Stability for the quermassintegral inequalities in the hyperbolic space

Julian Scheuer (Goethe University Frankfurt)

International workshop on geometry of submanifolds

Closed Soap Bubbles

Isoperimetric problem: Determine properties of area minimising surface, given volume constraint.

Round spheres in \mathbb{R}^{n+1} are unique closed minimisers of

$$\mathcal{R}(\Omega) = \frac{\mathsf{Area}^{rac{n+1}{n}}(\partial\Omega)}{\mathrm{Volume}(\Omega)}$$

Standard variational methods:

ightharpoonup Minimisers of \mathcal{R} have constant mean curvature

$$H = \operatorname{tr}(A) = \sum_{i=1}^{n} \kappa_i$$

 (κ_i) are eigenvalues of the Weingarten map A, principal curvatures.

Alexandrov's theorem

Is a closed embedded constant mean curvature (CMC) hypersurface of \mathbb{R}^{n+1} necessarily a sphere?

Answer: YES! (Alexandrov¹)

- ▶ Proof: Reflection across moving planes and the maximum principle.
- We are going to see another elegant proof today.

Relaxed CMC condition: Suppose for some $\delta > 0$, on a hypersurface M

$$n - \delta \le H \le n + \delta$$
.

Can we conclude

$$dist(M, S) \leq C\epsilon$$

for the unit sphere S, a constant C and where

$$\lim_{\delta \to 0} \epsilon(\delta) = 0 ?$$

¹ A characteristic property of spheres, Ann. Mat. Pura Appl. **58** (1962), no. 4, 303–315.

The question of stability

Theorem (Giulio Ciraolo and Luigi Vezzoni)

A sharp quantitative version of Alexandrov's theorem via the method of moving planes, J. Eur. Math. Soc. **20** (2018), no. 2, 261–299.

Let Ω be a smooth domain with connected boundary, then $\partial\Omega$ lies within an annulus of thickness $C \operatorname{osc}(H)$. C depends on $|\partial\Omega|$ and a lower bound for interior and exterior balls.

Generalization to spaceforms and other curvature functions

$$F = F(\kappa_i)$$

was given by Ciraolo/Roncoroni/Vezzoni.²

² Quantitative stability for hypersurfaces with almost constant curvature in space forms, Ann. Mat. Pura Appl. **200** (2021), no. 5, 2043–2083.

The question of stability

Theorem (Rolando Magnanini and Giorgio Poggesi)

On the stability for Alexandrov's soap bubble theorem, J. Anal. Math. 139 (2019), no. 1, 179–205.

Let Ω be a smooth domain with connected boundary, then $\partial\Omega$ lies within an annulus of thickness at most $C\|H - H_0\|_{L^1(\partial\Omega)}^{\tau_n}$, where

$$H_0 = \frac{n}{n+1} \frac{|\partial \Omega|}{|\Omega|},$$

 τ_n is a dimensional constant and C depends on few geometric quantities, such as interior and exterior ball conditions.

Integral approach

Key ingredient (A. Ros): Use Reilly's integral identity.

For C^2 -functions f on a domain $\Omega \subset \mathbb{R}^{n+1}$, with $f_{|\partial\Omega} = \text{const}$:

$$\int_{\Omega} (\Delta f)^2 - \int_{\Omega} |\nabla^2 f|^2 = \int_{\partial \Omega} H(\partial_{\nu} f)^2.$$

Cauchy-Schwarz-deficit:

$$|\mathring{\nabla}^2 f|^2 = |\nabla^2 f|^2 - \frac{1}{n+1} (\Delta f)^2$$

Then

$$\int_{\Omega} |\mathring{\nabla}^2 f|^2 = \frac{n}{n+1} \int_{\Omega} (\Delta f)^2 - \int_{\partial \Omega} H(\partial_{\nu} f)^2.$$

Solve

$$\Delta f = 1 \quad \text{in } \Omega$$
 $f = 0 \quad \text{on } \partial \Omega.$

Integral approach

Then

$$\begin{split} \int_{\Omega} |\mathring{\nabla}^{2} f|^{2} &= \frac{n}{(n+1)\operatorname{vol}(\Omega)} \left(\int_{\Omega} \Delta f \right)^{2} - \int_{\partial \Omega} H(\partial_{\nu} f)^{2} \\ &= \frac{n}{(n+1)\operatorname{vol}(\Omega)} \left(\int_{\partial \Omega} \partial_{\nu} f \right)^{2} - \int_{\partial \Omega} H(\partial_{\nu} f)^{2} \\ &\leq \frac{n}{(n+1)} \frac{\operatorname{Area}(\partial \Omega)}{\operatorname{vol}(\Omega)} \int_{\partial \Omega} (\partial_{\nu} f)^{2} - \int_{\partial \Omega} H(\partial_{\nu} f)^{2} \\ &\equiv \int_{\partial \Omega} (H_{0} - H)(\partial_{\nu} f)^{2}. \end{split}$$

The function f - q is harmonic, where

$$q = \frac{1}{2(n+1)}|x - c|^2 - R.$$

Magnanini/Poggesi: Good estimates for f - q.

