

Grundlagen Physik für 8 II/III

Mechanik				
Länge ℓ (engl. length) Grundgröße	$[\ell] = 1 \text{ m}$			
Zeit t (engl. time) Grundgröße	[t] = 1 s			
Masse m (engl. mass) Grundgröße	 [m] = 1 kg Maß für die Trägheit und Schwere eines Körpers ortsunabhängig 			
Kraft F (engl. force) Grundgröße	 Kräfte kann man nur an ihren Wirkungen erkennen: Verformung eines Körpers: dauerhaft (plastisch) vorübergehend (elastisch) Änderung des Bewegungszustands eines Körpers: Der Körper kann schneller oder langsamer werden und/oder seine Bewegungsrichtung ändern. [F] = 1 N (Newton) 			
Vektorcharakter der Kraft:	Angriffspunkt A Betrag Richtung Kraftpfeil F			
Gleichgewicht von Kräften	 Zwei Kräfte, die an einem Körper angreifen, sind im Gleichgewicht, wenn: ihre Angriffspunkte auf derselben Wirkungslinie liegen, sie dieselben Beträge und entgegengesetzte Richtungen haben. 			
Gravitation	Alle Körper ziehen sich gegenseitig an.			
Gewichtskraft $\overrightarrow{F_G}$	Die Gewichtskraft $\overrightarrow{F_G}$ auf einen Körper entsteht durch die gegenseitige Anziehung (Gravitation) von Erde und Körper, die mit wachsender Entfernung von der Erde abnimmt. Die Gewichtskraft ist ortsabhängig. Auf der Erde gilt: Auf eine 100 g Tafel Schokolade wirkt eine Gewichtskraft von ungefähr einem Newton.			

Bau der Körper

Es gibt feste, flüssige und gasförmige Körper. Die Körper bestehen aus sehr kleinen Teilchen. Zwischen den Teilchen wirken (abstoßende und anziehende) Kohäsionskräfte, deren Reichweiten gering sind.

	fester Stoff	flüssiger Stoff	gasförmiger Stoff	
Form	unveränderlich	passt sich der Gefäß- form an	nimmt den ganzen zur Verfügung stehenden Raum ein	makroskopisch
Volumen (bei konstanter Temperatur)	unveränderlich	Unveränderlich	veränderlich	opisch
Teilchenmodell				
Abstand zwischen den Teilchen (im Vergleich zur Teil- chengröße)	klein	klein, aber etwas größer als bei Fest- körpern	sehr groß	mil
Kohäsionskräfte	sehr stark	weniger stark	fast keine	mikroskopisch
Anordnung der Teilchen	regelmäßig (im Gitter)	gegeneinander ver- schiebbar	frei und unregelmä- ßig	
Art der Teilchenbewe- gung	Schwingen um feste Gleichgewichtslagen	Schwingen um wechselnde Gleich- gewichtslagen	unregelmäßig	

Mechanik

Volumenmessung

- Flüssigkeiten: mit kalibriertem Messzylinder
- unregelmäßig geformte feste Körper: z. B. mit Überlaufgefäß und einem kalibrierten Messzylinder

Volumenberechnung

z. B. Quader:
$$V = a \cdot b \cdot c$$

Umrechnung

Die Umrechnungszahl zwischen benachbarten Volumeneinheiten ist $1000 \ (10^3)$:

$$1 \text{ m}^3 = 1 \cdot 10^3 \text{ dm}^3$$

 $1 \text{ dm}^3 = 1 \cdot 10^3 \text{ cm}^3$
 $1 \text{ cm}^3 = 1 \cdot 10^3 \text{ mm}^3$

Für Flüssigkeiten und Gase:

$$1 \ell = 1 dm^3$$

$$1 m\ell = 1 cm^3$$

Dichte ρ abgeleitete Größe

Die Masse m eines homogenen Stoffes ist zu seinem Volumen V direkt proportional.

Die Dichte ρ eines Stoffes ist der Quotient aus der Masse und dem zugehörigen Volumen eines homogenen Körpers:

$$\rho = \frac{m}{V} \text{ mit } [\rho] = 1 \frac{kg}{dm^3}$$

So bedeutet z. B. der Wert $\rho_{Eisen}=7.8 rac{kg}{dm^3}$, dass ein Eisenkörper mit dem Volumen von $1.0~dm^3$ eine Masse von 7.8~kg besitzt.

Merke:
$$\rho_{Wasser} = 1.0 \frac{kg}{dm^3}$$

Gebräuchlich sind die Einheiten: [
$$\rho$$
] = $1\frac{mg}{mm^3}$ = $1\frac{g}{cm^3}$ = $1\frac{kg}{dm^3}$ = $1\frac{t}{m^3}$

Reibungskraft $\overrightarrow{F_R}$

Bei einem Festkörper treten nur dann Reibungskräfte auf, wenn

- der Körper durch eine Normalkraft (Anpresskraft) $\overrightarrow{F_N}$ auf eine Unterlage gepresst wird und
- gleichzeitig eine Kraft parallel zur gemeinsamen Berührfläche (von Körper und Unterlage) wirkt.

