Gráficos con ggplot2

Antonio Miñarro aminarro@ub.edu

Departament de Genètica, Microbiologia i Estadística

15/06/2021

A. Miñarro

Introducción

⊏squema dei tema

- Introducción
- Objetos geométricos
- 3 Facets
- 4 Stats
- 5 Posición y coordenadas

- Introducción
- Objetos geométricos
- 3 Facets
- 4 Stats
- 5 Posición y coordenadas

- Introducción
- Objetos geométricos
- 3 Facets
- 4 Stats
- 5 Posición y coordenadas

2 / 53

- Introducción
- Objetos geométricos
- 3 Facets
- 4 Stats
- 5 Posición y coordenadas

Introducción

- Introducción
- Objetos geométricos
- 3 Facets
- 4 Stats
- 5 Posición y coordenadas

2 / 53

- Introducción

3 / 53

El paquete ggplot2

- ggplot2 es un package de R dedicado a la realización de gràficos de una forma muy versátil y elegante.
- Implementa la denominada gramática de los gráficos, un sistema para describir y construir gráficos.
- Esta gramática trata los gráficos como un conjunto de elementos independientes que pueden combinarse para formar el gráfico final.
- La filosofía es trabajar a base de diferentes capas, comenzando por una capa inicial que fija los datos a representar y añadiendo posteriormente capas gráficas y de anotaciones.

Podéis encontrar más información en:

- H.Wickham, ggplot2: Elegant Graphics for Data Analysis.
 Springer-Verlag New York, 2009
- A Layered Grammar of Graphics

- Permite representar datos univariantes, multivariantes o categóricos.
- No forma parte de la distribución base de R por lo tanto hay que instalarlo y cargarlo posteriormente
- Forma parte de la colecció de packages para análisis de datos tidyverse que puede ser instalada en su totalidad con la instrucción
- > install.packages("tidyverse")
 - También puede instalarse de forma independiente
- > install.packages("ggplot2")
 > library(ggplot2)

0000000000000000

- Permite representar datos univariantes, multivariantes o categóricos.
- No forma parte de la distribución base de R por lo tanto hay que instalarlo y cargarlo posteriormente
- Forma parte de la colecció de packages para análisis de datos
- - También puede instalarse de forma independiente

000000000000000

- Permite representar datos univariantes, multivariantes o categóricos.
- No forma parte de la distribución base de R por lo tanto hay que instalarlo y cargarlo posteriormente
- Forma parte de la colecció de packages para análisis de datos tidyverse que puede ser instalada en su totalidad con la instrucción
- - También puede instalarse de forma independiente

- Permite representar datos univariantes, multivariantes o categóricos.
- No forma parte de la distribución base de R por lo tanto hay que instalarlo y cargarlo posteriormente
- Forma parte de la colecció de packages para análisis de datos tidyverse que puede ser instalada en su totalidad con la instrucción
- > install.packages("tidyverse")
 - También puede instalarse de forma independiente
- > install.packages("ggplot2")
 > library(ggplot2")

000000000000000

Características de ggplot2

- Permite representar datos univariantes, multivariantes o categóricos.
- No forma parte de la distribución base de R por lo tanto hay que instalarlo y cargarlo posteriormente
- Forma parte de la colecció de packages para análisis de datos tidyverse que puede ser instalada en su totalidad con la instrucción
- > install.packages("tidyverse")
 - También puede instalarse de forma independiente

A. Miñarro

- Permite representar datos univariantes, multivariantes o categóricos.
- No forma parte de la distribución base de R por lo tanto hay que instalarlo y cargarlo posteriormente
- Forma parte de la colecció de packages para análisis de datos tidyverse que puede ser instalada en su totalidad con la instrucción
- > install.packages("tidyverse")
 - También puede instalarse de forma independiente
- install.packages("ggplot2")
- library(ggplot2)

