

QUÍMICA NIVEL SUPERIOR PRUEBA 1

Lunes 18 de noviembre de 2013 (tarde)

1 hora

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- · Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [40 puntos].

0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
7		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
v		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
ю		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es (254)
	'			30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
æ				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
Tabla periódica				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
bla pe				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
Ta				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
	F			25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p (237)
	atómico	ento ca relativa		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
	Número atómico	Elemento Masa atómica relativa		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
	<u> </u>	<u> </u>		22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	* !	**
8		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
1	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

- 1. ¿Cuál es el número total de átomos de oxígeno en $0,200 \,\mathrm{mol}$ de glucosa, $\mathrm{C_6H_{12}O_6}$?
 - A. 1,20
 - B. 6,00
 - C. $1,20 \times 10^{23}$
 - D. $7,22 \times 10^{23}$
- **2.** ¿Cuáles son los coeficientes del H₂SO₄(aq) y el H₃PO₄(aq) cuando se ajusta la siguiente ecuación usando los números enteros más pequeños posible?

$$\underline{\hspace{1cm}} Ca_3(PO_4)_2(s) + \underline{\hspace{1cm}} H_2SO_4(aq) \rightarrow \underline{\hspace{1cm}} CaSO_4(s) + \underline{\hspace{1cm}} H_3PO_4(aq)$$

	Coeficiente del H ₂ SO ₄ (aq)	Coeficiente del H ₃ PO ₄ (aq)
A.	1	2
B.	2	3
C.	3	1
D.	3	2

- 3. Se disuelven 7,102 g de $Na_2SO_4(M=142,04\,\mathrm{g\,mol^{-1}})$ en agua para preparar $0,5000\,\mathrm{dm^3}$ de solución. ¿Cuál es la concentración del Na_2SO_4 en mol dm⁻³?
 - A. $2,500 \times 10^{-2}$
 - B. $1,000 \times 10^{-1}$
 - C. 1,000×10
 - D. $1,000 \times 10^2$

4. ¿Cuál es el número de neutrones y electrones en el ion yodo, ¹²⁵I⁺?

	Neutrones	Electrones
A.	53	53
B.	72	52
C.	72	53
D.	125	52

- **5.** ¿Cuál es la configuración electrónica abreviada del ion telururo, Te²⁻?
 - A. $[Kr]5s^25d^{10}5p^6$
 - B. $[Kr]5s^24d^{10}5p^2$
 - C. $[Kr]5s^24d^{10}5p^4$
 - D. $[Kr]5s^24d^{10}5p^6$
- **6.** ¿Qué serie presenta orden **creciente** respecto al radio?
 - A. $F < Cl^- < Cl$
 - B. Rb < K < Na
 - C. $Al^{3+} < Mg^{2+} < Na^{+}$
 - D. $I^{-} < Br^{-} < Cl^{-}$

- 7. ¿Qué óxidos forman soluciones ácidas cuando se añaden al agua?
 - A. $P_4O_{10}(s) y SO_3(g)$
 - B. $Na_2O(s)$ y MgO(s)
 - C. $Al_2O_3(s)$ y $SiO_2(s)$
 - D. MgO(s) y $Al_2O_3(s)$
- **8.** ¿Qué compuesto es probable que sea incoloro?
 - A. $[Zn(H_2O)_6]Cl_2$
 - B. $[NH_4]_2[Fe(H_2O)_6][SO_4]_2$
 - C. $K_3[Co(CN)_6]$
 - D. $[Ni(NH_3)_6][BF_4]_2$
- 9. ¿Cuál es la fórmula del nitruro de calcio?
 - A. Ca₃N₂
 - $B. \quad Ca_2N_3$
 - C. $Ca(NO_2)_2$
 - D. $Ca(NO_3)_2$

- 10. ¿Qué compuestos tienen estructura de red iónica en estado sólido?
 - I. Dióxido de silicio
 - II. Fluoruro de sodio
 - III. Nitrato de amonio
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- 11. ¿Qué fuerzas intermoleculares existen entre las siguientes moléculas?

