第七章 核外遗传

□核外遗传: 受细胞质内遗传物质控制的遗传现象, 称为核外遗传, 又称细胞质遗传(质遗传)。

□细胞核遗传:受细胞核内遗传物质控制的遗传 现象,称为细胞核遗传(核遗传)。

■ 核外遗传的特点

- ✓ 遗传物质通过细胞质从亲代传给子代;
- ✓ 正交和反交的遗传表现不同;
- ✓ 由细胞质中附加体决定的性状,其表现往往类似 病毒的转导或感染,即可传递给其它细胞;
- ✓ 基因定位困难: 非孟德尔遗传;

本章主要内容

- 母性影响
- 核外遗传举例
- 核外遗传与植物雄性不育性

母性影响

□母性影响:母体中核基因的某些产物积累在 卵细胞的细胞质中,使子代的表型不由自身 的基因所决定,而是由母本核基因决定的一 种遗传现象。

由于受控于核基因组,所以母性影响并 不属于细胞质遗传的范畴

■ 短暂的母性影响

例: 欧洲麦蛾肤色/眼色的遗传

野生型(A): 幼虫皮肤有色,成虫眼睛深褐色; 突变型(a): 幼虫皮肤无色,成虫眼睛红色;

- ✓ AA与aa杂交时,无论正交还是反交,子一代Aa 幼虫皮肤都为有色,成虫眼睛都为深褐色;
- \checkmark F_1 杂合体(Aa)与隐性纯合体的正反交结果不一样;

褐眼

红眼

原因: A基因产物(色素物质)在细胞质中,因此, ♀Aa的A产物在受精卵细胞质中积累,使幼虫表现为有色,但其子代aa个体无A基因,发育中细胞质中的A产物消耗完,成体为红眼。

红眼

成虫:

褐眼

■ 持久的母性影响

例: 椎实螺的外壳旋转方向的遗传

椎实螺是一种♀、♂同体的软体动物,即可进行异体杂交、又可进行自体受精进行繁殖。

外壳的旋转方 向有左旋和右 旋之分,属于 一对相对性状。

椎实螺

左旋(d)隐性 右旋(D)显性

特点: 子代表型受母体基因型控制,不按自己的基因型发育,而是按母本的基因型发育,自己的基因型推迟一代表现;

原因: 外壳旋转方向取决于第一次卵裂时纺锤体的取向, 而纺锤体的取向又取决于受精卵中细胞质的性质, 受精 卵中细胞质的性质是由母本基因型(卵母细胞)决定的; 母本基因型→受精卵中细胞质的性质→第一次 卵裂时纺锤体的取向→外壳旋转方向

母本基因型 → 子代外壳旋转方向

本章主要内容

- 母性影响
- 核外遗传举例
- 核外遗传与植物雄性不育性

核外遗传举例

- ✓ 线粒体的遗传
- ✓ 叶绿体的遗传
- ✓ 细胞内敏感物质的遗传

■ 线粒体(mitochondrion)的遗传

mtDNA的结构

- 1) 较小(植物大于动物),双链,裸露,多为环状DNA;
- 2) 一个细胞内有多个线粒体,一个线粒体有多个mtDNA分子;
- 3) mtDNA的复制方式也为半保留复制;
- 4) mtDNA的复制与核DNA的复制相对独立;
- 5) mtDNA含编码与呼吸作用相关的酶和蛋白质基因;

几种生物的mtDNA

物种	每细胞中线 粒体数	mtDNA 大小(kb)	mtDNA与核 DNA比值
酿酒酵母	22	84	0.18
鼠(L细胞)	500	16.2	0.002
人(Hela细胞)	800	16.4	0.01

线粒体的转录与翻译

✓ mtDNA含有一部分自身蛋白质、rRNA、tRNA的编码 基因,并拥有自身的一组密码子(大部分与核相同);

ぬロフ	√m P4 1 2 2	线粒体		
密码子 细胞核		哺乳动物	植物	酵母
UGA	终止	色	终止	色
AGA	精	终止	精	精
AGG	竹月	%IL	竹月	竹月
AUA	异亮	甲硫	异亮	异亮
AUU	异亮	甲硫	异亮	甲硫
CGG	精	精	色和精	精