5 / 53

A. Miñarro ggplot2 Como idea básica en un gráfico ggplot se combinan diferentes elementos que pueden dar lugar a diferentes capas (layers) en un mismo gráfico

Elementos de un ggplot

- Les datos que se quieren representar almacenados en un data frame.
- Objectos geométricos (geoms) que definen el aspecto global de la capa (barras,
- Atributos estéticos (aesthetics) que son propiedades visuales de los geoms como

- Diferentes elementos se pueden incluir en el gráfico con el operador +

ggplot2

Como idea básica en un gráfico ggplot se combinan diferentes elementos que pueden dar lugar a diferentes capas (layers) en un mismo gráfico

Elementos de un ggplot

- Les datos que se quieren representar almacenados en un data frame.
- Objectos geométricos (geoms) que definen el aspecto global de la capa (barras, puntos, líneas, ...)

- Diferentes elementos se pueden incluir en el gráfico con el operador +

A. Miñarro

Como idea básica en un gráfico ggplot se combinan diferentes elementos que pueden dar lugar a diferentes capas (layers) en un mismo gráfico

Elementos de un ggplot

- Les datos que se quieren representar almacenados en un data frame.
- Objectos geométricos (geoms) que definen el aspecto global de la capa (barras, puntos, líneas, ...)
- Atributos estéticos (aesthetics) que son propiedades visuales de los geoms como la posición, el color de línea, formas de los puntos, etc.
- Un resumen estadístico de los datos (stats)(contaje, suavizado, ...).
 Normalmente está asociado al tipo de geom con que trabajamos y normalmente las opciones por defecto acostumbran a acertar el más idóeno, pero lo podemos modificar seggún nuestros intereses..
- facets i scales permiten visualizar diferentes subconjuntos de los datos y controlar la representación en el espacio.
- Diferentes elementos se pueden incluir en el gráfico con el operador +

A. Miñarro ggplot2

6 / 53

Como idea básica en un gráfico ggplot se combinan diferentes elementos que pueden dar lugar a diferentes capas (layers) en un mismo gráfico

Elementos de un ggplot

- Les datos que se quieren representar almacenados en un data frame.
- Objectos geométricos (geoms) que definen el aspecto global de la capa (barras, puntos, líneas, ...)
- Atributos estéticos (aesthetics) que son propiedades visuales de los geoms como la posición, el color de línea, formas de los puntos, etc.
- Un resumen estadístico de los datos (stats)(contaje, suavizado, ...).
 Normalmente está asociado al tipo de geom con que trabajamos y normalmente las opciones por defecto acostumbran a acertar el más idóeno, pero lo podemos modificar seggún nuestros intereses..
- facets i scales permiten visualizar diferentes subconjuntos de los datos y controlar la representación en el espacio.
- Diferentes elementos se pueden incluir en el gráfico con el operador +

6 / 53

A. Miñarro

Como idea básica en un gráfico ggplot se combinan diferentes elementos que pueden dar lugar a diferentes capas (layers) en un mismo gráfico

Elementos de un ggplot

- Les datos que se quieren representar almacenados en un data frame.
- Objectos geométricos (geoms) que definen el aspecto global de la capa (barras, puntos, líneas, ...)
- Atributos estéticos (aesthetics) que son propiedades visuales de los geoms como la posición, el color de línea, formas de los puntos, etc.
- Un resumen estadístico de los datos (stats)(contaje, suavizado, ...). Normalmente está asociado al tipo de geom con que trabajamos y normalmente las opciones por defecto acostumbran a acertar el más idóeno, pero lo podemos modificar seggún nuestros intereses...
- facets i scales permiten visualizar diferentes subconjuntos de los datos y controlar la representación en el espacio.
- Diferentes elementos se pueden incluir en el gráfico con el operador +

Como idea básica en un gráfico ggplot se combinan diferentes elementos que pueden dar lugar a diferentes capas (layers) en un mismo gráfico

