العلامة		عناصر الإجابة
مجموع	مجزأة	عناصر الإنجاب
		الموضوع الأول المرين الأول (04,5 نقط)
01,25	0,75	$(t \in R)z = -1 + 2t$ ؛ $y = -t$ ؛ $x = 1 + t$: (BC) التمثیل الوسیطٰی للمستقیم (1
	0,5	$2(-t)+(-1+2t)+1=0:\;\left(P ight)$ محتوی في $\left(BC ight)$
1	$2 \times 0,5$	و (BC) غير متوازيين و غير متقاطعين إذن Δ) و (BC) ليسا من نفس المستوي.
	0,5	$d\left(A;(P) ight)=rac{6\sqrt{5}}{5}$ $\left(P ight)$ المسافة بين A و $\left(1\right)$
02.25	0,25	2 (0) - 1 + 1 = 0 (P) نقطة من D
02,25	0,5	$CD^2=1\cdot BD^2=1\cdot BC^2=6$ مثلث قائم BCD
	0,5	(P) $=$ (ABC) رباعي الوجوه $A \in (P)$ لأن $A \in (P)$ علما أن $ABCD$ (4
	0,5	$V = \frac{1}{3} A_{(BCD)} \times d(A;(P)) = 1u v ABCD$ حجم رباعي الوجوه - حجم حجم

		التمرين الثاني (04 نقط)
01	0,75	و حدّها الأول $v_0=5$ متتالية هندسية أساسها $q=\frac{5}{6}$ و حدّها الأول $v_0=5$
	0,25	$\lim_{n \to +\infty} v_n = 0 (2)$
	1	من أجل كل n من أجل كل أما أبي
03	0,5	$u_{n+1} - u_n > 0; u_{n+1} - u_n = \frac{(6 - u_n)(1 + u_n)}{\sqrt{5u_n + 6} + u_n}$ متزایدهٔ تماما $\left(u_n\right)$ (2)
	0,5	$(\frac{1}{6+\sqrt{5u_n+6}}<\frac{1}{6})$ 6 - $u_{n+1}\leq \frac{2}{3}(6-u_n)$ ، $\mathbb N$ من أجل كل n من أجل كل أ
	0,5	(یمکن استعمال البرهان بالتراجع) $0 \le 6 - u_n \le v_n$ ، $\mathbb N$ من أجل كل n من أجل كل
	0,5	$ (\lim_{n \to +\infty} u_n = 6 \lim_{n \to +\infty} v_n = 0) \lim_{n \to +\infty} u_n = 6 $

		التمرين الثالث (05 نقط)
01	0,5	$\Delta = 4i^2 \sin^2 \alpha (1)$ $z'' = 2(\cos \alpha - i \sin \alpha) z' = 2(\cos \alpha + i \sin \alpha)$
	0,5	
	0,25	رأو العكس) (أو العكس) يحديد $z_1=1-i\sqrt{3}$ ، $z_1=1+i\sqrt{3}$
01, 25	2×0.5	$\left(\frac{z_1}{z_2}\right)^{2013} = +1 \text{o} \frac{z_1}{z_2} = e^{i\left(\frac{2\pi}{3}\right)}$
	0,75	(x'x) وفاصلتها A و B وفاصلتها A وفاصلتها A وفاصلتها A بالنسبة A بالنسبة A
		و C لها نفس ترتیب A .
00.75	0,5	$\frac{z_C - z_A}{z_B - z_A} = \frac{\sqrt{3}}{2}i (\because)$
02,75	0,5	z_B-z_A z_B-z_A z_B-z_A z_B-z_A z_B-z_A z_B-z_A z_B-z_A صورة z_B-z_A صورة z_B-z_A التشابه الذي نسبته z_B-z_A و زاويته z_B-z_A
	2×0.25 0.5	$G = 4 + 2i\sqrt{3} (\Rightarrow)$
	0,5	$z_D = 4 \qquad (2)$

