线性代数学习辅导

基础强化训练 综合知识运用 课本习题全解 考试真题解析

天津大学数学系代数教研组 编写

目 录

第一草	线性万桯组	
,	教学要求	1
	主要内容	1
Ξ、	填空题	3
四、	综合题	3
答多	冬与提示	3
第二章	行列式	
-,	教学要求	4
Ξ,	主要内容	4
三、	填空题	6
四、	选择题	7
Ŧi.、	综合题	8
答》	系与提示	9
第三章	矩阵	10
-,	教学要求	10
	主要内容	
四、	选择题	13
Ŧi.\	综合题	15
答	冬与提示	16
第四章	n 元向量空间	17
— <u>,</u>	教学要求	17
Ξ,	主要内容	17
三、	填空题	22
四、	选择题	23
五、	综合题	24
答	案与提示	25
第五章	线性空间	27
<u> </u>	教学要求	27
	主要内容	27
Ξ.	、填空题	29
四	、选择题	29
五	、综合题	30
	案与提示	
第六章	特征值与特征向量·线性变换	33
	、教学要求	
	、主要内容	
Ξ	、填空题	3 <i>€</i>
	、选择题	
-	、综合题	
	案与提示	
_	二次型	

	学要求	
二、主	要内容	44
三、填	空题	47
四、选	择题	47
五、综	合题	48
答案与	提示	50
附录 课后	习题全解	52
第一章	线性方程组	52
第二章	行列式	58
第三章	矩阵	68
第四章	n 元向量空间	81
第五章	线性空间	94
第六章	特征值与特征向量·线性变换	99
第七章	二次型	115

ι

第一章 线性方程组

一、教学要求

- 1、了解数域的概念及 n 元向量的线性运算.
- 2、了解矩阵的概念, 灵活运用矩阵的初等变换.
- 3、掌握用矩阵消元法求解线性方程组.
- 3、理解和掌握判定线性方程组解的存在及个数的条件.

二、主要内容

(一) 数域

任何一个包含0和1的数集P对四则运算封闭,则称P是一个数域。

- (二) n元向量及其线性运算
- 1、n元向量的定义

由数域P中n个数排成的有序数列

$$\alpha = [a_1, a_2, \dots, a_n]$$

称为n元向量(或n维向量). 全体n元向量的集合记作 P^n .

2、n元向量的线性运算

两个向量 $\alpha = [a_1, a_2, ..., a_n], \beta = [b_1, b_2, ..., b_n] \in \mathbf{P}^n, \forall k \in \mathbf{P}$, 在集合 \mathbf{P}^n 中引入运算:

$$\alpha = \beta \Leftrightarrow a_i = b_i, i = 1, 2, ..., n,$$

$$\alpha + \beta = [a_1 + b_1, a_2 + b_2, ..., a_n + b_n],$$

$$k\alpha = [ka_1, ka_2, ..., ka_n],$$

其中 $\alpha + \beta, k\alpha$ 分别称为 $\alpha = \beta$ 的和以及数 $k = \alpha$ 的数量乘积.

- (三) 矩阵及其初等变换
- 1、矩阵的概念

由数域 \mathbf{P} 中 $s \times n$ 个数 $a_n(i=1,2,\cdots,s;j=1,2,\cdots,n)$ 排成的s行n列矩形数表

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{sn} \end{bmatrix}$$

称为数域P上的一个s行n列矩阵,简称为 $s \times n$ 矩阵。也可记作 A_{ssn} 或 $[a_{ij}]_{ssn}$.

当s=n时, 称A为n阶方阵或n阶矩阵.

 $1 \times n$ 矩阵称为行矩阵 (或行向量); $n \times 1$ 矩阵称为列矩阵 (或列向量).

- 2、矩阵的初等变换
- (1) 行的非**零倍乘**: 第i行乘以非零数k, 记作 $r_i \times k$;
- (2) 行的**倍加**: 第i行加上第j行的l倍, 记作 $r_i + lr_j$;
- (3) 行的对调:对调第i, j 两行,记作 $r_i \leftrightarrow r_i$,

称为矩阵的初等行变换.

类似地有矩阵的初等列变换: $c_i \times k, c_i + lc_i, c_i \leftrightarrow c_i$.

矩阵的初等行变换与初等列变换统称为矩阵的初等变换.

(四) 线性方程组的求解

1、线性方程组的一般形式

m×n线性方程组的一般形式为

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m, \end{cases}$$

其中 $x_1, x_2, ..., x_n$ 为方程组的n个未知量, a_{ij} $(i=1,2,\cdots,m;j=1,2,\cdots,n)$ 称为方程组的系数, b_i $(i=1,2,\cdots,m)$ 称为常数项.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \tilde{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

分别称为方程组的系数矩阵和增广矩阵.

当 $b_1 = b_2 = \cdots = b_m = 0$ 时,称为齐次线性方程组;否则,称为非齐次线性方程组。

- 2、行阶梯形矩阵
- 一个矩阵 R 称为行阶梯形矩阵,是指:
- (1) R 的下一行的主元只能出现在上一行主元的右边(R 的每个非零行的第一个不为零的元素称为 R 的主元);
 - (2) R 的零行只能在非零行的下方.
 - 3、矩阵的秩

设矩阵 A 作初等行变换化成行阶梯形矩阵 R , R 的非零行的个数称为矩阵 A 的秩, 记作 r(A).

4、非齐次线性方程组解的判定

对非齐次线性方程组的增广矩阵 \tilde{A} 作初等行变换,化成行阶梯形矩阵,即

$$\tilde{A} = [A, \beta]$$
—初等行变换 $\rightarrow [R, \gamma] = \tilde{R}$.

若 $r(A) \neq r(\tilde{A})$,则方程组无解;

若 $r(A) = r(\tilde{A}) = n$,则方程组有唯一解;

若 $r(A) = r(\tilde{A}) < n$,则方程组有无穷多解.

4、齐次线性方程组解的判定

对齐次线性方程组的系数矩阵 A 作初等行变换, 化成行阶梯形矩阵, 即

$$A \xrightarrow{\text{初等行变换}} R$$
.

若r(A)=n,则齐次方程组只有零解;

若r(A) < n,则齐次方程组有非零解.

三、填空题

$$\begin{cases} x_1 + 2x_2 + x_3 = 0, \\ 2x_1 + 3x_2 + (a+2)x_3 = 0,$$
 只有零解,则 a 的取值为______.
$$x_1 + ax_2 - 2x_3 = 0 \end{cases}$$

四、综合题

1、求解线性方程组
$$\begin{cases} 3x_1 - 5x_2 + 5x_3 - 3x_4 = 0, \\ x_1 - 2x_2 + 3x_3 - x_4 = 0, \\ 2x_1 - 3x_2 + 2x_3 - 2x_4 = 0. \end{cases}$$

2、求解线性方程组
$$\begin{cases} 3x_1 - 5x_2 + 5x_3 - 3x_4 = 2, \\ x_1 - 2x_2 + 3x_3 - x_4 = 1, \\ 2x_1 - 3x_2 + 2x_3 - 2x_4 = 1. \end{cases}$$

3、设方程组(I)
$$\begin{cases} x_1 + x_2 + x_3 = 0, \\ x_1 + 2x_2 + ax_3 = 0, 与方程组(II) \ x_1 + 2x_2 + x_3 = a - 1$$
有公共解,求 a 的值
$$x_1 + 4x_2 + a^2x_3 = 0$$

及所有公共解.

答案与提示

三、填空题: $1 \cdot a \neq 3$ 且 $a \neq -1$. $2 \cdot a = -1$. $3 \cdot a = -2$.

四、综合题:

- 1、通解为 $[x_1, x_2, x_3, x_4]^T = k_1[5, 4, 1, 0]^T + k_2[1, 0, 0, 1]^T$, $\forall k_1, k_2 \in \mathbf{P}$.
- 2、通解为 $[x_1, x_2, x_3, x_4]^T = [-1, -1, 0, 0]^T + k_1[5, 4, 1, 0]^T + k_2[1, 0, 0, 1]^T, \forall k_1, k_2 \in \mathbf{P}$.
- 3、a=1时公共解为 $k[-1,0,1]^T$, 其中k为任意常数; a=2时公共解为 $[0,1,-1]^T$.

第二章 行列式

一、教学要求

- 1、了解排列和逆序数的概念.
 - 2、掌握n阶行列式的定义,行列式的性质,并能利用行列式的性质计算行列式.
 - 3、掌握行列式按行(列)展开定理,并能利用定理计算行列式.
 - 4、掌握克拉默法则.

二、主要内容

- (一) 排列与逆序
- 1、排列的概念
- (1) 排列的定义

由自然数1,2,...,n组成的一个有序数组称为一个n阶排列,记作 $j_1j_2\cdots j_n$.

三、排列的逆序数

在一个排列中,若一个较大的数排在一个较小的数之前,则称这两个数构成一个逆序。排列的逆序的总个数称为该排列的逆序数,记作 $au(j,j_2\cdots j_n)$.

逆序数是偶数的排列称为偶排列, 逆序数是奇数的排列称为奇排列.

- (3) 排列的性质
- 一次对换改变排列的奇偶性. 任何一个n阶排列都可以通过对换转化为自然排列, 并且所作对换的次数与该排列有相同的奇偶性.
 - (二) n 阶行列式
 - 1、n阶行列式的定义

$$D_{n} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{j_{1}j_{2}\cdots j_{n}} (-1)^{\tau(j_{1}j_{2}\cdots j_{n})} a_{1j_{1}} a_{2j_{2}} \cdots a_{nj_{n}}.$$

该数值等于上式中所有取自不同行不同列的n个元素的乘积 $a_{1j_1}a_{2j_2}\cdots a_{nj_n}$ 的代数和,其中 $j_1j_2\cdots j_n$ 是 $1,2,\ldots,n$ 的一个排列。对每项前的符号有下述规定:当 $j_1j_2\cdots j_n$ 为偶排列时取正号,当 $j_1j_2\cdots j_n$ 为 为 请列时取负号。这里的数 $a_{ij}(i,j=1,2,\ldots,n)$ 称为行列式的元素。它的第一个下标 i 表示该元素 所在的行,称为行指标:第二个下标 i 表示该元素所在的列,称为列指标。

- 2、n 阶行列式的性质
- (1) 行列式与它的转置行列式相等, 即 $D = D^{T}$.
- (2) 如果行列式中某一行(列)的元素含有公因数k,则k可以提到行列式符号的外面。若行列式中某一行(列)的元素全为零,则行列式等于零。
- (3) 将行列式中两行(列)互换,行列式改变符号.若行列式中有两行(列)相同,则行列式的值为零.
 - (4) 若行列式中有两行(列)的对应元素成比例,则行列式的值为零.

- (5) 如果行列式的某一行(列)中各元素均可以写成两项之和,则此行列式可以写成两个行列式之和,
 - (6) 如果将行列式的某一行(列)各元素的 k 倍, 加到另一行(列)的对应元素上, 行列式的值不变.
 - 3、特殊行列式的计算
 - (1) 上三角形行列式

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11}a_{22}\cdots a_{nn}.$$

(2) 下三角形行列式

$$\begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = a_{11}a_{22}\cdots a_{nn}.$$

(3) 对角形行列式

$$\begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11}a_{22}\cdots a_{nn}.$$

(4) 次下三角形行列式

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ a_{n1} & 0 & \cdots & 0 \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} a_{1n} a_{2,n-1} \cdots a_{n1}.$$

- (三)、行列式的展开
- 1、余子式与代数余子式

设 $A = [a_{ij}]$ 是数域 \mathbf{P} 上的n 阶方阵,划去 \mathbf{A} 的(i,j) 元所在的第i 行和第j 列后,剩下的 $(n-1)^2$ 个元素按原来的相对位置构成的n-1 阶方阵的行列式称为 \mathbf{A} 的(i,j) 元的余子式,记作 \mathbf{M}_{ij} . 称

$$A_{ii} = (-1)^{i+j} M_{ii}$$

为A的(i, j)元的代数余子式.

- 2、行列式按一行(列)展开
- (1) 行列式 D 等于它的任意一行(列)的所有元素与其相应的代数余子式的乘积之和,即

$$D = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} \quad (i = 1, 2, \dots, n)$$

或

$$D = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj} (j = 1, 2, \dots, n).$$

(2) 行列式 D 中某一行 (列) 的各元素与另一行 (列) 的相应元素的代数余子式的乘积之和等于零,即

$$a_{i1}A_{j1} + a_{i2}A_{j2} + \dots + a_{in}A_{jn} = 0, \quad i \neq j;$$

 $(a_{1i}A_{1j} + a_{2i}A_{2j} + \dots + a_{ni}A_{nj} = 0, \quad i \neq j).$

(四)、克拉默法则 若 *n*× *n* 线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

的系数矩阵 $A = [a_n]$ 的行列式 $|A| \neq 0$,则方程组有唯一解,这个解是

$$\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{T} = \left[\frac{|B_{1}|}{|A|}, \frac{|B_{2}|}{|A|}, \cdots, \frac{|B_{n}|}{|A|}\right]^{T},$$

其中 $B_i(i=1,2,\cdots,n)$ 是把系数矩阵A中第i列的元素用方程组的常数项替代后得到的n阶方阵.

三、填空题

1、设矩阵
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, $B = \begin{bmatrix} 2a_{11} & a_{13} & a_{11} + a_{12} \\ 2a_{21} & a_{23} & a_{21} + a_{22} \\ 2a_{31} & a_{33} & a_{31} + a_{32} \end{bmatrix}$, 且 $A \models m$, 则 $B \models m$.

2、行列式
$$D = \begin{vmatrix} 9 & 8 & 7 & 6 \\ 1 & 2^2 & 3^2 & 4^2 \\ 1 & 2^3 & 3^3 & 4^3 \\ 1 & 2 & 3 & 4 \end{vmatrix} = \underline{\qquad}$$

3、设n阶方阵A的行列式为a,且每一行元素之和为b(≠0),则A的第n列元素的代数余子式之和为

4、设
$$D = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 3 & 4 & 6 \\ 3 & 4 & 1 & 2 \\ 2 & 2 & 2 & 2 \end{vmatrix}$$
, 则 $A_{11} + 2A_{21} + A_{31} + 2A_{41} =$ ______.

5、计算行列式
$$D = \begin{vmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{vmatrix} = \underline{\qquad}$$
.

6、方程
$$\begin{vmatrix} x & a_1 & a_2 & a_3 \\ a_1 & x & a_2 & a_3 \\ a_1 & a_2 & x & a_3 \\ a_1 & a_2 & a_3 & x \end{vmatrix} = 0$$
的全部根是_______.

四、选择题

1、已知 $\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma$ 都是3维列向量,且行列式 $|\alpha_1, \beta_1, \gamma| = |\alpha_1, \beta_2, \gamma| = |\alpha_2, \beta_1, \gamma| = |\alpha_2, \beta_2, \gamma|$ = 3, $|-2\gamma, \alpha_1 + \alpha_2, \beta_1 + 2\beta_2| =$ _____.

- (A) -9,18 (B) 9,-18 (C) -18,9 (D) 18,-9

- 3、设A为n阶方阵,B是A若干次初等变换后得到的矩阵,则有
- (A) |A| = |B| (B) 若|A| > 0,则一定有|B| > 0
- (C) $|A| \neq |B|$ (D) 若|A| = 0,则一定有|B| = 0

4、设
$$a,b,c$$
 两两互不相同,则 $\begin{vmatrix} b+c & c+a & a+b \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = 0$ 的充要条件是______.

- (A) abc = 0 (B) a+b+c=0 (C) a=1,b=-1,c=0 (D) $a^2=b^2,c=0$

5、4阶行列式
$$\begin{vmatrix} a_1 & 0 & b_1 & 0 \\ 0 & a_2 & 0 & b_2 \\ b_3 & 0 & a_3 & 0 \\ 0 & b_4 & 0 & a_4 \end{vmatrix} = \underline{\hspace{1cm}}.$$

(A) $a_1a_2a_3a_4 - b_1b_2b_3b_4$

- (C) $(a_1a_3 b_1b_3)(a_2a_4 b_2b_4)$ (D) $(a_1a_2 b_1b_2)(a_3a_4 b_3b_4)$

6、已知
$$D = \begin{vmatrix} 2 & 1 & 3 & 4 \\ 1 & 0 & 2 & 3 \\ 1 & 5 & 2 & 1 \\ -1 & 1 & 5 & 2 \end{vmatrix}$$
, 则 $A_{13} + A_{23} + A_{43} =$ _____.

- (A) 1
- (C) 3

(A) a = 1 且 a = -4 (B) a = -1 且 a = 4 (C) $a \ne 1$ 且 $a \ne -4$ (D) $a \ne 1$ 或 $a \ne -4$ 五、综合题

1、设
$$D = \begin{vmatrix} \lambda - 3 & -2 & 2 \\ k & \lambda + 1 & -k \\ -4 & -2 & \lambda + 3 \end{vmatrix} = 0$$
,求 λ 的值.

$$2、 计算 n+1 阶行列式 D = \begin{vmatrix} x_0 & y_1 & y_2 & \cdots & y_n \\ z_1 & x_1 & & & \\ z_2 & & x_2 & & \\ \vdots & & & \ddots & \\ z_n & & & & x_n \end{vmatrix}, \quad \underbrace{ 其中 \, x_i \neq 0, i = 1, 2, \dots, n. }_{1}$$

$$3、 计算 n 阶行列式 D = \begin{vmatrix} a_1 + b_1 & b_2 & \cdots & b_n \\ b_1 & a_2 + b_2 & \cdots & b_n \\ \vdots & \vdots & & \vdots \\ b_n & b_2 & \cdots & a + b \end{vmatrix}, \quad \underbrace{ \ddagger p \, a_i \neq 0, i = 1, 2, \dots, n. }_{1}$$

3、计算
$$n$$
 阶行列式 $D = \begin{vmatrix} a_1 + b_1 & b_2 & \cdots & b_n \\ b_1 & a_2 + b_2 & \cdots & b_n \\ \vdots & \vdots & & \vdots \\ b_1 & b_2 & \cdots & a_n + b_n \end{vmatrix}$, 其中 $a_i \neq 0, i = 1, 2, \dots, n$.

4、计算行列式
$$D = \begin{vmatrix} 1 & 1 & 1 & 1 & -1 & 0 \\ 1 & 2 & 3 & 1 & 2 & 3 \\ 1 & 4 & 9 & 3 & 4 & 5 \\ 1 & 1 & 1 & 2 & 0 & 1 \\ 1 & 2 & 3 & 3 & 5 & 7 \\ 0 & 0 & 0 & 4 & 9 & 16 \end{vmatrix}$$

$$5$$
、当 λ 取何值时,线性方程组
$$\begin{cases} (\lambda-1)x_1 + 3x_2 - 2x_3 = 0, \\ x_1 + (\lambda+1)x_2 - 2x_3 = 0, 有非零解. \\ 5x_1 - x_2 + (\lambda-4)x_3 = 0 \end{cases}$$

6、设
$$A = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ a_1 & a_2 & a_3 & \cdots & a_n \\ a_1^2 & a_2^2 & a_3^2 & \cdots & a_n^2 \\ \vdots & \vdots & \vdots & & \vdots \\ a_1^{n-1} & a_2^{n-1} & a_3^{n-1} & \cdots & a_n^{n-1} \end{bmatrix}, X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_3 \end{bmatrix}, \beta = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}, 其中 a_i \neq a_j (i \neq j; i, j = 1, 2, ..., n)$$

求方程组 $A^{T}X = \beta$ 的解.

答案与提示

三、填空题: 1、-2m. 2、120. 3、a/b. 4、-12. 5、 $(a^2+b^2+c^2+d^2)^2$.

6. $a_1, a_2, a_3, -(a_1 + a_2 + a_3)$.

四、选择题: 1、(B).2、(A). 3、(D). 4、(B). 5、(C).6、(D). 7、(B). 8、(C).

五、综合题:

1.
$$\lambda = 1, \lambda = -1$$
 ($\equiv \underline{\underline{x}}$). 2. $D = (x_0 - \sum_{i=1}^n \frac{y_i z_i}{x_i}) \prod_{i=1}^n x_i$.

3.
$$D = (1 + \sum_{i=1}^{n} \frac{b_i}{a_i}) \prod_{i=1}^{n} a_i$$
. 4. $D = 4$.

- 5、 $\lambda = 0$ 或 $\lambda = 2$ 时,方程组有非零解.
- 6、方程组的解为[1,0,...,0]^T.

第三章 矩阵

一、教学要求

- 1、掌握矩阵的基本运算及其运算律.
- 2、了解分块矩阵及其运算.
- 3、掌握矩阵的初等变换.
- 4、理解可逆矩阵的概念,掌握逆矩阵的性质和求法.
- 5、理解矩阵的秩的概念,掌握秩的求法,了解相抵标准形.

二、主要内容

- (一) 矩阵的运算
 - 1、矩阵的加法
 - (1) 加法的定义

$$A = [a_{ij}]_{m \times n}$$
 与 $B = [b_{ij}]_{m \times n}$ 的和为 $A + B = [a_{ij} + b_{ij}]_{m \times n}$.

- (2) 加法的运算律
- (1) A + B = B + A:
- ② (A+B)+C=A+(B+C);
- 4 A + (-A) = 0;
- 2、矩阵的数量乘法
- (1) 数量乘法的定义

$$A = [a_{ij}]_{m \times n}$$
 与数 k 的数量乘积为 $kA = k[a_{ij}]_{m \times n} = [ka_{ij}]_{m \times n}$.

- (2) 数量乘法的运算律
- (1) 1A = A;
- ② k(lA) = (kl)A;
- $(kA)^{\mathsf{T}} = kA^{\mathsf{T}};$
- (4) k(A+B) = kA + kB;
- (k+l)A = kA + lA.
- 3、矩阵的乘法
- (1) 乘法的定义

$$A = [a_{ij}]_{m \times n}$$
 与 $B = [b_{jk}]_{n \times s}$ 的乘积为 $AB = [c_{ik}]_{m \times s}$,其中

$$c_{ik} = a_{i1}b_{1k} + a_{i2}b_{2k} + \dots + a_{in}b_{nk}$$
.

- (2) 乘法的运算律
- ① (AB)C = A(BC):
- ② $E_m A_{m \times n} = A_{m \times n} E_n = A_{m \times n}$, $E_n A_{n \times n} = A_{n \times n} E_n = A_{n \times n}$;

 $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}} :$

(4)
$$(A+B)C = AC + BC$$
, $A(B+C) = AB + AC$;

$$(5) k(AB) = (kA)B = A(kB).$$

矩阵的乘法一般不满足交换律、消去律等.

4、方阵的幂与多项式

$$A_{n\times n}^{m} = \overbrace{AA\cdots A}^{m\uparrow A}, \quad A^{0} = E_{n};$$

$$a_{m}A^{m} + a_{m-1}A^{m-1} + \cdots + a_{1}A + a_{0}E_{n}.$$

(二) 分块矩阵

先分块,再计算.

(三) 可逆矩阵

1、定义

若有B使得AB = AB = E,则称A为可逆矩阵;且B由A唯一确定,称B为A的逆矩阵,记作 $B = A^{-1}$.

- 2、判定、求逆计算
- (1) 行列式法
- A可逆⇔|A|≠0.
- ② $A = [a_{ij}]_{n \times n} (n \ge 2)$ 的伴随矩阵为 $A^* = [A_{ij}]_{n \times n}^T$, 其中 A_{ij} 为 A 的 (i, j) 元的代数余子式;特别

地, 当
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
时, $A^* = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

③ 当
$$A$$
可逆时, $A^{-1} = \begin{cases} [a_{11}^{-1}], & \exists n = 1, \\ A^*/|A|, & \exists n \geq 2. \end{cases}$

- (2) 若干命题
- ① 使得AB = E 的方阵A = B 互为对方的逆矩阵;
- ② $(A^{-1})^{-1} = A$;
- $(kA)^{-1} = k^{-1}A^{-1}$;
- $(AB)^{-1} = B^{-1}A^{-1};$
- (5) $(A^T)^{-1} = (A^{-1})^T$:
- (3) 初等变换法
- ① A 可逆⇔ A 与 E, (行) 相抵;
- ② $[A, E_n]$ 有限次初等行变换 $[E_n, A^{-1}]$;

③
$$\begin{bmatrix} A \\ E_n \end{bmatrix}$$
 有限次初等列变换 $\begin{bmatrix} E_n \\ A^{-1} \end{bmatrix}$:

(4) 分块法

① $A = \operatorname{diag}(A_1, A_2, \cdots, A_s)$ 可逆 $\Leftrightarrow A_1, A_2, \cdots, A_s$ 都可逆,且

$$A^{-1} = \operatorname{diag}(A_1^{-1}, A_2^{-1}, \dots, A_s^{-1});$$

3、矩阵方程

(1)
$$AX = B$$
, 其中 A 可逆. $[A, B] \xrightarrow{\text{有限次初等行变换}} [E, A^{-1}B]$:

(2)
$$XA = B$$
, 其中 A 可逆.
$$\begin{bmatrix} A \\ B \end{bmatrix} \xrightarrow{\text{有限次初等列变换}} \begin{bmatrix} E_n \\ BA^{-1} \end{bmatrix}.$$

(四) 矩阵的初等变换

- 1、单位矩阵经过一次初等变换得到的矩阵称为初等矩阵;
- 2、对 A_{mn} 做一次初等行(列)变换,相当于在 A_{mn} 的左(右)边乘上相应的m(n)阶初等矩阵;
- 3、 $A_{m\times n}$ 与 $B_{m\times n}$ 行相抵 \Leftrightarrow 有 $P_{m\times n}$ 可逆,使得B=PA;
- 4、 A_{mxn} 与 B_{mxn} 列相抵 \Leftrightarrow 有 Q_{nxn} 可逆,使得B = AQ;
- 5、 $A_{m\times n}$ 与 $B_{m\times n}$ 相抵 \Leftrightarrow 有 $P_{m\times m}$ 与 $Q_{n\times n}$ 都可逆,使得 B=PAQ;

$$6$$
、秩为 r 的矩阵 $A_{m \times n}$ 有相抵标准形 $\begin{bmatrix} E_r & O_{r \times (n-r)} \\ O_{(m-r) \times r} & O_{(m-r) \times (n-r)} \end{bmatrix}$.

(五) 矩阵的秩

1、秩的定义

非零矩阵 $A = [u_{ij}]_{mn}$ 的非零子式的最高阶数称为 A 的**秩**,记作 r(A).规定 r(O) = 0.

- 2、秩的计算
- (1) 初等变换不改变矩阵的秩.
- (2) $A_{mxn} \xrightarrow{\text{有限X-初等变换}}$ 行阶梯形矩阵 B ,则 r(A) = B 的非零行数.
- 3、相抵标准形的运用 20.

$$r(A_{m \times n}) = r \Leftrightarrow A = P_{m \times m} \begin{bmatrix} E_r & O \\ O & O \end{bmatrix} Q_{n \times n}$$
 , 其中 P, Q 可逆.

4、秩的关系式

(1)
$$r\begin{bmatrix} A & O \\ O & B \end{bmatrix} = r(A) + r(B)$$
.

- (2) $r(A \pm B) \le r(A) + r(B)$.
- (3) $r(AB) \le \min\{r(A), r(B)\}$.
- (4) $A_{m \times n} B_{n \times s} = \mathbf{O} \Rightarrow r(\mathbf{A}) + r(\mathbf{B}) \leq n$.

(5)
$$r(A^*) = \begin{cases} n, & \stackrel{\square}{\to} r(A_{n \times n}) = n, \\ 1, & \stackrel{\square}{\to} r(A) = n - 1, \\ 0, & \stackrel{\square}{\to} r(A) < n - 1. \end{cases}$$

(6) 对于实矩阵 $\mathbf{A} = [a_{ij}]_{m \times n}$, 有 $r(\mathbf{A}\mathbf{A}^{\mathsf{T}}) = r(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = r(\mathbf{A})$.

三、填空题

1、设 $\alpha = [1, 0, -1]^T$,矩阵 $A = \alpha \alpha^T$, n为正整数,则 $kE - A^n =$.

2、设
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 2 & 0 \\ 2 & 1 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 0 & 4 \\ 0 & 5 & 6 \\ 6 & 4 & 5 \end{bmatrix}$, 则 $|AB| =$ _______.

3、设 $A_{3\times3} = [\alpha_1, \alpha_2, \alpha_3]$, $B_{3\times3} = [\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + 3\alpha_3, \alpha_1 + 4\alpha_2 + 9\alpha_3]$,且|A| = 5, 则|*B*|=____

4、设矩阵
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$
, $B = A^2 - 3A + 2E$, 则 $B^{-1} =$ ______

5、设n阶方阵A满足 $A^2 + A - 6E = O$,则 $(A - 3E)^{-1} = ___$

6、设
$$A$$
 是 n 阶方阵, A * 为其伴随矩阵,且 $|A| = \frac{1}{3}$,则 $\left| \left(\frac{1}{4} A \right)^{-1} - 15 A * \right| = _____.$

7、设A,B为n阶方阵,且 $|A|=3,|B|=2,|A^{-1}+B|=2$, B^* 为矩阵B的伴随矩阵,则 $|2A+B^{\bullet}|=$ _____

8、设
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 4 & 0 & 0 & 1 \end{bmatrix}$$
,则 A 中各元素的代数余子式之和为_____, A 中各元素的余子式

之和为

9、设
$$r(A_{5\times 5})=4$$
,则 $r(A^*)=$ ______, $r[(A^*)^*]=$ ______

10、
$$\&A = \begin{bmatrix} 1 & 2 & -1 \\ -2 & -4 & 2 \\ 3 & 6 & -3 \end{bmatrix}$$
, $\&A^{*} = \begin{bmatrix} A^{20} = \\ & A^{20} = \\ & & A^{20} = \\ & & & A^{20} = \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\$

11、已知矩阵
$$A = \begin{bmatrix} 1 & 2 & 3 & \cdots & n \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$
,则秩 $r(A^2 - A) =$ _______.

12、设3阶方阵 $A \neq O$, $B = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & t \\ 3 & 5 & 3 \end{bmatrix}$,且 $AB = O$,则 $t =$ _______.

12、设3阶方阵
$$A \neq O$$
, $B = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & t \\ 3 & 5 & 3 \end{bmatrix}$,且 $AB = O$,则 $t = \underline{\qquad}$

四、选择题

1、满足条件 的矩阵 A 可以不是方阵.

(A)
$$A\xi_{nxl} = \xi_{nxl}$$
 (B) $AS = SB$ (C) $SAS = B$

2、设A是 $m \times k$ 矩阵,B是 $k \times t$ 矩阵,若B的第i列元素全为零,则以下正确的是

	(A) AB 的第 j 列元素	索全等于零	(B) AB 的第 j 行元素	聚全等于零		
	(C) BA 的第 j 列元素	全等于零	(D) BA 的第 j 行元素	全等于零		
	3、设 $A_{4\times4}$ = -3,贝	$ A A = \underline{\hspace{1cm}}$				
	(A) 9	(B) 3 ⁵	(C) -3^5	(D) 12		
	4、设 A 是3阶方阵,	将 A 的第1列与第2列	交换得 B ,再把 B 的多	第2列加到第3列得 $oldsymbol{C}$,则满		
足人	4Q = C 的可逆矩阵 Q	为				
,	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$		
	(A) 1 0 0	$ \begin{array}{c cccc} (B) & 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{array} $	(C) 1 0 0	(D) 1 0 0		
	1 0 1	0 0 1	0 1 1	0 0 1		
	5、设 <i>A</i> , <i>B</i> , <i>C</i> 均为 n	阶方阵,且 $ABC = E_n$,则必有= <i>E_n</i> .			
	(A) BAC	(B) CBA	(C) ACB	(D) <i>CAB</i>		
	6、设 <i>A</i> , B, C 均为n	阶方阵. 若 $B = E + A$	B , $C = A + CA$, \emptyset	B-C=		
	(A) $m{E}$	(B) $-E$	(C) A	(D) -A		
	7、设 <i>A</i> , <i>B</i> , <i>A</i> + <i>B</i> 均	为n阶可逆矩阵,则(A	$(\mathbf{I}^{-1} + \mathbf{B}^{-1})^{-1} = \underline{\qquad}$			
	(A) $A^{-1} + B^{-1}$	(B) $A + B$	(C) $(A + B)^{-1}$	(D) $A(A+B)^{-1}B$		
	8、设 A 为可逆矩阵,矩阵 A 的第 1 行的 2 倍加到第 3 行得矩阵 B ,则 (A) A 的第1行的 -2 倍加到第 3 行得 B (B) A 的第 3 行的 -2 倍加到第 1 行得 B (C) A 的第 1 列的 -2 倍加到第 3 列得 B (D) A 的第 3 列的 -2 倍加到第 1 列得 B (D) A 的第 3 列的 -2 倍加到第 1 列得 B (D) A 的第 3 列的 -2 倍加到第 1 列得 B (D) A 的第 3 列的 -2 倍加到第 1 列得 B (D) A					
		$A^* = A^T$, $A = a_{11} = a_{12}$				
	(A) $\frac{\sqrt{3}}{3}$		(C) $\frac{1}{3}$	(D) √3		
	,	ſ1 <i>α α</i> ···	a			
		$\begin{bmatrix} a & 1 & a & \cdots \\ a & 1 & a & \cdots \end{bmatrix}$	a			
	10、设 <i>n(n</i> ≥3)阶矩	阵 $A = \begin{vmatrix} a & a & 1 & \cdots \end{vmatrix}$	a , 若伴随矩阵 A* f	的秩 $r(A^*)=1$,则 a 为 .		
	(),,,,,		:			
		a a a	1	的秩 <i>r(A*)=1</i> ,则 <i>a</i> 为		
	(A) 1					
		(B) $\frac{1}{1-n}$		$\frac{n-1}{n-1}$		
11、设n阶方阵 A 与 B 相抵,则必有						
	$(A) \stackrel{\text{def}}{=} A = a(a \neq 0)$	时, $ B =a$	(B) 当 $ A = a(a \neq 0)$	时, $ B =-a$		
	(C) 当 A ≠0时, B	$ \mathbf{g} = 0$	(D) $ A = 0$ 时, $ B $	= 0		
	12、设 A 为 $m \times n$ 矩阵, B 为 $n \times m$ 矩阵,若 $AB = E_m$,则					
	(A) $r(A) = m, r(B)$	= m	(B) $r(A) = m, r(B) = m$	= n		
	(C) $r(A) = n, r(B)$	= <i>m</i>	(D) $r(A) = n, r(B) =$	= n		

13、设
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & a \\ 3 & 6 & 9 \end{bmatrix}$$
, $B_{3\times3} \neq O$, 且 $AB = O$, 则______.

- (A) 当a = 6 时必有r(B) = 1
- (B) 当 a = 6 时必有 r(B) = 2
- (C) 当 $a \neq 6$ 时必有r(B) = 1
- (D) 当 $a \neq 6$ 时必有 r(B) = 2

五、综合题

- 1、设 $A = [a_{ij}]_{m \times n}$.
- (1) 若 $P_{m \times m} = \operatorname{diag}(p_1, p_2, \dots, p_m)$, 求PA;
- (2) 若 $\mathbf{Q}_{n\times n} = \operatorname{diag}(q_1, q_2, \dots, q_n)$, 求 $\mathbf{A}\mathbf{Q}$.
- 2、设 $A=\mathrm{diag}(a_{\scriptscriptstyle 1},a_{\scriptscriptstyle 2},\cdots,a_{\scriptscriptstyle n})$,其中 $a_{\scriptscriptstyle 1},a_{\scriptscriptstyle 2},\cdots,a_{\scriptscriptstyle n}$ 互不相等。求证

$$AB = BA \Leftrightarrow B$$
 也是 n 阶对角矩阵.

- 3、设 $A = [a_{ii}] \in \mathbf{P}^{m \times n}$, 对任意 $X \in \mathbf{P}^{n \times 1}$ 都有 $AX = \mathbf{0}$. 求证 $A = \mathbf{O}$.
- 4、求下列矩阵的逆矩阵.

(1)
$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 5 & 4 \\ 3 & 6 & 7 \end{bmatrix};$$
(2)
$$\begin{bmatrix} 2 & 6 & 3 \\ 3 & 2 & -6 \\ 6 & -3 & 2 \end{bmatrix};$$
(3)
$$\begin{bmatrix} 0 & 0 & 0 & 5 & -2 \\ 0 & 0 & 0 & 7 & -3 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \end{bmatrix};$$
(4)
$$\begin{bmatrix} 2 & -1 & 0 & 0 \\ -3 & 2 & 0 & 0 \\ 31 & -19 & 3 & 4 \\ -23 & 14 & -2 & -3 \end{bmatrix}.$$

$$\begin{bmatrix} 0 & 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -23 & 14 & -2 & -3 \end{bmatrix}$$

$$5. \ \mathcal{U}A^* = \begin{bmatrix} 1 & -2 & -3 & -4 \\ 0 & 1 & -2 & -3 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
为矩阵 A 的伴随矩阵, $2A^{-1}XA = A^{-1}X + E_4$,试不计算 A 与

A^{-1} ,而直接求矩阵X.

6、设
$$AXA + AX + XA + X = B$$
, 其中 $A = \begin{bmatrix} 0 & 2 & 2 \\ 2 & 0 & -2 \\ 2 & -2 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 81 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. 求矩阵 X .

7、设A为 $m \times n$ 矩阵,则 $r(A) = r \Leftrightarrow$ 存在矩阵 $B_{m \times r}, C_{r \times n}$,使得

$$A = BC$$
, $r(B) = r(C) = r$.

- 8、设A, B均为n阶方阵, $r(A) = r, r(B) = r_1$.
- (1) 求证存在可逆矩阵 Q, 使得 AQ 的后 n-r 列的元素全为零;
- (2) 求证存在可逆矩阵 P, 使得 PB 的前 n-r, 行的元素全为零;
- (3) 若 $r(A)+r(B) \le n$, 求证存在可逆矩阵T, 使得ATB = O.

答案与提示

三、填空题

$$1, k^2(k-2^n)$$

1.
$$k^2(k-2^n)$$
. 2. -720. 3. 10. 4. $\begin{bmatrix} 0 & \frac{1}{2} \\ -1 & -1 \end{bmatrix}$. 5. $-\frac{1}{6}(A+4E)$.

$$5, -\frac{1}{6}(A+4E).$$

$$6 \cdot 3 \cdot (-1)^n$$

6.
$$3 \cdot (-1)^n$$
. 7. $3 \cdot 2^n$. 8. -5, 7. 9. $r(A^*) = 1, r[(A^*)^*] = 0$.

$$10, -6^{19}A$$
. $11, 1$. $12, t = 4$.

四、选择题

11、(D). 12、(A). 13、(C).

五、综合题

1. (1)
$$PA = [p_i a_{ij}]_{m \times n} = \begin{bmatrix} \frac{p_1 a_{11}}{p_2 a_{21}} & \frac{p_1 a_{12}}{p_2 a_{22}} & \frac{p_1 a_{1n}}{p_2 a_{2n}} \\ \vdots & \vdots & \vdots \\ p_m a_{m1} & p_m a_{m2} & \cdots & p_m a_{mn} \end{bmatrix}$$

(2)
$$\mathbf{AQ} = [a_{ij}q_{j}]_{m \times n} = \begin{bmatrix} a_{11}q_{1} & a_{12}q_{2} & \cdots & a_{1n}q_{n} \\ a_{21}q_{1} & a_{22}q_{2} & \cdots & a_{2n}q_{n} \\ \vdots & \vdots & & \vdots \\ a_{m1}q_{1} & a_{m2}q_{2} & \cdots & a_{mn}q_{n} \end{bmatrix}.$$

- 2、略.
- 3、略.

4. (1)
$$\begin{bmatrix} 11 & -2 & -2 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$
:

(3)
$$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{2} & 0 \\ 3 & -2 & 0 & 0 & 0 \\ 7 & -5 & 0 & 0 & 0 \end{bmatrix};$$

5.
$$X = \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$6. \quad X = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 2 & 4 & 4 \end{bmatrix}.$$

- 7、略.
- 8、略.

$$(2) \ \frac{1}{49} \begin{bmatrix} 2 & 3 & 6 \\ 6 & 2 & -3 \\ 3 & -6 & 2 \end{bmatrix};$$

$$\begin{bmatrix}
 2 & 1 & 0 & 0 \\
 3 & 2 & 0 & 0 \\
 1 & 1 & 3 & 4 \\
 -2 & 1 & -2 & -3
 \end{bmatrix}.$$

第四章 n元向量空间

一、教学要求

- 1. 理解向量组的线性相关性、线性表示以及等价向量组等概念.
- 2. 掌握判断向量组的线性相关性的主要方法.
- 3. 掌握向量组的极大无关组和向量组的秩的概念及计算.
- 4. 理解向量组的秩与矩阵的秩之间的关系.
- 5. 了解向量空间,向量空间的基和维数,向量空间的结构.
- 6. 掌握齐次线性方程组解的性质以及基础解系,通解及解空间的结构.
- 8. 掌握非齐次线性方程组解的运算性质和通解结构.
- 9. 了解内积、欧氏空间、长度及正交等概念.
- 10. 掌握线性无关向量组标准正交化的方法.
- 11. 掌握正交矩阵的概念及性质.

二、主要内容

- (一) 向量组的线性组合和线性表示
- 1、定义

设 $\alpha_i \in \mathbf{P}^n, k_i \in \mathbf{P}, i = 1, 2, \dots, s$. 称向量 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s$ 为向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 的一个线性组合, k_1, k_2, \dots, k_s 称为这个线性组合的系数.

若 \mathbf{P}'' 中某个向量 $\boldsymbol{\beta}$ 是 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s$ 的一个线性组合,即存在 $k_1, k_2, \cdots, k_s \in \mathbf{P}$,使得 $\boldsymbol{\beta} = k_1 \boldsymbol{\alpha}_1 + k_2 \boldsymbol{\alpha}_2 + \cdots + k_s \boldsymbol{\alpha}_s$,则称 $\boldsymbol{\beta}$ 可由 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s$ 线性表示(或 $\boldsymbol{\alpha}$ 可分解为 \boldsymbol{s} 个向量).

注 β 可由 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性表示 \Leftrightarrow 非齐次线性方程组 $x_1\alpha_1 + x_2\alpha_2 + \dots + x_s\alpha_s = \beta$ 有解.

2、向量组的等价

设在 \mathbf{P}^n 中给定了向量组(I) $\alpha_1, \alpha_2, \cdots, \alpha_r$ 和 (II) $\beta_1, \beta_2, \cdots, \beta_s$. 如果(I) 中的每个向量都能够被 (II) 线性表示,则称(I) 可以由(II) 线性表示,如果(I) 和(II) 可以互相线性表示,则称(I) 与(II) (线性) 等价. 记作(I) \cong (II) .

- (二) 向量组的线性相关性
- 1、线性相关与线性无关的定义

设 $\alpha_1, \alpha_2, \dots, \alpha_r$ 是**P**"中的向量组,如果有不全为零的 $k_1, k_2, \dots, k_r \in \mathbf{P}$,使得

$$k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s = 0$$
,

则称 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 线性相关. 否则,称之为线性无关(或线性独立).

- 2、线性相关与线性无关的性质
- (1) 一个向量 α 线性相关当且仅当 $\alpha=0$, α 线性无关当且仅当 $\alpha\neq 0$;
- (2) 一个向量组中有部分组线性相关,则整个向量组线性相关;
- (3) 一个向量组线性无关,则其任何一个部分组线性无关;

- (4) 任何一个包含零向量的向量组必线性相关;
- (5) 若向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关,而向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$, β 线性相关,则 β 可 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表示,且表示方法唯一;
- (6) 两个等价的线性无关的向量组必含有相同个数的向量;
- (7) 在 P^n 中,任意n+1个向量必线性相关.
- 3、线性相关与线性无关的判别
- (1) 在 \mathbf{P}^n 中,向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ ($s \ge 2$) 线性相关的充分必要条件是其中至少有一个向量可以由其余向量线性表示. 一个向量组中有部分组线性相关,则整个向量组线性相关;
- (2) 在 \mathbf{P}^n 中,向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ ($s \ge 2$) 线性无关的充分必要条件是其中任意一个向量都不能由其余向量线性表示;
- (3) 设向量组 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 可以由向量组 $\beta_1,\beta_2,\cdots,\beta_s$ 线性表示. 如果r>s,则 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 线性相关:
- (4) 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关,若向量 β 不能由 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表示,则 $\alpha_1,\alpha_2,\cdots,\alpha_s$,分线性无关.
 - 4、数组向量的线性相关性的特殊判别法
 - (1) 设 P" 中的 m 个向量

$$\alpha_{1} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{bmatrix}, \alpha_{2} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{bmatrix}, \dots, \alpha_{m} = \begin{bmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{bmatrix}, \tag{4-1}$$

构造矩阵 $A_{n\times m}=[\alpha_1,\alpha_2,\cdots,\alpha_m]$,则向量组 (4-1) 线性相关 (线性无关) 的充分必要条件是 $n\times m$ 齐次方程组

$$x_1\alpha_1 + x_2\alpha_2 + \cdots + x_m\alpha_m = 0$$
 \vec{x} $A_{n\times m}X = 0$

有非零解(仅有零解), 也即 $r(A_{n\times m}) < m(r(A_{n\times m}) = m)$.

