(19)日本国特許庁(JP) (12) **公開特許公報(A)** (11)特許出願公開番号

特開平7-14811

(43)公開日 平成7年(1995)1月17日

(51) Int.Cl.⁶ 識別記号 庁内整理番号 FΙ 技術表示箇所

H 0 1 L 21/304 341 G

Τ

361 H

F 2 6 B 21/14 9140 - 3L

審査請求 未請求 請求項の数4 〇L (全 5 頁)

(71)出願人 000005108 (21)出願番号 特願平5-153280

(22)出願日 平成5年(1993)6月24日 東京都千代田区神田駿河台四丁目6番地

(72)発明者 平岡 明子

東京都国分寺市東恋ケ窪1丁目280番地

株式会社日立製作所

株式会社日立製作所中央研究所内

(72) 発明者 大倉 理

東京都国分寺市東恋ケ窪1丁目280番地

株式会社日立製作所中央研究所内

(72)発明者 由上 二郎

東京都国分寺市東恋ケ窪1丁目280番地

株式会社日立製作所中央研究所内

(74)代理人 介理士 小川 勝男

最終頁に続く

(54) 【発明の名称】 洗浄乾燥方法及び洗浄乾燥装置

(57)【要約】

【目的】 枚葉処理において均一性が良く、ウォーター マークの防止に効果的な洗浄手段を提供する。

【構成】 半導体ウェハ1を傾きをつけて薬液へ入れ、 液中で向きを変え、入れたときと反対側から取り出す。 取り出す際にはN2ガスを吹き付け薬液の除去効果を上 げる。また半導体ウェハ1の薬液への出し入れ時にN2 ガスを吹き付け、薬液の蒸気からの影響を低減する。

【効果】 本発明を用いることにより枚葉一貫処理半導 体ウェハの洗浄において、ウェハ面内の浸漬時間を等し くでき、かつ効果的な薬液除去を行える。

1

【特許請求の範囲】

【請求項1】容器と、該容器内に設けられた半導体基板 固定ステージと、該ステージの動作手段と、該容器内に 薬液およびガスを供給するための薬液およびガス供給ノ ズルを有する洗浄乾燥装置において、上記ステージの動 作手段は上記ステージを上下に移動する手段、チルトさ せる手段および回転動作させる手段とを含むことを特徴 とする洗浄乾燥装置。

【請求項2】半導体基板をステージに固定するステップと、該半導体基板の表面が液面に対し傾斜を持つように該半導体基板を洗浄液に挿入するステップと、該半導体基板を薬液中で挿入時に対して液面法線方向に対称となるように傾けるステップと、該半導体基板の傾きが挿入時に対して液面法線方向に対称となるような状態で該半導体基板を洗浄液から取り出すステップとを有することを特徴とする洗浄乾燥方法。

【請求項3】上記半導体基板を洗浄液から取り出すステップにおいて、上記半導体基板にN2ガスまたは不活性ガスの吹き付けを行うことを特徴とする請求項2に記載の洗浄乾燥方法。

【請求項4】上記半導体基板を洗浄液から取り出した後、 N_2 ガスまたは不活性ガスを吹き付けながら上記ステージを回転することを特徴とする請求項3記載の洗浄乾燥方法。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【産業上の利用分野】本発明は、半導体基板を十分な清 浄環境で、洗浄、乾燥処理を行なうことを可能にする洗 浄乾燥方法及びその装置に関する。

[0002]

【従来の技術】現在、洗浄方法としてはW. Kernらによ って考案されたアール・シー・エー(RCA)洗浄が主 流である。この方法は基本的にSC-1(NH4 OHと H₂O₂とH₂Oの混合液)、HF溶液、SC-2(HC 1とH2O2とH2Oの混合液)の三種の溶液処理からな り、アール・シー・エー・レビュー(RCA Review) Vol. 31、No. 187 (1970) で詳しく説明 されている。何種類もの薬液を用いるので、それらを入 れた複数の槽に順次ウェハを移動していく多槽多段方式 が一般である。これに対しペースや搬送中の汚染を考慮 40 し、ワンチャンバーで処理を行う一槽多段方式がある。 この方式にはスプレー洗浄を応用したものや洗浄槽内に 薬液の流れを作るものなどがある。詳細についてはセミ コンダクター・インターナショナル (Semiconductor In ternational), 1987年8月号) に紹介されてい る。前者はウェハにN2でミスト状にした薬液を吹き付 けて洗浄を行ない、そのミストを完全にパージした後、 遠心乾燥させるものである。後者はウェハカセットをい れた容器の底から薬液を送りこみ容器上部に流すもので ある。流す薬液を切り替えて洗浄を行い最後に温純水で 50

