Problema. Qual é a relação entre os raios de três círculos simultaneamente tangentes entre si e todos eles tangentes a uma mesma reta, como na figura a seguir?

Solução. Antes de tratar da situação geral, vamos analisar a situação de dois círculos tangentes entre si e ambos tangentes a uma mesma reta. Vamos então considerar duas circunferências de centros O_1 e O_2 e respectivos raios $r_1 \geq r_2$ ambas tangentes a uma mesma reta nos pontos $r_1 \in T_2$, como na figura a seguir.

Seja P o ponto do segmento O_1T_1 tal que os segmentos T_1T_2 e PO_2 são paralelos.

No triângulo retângulo temos que $PO_1=r_1-r_2$ e $O_1O_2=r_1+r_2$. Aplicando o Teorema de Pitágora, o outro cateto desse triângulo tem medida

$$PO_2 = \sqrt{(r_1 + r_2)^2 - (r_1 - r_2)^2} = 2\sqrt{r_1 r_2}$$

Agora vamos considerar uma terceira circunferência de centro O_3 e raio r_3 tangentes às duas circunferências de centro O_1 e O_2 e também tangente a mesma reta, como na figura a seguir.

Repetindo o argumento anterior para as circunferências de centros ${\it O}_1$ e ${\it O}_3$ temos que

$$PO_3 = 2\sqrt{r_1 r_3}$$

E repetindo o mesmo argumento anterior para as circunferências de centros ${\cal O}_2$ e ${\cal O}_3$ temos que

$$RO_3 = 2\sqrt{r_2 r_3}$$

Daí podemos concluir que

$$PO_2 = QR = QO_3 + O_3R$$

$$2\sqrt{r_1 r_2} = 2\sqrt{r_1 r_3} + 2\sqrt{r_2 r_3}$$

$$\sqrt{r_1 r_2} = \sqrt{r_1 r_3} + \sqrt{r_2 r_3}$$

Dividindo o lado esquerdo e o lado direito dessa igualda por $\sqrt{r_1r_2r_3}$ obtemos finalmente

$$\frac{1}{\sqrt{r_3}} = \frac{1}{\sqrt{r_2}} + \frac{1}{\sqrt{r_1}}$$