MA362 — 复分析

Assignment 6

Instructor: 姚卫红

Author: 刘逸灏 (515370910207)

— SJTU (Fall 2019)

习题 四(一)/9

设 z_0 是函数 f(z) 的 m 阶零点, 又是 g(z) 的 n 阶零点, 试问下列函数在 z_0 处具有何种性质?

- (1) f(z) + g(z);
- (2) $f(z) \cdot g(z)$;
- (3) $\frac{f(z)}{g(z)}$.

设

$$f(z) = (z - z_0)^m \varphi(z), \quad g(z) = (z - z_0)^n \psi(z),$$

其中 $\varphi(z)$, $\psi(z)$ 在点 z_0 的邻域 $|z-z_0| < R$ 内解析, 且 $\varphi(z_0)$, $\psi(z_0) \neq 0$.

(1)

设 $p = \min\{m, n\}$

$$f(z) + g(z) = (z - z_0)^m \varphi(z) + (z - z_0)^n \psi(z) = (z - z_0)^p \chi(z),$$

$$\chi(z) = (z - z_0)^{m-p} \varphi(z) + (z - z_0)^{n-p} \psi(z).$$

由 m-p=0 或 n-p=0 至少有一个成立,可得 $\chi(z_0)=\varphi(z_0)$ 或 $\psi(z_0)\neq 0$,且 $\chi(z)$ 在点 z_0 的邻域 $|z-z_0|< R$ 内解析,故 z_0 是函数的 $\min\{m,n\}$ 阶零点.

(2)

$$f(z) \cdot g(z) = (z - z_0)^{m+n} \varphi(z) \psi(z).$$

 $\varphi(z_0)\psi(z_0) \neq 0$, 且 $\varphi(z)\psi(z)$ 在点 z_0 的邻域 $|z-z_0| < R$ 内解析, 故 z_0 是函数的 m+n 阶零点.

(3)

$$\frac{f(z)}{g(z)} = (z - z_0)^{m-n} \frac{\varphi(z)}{\psi(z)}.$$

当 m>n 时, $\frac{\varphi(z_0)}{\psi(z_0)}\neq 0$,且 $\frac{\varphi(z)}{\psi(z)}$ 在点 z_0 的邻域 $|z-z_0|< R$ 内解析,故 z_0 是函数的 m-n 阶零点.

1

当 m=n 时, $\frac{f(z)}{g(z)}=\frac{\varphi(z)}{\psi(z)}$, 故 z_0 没有特别性质.

当 m < n 时, 函数在 z_0 处无定义, z_0 为间断点.

四(一)/10 习题

设 z_0 为解析函数 f(z) 的至少 n 阶零点, 又为解析函数 $\varphi(z)$ 的 n 阶零点, 则 (试证)

$$\lim_{z \to z_0} \frac{f(z)}{\varphi(z)} = \frac{f^{(n)}(z_0)}{\varphi^{(n)}(z_0)} \quad (\varphi^{(n)}(z_0) \neq 0).$$

设

$$f(z) = (z - z_0)^m g(z), \quad \varphi(z) = (z - z_0)^n \psi(z), \quad m \geqslant n,$$
 $g(z_0) = \frac{f^{(m)}(z_0)}{m!}, \quad \psi(z_0) = \frac{\varphi^{(n)}(z_0)}{n!},$

其中 g(z), $\psi(z)$ 在点 z_0 的邻域 $|z-z_0| < R$ 内解析, 且 $g(z_0)$, $\psi(z_0) \neq 0$.

$$\lim_{z \to z_0} \frac{f(z)}{\varphi(z)} = \lim_{z \to z_0} (z - z_0)^{m-n} \frac{g(z)}{\psi(z)} = \frac{g(z_0)}{\psi(z_0)} \lim_{z \to z_0} (z - z_0)^{m-n}.$$

当 m > n 时

$$f^{(n)}(z_0) = 0$$
, $\lim_{z \to z_0} \frac{f(z)}{\varphi(z)} = \frac{f^{(n)}(z_0)}{\varphi^{(n)}(z_0)} = 0$.

当 m = n 时

$$\lim_{z \to z_0} \frac{f(z)}{\varphi(z)} = \frac{g(z_0)}{\psi(z_0)} = \frac{f^{(n)}(z_0)}{\varphi^{(n)}(z_0)}.$$

四(-)/11习题

在原点解析, 而在 $z=\frac{1}{n}(n=1,2,\cdots)$ 处取下列各组值的函数是否存在:

(2)
$$0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{6}, \cdots;$$

(4) $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \cdots.$

$$(4)$$
 $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, $\frac{5}{6}$, ...

(2)

若存在函数 f(z) 在 z=0 解析且满足 $f\left(\frac{1}{2k-1}\right)=0 (k=1,2,\cdots)$,因零点列 $\left\{\frac{1}{2k-1}\right\}$ 以 z=0为极限点,故由唯一性定理知,在 z=0 的邻域内 $f(z)\equiv 0$,这与题设 $f\left(\frac{1}{2k}\right)=\frac{1}{k}\neq 0$ 矛盾,故不存 在.

(4)

设

$$f\left(\frac{1}{z}\right) = \frac{z}{z+1}, \quad f(z) = \frac{1/z}{1/z+1} = \frac{1}{z+1}.$$

f(z) 在原点 z=0 解析, 故满足题设条件.

习题 四 (一)/12

设

- (1) f(z) 在区域 D 内解析;
- (2) **在某一点** z₀ ∈ D, 有

$$f^{(n)}(z_0) = 0, \quad n = 1, 2, \cdots$$

试证 f(z) 在 D 内必为常数.

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n = f(z_0), \quad z \in B(z_0, R) \subset D.$$

设 $g(z) = f(z_0)$, 则 f(z) 和 g(z) 都在 D 内解析, 且在 D 内的子区域 $B(z_0, R)$ 相等. 根据唯一性定理和其推论可知 $f(z) = g(z) = f(z_0)$, 故 f(z) 在 D 内必为常数.