

NUTRIOME workshop1

Large-scale data handling and using tools to visualise multi-layered data from meal studies

1

Techniques to measure metabolomics

Overview

- Introduction
- Approaches
- Study Design
- Quality Control
- Applications

Approaches

Study of small molecules called metabolites: alterations in metabolic pathways under different conditions

NMR

LC-MS GC-MS

3

Targeted and non-targeted approach

Targeted: prior knowledge of metabolites to be measured

Non-targeted: no prior selection of metabolites

Advantages of targeted data

- Quantitative
- Cross cohort comparisons
- > Reproducibility
- Use as diagnostic biomarkers
- > Re-use of data is easier

Advantages of un-targeted data

- > Broader coverage of metabolome
- > New discoveries possible
- > Hypothesis generating

5

Data Format

Targeted

Concentration [µM]																	
Sample Identification	C0	C2	C3	C4	C14	C16	C18:1	Trigonellin	TMAO	Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly
	Acylcarniti	Acylcarniti	Acylcarnit	i Acylcarnit	i Acylcarniti	Acylcarnit	Acylcarnit	Alkaloids	Amine Oxi	Aminoacio	Aminoacio	Aminoacio	Aminoacid	Aminoacio	Aminoacio	Aminoacio	Aminoaci
P_11	21.9	13.7	0.539	0.792	0.058	0.114	0.106	3.125	18.9	609	158	82	9.954	46.3	931	49	440
P_12	23.1	16.2	0.734	0.779	0.043	0.103	0.137	1.366	9.654	672	80.6	145	13.4	30.2	1075	84.3	458
P_13	24.9	8.466	0.206	0.171	0.03	0.095	0.06	1.387	9.097	483	116	49.7	7.034	35.1	724	42.5	269
P_14	29.1	14.2	0.428	0.362	0.063	0.114	0.128	0.932	9.652	423	136	49	11.3	39.3	721	46	313
P_2	25.9	9.573	0.427	0.399	0.037	0.076	0.092	0.916	4.274	718	85.6	107	13.5	29.5	842	81	389
P_3	26.4	8.969	0.417	0.328	0.036	0.126	0.11	2.846	25.2	414	178	51.2	9.11	29.9	656	36.8	313
P_30	26.1	10.9	0.407	0.587	0.024	0.133	0.105	5.068	88	624	181	66.9	10.7	30.8	722	38.2	317
P_31	17.4	9.942	0.46	0.445	0.019	0.117	0.079	4.452	147	418	144	40.2	10.9	18.2	560	28.2	217
P_34	16.1	6.566	0.469	0.44	0.023	0.11	0.06	4.485	175	633	235	73.7	11.8	28.2	770	35	297
P_35	13.3	6.075	0.436	0.303	0.023	0.109	0.145	4.391	225	403	134	51.7	9.041	30.6	562	25.7	262
P 36	18.2	6.508	0.385	0.382	0.013	0.068	0.06	3,645	53.5	379	159	43.9	6.527	34.8	503	26.4	201

