Numerical Optimization Duality

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

Two-player zero-sum game

A Game between two players *P* and *D*

- Game setting
 - \mathcal{X} : A set of strategies for P
 - \mathcal{Y} : A set of strategies for D
 - Payoff function, $\psi(x, y)$, $x \in \mathcal{X}$, $y \in \mathcal{Y}$
- Example
 - Let $\mathcal{X} = \{1, 2\}, \ \mathcal{Y} = \{1, 2\}$
 - Payoff $\psi(x, y) = a_{x,y}$ where $A = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}$
- Game Rules:
 - *P* chooses a strategy $x \in \mathcal{X}$ and *D* chooses a strategy $y \in \mathcal{Y}$ independently
 - The referee reveals both the strategies simultaneously
 - Game Outcome : Depends on $\psi(x, y)$

Two-player zero-sum game

A Game between two players *P* and *D*

• Game Outcome:

$$\psi(x,y) > 0 \implies P$$
 pays an amount $\psi(x,y)$ to D
 $\psi(x,y) < 0 \implies D$ pays an amount $-\psi(x,y)$ to P

- P wishes to minimize payoff to D, while D wishes to receive maximum payoff from P
- Assume that minimum and maximum exist

Example: Game 1

$$\mathcal{X}=\{1,2\},\ \mathcal{Y}=\{1,2\},\ \psi(x,y)=a_{x,y},\ \text{where}$$

$$A=\begin{pmatrix} -2 & 1 \\ 2 & -3 \end{pmatrix}$$

Player P's strategy

$$\min\{\max_{y} a_{1,y}, \max_{y} a_{2,y}\}$$

$$= \min\{1, 2\}$$

$$= 1$$
Choose $x = 1$

Player *D*'s strategy

$$\max \{ \min_{x} a_{x,1}, \min_{x} a_{x,2} \}$$
= $\max \{ -2, -3 \}$
= -2

Choose y = 1

$min-max \ge max-min$

Example: Game 2

$$\mathcal{X}=\{1,2\},~\mathcal{Y}=\{1,2\},~\psi(x,y)=a_{x,y},~ ext{where}$$

$$A=\begin{pmatrix}-2&1\\2&3\end{pmatrix}$$

Player P's strategy

$$\min \{ \max_{y} a_{1,y}, \max_{y} a_{2,y} \}$$
= \text{min} \{ 1, 3 \}
= 1

Choose x = 1

Player *D*'s strategy

$$\max\{\min_{x} a_{x,1}, \min_{x} a_{x,2}\}$$
= \text{max}\{-2, 1\}
= 1

Choose y = 2

min-max = max-min

$$\min_{x \in \mathcal{X}} \underbrace{\max_{y \in \mathcal{Y}} \psi(x, y)}_{\text{primal function}}$$

Dual Problem

$$\max_{y \in \mathcal{Y}} \quad \min_{\substack{x \in \mathcal{X} \\ \text{dual function}}} \psi(x, y)$$

- The two problems are *dual* to each other
- For any $x \in \mathcal{X}$ and $y \in \mathcal{Y}$

$$\min_{x \in \mathcal{X}} \psi(x, y) \le \psi(x, y) \le \max_{y \in \mathcal{Y}} \psi(x, y)$$

$$\therefore \min_{x \in \mathcal{X}} \psi(x, y) \le \max_{y \in \mathcal{Y}} \psi(x, y)$$

$$\therefore \max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} \psi(x, y) \le \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \psi(x, y)$$

Weak Duality

$$\max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} \psi(x, y) \le \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \psi(x, y)$$

Weak Duality

$$\max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} \psi(x, y) \le \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \psi(x, y)$$

• When does the equality hold?

Definition

Let $x^* \in \mathcal{X}$ and $y^* \in \mathcal{Y}$. A point (x^*, y^*) is a saddle point for $\psi(x, y)$ if

$$\psi(x^*, y) \le \psi(x^*, y^*) \le \psi(x, y^*) \ \forall x \in \mathcal{X}, y \in \mathcal{Y}$$

- $x^* = \operatorname{argmin}_{x \in \mathcal{X}} \psi(x, y^*)$
- $y^* = \operatorname{argmax}_{y \in \mathcal{Y}} \psi(x^*, y)$

Theorem

The following equality holds

$$\max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} \psi(x, y) = \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \psi(x, y)$$

if and only if there exists a saddle point, (x^*, y^*) , for $\psi(x, y)$.

Proof.