Sie ist abhängig

- vom Betrag der Normalkraft
- sowie von der Stoffart und Oberflächenbeschaffenheit der beteiligten Körper.

 $F_R = \mu \cdot F_N \;\; \text{wobei} \; \mu \; \text{die Reibungszahl} \; \text{ist}$

Arbeit W als Übertragungsgröße

(engl. work) abgeleitete Größe

An einem Körper wird Arbeit verrichtet, wenn eine Kraft \overrightarrow{F} längs eines Wegs \overrightarrow{s} wirkt. Für \overrightarrow{F} || \overrightarrow{s} gilt:

$$W = F \cdot s$$
 mit $[W] = 1 Nm = 1 J (Joule)$

Arten der Arbeit:

- Hubarbeit: $W = F_G \cdot h$ und somit $W = m \cdot g \cdot h$
- Beschleunigungsarbeit
- Verformungsarbeit
- Reibungsarbeit: $W_R = F_R \cdot s$ und somit $W_R = \mu \cdot F_N \cdot s$

Die Arbeit 1 Joule wird verrichtet, wenn man z. B. einen Körper mit der Gewichtskraft 1 Newton (z. B. 100 g Tafel Schokolade auf der Erde) um einen Meter hochhebt.

$$1 \; kJ = 1 \cdot 10^{^3} \; J \; \; 1 \; MJ = 1 \cdot 10^6 \; \; J \; \; 1 \; GJ = 1 \cdot 10^9 \; J$$

Energie E als Speichergröße

(engl. energy) abgeleitete Größe

Energie bezeichnet die Arbeitsfähigkeit eines Körpers.

$$[E] = 1 J$$

Arten der Energie:

- Lageenergie (potenzielle Energie)
- Bewegungsenergie (kinetische Energie)
- Spannenergie
- innere Energie eines Körpers

Energieerhaltungssatz

Die Gesamtenergie bleibt bei jedem physikalischen Vorgang konstant. Energie kann weder erzeugt noch vernichtet werden, es wird eine Energieform in eine andere umgewandelt.

Leistung P

(engl. power) abgeleitete Größe

Die Leistung P ist der Quotient aus der verrichteten Arbeit W und der dafür benötigten Zeit t. Sie wird auch als Energiestrom bezeichnet.

$$P = \frac{W}{f}$$
 mit $[P] = 1 \frac{J}{g} = 1 \frac{Nm}{g} = 1 W \text{ (Watt)}$

Die Leistung 1 Watt liegt vor, wenn man z. B. einen Körper mit der Gewichtskraft 1 Newton (z. B. eine 100 g Tafel Schokolade auf der Erde) in einer Sekunde um einen Meter hochhebt.

Wirkungsgrad η

Er ist ein Gütekriterium bei Energieumwandlungen und gibt den Quotienten aus der Nutzarbeit und der zugeführten Arbeit an:

$$\eta = \frac{W_{nutz}}{W_{zu}}~$$
 und somit gilt auch: $~\eta = \frac{P_{nutz}}{P_{zu}}$

Druck p

(engl. pressure)

In Flüssigkeiten und Gasen herrscht stets ein Druck.

Der Druck p in Flüssigkeiten und Gasen ist der Quotient aus dem Betrag der Kraft \overrightarrow{F} , die auf die Fläche A senkrecht wirkt:

$$p = \frac{F}{A}$$
 mit $[p] = 1 \frac{N}{m^2} = 1$ Pa (Pascal)

- Der Normaldruck auf Meereshöhe beträgt 1013 hPa (Hektopascal)
- b) **Schweredruck** in Wasser:

$$p \sim h$$

c) Auftriebskraft in Wasser:

Archimedisches Prinzip

Der Betrag der Auftriebskraft entspricht dem der Gewichtskraft des verdrängten Wassers.

Optik

Sender

- selbst leuchtender Körper (z. B. Sonne)
- nicht selbst leuchtender Körper (z. B. Mond)

Ausbreitung

geradlinig

- ohne Medium (im Vakuum)
- in einem durchsichtigen Medium (z. B Luft) In Luft breitet sich Licht mit einer Geschwindigkeit von ca.

$$300000 \frac{km}{s}$$
 aus.

Modell

Der Lichtstrahl ist eine Modellvorstellung für ein schmales Lichtbündel.

Konvexlinsen

(Sammellinsen)

Konkavlinsen

zerstreuen Lichtbündel

Empfänger

z. B. Netzhaut des Auges, Film oder Aufnahmechip eines Fotoapparats