《数值分析》期末复习

重点知识点复习

第一部分 非线性方程求根方法

- →不动点迭代的一般理论
- →牛顿迭代法迭代格式
- →牛顿迭代法误差估计和收敛速度分析
- →非线性方程组迭代法

不动点迭代的一般理论

$$f(x) = 0 \quad \Rightarrow \quad x = \varphi(x)$$

若存在 x^* , 使得 $x^* = \varphi(x^*)$ 则称 x^* 为 $\varphi(x)$ 的不动点

$$\varphi(x)$$
 — 迭代函数

$$x_{n+1} = \varphi(x_n)$$

$$\Rightarrow \begin{cases} y_n = \varphi(x_n) \\ x_{n+1} = y_n \end{cases}$$

$$(x_n, y_n) \rightarrow (x_{n+1}, y_n)$$

$$\rightarrow (x_{n+1}, y_{n+1})$$

举例1: 方程 $x^3 + 4x^2 - 10 = 0$ 在 [1, 2] 上有一个根. 将方程变换成另一形式

(1)
$$x = \sqrt{10 - x^3} / 2$$
 $\varphi(x) = \sqrt{10 - x^3} / 2$
 $x_{n+1} = \varphi(x_n)$ ($n = 0, 1, 2, \dots$)
 $x_0 = 1.5$

(2)
$$x = \sqrt{10/(x+4)}$$
 $\varphi(x) = \sqrt{10/(x+4)}$ $x_{n+1} = \varphi(x_n)$ ($n = 0, 1, 2, \dots$) $x_0 = 1.5$

唯一性?构造规律?构造有效?

$$x_{n+1} = \frac{1}{2} \sqrt{10 - x_n^3}$$

n	X_n	x_{n+1} - x_n
0	1.5000	
1	1.2870	2.1e-1
2	1.4025	1.1e-1
3	1.3455	5.7e-2
4	1.3752	2.9e-2
5	1.3601	1.5e-2
6	1.3678	7.7e-3
7	1.3639	3.9e-3
8	1.3659	2.0e-3
9	1.3649	1.0e-3
10	1.3654	5.3e-4

$$x_{n+1} = \sqrt{\frac{10}{x_n + 4}}$$

n	x_n /	x_{n+1} - x_n /
0	1.5000	
1	1.3484	1.5e-1
2	1.3674	1.8e-2
3	1.3650	2.4e-3
4	1.3653	3.0e-4
5	1.3652	3.9e-5
6	1.3652	4.9e-6

引理2.1 如果 $\varphi(x) \in C^1[a, b]$,满足条件:

- (1) $a \le \varphi(x) \le b$; (2) $|\varphi'(x)| \le L < 1$ 则 $\varphi(x)$ 在 [a, b] 有唯一的不动点 x^*
- 证: 1)若 $\varphi(a) = a$ 或 $\varphi(b) = b$,显然 $\varphi(x)$ 有不动点设 $\varphi(a) \neq a$, $\varphi(b) \neq b$ 则有 $\varphi(a) >$, $a \varphi(b) < b$ 记 $\psi(x) = \varphi(x) x$ 则有 $\psi(a) \cdot \psi(b) < 0$ 所以, 存在 x^* , 使得 $\psi(x^*) = 0$ 即 $x^* = \varphi(x^*)$ 故 x^* 是 $\varphi(x)$ 的不动点.

2) 如果 $\varphi(x)$ 有两个不同的不动点 $x_1^* \neq x_2^*$ 则有

$$x_1^* = \varphi(x_1^*)$$
 $x_2^* = \varphi(x_2^*)$

两式相减得
$$x_1^* - x_2^* = \varphi(x_1^*) - \varphi(x_2^*)$$

由拉格朗日中值定理知, 存在 ξ 介于 x^* x 之间, 使

$$x_1^* - x_2^* = \varphi(x_1^*) - \varphi(x_2^*) = \varphi'(\xi)(x_1^* - x_2^*)$$

- $|x_1^* x_2^*| = |\varphi'(\xi)| \cdot |x_1^* x_2^*|$
- $|x_1^* x_2^*| \le L \cdot |x_1^* x_2^*|$
- $1 \le L$ (与 L<1 条件矛盾) **→** 故不动点唯一。

定理2.4 如果 $\varphi(x) \in C^1[a, b]$,满足条件: (1) $a \le \varphi(x) \le b$; (2) $|\varphi'(x)| \le L < 1$

(1)
$$a \le \varphi(x) \le b$$
; (2) $|\varphi'(x)| \le L < 1$

则对任意的 $x_0 \in [a, b]$, 迭代格式 $x_{n+1} = \varphi(x_n)$ 产生的序列 $\{x_n\}$ 收敛到不动点 x^* ,且有

$$|x^* - x_n| \le \frac{1}{1 - L} |x_{n+1} - x_n|$$

$$\begin{cases} x_n = \varphi(x_{n-1}) \\ x^* = \varphi(x^*) \end{cases} \rightarrow |x_n - x^*| = |\varphi(x_{n-1}) - \varphi(x^*)| \\ = |\varphi'(\xi)| \cdot |x_{n-1} - x^*|$$

$$\rightarrow |x_n - x^*| \le L |x_{n-1} - x^*|$$

$$|x_{n}-x^{*}| \leq L^{n}|x_{0}-x^{*}|$$

$$\lim_{n\to\infty} |x_n - x^*| \le \lim_{n\to\infty} L^n |x_0 - x^*| = 0 \quad (0 < L < 1)$$

所以,
$$\lim_{n\to\infty} x_n = x^*$$
 故迭代格式收敛

$$|x_{n} - x^{*}| = |x_{n} - x_{n+1} + x_{n+1} - x^{*}|$$

$$\leq |x_n - x_{n+1}| + |x_{n+1} - x^*| \leq |x_n - x_{n+1}| + L|x_n - x^*|$$

$$\rightarrow$$
 $(1-L) | x_n - x^* | \le | x_n - x_{n+1} |$

$$\rightarrow |x^* - x_n| \le \frac{1}{1 - L} |x_{n+1} - x_n|$$

不动点迭代序列的收敛速度

数列的 r 阶收敛(概念):

设
$$\lim_{n\to\infty} x_n = x^*$$
, 若存在 $\alpha>0$, $r>0$ 使得

$$\lim_{n\to\infty}\frac{|x_{n+1}-x^*|}{|x_n-x^*|^p}=a$$
 则称数列 $\{x_n\}$ r 阶收敛.

- 特别: (1) 收敛阶r=1时,称为线性收敛;(a<1)
 - (2) 收敛阶r>1时,称为超收敛;
 - (3) 收敛阶r=2时,称为平方收敛

序列的收敛阶数越高, 收敛速度越快

例2.3 方程 $x^3+10x-20=0$,取 $x_0=1.5$,证明迭代法在[1,2]上, $x_{n+1}=20/(x_n^2+10)$ 是线性收敛

iE:
$$\Rightarrow \varphi(x) = 20/(x^2 + 10)$$

$$\Rightarrow \varphi(1) \approx 1.82 \quad \varphi(2) \approx 1.43$$

$$\Rightarrow \begin{cases} \varphi'(x) = -40x/(x^2 + 10)^2 \\ \varphi''(x) = 40 \frac{3x^2 - 10}{(x^2 + 10)^3} \end{cases}$$

$$\varphi''(x) = 0 \quad \Rightarrow \quad \hat{x} = \sqrt{10/3}$$

$$\varphi'(\hat{x}) \approx -0.4108 \quad \Rightarrow \quad |\varphi'(x)| \leq 0.411$$

显然,在x*附近 $|\varphi'(x)| < 1 \quad \varphi'(x) \neq 0$ 利用Lagrange中值定理,有

$$|x_{n+1} - x^*| = |\varphi(x_n) - \varphi(x^*)| = |\varphi'(\xi_n)| |x_n - x^*|$$

其中, ξ_n 介于 x_n 和x*之间. 所以

$$\lim_{n\to\infty} \frac{|x_{n+1}-x^*|}{|x_n-x^*|} = \lim_{n\to\infty} |\varphi'(\xi_n)| = |\varphi'(x^*)|$$

由此可知,这一序列的收敛阶数为1,即迭代法是线性收敛.

定理2.6 设x*是 $\varphi(x)$ 的不动点,且

$$\varphi'(x^*) = \varphi''(x^*) = \cdots = \varphi^{(p-1)}(x^*) = 0$$

而
$$\varphi^{(p)}(x^*) \neq 0$$
则 $x_{n+1} = \varphi(x_n)$ p阶收敛

由Taylor公式

$$|x_{n+1} - x^*| = |\varphi(x_n) - \varphi(x^*)| = \frac{|x_n - x^*|^p}{p!} |\varphi^{(p)}(\xi_n)|$$

其中, ξ_n 介于 x_n 和x*之间. 所以

$$\lim_{n\to\infty} \frac{|x_{n+1}-x^*|}{|x_n-x^*|^p} = \frac{1}{p!} \lim_{n\to\infty} |\varphi^{(p)}(\xi_n)| = \frac{1}{p!} |\varphi^{(p)}(x^*)|$$

故迭代法p阶收敛.