Elementos de un ggplot

- Les datos que se quieren representar almacenados en un data frame.
- Objectos geométricos (geoms) que definen el aspecto global de la capa (barras, puntos, líneas, ...)
- Atributos estéticos (aesthetics) que son propiedades visuales de los geoms como la posición, el color de línea, formas de los puntos, etc.
- Un resumen estadístico de los datos (stats)(contaje, suavizado, ...). Normalmente está asociado al tipo de geom con que trabajamos y normalmente las opciones por defecto acostumbran a acertar el más idóeno, pero lo podemos modificar seggún nuestros intereses...
- facets i scales permiten visualizar diferentes subconjuntos de los datos y controlar la representación en el espacio.
- Diferentes elementos se pueden incluir en el gráfico con el operador +

A. Miñarro 15/06/2021 6 / 53

Proceso para crear un gráfico

Introducción

000000000000000

El proceso para la creación de un gráfico con ggplot2 difiere del proceso típico al que estamos acostumbrados. Los pasos básicos son:

- Crear un objeto de la clase *ggplot*, típicamente especificando los datos y algun aesthetics.
- Añadir geoms y otros elementos para crear y personalizar el gráfico a través del operador +.

A. Miñarro

Introducción

000000000000000

Entre otros utilizaremos los conjuntos de datos:

• El conjunto de datos sobre automóviles: mtcars

	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb
Mazda RX4	21.00	6.00	160.00	110.00	3.90	2.62	16.46	0.00	1.00	4.00	4.00
Mazda RX4 Wag	21.00	6.00	160.00	110.00	3.90	2.88	17.02	0.00	1.00	4.00	4.00
Datsun 710	22.80	4.00	108.00	93.00	3.85	2.32	18.61	1.00	1.00	4.00	1.00
Hornet 4 Drive	21.40	6.00	258.00	110.00	3.08	3.21	19.44	1.00	0.00	3.00	1.00
Hornet Sportabout	18.70	8.00	360.00	175.00	3.15	3.44	17.02	0.00	0.00	3.00	2.00
Valiant	18.10	6.00	225.00	105.00	2.76	3.46	20.22	1.00	0.00	3.00	1.00

• El conjunto sobre las flores de género *Iris*: iris

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.10	3.50	1.40	0.20	setosa
2	4.90	3.00	1.40	0.20	setosa
3	4.70	3.20	1.30	0.20	setosa
4	4.60	3.10	1.50	0.20	setosa
5	5.00	3.60	1.40	0.20	setosa
6	5.40	3.90	1.70	0.40	setosa

◆ロト ◆個ト ◆ 差ト ◆ 差 ト り へ ②

15/06/2021

8 / 53

Introducción

Conjuntos de datos utilizados (2)

- El conjunto de datos sobre calidad del aire: airquality
 - > data(airquality)
 - > attach(airquality)
 - > airquality\$Obsdata<-paste('2016',Month,Day,sep='-')</pre>
 - > detach(airquality)
 - > print(xtable(head(airquality)),scalebox=0.75)

	Ozone	Solar.R	Wind	Temp	Month	Day	Obsdata
1	41	190	7.40	67	5	1	2016-5-1
2	36	118	8.00	72	5	2	2016-5-2
3	12	149	12.60	74	5	3	2016-5-3
4	18	313	11.50	62	5	4	2016-5-4
5			14.30	56	5	5	2016-5-5
6	28		14.90	66	5	6	2016-5-6

Conjuntos de datos utilizados (3)

```
Número de teléfonos por continente 1951-1961
> aux<-as.data.frame(t(WorldPhones))</pre>
> aux$cont<-rownames(aux)</pre>
> telef<-reshape(aux,direction='long',idvar='cont',</pre>
           varying = list(1:7), times=colnames(aux)[1:7]
+
           ,timevar='year',v.names='telef')
+
> head(telef)
                 cont year telef
N.Amer.1951
               N.Amer 1951 45939
Europe.1951
               Europe 1951 21574
Asia, 1951
                 Asia 1951
                             2876
S.Amer.1951
               S.Amer 1951
                             1815
              Oceania 1951
Oceania, 1951
                             1646
Africa, 1951
               Africa 1951
                               89
```

15/06/2021

Introducción

000000000000000

Utilizamos la función ggplot para inicializar un gráfico.

