# Procesamiento entonativo computacional en el corpus PRESEEA-Valencia (nivel alto)

Patrones fonológicos frecuentes

Adrián Cabedo Nebot

Universitat de València

2024-04-17

### Objetivos

#### i Propuesta de investigación

- Desarrollar un análisis melódico en el corpus PRESEEA (Proyecto para el Estudio Sociolingüístico del Español de España y América) para cruzar datos acústicos y transcripciones y observar los patrones fonológicos más relevantes.
- Implementar las codificaciones SP-ToBI (Estebas y Prieto 2008) y AMH (análisis melódico del habla, Cantero 2002) junto con codificaciones automáticas no sesgadas por modelo entonativo.
- Análisis de caso del nivel sociocultural alto.

# Patrones entonativos español (AMH)

Patrones entonativos recogidos por Cantero y Font (2007)

- i Cuatro tonos generales
  - Neutro, entre un 15 % de inflexión tonal para los tonos descendentes y un 30 % de inflexión para tonos ascendentes.
  - Suspendido, con una subida entre 15 y 70 %.
  - Interrogativo, con una inflexión superior al 70 %.
  - Enfático, con un descenso final superior al 30 %, y habitualmente con desplazamientos tonales en la primera sílaba tónica o con modulaciones complejas en el cuerpo del grupo entonativo.

# Otros modelos (Garrido Almiñana 2012), TOBI (Estebas and Prieto 2008)

# Descripción tonal

- **Descendente:** Inicia en la última o penúltima sílaba tónica, descendiendo hasta el final del grupo entonativo. Varía en dos configuraciones principales:  $H + L^* L\%$  (inicio en la última tónica) /  $L^* L\%$  (inicio en la penúltima tónica)
- **Ascendente:** Se caracteriza por un aumento tonal al final del grupo. Diferentes configuraciones incluyen: L\* HH% (ascenso postónico fuerte) / L\* H% (ascenso postónico moderado) / L + H\* HH% (ascenso que comienza en la tónica)
- Circunflejo (Ascendente-Descendente): Empieza con un ascenso tonal y luego desciende, con variantes como: L + H\* L% (ascenso y descenso en la tónica) / L\* HL% (ascenso y descenso postónicos)

#### Corpus de análisis

- PRESEEA-Valencia
- El corpus está compuesto actualmente por 266 personas entrevistadas y una duración total de habla de 183 horas.
- 187205 tonemas, 1310441 palabras.
- **Sexo**. Hombres (91), mujeres (117);
- **Nivel educativo**. Nivel bajo (29), nivel alto (133), nivel medio (46);
- **Edades**. Edad joven (109), edad intermedia (49), mayores de 55 (50).

# Transcripción y alineación automática

- i Proceso metodológico
  - Audios en formato wav transcritos con Whisper.
  - Alineación automática con Montreal-Forced-Aligner (MFA).
  - Datos acústicos extraídos de PRAAT (pitch e intensidad).

### Ejemplo de PRAAT



Figure 1: PRAAT captura de pantalla

#### Procesamiento con Oralstats: variables de análisis

**Oralstats** (Cabedo 2022): programa gratuito desarrollado con R para combinar transcripciones y datos acústicos.



Figure 2: Código QR para acceder a Oralstats

#### Sobre el análisis

84 variables, de las que 21 entran en el análisis (desplazamiento tonal, reajuste tonal, duración, intensidad, acento léxico, patrón circunflejo, inflexión internas...)

#### Árbol de decisiones



#### Reglas de etiquetado computacional

```
vowels_analysis <- vowels_analysis %>% mutate(
between(inflexion_ST_to_next,-10,-5) &
                                           displacement %in% c("no") & q3piHz_q4piHZ_ST <= 1.91 & q3piHz_q4piHZ_ST <= -4.95 ~ "P1
between(inflexion_ST_to_next,-1,0.5) &
                                         displacement %in% c("no") & q3piHz_q4piHZ_ST <= 1.91 & q3piHz_q4piHZ_ST > -4.95 ~ "P2",
between(inflexion ST to next.0.51.5) &
                                          displacement %in% c("no") & q3piHz_q4piHZ_ST > 1.91 & q3piHz_q4piHZ_ST <= 10.18 - "P3",
between(inflexion_ST_to_next,-10,30) &
                                          displacement %in% c("no") & q3piHz_q4piHZ_ST > 1.91 & q3piHz_q4piHZ_ST > 10.18 - "P4",
                                          displacement %in% c("yes") & inflexion_ST_from_prev <= -7.48 & body_2 <= -37.21 - "P5"
between(inflexion_ST_to_next,0.51,20) &
between(inflexion ST to next.0.51.20) &
                                          displacement %in% c("yes") & inflexion_ST_from_prev <= -7.48 & body_2 > -37.21 - "P6",
                                          displacement %in% c("yes") & inflexion_ST_from_prev > -7.48 & body_2 <= -27.79 - "P7",
between(inflexion_ST_to_next,0.51,14)&
between(inflexion ST to next, 0.51.8) &
                                          displacement %in% c("yes") & inflexion ST from prey > -7.48 & body 2 > -27.79 ~ "P8".
            TRUE ~ "no assigned"
```

