计量经济学 Eviews 实验指导书

Lab 4 多元线性回归及矩阵运算 胡华平 2018/3/27

目录

1	实验	目的及要求	3
2	实验	原理	4
	2.1	k变量线性回归模型的矩阵表达	4
	2.2	经典线性回归模型假定的矩阵表述	4
	2.3	OLS 估计及 BLUE 性质证明的矩阵表达	4
	2.4	对回归系数进行显著性检验	4
	2.5	对回归模型进行总体显著性检验	4
		2.5.1 方差分析表 (ANOVA) 的矩阵表述	4
		2.5.2 总体模型显著性的 F 检验	4
	2.6	用多元回归做预测: 矩阵表述	4
3	实验	内容	5
•			5
	3.2	实验背景——玫瑰的需求	6
4	主要	实验步骤——以对数模型 M_2 为例(6)	9
•		Eviews 变量命名设计	9
	4.2	导入数据并进行预处理	9
	4.3		12
	4.4		13
	4.5		13
	4.6		13
	4.7		14
	4.8	计算判定系数 R^2 和调整判定系数 (\bar{R}^2)	14
	4.9	计算得到样本 t 统计量 (t^*_{β})	15
	4.10		15
			16
	4.12	计算给定 $\alpha = 0.05$ 水平下的查表的理论 F 值 $(F_{1-\alpha}(k-1, n-k))$, 并进行 F 假设	
	-		16
	4.13	对回归方程的进行样本外均值预测 $E(Y X=X_0)$	16
	4.14		17

1 实验目的及要求

- 目的: 掌握多元线性回归模型的估计、检验。
- 要求: 在老师指导下完成多元线性回归模型的建立、估计、统计检验,得到正确的分析结果;能运用矩阵方法实现前述操作。

2 实验原理

 当多元线性回归模型在满足线性模型古典假设的前提下,最小二乘估计结果具有无偏性、 有效性等性质,在此基础上进一步对估计所得的模型进行经济意义检验及统计检验。

2.1 k变量线性回归模型的矩阵表达

k 变量总体回归模型 (PRF) 的代数表达式如下:

$$Y_i = \beta_1 + \beta_2 X_{2i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + u_i$$
 (1)

如果样本数为n,则k变量总体回归模型矩阵表达为:

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \dots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & X_{21} & X_{31} & \dots & X_{k1} \\ 1 & X_{22} & X_{32} & \dots & X_{k2} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & X_{2n} & X_{3n} & \dots & X_{kn} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
(2)

$$y = X\beta + u \tag{3}$$

$$(n \times 1) = (n \times n)(k \times 1) + (n \times 1) \tag{4}$$

- 2.2 经典线性回归模型假定的矩阵表述
- 2.3 OLS 估计及 BLUE 性质证明的矩阵表达
- 2.4 对回归系数进行显著性检验
- 2.5 对回归模型进行总体显著性检验
- 2.5.1 方差分析表 (ANOVA) 的矩阵表述
- 2.5.2 总体模型显著性的 F 检验
- 2.6 用多元回归做预测:矩阵表述

3 实验内容

3.1 实验方案设计

在 Eviews 中运用矩阵方法, 计算如下步骤:

- 计算直线回归方程的回归系数向量 ($\hat{\beta}$), 并写出样本回归模型 (SRM)。
- 计算回归误差方差 $(\hat{\sigma}^2)$ 和回归误差标准差 $(\hat{\sigma})$ 。
- 计算回归系数的样本方差协方差矩阵 (\widehat{var} _ \widehat{cov})。
- 得出回归系数的样本标准差向量 $(S_{\hat{a}})$ 。
- 进行平方和分解, 计算 TSS、ESS 和 RSS。
- 计算判定系数 R^2 , 调整判定系数 (\hat{R}^2) 。
- 计算样本 t 统计量 (t*), 并进行 t 假设检验。
- 对回归方程的进行样本外均值预测 $E(Y|X=X_0)$
- 对回归方程的进行样本外个值预测 $(Y_0|X=X_0)$

表 1: 玫瑰的需求 (n=16)

