Chapter 1 - Basic Concepts: atoms

	Proton	Electron	Neutron
Charge/C	$+1.602 \times 10^{-19}$	-1.602×10^{-19}	0
Charge number (relative charge)	1	-1	0
Rest mass/kg	1.673×10^{-27}	9.109×10^{-31}	1.675×10^{-27}
Relative mass	1837	1	1839
Symbol Mass (amu) Discovery	p ⁺ 1.00732 1919, Rutherford	e ⁻ 0.000549 1897, Thomson	n ^o 1.00870 1932, Chadwi

Atomic and Mass Numbers

Atomic number (Z): equal to the number of protons in the nucleus. All atoms of the same element have the same number of protons.

E

Mass number (A): equal to the sum of the number of protons and neutrons for an atom.

Atomic mass unit (amu) is 1/12 the mass of 12 C (1.660 × 10^{-27} kg)

Isotopes of Hydrogen

The **atomic mass** is the weighted average mass, of the naturally occurring element. It is calculated from the isotopes of an element weighted by their relative abundances.

atomic mass = fraction_A m_A + fraction_B m_B + ...

Allotropes element's atoms are bonded together in a different manner

Successes in early quantum theory

$$\overline{v} = \frac{1}{\lambda} = R \left(\frac{1}{n^2} - \frac{1}{n^{2}} \right)$$

where R is the Rydberg constant for H, 1.097×10^5 cm⁻¹

Wave Nature of Matter

$$\lambda = \frac{h}{mv} \qquad \text{whe} \\ \text{con} \\ 6.6$$

where h is Planck's constant, 6.626×10^{-34} Js

Uncertainty Principle

$$(\Delta x) (\Delta m v) \geq \frac{h}{4\pi}$$

Schrödinger wave equation

The probability of finding an electron at a given point in space is determined from the function ψ^2 where ψ is the wavefunction.

$$\frac{d^2\psi}{dx^2} + \frac{8\pi^2 m}{h^2} (E-V)\psi = 0 \qquad \qquad \begin{array}{l} \text{where } m = \text{mass, } E = \text{total} \\ \text{energy, and } V = \text{potential} \\ \text{energy of the particle} \end{array}$$

$$\mbox{3d} \ \, \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} + \frac{8\pi^2 m}{h^2} (E-V) \psi = 0 \ \, \mbox{ where } m = \mbox{mass, } E = \mbox{total energy, and } V = \mbox{potential energy of the particle}$$

It is convenient to use spherical polar coordinates, with radial and angular parts of the wavefunction.

$$\psi_{Cartesian}(x, y, z) \equiv \psi_{radial}(r)\psi_{angular}(\theta, \phi) = R(r)A(\theta, \phi)$$

Definition of the polar coordinates (r, θ, ϕ)

- •The wave function ψ is a solution of the Schrodinger equation and describes the behavior of an electron in a region of space called the atomic orbital.
- We can find energy values that are associated with particular wavefunctions.
- •Quantization of energy levels arises naturally from the Schrodinger equation.

Atomic Orbital	n	1	m _I	Radial part of the wavefunction, R(r)	Angular part of the wavefunction, $A(\theta,\phi)$
1s	1	0	0	$2e^{-r}$	$\frac{1}{2\sqrt{\pi}}$
2s	2	0	0	$\frac{1}{2\sqrt{2}}(2-r)e^{-r/2}$	$\frac{1}{2\sqrt{\pi}}$
2p _x	2	1	+1	$\frac{1}{2\sqrt{6}}re^{-r/2}$	$\frac{\sqrt{3}(\sin\theta\cos\phi)}{2\sqrt{\pi}}$
$2p_z$	2	1	0	$\frac{1}{2\sqrt{6}}re^{-r/2}$	$\frac{\sqrt{3}(\cos\theta)}{2\sqrt{\pi}}$
2p _y	2	1	-1	$\frac{1}{2\sqrt{6}}re^{-r/2}$	$\frac{\sqrt{3}(\sin\theta\sin\phi)}{2\sqrt{\pi}}$

Atomic Orbitals

A wavefunction ψ is a mathematical function that contains detailed information about the behavior of an electron. An atomic wavefunction consists of a radial component R(r), and an angular component $A(\theta, \phi)$. The region of space defined by a wavefunction is called an <u>atomic orbital</u>.

n	Possible Values of <i>l</i>	Subshell Designation	Possible Values of m_l	Number of Orbitals in Subshell	Total Number of Orbitals in Shell
1	0	1s	0	1	1
2	0	2s	0	1	
	1	2p	1, 0, -1	3	4
3	0	3 <i>s</i>	0	1	
	1	3p	1, 0, -1	3	
	2	3d	2, 1, 0, -1, -2	5	9
4	0	4s	0	1	
	1	4p	1, 0, -1	3	
	2	4d	2, 1, 0, -1, -2	5	
	3	4f	3, 2, 1, 0, -1, -2, -3	7	16

Degenerate orbitals possess the same energy.

