STAT 244 HOMEWORK 6

Question 1

Suppose *X* follows a geometric distribution with parameter *p*.

1. Derive the likelihood ratio for testing the hypothesis $p = p_0$ versus the alternative $p \neq p_0$.

THE variable *X* has PMF given

$$p(X = x) = p(1 - p)^{x-1}$$
, $x = 1, 2, ...$

We have a composite hypothesis a generalized likelihood ratio test is in order.

$$\Lambda = \frac{\max_{p \in w_0} [L(p)]}{\max_{p \in \Omega} [L(p)]}$$

Where the rejection region consists of small values for Λ . In this case $w_0 = \{p_0\}$ and $\Omega = \{0$

$$\max_{p \in w_0} [L(p)] = p_0 (1 - p_0)^{x - 1}.$$

For the denomitor we have to maximize the likelihood for $p \in \Omega$. Which is the mle of $f(x \mid p) = p(1-p)^x$, $\hat{p} = \frac{1}{\overline{x}}$. Which makes

$$\max_{p \in \Omega} [L(p)] = \frac{1}{\overline{X}} \left(1 - \frac{1}{\overline{X}} \right)^{x-1}.$$

Therefore

$$\Lambda = \frac{\overline{X}p_0(1 - p_0)^{x - 1}\overline{X}^{x - 1}}{(\overline{X} - 1)^{x - 1}}$$

Which is the generalized likelihood ratio that will test the hypothesis.

2. For $p_0 = 0.01$, by some combination of numerical experimentation and mathematical analysis, find the set of possible valyes of *x* for X for which the likelihood ratio is less than 0.1.

EVALUATING Λ for a few values of X yields.

Hence for $x \le 4$ we have likelihood ratio less than 0.1.

It's important to note that I've set this up observing only 1 *X*, otherwise this would look slightly different, in fact I will end up replacing x for \overline{X} soon.

Table 1: GLR

3. Find the probability of Type 1 error for the test the rejects $p_0 = 0.01$ when the likelihood ratio is less than 0.1. Find the power of this test when p = 0.5. Find the power of ths test when p = 0.001.

Question 2 Rice 9.12

Let $X_1, ..., X_n$ be a random sample from an exponential distribution with the density function $f(x \mid \theta) = \theta e^{-\theta x}$. Derive a likelihood ratio test of H_0 : $\theta = \theta_0$ versus H_A : $\theta \neq \theta_0$, and show that the rejection region is of the form $\{\overline{X}e^{-\theta_0\overline{X}} \leq c\}$.

FIRST, recall that the mle of $L(\theta)$ is $\hat{\theta} = \overline{X}$. Set up the likelihood ratio test

I've found this in previous homeworks.

$$\Lambda = \frac{\max_{p \in w_0} [L(p)]}{\max_{p \in \Omega} [L(p)]}.$$

The numerater will be

$$L(\theta_0) = \prod_{i=1}^n \theta e^{-\theta_0 x_i}$$

and the denomitaor

$$L(\hat{\theta}) = \prod_{i=1}^{n} \frac{1}{\overline{X}} e^{-\frac{x_i}{\overline{X}}}.$$

Then

$$\Lambda = \frac{\prod_{i=1}^{n} \theta e^{-\theta_0 x_i}}{\prod_{i=1}^{n} \frac{1}{\overline{X}} e^{-\frac{x_i}{\overline{X}}}}$$

$$= \frac{\theta_0^n e^{-\theta_0 n \overline{X}}}{\frac{1}{\overline{X}^n} e^{-\frac{\overline{X}n}{\overline{X}}}}$$

$$= \frac{\theta_0^n \overline{X}^n e^{-\theta_0 n \overline{X}}}{e^{-n}}$$

$$= (e\theta_0 \overline{X} e^{(-\theta_0 \overline{X})})^n$$

Where H_0 is rejected when Λ is small. Since e, n, θ are positive, Λ is small when $\overline{X}e^{(-\theta_0\overline{X})}$ is small.

$$\begin{split} \left(e\theta_0\overline{X}e^{(-\theta_0\overline{X})}\right)^n &< c_1 \\ e\theta_0\overline{X}e^{(-\theta_0\overline{X})} &< c_1^{\frac{1}{n}} \\ \overline{X}e^{(-\theta_0\overline{X})} &< \frac{c_1^{\frac{1}{n}}}{\theta_0e} \end{split}$$

Therefore, we see the rejection region takes the form $\overline{X}e^{(-\theta_0\overline{X})} \le$ $c = \frac{c_1^{\frac{1}{n}}}{\theta_0 e}.$

Question 3 Rice 9.13

Suppose, to be specific, that in problem 12, $\theta_0 = 1$, n = 10, and that $\alpha = .05$. In order to use the test, we must find the appropriate value of c.

