MOTOROLA LINEAR AND INTERFACE ICS

MOTOROLA INC.

LINEAR AND INTERFACE INTEGRATED CIRCUITS

Alphanumeric Index and Cross Reference	
Selector Guides	
ntegrated Circuits Data Sheets	Inte
Amplifiers	
Power Supply	
Voltage References	
Data Conversion	
Interface	
Comparators	
Telecommunications	
Consumer	

Other Linear

Assurance

Packaging Information,

Quality and Reliability

Applications Literature

Including Small Outline
Integrated Circuits (SOIC)

MOTOROLA LINEAR/INTERFACE INTEGRATED CIRCUITS

This publication presents technical information for the broad line of Linear and Interface Integrated Circuit products. Complete device specifications are provided in the form of data sheets which are categorized by product type into nine chapters for easy reference. Selector guides by product family are provided in Chapter 2 to enable quick comparisons of performance characteristics. A cross-reference chapter lists Motorola direct replacement and functional equivalent part numbers for other industry products.

A chapter is provided to illustrate package outline and mounting hardware drawings, and includes information on the new Surface Mounted (SMD), Small Outline Integrated Circuit (SOIC) Additionally, chapters are provided with information on quality program concepts, highpackages.

reliability processing, and abstracts of available technical literature.

The information in this book has been carefully checked and is believed to be accurate;

however, no responsibility is assumed for inaccuracies. Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer.

> Series D ©MOTOROLA INC., 1983 Previous Edition ©1979 "All Rights Reserved"

CQUAM®, MDTL, MECL, MECL 10,000, MONOMAX, MRTL, MTTL and Switchmode are trademarks of Motorola Inc.

Alphanumeric Index and Cross Reference

Alphanumeric Index

Device Number		Function		De			Device			
AD562		Complete High-Speed 12-	Rit	Pa	ge	+	Number	_	Function	Pag
		Multiplying D/A Converte		6-	2		LM140,	A	Three-Terminal Positive Fix	ed
AD563		Complete 12-Bit High-Spec	he	0-	3		1 144 40		Voltage Regulators	4-5
	_	WIOROIITHIC D/A Converte	r	6-8	0		LM148		Quad MC1741 Operational	. 0
AM26L	S31	Quad RS-422 Line with		0-0	5		LM150		Amplifier	3-3
	_	Three-State Output		7-4	1	١.	LIVI 150		3-Terminal Adjustable Positi	ve
AM26LS	532	Quad RS-422/3 Line Recei	ver	/ -2	+		LM158	- 1	Voltage Regulator	4.00
0400-		WITH Inree-State Outputs	101	7-7	,		LIVI 138		Dual Low-Power Operationa	
CA3054		Dual Differential Amplifier		10-			LM193,A	- 1	Amplitier	3-44
CA3059	- 1	Zero Voltage Switch		11-0	- 1		LM201A		Dual Comparators	8-13
CA3079	1.	Zero Voltage Switch		11-3			LIVIZUIA	1	General Purpose Adjustable	
DAC-08		High-Speed 8-Bit Multiplying	,	11-0	,		LM208,A		Operational Amplifier	3-23
1.5045		U-10-A Converter		6-13	,	- 1	LIVIZUO,A	· F	Precision Operational	
LF347		Family of BIFET Operations	,	0-13	1	- li	LM209		Amplifiers	3-27
1.5054		Amplitiers	- 1	3-4			-M211		Positive Voltage Regulator	4-4
LF351	F	Family of BIFET Operational		3-4			_IVIZ		iigh Performance Voltage	' '
1 5055		Amplitiers		3-4		١,	M217	- 1	Comparator	8-3
LF353	F	amily of BIFET Operational		J - 4	-		-IVIZ I /	3	-Terminal Adjustable Positive	
15055	- 1	Amplitiers	1	3-4		1	.M217L	- 1	voltage Regulator	4-9
LF355	I N	Monolithic JFET Operational		J-4		1-	.IVIZ I / L	L	ow-Current 3-Terminal	
1 5050		Amplifier		3-6					Adjustable Positive Voltage	
LF356	N	Monolithic JFET Operational		3-0		1,	M217M		Regulator	4-17
	- 1	Amplifier		3-6		-	1412 1 / 141	M	edium-Current 3-Terminal	
LF357	M	Ionolithic JFET Operational		3-6					Adjustable Positive Voltage	
	i	Amplifier		3-6	1.	١,,	M000 A	- 1	Regulator	4-25
LM11,C,C		recision Operational		3-6		1-	M223,A	3-,	Ampere, 5 Volt Positive	
	- 1	Amplifiers		3-16			M224		Voltage Regulator	4-33
-M101A	Ge	eneral Purpose Adjustable	3	-10		1-	VIZZ4	QL	ad Low-Power Operational	
	- 1	Operational Amplifier	1 2	-23		I A	M237	1 1	Amplifiers	3-32
M108,A	Pr	ecision Operational	ا ا	-23		LIN	VI23/	3-1	Terminal Adjustable	
		Amplifiers	1 2	07	1		/1237M		Vegative Voltage Regulator	4-39
M109	Po	sitive Voltage Regulator		-27 I-4	١.	LIV	11237 IVI	ivie	dium-Current 3-Terminal	
M111	- I ∟ı6	In Performance Voltage	"	1-4				/	Adjustable Negative	
	(-omparator	1 .	-3		1.87	1239,A	1~ \	/oltage Regulator	4-46
M117	3-T	erminal Adjustable Positive	0	د-ر		LIV	1239,A	Qua	ad Single-Supply	
	1	Ollage Regulator	1	-9			1248	1	Comparators	8-9
M117L	Lov	v-Current 3-Terminal	4	-9		LIV	1248	Qua	ad MC1741 Operational	
	A	djustable Positive Voltage				LAA	250	A	mplifier	3-38
444		regulator	4-	17		-iVI	200	3-16	erminal Adjustable Positive	
M117M	Med	dium-Current 3-Terminal	4-	''		1 84	258	V	Oitage Regulator	4-69
	A	djustable Positive Voltage			- [∟iVI.	400	Dua	Low-Power Operational	
	ח	egulator	4)E	١.	N 44	285	A	mplifier	3-44
1 123,A	A-E	mpere, 5 Volt Positive	4-2	20	'	_IVI2	200	Micr	opower Voltage	
	V C	oltage Regulator	1 -	20	١.	NA.	202 A	R	eference Diodes	5-3
1124	Qua	d Low-Power Operational	4-3	,s		-IVI2	293,A 301A	Dua	Comparators	8-13
40-	AI.	riplifier	2 7	2	1	-1713	MIDG	Gen	eral Purpose Adjustable	
137	3-Te	rminal Adjustable	3-3	2	\int_{Γ}	Ma	- 1	Op	perational Amplifier	3-23
4071	Ne	egative Voltage Regulator	4-3	0	1	.ivi	007	inter	nally Compensated	
137M	MEGI	uill-Current 3-Terminal	4-3	9				Mo	onolithic Operational	1
	Ad	Justable Negative			1.	Mo	00 4	An	nplifier	3-50
	Vo	Itage Regulator	1 4		1-	ivi3	08,A	Preci	ision Operational	
139,A	Quac	d Single-Supply	4-4	0	1.	N 4 1	<u> </u>	An	plifiers	3-27
1	Co	mparators	0 0		1 .	МЗ мэ		Posit	IVe Voltage Regulator	4-4
			8-9			МЗ	11 	High	Performance Voltage	.
					1			Co	mparator	8-3

Device		Page	e		vice imber			ction	Page	_
lumber	Function	- ay	-		C75S	110	Dua	al Line Driver	7-27	
_M317	3-Terminal Adjustable Positive		,		C/55	a	FΜ	Stereo Demodulator	10-5	
	Voltage Regulator	4-9	9		IC130	-	FΜ	Stereo Demodulator	10-7	1
LM317L	Low-Current 3-Terminal			1	IC131 IC132	- 1	Dua	al Doubly Balanced		_
	Adjustable Positive Voltage		7	M	10132	.,		Chroma Demodulator	10-1	5
	Regulator .	4-1	1	1.	10400	ا ۱	100	w-Level Video Detector		
LM317M	Medium-Current 3-Terminal			IV	1C133	,0			10-1	9
-1410 (/ 141	Adjustable Positive Voltage		١.	1.	A1P	20	10	w-Level Video Detector		
	Regulator	4-2	25	M	AC133		-01	20.0.	10-1	
LM323,A	3-Ampere, 5 Volt Positive		20	1.	A2P		IE	Amplifier	10-2	
LIVIUZU,M	Voltage Regulator	4-3	33	N	MC134	49P	IT.	Amplifier	10-3	
I MACOA	Quad Low-Power Operational				MC13		T	/ Video IF Amplifier	10-3	
LM324	Amplifier	3-	32		MC13		1 1	miting FM IF Amplifier	10-3	39
L N 4007	3-Terminal Adjustable			1 -	MC13		LII	Amplifier and Quadrature		
LM337	Negative Voltage Regulator	4-	39	1	MC13	57	IF	Detector	10-	43
1.1400714	Medium-Current 3-Terminal						_	Detector V Sound IF Amplifier	10-	
LM337M	Adjustable Negative				MC13		15	olor TV Video Modulator	10-	
	Voltage Regulator	4-	-46	1 1	MC13		100	UIUI IV VIUGO MODULATOR	10-	62
	Quad Single-Supply				MC13		\T\	V Video Modulator	10-	
LM339,A	Comparators	8	3-9		MC13		T	V Modulator Circuit	10-	
	Three-Terminal Positive Fixed	i			MC13		F	M Modulator Circuit	.5	-
LM340,A	Voltage Degulators	4	-53		MC1		C	Color Television RGB to PAL/	10	-78
	Voltage Regulators Quad MC1741 Operational	Ι.		1	1			NTSC Encoder		-70 -82
LM348	Quad MO1/41 Operational	3	3-38	11	MC1	391P	T	V Horizontal Processor		-82 -82
	Amplifier		-	1	MC1	394P	-	TV Horizontal Processor	1	
LM350	3-Terminal Adjustable Positive	- 4	4-69	1		400,A	\ P	Precision Voltage References	5	5-7
	Voltage Regulator		, 55		MC1	403,A		Precision Low-Voltage		40
LM358	Dual Low-Power Operational	4	3-44	1	IVIO	,00,7	1	Reference	5	-12
	Amplifier	1	. ·r⊤		MO	404,4	۱ F	Precision Low-Drift Voltage		۰.
LM385	Micropower Voltage		5-3		IVIC	,-,c-+,r	- 1	Reference	5	-16
	Reference Diodes		5-ა 8-13		MAC	1406L	0	6-Bit Multiplying Digital-to-		
LM393,A	Dual Comparators	- 1 '	ر. ا د ا		IVIC	, +UUL	1	Analog Converter	6	3-23
LM2900	Quad Single-Supply	1,	3-152		140	1/100		8-Bit Multiplying Digital-to-		
	Operational Amplifier	3	J-152		MC	1408	1,	Analog Converter	1 -	3-35
LM2901	Quad Single-Supply		0.0			4.44		Peripheral Driver Array		7-32
	Comparators		8-9		1	1411		Peripheral Driver Array		7-32
LM2902	Quad Low-Power Operation	al	0.00			1412		Peripheral Driver Array	1	7-32
W	Amplifier		3-32			1413	l l	Dual Differential Comparator		8-18
LM2903	Dual Comparators	.	8-13			1414		Poripheral Driver Array	1	7-32
LM2903	Damar Operations	al				1416		Timing Circuit with Adjustab	le	
LIVI2904	Amplifier		3-44	.	MC	1422		Threshold		11-
LM3900	Quad Single-Supply			,			ا م	Threshold		
LIVIOSOO	Operational Amplitier		3-15	2	MC	1436	i,C	High-Voltage Operational		3-5
MC8T26								Amplifier Amplifier Amplifier		3-5
10100120	Transceiver		7-10	- 1		C1437		Dual Operational Amplifier		3-6
MC8T28	Noninverting Bus Transceiv	ver	7-15	י כ		21438		Power Booster		_ •
	Ctoto Buffer			_		C1439		High-Slew-Rate Operationa	.	3-6
MC8T9	Inverter	1	7-20	C				Amplifier	1	3-7
MOOTO	Ctoto Buffor				M	C144	5	Wideband Amplifier		3-8
MC8T9	Inverter		7-2	0	M	C1454	4G	1-Watt Power Amplifier		11-
	O. I. D. Horl		l I		M	C145	5	Timing Circuit)nai	1 17
MC8T9	Inverter		7-2	0	M	C145	6,C	High-Performance Operation	ııaı	3-
	L. T. Chata Duffor/	\			1 1	0	, -	Amplifier		ა-
MC8T9	Hex Intee-State Bulleti		7-2	<u>:</u> O	NA.	IC145	8.	Dual Operational Amplifier		_
	Inverter	1	-			C,N	,			3-
MC265	Quad Open-Collector Bus		7-2	24	1 .	0,N 1C145	28	High-Slew-Rate Dual	1	_
	Transceiver			-	1	10140	,,,,	Operational Amplifier		3-
MC268	Quad Open-Collector Bus	,	7-2	24	11					
	Transceiver		1-4							

Device Number	Function	Pag	1e	Device			
MC1463	Adjustable Negative Voltage	ne ra	,0	Number		Function	Pa
1	Regulator	-	, ,	MC171	0,C	Differential Comparator	0.6
MC1466L	Voltage and Current	4-7	1	MC171	1,C	Dual Differential Comparat	8-2
1	Regulator			MC172	3,C	Adjustable Positive or	or 8-2
MC1468	Dual + 15 Vall T	4-9	3		-, -	Mogative Vetter	
	Dual ± 15-Volt Tracking	1		MC173	3 C	Negative Voltage Regula	itor 4-1:
MC1469	Regulator	4-10)3	MC174	1.0	Differential Video Amplifier	3-1
1409	Adjustable Positive Voltage	•		N,NC		a poss operation	nal
1404 470	Regulator	4-10	1a.			Amplifier	2.40
MC1472	Dual Peripheral Positive		١	MC1741	IS,	High-Slew-Rate Operationa	1 0 12
1	NAND Driver	7-36	.	SC		Amplifier	1
MC1488	Quad MDTI Line Driver	1		MC1747	',C	Dual MC1741 Operational	3-12
MC1489,A	Quad MDTL Line Receiver	7-39		1		Amplifier	
MC1494L	Four-Quadrant Multiplier	7-45		MC1748	.c	General-Purpose Operation	3-13
MC1495L	Four Quadrant Multiplier	11-2			, -	Amplifier Operation	al
MC1496	Four-Quadrant Multiplier	11-3	3	MC1776		Programmer	3-13
1101430	Balanced Modulator-		- 1		,0	Programmable Operational	1
1404500 4	Demodulator	11-5	.	MCCCC		Amplitier	3-14:
MC1500,A	Precision Voltage Reference	es 5-7	.	MC3242	A	Memory Address Multiplexer	r 5 ,4,
MC1503,A	Precision Low-Voltage	5.7		1	-	and Refresh Address	
	Reference	F 40				Counter	7.50
MC1504,A	Precision Low-Drift Voltage	5-12		MC3301	- 10	Quad Operational Amplifier	7-50
* *	Reference			MC3302	10	Quad Single-Supply	3-152
MC1506L	6-Bit Multipluis - D	5-16		1	- `	Comparators	
	6-Bit Multiplying Digital-to-			MC3303	1	Outparators	8-9
MC1508	Analog Converter	6-23		0000	- 1	Quad Differential-Input	
WIC 1506	8-Bit Multiplying Digital-to-			MC3320P		Operational Amplifier	3-162
101511	Analog Converter	6-35		MC3320P	1 -	Class B Audio Drivers	10-87
MC1514	Dual Differential Comparator	8-18		MC3321P		Class B Audio Drivers	10-87
MC1536	High-Voltage Operational	0-18	1	MC3324,A	۸ <i>ا</i> ۸	Memory Address Multiplexer	10-67
	Amplifiers	0.54				and Refresh Address	0.00
MC1537	Dual Operational Amplifier	3-54				Counter	8-30,
MC1538R	Power Booster	3-58		MC3325	Α	Utomotivo Voltana D	4-160
1	High Clay Day	3-62		MC3334P	I Li	utomotive Voltage Regulator	10-91
	High-Slew-Rate Operational	1	11	MC3340P		ligh Energy Ignition Circuit	10-95
/IC1545	Amplifier	3-68		MC3344		lectronic Attenuator	10-99
	Wideband Amplifier	3-76		14103344	P	rogrammable Frequency	
1C1554G	1-Watt Power Amplifier	3-82		1400040	- 1	Switch	11-61
101000	I iming Circuit	11 15	11	MC3346	G	eneral-Purpose Transistor	1.01
IC1556	High-Performance Operationa	11113			1	Array	10 100
	Amplifier			MC3350	Tr	iple Independent Differential	10-102
C1558,N L	-ow-Noise Dual Operational	3-86				Amplifier	
-,,,	Amplifier Duai Operational		1	MC3356	Wi	ideband FSK Receiver	10-105
C1558S	tigh Clay Data 5	3-92	- 1	MC3357		W-Power FM IT	10-107
0000	ligh-Slew-Rate Dual			AC3358	L.	w-Power FM IF	10-113
C1563	Operational Amplifier	3-97	-1"		Du	al Low-Power Operational	.
C 1303	djustable Negative Voltage			100050	1 /	Amplifier	3-176
_	negulator	4-77	1	/IC3359	LO	w-Power Narrow-Band FM	0 .70
C1566L V	oltage and Current	7-//	1.	. .	1 1	F	10 117
1	Regulator	4.00	N	1C3361	Lov	w-Voltage Narrow-Band FM	10-117
C1568 D	ual ± 15-Volt Tracking	4-93			11	F	
	Regulator		N	IC3370P		o Voltage Switch	10-123
C1569 A	diustable Desir	4-103	M	C3373	Bor	moto Control t	11-66
	djustable Positive Voltage		'	- 55, 6	1161	mote Control Amplifier-	
	Regulator	4-109	N.A	C3386	ا ک	Detector	10-125
	ideband Amplifier with AGC	3-103	IVI	U3386	Ger	neral-Purpose Transistor	
10072	our-Quadrant Multiplier	11-22		0000	Α	rray	10-102
LIDADE LEC	our-Quadrant Multiplier		M	C3393P	Two	O-Modulus Prescaler	
1596 Ba	alanced Modulator-	11-36	M	C3396P	Divi		10-129
1	Demodulator		M	U3401	Qua	od Oporotional A	10-131
		11-51	1	_ !	~~~	- Sporational Amplifier	3-152
1709, Ge	neral-Purposo On-	11-51	IM	J3403 I	(JII)	Id Differential Issue	
1709, Ge	eneral-Purpose Operational Amplifier	3-112	M	C3403	Qua 	d Differential-Input perational Amplifier	

Device			Pag	ie	1	vice imbe	- \ F	Func	tion	Pag	е
lumber	Functio		ı ay	,-		C34		Dua	Low-Power Operational	0 4.	76
AC3405	Dual C	perational Amplifier			'''	J 0 1		Αı	mplifier	3-1 ⁻ 7-8	
VIOU-00	plus	Dual Voltage		00	M	C34	67	Trin	lo Preamplifier		- 1
	Corr	noarator	3-1				000	Flor	on Disk Write Controller	7-9	12
MC3410,C	10-Rit	D-to-A Converter	6-4	17			70P,	Flor	opy Disk Read Amplifier	١	
MC3410,0 MC3412	High-S	Speed 12-Bit D/A	١.		IVI	AP	1	0	vetem	7-1	02
VIC3412	Cor	verter	6-			1C34	171	Floi	ppy Disk Write Controller/		
MC0416	Cross	noint Switch	9-	-3	IV	1034	*/ '	L	load Driver	7-1	16
MC3416	Contin	nuously-Variable-Slope				100	176	Pro	grammable Operational		
MC3417	Del	ta Modulator/			10	AC34	+/0	1 4	Amplifier		182
	Dei	modulator	9-	12		400	400	Me	mory Controller Circuit	7-	127
1400410	Conti	nuously-Variable-Slope			1	MC3		OU	ad Single-Ended Line		
MC3418	De	ta Modulator/			1	иСЗ	481		Driver	7-	142
	Do	modulator	9	-12	١.		400 A D		tal Three-State Buffer/		
	Subs	criber Loop Interface			1	MC3	482A,B		Latch	7-	147
MC3419,		cuit	9	-30	١.				egrated Solenoid Driver	1	-133
A,C		phone Line-Feed Circuit	9	-45			3484V2		legrated Solenoid Driver	10	-133
MC3419-1		phone Line-Feed Circuit					3484V4	lini	uad Single-Ended Line		
MC3419A	- reiel	JUNIO FULL LOCK CHAPMA	9	-45		MC	3485	1 QI	Driver	7	-142
1L		phone Line-Feed Circuit						1	uad RS-422/423 Line		
MC3419C	- Tele	priorie Line-i eed Cirodic	9	9-45	1	MC:	3486	ηQ		7	-151
1L		Lucida Dogulator						_	Receiver ruad RS-422 Line Driver wit	h	
MC3420	Swit	chmode Regulator	4	-134		MC	3487	Q	Three-State Outputs	7	-154
		ontrol Circuit	4	1-153				- -	oual RS-423/232C Driver	1 7	'-158
MC3423		rvoltage Sensing Circuit					3488A,	BD	-Segment Visual Display		
MC3424,	A Pov	ver Supply Supervisory	١ :	8-30.		MC	3491	8	-Segment Visual Display	1 7	7-162
		ircuit/Dual-Voltage		4-160		1		1	Driver		
		comparator				MC	3503		Quad Differential-Input	1 :	3-162
MC3425,	A Pov	ver Supply Supervisory/	1						Operational Amplifier		-
		Over-Under-Voltage		4-176		MC	3505	1	Oual Operational Amplifier		
	F	Protection Circuit							plus Dual Voltage		3-168
MC3430	Hig	h-Speed Quad		8-46					Comparator		6-47
		Comparator		•		M	C3510	1	10-Bit D-to-A Converter		•
MC3431	Hiç	h-Speed Quad		8-46		M	C3512		High-Speed 12-Bit D/A		6-58
		Comparator		•				1	Converter Slope		
MC3432		gh-Speed Quad		8-46		М	C3517		Continuously-Variable-Slope		
		Comparator	1	0 .0					Delta Modulator/		9-12
MC3433	3 Hi	gh-Speed Quad	1	8-46				- 1	Demodulator		· · -
		Comparator	1	7-55	ı	M	IC3518		Continuously-Variable-Slop		
MC343	- 1	ex Unified Bus Receiver	1	, 50					Delta Modulator/		9-12
MC344		uad Interface Bus		7-58	3				Demodulator		J- 12
		Transceiver		, 50	-	N	AC3520		Switchmode Regulator		4-13
MC344	1A Q	uad Interface Bus		7-5	a l	1.			Control Circuit	ıi+	4-15
		Transceiver		1-5		l N	AC3523	}	Overvoltage Sensing Circu	11L	7-10
MC344	за С	uad Interface Bus		7-5	8	l N	MC3524	ŀ,A	Power Supply Supervisory	'	8-3
	1	Transceiver		,-3	-		-		Circuit/Dual-Voltage		4-1
MC344	16A C	luad Interface Bus		7-6	2				Comparator	•1	7-1
	1	Transceiver		/-0	_	11	MC3525	5,A	Power Supply Supervisory	y/	
MC344	47 E	Bidirectional Instrumentati	OU	70	:5	11.		•	Over-Under-Voltage		4-1
141004		Bus Transceiver		7-6)O				Protection Circuit		1
MC34	48A (Quad Three-State Bus		_, -	74		MC355	6	Dual Timing Circuit		11.
WO34		Transceiver		7-			MC355		Dual Low-Power Operation	nal	
мС34	50	Quad Line Receiver		7-		1 1			Amplifier		3-1
		Quad Line Receiver			76		NAC 455	Ω Δ	C Dual High-Frequency		
MC34		Quad Line Driver			83	1 1	IVIU455	א,סי רא	Operational Amplifier		3-
MC34	156	Dual Timing Circuit		11	-69		,C,N	,INC	Орогаления		

Device Number	Function			Device			
MC4741	C Quad MC1741 Operation	Pá	ige	Number		Function	
	Amplifier	1		MC330	85,A	Quad JFET-Input Operation	nal
MC6875	A M6800 Clock Generator/	3-1	91			Amplifiers	
	Driver		00	MC340	01	JFET-Input Operational	;
MC6880	Quad Three-State Bus	7-1	66			Amplifiers	3
	Transceiver		10	MC340	02	JFET-Input Operational	
MC6882	A,B Octal Three-State Buffer	7-	10	MODAO		Amplifiers	3
	Latch	7-1	47	MC3400)4	JFET-Input Operational	.
MC6885	Hex Three-State Buffer/	' '	٦,	MC3401	- 1	Amplifiers	3
MCCCCC	Inverter	7-2	n	MC3401		Electronic Telephone Circu	i+ c
MC6886	Hex Three-State Buffer/	' -		MC3401	11-	Electronic Telephone Circu	it g
MC6887	Inverter	7-2	0	Series	~	Telephone Tone Ringer	
MC6887	Hex Three-State Buffer/	-		MC3401		0	9
MCcooo	Inverter	7-2	n	WC3401	3	Speech Network and Tone	
MC6888	Hex Three-State Buffer/	. 2		MC3401		Dialer	9
MCGGGG	Inverter	7-20)	MC3401		Telephone Tone Dialer	9
MC6889 MC6890	Noninverting Bus Transce	VOr 740		MC3401		Telephone Tone Ringer	9
A1C0980	8-Bit Bus-Compatible MPI	J D/ 7-17		141034060	ء ا د	Switchmode Pulse Width	1
MC7800	A Converter	6-63		MC34061		Modulation Control Circuit	s 4-
Series	0.7	1		14100400	,A I	nree-Terminal	- 1
Selles	3-Terminal Positive Voltage	•				Programmable Overvoltag	ie
/IC78L00C	Regulators	4 10/	3	MC34062	, _	Sensing Circuit	4-2
AC	, Positive Voltage Regulators	3		141004002		in-Programmable	1
1C78M00		4-198	1	MC34063		Overvoltage Sensing Circu	ıit 4-2
BC	Positive Voltage Regulator				_	U to DC Converter Control	
1C78T00	1	4-204		MC34074	40	Circuits	4-2
.0,0100	Three-Ampere Positive					uad High Performance	
C7900C	Voltage Regulators	4-212		1		Single Supply Operational	4-15
Series	Three-Terminal Negative			MC34084,		Amplifiers	2.0
C79L00C,	FIXED Voltage Regulators	4-225				ad High-Speed JFET Inpu	t
AC Series	Tiffee-Terminal Negative			MC34085,	ام ام	Operational Amplifiers	3-22
C79M00	Fixed Voltage Regulators	4-234		1000,		lad High-Speed	
Series	Inree-Terminal Negative					Decompensated (AVCL ≥	
C10315L	Fixed Voltage Regulators	4-240				2) JFET Input Operational Amplifiers	1
- 10010L	Severi-Bit Parallel High-Spec	ed		MC35001	JE	T-Input Operation	3-22
C10317L	A/D Converter	0.70		500 1	0, 1	ET-Input Operational	
. 5517	Seven-Bit Parallel High-Spee	ed .	11	MC35002	JE	T-Input Operation	3-19
010318L,	AVD Converter	6-70	П		Δ	ET-Input Operational	
.9,CL6,	High-Speed 8-Bit D/A Converter		1	MC35004	JFF	T-Input Operational	3-19
CL7	Converter				Δ	mplifiers	1
	Monomay Plants	6-77	N	MC35060	Swi	tchmode Pulse Width	3-19
20011	Monomax Black-and-White				1 M	Odulation Control Office	
13002P	TV Subsystem	10-139	٨	/C35061.A	Thre	lodulation Control Circuits	4-243
	Monomax Black-and-White TV Subsystem			,, (P	rogrammable O	1
13010P	V Parallol Court	10-139			8	rogrammable Overvoltage ensing Circuit	
	V Parallel Sound IF and AFT	10-148	M	1C35062	Pin-	Programmable	4-255
	QUAM® AM Stereo Decoder	10-153			O	Vervoltage Sossiss of	
	C to DC Converter Control Circuits		M	1C35063	DC t	vervoltage Sensing Circuit to DC Converter Control	4-262
3074,A	Had High Dorts	4-273	-		Ci	rcuits	
,,,,	uad High Performance		M	C35074,A	Quar	d High Performance	4-273
	Single Supply Operational Amplifiers			, ,	Sir	ngle Supply Operational	
3084,A Q	uad IEET Man	3-204			An	operational operational	_
	uad JFET-INput Operational	1 1	M	C35084,A	Ouse	ipiniolo	3-204
	Amplifiare						
	Amplifiers	3-220		7,74	On	High-Speed JFET Input erational Amplifiers	3-220

Page

3-221 3-197 3-197 3-197 9-61 9-61 9-85 9-93 9-94 9-95

4-243

4-255 4-262 4-273 4-156, 3-204 3-220

Device			Pag	je		rice mber			etion	Pag	е
lumber	Func				TC	A5600		Univ	versal Microprocessor	4.00	14
//C35085,A	Qua	d High-Speed			1,0	,, 10000		Р	lower Supply Controller	4-29	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ח ו	ecompensated (AVCL ≥			1	F5600		Lloi	voreal Microprocessor	4-29	
	2)	JFET Input Operational			110	,F3000		F	Power Supply Controller	10-1	75
	Δ,	mplifiers	3-2		1		.	Lini	iversal Motor Speed		
.075407	Duc	I Line Receiver	7-1	84		DA1085	,	Offi	Controller	11-	
MC75107	Due	al Line Receiver	7-1	84		A,B			ac Phase Angle Controller	11-	92
MC75108	Dua	ven-Channel Line			T	DA1185	δA	Tria	ac Phase Angle Comment	10-	174
MC75125	Sev	en-Channel Line	7-1	189	TI	DA1190	OP	ΤV	Sound System		
	F	Receivers			T	DA1285	5A	Un	iversal Motor Speed	11.	.99
MC75127	Sev	ven-Channel Line	7 -	189				(Controller		174
	F	Receivers		- 1	1	DA3190	ΩP	TV	/ Sound System	1	
MC75128	Eig	ht-Channel Line Receivers		193		DA330		T	/ Color Processor		177
MC75129	Fig	ht-Channel Line Receivers	1	193				TI	/ Color Processor	10-	177
	Hic	sh Energy Ignition Circuit	10)-95		DA330		1	/ O-law Processor	10	191
MCC3334		gh Energy Ignition Circuit	10)-95		DA333		T	V Color Processor		
MCCF333	4 Hig	In Energy Ignition of the	11	1-76	1	DA333	33	T	V Color Difference	10	-193
NE565N	Ph	ase-Locked Loop	l	222	1.				Demodulator		
NE592	Vio	deo Amplifier]		-	TDA460	nn	F	lyback Converter Regulator		305,
OP-27	11.09	tra-Low Noise Precision,				DA400	,0	1''	Control Circuit	10	-218
10, -		High Speed Operational	-	007		0		1.	ow-Noise JFET Input		
1	1	Amplifiers	3	-227		TL071		15	Operational Amplifier	3	-236
	1	tra-Low Noise Precision,	1						Operational Amplino		
OP-37	01	High Speed Operational				TL072		L	ow-Noise JFET Input	વ	-236
		High Speed Operational	3	-227					Operational Amplifier	٦	200
		Amplifiers	_	1-80	1 1	TL074		IL	ow-Noise JFET Input		000
SAA1042	A S	tepper Motor Driver	1 .			I LU/ T		- 1	Operational Amplifier	3	-236
SE592	V	ideo Amplifier	ا ا	3-222	1 1			1	JFET-Input Operational		
SG1525		ulse Width Modulator	1		1	TL081		1	Amplifier	3	3-243
3013237	, .	Control Circuits	4	4-279				- 1	JFET-Input Operational		
	١	Pulse Width Modulation				TL082			JEET-Input Operational	1:	3-243
SG1526		VIISE WIGHT WOOddia.		4-286	1			1	Amplifier	1	,
		Control Circuits			1	TL084		١.	JFET-Input Operational	١.	3-243
SG1527	A F	Pulse Width Modulator		4-279		1200.		- 1	Δmplifier		
		Control Circuits	- 1	4-213	1	TI 404		- 1	Programmable Precision		5-21,
SG2525	A F	Pulse Width Modulator				TL431			References		4-310
302323	, I.	Control Circuits		4-279		Seri			Switchmode Pulse Width		
		Pulse Width Modulation				TL494	1	- 1	Modulation Control Circui	ts	4-319
SG2526	, '	Control Circuits		4-286				1	Modulation Control Chock		
	١.	Control Circuits				TL495	5	1	Switchmode Pulse Width	ito	4-319
SG2527	'A I	Pulse Width Modulator		4-279				- 1	Modulation Control Circu	115	4-01
	1	Control Circuits		7 2.0		TL786	n		Three-Terminal Positive		
SG3525	5A	Pulse Width Modulator	1	4 070	.	12/0	•		Voltage Regulators		4-33
00002	- 1	Control Circuits		4-279	'			_	Zero Voltage Controller		
000506	a	Pulse Width Modulation	1			UAA		O	Zeio Vollago Com		11-10
SG3526	,	Control Circuits	1	4-286	j	A,E	3		Peripheral Driver Array		7-3
		Pulse Width Modulator	- 1			ULN	200	1A	Periprieral Diliver Array	1	7-3
SG352	/A	Carried Circuite	1	4-279	9	ULN	200	2Α	Peripheral Driver Array	1	7-3
		Control Circuits	/ith			ULN			Peripheral Driver Array		7-3
SN751	72	Quad RS-485 Line Driver w	1111	7-19	7	ULN			Porinheral Driver Array		
		Three-State Output		, - 19		ULN			Dund 15 A Darlington SW	itch	7-20
SN751	73	Quad BS-422A/3 Line				ULIN	200	740	Ound 1 5 A Darlington SW	MCH	7-20
314731	. •	Receiver with Three-Stat	e			ULN	201	4D	Universal Switching Regul	lator	1
		Output		7-19	9	μΑ7	854	ŧU	Outputom		4-3
		Quad RS-485 Line Driver	with			1			Subsystem	reo	
SN751	/4	Three-State Output		7-19	7	μA7	58/	4	Phase Lock-Loop FM Ste	.00	10-2
1		Inree-State Output			1	1			Demodulator		1.0 '
SN751	175	Quad RS-422A/3 Line	٠.								
		Receiver with Three-Sta	ιe	7 40	00						
		Output		7-19	99						1
TD 44	200	FM IF Amplifier, Limiter ar	nd								
TBA1	200	Detector		10-1	58						
1		Demodulator		10-1							
TCA4	500A	FM Stereo Demodulator	tom								
1	550	Stereo Sound Control Sys	COLL	1.0		J i					

Cross Reference

A complete interchangeability list linking over 3000 devices are offered by most major Linear Integrated Circuits manufacturers to the nearest equivalent Motorola device. The "Motorola Direct Replacement" column lists devices with identical pin connections and package and the same or better electrical characteristics and

temperature range. The "Motorola Similar Replacement" column provides a device which performs the same function but with possible differences in package configurations, pin connections, temperature range or electrical specifications.

				citalacteristics	and
PART NO.		MOTOR DIREC REPLACE	`T	MOTOROI SIMILAR REPLACEM	
PART NO. 6605J 6605J 6605L 8216 8226 9614DC 9614DM 9615DC 9615DM 9615FM 9616CDC 9616EDC 9620DM 9627DC 9620DM 9627DC 9627DM 9636AT 9637T 9638T 9640DC 9640DC 9640DC 9640DC 9640DC 9640DC 965DC 9665DC 9666DC 9666DC 9666DC 9667DC 9667DC 9667DC 9667DC 9667DC 9667DC 97000000000000000000000000000000000000	MC M	DIREC	MENT MO M		
75108BPC 75110DC 75110PC 75207DC 75207PC	MC75 MC75	5S110L 5S110P	MC7	75108P 75107L 75107P	

PART NO.	MOTORO DIRECT REPLACEM	•	MOTOROI SIMILAR REPLACEM	1
75208DC 75208PC AD DAC-08AI AD DAC-08AI AD DAC-08DI AD DAC-08DI AD DAC-08BI AD SOS AD505J AD505S AD509J AD509S AD518J AD518S AD518J AD518S AD531 AD518S AD531 AD562AD AD562AD AD562AD AD562SD AD563SD AD563SD AD563SD AD565SD AD565SD AD565SD AD565SD AD565SD AD565SD AD565SD AD565SD AD565SD AD5689J AD580K AD580M AD580S AD589BI AD589BI AD589BI AD589BI AD741L AD741L AD741L AD741L AD741L AD741S AD1403AN AD1403AN	D DAC-08AQ DAC-08Q DAC-08Q	M M M M M M M M M M M M M M M M M M M	MOTOROS SIMILAR REPLACEM MC75108P LM301AH MC1776CG MC1776CG MC1776CG MC1776CG LM301AH LM101AH	1
AD1508-8D AD7520D	MC1408L7 MC1408L8 MC1508L8	MO	2410	
AD7520F AD7520N AM26LS31CJ	AM26LS31DC AM26LS31PC	MC:	3410L 3410L 3410L	

	MOTOROLA	MOTOROLA		MOTOROLA DIRECT	MOTOROLA SIMILAR
PART NO.	DIRECT REPLACEMENT	SIMILAR REPLACEMENT	PART NO.	REPLACEMENT	MC13002P
AM26LS31D AM26LS31P AM26LS32ACJ AM26LS32ACN AM26LS32D	AM26LS31D AM26LS31P AM26LS32ADC AM26LS32APC AM26LS32D		AN5150 AN5151 CA081AE CA081AS CA081BE CA081CS		MC13001P TL081ACP TL081ACJG TL081BCP TL081CJG TL081CP
AM26LS32P AM26S10DC AM26S10PC AM26S11DC AM26S11PC	AM26LS32P MC26S10L MC26S10P MC26S11L MC26S11P		CA081E CA081S CA082AE CA082AS CA082BE		TL081MJG TL082ACP TL082ACJG TL082BCP TL082CJG
AM101 AM101A AM101AD AM101AF AM101D	LM101AH LM101AH	LM101AH LM101AH LM101AH LM101AH	CA082CS CA082E CA082S CA084AE		TL082CP TL082MJG TL084ACN TL084CN TL082MJ
AM101F AM107 AM107D AM107F AM111D	LM107H	LM107H LM107H	CA084S CA101AT CA101T CA107T CA108AS	LM101AH LM101AH LM107H LM108AJ-8 LM108AH	
AM111H AM201 AM201A AM201AD AM201AF	LM111H LM201AH LM201AH	LM201AN LM201AH	CA108AT CA108S CA108T CA139AG CA139G	LM108J-8 LM108H LM139AJ LM139J	
AM201D AM201F AM207 AM207D AM207F	LM207H	LM201AN LM201AH LM207H LM207H	CA201AT CA201T CA207T CA208AT CA208S	LM201AH LM207H LM208AH LM208J-8	LM201AH
AM211D AM211H AM301 AM301A AM301AD	LM211J LM211H LM301AH LM301AH	LM301AJ	CA208T CA239AE CA239AG CA239E CA239G	LM208H LM239AN LM239AJ LM239N LM239J	
AM301D AM311D AM311H AM592DC AM592DM	LM311J-8 LM311H NE592F SE592F	LM301AJ	CA301AT CA307T CA308AS CA308AT CA308S	LM301AH LM307H LM308N LM308AH LM308H	
AM592HC AM592HM AM592PC AM723DC AM723DM	NE592K SE592K NE592N MC1723CL MC1723L		CA339AE CA339AG CA339E CA339G CA723CE	LM339AN LM339AJ LM339N LM339J MC1723CP	
AM723HC AM723HM AM723PC AM725HM	MC1723CG MC1723G MC1723CP MC1556G MC1733CL		CA723CT CA723E CA723T CA741CS	MC1723CG MC1723L MC1723G MC1741CP1 MC1741CG	
AM733DC AM733DM AM733HC AM733HM AM741DC	MC1733L MC1733CG MC1733G	MC1741CU MC1741U	CA741CI CA741S CA741T CA747CE CA747CF	MC1741U MC1741G MC1747CL MC1747CL MC1747CG	
AM741DM AM741HC AM741HM AM747DC AM747DM	MC1741CG MC1741G MC1747CL MC1747L MC1747CG		CA747CT CA747E CA747F CA747T CA748CS	MC1747L MC1747L MC1747G MC1748CP	1
AM747HC AM747HM AM748DC AM748DM AM748HC AM748HM	MC1747G	MC1748CU MC1748U	CA748CT CA748S CA748T CA758E CA1190	MC1748CG MC1748U MC1748G μΑ758Α	TDA1190Z

PART NO.	REP	OTOROLA DIRECT LACEMENT 310P	MOTORO SIMILA REPLACEI	R	PART NO		MOTORO DIRECT REPLACEM	Г	MOTORO SIMILAI REPLACEM	2
CA1352E CA1391E CA1394E CA1458S	MC1 MC1 MC1	352P 391P			CA3053S CA3054 CA3056 CA3056A		CA3054 MC1741CG MC1741G		MC1550G	ENI
CA1458T CA1558S CA1558T	MC14 MC15	158G	MC1558U		CA3058 CA3059 CA3064		CA3059		CA3059	
CA2111AE CA3000	MC13		MC1550G		CA3065 CA3067 CA3068		MC1358P		MC13010P MC1327P	
CA3001 CA3002 CA3004 CA3005 CA3006			MC1550G MC1550G MC1550G MC1550G MC1550G MC1550G		CA3072 CA3076 CA3078AS CA3078AT				MC1352P MC1327P MC1590G MC1776G MC1776G	
CA3007 CA3008 CA3008A			MC1550G MC1709U MC1709U		CA3078S CA3078T CA3079		CA3079		MC1776CG MC1776CG MC1776CG	
CA3010 CA3010A CA3011			MC1709G MC1709G MC1709G		CA3085 CA3085A CA3085AF			1	MC1723G MC1723G MC1723L	
CA3012 CA3013 CA3014 CA3015 CA3015A		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MC1390G MC1590G MC1357P MC1357P MC1709G		CA3085AS CA3085B CA3085BF CA3085BS CA3085F			N	101723G 101723G 101723L 101723G	
CA3016 CA3016A CA3020 CA3020A		N N M	IC1709G IC1709U IC1709F IC1554G		CA3085S CA3086 CA3086F CA3090AQ	M	C3386P	M	IC1723L IC1723G C3346P	
A3021 A3022 A3023 A3026		M M M	C1454G C1590G C1590G C1590G A3054		CA3091D CA3121E CA3125E CA3134E			M TI M	C1310P C1594L DA3333 C1327P DA1190Z	
A3028A A3028AF A3028AS A3028B		Mo Mo	C1550G C1550G C1550G		CA3134EM CA3134QM CA3136A CA3137E			TE	DA1190Z DA1190Z DA1190Z D3346P	
43028BF 43028BS 43029		MO	C1550G C1550G C1550G		CA3139 CA3145E CA3146			MO	C1327P C13010P (A3333 C3346P	
\3029A \3030 \3030A \3031 .3032		MC MC MC	C1709P1 C1709P1 C1709P1 C1709P1 C1712G		CA3151E CA3201E CA3210E CA3217E CA3221F			TD TD MC TD	A3333 A3301 13001P A3301	
3035 3035V1 3037 3037A		MC MC MC	1712CG 1352P 1352P 1709U 1709U		CA3223E CA3302E CA3401E CA6078AS		3302P 3401P	МС	A3333 13002P	
3038 3038A 3040 3041 3042		MC MC MC	1709U 1709U 1510G 1357P	1 1	CA6078AT CA6741S CA6741T CA7607E CA7611E			MC MC MC	1776G 1776G 1776G 1776G 13010P	
8043 8044 8044V1 8045		MC1	357P 357P 3010P 3010P		CMP-01CJ CMP-01CP CS3471 D555CJ	МСЗ	471P	MC1	3010P 556G 556P	
045F 046	MC3346P	MC3	346P 346P		D3242 D8216	мсз	242AP	١.	555G	
048 052 053 053F	WIC0046P	MC3: MC3: MC1: MC1:	301P 550G		08226 DAC-01 DAC-08AQ DAC-08CN DAC-08CP		-08AQ -08CP -08CP		T26AL T28L 506L	

				MOTOROLA	MOTOROLA
	MOTOROLA DIRECT	MOTOROLA SIMILAR	PART NO.	DIRECT REPLACEMENT	SIMILAR REPLACEMENT
PART NO. DAC-08CQ DAC-08EN DAC-08EP DAC-08EP DAC-08HN DAC-08HP DAC-08HQ DAC-08HQ DAC-08HQ DAC-08HQ DAC-08GQ DAC-1CC10BC DAC0800LCJ DAC0800LCJ DAC0801LCJ DAC0801LCJ DAC0801LCJ DAC0801LCJ DAC0802LCN DAC0802LCN DAC0806LCJ DAC0806LCJ DAC0806LCJ DAC08081CJ DAC08081CJ DAC08081CJ DAC0808LCJ DAC0808LCJ DAC0808LCJ DAC0808LCJ DAC08081CJ DAC0801CJ DAC08	DIRECTION REPLACEMENT DAC-08CQ DAC-08EP DAC-08EP DAC-08EP DAC-08HP DAC-08HP DAC-08HQ DAC-08CQ DAC-08CQ DAC-08CQ DAC-08CP DAC-08CQ DAC-08CP DAC-08HQ DAC-08HQ DAC-08CP DAC-08HQ DAC-08CP DAC-08HQ DAC-08HP DAC-08AQ MC1408L6 MC1408P6 MC1408P7 MC1408P8 MC1408P8 MC1408P8 MC1408P8 MC1408P8 MC1408P8 MC1408P8 MC3431D AM26LS31D AM26LS31D AM26LS31D AM26LS31P AM26LS32P MC26S11L MC26S11L MC26S11P MC26S11L MC26S11P MC1489AP MC3450L MC3450P MC3451L MC3452P MC3452L MC3432L MC3432L MC3432L MC3432L MC3432P MC3432L MC3432P	MC1489AL MC3437L MC3438L MC3491L MC1489AL MC1489AP MC3491P	DS7837J DS7837W DS7838W DS7838W DS7838W DS7838J DS8833J DS8833N DS8833J DS8834J DS8835N DS8835J DS8837N DS8837N DS8838J DS8838N DS8839N DS8839N DS8839N DS8839N DS85107J DS55108J DS55108J DS55108J DS55108J DS75107J DS75107J DS75107J DS75107N DS75108J DS75107J DS75107U CS75108J DS75107J DS75107J DS75107J DS75107J DS75108N DS75100J DS75107J DS75108J DS75107J DS75108J DS751	MC3437L MC3437P MC3438L MC3438P MC55107L MC75107L MC75108L MC75108P MC75108P MC75108P MC75S110P MC75S110P	MC3437L MC3438L MC3438L MC3438L MC3438L MC34391L MC8T28P MC8T26AL MC8T26AP MC8T26AP MC8T26AP MC8T26AP MC8T26AP MC8T26AP MC8T28P MC3491L MC75107L MC75107L MC75107L MC75108L MC75108L MC75108L MC75108L MC75108L MC75108P MC3419L AD562SD AD562KD LM111J LM11J LM11J LM11J LM11J LM111J LM11J LM1] LM1] LM1] LM1] LM1] LM1] LM1]

PART NO.		MOTORO	Т	MOTOR SIMIL	ΔR
ICL8043CE ICL8043CP ICL8043ME ICL8048CD ICL8048DP	E E E	REPLACE	MENT	MC1776G MC1776G MC1776G MC1776G MC1776G	MENT
ICL8069CC ICL8069DC ITT652 ITT654 ITT656		MC1411P MC1412P MC1413P		MC1776G LM385BZ- LM385Z-1.	1.2 2
TT1330 TT1352 TT3064 TT3065 TT3701		MC1330P MC1352P MC13010P MC1358P		TDA1190Z	
ITT3710 ITT3714 L144AP L201 L202		MC1411P MC1412P		MC1391P MC1394P -M324N	
L203 L583 LF347BN LF347N LF351AH LF351AN	L	MC1413P .F347BN .F347N MC34001AG	N	//C3484V2	
LF351AN LF351BH LF351BN LF351H LF351N LF352D	N N M	1C34001AP 1C34001BG 1C34001BP IC34001G F351N			
LF353AH LF353AN LF353BH LF353BN LF353H	M M M	C34002AG C34002AP C34002BG C34002BP	LI	⁼ 355J	
LF353N LF355AH LF355AJG LF355AL	LF	C34002G 353N			
LF355AP LF355BH LF355BJ LF355BN LF355H LF355JG	LF: LF:	355BH 355BJ 355BN 355H			
LF3555L LF355N LF355P LF356AH	LF3	855J 855H 855N 855N			
LF356AJG LF356AP LF356BH LF356BJ	LF3	56BH 56BJ			
LF356BN LF356H LF356JG LF356L LF356N	LF35 LF35 LF35	56J 56H 56N	×	٠,	
LF356P LF357AH LF357BH LF357BJ LF357BN	LF35 LF35 LF35 LF35	7BH 7BJ			

Т	PART NO.	MOTORO DIRECT REPLACEM	T	MOTORO SIMILA	R
	LF357H LF357JG LF357L LF357N LF357P	LF357H LF357J LF357H LF357N LF357N	ENI	REPLACE	MENT
	LF411CH LF411CN LF412CH LF412CH LF412CN LH0002CH LH0004CH LH0004CH LH0004CH LH0042CH LH740ACH LH2101AD LH2201AF LH2201AF LH2201AF LH2301AD LH2301AF LM11CH LM11CJ LM11CJ-8 LM11CLH LM11CLJ LM11CLJ-8 LM11CLN-14 LM11CN-14	LM11CH LM11CJ LM11CJ-8 LM11CLH LM11CLJ-8 LM11CLN-14 LM11CLN-14 LM11CLN-14		MC34001 AC MC34001 AC MC34002 AC MC34002 AC MC1538R MC1538G MC1536G MC34001 BG LF355H MC1537L MC1537L MC1537L MC1537L MC1537L MC1537L MC1437L)
	LM110H LM11J LM11J-8 LM101AD LM101AF LM101AH LM101AJ-14 LM101AJ-14 LM101AJ-14 LM101D LM101F LM101H LM101F LM107F LM107H LM107F LM107H LM107H LM108AD LM108AD LM108AF LM109H LM109H LM109LA M111J M111J M111J M111J M111J M111J M111J M111ZF	LM11CN-14 LM11H LM11J LM11J-8 LM101AH LM101AH LM101AH LM101AH LM107H LM107H LM108AJ LM108AF LM108J-8 LM108J-8 LM108J-8 LM108J LM108H LM109H LM109H LM109H LM109H	LM LM LM LM		

	MOTOROLA DIRECT	MOTOROLA SIMILAR	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT
ART NO.	REPLACEMENT	REPLACEMENT	LM201AJ		LM201AJ
_M112H _M117H	LM117H LM117K	MC1556G	LM201AJG LM201AJ-14	LM201AJ LM201AH	LM201AJ
LM117K LM117LA LM118D	LM117H	MC1741SU	LM201AL LM201AN LM201AP	LM201AN	LM201AN LM201AJ
LM118F LM118H LM120H-5.0 LM120H-5.2		MC1741SU MC1741SG MC7905CK MC7905.2CK MC7912CK	LM201D LM201F LM201H LM201J	LM201AH LM201AJ	LM201AH
LM120H-12 LM120H-15 LM120K-5.0 LM120K-5.2 LM120K-12		MC7915CK MC7905CK MC7905.2CK MC7912CK MC7915CK	LM201J-14 LM206H LM207F LM207H LM208AD	LM207H LM208AJ	MC1710CG LM207H
LM120K-15 LM122F LM122H LM123K	LM123K	MC1555G MC1555G LM124J	LM208AF LM208AH LM208AJ LM208D LM208F	LM208AF LM208AH LM208AJ-8 LM208J-8	LM208J-8
LM124AD LM124AF LM124AJ LM124D	LM124J	LM124J LM124J LM124J	LM208F LM208H LM209H LM209K LM209LA	LM208H LM209H LM209K LM209H	
LM124F LM124J LM125H LM126H LM128H	LM124J	MC1568G MC1568G MC1568G	LM203LA LM211D LM211H LM211JG LM212D	LM211J LM211H LM211J-8	MC1556L MC1556L
LM137K LM139AD LM139AJ	LM137K LM139AJ LM139AJ LM139J		LM212F LM212H LM217H	LM217H LM217K	MC1456G
LM139D LM139J LM140AK-5.0 LM140AK-12 LM140AK-15	LM139J LM140AK-5.0 LM140AK-12 LM140AK-15		LM217K LM217KC LM217KD LM217LA	LM217H	LM217K LM217H MC1741SU
LM140K-5.0 LM140K-12 LM140K-15 LM140LAH-5.	LM140K-5.0 LM140K-12 LM140K-15	MC78L05ACG MC78L06ACG	LM218D LM218F LM218H LM220H-5.0 LM220H-5.2		MC1741SU MC1741SG MC7905CK MC7905.2CK
LM140LAH-6. LM140LAH-8. LM140LAH-14 LM140LAH-14 LM140LAH-14	0 0 2 5	MC78L08ACG MC78L12ACG MC78L15ACG MC78L15ACG MC78L18ACG MC78L24ACG	LM220H-6.0 LM220H-8.0 LM220H-12 LM220H-15 LM220H-18		MC7906CK MC7908CK MC7912CK MC7915CK MC7918CK
LM140LAH-2 LM143D LM143F LM143H	4	MC78L24ACG MC1536G MC1536G MC1536G MC7905CK	LM220H-24 LM220K-5.0 LM220K-5.2 I M220K-6.0	2	MC7924CK MC7905CK MC7905.2CK MC7906CK MC7908CK
LM145K LM148D LM148J LM148F LM149D	LM148J LM148J	MC4741L MC4741L MC4741L	LM220K-8.0 LM220K-12 LM220K-15 LM220K-18 LM220K-24	2	MC7912CK MC7915CK MC7918CK MC7924CK MC1555G
LM149F LM150K LM158AH	LM150K	LM158H	LM222H LM223K LM224AD	LM223K	LM224J LM224J
LM158H LM158JG LM158L LM171H	LM158J LM158H	MC1590G	LM224AF LM224AJ LM224D LM224F	LM224J	LM224J
LM193AH LM193H LM201AD LM201AF LM201AH	LM193AH LM193H LM201AH	LM201AJ LM201AH	LM224J LM225H LM226H LM228H	LM224J	MC1568G MC1568G MC1568G

LM230A LM239A LM230A LM240LAH-16 LM240LAH-18 LM240LAH-1	PART NO.	MOTOR(DIREC REPLACE!	T		MOTOR	T.	MOTOROL SIMILAR	
LM240LAH-18	LM239AJ LM239D LM239J LM239N LM240LAH-5 LM240LAH-6 LM240LAH-8 LM240LAH-8	LM237K LM239AJ LM239AJ LM239J LM239J LM239N 6.0 6.0 6.0	MC78L05AC0 MC78L06CG MC78L08AC0 MC78L12AC0	G LM317KC LM317K	LM311J LM311N LM317H LM317K LM317T	MENT	MC1456L MC1456L MC1456G	ENT
LM309LA LM311D LM311D LM311H LM311H LM311H LM311JG LM311J-8 LM339N LM339N LM339N LM339N LM339N LM339N	LM240LAH-1: LM240LAH-2: LM240LAZ-6: LM240LAZ-6: LM240LAZ-12: LM240LAZ-13: LM240LAZ-13: LM240LAZ-18: LM240LAZ-18: LM240LAZ-18: LM240LAZ-24: LM243H LM245K LM248D LM248J LM250K LM258AH LM258AH LM258AH LM258AH LM258AH LM258AH LM258AH LM258AH LM2031AH LM301AD LM301AF LM301AJ LM301AD LM308AD LM309H LM309K LM309H LM309LA LM311D LM311JG	8 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MC78L15ACG MC78L18ACG MC78L18ACG MC78L18ACG MC78L05ACP MC78L05ACP MC78L05ACP MC78L15ACP MC78L15ACP MC78L15ACP MC78L15ACP MC78L15ACP MC78L15ACP MC78L15AGP MC78L15AGP MC78L15AGP MC78L15AGP MC7905CK MC4741L MC4741L LM258H MC1590G LM301AJ LM301AH MC1710CG LM307H LM308AJ LM308AH	LM317LA LM317MP LM317P LM317P LM318D LM318B LM318N LM320H-5.0 LM320H-5.0 LM320K-15 LM320K-15 LM320K-15 LM320LZ-5.0 LM320LZ-5.0 LM320LZ-5.0 LM320MP-6.0 LM320MP-5.2 LM320MP-5.2 LM320MP-5.2 LM320MP-15 LM320MP-18 LM320MP-15 LM320MP-18 LM320MP-17 LM320MP-18 LM320MP-18 LM320MP-18 LM320MP-18 LM320MP-18 LM320MP-17 LM320MP-18	LM317MT LM317T LM317T LM317T LM317T LM317T LM317T MC7912CK MC7915CK MC79L12ACI MC79L15ACI MC79L15ACI MC7915CT LM323K LM324J LM324N LM337K LM337T LM339AJ LM339AJ LM339AJ LM339AJ LM339AJ LM339J	PER SAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAM	MC1741SCU MC1741SCU MC1741SCG MC1741SCPI MC7905CH MC7912CK MC7912CK MC7915CK MC7915CT C7906CT C7906CT C7908CT C7912CT C7912CT C7912CT C7912CT C7914CT C7914CT C7914CT C1455G C1455P1 324J 324N 324N 324N 324N 324N 324N 324N 324N	

	MOTOROLA DIRECT	MOTOROLA SIMILAR	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT
M340AK-12 M340AK-15 M340AT-5.0 M340AT-15 LM340AT-15 LM340K-5.0 LM340K-15 LM340K-15 LM340KC-15 LM340KC-5 LM340KC-5 LM340KC-12 LM340KC-12 LM340KC-18 LM340LAH-8.0 LM340LAH-8.0 LM340LAH-15 LM340LAH-15 LM340LAH-15 LM340LAH-15 LM340LAH-12 LM340LAH-12 LM340LAH-12 LM340LAZ-10 LM340LAZ-10 LM340LAZ-10 LM340LAZ-11 LM340LAZ-15 LM340LAZ-15 LM340LAZ-16 LM340LAZ-15 LM340LAZ-16 LM340LAZ-16 LM340LAZ-16 LM340LAZ-16 LM340LAZ-16 LM340LAZ-16 LM340LAZ-16 LM340LAZ-16 LM340LAZ-16	DIRECT REPLACEMENT LM340AK-12 LM340AT-5.0 LM340AT-15 LM340K-15 LM340K-15 LM340K-15 LM340T-5.0 LM340T-6.0 LM340T-15 LM340T-12 LM340T-12 LM340T-12 LM340T-12 LM340T-15 LM340T-18 LM340T-24	MC78L05ACG MC78L06ACG MC78L06ACG MC78L08ACG MC78L12ACG MC78L15ACG MC78L15ACG MC78L08ACG MC78L12ACG MC78L06ACP MC78L06ACP MC78L06ACP MC78L06ACP MC78L06ACP MC78L06ACP MC78L06ACP MC78L06ACP MC78L12ACP MC78L12ACP MC78L12ACP MC78L12ACP MC78L12ACP MC78L12ACP MC78L12ACP MC78L12ACP MC78L12ACP	PART NO. LM385Z-1.2 LM385BZ-2.5 LM385BZ-2.5 LM393AH LM393AH LM393N LM555CH LM555CH LM555CD LM556CJ LM556CJ LM556CJ LM556D LM556D LM556H LM703LN LM709AH LM709CH LM709CH LM709CH LM710CH LM710CH LM711CN LM723CD LM723CH LM723CD	DIRECT	SIMILAR
LM340T-15 LM341P-5.0 LM341P-6.0 LM341P-8.0 LM341P-15 LM341P-15 LM341P-24 LM342P-5.0 LM342P-8.0 LM342P-8.0 LM342P-15 LM342P-15 LM342P-15 LM342P-18	LM340T-15 MC78M05CT MC78M06CT MC78M08CT MC78M12CT MC78M15CT MC78M18CT MC78M05CT MC78M05CT MC78M05CT MC78M05CT MC78M05CT MC78M12CT MC78M15CT MC78M15CT MC78M15CT MC78M18CT MC78M18CT	MC1436G	LM723CN LM723D LM723D LM723H LM733CD LM733CD LM733CN LM733CN LM733D LM733D LM733J LM741AH LM741CD LM741CH LM741CH	LM723J MC1723G MC1723L MC1733CL MC1733CL MC1733CL MC1733CP MC1733CP MC1733L MC1733G MC1733L LM741CJ	MC1741G
LM343D LM343H LM345K LM348D LM348J LM348N LM349D LM349N LM350K LM358AN LM358AN LM358JG LM358JG LM358N LM358N LM358N	LM348J LM348N LM350K LM358H LM358J LM358N LM358N LM358N	MC1436G MC7905CK MC4741CL MC4741CL MC4741CL LM358H LM358N	LM741EH LM741EH LM741EN LM741H LM747CD LM747CH LM747CJ LM747CN LM747D LM747D LM747H LM747J LM748CH LM748CN LM748CN LM748CN LM748J LM748J LM1035	LM741H LM747CJ LM747CH LM747CJ LM747CN LM747J LM747H LM747J MC1748CG MC1748CL MC1748CH MC1748CH MC1748CH	MC1741CU MC1741CP1

PART NO.	MOTORO DIRECT REPLACEM	01011	R		MOTORO	OLA T	MOTORO	DLA
LM1310N	MC1310P	MEFEACE	MENT	PART NO.	REPLACE	MENT	SIMILA REPLACEN	R
LM1351N LM1391N LM1394N LM1414J	MC1391P MC1394P MC1414L	MC1357P		LM3900N LM3905N LM4250CH LM4250CN LM4250H	LM3900N		MC1455P1 MC1776CG MC1776CP	
LM1414N LM1458H LM1458J LM1458N LM1458N-14	MC1414P MC1458G MC1458U MC1458P1 MC1458P1		,	LM4500A LM7805CK LM7805CT LM7805KC LM7806KC	TCA4500A MC7805CK MC7805CT MC7805CK		MC1776G	
LM1488J LM1488N LM1489AJ LM1489AN LM1489J	MC1488L MC1488P MC1489AL MC1489AP MC1489L			LM7808KC LM7812CK LM7812CT LM7812KC LM7815CK	MC7806CK MC7808CK MC7812CK MC7812CT MC7812CK			
LM1489N LM1496H LM1496J LM1496N LM1514J	MC1489P MC1496G MC1496L MC1496P MC1514L			LM7815CT LM7815KC LM7818KC LM7824KC LM7905CK	MC7815CK MC7815CT MC7815CK MC7818CK MC7824CK			
LM1558H LM1558J LM1596H LM1596J LM1800AN	MC1558G MC1558U MC1596G MC1596L	MC1310P		LM7905CT LM7912CK LM7912CT LM7915CK LM7915CT	MC7905CK MC7905CT MC7912CK MC7912CT MC7915CK			
LM1800N LM1808N LM1822 LM1828N LM1841N		MC1310P TDA1190Z MC13010P MC1327P MC1357P		LM78L05ACH LM78L05ACZ LM78L05CH LM78L05CZ LM78L08ACH	MC7915CT MC78L05ACC MC78L05ACC MC78L05CG MC78L05CC	.		
LM1848N LM1849A LM1889 LM1900D LM1981 LM1989		MC1327P MC3484V2 MC1374P MC3301L MC13020P		LM78L08ACZ LM78L08CH LM78L08CZ LM78L12ACH LM78L12ACZ	MC78L08ACG MC78L08ACP MC78L08CG MC78L08CP MC78L12ACG			
LM2111N LM2113N LM2808N LM2900N	MC1357P LM2900N	MC1372P MC1357P TDA1190Z		LM78L12CH LM78L12CZ LM78L15ACH LM78L15ACZ LM78L15CH	MC78L12ACP MC78L12CG MC78L12CP MC78L15ACG MC78L15ACP			
LM2901N LM2902J LM2902N LM2903N LM2903P	LM2901N LM2902J LM2902N LM2903N LM2903N			LM78L15CZ LM78L18ACH LM78L18ACZ LM78L18CH LM78L18CZ	MC78L15CG MC78L15CP MC78L18ACG MC78L18ACP MC78L18CG			
LM2904N LM2905N LM3011H LM3026 LM3045	LM2904N	MC1455P1 MC1550G CA3054 MC3346P	1 1	LM78L24ACH LM78L24ACZ LM78L24CH LM78L24CZ LM78M05CP	MC78L18CP MC78L24ACG MC78L24ACP MC78L24CG MC78L24CP			
LM3046N LM3054 LM3064N LM3065N LM3067N	MC3346P CA3054 MC1358P	MC13010P MC1327P		LM78M12CP LM78M15CP LM79L05ACZ LM79L12ACZ	MC79L05ACP MC79L12ACP	MC7	78M05CT 78M12CT 78M15CT	
LM3086N LM3089 LM3146 LM3146A LM3189	MC3386P	MC3356P MC3346P MC3346P MC3356P		-M79L15ACZ -M79M05CP -M79M12CP -M79M15CP -M55107AJ	MC79L15ACP MC55107L	MC7	9M05CT 9M12CT 9M15CT	
LM3301N LM3302 LM3302J -M3302N -M3401N	MC3301P MC3302P MC3302L MC3302P MC3401P			M55108AJ M55109J M55110J M55107AJ M75107AJ M75107AN	MC55108L MC55107L MC75107L	MC75	5S110L 5S110L	

			_		MOTOROLA	MOTOROLA SIMILAR
	MOTOROLA DIRECT	MOTOROLA SIMILAR REPLACEMENT	PA	RT NO.	DIRECT REPLACEMENT	REPLACEMENT
LM75108AJ LM75108AN LM75110J LM75110N LM75207L LM75207N	MC75108L MC75108P MC75S110L MC75S110L	MC75107L MC75107P MC75108L	N8 N8 N8 N8	3T26B 8T26J 8T26N 8T28B 8T37A 8T38A 8T95B 8T955	MC8T26AP MC8T26AP MC8T26AP MC8T28P MC3437P MC3438P MC3438P MC8T95P MC8T95L	
LM75208J LM75208N MB3759 MB3750 MC1310A MC1408B MC1408FB	TL494CN TL495CN MC1310P MC1408P8 MC1408L8 MC1458U	MC75108P	7777 22	8T96B 8T96F 18T97B 18T97F 18T98B 18T98F 15065A	MC8T96P MC8T96L MC8T97P MC8T97L MC8T98P MC8T98L MC1358P	
MC1458JG MC1458L MC1458P MC1488J MC1488N MC1488N3 MC1489AJ MC1489AN MC1489J MC1489N MC1489N3 MC1545J	MC1458G MC1458P1 MC1488L MC1488P MC1488PDS MC1489AL MC1489AP MC1489L MC1489PDS MC1489PDS MC1545L		1	N5072A N50526T N5556V N5558F N5558T N5558V N5595A N5595A N5596A N5596K N5709A	MC1456G MC1456P1 MC1458L MC1458G MC1458P1 MC1495L MC1495L MC1496L MC1496G MC1709CP2	MC1327P
MC1558JG MC1558L MC3446J MC3446N MC3460P MC3470N MC3481J MC3481N MC3485J MC3486J MC3486N MC3486N	MC1558U MC1558G MC3446AP DS3674N MC3470P MC3481L MC3485L MC3485L MC3485P MC3486L MC3486P MC3486P	MC3446AP MC3470AP		N5709G N5709T N5709V N5710A N5710T N5711TA N5711TA N5723A N5723T N5723T N5723T N5741A N57411 N5741V	MC1709CF MC1709CG MC1709CP1 MC1710CP MC1711CP MC1711CG MC1711CG MC1723CG MC1741CP2 MC1741CP1	MC1723CP
MC3487N MP562AD MP562XD MP562SD MP5531AJ MP5531BJ MP5531CP MP5531DP MP5531HJ MP5531HJ MP5532AJ	MC3487P AD562AD AD562KD AD562SD MC1500AG5 MC1500G5 MC1404U5 MC1400AG5 MC1400AG5 MC1500AG1 MC1500AG1	0		N5747A N5747F N5748A N5748T NE501A NE501K NE531G NE531T NE531V NE533G NE533T	MC1747CL MC1747CL MC1748CG	MC1747CG MC1733CL MC1733CG MC1439G MC1439P MC14776CG MC1776CG MC1776CG
MP5532BJ MP5532CP MP5532DP MP5532EJ MP5532HJ N8T13J N8T13N	MC1404U10 MC1404U10 MC1400AG1 MC1400G10 MC8T13L MC8T13P MC8T14L	0		NE533V NE537G NE537T NE540L NE550A NE550L NE555JG	MC1455U MC1455G	MC1456G MC1456G MC1554G MC1723CP MC1723CG
N8T14J N8T14N N8T15F N8T15F N8T26AB N8T26AB N8T26AE N8T26AI N8T26AN	MC8T14P MC8T14P MC8T26AP MC8T26AL MC8T26AL MC8T26AP			NE555L NE555P NE555T NE555V NE556A NE556I NE565A NE565K	MC1455P1 MC1455G MC1455P1 MC3456P MC3456L NE565N	

PART NO.	MOTOR DIREC REPLACE	T	MOTOROLA SIMILAR REPLACEMEN	- 1	PART NO.	MOTOR	T	MOTOROLA SIMILAR
NE592A NE592K NE5118R NE5118N NE5118N NE5561FE NE5561FE NE5561FO OP-01C OP-01G OP-01H OP-01J OP-01H OP-01J OP-08A OP-08B OP-08B OP-27AZ OP-27AZ OP-27BZ OP-27BZ OP-27BZ OP-27FZ OP-27FZ OP-27FZ OP-27FZ OP-27FZ OP-27FZ OP-27FZ OP-27FZ OP-27FZ OP-27FZ OP-27FZ OP-27FZ OP-27FZ OP-27FZ OP-37AZ OP-37BZ OP-37BZ OP-37BZ OP-37BZ OP-37BZ OP-37FZ OP-37G	NE592A NE592K MC3410L OP-27AJ OP-27AJ OP-27AZ OP-27BJ OP-27CJ OP-27CJ OP-27EJ OP-27EJ OP-27FJ OP-27FJ OP-27FJ OP-27FJ OP-27FJ OP-37AJ OP-37AJ OP-37AJ OP-37AJ OP-37AJ OP-37AJ OP-37FJ OP-37GJ		MC6890L MC6890L MC34060P MC1536 MC1536 MC1536G MC1536G MC1536G MC1776 MC1776 MC1776 MC1776	בייהיי ווותה ממטמו וומה	RC733T RC741DN RC747T RC744T RC747T RC748T RC1414DP RC1488DC RC1489DC RC1489DC RC1437DP RC1458DN RC1458T RC1556T RC3302DB RC4131DP RC4136DP RC4136DP RC4136DP RC4136DP RC4136DP RC4136DP RC4136SP RC4136D	MC1733C(MC1741CF MC1741CC MC1747CC MC1747CC MC1748CC MC1414L MC1414P	MENT GET GET GET GET GET GET GET	MC1471SCP1 MC1741SG MC3403L MC3403L MC3403P MC3403P MC3403P MC3403P MC3403P MC3403P MC3408R C1468R C1468R C1468R C1468R C1468R C1468R 075S110L 075S110P 01404U10 01404U10 01404U10 01404U10 01404U10 01500AG10 01500AG10 01500AG5

PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT
REF-02DZ REF-02EJ	MC1404U5 MC1400AG5	MC1400AG5
REF-02EZ REF-02HJ REF-02HP	MC1400G5	MC1400G5
REF-02HZ REF-02J	MC1500G5	MC1400G5
REF-02Z RM702T	MC1712G MC1709G	MC1500G5
RM709T RM710D RM710T	MC1710L MC1710G	
RM711DC RM711T	MC1711L MC1711G MC1723L	
RM723D RM723DC	MC1723L MC1723L MC1723G	
RM723T RM733D RM733T	MC1733L MC1733G	
RM741DP RM741T	MC1741P MC1741G MC1747L	
RM747D RM747T RM748T	MC1747G MC1748G	,
RM1514DC RM1537D	MC1514L MC1537L	MC3503L
RM4136D RM4136J RM4194DC		MC3503L MC1568L
RM4194TK RM4195T		MC1568R MC1568G MC1568R
RM4195TK RM4558D RM4558JG	MC4558U MC4558U	Wigitager
RM4558L RM4558T	MC4558G MC4558G	
RM55107AD RV3301DB	MC55107L MC3301P MC1556G	,
S5556T S5558E S5558T	MC1558L MC1558G	
S5596F S5596K	MC1596L MC1596G MC1709F	
S5709G S5709T S5710T	MC1709G MC1710G	
S5711K S5723T	MC1711G MC1723G MC1733G	
S5733K S5741T	MC1741G	MC1733G
SE501K SE531G SE531T		MC1539G MC1539G MC1776G
SE533G SE533T		MC1776G MC1556G
SE537G SE537T SE550L	MC1555U	MC1556G MC1723G
SE555JG SE555L	MC1555G MC1555G	
SE555T SE556A SE565A	MC3556L	MLM565CP MLM565CP
SE565K SE592A	SE592L	WEWGGGG

	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT	٠
PART NO. SE592K SE5118F SE55118F SE5410F SE5561FE SG100T SG101AD SG101AT SG101AT SG101AT SG105T SG105T SG105T SG107J SG107A SG108AT SG108AT SG108BAT SG109R SG109T SG111D SG111T SG117T SG117T SG118T SG117T SG118T SG123K SG123K SG123T SG124V SG137T SG140K-06 SG140K-08 SG140K-12 SG140K-15 SG140K-15 SG140K-15 SG140K-18 SG201AN	SE592G MC6890AL MC3510L LM101AH LM101AH LM105H LM105H LM108AJ LM108AH LM108J LM108H LM109K LM109H LM111J LM111H LM117K LM117H LM123K LM124J LM137K LM137H LM124J LM137K LM140K-5.0 LM140K-6.0 LM140K-6.0 LM140K-15 LM140K-15 LM140K-15 LM140K-18 LM150K LM201AN LM201AH L	MC6890AL MC35060L MC1723G LM101AH LM101AH LM105H LM107H MC109K LM117K MC1741SG LM137K MC1723G LM201AH LM201AN LM201AN LM201AN LM207H LM207H LM207H LM207H LM207H	

PART NO.	MOTORI DIREC REPLACE	T	MOTOROL SIMILAR REPLACEME		PART NO.	MOTORO	Г	MOTOROLA SIMILAR
SG217K SG217R SG217T SG218J SG218M	LM217K	,	LM217K MC1741SL		SG710CD SG710CN SG710CT SG710D	MC1710CL MC1710CP MC1710CG	ENT	REPLACEMEN
SG218T SG223K SG224J SG224N SG237K SG237R SG237T SG250K SG300N SG300T SG301AD SG301AM SG301AM SG301AT SG307J	LM223K LM224J LM224N LM237K LM237H LM250K LM301AN LM301AH LM307N	 N L	MC1741SL MC1741SG LM237K MC1723CP MC1723CG LM301AH LM301AN M307N		SG710N SG711CD SG711CD SG711CT SG711D SG711T SG711T SG723CD SG723CJ SG723CN SG723CT SG723D SG723J SG723T SG733CD	MC1710L MC1710GP MC1711GG MC1711CP MC1711CG MC1711L MC1711CP MC1711G MC1723CL MC1723CL MC1723CL MC1723CP MC1723CG MC1723L MC1723L MC1723L MC1723L MC1723L MC1723L		
SG307N SG307T SG308AJ SG308AM SG308AT	LM307H LM308AJ LM308AN	L	M307N		SG733CN SG733CT SG733D SG733N SG733T	MC1733CG MC1733L MC1733G		MC1733CP MC1733L
G308J G308M G308T G309K G309P	LM308AH LM308J LM308N LM308H LM309K				SG741CM SG741CT SG741SCM SG741SCT SG741ST	MC1743G MC1741CP1 MC1741CG MC1741SCP1 MC1741SCG MC1741SG		
G309R G309T G311D G311M G311T	LM309H LM311J LM311N		1309K C309K		SG741T SG747CJ SG747CN SG747CT SG747J	MC1741G MC1747CL MC1747CP2 MC1747CG		
9317K 9317P 9317R 9317T	LM311H LM317K LM317T LM317H	LM	317T		SG747T SG748CD SG748CM SG748CN	MC1747L MC1747G	MC	C1748CP1 C1748CP1 C1748CP1
3318J 3318M 3318T 3324J 324N	LM324J LM324N	MC	1741SCL 1741CP1 1741CG		SG748CT SG748D SG748T SG777CJ SG777CM	MC1748CG MC1748G	MC LM	308AJ
337K 337P 337R 337T 340K-05	LM337K LM337T LM337H LM340K-5.0	LM3	3 7Т		SG777CN SG777CT SG777J SG777T SG1118AJ		LM: LM: LM: LM:	308AN 308AN 308AH 108AJ 108AH 08AJ
340K-06 340K-08 340K-12 340K-15 340K-18	LM340K-6.0 LM340K-8.0 LM340K-12 LM340K-15 LM340K-18				SG1118AT SG1118J SG1118T SG1217 SG1217T		LM1 LM1 LM1 MC1	08AH 08J 08H 741G
840K-24 850K 901AJ 955CM 955CT	LM340K-24 LM350K MC1455P1 MC1455G	MC1	468G	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	SG1250T SG1402N SG1402T SG1436CT SG1436M SG1436T	MC1436CG MC1436U MC1436O	MC1	741SG 776G 594L 594L
551 56CJ 56GN 56J 56N	MC1555G MC3456L MC3456P MC3556L MC3556L			9999	G1456CT G1456T G1458M G1458T G1468J	MC1436G MC1456CG MC1456G MC1458P1 MC1458G MC1468L		

DIRECT REPLACEMENT SG2503T SG3501A SG3501A SG3118A SG311
SG1468N SG1468R SG1468R SG1468R SG1468B SG1468B SG1495D MC1495L SG2524J SG25
SG2118M SG2118M SG2118T SG2118T SG250T SG2402N SG2402N SG2402T SG2501AD SG2501AT SG2501AT SG2501AT SG2501AT SG2501AT SG420 SG4

	D	TOROLA IRECT		IOTOROLA SIMILAR	
PART NO.	REPL	ACEMENT		PLACEMENT	
SG2503T SG2503Y SG2524J	SG2!	525AJ	M	C1403AU C1403AU .494IJ	
SG2525AJ SG2526J	SG2				
SG2527AJ SG2542J SG2542N SG2543J SG2544J	SGZ	527AJ	M M M	C3324L C3324P C3324L C3324AL M308AJ	
SG3118AJ SG3118AM SG3118AT SG3118J SG3118M				M308AN M308AH M308J M308N	
SG3118T SG3250T SG3402N SG3402T SG3423M			1	M308H MC1776G MC1494L MC1494L MC3423P1	
SG3423Y SG3501AD SG3501AJ SG3501AN SG3501AT	MC	01468L 01468L 01468G		MC3423U MC1468L	
SG3501J SG3501D SG3501N SG3501T	MC MC	C1468L C1468L C1468L C1468G		MC1468L	
SG3502D SG3502G SG3502J SG3502N SG3503 SG3503M	м	C1403U		MC1468G MC1468L MC1468L MC1403U	
SG3503W SG3503Y SG3511J SG3511N SG3511T	N	IC1403U		MC1403U MC1463G MC1463G MC1463G	
SG3523Y SG3524J SG3525AJ SG3525AN SG3526J	18	G3525AJ G3525AN G3526J		MC3523U MC3420L	
SG3527AJ SG3527AN SG3542J SG3542N SG3543J		SG3527AJ SG3527AN		MC3424L MC3424P MC3424L	
SG3544J SG4194CJ SG4194CR SG4194J SG4194R				MC3424AL MC1468L MC1468R MC1568L MC1468R	
SG4250CM SG4250CT SG4250T SG4501D SG4501J		MC1468L		MC1776CP1 MC1776CG MC1776G MC1468L MC1468L	
SG4501N SG4501T SG7805ACF SG7805ACF SG7805ACF	>	MC7805AC MC7805AC	K T	MC1468G MC7805AC	Т

PART NO.		MOTORO DIRECT REPLACEM	-	MOTOROLA SIMILAR REPLACEMEI	
SG7805ACT SG7805AR SG7805AR		MC7805AK		MC7805ACT MC7805AK	-
SG7805AT SG7805CK		MC7805CK		MC7805AK	
SG7805CP SG7805CR		MC7805CT		MC7805CT	
SG7805CT SG7805K SG7805R	- 1	MC7805K		MC78M05CG	
SG7805T				MC7805K	
SG7806ACK SG7806ACP SG7806ACR SG7806ACT		MC7806ACK MC7806ACT		MC7805K MC7806ACT	
SG7806AK SG7806AR	-	MC7806AK		MC7806ACT	
SG7806AT SG7806CK SG7806CP		MC7806CK MC7806CT		MC7806AK MC7806AK	
SG7806CR SG7806CT SG7806K SG7806R	٨	∕IC7806K		MC7806CT MC78M06CG	
SG7806T				ИС7806К ИС7806К	
SG7808ACK SG7808ACP SG7808ACR	\ \\ \\	1C7808ACK 1C7808ACT			
SG7808ACT SG7808AK	I _M	C7808AK	1	//C78M08ACT //C7808ACT	1
SG7808AR SG7808AT	"	OTOOOAK		1C7808AK	l
SG7808CK SG7808CP	M	C7808CK C7808CT	^	IC7808AK	
SG7808CR SG7808CT		0700001	1	C7808CT	
SG7808K SG7808R	М	C7808K	- 1	C7808CG	
SG7808T SG7812ACK	M	C7812ACK		C7808K C7808K	
SG7812ACP SG7812ACR		C7812ACT	1		
SG7812ACT SG7812AK	I _M c	7812AK	M	C7812ACT C7812ACT	
SG7812AR SG7812AT		7701ZAK		C7812AK	
SG7812CK SG7812CP	MC	7812CK 7812CT	MC	C7812AK	
SG7812CR SG7812CT	""	701201	MC	7812CT	
SG7812K SG7815ACK	MC	7812K	livic	78M12CG	
SG7815ACP SG7815ACR	МС	7815ACK 7815ACT		70.17	
SG7815ACT SG7815AK		7015414	MC	7815ACT 7815ACT	
SG7815AR SG7815AT	IVIC	7815AK		7815AK	
SG7815CK SG7815CP	MC7 MC7	'815CK '815CT	MC	7815AK	
SG7815CR SG7815CT	- •		MC	7815CT	
SG7815K SG7815R	MC7	815K		78M15CG	
SG7815T				'815K '815K	

_	1 2		MOTORO	LA	MOTOROLA
Г	PART NO.		DIRECT REPLACEM		SIMILAD
	SG7818ACK SG7818ACP SG7818ACR SG7818ACT SG7818AK		MC7818ACI MC7818AC	Γ	MC7818ACT MC7818ACT
	SG7818AR SG7818AT SG7818CK SG7818CP SG7818CR		MC7818CK MC7818CT		MC7818AK MC7818AK
	SG7818CT SG7818K SG7818R SG7818T		MC7818K		MC7818CT MC7818CG MC7818K
	SG7824ACK SG7824ACP SG7824ACR SG7824ACT	- 1	MC7824ACK MC7824ACT		MC7818K MC7824ACT
	SG7824AK SG7824AR	1	MC7824AK		MC7824ACT MC7824AK
	SG7824AT SG7824CK SG7824CP SG7824CR		MC7824CK MC7824CT		MC7824AK
	SG7824CT SG7824K SG7824R	N	1C7824K		MC7824CT MC78M24CG
	SG7824T SG7905ACK SG7905ACP	N M	1C7905ACK 1C7905ACT		МС7824К МС7824К
	SG7905ACR SG7905ACT SG7905CK SG7905CP SG7905CR	М	C7905CT		MC7905ACT MC7905ACT MC7905CK MC7905CT
	SG7905CT SG7905.2CK SG7905.2CP SG7905.2CR	M	C7905.2CK C7905.2CT	-	MC7905CT MC7905.2CT
	SG7905.2CT SG7908CK SG7908CP SG7908CR	MC MC	C7908CK C7908CT		MC7905.2CT
	SG7908CT SG7912ACK SG7912ACP		7912ACK 7912ACT		MC7908CT MC7908CT
	SG7912ACR SG7912ACT SG7912CK SG7912CP	МС	7912CK 7912CT	7	//C7912ACT //C7912ACT
	SG7912CR SG7912CT SG7915ACK SG7915ACP SG7915ACR	МС	7915ACK 7915ACT	≥	1C7912CT 1C7912CT
	SG7915ACT SG7915CK SG7915CP SG7915CR	MC7	7915CK 7915CT	М	C7915ACT
9,95	6H323SKC		7918CK 7918CT 23K		C7915CT C7915CT
S	DD8090FM		01AH	М	C1508L8

	MOTOROLA DIRECT	MOTOROLA SIMILAR	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT
ART NO.	REPLACEMENT	REPLACEMENT	SN72510L		MC1710CG MC1710CP
SN52104L SN52106J	LM101H	MC1710L	SN72510N SN72514J		MC1414L
SN52106J SN52106L		MC1710G	SN72514N	MC1455G	MC1414P
SN52107L SN52108AL	LM107H LM108AH		SN72555L SN72555P	MC1455P1	
SN52108L	LM108H		SN72558L	MC1458G MC1458P1	
SN52109L	LM109H	MC1710L	SN72558P SN72702J	MC1712CL	
SN52510J SN52510L	14015141	MC1710G	SN72702L	MC1712CG	
SN52514J	MC1514L MC1555G		SN72709L SN72709P	MC1709CG MC1709CP1	
SN52555L SN52558L	MC1558G	MC1712L	SN72710J	MC1710CL MC1710CG	
SN52702AJ SN52702AL		MC1712G	SN72710L SN72710N	MC1710CD MC1710CP	
SN52702FA		MC1712G	SN72711J	MC1711CL	
SN52702J	MC1712L MC1712G		SN72711L SN72711N	MC1711CG MC1711CP	140474001
SN52702L SN52709AL	MC1709AG		SN72720J		MC1710CL MC1710CG
SN52709L SN52710FA	MC1709G MC1710F		SN72720L		MC1710CP
SN52710171	MC1710L		SN72720N SN72723J	MC1723CL	
SN52710L	MC1710G MC1711F		SN72723L SN72733J	MC1723CG MC1733CL	
SN52711FA SN52711J	MC1711L		SN72733L	MC1733CG	
SN52711L	MC1711G MC1723L		SN72741L	MC1741CG MC1741CP1	
SN52723J SN52723L	MC1723G		SN72741P SN72747J	MC1747CL	
SN52733J	MC1733L MC1733G		SN72747L SN72747N	MC1747CG MC1747CP2	1
SN52733L SN52741L	MC1741G		SN727471V	MC1748CG	
SN52747J	MC1747L MC1747G		SN72748P	MC1748CP1	MC1456G
SN52747L SN52748L	MC1747G MC1748G	MC1556G	SN72770L SN72771L		MC1456G MC1710CL
SN52770L		MC1556G	SN72810J		MC1710CG
SN52771L SN52810FA		MC1710F	SN72810L SN72810N		MC1710CP MC1711CL
SN52810J		MC1710L MC1710G	SN72811J SN72811L		MC1711CG
SN52810L SN52811FA		MC1711F MC1711L	SN72811N		MC1711CP
SN52811J		MC1711G	SN72905	MC7905CT MC7906CT	
SN52811L SN55107AJ	MC55107L	MC55107L	SN72906 SN72908	MC7908CT	
SN55107BJ	MC55108L		SN72912 SN72915	MC7912CT MC7915CT	
SN55108AJ SN55108BJ		MC75108L	SN75107AJ	MC75107L	
SN55109J		MC75S110L MC75S110L	SN75107AN SN75107BJ	MC75107P	MC75107L
SN55110J SN55244J	MC1544L	LM358N	SN75107BN	MC75108L	MC75107P
SN72L022P SN72L044JA		LM324N	SN75108AJ	1	
SN72L0445A		LM324N	SN75108AN SN75108BJ		MC75108L MC75108P
SN72301AL	LM301AH LM301AN		SN75108BN SN75110AJ	MC75S110L	
SN72301AP SN72306J	[[[]]	MC1710CL MC1710CG	SN75110AN		
SN72306L		MC1710CP	SN75121J	1	MC3481/5L MC3481/5P
SN72306N SN72307L	LM307H		SN75121N SN75122J		SN75125-9L SN75125-9F
SN72308AL	LM308AH LM308H		SN75122N SN75125J	MC75125L	0,470,23 0,
SN72308L SN72309L	LM309H		SN75125N	MC75125P	MC3481/5L
SN72311L	LM311H LM311N		SN75126J		MC3481/5F MC3481/5F
SN72311P SN72440J	LIVISTIN	MC3370P MC3370P	SN75126N SN75127J	MC75127L	
SN72440N SN72510J		MC3370P MC1710CL	SN75127N	MC75127P	

PART NO.	MOTORO DIRECT REPLACEM	CIANIA	- 1	PART NO.	MOTORO DIREC REPLACEM	Т	MOTOROLA SIMILAR
SN75128J SN75128N SN75129J SN75129N SN75138N	MC75128L MC75128P MC75129L MC75129P	MC3443P		SN76565N SN76591P SN76594P SN76600P	MC1391P MC1394P MC1350P	MENI	MC13010P
SN75138J SN75150J SN75150N SN75154J SN75154N		MC3443P MC1488L MC1488P MC1489L MC1489P		SN76642N SN76644N SN76650N SN76651N SN76653N SN76660N	MC1357P MC1352P		MC1352P MC1357P MC1352P
SN75160J SN75160N SN75172J SN75172NG SN75173J	SN75172J SN75172NG SN75173J	MC3447L MC3447P/P3		SN76665N SN76666N SN76669N SN76678P SSS101AL	MC1358P		MC1357P MC13010P MC1357P MC1355P
SN75173N SN75174J SN75174NG SN75175J SN75175N	SN75173N SN75174J SN75174NG SN75175J SN75175N			SSS101AJ SSS107J SSS107P SSS201AJ SSS201AL	LM101AH LM107H LM201AH		LM101AH -M107H
SN75176JG SN75176P SN75177JG SN75177P SN75178JG	SN75176JG* SN75176P* SN75177JG* SN75177P* SN75178JG*			SSS201AP SSS207J SSS207P SSS301AJ	LM207H LM301AH		-M201AH -M201AN -M207H
SN75178P SN75188J SN75188N SN75188N3 SN75189AJ	SN75178P* MC1488L MC1488P MC1488PDS MC1489AL			SSS301AL SSS301AP SSS741BJ SSS741CJ SSS741GJ	LM301AN MC1741SG	~	M301AH IC1741G IC1741CG
SN75189AJ4 SN75189AN SN75189J SN75189J4 SN75189N	MC1489ALDS MC1489AP MC1489L MC1489LDS MC1489P			SSS741GP SSS741J SSS747BP SSS747CK SSS747CM		M M M	C1741SG C1741G C1747L C1747CG C1747CF
SN75189N3 SN75207J SN75207N SN75208J SN75208N	MC1489PDS	MC75107L MC75107P MC75108L MC75108P		SSS747CP SSS747GK SSS747GP SSS747P SSS1408A-6Z	MC1408L6	M M	C1747CL C1747G C1747G C1747L C1747L
SN75251N SN75466J SN75466N SN75467J SN75467N	MC1411L MC1411P MC1412L MC1412P	MC3471P	25 05 05	SSS1408A-7Z SSS1408A-8Z SSS1458J SSS1508A-8Z SSS1558J	MC1408L7 MC1408L8 MC1458G MC1508L8 MC1558G		
SN75468J SN75468N SN75475JG SN75475P SN75491AN	MC1413L MC1413P MC1472U MC1472P1 MC75491P		T	ГАА630 ГВА120 ГВА440 ГВА520 ГВА920 ГВА920S		TB MC MC	C1327P A120C C13010P C1327P C1391P
N75491N N75492AN N75492N N76104N N76105N	MC75491P MC75492P MC75492P	MC1310P MC1310P	T T T	BA9205 BA990 BA1440 CA4500A DA1085 DA1190Z	TCA4500A TDA1085	MC MC	1391P 1327P 13010P
N76111N N76113N N76115N N76116N N76117N	MC1310P	MC1310P MC1310P MC1310P MC1310P	TI TI TI	DA1524 DA2540 DA2544 DA3780	TDA1190Z	MC MC	A5550 13010P 13010P 1376P
N76246N N76298N N76514L N76514N N76564N	MC1398P MC1496P	MC1327P MC1496G MC13010P	TE TE	DA4420 DA4600 DA5600 DC1027J7 -022CJG	TDA4600	MC1	3010P 3015L

DIRECT REPLACEMENT REPLACEMENT			1	
TL022CP TL022MJG TL022ML TL044CN TL044dCN TL044MJ TL071ACJG TL071ACP TL071BCJG TL071BCJG TL071BCP TL071CP TL072CJG TL074ACJ TL074ACJ TL074ACJ TL074ACJ TL074ACJ TL074ACJ TL074ACJ TL074ACJ TL074CD TL081BCJG TL081ACJG TL081ACJG TL081ACJG TL081CJG TL081CJG TL081CJG TL081CJG TL081CJG TL081CJG TL081CJG TL082CCP TL082CJG TL082CCP TL082CJG TL082CCP TL082CJG TL082CCP TL082CJG TL084CN TL084CN TL084CN TL084CN TL084CD TL084CN TL084CD TL084CN TL084CD TL084CD TL084CN TL084CD TL084CN TL084CD TL084CD TL084CN TL084CD TL084CN TL431LP TL	DART NO	DIRECT	SIMILAR	
1124941010	TL022CP TL022MJG TL022ML TL044CN TL044MJ TL071ACJG TL071BCP TL071BCP TL071CJG TL071CP TL072ACJG TL072ACP TL072ACP TL072ACP TL072ACJG TL072CP TL072ACJ TL074ACN TL074BCJ TL074BCJ TL074BCJ TL074BCJ TL074BCJ TL074BCN TL081BCJG TL082BCJG TL0	TL071ACJG TL071ACJG TL071ACP TL071BCJG TL071BCP TL071BCJG TL071CP TL072CJG TL072CP TL072CP TL072CP TL072CP TL074ACJ TL074ACJ TL074BCN TL074BCN TL081ACJG TL081BCP TL081BCP TL081BCP TL081CJG TL082CP TL082CJG TL082CP TL082CJG TL082CP TL082CJG TL084CJ TL431IJG TL431IJG TL431IJG TL431IJG TL434IJJ TL494CJ TL494CJ TL494CJ	REPLACEMENT LM358N LM158J LM158H LM324J LM324N	
TL495CJ TL495CN TL495CN TL495IJ TL495IN TL497CJ TL497CN TL497CN TL497MJ TL514MJ TL514MJ TL710CP TL710MJ TL710M	TL495CJ TL495CN TL495IJ TL495IN TL497CJ TL497CN TL497MJ TL514MJ TL710CP	TL495CN TL495IJ TL495IN MC1514L MC1710CP	MC34063P1 MC35063U	

	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT	
TL780-12CKC TL780-12CKC TL780-12CKC TL780-15CKC TL7805ACKC UC117K UC137K UC150K UC217K UC237K UC237K UC237K UC337T UC337K UC3525AJ UC1525AJ UC1525AJ UC1525AJ UC1525AJ UC2526AJ UC2526AJ UC2526AJ UC3525AJ UC3525AJ UC3525AJ UC3525AJ UC3525AJ UC3527AJ UC3525AJ UC3527AJ UC3526AJ UC3526A	TL780-12CKC TL780-15CKC MC7805ACT LM117K LM137K LM137K LM150K LM217K LM237K LM250K LM250K LM317T LM337K LM337T LM350K SG1525AJ SG1525AJ SG1527AJ SG2525AJ SG2525AJ SG2526AJ SG3525AJ SG3525AJ SG3525AJ SG3525AJ SG3525AJ SG3525AJ SG3527AJ SG3526AJ SG	MC3491L MC3491L MC3491L	

PART NO.		MOTOR DIREC REPLACE	CT	MOTOR SIMILA REPLACE	R
ULN2122A ULN2138A ULN2139D ULN2139G ULN2139H ULN2151D ULN2151D ULN2151H ULN2156D ULN2156G ULN2156H ULN2156H ULN2157A ULN2157A ULN2157H ULN2157H ULN2157H ULN2157H ULN2165A ULN2209A ULN2210A ULN2210A ULN2209A ULN2210A ULN2209A ULN2210A ULN2264A ULN2801A ULN2801A ULN2801A ULN2801A ULN2801A	UU UU UU SC SC SC	MC1358P MC1310P LN2801A LN2802A LN2803A -N2803A -N2803A -S3526N S3526N S3526N S3526N S3526J		MC1310P MC1310P MC1357P MC1439G MC1439P2 MC1439P1 MC1741CP MC1741CP MC1741CP MC17456G MC1456G MC1456G MC1456G MC1458P2 MC1327P	
ULS2139D ULS2139H ULS2139H ULS2139H ULS2151D ULS2156D ULS2156G ULS2156H ULS2157H ULS2157K ULS2157K ULS2157K ULS2157K ULS2157K ULS2157K ULS8126R ULX8161M XR082CN XR082CP XR082CN XR082CP XR082M XR084CN XR084CN XR084CP XR084M XR3470A	TLO TLO TLO TLO TLO MC3 MC1 MC1 MC1 MC1 MC1	82CJG 82CP 82CP 82MJG 84CJ 84CN 84CN 84CN 408L8 408L7 408L6 508L8 408P7 408P6	MC MC MC MC MC MC MC MC	21539G 21539G 21539L 21439P1 21741G 21741CP1 21556G 11556G 1556G 1558L 1558L 1558G 34060P	

-		1			
Г	PART NO.	MOTOROL DIRECT REPLACEME		MOTOROI SIMILAR	
	μΑ78GHM μΑ78GKC μΑ78GKM μΑ78GUC μΑ78GU1C	NEI EACEME	INI	REPLACEM LM117K LM117K LM117K LM317T LM317T	ENT
	μΑ78H05KC μΑ78L02ACJG μΑ78L05ACJG μΑ78L05ACLP μΑ78L05AHC μΑ78L05AWC μΑ78L05CJG	MC78L05ACF MC78L05ACC MC78L05ACF	5	MC7805CK MC78L02AC MC78L05AC	G
	μΑ78L05CLP μΑ78L05HC μΑ78L05WC μΑ78L06ACJG	MC78L05CP MC78L05CG MC78L05CP		MC78L05CG	
	μΑ78L06ACJG μΑ78L06ACLP μΑ78L06CJG μΑ78L06CLP	MC78L06ACP	- 1	MC78L06ACG MC78L06CG	•
	μΑ78L08ACJG μΑ78L08ACLP μΑ78L08AWC	MC78L06CP	١	MC78L08ACG MC78L08ACP	
	MATOLUSCUG	MC78L08CP	- 1	1C78L08CG	
	μΑ78L12ACLP μΑ78L12AHC μΑ78L12AWC μΑ78L12CJG	MC78L12ACP MC78L12ACG MC78L12ACP MC78L12CP		1C78L12ACG C78L12CG	
	μΑ78L12HC μΑ78L12WC μΑ78L15ACJG μΑ78L15ACLP	MC78L12CG MC78L12CP MC78L15ACP MC78L15ACP	М	C78L15ACG	
	μΑ78L15AWC μΑ78L15CJG μΑ78L15CLP μΑ78L15HC	1C78L15ACP 1C78L15CP 1C78L15CG 1C78L15CP	М	C78L15CG	
	μΑ78L18AHC Μ μΑ78L18AWC Μ μΑ78L24AHC Μ μΑ78L24AWC Μ	C78L18ACG C78L18ACP C78L24ACG C78L24ACP C78L24ACP C7802ACP			
	μΑ78MGHC μΑ78MGHM μΑ78MGT2C μΑ78MGU1C μΑ78MGUC		LM: LM: LM:	317MR 117MR 317T 317T 317MT	
	μΑ78M05CKD μΑ78M05CLA ΜC μΑ78M05HC ΜC	C78M05CT C78M05CG C78M05CG		78M05CT	
	#ATONIUSCKC I MC	78M05CT 78M06CT	MC	78M05CG	
	#A76WUGHC MC	78M06CG 78M06CG	MC7	78M06CT	
l	μΑ78M06HM μΑ78M06UC MC μΑ78M08CKC MC μΑ78M08CKD	78M08CT		8M06CG	
L		78M08CG	MC7	8M08CT	

	MOTOROLA DIRECT	MOTOROLA SIMILAR	PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT
-AIII 110.	REPLACEMENT	REPLACEMENT	"A79M24AHM		MC7924CK MC7924CT
μΑ78M08HC μΑ78M08HM	MC78M08CG	MC78M08CG	μA79M24AUC		MC7924CT MC7924CK
μΑ78M08UC μΑ78M12CKC	MC78M08CT MC78M12CT	MC78M12CT	μΑ79M24HM μΑ79M24UC		MC7924CT LM101AJ
μΑ78M12CKD μΑ78M12CLA μΑ78M12HC μΑ78M12HM	MC78M12CG MC78M12CG	MC78M12CG	μΑ101AD μΑ101AF μΑ101AH μΑ101D	LM101AH	LM101AJ LM101AJ LM101AJ
μΑ78M12UC μΑ78M15CKC	MC78M12CT MC78M15CT	MC78M15CT	μA101F μA101H	LM101AH LM107H	
μΑ78M15CKD μΑ78M15CLA μΑ78M15HC	MC78M15CG	MC78M15CG MC78M15CG	μA107H μA108AD μA108AF μΑ108AH	LM108AH	LM108AH
μΑ78Μ15ΗΜ μΑ78Μ15UC	MC78M15CT		μA108AH μA108D μΑ108Ε	LM108J LM108F	
μΑ78M18HC μΑ78M18HM μΑ78M18UG	MC78M18CG MC78M18CT	MC78M18CG	μΑ108F μΑ108Η μΑ109ΚΜ	LM108H LM109K	
μA78M20CKC μA78M20CKD	MC78M20CT	MC78M20CT	μA117KM μA201AD	LM117K	LM201AJ LM201AJ
μΑ78M20CLA μΑ78M20HC μΑ78M20HM	MC78M20CG MC78M20CG MC78M20CT	MC78M20CG	μA201AF μA201AH μA201D μA201F	LM201AH	LM201AJ LM201AJ
μA78M20UG μA78M24CKC Δ78M24CKD	MC78M24C1	MC78M24CT	μA201H μA207H	LM201AH LM207H LM208AJ	
μA78M24CLA μA78M24HC μA78M24HM	MC78M24CG MC78M24CG	MC78M24CG	μΑ208AD μΑ208AF μΑ208AH	LM208AH	LM208AḤ
μA78M24UC	MC78M24CT μΑ78S40DC		μA208D μA208F	LM208J LM208F LM208H	
μA78S40DM μA78S40PC μΑ79L05AHC	μΑ78S40DM μΑ78S40PC ΜC79L05ACG ΜC79L05ACP		μA208Η μA209ΚΜ μA217UV	LM209K	LM217K LM301AJ
μΑ79L05AWC μΑ79L05HC μΑ79L05WC μΑ79L12AHC μΑ79L12AWC	MC79L05CG MC79L05CP MC79L12ACG MC79L12ACP	à	μΑ301ΑD μΑ301ΑΗ μΑ301ΑΤ μΑ307Η μΑ307Τ	LM301AH LM301AN LM307H LM307N	
μΑ79L12HC μΑ79L12WC μΑ79L15AHC	MC79L12CG MC79L12CP MC79L15ACG	3	μA308AD μA308AH μA308D	LM308AJ LM308AH LM308J LM308H	
μΑ79L15AWC μΑ79L15AWC μΑ79L15HC μΑ79L15WC	MC79L15ACF MC79L15CG MC79L15CP		μA308H μA309KC μA311T	LM309K LM311N	
μΑ79M05AUC μΑ79M05CKC μΑ79M06AHN	M	MC7906CK MC7906CT	μΑ317ΚC μΑ317UC μΑ431ΑWC μΑ494DC	1 1 1 4 9 4 0 0	
μA79M06CK0		MC7806CT MC7906CK MC7906CT	μA494DM μA494PC μA555HC	TL494MJ TL494CN MC1455G	
μΑ79M06UC μΑ79M08ΑΗΙ μΑ79M08ΑU μΑ79M08CK	M C	MC7908CK MC7908CT MC7908CT	μA555HM μA555TC	MC1555G MC1455P1 MC3456L	
μΑ79M08HM		MC7908CK MC7908CT	μA556DC μA556DM μA556PC	MC3556L MC3456P	
μΑ79M12AU μΑ79M12CK μΑ79M15AU	MC79M12C MC79M12C MC79M15C	ST	μA565JJC μA565KJC	MC3512L	MC3412L MC3512L
μΑ79M15CK	C MC79M15C	MC7918CK MC7918CT	μA565TJM μA702DC μΑ702DM	MC1712CL MC1712L	
μΑ79M18AL μΑ79M18HM μΑ79M18U	VI I	MC7918CK MC7918CT	μΑ702FM		IVIOT/12L

PART NO.	MOTORO DIRECT REPLACEM	Classic	PARTIE	MOTORO	Т	MOTORO SIMILA)LA
μΑ702HC μΑ702HM μΑ702MJ μΑ702ML μΑ709ΑHM	MC1712CG MC1712G MC1712L MC1712G MC1709AG	-13200	 μΑ734ΗC μΑ734ΗM μΑ740ΗC μΑ740ΗΜ	REPLACEM	MENT	LM311H LM311H LM355H	AENT
μΑ709ΑΜJG μΑ709ΑΜL μΑ709CJG μΑ709CL μΑ709CP	MC1709AU MC1709AG MC1709CU MC1709CG MC1709CP1		μΑ741ADM μΑ741AFM μΑ741AHM μΑ741CJG μΑ741CL	MC1741CU MC1741CG	·	LF155H MC1741L MC1741F MC1741G	
μΑ709HC μΑ709HM μΑ709MJG μΑ709ML μΑ709TC	MC1709CG MC1709G MC1709U MC1709G MC1709CP1		μΑ741CP μΑ741DC μΑ741EHC μΑ741HC μΑ741HM μΑ741MJG	MC1741CP1 μΑ741DC μΑ741HC ΜC1741G		MC1741G	
μΑ710CJ μΑ710CP μΑ710DC μΑ710DM μΑ710HC μΑ710HM	MC1710CL MC1710CP MC1710CL MC1710L MC1710CG		μΑ741MJG μΑ741ML μΑ741RC μΑ741RM μΑ741TC μΑ742DC	MC1741U MC1741G MC1741CU MC1741U μΑ741TC			
μΑ710ΠΜ μΑ710ΜJ μΑ710PC μΑ711CJ μΑ711CN μΑ711DC	MC1710G MC1710L MC1710CP MC1711CL MC1711CP		μΑ746DC μΑ746HC μΑ747ADM μΑ747AHM μΑ747CL	MC1747CG	1	CA3059 MC1327P MC1327P MC1747L MC1747G	
μΑ711DM μΑ711HC μΑ711HM μΑ711MJ μΑ711PC	MC1711CL MC1711L MC1711CG MC1711G MC1711L		μΑ747CN μΑ747DC μΑ747DM μΑ747EDC μΑ747EHC	MC1747CP2 MC1747CL MC1747L MC1747CL MC1747CL			
4715DC 4715DM 4715HC 4715HM A723CF	MC1711CP MC1723CL	MC1741SCU MC1741SU MC1741SCG MC1741SG	μΑ747HC μΑ747HM μΑ747MJ μΑ747ML μΑ747PC	MC1747CG MC1747G MC1747L MC1747G MC1747CP2			
A723CJ A723CL A723CN A723DC A723DM	MC1723CL MC1723CG MC1723CP MC1723CL		μΑ748ΑΗΜ μΑ748CJG μΑ748CL μΑ748CP μΑ748ΗC	MC1748CU MC1748CG MC1748CP1 MC1748CG	M	C1748G	
A723F A723HC A723HM A723MJ A723ML	MC1723L MC1723L MC1723CG MC1723G MC1723L		μΑ748ΗΜ μΑ748ΜJG μΑ748ΜL μΑ748ΤC μΑ753ΤC	MC1748G MC1748U MC1748G MC1748CP1			
A723PC A725AHM A725EHC A725HC	MC1723G MC1723CP	LM108AH LM308AH LM308AH	μΑ754HC μΑ754TC μΑ757DC μΑ757DM μΑ758	47504	MC MC	31357P 31355P 31355P 31350P 1350P	
.725HM .732DC .732PC .733CJ .733CL	MC1733CL MC1733CG	LM108AH MC1310P MC1310P	μΑ767DC μΑ767PC μΑ772 μΑ775DC μΑ775DM	μΑ758Α LM339J	MC	1310P 1310P 1741S	
733CN 733DC 733DM 733FM 733HC	MC1733CP MC1733CL MC1733L MC1733F MC1733CG		μΑ775DM μΑ775PC μΑ776DC μΑ776DM μΑ776HC μΑ776HM	LM339J LM339N MC1776CG		1776CG 1776G	
331010		LM311J LM311J	μΑ776TC μΑ777CJ μΑ777CJG μΑ777CL μΑ777CN	MC1776G MC1776CP1	LM3	08AJ-8 08AJ-8 08AH 08AN	

	MOTOROLA	MOTOROLA
PART NO.	DIRECT REPLACEMENT	SIMILAR REPLACEMENT
μΑ777CP μΑ777DC μΑ777HC μΑ777MJ μΑ777MJG		LM308AN LM308AJ-8 LM308AH LM108AJ-8 LM108AJ-8
μΑ777ML μΑ777TC μΑ786DC μΑ791KC μΑ791KM		LM108AH LM308AN MC1327P MC1438R MC1538R
μΑ791P5 μΑ796DC μΑ796DM μΑ796HC μΑ796HM	MC1496L MC1596L MC1496G MC1596G	MC1438R
μΑ798ΗC μΑ798ΗΜ μΑ798RC μΑ798RM μΑ798ΤC	MC3458G MC3558G MC3458U MC3558U MC3458P1	
μΑ799ΗC μΑ799ΗΜ μΑ1310 μΑ1391ΡC μΑ1394ΡC	MC1310P MC1391P MC1394P	MC1741G MC1741G
μΑ1458CHC μΑ1458CP μΑ1458CRC μΑ1458CTC μΑ1458E	MC1458CG MC1458CP1 MC1458CU MC1458CP1 MC1458G	
μΑ1458HC μΑ1458P μΑ1458RC μΑ1458TC μΑ1558E	MC1558G MC1458P1 MC1458U MC1458P1 MC1558G	
μΑ1558ΗΜ μΑ2136ΡC μΑ2240DC μΑ2240DM μΑ2240PC	MC1558G .	MC1357P MC1455U MC1555G MC1455P1
μA3026HM μA3045 μA3046DC μA3054DC μA3064PC	MC3346P CA3054P	CA3054 MC3346P MC13010P
μA3065PC μA3086DM μA3301P μA3302P μA3303P	MC1358P MC3386P MC3301P MC3302P MC3303P	
μA3401P μA3403D μA3403P μA4136DC μA4136DM	MC3401P MC3403L MC3403P	MC4741CL MC4741L
μΑ4136PC μΑ4558HC μΑ4558HM μΑ4558TC μΑ7805CKC	MC4558CG MC4558G MC4558CP1 MC7805CT	MC4741CP
μΑ7805ΚC μΑ7805ΚΜ μΑ7805UC μΑ7805UV μΑ7806CKC	MC7805CK MC7805K MC7805CT MC7805BT MC7806CT	

PART NO.	MOTOROLA DIRECT REPLACEMENT	MOTOROLA SIMILAR REPLACEMENT
μΑ7806KC μΑ7806KM μΑ7806UC μΑ7806UV μΑ7808CKC	MC7806CK MC7806K MC7806CT MC7806BT MC7808CT	
μΑ7808ΚC μΑ7808ΚΜ μΑ7808UC μΑ7808UV μΑ7812CKC	MC7808K MC7808K MC7808CT MC7808BT MC7812CT	
μΑ7812KC μΑ7812KM μΑ7812UC μΑ7812UV μΑ7815CKC	MC7812CK MC7812K MC7812CT MC7812BT MC7815CT	
μΑ7815ΚC μΑ7815ΚΜ μΑ7815UC μΑ7815UV μΑ7818CKC	MC7815CK MC7815K MC7815CT MC7815BT MC7818CT	
μΑ7818ΚC μΑ7818ΚΜ μΑ7818UC μΑ7818UV μΑ7824CKC	MC7818CK MC7818K MC7818CT MC7818BT MC7824CT	
μΑ7824KC μΑ7824KM μΑ7824UC μΑ7824UV μΑ7902KC	MC7824CK MC7824K MC7824CT MC7824BT MC7902K	
μΑ7902ΚΜ μΑ7902UC μΑ7905CKC μΑ7905ΚC μΑ7905ΚΜ	MC7902K MC7902CT MC7905CT MC7905CK	MC7905CK
μΑ7905UC μΑ7905.2CKC μΑ7906CKC μΑ7906KC μΑ7906KM	MC7905CT MC7905.2CT MC7906CT MC7906CK	MC7906CK
μΑ7906UC μΑ7908CKC μΑ7908KC μΑ7908KM μΑ7908UC	MC7906CT MC7908CT MC7908CT	MC7908CK MC7908CT
μΑ7912CKC μΑ7912KC μΑ7912KM μΑ7912UC μΑ7915CKC	MC7912CT MC7912CK MC7912CT MC7915CT	MC7912CK
μΑ7915ΚC μΑ7915ΚΜ μΑ7915UC μΑ7918CKC μΑ7918ΚC	MC7915CK MC7915CT MC7918CT MC7918CK	MC7915CK
μΑ7918ΚΜ μΑ7918UC μΑ7924CKC μΑ7924ΚC μΑ7924ΚΜ	MC7918CT MC7924CT MC7924CK	MC7918CK MC7924CK
μΑ7924UC μΑ9636ACJG μΑ9636ACP μΡC1373	MC7924CT * *	MC3373P

^{*}To be introduced.

Selector Guides

Operational Amplifiers

Motorola offers a broad line of operational amplifiers to meet a wide range of usages. From low-cost industry-standard types to high precision circuits, the span encompasses a large range of performance capabilities. These linear integrated circuits are available as single, dual, and quad monolithic devices in a variety of package styles as well as standard chips.

Single Operational Amplifiers

Noncompensated

	I _{IB}	V _{IO}	TC _{VIO} μV/°C	IO nA	A _{VOI} V/mV	BW (A _V = 1) MHz	SR (A _V = 1) V/μs	Sup Volt	age	,	
Device	Max	Max	Тур	Max	Min	Тур	Тур	Min	Max	Description	Packages
Military Tem	perature	Range	(-55°C	to +125	°C)						
LM101A	0.075	2.0	10	10	50	1.0	0.5	±3.0	± 22	General Purpose	601,693
LM108	0.002	2.0	3.0	0.2	50	1.0	0.3	±3.0	± 20	Precision	601,693
LM108A	0.002	0.5	1.0	0.2	80	1.0	0.3	±3.0	± 20	Precision	601,693
MC1539	0.5	3.0	15	60	50	2.0	4.2	±4.0	±18	High Slew Rate	601
MC1709	0.5	5.0	15	200	25	1.0	0.3	±3.0	±18	General Purpose	601,693
MC1709A	0.6	3.0	5.0	100	25	1.0	0.5	±3.0	± 18	High Performance MC1709	601
MC1748	0.5	5.0	15	200	50	1.0	0.5	±3.0	± 22	General Purpose	601,693
Commercial	Tempera	ture Ra	inge (0°C	to +70	°C)						
LM301A	0.25	7.5	10	50	25	1.0	0.5	±3.0	±18	General Purpose	601,626,693,751
LM308	7.0	7.5	15	1.0	25	1.0	0.3	±3.0	±18	Precision	601,626,693
LM308A	7.0	0.5	5.0	1.0	80	1.0	0.3	±3.0	±18	Precision	601,626,693
MC1439	1.0	7.5	15	100	15	2.0	4.2	±6.0	±18	High Slew Rate	601,626
MC1709C	1.5	7.5	15	500	15	1.0	0.3	± 3.0	±18	General Purpose	601,626,693
MC1748C	0.5	6.0	. 15	200	20	1.0	0.5	±3.0	± 18	General Purpose	601,626,693
Industrial Te	mperatu	re Rang	je (– 25°0	C to +8	5°C)						
LM201A	0.075	2.0	10	10	50	1.0	0.5	±3.0	± 22	General Purpose	601,626,693
LM208	0.002	2.0	3.0	0.2	50	1.0	0.3	±3.0	± 20	Precision	601,632,693
LM208A	0.002	0.5	1.0	0.2	80	1.0	0.3	± 3.0	±20	Precision	601,632,693

Internally Compensated

internally C	ompen	sated									
Device	I _{IB} μΑ Max	V _{IO} mV Max	TC _{VIO} μV/°C Typ	IO nA Max	A _{VOI} V/mV Min	BW (A _V = 1) MHz Typ	SR (A _V = 1) V/μs Typ	Sup Volt \ Min		Description	Packages
Military Tem						.,,,	.,,,			Doomption	. uonugoo
LM11	50 pA	0.3	1.0	10 pA	250	1.0	0.3	±3.0	± 20	Precision	601,632,693
MC1536	0.02	5.0	1.0	3.0	100	1.0	2.0	± 3.0 ± 15	± 40	High Voltage	693,601
MC1556	0.02	4.0	10	2.0	100	1.0	2.5	± 15	± 40 ± 22		
	1				90	90	2.5		± 8.0	High Performance	601,693
MC1733	0.20	_	_	3.0 μΑ	90	90	-	±4.0	±8.0	Differential Wideband Video Amp	603,632
MC1741	0.5	5.0	15	200	50	1.0	0.5	±3.0	± 22	General Purpose	601,693
MC1741N	0.5	5.0	15	200	50	1.0	0.5	± 3.0	± 22	Low Noise	601,693
MC1741S	0.5	5.0	15	200	50	1.0	10	±3.0	± 22	High Slew Rate	601,693
MC1776	0.0075	5.0	15	3.0	200	1.0	0.2	± 1.5	± 18	μPower, Programmable	601,632
MC35001	100 pA	10	10	100 pA	25	4.0	13	± 5.0	± 22	JFET Input	601,693
MC35001A	75 pA	2.0	10	25 pA	50	4.0	13	±5.0	± 22	JFET Input	601,693
MC35001B	100 pA	5.0	10	50 pA	50	4.0	13	±5.0	± 22	JFET Input	601,693
OP-27A	0.040	0.025	0.2	35	1000	8.0	2.8	± 4.0	± 22	Low Noise, Precision	601,693
OP-27B	0.055	0.060	0.3	50	1000	8.0	2.8	±4.0	± 22	Low Noise, Precision	601,693
OP-27C	0.080	0.100	0.4	75	700	8.0	2.8	± 4.0	± 22	Low Noise, Precision	601,693
OP-37A	0.040	0.025	0.2	35	1000	40	17	±4.0	± 22	Low Noise, Precision,	601,693
OP-37B	0.055	0.060	0.3	50	1000	40	17	±4.0	± 22	Decompensated for	601,693
OP-37C	0.080	0.100	0.4	75	700	40	17	± 4.0	± 22	A _v ≥ 5	601,693
TL071M	200 pA	6.0	10	50 pA	35	4.0	13	±5.0	± 18	Low Noise, JFET Input	693
TL081M	200 pA	9.0	10	100 pA	25	4.0	13	±5.0	±18	JFET Input	693

Single Operational Amplifiers (continued)

nternally	Com	pensated
mternany	COIII	pensateu

						BW	SR	Sup			
	IIB	Vio	TCVIO	lo	A _{vol}	$(A_{V} = 1)$	(A _V = 1)	Voltage			
	μA	mV	μV/°C	nA	V/mV	MHz	V/μs	V	- 1		
Device	Max	Max	Тур	Max	Min	Тур	Тур	Min	Max	Description	Packages
Commercial *	Temperat	ure Ra	nge (0°C	to +70	°C)						
LF351	200 pA	10	10	100 pA	25	4.0	13	± 5.0	±18	JFET Input	626
LF355	200 pA	10	5.0	50 pA	50	1.0	5.0	±5.0	±18	JFET Input	601,626,693
LF355B	100 pA	5.0	5.0	20 pA	50	2.5	5.0	± 5.0	± 22	JFET Input	601,626,693
LF356	200 pA	10	5.0	50 pA	50	2.0	15	±5.0	± 18	JFET Input	601,626,693
LF356B	100 pA	5.0	5.0	20 pA	50	5.0	12	±5.0	± 22	JFET Input	601,626,693
LF357	200 pA	10	5.0	50 pA	50	3.0	75	±5.0	±18	Wideband FET Input	601,626,693
LF357B	100 pA	5.0	5.0	20 pA	50	20	50	±5.0	± 22	JFET Input	601,626,693
LM11C	100 pA	0.6	2.0	10 pA	250	1.0	0.3	± 3.0	± 20	Precision	626,632,646,601
LM11CL	200 pA	5.0	3.0	25 pA	50	1.0	0.3	± 3.0	± 20	Precision	693
LM307	0.25	7.5	10	50	25	1.0	0.5	± 3.0	±18	General Purpose	626
MC1436	0.04	10	12	10	70	1.0	2.0	± 15	± 34	High Voltage	626,601,693
MC1456	0.03	10	12	10	70	1.0	2.5	± 3.0	± 18	High Performance	601,626,693
MC1733C	30		_	5.0 μA	80	90	_	±4.0	± 8.0	Differential Wideband	601,632,646
111017000									1	Video Amp	
MC1741C	0.5	6.0	15	200	20	1.0	0.5	± 3.0	±18	General Purpose	601,626,693,751
MC1741NC	0.5	6.0	15	200	20	1.0	0.5	± 3.0	± 18	Low Noise	601,626,693
MC17411C	0.5	6.0	15	200	20	1.0	10	± 3.0	± 18	High Slew Rate	601,626,693
MC17413C	0.003	6.0	15	3.0	100	1.0	0.2	± 1.5	± 18	μPower, Programmable	693,626,601,751
MC3476	0.05	6.0	15	25	50	1.0	0.2	± 1.5	± 18	Low Cost	601,626,693
10103470	0.03	0.0					1			μPower, Programmable	
MC34001	200 pA	10	10	100 pA	25	4.0	13	± 5.0	± 18	JFET Input	601,626,693,751
MC34001A	100 pA	2.0	10	50 pA	50	4.0	13	± 5.0	±18	JFET Input	601,626,693,751
MC34001B	200 pA	5.0	10	100 pA		4.0	13	± 5.0	± 18	JFET Input	601,626,693,75
OP-27EP	0.040	0.025	0.2	35	1000	8.0	2.8	±4.0	± 22	Low Noise, Precision	626
OP-27EP	0.055	0.060	0.3	50	1000	8.0	2.8	±4.0	± 22	Low Noise, Precision	626
OP-27FP	0.035	0.100	0.4	75	700	8.0	2.8	±4.0	± 22	Low Noise, Precision	626
OP-37EP	0.040	0.025	0.4	35	1000	40	17	±4.0	± 22	Low Noise, Precision	626
	0.040	0.025	0.2	50	1000	40	17	±4.0	± 22	Decompensated for	626
OP-27FP OP-27GP	0.080	0.100	0.3	75	700	40	17	±4.0	± 22	A _V ≥ 5	626
		6.0	10	50 pA	50	4.0	13	± 5.0	1	Low Noise, JFET Input	626,693
TL071AC	200 pA	3.0	10	50 pA	50	4.0	13	± 5.0	± 18	Low Noise, JFET Input	626,693
TL071BC	200 pA	10	10	50 pA	25	4.0	13	± 5.0		Low Noise, JFET Input	626,693
TL071C	200 pA	6.0	10	100 pA		4.0	13	± 5.0	1	JFET Input	626,693
TL081AC	200 pA		10	100 pA		4.0	13	± 5.0		JFET Input	626,693
TL081BC	200 pA	3.0				4.0	13	± 5.0		JFET Input	626,693
TL081C	400 pA	15	10	200 pA		4.0	13	1 = 5.0	10	or ET mpat	020,000
Industrial Te							1 00	4.5	- 00	Laur Naine Bussinian	601,693
OP-27E	0.040	0.025	0.2	35	1000	8.0	2.8	± 4.0	± 22	Low Noise, Precision	
OP-27F	0.055	0.060	0.3	50	1000	8.0	2.8	± 4.0	±22	Low Noise, Precision	601,693
OP-27G	0.080	0.100	0.4	75	700	8.0	2.8	± 4.0	± 22	Low, Noise, Precision	601,693
OP-37E	0.040	0.025	0.2	35	1000	40	17	± 4.0	± 22	Low Noise, Precision,	601,693
OP-37F	0.055	0.060	0.3	50	1000		17	± 4.0	± 22	Decompensated for	601,693
OP-37G	0.080	0.100	0.4	75	700	40	17	± 4.0	± 22	$A_{V} \ge 5$	601,693

Dual Operational Amplifiers

Internally Compensated

Military Temperature Range (-55°C to +125°C)

LM158	0.15	5.0	10	30	50	1.0	0.6	± 1.5	± 18	Split Supplies	601,632,693
LIVITO	0.13	5.0		"	00	,,,,		+ 3.0	+ 36	Single Supply	
				1						(Low Power	
										Consumption)	
MC1558	0.5	5.0	10	200	50	1.1	0.8	± 3.0	± 22	Dual MC1741	601,693
MC1558N	0.5	5.0	10	200	50	1.1	0.8	± 3.0	± 22	Low Noise	601,693
MC1558S	0.5	5.0	10	200	50	1.0	10	± 3.0	± 22	High Slew Rate	601,693
MC1747	0.5	5.0	10	200	50	1.0	0.5	± 3.0	± 22	Dual MC1741	601,632
MC3558	0.5	5.0	10	50	50	1.0	0.6	± 1.5	± 18	Split Supplies	601,693
								+3.0	+.36	Single Supply	
MC4558	0.5	5.0	10	200	50	4.0	1.5	±3.0	± 22	High Frequency	601,693
MC35002	100 pA	10	10	100 pA	25	4.0	13	±5.0	± 22	JFET Input	601,693
MC35002A	75 pA	2.0	10	25 pA	50	4.0	13	±5.0	± 22	JFET Input	601,693
MC35002B	100 pA	5.0	10	50 pA	50	4.0	13	±5.0	± 22	JFET Input	601,693
TL072M	200 pA	6.0	10	50 pA	35	4.0	13	±5.0	± 18	Low Noise, JFET Input	693
TL082M	200 pA	6.0	10	100 pA	25	4.0	13	±5.0	± 18	JFET Input	693

Dual Operational Amplifiers (continued)

Internally Compensated

Device	l _{IB} μΑ Max	V _{IO} mV Max	TC _{VIO} μV/°C Typ	IIO nA Max	A _{vol} V/mV Min	BW (A _V = 1) MHz	SR (A _V = 1) V/μs	Vol	pply tage V Max		
	1					Тур	Тур	IVIII	iviax	Description	Packages
Commercial	T										r
LF353	200 pA	10	10	100 pA	25	4.0	13	± 5.0	± 18	JFET Input	626
LM358	0.25	6.0	7.0	50	25	1.0	0.6	± 1.5	± 18	Single Supply	601,626,693,751
								+3.0	+36	(Low Power	
										Consumption)	
MC1458	0.5	6.0	10	200	20	1.1	0.8	± 3.0	±18	Dual MC1741	601,626,693,751
MC1458C	0.70	10	10	300	20	1.1	8.0	± 3.0	± 18	Dual General Purpose	601,626,751
MC1458N	0.5	6.0	10	200	20	1.1	0.8	± 3.0	+ 18	Low Noise	601,626,693
MC1458S	0.5	6.0	10	200	20	1.0	10	± 3.0	± 18	High Slew Rate	601,626,693
MC1747C	0.5	6.0	10	200	25	1.0	0.5	± 3.0	± 18	Dual MC1741	603,632,646
MC3458	0.5	10	7.0	50	20	1.0	0.6	± 1.5	± 18	Split Supplies	601,626,693
								+ 3.0	+ 36	Single Supply	
										(Low Crossover	
										Distortion)	
MC4558C	0.5	6.0	10	200	20	3.0	1.5	± 3.0	+18	High Frequency	601,626,693,751
MC34002	100 pA	10	10	100 pA	25	4.0	13	±5.0	± 18	JFET Input	601,626,693,751
MC34002A	75 pA	2.0	10	50 pA	50	4.0	13	±5.0	± 18	JFET Input	601,626,693,751
MC34002B	100 pA	5.0	10	70 pA	25	4.0	13	±5.0	± 18	JFET Input	601,626,693,751
TL072AC	200 pA	6.0	10	50 pA	50	4.0	13	±5.0	± 18	Low Noise, JFET Input	626,693
TL072BC	200 pA	3.0	10	50 pA	50	4.0	13	± 5.0	± 18	Low Noise, JFET Input	626,693
TL072C	200 pA	10	10	50 pA	25	4.0	13	± 5.0	± 18	Low Noise, JFET Input	626,693
TL082AC	200 pA	6.0	10	100 pA	50	4.0	13	±5.0	± 18	JFET Input	626,693
TL082BC	200 pA	3.0	10	100 pA	50	4.0	13	± 5.0	±18	JFET Input	626,693
TL082C	400 pA	15	10	200 pA	25	4.0	13	± 5.0	±18	JFET Input	626,693
Automotive '	Temperat	ure Ra	nge (– 4	0°C to +	85°C)						
MC3358	5.0	8.0	10	75	20	1.0	0.6	± 1.5	± 18	Split Supplies	626
								+ 3.0	+36	Single Supply	
LM2904	0.25	7.0	7.0	50	100	1.0	0.6	± 1.5	± 13	Split or Single	626,751
					typ			±3.0	± 26	Supply OP Amp	,
Industrial Te	nperatur	e Rang	e (– 25°0	C to +85	°C)						
LM258	0.15	5.0	10	30	50	1.0	0.6	± 1.5	± 18	Split or Single	601,626,693
		-	- 1				0	± 3.0	±36	Supply OP Amp	551,520,000

Noncompensated

Military Temperature Range (-55°C to +125°C)

MC1537	0.5	5.0	10	200	25	1.0	0.25	± 3.0	± 18	Dual MC1709	632
Commercial	Tempera	ture Ra	nge (0°C	to +70	°C)						
MC1437	1.5	7.5	10	500	15	1.0	0.25	± 3.0	± 18	Dual MC1709	632,646

Quad Operational Amplifiers

Internally Compensated

Military Temperature Range (-55°C to +125°C)

Ivillitary rein		90	, 00 0	10 + 123	0,						
LM124	0.15	5.0	7.0	30	50	1.0	0.6	± 1.5	±16	Low Power	632,646
						}		+3.0	+32	Consumption	
LM148	0.10	5.0	—	25	50	1.0	0.5	±3.0	± 18	Quad MC1741	632
MC3503	0.5	5.0	7.0	50	50	1.0	0.6	± 1.5	± 18	General Purpose	632,646
								+3.0	+36	Low Power	
MC4741	0.5	5.0	15	200	50	1.0	0.5	± 3.0	± 22	Quad MC1741	632,646
MC35004	100 pA	10	10	100 pA	25	4.0	13	±5.0	± 22	JFET Input	632
MC35004B	100 pA	5.0	10	50 pA	50	4.0	13	±5.0	± 22	JFET Input	632
MC35074	0.50	4.5	10	75	25	4.5	10	+3.0	+ 44	High Performance,	632
MC35074A	0.50	2.0	10	50	50	4.5	10	+ 3.0	+44	Single Supply	632
MC35084	200 pA	10	10	50 pA	25	10	40	±5.0	± 18	Hi-Speed, JFET Input	632
MC35084A	200 pA	5.0	10	50 pA	50	10	40	±5.0	± 18	Hi-Speed, JFET Input	632
MC35085	200 pA	10	10	50 pA	25	20	80	± 5.0	± 18	Decompensated	632
MC35085A	200 pA	5.0	10	50 pA	50	20	80	±5.0	± 18	MC35084 for A _V ≥2	632
TL074M	200 pA	9.0	10	50 pA	35	4.0	13	±5.0	± 18	Low Noise, JFET Input	632
TL084M	200 pA	9.0	10	100 pA	25	4.0	13	± 5.0	± 18	JFET Input	632

Quad Operational Amplifiers (continued)

Internally Compensated

Commercial Te LF347 LF347B LM324 LM348 MC3401 LM3900 MC3403 MC4741C MC34004 MC34004 MC34074A MC34074A MC34084 LM34085 MC34084A LM34085 LM34084A LM34085 LM34084A LM34085 LM34084A LM34085 L	I _{IB} μA Max emperat 200 pA 200 pA 0.25 0.20 0.3 0.5 0.5 200 pA	VIO mV Max 10 5.0 6.0 6.0 — 10 6.0 10 5.0	TCVIO μV/°C Typ 10 10 7.0 7.0 15 10 10 10 10 10 10 10 10 10 10 10 10 10	100 nA Max 100 pA 100 pA 100 pA 50 50 50 200 100 pA 100 pA 75 50 50 50 pA	25 50 25 25 1.0 20 20 25 50 25	(A _V =1) MHz Typ 4.0 4.0 1.0 1.0 5.0 1.0 4.0 4.0 4.0	(A _V = 1) V/μs Typ 13 13 0.6 0.5 0.6 0.6	±5.0 ±5.0 ±1.5 +3.0 ±1.5 +3.0 ±1.5 +3.0 ±1.5 ±3.0	± 18 ± 18 ± 16 + 32 ± 18 ± 18 + 36 ± 18 + 36	JFET Input JFET Input Low Power Consumption Quad MC1741 Norton Input No Crossover Distortion Quad MC1741	Packages 646 646 632,646,751A 632,646,751A 632,646,751A
Commercial Te LF347 LF347B LM324 LM348 MC3401 LM3900 MC3403 MC4741C MC34004 MC34004 MC34074A MC34074A MC34084 LM34085 MC34084A LM34085 LM34084A LM34085 LM34084A LM34085 LM34084A LM34085 L	Max emperate 200 pA 200 pA 0.25 0.20 0.3 0.5 0.5 200 pA	Max 10 5.0 6.0 10 6.0 10 5.0 4.5 2.0 10 5.0 10	Typ nge (0°C 10 7.0 7.0 15 10 10 10 10 10 10 10	Max 100 pA 100 pA 100 pA 50 50 50 200 100 pA 100 pA 75 50	Min °C) 25 50 25 1.0 20 20 25 50 25	4.0 4.0 1.0 1.0 5.0 1.0 4.0	13 13 0.6 0.5 0.6 0.6	## 5.0 ± 5.0 ± 1.5 + 3.0 ± 1.5 + 3.0 ± 1.5 + 3.0	± 18 ± 18 ± 16 + 32 ± 18 ± 18 + 36 ± 18 + 36	JFET Input JFET Input Low Power Consumption Quad MC1741 Norton Input No Crossover Distortion	646 646 632,646,751A 632,646,751A 632,646
Commercial Te LF347 LF347B LM324 LM348 MC3401 LM3900 MC3403 MC4741C MC34004 MC34004 MC34074A MC34074A MC34084 LM34085 MC34084A LM34085 LM34084A LM34085 LM34084A LM34085 LM34084A LM34085 L	emperat 200 pA 200 pA 0.25 0.20 0.3 0.5 0.5 200 pA 200 pA 200 pA 200 pA 200 pA 200 pA	10 5.0 6.0 — 10 6.0 10 5.0 4.5 2.0 10 5.0	7.0 15 10 10 10 10 10 10 10 10 10 10 10 10 10	to +70 100 pA 100 pA 50 50 50 200 100 pA 100 pA 75 50	°C) 25 50 25 1.0 20 20 25 50 25	4.0 4.0 1.0 1.0 5.0 1.0 4.0	13 13 0.6 0.5 0.6 0.6	±5.0 ±5.0 ±1.5 +3.0 ±3.0 ±1.5 +3.0 ±1.5 +3.0	± 18 ± 18 ± 16 + 32 ± 18 ± 18 + 36 ± 18	JFET Input JFET Input Low Power Consumption Quad MC1741 Norton Input No Crossover Distortion	646 646 632,646,751A 632,646,751A 632,646
LF347 2 LF347B 2 LF347B 2 LM348 MC3401 LM3900 MC3403 MC4741C MC34004 2 MC34074 MC34074 MC34074A MC34084 2 TL074BC TL074BC 2 TL074C TL074BC 2 TL074C TL074BC 2 TL074BC 2 TL074BC 2 TL074C 4 Automotive Te	200 pA 200 pA 0.25 0.20 0.3 0.5 0.5 200 pA 200 pA 200 pA 200 pA 200 pA 200 pA 200 pA	10 5.0 6.0 6.0 — 10 6.0 10 5.0 4.5 2.0 10 5.0	10 10 7.0 7.0 7.0 15 10 10 10	100 pA 100 pA 50 50 50 200 100 pA 75 50	25 50 25 25 1.0 20 20 25 50 25	4.0 1.0 1.0 5.0 1.0 4.0	13 0.6 0.5 0.6 0.6	±5.0 ±1.5 +3.0 ±3.0 ±1.5 +3.0 ±1.5 +3.0	± 18 ± 16 + 32 ± 18 ± 18 + 36 ± 18 + 36	JFET Input Low Power Consumption Quad MC1741 Norton Input No Crossover Distortion	646 632,646,751A 632,646,751A 632,646
LF347B LM324 LM348 MC3401 LM3900 MC3403 MC4741C MC34004 MC34004 MC34074A MC34074A MC34084 MC34084 L074085 L0740C L1074BC L1074BC L1074BC L1074BC L1074BC L1074BC L1074BC L1074BC L1074BC L1084BC L	200 pA 0.25 0.20 0.3 0.5 0.5 200 pA 200 pA 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	5.0 6.0 6.0 — 10 6.0 10 5.0 4.5 2.0 10 5.0	7.0 7.0 7.0 15 10 10 10 10 10	100 pA 50 50 	50 25 25 1.0 20 20 25 50 25	4.0 1.0 1.0 5.0 1.0 4.0	13 0.6 0.5 0.6 0.6	±5.0 ±1.5 +3.0 ±3.0 ±1.5 +3.0 ±1.5 +3.0	± 18 ± 16 + 32 ± 18 ± 18 + 36 ± 18 + 36	JFET Input Low Power Consumption Quad MC1741 Norton Input No Crossover Distortion	646 632,646,751A 632,646,751A 632,646
LM324 LM348 MC3401 LM3900 MC3403 MC4741C MC34004 MC34008 MC34074 MC34084A MC34084A CTL074BC TL074BC TL084BC TL084BC TL084BC TL084BC TL084C Automotive Te	0.25 0.20 0.3 0.5 0.5 200 pA 200 pA 0.50	6.0 6.0 10 6.0 10 5.0 4.5 2.0 10 5.0 10	7.0 7.0 15 10 10 10 10 10	50 50 50 50 200 100 pA 100 pA 75 50	25 25 1.0 20 20 25 50 25	1.0 1.0 5.0 1.0 1.0 4.0	0.6 0.5 0.6 0.6	±1.5 +3.0 ±3.0 ±1.5 +3.0 ±1.5 +3.0	±16 +32 ±18 ±18 +36 ±18 +36	Low Power Consumption Quad MC1741 Norton Input No Crossover Distortion	632,646,751A 632,646,751A 632,646 632,646,751A
LM348 MC3401 LM3900 MC3403 MC4741C MC34004 MC34008 MC34074A MC34074A MC34085A ZTL074BC TL074BC TL074BC TL074BC TL074BC TL074BC TL074BC TL084BC TL084BC TL084BC TL084BC TL084C Automotive Te	0.20 0.3 0.5 0.5 200 pA 200 pA 0.50 0.50 200 pA 200 pA 200 pA 200 pA	6.0 	7.0 15 10 10 10 10	50 50 200 100 pA 100 pA 75 50	25 1.0 20 20 25 50 25	1.0 5.0 1.0 1.0 4.0	0.5 0.6 0.6	+3.0 ±3.0 ±1.5 +3.0 ±1.5 +3.0	+32 ±18 ±18 +36 ±18 +36	Consumption Quad MC1741 Norton Input No Crossover Distortion	632,646,751A 632,646 632,646,751A
MC3401 LM3900 MC3403 MC4741C MC34004 MC34008 MC34074 MC340874 MC34084 MC34084 MC34085 TL074AC TL074BC TL074BC TL074BC TL074C TL074C TL084BC TL084BC TL084BC TL084BC TL084C	0.3 0.5 0.5 200 pA 200 pA 0.50 0.50 200 pA 200 pA 200 pA 200 pA		7.0 15 10 10 10 10	50 200 100 pA 100 pA 75 50	1.0 20 20 25 50 25	5.0 1.0 1.0 4.0	0.6 0.6 0.5	± 3.0 ± 1.5 + 3.0 ± 1.5 + 3.0	± 18 ± 18 + 36 ± 18 + 36	Quad MC1741 Norton Input No Crossover Distortion	632,646 632,646,751A
MC3401 LM3900 MC3403 MC4741C MC34004 MC34008 MC34074 MC340874 MC34084 MC34084 MC34085 TL074AC TL074BC TL074BC TL074BC TL074C TL074C TL084BC TL084BC TL084BC TL084BC TL084C	0.3 0.5 0.5 200 pA 200 pA 0.50 0.50 200 pA 200 pA 200 pA 200 pA		7.0 15 10 10 10 10	50 200 100 pA 100 pA 75 50	1.0 20 20 25 50 25	5.0 1.0 1.0 4.0	0.6 0.6 0.5	± 1.5 + 3.0 ± 1.5 + 3.0	± 18 + 36 ± 18 + 36	Norton Input No Crossover Distortion	632,646 632,646,751A
LM3900 MC3403 MC4741C MC34004 2 MC34008 MC34074 MC34084 MC3408A C3408A C3408A C1074AC T1074BC T1074BC T1084AC T1084C T1084C Automotive Te	0.5 0.5 200 pA 200 pA 0.50 0.50 200 pA 200 pA 200 pA 200 pA	6.0 10 5.0 4.5 2.0 10 5.0 10	15 10 10 10 10	50 200 100 pA 100 pA 75 50	20 20 25 50 25	1.0 1.0 4.0	0.6 0.5	+3.0 ±1.5 +3.0	+ 36 ± 18 + 36	No Crossover Distortion	632,646,751A
MC3403 MC4741C MC34004 MC3400B MC34074 MC34084 MC34085 MC34085 TL074AC TL074BC TL074C TL074C TL084AC TL084C 4 Automotive Te	0.5 200 pA 200 pA 0.50 0.50 200 pA 200 pA 200 pA 200 pA	6.0 10 5.0 4.5 2.0 10 5.0 10	15 10 10 10 10	200 100 pA 100 pA 75 50	20 25 50 25	1.0 4.0	0.5	± 1.5 + 3.0	± 18 + 36	Distortion	
MC4741C MC34004 2 MC3400B MC34074 MC34084 MC34085 MC34085 Z TL074AC Z TL074BC Z TL084BC Z TL084C Automotive Te	0.5 200 pA 200 pA 0.50 0.50 200 pA 200 pA 200 pA 200 pA	6.0 10 5.0 4.5 2.0 10 5.0 10	15 10 10 10 10	200 100 pA 100 pA 75 50	20 25 50 25	1.0 4.0	0.5	+3.0	+ 36	Distortion	
MC34004 2 MC3400B 2 MC34074 MC34074 MC34084 2 MC34085 MC34085 TL074AC 2 TL074AC 2 TL074BC 2 TL074BC 2 TL074BC 2 TL084BC 2 TL084BC 4 Automotive Te	200 pA 200 pA 0.50 0.50 200 pA 200 pA 200 pA 200 pA	10 5.0 4.5 2.0 10 5.0	10 10 10 10	100 pA 100 pA 75 50	25 50 25	4.0					632,646
MC34004 2 MC3400B 2 MC34074 MC34074 MC34084 2 MC34085 MC34085 TL074AC 2 TL074AC 2 TL074BC 2 TL074BC 2 TL074BC 2 TL084BC 2 TL084BC 4 Automotive Te	200 pA 200 pA 0.50 0.50 200 pA 200 pA 200 pA 200 pA	10 5.0 4.5 2.0 10 5.0	10 10 10 10	100 pA 100 pA 75 50	25 50 25	4.0		± 3.0	+ 10	Ouad MC1741	632,646
MC3400B MC34074A MC34084 2 MC34085A 2 MC34085A 2 TL074AC 1 TL074BC 2 TL084BC 2 TL084BC 4 Automotive Teams	200 pA 0.50 0.50 200 pA 200 pA 200 pA 200 pA	5.0 4.5 2.0 10 5.0	10 10 10 10	100 pA 75 50	50 25		13		± 18	Quad MICI741	
MC34074 MC34074A MC34084 2 MC34085A 2 MC34085A 2 TL074AC 2 TL074BC 2 TL074BC 2 TL084AC 2 TL084AC 4 Automotive Te	0.50 0.50 200 pA 200 pA 200 pA 200 pA	4.5 2.0 10 5.0 10	10 10 10	75 50	25	4.0	1 13	±5.0	± 18	JFET Input	632,646
MC34074A MC34084 MC34085A MC34085A TL074AC TL074BC TL074BC TL074C TL084AC TL084AC TL084BC TL084C Automotive Te	0.50 200 pA 200 pA 200 pA 200 pA	2.0 10 5.0 10	10 10	50		1 7.0	13	±5.0	± 18	JFET Input	632,646
MC34084 2 MC34085A 2 MC34085A 2 TL074AC 2 TL074BC 2 TL074C 2 TL084AC 2 TL084BC 2 TL084BC 4 Automotive Te	200 pA 200 pA 200 pA 200 pA	10 5.0 10	10	1		4.5	10	+3.0	+44	High Performance,	632,646
MC34084A 2 MC34085A 2 TL074AC 2 TL074BC 2 TL074C 2 TL084AC 2 TL084BC 2 TL084C 4 Automotive Te	200 pA 200 pA 200 pA	5.0 10		50 pA	50	4.5	10	+3.0	+44	Single Supply	632,646
MC34085 2 MC34085A 2 TL074AC 2 TL074BC 2 TL074C 2 TL084AC 2 TL084BC 2 TL084C 4 Automotive Te	200 pA 200 pA	10	10		25	10	40	±5.0	±18	Hi-Speed, JFET Input	632,646
MC34085 2 MC34085A 2 TL074AC 2 TL074BC 2 TL074C 2 TL084AC 2 TL084BC 2 TL084C 4 Automotive Te	200 pA 200 pA			50 pA	50	10	40	±5.0	±18	Hi-Speed, JFET Input	632,646
MC34085A 2 TL074AC 2 TL074BC 2 TL074C 2 TL084AC 2 TL084BC 2 TL084C 4 Automotive Te	200 pA		10	50 pA	25	20	80	±5.0	± 18	Decompensated	632,646
TL074AC 2 TL074BC 2 TL074C 2 TL084AC 2 TL084BC 2 TL084C 4 Automotive Te			10	50 pA	50	20	80	±5.0	± 18	MC34084 for A _V ≥2	632,646
TL074BC 2 TL074C 2 TL084AC 2 TL084BC 2 TL084C 4 Automotive Te		6.0	10	50 pA	50	4.0	13	± 5.0	±18	Low Noise, JFET Input	632,646
TL074C 2 TL084AC 2 TL084BC 2 TL084C 4 Automotive Te	200 pA	3.0	10	50 pA	50	4.0	13	±5.0	±18	Low Noise, JFET Input	632,646
TL084AC 2 TL084BC 2 TL084C 4 Automotive Te	200 pA	10	10	50 pA	25	4.0	13	± 5.0	± 18	Low Noise, JFET Input	632,646
TL084BC 2 TL084C 4 Automotive Te	200 pA	6.0	10	100 pA	50	4.0	13	±5.0	± 18	JFET Input	632,646
TL084C 4	200 pA	3.0	10	100 pA	50	4.0	13	± 5.0	± 18	JFET Input	632,646
	400 pA	15	10	200 pA	25	4.0	13	±5.0	± 18	JFET Input	632,646
	empera	ture Ra	nge (-4	i0°C to -	+ 85°C)		- t				
LM2902	0.5	10		50	_	1.0	0.6	± 1.5	± 13	Differential	646,751A
LIVIZOUZ	0.5	10		"			0.0	+3.0	+ 26	Low Power	
MC3301	0.3			_	1.0	4.0	0.6	± 2.0	± 15	Norton Input	646
LM2900	0.5				1.0	4.0	0.0	+4.0	+ 28		
MC3303	0.5	8.0	10	75	20	1.0	0.6	± 1.5	± 18	Differential	646
10103303	0.5	0.0	10	/ / /	20		0.0	+3.0	+36	General Purpose	
MC33074	0.50	4.5	10	75	25	4.5	10	+3.0	+44	High Performance,	632,646
MC33074A	0.50	2.0	10	50	50	4.5	10	+3.0	+44	Single Supply	632,646
	200 pA	10	10	50 pA	25	10	40	± 5.0	± 18	Hi-Speed, JFET Input	632,646
	200 pA	5.0	10	50 pA	50	10	40	± 5.0	± 18	Hi-Speed, JFET Input	632,646
	200 pA 200 pA	10	10	50 pA	25	20	80	± 5.0	± 18	Decompensated	632,646
	200 pA	5.0	10	50 pA	50	20	80	± 5.0	± 18	MC33084 for A _V ≥2	632,646
Industrial Tem							1				
	·		·			1.0	0.6	± 1.5	± 16	Split or Single	632,646
LM224		5.0	7.0	30	50	1.0	0.0	± 1.5 ± 3.0	± 16 ± 32	Supply OP Amp	032,040
LM248	0.15		_	50	25	1.0	0.5	± 3.0	± 32	Quad MC1741	632,646

Electrical Specifications

AGC Amplifiers

70071	p				
	ating ure Range		Band-	V _{CC} /	
−55 to +125°C	0 to +75°C	A _V dB	width MHz	VEE Vdc	Case
MC1590		44 Typ @ 4 Typ @	-	+ 12/-	601
MC1545	MC1445	19 Typ @	į 75	+5/-5	603,632

Non AGC Amplifiers

MC1733	MC1733C	52 40 20	@	40 90 120	+6/-6	603,632, 646
SE592	NE592	55 45	@ @	40 90	+6/-6	603,632 646

Package Styles

CASE	601	603	626
MATERIAL	Metal	Metal	Plastic
SUFFIX after type number	G, H	G, H	P, P1, N

	14	14 		8	14
CASE	632	646	693	751	751A
MATERIAL	Ceramic	Plastic	Ceramic	Plastic	Plastic
SUFFIX after type number	J, L	P, P2	J-8, J, U	D	D

High Frequency Amplifiers

A variety of high-frequency circuits with features ranging from low-cost simplicity to multi-function versatility marks Motorola's line of integrated amplifiers. Devices described here are intended for industrial and communications applications. For devices especially dedicated to consumer products, i.e., TV and entertainment radio, see "Circuits for Consumer Applications".

