In	formaty.	ka, st	udia	dzienne,	mgr	II	st.
----	----------	--------	------	----------	-----	----	-----

semestr II

Rozpoznawanie obrazów

2017/2018

Prowadzący: dr inż. Bartłomiej Stasiak

wtorek, 12:00

Data oddania:	Ocena:
---------------	--------

Hubert Marcinkowski 214942 Artur Wróblewski 214985

Zadanie 2

1. Cel

Zadanie polegało na implementacji dodatkowej metody klasyfikacji w istniejącym już szkielecie z zadania nr 1. Dodatkowo należało dokonać analizy zdolności klasyfikacji obu metod wykorzystując obrazy z różnymi teksturami. Konieczne było również wprowadzenie dwóch metod ekstrakcji cech: w dziedzinie czasu oraz w dziedzinie częstotliwości.

2. Własna metoda

Zaimplementowaliśmy autorską metodę Marcinkovsky-Vroblevsky polegającą na wyznaczeniu centroidów każdej z klas oraz obliczeniu odległości od klasyfikowanego obiektu. Klasa do której należy nowy obiekt to ta do którego centrum odległość jest najmniejsza.

3. Zestawy cech

3.1. Dziedzina częstotliwości

Dla dziedziny częstotliwości zaproponowaliśmy użycie 4 cech. Każda z nich bazowała na sumie jasności pikseli w widmie amplitudowym z maską w kształcie pierścienia o promieniach (wewnętrzny i zewnętrzny):

- -2px i 4px
- -8px i 10px
- -14px i 16px

— 25px i 27px

Były to dobrze nam znane filtry pasmowoprzepustowe. Wybierając promienie pierścieni kierowaliśmy się występowaniem najjaśniejszych składowych widma. Cechy te są niezależne od obrotu.

3.2. Dziedzina czasu

Dla dziedziny czasu zaproponowaliśmy użycie 8 cech:

- suma jasności pikseli po wykryciu krawędzi z wykorzystaniem operatora Laplace'a
- 7 momentów obrazu przedstawionych poniżej

Momenty obiektu (obrazu), a dokładnie niezmienniki przekształceń. Metoda ta pozwala na rozpoznawanie wzorów niezależnie od pozycji, rozmiaru czy obrotu. Jako cechy użyliśmy każdego z niezmienników (łącznie 7 cech) - wzory podajemy poniżej:

$$\begin{split} I_1 &= \eta_{20} + \eta_{02} \\ I_2 &= (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2 \\ I_3 &= (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2 \\ I_4 &= (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2 \\ I_5 &= (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2] + (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] \\ I_6 &= (\eta_{20} - \eta_{02})[(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] + 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03}) \\ I_7 &= (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2] - (\eta_{30} - 3\eta_{12})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] \end{split}$$

4. Wyniki

Tabela 1. Macierz pomyłek k-NN dla bazy tekstur dla cech w dziedzinie czasu oraz k=11

	0	1	2	3	success ratio
0	156927	15719	7351	4289	85.15
1	27461	173534	3193	388	84.82
2	55492	21346	87646	34788	43.98
3	66297	31129	28146	76951	37.99

Tabela 2. Macierz pomyłek k-NN dla bazy tekstur dla cech w dziedzinie częstotliwości oraz $k=11\,$

	0	1	2	3	success ratio
0	142291	11	35037	6947	77.21
1	153	144185	59780	458	70.47
2	1682	19914	171309	2142	87.82
3	24578	2162	64818	110965	54.79

Tabela 3. Macierz pomyłek k-NN dla bazy tekstur dla cech w dziedzinie czasu oraz częstotliwości oraz k=11

	0	1	2	3	success ratio
0	161173	820	13306	8987	87.45
1	180	176083	27727	586	86.07
2	4087	20949	172832	1404	86.73
3	34049	3172	47383	117919	58.22

Tabela 4. Macierz pomyłek M-W dla bazy tekstur dla cech w dziedzinie czasu

	0	1	2	3	success ratio
0	1112	176046	7128	0	6.12
1	13034	180124	4807	6611	88.05
2	365495	37775	95981	21	48.17
3	58600	75239	30708	37976	18.75

Tabela 5. Macierz pomyłek M-W dla bazy tekstur dla cech w dziedzinie częstotliwości

	0	1	2	3	success ratio
0	119005	675	64606	0	64.58
1	221	82197	122158	0	40.18
2	367	84615	110130	4160	55.27
3	74712	12033	54018	61760	30.75

Tabela 6. Macierz pomyłek M-W dla bazy tekstur dla cech w dziedzinie czasu oraz częstotliwości

	0	1	2	3	success ratio
0	119665	43814	20807	0	64.93
1	154	113042	91380	0	55.26
2	364	90841	98595	9472	49.48
3	64842	29359	46306	62016	30.62

5. Wnioski

Dla zaimplementowanej przez nas metody zaobserwować można niestety wyraźny spadek jakości wyników względem metody k-NN. Dla przypadku brania pod uwagę jedynie cech z dziedziny czasu dla lnu zauważyć można rekordowo niską rozpoznawalność (stanowczo poniżej tej zadanej funkcją losującą). Mimo wszystko, sumaryczne wyniki dla każdego przypadku (dla atrybutów z dziedziny czasu, częstotliwości oraz połączonych) prezentują wyniki lepsze niż te dla rozkładu losowego (około 25% dla każdej z 4 klas). Zauważyć można jednak, że reprezentacja za pomocą centroidów nie jest jednak wystarczająca do otrzymania przyciągających uwagę wyników klasyfikacji. Niewątpliwą zaletą autorskiej metody jest czas wykonania, który jest zauważalnie krótszy.