YEAR	Q	X2	Х3	X4	X5
1971.3	11484	2.26	3.49	158.11	1
1971.4	9348	2.54	2.85	173.36	2
1972.1	8429	3.07	4.06	165.26	3
1972.2	10079	2.91	3.64	172.92	4
1972.3	9240	2.73	3.21	178.46	5
1972.4	8862	2.77	3.66	198.62	6
1973.1	6216	3.59	3.76	186.28	7
1973.2	8253	3.23	3.49	188.98	8
1973.3	8038	2.60	3.13	180.49	9
1973.4	7476	2.89	3.20	183.33	10
1974.1	5911	3.77	3.65	181.87	11
1974.2	7950	3.64	3.60	185.00	12
1974.3	6134	2.82	2.94	184.00	13
1974.4	5868	2.96	3.12	188.20	14
1975.1	3160	4.24	3.58	175.67	15
1975.2	5872	3.69	3.53	188.00	16
		•			

表 2: 变量定义及说明

variable	label
YEAR	年份.季度
Q	玫瑰销售量(打)
X2	玫瑰批发价格(\$/打)
Х3	石竹的平均批发价格(\$/打)
X4	家庭可支配收入(\$/周)
X5	时间趋势

3.2 实验背景——玫瑰的需求

玫瑰的需求:表1给出美国底特律市区对玫瑰的季度需求数据。

Warning in 1:dim(table_lab[1]): numerical expression has 2 elements: on ## the first used

变量说明见表2:

请考虑如下两个需求函数:

$$Y_t = \hat{\alpha}_1 + \hat{\alpha}_2 X_{2t} + \hat{\alpha}_3 X_{3t} + \hat{\alpha}_4 X_{4t} + \hat{\alpha}_5 X_{5t} + e_{1t}$$
(5)

$$ln(Y_t) = \hat{\beta}_1 + \hat{\beta}_2 ln(X_{2t}) + \hat{\beta}_3 ln(X_{3t}) + \hat{\beta}_4 ln(X_{4t}) + \hat{\beta}_5 X_{5t} + e_{2t}$$
(6)

定制化的公式效果函数:

调用效果函数:

$$ln(Y_t) = \hat{\beta}_1 + \hat{\beta}_2 ln(X_{2t}) + \hat{\beta}_3 ln(X_{3t}) \hat{\beta}_4 ln(X_{4t}) + \hat{\beta}_5 X_{5t} + e_{2t}$$

调用 chunk 模型(8)

$$ln(Y_t) = \hat{\beta}_1 + \hat{\beta}_2 ln(X_{2t}) + \hat{\beta}_3 ln(X_{3t}) \hat{\beta}_4 ln(X_{4t}) + \hat{\beta}_5 X_{5t} + e_{2t}$$
(7)

chunk 调用结果如下:

$$ln(Y_t) = \hat{\beta}_1 + \hat{\beta}_2 ln(X_{2t}) + \hat{\beta}_3 ln(X_{3t}) \hat{\beta}_4 ln(X_{4t}) + \hat{\beta}_5 X_{5t} + e_{2t}$$
(8)

转换函数如下

请回答如下问题:

- a. 关于线性模型(8), 运用菜单操作, 得到回归分析报告。
- b. 关于线性模型(5), 在 Eviews 中运用矩阵方法, 计算如下步骤:
 - 1. 计算直线回归方程的回归系数向量 (\hat{eta}) , 并写出样本回归模型 (SRM_2) 。
 - 2. 计算回归误差方差 $(\hat{\sigma}^2)$ 和回归误差标准差 $(\hat{\sigma})$ 。
 - 3. 计算回归系数的样本方差协方差矩阵 (\widehat{var} _ $\widehat{cov}(\hat{\beta})$)。
 - 4. 得出回归系数的样本标准差向量 $(S_{\hat{\beta}})$ 。
 - 5. 进行平方和分解, 计算TSS、ESS和RSS。
 - 6. 计算判定系数 R^2 , 调整判定系数 (\hat{R}^2) 。
 - 7. 计算样本 t 统计量 (t*), 并进行 t 假设检验。
 - 8. 对回归方程的整体显著性进行 F 假设检验。
 - 9. 对回归方程的进行样本外均值预测 $E(Y|X=X_0)$ 。
 - 10. 对回归方程的进行样本外个值预测 $(Y_0|X=X_0)$ 。

