Contents

6	Kap 6. Relativistische QM			
	6.0	0.1 QM eines freien Teilchens		
	6.0	0.2 Wahrscheinlichkeitserhaltung	4	
	6.1 Dir	rac Gleichung	6	
	6.1	.1 Wahrscheinlichkeitsstrom	6	
	6.1	2 Elektromagnetische Wechselwirkung	7	
	6.1	.3 Relativistische Korrekturen	(

Chapter 6

Kap 6. Relativistische QM

Notation: Vierer-Vektoren

$$x^{\mu} = ct, x, y, z) = (x^{0}, x^{1}, x^{2}, x^{3}) = (ct, \vec{r})$$

invariante Lönge $\sqrt{x^2}$

$$x^2 = x \cdot x = x^\mu x_\mu = x^\mu g_{\mu\nu} x^\nu$$

Einsteinsche Summenkonvention: $\sum_{\mu=0}^{3}$ für jedes Paar von oberen und unteren Index Metrischer Tensor

$$g_{\mu\nu} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$x_{\mu} = g_{\mu\nu}x^{\nu} = (ct, -\vec{r})$$

$$x^{\mu} = q^{\mu\nu}x_{\nu} = q^{\mu\nu}x^{\nu} = q^{\nu}x^{\nu}$$

$$g^{\nu}_{\nu} = \delta^{\nu}_{\nu} = \begin{cases} 1, & \mu = \nu \\ 0 & \text{sonst} \end{cases}$$

$$= g^{\mu\rho}g_{\rho\nu} \to g^{\mu\nu} = [g_{\mu\nu}]^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Vierer-Impuls: $p^{\mu}=(\frac{E}{c},\vec{p})~E=\sqrt{(mc^2)^2+(\vec{p}c)^2}$

$$p^2 = p_{\mu}p^{\mu} = \frac{E^2}{c^2} - \vec{p}^2 = \frac{m^2c^4 + \vec{p}^2c^2}{c^2} - \vec{p}^2 = m^2c^2$$

Vierer-Potential: LT $x'^{\mu} = \Lambda^{\mu}_{\nu} x^{\nu}$

$$A^{\mu} = (\frac{\phi}{c}, \vec{A}) \rightarrow A^{'\mu}(x') = \Lambda^{\mu}_{\nu} A^{\nu}(x)$$

Strom: $j^\mu=(c\rho,\vec{j})$ in E und M Skalarprodukt für a^μ,b^μ : $a\cdot b=a^\mu b_\mu=a^\mu g_{\mu\nu}b^\nu=a^0b^0-\vec{a}\cdot\vec{b}$ Ableitung nach x^ν

$$\partial_{\mu} = \frac{\partial}{\partial x^{\mu}} = (\frac{1}{c} \frac{\partial}{\partial t}, \vec{\nabla})$$

ist kovarianter Vektor unter Index w
g: $\partial \mu a \cdot x = \frac{\partial}{\partial x^{\mu}} (a_{\nu} x^{\nu}) = a_{\mu}$ Entsprechend $\partial^{\mu} = g^{\mu\nu} \partial_{\nu} = (\frac{1}{c} \frac{\partial}{\partial t}, -\vec{\nabla})$ d'Alebert Operator

$$\Box = \partial_{\mu}\partial^{\mu} = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \vec{\nabla}^2$$

6.0 QM eines freien Teilchens

$$E \to i\hbar \frac{\partial}{\partial t}, \quad \vec{p} = \frac{\hbar}{i} \vec{\nabla}$$

$$p^{\mu}=(\frac{E}{c},\vec{p})\rightarrow(i\hbar\frac{1}{c}\frac{\partial}{\partial t},-i\hbar\vec{\nabla})=i\hbar\partial^{\mu}$$

Schrödinger Gl. für NR freies Teilchens

$$E = \frac{\vec{p}^2}{2m} \rightarrow i\hbar \frac{\partial}{\partial t} \psi = -\frac{\hbar^2 \nabla^2}{2m} \psi(\vec{x}, t)$$

