This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-336751

(43)公開日 平成10年(1998)12月18日

(51) Int.Cl.⁶

H04Q 7/38

識別記号

FΙ

H04B 7/26

109N 109M

審査請求 未請求 請求項の数 6 OL (全 12 頁)

(21)出願番号

特顯平9-146935

(22) 出願日

平成9年(1997)6月4日

(71) 出願人 000003078

株式会社東芝

神奈川県川崎市幸区堀川町72番地

(72)発明者 農人 克也

神奈川県川崎市幸区小向東芝町1番地 株 二

式会社東芝研究開発センター内

(74)代理人 弁理士 須山 佐一

(54) 【発明の名称】 無線通信システム

(57)【要約】

【課題】 無線回線接続中の無駄な時間を省く。

【解決手段】この非対称無線伝送システムは、双方向無線通信チャネルを提供する狭帯域基地局3と、双方向無線通信チャネルを提供する広帯域基地局4とWWW サーバ5とをネットワーク1に接続したものであって、AWL端末2が起動したブラウザからのアクセスによってネットワーク1上のWWW サーバ5から広帯域基地局4が得たデータを下り専用の無線通信チャネルを利用してAWL端末2にダウンロードする場合、TCP終了毎にAWL端末2は狭帯域基地局3に回線切断要求を出しこの要求に対して狭帯域基地局3が各無線通信チャネルを解放(切断)する。また狭帯域基地局3は、ブラウザ起動中のAWL端末2の数に応じて無線通信チャネルをAWL端末に割り当てないことで送信バッファ42のオーバーフローを防止する。

【特許請求の範囲】

【請求項1】 ネットワークに接続され、ユーザに提供するためのさまざまなデータを格納した情報提供手段と、

前記ネットワークに接続され、自身のサービスエリア内 に存在する無線端末からの呼接続要求に対して自身と無 線端末との通信用に利用する第1の無線通信チャネルと 高速通信用の第2の無線通信チャネルとを割り当てて呼 接続する双方向無線通信手段と、

前記ネットワークに接続され、前記呼接続中に前記無線端末から所望のデータのダウンロード要求が発行された場合、前記情報提供手段から取得したデータを、前記第2の無線通信チャネルを利用して前記双方向無線通信手段に比べて十分高速な伝送速度で前記無線端末にダウンロードする下り専用無線通信手段と、

前記ダウンロード要求に対して前記下り専用無線通信手段によるデータのダウンロードが終了する毎に前記第1 および第2の無線通信チャネルを解放する手段とを具備 したことを特徴とする無線通信システム。

【請求項2】 ネットワークに接続され、ユーザに提供するさまざまなハイパーテキストデータをリンクして格納したウエッブサーバと、前記ネットワークに接続され、双方向無線通信チャネルを提供する狭帯域基地局と、前記ネットワークに接続され、前記双方向無線通信チャネルに比べてデータの伝送速度が十分高速な下り専用の無線通信チャネルを提供する広帯域基地局と、前記狭帯域基地局とは前記双方向無線通信チャネルを利用して主に各種要求の送受を行い、前記広帯域基地局とは前記下り専用の無線通信チャネルを利用して前記各種要求に対して前記ネットワークから前記広帯域基地局が得たデータのダウンロードを行う無線端末とを有する無線通信システムにおいて、

前記無線端末から前記ウエップサーバへアクセスする際 に行われたトランスポート制御プロトコルの接続フェー ズの終了をもって前記各無線通信チャネルを解放することを特徴とする無線通信システム。

【請求項3】 請求項2記載の無線通信システムにおいて

前記狭帯域基地局は、

前記無線端末がブラウザを起動しウエッブサーバにアクセスしホームページのデータをネットワークからダウンロードする際にトランスポート制御プロトコルによる接続を行い無線回線を接続するためにランダムアクセスする制御チャネルと、前記ブラウザを起動後に得たホームページからハイパーテキストアドレスを指定して所望のデータをダウンロードする際にトランスポート制御プロトコルによる接続を行い無線回線を接続するためにランダムアクセスする制御チャネルとを異ならせるように無線通信チャネルを割り当てることを特徴とする無線通信システム。

【請求項4】 請求項2記載の無線通信システムにおいて

前記無線端末が起動させたブラウザがトランスポート制御プロトコルの接続を行い無線通信チャネルの割り当て要求を行った場合、前記狭帯域基地局は、前記同様の手順で既に無線通信チャネルを割り当てている無線端末の数をチェックし、予め設定した閾値を越えている場合、前記無線通信チャネルの割当を拒否することを特徴とする無線通信システム。

【請求項5】 請求項2記載の無線通信システムにおいて、

前記無線端末が起動させたブラウザがトランスポート制御プロトコルの接続を行い無線通信チャネルの割り当て要求を行った場合、前記狭帯域基地局は、広帯域基地局の送信バッファに蓄積されているデータの残量をチェックし、予め設定した閾値を越えている場合、前記無線通信チャネルの割当を拒否することを特徴とする無線通信システム。

【請求項6】 請求項2記載の無線通信システムにおいて.