- (2) \mathbf{P}^n 中n个n元向量 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关(相关)的充分必要条件是 $|\mathbf{A}| = |\alpha_1, \alpha_2, \dots, \alpha_n| \neq 0$ (=0).
- (3) 若m > n, 即向量的个数超过向量的分量的个数,则向量组(4-1)线性相关.
- (三) 向量组的极大无关组与秩
- 1、极大线性无关组的定义

如果 \mathbf{P}^n 中的向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 的一个部分组 $\alpha_n, \alpha_n, \dots, \alpha_n$ 满足以下条件:

- (1) 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 中每个向量能被 $\alpha_k,\alpha_k,\cdots,\alpha_k$ 线性表示:
- (2) 向量组 $\alpha_{i_1}, \alpha_{i_2}, \dots, \alpha_{i_r}$ 线性无关.

则称向量组 $\alpha_{i_1}, \alpha_{i_2}, \cdots, \alpha_{i_r}$ 是向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 的一个极大线性无关组.

- 2、极大无关组的性质
- (1) 零向量组没有极大无关组:线性无关向量组的极大无关组是其本身:一般情况下极大无关组不唯一.

- (2) 向量组与其任一极大无关组等价.
- (3) 向量组的任意两个极大无关组等价.
- (4) 等价向量组的极大无关组也等价.
- (5) 向量组的任意两个极大无关组中所含向量的个数都相同.
- 3、 向量组的秩的定义

向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 的极大无关组所含向量的个数称为该向量组的**秩**. 记作 $r(\alpha_1,\alpha_2,\cdots,\alpha_s)$. 规定 仅由零向量组成的向量组的秩规定为零.

- 4、向量组的秩的性质
- (1) 向量组 $\alpha_1,\alpha_2,\dots,\alpha_s$ 线性无关(线性相关)的充分必要条件是 $r(\alpha_1,\alpha_2,\dots,\alpha_s) = s(< s)$;
- (2) 如果一个向量组的秩为r,则向量组中任意r个线性无关的向量都是它的一个极大无关组.
- (3) 如果向量组(I)可以由向量组(II)线性表示,则 $r(I) \le r(II)$.
- (4) 等价向量组有相同的秩.
- 5、 向量组的秩与矩阵秩的关系

设 $A = [a_{ij}]$ 是数域 P 上的 $m \times n$ 矩阵. 记 A 的 m 个行向量 $\beta_i \in P^n$, $i = 1, 2, \cdots, m$; n 个列向量为 $\alpha_i \in P^m$, $j = 1, 2, \cdots, n$, 称 $r(\beta_1, \beta_2, \cdots, \beta_m)$ 和 $r(\alpha_1, \alpha_2, \cdots, \alpha_n)$ 分别为 A 的行秩和列秩.

- ① A 的行秩=r(A)=A 的列秩.
- ② 设 $m \times n$ 矩阵 A 的秩为r,则 A 的不为零的r 阶子式所在的诸列是 A 的列向量组的一个极大无关组;不为零的r 阶子式所在的诸行是 A 的行向量组的一个极大无关组.
 - ③ 初等行变换不改变矩阵 A 的列向量之间的线性相关性.
 - (四)向量空间及其子空间
 - 1、向量空间的概念

P'' 是一个非空集合,P 是一个数域,定义了P'' 中元素之间的加法及P 中数与V 中元素之间的数量乘法、显然P'' 对这两种运算封闭,且满足以下八条基本运算规律。

- (1) $\alpha + \beta = \beta + \alpha, \forall \alpha, \beta \in \mathbf{P}^n$;
- (2) $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma), \forall \alpha, \beta, \gamma \in \mathbf{P}^n$;
- (3) P'' 中有元素 0 ,使得 $\alpha + 0 = \alpha$, $\forall \alpha \in P''$ (具有这个性质的元素 0 称为 P'' 的零元素);
- (4) 对于 P^n 中每一元素 α ,都有一个元素 $\beta \in P^n$,使得 $\alpha + \beta = 0$ (β 称为 α 的负元素):
- (5) 对于P'' 中任一元素 α 有, $1 \cdot \alpha = \alpha$:
- (6) $k(l\alpha) = (kl)\alpha, \forall k, l \in \mathbb{P}, \forall \alpha \in \mathbb{P}^n$;
- (7) $(k+l)\alpha = k\alpha + l\alpha, \forall k, l \in \mathbb{P}, \forall \alpha \in \mathbb{P}^n$;
- (8) $k(\alpha + \beta) = k\alpha + k\beta, \forall k \in \mathbb{P}, \forall \alpha, \beta \in \mathbb{P}^n$.

则称 P'' 是数域 P 上的 n 元向量空间. P'' 中元素称为向量.

2、子空间

设 $W \neq P''$ 的非空子集,如果W对于P'' 的加法和数量乘法运算封闭,则称 $W \neq P''$ 的子空间(记作W < V).

即 $W < V \Leftrightarrow W$ 非空且对于 \mathbf{P}^n 的加法和数量乘法运算封闭.

3、张成子空间

对于P''中的任意向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$,令

$$L(\alpha_1,\alpha_2,\cdots,\alpha_s) = \left\{ k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s \mid k_i \in \mathbf{P}, i = 1,2,\cdots,s \right\}.$$

则 $L(\alpha_1,\alpha_2,\cdots,\alpha_s)$ 是 \mathbf{P}^n 的子空间. 称 $L(\alpha_1,\alpha_2,\cdots,\alpha_s)$ 是由生成元 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 张成的子空间.

- 4、子空间的基与维数
- (1) 定义

设V 是数域 \mathbf{P} 上有限生成的线性空间, $\alpha_1, \alpha_2, \dots, \alpha_n \in V$, 如果

- ① $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关;
- ② $\alpha_1, \alpha_2, \cdots, \alpha_n$ 生成V,

则称向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是 V 的一个基. 非负整数 n 称为 V 的维数, 记作 $\dim V = n$.

规定 $\dim\{0\} = 0$.

- (五) 线性方程组解的性质及通解结构
- 1、线性方程组有解判别定理
- (1) m×n线性方程组

$$x_1\alpha_1 + x_2\alpha_2 + \dots + x_m\alpha_m = \beta \quad \text{if} \quad AX = \beta$$
 (4-2)

有解的充分必要条件是它的系数矩阵与增广矩阵有相同的秩,即 $r(A) = r(\tilde{A})$.

- (2) 设 $m \times n$ 线性方程组(4-2) 是相容的. 如果r(A) = n, 即A 列满秩,则方程组(4-2)有唯一解;如果r(A) < n,则方程组(4-2)有无穷多组解.
- (3) $m \times n$ 齐次线性方程组 AX = 0 有非零解的充分必要条件是它的系数矩阵的秩小于未知量的个数,即r(A) < n.
 - 2、齐次线性方程组解的结构
 - (1) 解的运算性质

齐次线性方程组 AX=0 的有限个解的线性组合仍是它的解,即解集 $N(A)=\left\{X\in P''\middle|AX=0\right\}$ 对于 P'' 的加法与数量乘法运算封闭,从而是 P'' 的一个子空间,称 N(A) 称为齐次方程组 AX=0 的解 (\mathbf{F}) 空间.

(2) 基础解系

数域 P 上的 $m \times n$ 齐次线性方程组 AX = 0 有非零解时,如果它的解向量 $\eta_1, \eta_2 \cdots, \eta_\ell$ 满足以下两个条件:

- ① $\eta_1, \eta_2, \cdots, \eta_r$ 线性无关;
- ② 方程组 AX = 0 的每一个解都可由 $\eta_1, \eta_2, \dots, \eta_r$ 线性表示.

则称 $\eta_1, \eta_2, \dots, \eta_r$ 为齐次方程组AX = 0的一个基础解系.

(3) 齐次线性方程组的通解结构

如果 $m \times n$ 齐次线性方程组AX=0 的系数矩阵A 的秩r < n,则它一定有基础解系(不唯一),并且它的每一个基础解系所含解向量的个数等于n-r. 即它的解空间 N(A) 是n-r 维的. 设 $\eta_1,\eta_2\cdots,\eta_r$ 为AX=0 的一个基础解系,则方程组AX=0 的通解为 $X=k_1\eta_1+k_2\eta_2+\cdots+k_{n-r}\eta_{n-r}$,

其中 k_1, k_2, \dots, k_{n-r} 为任意常数.

- 3、非齐次线性方程组解的结构
- (1) 导出组

数域 P 上的 $m \times n$ 非齐次线性方程组 $AX = \beta$,其中 $A \in P^{m \times n}$, $X \in P^n$, $\beta \in P^m$.称齐次线性方程组 AX = 0 为非齐次线性方程组 $AX = \beta$ 的导出组.

- (2) 非齐次线性方程组解的性质
- ① 如果 X_1, X_2 分别是方程组 $AX = \beta$ 的两个解,则 $X_1 X_2$ 是它的导出组AX = 0的解.
- ② 如果 X_0 是 $AX = \beta$ 的一个特解,而 η 是它的导出组 AX = 0 的任一解,则 $X_0 + \eta$ 是 $AX = \beta$ 的解.
 - (3) 非齐次线性方程组解的结构

如果非齐次线性方程组 $AX = \beta$ 有无穷多解,设r(A) = r,则它的通解为

$$X = X_0 + k_1 \eta_1 + k_2 \eta_2 + \dots + k_{n-r} \eta_{n-r}$$
, k_1, k_2, \dots, k_{n-r} 为任意常数,

其中 X_0 是 $AX = \beta$ 的一个特解, $\eta_1, \eta_2 \cdots, \eta_{n-r}$ 是其导出组AX = 0的一个基础解系.

- (六) R"中向量的内积
- 1、内积的定义

对于任意 $\alpha = \begin{bmatrix} a_1, a_2, \cdots, a_n \end{bmatrix}^\mathsf{T}$, $\beta = \begin{bmatrix} b_1, b_2, \cdots, b_n \end{bmatrix}^\mathsf{T} \in \mathbf{R}^n$, 规定 $\alpha \vdash \beta$ 的内积为 (α, β) 或 $\alpha \cdot \beta$,即

$$(\alpha, \beta) = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \alpha^{\mathsf{T}}\beta = \beta^{\mathsf{T}}\alpha$$
.

具有内积运算的 \mathbb{R}^n 称为一个欧几里得空间,简称欧氏空间。

如果 α , β 是 R" 中的行向量,则 α 与 β 的内积为

$$(\alpha, \beta) = a_1b_1 + a_2b_2 + \cdots + a_nb_n = \alpha\beta^{\mathsf{T}} = \beta\alpha^{\mathsf{T}}.$$

- 2、内积的性质
- (1) $(\alpha, \beta) = (\beta, \alpha)$;
- (2) $(k\alpha, \beta) = k(\alpha, \beta)$;
- (3) $(\alpha + \beta, \gamma) = (\alpha, \gamma) + (\beta, \gamma)$;
- (4) $(\alpha, \alpha) \ge 0$, $\mathbb{H}(\alpha, \alpha) = 0 \Leftrightarrow \alpha = 0$.
- 3、向量 α 的长度规定为 $|\alpha| = \sqrt{(\alpha,\alpha)}$.
- 4、标准正交组
- (1) 若 $(\alpha, \beta) = 0$,则称 $\alpha 与 \beta$ 正交,记作 $\alpha \bot \beta$.
- (2) 两两正交的非零向量组称为正交向量组、每个向量都是单位向量的正交向量组称为标准正交组.
 - (3) 正交向量组必线性无关.
- (4) 由n个向量组成的正交向量组称为欧氏空间R"的一个正交基. 由n个向量组成的标准正交组称为欧氏空间R"的一个标准正交基.

 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 是欧氏空间 \mathbf{R}^n 的一个标准正交基 \Leftrightarrow $(\alpha_i, \alpha_j) = \delta_{ij}, i, j = 1, 2, \cdots, n$.

(5) 施密特正交化方法

设(I) $\alpha_1, \alpha_2, \dots, \alpha_s (s \le n)$ 是 \mathbb{R}^n 的线性无关向量组,令

$$\beta_{i} = \alpha_{1},$$

$$\beta_{k} = \alpha_{k} - \sum_{i=1}^{k-1} \frac{(\alpha_{k}, \beta_{i})}{(\beta_{i}, \beta_{i})} \beta_{i}, k = 2, 3, \dots, s,$$

则(II) $\beta_1, \beta_2, \dots, \beta_s$ 是与(I)等价的正交向量组. 令

$$\eta_i = \frac{\beta_i}{|\beta_i|}, i = 1, 2, \dots, s,$$

则(III) $\eta_1, \eta_2, \dots, \eta_s$ 是与(I) 等价的标准正交组.

- (七) 正交矩阵
- 1、正交矩阵的定义

- 2、正交矩阵的性质
- (1) E 是正交矩阵, 初等矩阵 E[i,j] 是正交矩阵;
- (2) 若A是正交矩阵,则A = 1或-1;
- (3) 若A是正交矩阵,则 A^{-1} 与 A^{\bullet} 也是正交矩阵;
- (4) 若A与B是正交矩阵,则AB也是正交矩阵.
- (5) n 阶实矩阵 A 是正交矩阵的充要条件是 A 的列(行)向量组是欧氏空间 \mathbb{R}^n 的一个标准正交基.

三、填空题

- 1、若 $\alpha_1 = [1,0,5,2]^T$, $\alpha_2 = [3,-2,3,-4]^T$, $\alpha_3 = [-1,1,t,3]^T$ 线性相关,则 $t = _____$.
- 2、若 $\beta = [1,2,t]^{T}$ 可由 $\alpha_1 = [2,1,1]^{T}$, $\alpha_2 = [-1,2,7]^{T}$, $\alpha_3 = [1,-1,-4]^{T}$ 线性表出,则t =______.
- 3、当n为_____时,向量组 $\alpha_i = [1, \lambda_i, \lambda_i^2, \lambda_i^3](i=1,2,\cdots,n)$ 线性相关,其中 $\lambda_i, \lambda_2, \cdots, \lambda_n$ 是互不相同的数.
 - 4、设三阶矩阵 $A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & 0 & 4 \end{bmatrix}$,向量 $\alpha = [a,1,1]^{\mathsf{T}}$.已知 $A\alpha$ 与 α 线性相关, $a = \underline{\hspace{1cm}}$
- 5、设向量组 $\alpha_1 = [1, 3, -1]^T$, $\alpha_2 = [-1, 0, 2]^T$, $\alpha_3 = [3, k, -4]^T$,当 $k = _____$ 时, $\alpha_1, \alpha_2, \alpha_3$ 线性相关,此时它的一个极大无关组为______.
 - 6、设 3 元线性方程组 $AX=m{\beta}$ 的系数矩阵 A 的秩为 2, $\alpha_1,\alpha_2,\alpha_3$ 是其 3 个解向量,且 $\alpha_1+\alpha_2+\alpha_3$

$$\alpha_3 = [3, 6, 9]^T, \alpha_2 - \alpha_3 = [1, 1, 1]^T$$
,则 $AX = \beta$ 的通解为_____.

7、设
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$$
, A^{\bullet} 是 A 的伴随矩阵,则 $A^{\bullet}X = \mathbf{0}$ 的通解是______.

8、设
$$\alpha_1 = [6, -1, 1]^T$$
, $\alpha_2 = [-7, 4, 2]^T$ 是线性方程组
$$\begin{cases} a_1x_1 + a_2x_2 + a_3x_3 = a, \\ x_1 + 3x_2 - 2x_3 = 1, \text{ 的两个解,那么此方程} \\ 2x_1 + 5x_2 + x_3 = 8 \end{cases}$$

组的通解为

9、在 \mathbf{R}^4 中,与矩阵 $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{bmatrix}$ 的每个行向量都正交的全体向量所构成的 \mathbf{R}^4 的子空间

的维数是

四、选择题

- 1、设 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 是n元向量,下列命题中错误的是_____.
- (A) 若 α_{ϵ} 可由 $\alpha_{1},\alpha_{2},\cdots,\alpha_{\epsilon-1}$ 线性表出,则 $\alpha_{1},\alpha_{2},\cdots,\alpha_{\epsilon}$ 线性相关
- (B) 若 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性相关, α_n 不能用 $\alpha_1, \alpha_2, \cdots, \alpha_{n-1}$ 线性表出, 则 $\alpha_1, \alpha_2, \cdots, \alpha_{n-1}$ 线性相关
- (C) 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 中,任意s-1个向量都线性无关,则 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关
- (D) 若向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 的秩为 r,则 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 中任意 r 个线性无关的向量都是它的极大 无关组
 - 2、下列向量组中,线性无关的是

 - (A) [1,2,3,4],[4,3,2,1],[0,0,0,0] (B) [a,b,c],[b,c,d],[d,e,f],[f,a,b]
 - (C) [a,1,b,0,0],[c,0,d,2,3],[e,4,f,5,6] (D) [a,1,2,3],[b,1,2,3],[c,4,2,3],[d,0,0,0]
 - 3、设 A 是秩为n-1的n阶矩阵, α , 与 α , 是方程组 Ax=0 的互异的解,则 Ax=0 的通解必定是
- (A) $\alpha_1 + \alpha_2$ (B) $k\alpha_1$ (C) $k(\alpha_1 + \alpha_2)$ (D) $k(\alpha_1 \alpha_2)$
- 4、设有 3×4 非齐次线性方程组 $AX = \beta$,岩 成立,则该方程组一定有解.
- (A) r(A) = 1
- (B) r(A) = 2 (C) r(A) = 3 (D) r(A) = 4

5、设n阶矩阵A 的伴随矩阵 $A^{\bullet} \neq 0$,若 $\xi_1, \xi_2, \xi_3, \xi_4$ 是非齐次方程组Ax = b的互不相等的解,则

对应的齐次方程组 Ax = 0 的基础解系

(A) 不存在

- (B) 仅含一个非零解向量
- (C) 含有两个线性无关的解向量
- (D) 含有三个线性无关的解向量
- 6、对于 n 元方程组、下列命题正确的是 .
- (A) 如果 Ax = 0 只有零解、则 Ax = b 有唯一解.
- (B) 如果 Ax = 0 有非零解,则 Ax = b 有无穷多解.
- (C) 如果Ax = b有两个不同的解,则Ax = 0有无穷多解.
- (D) Ax = b 有唯一解的充要条件是r(A) = n.
- 7、齐次线性方程组 AX = 0 仅有零解的充要条件是
- (A) A 的行向量组线性无关
- (B) A 的列向量组线性无关
- (C) A 的行向量组线性相关
- (D) A 的列向量组线性相关
- 8、设 n 元线性方程组 AX = 0 的系数矩阵 A 的秩为 n = 3 ,且 α_1 , α_2 , α_3 为方程组 AX = 0 的 3 个线性无关的解向量,则方程组的另一个基础解系为
 - (A) $\alpha_1 \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$
- (B) $\alpha_2 \alpha_1, 2\alpha_1 + \alpha_2 + \alpha_3$
- (C) $2\alpha_2 \alpha_1, -\alpha_2 + \frac{1}{2}\alpha_3, \alpha_3 + \alpha_1$ (D) $\alpha_1 + \alpha_2 + \alpha_3, -\alpha_2 + \alpha_3, -2\alpha_3 \alpha_1$

9、设
$$\alpha_1 = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$, 则联立的三条直线 $\begin{cases} a_1x + b_1y + c_1 = 0, \\ a_2x + b_2y + c_2 = 0, (a_i^2 + b_i^2 \neq a_3x + b_3y + c_3 = 0, \end{cases}$

0, i = 1, 2, 3) 交于一点的充要条件是

- (A) $\alpha_1, \alpha_2, \alpha_3$ 线性相关
- (B) $r[\alpha_1, \alpha_2, \alpha_3] = r[\alpha_1, \alpha_2]$
- (C) $\alpha_1, \alpha_2, \alpha_3$ 线性无关
- (D) $\alpha_1, \alpha_2, \alpha_3$ 线性相关, α_1, α_2 线性无关

五、综合题

- 1、设向量组 $\alpha_1 = [1, -1, 2, 4]^T, \alpha_2 = [0, 3, 1, 2]^T, \alpha_3 = [3, 0, 7, 14]^T, \alpha_4 = [1, -1, 2, 0]^T$. 求向量组 的秩和一个极大无关组,并将其余向量用该极大无关组线性表示..
- 2、己知 $\alpha_1 = [1,-1,1]^T$, $\alpha_2 = [1,t,-1]^T$, $\alpha_3 = [t,1,2]^T$, $\beta = [4,t^2,-4]^T$, 若 β 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性 表出且表示法不唯一, 求t及 β 的表达式.
- 3、设 $\alpha_i = [a_{i1}, a_{i2}, \dots, a_{in}]^T$, $(i = 1, 2, \dots, r; r < n)$ 是n元实向量,且 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性无关,已 知 $\boldsymbol{\beta} = [b_1, b_2, \dots, b_n]^T$ 是线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\ \dots \\ a_{r1}x_1 + a_{r2}x_2 + \dots + a_mx_n = 0 \end{cases}$$

的非零解向量. 试判断向量组 $\alpha_1,\alpha_2,\ldots,\alpha_r,\beta$ 的线性相关性.

4、已知非齐次线性方程组

$$\begin{cases} \lambda x_1 + \lambda x_2 + 2x_3 = 1, \\ \lambda x_1 + (2\lambda - 1)x_2 + 3x_3 = 1, \\ \lambda x_1 + \lambda x_2 + (\lambda + 3)x_3 = 2\lambda - 1. \end{cases}$$

问 λ 为何值时, 方程组有唯一解, 无解, 有无穷多解? 并求出其通解.

5、设矩阵 $A=[\alpha_1,\alpha_2,\alpha_3,\alpha_4],\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 是 4 元向量,其中 $\alpha_2,\alpha_3,\alpha_4$ 线性无关. $\alpha_1=2\alpha_2-\alpha_3$,如果 $\beta=\alpha_1+\alpha_2+\alpha_3+\alpha_4$,求线性方程组 $AX=\beta$ 的通解.

6、设齐次方程组
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\ & \dots \\ a_{n-1,1}x_1 + a_{n-1,2}x_2 + \dots + a_{n-1,n}x_n = 0, \end{cases}$$
的系数矩阵为 A , M_j $(j = 1, 2, \dots, n)$ 是矩

阵 A 划去第 j 列所得到的行列式,证明:如果 M_j 不全为 0,则 $[M_1,-M_2,\cdots,\left(-1\right)^{n-1}M_n]^{\mathsf{T}}$ 是该方程组的基础解系.

7、设 α , β 为3维列向量,矩阵 $A = \alpha \alpha^{\mathsf{T}} + \beta \beta^{\mathsf{T}}$,其中 α^{T} , β^{T} 分别是 α , β 的转置,证明: (I) 秩 $r(A) \leq 2$; (II) 若 α , β 线性相关,则秩r(A) < 2.

- 8、若 A 是正交矩阵,Y = AX(X 与 Y) n 元列向量),证明 X 与 Y 的长度相等.
- 9、设 $A^T = A \in \mathbb{R}^{n \times n}$, $B^T = -B \in \mathbb{R}^{n \times n}$,且A B可逆,AB = BA. 试证 $(A + B)(A B)^{-1}$ 是正交矩阵.
 - 10、若A和B都是正交矩阵,且|A|=-|B|,求证|A+B|=0.

答案与提示

三、填空题: 1、t=1. 2、t=5. 3、 $n \ge 5$. 4、a=-1. 5、k=6, α_1,α_2 为一个极大无关组(不唯一). 6、 $k[1,1,1]^T+[1,2,3]^T$, k 为任意常数. 7、 $k_1[1,2,-1]^T+k_2[1,0,1]^T$, k_1,k_2 为任意常数. 8、 $[6,-1,1]^T+k[13,-5,-1]^T$, k 为任意常数. 9、2.

四、选择题: 1、(C). 2、(C). 3、(D). 4、(C). 5、(B).6、(C).7、(B). 8、(C). 9、(D). 五、综合题:

- 1、 $r[\alpha_1, \alpha_2, \alpha_3, \alpha_4] = 3$: $\alpha_1, \alpha_2, \alpha_4$ 是一个极大无关组,且 $\alpha_3 = 3\alpha_1 + \alpha_2 + 0 \cdot \alpha_4$.
- 2, t = 4, $\beta = -3u\alpha_1 + (4-u)\alpha_2 + u\alpha_3$, $\forall u \in \mathbf{P}$.
- 3、向量组 $\alpha_1,\alpha_2,\cdots,\alpha_r,\beta$ 线性无关.
- 4、当 $\lambda=0$ 或 $\lambda=-1$ 时, $r(A) \neq r(ilde{A})$,此时方程组无解;当 $\lambda \neq -1$, $\lambda \neq 0$ 且 $\lambda \neq 1$ 时,方程

组有唯一解,由克拉墨法则得 $x_1=\frac{5-\lambda}{\lambda(\lambda+1)}, x_2=-\frac{2}{\lambda+1}, x_3=\frac{2(\lambda-1)}{\lambda+1}$; 当 $\lambda=1$ 时,方程组有无穷

多解,通解为
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + k \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \quad \forall k \in \mathbf{P}.$$

- 5、方程组的通解为 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 0 \\ 1 \end{bmatrix} + k \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}, \quad \forall k \in \mathbf{P} .$
- 6、略.7、略.8、略.

故 $(A+B)(A-B)^{-1}$ 为正交矩阵.

10、因为
$$A, B$$
 都是正交阵,所以 $BB^{\mathsf{T}} = AA^{\mathsf{T}} = E_n$,且 $|B|^2 = 1$. 于是
$$|A + B| = |BB^{\mathsf{T}}A + BA^{\mathsf{T}}A| = |B(B^{\mathsf{T}} + A^{\mathsf{T}})A| = |B||A + B||A| = -|B|^2 |A + B| = -|A + B|.$$
 故 $|A + B| = 0$.

第五章 线性空间

一、教学要求

- 1. 了解线性空间的概念和性质,理解线性空间的子空间、基和维数的概念.
- 2. 理解和掌握基之间的过渡矩阵的概念和计算,会使用坐标的定义及坐标变换公式计算坐标。
- 3. 掌握用坐标化方法判断常见线性空间中向量组的线性相关性.

二、主要内容

- (一) 线性空间及其子空间
 - 1、线性空间的定义

设V是一个非空集合,P是一个数域,定义了V中元素之间的加法及P中数与V中元素之间的数量乘法、如果V对这两种元素封闭,且满足以下八条基本运算规律:

- (1) $\alpha + \beta = \beta + \alpha, \forall \alpha, \beta \in V$;
- (2) $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma), \forall \alpha, \beta, \gamma \in V$;
- (3) V 中有元素 0 ,使得 $\alpha + 0 = \alpha$ 、 $\forall \alpha \in V$ (具有这个性质的元素 0 称为 V 的零元素);
- (4) 对于V 中每一元素 α , 都有一个元素 $\beta \in V$, 使得 $\alpha + \beta = 0$ (β 称为 α 的负元素);
- (5) 对于V 中任一元素 α 有, $1 \cdot \alpha = \alpha$;
- (6) $k(l\alpha) = (kl)\alpha, \forall k, l \in \mathbf{P}, \forall \alpha \in V$:
- (7) $(k+l)\alpha = k\alpha + l\alpha, \forall k, l \in \mathbb{P}, \forall \alpha \in V$;
- (8) $k(\alpha + \beta) = k\alpha + k\beta, \forall k \in \mathbf{P}, \forall \alpha, \beta \in V$.

则称V 是数域P 上的线性空间或向量空间. V 中元素称为向量.

- 2、基本性质
- (1) V 中有唯一的零向量:
- (2) V 中每个向量 α 有唯一的负向量;
- (3) $\forall \alpha, \beta, \gamma \in V$, 若 $\alpha+\gamma=\beta+\gamma$,则 $\alpha=\beta$ (即V具有消去律);
- (4) $0=0 \cdot \alpha, -\alpha=(-1)\alpha$;
- (5) $k\alpha = 0 \Leftrightarrow k = 0$ 或者 $\alpha = 0$.
- 3、子空间的定义

设V 是数域 \mathbf{P} 上的线性空间,W 是V 的非空子集,如果W 按照V 的加法和数量乘法也构成 \mathbf{P} 上的线性空间,则称W 是V 的子空间(记作W < V).

- 4、子空间的判别
- (1) $W < V \Leftrightarrow W \neq V$ 的非空子集,且W 对于V 的加法和数量乘法都封闭.
- (2) 张成子空间

设 $L(\alpha_1,\alpha_2,\cdots,\alpha_s)=\left\{k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s\,\middle|\,k_i\in\mathbf{P},\,i=1,2,\cdots,s\right\}$. 则 $L(\alpha_1,\alpha_2,\cdots,\alpha_s)$ 是 V 的子空间。称 $L(\alpha_1,\alpha_2,\cdots,\alpha_s)$ 是由生成元 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 张成的子空间。

(二) 线性空间的维数与基、坐标

1、基和维数的定义

设V 是数域P上有限生成的线性空间, $\alpha_1,\alpha_2,\cdots,\alpha_n \in V$,如果

- ① $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关;
- ② $\alpha_1, \alpha_2, \dots, \alpha_n$ 生成V,

则称向量组 $\alpha_1,\alpha_2,\dots,\alpha_n$ 是V的一个基. 非负整数n称为V的维数,记作 dimV=n.

规定 $\dim\{\mathbf{0}_{\nu}\}=0$.

2、 向量在给定基下的坐标

设 V 是数域 \mathbf{P} 上的 n 维线性空间, $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是 V 的一个基,如果 V 中向量 α 可表示成 $\alpha = x_1\alpha_1 + x_2\alpha_2 + \cdots + x_n\alpha_n$, 称由表示系数构成的 n 元列向量 $\mathbf{X} = [x_1,x_2,\cdots,x_n]^\mathsf{T} \in \mathbf{P}^n$ 为向量 α 在 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 下的坐标(向量), 简称坐标,称 x_i 为第 i 个坐标分量, $i=1,2,\cdots,n$.

(三)坐标化方法・同构

设 V_n 是数域 \mathbf{P} 上的一个n 维线性空间, $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是 V_n 的一个基。设 V_n 中的向量 $\gamma,\beta_1,\beta_2,\cdots,\beta_n$ 在基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 下的坐标分别为 $\gamma',\beta_1',\beta_2',\cdots,\beta_n' \in \mathbf{P}^n$,则

- (1) $\gamma = k_1 \beta_1 + k_2 \beta_2 + \dots + k_n \beta_n$ 当且仅当 $\gamma' = k_1 \beta_1' + k_2 \beta_2' + \dots + k_n \beta_n'$;
- (2) $\beta_1, \beta_2, \dots, \beta_n$ 线性相关(线性无关)的充分必要条件是 $\beta_1', \beta_2', \dots, \beta_n'$ 线性相关(线性无关).

注 进一步延伸可得, V_n 中的向量组 $\beta_1,\beta_2,\cdots,\beta_n$ 与它的坐标组 $\beta_1',\beta_2',\cdots,\beta_n'\in \mathbf{P}^n$ 的极大无关组是对应的,从而 $r(\beta_1,\beta_2,\cdots,\beta_n)=r(\beta_1',\beta_2',\cdots,\beta_n')$.

- (四)基变换与坐标变换
 - 1、 过渡矩阵的定义

设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 以及 $\beta_1,\beta_2,\cdots,\beta_n$ 是n维线性空间V的两个基. 新基 $\{\beta_i\}$ 中的每个向量可由旧基 $\{\alpha_i\}$ 线性表示,即有

$$\begin{cases} \beta_1 = s_{11}\alpha_1 + s_{21}\alpha_2 + \dots + s_{n1}\alpha_n, \\ \beta_2 = s_{12}\alpha_1 + s_{22}\alpha_2 + \dots + s_{n2}\alpha_n, \\ \dots & \dots \\ \beta_n = s_{1n}\alpha_1 + s_{2n}\alpha_2 + \dots + s_{nn}\alpha_n. \end{cases}$$

以 $\beta_i(j=1,2,\cdots,n)$ 在旧基 $\{\alpha_i\}$ 下的坐标向量 $[s_{1j},s_{2j},\cdots,s_{nj}]^{\mathsf{T}}$ 为列向量作矩阵

$$S = \begin{bmatrix} s_{11} & s_{12} & \cdots & s_{1n} \\ s_{21} & s_{22} & \cdots & s_{2n} \\ \vdots & \vdots & & \vdots \\ s_{n1} & s_{n2} & \cdots & s_{nn} \end{bmatrix} \quad \overrightarrow{D} \left[\beta_{1}, \beta_{2}, \cdots, \beta_{n} \right] = [\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}] S ,$$

称方阵S为由旧基 $\{\alpha_i\}$ 到新基 $\{\beta_i\}$ 的过渡矩阵.

- 2、 过波矩阵的性质
- ① 过渡矩阵是可逆矩阵:
- ② 若由基 $\{\alpha_i\}$ 到基 $\{eta_i\}$ 的过渡矩阵为S,则由基 $\{eta_i\}$ 到基 $\{lpha_i\}$ 的过渡矩阵为 S^{-1} .

③ 过渡阵具有传递性,若由基(I)到基(II)的过渡矩阵为 S_1 ,由基(II)到基(III)的过渡矩阵为 S_2 ,则由基(I)到基(III)的过渡矩阵为 $S=S_1S_2$.

3、 坐标变换

设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 与 $\beta_1,\beta_2,\cdots,\beta_n$ 是V的两个基,S是由基 $\{\alpha_i\}$ 到基 $\{\beta_i\}$ 的过渡矩阵,又 $\gamma\in V$ 在旧基 $\{\alpha_i\}$ 与新基 $\{\beta_i\}$ 下的旧坐标和新坐标分别为 $X=[x_1,x_2,\cdots,x_n]^{\mathsf{T}},Y=[y_1,y_2,\cdots,y_n]^{\mathsf{T}}$,则

$$X = SY$$
 $y = S^{-1}X$

称为在基变换 $[\beta_1, \beta_2, \dots, \beta_n] = [\alpha_1, \alpha_2, \dots, \alpha_n]S$ 下的向量坐标变换公式.

三、填空题

- 1、设向量组(I) 可由向量组(II) 线性表示,向量组(I) 的秩为r,向量组(II) 的秩为s,则r与s的关系为
- 2、已知向量组 $(I)\alpha_1,\alpha_2,\alpha_3$; $(II)\alpha_1,\alpha_2,\alpha_3,\alpha_4$; $(III)\alpha_1,\alpha_2,\alpha_3,\alpha_5$, 如果它们的秩分别为 r(I)=r(II)=3,r(III)=4 , 则 $r(\alpha_1,\alpha_2,\alpha_3,\alpha_4+\alpha_5)=$ _______.
- 3、设 \mathbf{R}^3 两个基为(I): $\boldsymbol{\alpha}_1 = [1, 1, 1]^T$, $\boldsymbol{\alpha}_2 = [1, 0, -1]^T$, $\boldsymbol{\alpha}_3 = [1, 0, 1]^T$; (II): $\boldsymbol{\beta}_1 = [1, 2, 1]^T$, $\boldsymbol{\beta}_2 = [2, 3, 4]^T$, $\boldsymbol{\beta}_3 = [3, 4, 3]^T$. 则基(I)到(II)的过渡矩阵为______; 向量 $\boldsymbol{\beta} = \boldsymbol{\beta}_1 + 2\boldsymbol{\beta}_2 3\boldsymbol{\beta}_3$ 在基(I)下的坐标为______.

4、若 ξ_1 , ξ_2 , ξ_3 是 3 维线性空间 V_3 的一个基,而向量组 (I) $\alpha_1 = \xi_1 + \xi_2$, $\alpha_2 = \xi_2$, $\alpha_3 = \xi_1 + 2\xi_2 + 2\xi_3$ 和(II) $\beta_1 = \xi_1$, $\beta_2 = \xi_1 + \xi_2$, $\beta_3 = \xi_1 + \xi_2 + \xi_3$ 分别是 V_3 的另外两个基,则由基(I)到基(II)的过渡矩阵为

四、选择题

- 1. 以下的集合对于指定的运算不构成实数域 R 上的线性空间的是_____.
- (A) n阶实对称(实反对称)矩阵的全体,对于矩阵的加法和实数与矩阵的乘法运算;
- (B) 所有形如 $[3a+b,4,a-5b]^{T}$ 的向量集合对于向量的加法和数量乘法;
- (C) 迹等于零的n阶方阵的全体,对于矩阵的加法和实数与矩阵的乘法运算;
- (D) 正实数的全体 \mathbf{R}^+ , 对于加法 " \oplus ": $a \oplus b = ab$, $\forall a, b \in \mathbf{R}^+$; 数量乘法 " \circ ": $k \circ a = a^k$, $\forall k \in \mathbf{R}$, $\forall k \in \mathbf{R}^+$.
- 2、设向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,向量 β_1 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,向量 β_2 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,则下列结论正确的是_____.
 - (A) $\alpha_1, \alpha_2, \beta_1$ 线性无关
- (B) $\alpha_1, \alpha_2, \beta_2$ 线性无关

(C) $\alpha_2, \alpha_3, \beta_1, \beta_2$ 线性相关

(D)
$$\alpha_1, \alpha_2, \alpha_3, \beta_1 + \beta_2$$
 线性相关

3、已知向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关,则向量组_____

(A)
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1$$
 线性无关

(B)
$$\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_4, \alpha_4 - \alpha_1$$
线性无关

(C)
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 - \alpha_1$$
 线性相关

(D)
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 - \alpha_4, \alpha_4 - \alpha_1$$
线性相关

五、综合题

1. 试证明在 $\mathbf{R}^{2\times 2}$ 中由矩阵 $A_1 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $A_2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ 生成的子空间 $W_1 = L(A_1, A_2)$ 与由 $B_1 = \begin{bmatrix} 2 & -1 \\ 3 & 3 \end{bmatrix}$, $B_2 = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$ 生成的子空间 $W_2 = L(B_1, B_2)$ 是相同的.

2、设A 是n阶方阵,若存在正整数k,使得线性方程组 $A^kX=0$ 有解向量 α ,且 $A^{k-1}\alpha\neq 0$,

证明:向量组 α , $A\alpha$, ..., $A^{k-1}\alpha$ 是线性无关的.

3. 验证 2 阶实上三角阵的全体

$$V = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix} \middle| a_{11}, a_{12}, a_{22} \in \mathbf{R} \right\}$$

是实数域R上的一个线性空间,并写出它的一个基,求出维数.

- 4. 在线性空间 $\mathbf{R}^{"^{*"}}$ 中,取一个固定的矩阵 \mathbf{A} ,试证:与 \mathbf{A} 可交换的矩阵的全体构成 $\mathbf{R}^{"^{*"}}$ 的一个子空间.
- 5. 利用坐标向量判断多项式组: $f_1(x) = 1 3x + 5x^2$, $f_2(x) = -3 + 5x 7x^2$, $f_3(x) = -4 + 5x 6x^2 \in \mathbf{R}[x]$, 的线性相关性,并求该向量组的秩和一个极大无关组.

6. 验证
$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$, $A_3 = \begin{bmatrix} 1 & -2 \\ 1 & 0 \end{bmatrix}$, $A_4 = \begin{bmatrix} 1 & -3 \\ 3 & -1 \end{bmatrix}$ 为线性空间 $\mathbf{R}^{2\times 2}$ 的一个基,求

向量 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 在该基下的坐标.

7. 设 $\alpha_1, \alpha_2, \alpha_3$ 为3维线性空间V的一个基,证明向量组

$$\beta_1 = \alpha_1 + \alpha_2 + \alpha_3$$
, $\beta_2 = \alpha_1 - \alpha_2 + \alpha_3$, $\beta_3 = \alpha_1 - 2\alpha_2 - \alpha_3$

也是V的一个基,并求基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵.

8. 在 $\mathbf{R}[x]_3$ 中取定基(I): $1, x, x^2, x^3$ 和(II): $1, 1+x, 1+x+x^2, 1+x+x^2+x^3$.

- (1) 求由基(I)到基(II)的过渡矩阵;
- (2) 求 $f(x) = 1 + 2x + 3x^2 + 4x^3$ 在基(II) 下的坐标;
- (3) 若多项式 g(x) 在基(II)下坐标为 $\left[1,2,3,4\right]^{T}$, 求它在基(I)下的坐标.

答案与提示

三、填空题

1,
$$r \le s$$
. 2, 4. 3, $\begin{bmatrix} 2 & 3 & 4 \\ 0 & -1 & 0 \\ -1 & 0 & -1 \end{bmatrix}$; $\begin{bmatrix} -4 \\ -2 \\ 2 \end{bmatrix}$. 4, $\begin{bmatrix} 2 & 2 & 1 \\ 2 & 3 & 1 \\ -1 & -1 & 0 \end{bmatrix}$.

四、选择题: 1、B. 2、B. 3、C.

五、综合题:

1、观察可知

$$B_1 = 3A_2 - A_1, B_2 = A_1 - A_2; A_1 = \frac{B_1 + 3B_2}{2}, A_2 = \frac{B_1 + B_2}{2},$$

可知向量组 $\{A_1, A_2\}$ 与 $\{B_1, B_2\}$ 线性等价,因而生成的子空间相同.

2、略.

3、证略,
$$\begin{bmatrix}1&0\\0&0\end{bmatrix}$$
, $\begin{bmatrix}0&1\\0&0\end{bmatrix}$, $\begin{bmatrix}0&0\\0&1\end{bmatrix}$ 是线性空间 V 的一个基(不唯一), $\dim V=3$.

4、设 $M = \{B \in \mathbb{R}^{n \times n} \mid AB = BA, A \in \mathbb{R}^{n \times n}$ 中的一固定矩阵 $\}$,由于 $O \in M$, $M \in \mathbb{R}^{n \times n}$ 的一个非空的子集. $\forall B, C \in M$ 有AB = BA, AC = CA, A(B + C) = AB + AC = BA + CA = (B + C)

C)A,所以 $B+C\in M$;对 $\forall k\in \mathbb{R}$,A(kB)=k(AB)=k(BA)=(kB)A,所以 $kB\in M$,因此M 是 $\mathbb{R}^{n\times n}$ 的一个子空间.

5、向量组 $f_1(x)$, $f_2(x)$, $f_3(x)$ 的秩为 2, 因而是线性相关的, $f_1(x)$, $f_2(x)$ 就是一个极大无关组.

6 、设
$$k_1A_1 + k_2A_2 + k_3A_3 + k_4A_4 = 0$$
 ,则 有
$$\begin{cases} k_1 + k_2 + k_3 + k_4 = 0, \\ -k_2 - 2k_3 - 3k_4 = 0, \\ k_3 + 3k_4 = 0, \\ -k_4 = 0. \end{cases}$$
 解 方 程 组 得

 $k_1=k_2=k_3=k_4=0$,故 A_1,A_2,A_3,A_4 线性无关,又 ${\bf R}^{2\times 2}$ 的维数是 4,所以 A_1,A_2,A_3,A_4 为线性空间 ${\bf R}^{2\times 2}$ 的一个基.

设 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 在常用基下的坐标为 $X = [a,b,c,d]^\mathsf{T}$. 设由常用基 $E_{11},E_{12},E_{21},E_{22}$ 到基 A_1,A_2,A_3,A_4 的过渡矩阵为 S ,则有

$$[A_1, A_2, A_3, A_4] = [E_{11}, E_{12}, E_{21}, E_{22}] \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & -1 \end{bmatrix}, S = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$$

那么A在基 A_1 , A_2 , A_3 , A_4 下的坐标 $Y = S^{-1}X$,

$$\mathbf{Y} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & -1 \end{bmatrix}^{-1} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} a+b+c+d \\ -b-2c-3d \\ c+3d \\ -d \end{bmatrix}.$$

7、证略: 基
$$\alpha_1, \alpha_2, \alpha_3$$
到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵 $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & -1 \end{bmatrix}$.

8、(1)
$$\begin{bmatrix} 1,1+x,1+x+x^2,1+x+x^2+x^3 \end{bmatrix} = \begin{bmatrix} 1,x,x^2,x^3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
, 则由基(I)到基(II)

的过渡矩阵为
$$S = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
.

(2) 设 f(x) 在基(II)下的坐标为 Y, f(x) 在基(I)下的坐标为 $X = \begin{bmatrix} 1, 2, 3, 4 \end{bmatrix}^T$, 则 X = SY, 即 $Y = S^{-1}X$. 由于

$$[S, X] = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & | & -1 \\ 0 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 1 & 0 & | & -1 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix},$$

所以 $Y = [-1, -1, -1, 4]^T$.