Non-AGC Amplifiers

SE/NE592 — Differential Two Stage Video Amplifier

A monolithic, two state differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display and video recorder systems.

MC1733/MC1733C — Video Amplifier

Differential input and output amplifier provides three fixed gain options with bandwidth to 120 MHz. External resistor permits any gain setting from 10 to 400 v/v. Extremely fast rise time (2.5 ns typ) and propagation delay time (3.6 ns typ) makes this unit particularly useful as pulse amplifier in tape, drum, or disc memory read applications.

AGC Amplifiers

MC1545/MC1445 — Gated 2-Channel Input

Differential input and output amplifier with gated 2-channel input for a wide variety of switching purposes. Typical 75 MHz bandwidth makes it suitable for high-frequency applications such as video switching, FSK circuits, multiplexers, etc. Gating circuit is useful for AGC control.

MC1590 — Wide-Band General Purpose

Has differential inputs and outputs with unneutralized power gain as high as 35 dB typical at 100 MHz in tuned amplifier service. Effective AGC voltage range from 5 to 7 volts for a 30 dB gain reduction.

Voltage Regulators

Fixed Output Voltage Regulators

- Low-cost monolithic circuits for positive and/or negative regulation at currents from 100 mA to 3.0 A
- Ideal for on-card regulation of subsystems
- Internal current limiting thermal shutdown and safe-area compensation

Fixed/Voltage, 3-Terminal Regulators for Positive or Negative Polarity Power Supplies

V _{out} Volts	Tol.† Volts	I _O mA Max	Device Positive Output	Device Negative Output	V _{in} Min/Max	Reg _{line} mV	Reg _{load} mV	ΔV _O /ΔT mV/°C Typ	Case
2	± 0.1	1500	_	MC7902C	5.5/35	40	120	1.0	1, 221A
	± 0.15	100		MC79L03AC	4.7/30	60	72	_	29, 79
3	±0.3			MC79L03C		80			
5	± 0.5	100	MC78L05C	MC79L05C	6.7/30	200	60	_	29, 79
	± 0.25		MC78L05AC	MC79L05AC		150			
		500	MC78M05C	MC79M05C	7/35	100	100	1.0	79, 221A
	±0.4	1500	LM109	_				1.1	1, 79
			LM209	_					
	± 0.25		LM309	_		50		1.0	
	± 0.35		MC7805*	_	8.0/35			0.6	1
	± 0.25		MC7805B#		8/35	100]	1.0	1, 221A
			MC7805C	MC7905C	7/35				
	±0.2		MC7805A*	- ,	7.5/35	10	50	0.6	1
			MC7805AC	MC7905AC			100		1, 221A
	± 0.25		LM140-5*	_	7.0/35	50	50		1
	± 0.2	1	LM140A-5*	_		10	25		
	± 0.25		LM340-5	_		50	50		1, 221A
	± 0.2		LM340A-5	_		10	25		
	± 0.1		TL780-05C	_	7.0/35	5.0	25	0.06	221A
	± 0.25	3000	MC78T05*	_	7.3/35	25	30	0.1	1
			MC78T05C	_					
	±0.2								1, 221A
			MC78T05A*	_		10	25		1
			MC78T05AC	_					1, 221A
	±0.4]	LM123*	_	7.5/20	25	100		1
			LM223	_	1				
	± 0.25	1	LM323	_					221A
	± 0.2	1	LM123A	_					1
			LM223A			15	50		
			LM323A	_					221A
5.2	± 0.26	1500	_	MC7905.2C	7.2/35	105	105	1.0	1, 221A
6	±0.3	500	MC78M06C		8/35	100	120	1.0	79, 221A
	± 0.35	1500	MC7806*	_	9/35	60	100	0.7	1
	± 0.3	1	MC7806B#	_	9/35	120	120		1, 221A
			MC7806C	MC7906C	8/35				
	± 0.24	1	MC7806A*	_	8.6/35	11	50		1
	1		MC7806AC	_			100		1, 221A
	± 0.3		LM140-6*	_	8/35	60	60		1
			LM340-6			-			1, 221A
		3000	MC78T06*		8.3/35	30	30	0.12	1
			MC78T06C	_					1, 221A

 $^{\#}T_J = -40 \text{ to } + 125^{\circ}\text{C}$ $*T_J = -55 \text{ to } + 150^{\circ}\text{C}$

(continued)

[†]Output Voltage Tolerance for Worst Case

Fixed Output Voltage Regulators (continued)

V _{out} Volts	Tol.† Volts	I _O mA Max	Device Positive Output	Device Negative Output	V _{in} Min/Max	Regline mV	Regload mV	ΔV _O /ΔT mV/°C Typ	Case
8	± 0.8	100	MC78L08C		9.7/30	200	80	_	29, 79
			MC78L08AC	_		175			
	± 0.4	500	MC78M08C	_	10/35	100	160	1.0	79, 221A
		1500	MC7808*	_	11.5/35	80	100		1
			MC7808B#	_	11.5/35	160	160		1, 221A
			MC7808C	MC7908C	10.5/35				
	± 0.3		MC7808A*	_	10.6/35	13	50		1
			MC7808AC	_			100		1, 221A
	± 0.4		LM140-8*	_	10.5/35	80	80		1
			LM340-8	_					1, 221A
		3000	MC78T08*	_	10.4/35	35	30	0.16	1
			MC78T08C	_					1, 221A
12	± 1.2	100	MC78L12C	MC79L12C	13.7/35	250	100	_	29, 79
	± 0.6		MC78L12AC	MC79L12AC					
		500	MC78M12C	MC79M12C	14/35	100	240	1.0	79, 221A
		1500	MC7812*		15.5/35	120	120	1.5	1
			MC7812B#	_		240	240		1, 221A
			MC7812C	MC7912C	14.5/35				,
	± 0.5		MC7812A*	_	14.8/35	18	50		1
			MC7812AC				100		1, 221A
	± 0.6		LM140-12*	_	14.5/35	120	120	1.5	1
	± 0.5		LM140A-12*	_		18	32		
	±0.6		LM340-12			120	120		1, 221A
	± 0.5		LM340A-12	_		18	32		
	±0.24		TL780-12C	_		5.0		0.15	221A
	± 0.6	3000	MC78T12*	_	14.5/35	45	30	0.24	1
			MC78T12C						1, 221A
	± 0.5		MC78T12A*	_		18	25		1
			MC78T12AC	_					1, 221A
15	± 1.5	100	MC78L15C	MC78L15C	16.7/35	300	150		29, 79
	± 0.75		MC78L15AC	MC78L15A					20,70
		500	MC78M15C	MC79M15C	17/35	100	300	1.0	79, 221A
		1500	MC7815*	_	18.5/35	150	150	1.8	1
			MC7815B#	_		300	300		1, 221A
			MC7815C	MC7915C	17.5/35				,,
	± 0.6		MC7815A*	_	17.9/35	22	50		1
			MC7815AC				100		1, 221A
	±0.75		LM140-15*	_	17.5/35	150	150		1
	±0.6		LM140A-15*	_		22	35		
	±0.6 ±0.75 ±0.6	LM340-15	_	1	150	150	1	1, 221A	
			LM340A-15		1	22	35	1	
	±0.3		TL780-15C	_		15	60	0.18	221A
	± 0.75	3000	MC78T15*	_	17.5/40	55	30	0.3	1
			MC78T15C		1				1, 221A
	± 0.6		MC78T15A*	_	1	22	25	1	1
			MC78T15AC	_	1				1, 221A

[#]TJ = -40 to $+125^{\circ}$ C *TJ = -55 to $+150^{\circ}$ C †Output Voltage Tolerance for Worst Case

Fixed Output Voltage Regulators (continued)

V _{out} Volts	Tol.† Volts	I _O mA Max	Device Positive Output	Device Negative Output	V _{in} Min/Max	Regline mV	Reg _{load} mV	ΔV _O /ΔT mV/°C Typ	Case
18	± 1.8	100	MC78L18C	MC79L18C	19.7/35	325	170	_	29, 79
	±0.9		MC78L18AC	MC79L18AC					
		500	MC78M18C	_	20/35	100	360	1.0	79, 221A
		1500	MC7818*	_	22/35	180	180	2.3	1
			MC7818B#			360	360		1, 221A
			MC7818C	MC7918C	21/35				
	± 0.7		MC7818A*	_		31	50		1
			MC7818AC	_			100		1, 221A
	± 0.9		LM140-18*	_		180	180		1
			LM340-18	_					1, 221A
		3000	MC78T18*	_	20.6/40	80	30	0.36	1
			MC78T18C	_					1, 221A
20	± 1.0	500	MC78M20C	_	22/40	10	400	1.1	79, 221A
24	± 2.4	100	MC78L24C	MC79L24C	25.7/40	350	200	_	29, 79
	± 1.2		MC78L24AC	MC79L24AC		300			
		500	MC78M24C		26/40	100	480	1.2	79, 221A
		1500	MC7824*	_	28/40	240	240	3.0	1
			MC7824B#	_		480	480		1, 221A
		:	MC7824C	MC7924C	27/40				
	± 1.0		MC7824A*	_	27.3/40	36	50		1
			MC7824AC	_			100		1, 221A
	± 1.2	1	LM140-24*			240	240		1
		<u></u>	LM340-24	_					1, 221A
		3000	MC78T24*		26.7/40	90	30	0.48	1
			MC78T24C						1, 221A

Adjustable Output Voltage Regulators

Positive Output Regulators

Positi	ve Output I	reguia	ators											
lo		S u f f	V _o Vo		V Vo	in Its	V _{in} — V _{out} Differ- ential	Wa	D itts ax	Regul % V _O T _A = M	ut @ 25℃	TC V _{out}	TJ =	
mA Max	Device	i x	Min	Max	Min	Max	Volts Min	T _A = 25°C	T _C = 25°C	Line	Load	Typ %/°C	°C Max	Case
100	LM317L	H,Z	1.2	37	5.0	40	3.0		nally	0.04	0.5	0.006	125	29, 79
	LM217L#							Lim	ited	0.02	0.3	0.004	150	
	LM117L*											0.003		
150	MC1723	CP	2.0	37	9.5	40	3.0	1.25		0.1	0.3	0.003	150	646
		CG						1.0	2.1			0.003		603C
		G										0.002		
		CL						1.5	_			0.003	175	632
		L							_			0.002		
		CD						1.25				0.003	150	751A
250	MC1469	G	2.5	32	9.0	35	3.0	0.68	1.8	0.03	0.13	0.002	150	603
	MC1569			37	8.5	40	2.7			0.015				

(continued)

[#]T_J = -40 to +125°C *T_J = -55 to +150°C †Output Voltage Tolerance for Worst Case

Adjustable Output Voltage Regulators (continued)

Positive Output Regulators

lo		S u f	V _c Vc	out olts	V	in olts	V _{in} — V _{out} Differ- ential	Wa	D atts	Regulation % V _{out} @ T _A = 25°C Max		TC V _{out}	Tj =	
mA Max	Device	i x	Min	Max	Min	Max	Volts Min	T _A = 25°C	T _C = 25°C	Line	Load	Typ %/°C	°C Max	Case
500	LM317M	Т	1.2	37	5.0	40	3.0		nally	0.04	0.5	0.0056	125	221A
	LM317M	R						Lim	ited					80
	LM217M#									0.02	0.3	0.004	150	
	LM117M*											0.0036		
600	MC1469	R	2.5	32	9.0	35	3.0	3.0	14.0	0.03	0.05	0.002	150	614
	MC1569			37	8.5	40	2.7			0.015	-			
1500	LM317	Т	1.2	37	5.0	40	3.0		nally	0.04	0.5	0.006	125	221A
	LM317	H, K						Lim	ited					79, 1
	LM217#	1										0.004		
	LM117*									0.02	0.3	0.003	150	
3000	LM350	Т	1.2	33	5.0	36	3.0		nally	0.03	0.5	0.008	125	221A
	LM350	К						Lim	ited					· 1
	LM250#									0.01	0.3	0.0057	150	
	LM150*											0.0051		

 $^{\#}T_J = -25 \text{ to } +150^{\circ}\text{C}$ $*T_J = -55 \text{ to } +150^{\circ}\text{C}$

Negative Output Regulators

lo		S u f f		out lts	V Vo	in olts	V _{in} — V _{out} Differ- ential	Wa	D atts ax	% V ₀	ation ut @ 25°C ax	TC V _{out}	TJ =	
mA Max	Device	i x	Min	Max	Min	Max	Volts Min	T _A = 25°C	T _C = 25°C	Line	Load	Typ %/°C	°C Max	Case
250	MC1463	G	-3.8	- 32	9.0	35	3.0	0.68	1.8	0.03	0.05	0.002	150	603
	MC1563		-3.6	- 33	8.5	40	2.7			0.015	0.13			
500	LM337M	Т	- 1.2	- 37	5.0	40	3.0		nally	0.04	1.0	0.0048	125	221A
	LM337M							Lim	ited					
	LM237M#	R								0.02	0.5	0.0034	150	80
	LM137M*											0.0031		
600	MC1463	R	- 3.8	- 34	9.0	35	3.0	2.4	9.0	0.03	0.05	0.002	175	614
	MC1563		-3.6	- 37	8.5	40	2.7			0.015				,
1500	LM337	Т	- 1.2	- 37	5.0	40	3.0	Inter	nally	0.04	1.0	0.0048	125	221A
	LM337	н, к						Lim	ited					79, 1
	LM237#]								0.02	0.5	0.0034	150	1
	LM137*											0.0031		

 $^{\#}T_J = -25 \text{ to } +150^{\circ}\text{C}$ $*T_J = -55 \text{ to } +150^{\circ}\text{C}$

Switching Regulators

Used as the control circuit in PWM, push-pull, bridge and series type switchmode supplies. The devices include the reference, oscillator, pulse-width modulator, phase splitter and output sections. Frequency and duty cycle are independently adjustable.

lo mA	V ₀ Vo	CC olts	f _c kH	iz			TΔ	
Max	Min	Max	Min	Max	Device	Suffix	°C	Case
40	1	30	2.0	100	MC3420	Р	0 to +70	648
						L		620
					MC3520	L	-55 to +125	620
250*	7.0	40	1.0	300	MC34060	Р	0 to +70	646
						L		632
					MC35060	L	-55 to +125	632
250	7.0	40	1.0	300	TL494	CN	0 to +70	648
						CJ		620
						IN	- 25 to +.85	648
						IJ	-25 10 +.85	620
						MJ	-55 to +125	620
250		>40	1.0	300	TL495**	CN	0 to +70	707
						CJ		726
						IN	-25 to +85	707
						IJ	-25 to +85	726
					SG3525A	N	0° to +70	648
					SG3525A	J	0 to +70	620
±400	8	40	0.1	400	SG2525A	N	-40 to +85	648
				-	SG2525A	J	-40 to +65	620
					SG1525A	J	-55 to +125	620
					SG3527A	N	0 to +70	648
					SG3527A	J	0 10 +70	620
± 400	8	40	0.1	400	SG2527A	N	-40 to +85	648
					SG2527A	J	-40 10 +65	620
,					SG1527A	J	-55 to +125	620
					SG3526	N	0 to +70	707
					SG3526	J	0 10 +70	726
± 200	8	40	0.001	400	SG2526	N	-40 to +85	707
					SG2526	J	-40 to +65	726
					SG1526	J	-55 to +125	726
					μ A78S4 0	PC	0 to +70	648
1500*	2.5	40	0.1	100	μ A78S4 0	DC	0 10 + 70	620
					μ A 78S40	DM	-55 to +125	020
					MC34063	PI	0 to 170	626
					MC34063	U	0 to +70	693
1500*	2.5	40	0.1	100	MC33063	PI	-40 to +85	626
					MC33063	U	-40 10 +65	693
				1	MC35063	U	- 55 to + 125	693

^{*}Single output device

^{**}Internal 39 V zener for <40 volt operation

Special Regulators

Floating Voltage and Current Regulators

Designed for laboratory type power supplies. Voltage is limited only by the break down voltage of associated, external, series-pass transistors.

V ₀	out olts	lo mA		S u f f		nux olts	P _D Watts		f ^{/V} ref	ΔΙ <u>L</u> /L <u>L</u> · %	TC V _{out}	
Min	Max	Max	Device	x	Min	Max	Max	Line	Load	Max	Тур	Case
0	*	*	MC1466	٦	21	30	0.75	0.015	0.015	0.2	0.001	632
			MC1566	L	20	35]	0.004	0.004	0.1	0.006	

^{*}Dependent on characteristics of external series-pass elements.

Dual ±15 V Tracking Regulators

Internally, the device is set for \pm 15 V, but an external adjustment can change both outputs simultaneously, from 8.0 V to 20 V.

V _c Vo	out olts	l _O mA	V Vo	in olts		S u f f	P _D Watts	Regline	Regload	TC %/°C (T _{low} to Thigh)	Ta	
Min	Max	Max	Min	Max	Device	x	Max	mV	mV	Тур	T _A °C	Case
14.8	15.2	± 100	17	30	MC1468	G	0.8	10	10	3.0	0 to +75	603C
						L	1.0					632
						R	2.4					614
					MC1568	G	0.8				-55 to +125	603C
						L	1.0					632
						R	2.4					614

Low Temperature Drift, Voltage References

V _{out} Volts Typ	IO mA Max	ΔV _{out} /ΔT ppm/°C Max	Device	Reg _{line} mV Max	Reg _{load} mV Max	T _A °C	Case
1.235 ± 12 mV			LM385BZ-1.2			0 to +70	29
			LM285Z-1.2		1.0 (Note 2)	-40 to +85	
1.235 ± 25 mV	20	20 T	LM385Z-1.2	(NI - 4 - 4)	(Note 2)	0 to +70	
2.5 ± 38 mV	20	20 Typ	LM385BZ-2.5	(Note 1)			
			LM285Z-2.5		2.0 (Note 3)	-40 to +85	
2.5 ± 75 mV			LM385Z-2.5		(Note 3)	0 to +70	
2.5 ± 5.0 mV	± 10	25	MC1400G2	3.0	10	0 to +70	601
		10	MC1400AG2	(Note 4)	(Note 7)		
		40	MC1500G2	(1,1010-1)	(110107)	-55 to +125	
		10	MC1500AG2				
2.5 ± 25 mV	10	40	MC1403	3.0/4.5	10	0 to +70	693, 79, 751
		25	MC1403A	(Note 5)	(Note 8)	1	693, 79
		55	MC1503	(11016 0)	(14016-0)	- 55 to + 125	
*		25	MC1503A				

Notes:

- 1. Micro-Power Reference Diode Dynamic Impedance (z) \leq 1.0 Ω at IR = 100 μ A
- 2. $10 \mu A \le I_R \le 1.0 \text{ mA}$ 3. $20 \mu A \le I_R \le 1.0 \text{ mA}$
- 4. (V_{out} ± IV) ≤ V_{in} ≤ 40 V 5. 4.5 V ≤ V_{in} ≤ 15 V

- 15 V \leq V_{In} \leq 40 V 6. (V_{out} + 2.5 V) \leq V_{in} \leq 40 V 7. -10 mA \leq I_L \leq + 10 mA 8. 0 mA \leq I_L \leq 10 mA

(continued)

Special Regulators (continued)

Low Temperature Drift, Voltage References

V _{out} Volts Typ	IO mA Max	ΔV _{out} /ΔT ppm/°C Max	Device	Reg _{line} mV Max	Reg _{load} mV Max	T _A °C	Case
5.0 ± 10 mV	± 10	25	MC1400G5	4.0	20	0 to +70	693
		10	MC1400AG5	(Note 4)	(Note 7)		
		40	MC1500G5			-55 to +125	
		10	MC1500AG5				
5.0 ± 50 mV	10	40	MC1404U5	6.0	10	0 to +70	
		25	MC1404AU5	(Note 6)	(Note 8)		
		55	MC1504U5	, , , , , , , , , , , , , , , , , , , ,	,	-55 to +125	
		25	MC1504AU5				
6.25 ± 10 mV	± 10	25	MC1400G6	4.0	20	0 to +70	601
		10	MC1400AG6	(Note 4)	(Note 7)		
		40	MC1500G6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-55 to +125	
		10	MC1500AG6				
6.25 ± 60 mV	10	40	MC1404U6	6.0	10	0 to +70	693
	ļ	25	MC1404AU6	(Note 6)	(Note 8)		
		55	MC1504U6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-55 to +125	
	ļ	25	MC1504AU6				
10 ± 20 mV	± 10	25	MC1400G10	4.0	20	0 to +70	601
		10	MC1400AG10	(Note 4)	(Note 7)		
		40	MC1500G10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-55 to +125	
		10	MC1500AG10				
10 ± 100 mV	10	40	MC1404U10	6.0	10	0 to +70	693
		25	MC1404AU10	(Note 6)	(Note 8)		
		55	MC1504U10			-55 to +125	
		25	MC1504AU10				
			TL431C		leference	0 to +70	29, 626
2.5 to 37	100	50 Typ	TL431I		Impedance 0.5 Ω	-40 to +85	693
			TL431M]	0.0 12	-55 to +125	693

Notes:

- 1. Micro-Power Reference Diode Dynamic Impedance (z) \leq 1.0 Ω at IR = 100 μ A

- $\begin{array}{lll} 1. & \text{Micro-Power Reference Diode Dynamic} \\ 2. & 10 \ \mu A \leqslant I_R \leqslant 1.0 \ \text{mA} \\ 3. & 20 \ \mu A \leqslant I_R \leqslant 1.0 \ \text{mA} \\ 4. & (V_{out} + 1.0 \ \text{V}) \leqslant V_{in} \leqslant 40 \ \text{V} \\ 5. & 4.5 \ \text{V} \leqslant V_{in} \leqslant 15 \ \text{V}'.15 \ \text{V} \leqslant V_{in} \leqslant 40 \ \text{V} \\ 6. & (V_{out} + 2.5 \ \text{V}) \leqslant V_{in} \leqslant 40 \ \text{V} \\ 7. & -10 \ \text{mA} \leqslant I_L \leqslant +10 \ \text{mA} \\ 8. & 0 \ \text{mA} \leqslant I_L \leqslant 10 \ \text{mA} \\ \end{array}$

Package Styles

				_	3			
CASE	1 (TO-3)	29 (TO-92)	79 (TO-39)	80 (TO-66)	221A (TO-220)	603 (TO-5	603C Type)	614
MATERIAL	Metal	Plastic	Metal	Metal	Plastic	Metal	Metal	Metal
SUFFIX	SK, K, KC	P. Z	G, H	R) т	G, H	G	R

}	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	15	1	14	16	}	18	ł		
CASE	620	626	632 (TO-116)	646	648	693	707	726	751	751A
MATERIAL	Ceramic	Plastic	Ceramic	Plastic	Plastic	Ceramic	Plastic	Ceramic	Plastic	Plastic
SUFFIX	J, L	P or P1	L	P or P2	N, P	U	N	J	D	D

Voltage References

Precision Low-Voltage References

A family of precision low-voltage bandgap voltage reference, these devices are designed for applications requiring low temperature drift.

V _{out} Volts Typ	I _O mA Max	ΔV _{out} /ΔT ppm/°C Max	Device	Reg _{line} mV Max	Reg _{load} mV Max	T _A °C	Case
1.235 ± 12 mV			LM385BZ-1.2			0 to +70	29
			LM285Z-1.2		1.0 (Note 2)	-40 to +85	
1.235 ± 25 mV	20	20 Typ	LM385Z-1.2	(Note 1)	(11010 2)	0 to +70	
2.5 ± 38 mV	20	20 Typ	LM385BZ-2.5	(Note 1)			
			LM285Z-2.5		2.0 (Note 3)	-40 to +85	
2.5 ± 75 mV			LM385Z-2.5		(11010 0)	0 to +70	
2.5 ± 5.0 mV	±10	25	MC1400G2	3.0	10	0 to +70	601
		10	MC1400AG2	(Note 4)	(Note 7)		
		40	MC1500G2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(-55 to +125	
		10	MC1500AG2				
2.5 ± 25 mV	10	40	MC1403	3.0/4.5	10	0 to +70	693,79,751
		25	MC1403A	(Note 5)	(Note 8)		693, 79
		55	MC1503	(**************************************	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-55 to +125	
		25	MC1503A				
5.0 ± 10 mV	±10	25	MC1400G5	4.0	20	0 to +70	693
		10	MC1400AG5	(Note 4)	(Note 7)		
		40	MC1500G5	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-55 to +125	
		10	MC1500AG5				
5.0 ± 50 mV	10	40	MC1404U5	6.0	10	0 to +70	
		25	MC1404AU5	(Note 6)	(Note 8)		
		55	MC1504U5	(11010 0)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-55 to +125	
		25	MC1504AU5				
6.25 ± 10 mV	±10	25	MC1400G6	4.0	20	0 to +70	601
		10	MC1400AG6	(Note 4)	(Note 7)		
		40	MC1500G6] (1.555 ./	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-55 to +125	-
		10	MC1500AG6				

(continued)

Precision Low-Voltage References (Continued)

V _{out} Volts Typ	I _O mA Max	ΔV _{out} /ΔT ppm/°C Max	Device	Reg _{line} mV Max	Reg _{load} mV Max	T _A °C	Case
6.25 ± 60 mV	10	40	MC1404U6	6.0	10	0 to +70	693
		25	MC1404AU6	(Note 6)	(Note 8)		
		55	MC1504U6	(-55 to +125	
		25	MC1504AU6				
10 ± 20 mV	±10	25	MC1400G10	4.0	20	0 to +70	601
		10	MC1400AG10	(Note 4)	(Note 7)		
	ì	40	MC1500G10	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , ,	-55 to +125	
		10	MC1500AG10				
10 ± 100 mV	10	40	MC1404U10	6.0	10	0 to +70	693
		25	MC1404AU10	(Note 6)	(Note 8)		
	İ	55	MC1504U10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	-55 to +125	
		25	MC1504AU10				
2.5 to 37			TL431C	Shunt R	eference	0 to +70	29,626,693
	100	50 Typ	TL431I	Dynamic Impedance		-40 to +85	
			TL431M	(z) ≤	0.5 Ω	-55 to +125	693

- Notes: 1. Micro-Power Reference Diode Dynamic Impedance (z) \leq 1.0 Ω at IR = 100 μ A 2. 10 μ A \leq IR \leq 1.0 mA 3. 20 μ A \leq IR \leq 1.0 mA 4. (Vout +1.0 V) \leq Vin \leq 40 V 5. 4.5 V \leq Vin \leq 15 V/15 V \leq Vin \leq 40 V 6. (Vout + 2.5 V) \leq Vin \leq 40 V 7. -10 mA \leq IL \leq + 10 mA 8. 0 mA \leq IL \leq 10 mA

Data Conversion

The Line of data conversion products which Motorola offers, span a wide spectrum of speed and resolution/accuracy. Features including bus compatibility minimize external parts count and provide easy interface to microprocessor systems. Various technologies such as ion implantation, thin-film, laser trimming and CMOS are utilized to achieve functional capability, accuracy and production repeatability.

A-D Converters

Resolution		Accuracy	Conversion	Input Voltage	Supplies	1	npera				
(Bits)	Device	(Max)	Time	Range	(V)	М	ı	С	Package	Technology	Comments
7	MC10315L	± ½ LSB	66 ns	1 to 2 V _{p-p}	+5.0, -5.2			•	24-Pin DIP	Bipolar	Video Speed Flash, ECL Logic Levels
	MC10317L	± ½ LSB	66 ns	1 to 2 V _{p-p}	+5.0, ±5.2			•	24-Pin DIP	Bipolar	Video Speed Flash, Expandable to 8-Bits, ECL Logic Levels
8	*AM6108A	± ½ LSB	2.0 μs**	±5.0 V 0 to 5.0 V 0 to 10 V	+5.0, -5.2			•	28-Pin DIP	Bipolar	μP Compatible, Three- State Outputs, includes Reference
	MC145040	±1/2 LSB	50 μs**	0 to V _{DD}	+5.0, ±10%		Δ		20-Pin DIP	CMOS	Requires External Clock
8	MC145041	±½ LSB	50 μs**	0 to V _{DD}	+5.0, ±10%	place, we refer with	A	45.9427	20-Pin DIP	CMOS	Includes Internal Clock
8	MC14442	±1% LSB	32 μs	0 to V _{DD}	+5.0, ±10%				28-Pin DIP	CMOS	M68 μP Compatible 12-channel MUX S.A.R.
8	MC14444	±1⁄2 LSB	32 µs	0 to V _{DD}	+5.0, ±10%			A sept of the	40-Pin DIP	CMOS	M68 μP Compatible 16-channel MUX S.A.R.
8–10	MC14443/47	±0.3%	300 μs	Variable w/Supply	+5.0 to +18				16-Pin DIP	CMOS	μΡ Compatible, Single Slope, 6-channel MUX
31∕₂ Digit	MC14433	±0.05%	40 ms	± 2.0 V ± 200 mV	+5.0, +8.0				24-Pin DIP	CMOS	Dual Slope

Devices in shaded area — Refer to MOS Special Function Data Book, DL130, for further information.

^{*} To Be Introduced.

^{**} Includes Data Transfer Time.

[†] Temperature Ranges:

M • — Military (-55°C to +125°C)

I ■ — Industrial (-25°C to +85°C)

I ■ — Automotive (– 40°C to +85°C)
I ▲ — Automotive (–40°C to +125°C)

C

Commercial (0°C to +70°C)

D-A Converters

		Accuracy @ 25°C	Settling Time	Internal	Supplies		pera lange				
Resolution (Bits)	Part Number	(Max)	(±½ LSB)	Reference	(V)	М	ı	С	Package	Technology	Comments
6	MC1406	± 1/2 LSB	300 ns	_	+5.0, -15			•	14-Pin DIP	Bipolar	Multiplying
6	MC144110	±2.0%	- :		+5.0 to +15			•	20-Pin DIP	CMOS	Serial input, HEX DAC, 6 outputs
6	MC144111	±2.0%	-		+5.0 to +15			•	14-Pin DIP	CMOS	Serial input, Quad DAC, 4 outputs
8	DAC-08	± 1/2 LSB	150 ns	_	± 5.0 to ± 15	•			16-Pin DIP	Bipolar	High-speed multiplying
8	DAC-08A	± 1/4 LSB	135 ns	_	± 5.0 to ± 15	. •			16-Pin DIP	Bipolar	High-speed multiplying
8	DAC-08C	±1 LSB	150 ns		± 5.0 to ± 15			•	16-Pin DIP	Bipolar	High-speed multiplying
8	DAC-08E	± 1/2 LSB	150 ns	_	±5.0 to ±15			•	16-Pin DIP	Bipolar	High-speed multiplying
8	DAC-08H	± 1/4 LSB	135 ns		± 5.0 to ± 15			•	16-Pin DIP	Bipolar	High-speed multiplying
8	MC1408L6	±2 LSB	300 ns Typ	_	+5.0, -15			•	16-Pin DIP	Bipolar	Multiplying
8	MC1408L7	±1 LSB	300 ns Typ	_	+5.0, -15			•	16-Pin DIF	Bipolar	Multiplying
8	MC1408L8	± 1/2 LSB	300 ns Typ	_	+5.0, -15			•	16-Pin DIF	Bipolar	Multiplying
8	MC1408P6	±2 LSB	300 ns Typ	_	+5.0, -15			•	16-Pin DIF	Bipolar	Multiplying
8	MC1408P7	±1 LSB	300 ns Typ	_	+5.0, -15			•	16-Pin DIF	Bipolar	Multiplying
8	MC1408P8	± 1/2 LSB	300 ns Typ	_	+5.0, -15			•	16-Pin DIF	Bipolar	Multiplying
8	MC1508L8	± 1/2 LSB	300 ns Typ		+5.0, -15	•			16-Pin DIF	Bipolar	Multiplying
8	MC6890	± 1/2 LSB	300 ns	2.5 V	±5.0 to ±15	5		•	20-Pin DI	Bipolar Thin-Film	μP Compatible Double Buffered
8	MC6890A	± 1/2 LSB	300 ns	2.5 V	±5.0 to ±1	•			20-Pin DII	Bipolar Thin-Film	Includes Application Resistors

Devices in shaded area — Refer to MOS Special Function Data Book, DL130, for further information.

(continued)

† Temperature Ranges:

D-A Converters (continued)

Resolution	Part	Accuracy @ 25°C	Settling Time	Internal	Supplies		npera Range				
(Bits)	Number	(Max)	(± 1/2 LSB)	Reference	(V)	М	ı	С	Package	Technology	Comments
8	MC10318CL6	±2 LSB	10 ns Typ	_	- 5.2			•	16-Pin DIP	Bipolar ECL	ECL input Logic Level
8	MC10318CL7	±1 LSB	10 ns Typ	- .	- 5.2			•	16-Pin DIP	Bipolar ECL	ECL input Logic Level
8	MC10318L	±½ LSB	10 ns Typ	_	-5.2			•	16-Pin DIP	Bipolar ECL	ECL input Logic Level
·8	MC10318L9	± 1/4 LSB	10 ns Typ	_	-5.2			•	16-Pin DIP	Bipolar ECL	ECL input Logic Level
10	MC3410	±½ LSB	250 ns Typ	-	+5.0, -15			•	16-Pin DIP	Bipolar	Multiplying
10	MC3410C	±1 LSB	250 ns Typ	_	+5.0, -15			•	16-Pin DIP	Bipolar	Multiplying
10	MC3510	± 1/2 LSB	250 ns Typ	_	+5.0, -15	•			16-Pin DIP	Bipolar	Multiplying
12	AD562A	± 1/2 LSB	1.0 μs	_	+ 15, - 15		•		24-Pin DIP	Bipolar Thin-Film	Multiplying, includes Applications Resistors
12	AD562K	± ½ LSB	1.0 μs	_	+15, -15			•	24-Pin DIP	Bipolar Thin-Film	Multiplying, includes Applications Resistors
12	AD562S	± 1/4 LSB	1.0 μs	_	+ 15, - 15	•			24-Pin DIP	Bipolar Thin-Film	Multiplying, includes Applications Resistors
12	AD563J	± 1/2 LSB	1.2 μs	2.5 V	+5.0, -15			•	24-Pin DIP	Bipolar Thin-Film	Includes Applications Resistors
12	AD563K	± 1/4 LSB	1.2 μs	2.5 V	+5.0, -15			•	24-Pin DIP	Bipolar Thin-Film	Includes Applications Resistors
12	AD563S	± 1/4 LSB	1.2 <i>μ</i> s	2.5 V	+5.0, -15	•			24-Pin DIP	Bipolar Thin-Film	Includes Applications Resistors
12	AD563T	± 1/4 LSB	1.2 μs	2.5 V	+5.0, -15	•			24-Pin DIP	Bipolar Thin-Film	Includes Applications Resistors
12	MC3412	± 1/2 LSB	400 ns	10 V	+15, -15			•	24-Pin DIP	Bipolar Thin-Film	High-speed, includes Applications Resistors
12	MC3512	± ½ LSB	400 ns	10 V	+ 15, - 15	•			24-Pin DIP	Bipolar Thin-Film	High-speed, includes Applications Resistors

Temperature Ranges:

M • — Military (-55°C to +125°C)

I • — Industrial (-25°C to +85°C)

I ■ — Automotive (-40°C to +85°C)

I ■ — Automotive (-40°C to +125°C)

C • — Commercial (0°C to +70°C)

Bus interface

Microprocessor Bus

This family of devices is designed to extend the limited drive capabilities of today's standard microprocessors. All devices are fabricated with Schottky TTL technology for high speed.

General features include:

- Single +5.0 V Power Supply Requirement
- Three-State Logic Output
- Low Input Loading 200 μA Max.

DATA BUS EXTENDERS

Quad, Bidirectional, with 3-State Outputs

Device I _{II} H I _{IL} Number μA Max		Current	IOHL Output Disabled	tpLH. tpHL Propagation Delay Time — High to Low or Low to High ns Max		
			Leakage Current — High Logic State μΑ Max			
MC8T26A/MC6880A MC8T28/MC6889	25 25	- 200 - 200	100 100	14 17		

M6800 CLOCK GENERATOR

MC6875/MC6875A — Provides the non-overlapping two-phase clock signals for M6800 MPU systems.

MC6875L — $T_A = 0 \text{ to } +70^{\circ}\text{C}$ MC6875AL — $T_A = -55 \text{ to } +125^{\circ}\text{C}$

Package: L Suffix — Case 620

A-D/D-A CONVERTERS

(See Precision Circuits - Data Conversion)

MPU Bus Compatible MC6890/MC6890A — Split Supply

Computer Bus

NEW IBM 360/370 I/O INTERFACE

Line Receivers and Drivers designed to operate compatibly. The MC75125/MC75127 Seven-Channel Receivers, MC75128/MC75129 Eight-Channel Receivers, and the MC3481/MC3485 Drivers meet the new IBM System 360/370 I/O GA-22-6974-3 standard requirements.

SEVEN-CHANNEL LINE RECEIVERS

MC75125

MC75127 — Standard V_{CC} and Ground Pinouts.

Vcc

1Y

27

3Y

4Y

5Y

6Y

EIGHT-CHANNEL LINE RECEIVERS

MC75128 — Active-High Strobe

MC75129 — Active-Low Strobe

Device Number	Input Resistance kΩ Min/Max	I _{IH(R)} @ V _{IH} = 3.11 V mA Max	^t PLH @ C _L = 50 pF ns Max
MC75125/75127	7.0/20	0.42	25
MC75128/75129	7.0/20	0.42	25

New IBM 360/370 I/O Interface (continued)

QUAD LINE DRIVERS

MC3481 — Open emitter driver with individual fault flags.

MC3485 — Open emitter driver with combined open collector fault flag and inverted outputs.

Packages: L Suffix — Case 620 P Suffix — Case 648

Meets GA-22-6974-3

Device Number	V _{OH} @ I _{OH} = −59.3 mA Volts Min	los* @ Vo = 0 mA Max	tpLH @ C _L = 100 pF ns Typ
MC3481/3485	3.11	-5.0	20

*Fault Protection

Instrumentation Bus

QUAD INTERFACE TRANSCEIVERS

These devices are designed to meet the GPIB bus specification of IEEE Standard 488-1978, for the interconnection of Measurement Apparatus.

MC3440AP — Three drivers with common Enable input; one driver without mon Enable input. Enable.

MC3441AP — Four drivers with com- MC3443AP — Four drivers with com-

mon Enable input; no termination resistors.

MC3448A ---

────────────────────────────────────	O Bus
	Terminations
*	
Gnd	

Device Number	Receiver Input Hysteresis mV Min	Drive Output Voltage @ I _{OL} = 48 mA; Volts Max	tPHL (Driver or Receiver) ns Max
MC3440AP	400	0.5	30
MC3441AP	400	0.5	30
MC3443AP	400	0.5	25 (D) 22 (R)
MC3446AP	400	0.5	50 (D) 40 (R)
MC3448A	400	0.5	17 (D) 23 (R)

Instrumentation Bus (continued)

OCTAL LOW-POWER INTERFACE TRANSCEIVER

These devices are designed to meet the GPIB bus specifications of IEEE Standard 488-1978, for the interconnection of Measurement Apparatus.

MC3447 — Open collector, 3-State outputs with terminations.

Device Number	Receiver Input Hysteresis mV Min	Drive Output Voltage @ IOL = 48 mA; Volts Max	tPHL (Driver or Receiver) ns Max
MC3447	400	0.5	30 (D) 22 (R)*

HIGH-CURRENT PARTY-LINE BUS TRANSCEIVERS

Devices for industrial control and data communication.

MC26S10 — Inverting MC26S11 — Noninverting

Quad transceivers with open-collector drivers and PNP-buffered inputs for MOS compatibility.

Packages: L Suffix — Case 620 P Suffix — Case 648

Test	Condition	Limits
V _{OL} (D)	I _{OL} = 100 mA	0.8 Volts Max
IO (D)	V _{OH} = 4.5 V	100 μA Max
IO1 (D)	$V_{CC} = 0 V$	100 μA Max
. ,	$V_{OH} = 4.5 V$	
IH (D)	$V_{IH} = 2.7 V$	30 μA Max
liL (D)	$V_{II} = 0.4 V$	- 0.54 mA Max
t _P (D)	MC26S10	15 ns Max
1 (D)	MC26S11	19 ns Max
tp (R)	Both Types	15 ns Max

^{*}Inverter on MC26S11 only.

Memory Interface and Control

NMOS Memories to TTL Systems

MULTIPLEXED 16-PIN RAM CONTROL (For 4K, 16K, and 64K Dynamic Memories)

MC3480 — Memory Controller. Used with all three levels of RAM.

The memory controller chip is designed to greatly simplify the interface logic required to control popular 16-pin 4K, 16K, or 64K dynamic NMOS RAMs in a microprocessor system such as the M6800. The controller will generate, on command from the microprocessor, the proper RAS and timing signals required to successfully transfer data between the microprocessor and the NMOS memories. The controller, in conjunction with an oscillator, will also generate the necessary signals required to insure

that the dynamic memories are refreshed for the retention of data.

With Schottky TTL technology for high performance. and high input impedance for minimum loading of the MPU bus, the MC3480 reduces package count, and reduces system access/cycle times by 30%. The chip enable allows expansion to larger-word capacity.

Designed to interface directly with MC3242A address/ multiplexers/refresh counter.

The MC3482A or B is recommended for multiplex function with 64K RAMs.

Signals From MPU A12/14 A13/15 Ref Clk CE MC R/W

MC3242A — Designed for multiplexing 14 address lines into 7 for the 16-pin multiplexed 16K RAMs, while also containing a 7-bit refresh counter.

$$T_A = 0 \text{ to } +75^{\circ}C$$

Count	1	0	28	Vcc
Ref En	2		27	A6
Row En	3		26	A13
N.C.	4		25	A5
A1	5		24	A12
A8	6		23	A4
A2	7		22	A11
A9	8		21	АЗ
A0	9		20	A10
A7	10		19	0 6
00	11		18	O ₃
02	12		17	0 4
01	13		16	05
Gnd	14		15	CE

Packages:

L Suffix - Case 733 P Suffix — Case 710

 $T_A = 0 \text{ to } +70^{\circ}C$ MC 1 24 VCC 23 MC t1 2 t2 3 22 CE t3 4 21 Ref Clk 20 Ref Request t4 5 19 Ref Grant t5 6 R/W In 7 18 A12/14 Ref En Out 8 17 A13/15 16 RAS 1 Row En Out 9 R/W Out 10 15 RAS 2 CAS 11 14 RAS 3 Gnd 12 13 RAS 4 Packages: L Suffix - Case 623

MC3242A - 7-Bit (16K RAM) Address Multiplexer/Refresh Counter

P Suffix - Case 649

MC3482A/B — 8-Bit Address Multiplexer (See Microprocessor Bus Section)

MEMORY INTERFACE and CONTROL (continued)

BUS EXTENSION (See Microprocessor Bus)

Data Bus (Bidirectional) Extenders MC8T26A/MC6880A — Inverting MC8T28A/MC6889 — Noninverting

Address Bus (Unidirectional) Extenders MC8T95/MC6885 — Hex Noninverting MC8T96/MC6886 — Hex Inverting MC8T97/MC6887 — Hex Noninverting MC8T98/MC6888 — Hex Inverting MC3482A/MC6882A — Octal Inverting MC3482B/MC6882B — Octal Noninverting

Magnetic Memories to TTL Systems

SENSE AMPLIFIERS

... for Magnetic Tape Memories

$T_A = 0 \text{ to } +70^{\circ}C$

Packages:

L Suffix — Case 726 P Suffix — Case 707

MEMORY INTERFACE and CONTROL (continued)

Magnetic Memories to TTL Systems (continued)

FLOPPY DISK READ AMPLIFIER SYSTEM

MC3470/MC3470A — Designed as monolithic READ Amplifier Systems for obtaining digital information from floppy disk storage. They are designed to accept the differential ac signal produced by the magnetic head and produce a digital output pulse that corresponds to each peak of the input signal. The gain stage amplifies the input waveform and applies it to an external filter network, enabling the active differentiator and time domain filter to produce the desired output. They combine all the active circuitry to perform the floppy disk READ amplifier function in one circuit, and are guaranteed to have a maximum peak shift of 5.0%, adjustable to zero, for the MC3470P and 2.0%, adjustable to zero, for the MC3470P.

1 18 V_{CC2} Amplifier Inputs 2 Amplifier Outputs 3 16 Offset Decoupling 4 Active 15 Differentiator Gnd 5 14 Inputs 6 One-Shot Differentiator Components 7 12 Components V_{CC1} 11 One-Shot Components) 9 Data 10 Output

 $T_A = 0 \text{ to } +70^{\circ}\text{C}$

Package:

P Suffix — Case 707

.,	Peak Shift (f = 250 kHz, V _{ID} = 1.0 Vpp)	Voltag (f = 20 V _{ID} = [RI	tial Input e Gain 00 kHz, 5.0 mV MS])	Input Commode (5% Ma	Range
Device Number	% Max	Min	/V Max	Min	Max
MC3470 MC3470A	5.0 2.0	80 100	130 130	-0.1	1.5

MEMORY INTERFACE and CONTROL (continued)

Magnetic Memories to TTL Systems (continued)

FLOPPY DISK WRITE CONTROLLER/HEAD DRIVER SYSTEMS

MC3469P (Straddle Erase) — is designed to provide the entire interface between floppy disk heads and the head control and write data signals for stradle-erase heads.

Provisions are made for selecting a range of accurately controlled write currents and for head selection during both read and write operation. Additionally, provisions are included for externally adjusting degauss period and inner/outer track compensation.

MC3471P (Tunnel Erase) — is designed to provide the entire interface between the write data and head control signals and the heads (write and erase) for either Tunnel or straddle-erase floppy disk systems.

Provisions are made for selecting a range of accurately controlled write currents and for head selection during both read and write operation. Additionally, provisions are included for externally adjusting degauss period, inner/outer track compensation, and the delay from write gate to erase turn-on and turn-off.

Erase Delays are controlled by driving the delay inputs D1 and D2 with standard TTL open-collector logic (microprocessor compatible) or by using the external RC mode in which case the delay is one τ (K factor = 1.0).

In addition, a Inhibit output is provided which indicates that the heads are active during write, degauss, or erase.

Line Drivers and Receivers for Computer/Terminal Applications

RS-422/423 Specification (continued)

DRIVERS

Device Number	VOH @ I _{OH} = -20 mA Volts Min	V _{OL} @ I _{OL} = 48 mA Volts Max	V _{OD} (Differential) @ R _L = 100 Ω Volts Min	tpLH & tpHL ns Max
MC3487	2.5	0.5	2.0	20
AM26LS31	2.5	0.5		20

^{*}Not guaranteed.

 $\mathbf{MC3488A}~(\mu\mathrm{A9636A})$ — Dual; RS-423/232C with adjustable slew rate.

$$T_A = 0$$
 to $+70^{\circ}$ C
Packages: P1 Suffix — Case 626
U Suffix — Case 693

RS-449/485 SPECIFICATION (PARTY LINE)

The SN75172/SN75174 are monolithic quad differential line drivers with three-state outputs.

TRUTH TABLE					
Input	Control Inputs (E/Ē)	Noninverting Output	Inverting Output		
Н	H/L	Н	L		
L	H/L	L	Н		
X	L/H	Z	Z		

L = Low Logic State

H = High Logic State

X = Irrelevant

Z = Third-State (High Impedance)

TRUTH TABLE					
Control Noninverting Inverting Input Output Output					
Н	Н	Н	L		
L	Н	L	Н		
Х	L	Z	Z		
I Levi Legia Ctata					

L = Low Logic State

H = High Logic State

X = Irrelevant

Z = Third-State (High Impedance)

 $T_A = 0 \text{ to } +70^{\circ}\text{C}$

Packages:

L Suffix — Case 620

P Suffix — Case 648

RS-449/485 SPECIFICATION (PARTY LINE) (continued) RECEIVERS

The SN75173/SN75175 are monolithic quad differential line receivers with three-state outputs.

SN75175

FUNCTION TABLE (EACH RECEIVER)

Differential Inputs	Differential Inputs Enables		Output
A-B	G	G	Y
V _{ID} ≥ 0.2 V	.H X	X L	H H
$-0.2 \ V < V_{ m ID} < 0.2 \ V$	H X	X L	?
V _{ID} ≤ -0.2 V	H X	X L	L L
X	L	Н	z

FUNCTION TABLE (EACH RECEIVER)

Differential Inputs A–B	Enable	Output Y
V _{ID} ≥ 0.2 V	Н	Н
$-0.2 \text{ V} < \text{V}_{\text{1D}} < 0.2 \text{ V}$	Н	? .
V _{ID} ≤ -0.2 V	Н	L
X	L	Z

H = high level

L = low level

X = irrelevant

? = indeterminate

Z = high-impedance (off)

Numeric Display Interface

... for mating multiplexed LED or gas discharge numeric displays to MOS or TTL logic systems.

Gas Discharge Drivers

 ${f MC3491}$ — Eight segment cathode drivers with programmable current.

Package: L Suffix — Case 726

All Devices:

$$T_A = 0 \text{ to } +70^{\circ}\text{C}$$

Device Number	Output ON Current mA Max	Breakdown Voltage Volts Min	Current Deviation (All 8 Outputs) % Max	Output Voltage Compliance Range Volts
MC3491	1.85	80	10	5.0 to 50

Peripheral Interface

Driver Arrays

ULN2068* — Quad 1.5 A, $V_{CE} = 50 \text{ V Max}$

*Other members of series available. Contact Motorola Sales Office.

ULN2074* — Quad 1.5 A, $V_{CE} = 50 \text{ V Max}$

Both devices:

TA = 0 to +70°C

Package:

B Suffix — Case 648C

MC1411 Series/ULN2001 Series

 \dots Seven Darlington transistors with output clamp diodes.

Device Number	Application	Input Element
MC1411/ULN2001	General Purpose	Basic
MC1412/ULN2002	14-25 V PMOS	Zener and Series 10.5 kΩ resistor
MC1413/ULN2003	5.0 V CMOS or TTL	Series 2.7 kΩ resistor
MC1416/ULN2004	8-18 V MOS	Series 10.5 kΩ resistor

All Types:

VMax = 50 V

IMax = 500 mA

T_A = 0 to +85°C

Packages:

L Suffix — Case 620
P Suffix — Case 648

PERIPHERAL INTERFACE (continued)

Driver Arrays (continued)

ULN2801,2,3,4 ULN2803 — Octal Darlington Arrays

	Characteristics			
Device	Input Compatibility	V _{CE} (Max)/	TA	
ULN2801A	General Purpose CMOS, PMOS	50 V/500 mA	0 to +70°C	
ULN2802A	14-25 Volt PMOS	50 V/500 mA	0 to +70°C	
ULN2803A	TTL, 5.0 V CMOS	50 V/500 mA	0 to +70°C	
ULN2804A	6-15 V CMOS, PMOS	50 V/500 mA	0 to +70°C	

Dual Driver

. . . for relays, lamps, and other peripherals requiring more power than generally available from logic gates.

MC1472

Packages: P1 Suffix — Case 626 U Suffix — Case 693 $V_{(BR)CER} = 70 V$

Telecommunications

Motorola offers the broadest product line with the widest selection of telecommunications integrated circuits in the industry, including products for station set, switching and transmission

systems. The range of processes encompasses high density digital CMOS, high and low voltage linear bipolar, and laser trim. A wide variety of package options are available.

Function	Device	Description
CODEC	MC14407	PCM CODEC, D3 Format
Complete Telephone Circuit	MC34011 MC34010	Telephone Chip with DTMF, Ringer, Speech Network Telephone Chip with DTMF, Ringer, Speech Network MPU Interface Logic
Crosspoint Switches	MC142100 MC145100 MC3416	4 x 4 x 1 Analog Switch 4 x 4 x 1 Analog Switch 4 x 4 x 2 Analog Switch
CVSD	MC3417 MC3418	Continuously Variable Slope Delta Modulator/Demodulator Continuously Variable Slope Delta Modulator/Demodulator
Dialers	MC14408 MC14409 MC14410 MC14419 *MC34015 MC34013	Binary-to-Pulse Converter Subsystem Binary-to-Pulse Converter Subsystem 2-of-8 Tone Encoder 2-of-8 Keypad-to-Binary Encoder 2-of-8 DTMF Encoder DTMF Encoder
Filters	MC14413 MC14414 MC145414 MC145415 MC145431 MC145433 MC145440 MC145444 MC145441 MC145432	PCM Filter with Transmit Bandpass and RCV Lowpass PCM Filter with Transmit and RCV Lowpass Dual Tuneable Lowpass Filter Dual Lowpass Filter-Linear Phase Tuneable Lowpass/Bandpass Filter Tuneable Notch/Bandpass Filter 300 Baud Modem Filter-Bell 103 300 Baud Modem Filter-CCITT V.21 Tuneable Notch/Bandpass Filter
Modems	MC14411 MC14412 MC145440 MC145441 MC145445 MC145450 MC6860 MC6172 MC6173	Bit Rate Generator Universal Low-Speech (0-600BPS) 300 Baud Modem Filter-Bell 103 300 Baud Modem Filter-CCITT V.21 300 Baud Digital Modem 1200 Baud Digital Videotext Modem 0-600 BPS Digital Modem 1200/2400 BPS Digital Modulator 1200/2400 BPS Digital Demodulator
Monocircuit	MC14400 MC14401 MC14402 MC14403 MC14405	PCM CODEC/Filter PCM CODEC/Filter PCM CODEC/Filter PCM CODEC/Filter PCM CODEC/Filter PCM CODEC/Filter
Ringers	MC34012 MC34017	Telephone Tone Ringer Telephone Tone Ringer with Push-Pull Output
SLIC	MC3419 MC3419-1L	Subscriber Loop Interface Circuit Subscriber Loop Interface Circuit
TSAC	MC14416 MC14417 MC14418	Serial Input Time Slot Assigner Circuit Parallel Input Time Slot Assigner Circuit Bus-Addressable Time Slot Assigner Circuit
Voice/Data	*MC145420 *MC145422 *MC145423 *MC145428 *MC145429	Four-Wire Universal Digital Loop Transceiver Two-Wire Master Universal Digital Loop Transceiver Two-Wire Master Universal Digital Loop Transceiver Data Set Interface Audio Processor

^{*}To Be Introduced.

Devices in shaded area — refer to Motorola High-Speed CMOS Logic Data.

Circuits for Consumer and Automotive Applications

... reflecting Motorola's continuing commitment to semiconductor products necessary for consumer system designs. This tabulation is arranged to simplify first-order selection of consumer integrated circuit devices that satisfy the primary functions for Television, Audio, Radio, TV Games, Cordless Telephone, Automotive and Organ Applications.

Consumer Circuits

Television Subsystems

Function	Function Features			
MONOMAX — 1-Chip TV	Video IF, Detector, AGC, Video Amplifier, Horizontal Processor, Vertical Processor, and Sync For 525 Line Systems	710	MC13001	
	Same as Above Except For 625 Line Systems	710	MC13002	
Sound IF, Low Pass Filter, Detector, dc Volume Control,	Complete TV Sound System; 100 μ V, 3 dB Limiting Sensitivity; 4 Watts Output; V _{CC} = 24 V; R _L = 16 Ω	648C	TDA3190P	
Preamplifier, Power Amplifier	Same as TDA1190Z Except for 750 mW Output	648C	TDA1190P	

Video

TIGOU			
1st and 2nd Video IF Amplifier	IF Gain @ 45 MHz = 60 dB typ, AGC Range = 70 dB min	626	MC1349
	IF Gain @ 45 MHz = 50 dB typ, AGC Range = 60 dB min	626	MC1350
1st and 2nd Video IF, AGC Keyer and Amplifier	IF Gain @ 45 MHz = 53 dB typ, AGC Range = 75 dB min, "Forward AGC" Provided for Tuner	646	MC1352
3rd IF, Video Detector, Video Buffer, and AFC Buffer	Low-Level Detection, Low Harmonic Generation, Zero Signal dc Output Voltage of 7.0 to 8.2 V	626	MC1330A1
	Same as MC1330A1 Except Zero Signal dc Output Voltage of 7.8 to 9.0 V	626	MC1330A2
SAW Preamp, IF Amplifier, Detector, AGC, AFC	Complete Video IF or Parallel Sound IF System Complete AFT System with Simple Quadrature Detector	707	MC13010

Chroma

Chroma Demodulator	Dual Doubly Balanced Demodulator with RGB Matrix and PAL Switch	646	MC1327
Color Processor	PAL/NTSC Input, RGB Output, also RGB Inputs, Plus Fast Blanking Input. Ideal for Text, Graphics, Overlays	711	TDA3301 TDA3303
Color Processor	PAL/NTSC Input, RGB Outputs, on-Chip Hue Control	724	TDA3330
Color Processor	PAL/NTSC Input, Color Difference Outputs on-Chip Hue Control	707	TDA3333

Deflection

Horizontal Processor	Linear Balanced Phase Detector, Oscillator and Predriver, Adjustable dc Loop Gain, Adjustable Duty Cycle	626	MC1391
	Same as MC1391 except designed to accept negative Flyback Input Pulse	626	MC1394

Sound

Sound IF Detector	Interchangeable with ULN2111A	646	MC1357
Sound IF Detector, dc Volume	Excellent AMR, Interchangeable with CA3065	646	MC1358
Control, Preamplifier	30 μV, 3.0 dB Limiting, Excellent AMR	646	TBA120C
Sound IF, Low Pass Filter, Detector, dc Volume Control,	Complete TV Sound System; 100 μ V, 3 dB Limiting Sensitivity; 4 Watts Output; $V_{CC}=24$ V; $R_L=16$ Ω	648C	TDA3190P
Preamplifier	750 mW Output	648C	TDA1190P
Stereo Sound Control System	Stereo Balance, Volume, Bass, Treble Control	707	TCA5550

Modulators

Function	Features	Case	Device	
Color TV Video Modulator	Chroma Oscillator and Clock Driver, Lead and Lag Network, Chroma Modulator, RF Oscillator, and Modulator	646	MC1372	
•	RF Oscillator and Modulator	626	MC1373	
TV Modulator (Hi Quality)	RF Oscillator/Modulator, and FM Sound Oscillator/Modulator	646	MC1374	
FM Modulator	FM Oscillator and Modulator 1.4 MHz to 14 MHz Applications	626	MC1376	
RGB to PAL NTSC Encoder	RGB and Sync Inputs, Composite Video Out — PAL/NTSC Switch Selectable	738	MC1377	

Tuning System Circuits

Function	Features	Case	Device	
Tuner Control	Interface Between Synthesizer and Tuner	707	MC2801	
Two Modulus Prescaler	Divide-by-15 and 16. Toggle Frequency = 140 MHz	626	MC3393	
Divide-by-20 Prescaler	200 MHz Toggle Frequency	626	MC3396	
Remote Control Amplifier	Infrared Diode Signal Amplifier Shaper	626	MC3373	

IF Amplifiers — Radio

Function	Recommended Frequency IF RF* MHz	3 dB Limiting @ 10.7 MHz μV (RMS) Typ	AMR dB Typ	Recovered Audio Output $\Delta f = \pm 75 \text{ kHz}$ $\Delta f = \pm 3 \text{ kHz*}$ mV (RMS)	Power Supply Volts Max	Case	Device
AGC IF Amplifier	0.5-50	_	_	_	18	626	MC1350
Limiting FM-IF Amplifier	10.7	600	45	480	18	646	MC1355
Limiting IF Amplifier/Quad Detector	1–70	400	45	480 .	16	646	MC1357
Wideband FSK Receiver Oscillator/Mixer, FM, IF Detector, Meter Drive, Data Shaper	10.7 200*	30	50	500	15	738	MC3356
Low-Power FM-IF for Dual Conversion Scanning Receivers	0.5 10.7*	5.0	40	350*	8.0	648	MC3357
Narrow Band FM, Oscillator Mixer IF, AFT, Squelch	0.5 10.7*	2.0	40	700*	12	707	MC3359
Low Voltage Version of MC3357	0.5 10.7*	2.0	40	150*	8	648	MC3361

FM Stereo Decoders

Function	Channel Separation dB Typ	THD % Typ	Stereo/Indicator Lamp Driver mA Max	Features	Case	Device
FM Multiplex Stereo Decoder Coiless Operation	41	0.1	50	Low V _{CC} Automotive	646	MC1309
PLL Designs	41	0.1	75	High Input Signal Handling	646	MC1310
	62	0.1	100	Low Signal Blend for Noise Reduction	648	TCA4500A
	45	0.2	150	Power Supply Ripple Resection	648	μA758A

AM Stereo Decoder

Features	Function	Case	Device
CQUAM® AM Stereo Decoder	Monaural/Stereo AM Detector, Indicator	738	MC13020

Attenuators

Function	V _{CC} Range Vdc	THD % Typ	V dB Typ	Attenuation Range dB Typ	Case	Device
Electronic Attenuator	9.0-18	0.6	13	90	626	MC3340
Stereo, Volume, Bass, Treble, Balance	8.5-18	0.1	10	80	707	TCA5550

Audio

Features	(System) P _O Watts	V _{CC} Vdc Max	V _{in} @ rated P _O mV Typ	I _D mA Typ	RL Ohms	Case	Туре
Class B Audio Driver	10.0	35	89	10	165	626	MC3320
	10.0	20	32	7.0	65	626	MC3321

Transistor Arrays

Function	I _{C(max)} mA	V _{CEO} Volts Max	V _{CBO} Volts Max	V _{EBO} Volts Max	Case	Device
One Differentially Connected Pair and Three Isolated Transistors	50	15	20	5.0	646	MC3346 MC3386
Dual Independent Differential Amplifiers with Associated Constant Current Transistors	50	15	20	5.0	646	CA3054
Three Differentially Connected Pairs	50	35	40	5.0	648	MC3350

Automotive Circuits

Voltage Regulator

Function	Features	Case	Device
Automotive Voltage Regulator	Designed for use with NPN Darlington, Overvoltage Protection; "Open Sense" Shut Down; Selectable Temperature Coefficient for Use in a Floating Field Alternator Charging System	646	MC3325

Electronic Ignition

Electronic Ignition Circuit	Designed for Use in High Energy Variable Dwell Electronic Ignition Systems with Variable Reluctance Sensors. Dwell and Spark Energy are Externally Adjustable	626	MC3334
Flip-Chip Electronic Ignition Circuit	Same as MC3334	_	MCCF3334

Special Function — Automotive

Programmable Frequency Switch (Engine RPM Switch)	Wide Input Frequency Range (10 Hz to 100 kHz) Adjustable Hysteresis Wide Supply Operating Range (7 to 24 V)	646, 632	MC3344
Injector Driver	Power Driver for Automotive Fuel Injection Systems, Reduced Hold Current	314B	MC3484

Package Styles

Lead Configuration		8 (***) 1	14	0000000	1
Case	314B	626	632	646	648
Material	Plastic	Plastic	Ceramic	Plastic	Plastic
Suffix after Type Number	V	P or PL	L	Р	Р

Lead Configuration		~~~~~	1	0	00000000000000	24	1
Case	648C	707	710	T	711	724	738 -
Material	Plastic	Plastic	Plast	ic	Plastic	Plastic	Plastic
Suffix after Type Number	Р	Р	Р		Р	Р	(20 pin)

Amplifiers

AMPLIFIERS

Device	Function	Page
LF347	Family of BIFET Operational Amplifiers	3-4
LF351	Family of BIFET Operational Amplifiers	3-4
LF353	Family of BIFET Operational Amplifiers	3-4
LF355	Monolithic JFET Operational Amplifier	3-6
LF356	Monolithic JFET Operational Amplifier	3-6
LF357	Monolithic JFET Operational Amplifier	
LM11,C,CL	Precision Operational Amplifiers	3-16
LM101A	General Purpose Adjustable Operational Amplifier	3-23
LM108,A	Precision Operational Amplifiers	3-27
LM124	Quad Low-Power Operational Amplifier	3-32
LM148	Quad MC1741 Operational Amplifier	3-38
LM158	Dual Low-Power Operational Amplifier	3-44
LM201A	General Purpose Adjustable Operational Amplifier	3-23
LM208,A	Precision Operational Amplifiers	3-27
LM224	Quad Low-Power Operational Amplifiers	3-32
LM248	Quad MC1741 Operational Amplifier	3-38
LM258	Dual Low-Power Operational Amplifier	3-44
LM301A	General Purpose Adjustable Operational Amplifier	3-23
LM307	Internally Compensated Monolithic Operational Amplifier	3-50
LM308,A	Precision Operational Amplifiers	3-27
LM324	Quad Low-Power Operational Amplifier	
LM348	Quad MC1741 Operational Amplifier	3-38
LM358	Dual Low-Power Operational Amplifier	3-44
LM2900	Quad Single-Supply Operational Amplifier	3-152
LM2902	Quad Low-Power Operational Amplifier	3-32
LM2904	Dual Low-Power Operational Amplifier	3-44
LM3900	Quad Single-Supply Operational Amplifier	3-152
MC1436,C	High-Voltage Operational Amplifier	3-54
MC1437	Dual Operational Amplifier	
MC1438R	Power Booster	3-62
MC1439	High-Slew-Rate Operational Amplifier	
MC1445	Wideband Amplifier	3-76
MC1454G	1-Watt Power Amplifier	3-82
MC1456,C	High-Performance Operational Amplifier	3-86
MC1458,C,N	Dual Operational Amplifiers	3-92
MC1458S	High-Slew-Rate Dual Operational Amplifier	3-97
MC1536	High-Voltage Operational Amplifiers	3-54
MC1537	Dual Operational Amplifier	3-58
MC1538R	Power Booster	3-62
MC1539	High-Slew-Rate Operational Amplifier	3-68
MC1545	Wideband Amplifier	
MC1554G	1-Watt Power Amplifier	3-82
MC1556	High-Performance Operational Amplifier	3-86
MC1558,N MC1558S	Low-Noise Dual Operational Amplifier	3-92
MC1590	High-Slew-Rate Dual Operational Amplifier	3-97
MC1709,A,C	Wideband Amplifier with AGC	
	General-Purpose Operational Amplifier	3-112
MC1733,C MC1741,C,N,NC	Differential Video Amplifier General Purpose Operational Amplifier	3-116
MC1741S,SC	General-Purpose Operational Amplifier	3-124
MC17473,3C	High-Slew-Rate Operational Amplifier	3-129
MC1747,C	Dual MC1741 Operational Amplifier	3-135
MC1776,C	Programmable Operational Amplifier	3-139
MC3301	Quad Operational Amplifier	3-143
MC3303	Quad Differential-Input Operational Amplifier	3-152 3-162
	adda Dinoronida input Operational Ampilier	J-102

Device	Function	Page
MC3358	Dual Low-Power Operational Amplifier	3-176
MC3401	Quad Operational Amplifier	
MC3403	Quad Differential-Input Operational Amplifier	3-162
MC3405	Dual Operational Amplifier plus Dual Voltage Comparator	3-168
MC3458	Dual Low-Power Operational Amplifier	
MC3476	Programmable Operational Amplifier	3-182
MC3503	Quad Differential-Input Operational Amplifier	3-162
MC3505	Dual Operational Amplifier plus Dual Voltage Comparator	3-168
MC3558	Dual Low-Power Operational Amplifier	3-176
MC4558,AC,C,N,NC	Dual High-Frequency Operational Amplifier	3-187
MC4741,C	Quad MC1741 Operational Amplifier	
MC33074,A	Quad High-Performance Single Supply Operational Amplifiers	3-204
MC33084,A	Quad High-Speed JFET Input Operational Amplifiers	3-220
MC33085,A	Quad High-Speed JFET Input Operational Amplifiers	3-221
MC34001	JFET-Input Operational Amplifiers	3-197
MC34002	JFET-Input Operational Amplifiers	3-197
MC34004	JFET-Input Operational Amplifiers	3-197
MC34074,A	Quad High-Performance Single Supply Operational Amplifiers	3-204
MC34084,A	Quad High-Speed JFET Input Operational Amplifiers	3-220
MC34085,A	Quad High-Speed Decompensated (A _{VCL} ≥ 2) JFET Input Operational	
	Amplifiers	
MC35001	JFET-Input Operational Amplifiers	
MC35002	JFET-Input Operational Amplifiers	
MC35004	JFET-Input Operational Amplifiers	3-197
MC35074,A	Quad High-Performance Single Supply Operational Amplifiers	3-204
MC35084,A	Quad High-Speed JFET Input Operational Amplifiers	3-220
MC35085,A	Quad High-Speed Decompensated (A _{VCL} ≥ 2) JFET Input Operational	
	Amplifiers	
NE592	Video Amplifier	3-222
OP-27	Ultra-Low Noise Precision, High Speed Operational Amplifiers	3-227
OP-37	Ultra-Low Noise Precision, High Speed Operational Amplifiers	
SE592	Video Amplifier	3-222
TL071	Low-Noise JFET Input Operational Amplifier	3-236
TL072	Low-Noise JFET Input Operational Amplifier	3-236
TL074	Low-Noise JFET Input Operational Amplifier	3-236
TL081	JFET-Input Operational Amplifier	
TL082	JFET-Input Operational Amplifier	3-243
TI 084	JEET-Input Operational Amplifier	

LF347 LF351 LF353

JFET INPUT OPERATIONAL AMPLIFIERS

These low-cost JFET input operational amplifiers combine two state-of-the-art linear technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset voltage. The BIFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents.

These devices are available in single, dual and quad operational amplifiers which are pin-compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar devices.

- Input Offset Voltage of 5.0 mV Max (LF347B)
- Low Input Bias Current 50 pA
- Low Input Noise Voltage 16 nV/√Hz
- Wide Gain Bandwidth 4.0 MHz
- High Slew Rate 13 V/μs
- Low Supply Current 1.8 mA per Amplifier
- High Input Impedance 10¹² Ω
- High Common-Mode and Supply Voltage Rejection Ratios – 100 dB

MAXIMUM RATINGS

MAXIMOM NATINGS			
Rating	Symbol	Value	Unit
Supply Voltage	V _{CC}	+ 18 - 18	٧
Differential Input Voltage	V _{ID}	± 30	٧
Input Voltage Range (Note 1)	V _{IDR}	± 15	٧
Output Short Circuit Duration (Note 2)	ts	Continuous	
Power Dissipation at T _A = + 25°C	PD	900	mW
Derate above T _A = +25°C	1/ ₀ JA	10	mW/°C
Operating Ambient Temperature Range	TA	0 to +70	°C
Operating Junction Temperature Range	TJ	115	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

NOTES:

- 1. Unless otherwise specified, the absolute maximum negative input voltage is limited to the negative power supply.
- Any amplifier output can be shorted to ground indefinitely. However, if more than one amplifier output is shorted simultaneously, maximum junction temperature ratings may be exceeded.

FAMILY OF BIFET OPERATIONAL AMPLIFIERS SILICON MONOLITHIC INTEGRATED CIRCUITS

ORDERING INFORMATION

Op Amp Function	Device	Package
Single	LF351N	Plastic DIP
Dual	LF353N	Plastic DIP
Quad	LF347BN LF347N	Plastic DIP Plastic DIP

NOTES: (continued)

3. Input bias currents of JFET input op amps approximately double for every 10°C rise in junction temperature. To maintain junction temperatures as close to ambient as is possible, pulse techniques are utilized during test.

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, T_A = 25^{\circ}\text{C}$ unless otherwise noted).

			LF347B		LF347	, LF351, L	F353	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S \leq 10 k, V _{CM} = 0) $T_A = +25^{\circ}C$ $0^{\circ}C \leq T_A \leq +70^{\circ}C$	V _{IO}	_	1.0	5.0 8.0	_	5.0 —	10 13	mV
Average Temperature Coefficient of Input Offset Voltage $R_S \le 10 \text{ k, } 0^{\circ}\text{C} \le T_A \le +70^{\circ}\text{C}$	ΔV _{IO} /ΔΤ	_	10		_	10	_	μV/°C
Input Offset Current ($V_{CM}=0$, Note 3) $T_A=+25^{\circ}C$ $0^{\circ}C \leqslant T_A \leqslant +70^{\circ}C$	10	_	25 —	100 4.0	_	25 —	100 4.0	pA nA
Input Bias Current ($V_{CM}=0$, Note 3) $T_A=+25^{\circ}C$ $0^{\circ}C\leqslant T_A\leqslant+70^{\circ}C$	IB	_	50 —	200 8.0	<u> </u>	50 —	200 8.0	pA nA
Input Resistance	rį	_	1012		_	1012		Ω
Common Mode Input Voltage Range	VICR	± 11	+ 15 - 12	_	± 11	+ 15 - 12	_	V
Large-Signal Voltage Gain (VO = \pm 10 V, RL = 2.0 k) $T_A = +25^{\circ}C$ $0^{\circ}C \le T_A \le +70^{\circ}C$	AVOL	50 25	100	=	25 15	100	=	V/mV
Output Voltage Swing (R _L = 10 k)	٧o	± 12	± 14	_	± 12	± 14		V
Common Mode Rejection Ratio (R _S ≤ 10 k)	CMRR	80	100		70	100		dB
Supply Voltage Rejection Ratio (R _S ≤ 10 k)	PSRR	80	100		70	100		dB
Supply Current LF347 LF351 LF353	ID	=	7.2 — —	11 — —	_ _ _	7.2 1.8 3.6	11 3.4 6.5	mA
Slew Rate $(A_V = +1)$	SR		13			13		V/μs
Gain-Bandwidth Product	BWp	_	4.0			4.0		MH
Equivalent Input Noise Voltage (R _S = 100 Ω , f = 1000 Hz)	en	_	16	_	_	16	_	nV/√
Equivalent Input Noise Current (f = 1000 Hz)	in		0.01			0.01	_	pA/√
Channel Separation (LF347, LF353) 1.0 Hz \leq f \leq 20 kHz (Input Referred)	_	_	- 120	_	_	-120	_	dB

For Typical Characteristic Performance Curves, refer to MC34001/34002/34004 data sheet.

LF355, LF356, LF357* LF355B, LF356B, LF357B*

Specifications and Applications Information

MONOLITHIC JEET INPUT OPERATIONAL AMPLIFIERS

These internally compensated operational amplifiers incorporate highly matched JFET devices on the same chip with standard bipolar transistors. The JFET devices enhance the input characteristics of these operational amplifiers by more than an order of magnitude over conventional amplifiers.

This series of op amps combines the low current characteristics typical of FET amplifiers with the low initial offset voltage and offset voltage stability of bipolar amplifiers. Also, nulling the offset voltage does not degrade the drift or common mode rejection.

- Low Input Bias Current 30 pA
- Low Input Offset Current 3.0 pA
- Low Input Offset Voltage 1.0 mV
- Temperature Compensation of Input Offset Voltage 3.0 μV/°C
- Low Input Noise Current − 0.01 pA/√Hz
- High Input Impedance $-10^{12}\Omega$
- High Common-Mode Rejection Ratio 100 dB
- High DC Voltage Gain 106 dB

SERIES FEATURES

- LF355/355B Low Power Supply Current
- LF356/356B Wide Bandwidth
- LF357/357B Wider Bandwidth Decompensated (Aymin = 5)

ORDERING INFORMATION

Device	Temperature Range	Package			
LF355BH, H	0 to +70°C	Metal Can			
LF355BJ, J	0 to +70°C	Ceramic DIP			
LF355BN, N	0 to +70°C	Plastic DIP			
LF356BH, H	0 to +70°C	Metal Can			
LF356BJ, J	0 to +70°C	Ceramic DIP			
LF356BN, N	0 to +70°C	Plastic DIP			
LF357BH, H	0 to +70°C	Metal Can			
LF357BJ, J	0 to +70°C	Ceramic DIP			
LF357BN, N	0 to +70°C	Plastic DIP			

MONOLITHIC JEET OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUITS

APPLICATIONS

The LF series is suggested for all general purpose FET input amplifier requirements where precision and frequency response flexibility are of prime importance.

Specific applications include:

- Sample and Hold Circuits
- High Impedance Buffers
 East D/A and A/D Converters
- Precision High-Speed Integrators
- Wideband, Low Noise, Low Drift Amplifiers

*NOTE: The LF357/357B are designed for wider bandwidth applications. They are decompensated (AVmin = 5).

LF355, LF356, LF357, LF355B, LF356B, LF357B

MAXIMUM RATINGS

Rating	Symbol	LF355B/ 356B/357B	LF355/356/357	Unit
Supply Voltage	V _C C V _E E	+ 22 22	+ 18 - 18	٧
Differential Input Voltage	V _{ID}	± 40	± 30	٧
Input Voltage Range (Note 1)	V _{IDR}	± 20	± 16	V
Output Short-Circuit Duration	TS	Conti	nuous	
Operating Ambient Temperature Range	TA	0 to	+ 70	°C
Operating Junction Temperature Metal and Ceramic Packages Plastic Package	TJ		15 00	°C
Storage Temperature Range Metal and Ceramic Package Plastic Package	T _{stg}		o + 150 o + 125	.€

Note 1. Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply voltage.

CIRCUIT SCHEMATIC

LF355, LF356, LF357, LF355B, LF356B, LF357B

DC ELECTRICAL CHARACTERISTICS ($V_{CC} = 15 \text{ to } 20 \text{ V}, V_{EE} = -15 \text{ to } -20 \text{ V}$ for LF355B/356B/357B; $V_{CC} = 15 \text{ V}, V_{EE} = -15 \text{ V}$ for LF355/356/357; $T_{A} = 0^{\circ}\text{C}$ to $+70^{\circ}\text{C}$ unless otherwise noted)

		L	F355B/6B/	7B		LF355/6/7		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (Rs = 50 Ω , V _{CM} = 0) (T _A = 25°C) (Over Temperature)	ViO	_	3.0	5.0 6.5	_	3.0	10 13	mV
Average Temperature Coefficient of Input Offset Voltage (RS = 50 Ω)	ΔV _{IO} /ΔΤ	_	5.0	_	_	5.0	_	μV/°C
Change in Average TC with V_{IO} Adjust (RS = 50 Ω) (Note 2)	ΔΤC/ΔV _{IO}	_	0.5		_	0.5	_	μV/°C per mV
Input Offset Current ($V_{CM} = 0$) (Note 3) ($T_J = 25^{\circ}C$) ($T_J \le 70^{\circ}C$)	liO	_	3.0	20 1.0	_	3.0	50 2.0	pA nA
Input Bias Current ($V_{CM}=0$) (Note 3) ($T_J=25^{\circ}C$) ($T_J\leqslant70^{\circ}C$)	lΒ	_	30	100 5.0	_	30	200 8.0	pA nA
Input Resistance (T _J = 25°C)	rį	_	1012	_	_	1012		Ω
Large Signal Voltage Gain $(V_O = \pm 10 \text{ V}, R_L = 2.0 \text{ k}, V_{CC} = 15 \text{ V}, V_{EE} = -15 \text{ V})$ $(T_A = 25^{\circ}\text{C})$ $(0^{\circ}\text{C} \leq T_A \leq +70^{\circ}\text{C})$	AVOL	50 25	200	_	25 15	200	_	V/mV
Output Voltage Swing $(V_{CC}=15\ V,\ V_{EE}=-15\ V,\ R_L=10\ k\Omega)$ $(V_{CC}=15\ V,\ V_{EE}=-15\ V,\ R_L=2\ k\Omega)$	v _O	± 12 ± 10	± 13 ± 12	_	± 12 ± 10	± 13 ± 12		V
Input Common-Mode Voltage Range (V _{CC} = 15 V, V _{EE} = -15 V)	VICR	± 11	+ 15.1 - 12.0	_	± 10	+ 15.1 - 12.0		, A
Common-Mode Rejection Ratio	CMRR	85	100		80	100		dB
Supply Voltage Rejection Ratio (Note 4)	PSRR	85	100	_	80	100		dB
Supply Current (T _A = 25°C, V _{CC} = 15 V, V _{EE} = -15 V) LF355B/355	ΙD			4.0				mA
LF356B/357B LF356B/357		_	2.0 5.0 —	4.0 7.0 —	_ _ _	2.0 — 5.0	4.0 — 10	

AC ELECTRICAL CHARACTERISTICS (V_{CC} = 15 V, V_{EE} = -15 V, T_A = 25°C)

		LF355B/355 I			LF	356B/3	356	LF357B/357			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Slew Rate (Note 5) (A _V = 1) LF355/356 (A _V = 5) LF357	SR	_	5.0	_	7.5 —	12	_	_ 30	 50	_	V/μs
Gain-Bandwidth Product	GBW	_	2.5	_	_	5.0	_	_	20	_	MHz
Settling Time to 0.01% (Note 6)	t _S	_	4.0		_	1.5	_	_	1.5	_	μs
Equivalent Input Noise Voltage (Rs = 100Ω , f = $100 Hz$) (Rs = 100Ω , f = $1000 Hz$)	en	_	25 20	_	_	15 12	_	_	15 12	_	nV/√Hz
Equivalent Input Noise Current (f = 100 Hz) (f = 1000 Hz)	in	_	0.01 0.01	_	_	0.01 0.01	=	_	0.01	_	pA/√Hz
Input Capacitance	Ci	_	3.0	_	_	3.0	_	_	3.0	_	pF

Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply.

NOTES

tudes increasing or decreasing simultaneously, in accordance with common practice.

(5) The Min. slew rate limits apply for the LF356B and the LF357B, but do not apply for the LF356 or LF357.

⁽²⁾ The temperature coefficient of the adjusted input offset voltage changes only a small amount (0.5 μV/C typically) for each mV of adjustment from its original unadjusted value. Common-mode rejection and open loop voltage gain are also unaffected by offset adjustment.

⁽³⁾ The input bias currents approximately double for every 10°C rise in junction temperature, T_J. Due to limited test time, the input bias currents are correlated to junction temperature. Use of a heat sink is recommended if input bias current is to be kept to a minimum.

⁽⁴⁾ Supply voltage rejection ratio is measured for both supply magni-

⁽⁶⁾ Settling time is defined here, for a unity gain inverter connection using 2.0 k resistors for the LF355/6. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10 V step input is applied to the inverter. For the LF357, A_V = -5.0, the feedback resistor from output to input is 2.0 k and the output step is 10 V (see settling time test circuit).

TYPICAL DC PERFORMANCE CHARACTERISTICS (Curves are for LF355, LF356, and LF357 series unless otherwise specified) INPUT BIAS CURRENT versus CASE TEMPERATURE

TYPICAL DC PERFORMANCE CHARACTERISTICS (continued)

LF355, LF356, LF357, LF355B, LF356B, LF357B

TYPICAL AC PERFORMANCE CHARACTERISTICS

GAIN BANDWIDTH PRODUCT

INVERTER SETTLING TIME

1.0

t_s, SETTLING TIME (μs)

5.0

10

0.1

0.2

TYPICAL AC PERFORMANCE CHARACTERISTICS (continued)

LF355, LF356, LF357, LF355B, LF356B, LF357B

TYPICAL AC PERFORMANCE CHARACTERISTICS (continued)

TYPICAL CIRCUIT CONNECTIONS

FIGURE 31 — DRIVING CAPACITIVE LOADS

Due to a unique output stage design these amplifiers have the ability to drive large capacitive loads and still maintain stability. $C_{L(max)}\cong 0.01~\mu F$. Overshoot $\leqslant 20\%$

Settling time $(t_s) \cong 5.0 \ \mu s$

FIGURE 33 — INPUT OFFSET VOLTAGE ADJUSTMENT

- V_{IO} is adjusted with a 25 k potentiometer
- The potentiometer wiper is connected to VCC
- For potentioneters with temperature coefficient of 100 ppm/ $^{\circ}$ C or less the additional drift with adjust is $\approx 0.5 \ \mu V/{^{\circ}}$ C/mV of adjustment.
- Typical overall drift: 5.0 μ V/ $^{\circ}$ C \pm (0.5 μ V/ $^{\circ}$ C/mV of adjustment.)

FIGURE 35 — NONINVERTING UNITY GAIN OPERATION FOR LF357

FIGURE 32 — LARGE POWER BANDWIDTH AMPLIFIER

For distortion < 1% and a 20 Vp-p V $_{\rm Out}$ swing, power bandwidth is: 500 kHz.

FIGURE 34 — SETTLING TIME TEST CIRCUIT

FIGURE 36 — INVERTING UNITY GAIN FOR LF357

LF355, LF356, LF357, LF355B, LF356B, LF357B

TYPICAL APPLICATIONS

FIGURE 37 - WIDE BW, LOW NOISE, LOW DRIFT AMPLIFIER

- Power BW: $f_{max} = \frac{c_r}{2\pi V_p}$
- Parasitic input capacitance (C1 ≈ 3 pF for LF355, LF356, and LF357 plus any additional layout capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate add C2 such that: R2C2
 R1C1.

FIGURE 38 -- ISOLATING LARGE CAPACITIVE LOADS

- Overshoot 6%
- t_s = 10 μs
- When driving large C_L , the V_{out} slew rate is determined by C_L and $I_{out(max)}$:

$$\frac{\Delta V_{out}}{\Delta t} = \frac{I_{out}}{C_L} \cong \frac{0.02}{0.5} \text{ V/}\mu\text{s} = 0.04 \text{ V/}\mu\text{s} \text{ (with C}_L \text{ shown)}$$

FIGURE 39 --- 8-BIT D/A WITH OUTPUT CURRENT V_{CC} TO VOLTAGE CONVERSION

Theoretical V_O Theoretical V_O = $V_{O} = \frac{V_{O}f}{R_{14}}(R_O) \left(\frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \frac{A4}{16} + \frac{A5}{32} + \frac{A6}{64} + \frac{A7}{128} + \frac{A8}{256} \right)$ Adjust V_{O} , R14 or R_O so that V_O with all digital inputs at high level is equal to 9.961 volts. $V_O = \frac{2V_O}{1k} \left(5 \text{ k} \right) \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256} \right)$

$$V_O = \frac{2V}{1k} (5 \text{ k}) \left[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256} \right]$$

= $10 \text{ V} \left[\frac{255}{256} \right] = 9.961 \text{ V}$

FIGURE 40 — PRECISION CURRENT MONITOR

FIGURE 41 — LONG INTERVAL RC TIMER

Time (t) = $R4C \ln (V_R/V_R-V_I)$, $R_3 = R_4$, $R_5 = 0.1 R6$ If R1 = R2: t = 0.693 R4C

Design Example: 100 Second Timer

C = 1 μF R3 = R4 = 144 M V_B = 10 V

R1 = R2 = 1 k R6 = 20 k R5 = 2 k

FIGURE 42 --- HIGH IMPEDANCE, LOW DRIFT

LM11 LM11C LM11CL

PRECISION OPERATIONAL AMPLIFIERS

The LM11 is a precision, low drift operational amplifier providing the best features of existing FET and Bipolar op amps. Implementation of super gain transistors allows reduction of input bias currents by an order of magnitude over earlier devices such as the LM108A. Offset voltage and drift have also been reduced. Although bandwidth and slew rate are not as great as FET devices, input offset voltage, drift and bias current are inherently lower, particularly over temperature. Power consumption is also much lower, eliminating warm-up stabilization time in critical applications.

Offset balancing is provided, with the range determined by an external low resistance potentiometer. Compensation is provided internally, but external compensation can be added for improved stability when driving capacitive loads.

The precision characteristics of the LM11 make this device ideal for applications such as charge integrators, analog memories, electrometers, active filters, light meters and logarithmic amplifiers.

Low Input Offset Voltage:

100 μV

• Low Input Bias Current:

17 pA

• Low Input Offset Current:

0.5 pA

Low Input Offset Voltage Drift:Long-Term Stability:

 $1.0~\mu V/^{\circ}C$

High Common Mode Rejection:

10 μV/year 130 dB

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} to V _{EE}	40	Vdc
Differential Input Current (Note 1)	ID	± 10	mA .
Output Short-Circuit Duration (Note 2)	t _S	Indefinite	
Power Dissipation (Note 3)	PD	500	mW
Operating Junction Temperature LM11 LM11C/CL	ТЈ	150 85	°C
Storage Temperature Range Metal and Ceramic Packages Plastic Packages	T _{stg}	- 65 to + 150 - 55 to + 125	°C

ORDERING INFORMATION

Device	Operating Ambient Temperature Range	Package
LM11CLN, CN	0 to +70°C	Plastic 8-Pin DIP
LM11CLN-14, CN-14	0 to +70°C	Plastic 14-Pin DIP
LM11CLJ-8, CJ-8	0 to +70°C	Ceramic 8-Pin DIP
LM11CLJ, CJ	0 to +70°C	Ceramic 14-Pin DIP
LM11CLH, CH	0 to +70°C	Metal Can
LM11J-8	−55 to +125°C	Ceramic 8-Pin DIP
LM11J	−55 to +125°C	Ceramic 14-Pin DIP
LM11H	−55 to +125°C	Metal Can

PRECISION OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

*Unused pin (no internal connection) to allow for input anti-leakage guard ring on printed circuit board layout.

ELECTRICAL CHARACTERISTICS (T | = 25°C unless otherwise noted [Note 4])

			LM11			LM11C		1	M11CI	L	1			
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit			
Input Offset Voltage Tlow ^{to T} high	VIO	_	0.1 —	0.3 0.6	_	0.2	0.6 0.8	_	0.5	5.0 6.0	mV			
Input Offset Current Tlow to Thigh	lio	_	0.5	10 30	=	1.0 —	10 20	_	4.0 —	25 50	pА			
Input Bias Current Tlow to Thigh	I _{IB}	_	17 —	50 150	_	17 —	100 150	=	17 —	200 300	pА			
Input Resistance	ri	_	1011	_		1011	_	_	1011	_	Ω			
Input Offset Voltage Drift Tlow ^{to T} high	$\Delta V_{IO}/\Delta T$	_	1.0	3.0	_	2.0	5.0	_	3.0	_	μV/°C			
Input Offset Current Drift Tlow to Thigh	ΔΙ _{ΙΟ} /ΔΤ	_	20	_	_	10	_	_	50	-	fA/°C			
Input Bias Current Drift Tlow to Thigh	ΔΙ _{1Β} /ΔΤ	_	0.5	1.5	_	0.8	3.0	_	1.4		pA/°C			
Large Signal Voltage Gain VS = ±15 V, V _{out} = ±12 V, I _{out} = ±2.0 mA	Avol	100	300	_	100	300	_	25	300		V/mV			
Thow to Thigh (Note 5) $V_S = \pm 15 \text{ V}$, $V_{out} = \pm 12 \text{ V}$, $V_{out} = \pm 0.5 \text{ mA}$	-	50 250	 1200	_	50 250	 1200	<u> </u>	15 50	800	_				
Tlow to Thigh		100	_	_	100	-	_	30	_	m				
Common Mode Rejection Ratio $V_S = \pm 15 \text{ V}, -13 \text{ V} \leq V_{CM} \leq 14 \text{ V}$	CMRR	110	130	_	110	130	_	96	110	_	dB			
$V_S = \pm 15 \text{ V}, -12.5 \text{ V} \leq V_{CM} \leq 14 \text{ V},$ $T_{low} \text{ to } T_{high}$		100	_	_	100		_	90	-	_				
Power Supply Rejection Ratio ±2.5 V≤V _S ≤±20 V Tlow to thigh	PSRR	100 96	118	_	100 96	118	_	84 80	100	_	dB			
Power Supply Current Tlow to Thigh	lD.	=	0.3	0.6	_	0.3	0.8 1.0	Ξ	0.3	0.8 1.0	mA			
Output Short-Circuit Current T _J = 150°C, Output Shorted to Ground	l _{os}	_	± 10	_	_	±10	_	_	± 10	_	mA			

Notes:

^{1.} The inputs are shunted by back-to-back diodes for over-voltage protection. Excessive current will flow if the input differential voltage is in excess of 1.0 V if no limiting resistance is used. Additionally, a 2 kΩ resistance in each input is suggested to prevent possible latch-up initiated by supply reversals.

^{2.} The output is current limited when shorted to ground or any voltages less than the supplies. Continuous overloads will require package dissipation to be considered and heat sinking should be provided when necessary.

No be considered and next sinking should be provided which necessary.

3. Devices must be derated based on package thermal resistance (see package outline dimensions).

4. These specifications apply for VEE + 2.0 V ≤VCM≤VCC − 1.0 V (VEE + 2.5 V ≤VCM≤VCC − 1.0 V for Tlow to Thigh) and ±2.5 V ≤VS≤±20 V Tlow to Thigh: −55°C≤TJ≤+125°C for LM11

O'C≤TJ≤+70°C for LM11C and LM11CL

^{5.} $V_{out} = \pm 11.5 \text{ V}$, all other conditions unchanged.

FIGURE 9 — POWER SUPPLY REJECTION RATIO versus FREQUENCY

FIGURE 10 — SUPPLY CURRENT versus

FIGURE 11 — OPEN LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY

FIGURE 12 — SLEW RATE versus EXTERNAL COMPENSATION CAPACITOR

FIGURE 13 — CLOSED LOOP OUTPUT IMPEDANCE versus FREQUENCY

APPLICATIONS INFORMATION

Due to the extremely low input bias currents of this device, it may be tempting to remove the bias current compensation resistor normally associated with a summing amplifier configuration. Direct connection of the inputs to a low impedance source or ground should be avoided when supply voltages greater than approximately 3 volts are used. The potential problem involves reversal of one supply which can cause excessive current to flow in the second supply. Possible destruction of the IC could result if the second supply is not current limited to approximately 100 mA or if bypass capacitors greater than 1.0 µF are used in the supply bus.

Disconnecting one supply will generally cause reversal due to loading of the other supply within the IC and in external circuitry. Although the problem can usually be avoided by placing clamp diodes across the power supplied of each printed circuit board, a careful design will include sufficient resistance in the input leads to limit the current to 10 mA if the input leads are pulled to either supply by internal currents. This precaution is not limited to only the LM11.

The LM11 is capable of resolving picoampere level signals. Leakage currents external to the IC can severely impair the performance of the device. It is important that high quality insulating materials such as teflon be employed. Proper cleaning to remove fluxes and other residues from printed circuit boards, sockets and the device package are necessary to minimize surface leakage.

When operating in high humidity environments or temperatures near 0°C, a surface coating is suggested to set up a moisture parrier.

Leakage effects on printed circuit boards can be reduced by encircling the inputs (both sides of p.c. board) with a conductive guard ring connected to a low impedance potential nearly the same as that of the inputs.

The suggested printed circuit board layout for input guarding is shown in Figure 14. Guard ring electrical connections for common operational amplifier configurations are illustrated in Figure 15. For critical applications, a 14-pin

dual in-line package is available with guard pins (internally unconnected) adjacent to the inputs for minimal package leakage effects.

Electrostatic shielding is suggested in high-impedance circuits.

Error voltages in external circuitry can be generated by thermocouple effects. Dissimilar metals along with temperature gradients can set up an error voltage ranging in the hundreds of microvolts. Some of the best thermocouples are junctions of dissimilar metals made up of IC package pins and printed circuit boards. Problems can be avoided by keeping low level circuitry away from heat generating elements.

The LM11 is internally compensated, but external compensation can be added to improve stability, particularly when driving capacitive loads.

FIGURE 14 — SUGGESTED PRINTED
CIRCUIT BOARD LAYOUT FOR INPUT GUARDING
USING METAL PACKAGED DEVICE

FIGURE 15 — GUARD RING ELECTRICAL CONNECTIONS
FOR COMMON AMPLIFIER CONFIGURATIONS

FIGURE 16 — INPUT PROTECTION FOR SUMMING (INVERTING) AMPLIFIER

Current is limited by R1 in the event the input is connected to a low impedance source outside the common-mode range of the device. Current is controlled by R2 if one supply reverses. R1 and R2 do not affect normal operation.

FIGURE 17 — INPUT PROTECTION FOR A VOLTAGE FOLLOWER

Input current is limited by R1 when the input exceeds supply voltage, power supply is turned off, or output is shorted.

FIGURE 18 — CABLE BOOT STRAPPING AND INPUT SHIELDS

An input shield boot strapped in a voltage follower reduces input capacitance, leakage, and spurious voltages from cable flexing. A small capacitor from the input to ground will prevent any instability.

In a summing amplifier the input is at virtual ground. Therefore the shield can be grounded. A small feedback capacitor will insure stability.

FIGURE 19 — ADJUSTING INPUT OFFSET VOLTAGE WITH BALANCE POTENTIOMETER

Minimum Adjustment Range (mV)	R Ω
± 0.4	1.0 k
± 1.0	3.0 k
±2.0	10 k
± 5.0	100 k

Input offset voltage adjustment range is a function of the Balance Potentiometer Resistance as indicated by the table above. The potentiometer is connected between the two "Balance" pins.

LM101A LM201A LM301A

OPERATIONAL AMPLIFIER

A general purpose operational amplifier that allows the user to choose the compensation capacitor best suited to his needs. With proper compensation, summing amplifier slew rates to 10 V/ μ s can be obtained.

- Low Input Offset Current 20 nA maximum Over Temperature Range
- External Frequency Compensation for Flexibility
- Class AB Output Provides Excellent Linearity
- Output Short-Circuit Protection
- Guaranteed Drift Characteristics

FIGURE 1 - STANDARD COMPENSATION FIGURE 2 - DOUBLE-ENDED LIMIT DETECTOR AND OFFSET BALANCING CIRCUIT o vcc Invertin Output NonInverting Balance MZ4622 or Equiv Freq 10 MΩ = 4.8 V for $\begin{array}{l} V_{LT} \leqslant V_{I} \leqslant V_{UT} \\ V_{O} = -0.4 \ V \\ V_{I} < V_{LT} \ or \ V_{I} > V_{UT} \end{array}$ ρ ν^{EE} Pins Not Shown Are Not Connected

OPERATIONAL AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

N SUFFIX PLASTIC PACKAGE CASE 626-04 J SUFFIX CERAMIC PACKAGE CASE 693-02

(LM201A and LM301A)

ORDERING INFORMATION

Device	Temperature Range	Package
LM101AH	-55°C to +125°C	Metal Can
LM101AJ	-55°C to +125°C	Ceramic DIP
LM201AH	-25°C to +85°C	Metal Can
LM201AN	-25°C to +85°C	Plastic DIP
LM201AJ	-25°C to +85°C	Ceramic DIP
LM301AH	0°C to +70°C	Metal Can
LM301AN	0°C to +70°C	Plastic DIP
LM301AJ	0°C to +70°C	Ceramic DIP

LM101A, LM201A, LM301A

MAXIMUM RATINGS

			VALUE		
Rating	Symbol	LM101A	LM201A	LM301A	Unit
Power Supply Voltage	VCC, VEE	± 22	± 22	± 18	Vdc
Input Differential Voltage	V _{ID}	-	± 30		Volts
Input Common-Mode Range (Note 1)	VICR	-	± 15		Volts
Output Short-Circuit Duration	ts		Continuous		
Power Dissipation (Package Limitation) Metal Can Derate above T _A = +75°C Plastic Dual In-Line Package (LM201A/ Derate above T _A = +25°C 301A) Ceramic Package Derate above 25°C	PD	=======================================	500	625 5.0	mW mW/°C mW mW/°C mW
Operating Ambient Temperature Range	TA	-55 to +125	-25 to +85	0 to +70	°C
Storage Temperature Range	T _{stg}	—	65 to + 150 -		°C

Note 1. For supply voltages less than \pm 15 V, the absolute maximum input voltage is equal to the supply voltage.

ELECTRICAL CHARACTERISTICS (T_A = +25°C unless otherwise noted.) Unless otherwise specified, these specifications apply

for si ± 15	upply voltages fro V for the LM301	om ±5.0 A.	V to ±20	V for the	LM101A	and LM20)1A, and fr	om ± 5.0 V
			LM101A LM201A			LM301/	4	
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (Rs \leq 50 k Ω)	V _{IO}	_	0.7	2.0	_	2.0	7.5	mV
Input Offset Current	lιο	_	1.5	10		3.0	50	nA
Input Bias Current	lВ	_	30	75	_	70	250	nA
Input Resistance	ri	1.5	4.0	_	0.5	2.0		Megohms
Supply Current V _{CC} /V _{EE} = ±20 V V _{CC} /V _{EE} = ±15 V	ICC,IEE	_	1.8	3.0	_	 1.8	3.0	mA
Large Signal Voltage Gain (V _{CC} /V _{EE} = \pm 15 V, V _O = \pm 10 V, R _L > 2.0 k Ω)	Av	50	160	_	25	160	_	V/mV
The following specifications apply over the	operating temper	erature ra	nge.					
Input Offset Voltage (R _S ≤ 50 kΩ)	VIO	_	_	3.0	_	_	10	mV
Input Offset Current	lio	_	_	20	_	_	70	nA
Average Temperature Coefficient of Input Offset Voltage T _A (min) ≤ T _A ≤ T _A (max)	ΔV _{IO} /ΔΤ	_	3.0	15	_	6.0	30	μV/°C
Average Temperature Coefficient of Input Offset Current	ΔΙ _{ΙΟ} /ΔΤ							nA/°C

Input Offset Current	10	_	_	20	_	_	70	nA
Average Temperature Coefficient of Input Offset Voltage T _A (min) ≤ T _A ≤ T _A (max)	ΔV _{IO} /ΔΤ	_	3.0	15	_	6.0	30	μV/°C
Average Temperature Coefficient of Input Offset Current	ΔΙ _{ΙΟ} /ΔΤ							nA/°C
$+25^{\circ}C \leq T_{A} \leq T_{A}(max)$ $T_{A(min)} \leq T_{A} \leq 25^{\circ}C$		_	0.01 0.02	0.1 0.2	_	0.01 0.02	0.3 0.6	
Input Bias Current	Iв	_	_	100	_		300	nA
Large Signal Voltage Gain (VCC/VEE = \pm 15 V, VO = \pm 10 V, R _L > 2.0 k Ω)	Av	25		_	15	_		V/mV
Input Voltage Range VCC/VEE = ±20 V VCC/VEE = ±15 V	VI	± 15 —	_	_	_ ± 12	_	_	V
Common-Mode Rejection Ratio $R_S \le 50 \text{ k}\Omega$	CMRR	80	96	_	70	90		dB
Supply Voltage Rejection Ratio $R_S \le 50 \text{ k}\Omega$	PSRR	80	96	_	70	96		dB
Output Voltage Swing $V_{CC}/V_{EE}=\pm 15$ V, $R_L=10$ k Ω , $R_L=2.0$ k Ω	v _o	± 12 ± 10	± 14 ± 13	_	± 12 ± 10	± 14 ± 13	_	٧
Supply Currents (T _A = T _A (max), V _{CC} /V _{EE} = ±20 V)	ICC, IEE	_	1.2	2.5	_	_	_	mA

LM101A, LM201A, LM301A

TYPICAL CHARACTERISTICS

($V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, T_A = +25^{\circ}\text{C}$ unless otherwise noted.)

FIGURE 4 — MINIMUM INPUT VOLTAGE RANGE

FIGURE 5 — MINIMUM OUTPUT VOLTAGE SWING

FIGURE 6 - MINIMUM VOLTAGE GAIN

FIGURE 7 — TYPICAL SUPPLY CURRENTS

FIGURE 8 — OPEN-LOOP FREQUENCY RESPONSE

FIGURE 9 — LARGE-SIGNAL FREQUENCY RESPONSE

TYPICAL CHARACTERISTICS (continued)

 $(V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, T_A = +25^{\circ}\text{C} \text{ unless otherwise noted.})$

FIGURE 10 — VOLTAGE FOLLOWER PULSE RESPONSE

FIGURE 11 — OPEN-LOOP FREQUENCY RESPONSE

FIGURE 12 — LARGE-SIGNAL FREQUENCY RESPONSE

FIGURE 13 — INVERTER PULSE RESPONSE

TYPICAL COMPENSATION CIRCUITS

FIGURE 14 — SINGLE-POLE COMPENSATON

FIGURE 15 — FEEDFORWARD COMPENSATION

PRECISION OPERATIONAL AMPLIFIERS

The LM108/LM208/LM308 Series operational amplifiers provide high input impedance, low input offsets and temperature drifts, and low noise. These characteristics are made possible by use of a special Super Beta processing technology. This series of amplifiers is particularly useful for applications where high-accuracy and low-drift performance are essential. In addition high-speed performance may be improved by employing feed-forward compensation techniques to maximize slew rate without compromising other performance criteria.

The LM108A/LM208A/LM308A Series offers extremely low input offset voltage and drift specifications allowing usage in even the most critical applications without external offset nulling.

- Operation From a Wide Range of Power Supply Voltages
- Low Input Bias and Offset Currents
- Low Input Offset Voltage and Guaranteed Offset Voltage Drift Performance
- · High Input Impedance

FREQUENCY COMPENSATION Standard Compensation **Modified Compensation** Inverting Inverting Input Input Output Non-Inverting Compen Non Cf Inverting ←-/// Compen Input Compen Input Feedforward Compensations for Standard Feedforward Decoupling Load Capacitance Compensation R_S > 10 k 10 k C2* 10 pF Input • 10 k 0.01 μF 500 Output Compen Output 3.0 Compen B 去元 nF to اب 0.01 كٍ × 10⁵ R2

DEVICE SELECTION TABLE

	OPERATING TEMPERATURE RANGE						
	-55 to +125°C	-25 to +85°C	0 to +70°C				
STANDARD OFFSET VOLTAGE SPECIFICATION	LM108 Pkg. Suffix	LM208 Pkg. Suffix	LM308 Pkg. Suffix				
TIGHTENED OFFSET VOLTAGE SPECIFICATION	LM108A Pkg. Suffix	LM208A Pkg. Suffix	LM308A Pkg. Suffix				

LM108, LM108A LM208, LM208A LM308, LM308A

SUPER GAIN OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

J-8 SUFFIX CERAMIC PACKAGE CASE 693-02

*Unused pin (no internal connection) to allow for input anti-leakage guard ring on printed circuit board layout.

LM108, LM108A, LM208, LM208A, LM308, LM308A

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

		Value							
Rating	Symbol	LM108, LM108A	LM208, LM208A	LM308, LM308A	Unit				
Power Supply Voltage	V _{CC} , V _{EE}	± 20	± 20	± 18	Vdc				
Input Voltage (See Note 1)	VI	±15							
Input Differential Current (See Note 2)	lD	±10							
Output Short-Circuit Duration	ts	-	→ Indefinite → ▶						
Operating Ambient Temperature Range	TA	-55 to +125	- 25 to +85	0 to +70	°C				
Storage Temperature Range	T _{stg}	-65 to +150							
Junction Temperature Metal, Ceramic Package Plastic Package	ТЈ	4	+ 175 + 150		°C				

Note 1. For supply voltages less than ± 15 V, the maximum input voltage is equal to the supply voltage.

Note 2. The inputs are shunted with back-to-back diodes for over-voltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1.0 V is applied between the inputs unless some limiting resistance is used.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted these specifications apply for supply voltages of $+5.0 \text{ V} \le \text{V}_{CC} \le +20 \text{ V}$ and $-5.0 \text{ V} \ge \text{V}_{FF} \ge -20 \text{ V}$, $T_{\Delta} = +25^{\circ}\text{C}$.)

		LM108A LM208A			LM108 LM208			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	l –	0.3	0.5	_	0.7	2.0	mV
Input Offset Current	10	I –	0.05	0.2	_	0.005	0.2	nA
Input Bias Current	IB	[-	0.8	2.0	_	0.8	2.0	nA
Input Resistance	rį	30	70	_	30	70	-	Megohms
Power Supply Currents $V_{CC} = +20 \text{ V}, V_{EE} = -20 \text{ V}$	ICC,IEE	_	± 0.3	± 0.6	-	± 0.3	±0.6	mA
Large Signal Voltage Gain VCC = $ VEE $ = \pm 15 V, VO = \pm 10 V, RL \geqslant 10 k Ω	AVOL	80	300	_	50	300		V/mV

The following specifications apply over the operating temperature range.

Input Offset Voltage	V _{IO}	_	_	1.0	_	_	3.0	mV
Input Offset Current	lio	_	_	0.4	_	_	0.4	nA
Average Temperature Coefficient of Input Offset Voltage T _A (min)≤T _A ≤T _A (max)	ΔV _{IO} /ΔΤ	-	1.0	5.0	_	3.0	15	μV/°C
Average Temperature Coefficient of Input Offset Current	ΔΙ _{ΙΟ} /ΔΤ	_	0.5	2.5	_	0.5	2.5	pA/°C
Input Bias Current	Iв	_	_	3.0	_	_	3.0	nA
Large Signal Voltage Gain $ \begin{array}{lll} \text{VCC} &= \text{VEE} = \ +15 \ \text{V, V}_Q = \ \pm 10 \ \text{V,} \\ \text{R}_L &= \ 10 \ \text{k}\Omega \end{array} $	AVOL	40	_	_	25	_	_	V/mV
Input Voltage Range V _{CC} = V _{EE} = +15 V	VIR	± 13.5	_	_	± 13.5	_	_	٧
Common-Mode Rejection Ratio	CMRR	96	110	_	85	100	_	dB
Power Supply Voltage Rejection Ratio	PSRR	96	100	_	80	96	_	dB
Output Voltage Range $V_{CC} = V_{EE} = +15 \text{ V}, R_L = 10 \text{ k}\Omega$	VOR	± 13	± 14	_	± 13	± 14	_	٧
Supply Current (T _A = T _A [max])	ICC,IEE		± 0.15	± 0.4	_	± 0.15	±0.4	mA

LM108, LM108A, LM208, LM208A, LM308, LM308A

ELECTRICAL CHARACTERISTICS (Unless otherwise noted these specifications apply for supply voltages of $+5.0 \text{ V} \leq V_{CC} \leq +15 \text{ V}$ and $-5.0 \text{V} \geq V_{EE} \geq -15 \text{ V}$, $T_A = +25^{\circ}\text{C}$.)

Characteristic	Symbol	LM308A			LM308			
		Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	_	0.3	0.5	_	2.0	7.5	mV
Input Offset Current	110	_	0.2	1.0	_	0.2	1.0	nA
Input Bias Current	Iв	_	1.5	7.0	_	1.5	7.0	nA
Input Resistance	rį	10	40	_	10	40	_	Megohms
Power Supply Currents V _{CC} = +15 V, V _{EE} = -15 V	ICC'IEE		± 0.3	± 0.8	_	± 0.3	± 0.8	mA
Large Signal Voltage Gain $ \begin{array}{ll} V_{CC} = +15 \ V, \ V_{EE} = -15 \ V, \ V_{O} = \pm 10 \ V, \\ R_{L} \geqslant 10 \ k\Omega \end{array} $	AVOL	80	300	_	25	300	_	V/mV

The following specifications apply over the operating temperature range.

The following specifications apply over the operation	ing tompord							
Input Offset Voltage	V _{IO}	_		0.73	_	_	10	mV
Input Offset Current	Iю	_		1.5	_	_	1.5	nΑ
Average Temperature Coefficient of Input Offset Voltage T _A (min) ≤ T _A ≤ T _A (max)	ΔV _{ΙΟ} /ΔΤ	_	1.0	5.0		6.0	30	μV/°C
Average Temperature Coefficient of Input Offset Current	ΔΙ _{ΙΟ} /ΔΤ	_	2.0	10		2.0	10	pA/°C
Input Bias Current	Iв	_	_	10	_	_	10	nA
Large Signal Voltage Gain $\begin{array}{ll} V_{CC}+15~V,~V_{EE}=~-15~V,~V_{O}=~\pm10~V,\\ R_{L}\geqslant10~k\Omega \end{array}$	AVOL	60	_	_	15	_		V/mV
Input Voltage Range V _{CC} = +15 V, V _{EE} = -15V	VIR	± 13.5	_	_	± 13.5		_	٧
Common-Mode Rejection Ratio $R_S \le 50 \text{ k}\Omega$	CMRR	96	110	_	80	100	_	dB
Supply Voltage Rejection Ratio $R_S \le 50 \text{ k}\Omega$	PSRR	96	110	_	80	96	_	dB
Output Voltage Range $V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, R_L = 10 \text{ k}\Omega$	VOR	± 13	± 14		± 13	± 14	_	V

TYPICAL CHARACTERISTICS

LM108, LM108A, LM208, LM208A, LM308, LM308A

SUGGESTED DESIGN APPLICATIONS

FIGURE 7 — FAST (1) SUMMING AMPLIFIER WITH LOW INPUT CURRENT

INPUT GUARDING

Special care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the LM108,A amplifier series. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.

Even with properly cleaned and coated boards, leakage currents may cause trouble at +125°C, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8-lead TO-99 type package is accomplished by using a 10-lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the boards. The

FIGURE 8 — SAMPLE AND HOLD

FIGURE 9 — SUGGESTED PRINTED CIRCUIT BOARD LAYOUT for INPUT GUARDING USING METAL PACKAGED DEVICE

guard, which is a conductive ring surrounding the inputs, is connected to a low-impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.

The pin configuration of the dual in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard MC1741 and LM101A pin configuration).

FIGURE 10 - CONNECTION OF INPUT GUARDS

LM124, LM224, LM324, LM2902

Specifications and Applications Information

QUAD LOW POWER OPERATIONAL AMPLIFIERS

The LM124 Series are low-cost, quad operational amplifiers with true differential inputs. These have several distinct advantages over standard operational amplifier types in single supply applications. The quad amplifier can operate at supply voltages as low as 3.0 Volts or as high as 32 Volts with quiescent currents about one fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.

- Short Circuit Protected Outputs
- True Differential Input Stage
- Single Supply Operation: 3.0 to 32 Volts
 Low Input Bias Currents: 250 nA Max
- Four Amplifiers Per Package
- Internally Compensated
- Common Mode Range Extends to Negative Supply
- Industry Standard Pinouts

Rating	Symbol	LM124 LM224 LM324	LM2902	Unit
Power Supply Voltages				Vdc
Single Supply	Vcc	32	26	
Split Supplies	VCC, VEE	± 16	± 13	
Input Differential Voltage Range (1)	VIDR	± 32	± 26	Vdc
Input Common Mode Voltage Range (2)	VICR	-0.3 to 32	-0.3 to 26	Vdc
Input Forward Current (3) (V ₁ < -0.3 V)	IIF	50		mA
Output Short Circuit Duration	t _S	Conti	nuous	
Junction Temperature Ceramic and Metal Packages Plastic Package	TJ	17 18	-	°C
Storage Temperature Range Ceramic and Metal Packages Plastic Package	T _{stg}	-65 to	°C	
Operating Ambient Temperature Range	TA			οс
LM124		-55 to +125	-	
LM224		-25 to +85	-	
LM324		0 to +70	-	
LM2902		-	-40 to +85	

- (1) Split Power Supplies.
- (2) For Supply Voltages less than 32 V for the LM124/224/324 and 26 V for the LM2902, the absolute maximum input voltage is equal to the supply voltage.
- (3) This input current will only exist when the voltage is negative at any of the input leads. Normal output states will reestablish when the input voltage returns to a voltage greater than - 0.3 V.

QUAD DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION								
Device	Temperature Range	Package						
LM124J	-55 to +125 ^o C	Ceramic DIP						
LM2902J	-40 to +85°C	Ceramic DIP						
LM2902N	-40 to +85°C	Plastic DIP						
LM224J	–25 to +85 ⁰ C	Ceramic DIP						
LM224N	-25 to +85°C	Plastic DIP						
LM324J	0 to +70°C	Ceramic DIP						
LM324N	0 to +70°C	Plastic DIP						

LM124, LM224, LM324, LM2902

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V, V_{EE} = Gnd, T_A = 25°C unless otherwise noted)

	LM124/LM224			LM324		LM2902					
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V ₁₀										mV
$V_{CC} = 5.0 \text{ V to } 30 \text{ V } (26 \text{ V for LM2902}),$											
$V_{IC} = 0 \text{ V to } V_{CC} - 1.7 \text{ V}, V_{O} \simeq 1.4 \text{ V}, R_{S} = 0 \Omega$						0.0	7.0		2.0	7.0	
$T_A = 25^{\circ}C$		-	2.0	5.0 7.0	_	2.0	7.0 9.0	_	2.0	10	
$T_A = T_{high}$ to T_{low} (Note 1)		_	-		_	7.0	9.0	_	7.0	-	μV/°C
Average Temperature Coefficient of Input Offset Voltage	$\Delta V_{10}/\Delta T$	-	7.0	-	_	7.0	_	_	/.0	-	μν, υ
TA = Thigh to Tlow (Note 1) Input Offset Current	1	-	3.0	30	_	5.0	50	_	5.0	50	nΑ
TA = Thigh to Tlow (Note 1)	110	_	3.0	100		5.0	150	_	45	200	''^
Average Temperature Coefficient of Input Offset Current	ΔΙΙΟ/ΔΤ		10	_		10	-	_	10	_	pA/°C
TA = Thigh to Tlow (Note 1)	2110/21	_	1 10	_		10			.		P/4, U
Input Bias Current	I _{IB}	-	-45	-150	 	-45	-250		-45	-250	nΑ
TA = Thigh to Tlow (Note 1)	'18	_	-50	-300	~~	-50	-500	_	-50	-500	
Input Common-Mode Voltage Range (Note 2)	VICE				-						V
V _{CC} = 30 V (26 V for LM2902)	- ICIN	0	-	28.3	0	-	28.3	0	_	24.3	
$V_{CC} = 30 \text{ V } (26 \text{ V for LM2902}), T_A = T_{high} \text{ to } T_{low}$		0	-	28	0	_	28	0		24	
Differential Input Voltage Range	VIDR	-	-	Vcc	-	-	Vcc	_	-	Vcc	V
Large Signal Open-Loop Voltage Gain	AVOL										V/mV
R_L = 2.0 k Ω , V_{CC} = 15 V, For Large V_O Swing,		50	100		25	100	- '	-	100	-	
$T_A = T_{high}$ to T_{low} (Note 1)		25	-	-	15	-	-	-	-	-	
Channel Separation	_	-	-120	_	-	-120	_		-120	-	dB
1.0 kHz ≤ f ≤ 20 kHz, Input Referenced									<u> </u>		
Common-Mode Rejection Ratio	CMRR	70	85	-	65	70	-	50	70	-	dB
$R_S \leq 10 \text{ k}\Omega$					<u> </u>						
Power Supply Rejection Ratio	PSRR	65	100		65	100	_	50	100		dB
Output Voltage Range	Vor	0	-	3.3	0		3.3	0	_	3.3	V
R_{\perp} = 2 k Ω (R_{\perp} \geqslant 10 k Ω for LM2902),											ļ
Output Voltage-High Limit (TA = Thigh to Tlow)(Note 1)	Vон										V
$V_{CC} = 30 \text{ V } (26 \text{ V for LM2902}), R_{L} = 2 \text{ k}\Omega$		26	-	-	26	-	-	22		-	
V_{CC} = 30 V (26 V for LM2902), R _L = 10 k Ω		27	28		27	28	_	23	24	_	ļ
Output Voltage-Low Limit	VOL	-	5.0	20	-	5.0	20	-	5.0	100	m∨
$V_{CC} = 5.0 \text{ V}, R_L = 10 \text{ k}\Omega, T_A = T_{high} \text{ to } T_{low} \text{ (Note 1)}$			ļ		<u> </u>					 	ļ
Output Source Current (V _{ID} = +1.0 V, V _{CC} = 15 V)	10+		١		١			١	١.,		mA
$T_A = 25^{\circ}C$		20	40	-	20	40	_	20 10	40 20	_	Į.
TA = Thigh to T _{low} (Note 1)		10	20	-	10	20	<u> </u>	10	20	+	
Output Sink Current	10-							Į.			mA
$V_{ID} = -1.0 \text{ V, } V_{CC} = 15 \text{ V}$ $T_{\Delta} = 25^{\circ}\text{C}$		10	20	_	10	20	_	10	20	_	
TA = Thigh to Tlow (Note 1)		5	8	_	5	8	_	5	8	-	1
$V_{ID} = -1.0 \text{ V}, V_{O} = 200 \text{ mV}, T_{A} = 25^{\circ}\text{C}$		12	50	-	12	50	_		-	-	μΑ
Output Short Circuit to Ground (Note 3)	los	1-	40	60	1 -	40	60	-	40	60	mA
Power Supply Current (T _A = T _{high} to T _{low})(Note 1)	¹cc	1			1		†	†	T -		mA
$V_{CC} = 30 \text{ V } (26 \text{ V for LM2902}), V_{O} = 0 \text{ V, R}_{L} = \infty$	"	_	1.5	3.0	-	1.5	3.0	-	1.5	3.0	
V _{CC} = 5 V, V _O = 0 V, R _L = ∞	1	_	0.7	1.2	_	0.7	1.2	ı	0.7	1.2	1

NOTES:

- (2) The input common mode voltage or either input signal voltage should not be allowed to go negative by more than

- 0.3 V. The upper end of the common-mode voltage range is VCC -1.7 V, but either or both inputs can go to +32 V without damage (+26 V for LM2902).
- (3) Short circuits from the output to V_{CC} can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

CIRCUIT DESCRIPTION

The LM124 Series is made using four internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance a smaller compensation capacitor (only 5 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common-mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.

Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

TYPICAL PERFORMANCE CURVES

APPLICATIONS INFORMATION

FIGURE 7 - VOLTAGE REFERENCE

$$V_O = 2.5 V(1 + \frac{R1}{R2})$$

FIGURE 8 - WIEN BRIDGE OSCILLATOR

FIGURE 9 - HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER

FIGURE 10 - COMPARATOR WITH HYSTERESIS

APPLICATIONS INFORMATION (continued)

FIGURE 12 - FUNCTION GENERATOR

FIGURE 13 - MULTIPLE FEEDBACK BANDPASS FILTER

Given $f_0 = \text{Center Frequency}$ $A(f_0) = \text{Gain at Center Frequency}$

Choose Value f_0 , C Then: $R3 = \frac{Q}{\pi f_0 C}$ $R1 = \frac{R3}{2 A(f_0)}$ $R2 = \frac{R1 R3}{4Q^2 R1 - R3}$

For less than 10% error from operational amplifier

$$\frac{Q_0 f_0}{BW}$$
 < 0.1 Where f_0 and BW are expressed in Hz.

If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

LM148 LM248 LM348

Specifications and Applications Information

QUAD MC1741 OPERATIONAL AMPLIFIERS

The LM148 series is a true quad MC1741. Integrated on a single monolithic chip are four independent, low power operational amplifiers which have been designed to provide operating characteristics identical to those of the industry standard MC1741, and can be applied with no change in circuit performance. In addition, the total supply current for all four amplifiers is comparable to the supply current of a single MC1741. Other features include input offset currents and input bias currents which are much less than the MC1741 industry standard.

The LM148 can be used in applications where amplifier matching or high packing density is important. Other applications include high impedance buffer amplifiers and active filter amplifiers.

- Each Amplifier is Functionally Equivalent to the MC1741
- Low Input Offset and Input Bias Currents
- Class AB Output Stage Eliminates Crossover Distortion
- Pin Compatible with MC3503 and LM124
- True Differential Inputs
- Internally Frequency Compensated
- Short Circut Protection
- Low Power Supply Current (0.6 mA/Amplifier)

EQUIVALENT CIRCUIT SCHEMATIC (1/4 of Circuit Shown) NON-INVERTING INVERTING
QUAD MC1741 DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

0	RDERING INFORMAT	ION
Device	Temperature Range	Package
LM148J	-55 to +125°C	Ceramic DIP
LM248J	-25 to +85°C	Ceramic DIP
LM248N	-25 to +85°C	Plastic DIP
LM348J	0 to +70°C	Ceramic DIP
LM348N	0 to +70°C	Plastic DIP

LM148, LM248, LM348

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating		Symbol	LM148 LM248/LM348			Unit
Power Supply Voltage		V _{CC}	+ 22 - 22			Vdc Vdc
Input Differential Voltage		V _{ID}	± 44	±3	36	Volts
Input Common Mode Voltage		VICM	± 22	Volts		
Output Short Circuit Duration		ts	Continuous			
Operating Ambient Temperature	Range	TA	-55 to +125	-25 to +85	0 to +70	°C
Storage Temperature Range	Ceramic Package Plastic Package	T _{stg}	1	-65 to +150 -55 to +125		°C
Junction Temperature	Ceramic Package Plastic Package	TJ		175 150		°C

FI FCTRICAL CHARACTERISTICS (Voc = +15 V Vcc = -15 V, TA = 25°C unless otherwise noted)

			LM148		L	M248/34	8	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S ≤ 10 k)	V _{IO}	<u> </u>	1.0	5.0	-	1.0	6.0	mV
Input Offset Current	110	_	4.0	25	_	4.0	50	nA
Input Bias Current	IВ	_	30	100	1	30	200	nA
Input Resistance	ri	8.0	2.5	_	8.0	2.5		MΩ
Common Mode Input Voltage Range	VICR	± 12	-	-	± 12	_	_	V
Large Signal Voltage Gain $(R_1 \ge 2.0 \text{ k, V}_{O} = \pm 10 \text{ V})$	A _V	50	160	-	25	160	-	V/mV
Channel Separation (f = 1.0 Hz to 20 kHz)	-	-	-120	-		-120	-	dB
Common Mode Rejection Ratio (R _S ≤ 10 k)	CMRR	70	90	-	70	90	-	dB
Supply Voltage Rejection Ratio (R _S ≤ 10 k)	PSRR	77	96	_	77	96	-	dB
Output Voltage Swing (R _L ≥ 10 k)	V _O	± 12	± 13 ± 12	_	± 12 ± 10	± 13	_	"
(R _L ≥ 2 k) Output Short-Circuit Current	Ios	± 10	25		- 10	25	_	mA
Supply Current — (All Amplifiers)	ID		2.4	3.6	_	2.4	4.5	mA
Small Signal Bandwidth (A _V = 1)	BW		1.0		-	1.0	_	MH
Phase Margin (A _V = 1)	φm		60	_	_	60	_	degre
Slew Rate (A _V = 1)	SR	_	0.5	_	_	0.5	-	· V/μ

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, T_A = *T_{high} to T_{low} unless otherwise noted)

Input Offset Voltage $(R_S \le 10 \text{ k}\Omega)$	V _{IO}	-	-	6.0	_	-	7.5	mV
Input Offset Current	110	- 73						nA
LM148		-	_	75	_		_	
LM248	1	_	_	- 1	-		125	
LM348		-	-	· -	_		100	1
Input Bias Current	IIB							nΑ
LM148		_	-	325	-	_		
LM248	1		-	_	-	-	500	1
LM348		-	_	_	_		400	
Common Mode Input Voltage Range	VICR	± 12	_	n -	± 12		_	V
Large Signal Voltage Gain $(R_L \ge 2 \text{ k, V}_O = \pm 10 \text{ V})$	Av	25	-	_	15	-	-	V/mV
Common Mode Rejection Ratio (Rs ≤ 10 k)	CMRR	70	90	-	70	90	_	dB
Supply Voltage Rejection Ratio (R _S ≤ 10 k)	PSRR	77	96		77	96	-	dB
Output Voltage Swing	V _O							\ V
(R ₁ ≥ 10 k)		± 12	± 13	_	± 12	± 13	_	1
(R _L ≥ 2 k)		± 10	± 12	_	±10	± 12		

^{*}T_{high} = 125°C for LM148, 85°C for LM248, and 70°C for LM348. T_{low} = -55°C for LM148, -25°C for LM248, and 0°C for LM348. NOTE: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted or the maximum junction temperature will be exceeded.

28

VO, OUTPUT VOLTAGE (V_{p·p})

Ω

10

TYPICAL CHARACTERISTICS

(V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25°C unless otherwise noted).

1.0 k

f, FREQUENCY (Hz)

10 k

100 k

THD < 5%

100

FIGURE 4 — NEGATIVE OUTPUT VOLTAGE SWING versus LOAD RESISTANCE

FIGURE 5 — OUTPUT VOLTAGE SWING versus LOAD RESISTANCE (Single Supply Operation)

FIGURE 6 — NONINVERTING PULSE RESPONSE

FIGURE 7 — OPEN LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE

APPLICATIONS INFORMATION

FIGURE 8 — VOLTAGE REFERENCE

 $V_0 = 2.5 V(1 + \frac{R1}{R2})$

FIGURE 9 — WIEN BRIDGE OSCILLATOR

FIGURE 10 — HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER

FIGURE 11 — COMPARATOR WITH HYSTERESIS

FIGURE 12 – HIGH IMPEDANCE INSTRUMENTATION BUFFER/FILTER

gurtini in a grafi≸ esse

FIGURE 13 - FUNCTION GENERATOR

FIGURE 14 - BI-QUAD FILTER

FIGURE 15 – ABSOLUTE VALUE DVM FRONT END 0.5 μF MSD6150 500 k 100 k € LM148 Quad Op-Amp

LM158, LM258, LM358, LM2904

Specifications and Applications Information

DUAL LOW POWER OPERATIONAL AMPLIFIERS

Utilizing the circuit designs perfected for recently introduced Quad Operational Amplifiers, these dual operational amplifiers feature 1) low power drain, 2) a common mode input voltage range extending to ground/VEE, 3) Single Supply or Split Supply operation and 4) pin outs compatible with the popular MC1558 dual operational amplifier. The LM158 Series is equivalent to one-half of an LM124.

These amplifiers have several distinct advantages over standard operational amplifier types in single supply applications. They can operate at supply voltages as low as 3.0 Volts or as high as 32 Volts with quiescent currents about one-fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.

- Short Circuit Protected Outputs
- True Differential Input Stage
- Single Supply Operation: 3.0 to 32 Volts
- Low Input Bias Currents
- Internally Compensated
- Common Mode Range Extends to Negative Supply
- Single and Split Supply Operation
- Similar Performance to the Popular MC1558

Rating	Symbol	LM158 LM258 LM358	LM2904	Unit
Power Supply Voltages				Vdc
Single Supply	v _{cc}	32	26	
Split Supplies	VCC, VEE	± 16	± 13	
Input Differential Voltage Range (1)	VIDR	± 32	± 26	Vdc
Input Common Mode Voltage Range (2)	VICR	-0.3 to 32	-0.3 to 26	Vdc
Input Forward Current (3) (V _I < -0.3 V)	IIF	50	_	mA
Output Short Circuit Duration	ts	Conti	nuous	
Junction Temperature Ceramic and Metal Packages Plastic Package	Tj	17 15	-	°C
Storage Temperature Range Ceramic and Metal Packages Plastic Package	T _{stg}	-65 to	°C	
Operating Ambient Temperature Range LM158 LM258 LM358	ТД	-55 to +125 -25 to +85 0 to +70		°C
LM2904			-40 to +85	

- (1) Split Power Supplies.
- (2) For Supply Voltages less than 32 V for the LM158/258/358 and 26 V for the LM2904, the absolute maximum input voltage is equal to the supply voltage.
- (3) This input current will only exist when the voltage is negative at any of the input leads. Normal output states will reestablish when the input voltage returns to a voltage greater than - 0.3 V.

