TAREFA

Cálculo de Parâmetros de Linhas de Transmissão II

Resolva as questões da Tarefa a seguir de acordo com a TABELA a seguir associada ao seu número da Planilha de Monitoramento.

1. Considere a linha de transmissão em 230 kV com feixe de dois cabos X espaçamento Y, e dois cabos guarda multiaterrados CAA DOTTEREL 176,9 AWG cuja estrutura está mostrada na Figura 3 e transposição na Figura 4. Admita que a temperatura máxima para o cabo é de 75°C. pede-se:

Figura 1

Figura 2

NÚM.	CABO X	ESPAÇAMENTO Y [m]
1 – 66 – 67	CAA DUCK 605 AWG	0,4
2 -59 - 68	CAA KINGBIRD 636 AWG	0,35
3 - 58 - 69	CAA SWIFT 636 AWG	0,3
4 – 57 - 70	CAA ROOK 636 AWG	0,4
5 – 56 – 71	CAA GROSBEAK 636 AWG	0,35
6 – 55 – 72	CAA DUCK 605 AWG	0,3
7 – 54 – 73	CAA KINGBIRD 636 AWG	0,4
8 - 53 - 74	CAA SWIFT 636 AWG	0,35
9 – 52 – 75	CAA ROOK 636 AWG	0,3
10 – 51 –76	CAA GROSBEAK 636 AWG	0,4
11 – 50- 77	CAA DUCK 605 AWG	0,35
12 – 49- 78	CAA KINGBIRD 636 AWG	0,3
13 – 48- 79	CAA SWIFT 636 AWG	0,4
14 – 47- 80	CAA ROOK 636 AWG	0,35
15 – 46- 81	CAA GROSBEAK 636 AWG	0,3
16 – 45- 82	CAA DUCK 605 AWG	0,4
17 – 44- 83	CAA KINGBIRD 636 AWG	0,35
18 – 43 - 84	CAA SWIFT 636 AWG	0,3
19 – 42 - 85	CAA ROOK 636 AWG	0,4
20 - 41 - 86	CAA GROSBEAK 636 AWG	0,35
21 – 40 - 87	CAA DUCK 605 AWG	0,3
22 - 39 - 88	CAA KINGBIRD 636 AWG	0,4
23 - 38 - 89	CAA SWIFT 636 AWG	0,35
24 – 37- 90	CAA ROOK 636 AWG	0,3
25 – 36	CAA GROSBEAK 636 AWG	0,4
26 – 35	CAA DUCK 605 AWG	0,35
27 – 34	CAA KINGBIRD 636 AWG	0,3
28 - 33	CAA SWIFT 636 AWG	0,4
29 – 32	CAA ROOK 636 AWG	0,35
30 – 31	CAA GROSBEAK 636 AWG	0,3
61 – 62	CAA DUCK 605 AWG	0,4
63 - 64	CAA KINGBIRD 636 AWG	0,35
65 – 64	CAA SWIFT 636 AWG	0,3
60 - 65	CAA ROOK 636 AWG	0,4

- 1. Dados de cada subcondutor: raio, raio médio geométrico, resistência a 75°C.
- Dados do feixe de subcondutores: raio, raio médio geométrico, resistência a 50°C e 75°C
- 3. Matriz impedância da linha 5x5 contando com os cabos para-raios multi aterrados considerando o primeiro trecho da transposição da LT.
- 4. Matriz impedância da linha reduzida 3x3 incluindo os cabos para-raios considerando o primeiro trecho da transposição da LT.
- 5. Impedância aparente do condutor da **fase a**, da **fase b** e da **fase c** da linha de transmissão no primeiro trecho da transposição.
- Impedância de serviço da linha de transmissão no primeiro trecho da transposição.
- 7. Matriz impedância da linha 5x5 contando com os cabos para-raios multi aterrados no segundo trecho da transposição da LT.
- 8. Matriz impedância da linha reduzida 3x3 incluindo os cabos para-raios multi-aterrados considerando no segundo trecho da transposição da LT.
- Matriz impedância da linha 5x5 contando com os cabos para-raios multi aterrados no terceiro trecho da transposição da LT.
- 10. Matriz impedância da linha reduzida 3x3 incluindo os cabos para-raios multi-aterrados considerando no terceiro trecho da transposição da LT.
- 11. Matriz impedância da linha de 5x5 contando com os cabos para-raios multi aterrados no quarto trecho da transposição da LT.
- 12. Matriz impedância da linha reduzida 3x3 incluindo os cabos para-raios multi-aterrados considerando no quarto trecho da transposição da LT.
- 13. Matriz impedância da linha transposta 5x5 contando com os cabos para-raios multiaterrados.
- 14. Matriz impedância da linha transposta reduzida 3x3 incluindo os cabos para-raios multiaterrados.
- 15. Impedância aparente do condutor da **fase a**, da **fase b** e da **fase c** da linha de transmissão transposta.
- 16. Impedância de serviço da linha de transmissão transposta.