- c. 关于对数线性模型(6), 运用菜单操作, 得到回归分析报告。
- d. 关于对数线性模型(6), 在 Eviews 中运用矩阵方法, 计算如下步骤:
 - 1. 计算直线回归方程的回归系数向量($\hat{\beta}$), 并写出样本回归模型(SRM_2)
 - 2. 计算回归误差方差 ($\hat{\sigma}^2$) 和回归误差标准差 ($\hat{\sigma}$)。
 - 3. 计算回归系数的样本方差协方差矩阵 (\widehat{var} _ $\widehat{cov}(\hat{\beta})$)。
 - 4. 得出回归系数的样本标准差向量(S_ĝ)。
 - 5. 进行平方和分解, 计算TSS、ESS和RSS。
 - 6. 计算判定系数 R^2 , 调整判定系数 (\hat{R}^2) 。
 - 7. 计算样本 t 统计量 (\mathbf{t}_{β}^*) , 并进行 t 假设检验。
 - 8. 对回归方程的整体显著性进行 F 假设检验。
 - 9. 对回归方程的进行样本外均值预测 $E(Y|X=X_0)$ 。
 - 10. 对回归方程的进行样本外个值预测 $(Y_0|X=X_0)$ 。
- e. 根据对数模型特征,可知 $\hat{\beta}_2$ 、 $\hat{\beta}_3$ 和 $\hat{\beta}_4$ 分别为玫瑰需求的自价格弹性,交叉价格弹性和收入弹性。它们的先验符号是什么?你的结果同先验预期相符吗?
- f. 根据你的分析, 你会选择哪个模型 (如果可选)? 为什么?
- g. 仅考虑对数设定形式模型(6):
 - 1. 所估计的需求自价格弹性(即对玫瑰价格的弹性)是什么?
 - 2. 它是统计显著的吗?
 - 3. 如果是, 它是否在统计上异于1?(此题为选作)
 - 4. 理论上, 你对 $\hat{\beta}_3$ 和 $\hat{\beta}_4$ 的预期符号是什么?eviews 结果和这些预期相符吗?
 - 5. 如果 $\hat{\beta}_3$ 和 $\hat{\beta}_4$ 的系数在统计意义上不显著, 可能是什么原因?

【本次实验题目完毕啦!!】

4 主要实验步骤——以对数模型 M_2 为例(6)

4.1 Eviews 变量命名设计

4.2 导入数据并进行预处理

- 目标:
- 思路:
- 新建 Eviews 工作文件 (workfile)
 - 提示: Excel 数据, 每个同学的 Y 数据都不同, 找到自己学号对应下的 Y
 - Eviews 菜单操作:
 - a. 依次操作: file——》new——》workfile
 - b. 进行 workfile create 引导设置:
 - * workfile structure type: unstructured/undatede
 - * data range: 16
 - * workfile names(optional):
 - · WF: rose demand
 - · Page: model2 (强烈建议命名 model2!)
 - 注意:本次实验涉及到两个模型的比较——经典模型(5)和对数模型(6)。为避免两个模型 Eviews 变量命名的冲突,请务必注意分别在两个 Page 里分别完成两个模型的数据分析!
- 导入数据
 - 提示: Excel 数据,每个同学的 Y 数据都不同,找到自己学号对应下的 Y 数据 (X 数据所有同学都一样)
 - (方法1) 菜单操作 (Excel 和 Eviews):
 - a. Excel 找到数据。Excel 表格中仅保留自己需要的数据(YEAR, Q, X2, X3, X4, X5)
 - b. Excel 处理变量。加入一个新变量(建议命名为 cst),并给该变量的数据全部 设置为 1。
 - c. Eviews 导入数据。File——》Import——》Import From File:d:/econometrics/data/lab4-
 - (方法 2) 命令操作 (Eviews): 尤其注意常数序列 cst 的命令生成过程。
 - a. Eviews 命令窗口输入并运行代码: series cst=1
 - b. Eviews 命令窗口输入并运行代码: series ln x2=log(x2)
 - c. Eviews 命令窗口输入并运行代码: series ln x3=log(x3)
 - d. Eviews 命令窗口输入并运行代码: series ln x4=log(x4)
 - 说明:构造 Eviews 对象 CSt,是为了进一步构造矩阵。在有截距模型中,矩阵 X 的 第一列元素应全部设置为 1。
- 构造组 (group) 对象 xg
 - 提示: 把因变量 X序列 (series) 和常数 CSt序列 (series) 对象一起转换成矩阵 (matrix) 对象
 - 得到序列组 X

