2215011016 Yukito Sakai

1 Introduction

The back-and-forth method (BFM) is presented as a new solution for partial differential equations [2]. The back-and-forth method (BFM) was originally developed as a solution for the optimal transport problem. However, by extending its application to PDEs through the utilization of optimal transport, BFM becomes a powerful tool for solving PDEs. This solution method is particularly effective for non-linear partial differential equations and is faster than previous methods and does not require stability conditions, allowing a wider range of problems to be solved. This study compares the BFM-based solver with other solvers for the m=2 porous medium equation and shows that under certain conditions, the BFM solver can solve the non-linear porous media equation more efficiently.

2 Background

In this paper, we assume that Ω is a convex and compact subset of \mathbb{R}^n . We denote the set of probability measures on Ω , which are non-negative measures with mass 1, as $\mathcal{P}(\Omega)$. Additionally, we represent the space of continuous functions on Ω as $C(\Omega)$. For simplicity, we consider non-negative $L^1(\mathbb{R}^n)$ functions with an integral equal to 1.

The Porous Medium Equation (PME) is expressed as

$$\frac{\partial \rho}{\partial t} = \gamma \Delta(\rho^m)$$

for a fixed m > 1. This partial differential equation can be expressed as a Wasserstein gradient flow based on the energy function

$$U(\rho) = \frac{\gamma}{m-1} \int_{\Omega} \rho^m \, dx.$$

This allows the JKO scheme to find approximate solutions to the porous medium equation by discretizing time using a time step size τ and performing the following iterations based on the variational principle.

$$\rho^{(n+1)} := \operatorname*{argmin}_{\rho} U(\rho) + \frac{1}{2\tau} W_2^2(\rho, \rho^{(n)})$$

Here, Kantorovich's dual formula for the 2-Wasserstein distance is expressed as

$$\frac{1}{2\tau}W_2^2(\rho,\mu) = \sup_{(\varphi,\psi)\in C} \left(\int_{\Omega} \varphi \, d\rho + \int_{\Omega} \psi \, d\mu \right)$$

where \mathcal{C} is defined by $\mathcal{C} = \{(\varphi, \psi) \in C(\Omega) \times C(\Omega) \mid \varphi(x) + \psi(y) \leq \frac{1}{2\tau} |x - y|^2\}$ and τ represents the time step within the scheme. Therefore, the above minimization problem is represented as follows:

$$\min_{\rho \in P} \left(U(\rho) + \frac{1}{2\tau} W_2^2(\rho,\mu) \right) = \sup_{(\varphi,\psi) \in C} \left(\int_{\Omega} \psi \, d\mu - U^*(-\varphi) \right)$$

Here, $U^*(-\varphi) = \sup_{\rho \in P} \int_{\Omega} \left(-\frac{\gamma}{m-1} \rho^m + \rho \varphi \right) dx$ is the Legendre-Fenchel transform of U with respect to $-\varphi$.

Furthermore, by using the c-transform defined by $\psi^c(x) = \inf_{y \in \Omega} \left(\frac{1}{2\tau}|x-y|^2 - \psi(y)\right)$, the minimization problem has the following duality:

$$\min_{\rho \in P} \left(U(\rho) + \frac{1}{2\tau} W_2^2(\rho, \mu) \right)$$

$$= \sup \left(\int_{\Omega} \varphi^c d\mu - U^*(-\varphi) \right) =: \sup J$$

$$= \sup \left(\int_{\Omega} \psi d\mu - U^*(-\psi^c) \right) =: \sup I$$

Also, the solution to the generalized optimal transport problem ρ_* has the following properties:

$$\rho_*(x) = \delta U^*(-\varphi_*), \ \varphi_* \in U(\rho_*), \ \rho_*(x) = T_{\varphi\#}\mu$$

where $T_{\varphi\#}\mu$ is the pushforward measure with T being the map transporting from μ to ρ $(T_{\varphi\#}\mu = \rho)$.

