Estimacija GRV pomoću kernela (eng. *kernel density estimation – KDE*)

- Neparametarska estimacija gustine verovatnoće
- Histogrami
- KDE pomoću pravougaonog kernela
- Glatki kerneli
- Separabilni kerneli
- Naivni Bayesov klasifikator

Neparametarska estimacija gustine verovatnoće

- Bayesova teorija odlučivanja je formalno definisala problem određivanja regiona odlučivanja i klasifikatora uz pretpostavku da je raspodela poznata
- Najčešće ne poznajemo pravu gustinu raspodele verovatnoće već se ona mora proceniti na osnovu eksperimentalnih podataka
 - Estimacija parametara
 - Neparametarska estimacija
- Neparametarska estimacija gustine raspodele verovatnoće
 - Nema pretpostavke o parametarskom obliku gustine raspodele verovatnoće
 - Postoje i metode čiji je cilj direktna klasifikacija bez eksplicitne estimacije gustine raspodele verovatnoće

Histogram

- Najjednostavniji metod neparametarske estimacije
 - Prostor uzoraka deli se na ćelije
 - Verovatnoća da će uzorak upasti u neku ćeliju aproksimira se relativnim brojem uzoraka iz skupa za obuku koji pripadaju posmatranoj ćeliji:

$$P \approx \frac{k_N}{N}$$

gde je k_N broj uzoraka u određenoj ćeliji a N ukupan broj uzoraka

□ Procenjena gustina raspodele verovatnoće je konstantna unutar ćelije širine *h*:

$$\hat{p}_H(x) \approx \frac{1}{h} \cdot \frac{k_N}{N}, |x - \hat{x}| \leq \frac{h}{2}$$

i konvergira ka pravoj gustini raspodele ako $h \to 0$, $k_N \to \infty$ i $k_N/N \to 0$ (što su logični uslovi)

Nedostaci histograma

- Izrazita zavisnost od veličine ćelije
 - Problem određivanja optimalne širine ćelije

Zavisnost od položaja prve ćelije

Kod višedimenzionalnih obeležja javlja se i zavisnost od orijentacije ćelije

Nedostaci histograma

- Diskontinuiteti u estimiranoj gustini raspodele verovatnoće
 - Artefakt histograma kao metode
- Problem kod prostora visoke dimenzionalnosti (eng. the curse of dimensionality)
 - Potreban je ogroman broj uzoraka da većina ćelija ne bi ostala prazna
 - Da bi se postigla podjednaka popunjenost prostora u d dimenzija potrebno je N^d uzoraka

 Zbog svih navedenih nedostataka primena histograma ograničena je uglavnom na brzu vizuelizaciju podataka (u jednoj ili dve dimenzije)

Opšta formulacija neparametarske estimacije GRV

Verovatnoća da će vektor x, izvučen iz raspodele p(x), upasti u određeni region R uzoračkog prostora u opštem slučaju iznosi:

$$P = \int_{R} p(\mathbf{x}) d\mathbf{x}$$

Neka je N vektora $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(N)}\}$ izvučeno iz raspodele. Verovatnoća da se k od ovih N vektora nađe u R data je binomnom raspodelom:

$$P[k] = {N \choose k} P^{k} (1-P)^{N-k}$$

Ako se količnik k/N posmatra kao slučajna promenljiva, može se pokazati da su njegova srednja vrednost i varijansa:

$$E\left(\frac{k}{N}\right) = P$$
, $Var\left(\frac{k}{N}\right) = E\left(\left(\frac{k}{N} - P\right)^2\right) = \frac{P(1-P)}{N}$

■ Dakle, kada $N \to \infty$, raspodela postaje oštrija (varijansa teži nuli), pa se može očekivati dobra estimacija verovatnoće P kao količnika broja uzoraka koji upadaju u region R i ukupnog broja uzoraka