前記狭帯域基地局は、

前記無線端末がブラウザを起動して前記ウエッブサーバ へ新規にアクセスするときのランダムアクセスのリトラ イ回数の制限値と、前記ブラウザを起動後に前記ウエッ ブサーバにアクセスするときのランダムアクセスのリト ライ回数の制限値とをそれぞれ独立して設定したことを 特徴とする無線通信システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】マルチメディアの通信を行う 例えば簡易型携帯電話システムなどの無線通信システム に関する。

[0002]

【従来の技術】無線通信システムとして、例えば簡易型携帯電話システム(Personal Handy Phone system:PHS)等では、1995年より双方向無線チャネルを使用した音声通信サービスが開始され、また1996年には32kbps程度の通信速度のデータ通信サービスが開始されている。このデータ通信サービスは、従来の携帯電話等に比べて通信速度が速いため、インターネットへの接続も容易である。

【0003】一方、パソコン等によるインターネットへの接続は、WWW(World Wide Web)のブラウザ(閲覧/検索用ソフトウェア)を使用し公衆回線を通じて行われるが、このWWWのブラウザも日々改善され、音声データやテキストデータばかりでなく静止画や動画などのさまざなメディアのデータを扱えるようになって来た。

【0004】このような状況の中、近年では、PHS の無 線端末 (PHS 端末) にWWW のブラウザの機能を付加した ものも開発され、PHS 端末自体でインターネットへアク セスし所望のデータをダウンロードできるようになった。

【0005】ところで、PHS の通信速度は32Kbps程度であり、PHS 端末でインターネットにアクセスし、WWW から画像データ等のような重いデータをダウンロードする場合、多くの時間がかかることから、現在のPHS 等の伝送速度では、WWW のリンク機能等を十分にいかすことができない。

【0006】一般に、上りチャネルはユーザーのデータ 要求が主であり、下りチャネルは要求されたデータのダウンロードが主である。

【0007】そこで、現在のPHS の双方向無線チャネルに加え、サービスエリアがPHS より狭く、かつ十分高速な下りチャネルを付加した非対称無線伝送システムが提案されている(特願平7-074059)。

【0008】この非対称無線伝送システムは、上りチャネルの伝送速度がPHSの伝送速度(32Kbps程度)であるのに対して下りチャネルの伝送速度の方を例えば10Mbps等(PHSの伝送速度の300倍程度)に高速にしたものである。このようなシステムは、WWWのブラウザのようにネットワークに対してデータ要求を発行するだけで大量のデータをダウンロードするようなアプリケーションに適している。

【0009】ところで、この場合、上りチャネルに比べて下りチャネルが十分高速なため、所望のデータのダウンロード要求をかけると、軽いデータなどの場合、データのダウンロードが瞬時に終了してしまう。

【0010】しかしながら、従来の非対称無線伝送システムでは、オン・デマンド、つまりユーザからの要求に応じてデータがダウンロードされるため、ユーザがPHS端末の操作を行わない間は、無線回線が接続されているものの、有効なデータが送信されず、せっかくの高速の無線回線が無駄に占有されることになる。

[0011]

【発明が解決しようとする課題】このように従来の非対称無線伝送システムは、上りチャネルを32kbps程度の通常の速度の回線を使用し、下りチャネルを10Mbps程度の高速な回線を用いるので、ネットワークから主にデータをダウンロードするWWW ブラウザ等のアプリケーションを使用する上で適しているが、この場合、上り方向の通信、つまりアクセス(要求)に対して下り方向の通信、つまりデータのダウンロードが高速に行われるため、データがPHS 端末にダウンロードされた後、ユーザが次の操作をせずにいると、その間も無線回線は無駄に接続されたままであり、回線接続時間が無駄になるという問題があった。

【0012】また、回線接続中は、無線回線の限りあるスロットのうち、一人のユーザが1つのスロットを占有してしまうため、システム全体としてユーザ収容量も限られるという問題があった。

【0013】さらに、接続する無線端末が増加するのに 伴いダウンロードするデータ量が大きくなると、下りチャネルの広帯域基地局内に設けられている一定容量の送 信バッファがオーバーフローし、正常なダウンロード制 御ができなくなるという問題がある。

【0014】本発明はこのような課題を解決するためになされたもので、ブラウザ使用時の無駄な回線接続時間を省くことのできる無線通信システムを提供することを目的としている。

【0015】またダウンロード制御に支障をきたすことなくシステムの無線端末(ユーザ)の収容量を増加することのできる無線通信システムを提供することを目的としている。

[0016]

