Airfare Prediction

Wooseok Kim

Progress

What I did

- Environment Setup
- Studying Hadoop
- Algorithm analysis

Things to do until end of semester

- How to run the Hadoop on AWS
- Do the programming for the algorithm
- More familiar with map -reduce

Algorithm Analysis

- Data-driven Forecasting methods
 - There is no difference between a predictor and a target
- Model-driven forecasting methods
 - Similar to conventional predictive models, which have a predictor and a target
 - Based on the data from adjacent time periods
- Decomposition
 - Trend
 - Seasonality
 - Noise

Model-Driven Approaches

- Linear Regression
 - The simplest approaches
 - Can capture the long-term tendency, but it does a very poor job of fitting data

Model-Driven Approaches

- Polynomial Regression
 - Similar to linear regression except that higher-degree functions of the independent variable are used squares and cubes

Model-Driven Approaches

- Linear Regression with seasonality
 - The time-independent variable captures the trend and the dummy variables capture seasonality
 - Can be used for predicting any future value beyond n+1
- Autoregression Models
 - Regression models applied on lag series where each lag series is a new predictor used to fit the dependent variable, which is still the original series value
 - Create a lag series involving forecast errors and use this as another predictor.

- Naïve Forecast
 - The simplest forecasting model
 - F_{n+1} , the forecast for the next period, is given by the last data point
- Simple Average
 - Compute the next data as an average of all the data points
 - F_{n+1} =AVG $(y_n, y_{n-1}, ..., y_1)$
- Moving Average
 - Select a window of the last k periods for the average (n, ..., n-k+1)
 - Window keeps moving forward and thus returns a moving average

- Weighted Moving Average
 - $F_{n+1} = a * y_n + b * y_{n-1} + c * y_{n-2}$, where typically a > b > c
 - Assume that a = 0.6, b = 0.3, c = 0.1

	Airfare Avg (ORD)	Simulated Forecast
Q2 2016	314.45	
Q3 2016	308.14	
Q4 2016	313.45	
Q1 2017	323.80	311.957 = 0.6*313.45 + 0.3*308.14 + 0.1*314.45
Q2 2017	324.54	319.129 = 0.6*323.80 + 0.3*313.45 + 0.1*308.14

- Exponential Smoothing
 - $F_{n+1} = \alpha * y_n + (1 \alpha) * F_n$, α is generally 0~1
 - If α is close to 1, then the previously forecasted value of the last period has less weight than the actual value of the last period. Ex) α =1, Naïve Forecast
 - Can't make forecast more than one-step ahead because of data requirement for the previous forecasted value, F_n

- Need more sophisticated techniques than the ones described in order for trend and seasonality
- Once capturing trend and seasonality, can forecast the value at any time in the future, not just one step ahead value

- Two-parameter Exponential Smoothing
 - One-parameter exponential smoothing equation simply calculates the average value
 - If the series has a trend, an average slope can be estimated as well
 - L_n : avg value or length of Seasonality, T_n : Trend
 - $F_{n+1} = L_n + T_n$
 - $L_n = \alpha * y_n + (1 \alpha) * (L_{n-1} + T_{n-1})$
 - $T_n = \beta * (L_n L_{n-1}) + (1 \beta) * T_{n-1}$

- Two-parameter Exponential Smoothing
 - $F_{n+1} = L_n + T_n$, $L_n = \alpha * y_n + (1 \alpha) * (L_{n-1} + T_{n-1})$
 - $\overline{ \cdot T_n} = \beta * (L_n L_{n-1}) + (1 \beta) * T_{n-1}$
 - Assume that α =0.3, β =0.6, Forecast for Q2 2016 = 320

	Airfare Avg (ORD)	L_n	T_n	F_{n+1}
Q2 2016	314.45	320	0	
Q3 2016	308.14	318.335 = 0.3*314.45 + 0.7*320	-0.999 = 0.6(318.335- 320)+0.4*0	317.336 = 318.335 + (-0.999)
Q4 2016	313.45	314.276 = 0.3*308.14 + 0.7*(318.335-0.999)	-2.835 = 0.6(314.276-318.335)+0.4(-0.999)	311.441 = 314.276+(-2.835)

Next-Steps

- Implement the code for Two-parameter exponential smoothing
- How to run the Hadoop on AWS
- More familiar with the Hadoop especially Map-Reduce