	H ₂ Se	CO	H_2
A.	van der Waals y dipolo-dipolo	van der Waals y dipolo-dipolo	solo van der Waals
B.	van der Waals, dipolo-dipolo y enlace de hidrógeno	solo van der Waals	van der Waals y enlace de hidrógeno
C.	van der Waals, dipolo-dipolo y enlace de hidrógeno	van der Waals y dipolo-dipolo	solo van der Waals
D.	van der Waals y dipolo-dipolo	van der Waals y dipolo-dipolo	van der Waals y enlace de hidrógeno

- 12. ¿Qué especies tienen enlace covalente dativo?
 - I. $[Fe(H_2O)_6]Cl_3$
 - II. NH₄⁺
 - III. H₂O
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III

-7-

- A. $13\sigma y 5\pi$
- B. $15\sigma y 2\pi$
- C. $15\sigma y 3\pi$
- D. solo 15σ
- 14. ¿Qué hibridación presentan los átomos X, Y y Z en la epinefrina?

	X	Y	Z
A.	sp^2	sp^3	sp^3
B.	sp ²	sp	sp^3
C.	sp ³	sp^2	sp^2
D.	sp³	sp³	sp^3

8813-6125 Véase al dorso

¿Qué procesos son exotérmicos? **15.**

I.
$$CH_3CH_2CH_3(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$

II.
$$Cl_2(g) \rightarrow 2Cl(g)$$

III.
$$CH_3CH_2COOH(aq) + NaOH(aq) \rightarrow CH_3CH_2COONa(aq) + H_2O(l)$$

- Solo I y II A.
- Solo I y III B.
- Solo II y III C.
- I, II y III D.
- **16.** Considere las dos ecuaciones siguientes.

$$2Ca(s) + O_2(g) \rightarrow 2CaO(s)$$

$$\Delta H^{\ominus} = +x \text{ kJ}$$

$$Ca(s) + 0.5O_2(g) + CO_2(g) \rightarrow CaCO_3(s)$$
 $\Delta H^{\Theta} = +y \text{ kJ}$

$$\Delta H^{\Theta} = + v \text{ k.}$$

¿Cuál es el ΔH^{\ominus} , en kJ, para la siguiente reacción?

$$CaO(s) + CO_2(g) \rightarrow CaCO_3(s)$$

- A. y 0.5x
- B. y-x
- C. 0.5 y
- D. x-y

- 17. ¿Qué compuesto iónico tiene la entalpía de red más endotérmica?
 - A. Cloruro de sodio
 - B. Óxido de sodio
 - C. Cloruro de magnesio
 - D. Óxido de magnesio
- 18. ¿Para qué procesos se predice una variación positiva de entropía, ΔS ?
 - I. $I_2(g) \rightarrow I_2(s)$
 - II. $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$
 - III. $CH_3OH(l) \rightarrow CH_3OH(g)$
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- 19. ¿Qué combinación de signos de ΔH y ΔS resultará siempre en una reacción espontánea a cualquier temperatura?

	ΔH	ΔS
A.	+	+
B.	+	_
C.	_	_
D.	_	+

El diagrama de abajo muestra las variaciones de energía para una reacción con y sin catalizador. 20. ¿Qué símbolos representan la energía de activación, $E_{\rm a}$, y la variación de entalpía, ΔH , para la reacción con catalizador?

	$E_{\rm a}$ (con catalizador)	ΔΗ
A.	x	z
B.	y	z
C.	Z	x
D.	y-x	Z

21. Para una reacción que transcurre a la temperatura T, se obtuvieron los siguientes datos experimentales de velocidad.

$$A(g) + B(g) \rightarrow C(g) + D(g)$$

[A(g)] inicial / mol dm ⁻³	[B(g)] inicial / mol dm ⁻³	Velocidad inicial / mol dm ⁻³ s ⁻¹
3,00×10 ⁻¹	$2,00\times10^{-1}$	1,89×10 ⁻²
3,00×10 ⁻¹	$4,00\times10^{-1}$	1,89×10 ⁻²
6,00×10 ⁻¹	4,00×10 ⁻¹	7,56×10 ⁻²

¿Cuál es el orden con respecto de A(g) y respecto de B(g)?

	Orden respecto de A(g)	Orden respecto de B(g)
A.	cero	segundo
B.	primer	cero
C.	segundo	cero
D.	segundo	primer

22. Considere el siguiente mecanismo en dos etapas, propuesto para una reacción que transcurre a la temperatura *T*.

Etapa 1:
$$2NO_2(g) \xrightarrow{k_1} NO(g) + NO_3(g)$$
 Lenta

Etapa 2:
$$NO_3(g) + CO(g) \xrightarrow{k_2} NO_2(g) + CO_2(g)$$
 Rápida

¿Qué enunciados son correctos?