表 3: 计算对象、表达式及 Eviews 命名

name_chn	cat_eng	math	name_eviews
序列Y	series	\$Y\$	y
组X	group	\$X\$	xg
矩阵y	matrix	\$\mathbf{y}\$	y
矩阵x	matrix	\$\mathbf{X}\$	x
矩阵xtx	matrix	\$\mathbf{(X'X)}\$	xtx
矩阵 xtxi	matrix	<pre>\$\mathbf{{(X'X)}^{-1}}\$ \$\mathbf{X'y}\$ \$\mathbf{\hat{\beta}}\$ \$\hat{\sigma}^2\$ \$\hat{\sigma}\$</pre>	xtxi
矩阵 xty	matrix		xty
矩阵 beta	matrix		beta_hat
回归误差方差	scalar		sigma2_hat
回归误差标准差	scalar		sigma_hat
beta 样本方差协方差矩阵	matrix	$\ \ $	s2_varcov_be
beta 样本方差矩阵	matrix		s2_beta_hat
beta 样本标准差矩阵	matrix		s_beta_hat
均值修正值	scalar		mean_adj
总平方和	scalar		tss
残差平方和	scalar	\$RSS\$	rss
回归平方和	scalar	\$ESS\$	ess
判定系数	scalar	\$R^2\$	r2
调整判定系数	scalar	\$\bar{R}^2\$	r2_adj
矩阵 t 统计量	matrix	\$\mathbf{t^{\ast}_{\beta}}\$	t_str_beta_ha
理论 t 值	scalar	\$t_{1-\alpha/2}(n-k)\$ \$F^{\ast}\$ \$F_{1-\alpha}(k-1,n-k)\$ \$X_0\$ \$\hat{Y}_0\$	t_value
F 统计量	scalar		f_str
理论 F 值	scalar		f_value
样本外 Xo	matrix		xo
样本外回归值 Yo_hat	matrix		Yo_hat
均值预测 Yo_hat 的样本标准差 均值区间预测的左界 均值区间预测的右界 内值预测	scalar	\$E(Y X=X_0)\$	forecast_exp
	scalar	\$S_{\hat{Y}_0}\$	s_yoh
	scalar	\$E(Y X=X_0)_L\$	y_exp_lft
	scalar	\$E(Y X=X_0)_R\$	y_exp_rht
	scalar	\$(Y_0 X=X_0)\$	forecast_ind
Yo_hat-Yo 的样本标准差	scalar	\$S_{(\hat{Y}_o-Y_o)}\$	s_yoh_mns_y
个值区间预测的左界	scalar	\$(Y_o X=X_o)_L\$	y_ind_lft
个值区间预测的右界	scalar	\$(Y_o X=X_o)_R\$	y_ind_rht

	Α	В	/c \	[
1	YEAR	Y	cst	X		
2	1971.3	11484	/ 1	2.		
3	1971.4	9348	1	2.		
4	1972.1	8429	1	3.		
5	1972.2	10079	1	2.		
6	1972.3	9240	1	2.		
7	1972.4	8862	1	2.		
8	1973.1	6216	1	3.		
9	1973.2	8253	1	3.		
10	1973.3	8038	1	2		
11	1973.4	7476	1	2.		
12	1974.1	5911	1	3.		
13	1974.2	7950	1	3.		
14	1974.3	6134	1	2.		
15	1974.4	5868	1	2.		
16	1975.1	3160	1	4.		
17	1975.2	5872	1 /	3.		
10						

图 1: Excel 数据与变量预处理

- * 命名: 建议将样本数据序列组的 Eviews 对象命名为 xg
- * 菜单: 依次选择(cst ln_x2 ln_x3 ln_x4 x5)->open as group ->name (建议命名为 xg)
- 得到矩阵 X
 - 命名: 建议将样本数据矩阵 X 的 Eviews 对象命名为 x
 - 命令: matrix x=xg