(3)
$$g(x)$$
 在基(I)下的坐标 $X = SY = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 10 \\ 9 \\ 7 \\ 4 \end{bmatrix}$.

第六章 特征值与特征向量•线性变换

一、教学要求

- 1. 理解相似矩阵的概念和性质.
- 2. 理解矩阵的特征值和特征向量的概念和性质,会求矩阵的特征值与特征向量.
- 3. 理解矩阵相似可对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法,
- 4、掌握实对称矩阵的特征值和特征向量的性质.
- 5. 掌握实对称矩阵正交相似对角化的方法.
- 6. 理解线性变换的概念,掌握求线性变换的矩阵的方法.
- 7. 了解线性变换在不同基下的矩阵互相相似,

二、主要内容

(一) 矩阵的相似关系

1、定义

对于方阵 A, B ,若有可逆矩阵 S ,使得 $S^{-1}AS = B$,则称 A = B 相似,记作 $A \sim B$.

- 2、性质
- (1) 相似关系满足自反性、对称性、传递性.
- (2) 相似的矩阵有相同的行列式、秩、迹.
- (3) 设A~B,则A可逆⇔B可逆.
- (4) 设 $A \sim B$, 而 $\varphi(x)$ 是多项式,则 $\varphi(A) \sim \varphi(B)$.
- (5) 数量矩阵 kE, 只与自身相似.

(二) 方阵的特征值与特征向量

1、定义

设 $A \in P^{n \times n}$,若有 $\lambda_0 \in P$ 与非零列向量 $X \in P^n$,使得 $AX = \lambda_0 X$,则称 λ_0 是方阵A的一个特征值,X是A的属于特征值 λ_0 的一个特征向量.

- 2、计算方法
- (1) 计算 $A \in \mathbf{P}^{n \times n}$ 的特征多项式 $f(\lambda) = |\lambda E_n A|$,这个多项式在数域 \mathbf{P} 内的所有根即为 A 的 所有特征值.
- (2) 设 A 的所有互异特征值为 $\lambda_1, \lambda_2, \dots, \lambda_s$,对每个 λ_i ,求出齐次线性方程组 $(A \lambda_i E_n)X = 0$ 的基础解系 $X_{i1}, X_{i2}, \dots, X_{im_i}$ [$m_i = n r(A \lambda_i E_n)$ 称为特征值 λ_i 的几何重数],则 A 的属于特征值 λ_i 的全体特征向量为

$$k_{i1}X_{i1} + k_{i2}X_{i2} + \dots + k_{im}X_{im}$$
, $\forall k_{i1}, k_{i2}, \dots, k_{im} \in \mathbf{P}$ 不全为零 $(i = 1, 2, \dots, s)$.

- 3、性质
- (1) 矩阵经过运算之后特征值和特征向量的变化
- ① $A \cap A^{\mathsf{T}}$ 的特征值相同:

- ② 若 λ 是 A 的特征值,X 是 A 的属于特征值 λ 的特征向量,则 $k\lambda$ 是 kA 的特征值,X 也是 kA 的属于特征值 $k\lambda$ 的特征向量; λ''' 是 A''' 的特征值, X 也是 A''' 的属于特征值 λ''' 的特征向量; 对任 一多项式 $\varphi(x)$, $\varphi(\lambda)$ 是 $\varphi(A)$ 的特征值, X 也是 $\varphi(A)$ 的属于特征值 $\varphi(\lambda)$ 的特征向量;
- ③ 若 A 是可逆矩阵,则 A 的所有特征值不为零;且若 λ 是 A 的特征值,X 是 A 的属于特征值 λ 的特征向量,则 λ^{-1} 是 A^{-1} 的特征值,X 也是 A^{-1} 的属于特征值 λ^{-1} 的特征向量。
 - (2) 相似的矩阵有完全一致的特征值.
- (3) 若 $\lambda_1, \lambda_2, \cdots \lambda_s$ 是矩阵 A 的互异特征值, $X_{i1}, X_{i2}, \cdots, X_{im_i}$ 是属于 λ_i 的线性无关的特征向量 $(i=1,2,\cdots,s)$,则特征向量组

$$X_{11}, X_{12}, \dots, X_{1m_1}; X_{21}, X_{22}, \dots, X_{2m_2}; \dots; X_{s1}, X_{s2}, \dots, X_{sm_s}$$

也线性无关.

- (4) n_i 重特征值 λ 必满足 $n-r(A-\lambda_i E_n) \le n_i$, 即 λ 的几何重数不超过代数重数.
- (5) 设 $\mathbf{A} = [a_{ii}] \in \mathbf{P}^{n \times n}$ 在数域 \mathbf{P} 内有 \mathbf{n} 个特征值 $\lambda_1, \lambda_2, \dots, \lambda_n$,则
- ① A 必与以 $\lambda_1, \lambda_2, \dots, \lambda_n$ 为主对角元的某个上三角矩阵相似:
- ② 有关系式: $\lambda_1 + \lambda_2 + \cdots + \lambda_n = a_{11} + a_{22} + \cdots + a_{nn}$, $\lambda_1 \lambda_2 \cdots \lambda_n = |A|$;
- ③ kA, A''', $\varphi(A)$ 的全体特征值分别为

$$\lambda_1, \lambda_2, \cdots, \lambda_n,$$

$$\lambda_1^m, \lambda_2^m, \cdots, \lambda_n^m,$$

$$\varphi(\lambda_1), \varphi(\lambda_2), \cdots, \varphi(\lambda_n).$$

当A可逆时, A^{-1} , $A^* = |A|A^{-1}$ 的全体特征值分别为

$$\lambda_1^{-1}, \lambda_2^{-1}, \dots, \lambda_n^{-1},$$

$$\frac{|A|}{\lambda_1}, \frac{|A|}{\lambda_2}, \dots, \frac{|A|}{\lambda_n}.$$

(6) 判定可逆方阵的特征值法

 $|A_{n\times n}| = 0 \Leftrightarrow 0 \not\in A$ 的特征值; $A_{n\times n}$ 可逆 $\Leftrightarrow 0$ 不是 A 的特征值; $A-cE_n$ 可逆 $\Leftrightarrow c$ 不是 A 的特征值.

- (三) 矩阵的相似对角化
 - 1、定义

设 $A \in \mathbf{P}^{n \times n}$ 与对角矩阵 $A \in \mathbf{P}^{n \times n}$ 相似,则称A 可对角化,并称A 为A 的相似对角形。

- 2、对角化条件
- (1) A 可对角化 \Leftrightarrow A 有n 个线性无关的特征向量.
- (2) 若 $A \in \mathbf{P}^{n \times n}$ 有n个互异特征值,则A可对角化.
- (3) $A ∈ P^{nsn}$ 可对角化 $\Leftrightarrow A$ 的每个特征值 λ 都在数域 P内,且 λ 的几何重数等于代数重数.
- (4) 实对称矩阵必可正交对角化.
- (5) 准对角矩阵 $A = \text{diag}(A_1, A_2, \dots, A_s)$ 可对角化 $\Leftrightarrow A_1, A_2, \dots, A_s$ 均可对角化.
- 3、对角化步骤

设 $A \in \mathbf{P}^{n \times n}$ 可对角化.

- (1) 求出 A 的所有互异特征值 $\lambda_1, \lambda_2, \dots, \lambda_s \in \mathbf{P}$, 重数之和 $n_1 + n_2 + \dots + n_s$ 应为 n.
- (2) 对每个特征值 λ, 齐次线性方程组

$$(A - \lambda_i E_n)X = 0$$

的解空间的维数应为 n_i ,取其基础解系 $X_{i1},X_{i2},\cdots,X_{in}$, $(i=1,2,\cdots,s)$.

(3) 做 n 阶可逆矩阵 $S = [X_{11}, \cdots, X_{1n_1}; X_{21}, \cdots, X_{2n_2}; \cdots; X_{s1}, \cdots, X_{sn_s}]$,则 $S^{-1}AS = \operatorname{diag}(\lambda_1 E_{n_s}, \lambda_2 E_{n_s}, \cdots, \lambda_s E_{n_s}).$

(四) 实对称矩阵的正交相似对角化

- 1、实对称矩阵的性质
- (1) 实对称矩阵的特征值都是实数.
- (2) 实对称矩阵的属于不同特征值的特征向量正交.
- (3) 实对称矩阵 A 必正交相似于对角矩阵,即必存在正交矩阵 Q ,使得

$$Q^{\mathsf{T}}AQ = \Lambda = \mathrm{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$$
,

其中 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是A的n个特征值,Q的列向量是A的相应的n个标准正交特征向量.

- 2、实对称矩阵正交对角化的步骤
- (1) 求出 A 的所有不同的特征值 $\lambda_1, \lambda_2, \cdots, \lambda_s$,代数重数分别为 k_1, k_2, \cdots, k_s (此时 $k_1 + k_2 + \cdots + k_n = n$);
 - (2) 对于每一个特征值 λ , 求出齐次线性方程组 ($\lambda E A$)X = 0 的基础解系

$$X_{i1}, X_{i2}, \dots, X_{ik}, i = 1, 2, \dots, s$$
;

- (3) 将 $X_{i1}, X_{i2}, \dots, X_{ik_i}$ 正交化、单位化得 A 的属于 λ_i 的正交单位特征向量 $\eta_{i1}, \eta_{i2}, \dots, \eta_{ik_i}$, $i=1,2,\dots,s$;
 - (4) 令 $Q = [\eta_{11}, \dots, \eta_{1k}, \dots, \eta_{s1}, \dots, \eta_{sk}]$,则Q是正交矩阵,且

$$Q^{-1}AQ = \Lambda = \operatorname{diag}[\lambda_1, \dots, \lambda_1, \dots, \lambda_s, \dots, \lambda_s].$$

(五) 线性变换

1、定义

如果满足以下三个条件,则称 σ 是线性空间V的一个线性变换:

- (1) σ 是V 的变换, 即V 到V 的映射;
- (2) $\sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta), \forall \alpha, \beta \in V$;
- (3) $\sigma(k\alpha) = k\sigma(\alpha), \forall \alpha \in V, k \in \mathbf{P}$.
- 2、矩阵表示
- (1) 设 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 是数域 \mathbf{P} 上的n维线性空间V的一个基, σ 是V的线性变换,像 $\sigma(\alpha_j)$ 在基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的坐标为 $[\sigma(\alpha_j)]_{\{\alpha_i\}} \in \mathbf{P}^n \ (j=1,2,\cdots,n)$,则称矩阵

$$[\sigma]_{\{\alpha_i\}} = \left[[\sigma(\alpha_1)]_{\{\alpha_i\}}, [\sigma(\alpha_2)]_{\{\alpha_i\}}, \cdots, [\sigma(\alpha_n)]_{\{\alpha_i\}} \right] \in \mathbf{P}^{n \times n}$$

为 σ 在基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 下的(表示)矩阵.

- (2) $[\sigma(\xi)]_{\{\alpha_i\}} = [\sigma]_{\{\alpha_i\}} [\xi]_{\{\alpha_i\}}.$
- (3) 设某线性变换在V 的旧基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 与新基 $\beta_1,\beta_2,\cdots,\beta_n$ 下的矩阵分别为A 和B,且从基 $\{\alpha_i\}$ 到基 $\{\beta_i\}$ 的过渡矩阵为S,则 $B=S^{-1}AS$.

三、填空题

- 1、设A为3阶矩阵.已知E-A不可逆,且|A|=-6, $\operatorname{tr} A=0$.则A的全部特征值为____.
- 2、设 3×3 齐次线性方程组 AX=0 有非零解,1 和 2 均为方阵 A 的特征值,则 $|A^2-2A+3E| = ____.$
- 3、设n阶可逆矩阵A的每一行的元素之和为 $a(a \neq 0)$,则 A^{-1} 的每一行元素之和为_____,且 $2A^{-1}+3E_n$ 必有特征值_____.
 - 4、 己知矩阵 $A = \begin{bmatrix} a & -1 & 1 \\ 1 & 3 & 5 \\ 0 & 0 & 2 \end{bmatrix}$ 有 3 个实特征值,且 A 的任意两个特征向量都线性相关,则

a = ____, A 的三个特征值为_____.

5、已知矩阵
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & a & b \\ 0 & 2 & 3 \end{bmatrix}$$
 与矩阵 $B = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ 相似,则 $a =$ ______, $b =$ ______.

- 6、设A为 2 阶方阵, α_1 , α_2 为线性无关的 2 元列向量, $A\alpha_1=0$, $A\alpha_2=2\alpha_1+\alpha_2$,则A 的非零特征值为_____.
 - 7、设 $\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ x & 1 & y \\ 1 & 0 & 0 \end{bmatrix}$ 有三个线性无关的特征向量,则x和y 应满足的条件为_____.
 - 8、设3阶实对称矩阵A的秩为2,且 $A^2+2A=O$,则A的三个特征值为______.
 - 9、设a是实对称矩阵A的k 重特征值,则 $r(aE_n A) = _____$.
- 10、设 $\alpha_1 = [a,0,-1]^T$, $\alpha_2 = [1,b,1]^T$, $\alpha_3 = [c,1,2]^T$ 是实对称矩阵 A 的三个不同特征值所对应的特征向量,则 $a = ______$, $b = ______$, $c = ______$.
 - 11、设3阶实对称矩阵 A 的特征值为1,-1,-1,则 $A^{100} =$
- 12、设二维线性空间V上的线性变换 σ 在基 $\left\{ lpha_1,lpha_2 \right\}$ 下的矩阵为 $\left[egin{array}{cc} 3 & 6 \\ 1 & 2 \end{array} \right]$,则 σ 在基 $\left\{ egin{array}{cc} \frac{1}{2}lpha_2,3lpha_1 \end{array} \right\}$ 下的矩阵为

四、选择题

1、设 <i>A</i> ,S	为 n 阶可逆矩阵, $lpha$	是矩阵 A 的特征向量,	那么在下列矩阵中	
① A^{-1}		-2A+3E	4S ⑤A*	
α 肯定是其特征	E向量的矩阵有	个.		
(A) 1	(B) 2	(C) 3	(D) · 4	
2、设3阶)	矩阵 A 的特征值是 $1,$ -	-2,4,则下列矩阵中非证	艮化的是	
(A) E - A		$A \qquad \qquad (C) 2E + A$	• •	
3、设四阶9	矩阵 A 与 B 相似,矩	阵 A 的特征值为 $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$	$-\frac{1}{5}$,则行列式 $ B^{-1}-$	E =
$(A)\frac{1}{5}$	(B) 24	(C) 120	(D) $\frac{1}{120}$	
4、设 <i>A,B</i>	$\in \mathbf{P}^{n \times n}$ 有 n 个相同的	特征值,则以下说法错误	吴的是	
(A) 必有 A	$ \mathbf{a} = \mathbf{B} $	(B) 必有 trA =	${ m tr} {\cal B}$	
(C) 必有 r((A) = r(B)	(D) A 不一定	相似于 B	
5、设矩阵	$\boldsymbol{B} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \boldsymbol{\Xi}.$	知 $A \sim B$, $r(A-2E)$ +	$r(A-E) = \underline{\hspace{1cm}}$	
(A) 2	(B) 3	(C) 4	(D) 5	
$6、设X_1, X$	X_2, X_3 为矩阵 A 的分别	別属于特征值 $\lambda_1 = \lambda_2 = 1$	$\lambda_3 = 3$ 的三个线性无	关的特征向量. 若
可逆阵 S 满足 S	$S^{-1}AS = \operatorname{diag}(3,1,1)$,则可取矩阵 $oldsymbol{S}$ 为 $_{oldsymbol{}}$		
(A) $[X_2, X_2]$	$[X_3, X_1]$	(B) $[X_3, X_3 +$	X_1, X_2]	
(C) $[3X_3,$	$X_1, -2X_2$]	(D) $[X_1, X_3, X_4]$	K_2]	
7、下列 2	阶实矩阵可对角化的:	是		
(A) $\begin{bmatrix} 1 \\ -4 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 5 \end{bmatrix}$ (B) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} -4 \\ 5 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$	(D) $\begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$	
8、设3阶	方阵 A 的特征值互不	相同,若行列式 A =0	,则 <i>A</i> 的秩为	
	(B) 1		(D) 3	
9、设 <i>A</i> 2	为 3 阶矩阵, P 为	3 阶可逆矩阵,且 P -	$^{1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. 若	$P = (\beta_1, \beta_2, \beta_3) ,$
$Q = (2\beta_1 + \beta_2)$	$,\beta_2-\beta_1,\beta_3)$,则 Q^{-1}	$^{-1}AQ = \underline{\hspace{1cm}}$		
(A) $ \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix} $	$\begin{bmatrix} 0 & 0 \\ 2 & 0 \\ 0 & 1 \end{bmatrix} $ (B) $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 2 \end{bmatrix} $ (C) $\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 2 \end{bmatrix} \qquad (D) \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$
10、若 3 元	元向量 α, β 满足 $\alpha^{T}\beta$	3=2,则以下命题错误的	的是	
(A) 矩阵 /	$oldsymbol{eta} oldsymbol{lpha}^{T}$ 的非零特征值为	2 (B) 矩阵 βα ^T	不可对角化	

(C) 矩阵 $\beta \alpha^{T}$ 不可逆

(D) 矩阵 $\beta \alpha^{T}$ 的对角元素之和为 2

11、已知 2 阶实对称矩阵 A 的一个特征向量为 $\begin{bmatrix} -3 \\ 1 \end{bmatrix}$,且|A|< 0,则_____ 也必为 A 的特征向量.

(A)
$$k \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

(B)
$$k \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \forall k \in \mathbf{R}, k \neq 0$$

- (C) $k_1\begin{bmatrix} -3\\1 \end{bmatrix} + k_2\begin{bmatrix} 1\\3 \end{bmatrix}$, 其中 k_1 , k_2 为任意全不为零的实数
- (D) $k_1 \begin{bmatrix} -3 \\ 1 \end{bmatrix} + k_2 \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, 其中 k_1, k_2 为任意不全为零的实数
- 12、与实对称矩阵 $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ 正交相似的矩阵是 _____.

(A)
$$\begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 0 & 1 \\ 1 & 4 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$$

(A)
$$\begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$$
 (B) $\begin{bmatrix} 0 & 1 \\ 1 & 4 \end{bmatrix}$ (C) $\begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 1 \\ 4 & 3 \end{bmatrix}$

五、综合题

- 1、设 $A = [a_{ij}]_{max}$ 的每行元素之和都为c,求证:
- (1) c 是 A 的一个特征值;
- (2) 若 A 可逆,则 A^{-1} 的每行元素之和都为 c^{-1} ;
- (3) 对任一多项式 f(x), f(A) 的每行元素之和都为 f(c).

2、设矩阵
$$A = \begin{bmatrix} a & -1 & c \\ 5 & b & 3 \\ 1-c & 0 & -a \end{bmatrix}$$
, 其行列式 $|A| = -1$, 义 A 的伴随矩阵 A^{\bullet} 有一个特征值 λ_0 ,属

于 λ_0 的一个特征向量为 $\alpha=\left[-1,-1,1\right]^{\mathrm{T}}$, 试求常数 a,b,c 的值以及 λ_0 .

- 3、设 λ_1, λ_2 是n阶方阵A的两个不同的特征值, X_1, X_2 分别是A的属于特征值 λ_1, λ_2 的特征向 量. 证明当 $k_1 \neq 0, k_2 \neq 0$ 时, $k_1X_1 + k_2X_2$,不是A的特征向量.
 - 4、设A 是n 阶非零方阵,证明若存在正整数m 使得 $A^m = O$,则A 不可对角化.

5、设
$$A = \begin{bmatrix} 3 & 2 & -2 \\ -k & -1 & k \\ 4 & 2 & -3 \end{bmatrix}$$
, 当 k 为何值时,存在可逆矩阵 S ,使得 $S^{-1}AS$ 为对角阵? 并求出 S

和相应的对角阵.

6、设 3 阶矩阵 A 的特征值为 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3$,对应的特征向量依次为 $\xi_1 = \begin{bmatrix} 1,1,1 \end{bmatrix}^T$, $\xi_2 = \begin{bmatrix} 1,2,4 \end{bmatrix}^T$, $\xi_3 = \begin{bmatrix} 1,3,9 \end{bmatrix}^T$,又向量 $\beta = \begin{bmatrix} 1,1,3 \end{bmatrix}^T$.

- (1) 将 β 用 ξ_1,ξ_2,ξ_3 线性表出;
- (2) 求 Aⁿβ (n 为自然数).

7、设 3 阶实对称矩阵 A 的特征值为 2,5,7,对应于特征值 2,5 的特征向量分别为 $\alpha_1 = [-1,k,1]^T$, $\alpha_2 = [1,-1,2k]^T$, 求常数 k 及矩阵 A .

8、设 A 是 3 阶实对称矩阵, A 的特征值为 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3$,且 A 的对应于 λ_1, λ_2 的特征向量分别为 $\alpha_1 = [1, a, 1]^T, \alpha_2 = [a, a - 2, 0]^T$. A 的伴随矩阵 A^* 有特征值 λ_0 , λ_0 所对应的特征向量为 $\beta = [a - 2, -1, 3 - a]^T$. 求 a, λ_0 的值.

- 9、判断下列哪些法则 σ 是线性变换.
- (1) 在 $\mathbf{R}^{n\times n}$ 中, 取定两个元素 \mathbf{B} , \mathbf{C} , 对于任意 $\mathbf{X} \in \mathbf{R}^{n\times n}$, 规定 $\sigma(\mathbf{X}) = \mathbf{B}\mathbf{X}\mathbf{C}$;
- (2) 在线性空间V中,取一固定元素 α_0 ,对于任意 $\alpha \in V$,规定 $\sigma(\alpha) = \alpha + \alpha_0$;
- (3) 对 \mathbb{R}^2 中任意向量 $\alpha = [x, y]^T$, 规定 $\sigma(\alpha) == [x^2 y^2, 2xy]^T$.
- (4) 对 $\mathbf{R}^{2\times 3}$ 中任意矩阵A, 规定 $\sigma(A) = A^{\mathrm{T}}$.
- (5) 对 $\mathbf{R}^{2\times3}$ 中任意矩阵 A , 规定 $\sigma(A) = A + \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$.
- (6) 对 $\mathbf{R}^{2\times3}$ 中任意矩阵 \mathbf{A} , 规定 $\sigma(\mathbf{A}) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \mathbf{A}$.
- 10、在 \mathbf{R}^3 中,对于任意向量 $\alpha = [x, y, z]^{\mathsf{T}}$,规定 $\sigma(\alpha) = [2y + z, x 4y, 3x]^{\mathsf{T}}$,
- (1) 求 σ 在基 $\varepsilon_2, \varepsilon_1, \varepsilon_3$ 下的矩阵;
- (2) 求 σ 在基 $\alpha_1 = \begin{bmatrix} 1,1,1 \end{bmatrix}^T$, $\alpha_2 = \begin{bmatrix} 1,1,0 \end{bmatrix}^T$, $\alpha_3 = \begin{bmatrix} 1,0,0 \end{bmatrix}^T$ 下的矩阵;
- (3) 设 $\gamma = [3,2,1]^T$, 求 $\sigma(\gamma)$ 在基 $\{\alpha_i\}$ 下的坐标.

是 $\mathbf{R}^{2\times 2}$ 的两组基,定义 $\sigma(A) = A \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, A \in \mathbf{R}^{2\times 2}$.

- (1) 试证 σ 是 $\mathbb{R}^{2\times2}$ 上的线性变换;
- (2) 求由基 E_{11} , E_{12} , E_{21} , E_{22} 到基 B_{1} , B_{2} , B_{3} , B_{4} 的过渡矩阵;
- (3) 求 σ 在基 B_1, B_2, B_3, B_4 下的矩阵.
- 12、V 是实数域上以可微函数组 $(I)e^{x},e^{2x},xe^{2x}$ 为基的 3 维线性空间.
- (1) 求微分运算 D 在基(I)下的矩阵;
- (2) 是否存在 V 的某个基使得线性变换 D 在该基下的矩阵为对角矩阵.

13、已知
$$\alpha_1 = \begin{bmatrix} 1,-1,0 \end{bmatrix}^T$$
, $\alpha_2 = \begin{bmatrix} 0,1,1 \end{bmatrix}^T$, $\alpha_3 = \begin{bmatrix} -1,0,1 \end{bmatrix}^T$ 是 \mathbf{R}^3 的一个基, σ 是 \mathbf{R}^3 上的一个线性变

换,且
$$\sigma$$
 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵为 $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & 0 & -2 \end{bmatrix}$.

- (1) 证明 $\beta_1 = \alpha_1, \beta_2 = -\alpha_1 + \alpha_2, \beta_3 = -\alpha_2 + \alpha_3$ 也是 \mathbb{R}^3 的一个基;
- (2) 求 σ 在基 β_1 , β_2 , β_3 下的矩阵:
- (3) 设 $\alpha = \alpha_1 2\alpha_2 + 3\alpha_3$, 求 $\sigma(\alpha)$ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标.

答案与提示

三、填空题:

1、2,-3,1. 2、18. 3、
$$\frac{1}{a}$$
, $\frac{2}{a}$ +3. 4、 a =1,2,2,2. 5、0,2. 6、1. 7、 $x+y=0$. 8、-2,-2,0. 9、 $n-k$ (提示:实对称矩阵的每一个特征值的几何重数等于代数重数). 10、1, -4,2. 11、 $\begin{bmatrix} 2 & 6 \\ 1 & 3 \end{bmatrix}$. 12、 $\textbf{\textit{E}}_3$.

四、选择题:

11、(B). 12、(B).

五、综合题:

1、 (1) 略. (2) A^{-1} 的每行元素之和都为 c^{-1} . (3) f(A) 的每行元素之和为 f(c).

2、
$$a=c=2$$
, $b=-3$, $\lambda_0=1$. 3、略. 4、略.

5.
$$k = 0$$
. $\text{MX } S = \begin{bmatrix} X_1, X_2, X_3 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 1 \\ 2 & 0 & 0 \\ 0 & 2 & 1 \end{bmatrix}$, $S^{-1}AS = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

6. (1)
$$\beta = 2\xi_1 - 2\xi_2 + \xi_3$$
; (2) $A^n \beta = \begin{bmatrix} 2 - 2^{n+1} + 3^n \\ 2 - 2^{n+2} + 3^{n+1} \\ 2 - 2^{n+3} + 3^{n+2} \end{bmatrix}$.

7、 因为 α_1,α_2 是实对称矩阵 A 的属于特征值 2,5 的特征向量,所以 α_1 与 α_2 正交,则 $(\alpha_1,\alpha_2)=0$,求得k=1.

方法 1 设 $X = [x_1, x_2, x_3]^T$ 是 A 的属于特征值 7 的特征向量,则 X 与 α_1, α_2 都正交,因此 $(X, \alpha_i) = 0, i = 1, 2$,即

$$\begin{cases} -x_1 + x_2 + x_3 = 0, \\ x_1 - x_2 + 2x_3 = 0, \end{cases}$$

求得基础解系为 $\alpha_3 = [1,1,0]^T$.

将 $\alpha_1,\alpha_2,\alpha_3$ 单位化,得

$$\beta_1 = \frac{\alpha_1}{|\alpha_1|} = \left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right]^T, \quad \beta_2 = \frac{\alpha_2}{|\alpha_2|} = \left[\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}} \right]^T, \quad \beta_3 = \frac{\alpha_3}{|\alpha_3|} = \left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right]^T.$$

令 $S = [\beta_1, \beta_2, \beta_3]$, $\Lambda = \text{diag}(2,5,7)$, 则 S 为正交矩阵, 且 $S^T A S = \Lambda$, 因此

$$\mathbf{A} = \mathbf{S} \mathbf{A} \mathbf{S}^{\mathsf{T}} = \begin{bmatrix} -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & 0 \end{bmatrix} \begin{bmatrix} 2 & & \\ & 5 & \\ & & 7 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix} = \begin{bmatrix} 5 & 2 & 1 \\ 2 & 5 & -1 \\ 1 & -1 & 4 \end{bmatrix}.$$

方法 2 将 α_1, α_2 单位化,得

$$\beta_1 = \frac{\alpha_1}{|\alpha_1|} = \left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]^T, \quad \beta_2 = \frac{\alpha_2}{|\alpha_2|} = \left[\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right]^T.$$

设 β_3 是 A 的属于特征值 7 的单位特征向量,则 β_1 , β_2 , β_3 是 A 的分别对应于特征值 2,5,7 的标准正交特征向量组,此时 β_1 , β_2 , β_3 也是 A-7E 的分别对应于特征值 -5,-2,0 的标准正交特征向量组.

令
$$S = [\beta_1, \beta_2, \beta_3], \Lambda = \text{diag}(-5, -2, 0)$$
,则 S 为正交矩阵,且 $S^T(A - 7E)S = \Lambda$,因此

$$A - 7E = SAS^{\mathsf{T}} = -5\beta_1\beta_1^{\mathsf{T}} - 2\beta_2\beta_2^{\mathsf{T}} + 0\beta_3\beta_3^{\mathsf{T}} = \begin{bmatrix} -2 & 2 & 1\\ 2 & -2 & -1\\ 1 & -1 & -3 \end{bmatrix},$$

则
$$\mathbf{A} = \begin{bmatrix} -2 & 2 & 1 \\ 2 & -2 & -1 \\ 1 & -1 & -3 \end{bmatrix} + 7\mathbf{E} = \begin{bmatrix} 5 & 2 & 1 \\ 2 & 5 & -1 \\ 1 & -1 & 4 \end{bmatrix}.$$

8、由题设知 α_1 与 α_2 正交,则 $(\alpha_1,\alpha_2)=0$,求得a=0或a=1.

设 $X = [x_1, x_2, x_3]^T$ 是A的属于特征值3的特征向量,则X与 α_1, α_2 都正交,因此 $(X, \alpha_i) = 0$,i = 1, 2,即有

$$\begin{cases} x_1 + ax_2 + x_3 = 0, \\ ax_1 + (a-2)x_2 = 0. \end{cases}$$

当a=0时,有

$$\begin{cases} x_1 + x_3 = 0, \\ -2x_2 = 0, \end{cases}$$

求得一个基础解系为 $\alpha_3 = [1,0,-1]^T$. 因为A 是可逆矩阵,所以A 的属于特征值 λ 的特征向量与 A^* 的属于特征值 $\lambda^{-1} | A |$ 的特征向量的集合相同,因此 β 也为A 的特征向量,应与 $\alpha_1,\alpha_2,\alpha_3$ 之一成比例。而 $\beta = [-2,-1,3]^T$ 与 $\alpha_1,\alpha_2,\alpha_3$ 都不成比例,因此 $\alpha = 0$ 不符合题意,故舍去。

当a=1时,有

$$\begin{cases} x_1 + x_2 + x_3 = 0, \\ x_1 - x_2 = 0, \end{cases}$$

求得一个基础解系为 $\alpha_3 = [1,1,-2]^T$. 而 $\beta = [-1,-1,2]^T$,则 β 是 A 的对应于特征值 3 的特征向量,因此 $\lambda_1 = 3^{-1} |A| = 2$. 故 $a = 1, \lambda_1 = 2$.

9、(1) σ 为 $\mathbf{R}^{"*"}$ 上的线性变换. (2) 当 $\alpha_0 \neq 0$ 时, σ 不是 \mathbf{V} 上的线性变换. (3) σ 不是线性变换. (4) σ 不是线性变换. (5) σ 不是线性变换. (6) σ 是线性变换.

10\, (1)
$$\left[\sigma\right]_{\{e_i\}} = A = \begin{bmatrix} -4 & 1 & 0 \\ 2 & 0 & 1 \\ 0 & 3 & 0 \end{bmatrix}$$
. (2) $\left[\sigma\right]_{\{\alpha_i\}} = B = \begin{bmatrix} 3 & 3 & 3 \\ -6 & -6 & -2 \\ 6 & 5 & -1 \end{bmatrix}$.

(3)
$$[\sigma(\gamma)]_{\{\alpha,\}} = [9, -14, 10]^T$$
.

11、(1) 咯. (2)过渡矩阵
$$S = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$
. (3)
$$\begin{bmatrix} 2 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 1 & 1 & 2 & 0 \\ -1 & -1 & -1 & 1 \end{bmatrix}$$
.

12\,\ (1)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
.

(2) 不存在 V 的某个基, 使得 D 在该基下的矩阵为对角矩阵.

13、(1) 略.

- (2) σ 在基 $\beta_1, \beta_2, \beta_3$ 下的矩阵为 $\begin{bmatrix} 2 & 0 & -1 \\ 1 & 1 & -3 \\ 1 & -1 & -2 \end{bmatrix}$.
- (3) $\sigma(\alpha)$ 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标 $[7, -1, -5]^T$.

第七章 二次型

一、教学要求

- 1. 掌握二次型及其矩阵表示,二次型的秩,了解合同变换和合同矩阵的概念,理解二次型的标准 形、规范性的概念以及惯性定理.
 - 2. 掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.
 - 3. 掌握二次型和对应矩阵的正定性及其判别方法.

二、主要内容

(一) 二次型及其标准形

1、二次型及其矩阵表示

数域P上的n元二次型为

$$f(X) = f(x_1, x_2, \dots, x_n) \quad (X = \begin{bmatrix} x_1, x_2, \dots, x_n \end{bmatrix}^T)$$

$$= a_{11}x_1^2 + 2a_{12}x_1x_2 + \dots + 2a_{1n}x_1x_n$$

$$+ a_{22}x_2^2 + \dots + 2a_{2n}x_2x_n$$

$$+ \dots$$

$$+ a_{nn}x_n^2$$

$$= a_{11}x_1^2 + a_{12}x_1x_2 + \dots + a_{1n}x_1x_n$$

$$a_{21}x_2x_1 + a_{22}x_2^2 + \dots + a_{2n}x_2x_n$$

$$+ \dots$$

$$+ a_{n1}x_nx_1 + a_{n2}x_nx_2 + \dots + a_{nn}x_n^2 \qquad (a_{ij} = a_{ji})$$

$$= \sum_{i=1}^n \sum_{j=1}^n a_{ij}x_ix_j$$

$$= X^T A X$$

其中 $a_{ij} \in \mathbf{P}, x_j \in \mathbf{P}, i, j = 1, 2, ..., n$.

当 $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{n \times n}$ 为对称矩阵时,f(X) 与A ——对应,称A , $X^T A X$ 分别为二次型 f(X) 的矩阵、矩阵表示,称f(A) 为 f(X) 的秩.

- 2、矩阵的合同关系·满秋线性替换
- (1)矩阵的合同关系

设 $A, B \in P^{n \times n}$,若存在可逆矩阵 $S \in P^{n \times n}$,使得 $S^T A S = B$,则称 $A \ni B$ 合同, 记作 $A \simeq B$,称 S 为由 $A \ni B$ 的合同变换矩阵.

矩阵的合同关系具有以下基本性质:

- ① 满足反身性、对称性、传递性, 即是一种等价关系:
- ② 岩 $A \simeq B$,则r(A) = r(B);
- ③ 若 A 与 B 正交相似, 则 A 与 B 相似且合同.
- (2) 满秋线性替换

$$\begin{cases} x_1 = s_{11}y_1 + s_{12}y_2 + \dots + s_{1n}y_n, \\ x_2 = s_{21}y_1 + s_{22}y_2 + \dots + s_{2n}y_n, \\ \dots, \\ x_n = s_{n1}y_1 + s_{n2}y_2 + \dots + s_{nn}y_n, \end{cases}$$

即 X = SY, 称为由变量 X 到 Y 的一个线性替换,其中 $S = \left[s_{ij}\right]_{n,n}$ 称为线性替换的矩阵

对二次型 $f(X) = X^{\mathsf{T}} A X$ 作线性替换 X = SY, 有

$$f(X) = X^{\mathsf{T}} A X \frac{X = SY}{X} Y^{\mathsf{T}} (S^{\mathsf{T}} A S) Y \frac{S^{\mathsf{T}} A S = B}{X} Y^{\mathsf{T}} B Y = g(Y) ,$$

g(Y) 仍是二次型. 当 S 为可逆矩阵时, 称 X = SY 为满秩线性替换, 称二次型 f(X) 与 g(Y) 合同. 此时 A 与 B 合同, 因而秩相等. 对实二次型, 当 S 为正交矩阵时, 称 X = SY 为正交线性替换, 此时 A 与 B 正交合同.

3、化二次型为标准形

只含平方项的二次型称为标准形. 与二次型 f(X) 合同的标准形

$$g(Y) = d_1 y_1^2 + d_2 y_2^2 + \dots + d_n y_n^2$$
,

称为 f(X) 的一个标准形(或法式).

显然, 标准形的矩阵是对角阵.

- (1) 用配方法化二次型为标准形
- ① 当平方项系数不全为零时,直接配方:
- ② 当平方项系数全为零时,用平方差公式转化为平方项系数不全为零的情形,

配方法表明: 任何二次型都有标准形:

任何对称矩阵都与一对角矩阵合同.

(2) 用正交线性替换化实二次型为标准形

对任何实二次型 $f(X) = X^{\mathsf{T}} A X (A^{\mathsf{T}} = A)$,都存在正交线性替换,使得

$$f(X) = X^{\mathsf{T}} A X \underbrace{X = SY}_{\mathsf{T}} Y^{\mathsf{T}} (S^{\mathsf{T}} A S) Y = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2,$$

其中 λ , λ ,…, λ 是A 的全体特征值.

用正交线性替换化实二次型 f(X) 为标准形的步骤如下:

三、写出二次型 f(X) 的矩阵 A:

四、 \mathbf{R} $|\lambda E - A| = 0$,求出 A 的全体互不相同的特征值 λ_1 , λ_2 , \dots , 它们的重数分别为 n_1, n_2, \dots, n_ℓ ;

五、求 $(\lambda_i E - A)X = 0$ 的基础解系,进行施密特正交化和单位化得到 A 的属于特征值 λ_i 的 n_i 个标准正交的特征向量 (\mathbf{I}_i) : $\alpha_{i1}, \alpha_{i2}, \cdots, \alpha_{im}$ $(i=1,2,\cdots t)$;

六、令 $S = \left[(I_1), (I_2), \cdots, (I_r) \right]$,则S为正交矩阵. 实二次型f(X)经过正交线性替换X = SY就化为标准形 $g(Y) = Y^\mathsf{T}BY$,其中 $B = \mathrm{diag}(\lambda_l E_n, \lambda_2 E_n, \cdots, \lambda_l E_n)$.

4、规范形

(1) 复二次型的规范形

任意一个秩为r的n元复二次型 f(X)都有标准形 $h(Z) = z_1^2 + z_2^2 + \dots + z_r^2$,称之为复二次型 f(X)的规范形(或正规法式).

设n阶复对称矩阵A的秩为r,则 $A \simeq \begin{bmatrix} E_r & O \\ O & O \end{bmatrix}$. 称 $\begin{bmatrix} E_r & O \\ O & O \end{bmatrix}$ 为A的复合同标准形.

(2) 实二次型的规范形

秩为r的n元实二次型f(X)有标准形 $h(Z)=z_1^2+\cdots+z_p^2-z_{p+1}^2-\cdots-z_r^2$.称之为实二次型f(X)的规范形(或正规法式).

惯性定理 实二次型的规范形存在且唯一; 完全由秩和正惯性指数决定.

称 p, r-p, p-(r-p)=2p-r 分别为实二次型 f(X) 或其矩阵 A 的正惯性指数, 负惯性指数, 符号差. A 的正(负)惯性指数就是 A 的正(负)特征值的个数.

设n阶实对称矩阵A的秩为r,正惯性指数为p,则A实合同于

$$\operatorname{diag}(E_{\rho}, -E_{r-\rho}, O).$$

称 $\operatorname{diag}(E_p, -E_{r-p}, O)$ 为 A 的实合同标准形.

两个n元实二次型合同 \Leftrightarrow 它们的秩相等,且正惯性指数也相等.

两个n阶实对称矩阵实合同⇔ 它们的秩相等,且正惯性指数也相等

⇔ 它们的非零特征值的个数相等, 符号相同.

(二) 正定二次型与正定矩阵

1、定义

如果实二次型 $f(X) = X^T A X$ 满足, 对 $\forall X \in \mathbb{R}^n$, 且 $X \neq 0$, 恒有 f(X) > 0 (或 f(X) < 0),则称 f(X) 为正定(或负定) 二次型, 称实对称阵 A 为正定(或负定) 矩阵.

A 负定 ⇔ -A 正定.

实对称阵
$$A = \left[a_{ij}\right]_{n \times n}$$
 正定 $\Rightarrow a_{ii} > 0 \quad (i = 1, 2, \dots, n)$.

2、正定性的判定

判别正定性的典型方法有以下四类, 其中前两类方法主要基于如下引理:

引理1 实满秩线性替换不改变实二次型的正定性;

引理2 实相合关系不改变实对称矩阵的正定性.

(1) 正惯性指数法

n元实二次型 $f(X) = X^{T}AX$ (或n阶实对称矩阵A) 正定

- $\Leftrightarrow f(X)$ (或A) 的正惯性指数 p=n
- \Leftrightarrow $A 与 E_a$ 实合同,即存在实可逆矩阵 S ,使得 $S^T A S = E_a$
- ⇔ 存在实可逆矩阵 S , 使得 $A = S^{\mathsf{T}} S$.
- (2) 特征值法

n元实二次型 $f(X) = X^{\mathsf{T}} A X$ (或 n 阶实对称矩阵 A) 正定 $\Leftrightarrow A$ 的特征值全为正.

根据此方法易证,实对称阵 $A = \left[a_{ij} \right]_{n \times n}$ 正定 $\Rightarrow kA(k > 0), A^{-1}, A^{\bullet}$ 均正定;

$$\Rightarrow$$
 |A| > 0, 从而 A 可逆.

(3) 顺序主子式法

n元实二次型 $f(X) = X^T A X$ (或n阶实对称矩阵 A) 正定 ⇔ A 的各阶顺序主子式全为正.

(4) 分块法

准对角阵 $\operatorname{diag}(A_1, A_2, \dots, A_s)$ 正定 $\Leftrightarrow A_1, A_2, \dots, A_s$ 均正定.

三、填空题

- 1、三元二次型 $f_1(x_1,x_2,x_3) = x_1^2 + 4x_2^2 + x_3^2 4x_1x_2 8x_1x_3 4x_2x_3$ 的矩阵为________,秩为
- 2、设 $\alpha = [1, -1, 0]^{T}$ 是实二次型

$$f(X) = X^{\mathsf{T}} A X = a x_1^2 + x_2^2 - 2 x_1 x_2 + 2 x_1 x_3 + 2 b x_2 x_3$$

的矩阵 A 的特征向量,则常数 a,b 的值为_____

- 3、已知实二次型 $f(x_1,x_2,x_3)=2x_1^2+3x_2^2+3x_3^2+2ax_2x_3$,其中a>0,通过正交线性替换化为 $y_1^2+2y_2^2+5y_3^2$,则参数 a=_______.

5、设矩阵
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, 则 $A \ni B$ 之间的合同和相似关系为______.

6、k 满足_____时,二次型 $f(x_1,x_2,x_3)=x_1^2+2x_2^2+(1-k)x_3^2+2kx_1x_2+2x_1x_3$ 的矩阵的特征值全大于零.

四、选择题

- 1、设n阶方阵A与B的秩相等,则 .
- (A) 必存在n阶可逆矩阵P, O, 使得PAO = B
- (B) 必存在n阶可逆矩阵P,使得 $P^{-1}AP = B$

(C)	必存在n阶可逆矩阵	D	庙怨	p^{\uparrow}	1 P _	R
$((\cdot,\cdot)$	少存在加斯坦沙姆阵	r	107 (谷	P .	AP =	B

(D) 必有
$$|A| = |B|$$

2、设A与B均是n阶实对称矩阵,则正确命题是 .

- (A) 若A与B等价,则A与B相似 (B) 若A与B相似,则A与B合同
- (C) 若 A 与 B 合同,则 A 与 B 相似 (D) 若 A 与 B 等价,则 A 与 B 合同

$$3$$
、若实对称矩阵 A 与矩阵 $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix}$ 合同,则实二次型 $X^{\mathsf{T}}AX$ 的规范形应是_____.

(A)
$$y_3^2$$

(B)
$$y_1^2 + y_2^2 + y_3^2$$

(A)
$$y_1^2$$
 (B) $y_1^2 + y_2^2 + y_3^2$ (C) $y_1^2 + y_2^2 - y_3^2$ (D) $y_1^2 + y_2^2$

(D)
$$y_1^2 + y_2^2$$

4、设
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, 则 $\mathbf{A} \ni \mathbf{B}$ _____.

- (A) 合同且相似 (B) 合同但不相似 (C)不合同但相似 (D)不合同且不相似
- 5、设A为n阶正定矩阵,如果矩阵A与B相似,则B必为
- (A) 实对称矩阵 (B) 可逆矩阵 (C) 正定矩阵

- (D) 正交矩阵

6、设
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, 则 $A 与 B$ _____.