- > objeto<-ggplot(dataframe)</pre>
- o si no queremos guardar el objeto
- > ggplot(dataframe)

¿Qué sucede si ejecutamos la siguiente instrucción?

¿Qué sucede si ejecutamos la siguiente instrucción?

- > library(ggplot2)
- > ggplot(mtcars)

000000000000000

El siguiente paso es añadir alguna capa sobre el gráfico. Por ejemplo la función geom_point() añade una capa de puntos.

A. Miñarro

Introducción

000000000000000

Existe una gran flexibilidad en la forma cómo se crea el gráfico. También funcionan las instrucciones:

```
> ggplot(data=mtcars,aes(x=wt,y=mpg))+geom_point()
o
```

Incluir el **aes** en la llamada a *ggplot* permite que sea válida para diferentes **geom**s que podemos añadir posteriormente.

Aesthetic

- En un ggplot aesthetic aes() se refiere a "aquello que podemos ver". Es una propiedad visual de un objeto. Incluye:
 - x,y: qué va en los ejes
 - color: color del exterior
 - fill: color del interior
 - shape: forma de los puntos
 - linetype: tipo de línea
 - size: tamaño
 - alpha: transparencia (1:opaco; 0:transparente)
- Cada tipo de geometría acepta un subconjunto de las posibles opciones
- Una de las funciones más utilizadas es la de definir grupos a través de diversas variables aesthetics o directamente con la opción group

15/06/2021

0000000000000000

> ggplot(mtcars)+geom_histogram(aes(x=mpg),bins=5)

Definición de grupos a través de aes

0000000000000000

Definición de grupos a través de aes (2)

Propiedades aes independientes de variables (constantes)

Veamos el resultado de la siguiente instrucción:

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

- Introducción
- 2 Objetos geométricos
- 3 Facets
- 4 Stats
- 5 Posición y coordenadas


```
> p<-ggplot(data=iris,aes(x=Sepal.Length, y=Sepal.Width))
> p+geom_point()
   4.5 -
Sepal.Width
   4.0 -
   3.5 -
  3.0
   2.5 -
   2.0
                                Sepal.Length
```


A. Miñarro

Introducción

Eiercicios

Introducción

Ejercicios

- Explicar el resultado que se obtiene
 - > p<-ggplot(data=iris)
 - > p+geom_point(aes(x=Sepal.Length, y=Sepal.Width))
 - > p+geom_point()+geom_smooth(method='lm')
- Interpretar el resultado
 - > ggplot(data=mtcars) + geom_point(aes(x=wt,
 - y=mpg,col=as.factor(cyl)))
 - > ggplot(data=mtcars) + geom_point(aes(x=wt, y=mpg,col=cyl))
- 3 ¿Qué se obtiene si una misma variable se mapea en múltiples aesthetics?
- ¿Qué sucede si un aesthetic se asigna al resultado de una comparación lógica?

- Los objetos geométricos son las diferentes representaciones que realmente salen en la gráfica
- Una gráfica debe tener al menos una geometria pero no hay límite superior
- Las diferentes geometrías se añaden con el operador +

Algunas Geometrías

Introducción

- puntos (geom_point)
- lineas (geom_line)
- lineas conectadas en orden (geom_path)
- box-plots (geom_boxplot)
- lineas de suavizado (geom_smooth)
- densidades (geom_density)
- textos (geom_text)

- recta (geom_abline)
- recta hor. (geom_hline)
- recta ver. (geom_vline)
- histograma (geom_histogram)
- polígonos (geom_polygon)
- etiquetas (geom_label)
- ...