牛顿迭代法迭代格式

牛顿迭代格式
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 (n = 0, 1, 2,)

给定初值 x_0 , 迭代产生数列

 $X_0, X_1, X_2, \dots, X_n, \dots$

应用——求正数平方根算法

设
$$c > 0$$
, $x = \sqrt{C}$ \Rightarrow $x^2 - C = 0$

$$x_{n+1} = x_n - \frac{x_n^2 - C}{2x_n}$$
 $x_{n+1} = \frac{1}{2}[x_n + \frac{C}{x_n}]$

牛顿迭代法误差估计和收敛速度分析

Newton迭代法的局部收敛性

定理2.7: 设 f(x) 在点x*的某邻域内具有二阶连续导数,且设 f(x*)=0, $f'(x*)\neq 0$,则对<u>充分靠近点x*的初值</u> x_0 , Newton迭代法<u>至少平方</u>收敛.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \implies \varphi(x) = x - \frac{f(x)}{f'(x)}$$

$$\varphi'(x^*) = f(x^*)f''(x^*)/[f'(x^*)]^2 = 0$$

$$\varphi''(x^*) = \frac{f''(x^*)}{f'(x^*)}$$

所以, Newton迭代法至少平方收敛 (第3讲定理2.6)

缺陷

1.被零除错误

$$f(x) = x^3 - 3x + 2 = 0$$

在
$$x^*=1$$
附近, $f'(x) \approx 0$

2.程序死循环

对 $f(x) = \arctan x$

存在 x_0 , 使Newton迭 代法陷入死循环

3.其它

定理: 若函数f(x) 在[a, b] 上满足条件

- (1) f(a) f(b) < 0;
- (2) *f* '(x), *f* "(x) 在[a, b]上<u>连续且不变号</u> (恒为正或恒为负);
- (3) 取 $x_0 \in [a, b]$ 使得 $f(x_0)f''(x_0) > 0$ 。

则方程 f(x) = 0 在 [a, b] 上有 $\frac{\mathbb{R} - \mathbb{R} \times \mathbb{R}}{\mathbb{R} \times \mathbb{R}}$,且由初值 x_0 按牛顿迭代公式求得的序列 $\{x_n\}$ 二阶收敛于 x_n^* 。

$$f(x^*) = f(x_k) + f'(x_k)(x^* - x_k) + \frac{1}{2}f''(\xi_k)(x^* - x_k)^2 = 0$$

$$|x^* - [x_k - \frac{f(x_k)}{f'(x_k)}] = -\frac{f''(\xi_k)}{2f'(x_k)} (x^* - x_k)^2$$

$$x^* - x_{k+1} = -\frac{f''(\xi_k)}{2f'(x_k)} (x^* - x_k)^2$$

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{(x_k - x^*)^2} = \lim_{k \to \infty} \frac{|f''(\xi_k)|}{2|f'(x_k)|} = \frac{|f''(x^*)|}{2|f'(x^*)|}$$

引理1 设 x^* 是 f(x)=0 的二重根,则牛顿迭代法只具有一阶收敛

表明: 当有重根时, 传统牛顿法二阶收敛性 质不成立!

怎么办?

引理2 若 x^* 是 f(x)=0 的 m 重根,修正的牛顿迭代法

$$x_{n+1} = x_n - m \frac{f(x_n)}{f'(x_n)}$$

为至少二阶收敛

$$x_{n+1} = x_n - 2 \frac{f(x_n)}{f'(x_n)}$$

表5 x*为二重根时修正的牛顿迭代实验 (例3)

n	X _n	e _n	$ e_{n+1} / e_n ^2$
0	1.5	5.00e-001	
1	1.03333333333	3.33e-002	0.1333
2	1.00018214936	1.85e-004	0.1639
3	1.0000000552	5.52e-009	0.1667

非线性方程组迭代法

问题: n个方程的n元非线性方程组F(x) = 0

$$\begin{cases} f_1(x_1, x_2, ..., x_n) = 0 \\ f_2(x_1, x_2, ..., x_n) = 0 \\ \\ f_m(x_1, x_2, ..., x_n) = 0 \end{cases} \Leftrightarrow x = \begin{pmatrix} x_1 \\ x_2 \\ ... \\ x_n \end{pmatrix}, \quad F(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ ... \\ f_m(x) \end{pmatrix}, \quad \text{则方程组可以表示为} F(x) = \theta$$

1) 不动点方法 (x = G(x))

构造 x = x-F(x)的迭代格式

2) 牛顿法: x = x - F(x)/F'(x)

$$\vec{x}_{n+1} = \vec{x}_n - (DF(\vec{x}_n))^{-1} \vec{f}(\vec{x}_n) \qquad \qquad \qquad \qquad \qquad DF(\vec{x}) = \begin{bmatrix} \frac{\partial f_1(\vec{x})}{\partial x_1} & \frac{\partial f_1(\vec{x})}{\partial x_2} & \dots & \frac{\partial f_1(\vec{x})}{\partial x_n} \\ \frac{\partial f_2(\vec{x})}{\partial x_1} & \frac{\partial f_2(\vec{x})}{\partial x_2} & \dots & \frac{\partial f_2(\vec{x})}{\partial x_n} \\ \vdots & & \ddots & \vdots \\ \frac{\partial f_n(\vec{x})}{\partial x_1} & \frac{\partial f_n(\vec{x})}{\partial x_2} & \dots & \frac{\partial f_n(\vec{x})}{\partial x_n} \end{bmatrix}$$

第二部分 线性方程组的直接法

- →高斯消元法进行LU分解
- →列主元消元法
- → Doolittle法进行LU分解
- →向量范数 (三种) 定义性质及其计算
- →矩阵范数 (三种) 定义性质及其计算

高斯消元法进行LU分解

举例: 用高斯消元法对如下系数矩阵A进行三角分解

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 5 & 2 \\ 4 & 3 & 30 \end{bmatrix} \xrightarrow{\text{(-3/2)}\mathbf{r_1}+\mathbf{r_2}} F_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{4}{2} & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

列主元消元法

例列主元法
$$\begin{bmatrix} 10^{-8} & 2 & 3 \\ -1 & 3.712 & 4.623 \\ -2 & 1.072 & 5.643 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

第一列中绝对值最大为-2,取-2为主元

$$\begin{bmatrix} 10^{-8} & 2 & 3 & 1 \\ -1 & 3.712 & 4.623 & 2 \\ -2 & 1.072 & 5.643 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} -2 & 1.072 & 5.643 & 3 \\ -1 & 3.712 & 4.623 & 2 \\ 10^{-8} & 2 & 3 & 1 \end{bmatrix}$$

不
$$\begin{bmatrix} 10^{-8} & 2 & 3 & 1 \\ 0 & 0.2 \times 10^9 & 0.3 \times 10^9 & 0.1 \times 10^9 \\ \hline 元 & 0 & 0.4 \times 10^9 & 0.6 \times 10^9 & 0.2 \times 10^9 \end{bmatrix}$$
 Error

回代计算

 X_1 =-0.49105820, X_2 =-0.050886075, X_3 =0.367257384

MATLAB计算

-0.49105816158235 -0.05088609088002 0.36725741028862

Doolittle法进行LU分解

例3.5 求矩阵的Doolittle分解

$$A = \begin{bmatrix} 2 & 4 & 4 & 2 \\ 3 & 3 & 12 & 6 \\ 2 & 4 & -1 & 2 \\ 4 & 2 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 4 & 4 & 2 \\ 3/2 & 3 & 12 & 6 \\ 1 & 4 & -1 & 2 \\ 2 & 2 & 1 & 1 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 2 & 4 & 4 & 2 \\ 3/2 & -3 & 6 & 3 \\ 1 & 0 & -1 & 2 \\ 2 & 2 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 4 & 4 & 2 \\ 3/2 & -3 & 6 & 3 \\ 1 & 0 & -5 & 0 \\ 2 & 2 & 19/5 & -9 \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3/2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 2 & 2 & 19/5 & 1 \end{bmatrix} \quad U = \begin{bmatrix} 2 & 4 & 4 & 2 \\ 0 & -3 & 6 & 3 \\ 0 & 0 & -5 & 0 \\ 0 & 0 & 0 & -9 \end{bmatrix}$$

直接分解的运算特点:

- ①旧元素减去左边行与顶上列向量的点积
- ②计算行不用除法
- ③计算列要除主对角元

向量范数(三种)定义性质及其计算

定义3.1:设 R^n 是n维向量空间,如果对任意 $x \in R^n$,都有一个实数与之对应,且满足如下三个条件:

(2)齐次性:
$$\|\lambda x\| = |\lambda| \|x\| \lambda$$
为任意实数

(3)三角不等式:
$$||x+y|| \le ||x|| + ||y||$$
 ($y \in R^n$)

则称||x||为向量x的范数.

$$||x||_{1} = \sum_{i=1}^{n} |x_{i}| = |x_{1}| + |x_{2}| + \dots + |x_{n}|$$

$$||x||_{2} = \sqrt{\sum_{i=1}^{n} x_{i}^{2}} = \sqrt{x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}}$$

$$||x||_{\infty} = \max_{1 \le i \le n} |x_{i}| = \max(|x_{1}|, |x_{2}|, \dots, |x_{n}|)$$

_ .

