Package 'DeepLearningCausal'

July 30, 2024

Title Causal Inference with Super Learner and Deep Neural Networks

Maintainer Nguyen K. Huynh <khoinguyen.huynh@r.hit-u.ac.jp>

Type Package

Version 0.0.104

Repository CRAN

Date/Publication 2024-07-30 00:10:02 UTC

Description Functions to estimate Conditional Average Treatment Effects (CATE) and Population Average Treatment Effects on the Treated (PATT) from experimental or observational data using the Super Learner (SL) ensemble method and Deep neural networks. The package first provides functions to implement meta-learners such as the Single-learner (S-learner) and Two-learner (T-learner) described in Künzel et al. (2019) <doi:10.1073/pnas.1804597116> for estimating the CATE. The S- and T-learner are each estimated using the SL ensemble method and deep neural networks. It then provides functions to implement the Ottoboni and Poulos (2020) doi:10.1515/jci-2018-0035 PATT-C estimator to obtain the PATT from experimental data with noncompliance by using the SL ensemble method and deep neural networks. License GPL-3 **Encoding UTF-8** LazyData true **Imports** ROCR, caret, neuralnet, SuperLearner, class, xgboost, randomForest, glmnet, gam, e1071, gbm, Hmisc, weights Suggests testthat, ggplot2, tidyr, dplyr RoxygenNote 7.2.3 **Depends** R (>= 4.1.0) URL https://github.com/hknd23/DeepLearningCausal BugReports https://github.com/hknd23/DeepLearningCausal/issues NeedsCompilation no **Author** Nguyen K. Huynh [aut, cre] (https://orcid.org/0000-0002-6234-7232), Bumba Mukherjee [aut] (https://orcid.org/0000-0002-3453-601X), Irvin (Chen-Yu) Lee [aut] (https://orcid.org/0009-0004-5913-8925)

2 complier_mod

Contents

	complier_mod	2
	complier_predict	3
	exp_data	4
	exp_data_full	5
	metalearner_deepneural	5
	metalearner_ensemble	7
	neuralnet_complier_mod	9
	neuralnet_pattc_counterfactuals	10
	neuralnet_predict	10
	neuralnet_response_model	11
	pattc_counterfactuals	12
	pattc_deepneural	12
	pattc_ensemble	15
	pop_data	17
	pop_data_full	18
	print.metalearner_deepneural	19
	print.metalearner_ensemble	19
	print.pattc_deepneural	20
	print.pattc_ensemble	20
	response_model	21
Index		22

complier_mod

Train complier model using ensemble methods

Description

Train model using group exposed to treatment with compliance as binary outcome variable and covariates.

Usage

```
complier_mod(
  exp.data,
  complier.formula,
  treat.var,
  ID = NULL,
  SL.learners = c("SL.glmnet", "SL.xgboost", "SL.ranger", "SL.nnet", "SL.glm")
)
```

complier_predict 3

Arguments

exp.data list object of experimental data.

complier.formula

formula to fit compliance model (c ~ x) using complier variable and covariates

treat.var string specifying the binary treatment variable

ID string for name of indentifier variable.

SL.learners vector of strings for ML classifier algorithms. If left NULL employs extreme

gradient boosting, elastic net regression, random forest, and neural nets.

Value

model object of trained model.

complier_predict

Complier model prediction

Description

Predict Compliance from control group in experimental data

Usage

```
complier_predict(complier.mod, exp.data, treat.var, compl.var)
```

Arguments

complier.mod output from trained ensemble superlearner model

exp.data data.frame object of experimental dataset
treat.var string specifying the binary treatment variable
compl.var string specifying binary complier variable

Value

data. frame object with true compliers, predicted compliers in the control group, and all compliers (actual + predicted).

4 exp_data

exp_data

Survey Experiment of Support for Populist Policy

Description

Shortened version of survey response data that incorporates a vignette survey experiment. The vignette describes an international crisis between country A and B. After reading this vignette, respondents are randomly assigned to the control group or to one of two treatments: policy prescription to said crisis by strong (populist) leader and centrist (non-populist) leader. The respondents are then asked whether they are willing to support the policy decision to fight a war against country A, which is the dependent variable.