Por supuesto cada geom tiene su conjunto de opciones

```
geom_point(mapping = NULL, data = NULL, stat = "identity",
   position = "identity", ..., na.rm = FALSE, show.legend = NA,
   inherit.aes = TRUE)
geom_line(mapping = NULL, data = NULL, stat = "identity",
   position = "identity", na.rm = FALSE, show.legend = NA,
   inherit.aes = TRUE, ...)
geom_bar(mapping = NULL, data = NULL, stat = "count",
   position = "stack", ..., width = NULL, binwidth = NULL,
   na.rm = FALSE, show.legend = NA, inherit.aes = TRUE)
   .....
```

La opción **data** puede sobreescribir el conjunto de datos definido en la llamada a *ggplot*().

A. Miñarro ggplot2

Aplicación de diferentes geometrías

00000000000

Veamos el resultado de aplicar diferentes geometrías

A. Miñarro ggplot2 15/06/2021 24 / 53

Combinando geometrías

- > p+geom_point(aes(color=as.factor(am)))+
- + geom_smooth(aes(linetype=as.factor(am),col=as.factor(am)))+
- + geom_hline(yintercept=22)+
- + geom_label(aes(x=4,y=24,label='mpg=22'))

A. Miñarro ggplot2 15/06/2021 25 / 53

- > ggplot(airquality,aes(x=as.Date(Obsdata)))+
- + geom_line(aes(y=Temp),col='red')+
- + geom_line(aes(y=0zone),color='blue')

A. Miñarro

Definimos

> p1<-ggplot(data=iris,aes(x=Sepal.Length,y=Sepal.Width))

Imaginar los resultados y probar estas modificaciones

- geom_smooth(aes(fill=Species))
- 2 p1+geom_point(aes(colour=Species))+
 geom_smooth()
- p2<-p1+aes(colour=Species)</pre>
- p2+geom_point()+geom_smooth(method='lm')

Para más información sobre otras geoms ver ggplot2 cheatsheets

A. Miñarro ggplot2 15/06/2021 27 / 53

Definimos

> p1<-ggplot(data=iris,aes(x=Sepal.Length,y=Sepal.Width))

Imaginar los resultados y probar estas modificaciones

- 1 p1+geom_point()+ geom_smooth(aes(fill=Species))
- ② p1+geom_point(aes(colour=Species))+
 geom_smooth()
- p2<-p1+aes(colour=Species)
 </pre>
- p2+geom_point()+geom_smooth(method='lm')

Para más información sobre otras geoms ver ggplot2 cheatsheets

A. Miñarro ggplot2 15/06/2021 27 / 53

Definimos

> p1<-ggplot(data=iris,aes(x=Sepal.Length,y=Sepal.Width))

Imaginar los resultados y probar estas modificaciones

- 1 p1+geom_point()+
 geom_smooth(aes(fill=Species))
- p1+geom_point(aes(colour=Species))+
 geom_smooth()
- p2<-p1+aes(colour=Species)
 </pre>
- 0 p2+geom_point()+geom_smooth(method='lm')

Para más información sobre otras geoms ver ggplot2 cheatsheets

A. Miñarro ggplot2 15/06/2021 27 / 53

Eiercicios

Introducción

Definimos

> p1<-ggplot(data=iris,aes(x=Sepal.Length,y=Sepal.Width))

Imaginar los resultados y probar estas modificaciones

- p1+geom_point()+ geom_smooth(aes(fill=Species))
- p1+geom_point(aes(colour=Species))+ geom_smooth()
- p2<-p1+aes(colour=Species)</pre>

Para más información sobre otras geoms ver ggplot2 cheatsheets

A. Miñarro ggplot2 15/06/2021 27 / 53

Definimos

> p1<-ggplot(data=iris,aes(x=Sepal.Length,y=Sepal.Width))