【発明を解決するための手段】上記した目的を達成する ために、請求項1記載の発明の無線通信システムは、ネ ットワークに接続され、ユーザに提供するためのさまざ まなデータを格納した情報提供手段と、前記ネットワー クに接続され、自身のサービスエリア内に存在する無線 端末からの呼接続要求に対して自身と無線端末との通信 用に利用する第1の無線通信チャネルと高速通信用の第 2の無線通信チャネルとを割り当てて呼接続する双方向 無線通信手段と、前記ネットワークに接続され、前記呼 接続中に前記無線端末から所望のデータのダウンロード 要求が発行された場合、前記情報提供手段から取得した データを、前記第2の無線通信チャネルを利用して前記 双方向無線通信手段に比べて十分高速な伝送速度で前記 無線端末にダウンロードする下り専用無線通信手段と、 前記ダウンロード要求に対して前記下り専用無線通信手 段によるデータのダウンロードが終了する毎に前記第1 および第2の無線通信チャネルを解放する手段とを具備 したことを特徴としている。

【0017】この請求項1記載の発明の場合、無線端末、からの呼接続要求で呼接続を行い、ダウンロード要求に対して下り専用無線通信手段によるデータのダウンロードが終了する毎に第1および第2の無線通信チャネルを解放するので、次にユーザがハイパーテキストのアイコンを操作するまでのデータ送受信が行われない回線接続時間を削減することができる。

【0018】請求項2記載の発明の無線通信システムは、ネットワークに接続され、ユーザに提供するさまざまなハイパーテキストデータをリンクして格納したウエッブサーバと、前記ネットワークに接続され、双方向無線通信チャネルを提供する狭帯域基地局と、前記ネットワークに接続され、前記双方向無線通信チャネルに比べてデータの伝送速度が十分高速な下り専用の無線通信チャネルを提供する広帯域基地局と、前記狭帯域基地局とは前記双方向無線通信チャネルを利用して主に各種要求の送受を行い、前記広帯域基地局とは前記下り専用の無線通信チャネルを利用して前記各種要求に対して前記ネ

ットワークから前記広帯域基地局が得たデータのダウンロードを行う無線端末とを有する無線通信システムにおいて、前記無線端末から前記ウエッブサーバへアクセスする際に行われたトランスポート制御プロトコルの接続フェーズの終了をもって前記各無線通信チャネルを解放することを特徴としている。

【0019】この請求項2記載の発明の場合、ネットワーク上のウエップサーバより無線端末がデータをダウンロードする際、無線端末がトランスポート制御プロトコル、つまりTCPのコネクションを接続している間のみ無線回線を接続し、TCPのコネクションを接続していない間は無線回線を解放する。

【0020】すなわち、無線端末が狭帯域基地局と無線回線を接続し、ネットワーク上のウエッブサーバにアクセスする際に、無線端末がTCPのコネクションを接続している間は無線回線を接続し、TCPのコネクションの終了をもって無線回線を解放するので、無線回線の解放中は他の無線端末がウエッブサーバにアクセスできるようになり、実際の無線通信チャネルの数よりも多くの無線端末(ユーザ)を収容することができる。

【0021】請求項3記載の発明の無線通信システムは、請求項2記載の無線通信システムにおいて、前記狭帯域基地局は、前記無線端末がブラウザを起動しウエッブサーバにアクセスしホームページのデータをネットワークからダウンロードする際にトランスポート制御プロトコルによる接続を行い無線回線を接続するためにランダムアクセスする制御チャネルと、前記ブラウザを起動後に得たホームページからハイパーテキストアドレスを指定して所望のデータをダウンロードする際にトランスポート制御プロトコルによる接続を行い無線回線を接続するためにランダムアクセスする制御チャネルとを異ならせるように無線通信チャネルを割り当てることを特徴としている。

【0022】請求項4記載の発明の無線通信システムは、請求項2記載の無線通信システムにおいて、前記無線端末が起動させたブラウザがトランスポート制御プロトコルの接続を行い無線通信チャネルの割り当て要求を行った場合、前記狭帯域基地局は、前記同様の手順で既に無線通信チャネルを割り当てている無線端末の数をチェックし、予め設定した閾値を越えている場合、前記無線通信チャネルの割当を拒否することを特徴としている。

【0023】この請求項4記載の発明の場合、無線端末が起動させたブラウザがトランスポート制御プロトコルの接続を行い無線通信チャネルの割り当て要求を行った場合、狭帯域基地局が、上記同様の手順で既に無線通信チャネルを割り当てている無線端末の数をチェックし、閾値を越えている場合、割り当て要求を発行した無線端末に対する無線通信チャネルの割当を行わないので、ブラウザ(無線端末)からウエッブサーバへのアクセスを

禁止でき、ウエッブサーバから広帯域基地局へ新たなデータが蓄積されなくなり、広帯域基地局の送信バッファのオーバーフローを防止することができる。

【0024】請求項5記載の発明の無線通信システムは、請求項2記載の無線通信システムにおいて、前記無線端末が起動させたブラウザがトランスポート制御プロトコルの接続を行い無線通信チャネルの割り当て要求を行った場合、前記狭帯域基地局は、広帯域基地局の送信バッファに蓄積されているデータの残量をチェックし、予め設定した閾値を越えている場合、前記無線通信チャネルの割当を拒否することを特徴としている。

