Bayesian Statistics What it is and what it can do for you

Mattias Villani

Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University

Overview

- **►** The Bayesics
- **▶** Bayesian prediction
- **▶** Bayesian model inference
- **▶** Smoothness priors

Bernoulli trials - frequentist

- ▶ **Data**: *n* trials with binary outcomes: $X_1, ..., X_n$.
 - 0 = head in coin flip. 1 = tails.
 - ightharpoonup 0 = no rain in Tokyo. 1 = rain in Tokyo.
- ► Population parameter

$$\theta = \Pr(X = 1)$$

- \triangleright θ is a fixed constant.
- ▶ Unbiased estimator $\hat{\theta} = s/n$. s = number of successes ($X_i = 1$). Tokyo: $\hat{\theta} = 95/365 \approx 0.247$.
- $\hat{\theta}$ varies from sample to sample. **Sampling distribution**.
- ▶ **Confidence interval**: random interval [a, b] such that the true θ belongs to the interval in 95% of all possible samples of size n. Tokyo: [0.215, 0.305].
- ▶ **Hypothesis test**: $H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0 \text{ based on the test statistic } z = (\hat{\theta} \theta_0) / SD(\hat{\theta}).$

Bernoulli trials - Bayesian

- θ may be fixed, but it is **unknown to me**. I should describe my **uncertainty** about *θ* in the form of a **probability distribution**.
- ► Probability is **subjective degree of belief.**
- ► **Learning from data**: given a **prior** distribution, $p(\theta)$, how do we **update** to a **posterior distribution** $p(\theta|\text{data})$?
- **▶ Bayes theorem** for events

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

Example:

$$p(\text{cancer}|\text{positive test}) = \frac{p(\text{positive test}|\text{cancer})p(\text{cancer})}{p(\text{positive test})}$$

Prior distribution

Bernoulli trials - Bayesian

Bayes theorem for a continuous parameter

$$\underbrace{p(\theta|x_1,...,x_n)}_{\text{posterior}} = \underbrace{\frac{p(x_1,...,x_n|\theta)}{p(x_1,...,x_n|\theta)}}_{\substack{p(x_1,...,x_n)\\ \text{marginal likelihood}}} \underbrace{p(\theta|x_1,...,x_n)}_{\substack{p(x_1,...,x_n)}} \underbrace$$

- Bayesian updating in Bernoulli trials:
 - Prior: $\theta \sim \text{Beta}(\alpha, \beta)$
 - Likelihood: $\theta^s (1-\theta)^f$
 - ▶ Posterior: $\theta | x_1, ..., x_n \sim \text{Beta}(\alpha + s, \beta + f)$

Great theorems make great tattoos

Bayesian analysis of rain in Tokyo

Bayesian analysis of rain in Tokyo

► The posterior is a probability distribution. We can compute probabilities by integration

$$Pr(\theta < 0.2 | x_1, ..., x_n) = 0.03$$

- ▶ In R: pbeta(0.2, shape1 = alpha + s, shape2 = beta + n-s)
- ► Bayesian 95% credible interval

Direct probabilistic interpretation!

$$Pr(\theta \in [0.199, 0.280] | x_1, ..., x_n) = 0.95$$

- ► In R:
 - p qbeta(0.025, shape1 = alpha + s, shape2 = beta + n-s)
 - ightharpoonup qbeta(0.975, shape1 = alpha + s, shape2 = beta + n-s)

Conjugate priors

- Previous example was nice: prior and posterior were both Beta distributions.
- Beta prior is conjugate to a Bernoulli model.
- ▶ Normal prior is conjugate to Normal model.
- ► Gamma prior is conjugate to Poisson model (count data).

Normal approximation for "large" datasets

- What if the model does not have a conjugate prior?
- ► Theorem: the **posterior** distribution will be a **normal distribution** in **large datasets**, for **any** prior

$$\theta | x_1, ..., x_n \stackrel{approx}{\sim} N(\hat{\theta}, \Sigma)$$
 for large n

- $\hat{\theta}$ and Σ can be obtained by **numerical optimization**
- optim in R or fminunc in Matlab.
- Just need to code up the likelihood and the prior.