(A) 相似且合同

(B) 相似但不合同

(C) 不相似但合同

(D) 不相似且不合同

7、实二次型
$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$
 的标准形是 _____.

- (A) $10y_3^2$ (B) $y_1^2 + y_2^2 + 10y_3^2$ (C) $-y_1^2 y_2^2 10y_3^2$ (D) $y_1^2 y_2^2 10y_3^2$
- 8、以下矩阵中,正定的矩阵为

(A)
$$\begin{bmatrix} 1 & 2 & -3 \\ 0 & 7 & 4 \\ 2 & 5 & 0 \end{bmatrix}$$

(A)
$$\begin{bmatrix} 1 & 2 & -3 \\ 0 & 7 & 4 \\ 2 & 5 & 0 \end{bmatrix}$$
 (B) $\begin{bmatrix} 5 & 2 & 0 \\ 2 & 6 & -3 \\ 0 & -3 & -1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 8 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix}$

(c)
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 8 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$

- 9、设A, B 都是n阶正定矩阵,则以下命题错误的是
- (A) A + B 都正定 (B) $A^{-1}BA$ 正定 (C) ABA 正定

- (D) $\begin{bmatrix} A & O \\ O & B \end{bmatrix}$ 正定.

五、综合题

1、已知
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & a \\ 0 & a & -1 \end{bmatrix}$$
, 实二次型 $f(x_1, x_2, x_3) = X^{\mathsf{T}}(A^{\mathsf{T}}A)X$ 的秩为 2.

(1) 求实数 a 的值;

- (2) 求一个正交变换将实二次型 f 化为标准形;
- (3) 求实二次型 f 的秩、正负惯性指数和符号差.
- 2、设矩阵

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & y & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}.$$

- (1) 已知A的一个特征值为3,试求 ν ;
- (2) 求矩阵P, 使 $(AP)^{T}(AP)$ 为对角阵.
- 3、设A为n阶实对称矩阵.
- (1) 求证n元实二次型 $f(X) = X^T A X$,当|X| = 1时的最大(小)值为A的最大(小)特征值:
- (2) 当 $f(x_1,x_2,x_3) = 3x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_3$ 时,求在条件 $x_1^2 + x_2^2 + x_3^2 = 1$ 下 f 的最大值和最小值,并求出最大值点和最小值点.
 - 4、设二次型 $f(x_1, x_2, x_3) = ax_1^2 + ax_2^2 + (a-1)x_3^2 + 2x_1x_3 2x_2x_3$.
 - (1) 求二次型 f 的矩阵的所有特征值;
 - (2) 若二次型 f 的规范形为 $y_1^2 + y_2^2$, 求 a 的值.
- 5、设A为n阶实对称矩阵,r(A)=n, A_{ij} 是 $A=\left[a_{ij}\right]_{n\times n}$ 中元素 a_{ij} 的代数余子式 $(i,j=1,2,\cdots,n)$,二次型 $f(x_1,x_2,\cdots,x_n)=\sum_{i=1}^n\sum_{j=1}^n\frac{A_{ij}}{|A|}x_ix_j$.
- (1) 记 $X = [x_1, x_2, \dots, x_n]^T$, 把 $f(x_1, x_2, \dots, x_n)$ 写成矩阵形式,并证明二次型 f(X) 的矩阵为 A^{-1} .
 - (2) 二次型 $g(X) = X^T A X$ 与 f(X) 的规范形是否相同? 说明理由.
 - 6、设A 是n 阶实对称矩阵,且|A|<0.证明存在实n元列向量 $X \in \mathbf{R}^n$, $X \neq \mathbf{0}$,使得 $X^{\mathsf{T}}AX$ <0.
 - 7、设矩阵 $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, 矩阵 $B = (kE_n + A)^2$, 其中 k 为实数. 求对角矩阵 Λ ,使 B 与 Λ 相
- 似; 并求k为何值时, B为正定矩阵.
- 8、设A是n阶正定矩阵, α_1 , α_2 ,…, $\alpha_m \in \mathbf{R}^n$ 是非零向量,且 $\alpha_i^{\mathsf{T}} A \alpha_j = 0$ $(i \neq j, i, j = 1, 2, \dots, m)$. 证明 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性无关.
 - 9、设 $A \in \mathbb{R}^{m \times n}$ 且n < m,证明 $A^{\mathsf{T}}A$ 为正定矩阵 $\Leftrightarrow r(A) = n$.
 - 10、设A是n (≥3)阶实对称矩阵,且 $A^2 + 2A 3E_n = 0$.
 - (1) 若 A 的正惯性指数为 2, 求 A 的全部特征值;
 - (2) 证明: $\mathbf{B} = (\mathbf{A} + \mathbf{E}_n)^{\mathsf{T}} (\mathbf{A} + \mathbf{E}_n)$ 是正定矩阵;
 - (3) 证明: $A + kE_n$ (k > 3)为正定矩阵.

答案与提示

三、填空题:

1、
$$A = \begin{bmatrix} 1 & -2 & -4 \\ -2 & 4 & -2 \\ -4 & -2 & 1 \end{bmatrix}$$
, 秩为 3. 2、 $a = 0$, $b = 1$. 3、 $a = 2$. 4、 n , 0.

5、不相似但合同. 6、 -1 < k < 0.

四、选择题:

1、 (A). 2、 (B). 3、 (C). 4、 (A). 5、 (B). 6、 (B). 7、 (B). 8、 (D). 9、 (B).

五、综合题:

1, (1) a = -1.

(2)
$$S = [\eta_1, \eta_2, \eta_3] = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{bmatrix}$$
, 则 S 为正交阵,且 $S^TAS = \text{diag}(0, 2, 6)$. 故二次

型 f(X) 经正交线性替换 X = SY 化为标准形 $g(Y) = 2y_2^2 + 6y_3^2$.

- (3) 秩为 2, 正惯性指数为 2, 负惯性指数为 0, 符号差为 2.
- 2, (1) y = 2.
- (2) 提示:由 $A^T = A$,且 $(AP)^T (AP) = P^T A^2 P$,可见为使 $(AP)^T (AP)$ 为对角阵,实质上是使 A^2 合同于对角阵.

$$P = \begin{bmatrix} E_2 & O \\ O & P_2 \end{bmatrix}, \quad P_2 = \begin{bmatrix} 1 & -\frac{4}{5} \\ 0 & 1 \end{bmatrix},$$

将 f 化为标准型 $f = y_1^2 + y_2^2 + 5y_3^2 + \frac{9}{5}y_4^2$. 从而 $P^T A^2 P = \text{diag}(1,1,5,\frac{9}{5})$,即

$$(AP)^{T}(AP) = diag(1,1,5,\frac{9}{5}).$$

- 3、(1) 略.
- (2) 在 $x_1^2 + x_2^2 + x_3^2 = 1$ 条件下, f 的最大值为 4,最小值为 2.

令

$$Q = \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{bmatrix},$$

则 Q 为正交阵,且在正交线性替换 X = QY 下, $f = 2y_1^2 + 2y_2^2 + 4y_3^2$.

当
$$Y = [0,0,1]^T$$
 时, f 取得最大值 4,此时 $X = QY = \left[\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right]^T$ 为一个最大值点.

当 $Y = \begin{bmatrix}0,1,0\end{bmatrix}^{\mathsf{T}}$ 时,f取得最小值 2,此时 $X = \mathbf{Q}Y = \begin{bmatrix}0,1,0\end{bmatrix}^{\mathsf{T}}$ 为一个最小值点.

- 4、(1) A 的全体特征值 $\lambda_1 = a, \lambda_2 = a+1, \lambda_3 = a-2$.
- (2) a = 2.

(3) 略.

5、(1) 二次型f 的矩阵形式为

$$f(X) = \begin{bmatrix} x_{1}, x_{2}, \dots, x_{n} \end{bmatrix} \begin{bmatrix} 1 \\ A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$
$$= X^{T} \frac{(A^{\bullet})^{T}}{|A|} X = X^{T} \frac{A^{\bullet}}{|A|} X = X^{T} A^{-1} X,$$

所以二次型 f(X) 的矩阵是 A^{-1} .

- (2) $g(X) = X^{T}AX 与 f(X) = X^{T}A^{-1}X$ 有相同的规范形.
- 6、略.
- 7、**B** 相似于对角阵 $\Lambda = \text{diag}((k+2)^2, (k+2)^2, k^2)$; 当 $k \neq -2$ 且 $k \neq 0$ 时, **B** 为正定矩阵.
- 8、略.
- 9、略..
- 10、(1) A 的全部特征值为1, 1, -3 (n-2 重). (2) 略.

附录 课后习题全解

第一章 线性方程组

1、用初等行变换将n阶方阵A变为n阶单位矩阵 E_n ,并求出 E_n 经过这些同样的行变换所得到的矩阵B.

$$(1) \ A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{bmatrix}; \qquad (2) \ A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 3 & 7 & 2 & 3 \\ 2 & 5 & 1 & 2 \end{bmatrix}.$$

$$(2) \ A = \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 & 1 & 0 \\ 3 & 4 & 3 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{r_1 - 2r_1} \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -2 & -5 & -2 & 1 & 0 \\ 0 & -2 & -6 & -3 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{r_1 - r_2} \begin{cases} 1 & 0 & -2 & |-1| & 1 & 0 \\ 0 & -2 & -5 & |-2| & 1 & 0 \\ 0 & 0 & -1 & |-1| & -1 & 1 \end{bmatrix} \xrightarrow{r_1 - 2r_2} \begin{cases} 1 & 0 & 0 & | & 1 & 3 & -2 \\ 0 & -2 & 0 & | & 3 & 6 & -5 \\ 0 & 0 & -1 & |-1| & -1 & 1 \end{bmatrix}$$

$$\xrightarrow{r_1 - r_2} \begin{cases} 1 & 1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & | & 0 & 1 & 0 & 0 \\ 3 & 7 & 2 & 3 & | & 0 & 0 & 1 & 0 \\ 2 & 5 & 1 & 2 & | & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{r_1 - r_2} \begin{cases} 1 & 1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & -1 & 1 & 0 & 0 \\ 3 & 7 & 2 & 3 & | & 0 & 0 & 1 & 0 \\ 2 & 5 & 1 & 2 & | & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{r_1 - r_2} \begin{cases} 1 & 1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & -1 & 1 & 0 & 0 \\ 3 & 7 & 2 & 3 & | & 0 & 0 & 1 & 0 \\ 2 & 5 & 1 & 2 & | & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{r_1 - r_2} \begin{cases} 1 & 1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & -1 & 1 & 0 & 0 \\ 0 & 3 & 7 & 2 & 3 & | & 0 & 0 & 1 & 0 \\ 3 & 7 & 2 & 3 & | & 0 & 0 & 1 & 0 \\ 3 & 7 & 2 & 3 & | & 0 & 0 & 1 & 0 \\ 3 & 7 & 2 & 3 & | & 0 & 0 & 1 & 0 \\ 3 & 7 & 2 & 3 & | & 0 & 0 & 1 & 0 \\ 3 & 7 & 2 & 3 & | & 0 & 0 & 1 & 0 \\ 3 & 7 & 2 & 3 & | & 0 & 0 & 1 & 0 \\ 1 & 3 & 0 & 1 & | & 0 & 0 & -1 & 2 \end{bmatrix} \xrightarrow{r_1 - r_2} \begin{cases} 1 & 1 & 0 & 0 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & 2 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & | & -1 & 1 & 2 & -3 \\ 0 & 0 & 0 & 1 & | & 1 & -2 & -1 & 2 \end{bmatrix}$$

$$= [E_4, B].$$

2、求解下列各线性方程组.

(1)
$$\begin{cases} 3x_1 + x_2 - 5x_3 = 0, \\ x_1 + 3x_2 - 13x_3 = -6, \\ 2x_1 - x_2 + 3x_3 = 3, \\ 4x_1 - x_2 + x_3 = 3; \end{cases}$$
 (2)
$$\begin{cases} x_1 - 5x_2 + 2x_3 - 3x_4 = 11, \\ 5x_1 + 3x_2 + 6x_3 - x_4 = -1, \\ 3x_1 - x_2 + 4x_3 - 2x_4 = 5, \\ -x_1 - 9x_3 - 4x_4 = 17; \end{cases}$$

(3)
$$\begin{cases} 2x_1 + 3x_2 + x_3 = 4, \\ x_1 - 2x_2 + 4x_3 = -5, \\ 3x_1 + 8x_2 - 2x_3 = 13; \end{cases}$$
 (4)
$$\begin{cases} 3x_1 - 5x_2 + 5x_3 - 3x_4 = 2, \\ x_1 - 2x_2 + 3x_3 - x_4 = 1, \\ 2x_1 - 3x_2 + 2x_3 - 2x_4 = 1. \end{cases}$$

解 (1) 对方程组的增广矩阵作初等行变换,有

$$\tilde{A} = \begin{bmatrix} 3 & 1 & -5 & | & 0 \\ 1 & 3 & -13 & | & -6 \\ 2 & -1 & 3 & | & 3 \\ 4 & -1 & 1 & | & 3 \end{bmatrix} \xrightarrow{r_1 - r_3} \begin{bmatrix} 1 & 2 & -8 & | & -3 \\ 1 & 3 & -13 & | & -6 \\ 2 & -1 & 3 & | & 3 \\ 4 & -1 & 1 & | & 3 \end{bmatrix} \xrightarrow{r_2 - r_3} \begin{bmatrix} 1 & 2 & -8 & | & -3 \\ 0 & 1 & -5 & | & -3 \\ 0 & 0 & -6 & | & -6 \\ 0 & 0 & -12 & | & -12 \end{bmatrix} \xrightarrow{r_1 - r_3} \begin{bmatrix} 1 & 2 & -8 & | & -3 \\ 2 & -1 & 3 & | & 3 \\ 4 & -1 & 1 & | & 3 \end{bmatrix} \xrightarrow{r_2 - r_3} \begin{bmatrix} 1 & 2 & -8 & | & -3 \\ 0 & 1 & -5 & | & -3 \\ 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{r_1 - r_2} \begin{bmatrix} 1 & 2 & -8 & | & -3 \\ 0 & 1 & -5 & | & -3 \\ 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{r_1 - r_2} \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} = \tilde{R},$$

则方程组有唯一解: $x_1 = 1, x_2 = 2, x_3 = 1$.

(2) 对方程组的增广矩阵作初等行变换,有

$$\tilde{A} = \begin{bmatrix} 1 & -5 & 2 & -3 & | & 11 \\ 5 & 3 & 6 & -1 & | & -1 \\ 3 & -1 & 4 & -2 & | & 5 \\ -1 & -9 & 0 & -4 & | & 17 \end{bmatrix} - \frac{\text{filk in }}{\text{districts}} \begin{bmatrix} 1 & 0 & \frac{9}{7} & -\frac{1}{2} & | & 1 \\ 0 & 1 & -\frac{1}{7} & \frac{1}{2} & | & -2 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} = \tilde{R}.$$

由于 $r(R) = r(\tilde{R}) = 2 < 4$,所以方程组有无穷多解. 其同解方程组为

$$\begin{cases} x_1 = 1 - \frac{9}{7}x_3 + \frac{1}{2}x_4, \\ x_2 = -2 + \frac{1}{7}x_3 - \frac{1}{2}x_4, \end{cases}$$

则方程组的通解为

$$[x_1, x_2, x_3, x_4]^\mathsf{T} = [1, -2, 0, 0]^\mathsf{T} + k_1 [-\tfrac{9}{7}, \tfrac{1}{7}, 1, 0]^\mathsf{T} + k_2 [\tfrac{1}{2}, -\tfrac{1}{2}, 0, 1]^\mathsf{T} \;,\; \forall k_1, k_2 \in \mathsf{P} \;.$$

(3) 对方程组的增广矩阵作初等行变换,有

$$\tilde{A} = \begin{bmatrix} 2 & 3 & 1 & | & 4 \\ 1 & -2 & 4 & | & -5 \\ 3 & 8 & -2 & | & 13 \end{bmatrix} \xrightarrow{\text{fink} \times \\ \text{distribution}} \begin{bmatrix} 1 & 0 & 2 & | & -1 \\ 0 & 1 & -1 & | & 2 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} = \tilde{R} \ .$$

由于 $r(\mathbf{R}) = r(\tilde{\mathbf{R}}) = 2 < 3$,所以方程组有无穷多解. 其同解方程组为

$$\begin{cases} x_1 = -1 - 2x_3, \\ x_2 = 2 + x_3, \end{cases}$$

则方程组的通解为

$$[x_1, x_2, x_3]^{\mathsf{T}} = [-1, 2, 0]^{\mathsf{T}} + k[-2, 1, 1]^{\mathsf{T}}, \ \forall k \in \mathbf{P}$$
.

(4) 对方程组的增广矩阵作初等行变换,有

由于 $r(\mathbf{R}) = r(\tilde{\mathbf{R}}) = 2 < 4$,所以方程组有无穷多解。其同解方程组为

$$\begin{cases} x_1 = -1 + 5x_3 + x_4 \\ x_2 = -1 + 4x_3 \end{cases}$$

则方程组的通解为

$$\begin{bmatrix} x_1, x_2, x_3, x_4 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} -1, -1, 0, 0 \end{bmatrix}^{\mathsf{T}} + k_1 \begin{bmatrix} 5, 4, 1, 0 \end{bmatrix}^{\mathsf{T}} + k_2 \begin{bmatrix} 1, 0, 0, 1 \end{bmatrix}^{\mathsf{T}}, \forall k_1, k_2 \in \mathsf{P}.$$

3、设线性方程组

$$\begin{cases} ax_1 + x_2 + 5x_3 = -1, \\ 4x_1 - x_2 + 9x_3 = b, \\ x_1 + cx_2 - 3x_3 = 9 \end{cases}$$

与第3题(3)小题的方程组是同解方程组,求该方程组中的a,b,c.

解 由题设知,方程组的一般解为

$$\begin{cases} x_1 = -1 - 2x_3, \\ x_2 = 2 + x_3, \end{cases}$$

其中 x, 任意取值.

取 $x_3 = 0$, 则 $x_1 = -1, x_2 = 2$. 代入方程组, 得 a = 3, b = -6, c = 5.

4、设有线性方程组

$$\begin{cases} x_1 + \lambda x_2 + \mu x_3 + x_4 = 0, \\ 2x_1 + x_2 + x_3 + 2x_4 = 0, \\ 3x_1 + (2 + \lambda)x_2 + (4 + \mu)x_3 + 4x_4 = 1. \end{cases}$$

己知[1,-1,1,-1] 是该方程组的一个解, 试求:

(1) 方程组的全部解: (2) 该方程组满足 $x_2 = x_3$ 的全部解.

 \mathbf{K} 将 $[1,-1,1,-1]^{\mathsf{T}}$ 代入方程组,得 $\lambda=\mu$ 对方程组的增广矩阵 $\tilde{\mathbf{A}}$ 作初等行变换,得

$$\tilde{A} = \begin{bmatrix} 1 & \lambda & \lambda & 1 & 0 \\ 2 & 1 & 1 & 2 & 0 \\ 3 & 2 + \lambda & 4 + \lambda & 4 & 1 \end{bmatrix} \xrightarrow{r_1 - r_1 - r_2} \begin{bmatrix} 0 & \lambda - \frac{1}{2} & \lambda - \frac{1}{2} & 0 & 0 \\ 1 & \frac{1}{2} & \frac{1}{2} & 1 & 0 \\ 0 & 1 & 3 & 1 & 1 \end{bmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} & 1 & 0 \\ 0 & \lambda - \frac{1}{2} & \lambda - \frac{1}{2} & 0 & 0 \\ 0 & 1 & 3 & 1 & 1 \end{bmatrix}$$

当
$$\lambda \neq \frac{1}{2}$$
 时,有 $\tilde{A} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \tilde{R}$, $r(R) = r(\tilde{R}) = 3 < 4$,则方程组有无穷多解. 其同

解方程组为

$$\begin{cases} x_1 = -x_4, \\ x_2 = -\frac{1}{2} + \frac{1}{2}x_4, \\ x_3 = \frac{1}{2} - \frac{1}{2}x_4, \end{cases}$$

故方程组的全部解为

$$[x_1, x_2, x_3, x_4]^{\mathsf{T}} = [0, -\frac{1}{2}, \frac{1}{2}, 0]^{\mathsf{T}} + k[-1, \frac{1}{2}, -\frac{1}{2}, 1]^{\mathsf{T}}, \forall k \in \mathbf{P}.$$

当
$$\lambda = \frac{1}{2}$$
时,有 $\tilde{A} \rightarrow \begin{bmatrix} 1 & 0 & -1 & \frac{1}{2} & | & -\frac{1}{2} \\ 0 & 1 & 3 & 1 & | & 1 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} = \tilde{R}$, $r(R) = r(\tilde{R}) = 2 < 4$,则方程组有无穷多解. 其同解

方程组为

$$\begin{cases} x_1 = -\frac{1}{2} + x_3 - \frac{1}{2}x_4, \\ x_2 = 1 - 3x_3 - x_4, \end{cases}$$

故方程组的全部解为

$$[x_1, x_2, x_3, x_4]^{\mathsf{T}} = [-\frac{1}{2}, 1, 0, 0]^{\mathsf{T}} + k_1[1, -3, 1, 0]^{\mathsf{T}} + k_2[-\frac{1}{2}, -1, 0, 1]^{\mathsf{T}}, \ \forall k_1, k_2 \in \mathbf{P}$$

(2) 当 $\lambda \neq \frac{1}{2}$ 时,由于 $x_2 = x_3$,即 $-\frac{1}{2} + \frac{1}{2}x_4 = \frac{1}{2} - \frac{1}{2}x_4$,解得 $x_4 = 1$,故方程组的解为 $x_1 = -1$, $x_2 = 0$, $x_3 = 0$, $x_4 = 1$.

当 $\lambda = \frac{1}{2}$ 时,由于 $x_2 = x_3$,即 $1 - 3x_3 - x_4 = x_3$,解得 $x_4 = 1 - 4x_3$,则同解方程组为

$$\begin{cases} x_1 = -1 + 3x_3, \\ x_2 = x_3, \\ x_4 = 1 - 4x_3, \end{cases}$$

故方程组的全部解为

$$[x_1, x_2, x_3, x_4]^T = [-1, 0, 0, 1]^T + k_3[3, 1, 1, -4]^T, \ \forall k_3 \in \mathbf{P}$$
.

5、线性方程组

$$\begin{cases} x_1 - x_2 = a_1, \\ x_2 - x_3 = a_2, \\ x_3 - x_4 = a_3, \\ x_4 - x_5 = a_4, \\ x_5 - x_1 = a_5 \end{cases}$$

有解的充分必要条件是 $\sum_{i=1}^{5} a_i = 0$, 在有解时求它的解.

证 对方程组的增广矩阵 A 作初等行变换,

$$\tilde{A} = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & | & a_1 \\ 0 & 1 & -1 & 0 & 0 & | & a_2 \\ 0 & 0 & 1 & -1 & 0 & | & a_3 \\ 0 & 0 & 0 & 1 & -1 & | & a_4 \\ -1 & 0 & 0 & 0 & 1 & | & a_5 \end{bmatrix} \xrightarrow{\tilde{B}(\tilde{A})\tilde{B}(\tilde{A})\tilde{B}(\tilde{B})\tilde{B}(\tilde{B})\tilde{B}(\tilde{B})\tilde{B}(\tilde{B})\tilde{B}(\tilde{A})\tilde{B}(\tilde{A})\tilde{B}(\tilde{B})\tilde{B}(\tilde{B})\tilde{B}(\tilde{A$$

因为r(R) = 4,当且仅当 $r(\tilde{R}) = 4$,即 $\sum_{i=1}^{5} a_i = 0$ 方程组有解.

继续对其增广矩阵作初等行变换,

 $r(R) = r(\tilde{R}) = 4 < 5$,则方程组有无穷多解. 其同解方程组为

$$\begin{cases} x_1 = a_1 + a_2 + a_3 + a_4 + x_5, \\ x_2 = a_2 + a_3 + a_4 + x_5, \\ x_3 = a_3 + a_4 + x_5, \\ x_4 = a_4 + x_5, \end{cases}$$

故方程组的通解为

$$[x_1, x_2, x_3, x_4, x_5]^{\mathsf{T}} = [a_1 + a_2 + a_3 + a_4, a_2 + a_3 + a_4, a_3 + a_4, a_4, a_5]^{\mathsf{T}} + k[1, 1, 1, 1, 1]^{\mathsf{T}}, \ \forall k \in \mathbf{P}.$$

(8) 证明齐次线性方程组

(I)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0, \\ & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0, \end{cases}$$

只有零解的充分必要条件是线性方程组

(II)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

有唯一解.

证 方程组(I)只有零解的充分必要条件是其系数矩阵的行阶梯形矩阵r(R)=n,当且仅当方程组(II)的增广矩阵的行阶梯形矩阵 $r(R)=r(\tilde{R})=n$,因此方程组(II)有唯一解.

7、 设有齐次线性方程组

$$\begin{cases} (1+a)x_1 + x_2 + \dots + x_n = 0, \\ 2x_1 + (2+a)x_2 + \dots + 2x_n = 0, \\ \dots & (n \ge 2). \end{cases}$$

$$nx_1 + nx_2 + \dots + (n+a)x_n = 0$$

试问 a 取何值时, 该方程组有非零解, 并求出其通解.

解 方法 1 对方程组的系数矩阵 A 作初等行变换,有

$$A = \begin{bmatrix} 1+a & 1 & 1 & \cdots & 1 \\ 2 & 2+a & 2 & \cdots & 2 \\ 3 & 3 & 3+a & \cdots & 3 \\ \vdots & \vdots & \vdots & & \vdots \\ n & n & n & \cdots & n+a \end{bmatrix} \xrightarrow{r_1-ir_1 \atop i\geq 2} \begin{bmatrix} 1+a & 1 & 1 & \cdots & 1 \\ -2a & a & 0 & \cdots & 0 \\ -3a & 0 & a & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ -na & 0 & 0 & \cdots & a \end{bmatrix} = B_1.$$

当 a=0 时, $r(B_1)=1 < n$,则方程组有非零解. 其同解方程组为 $x_1+x_2+\cdots+x_n=0$,则方程组的通解为

$$[x_1, x_2, \cdots, x_n]^{\mathsf{T}} = k_1 \eta_1 + k_2 \eta_2 + \cdots + k_{n-1} \eta_{n-1}, \ \forall k_1, k_2, \cdots, k_{n-1} \in \mathbf{P} ,$$

其中
$$\eta_1 = \begin{bmatrix} -1, 1, 0, \dots, 0 \end{bmatrix}^T$$
, $\eta_2 = \begin{bmatrix} -1, 0, 1, 0, \dots, 0 \end{bmatrix}^T$, \dots , $\eta_{n-1} = \begin{bmatrix} -1, 0, \dots, 0, 1 \end{bmatrix}^T$.

当 $a \neq 0$ 时,对矩阵B,作初等行变换,有

$$B_{1} \to \begin{bmatrix} 1+a & 1 & \cdots & 1 \\ -2 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ -n & 0 & \cdots & 1 \end{bmatrix} \xrightarrow{r_{1} - \sum_{i=2}^{n} r_{i}} \begin{bmatrix} a + \frac{n(n+1)}{2} & 0 & \cdots & 0 \\ -2 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ -n & 0 & \cdots & 1 \end{bmatrix} = B_{2}.$$

由 B_2 可知, 当 $a=-\frac{n(n+1)}{2}$ 时, r(A)=n-1< n, 则方程组有非零解. 其同解方程组为

$$\begin{cases}
-2x_1 + x_2 = 0, \\
-3x_1 + x_3 = 0, \\
\dots \\
-nx_1 + x_n = 0.
\end{cases}$$

选 x_1 为自由变量,则方程组的通解为 $\left[x_1,x_2,\cdots,x_n\right]^T=k[1,2,\cdots,n]^T,\ \forall k\in\mathbf{P}$.

第二章 行列式

- 1、求下列排列的逆序数,并说明哪些是偶排列.
 - (1) 13524:

- (2) 54321:
- (3) $13\cdots(2n-1)246\cdots(2n)$; (4) $(n-1)(n-2)\cdots 21n$.

解(1) τ(13524)=3, 是奇排列:

- (2) $\tau(54321) = 10$, 是偶排列:
- (3) $\tau[13\cdots(2n-1)246\cdots(2n)] = \frac{n(n-1)}{2}$, 当 n=4k 或 n=4k+1 时为偶排列; 当 n=4k+2 或 n = 4k + 3 为奇排列:
- (4) $\tau[(n-1)(n-2)\cdots 21n] = \frac{(n-1)(n-2)}{2}$, 当 n=4k+1 或 n=4k+2 时为偶排列: 当 n=4k 或 n=4k+3 时为奇排列。
 - 2、 试确定下列五阶行列式中的项所带的符号.
 - (1) $a_{31}a_{25}a_{13}a_{52}a_{44}$;
- (2) $a_{14}a_{23}a_{51}a_{32}a_{45}$

解 (1) 正号:

- (2) 负号.
- 3、利用行列式的定义计算下列行列式.

$$\begin{array}{c}
(1) \begin{vmatrix}
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 4 \\
3 & 0 & 0 & 0 \\
0 & 5 & 0 & 0
\end{vmatrix} :$$

$$(2) \begin{vmatrix}
7 & 6 & 5 & 4 \\
3 & 8 & 9 & 0 \\
0 & 2 & 10 & 0 \\
0 & 0 & 1 & 0
\end{vmatrix} :$$

$$(3) \begin{vmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 2 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & n-1 \\
n & 0 & 0 & \cdots & 0
\end{vmatrix} :$$

$$(4) \begin{vmatrix}
0 & 0 & \cdots & 0 & 1 & 0 \\
0 & 0 & \cdots & 2 & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots & \vdots \\
n-1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & n
\end{vmatrix}$$

解(1)行列式的展开式中非零项为 $a_{13}a_{24}a_{31}a_{42}$,这一项列指标排列的逆序数为 $\tau(3412)=4$, 故 $D = (-1)^4 a_{13} a_{24} a_{31} a_{42} = 2 \times 4 \times 3 \times 5 = 120$;

(2)
$$D = (-1)^{r(4123)} a_{14} a_{21} a_{32} a_{43} = (-1)^3 a_{14} a_{21} a_{32} a_{43} = -1 \times 2 \times 3 \times 4 = -24$$
;

(3)
$$D = (-1)^{\tau(23\cdots n)} a_{12}a_{23}\cdots a_{n-1,n}a_{n1} = (-1)^{n-1}a_{12}a_{23}\cdots a_{n-1,n}a_{n1} = (-1)^{n-1}n!$$

(4)
$$D = (-1)^{\tau(n-1n-2\cdots 1n)} a_{1,n-1} a_{2,n-2} \cdots a_{n-1,1} a_{nn} = (-1)^{\frac{(n-1)(n-2)}{2}} n!$$

4、试用行列式的定义确定行列式

$$f(x) = \begin{vmatrix} 2x & x & 1 & 2 \\ 1 & x & 1 & -1 \\ 3 & 2 & x & 1 \\ 1 & 1 & 1 & x \end{vmatrix}$$

中 x^3 及 x^4 的系数.

解 含 x^3 项为 $-a_{12}a_{21}a_{33}a_{44}$, 其系数为-1; 含 x^4 项为 $a_{11}a_{22}a_{33}a_{44}$, 其系数为2.

5、计算下列行列式.

$$\begin{vmatrix}
-ab & ac & ae \\
bd & -cd & de \\
bf & cf & -ef
\end{vmatrix}$$

(6)
$$\begin{vmatrix} a & b & c & d \\ a & b+a & c+b+a & d+c+b+a \\ a & b+2a & c+2b+3a & d+2c+3b+4a \\ a & b+3a & c+3b+6a & d+3c+6b+10a \end{vmatrix};$$

解 (1) 用化三角形法.

原式
$$\frac{r_2 - 2r_1}{r_4 - 2r_1}$$
 $\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & 1 & 2 \\ 0 & -1 & 2 & 4 \\ 0 & -11 & 1 & -1 \end{vmatrix}$ $\begin{vmatrix} r_3 - r_2 \\ r_4 - 11r_2 \end{vmatrix}$ $\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & 1 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & -10 & -23 \end{vmatrix}$ $\begin{vmatrix} r_4 + 10r_3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & -3 \end{vmatrix}$ $= 3.$

(2) 原式=
$$\frac{r_1-r_2}{r_3-r_4}\begin{vmatrix} a & a & 0 & 0 \\ 1 & 1-a & 1 & 1 \\ 0 & 0 & b & b \\ 1 & 1 & 1 & 1-b \end{vmatrix} = \frac{c_2-c_1}{c_4-c_3}\begin{vmatrix} a & 0 & 0 & 0 \\ 1 & -a & 1 & 0 \\ 0 & 0 & b & 0 \\ 1 & 0 & 1 & -b \end{vmatrix} = a^2b^2.$$

$$(5) \quad \text{$\textstyle f$} \pm \frac{c_1 + c_2 + c_3}{c_2 - c_3} \begin{vmatrix} 1000 & 100 & 327 \\ 2000 & 100 & 443 \\ 1000 & 100 & 621 \end{vmatrix} \frac{r_2 - 2r_1}{r_3 - r_1} \begin{vmatrix} 1000 & 100 & 327 \\ 0 & -100 & -211 \\ 0 & 0 & 294 \end{vmatrix} = -29400000.$$

$$\frac{\mathbf{r_4} - \mathbf{r_3}}{0} \begin{vmatrix} a & b & c & d \\ 0 & a & b+a & c+b+a \\ 0 & 0 & a & b+2a \\ 0 & 0 & 0 & a \end{vmatrix} = a^4.$$

注1 也可以用初等列变换化简计算该行列式.

6、计算下列各行列式.

$$\begin{vmatrix} a & a & \cdots & a & b \\ a & a & \cdots & b & a \\ \vdots & \vdots & & \vdots & \vdots \\ a & b & \cdots & a & a \\ b & a & \cdots & a & a \end{vmatrix} ; \qquad (2) \begin{vmatrix} 1 & 2 & 2 & \cdots & 2 \\ 2 & 2 & 2 & \cdots & 2 \\ 2 & 2 & 3 & \cdots & 2 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 2 & 2 & 2 & \cdots & n \end{vmatrix} ;$$

$$\begin{vmatrix} a_{1}b_{1} & a_{1}b_{2} & a_{1}b_{3} & \cdots & a_{1}b_{n} \\ a_{1}b_{2} & a_{2}b_{2} & a_{2}b_{3} & \cdots & a_{2}b_{n} \\ a_{1}b_{3} & a_{2}b_{3} & a_{3}b_{3} & \cdots & a_{3}b_{n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{1}b_{n} & a_{2}b_{n} & a_{3}b_{n} & \cdots & a_{n}b_{n} \end{vmatrix};$$

$$\begin{vmatrix} \lambda + a_{1} & a_{2} & a_{3} & \cdots & a_{n} \\ a_{1} & \lambda + a_{2} & a_{3} & \cdots & a_{n} \\ a_{1} & a_{2} & \lambda + a_{3} & \cdots & a_{n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{1} & a_{2} & a_{3} & \cdots & \lambda + a_{n} \end{vmatrix}$$

$$\mathbf{R}$$
 (1) 原式 $\frac{每 - 7 \cdot 3 \cdot 5}{$ 第一行 \mathbf{R} $\mathbf{R$

$$\frac{\mathbf{r}_{i} - a\mathbf{r}_{1}}{i = 2, 3, \dots n} [(n-1)a + b] \begin{vmatrix} 1 & 1 & \dots & 1 & 1 \\ 0 & 0 & \dots & b - a & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & b - a & \dots & 0 & 0 \\ b - a & 0 & \dots & 0 & 0 \end{vmatrix}$$

$$= (-1)^{n+1} [(n-1)a + b] \begin{vmatrix} 0 & \dots & 0 & b - a \\ 0 & \dots & b - a & 0 \\ \vdots & & \vdots & \vdots \\ b - a & \dots & 0 & 0 \end{vmatrix}$$

$$= (-1)^{n+1}[(n-1)a+b] \begin{vmatrix} 0 & \cdots & 0 & b-a \\ 0 & \cdots & b-a & 0 \\ \vdots & & \vdots & \vdots \\ b-a & \cdots & 0 & 0 \end{vmatrix}$$

(2) 把第二行的-1 倍加到其余行,再把第一行的2倍加到第二行,得

$$\lim_{n \to \infty} \frac{1}{|a_{n}|} = \begin{vmatrix}
-1 & 0 & 0 & \cdots & 0 \\
2 & 2 & 2 & \cdots & 2 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & n-2
\end{vmatrix} = \begin{vmatrix}
-1 & 0 & 0 & \cdots & 0 \\
0 & 2 & 2 & \cdots & 2 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & n-2
\end{vmatrix} = -2(n-2)!.$$
(3)
$$\begin{vmatrix}
a_{1}b_{1} & a_{1}b_{2} & a_{1}b_{3} & \cdots & a_{1}b_{n} \\
a_{1}b_{2} & a_{2}b_{2} & a_{2}b_{3} & \cdots & a_{2}b_{n} \\
a_{1}b_{3} & a_{2}b_{3} & a_{3}b_{3} & \cdots & a_{3}b_{n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{1}b_{n} & a_{2}b_{n} & a_{3}b_{n} & \cdots & a_{n}b_{n}
\end{vmatrix} = \begin{vmatrix}
b_{1} & a_{1}b_{2} & a_{1}b_{3} & \cdots & a_{1}b_{n} \\
b_{2} & a_{2}b_{2} & a_{2}b_{3} & \cdots & a_{2}b_{n} \\
b_{3} & a_{2}b_{3} & a_{3}b_{3} & \cdots & a_{3}b_{n}
\end{vmatrix} = a_{1}\begin{vmatrix}
b_{1} & a_{1}b_{2} - a_{2}b_{1} & a_{1}b_{3} - a_{3}b_{1} & \cdots & a_{1}b_{n} - a_{n}b_{1} \\
b_{2} & 0 & a_{2}b_{3} - a_{3}b_{2} & \cdots & a_{2}b_{n} - a_{n}b_{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
b_{n} & 0 & 0 & \cdots & 0
\end{vmatrix}$$

$$= (-1)^{n+1} a_{1}b_{n}\begin{vmatrix}
a_{1}b_{2} - a_{2}b_{1} & * & * & \cdots & * \\
0 & a_{2}b_{3} - a_{3}b_{2} & * & \cdots & * \\
0 & a_{2}b_{3} - a_{3}b_{2} & * & \cdots & * \\
0 & a_{2}b_{3} - a_{3}b_{2} & * & \cdots & * \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a_{n-1}b_{n} - a_{n}b_{n-1}
\end{vmatrix}$$

$$= (-1)^{n+1} a_{1}b_{n}\prod_{n=1}^{n-1} (a_{k}b_{k+1} - a_{k+1}b_{k}).$$

(4) 把第二列,第三列,…,第n列都加到第一列,

原式 =
$$\lambda + \sum_{k=1}^{n} a_k$$

$$\begin{vmatrix} 1 & a_2 & a_3 & \cdots & a_n \\ 1 & \lambda + a_2 & a_3 & \cdots & a_n \\ 1 & a_2 & \lambda + a_3 & \cdots & a_n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & a_2 & a_3 & \cdots & \lambda + a_n \end{vmatrix} = \begin{vmatrix} \lambda + \sum_{k=1}^{n} a_k & a_2 & a_3 & \cdots & a_n \\ \lambda + \sum_{k=1}^{n} a_k & \lambda + a_2 & a_3 & \cdots & a_n \\ \vdots & \vdots & \vdots & & \vdots \\ \lambda + \sum_{k=1}^{n} a_k & a_2 & \lambda + a_3 & \cdots & a_n \\ \vdots & \vdots & \vdots & & \vdots \\ \lambda + \sum_{k=1}^{n} a_k & a_2 & a_3 & \cdots & \lambda + a_n \end{vmatrix}$$

$$= \lambda + \sum_{k=1}^{n} a_{k} \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & \lambda & 0 & \cdots & 0 \\ 1 & 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 0 & 0 & \cdots & \lambda \end{vmatrix} = \lambda^{n-1} (\lambda + \sum_{k=1}^{n} a_{k}).$$

(5) 这是一个n+1阶行列式

原式
$$\frac{c_1 + c_2 + \dots + c_{n+1}}{}$$
 $\begin{vmatrix} (n+1)a + (1+2+\dots + n)h & a+h & a+2h & \dots & a+nh \\ 0 & a & & & \\ 0 & -a & a & & \\ \vdots & & \ddots & \ddots & \\ 0 & & & -a & a \end{vmatrix}$

$$\frac{$$
按 c_1 展开 $\left[(n+1)a+\frac{n(n+1)}{2}h\right]$ $\begin{vmatrix} a & & & & & & & & \\ -a & a & & & & & & \\ & \ddots & \ddots & & & & \\ & & -a & a & & & \\ & & & -a & a & & \\ & & & & -a & a \end{vmatrix}_{(n \cap 1)} = \frac{(n+1)}{2}(2a+nh)a^n.$

(6) 这是一个n+1阶行列式

原式
$$=$$
 $\begin{vmatrix} -a_1 & a_1 & & & 0 \\ & -a_2 & \ddots & & \vdots \\ & & \ddots & a_{n-1} & 0 \\ & & & -a_n & 0 \\ 1 & 1 & \cdots & 1 & n+1 \end{vmatrix}$ $= (n+1) \prod_{i=1}^{n} (-a_i)$.

7、应用范德蒙行列式计算下列各题.

(1)
$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 2 & 2^2 & 2^3 & \cdots & 2^n \\ 3 & 3^2 & 3^3 & \cdots & 3^n \\ \vdots & \vdots & \vdots & & \vdots \\ n & n^2 & n^3 & \cdots & n^n \end{vmatrix};$$

(1)
$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 2 & 2^{2} & 2^{3} & \cdots & 2^{n} \\ 3 & 3^{2} & 3^{3} & \cdots & 3^{n} \\ \vdots & \vdots & \vdots & & \vdots \\ n & n^{2} & n^{3} & \cdots & n^{n} \end{vmatrix}$$

$$(2) \begin{vmatrix} a_{1}^{n} & a_{1}^{n-1}b_{1} & a_{1}^{n-2}b_{1}^{2} & \cdots & a_{1}b_{1}^{n-1} & b_{1}^{n} \\ a_{2}^{n} & a_{2}^{n-1}b_{2} & a_{2}^{n-2}b_{2}^{2} & \cdots & a_{2}b_{2}^{n-1} & b_{2}^{n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n+1}^{n} & a_{n+1}^{n-1}b_{n+1} & a_{n+1}^{n-2}b_{n+1}^{2} & \cdots & a_{n+1}b_{n+1}^{n-1} & b_{n+1}^{n} \end{vmatrix}, \quad \cancel{\ddagger} \Rightarrow a_{1}, a_{2}, \cdots, a_{n+1} \Rightarrow 3^{n} \Rightarrow 3^{$$

解 (1) 原式
$$\frac{r_i/i}{1 \le i \le n} n! V(1, 2, \dots, n) = \prod_{i=1}^n i!$$
;

(2) 原式
$$\frac{\mathbf{r}_{i}/a_{i}^{n}}{1 \leq i \leq n+1} a_{1}^{n} a_{2}^{n} a_{3}^{n} \cdots a_{n+1}^{n} \begin{vmatrix} 1 & b_{1}/a_{1} & (b_{1}/a_{1})^{2} & \cdots & (b_{1}/a_{1})^{n} \\ 1 & b_{2}/a_{2} & (b_{2}/a_{2})^{2} & \cdots & (b_{2}/a_{2})^{n} \\ 1 & b_{3}/a_{3} & (b_{3}/a_{3})^{2} & \cdots & (b_{3}/a_{3})^{n} \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & b_{n+1}/a_{n+1} & (b_{n+1}/a_{n+1})^{2} & \cdots & (b_{n+1}/a_{n+1})^{n} \end{vmatrix}$$

$$= a_{1}^{n} a_{2}^{n} a_{3}^{n} \cdots a_{n+1}^{n} V(\frac{b_{1}}{a_{1}}, \frac{b_{2}}{a_{2}}, \cdots, \frac{b_{n+1}}{a_{n+1}}) = a_{1}^{n} a_{2}^{n} a_{3}^{n} \cdots a_{n+1}^{n} \prod_{1 \leq i \leq (n+1)} \left(\frac{b_{i}}{a_{j}} - \frac{b_{i}}{a_{i}}\right).$$

8、证明下列各题.

$$\begin{vmatrix} 2a & 1 & & & & \\ a^{2} & 2a & 1 & & & \\ & \ddots & \ddots & \ddots & & \\ & & a^{2} & 2a & 1 \\ & & & a^{2} & 2a \end{vmatrix} = (n+1)a^{n};$$

$$\begin{vmatrix} a_{1} & & & & b_{1} \\ a_{2} & & & b_{2} \\ & \ddots & & \ddots & \\ & & a_{n} & b_{n} & \\ & & & b_{n} & a_{n} \\ & & & \ddots & & \ddots \\ & & & & b_{2} & & a_{2} \end{vmatrix} = (a_{1}^{2} - b_{1}^{2})(a_{2}^{2} - b_{2}^{2})\cdots(a_{n}^{2} - b_{n}^{2}).$$

$$(2) \begin{vmatrix} a_{1} & & & & b_{1} \\ a_{2} & & & \ddots & \\ & & b_{n} & a_{n} & \\ & & & \ddots & & \ddots \\ & & & & b_{2} & & a_{2} \end{vmatrix} = (a_{1}^{2} - b_{1}^{2})(a_{2}^{2} - b_{2}^{2})\cdots(a_{n}^{2} - b_{n}^{2}).$$

证(1)方法1 将原行列式 $D_n(n)$ 为阶数)化为上三角行列式得

$$D_{n} = \begin{vmatrix} 2a & 1 & & & & & & \\ 0 & \frac{3}{2}a & 1 & & & & & \\ & 0 & \frac{4}{3}a & 1 & & & & & \\ & & \ddots & \ddots & \ddots & & & \\ & & & 0 & \frac{n}{n-1}a & 1 & & \\ & & & 0 & \frac{n+1}{n}a \end{vmatrix} = (n+1)a^{n}.$$

方法 2 先将 D_n 按第 1 列展开,再将 D_n 的 (1,2) 元的 n-1 阶余子式按第 1 行展开得

$$D_n = 2aD_{n-1} - a^2D_{n-2}.$$

由于 $D_1 = 2a$, $D_2 = 3a^2$, 且利用上述递推式可得

$$D_n - aD_{n-1} = a(D_{n-1} - aD_{n-2}) = \dots = a^{n-2}(D_2 - aD_1) = a^n$$
,

因此
$$D_n = aD_{n-1} + a^n = a^2D_{n-2} + 2a^n = \dots = a^{n-1}D_1 + (n-1)a^n = (n+1)a^n$$
.