2

リンスする。その後底から排水し、IPA (イソプロピルアルコール) 蒸気乾燥を行う。以上2つの例はいずれもバッチ処理である。バッチ処理は現在の主流であるが、近年コスト低減のためのウェハ大口径化が進むに伴い、洗浄装置の形態も見直されてきている。広い面積をむらなく洗浄するには枚葉処理が有利だが、まだ十分な検討が行なわれていない。

[0003]

【発明が解決しようとする課題】上述の従来技術においてスプレー洗浄を応用したものの場合、短時間で洗浄ができる薬液も少量ですむが、ウェハに均一にミストがかからないと、面内の薬液分布にむらが生じて洗浄効果が不均一になってしまうという問題がある。また薬液をミスト状にするため薬液がウェハに滞在する時間が短く、反応に時間がかかるものには不向きである。

【0004】洗浄槽内に薬液の流れを作る方法の場合、 液面がウェハを横切る頻度が低減されるため粒子汚染の 確率低減には効果があるが、薬液の消費量が多いことや IPA中の水分によるウォーターマークの発生が問題と 20 なる。またIPA蒸気乾燥を行う場合、引火や爆発など の危険があるためその対策が必要となる。さらに枚葉処 理で扱うような大口径のウェハの場合、消費する薬液量 を少なくし、かつウェハ全体から均一に薬液や純水の除 去を行なう手段は実現が難しく、現在検討されている。

【0005】本発明の目的は上述した薬液や純水の残存によるウォーターマークやエッチングの不均一性などの問題を解決し、さらに枚葉化処理の実現可能な洗浄、乾燥方法及び装置を提供することにある。

[0006]

【課題を解決するための手段】上記目的を達成するために、本発明の処理装置のチャンバーは、処理内容に応じ、上下移動、チルト、回転動作を行うことができるウェハを支持するステージと、薬液、純水、N2などを供給するノズル、ドレインで構成される。

【0007】本発明では半導体基板を固定するステージの上下機構、チルト機構を用いて半導体基板が液面に対し傾斜を持つように半導体基板を洗浄液に挿入する。この時薬液に浸漬していない側からN2ガスまたは不活性ガスの吹き付けを行う。そして半導体基板を薬液で処理する間に、基板の傾きを挿入時に対して液面法線方向に対称となるよう変更し、その状態を変えずにステージを上昇させ、半導体基板を洗浄液から取り出す。このとき該半導体基板に対し、液を落すようにN2ガスまたは不活性ガスの吹き付けを行う。さらに半導体基板を洗浄液から取り出した後、液面から十分離れた位置でN2ガスまたは不活性ガスを吹き付けながらステージを回転し乾燥させる。その後同様の方法で純水リンス、乾燥を行なう。

[0008]

0 【作用】枚葉処理における半導体基板の洗浄、乾燥にお

3

いて

① 半導体基板を支持するステージを上下させ、薬液供 給時に半導体基板を液面から十分離すことで飛散の影響 を低減し、エッチングが不均一になることが避けられ

【0009】② 半導体基板を傾斜を付けて液へ挿入 し、液中で挿入時に対して液面法線方向に対称になるよ うに変更し、そのまま液から取り出すことにより半導体 基板内で処理時間を等しくでき、均一なエッチングがで きる。

【0010】③ 半導体基板を液から取り出す際ステー **ジに傾斜を付け、かつ上方から液を落すようにN₂ガス** または不活性ガスを吹き付けることにより短時間で薬液 を除去できる。

【0011】④ 半導体基板を液中に挿入する時及び液 から取り出す時に上方からN₂ガスまたは不活性ガスを 吹き付けることにより液からの蒸気の影響を低減し、均 一なエッチングができる。