Relativistischer Fall

1)
$$E = \sqrt{m^2c^4 + \vec{p}^2c^2} \rightarrow \text{nichtlokalen Operator}$$

2)
$$\frac{E^2}{c^2} = m^2 c^2 + \vec{p}^2 \rightarrow -\frac{\hbar^2}{c^2} \frac{\partial^2}{\partial t^2} \psi = m^2 c^2 \psi - \hbar^2 \vec{\nabla}^2 \psi$$

$$\Leftrightarrow 0 = m^2 c^2 \psi + \hbar^2 (\frac{1}{c^2} \frac{\partial^2}{\partial t^2 - \nabla^2) \psi = m^2 c^2 \psi + \hbar^2 \Box \psi})$$

Klein Gordon Gl.

$$(\Box + (\frac{mc}{\hbar})^2)\psi(x) = 0$$

Anwendbar auf skalare Teilichen (Spin 0) wie π^+,π^-,π^0,K,H Lösungen der KG-Gl. durch ebene Wellen

$$\psi_p(x) = Ne^{-ip\cdot x/\hbar} = Ne^{-iEt/\hbar}e^{+i\vec{p}\cdot\vec{x}/\hbar}$$

mit
$$p \cdot x = p^{\mu} x_{\mu} = Et - \vec{p} \cdot \vec{x}$$

$$\Box \psi_p = (x) = \frac{\partial}{\partial x^\mu} \frac{\partial}{\partial x_\mu} \psi_p(x) = N(-\frac{i}{\hbar} p_\mu) (-\frac{i}{\hbar} p^\mu) e^{-ip \cdot x/\hbar} = -\frac{p^2}{\hbar^2} \psi_p$$

KG:

$$\Rightarrow (-\frac{p^2}{\hbar^2} + \frac{m^2c^2}{\hbar^2})\psi_p(x) = 0 \Leftrightarrow p^2 = m^2c^2; \frac{E^2}{c^2} - \vec{p}^2$$

$$\to E = \pm c\sqrt{m^2c^2 + \vec{p}^2}$$

Lösungen mit Negativer Energie und das Energiespektrum ist nach unten nicht beschränkt.

6.0 Wahrscheinlichkeitserhaltung

Kontin.Gl $\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{J} = 0 \Leftrightarrow \partial_{\mu} j^{\mu} = 0$ mit $j^{\mu} = (\rho c, \vec{j})$. Gibt es einen erhaltenen 4-Strom für die lösung der KG-Gleichung?

$$\psi^*(\Box + (\frac{mc}{\hbar})^2)\psi(x) - \psi(\Box + (\frac{mc}{\hbar})^2)\psi^*(x) = 0$$

$$\psi^*(\partial_\mu \partial^\mu \psi) - \psi(\partial_\mu \partial^\mu \psi^*) = 0$$

$$\partial_{\mu} (\underbrace{\psi^* \partial^{\mu} \psi - \psi \partial^{\mu} \psi^*}_{\propto i^{\mu}}) = 0$$

$$j^{\mu} \propto (\psi^* \frac{i}{c} \frac{\propto}{\propto t} \psi - \psi \frac{i}{c} \frac{\propto}{\propto t} \psi^*, -(\psi^* \vec{\nabla} \psi - \psi \vec{\nabla} \psi^*))$$

Kandidat für Wahrscheinlichkeits Strom $\frac{2im}{\hbar}\vec{j}$ in Schrödinger Gl

$$j^{\mu} = \frac{i\hbar}{2m} (\psi^* \partial^{\mu} \psi - \psi \partial^{\mu} \psi^*)$$

$$\rightarrow j^{0} = \rho c = \frac{i\hbar}{2mc} \left(\psi^{*} \frac{\partial \psi}{\partial t} - \psi \frac{\partial \psi^{*}}{\partial t} \right)$$

Anwendung auf stationäre Lösung: $\psi_E(x) = e^{-iEt/\hbar}\psi_E(\vec{x})$

$$\frac{\partial \psi_E}{\partial t} = -\frac{iE}{\hbar} \psi_E, \\ \frac{\partial \psi_E^*}{\partial t} = -\frac{iE}{\hbar} \psi_E^* \Rightarrow \rho = \frac{i\hbar}{2mc^2} |\psi_E(\vec{x})|^2 \\ \frac{-2iE}{\hbar} = \frac{E}{mc^2} |\psi_E(x)|^2$$