【0025】この請求項5記載の発明の場合、無線端末が起動させたブラウザがトランスポート制御プロトコルの接続を行い無線通信チャネルの割り当て要求を行った場合、狭帯域基地局は、広帯域基地局の送信バッファに蓄積されているデータの残量をチェックし、閾値を越えている場合、割り当て要求を発行した無線端末に対する無線通信チャネルの割当を行わないので、無線端末からウエッブサーバへのアクセスを禁止でき、ウエッブサーバから広帯域基地局へ新たなデータが蓄積されなくなり、送信バッファのオーバーフローを防止することができる。

【0026】請求項6記載の発明の無線通信システムは、請求項2記載の無線通信システムにおいて、前記狭帯域基地局は、前記無線端末がブラウザを起動して前記ウエッブサーバへ新規にアクセスするときのランダムアクセスのリトライ回数の制限値と、前記ブラウザを起動後に前記ウエッブサーバにアクセスするときのランダムアクセスのリトライ回数の制限値とをそれぞれ独立して設定したことを特徴としている。

【0027】この請求項6記載の発明の場合、多くの無線端末から狭帯域基地局にほぼ同時にランダムアクセスがあったときにアクセス要求の衝突が発生する。この際には狭帯域基地局は各無線端末に対してリトライさせるが、各無線端末からアクセスしたブラウザの内容、つまりブラウザ起動時のホームページのダウンロードか、ブラウザ起動中の所望のハイパーテキストのアイコンのクリックによるデータのダウンロードかを識別して、それぞれの優先順にアクセスさせることができる。例えばブラウザ起動時の方を優先させるようにブラウザ起動後(ブラウザ起動中)のものよりもリトライ回数を多く設

(ブラウザ起動中)のものよりもリトライ回数を多く設定することにより、ブラウザ起動時のアクセスが成功する確率が高くなり、負荷の分散化/均等化を図ることができる。

[0028]

【発明の実施の形態】以下、本発明の実施の形態を図面 を参照して詳細に説明する。

【0029】図1は本発明の無線通信システムに係る一つの実施形態の非対称無線伝送システムの概略構成を示す図、図2は図1の非対称無線伝送システムの広帯域基

地局の構成を示す図である。

【0030】図1において、1はネットワークである。 このネットワーク1には、AWL 端末2との双方向無線通 信インターフェース、例えば数十Kbps程度の低速な無線 伝送速度の無線通信機能を持つ狭帯域基地局3と、基地 局 4→AWL 端末への下り方向専用の高速無線通信インタ ーフェース、例えば10Mbps程度の高速な無線伝送速度の 無線通信機能を持つ広帯域基地局4と、AWL 端末2を所 持するユーザが加入している電話会社、プロバイダ等を 介してアクセスが可能な情報提供手段としてのワールド ・ワイド・ウエッブ (World Wide Web) サーバ5 (以下 WWW サーバ5と称す)とが接続されている。双方向とは AWL 端末 2 →基地局 3 間 (上り方向) および基地局 3 → AWL 端末2間(下り方向)をいう。狭帯域基地局3は例 えば簡易型携帯電話システム(Personal Handy Phone sy stem:PHS) の無線通信機能 (1.9GHz程度の搬送周波数に データを時分割多重する機能など)を有している。ま た、広帯域基地局4は例えば2~30GHz 程度の搬送周波 数にデータを時分割多重する機能を有している。WWW サ ーバ5には、さまざまなハイパーテキストデータが格納・ されている。

【0031】なお、このように双方向の低速無線チャネ ルと下り方向の広帯域無線チャネルとを使ったデータ伝 送を非対称無線伝送 (Asymmetric Wireless Link:AWL) と呼び、下り方向の広帯域無線チャネルをAWL チャネル という。このAWL 端末2はアプリケーションソフトウェ アとしてWWW のブラウザ(閲覧/検索用ソフトウェア) を内部のROMなどに格納しており、ネットワーク1に 接続する際にはこのブラウザを起動し、このブラウザの 制御の元でネットワーク1にアクセスずる。つまりAWL 端末2はブラウザ起動に伴い自身から回線接続要求を発 行し、狭帯域基地局3からPHS チャネルとAWL チャネル の組みのデータ (割り当てスロット番号)を受信してそ れぞれの基地局3、4と無線回線を確立する無線通信機 能、表示画面上に各種情報を表示しキーパットへの指示 で各種情報を処理する情報処理機能とを有する携帯型情 報端末である。

【0032】すなわち、このAWL 端末2はブラウザ起動後、上記狭帯域基地局3との制御情報(呼接続要求、アクセス要求、各通信スロットの割り当て通知など)のやり取りで呼接続しネットワーク1を介してWWW サーバ5にアクセスし、WWW サーバ5から広帯域基地局4を通じてホームページ(Web ページ)のデータをダウンロードした後、表示画面上に表示されたホームページ画面内の所望のハイパーテキストのアイコンがユーザによってクリックされたことで、そのハイパーテキストのアドレスを指定し、ブラウザが有する閲覧/検索/リンク機能によってさまざまな情報をWWW サーバ5から広帯域基地局4を通じてダウンロードすることができる。

