TD 1:

Interface maître et esclave d'un robot ★ – Corrigé

Mise en situation

Modélisation de l'interface maître

Question 1 Réaliser le graphe d'analyse du mécanisme (liaisons et efforts).

- ▶ théorème du moment statique en B appliqué à l'équilibre de S_1 , en projection sur $\overrightarrow{z_0}$;
- ▶ théorème du moment statique en A appliqué à l'équilibre de S_2 , en projection sur $\overrightarrow{z_0}$;
- ▶ théorème du moment statique en D appliqué à l'équilibre de S_3 , en projection $Sur_{70} :$
- ▶ théorème de la résultante statique appliqué à l'équilibre de S_3 , en projection sur $\overrightarrow{y_2}$.

Correction

CCP PSI 2015.

B2-14

C1-05

C2-07

Question 3 #CCINP Montrer que:

$$C_m = \frac{L_1 F}{\sin (\theta_2 - \theta_3)} \left(\sin \theta_1 \sin (\theta_2 + \theta_3) - 2 \cos \theta_1 \sin \theta_2 \sin \theta_3 \right).$$

Correction

Cette relation n'étant pas linéaire, on propose d'analyser les résultats d'une simulation numérique en traçant le couple moteur/effort opérateur en fonction de l'abscisse du point ${\cal E}$

Question 4 Retrouver ces graphes en utilsant Python. J'ai pas essayé, mais si eux ont réussi, pourquoi pas vous? Il faut peut-être utiliser le premier devoir de vacances.

Correction

Question 5 Déterminer, à partir de la figure précédente, sur quel intervalle de l'abscisse X_E l'exigence « Linéarité couple/effort » (id 1.3.2.2) est satisfaite. (On ajoute que la course sur X_E doit être supérieure à 50 mm.)

Correction

Pour un rapport C_m/F de 33,25 mm, la fourchette de 1% est comprise entre 32,9175 mm et 33,5825 mm. La course de X_E est donc de 20-(-36)=56 mm. L'exigence est vérifiée.