定义:如果Rn中有两个范数 ||x||。与 ||x||, 存在常数m, M>0,使对任意n维向量x,有

$$m||x||_{s} \leq ||x||_{t} \leq M||x||_{s}$$
 则称这两个范数等价.

例2. 设
$$x=(x_1, x_2, \dots, x_n)^T$$
,证明
$$||x||_{\infty} \le ||x||_{1} \le n ||x||_{\infty}$$
 证明:
$$||x||_{1} = |x_1| + |x_2| + \dots + |x_n|$$

$$\max_{1 \le k \le n} |x_k| \le ||x||_{1} \le n \times \max_{1 \le k \le n} |x_k|$$
 所以
$$||x||_{\infty} \le ||x||_{1} \le n ||x||_{\infty}$$

矩阵范数(三种)定义性质及其计算

定义3.2 对 $A \in \mathbb{R}^{n \times n}$,存在实数 | | A | | 满足:

(2)齐次性:
$$\|\lambda A\| = |\lambda| \|A\|$$
 λ 为任意实数

(3)三角不等式:
$$||A + B|| \le ||A|| + ||B||$$
 ($B \in \mathbb{R}^{n \times n}$)

(4)相容性:
$$||A \cdot B|| \le ||A|| \cdot ||B|| \quad (\forall A, B \in \mathbb{R}^{n \times n})$$

则称 |A| 是矩阵 A 的一个范数.

Frobenius 范数
$$||A||_F = (\sum_{j=1}^n \sum_{i=1}^n a_{ij}^2)^{1/2}$$

矩阵算子范数的概念

设 ||x||是 R^n 上的向量范数, $A \in R^{n \times n}$,则A的非 负函数 $||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$

称为矩阵A的算子范数

注1:矩阵算子范数由向量范数诱导出,如

$$||A||_2 = \max_{x \neq 0} \frac{||Ax||_2}{||x||_2}$$
 \Rightarrow $||A||_2 = \max_{||x||_2 = 1} ||Ax||_2$

注2: A⁻¹的算子范数可表示为
$$(\min_{x\neq 0} \frac{||Ax||}{||x||})^{-1}$$

注2: A-1的算子范数可表示为
$$(\min_{x \neq 0} \frac{||x||}{||x||})^{-1}$$

$$||A^{-1}|| = \max_{x \neq 0} \frac{||A^{-1}x||}{||x||} = \max_{y \neq 0} \frac{||y||}{||Ay||} = \frac{1}{\min_{y \neq 0} \frac{||Ay||}{||y||}}$$

第三部分 线性方程组的迭代解法

- →雅可比迭代和高斯-赛德尔迭代的计算格式、 收敛性判断方法
- → 迭代向量序列的误差估计方法
- →极小化方法的基本思想、等价性定理
- →最速下降的基本思想

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$
 "1-范数"(列和范数)

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| \quad \text{无穷大范数(行和范数)}$$

$$\left\|A\right\|_{2} = \sqrt{\lambda_{\max}(A^{T}A)}$$

雅可比迭代和高斯-赛德尔迭代的计算格式

雅可比迭代法

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases} \qquad \begin{cases} \sum_{j=1}^{n} a_{ij}x_j = b_i \\ (i = 1, 2, ..., n) \end{cases}$$

$$x_{i}^{(k+1)} = \frac{1}{a_{ii}} [b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k)}]$$

$$(i = 1, 2, ..., n; k=1, 2,)$$

取初始向量 $X^{(0)}=[x_1^{(0)}x_2^{(0)}\cdots x_n^{(0)}]^T$, 迭代计算

总结:雅可比迭代法的矩阵表示 将方程组AX = b的系数矩阵 A分解

$$A = D - U - L$$

$$D = \begin{bmatrix} a_{11} & & \\ & a_{22} & \\ & & \ddots & \\ & & a_{nn} \end{bmatrix} \quad L = -\begin{bmatrix} 0 & & \\ a_{21} & 0 & & \\ \vdots & \ddots & \ddots & \\ a_{n1} & \cdots & a_{n,n-1} & 0 \end{bmatrix} \qquad U = -\begin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \\ & \ddots & \ddots & \vdots \\ & & 0 & a_{n-1,n} \\ & & & 0 \end{bmatrix}$$

$$AX = b = DX^{(k+1)} = (U+L)X^{(k)} + b$$

 $X^{(k+1)} = D^{-1}(U+L)X^{(k)} + D^{-1}b$

$$i l B_J = D^{-1}(U+L)$$
 $X^{(k+1)} = B_J X^{(k)} + f_J$

高斯-赛德尔迭代法的矩阵表示

$$a_{ii}x_{i}^{(k+1)} = [b_{i} - \sum_{j=1}^{i-1} a_{ij}x_{j}^{(k+1)} - \sum_{j=i+1}^{n} a_{ij}x_{j}^{(k)}]$$

$$\sum_{j=1}^{i} a_{ij}x_{j}^{(k+1)} = b_{i} - \sum_{j=i+1}^{n} a_{ij}x_{j}^{(k)} \quad (i = 1,2,...,n)$$

$$\begin{bmatrix} a_{11} & & & \\ a_{21} & a_{22} & & \\ \vdots & \vdots & \ddots & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_{1}^{(k+1)} \\ x_{2}^{(k+2)} \\ \vdots \\ x_{n}^{(k+1)} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix} - \begin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \\ 0 & \ddots & \vdots \\ \vdots \\ b_{n} \end{bmatrix} \begin{bmatrix} x_{1}^{(k)} \\ x_{2}^{(k)} \\ \vdots \\ x_{n}^{(k)} \end{bmatrix}$$

$$(D-L)X^{(k+1)}=b+UX^{(k)}$$

$$X^{(k+1)} = (D-L)^{-1}b + (D-L)^{-1}UX^{(k)}$$

迭代向量序列的误差估计方法

$$AX = b \rightarrow (M-N)X = b \rightarrow MX = NX + b$$

计算格式: $X^{(k+1)} = BX^{(k)} + f \quad (B = M^{-1}N)$
设方程组的精确解为 X^* ,则有
 $X^* = BX^* + f \rightarrow$
 $X^{(k+1)} - X^* = B(X^{(k)} - X^*)$
记 $\varepsilon^{(k)} = X^{(k)} - X^* \quad (k = 0, 1, 2, 3, \dots)$
则有 $\varepsilon^{(k)} = B \varepsilon^{(k)}$
 $\varepsilon^{(k)} = B \varepsilon^{(k-1)} \quad (k = 1, 2, 3, \dots)$

收敛性小结(6个定理)

定理1: 若||B||<1, 则迭代法 X^(k+1) =B X^(k) +f 收敛

定理2: 迭代格式 $X^{(k+1)} = B X^{(k)} + f$ 序列收敛的充分必要条

件是:

 $\lim_{k\to\infty}B^k=0$

定理3:若Ax=b的系数矩阵 A 是严格对角占优矩阵,则Jacobi和GS迭代收敛.

定理4: 迭代法 X(k+1) = B X(k) + f 收敛

⇔ 谱半径ρ(B) < 1</p>

定理5: 方程组 Ax=b 中, 若 A 是实对称正定矩阵,则 Gauss-Seidel迭法收敛

定理6: 设X*为方程组 AX=b 的解

若||B||<1,则对迭代格式 X^(k+1) = B X^(k) + f 有

(1)
$$||X^{(k)} - X^*|| \le \frac{||B||}{1 - ||B||} ||X^{(k)} - X^{(k-1)}||$$

(2)
$$||X^{(k)} - X^*|| \le \frac{||B||^k}{1 - ||B||} ||X^{(1)} - X^{(0)}||$$

若:
$$B_J = D^{-1}(U+L)$$
 $B_{G-S} = (D-L)^{-1}U$

小结(大规模稀疏线性系统迭代法求解)

三种迭代格式:

雅克比、高斯赛德尔、超松弛(高斯赛德尔为基础)。

收敛性分析(五个角度去思考):

- ➤ 是否<u>迭代矩阵B的范数小于1</u>?
- ➤ 是否<u>迭代矩阵B的极限为零矩阵</u>?
- ➤ 是否系数矩阵A为严格对角占优?
- ▶ 是否<u>迭代矩阵B的谱半径小于1</u>?
- ➤ 是否<u>系数矩阵A为实对称正定</u>? (<u>针对GS迭代</u>)

极小化方法的基本思想、等价性定理

初等变分原理

I 方程组问题: Ax = b

Ⅱ 极值问题: min

$$f(x) = \frac{1}{2}x^T A x - b^T x$$

定理4.10 设A = $(a_{ij})_{n\times n}$ 为实对称正定矩阵,

则 x 使二次函数

$$f(x) = \frac{1}{2}(Ax, x) - (b, x)$$

取极小值 ⇔ x 是线性方程组 Ax = b 的解。

最速下降法思想: 解对称正定方程组Ax = b

从初值点 $x^{(0)}$ 出发,以负梯度方向 r 为搜索方向 选择步长 t_0 , 使 $x^{(1)} = x^{(0)} + t_0$ r 为 f(x) 极小值点

在 x 处,梯度方向是 f(x) 增长最快方向 负梯度方向是 f(x) 下降最快方向

梯度: $\nabla f = gradf(x) = [f_{x1}, f_{x2}, \dots, f_{xn}]^T$

$$\nabla f = Ax - b$$

解对称正定方程组Ax = b 的最速下降算法:

$$r_0 = b - Ax^{(0)}$$
 , $k \leftarrow 0$;

第二步: 计算
$$t_k = (r_k, r_k) / (Ar_k, r_k)$$

$$x^{(k+1)} = x^{(k)} + t_k r_k; r_{k+1} = b - Ax^{(k+1)};$$

第三步: k ← k+ 1, 如果 ||r_k|| ≥ ε,转第二步;

否则,输出: x^(k),结束.

