Teaching and Developing Social and Emotional Skills with Technology

Version from, Monday 7th October, 2013, 15:00

Abstract

Social and emotional skills refer to range of interpersonal and life skills that are crucial for virtually all our interactions in everyday life. Teaching and learning such skills has a long history, with a large number of evidence-based programs across many domains such as education, business, medical or therapeutic contexts.

However, very little technology gets used in these programs, despite its potential to fundamentally enhance and complement the existing approaches. Primary aim of this paper is to provide a foundation and set an agenda for future research on the design of technology that would support, and help teach, social and emotional skills. To this end, we review the literature on social and emotional learning courses across various domains, identifying similarities and shared challenges to successful learning. We then link these to HCI research and the potential for both fields to be mutually enriched. Our key argument is that much existing HCI work can be directly relevant to social and emotional skills learning (SEL) across domains, but that the topic has been underresearched so far within HCI. We argue how such technology could fundamentally extend and enhance the possibilities available to social skills curricula designers in other domains, and help address some of the key challenges they face; as well as pose novel opportunities, challenges and well-motivated practical problems for HCI.

1. INTRODUCTION

Social and emotional skills refer to a range of skills that are crucial for our every-day life and healthy development [Weare and Nind 2011; Adi et al. 2007a; Damon and Eisenberg 2006]. We define the term broadly here to include skills such as those related to emotional intelligence, interpersonal and communication skills, and also skills such as mindfulness, self-control and empathy. The importance of such skills for personal competence and well-being is acknowledged both in research and industry [Durlak et al. 2011; Greenberg 2010; Stepien and Baernstein 2006; Barth and Lannen 2011; Carey et al. 2011; Bono et al. 2009]. Social and emotional skills are particularly valued in diverse domains such as education (from kindergarten to university education), leadership, social work, psychotherapy, and medical/clinical settings.

We see an increasing number of interventions and courses specifically designed to support social and emotional skill learning (SEL) in these areas, substantiated by a large body of peer-reviewed, scientific literature showing that such skills are teachable and interventions can lead to measurable improvements. For example, Durlak et al. [2011] reviewed the effects of more than 200 SEL interventions within primary and secondary schools, encompassing more than 270000 students. The calculated effect sizes averaged out to an 11% improvement in achievement tests and 10% decrease in classroom misbehaviour, with the effects lasting for at least 6 months after the intervention. However, very little technology gets used in the current curricula, despite its potential to help tackle some of the key challenges present.

There is also a growing interest in Human Computer Interaction (HCI) on research relevant to teaching or influencing social and emotional skills¹. In particular, a large

¹Research on using technology to support learning in more classical academic subjects such as mathematics, programming, physics or languages has a longer history within HCI, including a number of well-established

body of work has recently focused on autism (e.g., [Escobedo et al. 2012; Porayska-Pomsta et al. 2011; Zarin and Fallman 2011; Tentori and Hayes 2010; Gotsis et al. 2010; Hong et al. 2012]), and on using technology to enhance or facilitate psychotherapy [Coyle et al. 2011; Matthews and Doherty 2011; de Sá et al. 2010; Hancock et al. 2010]. Prior literature also includes smaller scale systems aiming to influence particular social behaviour such as discussion dominance, or rapport (e.g., [Narumi et al. 2009; Piper et al. 2006; Balaam et al. 2011a; Kim et al. 2008b; McAtamney and Parker 2006; Schroyen et al. 2008; Kim et al. 2008a; Toups and Kerne 2007; Kreitmayer et al. 2012; Daily 2010; Munson et al. 2010]). Wider interest in emotional and social skills within HCI is also exemplified for example by CHI workshops on 'Interaction Design and Emotional Wellbeing' (CHI'12) and 'Patient-Clinician Communication' (CHI'13); as well as a Special Interest Group (SIG) on Work-life Balance.

Given this, it is timely then that the potential of technology to support social and emotional skills training and development is explored in a more thorough way. This paper reviews literature across diverse domains, from education to business to medicine, where various forms of social and emotional skills teaching are key, and connects these to existing work in HCI. In doing so, we identify shared aspects and differences across the SEL domains, using these to draw out structure for future work and show potential for mutual enrichment of SEL and HCI research fields. The overall aim is to take the first steps towards a more principled approach to defining a systematic programme of research for HCI in support of SEL.

In particular, we argue that there are core methods and challenges to teaching social and emotional skills which are shared across all domains; and that these raise new opportunities for HCI research to explore if and how state of the art technologies can help address the challenges in SEL, as well as help support SEL more generally. Moreover, we argue that although much of existing HCI work was not, so far, connected to social skills training, it is actually highly relevant and could be beneficial for augmenting existing curricula. We then point to particular opportunities for further research into this topic, outlining the potential of such mutually enriching connections in more detail.

The remainder of this paper is divided into seven sections. The next two sections provide a detailed overview of social and emotional learning (SEL) curricula. We first focus on SEL in schools as an exemplary domain (Section 2), given it has the longest history of both academic research and practical applications, and addresses on the widest range of life skills. Section 3 then provides a brief overview of the methods and topics used SEL within remaining domains (workplace, medical, psychotherapeutic, and everyday life settings), pointing to relevant reviews and additional literature for each. The following three sections link the SEL literature to particular examples of, and opportunities for, HCI research. Section 4 identify the key challenges across the existing social and emotional skill curricula from an HCI perspective, Section 5 ties these to potential technology support, and Section 6 maps out the design space for HCI. Finally, Section 7 summarises and concludes the paper.

Results overview. Our review shows that although the interpretation and context of specific skills taught differs across the domains, there are substantial similarities in the methods used and the challenges that face curricula designers; and that these could be supported by technology – see Table 1 for an overview. In particular, the identified challenges build on the emphasis that social and emotional skills interventions

journals, e.g., Computers & Education. As further discussed in Section 2.3, while we reference selected articles, we do not review this literature in detail as it is mostly focused on declarative, content-based learning, rather than procedural skills-based learning, which is key for SEL.

place on procedural learning, i.e., the need for substantial *practice* and *feedback*, the key importance of the *transfer of learned skills* from facilitated sessions into every-day real world settings and the *need to motivate and engage* learners. We use these shared challenges as an initial structure to guide designers and researchers in thinking about ways to support SEL in each of the diverse domains; and show how this fits well with, and could easily benefit from, existing HCI work on ubiquitous computing, social signals processing, behavioural change, and "into the wild" research (see Table 2 on page 16).

Multi-level paper structure. The text is structured to allow for several ways in which the readers can approach the paper. We provide a detailed overview of the SEL literature as well as the examples of potential technology support. This is meant to serve as an initial 'guidepost' for readers interested in learning more about the specific subtopics, and as an argument base for the interpretations we make, but could be deemed as too detailed for others. For this reason, we keep all such detail in the third level subsections (e.g., 2.4.X or all third level subsections in section 5) and the paper can be read also by skipping these entirely. Similarly, readers interested only in the key implications for HCI can jump directly to Sections 4 to 6, leaving out the review of SEL literature.

2. LIFE SKILLS COURSES' CONTENTS WITHIN EDUCATION

This and the next section outline the contents of existing social and emotional skills courses and curricula in domains outside of HCI. We analyse (i) what are the core skills that get taught; (ii) how existing curricula approach this; and (iii) what challenges they face. The goal here is to build an overview of what gets taught and how across the domains, and then use this structure to outline the potential for HCI research (sections 4 and 5).

We start with social and emotional learning (SEL) in schools as an exemplary domain that we review in detail here, and follow this with an overview of other domains such as workplace, psychotherapy or medical contexts in the next section. The overview in these two sections is deliberately kept quite descriptive and without explicit links to HCI research, although our review process aimed to identify and foreground aspects and challenges relevant to HCI perspective. We first describe the literature review methodology (section 2.1), and outline the reasons why we chose SEL for schools as an exemplary domain (section 2.2). We then present the *methods* used in teaching of social skills in education (section 2.3) as well as the key *topics* that get taught (section 2.4), including specific examples from various curricula. The *challenges* faced by the curricula designers across all domains are summarised later in section 4.

2.1. Literature review methodology

A large number of systematic reviews of SEL literature already exist, mainly with the focus on meta-analyses of measurable effects and long-term impacts of the curricula (e.g., [Durlak et al. 2011; Weare and Nind 2011; Adi et al. 2007a; Greenberg 2010; Elbertson et al. 2009; Payton et al. 2008]). We build on these and approach the topic with a complementary HCI perspective in mind, aiming to draw out processes, methods and topics commonly used within curricula, and identify the challenges the curricula designers currently face.

As such, we analysed the contents of selected curricula, in addition to following references cited by the academic reviews above. This analysis was done by first creating summaries of individual curricula, collating these in mindmaps to draw out related topics, methods and approaches, and finally iteratively identifying the common aspects across curricula and domains. Given the large number of available curricula for

Challenges		Methods		Topics and skills ta	ught
				Four core areas: • identify and understand emotions • self-control strategies • communication skills • dealing with conflict and problematic situations	Education (Sections 2.1 to 2.5)
Key methods, based on procedural learning approaches: • supporting personal experience and opportunities to try out the • using model situations, role-plays • slowly building to more complex situations, preferably based on • feedback from others is key during practice Shared across domains Four learning principles (in bold) and the associated key challenges: • providing timely feedback (currently post-hoc, coming from train • creating opportunities for real-world practice (currently limited or embedding learnt skills into everyday life (very little is possible) • facilitating learners' engagement and motivation		Diverse topics around 'emotional intelligence' leadership skills copperation and communication skills self-management and planning other personal skills, e.g., via coaching	Workplace settings (Section 3.1)		
ur learning principles (in bold) and the associated key challenges: providing timely feedback (currently post-hoc, coming from trainer/peers) creating opportunities for real-world practice (currently limited mostly to in-session training) embedding learnt skills into everyday life (very little is possible for curricula designers at the moment) facilitating learners' engagement and motivation	Shared across domains	 y methods, based on procedural learning approaches: supporting personal experience and opportunities to try out the skills in practice using model situations, role-plays slowly building to more complex situations, preferably based on real-world experiences of the learners feedback from others is key during practice 	Shared across domains	Self-oriented skills: • stress, coping and life-style management stress, coping and life-style management interpersonal skills: • patient-clinician communication e.g., notivational interviewing • empathic skills	Medical settings (Section 3.2)
peers) tly to in-session training) curricula designers at the moment)	Ils in practice		Therapy process (supporting the patient): wide range of social and emotional skills depends on the patient's issues depends on the patient's issues Training and skills development of therapists: developing detailed self-awareness active listening and empathy skills techniques and approaches of the therapeutic approach	Therapeutic settings (Section 3.3)	
				Diverse topics: • non-clinical interventions, e.g., interpersonal skills courses, mindfulness based stress reduction • life-coaching and other commercial consultation • self-driven change	Everyday settings (Section 3.4)

Table 1: Overview of the key distinctions and similarities

educational domain, we based our review on a set of curricula selected by 'Collaboratory for Academic, Social and Emotional Learning' (CASEL)², which is a non-profit organisation supporting research and application of social and emotional learning in education, co-founded by the leading figures in the academic field.

In particular, we drew on curricula identified in two CASEL 'guides': CASEL [2003] guide reviews 80 SEL programs selected by a rigorous procedure, highlighting 22 of these as particularly well-designed. Each of the 80 programs is described, rated on 15 aspects and linked to academic literature evaluating its effects. The newer version of the guide, CASEL [2013], focusses primarily on preschool and elementary school programs, recommending 23 programs. We first systematically analysed the descriptions of all programs in both guides, and continued with more detailed examination of the programs highlighted in either version of the guide (i.e., 34 programs altogether³), as well as the academic literature available for each of these programs as referenced in the guides, as long as it was accessible through the libraries of three major universities (yielding 66 academic articles altogether). We also included any available course materials and descriptions of the programs that were available on the internet.

2.2. Social and emotional learning for schools

Social and emotional learning in education is a particularly interesting domain for several reasons, all suggesting that the field can be considered relatively mature, with a number of well-researched and evidence-based approaches.

First, skills taught in school-based curricula are those that have been identified by psychologists and educators as crucial not only to development in childhood and teenage years, but more importantly as key skills for adult life [Greenberg 2010]. They also focus on a large span of ages, from kindergarten to university education. As such, it to some extent encompasses the core set of skills needed in other life skills domains that tend to emphasise particular subsets of social skills, and consider many others to be already developed and available.

Second, SEL has more than 20 years' history of peer-reviewed programs, which have been already deployed to hundreds of thousands pupils. For example, Durlak et al. [2011] reviews 213 programs encompassing more than 270000 students of all ages, with the interventions conducted over several years. Some studies have their effects tracked for even longer periods of time, as is the case for Muennig et al. [2009] who have recently presented a 37-year follow-up study on the results of a randomized controlled trial conducted in 1962. Moreover, federal programs support further uptake of such curricula in the US.

Third, recent academic reviews analyse the evidence-base for the effectiveness of SEL programs and find measurable and significant positive effects of SEL in randomised trials, e.g., [Durlak et al. 2011; Greenberg 2010; Weare and Nind 2011]. In particular, the social and emotional skills curricula lead to improvements in the academic performance and the skills actually taught (e.g., Durlak et al. [2011] report average of 11% improvement in achievement tests, 25% in social and emotional skills in the 207 SEL interventions reviewed), as well as positive impacts on many other aspects of behaviour such as mental health [Adi et al. 2007a], violence prevention [Mytton et al. 2006; Adi et al. 2007b], conflict resolution [Garrard and Lipsey 2007], and bullying [Vreeman and Carroll 2007]. For more detail see e.g., Weare and Nind [2011] who provide a meta-review of 52 reviews in this domain, concluding that the interventions "had wide-ranging beneficial effects on individual children and your people, on class-

²http://casel.org/

³Eleven programs selected in CASEL 2013 guide were already selected in the 2003 edition, leaving twelve newly described ones, leading to 34 programs altogether (22+12).

rooms, families and communities and on an array of mental health, social, emotional and educational outcomes".

2.3. Methods for teaching SEL in education - procedural learning

Social and emotional skills are highly complex abilities, strongly dependent on external inputs and context, and are often based on subconscious processing [Ambady 2010; Lieberman 2000]. As such, social and emotional skills are mostly based on *procedural* rather than declarative knowledge [Kruglanski and Higgins 2007, p.288], which is acknowledged by all curricula. In other words, although people often have intuitive knowledge on how to react in social situations, it is problematic to explicitly articulate the processing rules by which they came to these conclusions. Examples of similar dependency on procedural skills can readily be found in other aspects of our life such as language use, where we know which form in our native language is correct but not necessarily why ("it sounds better"); or in social cognition where people are, for example, very sensitive to correct proportions of human face, but are not able to explicitly articulate even the most basic ones correctly [Lewicki et al. 1987].

Moreover, the key ability of most social and emotional skills is to be able to react accordingly even within 'hot' moments, i.e., despite being overwhelmed with emotions, or with the importance of the situation, or just having a very short time to react. During such moments, the ability of conscious, analytical thought is often diminished [Wyman et al. 2010; LeDoux 1998], again emphasising the need for learning skills on a procedural basis. Such strong emphasis on procedural learning is also one of the main differences of teaching social and emotional skills to other aspects of education, which gives more emphasis on declarative learning⁴.

The methods used to teach social and emotional skills reflect this emphasis on procedural learning. Curricula include extensive examples and opportunities for personal experience and practice, combined with extensive feedback on behaviour and progress. Curricula attempt to break the skills down into 'digestable' bits, focusing first on simple model situations and exploring these by role play, and only then slowly building up to more complex situations. These situations are then preferably drawn from real-world issues the students commonly experience, or particular experiences of the class. Repeated practice and extensive feedback from the trainer and peers are critical components in every step of the process.

