quantium

July 17, 2020

1 CONTENTS

- 1.1 1.Checking Missing Values
- 1.2 2.Treatment of Outliers
- 1.3 3. Feature Generation
- 1.4 4.Data Analysis, Insights and Recommendations on Customer Segments

[2]: transaction.head()

```
[2]:
               STORE_NBR LYLTY_CARD_NBR
         DATE
                                           TXN_ID
                                                   PROD_NBR \
     0 43390
                                     1000
                                                1
                                                           5
     1 43599
                       1
                                     1307
                                              348
                                                          66
     2 43605
                                              383
                       1
                                     1343
                                                          61
                       2
     3 43329
                                     2373
                                              974
                                                          69
     4 43330
                       2
                                     2426
                                             1038
                                                         108
```

	PROD_NAME	PROD_QTY	TOT_SALES
0	Natural Chip Compny SeaSalt175g	2	6.0
1	CCs Nacho Cheese 175g	3	6.3
2	Smiths Crinkle Cut Chips Chicken 170g	2	2.9
3	Smiths Chip Thinly S/Cream&Onion 175g	5	15.0
4	Kettle Tortilla ChpsHny&Jlpno Chili 150g	3	13.8

[3]: purchase_behaviour.head()

[3]:	LYLTY_CARD_NBR		LIFESTAGE	PREMIUM_CUSTOMER
0	1000	YOUNG	SINGLES/COUPLES	Premium
1	1002	YOUNG	SINGLES/COUPLES	Mainstream
2	1003		YOUNG FAMILIES	Budget

```
3 1004 OLDER SINGLES/COUPLES Mainstream
4 1005 MIDAGE SINGLES/COUPLES Mainstream
```

1.4.1 1. Checking Missing Values

```
[4]: print('Null values of purchase_behaviour data are \n\n' ,purchase_behaviour.

→isnull().sum())
```

Null values of purchase_behaviour data are

```
LYLTY_CARD_NBR 0
LIFESTAGE 0
PREMIUM_CUSTOMER 0
```

dtype: int64

```
[5]: print('Null values of purchase_behaviour data are \n\n' ,transaction.isnull().

→sum())
```

Null values of purchase_behaviour data are

```
DATE
                    0
                   0
STORE NBR
LYLTY_CARD_NBR
                   0
TXN_ID
PROD_NBR
                   0
PROD_NAME
                   0
PROD_QTY
                   0
TOT_SALES
                   0
dtype: int64
```

1.4.2 2. Treatment of Outliers

```
[6]: import seaborn as sns sns sns.distplot(transaction.TOT_SALES)
```

[6]: <matplotlib.axes._subplots.AxesSubplot at 0x2385e8023c8>

```
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00
                100
                          200
                                   300
                                             400
                                                      500
                                                                600
                                  TOT SALES
```

```
[7]: #Outliers

IQR = transaction.TOT_SALES.quantile(0.75) - transaction.TOT_SALES.quantile(0.

→25)

Lower_fence = transaction.TOT_SALES.quantile(0.25) - (IQR * 3)

Upper_fence = transaction.TOT_SALES.quantile(0.75) + (IQR * 3)

Upper_fence, Lower_fence, IQR
```

[7]: (20.5999999999994, -5.99999999999964, 3.7999999999999)

```
[8]: transaction.drop(transaction[transaction['TOT_SALES']>30].index,inplace = True)
```

1.4.3 3. Feature Generation

```
[9]: print('Number of Unique Product Items are :',transaction.PROD_NAME.nunique())
```

Number of Unique Product Items are: 114

3.1) Chips Brand Feature

Number of Unique Brands are : 29

```
['Natural' 'CCs' 'Smiths' 'Kettle' 'Old' 'Grain' 'Doritos' 'Twisties' 'WW'
      'Thins' 'Burger' 'NCC' 'Cheezels' 'Infzns' 'Red' 'Pringles' 'Dorito'
      'Infuzions' 'Smith' 'GrnWves' 'Tyrrells' 'Cobs' 'Woolworths' 'French'
      'RRD' 'Tostitos' 'Cheetos' 'Snbts' 'Sunbites']
     3.2) Weight of Chips Packets
[11]: transaction['weight'] = transaction.PROD_NAME.apply(lambda x : [i for i in_
       →list(x) if i.isdigit()])
      transaction['weight'] = transaction.weight.apply(lambda x : int(''.join(x)))
     3.3) Time transformation
[12]: from datetime import datetime
      datetime.fromordinal(693594)
      offset = 693594
      transaction['DATE'] = transaction['DATE']+offset
      transaction['DATE'] = transaction['DATE'].apply(lambda x : datetime.
       \hookrightarrow from ordinal(x))
[13]: transaction.head()
[13]:
              DATE STORE_NBR LYLTY_CARD_NBR
                                               TXN_ID PROD_NBR \
      0 2018-10-17
                            1
                                          1000
                                                     1
      1 2019-05-14
                            1
                                          1307
                                                   348
                                                              66
      2 2019-05-20
                                                   383
                            1
                                          1343
                                                              61
      3 2018-08-17
                            2
                                          2373
                                                   974
                                                              69
      4 2018-08-18
                            2
                                          2426
                                                  1038
                                                             108
                                        PROD NAME PROD QTY TOT SALES
                                                                           brand \
                               Compny SeaSalt175g
                                                                    6.0 Natural
      0
           Natural Chip
                                                           2
      1
                         CCs Nacho Cheese
                                              175g
                                                           3
                                                                    6.3
                                                                             CCs
           Smiths Crinkle Cut Chips Chicken 170g
                                                                          Smiths
      2
                                                           2
                                                                    2.9
           Smiths Chip Thinly S/Cream&Onion 175g
                                                           5
                                                                   15.0
                                                                          Smiths
      4 Kettle Tortilla ChpsHny&Jlpno Chili 150g
                                                           3
                                                                   13.8
                                                                          Kettle
         weight
      0
            175
      1
            175
      2
            170
      3
            175
      4
            150
[14]: data = pd.merge(transaction,purchase_behaviour,on = 'LYLTY_CARD_NBR')
```