Resolva a seguinte questão de acordo com o seu número na Planilha de Acompanhamento.

Considere duas linhas de 500 kV num circuito duplo com feixe de quatro subcondutores Y espaçamento Z, e dois **cabos guarda multiaterrados** CAA DOTTEREL 176,9 AWG cuja estrutura está mostrada na Figura 3. Admita que a temperatura máxima para o cabo é de 75°C e ambas tem 360 km. pede-se:

Figura 3 - LT 500 kV a circuito duplo

Figura 4 – Transposição da LT a circuito duplo

NÚM.	Υ	ESPAÇAMENTO Z [m]
1 – 66 – 67	CAA DUCK 605 AWG	0,4
2 -59 - 68	CAA KINGBIRD 636 AWG	0,35
3 – 58 - 69	CAA SWIFT 636 AWG	0,3
4 – 57 - 70	CAA ROOK 636 AWG	0,4
5 – 56 – 71	CAA GROSBEAK 636 AWG	0,35
6 – 55 – 72	CAA DUCK 605 AWG	0,3
7 – 54 – 73	CAA KINGBIRD 636 AWG	0,4
8 - 53 - 74	CAA SWIFT 636 AWG	0,35
9 – 52 – 75	CAA ROOK 636 AWG	0,3
10 – 51 –76	CAA GROSBEAK 636 AWG	0,4
11 – 50- 77	CAA DUCK 605 AWG	0,35
12 – 49- 78	CAA KINGBIRD 636 AWG	0,3
13 – 48- 79	CAA SWIFT 636 AWG	0,4
14 – 47- 80	CAA ROOK 636 AWG	0,35
15 – 46- 81	CAA GROSBEAK 636 AWG	0,3
16 – 45- 82	CAA DUCK 605 AWG	0,4
17 – 44- 83	CAA KINGBIRD 636 AWG	0,35
18 – 43 - 84	CAA SWIFT 636 AWG	0,3
19 – 42 - 85	CAA ROOK 636 AWG	0,4
20 - 41 - 86	CAA GROSBEAK 636 AWG	0,35
21 – 40 - 87	CAA DUCK 605 AWG	0,3
22 - 39 - 88	CAA KINGBIRD 636 AWG	0,4
23 - 38 - 89	CAA SWIFT 636 AWG	0,35
24 - 37- 90	CAA ROOK 636 AWG	0,3
25 – 36	CAA GROSBEAK 636 AWG	0,4
26 – 35	CAA DUCK 605 AWG	0,35
27 – 34	CAA KINGBIRD 636 AWG	0,3
28 - 33	CAA SWIFT 636 AWG	0,4
29 – 32	CAA ROOK 636 AWG	0,35
30 – 31	CAA GROSBEAK 636 AWG	0,3
61 – 62	CAA DUCK 605 AWG	0,4
63 - 64	CAA KINGBIRD 636 AWG	0,35
65 – 64	CAA SWIFT 636 AWG	0,3
60 - 65	CAA ROOK 636 AWG	0,4

- Dados de cada subcondutor: raio, raio médio geométrico, resistência a 50°C e 75°C.
- 2. Dados do feixe de subcondutores: raio, raio médio geométrico, resistência a a 50°C e 75°C.
- 3. Matriz impedância das linhas de transmissão 8x8 contando com os cabos para-raios considerando o primeiro trecho da transposição da LT.
- 4. Matriz impedância das linhas de transmissão reduzida 6x6 contando com os cabos para-raios considerando o primeiro trecho da transposição da LT.
- 5. Matriz impedância das linhas de transmissão 8x8 contando com os cabos para-raios considerando o segundo trecho da transposição da LT.
- 6. Matriz impedância das linhas de transmissão reduzida 6x6 contando com os cabos para-raios considerando o segundo trecho da transposição da LT.
- 7. Matriz impedância das linhas de transmissão 8x8 contando com os cabos para-raios considerando o terceiro trecho da transposição da LT.
- 8. Matriz impedância das linhas de transmissão reduzida 6x6 contando com os cabos para-raios considerando o terceiro trecho da transposição da LT.
- 9. Matriz impedância das linhas de transmissão transpostas 8x8 contando com os cabos para-raios multiaterrados.
- 10. Matriz impedância das linhas de transmissão transpostas reduzida 6x6 contando com os cabos para-raios multiaterrados.
- 11. Impedância aparente do condutor da **fase a**, **da fase b** e da **fase c** da LT1 transposta.
- 12. Impedância aparente do condutor da **fase a**, **da fase b** e da **fase c** da LT2 transposta.
- 13. Impedância de serviço da linha de transmissão transposta LT1 e da LT2
- 14. A impedância mútua da LT1 é positiva ou negativa? Alterando a posição dos condutores D, E e F na estrutura alteramos o valor da impedância mútua? Pode alterar o sinal da impedância mútua? Mostre sua resposta de forma qualitativa.