Surjectivité de l'exponentielle matricielle :

I Le développement

Le but de ce développement est de montrer que l'exponentielle réalise une surjection de $\mathcal{M}_n(\mathbb{C})$ dans $\mathrm{GL}_n(\mathbb{C})$ et d'en donner un corollaire.

Lemme 1 : [Rombaldi, p.767]

Soit $M \in \mathcal{M}_n(\mathbb{C})$.

Si $\rho(M) < 1$, alors $e^{\operatorname{Ln}(I_n + M)} = I_n + M$.

Preuve:

Soit $M \in \mathcal{M}_n(\mathbb{C})$ telle que $\rho(M) < 1$.

On considère :

$$\varphi: \left| \begin{array}{c} \left| -\frac{1}{\rho(M)}; \frac{1}{\rho(M)} \right| & \longrightarrow & \mathcal{M}_n(\mathbb{C}) \\ t & \longmapsto & \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} t^k M^k \end{array} \right|$$

La fonction φ est bien définie car pour tout $t\in \left]-\frac{1}{\rho(M)}; \frac{1}{\rho(M)}\right[$, on a $|\rho(tM)|=|t|\rho(M)<1$.

* Si $\rho(M)=0$, alors M est nilpotente et donc φ est de classe \mathcal{C}^{∞} sur $I=\mathbb{R}.$

$$* \ \mathrm{Si} \ \rho(M) \in]0;1[, \ \mathrm{alors} \ \varphi \ \mathrm{est} \ \mathrm{de} \ \mathrm{classe} \ \mathcal{C}^{\infty} \ \mathrm{sur} \ I = \left] -\frac{1}{\rho(M)}; \frac{1}{\rho(M)} \right[.$$

Ainsi, pour tout $t \in I$, on a:

$$\varphi'(t) = \sum_{k=1}^{+\infty} (-1)^{k-1} t^{k-1} M^k = \left(\sum_{k=0}^{+\infty} (-1)^k t^k M^k\right) M = (I_n + tM)^{-1} M$$

De plus, on considère la fonction Ψ définie sur I par $\Psi(t) = e^{\varphi(t)}$.

De plus, $\varphi(t)$ et $\varphi'(t)$ commutent (car polynômes en M) donc la fonction Ψ est dérivable et de dérivée :

$$\Psi'(t) = \varphi'(t)e^{\varphi(t)} = (I_n + tM)^{-1}Me^{\varphi(t)}$$

On a ainsi $(I_n + tM)\Psi'(t) = Me^{\varphi(t)}$.

De plus, la fonction Ψ' est dérivable en tant que produit de deux fonctions dérivables donc une deuxième dérivation donne :

$$M\Psi'(t) + (I_n + tM)\Psi''(t) = M\varphi'(t)e^{\varphi(t)} = M\Psi'(t)$$

On a ainsi $(I_n + tM)\Psi''(t) = 0$, or puisque $(I_n + tM)$ est inversible, on a alors que $\Psi'' = 0$ sur I.

Ainsi, la fonction Ψ' est constante sur I et on a :

$$\forall t \in I, \ \Psi'(t) = \Psi'(0) = M \ (\operatorname{car} \varphi(0) = 0)$$

Donc:

$$\Psi(t) = tM + \Psi(0) = tM + I_n (\text{car } \varphi(0) = 0)$$

Finalement, comme $\rho(M) < 1$, on a $1 \in I$ et on a donc en évaluant la relation ci-dessus en t = 1 que $e^{\operatorname{Ln}(I_n + M)} = I_n + M$.

Lemme 2 : [Rombaldi, p.769]

Soit $M \in GL_n(\mathbb{C})$ diagonalisable. Il existe un polynôme $Q \in \mathbb{C}_{n-1}[X]$ tel que Q(M) soit diagonalisable et $e^{Q(M)} = M$.

Il existe un polynôme $Q \in \mathbb{C}_{n-1}[X]$ tel que Q(M) soit diagonalisable et $e^{Q(M)} = M$

Preuve:

Soit $M \in \mathrm{GL}_n(\mathbb{C})$ diagonalisable.

