Fedor Ratnikov

Parallel & distributed training

2021

Large problems need large models

Source: https://arxiv.org/abs/1811.06965

The transformer curve

Machine Learning Supertasks

Image classification – ImageNet, JFT300M

Generative models – ImageNet(biggan), the internet

Language Models – common crawl, BERT / MLM

Machine Translation – multilingual translation

Reinforcement Learning – playstation* & steam:)

* playstation for RL: https://arxiv.org/abs/1912.06101

Meanwhile, exabytes of YouTube videos lay dormant across the web, waiting for someone who can make use of them

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

Advanced data parallel

arxiv.org/abs/1706.02677

Idea: get rid of the host, each gpu runs its own computation Q: why will weights be equal after such step?

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Naive implementation

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Q: Can we do better?

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Tree-allreduce

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Split data into chunks (ABCD)

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Split data into chunks (ABCD)

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Split data into chunks (ABCD)

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Split data into chunks (ABCD)

Ring all-reduce

Bonus quest: you can only send data between adjacent gpus

Image: graphcore ipu server

Answer & more: tinyurl.com/ring-allreduce-blog

Advanced data parallel

arxiv.org/abs/1706.02677

Idea: get rid of the host, each gpu runs its own computation Q: why will weights be equal after such step?

Advanced data parallel vs reality

arxiv.org/abs/1706.02677

Each gpu has different processing time & delays **Q:** can we improve device utilization?

HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server

HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server

HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server

Q: have we lost anything by going asynchronous?

HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server

Correction for staleness: arxiv.org/abs/1511.05950 & many others

Data-parallel Reinforcement Learning

Synchronous data-parallel: A. Stooke & P. Abbeel, 2018 tinyurl.com/gtc-parallel-rl

Asynchronous data-parallel:

Asynchronous methods for deep RL: arxiv.org/abs/1602.01783

Distributed asynchronous data-parallel:

IMPALA: arxiv.org/abs/1802.01561

R2D2: openreview.net/forum?id=r1lyTjAqYX

SEED RL: arxiv.org/abs/1910.06591

More:

(english) https://youtu.be/kOy49NqZeqI (russian) https://youtu.be/wswbMkT55mI

</Data-parallel>

- + easy to implement
- + can scale to 100s of gpus
- + can be fault-tolerant
- model must fit in 1 gpu
- large batches aren't always good for generalization
- 2-4 GPUs & no time naive data parallel tinyurl.com/torch-data-parallel
- 4+ GPUs or multiple hosts horovod (allreduce) github.com/horovod/horovod
 - High-level distributed pytorch (allreduce): tinyurl.com/distributed-dp
- Somewhat faulty GPU/network: synchronous data parallel + drop stragglers
- Very faulty or uneven resources: asynchronous data parallel (more later)
- Efficient training with large batches: LAMB https://arxiv.org/abs/1904.00962
- Dynamically adding or removing resources: https://tinyurl.com/torch-elastic

Model-parallel training

Q: What if a model is larger than GPU?

Model-parallel training

Q: What if a model is larger than GPU?

Model-parallel training

Q: What if a model is larger than GPU?

model size: O(N) throughput: O(1)

Gradients

Q: Can we go faster?

Pipelining

GPipe: arxiv.org/abs/1811.06965 – good starting point, *not* the 1st paper

Idea: split data into micro-batches and form a pipeline (right)

model size: O(n)

Gradients

throughput: O(n) – with caveats

Pipelining

GPipe: arxiv.org/abs/1811.06965 – good starting point, *not* the 1st paper

Idea: split data into micro-batches and form a pipeline (right)

			F _{3,0}	F _{3,1}	F _{3,2}	F _{3,3}	Вз,з	B _{3,2}	B _{3,1}	B _{3,0}				Update
		F _{2,0}	F _{2,1}	F _{2,2}	F _{2,3}			B _{2,3}	B _{2,2}	B _{2,1}	B _{2,0}			Update
	F _{1,0}	F _{1,1}	F _{1,2}	F _{1,3}					B _{1,3}	B _{1,2}	B _{1,1}	B _{1,0}		Update
F _{0,0}	F _{0,1}	F _{0,2}	F _{0,3}			В	ubble			Во,3	B _{0,2}	B _{0,1}	Во,о	Update

model size: O(n)

throughput: O(n) – with caveats

Q: Even faster?