New general shortcut

Theorem (Level set stability)

Stability from rigidity via umbilicity, (2021), arxiv:2103.07178.

Let $n \geq 2$, $M \subset \mathbb{R}^{n+1}$ closed hypersurface, |M| = 1. Let \mathcal{U} be one-sided neighbourhood of M, foliated by level sets of $f \in C^2(\bar{\mathcal{U}})$,

$$\bar{\mathcal{U}} = \bigcup_{0 \leq t \leq \max|f|} M_t, \quad M_t = \{|f| = t\},$$

with $f_{|M}=0$ and $|\nabla f|_{|\bar{\mathcal{U}}}>0$. Let p>n and $\max_{0\leq t\leq \max|f|}\|A\|_{p,M_t}\leq C_0$. Then

$$\operatorname{dist}(M,\mathcal{S}) \leq \frac{C(n,p,C_0)}{\min(\max|f|,\min|\nabla f|)^{\frac{p}{p+1}}} \left(\int_{\mathcal{U}} |\mathring{\nabla}^2 f|^p \right)^{\frac{1}{p+1}}$$

for a sphere S, provided the RHS is small.

Some Remarks

This also works in conformally flat Riemannian manifolds.

The exponent 1/(p+1) is worse than the constant τ_n in Magnanini/Poggesi's CMC stability problem.

But, the result is universal among many geometric problems.

Note in particular, that f is not assumed to solve any PDE.

Some words about the proof: Almost umbilicity I

If h is the 2^{nd} fundamental form of the boundary, then.

$$\nabla^2 f_{|M} = -|\nabla f|h.$$

Hence

$$|\nabla f|^2 |\mathring{A}|^2 = |\mathring{\nabla}^2 f_{|TM}|^2 - \frac{1}{n} (\mathring{\nabla}^2 f(\nu, \nu))^2,$$

where \mathring{A} is the tracefree part of the second fundamental form,

$$|\mathring{A}|^2 = c_n \sum_{i < j} (\kappa_i - \kappa_j)^2.$$

Some words about the proof: Almost umbilicity I

Hence \mathring{A} can be controlled by $\mathring{\nabla}^2 f$.

Classical result from hypersurface theory, due to Darboux:

$$\mathring{A} = 0 \Rightarrow M =$$
Sphere.

Stability versions available and due to De Lellis/Müller, Topping, Grosjean and recently...

Some words about the proof: Almost umbilicity I

Theorem (Antonio De Rosa, Stefano Gioffré)

Absence of bubbling phenomena for non-convex anisotropic nearly umbilical and quasi-Einstein hypersurfaces, J. Reine Angew. Math. **780** (2021), 1–40.

Let $M \subset \mathbb{R}^{n+1}$ be a closed hypersurface, p > n and

$$|M|=|\mathbb{S}^n|,\quad \|A\|_{L^p(M)}\leq c_0.$$

Then there exist $C = C(n, p, c_0) > 0$, such that: if

$$\|\mathring{A}\|_{L^p(M)} \leq \frac{1}{C},$$

then there exists $c \in \mathbb{R}^{n+1}$, such that M-c is a graph over the sphere,

$$\psi \colon \mathbb{S}^n \to M, \quad \psi(x) = e^{f(x)}x + c,$$

$$||f||_{W^{2,p}(\mathbb{S}^n)} \leq C||\mathring{A}||_{L^p(M)}.$$

Classical Steiner formula for convex $\Omega \subset \mathbb{R}^{n+1}$:

$$|ar{\Omega} + \epsilon B| = \sum_{k=0}^{n+1} \binom{n+1}{k} W_k(\Omega) \epsilon^k \quad \forall \epsilon \geq 0.$$

Here

$$W_0(\Omega) = |\Omega|, \quad W_k(\Omega) = \frac{1}{n+1} \int_{\partial \Omega} H_{k-1} \quad 1 \leq k \leq n;$$

 H_k are the normalized elementary symmetric polynomials and $H_0=1$. The classical Alexandrov-Fenchel inequalities say that

$$\frac{W_{k+1}(\Omega)}{W_{k+1}(B)} \geq \left(\frac{W_k(\Omega)}{W_k(B)}\right)^{\frac{n-1-k}{n-k}}, \quad 0 \leq k \leq n-1,$$

with equality precisely if Ω is a ball.

P. Guan/J. Li³: Generalization of the **QM-inequalities to** starshaped and *k*-convex hypersurfaces, i.e.

principal curvatures
$$\in \Gamma_k = \{H_1 > 0, \dots, H_k > 0\}.$$

For this result we get stability:

³ The quermassintegral inequalities for k-convex starshaped domains, Adv. Math. **221** (2009), no. 5, 1725–1732.

Theorem (Stability in non-convex QM-inequalities)

Stability from rigidity via umbilicity, (2021), arxiv:2103.07178.

