

SeLeP: Learning Based Semantic Prefetching for Exploratory Database Workloads

Farzaneh Zirak, Farhana Choudhury, and Renata Borovica-Gajic School of Computing and Information Systems, The University of Melbourne

Prefetching for Exploratory workload

Data Exploration

Search enormous amount of data for interesting information

Not always sure what we are looking for (until we find it)

Data Exploratory tools need to be

- Interactive: additional delay can hurt the result
- Adaptive: Users' workloads and interest may shift

Predict and cache likely query results to reduce query execution time (user wait time)

State-of-the-art Prefetchers

Work with Logical Block Addresses

Not scalable

Not adaptive

Not suitable for SQL-based workloads

Semantic based prefetchers are proven to be more effective

Objectives

Propose a prefetcher:

SeLeP in Nutshell System Overview (b) Block partitioning (a) Block encoding Encoder Partition manager encodings Block encodings Prefetcher $\langle enc(q_i) \rangle_{i=n-l}^l$ k - candidate partitions Prediction (c) Semantic learning Extract semantics Each block is like a matrix of values • Preprocess and normalize the blocks • Embed blocks into 32 bit vectors using AutoEncoders Partition the blocks • Cluster blocks frequently accessed together in the same partitions → Graph partitioning • Edges reflect co-accessing rate Previous G_{aff} : Aggregate block encodings to calculate partition encodings $res^B_{q_n}$: Next G_{aff} (l_p = 10): • Represent queries with aggregation of encoding for partitions they access → Time-series forecasting • Train the multi-layer LSTM model with sequence of query encodings, and output bitmap of subsequent partition access

Encoder LSTM

SeLeP in Action

Summary

Semantic learning

- Prefetching can substantially reduce I/O time
 - But the existing prefetchers cannot perform well in SQL-based and jumping navigational workloads
- SeLeP can benefit all types of exploratory workloads
 - improves the hit ratio up to 40% and reduces I/O time up to 45% compared to the state-of-the-art
 - attains 95% hit ratio and 80% I/O reduction on average