TTIC 31230, Fundamentals of Deep Learning

David McAllester, Winter 2020

Interpretable Latent Variables

Latent Variables

$$P_{\Phi}(y) = \sum_{z} P_{\Phi}(z) P_{\Phi}(y|z) = E_{z \sim P_{\Phi}(z)} P_{\Phi}(y|z)$$

Or

$$P_{\Phi}(y|x) = \sum_{z} P_{\Phi}(z|x) P_{\Phi}(y|z,x) = E_{z \sim P_{\Phi}(z|x)} P_{\Phi}(y|z,x)$$

Here z is a latent variable.

Interpretable Latent Variables

$$P_{\Phi}(y) = \sum_{z} P_{\Phi}(z) P_{\Phi}(y|z) = E_{z \sim P_{\Phi}(z)} P_{\Phi}(y|z)$$

Here we often think of z as the causal source of y.

For example z might be a physical scene causing image y.

Or z might be the intended utterance causing speech signal y.

In these situations a latent variable model should more accurately represent the distribution on y.

Interpretable Latent Variables

$$P_{\Phi}(y) = \sum_{z} P_{\Phi}(z) P_{\Phi}(y|z) = E_{z \sim P_{\Phi}(z)} P_{\Phi}(y|z)$$

 $P_{\Phi}(z)$ is called the prior.

Given an observation of y (the evidence) $P_{\Phi}(z|y)$ is called the posterior.

Variational Bayesian inference involves approximating the posterior.

Colorization with Latent Segmentation

$$x$$
 \hat{y} y Larsson et al., 2016

Colorization is a natural self-supervised learning problem — we delete the color and then try to recover it from the grey-level image.

Can colorization be used to learn segmentation?

Segmentation is latent — not determined by the color label.

Colorization with Latent Segmentation

x \hat{y} y Larsson et al., 2016

x is a grey level image.

y is a color image drawn from Pop(y|x).

 \hat{y} is an arbitrary color image.

 $P_{\Phi}(\hat{y}|x)$ is the probability that model Φ assigns to the color image \hat{y} given grey level image x.

Colorization with Latent Segmentation

$$\hat{x}$$
 \hat{y} y

$$P_{\Phi}(\hat{y}|x) = \sum_{z} P_{\Phi}(z|x) P_{\Phi}(\hat{y}|z,x).$$

input x

$$P_{\Phi}(z|x) = \dots$$
 semantic segmentation

$$P_{\Phi}(\hat{y}|z,x) = \dots$$
 segment colorization

Assumptions

We assume models $P_{\Phi}(z)$ and $P_{\Phi}(y|z)$ are both samplable and computable.

In other words, we can sample from these distributions and for any given z and y we can compute $P_{\Phi}(z)$ and $P_{\Phi}(y|z)$.

These are nontrivial assumptions.

A loopy graphical model is neither (efficiently) samplable nor computable.

Cases Where the Assumptions Hold

In CTC we have that z is the sequence with blanks and y is the result of removing the blanks from z.

In a hidden markov model z is the sequence of hidden states and y is the sequence of emissions.

An autoregressive model, such as an autoregressive language model, is both samplable and computable.

Image Generators

z $y_{\Phi}(z)$

We can generate an image y form noise z where $p_{\Phi}(z)$ and $p_{\Phi}(y|z)$ are both samplable and computable.

Typically $p_{\Phi}(z)$ is $\mathcal{N}(0,I)$ reshaped as z[X,Y,J]

Image Generators

 $y_{\Phi}(z)$

Our assumptions hold for image generators such as GANs, but z is typically viewed as "noise" and is not interpretable.

Modeling y

We would like to use the fundamental equation

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} \ E_{y \sim \operatorname{Pop}} - \ln P_{\Phi}(y)$$

But even when $P_{\Phi}(z)$ and $P_{\Phi}(y|z)$ are samplable and computable we cannot typically compute $P_{\Phi}(y)$.

Specifically, for $P_{\Phi}(y)$ defined by a generator we cannot compute $P_{\Phi}(y)$ for a test image y.

\mathbf{END}