Lista 3

Wiktor Kuchta (nr indeksu 315599)

14 marca 2023

1	2	3	4	5	6
+	+	+	+		+

1.

Podkreślone β -redeksy:

$$\underbrace{(\lambda x.x)(\underline{(\lambda x.x)(\lambda z.\underline{(\lambda x.x)z})})}_{}$$

2.

$$(\lambda x.xx)(\lambda yz.yz) \to xx[x := (\lambda yz.yz)] \equiv (\lambda yz.yz)(\lambda yz.yz)$$
$$\to (\lambda z.yz)[y := (\lambda yz.yz)] \equiv \lambda z.(\lambda yz.yz)z$$
$$\to \lambda z.(\lambda z.yz)[y := z] \equiv \lambda z.(\lambda t.yt)[y := z] \equiv \lambda z.(\lambda t.zt) \equiv \lambda zt.zt$$

3.

Pokażemy równoważność poniższych reguł:

$$\overline{\lambda x.Mx = M}^{\eta} \quad \text{gdzie } x \not\in FV(M)$$

$$\underline{Mx = Nx}_{M = N} \text{ Ext} \quad \text{gdzie } x \not\in FV(M) \cup FV(N)$$

Wyprowadzamy (Ext) z (η) . Zakładamy $x \notin FV(M) \cup FV(N)$.

$$\frac{\frac{\lambda x.Mx = M}{\Delta x.Mx} \eta}{\frac{M = \lambda x.Mx}{M = \lambda x.Mx}} \frac{\frac{Mx = Nx}{\lambda x.Mx = \lambda x.Nx} \text{ MonAbs}}{\frac{\lambda x.Mx = N}{\Delta x.Mx = N}} \frac{\eta}{\text{Trans}}$$

$$\frac{M = N}{M = N}$$

Wyprowadzamy (η) z (Ext). Zakładamy $x \notin FV(M)$.

$$\frac{\overline{(\lambda x.Mx)x = Mx}}{\lambda x.Mx = M}$$
Ext

4.

Ustalmy λ -termy M i N takie, że M=N. Indukcją względem struktury kontekstów pokażemy, że dla każdego kontekstu C zachodzi C[M]=C[N].

- 1. Jeśli C ma postać x (zmienna), to $C[M] \equiv C[N] \equiv x$, a więc C[M] = C[N] wnioskujemy regułą Refl.
- 2. Jeśli $C\equiv []$, to $C[M]\equiv M$ i $C[N]\equiv N$, więc korzystamy bezpośrednio z założenia M=N.
- 3. Jeśli C ma postać $C_1[]C_2[]$, to z założenia indukcyjnego mamy $C_1[M]=C_1[N]$ oraz $C_2[M]=C_2[N]$. Korzystając z MonApp otrzymujemy

$$C[M] \equiv C_1[M]C_2[M] = C_1[N]C_2[N] \equiv C[N].$$

4. Jeśli C ma postać $\lambda x.C_1[]$, to z założenia indukcyjnego mamy $C_1[M] = C_1[N]$. Korzystając z MonAbs otrzymujemy

$$C[M] \equiv \lambda x.C_1[M] = \lambda x.C_1[N] \equiv C[N].$$

6.

Niech $\omega_3 \equiv \lambda x.(\lambda t_1.(\lambda t_2.(\lambda t_3.xt_3)t_2)t_1)x$, tzn. standardowa $\omega \equiv \lambda x.xx$, tylko że x którego aplikujemy został trzykrotnie η -ekspandowany.

a)

 $\omega_3\omega_3$

b)

 $\omega\omega(\omega_3\omega_3)$