		التمرين الرابع: (06,5 نقط)
01	0,5	$\lim_{x \to -\infty} f(x) = -\infty \lim_{x \to -\infty} f(x) = 2 (1 \text{II})$
	0,5	معادلتا مستقيمين مقاربين $x=1$ ، $y=2$
01	0,5	$f'(x) = \frac{-1}{(x-1)^2} (1 + e^{\frac{1}{x-1}})$ ' $x \in]-\infty;1[$ من أجل (2)
	0,25	ا بما أنّ $f'(x) < 0$ من أجل كل $[-\infty;1]$ فإنّ f متناقصة تماما على $f'(x) < 0$
	0,25	جدول التغيّرات
0.5	0,25	للمعادلة $f(x)=0$ حل وحيد $lpha$ من $-\infty;1$ (مبرهنة القيم المتوسطة)
0,5	0,25	$0,21 < \alpha < 0,22$
	0,5	انشاء المستقيمين المقاربين لـ (C)
01,25	0,5	إنشاء المنحنى (C)
	0,25	$\left f ight $ الممثل للدالة $\left f ight $ الممثل للدالة
0,25	0,25	$m \in \left[\frac{1}{e}; 2 \right]$ للمعادلة $\left f(x) \right = m$ حلين مختلفين في الإشارة من أجل $\left f(x) \right = m$
	0.25×2	f'(2x-1) < 0 وعليه $x < 1$ فإن $x < 1$ وعليه $g'(x) = f'(2x-1)$ (1 (II
01,5	0,25	g متناقصة تماماً على $]1;\infty-$

	0,5 0,25	$\lim_{x \to -\infty} g(x) = -\infty \lim_{x \to -\infty} g(x) = 2$ جدول تغیّرات g (نفس جدول تغیرات g)
	2×0.25	$g'\left(\frac{\alpha+1}{2}\right) = 2f'(\alpha)$, $g\left(\frac{\alpha+1}{2}\right) = f(\alpha) = 0$ († (2)
1	0,25	$y=2 f'(\alpha) \left(x-rac{lpha+1}{2} ight)$ ب) برا معادلة له:
	0,25	($e^{\frac{1}{\alpha-1}} = -\frac{\alpha}{\alpha-1}$) $(T): y = \left(\frac{2}{(\alpha-1)^3}x - \frac{\alpha+1}{(\alpha-1)^3}\right)$ (ε

		الموضوع الثاتي التمرين الأول: (04,5 نقط)
1	0,5 0,5	$(-2-3i)^2+4(-2-3i)+13=0$ (E) حل للمعادلة $-2-3i$ (1 استنتاج الحل الآخر للمعادلة $-2-3i$ (E) استنتاج الحل الآخر المعادلة $-2-3i$
01,5	1 0,5	$z'-z_A=rac{1}{2}e^{i(rac{\pi}{2})}(z-z_A)$ ه $z'-z_A=rac{1}{2}e^{i(rac{\pi}{2})}(z-z_A)$ ه $z_C=-4-2i$ (ب)
02	0, 5 0, 5 0, 5	(3) أ) (3) مرجح النقطتين (3) و (3) مرفقين بالمعاملين (3) و (3) على الترتيب
	0,5	z_C-z_A $((\overrightarrow{AC};\overrightarrow{AD})=rac{\pi}{2}$ و متساوي الساقين $ACD=AC$ و AC

	0,50	(u_3) التمرین الثانی: $(u_1, u_1, u_2, u_1, u_2, u_3)$ و $(u_1, u_2, u_3, u_3, u_4, u_4, u_5, u_5, u_5, u_5, u_5, u_5, u_5, u_5$
	0,25	ب) التخمين: (u_n) متزايدة تماما و منقاربة.
	0,50	. $[0;1]$ متزایدة تماما علی المجال f ، $f'(x) = \frac{2}{(x+1)^2}$ (أ (2
	0,50	ب) البرهان بالتراجع أنّ من أجل كل عدد طبيعي n فإنّ: $0 < u_n < 1$.
04	0,75	$u_{n+1}-u_n=rac{u_n\left(1-u_n ight)}{u_n+1}$:جـ) من أجل كل n من n لدينا u_n+1 من أجل كل من u_n+1 من أجل من أجل كل من أجل كا من الديناء تماما.
	0,75	. $v_0=-1$: الحد الأول $v_{n+1}=rac{1}{2}$ ، v_n من أجل كل n من أجل كل
	0,50	$u_n = \frac{1}{1 + \left(\frac{1}{2}\right)^n}$ ؛ $v_n = -\left(\frac{1}{2}\right)^n$ ، \mathbb{N} من أجل كل n من أجل كل أما كل أ
	0,25	$\cdot (\lim_{n \to +\infty} v_n = 0) \cdot \lim_{n \to +\infty} u_n = 1$