Data Format

Un-targeted

Compound Name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
RT	0.543	0.551	0.586	0.586	0.59	0.591	0.592	0.595	0.597	0.604	0.605	0.611	0.616	0.623	0.624
Mass	155.0692	103.9641	196.0581	171.9075	166.0476	155.9339	218.0551	246.0502	216.0396	125.9988	186.0292	113.0589	180.0631	150.0527	301.0457
P100 V1 0h neg	3262	1541	119397	1063	3965	3396.5	4236	1856	6153.5	56552	5088	7109	9009	12818.5	1134
P100 V1 2h neg	3262	1541	90628	14178	3965	3396.5	4236	1856	6153.5	1764.5	5088	52467	9009	12818.5	1134
P100 V1 4h neg	3262	1541	178767	23173	3965	3396.5	4236	1856	6153.5	48314	5088	7109	9009	12818.5	1134
P100 V1 6h neg	3262	1541	10734	1063	3965	3396.5	4236	1856	6153.5	74181	5088	44811	9009	12818.5	1134
P100 V1 24h neg	3262	1541	10734	1063	3965	3396.5	4236	1856	6153.5	61569	5088	7109	9009	12818.5	15658
P102 V2 0h neg	34749	1541	77624	2126	104976	3396.5	4236	1856	69028	29558	5088	30851	120668	228586	12174
P102 V2 2h neg	22252	42764	24998	1063	20624	9740	18385	4484	32677	1764.5	23395	15908	18018	40522	2268
P102 V2 4h neg	12729	1541	32949	2328	28703	16898	21068	1856	40997	1764.5	5088	7109	9009	108444	1134
P102 V2 6h neg	10440	21988	72304	3322	57946	23795	30742	10753	58762	29674	5088	7109	67997	175683	4927
P102 V2 24h neg	17642	1541	111298	1063	76775	17374	4236	1856	6153.5	36856	5088	22362	191573	244794	12604
P105 V3 0h neg	34245	9329	10734	1063	3965	3396.5	4236	1856	48548	43415	10176	61865	62103	12818.5	1134

7

_

Biofluids

Blood: plasma, and serum

Plasma - need to decide on the anti coagulant and be consistent

Serum – clotting time and temperature needs to be consistent

Strict SOPs should be in place for collection of samples some key items: time of collection fasting state

consistent centrifugal speeds and temperature to be used

serum: clotting time

plasma: time from collection to processing

Storage: -80C and minimal freeze thaw cycles

Blood: plasma, and serum

Key recommendations

- Design decide on collection type (serum/ plasma)
- SOP for collection (clotting times, processing times, temperature, centrifugal speed)
- Storage: -80C
- Minimise Freeze Thaw cycles

11

NUTRIOME

Urine

- Urine is composed of endogenous and exogenous metabolites that have been filtered from the bloodstream by the kidneys
- Collected at home by participants (keep chilled)
- Issues to consider: first void/ mid stream/ time of day/ fasting 24 h urine collection
- Processing: centrifugation before freezing
- Storage: -80C. Minimise freeze thaw cycles

13

Urine

Recommendations

- ➤ SOP for collection clear instructions to participants
- Processing prior to storage
- > Storage: -80C
- Limit freeze thaw cycles

Feces

- > Feces are considered a non-invasive proxy for the study of the intestinal microbiome and metabolome.
- The faecal metabolome- representation of host metabolism, microbial metabolism and host-microbial co metabolism

15

Feces

- Sample collection: (1) spot sample(2) bulk collection
- > Specialised collection kit recommended
- Recent dietary intake recorded
- Clear instructions to volunteers
- Site of sampling needs to be consistent across the study
- Multiple sites if possible

Feces

Recommendations

- Bulk stool if possible (collection device consistent throughout study)
- Spot sampling may introduce variation
- Minimise freeze thaw
- Storage at -80C recommended

Clinical Chemistry 64:8 1158-1182 (2018)

Review

Preanalytical Processing and Biobanking Procedures of Biological Samples for Metabolomics Research: A White Paper, Community Perspective (for "Precision Medicine and Pharmacometabolomics Task Group"—The Metabolomics Society Initiative)

Jennifer A. Kirwan, ^{1,2*} Lorraine Brennan, ³ David Broadhurst, ⁴ Oliver Fiehn, ⁵ Marta Cascante, ⁶ Warwick B. Dunn, ⁷ Michael A. Schmidt, ^{8,9} and Vidya Velagapudi ^{10*}

19

Statistical Plan

- > Plan for analysis documented
- Data treatment
- > Engage with statistician

23

Quality Control

NUTRIOME

Quality Control

- Safeguards to be incorporated into a successful metabolomics study
- All samples that are to be directly compared to one another must be collected, processed, measured and statistically analysed in exactly the same way.
- Randomisation: samples should be extracted processed and measured in a random order.