(a) Let (x^*, y^*) be a saddle point for $\psi(x, y)$.

$$\therefore \psi(x^*, y) \le \psi(x^*, y^*) \le \psi(x, y^*) \quad \forall \ x \in \mathcal{X}, y \in \mathcal{Y}$$
$$\therefore \max_{y \in \mathcal{Y}} \psi(x^*, y) \le \psi(x^*, y^*) \le \min_{x \in \mathcal{X}} \psi(x, y^*)$$

Note that

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \psi(x, y) \le \max_{y \in \mathcal{Y}} \psi(x^*, y)$$

$$\min_{x \in \mathcal{X}} \psi(x, y^*) \le \max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} \psi(x, y^*).$$

Proof.(continued)

Therefore,

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \psi(x, y) \le \psi(x^*, y^*) \le \max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} \psi(x, y)$$

But, we know that

$$\max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} \psi(x, y) \le \psi(x^*, y^*) \le \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \psi(x, y)$$

Therefore,

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \psi(x, y) = \psi(x^*, y^*) = \max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} \psi(x, y)$$

Proof. (continued)

(b) Suppose the following equality holds for some

$$x^* \in \mathcal{X}, \ y^* \in \mathcal{Y},$$

$$\max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} \psi(x, y) = \psi(x^*, y^*) = \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \psi(x, y)$$

Now,

$$\max_{y \in \mathcal{Y}} \psi(x^*, y) = \psi(x^*, y^*) = \min_{x \in \mathcal{X}} \psi(x, y^*)$$

$$\therefore \psi(x^*, y) \leq \max_{y \in \mathcal{Y}} \psi(x^*, y) = \psi(x^*, y^*) = \min_{x \in \mathcal{X}} \psi(x, y^*) \leq \psi(x, y^*)$$

Therefore, (x^*, y^*) is a saddle point for $\psi(x, y)$.

Strong Duality

$$\max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} \psi(x, y) = \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \psi(x, y)$$

Consider the problem (NLP):

min
$$f(x)$$

s.t. $h_j(x) \le 0, j = 1, ..., l$
 $e_i(x) = 0, i = 1, ..., m$

- Can we define a game with a payoff function $\psi(\cdot)$ so that the solution to **NLP** is a solution to the *primal* problem, $\min_x \max_y \psi(x, y)$?
- What is the saddle point condition in terms of f, h_j 's and e_i 's?

Consider the problem(**P**):

min
$$f(x)$$

s.t. $h_j(x) \leq 0, j = 1, ..., l$
 $x \in X$

Define a payoff function as the Lagrangian,

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = f(\boldsymbol{x}) + \sum_{j=1}^{l} \lambda_j h_j(\boldsymbol{x})$$

where $x \in X$ and $\lambda_j \ge 0, j = 1, \dots, l$

- x: Primal Variables, λ : Dual Variables
- $\mathcal{X} = X$, $\mathcal{Y} = \{ \boldsymbol{\lambda} \in \mathbb{R}^l : \lambda_j \geq 0, \ j = 1, \dots, l \}$

Duality: Define a **min max** problem *equivalent* to the **primal** problem **P**. Then, the corresponding dual **max min** problem is the dual problem **D**.

Assumption: Minimum and Maximum exist for the problems defined here (Use infimum or supremum appropriately).

Primal Function
$$= \max_{\boldsymbol{\lambda} \geq \boldsymbol{0}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})$$
$$= \max_{\boldsymbol{\lambda} \geq \boldsymbol{0}} f(\boldsymbol{x}) + \sum_{j=1}^{l} \lambda_{j} h_{j}(\boldsymbol{x})$$
$$= \begin{cases} f(\boldsymbol{x}) & \text{if } h_{j}(\boldsymbol{x}) \leq 0 \ \forall j \\ +\infty & \text{Otherwise.} \end{cases}$$

Primal Problem:

$$\min_{\boldsymbol{x} \in X} \max_{\boldsymbol{\lambda} > \boldsymbol{0}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda})$$

That is, (ignoring the possibility of $h_j(\mathbf{x}) > 0 \ \forall j$),

min
$$f(x)$$

s.t. $h_j(x) \leq 0, j = 1, ..., l$
 $x \in X$

For $\lambda > 0$, define

Dual Function
$$= \theta(\lambda)$$

 $= \min_{\boldsymbol{x} \in X} \mathcal{L}(\boldsymbol{x}, \lambda)$
 $= \min_{\boldsymbol{x} \in X} f(\boldsymbol{x}) + \sum_{j=1}^{l} \lambda_j h_j(\boldsymbol{x})$

Dual Problem:

$$\max_{\boldsymbol{\lambda} \geq \boldsymbol{0}} \min_{\boldsymbol{x} \in X} f(\boldsymbol{x}) + \sum_{j=1}^{l} \lambda_j h_j(\boldsymbol{x})$$

Consider the problem:

$$\begin{array}{ll}
\text{min} & x^2 \\
\text{s.t.} & x \ge 1
\end{array}$$

- Primal solution: $x^* = 1$, $f(x^*) = 1$. $\mathcal{L}(x, \lambda) = x^2 + \lambda(1 - x)$
- Dual function: $\theta(\lambda) = \min_x x^2 + \lambda(1-x)$. At the minimum, $x^* = \frac{\lambda}{2}$. For $\lambda \ge 0$, $\theta(\lambda) = -\frac{1}{4}\lambda^2 + \lambda$. Therefore, the dual problem is

$$\max_{\lambda \ge 0} \ -\frac{1}{4}\lambda^2 + \lambda$$

- $\lambda^* = 2$, $\theta(\lambda^*) = 1$
- $f(x^*) = 1 = \theta(\lambda^*)$

Consider the problem (P1):

$$\begin{bmatrix} \min_{x \in X} & f(x) \\ \text{s.t.} & h(x) \leq 0 \end{bmatrix} \equiv \min_{x \in X} \max_{\lambda \geq 0} f(x) + \lambda h(x)$$