Usage

```
data(exp_data)
```

Format

exp_data:

A data frame with 257 rows and 12 columns:

female Gender.

age Age of participant.

income Monthly household income.

religion Religious denomination

practicing_religion Importance of religion in life.

education Educational level of participant.

political_ideology Political ideology of participant.

employment Employment status of participant.

marital_status Marital status of participant.

job_loss Concern about job loss.

strong_leader Binary treatment measure of leader type.

support_war Binary outcome measure for willingness to fight war. #' ...

Source

Yadav and Mukherjee (2024)

exp_data_full 5

exp_data_full

Survey Experiment of Support for Populist Policy

Description

Extended experiment data with 514 observations

Usage

```
data(exp_data_full)
```

Format

exp_data_full:

A data frame with 514 rows and 12 columns:

female Gender.

age Age of participant.

income Monthly household income.

religion Religious denomination

practicing_religion Importance of religion in life.

education Educational level of participant.

political_ideology Political ideology of participant.

employment Employment status of participant.

marital_status Marital status of participant.

job_loss Concern about job loss.

strong_leader Binary treatment measure of leader type.

support_war Binary outcome measure for willingness to fight war. #' ...

Source

Yadav and Mukherjee (2024)

metalearner_deepneural

metalearner_deepneural

Description

metalearner_deepneural implements the S-learner and T-learner for estimating CATE using Deep Neural Networks. The Resilient back propagation (Rprop) algorithm is used for training neural networks.

Usage

```
metalearner_deepneural(
  data,
  cov.formula,
  treat.var,
  meta.learner.type,
  stepmax = 1e+05,
  nfolds = 5,
  algorithm = "rprop+",
  hidden.layer = c(4, 2),
  linear.output = FALSE,
  binary.outcome = FALSE
)
```

Arguments

data data. frame object of data.

cov. formula formula description of the model $y \sim x(\text{list of covariates})$.

treat.var string for the name of treatment variable.

meta.learner.type

string specifying is the S-learner and "T. Learner" for the T-learner model.

stepmax maximum number of steps for training model.

nfolds number of folds for cross-validation. Currently supports up to 5 folds.

algorithm a string for the algorithm for the neural network. Default set to rprop+, the Re-

silient back propagation (Rprop) with weight backtracking algorithm for train-

ing neural networks.

hidden.layer vector of integers specifying layers and number of neurons.

linear.output logical specifying regression (TRUE) or classification (FALSE) model.

binary.outcome logical specifying predicted outcome variable will take binary values or propor-

tions.

Value

metalearner_deepneural of predicted outcome values and CATEs estimated by the meta learners for each observation.

Examples

metalearner_ensemble 7

```
stepmax = 2e+9,
                                    nfolds = 5,
                                    algorithm = "rprop+",
                                    hidden.layer = c(1),
                                    linear.output = FALSE,
                                    binary.outcome = FALSE)
print(slearner_nn)
# load dataset
set.seed(123456)
# estimate CATEs with T Learner
tlearner_nn <- metalearner_deepneural(cov.formula = support_war ~ age +</pre>
                                   income +
                                   employed + job_loss,
                                   data = exp_data,
                                   treat.var = "strong_leader",
                                  meta.learner.type = "T.Learner",
                                   stepmax = 1e+9,
                                   nfolds = 5,
                                   algorithm = "rprop+",
                                  hidden.layer = c(2,1),
                                   linear.output = FALSE,
                                  binary.outcome = FALSE)
print(tlearner_nn)
```

metalearner_ensemble metalearner_ensemble

Description

metalearner_ensemble implements the S-learner and T-learner for estimating CATE using the super learner ensemble method. The super learner in this case includes the following machine learning algorithms: extreme gradient boosting, glmnet (elastic net regression), random forest and neural nets.

Usage

```
metalearner_ensemble(
   data,
   cov.formula,
   treat.var,
   meta.learner.type,
   SL.learners = c("SL.glmnet", "SL.xgboost", "SL.ranger", "SL.nnet"),
   nfolds = 5,
   binary.outcome = FALSE
)
```

8 metalearner_ensemble

Arguments

data data.frame object of data

cov.formula formula description of the model y ~ x(list of covariates)

treat.var string for the name of treatment variable.

meta.learner.type

string specifying is the S-learner and "T.Learner" for the T-learner model.

