

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02215 - Estatística Geral 2 - 2020/1

Plano Aula 09 e 10

Markus Stein

(...continuação) Intervalos de Confiança

Já vimos até aqui * IC para uma média populacional μ + supondo σ^2 conhecido (ou n>30), + supondo σ^2 desconhecido (e n<30) e

* IC para diferença de médias $\mu_1 - \mu_2$.

Intervalo de confiança para a Variância

- Suponha que agora queremos estimar uma variância populacional σ^2 .
- Exemplo: Estimar a variabilidade dos retornos de certa aplicação financeira.
 - Qual o estimador pontual "natural" para o problema? E como calcular um IC para σ^2 ?

(... continuação) Estimação de σ^2

- Se desconhecemos a variância populacional, podemos estimá-la usando o estimador $S^2 = \frac{\sum_{i=1}^{n} (X_i \overline{X})^2}{n-1}$ (porquê?)
- Nesse caso S^2 é uma variável aleatória (v.a.). (Sabemos qual a distribuição amostral de S^2 ?)

Distribuição (de probabilidade) Qui - Quadradot (Bussab e Morettin - pág. 358)

Teorema (**Distribuição Qui-Quadrado, nossa versão**): Seja X_1, \ldots, X_n uma amostra aleatória da v.a. $X \sim Normal(\mu, \sigma^2)$ e $S^2 = \sum_{i=1}^n (X_i - \overline{X})^2/(n-1)$, então podemos escrever uma quantidade Q tal que (dadas algumas outras suposições que omitimos aqui)

$$Q = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{(n-1)}^2.$$

em que $\chi^2_{(n-1)}$ denota a distribuição de probabilidade Qui-Quadrado com n-1 graus de liberdade (g.l.).

- A distribuição χ^2 valores tabelados, assim como a distribuição normal padrão e a t. A diferença é que Q só assume valores positivos.
- Como usar a distribuição de Q para construir um IC para σ^2 ? Quais as suposições necessárias? Como interpretar os resultados?

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02215 - Estatística Geral 2 - 2020/1

Intervalo para uma proporção (populacional)

- Suponha que agora queremos estimar uma proporção populacional π .
- Exemplo: Estimar a proporção de pessoas infectadas por um certo vírus numa população.
 - Qual o estimador pontual "natural" para o problema? E como calcular um IC para π ?
- Quais as suposições necessárias? Como interpretar os resultados?

Usando o teorema central do limite

- $\frac{\overline{X} \mu}{\sigma/\sqrt{n}} \sim Normal(0, 1)$ se $X \sim Normal(\mu, \sigma^2)$, para σ^2 conhecido, ou $\frac{\overline{X} \mu}{S/\sqrt{n}} \sim Normal(0, 1)$ se o tamanho amostral for grande, n >> 30.

No caso da proporção amostral X não será normal Para uma amostra aleatória X_1, \ldots, X_n da v.a. $X \sim Bernoulli(\pi)$ temos que $\sum_{i=1}^{n} X_i \sim Binomial(n,\pi)$. Das propriedades da distribuição binomial sabemos que $E(\sum_{i=1}^{n} X_i) = np$ e $V(\sum_{i=1}^{n} X_i) = np(1-p)$.

Assim, para um tamanho de amostra suficientemente grande (n >> 30)

$$Z = \frac{\left(\sum_{i=1}^{n} X_i\right) - np}{\sqrt{np(1-p)}} \sim Normal(0,1)$$

ou ainda usando $p = \sum_{i=1}^{n} X_i/n$

$$Z = \frac{\left(\sum_{i=1}^{n} X_i/n\right) - p}{\sqrt{\frac{p(1-p)}{n}}} \sim Normal(0,1)$$

Dimensionamento de amostra

Chamamos de erro de estimação a metade da amplitude do intervalo, * no caso de IC para μ com σ^2 conhecido, $E = z_{\alpha/2} \times \sigma/\sqrt{n},$

* no caso de IC para μ com σ^2 desconhecido e n pequeno, $E = t_{(n-1):\alpha/2} \times s/\sqrt{n}$,

Como calcular o tamanho mínimo de uma amostra para uma confiança $1-\alpha$ especificada e um erro máximo E também fixado?

Ler slides das aulas 9 e 10

Fazer exercícios lista 1-3

Fazer avaliação parcial da área 1 - vale nota!!!

^{*} e no caso de IC para π , $E = z_{\alpha/2} * \sqrt{p(1-p)/n}$.