

Pseudonym

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Florin Belgun Christoforos Neofytidis Wintersemester 2013/14 13.03.2014

Lineare Algebra für Informatiker und Statistiker

Nachholklausur

Nachname:		Vor	rname:			_
Matrikelnr.:		_ Fachs	emester:			_
Abschluss:	Bachelor, PO 🗖 2007 🗖 2010 📮	2011		Ma	ster, PO 🖵 2010 🖵 201	.1
	Lehramt Gymnasium:		☐ mo	dularisiert	☐ nicht modularisie	rt
	□ Diplom □ Anderes:					
Hauptfach:	☐ Mathematik ☐ Wirtschaftsm.	☐ Inf.	☐ Phys.	□ Stat. □	<u> </u>	_
Nebenfach:	☐ Mathematik ☐ Wirtschaftsm.	☐ Inf.	☐ Phys.	□ Stat. □	<u> </u>	_
Anrechnung	der Credit Points für das	uptfach	□ Neben	fach (Bac	helor / Master)	
Studienausweis Bitte überprüfe Schreiben Sie b und Vorname Lösen Sie bitte seiten). Falls d auf dem Angab Durch Angabe Sie der Veröffen	jede Aufgabe auf den dafür vorgese ler Platz nicht ausreicht, verwender enblatt der entsprechenden Aufgab eines Pseudonyms links unten (z atlichung von Klausurergebnis und Minuten Zeit, um die Klausur zu alle Aufgaben durch! Die Teilaufga	elten habe grün. Sch ehenen Bl n Sie bitt be. B. die letz Pseudony	en. reiben Sie ättern (bi e die leere zten vier Z zm im Inte	e auf jedes tte benutzen en Seiten am Ziffern Ihrer l	Blatt Ihren Nachnam Sie dabei auch die Rüc Ende und vermerken d Matrikelnummer) stimm	en ies
	Vi	iel Erfolg	!			

2

/10

1

/10

3

/10

1 + 2 + 3

/30

1 + 2 + 3 + 4

/40

4

/10

Aufgabe 1. [10 Punkte]

Sei K ein Körper. Wir bezeichnen durch K[X] der Ring der Polynome mit Koeffizienten in K. Sei $X^2+X+1 \in K[X]$.

- (a) (2 Punkte) Berechnen Sie der Rest der Polynomdivision in K[X] von X^3 , bzw. X^4 durch $X^2 + X + 1$.
- (b) (3 Punkte) Seien $p, q \in \mathbb{N}$. Zeigen Sie, X^p und X^q haben den gleichen Rest modulo $X^2 + X + 1$ genau dann, wenn $p \equiv q \pmod 3$.
- (c) (2 Punkte) Betrachten Sie $V := K[X]/(X^2 + X + 1)$, der Ring der Restklassen modulo $X^2 + X + 1$, als K-Vektorraum. Welche Dimension hat V? Geben Sie eine Basis von V an und begründen Sie Ihre Antwort.
- (d) (3 Punkte) Sei $F: K[X] \to K[X], F(f) := X \cdot f, \forall f \in K[X]$ (F ist also die Multiplikation mit dem Polynom X). Zeigen Sie, es existiert genau eine K-lineare Abbildung $\hat{F}: V \to V$, so dass

$$\hat{F}([f]) = [F(f)], \ \forall f \in K[X].$$

(Für jedes Polynom $g \in K[X]$ bezeichnet [g] die Restklasse von g modulo $X^2 + X + 1$.) Berechnen Sie $\hat{F}([1])$ und $\hat{F}([X])$ als lineare Kombination der bei (c) angegebene Basiselemente.

Name:			

Aufgabe 2. [10 Punkte]

Sei $A_s \in \operatorname{Mat}(3 \times 3, \mathbb{C})$ die folgende Matrix, die vom Parameter $s \in \mathbb{C}$ abhängt:

$$A_s := \begin{pmatrix} 1 & 1 & 1 \\ 1 & s & i \\ 1 & -i & s^3 \end{pmatrix}.$$

- (a) (5 Punkte) Bestimmen Sie den Rang der Matrix A_s in Abhängigkeit von $s \in \mathbb{C}$. Zeigen Sie, A_0 ist invertierbar und berechnen Sie A_0^{-1} .
- (b) (2 Punkte) Sei $f_s: \mathbb{C}^3 \to \mathbb{C}^3$, $f_s(x) := A_s \cdot x$. Geben Sie eine Basis von ker f_λ an, wobei $\lambda := \frac{1}{2} + \frac{\sqrt{5}}{2}$.
- (c) (3 Punkte) Geben Sie die Lösungsmenge des linearen Gleichungssystems

$$A_i \cdot \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 2i \end{pmatrix}$$

an.

Name:			

Aufgabe 3. [10 Punkte]

(a) (3 Punkte) Sei $M \in Mat(3 \times 3, \mathbb{C})$ die folgende Matrix:

$$M := \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

Zeigen Sie,

$$M^{n} = \begin{pmatrix} 2^{n-1} & 0 & 2^{n-1} \\ 0 & 1 & 0 \\ 2^{n-1} & 0 & 2^{n-1} \end{pmatrix}, \ \forall n \in \mathbb{N} \setminus \{0\}.$$

(b) (4 Punkte) Zeigen Sie,

$$R := \left\{ \begin{pmatrix} a & 0 & a \\ 0 & b & 0 \\ a & 0 & a \end{pmatrix} \mid a, b \in \mathbb{C} \right\}$$

ist ein Ring mit den üblichen Matrixaddition, bzw. -Multiplikation. (Insbesondere ist hier zu zeigen, $A+B, A\cdot B\in R, \, \forall A,B\in R$)

Hat R ein Einselement? Oder Nullteiler? Begründen Sie Ihre Antwort.

(c) (3 Punkte) Bestimmen Sie alle Matrizen $A \in \mathbb{R}$, so dass $A^3 = -A$.

Name:			

Name:

Aufgabe 4. [10 Punkte]

Sei
$$A := \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \in \operatorname{Mat}(3 \times 3, \mathbb{R}), \, s \in \mathbb{R}.$$

- (a) (2 Punkte) Berechnen Sie das charakteristische Polynom von A und bestimmen Sie seine Nullstellen und ihre entsprechende Vielfachkeiten.
- (b) (2 Punkte) Bestimmen Sie die algebraische und geometrische Vielfachkeiten der Eigenwerten von A. Ist A diagonalisierbar? Begründen Sie Ihre Antwort.
- (c) (3 Punkte) Geben Sie je eine Basis für jeden Eigenraum von A an.
- (d) (3 Punkte) Sei $B \in \text{Mat}(n \times n, \mathbb{R})$ eine Matrix vom Rang 1, ihre Spur wird mit trB notiert. Zeigen Sie, B ist diagonalisierbar genau dann, wenn tr $B \neq 0$.

Hinweis: Berechnen Sie die geometrische und algebraische Vielfachkeit des Eigenwertes 0; benutzen Sie anschliessend, dass die Summe der Nullstellen des charakterisches Polynoms von B (berechnet mit Vielfachkeiten) gleich trB ist.

Name:			

Name:			