Recommence Relation .. A sequence can be define by giving a general formula for its 18th term by writing a few of its term and alternative purpose approach is to represent the sequence by finding a relationship among its terms such relation one neter as recomence. A recommence relation for the sequence (an) is an Equation that express land in terms of one or work of the previous terms of the sequence mainly ao o, az, On -1 U integers n, nono when no is a non negative integris. A sequence is called a solution of a recurrence relation if its terms solished the recoverage Relation Ru The requerence relation an = an + 3, with a = 4 reconjudy things the son 4,7,10,13 n=2,.... 20 9:4 02 = 02-1+3 = 02-1 +3 = 0, +3 = 4+3 03= 02+3 =7+3=10

$f_n = f_{n-1} + f_{n-2}$, $f_1 = f_{2-1}$
defines the fibonacci seasense.
1,1,2,3,5,8
Linear Recomence Relation:
A recoverie relation of the form form Gaytquilto
ar-2 ++ Grank: f(r) whose Cis one constants
is alled a line, recussence relation.
Here if Cod Gare non zero than it is known 10th order
recomence relation.
Ex:-
2 or + 3 ax -1 = 2" is the first order linear recoverie
relation with constant term a conficient
7f C -f ' '1
If for is identia zero that is no terms once that are
not multiplus of all the relation is known as homonization
Otherwise it is non-homonization.
Ex: - an = 2an-1 (Homonization Homogeneous receivence
relation with order one.
Solving homogeneous recomme relation
an experise for the second
on exclusive formula which salisfy the revience
the committee initial andition is rough a solution to
the recomence relation

Bock tracking) We replied yout Back tracking) B sobe recovering relation and and & with 1,= 2 defines the sequence. 2,5,8,... $S_0 \ln^n := \alpha_{n-1} = \alpha_{n-1-1} + 3$ an-an-1+3 = an-5+3 = (an-2+3)+3 = $= q_{n-2} + 3+3 = q_{n-2} + 2-3$ = (an-3+3)+3+3- an-3+3-3 = (an-a +3)+3+3+3 = an-4+4.3 = an-(n-1) + (n-1) = a1 + (n-1) 3 an = 5+ (n-1) 3 (an-(n-1)= an=x+1=0 . The exclusive formulal for given recommence relation is.

finding the solution of returns Relation.

If find an exclusive founds for the squence by=2 part with ime 9=7 bn - 26n-1+1 bn = 2 { 2bn-+2+13+1 = 22 21-21211 - 22 { 2 pm 3 +13 | 241 = 23 bn-31221211 $= 2^3 \{ 2b_{n-4} + 1 \} + 2^7 + 2 + 1$ = 24 {2bn-u+23+2°17+1 = 5~, pu-(v-1) + 5~-5 + 5~-3 + 5+1 $- 5u_{-1} (1) + 5u_{-1} - \frac{5u_{-1}}{2u_{-1}} - \frac{3u_{-1}}{3u_{-1}} - \frac{3u_{-1}}{3u_{-$

90-71 first an exclusive formula for the sequence defined by $C_n = 3c_{n-1} - 2C_{n-2}$ with initively condition $C_1 = 5$ and $C_2 = 3$ Cn = 3cn-1 - 2(n-2 into assail from 22-37(+2 =0 The given recurrence relation is Cn=3cn-1-2cn-2 -- Par 0 cn=2cn 7cn=3xn-1-22n-2 dividing both sides by xn-2 Cn = 20" $\chi^2 = 3\chi - 2$ $\chi'' - 3\chi + 2 = 0$ which is a charact ear of ear () a x 22(-2(f3=0 e JC (X-2) - (X-2)=0 (x-2) (x-1)=0 ! The rots are real and distinct (oncert the earl in the form of ansas, tos) Cn= u(1) + u(2) ... (i) Satisfying initial condition $n=1 \quad C_1 = u(1)! + v(2)!$ 5 = u + 2u . - - con ill

onen n=2

N=2

. (2 - u()2 + v(2)2

. 3 = u + uv ... can u

Solving ech iii andiui

= 3 = 40u

2 - - 2v

on v = -1

Pheing the valo of vin ani

5= u/2t

cr 5= u4-2 ce u-87

8 Con

lind the soln of the recomence relation ansan-1 + lan-2, aos2 as+ Soln. The given recoverie relation is. an: and + 2an- 2 16+ $a_n = x^n$ Xn = 2 xn-1 + 5 xn-5 giving poth side pri sch-5 $\frac{x_{u-u+s}}{x_{u-s}} = \frac{x_{u-1-u+s}}{x_{u-s}} + 5$ $\frac{x_{u-s}}{x_{u}} = \frac{x_{u-s}}{x_{u}} + 5x_{u}$ or xfact) x2-2x+2x-2-0 $\alpha = \chi(\chi-1) + 2(\chi-2) = 0$ a (2(fel) (x-2)=0 x=-02 x=4 .. The roots are real and eighingt 4=1/2, 1 an= 42" + u(-1)" (i) satisfying initel condition.

Date	e	
	Page	

n=0 Qo= u(2)0+ u(-1)0

Substituting con ill & iv-

Adding en i

2:440

7 = 24-8

9 = 34

a 4=3

glacing vous of vin iv.

7= 20=0

cr 7=2×3-V

or ve 7 = 6 - v

0 V = - (

placing save of ul v in ii

an - 42" + VG15"

Solve the recoverie of the relation of the

Who If the charactistic equation Do 6 - 1x - 15 = 0 as a single root S then the exclusion formuli's an = us + uns an= (utun)s then u and v depent on the initial and thou Find the solution of the recomence relation an = 6and - gard with the initial condition does, april Soln. an-6an-1-Jan-2 ear $\alpha = \frac{1}{2} = 6x - 9$ $\alpha = \frac{1}{2} = 6x + 9 = 0$ a x2-3.27c+32-0 a(x-39=0 $\alpha \chi = 3,3$ an = 43" + n V3" - Substituting the initial condition a=1 and 90- U30+ D 1= U. -. 0 = 1

N= 1 a,=u3' +'XU3' 0 6 = 9 u +3 U m. 6/1/2 2=110 0/1/ an U= 1 placing the same of sand Vin our in an= us + nus a an = 13" + n/3" a an = 3" 1 n3" Q. an = uan-1 - uan-2 Given april aira an - yan - yan - ? ea' soln. -6/04 an=xn $\chi^2 - 4\chi - 4$ a 21 - 121 + 12 a 21-2-271+29=0 $\alpha (x-2)^2=0$ Sim. x-7:0 012 x-7:0 X= 5 ... X = 2, 2 Single roof or 0, - U2" + Un2" , ean!

Substituting the initial vare 90-1, 9, 24 whon N=0 ao= mso + nxoxso 0 1 - 4 to a 4=1 When. M=1 a = ux2' + ux1x2' a 4 = 24 + 2V q 2 = 4 + V a 2= 1+U cy V= Paring the vare of y and vin earli 0n = U2n + n 12n a du= 54+ 54 V