Week 6, part E: Datapath

Deconstructing processors

Where and how does computation happen?

Datapath vs. Control

- Datapath: where all data computations take place.
 - Usually: registers, computational units, and a bunch of wires and muxes to connect them

- Control unit: orchestrates the actions that take place in the datapath.
 - The control unit is a big finite-state machine that instructs the datapath to perform all appropriate actions.

Example: Calculate $x^2 + 2x$

- Given an external input x.
- How would you compute x² + 2x with components you've seen so far?
- Components needed:
 - ALU (to add, subtract and multiply values)
 - Multiplexers (to determine what the inputs should be to the ALU)
 - Registers (to hold values used in the calculation)

Example schematic

- Load X into RA & RB
- Multiply RA & RB
 - Store result in RA
- Add X to RA
 - Store result in RA
- Add X to RA again
 - ALU output is x² + 2x.
- How do we make this happen?
 - We send control signals at the right time

Steps for $x^2 + 2x$:

Load X into RA & RB

- Load X into RA & RB
- Multiply RA & RB
 - Store result in RA

- Load X into RA & RB
- Multiply RA & RB
 - Store result in RA
- Add X to RA
 - Store result in RA

- Load X into RA & RB
- Multiply RA & RB
 - Store result in RA
- Add X to RA
 - Store result in RA
- Add X to RA again
 - ALU output is x² + 2x.

Making the calculation happen

	High-level Steps	Control Signals					
Step		SelxA	SelAB	ALUop	LdRA	LdRB	
0	Load X into RA & RB	0	Χ	Сору	1	1	
1	Multiply RA & RB, store result in RA	1	1	Mult	1	0	
2	Add X to RA, Store result in RA	0	0	Add	1	0	
3	Add X to RA again, ALU output is x² + 2x.	0	0	Add	1	0	

Making the calculation happen

	High-level Steps	Coi				
Step		SelxA	SelAB	ALUop	LdRA	LdRB
0	Load X into RA & RB	0	Χ	Сору	1	1
1	Multiply RA & RB, store result in RA	1	1	Mult	1	0
2	Add X to RA, Store result in RA	0	0	Add	1	0
3	Add X to RA again, ALU output is x² + 2x.	0	0	Add	1	O

Who sends these signals?

Control Unit

- Basically, a giant Finite State Machine
 - Synchronized to system-wide signals (clock, reset)
- Outputs the datapath control signals
 - SelxA, SelAB => control mux outputs (ALU inputs)
 - ALUop => controls ALU operation
 - LdRA, LdRB => controls loading for registers RA, RB
- Sometimes also output a done signal, when the computation is complete
 - Yet another output; not shown in our datapaths

Datapath + Control

The "Storage Thing"

- We have an ALU.
- We understand the concept of a datapath.
- How do we get A and B for the ALU?
- How do we get things into the registers?
- Tune in next week to learn more about:
 - Storage
 - The MIPS-32 data path
 - The MIPS-32 control unit