SL.learners vector for super learner ensemble that includes extreme gradient boosting, glmnet, random forest, and neural nets.

nfolds number of folds for cross-validation. Currently supports up to 5 folds.

binary.outcome logical specifying predicted outcome variable will take binary values or propor-

Value

metalearner_ensemble of predicted outcome values and CATEs estimated by the meta learners for each observation.

Examples

```
# load dataset
data(exp_data)
#load SuperLearner package
library(SuperLearner)
# estimate CATEs with S Learner
set.seed(123456)
slearner <- metalearner_ensemble(cov.formula = support_war ~ age +</pre>
                                  income + employed + job_loss,
                                 data = exp_data,
                                 treat.var = "strong_leader",
                                 meta.learner.type = "S.Learner",
                                 SL.learners = c("SL.glm"),
                                 nfolds = 5,
                                 binary.outcome = FALSE)
print(slearner)
# estimate CATEs with T Learner
set.seed(123456)
tlearner <- metalearner_ensemble(cov.formula = support_war ~ age + income +
                                   employed + job_loss,
                                   data = exp_data,
                                   treat.var = "strong_leader",
                                   meta.learner.type = "T.Learner",
                                   SL.learners = c("SL.xgboost", "SL.ranger",
                                                "SL.nnet"),
                                   nfolds = 5,
                                   binary.outcome = FALSE)
print(tlearner)
```

neuralnet_complier_mod

Train compliance model using neural networks

Description

Train model using group exposed to treatment with compliance as binary outcome variable and covariates.

Usage

```
neuralnet_complier_mod(
  complier.formula,
  exp.data,
  treat.var,
  algorithm = "rprop+",
  hidden.layer = c(4, 2),
  ID = NULL,
  stepmax = 1e+08
)
```

Arguments

complier.formula

formula for complier variable as outcome and covariates ($c \sim x$)

exp.data data.frame for experimental data.

treat.var string for treatment variable.

algorithm string for algorithm for training neural networks. Default set to the Resilient

back propagation with weight backtracking (rprop+). Other algorithms include

backprop', rprop-', 'sag', or 'slr' (see neuralnet package).

hidden.layer vector for specifying hidden layers and number of neurons.

ID string for identifier variablestepmax maximum number of steps.

Value

trained complier model object

10 neuralnet_predict

```
neuralnet_pattc_counterfactuals

Assess Population Data counterfactuals
```

Description

Create counterfactual datasets in the population for compliers and noncompliers. Then predict potential outcomes using trained model from neuralnet_response_model.

Usage

```
neuralnet_pattc_counterfactuals(
  pop.data,
  neuralnet.response.mod,
  ID = NULL,
  cluster = NULL,
  binary.outcome = FALSE
)
```

Arguments

pop.data population data.
neuralnet.response.mod

trained model from. neuralnet_response_model.

ID string for identifier variable.

cluster string for clustering variable (currently unused).

binary.outcome logical specifying predicted outcome variable will take binary values or propor-

tions.

Value

data.frame of predicted outcomes of response variable from counterfactuals.

Description

Predicting Compliance from control group experimental data

Usage

```
neuralnet_predict(neuralnet.complier.mod, exp.data, treat.var, compl.var)
```

Arguments

```
neuralnet.complier.mod
results from neuralnet_complier_mod
exp.data data.frame of experimental data
treat.var string for treatment variable
compl.var string for compliance variable
```

Value

data. frame object with true compliers, predicted compliers in the control group, and all compliers (actual + predicted).

```
neuralnet_response_model
```

Modeling Responses from experimental data Using Deep NN

Description

Model Responses from all compliers (actual + predicted) in experimental data using neural network.