(2)方法 1 这是一个 2n 阶行列式.

$$\begin{split} D_{2n} &= a_1 M_{11} + (-1)^{1+2n} b_1 M_{1,2n} = a_1 M_{11} - b_1 M_{1,2n} \\ &= a_1 (-1)^{(2n-1)+(2n-1)} a_1 D_{2(n-1)} - b_1 (-1)^{(2n-1)+1} b_1 D_{2(n-1)} \\ &= (a_1^2 - b_1^2) D_{2(n-1)} = (a_1^2 - b_1^2) (a_2^2 - b_2^2) D_{2(n-2)} \\ &= \dots = (a_1^2 - b_1^2) (a_2^2 - b_2^2) \dots (a_n^2 - b_n^2). \end{split}$$

方法 2 将行列式的第2n 行、第2n 列分别与前2n-2 行、前2n-2 列逐个互换,得

原式=
$$\begin{vmatrix} a_1 & b_1 \\ b_1 & a_1 \\ & & a_2 \\ & & \ddots & & \ddots \\ & & & a_n & b_n \\ & & & b_n & a_n \\ & & & \ddots & & \ddots \\ & & & b_2 & & & a_2 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 \\ b_1 & a_1 \\ & & a_2 & b_2 \\ & & b_2 & a_2 \\ & & & \ddots & & \ddots \\ & & & & b_n & a_n \end{vmatrix} = \prod_{i=1}^n (a_i^2 - b_i^2).$$

9、用克拉默法则求解下列各线性方程组:

(1)
$$\begin{cases} 2x_1 + x_2 - 5x_3 + x_4 = 8, \\ x_1 - 3x_2 - 6x_4 = 9, \\ 2x_2 - x_3 + 2x_4 = -5, \\ x_1 + 4x_2 - 7x_3 + 6x_4 = 0. \end{cases}$$
 (2)
$$\begin{cases} 5x_1 + 6x_2 = 1, \\ x_1 + 5x_2 + 6x_3 = -2, \\ x_2 + 5x_3 + 6x_4 = 2, \\ x_3 + 5x_4 + 6x_5 = -2, \\ x_4 + 5x_5 = -4. \end{cases}$$

解 (1) 系数行列式

$$|A| = \begin{vmatrix} 2 & 1 & -5 & 1 \\ 1 & -3 & 0 & -6 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix} = 27.$$

那么,

$$|B_{1}| = \begin{vmatrix} 8 & 1 & -5 & 1 \\ 9 & -3 & 0 & -6 \\ -5 & 2 & -1 & 2 \\ 0 & 4 & -7 & 6 \end{vmatrix} = 81 \Rightarrow x_{1} = \frac{|B_{1}|}{|A|} = 3;$$

$$|B_{2}| = \begin{vmatrix} 2 & 8 & -5 & 1 \\ 1 & 9 & 0 & -6 \\ 0 & -5 & -1 & 2 \\ 1 & 0 & -7 & 6 \end{vmatrix} = -108 \Rightarrow x_{2} = \frac{|B_{2}|}{|A|} = -4;$$

$$|B_{3}| = \begin{vmatrix} 2 & 1 & 8 & 1 \\ 1 & -3 & 9 & -6 \\ 0 & 2 & -5 & 2 \\ 1 & 4 & 0 & 6 \end{vmatrix} = -27 \Rightarrow x_{3} = \frac{|B_{3}|}{|A|} = -1;$$

$$|B_{4}| = \begin{vmatrix} 2 & 1 & -5 & 8 \\ 1 & -3 & 0 & 9 \\ 0 & 2 & -1 & -5 \\ 1 & 4 & -7 & 0 \end{vmatrix} = 27 \Rightarrow x_{4} = \frac{|B_{4}|}{|A|} = 1..$$

(2) 系数行列式

$$|A| = \begin{vmatrix} 5 & 6 \\ 1 & 5 & 6 \\ & 1 & 5 & 6 \\ & 1 & 5 & 6 \\ & & 1 & 5 \end{vmatrix} = \frac{3^6 - 2^6}{3 - 2} = 665 \neq 0.$$

那么,

$$|B_{5}| = \begin{vmatrix} 5 & 6 & 1 \\ 1 & 5 & 6 & -2 \\ 1 & 5 & 6 & 2 \\ 1 & 5 & -2 \\ 1 & -4 \end{vmatrix} \xrightarrow{\frac{1}{2}c_{5}} 1 + 2 \cdot 5 + 2 \begin{vmatrix} 5 & 6 & 0 & 0 \\ 1 & 5 & 6 & 0 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 1 \end{vmatrix} + 2 \begin{vmatrix} 5 & 6 & 0 & 0 \\ 1 & 5 & 6 & 0 \\ 0 & 1 & 5 & 6 \\ 0 & 0 & 0 & 1 \end{vmatrix} - 4 \begin{vmatrix} 5 & 6 & 0 & 0 \\ 1 & 5 & 6 & 0 \\ 0 & 1 & 5 & 6 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 49 + 2 \frac{3^{4} - 2^{4}}{3 - 2} - 4 \frac{3^{5} - 2^{5}}{3 - 2} = -665 \Rightarrow x_{5} = \frac{|B_{5}|}{|A|} = -1;$$

$$x_4 = -4 - 5x_5 = 1$$
; $x_3 = -2 - 5x_4 - 6x_5 = -1$;

$$x_2 = 2 - 5x_3 - 6x_4 = 1$$
; $x_1 = -2 - 5x_2 - 6x_3 = -1$.

10、给定平面上的三个点(1,1),(2,-1),(3,1). 求过这三个点且对称轴与y轴平行的抛物线的方

程.

解 由抛物线的对称轴与 y 轴平行可知其方程必为 $y = ax^2 + bx + c(a \neq 0)$ 的形式,而 抛物线过点 (1,1), (2,-1), (3,1),所以

$$\begin{cases} a+b+c = 1, \\ 4a+2b+c = -1, \\ 9a+3b+c = 1 \end{cases} \Rightarrow \begin{cases} a = 2, \\ b = -8, \\ c = 7. \end{cases}$$

抛物线的方程为 $v = 2x^2 - 8x + 7$.

注 也可以巧用已知条件解题: 抛物线的对称轴与y轴平行,且过点(1,1),(3,1),说明对称轴为x=2,进而(2,-1)是抛物线的顶点,可设抛物线的方程为

$$y = a(x-2)^2 - 1(a \neq 0)$$
.

带点 (1,1) 或 (3,1) 即知 a=2; 抛物线的方程为 $y=2(x-2)^2-1$.

11、设有齐次线性方程组

$$\begin{cases} (1+a)x_1 + x_2 + \dots + x_n = 0, \\ 2x_1 + (2+a)x_2 + \dots + 2x_n = 0, \\ \dots \\ nx_1 + nx_2 + \dots + (n+a)x_n = 0 \end{cases} (n \ge 2).$$

试问 a 取何值时,该方程组有非零解,并求出其通解,

解 方法 1 对方程组的系数矩阵 A 作初等行变换,有

$$A = \begin{bmatrix} 1+a & 1 & 1 & \cdots & 1 \\ 2 & 2+a & 2 & \cdots & 2 \\ 3 & 3 & 3+a & \cdots & 3 \\ \vdots & \vdots & \vdots & & \vdots \\ n & n & n & \cdots & n+a \end{bmatrix} \xrightarrow{r_1-ir_1\atop i\geq 2} \begin{bmatrix} 1+a & 1 & 1 & \cdots & 1 \\ -2a & a & 0 & \cdots & 0 \\ -3a & 0 & a & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ -na & 0 & 0 & \cdots & a \end{bmatrix} = B_1.$$

当a=0时, $r(B_1)=1< n$,则方程组有非零解. 其同解方程组为 $x_1+x_2+\cdots+x_n=0$,则方程组的通解为

$$[x_1, x_2, \dots, x_n]^T = k_1 \eta_1 + k_2 \eta_2 + \dots + k_{n-1} \eta_{n-1}, \ \forall k_1, k_2, \dots, k_{n-1} \in \mathbf{P}$$

其中 $\eta_1 = \begin{bmatrix} -1, 1, 0, \cdots, 0 \end{bmatrix}^T$, $\eta_2 = \begin{bmatrix} -1, 0, 1, 0, \cdots, 0 \end{bmatrix}^T$, \cdots , $\eta_{n-1} = \begin{bmatrix} -1, 0, \cdots, 0, 1 \end{bmatrix}^T$.

当 $a \neq 0$ 时,对矩阵 B_i 作初等行变换,有

$$B_{1} \to \begin{bmatrix} 1+a & 1 & \cdots & 1 \\ -2 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ -n & 0 & \cdots & 1 \end{bmatrix} \xrightarrow{r_{1} - \sum_{i=2}^{n} r_{i}} \begin{bmatrix} a + \frac{n(n+1)}{2} & 0 & \cdots & 0 \\ -2 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ -n & 0 & \cdots & 1 \end{bmatrix} = B_{2}.$$

由 B_2 可知,当 $a=-\frac{n(n+1)}{2}$ 时,r(A)=n-1< n,则方程组有非零解. 其同解方程组为

$$\begin{cases}
-2x_1 + x_2 = 0, \\
-3x_1 + x_3 = 0, \\
\dots \\
-nx_1 + x_n = 0.
\end{cases}$$

选 x_1 为自由变量,则方程组的通解为 $\left[x_1, x_2, \dots, x_n\right]^T = k[1, 2, \dots, n]^T$, $\forall k \in \mathbf{P}$.

方法 2 方程组的系数行列式为

$$|A| = \begin{vmatrix} 1+a & 1 & 1 & \cdots & 1 \\ 2 & 2+a & 2 & \cdots & 2 \\ 3 & 3 & 3+a & \cdots & 3 \\ \vdots & \vdots & \vdots & & \vdots \\ n & n & n & \cdots & n+a \end{vmatrix} = a^{n-1} \left(a + \frac{n(n+1)}{2}\right).$$

当|A|=0, 即a=0或 $a=-\frac{n(n+1)}{2}$ 时,则方程组有非零解;

当a=0时,对系数矩阵A作初等行变换,有

$$A = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 2 & 2 & \cdots & 2 \\ \vdots & \vdots & & \vdots \\ n & n & \cdots & n \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}.$$

其同解方程组为 $x_1 + x_2 + \cdots + x_n = 0$,则方程组的通解为

$$\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{\mathsf{T}} = k_{1} \eta_{1} + k_{2} \eta_{2} + \cdots + k_{n-1} \eta_{n-1}, \ \forall k_{1}, k_{2}, \cdots, k_{n-1} \in \mathbf{P} ,$$

其中
$$\eta_1 = \begin{bmatrix} -1, 1, 0, \cdots, 0 \end{bmatrix}^T$$
, $\eta_2 = \begin{bmatrix} -1, 0, 1, 0, \cdots, 0 \end{bmatrix}^T$, \cdots , $\eta_{n-1} = \begin{bmatrix} -1, 0, \cdots, 0, 1 \end{bmatrix}^T$.

当 $a = -\frac{n(n+1)}{2}$ 时,对系数矩阵 A 作初等行变换,有

$$A = \begin{bmatrix} 1+a & 1 & 1 & \cdots & 1 \\ 2 & 2+a & 2 & \cdots & 2 \\ 3 & 3 & 3+a & \cdots & 3 \\ \vdots & \vdots & \vdots & & \vdots \\ n & n & n & \cdots & n+a \end{bmatrix} \rightarrow \begin{bmatrix} 1+a & 1 & 1 & \cdots & 1 \\ -2a & a & 0 & \cdots & 0 \\ -3a & 0 & a & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ -na & 0 & 0 & \cdots & a \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ -2 & 1 & 0 & \cdots & 0 \\ -3 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ -n & 0 & 0 & \cdots & 1 \end{bmatrix}.$$

其同解方程组为

$$\begin{cases}
-2x_1 + x_2 = 0, \\
-3x_1 + x_3 = 0, \\
\dots \\
-nx_1 + x_n = 0.
\end{cases}$$

选 x_1 为自由变量,则方程组的通解为 $\left[x_1,x_2,\cdots,x_n\right]^{\mathrm{T}}=k[1,2,\cdots,n]^{\mathrm{T}},\;\forall k\in\mathbf{P}$.

第三章 矩阵

1、设矩阵
$$A = \begin{bmatrix} 1 & -2 & 2 & -4 \\ 5 & -9 & 1 & 2 \\ 6 & 3 & -7 & 5 \end{bmatrix}, B = \begin{bmatrix} 5 & 4 & 2 & 0 \\ 1 & -5 & 7 & 4 \\ -4 & -3 & 1 & -1 \end{bmatrix}, 求 \frac{1}{2}(3B - A).$$

$$\Re \frac{1}{2}(3\mathbf{B} - \mathbf{A}) = \frac{1}{2}(3\begin{bmatrix} 5 & 4 & 2 & 0 \\ 1 & -5 & 7 & 4 \\ -4 & -3 & 1 & -1 \end{bmatrix} - \begin{bmatrix} 1 & -2 & 2 & -4 \\ 5 & -9 & 1 & 2 \\ 6 & 3 & -7 & 5 \end{bmatrix}) = \begin{bmatrix} 7 & 7 & 2 & 2 \\ -1 & -3 & 10 & 5 \\ -9 & -6 & 5 & -4 \end{bmatrix}$$

2、设
$$A = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$
, $B = [b_1, b_2, \dots, b_n]$, 求 AB 和 BA .

$$\mathbf{\widehat{R}} \ \ \mathbf{A}\mathbf{B} = \begin{bmatrix} a_{1_{i_{1}}} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix} [b_{1}, b_{2}, \dots, b_{n}] = \begin{bmatrix} a_{1}b_{1} & a_{1}b_{2} & \cdots & a_{1}b_{n} \\ a_{2}b_{1} & a_{2}b_{2} & \cdots & a_{2}b_{n} \\ \vdots & \vdots & & \vdots \\ a_{n}b_{1} & a_{n}b_{2} & \cdots & a_{n}b_{n} \end{bmatrix} :$$

$$BA = [b_1, b_2, \dots, b_n] \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = b_1 a_1 + b_2 a_2 + \dots + b_n a_n.$$

3.
$$\&A = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 1 & 2 \\ 3 & -1 & 5 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 2 & 1 \\ 1 & -2 & -1 \end{bmatrix}$, $\%(1) \ 2AB - 3B$; (2) AB^{T} .

$$\mathbf{\beta} \mathbf{z} \mathbf{A} \mathbf{B} - 3 \mathbf{B} = \begin{bmatrix} 1 & 9 & 6 \\ 5 & 2 & -5 \\ 7 & 0 & -9 \end{bmatrix}; \mathbf{A} \mathbf{B}^{\mathsf{T}} = \begin{bmatrix} 4 & 3 & 1 \\ 5 & 10 & -2 \\ 0 & 12 & 0 \end{bmatrix}.$$

4、设 $A = [a_{ij}]$ 是n 阶方阵, ε_i 是第i 个分量是1, 其余元素全为零的 $n \times 1$ 矩阵, 求 $\varepsilon_i^{\mathsf{T}} A, A \varepsilon_j, \, \varepsilon_i^{\mathsf{T}} A \varepsilon_i (i, j = 1, 2, ..., n)$.

$$\Re \varepsilon_{i}^{\mathsf{T}} A = [1, 0, \dots, 0] \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{23} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = [a_{11}, a_{12}, \dots, a_{1n}],$$

$$A\varepsilon_{j} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{23} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{bmatrix}, \quad \varepsilon_{i}^{\mathsf{T}} A\varepsilon_{j} = (\varepsilon_{i}^{\mathsf{T}} A)\varepsilon_{j} = [a_{11}, a_{12}, \dots, a_{1n}] \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} = a_{1j}$$

5、求与矩阵 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ 可交换的所有矩阵.

解
$$A 与 X$$
 可交换,即 $AX = XA$,设 $X = \begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \end{bmatrix}$,

那么有
$$\begin{bmatrix} x_1 + x_4 & x_2 + x_5 & x_3 + x_6 \\ x_4 + x_7 & x_5 + x_8 & x_6 + x_9 \\ x_1 + x_7 & x_2 + x_8 & x_3 + x_9 \end{bmatrix} = \begin{bmatrix} x_1 + x_3 & x_1 + x_2 & x_2 + x_3 \\ x_4 + x_6 & x_4 + x_5 & x_5 + x_6 \\ x_7 + x_9 & x_7 + x_8 & x_8 + x_9 \end{bmatrix} \Leftrightarrow \begin{cases} x_1 = x_5 = x_9, \\ x_2 = x_6 = x_7, \\ x_3 = x_4 = x_8. \end{cases}$$

所以
$$X = \begin{bmatrix} x_1 & x_2 & x_3 \\ x_3 & x_1 & x_2 \\ x_2 & x_3 & x_1 \end{bmatrix}; \ \forall x_1, \ x_2, \ x_3 \in \mathbf{P}.$$

6、 设n阶方阵A与对角矩阵 $D=\mathrm{diag}(d_1,d_2,...,d_n)$ 可交换,且 $d_1,d_2,...,d_n$ 两两互异,证明A是对角阵

证 充分性显然, 下证必要性.

由矩阵相等的定义以及 d_1,d_2,\ldots,d_n 两两互异,得 $a_{ij}=0,i\neq j$, 因此矩阵 A 为对角阵.

$$\Re f(x) = \begin{vmatrix} x & 1 & 3 \\ 0 & 2 & x+1 \\ 1 & 1 & x-1 \end{vmatrix} = x \begin{vmatrix} 2 & x+1 \\ 1 & x-1 \end{vmatrix} + \begin{vmatrix} 1 & 3 \\ 2 & x+1 \end{vmatrix} = x^2 - 2x - 5,$$

$$f(A) = A^2 - 2A - 5E = \begin{bmatrix} 7 & -4 & -4 \\ -1 & 2 & 2 \\ -6 & 6 & 7 \end{bmatrix}.$$

8、设矩阵
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
, 求 $\mathbf{A}^2, \mathbf{A}^3, \mathbf{A}^4$.

$$\mathbf{A}^2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

9、计算下列各题

(1)
$$\begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}^n$$

(1)
$$\begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}^{n} :$$
 (2)
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^{n} :$$

解 记被n次幂的方阵为A.

(1) 因为
$$\mathbf{A} = \lambda \mathbf{E}_3 + \mathbf{J}$$
, 其中 $\mathbf{J} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ 满足 $\mathbf{J}^2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\mathbf{J}^3 = \mathbf{O}$, 所以

$$A^{n} = (\lambda E_{3} + J)^{n}$$

$$= (\lambda E_{3})^{n} + n(\lambda E_{3})^{n-1}J + \frac{n(n-1)}{2}(\lambda E_{3})^{n-2}J^{2}$$

$$= \begin{bmatrix} \lambda^{n} & n\lambda^{n-1} & n(n-1)\lambda^{n-2}/2\\ 0 & \lambda^{n} & n\lambda^{n-1}\\ 0 & 0 & \lambda^{n} \end{bmatrix}.$$

我们猜想
$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}^n = \begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix}.$$

假设结论对n = k - 1时成立

$$\mathtt{HP} \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}^{k-1} = \begin{bmatrix} \cos(k-1)\theta & -\sin(k-1)\theta \\ \sin(k-1)\theta & \cos(k-1)\theta \end{bmatrix},$$

$$\mathbb{M} A^{k} = \begin{bmatrix} \cos(k-1)\theta & -\sin(k-1)\theta \\ \sin(k-1)\theta & \cos(k-1)\theta \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} \cos k\theta & -\sin k\theta \\ \sin k\theta & \cos k\theta \end{bmatrix}.$$

由数学归纳法可知结论成立

因为
$$A^2 = 4E_4$$
,所以 $A^n = \begin{cases} (A^2)^{\frac{n-1}{2}}A = 2^{n-1}A, & \text{当}n$ 为奇数时;
$$(A^2)^{\frac{n}{2}} = 2^n E_4, & \text{当}n$$
为偶数时.

因为
$$A = E_n - \frac{1}{n}J$$
, 其中 $J = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} [1,1,\ldots,1]$ 满足 $J^2 = nJ$,

$$\mathbb{R} A^{n} = (E_{n} - \frac{1}{n}J)^{n} = C_{n}^{0}E_{n}(-\frac{1}{n})^{n}J^{n} + C_{n}^{1}E_{n}(-\frac{1}{n})^{n-1}J^{n-1} + \dots + C_{n}^{n-1}E_{n}(-\frac{1}{n})J + C_{n}^{n}E_{n}$$

$$= C_{n}^{0}(-\frac{1}{n})^{n}n^{n-1}J + C_{n}^{1}(-\frac{1}{n})^{n-1}n^{n-2}J + \dots + C_{n}^{n-1}(-\frac{1}{n})J + C_{n}^{n}E_{n}$$

$$= (C_{n}^{0}(-1)^{n} + C_{n}^{1}(-1)^{n-1} + \dots + C_{n}^{n-1}(-1))\frac{1}{n}J + C_{n}^{n}E_{n}$$

$$= ((1-1)^{n}-1)\frac{1}{n}J + E_{n}$$

$$= E_{n} - \frac{1}{n}J = A.$$

10、设 $A = [a_{ij}]$ 是n 阶方阵,则A 的主对角线上所有元素之和称为矩阵A 的迹,记作tcA,即

 $\operatorname{tr} A = \sum_{i=1}^{n} a_{ii}$. 证明 $\operatorname{tr}(AB) = \operatorname{tr}(BA)$, 其中 A 为 $m \times n$ 矩阵, B 为 $n \times m$ 阶方阵.

$$\mathbb{iE} \quad \operatorname{tr}(AB) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ji} = \sum_{i=1}^{n} \sum_{j=1}^{m} b_{ji} a_{ij} = \operatorname{tr}(BA).$$

11、设A, B 均为阶对称矩阵, 证明AB 为对称矩阵的充分必要条件是AB = BA.

证 若 AB 为对称矩阵,即 $(AB)^T = AB$,而 $(AB)^T = B^T A^T = BA$,所以 AB = BA.

反之,若AB = BA,则 $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}} = BA = AB$,即AB为对称矩阵.

12、设n阶方阵A满足 $AA^{\mathsf{T}} = E$,且|A| = -1,证明|A + E| = 0.

$$\mathbb{E} \quad |A + E| = |A + AA^{T}| = |A(E + A^{T})| = |A||E + A^{T}|$$
$$= |A||(E + A^{T})^{T}| = |A||E + A| = -|E + A|.$$

 $\therefore |\mathbf{A} + \mathbf{E}| = 0.$

13、求下列矩阵的逆矩阵.

(1)
$$A = \begin{bmatrix} 3 & 2 \\ 8 & 5 \end{bmatrix}$$
; (2) $A = \begin{bmatrix} 1 & -1 & 2 \\ 4 & 3 & 3 \\ 2 & 1 & 2 \end{bmatrix}$;

(3)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
; (4) $\mathbf{A} = \begin{bmatrix} 1 & -8 & -4 \\ 8 & -1 & 4 \\ 4 & 4 & -7 \end{bmatrix}$;

解 (1)
$$|A| = -1$$
, $A^* = \begin{bmatrix} 5 & -2 \\ -8 & 3 \end{bmatrix} \Rightarrow A^{-1} = \frac{A^*}{|A|} = -A^* = \begin{bmatrix} -5 & 2 \\ 8 & -3 \end{bmatrix}$.

(2) 用初等行变换法.

$$\begin{bmatrix} A, E \end{bmatrix} = \begin{bmatrix} 1 & -1 & 2 & | & 1 & 0 & 0 \\ 4 & 3 & 3 & | & 0 & 1 & 0 \\ 2 & 1 & 2 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{r_3 - 4r_1 \\ r_3 - 2r_2} \xrightarrow{r_3 - 2r_2} \xrightarrow{r_3 - 2r_2} \begin{bmatrix} 1 & -1 & 2 & | & 1 & 0 & 0 \\ 0 & 7 & -5 & | & -4 & 1 & 0 \\ 0 & 3 & -2 & | & -2 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{r_2 - 2r_3} \xrightarrow{r_3 - 2r_2} \xrightarrow{r_3 - 2r_2} \xrightarrow{r_3 - 3r_2} \xrightarrow{r_3 - 3r_3} \xrightarrow{r_3 - 3r_2} \xrightarrow{r_3 - 3r_3} \xrightarrow{r$$

$$\therefore A^{-1} = \begin{bmatrix} 3 & 4 & -9 \\ -2 & -2 & 5 \\ -2 & -3 & 7 \end{bmatrix}$$

(3) 用初等行变换法.

$$[A,E] = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{r_1 - r_4} \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{r_1 - r_5} \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\therefore A^{-1} = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

(4)
$$|A| = -729$$
, $A^* = \begin{bmatrix} -9 & -72 & -36 \\ 72 & 9 & -36 \\ 36 & -36 & 63 \end{bmatrix} = 9 \begin{bmatrix} -1 & -8 & -4 \\ 8 & 1 & -4 \\ 4 & -4 & 7 \end{bmatrix}$

$$\Rightarrow A^{-1} = \frac{A^*}{|A|} = -\frac{1}{81} \begin{bmatrix} -1 & -8 & -4 \\ 8 & 1 & -4 \\ 4 & -4 & 7 \end{bmatrix}.$$

14、设
$$A$$
为3阶方阵, A 经过第三行乘 $\frac{1}{3}$,第一列的 -2 倍加到第三列变成 $B=\begin{bmatrix}1&4&5\\2&5&4\\1&2&1\end{bmatrix}$,求

矩阵A.

解 由已知得
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix} A \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = B,$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}^{-1} B \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 4 & 5 \\ 2 & 5 & 4 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}.$$

15、设n阶方阵A满足 $A^2-2A-5E=O$,证明A+E可逆, 并求 $(A+E)^{-1}$.

证 由多项式除法得到

$$A^2 - 2A - 5E = (A - 3E)(A + E) - 2E = 0$$
,

即
$$(A-3E)(A+E)=2E$$
, 因此 $A+E$ 可逆, 并且 $(A+E)^{-1}=\frac{1}{2}(A-3E)$.

- 16、设A 是n阶方阵,且A 的每一行元素之和为a.
- (1) 验证 $AX_0 = aX_0$, 其中 $X_0 = \begin{bmatrix} 1, & 1, & \cdots, & 1 \end{bmatrix}^T$;
- (2) 若A可逆,且|A|=b,求 A^{-1} , A^{\bullet} 的每一行元素之和.

解 (1) 设
$$A = [a_{ij}]$$
, 则 $AX_0 = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{n} a_{1j} \\ \sum_{j=1}^{n} a_{2j} \\ \vdots \\ \sum_{j=1}^{n} a_{nj} \end{bmatrix} = \begin{bmatrix} a \\ a \\ \vdots \\ a \end{bmatrix} = aX_0$

(2) 由
$$AX_0 = aX_0$$
,则 $A^{-1}AX_0 = aA^{-1}X_0$,即 $aA^{-1}X_0 = X_0$,而 $a \neq 0$,否则有 $X_0 = 0$.
$$\therefore A^{-1}X_0 = \frac{1}{a}X_0, \quad \text{则 } A^{-1} \text{ 的每一行元素之和为} \frac{1}{a}.$$
 而 $A^{-1} = \frac{1}{b}A^{\bullet}$,即 $A^{\bullet} = bA^{-1}$, $\therefore A^{\bullet}X_0 = bA^{-1}X_0 = \frac{b}{a}X_0$.

- 17、设A是n阶方阵,A*是A的伴随矩阵,证明
- (1) A 可逆的充分必要条件是 A* 可逆;
- (2) $|A^*| = |A|^{n-1}$.

证 (1) 充分性 假设 |A|=0,由 $AA^{*=}|A|E=O$ 得 A=O,根据定义可知 $A^{*}=O$,这与 $|A^{*}|\neq 0$ 矛盾,故 A 可逆.

必要性 由A可逆,可知 $A^* = |A|A^{-1}$ 可逆.

(2) 分不同情况讨论:

若 $|A| \neq 0$,即A可逆,由 $AA^* = |A|E$,得 $|A||A^*| = |A|^n$,从而 $|A^*| = |A|^{n-1}$.

18、设
$$A = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$$
, X 满足 $A * X = A^{-1} + 2X$, 求矩阵 X .

解 \mid $A_{3\times 3}\mid$ = 4, A(A*X)= $A(A^{-1}+2X)$ \Longrightarrow (4E-2A)X=E,从而

$$X = (4E - 2A)^{-1} = \begin{bmatrix} 2 & -2 & 2 \\ 2 & 2 & -2 \\ -2 & 2 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & 0 & \frac{1}{4} \end{bmatrix}.$$

19、利用分块矩阵乘法计算下列矩阵的乘积

(1)
$$A = \begin{bmatrix} 3 & 4 & 0 & 0 \\ 4 & -3 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & -1 \end{bmatrix}, B = \begin{bmatrix} 3 & 4 & 0 & 0 \\ 4 & -3 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 2 & 3 & -1 & -1 \end{bmatrix};$$

(2)
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 5 & -7 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \end{bmatrix}.$$

$$= \begin{bmatrix} A_1 B_1 & O \\ A_2 C & A_2 B_2 \end{bmatrix} = \begin{bmatrix} 25 & 0 & 0 & 0 \\ 0 & 25 & 0 & 0 \\ 2 & 4 & 0 & 0 \\ -2 & -4 & 0 & 0 \end{bmatrix}.$$

(2)
$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 5 & -7 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 3 & 0 & 1 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} E_2 & C \\ O & A \end{bmatrix} \begin{bmatrix} B_1 & E_2 \\ O & B_2 \end{bmatrix}$$

$$= \begin{bmatrix} B_1 & E_2 + CB_2 \\ O & AB_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 6 & 8 \\ 2 & 3 & 1 & 3 \\ 0 & 0 & 9 & 14 \\ 0 & 0 & 8 & 6 \end{bmatrix}.$$

20、设 $A_{m \times n} = [\alpha_1, \alpha_2, ..., \alpha_n]$, 求 $AA^{\mathsf{T}}, A^{\mathsf{T}}A$.

$$\widehat{\mathbf{M}} \quad AA^{\mathsf{T}} = \left[\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}\right] \begin{bmatrix} \alpha_{1}^{\mathsf{T}} \\ \alpha_{2}^{\mathsf{T}} \\ \vdots \\ \alpha_{n}^{\mathsf{T}} \end{bmatrix} = \alpha_{1}\alpha_{1}^{\mathsf{T}} + \alpha_{2}\alpha_{2}^{\mathsf{T}} + \dots + \alpha_{n}\alpha_{n}^{\mathsf{T}},$$

$$\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A} = \begin{bmatrix} \boldsymbol{\alpha}_{1}^{\mathsf{T}} \\ \boldsymbol{\alpha}_{2}^{\mathsf{T}} \\ \vdots \\ \boldsymbol{\alpha}_{n}^{\mathsf{T}} \end{bmatrix} [\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \dots, \boldsymbol{\alpha}_{n}] = \begin{bmatrix} \boldsymbol{\alpha}_{1}^{\mathsf{T}} \boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{1}^{\mathsf{T}} \boldsymbol{\alpha}_{2} & \cdots & \boldsymbol{\alpha}_{1}^{\mathsf{T}} \boldsymbol{\alpha}_{n} \\ \boldsymbol{\alpha}_{2}^{\mathsf{T}} \boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{2}^{\mathsf{T}} \boldsymbol{\alpha}_{2} & \cdots & \boldsymbol{\alpha}_{2}^{\mathsf{T}} \boldsymbol{\alpha}_{n} \\ \vdots & \vdots & \vdots & \vdots \\ \boldsymbol{\alpha}_{n}^{\mathsf{T}} \boldsymbol{\alpha}_{1} & \boldsymbol{\alpha}_{n}^{\mathsf{T}} \boldsymbol{\alpha}_{2} & \cdots & \boldsymbol{\alpha}_{n}^{\mathsf{T}} \boldsymbol{\alpha}_{n} \end{bmatrix}.$$

21、证明可逆的上三角矩阵的逆矩阵仍是上三角矩阵

证 设
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & a_{nn} \end{bmatrix}, B = (b_{ij})$$
是 A 的逆矩阵,即有 $AB = E$,比较 E 和 AB 的第一列

元素

$$\begin{cases} 1 &= a_{11}b_{11} + a_{12}b_{21} + \cdots + a_{1n}b_{n1} \\ 0 &= a_{22}b_{21} + \cdots + a_{2n}b_{n1} \\ & \cdots \\ 0 &= a_{n-1,n-1}b_{n-1,1} + a_{n-1,n}b_{n1} \\ 0 &= a_{nn}b_{n1} \end{cases}$$

由 $|A| = a_{11}a_{22}\cdots a_{nn} \neq 0$ 知, $a_{ii} \neq 0 (i = 1, 2, ..., n)$,故由上式解得

$$b_{n1} = b_{n-1,1} = \cdots = b_{21} = 0$$

类似地,比较第2至n列可得,i>j时, $b_{ii}=0$,故 $B=A^{-1}$ 为上三角形矩阵.

22、设矩阵
$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & -4 & 3 \end{bmatrix}$$
, 求 \mathbf{A}^{2k} .

解
$$A$$
 是分块对角矩阵 $A = \begin{bmatrix} B & O \\ O & C \end{bmatrix}$, 其中 $B = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$, $C = \begin{bmatrix} 3 & 4 \\ -4 & 3 \end{bmatrix}$. 于是

$$A^{2k} = \begin{bmatrix} B^{2k} & O \\ O & C^{2k} \end{bmatrix}$$
. 下面求 $B^{2k} \ni C^{2k}$. 由于 $B = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} = 2E + G$, 其中 $G = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$,且 $G^2 = O$,

(2E)G=G(2E), 由二项展开公式得

$$B^{2k} = (2E + G)^{2k} = (2E)^{2k} + C_{2k}^{1}(2E)^{2k-1}G = 4^{k}E + k4^{k}G = \begin{bmatrix} 4^{k} & k4^{k} \\ 0 & 4^{k} \end{bmatrix}$$

23、求下列矩阵的逆矩阵.

(1)
$$A = \begin{bmatrix} 3 & 2 & 0 & 0 \\ 8 & 5 & 0 & 0 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 5 & 7 \end{bmatrix}$$
:

(2)
$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

(3)
$$A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 3 & 5 & 7 \\ 0 & 0 & 2 & 7 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

解 (1) 用分块法.

$$A^{-1} = \begin{bmatrix} B & O \\ O & C \end{bmatrix}^{-1} = \begin{bmatrix} B^{-1} & O \\ O & C^{-1} \end{bmatrix} = \begin{bmatrix} -5 & 2 & 0 & 0 \\ 8 & -3 & 0 & 0 \\ 0 & 0 & 7 & -4 \\ 0 & 0 & -5 & 3 \end{bmatrix}.$$

(2) 用分块法.

$$A^{-1} = \begin{bmatrix} \mathbf{O} & \mathbf{B} \\ \mathbf{C} & \mathbf{O} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{O} & \mathbf{C}^{-1} \\ \mathbf{B}^{-1} & \mathbf{O} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

$$(3) \begin{bmatrix} A, E \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & 3 & 1 & 0 & 0 & 0 \\ 2 & 3 & 5 & 7 & 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 7 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 3 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{r_1 - 2r_1 \atop r_1 \times 2 - 2} \begin{bmatrix} 1 & 1 & 2 & 3 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & -2 & 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{7}{2} & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & -2 \end{bmatrix}$$

24、设
$$A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 5 & 4 \end{bmatrix}$$
, X 满足 $(A+2E)X=A*-2E$,求矩阵 X .

解 $|A_{4\times 4}| = -4$, $|A+2E| = 240 \neq 0$,

$$(A+2E)XA = (A*-2E)A \Rightarrow (A+2E)XA = -2(A+2E)$$
,

从而

$$X = -2A^{-1} = -2\begin{bmatrix} B & O \\ O & C \end{bmatrix}^{-1} = -2\begin{bmatrix} B^{-1} & O \\ O & C^{-1} \end{bmatrix} = \begin{bmatrix} 4 & -2 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ 0 & 0 & -4 & 2 \\ 0 & 0 & 5 & -3 \end{bmatrix}.$$

25、求下列矩阵的秩.

(1)
$$A = \begin{bmatrix} 1 & -2 & 3 & -4 & 1 \\ 0 & 1 & -1 & -1 & 2 \\ 1 & 3 & 0 & -5 & 3 \\ 2 & 3 & 3 & -7 & 0 \end{bmatrix}$$
: (2) $A = \begin{bmatrix} 1 & 1 & 2 & -1 & 4 \\ 2 & 1 & 0 & 1 & -1 \\ 3 & 2 & 1 & 0 & 2 \\ 0 & -1 & 6 & 1 & 4 \end{bmatrix}$.

$$\text{MF} \quad (1) \quad A \xrightarrow{\text{c.v.}} \begin{bmatrix}
 1 & -2 & 3 & -4 & 1 \\
 0 & 1 & -1 & -1 & 2 \\
 0 & 5 & -3 & -1 & 2 \\
 0 & 7 & -3 & 1 & -2
 \end{bmatrix}
 \xrightarrow{\text{c.v.}} \begin{bmatrix}
 1 & -2 & 3 & -4 & 1 \\
 0 & 1 & -1 & -1 & 2 \\
 0 & 0 & 2 & 4 & -8 \\
 0 & 0 & 0 & 0 & 0
 \end{bmatrix} \Rightarrow r(A) = 3.$$

(2)
$$A \xrightarrow{\frac{r-2r}{r-2r}} \begin{bmatrix} 1 & 1 & 2 & -1 & 4 \\ 0 & 1 & 4 & -3 & 9 \\ 0 & -1 & -5 & 3 & -10 \\ 0 & -1 & 6 & 1 & 4 \end{bmatrix} \xrightarrow{r-2r} \begin{bmatrix} 1 & 1 & 2 & -1 & 4 \\ 0 & 1 & 4 & -3 & 9 \\ 0 & 0 & -1 & 0 & -1 \\ 0 & 0 & 0 & -2 & 3 \end{bmatrix} \Rightarrow r(A) = 4.$$

- 26、设A是n阶方阵.
- (1) 证明r(A) = 1的充分必要条件是存在非零列向量 α , β , 使得 $A = \alpha \beta^{T}$;
- (2) 若r(A)=1, 证明 $A^{m}=(trA)^{m-1}A$, 其中m是正整数;

(3)
$$\&A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ 3 & -6 & 9 \end{bmatrix}$$
, $\&A^m$, A^m

证 (1) 充分性. 由 $A=\alpha\beta^{T}$ 可知 $r(A) \leq r(\alpha)=1$,又由 $A \neq O$ 知 $r(A) \geq 1$,故 r(A)=1.

必要性. 已知r(A)=1. 令 $A=\left[lpha_1,...,lpha_n
ight]$,设 $lpha_i$ 为 $lpha_1,...,lpha_n$ 的极大无关组,则有 $lpha_j=k_jlpha_i(j=1,...,i-1,i+1,...,n)$. 于是

$$A = [k_1 \alpha_i, ..., k_{i-1} \alpha_i, \alpha_i, k_{i+1} \alpha_i, ..., k_n \alpha_i] = \alpha_i [k_1, ..., k_{i-1}, 1, k_{i+1}, ..., k_n].$$

记 $\alpha_i = [a_1, ..., a_n]^{\mathsf{T}}$,且 $\alpha_i \neq \mathbf{0}$.又记 $b_1 = k_1, ..., b_{i-1} = k_{i-1}, b_i = 1, b_{i+1} = k_{i+1}, ..., b_n = k_n$,则 $b_1, ..., b_n$ 不 全为零,令 $\alpha = \alpha_i = [a_1, ..., a_n]^{\mathsf{T}}$, $\beta = [b_1, ..., b_n]^{\mathsf{T}}$,且

$$\mathbf{A} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} [b_1, \dots, b_n] = \alpha \boldsymbol{\beta}^{\mathsf{T}}.$$

(2) 由 (1) 可知存在非零向量 $\alpha = [a_1, ..., a_n]^\mathsf{T}$, $\beta = [b_1, ..., b_n]^\mathsf{T}$, 其中 $a_1, ..., a_n$ 不全为零, $b_1, ..., b_n$ 不全为零,使得 $A = \alpha \beta^\mathsf{T}$. 义由 $\mathrm{tr} A = a_1 b_1 + \cdots + a_n b_n = \beta^\mathsf{T} \alpha$, 从而

$$A^{m} = (\alpha \beta^{\mathsf{T}})^{m} = \alpha (\beta^{\mathsf{T}} \alpha)^{m-1} \beta^{\mathsf{T}} = (\operatorname{tr} A)^{m-1} A.$$

解 (3) r(A)=1, trA=6, 由(2)可知

$$A^{m} = (\operatorname{tr} A)^{m-1} A = 6^{m-1} A = 6^{m-1} \begin{bmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ 3 & -6 & 9 \end{bmatrix}.$$

27、设A 是n阶方阵,且 $r(A) = r(\neq 0)$, 证明存在秩为n-r 的矩阵 B , 使得 AB = BA = O .

证 因为r(A)=r,故当r=n时,可得B=O满足条件.

当r < n时,存在n阶可逆方阵P, Q,使得 $PAQ = \begin{bmatrix} E_r & O \\ O & O \end{bmatrix}$,从而 $A = P^{-1} \begin{bmatrix} E_r & O \\ O & O \end{bmatrix} Q^{-1}$.取

$$B=Q\begin{bmatrix} O & O \\ O & E_{n-r} \end{bmatrix} P, \quad \emptyset AB = BA = O.$$

28、设A是n阶方阵,满足 $A^2=A$,证明r(A)+r(A-E)=n.

证 由 $A^2=A$,得(A-E)A=O,从而 $r(A)+r(A-E)\leq n$.又有

$$n = r(E) = r[(E-A)+A] \le r(E-A) + r(A) = r(A-E) + r(A)$$
,

故r(A)+r(A-E)=n.

29、设A是n阶方阵,证明

$$r(A^*) = \begin{cases} n, & r(A) = n, \\ 1, & r(A) = n - 1, \\ 0, & r(A) \le n - 2. \end{cases}$$

证 (1) 当r(A) = n 时, $A^* = |A|A^{-1}$ 可逆, 故 $r(A^*) = n$.

若 $r(A^*)=0$,则 $A^*=(A_{\mu})=\mathbf{0}$,于是 $A_{\mu}=0$,即A的所有n-1阶子式均为零,与 r(A)=n-1矛盾,故 $r(A^*)=1$.

- (3) 当 $r(A) \le n-2$ 时,A 的所有n-1阶子式均为零,由伴随矩阵 $A^* = (A_{\mu})$ 的定义知 $A^* = O$,即 $r(A^*) = 0$.
 - 30、设A 是 $n(n \ge 3)$ 阶方阵,证明 $(A^*)^* = |A|^{n-2}A$.

