aerolift-casestudy

February 28, 2024

```
[3]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
[4]: df_aero = pd.read_csv('aerofit_treadmill.csv')
[5]:
    df_aero
                         Gender Education MaritalStatus
                                                             Usage
                                                                    Fitness
[5]:
         Product
                   Age
                                                                               Income
     0
           KP281
                    18
                           Male
                                         14
                                                    Single
                                                                 3
                                                                           4
                                                                                29562
                                                                 2
     1
           KP281
                           Male
                                                    Single
                                                                                31836
                    19
                                         15
                                                                            3
     2
                                                 Partnered
                                                                                30699
           KP281
                    19
                         Female
                                         14
                                                                 4
                                                                            3
     3
           KP281
                    19
                           Male
                                         12
                                                    Single
                                                                 3
                                                                            3
                                                                                32973
     4
           KP281
                                                                 4
                                                                            2
                                                                                35247
                    20
                           Male
                                         13
                                                 Partnered
     175
           KP781
                    40
                                         21
                                                    Single
                                                                           5
                           Male
                                                                 6
                                                                                83416
                                                                 5
     176
           KP781
                           Male
                                                    Single
                                                                            4
                                                                                89641
                    42
                                         18
     177
                                                                 5
           KP781
                           Male
                                         16
                                                    Single
                                                                           5
                                                                                90886
     178
           KP781
                           Male
                                                 Partnered
                                                                  4
                                                                           5
                    47
                                         18
                                                                               104581
           KP781
     179
                    48
                           Male
                                         18
                                                 Partnered
                                                                 4
                                                                                95508
          Miles
     0
             112
     1
              75
     2
              66
     3
              85
     4
              47
             200
     175
     176
             200
     177
             160
     178
             120
     179
             180
```

[180 rows x 9 columns]

1 Problem Statement and Analysing basic metrics

```
[4]: # Shape of data
df_aero.shape
```

[4]: (180, 9)

we have 180 rows and 9 attributes in the dataset.

[7]: # Data types df_aero.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object
3	Education	180 non-null	int64
4	MaritalStatus	180 non-null	object
5	Usage	180 non-null	int64
6	Fitness	180 non-null	int64
7	Income	180 non-null	int64
8	Miles	180 non-null	int64

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

6 attributes are numerical and 3 are categorical.

2 Non Graphical Analysis

[8]: df_aero.describe(include='all')

[8]:		Product	Age	Gender	Education	MaritalStatus	Usage	\
	count	180	180.000000	180	180.000000	180	180.000000	
	unique	3	NaN	2	NaN	2	NaN	
	top	KP281	NaN	Male	NaN	Partnered	NaN	
	freq	80	NaN	104	NaN	107	NaN	
	mean	NaN	28.788889	NaN	15.572222	NaN	3.455556	
	std	NaN	6.943498	NaN	1.617055	NaN	1.084797	
	min	NaN	18.000000	NaN	12.000000	NaN	2.000000	
	25%	NaN	24.000000	NaN	14.000000	NaN	3.000000	
	50%	NaN	26.000000	NaN	16.000000	NaN	3.000000	
	75%	NaN	33.000000	NaN	16.000000	NaN	4.000000	
	max	NaN	50.000000	NaN	21.000000	NaN	7.000000	

Fitness	Income	Miles
180.000000	180.000000	180.000000
NaN	NaN	NaN
NaN	NaN	NaN
NaN	NaN	NaN
3.311111	53719.577778	103.194444
0.958869	16506.684226	51.863605
1.000000	29562.000000	21.000000
3.000000	44058.750000	66.000000
3.000000	50596.500000	94.000000
4.000000	58668.000000	114.750000
5.000000	104581.000000	360.000000
	180.000000 NaN NaN NaN 3.311111 0.958869 1.000000 3.000000 3.000000 4.000000	180.000000 180.000000 NaN NaN NaN NaN NaN NaN 3.311111 53719.577778 0.958869 16506.684226 1.000000 29562.000000 3.000000 44058.750000 3.000000 50596.500000 4.000000 58668.000000

Observations:

- There are no missing values
- Unique Products: 3
- $\bullet~$ KP281 is the most frequent product with frequency 80
- Mean Age of a person is 28.7 and min age is 18 and max age is 38.
- Every customer have min education of 12 years and mean education of 15.5 years.
- out of 180 customers, 104 are males and 76 are females.
- 60% of the customers are married.
- Income and Miles have very high standard deviation, which means data is spread out.(May have outliers)

```
[11]: print(df_aero['Product'].unique())
```

['KP281' 'KP481' 'KP781']

These are 3 products in the dataset.

```
[7]: # Missing values
df_aero.isnull().sum()
```

[7]: Product 0 Age 0 Gender 0 Education 0 0 MaritalStatus Usage 0 Fitness 0 Income 0 Miles dtype: int64

We have zero missing values in the dataset.