DUAL DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

J SUFFIX CERAMIC PACKAGE CASE 693-02

N SUFFIX
PLASTIC PACKAGE
CASE 626-04
(LM258, LM358, LM2904 only)

ORDERING INFORMATION

ORE	DERING INFORMAT	TION
Device	Temperature Range	Package
LM158H	-55 to +125 ⁰ C	Metal Can
LM158J	- 55 to + 125 ⁰ C	Ceramic DIP
LM2904H	-40 to +85 ⁰ C	Metal Can
LM2904J	-40 to +85°C	Ceramic DIP
LM2904N	-40 to +85 ⁰ C	Plastic DIP
LM258H	- 25 to +85 ⁰ C	Metal Can
LM258J	–25 to +85 ⁰ C	Ceramic DIP
LM258N	- 25 to +85 ⁰ C	Plastic DIP
LM358H	0-to + 70 ⁰ C	Metal Can
LM358J	0 to + 70 ⁰ C	Ceramic DIP
LM358N	0 to +70°C	Plastic DIP

LM158, LM258, LM358, LM2904

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $V_{EE} = Gnd$, $T_A = 25^{\circ}C$ unless otherwise noted)

		LM1	58/LM	258		LM358		L	M2904	4	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V ₁₀										mV
$V_{CC} = 5.0 \text{ V to } 30 \text{ V } (26 \text{ V for LM2904}),$								İ			
V_{IC} = 0 V to V_{CC} - 1.7 V, V_{O} \simeq 1.4 V, R_{S} = 0 Ω			1						ļ		
$T_A = 25^{\circ}C$			2.0	5.0	-	2.0	7.0	_	2.0	7.0	
T _A = T _{high} to T _{low} (Note 1)			<u> </u>	7.0			9.0	_	-	10	
Average Temperature Coefficient of Input Offset Voltage	$\Delta V_{10}/\Delta T$	-	7.0	-		7.0	- 1	-	7.0	-	μV/ ^O C
T _A = T _{high} to T _{low} (Note 1)			<u> </u>								
Input Offset Current	110	-	3.0	30	-	5.0	50		5.0	50	nA
TA = Thigh to Tlow (Note 1)		-	-	100	_		150	_	45	200	
Average Temperature Coefficient of Input Offset Current	ΔΙΙΟ/ΔΤ	-	10	-	-	10	-		10	-	pA/°C
$T_A = T_{high}$ to T_{low} (Note 1)											
Input Bias Current	IIB	-	-45	-150	-	-45	-250	-	-45	-250	nΑ
$T_A = T_{high}$ to T_{low} (Note 1)		-	-50	-300		-50	-500		-50	-500	
Input Common-Mode Voltage Range (Note 2)	VICR							1			V
$V_{CC} = 30 \ V \ (26 \ V \ for \ LM2904)$		0	-	28.3	0	_	28.3	0	-	24.3	
V_{CC} = 30 V (26 V for LM2904), T_A = T_{high} to T_{low}		0	_	28	0	_	28	0		24	
Differential Input Voltage Range	VIDR	-		Vcc			Vcc		_	Vcc	V
Large Signal Open-Loop Voltage Gain	AVOL				l			i			V/mV
R_L = 2.0 k Ω , V_{CC} = 15 V, For Large V_O Swing,		50	100	-	25	100	-	-	100	-	
$T_A = T_{high}$ to T_{low} (Note 1)		25	-	-	15	-	-	-		-	
Channel Separation	-	-	-120	-	-	-120	-	-	-120	-	dB
1.0 kHz ≤ f ≤ 20 kHz, Input Referenced			1								
Common-Mode Rejection Ratio	CMRR	70	85	Ī -	65	70	-	50	70	-	dB
R _S ≤ 10 kΩ	1										
Power Supply Rejection Ratio	PSRR	65	100	_	65	100	l –	50	100	_	dB
Output Voltage Range	VOR	0	T -	3.3	0	_	3.3	0	-	3.3	V
$R_L = 2 k\Omega (R_L \ge 10 k\Omega \text{ for LM2904})$					1			l	1	1	
Output Voltage-High Limit (TA = Thigh to Tlow)(Note 1)	VOH		†								V
$V_{CC} = 30 \text{ V } (26 \text{ V for LM2904}), R_L = 2 \text{ k}\Omega$		26	-		26	1 -	-	22	-	-	İ
$V_{CC} = 30 \text{ V } (26 \text{ V for LM2904}), R_{L} = 10 \text{ k}\Omega$		27	28	-	27	28	-	23	24	-	
Output Voltage-Low Limit	VOL	T -	5.0	20	T -	5.0	20	-	5.0	20	m∨
$V_{CC} = 5.0 \text{ V}$, $R_L = 10 \text{ k}\Omega$, $T_A = T_{high}$ to T_{low} (Note 1)					1				1		
Output Source Current	10+	20	40	-	20	40	T -	20	40	-	mA
V _{ID} = +1.0 V, V _{CC} = 15 V			-		1						
Output Sink Current	10-				T						
V _{ID} = -1.0 V, V _{CC} = 15 V		10	20	-	10	20	-	10	20	-	mA
$V_{1D} = -1.0 \text{ V}, V_{O} = 200 \text{ mV}$		12	50	L	12	50	-		_		μΑ
Output Short Circuit to Ground (Note 3)	los	T -	40	60	-	40	60	-	40	60	mA
Power Supply Current (TA = Thigh to Tlow)(Note 1)	¹cc	1	1	1				Π			mA
$V_{CC} = 30 \text{ V } (26 \text{ V for LM2904}), V_{O} = 0 \text{ V}, R_{L} = \infty$		-	1.5	3.0	-	1.5	3.0	-	1.5	3.0	İ
V _{CC} = 5 V, V _O = 0 V, R _L = ∞		-	0.7	1.2		0.7	1.2		0.7	1.2	

NOTES:

- (1) $T_{low} = -55^{\circ}\text{C}$ for LM158 $T_{high} = +125^{\circ}\text{C}$ for LM158 $= -40^{\circ}\text{C}$ for LM2904 $= +85^{\circ}\text{C}$ for LM2904 $= -25^{\circ}\text{C}$ for LM258 $= 0^{\circ}\text{C}$ for LM358 $= +70^{\circ}\text{C}$ for LM358
- (2) The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than

- 0.3 V. The upper end of the common-mode voltage range is VCC -1.7 V, but either or both inputs can go to +32 V without damage (+26 V for LM2904).
- (3) Short circuits from the output to V_{CC} can cause excessive heating and eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

CIRCUIT DESCRIPTION

The LM158 Series is made using two internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices O20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance a smaller compensation capacitor (only 5 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common-mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.

Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

TYPICAL PERFORMANCE CURVES

FIGURE 1 - INPUT VOLTAGE RANGE ±20 INPUT VOLTAGE (VOLTS) ±14 Negative ± 10 ±8.0 ±6.0 ⇒ ±4.0 ± 20 0 ±2.0 ± 8.0 ± 10 ±12 ±18 VCC/VEE, POWER SUPPLY VOLTAGES (VOLTS)

FIGURE 2 - OPEN LOOP FREQUENCY

FIGURE 3 - LARGE-SIGNAL FREQUENCY RESPONSE

FIGURE 4 – SMALL SIGNAL VOLTAGE FOLLOWER **PULSE RESPONSE** (Non-Inverting)

FIGURE 5 - POWER SUPPLY CURRENT versus POWER SUPPLY VOLTAGE

FIGURE 6 - INPUT BIAS CURRENT versus SUPPLY VOLTAGE

APPLICATIONS INFORMATION

FIGURE 7 - VOLTAGE REFERENCE

$$V_0 = 2.5 V(1 + \frac{R1}{R2})$$

FIGURE 8 - WIEN BRIDGE OSCILLATOR

FIGURE 9 - HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER

FIGURE 10 - COMPARATOR WITH HYSTERESIS

LM158, LM258, LM358, LM2904

APPLICATIONS INFORMATION (continued)

FIGURE 12 - FUNCTION GENERATOR

FIGURE 13 - MULTIPLE FEEDBACK BANDPASS FILTER

Given $f_0 = Center Frequency$ $A(f_0) = Gain at Center Frequency$

Choose Value f_o, C Then:

R3 =
$$\frac{Q}{\pi f_0 C}$$

R1 = $\frac{R3}{2 A(f_0)}$
R2 = $\frac{R1 R3}{4Q^2 R1 - R3}$

For less than 10% error from operational amplifier

$$\frac{Q_0 f_0}{BW}$$
 < 0.1 Where f_0 and BW are expressed in Hz.

If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

LM307

INTERNALLY COMPENSATED MONOLITHIC OPERATIONAL AMPLIFIER

A general purpose operational amplifier series well suited for applications requiring lower input currents than are available with the popular MC1741. These improved input characteristics permit greater accuracy in sample and hold circuits and long interval

• Internally Compensated

• Low Offset Voltage: 7.5 mV max • Low Input Offset Current: 50 nA max • Low Input Bias Current: 250 nA max

TYPICAL APPLICATION HIGH IMPEDANCE BRIDGE AMPLIFIER vcc 100 k 10 k LM107 Pins not shown are not connected

OPERATIONAL AMPLIFIER SILICON MONOLITHIC **INTEGRATED CIRCUIT**

ORDERING INFORMATION

Device	Temperature Range	Package
LM307N	0°C to +70°C	Plastic DIP

MAXIMUM RATINGS ($T_{\Delta} = +25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	LM307	Unit
Power Supply Voltages	V _{CC} V _{EE}	+ 18 - 18	Vdc
Differential Input Signal Voltage	V _{ID}	±30	Volts
Common-Mode Input Swing (Note 1)	V _{ICR}	± 15	Volts
Output Short-Circuit Duration	t _S	Indefin	ite
Power Dissipation (Package Limitation) (Note 2)	PD	500	mW
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($T_{\Delta} = +25^{\circ}\text{C}$ unless otherwise noted, see Note 3.)

	LM307				
Characteristics	Symbol	Min	Тур	Max	Unit
Input Offset Voltage $\begin{array}{ll} R_S \leqslant 50 \; k\Omega, T_A = \; + \; 25^{\circ} C \\ R_S \leqslant 50 \; k\Omega, T_A = \; T_{low} \; to \; T_{high} \end{array}$	V _{IO}	- -	2.0	7.5 10	mV
Input Offset Current TA = +25°C TA = Tlow to Thigh	lio	_	3.0	50 70	nA
Input Bias Current TA = +25°C TA = Tlow to Thigh	IIB	_	70 —	250 300	nA
Input Resistance	ri	0.5	2.0		MΩ
Supply Current $V_S = \pm 15 \text{ V, T}_A = +25^{\circ}\text{C}$	ΙD	_	1.8	3.0	mA
Large-Signal Voltage Gain $\begin{array}{l} V_S=\pm 15~V,~V_O=\pm 10~V,~R_L>2.0~k\Omega,~T_A=+25^{\circ}C\\ V_S=\pm 15~V,~V_O=\pm 10~V,~R_L\geqslant 2.0~k\Omega,~T_A=T_{low} \end{array}$	A _v	25 15	160 —	_ _	V/mV
Average Temperature Coefficient of Input Offset Voltage $T_{low} \le T_A \le T_{high}$	TCVIO	_	6.0	30	μV/°C
Average Temperature Coefficient of Input Offset Current $+25^{\circ}\text{C} \le \text{TA} \le \text{Thigh}$ $T_{\text{low}} \le \text{TA} \le +25^{\circ}\text{C}$	TCI _{IO}	_	0.01 0.02	0.3 0.6	nA/°C
Output Voltage Swing ($T_A = T_{low}$ to T_{high}) $V_S = \pm 15$ V, $R_L = 10$ k Ω $R_L = 2.0$ k Ω	v _O	± 12 ± 10	+ 14 ± 13	_	V
Input Voltage Range ($T_A = T_{low}$ to T_{high}) $V_S = \pm 15 \text{ V}$	VICR	± 12	_	_	. V .
.Common-Mode Rejection Ratio (TA = T_{low} to $T_{high})$. RS \leqslant 50 k Ω	CMRR	70	90	_	dB
Supply-Voltage Rejection Ratio (TA = T_{low} to T_{high}) $R_S \leqslant 50~k\Omega$	PSRR	70	96	_	dB

Symbols conform to JEDEC Engineering Bulletin No. 1 when applicable.

Note 1. For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage.

Note 2. For operating at elevated temperatures, the device must be derated based on a maximum junction temperature of 100°C

for the LM307. The H package is derated based on a thermal resistance of $+150^{\circ}\text{C/W}$, junction to ambient, or $+45^{\circ}\text{C/W}$, junction to case.

Note 3. Unless otherwise noted, these specifications apply for: $\pm 5.0 \text{ V} \le \text{V}_{CC}/\text{V}_{EE} \le \pm 15 \text{ V}$, $\text{T}_{low} = 0^{\circ}\text{C}$, $\text{T}_{high} = +70^{\circ}\text{C}$

TYPICAL CHARACTERISTICS

($V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, T_A = +25 ^{\circ}\text{C}$ unless otherwise noted.)

FIGURE 1 -- MINIMUM INPUT VOLTAGE RANGE

FIGURE 2 — MINIMUM OUTPUT VOLTAGE SWING

FIGURE 3 — MINIMUM VOLTAGE GAIN

FIGURE 4 — TYPICAL SUPPLY CURRENTS

FIGURE 5 — OPEN-LOOP FREQUENCY RESPONSE

FIGURE 6 - LARGE-SIGNAL FREQUENCY RESPONSE

TYPICAL CHARACTERISTICS (continued)

FIGURE 7 — VOLTAGE FOLLOWER PULSE RESPONSE

MC1436 MC1436C MC1536

ORDERING INFORMATION

Device	Temperature Range	Package
MC1436P1	0°C to +70°C	Plastic DIP
MC136CP1	0°C to +70°C	Plastic DIP
MC1436G	0°C to +70°C	Metal Can
MC1436U	0°C to +70°C	Ceramic DIP
MC1436CG	0°C to +70°C	Metal Can
MC1436CU	0°C to +70°C	Ceramic DIP
MC1536G	-55°C to +125°C	Metal Can
MC1536U	-55°C to +125°C	Ceramic DIP

HIGH VOLTAGE, INTERNALLY COMPENSATED OPERATIONAL AMPLIFIER

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- Maximum Supply Voltage $-\pm 40$ Vdc (MC1536)
- Output Voltage Swing -

 $\pm 30 \text{ V}_{pk(min)} \text{ (VCC} = +36 \text{ V}, \text{ VEE} = -36 \text{ V}) \text{ (MC1536)}$ $\pm 22 \text{ V}_{pk(min)} \text{ (VCC} = +28 \text{ V}, \text{ VEE} = -28 \text{ V})$

- Input Bias Current − 20 nA max (MC1536)
- Input Offset Current 3.0 nA max (MC1536)
- Fast Slew Rate 2.0 V/μs typ
- Internally Compensated
- Offset Voltage Null Capability
- Input Over-Voltage Protection
- AVOL 500,000 typ
- Characteristics Independent of Power Supply Voltages (±5.0 Vdc to ±36 Vdc)

OPERATIONAL AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

MC1436, MC1436C, MC1536

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted)

Rating	Symbol	MC1536	MC1436	MC1436C	Unit
Power Supply Voltage	vcc	+40	+34	+30	Vdc
	VEE	-40	-34	-30	
Input Differential Voltage Range	VIDR		3)	Volts	
Input Common-Mode Voltage Range	VICR		3)	Volts	
Output Short Circuit Duration (V _{CC} = V _{EE} = 28 Vdc, V _o = 0)	t _S		5.0		s
Power Dissipation (Package Limitation) Derate above T _A = +25 ⁰ C	PD		mW mW/ ^o C		
Operating Ambient Temperature Range	TA	-55 to +125 0 to +70			°C
Storage Temperature Range	T _{stg}	-65 to +150			°c

ELECTRICAL CHARACTERISTICS ($V_{CC} = +28 \text{ Vdc}$, $V_{EE} = -28 \text{ Vdc}$, $T_A = +25^{\circ}\text{C}$ unless otherwise noted)

		MC1536			MC1436		MC1436C				
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	Iв										nAdc
T _A = +25 ^o C T _A = T _{low} to T _{high} (See Note 1)		-	8.0	20 35	-	15	40 55	_	25	90	
Input Offset Current	110		 	35		 -	55	 			ļ
T _A = +25°C	1 '10	-	1.0	3.0	-	5.0	10		10	25	nAdc
TA = +25°C to Thigh		-	-	4.5	-	-	14		-	-	ł
T _A = T _{low} to +25°C				7.0			14				ļ
Input Offset Voltage $T_{\Delta} = +25^{\circ}C$	V ₁₀				1						mVdc
TA = T _{low} to T _{high}			2.0	5.0 7.0		5.0	10 14	_	5.0	12	į
Differential Input Impedance (Open-Loop, f ≤ 5.0 Hz)				7.0	 						
Parallel Input Resistance	rp	-	10	_	_	10	_	_	10	_	Meg ohm
Parallel Input Capacitance	Ср	-	2.0	-	-	2.0	_	-	2.0	-	pF
Common-Mode Input Impedance (f ≤ 5.0 Hz)	Z _{IC}	_	250	_	-	250			250	_	Meg ohm
Input Common Mode Voltage Range	VICE	±24	±25		± 22	±25	_	±18	±.20		V _{pk}
Equivalent Input Noise Voltage	en					<u> </u>					nV/(Hz)1/2
(A _V = 100, R _s = 10 k ohms, f = 1.0 kHz, BW = 1.0 Hz)		-	50	-	-	50	-		50	-	110/(112//2
Common-Mode Rejection Ratio (dc)	CMRR	80	110	-	70	110		50	90	-	dB
Large Signal dc Open Loop Voltage Gain	Avol										V/V
$(V_O = \pm 10 \text{ V, R}_L = 100 \text{ k ohms}) \begin{cases} T_A = +25^{\circ}C \\ T_A = T_{low} \text{ to } T_{high} \end{cases}$	i	100,000	500,000	-	70,000	500,000		50,000	500,000		
$\int T_A = T_{low} \text{ to } T_{high}$		50,000	-		50,000	-	-	-	-	-	
(V _O = ±10 V, R _L = 10 k ohms, T _A = +25°C)			200,000	-		200,000	-		200,000		
Power Bandwidth (Voltage Follower)	BWp										kHz
$(A_V = 1, R_L = 5.0 \text{ k ohms, THD} \le 5\%, V_0 = 40 \text{ Vp-p})$			23		-	23	-	-	23	-	
Unity Gain Crossover Frequency (open-loop)	fc		1.0	-	-	1.0	-	-	1.0		MHz
Phase Margin (open-loop, unity gain)	φm	-	50		-	50		-	50		degrees
Gain Margin	AM	-	18			18		-	18	-	dB
Slew Rate (Unity Gain)	SR	-	2.0	-		2.0		-	2.0	-	V/µs
Output Impedance (f ≤ 5.0 Hz)	z _o	-	1.0	-		1.0	-		1.0		k ohms
Short-Circuit Output Current	los	-	±17	-	-	± 17			±19	-	mAdc
Output Voltage Range (R _L = 5.0 k ohms)	Vor										V _{pk}
V _{CC} = +28 Vdc, V _{EE} = -28 Vdc		+22	±23	-	±20	±22	-	± 20	± 22	-	P.1
V _{CC} = +36 Vdc, V _{EE} = -36 Vdc		±30	±32	-	-	-	-		-	-	
Power Supply Sensitivity (dc)											μV/V
$V_{EE} = constaint, R_s \le 10 \text{ k ohms}$	PSS+	-	15	100		35	200	-	50	-	
V _{CC} = constant, R _s ≤ 10 k ohms	PSS-	-	15	100	-	35	200		50		
Power Supply Current (See Note 2)	lcc	-	2.2	4.0	- 1	2.6	5.0		2.6	5.0	mAdc
	IEE	-	2.2	40	-	2.6	5.0		2.6	5.0	
DC Quiescent Power Consumption	PC										mW
(V ₀ = 0)		-	124	224	-	146	280	-	146	280	

Note 1: T_{low}: 0°C for MC1436,C -55°C for MC1536 Thigh +70°C for MC1436,C +125°C for MC1536

Note 2 · V_{CC} = V_{EE} = 5.0 Vdc to 36 Vdc for MC1536 V_{CC} = V_{EE} = 5.0 Vdc to 30 Vdc for MC1436 V_{CC} = V_{EE} = 5.0 Vdc to 28 Vdc for MC1436C

FIGURE 9 - INVERTING FEEDBACK MODEL

FIGURE 10 - NON-INVERTING FEEDBACK MODEL

FIGURE 11 - AUDIO AMPLIFIER

FIGURE 12 – VOLTAGE CONTROLLED CURRENT SOURCE or TRANSCONDUCTANCE AMPLIFIER WITH 0 TO 40 V COMPLIANCE

FIGURE 13 - REPRESENTATIVE CIRCUIT SCHEMATIC

FIGURE 14 - EQUIVALENT CIRCUIT

MC1437 MC1537

ORDERING INFORMATION

Device	Temperature Range	Package
MC1437L	0°C to +70°C	Ceramic DIP
MC1437P	0°C to +70°C	Plastic DIP
MC1537L	-55°C to +125°C	Ceramic DIP

MATCHED DUAL OPERATIONAL AMPLIFIERS

. . . designed for use as summing amplifiers, integrators, or amplifiers with operating characteristics as a function of the external feedback components. Ideal for chopper stabilized applications where extremely high gain is required with excellent stability.

Typical Amplifier Features:

- High-Performance Open Loop Gain Characteristics AVOL = 45,000 typical
- Low Temperature Drift ± 3 μV/°C
- Large Output Voltage Swing –
 ± 14 V typical @ ± 15 V Supply

MAXIMUM RATINGS $(T_{\Delta} = +25^{\circ}C)$

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+18	Vdc
	VEE	-18	Vdc
Differential Input Voltage Range	VIDR	±5.0	Voltš
Common-Mode Input Voltage Range	VICR	±Vcc	Volts
Output Short Circuit Duration	ts	5.0	s
Power Dissipation (Package Limitation) Ceramic Package Derate above T _A = +25°C Plastic Package MC1437P Derate above T _A = +25°C	PD	750 6.0 625 5.0	mW mW/ ^o C mW mW/ ^o C
Operating Ambient Temperature Range MC1537 MC1437	TA	-55 to +125 0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

DUAL MC1709

OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 646-05 (MC1437P only)

L SUFFIX CERAMIC PACKAGE CASE 632-02 MO-001AA

 $\textbf{ELECTRICAL CHARACTERISTICS} - \textbf{Each Amplifier (V}_{CC} = +15 \ \textbf{Vdc}, \ \textbf{V}_{EE} = -15 \ \textbf{Vdc}, \ \textbf{T}_{A} = +25 \ \textbf{^{o}C unless otherwise noted.}$

						1			
		MC1537							
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Open Loop Voltage Gain $ (R_L = 5.0 \text{ k}\Omega, V_0 = \pm 10 \text{ V}, \\ T_A = T_{low} \textcircled{1} \text{ to } T_{high} \textcircled{2}) $	AVOL	25,000	45,000	70,000	15,000	45,000	-	-	
Output Impedance (f = 20 Hz)	z _o	_	30.		-	30	-	7.5	
nput Impedance (f = 20 Hz)	z _i	150	400	-	50	150	-	kΩ	
Output Voltage Range (R _L = 10 kΩ)	VOR	± 12	+14	-	±12	±14	-	V _{peak}	
(R _L = 2.0 kΩ)		+10	±13	-	-	-		.,	
Input Common-Mode Voltage Range	VICR	+8.0	±10	_	+8.0	± 10		V _{peak}	
Common-Mode Rejection Ratio	CMRR	70	100	_	65	100		dB	
Input Bias Current $\begin{pmatrix} I_{IB} = \frac{I_1 + I_2}{2} & (T_A = +25^{\circ}C) \\ (T_A = T_{Iow} \textcircled{1}) \end{pmatrix}$	IВ	-	0.2 0.5	0.5 1.5	-	0.4	1.5 2.0	μА	
Input Offset Current	110	-	0.05	0.2 0.5 0.2	-	0.05 - -	0.5 0.75 0.75	μА	
Input Offset Voltage (T _A = +25°C) (T _A = T _{low} to T _{high} ②)	V _{IO}	- -	1.0	5.0 6.0	_ _ _	1.0	7.5 10	mV	
Step Response Gain = 100, 5% overshoot, $R_1 = 1 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$, $R_3 = 1.5 \text{ k}\Omega$, $C_1 = 100 \text{ pF}$, $C_2 = 3.0 \text{ pF}$	^t TLH ^t PLH ^{-t} PHL SR	- -	0.8 0.38 12	-	1 1 1	0.8 0.38 12	1 1	μs μs V/μs	
$\begin{cases} Gain = 10, 10\% \ overshoot, \\ R_1 = 1 \ k\Omega, R_2 = 10 \ k\Omega, \\ R_3 = 1.5 \ k\Omega, C_1 = 500 \ pF, C_2 = 20 \ pF \end{cases}$	tTLH tPLH-tPHL SR	- - -	0.6 0.34 1.7		- - -	0.6 0.34 1.7	- - -	μs μs V/μs	
Gain = 1, 5% overshoot, R_1 = 10 kΩ, R_2 = 10 kΩ, R_3 = 1.5 kΩ, C_1 = 5000 pF, C_2 = 200 pF	[†] TLH [†] PLH- [†] PHL SR	1 -	2.2 1.3 0.25	-	- - -	2.2 1.3 0.25	- -	μs μs V/μs	
Average Temperature Coefficient of Input Offset Voltage	△V _{IO} /△T		0.23			0.23		μV/ ^O C	
$(R_S = 50 \Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \le 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc to T_{high} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc to T_A = T_{low} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc to T_A = T_{low} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc to T_A = T_{low} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc to T_A = T_{low} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc (R_S \ge 10 k\Omega, T_A = T_{low} \bigcirc (R_S \ge $		<u>-</u>	1.5 3.0	_	_ _	1.5 3.0	_		
Average Temperature Coefficient of Input Offset Voltage (TA = Tlow ① to +25°C) (TA = +25°C to Thigh ②	ΔΙ _{ΙΟ} /ΔΤ	_	0.7	_	_	0.7 0.7	_	nA/ ^o C	
DC Power Consumption (Total)	PC		160	225		160	225	mW	
(Power Supply = ±15 V, V _O = 0) Positive Supply Sensitivity (V== constant)	PSS+	_	10	150	-	10	200	μV/V	
(V _{EE} constant) Negative Supply Sensitivity (V _{CC} constant)	PSS-	-	10	150		10	200	μV/V	

MATCHING CHARACTERIS	TICS							
Open Loop Voltage Gain	AVOL1-AVOL2	-	±1.0	-	_	±1.0		dB
Input Bias Current	IB1-IB2	_	±0.15	-		±0.15	-	μА
Input Offset Current	¹ 101 ⁻¹ 102	-	±0.02		_	±0.02	_	μΑ
Average Temperature Coefficient	$\begin{vmatrix} \triangle I O 1 \\ \triangle T \end{vmatrix} = \begin{vmatrix} \triangle I O 2 \\ \triangle T \end{vmatrix}$	-	±0.2	-	-	±0.2	_	nA/ºC
Input Offset Voltage	V _{IO1} -V _{IO2}	-	±0.2	_		±0.2	-	mV
Average Temperature Coefficient	$\left \frac{\triangle V_{1O1}}{\triangle T}\right - \left \frac{\triangle V_{1O2}}{\triangle T}\right $	-	±0.5	-	-	±0.5	-	μV/ ^O C
Channel Separation (f = 10 kHz)	e ₀ 1 e ₀ 2	_	90	-	_	90	-	dB

TYPICAL OUTPUT CHARACTERISTICS

FIGURE 3 - TEST CIRCUIT V_{CC} = +15 Vdc, V_{EE} = 15 Vdc, T_A = 25°C

FIGURE	CURVE	VOLTAGE		OUTPUT NOISE				
NO.	NO.	GAIN	$R_1(\Omega)$	R ₂ (Ω)	R ₃ (Ω)	C ₁ (pF)	C ₂ (pF)	(mV[rms])
4	1	1	10 k	10 k	1.5 k	5.0 k	200	0.10
	2	10	10 k	100 k	1.5 k	500	20	0.14
	3	100	10 k	1.0 M	1.5 k	100	3.0	0.7
	4	1000	1.0 k	1.0 M	0	10	3.0	5.2
5	1	1	10 k	10 k	1.5 k	5.0 k	200	0.10
	2	10	10 k	100 k	1.5 k	500	20	0.14
	3	100	10 k	1.0 M	1.5 k	100	3.0	0.7
	4	1000	1.0 k	1.0 M	0	10	3.0	5.2
6	1	Avol	0	8	1.5 k	5.0 k	200	5.5
,	2	AVOL	Ō	00	1.5 k	500	20	10.5
	3	AVOL	0	80	1.5 k	100	3.0	21.0
	4	AVOL	0	00	0	10	3.0	39.0
	5	AVOL	0		- 00	0	3.0	

FIGURE 4 – LARGE SIGNAL SWING versus FREQUENCY

FIGURE 5 - VOLTAGE GAIN versus FREQUENCY

FIGURE 6 – OPEN LOOP VOLTAGE GAIN versus FREQUENCY

FIGURE 7 – TOTAL POWER CONSUMPTION versus POWER SUPPLY VOLTAGE

TYPICAL CHARACTERISTICS (continued)

FIGURE 8 - VOLTAGE GAIN versus POWER SUPPLY VOLTAGE

FIGURE 9 - COMMON INPUT SWING versus POWER SUPPLY VOLTAGE

VCC and VEE, POWER SUPPLY VOLTAGE (VOLTS)

FIGURE 10 - INPUT OFFSET VOLTAGE versus TEMPERATURE

FIGURE 11 - OUTPUT NOISE VOLTAGE versus SOURCE RESISTANCE

FIGURE 12 - INDUCED OUTPUT SIGNAL (CHANNEL SEPARATION) versus FREQUENCY

Induced output signal (µV of induced output signal in amplifier #2 per volt of output signal at amplifier #1).

MC1438R MC1538R

ORDERING INFORMATION

Device	Temperature Range	Package
MC1438R	0°C to +70°C	Metal Power
MC1538R	-55°C to +125°C	Metal Power

POWER BOOSTER

The MC1538/MC1438 is designed as a high current gain amplifier (70 dB), with unity voltage gain that can deliver load currents up to ±300 mAdc. This device is ideally suited to follow an operational amplifier (such as MC1556/MC1456) for driving low impedance loads and improving the overall circuit performance.

- High Input Impedance 0.4 Meg-Ohm typ when driving the MC1538/MC1438, the gain of an operational amplifier will approach the unloaded open-loop gain. Internal power dissipation of the operational amplifier will be independent of output voltage and therefore thermal drift will be reduced.
- Large Power Bandwidth 1.5 MHz typ considerably better than
 present operational amplifiers. Bandwidth and slew rate will be
 limited by the operational amplifier, not the MC1538/MC1438.
- Low Output Impedance 10 Ohms typ allows the MC1538/ MC1438 to drive a capacitive load with greatly reduced phase shift compared with an operational amplifier. Output voltage swing capability is much increased when driving small load impedances.
- Adjustable Current Limit − ±5.0 mAdc to ±300 mAdc
- Excellent Power-Supply Rejection − 1.0 mV/V typ
- Current Gain 3000 tvp

OPERATIONAL AMPLIFIERS POWER BOOSTER

SILICON MONOLITHIC INTEGRATED CIRCUIT

TYPICAL APPLICATIONS

DIGITAL OR ANALOG LINE DRIVER

Under some conditions of circuit layout and loading, the MC1538R/MC1438R will oscillate when driven into current limiting. Oscillation during positive current limiting can usually be suppressed by placing a 0.02 μ F capacitor between Pins 7 and 5. Oscillations during negative current limit can usually be suppressed by placing a 0.02 μ F capacitor between Pins 1 and 2. 100 Ohms in series with this capacitor will reduce any cross-over distortion occurring when driving extremely low impedance loads.

MC1438R, MC1538R

MAXIMUM RATINGS (T_C = +25°C unless otherwise noted.)

Rating	Symbol	MC1538R	MC1438R	Unit
Power Supply Voltage	V _{CC} V _{EE}	+22 -22	+18 -18	Vdc
Input Voltage Swing	V _{in}	V _{CC} (or VEE	Vdc
Load Current	۱L	3	150	mAdc
Power Dissipation @ $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$	P _D	3.0 24		Watts mW/ ^O C
Power Dissipation @ $T_C = +25^{\circ}C$ Derate above $T_C = +25^{\circ}C$	P _D 1/R _θ JC	17.5 140		Watts mW/ ^O C
Operating Ambient Temperature Range MC1438R MC1538R	TA	0 to + 70 -55 to +125		°C
Operating and Storage Junction Temperature Range	T _J ,T _{stg}	-65 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	41.6	°C/W
Thermal Resistance, Junction to Case	$R_{ heta JC}$	7.15	°C/W

ELECTRICAL CHARACTERISTICS

(R_L = 300 ohms, $T_C = +25^{\circ}C$ unless otherwise noted.)

				MC1538R 5.0 V ≤ V _{CC} = V _{EE} ≤ 20 V			MC1438R			_
							V _{CC} = +15 V,V _{EE} = -1		-15 V	ı .
Characteristic (Linear Operation)	Fig	Note	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Voltage Gain (f = 1.0 kHz)	1	-	Av	0.9	0.95	1.0	0.85	0.95	1.0	V/V
Current Gain (A _I = $\Delta I_{O}/\Delta I_{I}$)	1	_	Αį	-	3000	_	_	3000		A/A
Output Impedance (f = 1.0 kHz)	1	-	z _O	_	10	-		10	_	Ohms
Input Impedance (f = 1.0 kHz)	1	_	zį	_	400	-		400	-	k ohms
Output Voltage Swing (See Note 3)	1	3	v _o	±12	±13		±11	±12	_	Vdc
Input Bias Current	2	_	Iв	_	60	200	-	60	300	μAdc
Output Offset Voltage	2	1	· v _{oo}	_	25	150	_	25	200	mVdc
Small Signal Bandwidth (R _L = 300 ohms) (V_{\parallel} = 0 Vdc, V_{\parallel} = 100 mV[rms])	1	_	BW	_	8.0	_	-	8.0	-	MHz
Power Bandwidth (See Note 3) (V _O = 20 V _{p-p} , THD = 5%)	1	-	BW _P	_	1.5	-	-	1.5	-	MHz
Total Harmonic Distortion(Note 3) (f = 1.0 kHz, V _O = 20 V _{p-p})	1	_	THD	_	0.5	-	_	0.5	-	%
Output Short-Circuit Current (R1 = R2 = ∞) (R1 = R2 = 3.3. ohms) Adjustable Range	3 3 4,5	2	los	75 _ _	95 300 5.0 to 300	125 - -	65 - -	95 300 5.0 to 300	140 - -	mAdc
Power Supply Sensitivity (VEE constant) (VCC constant)	2	-	PSRR	_	1.0 1.0		- -	1.0 1.0	<u>-</u>	mV/V
Power Supply Current $(R_L \infty, V_I = 0)$	2	3	ICC IEE	4.5	6.0	10 .	2.5	6.0	15	mAdc
Power Dissipation (See Note 3) $(R_L \infty, V_I = 0)$	2	3	PC	150	180	300	75	180	450	mW

Note 1. Output offset Voltage is the quiescent dc output voltage with the input grounded.

Note 2. Short-Circuit Current, I_{SC}, is adjustable by varying R1, R2, R3 and R4. The positive current limit is set by R1 or R3, and the negative current limit is set by R2 or R4. See Figures 4 and 5 for curves of short-circuit current versus R1, R2, R3 and R4.

Note 3. $V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}.$

CIRCUIT SCHEMATIC

TYPICAL CHARACTERISTICS

 $(V_{CC} = +15 \text{ Vdc}, V_{EE} = -15 \text{ Vdc}, T_A = +25^{\circ}\text{C unless otherwise noted.})$

FIGURE 4 - SHORT-CIRCUIT CURRENT versus R1 OR R2
(100 mA to 300 mA)

FIGURE 5 - SHORT-CIRCUIT CURRENT versus R3 OR R4

TYPICAL CHARACTERISTICS (continued)

FIGURE 6 - POWER SUPPLY **CURRENT versus SHUNT RESISTANCE** ICC, IEE POWER SUPPLY CURRENT (mAdc) V1 = 1 R₁ = R₂ R₃ = R₄ = 0 12 TA = +125°C 11 10 +75°C +25°C 9.0 -55°C 8.0 7.0 14 16 4.0 6.0 8.0 10 12 R1 OR R2, SHUNT RESISTANCE (OHMS)

V_{CC} = 5.0 Vdc, V_{EE} = -5.0 Vdc

V_{CC} = 10 Vdc, V_{EE} = -10 Vdc

V_{CC} = 15 Vdc, V_{EE} = -15 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

V_{CC} = 20 Vdc, V_{EE} = -20 Vdc

TA, OPERATING AMBIENT TEMPERATURE RANGE (°C)

FIGURE 11 - INPUT BIAS CURRENT versus TEMPERATURE

^{*}See Figures 4 and 5 for definition of R1, R2, R3, and R4.

TYPICAL CHARACTERISTICS (continued)

(V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25°C unless otherwise noted.)

FIGURE 13 - DC SAFE OPERATING AREA

TYPICAL APPLICATIONS

FIGURE 14 - NON-INVERTING AC POWER AMPLIFIER

FIGURE 15 - NON-INVERTING POWER AMPLIFIER

FIGURE 16 - NON-INVERTING VOLTAGE FOLLOWER

FIGURE 17 - INVERTING POWER AMPLIFIER

TYPICAL APPLICATIONS (continued)

FIGURE 18 - PROGRAMMABLE VOLTAGE SOURCE

FIGURE 20 - SIGNAL DISTRIBUTION

FIGURE 19 – CONSTANT CURRENT SOURCE OR TRANSCONDUCTANCE AMPLIFIER

FIGURE 21 - ASTABLE MULTIVIBRATOR

FIGURE 22 - WIEN BRIDGE OSCILLATOR

MC1439 MC1539

ORDERING INFORMATION

Device	Temperature Range	Package
MC1439G	0°C to +70°C	Metal Can
MC1439P1	0°C to +70°C	Plastic DIP
MC1539G	-55°C to +125°C	Metal Can

UNCOMPENSATED OPERATIONAL AMPLIFIER

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- Low Input Offset Voltage 3.0 mV max
- Low Input Offset Current 60 nA max
- Large Power-Bandwidth 20 Vp-p Output Swing at 20 kHz min
- Output Short-Circuit Protection
- Input Over-Voltage Protection
- · Class AB Output for Excellent Linearity
- High Slew Rate 34 V/μs typ

FIGURE 1 - HIGH SLEW-RATE INVERTER 100 k 2200 100 k рF 1 k 0.1 µF $SR \cong 35/V\mu s$ 10 k +15 V -15 V VCC VEE FIGURE 2 - OUTPUT NULLING CIRCUIT Vcc• 10 k \leq R_S \leq 100(R₃) (V_{CC}) FIGURE 3 - OUTPUT LIMITING CIRCUIT

OPERATIONAL AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

MC1439, MC1539

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25°C unless otherwise noted.)

	MC1539				į			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	Iв				İ			μΑ
$(T_A = +25^{\circ}C)$		-	0.20	0.50	-	0.20	1.0	ì
$(T_A = T_{low} \bigcirc 1)$			0.23	0.70	_	0.23	1.5	ļ
Input Offset Current	امانا						450	nA
$(T_A = T_{low})$		-	-	75 60		-	150 100	l
$(T_A = +25^{\circ}C)$		-	20	60	-	20		l
(TA = Thigh 1)		-	-	75	_		150	
Input Offset Voltage	V ₁₀						7.5	mV
(T _A = +25 ^o C)		-	1.0	3.0	_	2.0	7.5	
(TA = T _{low} , T _{high})		-		4.0	_	-		
Average Temperature Coefficient of Input Offset Voltage $(T_A = T_{low} \text{ to } T_{high})$	TCV _{IO}							μV/ ^O C
$(R_S = 50 \Omega)$		-	3.0	-	-	3.0	_	
(R _S <u><</u> 10 kΩ)			5.0	_	-	5.0		<u> </u>
Input Impedance (f = 20 Hz)	zin	150	300	_	100	300	_	kΩ
Input Common-Mode Voltage Range	VICR	±11	±12		±11	±12		V_{pk}
Equivalent Input Noise Voltage $(R_S = 10 k\Omega, Noise Bandwidth = 1.0 Hz, f = 1.0 kHz)$	e _n	-	30	3.00	-	30	-	nV/(Hz)!
Common-Mode Rejection Ratio (f = 1.0 kHz)	CMRR	80	110	_	80	110		dB
Open-Loop Voltage Gain ($V_0 = \pm 10 \text{ V}, R_L =$	Avol							
10 kΩ, R ₅ = ∞) (T _A = +25°C to T _{high})		50,000	120,000	-	15,000	100,000	-	
$(T_A = T_{low})$		25,000	100,000	_	15,000	100,000		
Power Bandwidth ($A_v = 1$, THD $\leq 5\%$,	pBM				l			kHz
$V_O = 20 \text{ Vp-p}$ $(R_L = 2.0 \text{ k}\Omega)$			_	_	10	50		1
-		20	50					1
(R _L = 1.0 kΩ, R ₅ = 10 k) Step Response								
(Gain = 1000, no overshoot,	tTHL.		130	-		130	2	ns
$R1 = 1.0 \text{ k}\Omega$, $R2 = 1.0 \text{ M}\Omega$, $R3 = 1.0 \text{ k}\Omega$,	t _{pd}	-	190			190	-	ns
$R4 = 30 \text{ k}\Omega$, $R5 = 10 \text{ k}\Omega$, $C1 = 1000 \text{ pF}$	SR		6.0			6.0		V/μs
(Gain = 1000, 15% overshoot,	^t THL	_	80			80	_	ns
$R1 = 1.0 \text{ k}\Omega, R2 = 1.0 \text{ M}\Omega, R3 = 1.0 \text{ k}\Omega,$			100			100	_	ns
$R4 = 0$, $R5 = 10 \text{ k}\Omega$, $C1 = 10 \text{ pF}$	^t pd SR	_	14			14		. V/μs
	tTHL		60		,	60		ns
Gain = 100, no overshoot,			100			100		ns
$\langle R1 = 1.0 \text{ k}\Omega, R2 = 100 \text{ k}\Omega, R3 = 1.0 \text{ k}\Omega, \rangle$	t _{pd}					34		V/μs
$(R4 = 10 \text{ k}\Omega, R5 = 10 \text{ k}\Omega, C1 = 2200 \text{ pF})$	SR •=		34	-		120		ns
Gain = 10, 15% overshoot,	tTHL		120	-			_	ns
$R1 = 1.0 \text{ k}\Omega$, $R2 = 10 \text{ k}\Omega$, $R3 = 1.0 \text{ k}\Omega$,	t _{pd}	_	80	_		80		V/μs
$R4 = 1.0 \text{ k}\Omega$, $R5 = 10 \text{ k}\Omega$, $C1 = 2200 \text{ pF}$	SR	_	6.25	-	-	6.25		1
Gain = 1, 15% overshoot,	tTHL	-	160		_	160		ns
$\left\langle R1 = 10 \text{ k}\Omega, R2 = 10 \text{ k}\Omega, R3 = 5.0 \text{ k}\Omega, \right\rangle$	t _{pd}		80	-	-	80	_	ns
$(R4 = 390 \Omega, R5 = 10 k\Omega, C1 = 2200 pF)$	SR	_	4.2	-		4.2		V/µs
Output Impedance (f = 20 Hz)	z _O	_	4.0			4.0		kΩ
Output Voltage Swing	٧o					, 12		V_{pk}
$(R_L = 2.0 \text{ k}\Omega, f = 1.0 \text{ kHz})$		-	- 112	_	±10	±13	-	1
(R _L = 1.0 kΩ, f = 1.0 kHz)		±10	±13	450			200	μV/V
Positive Supply Rejection Ratio $(V_{EE} \text{ constant}, R_5 = \infty)$	PSRR+		50	150		50		
Negative Supply Rejection Ratio $(V_{CC} \text{ constant}, R_5 = \infty)$	PSRR-		50	150		50	200	μV/\
Power Supply Current	1 .	1				3.0	6.7	mAd
$(V_0 = 0)$	lcc	_	3.0	5.0	-		6.7	made
	1EE	-	3.0	5.0		3.0	6.7	

Thigh = +70°C for MC1439 +125°C for MC1539

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+18 +18	Vdc
Differential Input Voltage Range	VIDR	±(VCC + VEE)	Vdc
Common-Mode Input Voltage Range	VICR	+VCC,-IVEEI	Vdc
Load Current	ار	15	mA
Output Short-Circuit Duration	tS	Contin	uous
Power Dissipation (Package Limitation) Metal Package Derate above T _A = +25°C Plastic Dual In-Line Packages MC1439 Derate above T _A = +25°C	PD	680 4.6 625 5.0	mW mW/ ^O C mW mW/ ^O C
Operating Temperature Range MC1539 MC1439	TA	-55 to +125 0 to +70	°C
Storage Temperature Range Metal Packages Plastic Packages	T _{stg}	-65 to +150 -55 to +125	°C

FIGURE 4 - EQUIVALENT CIRCUIT SCHEMATIC

FIGURE 5 - EQUIVALENT CIRCUIT

TYPICAL OUTPUT CHARACTERISTICS

Vcc = +15 Vdc. Vcc = ~15 Vdc. Ta = +25°C.

FIGURE	CURVE	VOLTAGE	OLTAGE TEST CONDITIONS (FIGURE 6)							
NO.	NO.	GAIN	R ₁ (Ω)	R ₂ (Ω)	R ₃ (Ω)	R4 (Ω)	R ₅ (Ω)	C ₁ (pF)		
	1	Avol	0	00	0	000	- 00	0		
	2	1 .	10 k	10 k	5.0 k	390	10 k	2200		
	3	10	1.0 k	10 k	1.0 k	1.0 k	10 k	2200		
7,10,12	4	100	1.0 k	100 k	1.0 k	10 k	10 k	2200		
	5	1000	1.0 k	1.0 M	1.0 k	30 k	10 k	1000		
	6	1000	1.0 k	1.0 M	1.0 k	0	10 k	10		
8	1	Avoi	0	00	0	- 00	00	0		
	2	l i	1 1	1 1	-1	390	1 1	2200		
	3	1 1	1 1		1 1	1.0 k	1 1	2200		
	4	1 1	1 1		l i	10 k	1 1	2200		
	5	1 1	1 1	1 1	1 1	30 k	1 1	1000		
	6					0	. ▼	10		
13	ALL	1	10 k	10 k	5.0 k	390	10 k	2200		
14	ALL	10	1.0 k	10 k	1.0 k	1.0 k	10 k	2200		
15	ALL	100	1.0 k	100 k	1.0 k	10 k	10 k	2200		
16	ALL	1000	1.0 k	1.0 M	1.0 k	30 k	10 k	2200		

FIGURE 6 - TEST CIRCUIT

 $(V_{CC} = +15 \text{ Vdc}, V_{EE} = -15 \text{ Vdc}, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

FIGURE 8 - OPEN-LOOP VOLTAGE GAIN versus FREQUENCY

FIGURE 9 – OUTPUT VOLTAGE SWING versus LOAD RESISTANCE

FIGURE 10 - OPEN-LOOP PHASE-SHIFT versus FREQUENCY

FIGURE 11 – OUTPUT VOLTAGE SWING
(to clipping) versus SUPPLY

FIGURE 12 - CLOSED-LOOP GAIN versus FREQUENCY

(V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25°C, unless otherwise noted.)

FIGURE 13 - A_{CL}* = 1 RESPONSE versus TEMPERATURE

FIGURE 14 - ACL = 10 RESPONSE versus TEMPERATURE

FIGURE 15 - ACL = 100 RESPONSE versus TEMPERATURE

FIGURE 16 - ACL = 1000 RESPONSE versus TEMPERATURE

FIGURE 17 – SPECTRAL NOISE DENSITY

*A_{CL} = Closed-Loop Gain

FIGURE 18 - OUTPUT NOISE versus SOURCE RESISTANCE

 $(V_{CC} = +15 \text{ Vdc}, V_{EE} = -15 \text{ Vdc}, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

FIGURE 20 – POWER DISSIPATION versus POWER SUPPLY VOLTAGE

200

R_L = 1.0 kΩ
THD = 5%

R_L = ∞

NO R_L = ∞

SAFE OPERATING AREA (-55 to +125°C)

10

10

12

14

16

18

VCC AND VEE, POWER SUPPLY VOLTAGE (VOLTS)

FIGURE 21 - POWER BANDWIDTH (LARGE-SIGNAL SWING versus FREQUENCY) +12 +10 390 +8.0 OUTPUT VOLTAGE SWING (Vp) +6.0 +4.0 +2.0 -2.0 THD≤5.0% -4.0 Voltage Follower Configuration -6.0 -8.0 -10 -12 10 1.0 k 10 k 100 k f, FREQUENCY (Hz)

MOTOROLA LINEAR/INTERFACE DEVICES

FIGURE 25 - VOLTAGE-FOLLOWER PULSE RESPONSE

TYPICAL APPLICATIONS

FIGURE 26 - VOLTAGE FOLLOWER

$$z_{\text{OCL}} = z_{\text{OOL}} \left[\frac{1 + \frac{R_F}{R_i}}{A_{\text{Dl}}} \right] = 4 \text{ k} \left[\frac{1 + 0}{105} \right] \approx 0.04 \text{ OHM}$$

FIGURE 27 - DIFFERENTIAL AMPLIFIER

$$e_0 = -\frac{n_1}{R_1} e_1 + \frac{n_1}{R_2} e_2 + \left[1 + \frac{n_1}{R_3}\right] e_1$$
For R3 = $\frac{R_1, R_2}{R_1 + R_2}$

FIGURE 28 - SUMMING AMPLIFIER

RB = Parallel Combination of R1, R2, R3, RF.

$$\dot{e}_0 = - \left[\frac{RF}{R_1} \quad e_1 + \frac{RF}{R_2} \quad e_2 + \frac{RF}{R_3} \quad e_3 \right]$$
 *Properly Compensated

FIGURE 29 - +15 VOLT REGULATOR

TYPICAL APPLICATIONS (continued)

FIGURE 30 – LOAD REGULATION FOR CIRCUIT OF FIGURE 29

MC1445 MC1545

ORDERING INFORMATION

Device	Temperature Range	Package
MC1445G	0°C to +75°C	Metal Can
MC1445L	0°C to +75°C	Ceramic DIP
MC1545G	- 55°C to + 125°C	Metal Can
MC1545L	$-55^{\circ}\text{C to } + 125^{\circ}\text{C}$	Ceramic DIP

GATE CONTROLLED TWO-CHANNEL-INPUT WIDEBAND AMPLIFIER

. . . designed for use as a general-purpose gated wideband-amplifier, video switch, sense amplifier, multiplexer, modulator, FSK circuit, limiter, AGC circuit, or pulse amplifier. See Application Notes AN491 for design details.

- Large Bandwidth; 50 MHz typical
- Channel-Select Time of 20 ns typical
- Differential Inputs and Differential Output

GATE CONTROLLED TWO-CHANNEL-INPUT WIDEBAND AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

MC1445, MC1545

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	+12 -12	Vdc Vdc
Input Differential Voltage Range	V _{IDR}	±5.0	Volts
Load Current	1_	25	mA
Power Dissipation (Package Limitation) Flat Package Derate above $T_A = +25^{\circ}C$ Ceramic Dual In-Line Package Derate above $T_A = +25^{\circ}C$ Metal Can Derate above $T_A = +25^{\circ}C$	PD	500 3.3 625 5.0 680 4.6	mW mW/ ^O C mW mW/ ^O C mW mW/ ^O C
Operating Ambient Temperature Range MC1445 MC1545	TA	0 to +75 -55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($V_{CC} = +5.0 \text{ Vdc}$, $V_{EE} = 5.0 \text{ Vdc}$, at $T_A = +25^{\circ}\text{C}$, specifications apply to both input channels unless otherwise noted.)

				MC1545					
Characteristic	Fig. No.	Symbol	Min	Тур	Max	Min .	Тур	Max	Unit
Single-Ended Voltage Gain	1,12	A _{vs}	16	19	21	16	19.5	23	dB
Bandwidth	1,12	BW	40	50	l –	-	50	_	MHz
Input Impedance (f = 50 kHz)	5,14	z _i	4.0	10	-	3.0	10	_	k ohms
Output Impedance (f = 50 kHz)	6,15	z _O	-	25			25	_	Ohms
Output Differential Voltage Range (R _L = 1.0 k ohm, f = 50 kHz)	4,13	VODR	1.5	2.5		1.5	2.5	-	Vp-p
Input Bias Current	16	Iв	-	15	25	_	15	30	μAdc
Input Offset Current	16	110	_	2.0	-	_	2.0	_	μAdc
Input Offset Voltage	17	V _{IO}	_	1.0	5.0		-	7.5	m Vdc
Quiescent Output dc Level	17	v _O	-	0.1	_	_	0.1	_	Vdc
Output dc Level Change (Gate Input Voltage Change: +5.0 V to 0 V)	17	ΔVO	LAND	± 15	-	-	±15	-	mV
Common-Mode Rejection Ratio (f = 50 kHz)	9,18	CMRR		85	-	-	85	_	dB
Input Common-Mode Voltage Range	18	VICR	-	± 2.5		-	±2.5		Vp
Gate Characteristics Gate Input Voltage — Low Logic State (Note 1)	8	V _{IL(G)}	0.40	0.70	-	0.2	0.4	-	Vdc
Gate Input Voltage — High Logic State (Note 2)		V _{IH} (G)	_	1.5	2.2	_	1.3	3.0	ł
Gate Input Current — Low Logic State (VIL(G) = 0 V)	18	¹ IL(G)	-	-	2.5	_	-	4.0	mA
Gate Input Current — High Logic State (VIH(G) = +5.0 V)	18	liH(G)	and the	-	2.0	-	-	4.0	μА
Step Response	19	tPLH .	_	6.5	10	_	6.5	_	ns
(e _{in} = 20 mV)		tPHL tTLH	_	6.3 6.5	10 15	-	6.3 6.5	_	
		^t THL	_	7.0	15	_	7.0	-	
Wideband Input Noise (5.0 Hz – 10 MHz, R _S = 50 ohms)	10,20	e _n	-	25	-	-	25	_	μV(rms)
DC Power Consumption	11,20	PC	_	70	110	_	70	150	mW

Note 1. V_{1L}(G) is the gate voltage which results in channel A gain of unity or less and channel B gain of 16 dB or greater.

Note 2. VIH(G) is the gate voltage which results in channel B gain of unity or less and channel A gain of 16 dB or greater.

FIGURE 8 - GATE CHARACTERISTICS +20 A_{vs}, SINGLE-ENDED VOLTAGE GAIN (dB) 0 -10 -20 -30 50 -40 -50 -60 -70 0 0.5 2.5 1.0 1.5 2.0 VG, GATE VOLTAGE (VOLTS) FIGURE 10 - INPUT WIDEBAND NOISE

FIGURE 9 – COMMON MODE
REJECTION RATIO versus FREQUENCY

Wersus SOURCE RESISTANCE

33

Bandwidth = 5.0 Hz to 10 MHz

29

27

25

FIGURE 11 - CIRCUIT SCHEMATIC

FIGURE 12 – SINGLE ENDED VOLTAGE GAIN AND BANDWIDTH TEST CIRCUIT

RS, SOURCE RESISTANCE (OHMS)

10

FIGURE 13 - OUTPUT VOLTAGE SWING TEST CIRCUIT

FIGURE 15 - OUTPUT IMPEDANCE TEST CIRCUIT

FIGURE 17 – INPUT OFFSET VOLTAGE AND QUIESCENT OUTPUT LEVEL TEST CIRCUIT

FIGURE 14 - INPUT IMPEDANCE TEST CIRCUIT

FIGURE 16 – INPUT BIAS CURRENT AND INPUT
OFFSET CURRENT TEST CIRCUIT

FIGURE 18 – GATE CURRENT (HIGH AND LOW), COMMON-MODE REJECTION AND COMMON-MODE INPUT RANGE TEST CIRCUIT

FIGURE 19 – PROPAGATION DELAY AND RISE AND FALL TIMES TEST CIRCUIT

FIGURE 20 – POWER DISSIPATION AND WIDEBAND INPUT NOISE TEST CIRCUIT

FIGURE 21 - LIMITING CHARACTERISTIC

MC1454G MC1554G

ORDERING INFORMATION

Device	Temperature Range	Package
MC1454G	0°C to +70°C	Metal Can
MC1554G	-55°C to +125°C	Metal Can

1-WATT POWER AMPLIFIERS

... designed to amplify signals to 300-kHz with 1-Watt delivered to a direct coupled or capacitively coupled load.

- Low Total Harmonic Distortion 0.4% (Typ) @ 1 Watt
- Low Output Impedance 0.2 Ohm
- Excellent Gain Temperature Stability

1-WATT POWER AMPLIFIER INTEGRATED CIRCUIT

SILICON MONOLITHIC EPITAXIAL PASSIVATED

MC1454G, MC1554G

ELECTRICAL CHARACTERISTICS (T_C = +25°C unless otherwise noted)

Frequency compensation shown in Figures 6 and 7.

		RL	Gain		(-5	MC 1554 5 to +125			MC1454 to +70°		
Characteristic	Figure	(Ohms)	Option*	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Power (for eout<5.0% THD)	1	16	-	Pout	1.0	1.1	-	_	1.0	-	Watt
Power Dissipation (@ Pout = 1.0 W)	1	16	_	PD		0.9	1.2	-	0.9	-	Watt
Voltage Gain	1	16 16 16	10 18 36	A _v	8.0 - -	10 18 36	12 - -	-	10 18 36	-	V/V
Input Impedance	1	-	10	z _{in}	7.0	10	_	3.0	10	-	kΩ.
Output Impedance	1	_	10	z _o	_	0.2	-	-	0.4	_	Ω
Power Bandwidth (for e _{out} <5.0% THD)	2	16 16 16	10 18 36	BW	-	270 250 210	- - -		270 250 210	-	kHz
Total Harmonic Distortion (for e _{in} <0.05% THD, f = 20 Hz to 20 kHz)	2			THD							%
Pout = 1.0 Watt (sinewave)		16	10		-	0.4	-	-	0.4	-	1
P _{out} = 0.1 Watt (sinewave)		16	10		_	0.5		_	0.5	_	İ
Zero Signal Current Drain	3	∞		ΙD	_	11	15	_	11	20	mAdc
Output Noise Voltage	3	16	10	V _n	-	0.3	-	-	0.3	-	mV(rms
Output Quiescent Voltage (Split Supply Operation)	4	16	-	V _o (dc)		±10	±30	-	±10	-	mVdc
Positive Supply Sensitivity (VEE constant)	5	∞	_	s ⁺	-	-40	-	-	-40	-	mV/V
Negative Supply Sensitivity (V _{CC} constant)	5	∞	-	s-	-	-40	-		-40	-	mV/V

^{*}To obtain the voltage gain characteristic desired, use the following pin connections: Voltage Gain

Pin Connection

10 18 36 Pins 2 and 4 open, Pin 5 to ac ground Pins 2 and 5 open, Pin 4 to ac ground

Pin 2 connected to Pin 5, Pin 4 to ac ground

Characteristic Definitions (Linear Operation)

FIGURE 1

FIGURE 3

FIGURE 4

FIGURE 2

MAXIMUM RATINGS (T_C = +25°C unless otherwise noted)

Rating		Symbol	Value	Unit
Total Power Supply Voltage		IVCCI + IVEE	18	Vdc
Peak Load Current		lout	0.5	Ampere
Audio Output Power		Pout	1.8	Watts
Power Dissipation (package limitation) $T_{A} = +25^{\circ}C$ Derate above $25^{\circ}C$ $T_{C} = +25^{\circ}C$ Derate above $25^{\circ}C$		P _D 1/θJ _A P _D 1/θJ _C	600 4.8 1.8 14.4	mW mW/ ^O C Watts mW/ ^O C
Operating Temperature Range	MC1454 MC1554	TA	0 to +70 -55 to +125	°C
Storage Temperature Range		T _{stg}	-55 to +150	°c

FIGURE 7 – SINGLE SUPPLY OPERATION VOLTAGE GAIN (A_V) = 10, $f_{LOW} \approx 100 \text{ Hz}$

RECOMMENDED OPERATING CONDITIONS

In order to avoid local VHF instability, the following set of rules must be adhered to:

- 1. An R-C stabilizing network (0.1 μ F in series with 10 ohms) should be placed directly from pin 9 to ground, as shown in Figures 6 and 7, using short leads, to eliminate local VHF instability caused by lead inductance to the load.
- 2. Excessive lead inductance from the V_{CC} supply to pin 10 can cause high frequency instability. To prevent this, the V_{CC} by-pass capacitor should be connected with short leads from the V_{CC} pin to ground. If this capacitor is remotely located a series R-C network (0.1 _{If} and 10 ohms) should be used directly from pin 10 to ground as shown in Figures 6 and 7.

FIGURE 8 - TOTAL HARMONIC DISTORTION

Lead lengths from the external components to pins 7, 9, and 10 of the package should be as short as possible to insure good VHF grounding for these points.

Due to the large bandwidth of the amplifier, coupling must be avoided between the output and input leads. This can be assured by either (a) use of short leads which are well isolated, (b) narrow-banding the overall amplifier by placing a capacitor from pin 1 to ground to form a low-pass filter in combination with the source impedance, or (c) use of a shielded input cable. In applications which require upper band-edge control the input low-pass filter is recommended.

TYPICAL CHARACTERISTICS

MOTOROLA LINEAR/INTERFACE DEVICES

FIGURE 10 - VOLTAGE GAIN versus TEMPERATURE

FIGURE 11 - OUTPUT VOLTAGE CHANGE

FIGURE 12 – VOLTAGE GAIN versus FREQUENCY (R_L = ∞)

FIGURE 13 — MAXIMUM DEVICE DISSIPATION (SINE WAVE)

MC1456 MC1456C MC1556

ORDERING INFORMATION

Device	Temperature Range	Package
MC1456G,CG	0°C to +70°C	Metal Can
MC1456CP1,P1	0°C to +70°C	Plastic DIP
MC1556G	-55°C to +125°C	Metal Can
MC1556U	-55°C to +125°C	Ceramic DIP

INTERNALLY COMPENSATED, HIGH PERFORMANCE OPERATONAL AMPLIFIER

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- Low Input Bias Current 15 nA max
- Low Input Offset Current 2.0 nA max
- Low Input Offset Voltage 4.0 mV max
- Fast Slew Rate 2.5 V/μs typ
- Large Power Bandwidth 40 kHz typ
- Low Power Consumption 45 mW max
- Offset Voltage Null Capability
- Output Short-Circuit Protection
- Input Over-Voltage Protection

TYPICAL INPUT BIAS CURRENT AND INPUT OFFSET CURRENT versus TEMPERATURE for MC1556 MC1456 MC1456 MC1456 INPUT BIAS CURRENT INPUT BIAS CURRENT INPUT BIAS CURRENT INPUT BIAS CURRENT TALAMBIENT TEMPERATURE (90)

OPERATIONAL AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

MC1456, MC1456C, MC1556

MAXIMUM RATINGS (TA = +25°C unless otherwise	MC1456			
Rating	Symbol	MC1556	MC1456C	Unit
Power Supply Voltage	V _{CC} V _{EE}	+22 -22	+18 -18	Vdc
Differential Input Voltage Range	V _{IDR}	±Vcc		Volts
Common-Mode Voltage Range	VICR	±V _{CC}		Volts
Load Current	1 _L		20	
Output Short Circuit Duration	ts	Continuous		
Power Dissipation (Package Limitation) Derate above T _A = +25°C	PD	680 4.6		mW mW/ ^o C
Operating Temperature Range	TA	-55 to +125 0 to +70		°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	°C

Vdc, VFF = - 15 Vdc,	$T_A = +25^{\circ}C$ unless otherwise noted).
15	15 Vdc, VFF = - 15 Vdc,

	MC1556 MC1456			IC1456			MC1456C					
Characteristic	Fig.	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current		ЧВ										nAdc
T _A = +25°C			-	8.0	15	-	15	30	- 1	15	90	
TA = Tlow to Thigh (See Note 1)				-	30	-		40	-		-	
Input Offset Current		110										nAdc
T _A = +25°C			-	1.0	2.0	-	5.0	10		5.0	30	
TA = +25°C to Thigh			-	-	3.0	-	-	14	-	-	-	
TA = T _{low} to +25°C			-	-	5.0	-	-	14	-	-		
Input Offset Voltage		V _{IO}										mVdc
T _A = +25°C			-	2.0	4.0	-	5.0	10	-	5.0	12	
TA = Tlow to Thigh			-	-	6.0	-	-	14		_	_	
Differential Input Impedance (Open-Loop, f = 20 Hz)												l
Parallel Input Resistance		rp	-	5.0	-	-	3.0	-	-	3.0	-	Megohms
Parallel Input Capacitance		cb	-	6.0	_	-	6.0			6.0		pF
Common-Mode Input Impedance (f = 20 Hz)		zi	-	250	-	-	250		~	250		Megohms
Common-Mode Input Voltage Range	1	VICR	±12	±13	1	+11	±12	_	±10.5	±12	-	V _{pk}
Equivalent Input Noise Voltage (A _V = 100, R _S = 10 k ohms, f = 1.0 kHz, BW = 1.0 Hz)	2	en	-	45			45	-	-	45	-	nV/(Hz)
Common-Mode Rejection Ratio (f = 100 Hz)	3	CMRR	80	110	-	70	110	-	-	110	-	dB
Open-Loop Voltage Gain, (VO = ± 10 V, RL = 2.0 k ohms)	4,5,6	AVOL										V/V
$T_A = +25^{\circ}C$			100,000	200,000		70,000	100,000	-	25,000	100,000	-	
TA = Tlow to Thigh			40,000	-	-	40,000	-		_	-	-	
Power Bandwidth	9	ΒWiρ	_	40	-	-	40	-		40	-	kHz
(A _V = 1, R _L = 2.0 k ohms, THD≤5%, V _O = 20 Vp·p)				l								
Unity Gain Crossover Frequency (open-loop)	5	вw	-	1.0	-	-	1.0	-	-	1.0		MHz
Phase Margin (open-loop, unity gain)	5,7		-	70	-	-	70	-	-	70	-	degrees
Gain Margin	5,7		-	18	_		18	-		18		dB
Slew Rate (Unity Gain)		SR	-	2.5	-	-	2.5	_		2.5	_	V/μs
Output Impedance (f = 20 Hz)		z _o	-	1.0	2.0	-	1.0	2.5	-	1.0	_	kohms
Short-Circuit Output Current	8	los	-	-17, +9.0	-	-	-17, +9.0	-	-	-17, +9.0		mAdc
Output Voltage Swing (R _L = 2.0 k ohms)	10	VOR	±12	±13	-	+11	±12	_	±10	±12	-	V _{pk}
Power Supply Rejection Ratio V _{CC} = constant, R _S ≤ 10 k ohms V _{EE} = constant, R _S ≤ 10 k ohms		PSRR+ PSRR-		50 50	100 100	-	75 75	200 200	-	75 75	-	μV/V
Power Supply Current		lcc lee	-	1.0 1.0	1.5 1.5	-	1.3 1.3	3.0 3.0	-	1.3 1.3	4.0 4.0	mAdc
DC Quiescent Power Dissipation (VO = 0)	11	PD	-	30	45	-	40	90	-	40	120	mW

Note 1: T_{low} : 0^{o} for MC1456 and MC1456C $_{-55}^{o}$ C for MC1556 T_{high} : $+70^{o}$ C for MC1456 and MC1456C $_{+125}^{o}$ C for MC1556

TYPICAL CHARACTERISTICS

 $(V_{CC} = +15 \text{ Vdc}, V_{EE} = -15 \text{ Vdc}, T_A = +25^{\circ}\text{C} \text{ unless otherwise noted}).$

FIGURE 7 - OPEN-LOOP PHASE SHIFT

FIGURE 8 - OUTPUT SHORT-CIRCUIT CURRENT

FIGURE 9 - POWER BANDWIDTH

FIGURE 10 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE

FIGURE 11 - POWER DISSIPATION versus

TYPICAL APPLICATIONS

Where values are not given for external components they must be selected by the designer to fit the requirements of the system.

FIGURE 12 — INVERTING FEEDBACK MODEL

FIGURE 13 — NONINVERTING FEEDBACK MODEL

FIGURE 14 — LOW-DRIFT SAMPLE AND HOLD

FIGURE 15 — HIGH IMPEDANCE BRIDGE AMPLIFIER

TYPICAL APPLICATIONS (continued)

FIGURE 16 - LOGARITHMIC AMPLIFIER

FIGURE 17 - VOLTAGE OFFSET NULL CIRCUIT

FIGURE 18 – HIGH INPUT IMPEDANCE, HIGH OUTPUT CURRENT VOLTAGE FOLLOWER

MC1458, MC1458N, MC1458C MC1558, MC1558N

ORDERING INFORMATION

Device	Temperature Range	Package
MC1458G,CG,NG	0°C to + 70°C	Metal Can
MC1558G,NG	-55°C to +125°C	Metal Can
MC1458CU,NU,U	0°C to +70°C	Ceramic DIP
MC1558NU,U	-55°C to +125°C	Ceramic DIP
MC1458CP1,NP1,P1	0°C to +70°C	Plastic DIP

DUAL MC1741 INTERNALLY COMPENSATED, HIGH PERFORMANCE MONOLITHIC OPERATIONAL AMPLIFIERS

 \dots designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- No Frequency Compensation Required
- Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up
- Low Noise Selections Offered N Suffix

MAXIMUM RATINGS (TA = +25°C unless otherwise noted)

Rating	Symbol	MC1458	MC1558	Unit
Power Supply Voltage	Vcc	+18	+22	Vdc
	VEE	-18	-22	Vdc
Input Differential Voltage	VID	±	30	Volts
Input Common Mode Voltage (Note 1)	VICM	+15		Volts
Output Short Circuit Duration (Note 2)	ts	Conti		
Operating Ambient Temperature Range	TA	0 to +70	-55 to +125	°C
Storage Temperature Range	⊤stg	CE.	.450	°C
Metal and Ceramic Packages		Į.	o +150 o +125	
Plastic Package		-55 (5 1125	
Junction Temperature	ТЈ			°C
Metal and Ceramic Packages			75	
Plastic Package		1	50	

Note 1. For supply voltages less than \pm 15 V, the absolute maximum input voltage is equal to the supply voltage.

Note 2. Supply voltage equal to or less than 15 V.

(DUAL MC1741) DUAL OPERATIONAL AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

MC1458, MC1458N, MC1458C, MC1558, MC1558N

ELECTRICAL CHARACTERISTICS — Note 1. ($V_{CC} = 15 \text{ V}$, $V_{EE} = 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted).

	T		MC155	8	N	AC145	8	MC1458C			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S ≤ 10 k)	VIO	-	1.0	5.0	_	2.0	6.0	_	2.0	10	mV
Input Offset Current	110	-	20	200	_	20	200	-	20	300	nA
Input Bias Current	IIB	_	80	500	_	80	500	-	80	700	nΑ
Input Resistance	rį	0.3	2.0	-	0.3	2.0	_	-	2.0	-	МΩ
Input Capacitance	Ci	_	1.4		-	1.4	_	_	1.4	_	pF
Offset Voltage Adjustment Range	VIOR	_	±15	-		±15	-	_	±15	_	mV
Common Mode Input Voltage Range	VICR	±12	±13		±12	±13	-	±11	±13	_	V
Large Signal Voltage Gain $(V_O = \pm 10 \text{ V}, R_L = 2.0 \text{ k})$ $(V_O = \pm 10 \text{ V}, R_L = 10 \text{ k})$	Av	50 -	200 —	_	20 -	200	_	_ 20	_ 200	-	V/mV
Output Resistance	ro	_	75		_	75		-	75	-	Ω
Common Mode Rejection Ratio (R _S ≤ 10 k)	CMRR	70	90	-	70	90	-	60	90	-	dB
Supply Voltage Rejection Ratio $(R_S \le 10 \text{ k})$	PSRR	-	30	150	-	30	150	-	30	-	μV/V
Output Voltage Swing $ \begin{array}{l} (R_L \geqslant 10 \text{ k}) \\ (R_L \geqslant 2 \text{ k}) \end{array} $	v _o	±12 ±10	±14 ±13	_	±12 ±10	±14 ±13	_	±11 ±9.0	±14 ±13	_	V
Output Short-Circuit Current	los	_	20	-	-	20	_	_	20	_	mA
Supply Currents (Both Amplifiers)	ID	-	2.3	5.0	-	2.3	5.6	-	2.3	8.0	mA
Power Consumption	PC	_	70	150		70	170	_	70	240	mW
Transient Response (Unity Gain) $ \begin{aligned} (V_1 = 20\text{mV}, R_L \geqslant 2k\Omega, C_L \leqslant 100\text{pF}) & \text{Rise Time} \\ (V_1 = 20\text{mV}, R_L \geqslant 2k\Omega, C_L \leqslant 100\text{pF}) & \text{Overshoot} \\ (V_1 = 10\text{V}, R_L \geqslant 2k\Omega, C_L \leqslant 100\text{pF}) & \text{Slew Rate} \end{aligned} $	^t TLH os SR	- - -	0.3 15 0.5	 - -	_ _ _	0.3 15 0.5	- - -	_ _ _	0.3 15 0.5	- - -	μs % V/μs

ELECTRICAL CHARACTERISTICS Note 1 ($V_{CC} = 15 \text{ V}$, $V_{EE} = 15 \text{ V}$, $T_{A} = *T_{high}$ to T_{low} unless otherwise noted).

				MC155	8		MC145	8	N	1C145	вс	
Characteristi	c	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage $(R_S \le 10 \text{ k}\Omega)$		V ₁₀	vante.	1.0	6.0	-	-	7.5	_	-	12	mV
Input Offset Current $(T_A = 125^{\circ}C)$ $(T_A = -55^{\circ}C)$ $(T_A = 0^{\circ}C \text{ to } +70^{\circ}C)$		110	-	7.0 85 –	200 500 –	- - -	-	- 300	_ _ _	-	- 400	nA
Input Bias Current $(T_A = 125^{\circ}C)$ $(T_A = -55^{\circ}C)$ $(T_A = 0^{\circ}C \text{ to } +70^{\circ}C)$		IВ	_ _ _	30 300 -	500 1500 –	_ _ _	- - -	- 800			- 1000	nA
Common Mode Input Voltage Range		VICR	±12	±13	_	_	_	_		-	_	V
Common Mode Rejection Ratio (R _S ≤ 10 k)		CMRR	70	90	-	-	_	_	_	_	-	dΒ
Supply Voltage Rejection Ratio (R _S ≤ 10 k)		PSRR	_	30	150	-	-	_	-	-	_	μV/V
Output Voltage Swing (R _L ≥ 10 k) (R _L ≥ 2 k)		V _O	±12	±14 ±13	_	±12	±14 ±13	-	- ±9.0	_ ±13	_	V
Large Signal Voltage Gain (VO = ±10 V, RL = 2 k) (VO = ±10 V, RL = 10 k)		A _v	25	_		15	_	-	15	-	-	V/mV
Supply Currents (Both Amplifiers) (TA = 125°C) (TA = -55°C)		ID	_	-	4.5 6.0	_	_	_	-	-	-	mA
Power Consumption	(T _A = 125 ^o C) (T _A = -55 ^o C)	PC		_	135 180	_	_	-	_	_	_	mW

^{*}Thigh = 125°C for MC1558 and 70°C for MC1458, MC1458C

Note 1. Input pins of an unused amplifier must be grounded for split supply operation or biased at least 3.0 V above VEE for single supply operation.

 $T_{low} = -55$ °C for MC1558 and 0°C for MC1458, MC1458C

MC1458, MC1458N, MC1458C, MC1558, MC1558N

NOISE CHARACTERISTICS (Applies for MC1558N and MC1458N only, V_{CC} = 15 V, V_{EE} = -15 V, T_{A} = 25 o C)

		М	C1558N		N	/C1458N	,	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Burst Noise (Popcorn Noise) (BW = 1.0 Hz to 1.0 kHz, t = 10 s, R _S = 100 k Ω) (Input Referenced)	En	_	_	20	_	_	20	μVpeak

FIGURE 1 - BURST NOISE versus SOURCE RESISTANCE

FIGURE 3 - OUTPUT NOISE versus SOURCE RESISTANCE

FIGURE 2 - RMS NOISE versus SOURCE RESISTANCE

FIGURE 4 - SPECTRAL NOISE DENSITY

FIGURE 5 - BURST NOISE TEST CIRCUIT (N Suffixed Devices Only)

For applications where low noise performance is essential, selected devices denoted by an N suffix are offered. These units have been 100% tested for burst noise pulses on a special noise test system. Unlike conventional peak reading or RMS meters, this system was especially designed to provide the quick response time essential to burst (popcorn) noise testing.

The test time employed is 10 seconds and the 20 μ V peak limit refers to the operational amplifier input thus eliminating errors in the closed-loop gain factor of the operational amplifier under test.

MC1458, MC1458N, MC1458C, MC1558, MC1558N

TYPICAL CHARACTERISTICS

 $(V_{CC} = +15 \text{ Vdc}, V_{EE} = -15 \text{ Vdc}, T_A = +25^{\circ}\text{C} \text{ unless otherwise noted})$

FIGURE 8 – POSITIVE OUTPUT VOLTAGE SWING versus LOAD RESISTANCE

FIGURE 10 — OUTPUT VOLTAGE SWING versus LOAD RESISTANCE (Single Supply Operation)

FIGURE 11 - SINGLE SUPPLY INVERTING AMPLIFIER

FIGURE 12 — NONINVERTING PULSE RESPONSE

FIGURE 13 — TRANSIENT RESPONSE TEST CIRCUIT

FIGURE 14 — OPEN LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE

ORDERING INFORMATION

Device	Temperature Range	Package
MC1458SG	0°C to +70°C	Metal Can
MC1458SP1	0°C to +70°C	Plastic DIP
MC1458SU	0°C to +70°C	Ceramic DIP
MC1558SG	-55°C to +125°C	Metal Can
MC1558SU	-55°C to +125°C	Ceramic DIP

DUAL HIGH SLEW-RATE INTERNALLY-COMPENSATED OPERATIONAL AMPLIFIERS

The MC1558S is functionally equivalent, pin compatible, and possesses the same ease of use as the popular MC1558 circuit, yet offers 20 times higher slew rate and power bandwidth. This device is ideally suited for D/A converters due to its fast settling time and high slew rate.

- High Slew Rate $-10 \text{ V/}\mu\text{s}$ Guaranteed Minimum (for inverting unity gain only)
- No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low Power Consumption
- No Latch-Up

TYPICAL APPLICATION OUTPUT CURRENT TO VOLTAGE TRANSFORMATION FOR A D-TO-A CONVERTER

Settling time to within 1/2 LSB (±19.5 mV) is approximately 4.0 µs from the time that all bits are switched.

*The value of C may be selected to minimize overshoot and ringing (C \approx 68 pF).

$$V_{O} = \frac{V_{ref}}{R1} (R_{O}) \left[\frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \frac{A4}{16} + \frac{A5}{32} + \frac{A6}{64} + \frac{A7}{128} + \frac{A8}{256} \right]$$

Adjust V_{ref} , R1 or R $_{O}$ so that V_{O} with all digital inputs at high level is equal to 9.961 volts.

$$V_{ref} = 2.0 \text{ Vdc}$$

R1 = R2 \(\text{ = 1.0 k}\Omega\)

$$V_{O} = \frac{2 \text{ V}}{1 \text{ k}} \text{ (5 k)} \left[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256} \right] = 10 \text{ V} \left[\frac{255}{256} \right] = 9.961 \text{ V}$$

MC1458S MC1558S

DUAL OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

METAL PACKAGE CASE 601-04

P1 SUFFIX PLASTIC PACKAGE CASE 626-04 (MC1458S Only)

CERAMIC PACKAGE CASE 693-02

1/2 REPRESENTATIVE CIRCUIT SCHEMATIC

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating -	Symbol	MC1558S	MC1458S	Unit
	V _{CC} V _{EE}	+22 -22	+18 -18	Vdc
ange 1	V _{IDR}	±30 ±15 Continuous		Volts
ge Range ②	V _{ICR}			Volts
on	ts			
ture Range	TA	-55 to +125	0 to +70	°c
	T _{sta}	-65 to +150	-65 to +150	°c
Ceramic and Metal Package Plastic Package	Тј	175 150	175 150	°c °c
	ange 1 ge Range 2 on ture Range Ceramic and Metal Package	VCC VEE VIDR VIDR VI	VCC	VCC

Note 1. For supply voltages less than ±15 Vdc, the absolute maximum input voltage is equal to the supply voltage.

Note 2. Supply voltage equal to or less than 15 Vdc.

MC1458S, MC1558S

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25°C unless otherwise noted.)

			MC1558S		,	MC1458S			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Power Bandwidth (See Figure 3)	BWp							kHz	
$A_V = 1$, $R_L = 2.0 \text{ k}\Omega$, THD = 5%, $V_O = 20 \text{ V(p-p)}$	1 '	150	200	-	150	200			
Large-Signal Transient Response	1								
Slew Rate (Figures 10 and 11)	SR	ł						ļ	
V(-) to V(+)	1	10	20	-	10	20	-	V/µs	
V(+) to V(-)	1	10	12	-	10	12	-	ĺ	
Settling Time (Figures 10 and 11)	t _{setiq}	-	3.0	-	-	3.0	-	μs	
(to within 0.1%)									
Small-Signal Transient Response								1	
(Gain = 1, E_{in} = 20 mV, see Figures 7 and 8)						1 1			
Rise Time	tTLH	-	0.25			0.25		μs	
Fall Time	tTHL	-	0.25	-	-	0.25	-	μs	
Propagation Delay Time	tPLH,tPHL	-	0.25	-	-	0.25	-	μs	
Overshoot	os	-	20	_	-	20	_	%	
Short-Circuit Output Currents	los	±10	-	±45	±10	-	±45	mA	
Open-Loop Voltage Gain (R _L = 2.0 kΩ) (See Figure 4)	AVOL							-	
VO = ±10 V		50,000	200,000	-	20,000	100,000	-		
Output Impedance (f = 20 Hz)	z _o	-	75	_		75	_	Ω	
Input Impedance (f = 20 Hz)	zi	0.3	1.0	-	0.3	1.0	-	MΩ	
Output Voltage Swing	Vo							Vpk	
R _L = 10 kΩ		±12	±14	-	±12	±14	-		
$R_L = 2.0 \text{ k}\Omega$		±10	±13	-	±10	±13	-		
Input Common-Mode Voltage Swing	VICR	±12	±13	-	±12	±13	-	V _{pk}	
Common-Mode Rejection Ratio (f = 20 Hz)	CMRR	70	90	-	70	90	_	dB	
Input Bias Current (See Figure 2)	¹ıв				<u> </u>			nA	
		-	200	500		200	500	<u> </u>	
Input Offset Current	امانا							nA	
		-	30	200		30	200	<u> </u>	
Input Offset Voltage (R _S = ≤ 10 kΩ)	IVIOI				1		۱.,	m∨	
		-	1.0	5.0	ļ -	2.0	6.0	<u> </u>	
DC Power Consumption (See Figure 9)	Pc							mW	
(Power Supply = $\pm 15 \text{ V}$, $V_0 = 0$)	l	-	70	150		70	170	<u> </u>	
Positive Voltage Supply Sensitivity	PSS+					_		μV/V	
(VEE constant)	1		2.0	150		2.0	150	<u> </u>	
Negative Voltage Supply Sensitivity	PSS-							μV/V	
(VCC constant)		-	10	150	-	10	150	1	

^{**}Plastic package offered in limited temperature range device only.

ELECTRICAL CHARACTERISTICS (V_{CC} = 15 Vdc, V_{EE} = -15 Vdc, T_A = -55 to +125°C for MC1558S and T_A = 0 to 70°C for MC1458S, unless otherwise noted.)

			MC1558S			MC1458S		1
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Open Loop Voltage Gain VO = ±10 V	Avol	25,000	-	_	15,000	-	-	V/V
Output Voltage Swing $R_L = 10 k\Omega$ $R_1 = 2 k\Omega$	v _o	±12 ±10	_	_	±12 ±10		 -	V _{pk}
Input Common-Mode Voltage Range	VICR	±12	-	-	-	-	-	V _{pk}
Common-Mode Rejection Ratio (f = 20 Hz)	CMRR	70	_	_	-	_	-	dB
Input Bias Current $T_A = 125^{O}C$ $T_A = -55^{O}C$ $T_{\Delta} = 0 \text{ to } 70^{O}C$	IB	-	200 500 -	500 1500 –		- - -	- - 800	nA
Input Offset Current $T_A = 125^{O}C$ $T_A = -55^{O}C$ $T_A = 0 \text{ to } 70^{O}C$	110	-	30 	200 500	-	-	- - 300	nA
Input Offset Voltage $R_S \le 10 \text{ k}\Omega$	VIO	-	-	6.0	-	_	7.5	m∨
DC Power Consumption VO = 0 V	PC	-	-	200	-	_	-	mW
Positive Power Supply Sensitivity VEE = -15 V	P _{SS+}	-	-	150	_	_	_	μV/V
Negative Power Supply Sensitivity VCC = 15 V	PSS-	-	-	150	-	_		μ∨/∨

PEAK OUTPUT VOLTAGE FOR < 5% THD (VOLTS)

100

TYPICAL CHARACTERISTICS

(V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25°C unless otherwise noted.)

FIGURE 1 - OFFSET ADJUST CIRCUIT

FIGURE 2 - INPUT BIAS CURRENT versus TEMPERATURE IIB, AVERAGE INPUT BIAS CURRENT (nA) 350 300 250 200 150 100 0 -75

T, TEMPERATURE (°C)

OUTPUT VOLTAGE versus FREQUENCY

1.0 k

FIGURE 3 - POWER BANDWIDTH - NONDISTORTED

TYPICAL CHARACTERISTICS

(V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25°C unless otherwise noted.)

FIGURE 6 - SMALL-SIGNAL TRANSIENT RESPONSE DEFINITIONS

Rise Time

FIGURE 7 - SMALL-SIGNAL TRANSIENT RESPONSE

FIGURE 9 - LARGE-SIGNAL TRANSIENT WAVEFORMS

FIGURE 10 - SLEW RATE AND SETTLING TIME TEST CIRCUIT*

SETTLING TIME

In order to properly utilize the high slew rate and fast settling time of an operational amplifier, a number of system considerations must be observed. Capacitance at the summing node and at the amplifier output must be minimal and circuit board layout should be consistent with common high-frequency considerations. Both power supply connections should be adequately bypassed as close as possible to the device pins. In bypassing, both low and high-frequency components should be considered to avoid the possibility of excessive ringing. In order to achieve optimum damping, the selection of a capacitor in parallel with the feedback resistor may be necessary. A value too small could result in excessive ringing while a value too large will degrade slew rate and settling time.

SETTLING TIME MEASUREMENT

In order to accurately measure the settling time of an operational amplifier, it is suggested that the "false" summing junction approach be taken as shown in Figure 11. This is necessary since it is difficult to determine when the waveform at the output of the operational amplifier settles to within 0.1% of it's final value. Because the output and input voltages are effectively subtracted from each other at the amplifier inverting input, this seems like an ideal node for the measurement. However, the probe capacitance at this critical node can greatly affect the accuracy of the actual measurement.

The solution to these problems is the creation of a second or "false" summing node. The addition of two diodes at this node clamps the error voltage to limit the voltage excursion to the oscilloscope. Because of the voltage divider effect, only one-half of the actual error appears at this node. For extremely critical measurements, the capacitance of the diodes and the oscilloscope, and the settling time of the oscilloscope must be considered. The expression

$$t_{setlq} = \sqrt{x^2 + y^2 + z^2}$$

can be used to determine the actual amplifier settling time, where

t_{setla} = observed settling time

x = amplifier settling time (to be determined)

y = false summing junction settling time

z = oscilloscope settling time

It should be remembered that to settle within $\pm 0.1\%$ requires 7RC time constants.

The $\pm 0.1\%$ factor was chosen for the MC1558S settling time as it is compatible with the $\pm 1/2$ LSB accuracy of the MC1508L·8 digital-to-analog converter. This D-to-A converter features $\pm 0.19\%$ maximum error.

TYPICAL APPLICATION

FIGURE 13 - 12.5-WATT WIDEBAND POWER AMPLIFIER

MC1590

RF/IF/AUDIO AMPLIFIER

 \dots an integrated circuit featuring wide-range AGC for use in RF/IF amplifiers and audio amplifiers over the temperature range, –55 to +125°C. See Motorola Application Note AN-513 for design details.

- High Power Gain 50 dB typ at 10 MHz
 45 dB typ at 60 MHz
 35 dB typ at 100 MHz
- Wide-Range AGC 60 dB min, dc to 60 MHz
- Low Reverse Transfer Admittance < 10 μ mhos typ at 60 MHz
- 6.0 to 15-Volt Operation, Single-Polarity Power Supply

Rating	Symbol*	Value	Unit
Power Supply Voltage	v _{cc}	+18	Vdc
Output Supply	v _o	+18	Vdc
AGC Supply	V ₂ (AGC)	V _{CC}	Vdc
Differential Input Voltage	V _I	5.0	Vdc
Operating Temperature Range	TA	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Temperature	Т	+175	°С

WIDEBAND AMPLIFIER WITH AGC

SILICON MONOLITHIC INTEGRATED CIRCUIT

ADMITTANCE PARAMETERS (V_{CC} = +12 Vdc, T_A = +25°C)							
Parameter	Symbol	f = MHz Typ		Unit			
		30	60				
Single-Ended Input Admittance	911 b11	0.4 1.2	0.6 -3.0	mmhos			
Single-Ended Output Admittance	922 b22	0.05 0.50	0.1 1.0	mmho			
Forward Transfer Admittance (Pin 1 to Pin 5)	Ψ ₂₁ θ ₂₁ (Polar)	175 -30	150 -105	mmhos degrees			
Reverse Transfer Admittance*	912 b ₁₂	-0 -5.0	-0 -10	μmhos			

*The value of Reverse Transfer Admittance includes the feedback admittance of the test circuit used in the measurement. The total feedback capacitance (including test circuit) is 0.025 pF and is a more practical value for design calculations than the internal feedback of the device alone. (See Figure 10.)

SCATTERING PARAMETERS (V _{CC} = .+12 Vdc, T_A = +25°C, Z_0 = 50 Ω)							
Parameter	Symbol	f = 1	Unit				
i ai ailletei		30	60				
Input Reflection	S ₁₁	0.95	0.93	-			
Coefficient	θ11	-7.3	-16	degrees			
Output							
Reflection	S ₂₂	0.99	0.98	and a			
Coefficient	θ22	-3.0	-5.5	degrees			
Forward							
Transmission	S ₂₁	16.8	14.7				
Coefficient	θ21	128	64.3	degrees			
Reverse							
Transmission	S ₁₂	0.00048	0.00092				
Coefficient	θ 12	84.9	79.2	degrees			

ELECTRICAL CHARACTERISTICS (V_{CC} = 12 Vdc, f = 60 MHz, BW = 1.0 MHz, T_A = -55°C to 125°C unless otherwise noted)

Characteristic				MC1590		
	Fig.	Symbol	Min	Тур	Max	Unit
AGC Range	I					,
$(V_{2(AGC)} = 5.0 \text{ V to 7.0 V})$	1	MAGC	58		_	dB
$(V_{2}(AGC) = 5.0 \text{ V to } 7.0 \text{ V, } T_{A} = 25^{\circ}C)$	24		60	68	_	
Single-Ended Power Gain		Gp	37		_	dB
(T _A = 25°C)	24	,	40	45		
Noise Figure						
$(R_s \text{ optimized for best NF})$ $(T_A = 25^{\circ}C)$	24	NF	-	6.0	7.0	dB
Output Voltage Swing						<u> </u>
Differential Output	25	V _{ODR}				
(0 dB AGC)			10	_	- man	Vpp
$(0 \text{ dB AGC}, T_A = 25^{\circ}\text{C})$	l		13	14	_	
(-30 dB AGC)			4.0	-	_	1
(-30 dB AGC, T _A = 25°C)			5.0	6.0	-	
Single-Ended Output (Pin 5, 6)	25	Vocr				Vpp
(0 dB AGC)			5.0	-		1
(0 dB AGC, T _A = 25°C)	l i		6.5	7.0	-	
(-30 dB AGC)	l		2.0	_	-	
(-30 dB AGC, T _A = 25°C)	1		2.5	3.0		
Output Stage Current	32	10				
(Sum of Pins 5 and 6)	1 1		3.5	-	8.0	mA
(T _A = 25°C)	_		4.0	5.6	7.5	
Output Current Matching	32					
(Magnitude of Difference of Output Currents)		ΔI_{O}	_	0.7	-	mA
$(I_5 - I_6)$ $(T_A = 25^{\circ}C)$						
Power Supply Current	32					
$(V_0 = 0 V)$		¹cc			20	mA
(V _O = 0 V, T _A = 25°C)				14	17	
Power Consumption (12 x I _{CC})	-					
(V _I = 0 V)		PC			240	mW
(V _I = 0 V, T _A = 25°C)			-	168	204	

FIGURE 1 — UNNEUTRALIZED POWER GAIN versus FREQUENCY (Tuned Amplifier, See Figure 24)

FIGURE 2 — VOLTAGE GAIN versus FREQUENCY (Video Amplifier, See Figure 26)

TYPICAL CHARACTERISTICS

 $(V_{2} (AGC) = 0, V_{CC} = 12 Vdc, T_{A} = +25^{\circ}C \text{ unless otherwise noted})$

FIGURE 3 — DYNAMIC RANGE: OUTPUT VOLTAGE versus INPUT VOLTAGE (Video Amplifier, See Figure 26)

FIGURE 4 - VOLTAGE GAIN versus FREQUENCY (Video Amplifier, See Figure 26)

FIGURE 5 — VOLTAGE GAIN AND SUPPLY CURRENT versus SUPPLY VOLTAGE (Video Amplifier, See Figure 26)

FIGURE 6 – TYPICAL GAIN REDUCTION versus AGC VOLTAGE

FIGURE 7 - TYPICAL GAIN REDUCTION versus AGC CURRENT

FIGURE 8 — FIXED TUNED POWER GAIN REDUCTION versus TEMPERATURE (See Test Circuit, Figure 24)

FIGURE 9 — POWER GAIN versus SUPPLY VOLTAGE (See Test Circuit, Figure 24)

FIGURE 10 — REVERSE TRANSFER ADMITTANCE versus FREQUENCY (See Parameter Table, Page 1)

FIGURE 11 - NOISE FIGURE versus FREQUENCY

FIGURE 12 - NOISE FIGURE versus SOURCE RESISTANCE

FIGURE 13 - NOISE FIGURE versus AGC GAIN REDUCTION

FIGURE 14 — SINGLE-ENDED OUTPUT ADMITTANCE

FIGURE 15 - SINGLE-ENDED INPUT ADMITTANCE

FIGURE 16 — HARMONIC DISTORTION versus AGC GAIN REDUCTION FOR AM CARRIER (For Test Circuit, See Figure 17)

FIGURE 17 - 10.7-MHz AMPLIFIER Gain \simeq 55 dB, BW \simeq 100 kHz

FIGURE 18 – Y₂₁, FORWARD TRANSFER ADMITTANCE RECTANGULAR FORM

FIGURE 19 – Y₂₁, FORWARD TRANSFER ADMITTANCE POLAR FORM

FIGURE 20 - \mbox{S}_{11} and $\mbox{S}_{22},$ input and output reflection coefficient

10 MHz 30 MHz 30 MHz 100 MHz 150 MHz 1

FIGURE 21 - S₁₁ AND S₂₂, INPUT AND OUTPUT

FIGURE 22 – S₂₁, FORWARD TRANSMISSION COEFFICIENT (GAIN)

FIGURE 23 – S₁₂, REVERSE TRANSMISSION COEFFICIENT (FEEDBACK)

TYPICAL APPLICATIONS

FIGURE 24 - 60-MHz POWER GAIN TEST CIRCUIT

- L1 = 7 Turns, #20 AWG Wire, 5/16" Dia., C1.C2.C3 = (1.30) nF 5/8" Long C4 = (1.10) oF
- L2 = 6 Turns, #14 AWG Wire, 9/16" Dia., 3/4" Long

FIGURE 25a — PROCEDURE FOR SET—UP USING FIGURES 24 OR 25

Test	ein	V2(AGC)	RAGC(kΩ)
MAGC	2.23 mV (-40dBm)	5-7 V	0
Gp	1.0 mV (-47dBm)	≤5.0 V	5.6
NF	1.0 mV (-47dBm)	≤5.0 V	5.6
VOCR(5)			
Vocr(6)			5.6
v_{ODR}			
(0dB)	Adjust ein for	>0 dB	
	Square Wave Output	Limit	
	V _{2(AGC)} = V _{R(AGC)} = 0 V		
(-30 dB)	Adjust ein to 1.0 mV	>-30 dB	
	Adjust VR(AGC) so	Limit	
	that output is -30 dB		
	then reset ein to Square		
	Wave Output		

FIGURE 27 - 30-MHz AMPLIFIER (Power Gain = 50 dB, BW \approx 1.0 MHz)

- L1 = 12 Turns #22 AWG Wire on a Toroid Core,
- (T37-6 Micro Metal or Equiv)
- T1: Primary = 17 Turns #20 AWG Wire on a Toroid Core, (T44-6 Micro Metal or Equiv)

Secondary = 2 Turns #20 AWG Wire

FIGURE 25 - DIFFERENTIAL OUTPUT VOLTAGE SWING, (V5, V6) (60 MHz)

Close Wound Over 1/4" Form
Primary Winding 16 Turns = 26 AWG, Center Tapped
Secondary Winding 2 Turns = 26 AWG.

FIGURE 26 - VIDEO AMPLIFIER

FIGURE 28 - 100 MHz MIXER

- 5/8" Long
- L2 = 16 Turns, #20 AWG Wire on a Toroid Core, (T44-6 Micro Metal or Equiv)

TYPICAL APPLICATIONS (continued)

FIGURE 29 - TWO-STAGE 60 MHz IF AMPLIFIER (Power Gain \approx 80 dB, BW \approx 1.5 MHz)

FIGURE 30 - SPEECH COMPRESSOR

DESCRIPTION OF SPEECH COMPRESSOR

The amplifier drives the base of a PNP MPS6517 operating common-emitter with a voltage gain of approximately 20. The control R1 varies the quiescent Q point of this transistor so that varying amounts of signal exceed the level V_r . Diode D1 rectifies the positive peaks of Q1's output only when these peaks are greater than $V_r \cong 7.0$ Volts. The resulting output is filtered by C_x , R_x .

 $R_{\rm X}$ controls the charging time constant or attack time. $C_{\rm X}$ is involved in both charge and discharge. R2 (the 150 k Ω and input resistance of the emitter-follower Q2) controls the decay time. Making the decay long and attack short is accomplished by making $R_{\rm X}$ small and R2 large. (A Darlington emitter-follower may be needed if extremely slow decay times are required.)

The emitter-follower Q2 drives the AGC Pin 2 of the MC1590 and reduces the gain. R3 controls the slope of signal compression. The following graph (Figure 31) details performance with R3 set to 15 k Ω .

FIGURE 31 - OUTPUT VOLTAGE versus INPUT VOLTAGE

FIGURE 32 - OUTPUT CURRENT, CURRENT MATCH AND ICC FIXTURE

TABLE I - DISTORTION versus FREQUENCY

FREQUENCY	DISTORTION		DISTO	RTION
PREGUENCY	10 mV ei	100 mV e _i	10 mV e _i	100 mV e _i
100 Hz	3.5%	12%	15%	27%
300 Hz	2%	10%	6%	20%
1.0 kHz	1.5%	8%	3%	9%
10 kHz	1.5%	8%	1%	3%
100 kHz	1.5%	8%	1%	3%
	Notes '	1 and 2	Notes	3 and 4

Note: (1) Decay = 300 ms

Attack = 20 ms $C_X = 7.5 \mu F$

R_X = 0 (Short)

Decay = 20 ms Attack = 3 ms

 $C_X = 0.68 \mu F$ $R_X = 1.5 k\Omega$

MC1709 MC1709A MC1709C

ORDERING INFORMATION

Device	Temperature Range	Package
MC1709CG	0°C to +70°C	Metal Can
MC1709CU	0°C to +70°C	Ceramic DIP
MC1709CP1	0°C to +70°C	Plastic DIP
MC1709G,AG	-55°C to +125°C	Metal Can
MC1709AU	-55°C to +125°C	Ceramic DIP

MONOLITHIC OPERATIONAL AMPLIFIER

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- High-Performance Open Loop Gain Characteristics
 A_{vol} = 45,000 typical
- Low Temperature Drift $-\pm 3.0 \,\mu\text{V/}^{\circ}\text{C}$ typical (MC1709)
- Large Output Voltage Swing ±14 V typical @ ±15 V Supply
- Low Output Impedance $-z_0 = 150$ ohms typical

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

WAANTON ATTINGS (TA = +25 C utiless otherwise noted.)						
Rating	Symbol	Value	Unit			
Power Supply Voltage	V _{CC} V _{EE}	+ 18 - 18	Vdc			
Input Differential Voltage Range	V _{IDR}	±5.0	Volts			
Input Common-Mode Range	V _{ICR}	±10	Volts			
Output Load Current	ΙL	10	mA			
Output Short-Circuit Duration	tS	5.0	s			
Power Dissipation (Package Limitation) Metal Can Derate above T _A = +25°C	PD	680 4.6	mW mW/°C			
Plastic Dual In-Line Packages (MC1709C only) Derate above T _A = +25°C Ceramic Dual In-Line Package Derate above T _A = +25°C		625 5.0 750 6.0	mW mW/°C mW/°C mW/°C			
Operating Ambient MC1709A, MC1709 Temperature Range MC1709C	ТА	-55 to +125 0 to +70	°C			
Storage Temperature Range Metal and Ceramic Packages Plastic Packages	T _{stg}	-65 to +150 -55 to +125	°C			

OPERATIONAL AMPLIFIER SILICON MONOLITHIC INTEGRATED CIRCUIT

MC1709, MC1709A, MC1709C

ELECTRICAL CHARACTERISTICS (unless otherwise noted, 9.0 V \leq V_{CC} \leq 15 V, -9.0 V \geq V_{EE} \geq -15 V, T_A = 25°C)

		MC1709A			MC1709			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage $(R_{S}\leqslant 10\ k\Omega)$	V _{IO}		0.6	2.0	-	1.0	5.0	mV
Input Offset Current	10		10	50	_	50	200	nA
Input Bias Current	IВ	-	100	200	_	200	500	nΑ
Input Resistance	ri	350	700	_	150	400	_	kΩ
Output Resistance	ro	-	150	-	_	150	_	Ω
Power Supply Currents (V _{CC} = 15 V, V _{EE} = -15 V)	ICC, IEE	-	2.5	3.6	-		1	mA
Power Consumption (V _{CC} = 15 V, V _{EE} = -15 V)	PC	_	75	108	-	80	165	mW
Transient Response $(V_{CC} = 15 \text{ V}, V_{EE} = -15 \text{ V})$ See Figure 8								
Risetime Overshoot	^t TLH OS	-	_	1.5 30	_	0.3 10	1.0 30	μs %

ELECTRICAL CHARACTERISTICS (unless otherwise noted, 9.0 V ≤ V_{CC} ≤ 15 V, -9.0 V ≥ V_{FF} ≥ -15 V, T_A = -55°C to +125°C)

		MC1709A			MC1709				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Input Offset Voltage (R _S \leq 10 k Ω)	V _{IO}	_		3.0	-	-	6.0	mV	
Average Temperature Coefficient of Input Offset Voltage (R _S = 50Ω , T _A = 25° C to 125° C)	△V _{IO} /△T	_	1.8	10	_	_		μV/ ^O C	
$(R_S = 50 \Omega, T_A = -55^{\circ}C \text{ to } 25^{\circ}C)$		_	1.8	10	_	-	_		
$(R_S = 50 \Omega, T_A = -55^{\circ}C \text{ to } 125^{\circ}C)$		_		_	_	3.0	_		
$(R_S = 10 \text{ k}\Omega, T_A = 25^{\circ}\text{C to } 125^{\circ}\text{C})$		_	2.0	15		-			
$(R_S = 10 \text{ k}\Omega, T_A = -55^{\circ}\text{C to } 25^{\circ}\text{C})$			4.8	25		-	-		
$(R_S = 10 \text{ k}\Omega, T_A = -55^{\circ}\text{C to } 125^{\circ}\text{C})$		_	-	-	-	6.0	-		
Input Offset Current	110							nA	
$(T_A = -55^{\circ}C)$	"	_	40	250	_	100	500		
$(T_A = 125^{\circ}C)$		-	3.5	50	_	20	200		
Average Temperature Coefficient of Input Offset Current	△I₁O/△T							nA/ ⁰ C	
$(T_A = -55^{\circ}C \text{ to } 25^{\circ}C)$	10	_	0.45	2.8	_	_			
$(T_A = 25^{\circ}C \text{ to } 125^{\circ}C)$		_	0.08	0.5	-	_			
Input Bias Current	IIB	_	300	600	_	500	1500	nA	
(T _A = -55°C)	100								
Input Resistance	rį	85	170		40	100		kΩ	
$(T_A = -55^{\circ}C)$	''	00	1,70		-,0	,,,,			
Input Common-Mode Voltage Range	Vice	±8.0	±10		±8.0	±10	-	V	
$(V_{CC} = 15 \text{ V}, V_{EE} = -15 \text{ V})$									
Common Mode Rejection Ratio (RS \leq 10 k Ω)	CMRR	80	110		70	90	-	dB	
Supply Voltage Rejection Ratio (V _{CC} = 15 V, V _{EE} = -15 V, R _S \leq 10 k Ω)	PSRR	`	40	100	-	25	150	μV/V	
Large Signal Voltage Gain	Av	25	45	70	25	45	70	V/m\	
$(V_{CC} = 15 \text{ V}, V_{EE} = -15 \text{ V}, R_1 \ge 2.0 \text{ k}\Omega,$	•								
$V_0 = \pm 15 \text{ V}$									
Output Voltage Range	VOR							V	
(V _{CC} = 15 V, V _{EE} = -15 V)	011								
$(R_{\perp} \geqslant 10 \text{ k}\Omega)$		±12	±14	_	±12	±14	_		
$(R_1 \geqslant 2.0 \text{ k}\Omega)$		±10	±13		±10	±13	-		
Power Supply Currents	ICC/IEE							mA	
(V _{CC} = 15 V, V _{FF} = -15 V)	00.22								
$(T_A = -55^{\circ}C)$		_	2.7	4.5	-		_		
$(T_A = 125^{\circ}C)$		_	2.1	3.0		-			
Power Consumption	PC							mW	
(V _{CC} = 15, V _{EF} = -15 V)	~								
$(T_{\Delta} = -55^{\circ}C)$		_	81	135	-		_		
(TA = 125°C)		_	63	90	-	_	-		

MC1709, MC1709A, MC1709C

ELECTRICAL CHARACTERISTICS (unless otherwise ntoed, V_{CC} = 15 V, V_{EE} = -15 V, T_A = 25°C)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Offset Voltage $(R_S \leqslant 10~k\Omega, 9.0~V \leqslant 15~V, -9.0~V \geqslant V_{EE} \geqslant -15~V)$	V _{IO}		2.0	7.5	mV
Input Offset Current	10		100	500	nA
Input Bias Current	IB	-	300	1500	nA
Input Resistance	ri	50	250	_	kΩ
Output Resistance	r _o	_	150		Ω
Power Consumption	PC		80	200	mW
Large Signal Voltage Gain (R $_{L} \ge 2.0 \text{ k}\Omega$, V $_{O}$ = ±10 V)	Av	15	45	_	V/mV
Output Voltage Range $ (R_L \geqslant 10 \ k\Omega) \\ (R_L \geqslant 2.0 \ k\Omega) $	Vor	±12 ±10	±14 ±13	_	V
Input Common-Mode Voltage Range	VICR	±8.0	±10	-	V
Common Mode Rejection Ratio $(R_S \leqslant 10 \text{ k}\Omega)$	CMRR	65	90	Access	dB
Supply Voltage Rejection Ratio $(R_{\mbox{\scriptsize S}} \leqslant 10 \ \mbox{\scriptsize k}\Omega)$	PSRR	_	25	200	μV/V
Transient Response See Figure 8 Rise Time Overshoot	t _{TLH}		0.3 10	_	μs %

ELECTRICAL CHARACTERISTICS (unless otherwise specified, $V_{CC} = 15 \text{ V}$, $V_{EE} = -15 \text{ V}$, $T_A = 0^{\circ}\text{C}$ to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Input Offset Voltage $(R_S\leqslant 10~k\Omega,~9.0~V\leqslant V_{CC}\leqslant 15~V,~-9.0~V\geqslant V_{EE}\geqslant 15~V)$	V _{IO}	_		10	mV
Input Offset Current	110	_	_	750	nA
Input Bias Current	IB	-		2.0	μΑ
Large Signal Voltage Gain $(R_L \ge 2.0 \text{ k}\Omega, V_O = \pm 10 \text{ V})$	Av	12		-	V/mV
Input Resistance	ri	35	_	T -	kΩ

TYPICAL CHARACTERISTICS

FIGURE 2 - TEST, CIRCUIT (V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25 0 C)

Fig.	C No	Test Conditions					
No.	Curve No.	$R_1(\Omega)$	$R_2(\Omega)$	$R_3(\Omega)$	C ₁ (pF)	C ₂ (pF)	
3	1	10 k	10 k	1.5 k	5.0 k	200	
	2	10 k	100 k	1.5 k	500	20	
	3	10 k	1.0 M	1.5 k	100	3.0	
	4	1.0 k	1.0 M	0	10	3.0	
4	1	1.0 k	1.0 M	0	10	3.0	
	2	10 k	1.0 M	1.5 k	100	3.0	
	3	10 k	100 k	1.5 k	500	20	
İ	4	10 k	10 k	1.5 k	5.0 k	200	
5	1	0	- ∞	1.5 k	5.0 k	200	
	2	0	∞	1.5 k	500	20	
	3	0	- ∞	1.5 k	100	3.0	
	4	0	- ∞	0	10	3.0	

MC1709, MC1709A, MC1709C

FIGURE 8 - TRANSIENT RESPONSE TEST CIRCUIT

MC1733 MC1733C

ORDERING INFORMATION

Device	Temperature Range	Package
MC1733G	-55°C to +125°C	Metal Can
MC1733L	-55°C to +125°C	Ceramic DIP
MC1733CG	0°C to +70°C	Metal Can
MC1733CL	0°C to +70°C	Ceramic DIP
MiO1733CP	0°C to +70°C	Plastic DIP

DIFFERENTIAL VIDEO AMPLIFIER

. . . a wideband amplifier with differential input and differential output. Gain is fixed at 10, 100, or 400 without external components or, with the addition of one external resistor, gain becomes adjustable from 10 to 400.

- Bandwidth 120 MHz typical @ A_{vd} = 10
- Rise Time 2.5 ns typical @ A_{vd} = 10
- Propagation Delay Time − 3.6 ns typical @ A_{vd} = 10

DIFFERENTIAL VIDEO WIDEBAND AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

L SUFFIX CERAMIC PACKAGE CASE 632-02 MO-001AA

P SUFFIX PLASTIC PACKAGE CASE 646-05

MC1733, MC1733C

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	+8.0 -8.0	Volts
Differential Input Voltage	V _{in}	±5.0	Volts
Common-Mode Input Voltage	VICM	±6.0	Volts
Output Current	10	10	mA
Internal Power Dissipation (Note 1) Metal Can Package Ceramic Dual In-Line Package	P _D	500 500	mW
Operating Temperature Range MC1733C MC1733	ТА	0 to +70 -55 to +125	°С
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = +6.0 Vdc, V_{EE} = -6.0 Vdc, at T_A = +25°C unless otherwise noted.)

MC1733 MC1733C

			MC1733			MC1733C		MC1733C		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Units		
Differential Voltage Gain Gain 1 (Note 2) Gain 2 (Note 3) Gain 3 (Note 4)	A _{vd}	300 90 9.0	400 100 10	500 110 11	250 80 8.0	400 100 10	600 120 12	V/V		
Bandwidth (R _S = 50 Ω) Gain 1 Gain 2 Gain 3	BW	-	40 90 120	- - -	- - -	40 90 120	800 8001	MHz		
Rise Time $(R_S = 50 \Omega, V_O = 1 Vp\text{-}p)$ Gain 1 Gain 2 Gain 3	^t TLH ^t THL		10.5 4.5 2.5	- 10 -	_ _ _	10.5 4.5 2.5	- 12 -	ns		
Propagation Delay $(R_S = 50 \Omega, V_O = 1 \text{Vp-p})$ Gain 1 Gain 2 Gain 3	^t PLH ^t PHL		7.5 6.0 3.6	- 10 -	_ _ _	7.5 6.0 3.6	- 10 -	ns		
Input Resistance Gain 1 Gain 2 Gain 3	R _{in}	– 20 –	4.0 30 250	-	- 10 -	4.0 30 250		kΩ		
Input Capacitance (Gain 2)	C _{in}		2.0	-	_	2.0	-	pF		
Input Offset Current (Gain 3)	1101	_	0.4	3.0	_	0.4	5.0	μА		
Input Bias Current (Gain 3)	I _{IB}	-	9.0	20	-	9.0	30	μА		
Input Noise Voltage $(R_S = 50 \Omega)$, BW = 1 kHz to 10 MHz	V _n	_	12	-	-	12	_	μV(rms)		
Input Voltage Range (Gain 2)	Vin	±1.0	_	_	±1.0	_	_	V		
Common-Mode Rejection Ratio Gain 2 $(V_{CM} = \pm 1 \text{ V, f} \le 100 \text{ kHz})$ Gain 2 $(V_{CM} = \pm 1 \text{ V, f} = 5 \text{ MHz})$	CMRR	60 -	86 60	_	60 -	86 60	_	dB		
Supply Voltage Rejection Ratio Gain 2 $(\Delta V_S = \pm 0.5 \text{ V})$	PSRR	50	70	arm.	50	70	_	dB		
Output Offset Voltage Gain 1 Gain 2 and Gain 3	V ₀₀		0.6 0.35	1.5 1.0	_	0.6 0.35	1.5 1.5	V		
Output Common-Mode Voltage (Gain3)	VCMO	2.4	2.9	3.4	2.4	2.9	3.4	V		
Output Voltage Swing (Gain 2)	v _o	3.0	4.0	-	3.0	4.0	_	Vp-p		
Output Sink Current (Gain 2)	10	2.5	3.6	_	2.5	3.6	_	mA		
Output Resistance	R _{out}		20	_	-	20		Ω		
Power Supply Current (Gain 2)	1 _D	_	18	24		18	24	mA		

ELECTRICAL CHARACTERISTICS (V_{CC} = +6.0 Vdc, V_{EE} = -6.0 Vdc, at T_A = T_{high} to T_{low} unless otherwise noted.)*

			MC1733			MC17330		j
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Units
Differential Voltage Gain	A _{vd}							V/V
Gain 1 (Note 2)		200	-	600	250	-	600	
Gain 2 (Note 3)		80	-	120	80	-	120	
Gain 3 (Note 4)		8.0	-	12	8.0	-	12	
Input Resistance	R _{in}	8.0			8.0	_	-	kΩ
Gain 2								
Input Offset Current (Gain 3)	1101	-	-	5.0	-	_	6.0	μΑ
Input Bias Current (Gain 3)	I _{IB}	_	-	40	_	_	40	μΑ
Input Voltage Range (Gain 2)	V _{in}	±1.0		_	±1.0	_	-	V
Common-Mode Rejection Ratio	CMRR	50	-	_	50	_	_	dB
Gain 2 $(V_{CM} = \pm 1 \text{ V, } f \leq 100 \text{ kHz})$								
Supply Voltage Rejection Ratio	PSRR	50	-	_	50	-	_	dB
Gain 2 $(\Delta V_s = \pm 0.5 V)$							l	
Output Offset Voltage	V ₀₀							V
Gain 1			-	1.5			1.5	
Gain 2 and Gain 3		-	_	1.2	_	_	1.5	
Output Voltage Swing (Gain 2)	v _o	2.5	_	_	2.5	-	_	Vp-p
Output Sink Current (Gain 2)	10	2.2	-	-	2.5	_	_	mA
Power Supply Current (Gain 2)	I _D	_	_	27	-		27	mA

 $T_{low} = 0^{\circ}C$ for MC1733C, -55°C for MC1733

FIGURE 4 - MAXIMUM ALLOWABLE POWER DISSIPATION

NOTES

Note 1: Derate metal package at 6.5 mW/°C for operation at ambient temperatures above 75°C and dual in-line package at 9 mW/°C for operation at ambient temperatures above 100°C (see Figure 4). If operation at high ambient temperatures is required (MC1733) a heatsink may be necessary to limit maximum junction temperature to 150°C. Thermal resistance, junction-to-case, for the metal package is 69.4°C per Watt.

Note 2: Gain Select pins G_{1A} and G_{1B} connected together. Note 3: Gain Select pins G_{2A} and G_{2B} connected together.

Note 4: All Gain Select pins open.

TA, AMBIENT TEMPERATURE (°C)

TYPICAL CHARACTERISTICS

(V_{CC} = +6.0 Vdc, V_{EE} = -6.0 Vdc, T_A = +25°C unless otherwise noted.)

FIGURE 5 - SUPPLY CURRENT versus TEMPERATURE

 $T_{high} = +70^{\circ}C$ for MC1733C, +125°C for MC1733.

(VCC = +6.0 Vdc, VEE = -6.0 Vdc, T_A = +25°C unless otherwise noted.)

FIGURE 9 — GAIN versus SUPPLY VOLTAGE 1.4 1.2 GAIN 3 GAIN 3 GAIN 1 0.6 AND 1 0.7 GAIN 1 0.7 GAIN 1 0.8 GAIN 1 GAIN 2 GAIN 3 GAIN 1 GAIN 3 GAIN 1 GAIN 3 GAIN 1 GAIN 1 GAIN 3 GAIN 1 GAIN 3 GAIN 1 GAIN 3 GAIN 1 GAIN 3 GAIN 1 GAIN 3 GAIN 1 GAIN 3 GAIN 1 GAIN 3 GAIN 1 GAIN 3 GAIN 1 GAIN 1 GAIN 1 GAIN 1 GAIN 1 GAIN 3 GAIN 1 GAIN

VCC, |VEE|, SUPPLY VOLTAGE (VOLTS)

MOTOROLA LINEAR/INTERFACE DEVICES

(V_{CC} = +6.0 Vdc, V_{EE} = -6.0 Vdc, T_A = +25°C unless otherwise noted.)

FIGURE 14 - PULSE RESPONSE versus SUPPLY VOLTAGE

FIGURE 15 - PULSE RESPONSE versus TEMPERATURE

FIGURE 16 – DIFFERENTIAL OVERDRIVE RECOVERY TIME

FIGURE 17 - PHASE SHIFT versus FREQUENCY

FIGURE 18 - PHASE SHIFT versus FREQUENCY

(V_{CC} = +6.0 Vdc, V_{EE} = -6.0 Vdc, T_A = +25 O C unless otherwise noted.)

FIGURE 19 - INPUT RESISTANCE versus TEMPERATURE

FIGURE 20 - INPUT NOISE VOLTAGE

FIGURE 22 - OUTPUT VOLTAGE SWING versus

FIGURE 23 - OUTPUT VOLTAGE SWING versus FREQUENCY

FIGURE 24 - COMMON-MODE REJECTION RATIO

APPLICATIONS INFORMATION

FIGURE 25 - VOLTAGE CONTROLLED OSCILLATOR

By changing the voltage $V_{\rm C}$ the gain will vary over a range of 10 to 400. This will give a frequency variation about the value set by the capacitor and shown in Figure 26.

TAPE, DRUM OR DISC MEMORY READ AMPLIFIERS

The first of several methods to be discussed is shown in Figure 27. This block diagram describes a simple Read circuit with no threshold circuitry. Each block represents a basic function that must be performed by the Read circuit. The first block, referred to as "amplfication", increases the level of the signal available from the Read head to a level adequate to drive the peak detector. Obviously, these signal levels will vary depending on factors such as tape speed, whether the system used is disc or tape, and the type of head and the circuitry used. For a representative tape system, levels of 7 to 25 mV for the signal from the Read head and 2 V for the signal to the peak detector are typical. These signal levels are "peak-to-peak" unless otherwise specified. On the basis of the signal levels mentioned above, the overall amplification required is 38 to 49 dB.

How the overall gain requirement is implemented will depend somewhat on the system used. For instance, a tape cassette system with variable tape speed may utilize a first stage for gain and a second stage primarily for gain control. Thus, a typical circuit would utilize 35 dB in the first stage and 10 to 15 dB in the second stage.

Devices suitable for use as amplifiers fall into one of two categories, operational amplifiers or wideband video amplifiers. Lower speed equipment with low transfer rates commonly uses low cost operational amplifiers. Examples of these are the MC1741, MC1458, MC1709, and MLM301. Equipment requiring higher transfer rates, such as disc systems normally use wideband amplifiers such as the MC1733. The actual cross-over point where wideband amplifiers are used exclusively varies with equipment de-

FIGURE 27 - TYPICAL READ CIRCUIT (METHOD 1)

FIGURE 26 – OSCILLATOR FREQUENCY FOR VARIOUS CAPACITOR VALUES

sign. For purposes of comparison, the MLM301 has slightly less than a 40 dB open-loop gain at 100 kHz; the MC1741, a compensated op-amp, has approximately 20 dB open loop gain at 100 kHz; the MC1733 has approximately 33 dB of gain out to 100 MHz (depending on gain option and loading).

There are a number of ways to implement the peak detector function. However, the simplest and most widely used method is a passive differentiator that generates "zerocrossings" for each of the data peaks in the Read signal.

The actual circuitry used to differentiate the Read signal varies from a differential LC type in disc systems to a simple RC type in reel and cassette systems. Either type, of course, attenuates the signal by an amount depending on the circuit used and system specifications. A good approximation of attenuation using the RC type is 20 dB. Thus, the 2 V signal going into the differentiator is reduced to 200 mV.

The next block in Figure 27 to be discussed is the zero-crossing detector. In most cases detection of the zero-crossings is combined with the limiter. These functions serve to generate a TTL compatible pulse waveform with "edges" corresponding to zero-crossings. For low transfer rates, the circuit often used consists of an operational amplifier with series or shunt limiting. For higher transfer rates (greater than 100K B/S) comparators are used.

The method described above is often modified to include threshold sensing. In Figure 28, the function called "double-ended, limit-detector" enables the output NAND gate when either the negative or positive data peaks of the Read signal exceed a predetermined threshold. This function can be implemented in either of two ways. One method first rectifies the signal before it is applied to a comparator with a set threshold. The other method utilizes two comparators, one comparator for positive-going peaks and the other for negative-going peaks. These comparator outputs are then combined in the output logic gates.

APPLICATIONS INFORMATION (continued)

FIGURE 28 - READ CIRCUIT (METHOD 2)

Another common technique is shown in Figure 29. The branch labeled rectifiers, peak detector, etc., provides a clock transition of the D flip-flop that corresponds to the peak of both the positive and negative-going data peaks. This branch may include threshold circuitry prior to the peak detector. The detector in the lower path detects whether the signal peaks are positive or negative and feeds this data to the flip-flop. This detector can be implemented using a comparator with pre-set threshold.

FIGURE 29 - READ CIRCUIT (METHOD 3)

The technique shown in Figure 30 uses separate circuits with threshold provisions for both negative and positive peaks. The peak detectors and threshold detectors

may be implemented with two comparators and two passive differentiators.

Each of the methods shown offer certain intrinsic advantages or disadvantages. The overall decision as to which method to use however often involves other important considerations. These could include cost and system requirements or circuitry other than simply the Read circuitry. For instance, if cost is the predominate overall factor, then approach one may be the only feasible alternative.

Method four was included as a design example because it illustrates several unique advantages. First, it uses threshold sensing to reduce noise peak errors. Second, it may be implemented using only integrated circuits. Third, it offers separate, direct threshold sensing for both positive and negative peaks.

FIGURE 30 - READ CIRCUIT (Method 4)

ORDERING INFORMATION

MC1741, MC1741C MC1741N, MC1741NC

Device	Alternate	Temperature Range	Package
MC1741CG	LM741CD, μΑ741HC	0°C to +70°C	Metal Can
MC1741CP1	LM741CN, μΑ741TC	0°C to +70°C	Plastic DIP
MC1741NCP1		0°C to +70°C	Plastic DIP
MC1741CU,NCU		0°C to +70°C	Ceramic DIP
MC1741G,NG	_	-55°C to +125°C	Metal Can
MC1741U,NU	_	-55°C to +125°C	Ceramic DIP
MC1741NCG	_	0°C to +70°C	Metal Can

INTERNALLY COMPENSATED, HIGH PERFORMANCE OPERATIONAL AMPLIFIERS

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up
- Low Noise Selections Offered N Suffix

MAXIMUM RATINGS $(T_A = +25^{\circ}C \text{ ur})$	nless other	wise noted)		
Rating	Symbol	MC1741C	MC1741	Unit
Power Supply Voltage	V _{CC}	+ 18 18	+ 22 - 22	Vdc Vdc
Input Differential Voltage	٧ _{ID}	1	Volts	
Input Common Mode Voltage (Note 1)	VICM	=	± 15	Volts
Output Short Circuit Duration (Note 2)	ts	Cont	inuous	
Operating Ambient Temperature Range	TA	0 to +70	-55 to +125	°C
Storage Temperature Range Metal and Ceramic Packages Plastic Packages	T _{stg}		to +150 to +125	°C

Note 1. For supply voltages less than +15 V, the absolute maximum input voltage is equal to the supply voltage.

Note 2. Supply voltage equal to or less than 15 V.

OPERATIONAL AMPLIFIER SILICON MONOLITHIC INTEGRATED CIRCUIT

MC1741, MC1741C, MC1741N, MC1741NC

ELECTRICAL CHARACTERISTICS ($V_{CC} = 15 \text{ V}$, $V_{EE} = 15 \text{ V}$, $T_{A} = 25^{\circ}\text{C}$ unless otherwise noted).

		MC1741			MC1741C			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S \leq 10 k)	V _{IO}		1.0	5.0	-	2.0	6.0	mV
Input Offset Current	110		20	200	_	20	200	nΑ
Input Bias Current	IIB		80	500		80	500	nA
Input Resistance	ri	0.3	2.0	-	0.3	2.0		мΩ
Input Capacitance	Ci	-	1.4	-	-	1.4	_	pF
Offset Voltage Adjustment Range	VIOR		±.15		-	±.15	_	mV
Common Mode Input Voltage Range	VICR	±12	±13		±12	±13		V
Large Signal Voltage Gain $(V_O = \pm 10 \text{ V}, \text{R}_L \geqslant 2.0 \text{ k})$	A _v	50	200	-	20	200	-	V/mV
Output Resistance	ro	_	75	-		75	_	Ω
Common Mode Rejection Ratio (R _S ≤ 10 k)	CMRR	70	90		70	90	_	dB
Supply Voltage Rejection Ratio (R _S \leq 10 k)	PSRR	_	30	150	-	30	150	μV/V
Output Voltage Swing $(R_L \ge 10 \text{ k})$ $(R_L \ge 2 \text{ k})$	Vo	±12 ±10	±14 ±13	-	±12 ±10	±14 ±13	_	V
Output Short-Circuit Current	los		20	-		20	_	mA
Supply Current	ID	-	1.7	2.8	-	1.7	2.8	mA
Power Consumption	PC	-	50	85		50	85	mW
Transient Response (Unity Gain — Non-Inverting) $ \begin{aligned} & (V_{\parallel} = 20 \text{ mV}, R_{\parallel} \geq 2 \text{ k}, C_{\parallel} \leq 100 \text{ pF}) \text{Rise Time} \\ & (V_{\parallel} = 20 \text{ mV}, R_{\parallel} \geq 2 \text{ k}, C_{\parallel} \leq 100 \text{ pF}) \text{Overshoot} \\ & (V_{\parallel} = 10 \text{ V}, R_{\parallel} \geq 2 \text{ k}, C_{\parallel} \leq 100 \text{ pF}) \text{Slew Rate} \end{aligned} $	tTLH os SR		0.3 15 0.5			0.3 15 0.5		μs % V/μs

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, T_A = T_{low} \text{ to } T_{high} \text{ unless otherwise noted}$).

			MC1741		N	/IC1741C		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S \leq 10 k Ω)	VIO		1.0	6.0	_	- andre	7.5	mV
Input Offset Current $(T_A = 125^{\circ}C)$ $(T_A = -55^{\circ}C)$ $(T_A = 0^{\circ}C \text{ to } +70^{\circ}C)$	110		7.0 85 —	200 500 	-	- - -	- 300	nA
Input Bias Current $ (T_A = 125^{\circ}C) $ $ (T_A = -55^{\circ}C) $ $ (T_A = 0^{\circ}C \text{ to } +70^{\circ}C) $	IB		30 300 –	500 1500 		- -	- - 800	nA
Common Mode Input Voltage Range	VICR	±12	±13	_		-	-	V
Common Mode Rejection Ratio (R _S ≤ 10 k)	CMRR	70	90	-	-	-	-	dB
Supply Voltage Rejection Ratio (R _S ≤ 10 k)	PSRR	uma.	30	150		-	-	μν/ν
Output Voltage Swing $(R_L \ge 10 \text{ k})$ $(R_1 \ge 2 \text{ k})$	v _o	±12 ±10	±14 ±13	_ _	- ±10	- ±13	_	V
Large Signal Voltage Gain (R _L \ge 2 k, V _{Out} = ±10 V)	A _v	25	-	-	15	-	_	V/mV
Supply Currents (T _A = 125°C) (T _A = -55°C)	ID		1.5 2.0	2.5 3.3			-	mA
Power Consumption ($T_A = +125^{\circ}C$) ($T_A = -55^{\circ}C$)	PC		45 60	75 100	-	-		mW

^{*}Thigh = 125° C for MC1741 and 70° C for MC1741C T_{low} = -55° C for MC1741 and 0° C for MC1741C

MC1741, MC1741C, MC1741N, MC1741NC

NOISE CHARACTERISTICS (Applies for MC1741N and MC1741NC only, V_{CC} = 15 V, V_{EE} = -15 V, T_{A} = +25°C)

		MC1741N MC1741NC		IC				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Burst Noise (Popcorn Noise) (BW = 1.0 Hz to 1.0 kHz, t = 10 s, R _S = 100 k) (Input Referenced)	En	_	-	20		_	20	μV/peak

RS, SOURCE RESISTANCE (OHMS)

FIGURE 3 - OUTPUT NOISE versus SOURCE RESISTANCE

FIGURE 5 - BURST NOISE TEST CIRCUIT (N Suffixed Devices Only)

For applications where low noise performance is essential, selected devices denoted by an N suffix are offered. These units have been 100% tested for burst noise pulses on a special noise test system. Unlike conventional peak reading or RMS meters, this system was especially designed to provide the quick response time essential to burst (popcorn) noise testing.

The test time employed is 10 seconds and the 20 μ V peak limit refers to the operational amplifier input thus eliminating errors in the closed-loop gain factor of the operational amplifier under test.

MC1741, MC1741C, MC1741N, MC1741NC

TYPICAL CHARACTERISTICS

(VCC = +15 Vdc, VEE = -15 Vdc, TA + +25°C unless otherwise noted)

FIGURE 8 - POSITIVE OUTPUT VOLTAGE SWING versus LOAD RESISTANCE 15 14 +15 V SUPPLIES 13 12 OUTPUT VOLTAGE (Vp.p) ±12 V 10 9.0 8.0 ±9 V 7.0 6.0 5.0 3.0 2.0 1.0 5.0 k 7.0 k 10 k 2 N k 100 200 500 700 10 k

RL, LOAD RESISTANCE (OHMS)

FIGURE 12 — NONINVERTING PULSE RESPONSE

FIGURE 13 - TRANSIENT REPONSE TEST CIRCUIT

FIGURE 14 — OPEN LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE

ORDERING INFORMATION

Device	Temperature Range	Package
MC1741SG	-55°C to +125°C	Metal Can
MC1741SCG	0°C to +70°C	Metal Can
MC1741SCP1	0°C to +70°C	Plastic DIP

MC1741S MC1741SC

HIGH SLEW-RATE INTERNALLY-COMPENSATED OPERATIONAL AMPLIFIER

The MC1741S/MC1741SC is functionally equivalent, pin compatible, and possesses the same ease of use as the popular MC1741 circuit, yet offers 20 times higher slew rate and power bandwidth. This device is ideally suited for D-to-A converters due to its fast settling time and high slew rate.

- High Slew Rate 10 V/μs Guaranteed Minimum (for unity gain only)
- · No Frequency Compensation Required
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low Power Consumption
- No Latch-Up

OPERATIONAL AMPLIFIER

SILICON MONOLITHIC : INTEGRATED CIRCUIT

TYPICAL APPLICATION OF OUTPUT CURRENT TO VOLTAGE TRANSFORMATION FOR A D-TO-A CONVERTER

Pins not shown are not connected.

Settling time to within 1/2 LSB (\pm 19.5 mV) is approximately 4.0 $_{\rm JS}$ from the time that all bits are switched. *The value of C may be selected to minimize overshoot and ringing (C \approx 150 pF).

Theoretical Vn

$$V_0 = \frac{V_{ref}}{R1} \left(R_0 \right) \left[\frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \frac{A4}{16} + \frac{A5}{32} + \frac{A6}{64} + \frac{A7}{128} + \frac{A8}{256} \right]$$

Adjust V_{ref} , R1 or R0 so that V_0 with all digital inputs at high level is equal to 9.961 volts.

$$V_0 = \frac{2 \text{ V}}{1 \text{ k}} (5 \text{ k}) \left[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256} \right] = 10 \text{ V} \left[\frac{265}{256} \right] = 9.961 \text{ V}$$

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

		Va	ue	
Rating	Symbol	MC1741SC	MC1741S	Unit
Power Supply Voltage	V _{CC} V _{EE}	+18 -18	+22 -22	Vdc
Differential Input Signal Voltage	V _{ID}	±	30	Volts
Common-Mode Input Voltage Swing (See Note 1)	V _{ICR}	±15		Volts
Output Short-Circuit Duration (See Note 2)	ts	Continuous		
Power Dissipation (Package Limitation) Metal Package Derate above T _A = +25°C Plastic Dual In-Line Package Derate above T _A = +25°C	PD	6:	30 .6 25	mW mW/ ^o C mW mW/ ^o C
Operating Ambient Temperature Range	TA	0 to +75	-55 to +125	ос
Storage Temperature Range Metal Package Plastic Package	T _{stg}	1	o +150 o +125	°C

Note 1. For supply voltages less than ± 15 Vdc, the absolute maximum input voltage is equal to the supply voltage.

Note 2. Supply voltage equal to or less than 15 Vdc.

FIGURE 2 – INPUT BIAS CURRENT versus TEMPERATURE

400

350

250

150

0

-75

-50

-25

0

+25

+50

+75

+100

125

T, TEMPERATURE (°C)

MC1741S, MC1741SC

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25°C unless otherwise noted.)

		MC1741S			MC1741SC			4	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	
Power Bandwidth (See Figure 3)	BWP							kHz	
$A_V = 1$, $R_L = 2.0 \text{ k}\Omega$, THD = 5%, $V_O = 20 \text{ V(p-p)}$		150	200		150	200			
Large-Signal Transient Response									
Slew Rate (Figures 10 and 11)	SR								
V(-) to V(+)		10	20	-	10	20	-	V/µs	
V(+) to V(-)		10	12	-	10	12	-	İ	
Settling Time (Figures 10 and 11)	t _{setlg}		3.0	-	-	3.0	400	μs	
(to within 0.1%)									
Small-Signal Transient Response									
(Gain - 1, E _{in} = 20 mV, see Figures 7 and 8)	ŀ							1	
Rise Time	^t TLH	-	0.25		-	0.25	-	μs	
Fall Time	^t THL	-	0.25	-		0.25	-	μs	
Propagation Delay Time	tPLH,tPHL	-	0.25	-	-	0.25	-	μs	
Overshoot	os	-	20		_	20	-	%	
Short-Circuit Output Currents	los	±10	-	±35	±10	-	±35	mA	
Open-Loop Voltage Gain (R _L 2.0 kΩ) (See Figure 4)	A _{vol}							-	
VO ±10 V, TA +25°C		50,000	200,000	-	20,000	100,000	-		
$V_{O} = \pm 10 \text{ V, } T_{A} = T_{low}^* \text{ to } T_{high}^*$	Ì	25,000	-	-	15,000	-	-		
Output Impedance (f = 20 Hz)	z _O	_	75	-		75	_	Ω	
Input Impedance (f 20 Hz)	z i	0.3	1.0	_	0.3	1.0	-	MΩ	
Output Voltage Swing	Vo							Vpk	
$R_L = 10 \text{ k}\Omega$, $T_A = T_{low} \text{ to } T_{high} \text{ (MC1741S only)}$		±12	±14	-	±12	±14	-	1	
$R_L = 2.0 \text{ k}\Omega, T_A + 25^{\circ}\text{C}$	1	±10	±13	-	±10	±13	-		
$R_L = 2.0 \text{ k}\Omega$, $T_A = T_{low}$ to T_{high}		±10	****	-	±10		-		
Input Common-Mode Voltage Range	VICR	±12	±13		±12	±13		V _{pk}	
·	1		ļ						
TA = Tlow to Thigh (MC1741S)	CMRR	70	90		70	90	_	dB	
Common-Mode Rejection Ratio (f = 20 Hz)	CIVIRR	/0	90		l ′°	30		1	
TA = Tlow to Thigh (MC1741S)								 	
Input Bias Current (See Figure 2)	Iв				ŀ	200		nA	
$T_A = +25^{\circ}C$ and T_{high}		-	200	500	-	200	500 800	1	
$T_A = T_{low}$			500	1500			_800		
Input Offset Current	liol						200	nA	
$T_A = +25^{\circ}C$ and T_{high}		_	30	200	-	30	200		
$T_A = T_{low}$		-	_	500	_	_	300	ļ.,,	
Input Offset Voltage (R _S = $\leq 10 \text{ k}\Omega$)	Viol]				m∨	
$T_A = +25^{\circ}C$		-	1.0	5.0		2.0	6.0		
TA = Tlow to Thigh		-		6.0	_	_	7.5		
DC Power Consumption (See Figure 9)	PC							mW	
(Power Supply = $\pm 15 \text{ V}$, $V_0 = 0$)		-	50	85	-	50	85	1	
TA = Tlow to Thigh									
Positive Voltage Supply Sensitivity	PSS+							μV/	
(VFF constant)	1	_	2.0	100	_	2.0	150		
$T_A = T_{low}$ to T_{high} on MC1741S	1 500		-	 	 		 	μV/	
Negative Voltage Supply Sensitivity	PSS-		10	150	_	10	150	" "	
(VCC constant)	1	_	10	130	_			1	

^{*}T_{low} = 0 for MC1741SC = -55 ^OC for MC1741S

T_{high} = +70°C for MC1741SC = +125 °C for MC1741S

TYPICAL CHARACTERISTICS

(V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25°C unless otherwise noted.)

FIGURE 3 – POWER BANDWIDTH – NONDISTORTED OUTPUT VOLTAGE versus FREQUENCY

FIGURE 4 - OPEN-LOOP FREQUENCY RESPONSE

FIGURE 5 - NOISE versus FREQUENCY

FIGURE 6 - OUTPUT NOISE versus

FIGURE 7 – SMALL-SIGNAL TRANSIENT RESPONSE DEFINITIONS

FIGURE 8 – SMALL-SIGNAL TRANSIENT RESPONSE TEST CIRCUIT

TYPICAL CHARACTERISTICS

 $(V_{CC} = +15 \text{ Vdc}, V_{EE} = -15 \text{ Vdc}, T_A = +25^{\circ}\text{C} \text{ unless otherwise noted.})$

FIGURE 9 – POWER CONSUMPTION versus POWER SUPPLY VOLTAGES

FIGURE 10 - LARGE-SIGNAL TRANSIENT WAVEFORMS

FIGURE 11 - SETTLING TIME AND SLEW RATE TEST CIRCUIT

SETTLING TIME

In order to properly utilize the high slew rate and fast settling time of an operational amplifier, a number of system considerations must be observed. Capacitance at the summing node and at the amplifier output must be minimal and circuit board layout should be consistent with common high-frequency considerations. Both power supply connections should be adequately bypassed as close as possible to the device pins. In bypassing, both low and high-frequency components should be considered to avoid the possibility of excessive ringing. In order to achieve optimum damping, the selection of a capacitor in parallel with the feedback resistor may be necessary. A value too small could result in excessive ringing while a value too large will degrade slew rate and settling time.

SETTLING TIME MEASUREMENT

In order to accurately measure the settling time of an operational amplifier, it is suggested that the "false" summing junction approach be taken as shown in Figure 11. This is necessary since it is difficult to determine when the waveform at the output of the operational amplifier settles to within 0.1% of it's final value. Because the output and input voltages are effectively subtracted from each other at the amplifier inverting input, this seems like an ideal node for the measurement. However, the probe capacitance at this critical node can greatly affect the accuracy of the actual measurement.

The solution to these problems is the creation of a second or "false" summing node. The addition of two diodes at this node clamps the error voltage to limit the voltage excursion to the oscilloscope. Because of the voltage divider effect, only one-half of the actual error appears at this node. For extremely critical measurements, the capacitance of the diodes and the oscilloscope, and the settling time of the oscilloscope must be considered. The expression

$$t_{setlg} = \sqrt{x^2 + y^2 + z^2}$$

can be used to determine the actual amplifier settling time, where

t_{setlq} = observed settling time

x = amplifier settling time (to be determined)

y = false summing junction settling time

z = oscilloscope settling time

It should be remembered that to settle within $\pm 0.1\%$ requires 7RC time constants.

The $\pm 0.1\%$ factor was chosen for the MC1741S settling time as it is compatible with the $\pm 1/2$ LSB accuracy of the MC1508L8 digital-to-analog converter. This D-to-A converter features $\pm 0.19\%$ maximum error.