4.3 计算直线回归方程的回归系数向量 (\hat{eta}), 并写出样本回归模型 (SRM_2)。

- 目标:根据理论的矩阵公式,计算得到直线回归方程的回归系数向量 $(\hat{\beta})$
- 思路:
- · 构造矩阵 y
 - 提示: 把因变量 Y序列 (series) 对象转化成矩阵对象
 - 命名:建议将样本数据矩阵 y 的 Eviews 对象命名为 y + 命令: matrix y=q
- · 构造矩阵 X
 - 提示: 把因变量 X序列 (series) 对象转化成矩阵对象
 - 得到序列组 X
 - a. 命名:建议将样本数据序列组X的 Eviews 对象命名为xg
 - b. 菜单: 依次选择(cst ln_x2 ln_x3 ln_x4 x5)—>open as group —>name (建议命名为 xg)
 - 得到矩阵 X:
 - a. 命名:建议将样本数据矩阵 X 的 Eviews 对象命名为 x
 - b. 命令: matrix x=xg
- 利用矩阵公式计算回归系数 (β)
 - 得到重要矩阵 (X'X)
 - a. 命名: 建议将重要矩阵 (X'X) 的 Eviews 对象命名为 xtx
 - b. 命令: matrix xtx=@transpose(x)*x
 - 得到重要矩阵 $(X'X)^{-1}$
 - a. 命名: 建议将重要矩阵 $(X'X)^{-1}$ 的 Eviews 对象命名为 xtxi
 - b. 命令: matrix xtxi=@inverse(xtx)
 - 得到重要矩阵 X'y (建议命名为 xty)
 - a. 命名:建议将重要矩阵 X'y 的 Eviews 对象命名为 xty
 - b. 命令: matrix xtv=@transpose(x)*v
 - 得到回归系数矩阵 Â
 - a. 提示:回归系数矩阵 $\hat{\beta}$ 的理论计算公式为

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

- b. 命名: 建议将回归系数矩阵 $\hat{\beta}$ 的 Eviews 对象命名为 beta_hat
- c. 命令: matrix beta hat=xtxi*xty

4.4 计算回归误差方差 $(\hat{\sigma}^2)$ 和回归误差标准差 $(\hat{\sigma})$

- 目标:根据理论的矩阵公式,回归误差方差 $(\hat{\sigma}^2)$ 和回归误差标准差 $(\hat{\sigma})$
- 思路:
- 提示:回归误差方差 $(\hat{\sigma}^2)$ 和回归误差标准差 $(\hat{\sigma})$ 的理论计算公式分别为:

$$\hat{\sigma}^2 = \frac{\sum e_i^2}{n - k} = \frac{\mathbf{y}'\mathbf{y} - \hat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{y}}{n - k}$$

$$\hat{\sigma} = \sqrt{\frac{\sum e_i^2}{n - k}} = \sqrt{\frac{\mathbf{y}\mathbf{y}' - \hat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{y}}{n - k}}$$

- 命名: 建议将回归误差方差的 Eviews 对象命名为 sigma2_hat, 将回归误差标准差的 Eviews 对象命名为 sigma hat。
- 命令:
 - 回归误差方差 $\hat{\sigma}^2$: scalar sigma2_hat=1/(16-5)(@transpose(y)y-@transpose(beta_hat)*xty)
 - 回归误差标准差 σ̂: scalarsigma_hat=@sqr(sigma2_hat)
- 注意: 与 eviews 报告比对是否正确 (注:要开根号才能比较!)

4.5 计算回归系数的样本方差协方差矩阵 (\widehat{var} _ \widehat{cov} (\widehat{eta}))

- 目标:根据理论的矩阵公式,计算回归系数的样本方差协方差矩阵 $\widehat{(var_cov}(\hat{eta})$)
- 思路:
- 提示:回归系数的样本方差协方差矩阵阵 (\widehat{var} _ $\widehat{cov}(\hat{\beta})$) 的理论计算公式为:

$$\widehat{var} \ \widehat{cov}(\widehat{\beta}) = \widehat{\sigma}^2(\mathbf{X}'\mathbf{X})^{-1}$$

- 命名: 建议将样本方差协方差矩阵的 Eviews 对象命名为 s2_varcov_beta_hat
- 命令: matrix s2_varcov_beta_hat=sigma2_hat*xtxi
- 注意:与 eviews 报告比对是否正确(注:要开根号才能比较!)