Usage

```
neuralnet_response_model(
  response.formula,
  exp.data,
  neuralnet.compliers,
  compl.var,
  algorithm = "rprop+",
  hidden.layer = c(4, 2),
  stepmax = 1e+08
)
```

Arguments

```
response.formula
formula for response variable and covariates (y ~ x)

exp.data data.frame of experimental data.

neuralnet.compliers
data.frame of compliers (actual + predicted) from neuralnet_predict.

compl.var string of compliance variable
algorithm neural network algorithm, default set to "rprop+".

hidden.layer vector specifying hidden layers and number of neurons.

stepmax maximum number of steps for training model.
```

Value

trained response model object

12 pattc_deepneural

Description

Create counterfactual datasets in the population for compliers and noncompliers. Then predict potential outcomes from counterfactuals.

Usage

```
pattc_counterfactuals(
  pop.data,
  response.mod,
  ID = NULL,
  cluster = NULL,
  binary.outcome = FALSE
)
```

Arguments

pop.data population dataset

response.mod trained model from response_model.

ID string fir identifier variable cluster string for clustering variable

binary.outcome logical specifying whether predicted outcomes are proportions or binary (0-1).

Value

data. frame object of predicted outcomes of counterfactual groups.

Description

estimates the Population Average Treatment Effect of the Treated from experimental data with noncompliers using Deep Neural Networks.

pattc_deepneural 13

Usage

```
pattc_deepneural(
  response.formula,
  exp.data,
 pop.data,
  treat.var,
  compl.var,
  compl.algorithm = "rprop+",
  response.algorithm = "rprop+",
  compl.hidden.layer = c(4, 2),
  response.hidden.layer = c(4, 2),
  compl.stepmax = 1e+08,
  response.stepmax = 1e+08,
  ID = NULL,
  cluster = NULL,
  binary.outcome = FALSE,
 bootstrap = FALSE,
  nboot = 1000
)
```

Arguments

cluster

response.formula formula of response variable as outcome and covariates $(y \sim x)$ exp.data data. frame of experimental data. Must include binary treatment and compliance variables. pop.data data. frame of population data. Must include binary compliance variable treat.var string for treatment variable. compl.var string for compliance variable compl.algorithm string for algorithim to train neural network for compliance model. Default set to "rprop+". See (neuralnet package for available algorithms). response.algorithm string for algorithim to train neural network for response model. Default set to "rprop+". See (neuralnet package for available algorithms). compl.hidden.layer vector for specifying hidden layers and number of neurons in complier model. response.hidden.layer vector for specifying hidden layers and number of neurons in response model. maximum number of steps for complier model compl.stepmax response.stepmax maximum number of steps for response model ID string for identifier variable

string for cluster variable.

14 pattc_deepneural

binary.outcome logical specifying predicted outcome variable will take binary values or propor-

tions

bootstrap logical for bootstrapped PATT-C.

nboot number of bootstrapped samples

Value

pattc_deepneural class object of results of t test as PATTC estimate.

Examples

```
# load datasets
data(exp_data) #experimental data
data(pop_data) #population data
# specify models and estimate PATTC
set.seed(123456)
pattc_neural <- pattc_deepneural(response.formula = support_war ~ age + female +</pre>
                               income + education + employed + married +
                               hindu + job_loss,
                               exp.data = exp_data,
                               pop.data = pop_data,
                                treat.var = "strong_leader",
                               compl.var = "compliance",
                               compl.algorithm = "rprop+";
                               response.algorithm = "rprop+",
                               compl.hidden.layer = c(4,2),
                                response.hidden.layer = c(4,2),
                               compl.stepmax = 1e+09,
                               response.stepmax = 1e+09,
                               ID = NULL
                               cluster = NULL,
                               binary.outcome = FALSE)
print(pattc_neural)
pattc_neural_boot <- pattc_deepneural(response.formula = support_war ~ age + female +</pre>
                               income + education + employed + married +
                               hindu + job_loss,
                               exp.data = exp_data,
                               pop.data = pop_data,
                                treat.var = "strong_leader",
                                compl.var = "compliance",
                               compl.algorithm = "rprop+";
                               response.algorithm = "rprop+",
                               compl.hidden.layer = c(4,2),
                                response.hidden.layer = c(4,2),
                                compl.stepmax = 1e+09,
                               response.stepmax = 1e+09,
                                ID = NULL,
                               cluster = NULL,
                               binary.outcome = FALSE,
                               bootstrap = TRUE,
```

pattc_ensemble 15

```
nboot = 2000)
print(pattc_neural_boot)
```

pattc_ensemble

PATT_C SL Ensemble

Description

pattc_ensemble estimates the Population Average Treatment Effect of the Treated from experimental data with noncompliers using the super learner ensemble that includes extreme gradient boosting, glmnet (elastic net regression), random forest and neural nets.