Opšta formulacija neparametarske estimacije GRV

Uz pretpostavku da je R dovoljno malo tako da se $p(\mathbf{x})$ ne menja značajno unutar njega, važi:

$$P = \int_{R} p(\mathbf{x}) d\mathbf{x} \approx p(\mathbf{x}) \cdot V$$

gde je V zapremina regiona R, odakle se dobija:

$$\hat{p}(\mathbf{x}) = \frac{P}{V} = \frac{k_N}{NV}$$

- Ova estimacija postaje sve tačnija sa porastom N i smanjenjem V
- U praksi je veličina skupa uzoraka N fiksna
 - U cilju poboljšanja tačnosti estimacije $p(\mathbf{x})$, može se pustiti da se V približava nuli, ali bi onda region R postao tako mali da ne bi obuhvatao nijedan uzorak
 - U praksi se mora naći kompromisna vrednost za V, koja mora biti:
 - dovoljno velika da R obuhvati dovoljan broj uzoraka raspodele
 - dovoljno mala da bi važila pretpostavka da je p(x) konstantno unutar R

Opšta formulacija neparametarske estimacije GRV

Opšti izraz za neparametarsku estimaciju gustine verovatnoće je:

$$\hat{p}(\mathbf{x}) = \frac{k_N}{NV}$$

$$V - \text{zapremina koja obuhvata } \mathbf{x}$$

$$N - \text{ukupan broj uzoraka}$$

$$k_N - \text{broj uzoraka unutar } V$$

- U praktičnoj primeni ovog izraza postoje dva osnovna pristupa
 - Fiksirati zapreminu V i odrediti k_N na osnovu skupa uzoraka što se naziva metoda estimacije gustine raspodele verovatnoće pomoću kernela (eng. kernel density estimation – KDE)
 - □ Fiksirati vrednost k_N i odrediti odgovarajuću zapreminu oko tačke estimacije, čime se bavi metoda k najbližih suseda (eng. k nearest neighbors kNN)
- Estimacije $p(\mathbf{x})$ dobijene bilo kojom od ove dve metode (KDE i kNN) konvergiraju ka stvarnoj gustini raspodele verovatnoće kada $N \to \infty$, $V \to 0$, $k_N \to \infty$ i $k_N/N \to 0$

Estimacija GRV pomoću kernela (KDE)

- Svaki pojedinačni uzorak daje određeni doprinos ukupnoj estimiranoj GRV
- Procena GRV predstavljena je u vidu sume pojedinačnih tzv. kernel funkcija lociranih na mestima gde se nalaze pojedinačni uzorci
 - Histogram se može zamisliti kao KDE kod koje je svaki uzorak implicitno premešten u centar ćelije u kojoj se nalazi (što ne bi bilo opravdano)

- Na ovaj način prevazilazi se zavisnost histograma od položaja početne ćelije
 - Prikazani primer odnosi se na KDE korišćenjem tzv. Parzenovog (pravougaonog)
 prozora, gde je doprinos uzorka ukupnoj GRV isti na čitavom intervalu širine h

Parzenov prozor (kernel)

- Neka region R predstavlja D-dimenzionalnu hiperkocku stranice dužine h, sa centrom u tački estimacije x
 - □ Zapremina takve kocke je $V = h^D$
- Ako se sa K(u) označi jedinična hiperkocka centrirana oko koordinatnog početka (Parzenov prozor):

$$K(\mathbf{u}) = \begin{cases} 1, & |u_j| < 1/2, \forall j \in \{1,...,D\} \\ 0, & \text{drugde} \end{cases}$$

uzorak $\mathbf{x}^{(n)}$ pripada hiperkocki stranice h centriranoj oko \mathbf{x} ako i samo ako važi:

$$K\left(\frac{\mathbf{x}-\mathbf{x}^{(n)}}{h}\right)=1$$

Broj uzoraka unutar te hiperkocke je:

$$k_N = \sum_{n=1}^{N} K\left(\frac{\mathbf{x} - \mathbf{x}^{(n)}}{h}\right)$$

a procena GRV jednaka je:

$$\hat{\rho}_{KDE}(\mathbf{x}) = \frac{1}{N \cdot h^D} \sum_{n=1}^{N} K\left(\frac{\mathbf{x} - \mathbf{x}^{(n)}}{h}\right)$$