25

Food Intake Assessment

Food diaries, FFQ, 24 hr recalls

Limitation-1

Measurements over short periods of time may be unrepresentative

Limitation-3

Errors in reporting intakes

Limitation-2

Recall of eating behaviour can be difficult

Limitation-4

Recording process alters dietary habits

35

Food Intake Biomarkers

Identify biomarkers of legume intake

Confirmation of biomarkers

37

How do we use the biomarkers?

43

Citrus intake data

- i=1,...,n: subject in the study (with n=565); W_i : mean daily self-reported citrus intake (g/day); M_i : biomarker-derived estimates of citrus intake (g/day).

The aim is to ${\bf estimate}$: • \widehat{X}_t : calibrated mean daily citrus intake (g/day).

CALIBRATION EQUATIONS:

$$M_i = \beta_0 + \beta_1 W_i + \epsilon_i,$$

$$\widehat{X}_i = \widehat{\beta_0} + \widehat{\beta_1} W_i$$

With $\epsilon_i \sim N(0, \sigma^2)$.

47

Biomarker-Calibrated Red and Combined Red and Processed Meat Intakes with Chronic Disease Risk in a Cohort of Postmenopausal Women

Cheng Zheng,¹ Mary Pettinger,² GA Nagana Gowda,³ Johanna W Lampe,^{2,4} Daniel Raftery,³ Lesley F Tinker,² Ying Huang,^{2,4} Sandi L Navarro,² Diane M O'Brien,⁵ Linda Snetselaar,⁶ Simin Liu,⁷ Robert B Wallace,⁶ Marian L Neuhouser,^{2,4} and Ross L Prentice^{2,4}

¹Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA; ²Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ³Department of Ansethesiology and Pain Medicine, University of Washington, Seattle, WA, USA; ³School of Public Health, University of Washington, Seattle, WA, USA; ³Distructive for Arctic Biology, University of Alaska, Fairbanks, AK, USA; ²College of Public Health, Countering to Massington, Seattle, WA, USA; ³Distructive for Arctic Biology, University of Seattle, Washington, Seattle, WA, USA; ³Distructive for Arctic Biology, University of Seattle, Washington, Seattle, WA, USA; and ³Department of Epidemiology, School of Public Health, Foom University, Fronciscone, RI, USA; and ³Department of Epidemiology, School of Public Health, Foom University, Fronciscone, RI, USA; and ³Department of Epidemiology, School of Public Health, Foom University, Fronciscone, RI, USA; and ³Department of Epidemiology, School of Public Health, Foom University, Fronciscone, RI, USA; and ³Department of Epidemiology, School of Public Health, Foom University, Fronciscone, RI, USA; and ³Department of Epidemiology, School of Public Health, Foom University, Fronciscone, RI, USA; and ³Department of Epidemiology, School of Public Health, Foom University, Fronciscone, RI, USA; and ³Department of Epidemiology, School of Public Health, P

51

Calibration method Feeding Study Biomarkers 450 Participants (FFQ) Associated with disease among 81,954 participants intakes Regression Calibration Eqs

TABLE 5 T2D incidence HRs, and 95% CIs for a 40% increment above the median intake for red meat and for red plus processed meat in a Women's Health Initiative cohorts of 81,954 postmenopausal US women enrolled during 1993–1998 at 40 US clinical centers and followed through February 2020¹

	No adjus	tment for BN	II or dietary correlates		With adjustment for BMI and dietary correlates					
Outcome ($n = participants$	Red meat intake,	Red + processed			Red meat intake,		Red + processed			
with outcome)	g/d	P value	meat intake, g/d	P value	g/d	P value	meat intake, g/d	P value		
T2D (12,145)	1.37 (1.34, 1.39)	< 0.001	1.35 (1.33, 1.37)	< 0.001	1.08 (1.04, 1.12)	< 0.001	1.09 (1.05, 1.13)	< 0.001		

¹Values are HRs (95% Cls). Red meat median intakes were 24.7 g/d with biomarker calibration and 31.8 g/d without biomarker calibration, and red plus processed meat median intakes were 34.8 g/d with biomarker calibration and 42.2 g/d without biomarker calibration. DM-C, dietary modification comparison group; OS, observational study; T2D, type 2 diabrates.

