Série 12 Gaz Parfaits-Premier Principe-Cycles

Exercice 1

On fait subir à une mole de gaz parfait, initialement à l'état (P_0, V_0, T_0) , les transformations suivantes (toutes réversibles)

- Transformation adiabatique amenant le gaz dans l'état $(V_1=V_0/3)$, P_1 , T_1).
- Transformation isochore amenant le gaz vers l'état ($V_2=V_1$, P_2 , $T_2=T_0$).
- Transformation isotherme qui ramène le gaz vers l'état initial.
- 1- Représenter dans le diagramme de Clapeyron (P, V) le cycle décrit par le gaz.
- 2- Déterminer T_1 , P_1 et P_2 en fonction de T_0 ; P_0 et $\gamma = c_p/c_\nu$. Préciser si T_1 est supérieur ou inférieur à T_0 .
- 3- Calculer le travail W et la chaleur Q reçus par le gaz au cours de chacune de ces trois transformations. En déduire le travail total du cycle.

Exercice 2 Cycle moteur de Stirling

Le cycle comporte deux isochores et deux isothermes, tels que : $T_1 > T_2$

 $T_1 = Tc$: température de la source chaude ; $T_2 = Tf$: température de la source froide.

$$V_C = V_B = V_{min}$$
, et $V_D = V_A = V_{max}$.

- 1- Justifier le sens du parcours d'un cycle moteur.
- 2- Le système est un gaz parfait avec une capacité thermique à volume constant Cv.
 - a) Montrer que la chaleur cédée par le système lors de la transformation isochore DA est récupérée par la transformation isochore BC.
 - b) Exprimer le travail échangé par le système avec le milieu extérieur pendant les isothermes, en déduire les chaleurs échangées pendant ces mêmes transformations
- 3- En déduire le rendement de ce moteur en fonction des températures T₁ et T₂.

A. Zellagui