第四部分 数据插值方法

- → 拉格朗日插值公式以及拉格朗日插值基 函数构造方法
- →Hermite插值(导数插值)及插值余项
- →分段线性插值
- →均差计算方法以及牛顿插值公式的计算方法
- →样条插值

拉格朗日插值公式以及拉格朗日插值基函数构造方法

定理5.1 若插值结点 X_0, X_1, \dots, X_n 是 (n+1)个互异 点,则满足插值条件 $P(x_k) = y_k$ (k = 0,1,...,n)

的 n 次插值多项式

$$P(x)=a_0 + a_1x + \dots + a_nx^n$$

存在而且是唯一的。

证明: 由插值条件

$$P(x_0) = y_0$$

$$P(x_1) = y_1$$

$$P(x_n) = y_n$$

方程组系数矩阵取行列式

$$|A| = \begin{vmatrix} 1 & x_0 & \cdots & x_0^n \\ 1 & x_1 & \cdots & x_1^n \\ \vdots & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^n \end{vmatrix} = \prod_{n \ge i > j \ge 0} (x_i - x_j) \ne 0$$

故方程组有唯一解.

从而插值多项式 P(x) 存在而且是唯一的.

例5.1 误差函数表可构造6次插值函数

X	0	0.5000	1.0000	1.5000	2.0000	2.5000	3.0000
У	0	0.5205	0.8427	0.9661	0.9953	0.9996	1.0000

拉格朗日插值公式

插值条件:
$$L(x_k) = y_k \quad (k = 0,1,...,n)$$

$$L_n(x) = l_0(x)y_0 + l_1(x)y_1 + \dots + l_n(x)y_n$$

其中,第k(k=0,1,...,n)个插值基函数

$$l_k(x) = \frac{(x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)}{(x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)}$$

或:
$$l_k(x) = \prod_{\substack{j=0 \ j \neq k}}^n \frac{(x-x_j)}{(x_k-x_j)}$$

定理5.2 设 $f(x) \in C[a, b]$, 且 f(x) 在(a, b)内具有n+1阶导数, 取插值结点

$$a \le x_0 < x_1 < \dots < x_n \le b$$

则对任何 $x \in [a, b]$,满足 $L_n(x_k) = f(x_k)$ 的 n 次插值多项式 $L_n(x)$ 的误差

$$R_n(x) = f(x) - L_n(x) = \frac{f^{(n+1)}(\xi_n)}{(n+1)!} \omega_{n+1}(x)$$

其中,
$$\omega_{n+1}(x) = (x-x_0)(x-x_1)\cdots(x-x_n)$$

$$\xi_n \in (a, b)$$
 且与x有关

均差计算方法以及牛顿插值公式的计算方法

牛顿插值问题

取
$$x_0, x_1, x_2$$
,求二次函数
 $P(x)=a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1)$
满足条件
 $P(x_0)=f(x_0), P(x_1)=f(x_1), P(x_2)=f(x_2)$

插值条件引出关于a₀, a₁, a₂方程

$$\begin{cases} a_0 &= f(x_0) \\ a_0 + a_1(x_1 - x_0) &= f(x_1) \\ a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) = f(x_2) \end{cases}$$

解下三角方程组过程中引入符号

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \qquad f[x_1, x_2] = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

$$a_0 = f(x_0), \quad a_1 = f[x_0, x_1], \quad a_2 = f[x_0, x_1, x_2]$$

牛顿插值公式:

$$P(x)=f(x_0)+f[x_1,x_2](x-x_0) + f[x_0,x_1,x_2](x-x_0)(x-x_1)$$

定义5.3 若已知函数 f(x) 在点 $x_{0,x_1},...,x_n$ 处的值 $f(x_0)$, $f(x_1)$, ..., $f(x_n)$.如果 $i \neq j$,则

一阶均差
$$f[x_j, x_{j+1}] = \frac{f(x_{j+1}) - f(x_j)}{x_{j+1} - x_j}$$
 (j = 0,1,...,n-1)

二阶均差
$$f[x_j, x_{j+1}, x_{j+2}] = \frac{f[x_{j+1}, x_{j+2}] - f[x_j, x_{j+1}]}{x_{j+2} - x_j}$$
 ($j = 0,1,...,n-2$)

n阶均差
$$f[x_0, x_1, \dots, x_n] = \frac{f[x_1, \dots, x_n] - f[x_0, \dots x_{n-1}]}{x_n - x_0}$$

例 由函数表 求各阶均差

X	- 2	-1	0	1	3
y	-56	-16	-2	-2	4

解:按公式计算一阶均差、二阶均差、三阶均差

X	f(x)	一阶均差	二阶均差	三阶均差
-2	(-56)			
-1	-16	(40)		
0	-2	14	(-13)	
1	-2	0	-7	2
3	4	3	1	2

$$N_3(x) = -56 + 40(x + 2) - 13(x + 2)(x + 1) + 2(x + 2)(x + 1) x$$

Hermite插值(导数插值)及插值余项

插值条件中除函数值插值条件外,还有导数值插值条件,即:

已知2n+2个条件

$\boldsymbol{x_i}$	$\boldsymbol{x_0}$	$\boldsymbol{x_1}$	•••	$\boldsymbol{x_n}$
$y_i = f(x_i)$	Yo	y ₁	•••	y_n
$y_i' = f'(x_i)$	y_0'	y_1'	•••	y'_n

求:一个次数不超过2n+1的多项式 $H_{2n+1}(x)$

三次Hermite插值,采用基函数方式构造H(x):

$$H(x) = \alpha_0(x)y_0 + \alpha_1(x)y_1 + \beta_0(x)m_0 + \beta_1(x)m_1$$

插值条件:

$$H(x_0) = y_0$$
 $H(x_1) = y_1$
 $H'(x_0) = m_0$ $H'(x_1) = m_1$

插值条件表

	函数	大值	导数值	
	x_0	x_1	x_0	x_1
$\alpha_0(x)$	1	0	0	0
$\alpha_{l}(x)$	0	1	0	0
$\beta_0(x)$	0	0	1	0
$\beta_1(x)$	0	0	0	1

最终求得所有4个基函数(针对三次Hermite插值)

$$\alpha_0(x) = \left(1 + 2\frac{x - x_0}{x_1 - x_0}\right) \left(\frac{x - x_1}{x_0 - x_1}\right)^2 \qquad \beta_0(x) = (x - x_0) \left(\frac{x - x_1}{x_0 - x_1}\right)^2$$

$$\alpha_1(x) = \left(1 + 2\frac{x - x_1}{x_0 - x_1}\right) \left(\frac{x - x_0}{x_1 - x_0}\right)^2 \qquad \beta_1(x) = (x - x_1) \left(\frac{x - x_0}{x_1 - x_0}\right)^2$$

代入4个基函数即可得:三次Hermite插值多项式

$$H(x) = \alpha_0(x)y_0 + \alpha_1(x)y_1 + \beta_0(x)m_0 + \beta_1(x)m_1$$

定理: 两点三次Hermite插值的误差估计式

$$R(x) = f(x) - H_3(x) = \frac{f^{(4)}(\xi)}{4!} [(x - x_0)(x - x_1)]^2$$

分段插值

分段线性插值

插值节点满足: $x_0 < x_1 < \cdots < x_n$ 已知 $y_j = f(x_j)$ ($j = 0,1,2,\cdots,n$)

 $x \in [x_j, x_{j+1}]$ 时,线性插值函数

$$L_h(x) = \frac{x_{j+1} - x}{x_{j+1} - x_j} y_j + \frac{x - x_j}{x_{j+1} - x_j} y_{j+1} \quad (j = 0,1,\dots,n-1)$$