2 4.Data Analysis, Insights and Recommendations on Customer Segments

2.0.1 4.1) Customer Type vs Their LifeStage

```
[15]: customers = pd.crosstab(index = purchase_behaviour['LIFESTAGE'] , columns = □

→purchase_behaviour['PREMIUM_CUSTOMER'])

customers.sort_values('Premium', ascending=False).head()
```

[15]:	PREMIUM_CUSTOMER	Budget	Mainstream	Premium
	LIFESTAGE			
	OLDER SINGLES/COUPLES	4929	4930	4750
	RETIREES	4454	6479	3872
	YOUNG SINGLES/COUPLES	3779	8088	2574
	YOUNG FAMILIES	4017	2728	2433
	MIDAGE SINGLES/COUPLES	1504	3340	2431

2.0.2 4.2) Volume of Transactions Over TIME

```
[16]: transaction.index = pd.to_datetime(transaction.DATE)
plt.figure(figsize=(10,1))
transaction[['TOT_SALES']].groupby([transaction.index]).sum().

→plot(figsize=(20,7))
```

[16]: <matplotlib.axes._subplots.AxesSubplot at 0x2385e7f93c8>

<Figure size 720x72 with 0 Axes>

INSIGHTS:

- 1.At the end of year the sales has gone at its PEAK in a year.May be Christmas Would be the reason and there a lot of chance to increase more sales.
- 2. Theres downfall of Sales too between 5-6 and 8-9 months

RECOMMENDATIONS:

- 1.By Makeing a great display outside stores outlet window. Attracting more your customers with the decoration outside while keeping your interiors decorated too.
- 2. Appropriate Promotions and offers on old stock would help to increase sales

2.0.3 4.3) Most Saleable Chips Brands

```
order = data.groupby(['brand']).sum()['TOT_SALES'].sort_values(ascending=False).

→ index

plt.figure(figsize=(20,5))
sns.set_style("whitegrid")
ax = sns.barplot(x = 'brand',y = 'TOT_SALES' ,data = data,hue = 

→ 'PREMIUM_CUSTOMER', estimator=sum,order = order)
plt.xticks(rotation=65, horizontalalignment='right')
```

```
[17]: (array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]),
<a list of 29 Text major ticklabel objects>)
```


INSIGHTS:

- 1.kettle Brand Outperformed all other brands with large margin.
- 2. Only 5-6 Brands have nearly 80% share in Total Sales

RECOMMENDATIONS:

- 1.Offers on Bundle Pack of low saleable brand chips packets may result in good sales
- 2. Optimal Pricing of Best Brand Chips would yield high Amount of sales

2.0.4 4.4) Total Sales of Different Customer Segments grouped by LIFE_STAGE

```
order = data.groupby(['PREMIUM_CUSTOMER']).sum()['TOT_SALES'].

→sort_values(ascending=False).index

plt.figure(figsize=(20,5))
sns.set_style("whitegrid")
ax.set_xticklabels(ax.get_xticklabels(), rotation=90, 
→horizontalalignment='right')
ax = sns.barplot(x = 'PREMIUM_CUSTOMER', y = 'TOT_SALES', data = data, hue = 
→'LIFESTAGE', estimator=sum, order = order)
```


INSIGHTS:

- 1. Premium Customer spends less than Other Customers which is unexpected.
- 2.Older Families and Retirees spend more money than New Families and Midage Singles.

RECOMMENDATIONS:

- 1.Older Families and Retirees prefers stores near to them, so opening new stores according to geographical location or re-locating low performed Stores near to Old and Retirees will defnitely yield more sales
- 2. Coupons to less aged customer segment or according to low performed customer segments from above plot will result them to come again and again

2.0.5 4.5)Top 10 and Bottom 10 Products of Total Sales

[19]: (array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]), <a list of 20 Text major ticklabel objects>)

INSIGHTS:

- $1. \mathrm{Dorito}$ corn chips, Smiths and Kettle brands are most valued and mostly brought by older singles/couples.
- 2.WW, Sunbites brands have very low sales.

RECOMMENDATIONS:

- 1.Its better to exclude all these top performing brands in Offers, promotions etc.
- 2. Having as much as low stock of poor performing products would be better.

2.0.6 4.6)Top 10 and Bottom 10 Stores of Total Sales

[20]: (array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]), <a list of 20 Text major ticklabel objects>)

INSIGHTS:

- 1. Many poor performing stores are there we need to find a way to deal with them.
- 2. Customer Segments are making same proportion almost for every store.

RECOMMENDATIONS:

1. Need to relocate the stores performing worst.

2.0.7 4.7) Total Sales of Each Item vs Weight

[21]: <matplotlib.axes._subplots.AxesSubplot at 0x2385b5b2908>

INSIGHTS:

1. Average weighted chips packet have high sales that over weighted packets.