Usage

```
pattc_ensemble(
    response.formula,
    exp.data,
    pop.data,
    treat.var,
    compl.var,
    compl.SL.learners = c("SL.glmnet", "SL.xgboost", "SL.ranger", "SL.nnet", "SL.glm"),
    response.SL.learners = c("SL.glmnet", "SL.xgboost", "SL.ranger", "SL.nnet", "SL.glm"),
    ID = NULL,
    cluster = NULL,
    binary.outcome = FALSE,
    bootstrap = FALSE,
    nboot = 1000
)
```

Arguments

```
response.formula
formula for the effects of covariates on outcome variable (y ~ x).

exp.data
data.frame object for experimental data. Must include binary treatment and compliance variable.

pop.data
data.frame object for population data. Must include binary compliance variable.

treat.var
string for binary treatment variable.

compl.var
string for binary compliance variable.

compl.SL.learners
```

vector of names of ML algorithms used for compliance model.

pattc_ensemble

response.SL.learners

vector of names of ML algorithms used for response model.

ID string for name of identifier. (currently not used)

cluster string for name of cluster variable. (currently not used)

binary outcome logical specifying predicted outcome variable will take binary values or propor-

tions.

bootstrap logical for bootstrapped PATT-C.

nboot number of bootstrapped samples. Only used with bootstrap = FALSE

Value

pattc_ensemble object of results of t test as PATTC estimate.

Examples

```
# load datasets
data(exp_data_full) # full experimental data
data(exp_data) #experimental data
data(pop_data) #population data
#attach SuperLearner (model will not recognize learner if package is not loaded)
library(SuperLearner)
set.seed(123456)
#specify models and estimate PATTC
pattc <- pattc_ensemble(response.formula = support_war ~ age + income +</pre>
                                education + employed + job_loss,
                                 exp.data = exp_data_full,
                                 pop.data = pop_data,
                                 treat.var = "strong_leader",
                                 compl.var = "compliance",
                                 compl.SL.learners = c("SL.glm", "SL.nnet"),
                                 response.SL.learners = c("SL.glm", "SL.nnet"),
                                 ID = NULL,
                                 cluster = NULL,
                                 binary.outcome = FALSE)
print(pattc)
pattc_boot <- pattc_ensemble(response.formula = support_war ~ age + income +</pre>
                                education + employed + job_loss,
                                 exp.data = exp_data_full,
                                 pop.data = pop_data,
                                 treat.var = "strong_leader",
                                 compl.var = "compliance",
                                 compl.SL.learners = c("SL.glm", "SL.nnet"),
                                 response.SL.learners = c("SL.glm", "SL.nnet"),
                                 ID = NULL,
                                 cluster = NULL,
                                 binary.outcome = FALSE,
                                 bootstrap = TRUE,
                                 nboot = 1000)
print(pattc_boot)
```

pop_data 17

pop_data

World Value Survey India Sample

Description

World Value Survey (WVS) Data for India in 2022. The variables drawn from the said WVS India data match the covariates from the India survey experiment sample.

Usage

```
data(pop_data)
```

Format

pop_data:

A data frame with 846 rows and 13 columns:

female Respondent's Sex.

age Age of respondent.

income income group of Household.

religion Religious denomination

practicing_religion Importance of religion in respondent's life.

education Educational level of respondent.

political_ideology Political ideology of respondent.

employment Employment status and full-time employee.

marital_status Marital status of respondent.

job_loss Concern about job loss.

support_war Binary (Yes/No) outcome measure for willingness to fight war.

strong_leader Binary measure of preference for strong leader. ...