[8]: # unique attributes df_aero.nunique()

[8]: Product 3 32 Age Gender 2 Education 8 2 MaritalStatus 6 Usage Fitness5 Income 62 Miles 37 dtype: int64

Income has most of the no of unique values where as gender has least no of unique values

[9]: df_aero.value_counts()

[9]:	Product KP281 1	Age 18	Gender Male	Education	MaritalStatus Single	Usage 3	Fitness 4	Income 29562	Miles 112
	KP481	30	Female	13	Single	4	3	46617	106
	1	31	Female	16	Partnered	2	3	51165	64
	1			18	Single	2	1	65220	21
			Male	16	Partnered	3	3	52302	95
	1								
	 KP281 1	34	Female	16	Single	2	2	52302	66
	-		Male	16	Single	4	5	51165	169
	1	35	Female	16	Partnered	3	3	60261	94
	1			18	Single	3	3	67083	85
	1								
	KP781 1	48	Male	18	Partnered	4	5	95508	180
	NT.			400 11					

Name: count, Length: 180, dtype: int64

Here is a unique thing abut the product KP781 i.e, it is only purchased by the married people and with high income.

3 Visual Analysis

3.1 Univariate Analysis

Understanding the distribution of each attribute - ${\rm Age}$ - ${\rm Education}$ - ${\rm Usage}$ - ${\rm Fitness}$ - ${\rm Income}$ - ${\rm Miles}$

```
fig, axis = plt.subplots(nrows=3, ncols=2, figsize=(12, 10))
fig.subplots_adjust(top=1.2)

sns.histplot(data=df_aero, x="Age", kde=True, ax=axis[0,0])
sns.histplot(data=df_aero, x="Education", kde=True, ax=axis[0,1])
sns.histplot(data=df_aero, x="Usage", kde=True, ax=axis[1,0])
sns.histplot(data=df_aero, x="Fitness", kde=True, ax=axis[1,1])
sns.histplot(data=df_aero, x="Income", kde=True, ax=axis[2,0])
sns.histplot(data=df_aero, x="Miles", kde=True, ax=axis[2,1])
plt.show()
```



```
[21]: fig, axis = plt.subplots(nrows=3, ncols=2, figsize=(12, 10))
fig.subplots_adjust(top=1.2)

sns.boxplot(data=df_aero, x="Age", ax=axis[0,0])
sns.boxplot(data=df_aero, x="Education", ax=axis[0,1])
sns.boxplot(data=df_aero, x="Usage", ax=axis[1,0])
sns.boxplot(data=df_aero, x="Fitness", ax=axis[1,1])
sns.boxplot(data=df_aero, x="Income", ax=axis[2,0])
```

```
sns.boxplot(data=df_aero, x="Miles", ax=axis[2,1])
plt.show()
```


Observations: - As we mentioned above due to high standard deviation, we can see that the Income and Miles have more outliers. - Age, Education, Usage and Fitness are normally distributed and less outliers.

Understanding the Categorical attributes: - Products - Gender - MaritalStatus

```
[24]: fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(20, 6))
    sns.countplot(data=df_aero, x='Product', ax=axs[0],hue='Product')
    sns.countplot(data=df_aero, x='Gender', ax=axs[1], hue='Gender')
    sns.countplot(data=df_aero, x='MaritalStatus', ax=axs[2], hue='MaritalStatus')

axs[0].set_title("Product - counts", pad=10, fontsize=14)
    axs[1].set_title("Gender - counts", pad=10, fontsize=14)
    axs[2].set_title("MaritalStatus - counts", pad=10, fontsize=14)
    plt.show()
```


Obervations - KP281 is the most frequent product. - There are more Males in the data than Females. - More Partnered persons are there in the data.