Define
$$G = \{(y, z) : y = h(x), z = f(x), x \in X\}.$$

Consider the problem (P1):

$$\begin{bmatrix} \min_{x \in X} & f(x) \\ \text{s.t.} & h(x) \leq 0 \end{bmatrix} \equiv \min_{x \in X} \max_{\lambda \geq 0} f(x) + \lambda h(x)$$

Define
$$G = \{(y, z) : y = h(x), z = f(x), x \in X\}.$$

A solution to the primal problem **P1** is a point in G with $y \le 0$ and has minimum ordinate z.

Consider the problem (P1):

$$\begin{bmatrix} \min_{x \in X} & f(x) \\ \text{s.t.} & h(x) \leq 0 \end{bmatrix} \equiv \min_{x \in X} \max_{\lambda \geq 0} f(x) + \lambda h(x)$$

Define $G = \{(y, z) : y = h(x), z = f(x), x \in X\}.$

A solution to the primal problem **P1** is a point in G with $y \le 0$ and has minimum ordinate z.

Let (y^*, z^*) be this point in y - z space.

For a given $\lambda \geq 0$,

- Define $\theta(\lambda) = \min_{x \in X} f(x) + \lambda h(x)$.
- $\theta(\lambda)$ is a minimum $z + \lambda y$ over feasible G in y z space.

Consider the problem (P1):

$$\begin{vmatrix}
\min_{x \in X} & f(x) \\
s.t. & h(x) \le 0
\end{vmatrix} \equiv \min_{x \in X} \max_{\lambda \ge 0} f(x) + \lambda h(x)$$

Define $G = \{(y, z) : y = h(x), z = f(x), x \in X\}.$

A solution to the primal problem **P1** is a point in G with $y \le 0$ and has minimum ordinate z.

Let (y^*, z^*) be this point in y - z space.

For a given $\lambda \geq 0$,

- Define $\theta(\lambda) = \min_{x \in X} f(x) + \lambda h(x)$.
- $\theta(\lambda)$ is a minimum $z + \lambda y$ over feasible G in y z space.

Lagrangian Dual Problem (D1):

$$\max_{\lambda>0} \theta(\lambda) \equiv \max_{\lambda>0} \min_{x \in X} f(x) + \lambda h(x).$$

min
$$f(\mathbf{x})$$

s.t. $h_j(\mathbf{x}) \leq 0, j = 1, \dots, l$
 $e_i(\mathbf{x}) = 0, i = 1, \dots, m$
 $\mathbf{x} \in X$

Dual Problem

$$\max_{s.t.} \quad \theta(\lambda, \mu)$$
s.t. $\lambda \geq 0$

where
$$\theta(\lambda, \mu) = \min_{x \in X} \mathcal{L}(x, \lambda, \mu)$$
.

Theorem

Let x be primal feasible and (λ, μ) be dual feasible. Then

$$f(x) \geq \theta(\lambda, \mu).$$

min
$$f(x)$$

s.t. $h_j(x) \leq 0, j = 1, \dots, l$
 $e_i(x) = 0, i = 1, \dots, m$
 $x \in X$

Dual Problem

$$\max_{s.t.} \quad \theta(\lambda, \mu)$$
s.t. $\lambda \geq 0$

where $\theta(\lambda, \mu) = \min_{x \in X} \mathcal{L}(x, \lambda, \mu)$.

Proof.

Let x and (λ, μ) be primal and dual feasible respectively.

$$\theta(\lambda, \mu) = \min_{\boldsymbol{x} \in X} \mathcal{L}(\boldsymbol{x}, \lambda, \mu)$$

$$= \min_{\boldsymbol{x} \in X} f(\boldsymbol{x}) + \sum_{j=1}^{l} \underbrace{\lambda_{j} h_{j}(\boldsymbol{x})}_{\leq 0} + \sum_{i=1}^{m} \underbrace{\mu_{i} e_{i}(\boldsymbol{x})}_{=0}$$

$$< f(\boldsymbol{x})$$

min
$$f(\mathbf{x})$$

s.t. $h_j(\mathbf{x}) \leq 0, j = 1, \dots, l$
 $e_i(\mathbf{x}) = 0, i = 1, \dots, m$
 $\mathbf{x} \in X$

Dual Problem

$$\begin{array}{ll} \max & \theta(\boldsymbol{\lambda}, \boldsymbol{\mu}) \\ \text{s.t.} & \boldsymbol{\lambda} \geq \boldsymbol{0} \end{array}$$

where
$$\theta(\lambda, \mu) = \min_{x \in X} \mathcal{L}(x, \lambda, \mu)$$
.

