1

Gate21.IN.45

EE23BTECH11062 - V MANAS

Question:

A sinusoid $(\sqrt{2}sin(t))\mu(t)$, where $\mu(t)$ is the step input, is applied to a system with transfer function $G(s) = \frac{1}{1+s}$. The amplitude of the steady state output is

Solution:

Parameter	Description	Value
x(t)	input signal	$\sqrt{2}sin(t) \cdot \mu(t)$
G(s)	Transfer function	$\frac{1}{1+s}$
ω_0	angular frequency of input signal	1
y(t)	output signal	
TABLE I		

VARIABLES USED

Fig. 1. plot of y(n)

$$G(s) = \frac{1}{s+1} \tag{1}$$

$$G(j\omega) = \frac{1}{j\omega + 1} \tag{2}$$

$$|G(j\omega)| = \frac{1}{\sqrt{\omega^2 + 1}} \tag{3}$$

$$\angle G(j\omega) = -tan^{-1}(\omega) \tag{4}$$

$$y(t) = \sqrt{2}|G(j\omega_0)|_{\omega_0=1}sin(t-\angle G(j\omega_0)_{\omega_0=1})u(t)$$

(5)

$$y(t) = \sqrt{2}|G(j\omega)|_{\omega=1}\sin(t - \angle G(j\omega)_{\omega=1})u(t)$$
(6)

$$|G(j\omega)|_{\omega=1} = \frac{1}{\sqrt{2}}, \angle G(j\omega)_{\omega=1} = -45^{\circ}$$
(7)

$$y(t) = \sqrt{2} \times \frac{1}{\sqrt{2}} \sin(t - 45^\circ) u(t) \tag{8}$$

$$y(t) = \sin(t - 45^\circ)u(t) \tag{9}$$

So, the amplitude of steady state output is 1