Algoritmos em Grafos: Caminho mais curto Aplicação à gestão de projetos

J. Pascoal Faria, R. Rossetti, L. Ferreira FEUP, MIEIC, CAL

Grafo Nó-Atividade

DAG

Nó: atividade e tempo associado Arco: precedência

Qual a duração total mínima do projeto?

Que atividades podem ser atrasadas e por quanto tempo (sem aumentar a duração do projeto)?

Reformulação em Grafo Nó-Evento

DAG

Nó: evento - completar atividade

Arco: atividade

introduzem-se nós e arcos extra para garantir precedências (só no caso de atividades com mais que uma antecessora)

Menor Tempo de Conclusão

- menor tempo de conclusão de uma atividade
 - caminho mais comprido do evento inicial ao nó de conclusão da atividade
- adaptar algoritmo de caminho mais curto para grafos acíclicos
 - MTC(1) = 0
 - $MTC(w) = max \{ MTC(v) + c(v,w) \mid (v, w) \in E \}$

MTC : usar ordem topológica

Último Tempo de Conclusão

- último tempo de conclusão: mais tarde que uma atividade pode terminar sem comprometer as que se lhe seguem
 - UTC(n) = MTC(n)
 - UTC(v) = min{ UTC(w) $c(v, w) \mid (v, w) \in E$ }

UTC: usar ordem topológica inversa

Folgas nas atividades

·folga da atividade

$$folga(v,w) = UTC(w) - MTC(v) - c(v,w)$$

Folgas nas atividades

·folga da atividade

folga(v,w) = UTC(w)-MTC(v)-c(v,w)

Caminho crítico: só atividades de folga nula (há pelo menos 1)

Referências e mais informação

- "Data Structures and Algorithm Analysis in Java", Second Edition, Mark Allen Weiss, Addison Wesley, 2006
- "Introduction to Algorithms", Second Edition, Thomas H.
 Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, The MIT Press, 2001