IT550: Information Retrieval

Assignment 9: Recommendation System

Instructor: Prasenjit Majumder

Learning Outcome: At the end of this assignment you will learn using Collaborative filtering on a rating matrix to perform recommendations

1 Problem description

Recommendation system is used to recommend items to user. We focus on collaborative filtering (user and item based) in this assignment.

- User based Collaborative Filtering
 - 1. In this technique the similarity between the target user and the other users are calculated.
 - 2. The top K similar users are considered
 - 3. The missing rating of the item is then calculated by taking a weighted average of the ratings given by the other users and weights are the similarity scores that we calculated earlier
- Item based Collaborative Filtering
 - 1. In this technique the similarity between the target item and other items are calculated
 - 2. The top K similar items are considered
 - 3. The missing rating of the item is then calculated by taking a weighted average of the ratings of the similar items and weights are the similarity scores that we calculated earlier

2 Implementation

2.1 Dataset

- For this assignment we will make use of MovieLens 100K dataset. It consists of 100,000 ratings from 1000 users on 1700 movies.
- The dataset is directly downloaded by the Surprise API which has been shown in the references.

2.2 Exercise

- We will be using Surprise API (http://surpriselib.com/) which has basic implementations of all memory based recommendation algorithms.
- \bullet Split the dataset in train and test (80:20 ratio).
- Use user based collaborative filtering and perform 5 fold cross validation to train your algorithm, Use RMSE for evaluating each fold.
- Now evaluate your algorithm on the test data. Evaluate using accuracy
- Use item based collaborative filtering and perform 5 fold cross validation to train your algorithm, Use RMSE for evaluating each fold.
- Now evaluate your algorithm on the test data. Evaluate using accuracy.

3 References

- http://surpriselib.com/
- $\bullet \ \, \text{https://surprise.readthedocs.io/en/stable/knn_inspired.html\#surprise.prediction_algorithms.} \\ \text{knns.KNNBasic}$
- https://surprise.readthedocs.io/en/stable/getting_started.html

4 Submission

- You have to submit your assignment in notebook with proper comments and explanation of your approach.
- Show the scores for all the approaches clearly.
- \bullet The submission deadline for this assignment in 18th April 2021 at 11 PM