【0033】図2に示すように、上記広帯域基地局4

は、自身をネットワーク1に接続するためのネットワークアダプタ41、送信バッファ42、データリンク部43、誤り訂正検出用符号化部44、ベースパンドモデム部45、RF部46、アンテナ47および制御部48などから構成されている。送信パッファ42はネットロク1から得たデータを一時的に蓄積し、AWL端末2にものである。データリンク部43はデータを読み出すののも、当びでデータリンクのものである。誤り訂正検出用符号化部44はデータののものである。誤り訂正検出用符号化部44はデータの設立のである。RF部46はベースパンドモデム部45はフレーム単位のデータを送信する際にQPSK変調するものである。RF部46はベースパンドモデム部45で変調された信号をRF信号に変換(周波数変調および増幅)しアンテナ47から送信するものである。

【0034】続いて、図3を参照してこの非対称無線伝送システムの動作を説明する。

【0035】図3はAWL端末がWWWのブラウザを起動し回線を接続するシーケンスを示す図である。

【0036】同図に示すように、この非対称無線伝送システムの場合、ユーザがAWL端末2のユーザインターフェース(タッチ入力画面やキーパットなど)を操作してWWWのブラウザを起動すると、AWL端末2は、起動したブラウザの制御によりAWLチャネルの回線を接続するために上りのランダムアクセスチャネルで狭帯域基地局3にランダムアクセスし、AWLチャネルの回線接続要求を狭帯域基地局3に送信する。

【0037】狭帯域基地局3では、AWL 端末2がランダムアクセスに成功すると、AWL 端末2に対するAWL の回線の割り当てを行い、その回線割り当てを受けたAWL 端末2が広帯域基地局4とAWL の回線接続を行う。

【0038】AWL の回線が接続されると、以降、ネットワーク1上での(Transport Control Protcol :TCP)のコネクションのフェーズに移り、TCP のコネクションが関始される。

【0039】そして、SYN の送受信とack の返信により TCP のコネクションが張られると、続いてWWW のプロトコルであるHypertext Transfer Protcol (以下HTTPと称す) のコネクションのフェーズに移り、HTTPのコネクションが開始される。

【0040】そして、HTTPのコネクションが張られると、そこで初めてWWW サーバ5からホームページのデータが広帯域基地局4の送信バッファ42に蓄積後、割り当てられた通信スロットのタイミングでAWL 端末2にデータのダウンロードが行われる。 ホームページのダウンロードが終了し、HTTPのシーケンスが終了すると、TCPにおいてFINとack of FINの送受が行われ、この結果、TCPのコネクションが切断され、このTCPのシーケンスが終了すると、AWL 端末2はこのTCP終了をトリッガとして、AWL チャネルの切断要求を狭帯域基地局3に

送信し、それが狭帯域基地局3に受信されると、狭帯域基地局3がAWL チャネルの割り当てを解除し、広帯域基地局4とAWL 端末2とのAWL チャネルによる通信が断たれる。

【0041】以降、AWL チャネルは他のAWL 端末2に解放されるが、AWL 端末2においてブラウザは起動したままである。

【0042】したがって、AWL 端末2において、起動しているブラウザの制御で表示画面上に表示されているたホームページをユーザが見て、所望のデータを要求するためにホームページ内のハイパーテキストのアイコンをクリックすると、上記同様にHTTPを起動し、TCP を起動した後、AWL 端末2がAWL チャネルを獲得し、回線接続した上でTCP のコネクションを張り、HTTPのプロトコルにより所望のデータをダウンロードし、TCP を切断し、AWL チャネルを解放する。

【0043】このようにTCP のコネクションを張る毎に、AWL チャネルの回線を接続し、TCP のコネクションを切断する毎にAWL チャネルの回線を解放することで、AWL チャネルの回線の接続時間が最小で済み、しかも、回線解放期間は他のAWL 端末が通信チャネルを利用できるので、限られた通信チャネル以上にユーザを収容し、他の多くのAWL 端末2でAWL チャネルを共有することができる。

【0044】次に、図4、図5を参照してAWL チャネルの回線接続を要求するためのランダムアクセスの動作について説明する。なお双方向の狭帯域チャネルをPHS とした例で説明する。図4は一般的なPHS のTDMA/TDD方式のスロットの構成を示す図、図5はブラウザ起動時とブラウザ起動後とで異なるように割り当てられた制御スロットを示す図である。

【0045】図4に示すように、一般に、PHSのTDMA/TDDのスロットは、5msecの1つのフレームが8個のスロットから構成されている。8個のスロットのうち、下り方向の通信を行うために4つのスロットを使用し、上り方向の通信を行うために4つスロットを使用する。上り方向の4つのスロットおよび下り方向の4つのスロットのうち、いずれか1つのスロットを制御チャネルとして使用している。上り制御スロットの割り当て方としては、5通りある。

