BLU3202 - Lista de exercícios – Complexidade de algoritmos e Busca (Sequencial e Binária). Prof. Mauri Ferrandin

- 1. Qual é a complexidade computacional (pior caso) de um algoritmo que para multiplicar m matrizes de nxn?
- 2. Considerando três algoritmos diferentes que realizam a mesma tarefa com a complexidade dada por T_1 , T_2 e T_3 abaixo, se NÃO forem simplificadas de acordo com a notação O, qual deles é o mais rápido para n <= 5?

```
T_1 = 400n + 90;

T_2 = 500n
```

- $T_3 = 10n^2$
- 3. Considerando os algoritmos da questão 2, para que valor de n o algoritmo com complexidade T_3 deixa de ser mais rápido?
- 4. Dois algoritmos estão sendo testados para solução de um problema. Em uma análise inicial o primeiro resolve o problema com tempo $T_1(n) = 2n^2 + 3n + 10$ e o segundo com tempo $T_2(n) = 300n^3 + 100$. Represente a complexidade dos algoritmos usando a notação 0 e indique qual é o mais rápido considerando n < 5.
- 5. Pesquise e encontre a complexidade (pior caso) dos algoritmos abaixo:
 - somar duas matrizes nxn;
 - multiplicar duas matrizes de nxn
 - busca binária de um valor em um vetor;
 - ordenar valores em um vetor usando o algoritmo BubleSort;
 - ordenar valores em um vetor usando o algoritmo MergeSort;
 - ordenar valores em um vetor usando o algoritmo QuickSort;
- 6. Considere um vetor ordenado contendo com 25 números inteiros, faça um programa para fazer busca sequencial por um elemento neste vetor.
- 7. Considere um vetor ordenado contendo com 25 números inteiros, faça um programa para fazer busca binária por um elemento neste vetor.
- 8. Considere um vetor ordenado contendo com 25 números inteiros, faça um programa para fazer busca binária recursiva por um elemento neste vetor.
- 9. Implemente um algoritmo de busca usando uma tabela hash tendo como função h(x) = x % 10, considerando que a indexação possuirá 10 slots. Sugestão: use um vetor de filas para representação da tabela hash.