Caminos, ciclos y recorridos

Complementos de Matemática I - Matemática Discreta

2025

Departamento de Matemática Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNR

Definiciones

Definición

Dado un grafo G:

- un camino en G es una lista que alterna vértices y aristas (con extremos en esos vértices) de la forma $v_0, e_1, v_1, \ldots, e_k, v_k$ donde $e_i = v_{i-1}v_i$ para $i \in [k]$. La longitud del camino es la cantidad de aristas que posee.
- un recorrido es un camino que no repite aristas.
- un camino simple es un camino que no repite vértices (y por lo tanto, un recorrido).
- un u, v-camino es un camino cuyos extremos son u y v. Análogamente se definen un u, v-camino simple y u, v-recorrido.
- un camino o recorrido es cerrado si sus extremos son iguales.
- un circuito es un recorrido cerrado (camino que no repite aristas cuyos extremos son iguales).
- un ciclo es un camino simple cerrado (sólo repite los extremos del camino).

]

Ejemplo

Ejemplo

 $\begin{array}{l} f, e_5, e, e_8, a, e_1, b \text{ es un } f, b\text{-camino simple.} \\ f, e_5, e, e_4, d, e_3, c, e_7, a \text{ es un } f, a\text{-camino.} \\ a, e_8, e, e_4, d, e_3, c, e_7, a \text{ es un ciclo.} \end{array}$

Observación

Si el grafo es simple, es suficiente listar solo los vértices del camino: v_0, v_1, \ldots, v_k .

Propiedades

Lema

Dado un grafo G, todo u,v-camino en G para $u\neq v$ posee (como subgrafo) un u,v-camino simple.

Demostración.

En clase...

Propiedades

Observaciones:

- Todo circuito contiene un ciclo. Más aún, si v es un vértice en un circuito, existe (al menos) un ciclo en el circuito que contiene a v.
- Un grafo es conexo sii existe un u,v-camino en G para todo $u \neq v$ vértices de G.

Definición

Una componente conexa de un grafo G es un subgrafo conexo maximal. El número de componentes conexas de un grafo es $\kappa(G)$.

- El agregado de una arista reduce en a lo sumo una unidad el número de componentes conexas de un grafo. Es decir, si G' se obtuvo agregando una arista a G entonces $\kappa(G)-1\leq \kappa(G')\leq \kappa(G)$.
- El borrado de una arista aumenta en a lo sumo una unidad el número de componentes conexas. Es decir, si $G' = G \setminus e$ entonces $\kappa(G') \leq \kappa(G) + 1$.
- El borrado de un vértice puede aumentar el número de componentes conexas hasta en |V(G)|-2, es decir, si G'=G-v entonces $\kappa(G')\leq \kappa(G)+|V(G)|-2$.

4

Propiedades

Definición

Dado un grafo G, una arista de corte e de G es una arista tal que $\kappa(G \setminus e) > \kappa(G)$.

Un vértice de corte v de G es un vértice tal que $\kappa(G-v) > \kappa(G)$.

Lema

Dado un grafo G, una arista es de corte sii no pertenece a ningún ciclo.

Demostración.

En clase...

Observación

- $Si\ e = uv$ es de corte, ¿v es de corte?
- Si G no es conexo, \overline{G} es conexo?
- Si v es vértice de corte de G, $\overline{G} v$ es conexo.
- Sea G autocomplementario $(G \equiv \overline{G})$. Luego, G tiene un vértice de corte si y solo si G tiene un vértice de grado 1 (vértice pendiente o colgante).

Definición

Un circuito (recorrido) euleriano en un grafo G es un circuito (recorrido) que contiene todas las aristas de G.

Definición

Un grafo euleriano en un grafo G que posee un circuito euleriano.

Ejemplos:

- \bullet G es euleriano.
- ullet H tiene recorrido euleriano.
- ullet K_4 no tiene recorrido euleriano.