#### Correspondencia con MAS

|       | no_assigned | P1  | P2    | P3  | P4  | P5  | P6 | P7  | P8   |
|-------|-------------|-----|-------|-----|-----|-----|----|-----|------|
| PI    | 38743       | 130 | 45588 | 995 | 278 | 3   | 26 | 221 | 6010 |
| PII   | 1001        | 0   | 0     | 0   | 56  | 347 | 33 | 157 | 0    |
| PIII  | 211         | 0   | 0     | 0   | 50  | 55  | 22 | 239 | 762  |
| PIVa  | 407         | 87  | 0     | 0   | 0   | 3   | 1  | 27  | 134  |
| PIVb  | 132         | 2   | 86    | 0   | 0   | 0   | 0  | 0   | 23   |
| PIX   | 244         | 12  | 0     | 0   | 2   | 0   | 0  | 0   | 0    |
| PVIa  | 5339        | 0   | 0     | 600 | 114 | 84  | 59 | 805 | 5555 |
| PVIb  | 437         | 0   | 0     | 153 | 33  | 29  | 48 | 338 | 2382 |
| PVII  | 966         | 6   | 0     | 0   | 1   | 0   | 0  | 0   | 0    |
| PVIII | 481         | 24  | 0     | 0   | 5   | 0   | 0  | 0   | 0    |
| PXa   | 27          | 0   | 37    | 0   | 0   | 0   | 0  | 0   | 7    |
| PXb   | 69          | 0   | 11    | 42  | 2   | 0   | 0  | 0   | 25   |
| PXI   | 465         | 4   | 0     | 0   | 0   | 0   | 0  | 0   | 0    |
| PXIIc | 53          | 6   | 0     | 0   | 0   | 0   | 0  | 0   | 0    |
| PXIII | 480         | 0   | 0     | 0   | 30  | 0   | 19 | 0   | 326  |

Pearson's Chi-squared test

 ${\tt data: table(vowels\_filtered\$new\_variable, vowels\_filtered\$pattern)}$ 

X-squared = 71521, df = 112, p-value < 2.2e-16

# Relaciones significativas



### Correspondencia con TOBI

|           | no_assigned | P1  | P2    | P3  | P4  | P5  | P6  | P7   | P8   |
|-----------|-------------|-----|-------|-----|-----|-----|-----|------|------|
| H*+L      | 8720        | 67  | 0     | 0   | 11  | 0   | 0   | 0    | 0    |
| H+L*      | 2563        | 0   | 5668  | 214 | 99  | 1   | 2   | 9    | 122  |
| H+L*H%    | 2819        | 0   | 0     | 626 | 163 | 520 | 206 | 1081 | 3357 |
| H+L*L%    | 4630        | 39  | 0     | 0   | 56  | 0   | 0   | 0    | 0    |
| L*+H      | 5126        | 0   | 0     | 530 | 81  | 0   | 0   | 535  | 7244 |
| L+H*      | 3374        | 0   | 9290  | 37  | 19  | 0   | 0   | 3    | 235  |
| L+H*H%    | 5491        | 0   | 0     | 193 | 68  | 0   | 0   | 150  | 3586 |
| L+H*L%    | 7946        | 164 | 0     | 0   | 7   | 0   | 0   | 0    | 0    |
| unchanged | 8386        | 1   | 30764 | 190 | 67  | 0   | 0   | 9    | 680  |
|           |             |     |       |     |     |     |     |      |      |

Pearson's Chi-squared test

data: table(vowels\_filtered\$new\_variable, vowels\_filtered\$TOBI\_pattern)
X-squared = 118583, df = 64, p-value < 2.2e-16</pre>

# Relaciones significativas



#### Patrones y sociolecto alto



#### Breves conclusiones

- Síntesis
  - Los patrones fonológicos más recurrentes, por orden de frecuencia, son PVIa, PI, PVIb, PIX, PVIII y PII.
  - Las mujeres de nivel alto (mayores de 55 y jóvenes) usan mayor variedad de tonos fonológicos de manera significativa, sobre todo PIX, PIVa, PVIb, PVIII y PII. Riqueza expresiva.
  - 3 Los hombres jóvenes de nivel alto usan muy frecuentemente PI y PXIII y usan muy poco PXI y PVIb. El resto de hombres no presenta una distribución significativamente distinta en cuanto al uso de patrones fonológicos.

#### Líneas de investigación abiertas



#### Futuro

- Revisar el patrón fonológico con valle inicial y declinación constante.
- Incluir el reajuste con sílabas anteriores y posteriores independientemente de que sean tónicas o átonas léxicamente.
- Considerar estructuras inacabadas que no terminan con la última palabra tónica del grupo.
- Predecir el nivel sociocultural de los hablantes, su edad y sexo a partir de sus patrones fonológicos.
- Considerar los valores acústicos registrados (anacrusis, reajustes porcentuales, cuerpo...) independientemente del patrón fonológico.

#### Referencias generales

Cantero Serena, Francisco José, and Dolors Font Rotchés. 2007. "Entonación Del Español Peninsular En Habla Espontánea: Patrones Melódicos y Márgenes de Dispersión." *Moenia*, no. 13: 6992. http://hdl.handle.net/10347/6067.

Estebas, Eva. and Pilar Prieto, 2008, "La Notación Prosódica Del

- Español: Una Revisión Del Sp- ToBI." Estudios de Fonética Experimental, no. 17: 263–83. https://dialnet.unirioja.es/servlet/articulo?codigo=3102437&orden=2https://dialnet.unirioja.es/servlet/extart?codigo=3102437.
- Garrido Almiñana, Juan María. 2012. "Análisis fonético de los patrones melódicos locales en español: patrones entonativos." Revista Española de Lingüística 42 (2): 95–126.