Face Recognition

Prepared by: Group 07

Subject: Computer Vision Guided by: Dr. Mehul Raval Date: September 19, 2018 Ashna Jain (201501008) Dhruti Chandarana(201501015) Charmi Chokshi (201501021) Hena Ghonia (2015010132) Janvi Patel (201501072) Nishi Patel (201501076)

Problem Statement

- Performing face recognition on our class dataset using three different approaches,
 - Euclidean distance based matching
 - Using SVM classifier
 - Using Convolution Neural Network

which is robust to affine transformation (scaling, rotation, translation and illumination changes).

SIFT and HOG feature extraction

SIFT Feature Extraction:

- Detecting points of interest: key points in the SIFT framework
- Scale space extrema

$$\circ \quad D\left(x,y,\sigma
ight) =L\left(x,y,k_{i}\sigma
ight) -L\left(x,y,k_{j}\sigma
ight) ,$$

 Key Points Localization: Taylor series expansion

$$O D(\mathbf{x}) = D + \frac{\partial D^T}{\partial \mathbf{x}} \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \mathbf{x}$$

Hessian Matrix

$$O \quad \mathbf{H} = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix} \quad \mathbf{T_r}(\mathbf{H}) = D_{xx} + D_{yy} = \lambda_1 + \lambda_2; \operatorname{Det}(\mathbf{H}) = D_{xx}D_{yy} - D_{xy}^2 = \lambda_1\lambda_2$$

Orientation Assignment

HOG Feature Extraction:

- Preprocessing
- Calculating gradient images
- Calculating Histogram of Gradients
- Calculating HOG feature vector
- Block Normalization
- Multiclass sym

Approach 1: Support Vector Machine

SVM classification using SIFT and HOG feature extraction

keypoint localization

Eliminating edge responses

Input image

DOG Pyramid

Output

Testing on validation set

```
Actual label
['10' '11' '11' '11' '12' '13' '14' '14' '14' '15' '15' '15' '19' '19'
    '20' '2' '2' '3' '4' '4' '4' '4' '5' '5' '6' '7' '7' '7' '9' '9' '9']
predicted label
['10' '11' '11' '11' '12' '13' '14' '14' '14' '15' '15' '15' '11' '7' '7'
    '2' '2' '3' '4' '4' '4' '4' '5' '5' '6' '7' '7' '7' '9' '9' '9']
Recall= 0.9032258064516129
Precision = 0.8403225806451613
Accuracy: 90.32258064516128
```

When test images are real time images as well as rotated images

Approach: 2 Euclidean Distance based Matching

- Given a test image firstly, we are finding out feature vector of it.
- Then calculating distance from each image in dataset using matrix norm.
- Candidate image will be the one with minimum distance.
- For a single image,

$$x_i = \sqrt{\sum_i \sum_j (M_{ij} - V_{:j})^2}$$

M = Feature matrix of training dataset

V = Feature vector of test image

Results

feature Extraction

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
14.9374	11.2662	11.2399	13.2612	13.0906	11.5796	12.2061	12,3659	13.7217	14.7484	14.7609	13.8995	14.5415	14.2989	0	12.1521

Distance values for an image from the dataset

_																
ı	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Г	15.0770	10.8829	11.1403	13.1976	12.9437	11.5931	12.0871	12.1550	13.2061	13.5234	14.6621	13.9745	14.4750	14.2514	14.0849	11.9746

Distance values for an image which is not from the dataset

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
15.090	8 10.1955	10.4881	12.3749	12.1297	11.2895	11.8219	11.6852	12.7287	13.5656	14.4651	13.2522	14.8515	14.3105	13.9868	11.2655

Distance values for an rotated image (not from dataset)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
15.0908	10.1955	10.4881	12.3749	12.1297	11.2895	11.8219	11.6852	13.5719	12.7287	13.5656	14.4651	13.2522	14.8515	14.3105	13.9868

Distance values for an rotated image (from dataset)

Result Analysis:

- 100% accuracy for images from the dataset
- 66% accuracy for images which are not from the dataset.
 (total 21 images, 7 not from the dataset
 Total 10 subjects
 6- images normal
 1- rotated)

Results

Input Image

Image from Dataset

Image outside of Dataset Rotated Image from Dataset Rotated Image outside of Dataset

Convolutional Neural Network

- Preprocessing:
 - Face detection using Haar cascade classifier.
 - Files were renamed. For example 1_1.jpg,
 1_2.jpg... for individual.

- Convolutional layer-
 - Number of classes- 34 and 12 images of each individual
 - Kernel size for convolutional filter: 3x3.
 - Number of convolutional filters are taken as 32.
 - o Batch size: 32

Pooling Layer

Max Pooling with pooling size 2x2 Dropout regularization implemented where 25% of feature

are deleted. Adaptive moment estimation was used.

Layer (type) conv2d_3 (Conv2D) conv2d 4 (Conv2D) max pooling2d 2 (MaxPooling2 (None, 123, 123, 32) dropout 3 (Dropout) flatten 2 (Flatten)

activation 7 (Activation)

activation 8 (Activation)

Total params: 61,982,595 Trainable params: 61,982,595 Non-trainable params: 0

dense 3 (Dense)

dense 4 (Dense)

dropout 4 (Dropout)

is

(None, 248, 248, 32) activation 5 (Activation) activation 6 (Activation)

(None, 248, 248, 32) 0 (None, 246, 246, 32) 9248 (None, 246, 246, 32) 0 0 (None, 123, 123, 32) 0 (None, 484128) 0 (None, 128) 61968512 (None, 128) 0

Param #

320

0

0

4515

Output Shape

(None, 128)

(None, 34)

(None, 34)

Convolutional neural network

Training data accuracy - 97.40% Accuracy on validation set-74%

```
precision recall f1-score support
```

On testing data:

---→ avg / total

0.87

0.79

0.81

39

Conclusions

- System designed using Euclidean distance based matching is much robust to the transformation of image (value matrix norm increases).
- SIFT and HOG give better results as compared to other algorithms, in situation where there is huge difference in the orientation of the face.
- Approach based on CNN outperforms other techniques if the data size is large. But with small data size, traditional Machine Learning algorithms are preferable.
- Model Training time: a Deep Learning algorithm based algorithm may takes weeks or months whereas, traditional Machine Learning algorithms take few seconds or hours
- Model Testing time: DL takes much lesser time as compare to ML

References

- [1] David G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints": Computer Science Department, University of British Columbia, Vancouver, B.C., Canada, lowe@cs.ubc.ca; January 5, 2004
- [2] Coşkun, Musab, et al. "Face recognition based on convolutional neural network." *Modern Electrical and Energy Systems (MEES)*, 2017 International Conference on. IEEE, 2017.

Thank You