On note $\lambda_1, ..., \lambda_r$ les valeurs propres distinctes de M qui sont toutes non nulles (puisque M est inversible) et comme de plus elle est diagonalisable, il existe alors une matrice $P \in GL_n(\mathbb{C})$ telle que $M = P \operatorname{diag}(\lambda_1, ..., \lambda_n)P^{-1}$.

Du fait de la surjectivité de l'exponentielle de \mathbb{C} sur \mathbb{C}^* , il existe des nombres complexes $\mu_1, ..., \mu_r$ tels que pour tout $k \in [\![1;r]\!]$, $\lambda_k = e^{\mu_k}$. Le théorème d'interpolation de Lagrange nous donne alors qu'il existe un polynôme $Q \in \mathbb{C}_{n-1}[X]$ tel que pour tout $k \in [\![1;r]\!]$, $\mu_k = Q(\lambda_k)$.

La matrice diagonalisable $\Delta = P \operatorname{diag}(\mu_1, ..., \mu_n) P^{-1}$ est alors telle que :

$$e^{\Delta} = Pe^{\operatorname{diag}(\mu_1, \dots, \mu_n)}P^{-1} = P\operatorname{diag}(e^{\mu_1}, \dots, e^{\mu_n})P^{-1} = M$$

et on a : $\Delta = P \operatorname{diag}(Q(\lambda_1), ..., Q(\lambda_n)) P^{-1} = Q(P \operatorname{diag}(\lambda_1, ..., \lambda_n) P^{-1}) = Q(M).$

Finalement, on a donc démontré le lemme.

Théorème 3 : [Rombaldi, p.769]

Pour toute matrice $M \in \operatorname{GL}_n(\mathbb{C})$, il existe un polynôme $Q \in \mathbb{C}[X]$ tel que l'on ait $e^{Q(M)} = M$ (autrement dit : l'exponentielle matricielle réalise une surjection de $\mathcal{M}_n(\mathbb{C})$ dans $\operatorname{GL}_n(\mathbb{C})$).

Preuve:

Soit $M \in \mathrm{GL}_n(\mathbb{C})$.

Puisque χ_M est scindé dans \mathbb{C} , on a la décomposition de Dunford M=D+N avec D diagonalisable, N nilpotente, DN=ND et $D,N\in\mathbb{K}[M]$. Comme D a les mêmes valeurs propres de M, elle est inversible et le deuxième lemme nous dit qu'il existe un polynôme $Q_1\in\mathbb{C}[X]$ tel que $\Delta=Q_1(D)$ soit diagonalisable et $e^{Q_1(D)}=D$. La matrice D étant polynomiale en M, il en est de même pour Δ .

On a ainsi:

$$M = D(I_n + D^{-1}N) = e^{\Delta}(I_n + D^{-1}N)$$

Or, comme N est nilpotente et que D et N commutent, $D^{-1}N$ est nilpotente et donc $\rho\left(D^{-1}N\right)=0<1$.

Par le premier lemme on a alors $e^{\operatorname{Ln}\left(I_n+D^{-1}N\right)}=I_n+D^{-1}N$ et de plus, $\operatorname{Ln}\left(I_n+D^{-1}N\right)\in\mathbb{K}[M]$ (car $D,N\in\mathbb{K}[M]$ et donc $I_n+D^{-1}N$ aussi). Ainsi, on a $M=e^{\Delta}e^{\operatorname{Ln}\left(I_n+D^{-1}N\right)}=e^{\Delta+\operatorname{Ln}\left(I_n+D^{-1}N\right)}$ (car Δ et $\operatorname{Ln}\left(I_n+D^{-1}N\right)$ sont des éléments de $\mathbb{K}[M]$ et donc commutent).

Finalement, on a bien le résultat voulu.

Corollaire 4: [Rombaldi, p.770]

 $\overline{\mathrm{GL}_n(\mathbb{C})}$ est connexe par arcs.