Plot of the radial part of the wavefunction against distance (r) from the nucleus

Distance / from nacicus/ atomic unit

(n-l-1) radial nodes

ns orbitals have (n-1 radial nodes), np orbitals have (n-2 radial nodes), nd orbitals have (n-3 radial nodes), nf orbitals have (n-4 radial nodes).

Radial Distribution Function, $4\pi r^2 R(r)^2$

Boundary surfaces for angular part of wavefunction, $A(\theta,\phi)$

- Different colors of lobes are significant
 For s orbital it has constant phase i.e. the amplitude of the wavefunction has a constant sign
 For a p orbital, there is one phase change with respect to the boundary surface. This phase change occurs at a nodal plane.

Representations of an s and a set of three degenerate p atomic orbitals.

Cross-sections through the (a) 1s (no radial nodes), (b) 2s (one radial node), (c) 3s (two radial nodes), (d) 2p (no radial nodes) and (e) 3p (one radial node) atomic orbitals of hydrogen.

set of five degenerate d atomic orbitals

Orbitals energies in hydrogen-like species

$$E = -\frac{kZ^2}{n^2}$$
 k = 1.312×10³ kJ mol⁻¹
 Z = atomic number

In the absence of an electric or magnetic field these atomic orbital energy levels are **degenerate**; that is they are identical in energy.

Spin Quantum Number, m_s

- •Spin angular number, s, determines the *magnitude* of the spin angular momentum of a electron and has a value of ½.
- •Since angular momentum is a vector quantity, it must have direction
 - •Magnetic spin quantum number, m_s , can have values +1/2 or -1/2.

An orbital is fully occupied when it contains two electrons which are spin paired; one electron has a value of $m_s = +1/2$ and the other -1/2

Angular momentum, the inner quantum number, j, spin-orbit coupling

¹H – ground state

Many-electron atom

Ground State Electronic Configurations

Atomic number	Element	Ground state electronic configuration	Atomic number	Element	Ground state electronic configuration
1	Н	$1s^1$	53	I	$[Kr]5s^24d^{10}5p^5$
2	He	$1s^2 = [He]$	54	Xe	$[Kr]5s^24d^{10}5p^6 = [Xe]$
3	Li	[He]2s ¹	55	Cs	[Xe]6s ¹
4	Be	[He]2s ²	56	Ba	[Xe]6s ²
5	В	$[He]2s^22p^1$	57	La	$[Xe]6s^25d^1$
6	C	$[He]2s^22p^2$	58	Ce	$[Xe]4f^{1}6s^{2}5d^{1}$
7	N	$[He]2s^22p^3$	59	Pr	$[Xe]4f^36s^2$
8	0	$[He]2s^22p^4$	60	Nd	$[Xe]4f^46s^2$
9	F	$[He]2s^22p^5$	61	Pm	[Xe]4f ⁵ 6s ²
10	Ne	$[He]2s^22p^6 = [Ne]$	62	Sm	$[Xe]4f^66s^2$
11	Na	[Ne]3s ¹	63	Eu	$[Xe]4f^{7}6s^{2}$
12	Mg	[Ne]3s ²	64	Gd	$[Xe]4f^{7}6s^{2}5d^{1}$
13	Al	$[Ne]3s^23p^1$	65	Tb	$[Xe]4f^96s^2$
14	Si	$[Ne]3s^23p^2$	66	Dy	$[Xe]4f^{10}6s^2$
15	P	$[Ne]3s^23p^3$	67	Но	$[Xe]4f^{11}6s^2$
16	S	$[Ne]3s^23p^4$	68	Er	$[Xe]4f^{12}6s^2$
17	Cl	$[Ne]3s^23p^5$	69	Tm	$[Xe]4f^{13}6s^2$
18	Ar	$[Ne]3s^23p^6 = [Ar]$	70	Yb	$[Xe]4f^{14}6s^2$
19	K	[Ar]4s ¹	71	Lu	$[Xe]4f^{14}6s^25d^1$
20	Ca	$[Ar]4s^2$	72	Hf	$[Xe]4f^{14}6s^25d^2$
21	Sc	$[Ar]4s^23d^1$	73	Ta	$[Xe]4f^{14}6s^25d^3$
22	Ti	$[Ar]4s^23d^2$	74	W	$[Xe]4f^{14}6s^25d^4$
23	V	$[Ar]4s^23d^3$	75	Re	$[Xe]4f^{14}6s^25d^5$
24	Cr	$[Ar]4s^13d^5$	76	Os	$[Xe]4f^{14}6s^25d^6$
25	Mn	$[Ar]4s^23d^5$	77	Ir	$[Xe]4f^{14}6s^25d^7$

