

TABLE OF CONTENTS

01 ~ 02

Excel Data

Power BI Implementation

03 • 04

Python Mapping

Python Predictive Analysis 6

Introduction & Problem Statement

- 1. How many of you have used vending machines this year?
 - a. Did you ever wonder how companies know when to restock a vending machine?
- 2. ABC Vending is a small vending machine company with 5 vending machines across Mississauga
- 3. They Sell Four Categories of Products
 - a. Carbonated Beverages
 - b. Food
 - c. Non Carbonated Beverages
 - d. Water
- 4. In order to help ABC Vending with their business
 - a. Executive Dashboard
 - b. Logistic Mapping Supply Chain
 - c. Predictive Modelling Through Python

Excel Data Analysis

 The team used excel to slice and dice different data analytics techniques to achieve both exploratory data analysis and predictive modelling

ABC Analysis

• For predictive modelling we utilized the ABC Analysis to use historical data to predict what SKUs can be categorized based on the % of Cumulative Inventory:

Product	Sum of MQty	% of Total Inventory 💌	% of Cum. Inventory 🔻 ABC 🔻
Coca Cola - Zero Sugar	524	8%	8% A
Monster Energy Origina	385	6%	14% A
Poland Springs Water	311	5%	19% A
KitKat - Crisp Wafers	267	4%	23% A
Sunkist Soda - Orange	217	3%	26% A
Red Bull - Original	158	2%	29% A
Coca Cola - Regular	156	2%	31% A
Wonderful Pistachios -	147	2%	33% A
CheezIt - Original	138	2%	35% A
SunChips Multigrain - F	131	2%	37% A
Robert Irvine's - Fit Cru	121	2%	39% A
Oreo Mini	111	2%	41% A
Snapple Diet Tea - Peac	109	2%	43% A
SunChips Multigrain - S	106	2%	44% A
Takis - Hot Chilli Peppe	97	1%	46% A
Goldfish Baked - Chedo	92	1%	47% A
Snapple Diet Tea - Lem	88	1%	48% A
al , al , ,, ,		401	500/

Excel to PowerBI Transition

• We used both the exploratory data and predictive modelling done in Excel to create various KPIs that would help a Executive staff member make decision regarding the business in a strategic and astute manner.

KPI	What Impact does it Have?	
Count ABC SKU's	It will inform the team the quantity of SKUs in each bucket - once you click on a certain Class - it will give you the list of SKUs along with the quantity sold.	
Sum of dollars sold by Category	This will indicate which category is performing the best	
Sum of Price by Vendor	This will ensure all executive are aware of the top performing vendors, this will help in making decision in the future regarding vendor partnerships	
Sum of Transaction By Type	This will indicated what method of transactions we need to focus on	
ArcGIS Map	This will indicate where the machines are, and gives the users the ability to slice and dice based on the location	
Profitability Analysis	A quick view of different profitability metrics related to the company	

To Access the Dashboard - Click Here.

Python Programming: Mapping

- Goal is to determine optimal geo-spatial coordinates for vending machines and the optimal positioning for the warehouse facility
- The vending machines were given arbitrary longitudes and latitudes
 - Each location was given a weight to determine the warehouse location
 - Red Marker (Brunswick Sq Mall), Purple Marker (Earle Asphalt), Blue Marker (EB Public Library), Yellow Marker (GuttenPlans), Green Marker (Warehouse)

Python Programming: Mapping pt. 2

- Example presented is the optimal route between the Warehouse facility and Earle Asphalt:
 - O Distance between two locations found to be 4.35 km or 2.70 miles
 - o For drive mode assuming 50 km/h average speed it would take 5.22 minutes

Figure: Optimal Route Using 'bike' mode

Python Initial Analysis

Python Automatic Inventory System

```
#dfTPS=DataFrame
dfabc["TPS"]=TPS
dfabc["ABC%"]=(dfabc['Total Amount']/dfabc['TPS'])*100
number rows abc=len(dfabc)
dfabc.sort values(by=['ABC%'])
import numpy as np
conditions = [
    (dfabc['ABC%'] >= 2),#60%
    (dfabc['ABC%'] >= 1) & (dfabc['ABC%'] < 2),#61-75
    (dfabc['ABC%'] < 1)#rest
values = ['A','B','C']
dfabc['abc']=np.select(conditions, values)
import numpy as np
conditions1 = [
    (dfabc['abc'] == 'A'),
    (dfabc['abc'] == 'B'),
    (dfabc['abc'] == 'C')
values1 = [50, 25, 10]
dfabc['Initial stock']=np.select(conditions1, values1)
dfabc['Stock to BE']=np.select(conditions1, values1)
```

```
        Product
        Total Amount
        TPS
        ABC% abc
        Initial_stock

        0
        Autumns Granola Bar - Cinnamon Almond
        17
        6340
        0.268139
        C
        10

        1
        Bai Antioxidant - Brasilia BB
        4
        6340
        0.063091
        C
        10

        2
        Bai Antioxidant - Kula Watermelon
        5
        6340
        0.078864
        C
        10
```

```
# checking if anything is out of stock?
for i in range(162):
   if dfabc['abc'][i]=='A' and dfabc['Stock_to_BE'][i]<20:
      print("order 50 more of.....",dfabc['Product'][i] )

if dfabc['abc'][i]=='B' and dfabc['Stock_to_BE'][i]<15:
   print("order 30 more of.....",dfabc['Product'][i] )

if dfabc['abc'][i]=='C' and dfabc['Stock_to_BE'][i]<5:
   print("order 20 more of......",dfabc['Product'][i] )</pre>
```

```
order 20 more of...... Cheetos Baked - Flaming Hot order 20 more of..... Chesters Fries Flaming hot order 20 more of..... Good Health Veggie Stix - Sea Salt
```

Python Predictive Modelling

Conclusion

ABC vending machine with 8 months dataset, improvements were achieved through some descriptive and predictive analysis.

Five fronts were maintained including:

- Creating a executive Dashboard.
- Creating Different graphs for monitoring
- Rcoil Analysis (Most sales in that vending machine Row)
- Mapping (Optimal route)
- Machine learning to predict future demand