

15.511 Corporate Accounting Summer 2004

Professor S. P. Kothari

Sloan School of Management Massachusetts Institute of Technology

July 2, 2004

LIABILITIES: Current Liabilities

- Obligations that must be discharged in a short period of time (generally less than one year)
- Reported on balance sheet at nominal value
- Examples:
 - Accounts payable
 - Short-term borrowings
 - Current portion of long-term debt
 - Deposits
 - Warranties
 - Deferred Revenues / Income

LIABILITIES: Long-term Liabilities

- Obligations spanning a longer period of time (generally more than one year)
- Generally reported on the balance sheet at present value based on interest rate when initiated
- Examples:

Bonds

Long-term loans

Mortgages

Capital Leases

How do we compute present values? And interest expense?

Time Value Of Money

Future value of 1.00 today = 1.00 (1+10%) = 1.10 at the end of one year.

What is the present value of \$1.10 to be received one year from now?

Present value of \$1.10 one year from now = \$1.10/(1+10%) = \$1.00

What is the present value of \$1.00 to be received one year from now?

Present value of \$1.00 one year from now = \$1.00/(1.10) = \$0.91

4

Time Value Of Money

Future value of \$1.00 two years from now = \$1.00*(1+10%)*(1+10%)= $$1.00*(1.10)^2 = 1.21

Present value of \$1.00 to be received two years from now $= $1.00/[(1.10)^2] = 0.83

RECALL: PV of \$1.00 to be received a year from now = \$0.91

Calculating present values: An example

- You have just won a lottery. The lottery board offers you three different options for collecting your winnings:
- (1) Payments of \$500,000 at the end of each year for 20 years.
- (2) Lump-sum payment of \$4,500,000 today.
- (3) Lump-sum payment of \$1 million today, followed by \$2,100,000 at the end of years 5, 6, and 7.

Assume all earnings can be invested at a 10 percent annual rate. Ignoring any tax effects, which option should you choose and why?

Future Value of Option 1: \$500,000 at the end of each year for 20 years.

Future Value of Option 2: Lump-sum payment of \$4,500,000 today

Future Value of Option 3: \$1m today, and \$2.1m at the end of years 5, 6, and 7.

- If you invest all lottery receipts at 10% per year, how much will you have in 20 years?
 - 1. $$500K \times (1.10)^{19} + $500K \times (1.10)^{18} + ... + $500K \times (1.10)^1 + $500K = $28.64m$
 - $4,500,000 \times (1.10)^{20} = 30.27 \text{m}$
 - 3. $\$1m \times (1.10)^{20} + \$2.1m \times (1.10)^{15} + \$2.1m \times (1.10)^{14} + \$2.1m \times (1.10)^{13} = \$30.71m$
 - → FV(Option 1) < FV(Option 2) < FV(Option 3)

Present Value of Option 1: \$500,000 at the end of each year for 20 years.

Present Value of Option 2: Lump-sum payment of \$4,500,000 today

Present Value of Option 3: \$1m today, and \$2.1m at the end of years 5, 6, and 7.

Present Values

- If all lottery receipts can be invested at 10% per year, what is the present value of each option?
 - 1. $$500K \times (1.10)^{-20} + $500K \times (1.10)^{-19} + ... + $500K \times (1.10)^{-2} + $500K \times (1.10)^{-1} = $4.26m$
 - 2. $\$4,500,000 \times (1.10)^0 = \$4.5m$
 - 3. $$1m \times (1.10)^0 + $2.1m \times (1.10)^{-5} + $2.1m \times (1.10)^{-6} + $2.1m \times (1.10)^{-7} = $4.57m$
 - → PV(Option 1) < PV(Option 2) < PV(Option 3)

Converting Present and Future Values

Using PV and FV Tables (Appendix)

Table 1: Future Value of \$1

- A one-time payment to be received now and held (reinvested) for N periods
- Compounded at interest rate r%
- Multiply the dollar amount received by the factor in Row N,
 Column r%

Table 2: Present Value of \$1

- A one-time payment to be received N periods from now
- Discounted at interest rate r
- Multiply the dollar amount to be received by the factor in Row N, Column r

Time Value of Money Terminology

- Annuity: a stream of fixed-dollar payments made at regular intervals of time
 - Ordinary Annuity (annuity in arrears): payments occur at the end of the period
 - Annuity due (annuity in advance): payments occur at the beginning of the period

Formulas:

- FV(a) = { [((1+r)^N) 1] / r} * Fixed Period Cash Flow
- $PV(a) = \{ [(1 (1+r)^{(-N)})] / r] \} * Fixed Period Cash Flow$

Using PV and FV Tables (Appendix)

- Table 3: Future Value of \$1 ordinary annuity (annuity in arrears)
 - Regular payments to be received at end of year for N years and held (reinvested) until time N
 - Compounded at interest rate r%
 - Multiply the dollar amount received by the factor in Row N,
 Column r%
- FV of \$1 annuity due (annuity in advance) = (FV of an ordinary annuity for N+1 years) \$1

Using PV and FV Tables (Appendix)

- Table 4: Present Value of \$1 ordinary annuity (annuity in arrears)
 - Regular payments to be received at end of year for N years
 - Discounted at interest rate r%
 - Multiply the dollar amount to be received by the factor in Row N, Column r
- PV of \$1 annuity due (annuity in advance) = (PV of an ordinary annuity for N-1 years) + \$1