证 利用 $AA^* = A^*A = |A|E$.

(1) 当 $|A| \neq 0$ 时, $A^* = |A|A^{-1}$. 于是

$$(A^*)^* = (|A|A^{-1})^* = |A|A^{-1}|(|A|A^{-1})^{-1} = |A|^n |A^{-1}| \frac{1}{|A|}(A^{-1})^{-1} = |A|^n |A|^{-1} \frac{1}{|A|} A = |A|^{n-2} A$$

(2) 当|A| = 0时,由习题 29 知, $r(A^*) \le 1$.

当 $n \ge 3$ 时, $r(A^*)^* = 0$, $(A^*)^* = 0$,从而 $(A^*)^* = |A|^{n-2}A$.

第四章 n元向量空间

1. 设 $3(\alpha_1 - \alpha) + 2(\alpha_2 + \alpha) = 5(\alpha_3 + \alpha)$,其中 $\alpha_1 = [2, 5, 1, 3]^T$, $\alpha_2 = [10, 1, 5, 10]^T$, $\alpha_3 = [4, 1, -1, 1]^T$. 求向量 α .

解 由
$$3(\alpha_1 - \alpha) + 2(\alpha_2 + \alpha) = 5(\alpha_3 + \alpha)$$
,有
$$\alpha = \frac{1}{6} (3\alpha_1 + 2\alpha_2 - 5\alpha_3)$$

$$= \frac{1}{6} ([6, 15, 3, 9]^T + [20, 2, 10, 20]^T - [20, 5, -5, 5]^T)$$

$$= \frac{1}{6} [6, 12, 18, 24]^T = [1, 2, 3, 4]^T.$$

2、设 \mathbf{R}^4 中的向量 $\alpha_1 = [1,2,3,1]^{\mathsf{T}}, \ \alpha_2 = [-1,-1,-1,1]^{\mathsf{T}}, \ \alpha_3 = [0,2,4,1]^{\mathsf{T}}, \ \alpha_4 = [3,4,5,8]^{\mathsf{T}},$ $\alpha_5 = [-1,-2,-3,2]^{\mathsf{T}}$. 试判断 α_5 能否由 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性表示. 若能表示,表示式是否唯一.

 \mathbf{k} 设 $\alpha_s = x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 + x_4\alpha_4$, 得非齐次线性方程组

$$\begin{cases} x_1 & +x_2 & +x_3 & +x_4 & =1, \\ x_2 & -x_3 & +2x_4 & =1, \\ 2x_1 & +3x_2 & +(a+2)x_3 & +4x_4 & =b+3, \\ 3x_1 & +5x_2 & +x_3 & +(a+8)x_4 & =5. \end{cases}$$

对其增广矩阵施行初等行变换,得

$$\tilde{A} = \begin{bmatrix} 1 & -1 & 0 & 3 & | & -1 \\ 2 & -1 & 2 & 4 & | & -2 \\ 3 & -1 & 4 & 5 & | & -3 \\ 1 & 1 & 1 & 8 & | & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 3 & | & -1 \\ 0 & 1 & 2 & -2 & | & 0 \\ 0 & 2 & 4 & -4 & | & 0 \\ 0 & 2 & 1 & 5 & | & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 3 & | & -1 \\ 0 & 1 & 2 & -2 & | & 0 \\ 0 & 0 & 1 & -3 & | & 1 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix},$$

因为r(A)=r(A)=3<4,所以线性方程组有无穷多解,故 α_5 能由 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性表示,但表示式不唯一.

- 3. 设向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,向量组 $\alpha_2,\alpha_3,\alpha_4$ 线性无关.
- (1) α_1 能否由 α_2 , α_3 线性表示? 证明你的结论;
- (2) α_{λ} 能否由 $\alpha_{1}, \alpha_{2}, \alpha_{3}$ 线性表示? 证明你的结论.
- **解** (1) α_1 可由 α_2 , α_3 线性表示. 向量组 α_2 , α_3 , α_4 线性无关,其部分组 α_2 , α_3 也线性无关. 又 α_1 , α_2 , α_3 线性相关,从而 α_1 可由 α_2 , α_3 线性表示.
- (2) α_4 不能由 α_1 , α_2 , α_3 线性表示。假设 α_4 可由 α_1 , α_2 , α_3 线性表示,而由(1)知 α_1 可由 α_2 , α_3 线性表示,则 α_4 可由 α_2 , α_3 线性表示。与 α_2 , α_3 线性无关矛盾,从而假设错误,得证结论成立。
 - 4. 判断下列向量组的线性相关性,并说明理由.
 - (1) $\alpha_1 = [2, 2, 7, -1]^T$, $\alpha_2 = [3, -1, 2, 4]^T$, $\alpha_3 = [1, 1, 3, 1]^T$;
 - (2) $\alpha_1 = [1, -2, 1, 1]^T$, $\alpha_2 = [2, -3, 4, 5]^T$, $\alpha_3 = [1, -3, -1, -2]^T$.

解 (1)
$$A = [\alpha_1, \alpha_2, \alpha_3] = \begin{bmatrix} 2 & 3 & 1 \\ 2 & -1 & 1 \\ 7 & 2 & 3 \\ -1 & 4 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} -1 & 4 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
. $r(A_{4\times 3}) = 3$, 因此 A 的列向量组

 $\alpha_1, \alpha_2, \alpha_3$ 线性无关.

(2)
$$A = [\alpha_1, \alpha_2, \alpha_3] = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & -3 \\ 1 & 4 & -1 \\ 1 & 5 & -2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
. $r(A_{4x3}) = 2 < 3$,因此 A 的列向量组

 $\alpha_1, \alpha_2, \alpha_3$ 线性相关.

5. 若 \mathbf{P}'' 中的向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关,证明

$$\beta_1 = \alpha_1 + \lambda_1 \alpha_s$$
, $\beta_2 = \alpha_2 + \lambda_2 \alpha_s$, \cdots , $\beta_{s-1} = \alpha_{s-1} + \lambda_{s-1} \alpha_s$

也线性无关.

证 设有数
$$k_1, k_2, \cdots, k_{s-1}$$
,使得 $k_1 \beta_1 + k_2 \beta_2 + \cdots + k_{s-1} \beta_{s-1} = \mathbf{0}$,即
$$k_1 (\alpha_1 + \lambda_1 \alpha_s) + k_2 (\alpha_2 + \lambda_2 \alpha_s) + \cdots + k_{s-1} (\alpha_{s-1} + \lambda_{s-1} \alpha_s) = \mathbf{0}$$
,

整理得 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_{s-1}\alpha_{s-1} + (k_1\lambda_1 + k_2\lambda_2 + \dots + k_{s-1}\lambda_{s-1})\alpha_s = 0.$

由于 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,所以 $k_1 = k_2 = \cdots = k_{s-1} = 0$,从而 $\beta_1, \beta_2, \cdots, \beta_{s-1}$ 也线性无关。口 6. 求下列向量组的秩以及它的一个极大线性无关组,并且把其余向量用该极大无关组线性表示。

$$(1) \ \alpha_{_{1}} = [1,-1,2,4]^{^{T}} \ , \ \alpha_{_{2}} = [0,3,1,2]^{^{T}} \ , \ \alpha_{_{3}} = [3,0,7,14]^{^{T}} \ , \ \alpha_{_{4}} = [1,-1,2,0]^{^{T}} \ ;$$

(2) $\alpha_1 = [6, 4, 1, -1, 2]^T$, $\alpha_2 = [1, 0, 2, 3, -4]^T$, $\alpha_3 = [1, 4, -9, -16, 22]^T$, $\alpha_4 = [7, 1, 0, -1, 3]^T$ $\alpha_5 = [1, 3, 5, 6, -9]^T$.

解 (1)
$$[\alpha_1, \alpha_2, \alpha_3, \alpha_4] = \begin{bmatrix} 1 & 0 & 3 & 1 \\ -1 & 3 & 0 & -1 \\ 2 & 1 & 7 & 2 \\ 4 & 2 & 14 & 0 \end{bmatrix}$$
 $\xrightarrow{\text{有限次}}$ $\xrightarrow{\text{制等行变换}}$ $\begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = R$,

考察 R 的主元可知向量组 $\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}$ 的秩为 3, $\{\alpha_1,\alpha_2,\alpha_4\}$ 是其一个极大无关组,且 $\alpha_3=3\alpha_1+\alpha_2$.

$$(2) \ [\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5] = \begin{bmatrix} 6 & 1 & 1 & 7 & 1 \\ 4 & 0 & 4 & 1 & 3 \\ 1 & 2 & -9 & 0 & 5 \\ -1 & 3 & -16 & -1 & 6 \\ 2 & -4 & 22 & 3 & -9 \end{bmatrix} \xrightarrow{\text{first}} \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -5 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = R \ .$$

考察 R 的主元可知 $\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}$ 的秩为 4, $\{\alpha_1,\alpha_2,\alpha_4,\alpha_5\}$ 是其一个极大无关组,且 $\alpha_3=\alpha_1-5\alpha_2$.

7. 设 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 是线性子空间W的一个生成元组. 试证: 如果 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性无关,则 $\alpha_1, \cdots, \alpha_r$ 不能生成W.

ii. $\alpha_1 = 1\alpha_1 + 0\alpha_2 + \cdots + 0\alpha_r \in W$.

由 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性无关,知 α_1 不能由 $\alpha_2, \cdots, \alpha_r$ 线性表示。因而 $\alpha_2, \cdots, \alpha_r$ 不能生成W. \square

8. 设向量 β 可以由向量组 $\alpha_1,\alpha_2,\cdots,\alpha_{r-1},\alpha_r$ 线性表示,但向量 β 不能由 $\alpha_1,\alpha_2,\cdots,\alpha_{r-1}$ 线性表示。试证向量组 $\alpha_1,\alpha_2,\cdots,\alpha_{r-1},\alpha_r$ 与 $\alpha_1,\alpha_2,\cdots,\alpha_{r-1},\beta$ 有相同的秩.

证 由题设知有数 $k_1, k_2, \cdots, k_{r-1}, k_r$,使得 $\beta = k_1\alpha_1 + k_2\alpha_2 + \cdots + k_{r-1}\alpha_{r-1} + k_r\alpha_r$,其中 $k_r \neq 0$,否 则 与 向 量 β 不 能 由 $\alpha_1, \alpha_2, \cdots, \alpha_{r-1}$ 线 性 表 示 矛 盾 . 因 此 $\alpha_r = -k_r^{-1}(k_1\alpha_1 + k_2\alpha_2 + \cdots + k_{r-1}\alpha_{r-1} - \beta)$,即 α_r 可由向量组 $\alpha_1, \alpha_2, \cdots, \alpha_{r-1}, \beta$ 线性表示,故向量组 $\alpha_1, \alpha_2, \cdots, \alpha_{r-1}, \alpha_r$ 与 $\alpha_1, \alpha_2, \cdots, \alpha_{r-1}, \beta$ 等价,从而有相同的秩.

9. 设r < n,证明 \mathbf{P}^n 的子集 $W = \{[a_1, a_2, \cdots, a_r, 0 \cdots, 0]^T \mid a_1, a_2, \cdots, a_r \in \mathbf{P}\}$ 是一个子空间.

证 方法 1 显然 $0 \in W$, 所以子集 W 是非空的.

对任意的
$$\alpha = [a_1, a_2, \dots, a_r, 0 \dots, 0]^T$$
, $\beta = [b_1, b_2, \dots, b_r, 0 \dots, 0]^T \in W$, $k \in \mathbf{P}$,有

$$\alpha + \beta = [a_1 + b_1, a_2 + b_2, \dots, a_r + b_r, 0 \dots, 0]^T \in W$$
,即加法封闭:

 $k\alpha = [ka_1, ka_2, \cdots, ka_r, 0 \cdots, 0]^T \in W$,即数量乘法封闭.

从而得证W 是P'' 的子空间.

方法 2 $W = \{a_1 \varepsilon_1 + a_2 \varepsilon_2 + \dots + a_r \varepsilon_r \mid a_1, a_2, \dots, a_r \in \mathbf{P}\} = L(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_r)$ 是由 \mathbf{P} " 中的向量组 $\{\varepsilon_1, \varepsilon_2, \dots, \varepsilon_r\}$ 生成的子空间.

- 10. 求下列 P^3 的子空间的一个基及维数.

(2)
$$W_2 = L(\beta_1, \beta_2, \beta_3)$$
, $\not\exists + \beta_1 = [2, 3, -1]^T$, $\not\beta_2 = [1, 2, 2]^T$, $\not\beta_3 = [1, 1, -3]^T$.

考察 R 的主元可知 $\{\alpha_1, \alpha_2\}$ 是 W_1 的一个基, $\dim W_1 = 2$.

(2)
$$[\beta_1, \beta_2, \beta_3] = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ -1 & 2 & -3 \end{bmatrix} \xrightarrow{\text{first}} \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} = R$$
,

考察 R 的主元可知 $\{\beta_1, \beta_2\}$ 是 W, 的一个基, $\dim W_2 = 2$.

注 生成向量组的极大无关组是所张成子空间的基的典型取法.

11. 求下列齐次线性方程组的基础解系,并对(3)和(4)写出通解.

(1)
$$\begin{cases} 2x_1 + 3x_2 - x_3 + 2x_4 - x_5 = 0, \\ 3x_1 - 2x_2 + x_3 + 2x_4 = 0, \\ 7x_1 + 4x_2 - x_3 + 6x_4 - 2x_5 = 0, \\ 10x_1 + 2x_2 + 8x_4 - 2x_5 = 0; \end{cases}$$
 (2) $x_1 + 2x_2 + 3x_3 + \dots + nx_n = 0$;

(3)
$$\begin{cases} x_1 & -x_3 & +x_5 & = 0, \\ x_2 & -x_4 & +x_6 & = 0, \\ x_1 - x_2 & +x_5 - x_6 & = 0, \\ x_1 & -x_4 + x_5 & = 0. \end{cases}$$
 (4)
$$\begin{cases} x_1 - x_2 + 5x_3 - x_4 & = 0, \\ x_1 + x_2 - 2x_3 + 3x_4 & = 0, \\ 3x_1 - x_2 + 8x_3 + x_4 & = 0, \\ x_1 + 3x_2 - 9x_3 + 7x_4 & = 0. \end{cases}$$

 \mathbf{H} (1) 对方程组的系数矩阵 \mathbf{A} 施以初等行变换,得

由于r(A)=2<5,所以方程组有无穷多解,同解方程组为

$$\begin{cases} x_1 = -\frac{1}{13}x_3 - \frac{10}{13}x_4 + \frac{2}{13}x_5, \\ x_2 = -\frac{5}{13}x_3 - \frac{2}{13}x_4 + \frac{3}{13}x_5, \end{cases}$$
 其中 x_3, x_4, x_5 为自由变量,

则方程组的通解为

$$X = k_{1} \begin{bmatrix} -1 \\ 5 \\ 13 \\ 0 \\ 0 \end{bmatrix} + k_{2} \begin{bmatrix} -10 \\ -2 \\ 0 \\ 13 \\ 0 \end{bmatrix} + k_{3} \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \\ 13 \end{bmatrix}, \forall k_{1}, k_{2}, k_{3} \in \mathbf{P} ,$$

且 $\eta_1 = [-1,5,13,0,0]^T$, $\eta_2 = [-10,-2,0,13,0]^T$, $\eta_3 = [2,3,0,0,13]^T$ 是方程组的一个基础解系.

(2) 同解方程组为 $x_1 = -2x_2 - 3x_3 - \cdots - nx_n$,其中 x_2, x_3, \cdots, x_n 为自由变量。 方程组的通解为 $x_1 = -2k_2 - 3k_3 - \cdots - nk_n$, $\forall k_2, k_3, \cdots, k_n \in \mathbf{P}$, 且 $\eta_1 = \begin{bmatrix} -2, 1, 0, \cdots, 0 \end{bmatrix}^\mathsf{T}$, $\eta_2 = \begin{bmatrix} -3, 0, 1, \cdots, 0 \end{bmatrix}^\mathsf{T}$, \cdots , $\eta_{n-1} = \begin{bmatrix} -n, 0, \cdots, 0, 1 \end{bmatrix}^\mathsf{T}$ 为一个基础解系.

(3) 先将齐次线性方程组的系数矩阵化为行阶梯型矩阵。

$$A = \begin{bmatrix} 1 & 0 & -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 1 & -1 & 0 & 0 & 1 & -1 \\ 1 & 0 & 0 & -1 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

因为r(A)=3<6,所以基础解系含有6-3=3个解向量. 方程组的同解方程组为

$$\begin{cases} x_1 = x_4 - x_5, \\ x_2 = x_4 - x_6, & 其中 x_4, x_5, x_6 为自由变量; \\ x_3 = x_4. \end{cases}$$

则方程组的通解为
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = k, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + k_3 \begin{bmatrix} 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \forall k_1, k_2, k_3 \in \mathbf{P},$$

且 $\eta_1 = [1, 1, 1, 1, 0, 0]^T$, $\eta_2 = [-1, 0, 0, 0, 1, 0]^T$, $\eta_3 = [0, -1, 0, 0, 0, 1]^T$ 为一个基础解系.

(4) 对系数矩阵施以初等变换,

$$A = \begin{bmatrix} 1 & -1 & 5 & -1 \\ 1 & 1 & -2 & 3 \\ 3 & -1 & 8 & 1 \\ 1 & 3 & -9 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 5 & -1 \\ 0 & 2 & -7 & 4 \\ 0 & 2 & -7 & 4 \\ 0 & 4 & -14 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 5 & -1 \\ 0 & 2 & -7 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

$$\begin{cases} x_1 = -\frac{3}{2}x_3 - x_4, \\ x_2 = \frac{7}{2}x_3 - 2x_4, \end{cases}$$
 其中 x_3, x_4 为自由变量:

则方程组的通解为
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = k_1 \begin{bmatrix} -\frac{3}{2} \\ \frac{7}{2} \\ 1 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} -1 \\ -2 \\ 0 \\ 1 \end{bmatrix}, \forall k_1, k_2 \in \mathbf{P},$$

且
$$\eta_1 = \left[-\frac{3}{2}, \frac{7}{2}, 1, 0 \right]^T$$
, $\eta_2 = \left[-1, -2, 0, 1 \right]^T$ 为一个基础解系.

12. 己知 3 阶矩阵
$$A = \begin{bmatrix} 1 & -2 & 3 \\ -3 & 6 & -9 \\ 2 & -4 & 6 \end{bmatrix}$$
,试求秩为 2 的 3 阶方阵 B ,满足 $AB = O$.

解 3 阶方阵 B 使 AB = O, 说明 B 的每一个列向量都是齐次方程组 AX = 0 的解, 对 A 施行初 等行变换

$$A = \begin{bmatrix} 1 & -2 & 3 \\ -3 & 6 & -9 \\ 2 & -4 & 6 \end{bmatrix} \xrightarrow{r_2 + 3r_1 \atop r_3 + 2r_2} \begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

因为r(A)=1,方程组有无穷多解,同解方程组为 $x_1=2x_2-3x_3$,其中 x_2,x_3 为自由变量,取

$$AX = 0$$
的一个基础解系为 $\eta_1 = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix}^T$, $\eta_2 = \begin{bmatrix} -3 & 0 & 1 \end{bmatrix}^T$,所求的矩阵 B 为 $\begin{bmatrix} 2 & -3 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$,满足

r(B) = 2 且 AB = O. 注意矩阵 B 是不唯一的.

13. 设向量组 $\alpha_1,\alpha_2,\alpha_3$ 为齐次线性方程组 AX=0 的一个基础解系. 证明向量组 $\beta_1=\alpha_1+\alpha_2,\,\beta_2=\alpha_2+\alpha_3,\,\beta_3=\alpha_3+\alpha_1$ 也是齐次线性方程组 AX=0 的一个基础解系.

证 由题设知 AX=0 的基础解系中含有三个线性无关的解向量. 根据齐次线性方程组解的运算性质知 $\beta_1=\alpha_1+\alpha_2$, $\beta_2=\alpha_2+\alpha_3$, $\beta_3=\alpha_3+\alpha_1$ 均为 AX=0 的解. 下面只需证明向量组 β_1 , β_2 , β_3 线性无关. 令矩阵

$$B = [\beta_1, \beta_2, \beta_3] = [\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1]$$

$$\xrightarrow{-c_2 - c_1} \rightarrow [\alpha_1 + \alpha_2, \alpha_3 - \alpha_1, \alpha_3 + \alpha_1]$$

$$\xrightarrow{-c_1 + c_1} \rightarrow [\alpha_1 + \alpha_2, 2\alpha_3, \alpha_3 + \alpha_1] \rightarrow [\alpha_1 + \alpha_2, \alpha_3, \alpha_1] \rightarrow [\alpha_2, \alpha_3, \alpha_1] = C$$

因为向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,所以 $r(B)=r(C)=r(\alpha_1,\alpha_2,\alpha_3)=3$,因而向量组 β_1,β_2,β_3 线性无关,从而为AX=0的一个基础解系.

14. 求一个齐次线性方程组 AX = 0,使它的一个基础解系为所给的向量.

(1)
$$\eta_{1} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \\ -1 \end{bmatrix}, \eta_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 2 \\ -1 \end{bmatrix}, \eta_{3} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 2 \\ -1 \end{bmatrix};$$
 (2) $\eta_{1} = \begin{bmatrix} 6 \\ 1 \\ -7 \end{bmatrix}, \eta_{2} = \begin{bmatrix} 0 \\ 1 \\ -3 \end{bmatrix}.$

解(1)基础解系含有 3 个线性无关的解向量,所以这个 5 元方程组的系数矩阵的秩为 2,设其中的一个方程为 $a_1x_1+a_2x_2+a_3x_3+a_4x_4+a_5x_5=0$,将基础解系代入得到一个以所求方程组的系数为未知量的齐次线性方程组,

$$\begin{cases} a_1 + a_2 & -a_4 - a_5 = 0, \\ a_2 & +2a_4 - a_5 = 0, \\ a_1 & +a_3 & +2a_4 - a_5 = 0. \end{cases}$$

对其系数矩阵 A 做初等变换

$$A = \begin{bmatrix} 1 & 1 & 0 & -1 & -1 \\ 0 & 1 & 0 & 2 & -1 \\ 1 & 0 & 1 & 2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -3 & 0 \\ 0 & 1 & 0 & 2 & -1 \\ 0 & 0 & 1 & 5 & -1 \end{bmatrix}.$$

$$r(A)=3<5$$
,所以方程组有无穷多解,其同解方程组为
$$\begin{cases} a_1=3a_4, \\ a_2=-2a_4+a_5, \\ a_3=-5a_4+a_5, \end{cases}$$

则方程组的通解为
$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix} = k_1 \begin{bmatrix} 3 \\ -2 \\ -5 \\ 1 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \ \forall k_1, k_2 \in \mathbf{P},$$

可得所求方程组为 $\begin{cases} 3x_1 - 2x_2 - 5x_3 + x_4 = 0, \\ x_2 + x_3 + x_5 = 0. \end{cases}$

(2) 基础解系为 2 个线性无关的解向量, 所以这个 3 元线性方程组的系数矩阵的秩为 1, 设其中的 一个方程为 $a_1x_1 + a_2x_2 + a_3x_3 = 0$,将基础解系代入得,

$$\begin{cases} 6a_1 + a_2 - 7a_3 = 0, \\ a_2 - 3a_3 = 0. \end{cases}$$

对其系数矩阵 A 施以初等变换,得

$$A = \begin{bmatrix} 6 & 1 & -7 \\ 0 & 1 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{1}{6} & -\frac{7}{6} \\ 0 & 1 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -\frac{2}{3} \\ 0 & 1 & -3 \end{bmatrix},$$

同解方程组为 $\begin{cases} a_1 = \frac{2}{3}a_3, & \text{其中 } a_3 \text{为自由变量,通解为} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = a_3 \begin{bmatrix} 2 \\ 9 \\ 2 \end{bmatrix}, \forall a_3 \in \mathbf{P}, \text{ 所求的方程组为} \end{cases}$

 $2x_1 + 9x_2 + 3x_3 = 0$.

15. 设齐次线性方程组

(I):
$$\begin{cases} x_1 + 2x_2 + x_3 = 0, \\ 2x_1 + 3x_2 + 3x_3 = 0, \\ x_1 + x_2 + ax_3 = 0 \end{cases}$$
 (II):
$$\begin{cases} x_1 + bx_2 + cx_3 = 0, \\ 2x_1 + b^2x_2 + (c+3)x_3 = 0 \end{cases}$$

同解,且设方程组(I)与(II)的系数矩阵分别为A,和A,..

- (1) 求 $r(A_1)$ 和 $r(A_2)$; (2) 求参数a, b, c的值.

解 (1) 因为(I)与(II)同解,则 $r(A_1) = r(A_2)$,且 $r(A_2) \le 2$. 对(I)的系数矩阵 A_1 施行初等行变换 得

$$A_{1} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 3 \\ 1 & 1 & a \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 1 \\ 0 & -1 & a - 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & a - 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & a - 2 \end{bmatrix},$$

所以 $a=2, r(A_1)=2, r(A_2)=2$.

(2) 由(1)知方程组(II)的同解方程组为 $\begin{cases} x_1 = -3x_3, \\ x_2 = x_3, \end{cases}$ 把其代入方程组(II)中,得

$$\begin{cases} b+c=3, \\ b^2+c=3. \end{cases}$$
解得
$$\begin{cases} b=1 \\ c=2 \end{cases}$$
或
$$\begin{cases} b=0 \\ c=3 \end{cases}$$

当
$$\begin{cases} b=1 \\ c=2 \end{cases}$$
时,(I)与(II)同解:而当 $\begin{cases} b=0 \\ c=3 \end{cases}$ 时,(I)与(II)不同解,舍去.

16. 已知 3 阶矩阵 A 的第一行是 [a,b,c],其中 a,b,c 不全为零,矩阵 $B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & k \end{bmatrix}$ (k 为常

数),且AB = 0.求线性方程组AX = 0的通解.

解 由 AB = O ,知 $r(A) + r(B) \le 3$.又 $A \ne O$,则 $1 \le r(A) \le 2$, $1 \le r(B) \le 2$. 若 r(A) = 2 ,必有 r(B) = 1 ,此时 k = 9 . 方程组 AX = 0 的通解是 $t[1,2,3]^T$,其中 t 为任意实数 .

若r(A)=1,则AX=0的基础解系含 2 个解向量,同解方程组为 $\alpha x_1 + bx_2 + cx_3 = 0$,且满足

$$\begin{cases} a + 2b + 3c = 0, \\ (k-9)c = 0. \end{cases}$$

如果 $c \neq 0$,方程组的通解是 $t_1[c,0,-a]^T + t_2[0,c,-b]^T$,其中 t_1,t_2 为任意实数:

如果c=0,方程组的通解是 $t_1[1,2,0]^T+t_2[0,0,1]^T$, 其中 t_1,t_2 为任意实数.

17. 当 p,q 取何值时,线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 1, \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 = p, \\ x_2 + 2x_3 + 2x_4 + 6x_5 = 3, \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 = q. \end{cases}$$

有解?并在有解时,求出它的全部解.

解 对方程组的增广矩阵 \tilde{A} 施行初等行变换

$$\tilde{A} = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
3 & 2 & 1 & 1 & -3 & p \\
0 & 1 & 2 & 2 & 6 & 3 \\
5 & 4 & 3 & 3 & -1 & q
\end{bmatrix}
\rightarrow \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & -1 & -2 & -2 & -6 & p - 3 \\
0 & 1 & 2 & 2 & 6 & 3 \\
0 & -1 & -2 & -2 & -6 & q - 5
\end{bmatrix}
\rightarrow \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 & 6 & 3 \\
0 & 0 & 0 & 0 & 0 & p \\
0 & 0 & 0 & 0 & 0 & q - 2
\end{bmatrix}$$

当 p=0, q=2 时方程组有解,同解方程组为 $\begin{cases} x_1=-2+\ x_3+\ x_4+5x_5, \\ x_2=\ 3-2x_3-2x_4-6x_5, \end{cases}$ 其中 x_3, x_4, x_5 为自由变

量,则方程组的通解为

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \\ 0 \\ 0 \\ 0 \end{bmatrix} + k_1 \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} 1 \\ -2 \\ 0 \\ 1 \\ 0 \end{bmatrix} + k_3 \begin{bmatrix} 5 \\ -6 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \forall k_1, k_2, k_3 \in \mathbf{P}.$$

18. 已知 4 元向量组

$$\alpha_{1} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 3 \end{bmatrix}, \alpha_{2} = \begin{bmatrix} 1 \\ 1 \\ 3 \\ 5 \end{bmatrix}, \alpha_{3} = \begin{bmatrix} 1 \\ -1 \\ a+2 \\ 1 \end{bmatrix}, \alpha_{4} = \begin{bmatrix} 1 \\ 2 \\ 4 \\ a+8 \end{bmatrix}, \beta = \begin{bmatrix} 1 \\ 1 \\ b+3 \\ 5 \end{bmatrix}.$$

讨论a,b取何值时,(1) β 不能由 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性表示;(2) β 能由 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 唯一地线性表示,并写出此表示式。

 \mathbf{F} 令 $\mathbf{F} = x_1 \alpha_1 + x_2 \alpha_2 + x_3 \alpha_3 + x_4 \alpha_4$, 得非齐次线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1, \\ x_2 - x_3 + 2x_4 = 1, \\ 2x_1 + 3x_2 + (a+2)x_3 + 4x_4 = b+3, \\ 3x_1 + 5x_2 + x_3 + (a+8)x_4 = 5. \end{cases}$$

对其增广矩阵施行初等行变换,得

$$\tilde{A} = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & -1 & 2 & 1 \\
2 & 3 & a+2 & 4 & b+3 \\
3 & 5 & 1 & a+8 & 5
\end{bmatrix} \rightarrow
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & -1 & 2 & 1 \\
0 & 1 & a & 2 & b+1 \\
0 & 2 & -2 & a+5 & 2
\end{bmatrix} \rightarrow
\begin{bmatrix}
1 & 0 & 2 & -1 & 0 \\
0 & 1 & -1 & 2 & 1 \\
0 & 0 & a+1 & 0 & b \\
0 & 0 & 0 & a+1 & 0
\end{bmatrix}$$

(1)当 a=-1, $b\neq 0$ 时, r(A)=2,r(A)=3,线性方程组无解, β 不能由 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性表示;

(2) 当 $a \neq -1$ 时, $r(\tilde{A}) = r(A) = 4$,,线性方程组有唯一解, β 可由 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 唯一表示,表示式为 $\beta = -\frac{2b}{a+1}\alpha_1 + \frac{a+b+1}{a+1}\alpha_2 + \frac{b}{a+1}\alpha_3 + 0 \cdot \alpha_4$.

19. 设
$$A = \begin{bmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{bmatrix}$$
, $\beta = \begin{bmatrix} a \\ 1 \\ 1 \end{bmatrix}$. 已知线性方程组 $AX = \beta$ 存在两个不同的解.

- (1) 求参数 \(\lambda\), \(a\) 的值;
- (2) 求方程组 $AX = \beta$ 的通解.
- \mathbf{R} (1) 由题设知线性方程组 $\mathbf{A}\mathbf{X} = \boldsymbol{\beta}$ 有无穷多解,从而

$$|A| = \begin{vmatrix} \lambda & 1 & 1 \\ 0 & \lambda - 1 & 0 \\ 1 & 1 & \lambda \end{vmatrix} = (\lambda - 1)^2 (\lambda + 1) = 0$$
, $R = \lambda = 1$ $X = 1$.

当 $\lambda=1$ 时, $\widetilde{A}=\begin{bmatrix}1&1&1&a\\0&0&0&1\\1&1&1&1\end{bmatrix}$ $\rightarrow \begin{bmatrix}1&1&1&a\\0&0&0&1\\0&0&0&0\end{bmatrix}$, $r(\widetilde{A})\neq r(A)$,方程组无解,与题设矛盾,故

舍去;

当
$$\lambda = -1$$
时, $\widetilde{A} = \begin{bmatrix} -1 & 1 & 1 & | & a \\ 0 & -2 & 0 & | & 1 \\ 1 & 1 & -1 & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 1 & 1 & | & a \\ 0 & -2 & 0 & | & 1 \\ 0 & 0 & 0 & | & a+2 \end{bmatrix}$,由 $r(\widetilde{A}) = r(A)$ 得 $a = -2$.

(2) 由(1)可知, 当 $\lambda = -1$, a = -2 时, 方程组有无穷多解

同解方程组为
$$\begin{cases} x_1 = x_3 + \frac{3}{2}, \\ x_2 = -\frac{1}{2}, & \text{其中 } x_3 \text{ 为自由变量.} \end{cases}$$
 通解为
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = k \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} \frac{3}{2} \\ -\frac{1}{2} \\ 0 \end{bmatrix}, \forall k \in \mathbf{P}.$$

20. 设 4 元非齐次线性方程组的系数矩阵的秩等于 2, X_1, X_2, X_3 和 X_4 为它的四个解向量,且满足 $X_1 + X_2 = \begin{bmatrix} 2, 4, 0, 8 \end{bmatrix}^\mathsf{T}$, $2X_2 + X_3 = \begin{bmatrix} 3, 0, 3, 3 \end{bmatrix}^\mathsf{T}$, $3X_3 + X_4 = \begin{bmatrix} 2, 1, 0, 1 \end{bmatrix}^\mathsf{T}$.求该非齐次线性方程组的通解.

解 令 $\eta_1 = \frac{1}{2}(X_1 + X_2) = \begin{bmatrix} 1, 2, 0, 4 \end{bmatrix}^T$, $\eta_2 = \frac{1}{3}(2X_2 + X_3) = \begin{bmatrix} 1, 0, 1, 1 \end{bmatrix}^T$, $\eta_3 = (3X_3 + X_4) - (2X_2 + X_3) = \begin{bmatrix} -1, 1, -3, -2 \end{bmatrix}^T$. 因为 $A\eta_i = \beta$, i = 1, 2, 3, 所以 η_1, η_2, η_3 都是方程组 $AX = \beta$ 的解. 于是 $\xi_1 = \eta_1 - \eta_2 = \begin{bmatrix} 0, 2, -1, 3 \end{bmatrix}^T$, $\xi_2 = \eta_2 - \eta_3 = \begin{bmatrix} 2, -1, 4, 3 \end{bmatrix}^T$ 都是 $AX = \mathbf{0}$ 的解. 因为 4 - r(A) = 2 且 ξ_1, ξ_2 线性无关,所以 ξ_1, ξ_2 是 $AX = \mathbf{0}$ 的一个基础解系. 从而 $AX = \beta$ 的通解为

 $X = \eta_1 + k_1 \xi_1 + k_2 \xi_2 = [1, 2, 0, 4]^T + k_1 [0, 2, -1, 3]^T + k_2 [2, -1, 4, 3]^T$, 其中 k_1, k_2 为任意常数.

21. 已知非齐次线性方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = -1, \\ 4x_1 + 3x_2 + 5x_3 - x_4 = -1, \\ ax_1 + x_2 + 3x_3 - bx_4 = 1 \end{cases}$$
 有 3 个线性无关的解.

(1) 证明方程组系数矩阵 A 的秩 r(A) = 2; (2) 求参数 a, b 的值及方程组的通解.

证 (1) 设 $\alpha_1, \alpha_2, \alpha_3$ 是所给的非齐次线性方程组 $AX = \beta$ 的 3 个线性无关的解,令

$$\eta_1 = \alpha_1 - \alpha_2, \quad \eta_2 = \alpha_2 - \alpha_3$$

则 η_1, η_2 是 AX = 0 的解,且 η_1, η_2 线性无关,因此 AX = 0 的解空间的维数为 $4 - r(A) \ge 2$,即 $r(A) \le 2$.

又
$$A$$
有 2 阶子式 $\begin{vmatrix} 1 & 1 \\ 4 & 3 \end{vmatrix} \neq 0$,所以 $r(A) \geq 2$,因此 $r(A) = 2$.

解 (2) 对方程组的增广矩阵 \tilde{A} 施行行初等变换,得

$$\tilde{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & | & -1 \\ 4 & 3 & 5 & -1 & | & -1 \\ a & 1 & 3 & -b & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & -4 & | & 2 \\ 0 & 1 & -1 & 5 & | & -3 \\ 0 & 0 & 4-2a & 4a-b-5 & | & 4-2a \end{bmatrix}.$$

因为r(A)=2,所以有 $\begin{cases} -2a+4=0, \\ 4a-b-5=0, \end{cases}$ 解得 $\begin{cases} a=2, \\ b=3. \end{cases}$ 代入原方程组中得到同解方程组

22. 设A是 $m \times n$ 矩阵,证明对任意m元列向量 β ,线性方程组 $AX = \beta$ 总有解的充分必要条件是r(A) = m.

证 必要性 设对任意的 β , $AX=\beta$ 总有解,则对 ε_i , $AX=\varepsilon_i$ 有解,记作 X_i , 即 $AX_i=\varepsilon_i$. $i=(1,2,\cdots,m)$.

此时
$$A(X_1, X_2, \dots, X_m) = (AX_1, AX_2, \dots, AX_m) = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_m) = E_m$$
,因此
$$m = r(E_m) = r(A(x_1, x_2, \dots, x_m)) \le r(A) \le \min\{m, n\},$$

故r(A) = m.

充分性 设r(A)=m,则对任意的 β ,义 $r(A)\leq r(A,\beta)\leq \min(m,n+1)\leq m$,因此 $r(A)=r(A,\beta)=m$,故对任意的 β , $AX=\beta$ 总有解.

23. 已知 $n \times m$ 的矩阵 $A \subseteq C$ 的列向量组均为某一齐次线性方程组的基础解系,试证存在 m 阶可逆矩阵 B ,使得 AB = C .

证 设 $A = [\alpha_1, \alpha_2, \cdots, \alpha_m], B = [\beta_1, \beta_2, \cdots, \beta_m]$, 那 么 列 向 量 组 (I) $\alpha_1, \alpha_2, \cdots, \alpha_m$ 和 (II) $\beta_1, \beta_2, \cdots, \beta_m$ 都是某个齐次线性方程组的解空间的基,故 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性无关,r(A) = 向量组 (I) 的秩 = m, 并且 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 可由 $\beta_1, \beta_2, \cdots, \beta_m$ 线性表示. 不妨设表示系数矩阵为 $C_{m \times m}$,则 $A = [\alpha_1, \alpha_2, \cdots, \alpha_m] = [\beta_1, \beta_2, \cdots, \beta_m] C = BC$,因此 $m = r(A) \le r(C)$,又 $r(C) \le m$, 所以 r(C) = m,即矩阵 C 是满秩的,因而是可逆的.

24. 设 X_1, X_2, \cdots, X_i 分别是非齐次线性方程组 $AX = \beta$ 的解向量,证明对于任意常数 $k_i \in \mathbf{P} \ (i=1,2,\cdots,t)$,若 $\sum_{i=1}^t k_i = 1$,则 $\sum_{i=1}^t k_i X_i$ 也是 $AX = \beta$ 的解向量.

证 由题设 $AX_i = \beta$, $i = 1, 2, \dots, t$, 把 $\sum_{i=1}^{t} k_i X_i$ 代入 $AX = \beta$ 的左端,得

$$A(\sum_{i=1}^{t} k_i X_i) = k_1 A X_1 + k_2 A X_2 + \dots + k_t A X_t = (k_1 + k_2 + \dots + k_t) \beta$$
.

由题设 $k_1+k_2+\cdots+k_t=1$, $A(\sum_{i=1}^t k_i X_i)=\beta$,即 $\sum_{i=1}^t k_i X_i$ 也是 $AX=\beta$ 的解.

- 25. 设 γ_0 是非齐次线性方程组 $AX = \beta$ 的一个特解, $\eta_1, \eta_2, \cdots, \eta_{n-r}$ 是其导出组的一个基础解系.
- (I) 证明 $\gamma_0, \eta_1, \eta_2, \dots, \eta_{n-r}$ 线性无关.
- (2) 证明 $\gamma_0, \gamma_0 + \eta_1, \gamma_0 + \eta_2, \cdots, \gamma_0 + \eta_{n-r}$ 是方程组 $AX = \beta$ 的 n-r+1 个线性无关的解.
- 证 (I) 设有数 k_0, k_1, \dots, k_{n-r} , 使得

$$k_0 \gamma_0 + k_1 \eta_1 + \dots + k_{n-r} \eta_{n-r} = 0$$
, (*)

等式的两端同时左乘以矩阵 A ,得 $k_0 A \gamma_0 + k_1 A \eta_1 + \cdots + k_{n-r} A \eta_{n-r} = 0$,即 $k_0 \beta = 0$. 因为 $\beta \neq 0$, $\therefore k_0 = 0$; 又因为 $\eta_1, \eta_2, \cdots, \eta_{n-r}$ 是 $AX = \beta$ 的导出组的基础解系,线性无关,由(*)式知, $k_1 = k_2 = \cdots = k_{n-r} = 0$,所以 $\gamma_0, \eta_1, \eta_2, \cdots, \eta_{n-r}$ 线性无关.

(2) 由题设 $A\gamma_0=\beta$, $A\eta_i=0, i=1,2,\cdots,n-r$, 所以 $A(\gamma_0+\eta_i)=A\gamma_0+A\eta_i=\beta, i=1,2,$

 $\dots, n-r$,即 $\gamma_0, \gamma_0 + \eta_1, \gamma_0 + \eta_2, \dots, \gamma_0 + \eta_{n-r}$ 是 $AX = \beta$ 的解. 又假设存在 k_0, k_1, \dots, k_{n-r} ,使得 $k_0 \gamma_0 + k_1 (\gamma_0 + \eta_1) + \dots + k_{n-r} (\gamma_0 + \eta_{n-r}) = \mathbf{0}$,整理得

$$(k_0 + k_1 + k_2 + \cdots + k_{n-r})\gamma_0 + k_1\eta_1 + \cdots + k_{n-r}\eta_{n-r} = 0$$
.

由(1)知 γ_0 , η_1 , η_2 , ..., η_{n-r} 线性无关,得到 $k_0=k_1=k_2=\cdots=k_{n-r}=0$,即 γ_0 , $\gamma_0+\eta_1$, $\gamma_0+\eta_2$, ..., $\gamma_0+\eta_{n-r}$ 是 $AX=\beta$ 的 n-r+1 个线性无关的解.

26. 设线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

的系数矩阵的秩等于矩阵

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & b_n \\ b_1 & b_2 & \cdots & b_n & 0 \end{bmatrix}$$

的秩, 证明这个方程组必定有解.

证 记方程组的矩阵形式为 $AX = \beta$. 那么,

$$r(A) = r \begin{bmatrix} A & \beta \\ \beta^{\mathsf{T}} & 0 \end{bmatrix} \ge r[A, \beta] \ge r(A),$$

即 $r(A) = r[A, \beta]$, 从而方程组有解.

27. 已知 $\alpha_1, \alpha_2, \alpha_3$ 是的一个标准正交基,求 $\beta_1 = \alpha_1 - \alpha_2 + \alpha_3$ 与 $\beta_2 = 2\alpha_1 + \alpha_2 + 2\alpha_3$ 的内积.

$$\begin{split} \mathbf{H} \quad & (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2) = (\alpha_1 - \alpha_2 + \alpha_3, 2\alpha_1 + \alpha_2 + 2\alpha_3 \\ & = (\alpha_1, 2\alpha_1) + (\alpha_1, \alpha_2) + (\alpha_1, 2\alpha_3) - (\alpha_2, 2\alpha_1) + (\alpha_2, \alpha_2) + (\alpha_2, 2\alpha_3) + (\alpha_3, 2\alpha_1) \\ & \quad + (\alpha_3, \alpha_2) + (\alpha_3, 2\alpha_3) \\ & = 2(\alpha_1, \alpha_1) + (\alpha_2, \alpha_2) + 2(\alpha_3, \alpha_3) = 5. \end{split}$$

28. 将向量组 $\alpha_1 = [1,1,-1,1]^T$, $\alpha_2 = [1,-1,-1,1]^T$, $\alpha_3 = [2,1,1,3]^T$ 标准正交化.