3 The back-and-forth method and JKO scheme

BFM is an algorithm that iteratively performs gradient ascent updates in the φ space for the functional $J(\varphi)$ and in the ψ -space for the functional $I(\psi)$. Also, by swapping φ and ψ using the c-transform, it is possible to go back and forth between J and I and find the solution φ_* of the BFM while maintaining symmetry. The algorithm is based on the following ideas:

- 1. Back-and-forth Scheme: Iteratively alternate between gradient ascent steps in J and I.
- 2. For the H^1 -type norm H in Sobolev space, the gradient ascent steps are given by:

$$\nabla_H J(\varphi) = (\Theta_1 \mathrm{Id} - \Theta_2 \Delta)^{-1} \left[\delta U^*(-\varphi) - T_{\varphi \#} \mu \right],$$

$$\nabla_H I(\psi) = (\Theta_1 \mathrm{Id} - \Theta_2 \Delta)^{-1} \left[\mu - T_{\psi \#} (\delta U^*(\psi^c)) \right].$$

The appropriate choices for Θ_1 and Θ_2 can be found in [2].

Furthermore, utilizing the obtained solution φ_* from BFM, the minimization problem for ρ_* is solved using $\rho_*(x) = \delta U^*(-\varphi)$.

Algorithm 1 The back-and-forth scheme for solving $J(\varphi)$ and $I(\psi)$

Input: μ and φ_0 , iterate:

$$\varphi_{k+\frac{1}{2}} = \varphi_k + \nabla_H J(\varphi_k)$$

$$\psi_{k+\frac{1}{2}} = (\varphi_{k+\frac{1}{2}})^c$$

$$\psi_{k+1} = \psi_{k+\frac{1}{2}} + \nabla_H I(\psi_{k+\frac{1}{2}})$$

$$\varphi_{k+1} = (\psi_{k+1})^c$$

return φ_*

4 Experiments and Results

The porous medium equation (m=2) is solved using two different methods: The BBR scheme proposed by Berger, Brezis, Rogers [1], and the back-and-forth method explained in this paper. The speed and error of the two computational methods are compared with the exact solution, the Barenblatt solution, given by:

$$\rho(t,x) = \max\left(\frac{1}{t^{\frac{1}{3}}} \left(\left(\frac{\sqrt{3}}{16}\right)^{\frac{2}{3}} - \frac{1}{12} \frac{|x|^2}{t^{\frac{2}{3}}} \right), 0 \right)$$

Verify under the conditions of a grid size of 512 and $\varepsilon = 10^{-3}$. Graphs for multiple time step sizes τ at times $t = t_0, t_0 + 0.4, t_0 + 0.8, t_0 + 2.0$ are shown in Figures 1 and 2.

Figure 1: Comparison between the back-and-forth method and the barenblatt solution at times t = 0, 0.4, 0.8, 2.0.

5 Conclusion

The main objective of this paper was to explore solutions to nonlinear porous gradient equations, particularly employing the back-and-forth method as a numerical approach for nonlinear partial differential equations.

Figure 2: Comparison between the BBR scheme and the barenblatt solution at times t = 0, 0.4, 0.8, 2.0.

I also compared the results with other solution methods. The back-and-forth method demonstrated the ability to approximate the solution with minimal errors even for large time step sizes compared to other methods. This is attributed to the reconstruction of ρ through $\rho_*(x) = \delta U^*(-\varphi)$, avoiding shocks at the discontinuous at the boundary of ρ , and the capability to compute without constraints by solving the dual problem.

However, it is essential to choose appropriate time steps, τ , and conditions to exit the iterations of the backand-forth method, such as $\|\delta U^*(-\varphi) - T_{\varphi\#}\mu\|_{L^1(\Omega)} < \varepsilon$, in alignment with the grid size.

On the other hand, the BBR scheme, as observed in Figure 2, there are discontinuities at the boundary of the support (supp $\rho = \{x \in \Omega | \rho(x) > 0\}$) of the evolving function ρ , leading to constraints. Therefore, without choosing an small size for the time step τ , the presence of abrupt changes in the gradient $\nabla \rho$ can result in shocks at the boundary.

Therefore, as long as τ is not chosen too small, the back-and-forth method can accurately simulate the solution compared to other methods.

For future prospects, increasing the value of m in the porous medium gradient equation and exploring scenarios in two or three dimensions are potential directions to consider.

References

- [1] Alan E. Berger, Haim Brezis, and Joël C. W. Rogers. A numerical method for solving the problem $u_t \delta f(u) = 0$. RAIRO. Analyse numérique, 13(4):297–312, 1979.
- [2] Matt Jacobs, Wonjun Lee, and Flavien Léger. The back-and-forth method for Wasserstein gradient flows. ESAIM Control Optim. Calc. Var., 27:Paper No. 28, 35, 2021.