Weak Duality Theorem

Let p^* and d^* be optimal primal and dual objective function values respectively.

Let x be primal feasible and (λ, μ) be dual feasible. Then $f(x) \geq \theta(\lambda, \mu)$.

$$\min\{f(\mathbf{x}): h_j(\mathbf{x}) \leq 0 \ \forall \ j, e_i(\mathbf{x}) = 0 \ \forall \ i, \mathbf{x} \in X\}$$

$$\geq \max\{\theta(\lambda, \mu): \lambda \geq \mathbf{0}\}$$

$$p^* > d^*$$

Example:

Consider the problem:

$$\begin{array}{ll}
\text{min} & x^3 \\
\text{s.t.} & x = 1 \\
& x \in \mathbb{R}
\end{array}$$

- $x^* = 1$, $f(x^*) = 1$.
- Dual function:

$$\theta(\mu) = \min_{x \in \mathbb{R}} x^3 + \mu(x - 1)$$
$$= \min_{x \in \mathbb{R}} x^3 + \mu x - \mu$$
$$= -\infty \ \forall \ \mu \in \mathbb{R}$$

$$\therefore \theta(\mu^*) = -\infty < f(x^*) \implies d^* < p^*$$

$$\Rightarrow \text{ There exists a duality gap.}$$

Recall the example of two-player zero-sum game.

Example: Game 2

$$\mathcal{X} = \{1, 2\}, \ \mathcal{Y} = \{1, 2\}, \ \psi(x, y) = a_{x,y}, \ \text{where}$$

$$A = \begin{pmatrix} -2 & 1\\ 2 & 3 \end{pmatrix}$$

Player *P*'s strategy

$$\min\{\max_{y} a_{1,y}, \max_{y} a_{2,y}\}$$

$$= \min\{1, 3\}$$

$$= 1$$
Choose $x = 1$

Player D's strategy

$$\max \{ \min_{x} a_{x,1}, \min_{x} a_{x,2} \}$$

$$= \max \{-2, 1\}$$

$$= 1$$
Choose $y = 2$

min-max = max-min

min
$$f(x)$$

s.t. $h_j(x) \leq 0, j = 1, \dots, l$
 $e_i(x) = 0, i = 1, \dots, m$
 $x \in X$

Dual Problem

$$\max_{\text{s.t.}} \theta(\boldsymbol{\lambda}, \boldsymbol{\mu})$$
s.t. $\boldsymbol{\lambda} \geq \mathbf{0}$

where
$$\theta(\lambda, \mu) = \min_{x \in X} \mathcal{L}(x, \lambda, \mu)$$
.

Let x^* and (λ^*, μ^*) be optimal solutions to the primal and dual problems respectively. Let p^* and d^* be optimal primal and dual objective function values respectively.

 $p^* = d^* \Rightarrow$ There is no duality gap. Under what conditions is $p^* = d^*$?

Optimal primal and dual objective function values are same ($p^* = d^*$) if and only if (x^*, λ^*, μ^*) is a Lagrangian saddle point, that is, for $x, x^* \in X$ and $\lambda, \lambda^* \geq 0$,

$$\mathcal{L}(x^*, \lambda, \mu) \leq \mathcal{L}(x^*, \lambda^*, \mu^*) \leq \mathcal{L}(x, \lambda^*, \mu^*).$$

Proof.

(a)

Let (x^*, λ^*, μ^*) be a Lagrangian saddle point where $x^* \in X$ and $\lambda^* \geq 0$. Let $\lambda \geq 0$.

$$\mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}, \boldsymbol{\mu}) \leq \mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

$$\therefore f(\boldsymbol{x}^*) + \sum_{j=1}^{l} \lambda_j h_j(\boldsymbol{x}^*) + \sum_{i=1}^{m} \mu_i e_i(\boldsymbol{x}^*)$$

$$\leq f(\boldsymbol{x}^*) + \sum_{j=1}^{l} \lambda_j^* h_j(\boldsymbol{x}^*) + \sum_{i=1}^{m} \mu_i^* e_i(\boldsymbol{x}^*)$$

$$\therefore \begin{array}{c} h_j(\boldsymbol{x}^*) \leq 0 \ \forall j \\ e_i(\boldsymbol{x}^*) = 0 \ \forall i \end{array} \right\} \text{ and } \boldsymbol{x}^* \in X \Rightarrow \boldsymbol{x}^* \text{ is primal feasible}$$

$$\mathcal{L}(x^*, \lambda, \mu) \leq \mathcal{L}(x^*, \lambda^*, \mu^*)$$

$$\therefore \sum_{j=1}^l \lambda_j h_j(\boldsymbol{x}^*) + \sum_{i=1}^m \mu_i e_i(\boldsymbol{x}^*) \leq \sum_{j=1}^l \lambda_j^* h_j(\boldsymbol{x}^*) + \sum_{i=1}^m \mu_i^* e_i(\boldsymbol{x}^*)$$