4.6 得出回归系数的样本标准差向量()

- 目标:根据理论的矩阵公式。得出回归系数的样本标准差向量()
- 思路:
- 提取矩阵主对角元素,得到方差向量 $\mathbf{S}^2_{\hat{eta}}$
 - 提示:该矩阵维度为5*5
 - 命名: 建议将方差向量的 Eviews 对象命名为 s2_beta_hat
 - 命令: matrix s2 beta hat=@getmaindiagonal(s2 varcov beta hat)
 - 注意: Eviews 命令 @qetmaindiagonal()的作用是提取矩阵的对角线元素

• 矩阵元素开根号, 得到标准差向量

- 提示:标准差向量的矩阵维度为5*1

- 命名:建议将标准差向量的 Eviews 对象命名为

命令: matrix =@sqr(s2_beta_hat)注意: 与 eviews 报告比对是否正确

4.7 进行平方和分解, 计算TSS、ESS 和RSS

• 目标:根据理论的矩阵公式,进行平方和分解,计算TSS、ESS和RSS

- 思路:
- 计算均值修正值 $n\bar{Y}^2$
 - 提示:均值修正值的理论公式为

$$n\bar{Y}^2$$

- 命名: 建议将均值修正值的 Eviews 对象命名为 mean adj

- 命令: scalar mean_adj=16*(@mean(y))^2

- 计算总平方和 TSS
 - 提示: 总平方和 TSS 的理论计算公式为

$$TSS = \mathbf{y}'\mathbf{y} - n\bar{Y}^2$$

- 命名: 建议将总平方和的 Eviews 对象命名为 tss

- 命令: scalar tss=@transpose(y)*y-mean adj

- · 计算残差平方和 RSS
 - 提示: 残差平方和 RSS 的理论计算公式为:

$$RSS = \mathbf{e}'\mathbf{e} = \mathbf{y}'\mathbf{y} - \hat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{y}$$

- 命名:建议将残差平方和的 Eviews 对象命名为 rss

- 命令: scalar rss=@transpose(y)y-@transpose(beta_hat)xty

- 注意:与 eviews 报告比对是否正确

- 计算回归平方和 ESS
 - 提示: 回归平方和 ESS 的理论计算公式为:

$$ESS = \mathbf{e}'\mathbf{e} = \hat{\beta}'\mathbf{X}'\mathbf{y} - n\bar{Y}^2$$

- 命名: 建议将回归平方和的 Eviews 对象命名为 ess

- 命令: scalar ess=@transpose(beta_hat)*xty-mean_adj

4.8 计算判定系数 R^2 和调整判定系数 (\bar{R}^2)

- 目标:根据理论的矩阵公式,计算判定系数 R^2 和调整判定系数 (\bar{R}^2)
- 思路:
- 计算判定系数 R^2

- 提示: 理论计算公式为:

$$R^{2} = \frac{ESS}{TSS} = \frac{\hat{\beta}' \mathbf{X}' \mathbf{y} - n\bar{Y}^{2}}{\mathbf{y}' \mathbf{y} - n\bar{Y}^{2}}$$

- 命名:建议将判定系数的 Eviews 对象命名为 r2

- 命令: scalar r2=ess/tss

- 注意:与 eviews 报告比对是否正确

• 计算调整判定系数 (\bar{R}^2)

- 提示: 判定系数 \bar{R}^2 的理论计算公式为

$$\bar{R}^2 = 1 - \frac{RSS/f_{RSS}}{TSS/f_{TSS}} = 1 - \frac{\mathbf{y}'\mathbf{y} - \hat{\beta}\mathbf{X}'\mathbf{y}/n - k}{(\mathbf{y}'\mathbf{y} - n\bar{Y}^2)/n - 1}$$

- 命名:建议将调整判定系数的 Eviews 对象命名为 r2_adj

命令: scalar r2_adj=1-(rss/11)/(tss/15) 注意: 与 eviews 报告比对是否正确

4.9 计算得到样本 t 统计量 (t_{β}^*)