 $\rho < 0$ für Zustände mit E < 0

 \Rightarrow Keine mögliche Wahrscheinlichkeitsdichte. (Ok für Zustände mit positiver Energie) Interpretation: Zustände mit $E>0\Leftrightarrow z.B.$ π^+ und $E<0\Leftrightarrow z.B.$ π^- (Antiteilchen zum π^+) $\rho>0$: π^+ dominieren $\rho<0$: π^- dominieren $\rho<0$: π^- dominieren

$$j^{\mu} = |e| \frac{i\hbar}{2mc} (\psi^* \partial^{\mu} \psi - \psi \partial^{\mu} \psi^*)$$

Elektronen: Spin

 \rightarrow Wellenfunktion $\psi(x)$ hat ≥ 2 Komponenten

$$\psi(x) = \begin{pmatrix} \psi_1(x) \\ \dots \\ \psi_N(x) \end{pmatrix}$$

Möglichkeit: Matrixstruktur für \hat{H}

$$i\hbar \frac{\partial}{\partial t} \psi(x) = \hat{H}\psi(x)$$

Ansatz: $i\hbar \frac{\partial}{\partial t}\psi = \hat{H}\psi$ mit $\psi(x) = \begin{pmatrix} \psi_1(x) \\ \dots \\ \psi_N(x) \end{pmatrix}$

und Wahrscheinlichkeitsdichte $\rho = \sum_{i=1}^{N} |\dot{\psi}_i|^2$

$$\Rightarrow \hat{H} \propto \frac{\partial}{\partial x^i} \propto \hat{p}_i$$

Ansatz für \hat{H}

$$\hat{H} = c(\alpha_x \hat{p}_x + \alpha_y \hat{p}_y) + \beta mc^2 = c \sum_{i=1}^{3} \alpha_i \hat{p}_i + \beta mc^2$$

Ebene Wellenlösung für freie Teilchen

$$\psi(x) = e^{-px/\hbar}\psi(p)$$

 $mit p^2 = m^2 c^2$

$$\Rightarrow E\psi(p) = \left[c\sum_{i=1}^{3} \alpha_{i} p_{i} + \beta m c^{2}\right] \psi(p)$$

$$E^2\psi(p) = (m^2c^4 + \vec{p}^2c^2)\psi(p)$$

$$Ec(\vec{\alpha}\vec{p} + \beta mc)\psi(p) = c^2(\vec{\alpha}\vec{p} + \beta mc)^2\psi(p)$$

$$=c^2\left(\sum_{i,j=1}^3 \alpha_i \alpha_j p_i p_j + \sum_{i=1}^3 (\alpha_i \beta + \beta \alpha_i) p_i mc + \beta^2 m^2 c^2\right) \psi(p)$$

Koeffizienfenvergleich: $\beta^2 = 1$; Antikommutator:

$$\{\alpha_i, \beta\} = 0$$

- $\bullet \quad \beta^2 = 1$
- Antikommutator: $\overline{\{\alpha_i,\beta\}=0}$
- $i \neq j$: z.B: $p_x p_y \{\alpha_x \alpha_y + \alpha_y \alpha_x\}$; $\{\alpha_i, \alpha_j\} = 0$

•
$$i = j$$
: $\alpha_x^2 p_x^2 + \alpha_y^2 p_y^2 + \alpha_z^2 p_z^2 = \vec{p}^2 \Rightarrow \alpha_i^2 = 1$

$$\Rightarrow \left[\{ \alpha_i, \alpha_j \} = 2\delta_{ij} \right]$$

- 1) \hat{p}_i, \hat{H} hermitesch $\Rightarrow \vec{\alpha}, \beta$ hermitesch
- 2) $\alpha_i^2 = 1, \beta^2 = 1 \Rightarrow \text{Eigenwerte von } \alpha_i, \beta$

3)
$$\alpha_i \beta + \beta \alpha_i = 0 \qquad |\cdot \beta|$$

$$\Rightarrow \alpha_i = -\beta \alpha_i \beta \Rightarrow Tr[\alpha_i] = -Tr[\beta \alpha_i \beta] = -Tr[\alpha_i \beta^2] = -Tr[\alpha_i]$$

