Nirma University

Institute of Technology

Semester End Examination (IR & RPR), Dec-2020 B. Tech. in Computer Engineering, Semester -III 2CS305 – Discrete Mathematics

Time: 1:30 Hours Max Marks: 40

Q-1	Do as directed	[10]
		r -1
A CO-1	(a) Find the inverse for the function $f(y) = (3y+2)/(y-1)$.	[5]
	(b) Compute first four terms of the following recurrence sequences:	
	$a_n = na_{n-1} + n^2a_{n-2}; n > = 2; a_n = 1; n = 0; a_n = 1; n = 1$	
B CO-1	Let S denote the set of real numbers. The operation 'o' is defined on S like,	[5]
	a <i>o</i> b=a+2ab+b	
	Then find the value of x, if the solution of the equation is $x_02_07=82$.	
Q-2	Do as directed	[10]
_		
A CO-2	Consider the poset ({3, 5, 9, 15, 24, 45}, /), that is, the divisibility relation. (i) Draw its Hasse diagram. (ii) Find its maxima, minima, greatest and least elements when they exist.	[5]
	OR	
A CO-2	Determine whether the posets ({1, 2, 3, 4, 5}, /) and ({1, 2, 4, 8, 16}, /) are lattices	[5]
B CO-2	find the number of integers from set of numbers 1-100 that are not divisible by 2, 3 and 5.	[5]
Q-3	Do as directed	[10]
A CO-3	For each of these collections of premises, what relevant conclusion or conclusions can be drawn? Explain the rules of inference used to obtain each conclusion from the premises.	[6]
	a) "If I take the day off, it either rains or snows." "I took Tuesday off or I took Thursday off." "It was sunny on Tuesday." "It did not	
	snow on Thursday." b) "I am either clever or lucky." "I am not lucky." "If I am lucky, then I will win the lottery."	
	c) "Every computer science major has a personal computer."	

	"Ralph does not have a personal computer." "Ann has a personal computer."	
	OR OR	
A CO-3	Use rules of inference to show that the hypotheses "Randy works hard," "If Randy works hard, then he is a dull boy," and "If Randy is a dull boy, then he will not get the job" imply the conclusion "Randy will not get the job."	[6]
В	Give a proof by contradiction of the theorem "If 3n + 2 is odd, then	[4]
CO-3	n is odd."	
0.4	D 1 1	[10]
Q-4	Do as directed	[10]
A CO-3	Define concept of bipartite and isomorphism in a graph. Draw a bipartite graph for the degree sequence (3, 3, 3, 3, 3, 3, 3, 3). Identify whether the given graphs below are isomorphic to each other or not. Justify your answer	[5]
B CO-3	Identify whether the given graph has either Hamiltonian circuit or Euler circuit or both circuits. (you can choose any initial vertex) A B C If it exists, write down the complete path of both Hamiltonian and Euler circuit.	[5]