The sequence that approximately describes the relative energies or orbitals in *neutral* atoms:

 $1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d \approx 4f < 6p < 7s < 6d \approx 5f$

Atomic number	Element	Ground state electronic configuration	Atomic number	Element	Ground state electronic configuration
26	Fe	$[Ar]4s^23d^6$	78	Pt	[Xe]4f ¹⁴ 6s ¹ 5d ⁹
27	Co	$[Ar]4s^23d^7$	79	Au	$[Xe]4f^{14}6s^{1}5d^{10}$
28	Ni	$[Ar]4s^23d^8$	80	Hg	$[Xe]4f^{14}6s^25d^{10}$
29	Cu	$[Ar]4s^13d^{10}$	81	TI	$[Xe]4f^{14}6s^25d^{10}6p^1$
30	Zn	$[Ar]4s^23d^{10}$	82	Pb	$[Xe]4f^{14}6s^25d^{10}6p^2$
31	Ga	$[Ar]4s^23d^{10}4p^1$	83	Bi	$[Xe]4f^{14}6s^25d^{10}6p^3$
32	Ge	$[Ar]4s^23d^{10}4p^2$	84	Po	$[Xe]4f^{14}6s^25d^{10}6p^4$
33	As	$[Ar]4s^23d^{10}4p^3$	85	At	$[Xe]4f^{14}6s^25d^{10}6p^5$
34	Se	$[Ar]4s^23d^{10}4p^4$	86	Rn	$[Xe]4f^{14}6s^25d^{10}6p^6 = [Rn]$
35	Br	$[Ar]4s^23d^{10}4p^5$	87	Fr	[Rn]7s ¹
36	Kr	$[Ar]4s^23d^{10}4p^6 = [Kr]$	88	Ra	[Rn]7s ²
37	Rb	[Kr]5s1	89	Ac	$[Rn]6d^{1}7s^{2}$
38	Sr	[Kr]5s ²	90	Th	$[Rn]6d^27s^2$
39	Y	$[Kr]5s^24d^1$	91	Pa	$[Rn]5f^27s^26d^1$
40	Zr	$[Kr]5s^24d^2$	92	U	$[Rn]5f^37s^26d^1$
41	Nb	$[Kr]5s^14d^4$	93	Np	$[Rn]5f^47s^26d^1$
42	Mo	$[Kr]5s^14d^5$	94	Pu	$[Rn]5f^67s^2$
43	Tc	$[Kr]5s^24d^5$	95	Am	$[Rn]5f^{7}7s^{2}$
44	Ru	$[Kr]5s^{1}4d^{7}$	96	Cm	$[Rn]5f^{7}7s^{2}6d^{1}$
45	Rh	$[Kr]5s^14d^8$	97	Bk	$[Rn]5f^97s^2$
46	Pd	$[Kr]5s^04d^{10}$	98	Cf	$[Rn]5f^{10}7s^2$
47	Ag	$[Kr]5s^14d^{10}$	99	Es	$[Rn]5f^{11}7s^2$
48	Cd	$[Kr]5s^24d^{10}$	100	Fm	$[Rn]5f^{12}7s^2$
49	In	$[Kr]5s^24d^{10}5p^1$	101	Md	$[Rn]5f^{13}7s^2$
50	Sn	$[Kr]5s^24d^{10}5p^2$	102	No	$[Rn]5f^{14}7s^2$
51	Sb	$[Kr]5s^24d^{10}5p^3$	103	Lr	$[Rn]5f^{14}7s^26d^1$
52	Te	$[Kr]5s^24d^{10}5p^4$			

Penetration and shielding

Radial distribution functions, $4\pi r^2 R(r)^2$, for the 1s, 2s and 2p atomic orbitals of H.

Slater's Rules for Calculating Shielding

Effective nuclear charge

$$Z_{\rm eff} = Z - S$$

- Write out electron configuration of the element [1s][2s,2p][3s,3p][3d][4s,4p][4d][4f] [5s,5p] etc*
- 2. Electrons in an group higher in this sequence contribute nothing to *S*.
- 3. For an electron in *ns* or *np* orbital
 - i. Each of the other electrons of same *group* contributes S = 0.35 each (except in 1s, S = 0.3)
 - ii. Each electron in (n 1) shell, contributes S = 0.85
 - iii. Each electron in (n-2) or lower *shell*, contributes S = 1.00
- 4. For an electron in an *nd* or *nf* group
 - i. Each of the other electrons of same nd or nf group contributes S = 0.35 each
 - ii. Each electron in a lower group, contributes S = 1.00