		التمرين الثالث (04,5 نقط)
01	0,25	$I\left(\frac{3}{2};0;1\right) (^{\dagger}(1))$
	0,25	ب) التُحقق أنّ I نقطة من P (تقبل كل طريقة سليمة)
	0,5	ناظمي لـ (P) ناظمي لـ \overrightarrow{AB}
0,5	0,5	$x=k-rac{3}{2}$ (يقبل أي تمثيل وسيطي له $y=2k-2$ $(k\in\mathbb{R})$ يقبل أي تمثيل وسيطي آخر) (Δ) (2 $z=-4k+1$
01	$2 \times 0,5$	$E\left(-rac{7}{6}; -rac{4}{3}; -rac{1}{3} ight)$ و (Δ) و (P) و منه $t=rac{1}{3}$ و منه (3)
01	0,5	ب) (AB) و \overrightarrow{u} مرتبطان خطیا (AB)
	0,5	$(EC^2 + IE^2 = IC^2)$ (يقبل أي تبرير) E قائم في E قائم في
	$2 \times 0,25$	(ID) \(\psi(\lambda B\) ((4B) ((4B)
01	0,5	$V=rac{28}{9}uv$ DIEC ب) حجم رباعي الوجوه

		التمرين الرابع (07 نقط)
		$g(x) = x^2 + 2x + 4 - 2\ln(x+1)$ (I)
0,75	0,25	$\lim_{x \to -1} g(x) = +\infty $ (1
	0,5	$\lim_{x \to +\infty} g(x) = +\infty$
01.25	0,5	$g'(x) = \frac{2x^2 + 4x}{x+1}$ ، $x \in]-1;+\infty[$ من أجل
01, 25	0,25	$g'(x) \le 0$ فإن $g'(x) \le 0$ فيم x إذا كان $g'(x) \le 0$
		$g'(x) \ge 0$ فإن $x \ge 0$ و إذا كان $x \ge 0$
	0,25	جدول التغيّر ات
	0,25	$g(x) > 0$ ومنه $g(x) \ge 4$ (2
	0,25	$\lim_{x \to \infty} f(x) = -\infty \left(\int \left(1 \right) \left(\prod \right) \right)$
0,75	0,25	معادلة مستقيم مقارب $x=-1$
	0,25	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[x - \frac{1}{x+1} + 2 \frac{\ln(x+1)}{x+1} \right] = +\infty (-1)$

	0,5	$f'(x) = \frac{g(x)}{(x+1)^2} (i) (2)$
01,5	0,25	ب f دالة متزايدة تماما على $]-1;+\infty$
01,5	0,25	جدول تغیّرات f
	0,25	ج) للمعادلة $f(x)=0$ حلا وحيدا في $-1;+\infty$ (مبرهنة القيم المتوسطة)
	0,25	$0 < \alpha < 0.5$. $f(0.5) \approx 0.37$ of $f(0) = -1$
	0,25	$\lim_{x\to +\infty} [f(x)-x]=0$ بجوار (C_f) بجوار مقارب مائل لـ (C_f) بجوار Δ : $y=x$
01	0,25	$f(x) - x = \frac{-1 + 2\ln(x+1)}{(x+1)}$
	0,5	x -1 $-1+\sqrt{e}$ $+\infty$ $f(x)-x=\frac{-1+2\ln\left(x+1\right)}{x+1}$ (ب $f(x)-x$ $ $ $ 0$ $+$ (Δ) بالنسبة لـ (C_f) بالنسبة لـ (C_f)
0,5	0,5	
	1	ب) رسم المستقيمين المقاربين، المماس T و T و المستقيمين المقاربين المماس T
1,25	0,25	$0 < m < \frac{2}{\sqrt{e^3}} (\varepsilon)$