Parzenov prozor (kernel)

- Neka region R predstavlja D-dimenzionalnu hiperkocku stranice dužine h, sa centrom u tački estimacije x
 - □ Zapremina takve kocke je $V = h^D$
- Ako se sa K(u) označi jedinična hiperkocka centrirana oko koordinatnog početka (Parzenov prozor):

$$K(\mathbf{u}) = \begin{cases} 1, & |u_j| < 1/2, \forall j \in \{1,...,D\} \\ 0, & \text{drugde} \end{cases}$$

uzorak $\mathbf{x}^{(n)}$ pripada hiperkocki stranice h centriranoj oko \mathbf{x} ako i samo ako važi:

$$K\left(\frac{\mathbf{x}-\mathbf{x}^{(n)}}{h}\right)=1$$

Broj uzoraka unutar te hiperkocke je:

$$k_N = \sum_{n=1}^{N} K\left(\frac{\mathbf{x} - \mathbf{x}^{(n)}}{h}\right)$$

a procena GRV jednaka je:

$$\hat{\rho}_{KDE}(\mathbf{x}) = \frac{1}{N \cdot h^D} \sum_{n=1}^{N} K\left(\frac{\mathbf{x} - \mathbf{x}^{(n)}}{h}\right)$$

Parzenov prozor (kernel)

- Moguća je i alternativna interpretacija
 - Broj uzoraka koji upadaju u hiperkocku centriranu oko proizvoljne tačke x ujedno predstavlja broj hiperkocaka centriranih oko pojedinačnih uzoraka koje se preklapaju u tački x

Očekivanje KDE estimacije

Očekivana vrednost KDE estimacije je:

$$E(\hat{p}_{KDE}(\mathbf{x})) = \frac{E(k_N)}{N \cdot h^D} = \frac{1}{N \cdot h^D} \sum_{n=1}^{N} E\left(K\left(\frac{\mathbf{x} - \mathbf{x}^{(n)}}{h}\right)\right)$$

$$= \frac{1}{h^D} E\left(K\left(\frac{\mathbf{x} - \mathbf{x}^{(n)}}{h}\right)\right)$$

$$= \frac{1}{h^D} \int K\left(\frac{\mathbf{x} - \mathbf{x}'}{h}\right) p(\mathbf{x}') d\mathbf{x}'$$

$$= \frac{1}{h^D} K\left(\frac{\mathbf{x}}{h}\right) * p(\mathbf{x})$$

$$Konvolucija (podsećanje)$$

$$f(x) * g(x) = \int_{x} f(\xi) * g(x - \xi) d\xi$$

$$f(x) * g(x) = g(x) * f(x)$$

$$f(x) * A\delta(x - x_0) = Af(x - x_0)$$

■ KDE estimacija je pristrasna, jer $E(\hat{p}_{KDF}(\mathbf{x})) \neq p(\mathbf{x})$

Veza stvarne GRV i njene procene

- Očekivanje KDE estimacije je konvolucija stvarne GRV $p(\mathbf{x})$ i kernela
 - Konvolucija izaziva ublaženje naglih skokova u stvarnoj gustini raspodele,
 u meri određenoj vrstom i širinom kernela
 - \Box Za $h \rightarrow 0$ (u 1-D slučaju), kernel se približava Diracovom δ-impulsu:

$$\delta(x) = \begin{cases} \infty, & x = 0 \\ 0, & x \neq 0 \end{cases} \int_{-\infty}^{\infty} \delta(x) dx = 1$$

i estimacija postaje nepristrasna, ali se u praksi, za konačno N, estimacija pretvara u skup impulsa lociranih u tačkama skupa za obuku (što je loše)