Approximate posterior by simulation

- ► Fast computers + simulation algorithms = Bayes popular.
- ► Markov Chain Monte Carlo (MCMC) for general problems.
- Sequential Monte Carlo (SMC) for sequential (time-series) problems.
- ► Integrated Nested Laplace Approximation (INLA) for spatio-temporal problems.
- ▶ Approximate Bayesian Computation (ABC) when it is easy simulate data from the model, but hard to write down its probability distribution.

Bayesian prediction

▶ **Predicting** the observation tomorrow x_{n+1} given observations up to today: $x_1, ..., x_n$

$$\underbrace{p(x_{n+1}|x_1,...,x_n)}_{\text{predictive distribution}} = \int \underbrace{p(x_{n+1}|\theta)p(\theta|x_1,...,x_n)}_{\text{model}} d\theta$$

- ► Obtaining the **predictive distribution by simulation**:
 - 1. Simulate a θ^* from $p(\theta|x_1,...,x_n)$
 - 2. Simulate tomorrow's value x_{n+1} from the model $p(x_{n+1}|\theta^*)$
 - 3. Repeat Step 1 and 2 many times.
- Predictive distribution includes three sources of uncertainty:
 - Intrinsic model shocks/disturbances (Step 2)
 - Parameter uncertainty (Step 1)
 - Model uncertainty (explained next)

Bayesian model inference

▶ We usually entertain more than one model

$$\mathbf{M}_1: \ p_1(x|\theta_1)$$
$$\mathbf{M}_2: \ p_2(x|\theta_2)$$

► Example 1:

$$M_1: x \sim N(\theta_1, 1)$$

 $M_2: x \sim t_1(\theta_2, 1)$

► Example 2:

$$M_1: y = \alpha_1 + \beta_1 x + \epsilon$$

$$M_2: y = \alpha_2 + \beta_2 x + \gamma_2 z + \epsilon$$

Example 3:

$$M_1: x \sim Bernoulli(\theta)$$

 $M_2: x \sim Bernoulli(0.5)$

Bayesian model inference

Bayesian posterior model distribution

$$\underbrace{\Pr(M_k|x_1,...,x_n)}_{\text{posterior probability}} \propto \underbrace{p(x_1,...,x_n|M_k)}_{\text{marginal likelihood}} \cdot \underbrace{\Pr(M_k)}_{\text{prior probability}}$$

where

$$p(x_1,...,x_n|M_k) = \int p(x_1,...,x_n|\theta_k)p(\theta_k)d\theta_k.$$

Directly generalized to any number of models.

Bayesian Model Averaging (BMA).

And hey! ... let's be careful out there.

- ▶ Be especially careful with Bayesian model comparison when
 - The compared models are
 - very different in structure
 - severly misspecified
 - very complicated (black boxes).
 - The priors for the parameters in the models are
 - not carefully elicited
 - only weakly informative
 - not matched across models.
 - ► The data
 - ► has outliers (in all models)
 - has a multivariate response.

Smoothness priors

- Example: rain in Tokyo. Rain probability is likely not the same on every day.
- More general model:

$$x_i | \theta_i \sim \text{Bern}(\theta_i)$$

- ▶ Very flexible: every day has its own probability θ_i .
- Smoothness prior

$$x_i | \theta_i \sim \operatorname{Bern}(\theta_i)$$
 $\operatorname{Logit}(\theta_i) = f(\operatorname{day})$
 $f \sim \operatorname{GaussianProcess}$

Natural extension to spatial problems. Smooth latent fields.

Tokyo rain - 2 years of data - no smooth

Tokyo rain - 2 years of data - smooth

Log Gaussian Cox process for spatial count data

Log Gaussian Cox process for spatial count data

- ▶ Log Gaussian Cox Process over a spatial domain $s \in S$.
- Spatial intensity $\lambda(s)$ surface.
- ▶ Counts in a subregion $\tilde{\mathcal{S}} \subset \mathcal{S}$ is

$$N_y(ilde{\mathcal{S}}) \sim \mathsf{Poisson}\left(\int_{ ilde{\mathcal{S}}} \lambda(\mathbf{s}) d\mathbf{s}
ight).$$

Log intensity model

$$\log \lambda(\mathbf{s}) = \alpha + \mathbf{x}(\mathbf{s})\boldsymbol{\beta} + \xi(\mathbf{s})$$

where

- \triangleright α is an intercept
- x(s) are spatial covariates
- \triangleright β are regression coefficients
- $\xi(\mathbf{s})$ is a Gaussian process (GP)