Once a skill is mastered within the lessons, the key emphasis is then on its *transfer* out of the classroom into everyday contexts. Such transfer is the step existing curricula struggle with most at the moment. Current approaches aim to support opportunities for the learners to practice their new skills in real life situations outside of the classroom, but do not have many strategies to do so. Among the commonly used methods are: activities to increase awareness and remind learners about their skills on the school grounds (e.g., posters around the school); attempts to enlist the help of their social networks outside of the learning environment (e.g., letters to parents asking them to help reinforce the learning at home); as well as various home exercises for students.

In summary, the curricula focus on procedural learning and aim to help children and teenagers to make the skills and concepts tangible, understandable, and support personal experience whenever possible. As such, emphasis is on repeated practice with feedback in the facilitated learning context, often through role play, and on transferring the learnt skills into the everyday situations, outside of the classical training context.

⁴This is the reason why most of the existing HCI work on computer supported learning, looking to support these aspects, is out of the scope of this paper.

Fig. 1: Summary of the identified key topics in SEL in education and their dependencies.

2.4. Topics taught in SEL

Whereas the previous section focussed on methods and the general approaches taken to teach social and emotional skills (i.e., "how"), this section focuses on the content, i.e., "what" gets taught. We identified four overarching topics that appear in most of the courses we reviewed and use these to structure the overview here. These are:

- (1) identifying and understanding emotions (own and of others);
- (2) managing own emotions;
- (3) developing communication and relationship skills;
- (4) dealing with conflicts and problematic situations.

Each topic subsumes a number of simple situations or goals (e.g., being able to identify when becoming angry) and ways to train these (e.g., training learners to notice physical changes in their bodies). Although the exact approach, terminology or exercises used by a particular curriculum can differ from others, there is substantial similarity in the focus and emphasis on these sets of skills across the literature. Moreover, these topics partially build on each other in a sequential manner. For example, the ability to identify and understand emotions is a key pre-requisite for managing own emotions (without knowing own emotions, one cannot control them), which is in turn needed for keeping relationships (appreciating the perspective of another, not jumping to conclusions) etc. As such, they are mostly taught in the order as shown at Figure 1.

We describe each topic in more detail in a respective subsection below, illustrating the descriptions with examples of specific activities from selected curricula. Our goal is twofold: to provide an initial 'feel' for how such skills are taught in this domain; and to set up explicit examples that can be used in later sections to tie some of the existing HCI research to the approaches presented here.

2.4.1. Identifying and understanding emotions. The ability to identify and understand own and others' emotions is a prerequisite of most other social and emotional skills. A key goal is developing the emotional awareness of learners, which is the ability to differentiate, name and notice subtle changes of emotions. Curricula⁵ aim to train a practice

⁵Curricula including content on identifying and understanding emotions are: Caring School Community, I can problem solve, Life Skills Training, PATHS, Peace Works, Quest (Violence Prevention Series), Open

of internal reflection, leading to continuous exploration of how we and others feel. Emphasis is also placed on making the distinction between acknowledging a feeling, and acting upon that feeling/urge.

In particular, some of the curricula build on language usage, and especially on how use of language affects our thinking processes. Various exercises focus on developing the ability to identify emotions in both oneself and others, helping learners to become more reflexive and self-aware. As an example, the PATHS curriculum includes physical "Feeling Faces" cards, which the child learners use to signal their current emotional state throughout the day [Kam et al. 2004; Domitrovich et al. 2007]. Similarly, RULER curriculum uses popular stories to exemplify particular emotions, or draw out distinctions among subtle variants of a specific one [Reyes et al. 2012]. Another approach aims to support self-reflection by exploring and understanding how our bodies are affected by experiencing particular emotions. For example, children are helped to recognize their own feelings by checking their bodies and faces for 'tight' or relaxed muscles, frowns, smiles, and sensations in other parts of their bodies such as butterflies in their stomachs. Matching the facial expressions and body postures shown on cue cards helps the children to recognize the cues from their own bodies and associate a word with these feelings [Webster-Stratton and Reid 2004]. Emotions of others are explored through the ways in which they affect the tone of voice, body language etc. This is often incorporated as a game, e.g., developing the 'detective skills' to find out how others feel. Repeated use of similar activities aims to help learners think more often about how they, and others, might feel in various situations.

2.4.2. Self-control strategies. Self control and management of own emotions is a key aspect present in many curricula⁶ and the techniques used to developed self control build on emotional awareness.

Various strategies and exercises aim to help participants to relax and/or calm down once a strong feeling is recognised. These are often based on various physiological exercises such as muscle stretching and deep breathing techniques. Other strategies draw on verbal labelling, building on psychology and neuroscience findings showing that the act of consciously labelling an emotion by name (rather than "just" being aware of it) facilitates higher cognitive control over the emotional state [Greenberg 2006; Reyes et al. 2012]. Exercises training explicit acknowledgement of emotions, as well as thinking about what could be their cause, are often used. Specific strategies for anger management are particularly common, often combining both verbal labelling and physical relaxation exercises. An example is the "Turtle technique" [Robin et al. 1976], which is still used in a number of curricula (e.g., PATHS). In this technique, children are taught to "withdraw into their shell" (by pulling their arms and legs close their body and closing their eyes) at specified occasions such as when they feel increasingly angry. This is followed by a relaxation phase, where specific muscle groups are tensed and released. Once this technique is mastered, children discuss and appropriate alternative strategies of dealing with stressful situations, now that they are able to consciously reflect and react to them.

Circle, RIPP, Responsive Classroom, Second Step, SOAR, Social Decision Making and Problem Solving Program, 4Rs, Competent Kids, The Incredible Years Series, Michigan Model for Health, MindUP, RULER, Social decision making, Steps to respect, Too Good For Violence. 21 in total

⁶Life Skills Training, Lion's Quest, PATHS, Peace Works, Productive Conflict Resolution Program , Quest (Violence Prevention Series), Open Circle, RCCP, RIPP, Responsive Classroom, Second Step, SOAR, Social Decision Making and Problem Solving Program, Teenage Health teaching Modules, 4Rs, Al's Pals, Competent Kids, The Incredible Years Series, MindUP, Positive Action, RULER, Steps to respect, Too Good For Violence. **24 in total**

2.4.3. Communication skills. Another set of activities focuses on building good communication skills and supporting positive interactions with others⁷. The skills taught here aim at supporting respectful empathic communication and thus implicitly facilitating friendship relationships, and an ability to collaborate and avoid conflicts that could otherwise occur through misunderstanding.

The emphasis is on teaching active listening, which is then used to facilitate teaching empathy. Other teaching strategies also focus on training of specific communication skills (e.g., giving and accepting compliments). Exercises can include games to: induce collaborative activities; practise active listening, e.g., through listening to someone telling a story and then trying to rephrase it with as many details as possible; and disagree respectfully. These can include ways to subtly reframe a message into a form which is not threatening, such as in Aber et al. [1998] where students are taught to acknowledge the potential mismatch between their and the other's perception of the situation (e.g., preferably saying "It seems to me you are not listening now.", rather than "Why aren't you listening to me!").

2.4.4. Dealing with conflicts and problematic situations. Problem solving strategies and conflict management are the final topics of most curricula⁸. Violence prevention is commonly an important additional goal, as many of these curricula are designed for schools and neighbourhoods with a high prevalence of aggression and weapon use.

Students are often taught a particular structure of reacting to a problematic situation or a conflict. A key approach is to help students process the situation on a cognitive level, despite the fact that conflicts tend to ignite strong emotions. For example, the PATHS curriculum includes a "semaphore", where the sequence of red-yellow-green indicates a "stop-think-proceed" process [Kam et al. 2004; Domitrovich et al. 2007]. Such structured sequences always include and emphasise a goal setting and evaluation phase. Moreover, curricula aim to teach children and teenagers to recognise which conflicts might have arisen from misunderstanding, with perspective taking exercises forming the core approach. An example are workshops focusing on win-win negotiation (e.g., in RCCP) and providing suggested sequences for steps to take during disagreements (e.g., in Incredible Years).

2.5. Summary of SEL in education

There are several reasons to explore the social and emotional learning curricula in detail. SEL in education has a long history of research and a high number of evidence-based curricula, described in academic literature; it focuses on a large span of ages and foundational life skills; and rigorous studies exist that evaluate the impacts over time and show strong positive effects. We outlined the methods used to teach social and emotional skills. These are mainly based on procedural learning, involving focus on practice, need for feedback, and strong emphasis on supporting transfer of learnt skills into the real-world. We also described the content of the curricula in some detail. The discussion was structured according to the four overarching topics we identified on the basis of the literature review, with each topic comprising key sets of strategies and

⁷While implicit in many others, this aspect is explicitly highlighted within the following curricula: Michigan Model for Comprehensive Scholl health Education, Peace \GeraldineWorks, Open Circle, RCCP, Responsive Classroom, Second Step, SOAR, Tribes, Al's Pals, The Incredible Years Series, MindUP, Positive Action, Steps to respect curricula. **13 in total.**

⁸Michigan Model for Comprehensive Scholl health Education, PATHS, Peace Works, Productive Conflict Resolution Program, Quest (Violence Prevention Series), Open Circle, RCCP, RIPP, Responsive Classroom, Second Step, SOAR, Social Decision Making and Problem Solving Program, Tribes, 4Rs, Al's Pals, I Can Problem Solve, Competent Kids, The Incredible Years Series, Positive Action, Social decision making, Steps to respect, Too Good For Violence. 22 in total

tasks used across the curricula. This provides specific examples of how the content of the curricula looks, and will allow us to tie it in with the challenges and opportunities for HCI in later sections.

3. COURSE CONTENTS IN OTHER DOMAINS

Social and emotional skills have also been identified as key skills in a number of other domains such as in business and medical settings, talk-based therapies and everyday settings. The core underlying SEL skill sets needed in these domains are very similar to SEL in education, and the domains indeed assume some foundational life skills were acquired through the education process. Each of these domains thus focusses on a particular sub-set of skills in a more specialised and deeper way in their SEL programs.

Each subsection below introduces one domain. We outline the broad impacts achieved through SEL training, commonly used methods, and the key topic areas. While it is beyond the scope of this paper to go into more detail, we provide pointers to selected reviews where such detail can be found.

3.1. Workplace and business related setting

A focus on emotional and social skills teaching has a long history in the workplace, e.g., [Bailey and Butcher 1983b; 1983a], appearing under a wide range of labels such as interpersonal skills, soft-skills or, more recently, emotional intelligence and developmental workplace coaching. Social and emotional skills training is included as part of professional educational programmes such as for MBA and undergraduate business students; it is also offered as part on ongoing professional development in the workplace, e.g., many companies offer soft-skills courses or coaching to their executives and increasingly also other staff. Academic literature shows positive effects of such training (such as improved leadership, team-building or self-management skills), but the existing evidence is not as strong as for SEL in education. Some of the reasons are that training programs have often been developed on a purely commercial basis and outside of the academic community and detailed information about the content of the programs is often not available for intellectual property and/or competitive advantage reasons [Walter et al. 2011; Clarke 2006; Riggio et al. 2003].

Methods. The majority of courses follows similar strategies: role-play as a key approach to teaching the skills, together with discussion of fictional and real life cases, demonstrations and modeling. Emphasis is again placed on procedural learning and the opportunity to practice and embed skills so that they become automated. Time-frames differ from a few hours to multi-day courses, and to longer-term learning relationships (e.g., as in coaching).

Topics. A key focus is on developing aspects of emotional intelligence (EI), which can be defined as "the ability to carry out accurate reasoning focused on emotions and the ability to use emotions and emotional knowledge to enhance thought" [Mayer et al. 2008]. Such training might, for example, develop communication and cooperation skills, as well as increase self-awareness of the employees.

Specific leadership programs focussing on SEL skills in the workplace designed for executives are often aimed at relationship skills (such as conflict management and interviewing) and self-management (e.g., dealing with stress or time-planning and goal setting). Executives are often expected not only to learn these skills themselves, but also to be able to teach them to others later on. Coaching is often used as a way to help executives (and increasingly other employees) develop EI skills [Bono et al. 2009]. It is inherently client-focussed, with the goals agreed depending on the situation, and

emphasises accountability to the coaching relationship, honest feedback, supported reflection and accepting responsibility for own decisions.

Reviews. Arthur et al. [2003] provides a general overview of effectiveness of training within organisations, including training of interpersonal skills, and discusses the effects of various training designs. Their meta analysis reveals medium to large positive effect sizes (*d* around 0.60) for organisational training courses. Mayer et al. [2008] gives a thorough review of the 'emotional intelligence' concept, including connections between emotional intelligence and better real-world performance. Feldman and Lankau [2005] and Bono et al. [2009] summarise the practices and processes used in executive coaching by practitioners, and Carey et al. [2011] provides a rigorous review of academic literature on work-place based coaching for leadership.

3.2. Medical settings

Social skills, such as communication skills or empathy, are increasingly recognised as core clinical skills in the medical community [Rider and Keefer 2006; Barth and Lannen 2011; Makoul and Curry 2007; Kalet et al. 2004]. Improvements in such skills have been shown to enhance patient satisfaction, increase adherence to psychotherapy, and promote patient willingness to divulge sensitive information that may assist diagnosis as well as reduce the risk of subsequent litigations [Stewart 1995; Brown 2008]. Most curricula focus on one of three areas: (i) university courses for medical students; (ii) general courses and support for practicing medical personnel; and (iii) specialised courses for specific groups of medical personnel, such as in cancer care or end-of-life care, where specific skills related to empathy and communication are even more important (e.g., when giving bad news to patient). Most of the courses are available for doctors, followed closely by courses for nurses and other health professionals. Peer-reviewed evidence exists for the effectiveness of many of the interventions in this domain for improving the targeted skills (see reviews below).

Methods. A popular method in medical settings is the use of role play both with peers and using trained actors [Stepien and Baernstein 2006; Stiefel et al. 2010; Kalet et al. 2004; Barth and Lannen 2011], as well as facilitator or peer based feedback [Rao et al. 2007]. Courses also include workshops, lectures, and discussions of case studies. Many courses that aim at general communication skills include role plays with scripted exchanges or examples to practise on.

Topics. Curricula focus both on self-oriented emotional skills for medical personnel as well as a wide range of interpersonal interaction skills. Courses on self-oriented emotional skills include aspects such as personal reflection, self-awareness mindfulness, and stress management training [Shapiro et al. 2000; Epstein 1999; Satterfield and Hughes 2007]. This also incorporates the growing emphasis on the importance of teaching medical students and healthcare practitioners to manage their own well being, for example through teaching mindfulness techniques and lifestyle management [Hassed et al. 2009].

Courses on interpersonal skills aim to support generic patient-clinician interaction. The emphasis is on the ability to inquire for diagnosis related information and to clearly communicate test results and offer treatment suggestions (e.g., see [Kalet et al. 2004; Barth and Lannen 2011] for examples and review); related techniques such as motivational interviewing [Hettema et al. 2005], focus on skilful framing of questions with the aim of empowering clients to take responsibility for their own behaviours and decisions.

Empathy is understood as another a crucial component of successful and caring interactions between the patient and doctors, nurses and other health professionals. Em-

pathy is particularly important in interactions communicating deeply emotional and life-changing information, e.g., in oncology, and to a lesser extent also in other general practice [Barth and Lannen 2011]. For example, doctors often tend to ignore patients' emotions during difficult moments (e.g., having to communicate a critical diagnosis) and concentrate on the pragmatics, leading to negative consequences to treatment adherence and psychological functioning of patients. The training involves aspects such as sensitive responding to emotions from patients and improved understanding of the patients' psychosocial issues, concerns and needs as well as methods to do so while protecting the emotional well-being of the clinician or nurse.

