \frac{1}{2}x^{2} + 2 = 1 dx$ $\int_{0}^{4} 2x^{\frac{1}{2}}+1 - \frac{1}{2}x^{2} + 2 = 1 dx$ $\int_{0}^{4} 2x^{\frac{1}{2}}+1 - \frac{1}{2}x^{2} + 2 = 1 dx$ $\int_{0}^{4} 2x^{\frac{1}{2}}+1 - \frac{1}{2}x^{2} + 2 = 1 dx$ $\int_{0}^{4} 2x^{\frac{1}{2}}+1 - \frac{1}{2}x^{2} + 2 = 1 dx$ $\int_{0}^{4} 2x^{\frac{1}{2}}+1 - \frac{1}{2}x^{2} + 2 = 1 dx$ $\int_{0}^{4} 2x^{\frac{1}{2}}+1 - \frac{1}{2}x^{2} + 2 = 1 dx$ $\int_{0}^{4} 2x^{\frac{1}{2}}+1 - \frac{1}{2}x^{2} + 2 = 1 dx$ $\int_{0}^{4} 2x^{\frac{1}{2}}+1 - \frac{1}{2}x^{2} + 2 = 1 dx$ $\int_{0}^{4} 2x^{\frac{1}{2}}+1 - \frac{1}{2}x^{2} + 2 = 1 dx$ $\int_{0}^{4} 2x^{\frac{1}{2}}+1 - \frac{1}{2}x^{2}+1 + 2 = 1 dx$ $\int_{0}^{4} 2x^{\frac{1}{2}}+1 - \frac{1}{2}x^{2}+1 + 2 = 1 dx$ $\int_{0}^{4} 2x^{\frac{1}{2}}+1 - \frac{1}{2}x^{2}+1 + 2 = 1 dx$ $\int_{0}^{4} 2x^{\frac{1}{2}}+1 - \frac{1}{2}x^{2}+1 + 2 = 1 dx$ $\int_{0}^{4} 2x^{\frac{1}{2}}+1 - \frac{1}{2}x^{2}+1 + 2 = 1 dx$ $\int_{0}^{4} 2x^{\frac{1}{2}}+1 - \frac{1}{2}x^{2}+1 + 2 = 1 dx$ $\int_{0}^{4} 2x^{\frac{1}{2}}+1 - \frac{1}{2}x^{2}+1 + 2 = 1 dx$ $\int_{0}^{4} 2x^{\frac{1}{2}}+1 + 2 = 1 dx$ \int_{0}^{4

© UCLES 2022

The acute angle between the two tangents at B is denoted by α° , and the scales on the axes are the same.

(b) Find α . [5]

$$\mathcal{M}_{1} = \chi^{-\frac{1}{2}}$$

$$\mathcal{M}_{2} = \chi_{-1}$$

at
$$B x = 4$$

 $\therefore M_1 = (4)^{-\frac{1}{2}}$ $\therefore M_2 = 4 - 1$
 $M_1 = \frac{1}{2}$ $M_2 = 3$

 $tan\theta = M$ $0 = tan^{-1}(\frac{1}{2})$ $0 = tan^{-1}(3)$ 0 = 26.56505... 0 = 71.5(505...

© UCLES 2022

The diagram shows the circle with equation $x^2 + y^2 = 20$. Tangents touching the circle at points B and C pass through the point A (0, 10).

(a) By letting the equation of a tangent be y = mx + 10, find the two possible values of m. [4] Sub y = mx + 10 into $x^{2} + y^{2} = 10$ $x^{2} + (mx + 10)^{2} = 20$ $x^{2} + m^{2}x^{2} + 20m^{2} + 100 - 20 = 0$ $(1+m^{2})x^{2} + 20m^{2} + 80 = 0$ $(20m)^{2} - 4(1+m^{2})(80) = 0$ $(20m)^{2} - 4(1+m^{2})(80) = 0$ $(20m)^{2} - 320 - 320m^{2} = 0$

 $m^2 = 4$ 9709/11/0/N/22 $m = \pm$

(b) Find the coordinates of B and C.

$$4 = -2x + 10$$

$$tangents = circle$$
 $y = 2x + 10$

$$x^{2} + (-2x + 10)^{2} = 20$$

$$x^{2} + 4x^{2} - 40x + 100 - 20 = 0$$

$$\begin{array}{c|c} \chi^{2} + (2x + 10) - 20 \\ \chi^{2} + 4\chi^{2} + 40x + 100 - 20 \\ 5\chi^{2} + 160x + 20 = 0 \end{array}$$

$$3C = \frac{-(-40) \pm \sqrt{(-40)^2 - 4(5)(80)}}{3(5)}$$

$$\chi = -40^{+} \sqrt{(40)^{2} - 4(5)(80)}$$

$$4^{2} + 4^{2} = 20$$

$$4^{2} + 4^{2} = 20 - 16$$

$$4^{2} + 4^{2} = 20 - 16$$

$$(-4)^{2}+y^{2}=20$$

 $y=\pm 2$

$$B(-4,2) \notin C(4,2)$$

The point D is where the circle crosses the positive x-axis.

(c) Find angle *BDC* in degrees.

[3]

$$Q_{E} = \sqrt{(-4-4)+(2-2)^{2}}$$

$$dp = \sqrt{(-4-4)^2+(2-2)^2}$$

$$= \sqrt{8^2}$$

$$= 8$$

$$(-4)$$

$$= 2.054972593$$

$$d BD = \sqrt{(-4-50)^{2}(2-0)^{2}}$$
= 8.705

$$8^{2} = (8.7)^{2} + (2.05)^{2} - 2(8.7)(2.05) \cos \theta$$

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Cos-1	$(8^2 - (8))$	$\frac{2}{(2.05)^2}$) @	
				(use fu)
0 =	63.4 V	(I duc pl		decimal
				points in calc

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.