• 目标:根据理论的矩阵公式,计算样本 t 统计量 (t**),并进行 t 假设检验

• 思路:

• 提示: 样本 t 统计量 t_{β}^{*} 的理论计算公式为

$$\mathbf{t}_{eta}^{*}=rac{\widehat{eta}}{\mathbf{S}_{\widehat{eta}}}$$

- 命名:建议将样本 t 统计量的 Eviews 对象命名为 t_str_beta_hat
- 命令: matrix t_str_beta_hat=@ediv(beta_hat,s_beta_hat)
- 注意:与 Eviews 报告比对是否正确。Eviews 命令 @ediv()的作用是将矩阵对应元素进行相除。
- **4.10** 计算给定 $\alpha = 0.05$ 水平下的查表的理论 \mathbf{t} 值 $(t_{1-\alpha/2}(n-k))$,并进行 \mathbf{t} 假设检验

• 目标:根据理论的矩阵公式,计算查表的理论 t 值 $(t_{1-\alpha/2}(n-k))$,并进行 t 假设检验

. . 思改.

• 提示: 查表的理论 t 值 $(t_{1-\alpha/2}(n-k))$ 的理论计算公式为:

$$t_{1-\alpha/2}(n-k) = t_{0.975}(11)$$

• 命名:建议将查表理论 t 值的 Eviews 对象命名为 t_value

• 命令: scalar t_value=@qtdist(0.975,11)

4.11 对回归方程的整体显著性进行 F 假设检验

- 目标:根据理论的矩阵公式,计算样本F统计量,并进行模型整体显著性检验
- 思路:
- 提示: 样本 F 统计量 F* 的理论计算公式为:

$$F^* = \frac{ESS/f_{ESS}}{RSS/f_{RSS}} = \frac{MSS_{ESS}}{MSS_{RSS}} = \frac{(\hat{\beta}\mathbf{X}'\mathbf{y} - n\bar{Y}^2)/k - 1}{(\mathbf{y}'\mathbf{y} - \hat{\beta}'\mathbf{X}'\mathbf{y})/n - k}$$

- 命名: 建议将样本 F 统计量的 Eviews 对象命名为 f str
- 命令: scalar f_str=(ess/4)/(rss/11)
- 注意:与 eviews 报告比对是否正确。

4.12 计算给定 $\alpha = 0.05$ 水平下的查表的理论 **F** 值 ($F_{1-\alpha}(k-1,n-k)$), 并进行 **F** 假设检验

- 目标:根据理论的矩阵公式,计算查表的理论 F 值 $(F_{1-\alpha}(k-1,n-k))$,并进行 F 假设检验
- 思路:
- 提示: 查表的理论 F 值 $(F_{1-\alpha}(k-1,n-k))$ 的理论计算公式为:

$$F_{1-\alpha}(k-1, n-k) = F_{0.95}(4, 11)$$

- 命名: 建议将查表理论 F 值的 Eviews 对象命名为 f_value
- 命令: scalar t_value=@qfdist(0.95,4,11)

4.13 对回归方程的进行样本外均值预测 $E(Y|X=X_0)$

- 目标:根据理论的矩阵公式,计算样本外的均值预测 ($E(Y|X=X_0)$)
- 思路:
- 构造 X₀ 矩阵
 - 提示: 已知给定的样本外数据为 $(X_{20} = 20, X_{30} = 4, X_{40} = 4, X_{50} = 200)$ 。此时, X_0 矩阵的理论构造表达式为:

$$\mathbf{X_0} = \begin{bmatrix} 1 & X_{20} & X_{30} & X_{40} & X_{50} \end{bmatrix}$$

- 命名:建议将样本外预测矩阵 X_0 的 Eviews 对象命名为 x_0
- 命令:
 - a. 产生空矩阵: matrix(1,5) xo
 - b. 给矩阵赋值: matrix.fill(b=r) 1,20,4,4,200