Preuve:

Soient $A, B \in \mathrm{GL}_n(\mathbb{C})$.

Il existe deux matrices $X_1, X_2 \in \mathrm{GL}_n(\mathbb{C})$ telles que $A = e^{X_1}$ et $B = e^{X_2}$. L'application :

$$\varphi: \begin{bmatrix} [0;1] & \longrightarrow & \mathrm{GL}_n(\mathbb{C}) \\ t & \longmapsto & e^{(1-t)X_1+tX_2} \end{bmatrix}$$

est bien définie et est un chemin continu tel que $\varphi(0) = e^{X_1} = A$ et $\varphi(1) = e^{X_2} = B$. Autrement dit, $GL_n(\mathbb{C})$ est connexe par arcs.

II Remarques sur le développement

II.1 Pour aller plus loin...

II.1.1 Rayon spectral

Dans tout ce paragraphe, on rappelle uniquement quelques résultats de base sur le rayon spectral d'une matrice (ou de manière équivalente d'un endomorphisme) sur un \mathbb{C} -espace vectoriel de dimension finie.

Définition 5 : Rayon spectral [Rombaldi, p.654] :

On considère $M \in \mathcal{M}_n(\mathbb{C})$.

On appelle rayon spectral de M le réel $\rho(M) = \max_{\lambda \in \operatorname{Sp}_{\mathbb{C}}(M)} |\lambda|$.

Lemme 6: [Rombaldi, p.654]

Soit $M \in \mathcal{M}_n(\mathbb{C})$.

Si M est une matrice normale, alors $||M||_2 = \rho(M)$.

Théorème 7 : [Rombaldi, p.656]

L'application ρ qui, à toute matrice de $\mathcal{M}_n(\mathbb{C})$ associe son rayon spectral est continue

Théorème 8 : [Rombaldi, p.658]

Soit $M \in \mathcal{M}_n(\mathbb{C})$.

Les assertions suivantes sont équivalentes :

- * On a $\lim_{k\to+\infty} M^k = 0_{\mathcal{M}_n(\mathbb{C})}$.
- * Pour toute valeur initiale $x_0 \in \mathbb{C}^n$, la suite $(x_k)_{k \in \mathbb{N}}$ définie pour tout $k \in \mathbb{N}$ par $x_{k+1} = Mx_k$ converge de limite le vecteur nul.
- * On a $\rho(M) < 1$.
- * Il existe au moins une norme matricielle induite telle que ||M|| < 1.
- * La matrice $I_n M$ est inversible et la série de terme général M^k est convergente de somme $(I_n M)^{-1}$.
- *La matrice $I_n M$ est inversible et la série de terme général $\operatorname{Tr}(M^k)$ est convergente de somme $\operatorname{Tr}((I_n M)^{-1})$.
- * On a $\lim_{k \to +\infty} \operatorname{Tr}\left(M^{k}\right) = 0$.

Théorème 9 : Théorème de Gelfand [Rombaldi, p.659] :

Soit $M \in \mathcal{M}_n(\mathbb{C})$.

Quelle que soit la norme $\|\cdot\|$ choisie sur $\mathcal{M}_n(\mathbb{C})$, on a $\rho(M) = \lim_{k \to +\infty} \|M^k\|^{\frac{1}{k}}$.

II.1.2 D'autres résultats

Proposition 10: [Rombaldi, p.770]

Soit $p \in \mathbb{N}^*$.

Pour toute matrice $A \in GL_n(\mathbb{C})$, il existe une matrice $X \in GL_n(\mathbb{C})$ polynomiale en A telle que $X^p = A$.

Preuve:

Soit $p \in \mathbb{N}^*$.

Pour toute matrice $A \in GL_n(\mathbb{C})$, il existe $Y \in \mathcal{M}_n(\mathbb{C})$ polynomiale en A telle que $A = e^Y$. En posant alors $X = e^{\frac{1}{p}Y}$, on a $X \in GL_n(\mathbb{C})$, polynomiale en Y (et donc en A) et $X^p = e^Y = A$.