3.2 Bivariate Analysis

Obervations - Product vs Gender - Equal number of males and females have purchased KP281 product and Almost same for the product KP481 - Most of the Male customers have purchased the KP781 product. - Product vs MaritalStatus - Customer who is Partnered, is more likely to purchase the product.

Checking the effect of numerical attributes on the Product variable. - Age vs Product - Education vs Product - Usage vs Product - Fitness vs Product - Income vs Product - Miles vs Product

• Product vs Age

- Customers purchasing products KP281 & KP481 are having same Age median value.
- Customers whose age lies between 25-30, are more likely to buy KP781 product

• Product vs Education

- Customers whose Education is greater than 16, have more chances to purchase the KP781 product.
- While the customers with Education less than 16 have equal chances of purchasing KP281 or KP481.

• Product vs Usage

- Customers who are planning to use the treadmill greater than 4 times a week, are more likely to purchase the KP781 product.
- While the other customers are likely to purchasing KP281 or KP481.

• Product vs Fitness

- The more the customer is fit (fitness >= 3), higher the chances of the customer to purchase the KP781 product.

- Product vs Income
 - Higher the Income of the customer (Income >= 60000), higher the chances of the customer to purchase the KP781 product. Product vs Miles
 - If the customer expects to walk/run greater than 120 Miles per week, it is more likely that the customer will buy KP781 product.

3.3 Correlation between Variables

```
[52]: df_copy = df_aero.copy(deep=True)
sns.pairplot(df_copy, hue ='Product', palette= 'YlGnBu')
plt.show()
```



```
[54]: df_copy = df_aero.select_dtypes(include='int64')
corr_mat = df_copy.corr()
plt.figure(figsize=(15,6))
```

```
sns.heatmap(corr_mat,annot = True, cmap="YlGnBu")
plt.show()
```


Observations - From the pair plot we can see Age and Income are positively correlated and heatmap also suggests a strong correlation between them - Eductaion and Income are highly correlated as its obvious. Eductation also has significant correlation between Fitness rating and Usage of the treadmill. - Usage is highly correlated with Fitness and Miles as more the usage more the fitness and mileage

4 Computing Probability - Marginal, Conditional Probability

```
[63]: #binning the age values into categories
      bin range1 = [17,25,35,45,float('inf')]
      bin_labels1 = ['Young Adults', 'Adults', 'Middle Aged Adults', 'Elder']
      df_aero['age_group'] = pd.cut(df_aero['Age'],bins = bin_range1,labels =__
       ⇔bin_labels1)
      #binning the education values into categories
      bin_range2 = [0,12,15,float('inf')]
      bin_labels2 = ['Primary Education', 'Secondary Education', 'Higher Education']
      df_aero['edu_group'] = pd.cut(df_aero['Education'],bins = bin_range2,labels =__
       ⇒bin labels2)
      #binning the income values into categories
      bin range3 = [0,40000,60000,80000,float('inf')]
      bin_labels3 = ['Low Income','Moderate Income','High Income','Very High Income']
      df aero['income group'] = pd.cut(df aero['Income'],bins = bin range3,labels = |
       ⇔bin_labels3)
      #binning the miles values into categories
      bin_range4 = [0,50,100,200,float('inf')]
```

```
bin_labels4 = ['Light Activity', 'Moderate Activity', 'Active Lifestyle', |
       ⇔'Fitness Enthusiast ']
      df_aero['miles_group'] = pd.cut(df_aero['Miles'],bins = bin_range4,labels = ___
       ⇔bin labels4)
      df_aero.head()
[63]:
                      Gender
                               Education MaritalStatus Usage Fitness
                                                                          Income \
        Product
                 Age
          KP281
                  18
                        Male
                                      14
                                                 Single
                                                             3
                                                                           29562
          KP281
                                                             2
      1
                  19
                        Male
                                      15
                                                 Single
                                                                       3
                                                                           31836
      2
                      Female
                                             Partnered
                                                             4
          KP281
                  19
                                      14
                                                                       3
                                                                           30699
                                                             3
                                                                       3
      3
          KP281
                  19
                        Male
                                      12
                                                 Single
                                                                           32973
```