Reviews. Rao et al. [2007] present a systematic review of interventions designed to enhance communication behaviours between patients and doctors, and Barth and Lannen [2011] systematically review communication courses specialised for oncology personnel (e.g., doctors, nurses, social workers). Both found statistically significant positive effects of skills training, such as improvements in patient-centered communication skills as well as higher ratings from the patients. Emotional skills training for medical students is reviewed by [Satterfield and Hughes 2007] and shows positive effects of the interventions. Pedersen [2009] and Stepien and Baernstein [2006] review training courses that specifically aim to increase empathetic skills of students or practitioners. There have also been some successful initial studies on including technology into the teaching process, e.g., Tulsky et al. [2011] shows the benefits of combining lectures with tailored video-recording of the doctors' own interactions.

3.3. Therapeutic settings

A crucial part of talk-based psychotherapy aims to support the development of social and life skills, often for clients disadvantaged by cognitive or emotional deficits or going through difficult life situations at the time. The literature in this domain focuses on two main aspects. First is the psychotherapy itself, i.e., strategies to support learning and improvement on the part of the clients. The second aspect concerns the training and development of skills needed by the therapists/counsellors themselves, with the emphasis on supporting the learning process for the trainees leading to sophisticated combinations of class based learning and practice with real clients (under supervision of an experienced therapist).

Methods. The methods used to work with clients during the therapeutic process differ depending on the psychotherapy approach chosen by the therapist. These can range from very specific training situation and exercises such as exposure therapy in Cognitive Behavioural Therapies (CBT) or social skills training for people with autism, to unstructured exploration of personal experience in humanistic approaches. See, e.g., Coyle et al. [2007] for a succinct review of the most common psychotherapy schools and links to further resources.

Skills development for students and novice therapists builds on a mix of lectures on the theoretical background and putting these into practice. This is done initially with peer students who role-play clients or share and discuss their (real) problems; later in the learning process this also involves real-clients, where the students lead the psychotherapy under close supervision of an experienced therapist. The emphasis on supervision is high, with the majority of schools requiring student therapists to enroll into a psychotherapy themselves while studying.

Topics. In terms of supporting the client directly in the psychotherapy process, the topics again differ substantially depending on the clients' issues or disorder, and personalisation is crucial. As such therapies can, for example, aim to help clients to achieve better self-awareness, to develop better self-control, decision making pro-

cesses, and interpersonal skills, and to help change deeply set negative thinking patterns.

Therapist training is most concerned with very detailed self-awareness on the part of the therapist, and mastering the techniques and approaches of the studied psychotherapy approach. The ability to empathise and fully listen to the clients is particularly emphasised as a key therapeutic skill. The aim of all these skills is to help develop a good working relationship with clients, which is seen as one of the main aspects of successful psychotherapy [Asay and Lambert 1999].

Reviews. Therapeutic settings have already generated considerable research within HCI, looking at using technology to extend and improve the psychotherapy process. The work so far focused mostly on autism related systems (e.g., [Escobedo et al. 2012; Picard 2009; Hayes 2011; Porayska-Pomsta et al. 2011; Hong et al. 2012] and many others), and cognitive-behavioural therapies (e.g., [Coyle et al. 2011; Matthews and Doherty 2011]). Coyle et al. [2007] in particular gives an overview of the use of technology in psychotherapy, the potential for HCI involvement, and a solid introduction to most common psychotherapy styles.

In addition, Hill and Lent [2006] review existing literature on teaching counselling and psychotherapy students, showing significant positive effects of particular training methods. The book edited by Duncan et al. [2010] provides a detailed review of the factors common across various therapeutic approaches, including large positive effect sizes of most therapies, and the key role of therapeutic relationship.

3.4. Everyday life skills

Everyday life skills courses comprise a wide range of fragmented topics and methods. As such, we only briefly point to several illustrative examples where social and emotional intelligence skills are taught in, and for, everyday life settings. These are often framed as various life skills courses for the general population such as interventions supporting interpersonal skills (e.g., improving empathy for couples [Long et al. 1999; Angera and Long 2006]) or interventions based on meditation, yoga, and more recently Mindfulness Based Stress Reduction [Kabat-Zinn 2003], all aiming to support and improve personal well-being (e.g., [Grossman et al. 2004; Marchand 2012]). Moreover, the growth of life coaching (e.g., [Green et al. 2006]) and consultation services, most commercially based, as well as the wide usage of self-help books, point to the increased recognition by people of the value of positive self-driven change and interpersonal and emotional regulation skills. Altogether, these examples draw out the large scope of everyday life skills learning, and the value people place on them.

4. SUMMARISING SEL - FOUR LEARNING PRINCIPLES AND ASSOCIATED CHALLENGES

The previous two sections outline the diversity of topics across the reviewed domains, addressing different needs, age groups, and settings. However all domains share the focus on similar social and emotional skills, albeit interpreted specific to context; and use very similar teaching methods and approaches with a common dependence on procedural learning as well as the overall nature of the skills they teach – see Table 1 for an overview.

Based on these similarities, we draw out a set of four 'learning principles', with each principle pointing to particular challenges to social and emotional skills learning. We frame these principles with HCI research in mind, distinguishing them here in order to highlight particular issues that HCI designers and researchers could consider supporting. In this sense, they provide a structure that helps to outline more clearly how social and emotional learning could tie in with, and benefit from, HCI interests, guiding future work on this topic. We emphasise however that they should not be understood as

independent, reified concepts. They are obviously interrelated and dependent on each other, and it is likely that any real-world system will draw on multiple if not all of these aspects, although perhaps focusing on some more than the others as relevant.

We list the four principles below, and then discuss each in turn:

- supporting feedback;
- (2) facilitating practice;
- (3) embedding and transferring of skills into everyday situations;
- (4) supporting motivation and engagement of the learners.

Feedback. As social and emotional skills are very complex and challenging for learners to track easily by themselves without external support, all curricula facilitate various ways to give the learners feedback on their behaviour. However, providing timely feedback is difficult. Within the facilitated training sessions, the expert trainer or peers serve as the key source of feedback. However, this feedback mainly happens in a post-hoc manner, and often from unguided recollection of what happened during the practice. Moreover, the ratio of trainer to students commonly means that learners get feedback mostly from their peers, who are not trained or particularly skilled in what is taught. Outside of the facilitated sessions, any form of feedback is virtually impossible, and often ends up relying on the student's self report of their own attempts to practise when they come back to the facilitated session.

Practice. Opportunities for practice are absolutely key for procedural learning. Support for personal experience and hands-on exploration of the skills is thus present across all of the reviewed domains and training approaches. Within the lessons, practice opportunities range from simple model examples that are role-played to trying to utilise situations that occur naturally within the classroom for opportunistic practice. It is however hard for current curricula to go beyond a short-term role-play. This is especially so for topics that are ethically challenging such as responding to conflicts or emotionally loaded situations. And it is even more challenging to design ways to support learners in extending the (controlled) practice opportunities beyond of the immediate teaching interaction.

Embedding and transfer of skills. The ultimate goal of all social and emotional skills training programs is to transfer and embed the skills learned in the classroom context into everyday behaviour and real-world situations. By embedding we mean transforming a skill from one that can be enacted when prompted (e.g., in a practice session) into a skill which becomes an automated, nearly habitual response in everyday settings and situations. Curricula currently approach this, on the one hand, by including real-world examples and situations within the learning context (e.g., asking students to recall and discuss particular experience they had, or having doctors and therapists analyse data from their own practice) and, on the other hand, by attempting to extend the learning context outside of the lessons. Examples of attempts to extend training beyond the class include: trying to increasing awareness (e.g., posters placed around the building); scheduling follow-up meetings to support recollection of what was learned; and asking the learners' social networks to help reinforce the learning and skills in between sessions. However, the current approaches are limited in scope and effectiveness, and there is little curricula designers can do to directly influence embedding outside of the learning sessions. As such, this learning principle poses challenges that could perhaps most benefit from technology support.

Motivation and engagement. Supporting motivation and engagement of the learners also plays a major role in all learning experiences and is acknowledged as a key aspect within SEL for education, and increasingly also across all other domains and

Fig. 2: Diagram of the identified learning principles and their relationships

curricula. Existing work in HCI around creating engaging experiences suggests a potential to augment many aspects of the curricula, making them more engaging and thus motivating for the learners.

In addition to the four learning principles, we also highlight the importance of the fa-cilitated nature of most social and emotional learning, pointing to a strong distinction between the directly facilitated learning processes available within the class context and learning outside the class in real-world situations. We will argue later, in section 6.1, how this facilitated learning context opens up particular opportunities for thinking about technology support for SEL – it combines the benefits of a reasonably controlled setting (i.e., teaching curricula with mostly well defined structures; mostly inside a specific room; and facilitated by a SEL expert), but still allows for designing systems for use in real scenarios (i.e., the learning context). This could especially be interesting for initial deployment and exploration of the novel technologies in support of social and emotional learning.

In summary, the four principles point to the key challenges we identified in the existing SEL curricula, and provide a link between the curricula and the potential to support SEL by HCI research. Figure 2 then shows the relationships between the four principles, and puts them into context. Feedback and practice play a central role in learning social and emotional skills, regardless whether within or outside of the learning contexts. Supporting transfer of learned skills by embedding parts of learning into everyday contexts and real-world situations is then one of the key goals in the training reviewed above. Additionally, learning experiences need to be engaging and motivating to be successful.

Learning principles	Related research themes in HCI	reflection, emotional awareness and control communication skills	
feedback	affective computing, social signals processing, ubiquitous computing, systems for reflection		
practice	practice into the 'wild' studies, ubiquitous computing virtual reality, embodied agents, serious gam		
embedding into everyday life	behavioural change, persuasive and ambient technology, mobile computing	behavioural change technologies situated social support	
engagement and motivation	funology, game design, behavioural change (motivational aspects)	funology and gamification	

Table 2: Depiction of relations between the learning principles, the links to HCI, and the related broader topics in HCI research

5. SUPPORTING SEL WITH TECHNOLOGY - UNCOVERING SYNERGIES WITH HCI

This section draws out the potential synergies between the social and emotional learning, and existing HCI work and interests. We use the four learning principles to orient the discussion as it provides a direct connection to the curricula structure and approaches, and also to illustrate how this differentiation can serve as a good initial basis to guide thinking about the future HCI work on this topic.

As an overview, the Table 2 outlines the broad connections between the learning principles, relevant themes of research in HCI, and exemplary areas particularly suitable for technology support. We address each learning principle separately, with illustrative examples of relevant HCI work. These examples suggest the extent of existing HCI research that could be re-appropriated as relevant to social and emotional learning and also highlight the opportunities and challenges this would pose to HCI research. We end by drawing out some of the roles technology could take across the learning principles.

5.1. Feedback

Social and emotional skills are hard to track by the learners themselves during the learning process and all curricula incorporate various ways to give feedback on their progress. However, these are mostly based on trainers' or peer feedback, leading to predominantly post-hoc, high-level feedback that is based on recollection. As such, there are explicit challenges and opportunities for facilitation of timely feedback both within and outside of learning sessions.

Prior HCI research suggests that there is a potential for novel kinds of data capture systems that can capture in-situ data such as physiological signals or other sense-able data. In particular, HCI has recently started to focus on tracking aspects that are particularly relevant and important for learning of social and emotional skills, such as emotion detection in affective computing, supporting awareness and personal reflection, and social signals processing. This data can then be re-presented via some form of feedback either in real-time and/or as an explicit resource for post-hoc reflection and feedback, and through many different modalities (e.g., mobile, wearable, haptic, ambient displays; on the group vs. individual level etc.). Such systems could immediately augment and enhance existing curricula and learning processes; in doing so, the

SEL context can also raise new challenges for HCI by providing many well-motivated, complex practical problems to tackle for the developing technology.

We outline two areas of HCI systems that are specifically relevant to SEL. First are systems supporting personal reflection and emotional awareness (subsection 5.1.1); and second the early work looking into supporting or affecting communication (subsection 5.1.2). Due to space concerns, we focus here mainly on work attempting to sense aspects of behaviour that could be used as the basis for feedback. This leaves out other important research exploring the modes in which feedback can be provided. We refer the reader to other reviews, e.g., Börner et al. [2013] discussing ambient displays feedback in learning contexts.

5.1.1. Reflection and emotional awareness.

Much work has been done recently in HCI around supporting reflection (e.g., [Fleck and Fitzpatrick 2010; Sas and Dix 2011]), recognising and tracking emotions and helping people develop better awareness about, and control over, their behaviours. Such systems would fit well into many aspects across all curricula, such as: the exercises aimed to teach the learners to reflect on, and label, their emotions; emotional awareness exercises in business and medical social skills courses; as well as systems to support personal reflection in psychotherapy and coaching contexts.

Two broader approaches within HCI tap into reflection and emotional awareness. First is driven by advances in sensor technologies leading to affective computing systems and social signals processing in general (e.g., [Sun et al. 2011; Pentland 2008]), with the aim to automatically assess variables of interest such as conversational engagement or mimicry. Other approach looks at supporting personal reflection by providing users with additional data about their activities, and aims to support their own reflection, for emotional awareness for example, rather than providing system-based interpretation (e.g., [Kalnikaite et al. 2010; Höök et al. 2008; Slovák et al. 2012]).

Both approaches share the focus on helping users to become more self-aware and draw out patterns that they wouldn't have noticed otherwise by tracking and visualising emotional changes over time. This can be either on a more automatic, affective computing basis, as in AffectAura [McDuff et al. 2012] and Mood Meter [Hernandez et al. 2012]; or with more emphasis on the interpretation on the part of the user such as Affective Diary [Stahl et al. 2008; Sengers et al. 2007; Höök et al. 2008], Sense-Cam [Kalnikaite et al. 2010; Fleck and Fitzpatrick 2009] or Mood Map [Morris et al. 2010]. Similarly, Subtle Stone [Balaam et al. 2010] presents users with options to indicate their current emotion through an ambient, ambiguous visualisation, very closely resembling the Feeling Faces used in the PATHS curriculum. The nature of the technology could also support more than "just" a moment-to-moment reflection tool, e.g., by enhancing Feeling Faces with tracking and facilitating reflection over time. This would also have the potential to aggregate class 'mood' etc., all of which might be useful additional opportunities for the curricula design.

Other work focuses on supporting self-awareness in-the-moment. Examples are systems such as designed by Moraveji et al. [2011] to support greater awareness of one's own breathing and helping the user to maintain a calm and relaxed state; or mobile tracking systems exemplified by Rabbi et al. [2011]. Such systems might be used either in a nearly unchanged form as a part of supporting mindfulness and breath control techniques, which are taught across a number of domains; they can also serve as inspiration for new systems aiming to reflect background awareness of other aspects trackable by technology. To summarise, these examples illustrate systems that can support users in reflecting on their emotions and behaviour, but do not necessarily aim to help control or react to emotions or behaviours when these are recognised.

Self-control is another key component of many of the curricula across domains. Specific focus is often given on impulse management, such as in response to anger or acute stress, where the pivotal aspect is realising that one is getting angry or stressed, and then triggering the appropriate response, e.g., techniques for calming down. However, it is challenging to get feedback promptly when learning to do this. Recent advances within affective computing that draw on physiological signals could be particularly useful here. For example, Bouchard et al. [2012] shows how a short training based on a combination of physiological signals feedback and a computer game as a stimulus can help soldiers better manage their stress in real-world situations, reporting significantly better results than traditional techniques. Similarly, there are recent results suggesting a range of other possibilities, e.g.: to automatically track seizures [Poh et al. 2012]; to detect arousal increase in people on the autistic spectrum [Picard 2009]; and to detect interruptions [Pan et al. 2011]. All of these have been applied outside of the lab and (close to) real-world settings. Additionally, much social signals processing work shows promise for providing additional approaches to detecting key interpersonal emotional states such as anger or stress with sufficient precision, building on audio and video analyses techniques [Vinciarelli and Pantic 2012]; these are techniques that might well be suited for tracking within the classroom/training room (or other enclosed spaces such as a meeting room).