- 注意:与 eviews 报告比对是否正确。
- 计算样本外预测值 (\hat{Y}_0)
 - 提示: 样本外预测值 (\hat{Y}_0) 的计算公式为:

$$\hat{\mathbf{Y}_0} = \mathbf{X_0}\hat{\boldsymbol{\beta}}$$

- 命名: 建议将样本外预测值 \hat{Y}_0 的 Eviews 对象命名为 forecast_exp
- 命令: matrix Yo_hat=xo*beta_hat
- 注意:与 eviews 报告比对是否正确。
- 计算样本外预测值 (\hat{Y}_0) 的样本标准差 $S_{\hat{Y}_0}$
 - 提示: 样本外预测值 \hat{Y}_0 的样本标准差 $S_{\hat{Y}_0}$ 的理论计算公式为:

$$S_{\hat{Y_0}} = \sqrt{\hat{\sigma}^2 X_0 (X'X)^{-1} X_0'}$$

- 命名:建议将样本标准差 $S_{\hat{Y}_0}$ 的 Eviews 对象命名为 s_yoh
- 命令: scalar s_yoh=@sqr(sigma2_hat*xo*xtxi*@transpose(xo))
- 注意:与 eviews 报告比对是否正确。
- 计算均值预测的 $E(Y|X=X_0)$ 置信区间
 - 提示:均值预测的 $E(Y|X=X_0)$ 置信区间的理论计算公式为:

$$\mathbf{\hat{Y}_0} - \mathbf{t_{1-\alpha/2}}(\mathbf{n} - \mathbf{k}) \cdot \mathbf{S_{\hat{Y_0}}} \leq \mathbf{E}(\mathbf{Y}|\mathbf{X} = \mathbf{X_0}) \leq \mathbf{\hat{Y_0}} + \mathbf{t_{1-\alpha/2}}(\mathbf{n} - \mathbf{k}) \cdot \mathbf{S_{\hat{Y_0}}}$$

- 命名:建议将均值预测 $E(Y|X=X_0)$ 置信区间左界的 Eviews 对象命名为 y_exp_lft; 右界的 Eviews 对象命名为 y_exp_rht
- 命令:
 - a. 左界: scalar y_exp_lft=Yo_hat-t_value*s_yoh
 - b. 右界: scalar y_exp_rht=Yo_hat+t_value*s_yoh
- 注意:与 eviews 报告比对是否正确。

4.14 对回归方程的进行样本外个值预测 $(Y_0|X=X_0)$

- 计算随机变量 (\hat{Y}_0-Y_0) 的样本标准差 $S_{(\hat{Y}_0-Y_0)}$
 - 提示: 随机变量 $(\hat{Y}_0 Y_0)$ 的样本标准 $S_{(\hat{Y}_0 Y_0)}$ 的理论计算公式为:

$$\mathbf{S}_{(\hat{\mathbf{Y}}_0 - \mathbf{Y}_0)} = \sqrt{\hat{\sigma}^2 (1 + \mathbf{X}_0 (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}'_0)}$$

— 命名: 建议将随机变量 (\hat{Y}_0-Y_0) 的样本标准差 $S_{(\hat{Y}_0-Y_0)}$ 的 Eviews 对象命名为 s_yoh_mns_yo

- 命令: scalar s_yoh_mns_yo=@sqr(sigma2_hat*(1+xo*xtxi*@transpose(xo)))
- 注意:与 eviews 报告比对是否正确。
- 计算个值预测的 $(Y_0|X=X_0)$ 置信区间
 - 提示:均值预测的 $(Y_0|X=X_0)$ 置信区间的理论计算公式为:

$$\hat{Y_0} - t_{1-\alpha/2}(n-k) \cdot S_{(\hat{Y_0} - Y_0)} \leq (Y_0|X = X_0) \leq \hat{Y_0} + t_{1-\alpha/2}(n-k) \cdot S_{(\hat{Y_0} - Y_0)}$$

- 命名: 建议将均值预测 $(Y_0|X=X_0)$ 置信区间左界的 Eviews 对象命名为 y_ind_lft; 右界的 Eviews 对象命名为 y_ind_rht
- 命令:
 - a. 左界: scalar y_ind_lft=Yo_hat-t_value*s_yoh_mns_yo
 - b. 右界: scalar y_ind_rht=Yo_hat+t_value*s_yoh_mns_yo
- 注意:与 eviews 报告比对是否正确。