Digital Logic Design

Lecture 07: Combinational Logic Circuit & Boolean Algebra

Generalized De Morgan's Theorem

- NOT all variables
- Change . to + and + to .
- NOT the result
 - _____
- \blacksquare F = X.Y + X.Z + Y.Z
- F = !((!X + !Y) . (!X + !Z) . (!Y + !Z))
- F = !(!(X . Y) . !(X . Z) . !(Y . Z))

F = !(!(X & Y) & !(X & Z) & !(Y & Z))

F = !(!(X & Y) & !(X & Z) & !(Y & Z))

Boolean Algebra (cont)

- Sum of Products and Product of Sums
- The Duality Principal: Interchange AND with OR
- Algebraic Manipulations
 - X + XY = X(1+Y) = X
 - XY + XY' = X(Y+Y') = X
 - X + X'Y = (X + X')(X + Y) = X + Y
 - XY+X'Z+YZ = XY+X'Z -Consensus Theorem
- Complement of a Function: Interchange all 0's with 1's in the truth table

SOP Form

- A product of literals is called a product term or a cube (e.g. Ā·B·C in B³, or B·C in B³)
- Sum-Of-Product (SOP) Form: OR of product terms, e.g. AB+AC
- A minterm is a product term in which every literal (or variable) appears in Bⁿ
 - = $\bar{A}BC$ is a minterm in \mathcal{B}^3 but not in \mathcal{B}^4 . ABCD is a minterm in \mathcal{B}^4 .
- A canonical (or standard) SOP function:
 - a sum of minterms corresponding to the input combination of the truth table for which the function produces a "1" output.

Minterms in B³

			m_0	m_1	m_2	m_3	m_4	m_5	m_6	m_7
Α	В	С	ĀBŌ	$\bar{\textbf{A}}\bar{\textbf{B}}\textbf{C}$	$\bar{A}B\bar{C}$	$\bar{\textbf{A}}\textbf{B}\textbf{C}$	$A\bar{B}\bar{C}$	$\mathbf{A}\bar{\mathbf{B}}\mathbf{C}$	$\mathbf{A}\mathbf{B}\bar{\mathbf{C}}$	ABC
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Canonical (Standard) SOP Function

$$F(A,B,C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$
$$= m0 + m1 + m4 + m5$$

$$F(A,B,C) = \sum m(0,1,4,5) = one-set(0,1,4,5)$$

$$F(A,B,C,D) = \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$
$$= m4 + m9 + m14$$

$$F(A, B, C, D) = \sum m(4, 9, 14) = one - set(4, 9, 14)$$

Product of Sums Design

```
Maxterms:
A maxterm is NOT a minterm
maxterm M0 = NOT minterm m0
M0 = !m0
= !(!X . !Y)
= !!X + !!Y
= X + Y
```

POS form (dual of SOP form)

- A sum of literals is called a sum term (e.g. $\bar{A}+B+C$ in \mathcal{B}^3 , or (B+C) in \mathcal{B}^3)
- Product-Of-Sum (POS) Form: AND of sum terms, e.g. (Ā+B)(A+C)
- A maxterm is a sum term in which every literal (or variable) appears in Bⁿ
 - $(\bar{A}+B+C)$ is a maxterm in \mathcal{B}^3 but not in \mathcal{B}^4 . A+B+C+D is a maxterm in \mathcal{B}^4 .
- A canonical (or standard) POS function:
 - a product of maxterms corresponding to the input combination of the truth table for which the function produces a "0" output.

Product of Sums Design

X	Y	minterms	maxterms					
0	0	$m0 = !X \cdot !Y$	M0 = !m0 = X + Y $M1 = !m1 = X + !Y$ $M2 = !m2 = !X + Y$					
0	1	$m1 = !X \cdot Y$	M1 = !m1 = X + !Y					
1	0	$m2 = X \cdot !Y$	M2 = !m2 = !X + Y					
1	1	$m3 = X \cdot Y$	M3 = !m3 = !X + !Y					

Maxterms in B³

			M_0	M ₁	M ₂	₂ M ₃	, M <u>.</u>	ı M _e	, M ₆	M_7
			A + B	+ C	$\boldsymbol{A}+\overline{\boldsymbol{B}}$	+ C	$\overline{{\bm A}}+{\bm B}$	+ C	$\overline{\boldsymbol{A}}+\overline{\boldsymbol{B}}$	+ C
A	В	С		A + B	+ C	A + B	+ C	$\overline{\mathbf{A}} + \mathbf{B}$	+ C	$\overline{\boldsymbol{A}} + \overline{\boldsymbol{B}} + \overline{\boldsymbol{C}}$
0	0	0	0	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	1	1	1	0	1	1	1
1	0	1	1	1	1	1	1	0	1	1
1	1	0	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	0