- I. La reacción total es $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$.
- II. La etapa 1 es la determinante de la velocidad de reacción.
- III. La expresión de velocidad para la etapa 1 es velocidad = $k_1[NO_2]^2$.
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III

23. ¿Cuál de las siguientes modificaciones desplazará la posición de equilibrio hacia la derecha en el proceso Haber?

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H^{\ominus} = -92,6 \text{ kJ}$

- I. Disminución de la concentración de NH₃(g)
- II. Disminución de la temperatura
- III. Aumento de la presión
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III
- **24.** ¿Qué compuesto tiene la **mayor** entalpía molar de vaporización?
 - A. Etano
 - B. Ácido etanoico
 - C. Propano
 - D. Ácido propanoico
- **25.** ¿Cuáles son los pares conjugados ácido-base en la siguiente reacción?

$$HCO_3^-(aq) + H_2O(l) \rightleftharpoons OH^-(aq) + H_2CO_3(aq)$$

	Ácido de Brønsted–Lowry	Base de Brønsted–Lowry	Ácido conjugado	Base conjugada
A.	HCO ₃ ⁻ (aq)	H ₂ O(l)	H ₂ CO ₃ (aq)	OH ⁻ (aq)
B.	$H_2CO_3(aq)$	OH ⁻ (aq)	HCO ₃ ⁻ (aq)	H ₂ O(l)
C.	H ₂ O(l)	HCO ₃ ⁻ (aq)	H ₂ CO ₃ (aq)	OH ⁻ (aq)
D.	H ₂ O(l)	HCO ₃ ⁻ (aq)	OH ⁻ (aq)	H ₂ CO ₃ (aq)

A.	Ba(OH) ₂	CH ₃ NH ₂	CH ₃ COOH
B.	CH ₃ CH ₂ CH ₂ COOH	CH ₃ CH ₂ NH ₂	НСООН
C.	NH ₃	HNO ₃	CH ₃ CH ₂ COOH
D.	NH ₃	NaOH	H ₂ CO ₃

-13 -

27. ¿Cuál es la relación entre pK_a , pK_b y pK_w para un par ácido-base conjugado?

A.
$$pK_a = pK_w + pK_b$$

B.
$$pK_a = pK_w - pK_b$$

C.
$$pK_a \times pK_b = pK_w$$

D.
$$\frac{pK_a}{pK_b} = pK_w$$

28. La tabla siguiente muestra valores de K_a y p K_b para algunos ácidos y bases a 298 K.

Ácido	$K_{\rm a}$	Base	р <i>К</i> _ь
HClO	2,9×10 ⁻⁸	NH ₃	4,75
C ₆ H ₅ CH ₂ COOH	4,9×10 ⁻⁵	C ₆ H ₅ NH ₂	9,13

¿Qué dos fórmulas representan el ácido más débil y la base más débil de la tabla?

- A. HClO y C₆H₅NH₂
- B. C₆H₅CH₂COOH y NH₃
- C. C₆H₅CH₂COOH y C₆H₅NH₂
- D. HClO y NH₃

29.	¿Qué par de	compuestos s	se podría	usar pa	ra obtener	una	solución	tampón	(suponiendo	relaciones
	molares apro	piadas)?								

- A. KCl y HCl
- B. NaCl y HCl
- C. KHSO₄ y H₂SO₄
- D. CH₃COONa y CH₃COOH
- **30.** ¿Qué sales forman soluciones ácidas cuando se disuelven en agua?
 - I. NH₄C1
 - II. $Cr(NO_3)_3$
 - III. CH₃COONa
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- **31.** ¿Cuál es el nombre del MnO₂?
 - A. Óxido de manganeso(II)
 - B. Óxido de magnesio(II)
 - C. Óxido de manganeso(IV)
 - D. Óxido de magnesio(IV)

$$2Cr(OH)_{3}(s) + 6ClO^{-}(aq) \rightarrow 2CrO_{4}^{\ 2-}(aq) + 3Cl_{2}(g) + 2OH^{-}(aq) + 2H_{2}O(l)$$

¿Cuál enunciado es correcto?