- Anzahl; N - Dimension der Matrix

$$\# EW +1 = \# EW -1$$

$$\Rightarrow N \text{ gerade } (N = 2, 4, ...)$$

 $N=2\Rightarrow 3$ Pauli Matrizen als Kandidaten benötigt: 4 Matrizen $\Rightarrow N\geq 4: N=4$ funktioniert N=4: Dirac Basis: β diagonal

$$\beta = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} \mathbb{1} & 0 \\ 0 & \mathbb{1} \end{pmatrix}$$

 α_i hermitesch + $\{\alpha_i, \beta\} = 0$

$$\alpha = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \qquad \begin{pmatrix} A & -B \\ C & -D \end{pmatrix}$$

$$A = D = 0, C = B^{\dagger}$$

$$\beta \alpha = \begin{pmatrix} A & B \\ -C & -D \end{pmatrix}$$

$$\Rightarrow \alpha_i = \begin{pmatrix} 0 & \tau_i \\ \tau_i^{\dagger} & 0 \end{pmatrix}$$

$$\{\alpha_i, \alpha_j\} = 2\delta_{ij} \Leftrightarrow \tau_i \tau_i^{\dagger} + \tau_j \tau_i^{\dagger} = 2\delta_{ij}$$

Lösung $\tau_i = \sigma_i =$ Pauli Matrizen

$$\Rightarrow \boxed{\beta = \begin{pmatrix} \mathbb{1} & 0 \\ 0 & -\mathbb{1} \end{pmatrix}; \qquad \alpha_i = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix}}$$

6.1 Dirac Gleichung

$$i\hbar \frac{\partial}{\partial t} \psi(x) = c(\vec{\alpha} \cdot \frac{\hbar}{i} \vec{\nabla} + \beta mc) \psi(x) \qquad |\cdot \frac{\beta}{\hbar c}$$

Alternativ: kovariante Form

$$\Rightarrow i\beta\underbrace{\frac{i}{c}\frac{\partial}{\partial t}}_{\frac{\partial}{\partial x^0}}\psi + i\underbrace{\beta\vec{\alpha}_i}_{\gamma^i}\cdot\underbrace{\vec{\nabla}_i}_{\frac{\partial}{\partial x^i}}\psi - \frac{mc}{\hbar}\psi = 0$$

$$\Rightarrow (i\gamma^{\mu}\frac{\partial}{\partial x^{\mu}} - \frac{mc}{\hbar})\psi = 0$$

$$\gamma^0 = \beta; \, \gamma^i = \beta \alpha_i$$

$$\left[\left(i\gamma^{\mu}\partial_{\mu} - \frac{mc}{\hbar} \right) \psi = 0 \right]$$

Kovariante Form der Dirac Gleichung mit $[\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}] = 2g^{\mu\nu}\mathbb{1}_4$ z.B. $\{\gamma^i, \gamma^j\} = \beta \underbrace{\alpha_I \beta}_{-\beta \alpha_i} \alpha_j + \beta \underbrace{\alpha_j \beta}_{-\beta \alpha_j} \alpha_i = -\{\alpha_i, \alpha_j\} = -2\delta_{ij}$

6.1 Wahrscheinlichkeitsstrom

$$i\hbar \frac{\partial \psi}{\partial t} = \frac{\hbar c}{i} \vec{\alpha} \cdot \vec{\nabla} \psi + \beta m c^2 \psi$$

adjungierte Dirac Gleichung:

$$-i\hbar \frac{\partial \psi^{\dagger}}{\partial t} = \frac{\hbar c}{i} (\vec{\nabla} \psi^{\dagger}) \vec{\alpha} + \beta m c^2 \psi^{\dagger} \qquad |\cdot \psi|$$