Imaginar los resultados y probar estas modificaciones

- p1+geom_point()+ geom_smooth(aes(fill=Species))
- p1+geom_point(aes(colour=Species))+ geom_smooth()
- p2<-p1+aes(colour=Species)</pre>
- p2+geom_point()+geom_smooth(method='lm')

Para más información sobre otras geoms ver ggplot2 cheatsheets

A. Miñarro ggplot2 15/06/2021 27 / 53

Otras geoms

> ggplot(mtcars)+geom_boxplot(aes(x=as.factor(am),y=mpg))

> ggplot(mtcars)+geom_density(aes(mpg))

0000000000

A. Miñarro

- > p1<-ggplot(iris,aes(x=Sepal.Length,y=Sepal.Width))
- > p1+geom_point()+geom_boxplot()+geom_density2d()

- > p2<-ggplot(telef,aes(x=year,y=cont))
- > p2+geom_tile(aes(fill=telef))

- 1 Introducción
- 2 Objetos geométricos
- 3 Facets
- 4 Stats
- Posición y coordenadas

Facets

Introducción

Otra forma de representar diferentes variables categóricas es separar los gráficos en facets (facetas), subgráficos para cada valor de la variable.

Separar por una variable categórica única

facet_wrap(~variable,nrow,ncol)

Separar por la combinación de dos variables

facet_grid(variable 1~variable 2)

- > ggplot(iris)+geom_point(aes(x=Sepal.Length,
- y=Petal.Length))+ facet_wrap(~Species)

A. Miñarro ggplot2 15/06/2021 31 / 53

2

wt

Bd -250 -500 -250 -

-250 **-**

```
geom_smooth()+
 facet_grid(as.factor(am)~as.factor(cyl))
         4
                        6
                                      8
500 -
250 -
```

> ggplot(mtcars,aes(x=wt,y=mpg))+geom_point()+

Introducción

- Interpretar el resultado de la siguiente instrucción
 - > ggplot(mtcars,aes(x=wt,y=mpg))+geom_point()+
 - + geom_smooth()+
 - facet_grid(as.factor(am)~as.factor(gear))
- ¿ Qué ocurre si intentamos separar por una variable continua? ¿Cómo podemos solucionarlo?

Esquema del tema

- 4 Stats

Transformaciones estadísticas

Si aplicamos la geom_bar a unos datos, por defecto efectúa el contaje de las categorías de la varible y es ese contaje el que representa

> ggplot(mtcars)+geom_bar(aes(x=gear))

En realidad lo que hace es calcular

	V1
3	15
4	12
5	5

A. Miñarro

Propiedad stat

La propiedad **stat** determina la operación estadística que se realiza sobre los datos. Cada **geom** tiene asociada una propiedad **stat** por defecto.

geom	stat
geom_bar()	stat_count()
$geom_col()$	stat_identity()
$geom_point()$	stat_identity()
geom_smooth()	stat_smooth()

Las llamadas son intercambiables, por ejemplo

> ggplot(mtcars)+stat_count(aes(x=gear))

Opciones de las **stats**

Como siempre cada stat tiene su conjunto de opciones

```
stat_count(mapping = NULL, data = NULL, geom = "bar",
 position = "stack", ..., width = NULL,
 na.rm = FALSE, show.legend = NA, inherit.aes = TRUE)
stat_smooth(mapping = NULL, data = NULL, geom = "smooth",
  position = "identity", ..., method = "auto", formula = y ~ x,
  se = TRUE, n = 80, span = 0.75, fullrange = FALSE,
  level = 0.95, method.args = list(), na.rm = FALSE,
  show.legend = NA, inherit.aes = TRUE)
  . . . . . .
```