【0046】例えば上り方向の4つのスロットのうち、第1スロットをすべて制御スロットとして割り当てるとすると、下り制御チャネルの報知チャネルのスロットから2.5msec後の上り制御チャネルを、上り制御チャネルの第1スロットとし、以後、第2スロット、第3スロットと割り当てて行く。

【0047】この実施形態の非対称無線伝送システムでは、ブラウザを起動するときのTCPの確立によるランダムアクセスを行うスロットと、ブラウザ起動後に得たホームページ内のハイパーテキストのアイコンがクリック

されたときのTCP の確立のためのランダムアクセスを行うスロットとを割り当てたスロットの番号でグループ分けする。

【0048】例えば図5に示すように、第1スロット、第5スロット、第9スロットおよび第13スロットというように4スロットおきのスロットをブラウザ起動時のランダムアクセス用に使用し、その間に存在する残りの3つの上り制御スロットをブラウザ起動後のランダムアクセス用に使用する。

【0049】インターネット通信を行う上では、一度ブラウザを起動すると、他のブラウザを起動してブラウザを代えること少なく、リンクされたすべてのデータをダウンロードするまで1つのブラウザで行うことが一般的であり、ブラウザを起動する頻度よりもブラウザを起動してからハイパーテキストをクリックする頻度の方が大きい。

【0050】したがって、上述したようにブラウザ起動後のランダムアクセスのスロット数を多くし、さらにブラウザ起動時のランダムアクセスのスロットと分ける。 【0051】これにより、ランダムアクセスの負荷を分散させることができ、ランダムアクセスをより多く成功させることが可能になる。またブラウザの起動時と起動後とで要求が入るスロットが完全に分離されるので、要求の衝突がなくなり、例えばブラウザの起動時のランダムアクセスが、既に起動しているブラウザのランダムアクセスによって妨げられることがなくなる。

【0052】次に、広帯域基地局4の動作を説明する。 【0053】AWL 端末2において、ハイパーテキストの アイコンがクリックされ、所望のデータのダウンロード 要求があると、その要求は狭帯域基地局3およびネット ワーク1を介してWWW サーバ5に通知される。そして、 WWW サーバ5のデータは、ネットワーク1経由で広帯域 基地局4に送られ、ネットワークアダプタ41を介して 送信バッファ42に蓄積される。この送信バッファ42 には下り広帯域の無線チャネルでデータが送信可能にな るまで蓄積される。

【0054】そして、下り広帯域無線チャネルでデータが送信可能になると、データリンク部43により送信バッファ42のデータがデータリンクのフレーム単位に分割されて、フレーム毎にデータリンクヘッダが付加される。

【0055】次に、フレーム毎のデータは、誤り訂正・ 検出用符号化部44で誤り訂正された後、符号化されて ベースバンドモデム部45に出力され、ベースバンドモ デム部45で変調され、RF部46で周波数変調された 後、アンテナ47から送信される。

【0056】ところで、同じサービスエリア内のAWL端末2からデータ要求が数多くあると、高速な伝送速度を有する広帯域基地局4では、送信バッファ42のデータ容量が限度を越え、オーバーフローし、所望のデータの

ダウンロードが正常に行われなくなってしまう。

【0057】そこで、これを防ぐためにブラウザを起動できるユーザ数を制限する。

【0058】例えば図6に示すように、ユーザがAWL端末2を操作しブラウザを起動すると、ブラウザがHTTPの起動・TCPの起動を行い、ランダムアクセスを行う。

【0059】AWL 端末2が狭帯域基地局3とのランダムアクセスに成功すると、AWL 端末2から狭帯域基地局3へAWL 回線割り当て要求が発行される。

【0060】このAWL 回線割り当て要求が狭帯域基地局3に受信されると、狭帯域基地局3では、既にブラウザを起動しているユーザ数(端末数)をチェックし、ユーザ数(端末数)が予め定められた数に達しているか否か(越えているか否か)が判定される。なお予め設定するユーザ数は通信するメディアの種類やシステムの規模、送信バッファ42の容量等によって決める。

【0061】そして、既にブラウザを起動しているユーザ数が予め定められた数に達していた場合、狭帯域基地局3はAWL端末2に回線割り当て不可のメッセージを送ってする。

【0062】この回線割り当て不可のメッセージをAWL端末2が受信すると、AWL端末2は、回線割当が行われなかったので、新規のブラウザの起動ができない。

【0063】このようにして広帯域下り回線の負荷を調節する。

【0064】続いて、図7を参照して上記以外の方法について説明する。

【0065】図7に示すように、この場合、ユーザがブラウザによって表示された表示画面上のハイパーテキストのアイコンをクリックすると、AWL 端末2からHTTPの起動・TCP の起動、ランダムアクセスが行われる。そして狭帯域基地局3との間でランダムアクセスが成功すると、AWL 端末2から狭帯域基地局3へAWL 回線割り当て要求が送信される。