分段三次Hermite插值

已知函数值和导数值 $y_j = f(x_j), m_j = f'(x_j)$

$$\begin{split} H_h(x) &= (1 + 2\frac{x - x_j}{x_{j+1} - x_j})(\frac{x_{j+1} - x}{x_{j+1} - x_j})^2 y_j \quad \text{(j= 0,1,2,...,n$)} \\ &+ (1 + 2\frac{x_{j+1} - x}{x_{j+1} - x_j})(\frac{x - x_j}{x_{j+1} - x_j})^2 y_{j+1} \\ &+ (x - x_j)(\frac{x_{j+1} - x}{x_{j+1} - x_j})^2 m_j + (x - x_{j+1})(\frac{x - x_j}{x_{j+1} - x_j})^2 m_{j+1} \end{split}$$

$$x \in [x_j, x_{j+1}]$$
 ($j = 0,1,2,\dots,n-1$)

样条插值(含一阶导数刻画的样条函数)

定义 5.4: 给定区间[a,b]上的一个分划:

$$a = x_0 < x_1 < ... < x_n = b$$

已知 $f(x_i) = y_i$ ($j = 0,1,\dots,n$), 如果

$$S(x) = \begin{cases} S_1(x), x \in [x_0, x_1] \\ S_2(x), x \in [x_1, x_2] \\ \dots \\ S_n(x), x \in [x_{n-1}, x_n] \end{cases}$$

满足: (1) S(x)在 $[x_j, x_{j+1}]$ 上为三次多项式;

- (2) S"(x)在区间[a, b]上连续;
- (3) $S(x_j) = y_j \ (j = 0,1,\dots,n).$

则称 S(x)为三次样条插值函数.

n个三次多项式(每个三次多项式是4个待定系数), 待定系数共4n个!!

当
$$x \in [x_j, x_{j+1}]$$
 ($j = 0,1,...n-1$)时
 $S_j(x) = a_j + b_j x + c_j x^2 + d_j x^3$

由样条定义,可建立方程(4n-2)个!! Why?

插值条件:
$$S(x_j) = y_j$$
 ($j = 0,1,\dots,n$)
连续性条件: $S(x_j+0) = S(x_j-0)$ ($j = 1,\dots,n-1$)
 $S'(x_j+0) = S'(x_j-0)$ ($j = 1,\dots,n-1$)
 $S''(x_j+0) = S''(x_j-0)$ ($j = 1,\dots,n-1$)

方程数少于未知数个数??

- (1)自然边界条件: $S''(x_0)=0$, $S''(x_n)=0$
- (2)周期边界条件: $S'(x_0)=S'(x_n)$, $S''(x_0)=S''(x_n)$
- (3)固定边界条件: $S'(x_0)=f'(x_0)$, $S'(x_n)=f'(x_n)$

即可计算所有未知量!

举例:分段Hermite插值公式导出的样条方法

已知函数表

X	x ₀	X ₁	•••••	X _n	
f(x)	y ₀	y ₁	•••••	y _n	

设f(x) 在各插值节点 x_j 处的一阶导数为 m_j (未知)

取 $x_{j+1} - x_j = h$, $(j = 0,1,2,\dots,n)$.当 $x \in [x_j, x_{j+1}]$ 时, 分段Hermite插值

$$\begin{split} S(x) &= (1 + 2\frac{x - x_{j}}{h})(\frac{x_{j+1} - x}{h})^{2}y_{j} + (1 + 2\frac{x_{j+1} - x}{h})(\frac{x - x_{j}}{h})^{2}y_{j+1} \\ &+ (x - x_{j})(\frac{x_{j+1} - x}{h})^{2}m_{j} + (x - x_{j+1})(\frac{x - x_{j}}{h})^{2}m_{j+1} \end{split}$$

由S"(x)连续: 有等式: S"(x_i + 0)=S"(x_i - 0)

考虑 S''(x) 在区间 $[x_j, x_{j+1}]$ 和 $[x_{j-1}, x_j]$ 上表达式.

当 $x \in [x_i, x_{i+1}]$ 时, S(x) 由基函数组合而成

$$\alpha_{j}(x) = (1 + 2\frac{x - x_{j}}{h})(\frac{x_{j+1} - x}{h})^{2}$$

$$\alpha_{j+1}(x) = (1 + 2\frac{x_{j+1} - x}{h})(\frac{x - x_{j}}{h})^{2}$$

$$\beta_{j}(x) = (x - x_{j})(\frac{x_{j+1} - x}{h})^{2}$$

$$\beta_{j+1}(x) = (x - x_{j+1})(\frac{x - x_j}{h})^2$$

$$\begin{cases} \alpha_{j}''(x_{j}) = \left[\frac{-8}{h^{3}}(x_{j+1} - x) + (1 + 2\frac{x - x_{j}}{h})\frac{2}{h^{2}}\right]_{x = x_{j}} = -\frac{6}{h^{2}} \\ \alpha_{j+1}''(x_{j}) = \left[-\frac{8}{h^{3}}(x - x_{j}) + (1 + 2\frac{x_{j+1} - x}{h})\frac{2}{h^{2}}\right]_{x = x_{j}} = \frac{6}{h^{2}} \end{cases}$$

$$\begin{cases} \beta_{j}''(x_{j}) = \left[\frac{4}{h^{2}}(x - x_{j+1}) + (x - x_{j})\frac{2}{h^{2}}\right]_{x = x_{j}} = -\frac{4}{h} \\ \beta_{j+1}''(x_{j}) = \left[\frac{4}{h^{2}}(x - x_{j}) + (x - x_{j+1})\frac{2}{h^{2}}\right]_{x = x_{j}} = -\frac{2}{h} \end{cases}$$

$$S''(x_{j} + 0) = \alpha''_{j}(x_{j})y_{j} + \alpha''_{j+1}(x_{j})y_{j+1} + \beta''_{j}(x_{j})m_{j} + \beta''_{j+1}(x_{j})m_{j+1}$$

$$S''(x_j + 0) = -\frac{6}{h^2}y_j + \frac{6}{h^2}y_{j+1} - \frac{4}{h}m_j - \frac{2}{h}m_{j+1}$$

同理,有

$$S''(x_j - 0) = \frac{6}{h^2} y_{j-1} - \frac{6}{h^2} y_j + \frac{2}{h} m_{j-1} + \frac{4}{h} m_j$$

联立得:
$$-\frac{6}{h^2}y_j + \frac{6}{h^2}y_{j+1} - \frac{4}{h}m_j - \frac{2}{h}m_{j+1}$$
$$= \frac{6}{h^2}y_{j-1} - \frac{6}{h^2}y_j + \frac{2}{h}m_{j-1} + \frac{4}{h}m_j$$

$$m_{j-1} + 4m_j + m_{j+1} = \frac{3}{h}(y_{j+1} - y_{j-1})$$
(j=1, 2,, n-1)

设自然边界条件成立. 即

$$S''(x_0 + 0) = -\frac{6}{h^2} y_0 + \frac{6}{h^2} y_1 - \frac{4}{h} m_0 - \frac{2}{h} m_1 = 0$$

$$S''(x_n - 0) = \frac{6}{h^2} y_{n-1} - \frac{6}{h^2} y_n + \frac{2}{h} m_{n-1} + \frac{4}{h} m_n = 0$$

自然样条的导数值满足:

$$2m_0 + m_1 = \frac{3}{h}[y_1 - y_0]$$

$$2m_0 + m_1 = \frac{3}{h}[y_1 - y_0]$$
 $m_{n-1} + 2m_n = \frac{3}{h}[y_n - y_{n-1}]$

$$m_{j-1} + 4m_j + m_{j+1} = \frac{3}{h}(y_{j+1} - y_{j-1})$$
(j=1, 2,, n-1)

第五部分 数据拟合与函数逼近

- →曲线拟合的最小二乘法
- →求解超定方程组的最小二乘法
- →正交多项式及性质

求解超定方程组的最小二乘法

离散数据的线性拟合

X	<i>X</i> ₁	<i>X</i> ₂	•••••	<i>X</i> _m	
f(x)	<i>y</i> ₁	<i>y</i> ₂	• • • • • • • •	y _m	

求拟合函数:

$$\varphi(x) = c_1 + c_2 x$$

$$GX = F$$

最小二乘问题

$$\min_{X \in R^2} ||GX - F||_2$$

$$\Leftrightarrow (G^T G) X = (G^T F)$$

超定方程组: *GX=F* →

正规方程组: G^TGX=G^TF

引例3实验数据3次多项式拟合。

解: 设
$$\varphi(x) = c_1 + c_2 x + c_2 x^2 + c_3 x^3$$

$$\begin{bmatrix} 1 & -3 & 9 & -27 \\ 1 & -2 & 4 & -8 \\ 1 & -1 & 1 & -1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} -0.277 \\ 0.895 \\ -1.565 \\ 3.456 \\ 3.060 \\ 4.856 \\ 3.898 \end{bmatrix}$$

$$\begin{bmatrix} -0.277 \\ 0.895 \end{bmatrix} c_1 = 2.0563, c_2 = 1.7531$$
$$c_3 = -0.0025, c_4 = -0.1225$$