Differenz der beiden Gleichungen:

$$i\hbar \frac{\partial}{\partial t} (\psi^{\dagger} \psi) = \frac{\hbar c}{i} (\psi^{\dagger} \vec{\alpha} \cdot \vec{\nabla} \psi + (\vec{\nabla} \psi^{\dagger}) \vec{\alpha} \psi)$$

$$\Rightarrow \frac{\partial}{\partial t}(\psi^{\dagger}\psi) = -c\vec{\nabla}(\psi^{\dagger}\vec{\alpha}\psi)$$

$$\frac{\partial}{\partial t} \underbrace{(\psi^\dagger \psi)}_{\rho} + \vec{\nabla} \cdot \underbrace{(c\psi^\dagger \vec{\alpha} \psi)}_{\vec{i}}$$

$$\rho = \psi^{\dagger} \psi = \sum_{i} |\psi_i|^2 \ge 0$$

 ρ ist positiv definierte Warscheinlichkeitsdichte Kovariante Form des W-Stroms

$$j^{\mu} = (c\psi^{\dagger}\psi, c\psi^{\dagger}\vec{\alpha}\psi) \tag{6.1}$$

$$= (c\psi^{\dagger}\beta\gamma^{0}\psi, c\psi^{\dagger}\beta\vec{\gamma}\psi) \tag{6.2}$$

$$= c\psi^{\dagger}\beta\gamma^{\mu}\psi = c\overline{\psi}\gamma^{\mu}\psi \tag{6.3}$$

wobei $\overline{\psi}=\psi^\dagger\beta=\psi^\dagger\gamma^0$ der Pauli adungierte Spinor ist.

6.1 Elektromagnetische Wechselwirkung

externe \vec{E}, \vec{B} Fleder $\vec{B} = \vec{\nabla} \times \vec{A}, \ \vec{E} = -\vec{\nabla}\phi - \frac{\partial \vec{A}}{\partial t}$

$$\rightarrow A^{\mu} = (\frac{\phi}{c}, \vec{A})$$

minimale Subsittution:

$$p^{\mu} \rightarrow p^{\mu} - eA^{\mu} \quad QM \rightarrow i\hbar\partial^{\mu} - eA^{\mu} = i\hbar(\partial^{\mu} + \frac{ie}{\hbar}A^{\mu}) = i\hbar D^{\mu}$$

Komponenten der Kovarianten Ableitung D^{μ}

$$i\hbar D^{\mu} = (i\hbar \frac{1}{c} \frac{\partial}{\partial t} - \frac{e}{c} \phi, \frac{\hbar}{i} \vec{\nabla} - e\vec{A})$$

$$=(\frac{i}{c}(c\hbar\frac{\partial}{\partial t}-e\phi),\frac{\hbar}{i}\vec{\nabla}-e\vec{A})$$

j Ersetze in freier Dirac-Gl
 ∂

$$i\hbar \frac{\partial}{\partial t} \psi(x) = c\vec{\alpha} (\frac{\hbar}{i} \vec{\nabla} - e\vec{A}) \psi + \beta mc^2 \psi + e\phi \psi$$

oder

$$i\gamma^{\mu}D_{\mu} - \frac{mc}{\hbar}\psi = 0$$

beschreibt WW eines Elektrons der Ladung e mit dem elektromagnetischen Feld. Notation: $\vec{\alpha}\vec{p}\psi=\frac{\hbar}{i}\vec{\alpha}\vec{\nabla}\psi$

mit
$$A = 1...4 \ [\vec{\alpha}\vec{p}\psi]_A = \sum_{j=1}^3 \sum_{B=1}^4 \alpha_{jAB} \frac{\hbar}{i} \nabla_i \psi_B(\vec{x}, t) = \begin{bmatrix} 0 & \vec{\sigma}\vec{p} \\ \vec{\sigma}\vec{p} & 0 \end{bmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix} \end{bmatrix}_A$$

Nichtrel. Grenzfall: $E = mc^2 + E_S$

Ansatz:

$$\psi(\vec{x},t) = e^{i\frac{mc^2}{\hbar}t} \begin{pmatrix} \phi(\vec{x},t) \\ \chi(\vec{t}) \end{pmatrix} = e^{i\frac{mc^2}{\hbar}t} e^{i\frac{E_S}{\hbar}t} \begin{pmatrix} \phi_E(\vec{x},t) \\ \chi_E(\vec{t}) \end{pmatrix}$$