Compárese por ejemplo con

```
geom_bar(mapping = NULL, data = NULL, stat = "count",
 position = "stack", ..., width = NULL, binwidth = NULL,
 na.rm = FALSE, show.legend = NA, inherit.aes = TRUE)
geom_smooth(mapping = NULL, data = NULL, stat = "smooth",
  position = "identity", ..., method = "auto", formula = y ~ x,
  se = TRUE, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE)
```

A. Miñarro 15/06/2021 37 / 53

- > aux=data.frame(x=c('a','b','c'),y=c(10,20,15))
- > ggplot(aux)+geom_bar(aes(x,y))
- > ggplot(aux)+geom_bar(aes(x,y),stat='identity')

Se habría obtenido el mismo resultado con

> ggplot(aux)+geom_col(aes(x,y))

_ 《意》《意》 및 ∽익역

> ggplot(mtcars)+geom_bar(aes(gear,y=..prop..))

- ggplot(airquality,aes(x=as.Date(Obsdata)))+
- geom_line(aes(y=Temp), col='red')+
- geom_bar(aes(y=Wind),color='blue',stat='identity')

39 / 53

A. Miñarro ggplot2 15/06/2021

stat_summary()

```
> ggplot(mtcars)+
```

- stat_summary(aes(x=cyl,y=mpg),fun.ymin=min,
- fun.ymax=max,fun.y=median) +

Las funciones pueden personalizarse

- > ggplot(mtcars)+
- stat_summary(aes(x=cyl,y=mpg),
- fun.ymin=function(x) mean(x)-sd(x),
- fun.ymax=function(x) mean(x)+sd(x),
- fun.y=mean)

A. Miñarro

ggplot2

15/06/2021

42 / 53

stat_summary() (3)

A. Miñarro

```
> summaryAmp<-function(x,colvar,colfac){</pre>
   fact<-aggregate(x[,colvar],list(x[,colfac]),mean)$Group.1</pre>
   means<-aggregate(x[,colvar],list(x[,colfac]),mean)$x</pre>
   sds<-aggregate(x[,colvar],list(x[,colfac]),sd)$x</pre>
   len<-aggregate(x[,colvar],list(x[,colfac]),length)$x</pre>
  ses <-sds/sqrt(len)
  cis<-ses*qnorm(0.975)
   df<-data.frame(factor=fact,mean=means,sd=sds,se=ses,ci=cis)</pre>
   colnames(df)[1]<-colfac
   return(df)
+ }
> car.new<-summaryAmp(mtcars,'mpg','cyl')</pre>
> print(xtable(car.new))
```

	cyl	mean	sd	se	ci
1	4.00	26.66	4.51	1.36	2.67
2	6.00	19.74	1.45	0.55	1.08
3	8.00	15.10	2.56	0.68	1.34

←□ ▶ ←혈 ▶ ←혈 ▶ ←혈 ▶ ─ 혈 ─ ∽의

```
> p1<-ggplot(car.new,aes(x=as.factor(cyl),y=mean))</pre>
```

- > p2<-p1+geom_bar(stat='identity')</pre>
- > p3<-p2+geom_errorbar(aes(ymin=mean-ci,ymax=mean+ci),width=0.5)
- > p3

43 / 53

A. Miñarro 15/06/2021

Grupos

Introducción

Es frecuente disponer de datos agrupados. Por ejemplo en los datos sobre el número de teléfonos

```
cont vear telef
N.Amer.1951
              N.Amer 1951 45939
Europe.1951
              Europe 1951 21574
Asia, 1951
                Asia 1951
                            2876
S.Amer.1951
              S.Amer 1951
                            1815
Oceania 1951 Oceania 1951
                            1646
Africa, 1951
              Africa 1951
                              89
```

Si queremos graficar la evolución temporal del número de teléfonos por continentes hemos de utilizar la opción group.