FIGURE 12 - WAVEFORM AT FALSE SUMMING NODE

FIGURE 13 - EXPANDED WAVEFORM AT FALSE SUMMING NODE

TYPICAL APPLICATION

FIGURE 14 - 12.5-WATT WIDEBAND POWER AMPLIFIER

ORDERING INFORMATION

Device	Temperature Range	Package
MC1747G	-55°C to +125°C	Metal Can
MC1747L	-55°C to +125°C	Ceramic DIP
MC1747CG	0°C to +75°C	Metal Can
MC1747CL	0°C to +75°C	Ceramic DIP
MC1747CP2	0°C to +75°C	Plastic DIP

DUAL MC1741 INTERNALLY COMPENSATED, HIGH PERFORMANCE OPERATIONAL AMPLIFIER

... designed for use as summing amplifiers, integrators, or amplifiers with operating characteristics as a function of the external feedback components. The MC1747L and MC1747CL are functionally and electrically equivalent to the μ A747 and μ A747C respectively.

- No Frequency Compensation Required
- Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up
- Offset Voltage Null Capability

Circuit diagrams utilizing Motorola products are included as a means of illustrating typical semiconductor applications; consequently, complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent right of Motorola Inc. or others.

MC1747 MC1747C

(DUAL MC1741)

DUAL
OPERATIONAL AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

Rating	Symbol	MC1747	MC1747C	Unit		
Power Supply Voltages	Vcc	V _{CC} +22		Vdc		
	VEE	-22	-18	ļ		
Differential Input Signal Voltage	V _{ID}	+	30	Volts		
Common-Mode Input Swing Voltage ②	VICR	± 15		± 15		Volts
Output Short-Circuit Duration	tos	Continuous				
Voltage (Measurement between Offset Null and VEE)		+ 0.5		Volts		
Operating Ambient Temperature Range	TA	-55 to +125	0 to +75	°c		
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	°c		
Junction Temperature Ceramic and Metal Package Plastic Package	ТЈ	1	75 50	°C		

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ Vdc}$, $V_{EE} = -15 \text{ Vdc}$, $T_A = +25 ^{\circ}\text{C}$ unless otherwise noted.)

2	Symbol		MC1747			MC1747C		Unit
Characteristics		Min	Тур	Max	Min	Тур	Max	
Input Bias Current	Iв							nAdd
$T_A = +25^{\circ}C$		-	80	500	-	80	500	l
TA = Thigh ③ TA = Tlow ③		-	30	500	-	30	800	l
			300	1500		30	800	
Input Offset Current TA = +25°C	10	i						nAdd
TA = Thigh	1	-	20	200	-	20	200	1
TA = Thigh TA = T _{low}		-	7.0	200	_	7.0	300	
Input Offset Voltage (Rs ≤ 10 kΩ)		 	85	500	_	7.0	300	
T _A = $+25^{\circ}$ C	VIO	1		1				m Vd
TA = Tlow to Thigh	Ì	-	1.0 1.0	5.0 6.0	_	1.0	6.0	
Offset Voltage Adjustment Range	-					1.0	7.5	
		_	<u>+</u> 15		_	± 15	_	mV
Differential Input Impedance (Open-loop, f = 20 Hz)								
Parallel Input Resistance	i ii	0.3	2.0	-	0.3	2.0	-	MΩ
Parallel Input Capacitance	Ci	_	1.4	-	_	1.4		pF
Common-Mode Input Voltage Swing	VICR							Volts
T _{low} ≤ T _A ≤ T _{high}		<u>+</u> 12	<u>+</u> 13	_	<u>+</u> 12	<u>+</u> 13	-	
Common-Mode Rejection Ratio (R _S = 10 kΩ)	CMRR							dB
$T_{low} \leqslant T_A \leqslant T_{high}$		70	90	-	70	90	-	
Open-Loop Voltage Gain	A _{vol}							Volts
$T_A = +25^{\circ}C$ $T_A = T_{low} \text{ to } T_{high}$ $(V_O = \pm 10 \text{ V}, R_L = 2.0 \text{ k}\Omega)$		50,000	200,000	-	25,000	200,000	-	l
		25,000	-	-	15,000	-	-	
Transient Response (Unity Gain)								
$(V_{in} = 20 \text{ mV}, R_L = 2.0 \text{ k}\Omega, C_L \le 100 \text{ pF})$								
Rise Time	tPLH.	-	0.3	-	-	0.3	-	μs
Overshoot Percentage		-	5.0	-		5.0		%
Slew Rate (Unity Gain)	SR	-	0.5	-	-	0.5	-	V/μs
Output Impedance	z _o	-	75	-	-	75	-	ohms
Short-Circuit Output Current	los	-	25	_	-	25	-	mAdd
Channel Separation		-	120			120		dB
Output Voltage Swing (T _{Iow} ≤ T _A ≤ T _{high})	VOR							Vpk
R _L = 10 kΩ	0	+ 12	<u>+</u> 14	_	+ 12	<u>+</u> 14	_	• рк
R _L = 2.0 kΩ		± 10	± 13	_	± 10	± 13	_	
Power Supply Sensitivity (Tlow to Thigh)								μV/V
V _{EE} = Constant, R _S ≤ 10 kΩ	PSS+	_	30	150	_	30	150	4 * , *
V_{CC} = Constant, $R_S \le 10 \text{ k}\Omega$	PSS-	-	30	150	_	30	150	
Power Supply Current (each amplifier)	ICC, EE							mAdo
$T_A = +25^{\circ}C$,CC, EE	1 _	1.7	2.8	_	1.7	2.8	IIIAG
TA = Tlow	1	_	2.0	3.3	_	2.0	3.3	
TA = Thigh	1	-	1.5	2.5	-	2.0	3.3	
DC Power Consumption (each amplifier)	PC				—			mW
T _A = +25°C	1	-	50	85	_	50	85	''''
TA = Tlow	1		60	100	. =	60	100	
TA = Thigh	i	_	45	75	_	60	100	1

<sup>Thigh: 475°C for MC1747L

Thigh: 475°C for MC1747L

Thigh: 475°C for MC1747L</sup>

FIGURE 3 — TYPICAL FREQUENCY-SHIFT KEYER TONE GENERATOR TEST CIRCUIT

TYPICAL CHARACTERISTICS

(V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25°C unless otherwise noted.)

(V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25°C unless otherwise noted.)

ORDERING INFORMATION

Device Temperature Range		Package		
MC1748G	-55°C to +125°C	Metal Can		
MC1748U	-55°C to +125°C	Ceramic DIP		
MC1748CG	0°C to +70°C	Metal Can		
MC1748CP1	0°C to +70°C	Plastic DIP		
MC1748CU	0°C to +70°C	Ceramic DIP		

MC1748 MC1748C

HIGH PERFORMANCE OPERATIONAL AMPLIFIER

... designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

- Noncompensated MC1741
- Single 30 pF Capacitor Compensation Required For Unity Gain
- Short-Circuit Protection
- Offset Voltage Null Capability
- Wide Common-Mode and Differential Voltage Ranges
- Low-Power Consumption
- No Latch Up

OPERATIONAL AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

TYPICAL COMPENSATION CIRCUITS

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Symbol	MC1748	MC1748C	Unit
Power Supply Voltage	Vcc	+22	+18	Vdc
	VEE	-22	-18	
Differential Input Signal	V _{in}	<u>+</u>	±30	
Common-Mode Input Swing ①	VICR	±15		Volts
Output Short Circuit Duration	ts	Conti	nuous	
Power Dissipation (Package Limitation) Derate above T _A = +25°C	PD	680 4.6		mW mW/ ^O C
Operating Temperature Range	TA	-55 to +125	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ Vdc}$, $V_{EE} = -15 \text{ Vdc}$, $T_A = +25^{\circ}\text{C}$ unless otherwise noted.)

			MC1748					
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Bias Current	Iв							μAdc
$T_A = +25^{\circ}C$		-	0.08	0.5	-	0.08	0.5	
TA = T _{low} to T _{high} ②			0.3	1.5	-		0.8	
Input Offset Current	11101							μAdc
$T_A = +25^{\circ}C$			0.02	0.2	-	0.02	0.2	
TA = Tlow to Thigh			0.08	0.5			0.3	
Input Offset Voltage (R _S < 10 k Ω)	IVIOI							mVdc
$T_A = +25^{\circ}C$		-	1.0	5.0		1.0	6.0	
TA Tlow to Thigh				6.0			7.5	
Differential Input Impedance (Open-Loop, f = 20 Hz)								
Parallel Input Resistance	Rp	0.3	2.0	-	0.3	2.0	w	Megohm
Parallel Input Capacitance	Cp		1.4		-	1.4	-	pF
Common-Mode Input Impedance (f 20 Hz)	z _{in}	-	200		-	200		Megohms
Common-Mode Input Voltage Swing	VICR	±12	±13	-	±12	± 13	-	V _{pk}
Common-Mode Rejection Ratio (f = 100 Hz)	CMRR	70	90		70	90	-	dB
Open-Loop Voltage Gain, (V _O = ±10 V, R _L = 2.0 k ohms)	A _{vol}							V/V
$T_A \approx +25^{\circ}C$		50,000	200,00d	-	20,000	200,000	-	
TA = Tlow to Thigh		25,000	-	-	15,000	-		
Step Response ($V_{in} = 20 \text{ mV}$, $C_c = 30 \text{ pF}$, $R_1 = 2 \text{ k}\Omega$, $C_1 = 100 \text{ pF}$)								
Rise Time	tr	-	0.3	-		0.3		μs
Overshoot Percentage		-	5.0			5.0	-	%
Slew Rate	dV _{out} /dt	-	0.8	-	***	0.8	-	V/μs
Output Impedance (f = 20 Hz)	z _o	-	75	-	-	75	-	ohms
Short-Circuit Output Current	I _{sc}	-	25	-		25	-	mAdc
Output Voltage Swing (R _L = 10 k ohms)	٧o	± 12	±14	-	±12	± 14	-	Vpk
$R_L = 2 \text{ k ohms} (T_A = T_{low} \text{ to } t_{high})$		±10	±13		±10	±13	-	
Power Supply Sensitivity								μV/V
V_{EE} = constant, $R_S \le 10$ k ohms	S+		30	150	-	30	150	
V_{CC} = constant, $R_s \le 10$ k ohms	S-		30	150	-	30	150	
Power Supply Current	ID+	-	1.67	2.83	-	1.67	2.83	mAdc
	ID-	-	1.67	2.83	_	1.67	2.83	
DC Quiescent Power Dissipation	PD							mW
$(V_0 = 0)$	_	-	50	85		50	85	

 $[\]ensuremath{ \bigcirc \! \! \! }$ For supply voltages less than ± 15 V, the Maximum Input Voltage is equal to the Supply Voltage.

② T_{low}: 0°C for MC1748C -55°C for MC1748 T_{high}: +70° for MC1748C +125°C for MC1748

TYPICAL CHARACTERISTICS

(V_{CC} = +15 V, V_{EE} = -15 V, T_A = +25 $^{\circ}$ C unless otherwise noted.)

TYPICAL CHARACTERISTICS (continued)

(V_{CC} = +15 V, V_{EE} = -15 V, T_A = +25 o C unless otherwise noted.)

FIGURE 11 - VOLTAGE FOLLOWER PULSE RESPONSE

FIGURE 12 - OPEN-LOOP FREQUENCY RESPONSE

FIGURE 13 - LARGE-SIGNAL FREQUENCY RESPONSE

FIGURE 14 - INVERTER PULSE RESPONSE

Specifications and Applications Information

MONOLITHIC MICROPOWER PROGRAMMABLE OPERATIONAL AMPLIFIER

This extremely versatile operational amplifier features low power consumption and high input impedance. In addition, the quiescent currents within the device may be programmed by the choice of an external resistor value or current source applied to the I_{set} input. This allows the amplifier's characteristics to be optimized for input current and power consumption despite wide variations in operating power supply voltages.

- $\pm 1.2 \text{ V to } \pm 18 \text{ V Operation}$
- · Wide Programming Range
- Offset Null Capability
- No Frequency Compensation Required
- Low Input Bias Currents
- Short-Circuit Protection

RESISTIVE PROGRAMMING (See Figure 1.)

Typical R _{set} Values								
V _{CC} , V _{EE}	I _{set} = 1.5 μA	I _{set} = 15 μA						
±6.0V	3.6 MΩ	360 kΩ						
±10V	6.2 MΩ	620 kΩ						
±12V	7.5 MΩ	750 kΩ						
±15V	10 ΜΩ	1.0 ΜΩ						

Typical R _{set} Values								
VCC, VEE	lset = 1.5 μA	I _{set} = 15 μ A						
±1.5V	1.6 MΩ	160 kΩ						
±3.0V	3.6 MΩ	360 kΩ						
±6.0∨	7.5 MΩ	750 kΩ						
±15 V	20 ΜΩ	2.0 ΜΩ						

ACTIVE PROGRAMMING

MC1776 MC1776C

PROGRAMMABLE OPERATIONAL AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION

Device	Temperature Range	Package
MC1776G	- 55 to + 125°C	Metal Can
MC1776U	-55 to +125°C	Ceramic DIP
MC1776CG	0 to + 70°C	Metal Can
MC1776CP1	0 to + 70°C	Plastic DIP
MC1776CU	0 to +70°C	Ceramic DIP

Pins not shown are not connected.

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	V _{CC} , V _{EE}	± 18	Vdc
Differential Input Voltage	V _{ID}	± 30	Vdc
Common-Mode Input Voltage V_{CC} and $ V_{EE} \le 15 \text{ V}$ V_{CC} and $ V_{EE} \ge 15 \text{ V}$	VICM	V _{CC} , V _{EE} ± 15	Vdc
Offset Null to VEE Voltage	Voff-VEE	± 0.5	Vdc
Programming Current	Iset	500	μА
Programming Voltage (Voltage from I _{set} terminal to ground)	V _{set}	(V _{CC} -2.0 V) to V _{CC}	Vdc
Output Short-Circuit Duration*	t _s	Indefinite	S
Operating Temperature Range MC1776 MC1776C	ТА	-55 to +125 0 to +70	°C
Storage Temperature Range Metal and Ceramic Packages Plastic Package	T _{stg}	-65 to +150 -55 to +125	°C
Junction Temperature Metal and Ceramic Packages Plastic Package	Т	175 150	°C

^{*}May be to ground or either Supply Voltage. Rating applies up to a case temperature of $\pm 125^{\circ}$ C or ambient temperature of $\pm 70^{\circ}$ C and $I_{set} \leq 30 \ \mu A$.

SCHEMATIC DIAGRAM

ELECTRICAL CHARACTERISTICS (V_{CC} = +3.0 V, V_{EE} = -3.0 V, I_{set} = 1.5 μ A, T_A = +25°C unless otherwise noted.)

		MC1776		MC1776C			_	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S ≤ 10 kΩ)	VIO							mV
$T_A = +25^{\circ}C$			2.0	5.0	-	2.0	6.0	1
Tlow* \le TA \le Thigh*		-		6.0	-	_	7.5	
Offset Voltage Adjustment Range	VIOR	-	9.0	-	-	9.0	-	mV
Input Offset Current	10							nΑ
$T_A = +25^{\circ}C$		-	0.7	3.0	-	0.7	6.0	
$T_A = T_{high}$		-		5.0	-	-	6.0	
$T_A = T_{low}$		-	-	10	-	-	10	
Input Bias Current	IВ							nA
$T_A = +25^{\circ}C$	'-	-	2.0	7.5	-	2.0	10	
$T_A = T_{high}$		-	-	7.5	-	-	10	
TA = Tlow		-	-	20	-	-	20	
Input Resistance	ri	-	50	_	-	50	-	MΩ
Input Capacitance	ci	_	2.0	-		2.0	-	pF
Input Voltage Range	V _{ID}							V
$T_{low} \le T_A \le T_{high}$,	• 1.0	-	***	: 1.0	-	-	l
Large Signal Voltage Gain	AVOL							V/V
$R_L \ge 75 \text{ k}\Omega$, $V_O = \pm 1.0 \text{ V}$, $T_A = \pm 25^{\circ}\text{C}$		50 k	200 k	-	25 k	200 k	_	
$R_L \ge 75 \text{ k}\Omega$, $V_O = \pm 1.0 \text{ V}$, $T_{low} \le T_A \le T_{high}$		25 k	-	-	25 k		-	1
Output Voltage Swing	V _O							V
$R_L \ge 75 \text{ k}\Omega$, $T_{low} \le T_A \le T_{high}$		12.0	• 2.4	_	± 2.0	±2.4	-	
Output Resistance	ro		5.0		_	5.0	_	kΩ
Output Short-Circuit Current	los	-	3.0	-		3.0	-	mA
Common-Mode Rejection Ratio	CMRR							dB
$R_S \le 10 \text{ k}\Omega$, $T_{low} \le T_A \le T_{high}$		70	86	-	70	86		
Supply Voltage Rejection Ratio	PSRR							μV/V
$R_S \leq 10 \text{ k}\Omega$, $T_{low} \leq T_A \leq T_{high}$			25	150	-	25	200	
Supply Current	ICC, IEE							μA
$T_A = +25^{\circ}C$		-	13	20	-	13	20	
$T_{low} \le T_A \le T_{high}$		-	-	25	-	-	25	
Power Dissipation	PD							μW
$T_A = +25^{\circ}C$		-	78	120	-	78	120	
$T_{low} \le T_A \le T_{high}$		-	-	150	=	_	150	
Transient Response (Unity Gain)								
V_{in} = 20 mV, $R_L \ge 5.0 \text{ k}\Omega$, C_L = 100 pF					I			
Rise Time	^t TLH		3.0	-	-	3.0	-	μs
Overshoot	OS	_	0		-	0	-	- %
Slew Rate (R _L \geqslant 5.0 k Ω)	SR	-	0.03	_	-	0.03	-	V/µs

*T_{Iow} = -55°C for MC1776 0°C for MC1776C T_{high} = +125^oC for MC1776 +70^oC for MC1776C

ELECTRICAL CHARACTERISTICS ($V_{CC} = +3.0 \text{ V}$, $V_{EE} = -3.0 \text{ V}$, $I_{set} = 15 \mu A$, $T_A = +25^{\circ} C$ unless otherwise noted.)

			MC1776			MC1776C		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S ≤ 10 kΩ)	ViO	1		†	T	1		mV
$T_A = +25^{\circ}C$		-	2.0	5.0		2.0	6.0	
$T_{low}^* \le T_A \le T_{high}^*$		-	-	6.0	-		7.5	
Offset Voltage Adjustment Range	VIOR	-	18	-		18	-	mV
Input Offset Current	110				1			nΑ
$T_A = +25^{\circ}C$	1		2.0	15	-	2.0	25	
TA = Thigh		-	-	15	-	-	25	
$T_A = T_{low}$	1	-	-	40		-	40	
Input Bias Current	1 _{IB}			†	<u> </u>			nA
$T_A = +25^{\circ}C$		-	15	50	-	15	50	1
TA = Thigh		-	-	50	-		50	ŀ
$T_A = T_{low}$			i -	120	-	-	100	
Input Resistance	ri	-	5.0	-	-	5.0	_	MΩ
Input Capacitance	ci	_	2.0	-	-	2.0	-	pF
Input Voltage Range	VID							V
$T_{low} \leq T_A \leq T_{high}$		+ 1.0	-	-	+1.0	-	-	İ
Large Signal Voltage Gain	AVOL			 	1	<u> </u>		V/V
$R_L \ge 5.0 k\Omega$, $V_O = \pm 1.0 V$, $T_A = \pm 25^{\circ}C$		50 k	200 k	-	25 k	200 k	-	l
$R_L \ge 5.0 \text{ k}\Omega$, $V_O = \pm 1.0 \text{ V}$, $T_{low} \le T_A \le T_{high}$		25 k	-	-	25k	-	-	
Output Voltage Swing	v _o							V
R _L ≥5.0 kΩ, T _{low} ≤ T _A ≤ T _{high}		±1.9	± 2.1	-	+ 2.0	+2.1	-	
Output Resistance	ro	_	1.0	_		1.0	_	kΩ
Output Short-Circuit Current	los	_	5.0	-	-	5.0	_	mA
Common-Mode Rejection Ratio	CMRR							dB
$R_S \le 10 \text{ k}\Omega$, $T_{low} \le T_A \le T_{high}$		70	86	-	70	86	-	
Supply Voltage Rejection Ratio	PSRR	†	<u> </u>	t			 	μV/V
$R_S \le 10 \text{ k}\Omega$, $T_{low} \le T_A \le T_{high}$		-	25	150	-	25	200	
Supply Current	ICC, IEE	 	†	†	†		<u> </u>	μА
$T_A = +25^{\circ}C$	00 22	-	130	160		130	170	
$T_{low} \le T_A \le T_{high}$		-	-	180	-	-	180	
Power Dissipation	PD	†	†	 			-	μW
$T_A = +25^{\circ}C$		-	780	960		780	1020	
T _{low} ≤ T _A ≤ T _{high}		-	-	1080	-	-	1080	
Transient Response (Unity Gain)					1	1	1	
V_{in} = 20 mV, $R_{L} \ge 5.0 \text{ k}\Omega$, C_{L} = 100 pF			1					
Rise Time	tTLH	-	0.6	-	-	0.6	-	μs
Overshoot	os	_	5.0	_	_	5.0	-	%
Slew Rate (R _L ≥ 5.0 kΩ)	SR	_	0.35	_	-	0.35	T -	V/µs

^{*}T_{low} = -55°C for MC1776 0°C for MC1776C

T_{high} = +125°C for MC1776 +70°C for MC1776C

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, I_{set} = 1.5 μ A, T_{A} = +25°C unless otherwise noted.)

		MC1776			MC1776C			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S ≤ 10 kΩ)	VIO							mV
$T_A = +25^{\circ}C$		-	2.0	5.0	-	2.0	6.0	
$T_{low}^* \leq T_A \leq T_{high}^*$		-	-	6.0	-	-	7.5	
Offset Voltage Adjustment Range	VIOR		9.0	_	_	9.0	_	mV
Input Offset Current	110							nΑ
$T_A = +25^{\circ}C$		-	0.7	3.0	-	0.7	6.0	
$T_A = T_{high}$			_	5.0	_		6.0	! !
$T_A = T_{low}$		-	-	10	-	-	10	
Input Bias Current	Iв							nΑ
$T_A = +25^{\circ}C$			2.0	7.5	-	2.0	10	
TA = Thigh		-	_	7.5	-	-	10	
$T_A = T_{low}$		-		20	-		20	
Input Resistance	ri	_	50	_	-	50	_	MΩ
Input Capacitance	ci	-	2.0	_	-	2.0	_	pF
Input Voltage Range	VID							V
$T_{low} \le T_A \le T_{high}$		±10		-	± 10	_	_	
Large Signal Voltage Gain	AVOL							V/V
$R_L \ge 75 \text{ k}\Omega$, $V_O = \pm 10 \text{ V}$, $T_A = \pm 25^{\circ}\text{C}$		200 k	400 k	-	50 k	400 k	_	
$R_L \ge 75 \text{ k}\Omega$, $V_O = \pm 10 \text{ V}$, $T_{low} \le T_A \le T_{high}$		100 k	-		50 k		_	
Output Voltage Swing	Vo							V
$R_L \ge 75 \text{ k}\Omega$, $T_A = +25^{\circ}\text{C}$		+12	± 14	-	+ 12	± 14		
$R_L \ge 75 \text{ k}\Omega$, $T_{low} \le T_A \le T_{high}$		+ 10		-	± 10	-		
Output Resistance	ro		5.0		_	5.0	_	kΩ
Output Short-Circuit Current	los	_	3.0		-	3.0	-	mA
Common-Mode Rejection Ratio	CMRR							dB
$R_S \le 10 \text{ k}\Omega$, $T_{low} \le T_A \le T_{high}$		70	90	-	70	90	-	
Supply Voltage Rejection Ratio	PSRR							μV/V
$R_S \le 10 \text{ k}\Omega$, $T_{low} \le T_A \le T_{high}$		-	25	150	-	25	200	
Supply Current	ICC, IEE							μΑ
$T_A = +25^{\circ}C$		-	20	25	-	20	30	
$T_{low} \le T_A \le T_{high}$		-	-	30	-		35	
Power Dissipation	PD							mW
$T_A = +25^{\circ}C$		-	-	0.75	-	-	0.9	
$T_{low} \le T_A \le T_{high}$	1	-	_	0.9	-	-	1.05	
Transient Response (Unity Gain)								
$V_{in} = 20 \text{ mV}$, $R_{\perp} \ge 5.0 \text{ k}\Omega$, $C_{\perp} = 100 \text{ pF}$	1							
Rise Time	tTLH	-	1.6	-	-	1.6	-	μs
Overshoot	os		0	-	-	0		%
Slew Rate (R _L ≥ 5.0 kΩ)	SR	-	0.1	_	-	0.1	-	V/µs

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, I_{set} = 15 μ A, T_A = +25 o C unless otherwise noted.)

		MC1776						
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S \leq 10 k Ω)	VIO							mV
T _A = +25°C	'-	-	2.0	5.0	l –	2.0	6.0	
$T_{low}^* \le T_A \le T_{high}^*$		-	-	6.0		-	7.5	
Offset Voltage Adjustment Range	VIOR	-	18			18	_	mV
Input Offset Current	110							nΑ
$T_A = +25^{\circ}C$			2.0	15		2.0	25	
TA = Thigh	1	-	-	15	-	-	25	
$T_A = T_{low}$	ŀ	-	-	40		-	40	
Input Bias Current	11B							nΑ
$T_A = +25^{\circ}C$			15	50	-	15	50	
$T_A = T_{high}$			-	50	l –	-	50	
$T_A = T_{low}$		-	-	120	-	-	100	
Input Resistance	ri	-	5.0	_	-	5.0	-	MΩ
Input Capacitance	ci	-	2.0	-		2.0	-	pF
Input Voltage Range	V _{ID}							V
$T_{low} \le T_A \le T_{high}$		± 10	-	-	± 10	-	-	
Large Signal Voltage Gain	AVOL							V/V
$R_L \ge 5.0 k\Omega$, $V_O = \pm 10 V$, $T_A = \pm 25^{\circ} C$		100 k	400 k		50 k	400 k	-	
$R_L \ge 75 \text{ k}\Omega$, $V_0 = \pm 10 \text{ V}$, $T_{low} \le T_A \le T_{high}$		75 k	_	-	50 k	-	-	
Output Voltage Swing	v _o				T			V
$R_{L} \ge 5.0 k\Omega$, $T_{A} = +25^{\circ} C$		± 10	± 13	-	± 10	± 13		
$R_L \ge 75 \text{ k}\Omega$, $T_{low} \le T_A \le T_{high}$		± 10	-	-	± 10	-	-	
Output Resistance	ro	-	1.0	_	_	1.0	_	kΩ
Output Short-Circuit Current	Ios	-	12			12	-	mA
Common-Mode Rejection Ratio	CMRR							dB
$R_S \le 10 k\Omega$, $T_{low} \le T_A \le T_{high}$		70	90	-	70	90	-	
Supply Voltage Rejection Ratio	PSRR							μV/V
$R_S \le 10 k\Omega$, $T_{low} \le T_A \le T_{high}$		-	25	150	-	25	200	
Supply Current	ICC, IEE							μΑ
$T_A = +25^{\circ}C$	1	-	160	180	-	160	190	
$T_{low} \le T_A \le T_{high}$		-	_	200	-	_	200	
Power Dissipation	PD							mW
$T_A = +25^{\circ}C$		-	-	5.4	-		5.7	
$T_{low} \leq T_A \leq T_{high}$		-	-	6.0			6.0	
Transient Response (Unity Gain)								
$V_{in} = 20 \text{ mV}, R_{L} \ge 5.0 \text{ k}\Omega, C_{L} = 100 \text{ pF}$								
Rise Time	^t TLH	-	0.35	_	-	0.35		μs
Overshoot	os	-	10		-	10	-	%
Slew Rate (R _L \geq 5.0 k Ω)	SR		0.8	_	_	0.8	_	V/µs

^{*}T_{low} = -55°C for MC1776 0°C for MC1776C

 $T_{high} = +125^{\circ}C$ for MC1776 +70°C for MC1776C

TYPICAL CHARACTERISTICS

(TA = +25°C unless otherwise noted.)

FIGURE 1 - SET CURRENT versus SET RESISTOR

FIGURE 2 -- POSITIVE STANDBY SUPPLY
CURRENT versus SET CURRENT

FIGURE 3 - OPEN-LOOP GAIN versus SET CURRENT

FIGURE 4 - INPUT BIAS CURRENT versus SET CURRENT

FIGURE 5 - INPUT BIAS CURRENT

FIGURE 6 - GAIN-BANDWIDTH PRODUCT (GBW)

TYPICAL CHARACTERISTICS (continued)

(TA = +25°C unless otherwise noted.)

APPLICATIONS INFORMATION

FIGURE 13 - WIEN BRIDGE OSCILLATOR

FIGURE 14 - MULTIPLE FEEDBACK BANDPASS FILTER

Q = quality factor

Choose a value for C, then

R5 = -- $\pi f_0 C$

 $R1 = \frac{R5}{2A (f_0)}$

R2 = R1,R5 402 R1-R5

To obtain less than 10% error from the operational amplifier:

 $\frac{\alpha_0 \, f_0}{\alpha_0} \leq 0.1$ GBW

where fo and GBW are expressed in Hz. GBW is available from Figure 6 as a function of Set Current, I set.

FIGURE 15 - MULTIPLE FEEDBACK BANDPASS FILTER (1.0 kHz)

FIGURE 16 - GATED AMPLIFIER

FIGURE 17 - HIGH INPUT IMPEDANCE AMPLIFIER

MC3301 LM2900 MC3401 LM3900

Specifications and Applications Information

QUAD SINGLE-SUPPLY OPERATIONAL AMPLIFIER

These internally compensated Norton operational amplifiers are designed specifically for single positive power supply applications found in industrial control systems and automotive electronics. Each device contains four independent amplifiers — making it ideal for applications such as active filters, multi-channel amplifiers, tachometers, oscillators and other similar usages.

- Single-Supply Operation
- Internally Compensated
- Wide Unity Gain Bandwidth: 4.0 MHz Typical
- Low Input Bias Current: 50 nA Typical
- High Open-Loop Gain: 1000 V/V Minimum

ullet Large Output Voltage Swing: (V_{CC} - 1) V_{p-p}

MAXIMUM RATINGS

Rating	Symbol	LM2900/ LM3900	MC3301	MC3401	Unit
Supply Voltage	Vcc	+ 32	+ 28	+ 18	٧
Input Currents (Iin + or Iin -)	lin	5.0	5.0	5.0	mA
Output Current	lo	50	50	50	mA
Power Dissipation (T _A = +25°C) Derate above T _A = +25°C	P _D 1/R ₀ JA	625 5.0	625 5.0	625 5.0	mW mW/°C
Operating Ambient Temperature Range LM2900	TA	-40 to	-40 to +85	0 to +70	°C '
LM3900		+85 0 to +70	_	_	
Storage Temperature Range	T _{stg}	- 65 to + 150	- 65 to + 150	- 65 to + 150	°C

QUAD OPERATIONAL AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION

Device	Temperature Range	Package
LM3900N MC3401P	0°C to +70°C	Plastic DIP
LM2900N MC3301P	-40°C to +85°C	

MC3301, MC3401, LM2900, LM3900

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}$, $T_{\Delta} = +25 ^{\circ}\text{C}$ unless otherwise noted)

		LM2900 LM3900			N	1C330)1	MC3401			ı			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Open-Loop Voltage Gain $ f = 100 \text{ Hz}, R_L = 5.0 \text{ k} $ $ T_A = T_{low} \text{ to } T_{high} \text{ (Notes 1, 2)} $	AVOL	1.2	2.0	_	1.2	2.0	_	1.2	2.0	_	1.2 0.8	2.0	_	V/m\
Input Resistance (Inverting Input)	rį	_	1.0	_	-	1.0	_	-	1.0	_	0.1	1.0	_	МΩ
Output Resistance	ro	_	8.0	—	1	8.0	_	_	8.0	_	_	8.0	_	kΩ
Input Bias Current (Inverting Input) $T_{A} = T_{low} \text{ to T}_{high} \text{ (Note 1)}$	lВ	_	50 —	200 —	1 1	50 —	200 —	_	50 —	300	_	50 —	300 500	nA
Slew Rate (C _L = 100 pF, R _L = 2.0 k) Positive Output Swing Negative Output Swing	SR	_	0.5 20	_	_	0.5 20	_	_	0.5 20	_ _	_	0.5 20	_	V/μs
Unity Gain Bandwidth	BW	_	4.0	_	_	4.0	_	_	4.0	_	_	4.0	_	MH
Output Voltage Swing (Note 7) $ \begin{array}{ll} V_{CC} = +15 \text{ V, R}_L = 2.0 \text{ k} \\ V_{Out} \text{ High } (l_{in}^- = 0, l_{in}^+ = 0) \\ V_{out} \text{ Low } (l_{in}^- = 10 \ \mu\text{A, } l_{in}^+ = 0) \\ V_{CC} = \text{Maximum Rating, R}_L = \infty \\ V_{Out} \text{ High } (l_{in}^- = 0, l_{in}^+ = 0) \end{array} $	V _{OH} V _{OL}	13.5 —	14.2 0.03 29.5	0.2	13.5 —	14.2 0.03 29.5	0.2	13.5 —	14.2 0.03 25.5	0.2	13.5 —	14.2 0.03 15.5	0.2	٧
Output Current Source Sink (Note 3) Low Level Output Current $l_{in}^{-} = 5.0 \ \mu\text{A, V}_{OL} = 1.0 \text{ V}$	Isource Isink IOL	6.0 0.5 —	10 0.87 5.0	_	6.0 0.5 —	10 0.87 5.0	=	5.0 0.5 —	10 0.87 5.0	_	5.0 0.5 —	10 0.87 5.0		mA
Supply Current (All Four Amplifiers) Noninverting Inputs Open Noninverting Inputs Grounded	I _{DO}	_	6.9 7.8	10 14	_ _	6.9 7.8	10 14	_	6.9 7.8	10 14	 - -	6.9 7.8	10 14	mA
Power Supply Rejection (f = 100 Hz)	PSRR	_	55		_	55	_	_	55	_	_	55	_	dB
Mirror Gain (TA = Tlow to Thigh; Notes 1, 4) $I_{in}^+ = 20~\mu\text{A}$ $I_{in}^+ = 200~\mu\text{A}$	Ai	0.90 0.90		1.1 1.1	0.90 0.90		1.1 1.1	0.90 0.90		1.1 1.1	0.90 0.90		1.1 1.0	μΑ
Δ Mirror Gain (TA = Tlow to Thigh; Notes 1, 4) 20 μ A \leq Iin $^+$ \leq 200 μ A	ΔAi	_	2.0	5.0	_	2.0	5.0	_	2.0	5.0	_	2.0	5.0	%
Mirror Current ($T_A = T_{low}$ to T_{high} ; Note 1)		_	10	500	_	10	500	_	10	500	_	10	500	μΑ
Negative Input Current (Note 6)			1.0	$\perp =$		1.0	_		1.0	_	–	1.0		m/

NOTES:

- 2. Open-loop voltage gain is defined as voltage gain from the inverting input to the output.
- 3. Sink current is specified for linear operation. When the device is used as a comparator (non-linear operation) where the inverting input is overdriven, the sink current (low level output current) capability is typically 5.0 mA.
- 4. This specification indicates the current gain of the current mirror which is used as the noninverting input.
- 5. Input VBE match between the noninverting and inverting inputs occurs for a mirror current (noninverting input current) of approximately 10 µA.
- 6. Clamp transistors are included to prevent the input voltages from swinging below ground more than approximately -0.3 volts. The negative input currents that may result from large signal overdrive with capacitive input coupling must be limited externally to values of approximately 1.0 mA. Negative input currents in excess of 4.0 mA will cause the output to drop to a low voltage. These values apply for any one of the input terminals. If more than one of the input terminals are simultaneously driven negative, maximum currents are reduced. Common-mode biasing can be used to prevent negative input voltages.
- 7. When used as a noninverting amplifier, the minimum output voltage is the VBE of the inverting input transistor.

^{1.} $T_{low} = -40^{\circ}C$ for LM2900, MC3301

 $T_{high} = +85^{\circ}C \text{ for LM2900, MC3301}$

^{= 0°}C for LM3900, MC3401

^{= +70°}C ffor LM3900, MC3401

TYPICAL CHARACTERISTICS

(V_{CC} = +15 Vdc, R_L = 5.0 k Ω , T_A = +25°C [each amplifier] unless otherwise noted.)

FIGURE 2 — OPEN-LOOP VOLTAGE GAIN

FIGURE 3 — OUTPUT RESISTANCE versus FREQUENCY

FIGURE 4 — SUPPLY CURRENT versus SUPPLY VOLTAGE

FIGURE 5 — LINEAR SOURCE CURRENT versus SUPPLY VOLTAGE

FIGURE 6 - LINEAR SINK CURRENT versus SUPPLY VOLTAGE

MC3301, MC3401, LM2900, LM3900

OPERATION AND APPLICATIONS

BASIC AMPLIFIER

The basic amplifier is the common emitter stage shown in Figures 7 and 8. The active load I₁ is buffered from the input transistor by a PNP transistor, Q4, and from the output by an NPN transistor, Q2. Q2 is biased Class A by the current source I₂. The magnitude of I₂ (specified I_{sink}) is a limiting factor in capacitively cou-

pled linear operation at the output. The sink current of the device can be forced to exceed the specified level by keeping the output de voltage above ≈ 1.0 volt resulting in an increase in the distortion appearing at the output. Closed-loop stability is maintained by an on-the-chip 3-pF capacitor shown in Figure 10 on the following page. No external compensation is required.

FIGURE 7 -- BLOCK DIAGRAM

A noninverting input is obtained by adding a current mirror as shown in Figure 9. Essentially all current which enters the noninverting input, l_{in}^+ , flows through the diode CR1. The voltage drop across CR1 corresponds to this input current magnitude and this same voltage is applied to a matched device, Q3. Thus Q3 is biased to conduct an emitter current equal to l_{in}^+ . Since the alpha current gain of Q3 \approx 1, its collector current is

approximately equal to $l_{\rm in}^+$ also. In operation this current flows through an external feedback resistor which generates the output voltage signal. For inverting applications, the noninverting input is often used to set the dc quiescent level at the output. Techniques for doing this are discussed in the "Normal Design Procedure" section.

FIGURE 8 - A BASIC GAIN STAGE

FIGURE 9 — OBTAINING A NONINVERTING INPUT

OPERATION AND APPLICATIONS (continued)

BIASING CIRCUITRY

The circuitry common to all four amplifiers is shown in Figure 11. The purpose of this circuitry is to provide biasing voltage for the PNP and NPN current sources used in the amplifiers.

The voltage drops across diodes CR2, CR3 and CR4 are used as references. The voltage across resistor R1 is the sum of the drops across CR4 and CR3 minus the VBE of Q8. The PNP current sources (Q5, etc.) are set to the magnitude $V_{\mbox{\footnotesize{BE}}}/R1$ by transistor Q6. Transistor

Q7 reduces base current loading. The voltage across resistor R2 is the sum of the voltage drops across CR2, CR3 and CR4, minus the VBE drops of transistor Q9 and diode CR5 thus the current set is established by CR5 in all the NPN current sources (Q10, etc.). This technique results in current source magnitudes which are relatively independent of the supply voltage. Q11 (Figure 7) provides circuit protection from signals that are negative with respect to ground.

FIGURE 10 — A BASIC OPERATIONAL AMPLIFIER

FIGURE 11 - BIASING CIRCUITRY

NORMAL DESIGN PROCEDURE

1. Output Q-Point Biasing

- A. A number of techniques may be devised to bias the quiescent output voltage to an acceptable level. However, in terms of loop gain considerations it is usually desirable to use the noninverting input to effect the biasing; as shown in Figures 12 and 13 (see the first page of this specification). The high impedance of the collector of the noninverting "current mirror" transistor helps to achieve the maximum loop gain for any particular configuration. It is desirable that the noninverting input current be in the 10 μA to 200 μA range.
- B. V_{CC} Reference Voltage (see Figures 12 and 13) The noninverting input is normally returned to the V_{CC} voltage (which should be well filtered) through a resistor, R_r, allowing the input current, l_{in}+, to be within the range of 10 µA to 200 µA.

- Choosing the feedback resistor, R_f , to be equal to $\frac{1}{2}R_r$ will now bias the amplifier output dc level to approximately $\frac{VCC}{2}$. This allows the maximum dynamic range of the output voltage.
- C. Reference Voltage other than V_{CC} (see Figure 14) The biasing resistor R_r may be returned to a voltage (V_r) other than V_{CC} . By setting $R_f = R_{r}$, (still keeping I_{in}^+ between 10 μ A and 200 μ A) the output dc level will be equal to V_r . The expression for determining V_{Odc} is:

$$V_{\mbox{Odc}} = \frac{(\mbox{A}_i)(\mbox{V}_r)(\mbox{R}_f)}{\mbox{R}_r} + \left(1 \, - \, \frac{\mbox{R}_f}{\mbox{R}_r} \, \mbox{A}_i\right) \, \phi \label{eq:Vodc}$$

where ϕ is the V_{BE} drop of the input transistors (approximately 0.6 Vdc @ +25°C and assumed equal). A_i is the current mirror gain.

MC3301, MC3401, LM2900, LM3900

FIGURE 12 — INVERTING AMPLIFIER

FIGURE 13 — NONINVERTING AMPLIFIER

2. Gain Determination

A. Inverting Amplifier

The amplifier is normally used in the inverting mode. The input may be capacitively coupled to avoid upsetting the dc bias and the output is normally capacitively coupled to eliminate the dc voltage across the load. Note that when the output is capacitively coupled to the load, the value of I_{sink} becomes a limitation with respect to the load driving capabilities of the device. The limitation is less severe if the device is direct coupled. In this configuration, the ac gain is determined by the ratio of R_f to R_i , in the same manner as for a conventional operational amplifier:

$$A_V = \frac{R}{R}$$

The lower corner frequency is determined by the coupling capacitors to the input and load resistors. The upper corner frequency will usually be determined by the amplifier internal compensation. The amplifier unity gain bandwidth is typically 4.0 MHz and with the gain roll-off at 20 dB per decade, bandwidth will typically be 400 kHz with 20 dB of closed-loop gain or 40 kHz with 40 dB of closed-loop gain. The exception to this occurs at low gains where the input resistor selected is large. The pole formed by the amplifier input capacitance, stray capacitance and the input resistor may occur before the closed-loop gain intercepts the open-loop response curve. The inverting input capacity is typically 3.0 pF.

FIGURE 14 — INVERTING AMPLIFIER WITH ARBITRARY REFERENCE

FIGURE 15 — INVERTING AMPLIFIER WITH $A_V = 100 \text{ AND } V_r = V_{CC}$

B. Noninverting Amplifier

These devices may be used in the noninverting mode (see Figure 13). The amplifier gain in this configuration is subject to the current mirror gain. In addition, the resistance of the input diode must be included in the value of the input resistor. This resistance is approximately $\frac{26}{{{l_{in}}^{+}}}$ ohms, where ${{l_{in}}^{+}}$ is input current in milliamperes. The noninverting ac gain expression is given by:

$$A_{V} = \frac{(R_{f})(A_{j})}{R_{i} + \frac{26}{I_{in} + (mA)}}$$

The bandwidth of the noninverting configuration for a given R_f value is essentially independent of the gain chosen. For $R_f=510~\text{k}\Omega$ the bandwidth will be in excess of 200 kHz for noninverting gains of 1, 10, or 100. This is a result of the loop gain remaining constant for these gains since the input resistor is effectively isolated from the feedback loop.

TYPICAL APPLICATIONS

FIGURE 16 — TACHOMETER CIRCUIT

FIGURE 17 — VOLTAGE REGULATOR

For positive T_C zeners R2 and R1 can be selected to give T_C output.

FIGURE 18 — LOGIC "OR" GATE

TYPICAL APPLICATIONS (continued)

FIGURE 19 — LOGIC "NAND" GATE (Large Fan-In)

FIGURE 20 - LOGIC "NOR" GATE

FIGURE 21 — R-S FLIP-FLOP

FIGURE 22 — ASTABLE MULTIVIBRATOR

FIGURE 23 — POSITIVE-EDGE DIFFERENTIATOR

FIGURE 24 — NEGATIVE-EDGE DIFFERENTIATOR

FIGURE 25 — AMPLIFIER AND DRIVER FOR A 50-OHM LINE

FIGURE 26 — BASIC BANDPASS AND NOTCH FILTER

FIGURE 27 — BANDPASS AND NOTCH FILTER

TYPICAL APPLICATIONS (continued)

FIGURE 28 — VOLTAGE REGULATOR

V_O = V_Z + 0.6 Vdc NOTE 1: R is used to bias the zener. NOTE 2: If the Zener TC is positive, and equal in magnitude to the negative TC of the input to the operational amplifier (≈2.0 mV/C), the output is zero-TC. A 7.0 Volt Zener will give approximately zero-TC.

FIGURE 29 — ZERO CROSSING DETECTOR

MC3403 MC3503 MC3303

Specifications and Applications Information

QUAD LOW POWER OPERATIONAL AMPLIFIERS

The MC3503 is a low-cost, quad operational amplifier with true differential inputs. The device has electrical characteristics similar to the popular MC1741. However, the MC3503 has several distinct advantages over standard operational amplifier types in single supply applications. The quad amplifier can operate at supply voltages as low as 3.0 Volts or as high as 36 Volts with quiescent currents about one third of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.

- Short Circuit Protected Outputs
- Class AB Output Stage for Minimal Crossover Distortion
- True Differential Input Stage
- Single Supply Operation: 3.0 to 36 Volts
- Split Supply Operation: ±1.5 to ±18 Volts
- Low Input Bias Currents: 500 nA Max
- Four Amplifiers Per Package
- Internally Compensated
- Similar Performance to Popular MC1741
- Industry Standard Pinouts

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltages			Vdc
Single Supply	· V _{CC}	36	
Split Supplies	Vcc	+18	
	VEE	-18	
Input Differential Voltage Range (1)	VIDR	±36	Vdc
Input Common Mode Voltage Range (1) (2)	VICR	±18	Vdc
Storage Temperature Range	T _{stg}		°c
Ceramic Package		-65 to +150	
Plastic Package		-55 to +125	
Operating Ambient Temperature Range	TA		°C
MC3503	l i	-55 to +125	
MC3403	ł	0 to +70	
MC3303		-40 to +85	
Junction Temperature	TJ		°C
Ceramic Package	'	175	
Plastic Package		150	

(1) Split Power Supplies.

QUAD DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION

Type	Temperature Range	Package
MC3303L	-40°C to +85°C	Ceramic DIP
MC3303P	-40°C to +85°C	Plastic DIP
MC3403L	0°C to +70°C	Ceramic DIP
MC3403P	0°C to +70°C	Plastic DIP
MC3503L	-55°C to +125°C	Ceramic DIP

⁽²⁾ For Supply Voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage.

MC3403, MC3503, MC3303

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V for MC3503, MC3403; V_{CC} = +14 V, V_{EE} = Gnd for MCC3303. T_A = 25 o C unless otherwise noted.)

			MC3503			MC3403	103 MC3303				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V10	-	2.0	5.0	-	2.0	10	_	2.0	8.0	mV
TA = Thigh to Tlow (1)	1	-	-	6.0	-		12	_	-	10	
Input Offset Current	110		30	50	-	30	50	_	30	75	nA
TA = Thigh to Tlow		-	-	200	-	-	200	_	_	250	
Large Signal Open-Loop Voltage Gain	AVOL										V/mV
$V_0 = \pm 10 \text{ V}, R_L = 2.0 \text{ k}\Omega,$		50	200	-	20	200	-	20	200	-	
TA = Thigh to Tlow		25	_		15	-	-	15	-		
Input Bias Current	IВ	-	-200	-500	-	-200	-500	-	-200	-500	nΑ
TA = Thigh to Tlow			-300	-1500	-	-	-800			-1000	
Output Impedance	z _o	-	75	-	-	75	-	-	75	- 1	Ω
f = 20 Hz											110
Input Impedance	zi	0.3	1.0	-	0.3	1.0	-	0.3	1.0		MΩ
f = 20 Hz	+										V
Output Voltage Range R ₁ = 10 kΩ	VOR	±12	±13.5		±12	±13.5		+12	+12.5	_	V
R ₁ = 2.0 kΩ		±10	±13.5	_	±10	±13.5	_	+10	+12.5	_	
R _L = 2.0 kΩ, T _A = T _{high} to T _{low}		±10		-	±10	_	_	+10	1	_	
Input Common-Mode Voltage Range	VICE		+13.5 V -VEE		+13 V-VFF	+13.5V-VEF	_		+12.5V-VEE		V
Common-Mode Rejection Ratio	CMRR	70	90		70	90	-	70	90		dB
R _S ≤ 10 kΩ	Civilian	/	30		l , , ,	30	ĺ	1 ~	50		
Power Supply Current (V _O = 0)	ICC/EE	_	2.8	4.0		2.8	7.0	t	2.8	7.0	mA
R _L = ∞	1.00,422	ŀ	2.0								
Individual Output Short-Circuit Current (2)	los:	±10	±30	±45	±10	±20	±45	±10	±30	±45	mA
Positive Power Supply Rejection Ratio	PSRR+	_	30	150	_	30	150	<u> </u>	30	150	μV/V
Negative Power Supply Rejection Ratio	PSRR-		30	150	_	30	150	-	-		µV/V
Average Temperature Coefficient of Input	△I10/△T		50	-		50	-		50		pA/°C
Offset Current	2110/21	_	50	_	_	30	_	_	30		pA, c
TA = Thigh to Tlow								ŀ			
Average Temperature Coefficient of Input	△V ₁₀ /△T		10		_	10		 	10	-	μV/°C
Offset Voltage	1 10	1	1		1		l	1			-
TA = Thigh to Tlow								l			
Power Bandwidth	BWp	_	9.0	_		9.0	-	-	9.0		kHz
$A_V = 1$, $R_L = 2.0 \text{ k}\Omega$, $V_O = 20 \text{ V}(p \cdot p)$,	1	l						1			
THD = 5%								1			
Small-Signal Bandwidth	BW	_	1.0	-	-	1.0	_	-	1.0		MHz
$A_V = 1$, $R_L = 10 k\Omega$, $V_0 = 50 mV$								i			
Slew Rate	SR	_	0.6		-	0.6	_	-	0.6	-	V/µs
A _V = 1, V _i = ~10 V to +10 V		l			l						
Rise Time	tTLH	_	0.35	-	-	0.35	_	-	0.35	-	μs
$A_V = 1$, $R_L = 10 \text{ k}\Omega$, $V_0 = 50 \text{ mV}$				ŀ		}		1			
Fall Time	THL		0.35	-		0.35	-	-	0.35	-	μς
$A_V = 1$, $R_L = 10 \text{ k}\Omega$, $V_0 = 50 \text{ mV}$	1		l					1	l		
Overshoot	os	-	20	-	-	20	-	-	20	-	%
$A_V = 1$, $R_L = 10 \text{ k}\Omega$, $V_0 = 50 \text{ mV}$											
Phase Margin	φm	-	60	-	-	60	-	-	60	-	Degrees
A _V = 1, R _L = 2.0 kΩ, C _L = 200 pF								1	ļ		
Crossover Distortion	-	-	1.0	-	-	1.0	-	-	1.0	-	%
(V _{in} = 30 mVp-p, V _{out} = 2.0 Vp-p,			1	1							l
f = 10 kHz)		L	L	L	L	L	L	1	L		L

⁽¹⁾ T_{high} = 125°C for MC3503, 70°C for MC3403, 85°C for MC3303 T_{low} = -55°C for MC3503, 0°C for MC3403, -40°C for MC3303

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V, V_{EE} = Gnd, T_A = 25°C unless otherwise noted.)

		MC3503				MC3403			MC3303		1
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	VIO	-	2.0	5.0	_	2.0	10	-	-	10	mV
Input Offset Current	10	_	30	50	_	30	50	-	-	75	nA
Input Bias Current	IB	-	-200	-500		-200	-500	-		-500	nA
Large-Signal Open-Loop Voltage Gain $R_L = 2.0 \text{ k}\Omega$	AVOL	10	200	-	10	200	-	10	200	_	V/mV
Power Supply Rejection Ratio	PSRR	-	_	150	-	-	150	-	-	150	μV/V
Output Voltage Range (3) R _L = 10 kΩ, V _{CC} = 5.0 V R _L = 10 kΩ, 5.0 V ≤ V _{CC} ≤ 30 V	Vor	3.3 V _{CC} – 2.0	3.5 V _{CC} – 1.7	-	3.3 V _{CC} -2.0	3.5 V _{CC} – 1.7	-	3.3 V _{CC} - 2.0	3.5 V _{CC} – 1.7	-	Vp-p
Power Supply Current	¹ cc	_	2.5	4.0	-	2.5	7.0	-	2.5	7.0	mA
Channel Separation f = 1.0 kHz to 20 kHz (Input Referenced)	-	-	-120	-	-	-120	_	-	-120	-	dB

⁽²⁾ Not to exceed maximum package power dissipation.
(3) Output will swing to ground

The MC3503/3403/3303 is made using four internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q24 and Q22 with input buffer transistors Q25 and Q21 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and trans-conductance reduction functions. By reducing the trans-conductance a smaller compensation capacitor (only 5 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q24 and Q22. Another feature of this input stage is that the input common-mode range can include

CIRCUIT DESCRIPTION

the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage. The output stage is unique because it allows the output to swing to ground in single supply operation and yet does not exhibit any crossover distortion in split supply operation. This is possible because class AB operation is utilized.

Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

TYPICAL PERFORMANCE CURVES

APPLICATIONS INFORMATION

FIGURE 7 - VOLTAGE REFERENCE

FIGURE 8 --- WIEN BRIDGE OSCILLATOR

FIGURE 9 - HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER

FIGURE 10 - COMPARATOR WITH HYSTERESIS

T_N = Passband Notch Gain

 $\text{R2} = 1.6 \, \text{M}\Omega$

 $R3 = 1.6 M\Omega$

FIGURE 12 - FUNCTION GENERATOR

FIGURE 13 - MULTIPLE FEEDBACK BANDPASS FILTER

Given f_0 = Center Frequency $A(f_0)$ = Gain at Center Frequency

Choose Value f_o, C

$$R3 = \frac{Q}{\pi f_0 C}$$

$$R1 = \frac{R3}{2 A(f_0)}$$

$$R2 = \frac{R1 R5}{4Q^2 R1 - R5}$$

For less than 10% error from operational amplifier

$$\frac{Q_{o} f_{o}}{BW}$$
 < 0.1 Where f_{o} and BW are expressed in Hz.

If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

MC3405 MC3505

DUAL OPERATIONAL AMPLIFIER AND DUAL COMPARATOR

The MC3405/3505 contains two differential-input operational amplifiers and two comparators, each set capable of single supply operation. This operational amplifier-comparator circuit fulfills its applications as a general purpose product for automotive and consumer circuits as well as an industrial building block.

The MC3405 is specified over the commercial operating temperature range of 0 to $+70^{\circ}$ C, while the MC3505 is specified over the military operating range of -55 to $+125^{\circ}$ C.

- Operational Amplifiers Equivalent in Performance to MC3403/3503
- Comparators Similar in Performance to LM339/139
- Single Supply Operation: 3.0 to 36 Volts
- Split Supply Operation: ±1.5 to ±18 Volts
- Low Supply Current Drain
- Operational Amplifiers Are Internally Frequency Compensated
- Comparators TTL and CMOS Compatible

SINGLE SUPPLY 3.0 V to 36 V V VCC

DUAL OPERATIONAL AMPLIFIER AND DUAL VOLTAGE COMPARATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

L SUFFIX CERAMIC PACKAGE CASE 632-02 MO-001AA

P SUFFIX PLASTIC PACKAGE CASE 646-05

(MC3405 only)

ORDERING INFORMATION

Device	Temperature Range	Package
MC3405L	0 to +70°C	Ceramic DIP
MC3405P	0 to +70°C	Plastic DIP
MC3505L	-55 to +125°C	Ceramic DIP

MC3405, MC3505

OPERATIONAL AMPLIFIER SECTION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage—Single Supply Split Supplies	V _{CC} , V _{EE}	36 ± 18	Vdc
Input Differential Voltage Range	V _{IDR}	± 36	Vdc
Input Common Mode Voltage Range	V _{ICR}	± 18	Vdc
Operating Ambient Temperature Range—MC3505 MC3405	ТА	-55 to +125 0 to +70	°C
Storage Temperature Range—Ceramic Package Plastic Package	T _{stg}	-65 to +150 -55 to +125	°C
Operating Junction Temperature Range—Ceramic Package Plastic Package	TJ	175 150	°C

ELECTRICAL CHARACTERISTICS (VCC = 5.0 V. VEE = Gnd. TA = 25°C unless otherwise noted)

			MC3505			MC3405		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	_	2.0	5.0		2.0	10	mV
Input Offset Current	110	_	30	50	_	30	50	nΑ
Input Bias Current	IB	_	-200	-500	-	-200	-500	nA
Large-Signal Open-Loop Voltage Gain $(R_L = 2.0 \text{ k}\Omega)$	AVOL	20	200		20	200	_	V/mV
Power Supply Rejection Ratio	PSRR	_	-	150	_	-	150	μV/V
Output Voltage Range (Note 1) $ (R_L = 10 \text{ k}\Omega, \text{V}_{CC} = 5.0 \text{ V}) \\ (R_L = 10 \text{ k}\Omega, 5.0 \text{ V} \leqslant \text{V}_{CC} \leqslant 30 \text{ V}) $	VOR	3.3 V _{CC} -2.0	3.5 V _{CC} – 1.7	-	3.3 V _{CC} -2.0	3.5 V _{CC} – 1.7	-	Vp-p
Power Supply Current (Notes 2 and 3)	¹ cc	_	2.5	4.0		2.5	7.0	mA
Channel Separation f = 1.0 kHz to 20 kHz (Input Referenced)		_	-120	_		-120	-	dB

	· LL	. , ,						
Input Offset Voltage	V _{IO}	-	2.0	5.0		2.0	10	mV
(T _A = T _{low} to T _{high}) (Note 4)		-	-	6.0	_		12	
Average Temperature Coefficient of Input Offset Voltage	ΔV _{IO} /ΔΤ	-	15	-	-	15	-	μV/ ^O C
Input Offset Current	110	_		50		_	50	nΑ
(T _A = T _{low} to T _{high}) (Note 4)		_	-	200	-	-	200	
Input Bias Current	IIB	_	-200	-500		-200	-500	nΑ
(T _A = T _{low} to T _{high} (Note 4)		-	-300	-1500	-	_	-800	
Input Common Mode Voltage Range	VICR	+13 -V _{EE}		_	+13-V _{EE}	-		Vdc
Large Signal Open Loop Voltage Gain	AVOL							V/mV
$(V_0 = \pm 10 \text{ V}, R_L = 2.0 \text{ k}\Omega)$		50	200	-	20	200	-	
$(T_A = T_{low} \text{ to } T_{high}) \text{ (Note 4)}$		25	100	_	15	100	_	
Common Mode Rejection Ratio	CMRR	70	90	_	70	90	_	dB
Power Supply Rejection Ratio	PSRR	_	30	150	_	30	150	μV/V
Output Voltage	V _O							Vdc
$(R_1 = 10 k\Omega)$		± 12	± 13.5	-	±12	± 13.5	l – .	
$(R_L = 2.0 \text{ k}\Omega)$		± 10	± 13	-	± 10	± 13	-	
$(R_L = 2.0 \text{ k}\Omega, T_A = T_{low} \text{ to } T_{high})$ (Note 4)		± 10	-	-	± 10	_	_	
Output Short-Circuit Current	los	± 10	± 30	± 45	± 10	± 20	± 45	mA
Power Supply Current (Notes 2 and 3)	ICC, IEE	_	2.8	4.0	_	2.8	7.0	mA
Phase Margin	φm	_	60	_	_	60	_	Degrees
Small-Signal Bandwidth $(A_V = 1, R_L = 10 \text{ k}\Omega, V_O = 50 \text{ mV})$	вW	_	1.0	_	-	1.0	-	MHz
Power Bandwidth $(A_V=1,R_L=2.0~\text{k}\Omega,\text{V}_O=20~\text{V (p-p)},\\ \text{THD}=5\%)$	BWp	_	9.0	-		9.0	-	kHz
Rise Time/Fall Time	^t TLH, ^t THL	-	0.35	_	-	0.35		μs
Overshoot (AV = 1, RL = 10 k Ω , VO = 50 mV)	os	_	20	_	_	20	_	%
Slew Rate	SR	_	0.6	_	_	0.6	I -	V/µs

NOTES: 1. Output will swing to ground
2. Not to exceed maximum package power dissipation.
3. For Operational Amplifier and Comparator.

^{4.} $T_{low} = -55^{\circ}C$ for MC3505 $T_{high} = +125^{\circ}C$ for MC3505 $= +70^{\circ}C$ for MC3405

COMPARATOR SECTION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage—Single Supply Split Supplies	V _{CC} , V _{EE}	36 ± 18	Vdc
Input Differential Voltage Range	V _{IDR}	±36	Vdc
Input Common Mode Voltage Range	VICR	-0.3 to +36	Vdc
Sink Current	l _{sink}	20	mA
Operating Ambient Temperature Range—MC3505 MC3405	TA	-55 to +125 0 to +70	°C
Storage Temperature Range—Ceramic Package Plastic Package	T _{stg}	-65 to +150 -55 to +125	°C
Operating Junction Temperature Range—Ceramic Package Plastic Package	Тл	175 150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V, V_{EE} = Gnd, T_{A} = 25°C unless otherwise noted)

			MC3505			MC3405	i .	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	_	2.0	5.0 9.0	_	2.0	10 12	mV
(T _A = T _{low} to T _{high}) (Notes 1 and 2) Average Temperature Coefficient of Input Offset Voltage	ΔV _{ΙΟ} /ΔΤ		15	9.0	_	15	-	μV/ ^O C
Input Offset Current (T _A = T _{low} to T _{high}) (Note 1)	10	-	50 	75 150	_	50 —	100 200	nA
Input Bias Current (T _A = T _{low} to T _{high}) (Note 1)	IIB	_	-125 -	-500 -1500	_	-125 -	-500 -800	nΑ
Input Common Mode Voltage Range (T _A = T _{low} to T _{high}) (Note 1)	VICR	0	V _{CC} -1.5 V _{CC} -1.7	V _{CC} -1.7 V _{CC} -2.0	0 0	V _{CC} -1.5 V _{CC} -1.7	V _{CC} -1.7 V _{CC} -2.0	Vp-p
Input Differential Voltage (All V _{in} ≥ 0 Vdc)	VID	_	-	36	_		36	V
Large-Signal Open-Loop Voltage Gain (R _L = 15 kΩ)	Avol	-	200	-	_	200	_	V/mV
Output Sink Current $(V_{in}(-) \ge 1.0 \text{ Vdc}, V_{in}(+) = 0, V_{O} \le 1.5 \text{ V})$	l _{sink}	6.0	16	-	6.0	16	-	mA
Low Level Output Voltage (V _{in} (+) = 0 V, V _{in} (-) = 1.0 V, I _{sink} = 4.0 mA)	VOL	_	350	500	_	350	500	mV
$(T_A = T_{low} \text{ to } T_{high}) \text{ (Note 1)}$		_	_	700	_	_	700	
Output Leakage Current (V _{in} (+) ≥ 1.0 Vdc, V _{in} (-) = 0, V _O = 5.0 Vdc)	lor		0.1	1.0		0.1	1.0	μΑ
(T _A = T _{low} to T _{high}) (Note 1)		_	0.1	1.0	_	0.1 0.1	1.0	
Large-Signal Response		_	300	_	_	300		ns
Response Time (Note 3) ($V_{RL} = 5.0 \text{ Vdc}$, $R_L = 5.1 \text{ k}\Omega$)	-	-	1.3	-	_	1.3	-	μs

NOTES: 1. $T_{low} = -55^{\circ}C$ for MC3505 $T_{high} = +125^{\circ}C$ for MC3505 $= 0^{\circ}C$ for MC3405 $= +70^{\circ}C$ for MC3405

^{2.} $V_0 \cong 1.4 \text{ V}$, R_S = 0 Ω with V_{CC} from 5.0 Vdc to 30 Vdc, and over the input common mode range 0 to V_{CC} – 1.7 V.

^{3.} The response time specified is for a 100 mV input step with 5.0 mV overdrive. For larger signals 300 ns is typical.

MOTOROLA LINEAR/INTERFACE DEVICES

CIRCUIT SCHEMATIC (1/2 OF CIRCUIT SHOWN)

OPERATIONAL AMPLIFIER SECTION TYPICAL PERFORMANCE CURVES

COMPARATOR SECTION TYPICAL PERFORMANCE CURVES

APPLICATIONS INFORMATION

FIGURE 11 – PULSE WIDTH MODULATOR SCHEMATIC AND WAVEFORMS

VEE
$$V_{TH} = \frac{1}{2}V_{S}(1 + R2/R1) + V_{EE} \qquad V_{S} = V_{CC} - V_{EE}$$

$$V_{TL} = \frac{1}{2}V_{S}(1 - R2/R1) + V_{EE}$$
Oscillator Frequency
$$f = \frac{R1}{4R_{F}CR2}$$

 $P.W. = \left(\frac{1}{f}\right) \left(\frac{v_C - V_{TL}}{V_{TH} - V_{TL}}\right) \quad \text{When: } V_{TL} < V_C < V_{TH}$ Duty Cycle in %

$$D.C. = \left(\frac{v_C - V_{TL}}{V_{TH} - V_{TL}}\right) (100)$$

FIGURE 12 - WINDOW COMPARATOR 10 k Vcc 13 0 12 10 k 13 Op Amp 1 ₹10 k 10 k Vcc \$ 10 k Comp 1 v_c Adjust vin Op Amp 2

FIGURE 13 - SQUELCH CIRCUIT FOR AM OR FM

Q = Quality Factor

Ao = High Frequency Gain

Gain of Audio Stage

 $R1 = \frac{N_0}{\Omega \omega_0 C (2A_0 + 1)}$

$$V_{IL} = V_{CC} \frac{R3}{R1 + R2 + R3}$$
 $V_{IH} = V_{CC} \frac{R2 + R3}{R1 + R2 + R3}$
Oscillator

If R4 = R5 = R6

 $f = 0.72/R_fC$

As Shown, f = 2.2 kHz

 v_0 Will Oscillate If $V_{IH} < v_i$, or $V_{IL} > v_i$

 v_0 Will Be Low If $V_{IL} < v_i < V_{IH}$

FIGURE 15 - ZERO CROSSING DETECTOR WITH TEMPERATURE SENSOR

FIGURE 16 - LSTTL to CMOS INTERFACE WITH HYSTERESIS

*The same configuration may be used with an Op Amp if the 3 k resistor is removed.

FIGURE 17 - "NOR" GATE

*The same configuration may be used with an Op Amp if the 3 k resistor is removed.

MC3458 MC3558 MC3358

ORDERING INFORMATION

Device	Temperature Range	Package
MC3358P1	-40°C to +85°C	Plastic DIP
MC3458G	0°C to +70°C	Metal Can
MC3458P1	0°C to +70°C	Plastic DIP
MC3458U	0°C to +70°C	Ceramic DIP
MC3558G	-55°C to +125°C	Metal Can
MC3558U	-55°C to +125°C	Ceramic DIP

Specifications and Applications Information

DUAL LOW POWER OPERATIONAL AMPLIFIERS

Utilizing the circuit designs perfected for recently introduced Quad Operational Amplifiers, these dual operational amplifiers feature 1) low power drain, 2) a common mode input voltage range extending to ground/VEE, 3) Single Supply or Split Supply operation and 4) pin outs compatible with the popular MC1558 dual operational amplifier. The MC3558 Series is equivalent to one-half of a MC3503.

These amplifiers have several distinct advantages over standard operational amplifier types in single supply applications. They can operate at supply voltages as low as 3.0 Volts or as high as 36 Volts with quiescent currents about one-fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.

- Short Circuit Protected Outputs
- True Differential Input Stage
- Single Supply Operation: 3.0 to 36 Volts
- Low Input Bias Currents
- Internally Compensated
- Common Mode Range Extends to Negative Supply
- Class AB Output Stage for Minimum Crossover Distortion
- Single and Split Supply Operations Available
- Similar Performance to the Popular MC1558

Rating	Symbol	Value	Unit
Power Supply Voltages			Vdc
Single Supply	Vcc	36	
Split Supplies	VCC	+18	
	VEE	-18	
Input Differential Voltage Range (1)	V _{IDR}	±30	Vdc
Input Common Mode Voltage Range (2)	VICR	±15	Vdc
Input Forward Current (V _I < -0.3 V)	¹ IF	50	mA
Junction Temperature	T.1		°С
Ceramic and Metal Packages		175	
Plastic Package		150	
Storage Temperature Range	T _{stg}		°С
Ceramic and Metal Packages	5	-65 to +150	
Plastic Package		-55 to +125	
Operating Ambient Temper-	TA		°c
ature Range			
MC3558		-55 to +125	
MC3458		0 to +70	

- (1) Split Power Supplies.
- (2) For Supply Voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.

DUAL DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

MC3458, MC3558, MC3358

(For MC3558, MC3458, V_{CC} = +15 V, V_{EE} = -15 V, T_A = 25°C unless otherwise noted.) (For MC3358, V_{CC} = +14 V, V_{EE} = Gnd, ELECTRICAL CHARACTERISTICS T_A = 25°C, unless otherwise noted.)

		MC3558			MC3458			MC3358			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	_	2.0	5.0	-	2.0	10	_	2.0	8.0	m∨
TA = Thigh to Tlow (1)		-	-	6.0		-	12	-	_	10	
Input Offset Current	110	_	30	50	-	30	50	_	30	75	nA
TA = Thigh to Tlow		-	-	200	-	-	200	-	-	250	
Large Signal Open-Loop Voltage Gain	AVOL										V/mV
$V_0 = \pm 10 \text{ V}, R_L = 2.0 \text{ k}\Omega,$		50	200	-	20	200	-	20	200	-	
TA = Thigh to Tlow		25	300	-	15	-	-	15	-	-	
Input Bias Current	11B	-	-200	-500	-	-200	-500	-	-200	-500	nA
TA = Thigh to Tlow		-	-300	-1500		-	-800	_	-	-1000	
Output Impedance f = 20 Hz	z _o	-	75	-	-	75	-	-	75	-	Ω
Input Impedance	Z,	0.3	1.0	-	0.3	1.0	-	0.3	1.0	_	MΩ
f = 20 Hz	, ,										
Output Voltage Range	VOR				<u> </u>						V
R _L = 10 kΩ	011	•12	13 5		:12	± 13.5	-	12	12.5	-	
R _L = 2.0 kΩ		:10	+13	-	:10	±13	-	10	12		
$R_L = 2.0 \text{ k}\Omega$, $T_A = T_{high} \text{ to } T_{low}$		±10		-	:10	-	-	10	-	-	
Input Common-Mode Voltage Range	VICR	+13 V -VEE	+13 5 V - VEE	-	+13 V-VEE	+13.5V-VEE	-	+12 V -VEE	+12.5V-VEE	-	V
Common-Mode Rejection Ratio	CMRR	70	90	-	70	90	-	70	90	-	dB
R _S ≤ 10 kΩ											
Power Supply Current (V _O = 0)	ICC.IEE	-	16	2.2	-	16	3.7	-	16	3.7	mA
RL≝∞		i		l							L
Individual Output Short-Circuit Current (2)	los:	± 10	•30	•45	: 10	+ 20	±45	±10	±30	±45	mA
Positive Power Supply Rejection Ratio	PSRR+		30	150	-	30	150	-	30	150	μV/V
Negative Power Supply Rejection Ratio	PSRR-	-	30	150	_	30	150	-	_	-	μV/V
Average Temperature Coefficient of Input Offset Current	∴l ₁₀ /T	-	50		-	50	-	-	50	-	pA/°C
TA = Thigh to Tlow				ļ							
Average Temperature Coefficient of Input Offset Voltage	V ₁₀ / T	-	10		-	10	***	-	10	-	μV/°C
TA = Thigh to Tlow				İ					l		
Power Bandwidth $AV = 1$, $R_L = 2.0 k\Omega$, $V_0 = 20 V(p \cdot p)$, THD = 5%	BWp	-	9.0	-	-	9.0	-	·	9.0	-	kHz
	014			ļ				ļ	1.0	_	
Small-Signal Bandwidth $A_V = 1$, $R_L = 10 \text{ k}\Omega$, $V_0 = 50 \text{ mV}$	BW	-	1 0	-		1.0	-	-	1.0	_	MHz
Slew Rate	SR	-	0.6		-	0.6	~	-	0.6	-	V/µs
$A_V = 1$, $V_i = -10 \text{ V to } +10 \text{ V}$	1		1		1						
Rise Time $A_V = 1$, $R_L = 10 \text{ k}\Omega$, $V_0 = 50 \text{ mV}$	^t TLH	-	0.35	·	-	0 35	-	-	0.35	-	μς
Fall Time A _V = 1, R _L = 10 kΩ, V _O = 50 mV	THL	-	0.35		-	0.35	-	-	0.35	-	μς
Overshoot $A_V = 1$, $R_L = 10 \text{ k}\Omega$, $V_O = 50 \text{ mV}$	os	-	20	-	-	20	-	-	20	-	%
Phase Margin $A_V = 1$, $R_L = 2.0 \text{ k}\Omega$, $C_L = 200 \text{ pF}$	φm	-	60	-	-	60	-	-	60	-	Degrees
Crossover Distortion (V _{in} = 30 mVp·p, V _{out} = 2.0 Vp·p, f = 10 kHz)	-	-	1.0	-	-	1.0	-		1.0	-	%

⁽¹⁾ T_{high} = 125°C for MC3558, 70°C for MC3458, 85°C for MC3358 T_{low} = -55°C for MC3558, 0°C for MC3458, -40°C for MC3358. **ELECTRICAL CHARACTERISTICS** (V_{CC} = 5.0 V, V_{EE} = Gnd, T_A = 25°C unless otherwise noted.)

	1	MC3558		MC3458			I	MC3358			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	VIO	_	2.0	5.0	-	2.0	10	-	2.0	10	m∨
Input Offset Current	10	-	30	50	-	30	50	-	-	75	nA
Input Bias Current	Iв	-	-200	-500	-	-200	-500	-	_	-500	nA
Large-Signal Open-Loop Voltage Gain R _L = 2.0 kΩ	AVOL	20	200	-	20	200	-	20	200	-	V/mV
Power Supply Rejection Ratio	PSRR	-	_	150	_	_	150	-	-	150	μV/V
Output Voltage Range (3) $R_L = 10 \text{ k}\Omega$, $V_{CC} = 5.0 \text{ V}$ $R_L = 10 \text{ k}\Omega$, $5.0 \text{ V} \leq V_{CC} \leq 30 \text{ V}$	VOR	3.3	3.5 V _{CC} -1.7 V	-	3.3	3.5 V _{CC} -1.7 V	-	3.3	3.5 V _{CC} -1.7 V	-	Vp-p
Power Supply Current	¹cc	-	2.5	4.0	-	2.5	7.0	-	2.5	4.0	mA
Channel Separation f = 1.0 kHz to 20 kHz (Input Referenced)	-	_	-120	-	-	-120	-	-	-120	-	dB

⁽²⁾ Not to exceed maximum package power dissipation.
(3) Output will swing to ground

INVERTER PULSE RESPONSE

20 us/div

CIRCUIT DESCRIPTION

The MC3558 Series is made using two internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q24 and Q22 with input buffer transistors Q25 and Q21 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance a smaller compensation capacitor (only 5 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q24 and Q22. Another feature of this input stage is that the input common-mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.

The output stage is unique because it allows the output to swing to ground in single supply operation and yet does not exhibit any crossover distortion in split supply operation. This is possible because class AB operation is utilized.

Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

TYPICAL PERFORMANCE CURVES

APPLICATIONS INFORMATION

FIGURE 7 - VOLTAGE REFERENCE

FIGURE 8 - WIEN BRIDGE OSCILLATOR

FIGURE 9 - HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER

FIGURE 10 - COMPARATOR WITH HYSTERESIS

APPLICATIONS INFORMATION (continued)

FIGURE 12 - FUNCTION GENERATOR

FIGURE 13 - MULTIPLE FEEDBACK BANDPASS FILTER

Given f_O = Center Frequency
A(f_O) = Gain at Center Frequency

Choose Value fo, C

$$R3 = \frac{C}{\pi f_0 C}$$

$$R1 = \frac{R3}{2 A(f_0)}$$

$$R2 = \frac{R1 R3}{4Q^2 R1 - R3}$$

For less than 10% error from operational amplifier

$$\frac{Q_{o}}{BW} < 0.1$$
 Where f_{o} and BW are expressed in Hz.

If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

MC3476

LOW-COST PROGRAMMABLE OPERATIONAL AMPLIFIER

The MC3476 is a low-cost selection of the popular, industrystandard MC1776 programmable operational amplifier. This extremely versatile operational amplifier features low power consumption and high input impedance. In addition, the guiescent currents within the device may be programmed by the choice of an external resistor value or current source applied to the I_{set} input. This allows the amplifier's characteristics to be optimized for input current and power consumption despite wide variations in operating power supply voltages.

- ±6.0 V to ±18 V Operation
- Wide Programming Range
- Offset Null Capability
- No Frequency Compensation Required
- Low Input Bias Currents
- Short-Circuit Protection

RESISTIVE PROGRAMMING (See Figure 1.)

Typical R _{set} Values						
V _{CC} , V _{EE}	I _{set} = 10 μA	1 _{set} = 15 μA				
±6.0 V	560 kΩ	360 kΩ				
±9.0 V	820 kΩ	560 kΩ				
±12 V	1.0 MΩ	750 kΩ				
±15 V	1.5 M Ω	1.0 MΩ				

R_{set} to NEGATIVE SUPPLY

Typical R _{set} Values							
V _{CC} , V _{EE}	I _{set} = 10 μA	1 _{set} = 15 μA					
±6.0 V ±9.0 V	1.0 MΩ 1.8 MΩ	820 kΩ 1.2 MΩ					
±12 V	2.2 ΜΩ	1.5 ΜΩ					
±15 V	2.7 ΜΩ	2.0 ΜΩ					

ACTIVE PROGRAMMING

FET CURRENT SOURCE

Pins not shown are not connected.

LOW-COST **PROGRAMMABLE OPERATIONAL AMPLIFIER**

SILICON MONOLITHIC INTEGRATED CIRCUIT

P1 SUFFIX PLASTIC PACKAGE CASE 626-04

U SUFFIX CERAMIC PACKAGE CASE 693-02

ORDERING INFORMATION

Device	Temperature Range	Package
MC3476G	0 to +70°C	Metal Can
MC3476P1	0 to +70°C	Plastic DIP
MC3476U	0 to +70°C	Ceramic DIP

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	V _{CC} , V _{EE}	± 18	Vdc
Input Differential Voltage Range	V _{IDR}	± 30	Vdc
Input Common-Mode Voltage Range	VICR	V _{CC} , V _{EE}	Vdc
Offset Null to VEE Voltage	V _{off} -V _{EE}	±0.5	Vdc
Programming Current	I _{set}	200	μΑ
Programming Voltage (Voltage from I _{set} terminal to ground)	V _{set}	(V _{CC} -0.6 V) to V _{CC}	Vdc
Output Short-Circuit Duration*	t _S	Indefinite	s
Operating Ambient Temperature Range	TA	0 to 70	°C
Storage Temperature Range Metal and Ceramic Packages Plastic Package	T _{stg}	-65 to +150 -55 to +125	°C
Junction Temperature Metal and Ceramic Packages Plastic Package	TJ	175 150	°C

^{*}Short-Circuit to ground with $I_{set} \le 15~\mu A$. Rating applies up to ambient temperature of $+70^{\circ} C$.

EQUIVALENT SCHEMATIC DIAGRAM

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, I_{set} = 15 μ A, T_{A} = +25 o C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Offset Voltage (R _S ≤ 10 kΩ)	V _{IO}				m∨
$T_A = +25^{\circ}C$		-	2.0	6.0	
$0^{\circ}C \leq T_{A} \leq 70^{\circ}C$		_	_	7.5	
Offset Voltage Adjustment Range	V _{IOR}	_	18	_	mV
Input Offset Current	110				nΑ
$T_A = +25^{\circ}C$	"	_	2.0	25	
$T_A = 70^{\circ}C$	1	_	_	25	
$T_A = 0^{\circ}C$		-	_	40	
Input Bias Current	I _{IB}				nΑ
$T_A = +25^{\circ}C$		_	15	50	1
$T_A = 70^{\circ}C$		_	~~	50	
$T_A = 0^{\circ}C$		_	-	100	
Input Resistance	· r _i	_	5.0		MΩ
Input Capacitance	Ci	-	2.0	_	pF
Input Common-Mode Voltage Range	Vice	± 10	_	_	V
0°C ≤ T _A ≤ 70°C					
Large Signal Voltage Gain	AVOL				V/V
$R_L \ge 10 \text{ k}\Omega$, $V_0 = \pm 10 \text{ V}$, $T_A = +25^{\circ}\text{C}$		50 k	400 k	_	1
$R_L \ge 10 \text{ k}\Omega$, $V_O = \pm 10 \text{ V}$, $0^{\circ}\text{C} \le T_A \le 70^{\circ}\text{C}$		25 k		_	
Output Voltage Range	Vor				V
$R_L \ge 10 \text{ k}\Omega$, $T_A = +25^{\circ}\text{C}$		± 12	± 13	_	
$R_L \ge 10 \text{ k}\Omega, 0^{\circ}\text{C} \le T_A \le 70^{\circ}\text{C}$		± 12		_	
Output Resistance	ro	***	1.0	_	kΩ
Output Short-Circuit Current	los		12	_	mA
Common-Mode Rejection Ratio	CMRR	70	90	_	dB
$R_S \le 10 \text{ k}\Omega$, $0^{\circ}C \le T_A \le 70^{\circ}C$					
Supply Voltage Rejection Ratio	PSRR	-	25	200	μV/V
$R_S \le 10 \text{ k}\Omega$, $0^{\circ}\text{C} \le T_A \le 70^{\circ}\text{C}$					
Supply Current	ICC, IEE	***************************************			μΑ
$T_A = +25^{\circ}C$		_	160	200	
$0^{\circ}C \leq T_{A} \leq 70^{\circ}C$		_	_	225	
Power Dissipation	PD				mW
$T_A = +25^{\circ}C$			4.8	6.0	
$0^{\circ}C \leq T_{A} \leq 70^{\circ}C$		- ,		6.75	
Transient Response (Unity Gain)			1		
V_{in} = 20 mV, $R_L \ge 10 \text{ k}\Omega$, C_L = 100 pF					
Rise Time	t _{TLH}		0.35	_	μs
Overshoot	OS		10		%
Slew Rate (R _L ≥ 10 kΩ)	SR	_	0.8	_	V/µs

TYPICAL CHARACTERISTICS

(TA = +25°C unless otherwise noted.)

FIGURE 1 - SET CURRENT versus SET RESISTOR 100 M Vcc = R_{set}, SET RESISTOR (OHMS) 10 M V_{CC} = +15 V VEE = -15 V

FIGURE 2 - POSITIVE STANDBY SUPPLY **CURRENT versus SET CURRENT**

I_{set}, SET CURRENT (μA)

FIGURE 5 - SLEW RATE versus SET CURRENT

FIGURE 6 - GAIN-BANDWIDTH PRODUCT (GBW) versus SET CURRENT

TYPICAL CHARACTERISTICS (continued)

 $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$

MC4558, MC4558AC, MC4558C, MC4558N, MC4558NC

DUAL WIDEBAND OPERATIONAL AMPLIFIER

The MC4558, MC4558AC, and MC4558C combine all the outstanding features of the MC1458 and, in addition, possess three times the unity gain bandwidth of the industry standard.

- 2.5 MHz Unity Gain Bandwidth Guaranteed on MC4558 and MC4558AC
- 2 MHz Unity Gain Bandwidth Guaranteed on MC4558C
- Internally Compensated
- Short-Circuit Protection
- Gain and Phase Match between Amplifiers
- Low Power Consumption
- Low Noise Selections Offered N Suffix

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Symbol	MC4558 MC4558AC	MC4558C	Unit
Power Supply Voltage	Vcc	+22	+18	Vdc
•	VEE	-22	-18	Vdc
Input Differential Voltage	V _{ID}	±	30	Volts
Input Common Mode Voltage (Note 1)	VICM	±	15	Volts
Output Short-Circuit Duration (Note 2)	ts	Continuous		
Operating Ambient Temperature Range	TA	See Ordering Information Below		
Storage Temperature Range Metal and Ceramic Packages Plastic Package	T _{stg}	1	o +150 o +125	°C
Junction Temperature Metal and Ceramic Packages Plastic Package	Тյ		75 50	°c

Note 1. For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.

Note 2. Short circuit may be to ground or either supply.

DUAL WIDE BANDWIDTH OPERATIONAL AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION							
Device	Temperature Range	Package					
MC4558G,NG	-55 to +125°C	Metal Can					
MC4558NU,U	-55 to +125°C	Ceramic DIP					
MC4558CG,NCG	0 to +70°C	Metal Can					
MC4558ACP1, CP1,NCP1	0 to +70°C	Plastic DIP					
MC4558CU,NCU	0 to +70°C	Ceramic DIP					

MC4558, MC4558AC, MC4558C, MC4558N, MC4558NC

		MC4558, MC4558AC				MC4558C		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Un
Unity Gain Bandwidth	BW	2.5	2.8	-	2.0	2.8	_	МН
ELECTRICAL CHARACTERISTICS (V _{CC} = 15 V, V	/ _{FF} = -15 V,	 Τ _Δ = 25 ⁰ (L C unless otl	l herwise not	ed.)		L	L
Input Offset Voltage	V _{IO}	/ -	1.0	5.0	T	2.0	6.0	m V
(R _S ≤ 10 kΩ)	1 10		"."	3.0	_	2.0	6.0	""
Input Offset Current	110	_	20	200	-	20	200	nA
Input Bias Current†	IB	_	80	500	-	80	500	nA
Input Resistance	ri	0.3	2.0	<u> </u>	0.3	2.0	_	MΩ
Input Capacitance	Ci	-	1.4		-	1.4	_	pF
Common Mode Input Voltage Range	V _{ICR}	±12	±13		±12	±13	_	V
Large Signal Voltage Gain	Av					113		†
$(V_0 = \pm 10 \text{ V}, R_L = 2.0 \text{ k}\Omega)$	''v	50	200	_	20	200	. –	V/m
Output Resistance	ro		75	 	 	75	_	Ω
Common Mode Rejection Ratio	CMRR	70	90	-	70	90	_	dB
(R _S ≤ 10 kΩ)								
Supply Voltage Rejection Ratio	PSRR	_	30	150	_	30	150	μV/\
(R _S ≤ 10 kΩ)								
Output Voltage Swing	Vo							
$(R_L \ge 10 \text{ k}\Omega)$	İ	±12	±14	_	±12	±14		\ \
$(R_{L} \ge 2 k\Omega)$	ļ	±10	±13		±10	±13	-	ļ
Output Short-Circuit Current	los	10	20	40	10	20	40	mA
Supply Currents (Both Amplifiers)	I _D		2.3	5.0		2.3	5.6	mA
Power Consumption (Both Amplifiers)	PC		70	150		70	170	mW
Transient Response (Unity Gain)	1		0.3					
$(V_1 = 20 \text{ mV}, R_L \ge 2 \text{ k}\Omega, C_L \le 100 \text{ pF})$ Rise Time $(V_1 = 20 \text{ mV}, R_L \ge 2 \text{ k}\Omega, C_L \le 100 \text{ pF})$ Overshoot	tTLH os	_	0.3		_	0.3 15	_	μs
$(V_1 = 10 \text{ V}, R_L \ge 2 \text{ k}\Omega, C_L \le 100 \text{ pF})$ Slew Rate	SR	1.5	1.6		1.0	1.6	_	% V/μs
ELECTRICAL CHARACTERISTICS (V _{CC} = 15 V, V	V 15 V						L	1 17,00
		'A = " 'h			ierwise not	ea).		
Input Offset Voltage	V _{IO}	_	1.0	6.0	-	_	7.5	m∨
(R _S ≤ 10 kΩ)	.							ļ
Input Offset Current (TA = Thigh)	10		7.0	200				١.
$(T_A = T_{low})$	1	_	7.0 85	500	_	_	_	nA
$(T_A = 0^{\circ}C \text{ to } +70^{\circ}C)$	1	_	-	_	_	_	300	
Input Bias Current	I _{IB}	,						-
$(T_A = T_{high})$	"	-	30	500	_	_	-	nA
$(T_A = T_{low})$		-	300	1500	-	-	-	
$(T_A = 0^{\circ}C \text{ to } +70^{\circ}C)$			_	-	_	_	800	
Common Mode Input Voltage Range	VICR	±12	±13	_		-		V
Large Signal Voltage Gain	A _v	25		_	45			l
$(V_O = \pm 10 \text{ V}, R_L = 2 \text{ k}\Omega)$		25	_	_	15	_	_	V/m\
Common Mode Rejection Ratio	CMRR	70	- 00					-
$(R_S \le 10 \text{ k}\Omega)$	CIVIER	′0	90	_		_	-	dB
Supply Voltage Rejection Ratio	PSRR	_	30	150				μV/\
(R _S ≤ 10 kΩ)			"			_	1	" " "
Output Voltage Swing	Vo				†			
$(R_L \geqslant 10 \text{ k}\Omega)$		±12	±14	-	±12	±14	_	V
(R _L ≥ 2 kΩ)		±10	±13	_	±10	±13	_	
Supply Currents (Both Amplifiers)	ID							
(TA = Thigh)		_	-	4.5	-	_	5.0	mA
(T _A = T _{IOW})			-	6.0			6.7	
Power Consumption (Both Amplifiers)	PC	_	-	135	-	_	150	mW

^{*} Thigh = 125°C for MC4558 and 70°C for MC4558C and MC4558AC. Thow = -55°C for MC4558 and 0°C for MC4558C and MC4558AC. The is out of the amplifier due to PNP input transistors.

 $(T_A = T_{high})$ $(T_A = T_{low})$

MC4558, MC4558AC, MC4558C, MC4558N, MC4558NC

NOISE CHARACTERISTICS (Applies for MC4558N and MC4558NC only, V_{CC} = 15 V, V_{EE} = -15 V, T_A = 25°C)

		MC4558N			MC4558NC			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Burst Noise (Popcorn Noise)	En	_	_	20	_	-	20	μVpeak
(BW = 1.0 Hz to 1.0 kHz, t = 10 s,					İ			
$R_S = 100 \text{ k}\Omega$) (Input Referenced)		ĺ						

FIGURE 1 - BURST NOISE versus SOURCE RESISTANCE

FIGURE 2 - RMS NOISE versus SOURCE RESISTANCE

FIGURE 4 - SPECTRAL NOISE DENSITY

FIGURE 5 - BURST NOISE TEST CIRCUIT (N Suffixed Devices Only)

For applications where low noise performance is essential, selected devices denoted by an N suffix are offered. These units have been 100% tested for burst noise pulses on a special noise test system. Unlike conventional peak reading or RMS meters, this system was especially designed to provide the quick response time essential to burst (popcorn) noise testing.

The test time employed is 10 seconds and the 20 μ V peak limit refers to the operational amplifier input thus eliminating errors in the closed-loop gain factor of the operational amplifier under test.

FIGURE 11 - TRANSIENT RESPONSE TEST CIRCUIT

ORDERING INFORMATION

Device	Temperature Range	Package
MC4741L	-55°C to +125°C	Ceramic DIP
MC4741CL	0°C to +70°C	Ceramic DIP
MC4741CP	0°C to +70°C	Plastic DIP

Specifications and Applications Information

QUAD MC1741 OPERATIONAL AMPLIFIERS

The MC4741 series is a true quad MC1741. Integrated on a single monolithic chip are four independent, low-power operational amplifiers which have been designed to provide operating characteristics identical to those of the industry standard MC1741, and can be applied with no change in circuit performance.

The MC4741 can be used in applications where amplifier matching or high packing density is important. Other applications include high impedance buffer amplifiers and active filter amplifiers.

- Each Amplifier is Functionally Equivalent to the MC1741
- Class AB Output Stage Eliminates Crossover Distortion
- True Differential Inputs
- Internally Frequency Compensated
- Short Circuit Protection
- Low Power Supply Current (0.6 mA/Amplifier)

MC4741 MC4741C

QUAD MC1741
DIFFERENTIAL INPUT
OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted).

Rating	Symbol	MC4741	MC4741C	Unit
Power Supply Voltage	Vcc	+22	+18	Vdc
	VEE	-22	-18	Vdc
Input Differential Voltage	V _{ID}	±44	±36	Volts
Input Common Mode Voltage	VICM	±22	± 18	Volts
Output Short Circuit Duration	ts	Continuous		
Operating Ambient Temperature Range	TA	-55 to +125	0 to +70	°c
Storage Temperature Range	T _{stg}			°C
Ceramic Package		-65 to	+150	
Plastic Package	-	~55 to	+125	
Junction Temperature	TJ			°c
Ceramic Package	1	10	75	
Plastic Package		15	60	

TYPICAL APPLICATION

MC4741, MC4741C

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, T_A = 25°C unless otherwise noted).

			MC4741			MC47410	2	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S ≤ 10 k)	V _{IO}	_	1.0	5.0	anne	2.0	6.0	mV
Input Offset Current	110	-	20	200		20	200	nΑ
Input Bias Current	IB	-	80	500	-	80	500	nΑ
Input Resistance	rį	0.3	2.0		0.3	2.0	_	мΩ
Input Capacitance	Ci	-	1.4	-	-	1.4	-	pF
Offset Voltage Adjustment Range	VIOR	_	±15	-	_	±15	_	mV
Common Mode Input Voltage Range	VICR	±12	±13		±12	±13		V
Large Signal Voltage Gain $(V_O = \pm 10 \text{ V, R}_L \ge 2.0 \text{ k})$	Av	50	200	-	20	200	-	V/mV
Output Resistance	ro	_	75		-	75	_	Ω
Common Mode Rejection Ratio (R _S ≤ 10 k)	CMRR	70	90	_	70	90	· word	dB
Supply Voltage Rejection Ratio (R _S ≤ 10 k)	PSRR	-	30	150	-	30	150	μ ∨ /∨
Output Voltage Swing	V _O							V
(R _L ≥10 k)		±12	±14	-	±12	±14	-	
(R _L ≥2 k)	ļ	±10	±13		±10	±13		
Output Short-Circuit Current	los		20			20		mA
Supply Current - (All Amplifiers)	ID	_	2.4	4.0		3.5	7.0	mA
Power Consumption (All Amplifiers)	PC	-	72	120		105	210	mW
Transient Response (Unity Gain — Non-Inverting) $(V_{\parallel} = 20 \text{ m V}, R_{\parallel} \ge 2 \text{ k}, C_{\parallel} \le 100 \text{ pF})$ Rise Time $(V_{\parallel} = 20 \text{ m V}, R_{\parallel} \ge 2 \text{ k}, C_{\parallel} \le 100 \text{ pF})$ Overshoot	tTLH os	-	0.3 15		- -	0.3 15	_	μs %
$(V_{\parallel} = 10 \text{ V}, \text{ R}_{\perp} \ge 2 \text{ k}, \text{C}_{\perp} \le 100 \text{ pF})$ Slew Rate	SR		0.5	-		0.5		V/μs

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, T_A = *T_{high} to T_{low} unless otherwise noted.)

	T		MC4741			MC4741C		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S \leq 10 k Ω)	VIO	_	1.0	6.0	-		7.5	mV
Input Offset Current $(T_A = 125^{\circ}C)$ $(T_A = -55^{\circ}C)$ $(T_A = 0^{\circ}C \text{ to } +70^{\circ}C)$	110	- - -	7.0 85 —	200 500 –	- - -		300	nA
Input Bias Current $(T_A = 125^{\circ}C)$ $(T_A = -55^{\circ}C)$ $(T_A = 0^{\circ}C \text{ to } +70^{\circ}C)$	IB		30 300 –	500 1500 –			- - 800	nA
Common Mode Input Voltage Range	VICR	±12	±13		_	_	_	V
Large Signal Voltage Gain (R _L ≥ 2 k, V _{out} = ±10 V)	A _v	25	-	_	15	-	-	V/mV
Common Mode Rejection Ratio $(R_S \leq 10 \text{ k})$	CMRR	70	90	-	-	-	_	dB
Supply Voltage Rejection Ratio (R _S ≤ 10 k)	PSRR	-	30	150	_	-	-	μV/V
Output Voltage Swing $(R_L \geqslant 10 \text{ k})$ $(R_L \geqslant 2 \text{ k})$	v _o	±12 ±10	±14 ±13	_ _	- ±10	- ±13	, –	>
Supply Currents — (Al ¹ Amplifiers) (T _A = 125°C) (T _A = -55°C)	ID	_ _	2.4 3.6	3.4 5.0				mA
Power Consumption ($T_A = +125^{\circ}C$) (All Amplifiers) ($T_A = -55^{\circ}C$)	PC	_	72 108	102 150	_	_	_	mW

 $^{^*}T_{high}$ = 125°C for MC4741 and 70°C for MC4741C T_{low} = -55°C for MC4741 and 0°C for MC4741C

TYPICAL CHARACTERISTICS

(V_{CC} = +15 Vdc, V_{EE} = -15 Vdc, T_A = +25°C unless otherwise noted).

FIGURE 3 - POSITIVE OUTPUT VOLTAGE SWING versus LOAD RESISTANCE 14 ±15 V SUPPLIES 13 12 V₀, OUTPUT VOLTAGE (V_{p-p}) 11 ±12 V 10 9.0 8.0 ±9 V 7.0 6.0 5.0 4.0 3.0 2.0 1.0 200 5.0 k 7.0 k 10 k 500 700 1.0 k RL, LOAD RESISTANCE (OHMS)

FIGURE 5 - OUTPUT VOLTAGE SWING versus LOAD RESISTANCE (Single Supply Operation)

FIGURE 6 - BI-QUAD FILTER

FIGURE 7 — NONINVERTING PULSE RESPONSE

FIGURE 8 — OPEN LOOP VOLTAGE GAIN versus SUPPLY VOLTAGE

FIGURE 9 — TRANSIENT RESPONSE TEST CIRCUIT

FIGURE 10 - ABSOLUTE VALUE DVM FRONT END

JEET-INPUT OPERATIONAL AMPLIFIERS

These low cost JFET-Input operational amplifiers combine two state-of-the-art linear technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset voltage. The BIFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents.

The Motorola BIFET family offers single, dual and quad operational amplifiers which are pin-compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar devices. The MC35001/35002/35004 series are specified over the military operating temperature range of $-55^{\circ}\mathrm{C}$ to $+125^{\circ}\mathrm{C}$ and the MC34001/34002/34004 series are specified from 0°C to $+70^{\circ}\mathrm{C}$.

- Input Offset Voltage Options of 2.0, 5.0, and 10 mV Maximum
- Low Input Bias Current 40 pA
- Low Input Offset Current 10 pA
- Wide Gain Bandwidth 4.0 MHz
- High Slew Rate 13 V/μs
- Low Supply Current 1.8 mA per Amplifier
- High Input Impedance 10¹² Ω
- High Common-Mode and Supply Voltage Rejection Ratios 100 dB
- Industry Standard Pinouts

ORDERING INFORMATION

Op Amp Function	Device	Temperature Range	Package
	MC34001AG,BG,G	0 to +70°C	Metal Can
	MC34001AP,BP,P	0 to +70°C	Plastic DIP
Single	MC34001AU,BU,U	0 to +70°C	Ceramic DIP
	MC35001AG,BG,G	-55 to +125°C	Metal Can
	MC35001AU,BU,U	-55 to +125°C	Ceramic DIP
	MC34002AG,BG,G	0 to +70°C	Metal Can
	MC34002AP,BP,P	0 to +70°C	Plastic DIP
Dual	MC34002AU,BU,U	0 to +70°C	Ceramic DIP
	MC35002,AG,BG,G	-55 to +125°C	Metal Can
	MC35002,AU,BU,U	- 55 to + 125°C	Ceramic DIP
	MC34004BL,L	0 to +70°C	Ceramic DIP
Quad	MC34004BP,P	0 to +70°C	Plastic DIP
	MC35004BL,L	-55 to +125°C	Ceramic DIP

MC34001, MC35001 MC34002, MC35002 MC34004, MC35004

JFET-INPUT OPERATIONAL AMPLIFIERS SILICON MONOLITHIC INTEGRATED CIRCUITS

MC34001, MC35001, MC34002, MC35002, MC34004, MC35004

MAXIMUM RATINGS

Rating	Symbol	MC35001 MC35002 MC35004	MC34001 MC34002 MC34004	Unit
Supply Voltage	V _{CC}	+ 22 - 22	+ 18 18	٧
Differential Input Voltage	V _{ID}	± 40	± 30	V
Input Voltage Range	V _{IDR}	± 20	± 16	٧
Output Short-Circuit Duration	ts	Conti	nuous	
Operating Ambient Temperature Range	TA	-55 to +125	0 to +70	°C
Operating Junction Temperature Metal and Ceramic Packages Plastic Packages	TJ	150 —	115 115	°C
Storage Temperature Range Metal and Ceramic Packages Plastic Packages	T _{stg}	- 65 to + 150 	-65 to +150 -55 to +125	°C

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}$, $V_{EE} = -15 \text{ V}$, $T_A = 25^{\circ}$ unless otherwise noted).

	Symbol	MC350	01/35002	2/35004	MC340	01/34002	2/34004	
Characteristic		Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage ($R_S \le 10 \text{ k}$) $ MC3500XA, MC3400XA $ $ MC3500XB, MC3400XB $ $ MC3500X, MC3400X $	V _{IO}	_	1.0 3.0 5.0	2.0 5.0 10	=	1.0 3.0 5.0	2.0 5.0 10	mV
Average Temperature Coefficient of Input Offset Voltage $R_S \le 10 \text{ k}$, $T_A = T_{low} \text{ to } T_{high} \text{ (Note 1)}$	ΔV _{IO} /ΔΤ	_	10	_	_	10		μV/°C
Input Offset Current (V _{CM} = 0) (Note 2)	IIO	_ _ _	10 10 25	25 50 100		25 25 25	50 100 100	pΑ
Input Bias Current (V _{CM} = 0) (Note 2) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X	IB		40 40 50	75 100 200	* <u> </u>	50 50 50	100 200 200	pА
Input Resistance	ri		1012	_	_	1012	_	Ω
Common Mode Input Voltage Range	VICR	± 11	+ 15 - 12	_	± 11	+ 15 - 12	_	V
Large Signal Voltage Gain (V $_{O}$ = \pm 10 V, R $_{L}$ = 2.0 k) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X	AVOL	50 50 25	150 150 100		50 50 25	150 150 100	=	V/mV
Output Voltage Swing $ \begin{array}{l} (R_L \geqslant 10 \text{ k}) \\ (R_L \geqslant 2.0 \text{ k}) \end{array} $	V _O	± 12 ± 10	± 14 ± 13	_	± 12 ± 10	± 14 ± 13	_	v
Common Mode Rejection Ratio (R _S ≤ 10 k) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X	CMRR	80 80 —	100 100 —		80 80 70	100 100 100	 - -	dB
Supply Voltage Rejection Ratio (R _S ≤ 10 k) (Note 3) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X	PSRR	80 80 70	100 100 100		80 80 70	100 100 100	_ _ _	dB
Supply Current (Each Amplifier) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X	I _D	_	1.4 1.4 1.4	2.5 2.5 2.7	=	1.4 1.4 1.4	2.5 2.5 2.7	mA
Slew Rate (A _V = 1)	SR	_	13	_		13	_	V/μs
Gain-Bandwidth Product	GBW	_	4.0	_	_	4.0	_	MHz
Equivalent Input Noise Voltage (R _S = 100 Ω , f = 1000 Hz)	en	_	25	_	_	25	_	nV/√H:
Equivalent Input Noise Current (f = 1000 Hz)	in	_	0.01	_	I -	0.01	_	pA/√Hz

MC34001, MC35001, MC34002, MC35002, MC34004, MC35004

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}$, $V_{EE} = -15 \text{ V}$, $T_A = T_{low}$ to T_{high} [Note 1]).

		MC35001/35002/35004			MC340	01/3400	2/34004	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S ≤ 10 k) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X	V _{IO}	_	_	4.0 7.0 14			4.0 7.0 13	mV
Input Offset Current (V _{CM} = 0) (Note 2) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X	110		_ _ _	20 40 40	_ _ _		2.0 4.0 4.0	nA
Input Bias Current (V _{CM} = 0) (Note 2) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X	IIB		_ _ _	50 50 50	_ _ _	_	4.0 8.0 8.0	nA
Common Mode Input Voltage Range	V _{ICR}	± 11	_		± 11			V
Large Signal (V _O = ±10 V, R _L = 2.0 k) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X	AVOL	25 25 15	_ _ _	_ 	25 25 15	_ _ _		V/mV
Output Voltage Swing (R _L \ge 10 k) (R _L \ge 2.0 k)	v _O	± 12 ± 10	_	_	± 12 ± 10		_	٧
Common Mode Rejection Ratio (R _S ≤ 10 k) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X	CMRR	80 80 70		_	80 80 70	_ _ _		dB
Supply Voltage Rejection Ratio (R _S ≤ 10 k) (Note 3) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X	PSRR	80 80 70	=	_	80 80 70			dB
Supply Current (Each Amplifier) MC3500XA, MC3400XA MC3500XB, MC3400XB MC3500X, MC3400X	ID	=	_ _ _	2.8 2.8 3.0	_ _ _		2.8 2.8 3.0	mA

NOTES: (1) $T_{low} = -55^{\circ}\text{C}$ for MC35001/MC35001A/35001B MC35002/MC35002A/35002B MC35002A/35002B MC35001A/34001B MC35001A/34001B MC34002/34002A/34001B MC34002/34002A/34004B Thigh = $+125^{\circ}\text{C}$ for MC35001/MC35002A/35002B MC35002A/35002B MC35002A/35004B = $+70^{\circ}\text{C}$ for MC34001/34001A/34001B MC34002/34002A/34002B

MC34004/34004B

- (2) The input bias currents approximately double for every 10°C rise in junction temperature, T_J. Due to limited test time, the input bias currents are correlated to junction temperature. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
- (3) Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.
- (4) Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply.

TYPICAL PERFORMANCE CHARACTERISTICS

FIGURE 1 — INPUT BIAS CURRENT versus TEMPERATURE

FIGURE 2 — OUTPUT VOLTAGE SWING versus FREQUENCY

FIGURE 3 — OUTPUT VOLTAGE SWING versus LOAD RESISTANCE

FIGURE 4 — OUTPUT VOLTAGE SWING versus SUPPLY VOLTAGE

FIGURE 5 — OUTPUT VOLTAGE SWING versus TEMPERATURE

FIGURE 6 — SUPPLY CURRENT PER AMPLIFIER Versus TEMPERATURE

REPRESENTATIVE CIRCUIT SCHEMATIC (Each Amplifier)

TYPICAL APPLICATIONS

MC34001, MC35001, MC34002, MC35002, MC34004, MC35004

FIGURE 13 -- POSITIVE PEAK DETECTOR

FIGURE 14 — LONG INTERVAL RC TIMER

Time (t) = R4 C ℓ n (VR/VR-VI), R3 = R4, R5 = 0.1 R6 If R1 = R2: t = 0.693 R4C

FIGURE 15 — ISOLATING LARGE CAPACITIVE LOADS

- Overshoot <10%
- t_S = 10 μs
- When driving large C_L, the V_{Out} slew rate is determined by C_L and I_{out(max)}:

$$\frac{\Delta V_{OUt}}{\Delta t} = \frac{I_{OUt}}{C_L} = \frac{0.02}{0.5} \text{ V/}\mu\text{s} = 0.04 \text{ V/}\mu\text{s (with CL shown)}$$

FIGURE 16 — WIDE BW, LOW NOISE, LOW DRIFT AMPLIFIER

- Power BW: $f_{max} = \frac{S_r}{2\pi V_p} \approx 240 \text{ kHz}$
- Parasitic input capacitance (C1 ≅ 3 pF plus any additional layout capacitance) interacts with feedback elements and creates undesirable high-frequency pole. To compensate add C2 such that: R2C2 ≅ R1C1.

MC34074.A MC35074,A MC33074.A

Advance Information

HIGH SLEW RATE, WIDE BANDWIDTH, SINGLE SUPPLY QUAD OPERATIONAL AMPLIFIER

A standard low-cost Bipolar technology with innovative design concepts is employed for the MC34074 series of monolithic quad operational amplifiers. These devices offer 4.5 MHz of gain bandwidth product, 13 V/ μ s slew rate, and fast settling time without the use of JFET device technology. In addition, low input offset voltage can economically be achieved. Although these devices can be operated from split supplies, they are particularly suited for single supply operation, since the common mode input voltage range includes ground potential (VFF). The all NPN output stage, characterized by no deadband crossover distortion and large output voltage swing, also provides high capacitive drive capability, excellent phase and gain margins, low open-loop high frequency output impedance and symmetrical source/sink ac frequency response.

The MC34074/33074/35074 series of devices are available in standard or prime performance (A Suffix) grades and specified over commercial, industrial/vehicular or military temperature ranges.

• Wide Bandwidth: 4.5 MHz

• High Slew Rate: 13 V/μs

• Fast Settling Time: 1.1 μs to 0.10%

• Wide Single Supply Operating Range: 3.0 to 44 Volts

• Wide Input Common Mode Range Including Ground (VFF)

• Low Input Offset Voltage: 2.0 mV Maximum (A Suffix)

• Large Output Voltage Swing: $-14.7 \text{ V to } + 14.0 \text{ V for V}_S = \pm 15 \text{ V}$

• Large Capacitance Drive Capability: 0 to 10,000 pF

• Low T.H.D. Distortion: 0.02% Excellent Phase Margins: 60° • Excellent Gain Margin: 12 dB

SINGLE SUPPLY

This document contains information on a new product. Specifications and information herein

are subject to change without notice

QUAD HIGH PERFORMANCE SINGLE SUPPLY **OPERATIONAL AMPLIFIERS**

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION								
Device	Temperature Range	Package						
MC35074L, AL	-55 to + 125°C	Ceramic DIP						
MC33074L, AL	-40 to + 85°C	Ceramic DIP						
MC33074P, AP	-40 to + 85°C	Plastic DIP						
MC34074L, AL	0 to +70°C	Ceramic DIP						
MC34074P, AP	0 to +70°C	Plastic DIP						

MC34074,A, MC35074,A, MC33074,A

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (from V _{CC} to V _{EE})	V _S	+44	Volts
Input Differential Voltage Range	V _{IDR}	Note 1	Volts
Input Voltage Range	V _{IR}	Note 1	Volts
Output Short-Circuit Duration (Note 2)	t _S	Indefinite	Seconds
Operating Ambient Temperature Range MC35074,A MC33074,A MC34074,A	T _A	-55 to + 125 -40 to +85 0 to +70	°C
Operating Junction Temperature	Тј	+ 150	°C
Storage Temperature Range Ceramic Package Plastic Package	T _{stg}	-65 to +150 -55 to +125	°C

MAXIMUM DEVICE POWER DISSIPATION

Ambient Temperature	+ 25°C	+ 70°C	+ 85°C	+ 125°C	°C
Power Dissipation	1250	800	650	250	mW

NOTES:

- 1. Either or both input voltages must not exceed the magnitude of V_{CC} or V_{EE} . 2. Power dissipation must be considered to ensure maximum junction temperature (T_J) is not exceeded.

EQUIVALENT CIRCUIT SCHEMATIC (EACH AMPLIFIER)

DC ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, R_L \text{ connected to ground, } T_A = T_{low} \text{ to } T_{high} \text{ [Note 3] unless otherwise noted)}$

		MC35074A/34074A/ 33074A			MC35074/34074/33074			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
$ \begin{array}{l} \text{Input Offset Voltage (V}_{CM} = 0) \\ \text{V}_{CC} = + 15 \text{ V, V}_{EE} = -15 \text{ V, T}_{A} = + 25 ^{\circ}\text{C} \\ \text{V}_{CC} = + 5.0 \text{ V, V}_{EE} = 0 \text{ V, T}_{A} = + 25 ^{\circ}\text{C} \\ \text{V}_{CC} = + 15 \text{ V, V}_{EE} = -15 \text{ V, T}_{A} = T_{low} \text{ to T}_{high} \\ \end{array} $	v _{IO}	_	0.5 0.5 —	2.0 2.5 4.0	<u></u>	2.0 2.5 —	4.5 5.0 6.5	mV
Average Temperature Coefficient of Offset Voltage	$\Delta V_{IO}/\Delta T$		10	_	_	10	_	μV/°C
Input Bias Current ($V_{CM} = 0$) $T_A = +25^{\circ}C$ $T_A = T_{low} \text{ to } T_{high}$	IВ	_	100 —	500 700	_	100 —	500 700	nA
Input Offset Current ($V_{CM} = 0$) $T_A = +25^{\circ}C$ $T_A = T_{low} \text{ to } T_{high}$	I _{IO}	_	6.0	50 300	_	6.0 —	75 300	nA
Large Signal Voltage Gain $V_O = \pm 10 \text{ V}, R_L = 2.0 \text{ k}$	Avol	50	100	_	25	100		V/mV
$ \begin{array}{c} \text{Output Voltage Swing} \\ \text{V}_{CC} = +5.0 \text{ V, V}_{EE} = 0 \text{ V, R}_{L} = 2.0 \text{ k, T}_{A} = +25^{\circ}\text{C} \\ \text{V}_{CC} = +15 \text{ V, V}_{EE} = -15 \text{ V, R}_{L} = 10 \text{ k, T}_{A} = +25^{\circ}\text{C} \\ \text{V}_{CC} = +15 \text{ V, V}_{EE} -15 \text{ V, R}_{L} = 2.0 \text{ k, T}_{A} = T_{low} \text{ to T}_{high} \\ \end{array} $	V _{ОН}	3.7 13.7 13.5	4.0 14 —	_ _ _	3.7 13.7 13.5	4.0 14 —		V
$ \begin{array}{c} V_{CC} = +5.0 \text{ V, } V_{EE} = 0 \text{ V, } R_L = 2.0 \text{ k, } T_A = +25^{\circ}\text{C} \\ V_{CC} = +15 \text{ V, } V_{EE} + -15 \text{ V, } R_L = 10 \text{ k, } T_A = +25^{\circ}\text{C} \\ V_{CC} = +15 \text{ V, } V_{EE} = -15 \text{ V, } R_L = 2.0 \text{ k, } T_A = T_{low} \text{ to } T_{high} \\ \end{array} $	V _{OL}	_	0.1 -14.7 —	0.2 -14.4 -13.8	 	0.1 -14.7 —	0.2 -14.4 -13.8	
Output Short-Circuit Current (T _A = +25°C) Input Overdrive = 1.0 V, Output to Ground Source Sink	I _{SC}	10 20	30 47	_	10 20	30 47		mA
Input Common Mode Voltage Range $T_{A} = +25^{\circ}C$	V _{ICR}	V _{EE} to (V _{CC} - 1.8) V _{FF} to (V _{CC} - 2.2)			V _{EE} to (V _{CC} - 1.8) V _{EE} to (V _{CC} - 2.2)			V
T _A = T _{low} to T _{high} Common Mode Rejection Ratio (R _S ≤ 10 k)	CMRR	80 97 —		70 97 —			dB	
Power Supply Rejection Ratio (R _S = 100 Ω)	PSRR	80	97	-	70	97	 	dB
Power Supply Current V _C C = +5.0 V, V _{EE} = 0 V, T _A = +25°C V _C C = +15 V, V _{EE} = -15 V, T _A = +25°C V _C C = +15 V, V _{EE} = -15 V, T _A = T _{low} to T _{high}	ID		6.5 7.5 —	8.0 10 11		6.5 7.5 —	8.0 10 11	mA

NOTES: (continued)

^{3.} T_{low} = -55°C for MC35074, MC35074A = -40°C for MC33074, MC33074A

^{= 0°}C for MC34074, MC34074A

T_{high} = +125°C for MC35074, MC35074A = +85°C for MC33074, MC33074A = +70°C for MC34074, MC34074A

MC34074,A, MC35074,A, MC33074,A

AC ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, R_L \text{ connected to ground, } T_A = +25 ^{\circ}\text{C} \text{ unless otherwise noted}$)

		MC35074A/34074A/ 33074A			MC35074/34074/33074			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Slew Rate (V $_{in}$ = -10 V to + 10 V, R $_{L}$ = 2.0 k, C $_{L}$ = 500 pF) A $_{V}$ +1 A $_{V}$ -1	SR	8.0	10 13	_	_	10 13	_	V/μs
Settling Time (10 V Step, $A_V = -1.0$) To 0.10% ($\pm \frac{1}{2}$ LSB of 9-Bits) To 0.01% ($\pm \frac{1}{2}$ LSB of 12-Bits)	t _s	_	1.1 2.2			1.1 2.2	_	μs
Gain Bandwidth Product (f = 100 kHz)	GBW	3.5	4.5	_	_	4.5	_	MHz
Power Bandwidth $(A_V = +1.0, R_L = 2.0 \text{ k}, V_O = 20 \text{ V}_{P-P}, \text{THD} = 5.0\%)$	BWp	_	200	_	_	200		kHz
Phase Margin R _L = 2.0 k R _L = 2.0 k, C _L = 300 pF	φm	_	60 40	_	_	60 40		Degrees
Gain Margin $ \begin{aligned} R_L &= 2.0 \text{ k} \\ R_L &= 2.0 \text{ k}, C_L &= 300 \text{ pF} \end{aligned} $	A _m	_	12	=		12 4.0		dB
Equivalent Input Noise Voltage $R_S = 100 \Omega$, $f = 1.0 \text{ kHz}$	e _n		32	_	_	32		nV/ √Hz
Equivalent Input Noise Current (f = 1.0 kHz)	In	_	0.22	_		0.22	_	pA/ √Hz
Input Capacitance	Ci	_	0.8	_		0.8	_	pF
Total Harmonic Distortion $A_V = +10$, $R_L = 2.0$ k, $2.0 \le V_0 \le 20$ V_{p-p} , $f = 10$ kHz	THD	_	0.02	_	_	0.02	_	%
Channel Separation (f = 10 kHz)	_		120			120		dB
Open-Loop Output Impedance (f = 1.0 MHz)	z _o		30	_	_	30	_	Ω

TYPICAL PERFORMANCE CURVES

FIGURE 2—INPUT COMMON-MODE VOLTAGE RANGE versus TEMPERATURE

FIGURE 3—NORMALIZED INPUT BIAS CURRENT versus TEMPERATURE

FIGURE 4—NORMALIZED INPUT BIAS CURRENT versus INPUT COMMON-MODE VOLTAGE

FIGURE 5—SPLIT SUPPLY OUTPUT VOLTAGE SWING versus SUPPLY VOLTAGE

FIGURE 6—SPLIT SUPPLY OUTPUT SATURATION

Versus LOAD CURRENT

FIGURE 7—SINGLE SUPPLY OUTPUT SATURATION versus LOAD RESISTANCE TO GROUND

FIGURE 8—SINGLE SUPPLY OUTPUT SATURATION versus LOAD RESISTANCE TO V_{CC}

MC34074,A, MC35074,A, MC33074,A

FIGURE 9—OUTPUT SHORT CIRCUIT CURRENT versus TEMPERATURE

FIGURE 10—OUTPUT IMPEDANCE versus FREQUENCY

FIGURE 11—OUTPUT VOLTAGE SWING versus FREQUENCY

FIGURE 12—OUTPUT DISTORTION versus FREQUENCY

FIGURE 13—OUTPUT DISTORTION versus
OUTPUT VOLTAGE SWING

FIGURE 14—OPEN-LOOP VOLTAGE GAIN versus TEMPERATURE

FIGURE 17-NORMALIZED GAIN BANDWIDTH PRODUCT versus TEMPERATURE 1.15 GBW, GAIN BANDWIDTH PRODUCT 1.10 $V_S = \pm 15 V$ $R_L = 2.0 k$ 1.05 (NORMALIZED) 1.00 0.95 0.90 0.85 125 25 -25 -55 TA, AMBIENT TEMPERATURE (°C)

FIGURE 20—GAIN MARGIN versus LOAD CAPACITANCE

3

MC34074,A, MC35074,A, MC33074,A

FIGURE 21—PHASE MARGIN versus TEMPERATURE

FIGURE 22—GAIN MARGIN versus TEMPERATURE

FIGURE 23—NORMALIZED SLEW RATE versus TEMPERATURE

FIGURE 24—OUTPUT SETTLING TIME

FIGURE 25—SMALL-SIGNAL TRANSIENT RESPONSE

FIGURE 26—LARGE-SIGNAL TRANSIENT RESPONSE

FIGURE 27—COMMON-MODE REJECTION RATIO versus FREQUENCY

FIGURE 28—POWER SUPPLY REJECTION RATIO versus FREQUENCY

FIGURE 29—SUPPLY CURRENT versus SUPPLY VOLTAGE

FIGURE 30—POWER SUPPLY REJECTION RATIO versus TEMPERATURE

FIGURE 31—CHANNEL SEPARATION versus FREQUENCY

FIGURE 32—SPECTRAL NOISE DENSITY

MC34074.A. MC35074.A. MC33074,A

APPLICATIONS INFORMATION CIRCUIT DESCRIPTION/PERFORMANCE FEATURES OF THE MC34074 FAMILY

Although the bandwidth, slew rate, and settling time of the MC34074 amplifier family is similar to op amp products utilizing JFET input devices, these amplifiers offer other additional distinct advantages as a result of the PNP transistor differential input stage and an all NPN transistor output stage.

Since the input common mode voltage range of this input stage includes the V_{EE} potential, single supply operation is feasible to as low as 3.0 volts with the common mode input voltage at ground potential.

The input stage also allows differential input voltages up to \pm 44 volts, provided the maximum input voltage range is not exceeded. Specifically, the input voltages must range between VEE and VCC supply voltages as shown by the maximum rating table. In practice, although not recommended, the input voltages can exceed the VCC voltage by approximately 3.0 volts and decrease below the VEE voltage by 0.3 volts without causing product damage, although output phase reversal may occur. It is also possible to source up to approximately 5.0 mA of current from VEE through either input's clamping diode without damage or latching, although phase reversal may again occur.

If at least one input is within the common mode input voltage range and the other input is within the maximum input voltage range, no phase reversal will occur. If both inputs exceed the upper common mode input voltage limit, the output will be forced to its lowest voltage state.

Since the input capacitance associated with the small geometry input device is substantially lower (0.8 pF) than the typical JFET input gate capacitance (3.0 pF), better frequency response for a given input source resistance can be achieved using the MC34074 amplifiers. This performance feature becomes evident, for example, in fast settling D-to-A current to voltage conversion applications where the feedback resistance can form an input pole with the input capacitance of the op amp. This input pole creates a 2nd order system with the single pole op amp and is therefore detrimental to its settling time. In this context, lower input capacitance is desirable especially for higher values of feedback resistances (lower current DAC's). This input pole can be compensated for by creating a feedback zero with a capacitance across the feedback resistance, if necessary, to reduce overshoot. For 2.0 $k\Omega$ of feedback resistance, the MC34074 family can typically settle to within 1/2 LSB of 8 bits in 1.0 μ s, and within 1/2 LSB of 12 bits in 2.2 μ s for a 10 volt step. In a typical inverting unity gain fast settling configuration, the typical symmetrical slew rate is \pm 13 volts/ μ s. In the classic non-inverting unity gain configuration the typical output positive slew rate is + 10 volts/µs, and the corresponding negative slew rate will typically exceed the positive slew rate as a function of the fall time of the input waveform.

Since the bipolar input device matching characteristics are typically superior to that of JFETs, a low

untrimmed maximum offset voltage of 2.0 mV prime and 4.5 mV downgrade can be economically offered with high frequency performance characteristics. This combination is ideal for low-cost precision, high-speed quad op amp applications.

The all NPN output stage, shown in its basic form on the equivalent circuit schematic, offers unique advantages over the more conventional NPN/PNP transistor Class AB output stage. A 10 $k\Omega$ load resistance can typically swing within 1.0 volt of the positive rail (V $_{CC}$), and within 0.3 volts of the negative rail (V $_{EC}$), providing a 28.7 Vp-p swing from \pm 15 volt supplies. This large output swing becomes most noticable at lower supply voltages.

The positive swing is limited by the saturation voltage of the current source transistor Q4, and V_{RF} of the NPN pull up transistor Q5, and the voltage drop associated with the short circuit resistance, RSC. The negative swing is limited by the saturation voltage of the pulldown transistor Q15, the voltage drop ILR1, and the voltage drop associated with resistance RSC, where IL is the sink load current. For small valued sink currents, the above voltage drops are negligible, allowing the negative swing voltage to approach within millivolts of V_{FF}. For large valued sink currents (>5.0 mA), diode D3 clamps the voltage across R₁, thus limiting the negative swing to the saturation voltage of Q15, plus the forward diode drop of D3 (\approx V_{FF} + 1.0 V). Thus for a given supply voltage, unprecedented peak-to-peak output voltage swing is possible as indicated by the output swing specifications.

If the load resistance is referenced to V_{CC} instead of ground for single supply applications, the maximum possible output swing can be achieved for a given supply voltage. For light load currents, the load resistance will pull the output to V_{CC} during the positive swing and the output will pull the load resistance near ground during the negative swing. The load resistance value should be much less than that of the feedback resistance to maximize pull up capability.

Because the PNP output emitter-follower transistor has been eliminated, the MC34074 family offers a 20 mA minimum current sink capability, typically to an output voltage of (V_{EE} + 1.8 V). In single supply applications the output can directly source or sink base current from a common emitter NPN transistor for fast high current switching applications.

In addition, the all NPN transistor output stage is inherently fast, contributing to the bipolar amplifier's high gain-bandwidth product and fast settling capability. The associated high frequency low output impedance (30 Ω typ $(\!\!u$ 1.0 MHz) allows capacitive drive capability from 0 to 10,000 pF without oscillation in the unity closed loop gain configuration. The 60° phase margin and 12 dB gain margin as well as the general gain and phase characteristics are virtually independent of the source/sink output swing conditions. This allows

easier system phase compensation, since output swing will not be a phase consideration. The high frequency characteristics of the MC34074 family also allow excellent high frequency active filter capability, especially for low voltage single supply applications.

Although the single supply specification is defined at 5.0 volts, these amplifiers are functional to at least 3.0 volts (w 25°C although slight changes in parametrics such as bandwidth, slew rate, and dc gain may occur.

If power to this integrated circuit is applied in reverse polarity or if the IC is installed backwards in a socket, large unlimited current surges will occur through the device that may result in device destruction.

Special static precautions are not necessary for these bipolar amplifiers since there are no MOS transistors on the die.

As usual with most high frequency amplifiers, proper lead dress, component placement, and PC board layout should be exercised for optimum frequency performance. For example, long unshielded input or output

leads may result in unwanted input-output coupling. In order to preserve the relatively low input capacitance associated with these amplifiers, resistors connected to the inputs should be immediately adjacent to the input pin to minimize additional stray input capacitance. This not only minimizes the input pole for optimum frequency response, but also minimizes extraneous "pick up" at this node. Supply decoupling with adequate capacitance immediately adjacent to the supply pin is also important, particularly over temperature, since many types of decoupling capacitors exhibit great impedance changes over temperature.

The output of any one amplifier is current limited and thus protected from a direct short to ground. However, under such conditions, it is important not to allow the device to exceed the maximum junction temperature rating. Typically for \pm 15 volt supplies, any one output can be shorted continuously to ground without exceeding the maximum temperature rating.

TYPICAL SINGLE SUPPLY APPLICATIONS V_{CC} = 5.0 VOLTS

FIGURE 33 --- AC COUPLED NONINVERTING AMPLIFIER

FIGURE 34 — AC COUPLED INVERTING AMPLIFIER

FIGURE 35 — DC COUPLED INVERTING AMPLIFIER MAXIMUM OUTPUT SWING

FIGURE 36 — UNITY GAIN BUFFER TTL DRIVER

MC34074,A, MC35074,A, MC33074,A

FIGURE 43 — AC/DC GROUND CURRENT MONITOR

FIGURE 44 — PHOTOVOLTAIC CELL AMPLIFIER

FIGURE 45 — LOW INPUT VOLTAGE COMPARATOR WITH HYSTERESIS

FIGURE 46 — HIGH COMPLIANCE VOLTAGE TO SINK CURRENT CONVERTER

FIGURE 47 — HIGH INPUT IMPEDANCE DIFFERENTIAL AMPLIFIER

FIGURE 48 --- BRIDGE CURRENT AMPLIFIER

FIGURE 37 — ACTIVE HIGH-Q NOTCH FILTER

FIGURE 38 — ACTIVE BANDPASS FILTER

Given $f_O = Center Frequency$ $A_O = Gain at Center Frequency$ Choose Value f_O, O, A_O, C

$$R3 = \frac{Q}{\pi\,f_0\,C} \qquad R1 = \frac{R3}{2\,H_0} \qquad R2 = \frac{R1\,R3}{4Q^2\,R1 - R3}$$
 For less than 10% error from operational amplifier

Where f_0 and GBW are expressed in Hz. GBW = 4.5 MHz Typ.

FIGURE 39 --- LOW VOLTAGE FAST D/A CONVERTER

FIGURE 40 — HIGH SPEED LOW VOLTAGE COMPARATOR

FIGURE 41 — LED DRIVER

FIGURE 42 — TRANSISTOR DRIVER

FIGURE 49 — LOW VOLTAGE PEAK DETECTOR

FIGURE 50 — HIGH FREQUENCY PULSE WIDTH MODULATION

GENERAL ADDITIONAL APPLICATIONS INFORMATION $V_S = \pm 15$ VOLTS

FIGURE 51 — SECOND ORDER LOW-PASS ACTIVE FILTER

Choose: f_o, H_o, C2

Then: $C1 = 2C2 (H_0 + 1)$

$$R2 = \frac{\sqrt{2}}{4\pi\,f_O^{}\,C2}$$

$$R3 = \frac{R2}{H_0 + 1}$$

$$R1 = \frac{R2}{H_0}$$

FIGURE 52 — SECOND ORDER HIGH-PASS ACTIVE FILTER

Choose: f_0 , H_0 , C1

Then: R1 =
$$\frac{H_0 + 0.5}{\pi f_0 C1\sqrt{2}}$$

$$R2 = \frac{\sqrt{2}}{2\pi f_0 C1 (1/H_0 + 2)}$$

$$C2 = \frac{C1}{H_0}$$

FIGURE 53 - FAST SETTLING INVERTER

FIGURE 54 — BASIC INVERTING AMPLIFIER

FIGURE 55 - BASIC NONINVERTING AMPLIFIER

FIGURE 56 — UNITY GAIN BUFFER ($A_V = +1$)

FIGURE 57 — HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER

MC34074,A, MC35074,A, MC33074,A

MC34084,A MC35084,A MC33084,A

Product Preview

QUAD HIGH SPEED JFET INPUT OPERATIONAL AMPLIFIERS

These devices are a new generation of high-speed JFET input monolithic quad operational amplifiers. Innovative design concepts along with BIFET technology provide wide gain bandwidth product, high slew rate and fast settling time characteristics. Well matched high voltage JFET input devices ensure very low input offset errors and bias currents. The all NPN output stage, characterized by no deadband crossover distortion and large output voltage swing also provides high capacitive drive capability, excellent phase and gain margins, low open-loop output impedance, and symmetrical source/sink ac frequency response.

The MC34084,A/MC33084,A/MC35084,A devices are available in standard or prime performance (A suffix) grades and specified over commercial, Industrial/Vehicular or Military temperature ranges. Pin compatible with existing Industry standard BIFET and Bipolar Quad operational amplifiers, these devices allow the designer to easily upgrade the performance of existing designs. Applications for these high performance amplifiers include sample and holds, fast D/A amplifiers, high-speed integraters, active filters and other circuits requiring low bias current, high input impedance along with wide bandwidth and high slew rate.

Wide Gain Bandwidth: 10 MHz

High Slew Rate: 40 V/μs

• Fast Settling Time: 700 ns to ±0.1% (10 V Step)

• Low Input Bias Current: 200 pA Maximum

• High Input Impedance: 10¹² Ω

Input Offset Voltage: MC34084A — 5.0 mV Maximum
 MC34084 — 10 mV Maximum

 \bullet Large Output Voltage Swing: -14.7 V to +14 V for $V_S=\pm15$ V, $R_L=10$ k

 \bullet Low Open Loop Output Impedance: 30 Ω @ 1.0 MHz

• Low Equivalent Noise: Voltage — 16 nV/ $\sqrt{\text{Hz}}$ Current — 0.01 pA/ $\sqrt{\text{Hz}}$

• Low THD Distortion: 0.01% (A_V = 10, f = 20 kHz, R_L = 10 k)

• Excellent Phase/Gain Margins: 55°/10 dB

ORDERING INFORMATION

Device	Temperature Range	Package				
MC35084L, AL	-55 to +125°C	Ceramic DIP				
MC33084L, AL	-40 to +85°C	Ceramic DIP				
MC33084P, AP	-40 to +85°C	Plastic DIP				
MC34084L, AL	0 to +70°C	Ceramic DIP				
MC34084P, AP	0 to +70°C	Plastic DIP				

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

QUAD HIGH SPEED JFET INPUT OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

MC34085, A MC35085, A MC33085, A

Product Preview

QUAD HIGH SPEED DECOMPENSATED (A $_{VCL} \ge 2$) JFET INPUT OPERATIONAL AMPLIFIERS

These devices are a new generation of high-speed JFET input monolithic quad operational amplifiers. Innovative design concepts along with BIFET technology provide wide gain bandwidth product and high slew rate. Well matched high voltage JFET input devices ensure very low input offset errors and bias currents. The all NPN output stage, characterized by no deadband crossover distortion and large output voltage swing also provides high capacitive drive capability, low open-loop output impedance, and symmetrical source/sink ac frequency response.

The MC34085,A/MC33085,A/MC35085,A devices are available in standard or prime performance (A suffix) grades and specified over commercial, Industrial/Vehicular or Military temperature ranges. Pin compatible with existing Industry standard BIFET and Bipolar Quad operational amplifiers, these high-speed devices allow the designer to easily upgrade the performance of existing designs where closed Loop Gain is ≥2. Applications for these high performance amplifiers include sample and holds, active filters, high-speed inverting amplifiers, and other circuits requiring low bias current, high input impedance along with wide bandwidth and high slew rate.

• Wide Gain Bandwidth: 20 MHz

High Slew Rate: 80 V/μs

• Low Input Bias Current: 200 pA Maximum

• High Input Impedance: $10^{12} \Omega$

• Input Offset Voltage: MC34085A — 5.0 mV Maximum

MC34085 - 10 mV Maximum

• Large Output Voltage Swing: -14.7 V to +14 V for $V_S=\pm15$ V, $R_I=10$ k

Low Open-Loop Output Impedance: 30 Ω @ 1.0 MHz

• Low Equivalent Noise: Voltage — 16 nV/ $\sqrt{\text{Hz}}$ Current — 0.01 pA/ $\sqrt{\text{Hz}}$

• Low THD Distortion: 0.01% (A $_V = 10$, f = 20 kHz, R $_I = 10$ k)

Decompensated Version of the MC34084 Series

ORDERING INFORMATION

Device	Temperature Range	Package		
MC35085L, AL	-55 to +125°C	Ceramic DIP		
MC33085L, AL	-40 to +85°C	Ceramic DIP		
MC33085P, AP	-40 to +85°C	Plastic DIP		
MC34085L, AL	0 to +70°C	Ceramic DIP		
MC34085P, AP	0 to +70°C	Plastic DIP		

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

QUAD HIGH SPEED DECOMPENSATED (A_{VCL} ≥ 2) JFET INPUT OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

L SUFFIX CERAMIC PACKAGE CASE 632-02 MO-001AA

P SUFFIX PLASTIC PACKAGE CASE 646-05

NE592 SE592

DIFFERENTIAL TWO-STAGE VIDEO AMPLIFIER

The SE/NE592 is a monolithic, two-stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display and video recorder systems. The 592 is a pin-for-pin replacement for the MC1733.

- 90 MHz Bandwidth
- Adjustable Gains From 0 to 400
- Adjustable Pass Band
- · No Frequency Compensation Required

CIRCUIT SCHEMATIC ٧cc 10 k Output 1 Input 2 O Output 2 7 k Input 10 G1A O G1_B O-50 **≨**50 G2AO G2B O 400 400 ≨1.4 k 300 **€** 600 \$600 VEE

VIDEO AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION

Device	Temperature Range	Package
NE592N	0 to 70°C	Plastic DIP
NE592H	0 to 70 ⁰ C	Metal Can
NE592F	0 to 70 ⁰ C	Ceramic DIP
SE592H	-55 to +125°C	Metal Can
SE592F	-55 to +125 ^o C	Ceramic DIP

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+8.0 -8.0	Volts
Differential Input Voltages	V _{ID}	±5.0	Volts
Common-Mode Input Voltage	VIC	±6.0	Volts
Output Current	I _o	10	mA
Operating Ambient Temperature Range SE592 NE592	Тд	-55 to +125 0 to +70	°C
Operating Junction Temperature Range Metal and Ceramic Packages Plastic Package	ТЈ	175 150	°C
Storage Temperature Range Metal and Ceramic Packagee Plastic Package	T _{stg}	-65 to +150 -55 to +125	°C

ELECTRICAL CHARACTERISTICS T_A = 25°C unless otherwise noted. $(V_{CC} = +6.0 \text{ V}, V_{EE} = -6.0 \text{ V}, V_{CM} = 0)$

			SE592		I	NE592		T
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Units
Differential Voltage Gain - Figure 3	A _{vd}							V/V
$(R_L = 2 k\Omega, e_{out} = 3 Vp-p)$				ł				
(Gain 1, Note 1)		300	400	500	250	400	600	
(Gain 2, Note 2)		90	100	110	80	100	120	
Bandwidth — Figure 3	BW							MHz
(Gain 1, Note 1)		-	40	-		40	_	1
(Gain 1, Note 2)		_	90	_	_	90		
Rise Time - Figure 3								ns
(Gain 1, e _{out} = 1 Vp-p, Note 1)	^t TLH	-	10.5	-	_	10.5	-	
(Gain 2, e _{out} = 1 Vp-p, Note 2)	^t THL	-	4.5	10	-	4.5	12	
Propagation Delay - Figure 3								ns
(Gain 1, e _{out} = 1 Vp-p, Note 1)	^t PLH	-	7.5			7.5	-	1
(Gain 2, e _{out} = 1 Vp-p, Note 2)	^t PHL	-	6.0	10		6.0	10	
Input Resistance	Rin							kΩ
(Gain 1, Note 1)		-	4.0	-		4.0	_	1
(Gain 2, Note 2)		20	30	_	10	30		
Input Capacitance								
(Gain 2, Note 2)	Cin	-	2.0	-	-	2.0	_	pF
Input Offset Current (Gain 3, Note 3) - Fig. 2	110	_	0.4	3.0	_	0.4	5.0	μΑ
Input Bias Current (Gain 3, Note 3) - Fig. 2	ÌВ	_	9.0	20	-	9.0	30	μΑ
Input Noise Voltage (Gain 1 and Gain 2)	Vn	_	12	-	_	12	_	μV (rms)
(BW = 1 kHz to 10 MHz) — Figure 1								
Input Voltage Range (Gain 2, Note 2)- Fig. 3	Vin	±1.0			±1.0	_	-	V
Common-Mode Rejection Ratio - Figure 3	CMRR							dB
(Gain 2, $V_{CM} = \pm 1 \text{ V, } f \leq 100 \text{ kHz}$)		60	86	-	60	86	-	
(Gain 2, $V_{CM} = \pm 1 \text{ V, f} = 5 \text{ MHz}$)		-	60			60	-	
Supply Voltage Rejection Ratio - Figure 2	PSRR							dB
(Gain 2, $\Delta V_s = \pm 0.5 V$)		50	70	_	50	70	_	
Output Offset Voltage - Figure 2	Voo							V
(Gain 3, R _L = ∞ , Note 3)		-	0.35	0.75	-	0.35	0.75	
Output Common-Mode Voltage — Figure 2	Vсмо							V
(R _L = ∞, Gain 3, Note 3)		2.4	2.9	3.4	2.4	2.9	3.4	
Output Voltage Swing — Figure 3	V _O							Vp-p
(R _L = 2k, Gain 2, Note 2)	ŭ	3.0	4.0	-	3.0	4.0	-	''
Output Resistance	ro	_	20	_	-	20	_	Ω
Power Supply Current - Figure 2	^I D							mA
(R _L = ∞, Gain 2, Note 2)	_	_	18	24	-	18	24	1

Note 1. Gain select pins ${\rm G1}_{\rm A}$ and ${\rm G1}_{\rm B}$ connected together.

Note 2. Gain select pins ${\sf G2}_{\mbox{\scriptsize A}}$ and ${\sf G2}_{\mbox{\scriptsize B}}$ connected together.

Note 3. All gain select pins open.