$$\therefore \sum_{i=1}^{l} \lambda_{j} h_{j}(\boldsymbol{x}^{*}) \leq \sum_{i=1}^{l} \lambda_{j}^{*} h_{j}(\boldsymbol{x}^{*}) \quad (\because e_{i}(\boldsymbol{x}^{*}) = 0 \; \forall \; i)$$

$$\therefore 0 \leq \sum_{j=1}^{l} \lambda_{j}^{*} h_{j}(\mathbf{x}^{*}) \qquad \text{(Letting } \lambda_{j} = 0 \,\,\forall \, j\text{)}$$

Also,
$$0 \geq \sum_{i=1}^{l} \lambda_j^* h_j(\boldsymbol{x}^*)$$
. $(\because \lambda_j^* \geq 0, h_j(\boldsymbol{x}^*) \leq 0 \ \forall j)$

$$\therefore \sum_{j=1}^{l} \lambda_{j}^{*} h_{j}(\boldsymbol{x}^{*}) = 0 \Rightarrow \lambda_{j}^{*} h_{j}(\boldsymbol{x}^{*}) = 0 \forall j$$

 (x^*, λ^*, μ^*) is a saddle point. $\mathcal{L}(x^*, \lambda^*, \mu^*) \leq \mathcal{L}(x, \lambda^*, \mu^*)$. Therefore, the dual function at (λ^*, μ^*) ,

$$\theta(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \min_{\boldsymbol{x} \in X} f(\boldsymbol{x}) + \sum_{j=1}^{l} \lambda_j^* h_j(\boldsymbol{x}) + \sum_{i=1}^{m} \mu_i^* e_i(\boldsymbol{x})$$

$$= \min_{\boldsymbol{x} \in X} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

$$= \mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

$$= f(\boldsymbol{x}^*) + \sum_{j=1}^{l} \lambda_j^* h_j(\boldsymbol{x}^*) + \sum_{i=1}^{m} \mu_i^* e_i(\boldsymbol{x}^*)$$

$$= f(\boldsymbol{x}^*)$$

$$\cdot d^* = p^*.$$

(b)

Let $f(x^*) = \theta(\lambda^*, \mu^*)$. Note that x^* is primal feasible and (λ^*, μ^*) is dual feasible. Let x be primal feasible and $\lambda_i \ge 0 \ \forall j$.

$$\therefore \theta(\lambda^*, \mu^*) = \min_{x \in X} f(x) + \sum_{j=1}^{l} \lambda_j^* h_j(x) + \sum_{i=1}^{m} \mu_i^* e_i(x)$$

$$\leq f(x^*) + \sum_{j=1}^{l} \lambda_j^* h_j(x^*) + \sum_{i=1}^{m} \mu_i^* e_i(x^*)$$

$$= f(x^*) + \sum_{j=1}^{l} \lambda_j^* h_j(x^*)$$

$$\leq f(x^*) \quad (\because \lambda_i^* \geq 0, h_j(x^*) \leq 0)$$

But, $\theta(\lambda^*, \mu^*) = f(x^*)$. Therefore, $\lambda_i^* h_i(x^*) = 0 \ \forall j$.

$$\mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = f(\boldsymbol{x}^*) + \sum_{j=1}^{N} \lambda_j^* h_j(\boldsymbol{x}^*) + \sum_{i=1}^{M} \mu_i^* e_i(\boldsymbol{x}^*)$$

$$= f(\boldsymbol{x}^*)$$

$$= \theta(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

$$= \min_{\boldsymbol{x} \in X} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

$$\therefore \mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) \leq \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) \dots (1)$$

$$\begin{array}{lll} \mathcal{L}(\boldsymbol{x}^*,\boldsymbol{\lambda}^*,\boldsymbol{\mu}^*) & = & f(\boldsymbol{x}^*) \\ & \geq & f(\boldsymbol{x}^*) + \sum_{j=1}^l \lambda_j h_j(\boldsymbol{x}^*) + \sum_{i=1}^m \mu_i e_i(\boldsymbol{x}^*) \\ & \therefore \mathcal{L}(\boldsymbol{x}^*,\boldsymbol{\lambda}^*,\boldsymbol{\mu}^*) & \geq & \mathcal{L}(\boldsymbol{x}^*,\boldsymbol{\lambda},\boldsymbol{\mu}) & \dots \end{array}$$

From (1) and (2), (x^*, λ^*, μ^*) is a Lagrangian saddle point.

How to find a saddle point if it exists?

