Maestría en Estadística Aplicada

Curso: Modelos Lineales (cohorte 2022-2023)

Guía de actividades Nº 1

1. Sea
$$\mathbf{X} \sim N_3(\mathbf{0}, \Sigma)$$
 con $\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$ y $\Sigma = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 4 \end{bmatrix}$

- a) Plantear $f(\mathbf{X})$
- b) Encontrar la distribución marginal de X_1 y X_3
- c) Encontrar la distribución conjunta de (X_1, X_2) y (X_1, X_3)
- d) Encontrar la distribución condicional de $(X_2|X_1=x_1,X_3=x_3)$ y $(X_1,X_3|X_2=x_2)$
- e) Encontrar la matriz de correlación
- f) Encontrar $\rho_{13|2}$ y $\rho_{12|3}$
- g) Encontrar la distribución de $Z = 3x_1 2x_2 11$.
- h) Encontrar la covarianza entre Z_1 y Z_2 donde: $Z_1 = 2x_1 3x_2 + x_3 3y$ $Z_2 = 3x_3 + 2$
- 2. En el archivo calefacción.IDB2 se muestran datos correspondientes a una muestra de 20 inmuebles ubicados en cierta zona residencial. Se consideran tres variables que están relacionadas con el costo de calefacción de la vivienda: la temperatura exterior media diaria (X1), el número de cm. de aislamiento térmico de las paredes (X2) y la antigüedad del calefactor (X3). (Utilice algún software)
 - a) Estime el vector de medias y la matriz de varianzas y covarianzas del vector $\mathbf{X}' = (X_1 X_2 X_3)$
 - b) Estime la matriz de correlación.
 - c) Estime la matriz de correlación parcial de $\mathbf{X}^{(1)}=(X_1,X_2)$ dado $\mathbf{X}^{(2)}=X_3$

3. Sea
$$\mathbf{X} \sim N_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 con $\boldsymbol{\mu} = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}$ y $\boldsymbol{\Sigma} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

- a) Encontrar la distribución conjunta de (X_1, X_2)
- b) Encontrar la distribución condicional de $X_1, X_2 | X_3 = x_3$, la esperanza y varianza.
- c) Encontrar ρ_{12} y $\rho_{12|3}$
- 4. Sea $\mathbf{X} \sim N_n(\mathbf{\mu}, \mathbf{\Sigma})$, obtener $E(\mathbf{X})$ y $Var(\mathbf{X})$ utilizando la Función Generadora de Momentos.

1

Maestría en Estadística Aplicada

Curso: Modelos Lineales (cohorte 2022-2023)

Guía de actividades Nº 1

- 5. Sea $\mathbf{X} \sim N_3(\mathbf{0}, \mathbf{I})$ encontrar la transformación $\mathbf{C}\mathbf{X}$ tal que la matriz de covarianzas de la variable resultante sea: $\Sigma = \begin{bmatrix} 7 & 2 & 1 \\ 2 & 7 & -1 \\ 1 & -1 & 4 \end{bmatrix}$. (Ayuda. Utilizar R o algún software que soporte algebra matricial. Pensar en descomposición espectral o descomposición de Cholesky)
- 6. Dada $\mathbf{X} \sim N_2 \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$ encontrar la transformación $\mathbf{Y} = \mathbf{T}\mathbf{X} + \mathbf{c}$ tal que $\mathbf{Y} \sim N_2(\mathbf{0}, \mathbf{I})$