		Mendeleev's Predictions for Eka-Silicon Property (made in 1871)								Observed Properties of Germanium (discovered in 1886)							
н	1	Dens Spec Melt Colo Form Dens	Density (g/cm³) Specific heat (J/g-k) Melting point (°C) Color I Formula of oxide Density of oxide (g/cm³)						72 5.5 0.305 High Dark gray XO ₂ 4.7			72.59 5.35 0.309 947 Grayish white GeO ₂ 4.70 GeCl ₄					
11					hlorid	e (°C)		little u	ınder 1	100		84				_	He
Li	Be											В	C	N	О	F	Ne
Na	Mg										Al	Si	P	s	Cl	Ar	
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Cs	Ba	La	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	Ancient Times 1735–1843 1894–1918																
	1	Midd	lle A	ges-	1700		18	343–1	1886		1	923-	1961			1965	_

^{*}A bracket indicates a group and n is the principle quantum number of a shell

-block e	element	s			(-block e	element	s						p-block	element	s	
Group	Group							Group									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1				Group nur	Group number Recommended name										2	
н					1		Alk	ali metals									He
3	4	l			2		Alk	aline earth me	etals			-		7	8	9	10
-	4				15			ctogens				5 B	6 C	N N	_	-	
Li	Be				16			lcogens				_			0	F	Ne
11	12				17			ogens ole gases				13	14	15	16	17	18
Na	Mg				10		NOC	не gases				Al	Si	Р	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La–Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89–103	104	105	106	107	108	109	110	111	112	113	114	115	116		118
Fr	Ra	Ac–Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh		Uuo
								f-block (element	s							
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
		Lanthan	ioids	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
		Actinoic	ls	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

The aufbau principle

- •Orbitals are filled in the order of energy, the lowest energy orbitals being filled first.
- •Hund's first rule: in a set of degenerate orbitals, electrons may not be spin paired in an orbital until each orbital in the set contains one electron; electrons singly occupying orbitals in a degenerate set have parallel spins, i.e. have the same values of m_s.
- •Pauli Exclusion Principle: no two electrons in the same atom can have identical sets of quantum numbers n, l, m_l , m_s ; each orbital can accommodate a maximum of two electrons with different m_s .

Valence and core electrons

Ionization Energy

Element	I_1	I_2	I_3	I_4	I_5	I_6	I_7
Na	495	4562			(inner-sh	ell electrons)	
Mg	738	1451	7733				
Al	578	1817	2745	11,577			
Si	786	1577	3232	4356	16,091		
P	1012	1907	2914	4964	6274	21,267	
S	1000	2252	3357	4556	7004	8496	27,107
Cl	1251	2298	3822	5159	6542	9362	11,018
Ar	1521	2666	3931	5771	7238	8781	11,995

Electron Affinity

Electron affinity is defined as minus the change in internal energy for the gain of an electron by a gaseous atom.

$$EA = -\Delta U(0K)$$

H -73							He > 0
Li -60	Be > 0	B −27	C -122	N > 0	O -141	F −328	Ne > 0
Na -53	Mg > 0	Al -43	Si -134	P −72	S -200	Cl -349	Ar > 0
K -48	Ca -2	Ga -30	Ge -119	As -78	Se −195	Br -325	Kr > 0
Rb -47	Sr -5	In -30	Sn -107	Sb -103	Te -190	I -295	Xe > 0
1A	2A	3A	4A	5A	6A	7A	8A

Process	$pprox \Delta_{ m EA} H/{ m kJmol}^{-1}$
$H(g) + e^- \longrightarrow H^-(g)$	-73
$Li(g) + e^{-} \longrightarrow Li^{-}(g)$	-60
$Na(g) + e^- \longrightarrow Na^-(g)$	-53
$K(g) + e^{-} \longrightarrow K^{-}(g)$	-48
$N(g) + e^{-} \longrightarrow N^{-}(g)$	≈0
$P(g) + e^- \longrightarrow P^-(g)$	-72
$O(g) + e^{-} \longrightarrow O^{-}(g)$	-141
$O^-(g) + e^- \longrightarrow O^{2-}(g)$	+798
$S(g) + e^- \longrightarrow S^-(g)$	-201
$S^{-}(g) + e^{-} \longrightarrow S^{2-}(g)$	+640
$F(g) + e^{-} \longrightarrow F^{-}(g)$	-328
$Cl(g) + e^{-} \longrightarrow Cl^{-}(g)$	-349
$Br(g) + e^{-} \longrightarrow Br^{-}(g)$	-325
$I(g) + e^{-} \longrightarrow I^{-}(g)$	-295

 $^{^\}dagger$ Tables of data differ in whether they list values of $E\!A$ or $\Delta_{\rm EA}H$ and it is essential to note which is being used.