$$\begin{split} & \Rightarrow i\hbar \begin{pmatrix} \dot{\phi} \\ \dot{\chi} \end{pmatrix} + mc^2 \begin{pmatrix} \phi \\ \chi \end{pmatrix} = c \begin{pmatrix} \vec{\sigma}\vec{p}i\vec{\chi} \\ \vec{\sigma}\vec{p}i\phi \end{pmatrix} + mc^2 \begin{pmatrix} \phi \\ -\chi \end{pmatrix} + e\phi \begin{pmatrix} \phi \\ \chi \end{pmatrix} \\ \\ & \text{mit } \vec{\pi} = \vec{p} - e\vec{A} = \frac{\hbar}{i}\vec{\nabla} - e\vec{A} = \frac{\hbar}{i}\vec{D} \\ \\ & \Rightarrow \chi : 2mc^2\chi + i\hbar\dot{\chi} - e\phi\chi = c\vec{\sigma}\vec{\pi}\phi \\ \\ & \Rightarrow i\hbar\dot{\phi} = c\vec{\sigma}\vec{\pi}\chi + e\Phi\phi \end{split}$$

$$\chi \approx \frac{1}{2mc^2} c \vec{\sigma} \vec{\pi} \phi \approx \frac{mv}{2mc} \phi = \frac{1}{2} \frac{v}{c} \phi$$

 $(\chi = \frac{1}{2mc^2 + E_S - V} c \vec{\sigma} \vec{\pi} \phi) \chi$ ist kleine Komponente des Dirac Spinors. Einsetzen von χ :

$$i\hbar\frac{\partial\phi}{\partial t} = \frac{c^2(\vec{\sigma}\vec{\pi})^2}{2mc^2}\phi + V\phi \qquad (V = e\Phi)$$

Berechnung von $(\vec{\sigma}\vec{\pi})^2 = -\hbar^2 \underbrace{\sigma_i \sigma_j}_{\frac{1}{2}[\sigma_i,\sigma_j] + \frac{1}{2}\{\sigma_i,\sigma_j\}} D_i D_j \text{ mit } [\sigma_i,\sigma_j] = i\hbar^2 \epsilon_{ijk} \sigma_k \text{ und } \sigma_{ij}$

$$(\vec{\sigma}\vec{\pi})^2 = \vec{\pi}^2 - i\hbar^2 \epsilon_{ijk} \sigma_k \underbrace{D_i D_j}_{\frac{1}{2}[D_i, D_j]}$$

$$[D_i, D_j] = [\nabla_i - \frac{i}{\hbar} e A_i, \nabla_j - \frac{i}{\hbar} e A_j] = -\frac{i}{\hbar} e \underbrace{(\nabla_i A_j)}_{\vec{\nabla} \times \vec{A}} \underbrace{-(\nabla_j A_i)}_{\vec{\nabla} \times \vec{A}}$$

$$\Rightarrow (\vec{\sigma}\vec{\pi})^2 = \vec{\pi}^2 - \frac{1}{2}\hbar e\vec{\sigma}(\vec{\nabla}\times\vec{A})2 = \vec{\pi}^2 - 2e\vec{S}\vec{B} \qquad (\vec{S} = \frac{\hbar}{2}\vec{\sigma}$$

$$\rightarrow i\hbar \frac{\partial \phi}{\partial t} = \frac{\pi^2}{2m}\phi - \frac{e}{2m}2\vec{S}\vec{B}\phi + V\phi$$

$$i\hbar\frac{\partial\phi}{\partial t} = \frac{(\vec{p} - e\vec{A})^2}{2m}\phi - \frac{e}{2m}2\vec{S}\vec{B}\phi + V\phi$$
 Pauli Gleichung

Schwaches homogenes B-Feld: $\vec{A} = \frac{1}{2}\vec{B} \times \vec{r}$

$$\frac{(\vec{p}-e\vec{A})^2}{2m}\approx\frac{\vec{p}^2}{2m}-\frac{e}{2m}\vec{B}\vec{L}$$

$$\Rightarrow i\hbar \frac{\partial \phi}{\partial t} = \frac{\vec{p}^2}{2m}\phi - \frac{e}{2m}\vec{B}(\vec{L} + 2\vec{S})\phi + V\phi$$

Magnetisches Moment des Elektrons: $\vec{\mu}=\frac{e}{2m}(\vec{L}+2\vec{S})~g=2$ für geladenes Dirac-Fermion