- U opštem slučaju, za konačno N, p(x) se estimira kao suma konačnog broja prekidnih funkcija, pa je i sama estimacija prekidna funkcija
 - Ideja: korišćenje neprekidnih (glatkih) funkcija kao kernela

Primer

Na osnovu datog skupa uzoraka $X = \{x^{(1)}, x^{(2)}, ..., x^{(N)}\} = \{4, 5, 5, 6, 12, 14, 15, 15, 16, 17\}$ estimirati gustinu raspodele verovatnoće p(x) u tačkama x = 3, 10, 15 pomoću Parzenovih prozora širine h = 4.

Rešenje:

Glatki kerneli

- Izbor glatkog kernela umesto Parzenovog prozora:
 - Otklanja problem diskontinuiteta u proceni GRV
 - Omogućuje da se doprinosi različitih tačaka u okolini uzorka različito ponderišu
- Kernel K(x) mora zadovoljiti uslov:

$$\int_{R^D} K(\mathbf{x}) d\mathbf{x} = 1,$$

i obično se koriste glatke, radijalno simetrične i unimodalne funkcije kao što je Gaussova:

$$K(\mathbf{x}) = \frac{1}{(2\pi)^{D/2}} e^{-\frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{x}}$$

Izraz za procenu gustine verovatnoće ostaje nepromenjen:

$$\hat{\rho}_{KDE}(\mathbf{x}) = \frac{1}{N \cdot h^D} \sum_{n=1}^{N} K\left(\frac{\mathbf{x} - \mathbf{x}^{(n)}}{h}\right)$$

Predstavljanje KDE estimacije preko konvolucije

- Konvolucija u teoriji signala i sistema predstavlja vezu između pobude i odziva linearnog vremenski nepromenljivog sistema (filtra)
 - U slučaju Parzenovog prozora, $\hat{p}_{KDE}(\mathbf{x})$ se dobija kao odziv filtra sa pravougaonim impulsnim odzivom na pobudu u vidu niza δ-impulsa
 - U slučaju glatkog kernela, $\hat{p}_{KDE}(\mathbf{x})$ se dobija kao odziv filtra sa glatkim impulsnim odzivom na istu pobudu

- Izbor kernela određuje oblik modova (izbočina) u estimiranoj raspodeli
- Širina modova određena je širinom kernela (eng. kernel bandwidth)

Izbor širine kernela

- Izbor širine kernela je od suštinskog značaja za primenu KDE metode
 - Preuzak kernel daje estimaciju sa dosta (lažnih) modova, koja je teška za interpretaciju
 - Preširok kernel suviše izravnava estimaciju i skriva strukturu stvarne raspodele

Uticaj izbora širine kernela na procenu GRV

- Izbor širokog kernela
 - smanjuje varijansu jer su procene na različitim skupovima uzoraka međusobno slične
 - oxdot povećava pristrasnost jer prosek svih procena $\hat{
 ho}_{\scriptscriptstyle KDE}({f x})$ manje liči na stvarnu GRV
- Izbor uskog kernela
 - \Box smanjuje pristrasnost jer prosek svih procena $\hat{\rho}_{KDF}(\mathbf{x})$ više liči na stvarnu GRV
 - povećava varijansu jer su procene na različitim skupovima uzoraka značajno različite

Metode izbora širine kernela (1-D slučaj)

- Subjektivan izbor
 - □ Formirati procene za nekoliko vrednosti širine kernela i odabrati vrednost za koju se dobija procena koja najviše odgovara našim apriornim (subjektivnim) pretpostavkama
 - Ovaj pristup je teško primenljiv u slučaju višedimenzionalnih obeležja
- Za raspodele koje otprilike odgovaraju Gaussovim (unimodalne, simetrične, ne suviše izraženih "repova")
 - Bira se širina kernela koja minimizuje tzv. integralnu srednjekvadratnu grešku (MISE) u odnosu na Gaussovu raspodelu:

$$h_{OPT} = \underset{h}{\operatorname{arg\,min}} MISE\{\hat{p}_{KDE}(\mathbf{x})\} = \underset{h}{\operatorname{arg\,min}} E\left\{\int (\hat{p}_{KDE}(\mathbf{x}) - p(\mathbf{x}))^2 dx\right\}$$

