Measurement: Concepts in Practice

Department of Government London School of Economics and Political Science 2 Measurement

3 Assessing Measurement Quality

1 Review

2 Measurement

3 Assessing Measurement Quality

Concept Definition

- Classical approach (minimal, maximal, ordinal)
- Family resemblance approach

Family Resemblance

Necessary and sufficient:

Rule of Law ∧ Equality

■ Unnecessary and sufficient:

Rule of Law ∨ Equality

Necessary and insufficient:

Rule of Law \land Equality \land *Elections*

Unnecessary and insufficient:

(Rule of Law ∨ Equality) ∧ Elections

Gerring's Criteria

- Resonance (face validity)
- 2 Domain/scope
- 3 Consistency
- Fecundity
- **5** Differentiation
- 6 Causal utility
- 7 Operationalization

1 Review

2 Measurement

3 Assessing Measurement Quality

An Example: Opinion

Measurement

- Opinion is a summary evaluation of a particular object
- Only one necessary feature: evaluation/favorability
- How do we measure this?

■ To study concepts, we need to be able to observe those concepts

- To study concepts, we need to be able to observe those concepts
- Operationalization is the process of creating measures for concepts

- To study concepts, we need to be able to observe those concepts
- Operationalization is the process of creating measures for concepts
- Recall the definition of *variable*:
 - A dimension that describes an observation

- To study concepts, we need to be able to observe those concepts
- Operationalization is the process of creating measures for concepts
- Recall the definition of *variable*:
 - A dimension that describes an observation
 - The operationalization of a concept

Definition

Definition

 \rightarrow Feature

Definition

 \rightarrow Feature \rightarrow Indicator(s)

Definition

$$\rightarrow$$
 Feature \rightarrow Indicator(s)

Indicators might be scaled or potential alternatives

Definition

$$\rightarrow$$
 Feature \rightarrow Indicator(s)

Indicators might be scaled or potential alternatives

Example: Democracy

Democracy

How do we operationalize this concept?

Example: Democracy

Measurement

Democracy

 \rightarrow Free and fair elections

How do we operationalize this concept?

Example: Democracy

Democracy

 \rightarrow Free and fair elections \rightarrow ?

How do we operationalize this concept?

Questions?

Types of Measures

Note: *Ratio* scale measures are interval measures with a non-arbitrary zero value

Activity

- Concept: Democracy
- Attribute: Free and fair elections
- Measure:
 - 1 Categorical
 - 2 Ordinal
 - 3 Numeric

Coding

- Variable: A dimension that describes an observation
- Coding: Assigning a score for a variable to an observation

Coding

- Variable: A dimension that describes an observation
- Coding: Assigning a score for a variable to an observation
 - Manual or hand coding
 - Automated coding

Using Multiple Indicators

- Choose the "best" one
- Apply an AND operator
 - Must have all indicators to be coded 1
 - Treat indicators as "ordinal" in Gerring's sense
- Scale the indicators (e.g., sum or mean)

Questions?

1 Review

2 Measurement

Assessing Measurement Quality

Assessing Measurement Quality

- Conceptual clarity
- 2 Construct validity
 - Convergent validity
 - Divergent validity
- 3 Accuracy and precision

Assessing Measures I

- Conceptual clarity is about knowing what we want to measure
- Sloppy concepts make for bad measures
 - Ambiguity
 - Vagueness

Assessing Measures I

- Conceptual clarity is about knowing what we want to measure
- Sloppy concepts make for bad measures
 - Ambiguity
 - Vagueness
- Revise concept definition as needed

Assessing Measures II

Construct validity is the degree to which a variable measures a concept¹

¹Note: Kellstedt and Whitten call this "content validity". They use "construct validity" to mean whether a measure has predictive validity (i.e., that the measure is related to measures of other concepts that are theorized to be related).

Assessing Measures II

- Construct validity is the degree to which a variable measures a concept¹
- Construct validity is **high** if a variable is a measure of the concept we care about

 $^{^{1}}$ Note: Kellstedt and Whitten call this "content validity". They use "construct validity" to mean whether a measure has predictive validity (i.e., that the measure is related to measures of other concepts that are theorized to be related).

Assessing Measures II

- Construct validity is the degree to which a variable measures a concept¹
- Construct validity is **high** if a variable is a measure of the concept we care about
- Construct validity is **low** if a variable is actually a measure of something else

¹Note: Kellstedt and Whitten call this "content validity". They use "construct validity" to mean whether a measure has predictive validity (i.e., that the measure is related to measures of other concepts that are theorized to be related).

Assessing Construct Validity

- Multiple measures!
- Look for:
 - Convergence (Convergent validity)
 - Discrimination (Discriminant validity)

Assessing Construct Validity

- Multiple measures!
- Look for:
 - Convergence (Convergent validity)
 - Discrimination (Discriminant validity)
- For example, the multi-trait, multi-method matrix

Construct validity

Accuracy

Accurate

Synonyms: true, correct, unbiased, valid

Image Source: Wikimedia, Public Domain

Accuracy

Accuracy

Precision

Precise

Synonyms: certain, exact, specific, low variance

Image Source: Wikimedia, Nevit Dilmen

Accuracy

Precision

Accuracy

Precision

Reliability

Reliable

Synonyms: dependable, replicable, repeatable, consistent

Typically used in the context of:

- Multiple measures used in a scale
- Multiple scores at different times
- Multiple individuals coding using one method

Questions?

Key Points

- Theory is about concepts
- 2 Analysis is about measured variables
- 3 So our task as scientists is to:
 - Find observable implications of theory
 - Draw theoretical implications from measures