 $\begin{bmatrix} 0 & 0 & 1 & 2 \end{bmatrix}$ ⑤ N_2 ガスまたは不活性ガスを吹き付け ながら回転させ、乾燥を行うことにより、傾いたウェハ 20 へのガス吹き付けのみでは除去しきれない分を短時間で 完全に除去することができる。

[0013]

【実施例】本発明の一実施例である装置の概要を図1に 示す。半導体ウェハ1は図1のようにテフロン製の支持 **爪2でステージ3に固定される。このステージ3には薬** 液へのウェハ浸漬時や液からの取り出し時に高さを変え る上下移動、ウェハの挿入時、浸漬中、取り出し時の角 度を任意に変えるチルト動作、スピン乾燥させるときの 回転動作などの機能を持たせた。薬液A15及び薬液B 30 16はバルブ11、12を介してノズル8から洗浄槽4 に供給される。さらに薬液A15及び薬液B16を洗浄 槽4に供給するためのラインを洗浄、乾燥するためにバ ルブ12から純水17、N2ガス18を供給できる。ま た純水14はバルブ10を通してノズル7から、 N_2 ガ ス13はバルブ9を通してノズル6から供給される。

【0014】次に図2~図6を用いて本発明による洗浄 方法について説明する。まず洗浄槽4をN₂ガス13で パージした後、ウェハ1を入れる。そして図2のように ステージ3を水平に上昇させた状態で、バルブ11また 40 ス、14、17…純水、15…薬液A、16…薬液B、 は12を開けて薬液A15またはB16を入れる。洗浄 槽内の薬液17が十分な量になったら、図3のようにス

テージ3を傾けノズル6からN2ガス13を吹き付けな がら下降させ、ウェハ1を浸漬する。そして図4のよう に薬液中でウェハ1の向きを変える。処理終了後、この 状態のままステージ3を上昇させる。このときステージ 3の上昇速度は浸漬の際の下降速度と同一になるように する。これら一連の操作によりウェハ面内の処理時間を 一定にできる。次に図5のようにステージ3を上昇させ る際バルブ9を開け、ノズル6から№ヵガス13を吹き 付け、基板表面を液切れさせる。このN2ガス13は薬 10 液を巻き上げないように流量を調整する。次に図6のよ **うに十分な高さにステージ3を上昇させた後、ドレイン** 5から薬液の排水を行う。そしてバルブ10を開け、ノ ズル7から純水14を洗浄槽4に入れる。以下同様の手 順でリンスを行い最後にN₂ガスまたは不活性ガスを吹 き付けながらスピン乾燥させる。

【0015】なお本発明においてステージ3の操作は、 実施例ではチャンバー底部からステージ3を支持する部 分によって行われるが、上部にステージ支持部を設けて も良い。また2種類の薬液を用いる場合は、最初の薬液 を供給したあと次の薬液に移る前に、まずバルブ12か ら純水17を供給し、薬液供給ラインを洗浄する。その 後N2 ガス18を導入し、乾燥を行ってから次の薬液を 供給する。

$[0\ 0\ 1\ 6]$

【発明の効果】本発明により枚葉一貫処理半導体ウェハ の洗浄の、ウェハ面内均一性の改善すると共に乾燥に伴 うウォーターマークを低減できる。

【図面の簡単な説明】

- 【図1】本発明による洗浄装置の概略図。
- 【図2】薬液の供給時のステージ3の状態を示す図。
- 【図3】薬液へのウェハ挿入時のステージ3の状態を示 す図。
- 【図4】薬液中のステージ3の状態を示す図。
- 【図5】薬液からのウェハ取出し、乾燥方法を示す図。
- 【図6】純水供給時のステージ3の状態を示す図。

【符号の説明】

1…半導体ウェハ,2…半導体固定爪、3…回転ステー ジ、4…洗浄槽、5…ドレイン、6,7,8…ノズル、 9, 10, 11, 12…バルブ、13, 18…N₂ガ 19…洗浄槽内の薬液B、20…洗浄槽内の純水。

フロントページの続き

(72)発明者 糸賀 敏彦

東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内