【0066】ここで、狭帯域基地局3がAWL 回線割り当て要求を受信すると、それをネットワーク1を通じて広帯域基地局4に通知する。すると、広帯域基地局4は既に送信バッファ42に蓄積されているデータの蓄積量と予め定めておいた制限値(閾値)とを比較する。

【0067】そして、送信バッファ42に蓄積されているデータの蓄積量が制限値(閾値)よりも多い場合、広帯域基地局4は狭帯域基地局3にAWL 回線割当不可であることを通知し、狭帯域基地局3は、AWL 端末2にAWL回線割当不可のメッセージを返信する。

【0068】これにより、AWL 端末2にはAWL 回線が接続されず、データのダウンロードを行うことができない。したがって、広帯域基地局4内の送信バッファ42がオーバーフローせずに済む。なお、上記の例では、送信バッファ42内のデータの蓄積量と制限値(閾値)とを比較したが、送信バッファ42全体でデータを蓄積可

能な残りの容量(残容量)と閾値とを比較しても良い。 この場合、送信バッファ42の残容量が閾値よりも少な い場合にAWL 回線割当不可とする。

【0069】次に、図8を参照して複数のAWL 端末のリトライ回数を個々に制限する動作について説明する。

【0070】この場合、狭帯域基地局3には、AWL 端末2がブラウザを起動してWWW サーバ5へ新規にアクセスするときのランダムアクセスのリトライ回数の制限値と、ブラウザを起動後にWWW サーバ5にアクセスするときのランダムアクセスのリトライ回数の制限値とをそれぞれ独立して設定する機能を持たせる。

【0071】狭帯域基地局3には、ブラウザ起動時のランダムアクセスによる最大リトライ回数を例えば10回、ブラウザ起動後のハイパーテキストのアイコンクリックによるランダムアクセスの最大リトライ回数を例えば3回などと設定する。

【0072】例えば図8に示すように、AWL 端末3 が新規にブラウザを起動し、双方向チャネルの上り無線チャネルでランダムアクセスを行ったとき、既にブラウザ起動中のAWL 端末1 においてユーザが所望のハイパーテキストをクリックし双方向チャネルの上り無線チャネルでAWL 端末3 と同時にランダムアクセスを行った場合、アクセスが衝突する(801)。アクセスが衝突すると、スロットが割り当てられないため、無線回線は接続されず、回線接続失敗となる。

【 0 0 7 3 】 そこで、それぞれのAWL 端末1 、AWL 端末 3 は個々に時間を空けてリトライする。

【0074】そして、AWL 端末3 から1回目のリトライを行ったとき、たまたま既にブラウザ起動中のAWL 端末2 においてユーザが所望のハイパーテキストをクリックしランダムアクセスを行うと、ここでもアクセスが衝突し(802)、今度も回線接続失敗となる。

【0075】このようにリトライ動作を続けると、AWL端末1とAWL端末2とがブラウザ起動後のランダムアクセスなので、狭帯域基地局3はこれらのAWL端末1とAWL端末2のリトライ回数が設定値である3回を越えた場合、リトライを終了させ(ブロッキング)、リトライ動作によるデータのダウンロードを行わせないようにする。したがって、以降は、各AWL端末1、AWL端末2のユーザがハイパーテキストのアイコンを再度クリックすることで各ブラウザが狭帯域基地局3とランダムアクセスすることになる。

【0076】一方、AWL 端末3 はブラウザ起動時のランダムアクセスなので、狭帯域基地局3はAWL 端末3 に3回目のリトライ以降もリトライさせる(10回まで)。 【0077】AWL 端末1 とAWL 端末2 が既にブロッキングされているため、AWL 端末3 は4回目のリトライで狭帯域基地局3とのアクセスが成功する(803)。

【0078】このように狭帯域基地局3は各AWL 端末1 ~AWL 端末3 に対してリトライさせる際に、各AWL 端末 1 ~AWL 端末3 からアクセスしたブラウザの内容、つまりブラウザ起動時のホームページのダウンロード要求か、ブラウザ起動中における表示画面上の所望のハイパーテキストのアイコンのクリック操作によるデータのダウンロード要求かを識別し、それぞれに応じて設定したリトライ回数でリトライさせるので、ブラウザの状態によって優先度を決めることができる。

【0079】この例のように新規にブラウザを起動した AWL 端末3 のリトライ回数の制限値を他のAWL 端末1、 AWL 端末2 よりも多く設定しておくことで、ブラウザ起動時のアクセスが成功する確率が高くなりホームページのダウンロードを優先的に行わせることができる。通常、既にブラウザが起動中に行われるアクセスに比べて初回のホームページのダウンロードの方が操作が煩雑でアクセスの重要度が高いため、このように設定した方が良好なパフォーマンスを得ることができる。また、それぞれのAWL 端末1 ~AWL 端末3 毎に独立してトライ回数を設定することにより、負荷の分散化/均等化を図ることができる。