Such systems would fit well with the content of many of the curricula across the domains, where the students are taught to observe and reflect on the changes felt in their bodies during (and at the beginning) of such episodes. Moreover, many of the sensors are wearable and are likely to become unobtrusive soon, suggesting the potential to support feedback outside of the classroom and during everyday life. Other aspects of managing one's own emotions focus on keeping up motivation, postponing pleasurable experiences etc., and could perhaps also be facilitated by providing support for relevant personal reflection; or might even have measurable correlates detectable by sensors or analysis of logged data.

5.1.2. Communication skills.

Many curricula involve exercises to teach particular communication skills and interaction strategies. Prior work in HCI suggests ways in which technology might support and enhance the feedback possibilities, with the potential to make communication learning more effective. In particular, a number of papers show how relevant aspects of interaction are trackable in real-time, and how providing feedback on these can affect and change interaction in positive ways. These systems suggest that similar feedback could be useful for many aspects of the curricula, including active listening, constructive communication styles or perspective taking exercises.

For example, the Meeting Mediator system by Kim et al. [2008b] directly feeds back speaking behaviour of participants in a discussion. Such feedback lowers domination of individuals and helps achieve a more balanced discussion. Similarly, Pentland [2008] shows techniques to track aspects such as influence or activity within the interaction and Gatica-Perez [2009] reviews other methods to analyse and track aspects of social interaction in small groups. Moreover, DiMicco et al. [2007] discusses how increased awareness of parts of the interaction can affect and shape group dynamics. There are also indications that even subtler elements of interpersonal interaction can be addressed. For example, Balaam et al. [2011a] shows how feedback based on nonverbal behaviour can affect and increase feelings of rapport. Although Balaam et al. [2011a] used Wizard of Oz techniques to select the indicators, there are already several systems that aim to automate similar tracking [Sun et al. 2011; Hagad and Legaspi 2011]. Similarly, Daily [2010] uses physiological data to provide a posteriori feedback on group discussion in classes, supporting improved reflection of the shared experi-

ence and empathy. Skinner et al. [2009] present a technology based course for medical doctors based on a lecture and a set of video clips demonstrating important aspects, tailored to each doctor by including relevant fragments of the doctor's own interactions with patients recorded earlier. A randomised control trial shows a significant improvement in doctors' empathy towards patients in contrast to a wait-listed control group [Tulsky et al. 2011].

In summary, many of the systems outlined above show the potential of technology to capture relevant data that can be used to provide novel feedback mechanisms in relation to self-awareness and social communication skills, and could easily help with many of the challenges curricula designers face.

5.2. Practice

All the reviewed curricula aim to provide extensive opportunities to practice, mainly within the lessons, using role-plays and model situations as the key methods. The goal is to practice 'proper' reactions and understanding of situations and challenges one can face in daily life. Participants are also encouraged to continue practicing the new skill outside of the class setting. By practice we mean here a consciously accomplished activity with the goal to further develop the skill in question.

Existing HCI literature points to two areas which are directly relevant. The first is receiving feedback on one's own behaviour, which is key for successful practice. The types of systems outlined in the previous section can directly extend the opportunities for students' practice, especially outside of learning sessions where little or no feedback is otherwise available. Thus facilitating practice 'in the wild' presents novel opportunities and challenges for many applications of ubiquitous computing, such as wearable, mobile and sensor-based technologies. Second, recent work on conversational/relational agents together with research on virtual spaces points to novel, easily controllable and configurable environments that could allow students to practise in a wide range of novel model situations, settings and on a range of topics. This would be especially useful for concepts that are problematic to tap into normally, either due to ethical concerns (e.g., dealing with a conflict situation) or what are not feasible to enact in class. We review the two areas below.

5.2.1. Bringing practice opportunities "into the wild".

One of the key problems existing curricula face when aiming to facilitate practice outside of the lessons is the difficulty in providing learners with sufficient and timely feedback or support during independent practice. This could be in form of real-time feedback during the external practice sessions, but also as a post-hoc support, helping the learner more reliably recall and reflect on their own behaviour.

Many of the feedback options described above have been, or at least have the potential to be, deployed in real-world use, suggesting that such systems could extend practice and feedback possibilities beyond formal learning settings. For example, the systems supporting reflection have mostly been developed with real-world use in mind ([McDuff et al. 2012; Balaam et al. 2011a; Stahl et al. 2008; Moraveji et al. 2011]). Initial work has also deployed analogous principles to support emotional awareness training [Matthews and Doherty 2011] and social skills exercises tracking [de Sá et al. 2010] for psychotherapy clients, drawing on the increasing power and ubiquity of mobile phones. Prior work also shows how technology can help shape and support practice, in particular interaction strategies outside of the class. For example, the MOSOCO project [Escobedo et al. 2012; Tentori and Hayes 2010] exemplifies how mobile phones can help children on the autistic spectrum practise their social skills outside of lessons, and how the system can help elicit feedback from their peers.

Feedback on other interactional aspects could be deployed in the wild. For example, systems such as Meeting Mediator [Kim et al. 2008b] or those described by Pentland [2008] could be easily adjusted to provide information on real-world meetings. Similarly, existing research suggests that some of the systems based on physiological signals could be also applicable outside of the laboratory or teaching contexts despite the increased noise such situations bring (e.g., [Pan et al. 2011]).

We argue that developing technology to support feedback and practice in the wild would highly benefit existing social and emotional learning programs, regardless of the domain, as it clearly addresses one of the key issues such curricula face. It would, however, also bring crucial challenges to HCI research, requiring systems that are robust enough to cope with "in the wild" settings and to address specific issues around which aspects can be sensed at all, the degree of adaptability, cost-benefit ratio etc. Section 6.2 discusses such technological challenges in more detail.

5.2.2. Novel environments for practice. Curricula across all domains include a large number of role-play or modelling examples, allowing the learners to test and explore skills in a safe situation. Prior research suggests that technology could support novel settings by providing virtual environments or games that can substantially extend and augment the opportunities for such role-play and practice.

Initial work on 'serious' games suggests that these can address many complex concepts relevant to social and emotional learning, and do so in an engaging way. For example, Coyle et al. [2011] shows how a specially designed game can enhance and positively augment cognitive behavioural psychotherapy, especially for teenage patients. Similarly, prior research has looked at the possibilities of novel interfaces such as multi-touch tabletops to augment therapy with autistic children, including aspects of cooperation [Piper et al. 2006] or communication skills [Zarin and Fallman 2011]. Moreover, there is initial evidence that similar serious games could also help people from non-clinical populations. For example, Hailpern et al. [2011] designed a game that helps relatives and friends of patients with aphasia to increase awareness and understanding of the aphasia disorder, and how it must feel for the patients themselves; and Rusch [2012] aimed to facilitate a similar understanding of depression. Similarly, Rubin-Vaughan et al. [2011] developed and deployed a curriculum consisting of a series of games that help children practice their social skills, such as perspective taking, with a specific focus on bullying prevention exercises. Altogether, this works suggests that serious games have the potential to augment the learning of complex social and emotional skills, including topics such as perspective taking, empathy, active listening, and exploring the impacts of one's choices.

Augmented and virtual reality environments have been successfully used in similar contexts. For example, virtual reality is increasingly applied in therapy to help people control social phobias (e.g., [Romano 2005]), reduce physical pain [Gromala et al. 2011], or reduce posttraumatic stress disorder and support resilience [Rizzo et al. 2013]. Moreover, an increasing number of papers draw on Bailenson et al. [2008] and explore how changing aspects of interaction in virtual reality affects learning or behavioural change. For example, Fox and Bailenson [2009] suggests that amplifying feedback of user's actions (e.g., the character gets literally slimmer when exercising) can increase the persuasive impacts that transfer in the real-world (e.g., more exercise in the voluntary phase of the study); or that experiencing a "superpower" within virtual reality can lead to measurable increases in prosocial behaviour in the real-world [Rosenberg et al. 2013]. Augmented reality environments have also been used in other educational settings, although mainly for cognitive rather than social or emotional skills learning, see Wu et al. [2012] for a review. Additionally, research on embodied agents presents initial work on using agents to support learning of particular skills,

such as negotiation in Core et al. [2006], or preparing for a job interview [Hoque et al. 2013]. Much work also focusses on creating virtual agents that can elicit feelings of empathy, support and maintain relationships [Bickmore and Picard 2005; Bickmore et al. 2010], often building on concepts such as mimicry or rapport. In summary, social and emotional learning curricula could especially benefit from VR or augmented reality systems given the potential to simulate situation that be difficult or impossible to stage in real-life; and perhaps even more so in combination with the gaming and embodied agents elements described above (as VR seems to intensify the immersion).

5.3. Embedding learned skills into everyday life

Once a skill is partially learned, for example when the learner can enact it in a practice situation, the ultimate goal of the curricula is to support the learners in embedding such skills into their everyday behaviours and situations. In other words, embedding aims to support the transfer of skills learned in facilitated sessions into skills that are increasingly generalised and ingrained into everyday situations. In this sense, there is a subtle but important difference between embedding (background support for ongoing, natural, everyday situations, over longer periods) and practice (a consciously enacted, specific activity aimed at practising a particular skill).

Despite its importance, there is little trainers (or curricula designers) can do to facilitate and support such embedding at the moment. In the rest of this section, we outline two exemplary ways in which existing HCI research might help address the challenge. First, a large body of research exists on using technology to facilitate behavioural change, supporting people in changing their everyday activities and habits. As social and emotional skills are also mostly behaviours (rather than, e.g., declarative 'knowledge'), many of the techniques introduced in HCI to promote behaviour change for health or ecological sustainability are likely to be relevant for SEL. Second, technology can tap into social support for embedding skills in everyday life. For example, technology can be used to share part of the expert/trainer role to other social contacts in the participants' lives, such as drawing on social support and feedback from their friends, colleagues, and parents (in the case of SEL in education); as well as to support interactions with online networks (who may be strangers but who share the same goals). Together, such use of technology has the potential to enhance and augment one of the greatest challenges of the existing social and emotional skills learning curricula.

5.3.1. Behaviour change technologies. Learning new social and emotional skills often includes a considerable change in habits and ways learners would automatically react and/or behave; this is also one of the key reasons why procedural learning is emphasised across all curricula and domains. As already noted, while techniques for procedural learning are well established and available within sessions, curricula currently have few options to support embedding of the skills into everyday patterns of behaviour of the learners.

Behavioural change research within HCI has dealt with similar challenges, mainly in the context of health or ecological sustainability [Hekler et al. 2013; Consolvo et al. 2009; Klasnja et al. 2011]. Many behavioural change systems are based on pervasive technology used to track user behaviors in everyday life over extended time periods, and to help facilitate users' reflection and discovery of emerging patterns, enable exploration, and monitor own progress. For example, usage patterns of electricity [Gustafsson and Gyllenswärd 2005], water [Kuznetsov and Paulos 2010] and food [Ganglbauer et al. 2013] have been tracked and displayed to users in order to encourage conserving these resources. Similarly, mobile devices and sensors have been used to continuously track personal information such as physical activity data [Lin et al. 2006b; Consolvo et al. 2008] to facilitate ongoing awareness and promote healthier lifestyle habits; mo-

bile devices have also been used to help participants manage domestic activities such as TV consumption and household chores [Reitberger et al. 2013], fostering reflection and renegotiation of such activities based on awareness of behaviour patterns over time. Such ambient systems support the user over an extended period of time by sensing relevant information and feeding it back in a contextually adequate way, going beyond conscious practice on an one-off basis and under specific circumstances. Systems can also provide on-going subtle cues for facilitating awareness or triggers that remind users to attend to intended activities [Li et al. 2010; Consolvo et al. 2009; Obermair et al. 2008].

Although behaviour change literature directly addressing social skills is scarce in HCI so far, we expect that similar strategies and technologies we see in other behavioural change topics could work well also for (parts of) SEL. Several examples of existing work provide preliminary evidence on how such long-term support and embedding might be possible. One such example is SocialMirror [Hong et al. 2012], an ambient system to support embedding of learnt everyday behaviours of people with autism who are living independently, allowing the users to ask and receive feedback from a trusted community of acquaintances and professionals; and Munson et al. [2010] integrated a well-known positive psychology intervention into a social networking site, meshing with users' daily habits around these sites. Similarly, Mamykina et al. [2008] designed MAHI, a system for newly diagnosed diabetes patients, extending the inclass lessons by facilitating participants' ability to track, reflect on and analyse their everyday experiences with diabetes, leading to improved feeling of control over the disease.

Altogether, the examples above suggest that many behavior change techniques have potential to foster the continuous application of learned skills throughout everyday life, and support learners in sustained and habitual use of these skills in the appropriate situations.

5.3.2. Situated social support. Curricula across the domains rely on the trainers or peers to support the learning process by providing feedback, emotional support or tracking progress. However, trainers' or peers' support is problematic to extend and maintain beyond the in-session learning in the current curricula. This is particularly important for SEL in education, where parental involvement (and out-of-session peer pressure) constitutes a major aspect. Prior work in HCI suggests ways of facilitating additional support and feedback for participants, also from their other social contacts, and outside of the learning sessions.

Initial studies suggest ways by which the expert role of the trainer can be shared with or distributed to other social contacts, such as involving parents or extended family and friends networks. For example, Luckin [2008] developed the Homework system that serves as a link between the school lessons, teachers and parents, facilitating the involvement of the parents in home learning activities of their children; and Hong et al. [2012] explores how a social network can support a person with autism in drawing on advice, help and interactions with an extended network of close others, rather than relying on a single primary care-giver and/or the trainer. Such systems extend the support learners can receive from 'experts' in out-of-session contexts.

Existing work also utilises and supports peer feedback and interaction. Many of the behavioural systems mentioned above work with peer and broader social network cooperation/competition to motivate and engage participants to keep up with their goals, often utilising existing social networks and systems. For example, the Power Agent [Gustafsson et al. 2009] game uses social facilitation, particularly cooperation (with family members and peers) and competition (with other teams) to facilitate learning of energy saving behaviors in a game setting; and the BinCam [Thieme et al. 2012] lever-

ages social influence, in this case mediated via a social network, to foster reflection and behavior change regarding waste and recycling. Similarly, FishSteps [Lin et al. 2006a] takes advantage of social competition to influence people to become more physically active; Gasser et al. [2006] also use social facilitation to support healthy nutrition and activity. Drawing on such peer cooperation or healthy competition could be very beneficial also for many aspects of social and emotional learning.

Finally, social support can be facilitated also by strangers, as is the case with online social networks and support groups. These has been extensively studied and used (see e.g., [Barak et al. 2008; Newman et al. 2011]), especially in the context of patients with chronic diseases (e.g., cancer [Skeels et al. 2010]), and other stressful periods in life (e.g., smoking cessation [Ploderer et al. 2013]). The findings point to the potential of online support groups to provide emotional and information support. Whereas social support groups have been mainly used for distress situations, where users come to discuss their issues and receive information or experiences from others, it would be interesting to explore if a similar model of social support and encouragement is viable also for (parts of) social and emotional skills learning.