线粒体的转录与翻译

- ✓ 线粒体的遗传装置能够单独完成DNA复制、基因转录、 蛋白质合成和基因重组,并拥有自身的核糖体;
- ✓ 参与mtDNA复制、转录、翻译及基因表达调控的很多 蛋白质来自核基因编码,对核基因具有一定的依赖性;

线粒体是半自主性的,受核和线粒体 两套遗传系统的共同控制

人类线粒体基因组

例:酵母小菌落的遗传

小菌落酵母细胞缺少细胞色素a、b和细胞色素氧化酶→不能有氧呼吸→不能有效利用有机物→产生小菌落

A和a代表不同的交配型

小菌落突变株的三种类型

分离型小菌落(segregational petite): 核基因突变

中性型小菌落(neutral petite) (p0): mtDNA大部分丧失

抑制型小菌落(suppressive petite) (p): mtDNA产生抑制基因

与野生型mtDNA (p+)杂交:

分离型小菌落:野生型:小菌落=1:1

中性型小菌落 (p^0) : $p^+ \times p^0$: 野生型:小菌落 = 4:0

抑制型小菌落 $(p^{-}): p^{+} \times p^{-}:$ 野生型:小菌落 = 0:4

分离型小菌落: 核基因突变导致线粒体有氧呼吸所需蛋白缺陷

中性型小菌落: mtDNA大范围缺陷, 甚至缺失

抑制型小菌落: mtDNA突变产生抑制基因

■ 叶绿体(chloropast)的遗传

cpDNA的结构

- 1) 120~200 kb, 双链环状DNA, 裸露;
- 2) 一个细胞含有一个或上百个叶绿体,一个叶绿体有 多个cpDNA分子;
- 3) 含有有两个大的反向重复序列;
- 4) cpDNA的复制方式也为半保留复制;
- 5) cpDNA的复制与核DNA的复制相对独立;
- 6) cpDNA含编码与光合作用相关的酶和蛋白质基因;

叶绿体的转录与翻译

- ✓ cpDNA含有一部分自身蛋白质、rRNA、tRNA的编码基因,并且密码子与核密码子相同;
- ✓ 叶绿体的遗传装置能够单独完成DNA复制、基因转录、蛋白质合成,并拥有自身的核糖体;
- ✓蛋白由自身编码、核基因编码和二者共同编码,因 此对核基因具有一定的依赖性;

叶绿体是半自主性的,受核和叶绿体 两套遗传系统的共同控制

例一: 紫茉莉花斑性状的遗传

紫茉莉花 斑植株着生有 绿色、白色和 花斑三种枝条。

1909年,德国生物学家柯伦斯(Carl Corrans)

柯伦斯杂交试验

接受花粉的枝条	提供花粉的枝条	杂种植株的表现	
白色	白色、绿色、花斑	白色	
绿色	白色、绿色、花斑	绿色	
花斑	白色、绿色、花斑	白色、绿色、花斑 (不成比例)	

规律: 杂种植株的表现完全由母本枝条决定,与提供 花粉的父本无关。

原因

细胞学研究表明:

绿细胞中含有正常的叶绿体

白细胞中只含白色体无叶绿体

绿白组织交界区域:某些细胞内既有叶绿体又有白色体

受精时,由于精子几乎没有细胞质,所以枝条的颜色 完全由卵细胞(母本)的细胞质决定

- ✓ 绿色枝条产生的卵细胞中只有叶绿体,因而受精卵中只有叶绿体,子代均为绿色枝条。
- ✓ 白色枝条产生的卵细胞中只有白色体,因而受精卵中只有白色体,子代均为白色枝条。

例二: 衣藻的核外遗传(1954年Ruth Sager等)

野生型是链霉素-敏感型(sms)。

Mt 代表交配型,不同交配型间可以杂交:

 $sm^rMt^+ \times sm^sMt^- \rightarrow$ 全部后代(>95%) sm^r

 $sm^sMt^+ \times sm^rMt^- \rightarrow$ 全部后代(>95%) sm^s

原因: Mt^+ 中存在限制-修饰酶系,使来自 Mt^- 的cpDNA降解

■ 细胞内敏感物质的遗传

例:草履虫放毒型的遗传

草履虫(Paramecium aurelia)是一种常见的原生动物,种类很多;