Let $n \geq 2$ and $1 \leq k \leq n$. Let $M^n \subset \mathbb{M}_0$ be a closed and starshaped C^2 -hypersurface with interior ρ -ball condition such that $\kappa \in \Gamma_k$. Then there exists a constant C, depending on n, |M| and on upper bounds for ρ^{-1} and $(\min_M \operatorname{dist}(\kappa, \partial \Gamma_k))^{-1}$, such that

$$\frac{W_{k+1}(\Omega)}{W_{k+1}(B)} - \left(\frac{W_k(\Omega)}{W_k(B)}\right)^{\frac{n-k}{n-k+1}} < C^{-1}$$

implies, for a sphere S,

$$\operatorname{dist}(M,S) \leq C \left(\frac{W_{k+1}(\Omega)}{W_{k+1}(B)} - \left(\frac{W_k(\Omega)}{W_k(B)} \right)^{\frac{n-k}{n-k+1}} \right)^{\frac{1}{2(n+1)}}.$$

We use the curvature flow

$$\partial_t x = \left(\frac{H_{k-1}}{H_k} - u\right) \nu.$$

Convergence to a round sphere settled by Claus Gerhardt⁴. This flow preserves $\tilde{W}_k(\Omega)$ (normalized W_k) and decreases $\tilde{W}_{k+1}(\Omega)$. We estimate a particular space-time integral:

$$\int_0^\infty \int_{M_t} \left(\frac{H_{k+1} H_{k-1}}{H_k} - H_k \right) dt = \int_0^\infty \int_{M_t} \left(\frac{H_{k+1} H_{k-1}}{H_k} - u H_{k+1} \right) dt$$

$$= c_{n,k} \int_0^\infty \frac{d}{dt} \tilde{W}_{k+1}(\Omega_t) dt$$

$$= 1 - \tilde{W}_{k+1}(\Omega)$$

$$= \tilde{W}_k(\Omega)^{\frac{n-k-1}{n-k}} - \tilde{W}_{k+1}(\Omega).$$

⁴ Flow of nonconvex hypersurfaces into spheres, J. Differ. Geom. **32** (1990), no. 1, 299–314.

Hence the right hand side controls the *Newton-MacLaurin-deficit*: Recall that

$$H_{k+1}H_{k-1} \le H_k^2$$

with equality precisely at umbilic points.

Apply the associated quantitative estimates:

$$\frac{|\mathring{A}|^2}{c(n, 1/H_k)} \le H_k^2 - H_{k+1}H_{k-1} \quad \forall 1 \le k \le n-2.$$

Further elementary arguments give L^2 -control on $|\mathring{A}|^2$.

Almost-umbilicity finishes the proof.

Almost umbilicity III: Quermassintegrals in hyperbolic space

For a bounded domain Ω in hyperbolic space \mathbb{H}^{n+1} with C^2 boundary $M = \partial \Omega$, the k^{th} quermassintegrals W_k is defined inductively:

$$W_{k+1}(\Omega) = \frac{1}{n+1} \int_M E_k(\kappa) d\mu - \frac{k}{n+2-k} W_{k-1}(\Omega)$$

where

$$W_0(\Omega) = |\Omega|, \quad W_1(\Omega) = \frac{1}{n+1}|M|.$$

The extra term comes from ambient hyperbolic curvature, which effects the evolution of the outward parallel bodies.

Under a normal variation $\partial_t x = f \nu$, these quantities behave just as in the Euclidean space (the effect of the extra term in their definition):

$$\partial_t W_k(\Omega) = c_{n,k} \int_M H_k f \, d\mu.$$

Wang and Xia proved corresponding quermassintegral inequalities:

Almost umbilicity III: Stability in hyperbolic space

Theorem (Guofang Wang and Chao Xia)

Isoperimetric type problems and Alexandrov-Fenchel type inequalities in the hyperbolic space, Adv. Math. **259** (2014), 532–556.

Let $n \geq 2$, $\Omega \subset \mathbb{H}^{n+1}$ be a horo-convex domain, and $1 \leq m \leq n-1$.

$$W_{m+1}(\Omega) \geq f_{m+1} \circ f_m^{-1}(W_m(\Omega)),$$

with equality iff Ω is a geodesic ball. Here $f_m(r) = W_m(B_r)$.

Associated with this we get a stability estimate:

Almost umbilicity III: Stability in hyperbolic space

Theorem (with Prachi Sahjwani)

Stability of the quermassintegral inequalities in hyperbolic space, J. Geom. Anal. **34** (2024), art. 13.

Let $n \geq 2$, $\Omega \subset \mathbb{H}^{n+1}$ be a horo-convex domain, and $1 \leq m \leq n-1$. Then there exists a constant $C = C(n, \rho_{-}(\Omega), \max_{\partial \Omega} H_m/H_{m-1})$ and a geodesic sphere $S_{\mathbb{H}}$ such that

$$\operatorname{dist}(\partial\Omega, S_{\mathbb{H}}) \leq C \left(W_{m+1}(\Omega) - f_{m+1} \circ f_m^{-1} \left(W_m(\Omega)\right)\right)^{\frac{1}{m+2}}.$$

The dependence on $H_m \backslash H_{m-1}$ allows for curvature blow-up.

This is in contrast to the Euclidean case.

On the other hand, in the Euclidean case I considered more general hypersurfaces.

Çok teşekkür ederim!