残差2范数: ||r||₂ = 2.9007

正交多项式及性质

定义6.3 设 f(x), $g(x) \in C[a, b]$, $\rho(x)$ 是区间[a,b]上的权函数,若等式

$$(f,g) = \int_a^b \rho(x)f(x)g(x)dx = 0$$

成立,则称f(x), g(x)在[a, b]上带权 $\rho(x)$ 正交. 当 $\rho(x)$ =1时,简称正交。

例1 验证 $\varphi_0(x)=1$, $\varphi_1(x)=x$ 在[-1,1]上正交,

并求二次多项式 $\varphi_2(x)$ 使之与 $\varphi_0(x)$, $\varphi_1(x)$ 正交

解:
$$\int_{-1}^{1} \varphi_0(x) \varphi_1(x) dx = \int_{-1}^{1} 1 \cdot x dx = 0$$

设
$$\varphi_2(x) = x^2 + a_{21}x + a_{22}$$

$$\int_{-1}^{1} 1 \cdot \varphi_2(x) dx = 0$$

$$\int_{-1}^{1} 1 \cdot \varphi_2(x) dx = 0 \qquad \qquad \int_{-1}^{1} x \varphi_2(x) dx = 0$$

$$\int_{-1}^{1} (x^2 + a_{21}x + a_{22})dx = 0 \quad \int_{-1}^{1} x(x^2 + a_{21}x + a_{22})dx = 0$$

$$2/3+2a_{22}=0$$

 $2a_{21}/3=0$

$$2a_{21}/3=0$$

$$a_{22} = -1/3$$
 $a_{21} = 0$

$$a_{21} = 0$$

所以,
$$\varphi_2(x) = x^2 - \frac{1}{3}$$

2.切比雪夫多项式的正交性

$$\int_{0}^{\pi} \cos(m\theta) \cos(n\theta) d\theta = 0 \quad (m \neq n)$$

$$(T_{m}, T_{n}) = \int_{-1}^{1} \frac{1}{\sqrt{1 - x^{2}}} T_{m}(x) T_{n}(x) dx$$

$$= \int_{0}^{\pi} \cos m\theta \cos n\theta d\theta = 0$$

所以, 切比雪夫多项式在[-1,1]上带权

$$\rho(x) = \frac{1}{\sqrt{1-x^2}}$$
正交

勒让德(Legendre)多项式

1.表达式
$$P_0(x) = 1, P_1(x) = x$$

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n] \qquad (n \ge 1)$$

2. 正交性

$$\int_{-1}^{1} P_m(x) P_n(x) dx = \begin{cases} 0, & m \neq n \\ \frac{2}{2n+1}, m = n \end{cases}$$

$$\begin{cases} p_0 = 1, & p_1 = x, \\ p_{n+1} = \frac{2n+1}{n+1} x p_n - \frac{n}{n+1} p_{n-1} \end{cases}$$

$$p_2(x) = \frac{1}{2}(3x^2 - 1)$$
 $p_3(x) = \frac{1}{2}(5x^3 - 3x)$

4.零点分布

 $P_n(x)$ 的n 个零点,落入区间[-1,1]中

$$P_2(x)$$
的两个零点: $x_1 = -\frac{1}{\sqrt{3}}$ $x_2 = \frac{1}{\sqrt{3}}$

$$P_3(x)$$
的三个零点: $x_1 = -\sqrt{\frac{3}{5}}$ $x_2 = 0$ $x_3 = \sqrt{\frac{3}{5}}$

用正交多项式作最佳平方逼近

设 $P_0(x)$, $P_1(x)$, …, $P_n(x)$ 为区间[a, b]上的正交多项式, 即

$$(P_k, P_j) = \int_a^b P_k(x) P_j(x) dx = 0$$

 $\{k \neq j, k, j = 0, 1, \dots, n\}$

使
$$L = \int_a^b [P(x) - f(x)]^2 dx = \min$$

$$L(a_0, a_1, \dots, a_n) = \int_a^b \left[\sum_{j=0}^n a_j P_j(x) - f(x) \right]^2 dx$$

$$\frac{\partial L}{\partial a_k} = 2\int_a^b P_k(x) \left[\sum_{j=0}^n a_j P_j(x) - f(x)\right] dx$$

由于
$$(P_k, P_j) = \int_a^b P_k(x) P_j(x) dx = 0, (k \neq j)$$

则有
$$(P_k, P_k)a_k = (P_k, f)$$
 $(k = 0, 1, 2, \dots, n)$

$$a_k = \frac{(P_k, f)}{(P_k, P_k)}$$
 (k = 0, 1, 2, ..., n)

$$f(x)$$
的平方逼近 $P(x) = \sum_{k=0}^{n} \frac{(P_k, f)}{(P_k, P_k)} P_k(x)$

例 求二次多项式
$$P(x) = a_0 + a_1 x + a_2 x^2$$
 使
$$\int_0^1 [P(x) - \sin(\pi x)]^2 dx = \min$$

构造区间[0,1]上的正交多项式

$$P_0(x)=1$$
, $P_1(x)=x-1/2$, $P_2(x)=x^2-x+1/6$

$$\sin(\pi x) \approx \frac{(P_0, \sin(\pi x))}{(P_0, P_0)} + \frac{(P_1, \sin(\pi x))}{(P_1, P_1)} P_1(x) + \frac{(P_2, \sin(\pi x))}{(P_2, P_2)} P_2(x)$$

$$\frac{(P_0,\sin(\pi x))}{(P_0,P_0)} = \frac{2/\pi}{1} \qquad \frac{(P_1.\sin(\pi x))}{(P_1,P_1)} = \frac{0}{1/12}$$

$$\frac{(P_2.\sin(\pi x))}{(P_2,P_2)} = \frac{(\pi^2 - 12)/3\pi^3}{1/180}$$

第六部分 数值积分和数值微分

- →梯形公式、辛卜生求积公式
- →复合求积公式及算法
- →插值型求积公式的误差估计方法
- →高斯积分法
- →差商计算数值微分方法

梯形公式、辛卜生求积公式

梯形公式:

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} [f(a) + f(b)]$$

Simpson 公式:

$$\int_{a}^{b} f(x)dx = \frac{b-a}{6} [f(a) + 4f(\frac{a+b}{2}) + f(b)] + R[f]$$

复合求积公式及算法

如何判断代数精度?

复合梯形求积公式

将积分区间[a,b]n等分.取 $h=(b-a)/n.x_i=a+jh$

$$\int_{a}^{b} f(x)dx = \sum_{j=0}^{n-1} \int_{x_{j}}^{x_{j+1}} f(x)dx \approx \frac{h}{2} \sum_{j=0}^{n-1} [f(x_{j}) + f(x_{j+1})]$$
$$= \frac{h}{2} [f(a) + f(b) + 2 \sum_{j=1}^{n-1} f(x_{j})]$$

插值型求积公式的误差估计方法

插值型求积公式

对
$$[a, b]$$
做分划: $a \le x_0 < x_1 < x_2 < \dots < x_n \le b$ Lagrange插值 $f(x) \approx \sum_{j=0}^n l_j(x) f(x_j)$
$$\int_a^b f(x) dx \approx \sum_{j=0}^n [\int_a^b l_j(x) dx] f(x_j)$$
 令 $A_j = \int_a^b l_j(x) dx, (j = 0,1,2,\cdots,n)$
$$\int_a^b f(x) dx = \sum_{j=0}^n A_j f(x_j) + R[f]$$

插值型求积公式的余项

$$R[f] = \int_a^b [f(x) - L_n(x)] dx = \int_a^b \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega_{n+1}(x) dx$$

例2. 用线性插值公式推导梯形公式

$$A_0 = \int_a^b \frac{b-x}{b-a} dx = \frac{1}{2}(b-a) \qquad A_1 = \int_a^b \frac{x-a}{b-a} dx = \frac{1}{2}(b-a)$$

$$R[f] = \int_a^b \frac{f''(\xi)}{2} (x-a)(x-b) dx = 0$$

高斯积分法

定义 如果求积结点 x_0, x_1, \dots, x_n ,使插值型求积公式

$$\int_{-1}^{1} f(x)dx \approx \sum_{k=0}^{n} A_k f(x_k)$$

的代数精度为2n+1,则称该求积公式为Gauss型求积公式. 称这些求积结点为Gauss点.