5.4. Engagement and motivation

Facilitating engagement and supporting motivation of the learners is important across all domains and curricula. A large body of work in HCI focuses on creating engaging experiences, showing the potential of technology and design to enhance users' engagement with a wide range of aspects, activities and concepts such as [[work ref]], school education [Connolly et al. 2012; Bers 2010], digital art [Edmonds 2013], stroke rehabilitation [Balaam et al. 2011b] to name just a few. This breadth of topics, as further illustrated, e.g., in the Funology book [Blythe et al. 2004] and subsequent research, suggests the high potential of similar approaches to augment many aspects across the curricula, making social and emotional skills learning more engaging and motivating.

Similarly, the recent uptake of systems that aim to support users' engagement through 'gamification' or 'gameful design' [Deterding et al. 2011; McGonigal 2011] could be particularly relevant to social and emotional skills curricula, integrating game mechanics like rewards, goals, points or challenges into real life activities. For example, Superbetter⁹ aims to help players increase their personal resilience, using a structure of quests, adversaries, and power-ups to engage players with scientifically endorsed exercises. Other applications in this area are related to behaviour change technologies, such as supporting users to become more fit (e.g. via activity tracking sensors coupled with gamified services such as Nike+ and Fitbit), lose weight (Withings) or to improve people's sleep (Zeo). Gamification approaches have been also successfully applied in education (e.g., [Torres and Wolozin 2011; Sheldon 2011; Mamykina et al. 2008]), as well as psychotherapy work [Goh et al. 2008; Piper et al. 2006]. Several game-based systems looking at social skills with children also report positive effects and high engagement of the users, e.g., [Hourcade et al. 2013; Hendrix et al. 2009].

All of these examples highlight the possibility of technology based systems to create intrinsically motivating applications that draw user in and are fun to interact with, regardless of the activity or behaviour to be supported.

5.5. Summarising technology roles across learning principles

Across all of these examples, we see a range of successfully deployed—or potentially deployable—HCI systems. While the presentation was so far structured according to the learning principles (showing HCI can address the key challenges), we can also see across the presented examples broad categories of types of technologies that can be

⁹http://www.superbetter.com/

deployed to support different principles. We draw out some of these categories here to illustrate the general classes of technologies that can support SEL. This variety also points to the complexity of the design space and emphasises that supporting a particular learning principle does not necessarily prescribe a particular role for, or type of, technology.

- (1) **Expert sensing:** Some of the systems rely on sensing and automated interpretation of behaviour, helping users draw out patterns they were not aware of before. Information can be presented in real-time, such as giving feedback on communication behaviour in meetings [Kim et al. 2008b; DiMicco et al. 2007], or over longer periods of time such as in AffectAura [McDuff et al. 2012]. Such systems often draw on and connect many disparate data sources.
- (2) **Structuring activities:** Other systems aim to provide timely reminders to support users behaviour. They may provide data for the user to reflect and act on, but rely much less on automatic sensing and interpretative capabilities of technology, leaving the interpretation to the user. Examples can be found in autism technology such as MOSOCO system [Escobedo et al. 2012] listing the appropriate actions the person should take and asking them to rate their performance (i.e., no sensing on the part of the system); personal reflection tools, such as Affect Diary [Stahl et al. 2008] and systems around SenseCam (e.g., [Fleck and Fitzpatrick 2009]; or facilitating keeping of diaries in psychotherapy [Matthews and Doherty 2011].
- (3) **Novel experiences:** A third role we saw systems take was to facilitate or create novel experiences. This can be either by providing a 'new world' to behave in, as per (serious) games [Hailpern et al. 2011] and virtual reality [Bouchard et al. 2012; Romano 2005]; or by helping the users to get a novel perception of a particular behaviour such as through gamification of real-world experience (e.g., Superbetter app) and the accentuated feedback in systems developed by Bailenson et al. [2008].
- (4) **Connecting and sharing:** Fourth role was in supporting connecting and sharing among larger groups of users. For example, facilitating cooperation by reaching out to social support nets (e.g., [Newman et al. 2011]), or the family/friends circle (e.g., [Hong et al. 2012; Munson et al. 2010]).

6. MAPPING OUT THE DESIGN SPACE - OPPORTUNITIES AND CHALLENGES FOR HCI

Previous sections have so far looked at what social skills curricula focus on and where the challenges lie (sec 2-4); and then provided examples showing how these challenges and learning principles could be supported by technology (sec 5). While drawing out some of the HCI research that is already very relevant to these domains, section 5 was however still structured by the learning principles and social skills learning challenges, aiming to show that HCI has the potential to address many of the key issues there.

In this section we take a different viewpoint and outline the challenges (and thus also opportunities) that supporting social and emotional skills curricula would pose to HCI, across the learning principles and curricular domains. We focus on four main areas, outlined below and in Table 3:

— We first discuss the **implications of the facilitated nature** of the social skills learning curricula, leading to distinguishing inside and outside of the training session as two core settings for design of systems in this area. We outline how they differ in their affordances, possible target groups of users to design for, and the differences in what types technology could be most useful in each; also highlighting the need for technology that would help connect together the learning processes inside/outside.

Selected areas	Specific topics		
Implications of the facilitated nature of SEL	in-session vs. out-of-session learning and the specific opportunities and challenges of each ways to facilitate connections between in-/out-of-session learning		
Technology challenges	 sensing of the interpersonal aspects – 'in the wild', robust technology supporting the complexity of curricula – adaptability, modularity dealing with privacy, ethics, up-keep costs and servicing of technology etc. 		
Design challenges	 ways to support cooperation with curricula designers designing to `teach and disappear' challenges shared with other ubicomp systems 		
Methodological challenges	 accommodating the complex structure and long-term methods of curricula design matching evaluation approaches with those used in HCl research finding a good balance of roles for HCl involvement 		

Table 3: Mapping out the design space of SEL – summarising the areas bringing key challenges and opportunities for HCI research

- Second, we discuss the **challenges for technology** posed by the social skills learning space. We start with the two key technical challenges in this space: sensing interpersonal signals relevant to social skills teaching, and the need for adaptability and modularity of technology due to the complexity of the curricula to be supported. We then briefly discuss many other challenges that are shared with other ubiquitous applications (e.g., privacy, ethics, timely feedback, maintenance of deployed technology).
- Third, we look at some of the **design challenges** this space poses. Apart from the common issues again shared by other ubiquitous applications, we draw out two more specific aspects: On one hand, the focus on designing technology that facilitates or 'scaffolds' learning of skills, but is expected to be removed once the skills are learned. On the other, there is a potential for a large scale, real-world impact of technology that would get incorporated into curricula. However, this comes together with the design challenges connected to the complex, multi-disciplinary interventions to be supported, which involve many stakeholders and policy decisions as well as strict requirements on cost-effectivity and robustness of developed technology.
- Fourth, we briefly outline some of the **methodological challenges** brought by cooperation with large scale interventions and related research. These draw on differences in the structure and time span of research on educational curricula, and the approaches common in HCI. Similarly, the evaluation of the developed technologies might require novel methodology approaches, perhaps drawing on and reappropriating the knowledge already existing educational and related domains. We conclude with a short discussion about what could be the role and contribution of HCI in this space.

6.1. Implications of facilitated learning - possible settings

One of the defining features of social skills learning curricula is the combination of facilitated teaching, i.e., learning under a guidance of an expert trainer, and the interplay between learning processes during and outside of the learning sessions. Table 4

	In-session learning	Out-of-session learning
Target group	expert trainer learners peers	learners wider social circle (family, friends, colleagues) online networks
Setting affordances	in-doors, often fixed space (used repeatedly) sessions can be structured and controlled interactions can be shaped around technology	everyday settings, changing rapidly, uncontrolled meshing into everyday practice needed e.g., unobtrusive sensing and feedback
Technology	wide range, including VR, biofeedback, video based SSP and similar technologies requiring stable environment can be shared among users, classes	mainly mobile, wearable used by individual users (personalised)

Table 4: Summarising the key differences between in- and out-of-session learning settings

flags up our brief discussion on how inside/outside of training sessions differ in terms of affordances, target user groups and types of technology that could be used.

In particular, although one of the key HCI contributions to social emotional learning courses could be extending the learning support *beyond* in-session learning, developing systems for the in-session contexts can be a good first step, both in terms of testing the technology, as well as being directly useful in supporting the facilitator's role and enhancing the learning experience. We suggest that in-session learning is an interesting design space in which novel technologies can be developed — marrying the benefit of direct application into, and testing within, real-world scenarios, with the possibility to do so in a well constrained and manageable environment and with a facilitator who is an expert in both content and the tools they use.

6.1.1. In-session learning. Learning sessions typically take place indoors, involving a mix of lectures and hands-on experiences, likely with an expert trainer/coach present. This leads to a limited, often quite controllable settings for technology deployment and points to particular user roles that can be designed for, such as supporting the trainer's expert role (augmenting and enhancing rather than replacing their skills), facilitating peer feedback or group reflection on examples, and directly supporting the individual learners.

Additionally, the training experiences have a particular quality of being "real" and "not-so-real" at the same time: often asking participants to practice and try new skills out in a "safe place" (e.g., through role play), where potential failures in interaction are actually a valuable basis for reflection and learning, and the expert trainer can immediately assist if problems appear. In this sense, such in-session training is a 'real' situation in terms of the learning setting, but fictional and 'unreal' for the participants, and also a situation that is specifically open to, and designed for, external feedback and reflection.

The combination of the in-class space and the specificity of training experiences potentially allows for a more intricate technology deployment than would be possible in every-day life. Many of the pragmatic and ethical challenges present outside of the classroom are relaxed, such as the possibility to affect, interrupt and shape the interactions; being less difficult to obtain consent with data collection; or the fact that the situation is role-played and thus (most probably) less personally sensitive for participants. Moreover, the 'controlled' training spaces have many additional advantages such as the potential for easier initial technology deployment and lower robustness

requirements; or the potential for easy collection of training data corpuses for automated approaches such as social signal processing or affective computing — while still working with the "real" learning process (i.e., not an instrumentally designed laboratory task). The curricula are often well structured, with prepared exercises and model situations known in advance, which can also ease initial deployment of technology.

6.1.2. Out of session learning. Everyday life automatically offers many opportunities to practise social skills. Such practice serves an important role in most curricula as it supports successful transfer of learnt behaviours into learners' lives. The key issue is however that—in contrast to the in-session learning—learners can receive only very little support from the trainer or peers in these settings; thus skills that are not developed completely are hard to practise successfully. Learners can slip back into their old habits (perhaps not even knowing they are doing so), might not even attempt to try the skills (as the situation is too important), or would need external facilitation to practise successfully.

This points to a number of roles technology is likely to support when facilitating learning outside. As discussed earlier, systems can focus on individual learners and possible ways in which they can be supported in their practice (e.g., through feedback) and reflection on their behaviours. Alternatively, technology might attempt to seed a supporting environment for the learners through facilitating involvement of their social networks such as family, friends, colleagues into the learning process, supporting peer interaction and support outside of the in-session, or even providing links for the trainer's intervention or support outside of the learning session (and as captured data for feedback in class as will be discussed below).

The "in-the-wild", everyday setting has also implications for technologies used. Mobile and wearable nature are likely to be key, together with the need to blend with and into everyday behaviours and still provide meaningful feedback or benefit. Given the interpersonal nature of many social skills, any sensing which might involve people other than the learner outside of in-session learning will need to address many additional complex design and ethical challenges.

Still, supporting and facilitating learning outside of direct learning sessions is the key challenge for social and emotional skills curricula at the moment. We have also seen examples of HCI research in previous sections that have dealt with these successfully (e.g., [Escobedo et al. 2012; Tentori and Hayes 2010; Matthews and Doherty 2011]), suggesting that it is possible to provide beneficial intervention even in such complex settings.

6.1.3. Connecting in-/out-session learning. Another important area for technology support is supporting connections between in- and out-session learning. We envision that much has to be possible to extend the current "homework" approach used in the curricula, where the learners are asked to do particular exercises in between sessions and then report back (e.g., in person, and/or via an essay, diary record etc.). Obvious examples of potential for technology support are to: track progress or practice; collect (video/audio) data to support post-hoc reflection or analysis within sessions; and support communication channels to get information/help from the peers or experts even when outside of the session (as discussed above). However, we expect many other, more sophisticated ideas are possible, each drawing on the particularities of the curricula and domain to be supported. An example of such technology, albeit aimed at learning mathematics rather than social skills, is from the Homework project [Luckin 2008], where 5-7 year olds were given tablets and specialised software connecting class work, homework exercises, and facilitating parents' involvement and communication between parents and teachers.

6.2. Technology challenges

There are also challenges that technology deployment will face in the area of social and emotional learning. While many of these are shared with other ubiquitous applications, some are more specific to SEL. First is the sensing and processing of aspects relevant to feedback on social skills that are mostly based on interpersonal interaction and complex concepts. Second is related to the complexity of many curricula and the need to make technology support particularly adaptable, modular and re-usable.

6.2.1. Sensing of interpersonal aspects. Automatic capture and processing of data that is robust and reliable is often difficult in the wild, especially if it is to be meshed fluidly with other complex interactions (as will be the case in both in-session and out of session systems here). However, sensing and processing of aspects relevant to social skills is likely to be challenging by itself, even in controlled laboratory conditions.

This is partly due to the interpersonal nature of the sensed data, which has not been common in social signals processing, affective computing or related fields that focus so far mostly on individuals [Vinciarelli and Pantic 2012]. Additionally, many of the social concepts taught in the courses are holistic and are yet to be defined in a way that would allow automatic sensing; it might be even impossible for some. Support for social and emotional skills courses thus raises many well-motivated research questions around which aspects can be sensed and interpreted¹⁰, and whether that is possible on the individual or interpersonal level (i.e., combining sensed data across participants).

There is also a question of the level of interpretation we expect the system to provide. This leads to a continuum from leaving the sense-making of raw data entirely to the user (e.g., as per SenseCam systems [Fleck and Fitzpatrick 2009]) and/or the facilitator, to providing full interpretation by the system (e.g., as in arousal detection for people with autism [Picard 2009]). Even if particular concepts cannot be reliably and fully interpreted by technology, it might still be possible, and in many cases actually preferable, to support the users by providing a 'reasonably' pre-processed data they can view, interpret and reflect on.

6.2.2. Complexity of curricula – need for adaptability and modularity. Another challenge is posed by the complexity of curricula, the wide range of skills that are usually taught and the developmental/progressive nature of skill acquisition. This suggests the need for modularity of the designed systems and preference for highly versatile and reusable designs that can be adapted for teaching many aspects within the curricula. Cost-benefit ratio and robustness of the system will be also important, both in terms of durability and reliable sensing in difficult real-world environments, regardless of context and setting. These will be especially crucial if the aim is to deploy technology as a part of existing curricula. Technology will also need to adapt to the differences among domains and settings, and the related variances in the length, focus and breadth of curricula, even when supporting a concept important across the domains (such as self-reflection). For example, we expect differences between designing for young learners (such as in education curricula and psychotherapy for adolescents) and for adult learners (e.g., in business and medical domain courses); and differences in supporting social skill acquisition for professional versus personal motivations.

6.2.3. Challenges shared with other ubiquitous systems. Many of the challenges in this design space are shared with other ubiquitous computing applications. For example pro-

¹⁰An intriguing parallel can be seen in psychology of interpersonal judgments, where large body of research shows that human raters can reliably judge complex concepts such as perceived warmth or friendliness of an conversation on the macro level (gut instinct), but even after many studies micro-coding many of the nonverbal signals (head nods, movements etc.), it is still unclear what cues intuitive judgement of the raters draws upon [Ambady et al. 2000] or [Harrigan et al. 2008, p.299].

viding timely, unobtrusive feedback is often a challenge for ubiquitous applications, even if the sensing and processing issues described above are resolved; as are issues around managing and keeping the technology running once deployed. Privacy needs to be addressed whenever a system includes sensing or data collection, especially so if the goal is to sense interpersonal aspects of an interaction. Finally, ethical concerns regularly arise, particularly when working in sensitive settings such as education of young learners or in the medical domain. For a more detailed discussion of such issues in other contexts see e.g., Caceres and Friday [2012], Consolvo et al. [2007] or Kientz et al. [2007].