Consider the problem (**NLP**):

min
$$f(\mathbf{x})$$

s.t. $h_j(\mathbf{x}) \leq 0, j = 1, \dots, l$
 $e_i(\mathbf{x}) = 0, i = 1, \dots, m$
 $\mathbf{x} \in X$

Theorem

Let f and h_j 's be continuously differentiable convex functions, $e_i(\mathbf{x}) = a_i^T \mathbf{x} - b_i \ \forall i \ and \ X \ be \ a \ convex \ set.$ Assume that Slater's condition holds. Then, $(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ is a KKT point \Rightarrow $(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ is a Lagrangian saddle point.

If x^* is primal feasible, $x^* \in int(X)$, λ^* is dual feasible and (x^*, λ^*, μ^*) is a Lagrangian saddle point, then (x^*, λ^*, μ^*) is a KKT point.

Proof.

 x^* is primal feasible. $h_j(x^*) \le 0 \ \forall j \text{ and } e_i(x^*) = 0 \ \forall i.$ (x^*, λ^*, μ^*) is a KKT point. Therefore,

$$abla f(oldsymbol{x}^*) + \sum_{j=1}^l \lambda_j^*
abla h_j(oldsymbol{x}^*) + \sum_{i=1}^m \mu_i^*
abla e_i(oldsymbol{x}^*) = oldsymbol{0} \ \lambda_j^* h_j(oldsymbol{x}^*) = oldsymbol{0} \ oldsymbol{0} \ oldsymbol{j} \ \lambda_i^* \geq oldsymbol{0} \ oldsymbol{j} \ j$$

f is convex. Therefore, for all $x \in X$,

$$f(\mathbf{x}) \ge f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*). \qquad \dots (3)$$

Similarly, since every h_i is convex,

$$h_j(\mathbf{x}) \geq h_j(\mathbf{x}^*) + \nabla h_j(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*).$$
 (4)

Every e_i is an affine function. Therefore,

$$e_i(\mathbf{x}) = e_i(\mathbf{x}^*) + \nabla e_i(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*).$$
 ... (5)

Multiplying (4) by λ_i^* and (5) by μ_i^* , adding and using KKT conditions,

conditions,
$$f(\boldsymbol{x}) + \sum_{j=1}^{l} \lambda_{j}^{*} h_{j}(\boldsymbol{x}) + \sum_{i=1}^{m} \mu_{i}^{*} e_{i}(\boldsymbol{x})$$

$$\geq f(\boldsymbol{x}^{*}) + \sum_{j=1}^{l} \lambda_{j}^{*} h_{j}(\boldsymbol{x}^{*}) + \sum_{i=1}^{m} \mu_{i}^{*} e_{i}(\boldsymbol{x}^{*})$$

$$\therefore \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}) \geq \mathcal{L}(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}) \quad \dots (6)$$
Also,
$$f(\boldsymbol{x}^{*}) = f(\boldsymbol{x}^{*}) + \sum_{j=1}^{l} \lambda_{j}^{*} h_{j}(\boldsymbol{x}^{*}) + \sum_{i=1}^{m} \mu_{i}^{*} e_{i}(\boldsymbol{x}^{*})$$

$$\geq f(\boldsymbol{x}^{*}) + \sum_{j=1}^{l} \lambda_{j} h_{j}(\boldsymbol{x}^{*}) + \sum_{i=1}^{m} \mu_{i} e_{i}(\boldsymbol{x}^{*})$$

$$\geq f(\boldsymbol{x}^{*}) + \sum_{j=1}^{l} \lambda_{j} h_{j}(\boldsymbol{x}^{*}) + \sum_{i=1}^{m} \mu_{i} e_{i}(\boldsymbol{x}^{*})$$

$$\therefore \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) \geq \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}, \boldsymbol{\mu}) \quad \dots (7)$$

Therefore, (x^*, λ^*, μ^*) is a Lagrangian saddle point.

(b) (x^*, λ^*, μ^*) is a Lagrangian saddle point, where x^* is primal feasible, $x^* \in int(X)$ and λ^* is dual feasible. Therefore,

$$h_j(\mathbf{x}^*) \leq 0 \ \forall j$$

 $e_i(\mathbf{x}^*) = 0 \ \forall i$ and $\lambda_j^* \geq 0 \ \forall j$...(8)

and

$$\mathcal{L}(x^*, \lambda, \mu) \leq \mathcal{L}(x^*, \lambda^*, \mu^*).$$

$$\therefore \sum_{j=1}^{l} \lambda_{j} h_{j}(\mathbf{x}^{*}) + \sum_{i=1}^{m} \mu_{i} e_{i}(\mathbf{x}^{*}) \leq \sum_{j=1}^{l} \lambda_{j}^{*} h_{j}(\mathbf{x}^{*}) + \sum_{i=1}^{m} \mu_{i}^{*} e_{i}(\mathbf{x}^{*})$$

$$\therefore \lambda_j^* h_j(\mathbf{x}^*) = 0 \ \forall j \quad \dots (9)$$

Also,
$$\mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) \leq \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$
.