Lema	
Dado un grafo G con $\delta(G) \geq 2$, entonces G contiene un ciclo.	
Demostración.	
En clase	
Teorema	
Un grafo conexo es euleriano si y sólo si todos sus vértices tienen grado par.	
Demostración.	
En clase	
Corolario	
Todo grafo conexo par se puede descomoner en ciclos.	

Dado un grafo conexo par, ¿cómo hallar un circuito euleriano?

Algoritmo de Fleury

- 1. Considerar cualquier vértice $u \in V(G)$.
 - $W \leftarrow u$
 - $x \leftarrow u$
 - F ← G
- 2. Mientras $d_F(x) > 0$, seleccionar una arista e = xv (incidente en x), donde e no es de corte de F, salvo que tal arista no exista.
 - $W \leftarrow uev$
 - \bullet $x \leftarrow v$
 - $F \leftarrow F \setminus e$
- 3. W es un circuito euleriano.

Teorema

Si G es conexo y par entonces el camino que devuelve el Alg. de Fleury es un circuito euleriano.

Teorema

Un grafo conexo G tiene un recorrido (no cerrado) euleriano si y sólo si tiene exactamente dos vértices de grado impar.

Definición

Un grafo dirigido o digrafo G es un par ordenado (V,A) donde V es el conjunto de vértices y A es el conjunto de sus arcos o aristas dirigidas. Podemos pensar que hay una función ψ_G que asigna a cada arco un par ordenado de vértices. Es decir, para cada $e \in A$, existe un par ordenado $(i,j) \in V \times V$ tal que $\psi_G(e) = (i,j)$.

Un bucle en un digrafo es una arista cuyos extremos coinciden, es decir, $\psi_G(e)=(i,i)$ para algún $i\in V$. Aristas múltiples o repetidas son aristas distintas $e,e'\in A$ tales que $\psi_G(e)=\psi_G(e')$.

Ejemplo

Consideremos el grafo dirigido G = (V, A), donde $V = \{a, b, c, d, e\}$ y $A = \{(a, a), (a, b), (a, d), (b, c), (b, e), (d, b), (e, c)\}.$

Definición

El grafo subyacente de un digrafo D es el grafo G obtenido considerando los arcos como pares no ordenados.

Observación

Las definiciones sobre digrafos, de subdigrafo, isomorfismos, etc. son análogas a las de grafos.

- Matriz de adyacencia $A(D) = \{a_{ij}\}$ donde a_{ij} es la cantidad de arcos $(v_i, v_j) \in E(D)$.
- Matriz de incidencia $M(D) = \{m_{ve}\}$ donde:

$$m_{ve} = \begin{cases} 1 & \text{si } e = (v, u), \\ -1 & \text{si } e = (u, v), \\ 0 & \text{si } e = (u, w), \ u \neq v \neq w. \end{cases}$$

Definición

Sea D un digrafo $y \ v \in V(D)$. El grado de salida de v es la cantidad de aristas de la forma (v,u), i.e. que tienen a v como origen. Notación $d_D^+(v)$.

El grado de entrada de v es la cantidad de aristas de la forma (u,v), i.e. que tienen a v como final. Notación $d_D^-(v)$.

Ejercicio: Sea D un digrafo,

$$\sum_{v \in V(D)} d_D^+(v) = \sum_{v \in V(D)} d_D^-(v)$$

Observación

Se definen de manera análoga camino dirigido, recorrido dirigido, camino simple dirigido, etc., respetando el orden de los arcos y nodos en la lista.

Definición

Un circuito (recorrido) euleriano dirigido en un digrafo es un circuito (recorrido) dirigido que contiene todas las aristas.

Lema

Sea D un digrafo. Si $d^+(v) \ge 1 \ \forall v \in V(D)$ entonces D contiene un ciclo.

Demostración.

En clase...

Teorema

Un digrafo D es euleriano si y sólo si $d^+(v) = d^-(v) \ \forall v \in V(D)$ y el grafo subyacente tiene a lo sumo una componente conexa no trivial.

Demostración.

Ejercicio.