6.3. Design challenges

Similar to above, many challenges related to design are shared with other ubiquitous systems, but some are quite specific to SEL. We discuss two such key aspects. First is a combination of an opportunity and a challenge: the potential for large scale, real-world impacts *if* the technology is accepted by the curricula design community. This however brings the need to closely cooperate with curricula designers and serious challenges due to the particularities of the setting, the interdisciplinarity of such projects, the interactions with policy makers etc. Second is designing technology as a temporary scaffold not as a permanent crutch, i.e., designing with the aim to help teach new skills over a limited period of time, after which the technology is expected to be taken away or not longer needed, and where the skills persist. Finally, we then highlight the more common ubiquitous technology design decisions, drawing out those that might be particularly relevant to the SEL area.

- 6.3.1. Need for cooperation and knowledge sharing with curricula designers. The learning principles identified earlier—together with curricula descriptions available in literature—are likely to help initial explorations of the design space. However, developing systems either in collaboration with curricula designers, or directly for specific existing curricula will be crucial for real-world usefulness and deployment of the developed systems. Coyle et al. [2007] have discussed this issue with respect to designing for mental-health domain; Porayska-Pomsta et al. [2011] address the challenges of similar interdisciplinarity in designing for autism. We will argue in the next section how their approach can be extended to whole setting of social and emotional skills, and return to the methodological challenges brought about by such interdisciplinary cooperation.
- 6.3.2. Designing to "teach and disappear". Most social and emotional skills courses, irrespective of domain, run only for a limited time. This can be often as short as a few hours or a weekend; or span longer time periods, but possibly limited to several hours every week (e.g., as in K9 school curricula). In both cases, the aim is to facilitate development of new skills over the duration of the course, and it is crucial that the skills become embedded enough to persist even after the course is finished. Although it might be relevant for some cases to develop technology that allows to extend or supplement the course duration, the ultimate goal of technology is likely to scaffold and help learn skills that will stay available after the technology is taken away. This provides interesting and novel challenges to designing systems, especially with the potential to enriching approaches used in behavioural change and related fields. Additionally, such a focus calls for designs that can adapt and follow the learning curve of students, always supporting the next 'zone of proximal development'.
- 6.3.3. Design challenges shared with other ubiquitous systems. Designing for social and emotional skills is also likely to raise many issues that have been already widely discussed in earlier work around ubiquitous systems and related technology. These can be challenges around privacy and the degree of control given to users; need for adapt-

ability and personalisability, as well as designing with sensitivity to different cultures. Other factors will likely involve decisions around making the technology individualised or shared by many; the feedback style (give "expert" opinions, or leave interpretation open to users) or feedback mode (ambient vs. explicit feedback), as well as the need to include many potentially competing requirements (e.g., the need to address most if not all learning principles). Pragmatics will also come into play including issues around designing for difficult settings (e.g., schools with high violence and poverty rates); or supporting training and ease of use of technology for trainers and learners, especially in large-scale deployments. See, e.g., Consolvo et al. [2007] or Rogers et al. [2007] for an in depth discussion of similar issues.

6.4. Methodological challenges

Research on social and emotional skills will likely bring also novel methodological challenges, especially if the aim is inclusion or co-design of the technology in large-scale curricula projects, and it's acceptance by curricula designers and policy makers. Here we focus mainly on such co-operative projects, as these are likely to have the highest potential for large-scale impact of HCI research; but also present specific challenges. We discuss three interrelated issues: structure and methods usually imposed on research in curricula design projects; the approaches to evaluation in these domains; and the possible roles HCI could take in this space.

6.4.1. Structure and methods. Curricula tend to be very complex, large scale interventions, especially so in the education and the medical settings. Designing technology for these settings will need to take into account the longer term time-span and intense focus of research projects in these domains, where it is usual to take many years to develop and test a curriculum. For example, Matthews and Doherty [2011] show how such co-operation is possible and discuss the development, deployment and clinical trial of a mobile-phone support for psychotherapy with adolescents.

Although it is potentially challenging to accommodate this in the quicker turn-around of projects usual in the HCI space, such sustained focus and long-term research agendas may have a beneficial impact on research on social skills and interaction within HCI more generally. Whereas existing HCI work on teaching social and emotional skills has been mostly fragmented (except perhaps for autism research), often in the form of single studies, with little long-term follow-up, the structure inherent in SEL curricula might promote more systematic research and lead to highly successful, real-world applications. Such projects could enrich HCI approaches with methodologies, contexts and goals that are well defined, well researched and very well motivated by real-world needs.

6.4.2. Evaluation approaches. Approaches to evaluation methodologies also tend to differ between curricula designers and most of HCI work. There is a push for an "evidence based" support for curricula interventions, as required by the policy makers. This leads to a sequence of increasingly complex studies, starting from formative, small pilot studies that test viability of particular ideas; through larger, longer term studies to confirm potential; but eventually building up to multi-site trials, often in the form of randomised control trials or similarly resource intensive methodologies such as complex quasi-experimental designs, which are less common in HCI. So although there is a mix of qualitative and quantitative methods inherent in the design and initial exploration of curricula, there is a call for mostly quantitative methods to test the effects of a developed curriculum on outcomes in the long term. There is also the potential for HCI to influence these evaluations with a complementary focus on the processes and interactions through which such outcomes are achieved. This can impact the roles HCI might take in this domain, as discussed in the next section.

6.4.3. Roles for HCl. The complexity, scale and dependencies of such large-scale projects necessarily affect ways in which we as HCI practicioners can engage. An extensive discussion of similar issues in related domains is already available. For example, Coyle et al. [2007] suggests a two stage process in the area of talk-based therapies, where the first exploratory part is led by HCI with cooperation from experts from the other domain, aiming to iteratively develop and run initial evaluations of promising systems to the point "where they are shown to be usable by the target end users, are agreed to have clinical validity and are predicted to have therapeutic benefits." Stage two then focuses on larger scale evaluations and the roles exchange: the lead is assumed by the curricula experts with HCI researchers in a collaborating role, and receiving feedback on the systems use in real-world practice. Fitzpatrick and Ellingsen [2012] discuss similar issues in their review of CSCW systems in medical settings, arguing for the need to engage with and raise awareness of CSCW (and HCI related) issues with many of the stakeholders.

We suggest a combination of the Coyle et al. [2007] model of cooperation with curricula designers, complemented with another stream of more independent, smaller, exploratory studies that try to push the boundaries of what might be possible to do with technology in the first place. In other words, we can see benefit in parallel research on two areas: (i) aiming for large scale, real-world impact with technologies/ideas that are already matured in HCI, in close cooperation with curricula designers and large interdisciplinary projects; and (ii) more exploratory HCI process, that draws on existing curricula and the challenges, bringing novel, untested technology and exploring a broad range of viable approaches that eventually feed into the first stream. It is our hope that this article could inspire future work pursuing either of the two direction.

7. CONCLUSIONS

This paper points to the potential for synergy between HCI and social and emotional skills learning, benefiting both disciplines. We outline the key challenges for current SEL approaches, show how these could be supported by technology, and highlight the new challenges and opportunities this would pose to HCI. This paper has put forth a set of distinctions to help guide further research. We provide a summary of the topics, methods, as well as the learning principles and their associated challenges in SEL across the domains (Table 1); we review HCI research relevant to the respective challenges (Table 2) and outline the design space and opportunities for HCI (Table 3).

In particular, the curricula across all domains struggle with providing *timely feedback* (currently post-hoc, coming from trainer/peers); creating opportunities for *real-world practice* (currently limited mostly to in-session training); *embedding learnt skills into everyday life* (very little is possible for curricula designers at the moment); and *facilitating engagement and motivation*. The overarching challenge across these issues is the need to extend support for out-of-session learning, which is fundamental for social and emotional skills but hard to facilitate for the current curricula. The review of existing HCI research shows there are strong indications that technology can help address many of these challenges; particularly as many HCI approaches that were not connected to social and emotional learning so far could be directly beneficial here.

HCI involvement in this space has a potential for strong, real-world impacts. Social and emotional skills learning is crucial for diverse domains and ages, such as education (from kindergarten to high-school), business, medical, therapeutic and everyday settings. Good SEL programmes are therefore relevant for an exceedingly wide range of potential learners, and not limited to special-needs groups such as autism or psychotherapy patients. Moreover, engaging with these contexts is likely to bring well-motivated problems to tackle for many developing technologies (e.g., 'in the wild' social skills processing), raising intriguing novel challenges for future HCI research.

We end by highlighting three selected aspects of SEL we personally find particularly interesting for immediate future work within HCI. These are (i) addressing the support for social and emotional learning in education of neuro-typical children (domain with a long history, many curricula that are widely applied, but so far under-researched in HCI); (ii) the implications of supporting facilitated learning in SEL (and the differences in design settings it brings); and (iii) finding ways to mesh HCI research and technology support well with the curricula design (building on the long history of research there).

Overall, this paper suggests that social and emotional learning points to a complex, intriguing research space, which has a high potential to enrich HCI research and practice. It is our hope that while the characterisations and distinctions suggested in this paper could be useful for immediate future work into this space, further research will elaborate on, clarify and extend, rather than reify, these.

REFERENCES

- ABER, J. L., JONES, S. M., BROWN, J. L., CHAUDRY, N., AND SAMPLES, F. 1998. Resolving conflict creatively: Evaluating the developmental effects of a school-based violence prevention program in neighborhood and classroom context. *Development and Psychopathology* 10, 02, 187–213.
- ADI, Y., KILLORAN, A., MCMILLAN, S., KILORAN, A., AND STEWARD-BROWN, S. 2007a. Systematic review of the effectiveness of interventions to promote mental wellbeing in children in primary education Universal Approaches Non-violence related outcomes. Tech. Rep. June 2007, National Institute of Health and Clinical Excellence Report (NICE).
- ADI, Y., KILORAN, A., JANMOHAMED, K., STEWART-BROWN, S., AND KILLORAN, A. 2007b. Systematic review of the effectiveness of interventions to promote mental wellbeing in primary schools Universal approaches which do not focus on violence or bullying. Tech. Rep. December 2007, National Institute of Health and Clinical Excellence Report (NICE).
- AMBADY, N. 2010. The Perils of Pondering: Intuition and Thin Slice Judgments. *Psychological Inquiry 21*, 4, 271–278.
- AMBADY, N., BERNIERI, F. J., AND RICHARDSON, J. A. 2000. Toward a histology of social behavior: Judgmental accuracy from thin slices of the behavioral stream. Advances in Experimental Social Psychology 32
- ANGERA, J. AND LONG, E. 2006. Qualitative and Quantitative Evaluations of an Empathy Training Program for Couples in Marriage and Romantic Relationships. *Journal of Couple & Relationship Therapy* 5, 1, 1–26.
- ARTHUR, W. J., BENNETT, W. J., EDENS, P. S., AND BELL, S. T. 2003. Effectiveness of training in organizations: A meta-analysis of design and evaluation features. *Journal of Applied Psychology* 88, 2, 234–245.
- ASAY, T. P. AND LAMBERT, M. J. 1999. The empirical case for the common factors in therapy: Quantitative findings. In *The heart and soul of change: What works in therapy.*
- BAILENSON, J. N., YEE, N., BLASCOVICH, J., AND GUADAGNO, R. E. 2008. Transformed social interaction in mediated interpersonal communication. In *Mediated Interpersonal Communication*, E. Konijn, M. Tanis, S. Utz, and A. Linden, Eds. Lawrence Erlbaum Associates, 77–99.
- BAILEY, C. AND BUTCHER, D. 1983a. Interpersonal Skills Training II: The Trainer's Role. *Management Learning* 14, 2, 106–112.
- BAILEY, C. T. AND BUTCHER, D. J. 1983b. Interpersonal Skills Training I: The Nature of Skill Acquisition and its Implications for Training Design and Management. *Management Learning* 14, 1, 48–54.
- BALAAM, M., FITZPATRICK, G., GOOD, J., AND HARRIS, E. 2011a. Enhancing interactional synchrony with an ambient display. In *CHI '11*. ACM Press, 867–876.
- BALAAM, M., FITZPATRICK, G., GOOD, J., AND LUCKIN, R. 2010. Exploring affective technologies for the classroom with the subtle stone. In CHI '10. ACM Press, New York, New York, USA, 1623.
- BALAAM, M., RICKETTS, I., MAWSON, S., BURRIDGE, J., RENNICK EGGLESTONE, S., FITZPATRICK, G., RODDEN, T., HUGHES, A.-M., WILKINSON, A., NIND, T., AXELROD, L., AND HARRIS, E. 2011b. Motivating mobility: designing for lived motivation in stroke rehabilitation. In *Proceedings of the 2011 annual conference on Human factors in computing systems CHI '11*. ACM Press, New York, New York, USA, 3073–3082.
- BARAK, A., BONIEL-NISSIM, M., AND SULER, J. 2008. Fostering empowerment in online support groups. Computers in Human Behavior 24, 5, 1867–1883.

