

Программная инженерия: ИТ-лидеры будущего

Презентация к итоговой аттестационной работе

Тема

ИТОГОВАЯ АТТЕСТАЦИОННАЯ РАБОТА ПО КУРСУ «Программная инженерия: ИТ-лидеры будущего»

Цели и задачи

- Участие в соревновании на платформе Kaggle, посвященном предсказанию задержек рейсов.

- Проанализировать предоставленные данные, построить модели машинного обучения

- Улучшить их с целью достижения точности предсказаний выше 0.7 (метрика AUC-ROC)

Регистрация на Kaggle

Изучение данных

	Month	DayofMonth	DayOfWeek	DepTime	UniqueCarrier	Origin	Dest	Distance	dep_delayed_15min
0	c-8	c-21	c-7	1934	AA	ATL	DFW	732	N
1	c-4	c-20	c-3	1548	US	PIT	мсо	834	N
2	c-9	c-2	c-5	1422	XE	RDU	CLE	416	N
3	c-11	c-25	c-6	1015	00	DEN	MEM	872	N
4	c-10	c-7	c-6	1828	WN	MDW	OMA	423	Y

Вывод первых 5 строк датасета

Размер датасета: (100000, 9)

Данные: месяц, день месяца, день недели, DepTime, UniqueCarrier, Origin, Dest, дистанция, задержка – целевая переменная.

Вывод информации о данных каждого столбца

Только 2 столбца содержат целочисленный тип данных. Остальные столбцы необходимо преобразовать.

Изучение данных: гистограммы

DayofMonth

DayOfWeek

Изучение данных : гистограммы

Изучение данных : гистограммы

Изучение данных: диаграмма boxplot

Изучение данных

Вывод информации о пропусках

Столбцы не содержат пропусков, следовательно, проводить этап очистки данных от пропусков не требуется.

Предобработка данных

Кодирование категориальных признаков

```
[3] d Month={'c-1':1,'c-2':2,'c-3':3,'c-4':4,'c-5':5,'c-6':6,'c-7':7,'c-8':8,'c-9':9,'c-10':10,'c-11':11,'c-12':12}
     data['Month']=data['Month'].apply(lambda x:d Month[x])
     d_DayofMonth={DayofMonth: i for i, DayofMonth in enumerate(data['DayofMonth'].unique())}
     data['DayofMonth']=data['DayofMonth'].map(d DayofMonth)
     d DayOfWeek={'c-1':1,'c-2':2,'c-3':3,'c-4':4,'c-5':5,'c-6':6,'c-7':7}
     data['DayOfWeek']=data['DayOfWeek'].apply(lambda x:d DayOfWeek[x])
     d UniqueCarrier={UniqueCarrier: i for i, UniqueCarrier in enumerate(data['UniqueCarrier'].unique())}
     data['UniqueCarrier']=data['UniqueCarrier'].map(d UniqueCarrier)
     d Origin = {Origin: i for i, Origin in enumerate(data['Origin'].unique())}
     data['Origin'] = data['Origin'].map(d Origin)
     d Dest = {Dest: i for i, Dest in enumerate(data['Dest'].unique())}
     data['Dest'] = data['Dest'].map(d Dest)
     d_dep_delayed_15min={'Y':0,'N':1}
     data['dep delayed 15min']=data['dep delayed 15min'].apply(lambda x:d dep delayed 15min[x])
```

Категориальные признаки были преобразованы в целые числа.

Предобработка данных

Кодирование категориальных признаков

```
[ ] data[['Month', 'DayofMonth', 'DayOfWeek', 'DepTime', 'UniqueCarrier', 'Origin',
'Dest', 'Distance', 'dep_delayed_15min']].corr(method='kendall',numeric_on|y=True)
```

		Month	DayofMonth	DayOfWeek	DepTime	UniqueCarrier	Origin	Dest	Distance	dep_delayed_15min
	Month	1.000000	-0.002555	0.003603	-0.000984	0.007052	-0.002200	-0.001379	0.003969	-0.014379
	DayofMonth	-0.002555	1.000000	0.019271	0.002411	-0.002826	-0.001494	0.001412	0.004028	0.002231
	DayOfWeek	0.003603	0.019271	1.000000	0.006914	0.006462	-0.001308	-0.000210	0.008162	-0.009456
	DepTime	-0.000984	0.002411	0.006914	1.000000	0.005074	-0.059880	0.074335	-0.024369	-0.202473
L	UniqueCarrier	0.007052	-0.002826	0.006462	0.005074	1.000000	-0.025785	0.008062	-0.016330	-0.015000
	Origin	-0.002200	-0.001494	-0.001308	-0.059880	-0.025785	1.000000	-0.117516	-0.093042	0.036790
	Dest	-0.001379	0.001412	-0.000210	0.074335	0.008062	-0.117516	1.000000	-0.088604	-0.014844
	Distance	0.003969	0.004028	0.008162	-0.024369	-0.016330	-0.093042	-0.088604	1.000000	-0.010030
dep	_delayed_15min	-0.014379	0.002231	-0.009456	-0.202473	-0.015000	0.036790	-0.014844	-0.010030	1.000000

Корреляционная матрица показала, что день месяца и день недели слабо влияют на целевую переменную.