解 先将 $\alpha_1, \alpha_2, \alpha_3$ 正交化,令

$$\beta_{1} = \alpha_{1} = \begin{bmatrix} 1, 1, -1, 1 \end{bmatrix}^{T},$$

$$\beta_{2} = \alpha_{2} - \frac{(\alpha_{2}, \beta_{1})}{(\beta_{1}, \beta_{1})} \beta_{1} = \alpha_{2} - \frac{1}{2} \beta_{1} = \frac{1}{2} \begin{bmatrix} 1, -3, -1, 1 \end{bmatrix}^{T},$$

$$\beta_{3} = \alpha_{3} - \frac{(\alpha_{3}, \beta_{1})}{(\beta_{1}, \beta_{1})} \beta_{1} - \frac{(\alpha_{3}, \beta_{2})}{(\beta_{2}, \beta_{2})} \beta_{2} = \alpha_{3} - \frac{5}{4} \beta_{1} - \frac{1}{6} \beta_{2} = \frac{1}{3} \begin{bmatrix} 2, 0, 7, 5 \end{bmatrix}^{T}.$$

再单位化得

$$\eta_1 = \frac{\beta_1}{|\beta_1|} = \frac{1}{2} [1, 1, -1, 1]^T, \quad \eta_2 = \frac{\beta_2}{|\beta_2|} = \frac{1}{2\sqrt{3}} [1, -3, -1, 1]^T, \quad \eta_3 = \frac{\beta_3}{|\beta_3|} = \frac{1}{\sqrt{78}} [2, 0, 7, 5]^T.$$

29. 证明:在欧氏空间 \mathbb{R}^n 内,对于任意向量 α , β 以下等式成立.

(1)
$$|\alpha + \beta|^2 = |\alpha|^2 + |\beta|^2$$
, 其中 $\alpha = \beta$ 正交, 并说明它的几何意义:

(2)
$$(\alpha, \beta) = \frac{1}{4} |\alpha + \beta|^2 - \frac{1}{4} |\alpha - \beta|^2$$
.

证 (1) 由 α 与 β 正交知(α , β)=0, 故

$$|\alpha + \beta|^2 = (\alpha + \beta, \alpha + \beta) = |\alpha|^2 + 2(\alpha, \beta) + |\beta|^2 = |\alpha|^2 + |\beta|^2$$
.

该式的几何意义为: 直角三角形斜边长度的平方等于两直角边长的平方和.

(2) 因为

$$\frac{1}{4}|\alpha+\beta|^2 - \frac{1}{4}|\alpha-\beta|^2$$

$$= \frac{1}{4}(\alpha+\beta,\alpha+\beta) - \frac{1}{4}(\alpha-\beta,\alpha-\beta)$$

$$= \frac{1}{4}[|\alpha|^2 + 2(\alpha,\beta) + |\beta|^2 - |\alpha|^2 + 2(\alpha,\beta) - |\beta|^2] = (\alpha,\beta)$$

所以等式成立.

- 30. 设A,B都是n阶正交阵,试证:
- (1) A^{-1} 也是正交阵; (2) AB 也是正交阵.

证 (1) 因为
$$A$$
 是 n 阶正交阵,所以 $A^{\mathsf{T}}A = E$,且 $A^{-1} = A^{\mathsf{T}}$.故 $(A^{-1})^{\mathsf{T}}A^{-1} = (A^{\mathsf{T}})^{-1}A^{-1} = (AA^{\mathsf{T}})^{-1} = (AA^{-1})^{-1} = E$,

从而 A^{-1} 也是正交阵.

(2) 因为 A , B 都是 n 阶正交阵,所以 $A^{T}A = E$, $B^{T}B = E$, 故 $(AB)^{T}(AB) = B^{T}A^{T}(AB) = B^{T}(A^{T}A)B = B^{T}B = E ,$

从而AB也是正交阵。

第五章 线性空间

- 1. 下面的子集合,是不是一个子空间?
- (1) \mathbf{R}^3 的子集 $W = \{(x_1, x_2, x_3) | x_1 + x_2 + x_3 = 0\};$
- (2) \mathbf{R}^3 的子集 $W = \{(x_1, x_2, x_3) | x_1 + x_2 + x_3 = 1\}$;
- (3) \mathbf{R}^2 的子集 $W = \{(x, y) | xy \ge 0\}$;
- (4) \mathbf{R}^2 的子集 $W = \{(x, y) | x^2 + y^2 \le 1\};$
- (5) 实空间 $\mathbf{R}^{n\times n}$ 内,所有n阶实对称矩阵组成的子集合;
- (6) 实空间 $\mathbf{R}^{n\times n}$ 内,所有n阶可逆矩阵组成的子集合.
- 解 (1) $W = \{(x_1, x_2, x_3) | x_1 + x_2 + x_3 = 0\}$ 是 \mathbb{R}^3 的子空间;
- (2) $W = \{(x_1, x_2, x_3) | x_1 + x_2 + x_3 = 1\}$ 不是 \mathbb{R}^3 的子空间. W 对向量的加法及数量乘法运算都不封闭.
 - (3) $W = \{(x, y) | xy \ge 0\}$ 不是 \mathbb{R}^2 的子空间. W 对向量的加法运算不封闭;
 - (4) $W = \{(x, y) | x^2 + y^2 \le 1\}$ 不是 \mathbb{R}^2 的子空间. W 对向量的加法及数量乘法都不封闭:
 - (5) $W = \left\{ A \in \mathbb{R}^{n \times n} \middle| A^{\mathsf{T}} = A \right\}$ 是 $\mathbb{R}^{n \times n}$ 的子空间;
- (6) 实空间 $\mathbf{R}^{n\times n}$ 内,所有n阶可逆矩阵组成的子集合不是 $\mathbf{R}^{n\times n}$ 的子空间,它对矩阵的加法和数乘运算均不封闭。
 - 2. 求下列线性空间的一个基并指出其维数.
 - (1) $W = \{(x_1, x_2, x_3) | x_i \in \mathbb{R}, x_1 + x_2 + x_3 = 0\}$:
 - (2) 数域 \mathbf{P} 上全体形如 $\begin{bmatrix} 0 & a \\ -a & b \end{bmatrix}$ 的二阶矩阵,对矩阵加法和数与矩阵的乘法所构成的线性空间;
 - (3) \mathbb{R}^4 的子空间 $W = \{[s+3t, s-t, 2s-t, 4t] | s, t \in \mathbb{R} \}$.
- 解(1) $W = \{(x_1, x_2, x_3) | x_i \in \mathbb{R}, x_1 + x_2 + x_3 = 0\}$ 是齐次线性方程组 $x_1 + x_2 + x_3 = 0$ 的解空间,所以W的维数是 2,方程组的基础解系 $\eta_1 = [-1, 1, 0]^\mathsf{T}$, $\eta_2 = [-1, 0, 1]^\mathsf{T}$ 是W的一个基.
 - (2) 对任意 $a,b \in \mathbf{R}$, 有 $\begin{bmatrix} 0 & a \\ -a & b \end{bmatrix} = a \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$

又矩阵 $A_1 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, $A_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ 线性无关,所以 A_1 , A_2 为一个基,且该线性空间的维数为 2.

(3) 对任意 $s,t \in \mathbb{R}$,有 [s+3t,s-t,2s-t,4t] = s[1,1,2,0] + t[3,-1,-1,4] ,又向量组 [1,1,2,0],[3,-1,-1,4]线性无关,从而为 W的一个基,且 W的维数是 2.

3.
$$\Leftrightarrow \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 4 \\ 2 \\ 6 \end{bmatrix}, \boldsymbol{\omega} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}.$$

(1) $L(v_1, v_2, v_3)$ 中有多少个向量? (2) ω 在 $L(v_1, v_2, v_3)$ 中吗? 为什么?

解 (1)
$$L(v_1, v_2, v_3) = \left\{ \sum_{i=1}^3 k_i v_i \middle| \forall k_i \in \mathbf{R} \right\}$$
中有无穷多个向量.

(2) 方程组 $\omega = x_1 v_1 + x_2 v_2 + x_3 v_3$ 的增广矩阵为

$$\tilde{A} = \begin{bmatrix} 1 & 2 & 4 & 2 \\ 0 & 1 & 2 & 1 \\ -1 & 3 & 6 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 4 & 2 \\ 0 & 1 & 2 & 1 \\ 0 & 5 & 10 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 2 & 10 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

 $r(\tilde{A}) = r(A) = 2 < 3$,该方程组有无穷多解,通解为 $[x_1, x_2, x_3]^T = [2, -2k + 10, k]^T$,其中 k 为任意常数. 所以 ω 在 $L(v_1, v_2, v_3)$ 中,且 $\omega = 2v_1 + (-2k + 10)v_2 + kv_3$,其中 k 为任意常数.

4. 令
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 7 \\ 9 \end{bmatrix}$, 判断 \mathbf{v}_1 , \mathbf{v}_2 是否是 \mathbf{R}^3 的一个基,是否是 \mathbf{R}^2 的一个基.

解 因为 $\dim \mathbb{R}^3 = 3$, 所以 ν_1, ν_2 不是 \mathbb{R}^3 的一个基; $\nu_1, \nu_2 \notin \mathbb{R}^2$, 所以也不是 \mathbb{R}^2 的基.

5. 证明向量
$$v_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ -8 \end{bmatrix}, v_3 = \begin{bmatrix} -3 \\ 7 \end{bmatrix}$$
生成 \mathbb{R}^2 但不构成一个基.

解 dim \mathbf{R}^2 = 2, 所以 $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ 不是 \mathbf{R}^2 的一个基. 但由于 $\varepsilon_1 = 4\mathbf{v}_1 - \frac{3}{2}\mathbf{v}_2, \varepsilon_2 = \mathbf{v}_1 - \frac{1}{2}\mathbf{v}_2$,而 $\mathbf{R}^2 = L(\varepsilon_1, \varepsilon_2)$,所以 $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ 可以生成 \mathbf{R}^2 .

6. 利用坐标向量验证多项式组: $5x + x^2, 1 - 8x - 2x^2, -3 + 4x + 2x^2, 2 - 3x$ 是否生成 $\mathbb{R}[x]_{1}$.

解 设
$$f_1(x) = 5x + x^2$$
, $f_2(x) = 1 - 8x - 2x^2$, $f_3(x) = -3 + 4x + 2x^2$, $f_4(x) = 2 - 3x$, 则 $f_1(x)$,

 $f_2(x), f_3(x), f_4(x)$ 在 **R**[x], 的标准基1, x, x^2 下的坐标分别是

$$\alpha_1 = \begin{bmatrix} 0 \\ 5 \\ 1 \end{bmatrix}, \ \alpha_2 = \begin{bmatrix} 1 \\ -8 \\ -2 \end{bmatrix}, \ \alpha_3 = \begin{bmatrix} -3 \\ 4 \\ 2 \end{bmatrix}, \ \alpha_4 = \begin{bmatrix} 2 \\ -3 \\ 0 \end{bmatrix}.$$

由于

$$A = \begin{bmatrix} \alpha_1, \alpha_2, \alpha_3, \alpha_4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -3 & 2 \\ 5 & -8 & 4 & -3 \\ 1 & -2 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 2 & 0 \\ 0 & 1 & -3 & 2 \\ 0 & 0 & 0 & -7 \end{bmatrix},$$

所以 r(A)=3,因此向量组 $f_1(x)$, $f_2(x)$, $f_3(x)$, $f_4(x)$ 的秩也为 3,而 $\dim \mathbf{R}[x]_2=3$,因此 $f_1(x)$, $f_2(x)$, $f_3(x)$, $f_4(x)$ 能生成 $\mathbf{R}[x]_2$.

7. 设 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 为线性空间 R^4 的一个基,证明 $\beta_1 = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$, $\beta_2 = \alpha_1 - \alpha_2 + \alpha_3$

 $-\alpha_4$, $\beta_3 = \alpha_1 + \alpha_2 - \alpha_3 - \alpha_4$, $\beta_4 = \alpha_1 - \alpha_2 - \alpha_3 + \alpha_4$ 也是 \mathbb{R}^4 的一个基.

 $|A|=16\neq 0$, A 可逆,故 $\beta_1,\beta_2,\beta_3,\beta_4$ 线性无关,又 dim $\mathbf{R}^4=4$, 所以 $\beta_1,\beta_2,\beta_3,\beta_4$ 是 \mathbf{R}^4 的一个基.

8. 判断 Y 是否在由 A 的列生成的空间中,这里

$$Y = \begin{bmatrix} 6 \\ 7 \\ 1 \\ -4 \end{bmatrix}, \quad A = \begin{bmatrix} 5 & -5 & -9 \\ 8 & 8 & -6 \\ -5 & -9 & 3 \\ 3 & -2 & -7 \end{bmatrix}.$$

解 记 A 的 列 向 量 为 $v_1 = \begin{bmatrix} 5 \\ 8 \\ -5 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} -5 \\ 8 \\ -9 \\ 2 \end{bmatrix}, v_3 = \begin{bmatrix} -9 \\ -6 \\ 3 \\ -7 \end{bmatrix}$, 考 察 非 齐 次 线 性 方 程 组

 $Y = x_1 \nu_1 + x_2 \nu_2 + x_3 \nu_3$ 的增广矩阵

$$\tilde{A} = \begin{bmatrix} 5 & -5 & -9 & | & 6 \\ 8 & 8 & -6 & | & 7 \\ -5 & -9 & 3 & | & 1 \\ 3 & -2 & -7 & | & -4 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & -1 & 5 & | & 14 \\ 0 & 1 & 12 & | & 40 \\ 0 & 0 & 2 & | & 7 \\ 0 & 0 & 0 & | & 0 \end{bmatrix},$$

 $r(\tilde{A}) = r(A) = 3$,该方程组有唯一解,所以Y在 $L(\nu_1, \nu_2, \nu_3)$ 中.

9. 已知
$$\mathbf{R}^3$$
的一个基为 $\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 3 \\ 4 \\ 3 \end{bmatrix}$. 求向量 $\alpha = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$ 在该基下的坐标.

解 设
$$\alpha=k_1\alpha_1+k_2\alpha_2+k_3\alpha_3$$
,有方程组
$$\begin{cases} k_1+2k_2+3k_3=4,\\ 2k_1+3k_2+4k_3=1, \text{ 解得} \\ k_1+4k_2+3k_3=2, \end{cases} \begin{cases} k_1=-6,\\ k_2=-1, \text{ 则向量}\alpha$$
在该基
$$k_3=4 \end{cases}$$

下的坐标为 $X_1 = [-6, -1, 4]^T$.

10. 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 和 $\beta_1, \beta_2, \beta_3$ 是线性空间V的两个基,设 $\alpha_1 = 4\beta_1 - \beta_2, \quad \alpha_2 = -\beta_1 + \beta_2 + \beta_3, \quad \alpha_3 = \beta_2 - \beta_3.$

- (1) 求由基 $\{\alpha_i\}$ 到 $\{\beta_i\}$ 的过渡矩阵;
- (2) 设 $\alpha = 3\alpha_1 + 4\alpha_2 + \alpha_3$, 求 α 在基{ β_i }下的坐标.

$$m{k}$$
 (1) $[\alpha_1, \alpha_2, \alpha_3] = [\beta_1, \beta_2, \beta_3] \begin{bmatrix} 4 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$,则由基 $\{\beta_i\}$ 到 $\{\alpha_i\}$ 的过渡矩阵为

$$S = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$
,从而由基 $\{\alpha_i\}$ 到 $\{\beta_i\}$ 的过渡矩阵为 $S^{-1} = \frac{1}{7} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 4 & 4 \\ 1 & 4 & -3 \end{bmatrix}$.

(2) $\alpha = 3\alpha_1 + 4\alpha_2 + \alpha_3$ 在基 $\{\alpha_i\}$ 下的坐标为 $X = \begin{bmatrix} 3, 4, 1 \end{bmatrix}^T$. 设 $\alpha = 3\alpha_1 + 4\alpha_2 + \alpha_3$ 在基 $\{\beta_i\}$ 下

的坐标为
$$Y$$
,则 $Y = SX = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 8 \\ 2 \\ 3 \end{bmatrix}$.

11. 在 R^{2×2} 中取定两个基

(I)
$$E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

(II)
$$A_1 = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 3 \\ 1 & 0 \end{bmatrix}, A_3 = \begin{bmatrix} 5 & 3 \\ 2 & 1 \end{bmatrix}, A_4 = \begin{bmatrix} 6 & 6 \\ 1 & 3 \end{bmatrix}.$$

(1) 求由基(I)到基(II)的过渡矩阵S: (2) 求在两个基下具有相同坐标的元素

解 (1)
$$[A_1, A_2, A_3, A_4] = [E_{11}, E_{12}, E_{21}, E_{22}]$$

$$\begin{bmatrix} 2 & 0 & 5 & 6 \\ 1 & 3 & 3 & 6 \\ -1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \end{bmatrix}$$
, 则 $S = \begin{bmatrix} 2 & 0 & 5 & 6 \\ 1 & 3 & 3 & 6 \\ -1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \end{bmatrix}$.

(2) 设 $X = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} \in \mathbf{R}^{2\times 2}$ 在两个基下有相同的坐标,则 X 在基(I)下的坐标为 $[x_1, x_2, x_3, x_4]^T$,

X 在基(II)下有相同的坐标为 $S^{-1}[x_1, x_2, x_3, x_4]^{\mathsf{T}}$,则 SX' = X',进一步整理得齐次线性方程组(S - E)X' = 0.

$$S - E = \begin{bmatrix} 1 & 0 & 5 & 6 \\ 1 & 2 & 3 & 6 \\ -1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

12. 在**R**[x], 中,求由基(I) $1-2x+x^2$, $3-5x+4x^2$, $2x+3x^2$ 到基(II) 1, x, x^2 的过渡矩阵, 再求-1+2x 在基(I)下的坐标.

解
$$\begin{bmatrix} 1-2x+x^2, 3-5x+4x^2, 2x+3x^2 \end{bmatrix} = \begin{bmatrix} 1, x, x^2 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ -2 & -5 & 2 \\ 1 & 4 & 3 \end{bmatrix}$$
, 则由基(II)到基(I)的过渡

矩阵为
$$S = \begin{bmatrix} 1 & 3 & 0 \\ -2 & -5 & 2 \\ 1 & 4 & 3 \end{bmatrix}$$
,从而由基(I)到基(II)的过渡矩阵为 $S^{-1} = \begin{bmatrix} -23 & -9 & 6 \\ 8 & 3 & -2 \\ -3 & -1 & 1 \end{bmatrix}$.

设-1+2x在基(I)下的坐标为Y,它在基(II)下的坐标为 $X=\begin{bmatrix}-1,2,0\end{bmatrix}^{\mathrm{T}}$,则由坐标变换公式得

$$Y = S^{-1}X = \begin{bmatrix} -23 & -9 & 6 \\ 8 & 3 & -2 \\ -3 & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}.$$

第六章 特征值与特征向量•线性变换

1、求下列实矩阵的特征值与特征向量.

解 (1) $|\lambda E_2 - A| = \begin{vmatrix} \lambda - 5 & -3 \\ -3 & \lambda - 5 \end{vmatrix} = (\lambda - 2)(\lambda - 8)$,可知 A 的全部特征值为 $\lambda = 2$, $\lambda = 8$. 对 $\lambda = 2$,

$$A - 2E_2 = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix},$$

可知属于特征值入的全部特征向量为

$$k_1[-1, 1]^T (k_1 \neq 0)$$
.

对 礼 = 8,

$$A-8E_2 = \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix},$$

可知属于特征值分的全部特征向量为

$$\begin{aligned}
\kappa_{2}[1, 1] & (\kappa_{2} \neq 0). \\
(2) & |\lambda E_{3} - A| = \begin{vmatrix} \lambda - 2 & 1 & -2 \\ -5 & \lambda + 3 & -3 \\ 1 & 0 & \lambda + 2 \end{vmatrix} \frac{c_{1} + c_{2} - c_{3}}{c_{1} + c_{2} - c_{3}} \begin{vmatrix} \lambda + 1 & 1 & -2 \\ \lambda + 1 & \lambda + 3 & -3 \\ -\lambda - 1 & 0 & \lambda + 2 \end{vmatrix} \\
& \frac{r_{2} - r_{1}}{r_{3} + r_{1}} \begin{vmatrix} \lambda + 1 & 1 & -2 \\ 0 & \lambda + 2 & -1 \\ 0 & 1 & \lambda \end{vmatrix} = (\lambda + 1)^{3},
\end{aligned}$$

可知A的全部特征值为 $\lambda = \lambda = \lambda = -1$.

对
$$\lambda = -1$$
,由

$$A - (-1)E_3 = \begin{bmatrix} 3 & -1 & 2 \\ 5 & -2 & 3 \\ -1 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

可知属于特征值入的全部特征向量为

$$k[1, 1, -1]^{T} (k \neq 0)$$
.

$$(3) |\lambda E_4 - A| = \begin{vmatrix} \lambda - 1 & -1 & -1 & -1 \\ -1 & \lambda - 1 & 1 & 1 \\ -1 & 1 & \lambda - 1 & 1 \\ -1 & 1 & 1 & \lambda - 1 \end{vmatrix} \frac{r_i + r_1}{i > 1} \begin{vmatrix} \lambda - 1 & -1 & -1 & -1 \\ \lambda - 2 & \lambda - 2 & 0 & 0 \\ \lambda - 2 & 0 & \lambda - 2 & 0 \\ \lambda - 2 & 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^3 (\lambda + 2),$$

可知 A 的全部特征值为 $\lambda_1 = \lambda_2 = \lambda_3 = 2$, $\lambda_4 = -2$

对
$$\lambda = 2$$
,由

可知属于特征值え的全部特征向量为

$$k_1X_1 + k_2X_2 + k_3X_3$$
 (k_1 , k_2 , k_3 不全为零).

对 $\lambda_4 = -2$,由

$$A - (-2)E_4 = \begin{bmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & -1 & -1 \\ 1 & -1 & 3 & -1 \\ 1 & -1 & -1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \Rightarrow X_4 = \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix},$$

可知属于特征值 λ , 的全部特征向量为 $k_4 X_4 (k_4 \neq 0)$.

2、如果n阶方阵A满足 $A^3 = 3A$,证明A的特征值只能是0或± $\sqrt{3}$.

证 设 λ 是 A 的任一特征值, 而 $X \neq 0$ 为对应的特征向量,则

$$AX = \lambda X, \ A^3 = 3A \Rightarrow \lambda^3 X = A^3 X = 3AX = 3\lambda X$$
$$\Rightarrow (\lambda^3 - 3\lambda)X = 0$$
$$\Rightarrow \lambda^3 - 3\lambda = 0$$
$$\Rightarrow \lambda \in \{0, \pm \sqrt{3}\}.$$

3、已知 3 阶方阵
$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$
, $f(x) = x^2 - 2x + 6$.

- (1) 求 A 的特征值和特征向量;
- (2) 求 f(A) 的特征值和特征向量.
- 解 (1) A 的特征多项式

$$|\lambda E_3 - A| = \begin{vmatrix} \lambda + 1 & -1 & 0 \\ 4 & \lambda - 3 & 0 \\ -1 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)(\lambda - 1)^2,$$

可知A的全部特征值为 $\lambda = 2$, $\lambda_2 = \lambda_3 = 1$

 $対 \lambda = 2$,

$$A - 2E_3 = \begin{bmatrix} -3 & 1 & 0 \\ -4 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow X_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

可知属于特征值 λ 的全部特征向量为 $k_i X_i (k_i \neq 0)$.

对 $\lambda_3 = 1$,

$$A-1E_{3} = \begin{bmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow X_{1} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix},$$

可知属于特征值 λ , 的全部特征向量为 $k_2X_2(k_2 \neq 0)$.

(2) f(A) 的全部特征值为 $\mu_1 = f(\lambda_1) = 6$, $\mu_{2,3} = f(\lambda_{2,3}) = 5$.

f(A) 的属于特征值 $\mu_1=6$ 的全部特征向量,即为 A 的属于特征值 λ_1 的全部特征向量

$$k_1 X_1 (k_1 \neq 0)$$
.

$$f(A) = (A - E)^{2} + 5E = \begin{bmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}^{2} + 5E = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 1 & 1 \end{bmatrix} + 5E \text{ print}$$

$$f(\mathbf{A}) - 5\mathbf{E} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 1 & 1 \end{bmatrix} \Rightarrow \mathbf{Y}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{Y}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix},$$

可知 f(A) 的属于特征值 $\mu_{2,3} = 5$ 的全部特征向量为 $l_1Y_1 + l_2Y_2$ (l_1, l_2 不全为零).

注 f(A) 的特征值可由 A 的特征值完全确定,但 f(A) 的属于特征值 $f(\lambda)$ 的特征向量不一定是 A 的属于特征值 λ 的特征向量,有时需要解方程组 $[f(\lambda)E-f(A)]X=0$ 来确定 f(A) 的属于特征值 $f(\lambda)$ 的全部特征向量.

4、设A 是n 阶可逆矩阵,证明:岩 λ_i (i=1,2,...,n) 是A 的特征值,则 $\frac{1}{4}$ 是伴随矩阵 A^* 的特征值:岩 X_i 是A 的属于 λ_i 的特征向量,则 X_i 也是 A^* 的属于 $\frac{1}{4}$ 特征向量.

证 因为A可逆,所以 $A^* = |A|A^{-1}$. 又 $X_i \neq 0$ 是A的属于 λ_i 的特征向量,从而

$$AX_i = \lambda_i X_i \Rightarrow X_i = \lambda_i A^{-1} X_i$$
,必有 $\lambda_i \neq 0$
 $\Rightarrow A^{-1} X_i = \lambda_i^{-1} X_i$
 $\Rightarrow A * X_i = |A| A^{-1} X_i = \frac{|A|}{\lambda} X_i$,

其中 $\frac{|A|}{\lambda}$ = $\lambda_1 \cdots \lambda_{i-1} \lambda_{i+1} \cdots \lambda_n (i=1,2,\cdots,n)$.

5、设3阶方阵
$$A = \begin{bmatrix} -1 & 2 & 2 \\ 2 & -1 & -2 \\ 2 & -2 & -1 \end{bmatrix}$$
.

- (1) 求 A 的特征值和特征向量;
- (2) 求 $2E + A^{-1} A^*$ 的特征值和特征向量.
- 解 (1) A 的特征多项式

$$|\lambda E_{3} - A| = \begin{vmatrix} \lambda + 1 & -2 & -2 \\ -2 & \lambda + 1 & 2 \\ -2 & 2 & \lambda + 1 \end{vmatrix} \frac{r_{2} + r_{1}}{r_{3} + r_{1}} \begin{vmatrix} \lambda + 1 & -2 & -2 \\ \lambda - 1 & \lambda - 1 & 0 \\ \lambda - 1 & 0 & \lambda - 1 \end{vmatrix}$$
$$\frac{c_{1} - c_{2} - c_{3}}{0} \begin{vmatrix} \lambda + 5 & -2 & -2 \\ 0 & \lambda - 1 & 0 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda + 5)(\lambda - 1)^{2},$$

可知 A 的全部特征值为 $\lambda_1 = -5$, $\lambda_2 = \lambda_3 = 1$.

对 $\lambda = -5$,

$$A - (-5)E_3 = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & -2 \\ 2 & -2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow X_1 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix},$$

可知属于特征值ん的全部特征向量为

$$k_1X_1(k_1\neq 0)$$
.

对 $\lambda_3 = 1$,

可知属于特征值え的全部特征向量为

$$k_2X_2 + k_3X_3$$
 (k_2 , k_3 不全为零).

(2) 由(1)可知

$$|A| = \lambda_1 \lambda_2 \lambda_3 = -5$$
, $A^* = |A|A^{-1} = -5A^{-1}$, $2E + A^{-1} - A^* = 2E + 6A^{-1}$.

得知 $2E + A^{-1} - A^*$ 的全部特征值和特征向量为

$$\begin{split} \mu_{\rm l} &= 2 + 6 \lambda_{\rm l}^{-{\rm l}} = \frac{4}{5} \;, \qquad k_{\rm l} X_{\rm l} (k_{\rm l} \neq 0) \;; \\ \mu_{\rm 2,3} &= 2 + 6 \lambda_{\rm 2,3}^{-{\rm l}} = 8 \;, \qquad k_{\rm 2} X_{\rm 2} + k_{\rm 3} X_{\rm 3} \left(k_{\rm 2}, \; k_{\rm 3} \, {\rm Tr} \, {\rm cm} \right) \;. \end{split}$$

6、已知 3 阶方阵
$$A=\begin{bmatrix}2&x&2\\5&y&3\\-1&0&-2\end{bmatrix}$$
的特征值为 $\lambda_1=\lambda_2=\lambda_3=-1$,试求 x,y 的值及 A 的特征

向量.

解 由题设,可知

$$y = \operatorname{tr} A = \lambda_1 + \lambda_2 + \lambda_3 = -3,$$
$$|A| = 7x + 6 = \lambda_1 \lambda_2 \lambda_3 = -1 \Rightarrow x = -1.$$

对 $\lambda = -1$,

$$A - (-1)E_3 = \begin{bmatrix} 3 & -1 & 2 \\ 5 & -2 & 3 \\ -1 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow X = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix},$$

可知属于特征值 λ 的全部特征向量为 $kX(k \neq 0)$.

7、设A与B都是n阶方阵,且r(A)+r(B)< n,证明A与B有公共特征向量.

证 由题设知, r(A) < n, $r(B) < n \Rightarrow A$, B 均以 0 为特征值.

n 元齐次线性方程组 $\begin{cases} AX = 0, \\ BX = 0 \end{cases}$ 的系数矩阵的秩

$$r\begin{bmatrix} A \\ B \end{bmatrix} = r\left(\begin{bmatrix} A \\ O \end{bmatrix} + \begin{bmatrix} O \\ B \end{bmatrix}\right) \le r\begin{bmatrix} A \\ O \end{bmatrix} + r\begin{bmatrix} O \\ B \end{bmatrix} = r(A) + r(B) < n$$

必有非零解向量,即A与B有属于特征值0的公共特征向量.

3、设 X_1, X_2 是方阵A的不同特征值所对应的特征向量,证明 $X_1 + X_2$ 不是A的特征向量.

证 (反证法)假设 X_1+X_2 为 A 的属于 λ 的特征向量,则 $A(X_1+X_2)=\lambda(X_1+X_2)$,即 $AX_1+AX_2=\lambda X_1+\lambda X_2$.又 $AX_i=\lambda_i X_i (i=1,2)$,于是有 $(\lambda_1-\lambda_2)X_1+(\lambda_1-\lambda_2)X_2=0$,因为 X_1,X_2 线性无关,则 $\lambda=\lambda_1=\lambda_2$.故假设不成立,原命题正确.

4、设A为非奇异矩阵,证明AB与BA相似.

证 因为A可逆,于是 $A^{-1}(AB)A = BA$,即AB与BA相似.

10、如果A和B均可对角化,证明 $\begin{bmatrix} A & O \\ O & B \end{bmatrix}$ 也可对角化.

证 因为 A, B 可对角化,所以存在可逆矩阵 S_1 , S_2 , 使得 $S_1^{-1}AS_1 = A_1$, $S_2^{-1}AS_2 = A_2$ 均为对角矩阵.

令
$$S = \begin{bmatrix} S_1 & O \\ O & S_2 \end{bmatrix}$$
,则 S 可逆,且
$$S^{-1} \begin{bmatrix} A & O \\ O & B \end{bmatrix} S = \begin{bmatrix} S_1^{-1} & O \\ O & S_2^{-1} \end{bmatrix} \begin{bmatrix} A & O \\ O & B \end{bmatrix} \begin{bmatrix} S_1 & O \\ O & S_2 \end{bmatrix} = \begin{bmatrix} S_1^{-1}AS_1 & O \\ O & S_2^{-1}BS_2 \end{bmatrix} = \begin{bmatrix} A_1 & O \\ O & A_2 \end{bmatrix}$$

为对角矩阵.

11、设3阶方阵
$$\mathbf{A} = \begin{bmatrix} 3 & 2 & -1 \\ -2 & -2 & 2 \\ 3 & 6 & -1 \end{bmatrix}$$
.

(1) 试证 A 可对角化;

(2) 求可逆矩阵 S, 使 $S^{-1}AS = \Lambda$ 为对角矩阵.

证 (1) A 的特征多项式

$$|\lambda E_{3} - A| = \begin{vmatrix} \lambda - 3 & -2 & 1 \\ 2 & \lambda + 2 & -2 \\ -3 & -6 & \lambda + 1 \end{vmatrix} \frac{c_{2} - 2c_{1}}{c_{3} + c_{1}} \begin{vmatrix} \lambda - 3 & -2\lambda + 4 & \lambda - 2 \\ 2 & \lambda - 2 & 0 \\ -3 & 0 & \lambda - 2 \end{vmatrix}$$

$$\frac{r_{1} + 2r_{2} - r_{3}}{c_{3} + c_{1}} \begin{vmatrix} \lambda + 4 & 0 & 0 \\ 2 & \lambda - 2 & 0 \\ -3 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^{2}(\lambda + 4),$$

可知 A 的全部特征值为 $\lambda = \lambda = 2$, $\lambda = -4$.

判断是否可对角化,只需考察各重根特征值的几何重数是否等于代数重数. 对 $\lambda_{1,2}=2$,

$$A-2E_3 = \begin{bmatrix} 1 & 2 & -1 \\ -2 & -4 & 2 \\ 3 & 6 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$
$$3-r(A-2E_3) = 3-1 = 2 \Rightarrow A \text{ 可对角化}.$$

解 (2) 由(1)可知,
$$A$$
有属于特征值 $\lambda_1 = \lambda_2 = 2$ 的线性无关特征向量 $X_1 = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$, $X_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

对 $\lambda = -4$,由

$$A - (-4)E_3 = \begin{bmatrix} 7 & 2 & -1 \\ -2 & 2 & 2 \\ 3 & 6 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 0 & -1 \\ 0 & 3 & 2 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow X_3 = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}.$$

$$\diamondsuit S = [X_1, X_2, X_3] = \begin{bmatrix} -2 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{bmatrix}, \ \emptyset S^{-1}AS = \text{diag}(2, 2, -4) = A.$$

12、设 3 阶方阵 A 的三个特征值为 0, 1, -1, 其对应的特征向量依次为 $X_1 = [0, 1, 2]^T$, $X_2 = [1, 1, -1]^T$, $X_3 = [2, 4, 0]^T$,试求 A^{100} .

解 令
$$S = [X_1, X_2, \frac{1}{2}X_3]$$
,则

$$S^{-1}AS = \text{diag}(0, 1, -1) = \Lambda \Rightarrow A = S\Lambda S^{-1}$$
.

那么,

$$A^{100} = (SAS^{-1})^{100} = SA^{100}S^{-1} = S\text{diag}(0, 1, 1)S^{-1}$$

$$= \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 2 \\ 2 & -1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 2 & -1 \\ -4 & 2 & -1 \end{bmatrix}.$$

13、设 3 阶实对称矩阵
$$A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{bmatrix}$$
.

- (1) 求可逆矩阵S, 使得 $S^{-1}AS$ 为对角矩阵:
- (2) 求正交矩阵Q, 使得 $Q^{\mathsf{T}}AQ$ 为对角矩阵.

$$\mathbf{P} (1) \quad |\lambda E - A| = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ -2 & \lambda - 5 & 4 \\ 2 & 4 & \lambda - 5 \end{vmatrix} = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ -2 & \lambda - 5 & 4 \\ 0 & \lambda - 1 & \lambda - 1 \end{vmatrix} \\
= \begin{vmatrix} \lambda - 2 & -4 & 2 \\ -2 & \lambda - 9 & 4 \\ 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^{2} (\lambda - 10),$$

则 A 的特征值为 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = 10$.

对于 $\lambda_1 = 1$, 求解(E - A)X = 0. 因为

$$E - A = \begin{bmatrix} -1 & -2 & 2 \\ -2 & -4 & 4 \\ 2 & 4 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

所以同解方程组为 $x_1 + 2x_2 - 2x_3 = 0$,求得一个基础解系为 $X_1 = [-2,1,0]^T$, $X_2 = [2,0,1]^T$;

对于 $\lambda_3=10$, 求得 (10E-A)X=0 的一个基础解系为 $X_3=[1,2,-2]^{\mathsf{T}}$.

令 $S = [X_1, X_2, X_3]$, 则 S 为可逆矩阵,且 $S^{-1}AS = \text{diag}(1,1,10)$.

(2) 先求 A 的特征值和特征向量,过程与(1)相同.

将 X_1, X_2 正交化, 得

$$\beta_1 = X_1 = [-2, 1, 0]^T,$$

 $\beta_2 = X_2 - \frac{(X_2, \beta_1)}{(\beta_1, \beta_2)} \beta_1 = X_2 + \frac{4}{5} \beta_1 = [\frac{2}{5}, \frac{4}{5}, 1]^T.$

再将 β_1,β_2,X_3 单位化,得

$$\begin{split} & \boldsymbol{\eta}_{1} = \frac{\beta_{1}}{|\beta_{1}|} = \left[-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 0 \right]^{T}, \ \boldsymbol{\eta}_{2} = \frac{\beta_{2}}{|\beta_{2}|} = \left[\frac{2}{3\sqrt{5}}, \frac{4}{3\sqrt{5}}, \frac{5}{3\sqrt{5}} \right]^{T}, \\ & \boldsymbol{\eta}_{3} = \frac{X_{3}}{|X_{3}|} = \left[\frac{1}{3}, \frac{2}{3}, -\frac{2}{3} \right]^{T}. \end{split}$$

令 $Q = [\eta_1, \eta_2, \eta_3]$,则Q为正交矩阵,且 $Q^T A Q = \text{diag}(1,1,10)$.

14、求正交矩阵Q,使得 $Q^{\mathsf{T}}AQ$ 为对角矩阵.

(1)
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
; (2) $A = \begin{bmatrix} 3 & 4 & -2 \\ 4 & 3 & 2 \\ -2 & 2 & 6 \end{bmatrix}$; (3) $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$.

$$||AE_3 - A|| = \begin{vmatrix} \lambda - 1 & -2 & 0 \\ -2 & \lambda - 1 & 0 \\ 0 & 0 & \lambda \end{vmatrix} = \lambda \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix} = \lambda(\lambda - 3)(\lambda + 1),$$

则 A 的特征值为 $\lambda = 3$, $\lambda_1 = -1$, $\lambda_2 = 0$.

对于 $\lambda = 3$, 求解(3E - A)X = 0. 因为

$$3E - A = \begin{bmatrix} 2 & -2 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

所以同解方程组为 $\begin{cases} x_1 - x_2 = 0, \\ x_3 = 0, \end{cases}$ 求得一个基础解系为 $X_1 = \begin{bmatrix} 1, 1, 0 \end{bmatrix}^T$.

对于 $\lambda_1 = -1$, 求解(-E - A)X = 0. 因为

$$-E - A = \begin{bmatrix} -2 & -2 & 0 \\ -2 & -2 & 0 \\ 0 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

所以同解方程组为 $\begin{cases} x_1 + x_2 = 0, \\ x_3 = 0, \end{cases}$ 求得一个基础解系为 $X_2 = \begin{bmatrix} 1, -1, 0 \end{bmatrix}^T$.

对于 $\lambda_3 = 0$, 求解(-0E - A)X = 0.因为

$$-0E - A = \begin{bmatrix} -1 & -2 & 0 \\ -2 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

所以同解方程组为 $\begin{cases} x_1 = 0, \\ x_2 = 0, \end{cases}$ 求得一个基础解系为 $X_3 = \begin{bmatrix} 0, 0, 1 \end{bmatrix}^T$.

将 X_1, X ,单位化,得

$$\eta_1 = \frac{X_1}{|X_1|} = \left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right]^T, \eta_2 = \frac{X_2}{|X_2|} = \left[\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right]^T.$$

令
$$\mathbf{Q} = \begin{bmatrix} \eta_1, \eta_2, X_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, 则 \mathbf{Q} 为正交矩阵,且 $\mathbf{Q}^T A \mathbf{Q} = \operatorname{diag}(3, -1, 0)$.

(2)
$$|\lambda E - A| = \begin{vmatrix} \lambda - 3 & -4 & 2 \\ -4 & \lambda - 3 & -2 \\ 2 & -2 & \lambda - 6 \end{vmatrix} = \begin{vmatrix} \lambda - 7 & \lambda - 7 & 0 \\ -4 & \lambda + 1 & -2 \\ 2 & -4 & \lambda - 6 \end{vmatrix} = \begin{vmatrix} \lambda - 7 & 0 & 0 \\ -4 & \lambda + 1 & -2 \\ 2 & -4 & \lambda - 6 \end{vmatrix}$$

$$=(\lambda-7)^2(\lambda+2),$$

则 A 的特征值为 $\lambda_1 = \lambda_2 = 7$, $\lambda_3 = -2$.

对于
$$\lambda = 7$$
, 求解 $(7E - A)X = 0$. 因为

$$7E - A = \begin{bmatrix} 4 & -4 & 2 \\ -4 & 4 & -2 \\ 2 & -2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

所以同解方程组为 $2x_1 - 2x_2 + x_3 = 0$, 求得一个基础解系为 $X_1 = [1,1,0]^T$, $X_2 = [-1,0,2]^T$.

对于 $\lambda_3 = -2$, 求得 (-2E - A)X = 0 的一个基础解系为 $X_3 = [2, -2, 1]^T$.

将 X_1, X_2 正交化, 得

$$\begin{split} \boldsymbol{\beta}_1 &= \boldsymbol{X}_1 = [1,1,0]^T, \\ \boldsymbol{\beta}_2 &= \boldsymbol{X}_2 - \frac{(X_2,\beta_1)}{(\boldsymbol{\beta}_1,\beta_1)} \, \boldsymbol{\beta}_1 = \boldsymbol{X}_2 + \frac{1}{2} \, \boldsymbol{\beta}_1 = [-\frac{1}{2},\frac{1}{2},2]^T. \end{split}$$

再将 β_1, β_2, X_3 单位化, 得

$$\boldsymbol{\eta}_1 = \frac{\beta_1}{|\beta_1|} = \left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right]^{\mathrm{T}}, \quad \boldsymbol{\eta}_2 = \frac{\beta_2}{|\beta_2|} = \left[-\frac{1}{3\sqrt{2}}, \frac{1}{3\sqrt{2}}, \frac{4}{3\sqrt{2}}\right]^{\mathrm{T}}, \quad \boldsymbol{\eta}_3 = \frac{X_3}{|X_3|} = \left[\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right]^{\mathrm{T}}.$$

令 $Q = [\eta_1, \eta_2, \eta_3]$,则Q为正交矩阵,且 $Q^T A Q = \text{diag}(7,7,-2)$.

(3) 类似方法计算可得
$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0\\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\\ 0 & \frac{1}{\sqrt{2}} & 0 & -\frac{1}{2} \end{bmatrix}$$
, 且 $Q^{T}AQ = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & -1 & \\ & & & -1 \end{bmatrix}$.

- 15、设3阶实对称矩阵 A 的各行元素之和均为3,且线性方程组 AX = 0 有两个线性无关解.
- (1) 求 A 的特征值和特征向量;
- (2) 求正交矩阵 O 和对角矩阵 Λ , 使得 $O^{\mathsf{T}}AO = \Lambda$.

解(1)由A的各行元素之和为3,知 $A[1,1,1]^T=3[1,1,1]^T$,则3是A的一个特征值, $\alpha_1=[1,1,1]^T$ 是相应的特征向量。

又方程组 AX=0 有两个线性无关解,所以 A 有 0 特征值,且 $n-r(A) \ge 2$,则 $r(A) \le 1$.而 $r(A) \ge 1$,故 r(A) = 1,从而实对称矩阵 A 的特征值为 3,0,0.进而 A 的属于特征值 3 的全部特征向量为

$$k_1 \alpha_1 = k_1 [1, 1, 1]^T, \forall k_1 \in \mathbf{R}, k_1 \neq 0.$$

设 $X = [x_1, x_2, x_3]^T$ 是 A 的属于特征值 0 的特征向量,则 X 与 α_1 都正交,因此 $x_1 + x_2 + x_3 = 0$. 求得一个基础解系为 $\alpha_2 = [-1, 1, 0]^T$, $\alpha_3 = [-1, 0, 1]^T$,故 A 的属于特征值 0 的全部特征向量为

$$k_2\alpha_2 + k_3\alpha_3 = k_2[-1,1,0]^{\mathrm{T}} + k_3[-1,0,1]^{\mathrm{T}}$$
,

其中 $\forall k_2, k_3 \in \mathbf{R}$, k_2, k_3 不全为零.

(2) 将 α_1, α_2 正交化, 得

$$\beta_1 = \alpha_2 = [-1, 1, 0]^T,$$

 $\beta_2 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = \alpha_3 - \frac{1}{2} \beta_1 = [-\frac{1}{2}, -\frac{1}{2}, 1]^T.$

再将 $\alpha_1, \beta_1, \beta_2$,单位化,得

$$\eta_1 = \frac{\alpha_1}{|\alpha_1|} = \left[\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]^T, \quad \eta_2 = \frac{\beta_1}{|\beta_1|} = \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right]^T, \quad \eta_3 = \frac{\beta_2}{|\beta_3|} = \left[-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right]^T.$$

令 $Q = [\eta_1, \eta_2, \eta_3]$, $\Lambda = \text{diag}(3,0,0)$, 则Q为正交矩阵,且 $Q^T A Q = \Lambda$.