- BARTH, J. AND LANNEN, P. 2011. Efficacy of communication skills training courses in oncology: a systematic review and meta-analysis. *Annals of oncology* 22, 5, 1030–40.
- BERS, M. U. 2010. The TangibleK robotics program: Applied computational thinking for young children. Early Childhood Research & Practice 12, 2, 1–19.
- BICKMORE, T. W., MITCHELL, S. E., JACK, B. W., PAASCHE-ORLOW, M. K., PFEIFER, L. M., AND ODON-NELL, J. 2010. Response to a Relational Agent by Hospital Patients with Depressive Symptoms. In *Interacting with computers*. Vol. 22. 289–298.
- BICKMORE, T. W. AND PICARD, R. W. 2005. Establishing and maintaining long-term human-computer relationships. ACM Transactions on Computer-Human Interaction 12, 2, 293–327.
- BLYTHE, M. A., OVERBEEKE, K., MONK, A. F., AND WRIGHT, P. C. 2004. Funology: from usability to enjoyment. Vol. 3. Springer.
- BONO, J. E., PURVANOVA, R. K., TOWLER, A. J., AND PETERSON, D. B. 2009. Survey of Executive Coaching Practices. *Personnel Psychology* 62, 2, 361–404.
- BÖRNER, D., KALZ, M., AND SPECHT, M. 2013. Beyond the channel: A literature review on ambient displays for learning. *Computers & Education 60*, 1, 426–435.
- BOUCHARD, S., BERNIER, F., BOIVIN, E., MORIN, B., AND ROBILLARD, G. 2012. Using biofeedback while immersed in a stressful videogame increases the effectiveness of stress management skills in soldiers. *PloS one 7*, 4, e36169.
- Brown, J. 2008. How clinical communication has become a core part of medical education in the UK. *Medical education* 42, 3, 271-8.
- CACERES, R. AND FRIDAY, A. 2012. Ubicomp Systems at 20: Progress, Opportunities, and Challenges. *IEEE Pervasive Computing* 11, 1, 14–21.
- CAREY, W., PHILIPPON, D. J., AND CUMMINGS, G. G. 2011. Coaching models for leadership development: An integrative review. *Journal of Leadership Studies* 5, 1, 51–69.
- CASEL. 2003. Safe and sound: An educational leaders guide to evidence-based social and emotional learning (SEL) programs. Collaborative for Academic, Social, and Emotional Learning.
- CASEL. 2013. *Effective Social and Emotional Learning Programs*. Collaborative for Academic, Social, and Emotional Learning.
- CLARKE, N. 2006. Emotional Intelligence Training: A Case of Caveat Emptor. Human Resource Development Review 5, 4, 422–441.
- CONNOLLY, T. M., BOYLE, E. A., MACARTHUR, E., HAINEY, T., AND BOYLE, J. M. 2012. A systematic literature review of empirical evidence on computer games and serious games. *Computers & Education* 59, 2, 661–686.
- CONSOLVO, S., HARRISON, B., SMITH, I., CHEN, M. Y., EVERITT, K., FROEHLICH, J., AND LANDAY, J. A. 2007. Conducting In Situ Evaluations for and With Ubiquitous Computing Technologies. *International Journal of Human-Computer Interaction* 22, 1-2, 103–118.
- CONSOLVO, S., LIBBY, R., SMITH, I., LANDAY, J. A., MCDONALD, D. W., TOSCOS, T., CHEN, M. Y., FROEHLICH, J., HARRISON, B., KLASNJA, P., LAMARCA, A., AND LEGRAND, L. 2008. Activity sensing in the wild: a field trial of ubifit garden. In *Proceeding of the twenty-sixth annual CHI conference on Human factors in computing systems CHI '08*. ACM Press, New York, New York, USA, 1797.
- CONSOLVO, S., McDonald, D. W., and Landay, J. A. 2009. Theory-driven design strategies for technologies that support behavior change in everyday life. In *CHI '09*. ACM Press, 405—-414.
- CORE, M., TRAUM, D., LANE, H. C., SWARTOUT, W., GRATCH, J., VAN LENT, M., AND MARSELLA, S. 2006. Teaching Negotiation Skills through Practice and Reflection with Virtual Humans. SIMULA-TION 82, 11, 685–701.
- COYLE, D., DOHERTY, G., MATTHEWS, M., AND SHARRY, J. 2007. Computers in talk-based mental health interventions. *Interacting with Computers* 19, 4, 545–562.
- COYLE, D., McGlade, N., Doherty, G., and O'Reilly, G. 2011. Exploratory evaluations of a computer game supporting cognitive behavioural therapy for adolescents. In *CHI '11*. ACM Press, New York, New York, USA, 2937–2946.
- Daily, S. 2010. More than a feeling: technology-infused learning environments to support the development of empathy. 2005.
- DAMON, W. AND EISENBERG, N., Eds. 2006. Handbook of child psychology, Vol 3. Social, emotional, and personality development. 5th Ed. John Wiley & Sons Inc.
- DE SÁ, M., CARRIÇO, L., NECA, J., FERNANDES, N., FEITEIRA, P., PEREIRA, R., BERNARDO, P., FARIA, J. A., AND SÁ, I. 2010. Ubiquitous geo-referenced social skills therapy. In *Proceedings of the 12th ACM international conference adjunct papers on Ubiquitous computing Ubicomp '10*. ACM Press, New York, New York, USA, 399.

- DETERDING, S., DIXON, D., KHALED, R., AND NACKE, L. 2011. From game design elements to gamefulness. In *MindTrek* '11. ACM Press, New York, New York, USA, 9.
- DIMICCO, J. M., HOLLENBACH, K. J., PANDOLFO, A., AND BENDER, W. 2007. The Impact of Increased Awareness While Face-to-Face. *Human-Computer Interaction* 22, 1&2, 47 96.
- DOMITROVICH, C. E., CORTES, R. C., AND GREENBERG, M. T. 2007. Improving young children's social and emotional competence: a randomized trial of the preschool "PATHS" curriculum. *The journal of primary prevention* 28, 2, 67–91.
- DUNCAN, B., MILLER, S., WAMPOLD, B., AND HUBBLE, M. 2010. The heart and soul of change: Delivering what works in therapy. 2nd Ed.
- Durlak, J. A., Weissberg, R. P., Dymnicki, A. B., Taylor, R. D., and Schellinger, K. B. 2011. The impact of enhancing students' social and emotional learning: a meta-analysis of school-based universal interventions. *Child development 82*, 1, 405–32.
- EDMONDS, E. 2013. Digital Arts: Did You Feel That? 2439-2446.
- ELBERTSON, N. A., BRACKETT, M. A., AND WEISSBERG, R. P. 2009. School-based social and emotional learning (SEL) programming: Current perspectives. Second international handbook of educational change, 1017–1032.
- EPSTEIN, R. M. 1999. Mindful Practice. JAMA: The Journal of the American Medical Association 282, 9,
- ESCOBEDO, L., NGUYEN, D. H., BOYD, L., HIRANO, S., RANGEL, A., GARCIA-ROSAS, D., TENTORI, M., AND HAYES, G. 2012. MOSOCO: a mobile assistive tool to support children with autism practicing social skills in real-life situations. In *Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems CHI '12*. ACM Press, New York, New York, USA, 2589.
- FELDMAN, D. C. AND LANKAU, M. J. 2005. Executive Coaching: A Review and Agenda for Future Research. Journal of Management 31, 6, 829–848.
- FITZPATRICK, G. AND ELLINGSEN, G. 2012. A Review of 25 Years of CSCW Research in Healthcare: Contributions, Challenges and Future Agendas. Computer Supported Cooperative Work (CSCW).
- FLECK, R. AND FITZPATRICK, G. 2009. Teachers and tutors social reflection around SenseCam images. International Journal of Human-Computer Studies 67, 12, 1024–1036.
- FLECK, R. AND FITZPATRICK, G. 2010. Reflecting on reflection: framing a design landscape. In *OZCHI'10*. 216–223.
- FOX, J. AND BAILENSON, J. N. 2009. Virtual Self-Modeling: The Effects of Vicarious Reinforcement and Identification on Exercise Behaviors. *Media Psychology* 12, 1, 1–25.
- Ganglbauer, E., Fitzpatrick, G., and Comber, R. 2013. Negotiating food waste. ACM Transactions on Computer-Human Interaction 20, 2, 1–25.
- GARRARD, W. M. AND LIPSEY, M. W. 2007. Conflict resolution education and antisocial behavior in US schools: A meta-analysis. *Conflict Resolution Quarterly* 25, 1, 9–38.
- GASSER, R., BRODBECK, D., DEGEN, M., LUTHIGER, J., WYSS, R., AND REICHLIN, S. 2006. Persuasiveness of a Mobile Lifestyle Coaching Application Using Social Facilitation.
- GATICA-PEREZ, D. 2009. Automatic nonverbal analysis of social interaction in small groups: A review. Image and Vision Computing 27, 12, 1775–1787.
- GOH, D. H., ANG, R. P., AND TAN, H. C. 2008. Strategies for designing effective psychotherapeutic gaming interventions for children and adolescents. *Computers in Human Behavior 24*, 5, 2217–2235.
- GOTSIS, M., PIGGOT, J., HUGHES, D., AND STONE, W. 2010. SMART-games: a video game intervention for children with Autism Spectrum Disorders. In *Proceedings of the 9th International Conference on Interaction Design and Children IDC '10*. IDC '10. ACM Press, New York, New York, USA, 194.
- GREEN, L. S., OADES, L. G., AND GRANT, A. M. 2006. Cognitive-behavioral, solution-focused life coaching: Enhancing goal striving, well-being, and hope. *The Journal of Positive Psychology* 1, 3, 142–149.
- GREENBERG, M. T. 2006. Promoting resilience in children and youth: preventive interventions and their interface with neuroscience. *Annals of the New York Academy of Sciences 1094*, 139–50.
- GREENBERG, M. T. 2010. Schoolbased prevention: current status and future challenges. *Effective Education* 2, 1, 27–52.
- GROMALA, D., SONG, M., YIM, J.-D., FOX, T., BARNES, S. J., NAZEMI, M., SHAW, C., AND SQUIRE, P. 2011. Immersive VR: a non-pharmacological analgesic for chronic pain? In *CHI EA '11*. ACM Press, 1171.
- GROSSMAN, P., NEIMANN, L., SCHMIDT, S., AND WALACH, H. 2004. Mindfulness-based stress reduction and health benefits A meta-analysis. *Journal of Psychosomatic Research* 57, 1, 35–43.

- GUSTAFSSON, A. AND GYLLENSWÄRD, M. 2005. The power-aware cord: energy awareness through ambient information display. In *CHI '05 extended abstracts on Human factors in computing systems*. ACM, Portland, OR, USA, 1423–1426.
- GUSTAFSSON, A., KATZEFF, C., AND BANG, M. 2009. Evaluation of a pervasive game for domestic energy engagement among teenagers. Computers in Entertainment 7, 4, 1.
- HAGAD, J. AND LEGASPI, R. 2011. Predicting Levels of Rapport in Dyadic Interactions through Automatic Detection of Posture and Posture Congruence. In *Privacy, Security, Risk...*. IEEE, 613—616.
- HAILPERN, J., DANILEVSKY, M., HARRIS, A., KARAHALIOS, K., DELL, G., AND HENGST, J. 2011. ACES: promoting empathy towards aphasia through language distortion emulation software. In *Proceedings of the 2011 annual conference on Human factors in computing systems CHI '11*. ACM Press, New York, New York, USA, 609.
- HANCOCK, M., TEN CATE, T., CARPENDALE, S., AND ISENBERG, T. 2010. Supporting sandtray therapy on an interactive tabletop. In *CHI '10*. ACM Press, New York, New York, USA, 2133.
- HARRIGAN, J., ROSENTHAL, R., AND SCHERER, K. 2008. New Handbook of Methods in Nonverbal Behavior Research. OUP Oxford.
- HASSED, C., DE LISLE, S., SULLIVAN, G., AND PIER, C. 2009. Enhancing the health of medical students: outcomes of an integrated mindfulness and lifestyle program. Advances in health sciences education 14. 3, 387-398.
- HAYES, G. R. 2011. The relationship of action research to human-computer interaction. ACM Transactions on Computer-Human Interaction 18, 3, 1–20.
- HEKLER, E. B., KLASNJA, P., FROEHLICH, J. E., AND BUMAN, M. P. 2013. Mind the Theoretical Gap: Interpreting, Using, and Developing Behavioral Theory in HCI Research. In *CHI '13*. ACM Press, New York, New York, USA, 3307.
- HENDRIX, K., VAN HERK, R., VERHAEGH, J., AND MARKOPOULOS, P. 2009. Increasing children's social competence through games, an exploratory study. In *Proceedings of the 8th International Conference on Interaction Design and Children IDC '09*. ACM Press, New York, New York, USA, 182.
- HERNANDEZ, J., HOQUE, M. E., DREVO, W., AND PICARD, R. W. 2012. Mood meter: counting smiles in the wild. In *UbiComp '12*. ACM Press, 301.
- HETTEMA, J., STEELE, J., AND MILLER, W. R. 2005. Motivational interviewing. Annual review of clinical psychology 1, 91–111.
- HILL, C. E. AND LENT, R. W. 2006. A narrative and meta-analytic review of helping skills training: Time to revive a dormant area of inquiry. *Psychotherapy (Chicago, Ill.)* 43, 2, 154–72.
- HONG, H., KIM, J. G., ABOWD, G. D., AND ARRIAGA, R. I. 2012. Designing a social network to support the independence of young adults with autism. In *CSCW* '12. ACM Press, New York, New York, USA, 627.
- HÖÖK, K., STAHL, A., SUNDSTRÖM, P., AND LAAKSOLAAHTI, J. 2008. Interactional empowerment. In *CHI* '08. ACM Press, New York, USA, 647–656.
- HOQUE, M. E., COURGEON, M., MARTIN, J.-C., MUTLU, B., AND PICARD, R. W. 2013. MACH: My Automatic Conversation Coach. In *Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing UbiComp '13*. ACM Press, New York, New York, USA, 697.
- HOURCADE, J. P., WILLIAMS, S. R., MILLER, E. A., HUEBNER, K. E., AND LIANG, L. J. 2013. Evaluation of tablet apps to encourage social interaction in children with autism spectrum disorders. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems CHI '13*. ACM Press, New York, New York, USA, 3197.
- KABAT-ZINN, J. 2003. Mindfulness-based interventions in context: past, present, and future. Clinical psychology: Science and practice 10, 2, 144-156.
- KALET, A., PUGNAIRE, M. P., COLE-KELLY, K., JANICIK, R., FERRARA, E., SCHWARTZ, M. D., LIPKIN, M., AND LAZARE, A. 2004. Teaching communication in clinical clerkships: models from the macy initiative in health communications. *Academic medicine* 79, 6, 511–20.
- KALNIKAITE, V., SELLEN, A., WHITTAKER, S., AND KIRK, D. 2010. Now let me see where i was. In *Proceedings of the 28th international conference on Human factors in computing systems CHI '10*. ACM Press, New York, New York, USA, 2045.
- KAM, C.-M., GREENBERG, M. T., AND KUSCHE, C. A. 2004. Sustained Effects of the PATHS Curriculum on the Social and Psychological Adjustment of Children in Special Education. *Journal of Emotional and Behavioral Disorders* 12, 2, 66–78.
- KIENTZ, J., HAYES, G., WESTEYN, T., STARNER, T., AND ABOWD, G. 2007. Pervasive Computing and Autism: Assisting Caregivers of Children with Special Needs. *IEEE Pervasive Computing* 6, 1, 28–35.
- KIM, K., PICARD, R. W., AND LIEBERMAN, H. 2008a. Common sense assistant for writing stories that teach social skills. In *CHI EA '08*. ACM Press, New York, New York, USA, 2805.