- Za Gaussov kernel optimalna širina je $h_{OPT} = 1,06\sigma N^{-0,2}$ (Silvermanovo pravilo), gde je σ uzoračka standardna devijacija, a N broj uzoraka za obuku
- Za multimodalne raspodele bolje je koristiti modifikovanu formulu, koja se zasniva na robustnijoj meri rasipanja:

na robustnijoj meri rasipanja:

$$h_{OPT} = 0.92AN^{-0.2}, \qquad A = \min \left\{ \sigma, \frac{IQR}{1.32} \right\}$$

gde je σ uzoračka standardna devijacija, a IQR = Q3 – Q1 tzv. interkvartilni raspon (razlika između 75. i 25. percentila GRV)

Metode izbora širine kernela (1-D slučaj)

- Direktna procena GRV na osnovu maksimalne izglednosti sama po sebi ne dolazi u obzir zato što bi dala h_{ML} = 0, odnosno, procenu GRV činili bi δ-impulsi u tačkama iz skupa za obuku
 - Međutim, moguća je unakrsna validacija izglednosti (eng. likelihood cross-validation),
 pri čemu se maksimizuje pseudoizglednost, što je ukupna izglednost svih n uzoraka,
 ali je za svaki uzorak računata u odnosu na raspodelu procenjenu na preostalih N 1:

$$h_{MLCV} = \underset{h}{\operatorname{argmax}} \sum_{n=1}^{N} \ln p_{-n}(x^{(n)})$$

$$p_{-n}(x^{(n)}) = \frac{1}{(N-1)h} \sum_{\substack{m=1 \ m \neq n}}^{N} K\left(\frac{x^{(n)} - x^{(m)}}{h}\right)$$

Višedimenzionalni slučaj je znatno složeniji, pogotovo uzevši u obzir da su rasipanja po različitim dimenzijama u praksi različita, tako da širine kernela ne bi trebalo da budu iste po svim dimenzijama, tj. potreban je vektor širine kernela, a često i čitava kovarijansna matrica

Separabilni kerneli (eng. product kernels)

Jedan vrlo popularan metod za KDE u višedimenzionalnom prostoru obuhvata upotrebu separabilnih kernela, koji se mogu predstaviti kao proizvod jednodimenzionalnih kernela:

$$\hat{p}_{PKDE}(\mathbf{x}) = \frac{1}{N} \cdot \frac{1}{h_1 h_2 \dots h_D} \sum_{n=1}^{N} \prod_{d=1}^{D} K_d \left(\frac{X_d - X_d^{(n)}}{h_d} \right)$$

- Obično se ista funkcija $K_d(x)$ koristi za svaku dimenziju, a eventualno se razlikuju širine odgovarajućih 1-D kernela
- Određivanje širine kernela za svaku dimenziju može se izvršiti nekom od prethodno pomenutih metoda
- Separabilnost kernela ne implicira nezavisnost pojedinačnih obeležja
 - KDE metoda koja bi pretpostavljala nezavisnost obeležja imala bi sledeći oblik:

$$\hat{\rho}_{KDE_INDF}(\mathbf{x}) = \prod_{d=1}^{D} \frac{1}{Nh_d} \sum_{n=1}^{N} K_d \left(\frac{X_d - X_d^{(n)}}{h_d} \right)$$

Separabilni kerneli (primer 1)

Dvodimenzionalna unimodalna Gaussova raspodela, N = 100 uzoraka

Separabilni kerneli (primer 2)