【0080】このようにこの実施形態の非対称無線伝送システムによれば、無線端末2から狭帯域基地局3を通じてネットワーク1上のWWW サーバ5にアクセスする場合、狭帯域基地局3において、TCP のコネクションが接続されている間のみAWL チャネルの回線を接続する呼制御を行うので、無線回線を接続したままユーザからの要求を待つような無駄な時間を省くことができる。またTCPの終了をもってAWLチャネルの無線回線が解放(切断)されるので、無線回線解放中は他の無線端末2がWWWサーバ5にアクセスすることができ、無線通信チャネル数、つまりPHSで設定されている1フレーム中の通信スロット数以上の無線端末(ユーザ)をシステムに収容することができる。

【0081】また、狭帯域基地局3では、TCPの確立によるランダムアクセスを行う制御スロットをスロット番号でグループ分けし、ブラウザ起動時の制御スロットよりもブラウザ起動後の制御スロットのほうを多く割り当てるので、ランダムアクセスの負荷を分散させることができる。またブラウザの起動時と起動後とで要求が入る制御スロットを完全に分離したので、ブラウザの起動時のランダムアクセスが、既に起動しているブラウザのランダムアクセスによって妨げられることがなくなる。

【0082】また、無線端末2から狭帯域基地局3へアクセス要求があると、狭帯域基地局3は既にブラウザがアクセスしている無線端末数(ユーザ数)をチェックして広帯域基地局4の送信バッファ42がオーバーフローしそうな場合は無線端末2へのAWLチャネルの割り当てを行わない(拒否する)ので、ブラウザによるWWWサーバ5への新規のアクセスができなくなり、広帯域基地局4の送信バッファ42がオーバーフローすることを未然に防ぐことができる。また、これ以外の方法として、無

線端末2から狭帯域基地局3へアクセス要求があったときに、狭帯域基地局3は広帯域基地局4の送信バッファ42自体のデータの残量をチェックし、予め定めた制限値よりも多い場合に無線端末2へのAWLチャネルの割当を行わない(拒否する)ので、上記同様に広帯域基地局4の送信バッファ42がオーバーフローすることを未然に防ぐことができる。

【0083】さらに狭帯域基地局3において、TCPの確立による無線端末2からのランダムアクセスのリトライ回数を、ブラウザ起動時のアクセスとブラウザ起動後のアクセスとでそれぞれ独立して設定することで、ランダムアクセスの負荷を分散させることができる。例えばブラウザ起動時よりもブラウザ起動後のリトライ回数を少なく設定すれば、異なる無線端末2からの要求の衝突が発生した場合、ハイパーテキストのクリックによるデータダウンロード要求よりもブラウザ起動時のホームページのダウンロードが優先されるようになる。

【0084】なお、上記実施形態では、狭帯域基地局と 広帯域基地局というように基地局を2つの筺体に分けた ものを例にしたが、狭帯域基地局と広帯域基地局とを同 一の筺体としても良い。

[0085]

【発明の効果】このように本発明によれば、トランスポート制御プロトコル、つまりTCP を接続している間のみ呼を接続しTCP の終了をもって呼を解放するので、呼の解放中は他の無線端末がアクセスできるようになり、実際の無線通信チャネル(スロット)の数よりも多くの無線端末(ユーザ)を収容することができる。

【0086】また、無線端末からの無線通信チャネル割り当て要求に対して、広帯域基地局の送信バッファがオーバーフローしそうなときは、狭帯域基地局が割り当て要求を出した無線端末に無線通信チャネルの割当を行わないので、広帯域基地局の送信バッファのオーバーフローを未然に防止することができる。

【0087】この結果、ブラウザ使用時の無駄な回線接続時間を省くことができる。また、ダウンロード制御に支障をきたすことなくシステムのユーザ収容量を増加することができる。

【図面の簡単な説明】

【図1】本発明に係る一つの実施形態の非対称無線伝送システムの構成を示す図。

【図2】図1の非対称無線伝送システムの広帯域基地局の構成を示す図。

【図3】この非対称無線伝送システムの動作を示すシーケンス図。

【図4】一般的なTDMA-TDDのスロット構成を示す図。

【図5】ブラウザの起動時と起動後とで異なる制御スロットを割り当る際の概念図。

【図6】無線端末からの新規のアクセスを制限する通信 -

シーケンスの一例を示す図。

【図7】図6の例以外に無線端末からの新規のアクセスを制限する通信シーケンスを示す図。

【図8】 ブラウザ起動時に行われる新規のランダムアクセスのリトライ回数とブラウザ起動後のランダムアクセスのリトライ回数とを異ならせた通信シーケンスを示す図。

【符号の説明】

1…ネットワーク、2…無線端末、3…狭帯域基地局、4…広帯域基地局、5…WWW サーバ、41…ネットワークアダプタ、42…送信バッファ、43…データリンク部、44…誤り訂正検出用符号化部、45…ベースバンドモデム部、46…RF部、47…アンテナ、48…制御部。

【図1】

[図4]

【図5】

【図2】

【図6】

【図3】

【図7】

【図8】