- A. El Cr (OH)₃ es el agente oxidante y el número de oxidación del cromo cambia de +3 a +6.
- B. El Cr(OH)₃ es el agente reductor y se reduce.
- C. El ClO es el agente oxidante y el número de oxidación del cloro cambia de +1 a 0.
- D. El ClO es el agente reductor y el número de oxidación del cloro cambia de -1 a 0.
- 33. Considere los dos siguientes potenciales de electrodo estándar a 298 K.

$$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \Longrightarrow \operatorname{Sn}(s)$$
 $E^{\ominus} = -0.14 \,\mathrm{V}$

$$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$$
 $E^{\ominus} = +0,77 \text{ V}$

¿Cuál es la ecuación y el potencial de la pila para la reacción espontánea que se produce?

A.
$$2\text{Fe}^{2+}(aq) + \text{Sn}^{2+}(aq) \rightarrow 2\text{Fe}^{3+}(aq) + \text{Sn}(s)$$
 $E^{\ominus} = -0.91\text{ V}$

B.
$$2Fe^{3+}(aq) + Sn(s) \rightarrow 2Fe^{2+}(aq) + Sn^{2+}(aq)$$
 $E^{\Theta} = +0.91V$

C.
$$2Fe^{2+}(aq) + Sn^{2+}(aq) \rightarrow 2Fe^{3+}(aq) + Sn(s)$$
 $E^{\Theta} = +0.91V$

D.
$$2Fe^{3+}(aq) + Sn(s) \rightarrow 2Fe^{2+}(aq) + Sn^{2+}(aq)$$
 $E^{\Theta} = +1,68 \text{ V}$

- **34.** ¿Qué sucede durante la electrólisis de una solución acuosa concentrada de cloruro de potasio?
 - I. La reducción se produce en el electrodo negativo (cátodo).
 - II. Se desprende hidrógeno gaseoso en el electrodo negativo (cátodo).
 - III. El pH del electrolito aumenta.
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III

- **35.** ¿Cuál es el nombre de (CH₃)₃CCOCH₃, aplicando las reglas de la IUPAC?
 - A. 2,2-dimetil-3-butanona
 - B. 3,3-dimetil-2-butanona
 - C. 2,2-dimetilbutanal
 - D. 3,3-dimetilbutanal
- **36.** ¿Qué grupos funcionales están presentes en el C₆H₅CONHC₆H₅?
 - A. Anillo bencénico (fenilo), amina
 - B. Anillo bencénico (fenilo), cetona, amina
 - C. Anillo bencénico (fenilo), amida
 - D. Alqueno, amida
- **37.** ¿Cuál es el producto de la reacción cuando el CH₃CH₂CH₂CH₂CH₂CN se reduce con hidrógeno, usando un catalizador de níquel en condiciones apropiadas?
 - A. CH₃CH₂CH₂CH₂CH₂NH₂
 - B. CH₃CH₂CH₂CH₂CH₂CH₂NH₂
 - C. CH₃CH₂CH₂CH₂CH₂CH₃
 - D. CH₃CH₂CH₂CH₂CH₂CH₂CH₃
- **38.** ¿Qué producto orgánico principal se forma cuando el (CH₃)₃CBr reacciona con solución concentrada de KOH en etanol?
 - A. $(CH_3)_3COH$
 - B. $(CH_3)_2CCH_2$
 - C. $(CH_3)_2CO$
 - D. (CH₃)₂CHO

39.	¿Cuál es el producto orgánico de la reacción que se produce cuando el 1-butanol se calienta con
	ácido etanoico en presencia de ácido sulfúrico concentrado?

- A. Metanoato de butilo
- B. Etanoato de butilo
- C. Butanoato de etilo
- D. Propanoato de etilo
- **40.** Una estudiante midió la masa y el volumen de una pieza de plata y registró los siguientes valores.

Masa del recipiente de pesada vacío	1,0800 g		
Masa del recipiente de pesada con la pieza de plata	11,5700 g		
Volumen de plata	1,00 cm ³		

¿Qué valor, en g cm⁻³, debe informar la estudiante en su libreta de laboratorio para la densidad de la plata?

- A. 10,49
- B. 10,4900
- C. 10,5
- D. 10,500