Dvodimenzionalna bimodalna Gaussova raspodela, N = 100 uzoraka

Naivni Bayesov klasifikator

Bayesov klasifikator definisan je pravilom odlučivanja:

"dodeli **x** klasi
$$\omega_i$$
 ako je $g_i(\mathbf{x}) \ge g_j(\mathbf{x})$ za svako $j \ne i$ "

pri čemu su diskriminantne funkcije jednake $g_i(\mathbf{x}) = P(\omega_i | \mathbf{x}) \propto p(\mathbf{x} | \omega_i)P(\omega_i)$

- \Box P(ω_i) je u praksi definisano apriornim znanjem
- $p(\mathbf{x}|\omega_i)$ se estimira npr. pomoću KDE, što u visokodimenzionalnom prostoru obeležja može biti velik problem
- Naivni Bayesov klasifikator predstavlja veoma praktično pojednostavljenje Bayesovog klasifikatora
 - Pretpostavka je da su obeležja nezavisna u okviru iste klase:

$$p(\mathbf{x} \mid \omega_i) = \prod_{d=1}^{D} p_d(x_d \mid \omega_i)$$

što je mnogo manje striktno nego pretpostavka da su generalno nezavisna: $p(\mathbf{x}) = \prod_{d=1}^{D} p_d(x_d)$

- Glavna prednost ove metode leži u tome što je umesto višedimenzionalnih GRV $p(\mathbf{x}|\omega_i)$ dovoljno estimirati samo jednodimenzionalne GRV $p_d(x_d|\omega_i)$
 - Uprkos jednostavnosti, naivni Bayesov klasifikator ima veoma dobre perfomanse

Naivni Bayesov klasifikator (primer)

- Neka se razmatra Bayesov klasifikator čiji je zadatak klasifikacija D-dimenzionalnih vektora obeležja $\mathbf{x} = [x_1, ..., x_D]^T$ sa binarnim vrednostima $(x_i \in \{0, 1\}, i = 1, ..., D)$, i neka su verovatnoće da i-ta koordinata vektora \mathbf{x} bude jednaka $\mathbf{1}$ u pojedinim klasama jednake $P(x_i = 1 | \omega_1) = p_i$ i $P(x_i = 1 | \omega_2) = q_i$.
 - □ Po Bayesovom pravilu, dati vektor **x** klasifikuje se na osnovu odnosa izglednosti:

$$\Lambda(\mathbf{x}) = \frac{\mathsf{P}(\mathbf{x} \mid \omega_1)}{\mathsf{P}(\mathbf{x} \mid \omega_2)} \bigotimes_{\omega_2}^{\omega_1} \frac{\mathsf{P}(\omega_2)}{\mathsf{P}(\omega_1)}$$

- □ Međutim, bez pretpostavke o nezavisnosti u okviru pojedinih klasa, nastaje problem sa količinom potrebnih uzoraka za estimaciju $P(\mathbf{x}|\omega_i)$ jer \mathbf{x} može imati 2^D mogućih vrednosti, pa je za svaku klasu potrebno po $2^D 1$ pouzdanih estimacija
- Uz pretpostavku o nezavisnosti obeležja u okviru pojedinih klasa, odgovarajuće verovatnoće jednake su:

$$P(\mathbf{x} \mid \omega_{1}) = \prod_{i=1}^{D} p_{i}^{x_{i}} (1 - p_{i})^{1 - x_{i}}$$

$$P(\mathbf{x} \mid \omega_{2}) = \prod_{i=1}^{D} q_{i}^{x_{i}} (1 - q_{i})^{1 - x_{i}}$$

i broj potrebnih estimacija po klasi sada je D (umesto $2^D - 1$)

D = 3 (klasa ω_1)

Mogući ishodi (x)	P(x ω ₁)
000	0.10
001	0.15
010	0.10
001	0.25
100	0.05
101	0.05
110	0.20
111	0.10