6.1 Relativistische Korrekturen

Energieeigenzustände: $\begin{pmatrix} \phi \\ \chi \end{pmatrix} (\vec{x},t) = e^{-E_s t/\hbar} \begin{pmatrix} \phi \\ \chi \end{pmatrix} (\vec{x},t)$

Dirac Gleichung ist äquivalent zu

$$(2mc^2 + E_S - V)\chi = c\vec{\sigma}\vec{\pi}\phi$$

$$E_S\phi = c\vec{\sigma}\vec{\pi}\chi + V\phi$$

$$\Rightarrow \chi = \frac{1}{2mc^2 + E_S - V} c\vec{\sigma}\vec{\pi}\phi \tag{6.4}$$

$$= \frac{1}{2mc} \frac{1}{1 + \frac{E_S - V}{2mc^2}} \vec{\sigma} \vec{\pi} \phi \tag{6.5}$$

$$\approx \frac{1}{2mc} \left(1 - \frac{E_S - V}{2mc^2} + \ldots\right) \vec{\sigma} \vec{\pi} \phi \tag{6.6}$$

$$(E_S - V)\vec{\sigma}\vec{\pi}\phi = \vec{\sigma}\vec{\pi}(E_S - V)\phi + \vec{\sigma}\underbrace{[E_S - V, \vec{\pi}]}_{[\vec{\pi}, V] = \frac{\hbar}{i}(\vec{\nabla}V)}\phi$$

Einsetzen in $E_S \phi = \dots$

$$(E_S - V)\phi = \frac{(\vec{\sigma}\vec{\pi})^2}{2m}\phi - \frac{\vec{\sigma}\vec{\pi}}{4m^2c^2} \left(\frac{(\vec{\sigma}\vec{\pi})^3}{2m} + \vec{\sigma}\frac{\hbar}{i}(\vec{\nabla}V)\right)\phi$$

Spezialfall:

- V = V(r) sphärisch symmetrisch $\Rightarrow \vec{\nabla} V = \vec{r} \frac{1}{r} \frac{dV}{dr}$
- $\vec{A} = 0 \Rightarrow \vec{\pi} = \vec{p} = \frac{\hbar}{i} \vec{\nabla} \Rightarrow (\vec{\sigma} \vec{\pi})^2 = \vec{p}^2$

$$\Rightarrow E_S \phi = (\frac{\vec{p}^2}{2m} - \frac{p^4}{8m^3c^2} + V)\phi - \frac{\hbar}{i} \frac{1}{4m^2c^2} \underbrace{\sigma_i \sigma_j}_{i\epsilon_{ijk}\pi_k + \sigma_{ij}} p_i r_j \frac{1}{r} \frac{dV}{dr} \phi$$

$$E_S\phi = (\frac{\vec{p}^2}{2m} - \frac{p^4}{8m^3c^2} + V)\phi - \hbar \frac{1}{4m^2c^2} \vec{\sigma}(\vec{r} \times \vec{p}) \frac{1}{r} \frac{dV}{dr} \phi + \frac{\hbar^2}{4m^2c^2} \left((\nabla^2 V) + \underbrace{(\vec{\nabla}) \cdot \vec{\nabla}}_{\text{nicht selbst adjungiert}} \right) \phi$$

Interpretation:

- $-\frac{p^4}{8m^3c^2}$ relativistischer Beitrag zur kin. Energie $E = \sqrt{(mc^2)^2 + p^2c^2} = mc^2\sqrt{1 + \frac{p^2}{(mc)^2}} = mc^2(1 + \frac{1}{2}\frac{p^2}{m^2c^2} \frac{1}{8}\frac{p^4}{m^4c^4} + ...) = mc^2 \frac{p^2}{2m} \frac{1}{8}\frac{p^4}{m^3c^2}$
- $\hbar \frac{1}{4m^2c^2} \vec{\sigma}(\vec{r} \times \vec{p}) \frac{1}{r} \frac{dV}{dr} \phi = \frac{1}{2m^2c^2} \frac{1}{r} \frac{dV}{dr} \vec{L} \vec{S} \phi = H_{LS}$ Korrekte Spin-Bahn Kopplung, incluive Thomas Präzessionsfaktor $\frac{1}{2}$