ELECTRICAL CHARACTERISTICS T_A = T_{high} to T_{low} unless otherwise noted.* (V_{CC} = +6.0 Vdc, V_{EE} = -6.0 Vdc, V_{CM} = 0)

			SE592			NE592		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Units
Differential Voltage Gain - Figure 3	A _{vd}							V/V
$(R_L = 2 k\Omega, e_{out} = 3 Vp-p)$		1						
(Gain 1, Note 1)	l	200	-	600	250	-	600	
(Gain 2, Note 2)		80	_	120	80		120	
Input Resistance (Gain 2)	Rin	8.0	_	_	8.0	-	_	kΩ
Input Offset Current (Gain 3) - Figure 2	110	_	_	5.0	_	_	6.0	μΑ
Input Bias Current (Gain 3) - Figure 2	IВ		_	40	_	_	40	μA
Input Voltage Range (Gain 2) - Figure 3	Vin	±1.0	-	-	±1.0	-	_	V
Common-Mode Rejection Ratio - Figure 3	CMRR	50	_	-	50	_	_	dB
(Gain 2, $V_{CM} = \pm 1 \text{ V, f} \leq 100 \text{ kHz}$)		1	ĺ			1		
Supply Voltage Rejection Ratio - Figure 2	PSRR	50	_	_	50	_		dB
(Gain 2, \triangle V _S = ±0.5 V)						ļ		
Output Offset Voltage (Gain 3) - Figure 2	V ₀₀	_	_	1.2	_	-	1.5	V
Output Voltage Swing (Gain 2) - Figure 3	٧o	2.5	-	_	2.5	_	_	Vp-p
Power Supply Current (Gain 2) - Figure 2	I _D	-	_	27	_	-	27	mA

 $T_{low} = 0^{o}$ C for NE592, -55 o C for SE592 Thigh = +70 o C for NE592, +125 o C for SE592

GENERAL TEST CIRCUITS FIGURE 1

FIGURE 2 FIGURE 3 0.2 μF 0.2 μF **∮**51 **∮**51 **≶**51 eout

FIGURE 6 - OUTPUT VOLTAGE SWING AS A **FUNCTION OF FREQUENCY** 7.0 $V_S = \pm 6.0 \text{ V}$ $T_A = 25^{\circ}\text{C}$ $R_L = 1.0 \text{ k}$ 6.0 OUTPUT VOLTAGE SWING (Vpp) 4.0 3.0 2.0 1.0 0 L 1.0 50 500 1000 5.0 10 FREQUENCY (MHz)

FIGURE 8 – VOLTAGE GAIN AS A FUNCTION OF $$\rm R_{adj}$$ RESISTANCE

FIGURE 9 – DISK/TAPE PHASE MODULATED READBACK SYSTEMS

FIGURE 10 — DIFFERENTIATION WITH HIGH COMMON MODE NOISE REJECTION

FOR FREQUENCY f₁ $<<1/2~\pi$ (32) C $v_{O}\cong 1.4\times 10^{4} C$ $\frac{d_{v1}}{dt}$

FIGURE 11 - FILTER NETWORKS

BAS	IC CONFIGUE	RATION
Z NETWORK	FILTER TYPE	VO (5) TRANSFER V1 (5) FUNCTION
٥-٨٠٠٠٠٥	Low Pass	$\frac{1.4 \times 10^4}{L} \left[\frac{1}{s + R/L} \right]$
0	High Pass	$\frac{1.4 \times 10^4}{R} \left[\frac{s}{s + 1/RC} \right]$
٥-١٠٠٠١١٥	Band Pass	$\frac{1.4 \times 10^4}{L} \left[\frac{s}{s^2 + R/L s + 1/LC} \right]$
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	Band Reject	$\frac{1.4 \times 10^4}{R} \left[\frac{s^2 + 1/LC}{s^2 + 1/LC + s/RC} \right]$
NOTE:		

In the networks above, the R value used is assumed to include 2 r_e, or approximately 30 Ohms.

OP-27 OP-37

ULTRA-LOW NOISE PRECISION, HIGH SPEED OPERATIONAL AMPLIFIERS

The OP-27 and OP-37 are a series of monolithic operational amplifiers which combine low-noise, precision dc performance and wide bandwidth all in one device. Advanced Bipolar processing and innovative design techniques have produced the lowest noise precision operational amplifier in the industry. These devices are trimmed for extremely low initial input offset voltage by utilizing a highly stable and reliable zener zap technique during factory testing which yields guaranteed V_{IO} limits as tight as 25 μV . A unique input bias current cancellation scheme maintains low I_{IB} and I_{IO} to typically ± 20 nA and 15 nA respectively over the full military temperature range. Other sources of input errors are reduced in excess of -120 dB due to extremely high common-mode and power supply rejection ratios.

Also impressive, are the slew rate and bandwidth of these devices. The OP-27 has a gain bandwidth product of 8.0 MHz and slew rate of 2.8 V/ μ s. While the OP-37 provides a 63 MHz gain bandwidth product and 17 V/ μ s slew rate for applications with closed loop gains \geqslant 5.

The precision, low noise and high speed characteristics of these devices make them ideal for amplifying transducer signals, RIAA phono, NAB tape head and microphone preamplifiers, wide band instrumentation amplifiers and high speed signal conditioning for data acquisition systems.

- Extremely Low-Noise 3.0 nV/ $\sqrt{\rm Hz}$ at 1.0 kHz 80 nVp-p, 0.1 Hz to 10 Hz
- Low Initial Input Offset Voltage 10 μV
- \bullet Ultra Stable Input Offset Voltage 0.2 μ V/mo.
- Wide Gain Bandwidth Product and High Slew Rate: OP-27 — 8.0 MHz, 2.8 V/μs OP-37 — 63 MHz, 17 V/μs
- High Open-Loop Gain 1.8 Million
- High Common-Mode Rejection 126 dB
- Replaces OP-05, OP-06, OP-07, AD510, AD517, μA725 and NE5534

ULTRA-LOW NOISE PRECISION, HIGH SPEED OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

		ORDERING	INFORMATION			
		Device		Temperature		
Slew Rate	V _{IO} ≤ 25 μV	V _{IO} ≤ 60 μV	V ₁₀ ≤ 100 μV	Range	Package	
	OP-27AJ	OP-27BJ	OP-27CJ	-55 to +125°C	Metal Can	
	OP-27AZ	OP-27BZ	OP-27CZ		Ceramic DIP	
≥ 1.7 V/μs	OP-27EJ	OP-27FJ	OP-27GJ	- 25 to +85°C	Metal Can	
	OP-27EZ	OP-27FZ	OP-27GZ		Ceramic DIP	
	OP-27EP	OP-27FP	OP-27GP	0 to +70°C	Plastic Dip	
	OP-37AJ	OP-37BJ	OP-37CJ	-55 to +125°C	Metal Can	
	OP-37AZ	OP-37BZ	OP-37CZ]	Ceramic DIP	
≥11 V/μs	OP-37EJ	OP-37FJ	OP-37GJ	- 25 to +85°C	Metal Can	
	OP-37EZ	OP-37FZ	OP-37GZ		Ceramic DIP	
	OP-37EP	OP-37FP	OP-37GP	0 to +70°C	Plastic Dip	

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V _{CC} V _{EE}	+ 22 - 22	V
Input Voltage Range (Note 1)	V _{IDR}	± 22	V
Differential Input Voltage (Note 2)	V _{ID}	± 0.7	V
Differential Input Current (Note 2)	ΙD	± 25	mA
Output Short-Circuit Duration	ts	Indefinite	
Power Dissipation and Thermal Characteristics Plastic Package (P Suffix) T _A = +36°C	PD	500	mW
Derate above T _A = +36°C	1/R ₀ JA	5.6	mW/°C
Metal Package (J Suffix) T _A = +80°C	PD	500	mW
Derate above T _A = +80°C	1/R ₀ JA	7.1	mW/°C
Ceramic Package (Z Suffix) T _A = +75°C	PD	500	mW
Derate above T _A = +75°C	1/R _∂ JA	6.7	mW/°C
Operating Ambient Temperature OP-27 and OP-37 A,B and C Grades	TA	-55 to +125	°C
OP-27 and OP-37 E,F and G Grades (Metal and Ceramic Packages)		- 25 to +85	
OP-27 and OP-37EP, FP and GP Grades (Plastic Package)		0 to +70	
Junction Temperature	TJ	+ 150	°C
Storage Temperature Range Ceramic and Metal Packages Plastic Package	T _{stg}	- 65 to + 150 - 65 to + 125	°C

NOTES:

- 1. For supply voltages less than $\,\pm\,22$ V, the absolute maximum input voltage range is equal to the supply voltage.
- The inputs are protected by back-to-back diodes. Current limiting resistors are not used in order to achieve low noise. If differential input voltage exceeds ± 0.7 V, the input current must be limited to 25 mA.

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, T_A = +25 ^{\circ}\text{C}$ unless otherwise noted.)

			OP-27A/E/EP OP-37A/E/EP			P-27B/F/F P-37B/F/F		OP-27C/G/GP OP-37C/G/GP			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	-	10	25	_	20	60	_	30	100	μV
Long Term Input Offset Voltage Stability (Note 3)	V _{IO} /t	_	0.2	1.0	_	0.3	1.5	_	0.4	2.0	μV/mo
Input Offset Current	lю	_	7.0	35	_	9.0	50	_	12	75	nA
Input Bias Current	l _{IB}		± 10	± 40	_	±12	± 55	_	± 15	± 80	nA
Input Noise Voltage 0.1 to 10 Hz (Note 4)	e _{np-p}	_	0.08	0.18	_	0.08	0.18	_	0.09	0.25	μV _{p-p}
Input Noise Voltage Density $f_O = 10 \text{ Hz}$ $f_O = 30 \text{ Hz}$ $f_O = 1000 \text{ Hz}$ (Note 4)	e _n		3.5 3.1 3.0	5.5 4.5 3.8		3.5 3.1 3.0	5.5 4.5 3.8		3.8 3.3 3.2	8.0 5.6 4.5	nV/√Hz
Input Noise Current Density $f_O=10~Hz$ $f_O=30~Hz$ $f_O=1000~Hz$ (Note 4)	in	_	1.7 1.0 0.4	4.0 2.3 0.6	_ _ _	1.7 1.0 0.4	4.0 2.3 0.6	_	1.7 1.0 0.4	— — 0.6	pA∕√Hz
Input Resistance — Differential Mode	rį	1.5	6.0		1.2	5.0		0.8	4.0	_	МΩ
Input Resistance — Common Mode	Rincm	_	3.0	_	_	2.5	_	_	2.0	_	GΩ
Input Voltage Range	VIR	±11.0	± 12.3	_	±11.0	± 12.3	_	±11.0	± 12.3	_	٧

(continued)

ELECTRICAL CHARACTERISTICS (continued)

			P-27A/E/E P-37A/E/E		OP-27B/F/FP OP-37B/F/FP			OP-27C/G/GP OP-37C/G/GP			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Common Mode Rejection Ratio V _{CM} = ±11 V	CMRR	114	126	_	106	123	_	100	120	_	dB
Power Supply Rejection Ratio V _S = ±4.0 V to ±18 V	PSRR	100	120	_	100	120		94	114	_	dB
Large-Signal Voltage Gain $ \begin{array}{l} R_L \geqslant 2 \; k\Omega, \; V_O \; = \; \pm 10 \; V \\ R_L \geqslant 1 \; k\Omega, \; V_O \; = \; \pm 10 \; V \\ R_L = \; 600 \; \Omega, \; V_O \; = \; \pm 1.0 \; V, \\ V_S \; = \; \pm 4.0 \; V \end{array} $	AVOL	1000 800	1800 1500 700	_ _ _	1000 800	1800 1500 700	- - -	700 —	1500 1500 500	_ _ _	V/mV
Output Voltage Swing $ \begin{array}{l} {\sf R}_{L} \geqslant 2 \; {\sf k} \Omega \\ {\sf R}_{L} \geqslant 600 \; \Omega \end{array} $	v _o	±12.0 ±10.0	± 13.8 ± 11.5	_	± 12.0 ± 10.0	± 13.8 ± 11.5	_	± 11.5 ± 10.0	± 13.5 ± 11.5	_	V
Slew Rate, R _L \geqslant 2 k Ω OP-27 OP-37	SR	1.7 11	2.8 17	_	1.7 11	2.8 17	_	1.7 11	2.8 17	_	V/µs
Gain Bandwidth Product OP-27	GBW	5.0	8.0	_	5.0	8.0		5.0	8.0	_	MHz
OP-37 Av \geq 5.0 $f_O = 10 \text{ kHz}$ $f_O = 1 \text{ MHz}$		45 —	63 40	_	45 —	63 40	_	45 —	63 40	_	
Open Loop Output Resistance VO = 0, IO = 0	ro	_	70	_	_	70	_	_	70	_	Ω
Power Dissipation VO = 0, No Load	PD	_	90	140		90	140	_	100	170	mW
Offset Adjustment Range Rp = 10 $k\Omega$			±4.0	_		±4.0	_	_	±4.0	_	mV

NOTES (continued)

- 3. Long term input offset voltage stability for the OP-27 and OP-37 series, refers to the average trend line of V_{IO} versus time over extended periods after the first 30 days of operation. Excluding the first hour of operation, changes in V_{IO} during the first 30 days are typically 2.5 μV.
- 4. Sample tested.

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, T_A = T_{low} \text{ to } T_{high} \text{ [Note 5])}$

		OP-27A OP-37A			OP-27B OP-37B			OP-27C OP-37C				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
Input Offset Voltage	V _{IO}	_	30	60	_	50	200	_	70	300	μ٧	
Average Input Offset Drift (Note 6)	TCVIO	_	0.2	0.6	1	0.3	1.3	-	0.4	1.8	μV/°C	
Input Offset Current	10	_	15	50	_	22	85	_	30	135	nΑ	
Input Bias Current	Iв	_	± 20	± 60	_	± 28	±95	_	±35	± 150	nA	
Input Voltage Range	VIR	±10.3	± 11.5	_	±10.3	±11.5	_	±10.2	±11.5	_	V	
Common Mode Rejection Ratio $V_{\hbox{CM}} = \pm 10 \ \hbox{V}$	CMRR	108	122	_	100	119	_	94	116	_	dB	
Power Supply Rejection Ratio VS = ±4.5 V to ±18 V	PSRR	96	114	_	94	114	_	86	108	_	dB	
Large-Signal Voltage Gain R _L ≥2.0·kΩ, V _O = ±10 V	Avol	600	1200	_	500	1000	_	300	800	_	V/mV	
Output Voltage Swing $R_L \ge 2.0 k\Omega $	v _o	±11.5	± 13.5	_	±11.0	± 13.2	_	± 10.5	±13.0	_	V	

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, T_A = T_{low} \text{ to } T_{high} \text{ [Note 5])}$

		1)P-27E/E)P-37E/E			OP-27F/F OP-37F/F	•		OP-27G/GP OP-37G/GP		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	-	20	50	_	40	140	_	55	220	μV
Average Input Offset Drift (Note 6)	TCVIO	_	0.2	0.6	_	0.3	1.3	-	0.4	1.8	μV/°C
Input Offset Current	lio	_	10	50	_	14	85	_	20	135	nA
Input Bias Current	IВ	_	±14	±60	_	±18	±95	_	± 25	± 150	nA
Input Voltage Range	VIR	± 10.5	±11.8	_	± 10.5	±11.8	_	± 10.5	±11.8	_	V
Common Mode Rejection Ratio V _{CM} = ±10 V	CMRR	110	124	_	102	121		96	118		dB
Power Supply Rejection Ratio V _S = ±4.5 V to ±18 V	PSRR	97	114		96	114	_	90	114	-	dB
Large-Signal Voltage Gain $R_L \ge 2.0 \text{ k}\Omega$, $V_O = \pm 10 \text{ V}$	AVOL	750	1500	_	700	1300	_	450	1000	-	V/mV
Output Voltage Swing $R_L \geqslant 2.0 \ k\Omega$	v _O	± 11.7	± 13.6	-	±11.4	± 13.5	_	±11.0	± 13.3	_	٧

NOTES (continued)

5. T_{low} = -55°C for OP-27A/OP-37A OP-27B/OP-37B

OP-27C/OP-37C

= -25°C for OP-27E/OP-37E OP-27F/OP-37F OP-27G/OP-37G

0°C for OP-27EP/OP-37EP OP-27FP/OP-37FP OP-27GP/OP-37GP $T_{high} = +125$ °C for OP-27A/OP-37A OP-27B/OP-37B

OP-27C/OP-37C= +85°C for OP-27E/OP-37E

OP-27E/OP-37E OP-27F/OP-37F OP-27G/OP-37G

= +70°C for OP-27EP/OP-37EP OP-27FP/OP-37FP OP-27GP/OP-37GP

6. TCV_{IO} performance is within specifications unnulled or when nulled with a potentiometer Rp = $8 \text{ k}\Omega$ to 20 k Ω .

ABBREVIATED CIRCUIT SCHEMATIC

TYPICAL CHARACTERISTICS

(Performance curves are for both OP-27 and OP-37 devices unless otherwise noted.)

FIGURE 3 — INPUT WIDEBAND VOLTAGE NOISE versus BANDWIDTH (0.1 Hz TO FREQUENCY INDICATED)

FIGURE 4 — TOTAL NOISE versus SOURCE RESISTANCE

FIGURE 5 — VOLTAGE NOISE versus TEMPERATURE

FIGURE 6 — VOLTAGE NOISE versus SUPPLY VOLTAGE

FIGURE 20 — OP-27 MAXIMUM UNDISTORTED OUTPUT

FIGURE 21 — OP-37 MAXIMUM UNDISTORTED OUTPUT

FIGURE 22 — OP-27 SMALL-SIGNAL TRANSIENT RESPONSE

FIGURE 23 — OP-37 SMALL-SIGNAL TRANSIENT RESPONSE

FIGURE 24 — OP-27 LARGE-SIGNAL TRANSIENT RESPONSE

FIGURE 25 --- OP-37 LARGE-SIGNAL TRANSIENT RESPONSE

APPLICATIONS INFORMATION

The designer is cautioned that stray thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can prevent realization of the drift performance indicated. Best operation will be obtained when both input contacts are maintained at the same temperature, preferably close to the temperature of the device's package.

OFFSET VOLTAGE ADJUSTMENT

The input offset voltage and drift over temperature are permanently trimmed at wafer testing. However, if further adjustment of V_{IO} is required, nulling with a 10 k Ω potentiometer as shown in Figure 26 will not degrade TCV $_{IO}$. Other potentiometer values from 1.0 k Ω to 1.0 M Ω can be used with a slight degradation (0.1 to 0.2 $\mu l/^{9}$ C) of TCV $_{IO}$. Trimming to a value other than zero creates a drift of (V $_{IO}/300)$ $\mu l/^{9}$ C, e.g. if V $_{IO}$ is adjusted to 100 $\mu l/$, the change in TCV $_{IO}$ will be 0.33 $\mu l/^{9}$ C. The offset voltage adjustment range with a 10 k Ω potentiometer is ± 4.0 mV. If a smaller adjustment range is required, the sensitivity and/or resolution of the nulling can be increased by using a smaller pot in conjunction with fixed resistors.

FIGURE 26 — OFFSET NULLING CIRCUIT

NOISE MEASUREMENTS

The extremely low noise of these devices can make accurate measurement a difficult task. In order to realize the 80 nV peak-to-peak noise specification of the op amp

in the 0.1 Hz to 10 Hz frequency range, the following audelines must be observed:

- (1) The device has to be warmed up for at least five minutes. As the op amp warms up, its offset voltage changes typically 4.0 µV due to its chip temperature increasing 14 to 20°C from the moment the power supplies are turned on. In the 10 sec measurement interval these temperature-induced effects can easily exceed tens of nanovolts.
- (2) For similar reasons, the device has to be well shielded from air currents to eliminate the possibility of thermoelectric effects in excess of several nanovolts.
- (3) Sudden motion in the vicinity of the device can also "feed-through" to increase the observed noise.
- (4) The test time to measure 0.1 Hz to 10 Hz noise should not exceed 10 sec. As shown in the noise tester frequency response curve (Figure 1) the 0.1 Hz corner is defined by only one zero. The test time of 10 sec acts as an additional zero to eliminate noise contributions from the frequency band below 0.1 Hz.

A noise-voltage density test is recommended when measuring noise on a large number of units. A 10 Hz noise-voltage density measurement will correlate well with a 0.1 Hz-to-10 Hz peak-to-peak noise reading since both results are determined by the white noise and the location of the 1/f corner frequency.

UNITY GAIN BUFFER APPLICATIONS FOR OP-27

When $R_F \le 100~\Omega$ and the input is driven with a fast, large signal pulse (> 1.0 V), the output waveform will look as shown in Figure 27.

During the initial fast input step, the input protection diodes effectively short the output to the input and current limit only by the output short circuit protection of the signal generator. With RF $\geq 500~\Omega,$ the output is capable of handling the current requirements (I_L ≤ 20 mA at 10 V) and the amplifier stays in its active mode and a smooth transition will occur.

As with all operational amplifiers when $R_F>2.0~k\Omega,$ a pole will be created with R_F and the amplifier's input capacitance (8.0 pF), creating additional phase shift an reducing the phase margin. A small capacitor (20 to 50 pF) in parallel with R_F will eliminate this problem.

FIGURE 27 -- PULSED OPERATION

TL071 TL072 TL074

Specifications and Applications Information

LOW-NOISE JFET INPUT OPERATIONAL AMPLIFIERS

These low-noise JFET input operational amplifiers combine two state-of-the-art linear technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset voltage. The BIFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents. Moreover, the devices exhibit low-noise and low harmonic distortion making them ideal for use in high-fidelity audio amplifier applications.

These devices are available in single, dual and quad operational amplifiers which are pin-compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar products. Devices with an "M" suffix are specified over the military operating temperature range of -55° C to $+125^{\circ}$ C and those with a "C" suffix are specified from 0° C to $+70^{\circ}$ C.

- Low Input Noise Voltage 18 nV/√Hz Typ
- Low Harmonic Distortion 0.01% Typ
- Low Input Bias and Offset Currents
- High Input Impedance 10¹² Ω Typ
- High Slew Rate 13 V/μs Typ
- Wide Gain Bandwidth 4.0 MHz Typ
- Low Supply Current 1.4 mA per Amp

ORDERING INFORMATION

Op Amp Function	Device	Temperature Range	Package
Single	TL071ACJG, BCJG, CJG	0 to +70°C	Ceramic DIP
	TL071ACP, BCP, CP	0 to +70°C	Plastic DIP
	TL071MJG	-55 to +125°C	Ceramic DIP
Dual	TL072ACJG, BCJG, CJG	0 to +70°C	Ceramic DIP
	TL072ACP, BCP, CP	0 to +70°C	Plastic DIP
	TL072MJG	-55 to +125°C	Ceramic DIP
Quad	TL074ACJ, BCJ, CJ	0° to +70°C	Ceramic DIP
	TL074ACN, BCN, CN	0° to +70°C	Plastic DIP
	TL074MJ	-55 to +125°C	Ceramic DIP

LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUITS

TL071, TL072, TL074

MAXIMUM RATINGS

Rating	Symbol	TL07 M	TL07_ C TL07_ AC TL07_ BC	Unit
Supply Voltage	V _{CC} V _{EE}	+ 18 - 18	+ 18 - 18	٧
Differential Input Voltage	V _{ID}	± 30	±30	٧
Input Voltage Range (Note 1)	V _{IDR}	± 15	± 15	V
Output Short-Circuit Duration (Note 2)	ts	Conti	nuous	
Power Dissipation Plastic Package (N,P) Derate above T _A = +47°C Ceramic Package (J, JG) Derate above T _A = +82°C	P _D 1/θJA P _D 1/θJA	— — 680 10	680 10 680 10	mW mW/°C mW mW/°C
Operating Ambient Temperature Range	TA	-55 to +125	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	°C

NOTES: 1. The magnitude of the input voltage must not exceed the magnitude of the supply voltage or 15 volts, whichever is less.

2. The output may be shorted to ground or either supply. Temperature and/or supply voltages must be limited to ensure that power dissipation ratings are not exceeded.

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, T_A = +25° unless otherwise noted).

			TL07 M			TL07_ C TL07_ AC TL07_ BC		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (RS \leq 10 k, V _{CM} = 0) TL071, TL072 TL074 TL074 TL07_ A TL07_ B	VIO	_ _ _	3.0 3.0 —	6.0 9.0 —	_ _ _	3.0 3.0 3.0 2.0	10 10 6.0 3.0	mV
Average Temperature Coefficient of Input Offset Voltage $R_S = 50 \Omega$, $T_A = T_{low}$ to T_{high} (Note 3)	ΔV _{ΙΟ} /ΔΤ		10			10	_	μV/°C
Input Offset Current (V _{CM} = 0) (Note 4) TL07_ TL07_ A, TL07_ B	lio	_	5.0 —	50 —	_	5.0 5.0	50 50	pА
Input Bias Current ($V_{CM}=0$) (Note 4) TL07_ TL07_ A, TL07_ B	IB	<u> </u>	30	200 —	_	30 30	200 200	pA
Input Resistance	ri	_	1012	_	_	1012	_	Ω
Common Mode Input Voltage Range TL07_ TL07_ A, TL07_ B	VICR	± 11	+ 15, – 12 —	_	±10 ±11	+ 15, - 12 + 15, - 12	_	V
Large-Signal Voltage Gain (V $_{O}=\pm 10$ V, R $_{L}$ \geqslant , 2.0 k) TL07 TL07 A, TL07 B	Avol	35	150 —	_	25 50	150 150	_	V/mV
Output Voltage Swing (Peak-to-Peak) (R _L = 10 k)	V _O	24	28	_	24	28	_	V
Common Mode Rejection Ratio (Rs \leq 10 k) TL07 $_{-}$ TL07 $_{-}$ A, TL07 $_{-}$ B	CMRR	80	100	_	70 80	100 100	_	dB
Supply Voltage Rejection Ratio (Rs \leq 10 k) $${\rm TL07}_{-}$$ ${\rm TL07}_{-}$ A, TL07_ B	PSRR	80	100 —	_	70 80	100 100	_	dB
Supply Current (Each Amplifier)	ID		1.4	2.5		1.4	2.5	mA
Unity Gain Bandwidth	BW	_	4.0	_	_	4.0	_	MHz
Slew Rate (See Figure 1) $V_{in} = 10 \text{ V}, R_L = 2.0 \text{ k}, C_L = 100 \text{ pF}$	SR	10	13	_	_	13		V/μs

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}$, $V_{FF} = -15 \text{ V}$, $T_{\Delta} = +25^{\circ}$ unless otherwise noted).

		TL07 M		TL07_ C TL07_ AC TL07_ BC				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Rise Time (See Figure 1)	t _r	_	0.1	_	_	0.1	_	μs
Overshoot Factor $V_{in} = 20 \text{ mV}$, $R_L = 2.0 \text{ k}$, $C_L = 100 \text{ pF}$		_	10	-	_	10	_	%
Equivalent Input Noise Voltage $R_S = 100 \Omega$, $f = 1000 Hz$	e _n	_	18	_	_	18	_	nV/√Hz
Equivalent Input Noise Current $R_S = 100 \Omega$, $f = 1000 Hz$	in	_	0.01	_	_	0.01	<u> </u>	pA/√Hz
Total Harmonic Distortion V_O (RMS) = 10 V, $R_S \le 1.0$ k $R_L \ge 2.0$ k, f = 1000 Hz	THD		0.01			0.01	-	%
Channel Separation $A_V = 100$	_	_	120	_	_	120	_	dB

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}$, $V_{EE} = -15 \text{ V}$, $T_A = T_{high}$ to T_{low} [Note 3]).

		TL07_ C TL07_ AC TL07_ M TL07_ BC						
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S ≤ 10 k, V _{CM} = 0)	VIO							mV
TL071, TL072		_	_	9.0	l —	_	13	
TL074		-		15	i —	_	13	
TL07_ A	1	-					7.5	
TL07 B		_		l —		_	5.0	
Input Offset Current (V _{CM} = 0) (Note 4)	10							nA
TL07_		_	l —	20		_	2.0	
TL07_ A, TL07_ B		-		_		_	2.0	
Input Bias Current (V _{CM} = 0) (Note 4)	Iв							nA
TL07_		-		50	_	l —	7.0	
TL07 A, TL07 B		 	_			_	7.0	
Large-Signal Voltage Gain (V _O = ±10 V, R _L ≥ 2.0 k)	AVOL							V/mV
TL07_	'	20	1 —	-	15	_	l —	
TL07 A, TL07 B		_	_	_	25			
Output Voltage Swing (Peak-to-Peak)	Vo							V
(RL ≥ 10 k)		24		-	24	-	-	
(R _L ≥ 2.0 k)		20	-	-	20	-		

NOTES (Continued):

- 3. Tlow = -55°C for TL071M, TL072M, TL074M = 0°C for TL071C, TL071AC, TL071BC TL072C, TL072AC, TL072BC
- Thigh = + 125°C for TL071M, TL072M, TL074M
- = +70°C for TL071C, TL071AC, TL071BC TL072C, TL072AC, TL072BC
- TL072C, TL072AC, TL072BC TL074C, TL074AC, TL074BC
- Input Bias currents of JFET input op amps approximately double for every 10°C rise in Junction Temperature as shown in Figure 3. To maintain Junction Temperature as close to ambient temperatures as possible, pulse techniques must be used during test.

TEST CIRCUITS

FIGURE 1 — UNITY GAIN VOLTAGE FOLLOWER

TL074C, TL074AC, TL074BC

FIGURE 2 — INVERTING GAIN OF 10 AMPLIFIER

FIGURE 3 — INPUT BIAS CURRENT versus TEMPERATURE

FIGURE 4 — OUTPUT VOLTAGE SWING versus FREQUENCY

FIGURE 5 — OUTPUT VOLTAGE SWING versus LOAD RESISTANCE

FIGURE 6 — OUTPUT VOLTAGE SWING versus SUPPLY VOLTAGE

FIGURE 7 — OUTPUT VOLTAGE SWING versus TEMPERATURE

FIGURE 8 — SUPPLY CURRENT PER AMPLIFIER Versus TEMPERATURE

FIGURE 9 — LARGE-SIGNAL VOLTAGE GAIN AND PHASE SHIFT versus FREQUENCY

FIGURE 10 — LARGE-SIGNAL VOLTAGE GAIN versus TEMPERATURE

FIGURE 11 — NORMALIZED SLEW RATE versus TEMPERATURE

FIGURE 12 — EQUIVALENT INPUT NOISE VOLTAGE versus FREQUENCY

FIGURE 13 — TOTAL HARMONIC DISTORTION versus FREQUENCY

REPRESENTATIVE CIRCUIT SCHEMATIC (Each Amplifier) Output ₀ V_{CC} Q2 Q4 Q5 Q6 Inputs \$ 2.0 k Q17 Q20 Q15 Q19 10 pF Q14 021 022 024 Q13 Q16 Q12 Q11 Q25 Q10 Q9 08 Offset Null 1.5 k **≷** (TL071 only) Bias Circuitry Common to All Amplifiers

FIGURE 14 — AUDIO TONE CONTROL AMPLIFIER

FIGURE 15 — HIGH Q NOTCH FILTER

TL081 TL082 TL084

Specifications and Applications Information

JFET INPUT OPERATIONAL AMPLIFIERS

These low-cost JFET input operational amplifiers combine two state-of-the-art linear technologies on a single monolithic integrated circuit. Each internally compensated operational amplifier has well matched high voltage JFET input devices for low input offset voltage. The BIFET technology provides wide bandwidths and fast slew rates with low input bias currents, input offset currents, and supply currents.

These devices are available in single, dual and quad operational amplifiers which are pin-compatible with the industry standard MC1741, MC1458, and the MC3403/LM324 bipolar products. Devices with an "M" suffix are specified over the military operating memberature range of -55°C to $+125^{\circ}\text{C}$ and those with a "C" suffix are specified from 0°C to $+70^{\circ}\text{C}$.

- Input Offset Voltage Options of 3.0, 6.0, and 15 mV Max
- Low Input Bias Current 30 pA
- Low Input Offset Current 5.0 pA
- Wide Gain Bandwidth 3.0 MHz
- High Slew Rate 13 V/μs
- Low Supply Current 1.4 mA per Amplifier
- High Input Impedance 10¹² Ω
- Industry Standard Pinouts

ORDERING INFORMATION

Op Amp Function	Device	Temperature Range	Package
Single	TL081ACJG, BCJG, CJG	0 to +70°C	Ceramic DIP
	TL081ACP, BCP, CP	0 to +70°C	Plastic DIP
	TL081MJG	-55 to +125°C	Ceramic DIP
Dual	TL082ACJG, BCJG, CJG	0 to +70°C	Ceramic DIP
	TL082ACP, BCP, CP	0 to +70°C	Plastic DIP
	TL082MJG	-55 to +125°C	Ceramic DIP
Quad	TL084ACJ, BCJ, CJ	0 to +70°C	Ceramic DIP
	TL084ACN, BCN, CN	0 to +70°C	Plastic DIP
	TL084MJ	-55 to +125°C	Ceramic DIP

JFET-INPUT OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUITS

N SUFFIX PLASTIC PACKAGE CASE 646-05 (TL084 only) J SUFFIX
CERAMIC PACKAGE
CASE 632-02
MO-001AA
(TL084 only)

MAXIMUM RATINGS

Rating	Symbol	TL08M	TL08C TL08AC TL08BC	Unit
Supply Voltage	V _{CC}	+ 18 - 18	+ 18 - 18	٧
Differential Input Voltage	V _{ID}	±30	±30	V
Input Voltage Range (Note 1)	V _{IDR}	± 15	± 15	V
Output Short-Circuit Duration (Note 2)	ts	Conti	nuous	
Power Dissipation Plastic Package (N,P) Derate above T _A = +47°C Ceramic Package (J,JG) Derate above T _A = +82°C	P _D 1/θ _J A P _D 1/θ _J A	— — 680 10	680 10 680 10	mW mW/°C mW mW/°C
Operating Ambient Temperature Range	TA	-55 to +125	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	°C

NOTES: 1. The magnitude of the input voltage must not exceed the magnitude of the supply voltage or 15 volts, whichever is less.

The output may be shorted to ground or either supply. Temperature and/or supply voltages must be limited to ensure that power dissipation ratings are not exceeded.

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}$, $V_{EE} = -15 \text{ V}$, $T_{A} = +25 ^{\circ}\text{C}$ unless otherwise noted).

			TL08M			TL08C TL08AC TL08BC		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (Rs \leq 10 k, V _{CM} = 0) TL081, TL082 TL084 TL08A TL08B	V _{IO}	_ _ _	3.0 3.0 —	6.0 9.0 —		5.0 5.0 3.0 2.0	15 15 6.0 3.0	mV
Average Temperature Coefficient of Input Offset Voltage $R_S = 50 \Omega$, $T_A = T_{low}$ to T_{high} (Note 3)	ΔV _{IO} /ΔΤ	_	10	_	_	10	_	μV/°C
Input Offset Current (V _{CM} = 0) (Note 4) TL08	10	_	5.0 —	100 —	_	5.0 5.0	200 100	рA
Input Bias Current (V _{CM} = 0) (Note 4) TL08 TL08A, TL08B	IB	_	30 —	200 —	_	30 30	400 200	рA
Input Resistance	· r _i	_	1012	_	_	1012		Ω
Common Mode Input Voltage Range TL08	VICR	± 11	+ 15, – 12 —	_	±10 ±11	+ 15, - 12 ± 15, - 12	=	V
Large-Signal Voltage Gain ($V_0 = \pm 10 \text{ V}$, $R_L \ge 2.0 \text{ k}$) TL08	Avol	25 —	150 —	_	25 50	150 150	=	V/mV
Output Voltage Swing (Peak-to-Peak) RL = 10 k	v _o	24	28	_	24	28	_	٧
Common Mode Rejection Ratio (Rg≤10 k) TL08 TL08A, TL08B	CMRR	80	100 —	_	70 80	100 100	_	dB
Supply Voltage Rejection Ratio (R _S ≤10 k) TL08	PSRR	80	100 —	_	70 80	100 100	_	dB
Supply Current (Each Amplifier)	ΙD	_	1.4	2.8		1.4	2.8	mA
Unity Gain Bandwidth	BW		4.0		_	4.0	_	MHz

TL081, TL082, TL084

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}$, $V_{EE} = -15 \text{ V}$, $T_A = +25^{\circ}\text{C}$ unless otherwise noted).

			TL08N	1		TL08C TL08AC TL08BC		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Slew Rate (See Figure 1) $V_{in} = 10 \text{ V}, R_L = 2.0 \text{ k}, C_L = 100 \text{ pF}$	SR	8.0	13	_	_	13		V/μs
Rise Time (See Figure 1)	tr	-	0.1	-	<u> </u>	0.1	-	μs
Overshoot Factor $V_{in} = 20 \text{ mV}, R_L = 2.0 \text{ k}, C_L = 100 \text{ pF}$	_	_	10	-	_	10	_	%
Equivalent Input Noise Voltage R _S = 100 Ω, f = 1000 Hz	e _n	-	25	_	_	25	-	nV/√Hz
Channel Separation Ay = 100	_	-	120	_	-	120	_	dB

ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEF = -15 V, TA = Tlow to Thigh [Note 3].)

			TL08M			TL08C TL08AC TL08BC		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (R _S ≤10 k, V _{CM} = 0)	V _{IO}							mV
TL081, TL082		_	_	9.0	_	<u> </u>	20	
TL084		_		15			20	
TL08A		_	_	-	l —	_	7.5	
TL08B		_		-	-	_	5.0	
Input Offset Current (V _{CM} = 0) (Note 4)	lio							nA
TL08	.0	l —	_	20			5.0	
TL08A, TL08.	В	_	_	l —	_	_	3.0	
Input Bias Current (V _{CM} = 0) (Note 4)	liB							nA
TL08		l —	_	50		_	10	
TL08A, TL08.	В	_	_	-	_	_	7.0	
Large-Signal Voltage Gain (V _O = ±10 V, R _L ≥2.0 k)	AVOL							V/mV
TL08		15		_	15		-	
TL08A, TL08.	В		_	-	25	_	-	
Output Voltage Swing (Peak-to-Peak)	Vo							٧
(R _I ≥10 k)		24		-	24	-	—	
(R _I ≥2.0 k)		20	_	-	20	_	l —	

NOTES (continued):

- 3. Tiow = -55°C for TL081M, TL082M, TL084M = 0°C for TL081C, TL081AC, TL081BC TL082C, TL082AC, TL082BC TL084C, TL084AC, TL084BC
- $\begin{array}{ll} T_{\mbox{high}} &= +125^{\circ}\mbox{C for TL081M, TL082M, TL084M} \\ &= +70^{\circ}\mbox{C for TL081C, TL081AC, TL081BC} \\ &= TL082\mbox{C, TL082AC, TL082BC} \end{array}$ TL084C, TL084AC, TL084BC
- 4. Input Bias currents of JFET input Op Amps approximately double for every 10°C rise in junction temperature as shown in Figure 3. To maintain junction temperature as close to ambient temperature as possible, pulse techniques must be used during test.

TEST CIRCUITS

FIGURE 1 — UNITY GAIN VOLTAGE

FOLLOWER o Vo Vin O $C_L = 100 pF$ $R_{L} = 2.0 \text{ k}$

FIGURE 2 — INVERTING GAIN OF 10 **AMPLIFIER**

FIGURE 3 — INPUT BIAS CURRENT Versus TEMPERATURE

FIGURE 4 — OUTPUT VOLTAGE SWING versus FREQUENCY

FIGURE 5 — OUTPUT VOLTAGE SWING versus LOAD RESISTANCE

FIGURE 6 — OUTPUT VOLTAGE SWING versus SUPPLY VOLTAGE

FIGURE 7 — OUTPUT VOLTAGE SWING versus TEMPERATURE

FIGURE 8 — SUPPLY CURRENT PER AMPLIFIER Versus TEMPERATURE

FIGURE 9 — LARGE-SIGNAL VOLTAGE GAIN AND PHASE SHIFT versus FREQUENCY

FIGURE 10 — LARGE-SIGNAL VOLTAGE GAIN Versus TEMPERATURE

FIGURE 11 — NORMALIZED SLEW RATE versus TEMPERATURE

FIGURE 12 — EQUIVALENT INPUT NOISE VOLTAGE
Versus FREQUENCY

FIGURE 13 — TOTAL HARMONIC DISTORTION versus FREQUENCY

REPRESENTATIVE CIRCUIT SCHEMATIC (Each Amplifier)

TYPICAL APPLICATIONS

FIGURE 15 - POSITIVE PEAK DETECTOR

FIGURE 16 — LONG INTERVAL RC TIMER

Time (t) = R4 $C\ell n$ ($V_R/V_R - V_1$), $R_3 = R_4$, $R_5 = 0.1$ R6 If R1 = R2: t = 0.693 R4C

Design Example: 100 Second Timer

$$V_R = 10 \text{ V}$$
 $C = 1.0 \mu\text{F}$ R3 R6 = 20 k R5 = 2.0 k R1

R3 = R4 = 144 M R1 = R2 = 1.0 k

FIGURE 17 - ISOLATING LARGE CAPACITIVE LOADS

- Overshoot < 10%
- $t_s = 10 \mu s$
- When driving large C_L, the V_{out} slew rate is determined by C_L and I_{out(max)}:

$$\frac{\Delta V_{out}}{\Delta t} \, = \, \frac{I_{out}}{C_L} \cong \frac{0.02}{0.5} \; \text{V/}\mu\text{s} \, = \, 0.04 \; \text{V/}\mu\text{s} \; (\text{with } C_L \; \text{shown})$$

FIGURE 18 — VOLTAGE CONTROLLED CURRENT SOURCE

If R1 through R4 >> R5 then $I_{out} = \frac{V_{in}}{R5}$

Power Supply

POWER SUPPLY

Device	Function	Page
LM109	Positive Voltage Regulator	4-4
LM117	3-Terminal Adjustable Positive Voltage Regulator	4-9
LM117L	Low-Current 3-Terminal Adjustable Positive Voltage Regulator	4-17
LM117M	Medium-Current 3-Terminal Adjustable Positive Voltage Regulator	4-25
LM123,A	3-Ampere, 5 Volt Positive Voltage Regulator	
LM137	3-Terminal Adjustable Negative Voltage Regulator	
LM137M	Medium-Current 3-Terminal Adjustable Negative Voltage Regulator	4-46
LM140,A	Three-Terminal Positive Fixed Voltage Regulators	4-53
LM150	3-Terminal Adjustable Positive Voltage Regulator	4-69
LM209	Positive Voltage Regulator	
LM217	3-Terminal Adjustable Positive Voltage Regulator	4-9
LM217L	Low-Current 3-Terminal Adjustable Positive Voltage Regulator	4-17
LM217M	Medium-Current 3-Terminal Adjustable Positive Voltage Regulator	4-25
LM223,A	3-Ampere, 5 Volt Positive Voltage Regulator	4-33
LM237	3-Terminal Adjustable Negative Voltage Regulator	
LM237M	Medium-Current 3-Terminal Adjustable Negative Voltage Regulator	4-46
LM250	3-Terminal Adjustable Positive Voltage Regulator	4-69
LM309	Positive Voltage Regulator	4-4
LM317	3-Terminal Adjustable Positive Voltage Regulator	4-9
LM317L	Low-Current 3-Terminal Adjustable Positive Voltage Regulator	
LM317M	Medium-Current 3-Terminal Adjustable Positive Voltage Regulator	4-25
LM323,A	3-Ampere, 5 Volt Positive Voltage Regulator	4-33
LM337	3-Terminal Adjustable Negative Voltage Regulator	
LM337M	Medium-Current 3-Terminal Adjustable Negative Voltage Regulator	4-46
LM340,A	Three-Terminal Positive Fixed Voltage Regulators	4-53
LM350	3-Terminal Adjustable Positive Voltage Regulator	
MC1463	Adjustable Negative Voltage Regulator	4-77
MC1466L	Voltage and Current Regulator	
MC1468	Dual ±15-Volt Tracking Regulator	4-103
MC1469	Adjustable Positive Voltage Regulator	
MC1563	Adjustable Negative Voltage Regulator	4-77
MC1566L	Voltage and Current Regulator	4-93
MC1568	Dual ±15-Volt Tracking Regulator	
MC1569	Adjustable Positive Voltage Regulator	4-109
MC1723,C	Adjustable Positive or Negative Voltage Regulator	4-128
MC3324,A	Power Supply Supervisory Circuit/Dual-Voltage Comparator	4-160
MC3420	Switchmode Regulator Control Circuit	4-134
MC3423	Overvoltage Sensing Circuit	4-153
MC3424,A	Power Supply Supervisory Circuit/Dual-Voltage Comparator	
MC3425,A	Power Supply Supervisory/Over-Under-Voltage Protection Circuit	
MC3520	Switchmode Regulator Control Circuit	4-134
MC3523	Overvoltage Sensing Circuit	
MC3524,A	Power Supply Supervisory/Over-Under-Voltage Protection Circuit	4-160
MC3525,A	Power Supply Supervisory/Over-Under-Voltage Protection Circuit	4-176
MC7800 Series	3-Terminal Positive Voltage Regulators	4-186
MC78L00C,AC Series		4-198
MC78M00BC Series	Positive Voltage Regulator	
MC78T00 Series	Three-Ampere Positive Voltage Regulators	
MC7900C Series	Three-Terminal Negative Fixed Voltage Regulators	
MC79L00C,AC Series	Three-Terminal Negative Fixed Voltage Regulators	
MC79M00 Series	Three-Terminal Negative Fixed Voltage Regulators	
MC33063	DC to DC Converter Control Circuits	
MC34060	Switchmode Pulse Width Modulation Control Circuits	
MC34061,A	Three-Terminal Programmable Overvoltage Sensing Circuit	4-255

Device	Function	Page
MC34062	Pin-Programmable Overvoltage Sensing Circuit	4-262
MC34063	DC to DC Converter Control Circuits	4-273
MC35060	Switchmode Pulse Width Modulation Control Circuits	4-243
MC35061,A	Three-Terminal Programmable Overvoltage Sensing Circuit	4-255
MC35062	Pin-Programmable Overvoltage Sensing Circuit	4-262
MC35063	DC to DC Converter Control Circuits	
SG1525A	Pulse Width Modulator Control Circuits	4-279
SG1526	Pulse Width Modulation Control Circuits	4-286
SG1527A	Pulse Width Modulator Control Circuits	4-279
SG2525A	Pulse Width Modulator Control Circuits	4-279
SG2526	Pulse Width Modulation Control Circuits	4-286
SG2527A	Pulse Width Modulator Control Circuits	
SG3525A	Pulse Width Modulator Control Circuits	4-279
SG3526	Pulse Width Modulation Control Circuits	4-286
SG3527A	Pulse Width Modulator Control Circuits	4-279
TCA5600	Universal Microprocessor Power Supply Controller	4-294
TCF5600	Universal Microprocessor Power Supply Controller	4-294
TDA4600	Flyback Converter Regulator Control Circuit	4-305
TL431 Series	Programmable Precision References	4-311
TL494	Switchmode Pulse Width Modulation Control Circuits	4-319
TL495	Switchmode Pulse Width Modulation Control Circuits	4-319
TL780	Three-Terminal Positive Voltage Regulators	4-330
μA78S40	Universal Switching Regulator Subsystem	4-336

LM109 LM209 LM309

MONOLITHIC POSITIVE THREE - TERMINAL FIXED VOLTAGE REGULATOR

A versatile positive fixed +5.0-volt regulator designed for easy application as on on-card, local voltage regulator for digital logic systems. Current limiting and thermal shutdown are provided to make the units extremely rugged.

In most applications only one external component, a capacitor, is required in conjunction with the LM109 Series devices. Even this component may be omitted if the power-supply filter is not located an appreciable distance from the regulator.

- High Maximum Output Current Over 1.0 Ampere in TO-3 type Package — Over 200 mA in TO-39 type Package.
- Minimum External Components Required
- Internal Short-Circuit Protection
- Internal Thermal Overload Protection
- Excellent Line and Load Transient Rejection
- Designed for Use with Popular MDTL and MTTL Logic

POSITIVE VOLTAGE REGULATOR

ORDERING INFORMATION					
Device	Temperature Range	Package			
LM109H	$T_J = -55^{\circ}C \text{ to } + 150^{\circ}C$	Metal Can			
LM109K	$T_J = -55^{\circ}C \text{ to } + 150^{\circ}C$	Metal Power			
LM209H	$T_J = -55^{\circ}C \text{ to } + 150^{\circ}C$	Metal Can			
LM209K	$T_J = -55^{\circ}C \text{ to } + 150^{\circ}C$	Metal Power			
LM309H	$T_J = 0^{\circ}C \text{ to } + 125^{\circ}C$	Metal Can			
LM309K	$T_J = 0^{\circ}C \text{ to } + 125^{\circ}C$	Metal Power			

FIXED 5.0 V REGULATOR Input C1* 0.22 µF Ground Fixed 5.0 V REGULATOR C2 SV Output C2

TYPICAL APPLICATION

 Required if regulator is located an appreciable distance from power supply filter.
 Although no output capacitor is needed for stability, it does improve transient response.

LM109, LM209, LM309

MAXIMUM BATINGS

Rating	Symbol	Value	Unit
Input Voltage	Vin	35	Vdc
Power Dissipation	PD	Internally Limited	
Junction Temperature Range	Tj		оС
LM109		-55 to +150	
LM209		-55 to +150	
LM309		0 to +125	
Storage Temperature Range	T _{stg}	-65 to +150	oC
Lead Temperature (soldering, t = 60 s)	TS	300	oC.

ELECTRICAL CHARACTERISTICS

			LM109/LM	209 ①		LM309	2)	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	v _o	4.7	5.05	5.3	4.8	5.05	5.2	Vdc
Input Regulation (T _J = +25°C)	Regline		4.0	50		4.0	50	mV
7.0 ≤ V _{in} ≤ 25 V	1							
Load Regulation (Tj +25°C)	Regload							mV
Case 11-01 (type TO-3) 5.0 mA \leq 10 \leq 1.5A			50	100		50	100	
Case 79-02 (TO-39) 5.0 mA \leqslant 1 $_{ m O}$ \leqslant 0.5A			20	50		20	50	
Output Voltage Range	V _O	4.6		5.4	4.75		5.25	Vdc
$7.0 \text{ V} \leqslant \text{V}_{10} \leqslant 25 \text{ V}$								
$5.0 \text{ mA} \leqslant I_{O} \leqslant I_{\text{max}}, P \leqslant P_{\text{max}}$								
Quiescent Current (7.0 V ≤ V _{in} ≤ 25 V)	I _B		5.2	10	-	5.2	10	mAdd
Quiescent Current Change (7.0 V \leq V _{in} \leq 25 V)	ΔIB			0.5	-		0.5	
$5.0 \text{ mA} \leqslant 1_{\text{O}} \leqslant 1_{\text{max}}$				0.8			0.8	
Output Noise Voltage (T _A = +25°C)	٧N		40			40		μ∨
10 Hz ≤ f ≤ 100 kHz								
Long Term Stability	S		-	10			20	mV
Thermal Resistance, Junction to Case ③	θЈС							°C/W
Case 1 (type TO-3)			3.0		-	3.0	-	
Case 79-02 (TO-39)			15		-	15		

NOTES:

- ① Unless otherwise specified, these specifications apply for $-55^{\circ}\text{C} \leqslant \text{T}_J \leqslant +150^{\circ}\text{C} \leqslant \text{T}_J \leqslant +150^{\circ}\text{C} \text{ for the}$ LM209). For Case 79 02 (TO 39) $V_{10} = 10 \text{ V}$, $I_Q = 0.1 \text{ A}$, $I_{max} = 0.2 \text{ A}$ and $P_{max} = 2.0 \text{ W}$. For Case 1 (type TO-3) $V_{10} = 10 \text{ V}$, $I_Q = 0.5 \text{ A}$, $I_{max} = 1.0 \text{ A}$ and $P_{max} = 20 \text{ W}$.
- ② Unless otherwise specified, these specifications apply for $0^{\circ}C \le T_{J} \le +125^{\circ}C$, $V_{in} = 10V$. For Case 79 02 (TO 39) $I_{O} = 0.1A$, $I_{max} = 0.2A$ and, $P_{max} = 2.0$ W. For Case 1 (type TO·3) $I_{O} = 0.5$ A, $I_{max} = 1.0$ A and $P_{max} = 20$ W.
- (3) Without a heat sink, the thermal resistance of the Case 79.02 (TO-39)* package is about | 150°C/W, while that of the Case 1 (type TO 3) package is approximately 35°C/W. With a heat sink, the effective thermal resistance can only approach the values specified, depending on the efficiency of the heat sink.

TYPICAL CHARACTERISTICS

(V_{in} = 10 V, T_A = +25°C unless otherwise noted.)

FIGURE 1 — MAXIMUM AVERAGE POWER DISSIPATION (LM109K, LM209K)

FIGURE 2 — MAXIMUM AVERAGE POWER DISSIPATION (LM109H, LM209H)

TYPICAL CHARACTERISTICS (continued)

 $(V_{in} = 10 \text{ V}, T_A = +25^{\circ}\text{C} \text{ unless otherwise noted.})$

FIGURE 3 – MAXIMUM AVERAGE POWER DISSIPATION

FIGURE 4 – MAXIMUM AVERAGE POWER DISSIPATION

FIGURE 5 - OUTPUT IMPEDANCE versus FREQUENCY

FIGURE 6 - PEAK OUTPUT CURRENT (K PACKAGE)

FIGURE 7 - PEAK OUTPUT CURRENT (H PACKAGE)

FIGURE 8 - RIPPLE REJECTION

TYPICAL CHARACTERISTICS (continued)

FIGURE 9 - DROPOUT VOLTAGE

FIGURE 10 – DROPOUT CHARACTERISTIC (K PACKAGE)

FIGURE 11 - OUTPUT VOLTAGE

FIGURE 12 – OUTPUT NOISE VOLTAGE

FIGURE 13 - QUIESCENT CURRENT

FIGURE 14 - QUIESCENT CURRENT

TYPICAL APPLICATIONS

FIGURE 15 - ADJUSTABLE OUTPUT REGULATOR

FIGURE 16 - CURRENT REGULATOR

FIGURE 17 – 5.0-VOLT, 3.0-AMPERE REGULATOR (with plastic boost transistor)

FIGURE 18 – 5.0 VOLT, 4.0-AMPERE TRANSISTOR (with plastic Darlington boost transistor)

FIGURE 19 - 5.0-VOLT, 10-AMPERE REGULATOR

FIGURE 20 – 5.0-VOLT, 10-AMPERE REGULATOR (with Short-Circuit Current Limiting for Safe-Area Protection of pass transistors)

Specifications and Applications Information

3-TERMINAL ADJUSTABLE OUTPUT POSITIVE VOLTAGE REGULATOR

The LM117/217/317 are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 1.5 A over an output voltage range of 1.2 V to 37 V. These voltage regulators are exceptionally easy to use and require only two external resistors test the output voltage. Further, they employ internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof.

The LM117 series serve a wide variety of applications including local, on card regulation. This device can also be used to make a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM117 series can be used as a precision current regulator.

- Output Current in Excess of 1.5 Ampere in TO-3 and TO-220 Packages
- Output Current in Excess of 0.5 Ampere in TO-39 Package
- Output Adjustable between 1.2 V and 37 V
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting Constant with Temperature
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-lead Transistor Packages
- Eliminates Stocking Many Fixed Voltages

STANDARD APPLICATION

- * = $\mathbf{C_{in}}$ is required if regulator is located an appreciable distance from power supply filter.
- ** = C_o is not needed for stability, however it does improve transient response.

$$V_{out} = 1.25 \text{ V } (1 + \frac{R_2}{R_1}) + I_{Adj} R_2$$

Since $I_{\mbox{Adj}}$ is controlled to less than 100 $\mu\mbox{A},$ the error associated with this term is negligible in most applications

LM117 LM217 LM317

3-TERMINAL ADJUSTABLE POSITIVE VOLTAGE REGULATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

Case is third electrical connection.

ORDERING INFORMATION

Device	Temperature Range	Package
LM117H	$T_1 = -55^{\circ}C$ to $+150^{\circ}C$	Metal Can
LM117K	$T_{\rm J} = -55^{\rm o}$ C to $+150^{\rm o}$ C	Metal Power
LM217H	$T_J = -25^{\circ}C \text{ to } +150^{\circ}C$	Metal Can
LM217K	$T_J = -25^{\circ}C \text{ to } +150^{\circ}C$	Metal Power
LM317H	$T_J = 0^{\circ}C \text{ to } +125^{\circ}C$	Metal Can
LM317K	$T_J = 0^{\circ}C \text{ to } +125^{\circ}C$	Metal Power
LM317T	$T_J = 0^{\circ}C \text{ to } +125^{\circ}C$	Plastic Power

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input-Output Voltage Differential	V _I -V _O	40	Vdc
Power Dissipation	PD	Internally Limited	
Operating Junction Temperature Range LM117 LM217 LM317	Т	-55 to +150 -25 to +150 0 to +125	°c
Storage Temperature Range	T _{stg}	-65 to +150	°c

ELECTRICAL CHARACTERISTICS (V_I-V_O = 5.0 V; I_O = 0.5 A for K and T packages; I_O = 0.1 A for H package; T_J = T_{low} to Thigh [see Note 1]; I_{max} and P_{max} per Note 2; unless otherwise specified.)

			LM117/217			LM317			
Characteristic	Figure	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Line Regulation (Note 3) $T_A = 25^{\circ}C$, 3.0 V \leq V _I -V _O \leq 40 V	1	Regline	-	0.01	0.02	_	0.01	0.04	%/V
Load Regulation (Note 3) $ T_A = 25^\circ\text{C}, \ 10 \ \text{mA} \le I_O \le I_{\text{max}} $ $ V_O \le 5.0 \ \text{V} $ $ V_O \ge 5.0 \ \text{V} $	2	Regload	_	5.0 0.1	15 0.3	_	5.0 0.1	25 0.5	mV
Thermal Regulation (T _A = +25°C) 20 ms Pulse		_	_	0.02	0.07	_	0.03	0.07	% V _O %/W
Adjustment Pin Current	3	Adi	_	50	100	_	50	100	μΑ
Adjustment Pin Current Change 2.5 V \leq V _I -V _O \leq 40 V 10 mA \leq I _L \leq I _{max} , P _D \leq P _{max}	1,2	الا	-	0.2	5.0	-	0.2	5.0	μА
Reference Voltage (Note 4) $3.0 \text{ V} \leq \text{V}_1\text{-V}_0 \leq 40 \text{ V}$ $10 \text{ mA} \leq \text{I}_0 \leq \text{I}_{max}$, $P_D \leq P_{max}$	3	V _{ref}	1.20	1.25	1.30	1.20	1.25	1.30	٧
Line Regulation (Note 3) 3.0 V \leq V _I -V _O \leq 40 V	1	Regline	_	0.02	0.05	_	0.02	0.07	%/V
Load Regulation (Note 3) 10 mA \leq I _O \leq I _{max} $V_O \leq$ 5.0 V $V_O \geq$ 5.0 V	2	Regload	_	20 0.3	50 1.0	_	20 0.3	70 1.5	mV % VO
Temperature Stability (T _{low} ≤ T _J ≤ T _{high})	3	Ts		0.7			0.7		% V _O
Minimum Load Current to Maintain Regulation (V _I -V _O = 40 V)	3	ILmin	_	3.5	5.0	_	3.5	10	mA
Maximum Output Current $V_I \cdot V_O \le 15 \ V, \ P_O \le P_{max}$ K and T Packages H Package $V_I \cdot V_O = 40 \ V, \ P_O \le P_{max}$, $T_A = 25 \ ^\circ C$ K and T Packages H Package	3	Imax	1.5 0.5 0.25	2.2 0.8 0.4 0.07		1.5 0.5 0.15	2.2 0.8 0.4 0.07		А
RMS Noise, % of V_O $T_A = 25^{\circ}C$, 10 Hz $\leq f \leq 10$ kHz	_	N	_	0.003	_	_	0.003	_	% V _O
Ripple Rejection, $V_O=10$ V, $f=120$ Hz (Note 5) Without $C_{Adj}=10~\mu F$	4	RR	— 66	65 80		_ 66	65 80	_	dB
Long-Term Stability, $T_J = T_{high}$ (Note 6) $T_A = 25^{\circ}C$ for Endpoint Measurements	3	S	_	0.3	1.0	_	0.3	1.0	%/1.0 k Hrs.
Thermal Resistance Junction to Case H Package (TO-39) K Package (TO-3) T Package (TO-220)	_	R _θ JC	_	12 2.3 —	15 3.0	_	12 2.3 5.0	15 3.0 —	°C/W

NOTES: (1) T_{low} = -55°C for LM117 T_{high} = +150°C for LM117 = -25°C for LM217 = +150°C for LM217

= 0°C for LM317

(2) $I_{max} = 1.5 \text{ A for K (TO-3)}$ and T (TO-220) Packages

= +125°C for LM317

= 0.5 A for H (TO-39) Package

P_{max} = 20 W for K (TO-3) Package

= 20 W for T (TO-220) Package

= 2.0 W for H (TO-39) Package

(3) Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

- (4) Selected devices with tightened tolerance reference voltage available.
- (5) CADJ, when used, is connected between the adjustment pin and ground.
- (6) Since Long-Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

SCHEMATIC DIAGRAM

FIGURE 1 — LINE REGULATION AND $\Delta I_{\mbox{Adj}}/\mbox{LINE TEST CIRCUIT}$

FIGURE 2 – LOAD REGULATION AND $\Delta I_{\mbox{\sc Adj}}/\mbox{\sc LOAD}$ TEST CIRCUIT

FIGURE 3 - STANDARD TEST CIRCUIT

FIGURE 4 - RIPPLE REJECTION TEST CIRCUIT

APPLICATIONS INFORMATION

BASIC CIRCUIT OPERATION

The LM117 is a 3-terminal floating regulator. In operation, the LM117 develops and maintains a nominal 1.25 volt reference (V_{ref}) between its output and adjustment terminals. This reference voltage is converted to a programming current (I_{PROG}) by R1 (see Figure 17), and this constant current flows through R2 to ground. The regulated output voltage is given by:

$$V_{out} = V_{ref} (1 + \frac{R2}{R1}) + I_{Adj} R2$$

Since the current from the adjustment terminal (IAdj) represents an error term in the equation, the LM117 was designed to control IAdj to less than 100 μA and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM117 is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

FIGURE 17 - BASIC CIRCUIT CONFIGURATION

LOAD REGULATION

The LM117 is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

EXTERNAL CAPACITORS

A 0.1 μF disc or 1 μF tantalum input bypass capacitor (C_{in}) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (C_{ADJ}) prevents ripple from being amplified as the output voltage increased. A 10 μ F capacitor should improve ripple rejection about 15dB at 120 Hz in a 10 volt application.

Although the LM117 is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (C_0) in the form of a 1 μF tantalum or 25 μF aluminum electrolytic capacitor on the output swamps this effect and insures stability.

PROTECTION DIODES

When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 18 shows the LM117 with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values ($C_0 > 25~\mu\text{F}$, $C_{ADJ} > 10~\mu\text{F}$). Diode D₁ prevents C_0 from discharging thru the I.C. during an input short circuit. Diode D₂ protects against capacitor C_{ADJ} discharging through the I.C. during an output short circuit. The combination of diodes D1 and D2 prevents C_{ADJ} from discharging through the I.C. during an input short circuit.

FIGURE 18 – VOLTAGE REGULATOR WITH PROTECTION DIODES

FIGURE 19 – "LABORATORY" POWER SUPPLY WITH ADJUSTABLE CURRENT LIMIT AND OUTPUT VOLTAGE

FIGURE 20 - ADJUSTABLE CURRENT LIMITER

FIGURE 22 - SLOW TURN-ON REGULATOR

FIGURE 21 - 5 V ELECTRONIC SHUT DOWN REGULATOR

FIGURE 23 - CURRENT REGULATOR

LM117L LM217L LM317L

Specifications and Applications Information

3-TERMINAL ADJUSTABLE OUTPUT POSITIVE VOLTAGE REGULATOR

The LM117L/217L/317L are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 100 mA over an output voltage range of 1.2 V to 37 V. These voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof.

The LM117L series serves a wide variety of applications including local, on card regulation. This device can also be used to make a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM117L series can be used as a precision current regulator.

- Output Current in Excess of 100 mA
- Output Adjustable Between 1.2 V and 37 V
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-Lead Transistor Packages
- Eliminates Stocking Many Fixed Voltages

LOW-CURRENT 3-TERMINAL ADJUSTABLE POSITIVE VOLTAGE REGULATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

Z SUFFIX
CASE 29-02
TO-226AA
(TO-92)
PLASTIC PACKAGE
(LM317 only)

Pin 1 Adjust
Pin 2 Vout
Pin 3 Vin 1
2 3

- * = C_{in} is required if regulator is located an appreciable distance from power supply filter.
- ** = C_o is not needed for stability, however it does improve transient response.

$$V_{out} = 1.25 \text{ V } (1 + \frac{R_2}{R_1}) + I_{Adj} R_2$$

Since I_{Adj} is controlled to less than 100 $\mu A,$ the error associated with this term is negligible in most applications

ORDERING INFORMATION

Device	Temperature Range	Package
LM117LH	$T_J = -55^{\circ}C \text{ to } +150^{\circ}C$	Metal Can
LM217LH	$T_J = -25^{\circ}C \text{ to } + 150^{\circ}C$	Metal Can
LM317LH	$T_J = 0^{\circ}C \text{ to } + 125^{\circ}C$	Metal Can
LM317LZ	$T_J = 0^{\circ}C \text{ to } + 125^{\circ}C$	Plastic

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Input-Output Voltage Differential		V _I -V _O	40	Vdc
Power Dissipation		PD	Internally Limited	
Operating Junction Temperature Range	LM117L LM217L LM317L	TJ	-55 to +150 -25 to +150 0 to +125	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS

 $(V_I - V_O = 5 \text{ V}; I_O = 40 \text{ mA}; T_J = T_{low} \text{ to } T_{high} \text{ [see Note 1]}; I_{max} \text{ and } P_{max} \text{ per Note 2}; unless otherwise specified.)}$

	T		LN	//117L/21	17L	T	LM317L		
Characteristic	Figure	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Line Regulation (Note 3) $T_A = 25^{\circ}C$, $3 \text{ V} \leq \text{V}_1 \text{-V}_0 \leq 40 \text{ V}$	1	Regline	_	0.01	0.02	_	0.01	0.04	%/V
Load Regulation (Note 3), T_A = 25°C 5 mA \leq I _O \leq I _{max} — LM117L/217L 10 mA \leq I _O \leq I _{max} — LM317L	2	Reg _{load}							
$V_0 \le 5V$ $V_0 \ge 5 V$			_	5 0.1	15 0.3	_	5 0.1	25 0.5	mV % VO
Adjustment Pin Current	3	l _{Adj}	_	50	100	_	50	100	μΑ
$ \begin{array}{l} \mbox{Adjustment Pin Current Change} \\ 2.5 \ \mbox{V} \le \ \mbox{$V_{\rm I}$-$V_{\rm O}$} \le 40 \ \mbox{$V_{\rm I}$-$V_{\rm D}$} \le \mbox{$P_{\rm max}$} \\ 5 \ \mbox{mA} \le \ \mbox{$I_{\rm O}$} \le \mbox{$I_{\rm max}$} - \mbox{$LM117L/217L$} \\ 10 \ \mbox{mA} \le \ \mbox{$I_{\rm O}$} \le \mbox{$I_{\rm max}$} - \mbox{$LM317L$} \\ \end{array} $	1,2	∆lAdj		0.2	5	_	0.2	5	μА
$\begin{aligned} & \text{Reference Voltage (Note 4)} \\ & 3 \text{ V} \leqslant \text{V}_{\text{I}}\text{-V}_{\text{O}} \leqslant 40 \text{ V}, \text{P}_{\text{D}} \leqslant \text{P}_{\text{max}} \\ & 5 \text{ mA} \leqslant \text{I}_{\text{O}} \leqslant \text{I}_{\text{max}} - \text{LM117L/217L} \\ & 10 \text{ mA} \leqslant \text{I}_{\text{O}} \leqslant \text{I}_{\text{max}} - \text{LM317L} \end{aligned}$	3	V _{ref}	1.20	1.25	1.30	1.20	1.25	1.30	V
Line Regulation (Note 3) $3 \text{ V} \leq \text{V}_1 \text{-V}_0 \leq 40 \text{ V}$	1	Reg _{line}		0.02	0.05	_	0.02	0.07	%/V
$ \begin{split} &\text{Load Regulation (Note 3)} \\ &5 \text{ mA} \leqslant I_O \leqslant I_{max} - \text{LM117L/217L} \\ &10 \text{ mA} \leqslant I_O \leqslant I_{max} - \text{LM317L} \\ &V_O \leqslant 5 \text{ V} \end{split} $	2	Reg _{load}		20	50		20	70	mV
V _O ≥ 5 V				0.3	1		0.3	1.5	%VO
Temperature Stability ($T_{low} \le T_J \le T_{high}$)	3	TS	_	0.7	_		0.7	_	%VO
Minimum Load Current to Maintain Regulation (V _I -V _O = 40 V)	3	^I Lmin	_	3.5	5	_	3.5	10	mA
$\label{eq:max_max} \begin{array}{ll} \text{Maximum Output Current} \\ V_l \cdot V_O \leqslant 20 \text{ V, } P_D \leqslant P_{\text{max}} \text{ H Package} \\ V_l \cdot V_O \leqslant 6.25 \text{ V, } P_D \leqslant P_{\text{max}}. \text{ Z Package} \\ V_l \cdot V_O = 40 \text{ V, } P_D \leqslant P_{\text{max}}. \text{ TA} = 25^{\circ}\text{C} \end{array}$	3	I _{max}	100 100	200 200	_ _	100 1005	200 200	_	А
H Package Z Package			_	50 20	_	_	50 20	_	
RMS Noise, % of V_O T_A = 25°C, 10 Hz \leqslant f \leqslant 10 kHz	_	N	_	0.003	_		0.003	_	%Vo
Ripple Rejection (Note 5) V_O = 1.25 V, f = 120 Hz C_{ADJ} = 10 μF V_O = 10.0 V	4	RR	66 —	80 80	_	60 —	80 80	_	dB
Long Term Stability, $T_J = T_{high}$ (Note 6) $T_A = 25^{\circ}C$ for Endpoint Measurements	3	S	valence	0.3	1	_	0.3	1	%/1.0 k Hrs.
Thermal Resistance Junction to Case H Package (TO-39) Z Package (TO-92)	_	R _⊕ JC	_	40 —	_	_	40 160	_	°C/W

(1) T_{low} = -55°C for LM117L -25°C for LM217L

0°C for LM317L

(2) $I_{max} = 100 \text{ mA}$ P_{max} = 2 W for H (TO-39) Package = 625 mW for Z (TO-92) Package T_{high} = +150°C for LM117L = +150°C for LM217L = +125°C for LM317L

(3) Load and line regulation are specified at constant junction temperature. Changes in $V_{\mbox{\scriptsize O}}$ due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

(4) Selected devices with tightened tolerance reference voltage available. (5) CADJ, when used, is connected between the adjustment pin and

(6) Since Long Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

LM117L, LM217L, LM317L

SCHEMATIC DIAGRAM

FIGURE 1 — LINE REGULATION AND $\Delta I_{\mbox{Adj}}/\mbox{LINE TEST CIRCUIT}$

FIGURE 2 – LOAD REGULATION AND $\Delta I_{\mbox{Adj}}/\mbox{LOAD}$ TEST CIRCUIT

FIGURE 3 - STANDARD TEST CIRCUIT

FIGURE 4 - RIPPLE REJECTION TEST CIRCUIT

LM117L, LM217L, LM317L

APPLICATIONS INFORMATION

BASIC CIRCUIT OPERATION

The LM117L is a 3-terminal floating regulator. In operation, the LM117L develops and maintains a nominal 1.25 volt reference (V_{ref}) between its output and adjustment terminals. This reference voltage is converted to a programming current (IPROG) by R1 (see Figure 13), and this constant current flows through R2 to ground. The regulated output voltage is given by:

$$V_{out} = V_{ref} (1 + \frac{R2}{R1}) + I_{Adj} R2$$

Since the current from the adjustment terminal (I_{Adj}) represents an error term in the equation, the LM117L was designed to control I_{Adj} to less than 100 μ A and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM117L is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

FIGURE 17 - BASIC CIRCUIT CONFIGURATION

LOAD REGULATION

The LM117L is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

EXTERNAL CAPACITORS

A 0.1 μ F disc or 1 μ F tantalum input bypass capacitor (C_{in}) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (C_{ADJ}) prevents ripple from being amplified as the output voltage is increased. A 10 μ F capacitor should improve ripple rejection about 15dB at 120 Hz in a 10 volt application.

Although the LM117L is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (C_0) in the form of a 1 μF tantalum or 25 μF aluminum electrolytic capacitor on the output swamps this effect and insures stability.

PROTECTION DIODES

When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 14 shows the LM117L with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values ($C_{\rm O}>10~\mu\text{F},~C_{\rm ADJ}>5~\mu\text{F}).$ Diode D1 prevents $C_{\rm O}$ from discharging thru the I.C. during an input short circuit. Diode D2 protects against capacitor $C_{\rm ADJ}$ discharging through the I.C. during an output short circuit. The combination of diodes D1 and D2 prevents $C_{\rm ADJ}$ from discharging through the I.C. during an input short circuit.

FIGURE 18 – VOLTAGE REGULATOR WITH PROTECTION DIODES

FIGURE 19 - ADJUSTABLE CURRENT LIMITER

FIGURE 21 - SLOW TURN-ON REGULATOR

FIGURE 20 - 5 V ELECTRONIC SHUTDOWN REGULATOR

FIGURE 22 - CURRENT REGULATOR

LM117M LM217M LM317M

Specifications and Applications Information

3-TERMINAL ADJUSTABLE OUTPUT POSITIVE VOLTAGE REGULATOR

The LM117M/217M/317M are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 500 mA over an output voltage range of 1.2 V to 37 V. These voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof.

The LM117M series serve a wide variety of applications including local, on card regulation. This device can also be used to make a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM117M series can be used as a precision current regulator.

- · Output Current in Excess of 500 mA
- Output Adjustable Between 1.2 V and 37 V
- Internal Thermal Overload Protection
- Internal Short-Circuit-Current Limiting
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-Lead Transistor Packages
- Eliminates Stocking Many Fixed Voltages

MEDIUM-CURRENT 3-TERMINAL ADJUSTABLE POSITIVE VOLTAGE REGULATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

R SUFFIX METAL PACKAGE CASE 80-02 TO-213AA (TO-66)

(Bottom View)
Case is output

Pins 1 and 2 electrically isolated from case. Case is third electrical connection.

- * C_{in} is required if regulator is located an appreciable distance from power supply filter.
- ** C₀ is not needed for stability, however it does improve transient response.

$$V_0 = 1.25 \text{ V } (1 + \frac{R_2}{R_1}) + I_{adj} R_2$$

Since I_{adj} is controlled to less than 100 μ A, the error associated with this term is negligible in most applications

ORDERING INFORMATION

Device	Temperature Range	Package
LM117MR	T _J = -55°C to +150°C	Metal Power
LM217MR	T _J = -25°C to +150°C	Metal Power
LM317MR	T _J = 0°C to +125°C	Metal Power
LM317MT	T _J = 0°C to +125°C	Plastic Power

LM117M, LM217M, LM317M

MAXIMUM RATINGS

Rating		Symbol	Value	Unit	
Input-Output Voltage Differential		V _I -V _O	40	Vdc	
Power Dissipation		PD	Internally Limited		
Operating Junction Temperature Range	LM117M LM217M LM317M	Т	-55 to +150 -25 to +150 0 to +125	°C	
Storage Temperature Range		T _{stg}	-65 to +150	°C	

 $\textbf{ELECTRICAL CHARACTERISTICS} \ \, (V_I - V_O \ = \ 5.0 \ V, \ I_O \ = \ 0.1 \ A, \ T_J \ = \ T_{low} \ to \ T_{high} \ [see Note 1], \ P_{max} \ per \ Note 2, \ unless \ T_{low} \ to T_{high} \ [see Note 1], \ P_{max} \ per \ Note 2, \ unless \ T_{low} \ to T_{l$ otherwise specified.)

			LN	1117M/21	7M		LM317M		
Characteristic	Figure	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Line Regulation (Note 3) $T_A = 25^{\circ}C$, 3.0 $V \le V_I - V_O \le 40 \text{ V}$	1	Regline	1	0.01	0.02		0.01	0.04	%/V
Load Regulation (Note 3) $ T_{\mbox{A}} = 25^{\circ}\mbox{C}, \ 10 \ \mbox{mA} \le I_{\mbox{O}} \le 0.5 \ \mbox{A} \\ \mbox{$V_{\mbox{$O$}} \le 5.0 \ \mbox{$V$}} \\ \mbox{$V_{\mbox{O}} \ge 5.0 \ \mbox{V}} $	2	Reg _{load}	_	5.0 0.1	15 0.3	_	5.0 0.1	25 0.5	mV % VO
Adjustment Pin Current	3	l _{Adj}	_	50	100		50	100	μΑ
Adjustment Pin Current Change 2.5 V \leq V _I -V _O \leq 40 V 10 mA \leq I _L \leq 0.5 A, P _D \leq P _{max}	1,2	ΔlAdj	_	0.2	5.0		0.2	5.0	μΑ
Reference Voltage (Note 4) 3.0 V \leq V _I -V _O \leq 40 V 10 mA \leq I _O \leq 0.5 A, P _D \leq P _{max}	3	V _{ref}	1.20	1.25	1.30	1.20	1.25	1.30	٧
Line Regulation (Note 3) 3.0 $V \le V_I - V_O \le 40 V$	1	Regline		0.02	0.05		0.02	0.07	%/V
Load Regulation (Note 3) 10 mA \leq I _O \leq 0.5 A V _O \leq 5.0 V V _O \geq 5.0 V	2	Reg _{load}	_	20 0.3	50 1.0		20 0.3	70 1.5	mV % VO
Temperature Stability (T _{low} ≤ T _J ≤ T _{high})	3	TS	_	0.7		_	0.7	_	% V _O
Minimum Load Current to Maintain Regulation (V _I -V _O = 40 V)	3	l _{Lmin}	_	3.5	5.0		3.5	10	mA
Maximum Output Current V_I - $V_O \le 15 \text{ V}$, $P_D \le P_{max}$ V_I - $V_O = 40 \text{ V}$, $P_D \le P_{max}$, $T_A = 25^{\circ}\text{C}$	3	I _{max}	0.5 0.15	0.9 0.25	_	0.5 0.15	0.9 0.25	=	А
RMS Noise, % of V_O $T_A = 25^{\circ}C$, 10 Hz \leq f \leq 10 kHz	_	N	_	0.003		_	0.003	_	% V _O
Ripple Rejection, $V_O = 10 \text{ V, f} = 120 \text{ Hz}$ (Note 5) Without CAdj $C_{Adj} = 10 \mu F$	4	RR	— 66	65 80	_	— 66	65 80	_	dB
Long-Term Stability, T _J = T _{high} (Note 6) T _A = 25°C for Endpoint Measurements	3	S		0.3	1.0	_	0.3	1.0	%/1.0 k Hrs.
Thermal Resistance Junction to Case R Package (TO-66) T Package (TO-220)		R _⊕ JC	_	7.0 —	_	_	7.0 7.0	_	°C/W

NOTES:

(1) T_{low} = -55°C for LM117M

 T_{high} = +150°C for LM117M

= -25°C for LM217M = 0°C for LM317M = +150°C for LM217M

(2) $P_{max} = 7.5 W$

= +150 C to. 2.... = +125°C for LM317M

⁽³⁾ Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

⁽⁴⁾ Selected devices with tightened tolerance reference voltage available.

⁽⁵⁾ C_{adj}, when used, is connected between the adjustment pin and ground.

⁽⁶⁾ Since Long Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

LM117M, LM217M, LM317M

SCHEMATIC DIAGRAM

FIGURE 1 — LINE REGULATION AND $\Delta I_{Adj}/LINE$ TEST CIRCUIT

FIGURE 2 – LOAD REGULATION AND $\Delta I_{\mbox{Adj}}/\mbox{LOAD TEST CIRCUIT}$

FIGURE 3 - STANDARD TEST CIRCUIT

FIGURE 4 - RIPPLE REJECTION TEST CIRCUIT

LM117M, LM217M, LM317M

APPLICATIONS INFORMATION

BASIC CIRCUIT OPERATION

The LM117M is a 3-terminal floating regulator. In operation, the LM117M develops and maintains a nominal 1.25 volt reference (V_{ref}) between its output and adjustment terminals. This reference voltage is converted to a programming current (I_{prog}) by R1 (see Figure 17), and this constant current flows through R2 to ground. The regulated output voltage is given by:

$$V_0 = V_{ref} (1 + \frac{R2}{R1}) + I_{adj} R2$$

Since the current from the adjustment terminal (I_{adj}) represents an error term in the equation, the LM117M was designed to control I_{adj} to less than $100\,\mu\text{A}$ and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM117M is a floating regulator, it is only the voltage differential across the circuit that is important to performance, and operation at high voltages with respect to ground is possible.

FIGURE 17 - BASIC CIRCUIT CONFIGURATION

LOAD REGULATION

The LM117M is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

EXTERNAL CAPACITORS

A 0.1 μ F disc or1 μ F tantalum input bypass capacitor (C_{in}) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (C_{adj}) prevents ripple from being amplified as the output voltage is increased. A 10 μ F capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 volt application.

Although the LM117M is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (C₀) in the form of a 1 μF tantalum or 25 μF aluminum electrolytic capacitor on the output swamps this effect and insures stability.

PROTECTION DIODES

When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 18 shows the LM117M with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values ($C_0 > 10~\mu F,~C_{adj} > 5~\mu F).$ Diode D1 prevents C_0 from discharging thru the l.C. during an input short circuit. Diode D2 protects against capacitor C_{adj} discharging through the l.C. during an output short circuit. The combination of diodes D1 and D2 prevents C_{adj} from discharging through the l.C. during an input short circuit.

FIGURE 18 – VOLTAGE REGULATOR WITH PROTECTION DIODES

FIGURE 19 - ADJUSTABLE CURRENT LIMITER

FIGURE 21 - SLOW TURN-ON REGULATOR

FIGURE 20 - 5 V ELECTRONIC SHUTDOWN REGULATOR

FIGURE 22 - CURRENT REGULATOR

Specifications and Applications Information

3 AMPERE, 5 VOLT POSITIVE VOLTAGE REGULATOR

The LM123, A/LM223, A/LM323, A are a family of monolithic integrated circuits which supply a fixed positive 5.0 volt output with a load driving capability in excess of 3.0 amperes. These three-terminal regulators employ internal current limiting, thermal shutdown, and safe-area compensation. An improved series with superior electrical characteristics and a 2% output voltage tolerance is available as A-suffix (LM123A/LM223A/LM323A) device types.

These regulators are offered in a hermetic TO-3 metal power package in three operating temperature ranges. A 0°C to +125°C temperature range version is also available in a low cost TO-220 plastic power package.

Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents. This series of devices can be used with a series pass transistor to supply up to 15 amperes at 5.0 volts.

- Output Current in Excess of 3.0 Amperes
- Available with 2% Output Voltage Tolerance
- No external Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Thermal Regulation and Ripple Rejection Have Specified Limits

MAXIMUM RATINGS

Rating		Symbol	Value	Unit	
Input Voltage		V _{in}	20	Vdc	
Power Dissipation		PD	Internally Limited		
Operating Junction Temperature Range	LM123, A LM223, A LM323, A	Tu	-55 to +150 -25 to +150 0 to +125	°C	
Storage Temperature Range		T _{stg}	-65 to +150	°C	
Lead Temperature (Soldering, 10 s)		T _{solder}	300	°C	

ORDERING INFORMATION

Device	Output Voltage Tolerance	Junction Temperature Range	Package
LM123K LM123AK	6% 2%	−55 to +150°C	Metal Power
LM223K LM223AK	6% 2%	−25 to +150°C	
LM323K LM323AK	4% 2%	0 to +125°C	
LM323T LM323AT	4% 2%		Plastic Power

LM123, LM123A LM223, LM223A LM323, LM323A

3-AMPERE, 5 VOLT POSITIVE VOLTAGE REGULATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.5 V above the output voltage even during the low point on the input ripple voltage.

- = C_{in} is required if regulator is located an appreciable distance from power supply filter. (See Applications Information for details.)
- ** = C_O is not needed for stability; however, it does improve transient response.

ELECTRICAL CHARACTERISTICS (T_J = T_{low} to T_{high} [see Note 1] unless otherwise specified.)

		LM123A	/LM223A/	LM323A	LM'	123/LM	223	LM323			Unit
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max] ""
Output Voltage $(V_{in} = 7.5 \text{ V}, 0 \leqslant I_{out} \leqslant 3.0 \text{ A}, T_J = 25^{\circ}\text{C})$	v _o	4.9	5.0	5.1	4.7	5.0	5.3	4.8	5.0	5.2	V
Output Voltage $ (7.5 \text{ V} \leqslant \text{V}_{in} \leqslant 15 \text{ V}, 0 \leqslant \text{I}_{out} \leqslant 3.0 \text{ A}, \\ \text{P} \leqslant \text{P}_{max} \text{[Note 2])} $	v _o	4.8	5.0	5.2	4.6	5.0	5.4	4.75	5.0	5.25	٧
Line Regulation (7.5 V \leq V _{in} \leq 15 V, T _J = 25°C) (Note 3)	Reg _{line}	_	1.0	15	-	1.0	25	_	1.0	25	mV
Load Regulation $(V_{in} = 7.5 \text{ V, 0} \leqslant I_{out} \leqslant 3.0 \text{ A, T}_{J} = 25^{\circ}\text{C})$ (Note 3)	Reg _{load}	_	10	50		10	100		10	100	mV
Thermal Regulation (Pulse = 10 ms, P = 20 W, T _A = 25°C)	Reg _{therm}	_	0.001	0.01	-	0.002	0.03	-	0.002	0.03	%V _O /W
Quiescent Current (7.5 V \leq V _{in} \leq 15 V, 0 \leq I _{out} \leq 3.0 A)	IВ	_	3.5	10	_	3.5	20	-	3.5	20	mA
Output Noise Voltage (10 Hz \leq f \leq 100 kHz, T _J = 25°C)	V _N		40	_	_	40	_	-	40	-	μV _{rms}
Ripple Rejection $ (8.0~V\leqslant V_{in}\leqslant 18~V,~I_{out}=2.0~A,\\ f=120~Hz,~T_J=25^\circ C) $	RR	66	75	_	62	75	_	62	75	-	dB
Short Circuit Current Limit $(V_{in} = 15 \text{ V, T}_J = 25^{\circ}\text{C})$ $(V_{in} = 7 5 \text{ V, T}_J = 25^{\circ}\text{C})$	lsc	_	4.5 5.5	_	_	4.5 5.5	-	-	4.5 5.5	-	А
Long Term Stability	S	_	_	35	_	_	35 .	_	_	35	mV
Thermal Resistance Junction to Case (Note 4)	R _θ JC		2.0	_	_	2.0	_	_	2.0	_	°C/W

Note 1. T_{low} = -55°C for LM123, A T_{high} = +150°C for LM123, A = -25°C for LM223, A = +150°C for LM223, A = 0°C for LM323, A = +125°C for LM323, A

Note 2. Although power dissipation is internally limited, specifications apply only for P ≤ P_{max} P_{max} = 30 W for K (TO-3) package

P_{max} = 25 W for T (TO-220) package

Note 3. Load and line regulation are specified at constant junction temperature. Pulse testing is required with a pulse width $\leqslant 1.0 \text{ ms}$ and a duty cycle ≤ 5%.

Note 4. Without a heat sink, the thermal resistance (R_{BJA}) is 35°C/W for the TO-3, and 65°C/W for the TO-220 packages. With a heat sink, the effective thermal resistance can approach the specified values of 2.0 °C/W, depending on the efficiency of the heat sink.

VOLTAGE REGULATOR PERFORMANCE

The performance of a voltage regulator is specified by its immunity to changes in load, input voltage, power dissipation, and temperature. Line and load regulation are tested with a pulse of short duration ($< 100 \mu s$) and are strictly a function of electrical gain. However, pulse widths of longer duration (> 1.0 ms) are sufficient to affect temperature gradients across the die. These temperature gradients can cause a change in the output voltage, in addition to changes caused by line and load regulation. Longer pulse widths and thermal gradients make it desirable to specify thermal regulation.

Thermal regulation is defined as the change in output voltage caused by a change in dissipated power for a specified time, and is expressed as a percentage output voltage change per watt. The change in dissipated power can be caused by a change in either the input voltage or the load current. Thermal regulation is a function of LC. layout and die attach techniques, and usually occurs within 10 ms of a change in power dissipation. After 10 ms, additional changes in the output voltage are due to the temperature coefficient of the device.

Figure 1 shows the line and thermal regulation response of a typical LM123A to a 20 watt input pulse. The variation of the output voltage due to line regulation is labeled 1 and the thermal regulation component is labeled (2). Figure 2 shows the load and thermal regulation response of a typical LM123A to a 20 watt load pulse. The output voltage variation due to load regulation is labeled (1) and the thermal regulation component is labeled (2).

APPLICATIONS INFORMATION

Design Considerations

The LM123.A Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with

long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A $0.33\,\mu\text{F}$ or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

FIGURE 15 - CURRENT REGULATOR

The LM123,A regulator can also be used as a current source when connected as above. Resistor R determines the current as follows:

$$I_O = \frac{5.0 \text{ V}}{\text{R}} + I_B$$

 $\Delta l_{B}\cong 0.7$ mA over line, load and temperature changes $l_{B}\approx 3.5$ mA

For example, a 2-ampere current source would require R to be a 2.5 ohm, 15 W resistor and the output voltage compliance would be the input voltage less 7.5 volts.

FIGURE 16 - ADJUSTABLE OUTPUT REGULATOR

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 3.0 volts greater than the regulator voltage.

FIGURE 17 -- CURRENT BOOST REGULATOR

The LM123,A series can be current boosted with a PNP transistor. The 2N4398 provides current to 15 amperes. Resistor R in conjunction with the VBE of the PNP determines when the pass transistor begins conducting; this circuit is not short-circuit proof. Input-output differential voltage minimum is increased by the VBE of the pass transistor.

FIGURE 18 — CURRENT BOOST WITH SHORT-CIRCUIT PROTECTION

The circuit of Figure 17 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, RSC, and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the three-terminal regulator. Therefore, an eight-ampere power transistor is specified.

LM137 LM237 LM337

Specifications and Applications Information

3-TERMINAL ADJUSTABLE OUTPUT NEGATIVE VOLTAGE REGULATOR

The LM137/237/337 are adjustable 3-terminal negative voltage regulators capable of supplying in excess of 1.5 A over an output voltage range of -1.2 V to -37 V. These voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof.

The LM137 series serve a wide variety of applications including local, on-card regulation. This device can also be used to make a programmable output regulator; or, by connecting a fixed resistor between the adjustment and output, the LM137 series can be used as a precision current regulator.

- Output Current in Excess of 1.5 Ampere in TO-3 and TO-220 Packages
- Output Current in Excess of 0.5 Ampere in TO-39 Package
- Output Adjustable Between -1.2 V and -37 V
- Internal Thermal Overload Protection
- Internal Short-Circuit-Current Limiting, Constant with Temperature
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-Lead Transistor Packages
- Eliminates Stocking Many Fixed Voltages

PROG R2

*C_{in} is required if regulator is located more than 4 inches from power supply filter. A 1 μ F solid tantalum or 10 μ F aluminum electrolytic is recommended.

** C_0 is necessary for stability. A 1 μ F solid tantalum or 10 μ F aluminum electrolytic is recommended.

$$V_{out} = -1.25 \text{ V } (1 + \frac{R2}{R1})$$

3-TERMINAL ADJUSTABLE NEGATIVE VOLTAGE REGULATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION

Device	Temperature Range	Package
LM137H	T _J = ~55°C to +150°C	Metal Can
LM137K	T_l = -55°C to +150°C	Metal Power
LM237H	T _{.1} = -25°C to +150°C	Metal Can
LM237K	T _{.1} = -25°C to +150°C	Metal Power
LM337H	T _{.1} = 0°C to +125°C	Metal Can
LM337K	T ₁ = 0°C to +125°C	Metal Power
LM337T	T _J = 0°C to +125°C	Plastic Power

MAXIMUM RATINGS

LM137, LM237, LM337

Rating		Symbol	Value	Unit
Input-Output Voltage Differential		V _I -V _O	40	Vdc
Power Dissipation		PD	Internally Limited	
Operating Junction Temperature Range	LM137 LM237 LM337	ТЈ	-55 to +150 -25 to +150 0 to +125	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C

 $\textbf{ELECTRICAL CHARACTERISTICS} \qquad \textbf{(|V_I - V_O| = 5 V, I_O = 0.5 A for K and T packages; I_O = 0.1 A for H package; T_J = T_{low} to T_{high}[see T_O = 0.5 A for K and T packages; I_O = 0.1 A for H package; T_J = T_{low} to T_{high}[see T_O = 0.5 A for K and T packages; I_O = 0.1 A for H package; T_J = T_{low} to T_{high}[see T_O = 0.5 A for K and T packages; I_O = 0.1 A for H package; I_O = 0.1$ Note 1], I_{max} and P_{max} per Note 2, unless otherwise specified.)

			LM137/237			LM337		1	
Characteristic	Figure	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Line Regulation (Note 3) $T_A = 25^{\circ}C$, 3.0 $V \le V_1-V_0 \le 40 \text{ V}$	1	Regline		0.01	0.02		0.01	0.04	%/V
Load Regulation (Note 3) $ \begin{aligned} T_A &= 25^\circ\text{C}, \ 10 \ \text{mA} \leqslant I_O \leqslant I_{\text{max}} \\ V_O &\leqslant 5.0 \ \text{V} \\ V_O &\geqslant 5.0 \ \text{V} \end{aligned} $	2	Regload	_	15 0.3	25 0.5	_	15 0.3	50 1.0	mV % VO
Thermal Regulation 10 mS Pulse, T _A = 25°C	_	Reg _{therm}	_	0.002	0.02	_	0.003	0.04	% V _O M
Adjustment Pin Current	3	^I Adi	_	65	100	_	65	100	μА
Adjustment Pin Current Change $ 2.5 \text{ V} \leqslant V_I \cdot V_O \leqslant 40 \text{ V} $ $ 10 \text{ mA} \leqslant L \leqslant l_{max}, $ $ P_D \leqslant P_{max}, \text{ TA} = 25^{\circ}\text{C} $	1,2	ΔlAdj	_	2.0	5.0	_	2.0	5.0	μА
Reference Voltage (Note 4) $T_A = +25^{\circ}C$ 3.0 $V \le V -V_O \le 40$ V, 10 mA $\le I_O \le I_{max}$, $P_D \le P_{max}$, $T_J = T_{low}$ to T_{high}	3	V _{ref}	- 1.225 - 1.20	- 1.250 - 1.25	1.275 1.30	- 1.213 - 1.20	- 1.250 - 1.25	- 1.287 - 1.30	٧
Line Regulation (Note 3) 3.0 V \leq V _I -V _O \leq 40 V	1	Regline	_	0.02	0.05	_	0.02	0.07	%/V
Load Regulation (Note 3) 10 mA ≤ I _O ≤ I _{max} V _O ≤ 5.0 V V _O ≥ 5.0 V	2	Regload	_	20 0.3	50 1.0	_	20 0.3	70 1.5	mV % VO
Temperature Stability (T _{low} ≤ T _J ≤ T _{high})	3	TS	_	0.6			0.6		% V _O
Minimum Load Current to Maintain Regulation $(V -V_O \le 10 \text{ V})$ $\cdot (V -V_O \le 40 \text{ V})$	3	Lmin	-	1.2 2.5	3.0 5.0	_	1.5 2.5	6.0 10	mA
Maximum Output Current $\begin{split} V_I \lor V_O &\le 15 \ V, \ P) \leqslant P_{max} \\ K \ and T \ Packages \\ H \ Package \\ V_I \lor V_O &= 40 \ V, \ P_D \leqslant P_{max}, \ T_J = 25 ^\circ C \\ K \ and T \ Packages \\ H \ Package \\ H \ Package \end{split}$	3	l _{max}	1.5 0.5 0.24 0.15	2.2 0.8 0.4 0.20		1.5 0.5 0.15 0.10	2.2 0.8 0.4 0.20	=	А
RMS Noise, % of V_O $T_A = 25^{\circ}C$, 10 Hz \leq f \leq 10 kHz	_	N		0.003	_	_	0.003	_	% V _O
Ripple Rejection, $V_O = -10 \text{ V}$, $f = 120 \text{ Hz}$ (Note 5) Without C_{Adj} $C_{Adj} = 10 \mu\text{F}$	4	RR	 66	60 77	-	 66	60 77	_	dB
Long-Term Stability, T _J = T _{high} (Note 6) T _A = 25°C for Endpoint Measurements	- 3	S	_	0.3	1.0	_	0.3	1.0	%/1.0 k Hrs.
Thermal Resistance Junction to Case H Package (TO-39) K Package (TO-3) T Package (TO-220)	_	R _Ø JC	<u>-</u>	12 2.3	15 3.0 —	_	12 2.3 4.0	15 3.0 —	°C/W

- (1) $T_{low} = -55^{\circ}C$ for LM137
- T_{high} = +150°C for LM137
- = -25°C for LM237 = 0°C for LM337
- = +150°C for LM237 = +125°C for LM337
- (2) $I_{max} = 1.5 \text{ A for K (TO-3)}$ and T (TO-220 Packages
 - = 0.5 A for H (TO-39) Package
 - P_{max} = 20 W for K (TO-3) and T (TO-220) Packages = 2 W for H (TO-39) Package
- (3) Load and line regulation are specified at a constant junction temperature. Pulse testing with a low duty cycle is used. Change in V_O because of heating effects is covered under the Thermal Regulation specifi-
- (4) Selected devices with tightened tolerance reference voltage available.
- (5) Cadj, when used, is connected between the adjustment pin and
- (6) Since Long Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.
- (7) Power dissipation within an I.C. voltage regulator produces a temperature gradient on the die, affecting individual I.C. components on the die. These effects can be minimized by proper integrated circuit design and layout techniques. Thermal Regulation is the effect of these temperature gradients on the output voltage and is expressed in percentage of output change per watt of power change in a specified time.

SCHEMATIC DIAGRAM

FIGURE 1 — LINE REGULATION AND $\Delta I_{\mbox{Adj}}/\mbox{LINE TEST CIRCUIT}$

FIGURE 2 — LOAD REGULATION AND $\Delta I_{\mbox{Adi}}/\mbox{LOAD}$ TEST CIRCUIT

FIGURE 3 - STANDARD TEST CIRCUIT

FIGURE 4 — RIPPLE REJECTION TEST CIRCUIT

APPLICATIONS INFORMATION

BASIC CIRCUIT OPERATION

The LM137 is a 3-terminal floating regulator. In operation, the LM137 develops and maintains a nominal –1.25 volt reference (V_{Tef}) between its output and adjustment terminals. This reference voltage is converted to a programming current (IPROG) by R1 (see Figure 17), and this constant current flows through R2 from ground. The regulated output voltage is given by:

$$V_{out} = V_{ref} (1 + \frac{R2}{R1}) + I_{adj} R2$$

Since the current into the adjustment terminal (I_{adj}) represents an error term in the equation, the LM137 was designed to control I_{adj} to less than 100 μA and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will increase.

Since the LM137 is a floating regulator, it is only the voltage differential across the circuit that is important to performance, and operation at high voltages with respect to ground is possible.

FIGURE 17 -- BASIC CIRCUIT CONFIGURATION

LOAD REGULATION

The LM137 is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be

returned near the load ground to provide remote ground sensing and improve load regulation.

EXTERNAL CAPACITORS

A 1 μ F tantalum input bypass capacitor (C_{in}) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (C_{adj}) prevents ripple from being amplified as the output voltage is increased. A 10 μ F capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 volt application.

An output capacitor (Co) in the form of a 1 μ F tantalum or 10 μ F aluminum electrolytic capacitor is required for stability.

PROTECTION DIODES

When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 18 shows the LM137 with the recommended protection diodes for output voltages in excess of –25 V or high capacitance values ($C_0 > 25~\mu\text{F},~C_{adj} > 10~\mu\text{F}).$ Diode D1 prevents C_0 from discharging thru the l.C. during an input short circuit. Diode D2 protects against capacitor C_{adj} discharging through the l.C. during an output short circuit. The combination of diodes D1 and D2 prevents C_{adj} from discharging through the l.C. during an input short circuit.

FIGURE 18 – VOLTAGE REGULATOR WITH PROTECTION DIODES

LM137M LM237M LM337M

Specifications and Applications Information

3-TERMINAL ADJUSTABLE OUTPUT NEGATIVE VOLTAGE REGULATOR

The LM137M/237M/337M are adjustable 3-terminal negative voltage regulators capable of supplying in excess of 500 mA over an output voltage range of –1.2 V to –37 V. These voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof.

The LM137M series serve a wide variety of applications including local, on-card regulation. This device can also be used to make a programmable output regulator; or, by connecting a fixed resistor between the adjustment and output, the LM137M series can be used as a precision current regulator.

- Output Current in Excess of 500 mA
- Output Adjustable Between −1.2 V and −37 V
- Internal Thermal Overload Protection
- Internal Short-Circuit-Current Limiting
- Output Transistor Safe-Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-Lead Transistor Packages
- Eliminates Stocking Many Fixed Voltages

STANDARD APPLICATION

* C_{in} is required if regulator is located more than 4 inches from power supply filter. A 1 μ F solid tantalum or 10 μ F aluminum electrolytic is recommended.

** C_0 is necessary for stability. A 1 μ F solid tantalum or 10 μ F aluminum electrolytic is recommended.

$$V_{out} = -1.25 \text{ V } (1 + \frac{R2}{R1})$$

MEDIUM-CURRENT 3-TERMINAL ADJUSTABLE NEGATIVE VOLTAGE REGULATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

R SUFFIX METAL PACKAGE CASE 80-02 TO-213AA (TO-66)

(Bottom View) Case is Input

Pins 1 and 2 electrically isolated from case. Case is third electrical connection.

T SUFFIX PLASTIC PACKAGE (LM337M only) CASE 221A-02 TO-220AB

Pin 1 Adjust Pin 2 V_{in} Pin 3 V_{out}

Heatsink surface connected to Pin 2

ORDERING INFORMATION

Device	Temperature Range	Package
LM137MR	T _{.1} = -55°C to +150°C	Metal Power
LM237MR	T _J = -25°C to +150°C	Metal Power
LM337MR	T _J = 0°C to +125°C	Metal Power
LM337MT	T ₁ = 0°C to +125°C	Plastic Power

LM137M, LM237M, LM337M

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Input-Output Voltage Differential		V _I -V _O	40	Vdc
Power Dissipation		PD	Internally Limited	
Operating Junction Temperature Range	LM137M LM237M LM337M	TJ	-55 to +150 -25 to +150 0 to +125	°C
Storage Temperature Range		T _{stq}	-65 to +150	°C

 $\begin{array}{ll} \textbf{ELECTRICAL CHARACTERISTICS} & (|V_I - V_O| = 5.0 \text{ V, } I_O = 0.1; \text{ T}_J = \text{T}_{low} \text{ to T}_{high} \text{ [see Note 1], } P_{max} \text{ per Note 2, } \\ & \text{unless otherwise specified.)} \end{array}$

			LM137M/237M						
Characteristic	Figure	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Line Regulation (Note 3) $T_A = 25^{\circ}C$, 3.0 V \leq V -V \leq 40 V	1	Regline	_	0.01	0.02	_	0.01	0.04	%/V
Load Regulation (Note 3), $ T_A = 25^{\circ}\text{C}, \ 10 \ \text{mA} \leqslant I_O \leqslant 0.5 \ \text{A} \\ V_O \leqslant 5.0 \ \text{V} \\ V_O \geqslant 5.0 \ \text{V} $	2	Regload	_	15 0.3	25 0.5	_ _	15 0.3	50 1.0	mV % VO
Thermal Regulation 10 mS Pulse, T _A = 25°C	_	Reg _{therm}	-	0.002	0.02	_	0.003	0.04	%V _O /W
Adjustment Pin Current	3	ladi		65	100	_	65	100	μΑ
Adjustment Pin Current Change $2.5 \ V \leqslant V_l \cdot V_O \leqslant 40 \ V,$ $10 \ mA \leqslant I_L \leqslant 0.5 \ A,$ $P_D \leqslant P_{max} \cdot T_A = 25^{\circ}C$	1,2	∆l _{adj}	-	2.0	5.0		2.0	5.0	μΑ
$\label{eq:reconstruction} \begin{split} & \text{Reference Voltage (Note 4)} \\ & 3.0 V \leqslant V \text{-}V_O \leqslant 40 \text{V, } 10 \text{mA} \leqslant I_O \leqslant 0.5 \text{A,} \\ & P_O \leqslant P_{max}, T_A = 25^\circ \text{C} \\ & \text{Tow to Thigh} \end{split}$	3	V _{ref}	-1.225 -1.20	-1.250 -1.25	-1.275 -1.30	-1.213 -1.20	-1.250 -1.25	-1.287 -1.30	V
Line Regulation (Note 3) 3.0 $V \le V_1 - V_0 \le 40 \text{ V}$	1	Regline	_	0.02	0.05	_	0.02	0.07	%/V
Load Regulation (Note 3) 10 mA \leq $I_0 \leq$ 0.5 A $ V_0 \leq$ 5.0 V $ V_0 \geqslant$ 5.0 V	2	Regload		20 0.3	50 1.0	_ _	20 0.3	70 1.5	mV %V⊙
Temperature Stability ($T_{low} \le T_J \le T_{high}$)	3	TS		0.6			0.6	_	%Vo
Minimum Load Current to $ \text{Maintain Regulation } (V_I - V_O \leq 10 \text{ V}) \\ (V_I - V_O \leq 40 \text{ V}) $	3.	I _{Lmin}	_	1.2 2.5	3.0 5.0	=	1.5 2.5	6.0 10	mA
Maximum Output Current $ V_1-V_0 \le 15 \text{ V}, P_D \le P_{\text{max}}$ $ V_1-V_0 = 40 \text{ V}, P_D \le P_{\text{max}}$ $ V_1-V_0 = 40 \text{ V}, P_D \le P_{\text{max}}$ $ V_1-V_0 = 40 \text{ V}$	3	I _{max}	0.5 0.15	0.9 0.25	_	0.5 0.1	0.9 0.25	_	A
RMS Noise, % of V_O $T_A = 25$ °C, 10 Hz \leqslant f \leqslant 10 kHz	-	N	-	0.003	_		0.003	_	%V _O
Ripple Rejection, V _O = -10 V, f = 120 Hz (Note 5) Without C _{adj} C _{adj} = 10 µF	4	RR	_ 66	60 77	=	_ 66	60 77	_	dB
Long Term Stability, T _J = T _{high} (Note 6) T _A = 25°C for Endpoint Measurements	3	S	_	0.3	1.0	_	0.3	1.0	%/1.0 k Hrs.
Thermal Resistance Junction to Case R Package (TO-66) T Package (TO-220)	_	R _θ JC	_	7.0	_		7.0 7:0	_	°C/W

NOTES:

(1) T_{low} = -55°C for LM137M = -25°C for LM237M = 0°C for LM337M T_{high} = +150°C for LM137M = +150°C for LM237M = +125°C for LM337M

(2) P_{max} = 7.5 W

 $(3) \ \ Load \ and \ line \ regulation \ are \ specified \ at \ constant junction \ temperature.$ Changes in $V_{\mbox{\scriptsize O}}$ due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

- (4) Selected devices with tightened tolerance reference voltage available.
- (5) Cadj, when used, is connected between the adjustment pin and ground.
- (6) Since Long Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

FIGURE 1 – LINE REGULATION AND $\Delta I_{adj}/LINE$ TEST CIRCUIT

FIGURE 2 - LOAD REGULATION AND $\triangle I_{adj}/LOAD$ TEST CIRCUIT

FIGURE 3 - STANDARD TEST CIRCUIT

FIGURE 4 - RIPPLE REJECTION TEST CIRCUIT

FIGURE 11 — RIPPLE REJECTION versus OUTPUT VOLTAGE

FIGURE 12 — RIPPLE REJECTION versus OUTPUT CURRENT

FIGURE 13 — RIPPLE REJECTION versus FREQUENCY

FIGURE 14 — OUTPUT IMPEDANCE

FIGURE 15 — LINE TRANSIENT RESPONSE

FIGURE 16 — LOAD TRANSIENT RESPONSE

APPLICATIONS INFORMATION

BASIC CIRCUIT OPERATION

The LM137M is a 3-terminal floating regulator. In operation, the LM137M develops and maintains a nominal $-1.25\,$ volt reference (Vref) between its output and adjustment terminals. This reference voltage is converted to a programming current (IPROG) by R1 (see Figure 17), and this constant current flows through R2 from ground. The regulated output voltage is given by:

$$V_{out} = V_{ref} (1 + \frac{R2}{R1}) + I_{adj}R2$$

Since the current into the adjustment terminal (l_{adj}) represents an error term in the equation, the LM137M was designed to control l_{adj} to less than $100\,\mu\text{A}$ and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will increase.

Since the LM137M is a floating regulator, it is only the voltage differential across the circuit that is important to performance, and operation at high voltages with respect to ground is possible.

FIGURE 17 - BASIC CIRCUIT CONFIGURATION

LOAD REGULATION

The LM137M is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be

returned near the load ground to provide remote ground sensing and improve load regulation.

EXTERNAL CAPACITORS

A 1 μ F tantalum input bypass capacitor (C_{in}) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (C_{adj}) prevents ripple from being amplified as the output voltage is increased. A 10 μ F capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 volt application.

An output capacitor (C_0) in the form of a 1 μ F tantalum or 10 μ F aluminum electrolytic capacitor is required for stability.

PROTECTION DIODES

When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 18 shows the LM137M with the recommended protection diodes for output voltages in excess of –25 V or high capacitance values ($C_0 > 25~\mu F,~C_{adj} > 10~\mu F).$ Diode D_1 prevents C_0 from discharging thru the I.C. during an input short circuit. Diode D_2 protects against capacitor C_{adj} discharging through the I.C. during an output short circuit. The combination of diodes D1 and D2 prevents C_{adj} from discharging through the I.C. during an input short circuit.

FIGURE 18 – VOLTAGE REGULATOR WITH PROTECTION DIODES

LM140.A Series LM340.A Series

Specifications and Applications Information

THREE-TERMINAL POSITIVE VOLTAGE REGULATORS

This family of fixed voltage regulators are monolithic integrated circuits capable of driving loads in excess of 1.0 ampere. These three-terminal regulators employ internal current limiting, thermal shutdown, and safe-area compensation. Devices are available with improved specifications, including a 2% output voltage tolerance, on A-suffix 5.0, 12 and 15 volt device types.

Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents. This series of devices can be used with a series-pass transistor to boost output current capability at the nominal output voltage.

- Output Current in Excess of 1.0 Ampere
- No External Components Required
- Output Voltage Offered in 2% and 4% Tolerance*
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation

THREE-TERMINAL POSITIVE FIXED **VOLTAGE REGULATORS**

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION

Device	Output Voltage and Tolerance	Operating Junction Temperature Range	Package
LM140K-5.0	5.0 V ± 4%	55°C to + 150°C	Metal Power
LM140AK-5.0	5.0 V ± 2%	-55°C to +150°C	Metal Power
LM140K-6.0	6.0 V ± 4%	- 55°C to + 150°C	Metal Power
LM140K-8.0	8.0 V ± 4%	-55°C to +150°C	Metal Power
LM140K-12	12 V ± 4%	-55°C to +150°C	Metal Power
LM140AK-12	12 V ± 2%	-55°C to +150°C	Metal Power
LM140K-15	15 V ± 4%	-55°C to +150°C	Metal Power
LM140AK-15	15 V ± 2%	-55°C to +150°C	Metal Power
LM140K-18	18 V ± 4%	-55°C to +150°C	Metal Power
LM140K-24	24 V ± 4%	- 55°C to + 150°C	Metal Power
LM340K-5.0	5.0 V ± 4%	0°C to + 125°C	Metal Power
LM340AK-5.0	5.0 V ± 2%	0°C to +125°C	
LM340T-5.0	5.0 V ± 4%	0°C to + 125°C	Plastic Power
LM340AT-5.0	5.0 V ± 2%	0°C to + 125°C	
LM340K-6.0	6.0 V ± 4%	0°C to + 125°C	Metal Power
LM340T-6.0	6.0 V ± 4%	0°C to + 125°C	Plastic Power
LM340K-8.0	8.0 V ± 4%	0°C to +125°C	Metal Power
LM340T-8.0	8.0 V ± 4%	0°C to +125°C	Plastic Power
LM340K-12	12 V ± 4%	0°C to +125°C	Metal Power
LM340AK-12	12 V ± 2%	0°C to + 125°C	
LM340T-12	12 V ± 4%	0°C to +125°C	Plastic Power
LM340AT-12	12 V ± 2%	0°C to + 125°C	
LM340K-15	15 V ± 4%	0°C to + 125°C	Metal Power
LM340AK-15	15 V ± 2%	0°C to +125°C	
LM340T-15	15 V ± 4%	0°C to +125°C	Plastic Power
LM340AT-15	15 V ± 2%	0°C to +125°C	
LM340K-18	18 V ± 4%	0°C to +125°C	Metal Power
LM340T-18	18 V ± 4%	0°C to +125°C	Plastic Power
LM340K-24	24 V ± 4%	0°C to +125°C	Metal Power
LM340T-24	24 V ± 4%	0°C to + 125°C	Plastic Power

^{*2%} regulators are available in 5, 12 and 15 volt devices

A common ground is required between the input and the output voltages. The input voltage must remain typically 1.7 V above the output voltage even during the low point on the input ripple voltage.

- XX = these two digits of the type number indicate voltage.
 - = Cin is required if regulator is located an appreciable distance from power supply filter.
- ** = CO is not needed for stability; however, it does improve transient response. If needed, use a 0.1 μF ceramic disc.

MOTOROLA LINEAR/INTERFACE DEVICES

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (5.0 V - 18 V) (24 V)	V _{in}	35 40	Vdc
Power Dissipation and Thermal Characteristics Plastic Package $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air	PD	Internally Limited	Watts
	1/θJA	15.4	mW/°C
	θJA	65	°C/W
$T_C = +25^{\circ}C$	P _D	Internally Limited	Watts
Derate above $T_C = +75^{\circ}C$ (See Figure 1)	1/θJC	200	mW/°C
Thermal Resistance, Junction to Case	θJC	5.0	°C/W
Metal Package $T_C = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air	P _D	Internally Limited	Watts
	1/θJA	22.5	mW/°C
	θJA	45	°C/W
$T_C = +25^{\circ}C$	P _D	Internally Limited	Watts
Derate above $T_C = +65^{\circ}C$ (See Figure 2)	1/θJC	182	mW/°C
Thermal Resistance, Junction to Case	θJC	5.5	°C/W
Storage Junction Temperature Range	T _{stq}	- 65 to + 150	°C
Operating Junction Temperature Range LM140,A LM340,A	TJ	- 55 to + 150 0 to + 150	°C

EQUIVALENT SCHEMATIC DIAGRAM

DEFINITIONS

Line Regulation — The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation — The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation — The maximum total device

dissipation for which the regulator will operate within specifications.

Quiescent Current — That part of the input current that is not delivered to the load.

Output Noise Voltage — The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C) I _O = 5.0 mA to 1.0 A	V _O	4.8	5.0	5.2	Vdc
Line Regulation (Note 2) 8.0 to 20 Vdc 7.0 to 25 Vdc (T _J = +25°C) 8.0 to 12 Vdc, I _Q = 1.0 A 7.3 to 20 Vdc, I _Q = 1.0 A (T _J = +25°C)	Regline	_ _ _ _	<u>-</u> - -	50 50 25 50	mV
Load Regulation (Note 2) 5.0 mA \leq IO \leq 1.0 A 5.0 mA \leq IO \leq 1.5 A (T _J = +25°C) 250 mA \leq IO \leq 750 mA (T _J = +25°C)	Regload	_ _ _		50 50 25	mV
Output Voltage LM140 8.0 \leq V _{in} \leq 20 Vdc, 5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W LM340 7.0 \leq V _{in} \leq 20 Vdc, 5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W	Vo	4.75 4.75	_	5.25 5.25	Vdc
Quiescent Current I _O = 1.0 A LM140 LM340 LM140 (T _J = +25°C) LM340 (T _J = +25°C)	lВ	_ _ _ _	 4.0 4.0	7.0 8.5 6.0 8.0	mA
	71B	_ _ _ _	_ _ _ _ _	0.8 1.0 0.5 0.8 1.0	m A
Ripple Rejection LM140 LM340 I _O = 1.0 A (T _J = +25°C) LM140 LM340	RR	68 62 68 62	80 80	_ _ _	dB
Dropout Voltage	V _{in} -V _O	_	1.7		Vdc
Output Resistance (f = 1.0 kHz)	ro		2.0		mΩ
Short-Circuit Current Limit ($T_J = +25^{\circ}C$)	I _{sc}		2.0		Α
Output Noise Voltage (T $_A = +25^{\circ}C$) 10 Hz \leq f \leq 100 kHz	Vn	_	40		μV
Average Temperature Coefficient of Output Voltage $I_{O} = 5.0 \text{ mA}$	TCVO	_	± 0.6	_	mV/°C
Peak Output Current (T _J = +25°C)	lo		2.4		A
Input Voltage to Maintain Line Regulation (T $_{J}=+25^{\circ}\text{C}$) I $_{O}=1.0~\text{A}$		7.3	_		Vdc

NOTES: 1. $T_{low} = -55^{\circ}C$ for LM140 $T_{high} = +150^{\circ}C$ for LM140 $= 0^{\circ}C$ for LM340 $= +125^{\circ}C$ for LM340

Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140A/340A --- 5.0

ELECTRICAL CHARACTERISTICS (Vin = 10 V, IO = 1.0 A, TJ = Tlow to Thigh (Note 1), unless otherwise noted).

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = $+25^{\circ}$ C) I _O = 5.0 mA to 1.0 A	v _o	4.9	5.0	5.1	Vdc
Line Regulation (Note 2) 7.5 to 20 Vdc, $I_O=500$ mA 7.3 to 20 Vdc ($T_J=+25^{\circ}\text{C}$) 8.0 to 12 Vdc ($T_J=+25^{\circ}\text{C}$) 8.0 to 12 Vdc ($T_J=+25^{\circ}\text{C}$)	Regline	_ _ _	3.0 — —	10 10 12 4.0	mV
Load Regulation (Note 2) 5.0 mA \leq I $_{O} \leq$ 1.0 A 5.0 mA \leq I $_{O} \leq$ 1.5 A (T $_{J} = +25^{\circ}$ C) 250 mA \leq I $_{O} \leq$ 750 mA (T $_{J} = +25^{\circ}$ C)	Regload	_ _ _	_	25 25 15	mV
Output Voltage 7.5 \leq V $_{in}$ \leq 20 Vdc, 5.0 mA \leq I $_{O}$ \leq 1.0 A, P $_{D}$ \leq 15 W	v _o	4.8		5.2	Vdc
Quiescent Current $(T_J = +25^{\circ}C)$	IB	-	 3.5	6.5 6.0	mA
Quiescent Current Change 5.0 mA \leq I $_{O} \leq$ 1.0 A, V $_{in} =$ 10 V 8.0 \leq V $_{in} \leq$ 25 Vdc, I $_{O} =$ 500 mA 7.5 \leq V $_{in} \leq$ 20 Vdc, I $_{O} =$ 1.0 A (T $_{J} =$ +25°C)	ΔIB		_ _ _	0.5 0.8 0.8	mA
Ripple Rejection	RR	68 68	_ 80	_	dB
Dropout Voltage	V _{in} - V _O		1.7		Vdc
Output Resistance (f = 1.0 kHz)	ro	_	2.0	_	mΩ
Short-Circuit Current Limit (T _J = +25°C)	I _{sc}		2.0		А
Output Noise Voltage (T _A = +25°C) 10 Hz ≤ f ≤ 100 kHz	Vn		40		μV
Average Temperature Coefficient of Output Voltage I _O = 5.0 mA	TCVO	_	± 0.6	-	mV/°C
Peak Output Current (T _J = +25°C)	lo	_	2.4	_	А
Input Voltage to Maintain Line Regulation (T _J = +25°C)		7.3	_		Vdc

^{1.} T_{low} = -55°C for LM140A = 0°C for LM340A Thigh = +150°C for LM140A = +125°C for LM340A

^{2.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140,A, LM340,A

LM140/340 — 6.0 ELECTRICAL CHARACTERISTICS ($V_{in} = 11 \text{ V}$, $I_{Q} = 500 \text{ mA}$, $T_{J} = T_{low}$ to T_{high} (Note 1), unless otherwise noted).

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C) I _O = 5.0 mA to 1.0 A	V _O	5.75	6.0	6.25	Vdc
Usine Regulation (Note 2) 9.0 to 21 Vdc 8.0 to 25 Vdc (T _J = +25°C) 9.0 to 13 Vdc, I _O = 1.0 A 8.3 to 21 Vdc, I _O = 1.0 A (T _J = +25°C)	Regline	_ _ _ _		60 60 30 60	mV
Load Regulation (Note 2) 5.0 mA \leq _O \leq 1.0 A 5.0 mA \leq _O \leq 1.5 A (T _J = +25°C) 250 mA \leq _O \leq 750 mA (T _J = +25°C)	Regload		_ _ _	60 60 30	mV
Output Voltage LM140 9.0 \leq V _{in} \leq 21 Vdc, 5.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W LM340 8.0 \leq V _{in} \leq 21 Vdc, 6.0 mA \leq I _O \leq 1.0 A, P _D \leq 15 W	Vo	5.7 5.7	_	6.3 6.3	Vdc
Quiescent Current IO = 1.0 A LM140 LM340 LM140 (T _J = +25°C) LM340 (T _J = +25°C)	lВ	_ _ _ _	 4.0 4.0	7.0 8.5 6.0 8.0	mA
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	71B	_ _ _ _	_ _ _ _	0.8 1.0 0.5 0.8 1.0	mA
Ripple Rejection LM140 LM340 I _O = 1.0 A (T _J = +25°C) LM140 LM340	RR	65 59 65 59	 78 78	_ _ _	dB
Dropout Voltage	V _{in} - V _O	_	1.7	-	Vdc
Output Resistance (f = 1.0 kHz)	ro		2.0		mΩ
Short-Circuit Current Limit (T _J = +25°C)	I _{sc}		1.9		Α
Output Noise Voltage (T _A = $+25^{\circ}$ C) 10 Hz \leq f \leq 100 kHz	Vn	_	45	_	μV
Average Temperature Coefficient of Output Voltage IO = 5.0 mA	TCVO	_	± 0.7		mV/°C
Peak Output Current (T _J = +25°C)	lo	_	2.4		Α
Input Voltage to Maintain Line Regulation (T $_{J}=+25^{\circ}\text{C}$) I $_{O}=1.0~\text{A}$		8.3	_	_	Vdc

^{1.} T_{low} = -55°C for LM140 Thigh = +150°C for LM140 = 0°C for LM340 = +125°C for LM340

Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140/340 --- 8.0

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T $_{\rm J}=+25^{\circ}{\rm C}$) I $_{\rm O}=5.0$ mA to 1.0 A	V _O	7.7	8.0	8.3	Vdc
Line Regulation (Note 2) 11 to 23 Vdc 10.5 to 25 Vdc ($T_J = +25^{\circ}C$) 11 to 17 Vdc, $I_O = 1.0$ A 10.5 to 23 Vdc, $I_O = 1.0$ A ($T_J = +25^{\circ}C$)	Regline	_ _ _ _	_ _ _ _	80 80 40 80	mV
Load Regulation (Note 2) 5.0 mA \leq I _O \leq 1.0 A (T _J = +25°C) 250 mA \leq I _O \leq 1.5 A (T _J = +25°C) 250 mA \leq I _O \leq 750 mA (T _J = +25°C)	Reg _{load}	_ _ _	_ _ _	80 80 40	mV
Output Voltage LM140 $11.5 \le V_{in} \le 23 \text{ Vdc, } 5.0 \text{ mA} \le I_0 \le 1.0 \text{ A, P}_0 \le 15 \text{ W}$ LM340 $10.5 \le V_{in} \le 23 \text{ Vdc, } 5.0 \text{ mA} \le I_0 \le 1.0 \text{ A, P}_0 \le 15 \text{ W}$	v _O	7.6		8.4	Vdc
$10.5 \le V_{in} \le 23 \text{ Vdc}, 5.0 \text{ mA} \le I_O \le 1.0 \text{ A, } P_D \le 15 \text{ W}$ Quiescent Current $I_O = 1.0 \text{ A}$ LM140 LM340 LM140 $(T_J = +25^{\circ}\text{C})$	IB	7.6		7.0 8.5 6.0	mA
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ΔIB		4.0 — —	0.8 1.0 0.5	mA
$\begin{array}{llllllllllllllllllllllllllllllllllll$	RR	62		0.8	dB
LM340 I _O = 1.0 A (T _J = +25°C) LM140 LM340		56 62 56	 76 76	_ 	
Dropout Voltage	V _{in} -V _O		1.7		Vdc
Output Resistance (f = 1.0 kHz)	ro		2.0		mΩ
Short-Circuit Current Limit (T _J = $+25^{\circ}$ C) Output Noise Voltage (T _A = $+25^{\circ}$ C) 10 Hz \leq f \leq 100 kHz	I _{sc} V _n	_	1.5 52	-	Α μV
Average Temperature Coefficient of Output Voltage O = 5.0 mA	TCVO		± 1.0	<u> </u>	mV/°C
Peak Output Current (T _J = +25°C)	lo	_	2.4		Α
Input Voltage to Maintain Line Regulation (T $_{J}$ = $+25^{\circ}$ C) $_{O}$ = 1.0 A		10.5		_	Vdc

^{1.} $T_{low} = -55^{\circ}C$ for LM140 $T_{high} = +150^{\circ}C$ for LM140 $= +125^{\circ}C$ for LM340

Load and line regulation are specified at constant junction temperature. Changes in V_Q due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140,A, LM340,A

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$) I _O = 5.0 mA to 1.0 A	v _O	11.5	12	12.5	Vdc
Line Regulation (Note 2) 15 to 27 Vdc 14.6 to 30 Vdc ($T_J = +25^{\circ}C$) 16 to 22 Vdc, $I_O = 1.0$ A 14.6 to 27 Vdc, $I_O = 1.0$ A ($T_J = +25^{\circ}C$)	Regline	_ _ _		120 120 60 120	mV
Load Regulation (Note 2) 5.0 mA \leq I $_{O} \leq$ 1.0 A 5.0 mA \leq I $_{O} \leq$ 1.5 A (T $_{J} = +25^{\circ}\text{C}$) 250 mA \leq I $_{O} \leq$ 750 mA (T $_{J} = +25^{\circ}\text{C}$)	Reg _{load}	_ _ _	_ _ _	120 120 60	mV
Output Voltage LM140 $15.5 \le V_{\text{in}} \le 27 \text{ Vdc, } 5.0 \text{ mA} \le I_{\text{O}} \le 1.0 \text{ A, Pp} \le 15 \text{ W}$ LM340 $14.5 \le V_{\text{in}} \le 27 \text{ Vdc, } 5.0 \text{ mA} \le I_{\text{O}} \le 1.0 \text{ A, Pp} \le 15 \text{ W}$	Vo	11.4	_	12.6	Vdc
Quiescent Current I _O = 1.0 A LM140 LM340 LM140 (T _J = +25°C) LM340 (T _J = +25°C)	lB		 4.0 4.0	7.0 8.5 6.0 8.0	mA
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	71B	_ _ _ _		0.8 1.0 0.5 0.8 1.0	mA⊹
Ripple Rejection LM140 LM340 I _O = 1.0 A (T _J = +25°C) LM140 LM340	RR	61 55 61 55	 72 72	_ _ _	dB
Dropout Voltage	V _{in} -V _O	_	1.7	_	Vdc
Output Resistance (f = 1.0 kHz)	ro	_	2.0	_	mΩ
Short-Circuit Current Limit (T _J = +25°C)	l _{sc}	_	1.1	_	Α
Output Noise Voltage ($T_A = +25^{\circ}C$) 10 Hz \leq f \leq 100 kHz	Vn	_	75	_	μV
Average Temperature Coefficient of Output Voltage $I_{\hbox{\scriptsize O}}=5.0~\hbox{\scriptsize mA}$	TCVO	_	± 1.5	_	mV/°C
Peak Output Current (T _J = +25°C)	10	_	2.4	_	Α
Input Voltage to Maintain Line Regulation (TJ = $+25$ °C) IO = 1.0 A		14.6	_	_	Vdc

^{1.} $T_{low} = -55^{\circ}C$ for LM140 $T_{high} = +150^{\circ}C$ for LM140 $= +125^{\circ}C$ for LM340

Load and line regulation are specified at constant junction temperature. Changes in V_Q due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140A/340A - 12 **ELECTRICAL CHARACTERISTICS** ($V_{in} = 19 \text{ V}$, $I_{0} = 1.0 \text{ A}$, $T_{J} = T_{low}$ to T_{high} (Note 1), unless otherwise noted).

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = $+25$ °C) I _O = 5.0 mA to 1.0 A	Vo	11.75	12	12.25	Vdc
Line Regulation (Note 2) 14.8 to 27 Vdc, I _Q = 500 mA 14.5 to 27 Vdc (T _J = +25°C) 16 to 22 Vdc 16 to 22 Vdc (T _J = +25°C)	Regline		4.0 —	18 18 30 9.0	mV .
Load Regulation (Note 2) 5.0 mA \leq _O \leq 1.0 A 5.0 mA \leq _O \leq 1.5 A (T _J = +25°C) 250 mA \leq _O \leq 750 mA (T _J = +25°C)	Regload		_ _ _	60 32 19	mV
Output Voltage 14.8 \leq V $_{in}$ \leq 27 Vdc, 5.0 mA \leq I $_{0}$ \leq 1.0 A, P $_{D}$ \leq 15 W	v _O	11.5	_	12.5	Vdc
Quiescent Current $(T_J = +25^{\circ}C)$	ΙΒ	_	— 3.5	6.5 6.0	mA
Quiescent Current Change 5.0 mA \leq $ _{Q} \leq$ 1.0 A, $V_{in} =$ 19 V 15 \leq $V_{in} \leq$ 30 Vdc, $ _{Q} =$ 500 mA 14.8 \leq $V_{in} \leq$ 27 Vdc, $ _{Q} =$ 1.0 A (T,J $=$ $+$ 25°C)	ΔIB		_ _ _	0.5 0.8 0.8	mA
Ripple Rejection $15 \le V_{in} \le 25 \text{ Vdc, } f = 120 \text{ Hz}$ $I_O = 500 \text{ mA}$ $I_O = 1.0 \text{ A, } (T_J = +25^{\circ}\text{C})$	RR	61 61		_	dB
Dropout Voltage	V _{in} - V _O	_	1.7	_	Vdc
Output Resistance (f = 1.0 kHz)	ro		2.0	_	mΩ
Short-Circuit Current Limit (T _J = +25°C)	İsc	_	1.1	_	A
Output Noise Voltage (T $_A = +25^{\circ}$ C) 10 Hz \leq f \leq 100 kHz	Vn	_	75	_	μV
Average Temperature Coefficient of Output Voltage $I_{\hbox{\scriptsize O}}=5.0~\hbox{\scriptsize mA}$	TCVO	_	± 1.5	_	mV/°C
Peak Output Current (T _J = +25°C)	10	_	2.4		А
Input Voltage to Maintain Line Regulation (T _J = +25°C)		14.5		_	Vdc

^{1.} $T_{low} = -55^{\circ}C$ for LM140A $T_{high} = +150^{\circ}C$ for LM140A $= 0^{\circ}C$ for LM340A $= +125^{\circ}C$ for LM340A

^{2.} Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140,A, LM340,A

LM140/340 — 15 ELECTRICAL CHARACTERISTICS ($V_{in} = 23 \text{ V}$, $I_{O} = 500 \text{ mA}$, $T_{J} = T_{low}$ to T_{high} (Note 1), unless otherwise noted).

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C) I _O = 5.0 mA to 1.0 A	V _O	14.4	15	15.6	Vdc
Line Regulation (Note 2) 18.5 to 30 Vdc 17.5 to 30 Vdc 17.5 to 30 Vdc ($T_J = +25^{\circ}C$) 20 to 26 Vdc, $I_O = 1.0$ A 17.7 to 30 Vdc, $I_O = 1.0$ A ($T_J = +25^{\circ}C$)	Regline	_ _ _ _		150 150 75 150	mV
Load Regulation (Note 2) 5.0 mA \leq _O \leq 1.0 A 5.0 mA \leq _O \leq 1.5 A (T _J = +25°C) 250 mA \leq _O \leq 750 mA (T _J = +25°C)	Regload	_ _ _	_ _ _	150 150 75	mV
Output Voltage LM140 $18.5 \le V_{\text{in}} \le 30 \text{ Vdc, } 5.0 \text{ mA} \le I_{\text{O}} \le 1.0 \text{ A, P}_{\text{D}} \le 15 \text{ W}$ LM340 $17.5 \le V_{\text{in}} \le 30 \text{ Vdc, } 5.0 \text{ mA} \le I_{\text{O}} \le 1.0 \text{ A, P}_{\text{D}} \le 15 \text{ W}$	Vo	14.25 14.25		15.75 15.75	Vdc
Quiescent Current $I_{O} = 1.0 \text{ A}$ LM140 LM340 LM340 (TJ = +25°C) LM340 (TJ = +25°C)	lВ	_ _ _ _	 4.0 4.0	7.0 8.5 6.0 8.0	mA
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	7IB		 	0.8 1.0 0.5 0.8 1.0	mA
Ripple Rejection LM140 LM340 I _O = 1.0 A (T _J = +25°C) LM140 LM340	RR	60 54 60 54	 70 70	-	dB
Dropout Voltage	V _{in} - V _O	_	1.7		Vdc
Output Resistance (f = 1.0 kHz)	ro		2.0		mΩ
Short-Circuit Current Limit (T _J = +25°C)	I _{sc}		800		Α
Output Noise Voltage ($T_A = +25^{\circ}C$) 10 Hz $\leq f \leq$ 100 kHz	V _n	_	90	_	μV
Average Temperature Coefficient of Output Voltage $I_{\hbox{\scriptsize O}}=$ 5.0 mA	TCVO	_	± 1.8	_	mV/°C
Peak Output Current (T _J = +25°C)	lo		2.4		Α
Input Voltage to Maintain Line Regulation (TJ = $+25^{\circ}$ C) IO = 1.0 A		17.7		_	Vdc

^{1.} $T_{low} = -55^{\circ}\text{C}$ for LM140 $T_{high} = +150^{\circ}\text{C}$ for LM140 $= +125^{\circ}\text{C}$ for LM340

Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140A/340A - 15

ELECTRICAL CHARACTERISTICS ($V_{in} = 23 \text{ V}$, $I_{O} = 1.0 \text{ A}$, $T_{J} = T_{low}$ to T_{high} (Note 1), unless otherwise noted).

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = $+25$ °C) l_{O} = 5.0 mA to 1.0 A	v _O	14.7	15	15.3	Vdc
Line Regulation (Note 2) 17.9 to 30 Vdc, I _Q = 500 mA 17.5 to 30 Vdc (T _J = +25°C) 20 to 26 Vdc, I _Q = 1.0 A 20 to 26 Vdc, I _Q = 1.0 A (T _J = +25°C)	Regline	_ _ _	4.0 —	22 22 30 10	mV
Load Regulation (Note 2) 5.0 mA \leqslant I $_{O} \leqslant$ 1.0 A 5.0 mA \leqslant I $_{O} \leqslant$ 1.5 A (T $_{J}$ = +25°C) 250 mA \leqslant I $_{O} \leqslant$ 750 mA (T $_{J}$ = +25°C)	Regload		 12 	75 35 21	mV
Output Voltage 17.9 \leq V $_{in}$ \leq 30 Vdc, 5.0 mA \leq I $_{O}$ \leq 1.0 A, P $_{D}$ \leq 15 W	Vo	14.4	_	15.6	Vdc
Quiescent Current $(T_J = +25^{\circ}C)$	lΒ	_	 3.5	6.5 6.0	mA
Quiescent Current Change 5.0 mA \leqslant I $_{O} \leqslant$ 1.0 A, V $_{in} = 23$ V 17.9 \leqslant V $_{in} \leqslant$ 30 Vdc, I $_{O} = 500$ mA 17.9 \leqslant V $_{in} \leqslant$ 30 Vdc, I $_{O} = 1.0$ A (T $_{J} = +25^{\circ}$ C)	ΔIB		_ _ _	0.5 0.8 0.8	mA
Ripple Rejection $18.5 \le V_{in} \le 28.5 \text{ Vdc, } f = 120 \text{ Hz}$ $I_{O} = 500 \text{ mA}$ $I_{O} = 1.0 \text{ A, } (T_{J} = +25^{\circ}\text{C})$	RR	60 60	— 70		dB
Dropout Voltage	V _{in} - V _O		1.7	_	Vdc
Output Resistance (f = 1.0 kHz)	rO	_	2.0	_	mΩ
Short-Circuit Current Limit (T _J = +25°C)	I _{sc}	_	800	_	mA
Output Noise Voltage ($T_A = +25^{\circ}C$) 10 Hz \leq f \leq 100 kHz	Vn	-	90	_	μV
Average Temperature Coefficient of Output Voltage $I_{\mbox{\scriptsize O}}=5.0~\mbox{\scriptsize mA}$	TCVO	_	± 1.8		mV/°C
Peak Output Current (T _J = +25°C)	10	_	2.4	_	Α
Input Voltage to Maintain Line Regulation (T _J = +25°C)		17.5	_	_	Vdc

^{1.} $T_{low} = -55^{\circ}C$ for LM140A $T_{high} = +150^{\circ}C$ for LM140A $= 0^{\circ}C$ for LM340A $= +125^{\circ}C$ for LM340A

Load and line regulation are specified at constant junction temperature. Changes in V_Q due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140,A, LM340,A

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}\text{C}$) I _O = 5.0 mA to 1.0 A	V _O	17.3	18	18.7	Vdc
Line Regulation (Note 2) 21.5 to 33 Vdc 21 to 33 Vdc (TJ = $+25^{\circ}$ C) 24 to 30 Vdc, IQ = 1.0 A 21 to 33 Vdc, IQ = 1.0 A (TJ = $+25^{\circ}$ C)	Regline	_ _ _		180 180 90 180	mV
Load Regulation (Note 2) 5.0 mA \leq IO \leq 1.0 A 5.0 mA \leq IO \leq 1.5 A (TJ = +25°C) 250 mA \leq IO \leq 750 mA (TJ = +25°C)	Reg _{load}	_	_ _ _	180 180 90	mV
Output Voltage LM140 $22 \leqslant V_{in} \leqslant 33 \text{ Vdc, } 5.0 \text{ mA} \leqslant I_{Q} \leqslant 1.0 \text{ A, } P_{D} \leqslant 15 \text{ W}$ LM340 $21 \leqslant V_{in} \leqslant 33 \text{ Vdc, } 5.0 \text{ mA} \leqslant I_{Q} \leqslant 1.0 \text{ A, } P_{D} \leqslant 15 \text{ W}$	v _o	17.1 17.1	_	18.9 18.9	Vdc
Quiescent Current $I_{O}=1.0 \text{ A}$ LM140 LM340 LM140 $I_{J}=+25^{\circ}\text{C}$ LM340 $I_{J}=+25^{\circ}\text{C}$	ΙΒ	_ _ _ _	 4.0 4.0	7.0 8.5 6.0 8.0	mA
	ΔIB		_ _ _ _	0.8 1.0 0.5 0.8 1.0	mA
Ripple Rejection LM140 LM340 I _O = 1.0 A (T _J = +25°C) LM140 LM340	RR	59 53 59 53	 69 69	_ _ _	dB
Dropout Voltage	V _{in} - V _O		1.7	_	Vdc
Output Resistance (f = 1.0 kHz)	ro	_	2.0	_	mΩ
Short-Circuit Current Limit (T _J = +25°C)	I _{sc}	_	500	_	Α
Output Noise Voltage (TA = $+25^{\circ}$ C) 10 Hz \leq f \leq 100 kHz	V _n	_	110,	_	μV
Average Temperature Coefficient of Output Voltage $I_{\mbox{\scriptsize O}}=5.0~\mbox{\scriptsize mA}$	TCVO	_	± 2.3	_	mV/°C
Peak Output Current (T _J = +25°C)	10	_	2.4		Α
Input Voltage to Maintain Line Regulation (T $_J = +25^{\circ}\text{C})$ I $_O = 1.0~\text{A}$		21	_	_	Vdc

Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140/340 --- 24

ELECTRICAL CHARACTERISTICS ($V_{in} = 33 \text{ V}$, $I_{O} = 500 \text{ mA}$, $T_{J} = T_{low}$ to T_{high} (Note 1), unless otherwise noted).