1. Show that rejection region is of the form $\{\overline{X} \le x_0\} \cup \{\overline{X} \ge x_1\}$, where x_0 and x_1 are deterimined by c.

Now that we are given a value for θ_0 we have

$$f(x \mid \theta_0) = xe^{-x}.$$

But we also found in the previous question that our test rejects when

$$f(\overline{X} \mid \theta_0) = \overline{X}e^{(-\overline{X})}$$

is small, specifically when less than c. To see why it takes the form $\{\overline{X} \le x_0\} \cup \{\overline{X} \ge x_1\}$, consider the graph of the function.

There would be a *c* chosen that corresponds with the *Y* axis of the graph and a horizontal line would interect the function at two values of x.

2. Explain why *c* should be chosen so that $P(\overline{X}e^{(-\overline{X})} \le c) = .05$.

This is just a restatement of Type I error under Neyman-Pearson.

$$Pr(\text{Reject } H_0 \mid H_0) = Pr(x \in [0, c] \mid \theta_0)$$

Which can be worded to say, the probability that x falls in the rejection zone. Furthermore, we found that $P(\overline{X}e^{(-\overline{X})})$ provides a rejection zone for Λ . What remains is to determine how willing we are to make Type 1 error.

If we want $\alpha = .05$ then we should set

$$Pr(x \in [0, c] \mid \theta_0) = Pr(f(\overline{X} \mid \theta)) < c) = .05$$

to determine what c should be.

3. Explain why $\sum_{i=1}^{1} 0X_i$ and hence \overline{X} follow gamma distributions when $\theta_0 = 1$. How could this knowledge be used to choose c?

Under H_0 : $\theta_0 = 1$ $X_i \sim Exponetial(1)$ which is a special ase of $\Gamma(1,\lambda)$ or in this particular case $\Gamma(1,1)$. On the last homework, I found that $\sum_{i=1}^{n} X_i \sim \Gamma(n,1)$ and $\overline{X} \sim \Gamma(n,n)$. Knowing the exact distribution, means I could compute the exact value of c for which 95 coverage for acceptable values of H_0 .

In this day and age, a computer would be the easiest way to do this. The gist would be first solve $f(\overline{X}) = c$ to get $x_0(c)$ and $x_1(c)$. Then solve

$$\alpha(c) = F(x_0(c)) + 1 - F(x_1(c))$$

Where F(x) is cdf of $\Gamma(10, 10)$.

4. Suppose you hadn't thought of the preceding fact. Explain how you could determine a good approximation to *c* by generating random numbers on a computer (simulation).

GENERATE a bunch of samples from Exponential(1) of size n=10. Then compute $\overline{X}e^{\overline{X}}$ for each sample. Sort the result and set the cuttoff as the value indexed at the 5% of the number of samples generated. For example, if the results are stored in some list of size 10000 then you'd take value indexed at list[500] as the cuttoff value for a close approximation.

Question 4

Call "This, it thus, and" Class I workds; Class II is "everything else". For each of 215 groups of 5 of James Mill's sentences, the number of Class I words was counted.

Test whether a Binomial Distribution $(n = 5, \theta)$ fits these data.

FIRST, knowing the MLE of a binomial will be useful.

$$\begin{split} L(\theta) &= \prod_{i=1}^n \binom{n}{x_i} \theta^{x_i} (1-\theta)^{n-x_i} \\ &= \prod_{i=1}^n \binom{n}{x_i} \theta^{\sum_{i=1}^n x_i} (1-\theta)^{n-\sum_{i=1}^n x_i} \end{split}$$

$$\frac{d}{d\theta}\log L(\theta) = \frac{\overline{X}n}{\theta} + \frac{n - \overline{X}n}{\theta - 1}$$

Setting the above equal to zero and solving for θ give the mle.

$$\hat{\theta} = \overline{X}$$

Using the table we can compute the mle, $\hat{\theta} = 339/215(5) = .31$.

Figure 1: James Mill, the economist

Table 2: Class I words