Pipeline-parallel training

PipeDream: arxiv.org/abs/1806.03377

Idea: apply gradients with every microbatch for maximum throughput

Also neat:

- Automatically partition layers to GPUs via dynamic programming
- Store k past weight versions to reduce gradient staleness
- Aims at high latency

</Model-parallel>

- + model larger than GPU
- + faster for small
- * typical size: 2-8 gpus
- model partitioning is tricky
- latency is critical, go buy nvlink except for PipeDream

Tutorials:

- Simple pipelining in PyTorch tinyurl.com/pytorch-pipelining
- Distributed model-parallel with torch RPC https://tinyurl.com/torch-rpc
- Advanced but still in active development github.com/microsoft/DeepSpeed

Case study: DeepSpeed

Source: tinyurl.com/microsoft-deepspeed

ZeRO 4-way data parallel training

Using:

- P_{os} (Optimizer state)
- P_g (Gradient)
- P_p (Parameters)

Case study: GPT-3

Paper: arxiv.org/abs/2005.14165

GPT-3:

- Huge transformer language model, largest = 175B weights
- Can solve many nlp tasks with few or no training examples, see ==>
- Training algorithm: undisclosed probably similar to ZeRO
- Dataset: not publicly available language & open-source code
- OpenAl being as "open" as ever :)

```
Translate English to French: ← task description

sea otter => loutre de mer ← example

cheese => ← prompt
```

- Q: When counting, what number comes before 100?
- A: Ninety-nine comes before 100.
- Q: When counting, what number comes before 123?
- A: One hundred and twenty-two comes before 123.
- Q: When counting, what number comes before 1000?
- A: Nine hundred and ninety-nine comes before 1000.

There's always a bigger fish

Gshard paper: arxiv.org/abs/2006.16668 Previous work: arxiv.org/abs/1701.06538

GShard:

- Mixture of experts layers
 - Thousands of small sub-networks
 - Only a few "experts" per input
- Experts are sharded across devices
- Heuristic load-balancing between experts
- 600B parameters. Trained on 2048 TPUs. Because google.

Scaling up vs scaling out

Megatron-LM: arxiv.org/abs/1909.08053 Pricing: phone call to authorized vendor *(anonymized)*

Server pod used to train Megatron-LM

- 32x DGX-2H servers ≈ \$900,000 each
- 16x Tesla v100-sxm2 sxm3 per node
- High-end interconnect (mellanox / huawei)
- \$25±3 million just for the hardware

Scaling up vs scaling out

Megatron-LM: arxiv.org/abs/1909.08053 Pricing: phone call to authorized vendor *(anonymized)*

Server pod used to train Megatron-LM

- 32x DGX-2H servers ≈ \$900,000 each
- 16x Tesla v100-sxm2 sxm3 per node
- High-end interconnect (mellanox / huawei)
- \$25±3 million just for the hardware

Give \$25M to gamers:

- 10,000 high-end desktops, \$2500 each
- GPUs: mostly 2080Super / 2080Ti

About 10x more flop/s!

Volunteer computing

Idea: ask folks on the internet to help you compute a tricky problem on their desktops

- Protein folding https://foldingathome.org/
- Telescope data analysis seti@home
- Model-based RL for chess https://lczero.org
 Fully asynchronous, volunteers donate
 compute to play games & submit results
- General deep learning limited success Kijsipongse E. et al, 2018, JSC
- Deep learning over torrents yarr! https://arxiv.org/abs/2002.04013

Weird one: Learning@home

TL;DR

- each layer is a mixture of experts
- 1000s of distributed experts
 - only top-k experts are chosen depending on input features
- Fully asynchronous training
- Fault tolerance = dropout

Weird one: Learning@home

TL;DR

- each layer is a mixture of experts
- 1000s of distributed experts
 - only top-k experts are chosen depending on input features
- Fully asynchronous training
- Fault tolerance = dropout

Read more:

arxiv.org/abs/2002.04013

Coolest part:

They use torrents for communication!