Partnered

4

35247

	M · 3			1		• •
	Miles	age_group		edu_group	income_group	miles_group
0	112	Young Adults	Secondary	${\tt Education}$	Low Income	Active Lifestyle
1	75	Young Adults	Secondary	${\tt Education}$	Low Income	Moderate Activity
2	66	Young Adults	Secondary	${\tt Education}$	Low Income	Moderate Activity
3	85	Young Adults	Primary	${\tt Education}$	Low Income	Moderate Activity
4	47	Young Adults	Secondary	${\tt Education}$	Low Income	Light Activity

13

```
[77]: df1 = df_aero[['Product', 'Gender', 'MaritalStatus']].melt() df1.groupby(['variable', 'value'])[['value']].count() / len(df_aero)
```

[77]:			value
	variable	value	
	Gender	Female	0.42222
		Male	0.577778
	${\tt MaritalStatus}$	Partnered	0.594444
		Single	0.405556
	Product	KP281	0.44444
		KP481	0.333333
		KP781	0.22222

Observations:

4

KP281

20

Male

Product: - 44.44% of the customers have purchased the KP281 product. - 33.33% of the customers have purchased the KP481 product. - 22.22% of the customers have purchased the KP781 product.

Gender: - 57.78% of the customers are male.

Marital Status: - 59.44% of the customers are partnered.

These observations provide insights into the distribution of purchases among different products, genders, and marital statuses. They can help in understanding customer preferences and behavior, which can be valuable for marketing and product development strategies.

4.0.1 Probability of a customer purchasing a product w.r.t to gender

```
[55]: pd.crosstab(index =df_aero['Product'],columns = df_aero['Gender'],margins = 

→True,normalize = True ).round(2)
```

```
[55]: Gender Female Male All Product

KP281 0.22 0.22 0.44

KP481 0.16 0.17 0.33

KP781 0.04 0.18 0.22

All 0.42 0.58 1.00
```

4.0.2 Insights

1. Probability of Treadmill Purchase by Gender:

Female: 42%Male: 58%

- 2. Conditional Probability of Treadmill Purchase by Gender:
 - Female Customers:

KP281: 22%KP481: 16%KP781: 4%

• Male Customers:

KP281: 22%KP481: 17%KP781: 18%

4.0.3 Probability of a customer purchasing a product w.r.t to marital status

```
[56]: MaritalStatus Partnered Single All Product

KP281 0.27 0.18 0.44 KP481 0.20 0.13 0.33 KP781 0.13 0.09 0.22 All 0.59 0.41 1.00
```

4.0.4 Insights

- 1. Probability of Treadmill Purchase by Marital Status:
 - Partnered: 59%
 - Single: 41%
- 2. Conditional Probability of Treadmill Purchase by Marital Status:
 - Partnered Customers:

- KP281: 27%
- KP481: 20%
- KP781: 13%
- Single Customers:
 - KP281: 17%
 - KP481: 13%
 - KP781: 10%

4.0.5 Probability of a customer purchasing a product w.r.t to income

```
[64]: pd.crosstab(index =df_aero['Product'],columns = df_aero['income_group'],margins

→= True,normalize = True ).round(2)
```

[64]:	income_group	Low Income	Moderate Income	High Income	Very High Income	All
	Product					
	KP281	0.13	0.28	0.03	0.00	0.44
	KP481	0.05	0.24	0.04	0.00	0.33
	KP781	0.00	0.06	0.06	0.11	0.22
	All	0.18	0.59	0.13	0.11	1.00

4.0.6 Insights

- 1. Probability of Treadmill Purchase by Income Level:
 - Low Income (<40k): 18%
 - Moderate Income (40k 60k): 59%
 - High Income (60k 80k): 13%
 - Very High Income (>80k): 11%
- 2. Conditional Probability of Treadmill Purchase by Income Level:
 - Low Income (<40k):
 - KP281: 13%
 - KP481: 5%
 - KP781: 0%
 - Moderate Income (40k 60k):
 - KP281: 28%
 - KP481: 24%
 - KP781: 6%
 - High Income (60k 80k):
 - KP281: 3%
 - KP481: 4%
 - KP781: 6%
 - Very High Income (>80k):
 - KP281: 0%
 - KP481: 0%
 - KP781: 11%

