

Equipo 1:

ESTEBAN AVALOS ARANZA ALEJANDRA 1941599 AVILA CASTRO INGRID MARIANA 1941460 CARDENAS GARCIA OSCAR ANDRES 1941600 GARCÍA SALAZAR VALERIA GUADALUPE 1850355 GONZÁLEZ PÉREZ ANA VICTORIA 1941504

COLLACS?

Es el proceso de representación de datos, en formato gráfico, de una manera clara y eficaz.

Herramienta poderosa para el análisis e interpretación de datos grandes y complejos.

Ventajas

Ayuda en la toma de decisiones acertadas.

Ahorro de tiempo.

Optimiza la colaboración/divulgación de la información.

Funciones de autoservicio para los usuarios.

Reducción de la carga de trabajo del equipo de tecnología.

Tipos de Gráficas

- 1) Histograma
- 3) Gráfico de barras
- **5**) Box plot o diagrama de caja

- 2) Gráfico de lineas
- 4) Gráfico de dispersión
- **6** Gráfico de pastel

Librerias

- MATPLOTLIB: Permite la creación de gráficos en dos dimensiones.
- PLOTLY: Nos ayuda a realizar gráficos interactivos.
- SEABORN: Permite generar fácilmente elegantes gráficos.
- NUMPY: Abreviación de "Numerical Python", y nos proporciona una gran cantidad de métodos para trabajar con arrays y matrices.

Histograma

Un histograma muestra la **acumulación** ó tendencia, la **variabilidad** o dispersión y la forma de la distribución.


```
import matplotlib.pyplot as plt

plt.hist(estudiantes['Dalc'], color= 'green')

plt.xlabel('Consumo Diario')

plt.ylabel('Frecuencia')

plt.title ("Consumo de alcohol entre semana")

plt.show()
```

Gráfico de lineas

Se usan para representar grandes cantidades de datos que tienen lugar durante un período continuado de tiempo

```
1 lista = [11,2,3,15,8,13,21,34]
2 plt.plot(lista)
3 plt.title("Título")
4 plt.xlabel("Eje x")
5 plt.ylabel("Eje y")
```


Gráfico de barras

Son adecuadas para representar datos cuantitativos y se pueden usar también para datos cualitativos ordinales, muestran el cambio del valor de los datos a través de sus valores ordenados con respecto a un criterio.


```
paises = ['Estados Unidos', 'España', 'Mexico', 'Rusia', 'Japon']
ventas = [25, 32, 34, 20, 25]

plt.bar(paises, ventas)
plt.xlabel('Paises')
plt.ylabel('Ventas')
plt.title('Ventas por país')
plt.show()
```

Grafico de dispersión

Permite estudiar las relaciones entre dos conjuntos asociados de datos que aparecen en pares (por ejemplo, (x,y), uno de cada conjunto).

```
import numpy as np
x = 10*np.random.rand(200, 1)
y = np.sin(x)
plt.scatter(x,y)
plt.show()
```


Box plot o diagrama de caja

El diagrama de caja muestra a simple vista la mediana y los cuartiles de los datos, pudiendo también representar los valores atípicos de estos.

```
1    np.random.seed(10)
2    datos = np.random.normal(100, 20, 200)
3
4    fig = plt.figure(figsize =(10, 7))
5
6    plt.boxplot(datos)
7    plt.show()
```



```
categoría = 'Futbol', 'Beisbol', 'Atletismo', 'Natación'
tamaño = [257, 234, 125, 359]

fig1, ax1 = plt.subplots()
ax1.pie(tamaño, labels=categoría,)
plt.show()
```

La gráfica de pastel se usa para representar variables cualitativas o categóricas, de preferencia nominales, se utiliza para mostrar la proporción le corresponde a cada categoría.

Bibliografias

- https://blogs.sas.com/content/sasla/2014/03/26/las-7-ventajas-principales-de-la-visualizacion-de-datos/
- https://core.ac.uk/download/pdf/296401308.pdf
- https://jakevdp.github.io/PythonDataScienceHandbook/04.14-visualization-with-seaborn.html

https://matplotlib.org/stable/tutorials/introductory/pyplot.html