Grupos (2)

> ggplot(telef,aes(x=year,y=telef,col=cont))+geom_line()

> ggplot(telef,aes(x=year,y=telef,col=cont))+geom_line(aes(group=cont))

- A lutus divosión
- 2 Objetos geométricos
- 3 Facets
- 4 Stats
- Posición y coordenadas

A. Miñarro

Ajustes de posición

Introducción

Supongamos que utilizamos dos variables para definir el eje X y una propiedad aes. ¿Cuál es el resultado?

```
> ggplot(mtcars)+geom_bar(aes(x=as.factor(cyl),
+ fill=as.factor(gear)))
```


El resultado

son unas barras apiladas, opcion por defecto.

Los ajustes de posición permiten modificar ciertas opciones.

A. Miñarro ggplot2 15/06/2021 47 / 53

Modificación de la posición (geom_bar())

```
> library(gridExtra)
> p1<-ggplot(mtcars,aes(x=as.factor(cyl),fill=as.factor(gear)))
> grid.arrange(p1+geom_bar(position='stack'),
+ p1+geom_bar(position='fill'),
+ p1+geom_bar(position='dodge'),
+ p1+geom_bar(position='identity'),ncol=2)
                                         1.00 -
                       as.factor(gear)
                                                              as.factor(gear)
                                         0.75
 count
                                         0.50
                                         0.25
    0 -
                                         0.00 -
       as.factor(cvl)
                                              as.factor(cvl)
   12.5 -
                                         12.5 -
                       as.factor(gear)
                                                              as.factor(gear)
   10.0 -
                                         10.0 -
 count
    7.5 -
                                          7.5 -
    5.0 -
                                          5.0 -
    2.5 -
                                          2.5 -
    0.0 -
                                          0.0 -
```


15/06/2021

48 / 53

A. Miñarro ggplot2

as.factor(cyl)

as.factor(cyl)

```
> p1<-ggplot(mtcars,aes(x=hp,y=mpg))</pre>
> grid.arrange(p1+geom_point(),
+ p1+geom_point(position='jitter'),
```


A. Miñarro

49 / 53

Sistemas de coordenadas

ggplot presenta diferentes sistemas de coordenadas además de las tradicionales coordenadas cartesianas

Coordenadas	Efecto
coord_flip()	Intercambia ejes X e Y
coord_quickmap()	Ajusta el aspecto para mapas
coord_polar()	Coordenadas polares

- > p<-ggplot(iris,aes(x=Species,y=Sepal.Length))+geom_boxplot()
- > p+coord_flip()


```
> p<-ggplot(mtcars,aes(x=as.factor(carb),fill=as.factor(carb)))</pre>
> grid.arrange(p+geom_bar(),
+ p+geom_bar()+coord_polar(),ncol=2)
```


- > sp<-map_data('world','Spain')
- > p<-ggplot(sp,aes(long,lat,group=group))</pre>
- > grid.arrange(p+geom_polygon(fill='red'),
- + p+geom_polygon(fill='red')+coord_quickmap(),ncol=2)

15/06/2021

51 / 53

A. Miñarro

Modificación de las coordenadas (2)

Cada función que define las coordenadas tiene sus propias opciones.

```
coord_cartesian(xlim = NULL, ylim = NULL, expand = TRUE)
coord_polar(theta = "x", start = 0, direction = 1)
```

Por eiemplo para hacer un zoom

```
> p1<-ggplot(mtcars,aes(x=hp,y=mpg))
```

- > grid.arrange(p1+geom_point(),p1+geom_point()+
- + coord_cartesian(xlim=c(50,150), vlim=c(15,25)),ncol=2)

52 / 53

A. Miñarro ggplot2 15/06/2021

Hasta el momento hemos visto como construir un gráfico ggplot a partir de la adición de sucesivas capas

Capas en la gramática de los gráficos

```
ggplot(data = <DATA>) +
 <GEOM FUNCTION>(
  mapping = aes(<MAPPINGS>),
  stat = \langle STAT \rangle,
  position = <POSITION>
 ) +
 <COORDINATE_FUNCTION> +
 <FACET_FUNCTION>
```