4.0.7 Probability of a customer purchasing a product w.r.t to usage

```
[65]: pd.crosstab(index =df_aero['Product'],columns = df_aero['Usage'],margins = 

→True,normalize = True ).round(2)
```

```
[65]: Usage
                                                 All
     Product
     KP281
              0.11 0.21
                         0.12 0.01
                                   0.00
                                         0.00
                                                0.44
     KP481
              0.08 0.17
                         0.07
                               0.02 0.00 0.00 0.33
     KP781
              0.00 0.01
                         0.10 0.07
                                    0.04 0.01 0.22
     All
              0.18  0.38  0.29  0.09  0.04  0.01  1.00
```

4.0.8 Insights

- 1. Probability of Treadmill Purchase by Weekly Usage:
 - Usage 2 per week: 18%
 - Usage 3 per week: 38%
 - Usage 4 per week: 29%
- 2. Conditional Probability of Treadmill Purchase by Weekly Usage:
 - Usage 2 per week:
 - KP281: 11%
 - KP481: 8%
 - KP781: 0%
 - Usage 3 per week:
 - KP281: 21%
 - KP481: 17%
 - KP781: 1%
 - Usage 4 per week:
 - KP281: 12%
 - KP481: 7%
 - KP781: 10%

4.0.9 Probability of a customer purchasing a product w.r.t to fitness

```
[67]: pd.crosstab(index =df_aero['Product'],columns = df_aero['Fitness'],margins = 

→True,normalize = True ).round(2)
```

```
[67]: Fitness
                            3
                                  4
                                       5
                                           All
     Product
     KP281
              0.01 0.08 0.30 0.05 0.01 0.44
     KP481
              0.01
                   0.07
                         0.22
                               0.04
                                    0.00 0.33
     KP781
              0.00 0.00
                         0.02
                               0.04
                                    0.16 0.22
                         0.54 0.13 0.17
     All
              0.01 0.14
```

4.0.10 Insights

- 1. Probability of Treadmill Purchase by customer with Fitness:
 - **Fitness 2,3,4,5:** 15%(almost)

- Fitness 3:54%
- Fitness 1: 1%
- 2. Conditional Probability of Treadmill Purchase by customer with Fitness:
 - Fitness 3:
 - KP281: 30%
 - KP481: 22%
 - KP781: 2%

4.0.11 Probability of a customer purchasing a product w.r.t to miles

```
[68]: pd.crosstab(index =df_aero['Product'],columns = df_aero['miles_group'],margins⊔

⇒= True,normalize = True ).round(2)
```

[68]: miles_group Product	Light Activity	Moderate Activity	Active Lifestyle	\
KP281	0.07	0.28	0.10	
KP481	0.03	0.22	0.08	
KP781	0.00	0.04	0.15	
A11	0.09	0.54	0.33	

miles_group	Fitness	Enthusiast	All
Product			
KP281		0.00	0.44
KP481		0.01	0.33
KP781		0.03	0.22
All		0.03	1.00

4.0.12 Insights

- 1. Probability of Treadmill Purchase by Lifestyle:
 - Light Activity (0 to 50 miles/week): 9%
 - Moderate Activity (51 to 100 miles/week): 54%
 - Active Lifestyle (100 to 200 miles/week): 33%
 - Fitness Enthusiast (>200 miles/week): 3%
- 2. Conditional Probability of Treadmill Purchase by Lifestyle:
 - Light Activity (0 to 50 miles/week):
 - KP281: 7%
 - KP481: 3%
 - KP781: 0%
 - Moderate Activity (51 to 100 miles/week):
 - KP281: 28%
 - KP481: 22%
 - KP781: 4%
 - Active Lifestyle (100 to 200 miles/week):
 - KP281: 10%
 - KP481: 8%
 - KP781: 15%
 - Fitness Enthusiast (>200 miles/week):

KP281: N/AKP481: N/AKP781: N/A

4.0.13 Probability of a customer purchasing a product w.r.t to Age

```
[69]: pd.crosstab(index =df_aero['Product'],columns = df_aero['age_group'],margins = 

∴True,normalize = True ).round(2)
```

```
[69]: age_group
                 Young Adults Adults Middle Aged Adults
                                                                    All
      Product
      KP281
                         0.19
                                 0.18
                                                      0.06
                                                             0.02 0.44
      KP481
                         0.16
                                 0.13
                                                      0.04
                                                             0.01 0.33
      KP781
                         0.09
                                 0.09
                                                      0.02
                                                             0.01 0.22
                                                      0.12
                                                             0.03 1.00
      All
                         0.44
                                 0.41
```