Source

Haerpfer, C., Inglehart, R., Moreno, A., Welzel, C., Kizilova, K., Diez-Medrano J., M. Lagos, P. Norris, E. Ponarin & B. Puranen et al. (eds.). 2020. World Values Survey: Round Seven – Country-Pooled Datafile. Madrid, Spain & Vienna, Austria: JD Systems Institute & WVSA Secretariat. <doi.org/10.14281/18241.1>

pop_data_full

pop_data_full

World Value Survey India Sample

Description

Extended World Value Survey (WVS) Data for India in 1995, 2001, 2006, 2012, and 2022.

Usage

```
data(pop_data_full)
```

Format

```
pop_data_full:
```

A data frame with 11,813 rows and 13 columns:

female Respondent's Sex.

age Age of respondent.

income income group of Household.

religion Religious denomination

practicing_religion Importance of religion in respondent's life.

education Educational level of respondent.

political_ideology Political ideology of respondent.

employment Employment status and full-time employee.

marital_status Marital status of respondent.

job_loss Concern about job loss.

support_war Binary (Yes/No) outcome measure for willingness to fight war.

strong_leader Binary measure of preference for strong leader. ...

Source

Haerpfer, C., Inglehart, R., Moreno, A., Welzel, C., Kizilova, K., Diez-Medrano J., M. Lagos, P. Norris, E. Ponarin & B. Puranen et al. (eds.). 2020. World Values Survey: Round Seven – Country-Pooled Datafile. Madrid, Spain & Vienna, Austria: JD Systems Institute & WVSA Secretariat. <doi.org/10.14281/18241.1>

Description

Print method for metalearner_deepneural

Usage

```
## S3 method for class 'metalearner_deepneural' print(x, ...)
```

Arguments

x metalearner_deepneural class object from metalearner_deepneural... additional parameter

Value

list of model results

Description

Print method for metalearner_ensemble

Usage

```
## S3 method for class 'metalearner_ensemble'
print(x, ...)
```

Arguments

```
x metalearner_ensemble class object from metalearner_ensemble ... additional parameter
```

Value

list of model results

20 print.pattc_ensemble

Description

Print method for pattc_deepneural

Usage

```
## S3 method for class 'pattc_deepneural'
print(x, ...)
```

Arguments

x pattc_deepneural class object from pattc_deepneural
... additional parameter

Value

list of model results

Description

Print method for pattc_ensemble

Usage

```
## S3 method for class 'pattc_ensemble'
print(x, ...)
```

Arguments

x pattc_ensemble class object from pattc_ensemble ... additional parameter

Value

list of model results

response_model 21

response_model

Response model from experimental data using SL ensemble

Description

Train response model (response variable as outcome and covariates) from all compliers (actual + predicted) in experimental data using SL ensemble.

Usage

```
response_model(
  response.formula,
  exp.data,
  compl.var,
  exp.compliers,
  family = "binomial",
  ID = NULL,
  SL.learners = c("SL.glmnet", "SL.xgboost", "SL.ranger", "SL.nnet", "SL.glm")
)
```

Arguments

response.formula

formula to fit the response model (y ~ x) using binary outcome variable and

covariates

exp. data experimental dataset.

compl.var string specifying binary complier variable

exp.compliers data.frame object of compliers from complier_predict.

family string for "gaussian" or "binomial".

ID string for identifier variable.

SL.learners vector of names of ML algorithms used for ensemble model.

Value

trained response model.

Index

```
* dataset
    exp_data, 4
    exp_data_full, 5
    pop_data, 17
    pop_data_full, 18
complier_mod, 2
complier_predict, 3
exp_data, 4
exp_data_full, 5
metalearner_deepneural, 5
metalearner_ensemble, 7
{\tt neuralnet\_complier\_mod}, 9
{\tt neuralnet\_pattc\_counterfactuals}, \\ 10
neuralnet_predict, 10
neuralnet_response_model, 11
pattc_counterfactuals, 12
pattc_deepneural, 12
pattc_ensemble, 15
pop_data, 17
pop\_data\_full, \textcolor{red}{18}
print.metalearner_deepneural, 19
print.metalearner_ensemble, 19
print.pattc_deepneural, 20
print.pattc_ensemble, 20
response_model, 21
```