 2 HR estimates and 95% CIs are based on Cox models with baseline hazard rates stratified on study component (DM-C or OS), hormone therapy trial status (estrogen plus progestin, estrogen plus progestin placebo, estrogen-alone, estrogen-alone placebo, not randomized), age at enrollment (50–54, 55–59, 60–64, 65–69, 70–74, or \geq 75 y), and with adjustment for a disease-specific set of potential confounding factors.

53

Calibration method

The Journal of Nutrition Nutritional Epidemiology

Associations of Biomarker-Calibrated Healthy Eating Index-2010 Scores with Chronic Disease Risk and Their Dependency on Energy Intake and Body Mass Index in Postmenopausal Women

Marian L Neuhouser, ¹ Mary Pettinger, ¹ Lesley F Tinker, ¹ Cynthia Thomson, ² Linda Van Horn, ³ Bernhard Haring, ⁴ James M Shikany, ⁵ Marcia L Stefanick, ⁶ Ross L Prentice, ¹ JoAnn E Manson, ⁷ Yasmin Mossavar-Rahmani, ⁸ and Johanna W Lampe¹

TABLE 4 Associations between a 20% increment in HEI-2010 score with and without biomarker calibrations with additional for calibrated energy and adjustment BMI and type 2 diabetes in the WHI¹

		HR (95% CI) ²								
	No. of cases (rate				Calibrated, adjusted					
	per 1000 person-years)	Uncalibrated	Calibrated ³	for calibrated total energy ⁴	Calibrated, adjusted BMI	for calibrated total energy and BMI				
Type 2 diabetes ⁵	14,201 (10.14)	0.91 (0.90, 0.93)	0.45 (0.36, 0.55)	0.84 (0.70, 1.02)	0.85 (0.74 0.97)	0.87 (0.75, 0.99)				

¹CT, Clinical Trial; CVD, cardiovascular disease; FFQ, food-frequency questionnaire; E, estrogen; HEI, Healthy Eating Index; OS, Observational Study; P, progesterone; WHI, Women's Health Initiative.

²Cox proportional regression models stratified by 5-y age categories, study component (CT/OS), and HT(hormone therapy) trial arm, and adjusted for linear age, race/ethnicity (White, Black, Hispanic, other race/ethnicity), season of FFQ completion, education (Ehigh school, some post-high school, college degree or higher), income (<\$20K, \$20K to <\$35K, \$35K to <\$75K, \$275 K), current smoking, alcholi intake (nondrinker, <1 drink/wk, 1 to <7 drinks/wk, 1 to tail recreational physical activity, dietary supplement use, postmenopausal hormone therapy (never, past, current E-alone, current E+P), history of CVD, and family history of diabetes.

³HEI-2010 scores are biomarker calibrated. ⁴Adjustment for calibrated total energy using doubly labeled water.

5Incidence

55

Conclusions

- > Metabolomics wide range of applications in nutrition research
- Precision Nutrition metabotypes
- Food Intake Biomarkers

Dr Aoife O'Gorman Claire Connolly Fionnuala McDermott

Wenxuan Li Rebecca Finlay Max Ammann Tilde Martinsen Shubbham Gupta Dr Xiaofei Yin Dr Ya Gao Aoife Courtney

Collaborators

HELMHOLTZ MUNICI) Prof. Jakob Linseisen Dr. Anna Riedl

PROMED-COG: C MvEvoy, F Prinelli, C Trevisan NANS: A Flynn, M Gibney, A Nugent, B

McNulty, J Walton FoodBall Partners Food4me Partners

US-Ireland: Jayne Woodside (QUB), Frank Hu (Harvard) Qi Sun (Harvard)

Funding Agencies

European Commission