CK0031 - Lista 1

Marcos Felipe De Menezes Mota - 354080

1 Questão 1

1.a

Falso, pois um agente com apenas informação parcial sobre o estado do mundo pode gerar um função de probabilidade para as ações. Com a nossa definição de racionalidade baseado em maximação de um função de desempenho, podemos dizer que um agente é perfeitamente racional mesmo se ele maximizar uma função probabilística de desempenho e ações.

1.b

Verdadeiro, pois em ambientes sequenciais um agente reflex iria apenas agir baseado no percept atual mas a caracteristica desses ambientes são, que ações efeitas no presente pode afetar as ações a serem tomadas no futuro. Como agentes reflex não tem essa habildade, nunca poderam selecionar suas ações baseadas na melhora de uma madida de desempenho para esse ambiente.

1.c

Verdadeiro. Um componente essencial de um task environment é a medida de performace. Logo se atribuirmos uma media de performace que sempre da a pontuação maxima para qualquer ação, qualquer agente vai ser racional.

1.d

Falso. Um agent program tem como entrada um percept atual do ambiente. Já uma agent function tem como entrada o histórico de percepts.

1.e

Falso. Em geral agent functions são infinitas a não ser que haja uma restrição no tamanho da lista de percepts que podem ser usadas. Logo, agent functions são objetos matemáticos que não implicam em implementação.

1.f

Verdadeiro. Por exemplo usando uma medida de performace do item C obtemos esse tipo de resultado.

1.g

Verdadeiro, pois se existe um ambiente que todo agente é racional se mudarmos os actuators e sensors do task environment o agente ainda será racional.

1.h

Falso. Se o ambiente não pode ser percebido a racionalidade do agente vem do conhcimento interno modelado no agente. Se esse modelo for mal feito o agente não tomará ações para maximizar a performace e logo não são racionais.

1.i

Falso. Por mais que o agente tome sempre as decisões mais racionais possiveis o ambiente não pode ser completamente observável e fatores como blefe não permitem uma modelagem matemática determinística.

2 Questão 2

2.a Playing Soccer

2.a.1 PEAS

Performace	Environment	Actuators	Sensors
Número de Gols	Campo de Futebol	Pernas	Camera
Defesas		Mãos	Sensor de distância

2.a.2 Caracterização

partially observable multi-ager	t stochastic	sequential	dynamic	continuous	known
-----------------------------------	--------------	------------	---------	------------	-------

2.b Shop Books

2.b.1 PEAS

Performace	Environment	Actuators	Sensors
Descontos	Serviço de Compras Online	HTML parser	Listeners
Número de livros		efetuar procedimentos	buscador

2.b.2 Caracterização

2.c Tennis Match

2.c.1 **PEAS**

Performace	Environment	Actuators	Sensors
Sets Ganhos	Quadra de Tennis	Mãos	Camera
Número de pontos		Motores	Sensor de distância
Velocida de lançamento		Raquete	osciloscópio

2.c.2 Caracterização

partially observable	multi-agent	stochastic	sequential	dynamic	continuous	known
T			1			

Performace	Environment	Actuators	Sensors
Sets Ganhos	Quadra de Tennis	Mãos	Camera
Número de pontos		Motores	Sensor de distância
Velocida de lançamento		Raquete	osciloscópio

2.d Tennis Match Against Wall

2.d.1 PEAS

2.d.2 Caracterização

2.e High Jump

2.e.1 **PEAS**

Performace	Environment	Actuators	Sensors
Altura	Mundo	Pernas	Camera
		Motores	Sensor de distância
		Armortecedores	osciloscópio

${\bf 2.e.2}\quad {\bf Caracteriza} \\ {\bf \tilde{ao}}$

fully observable	single-agent	stochastic	episodic	dynamic	continuous	known
1011.) 00001 10010	~	D C C CII COD CI C	001000110	0., 11011110	001101110000	11110 1111

2.f Biddin at an Auction

2.f.1 PEAS

Performace	Environment	Actuators	Sensors
Comprar Objeto	Leilão	Publicar propostas	Listeners
Menor porcentagem de preço			

fully observable	single-agent	stochastic	episodic	static	discrete	known
,	1 0		1			

2.f.2 Caracterização

3 Questão 3

3.a Agent

Programa que pode perceber e atuar no ambiente em que ele está inserido.

3.b Agent Function

Apartir de todos os percepts decidir qual ação deverá ser executada em terminado percept.

3.c Agent Program

Função que apartir do estado atual do ambiente decide qual a ação deve ser tomada.

3.d Rationality

Tomar a ação correta no estado atual e pensando em sua consequências futuras aonde a forma de dizer se a ação foi correta é baseada no quão proximo ela te deixou do objetivo.

3.e Autonomy

Tomar boas decisões baseadas apenas nas informações presentes no ambiente e informação do agente, ou seja, sem conhecimento pré-determinado ou passado por outro agente.

3.f Reflex Agent

Agente que apenas leva em conta soment o percept atual do ambiente e realiza sua ação consultando uma tabela de ações pré-determinada para cada percept.

3.g Model-Based Agent

Agente que usa histórico de percepts junto com of efeitos de suas ações no ambiente para escolher a melhor ação no estado atual.

3.h Goal-Based Agent

Esse agente além de de usar os percepts passados como os Model-Based escolhe suas ações baseadas em um conjuto de objetivos que devem ser alcaçados, logo não tem objetivos a longo termo.

3.i Utility Agent

Esse agente diferente do Goal-Based não possuem a noção de objetivo mas escolhe sua ação de forma a maximizar uma função interna chamada função de utilidade.

3.j Learn Agent

Agente que pussui uma forma de critica externa da forma que o agente pode dizer se sua ação foi boa ou não e atualizar seus parametros e possiveis ações para que possa aprender de que forma ele pode melhorar sua performace.

4 Questão 4

4.a

Sim é possivel. Como exemplo podemos ter um ambiente bem simples, como o vaccumn world, onde tanto um reflex-agent como um model-based tomam atitudes ótimas assim toda a sequência de percepts teram ações iguais.

4.b

Depende do ambiente, em geral agent program que são adaptados para ambientes estocasticos e dinamicos podem variar suas ações para a mesma sequência de percepts.

4.c

Isso pode mudar a agent function em ambientes dinamicos pois assim mais mudanças no ambiente seram percebidas e o agente pode tomar ações basea-

das nessas mudanças e isso pode variar a ação tomada, logo a agent function em si.

5 Questão 5

https://github.com/marcosfmmota/CK0031/tree/master/Lista1

Um reflex agent não conseguiria voltar para a posição inicial pois ele atua simplemente sobre os percepts atuais logo não possui memória sobre o ambiente em que ele esteve anteriormente.

Dessa forma um reflex agent ficaria apenas andando aleatóriamente pelo ambiente e não teria como garantir que todos os humanos do ambiente seria salvos, mas apenas alguns que o agente encontrasse no caminho. O que mais impede o bom desempenho de um reflex agent é a sua falta de memória das ações passadas.