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$) $I_O = 5.0 \text{ mA to } 1.0 \text{ A}$	Vo	23	24	25	Vdc
Line Regulation (Note 2) 28 to 38 Vdc 27 to 38 Vdc ($T_J = +25^{\circ}C$) 30 to 36 Vdc, $I_O = 1.0$ A 27.1 to 38 Vdc, $I_O = 1.0$ A ($T_J = +25^{\circ}C$)	Regline	_ _ _		240 240 120 240	mV
Load Regulation (Note 2) 5.0 mA \leq IO \leq 1.0 A 5.0 mA \leq IO \leq 1.5 A (T _J = +25°C) 250 mA \leq IO \leq 750 mA (T _J = +25°C)	Reg _{load}	_ _ _		240 240 120	mV
Output Voltage LM140 $28 \leqslant V_{In} \leqslant 38 \text{ Vdc, } 5.0 \text{ mA} \leqslant I_{O} \leqslant 1.0 \text{ A, P}_{D} \leqslant 15 \text{ W}$ LM340 $27 \leqslant V_{In} \leqslant 38 \text{ Vdc, } 5.0 \text{ mA} \leqslant I_{O} \leqslant 1.0 \text{ A, P}_{D} \leqslant 15 \text{ W}$	v _O	22.8	_	25.2 25.2	Vdc
Quiescent Current IO = 1.0 A LM140 LM340 LM140 (TJ = +25°C) LM340 (TJ = +25°C)	IB		- 4.0 4.0	7.0 8.5 6.0 8.0	mA
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ΔIB		_ _ _ _	0.8 1.0 0.5 0.8 1.0	mA
Ripple Rejection LM140 LM340 I _O = 1.0 A (T _J = +25°C) LM140 LM340	RR	56 50 56 50	66 66	_ _ _	dB
Dropout Voltage	V _{in} -V _O	_	1.7		Vdc
Output Resistance (f = 1.0 kHz)	ro	_	2.0	_	mΩ
Short-Circuit Current Limit ($T_J = +25^{\circ}C$)	I _{sc}		200	_	Α
Output Noise Voltage ($T_A = +25^{\circ}C$) 10 Hz $\leq f \leq$ 100 kHz	Vn	_	170	_	μV
Average Temperature Coefficient of Output Voltage $I_{\hbox{\scriptsize O}}=5.0~\hbox{\scriptsize mA}$	TCVO		± 3.0		mV/°C
Peak Output Current (T _J = +25°C)	10	_	2.4	_	A
Input Voltage to Maintain Line Regulation (T $_{J} = +25^{\circ}\text{C})$ I $_{O} = 1.0$ A		27.1		_	Vdc

^{1.} T_{low} = -55°C for LM140 Thigh = +150°C for LM140 = 0°C for LM340 = +125°C for LM340

Load and line regulation are specified at constant junction temperature. Changes in V_Q due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

LM140.A. LM340.A

VOLTAGE REGULATOR PERFORMANCE

The performance of a voltage regulator is specified by its immunity to changes in load, input voltage, power dissipation, and temperature. Line and load regulation are tested with a pulse of short duration (< 100 μ s) and are strictly a function of electrical gain. However, pulse widths of longer duration (> 1.0 ms) are sufficient to affect temperature gradients across the die. These temperature gradients can cause a change in the output voltage, in addition to changes caused by line and load regulation. Longer pulse widths and thermal gradients make it desirable to specify thermal regulation.

Thermal regulation is defined as the change in output voltage caused by a change in dissipated power for a specified time, and is expressed as a percentage output voltage change per watt. The change in dissipated

power can be caused by a change in either the input voltage or the load current. Thermal regulation is a function of IC layout and die attach techniques, and usually occurs within 10 ms of a change in power dissipation. After 10 ms, additional changes in the output voltage are due to the temperature coefficient of the device.

Figure 1 shows the line and thermal regulation response of a typical LM140AK-5.0 to a 10 watt input pulse. The variation of the output voltage due to line regulation is labeled ① and the thermal regulation component is labeled @. Figure 2 shows the load and thermal regulation response of a typical LM140AK-5.0 to a 15 watt load pulse. The output voltage variation due to load regulation is labeled ① and the thermal regulation component is labeled @.

FIGURE 1 — LINE AND THERMAL REGULATION

LM140AK-5.0

$$V_0 = 5.0 V$$

$$V_{\text{in}} = 8.0 \text{ V} \rightarrow 18 \text{ V} \rightarrow 8.0 \text{ V}$$
 ① = Reg_{line} = 2.4 mV
 $I_{\text{out}} = 1.0 \text{ A}$ ② = Reg_{therm} = 0.0030%V_O/W

$\textcircled{1} = \text{Reg}_{\text{line}} = 2.4 \text{ mV}$

FIGURE 2 - LOAD AND THERMAL REGULATION

t TIME (2.0 ms/div.)

LM140AK-5.0

$$V_0 = 5.0 V$$

$$V_{in} = 15$$
 ① = Reg_{load} = 4.4 mV
 $I_{out} = 0 \text{ A} \rightarrow 1.5 \text{ A} \rightarrow 0 \text{ A}$ ② = Reg_{therm} = 0.0020%V_OW

FIGURE 3 — TEMPERATURE STABILITY

FIGURE 4 - OUTPUT IMPEDANCE

FIGURE 11 — LINE TRANSIENT RESPONSE

FIGURE 12 — LOAD TRANSIENT RESPONSE

FIGURE 13 — WORST CASE POWER DISSIPATION VERSUS AMBIENT TEMPERATURE (Case 221A)

FIGURE 14 — WORST CASE POWER DISSIPATION Versus AMBIENT TEMPERATURE (Case 1)

APPLICATIONS INFORMATION

Design Considerations

The LM140 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 $\mu \rm F$ or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

FIGURE 15 — CURRENT REGULATOR

These regulators can also be used as a current source when connected as above. In order to minimize dissipation the LM140-5.0 is chosen in this application. Resistor R determines the current as follows:

$$I_O = \frac{5.0 \text{ V}}{R} + I_O$$

I_O ≅ 1.5 mA over line and load changes

For example, a 1-ampere current source would require R to be a 5-ohm, 10-W resistor and the output voltage compliance would be the input voltage less 7.0 volts.

FIGURE 16 - ADJUSTABLE OUTPUT REGULATOR

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with thi arrangement is 2.0 volts greater than the regulator voltage.

FIGURE 17 — CURRENT BOOST REGULATOR

The LM140 series can be current boosted with a PNP transistor. The MJ2955 provides current to 5.0 amperes. Resistor R in conjunction with the V_{BE} of the PNP determines when the pass transistor begins conducting; this circuit is not short-circuit proof. Input-output differential voltage minimum is increased by V_{BE} of the pass transistor.

FIGURE 18 — SHORT-CIRCUIT PROTECTION

The circuit of Figure 17 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, P_{SC}, and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the three-terminal regulator. Therefore, a four-ampere plastic power transistor is specified.

LM150 LM250 LM350

Specifications and Applications Information

3-TERMINAL ADJUSTABLE OUTPUT POSITIVE VOLTAGE REGULATOR

The LM150/250/350 are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 3.0 A over an output voltage range of 1.2 V to 33 V. These voltage regulators are exceptionally easy to use and require only two external resistors to set the output voltage. Further, they employ internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof.

The LM150 series serve a wide variety of applications including local, on card regulation. This device also makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM150 series can be used as a precision current regulator.

- Guaranteed 3.0 Amps Output Current
- Output Adjustable between 1.2 V and 33 V
- Load Regulation Typically 0.1%
- Line Regulation Typically 0.005%/V
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting Constant with Temperature
- Output Transistor Safe-area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-lead Transistor Packages
- Eliminates Stocking Many Fixed Voltages

3-TERMINAL ADJUSTABLE POSITIVE VOLTAGE REGULATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

- * = C_{in} is required if regulator is located an appreciable distance from power supply filter.
- ** = C_o is not needed for stability, however it does improve transient response.

$$V_{out} = 1.25 \text{ V } (1 + \frac{R_2}{R_1}) + I_{Adj} R_2$$

Since $I_{\mbox{Adj}}$ is controlled to less than 100 $\mu\mbox{A},$ the error associated with this term is negligible in most applications

ORDERING INFORMATION

Device	Temperature Range	Package
LM150K	T _J = -55°C to +150°C	Metal Power
LM250K	T _{.1} = -25°C to +150°C	Metal Power
LM350K	T _{.1} = 0°C to +125°C	Metal Power
LM350T	T _J = 0°C to +125°C	Plastic Power

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Input-Output Voltage Differential		V _I -V _O	35	Vdc
Power Dissipation		PD	Internally Limited	
Operating Junction Temperature Range	LM150 LM250 LM350	TJ	-55 to +150 -25 to +150 0 to +125	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C
Soldering Lead Temperature (10 seconds)			300	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, V_I - V_O = 5.0 V; I_L = 1.5 A; T_J = T_{low} to T_{high} ; P_{max} (see Note 11)

				LM150/25	0		LM350		
Characteristic	Figure	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Line Regulation (Note 2) $T_A = 25^{\circ}C$, 3.0 V \leq V _I -V _O \leq 35 V	1	Regline	_	0.005	0.01	_	0.005	0.03	%/V
Load Regulation (Note 2) $ T_{\mbox{A}} = 25^{\circ}\mbox{C}, \ 10 \ \mbox{m}\mbox{A} \leqslant \mbox{I_L} \leqslant 3.0 \ \mbox{A} \\ \mbox{V_O} \leqslant 5.0 \ \mbox{V} \\ \mbox{V_O} \geqslant 5.0 \ \mbox{V} $	2	Regload	_	5.0 0.1	15 0.3	_	5.0 0.1	25 0.5	mV % VO
Thermal Regulation, Pulse = 20 ms, TA = 25°C		Reg _{therm}		0.002	_	_	0.002	_	% V _O /W
Adjustment Pin Current	3	Adj		50	100	_	50	100	μΑ
Adjustment Pin Current Change 3.0 V \leq V _I -V _O \leq 35 V 10 mA \leq I _L \leq 3.0 A, P _D \leq P _{max}	1,2	Δl _{Adj}	_	0.2	5.0	_	0.2	5.0	μΑ
Reference Voltage (Note 3) $3.0 \text{ V} \leq \text{V}_{\text{I}}\text{-V}_{\text{O}} \leq 35 \text{ V}$ $10 \text{ mA} \leq \text{I}_{\text{L}} \leq 3.0 \text{ A, P}_{\text{D}} \leq \text{P}_{\text{max}}$	3	V _{ref}	1.20	1.25	1.30	1.20	1.25	1.30	V
Line Regulation (Note 2) 3.0 V \leq V _I -V _O \leq 35 V	1	Regline		0.02	0.05		0.02	0.07	%/V
Load Regulation (Note 2) 10 mA \leq I _L \leq 3.0 A VO \leq 5.0 V VO \geq 5.0 V	2	Regload	_	20 0.3	50 1.0	_	20 0.3	70 1.5	mV % VO
Temperature Stability (T _{low} ≤ T _J ≤ T _{high})	3	TS	_	1.0	_		1.0		% V _O
Minimum Load Current to Maintain Regulation (V _I -V _O = 35 V)	3	l _{Lmin}	_	3.5	5.0		3.5	10	mA
Maximum Output Current V_I - $V_O \le 10 \text{ V}$, $P_D \le P_{max}$ V_I - $V_O = 30 \text{ V}$, $P_D \le P_{max}$, $T_A = 25^{\circ}\text{C}$	3	I _{max}	3.0 0.3	4.5 1.0	=	3.0 0.25	4.5 1.0		А
RMS Noise, % of V_O $T_A = 25^{\circ}C$, 10 Hz \leq f \leq 10 kHz	_	N		0.003			0.003	_	% VO
Ripple Rejection, V _O = 10 V, f = 120 Hz (Note 4) Without C _{Adi}	4	RR		65			65		dB
$C_{Adj} = 10 \mu F$			66	80	=	66	80	_	
Long-Term Stability, $T_J = T_{high}$ (Note 5) $T_A = 25$ °C for Endpoint Measurements	3	S	_	0.3	1.0	_	0.3	1.0	%/1.0 k Hrs.
Thermal Resistance Junction to Case Peak (Note 6) K Package (TO-3) T Package (TO-220) Average (Note 7) K Package (TO-3) T Package (TO-220)		R _Ø JC		2.3 — — —	 1.5 	_ _ _	2.3 2.3 —	 1.5 1.5	°C/W

NOTES:

(1) $T_{low} = -55^{\circ}C$ for LM150 -25°C for LM250 0°C for LM350

Thigh = +150°C for LM150 = +150°C for LM250

= +125°C for LM350

 $P_{max} = 30 \text{ W for K suffix (TO-3)}$

P_{max} = 25 W for T suffix (TO-220)

(2) Load and line regulation are specified at constant junction temperature. Changes in $V_{\mbox{\scriptsize O}}$ due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

- (3) Selected devices with tightened tolerance reference voltage available. (4) CAdj, when used, is connected between the adjustment pin and
- (5) Since Long-Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.
- (6) Thermal Resistance evaluated measuring the hottest temperature on the die using an infrared scanner. This method of evaluation yields very accurate thermal resistance values which are conservative when compared to other measurement techniques.
- (7) The average die temperature is used to derive the value of thermal resistance junction to case (average).

SCHEMATIC DIAGRAM

FIGURE 1 — LINE REGULATION AND $\Delta I_{\mbox{Adj}}/\mbox{LINE TEST CIRCUIT}$

FIGURE 2 — LOAD REGULATION AND $\Delta I_{\mbox{Adi}}/\mbox{LOAD TEST CIRCUIT}$

FIGURE 3 — STANDARD TEST CIRCUIT

FIGURE 4 — RIPPLE REJECTION TEST CIRCUIT

APPLICATIONS INFORMATION

BASIC CIRCUIT OPERATION

The LM150 is a 3-terminal floating regulator. In operation, the LM150 develops and maintains a nominal 1.25 volt reference (V_{ref}) between its output and adjustment terminals. This reference voltage is converted to a programming current (I_{PROG}) by R1 (see Figure 17), and this constant current flows through R2 to ground. The regulated output voltage is given by:

$$V_{out} = V_{ref} (1 + \frac{R2}{R1}) + I_{Adj} R2$$

Since the current from the adjustment terminal (IAdj) represents an error term in the equation, the LM150 was designed to control IAdj to less than 100 μA and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM150 is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

FIGURE 17 - BASIC CIRCUIT CONFIGURATION

LOAD REGULATION

The LM150 is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

EXTERNAL CAPACITORS

A 0.1 μF disc or 1 μF tantalum input bypass capacitor (C_{in}) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (CADJ) prevents ripple from being amplified as the output voltage is increased. A 10 μ F capacitor should improve ripple rejection about 15dB at 120 Hz in a 10 volt application.

Although the LM150 is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (C_0) in the form of a 1 μF tantalum or 25 μF aluminum electrolytic capacitor on the output swamps this effect and insures stability.

PROTECTION DIODES

When external capacitors are used with any I.C. regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 18 shows the LM150 with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values ($C_0 > 25~\mu\text{F}$, $C_{ADJ} > 10~\mu\text{F}$). Diode D₁ prevents C₀ from discharging thru the I.C. during an input short circuit. Diode D₂ protects against capacitor C_{ADJ} discharging through the I.C. during an output short circuit. The combination of diodes D1 and D2 prevents C_{ADJ} from discharging through the I.C. during an input short circuit.

FIGURE 18 – VOLTAGE REGULATOR WITH PROTECTION DIODES

FIGURE 19 — "LABORATORY" POWER SUPPLY WITH ADJUSTABLE CURRENT LIMIT AND OUTPUT VOLTAGE

FIGURE 20 - ADJUSTABLE CURRENT LIMITER

FIGURE 22 - SLOW TURN-ON REGULATOR

FIGURE 21 - 5 V ELECTRONIC SHUT DOWN REGULATOR

FIGURE 23 - CURRENT REGULATOR

MC1463 MC1563

Specifications and Applications Information

NEGATIVE VOLTAGE REGULATOR

The MC1563/MC1463 is a "three terminal" negative regulator designed to deliver continuous load current up to 500 mAdc and provide a maximum negative input voltage of —40 Vdc. Output current capability can be increased to greater than 10 Adc through use

of one or more external transistors.

Specifications and performance of the MC1563/MC1463 Negative Voltage Regulator are nearly identical to the MC1569/MC1469 Positive Voltage Regulator. For systems requiring both a positive and negative power supply, these devices are excellent for use as complementary regulators and offer the advantage of operating with a common input

The MC1563R/MC1463R case can be mounted directly to a grounded heat sink which eliminates the need for an insulator.

- Case is at Ground Potential (R package)
- Electronic "Shutdown" and Short-Circuit Protection
- Low Output Impedance 20 Milliohms typical
- High Power Capability − 9.0 Watts
- Excellent Temperature Stability $-\Delta V_{0}/\Delta T = \pm 0.002\%/^{O}C$ typical
- High Ripple Rejection 0.002% typical
- 500 mA Current Capability

NEGATIVE-POWER-SUPPLY VOLTAGE REGULATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

G SUFFIX METAL PACKAGE CASE 603-04

R SUFFIX METAL PACKAGE CASE 614-02

DEVICE	TEMPERATURE RANGE	PACKAGE
MC1463G	0° C to +70° C	Metal Can
MC1463R	0° C to +70° C	Metal Power
MC1563G	-55° C to +125° C	Metal Can
MC1563R	-55° C to +125° C	Metal Power

MAXIMUM RATINGS ($T_C = +25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Val	lue	Unit
Input Voltage MC1463	VI		_	Vdc
MC1463 MC1563		−35 −40		
		G Package	R Package	
Load Current — Peak	ال	250	600	mA
Current, Pin 2	12	10	10	mA
Power Dissipation and Thermal Characteristics				
T _A = 25 ^o C	PD	0.68	2.4	Watts
Derate above T _A = 25°C	$1/R_{\theta}JA$	5.44	16	mW/OC
Thermal Resistance, Junction to Air	$R_{\theta JA}$	184	62	oC/W
$T_C = 25^{\circ}C$	PD	1.8	9.0	Watts
Derate above T _C = 25 ^o C	$1/R_{\theta}JC$	14.4	61	mW/ ^O C
Thermal Resistance, Junction to Case	$R_{\theta}JC$	69.4	17	°C/W
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to	-65 to +150	

OPERATING TEMPERATURE RANGE

Operating Ambient Temperature Range	TA		°С
MC1463		0 to +70	
MC1563		-55 to +125	

ELECTRICAL CHARACTERISTICS (I_L = 100 mAdc, T_C = +25°C, V_{in} = 15 V, V_O = 10 V unless otherwise noted.)

					MC1563			MC1463		
Characteristic	Fig.	Note	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage (T _A = T _{low} ① to T _{high} ② I _L = 1.0 mA)	4	1,6	VI	-8.5	_	-40	-9.0	-	-35	Vdc
Output Voltage Range (I _L = 1.0 mA)	4	_	v _o	-3.6	_	-37	-3.8	-	-32	Vdc
Reference Voltage (Pin 1 to Ground)	4	-	V _{ref}	-3.4	-3.5	-3.6	-3.2	-3.5	-3.8	Vdc
Minimum Input-Output Voltage Differential (R _{SC} = 0)	4	2	Iv _{in} - v _O I	_	1.5	2.7	-	1.5	3.0	Vdc
Bias Current (Standby Current) $(I_L = 1.0 \text{ mAdc}, I_{B} = I_{I} - I_{L})$	4	_	Iв	-	7.0	11	-	7.0	14	mAdc
Output Noise $(C_n = 0.1 \ \mu\text{F}, f = 10 \ \text{Hz} \text{ to } 5.0 \ \text{MHz})$	4	-	٧N		120	-	-	120	_	μV(rms)
Temperature Coefficient of Output Voltage	4	3	ΔV _O /ΔΤ	_	±0.002		-	±0.002	_	%/°C
Operating Load Current Range (R _{SC} = 0.3 ohm) R Package (R _{SC} = 2.0 ohms) G Package	4	-	ILR	1.0 1.0	_	500 200	1.0	_	500 200	mAdc
Input Regulation (V _{in} = 1.0 V _{rms} , f = 1.0 kHz)	4	4	Regline		0.002	0.015	_	0.003	0.030	%/V0
Load Regulation $ (T_J = \text{Constant } [1.0 \text{ mA} \leqslant I_L \leqslant 20 \text{ mA}]) $	6	5	Regload		0.4 0.005 0.01	1.6 0.05 0.13		0.7 0.005 0.01	2.4 0.05 0.13	mV %
Output Impedance (f = 1.0 kHz)	7	~	z _o	-	20	_	_	35	_	milliohms
Shutdown Current (V ₁ = -35 Vdc)	8	-	[†] sd	-	7.0	15	-	14	50	μAdc

① T_{low} = 0°C for MC1463 = -55°C for MC1563

Heat sink required for $T_{\mbox{\scriptsize high}}$ testing of "G" package.

② T_{high} = +70°C for MC1463 = +125°C for MC1563

- Note 1. "Minimum Input Voltage" is the minimum "total instantaneous input voltage" required to properly bias the internal zener reference diode.
- Note 2. This parameter states that the MC1563/MC1463 will regulate properly with the input-output voltage differential $|V_1-V_O|$ as low as 2.7 Vdc and 3.0 Vdc respectively. Typical units will regulate properly with $|V_1-V_O|$ as low as 1.5 Vdc as shown in the typical column.
- Note 3. "Temperature Coefficient of Output Voltage" is defined

$$\Delta V_{O}/\Delta T = \frac{\pm (V_{O} \text{ max} - V_{O} \text{ min}) (100)}{\triangle T_{A} (V_{O} @ T_{A} - +25^{\circ}C)}$$

where \triangle T_A = +180°C for the MC1563 +75°C for the MC1463

The output-voltage adjusting resistors (R_A and R_B) must have matched temperature characteristics in order to maintain a constant ratio independent of temperature.

Note 4. Input regulation is the percentage change in output voltage per volt change in the input voltage and is expressed as

Input Regulation =
$$\frac{V_O}{V_O(V_I)}$$
 100 (%/ V_O).

where v_{0} is the change in the output voltage V_{0} for the input change $v_{in}\,.$

The following example illustrates how to compute maximum output voltage change for the conditions given:

$$\begin{aligned} & \text{Reg}_{\text{in}} = 0.015\% / V_{\text{O}} \\ & V_{\text{O}} = 10 \ \text{Vdc} \\ & v_{\text{in}} = 1.0 \ \text{V(rms)} \end{aligned}$$

$$V_{\text{O}} = \frac{(\text{Reg}_{\text{line}}) \ (V_{\text{I}}) \ (V_{\text{O}})}{100 \ \text{I}} \\ = \frac{(0.015) (1.0) (10)}{100} \\ = 0.0015 \ \text{V(rms)} \end{aligned}$$

Note 5. Temperature drift effect must be taken into account separately for conditions of high junction temperature changes due to the thermal feedback that exists on the monolithic chip.

Load Regulation =
$$\frac{VO|I_L = 1.0 \text{ mA}|^{-VO}|I_L = 50 \text{ mA}|}{VO|I_L = 1.0 \text{ mA}|} \times 100$$

Note 6. Not to exceed maximum package power dissipation.

TEST CIRCUITS

(I) = 100 mAdc, $T_C = +25^{\circ}C$ unless otherwise noted.)

GENERAL DESIGN INFORMATION

1. Output Voltage, VO

a) Output Voltage is set by resistors R_A and R_B (see Figure 9). Set R_B = 6.8 k ohms and determine R_A from the graph of Figure 11 or from the equation:

$R_A \approx (2 |V_O| - 7) k\Omega$

- b) Output voltage can be varied by making RA adjustable as shown in Figures 9 and 10.
- c) Output voltage, V_O , is determined by the ratio of R_A and R_B therefore optimum temperature performance can be achieved if RA and RB have the same temperature coefficient.
- d) $V_0 = V_{ref} (1 + R_A)$; therefore the tolerance on $\overline{R_B}$

output voltage is determined by the tolerance of Vref and RA and RB.

 Short-Circuit Current, I_{SC}
 Short-Circuit Current, I_{SC} is determined by R_{SC}. R_{SC} may
 Short-Circuit Current, I_{SC} is determined by R_{SC}. R_{SC} may be chosen with the aid of Figure 11 when using the typical circuit connection of Figure 9. See Figure 27 for current limiting during NPN current boost.

3. Compensation, C_C

A 0.001 μF capacitor (C_c, see Figure 9), will provide adequate compensation in most applications, with or without current boost. Smaller values of Cc will reduce stability and larger values of Cc will degrade pulse response and output impedance versus frequency. The physical location of Co should be close to the MC1563/MC1463 with short lead lengths.

4. Noise Filter Capacitor, C_n A 0.1 μF capacitor, C_n from Pin 3 to ground will typically reduce the output noise voltage to 120 µV(rms). The value of Cn can be increased or decreased, depending on the noise voltage requirements of a particular application. A minimum value of 0.001 µF is recommended.

5. Output Capacitor, Co

The value of Co should be at least 10 µF in order to provide good stability

6. Shutdown Control

One method of turning "OFF" the regulator is to draw 1 mA from Pin 2 (See Figure 8). This control can be used to eliminate power consumption by circuit loads which can be put in "standby" mode. Examples include, an ac or dc "squelch" control for communications circuits, and a dissipation control to protect the regulator under sustained output short-circuiting. As the magnitude of the input-threshold voltage at Pin 2 depends directly upon the junction temperature of the integrated circuit chip, a fixed dc voltage at Pin 2 will cause automatic shutdown for high junction temperatures (see Figure 35). This will protect the chip, independent of the heat sinking used, the ambient temperature, or the input or output voltage levels. Standard logic levels of MECL, MRTL, MDTL or MTTL can also be used to turn the regulator "ON" or "OFF" (see Figures 30 and 31).

7. Remote Sensing

The connection to Pin 8 can be made with a separate lead direct to the load. Thus, "remote sensing" can be achieved and the effect of undesired impedances (including that of the milliammeter used to measure IL) on $z_{\rm 0}$ can be greatly reduced (see Figure 33).

MECL, MDTL, MRTL, and MTTL are Trademarks of Motorola Inc.

FIGURE 9 - TYPICAL CIRCUIT CONNECTION

R_{SC}, EXTERNAL CURRENT-LIMITING RESISTOR (OHMS)

TYPICAL CHARACTERISTICS

 $C_{\sf D} = 0.1\,\mu{\sf F}$, $C_{\sf C} = 0.001\,\mu{\sf F}$, $C_{\sf O} = 10\,\mu{\sf F}$, $T_{\sf C} = +25^{\sf O}{\sf C}$, Unless otherwise noted: $V_{I(nom)} = -15 \text{ Vdc}, V_{O(nom)} = -10 \text{ Vdc}, I_L = 100 \text{ mAdc}.$

FIGURE 12 - TEMPERATURE DEPENDENCE

FIGURE 13 - FREQUENCY DEPENDENCE OF OUTPUT IMPEDANCE

FIGURE 14 - DEPENDENCE OF OUTPUT IMPEDANCE ON OUTPUT VOLTAGE

FIGURE 15 - OUTPUT IMPEDANCE versus R_{sc}

FIGURE 16 - CURRENT LIMITING CHARACTERISTICS

TYPICAL CHARACTERISTICS (continued)

OPERATION AND APPLICATIONS

This section describes the operation and design of the MC1563 (MC1463) negative voltage regulator and also provides information on useful applications.

SUBJECT SEQUENCE INDEX

Specif	ication Pg. No.	Specifica	tion Pg. No.
Theory of Operation	7	Remote Sensing	12
NPN Current Boosting	9	An Adjustable Zero-Temperature-Coefficient	13
PNP Current Boosting	10	Voltage Source	
Positive and Negative Power Supplies	11	Thermal Shutdown	13
Shutdown Techniques	11	Thermal Considerations	13
Voltage Boosting	12	PC Board Layout and Information	15

THEORY OF OPERATION

The usual series voltage regulator shown in Figure 23, consists of a reference voltage, an error amplifier, and a series control element. The error amplifier compares the output voltage with the reference voltage and adjusts the output accordingly until the error is essentially zero. For applications requiring output voltages larger than the reference, there are two options. The first is to use a resistive divider across the output and compare only a fraction of the output voltage to the reference. This approach suffers from reduced feedback to the error amplifier due to the attenuation of the resistive divider. This degrades load regulation especially at high voltage levels.

The alternative is to eliminate the resistive divider and to shift the reference voltage instead. To accomplish this, another amplifier is employed to amplify (or level shift) the reference voltage using an operational amplifier as shown in Figure 24. The gain-determining resistors may be external, enabling a wide range of output voltages. This

is exactly the same approach used in the first option. That is, the output is being resistively divided to match the reference voltage. There is however, one big difference in that the output of this "regulator" is driving the input of another regulator (the error amplifier). The output of the reference amplifier has a relatively low impedance as compared to the input impedance of the error amplifier. Changes in the load of the output of the error amplifier are buffered to the extent that they have virtually no effect on the reference amplifier. If the feedback resistors are external (as they are on the MC1563) a wide range of reference voltages can be established.

The error amplifier can now be operated at unity gain to provide excellent regulation. In fact, this "regulator-within-a-regulator" concept permits the load regulation to be specified in terms of output impedance rather than as some percentage change of the output voltage. This approach was used in the design of the MC1563 negative voltage regulator.

FIGURE 23 — SERIES VOLTAGE REGULATOR

FIGURE 24 — THE "REGULATOR-WITHIN-A-REGULATOR" APPROACH

MC1563/MC1463 Block Diagram o 2 VO(ref) Start-Up V_{ref} and l_{ref} Shut-Down Control Bias DC Level Shift Unity-Gain Regulator Simplified Circuit Schematic Co. 10 uF \approx -3.5 Vdc 60 k Complete Circuit Schematic Shut-Down Control DC Shift Output DC Shift Sense 19 99 3 Y Noise Filter Ground 3 k 920 2.37 k Output 4 63 k Sense Compensation 60 k 330 955 Current Limit

FIGURE 25 (Recommended External Circuitry is Depicted With Dotted Lines.)

MC1563 (MC1463) Operation

Control

Figure 25 shows the MC1563 (MC1463) Negative Regulator block diagram, simplified schematic, and complete schematic. The four basic sections of the regulator are: Control, Bias, DC Level Shift, and Output (unity gain) Regulator. Each section is detailed in the following paragraphs.

The control section involves two basic functions, startup and shutdown. A start-up function is required since the biasing is essentially independent of the unregulated input voltage. It makes use of two zener diodes having the same breakdown voltage. A first or auxiliary zener is driven directly from the input voltage line through a resistor (60 k Ω) and permits the regulator to initially achieve the desired bias conditions. This permits the second, or reference zener to be driven from a current source. When the reference zener enters breakdown, the auxiliary zener is isolated from the rest of the regulator circuitry by a diode disconnect technique. This is necessary to keep the added noise and ripple of the auxiliary zener from degrading the performance of the regulator.

The shutdown control, in effect, consists of a PNP transistor across the reference zener diode. When this transistor is turned "ON", via Pin 2, the reference voltage is reduced to essentially zero volts and the regulator is forced to shutdown. During shutdown the current drain of the complete IC regulator drops to $V_{in}/60~k\Omega$ or $500~\mu A$ for a -30~V input.

Bias

A zener diode is the main reference element and forms the heart of the bias circuitry. Its positive temperature coefficient is balanced by the negative temperature coefficients of forward biased diodes in a ratio determined by the resistors in the diode string. The result is a reference voltage of approximately -3.5 Vdc with a typical temperature coefficient of 0.002%/PC. In addition, this circuit also provides a reference current which is used to bias all current sources in the remaining regulator circuitry.

DC Level Shift

The reference voltage is used as the input to a Darlington differential amplifier. The gain of this amplifier is quite high and it therefore may be considered to function as a conventional operational amplifier. Consequently, negative feedback can be employed using two external resistors (RA and RB) to set the closed-loop gain and to boost the reference voltage to the desired output voltage. A capacitor, $C_{\rm n}$, is introduced externally into the level shift network (via Pin 3) to stabilize the amplifier and to filter the zener noise. The recommended value for this capacitor is $0.1~\mu {\rm F}$ and should have a voltage rating in excess of the desired output voltage. Smaller capacitors (0.001 $\mu {\rm F}$ minimum) may be used but will cause a slight increase in output noise. Larger values of $C_{\rm n}$ will reduce the noise as well as delay the start-up of the regulator.

Output Regulator

The output of the shift amplifier is fed internally to the noninverting input of the output error amplifier. The

FIGURE 26 — TYPICAL NPN CURRENT BOOST CONNECTION

inverting input to this amplifier is the Output Sense connection (Pin 8) of the regulator. A Darlington connected NPN power transistor is used to handle the load current. The short-circuit current limiting resistor, R_{SC} , is connected in the emitter of this transistor to sample the full load current. This connection enables a four-diode string to limit the drive current to the power transistors in a conventional manner.

Stability and Compensation

As has been seen, the MC1563 employs two amplifiers, each using negative feedback. This implies the possibility of frequency instability due to excessive phase shift at high frequencies. Since the error amplifier is normally used at unity gain (the worst case for stability) a high impedance node is brought out for compensation. For normal operation, a capacitor is connected between this point (Pin 7) and Pin 5. The recommended value of $0.001~\mu F$ will insure stability and still provide acceptable transient response (see Figure 21). It is also necessary to use an output capacitor, C_0 , (typically $10~\mu F$) directly from the output (Pin 6) to ground. When an external transistor is used to boost the current, $C_0 = 100~\mu F$ is recommended (see Figure 26).

NPN CURRENT BOOSTING

For applications requiring more than 500 mA of load current, or for minimizing voltage variations due to temperature changes in the IC regulator arising from changes of the internal power dissipation, the NPN current-boost circuits of Figure 2 or 26, are recommended. The circuit shown in Figure 26 can supply up to approximately 4.0 amperes (subject to safe area limitations). At higher currents the VBE of the pass transistor may itself exceed the threshold of the current limit even for $R_{\rm SC}=0$. Figure 2 illustrates the use of an additional external diode from Pin 4 for higher current operation or for pass transistors exhibiting higher VBE's. It will probably be necessary to determine $R_{\rm SC}$ experimentally for each case where a pass transistor is used because VBE varies from device to device. The circuit of Figure 26 when set up for a -10 V output

the chedit of Figure 20 when see up for a ---

 $(R_A=13~k\Omega)$ supply and operating with a -15 V input, with a R_{SC} of 0.1 $\Omega,$ will yield a change in output voltage of only 26 mV over a load current range of from 1 mA to 3.5 A. This corresponds to a dc output impedance of only 7.5 milliohms or a percentage load regulation of 0.26% for a full 3.5-ampere load current change. Figure 27 indicates how the short circuit current varies with the value of R_{SC} for this circuit.

PNP CURRENT BOOSTING

A PNP power transistor can also be used to boost the load current capabilities. To improve the efficiency of the PNP boost configuration, particularly for small output voltages, the circuit of Figure 28, is recommended. An auxiliary -9 volt supply is used to power the IC regulator and the heavy load current is obtained from a second supply of lower voltage. For the 10-ampere regulator of Figure

28 this represents a savings of 22 watts when compared with operating the regulator from the single –9 V supply. It can supply current to 10 amperes while requiring an input voltage to the collector of the pass transistor of –6.8 volts minimum. The pass transistor is limited to 10 amperes by the added short-circuit current network in its emitter ($R_{\rm Sc2}$) and the IC regulator is limited to 500 mA in the conventional manner ($R_{\rm Sc1}$). The MJ450 exhibits a minimum hFE of 20 at 10 amperes, thus requiring only 500 mA from the MC1563R. Regulation of this circuit is comparable to that of the NPN boost configuration.

For higher output voltages the additional unregulated power supply is not required. The collector of the PNP boost transistor can tie directly to Pin 5 and the internal current limit circuit will provide short-circuit protection using R_{sc} (see Figure 11). Transistor Q2 and R_{sc2} will not be required and Pin 2 should be returned to ground.

FIGURE 29 — A ± 15 Vdc COMPLEMENTARY TRACKING REGULATOR WITH AUXILIARY +5.0 V SUPPLY

POSITIVE AND NEGATIVE POWER SUPPLIES

If the MC1563 is driven from a floating source it is possible to use it as a positive regulator by grounding the negative output terminal. The MC1563 may also be used with the MC1569 to provide completely independent positive and negative power regulators with comparable performance. When used in this manner a silicon diode such as the 1N4001 must be connected as a clamp on the output with the cathode to ground and the anode to the negative output voltage. This is to prevent the positive voltage in the system from forcing the output to a positive value and preventing the MC1563 from starting up.

Some applications may require complementary tracking in which both supplies arrive at the voltage level simultaneously, and variations in the magnitudes of the two voltages track. Figures 3 and 29 illustrate this approach. In this application, the MC1563 is used as the reference regulator, establishing the negative output voltage. The MC1569 positive regulator is used in a tracking mode by grounding one side of the differential amplifier (Pin 6 of the MC1569) and using the other side (Pin 5 of the MC1569) to sense the voltage developed at the junction of the two 3 k-ohm resistors. This differential amplifier controls the MC1569 series pass transistor such that the voltage at Pin 5 will be zero. When the voltage at pin 5 equals zero, +|VO| must equal -|VO|.

For the configuration shown in Figure 29, the level shift amplifier in the MC1569 is employed to generate an auxiliary +5-volt supply which is boosted to a 2-ampere capability by Q1 and Q2. (The +5-volt supply, as shown,

is not short-circuit protected.) The –15-volt supply varies less than 0.1 mV over a zero to –300 mAdc current range and the +15-volt supply tracks this variation. The +15-volt supply varies 20 mV over the zero to +300-mAdc load current range. The +5-volt supply varies less than 5 mV for $0 \le I_L \le 200$ mA with the other two voltages remaining unchanged. See MC1561 data sheet or MC1569 data sheet for information concerning latch-up when using plus and minus regulations.

SHUTDOWN TECHNIQUES

Pin 2 of the MC1563 is provided for the express purpose of shutting the regulator "OFF". Referring to the schematic, it can be seen that pin 2 goes to the base of a PNP transistor: which, if turned "ON", will deny current to all the biasing current sources. This action causes the output to go to essentially zero volts and the only current drawn by the IC regulator will be the small start current through the 60 k-ohm start resistor ($V_{in}/60~k\Omega$). This feature provides additional versatility in the applications of the MC1563. Various sub-systems may be placed in a "standby" mode to conserve power until actually needed. Or the power may be turned "OFF" in response to other occurrences such as over-heating, over-voltage, shorted output, etc.

As an illustration of the first case, consider a system consisting of both positive-supply logic (MTTL) and negative-supply logic (MECL). The MECL logic may be used in a high-speed arithmetic processor whose services are not continuously required. Substantial power may

FIGURE 32 - VOLTAGE BOOSTING CIRCUIT

thus be conserved if the MECL circuitry remains unpowered except when needed. The negative regulator can be shutdown using any of the standard logic swings. For saturated logic control, Figure 30 shows a circuit that allows the normal positive output swing to cause the regulator to shutdown when the logic output is in the low voltage state. The negative output levels of a MECL gate can also be used for shutdown control as shown in Figure 31.

VOLTAGE BOOSTING

Some applications may require a high output voltage which may exceed the voltage rating of the MC1563. This must be solved by assuring that the IC regulator is operated within its limits. Three points in the regulator need to be considered:

- 1. The input voltage (Pin 4),
- 2. the output voltage (Pin 6) and,
- 3. the output sense lead (Pin 8).

A reduced input voltage can be provided by using a separate supply. The output voltage may be zener-level shifted, and the sense line can tie to a portion of the output voltage through a resistive divider. The voltage boost circuit of Figure 32 uses this approach to provide a -90 volt supply. This circuit will exhibit regulation of 0.001% over a 100 mA load current range.

REMOTE SENSING

The MC1563 offers a remote sensing capability. This is important when the load is remote from the regulator, as the resistances of the interconnecting lines (VEE and GND) are added directly to the output impedance of the regulator. By remote sensing, this resistance is included inside the control loop of the regulator and is essentially eliminated. Figure 33 shows how remote sensing is accomplished using both a separate sense line from Pin 8 and a separate ground line from the regulator to the remote load.

FIGURE 33 — REMOTE SENSING CIRCUIT

FIGURE 34 — AN ADJUSTABLE "ZERO-TC" VOLTAGE SOURCE

AN ADJUSTABLE ZERO-TEMPERATURE-COEFFICIENT (0-TC) VOLTAGE REFERENCE SOURCE

The MC1563, when used in conjunction with low-TC resistors, makes an excellent reference-voltage generator. If the -3.5 volt reference voltage of the IC regulator is a satisfactory value, then Pins 1 and 9 can be tied together and no resistors are needed. This will provide a voltage reference having a typical temperature coefficient of 0.002%/PC. By adding two resistors, R_A and R_B , any voltage between -3.5 Vdc and -37 Vdc can be obtained with the same low TC (see Figure 3.4)

THERMAL SHUTDOWN

By setting a fixed voltage at Pin 2, the MC1563 chip can be protected against excessive junction temperatures caused by power dissipation in the IC regulator. This is based on the negative temperature coefficient of the base-emitter junction of the shutdown transistor (-1.9 x

 $10^{-3} V/^{\circ} C$). By setting -0.61 Vdc externally, at Pin 2, the regulator will shutdown when the chip temperature reaches approximately $140^{\circ} C$. Figure 35 shows a circuit that uses a zero-TC zener diode and a resistive divider to obtain this voltage.

In the case where an external pass transistor is employed; its temperature, rather than that of the IC regulator, requires control. A technique similar to the one just discussed can be used by directly monitoring the case temperature of the pass transistor as is indicated in Figure 36. The case of the normally "OFF" thermal monitoring transistor, Q2, should be in thermal contact with, but electrically isolated from, the case of the boost transistor, Q1.

THERMAL CONSIDERATIONS

Monolithic voltage regulators are subjected to internal heating similar to a power transistor. Since the degree of internal heating is a function of the specific application,

FIGURE 35 — JUNCTION TEMPERATURE LIMITING SHUTDOWN CIRCUIT

the designer must use caution not to exceed the specified maximum junction temperature (+175°C). Exceeding this limit will reduce reliability at an exponential rate. Good heatsinking not only reduces the junction temperature for a given power dissipation; it also tends to improve the dc stability of the output voltage by reducing the junction temperature change resulting from a change in the power dissipation of the IC regulator. By using the derating factors or thermal resistance values given in the Maximum Ratings Table of this data sheet, junction temperature can be computed for any given application in the same manner as for a power transistor*. A short-circuit on the output terminal can produce a "worst-case" thermal condition especially if the maximum input voltage is applied simultaneously with the maximum value of short-circuit load current (500 mA). Care should be taken not to exceed the maximum junction temperature rating during this fault condition and, in addition, the dc safe operating area limit (see Figure 22).

Thermal characteristics for a voltage regulator are useful in predicting performance since dc load and line regulation are affected by changes in junction temperature. These temperature changes can result from either a change in the ambient temperature, TA, or a change in the power dissipated in the IC regulator. The effects of ambient

temperature change on the dc output voltage can be estimated from the "Temperature Coefficient of Output Voltage" characteristic parameter shown as ±0.002%/°C, typical. Power dissipation is typically changed in the IC regulator by varying the dc load current. To estimate the dc change in output voltage due to a change in the dc load current, three effects must be considered:

- 1. junction temperature change due to the change in the power dissipation
- 2. output voltage decrease due to the finite output impedance of the control amplifier
- 3. thermal gradient on the IC chip.

A temperature differential does exist across a power IC chip and can cause a dc shift in the output voltage. A "gradient coefficient," GCVO, can be used to describe this effect and is typically +0.03%/watt for the MC1563R. For an example of the relative magnitudes of these effects, consider the following conditions:

Given: MC1563R with $V_I = -10 \text{ Vdc}$ $V_O = -5 \text{ Vdc}$ and $I_L = 100 \text{ mA to } 200 \text{ mA}$ $(\Delta I_L = 100 \text{ mA})$ assume $T_A = +25^{\circ}\text{C}$ TO-66 Type Case with heatsink

FIGURE 36 — THERMAL SHUTDOWN WHEN USING EXTERNAL PASS TRANSISTORS

^{*}For more detailed information of methods used to compute junction temperature, see Motorola Application Note AN-226, Measurement of Thermal Properties of Semiconductors.

assume $R_{\theta CS} = 0.2^{\circ}C/W$ and $R_{\theta SA} = 2^{\circ}C/W$

It is desired to find the $\triangle V_O$ which results from this $\triangle I_L.$ Each of the three previously stated effects on V_O can now be separately considered.

1. $\triangle V_O$ due to $\triangle T_J$

OR
$$\triangle V_O = (V_O) (\triangle P_D) (\triangle V_O/\Delta T) (R_{\theta} J_C + R_{\theta} C_S + R_{\theta} S_A)$$

$$\triangle V_O = (5 \text{ V})(5 \text{ V} \times 0.1 \text{ A})(\pm 0.002\%/^{\circ}C)(19.2^{\circ}C/W)$$

$$\triangle V_O \approx \pm 1.0 \text{ mW}$$

2. $\triangle V_O$ due to z_O

$$|\triangle V_{O}| = (-z_{O})(I_{L})$$

 $|\triangle V_{O}| = -(2 \times 10^{-2})(10^{-1}) = -2 \text{ mV}$

3. $\triangle V_O$ due to gradient coefficient, $\Delta V_O/\Delta G$

$$\begin{split} |\triangle \ V_O| &= (\Delta V_O/\Delta G)(V_O)(\Delta P_D) \\ |\triangle \ V_O| &= (+3 \ x \ 10^{-4}/W)(5 \ volts)(5 \ x \ 10^{-1}W) \\ |\triangle \ V_O| &= +0.8 \ mV \end{split}$$

Therefore the total ΔV_0 is given by

OR
$$|\Delta V_{O} \text{ total}| = \pm 1.0 - 2.0 + 0.8 \text{ mV}$$

-2.2 mV $\leq |V_{O} \text{ total}| \leq -0.2 \text{ mV}$

Other operating conditions may be substituted and computed in a similar manner to evaluate the relative effects of the parameters.

TYPICAL PRINTED CIRCUIT BOARD LAYOUT

FIGURE 37 — LOCATION OF COMPONENTS

Note 1:

When R_{adj} is used it is necessary to remove the copper which shorts out R_{adj} .

Note 2

Extra holes are available in the circuit board to permit two resistors to be paralleled to obtain the desired value of R_{sc} .

Note 3:

If Pin 2 is used to shut down the regulator, remove the copper which shorts Pin 2 to ground.

Note 4:

Remote sensing can be achieved by removing the copper which shorts Pin 8 to Pin 6 and connecting Pin 8 directly to the 'minus' load terminal. The circuit board ground should be connected to the unregulated power supply ground at the "plus" load terminal.

PARTS LIST

Component	Value	Description
R _A R _B	Select 6.8 k	1/4 or 1/2 watt carbon
R _{adj}	Select	IRC Model X-201, Mallory Model MTC-1 or equivalent
R _{sc}	Select	1/2 watt carbon
R′∟	Select	For minimum current of 1 mAdc
Co	10 μF	Sprague 1500 Series, Dickson D10C series or equivalent
Cn	0.1 μF (Ceramic Disc - Centralab DDA104, or equivalent
cc	0.001 μF √	Sprague TG-P10, or equivalent
J ₁		Jumper
Q1		MC1563R or MC1463R
*HS	-	Heatsink Thermalloy #6168 B or equivalent
*Socket	(Not Shown)	Robinson Nugent #0001306 or equivalent Electronic Molding Corp. #6341-210-1, 6348-188-1, 6349-188-1 or equivalent
PC Board		Circuit DOT, Inc. #PC1113 or equivalent 1155 W. 23rd St. Tempe, Arizona 85281

^{*}Optional

MC1466L MC1566L

Specifications and Applications Information

MONOLITHIC VOLTAGE AND CURRENT REGULATOR

This unique "floating" regulator can deliver hundreds of volts — limited only by the breakdown voltage of the external series pass transistor. Output voltage and output current are adjustable. The MC1466/MC1566 integrated circuit voltage and current regulator is designed to give "laboratory" power-supply performance.

- Voltage/Current Regulation with Automatic Crossover
- Excellent Line Voltage Regulation, 0.02% + 1.0 mV
- Excellent Load Voltage Regulation, 0.01% + 1.0 mV
- Excellent Current Regulation, 0.1% + 1.0 mA
- Short-Circuit Protection
- Output Voltage Adjustable to Zero Volts
- Internal Reference Voltage
- Adjustable Internal Current Source

PRECISION WIDE-RANGE VOLTAGE and CURRENT REGULATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

CERAMIC PACKAGE CASE 632-02 MO-001AA

ORDERING INFORMATION						
Device	Temperature Range	Package				
MC1466L	0°C to +70° C	Ceramic DIP				
MC1566L	-55°C to +125°C	Ceramic DIP				

TYPICAL APPLICATIONS

FIGURE 3 - 0-TO-250 VDC, 0.1-AMPERE REGULATOR

FIGURE 2 - 0-TO-40 VDC, 0.5-AMPERE REGULATOR

FIGURE 4 - REMOTE PROGRAMMING

MAXIMUM RATINGS ($T_A = +25^{\circ}$ unless otherwise noted)

Rating		Symbol	Value	Unit
Auxiliary Voltage	MC1466 MC1566	V _{aux}	30 35	Vdc
Power Dissipation (Package Limitation) Derate above $T_A = +50^{\circ}C$		P _D 1/ _θ JA	750 6.0	mW mW/°C
Operating Temperature Range	MC1466 MC1566	TA	0 to +70 -55 to +125	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, $V_{aux} = +25$ Vdc unless otherwise noted)

MC1466L, MC1566L

NOTE 1:

The instantaneous input voltage, V_{aux}, must not exceed the maximum value of 30 **volts** for the MC1466 or 35 volts for the MC1566. The instantaneous value of V_{aux} must be greater than 20 volts for the MC1566 or 21 volts for the MC1466 for proper internal regulation.

NOTE 2:

The auxiliary supply voltage Vaux, must "float" and be electrically isolated from the unregulated high voltage supply, Vin-

NOTE 3:

Reference current may be set to any value of current less than 1.2 mAdc by applying the relationship: $I_{ref (mA)} = \frac{8.55}{R_1 (k\Omega)}.$

$$I_{ref (mA)} = \frac{6.55}{R_1 (k\Omega)}$$

NOTE 4

A built-in offset voltage (15 mVdc nominal) is provided so that the power supply output voltage or current may be adjusted to zero.

Load Voltage Regulation is a function of two additive components, ΔV_{iOV} and $\Delta V_{ref},$ where ΔV_{iOV} is the change in input offset voltage (measured between pins 8 and 9) and ΔV_{ref} is the change in voltage across R2 (measured between pin 8 and ground). Each component may be measured separately or the sum may be measured across the load. The measurement procedure for the test circuit shown is:

- a. With S1 open (I₄ = 0) measure the value of V_{iov} (1) and V_{ref} (1)
- b. Close S1, adjust R4 so that $I_4 = 500 \mu A$ and note Viov (2) and Vref (2).

Then $\Delta V_{iov} = V_{iov} (1) - V_{iov} (2)$

% Reference Regulation =

$$\frac{[V_{\text{ref}}(1) - V_{\text{ref}}(2)]}{V_{\text{ref}}(1)} (100\%) = \frac{\Delta V_{\text{ref}}}{V_{\text{ref}}} (100\%)$$

Load Voltage Regulation =

$$\frac{\Delta V_{ref}}{V_{ref}}$$
 (100%) + ΔV_{iov} .

NOTE 6:

Line Voltage Regulation is a function of the same two additive components as Load Voltage Regulation, ΔV_{ioV} and ΔV_{ref} (see note 5). The measurement procedure is:

- a. Set the auxiliary voltage, V_{aux}, to 22 volts for the MC1566 or the MC1466. Read the value of
- when Joyd or the IWC 1400. Head the value of V_{10V} (1) and V_{ref} (1). Change the V_{aux} to 28 vots for the MC1466 and note the value of V_{10V} (2) and V_{ref} (2). Then compute Line Voltage Regulation:

$$\Delta V_{iov} = \Delta V_{iov}$$
 (1) - V_{iov} (2)

% Reference Regulation

$$\frac{[V_{\text{ref}}(1) - V_{\text{ref}}(2)]}{V_{\text{ref}}(1)} (100\%) = \frac{\Delta V_{\text{ref}}}{V_{\text{ref}}} (100\%)$$

Line Voltage Regulation =

$$\frac{\Delta V_{ref}}{V_{ref}}$$
 (100%) + ΔV_{iov} .

NOTE 7:

Load Current Regulation is measured by the following procedure:

- a. With S2 open, adjust R3 for an initial load current, $I_L(1)$, such that V_O is 8.0 Vdc.
- b. With S2 closed, adjust R_T for V_0 = 1.0 Vdc and read $I_L(2)$. Then Load Current Regulation =

$$\frac{[I_{L(2)} - I_{L(1)}]}{I_{L(1)}} (100\%) + I_{ref}$$

where Iref is 1.0 mAdc, Load Current Regulation is specified in this manner because I_{ref} passes through the load in a direction opposite that of load current and does not pass through the current sense resistor, R_s.

FIGURE 6 - TYPICAL CIRCUIT CONNECTION

NORMAL DESIGN PROCEDURE AND DESIGN CONSIDERATIONS

1. Constant Voltage:

For constant voltage operation, output voltage $V_{\mathbf{0}}$ is given by: $V_0 = (I_{ref}) (R_2)$

where R2 is the resistance from pin 8 to ground and Iref is the output current of pin 3.

The recommended value of $I_{\mbox{ref}}$ is 1.0 mAdc. Resistor R1 sets the value of Iref:

$$I_{ref} = \frac{8.5}{R_1}$$

where R1 is the resistance between pins 2 and 12.

2. Constant Current:

For constant current operation:

- (a) Select $\,\mathrm{R}_{\mathrm{S}}$ for a 250 mV drop at the maximum desired regulated output current, I max.
- (b) Adjust potentiometer R3 to set constant current output at desired value between zero and I max.
- 3. If V_{in} is greater than 20 Vdc, CR2, CR3, and CR4 are necessary to protect the MC1466/MC1566 during short-circuit or transient
- 4. In applications where very low output noise is desired, R2 may be bypassed with C1 (0.1 μ F to 2.0 μ F). When R2 is bypassed, CR1 is necessary for protection during short-circuit conditions.
- 5. CR5 is recommended to protect the MC1466/MC1566 from simultaneous pass transistor failure and output short-circuit.

- 6. The RC network (10 pF, 240 pF, 1.2 k Ω) is used for compensation. The values shown are valid for all applications. However, the 10 pF capacitor may be omitted if f_{τ} of Q1 and Q2 is greater than 0.5 MHz.
- 7. For remote sense applications, the positive voltage sense terminal (Pin 9) is connected to the positive load terminal through a separate sense lead; and the negative sense terminal (the ground side of R2) is connected to the negative load terminal through a separate sense
- 8. Co may be selected by using the relationship: $C_0 = (100 \mu F) I_{L(max)}$, where $I_{L(max)}$ is the maximum load current
- 9. C2 is necessary for the internal compensation of the MC1466/
- 10. For optimum regulation, current out of Pin 5, I5 should not exceed 0.5 mAdc. Therefore select Q1 and Q2 such that:

$$\frac{I_{\text{max}}}{\beta 1 \beta 2} \le 0.5 \text{ mAdc}$$

where: I_{max} = maximum short-circuit load current (mAdc)

$$\beta$$
1 = minimum beta of Q1

 $\beta 2$ = minimum beta of Q2

Although Pin 5 will source up to 1.5 mAdc, 15 > 0.5 mAdc will result in a degradation in regulation.

- 11. CR6 is recommended when $V_{\rm O} > 150$ Vdc and should be rated such that Peak Inverse Voltage $> V_{\rm O}$.
- 12. In applications where R2 might be rapidly reduced in value, it is recommended that CR3 be replaced by Q2 and R4.

This design consideration prevents R2 from being destroyed by excessive discharge current from Co. Components Q2 and R4 should be selected such that:

$$R4 = \frac{R2}{10}$$
 and

V(BR)CEO of $Q2 \ge V_O$

OPERATION AND APPLICATIONS

This section describes the operation and design of the MC1566/MC1466 voltage and current regulator and also provides information on useful applications.

SUBJECT SEQUENCE

Theory of Operation Applications Transient Failures Voltage/Current-Mode Indicator

THEORY OF OPERATION

The schematic of Figure 5 can be simplified by breaking it down into basic functions, beginning with a simplified version of the voltage reference, Figure 7. Zener diodes CR1 and CR5 with their associated forward biased diodes CR2 through CR4 and CR6 through CR8 form the stable reference needed to balance the differential amplifier. At balance (VB1 = VB2), the output voltage, (V12 - V7), is at a value that is twice the drop across either of the two diode strings: V12 - V7 = 2 (VCR1 + VCR2 + VCR3 + VCR4). Other voltages, temperature compensated or otherwise, are also derived from these diodes strings for use in other parts of the circuit.

The voltage controlled current source (Figure 8) is a PNP-NPN composite which, due to the high NPN beta,

FIGURE 7 - REFERENCE VOLTAGE REGULATOR

yields a good working PNP from a lateral device working at a collector current of only a few microamperes. Its base voltage (VB2) is derived from a temperature compensated portion of the diode string and consequently the overall current is dependent on the value of emitter resistor R1. Temperature compensation of the base emitter junction of Q3 is not important because approximately 9 volts exists between V_{B2} and V_{12} , making the ΔV_{BE} 's very small in percentage. Circuit reference voltage is derived from the product of IR and RR; if IR is set at 1 mA (R1 = 8.5 k Ω), then R_R (in k Ω) = V₀. Other values of current may be used as long as the following restraints are kept in mind: 1) package dissipation will be increased by about 11 mW/mA and 2) bias current for the voltage control amplifier is 3 μ A, temperature dependent, and is extracted from the reference current. The reference current should

FIGURE 8 - VOLTAGE CONTROLLED CURRENT SOURCE

be at least two orders of magnitude above the largest expected bias current.

Loop amplification in the constant voltage mode is supplied by the voltage controlled amplifier (Figure 9), a standard high-gain differential amplifier. The inputs are diode-protected against differential overvoltages and an emitter degenerating resistor, ROS, has been added to one of the transistors. For an emitter current in both Q5 and Q6 of 1/2 milliampere there will exist a preset offset voltage in this differential amplifier of 15 mV to insure that the output voltage will be zero when the reference voltage is zero. Without ROS, the output voltage could be a few millivolts above zero due to the inherent offset. Since the load resistor is so large in this stage compared with the load (Q9) it will be more instructive to look at the gain on a transconductance basis rather than voltage gain. Transconductance of the differential stage is defined for small signals as:

$$g_{\rm m} = \frac{1}{2r_{\rm e} + R_{\rm E}} \tag{1}$$

where

$$r_e \approx \frac{0.026}{I_E}$$
 and

RE = added emitter degenerating resistance.

For $I_E = 0.5 \text{ mA}$,

$$g_{\rm m} = \frac{1}{104 + 30} = \frac{1}{134} = 7.5 \text{ mA/volt.}$$
 (2)

FIGURE 9 - VOLTAGE CONTROL AMPLIFIER

FIGURE 10 - CURRENT CONTROL CIRCUIT

This level is further boosted by the output stage such that in the constant voltage mode overall transconductance is about 300 mA/volt.

A second differential stage nearly identical to the first stage, serves as the current control amplifier (Figure 10). The gain of this stage insures a rapid crossover from the constant voltage to constant current modes and provides a convenient point to control the maximum deliverable load current. In use, a reference voltage derived from the preregulator and a voltage divider is applied to pin 10 while the output current is sampled across RS by pin 11. When IL RS is 15 mV below the reference value, voltage V₁ begins to rapidly rise, eventually gaining complete control of Q9 and limiting output current to a value of V₂/R_S. If V₂ is derived from a variable source, short circuit current may be controlled over the complete output current capability of the regulator. Since the constantvoltage to constant-current change-over requires only a few millivolts the voltage regulation maintains its quality to the current limit and accordingly shows a very sharp "knee" (1% +1 mA, Figure 11). Note that the regulator can switch back into the constant voltage mode if the output voltage reaches a value greater than VR. Operation through zero milliamperes is guaranteed by the inclusion of another emitter offsetting resistor.

FIGURE 11 - V_I CURVE FOR 0-TO-40 V,

MC1466L, MC1566L

Transistor Q9 and five diodes comprise the essential parts of the output stage (Figure 12). The diodes perform an "OR" function which allows only one mode of operation at a time - constant current or constant voltage. However, an additional stage (Q9) must be included to invert the logic and make it compatible with the driving requirements of series pass transistors as well as provide additional gain. A 1.5 mA collector current source sets the maximum deliverable output current and boosts the output impedance to that of the current source.

Note that the negative (substrate) side of the MC1566/MC1466 is 7.25 volts lower than the output voltage, and the reference regulator guarantees that the positive side is 11 volts above the output. Thus the IC remains at a voltage (relative to ground) solely dependent on the output, "floating" above and below V_0 . V_{CE} across Q9 is only two or three V_{BE} 's depending on the number of transistors used in the series pass configuration.

Performance characteristics of the regulator may be approximately calculated for a given circuit (Figure 2). Assuming that the two added transistors (Q12 and Q13) have minimum beta's of 20, then the overall regulator transconductance will be:

$$g_{mT} = (400) 300 \text{ mA/volt} = 120 \text{ A/volt}.$$
 (3)

For a change in current of 500 mA the output voltage will drop only:

$$\Delta V = \frac{0.5}{120} = 4.2 \text{ mV}. \tag{4}$$

FIGURE 12 - MC1566 OUTPUT STAGE

The analysis thus far does not consider changes in V_R due to output current changes. If I_L increases by 500 mA the collector current of Q9 decreases by 1.25 mA, causing the collector current of Q5 to increase by 30 μ A. Accordingly, I_R will be decreased by $\approx 0.30 \, \mu$ A which will drop the output by 0.03%. This figure may be improved considerably by either using high beta devices as the pass transistors, or by increasing I_R . Note again, however, that the maximum power rating of the package must be kept in mind. For example if $I_R = 4$ mA, power dissipation is

$$P_D = 20 \text{ V } (8 \text{ mA}) + (11 \text{ V x } 3 \text{ mA}) = 193 \text{ mW}.$$
 (5)

This indicates that the circuit may be safely operated up to 118°C using 20 volts at the auxiliary supply voltage. If, however, the auxiliary supply voltage is 35 volts,

$$P_D = 35 \text{ V } (8 \text{ mA}) + 26 \text{ V } (3 \text{ mA}) = 358 \text{ mW}.$$
 (6)

which dictates that the maximum operating temperature must be less than 91°C to keep package dissipation within specified limits.

Line voltage regulation is also a function of the voltage change between pins 8 and 9, and the change of V_{ref} . In this case, however, these voltages change due to changes in the internal regulator's voltages, which in turn are caused by changes in V_{aux} . Note that line voltage regulation is not a function of V_{in} . Note also that the instantaneous value of V_{aux} must always be between 20 and 35 volts.

Figure 6 shows six external diodes (CR1 to CR6) added for protective purposes. CR1 should be used if the output voltage is less than 20 volts and CR2, CR3 are absent. For of CR2 and CR3. Diode CR4 prevents IC failure if the series pass transistors develop collector-base shorts while the main power transistor suffers a simultaneous open emitter. If the possibility of such a transistor failure mode seems remote, CR4 may be deleted. To prevent instantaneous differential and common-mode breakdown of the current sense amplifier, CR5 must be placed across the current limit resistor R₅.

Load transients occasionally produce a damaging reversal of current flow from output to input $V_O > 150$ volts (which will destroy the IC). Diode CR₆ prevents such reversal and renders the circuit immune from destruction for such conditions, e.g., adding a large output capacitor after the supply is turned "on". Diodes CR₁, CR₂, CR₃, and CR₅ may be general purpose silicon units such as 1N4001 or equivalent whereas CR₄ and CR₆ should have a peak inverse voltage rating equal to V_{in} or greater.

APPLICATIONS

Figure 2 shows a typical 0-to-40 volts, 0.5-ampere regulator with better than 0.01% performance. The RC network between pins 5 and 6 and the capacitor between pins 13 and 14 provide frequency compensation for the MC1566/MC1466. The external pass transistors are used to boost load current, since the output current of the regulator is less than 2 mA.

Figure 1 is a 0-to-15 volts, 10-ampere regulator with the pass transistor configuration necessary to boost the load current to 10 amperes. Note that C_0 has been increased to 1000 μ F following the general rule:

$$C_0 = 100 \, \mu F/A \, I_L$$

The prime advantage of the MC1566/MC1466 is its use as a high voltage regulator, as shown in Figure 3. This 0-to-250 volts 0.1-ampere regulator is typical of high voltage applications, limited only by the breakdown and safe areas of the output pass transistors.

The primary limiting factor in high voltage series regulators is the pass transistor. Figure 13 shows a safe area curve for the MJ413. Looking at Figure 3, we see that if the output is shorted, the transistor will have a collector current of 100 mA, with a VCE approximately equal to 260 volts. Thus this point falls on the dc line of the safe area curve, insuring that the transistor will not enter secondary breakdown.

In this respect (Safe Operating Area) the foldback circuit of Figure 14 is superior for handling high voltages and yet is short-circuit protected. This is due to the fact that load current is diminished as output voltage drops (VCE increases as V_O drops) as seen in Figure 15. By careful design the load current at a short, I_{SC} can be made low enough such that the combined VCE (V_{in}) and I_{SC} still falls within the dc safe operating area of the transistor. For the illustrated design (Figure 14), an input voltage of 210 volts is compa-

tible with a short-circuit current of 100 mA. Yet current foldback allows us to design for a maximum regulated load current of 500 mA. The pertinent design equations are:

Let R₂ (k
$$\Omega$$
) = V₀

$$\alpha = \frac{0.25}{V_0} \left[\frac{I_k}{I_{SC}} - 1 \right]$$
R₁ (k Ω) = $\frac{\alpha}{1 - \alpha}$ V₀
R_{SC} = $\frac{0.25}{(1 - \alpha) I_{SC}}$.

FIGURE 14 - A 200 V, 0.5-AMPERE REGULATOR WITH CURRENT FOLDBACK 1N4005 MJ421 OR FOUN OR EQUIV $V_{in} = 210 V$ MJ413 OR EQUIV 240 pF MC1466 15 k 1 k MC1566 10 R_2 200 H R_{SC} 2.5 Ω/1W 18 k 8.55 k 500 1N4001 OR EQUIV V o = 200 V 200 k 50 μF

MOTOROLA LINEAR/INTERFACE DEVICES

The terms I_{SC} and I_k correspond to the short-circuit current and maximum available load current as shown in Figure 15.

Figure 16 shows a remote sense application which should be used when high current or long wire lengths are used. This type of wiring is recommended for any application where the best possible regulation is desired. Since the sense lines draw only a small current, large voltage drops do not destroy the excellent regulation of the MC1566/MC1466.

TRANSIENT FAILURES

In industrial areas where electrical machinery is used

the normal ac line often contains bursts of voltage running from hundreds to thousands of volts in magnitude and only microseconds in duration. Under some conditions this energy is dissipated across the internal zener connected between pins 9 and 7. This transient condition may produce a total failure of the regulator device without any apparent explanation. This type of failure is identified by absence of the 7-volt zener (CR1) between pin 9 and pin 7. To prevent this failure mode the use of a shielded power transformer is recommended, as shown in Figure 6. In addition, it is recommended that C1, C3 and C4 be included to aid in transient repression. These capacitors should have good high frequency characteristics.

If the possibility of transients on the output exists, the addition of a resistor and zener diode between pins 9 and 7 as shown on Figure 17 should be added.

VOLTAGE/CURRENT - MODE INDICATOR

There may be times when it is desirable to know when the MC1566/MC1466 is in the constant current mode or constant voltage mode. A mode indicator can be easily added to provide this feature. Figure 18 shows how a PNP transistor has replaced a protection doide between pins 8 and 9 of Figure 2. When the MC1566/MC1466 goes from constant voltage mode to constant current mode, V_0 will drop below V_8 and the PNP transistor will turn on. The 1-mA current supplied by pin 8 will now be shunted to base of Q2 thereby turning on the indicator device 11.

FIGURE 16 - REMOTE SENSE

FIGURE 17 - A 0-TO-250 VOLT, 0.1-AMPERE REGULATOR MJE340 OR EQUIV **♦●** V_{in} = 260 V MJ413 OR EQUIV MC1466 MC1566 240 pF 25 V 15 k 100 10 12 **≨** 2.5 v_Z ≅ 8 v 500 8.55 k 18 k All diodes are 1N4001 or equivalent. 250 k V_O Adjust 10 年 六

FIGURE 18 - 0-TO--40 Vdc, 0.5-AMPERE REGULATOR WITH MODE INDICATOR MPS6565 OR EQUIV +50 Vdc 0.1 μF 2N4922 OR EQUIV MC1466 240 pF MC1566 1.0 k 11 10 1N4001 0.5 OR EQUIV 9 2 0 012 8.5 k 1N4001 50 μF 2 OR EQUIV V_C, (CONTROL VOLTAGE TO SCHMITT TRIGGER) *Select Q1 such that $V_{\rm CEO} > V_{\rm O}$

MC1468 MC1568

DUAL ±15-VOLT REGULATOR

The MC1568/MC1468 is a dual polarity tracking regulator designed to provide balanced positive and negative output voltages at currents to 100 mA. Internally, the device is set for \pm 15-volt outputs but an external adjustment can be used to change both outputs simultaneously from 8.0 to 20 volts. Input voltages up to \pm 30 volts can be used and there is provision for adjustable current limiting. The device is available in three package types to accomodate various power requirements.

- Internally set to ±15 V Tracking Outputs
- Output Currents to 100 mA
- Outputs Balanced to within 1% (MC1568)
- Line and Load Regulation of 0.06%
- 1% Maximum Output Variation due to Temperature Changes
- Standby Current Drain of 3.0 mA
- Externally Adjustable Current Limit
- Remote Sensing Provisions
- Case is at Ground Potential (R suffix package)

CIRCUIT SCHEMATIC VCC 4(7) III COMPEN (+) VEE 5(8) SND 010(1) VOLTAGE ADJUST 1 ADJUST SIENDS () SIENDS

DUAL ±15-VOLT TRACKING REGULATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

(Bottom View)

G SUFFIX METAL PACKAGE CASE 603C-01 TO-100

R SUFFIX METAL PACKAGE CASE 614-02

L SUFFIX CERAMIC PACKAGE CASE 632-02 MO-001AA

DEVICE	TEMPERATURE RANGE	PACKAGE
MC1468G	0° C to +70° C	Metal Can
MC1468L	0° C to +70° C	Ceramic DIF
MC1468R	0° C to +70° C	Metal Power
MC1568G	-55° C to +125° C	Metal Can
MC1568L	-55° C to +125° C	Ceramic DIF
MC1568R	-55° C to -125° C	Metal Power

MAXIMUM RATINGS ($T_C = +25^{\circ}C$ unless otherwise noted.)

Rating	Symbol		Value		Unit	
Input Voltage	V _{CC} , V _{EE}	30			Vdc	
Peak Load Current	IPK	100		I _{PK} 100		mA
Power Dissipation and Thermal Characteristics		G Package	R Package	L Package		
$T_A = +25^{\circ}C$	P _D	0.8	2.4	1.0	Watts	
Derate above T _A = +25°C	. 1/∂ _{JA}	6.6	28.5	10	mW/ ^O C	
Thermal Resistance, Junction to Air	θ JA	150	35	100	°C/W	
$T_{C} = +25^{\circ}C$	l P _D	2.1	9.0	2.5	Watts	
Derate above $T_C = +25^{\circ}C$	1/θ JC	14	61	20	mW/ ^O C	
Thermal Resistance, Junction to Case	θJC	70	17	50	°C/W	
Storage and Junction Temperature Range	T _J ,T _{stg}	-65 to +150			°C	
Minimum Short-Circuit Resistance	R _{SC} (min)	4.0			Ohms	

OPERATING TEMPERATURE RANGE

Ambient Temperature	TA		°C
MC1468		0 to +70	
MC1568		-55 to +125	

ELECTRICAL CHARACTERISTICS (V_{CC} = +20 V, V_{EE} = -20 V, C1 = C2 = 1500 pF, C3 = C4 = 1.0 μ F, R_{SC}⁺ = R_{SC}⁻ = 4.0 Ω , I_L⁺ = I_L⁻ = 0, T_C = +25 C unless otherwise noted.) (See Figure 1.)

		MC1568			MC1468			1
Characteristic	Symbol*	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage	v _o	±14.8	±15	±15.2	±14.5	±15	±15.5	Vdc
Input Voltage	Vin	_	_	±30			±30	Vdc
Input-Output Voltage Differential	V _{in} - V _O	2.0	_	_	2.0	_		Vdc
Output Voltage Balance	V _{Bal}	_	±50	±150	-	±50	±300	mV
Line Regulation Voltage (V _{in} = 18 V to 30 V) (T _{Iow} to T _{high} 2)	Regline	_	_ _	10 20	_	_	10 20	mV
Load Regulation Voltage $\{I_L = 0 \text{ to } 50 \text{ mA}, T_J = \text{constant}\}$ $\{T_A = T_{low} \text{ to } T_{high}\}$	Regload	-	_ _	10 30	- :	-	10 30	mV ·
Output Voltage Range L Package (See Figure 4.) R and G Packages (See Figures 2 and 13.)	VOR	±8.0 ±14.5	<u>-</u> '.	±20 ±20	±8.0 ±14.5	-	±20 ±20	Vdc
Ripple Rejection (f = 120 Hz)	RR	_	75	_	_	75	_	dB
Output Voltage Temperature Stability (Tlow to Thigh)	TSV _O	-	0.3	1.0	_	0.3	1.0	%
Short-Circuit Current Limit (R _{SC} = 10 ohms)	I _{sc}		60	_	_	60	_	mA
Output Noise Voltage (BW = 100 Hz - 10 kHz)	Vn	_	100	_	_	100	_	μV(RMS)
Positive Standby Current (Vin = +30 V)	IB ⁺	_	2.4	4.0	-	2.4	4.0	mA
Negative Standby Current (V _{in} = -30 V)	IB_	_	1.0	3.0	_	1.0	3.0	mA
Long-Term Stability	△V _O /△t	_	0.2	-	_	0.2		%/k Hr

① $T_{low} = 0^{o}C$ for MC1468 = -55°C for MC1568

② $T_{high} = +70^{\circ}C$ for MC1468 = +125 $^{\circ}C$ for MC1568

TYPICAL APPLICATIONS

FIGURE 1 - BASIC 50-mA REGULATOR

C1 and C2 should be located as close to the device as possible. A 0.1 $\mu\mathrm{F}$ ceramic capacitor ($\mathrm{C_{in}}$) may be required on the input lines if the device is located an appreciable distance from the rectifier filter capacitors.

C3 and C4 may be increased to improve load transient response and to reduce the output noise voltage. At low temperature operation, it may be necessary to bypass C4 with a 0.1 μF ceramic disc capacitor.

FIGURE 2 – VOLTAGE ADJUST AND BALANCE ADJUST CIRCUIT $(14.5~\textrm{V} \leqslant \textrm{V}_{\textrm{out}} \leqslant 20~\textrm{V})$

Balance adjust available in MC1568L, MC1468L ceramic dual in-line package only.

FIGURE 3 — ±1.5-AMPERE REGULATOR (Short-Circuit Protected, with Proper Heatsinking) (Metal-Packaged Devices Only, R Suffix)

FIGURE 4 – OUTPUT VOLTAGE ADJUSTMENT FOR 8.0 V ≤ |±V_O |≤ 14.5 V (Ceramic-Packaged Devices Only, L Suffix.)

The presence of the Baladj, pin 2, on devices housed in the dual in-line package (L suffix) allows the user to adjust the output voltages down to ±8.0 V. The required value of resistor R2 can calculated from

 $R2 = \frac{R1\ R_{int}}{R_{int}\left(V_0 - \phi - \frac{1}{V_0}\right) - \sqrt{1 - V_0}} \frac{(\phi + V_2)}{V_0 - \phi R1}$ Where: $R_{int} = An$ Internal Resistor = $R1 = 1\ k\Omega$ $\phi = 0.68\ V$ $V_2 = 6.6\ V$

TYPICAL CHARACTERISTICS

(V_{CC} = +20 V, V_{EE} = -20 V, V_{O} = ±15 V, T_{A} = +25 o C unless otherwise noted.)

$\label{eq:typical_characteristics} TYPICAL\ CHARACTERISTICS\ (continued) $$(V_{CC}=+20\ V,V_{EE}=-20\ V,V_{O}=\pm15\ V,T_{A}=+25^{O}C\ unless\ otherwise\ noted.)$$

CHANGE IN JUNCTION TEMPERATURE

THERMAL SHIFT

16

15

FIGURE 13 - TEMPERATURE COEFFICIENT OF

±V_O, OUTPUT VOLTAGE (±V)

$\begin{tabular}{ll} TYPICAL CHARACTERISTICS (continued) \\ (V_{CC} = +20 \ V, \ V_{EE} = -20 \ V, \ V_O = \pm 15 \ V, \ T_A = +25 \ ^{O}C \ unless \ otherwise \ noted.) \\ \end{tabular}$

MC1469 MC1569

Specifications and Applications Information

MONOLITHIC VOLTAGE REGULATOR

The MC1569/MC1469 is a positive voltage regulator designed to deliver continuous load current up to 500 mAdc. Output voltage is adjustable from 2.5 Vdc to 37 Vdc. The MC1569 is specified for use within the military temperature range (-55 to +125°C) and the MC1469 within the 0 to +70°C temperature range.

For systems requiring a positive regulated voltage, the MC1569 can be used with performance nearly identical to the MC1563 negative voltage regulator. Systems requiring both a positive and negative regulated voltage can use the MC1569 and MC1563 as complementary regulators with a common input ground.

- Electronic "Shut-Down" Control
- Excellent Load Regulation (Low Output Impedance 20 milliohms tvp)
- High Power Capability: up to 17.5 Watts
- Excellent Temperature Stability: ±0.002 %/°C typ
- High Ripple Rejection: 0.002 %/V tvp

FIGURE 1 - ±15 V, ±400 mA COMPLEMENTARY TRACKING **VOLTAGE REGULATOR**

POSITIVE VOLTAGE REGULATOR INTEGRATED CIRCUIT

SILICON MONOLITHIC **EPITAXIAL PASSIVATED**

G SUFFIX METAL PACKAGE CASE 603-04

(Bottom View)

R SUFFIX METAL PACKAGE CASE 614-02

(Bottom View)

ORDERING	ORDERING INFORMATION							
DEVICE	DEVICE TEMPERATURE RANGE							
MC1469G	0° C to +70°C	Metal Can						
MC1469R	0° C to +70° C	Metal Power						
MC1569G	-55° C to +125° C	Metal Can						
MC1569R	-55° C to +125° C	Metal Power						

FIGURE 2 – TYPICAL CIRCUIT CONNECTION (3.5 \leq V_O \leq 37 Vdc, 1 \leq 1, \leq 500 mA)

FIGURE 3 - TYPICAL NPN CURRENT BOOST CONNECTION (VO = 5.0 Vdc, IL = 10 Adc [max])

500 mA max

MAXIMUM RATINGS (T_C = +25°C unless otherwise noted)

Rating	Symbol	Va	lue	Unit
Input Voltage MC1469 MC1569	V _{in}	1	35 10	Vdc
Peak Load Current	^I PK	G Package 250	R Package 600	mA
Current, Pin 2 Current, Pin 9	I _{pin 2} I _{pin 9}	10 5.0	10 5.0	mA
Power Dissipation and Thermal Characteristics $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air $T_C = +25^{\circ}C$ Derate above $T_C = +25^{\circ}C$ Thermal Resistance, Junction to Case	P _D 1/θ JA θ JA P _D 1/θ JC θ JC	0.68 5.44 184 1.8 14.4 69.4	3.0 24 41.6 14 140 7.15	Watts mW/OC OC/W Watts mW/OC
Operating and Storage Junction Temperature	T _J , T _{stg}	-65 to	+150	°С

OPERATING TEMPERATURE RANGE

Ambient Temperature	TA		°С
MC1469		0 to +70	
MC1569		-55 to +125	

ELECTRICAL CHARACTERISTICS

(T_C = +25°C unless otherwise noted) (Load Current = 100 mA for "R" Package device, = 10 mA for "G" Package device,

*		MC1569					MC1469			
Characteristic	Fig.	Note	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage (T _A = T _{low} ① to T _{high} ②)	4	1	Vin	8.5	-	40	9.0	-	35	Vdc
Output Voltage Range	4,5		v _O	2.5	_	37	2.5	<u> </u>	32	Vdc
Reference Voltage (Pin 8 to Ground , Vin = 15 V	4		V _{ref}	3.4	3.5	3.6	3.2	3.5	3.8	Vdc
Minimum Input-Output Voltage Differential (R _{SC} = 0)	4	2	V _{in} – V _O	_	2.1	2.7	_	2.1	3.0	Vdc
Bias Current $(V_{in} = 15 \text{ V})$ $(I_L = 1.0 \text{ mAdc}, R_2 = 6.8 \text{ k ohms}, I_{IB} = I_{in} - I_L)$	4		¹ IВ	_	4.0	9.0	_	5.0	12	mAdc
Output Noise ($C_N = 0.1 \mu F$, $f = 10 Hz$ to $5.0 MHz$)	4		V _n	_	0.150	_	. –	0.150	_	mV(rms)
Temperature Coefficient of Output Voltage	4	3	TCVO		±0.002	-	-	±0.002	_	%/°C
$ \begin{array}{lll} \text{Operating Load Current Range} \\ \text{(R}_{\text{SC}} \leqslant 0.3 \text{ ohms)} & \text{R Package} \\ \text{(R}_{\text{SC}} \leqslant 2.0 \text{ ohms)} & \text{G Package} \end{array} $	4		ار	1.0 1.0	_ _	500 200	1.0 1.0	<u>-</u>	500 200	mAdc
Input Regulation	6	4	Regline		0.002	0.015	-	0.003	0.030	%/V _O
Load Regulation (T _J = Constant [1.0 mA≤I _L ≤20 mA]) (T _C = +25 ^o C [1.0 mA≤I _L ≤50 mA]) R Package G Package	7	5	Regload	_	0.4 0.005 0.01	1.6 0.05 0.13	_ _ _	0.7 0.005 0.01	2.4 0.05 0.13	mV %
Output Impedance $(C_c = 0.001 \mu\text{F}, R_{SC} = 1.0 \text{ohm}, f = 1.0 \text{kHz}, V_{in} = +14 \text{Vdc}, V_{O} = +10 \text{Vdc})$	8	6	z _O	_	20	_	-	35	-	milliohms
Shutdown Current (V _{in} = +35 Vdc)	9		l _{sd}	-	70	150	_	140	500	μAdc

 $T_{low} = 0^{\circ}C \text{ for MC1469}$ = -55°C for MC1569

② T_{high} = +70° C for MC1469 = +125°C for MC1569

MC1469, MC1569

- Note 1. "Minimum Input Voltage" is the minimum "total instantaneous input voltage" required to properly bias the internal zener reference diode. For output voltages greater than approximately 5.5 Vdc the minimum "total instantaneous input voltage" must increase to the extent that it will always exceed the output voltage by at least the "input-output voltage differential".
- Note 2. This parameter states that the MC1569/MC1469 will regulate properly with the input-output voltage differential ($V_{in}-V_{O}$) as low as 2.7 Vdc and 3.0 Vdc respectively. Typical units will regulate properly with ($V_{in}-V_{O}$) as low-as 2.1 Vdc as shown in the typical column. (See Figure 21.)
- Note 3. "Temperature Coefficient of Output Voltage" is defined as:

as:
$$MC1569, TCV_O = \frac{\pm (V_O \max - V_O \min) (100)}{(180^{\circ}C) (V_O @ 25^{\circ}C)} = \%/^{\circ}C$$

MC1469, TCV_O =
$$\frac{\pm (V_O \max - V_O \min) (100)}{(75^{\circ}C) (V_O @ 25^{\circ}C)} = \%/^{\circ}C$$

The output-voltage adjusting resistors (R1 and R2) must have matched temperature characteristics in order to maintain a constant ratio independent of temperature.

Note 4. Input regulation is the percentage change in output voltage per volt change in the input voltage and is expressed as

Input Regulation = $\frac{v_0}{V_0 (v_{in})}$ 100 (%/V₀),

where v_0 is the change in the output voltage V_0 for the input change v_{in} .

The following example illustrates how to compute maximum output voltage change for the conditions given:

$$\begin{aligned} \text{Regline} &= 0.015 \, \% / V_{O} \\ V_{O} &= 10 \, \text{Vdc} \\ v_{in} &= 1.0 \, \text{V(rms)} \\ v_{O} &= \frac{\left(\text{Regline}\right) \left(v_{in}\right) \left(V_{O}\right)}{100} \\ &= \frac{\left(0.015\right) \left(1.0\right) \left(10\right)}{100} \\ &= 0.0015 \, \text{V(rms)} \end{aligned}$$

Note 5. Load regulation is specified for small (≤+17°C) changes in junction temperature. Temperature drift effect must be taken into account separately for conditions of high junction temperature changes due to the thermal feedback that exists on the monolithic chip.

back that exists on the monolithic chip.

Load Regulation =
$$\frac{|V_O|I_L = 1.0 \text{ mA}] - |V_O|I_L = 50 \text{ mA}|}{|V_O|I_L = 1.0 \text{ mA}|} \times 100$$

Note 6. The resulting low level output signal (v_o) will require the use of a tuned voltmeter to obtain a reading. Special care should be used to insure that the measurement technique does not include connection resistance, wire resistance, and wire lead inductance (i.e., measure close to the case). Note that No. 22 AWG hook-up wire has approximately 4.0 milliohms/in. dc resistance and an inductive reactance of approximately 10 milliohms/in. at 100 kHz. Avoid use of alligator clips or banana plug-jack combination.

TEST CIRCUITS

GENERAL DESIGN INFORMATION

 Output Voltage, V_O
 For V_O ≥ 3.5 Vdc – Output voltage is set by resistors R1 and R2 (see Figure 4). Set R2 = 6.8 k ohms and determine R1 from the graph of Figure 10 or from the equation:

$$R1 \approx (2 \text{ V}_{O} - 7) \text{ k}\Omega$$

b) For $2.5 \le V_O \le 3.5 \text{ Vdc}$ — Output voltage is set by resistors R1 and R2 (see Figure 5). Resistors R1 and R2 can be determined from the graph of Figure 11 or from the equations:

$$R2 \approx 2 (V_0) k\Omega$$

 $R1 \approx (7 k\Omega - R2) k\Omega$

- c) Output voltage, Vo. is determined by the ratio of R1 and R2, therefore optimum temperature performance can be achieved if R1 and R2 have the same temperature coefficient.
- d) Output voltage can be varied by making R1 adjustable as shown in Figure 43.
- e) If Vo = 3.5 Vdc (to supply MRTL* for example), tie pins 6. 8 and 9 together. R1 and R2 are not needed in this case.

Short Circuit Current, I_{SC}
 Short Circuit Current, I_{SC}, is determined by R_{SC}. R_{SC} may be chosen with the aid of Figure 12 or the expression:

$$R_{\text{sc}} \approx \frac{0.6}{I_{\text{sc}}} \text{ ohm}$$

where I_{SC} is measured in amperes. This expression is also valid when current is boosted as shown in Figure 2.

3. Compensation, C_C

A 0.001 µF capacitor, Cc, from pin 4 to ground will provide adequate compensation in most applications, with or without current boost. Smaller values of Cc will reduce stability and larger values of Cc will degrade pulse response and output impedance versus frequency. The physical location of Cc should be close to the MC1569/MC1469 with short lead lengths.

4. Noise Filter Capacitor, CN

A 0.1 μF capacitor, CN, from pin 7 to ground will typically reduce the output noise voltage to 150 µV (rms). The value of CN can be increased or decreased, depending on the noise voltage requirements of a particular application. A minimum value of 0.001 µF is recommended.

5. Output Capacitor, CO

The value of Co should be at least 1.0 µF in order to provide good stability. The maximum value recommended is a function of current limit resistor R_{sc}:

$$C_{O~max} \approx \frac{250~\mu\text{F}}{R_{SC}}$$

where R_{SC} is measured in ohms. Values of CO greater than this will degrade the pulse response characteristics and increase the settling time.

6. Shut-Down Control

One method of turning "OFF" the regulator is to apply a dc voltage at pin 2. This control can be used to eliminate power consumption by circuit loads which can be put in "standby" mode. Examples include, an ac or dc "squelch" control for communications circuits, and a dissipation control to protect the regulator under sustained output shortcircuiting. As the magnitude of the input-threshold voltage at Pin 2 depends directly upon the junction temperature of the integrated circuit chip, a fixed dc voltage at Pin 2 will cause automatic shut-down for high junction temperatures. This will protect the chip, independent of the heat sinking used, the ambient temperature, or the input or output voltage levels. Standard Logic levels of MRTL, MDTL* or MTTL* can also be used to turn the regulator "ON" or "OFF"

7. Remote Sensina

The connection to pin 5 can be made with a separate lead direct to the load. Thus, "remote sensing" can be achieved and the effect of undesired impedances (including that of the milliammeter used to measure II) on zo can be greatly reduced.

FIGURE 10 - R1 versus VO $(V_O \geqslant 3.5 \text{ Vdc, See Figure 4})$

FIGURE 11 - R1 and R2 versus Vo $(2.5 \le V_O \le 3.5 \text{ Vdc, See Figure 5})$

FIGURE 12 - I_{sc} versus R_{sc}

R_{SC}, EXTERNAL CURRENT-LIMITING RESISTOR (OHMS)

TYPICAL CHARACTERISTICS

Unless otherwise noted: $C_N = 0.1 \,\mu\text{F}$, $C_C = 0.001 \,\mu\text{F}$, $C_O = 1.0 \,\mu\text{F}$, $T_C = +25^{\circ}\text{C}$, $V_{in} \text{ nom} = +9.0 \,\text{Vdc}$, $V_O \text{ nom} = +5.0 \,\text{Vdc}$,

200 4 6- 8 -----

IL>200 mA for R package only.

FIGURE 13 – DEPENDENCE OF OUTPUT IMPEDANCE ON OUTPUT VOLTAGE

FIGURE 14 - OUTPUT IMPEDANCE versus R_{sc}

FIGURE 15 – FREQUENCY DEPENDENCE OF INPUT REGULATION, $C_0 = 10 \mu F$

FIGURE 16 – FREQUENCY DEPENDENCE OF INPUT REGULATION, C_{O} = 2.0 μ F

FIGURE 17 - CURRENT-LIMITING CHARACTERISTICS

FIGURE 18 - BIAS CURRENT versus INPUT VOLTAGE

TYPICAL CHARACTERISTICS (continued)

Unless otherwise noted: $C_N = 0.1 \,\mu\text{F}$, $C_C = 0.001 \,\mu\text{F}$, $C_O = 1.0 \,\mu\text{F}$, $T_C = +25^{\circ}\text{C}$,

 V_{in} nom = +9.0 Vdc, V_{O} nom = +5.0 Vdc,

IL>200 mA for R package only.

FIGURE 19 — EFFECT OF LOAD CURRENT ON INPUT-OUTPUT VOLTAGE DIFFERENTIAL

FIGURE 20 - EFFECT OF INPUT-OUTPUT VOLTAGE

FIGURE 21 - INPUT TRANSIENT RESPONSE

FIGURE 22 – TEMPERATURE DEPENDENCE OF SHORT-CIRCUIT LOAD CURRENT

FIGURE 23 – FREQUENCY DEPENDENCE OF OUTPUT IMPEDANCE, $C_{\rm O}$ = 10 $\mu{\rm F}$

FIGURE 24 — FREQUENCY DEPENDENCE OF OUTPUT IMPEDANCE, $C_0 = 2.0 \mu F$

OPERATIONS AND APPLICATIONS

This section describes the operation and design of the MC1569 positive voltage regulator and also provides information on useful applications.

SUBJECT SEQUENCE

Theory of Operation
NPN Current Boosting
PNP Current Boosting
Switching Regulator
Positive and Negative Power Supplies

Shutdown Techniques
Voltage Boosting
Remote Sensing
An Adjustable-Zero-Temperature-

Coefficient Voltage Source

Thermal Shutdown
Thermal Considerations
Latch-Up

THEORY OF OPERATION

The usual series voltage regulator shown in Figure 25, consists of a reference voltage, an error amplifier, and a series control element. The error amplifier compares the output voltage with the reference voltage and adjusts the output accordingly until the error is essentially zero. For applications requiring output voltages larger than the reference, there are two options. The first is to use a resistive divider across the output and compare only a fraction of the output voltage to the reference. This approach suffers from reduced feedback to the error amplifier due to the attenuation of the resistive divider. This degrades load regulation especially at high voltage levels.

The alternative is to eliminate the resistive divider and to shift the reference voltage instead. To accomplish this, another amplifier is employed to amplify (or level shift) the reference voltage using an operational amplifier as shown in Figure 26. The gain-determining resistors may be external, enabling a wide range of output voltages. This

is exactly the same approach used in the first option. That is, the output is being resistively divided to match the reference voltage. There is however, one big difference in that the output of this "regulator" is driving the input of another regulator (the error amplifier). The output of the reference amplifier has a relatively low impedance as compared to the input impedance of the error amplifier. Changes in the load of the output of the error amplifier are buffered to the extent that they have virtually no effect on the reference amplifier. If the feedback resistors are external (as they are on the MC1569) a wide range of reference voltages can be established.

The error amplifier can now be operated at unity gain to provide excellent regulation. In fact, this "regulator-within-a-regulator" concept permits the load regulation to be specified in terms of output impedance rather than as some percentage change of the output voltage. This approach was used in the design of the MC1569 positive-voltage regulator.

FIGURE 25 - SERIES VOLTAGE REGULATOR

FIGURE 26 - THE "REGULATOR-WITHIN-A-REGULATOR" APPROACH

FIGURE 27 (Recommended External Circuitry is Depicted With Dotted Lines.) MC1569/MC1469 BLOCK DIAGRAM V_{ref} AND I_{ref} CONTROL ERROR AMPLIFIER AND DC LEVEL SHIFT UNITY-GAIN REGULATOR SIMPLIFIED CIRCUIT SCHEMATIC OUTPUT SHUT DOWN COMPLETE CIRCUIT SCHEMATIC O 1 OUTPUT 834 COMPENSATION AND CURRENT LIMIT O 5 OUTPUT SENSE O 9 DC SHIFT OUTPUT O 7 NOISE FILTER O 6 OUTPUT REFERENCE O 8 DC SHIFT SENSE 2.67 SHUTDOWN CONTROL 410 0 is ground for Case 602A (G suf-GND* C

MC1569 Operation

Figure 27 shows the MC1569 Regulator block diagram, simplified schematic, and complete schematic. The four basic sections of the regulator are: Control, Bias, DC Level Shift, and Output (unity gain) Regulator. Each section is detailed in the following paragraphs.

Control

The control section involves two basic functions, startup and shutdown. A start-up function is required since the biasing is essentially independent of the unregulated input voltage. It makes use of two zener diodes having the same breakdown voltage. A first or auxiliary zener is driven directly from the input voltage line through a resistor (60 k Ω) and permits the regulator to initially achieve the desired bias conditions. This permits the second, or reference zener to be driven from a current source. When the reference zener enters breakdown, the auxiliary zener is isolated from the rest of the regulator circuitry by a diode disconnect technique. This is necessary to keep the added noise and ripple of the auxiliary zener from degrading the performance of the regulator.

MC1469, MC1569

The shutdown control consists of an NPN transistor across the reference zener diode. When this transistor is turned "ON", via pin 2, the reference voltage is reduced to essentially zero volts and the regulator is forced to shutdown. During shutdown the current drain of the complete IC regulator drops to $V_{in}/60~k\Omega$ or 500 μA for a 30 V input.

Bias

A zener diode is the main reference element and forms the heart of the bias circuitry. Its positive temperature coefficient is balanced by the negative temperature coefficients of forward biased diodes in a ratio determined by the resistors in the diode string. The result is a reference voltage of approximately 3.5 Vdc with a typical temperature coefficient of 0.002 %/°C. In addition, this circuit also provides a reference current which is used to bias all current sources in the remaining regulator circuitry.

DC Level Shift

The reference voltage is used as the input to a Darlington differential amplifier. The gain of this amplifier is quite high and it therefore may be considered to function as a conventional operational amplifier. Consequently, negative feedback can be employed using two external resistors (R I and R2) to set the closed-loop gain and to boost the reference voltage to the desired output voltage. A capacitor, C_N , is introduced externally into the level shift network (via pin 7) to stabilize the amplifier and to filter the zener noise. The recommended value for this capacitor is 0.1 μF and should have a voltage rating in excess of the desired output voltage. Smaller capacitors (0.001 μF minimum) may be used but will cause a slight increase in output noise. Larger values of C_N will reduce the noise as well as delay the start-up of the regulator.

Output Regulator

The output of the level shift amplifier (pin 9) is fed to the noninverting input (pin 6) of the output error amplifier. The inverting input to this amplifier is the Output Sense connection (pin 5) of the regulator. A Darlington connected NPN power transistor is used to handle the load current. The short-circuit current limiting resistor, R_{SC} , is connected in the emitter of this transistor to sample the full load current. By placing an external low-level NPN transistor across R_{SC} as shown in Figure 27, output current can be limited to a predetermined value:

$$I_L \max \approx \frac{0.6}{R_{SC}} \text{ or } R_{SC} = \frac{0.6}{I_L \text{ max}}$$

where I_L max is the maximum load current (amperes) and R_{SC} is the value of the current limiting resistor (ohms).

Stability and Compensation

As has been seen, the MC1569 employs two amplifiers, each using negative feedback. This implies the possibility of instability due to excessive phase shift at high frequencies. Since the error amplifier is normally used at unity gain (the worst case for stability) a high impedance node is brought out for compensation. For normal operation, a capacitor is connected between this point (pin 4) and ground. The recommended value of 0.001 μ F will insure stability and still provide acceptable transient response (see Figure 28, Å and B). It is also necessary to use an output capacitor, C_O (typically 1.0 μ F) from the output, V_O, to ground. When an external transistor is used to boost the current, C_O = 1.0 μ F is also recommended (see Figure 2).

FIGURE 28B - LOAD TRANSIENT RESPONSE

TYPICAL NPN CURRENT BOOST CONNECTIONS

FIGURE 29A - 5 VOLT 5-AMPERE REGULATOR

FIGURE 29B - 5-VOLT 5-AMPERE REGULATOR

FIGURE 30 - PNP CURRENT BOOST CONNECTION

NPN CURRENT BOOSTING

For applications requiring more than 500 mA of load current, or for minimizing voltage variations due to temperature changes in the IC regulator arising from changes of the internal power dissipation, the NPN current-boost circuits of Figure 3 or 29 are recommended. The transistor shown in Figure 29A, the 2N3055 can supply currents to 5.0 amperes (subject, of course, to the safe area limitations). To improve the efficiency of the NPN

boost configuration, particularly for small output voltages, the circuit of Figure 29 is recommended. An auxiliary 9.5-volt supply is used to power the IC regulator and the heavy load current is obtained from a second supply of lower voltage. For the 5.0 ampere regulator of Figure 29 this represents a savings of 17.5 watts when compared with operating the regulator from the single 9.5 V supply. It can supply current to 5.0 amperes while requiring an input voltage to the collector of the pass transistor of 6.0 volts minimum. The pass transistor is limited to 5.0 amperes by the added short-circuit current network in its emitter ($R_{\rm SC}$), (Figure 29B).

PNP CURRENT BOOSTING

A typical PNP current boost circuit is shown in Figure 30. Voltages from 2.5 Vdc to 37 Vdc and currents of many amperes can be obtained with this circuit.

Since the PNP transistor must not be turned on by the MC1569 bias current (l_{IB}) the resistor R_{in} must meet the following condition

$$R_{in} < \frac{V_{BE}}{I_{IR}}$$

where V_{BE} is the base-to-emitter voltage required to turn on the PNP pass transistor, (typically 0.6 Vdc for silicon and 0.2 Vdc for germanium).

For germanium pass transistors, a silicon diode may be placed in series with the emitter to provide an additional voltage drop. This allows a larger value of R_{in} than would be possible if the diode were omitted. The diode will, however, be required to carry the maximum load current.

SELF-OSCILLATING SWITCHING REGULATOR

In all of the current boosting circuits shown thus far it has been assumed that the input-output voltage differential can be minimized to obtain maximum efficiency in both the external pass element as well as the MC1569. This may not be possible in applications where only a single supply voltage is available and high current levels preclude zener diode pre-regulating approaches. In such applications a switching-mode voltage regulator is highly desirable since the pass device is either ON or OFF. The theoretical efficiency of an ideal switching regulator is 100%. Realizable efficiencies of 90% are within the realm of possibility thus obviating the need for large power dissipating components. The output voltage will contain a ripple component; however, this can be made quite small if the switching frequency is made relatively high so filtering techniques are effective. Figure 31 shows a functional diagram for a self-oscillating voltage regulator. comparator-driver will sense the voltage across the inductor, this voltage being related to the load current, II, by

MC1469, MC1569

$$L \frac{dI_L}{dt} = V.$$

For a first approximation this can be assumed to be a linear relationship.

Initially, V_O will be low and Q1 will be ON. The voltage at the non-inverting input will approach $\beta_1 V_{in}$, when:

$$\beta_1 V_{in} = \frac{V_{ref} R_a}{R_a + R_b} + \frac{V_c R_b}{R_a + R_b}$$

When this output voltage is reached the comparator will switch, turning Q1 OFF. The diode, CR1, will now become forward biased and will supply a path for the inductor current. This current and the sense voltage will start to decrease until the output voltage reaches

$$\beta_2 V_{in} = \frac{V_{ref} R_a}{R_a + R_b}$$

where the comparator will again switch turning Q1 ON, and the cycle repeats. Thus the output voltage is approximately V_{ref} plus a ripple component.

The frequency of oscillation can be shown to be

$$f = \frac{V_O (V_{in} - V_O)}{L V_C I(max) - I_O}$$
 (1)

where

I (max) = The maximum value of inductor current

IO = The minimum inductor current.

Normally this frequency will be in the range of approximately 2 kHz to 6 kHz. In this range, inductor values can be small and are compatible with the switching times of the pass transistor and diode. The switching time of the comparator is quite fast since positive feedback aids both turn-on and turn-off times. The limiting factors are the diode and pass transistor rise and fall times which should be quite fast or efficiency will suffer.

Figure 32 shows a self oscillating switching regulator which in many respects is similar to the PNP current boost previously discussed. The 6.8 k Ω resistor in conjunction with R1 sets the reference voltage, V_{ref} . Q1 and CR1 are selected for fast switching times as well as the necessary power dissipation ratings. Since a linear inductor is assumed, the inductor cannot be allowed to saturate at maximum load currents and should be chosen accordingly. If core saturation does occur, peak transistor and diode currents will be large and power dissipation will increase.

FIGURE 31 – BASIC SELF-OSCILLATING SWITCHING REGULATOR

FIGURE 32 – MC1569 SELF-OSCILLATING SWITCHING REGULATOR

As a design center is required for a practical circuit, assume the following requirements:

$$V_{in} = +28 \text{ Volts}$$

 $V_O = +10 \text{ Volts}$

 $\Delta V_{O} = 50 \text{ mV}$

f≅5 kHz

I(max) = 1.125 A

 $I_O = 1 A$

$$\Delta V \approx V_{\rm in} \frac{R_{\rm b}}{R_{\rm a}}.$$
 (2)

Using Equation (1), the inductor value can be found:

$$L = \frac{(28-10)}{2(1.125-1)} \frac{10}{28} \left(\frac{1}{5 \times 10^3} \right)$$

≈7 mH

For the test circuit, a value of 6 mH was selected. Using for a first approximation

$$C_{O} = \frac{(V_{in} - V_{O})(V_{O})}{8L f^{2} V_{in} (\Delta V)}$$

$$=\frac{(28-10)10}{8(7\times10^{-3})(5\times10^{3})^{2}(28)(50\times10^{-3})}$$

≈95 µF.

As shown, a value of 100 μF was selected. Since little current is required at pin 6, R_a can be large. Assume R_a = 47 $k\Omega$ and then use Equation (2) to determine R_b :

$$50 \times 10^{-3} = \frac{28}{47 \text{ k}\Omega} R_{\text{b}}$$

$$R_b = \frac{47}{28} 50 \approx 85\Omega$$
.

Since the internal impedance presented by pin 9 is on the order of 60Ω , a value of $R_b=10\Omega$ is adequate.

Diodes CR2, CR3, and R_{C} may be added to prevent saturation of the error amplifier to increase switching

speed. When the output stage of the error amplifier approaches saturation, CR2 becomes forward biased and clamps the error amplifier. Resistor R_{c} should be selected to supply a total of 1 mAdc to CR2 and CR3.

To show correlation between the predicted and tested specifications the following data was obtained:

$$V_{in} = +28 (\pm 1\%) \text{ Volts}$$

 $V_{\Omega} = +10 \text{ Volts}$

 $\Delta V_0 = 60 \text{ mV}$

f = 7 kHz

 $@I_{I} = 1A$

which checks quite well with the predicted values. R_b can be adjusted to minimize the ripple component as well as to trim the operating frequency. Also this frequency will change with varying loads as is normal with this type of circuit. Pin 2 can still be used for shut-down if so desired. R_{SC} should be set such that the ratio of load current to base drive current is 10:1 in this case $l_1\approx 100\text{ mA}$ and $R_{SC}=6.5\Omega$.

POSITIVE AND NEGATIVE POWER SUPPLIES

If the MC1569 is driven from a floating source it is possible to use it as a negative regulator by grounding the positive output terminal. The MC1569 may also be used with the MC1563 to-provide completely independent positive and negative voltage regulators with comparable performance.

Some applications may require complementary tracking in which both supplies arrive at the voltage level simultaneously, and variations in the magnitudes of the two voltages track. Figures 1 and 33 illustrate this approach. In this application, the MC1563 is used as the reference regulator, establishing the negative output voltage. The MC1569 positive regulator is used in a tracking mode by grounding one side of the differential amplifier (pin 6 of the MC1569) and using the other side (pin 5 of the MC1569) to sense the voltage developed at the junction of the two 3-k ohm resistors. This differential amplifier controls the MC1569 series pass transistor such that the voltage at pin 5 will be zero. When the voltage at pin 5 equals zero, +Vo must equal |-Vo|.

For the configuration shown in Figure 33, the level shift amplifier in the MC1569 is employed to generate an auxiliary +5-volt supply which is boosted to a 2-ampere capability by Q1 and Q2. (The +5-volt supply, as shown,

MC1469, MC1569

is not short-circuit protected.) The -15-volt supply varies less than 0.1 mV over a zero to -300 mAdc current range and the +15-volt supply tracks this variation. The +15-volt supply varies 20 mV over the zero to +300 mAdc load current range. The +5-volt supply varies less than 5 mV for $0 \le I_L \le 200$ mA with the other two voltages remaining unchanged. See page 19 for additional information.

SHUTDOWN TECHNIQUES

Pin 2 of the MC1569 is provided for the express purpose of shutting the regulator "OFF". Referring to the schematic, it can be seen that pin 2 goes to the base of an NPN transistor; which, if turned "ON", will turn the zener "OFF" and deny current to all the biasing current sources. This action causes the output to go to essentially

zero volts and the only current drawn by the IC regulator will be the small start current through the 60-k-ohm start resistor $(V_{in}/60~k\Omega)$. This feature provides additional versatility in the applications of the MC1569. Various subsystems may be placed in a "standby" mode to conserve power until actually needed. Or the power may be turned "OFF" in response to other occurrences such as overheating, over-voltage, shorted output, etc.

To activate shutdown, one simply applies a potential greater than two diode drops with a current capability of 1 mA. Note that if a hard supply (i.e., +3 V) is applied directly to pin 2, the shutdown circuitry will be destroyed since there is no inherent current limiting. Maximum rating for the drive current into pin 2 is 10 mA, while 1 mA is adequate for shutdown.

(10+≈400 mA MAX) R_{SC} = 1.5 • V0 = +15 Vdc +20 Vdc • 2N706 Q1 (2N5223) 2N3055 MJ3101 10 uF OR EQUIV OR EQUIV OR EQUIV MC1569R N2 MC1469R V₀.= +5 V POSITIVE REGULATOR = 0.001 µF 3 k 12 k 67 CASE 6 δz +V0 = | -V0 | = $R_A(k\Omega) +7$.0.1 μF 6.8 k MZ4625 OR EQUIV **≯**3 k $0.1 \, \mu F$ Q 2 🗘 CASE **≨** 620 RA = 22 k \$ MC1563R MC1463R **NEGATIVE REGULATOR** C_c = 0.001 µF $R_S = 1.8$ - Vo = -15 Vdc -20 Vdc (10-≈400 mA MAX).

FIGURE 33 - A ± 15 Vdc COMPLEMENTARY TRACKING REGULATOR WITH AUXILIARY +5.0 V SUPPLY

FIGURE 34 - ELECTRONIC SHUT-DOWN USING A MDTL GATE

FIGURE 35 — AUTOMATIC LATCH INTO SHUT-DOWN WHEN OUTPUT IS SHORT-CIRCUITED WITH MANUAL RE-START

FIGURE 36 - VOLTAGE BOOSTING CIRCUIT

Figure 34 shows how the regulator can be controlled by a logic gate. Here, it is assumed that the regulator operates in its normal mode — as a positive regulator referenced to ground — and that the logic gate is of the saturating type, operating from a positive supply to ground. The high logic level should be greater than about 1.5 V and should source no more than 10 mA into pin 2.

The gate shown is of the MDTL type. MRTL and MTTL can also be used as long as the drive current is within safe limits (this is important when using MTTL, where the output stage uses an active pull-up).

In some cases a regulator can be designed which can handle the power dissipation resulting from normal operation but cannot safely dissipate the power resulting from a sustained short-circuit. The circuit of Figure 35 solves this problem by shutting down the regulator when the output is short-circuited.

VOLTAGE BOOSTING

The MC1569 has a maximum output voltage capability of 37 volts which covers the bulk of the user requirements. However, it is possible to obtain higher output voltages. One such voltage boosting circuit is shown in Figure 36.

Since high voltage NPN silicon devices are readily available, the only problem is the voltage limitations of the MC1569. This can be overcome by using voltage shift techniques to limit the voltage to 35 volts across the MC1569 while referencing to a higher output voltage.

The zener diode in the base lead of the NPN device is used to shift the output voltage of the MC1569 by approximately 75 volts to the desired high voltage level, in this case 100 volts. Another voltage shift is accomplished by the resistor divider on the output to accommodate the required 25 volt reference to the MC1569. The 2 k Ω resistor is used to bias the zener diode so the current through the 4.7 k Ω resistor can be controlled by the MC1569. The 1N4001 diode protects the MC1569 from supplying load current under short circuit conditions and Q2 serves to limit base current to Q1. For R_{SC} as shown, the short circuit current will be approximately 100 mA.

In order to use a single supply voltage, $V_{in}(2)$ can be derived from $V_{in}(1)$ with a zener diode, shunt preregulator.

It can be seen that loop gain has been reduced by the resistor divider and hence the closed loop bandwidth will be less. This of course will result in a more stable system, but regulator performance is degraded to some degree.

REMOTE SENSING

The MC1569 offers a remote sensing capability. This is important when the load is remote from the regulator.

MC1469, MC1569

as the resistance of the interconnecting lines (VO and GND) are added directly to the output impedance of the regulator. By remote sensing, this resistance is included inside the control loop of the regulator and is essentially eliminated. Figure 37 shows how remote sensing is accomplished using both a separate sense line from pin 8 and a separate ground line from the regulator to the remote load.

AN ADJUSTABLE ZERO-TEMPERATURE-COEFFICIENT (0-TC) VOLTAGE REFERENCE SOURCE.

The MC1569, when used in conjunction with low TC resistors, makes an excellent reference-voltage generator. If the 3.5 volt reference voltage of the IC regulator is a satisfactory value, then pins 8 and 9 can be tied together and no resistors are needed. This will provide a voltage

reference having a typical temperature coefficient of 0.002%/°C. By adding two resistors, R1 and R2, any voltage between 3.5 Vdc and 37 Vdc can be obtained with the same low TC (see Figure 38).

THERMAL SHUTDOWN

By setting a fixed voltage at pin 2, the MC1569 chip can be protected against excessive junction temperatures caused by power dissipation in the IC regulator. This is based on the negative temperature coefficient of the base-emitter junction of the shutdown transistor and the diode in series with pin $2 (-3.4 \times 10^{-3} \text{V/PC})$. By setting 1.0 Vdc externally at pin 2, the regulator will shutdown when the chip temperature reaches approximately +140°C. Figure 39 shows a circuit that uses a zero-TC zener diode and a resistive divider to obtain this voltage.

FIGURE 37 - REMOTE SENSING CIRCUIT

FIGURE 38 - AN ADJUSTABLE "ZERO-TC" VOLTAGE SOURCE

FIGURE 39 - JUNCTION TEMPERATURE LIMITING SHUTDOWN CIRCUIT

FIGURE 39A - USING A ZERO TC REFERENCE

FIGURE 39B - USING A TA REFERENCE

FIGURE 40 – THERMAL SHUTDOWN WHEN USING EXTERNAL PASS TRANSISTORS

In the case where an external pass transistor is employed, its temperature, rather than that of the IC regulator, requires control. A technique similar to the one just discussed can be used by directly monitoring the case temperature of the pass transistor as is indicated in Figure 40. The case of the normally "OFF" thermal monitoring transistor, Q2, should be in thermal contact with, but electrically isolated from, the case of the boost transistor, Q1.

THERMAL CONSIDERATIONS

Monolithic voltage regulators are subjected to internal heating similar to a power transistor. Since the degree of internal heating is a function of the specific application. the designer must use caution not to exceed the specified maximum junction temperature (+150°C). Exceeding this limit will reduce reliability at an exponential rate. Good heatsinking not only reduces the junction temperature for a given power dissipation; it also tends to improve the dc stability of the output voltage by reducing the junction temperature change resulting from a change in the power dissipation of the IC regulator. By using the derating factors or thermal resistance values given in the Maximum Ratings Table of this data sheet, junction temperature can be computed for any given application in the same manner as for a power transistor*. A shortcircuit on the output terminal can produce a "worst-case" thermal condition especially if the maximum input voltage is applied simultaneously with the maximum value of short-circuit load current. Care should be taken not to

FIGURE 41 – DC SAFE OPERATING AREA

exceed the maximum junction temperature rating during this fault condition and, in addition, the dc safe operating area limit (see Figure 41).

Thermal characteristics for a voltage regulator are useful in predicting performance since dc load and line regulation are affected by changes in junction temperature. These temperature changes can result from either a change in the ambient temperature, TA, or a change in the power dissipated in the IC regulator. The effects of ambient temperature change on the dc output voltage can be estimated from the "Temperature Coefficient of Output Voltage" characteristic parameter shown as ±0.002%/°C, typical. Power dissipation is typically changed in the IC regulator by varying the dc load current. To estimate the dc change in output voltage due to a change in the dc load current, three effects must be considered:

- 1. junction temperature change due to the change in the power dissipation
- 2. output voltage decrease due to the finite output impedance of the control amplifier
- 3. thermal gradient on the IC chip.

A temperature differential does exist across a power IC chip and can cause a dc shift in the output voltage. A "gradient coefficient," GCV_O, can be used to describe this effect and is typically -0.06%/watt for the MC1569. For an example of the relative magnitudes of these effects, consider the following conditions:

Given MC1569 with $V_{in} = 10 \text{ Vdc}$

 $V_0 = 5 \text{ Vdc}$

^{*}For more detailed information of methods used to compute junction temperature, see Motorola Application Note AN-226, Measurement of Thermal Properties of Semiconductors.

and $I_{L} = 100 \text{ mA}$ to 200 mA

 $(\Delta I_{I} = 100 \text{ mA})$

assume $T_A = +25^{\circ}C$

TO-66 Case with heatsink

assume $\theta_{CS} = 0.2^{\circ}\text{C/W}$

and $\theta_{SA} = 2^{\circ}C/W$

 $\theta_{\rm JC} = 7.15^{\rm o}$ C/W (from maximum ratings

It is desired to find the ΔV_O which results from this $\Delta I_L.$ Each of the three previously stated effects on V_O can now be separately considered.

1. ΔVO due to ΔTJ

$$\Delta V_{O} = (V_{O})(\Delta P_{D})(TCV_{O})(\theta_{JC} + \theta_{CS} + \theta_{SA})$$

OR

 $\Delta V_{O} = (5V)(5 \text{ V x } 0.1\text{A})(\pm 0.002\%/^{\circ}\text{C})(9.35^{\circ}\text{C/W})$

 $\Delta V_{O} \approx \pm 0.5 \text{ mV}$

2. ΔV_O due to z_O

 $|\Delta V_{O}| = (-z_{O})(I_{L})$

$$|\Delta V_{O}| = -(2 \times 10^{-2})(10^{-1}) = -2 \text{ mV}$$

3. ΔV_O due to gradient coefficient, GCVO

 $|\Delta V_O| = (GCV_O)(V_O)(\Delta P_D)$

$$|\Delta V_{O}| = (-6 \times 10^{-4}/\text{W})(5 \text{ volts})(5 \times 10^{-1}\text{W})$$

 $|\Delta V_{O}| = -1.6 \text{ mV}$

Therefore the total ΔV_O is given by

$$|\Delta V_{O} \text{ total}| = \pm 0.5 - 2.0 - 1.6 \text{ mV}$$

OR

$$-4.1 \text{ mV} \leq |V_{O} \text{ total}| \leq -3.1 \text{ mV}$$

Other operating conditions may be substituted and computed in a similar manner to evaluate the relative effects of the parameters.

TYPICAL PRINTED CIRCUIT BOARD LAYOUT

FIGURE 42 - LOCATION OF COMPONENTS

FIGURE 43 - CIRCUIT SCHEMATIC FOR PRINTED CIRCUIT BOARD (Pg. 17)

*C; - May be required if long input leads are used.

PARTS LIST

Component	Value	Description
R1 R2	Select 6.8 k	1/4 or 1/2 watt carbon
*RA	Select	IRC Model X-201 Mallory Model MTC-1 or equivalent
R _{sc}	Select	1/2 watt carbon
*R ₁ '	Select	For minimum current of 1 mAdc
co	1.0 μF	Sprague 1500 Series, Dickson D10C series or equivalent
C _N C _c *C _i	0.1 μF 0.001 μF 0.01 μF	Ceramic Disc — Centralab DDA 104, Sprague TG-P10, or equivalent
Q1 Q2	MC1569R or MC1469R 2N5223, 2N706, or equivalent	
*HS	_	Heatsink Thermalloy #6168B
*Socket	(Not Shown)	Robinson Nugent #0001306 Electronic Molding Corp. #6341-210-1, 6348-188-1, 6349-188-1
PC Board	· ·	Circuit Dot, Inc. #PC1113 1155 W. 23rd St., Tempe, Ariz. 85281
*Optional		1100 W. 2010 Ct., Tempe, Artz. 00201

LATCH-UP

Latch-up of these and other regulators can occur if:

- 1. There are plus and minus voltages available
- A load exists between V_O⁺ and V_O⁻ (This "common load" may be something inconspicuous

 e.g. an operational amplifier. Nearly everyone who uses + and voltages will have a common load from V_{CC} to V_{EE}.)
- 3. V_{in}^+ and V_{in}^- are not applied at the same time.

The above conditions result in one of the two outputs becoming reverse-biased which prevents the regulator from turning ON . Latch-up can be prevented by the circuit configurations shown in Figures 44 and 45.

Note: This configuration increases minimum

MC1723 MC1723C

MONOLITHIC VOLTAGE REGULATOR

The MC1723 is a positive or negative voltage regulator designed to deliver load current to 150 mAdc. Output current capability can be increased to several amperes through use of one or more external pass transistors. MC1723 is specified for operation over the military temperature range (–55 $^{\circ}$ C to +125 $^{\circ}$ C) and the MC1723C over the commercial temperature range (0 to +70°C)

- Output Voltage Adjustable from 2 Vdc to 37 Vdc
- Output Current to 150 mAdc Without External Pass Transistors
- 0.01% Line and 0.03% Load Regulation
- Adjustable Short-Circuit Protection

VOLTAGE REGULATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

-55°C to +125°C Ceramic DIP

MC1723, MC1723C

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Pulse Voltage from VCC to VEE (50 ms)	V _{in(p)}	50	V _{peak}
Continuous Voltage from VCC to VEE	V _{in}	40	Vdc
Input-Output Voltage Differential	$V_{in} - V_{O}$	40	Vdc
Maximum Output Current	IL.	150	mA d c
Current from V _{ref}	l _{ref}	15	mAdc
Current from V ₂	l _z	25	mA
Voltage Between Non-Inverting Input and VEE	Vie	8.0	Vdc
Differential Input Voltage	V _{id}	± 5.0	Vdc
Power Dissipation and Thermal Characteristics Plastic Package $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air Metal Package $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air $T_C = +25^{\circ}C$ Thermal Resistance, Junction to Air $T_C = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Case Dual In-Line Ceramic Package Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air	PD 1/θ jA θ jA PD 1/θ jA θ jA PD 1/θ jA θ jC PD 1/θ jA θ jA	1.25 10 100 1.0 6.6 150 2.1 14 35 1.5	W mW/°C °C/W Watt mW/°C °C/W Watts mW/°C °C/W Watt mW/°C °C/W
Operating and Storage Junction Temperature Range Metal Package Dual In-Line Ceramic and Ceramic Flat Packages	T _J , T _{stg}	-65 to +150 -65 to +175	°C
Operating Ambient Temperature Range MC1723C MC1723	ТД	0 to +70 -55 to +125	°С

ELECTRICAL CHARACTERISTICS (Unless otherwise noted: $T_A = +25^{\circ}C$, V_{in} 12 Vdc, $V_O = 5.0$ Vdc, $I_L = 1.0$ mAdc, $R_{SC} = 0$, C1 = 100 pF, $C_{ref} = 0$ and divider impedance as seen by the error amplifier ≤ 10 kΩ connected as shown in Figure 2)

			MC1723			.		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Voltage Range	V _{in}	9.5	-	40	9.5	_	40	Vdc
Output Voltage Range	V _O	2.0	_	37	2.0	_	37	Vdc
Input-Output Voltage Differential	V _{in} -V _O	3.0	_	38	3.0	-	38	Vdc
Reference Voltage	V _{ref}	6.95	7.15	7.35	6.80	7.15	7.50	Vdc
Standby Current Drain (I _L = 0, V _{in} = 30 V)	I _{IB}	_	2.3	3.5	_	2.3	4.0	mAdc
Output Noise Voltage (f = 100 Hz to 10 kHz) Cref = 0 Cref = 5.0 µF	Vn	_	20 2.5	_	_	20 2.5	1 1	μV(RMS)
Average Temperature Coefficient of Output Voltage (T _{Iow} 0 < T _A < T _{high} 2)	TCVO	-	0.002	0.015	_	0.003	0.015	%/ ^o C
$ \begin{array}{l} \text{Line Regulation} \\ (T_A = +25^{o}\text{C}) \left\{ 12 \text{ V} < \text{V}_{in} < 15 \text{ V} \\ 12 \text{ V} < \text{V}_{in} < 40 \text{ V} \\ (T_{low} \textcircled{1} < T_A < T_{high} \textcircled{2}) \\ 12 \text{ V} < \text{V}_{in} < 15 \text{ V} \end{array} \right. $	Regline	- -	0.01 0.02 -	0.1 0.2 0.3	. - . -	0.01 0.1 —	0.1 0.5 0.3	%V _O
Load Regulation (1.0 mA $<$ 1 L $<$ 50 mA) $T_A = +25^{\circ}C$ $T_{low} 0 < T_A < T_{high} 2$	Reg _{load}	· -	0.03	0.15 0.6	<u>-</u>	0.03 -	0.2 0.6	%VO
Ripple Rejection (f = 50 Hz to 10 kHz) $C_{ref} = 0$ $C_{ref} = 5.0 \mu F$	RR	<u>-</u>	74 86	_	<u>-</u>	74 86	- -	dB
Short Circuit Current Limit (R _{SC} = 10 Ω , V _O = 0)	I _{sc}	_	65	. –	-	65	_	mAdc
Long Term Stability	△V _O /△t	_	0.1	-	-	0.1		%/1000 Hr

 $[\]mathbf{1}_{\text{low}} = 0^{\circ} \text{C for MC1723C} \\
= -55^{\circ} \text{C for MC1723}$

② T_{high} = +70° C for MC1723C = +125° C for MC1723

TYPICAL CHARACTERISTICS

 $(V_{in} = 12 \text{ Vdc}, V_O = 5.0 \text{ Vdc}, I_L = 1.0 \text{ mAdc}, R_{SC} = 0, T_A = +25^{\circ}\text{C unless otherwise noted.})$

Vin-V_O, INPUT-OUTPUT VOLTAGE (VOLTS)

FIGURE 5 – LOAD REGULATION CHARACTERISTICS WITHOUT CURRENT LIMITING

IO, OUTPUT CURRENT (mA)

FIGURE 6 - LOAD REGULATION CHARACTERISTICS

FIGURE 7 – LOAD REGULATION CHARACTERISTICS WITH CURRENT LIMITING

FIGURE 8 - CURRENT LIMITING CHARACTERISTICS

FIGURE 9 – CURRENT LIMITING CHARACTERISTICS AS A FUNCTION OF JUNCTION TEMPERATURE

TJ, JUNCTION TEMPERATURE (°C)

TYPICAL CHARACTERISTICS (continued)

FIGURE 11 - LOAD REGULATION AS A FUNCTION OF INPUT-OUTPUT VOLTAGE DIFFERENTIAL

Vin-VO, INPUT-OUTPUT VOLTAGE (VOLTS)

FIGURE 12 - STANDBY CURRENT DRAIN AS A FUNCTION OF INPUT VOLTAGE

FIGURE 13 - LINE TRANSIENT RESPONSE

FIGURE 15 - OUTPUT IMPEDANCE AS **FUNCTION OF FREQUENCY**

TYPICAL APPLICATIONS

Pin numbers adjacent to terminals are for the metal package; pin numbers in parenthesis are for the dual in-line packages.

FIGURE 16 – TYPICAL CONNECTION FOR 2 < v_0 < 7

FIGURE 17 - MC1723,C FOLDBACK CONNECTION 6 (10) (12) 8(11) 7 10(2) (11) 7

For minimum drift R3 = R1||R2.

6 (10) V₀ 10 (2) R1 (6) 4 MC1723 (MC1723C) 2(4) 그 (5) 3 9 (13) > **≨** R2 1 (3) ۷ο 5 (7) knee - 1 V_{sense} ISC ISC

V_{sense}

RSC = (1-α) ISC

FIGURE 18 - +5 V, 1-AMPERE SWITCHING REGULATOR

FIGURE 19 - +5 V, 1-AMPERE HIGH **EFFICIENCY REGULATOR**

FIGURE 20 - +15 V, 1-AMPERE REGULATOR WITH REMOTE SENSE

FIGURE 21 -- 15 V NEGATIVE REGULATOR

TYPICAL APPLICATIONS (continued)

FIGURE 22 - +12 V, 1-AMPERE REGULATOR USING PNP CURRENT BOOST

MC3420 MC3520

Specifications and Applications Information

SWITCHMODE REGULATOR CONTROL CIRCUIT

The MC3520/3420 is an inverter control unit which provides all the control circuitry for PWM push-pull, bridge and series type switchmode power supplies.

These devices are designed to supply the pulse width modulated drive to the bases of two external power transistors. Other applications where these devices can be used are in transformer-less voltage doublers, transformer coupled dc-to-dc converters and other power control functions.

The MC3520 is specified over the military operating range of -55° C to $+125^{\circ}$ C. The MC3420 is specified from 0°C to $+70^{\circ}$ C.

- Includes Symmetrical Oscillator
- On Chip Pulse Width Modulator, Voltage Reference, Dead Time Comparator, and Phase Splitter
- Output Frequency Adjustable (2.0 kHz to 100 kHz)
- Inhibit and Symmetry Correction Inputs Available
- Controlled Start-Up
- Frequency and Dead Time are Independently Adjustable (0% to 100%)
- Can be Slaved to Other MC3420s
- Open Collector Outputs
- Output Capability 50 mA (Max.)
- On Chip Protection Against Double Pulsing of Same Output During Load Transient Condition

FIGURE 1-TYPICAL APPLICATION

SWITCHMODE REGULATOR CONTROL CIRCUIT

SILICON MONOLITHIC INTEGRATED CIRCUITS

MAXIMUM RATINGS

Rating	Symbol	MC3520	MC3420	Unit
Power Supply Voltage	Vcc	3	0	٧
Output Voltage (pins 11 and 13)	V _{out}	4	0	٧
Oscillator Output Voltage (pin 14)	V ₁₄	3	0	٧
Voltage at pin 4	V ₄	2.0		٧
Voltage at pins 3 and 8	V3, V8	5.0		V
Voltage at pin 5	V ₅	7.0		V
Power Dissipation	PD	See Thermal	Information	
Operating Junction Temperature	Tj			°C
Plastic Package	1	_	125	
Ceramic Package		150	150	
Operating Ambient Temperature Range	TA	-55 to +125	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = 10 to 30 V, T_A = 25°C unless otherwise noted.)

			MC3520			MC3420			4
Characteristic	Figure	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
REFERENCE SECTION									
Reference Voltage	5	V _{ref}	7.6	7.8	8.0	7.4	7.8	8.2	٧
(I _{ref} = 400 μA)	5	TCV _{ref}		0.008	0.03		0.008	0.03	%/°C
Temperature Coefficient of Reference Voltage ($V_{CC} = 15 \text{ V, I}_{ref} = 400 \mu\text{A}$)	5	1 C V ref		0.000	0.00		0.000		
Input Regulation of Reference Voltage	5	Regline					4.0	7.5	mV/V
$(I_{ref} = 400 \mu A)$			_	3.0 5.0	7.5	-	4.0 5.0	7.5	
(I _{ref} = 1.0 mA)				5.0			5.0	L	
DC SUPPLY SECTION		т		Т			r	30	V
Supply Voltage	5	Vin	10		30	10	_		
Supply Current $(R_{ext} = 10 \text{ k}\Omega, \text{ excluding load and current and reference current})$	5	ID		_	16			22	mA
OSCILLATOR SECTION							,		
Line Frequency Stability	5								
(f = 20 kHz)		Δf	_	-	3.0	-		5.0	% %/°C
(f = 20 kHz, V _{CC} = 15 V, T _{low} to T _{high})		Δf		0.03	_		0.04	_	
Maximum Output Frequency (V _{CC} = 15 V)	6	fmax	100	200	_	100	200		kHz
Minimum Output Frequency (VCC = 15 V)	6	fmin		2.0	5.0	_	2.0	5.0	kHz
Oscillator Output Saturation Voltage (I14 sink = 5.0 mA)	11	V _{osc(sat)}		0.2	0.5	-	0.2	0.5	٧
OUTPUT SECTION						,			
Output Saturation Voltage	7	VCE(sat)							V
$(I_L = 40 \text{ mA}, T_{high} \text{ to } T_{low})$			_	0.33	0.5	_	0.33	0.5	
(I _L = 25 mA, T _{high} to T _{low})				0.22		<u> </u>	0.22	50	μA
Output Leakage Current (VCE = 40 V, Pins 11 and 13)	8	ICE			50	_		50	μΑ
COMPARATOR SECTION						,	·		
Pulse Width Adjustment Range	9	ΔPW	0		100	0		100	%
Dead Time Adjustment Range	9	ΔDT	0		100	0		100	%
Temperature Coefficient of Dead Time	_	TCDT	_	0.1	-	_	0.1	_	%/°C
Comparator Bias Currents	12,13	Iв	_	5.0	15	_	5.0	15	μA
	14	IIB	_	10	30	-	10	30	μA

ELECTRICAL CHARACTERISTICS (continued)

				MC352	0		MC342	0	
Characteristic	Figure	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
AUXILIARY INPUTS/OUTPUTS								.	
Ramp Voltage Peak High	5							T T	V
Peak Low		V _{ramp} (Hi) V _{ramp} (Low)	5.5 2.0	6.0	6.5 2.8	5.5 2.0	6.0	6.5 2.8	
Ramp Voltage Change	5	ΔV _{ramp}	3.0	3.5	4.0	3.0	3.5	4.0	V
(V _{ramp Hi} - V _{ramp Low})		10.77					Ì		
Ramp Out Sink Current	5	Isink	-	400	-	-	400	_	μΑ
Ramp Out Source Current	5	source	_	3.0	_	-	3.0	_	mA
Inhibit Input Current — High (V _{IH} = 2.0 V)	10	Чн	-	_	40	-	-	40	μА
Inhibit Input Current — Low (V _{IL} = 0.8 V)	10	ηL	-	-25	-180	-	-25	-180	μА
Symmetry Correction Input/Output 2 Inhibit Current — High (VSY = 2.0 V, Pin 16)	10	ISY/H	-	-	40	-	-	40	μА
Symmetry Correction Input/Output 2 Inhibit Current $-$ Low (VSY $=$ 0.8 V, Pin 16)	10	^I SY/L	_	-10	-180	-	-10	-180	μA
F/F _{out} Source Current	-	I _{source}	_	2.0	_	_	2.0	_	mA
OUTPUT AC CHARACTERISTICS (TA = Thigh, VCC	= +15 V, f								
Rise Time	15	t _r	_	40	_	_	40	_	ns
Fall Time	15	tf	_	150		_	150	_	ns
Overlap Time	15	tov	_	275	_	_	275	_	ns
Assymmetry (Duty Cycle = 50%)	15	ton1 -ton2	-	±1.0	-	-	± 1.0	_	%

NOTE:

T_{high} = +125°C for MC3520 +70°C for MC3420 $T_{low} = -55^{\circ}C$ for MC3520 0°C for MC3420

FIGURE 2-EQUIVALENT CIRCUIT

FIGURE 3 - CIRCUIT SCHEMATIC

(continued next page)

(continued) FIGURE 3 - CIRCUIT SCHEMATIC

GENERAL INFORMATION

The internal block diagram of the MC3420 is shown in Figure 2, and consists of the following sections:

Voltage Reference

A stable reference voltage is generated by the MC3420 primarily for internal use. However, it is also available externally at Pin 9 ($V_{\rm ref}$) for use in setting the dead time (Pin 7) and for use as a reference for the external control loop error amplifiers.

Ramp Generator

The ramp generator section produces a symmetrical triangular waveform ramping between 2.4 V and 6.0 V, with frequency determined by an external resistor (R_{ext}) and capacitor (C_{ext}) tied from Pins 1 and 2, respectively, to ground.

PWM Comparator

The output of the ramp generator at pin 8 is normally connected to Pin 5, RAMP IN. The PWM (pulse width modulation) comparator compares the voltage at Pin 6 (Vcontrol) to the ramp generator output. The level of Vcontrol determines the outputs' pulse width or duty cycle. The duty cycle of each output can vary, exclusive of dead time, from 50% (when Vcontrol is at approximately 2.4 V) to 0% (Vcontrol approximately 6.0 V).

Dead Time Comparator

An additional comparator has been included in MC3420 to allow independent adjustment of system dead time or maximum duty cycle. By dividing down V_{ref} at Pin 9 with a resistive divider or potentiometer, and applying this voltage to Pin 7, a stable dead time is obtained for prevention of inverter switching transistor cross conduction at high duty cycles due to storage time delays.

Phase Splitter

A phase splitter is included to obtain two 180° out of phase outputs for use in multiple transistor inverter systems. It consists of a toggle flip-flop whose clock signal is derived by "ANDing" the output of the PWM comparator and a signal from the ramp generator section. This "AND" gate ensures that the outputs truly alternate under control loop transient conditions. Better understanding of this feature and MC3420 operation may be gained by studying the circuit waveforms, shown in Figure 4.

FIGURE 4 - INTERNAL WAVEFORMS

FIGURE 5 - STANDARD AC, DC TEST CIRCUIT

FIGURE 6 - FREQUENCY LIMIT TEST CIRCUIT

FIGURE 7 - OUTPUT SATURATION TEST CIRCUIT

Note: Use voltage change on pins 6, 7 to change output states. A voltage must always be present on pins 6 and 7.

FIGURE 8 - OUTPUT LEAKAGE TEST CIRCUIT

FIGURE 9 - OUTPUT DUTY CYCLE TEST CIRCUIT

TYPICAL DUT		TYPICAL DUTY CYCLE versus PWM VOLTAGE (Vcontrol)			
Versus DEAD TIM	LVOLIAGE				
PIN 7.	% DUTY	PIN 6.	% DUTY		
DEAD TIME	CYCLE	V _{control} (V)	CYCLE		
	(FOR EACH	(DEAD TIME	(FOR EACH		
VOLTAGE (V)	,,				
(V _{control} = 2.0 V)	OUTPUT)	VOLTAGE = 1.0 V)	OUTPUT)		
2.0	50	2.0	50		
2.5	46	2.5	46		
3.0	40	3.0	40		
3.5	33	3.5	33		
4.0	26	4.0	26		
4.5	18	4.5	18		
5.0	11	5.0	11		
5.5	4.0	5.5	4.0		
6.0	0	6.0	0		

	∨ ₆	٧7	
	Vo	lts	
100% Adjust			
Dead Time	1.0	1.0	(Pin 11 + Pin 13 = Logic "1")
Pulse Width	1.0	1.0	(Fill Fill Logic
0% Adjust			
Dead Time	7.0	1.0	(Pin 11)(Pin 13) = Logic "1"
Pulse Width	1.0	7.0	(1111 11)(1111 13) = Logic 1

NOTE: Logic "1" is TTL-Compatible VOH.

FIGURE 10 - INHIBIT/SYMMETRY TEST CIRCUIT

FIGURE 11 - OSCILLATOR OUTPUT (pin 14) TEST CIRCUIT

FIGURE 12 - V_{Control} BIAS CURRENT TEST CIRCUIT

FIGURE 13 - DEAD TIME BIAS CURRENT TEST CIRCUIT

FIGURE 14 - RAMP IN BIAS CURRENT TEST CIRCUIT

FIGURE 15 - AC TEST CIRCUIT AND WAVEFORMS

TYPICAL CHARACTERISTICS

FIGURE 17 - REFERENCE VOLTAGE versus

FIGURE 18 - DRAIN CURRENT versus EXTERNAL RESISTANCE

FIGURE 19 — PEAK FLIP-FLOP_{out} VOLTAGE versus EXTERNAL RESISTANCE

FIGURE 20 - DRAIN CURRENT versus TEMPERATURE

FIGURE 21 — REFERENCE VOLTAGE TEMPERATURE COEFFICIENT versus OUTPUT CURRENT

OPERATION AND APPLICATIONS INFORMATION

The Voltage Reference

The temperature coefficient of V_{ref} has been optimized for a 400 μ A (\cong 20 k Ω) load. If increased current capability is required, an op amp buffer may be used, as shown in Figure 22.

FIGURE 22

Output Frequency

The values of R_{ext} and C_{ext} for a given output frequency, f_0 , can be found from:

$$f_0 \cong \frac{0.55}{R_{ext} C_{ext}}; 5.0 \text{ k}\Omega \leqslant R_{ext} \leqslant 20 \text{ k}\Omega \text{ (Eq. 1)}$$

or from the graph shown in Figure 23.

Note that f_0 refers to the frequency of Output 1 (Pin 11) or Output 2 (Pin 13). The frequency of the ramp generator output waveform at Pin 8 will be twice f_0 .

Dead Time

Figure 24 illustrates how to set or adjust the MC3420 outputs' dead time or maximum duty cycle. For minimum dead time drift with temperature or supply voltage, $V_{D,T}$ should be derived from V_{ref} as shown.

Pin 7 should always be tied to some voltage between Gnd and $\ensuremath{V_{ref}}.$

FIGURE 24

Connections to the V_{control} Pin

In many systems, it is necessary to make multiple connections to the $V_{control}$ Pin in order to implement features in addition to voltage regulation such as current limiting, soft start, etc. These can be made by the use of a simple "diode-OR" connection, as shown in Figure 25. This allows whichever control element is seeking the lowest PWM duty cycle to dominate. Note that a resistor, R1, whose value is $\leqslant 50~k\Omega$ is placed from the $V_{control}$ Pin to ground. This is necessary to provide a dc path for the PWM comparator input bias current under all conditions.

The system duty cycle is given by:

D.C. (%)
$$\cong \frac{V_{Control} - 2}{4} \times 100$$
 (Eq. 2)

FIGURE 25

Soft Start

In most PWM switching supplies, a soft start feature is desired to prevent output voltage overshoots and magnetizing current imbalances in the power transformer primary. This feature forces the duty cycle of the switching elements to gradually increase from zero to their normal operating point during initial system power-up or after an inhibit. This feature can be easily implemented with the MC3420. One method is shown in Figure 26.

FIGURE 26

After an inhibit command or during power-up, the voltage on R1 and Pin 6 exponentially decays from VCC toward ground with a time constant of R1C1, allowing a gradual increase in duty cycle. Diodes D2 - D4 provide a diode-or function at the V $_{\mbox{control}}$ Pin, while Q1 serves to reset the timing capacitor, C1, when an inhibit command is received thereby reinitializing the soft-start feature. D1 allows C1 to reset when power (VCC) is turned off.

