MTH 627: Advanced PDEs notes

Madison Phelps *

September 25, 2022

^{*}Oregon State University, phelpmad@oregonstate.edu

Contents

1 9.21.22

$1 \quad 9.21.22$

Hello.

Definition 1 (Semi-norm). Let V be a vector space and define $p:V\to\mathbb{R}$. Then p is a semi-norm if

- (1) p has absolute homogeneity; p(cx) = |c|p(x) for all $x \in V$ and $c \in \mathbb{R}$, and
- (2) p has the triangle inequality; $p(x+y) \le p(x) + p(y)$ for all $x, y \in V$.

Property 1 ((semi-norms)). If $p: V \to \mathbb{R}$ is a semi-norm, then

(1) p has the reverse triangle inequality; $|p(x) - p(y)| \le p(x - y)$, for all $x, y \in V$.

Solution.

Let $x, y \in V$ and suppose p is a semi-norm on V. Using the triangle inequality we compute,

$$p(x) = p(x - y + y) \le p(x - y) + p(y)$$

$$p(y) = p(y - x + x) \le p(x - y) + p(x),$$

meaning that

$$p(x) - p(y) \le p(x - y)$$
 and $p(y) - p(x) \le p(x - y)$

which results in

$$-p(x-y) \le p(x) - p(y) \le p(x-y)$$

by multiplying the second inequality by -1. Therefore, $|p(x) - p(y)| \le p(x - y)$, for all $x, y \in V$.

(2) p is non-negative $p(x) \ge 0$ for all $x \in V$

Hello.

Hello.