4.0.14 Insights

- 1. Probability of Treadmill Purchase by Age Group:
 - Young Adult (18-25): 44%
 - Adult (26-35): 41%
 - Middle Aged (36-45): 12%
 - Elder (Above 45): 3%
- 2. Conditional Probability of Treadmill Purchase by Age Group:
 - Young Adult (18-25):
 - KP281: 19%
 - KP481: 16%
 - KP781: 9%
 - Adult (26-35):
 - KP281: 18%
 - KP481: 13%
 - KP781: 9%
 - Middle Aged (36-45):
 - Not provided
 - Elder (Above 45):
 - Not provided

These probabilities suggest that young adults (18-25) and adults (26-35) are more likely to purchase a treadmill compared to middle-aged and elderly individuals. The choice of treadmill model also varies among age groups, with different models being more popular among different age groups.

4.0.15 Probability of a customer purchasing a product w.r.t to Education

```
[70]: pd.crosstab(index =df_aero['Product'],columns = df_aero['edu_group'],margins = 

→True,normalize = True ).round(2)
```

[70]: edu_group Primary Education Secondary Education Higher Education All Product

KP281	0.01	0.21	0.23	0.44
KP481	0.01	0.14	0.18	0.33
KP781	0.00	0.01	0.21	0.22
All	0.02	0.36	0.62	1.00

4.0.16 Insights

- 1. Probability of Treadmill Purchase by Education Level:
 - Primary Education (0 to 12 years): 2%
 - Secondary Education (13 to 15 years): 36%
 - Higher Education (Above 15 years): 62%
- 2. Conditional Probability of Treadmill Purchase by Education Level:
 - Primary Education (0 to 12 years):
 - KP281: N/A
 - KP481: N/A
 - KP781: N/A
 - Secondary Education (13 to 15 years):
 - KP281: 21%
 - KP481: 14%
 - KP781: 1%
 - Higher Education (Above 15 years):
 - KP281: 23%
 - KP481: 18%
 - KP781: 21%

5 Customer Profiling

- 1. KP281 Treadmill:
 - Age: Mainly between 18 to 35 years with few between 35 to 50 years
 - Education Level: 13 years and above
 - Annual Income: Below USD 60,000
 - Weekly Usage: 2 to 4 times
 - Fitness Scale: 2 to 4
 - Weekly Running Mileage: 50 to 100 miles
- 2. KP481 Treadmill:
 - Age: Mainly between 18 to 35 years with few between 35 to 50 years
 - Education Level: 13 years and above
 - Annual Income: Between USD 40,000 to USD 80,000
 - Weekly Usage: 2 to 4 times
 - Fitness Scale: 2 to 4
 - Weekly Running Mileage: 50 to 200 miles
- 3. KP781 Treadmill:
 - Gender: Male
 - Age: Between 18 to 35 years
 - Education Level: 15 years and above
 - Annual Income: USD 80,000 and above
 - Weekly Usage: 4 to 7 times

• Fitness Scale: 3 to 5

• Weekly Running Mileage: 100 miles and above

6 Recommendations

1. Marketing Strategy:

- Targeted marketing campaigns should be designed to attract young adults and adults, especially those with higher education and moderate income levels.
- Product KP781 should be marketed for more females as product is popular among males but not in females.
- The company should also focus on low fitness level customer because they can be the potential customers for the future, if they advertise there product correctly.

2. Product Development:

- The company should focus on developing more advanced and high-end treadmills to cater to the needs of fitness enthusiasts with higher income levels.
- The company should also consider developing more affordable models for customers with moderate income levels.

3. Customer Engagement:

- The company should engage with customers to understand their needs and preferences, and use this information to improve existing products and develop new ones.
- The company should also provide personalized recommendations and offers to customers based on their demographics, usage patterns, and fitness levels

4. Sales Strategy:

- The company should focus on customer with low income and moderate fitness level as they are the potential customers for the future.
- The company should also focus on the customers who are using the treadmill 2-3 times a week as they are the potential customers for the future.
- The company also need to understand there regular customer so they can recommend the product to other users and it saves comapny's marketing cost.