EXAMEN DE ESTADÍSTICA

2º Fisioterapia	Modelo A		25 de mayo de 2020
Nombre:		DNI:	Grupo:

Duración: 1 hora.

(5 pts.) 1. En un grupo de 150 estudiantes de los cuales 50 son trabajadores, se ha registrado la nota obtenida en el examen de una cierta asignatura, obteniendo las siguientes distribuciones:

Nota	Estudiantes no trabajadores	Estudiantes trabajadores
0 - 2	8	2
2 - 4	15	9
4 - 6	25	19
6 - 8	38	11
8 - 10	14	9

Se pide:

- a) Teniendo en cuenta que para poder aprobar hay que sacar una nota superior a 5 ¿Qué porcentaje de alumnos ha aprobado entre los estudiantes no trabajadores? ¿Y entre los trabajadores?
- b) ¿Cuál de las dos muestras presenta una dispersión relativa de las notas mayor?
- c) ¿Qué muestra es más asimétrica: la de los estudiantes trabajadores o la de los que no son trabajadores?
- d) Para optar a una beca para ir al extranjero se necesita transformar la nota según la siguiente transformación linear Y=0.5+x*1.45. ¿Cuál será la nueva nota media para los dos grupos? ¿Y cómo varía la asimetría de las dos distribuciones?
- e) ¿Qué nota es relativamente mayor un 7 en estudiantes no trabajadores o un 6 en estudiantes trabajadores?

Usar las siguientes sumas para los cálculos:

Estudiantes no trabajadores: $\sum x_i n_i = 570$, $\sum x_i^2 n_i = 3764$, $\sum (x_i - \bar{x})^3 n_i = -547.8$ y $\sum (x_i - \bar{x})^4 n_i = 6475.73$.

Estudiantes trabajadores: $\sum y_i n_i = 282$, $\sum y_i^2 n_i = 1826$, $\sum (y_i - \bar{y})^3 n_i = -1.31$ y $\sum (y_i - \bar{y})^4 n_i = 2552.14$.

(5 pts.) 2. En un grupo de pacientes se analiza el efecto de una sustancia dopante en el tiempo de respuesta a un determinado estímulo. Para ello, se suministra en sucesivas dosis, de 10 a 80 mg, la misma cantidad de dopante a todos los miembros del grupo, y se anota el tiempo medio de respuesta al estímulo, expresado en centésimas de segundo.

- a) Según el modelo de regresión lineal, ¿cuánto aumentará o disminuirá el tiempo de respuesta por cada mg más que aumentemos la dosis?
- b) Según el modelo de regresión exponencial, ¿qué tiempo de respuesta se espera para una dosis de 75 mg? ¿Es fiable la predicción?
- c) Si para el estímulo estudiado los tiempos de reacción superiores a un segundo se consideran peligrosos para la salud, ¿a partir de qué nivel debería regularse, e incluso prohibirse, la administración de la sustancia dopante según el modelo logarítmico?