$$\therefore \mathbf{x}^* = \underset{\mathbf{x} \in \mathbf{Y}}{\operatorname{argmin}} \ \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

$$\therefore \boldsymbol{x}^* = \operatorname*{argmin}_{x \in X} \ \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

Note that,

nat,
$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = f(\boldsymbol{x}) + \sum_{j=1}^l \lambda_j^* h_j(\boldsymbol{x}) + \sum_{i=1}^m \mu_i^* e_i(\boldsymbol{x}).$$

 $\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ is a *convex* function of \mathbf{x} (since f and h_j 's are convex functions, e_i 's are affine functions and $\lambda_j^* \geq 0$). Further, $\mathbf{x}^* \in int(X)$.

$$\therefore \nabla_x \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \mathbf{0} \quad \dots (10)$$

Therefore, from (8), (9) and (10), we see that (x^*, λ^*, μ^*) is a KKT point.

Consider the convex programming problem (**CP**):

min
$$f(\mathbf{x})$$

s.t. $h_j(\mathbf{x}) \leq 0, \ j = 1, \dots, l$
 $e_i(\mathbf{x}) = 0, \ e_i(\mathbf{x}) = \mathbf{a}_i^T \mathbf{x} - b_i, \ i = 1, \dots, m$
 $\mathbf{x} \in \mathbb{R}^n$

where f and h_j 's are continuously differentiable convex functions. Assume that Slater's condition holds.

$$\mathcal{L}(oldsymbol{x},oldsymbol{\lambda},oldsymbol{\mu}) = f(oldsymbol{x}) + \sum_{j=1}^{l} \lambda_j h_j(oldsymbol{x}) + \sum_{i=1}^{m} \mu_i e_i(oldsymbol{x})$$

Dual Problem: $\max_{\substack{\lambda \geq 0 \ L}} \min_{x \in \mathbb{R}^n} \mathcal{L}(oldsymbol{x},oldsymbol{\lambda},oldsymbol{\mu})$

which is the **Wolfe Dual** of **CP**:

$$\max_{oldsymbol{x},oldsymbol{\lambda},oldsymbol{\mu}} egin{array}{c} \mathcal{L}(oldsymbol{x},oldsymbol{\lambda},oldsymbol{\mu}) \\ ext{s.t.} &
abla_x \ \mathcal{L}(oldsymbol{x},oldsymbol{\lambda},oldsymbol{\mu}) = 0 \\ oldsymbol{\lambda} > oldsymbol{0} \end{array}$$

Example:

min
$$(x-2)^2$$

s.t. $2x+1 \le 0$
 $x \in [-1,1]$

- Convex Programming Problem
- Slater's condition holds

•
$$x^* = -\frac{1}{2}$$
, $p^* = f(x^*) = \frac{25}{4}$

• Dual function:
$$\theta(\lambda) = \min_{x \in [-1,1]} (x-2)^2 + \lambda (2x+1)$$

The Wolfe dual problem is:

$$\max_{s.t.} -\lambda^2 + 5\lambda$$
s.t. $\lambda \in [1, 3]$

Solution:
$$\lambda^* = \frac{5}{2}$$

Optimal Dual Objective Value, $d^* = \frac{25}{4} = p^*$

Example:

Consider the problem:

min
$$x_1^2 + x_2^2 + \ldots + x_n^2$$

s.t. $x_1 + x_2 + \ldots + x_n = 1$

- Convex programming problem
- Slater's condition holds

•
$$x^* = (\frac{1}{n}, \dots, \frac{1}{n})^T$$
, $f(x^*) = \frac{1}{n}$

•
$$\mathcal{L}(\mathbf{x}, \mu) = x_1^2 + \ldots + x_n^2 + \mu(x_1 + \ldots + x_n - 1)$$

•
$$\nabla_x \mathcal{L}(\mathbf{x}, \mu) = \mathbf{0} \Rightarrow x_i = -\frac{\mu}{2} \ \forall \ i$$

Wolfe dual problem:

$$\left. \begin{array}{l} \max \ \mathcal{L}(\boldsymbol{x}, \boldsymbol{\mu}) \\ \text{s.t.} \ \nabla_{\boldsymbol{x}} \ \mathcal{L}(\boldsymbol{x}, \boldsymbol{\mu}) = 0 \end{array} \right\} \equiv \max_{\boldsymbol{\mu} \in \mathbb{R}} \ -\frac{n}{4} \boldsymbol{\mu}^2 - \boldsymbol{\mu}$$

Solution to the dual problem:
$$\mu^* = -\frac{2}{n} \Rightarrow x_i^* = \frac{1}{n} \forall i$$

Example: Consider the *Linear Program* (**LP**),

min
$$c^T x$$

s.t. $Ax = b$
 $x \ge 0$

where $A \in \mathbb{R}^{m \times n}$ and rank(A) = m < n.