16、设 3 阶实对称矩阵 A 的三个特征值为 $\lambda_1 = \lambda_2 = 2$ 和 $\lambda_3 = 3$; 对应于 $\lambda_1 = \lambda_2 = 2$ 的一个特征向量为 $X = \begin{bmatrix} 97, k, -99 \end{bmatrix}^T$,对应于 $\lambda_3 = 3$ 的特征向量为 $X_3 = \begin{bmatrix} 1, 1, 1 \end{bmatrix}^T$. 求参数 k 和矩阵 A.

解 方法 1 因为 A 是实对称矩阵, 所以 $0 = (X, X_3) = 97 + k - 99$, 得 k = 2.

设 $X_1 = [x_1, x_2, x_3]^T$ 是A 的对应于特征值2的一个特征向量,则

$$(X_1, X_3) = x_1 + x_2 + x_3 = 0$$
.

该齐次线性方程组的一个基础解系为 $\alpha_1 = \begin{bmatrix} -1,1,0 \end{bmatrix}^T$, $\alpha_2 = \begin{bmatrix} -1,0,1 \end{bmatrix}^T$. 令

$$S = \begin{bmatrix} \alpha_1, \alpha_2, X_3 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix},$$

则 S 为可逆矩阵, 且 $S^{-1}AS = diag(2,2,3) = \Lambda$, 因此

$$A = SAS^{-1} = S \left(2E_3 + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) S^{-1}$$

$$= 2E_3 + \frac{1}{3} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 & -1 \\ -1 & -1 & 2 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 7 & 1 & 1 \\ 1 & 7 & 1 \\ 1 & 1 & 7 \end{bmatrix}.$$

方法 2 求 α_1 , α_2 与方法 1 相同.

将 α_1, α_2 ,正交化,得

$$\beta_{1} = \alpha_{1} = [-1, 1, 0]^{T},$$

$$\beta_{2} = \alpha_{2} - \frac{(\alpha_{2}, \beta_{1})}{(\beta_{1}, \beta_{1})} \beta_{1} = \alpha_{2} - \frac{1}{2} \beta_{1} = [-\frac{1}{2}, -\frac{1}{2}, 1]^{T}.$$

再将 β_1, β_2, X_3 单位化, 得

$$\eta_1 = \frac{\beta_1}{|\beta_1|} = \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right]^{\mathsf{T}},
\eta_2 = \frac{\beta_2}{|\beta_2|} = \left[-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}} \right]^{\mathsf{T}},
\eta_3 = \frac{X_3}{|X_3|} = \left[\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right]^{\mathsf{T}}.$$

令 $Q = [\eta_1, \eta_2, \eta_3]$, $\Lambda = \text{diag}(2, 2, 3)$, 则Q为正交矩阵,且 $Q^T A Q = \Lambda$,因此

$$\mathbf{A} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{\mathsf{T}} = \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} 2 & \\ & 2 & \\ & 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} 2 & \\ & 2 & \\ & & 3 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 7 & 1 & 1 \\ 1 & 7 & 1 \\ 1 & 1 & 7 \end{bmatrix}.$$

方法 3 实对称矩阵 $A-2E_3$ 的全部特征值为 0,0,1,且 $Y=\frac{1}{\sqrt{3}}$ X_3 为 $A-2E_3$ 的属于特征值 1 的单位特征向量。由实对称矩阵的谱分解定理,有

$$A - 2E_3 = YY^{\mathsf{T}} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix},$$

故
$$\mathbf{A} = 2\mathbf{E}_3 + \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 7 & 1 & 1 \\ 1 & 7 & 1 \\ 1 & 1 & 7 \end{bmatrix}.$$

17、设3阶实对称矩阵A满足 $A^3 + A - 10E_3 = 0$,求A.

解 设 λ 是实对称矩阵 A 的任一特征值,则 λ 是实数,且 $\lambda^3 + \lambda - 10$ 是矩阵 $A^3 + A - 10E_3 = O$ 的特征值,因而 $\lambda^3 + \lambda - 10 = 0$. 又观察可知 $2^3 + 2 - 10 = 0$;于是 $\lambda^3 + \lambda - 10 = (\lambda - 2)(\lambda^2 + 2\lambda + 5)$. 因为 A 是实对称矩阵,所以 2 为 A 的 3 重特征值. 此时存在正交矩阵 S ,使得 $S^{-1}AS = 2E_3$,从而 $A = S(2E_3)S^{-1} = 2E_3$.

- 8、设 $\alpha = [a_1, a_2, ..., a_n]^T, a_1 \neq 0, A = \alpha \alpha^T.$
- (1)证明 $\lambda = 0$ 是A的n-1 重特征值;
- (2) 求 A 的非零特征值及n 个线性无关的特征向量.

证 (1) 注意到 A 为对称矩阵,故 A 与对角阵 $A = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_n)$ 相似,其中 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 是 A 的全部特征值. 另外,r(A) = 1,从而 r(A) = 1,于是 A 的对角元只有一个非零,又 |A| = 0,所以 $\lambda = 0$ 是 A 的特征值且为 n-1 重.

解 (2) 由 $A\alpha = (\alpha\alpha^{\mathsf{T}})\alpha = \alpha(\alpha^{\mathsf{T}}\alpha) = (\sum_{i=1}^n a_i^2)\alpha$,可见 $\lambda_1 = \sum_{i=1}^n a_i^2 \neq 0$ 为 A 的一个特征值,且对应的特征向量为 α .

当 $\lambda = 0$ 时,求解方程组AX = 0,由

$$A = \begin{pmatrix} a_{1}^{2} & a_{1}a_{2} & \cdots & a_{1}a_{n} \\ a_{2}a_{1} & a_{2}^{2} & \cdots & a_{2}a_{n} \\ \vdots & \vdots & & \vdots \\ a_{n}a_{1} & a_{n}a_{2} & \cdots & a_{n}^{2} \end{pmatrix} \xrightarrow{r_{1}+a_{1}} \begin{pmatrix} a_{1} & a_{2} & \cdots & a_{n} \\ a_{2}a_{1} & a_{2}^{2} & \cdots & a_{2}a_{n} \\ \vdots & \vdots & & \vdots \\ a_{n}a_{1} & a_{n}a_{2} & \cdots & a_{n}^{2} \end{pmatrix} \xrightarrow{r_{i}-a_{i}r_{i}} \begin{pmatrix} a_{1} & a_{2} & \cdots & a_{n} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

得 $\lambda=0$ 对应的线性无关的特征向量为 $\alpha_2=(-\frac{a_2}{a_1},1,0,\cdots,0)^{\mathrm{T}}$, $\alpha_3=(-\frac{a_3}{a_1},0,1,\cdots,0)^{\mathrm{T}}$, …,

$$\alpha_n = \left(-\frac{a_n}{a_1}, 0, 0, \dots, 1\right)^{\mathsf{T}}.$$

- 19、 判断下列哪些法则 σ 是线性变换.
- (1) 在 $\mathbf{R}^{n\times n}$ 中,取定两个元素 A, B ,对于任意 $X \in \mathbf{R}^{n\times n}$,规定 $\sigma(X) = AXB$;
- (2) 在线性空间V中,取一固定元素 α_0 ,对于任意 $\alpha \in V$,规定 $\sigma(\alpha) = \alpha + \alpha_0$;
- (3) 在 \mathbb{R}^2 中,对于任意向量 $\alpha = [x, y]^\mathsf{T}$,规定 $\sigma(\alpha) = [x^2 + y^2, -2xy]^\mathsf{T}$.
- 解 (1) 因为 $\forall X, Y \in \mathbb{R}^{n \times n}$, $k \in \mathbb{R}$, 有 $\sigma(X) = AXB \in \mathbb{R}^{n \times n}$, 且

$$\sigma(X+Y) = A(X+Y)B = AXB + AYB = \sigma(X) + \sigma(Y),$$

$$\sigma(kX) = A(kX)B = kAXB = k\sigma(X),$$

所以 σ 为 R^{n*n} 上的线性变换.

(2)因为 $\forall \alpha, \beta \in V, k \in P$,有 $\sigma(\alpha) = \alpha + \alpha_0 \in V$,且

$$\sigma(\alpha + \beta) = \alpha + \beta + \alpha_0 = \sigma(\alpha) + \sigma(\beta) - \alpha_0,$$

$$\sigma(k\alpha) = k\alpha + \alpha_0 = k(\alpha + \alpha_0) - (k-1)\alpha_0 = k\sigma(\alpha) - (k-1)\alpha_0,$$

所以当 $\alpha_0 \neq 0$ 时, σ 不是V上的线性变换;当 $\alpha_0 = 0$ 时, σ 是V上的线性变换:

$$(3) \diamondsuit \boldsymbol{\alpha} = \begin{bmatrix} 1, 0 \end{bmatrix}^\mathsf{T}, \quad \boldsymbol{\beta} = \begin{bmatrix} 0, 1 \end{bmatrix}^\mathsf{T}, \quad \emptyset \ \boldsymbol{\sigma}(\boldsymbol{\alpha}) = \begin{bmatrix} 1, 0 \end{bmatrix}^\mathsf{T}, \boldsymbol{\sigma}(\boldsymbol{\beta}) = \begin{bmatrix} 1, 0 \end{bmatrix}^\mathsf{T}.$$

因为 $\sigma(\alpha + \beta) = [2, -2]^T \neq \sigma(\alpha) + \sigma(\beta)$, 所以 σ 不是线性变换.

20、在 \mathbf{R}^n 上定义映射 σ 为 $\sigma([x_1,x_2,\cdots,x_n]^\mathsf{T})=[0,x_2,\cdots,x_n]^\mathsf{T}$. 证明 σ 是 \mathbf{R}^n 上的一个线性变换.

证
$$\forall \alpha = (x_1, x_2, \dots, x_n), \beta = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n, k \in \mathbb{R}, \bar{\eta}$$

$$\sigma(\alpha + \beta) = \sigma(x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

$$= (0, x_2 + y_2, \dots, x_n + y_n)$$

$$= (0, x_2, \dots, x_n) + (0, y_2, \dots, y_n)$$

$$= \sigma(\alpha) + \sigma(\beta),$$

$$\sigma(k\alpha) = \sigma(kx_1, kx_2, \dots, kx_n) = (0, kx_2, \dots, kx_n) = k(0, x_2, \dots, x_n) = k\sigma(\alpha).$$

从而得证 σ 是 \mathbb{R}^n 上的线性变换.

21、设 V是实数域上以可微函数组 x^2e^x , xe^x , e^x 为基的 3 维线性空间。求微分运算 D 在所给基下的矩阵。

解 记
$$\alpha_1 = x^2 e^x$$
, $\alpha_2 = x e^x$, $\alpha_3 = e^x$, 则

$$\begin{cases} D(\alpha_1) = (x^2 e^x)' = 2x e^x + x^2 e^x = 1\alpha_1 + 2\alpha_2 + 0\alpha_3, \\ D(\alpha_2) = (x e^x)' = e^x + x e^x = 0\alpha_1 + 1\alpha_2 + 1\alpha_3, \\ D(\alpha_3) = (e^x)' = e^x = 0\alpha_1 + 0\alpha_2 + 1\alpha_3, \end{cases}$$

可知D在基 x^2e^x , xe^x , e^x 下的矩阵为

$$\mathbf{D} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

22、设

$$E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

与

$$\boldsymbol{B}_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad \boldsymbol{B}_2 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad \boldsymbol{B}_3 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \quad \boldsymbol{B}_4 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

是 $\mathbf{R}^{2\times 2}$ 的两个基,定义 $\sigma(A) = A \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$, $\forall A \in \mathbf{R}^{2\times 2}$.

- (1) 试证 σ 是 $\mathbb{R}^{2\times 2}$ 上的线性变换;
- (2) 求由基 E_{12} , E_{11} , E_{22} , E_{21} 到基 B_{1} , B_{2} , B_{3} , B_{4} 的过渡矩阵:
- (3) 求 σ 在基 B_1, B_2, B_3, B_4 下的矩阵.

证 (1) 记
$$P = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$$
, 则 $\forall A, B \in \mathbb{R}^{2\times 2}, k \in \mathbb{R}$ 有
$$\sigma(A) = AP \in \mathbb{R}^{2\times 2},$$

$$\sigma(A+B) = (A+B)P = AP + BP = \sigma(A) + \sigma(B),$$

$$\sigma(kA) = (kA)P = kAP = k\sigma(A),$$

从而 σ 是 $\mathbf{R}^{2\times2}$ 上的线性变换.

解 (2) 因为

$$\begin{split} \boldsymbol{B}_{1} &= 1\boldsymbol{E}_{12} + 1\boldsymbol{E}_{11} + 1\boldsymbol{E}_{22} + 1\boldsymbol{E}_{21}, \\ \boldsymbol{B}_{2} &= 1\boldsymbol{E}_{12} + 1\boldsymbol{E}_{11} + 0\boldsymbol{E}_{22} + 1\boldsymbol{E}_{21}, \\ \boldsymbol{B}_{3} &= 1\boldsymbol{E}_{12} + 1\boldsymbol{E}_{11} + 0\boldsymbol{E}_{22} + 0\boldsymbol{E}_{21}, \\ \boldsymbol{B}_{4} &= 0\boldsymbol{E}_{12} + 1\boldsymbol{E}_{11} + 0\boldsymbol{E}_{22} + 0\boldsymbol{E}_{21}, \end{split}$$

所以基
$$E_{11}$$
, E_{12} , E_{21} , E_{22} 到基 B_1 , B_2 , B_3 , B_4 的过渡矩阵 $S = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$.

(3)因为

$$\sigma(E_{11}) = E_{11}P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = 1E_{11} + 0E_{12} + 0E_{21} + 0E_{22},$$

$$\sigma(E_{12}) = E_{12}P = \begin{bmatrix} 0 & -2 \\ 0 & 0 \end{bmatrix} = 0E_{11} - 2E_{12} + 0E_{21} + 0E_{22},$$

$$\sigma(E_{21}) = E_{21}P = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = 0E_{11} + 0E_{12} + 1E_{21} + 0E_{22},$$

$$\sigma(E_{22}) = E_{22}P = \begin{bmatrix} 0 & 0 \\ 0 & -2 \end{bmatrix} = 0E_{11} + 0E_{12} + 0E_{21} - 2E_{22}$$

所以 σ 在标准基 $E_{11}, E_{12}, E_{21}, E_{22}$ 下的矩阵 $M_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}$,而标准基 $E_{11}, E_{12}, E_{21}, E_{22}$ 到

基 B_1, B_2, B_3, B_4 的过渡矩阵 $T = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$, 从而 σ 在基 B_1, B_2, B_3, B_4 下的矩阵

$$\boldsymbol{M}_2 = \boldsymbol{T}^{-1} \boldsymbol{M}_1 \boldsymbol{T} = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ -3 & -3 & -2 & 0 \\ 3 & 3 & 3 & 1 \end{bmatrix}.$$

- 23、在 \mathbf{R}^3 中,对于任意向量 $\alpha = [x, y, z]^T$,规定 $\sigma(\alpha) = [x y, y z, z x]^T$.
- (1) 求 σ 在标准基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵:
- (2) 用定义 6.4.9 直接求 σ 在基 $\alpha_1 = [1,0,0]^T, \alpha_2 = [1,1,0]^T, \alpha_3 = [1,1,1]^T$ 下的矩阵;
- (3) 用定理 6.4.14 求 σ 在基 $\{\alpha_i\}$ 下的矩阵.
- (4) 设 $\gamma = [1,-2,3]^T$, 求 $\sigma(\gamma)$ 在基 $\{\alpha_i\}$ 下的坐标.
- 解 (1) 方法 1 基像组为

$$\begin{cases} \sigma(\varepsilon_1) = \sigma([1,0,0]^T) = [1,0,-1]^T = 1 \cdot \varepsilon_1 + 0 \cdot \varepsilon_2 - 1 \cdot \varepsilon_3, \\ \sigma(\varepsilon_2) = \sigma([0,1,0]^T) = [-1,1,0]^T = -1 \cdot \varepsilon_1 + 1 \cdot \varepsilon_2 + 0 \cdot \varepsilon_3, \\ \sigma(\varepsilon_3) = \sigma([0,0,1]^T) = [0,-1,1]^T = 0 \cdot \varepsilon_1 - 1 \cdot \varepsilon_2 + 1 \cdot \varepsilon_3, \end{cases}$$

故 σ 在标准基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵为

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}.$$

(2) 基像组为

$$\begin{cases} \sigma(\alpha_1) = \sigma([1,0,0]^T) = [1,0,-1]^T = \alpha_1 + \alpha_2 - \alpha_3, \\ \sigma(\alpha_2) = \sigma([1,1,0]^T) = [0,1,-1]^T = -1 \cdot \alpha_1 + 2\alpha_2 - \alpha_3, \\ \sigma(\alpha_3) = \sigma([1,1,1]^T) = [0,0,0]^T = 0 \cdot \alpha_1 + 0 \cdot \alpha_2 + 0 \cdot \alpha_3, \end{cases}$$

可知 σ 在基 $\alpha_1,\alpha_2,\alpha_3$ 下的矩阵为

$$\boldsymbol{B} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 2 & 0 \\ -1 & -1 & 0 \end{bmatrix}.$$

(3) 由标准基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 到基 $\alpha_1, \alpha_2, \alpha_3$ 的过渡矩阵为

$$S = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix},$$

 σ 在基 $\alpha_1,\alpha_2,\alpha_3$ 下的矩阵为

$$\boldsymbol{B} = \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 2 & 0 \\ -1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 2 & 0 \\ -1 & -1 & 0 \end{bmatrix}.$$

(4)
$$\sigma(\gamma) = \sigma([1, -2, 3]^T) = [3, -5, 2]^T = 8\alpha_1 - 7\alpha_2 + 2\alpha_3 \Rightarrow [\sigma(\gamma)]_{\alpha_1} = [8, -7, 2]^T$$

24、已知 $\alpha_1,\alpha_2,\alpha_3$ 是线性空间V的一个基,线性变换 σ 在该基下的矩阵为

$$A = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ 0 & -2 & 0 \end{bmatrix},$$

 $\mathbb{H} \beta_1 = 3\alpha_1 + 3\alpha_2 - 2\alpha_3, \beta_2 = -\alpha_2, \beta_3 = 8\alpha_1 + 6\alpha_2 - 5\alpha_3,$

- (1) 证明 β_1 , β_2 , β_3 也是 V 的一个基;
- (2) 求 σ 在基 β_1,β_2,β_3 下的矩阵.

证 (1) 因为

$$[\beta_1, \beta_2, \beta_3] = [3\alpha_1 + 3\alpha_2 - 2\alpha_3, -\alpha_2, 8\alpha_1 + 6\alpha_2 - 5\alpha_3]$$

$$= [\alpha_1, \alpha_2, \alpha_3] \begin{bmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{bmatrix}$$

记
$$S = \begin{bmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{bmatrix}$$
, 因 $|S| = -1 \neq 0$, S 可逆,得证 $\beta_1, \beta_2, \beta_3$ 也是一个基.

解 (2) S 就是由基 $\alpha_1,\alpha_2,\alpha_3$ 到基 β_1,β_2,β_3 的过渡矩阵,从而 σ 在基 β_1,β_2,β_3 下的矩阵为

$$\boldsymbol{B} = \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S} = \begin{bmatrix} -5 & 0 & -8 \\ -3 & -1 & -6 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ 0 & -2 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{bmatrix} = \begin{bmatrix} 53 & -11 & 116 \\ 44 & -9 & 97 \\ -20 & 4 & -44 \end{bmatrix}.$$

25、设 A 为 3 阶实矩阵, α_1 , α_2 为 A 的分别属于特征值1,-2 的特征向量,向量 α_3 满足 $A\alpha_3=\alpha_1-\alpha_2+\alpha_3$.

- (1) 证明 $\alpha_1, \alpha_2, \alpha_3$ 线性无关;
- (2) 求 A 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵.

证 (1) 设

$$k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = \mathbf{0} , \qquad \qquad \boxed{1}$$

两边同时左乘以 A 得

$$A(k_{1}\alpha_{1} + k_{2}\alpha_{2} + k_{3}\alpha_{3}) = k_{1}A\alpha_{1} + k_{2}A\alpha_{2} + k_{3}A\alpha_{3}$$

$$= (k_{1} + k_{3})\alpha_{1} - (2k_{2} + k_{3})\alpha_{2} + k_{3}\alpha_{3} = 0.$$
②

①-②得

$$2k_3\alpha_1 + (3k_2 + k_3)\alpha_2 = 0 ,$$

由 α_1,α_2 线性无关,可知 $k_2=k_3=0$. 代入①可知 $k_1\alpha_1=0$,又 $\alpha_1\neq 0$,从而 $k_1=0$,故 $\alpha_1,\alpha_2,\alpha_3$ 线性无关.

$$(2) A[\alpha_1, \alpha_2, \alpha_3] = [A\alpha_1, A\alpha_2, A\alpha_3] = [\alpha_1, -2\alpha_2, \alpha_1 - \alpha_2 + \alpha_3]$$

$$= [\alpha_1, \alpha_2, \alpha_3] \begin{bmatrix} 1 & 0 & 1 \\ 0 & -2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

故线性变换 A 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵为 $\begin{bmatrix} 1 & 0 & 1 \\ 0 & -2 & -1 \\ 0 & 0 & 1 \end{bmatrix}$.

第七章 二次型

1、写出下列二次型的矩阵表达式.

(1)
$$f(x_1, x_2, x_3) = x_1^2 - 2x_1x_2 + x_2^2 + 5x_2x_3 - 3x_3^2$$
;

(2)
$$f(x_1, x_2, x_3, x_4) = x_1x_2 + x_2x_3 + x_3x_4$$
;

解 (1)
$$f(x_1, x_2, x_3) = [x_1, x_2, x_3] \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & \frac{5}{2} \\ 0 & \frac{5}{2} & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
;

$$f(x_1, x_2, x_3, x_4) = \begin{bmatrix} x_1, x_2, x_3, x_4 \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}.$$

2、已知二次型 $f(x_1, x_2, x_3) = 5x_1^2 + 5x_2^2 + cx_3^2 - 2x_1x_2 + 6x_1x_3 - 6x_2x_3$ 的秩等于 2,求参数 c 及二次型矩阵的特征值.

解 二次型
$$f$$
 的矩阵为 $A = \begin{bmatrix} 5 & -1 & 3 \\ -1 & 5 & -3 \\ 3 & -3 & c \end{bmatrix}$,则 $r(A) = 2$,从而
$$|A| = \begin{bmatrix} 5 & -1 & 3 \\ -1 & 5 & -3 \\ 3 & -3 & c \end{bmatrix} = 24(c-3) = 0$$
,

解得c = 3.

$$\begin{vmatrix} \lambda E_3 - A \end{vmatrix} = \begin{vmatrix} \lambda - 5 & 1 & -3 \\ 1 & \lambda - 5 & 3 \\ -3 & 3 & \lambda - 3 \end{vmatrix} = \begin{vmatrix} \lambda - 4 & 1 & -3 \\ \lambda - 4 & \lambda - 5 & 3 \\ 0 & 3 & \lambda - 3 \end{vmatrix} = (\lambda - 4) \begin{vmatrix} 1 & 0 & 0 \\ 1 & \lambda - 6 & 6 \\ 0 & 3 & \lambda - 3 \end{vmatrix} = (\lambda - 4)(\lambda - 9).$$

所以A 的特征值为 0, 4, 9, 且存在正交矩阵S, 使得 $S^TAS = \operatorname{diag}(0,4,9)$. 于是作正交替换X = SY,有 $f = 4y_1^2 + 9y_2^2$.

3、用正交替换将下列实二次型化为标准形,并求出所用的正交替换.

(1)
$$f(x_1, x_2, x_3) = 3x_1^2 + 3x_2^2 + 6x_3^2 + 8x_1x_2 - 4x_1x_3 + 4x_2x_3$$
;

(2)
$$f(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + x_3^2 - 4x_1x_2 - 8x_1x_3 - 4x_2x_3$$
;

(3)
$$f(x_1, x_2, x_3, x_4) = 2x_1x_2 - 2x_3x_4$$
.

解(1)二次型
$$f$$
的矩阵为 $A = \begin{bmatrix} 3 & 4 & -2 \\ 4 & 3 & 2 \\ -2 & 2 & 6 \end{bmatrix}$. 因为
$$|A - \lambda E_3| = \begin{vmatrix} 3 - \lambda & 4 & -2 \\ 4 & 3 - \lambda & 2 \\ -2 & 2 & 6 - \lambda \end{vmatrix} = -(\lambda - 7)^2 (\lambda + 2),$$

所以A的特征值为7,7,-2.

对特征值 7,解齐次线性方程组 (A-7E)X=0,得基础解系为 $\alpha_1=[1,1,0]^T$, $\alpha_2=[-1,0,2]^T$;对特征值 -2,解齐次线性方程组 (A+2E)X=0,得基础解系为 $\alpha_3=\begin{bmatrix}2,-2,1\end{bmatrix}^T$.

将
$$\alpha_1, \alpha_2$$
正交化,得 $\beta_1 = \alpha_1$, $\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = \frac{1}{2} [-1, 1, 4]^T$.

单位化得

$$\boldsymbol{\eta}_1 = \frac{\beta_1}{|\beta_1|} = \left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right]^T, \quad \boldsymbol{\eta}_2 = \frac{\beta_2}{|\beta_2|} = \left[-\frac{1}{3\sqrt{2}}, \frac{1}{3\sqrt{2}}, \frac{4}{3\sqrt{2}}\right]^T, \quad \boldsymbol{\eta}_3 = \frac{\alpha_3}{|\alpha_3|} = \left[\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right]^T.$$

则 η_1, η_2, η_3 为标准正交特征向量组. 令

$$S = \begin{bmatrix} \eta_1, & \eta_2, & \eta_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{3\sqrt{2}} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} & -\frac{2}{3} \\ 0 & \frac{4}{3\sqrt{2}} & \frac{1}{3} \end{bmatrix},$$

则 S 为正交矩阵,且 $S^T AS = \text{diag}(7,7,-2)$. 作正交替换 X = SY ,可将二次型 f 化为标准形 $f = 7y_1^2 + 7y_2^2 - 2y_3^2$.

(2) 二次型
$$f$$
 的矩阵为 $A = \begin{bmatrix} 1 & -2 & -4 \\ -2 & 4 & -2 \\ -4 & -2 & 1 \end{bmatrix}$, 因为
$$|\lambda E_3 - A| = \begin{vmatrix} \lambda - 1 & 2 & 4 \\ 2 & \lambda - 4 & 2 \\ 4 & 2 & \lambda - 1 \end{vmatrix} = (\lambda - 5)^2 (\lambda + 4) ,$$

所以 A 的特征值为 $\lambda_1 = \lambda_2 = 5$, $\lambda_3 = -4$.

对特征值 5,解齐次线性方程组 $(5E_3-A)X=0$,可求得 $\alpha_1=\begin{bmatrix}1,-2,0\end{bmatrix}^{\rm T}$, $\alpha_2=\begin{bmatrix}1,0,-1\end{bmatrix}^{\rm T}$ 是 A 的属于特征值 5 的特征向量. 将 α_1 , α_2 正交化,令

$$\beta_1 = \alpha_1$$
, $\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = \left[\frac{4}{5}, \frac{2}{5}, -1\right]^T$.

将 β_1 , β_2 单位化:

$$\eta_1 = \frac{\beta_1}{|\beta_1|} = \left[\frac{\sqrt{5}}{5}, -\frac{2\sqrt{5}}{5}, 0\right]^T, \quad \eta_2 = \frac{\beta_2}{|\beta_2|} = \left[\frac{4\sqrt{5}}{15}, \frac{2\sqrt{5}}{15}, -\frac{\sqrt{5}}{3}\right]^T.$$

对特征值 -4,求解齐次线性方程组 $(-4E_3-A)X=0$,得 $\alpha_3=\begin{bmatrix}2,1,2\end{bmatrix}^{\rm T}$ 是 A 的属于特征值 -4 的特征向量. 将 α_3 单位化得

$$\eta_3 = \frac{\alpha_3}{|\alpha_3|} = \left[\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right]^T.$$

令

$$S = [\eta_1, \eta_2, \eta_3] = \frac{1}{15} \begin{bmatrix} 3\sqrt{5} & 4\sqrt{5} & 10 \\ -6\sqrt{5} & 2\sqrt{5} & 5 \\ 0 & -5\sqrt{5} & 10 \end{bmatrix},$$

则 S 为正交阵,且 $S^{T}AS = \text{diag}(5,5,-4)$. 故二次型 f(X) 经正交线性替换 X = SY 化为标准形 $g(Y) = 5y_1^2 + 5y_2^2 - 4y_3^2$.

注 在求二重特征值 5 的特征向量时,也可通过观察直接得到 $\alpha_1 = \begin{bmatrix} -2,2,1 \end{bmatrix}^T$, $\alpha_2 = \begin{bmatrix} 1,2,-2 \end{bmatrix}^T$ 是 A 的属于 5 的正交的特征向量,以避免正交化过程.

(3) 二次型
$$f$$
 的矩阵为 $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$. 因为
$$|\lambda E_4 - A| = \begin{vmatrix} \lambda & -1 & 0 & 0 \\ -1 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 1 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda & -1 & |\lambda| & 1 \\ -1 & \lambda| & |\lambda| & 1 \end{vmatrix} = (\lambda - 1)^2 (\lambda + 1)^2,$$

所以 A 的特征值为 $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = \lambda_4 = -1$.

对特征值 $\lambda = \lambda_1 = 1$, 解齐次方程组(E - A)X = 0, 得基础解系

$$\alpha_1 = [0, 0, -1, -1]^T$$
, $\alpha_2 = [1, 1, 0, 0]^T$;

对特征值 $\lambda_3 = \lambda_4 = -1$, 解齐次方程组(E + A)X = 0, 得基础解系

$$\alpha_3 = [1, -1, 0, 0]^T$$
, $\alpha_4 = [0, 0, 1, 1]^T$.

由于 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 已经是正交组,只需单位化,令

$$\beta_{1} = \frac{\alpha_{1}}{|\alpha_{1}|} = \begin{bmatrix} 0 \\ 0 \\ -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}, \quad \beta_{2} = \frac{\alpha_{2}}{|\alpha_{2}|} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{bmatrix}, \quad \beta_{3} = \frac{\alpha_{3}}{|\alpha_{3}|} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{bmatrix}, \quad \beta_{4} = \frac{\alpha_{4}}{|\alpha_{4}|} = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}.$$

则 $oldsymbol{eta}_1,oldsymbol{eta}_2,oldsymbol{eta}_3,oldsymbol{eta}_4$ 为标准正交的特征向量组,令

$$S = [\beta_1, \beta_2, \beta_3, \beta_4] = \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ -\frac{1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix},$$

则 S 为正交矩阵,且 S^TAS = diag(1,1,-1,-1). 作正交线性替换 X = SY, 可将原二次型化为标准形 $f = v_1^2 + v_2^2 - v_1^2 - v_2^2$.

4、用配方法将下列二次型化为标准形,并写出所用的满秩线性替换.

(1)
$$f(x_1, x_2, x_3) = x_1^2 + 5x_1x_2 - 3x_2x_3$$

(2)
$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

(3)
$$f(x_1, x_2, x_3, x_4) = x_1x_2 + x_2x_3 + x_3x_4$$
.

解(1)由配方法,

$$f(x_1, x_2, x_3) = x_1^2 + 5x_1x_2 - 3x_2x_3$$

$$= (x_1 + \frac{5}{2}x_2)^2 - \frac{25}{4}x_2^2 - 3x_2x_3$$

$$= (x_1 + \frac{5}{2}x_2)^2 - \frac{25}{4}(x_2 + \frac{6}{25}x_3)^2 + \frac{9}{25}x_3^2.$$

令

$$\begin{cases} y_1 = x_1 + \frac{5}{2}x_2, \\ y_2 = x_2 + \frac{6}{25}x_3, \\ y_3 = x_3 \end{cases} \qquad \begin{cases} x_1 = y_1 - \frac{5}{2}y_2 + \frac{3}{5}y_3, \\ x_2 = y_2 - \frac{6}{25}y_3, \\ x_3 = y_3, \end{cases}$$

其中 $S = \begin{bmatrix} 1 & -\frac{5}{2} & \frac{3}{5} \\ 0 & 1 & -\frac{6}{25} \\ 0 & 0 & 1 \end{bmatrix}$ 为可逆矩阵. 作满秩线性替换 X = SY,可将二次型化为标准形

$$g = y_1^2 - \frac{25}{4}y_2^2 + \frac{9}{25}y_3^2$$
.

(2) 由配方法,

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$$

$$= 2\left[x_1^2 + 2x_1(x_2 - x_3) + (x_2 - x_3)^2\right] - 2(x_2 - x_3)^2 + 5x_2^2 + 5x_3^2 - 8x_2x_3$$

$$= 2(x_1 + x_2 - x_3)^2 + 3x_2^2 - 4x_2x_3 + 3x_3^2$$

$$= 2(x_1 + x_2 - x_3)^2 + 3\left(x_2^2 - \frac{4}{3}x_2x_3 + \frac{4}{9}x_3^2\right) + \frac{5}{3}x_3^2$$

$$= 2(x_1 + x_2 - x_3)^2 + 3\left(x_2 - \frac{2}{3}x_3\right)^2 + \frac{5}{3}x_3^2.$$

令

$$\begin{cases} y_1 = x_1 + x_2 - x_3, \\ y_2 = x_2 - \frac{2}{3}x_3, \\ y_3 = x_3. \end{cases} \quad \text{ind} \quad \begin{cases} x_1 = y_1 - y_2 + \frac{1}{3}y_3, \\ x_2 = y_2 + \frac{2}{3}y_3, \\ x_3 = y_3. \end{cases}$$

其中 $S = \begin{bmatrix} 1 & -1 & \frac{1}{3} \\ 0 & 1 & \frac{2}{3} \\ 0 & 0 & 1 \end{bmatrix}$ 为可逆矩阵. 作满秩线性替换 X = SY,可将原二次型化为标准形

$$g = 2y_1^2 + 3y_2^2 + \frac{5}{3}y_3^2$$
.

(3) 由于所给二次型没有平方项, 故先作满秩线性替换

$$\begin{cases} x_1 = y_1 + y_2, \\ x_2 = y_1 - y_2, \\ x_3 = y_3, \\ x_4 = y_4 \end{cases}$$

则

$$f = y_1^2 - y_2^2 + y_1 y_3 - y_2 y_3 + y_3 y_4$$

$$= (y_1^2 + y_1 y_3 + \frac{1}{4} y_3^2) - (y_2^2 + y_2 y_3 + \frac{1}{4} y_3^2) + y_3 y_4$$

$$= (y_1 + \frac{1}{2} y_3)^2 - (y_2 + \frac{1}{2} y_3)^2 + (\frac{y_3 + y_4}{2})^2 - (\frac{y_3 - y_4}{2})^2.$$

再令

$$\begin{cases} z_1 = y_1 & +\frac{1}{2}y_3, \\ z_2 = y_2 & +\frac{1}{2}y_3, \\ z_3 = \frac{1}{2}y_3 & +\frac{1}{2}y_4, \\ z_4 = \frac{1}{2}y_3 & -\frac{1}{2}y_4 \end{cases} \qquad \begin{cases} y_1 = z_1 & -\frac{1}{2}z_3 & -\frac{1}{2}z_4, \\ y_2 = z_2 & -\frac{1}{2}z_3 & -\frac{1}{2}z_4, \\ y_3 = z_3 & +z_4, \\ y_4 = z_3 & -z_4, \end{cases}$$

就将原二次型化为标准形 $g(z_1, z_2, z_3, z_4) = z_1^2 - z_2^2 + z_3^2 - z_4^2$

所作的满秩线性替换为

$$\begin{cases} x_1 = z_1 + z_2 - z_3 - z_4, \\ x_2 = z_1 - z_2, \\ x_3 = z_3 + z_4, \\ x_4 = z_3 - z_4, \end{cases}$$

记为X = SZ, 其中

$$S = S_1 S_2 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

为可逆矩阵.

5、化二次型 $f(x_1, x_2, \dots, x_n) = x_1x_2 + x_3x_4 + \dots + x_{n-1}x_n \ (n=2k)$ 为标准形,并且求出该二次型的 秩与符号差.

解 根据二次型f的特点,作满秩线性替换

$$\begin{cases} x_1 = y_1 + y_2, \\ x_2 = y_1 - y_2, \\ x_3 = y_3 + y_4, \\ x_4 = y_3 - y_4, \\ \dots \\ x_{n-1} = y_{n-1} + y_n, \\ x_n = y_{n-1} - y_n \end{cases}$$
 $X = SY$,

其中

$$S = \begin{bmatrix} 1 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & -1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 1 \\ 0 & 0 & 0 & 0 & \cdots & 1 & -1 \end{bmatrix}$$

为可逆阵,将 f 化为标准形

$$g = y_1^2 - y_2^2 + y_3^2 - y_4^2 + \dots + y_{n-1}^2 - y_n^2$$

因此f的秩为n,正、负惯性指数均为 $\frac{n}{5}$,故符号差为0.

6、当参数 t 为何值时, 下列实二次型为正定二次型.

(1)
$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + 5x_3^2 + 2tx_1x_2 - 2x_1x_3 + 4x_2x_3$$
:

(2)
$$f(x_1, x_2, x_3) = x_1^2 + 2tx_1x_2 + x_2^2 + tx_3^2$$
;

(3)
$$f(x_1, x_2, x_3, x_4) = t(x_1^2 + x_2^2 + x_3^2) + x_4^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$$

解(1)二次型
$$f$$
 的矩阵为 $A = \begin{bmatrix} 1 & t & -1 \\ t & 1 & 2 \\ -1 & 2 & 5 \end{bmatrix}$. 其各阶顺序主子式为

$$|A_1| = 1 > 0$$
, $|A_2| = \begin{vmatrix} 1 & t \\ t & 1 \end{vmatrix} = 1 - t^2$, $|A_3| = |A| = -t(5t + 4)$.

由 $1-t^2 > 0$, t(5t+4) < 0, 解得 $-\frac{4}{5} < t < 0$. 因而当 $-\frac{4}{5} < t < 0$ 时,二次型f是正定的.

(2) 二次型
$$f$$
 对应的矩阵为 $A = \begin{bmatrix} 1 & t & 0 \\ t & 1 & 0 \\ 0 & 0 & t \end{bmatrix}$. 其各阶顺序主子式为
$$|A_1| = 1 > 0, \quad |A_2| = \begin{vmatrix} 1 & t \\ t & 1 \end{vmatrix} = 1 - t^2, \quad |A_3| = |A| = t \left(1 - t^2\right).$$

由 $1-t^2 > 0$, $t(1-t^2) > 0$, 解得0 < t < 1. 因而当0 < t < 1时, 二次型f是正定的.

(3) 二次型
$$f$$
 的矩阵为 $A = \begin{bmatrix} t & 1 & 1 & 0 \\ 1 & t & -1 & 0 \\ 1 & -1 & t & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, A 的各阶顺序主子式为
$$|A_1| = t , |A_2| = \begin{vmatrix} t & 1 \\ 1 & t \end{vmatrix} = t^2 - 1 = (t+1)(t-1) ,$$

$$|A_3| = \begin{vmatrix} t & 1 & 1 \\ 1 & t & -1 \\ 1 & -1 & t \end{vmatrix} = (t+1)^2(t-2) , |A_4| = |A| = (t+1)^2(t-2) .$$

f 正定当且仅当 A 的各阶顺序主子式均大于零,即

$$\begin{cases} t > 0, \\ (t+1)(t-1) > 0, \\ (t+1)^{2}(t-2) > 0, \end{cases}$$

解得t > 2. 因此当t > 2时,f是正定的.

7、设有n元实二次型

$$f(x_1, x_2, ..., x_n) = (x_1 + a_1 x_2)^2 + (x_2 + a_2 x_3)^2 + \dots + (x_{n-1} + a_{n-1} x_n)^2 + (x_n + a_n x_1)^2,$$

问当 a_1, a_2, \ldots, a_n 满足什么条件时,二次型 $f(x_1, x_2, \ldots, x_n)$ 是正定的.

解 由己知条件知,对任意的 $x_1, x_2, ..., x_n$,有 $f(x_1, x_2, ..., x_n) \ge 0$. 要使二次型f正定,只需下述齐次线性方程组仅有零解,

$$\begin{cases} x_1 + a_1 x_2 & = 0, \\ x_2 + a_2 x_3 & = 0, \\ & \cdots \\ x_{n-1} + a_{n-1} x_n = 0, \\ a_n x_1 & + x_n & = 0. \end{cases}$$

此方程组仅有零解的充分必要条件是其系数矩阵A的行列式

$$|A| = \begin{vmatrix} 1 & a_1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & a_2 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & a_{n-1} \\ a_n & 0 & 0 & \cdots & 0 & 1 \end{vmatrix} = 1 + (-1)^{n+1} a_1 a_2 \cdots a_n \neq 0.$$

故当 $1+(-1)^{n+1}a_1a_2\cdots a_n\neq 0$,即 $a_1a_2\cdots a_n\neq (-1)^n$ 时,对于任意的不全为零的 x_1,x_2,\ldots,x_n ,有 $f(x_1,x_2,\ldots,x_n)\geq 0$,即二次型 $f(x_1,x_2,\ldots,x_n)$ 是正定的.

8、 设A与B 都是n阶正定矩阵,证明AB正定的充分必要条件是AB = BA.

证 方法 1 设 AB 的特征值为 λ ,则 $ABX = \lambda X$,其中 X 为对应的特征向量. 由于 A 正定,所以 A 可逆,于是 $BX = \lambda A^{-1}X$. 等式两边同时左乘 X^{T} ,得 $X^{\mathsf{T}}BX = \lambda X^{\mathsf{T}}A^{-1}X$. 由 A 正定,就有 A^{-1} 正定,又 $X \neq \mathbf{0}$,故 $X^{\mathsf{T}}A^{-1}X > 0$. 又由 B 正定,所以 $X^{\mathsf{T}}BX > 0$,因此 $\lambda > 0$,即 AB 的特征值全大于零。

方法 2 由 A , B 正定,知必存在 n 阶可逆阵 P , Q , 使得 $A = P^{\mathsf{T}}P$, $B = Q^{\mathsf{T}}Q$. 于是

$$AB = P^{\mathsf{T}} P Q^{\mathsf{T}} Q = Q^{-1} (Q P^{\mathsf{T}} P Q^{\mathsf{T}}) Q = Q^{-1} (P Q^{\mathsf{T}})^{\mathsf{T}} (P Q^{\mathsf{T}}) Q.$$

因而矩阵 AB 和矩阵 $(PQ^{\mathsf{T}})^{\mathsf{T}}(PQ^{\mathsf{T}})$ 相似. 由 P, Q 可逆,知 PQ^{T} 也可逆,因而 $(PQ^{\mathsf{T}})^{\mathsf{T}}(PQ^{\mathsf{T}})$ 正定,其特征值全大于零、又 AB 与之相似,故 AB 的特征值全大于零。

因为 $AB \in \mathbb{R}^{n \times n}$ 的特征值全大于零,故

$$AB$$
 正定 $\Leftrightarrow AB$ 实对称 $\Leftrightarrow AB = (AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}} = BA$.

9、 设A为n阶正定矩阵,B为n阶实反对称矩阵,证明, $A-B^2$ 为正定矩阵.

证 因为B 是实反对称矩阵,即 $B^T = -B$,所以 $A - B^2 = A + B^T B$. 由A 实对称知 $A + B^T B$ 是实对称矩阵,即 $A - B^2$ 是实对称的.

因为A正定,故对 $\forall X \neq 0, X \in \mathbb{R}^n$,有

$$\boldsymbol{X}^{\mathsf{T}}(\boldsymbol{A}-\boldsymbol{B}^{2})\boldsymbol{X} = \boldsymbol{X}^{\mathsf{T}}(\boldsymbol{A}+\boldsymbol{B}^{\mathsf{T}}\boldsymbol{B})\boldsymbol{X} = \boldsymbol{X}^{\mathsf{T}}\boldsymbol{A}\boldsymbol{X} + (\boldsymbol{B}\boldsymbol{X})^{\mathsf{T}}\boldsymbol{B}\boldsymbol{X} \geq 0\,.$$

因此, $A-B^2$ 是正定矩阵.

10、 设A为 $m \times n$ 矩阵, $\lambda > 0$.证明 $B = \lambda E_n + A^T A$ 为正定矩阵.

证 $B^T = (\lambda E_n + A^T A)^T = \lambda E_n + A^T A = B$, 所以 B 是实对称矩阵, 且由 $\lambda > 0$ 可知, 对 $\forall X \in \mathbf{R}^n, X \neq 0$, 有

$$X^{\mathsf{T}}BX = X^{\mathsf{T}}(\lambda E_n + A^{\mathsf{T}}A)X = \lambda X^{\mathsf{T}}X + (AX)^{\mathsf{T}}(AX) > 0$$
,

所以**B**是正定矩阵. □