Poisson Process

포아송 과정이란, 정상성과 독립성을 만족하며, 초기에는 사건의 수가 0번이면서, 발생할 사건의 수가 Poisson 분포를 따르는 확률과정이다.

시간 t동안 발생하는 사건의 수를 나타내는 확률과정인 Counting Process이다.

$$E[X] = \lambda$$

$$E[X] = \lambda$$

$$P(X=20) = \frac{\lambda}{x!} e^{\lambda} E[X] = \lambda^{2} + \lambda$$

$$P(X=20) = \frac{\lambda}{x!} e^{\lambda} V_{AN}[X] = \lambda$$

$$E[N(t)] = \lambda^{2}$$

$$P[N(t) = n] = \frac{\lambda^{2}}{n!} e^{\lambda} E[N(t)] = \lambda^{2} + \lambda^{2}$$

$$V_{AN}[N(t)] = \lambda^{2}$$

$$V_{AN}[N(t)] = \lambda^{2}$$

정상성(Stationary)

연속형 확률변수 X(t)가 같은 주기 → 같은 확률분포 X(t)

$$X(t+s)-X(s)=X(t)-X(0)$$

독립성(Independent)

연속형 확률변수 X(t)가 겹치지 않는 구간에 대해서는 독립적인 확률변수를 갖는다.

정상성 만족, 독립성 불만족 예시

시간대 t에 태어나는 아기들의 수가 N(t)일때, 아기들의 수는 특정 시간대의 인구수에 영향을 받는다.

정상성 불만족, 독립성 만족 예시

상점에 입장하는 사람들의 수 N(t), 시간대가 다르면 손님들의 수가 다르다.

포아송 과정을 따르는 N(t)가 있을 때,

$$E[N(t)N(t+s)]$$
 계산

Poisson Process 2

```
E[NC47 NC445]]
= E[N(+) N(+15) + N(+) N(+) - N(+) N(+)]
= E[N(+) (Net+5) - N(+)) + N(+) ]
    名なり
   N(++5) - NU) = N(5) - N(0)
 = E[N(+) (NLS) -N(0)) + N(+)2]
 = E[N(4) N(6)] - E[N(1)N(0)] + E[N(1)]
    E[NW] = a
  = E[NLY)NIST] + E[NLY)2]
     श्राक
    E[NUEN NUST] = E[NUEN] E[MIST]
  = E[Maj]E[NG] + E[NG)]
     E[NUI] = At
     EINGS = 75
     E[Nevi] = (At) + At
   = (\(\lambda\tau)(\(\lambda\tau)\) + (\(\lambda\tau)\) + \(\lambda\tau)\)
   = ht ( 25+ 2t+1)
```

Poisson Process 4