Q1.

According to the question, the result set of "A ORB AND C" is ((A OR B) AND C) U (A OR (B AND C)).

To help visudise,
(A ORB) AND C:

A OR (B AND C):

Therefore ((A DRB) AND C) U (A OR (B ANDC))
= A OR (B AND C)

Therefore, the most efficient way to solve it is to find intersection of B and C firstly. Then we merge it with all postings from A.

Q2.

- (a) By using permuterm, lord \$\forall \(\) we need to expand the terms, \{ hello \(\), world \(\), world \(\), world \(\), his.

 And each expansion will have a pointer.
- For example,

 hello\$\pm\$ will be expanded to \text{hello\$\$\pm\$ llo\$\$hello\$\$ phello\$\$
- : totally, it will cost: $6 \times (6+4) + 6 \times (6+4) + 5 \times (5+4) + 3 \times (3+4) + 5 \times (5+4)$ = 231 bytes
- By using bi-gram.

 we need encode these terms: { \$h, he, el, 11, 10, 0\$, \$w, wo.

 or, rl, ld, d\$, rd, hi. i\$, \$l\$, and each has a pointer.
- :- It will cost. $16 \times (2+4) = 96$ bytes
- 1: 231 296
- : permuterm is larger.

Q.2. (b).

For query *e*10, in permuterm index, it can be rewriten as *e*10\$. \Rightarrow 10\$ *e*Therefore, we only need to look at terms seart with 10\$ in B-tree, and verify that it how e in the following

(C) For query *e*lo, in bi-gram index,

1° me find the intersection posting lines of 10' and 5%.

2° we need to verity that it has 10*

3° we find all postings that have 'e' in front of 10*!

Q3.

- (a) Given threshold of 2.

 { weird, windy, wired, wiry, word, wordy, y will be considered.
- (b) By using the formula. AND = exp(-Bii) = 1+0.37+0.135 = 1-505

$$P(err)$$
 of ware = $\frac{exp(-3)}{1.505} = 0.033$

P(err) of Weird =
$$\frac{e^{x}P(-2)}{1.505} = 0.090$$

P(err) of windy =
$$\frac{\exp(-1)}{1.505} = 0.244$$

$$P(err)$$
 of wired = $\frac{exp(-2)}{1.505} = 0.090$

p(err) of wiry =
$$\frac{\exp(-1)}{1.5^{\circ}5} = 0.244$$

p(err) of word =
$$\frac{e^{xp(-2)}}{1.505} = 0.090$$

Pierry of wordy =
$$\frac{\exp(-1)}{1-505} = 0.244$$

Then we compare the result of Pierry. Piw. the largest one is the correct word.

$$p(wested) = 4.05 \times 10^{-3}$$

$$P(wired) = 9 \times 10^{-3}$$

is windy will be choosen

Q4.

(a) Elias -
$$r$$
 code is $2 log G + 1 bits$
3 bytes = $24 bits$
... G is $2^{12} - 1 = 4095$

(b) Elias -
$$\delta$$
 code is $2 \log_2 \log_2 k + \log_2 k$ bies $3 \text{ bytes} = 24 \text{ birs}$
: k is $2^{16} - 1 = 65535$.

(C). After decoding.

Assume A and B all stare from porting ID 1. .. A AND NOT B \Rightarrow 1 999, 1001, 1032}

Qs.

Term	Query				Di	Ĩ)2	D3	Dr D5
	tf	af	idf	wt	t	+ +:	} -	ef	ef t
do	0			0	1	1		1	10
you	0			0	1	O	•	o '	0 0
like	O			0	l	1	1		1 0
green	1	ン	1.14	1.14	1	0	0	τ	
eggs	1	3	0.97	0.97	1	0	t	1	0
and	0			0	1	0	0	©) D
ham	0			1	ſ	0	1	0	0
not	0				O	1	•	ţ	O
them	0			1	O	•	<u>ට</u>	0	0
or	0			I	0	0	1	0	0
why	0				0	<i>О</i>	G	0	1
are	D			l	0	0	D	0	1
they	O			0	0	O	0	0	ŀ
. <i>0</i>	0			0	O	ľ	1	!	0

By using $W_{t,d} = (1 + \log_{10} ef) \times \log_{10} (N/df)$ for query, we can jet a vector V_{query} for docs, we do not need consider idf, so use can get normarlised vertor for each consider $i \in \mathbb{Z}_{1,2,3,y}$

:- final weight is computer worne similarity of (Valley, Vdi). Ranks: Di > Ds > Du > Ds

Q6.

(a) YES, it is possible that there is a horizontal line segment in recoll-precision graph. Example is that all does are relevant.

(b).

1. System 1, Precision or rank $8 = \frac{3}{8}$ System 2, Precision or rank $8 = \frac{3}{8}$

2. System 1, Recall at precision $\frac{1}{3}$:

Rank $\frac{3}{4}$ $\frac{6}{4}$ $\frac{9}{4}$ Recall $\frac{1}{4}$ $\frac{3}{4}$

System 2, Recoll at precision $\frac{1}{3}$:

| Recoll $\frac{1}{4}$ | $\frac{3}{4}$.

(c) MAP for System 1, Q1: $\frac{1}{6} \times (1+1+1+\frac{1}{5}+\frac{5}{9}+\frac{6}{10}) = 0.826$ $Q_2: \frac{1}{4} \times (1+\frac{1}{5}+\frac{3}{9}+\frac{1}{10}) = 0.53$ $System 2 | Q_1: \frac{1}{6} \times (1+1+1+\frac{1}{6}+\frac{5}{7}+\frac{6}{9}) = 0.86$ $Q_2: \frac{1}{4} \times (1+\frac{2}{7}+\frac{3}{7}) = 0.5.$

As shown in plot.

interpolated precisions for recall level 0.5 is 1.

recall level 0.8 is 0.6

Q7.

(a) By definition A Markov chain is ergodic if we have a path from any state to any other.

But in given chain, Z has no path to other states Therefore, it is NOT ergodic.

$$final Matrix = 0.5 \times \begin{pmatrix} 0 & \frac{1}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} &$$

$$\begin{array}{c}
(d) \\
(0.2.0.2.0.2.0.2,0.2,0.2) \\
(0.2.0.2.0.2.0.2,0.2,0.2)
\end{array}$$

$$\begin{array}{c}
\frac{1}{10} \frac{4}{15} \frac{4}{15} \frac{1}{15} \\
\frac{7}{10} \frac{7}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \\
\frac{7}{10} \frac{7}{10} \frac{1}{10} \frac{1$$