- KIM, T., CHANG, A., HOLLAND, L., AND PENTLAND, A. S. 2008b. Meeting mediator: enhancing group collaboration using sociometric feedback. In CSCW'08. ACM, 457–466.
- KLASNJA, P., CONSOLVO, S., AND PRATT, W. 2011. How to evaluate technologies for health behavior change in HCI research. In *CHI* '11. ACM Press, New York, USA, 3063—3072.
- KREITMAYER, S., ROGERS, Y., LANEY, R., AND PEAKE, S. 2012. From Participatory to Contributory Simulations: Changing the Game in the Classroom. In *Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems CHI '12*. ACM Press, New York, New York, USA, 49.
- KRUGLANSKI, A. W. AND HIGGINS, E. T. 2007. Social psychology: Handbook of basic principles. The Guilford Press.
- KUZNETSOV, S. AND PAULOS, E. 2010. UpStream. In Proceedings of the 28th international conference on Human factors in computing systems - CHI '10. ACM Press, New York, New York, USA, 1851.
- LEDOUX, J. 1998. The emotional brain: The mysterious underpinnings of emotional life. Simon & Schuster.
- Lewicki, P., Czyzewska, M., and Hoffman, H. 1987. Unconscious acquisition of complex procedural knowledge. *Journal of Experimental Psychology: Learning, Memory, and Cognition* 13, 4, 523–530.
- LI, I., DEY, A., AND FORLIZZI, J. 2010. A stage-based model of personal informatics systems. In Proceedings of the 28th international conference on Human factors in computing systems - CHI '10. ACM Press, New York, New York, USA, 557.
- LIEBERMAN, M. 2000. Intuition: A social cognitive neuroscience approach. *Psychological Bulletin 126*, 1, 109–137.
- LIN, J., MAMYKINA, L., LINDTNER, S., DELAJOUX, G., AND STRUB, H. 2006a. FishnSteps: Encouraging Physical Activity with an Interactive Computer Game UbiComp 2006: Ubiquitous Computing. P. Dourish and A. Friday, Eds. Vol. 4206. Springer Berlin / Heidelberg, 261–278.
- LIN, J. J., MAMYKINA, L., LINDTNER, S., DELAJOUX, G., AND STRUB, H. B. 2006b. FishnSteps: Encouraging physical activity with an interactive computer game. In *Ubicomp '06*. Springer, 261–278.
- Long, E. C. J., Angera, J. J., Carter, S. J., Nakamoto, M., and Kalso, M. 1999. Understanding the one you love: A longitudinal assessment of an empathy training program for couples in romantic relationships. *Family Relations* 48, 3, 235–242.
- LUCKIN, R. 2008. The learner centric ecology of resources: A framework for using technology to scaffold learning. *Computers & Education 50*, 2, 449–462.
- MAKOUL, G. AND CURRY, R. H. 2007. The value of assessing and addressing communication skills. *JAMA:* the journal of the American Medical Association 298, 9, 1057–9.
- MAMYKINA, L., MYNATT, E., DAVIDSON, P., AND GREENBLATT, D. 2008. investigation of social scaffolding for reflective thinking in diabetes management. In *CHI '08*. ACM Press, New York, New York, USA, 477.
- MARCHAND, W. R. 2012. Mindfulness-based stress reduction, mindfulness-based cognitive therapy, and Zen meditation for depression, anxiety, pain, and psychological distress. *Journal of psychiatric practice 18*, 4, 233–52.
- MATTHEWS, M. AND DOHERTY, G. 2011. In the mood: engaging teenagers in psychotherapy using mobile phones. In *Proceedings of the 2011 annual conference on Human factors in computing systems CHI '11*. ACM Press, New York, New York, USA, 2947.
- MAYER, J. D., ROBERTS, R. D., AND BARSADE, S. G. 2008. Human abilities: emotional intelligence. *Annual review of psychology* 59, 507–36.
- MCATAMNEY, G. AND PARKER, C. 2006. An examination of the effects of a wearable display on informal face-to-face communication. In *CHI '06*. ACM Press, New York, New York, USA, 45.
- McDuff, D., Karlson, A., Kapoor, A., Roseway, A., and Czerwinski, M. 2012. AffectAura: an intelligent system for emotional memory. In *CHI '12*. 849.
- McGonigal, J. 2011. Reality is broken. Vol. 169. The Penguin Press.
- MORAVEJI, N., OLSON, B., NGUYEN, T., SAADAT, M., KHALIGHI, Y., PEA, R., AND HEER, J. 2011. Peripheral Paced Respiration: Influencing User Physiology during Information Work. In *UIST'11*.
- MORRIS, M. E., KATHAWALA, Q., LEEN, T. K., GORENSTEIN, E. E., GUILAK, F., LABHARD, M., AND DELEEUW, W. 2010. Mobile therapy: case study evaluations of a cell phone application for emotional self-awareness. *Journal of medical Internet research 12*, 2, e10.
- MUENNIG, P., SCHWEINHART, L., MONTIE, J., AND NEIDELL, M. 2009. Effects of a prekindergarten educational intervention on adult health: 37-year follow-up results of a randomized controlled trial. *American journal of public health 99*, 8, 1431–7.
- MUNSON, S., LAUTERBACH, D., NEWMAN, M. W., AND RESNICK, P. 2010. Happier together: integrating a wellness application into a social network site. In *Persuasive Technology*.

- MYTTON, J., DIGUISEPPI, C., GOUGH, D., TAYLOR, R., AND LOGAN, S. 2006. School-based secondary prevention programmes for preventing violence. *Cochrane database of systematic reviews 3*.
- NARUMI, T., AKAGAWA, T., SEONG, Y., AND HIROSE, M. 2009. An Entertainment System Using Thermal Feedback for Increasing Communication and Social Skills. *Learning by Playing. Game-based Education System Design and Development*, 184–195.
- NEWMAN, M. W., LAUTERBACH, D., MUNSON, S. A., RESNICK, P., AND MORRIS, M. E. 2011. It's not that i don't have problems, i'm just not putting them on facebook. In *CSCW '11*. ACM Press, New York, New York, USA, 341.
- OBERMAIR, C., REITBERGER, W., MESCHTSCHERJAKOV, A., LANKES, M., AND TSCHELIGI, M. 2008. per-Frames: Persuasive picture frames for proper posture. *Persuasive Technology*, 128–139.
- PAN, M. K., CHANG, J.-S., HIMMETOGLU, G. H., MOON, A., HAZELTON, T. W., MACLEAN, K. E., AND CROFT, E. A. 2011. Now where was I?: physiologically-triggered bookmarking. In *CHI '11*. ACM Press, 363—372.
- Payton, J., Weissberg, R., Durlak, J., Dymnicki, A., Taylor, R., Schellinger, K., and Pachan, M. 2008. The Positive Impact of Social and Emotional Learning for Kindergarten to Eighth-Grade Students Findings from Three Scientific Reviews. Tech. rep., Collaborative for Academic, Social, and Emotional Learning, Chicago.
- PEDERSEN, R. 2009. Empirical research on empathy in medicine-A critical review. *Patient education and counseling* 76, 3, 307–22.
- PENTLAND, A. S. 2008. Honest Signals: How They Shape Our World. The MIT Press.
- PICARD, R. W. 2009. Future affective technology for autism and emotion communication. *Philosophical transactions of the Royal Society of London. Series B, Biological sciences 364*, 1535, 3575–84.
- PIPER, A. M., O'BRIEN, E., MORRIS, M. R., AND WINOGRAD, T. 2006. SIDES: a cooperative tabletop computer game for social skills development. In CSCW '06. ACM Press, New York, New York, USA, 1.
- PLODERER, B., SMITH, W., HOWARD, S., PEARCE, J., AND BORLAND, R. 2013. Patterns of Support in an Online Community for Smoking Cessation. In *C&T'13*. ACM Press, New York, 26–35.
- POH, M.-Z., LODDENKEMPER, T., REINSBERGER, C., SWENSON, N. C., GOYAL, S., SABTALA, M. C., MADSEN, J. R., AND PICARD, R. W. 2012. Convulsive seizure detection using a wrist-worn electrodermal activity and accelerometry biosensor. *Epilepsia* 53, 5, e93–7.
- PORAYSKA-POMSTA, K., FRAUENBERGER, C., PAIN, H., RAJENDRAN, G., SMITH, T., MENZIES, R., FOSTER, M. E., ALCORN, A., WASS, S., BERNADINI, S., AVRAMIDES, K., KEAY-BRIGHT, W., CHEN, J., WALLER, A., GULDBERG, K., GOOD, J., AND LEMON, O. 2011. Developing technology for autism: an interdisciplinary approach. *Personal and Ubiquitous Computing* 16, 2, 117–127.
- RABBI, M., ALI, S., CHOUDHURY, T., AND BERKE, E. 2011. Passive and In-Situ assessment of mental and physical well-being using mobile sensors. In *UbiComp '11*. ACM Press, New York, New York, USA, 385.
- RAO, J. K., ANDERSON, L. A., INUI, T. S., AND FRANKEL, R. M. 2007. Communication interventions make a difference in conversations between physicians and patients: a systematic review of the evidence. *Medical care* 45, 4, 340–9.
- REITBERGER, W., KASTENMILLER, M., AND FITZPATRICK, G. 2013. Invisible Work: An Ambient System for Awareness and Reflection of Household Tasks. In *Persuasive Technology SE 22*, S. Berkovsky and J. Freyne, Eds. Lecture Notes in Computer Science Series, vol. 7822. Springer Berlin Heidelberg, 180–191
- REYES, M. R., BRACKETT, M. A., RIVERS, S. E., ELBERTSON, N. A., AND SALOVEY, P. 2012. The Interaction Effects of Program Training, Dosage, and Implementation Quality on Targeted Student Outcomes for The RULER Approach to Social and Emotional Learning. School Psychology Review 41, 1, 82–99.
- RIDER, E. A. AND KEEFER, C. H. 2006. Communication skills competencies: definitions and a teaching toolbox. *Medical education* 40, 7, 624-9.
- RIGGIO, R. E., RIGGIO, H. R., SALINAS, C., AND COLE, E. J. 2003. The role of social and emotional communication skills in leader emergence and effectiveness. *Group Dynamics: Theory, Research, and Practice* 7, 2, 83–103.
- RIZZO, A. S., BUCKWALTER, J. G., FORBELL, E., REIST, C., DIFEDE, J., ROTHBAUM, B. O., LANGE, B., KOENIG, S., AND TALBOT, T. 2013. Virtual Reality Applications to Address the Wounds of War. *Psychiatric Annals* 43, 3, 123–138.
- ROBIN, A., SCHNEIDER, M., AND DOLNICK, M. 1976. The turtle technique: An extended case study of self-control in the classroom. *Psychology in the Schools 13*, 4, 449–453.
- ROGERS, Y., CONNELLY, K., TEDESCO, L., HAZLEWOOD, W., KURTZ, A., HALL, R. E., HURSEY, J., AND TOSCOS, T. 2007. Why Its Worth the Hassle: The Value of In-Situ Studies When Designing Ubicomp. In *Ubicomp '07*. 336–353.

- ROMANO, D. M. 2005. Virtual Reality Therapy. Developmental Medicine and Child Neurology 47, 09, 580.
- ROSENBERG, R. S., BAUGHMAN, S. L., AND BAILENSON, J. N. 2013. Virtual Superheroes: Using Superpowers in Virtual Reality to Encourage Prosocial Behavior. *PLoS ONE 8*, 1, e55003.
- RUBIN-VAUGHAN, A., PEPLER, D., BROWN, S., AND CRAIG, W. 2011. Quest for the Golden Rule: An effective social skills promotion and bullying prevention program. *Computers & Education 56*, 1, 166–175.
- RUSCH, D. C. 2012. "Elude". In FDG '12. ACM Press, New York, New York, USA, 254.
- SAS, C. AND DIX, A. 2011. Designing for reflection on personal experience. *International Journal of Human-Computer Studies* 69, 5, 281–282.
- SATTERFIELD, J. M. AND HUGHES, E. 2007. Emotion skills training for medical students: a systematic review. *Medical education* 41, 10, 935–41.
- Schroyen, J., Gabriëls, K., Luyten, K., Teunkens, D., Robert, K., Coninx, K., Flerackers, E., and Manshoven, E. 2008. Training social learning skills by collaborative mobile gaming in museums. In *ACE '08*. ACM Press, New York, New York, USA, 46.
- SENGERS, P., BOEHNER, K., MATEAS, M., AND GAY, G. 2007. The disenchantment of affect. *Personal and Ubiquitous Computing 12*, 5, 347–358.
- SHAPIRO, S. L., SHAPIRO, D. E., AND SCHWARTZ, G. E. 2000. Stress management in medical education: a review of the literature. Academic medicine: journal of the Association of American Medical Colleges 75, 7, 748–59.
- SHELDON, L. 2011. The Multiplayer Classroom: Designing Coursework as a Game.
- Skeels, M. M., Unruh, K. T., Powell, C., and Pratt, W. 2010. Catalyzing Social Support for Breast Cancer Patients. CHI ... conference proceedings / Conference on Human Factors in Computing Systems. CHI Conference, 173–182.
- SKINNER, C. S., POLLAK, K. I., FARRELL, D., OLSEN, M. K., JEFFREYS, A. S., AND TULSKY, J. A. 2009. Use of and reactions to a tailored CD-ROM designed to enhance oncologist-patient communication: the SCOPE trial intervention. *Patient education and counseling* 77, 1, 90–6.
- SLOVÁK, P., JANSSEN, J., AND FITZPATRICK, G. 2012. Understanding heart rate sharing: towards unpacking physiosocial space. In CHI '12. 859–868.
- STAHL, A., HÖÖK, K., SVENSSON, M., TAYLOR, A. S., AND COMBETTO, M. 2008. Experiencing the Affective Diary. *Personal and Ubiquitous Computing 13*, 5, 365–378.
- STEPIEN, K. A. AND BAERNSTEIN, A. 2006. Educating for empathy. A review. *Journal of general internal medicine* 21, 5, 524–30.
- STEWART, M. A. 1995. Effective physician-patient communication and health outcomes: a review. CMAJ: Canadian Medical Association journal = journal de l'Association medicale canadienne 152, 9, 1423–33.
- STIEFEL, F., BARTH, J., BENSING, J., FALLOWFIELD, L., JOST, L., RAZAVI, D., AND KISS, A. 2010. Communication skills training in oncology: a position paper based on a consensus meeting among European experts in 2009. *Annals of oncology 21*, 2, 204–7.
- SUN, X., NIJHOLT, A., TRUONG, K. P., AND PANTIC, M. 2011. Automatic understanding of affective and social signals by multimodal mimicry recognition. In *ACII'11*. 289–296.
- TENTORI, M. AND HAYES, G. R. 2010. Designing for interaction immediacy to enhance social skills of children with autism. In *Ubicomp '10*. ACM Press, 51.
- THIEME, A., COMBER, R., MIEBACH, J., WEEDEN, J., KRAEMER, N., LAWSON, S., AND OLIVIER, P. 2012. We've bin watching you: designing for reflection and social persuasion to promote sustainable lifestyles. 2337–2346–2346.
- TORRES, R. AND WOLOZIN, L. 2011. Quest to learn: Developing the school for digital kids. MIT Press.
- Toups, Z. O. and Kerne, A. 2007. Implicit coordination in firefighting practice. In *Proceedings of the SIGCHI conference on Human factors in computing systems CHI '07*. ACM Press, New York, New York, USA, 707.
- Tulsky, J. A., Arnold, R. M., Alexander, S. C., Olsen, M. K., Jeffreys, A. S., Rodriguez, K. L., Skinner, C. S., Farrell, D., Abernethy, A. P., and Pollak, K. I. 2011. Enhancing communication between oncologists and patients with a computer-based training program: a randomized trial. *Annals of internal medicine 155*, 9, 593–601.
- VINCIARELLI, A. AND PANTIC, M. 2012. Bridging the gap between social animal and unsocial machine: A survey of social signal processing. *IEEE Transactions on Affective Computing 3*, 1, 69–87.
- VREEMAN, R. C. AND CARROLL, A. E. 2007. A systematic review of school-based interventions to prevent bullying. *Archives of Pediatrics & Adolescent Medicine 161*, 1, 78.
- WALTER, F., COLE, M. S., AND HUMPHREY, R. H. 2011. Emotional Intelligence: Sine Qua Non of Leadership or Folderol? Academy of Management Perspectives 25, 1, 45-59.

- WEARE, K. AND NIND, M. 2011. Mental health promotion and problem prevention in schools: what does the evidence say? *Health Promotion International* 26, S1, i29-i69.
- WEBSTER-STRATTON, C. AND REID, M. J. 2004. Strengthening Social and Emotional Competence in Young Children-The Foundation for Early School Readiness and Success: Incredible Years Classroom Social Skills and Problem-Solving Curriculum. *Infants & Young Children:* 17, 2, 96–113.
- Wu, H.-K., Wen-Yu Lee, S., Chang, H.-Y., and Liang, J.-C. 2012. Current Status, Opportunities and Challenges of Augmented Reality in Education. *Computers & Education null*, null.
- WYMAN, P. A., CROSS, W., HENDRICKS BROWN, C., YU, Q., TU, X., AND EBERLY, S. 2010. Intervention to strengthen emotional self-regulation in children with emerging mental health problems: proximal impact on school behavior. *Journal of abnormal child psychology* 38, 5, 707–20.
- ZARIN, R. AND FALLMAN, D. 2011. Through the troll forest: exploring tabletop interaction design for children with special cognitive needs. In *CHI '11*. ACM Press, New York, New York, USA, 3319.