- ✓ 大核(1个): 多倍体,主要负责营养;
- ✓ 小核(2个): 二倍体、主要 负责遗传;

草履虫的繁殖:

(1). 无性生殖: 一个个体经有丝分裂成两个个体。

(2). 有性生殖:接合生殖和自体受精

接合生殖 **2**n **2**n **2**n 两次有 丝分裂 接合,两二倍体小核 两小核融合 两个单倍体小核融合 进行两次减数分裂变 为一个大核 为一个二倍体小核 为8个单倍体小核 **2**n n n 大核和随机7个单倍 双方互换1个小核 体小核解体消失 剩下的1个小 n 核再进行一 次有丝分裂

接合生殖 两次有 AA aa 丝分裂 Aa 4Aa 4Aa Aa + + AA aa 接合,两二倍体小核 两小核融合 两个单倍体小核融合 进行两次减数分裂变 为一个大核 为一个二倍体小核 为8个单倍体小核 **2**n **4A 4a** A Aa Aa A + ++ + + +**4A 4a** Aa Aa a a 大核和随机7个单倍 双方互换1个小核 体小核解体消失 X AA aa 剩下的1个小 核再进行一 A a 次有丝分裂 A a + + Aa Aa A a

草履虫放毒型遗传:

卡巴粒:位于细胞质,内含DNA,含有毒素基因

K基因: 位于核内, 维持卡巴粒的稳定

放毒型: KK(Kk) + 卡巴粒

放毒型可以产生毒素杀死无毒的敏感型

长时接合

刚开始时是 放 毒 型 , 5~8 代 后 变 为敏感型 卡巴粒的稳定依赖于核基因K的存在, 因此,卡巴粒所携带的基因的遗传方式 是一种核质互作遗传;

本章主要内容

- 母性影响
- 核外遗传举例
- 核外遗传与植物雄性不育性

核外遗传与植物雄性不育性

雄性不育的特征是雄蕊发育不正常,不能产生有功能的花粉(雄配子),但其雌蕊发育正常,能接受正常花粉而受精结实。

杂种优势

母本

F₁杂交种

父本

在农业生产中,经常利用杂交获取杂种优势,以快速有效的提高作物的经济特性。但很多主要的农作物(如水稻)均为雌雄同体,多数情况下更偏向于自交,从而限制了杂种优势的利用。

天然的<mark>雄性不育植株(系)</mark>则能够有效阻断自 交,为杂交提供了条件。

■ 植物雄性不育性的类别

✓ 质不育型: 由细胞质中的基因决定不育

特点:不育性只能被保持而不能被恢复

✓ 核不育型: 由细胞核中的基因决定不育

遗传研究表明:

多数核不育型均受简单的一对隐性基因(msms) 所控制,纯合体(msms)表现为雄性不育。

这种不育性能被相对显性基因Ms所恢复,杂合体(Msms)后代呈简单的孟德尔式的分离。

✓ 核不育型: 由细胞核中的基因决定不育

用普通遗传学的方法不能使整个群体保持这 种不育性,这是核不育型的一个重要特征。

特点:不育性只能被恢复而不能被保持

目前发现的光、温敏核不育材料提供了一种解决上述问题的可能性:

水稻光敏核不育材料:

长日照条件下为不育(>14h,制种) 短日照条件下为可育(<14h,繁种)

水稻温敏核不育材料:

- > 28°C为不育(制种)
- < 23-24 ℃为可育(繁种)

✓ 质-核不育型:由细胞质基因和细胞核基因互作控制的不育类型。

遗传特点:

和胞核 { 可育基因为R

遗传特点:无论细胞质还是细胞核,只要存在可育等 位基因则表现为可育,因此不育系的基因型为S(rr)。

不育系S(rr) 存在以下两种杂交情况:

S(RR)和N(RR)能够恢复S(rr)的育性,因此称为恢复系(R)。

不育系S(rr) 存在以下两种杂交情况:

能够保持S(rr)不育性的N(rr)称为保持系(B)。

■二区三系制种法

三系: ①雄性不育系、②保持系、③恢复系

二区: ①制种区

②不育系-保持系繁殖区(繁种区)

制种区

繁种区

二区三系配套制种图示

繁种区

制种区