定理7.2 如果多项式 $w_{n+1}(x)=(x-x_0)(x-x_1)\cdots(x-x_n)$ 与任意的不超过n次的多项式P(x)正交,即

$$\int_{-1}^{1} w_{n+1}(x) P(x) dx = 0$$

则, $w_{n+1}(x)$ 的所有零点 x_0, x_1, \dots, x_n 是Gauss点

举例:验证多项式 $w_2(x) = x^2 - \frac{1}{3}$ 是[-1,1]上正交多项式.

$$\int_{-1}^{1} (a_0 + a_1 x) w_2(x) dx = a_0 \int_{-1}^{1} w_2(x) dx + a_1 \int_{-1}^{1} x w_2(x) dx = 0$$

得Gauss点
$$x_0 = -\frac{1}{\sqrt{3}}, x_1 = \frac{1}{\sqrt{3}}$$

插值公式:
$$f(x) \approx \frac{x_1 - x}{x_1 - x_0} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1)$$

$$\int_{-1}^{1} \frac{x_1 - x}{x_1 - x_0} dx = \frac{2x_1}{x_1 - x_0} = 1 \qquad \int_{-1}^{1} \frac{x - x_0}{x_1 - x_0} dx = \frac{-2x_0}{x_1 - x_0} = 1$$

两点Gauss公式
$$\int_{-1}^{1} f(x)dx \approx f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$$

Legendre多项式递推式
$$egin{cases} p_0=1, & p_1=x, \ p_{n+1}=rac{2n+1}{n+1}xp_n-rac{n}{n+1}p_{n-1} \end{cases}$$

$$p_{2}(x) = \frac{1}{2}(3x^{2} - 1) \qquad p_{3}(x) = \frac{1}{2}(5x^{3} - 3x)$$

$$p_{3}(x) = \frac{1}{2}(5x^{3} - 3x) = 0$$

$$x_{0,2} = \mp \sqrt{\frac{3}{5}} \approx -0.7745067 \qquad x_{1} = 0$$

三点Gauss数值求积公式 $\int_{-1}^{1} f(x)dx \approx$

0.5556f(-0.7745) + 0.8889f(0) + 0.5556f(0.7745)

差商计算数值微分方法

Taylor级数展开

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2}f''(a) + \frac{h^3}{3!}f^{(3)}(a) + O(h^4)$$
—阶向前差商
$$f'(a) = \frac{f(a+h) - f(a)}{h} + O(h)$$

h	误差
0.5	-0.2055
0.4	-0.1684
0.3	-0.1292
0.2	-0.0879
0.1	-0.0447

$$f(a-h) = f(a) - hf'(a) + \frac{h^2}{2}f''(a) - \frac{h^3}{3!}f^{(3)}(a) + O(h^4)$$

一阶向后差商
$$f'(a) = \frac{f(a) - f(a-h)}{h} + O(h)$$

h	误差	
0.5	0.2398	
0.4	0.1905	
0.3	0.1416	
0.2	0.0934	
0.1	0.0461	

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2}f''(a) + \frac{h^3}{3!}f^{(3)}(a) + \cdots$$

$$f(a-h) = f(a) - hf'(a) + \frac{h^2}{2}f''(a) - \frac{h^3}{3!}f^{(3)}(a) + \cdots$$

$$f(a+h) - f(a-h) = 2hf'(a) + O(h^3)$$

一阶中心差商
$$f'(a) = \frac{f(a+h)-f(a-h)}{2h} + O(h^2)$$

$$f(a+h)+f(a-h)=2f(a)+h^2f''(a)+O(h^4)$$

二阶中心差商
$$f''(a) = \frac{f(a+h)-2f(a)+f(a-h)}{h^2}+O(h^2)$$

三种一阶差商与导数误差比较

h	0.5	0.4	0.3	0.2	0.1
误差1	-0.2055	-0.1684	-0.1292	-0.0879	-0.0447
误差 2	0.2398	0.1905	0.1416	0.0934	0.0461
误差	0.0171	0.0110	0.0062	0.0028	0.00073

二阶差商与二阶导数误差

h	误差	
0.5	0.0188	
0.4	0.0121	
0.3	0.0068	
0.2	0.0030	
0.1	0.0008	

Lagrange插值函数方法

二次多项式插值

$$f'(x) \approx \sum_{j=0}^{2} l'_{j}(x) f(x_{j})$$

$$l_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

$$l_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$

$$l_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

二次多项式插值
$$f(x) \approx \sum_{j=0}^{2} l_j(x) f(x_j)$$

$$f'(x) \approx \sum_{j=0}^{2} l'_j(x) f(x_j)$$

$$f'(x_k) \approx \sum_{j=0}^{2} l'_j(x_k) f(x_j)$$

$$l_0'(x) = \frac{(x - x_1) + (x - x_2)}{2h^2}$$

$$l_1'(x) = \frac{(x - x_0) + (x - x_2)}{-h^2}$$

$$l_2'(x) = \frac{(x - x_0) + (x - x_1)}{2h^2}$$

$$l'_0(x_0) = -\frac{3}{2h} \qquad l'_1(x_0) = \frac{2}{h} \qquad l'_2(x_0) = -\frac{1}{2h}$$
$$f'(x_0) \approx \frac{1}{2h} [-3f(x_0) + 4f(x_1) - f(x_2)]$$

$$l'_0(x_1) = -\frac{1}{2h} \qquad l'_1(x_1) = 0 \qquad l'_2(x_1) = \frac{1}{2h}$$

$$f'(x_1) \approx \frac{1}{2h} [-f(x_0) + f(x_2)]$$

$$l'_0(x_2) = \frac{1}{2h} \qquad l'_1(x_0) = \frac{-2}{h} \qquad l'_2(x_0) = \frac{3}{2h}$$
$$f'(x_2) \approx \frac{1}{2h} [f(x_0) - 4f(x_1) + 3f(x_2)]$$

二次多项式插值导出的二阶导数计算公式

$$f''(x_j) \approx \frac{f(x_{j-1}) - 2f(x_j) + f(x_{j+1})}{h^2}$$

四次多项式插值导出的二阶导数计算公式

$$f''(x_j) \approx \frac{1}{h^2} [-f_{j-2} + 16f_{j-1} - 30f_j + 16f_{j+1} - f_{j+2}]$$

第七部分 常微方程的数值解法

- →一阶常微分方程的欧拉方法、修正的欧拉法
- →局部截断误差和计算格式的精度阶概念
- → 龙格库塔方法
- →常微分方程组和高阶常微分方程的数值法
- →有限差分法

一阶常微分方程的欧拉方法、修正的欧拉法

近似解求法(Euler法):

- 1) 区域离散: 取定步长 h, 记 x_n = x₀ + nh, (n = 1,2, ···, N)
- 2) 格式: Euler公式(法), y_{n+1} = y_n + h f(x_n, y_n)

近似解求法(修正-Euler法):

$$y_{n+1} - y_n = \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$

$$\tilde{y}_{n+1} = y_n + h f(x_n, y_n)$$

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, \tilde{y}_{n+1})]$$

预-校方法又称为修正的Euler法,算法如下

$$k_1 = f(x_n, y_n),$$
 $k_2 = f(x_{n+1}, y_n + h k_1),$
 $y_{n+1} = y_n + \frac{h}{2}[k_1 + k_2]$

局部截断误差和计算格式的精度阶概念

设 $y_n = y(x_n)$, 称 $R_{n+1} = y(x_{n+1}) - y_{n+1}$ 为局部截断误差.

由泰勒公式

$$y(x_{n+1}) = y(x_n) + (x_{n+1} - x_n)y'(x_n) + \frac{(x_{n+1} - x_n)^2}{2}y''(\xi)$$

$$||y(x_{n+1})|| = y(x_n) + hf(x_n, y_n) + \frac{h^2}{2}y''(\xi)$$

Euler公式: $y_{n+1} = y_n + hf(x_n, y_n)$ 的局部截断误差 $y(x_{n+1}) - y_{n+1} = y(x_n) - y_n + O(h^2) = O(h^2)$

Euler公式的局部截断误差记为: O(h²) 称Euler公式具有1阶精度。

若局部截断误差为 O(h p+1), 则称显式单步法(如欧拉法)具有 p 阶精度。(计算格式的精度概念)

例 3. 证明修正的Euler法具有2阶精度

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, \tilde{y}_{n+1})]$$

其中: $\widetilde{y}_{n+1} = y_n + hf(x_n, y_n)$

将改进欧拉法推广为. 龙格库塔方法(推导方法)

$$\begin{cases} y_{i+l} &= y_i + h[\lambda_l K_l + \lambda_2 K_2] \\ K_l &= f(x_i, y_i) \\ K_2 &= f(x_i + p_1 h, y_i + p_2) \end{cases} y''(x) = \frac{d}{dx} f(x, y)$$
首先希望能确定系数 λ_1 、 λ_2 、 λ_2 、 λ_3 λ_4 λ_4 λ_5 λ_4 λ_5 λ_5 的前提假设下,使得 $y_i = y(x_i)$ $y_i = y(x_i)$ $y_i = f(x, y) + f(x, y) = f(x, y) + f(x, y)$ $y_i = f(x_i, y_i)$ y

Step 2: 将 \mathbb{K}_2 代入第1式,得到

$$y_{i+1} = y_i + (\lambda_1 + \lambda_2)hy'(x_i) + \lambda_2 h^2[p_1 f_x(x_i, y_i)] + p_2 f(x_i, y_i)f_y(x_i, y_i)] + O(h^3)$$

Step 3: 将 y_{i+1} 与 $y(x_{i+1})$ 在 x_i 点的泰勒展开作比较

$$y_{i+1} = y_i + (\lambda_1 + \lambda_2)hy'(x_i) + \lambda_2h^2[p_1f_x(x_i, y_i) + p_2f(x_i, y_i)f_y(x_i, y_i)] + O(h^3)$$

$$y(x_{i+1}) = y(x_i) + hy'(x_i) + \frac{h^2}{2}y''(x_i) + O(h^3)$$

要求 $R_i = y(x_{i+1}) - y_{i+1} = O(h^3)$, 则必须有:

$$\lambda_1 + \lambda_2 = 1;$$
 这里有 4 个未知 $\lambda_2 p_1 = \frac{1}{2}; \ \lambda_2 p_2 = \frac{1}{2};$ 数,3 个方程。

满足上述方程的一族公式称为二阶龙格 - 库塔格式。

注意到,当 $\mathbf{p_1}=\mathbf{p_2}$, $\lambda_1=\lambda_2=\frac{1}{2}$; $p_1=p_2=1$ 就是改进的欧拉法。

问题: 为获得更高的精度, 应该如何进一步推广?

