אינפי 2 - דף עזר בנושא גזירות של פונקציות של שני משתנים

 $u=(u_1,u_2)$ נגזרת מכוונת בכיוון ו היא: $u=(u_1,u_2)$ יהא האדרה: יהא יהא $u=(u_1,u_2)$ יחידה:

$$\frac{\partial f}{\partial u}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + hu_1, y_0 + hu_2) - f(x_0, y_0)}{h}$$

(בתנאי שהגבול קיים).

u=(1,0) או u=(0,1) או מקרה פרטי עבור מקרה איא מקרה מלית חלקית

$$\begin{split} \frac{\partial f}{\partial x}(x_0, y_0) &= \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h} \\ \frac{\partial f}{\partial y}(x_0, y_0) &= \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h} \end{split}$$

A,B מדרה: f(x,y) אם קיימים קבועים f(x,y) הגדרה (דיפרנציאבילית) בנקודה f(x,y) אם קיימים קבועים $f(x_0,y_0)+Ah+Bk+\alpha(h,k)\sqrt{h^2+k^2}$: h,k אלכל אלכל $\alpha(h,k)$. $\alpha(h,k)$

<u>: משפטים</u>

- . בה. בנקודה (x_0,y_0) אז היא רציפה בה גזירה גזירה אם f(x,y) אז היא רציפה בה.
- : אז יש לה בה נגזרות חלקיות, ומתקיים f(x,y) אז יש לה בה נגזרות גזירה בנקודה .2

$$A = \frac{\partial f}{\partial x}(x_0, y_0), B = \frac{\partial f}{\partial y}(x_0, y_0)$$

- נגזרות אלה רציפות בנקודה (x_0,y_0) אם לf(x,y) יש נגזרות חלקיות בסביבת (x_0,y_0) אז ונגזרות אלה בנקודה (x_0,y_0) אז ווירה בנקודה (f(x,y)) אז ירה בנקודה (f(x,y))
- בכיוון f(x,y) אם f(x,y) גזירה בנקודה f(x,y), אז הנגזרת המכוונת של f(x,y) בכיוון $u=(u_1,u_2)$

$$\frac{\partial f}{\partial u}(x_0,y_0) = u_1 \frac{\partial f}{\partial u}(x_0,y_0) + u_2 \frac{\partial f}{\partial y}(x_0,y_0)$$

. ∇f - מימון f ומסומן הגרדיאנט לקרא ($\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}$) טימון יהווקטור סימון (קרא הגרדיאנט של

. בסימון זה, משפט 4 ינוסח: f גזירה $\nabla f \cdot \vec{u} \leftarrow \frac{\partial f}{\partial \vec{u}}$ (מכפלה סקלרית).

 $\frac{\partial^2 f}{\partial x \partial y}, \frac{\partial^2 f}{\partial y \partial x}$ מוגדרת בסביבה, וקיימות $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$, (x_0, y_0) מוגדרת בסביבת f(x, y) סוגדרת בסביבת בסביבת אם 5.5

. בסביבת הנקודה (x_0,y_0), והן רציפות, אז הן שוות

. גזירות. x(t),y(t) כאשר השרשרת: תהא הירה. נסמן: f(x,y) גזירה. נסמן: f(x,y) כאשר 6.

$$F'(t) = \frac{\partial f}{\partial x} x'(t) + \frac{\partial f}{\partial y} y'(t)$$
 אזי $F'(t) = \frac{\partial f}{\partial x} x'(t) + \frac{\partial f}{\partial y} y'(t)$

. הכללה g(x,y), x(u,v), y(u,v) פונקציות גזירות

- נסמן G אזי G(u,v)=g(x(u,v),y(u,v)) . נסמן

$$\frac{\partial G}{\partial u} = \frac{\partial g}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial g}{\partial y} \frac{\partial y}{\partial u}$$
$$\frac{\partial G}{\partial y} = \frac{\partial g}{\partial x} \frac{\partial x}{\partial y} + \frac{\partial g}{\partial y} \frac{\partial y}{\partial y}.$$