矩阵分析与应用作业 5

潘澳旋

6. 空间 V 上恒等映射下的不变子空间

解 根据不变子空间的定义,在恒等映射下所有的子空间都是不变子空间,如像空间、核空间等。

7. Let T be the linear operator on \Re^4 defined by

$$\mathbf{T}(x_1, x_2, x_3, x_4) = (x_1 + x_2 + 2x_3 - x_4, x_2 + x_4, 2x_3 - x_4, x_3 + x_4),$$

and let $\mathcal{X} = span\{e_1, e_2\}$ be the subspace that is spanned by the first two unit vectors in \mathfrak{R}^4 .

- (a) Explain why \mathcal{X} is invariant under \mathbf{T} .
- (b) Determine $[\mathbf{T}_{/\mathcal{X}}]_{\{e_1,e_2\}}$.
- (c) Describe the structure of $[T]_{\mathcal{B}}$, where \mathcal{B} is any basis obtained from an extension of $\{e_1, e_2\}$.

解 a. 线性算子 T 分别作用于 e_1 、 e_2 ,得: $T(e_1)=e_1\in X, T(e_2)=e_1+e_2\in X$,对于 $x=ae_1+be_2\in X$, 经过 T 作用后 $T(x)=(a+b)e_1+be_2\in X$,因此空间 X 是线性算子 T 下的不变子空间。

b. $\exists T(e_1) = e_1 \in X, T(e_2) = e_1 + e_2 \in X \ \mbox{$\bar{$\beta$}$} \ [T_{/X}]_{[e_1,e_2]} =$

$$\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right)$$
(1)

c. 设 $B = e_1, e_2, u_1, u_2$,则 $[T_B] = ([T_{e_1}], [T_{e_2}], [T_{u_1}], [T_{u_2}])$,结合 b 知 $[T_B] =$

$$\begin{pmatrix} [T_{X_{(e_1,e_2)}}] & B_{2x2} \\ 0 & C_{2x2} \end{pmatrix}$$
 (2)

$$= \begin{pmatrix} 1 & 1 & B_{2x2} \\ 0 & 1 & & \\ & 0 & C_{2x2} \end{pmatrix}$$
 (3)