- Convex programming problem
- Slater's condition holds

$$\bullet \ \mathcal{L}(x, \lambda, \mu) = c^T x + \mu^T (b - Ax) - \lambda^T x$$

$$\bullet \ \nabla_{\mathbf{x}} \ \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \mathbf{0} \ \Rightarrow \ \boldsymbol{c} - \boldsymbol{A}^T \boldsymbol{\mu} - \boldsymbol{\lambda} = \mathbf{0}$$

Wolfe dual problem(Dual-LP):

$$\left. \begin{array}{l}
\max \, \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \\
\text{s.t. } \nabla_{\mathbf{x}} \, \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = 0 \\
\boldsymbol{\lambda} \geq \mathbf{0}
\end{array} \right\} \equiv \left. \begin{array}{l}
\max \, \boldsymbol{b}^T \boldsymbol{\mu} \\
\text{s.t. } \boldsymbol{A}^T \boldsymbol{\mu} \leq \boldsymbol{c}
\end{array} \right.$$

The dual of **Dual-LP** is LP!

Example: Consider the Quadratic Program,

$$\min_{\substack{1 \\ \text{s.t.}}} \frac{1}{2} \mathbf{x}^T \mathbf{H} \mathbf{x} + \mathbf{c}^T \mathbf{x} \\ \mathbf{A} \mathbf{x} \ge \mathbf{b}$$

where $H \in \mathbb{R}^{n \times n}$ is a symmetric positive semi-definite matrix and $A \in \mathbb{R}^{m \times n}$, rank(A) = m.

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{H} \boldsymbol{x} + \boldsymbol{c}^T \boldsymbol{x} + \boldsymbol{\lambda}^T (\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x})$$
$$\nabla_x \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = 0 \implies \boldsymbol{H} \boldsymbol{x} + \boldsymbol{c} - \boldsymbol{A}^T \boldsymbol{\lambda} = \boldsymbol{0}$$

Therefore, the Wolfe dual problem is,

max
$$\frac{1}{2}x^THx + c^Tx + \lambda^T(b - Ax)$$

s.t. $Hx - A^T\lambda = -c$
 $\lambda > 0$.

The dual problem cannot be given explicitly in terms of dual variables.

Example: Consider the *Quadratic Program*,

$$\min_{\substack{\frac{1}{2}x^T H x + c^T x \\ \text{s.t.}}} \frac{\frac{1}{2}x^T H x + c^T x}{Ax \ge b}$$

where $H \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix.

$$\mathcal{L}(x, \lambda) = \frac{1}{2}x^{T}Hx + c^{T}x + \lambda^{T}(b - Ax)$$

$$\nabla_{x} \mathcal{L}(x, \lambda) = 0 \Rightarrow Hx + c - A^{T}\lambda = 0$$
Therefore the Wolfe dual problem is

Therefore, the **Wolfe dual problem** is,

max
$$\frac{1}{2}x^THx + c^Tx + \lambda^T(b - Ax)$$

s.t. $Hx + c - A^T\lambda = 0$
 $\lambda \ge 0$.

Using $x = H^{-1}(A^T \lambda - c)$, the dual problem is,

$$\max_{\boldsymbol{\lambda} \geq \mathbf{0}} \ -\frac{1}{2} \boldsymbol{\lambda}^T \boldsymbol{A} \boldsymbol{H}^{-1} \boldsymbol{A}^T \boldsymbol{\lambda} + (\boldsymbol{A} \boldsymbol{H}^{-1} \boldsymbol{c} + \boldsymbol{b})^T \boldsymbol{\lambda}$$

Example:

min
$$\sum_{i=1}^{n} x_i \log(\frac{x_i}{c_i})$$

s.t. $Ax = b$
 $x \ge 0$

where $c_i > 0 \ \forall i, A \in \mathbb{R}^{m \times n}$ and $m \ll n$.

- Convex programming problem
- Slater's condition holds

The Wolfe dual problem is:

$$\max_{\boldsymbol{\mu} \in \mathbb{R}^m} -\sum_{i} c_i \exp\{(\boldsymbol{A}^T \boldsymbol{\mu})_i - 1\} + \boldsymbol{b}^T \boldsymbol{\mu}$$

Consider the problem (**NLP**):

min
$$f(\mathbf{x})$$

s.t. $h_j(\mathbf{x}) \leq 0, \ j = 1, \dots, l$
 $e_i(\mathbf{x}) = 0, \ i = 1, \dots, m$

 $x \in X$ where X is a compact set.

$$heta(oldsymbol{\lambda},oldsymbol{\mu}) = \min_{\mathbf{x} \in X} f(\mathbf{x}) + \sum_{i=1}^{l} \lambda_{i} h_{j}(\mathbf{x}) + \sum_{i=1}^{m} \mu_{i} e_{i}(\mathbf{x})$$

• Dual function is a pointwise \overline{m} nimum of a \overline{m} milling of affine functions of (λ, μ) .

 $\theta(\lambda, \mu)$ is a *concave* function.

$$\max_{s.t.} \theta(\lambda, \mu)$$

Therefore, the dual problem is a convex programming problem even if the primal problem is not!