Inrush Current Limiting

Since many PWM switching supplies are operated directly off the rectified 110 Vac line with capacitive input filters, some means of preventing rectifier failure due to inrush surge currents is usually necessary. One method which can be used is shown in Figure 27.

In this circuit, a series resistor, R_S, is used to provide inrush surge current limiting. After the filter capacitor, C1, is charged, Q1 receives a trigger signal from the control circuitry through T1 and shorts R_S out of the circuit, eliminating its otherwise larger power dissipation. The trigger signal for Q1 may be derived from either the oscillator output (Pin 14) or one of the MC3420's outputs. If the oscillator output is used, it will be necessary

FIGURE 27

to provide a time delay on the inhibit pin to keep it low until the input filter capacitor, C1, has had time to charge, whereas the initial portion of the soft start timing cycle can be used for this delay if this signal is derived from one of the output pins. However, using the Oscillator Output Pin does offer the advantage that its waveform has a constant 50% duty cycle, independent of the outputs' duty cycle which can simplify the design of a drive circuit for T1.

Slaving

In some applications, as when one PWM inverter/converter is used to feed another, it may be desired that their frequencies be synchronized. This can be done with multiple MC3420s as shown in Figure 28. By omitting their Rext and Cext, up to two MC3420s may be slaved to a master MC3420.

FIGURE 28 - SLAVING THE MC3420

15 V, 2 A DC-to-DC Converter

Figure 29 illustrates the use of the MC3520 in a PWM switching power supply utilizing a single series switching element (see Appendix for description of PWM switching supply configurations). The series switching transistor, Q1, chops the dc input voltage, $V_{\rm in}$, at a frequency of \cong 25 kHz, and the resulting waveform is filtered by L1 and C1 to provide the dc output voltage. The frequency is set by R4 and C3, and since the outputs of the MC3520 are wire-ORed together, fo is twice that given by Equation 1 and Figure 23. $V_{\rm O}$ is regulated by comparing its value to the MC3520's reference voltage and amplifying the error voltage with U1. The output of U1 is fed into the MC3520 to provide PWM to Q1, thereby controlling its duty cycle and thus the value of $V_{\rm O}$.

C2 provides a soft-start feature during power up to prevent output voltage overshoots and excessive start up currents through $\Omega1$.

Short circuit protection is provided by R_{SC}, Q3 and Q4. When an overcurrent condition occurs, Q3 is turned on by the voltage across R_{SC}; Q3 drives Q4 on, which raises the voltage at pin 6 ($V_{control}$) of the MC3520, reducing Q1's duty cycle and maintaining a constant output current of \cong 2.5 A.

5 V, 50 A Line-Operated Supply

A 5 V, 50 A line-operated 20 kHz switching power supply using the MC3520 is shown in Figures 30a and b. An explanation of the operation of each section of the supply follows.

Input Section

The 120 Vac line is full wave voltage doubled by CR1, CR2, C1 and C2 to provide 310 Vdc to the power section of the supply. Inrush surge current limiting is provided by R1, which is shorted out of the circuit by Q1 after C1 and C2 are initially charged.

Power Section

The supply utilizes two switching transistors, Q2 and Q3, in a half-bridge configuration (see Appendix) to drive the high frequency power transformer, T2.

The bases of $\Omega 2$ and $\Omega 3$ are driven by T3 and T4, respectively, to provide isolation from the control and base drive sections of the supply. CR3, CR5, CR6, and CR8 constitute anti-saturation (Baker) clamps which provide increased and more uniform switching speeds for

Q2 and Q3. CR4 and CR7 allow reverse base currents during turn off.

Output Section

The output of T2 is rectified by Schottky diodes, CR9 and CR10. VR1 is a transient suppressor to protect CR9 and CR10 from transients that might cause reverse breakdown. L1 and C4 constitute the output filter. C4 should have very low ESR (equivalent series resistance) at 20 kHz to provide the most effective filtering. L2 and C5 make up a high-frequency filter to reduce commutation spikes which pass L1 due to its interwinding capacitance. RSC provides output overcurrent sensing to the control section.

Control Section

The MC3520 provides the PWM control for the supply. R2 is adjusted to obtain a 20 kHz operating frequency. R3 adjusts the dead time (\cong 5 μ s each half-cycle). U1A and U1B are the output current and output voltage error amplifiers, respectively. R5 sets the output voltage while R4 determines the output current limit. C7 and C8 are the current and voltage loop compensation capacitors.

C6 provides the soft-start feature while Q4 ensures a soft-start after each system inhibit (pin 15 low).

Base Drive Section

Turn on drive to the power section switching transistors occurs when each of the outputs of the MC3520 saturate. Q5 or Q6 are therefore turned on, and 15 V applied to the primaries of T3 or T4, supplying forward base drive to Q2 or Q3.

Turn off drive occurs when Q5 or Q6 turn off, and the magnetizing energy stored in T3 or T4's core is transformed into a negative "flyback" voltage at their secondaries, providing reverse base drive to Q2 or Q3. CR11 and CR12 act as clamps, to prevent this flyback voltage from exceeding -5 V at T3 or T4's secondary (30 V on Q5 or Q6's collector).

Q1 Driver Section

Q7 and T1 provide the gate drive to Q1. Q7 starts operating after an initial delay of 100 ms created by the soft-start circuit, thereby allowing C1 and C2 to charge up before firing Q1.

FIGURE 29 - 15 V, 2A DC-TO-DC CONVERTER

FIGURE 30a - 5 V, 50A LINE-OPERATED SUPPLY (continued on following page)

Performance	
Line Regulation:	0.4%
Load Regulation:	0.25%
Output Ripple and Noise:	60 mV p-p
• • •	25 mV rms
Line current surge at turn-on:	35 A max
Efficiency:	80%

FIGURE 30h

APPENDIX: BASIC PWM SWITCHING SUPPLY POWER CIRCUIT CONFIGURATIONS

The material given in this section is intended to acquaint the designer with the basic switching transistor configurations used in PWM power supplies. Circuit configurations, collector voltage and current waveforms of the switching transistors, and required transistor specifications for the most commonly utilized configurations are shown in Figures 1A through 4A. It should be noted that the waveforms and specifications are idealized, in that the effects of leakage inductance voltage spikes, stray circuit capacitance, snubber networks, clamp diode overshoots, diode reverse recovery and saturation voltages have been neglected. For more information on these effects, the configurations, or switching supplies in general, consult the references listed in the References section.

Series Configuration

The single transistor series configuration is shown in Figure 1A. This configuration is usually limited to applications in which 0.2 $\rm V_{CC} < \rm V_{o} < 0.8~\rm V_{CC}$ and where input-output isolation is not required.

Push-Pull Configuration

Figure 2A shows the two-transistor push-pull configuration. Unlike the series configuration, it can be used to either step-up or step-down the input voltage, V_{CC} , and also provides input-output isolation. It does, however, have the disadvantage that additional circuitry must be used to provide symmetry correction for the prevention of transformer saturation.

Half-Bridge Configuration

The half-bridge configuration, shown in Figure 3A, does not suffer from the symmetry problems of the push-pull configuration since the transformer primary is capacitively coupled. This prevents transformer core saturation since no net dc current is allowed to flow in its primary.

Note that for the same input power, bus voltage, and duty cycle, the half-bridge requires switching transistors

which have twice the current and half the voltage requirements as those of the push-pull configuration.

Full-Bridge Configuration

By replacing the bridge capacitors, C, of the halfbridge configuration of Figure 4A results. With this configuration, double the power of the half-bridge configuration can be obtained at the expense of two additional switching transistors and their associated circuitry.

ABBREVIATIONS USED IN FIGURES 1A THROUGH 4A

I_C: Switching transistor collector current

V_{CE}: Switching transistor collector-to-emitter-voltage

P_{in}: Average input power D.C.: Inverter duty cycle

V_{CC}: DC bus voltage

VCEO(sus): VCE that transistor must withstand during

turn-or

VCEX: VCE that transistor must block during non-

conduction period.

REFERENCES

More detailed information on switching power supplies may be obtained by consulting the following articles:

- L. Jansson: "A Survey of Converter Circuits for SMPS," Mullard Technical Communications #119, July 1973.
- R. Haver: "A New Approach to Switching Regulators," Motorola AN-719, May 1974.
- R. Haver: "Switched Mode Power Supplies, a 5 V, 40 A Design," Motorola AN-737, December 1974.
- W. Hersom: "Optimizing the High Current Transistor Converter," Solid State Power Conversion, March/ April 1975.
- W. Hirshberg: "Simplify Converter Designs with Flyback," Solid State Power Conversion, March/April 1975.
- P. Wood: "Design of a 5 V, 100 Watt Power Supply, TRW AN #122, February 1975.
- J. Turnbull: "Radio Frequency Interference Suppression in SMPS," Ferroxcube AN-F601.

- 8. W. Hetterscheid: "Base Circuit Design for High-Voltage Switching Transistors in Power Converters," Mullard Technical Communications (North American Phillips) #473, November 1974.
- B. George: "6 V 100 A Switched-Mode Power Supply Operating Directly from the Mains," Mullard Technical Communications (North American Phillips) #123, July 1974.
- B. Bailey: "Circuit Design and Semiconductor Selection for Square-Wave and Sine-Wave Inverters," Proc. of Powercon 2, October 1975.
- B. Bailey: "Safe Reverse Bias Operation—A New Approach," Proc. of Powercon 3, June 1976.
- Gutmann and Suva: "A Line-Operated, Regulated
 V/50 A Switching Power Supply," Motorola AN-767, September 1976.

Specifications and Applications Information

OVERVOLTAGE "CROWBAR" SENSING CIRCUIT

These overvoltage protection circuits (OVP) protect sensitive electronic circuitry from overvoltage transients or regulator failures when used in conjunction with an external "crowbar" SCR. They sense the overvoltage condition and quickly "crowbar" or short circuit the supply, forcing the supply into current limiting or opening the fuse or circuit breaker.

The protection voltage threshold is adjustable and the MC3423/3523 can be programmed for minimum duration of overvoltage condition before tripping, thus supplying noise immunity.

The MC3423/3523 is essentially a "two terminal" system, therefore it can be used with either positive or negative supplies.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Differential Power Supply Voltage	V _{CC} -V _{EE}	40	Vdc
Sense Voltage (1)	V _{Sense} 1	6.5	Vdc
Sense Voltage (2)	V _{Sense 2}	6.5	Vdc
Remote Activation Input Voltage	V _{act}	7.0	Vdc
Output Current	10	300	mA
Operating Ambient Temperature Range MC3423 MC3523	TA	0 to +70 -55 to +125	°C
Operating Junction Temperature Plastic Package Ceramic Package	Тј	125 150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

MC3423 MC3523

OVERVOLTAGE SENSING CIRCUIT

SILICON MONOLITHIC INTEGRATED CIRCUIT

U SUFFIX CERAMIC PACKAGE CASE 693-02

DEVICE	TEMPERATURE RANGE	PACKAGE
MC3423P1	0 to +70°C	Plastic DIP
MC3423U	0 to +70°C	Ceramic DIP
MC3523U	-55 to +125°C	Ceramic DIF

ELECTRICAL CHARACTERISTICS (5 V \leq V_{CC} -V_{EE} \leq 36 V, T_{low} < T_A < T_{high} unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Supply Voltage Range	V _{CC} -V _{EE}	4.5	_	40	Vdc
Output Voltage (IO = 100 mA)	v _o	V _{CC} -2.2	V _{CC} -1.8		Vdc
Indicator Output Voltage (IO(Ind) = 1.6 mA)	V _{OL} (Ind)	-	0.1	0.4	Vdc
Sense Trip Voltage (T _A = 25°C)	V _{Sense 1} , V _{Sense 2}	2.45	2.6	2.75	Vdc
Temperature Coefficient of V _{Sense 1} (Figure 2)	TCV _{S1}	_	0.06	_	%/°C
Remote Activation Input Current (V _{1H} = 2.0 V, V _{CC} -V _{EE} = 5.0 V) (V _{1L} = 0.8 V, V _{CC} -V _{EE} = 5.0 V)	tin tic		5.0 -120	40 -180	μА
Source Current	Source	0.1	0.2	0.3	mA
Output Current Risetime (T _A = 25 ^o C)	t _r	=	400	-	mA/μs
Propagation Delay Time (T _A = 25°C)	^t pd		0.5	-	μς
Supply Current MC3423 MC3523	ID		6.0 5.0	10 7.0	mA

 $T_{low} = -55^{\circ}C$ for MC3523 = $0^{\circ}C$ for MC3423 T_{high} = +125°C for MC3523 = +70°C for MC3423

FIGURE 1 - BLOCK DIAGRAM

FIGURE 2 - SENSE VOLTAGE TEST CIRCUIT

FIGURE 3 - BASIC CIRCUIT CONFIGURATION

FIGURE 4 – CIRCUIT CONFIGURATION FOR SUPPLY VOLTAGE ABOVE 36 V

FIGURE 5 – BASIC CONFIGURATION FOR PROGRAMMABLE DURATION OF OVERVOLTAGE CONDITION BEFORE TRIP

APPLICATIONS INFORMATION

BASIC CIRCUIT CONFIGURATION

The basic circuit configuration of the MC3423/3523 OVP is shown in Figure 3 for supply voltages from 4.5 V to 36 V, and in Figure 4 for trip voltages above 36 V. The threshold or trip voltage at which the MC3423/3523 will trigger and supply gate drive to the crowbar SCR, Q1, is determined by the selection of R1 and R2. Their values can be determined by the equation given in Figures 3 and 4, or by the graph shown in Figure 8. The minimum value of the gate current limiting resistor, RG, is given in Figure 9. Using this value of RG, the SCR, Q1, will receive the greatest gate current possible without damaging the MC3423/3523. If lower output currents are required, RG can be increased in value. The switch, S1, shown in Figure 3 may be used to reset the SCR crowbar. Otherwise, the power supply, across which the SCR is connected, must be shut down to reset the crowbar. If a non currentlimited supply is used, a fuse or circuit breaker, F1, should be used to protect the SCR and/or the load.

The circuit configurations shown in Figures 3 and 4 will have a typical propogation delay of 1.0 μ s. If faster operation is desired, pin 3 may be connected to pin 2 with pin 4 left floating. This will result in decreasing the propogation delay to approximately 0.5 μ s at the expense of a slightly increased TC for the trip voltage value.

CONFIGURATION FOR PROGRAMMABLE MINIMUM DURATION OF OVERVOLTAGE CONDITION BEFORE TRIPPING

In many instances, the MC3423/3523 OVP will be used in a noise environment. To prevent false tripping of the OVP circuit by noise which would not normally harm the load, MC3423/3523 has a programmable delay feature. To implement this feature, the circuit configuration of Figure 5 is used. In this configuration, a capacitor is connected from pin 3 to VEE. The value of this capacitor determines the minimum duration of the overvoltage condition which is necessary to trip the OVP. The value of C can be found from Figure 10. The circuit operates in the following manner: When VCC rises above the trip point set by R1 and R2, an internal current source (pin 4) begins charging the capacitor, C, connected to pin 3. If the overvoltage condition disappears before this occurs, the capacitor is discharged at a rate ≅ 10 times faster than the charging rate, resetting the timing feature until the next overvoltage condition occurs.

Occasionally, it is desired that immediate crowbarring of the supply occur when a high overvoltage condition occurs, while retaining the false tripping immunity of Figure 5. In this case, the circuit of Figure 6 can be used. The circuit will operate as previously described for small overvoltages, but will immediately trip if the power supply voltage exceeds $V_{\rm Z1} + 1.4 \ V$.

FIGURE 6 – CONFIGURATION FOR PROGRAMMABLE DURATION OF OVERVOLTAGE CONDITION BEFORE TRIP/WITH IMMEDIATE TRIP AT HIGH OVERVOLTAGES

ADDITIONAL FEATURES

1. Activation Indication Output

An additional output for use as an indicator of OVP activation is provided by the MC3423/3523. This output is an open collector transistor which saturates when the OVP is activated. It will remain in a saturated state until the SCR crowbar pulls the supply voltage, VCC, below 4.5 V as in Figure 5. This output can be used to clock an edge triggered flip-flop whose output inhibits or shuts down the power supply when the OVP trips. This reduces or eliminates the heatsinking requirements for the crowbar SCR.

2. Remote Activation Input

Another feature of the MC3423/3523 is its remote activation input, pin 5. If the volage on this CMOS/TTL compatible input is held below 0.8 V, the MC3423/ 3523 operates normally. However, if it is raised to a voltage above 2.0 V, the OVP output is activated independent of whether or not an overvoltage condition is present. It should be noted that pin 5 has an internal pull-up current source. This feature can be used to accomplish an orderly and sequenced shutdown of system power supplies during a system fault condition. In addition, the activation indication output of one MC3423/3523 can be used to activate another MC3423/3523 if a single transistor inverter is used to interface the former's indication output to the latter's remote activation input, as shown in Figure 7. In this circuit, the indication output (pin 6) of the MC3423 on power supply 1 is used to activate the MC3423 associated with power supply 2. Q1 is any small PNP with adequate voltage rating.

FIGURE 7 – CIRCUIT CONFIGURATION FOR ACTIVATING ONE MC3523 FROM ANOTHER

Note that both supplies have their negative output leads tied together (i.e., both are positive supplies). If their positive leads are common (two negative supplies) the emitter of $\Omega 1$ would be moved to the positive lead of supply 1 and R1 would therefore have to be resized to deliver the appropriate drive to $\Omega 1$.

CROWBAR SCR CONSIDERATIONS

Referring to Figure 11, it can be seen that the crowbar SCR, when activated, is subject to a large current surge from the output capacitance, Cout. This capacitance consists of the power supply output caps, the load's decoupling caps, and in the case of Figure 11A, the supply's input filter caps. This surge current is illustrated in Figure 12, and can cause SCR failure or degradation by any one of three mechanisms: di/dt, absolute peak surge, or I2t. The interrelationship of these failure methods and the breadth of the applications make specification of the SCR by the semiconductor manufacturer difficult and expensive. Therefore, the designer must empirically determine the SCR and circuit elements which result in reliable and effective OVP operation. However, an understanding of the factors which influence the SCR's di/dt and surge capabilities simplifies this task.

1. di/dt

As the gate region of the SCR is driven on, its area of conduction takes a finite amount of time to grow, starting as a very small region and gradually spreading. Since the anode current flows through this turned-on gate region, very high current densities can occur in the gate region if high anode currents appear quickly (di/dt). This can result in immediate destruction of the SCR or gradual degradation of its forward blocking voltage capabilities — depending on the severity of the occasion.

FIGURE 8 – R1 versus TRIP VOLTAGE

FIGURE 9 - MINIMUM RG versus SUPPLY VOLTAGE

0 15 20
VT, TRIP VOLTAGE (VOLTS)

FIGURE 10 — CAPACITANCE versus

FIGURE 11 – TYPICAL CROWBAR OVP CIRCUIT CONFIGURATIONS

FIGURE 12 – CROWBAR SCR SURGE CURRENT WAVEFORM

FIGURE 13 — CIRCUIT ELEMENTS AFFECTING SCR SURGE & di/dt

The value of di/dt that an SCR can safely handle is influenced by its construction and the characteristics of the gate drive signal. A center-gate-fire SCR has more di/dt capability than a corner-gate-fire type, and heavily overdriving (3 to 5 times IGT) the SCR gate with a fast < 1.0 us rise time signal will maximize its di/dt capability. A typical maximum number in phase control SCRs of less than 50 A(RMS) rating might be 200 A/ μ s, assuming a gate current of five times IGT and < 1.0 μs rise time. If having done this, a di/dt problem is seen to still exist, the designer can also decrease the di/dt of the current waveform by adding inductance in series with the SCR, as shown in Figure 13. Of course, this reduces the circuit's ability to rapidly reduce the dc bus voltage and a tradeoff must be made between speedy voltage reduction and di/dt.

2. Surge Current

If the peak current and/or the duration of the surge is excessive, immediate destruction due to device overheating will result. The surge capability of the SCR is directly proportional to its die area. If the surge current cannot be reduced (by adding series resistance — see Figure 13) to a safe level which is consistent with the system's requirements for speedy bus voltage reduction, the designer must use a higher current SCR. This may result in the average current capability of the SCR exceeding the steady state current requirements imposed by the dc power supply.

A WORD ABOUT FUSING

Before leaving the subject of the crowbar SCR, a few words about fuse protection are in order. Referring back to Figure 11A, it will be seen that a fuse is necessary if the power supply to be protected is not output current limited. This fuse is not meant to prevent SCR failure but rather to prevent a fire!

In order to protect the SCR, the fuse would have to possess an I^2 t rating less than that of the SCR and yet have a high enough continuous current rating to survive normal supply output currents. In addition, it must be capable of successfully clearing the high short circuit currents from the supply. Such a fuse as this is quite expensive, and may not even be available.

The usual design compromise then is to use a garden variety fuse (3AG or 3AB style) which cannot be relied on to blow before the thyristor does, and trust that if the SCR does fail, it will fail short circuit. In the majority of the designs, this will be the case, though this is difficult to guarantee. Of course, a sufficiently high surge will cause an open. These comments also apply to the fuse in Figure 11B.

For a complete and detailed treatment of SCR and fuse selection, refer to Motorola Application Note AN-789.

CROWBAR SCR SELECTION GUIDE

As an aid in selecting an SCR for crowbar use, the following selection guide is presented.

DEVICE	IRMS	IFSM	PACKAGE
2N6400 Series	16A	160A	TO220 Plastic
2N6504 Series	25A	160A	TO220 Plastic
2N1842 Series	16A	125A	Metal Stud
2N2573 Series	25A	260A	Metal TO-3 Type
2N681 Series	25A	200A	Metal Stud
MCR3935-1 Series	35A	350A	Metal Stud
MCR81-5 Series	80A	1000A	Metal Stud

MC3424, MC3424A MC3524, MC3524A MC3324, MC3324A

Advance Information

POWER SUPPLY SUPERVISORY CIRCUIT/ DUAL-VOLTAGE COMPARATOR

The MC3424 series is a dual-channel supervisory circuit, consisting of two uncommitted input comparators, a reference, output comparators, with high current Drive and Indicator outputs for each channel. The input comparators feature programmable hysteresis, high common-mode rejection, and wide common-mode range, capable of comparing at ground potential with single-supply operation. Separate Delay pins are provided to increase noise immunity by delaying activation of the outputs. A 2.5 V bandgap voltage reference is pinned-out for referencing the input comparators, or other external functions. Independent high current Drive and Indicator outputs for each channel can source and sink up to 300 mA and 30 mA respectively. CMOS/TTL compatible digital inputs provide Remote Activation of each channel's outputs. An Input Enable pin allows control of the input comparators.

Although this device is intended for power supply supervision, the pinned-out reference, uncommitted input comparators, and many other features, enable the MC3424 series to be utilized for a wide range of applications.

- Pinned-Out 2.5 V Reference
- Wide Common-Mode Range
- Programmable Hysteresis
- Programmable Time Delays
- Two 300 mA Drive Outputs
- Remote Activation Capability
- Wide Supply Range: 4.5 V \leq V_{CC} \leq 40 V

APPLICATIONS

- Dual Over-Voltage "Crowbar" Protection
- Dual Under-Voltage Supervision
- Over/Under Voltage Protection
- Split-Supply Supervision
- Line-Loss Sensing
- Proportional Controller
- Programmable Frequency Switch
- Battery Charger

Over-Voltage Crowbar Protection, Under-Voltage Indication Vin OOO OPOWER Supply Cout Vin Ooo OPOWER Supply Cout OOO OPOWER

POWER SUPPLY SUPERVISORY CIRCUIT/DUAL VOLTAGE COMPARATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

Device	Temperature Range	Package
MC3524L, AL	-55 to +125°C	Ceramic DIP
MC3324L, AL	400500	Ceramic DIP
MC3324P, AP	-40 to +85°C	Plastic DIP
MC3424L, AL	0. 7000	Ceramic DIP
MC3424P, AP	0 to +70°C	Plastic DIP

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MC3424,A, MC3524,A, MC3324,A

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	40	Vdc
Comparator Input Differential Voltage Range	VIDR	±40	Vdc
Comparator Input Voltage Range	VIR	-0.3 to +40	Vdc
Input Enable Voltage Range	VIE	-0.3 to +40	Vdc
Remote Activation Input Voltage Range	V _{RA}	-0.3 to +40	Vdc
Drive Output Short-Circuit Current	IOS(DRV)	Internally Limited	mA
Indicator Output Voltage	VIND	0 to 40	Vdc
Indicator Output Sink Current	IND	30	mA
Reference Short-Circuit Current	I _{OS(ref)}	Internally Limited	mA
Power Dissipation and Thermal Characteristics Ceramic Package Maximum Power Dissipation @ TA = 95°C Thermal Resistance Junction to Air Plastic Package Maximum Power Dissipation @ TA = 70°C Thermal Resistance Junction to Air Operating Junction Temperature	PD R _θ JA PD R _θ JA	1000 80 1000 80	mW °C/W mW °C/W
Ceramic Package Plastic Package	.5	+175 +150	
Operating Ambient Temperature Range MC3524, MC3524A MC3324, MC3324A MC3424, MC3424A	TA	-55 to +125 -40 to +85 0 to +70	°C
Storage Temperature Range Ceramic Package Plastic Package	T _{stg}	-65 to +175 -55 to +150	°C

ELECTRICAL CHARACTERISTICS (4.5 V \leq V_{CC} \leq 40 V; T_A = T_{low} to T_{high} [see Note 1] unless otherwise specified.)

		MC3524	A/3424A	/3324A	MC35	24/3424/	3324	Unit
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
REFERENCE SECTION	-							
Reference Output Voltage V _{CC} = 15V; I _L = 0 mA T _A = 25°C T _{low} to T _{high} (Note 1)	V _{ref}	2.475 2.45	2.5 2.5	2.525 2.55	2.4 2.33	2.5 2.5	2.6 2.63	Vdc
Line Regulation 4.5 V \leq V _{CC} \leq 40 V; I _L = 0 mA; T _J = 25°C	Regline		7.0	15	_	7.0	15	mV
Load Regulation 0 mA \leq I _L \leq 10 mA; V _{CC} = 15 V; T _J = 25°C	Regload	_	4.0	12	_	4.0	12	mV
Output Short-Circuit Current (T _A = 25°C)	IOS(ref)		23	_		23	-	mA
Power Supply Voltage Operating Range	Vcc	4.5		40	4.5	_	40	Vdc
Power Supply Current $V_{CC} = 40 \text{ V; } T_A = 25^{\circ}\text{C; No Output Loads}$ $V_{C1-}, V_{C2-} = V_{CC;}$ $V_{C1+}, V_{C2+} = 0 \text{ V}$	ICC(off)	_	12	15		12	.15	mA
V _{C1+} , V _{C2+} = V _{CC} ; V _{C1-} , V _{C2-} = 0 V	I _{CC(on)}		27	32	_	27	32	mA

NOTES:

- (1) T_{Iow} = -55°C for MC3524, MC3524A = -40°C for MC3324, MC3324A = 0°C for MC3424, MC3424A
- T_{high} = +125°C for MC3524, MC3524A = +85°C for MC3324, MC3324A = +70°C for MC3424, MC3424A
- (2) The input common-mode voltage or input signal voltage should not be allowed to go negative by more than 300 mV. The upper functional limit of the common-mode voltage range is typically V_{CC} –1.4 volts, but either or both inputs can go to 40 volts, independent of V_{CC}, without device destruction.
- (3) The $V_{th(ES1)}$ limits are approximately 0.9 times the V_{ref} limits over the applicable temperature range.
- (4) The $V_{th(OC)}$ limits are approximately the V_{ref} limits over the applicable temperature range.

FLECTRICAL CHARACTERISTICS (4.5 V SVCC S40 V: TA = Tlour to Third [see Note 1] upless otherwise spec

	_	MC3524	A/3424A/3	3324A	MC352	4/3424/3	324	
Characteristic	Symbol	Min	Тур	Max	Min	Typ	Max	Unit
INPUT SECTION	l							I
Input Offset Voltage	V _{IO}							mV
T _A = 25°C		_	±3.0	±8.0		±5.0	±10	
T _{low} to T _{high} (Note 1)			±3.0	±12		±5.0	±15	
Input Offset Current	10					120	. 05	nA
T _A = 25°C T _{low} to T _{high} (Note 1)			±3.0 ±3.0	±25 ±250		±3.0 ±3.0	±25 ±250	
Input Bias Current	Iв							nA
T _A = 25°C	'16		50	250		50	250	'''
T _{low} to T _{high} (Note 1)			500	1000		500	1000	
Comparator Input Functional Common Mode Range (T _A = 25°C, Note 2)	VICR	-0.1	V _{CC} -1.4	_	-0.1	V _{CC} -1.4		V
Hysteresis Activation Voltage	V _{H(act)}							V
$V_{CC} = 15 \text{ V}; V_{C1+}, V_{C2+} = V_{CC}; T_A = 25^{\circ}C$			1.2					
I _H = 10% I _H = 90%		_	1.4	_	_	1.2 1.4		
Hysteresis Current	lн	10	12.5	15	9.0	12.5	16	μА
V _{CC} = 15 V; V _{C1-} , V _{C2-} = 2.5 V; V _{C1+} , V _{C2+} = V _{CC} ; T _A = 25°C	111							,
Common Mode Rejection Ratio	CMRR	60	72		60	72		dB
Power Supply Rejection Ratio	PSRR		95			95		dB
Input Enable Threshold (Pin 16; Note 3)	V _{th(IE)}	0.9	1.4	1.9	0.9	1.4	1.9	v
Input Enable Current (Pin 16)	CI(IL)							μА
V _{IL(IE)} = 0 V	IIL(IE)		-0.5	-2.5		-0.5	-2.5	,
V _{IH(IE)} = 40 V	IH(IE)		0.05	1.0	_	0.05	1.0	
Enable Select 1 Threshold Voltage (Pin 2)	V _{th(ES1)}	2.2	2.25	2.3	2.1	2.25	2.4	V
Delay Pin Voltage (I _{DLY} = 0 mA)				0.5				V
Low State High State	VOL(DLY)	 V _{CC} -0.5	0.2 V _{CC} -0.15	0.5	 V _{CC} -0.5	0.2 V _{CC} -0.15	0.5	
Delay Pin Source Current		150	200	250	140	200	260	μA
V _{CC} = 15 V; V _{DLY1} , V _{DLY2} = 0 V	IDLY(source)	100	200	200	140	200	200	"
Delay Pin Sink Current	IDLY(sink)	1.8	3.0		1.8	3.0		mA
V _{CC} = 15 V; V _{DLY1} , V _{DLY2} = 2.5 V	221(01111)							
OUTPUT SECTION								
Drive Output Peak Current (T _A = 25°C)	IDRV(peak)	200	300		200	300	_	mA
Drive Output V (IDRV = 100 mA; TA = 25°C)	VOH(DRV)	V _{CC} -2.5	V _{CC} -2.0		V _{CC} -2.5	V _{CC} -2.0		V
Drive Output Leakage Current (VDRV = 0 V)	IDRV(leak)		15	200		15	200	nA
Drive Output Current Slew Rate (TA = 25°C)	di/dt		2.0			2.0		A/μS
Drive Output Transient Rejection (TA = 25°C)	IDRV(trans)		1.0	_	_	1.0		mA
$V_{CC} = 0 \text{ V to } 15 \text{ V at } dV/dt = 200 \text{ V/}\mu\text{s};$	DRV(trails)		"			10		(Peak
V _{C1-} , V _{C2-} = V _{ref} ; V _{C1+} , V _{C2+} = 0 V								
Indicator Output Saturation Voltage I _{IND} = 30 mA; T _A = 25°C	VIND(sat)		560	800		560	800	mV
Indicator Output Leakage Current VOH(IND) = 40 V	^I IND(leak)	_	25	200		25	200	nA
Output Comparator Threshold V (Note 4)	V _{th(OC)}	2.45	2.5	2.55	2.33	2.5	2.63	V
Remote Activation Threshold Voltage	V _{th(RA)}	1.3	1.4	1.5	1.1	1.4	1.7	V
Remote Activation Current								μА
V _{IL(RA)} = 0 V	IL(RA)		-100	-250	<u> </u>	-100	-250	
V _{IH(RA)} = 40 V	IH(RA)		70	250		70	250	
Propagation Delay (V _{CC} = 15 V; T _A = 25°C) Input to Drive Output	^t PLH(IN/DRV)	- ,	1.0	_	_	1.0	_	μS
100 mV Overdrive, C _{DLY} = 0 µF Remote Activation to Drive Output	tPLH(RA/DRV)		600			600	_	ns
1.4 V Overdrive (2.5 V to 0 V Step)								1

FIGURE 1 — HYSTERESIS CURRENT versus HYSTERESIS ACTIVATION VOLTAGE

FIGURE 2 — HYSTERESIS ACTIVATION VOLTAGE versus TEMPERATURE

FIGURE 3 — HYSTERESIS CURRENT versus TEMPERATURE

FIGURE 4 — REFERENCE VOLTAGE CHANGE versus
OUTPUT CURRENT

FIGURE 5 — REFERENCE VOLTAGE CHANGE versus TEMPERATURE

FIGURE 6 — REFERENCE SHORT-CIRCUIT CURRENT Versus TEMPERATURE

FIGURE 7 — OUTPUT DELAY TIME versus
DELAY CAPACITANCE

FIGURE 8 — DELAY PIN SOURCE CURRENT versus TEMPERATURE

FIGURE 9 — DRIVE OUTPUT SATURATION VOLTAGE

FIGURE 10 — INDICATOR OUTPUT SATURATION

FIGURE 11 — DRIVE OUTPUT SATURATION VOLTAGE versus TEMPERATURE

FIGURE 12 — POWER SUPPLY CURRENT versus VOLTAGE

MC3424,A, MC3524,A, MC3324,A

FIGURE 13 — THE COMPLETE VOLTAGE SENSE CAPABILITY OF THE INPUT COMPARATORS, WITH OR WITHOUT PROGRAMMABLE HYSTERESIS.

		VOLTAGE S	ENSE (VS)	
	ov	ER	UNI	DER
	WITH HYSTERESIS	WITHOUT HYSTERESIS	WITH HYSTERESIS	WITHOUT HYSTERESIS
V _S > V _{ref}	VS VH=IHRH	Vs Vref	$V_{H} = I_{H} \left(\frac{R_{1} R_{2}}{R_{1} + R_{2}} \right)$ R_{1} R_{2} V_{ref}	Vs Vref Vth < 2\phi
V _S ≤ V _{ref} V _S ≥ 2φ*	$V_{S} \circ O \longrightarrow V_{H} = I_{H} \left(\frac{R_{1} R_{2}}{R_{1} + R_{2}}\right)$ $V_{ref} \circ O \longrightarrow R_{1}$ R_{2} $V_{th} > 2\phi \longrightarrow R_{2}$	V _S	$V_{H} = I_{H}R_{H}$ R_{H} $V_{th} > 2\phi$	Vs Vref Vth < 2 ϕ
V _S < 2φ* V _S ≥ 0 V	$V_{H} = I_{H} \left(\frac{R_{1} R_{2}}{R_{1} + R_{2}} \right)$ V_{ref} R_{1} V_{S} R_{2}	V _{ref}	$V_{H} = I_{H} \begin{pmatrix} R_{1} & R_{2} \\ R_{1} & + & R_{2} \end{pmatrix}$ V_{ref} V_{S} $V_{th} > 2\phi$ $V_{th} > 2\phi$	V _S ο ο + V _{ref} ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο
V _S < 0 V	$V_{H} = I_{H} \left(\frac{R_{1} R_{2}}{R_{1} + R_{2}}\right)$ V_{ref} V_{S} $V_{th} > 2\phi$	V _{ref}	$V_{H} = I_{H} \left(\frac{R_{1} R_{2}}{R_{1} + R_{2}} \right)$ V_{ref} R_{1} V_{S} R_{2} $V_{th} > 2\phi$	Vref

^{*2} $\phi \simeq$ 1.1 Volts at TJ = 25°C

۷cc Enable Select 1/ 200 μΑ Drive 1 6 IND 1 Input Enable 16 C2 - 014 Drive 2 10 2.25 V Reference Regulator IND 2 13 4 5 12 DLY2 DLY1 RA1 RA2 V_{ref} Gnd INPUT SECTION **OUTPUT SECTION**

FIGURE 14 -- MC3524/3424/3324 BLOCK DIAGRAM

Note: All voltages and currents are nominal.

MC3424,A, MC3524,A, MC3324,A

CIRCUIT DESCRIPTION

The MC3424 series is a high current output, dual channel power supply supervisory circuit. Basic circuit configuration is shown in Figure 14. Each channel features a true differential input comparator with a common-mode range from ground potential to VCC - 1.4 volts, with single supply operation. The inverting inputs of each input comparator (C1–, C2–) have a feedback activated 12.5 μ A current sink for programming input comparator hysteresis. Source resistance of the inverting inputs determines the amount of hysteresis for each input comparator. The hysteresis feature can be defeated by reducing the inverting input voltage of the respective input comparator to less than two diode drops (2 $\phi \approx$ 1.1 volts) above Gnd (See Hysteresis Activation Voltage specification). A complete matrix of various input comparator conditions is shown in Figure 13

The digital Input Enable (IE) pin provides full enable/disable control of one or both of the input comparators. Input Comparator 1 enable control is allowed if the Enable Select1/Non-Inverting Input (pin 2) is less than 90% of the internal 2.5 volts reference (0.9 $V_{\text{Tef}} \!\cong\! 2.25$ V). If the Input Enable Select1/Non-Inverting Input (pin 2) is greater than 0.9 V_{Tef} , Comparator 1 is not affected by the logic state of the Input Enable pin and always remains enabled.

The voltage threshold of the Input Enable pin is TTL-compatible. A logic level "1" permits normal operation of input comparators, as stated above. A logic "0" forces the respective Delay pin (DLY1, DLY2) to a low state, independent of the input comparator's state.

The selective enabling feature of Input Comparator 1 is directly applicable when the MC3424 series is used as an over- and under-voltage supervisory circuit, where channel 2 (Input Comparator 2) is monitoring under-voltage conditions, and channel 1 is utilized for over-voltage protection. The ability to keep channel 1 (Input Comparator 1) active, while disabling channel 2, provides immediate over-voltage protection during power supply turn-on, while the under-voltage channel (2) can be disabled during the power supply turn-on rise time to the regulated level, preventing false indication of an under-voltage condition. If it is desired to monitor two independent voltages for an under-voltage condition, both channels can be selectively disabled until the slowest supply reaches its regulated voltage.

Separate Delay pins (DLY1, DLY2) are provided for each channel to independently delay the Drive and Indicator Outputs, thus providing greater input noise immunity. The two Delay pins are essentially the outputs of the respective input comparators, and provide a constant current source of typically 200 μ A when the non-inverting input voltage is greater than the inverting input level (VC1+ > VC1-; VC2+ > VC2-).

A capacitor (CDLY) tied to these Delay pins will establish a predictable delay time (tDLY) of the Drive and Indicator outputs for the respective channel. The Delay pins are internally tied to the non-inverting input of Output Comparators 1 and 2, which are referenced to 2.5 volts. Therefore, delay time (tDLY) is based on the constant current IDLY(source) charging the external delay capacitor (CDLY) to 2.5 volts or:

$$t_{DLY} = \frac{V_{ref} C_{DLY}}{I_{DLY(source)}} = \frac{2.5 C_{DLY}}{200 \mu A} = 12500 C_{DLY}.$$

Figure 7 provides C_{DLY} values for a wide range of time delays.

The Delay pins are pulled low when the respective input comparator's non-inverting input is less than the inverting input (V_{C1+} < V_{C1-}; V_{C2+} < V_{C2-}), or when the Input Enable pin is at a low logic level. The sink current (\geqslant 1.8 mA) capability of the Delay pins is much greater than the typical 200 μA source current, thus enabling a relatively fast delay capacitor discharge time.

Each independent channel of the MC3424 series has a Drive (DRV) and Indicator output (IND) which respectively source and sink current simultaneously. The Drive outputs are current-limited emitter-followers capable of sourcing 300 mA at a turn-on slew rate of $2.0 A/\mu S$, ideal for driving "Crowbar" SCR's. The Indicator outputs are open collector, NPN transistors, capable of sinking 30 mA to provide sufficient drive for LED's, small relays or regular shut-down circuitry. These current capabilities apply to both channels operating simultaneously, providing device power dissipation limits are not exceeded.

Separate TTL-compatible Remote Activation inputs (RA1, RA2) for each channel will activate the Drive and Indicator outputs of the respective channel, independent of the input comparator state, when a low logic level applied. The active low for remote activation permits latching of the respective outputs by connecting the Indicator output, via a ≤ 5.0 K resistor to the Remote Activation input of the same channel, as shown in Figure 18. Latching will now occur by either of the Remote Activation inputs with a short duration low logic level, or by the input comparators. Unlatching of each channel is accomplished with a short duration, high logic level at the Remote Activation pin.

The MC3424 series has an internal 2.5 V bandgap reference capable of sourcing up to 10 mA of load current for external bias circuits. This reference has an accuracy of $\pm 4.0\%$ for the basic devices and $\pm 1.0\%$ for the A-suffix device types at 25°C. The reference has a typical temperature coefficient of 30 ppm/°C for A-suffix devices.

CROWBAR SCR CONSIDERATIONS

Referring to Figure 15, it can be seen that the crowbar SCR, when activated, is subject to a large current surge from the output capacitance, Cout. This capacitance consists of the power supply output capacitors, the load's decoupling capacitors, and in the case of Figure 15A, the supply's input filter capacitors. This surge current is illustrated in Figure 16, and can cause SCR failure or degradation by any one of three mechanisms: di/dt, absolute peak surge, or I2t. The interrelationship of these failure methods and the breadth of the applications make specification of the SCR by the semiconductor manufacturer difficult and expensive. Therefore, the designer must empirically determine the SCR and circuit elements which result in reliable and effective OVP operation. However, an understanding of the factors which influence the SCR's di/dt and surge capabilities simplifies this task.

1. di/dt

As the gate region of the SCR is driven on, its area of conduction takes a finite amount of time to grow, starting as a very small region and gradually spreading.

Since the anode current flows through this turned-on gate region, very high current densities can occur in the gate region if high anode currents appear quickly (di/dt). This can result in immediate destruction of the SCR or gradual degradation of its forward blocking voltage capabilities — depending on the severity of the occasion.

The value of di/dt that an SCR can safely handle is influenced by its construction and the characteristics of the gate drive signal. A center-gate-fire SCR has more di/dt capability than a corner-gate-fire type, and heavily overdriving (3 to 5 times IGT) the SCR gate with a fast $<1.0 \mu s$ rise time signal will maximize its di/dt capability. A typical maximum number in phase control SCRs of less than 50 A(RMS) rating might be 200 A/ μ s, assuming a gate current of five times IGT and < 1.0 μ s rise time. If having done this, a di/dt problem is seen to still exist, the designer can also decrease the di/dt of the current waveform by adding inductance in series with the SCR, as shown in Figure 17. Of course, this reduces the circuit's ability to rapidly reduce the dc bus voltage and a tradeoff must be made between speedy voltage reduction and di/dt.

FIGURE 15 — TYPICAL CROWBAR CIRCUIT CONFIGURATIONS

FIGURE 16 — CROWBAR SCR SURGE CURRENT WAVEFORM

2. Surge Current

If the peak current and/or the duration of the surge is excessive, immediate destruction due to device overheating will result. The surge capability of the SCR is directly proportional to its die area. If the surge current cannot be reduced (by adding series resistance—see Figure 17) to a safe level which is consistent with the system's requirements for speedy bus voltage reduction, the designer must use a higher current SCR. This may result in the average current capability of the SCR exceeding the steady state current requirements imposed by the dc power supply.

FIGURE 17 — CIRCUIT ELEMENTS AFFECTING SCR SURGE & di/dt

A WORD ABOUT FUSING

Before leaving the subject of the crowbar SCR, a few words about fuse protection are in order. Referring back to Figure 15A, it will be seen that a fuse is necessary if the power supply to be protected is not output current limited. This fuse is not meant to prevent SCR failure but rather to prevent a fire!

In order to protect the SCR, the fuse would have to possess an I^2 t rating less than that of the SCR and yet have a high enough continuous current rating to survive normal supply output currents. In addition, it must be capable of successfully clearing the high short circuit currents from the supply. Such a fuse as this is quite expensive, and may not even be available.

The usual design compromise then is to use a garden variety fuse (3AG or 3AB style) which cannot be relied on to blow before the thyristor does, and trust that if the SCR does fail, it will fail short circuit. In the majority of the designs, this will be the case, though this is difficult to guarantee. Of course, a sufficiently high surge will cause an open. These comments also apply to the fuse in Figure 15R

CROWBAR SCR SELECTION GUIDE

As an aid in selecting an SCR for crowbar use, the following selection guide is presented.

DEVICE	IRMS	IFSM	PACKAGE
MCR67 Series	12 A	100 A	Metal Stud
MCR68 Series	12 A	100 A	TO-220 Plastic
2N1842 Series	16 A	125 A	Metal Stud
2N6400 Series	16 A	160 A	TO-220 Plastic
2N6504 Series	25 A	160 A	TO-220 Plastic
2N681 Series	25 A	200 A	Metal Stud
2N2573 Series	25 A	260 A	TO-3 Metal Can
MCR69 Series	25 A	300 A	TO-220 Plastic
MCR70 Series	35 A	350 A	Metal Stud
MCR71 Series	55 A	550 A	Metal Stud

For a complete and detailed treatment of SCR and fuse selection refer to Motorola Application Note AN-789.

APPLICATIONS INFORMATION

FIGURE 18 — OVERVOLTAGE PROTECTION OF SPLIT SUPPLIES WITH DELAY AND LATCHED-FAULT INDICATION.

FIGURE 19 — OVERVOLTAGE PROTECTION OF 5.0 V SUPPLY WITH LINE LOSS DETECTOR

FIGURE 20 — LATCHING OVERVOLTAGE SENSING CIRCUIT WITH INTERMITTENT AUDIO ALARM

FIGURE 21 — ADJUSTABLE D.C. PICK-UP/DROP-OUT RELAY CIRCUIT

FIGURE 22 — 9.0 V BATTERY CHARGER with ZERO SENSE LOAD CURRENT

FIGURE 23 — PROPORTIONAL CONTROL CIRCUIT

FIGURE 24 — ALTERNATING TWO TONE GENERATOR (EUROPEAN SIREN)

FIGURE 25 — TONE BURST GENERATOR

FIGURE 26 — PHOTOFLASH CONVERTER

FIGURE 27 — PROGRAMMABLE FREQUENCY SWITCH

FIGURE 28 - EMERGENCY LIGHTING SYSTEM

FIGURE 29 — REFERENCE TEMPERATURE COEFFICIENT MODIFICATIONS

MC3425 MC3425A MC3525 MC3525A

Advance Information

POWER SUPPLY SUPERVISORY/OVER-UNDER-VOLTAGE PROTECTION CIRCUIT

The MC3425/3525 is a power supply supervisory circuit containing all the necessary functions required to monitor over- and undervoltage fault conditions. These integrated circuits contain dedicated over- and under-voltage sensing channels with independently programmable time delays. The over-voltage channel has a high current Drive Output for use in conjunction with an external SCR "Crowbar" for shutdown. The under-voltage channel input comparator has hysteresis which is externally programmable, and an open-collector output for fault indication.

- Dedicated Over- And Under-Voltage Sensing
- Programmable Hysteresis Of Under-Voltage Comparator
- Internal 2.5 V Reference
- 300 mA Over-Voltage Drive Output
- 30 mA Under-Voltage Indicator Output
- Programmable Time Delays
- 4.5 V to 40 V Operation

POWER SUPPLY SUPERVISORY/ OVER-UNDER-VOLTAGE PROTECTION CIRCUIT

SILICON MONOLITHIC INTEGRATED CIRCUIT

P1 SUFFIX PLASTIC PACKAGE CASE 626-04

U SUFFIX CERAMIC PACKAGE CASE 693-02

TYPICAL APPLICATION

Over-Voltage Crowbar Protection, Under-Voltage Indication

O.V. DRV Output 1 8 VCC 7 Gnd O.V. DLY 2 7 Gnd U.V. IND Output 5 U.V. DLY (Top View)

ORDERING INFORMATION

Device	Temperature Range	Package
MC3525U, AU	-55 to +125°C	Ceramic DIP
MC3425P1, AP1		Plastic DIP
MC3425U, AU	0 to +70°C	Ceramic DIP

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MC3425, MC3425A, MC3525, MC3525A

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Power Supply Voltage	Vcc	40	Vdc	
Comparator Input Voltage Range (Note 2)	VIR	-0.3 to +40	Vdc	
Drive Output Short-Circuit Current	IOS(DRV)	Internally Limited	· mA	
Indicator Output Voltage	VIND	0 to 40	Vdc	
Indicator Output Sink Current	IND	30	mA	
Power Dissipation and Thermal Characteristics Ceramic Package Maximum Power Dissipation @ T _A = 95°C Thermal Resistance Junction to Air Plastic Package Maximum Power Dissipation @ T _A = 70°C Thermal Resistance Junction to Air	P _D R _θ JA P _D R _θ JA	1000 80 1000 80	mW °C/W mW °C/W	
Operating Junction Temperature Ceramic Package Plastic Package	TJ	+175 +150	°C	
Operating Ambient Temperature Range MC3425, MC3425A MC3525, MC3525A	TA	0 to +70 -55 to +125	°C	
Storage Temperature Range Ceramic Package Plastic Package	T _{stg}	-65 to +175 -55 to +150	°C	

ELECTRICAL CHARACTERISTICS (4.5 V \leq V_{CC} \leq 40 V; T_A = T_{low} to T_{high} [see Note 1] unless otherwise specified.)

Characteristic	Symbol	MC3525A/3425A		MC3525/3425		5	Unia	
		Min	Тур	Max	Min	Тур	Max	Unit
REFERENCE SECTION								
Sense Trip Voltage (Reference Voltage) V _{CC} = 15 V T _A = 25°C T _{low} to T _{high} (Note 1)	VSense	2.475 2.45	2.5 2.5	2.525 2.55	2.4 2.33	2.5 2.5	2.6 2.63	Vdc
Line Regulation of V_{Sense} 4.5 $V \le V_{CC} \le 40 \text{ V}; T_J = 25^{\circ}\text{C}$	Regline	_	7.0	15	_	7.0	15	mV
Power Supply Voltage Operating Range	Vcc	4.5		40	4.5		40	Vdc
Power Supply Current V _{CC} = 40 V; T _A = 25°C; No Output Loads O.V. Sense (Pin 3) = 0 V; U.V. Sense (Pin 4) = V _{CC}	ICC(off)		8.5	10	_	8.5	10	mA
O.V. Sense (Pin 3) = V _{CC} ; U.V. Sense (Pin 4) = 0 V	ICC(on)		16.5	19		16.5	19	mA

NOTES:

(1) T_{low} = -55°C for MC3525, MC3525A = 0°C for MC3425, MC3425A T_{high} = +125°C for MC3525, MC3525A = +70°C for MC3425, MC3425A

⁽²⁾ The input signal voltage should not be allowed to go negative by more than 300 mV or positive by more than 40 V, independent of V_{CC}, without device destruction.

⁽³⁾ The $V_{th(OC)}$ limits are approximately the V_{Sense} limits over the applicable temperature range.

ELECTRICAL CHARACTERISTICS (4.5 V ≤ V_{CC} ≤ 40 V; T_A = T_{low} to T_{high} [see Note 1] unless otherwise specified.)

Observatoriale		мсз	525A/342	5A	MC	3525/3425		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
INPUT SECTION								
Input Bias Current, O.V. and U.V. Sense	lВ	_	1.0	2.0	_	1.0	2.0	μΑ
Hysteresis Activation Voltage, U.V. Sense V _{CC} = 15 V; T _A = 25°C; I _H = 10%	VH(act)	_	0.6		_	0.6	_	٧
I _H = 90% Hysteresis Current, U.V. Sense V _{CC} = 15 V; T _A = 25°C; U.V. Sense (Pin 4) = 2.5 V	IН	10	0.8 12.5	15	9.0	12.5	16	μΑ
Delay Pin Voltage (I _{DLY} = 0 mA) Low State High State	VOL(DLY) VOH(DLY)	_ V _{CC} -0.5	0.2 V _{CC} -0.15	0.5	 V _{CC} -0.5	0.2 V _{CC} -0.15	0.5	٧
Delay Pin Source Current V _{CC} = 15 V; V _{DLY} = 0 V	I _{DLY} (source)	150	200	250	140	200	260	μА
Delay Pin Sink Current V _{CC} = 15 V; V _{DLY} = 2.5 V	^I DLY(sink)	1.8	3.0	-	1.8	3.0	_	mA
OUTPUT SECTION					-		-	
Drive Output Peak Current (T _A = 25°C)	IDRV(peak)	200	300		200	300	_	mA
Drive Output Voltage I _{DRV} = 100 mA; T _A = 25°C	VOH(DRV)	V _{CC} -2.5	V _{CC} -2.0		V _{CC} -2.5	V _{CC} -2.0	_	٧
Drive Output Leakage Current VDRV = 0 V	IDRV(leak)		15	200	_	15	200	nA
Drive Output Current Slew Rate (TA = 25°C)	di/dt	_	2.0	_	_	2.0		Α/μ
Drive Output V _{CC} Transient Rejection V _{CC} = 0 V to 15 V at dV/dt = 200 V/μs; O.V. Sense (Pin 3) = 0 V; T _A = 25°C	IDRV(trans)	_	1.0		_	1.0		mA (Peak
Indicator Output Saturation Voltage I _{IND} = 30 mA; T _A = 25°C	V _{IND(sat)}		560	800	-	560	800	mV
Indicator Output Leakage Current VOH(IND) = 40 V	IND(leak)	 .	25	200	*****	25	200	nΑ
Output Comparator Threshold Voltage (Note 3)	V _{th(OC)}	2.45	2.5	2.55	2.33	2.5	2.63	٧
Propagation Delay Time (V _{CC} = 15 V; T _A = 25°C) Input to Drive Output or Indicator Output 100 mV Overdrive, C _{DLY} = 0 μF	^t PLH(IN/OUT)		1.7		_	1.7	_	μS
Input to Delay 2.5 V Overdrive (0 V to 5.0 V Step)	^t PLH(IN/DLY)	_	700	_	_	700	_	ns

FIGURE 1 — HYSTERESIS CURRENT versus HYSTERESIS ACTIVATION VOLTAGE

FIGURE 2 — HYSTERESIS ACTIVATION VOLTAGE versus TEMPERATURE

FIGURE 3 — HYSTERESIS CURRENT

FIGURE 4 — SENSE TRIP VOLTAGE CHANGE versus TEMPERATURE

FIGURE 5 — OUTPUT DELAY TIME versus

FIGURE 6 — DELAY PIN SOURCE CURRENT versus TEMPERATURE

FIGURE 7 — DRIVE OUTPUT SATURATION VOLTAGE VERSUS OUTPUT PEAK CURRENT

FIGURE 8 — INDICATOR OUTPUT SATURATION VOLTAGE versus OUTPUT SINK CURRENT

FIGURE 9 — DRIVE OUTPUT SATURATION VOLTAGE

Versus TEMPERATURE

FIGURE 10 — POWER SUPPLY CURRENT versus VOLTAGE

APPLICATIONS INFORMATION

FIGURE 11 - OVERVOLTAGE PROTECTION AND UNDER VOLTAGE FAULT INDICATION WITH PROGRAMMABLE DELAY

FIGURE 12 — OVERVOLTAGE PROTECTION OF 5.0 V SUPPLY WITH LINE LOSS DETECTOR

FIGURE 13 — OVERVOLTAGE AUDIO ALARM CIRCUIT

FIGURE 14 — PROGRAMMABLE FREQUENCY SWITCH

CIRCUIT DESCRIPTION

The MC3425/MC3525 is a power supply supervisory circuit containing all the necessary functions required to monitor over- and under-voltage fault conditions. The block diagram is shown below in Figure 15. The Over-Voltage (O.V.) and Under-Voltage (U.V.) Input Comparators are both referenced to an internal 2.5 V regulator. The U.V. Input Comparator has a feedback activated 12.5 μ A current sink (I_H) which is used for programming the input hysteresis voltage (V_H). The source resistance feeding this input (R_H) determines the amount of hysteresis voltage by V_H = I_HR_H = 12.5 × 10⁻⁶ R_H.

Separate Delay pins (O.V. DLY, U.V. DLY) are provided for each channel to independently delay the Drive and Indicator outputs, thus providing greater input noise immunity. The two Delay pins are essentially the outputs of the respective input comparators, and provide a constant current source, $I_{DLY(source)}$, of typically 200 μA when the non-inverting input voltage is greater than the inverting input level. A capacitor connected from these Delay pins to ground, will establish a predictable delay time (tDLY) for the Drive and Indicator outputs. The Delay pins are internally connected to the non-inverting inputs of the O.V. and U.V. Output Comparators, which are referenced to the internal 2.5 V regulator. Therefore, delay time (tDLY) is based on the constant current source, $I_{DLY(source)}$, charging the external delay capacitor (CDLY) to 2.5 volts.

$$t_{DLY} = \frac{V_{ref} C_{DLY}}{I_{DLY(source)}} = \frac{2.5 C_{DLY}}{200 \mu A} = 12500 C_{DLY}$$

Figure 5 provides C_{DLY} values for a wide range of time delays. The Delay pins are pulled low when the respective input comparator's non-inverting input is less than the inverting input. The sink current, $I_{DLY(sink)}$, capability of the Delay pins is $\geqslant 1.8$ mA and is much greater than the typical 200 μ A source current, thus enabling a relatively fast delay capacitor discharge time.

The Over-Voltage Drive Output is a current-limited emitter-follower capable of sourcing 300 mA at a turn-on slew rate of 2.0 A/ μ s, ideal for driving "Crowbar" SCR's. The Under-Voltage Indicator Output is an open-collector, NPN transistor, capable of sinking 30 mA to provide sufficient drive for LED's, small relays or shut-down circuitry. These current capabilities apply to both channels operating simultaneously, providing device power dissipation limits are not exceeded.

The MC3425/MC3525 has an internal 2.5 V bandgap reference regulator with an accuracy of $\pm 4.0\%$ for the basic devices and $\pm 1.0\%$ for the A-suffix device types at 25°C. The reference has a typical temperature coefficient of 30 ppm/°C for A-suffix devices.

Vcc OV 200 μΑ Sense Input Output 3 Comparate Comparato O.V ١ O.V. DRV o ^{U.V.} ı Output 200 μΑ Comparato 6 υv U.V. Input Comparato Sense UV O 4 2.5 V Reference Regulator 5 6 **d** 2 7 b U.V. O.V. Gnd **OUTPUT SECTION** INPUT SECTION DLY DLY

FIGURE 15 - MC3425/MC3525 BLOCK DIAGRAM

Note: All voltages and currents are nominal.

CROWBAR SCR CONSIDERATIONS

Referring to Figure 16, it can be seen that the crowbar SCR, when activated, is subject to a large current surge from the output capacitance, Cout. This capacitance consists of the power supply output capacitors, the load's decoupling capacitors, and in the case of Figure 16A, the supply's input filter capacitors. This surge current is illustrated in Figure 17, and can cause SCR failure or degradation by any one of three mechanisms: di/dt, absolute peak surge, or I2t. The interrelationship of these failure methods and the breadth of the applications make specification of the SCR by the semiconductor manufacturer difficult and expensive. Therefore, the designer must empirically determine the SCR and circuit elements which result in reliable and effective OVP operation. However, an understanding of the factors which influence the SCR's di/dt and surge capabilities simplifies this task.

1. di/dt

As the gate region of the SCR is driven on, its area of conduction takes a finite amount of time to grow, starting as a very small region and gradually spreading. Since the anode current flows through this turned-on

gate region, very high current densities can occur in the gate region if high anode currents appear quickly (di/dt). This can result in immediate destruction of the SCR or gradual degradation of its forward blocking voltage capabilities — depending on the severity of the occasion.

The value of di/dt that an SCR can safely handle is influenced by its construction and the characteristics of the gate drive signal. A center-gate-fire SCR has more di/dt capability than a corner-gate-fire type, and heavily overdriving (3 to 5 times IGT) the SCR gate with a fast <1.0 μ s rise time signal will maximize its di/dt capability. A typical maximum number in phase control SCRs of less than 50 A(RMS) rating might be 200 A/μs, assuming a gate current of five times IGT and $< 1.0 \,\mu s$ rise time. If having done this, a di/dt problem is seen to still exist, the designer can also decrease the di/dt of the current waveform by adding inductance in series with the SCR, as shown in Figure 18. Of course, this reduces the circuit's ability to rapidly reduce the dc bus voltage and a tradeoff must be made between speedy voltage reduction and di/dt.

FIGURE 16 — TYPICAL CROWBAR CIRCUIT CONFIGURATIONS

MC3425, MC3425A, MC3525, MC3525A

FIGURE 17 — CROWBAR SCR SURGE CURRENT

2. Surge Current

If the peak current and/or the duration of the surge is excessive, immediate destruction due to device overheating will result. The surge capability of the SCR is directly proportional to its die area. If the surge current cannot be reduced (by adding series resistance—see Figure 18) to a safe level which is consistent with the system's requirements for speedy bus voltage reduction, the designer must use a higher current SCR. This may result in the average current capability of the SCR exceeding the steady state current requirements imposed by the dc power supply.

FIGURE 18 — CIRCUIT ELEMENTS AFFECTING SCR SURGE & di/dt

A WORD ABOUT FUSING

Before leaving the subject of the crowbar SCR, a few words about fuse protection are in order. Referring back to Figure 16A, it will be seen that a fuse is necessary if the power supply to be protected is not output current limited. This fuse is not meant to prevent SCR failure but rather to prevent a firel

In order to protect the SCR, the fuse would have to possess an I^2t rating less than that of the SCR and yet have a high enough continuous current rating to survive normal supply output currents. In addition, it must be capable of successfully clearing the high short circuit currents from the supply. Such a fuse as this is quite expensive, and may not even be available.

The usual design compromise then is to use a garden variety fuse (3AG or 3AB style) which cannot be relied on to blow before the thyristor does, and trust that if the SCR does fail, it will fail short circuit. In the majority of the designs, this will be the case, though this is difficult to guarantee. Of course, a sufficiently high surge will cause an open. These comments also apply to the fuse in Figure 16B.

CROWBAR SCR SELECTION GUIDE

As an aid in selecting an SCR for crowbar use, the following selection guide is presented.

DEVICE	IRMS	IFSM	PACKAGE
MCR67 Series	12 A	100 A	Metal Stud
MCR68 Series	12 A	100 A	TO-220 Plastic
2N1842 Series	16 A	125 A	Metal Stud
2N6400 Series	16 A	160 A	TO-220 Plastic
2N6504 Series	25 A	160 A	TO-220 Plastic
2N681 Series	25 A	200 A	Metal Stud
2N2573 Series	25 A	260 A	TO-3 Metal Can
MCR69 Series	25 A	300 A	TO-220 Plastic
MCR70 Series	35 A	350 A	Metal Stud
MCR71 Series	55 A	550 A	Metal Stud

For a complete and detailed treatment of SCR and fuse selection refer to Motorola Application Note AN-789.

THREE-TERMINAL POSITIVE VOLTAGE REGULATORS

These voltage regulators are monolithic integrated circuits designed as fixed-voltage regulators for a wide variety of applications including local, on-card regulation. These regulators employ internal current limiting, thermal shutdown, and safe-area compensation. With adequate heatsinking they can deliver output currents in excess of 1.0 ampere. Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents.

- Output Current in Excess of 1.0 Ampere
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Output Voltage Offered in 2% and 4% Tolerance

ORDERING INFORMATION

Device	Output Voltage Tolerance	Temperature Range	Package
MC78XXK MC78XXAK	4% 2%	-55 to +150°C	Metal Power
MC78XXBK	4%	-40 to +125°C	
MC78XXCK MC78XXACK	4% 2%	0 to +125°C	
MC78XXCT MC78XXACT	4% 2%		Plastic Power
MC78XXBT	4%	-40 to +125°C	

THREE-TERMINAL POSITIVE FIXED VOLTAGE REGULATORS

SILICON MONOLITHIC INTEGRATED CIRCUITS

Pins 1 and 2 electrically isolated from case. Case is third electrical connection.

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

- XX = these two digits of the type number indicate voltage.
 - * = C_{in} is required if regulator is located an appreciable distance from power supply filter.
- ** = CO is not needed for stability; however, it does improve transient response.
 - XX indicates nominal voltage

				· · · · · · · · · · · · · · · · · · ·
I		TYPE NO	/VOLTAGE	
	MC7805	5.0 Volts	MC7815	15 Volts
	MC7806	6.0 Volts	MC7818	18 Volts
	MC7808	8.0 Volts	MC7824	24 Volts
	MC7812	12 Volts		

MC7800 Series MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (5.0 V - 18 V) (24 V)	V _{in}	35 40	Vdc
Power Dissipation and Thermal Characteristics Plastic Package TA = +25°C Derate above TA = +25°C Thermal Resistance, Junction to Air	P _D 1/θJA θJA	Internally Limited 15.4 65	Watts mW/°C °C/W
T_C = +25°C Derate above T_C = +75°C (See Figure 1) Thermal Resistance, Junction to Case	P _D 1/θ _{JC} θ _{JC}	Internally Limited 200 5.0	Watts mW/°C °C/W
Metal Package TA = +25°C Derate above TA = +25°C Thermal Resistance, Junction to Air	P _D 1/θ _J A θJA	Internally Limited 22.5 45	Watts mW/°C °C/W
T_C = +25°C Derate above T_C = +65°C (See Figure 2) Thermal Resistance, Junction to Case	P _D 1/θ _{JC} θ _{JC}	Internally Limited 182 5.5	Watts mW/°C °C/W
Storage Junction Temperature Range	T _{stq}	-65 to +150	°C
Operating Junction Temperature Range MC7800, A MC7800C, AC MC7800, B	TJ	-55 to +150 0 to +150 -40 to +150	°C

DEFINITIONS

Line Regulation — The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation — The change in output voltage for a change in load current at constant chip temperature.

 $\label{lem:maximum Power Dissipation} \textbf{--} \textbf{The maximum total device dissipation for which the regulator will operate within specifications}.$

Quiescent Current — That part of the input current that is not delivered to the load.

Output Noise Voltage — The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long Term Stability — Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

MC7805, B, C ELECTRICAL CHARACTERISTICS (V_{in} = 10 V, I_O = 500 mA, T_J = T_{low} to T_{high} [Note 1] unless otherwise noted).

01	0	T	MC7805	5		MC7805	В	1	MC7805	С	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min.	Тур	Max	Unit
Output Voltage (T _J = +25°C)	v _o	4.8	5.0	5.2	4.8	5.0	5.2	4.8	5.0	5.2	Vdc
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _O \leq 15 W)	v _o										Vdc
7.0 Vdc ≤ V _{in} ≤ 20 Vdc 8.0 Vdc ≤ V _{in} ≤ 20 Vdc		4.65	5.0	5.35	4.75	5.0	5.25	4.75 —	5.0	5.25 —	
Line Regulation (T $_J$ = +25°C, Note 2) 7.0 Vdc \leq V $_{in}$ \leq 25 Vdc 8.0 Vdc \leq V $_{in}$ \leq 12 Vdc	Regline	_	2.0 1.0	50 25	_	7.0 2.0	100 50	_	7.0 2.0	100 50	mV
Load Regulation (T $_J$ = +25°C, Note 2) 5.0 mA \le I $_O$ \le 1.5 A 250 mA \le I $_O$ \le 750 mA	Reg _{load}	_	25 8.0	100 25	_	40 15	100 50	_	40 15	100	mV
Quiescent Current (T _J = +25°C)	I _B	I -	3.2	6.0	_	4.3	8.0	_	4.3	8.0	mA
Quiescent Current Change 7.0 Vdc \leqslant V _{in} \leqslant 25 Vdc 8.0 Vdc \leqslant V _{in} \leqslant 25 Vdc 5.0 mA \leqslant 10 \leqslant 1.0 A	BIF		0.3 0.04	0.8 0.5	_ 	_	_ 1.3 0.5		_ _ _	1.3 0.5	mA
Ripple Rejection 8.0 Vdc ≤ V _{in} ≤ 18 Vdc, f = 120 Hz	RR	68	75	_	-	68	_	_	68	-	dB
Dropout Voltage (IO = 1.0 A, T _J = +25°C)	V _{in} - V _O	_	2.0	2.5	_	2.0		_	2.0	-	Vdc
Output Noise Voltage (T_A = +25°C) 10 Hz \leqslant f \leqslant 100 kHz	V _n	-	10	40	_	10		_	10	-	μV/ VO
Output Resistance f = 1.0 kHz	ro		17	-	_	17	_	-	17	_	mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	I _{sc}	_	0.2	1.2	_	0.2	_	_	0.2	-	Α.
Peak Output Current (T _J = +25°C)	I _{max}	1.3	2.5	3.3	_	2.2	_		2.2	_	Α
Average Temperature Coefficient of Output Voltage	тсv _O		±0.6	*****	_	-1.1	_	_	-1.1	-	mV∕ °C

MC7805A, AC ELECTRICAL CHARACTERISTICS (V_{in} = 10 V, I_{0} = 1.0 A, T_{J} = T_{low} to T_{high} [Note 1] unless otherwise noted)

Characteristics	Symbol		MC7805A			MC7805AC		Unit
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	V _O .	4.9	5.0	5.1	4.9	5.0	5.1	Vdc
Output Voltage	v _o							Vdc
$(5.0 \text{ mA} \leqslant I_{O} \leqslant 1.0 \text{ A}, P_{O} \leqslant 15 \text{ W})$	-	4.8	5.0	5.2	4.8	5.0	5.2	
7.5 Vdc ≤ V _{in} ≤ 20 Vdc								
Line Regulation (Note 2)	Regline							mV
$7.5 \text{ Vdc} \le V_{in} \le 25 \text{ Vdc}, I_{O} = 500 \text{ mA}$		_	2.0	10	_	7.0	50	
8.0 Vdc ≤ V _{in} ≤ 12 Vdc		_	3.0	10		10	50	
8.0 Vdc ≤ V _{in} ≤ 12 Vdc, T _J = +25°C		_	1.0	4.0	_	2.0	25	
7.3 Vdc ≤ V _{in} ≤ 20 Vdc, T _J = +25°C			2.0	10	l . –	7.0	50	
Load Regulation (Note 2)	Regload							mV
$5.0 \text{ mA} \leqslant I_{O} \leqslant 1.5 \text{ A, T}_{J} = +25^{\circ}\text{C}$		_	2.0	25	l –	25	100	
$5.0 \text{ mA} \leq I_{O} \leq 1.0 \text{ A}$		www.	2.0	25	-	25	100	
250 mA $\leq I_0 \leq 750$ mA, $T_J = +25$ °C		_	1.0	15	_	_	_	
250 mA ≤ I _O ≤ 750 mA		_	1.0	25	_	8.0	50	
Quiescent Current	l _B	_	_	5.0	_	_	6.0	mA
$T_J = +25$ °C	_	-	3.2	4.0	_	4.3	6.0	
Quiescent Current Change	ΔIB							mA
$8.0 \text{ Vdc} \le V_{in} \le 25 \text{ Vdc}, I_{O} = 500 \text{ mA}$	-	_	0.3	0.5	_		0.8	
7.5 Vdc ≤ V _{in} ≤ 20 Vdc, T _J = +25°C		_	0.2	0.5	_	_	0.8	
$5.0 \text{ mA} \le I_{O} \le 1.0 \text{ A}$		_	0.04	0.2	_	_	0.5	
Ripple Rejection	RR							dB
8.0 Vdc ≤ V _{in} ≤ 18 Vdc, f = 120 Hz,			-					
T _J = +25°C		68	75	_	_	_	_	
$8.0 \text{ Vdc} \leq V_{in} \leq 18 \text{ Vdc}, f = 120 \text{ Hz},$								
I _O = 500 mA		68	75			68		
Dropout Voltage (I _O = 1.0 A, T _J = +25°C)	V _{in} - V _O		2.0	2.5		2.0	_	Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz ≤ f ≤ 100 kHz	v _n	_	10	40		10	-	μν/νο
Output Resistance (f = 1.0 kHz)	ro	_	2.0	_	_	17	_	mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	I _{sc}	_	0.2	1.2	_	0.2		А
Peak Output Current (T _J = +25°C)	I _{max}	1.3	2.5	3.3	_	2.2	_	Α
Average Temperature Coefficient of Output Voltage	TCVO	_	±0.6	_		-1.1	_	mV/°C

NOTES: 1. T_{low} = -55°C for MC78XX, A = 0° for MC78XXC, AC = -40°C for MC78XXB

Thigh = +150°C for MC78XX, A = +125°C for MC78XXC, AC, B

 $^{2. \} Load \ and \ line \ regulation \ are \ specified \ at \ constant \ junction \ temperature. \ Changes \ in \ V_O \ due \ to \ heating \ effects \ must \ be \ taken \ into \ account$ separately. Pulse testing with low duty cycle is used.

MC7806, B, C ELECTRICAL CHARACTERISTICS (Vin = 11 V, IO = 500 mA, TJ = Tlow to Thigh [Note 1] unless otherwise noted).

	T	MC7806			MC7806	•		T			
Characteristic	Symbol	Min	Typ	Max	Min	Typ	Max	Min	/IC78060 Typ	Max	Unit
Output Voltage (T i = +25°C)	V _O	5.75	6.0	6.25	5.75	6.0	6.25	5.75	6.0	6.25	Vdc
Output Voltage (5.0 mA \leq I \leq 1.0 A, P $_{O} \leq$ 15 W)	v _o										Vdc
$8.0 \text{ Vdc} \leqslant V_{in} \leqslant 21 \text{ Vdc}$ $9.0 \text{ Vdc} \leqslant V_{in} \leqslant 21 \text{ Vdc}$		5.65	6.0	6.35	5.7	6.0	- 6.3	5.7 —	6.0 —	6.3 —	
Line Regulation (T _J = +25°C, Note 2) 8.0 Vdc \leq V _{in} \leq 25 Vdc 9.0 Vdc \leq V _{in} \leq 13 Vdc	Reg _{line}	_	3.0 2.0	60 30	_	9.0 3.0	120 60	_	9.0 3.0	120 60	mV
Load Regulation (T $_J$ = +25°C, Note 2) 5.0 mA \le I $_O$ \le 1.5 A 250 mA \le I $_O$ \le 750 mA	Reg _{load}	_	27 9.0	100 30	_	43 16	120 60	_	43 16	120 60	mV
Quiescent Current (T _J = +25°C)	I _B	_	3.2	6.0	_	4.3	8.0	_	4.3	8.0	mA
Quiescent Current Change 8.0 Vdc \leq Vi _{In} \leq 25 Vdc 9.0 Vdc \leq Vi _{In} \leq 25 Vdc 5.0 mA \leq 10 \leq 1.0 A	71 ^B	_ _ _	 0.3 0.04	 0.8 0.5		_ _ _	1.3 0.5	_ _ _	_ _ _	1.3 — 0.5	mA
Ripple Rejection 9.0 Vdc ≤ V _{in} ≤ 19 Vdc, f = 120 Hz	RR	65	73		_	65	_	-	65	_	dB
Dropout Voltage (IO = 1.0 A, TJ = +25°C)	V _{in} - V _O	_	2.0	2.5	_	2.0			2.0	_	Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz ≤ f ≤ 100 kHz	V _n	-	10	40	-	10	-	_	10	_	μV/ VO
Output Resistance f = 1.0 kHz	ro	_	17			17			17		mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	I _{sc}	-	0.2	1.2	_	0.2	_	_	0.2	_	A
Peak Output Current (T _J = +25°C)	I _{max}	1.3	2.5	3.3		2.2		_	2.2		Α
Average Temperature Coefficient of Output Voltage	TCVO	_	±0.7		_	-0.8	_	_	-0.8		mV∕ °C

MC7806A, AC

ELECTRICAL CHARACTERISTICS (Vin = 11 V, IO = 1.0 A, TJ = Tlow to Thigh [Note 1] unless otherwise noted)

Characteristics	Symbol		MC7806A			MC7806AC		Unit
Characteristics	Symbol	Min	Тур	Max	Min .	Тур	Max	0
Output Voltage (T _J = +25°C)	v _o	5.88	6.0	6.12	5.88	6.0	6.12	Vdc
Output Voltage (5.0 mA \leq I $_{O} \leq$ 1.0 A, P $_{O} \leq$ 15 W) 8.6 Vdc \leq V $_{in} \leq$ 21 Vdc	v _O	5.76	6.0	6.24	5.76	6.0	6.24	Vdc
Line Regulation (Note 2) 8.6 Vdc \leq V _{in} \leq 25 Vdc, I _O = 500 mA 9.0 Vdc \leq V _{in} \leq 13 Vdc 9.0 Vdc \leq V _{in} \leq 13 Vdc, T _J = +25°C 8.3 Vdc \leq V _{in} \leq 21 Vdc, T _J = +25°C	Reg _{line}	_ _ _	3.0 5.0 2.0 4.0	11 15 5.0	_ _ _	9.0 11 3.0 9.0	60 60 30 60	mV
Load Regulation (Note 2) $5.0 \text{ mA} \le I_D \le 1.5 \text{ A, T}_J = +25^{\circ}\text{C}$ $5.0 \text{ mA} \le I_D \le 1.5 \text{ A, T}_J = +25^{\circ}\text{C}$ $5.0 \text{ mA} \le I_D \le 750 \text{ mA, T}_J = +25^{\circ}\text{C}$ $250 \text{ mA} \le I_D \le 750 \text{ mA}$	Reg _{load}	- - - -	2.0 2.0 1.0 1.0	25 25 15 25		43 43 — 16	100 100 50	mV
Quiescent Current T _J = +25°C	lΒ	_	_ 3.2	5.0 4.0	_	4.3	6.0 6.0	mA
Quiescent Current Change 9.0 Vdc \leq V _{in} \leq 25 Vdc, I _O = 500 mA 8.6 Vdc \leq V _{in} \leq 21 Vdc, T _J = +25°C 5.0 mA \leq I _O \leq 1.0 A	71 ^B		0.3 0.2 0.04	0.5 0.5 0.2		_ _ _	0.8 0.8 0.5	mA
Ripple Rejection 9.0 Vdc \leq V _{in} \leq 19 Vdc, f = 120 Hz, T _J = +25°C 9.0 Vdc \leq V _{in} \leq 19 Vdc, f = 120 Hz, I _D = 500 mA	RR	65 65	73 73	_	_	_ 65	-	dB
Dropout Voltage (IO = 1.0 A, TJ = +25°C)	V _{in} - V _O	_	2.0	2.5	_	2.0		Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz ≤ f ≤ 100 kHz	V _n		10	40	-	10	-	μV/V(
Output Resistance (f = 1.0 kHz)	ro	_	2.0	_		17		mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	I _{sc}	_	0.2	1.2	_	0.2		A
Peak Output Current (T _J = +25°C)	I _{max}	1.3	2.5	3.3	_	2.2		A
	TCVO		±0.7	_		-0.8		mV/°

^{= -40°}C for MC78XXB

^{2.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7808, B, C ELECTRICAL CHARACTERISTICS (V_{in} = 14 V, I_{O} = 500 mA, T_{J} = T_{low} to T_{high} [Note 1] unless otherwise noted).

Characteristic	Symbol		MC7808	3		MC7808	В	ı	MC7808	С	Unit
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Oilit
Output Voltage (T _J = +25°C)	v _o	7.7	8.0	8.3	7.7	8.0	8.3	7.7	8.0	8.3	Vdc
Output Voltage (5.0 mA \leq 10 \leq 1.0 A, PO \leq 15 W)	v _o										Vdc
10.5 Vdc \leq V _{in} \leq 23 Vdc 11.5 Vdc \leq V _{in} \leq 23 Vdc		7.6	8.0	- 8.4	7.6	8.0	8.4	7.6 —	8.0	8.4	
Line Regulation (T _J = +25°C, Note 2) $10.5 \text{ Vdc} \leqslant V_{in} \leqslant 25 \text{ Vdc} \\ 11 \text{ Vdc} \leqslant V_{in} \leqslant 17 \text{ Vdc}$	Regline	_	3.0 2.0	80 40	_ _	12 5.0	160 80	_	12 5.0	160 80	mV
Load Regulation (T $_J$ = +25°C, Note 2) 5.0 mA \leqslant I $_O$ \leqslant 1.5 A 250 mA \leqslant I $_O$ \leqslant 750 mA	Regload	_	28	100 40	_	45 16	160 80	_	45 16	160 80	mV
Quiescent Current (T _J = +25°C)	I _B	_	3.2	6.0	_	4.3	8.0	_	4.3	8.0	mA
Quiescent Current Change $10.5\ \text{Vdc} \leqslant V_{in} \leqslant 25\ \text{Vdc} \\ 11.5\ \text{Vdc} \leqslant V_{in} \leqslant 25\ \text{Vdc} \\ 5.0\ \text{mA} \leqslant I_O \leqslant 1.0\ \text{A}$	7I ^B		 0.3 0.04	- 0.8 0.5		_ _ _	1.0 0.5	_ _ _	_ _ _	1.0 0.5	mA
Ripple Rejection 11.5 Vdc \leq V _{in} \leq 21.5 Vdc, f = 120 Hz	RR	62	70		_	62	_	_	62	_	dB
Dropout Voltage (I _O = 1.0 A, T _J = +25°C)	V _{in} - V _O		2.0	2.5	-	2.0	_	_	2.0		Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz ≤ f ≤ 100 kHz	V _n	-	10	40	_	10			10	_	μV/ VO
Output Resistance f = 1.0 kHz	ro	_	18	_	_	18	_	_	18	_	mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	I _{sc}	_	0.2	1.2	_	0.2	_	_	0.2	_	Α
Peak Output Current (T _J = +25°C)	Imax	1.3	2.5	3.3	_	2.2	_	_	2.2	-	Α
Average Temperature Coefficient of Output Voltage	TCVO	_	±1.0	_	_	-0.8	_	_	-0.8	_	mV/ °C

MC7808A, AC

ELECTRICAL CHARACTERISTICS (V_{in} = 14 V, I_{O} = 1.0 A, T_{J} = T_{low} to T_{high} (Note 1) unless otherwise noted)

Characteristics	Symbol		MC7808A			MC7808AC		Unit
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	v _o	7.84	8.0	8.16	7.84	8.0	8.16	Vdc
Output Voltage (5.0 mA \leqslant I $_{O}$ \leqslant 1.0 A, P $_{O}$ \leqslant 15 W) 10.6 Vdc \leqslant V $_{in}$ \leqslant 23 Vdc	v _o	7.7	8.0	8.3	7.7	8.0	8.3	Vdc
Line Regulation (Note 2) 10.6 Vdc \leq V $_{In} \leq$ 25 Vdc, I $_{Q}$ = 500 mA 11 Vdc \leq V $_{In} \leq$ 17 Vdc 11 Vdc \leq V $_{In} \leq$ 17 Vdc, T $_{J}$ = +25°C 10.4 Vdc \leq V $_{In} \leq$ 23 Vdc, T $_{J}$ = +25°C	Reg _{line}		4.0 6.0 2.0 4.0	13 20 6.0	_ _ _	12 15 5.0 12	80 80 40 80	mV -
10.4 Vol. \otimes	Regload		2.0 2.0 1.0 1.0	25 25 15 25	-	45 45 — — 16	100 100 — 50	mV
Quiescent Current T _J = +25°C	lВ	_	3.2	5.0 4.0	_	4.3	6.0 6.0	mA
Quiescent Current Change 11 Vdc \leq V $_{In} \leq$ 25 Vdc. $_{IO}$ = 500 mA 10.6 Vdc \leq V $_{In} \leq$ 23 Vdc, T $_{J}$ = +25°C 5.0 mA \leq I $_{J} \leq$ 1.0 A	7 _l B	_ _ _	0.3 0.2 0.04	0.5 0.5 0.2	_ _ _		0.8 0.8 0.5	mA
Ripple Rejection 11.5 Vdc ≤ V_{IN} ≤ 21.5 Vdc, f = 120 Hz, T_J = +25°C 11.5 Vdc ≤ V_{IN} ≤ 21.5 Vdc, f = 120 Hz, I_O = 500 mA	RR	62	70 70	_		- 62	_	dB
Dropout Voltage (I _O = 1.0 A, T _J = +25°C)	V _{in} - V _O	_	2.0	2.5	_	2.0	-	Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz ≤ f ≤ 100 kHz	v _n	_	10	40	-	10	_	μV/V _O
Output Resistance (f = 1.0 kHz)	ro		2.0	_	_	18	_	mΩ
Short-Circuit Current Limit (TA = +25°C) V _{in} = 35 Vdc	l _{sc}	_	0.2	. , 1.2	_	0.2	_	А
Peak Output Current (T _J = +25°C)	I _{max}	1.3	2.5	3.3		2.2		А
Average Temperature Coefficient of Output Voltage	TCVO		±1.0	_	-	-0.8	_	mV/°C

NOTES: 1. T_{low} = -55°C for MC78XX, A = 0° for MC78XXC, AC = -40°C for MC78XXB

T_{high} = +150°C for MC78XX, A = +125°C for MC78XXC, AC, B

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7812, B, C
ELECTRICAL CHARACTERISTICS (V_{in} = 19 V, I_O = 500 mA, T_J = T_{low} to T_{high} [Note 1] unless otherwise noted).

			MC7812		N	MC78121	В	MC7812C			Unit
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	V _O	11.5	12	12.5	11.5	12	12.5	11.5	12	12.5	Vdc
Output Voltage (5.0 mA \leq I $_{O}$ \leq 1.0 A, P $_{O}$ \leq 15 W) 14.5 Vdc \leq Vi $_{I}$ \leq 27 Vdc 15.5 Vdc \leq Vi $_{I}$ \leq 27 Vdc	Vo	11.4	_ 12	_ 12.6	_ 11.4	_ 12	_ 12.6	11.4	12 —	12.6	Vdc
Line Regulation (T _J = +25°C, Note 2) 14.5 Vdc ≤ V _{in} ≤ 30 Vdc 16 Vdc ≤ V _{in} ≤ 22 Vdc	Regline	_	5.0 3.0	120 60	_	13 6.0	240 120	_	13 6.0	240 120	mV
Load Regulation (T $_J$ = +25°C, Note 2) 5.0 mA \le I $_O$ \le 1.5 A 250 mA \le I $_O$ \le 750 mA	Reg _{load}	_	30 10	120 60	_	46 17	240 120	_	46 17	240 120	mV
Quiescent Current (T _J = +25°C)	1 _B	_	3.4	6.0	_	4.4	8.0		4.4	8.0	mA
Quiescent Current Change $ 14.5 \ \text{Vdc} \leqslant V_{\text{in}} \leqslant 30 \ \text{Vdc} $ $ 15 \ \text{Vdc} \leqslant V_{\text{in}} \leqslant 30 \ \text{Vdc} $ $ 5.0 \ \text{mA} \leqslant _{O} \leqslant 1.0 \ \text{A} $	٠٦١ ^B	_ _ _	- 0.3 0.04	 0.8 0.5		_ _ _	1.0 0.5	_	_ _ _	1.0 — 0.5	mA
Ripple Rejection 15 Vdc ≤ V _{in} ≤ 25 Vdc, f = 120 Hz	RR	61	68	_	_	60		_	60	_	dB
Dropout Voltage (I _O = 1.0 A, T _J = +25°C)	V _{in} - V _O	T -	2.0	2.5		2.0			2.0	_	Vdc
Output Noise Voltage ($T_A = +25$ °C) 10 Hz \leq f \leq 100 kHz	V _n	_	10	40	_	10	_	_	10	_	μV/ VO
Output Resistance f = 1.0 kHz	ro	_	18			18		_	18	_	mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	I _{sc}	_	0.2	1.2	_	0.2	_	_	0.2	_	A
Peak Output Current (T _J = +25°C)	I _{max}	1.3	2.5	3.3		2.2			2.2		Α
Average Temperature Coefficient of Output Voltage	TCVO	_	±1.5	_	-	-1.0	_	_	-1.0	_	mV∕ °C

MC7812A, AC

ELECTRICAL CHARACTERISTICS (Vin = 19 V, IO = 1.0 A, TJ = Tlow to Thigh [Note 1] unless otherwise noted)

	0		MC7812A			Unit		
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	
Output Voltage (T I = +25°C)	V _O	11.75	12	12.25	11.75	12	12.25	Vdc
Output Voltage (5.0 mA \leq I $_{O} \leq$ 1.0 A, P $_{O} \leq$ 15 W) 14.8 Vdc \leq V $_{in} \leq$ 27 Vdc	v _O	11.5	12	12.5	11.5	12	12.5	Vdc
Line Regulation (Note 2) 14.8 Vdc \leq V $_{in} \leq$ 30 Vdc, I $_{O}$ = 500 mA 16 Vdc \leq V $_{in} \leq$ 22 Vdc 16 Vdc \leq V $_{in} \leq$ 22 Vdc, T $_{J}$ = +25°C 14.5 Vdc \leq V $_{in} \leq$ 27 Vdc, T $_{J}$ = +25°C	Reg _{line}	_ _ _ _	5.0 8.0 3.0 5.0	18 30 9.0 18	- - -	13 16 6.0 13	120 120 60 120	mV
Load Regulation (Note 2) 5.0 mA \leq Io \leq 1.5 A, T _J = +25°C 5.0 mA \leq Io \leq 1.0 A 250 mA \leq Io \leq 750 mA, T _J = +25°C 250 mA \leq Io \leq 750 mA \leq Io \leq 750 mA	Reg _{load}	_ _ _ _	2.0 2.0 1.0 1.0	25 25 15 25	<u>-</u> - - -	46 46 — 17	100 100 — 50	mV
Quiescent Current T _J = +25°C	1 _B	_	3.4	5.0 4.0	_	- 4.4	6.0 6.0	mA
Quiescent Current Change 15 Vdc \leqslant $V_{in} \leqslant$ 30 Vdc, I_{O} = 500 mA 14.8 Vdc \leqslant $V_{in} \leqslant$ 27 Vdc, T_{J} = +25°C 5.0 mA \leqslant $I_{O} \leqslant$ 1.0 A	ηB	 	0.3 0.2 0.04	0.5 0.5 0.2	_ _ _		0.8 0.8 0.5	mA
Ripple Rejection 15 Vdc \leq V _{In} \leq 25 Vdc, f = 120 Hz, T_J = +25°C 15 Vdc \leq V _{In} \leq 25 Vdc, f = 120 Hz, I_D = 500 mA	RR	61 61	68 68		_ _	60		dB
Dropout Voltage (I _O = 1.0 A, T _J = +25°C)	V _{in} - V _O		2.0	2.5		2.0	_	Vdc
Output Noise Voltage ($T_A = +25$ °C) 10 Hz $\leq f \leq 100$ kHz	V _n	_	10	40	_	10	_	μV/V _O
Output Resistance (f = 1.0 kHz)	ro		2.0			18	_	mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	I _{sc}	_	0.2	1.2		0.2		A
Peak Output Current (T _J = +25°C)	I _{max}	1.3	2.5	3.3		2.2		A
Average Temperature Coefficient of Output Voltage	TCVO	_	±1.5	-	_	-1.0		mV/°C

NOTES: 1. T_{low} = -55°C for MC78XX, A = 0° for MC78XXC, AC

Thigh = +150°C for MC78XX, A = +125°C for MC78XXC, AC, B

^{= -40°}C for MC78XXB
2. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7815, B, C ELECTRICAL CHARACTERISTICS (V_{in} = 23 V, I_{O} = 500 mA, T_{J} = T_{low} to T_{high} [Note 1] unless otherwise noted).

Characteristic	Symbol		MC781	5		MC7815	В	1			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	v _o	14.4	15	15.6	14.4	15	15.6	14.4	15	15.6	Vdc
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _O \leq 15 W)	v _o										Vdc
17.5 Vdc ≤ V _{in} ≤ 30 Vdc 18.5 Vdc ≤ V _{in} ≤ 30 Vdc		14.25	15	15.75	14.25	15	15.75	14.25	15	15.75 —	
Line Regulation (T $_J$ = +25°C, Note 2) 17.5 Vdc \leqslant V $_{in}$ \leqslant 30 Vdc 20 Vdc \leqslant V $_{in}$ \leqslant 26 Vdc	Reg _{line}		6.0 3.0	150 75	_	13 6.0	300 150	_	13 6.0	300 150	mV
Load Regulation (T $_J$ = +25°C, Note 2) 5.0 mA \leqslant I $_O$ \leqslant 1.5 A 250 mA \leqslant I $_O$ \leqslant 750 mA	Regload	_	32 10	150 75	_	52 20	300 150	_ _	52 20	300 150	mV
Quiescent Current (T _J = +25°C)	ΙΒ	_	3.4	6.0	_	4.4	8.0	_	4.4	8.0	mA
Quiescent Current Change $ 17.5 \ \mbox{Vdc} \leqslant V_{in} \leqslant 30 \ \mbox{Vdc} \\ 18.5 \ \mbox{Vdc} \leqslant V_{in} \leqslant 30 \ \mbox{Vdc} \\ 5.0 \ \mbox{mA} \leqslant _Q \leqslant 1.0 \ \mbox{A} $	7lΒ		0.3 0.04	 0.8 0.5			1.0 0.5	_	_	1.0 — 0.5	mA
Ripple Rejection 18.5 Vdc \leq V _{in} \leq 28.5 Vdc, f = 120 Hz	RR	60	66	_	_	58	_	_	58	_	dB
Dropout Voltage (I _O = 1.0 A, T _J = +25°C)	V _{in} - V _O		2.0	2.5	_	2.0	_	_	2.0	_	Vdc
Output Noise Voltage (T_A = +25°C) 10 Hz \leqslant f \leqslant 100 kHz	Vn		10	40	-	10		_	10	_	μV/ VO
Output Resistance f = 1.0 kHz	ro	_	19	_	_	19		_	19	_	mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	I _{sc}	. –	0.2	1.2	_	0.2		_	0.2	-	Α
Peak Output Current (T _J = +25°C)	I _{max}	1.3	2.5	3.3	_	2.2	_	_	2.2	_	Α
Average Temperature Coefficient of Output Voltage	TCVO	_	±1.8	_	_	-1.0	_	-	-1.0	. —	mV/ .°C

MC7815A, AC

ELECTRICAL CHARACTERISTICS (V_{in} = 23 V, I_O = 1.0 A, T_J = T_{low} to T_{high} (Note 1) unless otherwise noted)

Characteristics	Symbol		MC7815A		<u></u>	Unit		
Characteristics	Syllibol	Min.	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	v _o	14.7	15	15.3	14.7	15	15.3	Vdc
Output Voltage (5.0 mA \leqslant I $_{O}$ \leqslant 1.0 A, P $_{O}$ \leqslant 15 W) 17.9 Vdc \leqslant V $_{in}$ \leqslant 30 Vdc	v _o	14.4	15	15.6	14.4	15	15.6	Vdc
Line Regulation (Note 2) 17.9 $Vdc \le V_{in} \le 30 \ Vdc, I_{O} = 500 \ mA$ 20 $Vdc \le V_{in} \le 26 \ Vdc$ 20 $Vdc \le V_{in} \le 26 \ Vdc, T_{J} = +25^{\circ}C$ 17.5 $Vdc \le V_{in} \le 30 \ Vdc, T_{J} = +25^{\circ}C$	Reg _{line}		6.0 6.0 3.0 6.0	22 22 10 22	_ _ _ _	13 16 6.0 13	150 150 75 150	mV
Load Regulation (Note 2) 5.0 mA \leq _O \leq 1.5 A, T _J = +25°C 5.0 mA \leq _O \leq 1.0 A 250 mA \leq _O \leq 750mA, T _J = +25°C 250 mA \leq _O \leq 750 mA	Reg _{load}	_ _ _	2.0 2.0 1.0 1.0	25 25 15 25	_ _ _	52 52 — 20	100 100 — 50	mV
Quiescent Current T _J = +25°C	IΒ	= .	3.4	5.5 4.5	_	4.4	6.0 6.0	mA
Quiescent Current Change 17.5 Vdc \leq V $_{In} \leq$ 30 Vdc, I $_{Q}$ = 500 mA 17.5 Vdc \leq V $_{In} \leq$ 30 Vdc, T $_{J}$ = +25°C 5.0 mA \leq I $_{Q} \leq$ 1.0 A	71 ^B		0.3 0.2 0.04	0.5 0.5 0.2	_	-	0.8 0.8 0.5	mA
Ripple Rejection 18.5 Vdc \leq V _{In} \leq 28.5 Vdc, f = 120 Hz, T _J = +25°C 18.5 Vdc \leq V _{In} \leq 28.5 Vdc, f = 120 Hz, I _D = 500 mA	RR	60	66		_	58	_	dB
Dropout Voltage (I _O = 1.0 A, T _J = +25°C)	V _{in} - V _O		2.0	2.5	_	2.0		Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz ≤ f ≤ 100 kHz	v _n	-	10	40	_	10	-	μV/V _O
Output Resistance (f = 1.0 kHz)	ro	_	2.0	_	-	19	_	mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	I _{sc}	_	0.2	1.2	_	0.2	_	A
Peak Output Current (T _J = +25°C)	I _{max}	1.3	2.5	3.3	_	2.2	_	А
Average Temperature Coefficient of Output Voltage	TCVO	_	±1.8			-1.0		mV/°C
						1	1	1

NOTES: 1. T_{low} = -55°C for MC78XX, A = 0° for MC78XXC, AC = -40°C for MC78XXB

Thigh = +150°C for MC78XX, A = +125°C for MC78XXC, AC, B

^{2.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7818, B, C
ELECTRICAL CHARACTERISTICS (Vio = 27 V. Io = 500 mA, T i= Tipus to Thigh (Note 1) unless otherwise noted).

	0		MC7818		N	AC78181	3		MC7818		Unit
Characteristic	Symbol	Min	Typ	Max	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	v _o	17.3	18	18.7	17.3	18	18.7	17.3	18	18.7	Vdc
Output Voltage (5.0 mA \leq 10 \leq 1.0 A, P _O \leq 15 W) 21 Vdc \leq V _{in} \leq 33 Vdc	v _o		_	_	_	_	_	17.1	18	18.9	Vdc
22 Vdc ≤ V _{in} ≤ 33 Vdc		17.1	18	18.9	17.1	18	18.9	_	_		
Line Regulation (T $_J$ = +25°C, Note 2) 21 Vdc \le V $_{in}$ \le 33 Vdc 24 Vdc \le V $_{in}$ \le 30 Vdc	Regline	_	7.0 4.0	180 90	_	25 10	360 180	-	25 10	360 180	mV
Load Regulation (T $_J$ = +25°C, Note 2) 5.0 mA \leq I $_O$ \leq 1.5 A 250 mA \leq I $_O$ \leq 750 mA	Regload	_	35 12	180 90		55 22	360 180	-	55 22	360 180	mV
Quiescent Current (T _J = +25°C)	IВ	_	3.5	6.0	_	4.5	8.0	_	4.5	8.0	mA
Quiescent Current Change 21 Vdc \leq Vin \leq 33 Vdc 22 Vdc \leq Vin \leq 33 Vdc 5.0 mA \leq ln \leq 1.0 A	7lΒ	_ _ _	- 0.3 0.04	— 0.8 0.5	_ 	_ _ _	 1.0 0.5	_ _ _	_ _ _	1.0 — 0.5	mA
Ripple Rejection 22 Vdc ≤ V _{in} ≤ 32 Vdc, f = 120 Hz	RR	59	65	-	-	57	-	_	57	-	dB
Dropout Voltage (IO = 1.0 A, TJ = +25°C)	V _{in} - V _O	_	2.0	2.5	_	2.0		_	2.0		Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz ≤ f ≤ 100 kHz	V _n	_	10	40	-	10	-	_	10	_	μV/ VO
Output Resistance f = 1.0 kHz	ro	_	19		_	19	_		19		mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	I _{sc}		0.2	1.2	_	0.2	_		0.2	-	Α
Peak Output Current (T _J = +25°C)	I _{max}	1.3	2.5	3.3		2.2	_	_	2.2		A
Average Temperature Coefficient of Output Voltage	TCVO	_	±2.3	_	-	-1.0	_	_	-1.0	_	mV∕ °C

MC7818A, AC

ELECTRICAL CHARACTERISTICS (V_{in} = 27 V, I_O = 1.0 A, T_J = T_{low} to T_{high} [Note 1] unless otherwise noted)

	C b l	l	MC7818A			Unit		
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Oint
Output Voltage (T _{.J} = +25°C)	v _o	17.64	18	18.36	17.64	18	18.36	Vdc
Output Voltage (5.0 mA \leq IO \leq 1.0 A, PO \leq 15 W)	v _o	17.3	18	18.7	17.3	18	17.3	Vdc
21 Vdc ≤ V _{in} ≤ 33 Vdc			,,,					
Line Regulation (Note 2)	Regline		7.0	31		25	180	m∨
21 Vdc ≤ V _{in} ≤ 33 Vdc, I _O = 500 mA		_	7.0 12	45	_	28	180	
$24 \text{ Vdc} \leq V_{\text{in}} \leq 30 \text{ Vdc}$		-	4.0	15		10	90	İ
24 Vdc ≤ V _{in} ≤ 30 Vdc, T _J = +25°C 20.6 Vdc ≤ V _{in} ≤ 33 Vdc, T _J = +25°C		_	7.0	31		25	180	
Load Regulation (Note 2)	Regload							mV
$5.0 \text{ mA} \le I_{O} \le 1.5 \text{ A}, T_{J} = +25^{\circ}\text{C}$		_	2.0	25	-	55	100	
$5.0 \text{ mA} \leq I_0 \leq 1.0 \text{ A}$		_	2.0	25	_	55	100	
250 mA ≤ I _O ≤ 750mA, T _J = +25°C		_	1.0	15	_		_	
250 mA ≤ I _O ≤ 750 mA			1.0	25		22	50	
Quiescent Current	I _B	_	_	5.5	-	_	6.0	mA
T _J = +25°C			3.4	4.5		4.5	6.0	
Quiescent Current Change	ЫВ							mA
21 Vdc ≤ V _{in} ≤ 33 Vdc, I _O = 500 mA		_	0.3	0.5	_		0.8	
21 Vdc ≤ V _{in} ≤ 33 Vdc, T _J = +25°C			0.2	0.5	i –	_	0.8	
5.0 mA ≤ I _O ≤ 1.0 A			0.04	0.2	_	_	0.5	
Ripple Rejection	RR							dB
22 Vdc \leq V _{in} \leq 32 Vdc, f = 120 Hz, T _J = +25°C		59	65		_	-	_	
22 Vdc \leq V _{in} \leq 32 Vdc, f = 120 Hz, I _O = 500 mA		59	65	_	_	57	-	
Dropout Voltage (IO = 1.0 A, TJ = +25°C)	V _{in} - V _O	_	2.0	2.5	_	2.0		Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz ≤ f ≤ 100 kHz	V _n	_	10	40	_	10	_	μV/V _O
Output Resistance (f = 1.0 kHz)	ō		2.0	_		19		mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	I _{sc}	_	0.2	1.2	_	0.2	_	A
Peak Output Current (T _J = +25°C)	Imax	1.3	2.5	3.3		2.2	_	A
Average Temperature Coefficient of Output Voltage	TCVO	_	±2.3			-1.0	_	mV/°C

NOTES: 1. T_{low} = -55°C for MC78XX, A = 0° for MC78XXC, AC

Thigh = +150°C for MC78XX, A = +125°C for MC78XXC, AC, B

^{= -40°}C for MC78XXB

2. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7824, B, C **ELECTRICAL CHARACTERISTICS** ($V_{in} = 33 \text{ V}$, $I_{O} = 500 \text{ mA}$, $T_{J} = T_{low}$ to T_{high} [Note 1] unless otherwise noted).

Characteristic	Symbol		MC7824	1		MC7824	В		MC7824	С	Ι
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	v _o	23	24	25	23	24	25	23	24	25	Vdc
Output Voltage (5.0 mA \leq I _O \leq 1.0 A, P _O \leq 15 W) 27 Vdc \leq V _{in} \leq 38 Vdc	Vo	_	_			_		22.8	24	25.2	Vdc
28 Vdc ≤ V _{in} ≤ 38 Vdc		22.8	24	25.2	22.8	24	25.2	_			
Line Regulation (T _J = +25°C, Note 2) 27 Vdc \leq V _{in} \leq 38 Vdc 30 Vdc \leq V _{in} \leq 36 Vdc	Regline	_	10 5.0	240 120	_	31 14	480 240	_	31 14	480 240	mV
Load Regulation (T $_J$ = +25°C, Note 2) 5.0 mA \leq I $_O$ \leq 1.5 A 250 mA \leq I $_O$ \leq 750 mA	Reg _{load}	_	40 15	240 120		60 25	480 240	_	60 25	480 240	mV
Quiescent Current (T _J = +25°C)	IВ	_	3.6	6.0	_	4.6	8.0	_	4.6	8.0	mA
Quiescent Current Change 27 Vdc \leqslant V $_{in}$ \leqslant 38 Vdc 28 Vdc \leqslant V $_{in}$ \leqslant 38 Vdc 5.0 mA \leqslant 1 $_{O}$ \leqslant 1.0 A	71B	_ _ _	0.3 0.04	0.8 0.5	=	_	_ 1.0 0.5	_	_	1.0 — 0.5	mA
Ripple Rejection 28 Vdc ≤ V _{in} ≤ 38 Vdc, f = 120 Hz	RR	56	62	_	number 1	54	_	_	54		dB
Dropout Voltage (I _O = 1.0 A, T _J = +25°C)	V _{in} - V _O	_	2.0	2.5	_	2.0	_	_	2.0		Vdc
Output Noise Voltage (T_A = +25°C) 10 Hz \leq f \leq 100 kHz	V _n	_	10	40	_	10	-	-	10		μV/ VO
Output Resistance f = 1.0 kHz	ro	_	20		_	20	_	_	20	_	mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	l _{sc}	_	0.2	1.2	_	0.2	_	_	0.2	_	Α
Peak Output Current (T _J = +25°C)	I _{max}	1.3	2.5	3.3	_	2.2	-	_	2.2	_	Α
Average Temperature Coefficient of Output Voltage	TCVO	_	±3.0	_		-1.5			-1.5	_	mV∕ °C

MC7824A, AC

ELECTRICAL CHARACTERISTICS (V_{in} = 33 V, I_O = 1.0 A, T_J = T_{low} to T_{high} (Note 1) unless otherwise noted)

Characteristics	Symbol		MC7824A			MC7824AC	;	Unit
Citaracteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	v _o	23.5	24	24.5	23.5	24	24.5	Vdc
Output Voltage (5.0 mA \leq I $_{O} \leq$ 1.0 A, P $_{O} \leq$ 15 W) 27.3 Vdc \leq V $_{in} \leq$ 38 Vdc	v _o	23	24	25	23	24	25	Vdc
Line Regulation (Note 2) 27 Vdc \leq V $_{In} \leq$ 38 Vdc, I $_{O}$ = 500 mA 30 Vdc \leq V $_{In} \leq$ 36 Vdc 30 Vdc \leq V $_{In} \leq$ 36 Vdc, T $_{J}$ = +25°C 26.7 Vdc \leq V $_{In} \leq$ 38 Vdc, T $_{J}$ = +25°C	Reg _{line}	_ _ _	10 15 5.0 10	36 60 19 36		31 35 14 31	240 240 120 240	mV
Load Regulation (Note 2) 5.0 mA \leq $I_O \leq$ 1.5 A, T_J = +25°C 5.0 mA \leq $I_O \leq$ 1.0 A 250 mA \leq $I_O \leq$ 750mA, T_J = +25°C 250 mA \leq $I_O \leq$ 750 mA	Reg _{load}		2.0 2.0 1.0 1.0	25 25 15 25		60 60 25	100 100 — 50	mV
Quiescent Current T _J = +25°C	I _B	_	3.6	6.0 5.0	_	- 4.6	6.0 6.0	mA
Quiescent Current Change 27.3 Vdc \leq V $_{In}$ \leq 38 Vdc, I $_{Q}$ = 500 mA 27.3 Vdc \leq V $_{In}$ \leq 38 Vdc, T $_{J}$ = +25°C 5.0 mA \leq I $_{Q}$ \leq 1.0 A	71B	_ _ _	0.3 0.2 0.04	0.5 0.5 0.2	_		0.8 0.8 0.5	mA
Ripple Rejection 28 Vdc ≤ V _{in} ≤ 38 Vdc, f = 120 Hz, T _J = +25°C 28 Vdc ≤ V _{in} ≤ 38 Vdc, f = 120 Hz, I _O = 500 mA	RR	56 56	62 62	_	_	_ 54		dB
Dropout Voltage (I _O = 1.0 A, T _J = +25°C)	V _{in} - V _O	_	2.0	2.5	_	2.0	_	Vdc
Output Noise Voltage (T _A = +25°C) 10 Hz ≤ f ≤ 100 kHz	v _n	-	10	40	_	10	-	μV/V _O
Output Resistance (f = 1.0 kHz)	ro		2.0	_	_	20	_	mΩ
Short-Circuit Current Limit (T _A = +25°C) V _{in} = 35 Vdc	I _{sc}	_	0.2	1.2		0.2	_	A
Peak Output Current (T _J = +25°C)	I _{max}	1.3	2.5	3.3	_	2.2	_	А
Average Temperature Coefficient of Output Voltage	TCVO	_	±3.0	_	_	-1.5	_	mV/°C

NOTES: 1. $T_{low} = -55^{\circ}\text{C}$ for MC78XX, A = 0° for MC78XXC, AC = -40°C for MC78XXB

T_{high} = +150°C for MC78XX, A = +125°C for MC78XXC, AC, B

^{2.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

PD. POWER DISSIPATION (WATTS)

-50 -25

TYPICAL CHARACTERISTICS $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$

FIGURE 1 — WORST CASE POWER DISSIPATION versus AMBIENT TEMPERATURE (Case 221A)

20 $\theta_{JC} = 5^{\circ}C/W$ $\theta_{JA} = 65^{\circ}C/W$ FIGURE 2 – WORST CASE POWER DISSIPATION versus AMBIENT TEMPERATURE (Case 1)

FIGURE 3 — INPUT OUTPUT DIFFERENTIAL AS A FUNCTION OF JUNCTION TEMPERATURE (MC78XXC, AC, B)

TA, AMBIENT TEMPERATURE (°C)

25 50

100 125

FIGURE 4 – INPUT OUTPUT DIFFERENTIAL AS A FUNCTION OF JUNCTION TEMPERATURE

FIGURE 5 — PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE

FIGURE 6 — PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE (MC78XX, A)

MC7824C 33 V

4.0 6.0 8.0

TYPICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

FIGURE 7 — RIPPLE REJECTION AS A FUNCTION OF OUTPUT VOLTAGES (MC78XXC, AC)

80

70

1 = 120 Hz
10 = 20 mA
2V_{in} = 1.0 V(RMS)

MC7805C 11 V
MC7805C 11 V
MC7805C 13 V
MC7815C 23 V
MC7815C 23 V

FIGURE 8 – RIPPLE REJECTION AS A FUNCTION OF FREQUENCY (MC78XXC, AC, A)

FIGURE 9 — OUTPUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE (MC78XXC, AC, B)

14

VO, OUTPUT VOLTAGE (VOLTS)

18 20 22 24

FIGURE 10 - OUTPUT IMPEDANCE AS A FUNCTION OF OUTPUT VOLTAGE (MC78XXC, AC)

FIGURE 11 — QUIESCENT CURRENT AS A FUNCTION OF TEMPERATURE (MC78XXC, AC, B)

FIGURE 12 — DROPOUT CHARACTERISTICS (MC78XX, A)

APPLICATIONS INFORMATION

Design Considerations

The MC7800 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected

to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 µF or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directlyacross the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistancedrops since the regulator has no external sense lead.

FIGURE 13 - CURRENT REGULATOR

The MC7800 regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC7805C is chosen in this application. Resistor R determines the current as follows:

$$I_{O} = \frac{5}{R} \frac{V}{R} + I_{Q}$$

IO = 1.5 mA over line and load changes

For example, a 1-ampere current source would require R to be a 5-ohm, 10-W resistor and the output voltage compliance would be the input voltage less 7 volts.

FIGURE 14 – ADJUSTABLE OUTPUT REGULATOR

$$V_{O}$$
, 7.0 V to 20 V V_{IN} $V_{O} \geqslant 2.0 \text{ V}$

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 2.0 volts greater than the regulator voltage.

FIGURE 15 - CURRENT BOOST REGULATOR

XX = 2 digits of type number indicating voltage.

The MC7800 series can be current boosted with a PNP transistor. The MJ2955 provides current to 5.0 amperes. Resistor R in conjunction with the V_{BE} of the PNP determines when the pass transistor begins conducting; this circuit is not short-circuit proof. Input-output differential voltage minimum is increased by V_{BE} of the pass transistor.

FIGURE 16 - SHORT-CIRCUIT PROTECTION

XX = 2 digits of type number indicating voltage.

The circuit of Figure 15 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, $R_{SC,\ell}$ and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the three-terminal regulator. Therefore, a four-ampere plastic power transistor is specified.

MC78L00C,AC **Series**

THREE-TERMINAL LOW CURRENT POSITIVE VOLTAGE REGULATORS

The MC78L00 Series of positive voltage regulators are inexpensive. easy-to-use devices suitable for a multitude of applications that require a regulated supply of up to 100 mA. Like their higher powered MC7800 and MC78M00 Series cousins, these regulators feature internal current limiting and thermal shutdown making them remarkably rugged. No external components are required with the MC78L00 devices in many applications.

These devices offer a substantial performance advantage over the traditional zener diode-resistor combination. Output impedance is greatly reduced and quiescent current is substantially reduced.

- Wide Range of Available, Fixed Output Voltages
- Low Cost
- Internal Short-Circuit Current Limiting
- Internal Thermal Overload Protection
- No External Components Required
- Complementary Negative Regulators Offered (MC79L00 Series)
- Available in Either ±5% (AC) or ±10% (C) Selections

Device No. · 10%	Device No. ±5%	Nominal Voltage
MC78L05C	MC78L05AC	5.0
MC78L08C	MC78L08AC	8.0
MC78L12C	MC78L12AC	12
MC78L15C	MC78L15AC	15
MC78L18C	MC78L18AC	18
MC78L24C	MC78L24AC	24

THREE-TERMINAL LOW CURRENT **POSITIVE FIXED VOLTAGE REGULATORS**

P SUFFIX PLASTIC PACKAGE CASE 29-02 TO-226AA (TO-92) Pin 1. Output

3. Input

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

- = C is required if regulator is located an appreciable distance from power supply
- ** = CO is not needed for stability; however, it does improve transient response.

ORDERING IN	FORMATION	o .							
Device	Junction Temperature Range	Package							
MC78LXXACG	T _J = 0°C to + 125°C	Metal Can							
MC78LXXACP	T _J = 0°C to + 125°C	Plastic Transistor							
MC78LXXCG	T _J = 0°C to + 125°C	Metal Can							
MC78LXXCP T _J = 0°C to Plastic Transistor									
XX indicates nominal voltage									

MC78L00C,AC Series

MC78L00 Series MAXIMUM RATINGS ($T_A = +125^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (2.6 V - 8.0 V)	٧ı	30	Vdc
(12 V – 18 V)		35	
(24 V)		40	
Storage Junction Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature Range	TJ	0 to +150	°C

MC78L05C, MC78L05AC ELECTRICAL CHARACTERISTICS (V₁ = 10 V, I_O = 40 mA, C₁ = 0.33 μ F, C_O = 0.1 μ F, 0°C < T $_J$ < +125°C unless otherwise noted.)

			MC78L05	С	N	AC78L05A	AC .	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	v _o	4.6	5.0	5.4	4.8	5.0	5.2	Vdc
Line Regulation (T _J = +25 ^O C, I _O = 40 mA)	Regline							mV
7.0 Vdc ≤ V ₁ ≤ 20 Vdc 8.0 Vdc ≤V ₁ ≤ 20 Vdc		_	55 45	200 150	-	55 45	150 100	
Load Regulation $(T_J = +25^{O}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{O}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Regload	-	11 5.0	60 30	_	11 5.0	60 30	mV
Output Voltage (7.0 Vdc \leq V $_{\parallel}$ \leq 20 Vdc, 1.0 mA \leq I $_{\parallel}$ \leq 40 mA) (V $_{\parallel}$ = 10 V, 1.0 mA \leq I $_{\parallel}$ \leq 70 mA)	v _o	4.5 4.5	-	5.5 5.5	4.75 4.75	_	5.25 5.25	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	IB	_	3.8 -	6.0 5.5	/ <u>-</u>	3.8 -	6.0 5.5	mA
Input Bias Current Change (8.0 Vdc \leq V ₁ \leq 20 Vdc) (1.0 mA \leq I _O \leq 40 mA)	△IB	· <u> </u>	_	1.5 0.2	_ _	_ _	1.5 0.1	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz \leq f \leq 100 kHz)	Vn	_	40	_	-	40	_	μV
Long-Term Stability	△V _O /△t	_	12		_	12	_	mV/1.0 k Hrs
Ripple Rejection ($I_O = 40 \text{ mA}$, f = 120 Hz, 8.0 V \leq V _I \leq 18 V, T _J = +25°C)	RR	40	49		41	49	-	dB
Input-Output Voltage Differential $(T_J = +25^{\circ}C)$	V _I /V _O	-	1.7	-	_	1.7	_	Vdc

MC78L08C, MC78L08AC ELECTRICAL CHARACTERISTICS (V₁ = 14 V, I_O = 40 mA, C₁ = 0.33 μ F,C_O = 0.1 μ F, 0°C < T_J < +125°C unless otherwise noted.)

			MC78L08	BC .		MC78L08/	AC	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	v _o	7.36	8.0	8.64	7.7	8.0	8.3	Vdc
Line Regulation	Regline							m∨
$(T_J = +25^{\circ}C, I_O = 40 \text{ mA})$								
10.5 Vdc ≤ V _I ≤ 23 Vdc		-	20	200	-	20	175	
11 Vdc ≤ V ₁ ≤ 23 Vdc			12	150		12	125	
Load Regulation	Regload					45	80	mV
$(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$		_	15 6.0	80 40	_	15 8.0	40	
$(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$			6.0	40		8.0	40	Vdc
Output Voltage	٧o	7.2	_	8.8	7.6	_	8.4	Vac
$(10.5 \text{ Vdc} \le V_1 \le 23 \text{ Vdc}, 1.0 \text{ mA} \le I_0 \le 40 \text{ mA})$ $(V_1 = 14 \text{ V}, 1.0 \text{ mA} \le I_0 \le 70 \text{ mA})$		7.2	_	8.8	7.6	_	8.4	
	1.	7.2		0.0		-		mA
Input Bias Current	¹IВ		3.0	6.0		3.0	6.0	mA
(T _J = +25 ^o C) (T _J = +125 ^o C)		_	3.0	5.5		3.0	5.5	
				3.3				mA
Input Bias Current Change (11 Vdc ≤ V _I ≤ 23 Vdc)	△IB	_		1.5		_	1.5	111/2
$(1.0 \text{ mA} \le 10 \le 40 \text{ mA})$		_		0.2	_	_	0.1	
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		52	-	_	60	_	μV
100 kHz)	V _n	_	32			"		
Long-Term Stability	△V _O /△t	_	20	_	_	20	_	mV/1.0 k Hrs.
Ripple Rejection (I _O = 40 mA, f = 120 Hz,	RR	36	55	_	37	57	_	dB
$12 \text{ V} \le \text{ V}_{\text{I}} \le 23 \text{ V}, \text{ T}_{\text{J}} = +25^{\circ}\text{C}$								
Input-Output Voltage Differential	V _I /V _O	-	1.7	_	_	1.7	_	Vdc
$(T_J = +25^{\circ}C)$		1			1		1	

MC78L12C, MC78L12AC ELECTRICAL CHARACTERISTICS (V_I = 19 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, 0°C < T_J < \pm 125°C unless otherwise noted.)

			MC78L12	2C		MC78L12AC		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^O C)	v _o	11.1	12	12.9	11.5	12	12.5	Vdc
Line Regulation (T _J = +25°C, I _O = 40 mA)	Regline							mV
14.5 Vdc ≤ V _I ≤ 27 Vdc 16 Vdc ≤ V _I ≤ 27 Vdc		-	120 100	250 200	-	120 100	250 200	
Load Regulation $ (T_J = +25^{O}C, 1.0 \text{ mA} \leqslant I_O \leqslant 100 \text{ mA}) $ $ (T_J = +25^{O}C, 1.0 \text{ mA} \leqslant I_O \leqslant 40 \text{ mA}) $	Reg _{load}	. -	20 10	100 50		20 10	100 50	mV
Output Voltage (14.5 Vdc \leq V _I \leq 27 Vdc, 1.0 mA \leq I _O \leq 40 mA) (V _I = 19 V, 1.0 mA \leq I _O \leq 70 mA)	v _o	10.8 10.8	- -	13.2 13.2	11.4 11.4	_	12.6 12.6	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	IB	_	4.2 	6.5 6.0		4.2 —	6.5 6.0	mA
Input Bias Current Change (16 Vdc \leq V $_{\parallel}$ \leq 27 Vdc) (1.0 mA \leq $_{\parallel}$ $_{\parallel}$ $_{\parallel}$ $_{\parallel}$ $_{\parallel}$ $_{\parallel}$ $_{\parallel}$	МIВ	_	_	1.5 0.2		_	1.5 0.1	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz \leq f \leq 100 kHz)	Vn	_	80			80	1000	μ∨
Long-Term Stability	△V _O /△t	_	24	_	_	24	_	mV/1.0 k Hrs.
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 15 V \leq V _I \leq 25 V, T _J = +25 ^o C)	RR	36	42	-	37	42	_	dB
Input-Output Voltage Differential $(T_J = +25^{O}C)$	V _I /V _O	-	1.7		_	1.7		Vdc

MC78L15C, MC78L15AC ELECTRICAL CHARACTERISTICS (V₁ = 23 V, I_O = 40 mA, C₁ = 0.33 μ F, C_O = 0.1 μ F, 0°C < T $_J$ < +125°C unless otherwise noted.)

			MC78L15	С	1	VC78L15A	C	1
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	٧o	13.8	15	16.2	14.4	15	15.6	Vdc
Line Regulation (T _J = +25°C, I _O = 40 mA)	Regline							mV
17.5 Vdc ≤ V _I ≤ 30 Vdc 20 Vdc ≤ V _I ≤ 30 Vdc			130 110	300 250	_	130 110	300 250	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Regload	_	25 12	15 0 75	_ _	25 12	150 75	mV
Output Voltage $ (17.5 \text{ Vdc} \leqslant V_{\parallel} \leqslant 30 \text{ Vdc}, 1.0 \text{ mA} \leqslant I_{0} \leqslant 40 \text{ mA}) $ $ (V_{\parallel} = 23 \text{ V}, 1.0 \text{ mA} \leqslant I_{0} \leqslant 70 \text{ mA}) $	v _o	13.5 13.5		16.5 16.5	14.25 14.25		15.75 15.75	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$. IIB	_ _	4.4 —	6.5 6.0	-	4.4	6.5 6.0	· mA
Input Bias Current Change (20 Vdc ≤ V _I ≤ 30 Vdc) (1.0 mA ≤ I _O ≤ 40 mA)	△IB		_	1.5 0.2	_	_ _	1.5 0.1	mA .
Output Noise Voltage (T _A = +25 $^{\circ}$ C, 10 Hz \leq f \leq 100 kHz)	Vn	-	90	_		90	-	μ∨
Long-Term Stability	△Vo/△t	_	30	_	_	30	_	mV/1.0 k Hrs.
Ripple Rejection ($I_O = 40 \text{ mA}$, f = 120 Hz, 18.5 V \leq V _I \leq 28.5 V, T _J = +25°C)	RR	33	39		34	39	_	dB .
Input-Output Voltage Differential (T _J = +25 ^o C)	V _I /V _O		1.7	_	_	1.7	_	Vdc

MC78L00C,AC Series

MC78L18C, MC78L18AC ELECTRICAL CHARACTERISTICS (V $_{J}$ = 27 V, $_{IO}$ = 40 mA, C $_{I}$ = 0.33 μF , C $_{O}$ = 0.1 μF , $_{O}^{o}\text{C}$ < T $_{J}$ < +125 ^{o}C unless otherwise noted.)

			MC78L180		N	IC78L18A	С	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	v _o	16.6	18	19.4	17.3	18	18.7	Vdc
Line Regulation (T ₁ = +25 ^O C, I _O = 40 mA)	Regline							mV
21.4 Vdc \leq V ₁ \leq 33 Vdc 20.7 Vdc \leq V ₁ \leq 33 Vdc		-	32 27	325 275	-	45	325	
22 Vdc \leq V ₁ \leq 33 Vdc 21 Vdc \leq V ₁ \leq 33 Vdc			27	275		35	275	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}		30 15	170 85	- -	30 15	170 85	mV
Output Voltage (21.4 Vdc \leq V ₁ \leq 33 Vdc, 1.0 mA \leq I ₀ \leq 40 mA) (20.7 Vdc \leq V ₁ \leq 33 Vdc, 1.0 mA \leq I ₀ \leq 40 mA)	v _o	16.2 16.2	_ 	17.8	17.1	-	18.9	Vdc
$(V_1 = 27 \text{ V}, 1.0 \text{ mA} \le I_0 \le 70 \text{ mA})$ $(V_1 = 27 \text{ V}, 1.0 \text{ mA} \le I_0 \le 70 \text{ mA})$		10.2		17.0	17.1		18.9	
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	IВ	_	3.1	6.5 6.0	_ _	3.1 -	6.5 6.0	mA
Input Bias Current Change (22 Vdc \leq V _I \leq 33 Vdc) (21 Vdc \leq V _I = 33 Vdc) (1.0 mA \leq I _O \leq 40 mA)	△†IB	-	-	1.5			1.5 0.1	mA
Output Noise Voltage (T _A = +25 ^o C, 10 Hz ≤ f ≤ 100 kHz)	Vn	-	150	-	-	150	-	μ∨
Long-Term Stability	△V _O /△t	-	45		_	45	-	mV/1.0 k Hrs.
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 23 V \leq V _I \leq 33 V, T _J = +25°C)	RR	32	46	_	33	48	_	dB
Input-Output Voltage Differential (T _J = +25°C)	V _I /V _O		1.7	_	_	1.7	_	Vdc

MC78L24C, MC78L24AC ELECTRICAL CHARACTERISTICS (V $_{J}$ = 33 V , I $_{O}$ = 40 mA, C $_{J}$ = 0.33 μF , C $_{O}$ = 0.1 μF , 0 ^{0}C < T $_{J}$ < +125 ^{0}C unless otherwise noted.)

			MC78L24	С	1	/C78L24/	C	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	νo	22.1	24	25.9	23	24	25	Vdc
Line Regulation (T ₁ = +25°C, I _O = 40 mA)	Regline							mV
27.5 Vdc ≤ V ₁ ≤ 38 Vdc		_	35	350	-	-	_	
28 Vdc ≤ V _I ≤ 38 Vdc 27 Vdc ≤ V _I ≤ 38 Vdc		_	30 -	300	_	50 60	300 350	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}	_	40 20	200 100		40 20	200 100	mV
Output Voltage (28 Vdc \leq V ₁ \leq 38 Vdc, 1.0 mA \leq I ₀ \leq 40 mA) (27 Vdc \leq V ₁ \leq 38 Vdc, 1.0 mA \leq I ₀ \leq 40 mA) (28 Vdc \leq V ₁ \leq 33 V, 1.0 mA \leq I ₀ \leq 70 mA)	v _o	21.6 21.6	-	26.4 26.4	22.8	, -	25.2	Vdc
$(27 \text{ Vdc} \le V_1 \le 33 \text{ V}, 1.0 \text{ mA} \le 10 \le 70 \text{ mA})$		21.0		20.4	22.8		25.2	
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	IIB	_	3.1	6.5 6.0	-	3.1 	6.5 6.0	mA
Input Bias Current Change (28 \forall dc \leq \forall 1 \leq 38 \forall dc) (1.0 $mA \leq$ 10 \leq 40 mA)	△IIB		-	1.5 0.2	_	_	1.5 0.1	mA
Output Noise Voltage (T _A = +25 o C, 10 Hz \leq f \leq 100 kHz)	V _n	-	200	_	-	200	_	μ∨
Long-Term Stability	△V _O /△t		56			56		mV/1.0 k Hrs
Ripple Rejection (I $_{O}$ = 40 mA, f = 120 Hz, 29 V \leq V \leq 35 V, T $_{J}$ = +25 o C)	RR	30	43	_	31	45	_	dB
Input-Output Voltage Differential $(T_J = +25^{\circ}C)$	V _I /V _O	_	1.7	_	-	1.7	-	Vdc

TYPICAL CHARACTERISTICS

 $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$

APPLICATIONS INFORMATION

Design Considerations

The MC78L00C Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be

selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

FIGURE 7 - CURRENT REGULATOR

The MC78L00C regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC78L05C is chosen in this application. Resistor R determines the current as follows:

$$I_O = \frac{5 \text{ V}}{R} + I_{IB}$$

I_{IB} = 3.8 mA over line and load changes

For example, a 100 mA current source would require R to be a 50-ohm, 1/2-W resistor and the output voltage compliance would be the input voltage less 7 volts.

FIGURE 8 - ±15 V TRACKING VOLTAGE REGULATOR

FIGURE 9 - POSITIVE AND NEGATIVE REGULATOR

MC78M00 SERIES THREE-TERMINAL MEDIUM CURRENT POSITIVE VOLTAGE REGULATORS

The MC78M00 Series positive voltage regulators are identical to the popular MC7800 Series devices, except that they are specified for only half the output current. Like the MC7800 devices, the MC78M00 three-terminal regulators are intended for local, oncard voltage regulation.

Internal current limiting, thermal shutdown circuitry and safearea compensation for the internal pass transistor combine to make these devices remarkably rugged under most operating conditions. Maximum output current, with adequate heatsinking is 500 mA.

- No External Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Packaged in the Plastic Case 221A and Case 79 (TO-220 and Hermetic TO-39)

REPRESENTATIVE SCHEMATIC DIAGRAM O Input 100 € 100 € 10 100 k € 500 € 240 200 0.3 3.3 Output 2 k 0-25 k 2.7 F 28 30 pF 500 € O Gnd

THREE-TERMINAL MEDIUM CURRENT POSITIVE FIXED VOLTAGE REGULATORS

STANDARD APPLICATION

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

- = C_{in} is required if regulator is located an appreciable distance from power supply filter.
- ** = C_O improves stability and transient response.

ORDERING IN	FORMATION	
Device	Temperature Range	Package
MC78MXXCG	T _J = 0°C to + 125°C	Metal Can
MC78MXXCT	T _J = 0°C to + 125°C	Plastic Power
MC78MXXBT	T _J = -40°C to +125°C	Plastic Power

TYPE NO./VOLTAGE

MC7805MB,C 5.0 Volts MC7815MB,C 15 Volts MC7806MB,C .6.0 Volts MC7818MB,C 18 Volts MC7808MB,C 8.0 Volts MC7820MB,C 20 Volts MC7812MB,C 12 Volts MC7824MB,C 24 Volts

MC78M00 Series MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating		Symbol	aue	Unit
Input Voltage (5.0 V – 18 V) (20 V – 24 V)		VI	35 40	Vdc
Power Dissipation (Package Limitation) Plastic Package TA = 25°C Derate above TA = 25°C TC = 25°C Derate above TC = 110°C Metal Package TA = 25°C Derate above TA = 25°C TC = 25°C Derate above TA = 25°C Derate above TC = 85°C		PD ØJA PD ØJC PD ØJA PD ØJC	Internally Limited 70 Internally Limited 5.0 Internally Limited 185 Internally Limited 25	°C/W °C/W °C/W
Operating Junction Temperature Range	MC78MXXC MC78MXXB	TJ	0 to +125 -40 to +125	ပ္
Storage Temperature Range		T _{stg}	-65 to +150	°C

MC78M05 ELECTRICAL CHARACTERISTICS (V_I = 10 V, I_O = 200 mA, *T_{IOW} < T_J < +125°C, P_D \le 5.0 W unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _{.J} = +25°C)	Vo	4.8	5.0	5.2	Vdc
Line Regulation $(T_J = +25^{\circ}C)$	Regline			400	mV
(7.0 Vdc ≤ V _I ≤ 25 Vdc) (8.0 Vdc ≤ V _I ≤ 25 Vdc)		_	3.0 1.0	100 50	
Load Regulation $(T_J = +25^{\circ}\text{C}, 5.0 \text{ mA} \le I_O \le 500 \text{ mA})$ $(T_J = +25^{\circ}\text{C}, 5.0 \text{ mA} \le I_O \le 200 \text{ mA})$	Regload	_	20 10	100 50	mV
Output Voltage (8.0 Vdc \leq V _I \leq 25 Vdc, 5.0 mA \leq I _O \leq 200 mA)	v _O	4.75	_	5.25	Vdc
Input Bias Current (T _J = +25°C)	IВ		4.5	6.0	mA
Quiescent Current Change $(8.0 \text{ Vdc} \le \text{V}_1 \le 25 \text{ Vdc})$ $(5.0 \text{ mA} \le \text{I}_{\text{O}} \le 200 \text{ mA})$	ΔΙΙΒ	_	_	0.8 0.5	mA
Output Noise Voltage (T _A = +25°C, 10 Hz ≤ f ≤ 100 kHz)	٧n	_	40		μV
Long-Term Stability	ΔV _O /Δt	_	_	20	mV/1.0 k Hrs.
Ripple Rejection (I _O = 100 mA, f = 120 Hz, 8.0 V \leq V _I \leq 18 V) (I _O = 300 mA, f = 120 Hz, 8.0 \leq V _I \leq 18 V, T _J = 25°C)	RR	_	80 80		dB
Input-Output Voltage Differential (T _J = +25°C)	V _I -V _O	_	2.0	_	Vdc
Short-Circuit Current Limit (T _J = +25°C, V _I = 35 V)	los		300		mA .
Average Temperature Coefficient of Output Voltage (IO = 5.0 mA)	ΔV _O /ΔΤ		-1.0	_	mV/°C
Peak Output Current $(T_J = 25^{\circ}C)$	ю	_	700	_	mA

^{*}T_{low} = -40°C for MC78MXXB = 0°C for MC78MXXC

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	v _O	5.75	6.0	6.25	Vdc
Line Regulation $(T_J = +25^{\circ}C)$	Regline				mV
(8.0 Vdc ≤ V _I ≤ 25 Vdc) (9.0 Vdc ≤ V _I ≤ 25 Vdc)		_	5.0 1.5	100 50	
Load Regulation $(T_J = +25^{\circ}\text{C}, 5.0 \text{ mA} \le I_O \le 500 \text{ mA})$ $(T_J = +25^{\circ}\text{C}, 5.0 \text{ mA} \le I_O \le 200 \text{ mA})$	Regload	=	20 10	120 60	mV
Output Voltage (9.0 Vdc \leq V _I \leq 25 Vdc, 5.0 mA \leq I _O \leq 200 mA)	v _O	5.7	_	6.3	Vdc
Input Bias Current (T _J = +25°C)	Iв	_	4.5	6.0	mA
Quiescent Current Change (9.0 Vdc \leq V _I \leq 25 Vdc) (5.0 mA \leq I _O \leq 200 mA)	ΔΙΙΒ	_	=	0.8 0.5	mA
Output Noise Voltage (T _A = +25°C, 10 Hz ≤ f ≤ 100 kHz)	Vn		45	_	μV
Long-Term Stability	$\Delta V_O/\Delta t$		_	24	mV/1.0 k Hrs.
Ripple Rejection (I _O = 100 mA, f = 120 Hz, 9.0 V \leq V _I \leq 19 V) (I _O = 300 mA, f = 120 Hz, 9.0 V \leq V _I \leq 19 V, T _J = 25°C)	RR	_	80 80	_	dB
Input-Output Voltage Differential (TA = +25°C)	V _I -V _O		2.0	_	Vdc
Short-Circuit Current Limit (T _J = +25°C, V _I = 35 V)	los	_	270	_	mA
Average Temperature Coefficient of Output Voltage ($I_O = 5.0 \text{ mA}$)	ΔV _O /ΔΤ	_	- 1.0	_	mV/°C
Peak Output Current (T _J = 25°C)	lo		700	_	mA

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	VO	7.7	8.0	8.3	Vdc
Line Regulation $(T_J = +25^{\circ}C)$ $(10.5 \text{ Vdc} \leq V_I \leq 25 \text{ Vdc})$	Regline		6.0	100	mV
(11 Vdc ≤ V _I ≤ 25 Vdc)		_	2.0	50	
Load Regulation $(T_J = +25^{\circ}C, 5.0 \text{ mA} \leq I_O \leq 500 \text{ mA})$	Regload		25	160	mV
$(T_J = +25^{\circ}C, 5.0 \text{ mA} \le I_O \le 200 \text{ mA})$			10	80	
Output Voltage (11.5 Vdc \leq V _I \leq 25 Vdc, 5.0 mA \leq I _O \leq 200 mA)	v _O	7.6		8.4	Vdc
Input Bias Current ($T_J = +25^{\circ}C$)	Iв	_	4.6	6.0	mA
Quiescent Current Change (11.5 Vdc \leq V _I \leq 25 Vdc) (5.0 mA \leq I _O \leq 200 mA)	ΔΙΙΒ	_	_	0.8 0.5	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq$ 100 kHz)	Vn		52	_	μV
Long-Term Stability	ΔV _O /Δt	_	_	32	mV/1.0 k Hrs.
Ripple Rejection (I _O = 100 mA, f = 120 Hz, 11.5 V \leq V _I \leq 21.5 V) (I _O = 300 mA, f = 120 Hz, 11.5 V \leq V _I \leq 21.5 V, T _J = 25°C)	RR	_	80 80	_	dB
Input-Output Voltage Differential (T _J = +25°C)	V _I -V _O	_	2.0	-	Vdc
Short-Circuit Current Limit (T _J = +25°C, V _I = 35 V)	los	_	250	_	mA
Average Temperature Coefficient of Output Voltage ($I_O = 5.0 \text{ mA}$)	$\Delta V_{O}/\Delta T$	_	-1.0	_	mV/°C
Peak Output Current (T _J = 25°C)	10	_	700		mA

 $T_{low} = -40^{\circ}C$ for MC78MXXB

^{= 0°}C for MC78MXXC

MC78M12 ELECTRICAL CHARACTERISTICS (V_j = 19 V, I_{Q} = 200 mA, *T I_{QW} < TJ < +125°C, P_{Q} < 5.0 W unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	٧o	11.5	12	12.5	Vdc
Line Regulation $(T_J = +25^{\circ}C)$	Regline				mV
(14.5 Vdc \leq V _I \leq 30 Vdc) (16 Vdc \leq V _I \leq 22 Vdc)		_	8.0 2.0	100 50	
Load Regulation $(T_J = +25^{\circ}\text{C}, 5.0 \text{ mA} \le I_O \le 500 \text{ mA})$ $(T_J = +25^{\circ}\text{C}, 5.0 \text{ mA} \le I_O \le 200 \text{ mA})$	Regload	_	25 10	240 120	mV
Output Voltage (15.5 Vdc \leq V _I \leq 27 Vdc, 5.0 mA \leq I _O \leq 200 mA)	v _O	11.4	_	12.6	Vdc
Input Bias Current (T _J = +25°C)	IIB	_	4.8	6.0	mA
Quiescent Current Change (15.5 Vdc \leq V $_{I}$ \leq 30 Vdc) (5.0 mA \leq I $_{Q}$ \leq 200 mA)	ΔΙΙΒ	_		0.8 0.5	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq$ 100 kHz)	٧n	TOUTHOU .	75	_	μV
Long-Term Stability	ΔV _O /Δt	_	_	48	mV/1.0 k Hrs.
Ripple Rejection (I _O = 100 mA, f = 120 Hz, 15 V \leq V _I \leq 25 V) (I _O = 300 mA, f = 120 Hz, 15 V \leq V _I \leq 25 V, T _J = 25°C)	RR	_	80 80	_	dB
Input-Output Voltage Differential (T _J = +25°C)	V _I -V _O	_	2.0	_	Vdc
Short-Circuit Current Limit (T _J = +25°C, V _I = 35 V)	los	_	240	_	mA
Average Temperature Coefficient of Output Voltage (I _O = 5.0 mA)	ΔV _O /ΔΤ		- 1.0	_	mV/°C
Peak Output Current (T _J = 25°C)	Ю	_	700		mA

MC78M15 ELECTRICAL CHARACTERISTICS (VI = 23 V, IO = 200 mA, *TIow < TJ < +125°C, PD \leq 5.0 W unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	٧o	14.4	15	15.6	Vdc
Input Regulation (T _J = +25°C)	Regline				mV
(17.5 Vdc ≤ V _I ≤ 30 Vdc) (20 Vdc ≤ V _I ≤ 30 Vdc)		_	10 3.0	100 50	
Load Regulation $(T_J = +25^{\circ}\text{C}, 5.0 \text{ mA} \le I_O \le 500 \text{ mA})$ $(T_J = +25^{\circ}\text{C}, 5.0 \text{ mA} \le I_O \le 200 \text{ mA})$	Regload	_ _	25 10	300 150	mV
Output Voltage (18.5 Vdc \leq V _I \leq 30 Vdc, 5.0 mA \leq I _O \leq 200 mA)	v _O	14.25		15.75	Vdc
Input Bias Current (T _J = +25°C)	liΒ		4.8	6.0	mA
Quiescent Current Change (18.5 Vdc \leq V _I \leq 30 Vdc) (5.0 mA \leq I _Q \leq 200 mA)	ΔΙΙΒ	_	_	0.8 0.5	
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq$ 100 kHz)	٧n	_	90	_	μV
Long-Term Stability	ΔV _O /Δt	_	_	60	mV/1.0 k Hrs.
Ripple Rejection (I _O = 100 mA, f = 120 Hz, 18.5 V \leq V _I \leq 28.5 V) (I _O = 300 mA, f = 120 Hz, 18.5 V \leq V _I \leq 28.5 V, T _J = 25°C)	RR		70 70	_	dB
Input-Output Voltage Differential $(T_J = +25^{\circ}C)$	V _I -V _O	_	2.0		Vdc
Short-Circuit Current Limit (T _J = +25°C, V _I = 35 V)	los		240	I	mA
Average Temperature Coefficient of Output Voltage (I _O = 5.0 mA)	ΔV _O /ΔΤ	_	- 1.0	_	mV/°C
Peak Output Current (T _J = 25°C)	Ю		700	_	mA

^{*}T_{low} = -40°C for MC78MXXB = 0°C for MC78MXXC

MC78M18 ELECTRICAL CHARACTERISTICS (V_j = 27 V, I_O = 200 mA, *T_{IOW} < T_J < \pm 125°C, P_D \leq 5.0 W unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	Vo	17.3	18	18.7	Vdc
Line Regulation $(T_J = +25^{\circ}C)$ $(21 \text{ Vdc} \le V_I \le 33 \text{ Vdc})$	Regline		10	100	mV
(24 Vdc ≤ V _I ≤ 33 Vdc)			40	50	
Load Regulation $(T_J = +25^{\circ}\text{C}, 5.0 \text{ mA} \le I_O \le 500 \text{ mA})$ $(T_J = +25^{\circ}\text{C}, 5.0 \text{ mA} \le I_O \le 200 \text{ mA})$	Regload	_	30 10	360 180	mV
Output Voltage (22 Vdc \leq V _I \leq 33 Vdc, 5.0 mA \leq I _O \leq 200 mA)	v _o	17.1		18.9	Vdc
Input Bias Current (T _J = +25°C)	lв	_	4.8	6.5	mA
Quiescent Current Change (22 Vdc \leq V _I \leq 33 Vdc) (5.0 mA \leq I _Q \leq 200 mA)	ΔΙΙΒ	_	_	0.8 0.5	mA
Output Noise Voltage (T _A = +25°C, 10 Hz ≤ f ≤ 100 kHz)	Vn	_	100	_	μV
Long-Term Stability	ΔV _O /Δt	_	_	72	mV/1.0 k Hrs.
Ripple Rejection ($I_O = 100$ mA, $f = 120$ Hz, 22 V \leq V $_I \leq 32$ V) ($I_O = 300$ mA, $f = 120$ Hz, 22 V \leq V $_I \leq 32$ V, T $_J = 25^{\circ}$ C)	RR		70 70		dB
Input-Output Voltage Differential $(T_J = +25^{\circ}C)$	V _I -V _O	_	2.0	_	Vdc
Short-Circuit Current Limit (T _J = +25°C, V _I = 35 V)	los		240		mA
Average Temperature Coefficient of Output Voltage (I _O = 5.0 mA)	ΔV _O /ΔΤ	_	- 1.0	_	mV/°C
Peak Output Current (T _J = 25°C)	lo	_	700	-	mA

MC78M20 ELECTRICAL CHARACTERISTICS (VI = 29 V, IO = 200 mA, * $T_{IOW} < T_{J} < +125 ^{\circ}$ C, PD \leqslant 5.0 W unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	٧o	19.2	20	20.8	Vdc
Line Regulation $(T_J = +25^{\circ}C)$	Regline				mV
(23 Vdc ≤ V _I ≤ 35 Vdc) (24 Vdc ≤ V _I ≤ 35 Vdc)	*	_	10 5.0	100 50	
Load Regulation $(T_J = +25^{\circ}\text{C}, 5.0 \text{ mA} \le I_O \le 500 \text{ mA})$ $(T_J = +25^{\circ}\text{C}, 5.0 \text{ mA} \le I_O \le 200 \text{ mA})$	Regload	_	30 10	400 200	mV
Output Voltage (24 Vdc \leq V _I \leq 35 Vdc, 5.0 mA \leq I _O \leq 200 mA)	v _O	19		21	Vdc
Input Bias Current (T _J = +25°C)	Iв	_	4.9	6.5	mA
Quiescent Current Change (24 Vdc \leq V _I \leq 35 Vdc) (5.0 mA \leq I _O \leq 200 mA)	ΔΙΙΒ	<u>-</u>		0.8 0.5	mA
Output Noise Voltage (T _A = +25°C, 10 Hz ≤ f ≤ 100 kHz)	٧n	_	110	_	μV
Long-Term Stability	ΔV _O /Δt		_	80	mV/1.0 k Hrs.
Ripple Rejection (I _O = 100 mA, f = 120 Hz, 24 V \leq V _I \leq 34 V) (I _O = 300 mA, f = 120 Hz, 24 V \leq V _I \leq 34 V, T _J = 25°C)	RR	=	70 70	_	dB
Input-Output Voltage Differential (T _J = +25°C)	V _I -V _O		2.0	_	Vdc
Short-Circuit Current Limit (T _J = +25°C, V _I = 35 V)	los	_	240	_	mA
Average Temperature Coefficient of Output Voltage (I _O = 5.0 mA)	ΔV _O /ΔΤ	_	-1.1	_	mV/°C
Peak Output Current (T _J = 25°C)	lo	_	700	_	mA

 $[*]T_{low} = -40$ °C for MC78MXXB = 0°C for MC78MXXC

MC78M24 ELECTRICAL CHARACTERISTICS (VI = 33 V, IO = 200 mA, *TIOW < TJ < \pm 125°C, PD \leq 5.0 W unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T,j = +25°C)	Vο	23	24	25	Vdc
Line Regulation (T.I = +25°C)	Regline				mV
(17 √4 ≤ 50) (27 √40 ≤ √1 ≤ 38 √4c) (28 √40 ≤ √1 ≤ 38 √4c)		_	10 5.0	100 50	
Load Regulation $(T_J = +25^{\circ}C, 5.0 \text{ mA} \le I_O \le 500 \text{ mA})$ $(T_J = +25^{\circ}C, 5.0 \text{ mA} \le I_O \le 200 \text{ mA})$	Regload	<u>-</u>	30 10	480 240	mV
Output Voltage (28 Vdc \leq V ₁ \leq 38 Vdc, 5.0 mA \leq I ₀ \leq 200 mA)	v _O	22.8	_	25.2	Vdc
Input Bias Current (T _J = +25°C)	I _{IB}	_	5.0	7.0	mA
Quiescent Current Change (28 Vdc \leq V \leq 38 Vdc) (5.0 mA \leq $_{O}$ \leq 200 mA)	ΔΙΙΒ	_	_	0.8 0.5	mA
Output Noise Voltage (T _A = +25°C, 10 Hz ≤ f ≤ 100 kHz)	٧n	_	170		μV
Long-Term Stability	ΔV _O /Δt	_		96	mV/1.0 k Hrs.
Ripple Rejection (I _O = 100 mA, f = 120 Hz, 28 V \leq V _I \leq 38 V) (I _O = 300 mA, f = 120 Hz, 28 V \leq V _I \leq 38 V, T _J = 25°C)	RR	_	70 70		dB
Input-Output Voltage Differential	V _I -V _O		2.0	_	Vdc
Short-Circuit Current Limit (T _J = +25°C)	los		240		mA
Average Temperature Coefficient of Output Voltage $(I_Q = 5.0 \text{ mA}, 0^{\circ}\text{C} \le T_J \le + 125^{\circ}\text{C})$	ΔV _O /ΔΤ		-1.2	_	mV/°C
Peak Output Current (T _J = 25°C)	lo	_	700	_	mA

^{*}T_{low} = -40°C for MC78MXXB = 0°C for MC78MXXC

DEFINITIONS

Line Regulation — The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation — The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation – The maximum total device dissipation for which the regulator will operate within specifications.

