Lecture Notes

Kyle Chui

2022-01-04

1 Lecture 1

The goal of this class is to solve *mathematical* problems with the help of *computers*.

1.1 Chapter Summaries

- 1. Computations in computers
 - How to store (real) numbers in the computer

Note. If the number has finitely many digits, then it is simple. What about numbers with infinitely many digits, i.e. $\frac{1}{3}$? We have to truncate or round, and store an approximation with finitely many digits.

• How to perform computations

Note. From regular math, we know that $\frac{1}{3} + \frac{1}{3} = \frac{2}{3}$. However, in the computer, due to errors, we have $\frac{1}{3} \oplus \frac{1}{3} = ? \oplus ? = ??$.

- Errors
- 2. Find roots of f(x) = 0 using bisection, Newton's method, ...
 - Convergence
 - Convergence order (how fast it converges)
- 3. Polynomial interpolation
 - Approximate a function f(x) by a polynomial P(x), where $f(x_i) = P(x_i)$ for finitely many x_i
 - Accuracy of the polynomial approximations
- 4. Numerical differentiations and numerical integrations
 - Using the approximations from chapter 3, we can approximate using

$$f'(x^*) \approx P'(x^*) = \sum_{i=0}^{k} f(x_k)c_k,$$

and

$$\int_{a}^{b} f(x) dx \approx \int_{a}^{b} P(x) dx = \sum_{i=1}^{k} f(\overline{x_{k}}) \overline{c_{k}}.$$

- Error analysis
- 6.7. Solving linear systems of equations
 - Direct methods: Gaussian elimination (computationally expensive)
 - Iterative methods: (faster and cheaper)
 - Solution stability

1.2 Round-off errors and computer arithmetics

There are three kinds of errors:

- Modeling Error: Occurs when we convert a problem from the real world into the mathematical world.
- Method Error: Occurs when we try to solve the mathematical problem numerically.
- Round-off error: Occurs when the computer gives an incorrect result with the correct algorithm (comes from storage and computation).

1.2.1 Storage

Infinite digit real numbers are *stored* as finite digit numbers, using the normalized decimal form of real numbers.

Definition. Normalized decimal form of a real number

For any $y \in \mathbb{R}$, we may write

$$y = \pm 0.d_1 d_2 d_3 \dots d_k d_{k+1} \dots \cdot 10^n$$

where $0 < d_1 \le 9$, $0 \le d_i \le 9$, n are integers. For the particular case where y = 0, we write $y = 0.0 \cdot 10^0$.

Definition. Normalized machine numbers (Floating-point form) Any machine number y can be written as

$$y = \pm 0.d_1 d_2 \cdots d_k \cdot 10^n,$$

where $0 < d_1 \le 9$, $0 \le d_i \le 9$, n are integers.

We can think of the storage process as mapping normalized real numbers to normalized machine numbers. We do this via rounding or truncating.

Consider some $y \in \mathbb{R} \setminus \{0\}$.

• Truncating (k-digit truncation of $y = \pm 0.d_1d_2d_3...d_kd_{k+1}d_{k+2}...\cdot 10^n$) Simply omit the digits from d_{k+1} and onwards, in other words

$$f(\pm 0.d_1d_2d_3...d_kd_{k+1}d_{k+2}...\cdot 10^n) = \pm 0.d_1d_2...d_k\cdot 10^n.$$

Thus we have $y \approx fl(y)$.

• Rounding (k-digit rounding of $y = \pm 0.d_1d_2d_3...d_kd_{k+1}d_{k+2}...\cdot 10^n$) If $d_{k+1} < 5$, then we drop $d_{k+1}d_{k+2}...$ (same with truncating)

If $d_{k+1} \ge 5$, then add 1 to d_k and drop $d_{k+1}d_{k+2}...$

$$f(\pm 0.d_1d_2d_3...d_kd_{k+1}d_{k+2}...\cdot 10^n) = \pm \delta_1\delta_2...\delta_k\cdot 10^m.$$

2 Lecture 2

Note. Since we use the notation fl to denote both k-digit truncation as well as k-digit rounding, be sure not to mix the two up.

Definition. Errors

Suppose p^* is an approximation of p. Then the actual error is $p-p^*$, the absolute error is $|p-p^*|$, and the relative error is $\frac{|p-p^*|}{|p|}$, where $p \neq 0$.

Definition. Significant Digits

The number p^* is said to approximate p to "t" significant digits if "t" is the largest non-negative integer for which

$$\frac{|p - p^*|}{|p|} \le 5 \cdot 10^{-t}.$$

2.1 Computer Arithmetic

Assume that x, y are real numbers, then

$$x \oplus y = \mathrm{fl}(\mathrm{fl}(x) + \mathrm{fl}(y))$$

$$x \ominus y = f(f(x) - f(y))$$

$$x \otimes y = \mathrm{fl}(\mathrm{fl}(x) \cdot \mathrm{fl}(y))$$

$$x \oplus y = \mathrm{fl}(\mathrm{fl}(x) + \mathrm{fl}(y))$$

3 Lecture 3

Note. When computing relative error, keep 2 non-zero digits.

If after performing our operation with k-digit chopping, we still have k significant digits, then our operation is pretty good (because it did not lose precision). In general, the \oplus operator will lose at most one significant digit. Unlike addition, the \ominus operator can lose multiple significant digits (when you subtract almost identical numbers).

We see errors introduced in computations:

- Subtraction of almost identical numbers results in loss of significant digits
- More operations \rightarrow more errors \rightarrow loss of significant digits

To avoid loss of accuracy, we can perform some manipulations to avoid scenarios that involve inaccuracies:

Example. Quadratic formula

For a given quadratic $ax^2 + bx + c = 0$, we know that a solution is

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$

Suppose b > 0 and $b^2 \gg 4ac$. Then $b^2 - 4ac \approx b^2$, so $b \approx \sqrt{b^2 - 4ac}$. This can lead to inaccuracies because we are subtracting nearly identical numbers. To avoid this, we can perform some algebra as follows:

$$\begin{split} x_1 &= \frac{-b + \sqrt{b^2 - 4ac}}{2a} \\ &= \frac{-b + \sqrt{b^2 - 4ac}}{2a} \cdot \frac{-b - \sqrt{b^2 - 4ac}}{-b - \sqrt{b^2 - 4ac}} \\ &= \frac{b^2 - (b^2 - 4ac)}{2a(-b - \sqrt{b^2 - 4ac})} \\ &= \frac{4ac}{2a(-b - \sqrt{b^2 - 4ac})} \\ &= \frac{2c}{-b - \sqrt{b^2 - 4ac}}. \end{split}$$

Since this solution avoids the subtraction of two nearly identical numbers, it is more accurate. For the other root, we are subtracting two negative numbers that are nearly identical, so there is no issue.