Предобработка данных


```
[ ] scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)
```

масштабирование данных

- 1) Берём за X столбцы 'Month', 'DepTime', 'UniqueCarrier', 'Origin', 'Dest', 'Distance', столбцы 'DayofMonth' и 'DayOfWeek' не берём, так как их влияние на целевую переменную слабое.
- 2) Берём за у целевой столбец 'dep_delayed_15min'
- 3) Делим данные на обучающую и тестовую выборки

Построение моделей

Логистическая регрессия [] lr = LogisticRegression() lr.fit(x_train, y_train) → LogisticRegression () LogisticRegression()

Оценка качества

Перекрестная проверка

```
print('Cross-validation scores:')
print(f'Logistic Regression: {lr.score(X test, y test)}')
print(f'Random Forest: {rf.score(X test, y test)}')
print(f'Gradient Boosting: {gb.score(X test, y test)}')
print(f'XGBoost: {xgb.score(X test, y test)}')
```

Cross-validation scores:

Logistic Regression: 0.80945

Random Forest: 0.81825

Gradient Boosting: 0.8172

XGBoost: 0.82115

Метрика AUC-ROC

```
lr auc = roc auc score(y test, lr.predict proba(X test)[:, 1])
rf auc = roc auc score(y test, rf.predict proba(X test)[:, 1])
gb auc = roc auc score(y test, gb.predict proba(X test)[:, 1])
xgb auc = roc auc score(y test, xgb.predict proba(X test)[:, 1])
print('AUC-ROC scores:')
print(f'Logistic Regression: {lr auc}')
print(f'Random Forest: {rf auc}')
print(f'Gradient Boosting: {gb auc}')
print(f'XGBoost: {xgb auc}')
```

→ AUC-ROC scores:

Logistic Regression: 0.6921575646157263

Random Forest: 0.7517692136846081

Gradient Boosting: 0.7248366024197563

XGBoost: 0.7380825304495986

Внутренний слайд вариант 6

Настройка гиперпараметров модели с использованием метода RandomizedSearchCV

Из 4 моделей лучшие результаты показала модель Random Forest, поэтому RandomizedSearchCV будут применятся для неё.

Meтрика AUC-ROC модели Random Forest = 0.7511997863299824

Meтрика AUC-ROC для RandomizedSearchCV = 0.755961036834571

Лучшие результаты показала модель RandomizedSearchCV, метрика AUC-ROC выше 0.7, требуемая точность достигнута.

AUC-ROC scores: Logistic Regression: 0.6921575646157263 Random Forest: 0.7511997863299824 Gradient Boosting: 0.7248366024197563

XGBoost: 0.7380825304495986

```
[12] # RandomizedSearchCV
param_distributions = {'n_estimators': range(100, 1000, 50), 'max_depth': range(5, 30, 2)}
random_search = RandomizedSearchCV(estimator=rf, param_distributions=param_distributions, cv=5, scoring='roc_auc', n_iter=20)
random_search.fit(X_train, y_train)

→ RandomizedSearchCV ③ ③
→ best_estimator_: RandomForestClassifier
→ RandomForestClassifier → RandomForestClassifier
→ RandomizedSearchCV')
print(f'Cross-validation scores: {random_search.score(X_test, y_test)}')
rs_auc = roc_auc_score(y_test,random_search.predict_proba(X_test)[:, 1])
print(f'AUC-ROC_scores: {rs_auc}')

→ RandomizedSearchCV
Cross-validation scores: 0.755961036834571
AUC-ROC_scores: 0.755961036834571
```

Оптимизация модели

Настройка гиперпараметров модели с использованием метода RandomizedSearchCV

Из 4 моделей лучшие результаты показала модель Random Forest, поэтому RandomizedSearchCV будут применятся для неё.

Метрика AUC-ROC модели Random Forest = 0.7511997863299824

Метрика AUC-ROC для RandomizedSearchCV = 0.755961036834571

Лучшие результаты показала модель RandomizedSearchCV, метрика AUC-ROC выше 0.7, требуемая точность достигнута.

```
[12] # RandomizedSearchCV
     param_distributions = {'n_estimators': range(100, 1000, 50), 'max_depth': range(5, 30, 2)}
     random search = RandomizedSearchCV(estimator=rf, param distributions=param distributions, cv=5, scoring='roc auc', n iter=20)
     random search.fit(X train, y train)
₹
                                           (i) (?)
                 RandomizedSearchCV
       best_estimator_: RandomForestClassifier
              ► RandomForestClassifier ②
[18] print('RandomizedSearchCV')
     print(f'Cross-validation scores: {random search.score(X test, y test)}')
     rs_auc = roc_auc_score(y_test,random_search.predict_proba(X_test)[:, 1])
     print(f'AUC-ROC scores: {rs auc}')
 RandomizedSearchCV
     Cross-validation scores: 0.755961036834571
     AUC-ROC scores: 0.755961036834571
```


Спасибо за внимание!

Контакты Сайт **479371530799** ★ ksenya.ilina.l@gmail.com