二阶龙格 - 库塔格式推广得到更高精度格式

$$\begin{cases} y_{i+1} = y_i + h[\lambda_1 K_1 + \lambda_2 K_2 + ... + \lambda_m K_m] \\ K_1 = f(x_i, y_i) \\ K_2 = f(x_i + \alpha_2 h, y_i + \beta_{21} h K_1) \\ K_3 = f(x_i + \alpha_3 h, y_i + \beta_{31} h K_1 + \beta_{32} h K_2) \\ \\ K_m = f(x_i + \alpha_m h, y + \beta_{m1} h K_1 + \beta_{m2} h K_2 + ... + \beta_{mm-1} h K_{m-1}) \end{cases}$$

其中 $λ_i$ (i = 1, ..., m), $α_i$ (i = 2, ..., m) 和 $β_{ij}$ (i = 2, ..., m; j = 1, ..., i–1) 均为待定系数, 确定这些系数的步骤与前面相似。

➤ 最常用为四阶经典龙格-库塔法 /* Classical Runge-Kutta Method */:

$$\begin{cases} y_{i+1} &= y_i + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 &= f(x_i, y_i) \\ K_2 &= f(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_1) \\ K_3 &= f(x_i + \frac{h}{2}, y_i + \frac{h}{2}K_2) \\ K_4 &= f(x_i + h, y_i + hK_3) \end{cases}$$

常微分方程组和高阶常微分方程的数值法

例1: 一阶常微分方程
$$\begin{cases} \frac{dx}{dt} = f_1(t, x, y) & x(t_0) = x_0 \\ \frac{dy}{dt} = f_2(t, x, y) & y(t_0) = y_0 \end{cases}$$

一阶常微分方程组的向量表示

记
$$Y = \begin{bmatrix} x \\ y \end{bmatrix}$$
 $F(t,Y) = \begin{bmatrix} f_1(t,Y) \\ f_2(t,Y) \end{bmatrix}$

$$\begin{cases} \frac{dY}{dt} = F(t,Y) & t > t_0 \\ Y(t_0) = Y_0 \end{cases}$$

$$\begin{bmatrix} Y(t_0) = Y_0 \\ Y(t_0) = Y_0 \end{bmatrix}$$

$$\begin{bmatrix} Y(t_0) = Y_0 \\ Y(t_0) = Y_0 \end{bmatrix}$$

$$\begin{bmatrix} Y(t_0) = Y_0 \\ Y(t_0) = Y_0 \end{bmatrix}$$

$$Y_0 = [x_0, y_0]^T$$

例2: 高阶常微分方程组初值问题

$$\begin{cases} y'' = f(x, y, y') \\ y(x_0) = y_0, \ y'(x_0) = m_0 \end{cases} \Rightarrow \begin{cases} y_1(x) = y(x) \\ y_2(x) = y'(x) \end{cases}$$

一阶常微分方程组: 初值条件:

$$\begin{cases} y_1' = y_2 & y_1(x_0) = y_0, \\ y_2' = f(x, y_1, y_2) & y_2(x_0) = m_0 \end{cases}$$

$$Y(x) = \begin{bmatrix} y_1(x) \\ y_2(x) \end{bmatrix} \qquad F(x,Y) = \begin{bmatrix} y_2(x) \\ f(x,y_1,y_2) \end{bmatrix} \qquad Y_0 = \begin{bmatrix} y_0 \\ m_0 \end{bmatrix}$$

常微分方程组 $\begin{cases} \frac{dY}{dx} = F(x,Y) \\ Y(x_0) = Y_0 \end{cases}$

有限差分法

二阶常微分方程边值问题一般形式

$$-\frac{d}{dx}(p\frac{du}{dx}) + r\frac{du}{dx} + qu = f(x), \qquad a \le x \le b$$

$$u(a) = \alpha, \ u(b) = \beta$$

将边值问题离散化为代数方程分三个步骤:

第一步:将求解区域离散化;

第二步:将微分方程离散化;

第三步:处理边界条件.

微分方程离散化方法——有限差分法

(finite difference method)

用差商替代微分方程中的导数项

有限差分法的基本问题是研究对微分算子的各阶逼近格式(即差分格式)。

第一步:求解区域离散化,均匀剖分构造均匀网格,取正整数n,步长h = (b - a)/(n+1),得

$$x_{j} = a + jh$$
 ($j = 0, 1, \dots, n+1$)
$$\Omega = \{x \mid a < x < b\}$$

求解区域

第二步: 微分方程离散化

考虑微分方程
$$\begin{cases} -u'' + qu = f(x), \ a \le x \le b \\ u(a) = \alpha, \ u(b) = \beta \end{cases}$$

差分逼近

$$u''(x_j) = \frac{1}{h^2} [u(x_{j+1}) - 2u(x_j) + u(x_{j-1})] + \frac{h^2}{12} u^{(4)}(\xi_j)$$

$$- \frac{1}{h^2} (u_{j+1} - 2u_j + u_{j-1}) + qu_j = f_j$$

三点差分格式
$$-u_{j-1} + (2+qh^2)u_j - u_{j+1} = h^2 f_j$$
 ($j = 1, \dots, n$)

第三步: 边界条件处理

第一类边界条件
$$u(a) = \alpha, u(b) = \beta$$

$$u_0 = \alpha, u_{n+1} = \beta$$

$$\begin{bmatrix} 2+qh^2 & -1 \\ -1 & 2+qh^2 & -1 \\ & \ddots & \ddots & \ddots \\ & & -1 & 2+qh^2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} F_1 \\ F_2 \\ \vdots \\ F_n \end{bmatrix}$$

$$F_{1} = h^{2} f_{1} + u_{0}$$

$$F_{j} = h^{2} f_{j} \qquad (j = 1, 2, \dots, n)$$

$$F_{n} = h^{2} f_{n} + u_{n+1}$$

第八部分 矩阵的特征值与特征向量

→ 计算实矩阵的按模最大(小)的特征值 及其相应的特征向量的乘幂法(反幂法)

(刚讲,自复习)

乘幂法求矩阵的特征值及特征向量的方法可归纳如下:

输入: 矩阵A, 初始向量 x_0 , 误差限 e, 最大迭代次数 N, $k \leftarrow 0$, $\lambda_0 = 0$

1) 规范化计算得到:

$$z_k = \frac{x_k}{\|x_k\|_{\infty}}$$

2) 递归计算:

$$X_{k+1} = AZ_k$$

- 3) 计算最大值: $\lambda = ||x_{k+1}||_{\infty}$ (即: $\lambda = \max\{x_{k+1}\}$)
- 4) 如果 |λ-λ₀|< e, 则输出:

$$\lambda$$
 (特征值), z_{k+1} 或 x_{k+1} (特征向量)

最终计算得<mark>λ</mark>1

5) 否则($|\lambda-\lambda_0|>=e$):

如果k\leftarrowk+1,
$$\lambda_0 \leftarrow \lambda$$
;

转1)

反幂法求矩阵的特征值及特征向量的方法可归纳如下:

输入: 矩阵A, 初始向量 x_0 , 误差限e, 最大迭代次数N, k $\leftarrow 0$, $\lambda_0 = 0$

1) 规范化计算得到:

$$z_k = \frac{x_k}{\|x_k\|_{\infty}}$$

- 2) 对A作三角分解A=LU 即: X_{k+1}= A-1_{Z_k}(与乘幂法不
- 3) 解方程组: $LUx_{k+1} = z_{k}$ (两步: $Lw_k = z_k$ $Ux_{k+1} = w_k$) (对比乘幂法 $x_{k+1} = Az_k$)
- 4) 计算最大值: $a = ||\mathbf{x}_{k+1}||_{\infty}$ (即 $a = \max\{|\mathbf{x}_{k+1}|\}$ 为A-1的最大特征值近似)
- 5) 如果 $|a-\lambda_0| < e$, 则输出:

$$\lambda=1/a$$
 (特征值), z_{k+1} 或 x_{k+1} (对应的特征向量)

6) 否则 $|a-\lambda_0| >=e$:

如果: k < N, 则 $k \leftarrow k + 1$, $\lambda_0 \leftarrow a$;