Proposition 11: [Berhuy, p.998]

On a $e^{\mathcal{M}_n(\mathbb{R})} = \{M^2, M \in \mathrm{GL}_n(\mathbb{R})\}.$

Preuve:

* Soit $A \in e^{\mathcal{M}_n(\mathbb{R})}$.

Il existe alors $B \in \mathcal{M}_n(\mathbb{R})$ telle que l'on ait $A = e^B$ et ainsi $A = \left(e^{\frac{1}{2}B}\right)^2$ avec $e^{\frac{1}{2}B} \in \mathrm{GL}_n(\mathbb{R})$.

* Réciproquement, soit $A \in \{M^2, M \in \mathcal{M}_n(\mathbb{R})\}.$

Il existe alors une matrice $B \in \mathcal{M}_n(\mathbb{R})$ telle que $A = B^2$. Or, il existe une matrice $C \in \mathrm{GL}_n(\mathbb{C})$ telle que $B = e^C$ et puisque B est à coefficients réels, on a aussi $B = e^{\overline{C}}$.

Ainsi, on a $A = B^2 = e^{C + \overline{C}}$, avec $C + \overline{C} \in \mathcal{M}_n(\mathbb{R})$.

II.1.3 Bijection des nilpotents sur unipotents

Soit K un corps de caractéristique nulle.

On note $\mathcal{N}_n(\mathbb{K})$ l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{K})$ et on considère l'ensemble des matrices unipotentes $\mathcal{U}_n(\mathbb{K}) = \{ M \in \mathcal{M}_n(\mathbb{K}) \text{ tq } M - I_n \in \mathcal{N}_n(\mathbb{K}) \}.$

Théorème 12: [Rombaldi, p.768]

L'exponentielle matricielle induit une bijection de $\mathcal{N}_n(\mathbb{K})$ sur $\mathcal{U}_n(\mathbb{K})$.

Preuve:

On considère $\exp: \mathcal{N}_n(\mathbb{K}) \longrightarrow \mathcal{U}_n(\mathbb{K})$ et $\ln: \mathcal{U}_n(\mathbb{K}) \longrightarrow \mathcal{N}_n(\mathbb{K})$ définies pour tout $N \in \mathcal{N}_n(\mathbb{K})$ et $U \in \mathcal{U}_n(\mathbb{K})$ par $\exp(N) = P(N)$ et $\ln(U) = Q(U)$, où :

$$P(X) = \sum_{k=0}^{n} \frac{X^k}{k!}$$
 et $Q(X) = \sum_{k=1}^{n} \frac{(X-1)^k}{k}$

Pour tout $x \in \mathbb{R}$, on a $x = \ln(\exp(x)) = (Q \circ P)(x) + o(x^n)$. Par unicité du développement limité d'une fonction, on en déduit qu'il existe un polynôme $R \in \mathbb{Q}[X]$ tel que $Q \circ P = X + X^{n+1}R(X)$. On a alors :

$$\forall N \in \mathcal{N}_n(\mathbb{K}), \ \ln(\exp(N)) = (Q \circ P)(N) = N + N^{n+1}R(N) = N$$

Ainsi, $\ln \circ \exp = \operatorname{Id}_{\mathcal{N}_n(\mathbb{K})}$ et on montre de même que $\exp \circ \ln = \operatorname{Id}_{\mathcal{U}_n(\mathbb{K})}$.

Finalement, l'exponentielle matricielle induit une bijection de $\mathcal{N}_n(\mathbb{K})$ sur $\mathcal{U}_n(\mathbb{K})$.

Remarque 13:

 $\overline{\text{Si }\mathbb{K}=\mathbb{R} \text{ ou }\mathbb{C}, \text{ alors la bijection induite est un homéomorphisme, car l'application exponentielle et sa réciproque sont polynomiales.$

II.2 Recasages

Recasages: 150 - 152 - 155

III Bibliographie

- Jean-Étienne Rombaldi, Mathématiques pour l'agrégation, Algèbre et géométrie.
- Grégory Berhuy, <u>Algèbre : le grand combat</u>.