Input Bias Current — That part of the input current that is not delivered to the load.

Output Noise Voltage — The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long Term Stability — Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

TYPICAL PERFORMANCE CURVES

FIGURE 1 — WORST CASE POWER DISSIPATION VERSUS AMBIENT TEMPERATURE

FIGURE 2 – WORST CASE POWER DISSIPATION versus AMBIENT TEMPERATURE

FIGURE 3 – PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE

FIGURE 4 – RIPPLE REJECTION AS A FUNCTION OF FREQUENCY

APPLICATIONS INFORMATION

Design Considerations

The MC78M00 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the reulator input be by-passed with a capacitor if the regulator is connected to the power supply

filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 µF or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

FIGURE 5 — CURRENT REGULATOR

The MC78M00 regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC78M05C is chosen in this application. Resistor R determines the current as follows:

$$I_O = \frac{5.0 \text{ V}}{\text{R}} + I_{IB}$$

IJB = 1.5 mA over line and load changes

For example, a 500 mA current source would require R to be a 10-ohm, 10-W resistor and the output voltage compliance would be the input voltage less 7.0 volts.

FIGURE 6 — ADJUSTABLE OUTPUT REGULATOR

$$V_{O}$$
, 7.0 V to 20 V $V_{IN} - V_{O} \geqslant$ 2.0 V

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 2.0 volts greater than the regulator voltage.

FIGURE 7 — CURRENT BOOST REGULATOR

XX = 2 digits of type number indicating voltage.

The MC78M00 series can be current boosted with a PNP transistor. The MJ2955 provides current to 5.0 amperes. Resistor R in conjunction with the VBE of the PNP determines when the pass transistor begins conducting; this circuit is not short-circuit proof. Input-output differential voltage minimum is increased by VBE of the pass transistor.

FIGURE 8 — CURRENT BOOST WITH SHORT-CIRCUIT PROTECTION

XX = 2 digits of type number indicating voltage.

The circuit of Figure 7 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, R_{SC} , and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the three-terminal regulator. Therefore, a two-ampere plastic power transistor is specified.

Specifications and Applications Information

THREE-AMPERE POSITIVE VOLTAGE REGULATORS

This family of fixed voltage regulators are monolithic integrated circuits capable of driving loads in excess of 3.0 amperes. These three-terminal regulators employ internal current limiting, thermal shutdown, and safe-area compensation. Devices are available with improved specifications, including a 2% output voltage tolerance, on A-suffix 5.0, 12 and 15 volt device types.

Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents. This series of devices can be used with a series-pass transistor to supply up to 15 amperes at the nominal output voltage.

- Output Current in Excess of 3.0 Amperes
- Power Dissipation: 30 W (K-Suffix), 25 W (T-Suffix)
- No External Components Required
- Output Voltage Offered in 2% and 4% Tolerance*
- Thermal Regulation is Specified
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation

MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (5.0 V-12 V)	Vin	35	Vdc
(15 V-24 V)		40	
Power Dissipation and Thermal			
Characteristics			
Plastic Package (Note 2)			
T _Δ = +25°C	PD	Internally Limited	
Thermal Resistance, Junction to Air	$R_{\theta}JA$	65	°C/W
T _C = +25°C	PD	Internally Limited	
Thermal Resistance, Junction to Case	$R_{\theta JC}$	2.5	°C/W
Metal Package (Note 2)			
T _Δ = +25°C	PD	Internally Limited	
Thermal Resistance, Junction to Air	$R_{\theta JA}$	35	°C/W
T _C = +25°C	PD	Internally Limited	
Thermal Resistance, Junction to Case	$R_{\theta}JC$	2.5	°¢/W
Storage Junction Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature Range	Tj		°C
MC78T00, A	"	-55 to +150	
MC78T00C, AC		0 to +125	

ORDERING INFORMATION

Device	Output Voltage Tolerance		
MC78TXXK MC78TXXAK	4% 2%*	−55 to +150°C	Metal Power
MC78TXXCK MC78TXXACK	4% 2%*	0 to +125°C	
MC78TXXCT MC78TXXACT	4% 2%*		Plastic Power

XX Indicates nominal voltage *2% regulators are available in 5, 12 and 15 volt devices

THREE-AMPERE POSITIVE FIXED VOLTAGE REGULATORS

SILICON MONOLITHIC INTEGRATED CIRCUIT

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.2 V above the output voltage even during the low point on the input ripple voltage.

XX = these two digits of the type number indicate voltage.

- * = C_{in} is required if regulator is located an appreciable distance from power supply filter. (See Applications Information for details)
- ** = C_O is not needed for stability; however, it does improve transient response.

TYPE NO./VOLTAGE						
MC78T05	5.0 Volts	MC78T15	15 Volts			
MC78T06	6.0 Volts	MC78T18	18 Volts			
MC78T08	8.0 Volts	MC78T24	24 Volts			
MC78T12	12 Volts					

MC78T05, A, AC, C

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (\textbf{V}_{in} = 10 \ \textbf{V}, \textbf{I}_{O} = 3.0 \ \textbf{A}, \textbf{T}_{J} = \textbf{T}_{low} \ \textbf{to} \ \textbf{T}_{high} [\textbf{Note 1}], \textbf{P}_{O} \leqslant \textbf{P}_{max} [\textbf{Note 2}], \textbf{unless otherwise noted}).$

		MC78T05A, AC			MC78T05, C			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage $ (5.0 \text{ mA} \leqslant I_O \leqslant 3.0 \text{ A, T}_J = +25^{\circ}\text{C}) \\ (5.0 \text{ mA} \leqslant I_O \leqslant 3.0 \text{ A;} \\ 5.0 \text{ mA} \leqslant I_O \leqslant 2.0 \text{ A, 7.3 Vdc} \leqslant V_{in} \leqslant 20 \text{ Vdc}) $	Vo	4.9 4.8	5.0 5.0	5.1 5.2	4.8 4.75	5.0 5.0	5.2 5.25	Vdc
Line Regulation (Note 3) (7.2 Vdc \leqslant V _{in} \leqslant 35 Vdc, I _O = 5.0 mA, T _J = +25°C; 7.2 Vdc \leqslant V _{in} \leqslant 35 Vdc, I _O = 1.0 A, T _J = +25°C; 7.5 Vdc \leqslant V _{in} \leqslant 20 Vdc, I _O = 2.0 A; 8.0 Vdc \leqslant V _{in} \leqslant 12 Vdc, I _O = 3.0 A)	Regline	_	3.0	10		3.0	25	mV
Load Regulation (Note 3) $ (5.0 \text{ mA} \leqslant I_O \leqslant 3.0 \text{ A, T}_J = +25^{\circ}\text{C}) \\ (5.0 \text{ mA} \leqslant I_O \leqslant 3.0 \text{ A}) $	Reg _{load}		10 15	25 50		10 15	30 80	mV
Thermal Regulation (Pulse = 10 ms, P = 20 W, $T_A = +25$ °C)	Reg _{therm}	-	0.001	0.01	-	0.002	0.03	%V _O /W
Quiescent Current (5.0 mA \leqslant I $_O \leqslant$ 3.0 A, T $_J$ = +25°C) (5.0 mA \leqslant I $_O \leqslant$ 3.0 A)	IВ		3.5 4.0	5.0 6.0	_	3.5 4.0	5.0 6.0	mA
Quiescent Current Change (7.2 Vdc \leq V _{in} \leq 35 Vdc, I _O = 5.0 mA, T _J = +25°C; 7.5 Vdc \leq V _{in} \leq 20 Vdc, I _O = 2.0 A; 5.0 mA \leq I _O \leq 3.0 A)	PΙΒ	-	0.1	0.5		0.1	0.8	mA
Ripple Rejection (8.0 Vdc \leq V _{in} \leq 18 Vdc, f = 120 Hz, I _O = 2.0 A)	RR	68	75	_	65	75	_	dB
Dropout Voltage (I _O = 3.0 A, T _J = +25°C)	V _{in} -V _O		2.2	2.5	_	2.2	2.5	Vdc
Output Noise Voltage (10 Hz \leqslant f \leqslant 100 kHz, T _J = +25°C)	V _n	-	10	_	_	10	_	μV/V _O
Output Resistance (f = 1.0 kHz)	RO	-	2.0	_	_	2.0	_	mΩ
Short Circuit Current Limit (Vin = 35 Vdc, TJ = +25°C)	Isc	_	1.5	2.5	_	1.5	2.5	Α
Peak Output Current (T _J = +25°C)	I _{max}	-	5.0		_	5.0		Α
Average Temperature Coefficient of Output Voltage (I _O = 5.0 mA) MC78T05, MC78T05A MC78T05AC, C	TCVO	_	0.2	1.0	_	0.2	1.0	mV/°C

Note 1. T_{low} = -55°C for MC78TXX, A = 0°C for MC78TXXC, AC

T_{high} = +150°C for MC78TXX, A = +125°C for MC78TXXC, AC

Note 2. Although power dissipation is internally limited, specifications apply only for $P_0 \leqslant P_{max}$ = 20 W for K(TO-3) package P_{max} = 25 W for T(TO-220) package.

Note 3. Line and load regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC78T06, C

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (V_{in} = 11\ V, I_{O} = 3.0\ A, T_{J} = T_{low}\ to\ T_{high} [Note\ 1], P_{O} \leqslant P_{max}[Note\ 2], unless otherwise noted).$

Characteristic	0.1.1		Unit		
Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage $ (5.0 \text{ mA} \leqslant I_O \leqslant 3.0 \text{ A, T}_J = +25^{\circ}\text{C}) \\ (5.0 \text{ mA} \leqslant I_O \leqslant 3.0 \text{ A;} \\ 5.0 \text{ mA} \leqslant I_O \leqslant 2.0 \text{ A, 8.3 Vdc} \leqslant V_{in} \leqslant 21 \text{ Vdc}) $	Vo	5.75 5.7	6.0 6.0	6.25 6.3	Vdc
Line Regulation (Note 3) $ (8.25 \ \mbox{Vdc} \leqslant V_{in} \leqslant 35 \ \mbox{Vdc}, \ I_{Q} = 5.0 \ \mbox{mA}, \ \mbox{T}_{J} = +25^{\circ}\mbox{C}; \\ 8.25 \ \mbox{Vdc} \leqslant V_{in} \leqslant 35 \ \mbox{Vdc}, \ I_{Q} = 1.0 \ \mbox{A}, \ \mbox{T}_{J} = +25^{\circ}\mbox{C}; \\ 8.6 \ \mbox{Vdc} \leqslant V_{in} \leqslant 21 \ \mbox{Vdc}, \ \mbox{I}_{Q} = 2.0 \ \mbox{A}; \\ 9.0 \ \mbox{Vdc} \leqslant V_{in} \leqslant 13 \ \mbox{Vdc}, \ \mbox{I}_{Q} = 3.0 \ \mbox{A}) $	Regline		4.0	30	mV
Load Regulation (Note 3) $ (5.0 \text{ mA} \leqslant I_O \leqslant 3.0 \text{ A, T}_J = +25^\circ\text{C}) \\ (5.0 \text{ mA} \leqslant I_O \leqslant 3.0 \text{ A}) $	Reg _{load}	_	10 15	30 80	mV
Thermal Regulation (Pulse = 10 ms, P = 20 W, T _A = +25°C)	Reg _{therm}	_	0.002	0.03	%V _O /W
Ouiescent Current (5.0 mA \leq I $_{O} \leq$ 3.0 A, T $_{J}$ = +25°C) (5.0 mA \leq I $_{O} \leq$ 3.0 A)	IB	_	3.5 4.0	5.0 6.0	mA
Quiescent Current Change (8.25 $Vdc \le V_{in} \le 35 Vdc$, $I_{O} = 5.0 \text{ mA}$, $T_{J} = +25^{\circ}\text{C}$; 8.6 $Vdc \le V_{in} \le 21 Vdc$, $I_{O} = 2.0 \text{ A}$; 5.0 $\text{mA} \le I_{O} \le 3.0 \text{ A}$)	7lΒ	_	0.1	0.8	mA
Ripple Rejection (9.0 Vdc \leq V _{in} \leq 19 Vdc, f = 120 Hz, I _O = 2.0 A)	RR	63	73	_	dB
Dropout Voltage (IO = 3.0 A, TJ = +25°C)	V _{in} -V _O	_	2.2	2.5	Vdc
Output Noise Voltage (10 Hz \leqslant f \leqslant 100 kHz, T _J = +25°C)	V _n	_	10	_	μV/V _O
Output Resistance (f = 1.0 kHz)	RO		2.0	_	mΩ
Short Circuit Current Limit (V _{in} = 35 Vdc, T _J = +25°C)	Isc	_	1.5	2.5	А
Peak Output Current (T _J = +25°C)	I _{max}	_	5.0		Α
Average Temperature Coefficient of Output Voltage (I _O = 5.0 mA) MC78T06	TCVO		0.3	1.2	mV/°C
MC78T06C			0.3		

Note 1. T_{low} = -55°C for MC78TXX, A = 0°C for MC78TXXC, AC

Thigh = +150°C for MC78TXX, A = +125°C for MC78TXXC, AC

P_{max} = 30 W for K(TO-3) package

Note 2. Although power dissipation is internally limited, specifications apply only for $P_0 \leqslant P_{max}$ P_{max} = 25 W for T(TO-220) package.

Note 3. Line and load regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC78T08, C

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (\textbf{V}_{in} = 14 \ \textbf{V}, \textbf{I}_{0} = 3.0 \ \textbf{A}, \textbf{T}_{J} = \textbf{T}_{low} \ \textbf{to} \ \textbf{T}_{high} [\textbf{Note 1}], \textbf{P}_{0} \leqslant \textbf{P}_{max} [\textbf{Note 2}], \textbf{unless otherwise noted}).$

Characteristic					
Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage $ (5.0 \text{ mA} \leqslant I_O \leqslant 3.0 \text{ A, T}_J = +25^{\circ}\text{C}) \\ (5.0 \text{ mA} \leqslant I_O \leqslant 3.0 \text{ A;} \\ 5.0 \text{ mA} \leqslant I_O \leqslant 2.0 \text{ A, 10.4 Vdc} \leqslant V_{in} \leqslant 23 \text{ Vdc}) $	Vo	7.7 7.6	8.0 8.0	8.3 8.4	Vdc
Line Regulation (Note 3) (10.3 Vdc \leq V _{in} \leq 35 Vdc, I _O = 5.0 mA, T _J = +25°C; 10.3 Vdc \leq V _{in} \leq 35 Vdc, I _O = 1.0 A, T _J = +25°C; 10.7 Vdc \leq V _{in} \leq 23 Vdc, I _O = 2.0 A; 11 Vdc \leq V _{in} \leq 17 Vdc, I _O = 3.0 A)	Regline	_	4.0	35	mV
Load Regulation (Note 3) $ (5.0 \text{ mA} \leqslant I_O \leqslant 3.0 \text{ A, T}_J = +25^\circ\text{C}) \\ (5.0 \text{ mA} \leqslant I_O \leqslant 3.0 \text{ A}) $	Reg _{load}	_	10 15	30 80	mV
Thermal Regulation (Pulse = 10 ms, P = 20 W, T _A = +25°C)	Reg _{therm}	_	0.002	0.03	%V _O /W
Outescent Current (5.0 mA \leq IO \leq 3.0 A, T _J = +25°C) (5.0 mA \leq IO \leq 3.0 A)	IВ	_	3.5 4.0	5.0 6.0	mA
Quiescent Current Change (10.3 Vdc \leq V _{in} \leq 35 Vdc, I _O = 5.0 mA, T _J = +25°C; 10.7 Vdc \leq V _{in} \leq 23 Vdc, I _O = 2.0 A; 5.0 mA \leq I _O \leq 3.0 A)	ΔlB	_	0.1	0.8	mA
Ripple Rejection (11 Vdc \leq V _{in} \leq 21 Vdc, f = 120 Hz, l _O = 2.0 A)	RR	61	71	_	dB
Dropout Voltage ($I_0 = 3.0 \text{ A}, T_J = +25^{\circ}\text{C}$)	V _{in} -V _O		2.2	2.5	Vdc
Output Noise Voltage (10 Hz \leqslant f \leqslant 100 kHz, T _J = +25°C)	V _n	_	10	_	μV/V _O
Output Resistance (f = 1.0 kHz)	RO		2.0	_	mΩ
Short Circuit Current Limit (V _{in} = 35 Vdc, T _J = +25°C)	^I sc	_	1.5	2.5	A
Peak Output Current (T _J = +25°C)	I _{max}	_	5.0	_	A
Average Temperature Coefficient of Output Voltage (I _O = 5.0 mA)	TCVO		0.0	1.0	mV/°C
MC78T08 MC78T08C			0.3	1.6	

Note 1. T_{low} = -55°C for MC78TXX, A = 0°C for MC78TXXC, AC

Thigh = +150°C for MC78TXX, A = +125°C for MC78TXXC, AC

Note 2. Although power dissipation is internally limited, specifications apply only for $P_0 \leqslant P_{max} = P_{max} = 10$ W for K(TO-3) package $P_{max} = 10$ W for T(TO-220) package.

Note 3. Line and load regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC78T12, A, AC, C

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (\textbf{V}_{in} = 19 \ \textbf{V}, \textbf{I}_{O} = 3.0 \ \textbf{A}, \textbf{T}_{J} = \textbf{T}_{low} \ \text{to T}_{high} [\textbf{Note 1}], \textbf{P}_{O} \leqslant \textbf{P}_{max} [\textbf{Note 2}], \textbf{unless otherwise noted}).$

		М	MC78T12A, AC			/IC78T1	2, C	Unit
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max] Unit
Output Voltage (5.0 mA \leq I $_{O} \leq$ 3.0 A, T $_{J}$ = +25°C) (5.0 mA \leq I $_{O} \leq$ 3.0 A; 5.0 mA \leq I $_{O} \leq$ 2.0 A, 14.5 Vdc \leq V $_{IN} \leq$ 27 Vdc)	v _o	11.75 11.5	12 12	12.25 12.5	11.5 11.4	12 12	12.5 12.6	Vdc
Line Regulation (Note 3) (14.5 Vdc \leq V _{in} \leq 35 Vdc, I _O = 5.0 mA, T _J = +25°C; 14.5 Vdc \leq V _{in} \leq 35 Vdc, I _O = 1.0 A, T _J = +25°C; 14.9 Vdc \leq V _{in} \leq 27 Vdc, I _O = 2.0 A; 16 Vdc \leq V _{in} \leq 22 Vdc, I _O = 3.0 A)	Reg _{line}	_	6.0	18	_	6.0	45	mV
Load Regulation (Note 3) (5.0 mA \leq I $_{O}$ \leq 3.0 A, T $_{J}$ = +25°C) (5.0 mA \leq I $_{O}$ \leq 3.0 A)	Reg _{load}	_	10 15	25 50	_	10 15	30 80	mV
Thermal Regulation (Pulse = 10 ms, P = 20 W, T _A = +25°C)	Reg _{therm}	_	0.001	0.01	-	0.002	0.03	%V _O /W
Quiescent Current (5.0 mA \leq IO \leq 3.0 A, TJ = +25°C) (5.0 mA \leq IO \leq 3.0 A)	I _B	_	3.5 4.0	5.0 6.0	_	3.5 4.0	5.0 6.0	mA
Quiescent Current Change (14.5 Vdc \leq V _{in} \leq 35 Vdc, I _O = 5.0 mA, T _J = +25°C; 14.9 Vdc \leq V _{in} \leq 27 Vdc, I _O = 2.0 A; 5.0 mA \leq I _O \leq 3.0 A)	ΔΙΒ	_	0.1	0.5	_	0.1	0.8	mA
Ripple Rejection (15 Vdc \leq V _{in} \leq 25 Vdc, f = 120 Hz, I _O = 2.0 A)	RR	61	67	-	57	67	_	dB
Dropout Voltage (I _O = 3.0 A, T _J = +25°C)	V _{in} -V _O	_	2.2	2.5	_	2.2	2.5	Vdc
Output Noise Voltage (10 Hz \leqslant f \leqslant 100 kHz, T _J = +25°C)	V _n	_	10	-	_	10	_	μV/V _O
Output Resistance (f = 1.0 kHz)	RO		2.0	_		2.0		mΩ
Short Circuit Current Limit (V _{in} = 35 Vdc, T _J = +25°C)	Isc	_	1.5	2.5		1.5	2.5	А
Peak Output Current (T _J = +25°C)	I _{max}	_	5.0	_	_	5.0	_	Α
Average Temperature Coefficient of Output Voltage (I _O = 5.0 mA) MC78T12, MC78T12A MC78T12AC, MC7812C	TCVO	_	0.5 0.5	2.4	-	0.5 0.5	2.4	mV/°C

Note 1. T_{low} = -55°C for MC78TXX, A = 0°C for MC78TXXC, AC T_{high} = +150°C for MC78TXX, A = +125°C for MC78TXXC, AC

Note 2. Although power dissipation is internally limited, specifications apply only for $P_0 \leqslant P_{max}$ = 30 W for K(TO-3) package P_{max} = 25 W for T(TO-220) package.

Note 3. Line and load regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC78T15, A, AC, C

ELECTRICAL CHARACTERISTICS ($V_{in} = 23 \text{ V}$, $I_{O} = 3.0 \text{ A}$, $T_{J} = T_{low}$ to T_{high} [Note 1], $P_{O} \leqslant P_{max}$ [Note 2], unless otherwise noted).

A		М	C78T15	A, AC	N	/IC78T1	5, C	T
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage $ (5.0 \text{ mA} \leqslant I_O \leqslant 3.0 \text{ A, T}_J = +25 ^{\circ}\text{C}) \\ (5.0 \text{ mA} \leqslant I_O \leqslant 3.0 \text{ A;} \\ 5.0 \text{ mA} \leqslant I_O \leqslant 2.0 \text{ A, } 17.5 \text{ Vdc} \leqslant V_{in} \leqslant 30 \text{ Vdc}) $	Vo	14.7 14.4	15 15	15.3 15.6	14.4 14.25	15 15	15.6 15.75	Vdc
Line Regulation (Note 3) $ \begin{array}{l} (17.6 \ \mbox{Vdc} \leqslant V_{in} \leqslant 40 \ \mbox{Vdc}, \ I_{Q} = 5.0 \ \mbox{mA}, \ T_{J} = ^{+25^{\circ}}\mbox{C}; \\ 17.6 \ \mbox{Vdc} \leqslant V_{in} \leqslant 40 \ \mbox{Vdc}, \ I_{Q} = 1.0 \ \mbox{A}, \ T_{J} = ^{+25^{\circ}}\mbox{C}; \\ 18 \ \mbox{Vdc} \leqslant V_{in} \leqslant 30 \ \mbox{Vdc}, \ I_{Q} = 2.0 \ \mbox{A}; \\ 20 \ \mbox{Vdc} \leqslant V_{in} \leqslant 36 \ \mbox{Vdc}, \ I_{Q} = 3.0 \ \mbox{A}) \end{array} $	Reg _{line}	_	7.5	22	_	7.5	55	mV
Load Regulation (Note 3) (5.0 mA \leq I $_{O} \leq$ 3.0 A, T $_{J}$ = +25°C) (5.0 mA \leq I $_{O} \leq$ 3.0 A)	Reg _{load}	_	10 15	25 50	_	10 15	30 80	mV
Thermal Regulation (Pulse = 10 ms, P = 20 W, $T_A = +25$ °C)	Reg _{therm}	_	0.001	0.01	-	0.002	0.03	%V _O /W
Quiescent Current (5.0 mA \leqslant I $_O \leqslant$ 3.0 A, T $_J$ = +25°C) (5.0 mA \leqslant I $_O \leqslant$ 3.0 A)	IВ	_	3.5 4.0	5.0 6.0	_	3.5 4.0	5.0 6.0	mA
Quiescent Current Change (17.6 Vdc \leq V _{in} \leq 40 Vdc, I _O = 5.0 mA, T _J = +25°C; 18 Vdc \leq V _{in} \leq 30 Vdc, I _O = 2.0 A; 5.0 mA \leq I _O \leq 3.0 A)	ŊΒ	-	0.1	0.5	_	0.1	0.8	mA
Ripple Rejection (18.5 Vdc \leq V _{in} \leq 28.5 Vdc, f = 120 Hz, I _O = 2.0 A)	RR	60	65	_	55	65	-	dB
Dropout Voltage (IO = 3.0 A, TJ = +25°C)	V _{in} -V _O	_	2.2	2.5	_	2.2	2.5	Vdc
Output Noise Voltage (10 Hz \leqslant f \leqslant 100 kHz, T _J = +25°C)	V _n	-	10	_	_	10	_	μV/V _O
Output Resistance (f = 1.0 kHz)	RO	-	2.0	_	_	2.0	-	mΩ
Short Circuit Current Limit (V _{in} = 40 Vdc, T _J = +25°C)	Isc	_	1.0	2.0		1.0	2.0	А
Peak Output Current (T _J = +25°C)	I _{max}	-	5.0	_	_	5.0	_	Α
Average Temperature Coefficient of Output Voltage (I _O = 5.0 mA) MC78T15, MC78T15A	TCVO	_	0.6	3.0	_	0.6	3.0	mV/°C
MC78T15AC, MC7815C			0.6	_	<u> </u>	0.6		

Note 1. T_{low} = -55°C for MC78TXX, A = 0°C for MC78TXXC, AC T_{high} = +150°C for MC78TXX, A = +125°C for MC78TXXC, AC

Note 2. Although power dissipation is internally limited, specifications apply only for $P_O \leqslant P_{max}$ = 20 W for K(TO-3) package P_{max} = 25 W for T(TO-220) package.

Note 3. Line and load regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC78T18, C

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (\textbf{V}_{in} = 27 \, \textbf{V}, \textbf{I}_{O} = 3.0 \, \textbf{A}, \textbf{T}_{J} = \textbf{T}_{low} \, \text{to T}_{high} [\textbf{Note 1}], \textbf{P}_{O} \leqslant \textbf{P}_{max} [\textbf{Note 2}], \textbf{unless otherwise noted}).$

Oh			T		
Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage $ (5.0 \text{ mA} \leqslant I_O \leqslant 3.0 \text{ A, T}_J = +25^{\circ}\text{C}) \\ (5.0 \text{ mA} \leqslant I_O \leqslant 3.0 \text{ A,} \\ 5.0 \text{ mA} \leqslant I_O \leqslant 2.0 \text{ A, } 20.6 \text{ Vdc} \leqslant V_{in} \leqslant 33 \text{ Vdc}) $	Vo	17.3 17.1	18 18	18.7 18.9	Vdc
Line Regulation (Note 3) (20.7 Vdc \leq V _{In} \leq 40 Vdc, I _O = 5.0 mA, T _J = +25°C; 20.7 Vdc \leq V _{In} \leq 40 Vdc, I _O = 1.0 A, T _J = +25°C; 21.2 Vdc \leq V _{In} \leq 33 Vdc, I _O = 2.0 A; 24 Vdc \leq V _{In} \leq 30 Vdc, I _O = 3.0 A)	Regline	_	9.0	80	mV
Load Regulation (Note 3) $(5.0 \text{ mA} \le l_O \le 3.0 \text{ A}, T_J = +25^{\circ}\text{C})$ $(5.0 \text{ mA} \le l_O \le 3.0 \text{ A})$	Regload	_	10 15	30 80	mV
Thermal Regulation (Pulse = 10 ms, P = 20 W, T _A = +25°C)	Reg _{therm}		0.002	0.03	%V _O /W
Quiescent Current (5.0 mA \leqslant $I_O \leqslant$ 3.0 A, T_J = +25°C) (5.0 mA \leqslant $I_O \leqslant$ 3.0 A)	ΙB	_	3.5 4.0	5.0 6.0	mA
Quiescent Current Change (20.7 Vdc \leq V _{In} \leq 40 Vdc, I _O = 5.0 mA, T _J = +25°C; 21.2 Vdc \leq V _{in} \leq 33 Vdc, I _O = 2.0 A; 5.0 mA \leq I _O \leq 3.0 A)	PIB		0.1	0.8	mA
Ripple Rejection (22 Vdc \leq V $_{in}$ \leq 32 Vdc, f = 120 Hz, I $_{O}$ = 2.0 A)	RR	54	64	_	dB
Dropout Voltage (I _O = 3.0 A, T _J = +25°C)	v _{in} -v _O	_	2.2	2.5	Vdc
Output Noise Voltage (10 Hz \leqslant f \leqslant 100 kHz, T $_J$ = +25°C)	V _n	_	10	_	μV/V _O
Output Resistance (f = 1.0 kHz)	RO	_	2.0 ~	_	mΩ
Short Circuit Current Limit (V _{in} = 40 Vdc, T _J = +25°C)	Isc		1.0	2.0	A
Peak Output Current (T _J = +25°C)	I _{max}	_	5.0	_	Α
Average Temperature Coefficient of Output Voltage (I _O = 5.0 mA) MC78T18	TCVO		0.7	3.6	mV/°C
MC78T18C		-	0.7	-	

Note 1. T_{low} = -55°C for MC78TXX, A = 0°C for MC78TXXC, AC

Thigh = +150°C for MC78TXX, A = +125°C for MC78TXXC, AC

P_{max} = 30 W for K(TO-3) package

Note 2. Although power dissipation is internally limited, specifications apply only for $P_0 \leqslant P_{max}$ P_{max} = 25 W for T(TO-220) package.

Note 3. Line and load regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC78T24, C

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (V_{in} = 33\ V, I_{O} = 3.0\ A, T_{J} = T_{low}\ to\ T_{high} [Note\ 1], P_{O} \leqslant P_{max} [Note\ 2], unless otherwise noted).$

			11		
Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage $(5.0 \text{ mA} \leqslant I_0 \leqslant 3.0 \text{ A}, T_J = +25^{\circ}\text{C})$ $(5.0 \text{ mA} \leqslant I_0 \leqslant 3.0 \text{ A};$ $5.0 \text{ mA} \leqslant I_0 \leqslant 2.0 \text{ A}, 27.3 \text{ Vdc} \leqslant V_{in} \leqslant 39 \text{ Vdc})$	Vo	23 22.8	24 24	25 25.2	Vdc
Line Regulation (Note 3) (27 Vdc \leqslant V _{in} \leqslant 40 Vdc, I _O = 5.0 mA, T _J = +25°C; 27 Vdc \leqslant V _{in} \leqslant 40 Vdc, I _O = 1.0 A, T _J = +25°C; 27.5 Vdc \leqslant V _{in} \leqslant 39 Vdc, I _O = 2.0 A; 30 Vdc \leqslant V _{in} \leqslant 36 Vdc, I _O = 3.0 A)	Regline		12	90	mV
Load Regulation (Note 3) (5.0 mA \leq I $_{O} \leq$ 3.0 A, T $_{J}$ = +25°C) (5.0 mA \leq I $_{O} \leq$ 3.0 A)	Reg _{load}	_	10 15	30 80	mV
Thermal Regulation (Pulse = 10 ms, P = 20 W, T _A = +25°C)	Reg _{therm}		0.002	0.03	%v _O /w
Quiescent Current (5.0 mA \leq I $_{O} \leq$ 3.0 A, T $_{J}$ = +25°C) (5.0 mA \leq I $_{O} \leq$ 3.0 A)	ΙΒ	_	3.5 4.0	5.0 6.0	mA
Quiescent Current Change (27 Vdc \leq V $_{in}$ \leq 40 Vdc, I $_{O}$ = 5.0 mA, T $_{J}$ = +25°C; 27.5 Vdc \leq V $_{in}$ \leq 39 Vdc, I $_{O}$ = 2 0 A; 5.0 mA \leq 1 $_{O}$ \leq 3.0 A)	71B		0.1	0.8	mA
Ripple Rejection (28 Vdc \leq V _{in} \leq 38 Vdc, f = 120 Hz, I _O = 2.0 A)	RR	51	61	_	dB
Dropout Voltage (I _O = 3.0 A, T _J = +25°C)	V _{in} -V _O	_	2.2	2.5	Vdc
Output Noise Voltage (10 Hz \leqslant f \leqslant 100 kHz, T _J = +25°C)	V _n	_	10	_	μV/V _O
Output Resistance (f = 1.0 kHz)	RO	_	2.0	_	mΩ
Short Circuit Current Limit (Vin = 40 Vdc, T _J = +25°C)	Isc	_	1.0	2.0	A
Peak Output Current (T _J = +25°C)	I _{max}		5.0	_	Α
Average Temperature Coefficient of Output Voltage (I _O = 5.0 mA)	TCVO		1.0	4.8	mV/°C
MC78T24 MC78T24C			1.0	4.0	

Note 1. T_{low} = -55°C for MC78TXX, A = 0°C for MC78TXXC, AC

T_{high} = +150°C for MC78TXX, A = +125°C for MC78TXXC, AC

Note 2. Although power dissipation is internally limited, specifications apply only for $P_0 \leqslant P_{max} = 30$ W for K(TO-3) package $P_{max} = 25$ W for T(TO-220) package.

Note 3. Line and load regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

SCHEMATIC DIAGRAM

VOLTAGE REGULATOR PERFORMANCE

The performance of a voltage regulator is specified by its immunity to changes in load, input voltage, power dissipation, and temperature. Line and load regulation are tested with a pulse of short duration (< 100 μ s) and are strictly a function of electrical gain. However, pulse widths of longer duration (> 1.0 ms) are sufficient to affect temperature gradients across the die. These temperature gradients can cause a change in the output voltage, in addition to changes caused by line and load regulation. Longer pulse widths and thermal gradients make it desirable to specify thermal regulation.

Thermal regulation is defined as the change in output voltage caused by a change in dissipated power for a specified time, and is expressed as a percentage output voltage change per watt. The

change in dissipated power can be caused by a change in either the input voltage or the load current. Thermal regulation is a function of I.C. layout and die attach techniques, and usually occurs within 10 ms of a change in power dissipation. After 10 ms, additional changes in the output voltage are due to the temperature coefficient of the device.

Figure 1 shows the line and thermal regulation response of a typical MC78T05A to a 20 wattinput pulse. The variation of the output voltage due to line regulation is labeled 1 and the thermal regulation component is labeled 2. Figure 2 shows the load and thermal regulation response of a typical MC78T05A to a 20 watt load pulse. The output voltage variation due to load regulation is labeled 1 and the thermal regulation component is labeled 2.

FIGURE 1 — LINE AND THERMAL REGULATION

FIGURE 2 — LOAD AND THERMAL REGULATION

 $\begin{array}{c} \text{MC78T05A} \\ \text{V}_0 = 5.0 \text{ V} \\ \text{V}_{\text{in}} = 15 \\ \text{I}_{\text{out}} = 0 \text{ A} - 2 \text{ O A} - 0 \text{ A} \end{array} \qquad \begin{array}{c} \textcircled{1} = \text{Reg}_{\text{load}} = 4.4 \text{ mV} \\ \textcircled{2} = \text{Reg}_{\text{therm}} = 0.0015\% \text{V}_0/\text{W} \end{array}$

FIGURE 3 — TEMPERATURE STABILITY

FIGURE 4 — OUTPUT IMPEDANCE

FIGURE 6 — RIPPLE REJECTION versus
OUTPUT CURRENT

FIGURE 7 — QUIESCENT CURRENT versus INPUT VOLTAGE

FIGURE 8 — QUIESCENT CURRENT versus
OUTPUT CURRENT

FIGURE 9 — DROPOUT VOLTAGE

FIGURE 10 - PEAK OUTPUT CURRENT

APPLICATIONS INFORMATION

Design Considerations

The MC78T00.A Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with

long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A $0.33\,\mu\text{F}$ or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead

FIGURE 16 - CURRENT REGULATOR

The MC78T05 regulator can also be used as a current source when connected as above. In order to minimize dissipation, the MC78T05 is chosen in this application. Resistor R determines the current as follows:

$$I_0 = \frac{5 \text{ V}}{\text{R}} + I_{\text{B}}$$

 Δ I $_{B}\cong 0.7$ mA over line, load and temperature changes I $_{B}\cong 3.5$ mA

For example, a 2-ampere current source would require R to be a 2.5 ohm, 15 W resistor and the output voltage compliance would be the input voltage less 7.5 volts.

FIGURE 17 - ADJUSTABLE OUTPUT REGULATOR

 V_{O} , 8.0 V to 20 V $V_{in} - V_{O} \ge 2.5 \text{ V}$

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 3.0 volts greater than the regulator voltage.

FIGURE 18 - CURRENT BOOST REGULATOR

XX = 2 digits of type number indicating voltage.

The MC78T00, A series can be current boosted with a PNP transistor. The 2N4398 provides current to 15 amperes. Resistor R in conjunction with the VBE of the PNP determines when the pass transistor begins conducting; this circuit is not short-circuit proof. Input-output differential voltage minimum is increased by the VBE of the pass transistor.

FIGURE 19 — CURRENT BOOST WITH SHORT-CIRCUIT PROTECTION

XX = 2 digits of type number indicating voltage.

The circuit of Figure 18 can be modified to provide supply protection against short circuits by adding a short-circuit sense resistor, R_{SC} , and an additional PNP transistor. The current sensing PNP must be able to handle the short-circuit current of the three-terminal regulator. Therefore, an eight-ampere power transistor is specified.

MC7900C SERIES THREE-TERMINAL NEGATIVE VOLTAGE REGULATORS

The MC7900C Series of fixed output negative voltage regulators are intended as complements to the popular MC7800C Series devices. These negative regulators are available in the same seven-voltage options as the MC7800C devices. In addition, two extra voltage options commonly employed in MECL systems are also available in the negative MC7900C Series.

Available in fixed output voltage options from -2.0 to -24 volts, these regulators employ current limiting, thermal shutdown, and safe-area compensation - making them remarkably rugged under most operating conditions. With adequate heat-sinking they can deliver output currents in excess of 1.0 ampere.

- No External Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Packaged in the Plastic Case 221A and Case 1 (TO-220 and Hermetic TO-3)

SCHEMATIC DIAGRAM R2 \$ 20 pF 10 pF 240 20 k **₹**0.3

DEVICE TYPE/NOMINAL OUTPUT VOLTAGE

MC7902C - 2.0 Volts MC7906C - 6.0 Volts

MC7905C - 5.0 Volts MC7908C - 8.0 Volts

MC7905.2C - 5.2 Volts MC7912C - 12 Volts MC7915C - 15 Volts MC7918C - 18 Volts

MC7924C - 24 Volts

MC7900C **Series**

THREE-TERMINAL **NEGATIVE FIXED** VOLTAGE REGULATORS

Pin 1. Ground 2. Input

3. Output

(Heatsink surface connected to Pin 2)

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V more negative even during the high point on the input ripple

- XX = these two digits of the type number indicate voltage.
 - = Cin is required if regulator is located an appreciable distance from power supply
- = CO improves stability and transient response.

DEVICE	TEMPERATURE RANGE	PACKAGE
MC79XXCK	T _J = 0° C to + 125°C	Metal Power
MC79XXCT	T ₁ = 0° C to + 125°C	Plastic Power

MC7900C Series MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (2.0 V - 18 V) (24 V)	VI	-35 -40	Vdc
Power Dissipation Plastic Package $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$	P _D 1/R _{ØJA}	Internally Limited 15.4	Watts mW/ ^o C
$T_C = +25^{\circ}C$ Derate above $T_C = +95^{\circ}C$ (See Figure 1)	P _D 1/R _θ JC	Internally Limited 200	Watts mW/ ^O C
Metal Package T _A = +25 ^o C Derate above T _A = +25 ^o C	P _D 1/R _∂ JA	Internally Limited 28.6	Watts mW/ ^O C
$T_{C} = +25^{\circ}C$ Derate above $T_{C} = +65^{\circ}C$	P _D 1/R _θ J _C	Internally Limited 182	Watts mW/ ^O C
Storage Temperature Range	T _{stg}	-65 to +150	°С
Junction Temperature Range	T _J	0 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient — Plastic Package — Metal Package	$R_{ heta}$ JA	65 35	°C/W
Thermal Resistance, Junction to Case — Plastic Package — Metal Package	$R_{ heta JC}$	5.0 5.5	°C/W

MC7902C ELECTRICAL CHARACTERISTICS (V_{\parallel} = -10 V, I_{Q} = 500 mA, 0^{o} C <T $_{J}$ < +125 o C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage $(T_J = +25^{\circ}C)$	Vo	-1.92	-2.00	-2.08	Vdc
Line Regulation $(T_J = +25^{\circ}C, I_O = 100 \text{ mA})$	Regline				mV
$-7.0 \text{ Vdc} \geqslant \text{V}_{\text{I}} \geqslant -25 \text{ Vdc}$		-	8.0	20	
$-8.0 \text{ Vdc} \geqslant \text{V}_{\text{I}} \geqslant -12 \text{ Vdc}$			4.0	10	
$(T_J = +25^{\circ}C, I_O = 500 \text{ mA})$ -7.0 Vdc $\geqslant V_I \geqslant -25 \text{ Vdc}$ -8.0 Vdc $\geqslant V_I \geqslant -12 \text{ Vdc}$			18 8.0	40 20	
Load Regulation	Regload				mV
$T_J = +25^{\circ}C$, 5.0 mA $\leq I_O \leq 1.5$ A		_	70	120	
250 mA ≤ I _O ≤ 750 mA		-	20	60	
Output Voltage -7.0 Vdc \geqslant V _I \geqslant -20 Vdc, 5.0 mA \leqslant I $_{O}$ \leqslant 1.0 A, P \leqslant 15 W	V _O	-1.90	-	-2.10	Vdc
Input Bias Current (T _J = +25 ^o C)	IIB	_	4.3	8.0	mA
Input Bias Current Change -7.0 Vdc \geqslant V $_{\parallel}$ \geqslant -25 Vdc 5.0 mA \leqslant I $_{0}$ \leqslant 1.5 A	^IB			1.3 0.5	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz \leq f \leq 100 kHz)	V _n	_	40		μV
Long-Term Stability	ΔV _O /Δt	_	-	20	mV/1.0 k Hrs
Ripple Rejection (IO = 20 mA, f = 120 Hz)	RR	_	65	_	dB
Input-Output Voltage Differential $I_O = 1.0 \text{ A}, T_J = +25^{\circ}\text{C}$	V _I -V _O		3.5	num.	Vdc
Average Temperature Coefficient of Output Voltage $I_O=5.0$ mA, 0^{o} C \leqslant T_{A} \leqslant $+125^{o}$ C	△V _O /△T		-1.0		mV/ ^o C

MC7900C Series

$\textbf{MC7905C ELECTRICAL CHARACTERISTICS} \ (V_{1} = -10 \ V, I_{O} = 500 \ \text{mA}, 0^{O}\text{C} < T_{J} < +125^{O}\text{C}, \text{ unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	٧o	-4.8	-5.0	-5.2	Vdc
Line Regulation	Regline				mV
$(T_J = +25^{\circ}C, I_O = 100 \text{ mA})$ -7.0 Vdc $\geqslant V_I \geqslant -25 \text{ Vdc}$ -8.0 Vdc $\geqslant V_I \geqslant -12 \text{ Vdc}$ $(T_J = +25^{\circ}C, I_O = 500 \text{ mA})$		-	7.0 2.0 35	50 25 100	
-7.0 Vdc ≥ V _I ≥-25 Vdc -8.0 Vdc ≥ V _I ≥-12 Vdc		_	8.0	50	
Load Regulation $T_J = +25^{\circ}C, 5.0 \text{ mA} \leqslant I_O \leqslant 1.5 \text{ A}$ 250 mA $\leqslant I_O \leqslant 750 \text{ mA}$	Regload		11 4.0	100 50	mV
Output Voltage -7.0 Vdc \geqslant V $_{\parallel}$ \geqslant -20 Vdc, 5.0 mA \leqslant I $_{\parallel}$ \leqslant 1.0 A, P \leqslant 15 W	V _O	-4.75	_	-5.25	Vdc
Input Bias Current (T _J = +25°C)	IB	_	4.3	8.0	mA
Input Bias Current Change -7.0 Vdc \geqslant V _{in} \geqslant -25 Vdc 5.0 mA \leqslant I $_O \leqslant$ 1.5 A	^IIB			1.3 0.5	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq 100 \text{ kHz}$)	Vn	_	40	-	μ∨
Long-Term Stability	$\Delta V_O/\Delta t$			20	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	-	70		dB
Input-Output Voltage Differential IO = 1.0 A, T _J = +25°C	IV _I -V _O I	_	2.0	_	Vdc
Average Temperature Coefficient of Output Voltage I $_{O}$ = 5.0 mA, $_{O}$ C \leqslant T $_{A}$ \leqslant +125 $^{\circ}$ C	^V _O /^T	-	-1.0	_	mV/ ^o C

$\textbf{MC7905.2C ELECTRICAL CHARACTERISTICS} \ (\text{V}_{1} = -10 \text{ V}, \text{I}_{0} = 500 \text{ mA}, \text{ } 0^{0}\text{C} < \text{T}_{J} < +125^{0}\text{C}, \text{ unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^O C)	v _o	-5.0	-5.2	-5.4	Vdc
Line Regulation (T ₁ = +25 ^o C, I _O = 100 mA)	Regline				mV
$-7.2 \text{ Vdc} \geqslant \text{V}_1 \geqslant -25 \text{ Vdc}$			8.0	52	
-8.0 Vdc ≥ V ₁ ≥ -12 Vdc			2.2	27	
$(T_1 = +25^{\circ}C, I_{O} = 500 \text{ mA})$					
$-7.2 \text{ Vdc} \geqslant \text{V}_{\text{I}} \geqslant -25 \text{ Vdc}$			37	105	
-8.0 Vdc ≥ V _I ≥-12 Vdc		-	8.5	52	
Load Regulation	Regload				mV
$T_J = +25^{\circ}C$, 5.0 mA $\leq I_O \leq 1.5$ A		-	12	105	
250 mA ≤1 ₀ ≤750 mA			4.5	52	
Output Voltage	v _O	-4.94	-	-5.46	Vdc
$-7.2 \text{ Vdc} \geqslant \text{V}_{\text{I}} \geqslant -20 \text{ Vdc}, 5.0 \text{ mA} \leqslant \text{I}_{\text{O}} \leqslant 1.0 \text{ A}, \text{P} \leqslant 15 \text{ W}$					
Input Bias Current $(T_J = +25^{\circ}C)$	IB		4.3	8.0	mA
Input Bias Current Change	∆IB			İ	mA
-7.2 Vdc ≥ V ₁ ≥ -25 Vdc		- '	-	1.3	1
$5.0 \text{ mA} \leqslant I_{\text{O}} \leqslant 1.5 \text{ A}$			-	0.5	
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq 100 \text{ kHz}$)	V _n	-	42		μ∨
Long-Term Stability	ΔV _O /Δt	-	-	20	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	_	68		dB
Input-Output Voltage Differential IO = 1.0 A, T _J = +25°C	IVI-VOI	_	2.0	_	Vdc
Average Temperature Coefficient of Output Voltage $I_O = 5.0 \text{ mA}$, $0^{\circ}\text{C} \leqslant T_A \leqslant +125^{\circ}\text{C}$	^V _O /^T	_	-1.0	-	mV/ ^O C

MC7906C ELECTRICAL CHARACTERISTICS (V_1 = -11 V, I_0 = 500 mA, 0° C < T_J < +125°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	v _o	-5.75	-6.0	-6.25	Vdc
Line Regulation (T _J = +25 ^O C, I _O = 100 mA)	Regline				mV
$-8.0 \text{ Vdc} \ge V_1 \ge -25 \text{ Vdc}$ $-9.0 \text{ Vdc} \ge V_1 \ge -13 \text{ Vdc}$ $(T_J = +25^{\circ}\text{C}, I_O = 500 \text{ mA})$ $-8.0 \text{ Vdc} \ge V_1 \ge -25 \text{ Vdc}$		- -	9.0	60 30	-
-8.0 Vdc ≥ V ≥ -25 Vdc -9.0 Vdc ≥ V ≥ -13 Vdc		_	43 10	120 60	
Load Regulation $T_J = +25^{\rm o}{\rm C}, 5.0~{\rm mA} \leqslant I_O \leqslant~1.5~{\rm A}$ 250 mA $\leqslant I_O \leqslant~750~{\rm mA}$	Regload	-	13 5.0	120 60	mV
Output Voltage $ -8.0 \text{ Vdc} \geqslant V_{\parallel} \geqslant -21 \text{ Vdc}, 5.0 \text{ mA} \leqslant I_{\bigodot} \leqslant 1.0 \text{ A, P} \leqslant 15 \text{ W}) $.vo	-5.7	-	-6.3	Vdc
Input Bias Current (T _J = +25 ^o C)	Iв		4.3	8.0	mA
Input Bias Current Change -8.0 Vdc \geqslant V $_{\parallel}$ \geqslant -25 Vdc 5.0 mA \leqslant I $_{\parallel}$ 0 \leqslant 1.5 A	△IB		_	1.3 0.5	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz \leq f \leq 100 kHz)	V _n	-	45	_	μV
Long-Term Stability	- ΔV _O /Δt	_	_	24	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR		65	_	dB
Input-Output Voltage Differential $I_O = 1.0 A, T_J = +25^{\circ}C$	IVI-VOI	_	2.0	_	Vdc
Average Temperature Coefficient of Output Voltage $I_O=5.0$ mA, $0^{o}C\leqslant T_{A}\leqslant +125^{o}C$	△V _O /△T	_	-1.0	-	mV/ ^o C

MC7908C ELECTRICAL CHARACTERISTICS (V_I = -14 V, I_O = 500 mA, 0°C < T_J < +125°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	v _o	-7.7	-8.0	-8.3	Vdc
Line Regulation (T _J = +25 ^o C, I _O = 100 mA)	Regline				mV
-10.5 $Vdc \geqslant V_{\parallel} \geqslant$ -25 Vdc -11 $Vdc \geqslant V_{\parallel} \geqslant$ -17 Vdc		_ , _	12 5.0	80 40	
$(T_J = +25^{\circ}C, I_O = 500 \text{ mA})$ -10.5 Vdc $\geqslant V_I \geqslant -25 \text{ Vdc}$ -11 Vdc $\geqslant V_I \geqslant -17 \text{ Vdc}$			50 22	160 80	
Load Regulation $T_J = +25^{O}C, 5.0 \text{ mA} \leqslant I_O \leqslant 1.5 \text{ A}$ 250 mA $\leqslant I_O \leqslant 750 \text{ mA}$	Regload		26 9.0	160 80	mV ·
Output Voltage $-10.5~Vdc\geqslant V_{\parallel}\geqslant -23~Vdc,~~5.0~mA\leqslant I_{0}\leqslant~1.0~A,~P\leqslant 15~W$	v _o	-7.6	-	-8.4	Vdc
Input Bias Current (T _J = +25°C)	IВ	_	4.3	8.0	mA
Input Bias Current Change -10.5 $Vdc \geqslant V_1 \geqslant -25 \ Vdc$ 5.0 $mA \leqslant I_O \leqslant 1.5 \ A$	△IB	_	_	1.0 0.5	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq$ 100 kHz)	Vn	_	52	. –	μ∨
Long-Term Stability	ΔV _O /Δt		_	32	mV/1.0 k Hrs
lipple Rejection (I _O = 20 mA, f = 120 Hz)	RR	_	62		dB
Input-Output Voltage Differential IO = 1.0 A, TJ = +25°C	V _I -V _O	_	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage $I_O = 5.0 \text{ mA}$, $0^{\circ}\text{C} \leqslant T_{A} \leqslant +125^{\circ}\text{C}$	△V _O /△T		-1.0		mV/°C

MC7900C Series

MC7912C ELECTRICAL CHARACTERISTICS (V $_{J}$ = -19 V, I_{Q} = 500 mA, 0^{o}C < T $_{J}$ < +125 ^{o}C , unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	v _o	-11.5	-12	-12.5	Vdc
Line Regulation (T ₁ = +25°C, I _O = 100 mA)	Regline				mV
(1) = 725 G, 10 = 100 m/m/ -14.5 Vdc \ge V ₁ \ge -30 Vdc -16 Vdc \ge V ₁ \ge -22 Vdc		<u> </u>	13 6.0	120 60	
$(T_J = +25^{\circ}\text{C}, I_O = 500 \text{ mA})$ -14.5 Vdc $\geqslant V_I \geqslant -30 \text{ Vdc}$ -16 Vdc $\geqslant V_I \geqslant -22 \text{ Vdc}$		<u>-</u> -	55 24	240 120	
Load Regulation $T_J = +25^{O}C, 5.0 \text{ mA} \leqslant I_O \leqslant 1.5 \text{ A}$ 250 mA $\leqslant I_O \leqslant 750 \text{ mA}$	Regload		46 17	240 120	mV
Output Voltage -14.5 Vdc \geqslant V $_{\parallel}$ \geqslant -27 Vdc, 5.0 mA \leqslant I $_{\parallel}$ \leqslant 1.0 A, P \leqslant 15 W	v _o	-11.4	-	-12.6	Vdc
Input Bias Current (T _J = +25 ^o C)	IIB	-	4.4	8.0	mA
Input Bias Current Change -14.5 Vdc \geqslant V $_{\parallel}$ \geqslant -30 Vdc 5.0 mA \leqslant $_{\parallel}$ $_{\parallel}$ $ \le$ 1.5 A	△IB	-	-	1.0 0.5	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq$ 100 kHz)	Vn	-	75	-	μV
Long-Term Stability	ΔV _O /Δt	-	_	48	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	_	61	-	dB
Input-Output Voltage Differential $I_O = 1.0 \text{ A}, T_J = +25^{\circ}\text{C}$	V ₁ -V ₀	and a	2.0	_	Vdc
Average Temperature Coefficient of Output Voltage $I_O = 5.0 \text{ mA}, 0^{O}\text{C} \leqslant T_A \leqslant +125^{O}\text{C}$	△V _O /△T		-1.0	-	mV/ ^o C

MC7915C ELECTRICAL CHARACTERISTICS ($V_1 = -23 \text{ V}$, $I_0 = 500 \text{ mA}$, $0^{\circ}\text{C} < T_J < +125^{\circ}\text{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	v _o	-14.4	-15	-15.6	Vdc
Line Regulation	Regline				mV
$(T_J = +25^{\circ}C, I_O = 100 \text{ mA})$					
-17.5 Vdc ≥ V _I ≥ -30 Vdc		_	14	150	
-20 Vdc ≥ V _I ≥-26 Vdc		-	6.0	75	
$(T_1 = +25^{\circ}C, I_{\odot} = 500 \text{ mA})$					
-17.5 Vdc ≥ V ₁ ≥ -30 Vdc	1	-	57	300	1
-20 Vdc ≥ V ₁ ≥ -26 Vdc		-	27	150	
Load Regulation	Regload				mV
$T_1 = +25^{\circ}C$, 5.0 mA $\leq I_0 \leq 1.5$ A	1 1000	-	68	300	
250 mA ≤ I _O ≤ 750 mA		-	25	150	
Output Voltage	Vo	-14.25	_	-15.75	Vdc
-17.5 Vdc \geqslant V _I \geqslant -30 Vdc , 5.0 mA \leqslant I _O \leqslant 1.0 A, P \leqslant 15 W					
Input Bias Current (T _J = +25 ^o C)	IВ	-	4.4	8.0	mA
Input Bias Current Change	△IB				mA
-17.5 Vdc ≥ V _I ≥ -30 Vdc	"	-	-	1.0	
$5.0 \text{ mA} \leq I_{O} \leq 1.5 \text{ A}$		-	-	0.5	
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq 100$ kHz)	Vn	-	90	-	μV
Long-Term Stability	ΔV _O /Δt	-	-	60	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	_	60	_	dB
Input-Output Voltage Differential	IVI-VOI	_	2.0	_	Vdc
I _O = 1.0 A, T _J = +25°C					
Average Temperature Coefficient of Output Voltage	△V _O /△T	_	-1.0		mV/°C
$I_0 = 5.0 \text{ mA}, 0^{\circ}\text{C} \leqslant T_A \leqslant +125^{\circ}\text{C}$			}		1

$\textbf{MC7918C ELECTRICAL CHARACTERISTICS} \ (V_I = -27 \ V, I_O = 500 \ \text{mA}, 0^{O}\text{C} < T_J < +125^{O}\text{C}, unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^O C)	v _o	-17.3	-18	-18.7	Vdc
Line Regulation $(T_J = +25^{\circ}C, I_O = 100 \text{ mA})$	Regline				mV
-21 Vdc \geqslant V _I \geqslant -33 Vdc -24 Vdc \geqslant V _I \geqslant -30 Vdc (T _J = +25 ^O C, I _O = 500 mA)		<u> </u>	25 10	180 90	
-21 Vdc		_	90 50	360 180	
Load Regulation $T_J = +25^{O}C, 5.0 \text{ mA} \leqslant I_O \leqslant 1.0 \text{ A} \\ 250 \text{ mA} \leqslant I_O \leqslant 750 \text{ mA}$	Regload	-	110 55	360 180	mV
Output Voltage $-21 \text{ Vdc} \geqslant \text{V}_1 \geqslant -33 \text{ Vdc}, 5.0 \text{ mA} \leqslant \text{I}_{\hbox{\scriptsize O}} \leqslant 1.0 \text{ A}, \text{P} \leqslant 15 \text{ W}$	v _o	-17.1	_	-18.9	Vdc
Input Bias Current (T _J = +25 ^o C)	IВ	_	4.5	8.0	mA
Input Bias Current Change -21 Vdc \geqslant V $_{\parallel}$ \geqslant -33 Vdc 5.0 mA \leqslant I $_{\parallel}$ 0 \leqslant 1.0 A	△IIB	_ _		1.0 0.5	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq 100$ kHz)	Vn	_	110		μ٧
Long-Term Stability	ΔV _O /Δt	_		72	mV/1.0 k Hrs
Ripple Rejection (I _O = 20 mA, f = 120 Hz)	RR	_	59	-	dB
Input-Output Voltage Differential $I_O = 1.0 \text{ A}, T_J = +25^{O}C$	V _I -V _O	=	2.0	Materia	Vdc
Average Temperature Coefficient of Output Voltage $I_O=5.0~mA$, $0^{\rm O}$ C \lesssim T_A \lesssim +125 $^{\rm O}$ C	△V _O /△T	_	-1.0	-	mV/ ^O C

MC7924C ELECTRICAL CHARACTERISTICS ($V_1 = -33$ V, $I_0 = 500$ mA, 0° C <T $_J < +125^{\circ}$ C, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	v _o	-23	-24	-25	Vdc
Line Regulation $(T_J = +25^{\circ}C, I_O = 100 \text{ mA})$	Regline				mV
-27 Vdc ≥ V _I ≥ -38 Vdc		_	31	240	
-30 Vdc ≥ V _I ≥ -36 Vdc		_	14	120	
$(T_J = +25^{\circ}C, I_O = 500 \text{ mA})$					
-27 Vdc ≥ V ₁ ≥ -38 Vdc		_	118	480	
-30 Vdc ≥ V ₁ ≥ -36 Vdc		_	70	240	
Load Regulation	Regload				mV
$T_J = +25^{\circ}C$, 5.0 mA $\leq I_O \leq 1.0$ A	Sioud	_	150	480	
250 mA ≤ I _O ≤ 750 mA		_	85	240	
Output Voltage -27 Vdc \geqslant V _I \geqslant -38 Vdc, 5.0 mA \leqslant I _O \leqslant 1.0 A, P \leqslant 15 W	v _o	-22.8	-	-25.2	Vdc
Input Bias Current (T _J = +25 ^o C)	Iв	_	4.6	8.0	mA
Input Bias Current Change	△IIB				mA
-27 Vdc ≥ V _I ≥ -38 Vdc		_	_	1.0	
$5.0 \text{ mA} \leqslant I_{\text{O}} \leqslant 1.0 \text{ A}$		-	_	0.5	
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq 100 \text{ kHz}$)	Vn	_	170	_	μV
Long-Term Stability	ΔV _O /Δt	-	-	96	mV/1.0 k Hrs
Ripple Rejection (IO = 20 mA, f = 120 Hz)	RR	****	56	_	dB
Input-Output Voltage Differential $I_O = 1.0 A, T_J = +25^{O}C$	V _I -V _O	_	2.0	-	Vdc
Average Temperature Coefficient of Output Voltage $I_O = 5.0 \text{ mA}, 0^O C \leqslant T_A \leqslant +125^O C$	△V _O /△T	_	-1.0	-	mV/°C

TYPICAL CHARACTERISTICS

 $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$

FIGURE 1 – WORST CASE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE (TO-220)

FIGURE 2 — WORST CASE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE (TO-3)

FIGURE 3 – PEAK OUTPUT CURRENT AS A FUNCTION OF INPUT-OUTPUT DIFFERENTIAL VOLTAGE

FIGURE 4 – RIPPLE REJECTION AS A FUNCTION OF FREQUENCY

FIGURE 5 – RIPPLE REJECTION AS A FUNCTION OF OUTPUT VOLTAGES

FIGURE 6 – OUTPUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE

TYPICAL CHARACTERISTICS (continued)

DEFINITIONS

Line Regulation — The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation -- The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications.

Input Bias Current \vdash That part of the input current that is not delivered to the load.

Output Noise Voltage The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long Term Stability — Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

APPLICATIONS INFORMATION

Design Considerations

The MC7900C Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected

to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 µF or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

FIGURE 8 - CURRENT REGULATOR

The MC7902, -2.0 V regulator can be used as a constant current source when connected as above. The output current is the sum of resistor R current and quiescent bias current as follows:

$$I_O = \frac{2 \text{ V}}{\text{R}} + I_B$$

The quiescent current for this regulator is typically 4.3 mA. The 2.0 volt regulator was chosen to minimize dissipation and to allow the output voltage to operate to within 6.0 V below the input voltage.

FIGURE 9 - CURRENT BOOST REGULATOR (-5.0 V @ 4.0 A, with 5.0 A current limiting)

*Mounted on common heat sink, Motorola MS-10 or equivalent.

When a boost transistor is used, short-circuit currents are equal to the sum of the series pass and regulator limits, which are measured at 3.2 A and 1.8 A respectively in this case. Series pass limiting is approximately equal to 0.6 V/R₅C. Operation beyond this point to the peak current capability of the MC7905C is possible if the regulator is mounted on a heat sink; otherwise thermal shutdown will occur when the additional load current is picked up by the regulator.

FIGURE 10 - OPERATIONAL AMPLIFIER SUPPLY

The MC7815 and MC7915 positive and negative regulators may be connected as shown to obtain a dual power supply for operational amplifiers. A clamp diode should be used at the output of the MC7815 to prevent potential latch-up problems.

FIGURE 11 – TYPICAL MECL SYSTEM POWER SUPPLY (-5.2 V @ 4.0 A and -2.0 V @ 2.0 A; for PC Board)

When current-boost power transistors are used, 47-ohm base-to-emitter resistors (R) must be used to bypass the quiescent current at no load. These resistors, in conjunction with the VBE of the NPN transistors, determine when the pass transistors begin conducting. The 1-ohm and 4-ohm dropping resistors were chosen to reduce the power dissipated in the boost transistors but still leave at least 2.0 V across these devices for good regulation.

MC79L00C,AC Series

THREE-TERMINAL LOW CURRENT NEGATIVE VOLTAGE REGULATORS

The MC79L00 Series negative voltage regulators are inexpensive, easy-to-use devices suitable for numerous applications requiring up to 100 mA. Like the higher powered MC7900 Series negative regulators, this series features thermal shutdown and current limiting, making them remarkably rugged. In most applications, no external components are required for operation.

The MC79L00 devices are useful for on-card regulation or any other application where a regulated negative voltage at a modest current level is needed. These regulators offer substantial advantage over the common resistor/zener diode approach.

- No External Components Required
- Internal Short-Circuit Current Limiting
- Internal Thermal Overload Protection
- Low Cost
- Complementary Positive Regulators Offered (MC78L00 Series)
- Available in Either ±5% (AC) or ±10% (C) Selections

REPRESENTATIVE CIRCUIT SCHEMATIC Gnd R8 R5 2 Q10 ₹R9 R17 \$ ≹R1 Q8 Q14 R16 . Q9 0.1 R4 Output R2 012 Q13 21 02 RЗ Q6 0.1 R10 Input

Device No. ±10%	Device No. ±5%	Nominal Voltage
MC79L03C	MC79L03AC	- 3.0
MC79L05C	MC79L05AC	- 5.0
MC79L12C	MC79L12AC	- 12
MC79L15C	MC79L15AC	- 15
MC79L18C	MC79L18AC	- 18
MC79L24C	MC79L24AC	-24

THREE-TERMINAL LOW **CURRENT NEGATIVE FIXED VOLTAGE REGULATORS**

P SUFFIX PLASTIC PACKAGE CASE 29-02 TO-226AA (TO-92)

2. Input

3. Output

G SUFFIX METAL PACKAGE CASE 79-02 TO-205AD

(TO-39) Pin 1. Ground

2. Output

3. Input

STANDARD APPLICATION

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

- * = C₁ is required if regulator is located an appreciable distance from power supply
- = C_O improves stability and transient response

ORDERING INFORMATION								
Device Temperature Range Package								
MC79LXXACG	$T_J = 0^{\circ}C \text{ to } + 125^{\circ}C$	Metal Can						
MC79LXXACP	$T_J = 0^{\circ}C \text{ to } + 125^{\circ}C$	Plastic Power						
MC79LXXCG	$T_J = 0^{\circ}C \text{ to } + 125^{\circ}C$	Metal Can						
MC79LXXCP	$T_J = 0^{\circ}C \text{ to } + 125^{\circ}C$	Plastic Power						
XX indicates nominal voltage								

MC79L00C Series MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)

		д		
	Rating	Symbol	Value	Unit
Input Voltage (-3,-5 V) (-12,-15,-18 V) (-24 V)		V _I	-30 -35 -40	Vdc
Storage Tempera	ture Range	T _{stg}	-65 to +150	°С
Junction Temper	ature Range	TJ	0 to +150	°C

MC79L03C, AC ELECTRICAL CHARACTERISTICS (V $_{I}$ = -10 V, I $_{O}$ = 40 mA, C_{I} = 0.33 μ F, C_{O} = 0.1 μ F, 0°C < T $_{J}$ < +125°C unless otherwise noted.)

			MC79L030	:	N.	1C79L03A	C	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	v _o	-2.76	-3.00	-3.24	-2.88	-3.0	-3.12	Vdc
Input Regulation	Regline							mV
$(T_J = +25^{\circ}C)$			_	80		_	60	
-7.0 Vdc ≥ V _I ≥ -20 Vdc -8.0 Vdc ≥ V _I ≥ -20 Vdc		_	_	60	_	_	40	
Load Regulation	Regload				 			mV
$T_{.1} = +25^{\circ}C$, 1.0 mA $\leq I_{.0} \leq 100$ mA	sioau		-	72	-	-	72	
1.0 mA ≤ I _O ≤ 40 mA		_	-	36	_	-	36	
Output Voltage	٧o							Vdc
$-7.0 \text{ Vdc} \ge \text{V}_{\text{I}} \ge -20 \text{ Vdc}$, $1.0 \text{ mA} \le \text{I}_{\text{O}} \le 40 \text{ mA}$		-2.7	-	-3.3	-2.85	-	-3.15	
$V_1 = -10 \text{ Vdc}, 1.0 \text{ mA} \le I_0 \le 70 \text{ mA}$		-2.7	-	-3.3	-2.85		-3.15	
Input Bias Current	IIB		l			İ	6.0	mA
$(T_J = +25^{\circ}C)$			-	6.0 5.5	_	_	5.5	
$(T_J = +125^{\circ}C)$				5.5			9.0	mA
Input Bias Current Change	△HB			1.5			-1.5	l ma
-8.0 Vdc ≥ V ₁ ≥ -20 Vdc		_	_	-1.5 -0.2	_		-0.1	1
1.0 mA ≤ I _O ≤ 40 mA						30	-0.1	μV
Output Noise Voltage	٧n	-	30	-	_	30	_	μ ν
$(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$				<u> </u>	 	<u> </u>		mV/1.0 k Hrs.
Long-Term Stability	^V _O /^t		10	_		10		
Ripple Rejection	RR	44	51	-	45	51	-	dB
$(-8.0 \ge V_1 \ge -18 \text{ Vdc}, f = 120 \text{ Hz}, T_J = 25^{\circ}\text{C})$							ļ	
Input-Output Voltage Differential	14-401		1.7	-	-	1.7	-	Vdc
IO = 40 mA, T _J = +25°C	1							

MC79L05C, AC Series ELECTRICAL CHARACTERISTICS (V_I = -10 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, 0°C < T_J < +125°C unless otherwise noted.)

			MC79L05	С		MC79L05	AC	1
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	-4.6	-5.0	-5.4	-4.8	-5.0	-5.2	Vdc
Input Regulation (T _J = +25 ^o C)	Regline							mV
-7.0 Vdc ≥ V _I ≥ -20 Vdc -8.0 Vdc ≥ V _I ≥ -20 Vdc		_	_	200 150	_	-	150 100	
Load Regulation $T_J=+25^{o}C,1.0~\text{mA}\leqslant I_{\mbox{O}}\leqslant 100~\text{mA} \\ 1.0~\text{mA}\leqslant I_{\mbox{O}}\leqslant 40~\text{mA}$	Regload	_	_	60 30	_	_	60	mV
Output Voltage $ -7.0 \text{ Vdc} \geqslant V_{\parallel} \geqslant -20 \text{ Vdc}, 1.0 \text{ mA} \leqslant I_{0} \leqslant 40 \text{ mA} $ V_{\parallel} = $-10 \text{ Vdc}, 1.0 \text{ mA} \leqslant I_{0} \leqslant 70 \text{ mA} $	v _O	-4.5 -4.5		-5.5 -5.5	-4.75 -4.75	_	-5.25 -5.25	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	IB	_	-	6.0 5.5	_	_	6.0 5.5	mA
Input Bias Current Change $-8.0 \text{ Vdc} \geqslant \text{V}_1 \geqslant -20 \text{ Vdc}$ $1.0 \text{ mA} \leqslant \text{I}_O \leqslant 40 \text{ mA}$	^IIB	_	_	1.5 0.2	_	_	1.5	mA .
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	_	40	_	_	40	-	μV
Long-Term Stability	^V _O /△t	_	12	-		12		mV/1.0 k Hrs
Ripple Rejection (-8.0 \geqslant V _I \geqslant 18 Vdc, f = 120 kHz, T _J = 25°C)	RR	40	49	_	41	49	_	dB
Input-Output Voltage Differential I _O = 40 mA, T _J = +25 ^O C	V _I -V _O	-	1.7	-	_	1.7	-	Vdc

MC79L12C, AC ELECTRICAL CHARACTERISTICS (V_I = -19 V, I_O = 40 mA, C_I = $0.33~\mu$ F, C_O = $0.1~\mu$ F, 0°C < T_J < +125°C unless otherwise noted.)

			MC79L12	С	l N	1C79L12	AC	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage $(T_J = +25^{\circ}C)$	Vo	-11.1	-12	-12.9	-11.5	-12	-12.5	Vdc
Input Regulation (T _J = +25°C)	Regline							mV
-14.5 Vdc ≥ V _I ≥ -27 Vdc -16 Vdc ≥ V _I ≥ -27 Vdc		-	_	250 200	-	_ _	250 200	
Load Regulation $T_J=+25^OC, 1.0 \text{ mA} \leqslant I_O \leqslant 100 \text{ mA} \\ 1.0 \text{ mA} \leqslant I_O \leqslant 40 \text{ mA}$	Regload	-	_	10 0 50	_	_	100 50	mV
Output Voltage $-14.5 \text{ Vdc} \geqslant \text{V}_{\text{I}} \geqslant -27 \text{ Vdc}, \ 1.0 \text{ mA} \leqslant \text{I}_{\text{O}} \leqslant 40 \text{ mA}$ $\text{V}_{\text{I}} = -19 \text{ Vdc}, \ 1.0 \text{ mA} \leqslant \text{I}_{\text{O}} \leqslant 70 \text{ mA}$	v _o	-10.8 -10.8	_	-13.2 -13.2	-11.4 -11.4	_	-12.6 -12.6	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	IВ		_	6.5 6.0	_	_	6.5	mA
Input Bias Current Change -16 Vdc \geqslant V _I \geqslant -27 Vdc 1.0 mA \leqslant I _O \leqslant 40 mA	^I _{IB}		-	1.5	_	_	1.5	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	Vn	_	80		_	80	-	μV
Long-Term Stability	△V _O /△t	_	24	_	_	24	_	mV/1.0 k Hrs.
Ripple Rejection (-15 \leq V _I \leq -25 Vdc, f = 120 Hz, T _J = +25 ^o C)	RR	36	42	-	37	42	_	dB
Input-Output Voltage Differential $J_0 = 40 \text{ mA}$, $T_J = +25^{\circ}\text{C}$	V _I -V _O	_	1.7			1.7	_	Vdc

MC79L00C,AC Series

MC79L15C, AC ELECTRICAL CHARACTERISTICS (V $_I$ = -23 V, I $_O$ = 40 mA, C $_I$ = 0.33 μF , C $_O$ = 0.1 μF , 0°C < T $_J$ < +125°C unless otherwise noted.)

	MC79L15C MC79L15AC		MC79L15C MC79L15		MC79L15C		VC .	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	Vo	-13.8	-15	-16.2	-14.4	-15	-15.6	Vdc
Input Regulation (T = +25°C)	Regline							m/V
$-17.5 \text{ Vdc} \geqslant \text{V}_{\parallel} \geqslant -30 \text{ Vdc}$ $-20 \text{ Vdc} \geqslant \text{V}_{\parallel} \geqslant -30 \text{ Vdc}$		_	_	300 250	_		300 250	
2.0 vac ≥ V_1 = 30 vac Load Regulation $T_J = +25^{\circ}C$, 1.0 mA ≤ I_0 ≤ 100 mA 1.0 mA ≤ I_0 ≤ 40 mA	Regload	-	_	150 75	_	-	150 75	mV
Output Voltage $-17.5 \text{ Vdc} \geqslant V_{\parallel} \geqslant -30 \text{ Vdc}, \ 1.0 \text{ mA} \leqslant I_{0} \leqslant 40 \text{ mA}$ $V_{\parallel} = -23 \text{ Vdc}, \ 1.0 \text{ mA} \leqslant I_{0} \leqslant 70 \text{ mA}$	v _o	-13.5 -13.5	_ _	-16.5 -16.5	-14.25 -14.25	-	-15.75 -15.75	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_I = +125^{\circ}C)$	IВ		_ _	6.5 6.0	_	_	6.5 6.0	mA
Input Bias Current Change $-20 \text{ Vdc} > \text{V}_1 > -30 \text{ Vdc}$ $1.0 \text{ mA} \leq \text{I}_0 \leq 40 \text{ mA}$	△IB	-		1.5 0.2	_	_	1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	_	90	_	_	90	_	μV
Long-Term Stability	△Vo/△t		30	-	_	30		mV/1.0 k Hrs.
Ripple Rejection (-18.5 \leq V _I \leq -28.5 Vdc, f = 120 Hz)	RR	33	39	-	34	39	_	dB
Input-Output Voltage Differential $I_O = 40 \text{ mA}$, $T_J = +25^{\circ}\text{C}$	IV _I -V _O I	-	1.7	_	_	1.7		Vdc

MC79L18C, AC ELECTRICAL CHARACTERISTICS (V_I = -27 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, 0°C < T_{.I} < +125°C unless otherwise noted.)

			1C79L180		N	1C79L18/	AC .	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^o C)	VO	-16.6	-18	-19.4	-17.3	-18	-18.7	Vdc
Input Regulation (T = +25°C)	Regline					-		mV
-20.7 Vdc ≥ V ₁ ≥ -33 Vdc		-	-	-	-	-	325	
-21.4 Vdc ≥ V _I ≥ -33 Vdc		-	-	325	-	-		
-22 Vdc ≥ V _I ≥ -33 Vdc -21 Vdc ≥ V _I ≥ -33 Vdc		_	-	275 —	_	_	275	
Load Regulation $T_J = +25^{O}C$, 1.0 mA $\leq I_O \leq 100$ mA 1.0 mA $\leq I_O \leq 40$ mA	Reg _{load}			170 85	_		170 85	mV
Output Voltage $-20.7 \text{ Vdc} \geqslant \text{V}_{\parallel} \geqslant -33 \text{ Vdc}, 1.0 \text{ mA} \leqslant \text{I}_{0} \leqslant 40 \text{ mA}$	v _o	-	-	-	-17.1	_	-18.9	Vdc
$-21.4 \text{ Vdc} \ge V_1 \ge -33 \text{ Vdc}, 1.0 \text{ mA} \le I_0 \le 40 \text{ mA}$ $V_1 = -27 \text{ Vdc}, 1.0 \text{ mA} \le I_0 \le 70 \text{ mA}$		-16.2 -16.2	_	-19.8 -19.8	-17.1	_	-18.9	
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	IIB		-	6.5 6.0	-	-	6.5 6.0	mA
Input Bias Current Change -21 Vdc ≥ V ₁ ≥ -33 Vdc	ΔIB		-	-	-	_	1.5	mA
-27 Vdc ≥ V _I ≥ -33 Vdc 1.0 mA ≤ I _O ≤ 40 mA		-	-	1.5 0.2		_	0.1	
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	Vn	-	150	-	_	150	-	μV
Long-Term Stability	△V _O /△t	-	45	_	_	45	-	mV/1.0 k Hrs.
Ripple Rejection (-23 \leq V _I \leq -33 Vdc, f = 120 Hz, T _J = +25°C)	RR	32	46	-	33	48	-	dB
Input-Output Voltage Differential IO = 40 mA, TJ = +25°C	1V ₁ -V ₀ 1	-	1.7	_	-	1.7	_	Vdc

MC79L24C, AC ELECTRICAL CHARACTERISTICS (V_I = -33 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, 0°C < T_J < +125°C unless otherwise noted.)

		MC79L24C				MC79L24	AC	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (T _J = +25 ^O C)	Vo	-22.1	-24	-25.9	-23	-24	-25	Vdc
Input Regulation (T _J = +25 ^O C)	Regline							mV
-27 Vdc ≥ V _I ≥ -38 V		-	-	-	-	-	350	
-27.5 Vdc ≥ V _I ≥ -38 Vdc		-	_	350	-	-	-	
-28 Vdc ≥ V _I ≥ -38 Vdc		-	-	300	-		300	
Load Regulation $T_J = +25^{\circ}C, 1.0 \text{ mA} \leq I_O \leq 100 \text{ mA}$ $1.0 \text{ mA} \leq I_O \leq 40 \text{ mA}$	Regload	_	-	200	_	_	200	mV
Output Voltage $-27 \text{ Vdc} \ge V_1 \ge -38 \text{ V}, 1.0 \text{ mA} \le I_0 \le 40 \text{ mA}$	V _O	_	_	-	-22.8	_	-25.2	Vdc
$-28 \text{ Vdc} \ge \text{V}_1 \ge -38 \text{ Vdc}, 1.0 \text{ mA} \le \text{I}_0 \le 40 \text{ mA}$ V ₁ = $-33 \text{ Vdc}, 1.0 \text{ mA} \le \text{I}_0 \le 70 \text{ mA}$		-21.4 -21.4	-	-26.4 -26.4	- -22.8	_	- -25.2	
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	IB	_	_	6.5 6.0	_	_	6.5 6.0	mA
Input Bias Current Change $-28 \text{ Vdc} \geqslant \text{V}_1 \geqslant -38 \text{ Vdc}$ $1.0 \text{ mA} \leqslant \text{I}_O \leqslant 40 \text{ mA}$	ΔIB	_		1.5 0.2	_	_	1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	-	200	-	-	200	-	μ∨
Long-Term Stability	△V _O /△t	_	56	-	_	56	-	mV/1.0 k Hrs.
Ripple Rejection (-29 $ imes$ V _I $ imes$ -35 Vdc, f = 120 Hz, T _J = 25 ⁰ C)	RR	30	43	-	31	47	-	dB
Input-Output Voltage Differential . IO = 40 mA, T _J = +25 ⁰ C	V ₁ -V _O	-	1.7	_	-	1.7	-	Vdc

APPLICATIONS INFORMATION

Design Considerations

The MC79L00C Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short-Circuit Protection that limits the maximum current the circuit will pass.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be

selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 µF or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

FIGURE 7 - CURRENT REGULATOR

The MC79L03, $-3.0\,V$ regulator can be used as a constant current source when connected as above. The output current is the sum of resistor R current and quiescent bias current as follows:

$$I_O = \frac{3 \text{ V}}{\text{R}} + I_B$$

The quiescent current for this regulator is typically 3.8 mA. The -3.0 volt regulator was chosen to minimize dissipation and to allow the output voltage to operate to within 6.0 V below the input voltage.

FIGURE 8 - POSITIVE AND NEGATIVE REGULATOR

TYPICAL CHARACTERISTICS

 $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$

FIGURE 2 - DROPOUT VOLTAGE versus JUNCTION TEMPERATURE

FIGURE 3 - INPUT BIAS CURRENT versus AMBIENT TEMPERATURE

FIGURE 4 - INPUT BIAS CURRENT versus INPUT VOLTAGE

FIGURE 5 - MAXIMUM AVERAGE POWER DISSIPATION

FIGURE 6 - MAXIMUM AVERAGE POWER DISSIPATION versus

MC79M00 Series

THREE-TERMINAL NEGATIVE VOLTAGE REGULATORS

The MC79M00 Series of fixed output negative voltage regulators are intended as complements to the popular MC78M00 Series devices.

Available in fixed output voltage options of -5.0, -12 and -15 volts, these regulators employ current limiting, thermal shutdown, and safe-area compensation — making them remarkably rugged under most operating conditions. With adequate heat-sinking they can deliver output currents in excess of 0.5 ampere.

- No External Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Packaged in the Plastic Case 221A (TO-220AB)

EQUIVALENT SCHEMATIC DIAGRAM Gnd 10 k 10 k 10 pF 10 p

ORDERING INFORMATION

Device	Output Voltage	Operating Junction Temperature Range	Package
MC79M05CT MC79M12CT MC79M15CT	− 5.0 Volts − 12 Volts − 15 Volts	0°C to +125°C	Plastic Power

THREE-TERMINAL NEGATIVE FIXED VOLTAGE REGULATORS

SILICON MONOLITHIC INTEGRATED CIRCUITS

A common ground is required between the input and the output voltages. The input voltage must remain typically 1.1 V more negative even during the high point on the input ripple voltage.

- XX = these two digits of the type number indicate voltage.
- C_{in} is required if regulator is located an appreciable distance from power supply filter.
- ** = Co improves stability and transient response.

MC79MXX Series MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit	
Input Voltage	VI	- 35	Vdc	
Power Dissipation Plastic Package $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ $T_C = +25^{\circ}C$ Derate above $T_C = +95^{\circ}C$	P _D 1/Réja P _D 1/Réjc	Internally Limited 14.2 Internally Limited 200	Watts mW/°C Watts mW/°C	
Storage Junction Temperature Range	T _{stg}	-65 to +150	°C	
Junction Temperature Range	TJ	0 to +150	°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	RθJA	65	°C/W
Thermal Resistance, Junction to Case	$R\theta_{JC}$	5.0	°C/W

$\textbf{MC79MO5C ELECTRICAL CHARACTERISTICS} \; (V_{J} = -10 \; \text{V}, I_{O} = 350 \; \text{mA}, \, 0^{\circ}\text{C} < T_{J} < +125^{\circ}\text{C} \; \text{unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	Vo	- 4.8	-5.0	-5.2	Vdc
Line Regulation (T $_J=+25^\circ$ C) (Note 1) -7.0 Vdc \geqslant V $_J\geqslant$ -25 Vdc -8.0 Vdc \geqslant V $_J\geqslant$ -18 Vdc	Reg _{line}	_	7.0 2.0	50 30	mV
Load Regulation (T _J = $+25^{\circ}$ C) (Note 1) 5.0 mA \leq I _O \leq 500 mA	Regload	_	30	100	mV
Output Voltage $-7.0 \text{ Vdc} \geqslant V_{\text{I}} \geqslant -25 \text{ Vdc}, 5.0 \text{ mA} \leqslant I_{\text{O}} \leqslant 350 \text{ mA}$	v _O	- 4.75	_	- 5.25	Vdc
Input Bias Current (T _J = +25°C)	IВ	_	4.3	8.0	mA
Input Bias Current Change $-8.0 \text{ Vdc} \geqslant V_{\parallel} \geqslant -25 \text{ Vdc}, \ I_{Q} = 350 \text{ mA}$ $5.0 \text{ mA} \leqslant I_{Q} \leqslant 350 \text{ mA}, \ V_{\parallel} = -10 \text{ V}$	ΔΙΙΒ		_	0.4 0.4	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq$ 100 kHz)	٧n		40		μV
Ripple Rejection (f = 120 Hz)	RR	54	66		dB
Input-Output Voltage Differential $I_Q = 500 \text{ mA}, T_J = +25^{\circ}\text{C}$	V _I -V _O		1.1	_	Vdc
Average Temperature Coefficient of Output Voltage $I_O=5.0$ mA, $0^{\circ}C \leq T_J \leq +125^{\circ}C$	ΔV _O /ΔΤ	_	0.2		mV/°C

Note

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC79M12C ELECTRICAL CHARACTERISTICS (V) = -19 V, I $_{O}$ = 350 mA, 0°C < T $_{J}$ < +125°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	v _o	-11.5	- 12	- 12.5	Vdc
Line Regulation (T _J = $+25^{\circ}$ C) (Note 1) $-14.5 \text{ Vdc} \ge \text{V}_{ } \ge -30 \text{ Vdc}$ $-15 \text{ Vdc} \ge \text{V}_{ } \ge -25 \text{ Vdc}$	Regline	÷ _	5.0 3.0	80 50	mV mV
Load Regulation (T _J = $+25^{\circ}$ C) (Note 1) 5.0 mA \leq I _O \leq 500 mA	Regload	_	30	240	mV
Output Voltage - 14.5 Vdc ≥ V _I ≥ -30 Vdc, 5.0 mA ≤ I _O ≤ 350 mA	v _O	-11.4	_	- 12.6	Vdc
Input Bias Current (T _J = +25°C)	Iв	_	4.4	8.0	mA
Input Bias Current Change -14.5 Vdc \ge V $_{\parallel} \ge -30$ Vdc, $ _{\mbox{O}} = 350$ mA \le $ _{\mbox{O}} \le 350$ mA, V $_{\parallel} = -19$ V	ΔΙΙΒ	_	=	0.4 0.4	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, $10Hz \le f \le 100 \text{ kHz}$)	٧n	. –	75	_	μV
Ripple Rejection (f = 120 Hz)	RR	54	60		dB
Input-Output Voltage Differential IO = 500 mA, T _J = +25°C	V _I -V _O	_	1.1	_	Vdc
Average Temperature Coefficient of Output Voltage $I_O = 5.0$ mA, $0^{\circ}C \le T_J \le +125^{\circ}C$	ΔV _O /ΔΤ	_	-0.8		mV/°C

$\textbf{MC79M15C ELECTRICAL CHARACTERISTICS} \ (V_{J} = -23 \ V, \ I_{\hbox{\scriptsize O}} = 350 \ \text{mA}, \ 0^{\circ}\text{\scriptsize C} < T_{\hbox{\scriptsize J}} < +125^{\circ}\text{\scriptsize C} \ \text{unless otherwise noted.})$

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	٧o	- 14.4	- 15	- 15.6	Vdc
Line Regulation (T _J = $+25^{\circ}$) (Note 1) -17.5 Vdc \geq V _I \geq -30 Vdc -18 Vdc \geq V _I \geq -28 Vdc	Reg _{line}	_	5.0 3.0	80 50	mV
Load Regulation (T _J = $+25^{\circ}$ C) (Note 1) 5.0 mA \leq I _O \leq 500 mA	Regload	_	30	240	mV
Output Voltage $-17.5 \text{ Vdc} \ge V_{\parallel} \ge -30 \text{ Vdc}$, 5.0 mA $\le I_{0} \le 350 \text{ mA}$	v _o	- 14.25	_	- 15.75	Vdc
Input Bias Current (T _J = +25°C)	lв	_	4.4	8.0	mA
Input Bias Current Change $-17.5 \text{ Vdc} \ge V_{\parallel} \ge -30 \text{ Vdc}$, $I_{\bigcirc} = 350 \text{ mA}$ $5.0 \text{ mA} \le I_{\bigcirc} \le 350 \text{ mA}$, $V_{\parallel} = -23 \text{ V}$	ΔΙΙΒ	_	<u>-</u>	0.4 0.4	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq$ 100 kHz)	Vn	_	90	_	μV
Ripple Rejection (f = 120 Hz)	RR	54	60	_	dB
Input-Output Voltage Differential IO = 500 mA, TJ = +25°C	V _I -V _O	_	1.1	_	Vdc
Average Temperature Coefficient of Output Voltage $I_O = 5.0$ mA, $0^{\circ}C \le T_J \le +125^{\circ}C$	ΔV _O /ΔΤ		-1.0	_	mV/°C

Note:

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_Q due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC34060 MC35060

Specifications and Applications Information

SWITCHMODE PULSE WIDTH MODULATION CONTROL CIRCUITS

The MC35060 and MC34060 are low cost fixed frequency, pulse width modulation control circuits designed primarily for single ended SWITCHMODE power supply control. These devices feature:

- Complete Pulse Width Modulation Control Circuitry
- On-Chip Oscillator With Master or Slave Operation
- On-Chip Error Amplifiers
- On-Chip 5.0 Volt Reference
- Adjustable Dead Time Control
- Uncommitted Output Transistor for 200 mA Source or Sink

PIN CONNECTIONS Non-Inv Non-Inv Input Input Error Error Amn 13 Input Input vcc -Compen/PWM 5.0 V V_{ref} 12 Comp Input Dead - Time N.C. Control Ст 10 vcc Oscillator 6 9 Q1 Ground 7 (Top View)

The MC34060 is specified over the commercial operating range of 0° C to $+70^{\circ}$ C. The MC35060 is specified over the full military range of -55 to $+125^{\circ}$ C.

SWITCHMODE PULSE WIDTH MODULATION CONTROL CIRCUITS

SILICON MONOLITHIC INTEGRATED CIRCUITS

P SUFFIX PLASTIC PACKAGE CASE 646-05 (MC34060 only)

ORDERING INFORMATION							
Device	Package						
MC35060L	-55 to +125°C	Ceramic DIP					
MC34060P	0 to +70°C	Plastic DIP					
MC34060L	0 to +70°C	Ceramic DIP					

FIGURE 1 - BLOCK DIAGRAM

Description

The MC35060/34060 is a fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. (See Figure 1.) An internal-linear sawtooth oscillator is frequency-programmable by two external components, R_T and C_T . The oscillator frequency is determined by:

$$f_{OSC} \approx \frac{1.1}{R_T - C_T}$$

Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor C_T to either of two control signals. The output is enabled only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control-signal amplitude causes a corresponding linear decrease of output pulse width. (Refer to the timing diagram shown in Figure 2.)

The control signals are external inputs that can be fed into the dead-time control, the error amplifier inputs, or the feedback input. The dead-time control comparator has an effective 120 mV input offset which limits the minimum output dead time to approximately the first 4% of the sawtooth-cycle time. This would result in a maximum duty cycle of 96%. Additional dead time may be imposed on the output by setting the dead time-control input to a fixed voltage, ranging between 0 to 3.3 V.

The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on-time, established by the dead time time control input, down to zero, as the voltage at the feed-

back pin varies from 0.5 to 3.5 V. Both error amplifiers have a common-mode input range from -0.3 V to (V_{CC} -2 V), and may be used to sense power supply output voltage and current. The error-amplifier outputs are active high and are ORed together at the non-inverting input of the pulse-width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop.

The MC35060/34060 has an internal 5.0 V reference capable of sourcing up to 10 mA of load currents for external bias circuits. The reference has an internal accuracy of $\pm5\%$ with a thermal drift of less than 50 mV over an operating temperature range of 0 to +70°C.

MAXIMUM RATINGS (Full operating ambient temperature range applies unless otherwise noted)

Rating	Symbol	MC35060	MC34060	Unit
Power Supply Voltage	Vcc	42	42	٧
Collector Output Voltage	V _C	42	42	٧
Collector Output Current	lc	250	250	mA
Amplifier Input Voltage	V _{in}	V _{CC} + 0.3	V _{CC} + 0.3	٧
Power Dissipation @ T _A ≤ 45°C	PD	1000	1000	mW
Operating Junction Temperature	TJ	150	150	°C
Operating Ambient Temperature Range	TA	-55 to 125	0 to 70	°C
Storage Temperature Range	T _{stg}	- 65 to 150	-65 to 150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	L Suffix Ceramic Package	P Suffix Plastic Package	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	100	80	°C/W
Power Derating Factor	1/R _{€JA}	10	12.5	mW/°C
Derating Ambient Temperature	TA	50	45	°C

RECOMMENDED OPERATING CONDITIONS

		MC				
Condition/Value	Symbol	Min	Тур	Max	Unit	
Power Supply Voltage	Vcc	7.0	15	40	٧	
Collector Output Voltage	VC	_	30	40	٧	
Collector Output Current	lc	_	_	200	mA	
Amplifier Input Voltage	V _{in}	-0.3	_	V _{CC} -2.0	V	
Current Into Feedback Terminal	l _{f.b.}	_		0.3	mA	
Reference Output Current	l _{ref}	_	_	10	mA	
Timing Resistor	R _T	1.8	47	500	kΩ	
Timing Capacitor	CT	0.00047	0.001	10	μF	
Oscillator Frequency	f _{osc}	1.0	25	200	kHz	

ELECTRICAL CHARACTERISTICS ($V_{CC} = 15 \text{ V}$, $f_{OSC} = 25 \text{ kHz}$ unless otherwise noted. For typical values $T_A = 25^{\circ}C$, for min/max values T_A is the operating ambient temperature range that applies unless otherwise noted.)

·		MC35060			MC34060			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
REFERENCE SECTION								
Reference Voltage (I _O = 1.0 mA)	V _{ref}	4.75	5.0	5.25	4.75	5.0	5.25	٧
Reference Voltage Change with Temperature $(\Delta T_A = Min \text{ to Max})$	V _{ref} (ΔT)	_	0.2	2.0	-	1.3	2.6	%
Input Regulation (V _{CC} = 7.0 V to 40 V)	Regline	-	2.0	25	_	2.0	25	mV
Output Regulation (I _O = 1.0 mA to 10 mA)	Regload	_	3.0	15	_	3.0	15	mV
Short-Circuit Output Current (V _{ref} = 0 V, T _A = 25°C)	Isc	10	35	50	_	35	_	mA
OUTPUT SECTION								
Collector Off-State Current (V _{CC} = 40 V, V _{CE} = 40 V)	lC(off)	_	2.0	100		2.0	100	μΑ
Emitter Off-State Current (V _{CC} = 40 V, V _C = 40 V, V _E = 0 V)	lE(off)	-	_	- 150	-	_	-100	μΑ
Collector-Emitter Saturation Voltage Common-Emitter (VE = 0 V, I _C = 200 mA)	V _{sat(C)}	_	1.1	1.5	_	1.1	1.3	V
Emitter-Follower $(V_C = 15 \text{ V, I}_E = -200 \text{ mA})$	V _{sat(E)}	_	1.5	2.5		1.5	2.5	V
Output Voltage Rise time (T _A = 25°C) Common-Emitter (See Figure 12) Emitter-Follower (See Figure 13)	t _r	_	100 100	200 200	_	100 100	200 200	ns
Output Voltage Fall Time (T _A = 25°C) Common-Emitter (See Figure 12) Emitter-Follower (See Figure 13)	t _f	_	25 40	100 100	_	25 40	100	ns

Characteristic	Symbol	MC35	Unit		
	Symbol	Min	Тур	Max	Oilit
ERROR AMPLIFIER SECTIONS					
Input Offset Voltage (Vo[Pin 3] = 2.5 V)	V _{IO}	_	2.0	10	mV
Input Offset Current (VC[Pin 3] = 2.5 V)	10	_	5.0	250	nA
Input Bias Current (Vo[Pin 3] = 2.5 V)	IIB	_	0.1	1.0	μΑ
Input Common-Mode Voltage Range (V _{CC} = 7.0 V to 40 V)	VICR	-0.3	_	V _{CC} -2.0	٧
Open Loop Voltage Gain ($\Delta V_O = 3.0 \text{ V}$, $V_O = 0.5 \text{ to } 3.5 \text{ V}$, $R_L = 2.0 \text{ k}\Omega$)	Avol	70	95	_	dB

ELECTRICAL CHARACTERISTICS (V_{CC} = 15 V, f_{osc} = 25 kHz unless otherwise noted. For typical values T_A = 25°C, for min/max values T_A is the operating ambient temperature range that applies unless otherwise noted.)

		MC35060/MC34060			
Characteristic	Symbol	Min	Тур	Max	Unit
ERROR AMPLIFIER SECTIONS (Continued)					
Unity-Gain Crossover Frequency (V _O = 0.5, to 3.5 V, R _L = 2.0 k Ω)	fc		350	_	kHz
Phase Margin at Unity-Gain (VO = 0.5 to 3.5 V, RL = 2.0 k Ω)	ϕ_{m}	_	65	_	deg.
Common-Mode Rejection Ratio (V _{CC} = 40 V)	CMRR	65	90	_	dB
Power Supply Rejection Ratio ($\Delta V_{CC}=33~V,~V_{O}=2.5~V,~R_{L}=2.0~k\Omega$)	PSRR	_	100	_	dB
Output Sink Current (Vo[Pin 3] = 0.7 V)	10-	0.3	0.7		mA
Output Source Current (Vo[Pin 3] = 3.5 V)	lO+	-2.0	-4.0	_	mA
PWM COMPARATOR SECTION (Test circuit Figure 11)					
Input Threshold Voltage (Zero Duty Cycle)	V _{TH}		3.5	4.5	V
Input Sink Current (V[Pin 3] = 0.7 V)	II –	0.3	0.7	_	mA
DEAD-TIME CONTROL SECTION (Test Circuit Figure 11)	*				
Input Bias Current (Pin 4) (V _{in} = 0 to 5.25 V)	liB(DT)	_	-2.0	- 10	μΑ
Maximum Output Duty Cycle $(V_{in}=0\ V,\ C_{T}=0.1\ \mu F,\ R_{T}=12\ k\Omega)$ $(V_{in}=0\ V,\ C_{T}=0.001\ \mu F,\ R_{T}=47\ k\Omega)$	DC _{max}	90	96 92	100 100	%
Input Threshold Voltage (Pin 4) (Zero Duty Cycle) (Maximum Duty Cycle)	V _{TH}		2.8	3.3	V
OSCILLATOR SECTION		1	1		
Frequency (C _T = 0.001 μ F, R _T = 47 k Ω)	fosc	_	25	_	kHz
Standard Deviation of Frequency* ($C_T = 0.001 \mu F$, $R_T = 47 k\Omega$)	σ fosc		3.0	_	%
Frequency Change with Voltage (V _{CC} = 7.0 V to 40 V, T _A = 25°C)	$\Delta f_{OSC}(\Delta V)$	_	0.1		%
Frequency Change with Temperature $(\Delta T_A = T_{A OW} \text{ to } T_{Ahigh})$	$\Delta f_{OSC}(\Delta T)$	_	± 1.0	± 2.0	%
TOTAL DEVICE					
Standby Supply Current (Pin 6 at V _{ref} , all other inputs and outputs open)	lcc			10	mA
(V _{CC} = 15 V) (V _{CC} = 40 V)		=	5.5 7.0	10 15	
Average Supply Current (V[Pin 4] = 2.0 V, CT $\stackrel{.}{=}$ 0.001, RT = 47 k Ω). See Figure 11.	Is	_	7.0		mA

^{*}Standard deviation is a measure of the statistical distribution about the mean as derived from the formula; $\sigma = \sqrt{\frac{N}{\sum_{i} (X_{n} - x_{i})^{2}}} \sqrt{\frac{n}{n}} = 1$

FIGURE 3 — OSCILLATOR FREQUENCY versus TIMING RESISTANCE

FIGURE 4 — OPEN LOOP VOLTAGE GAIN AND PHASE Versus FREQUENCY

FIGURE 5 — PERCENT DEAD-TIME versus
OSCILLATOR FREQUENCY

FIGURE 6 - PERCENT DUTY CYCLE versus

FIGURE 7 — EMITTER FOLLOWER CONFIGURATION OUTPUT-SATURATION VOLTAGE versus EMITTER CURRENT

FIGURE 8 — COMMON EMITTER CONFIGURATION
OUTPUT-SATURATION VOLTAGE versus
EMITTER CURRENT

FIGURE 9 — STANDBY-SUPPLY CURRENT versus SUPPLY VOLTAGE

8.0
7.0
6.0
6.0
4.0
3.0
3.0
1.0
0
5.0
10
15
20
25
30
35
40

FIGURE 10 — ERROR AMPLIFIER CHARACTERISTICS

FIGURE 12 — COMMON-EMITTER CONFIGURATION TEST CIRCUIT AND WAVEFORM

FIGURE 11 — DEAD-TIME AND FEEDBACK CONTROL TEST CIRCUIT

FIGURE 13 — EMITTER-FOLLOWER CONFIGURATION TEST CIRCUIT AND WAVEFORM

FIGURE 14 — ERROR AMPLIFIER SENSING TECHNIQUES

FIGURE 15 — DEAD-TIME CONTROL CIRCUIT

FIGURE 16 — SOFT-START CIRCUIT

FIGURE 17 — SLAVING TWO OR MORE CONTROL CIRCUITS

FIGURE 18 — STEP-DOWN CONVERTER WITH SOFT-START AND OUTPUT CURRENT LIMITING

TEST	CONDITIONS	RESULTS	
Line Regulation	V _{in} = 8.0 V to 40 V, I _O = 1.0 A	25 mV 0.5%	
Load Regulation	V _{in} = 12 V, I _O = 1.0 mA to 1.0 A	3.0 mV 0.06%	
Output Ripple	V _{in} = 12 V, I _O = 1.0 A	75 mV p-p P.A.R.D.	
Short Circuit Current	V_{in} = 12 V, R_L = 0.1 Ω	1.6 A	
Efficiency	V _{in} = 12 V, I _O = 1.0 A	73%	

FIGURE 19 — STEP-UP CONVERTER

TEST	CONDITIONS	RESULTS	
Line Regulation	V _{in} = 8.0 V to 26 V, I _O = 0.5 A	40 mV 0.14%	
Load Regulation	V _{in} = 12 V, I _O = 1.0 mA to 0.5 A	5.0 mV 0.18%	
Output Ripple	V _{in} = 12 V, I _O = 0.5 A	24 mV p-p P.A.R.D.	
Efficiency	V _{in} = 12 V, I _O = 0.5 A	75%	

^{*}Optional circuit to minimize output ripple.

FIGURE 20 — STEP-UP/DOWN VOLTAGE INVERTING CONVERTER WITH SOFT-START AND CURRENT LIMITING

TEST	CONDITIONS	RESULTS
Line Regulation	V _{in} = 8.0 V to 40 V, I _O = 250 mA	52 mV 0.35%
Load Regulation	V _{in} = 12 V, I _O = 1 mA to 250 mA	47 mV 0.32%
Output Ripple	V _{in} = 12 V, I _O = 250 mA	10 mV p.p. P.A.R.D.
Short Circuit Current	V _{in} = 12 V, R _L = 0.1 Ω	330 mA
Efficiency	V _{in} = 12 V, I _O = 250 mA	86%

^{*}Optional circuit to minimize output ripple.

L2, L3

Coilcraft Z7157, 25 µH @ 1.0 A

5.0 V/3.0 A

12/0.75 A

Common

-12/0.75 A

MOTOROLA LINEAR/INTERFACE DEVICES

TEST	CONDITIONS	RESULTS
Line Regulation 5.0 V	V _{in} = 95 to 135 Vac, I _O = 3.0 A	20 mV 0.40%
Line Regulation ±12 V	V _{in} = 95 to 135 Vac, I _O = ±0.75 A	52 mV 0.26%
Load Regulation 5.0 V	V _{in} = 115 Vac, I _O = 1.0 to 4.0 A	476 mV 9.5%
Load Regulation ±12 V	V_{in} = 115 Vac, I_{O} = ±0.4 to ±0.9 A	300 mV 2.5%
Output Ripple 5.0 V	V _{in} = 115 Vac, I _O = 3.0 A	45 mV p-p P.A.R.D.
Output Ripple ±12 V	V _{in} = 115 Vac, I _O = ±0.75 A	75 mV p-p P.A.R.D.
Efficiency	V_{in} = 115 Vac, I_{O} 5.0 V = 3.0 A I_{O} ±12 = ±0.75 A	74%

MC34061, MC34061A MC35061, MC35061A

Advance Information

THREE-TERMINAL OVERVOLTAGE "CROWBAR" SENSING CIRCUIT

The MC34061/35061 overvoltage protection (OVP) circuits, in combination with two external programming resistors and a "crowbar" SCR, protect sensitive electronic circuitry from overvoltage damage. They sense an overvoltage condition and quickly "crowbar", or short circuit, the supply. An external capacitor may be used to program a minimum overvoltage duration before tripping, thus providing noise immunity.

These three-terminal circuits provide a cost-effective means of protecting either positive or negative power supplies. The unique design of the MC34061/35061 eliminates trip voltage and temperature drift errors due to SCR gate variations.

The basic MC34061/35061 devices offer a ±2% tolerance on the sense trip voltage. The A-suffix devices have a ±1% sense trip voltage specification and other key parameters have tightened limits. The series is available in a low-cost plastic TO-92 package, dual-inline plastic or ceramic packages, and feature:

- Unique Three-Terminal Design
- SCR Gate Drive Output of 200 mA
- Sense Voltage of 2.5 V ±1% or ±2%
- Hysteresis of 250 mV
- Wide Supply Range: 4.0 V ≤ V_{CC} ≤ 41 V

MAXIMUM RATINGS			
Rating	Symbol	Value	Unit
Operating Voltage	V _{CC} - V _{DRV}	40	Vdc
Sense Voltage	V _{Sense}	40	Vdc
Drive Output Current	IDRV	Internally Limited	mA
Operating Ambient Temperature Range MC34061, MC34061A MC35061, MC35061A	TA	0 to +70 -55 to +125	°C
Operating Junction Temperature	TJ	150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

THREE-TERMINAL PROGRAMMABLE OVERVOLTAGE SENSING CIRCUIT

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX
PLASTIC PACKAGE
CASE 29-02
TO-226AA
(TO-92)
(MC34061,A only)

- Pin 1. V_{CC}
 - 2. Drive Output
 - Sense

P1 SUFFIX
PLASTIC DUAL-IN-LINE
PACKAGE
CASE 626-04
(MC34061,A only)

U SUFFIX CERAMIC PACKAGE CASE 693-02

ORDERING INFORMATION

Device	Temperature Range	Package
MC35061U, AU	-55 to +125°C	Ceramic DIP
MC34061P, AP	0 to +70°C	Plastic TO-92
MC34061P1, AP1		Plastic DIP
MC34061U, AU		Ceramic DIP

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ELECTRICAL CHARACTERISTICS (V_{CC}-V_{DRV} = 5.0 V; T_A = T_{low} to T_{high} [see Note 1] unless otherwise specified)

Characteristic		MC35	061A/340	A/34061A		5061/340	61	I
	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Operating Voltage Range	V _{CC-VDRV}	3.0	_	40	3.0	_	40	Vdc
Sense Trip Voltage T _A = 25°C T _{low} to T _{high} (Note 1)	VSense	2.475 2.45	2.5 2.5	2.525 2.55	2.45 2.4	2.5 2.5	2.55 2.6	Vdc
Line Regulation, V_{Sense} (3.0 \leq V_{CC} - $V_{DRV} \leq$ 40 V) T_A = 25°C T_{low} to T_{high} (Note 1)	Regline		0.001 0.001	0.005 0.01		0.001 0.001	0.01 0.02	%/V
Input Bias Current, Sense Pin At Trip Point (Note 2) After Trip (V _{Sense} = 3.0 V)	IВ	_	0.3 0.9	1.0 3.0	_	0.3 0.9	2.0 6.0	μА
Hysteresis Voltage, Sense Pin	V _H	_	250	_		250	_	mV
Drive Output Current, ON State T _J = 25°C T _{low} to T _{high} (Note 1)	IDRV(on)	170 100	200 200	300 350	120 80	200 200	300 350	mA
Drive Output Current, OFF State V _{CC} -V _{DRV} = 5.0 V 3.0 V ≤ V _{CC} -V _{DRV} ≤ 40 V	IDRV(off)	0.2 0.2	0.6 0.6	1.0 1.5	0.2 0.2	0.6 0.6	1.0 1.5	mA
Drive Output Current Slew Rate TA = 25°C	di/dt	_	2.0	-	_	2.0	_	A/μs
Drive Output V_{CC} Transient Rejection $V_{CC-V_{DRV}} = 0 \text{ V to } 15 \text{ V at } dV/dt = 200 \text{ V/}\mu\text{s; } V_{Sense} = 0 \text{ V; } T_A = 25^{\circ}\text{C}$	ΔI _{DRV(trans)}		1.0		_	1.0	_	mA (Peak)
Propagation Delay Time (T _A = 25°C) 500 mV Overdrive	^t PLH		500	_	_	500	-	ns

NOTES:

FIGURE 1 — STANDARD TEST CIRCUIT

^{*}A 1.0 μ F tantalum or 10 μ F electrolytic capacitor may be necessary to compensate for lead inductance when measuring Hysteresis Voltage. When this capacitor is used, it should be placed as close as possible to the device package.

⁽¹⁾ $T_{low} = -55^{\circ}C$ for MC35061, MC35061A

^{= 0°}C for MC34061, MC34061A

T_{high} = +125°C for MC35061, MC35061A

^{= +70°}C for MC34061, MC34061A

⁽²⁾ This specification is an engineering estimate based on design parameters, and is not tested.

APPLICATIONS INFORMATION

FIGURE 8 — BLOCK DIAGRAM AND TYPICAL APPLICATION

BASIC CIRCUIT CONFIGURATION

Each device within the MC34061 series consists of a 2.5 V shunt reference, a comparator with 250 mV hysteresis and a power output transistor. In the typical application of Figure 8, the voltage at the inverting input of the comparator

is $\frac{VCC R_2}{R_1 + R_2}$, while the voltage at the non-inverting input is

 V_{CC} –2.5 V. Thus, for a given (R₁, R₂) voltage divider, the comparator's output state is a function of V_{CC} . The following table applies:

Vcc	Drive Output
$<\frac{R_1 + R_2}{R_1}$ (2.5 V)	OFF State
$> \frac{R_1 + R_2}{R_1} (2.5 \text{ V})$	ON State

By making the proper choice of R₁ and R₂, a level detector for any voltage within the device's operating voltage range may be realized. A few precautions are necessary, however.

Note that even in the OFF State, a minimum drive output current, equal to the sum of the reference and comparator supply currents, is available. Therefore, a means of shunting this current away from the driven circuit is necessary. In the example of Figure 8, a $100\,\Omega$ resistor (RGK) is used, producing a voltage at the Drive Output of approximately 60 mV in the OFF State.

In the ON State the MC34061 becomes a current source capable of saturating to within 2.0 V of V_{CC}. Therefore, when driving a high impedance load, it may be desirable to clamp the drive output to at least 3.0 V below V_{CC} (V_{CC}-V_{DRV} \geqslant 3.0 V) if it is important that the voltage reference continue to regulate.

FIGURE 9 — OVERVOLTAGE PROTECTION WITH TIME DELAY

PROGRAMMING A MINIMUM OVERVOLTAGE DURATION BEFORE TRIPPING

A time delay may be programmed into the operation of the MC34061/35061 series to provide noise immunity. This time delay is implemented by adding a capacitor (CDLY) between the VCC and Sense leads as shown in Figure 9. The time delay obtained by this technique is a function of R1, R2, and CDLY as well as the nominal supply voltage, VCC(nom), and the overvoltaged supply voltage, VCC. The nominal supply voltage determines the initial charge on CDLY, while the magnitude of the overvoltage condition determines the rate at which CDLY charges to the reference voltage, $V_{\text{ref}} = 2.5 \, \text{V}$. Thus, for a given R1, R2 and CDLY, the time delay is reduced as the overvoltage is increased. The expression for the time delay, tDLY, is:

$$\begin{split} t_{DLY} = & \frac{R_1 R_2 C_{DLY}}{R_1 + R_2} \; In \; \left[\frac{V_{CC} - V_{CC(nom)}}{V_{CC} - V_{trip}} \right] \\ where: \\ & V_{trip} = & \frac{R_1 + R_2}{R_1} \left(2.5 \; V \right) \end{split}$$

Figure 6 shows the CDLY values versus delay time (tDLY) for a typical 5.0 V power supply protection circuit. The figure also shows the change in tDLY with variations in the overvoltaged supply, VCC. In this example R₁ = 1.8 k, R₂ = 2.7 k, VCC(nom) = 5.0 V, and V_{trip} = 6.25 V.

THE NEED FOR A GATE RESISTOR

For power supplies above 11 V, a gate resistor, R_G, in series with the SCR gate is recommended to limit the power dissipated by the IC to approximately 2.0 W. This resistor will protect the MC34061/35061 in the event of a defective or missing SCR, while allowing the maximum drive output current to the gate of the SCR. Figure 7 shows the minimum recommended gate resistor, R_G(min), versus the power supply voltage, V_{CC}. A larger value of R_G may be used if less drive current is needed.

CROWBAR SCR CONSIDERATIONS

Referring to Figure 10, it can be seen that the crowbar SCR, when activated, is subject to a large current surge from the output capacitance, Cout. This capacitance consists of the power supply output capacitors, the load's decoupling capacitors, and in the case of Figure 10A, the supply's input filter capacitors. This surge current is illustrated in Figure 11, and can cause SCR failure or degradation by any one of three mechanisms: di/dt, absolute peak surge, or I2t. The interrelationship of these failure methods and the breadth of the applications make specification of the SCR by the semiconductor manufacturer difficult and expensive. Therefore, the designer must empirically determine the SCR and circuit elements which result in reliable and effective OVP operation. However, an understanding of the factors which influence the SCR's di/dt and surge capabilities simplifies this task.

1. di/dt

As the gate region of the SCR is driven on, its area of conduction takes a finite amount of time to grow, starting as a very small region and gradually spreading. Since the anode current flows through this turned-on

gate region, very high current densities can occur in the gate region if high anode currents appear quickly (di/dt). This can result in immediate destruction of the SCR or gradual degradation of its forward blocking voltage capabilities — depending on the severity of the occasion.

The value of di/dt that an SCR can safely handle is influenced by its construction and the characteristics of the gate drive signal. A center-gate-fire SCR has more di/dt capability than a corner-gate-fire type, and heavily overdriving (3 to 5 times IGT) the SCR gate with a fast $<1.0 \mu s$ rise time signal will maximize its di/dt capability. A typical maximum number in phase control SCRs of less than 50 A(RMS) rating might be 200 A/ μ s, assuming a gate current of five times IGT and $< 1.0 \,\mu s$ rise time. If having done this, a di/dt problem is seen to still exist, the designer can also decrease the di/dt of the current waveform by adding inductance in series with the SCR, as shown in Figure 12. Of course, this reduces the circuit's ability to rapidly reduce the dc bus voltage and a tradeoff must be made between speedy voltage reduction and di/dt.

FIGURE 10 — TYPICAL CROWBAR CIRCUIT CONFIGURATIONS

 $\begin{array}{c} \textbf{FIGURE 11} - \textbf{CROWBAR SCR SURGE CURRENT} \\ \textbf{WAVEFORM} \end{array}$

2. Surge Current

If the peak current and/or the duration of the surge is excessive, immediate destruction due to device overheating will result. The surge capability of the SCR is directly proportional to its die area. If the surge current cannot be reduced (by adding series resistance—see Figure 12) to a safe level which is consistent with the system's requirements for speedy bus voltage reduction, the designer must use a higher current SCR. This may result in the average current capability of the SCR exceeding the steady state current requirements imposed by the dc power supply.

FIGURE 12 — CIRCUIT ELEMENTS AFFECTING SCR SURGE AND di/dt

A WORD ABOUT FUSING

Before leaving the subject of the crowbar SCR, a few words about fuse protection are in order. Referring back to Figure 10A, it will be seen that a fuse is necessary if the power supply to be protected is not output current limited. This fuse is not meant to prevent SCR failure but rather to prevent a fire!

In order to protect the SCR, the fuse would have to possess an l^2t rating less than that of the SCR and yet have a high enough continuous current rating to survive normal supply output currents. In addition, it must be capable of successfully clearing the high short circuit currents from the supply. Such a fuse as this is quite expensive, and may not even be available.

The usual design compromise then is to use a garden variety fuse (3AG or 3AB style) which cannot be relied on to blow before the thyristor does, and trust that if the SCR does fail, it will fail short circuit. In the majority of the designs, this will be the case, though this is difficult to guarantee. Of course, a sufficiently high surge will cause an open. These comments also apply to the fuse in Figure 10B

CROWBAR SCR SELECTION GUIDE

As an aid in selecting an SCR for crowbar use, the following selection guide is presented.

DEVICE	IRMS	IFSM	PACKAGE
MCR67 Series	12 A	100 A	Metal Stud
MCR68 Series	12 A	100 A	TO-220 Plastic
2N1842 Series	16 A	125 A	Metal Stud
2N6400 Series	16 A	160 A	TO-220 Plastic
2N6504 Series	25 A	160 A	TO-220 Plastic
2N681 Series	25 A	200 A	Metal Stud
2N2573 Series	25 A	260 A	TO-3 Metal Can
MCR69 Series	25 A	300 A	TO-220 Plastic
MCR70 Series	35 A	350 A	Metal Stud
MCR71 Series	55 A	550 A	Metal Stud

For a complete and detailed treatment of SCR and fuse selection refer to Motorola Application Note AN-789.

MC34062 MC35062

Advance Information

PIN-PROGRAMMABLE OVERVOLTAGE "CROWBAR" SENSING CIRCUIT

The MC34062/35062 overvoltage protection (OVP) circuits require only an external "crowbar" SCR to protect sensitive electronic circuitry from overvoltage damage. They sense an overvoltage condition and quickly "crowbar", or short circuit, the supply. An on-chip, tapped resistor network allows the device to be programmed for trip voltages ranging from 3.5 to 40 V. Each of the five programming pins provides one standard overvoltage trip point for nominal power supply voltages of 5.0, 12, 15, 24 or 28 V. Many other trip voltages may be programmed by interconnecting and grounding various combinations of these programming pins. Tables are provided in the Applications Information which show connection schemes for 120 trip voltages.

These circuits provide a cost-effective means of protecting either positive or negative power supplies. In addition, an external capacitor may be used to program a minimum overvoltage duration before tripping, thus providing noise immunity. The unique design of the MC34062/35062 eliminates voltage and temperature drift errors due to SCR gate variations.

- Unique Pin-Programmable Trip Voltage from 3.5 to 40 V
- One-Pin Programming for 5.0, 12, 15, 24 and 28 V Power Supplies
- SCR Gate Drive Output of 200 mA
- Built-In Hysteresis Voltage
- ullet Wide Supply Range: 4.0 V \leq V_{CC} \leq 40 V

This document contains information on a new product. Specifications and information herein are subject to change without notice.

PIN-PROGRAMMABLE OVERVOLTAGE SENSING CIRCUIT

SILICON MONOLITHIC INTEGRATED CIRCUIT

P1 SUFFIX PLASTIC PACKAGE CASE 626-04

(MC34062 only)

U SUFFIX CERAMIC PACKAGE CASE 693-02

ORDERING INFORMATION

Device	Temperature Range	Package
MC35062U	-55 to +125°C	Ceramic DIP
MC34062P1	0 to +70°C	Plastic DIP
MC34062U	1	Ceramic DIP

MC34062, MC35062

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Operating Voltage	V _{CC} - V _{DRV}	40	Vdc
Voltage Across Any Internal Resistor In Network	V _{RN}	40	Vdc
Current Through Any Resistor In Network	IRN	10	mA
Sense Voltage	VSense	40	Vdc
Drive Output Current	IDRV	Internally Limited	mA
Operating Ambient Temperature MC34062 MC35062	TA	0 to +70 -55 to +125	°C
Operating Junction Temperature	TJ	150	°C
Storage Temperature Range	T _{stg}	-65 to +150°C	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V; V_{DRV} = 0 V; T_A = T_{low} to T_{high} unless otherwise specified.)

Observatoriotis	Sumbal	мсз	5062/MC34	062	Unit
Characteristic	Symbol	Min	Тур	Max	Unit
Operating Voltage Range	V _{CC} - V _{DRV}	3.0	_	40	Vdc
Sense Trip Voltage TA = 25°C T _{low} to T _{high}	VSense	2.425 2.375	2.5 2.5	2.575 2.625	Vdc
Line Regulation, V_{Sense} (3.0 V \leqslant V_{CC} - V_{DRV} \leqslant 40 V) T_A = 25°C T_{low} to T_{high}	Regline	_ _	0.001 0.001	0.01 0.02	%/V
Trip Voltage (Pin 4 = Gnd; V _{DRV} = 0 V) T _A = 25°C T _{low} to T _{high}	V _{trip(4)}	6.01 5.89	6.2 6.2	6.39 6.51	V
Hysteresis Voltage (Pin 4 = Gnd; V _{DRV} = 0 V)	V _{H(4)}	_	0.62	_	V
Trip Voltage (Pin 5 = Gnd; V _{DRV} = 0 V) T _A = 25°C T _{low} to T _{high}	V _{trip} (5)	: 13.3 13.0	13.7 13.7	14.1 14.4	V
Hysteresis Voltage (Pin 5 = Gnd; V _{DRV} = 0 V)	V _{H(5)}	_	1.37	_	V
Trip Voltage (Pin 6 = Gnd; V _{DRV} = 0 V) T _A = 25°C T _{low} to T _{high}	V _{trip} (6)	16.6 16.2	17.1 17.1	17.6 18.0	\ \ \
Hysteresis Voltage (Pin 6 = Gnd; V _{DRV} = 0 V)	V _{H(6)}	_	1.71	_	V
Trip Voltage (Pin 7 = Gnd; V _{DRV} = 0 V) T _A = 25°C T _{low} to T _{high}	V _{trip} (7)	26.6 26.0	27.4 27.4	28.2 28.8	V
Hysteresis Voltage (Pin 7 = Gnd; V _{DRV} = 0 V)	VH(7)	_	2.74	-	V
Trip Voltage (Pin 8 = Gnd; V _{DRV} = 0 V) T _A = 25°C T _{low} to T _{high}	V _{trip} (8)	30.9 30.3	31.9 31.9	32.9 33.5	V
Hysteresis Voltage (Pin 8 = Gnd; V _{DRV} = 0 V)	V _{H(8)}	_	3.19		V
Resistor Network Current at Nominal Power Supply Voltage V _{CC} = 28 V; V _{DRV} = 0 V; Pin 8 = Gnd	I _{RN}	0.5	1.1	2.0	mA
Drive Output Current, ON State T _J = 25°C T _{low} to T _{high}	IDRV(on)	170 100	200 200	300 350	mA
Drive Output Current, OFF State $ V_{CC} = 5.0 \text{ V; } V_{DRV} = 0 \text{ V} \\ 3.0 \text{ V} \leqslant V_{CC} - V_{DRV} \leqslant 40 \text{ V} $	IDRV(off)	0.2 0.2	0.6 0.6	1.0 1.5	mA
Drive Output Current Slew Rate (T _A = 25°C)	di/dt	_	2.0	_	A/μs
Drive Output V_{CC} Transient Rejection $V_{CC} = 0 \text{ V to } 15 \text{ V at } dV/dt = 200 \text{ V}/\mu s;$ $V_{DRV} = 0 \text{ V; } V_{Sense} = 0 \text{ V; } T_A = 25^{\circ}\text{C}$	ΔI _{DRV} (trans)	-	1.0	_	mA (Peak
Propagation Delay Time (T _A = 25°C; 500 mV Overdrive)	tPLH	_	500	_	ns

T_{low} = -55°C for MC35062 Thigh = +125°C for MC35062 = 0°C for MC34062 = +70°C for MC34062

FIGURE 1 - STANDARD TEST CIRCUIT

FIGURE 2 — DRIVE CURRENT versus NORMALIZED RESISTOR DIVIDER VOLTAGE (Normalized to V_{trip} at T_A = 25°C) 1000 DRIVE OUTPUT CURRENT (mA) 100 10 TA = 25°C 1.0 JR. 0.1 0.80 0.92 0.96 1 0 1.04 1.08 NORMALIZED VOLTAGE ACROSS RESISTOR DIVIDER

FIGURE 6 — DELAY CAPACITANCE versus DELAY TIME FOR NOMINAL 5.0 V POWER SUPPLY

FIGURE 7 — DELAY CAPACITANCE versus DELAY TIME

FIGURE 8 — DELAY CAPACITANCE versus DELAY TIME FOR NOMINAL 15 V POWER SUPPLY

FIGURE 9 — DELAY CAPACITANCE versus DELAY TIME
FOR NOMINAL 24 V POWER SUPPLY

FIGURE 10 — DELAY CAPACITANCE versus DELAY TIME FOR NOMINAL 28 V POWER SUPPLY

APPLICATIONS INFORMATION

BASIC CIRCUIT CONFIGURATION

The MC34062 and MC35062 each consist of a 2.5 V shunt reference, a comparator with built-in hysteresis, a power output transistor, and an on-chip, tapped resistor network. In the typical application of Figure 11 the volt-

age at the inverting input of the comparator is $\frac{V_{CC} R_2}{R_1 + R_2}$

while the voltage at the non-inverting input is $V_{CC} - 2.5 \text{ V}$. Thus, for a given (R₁, R₂) voltage divider, the comparator's output state is a function of V_{CC} . The following table applies:

Vcc	Drive Output
$<\frac{R_1+R_2}{R_1}$ (2.5 V)	OFF State
$> \frac{R_1 + R_2}{R_1} (2.5 \text{ V})$	ON State

By making the proper choice of R_1 and R_2 , a level detector for any voltage from 3.5 to 40 V may be realized.

The on-chip resistor network is configured as shown in the Functional Block Diagram on the front page of this data sheet. Each of the five programming pins (4 through 8) provides one standard overvoltage trip point for nominal power supply voltages of 5.0, 12, 15, 24 or 28 V. These standard trip points are implemented by grounding one of the five programming pins, and are summarized in the following table:

Nominal Power Supply Voltage	Ground Pin Number	Typical Trip Voltage
5.0 V	4	6.2 V
12 V	5	13.7 V
15 V	6	17.1 V
24 V	7	27.4 V
28 V	8	31.9 V

FIGURE 11 — BLOCK DIAGRAM AND TYPICAL APPLICATION

Many other trip voltages may be programmed by interconnecting and grounding various combinations of the programming pins. Table 1 provides connection schemes for 120 nominal Trip Voltages (Vtrip). Additional Trip Voltages may also be implemented with other pin connections. All of these Trip Voltages will be within $\pm 3.0\%$ of the nominal value at $T_A = 25^{\circ} C$ and within $\pm 5.0\%$ over the operating temperature range.

The hysteresis built into the comparator is 250 mV at the inverting input. This comparator hysteresis voltage is

multiplied by the ratio $\frac{R_1 + R_2}{R_1}$, just as the 2.5 V Sense Trip

Voltage (VSense) is multiplied by the same ratio to define the Trip Voltage (V_{trip}). Thus, the Hysteresis Voltage (V_{H}) is approximately 10% of the Trip Voltage for any Trip Voltage.

Some precautions are necessary in the operation of the protection circuit shown in Figure 11. Note that even in the OFF State, a minimum drive output current, equal to the sum of the reference and comparator supply currents, is available. Therefore, a means of shunting this current away from the driven circuit is necessary. In the example of Figure 11; a 100 Ω resistor (RGK) is used, producing a voltage at the Drive Output of approximately 60 mV in the OFF State.

In the ON State the MC34062 becomes a current source capable of saturating to within 2.0 V of V_{CC}. Therefore, when driving a high impedance load, it may be desirable to clamp the drive output to at least 3.0 V below V_{CC} (V_{CC} – V_{DRV} \geqslant 3.0 V) if it is important that the reference continue to regulate.

PROGRAMMING A MINIMUM OVERVOLTAGE DURATION BEFORE TRIPPING

A time delay may be programmed into the operation of the MC34062/35062 to provide noise immunity. This time delay is implemented by adding a capacitor (CpLy) between the V_{CC} and Sense leads as shown in Figure 12. The time delay obtained by this technique is a function of the internal resistors (R₁, R₂) and CpLy, as well as the nominal supply voltage, V_{CC}(nom), and the overvoltaged supply voltage V_{CC}. The nominal supply voltage determines the initial charge on CpLy, while the magnitude of the overvoltage condition determines the rate at which CpLy charges to the reference voltage, V_{ref} = 2.5 V. Thus, for a given R₁, R₂ and CpLy, the time delay is reduced as the overvoltage is increased. The expression for the time delay, tpLy is:

$$\begin{split} t_{DLY} = & \ \frac{R_1 \ R_2 \ C_{DLY}}{R_1 + R_2} \quad In \quad \boxed{\frac{V_{CC} - V_{CC(nom)}}{V_{CC} - V_{trip}}} \\ where: & \ V_{trip} = \frac{R_1 + R_2}{R_1} \ (2.5 \ V) \end{split}$$

Figures 6 through 10 show the CDLY values versus delay time (tDLY) for nominal 5.0, 12, 15, 24 and 28 V power supply protection circuits, each using a one-pin MC34062/35062 programming scheme. These figures also show the change in tDLY with variations in the over-voltaged supply, VCC.

THE NEED FOR A GATE RESISTOR

For power supplies above 11 V, a gate resistor, R_G, in series with the SCR gate is recommended to limit the power dissipated by the IC to approximately 2.0 W. This resistor will protect the MC34062/35062 in the event of a defective or missing SCR, while allowing the maximum drive output current to the gate of the SCR. Figure 5 shows the minimum recommended gate resistor, R_G(min), versus the power supply voltage, V_{CC}. A larger value of R_G may be used if less drive current is needed.

FIGURE 12 — OVERVOLTAGE PROTECTION WITH TIME DELAY

TABLE 1 — PIN-PROGRAMMING OF RESISTOR NETWORK FOR NOMINAL TRIP VOLTAGES.

V _{trip} Pin	3 Pin 4	5										
		Pin 5	Pin 6	Pin 7	Pin 8	V _{trip}	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8
3.483	Gnd	•	Gnd	•	Gnd	5.101	1_		Gnd		Ŀ	Gnd
3.632	Gnd	Gnd	•	Gnd		5.222	•_	Gnd		Gnd	•	
3.758	Gnd	•	Gnd	J		5.328	•	Gnd	ſ		1	•
3.807	Gnd	•	Gnd		·	5.413	•	Gnd	Gnd		•	
3.883	Gnd	•	•	Gnd	Ŀ	5.563	•	Gnd	ſ	7	•	
3.923		Gnd	•	Gnd	_•	5.673	•	Gnd	•	7		
4.012	Gnd	Gnd	_•	Gnd		5.734	•	Gnd				_•
4.098	Gnd	•		_•	Gnd	5.887	•_		•		Gnd	_•
4.130		•	Gnd	_•	Gnd	5.900	•_		_•	Gnd		
4.196	Gnd		Gnd	_•	Gnd	5.991	•_	•	Gnd	·	_•	-
4.272	Gnd	Gnd	_•			6.092	•	•	•	Ļ	Gnd	_•
4.353	Gnd			•]	Gnd	6.200		Gnd	**			
4.407	•	Gnd	_•	Gnd		6.311	•				Gnd	_•
4.520	•	Gnd	_•		Gnd	6.610	•	•	•	•	Gnd	¬
4.598	Gnd	_•		Gnd		6.703	•	•	٦.	Gnd	_•	
4.673	•	•	Gnd	_•	Gnd	6.840	•	•	Gnd	Gnd	_•	
4.709	•	Gnd	Gnd	_•	Gnd	7.000	•				_•	Gnd
4.845	Gnd	•	Gnd	-	_•	7.132	٠_		Gnd	•	-	_•
4.947		Gnd	Gnd	_•	Gnd	7.298	٠		7	Gnd		•
4.996	•	Gnd	-	Gnd	_ •.	7.347	. •	•	Gnd		•	

TABLE 1 — (Continued)

V _{trip}	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	V _{trip}	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8
7.478	•_	Ŷ	Gnd	Gnd		_•	10.400	<u> </u>		_•	٠_	_•	Gnd
7.799	•	•	Gnd			•	10.540		. •	Gnd	Gnd	_•	
8.106		٤	Gnd	•	Gnd		10.700		1_			_•	Gnd
8.220		٠	Gnd	•		Gnd	11.047		٠	Gnd		_•	
8.409		٠	Gnd	Gnd	•	Gnd	11.178		٤_	Gnd	Gnd		_•
8.539		•	Gnd	•			11.496		٠_		Gnd	_•	
8.633		٠		Gnd	_•	Gnd	11.630	•_	L	•_	Gnd	_•	Gnd
8.756		٩	P	Gnd	•		11.895	٠			Gnd	•	v _{cc}
8.870	•	•	Gnd	Gnd	•	J	11.937	•	_•	٤_	Gnd	Gnd	•
8.906	•	•	•		1	Gnd	12.086	٤		Gnd		•	Vcc
9.013		•	Gnd		Gnd	•	12.477		٤		Gnd		•
9.178	•	•		•	1	Gnd	12.556	٤	•	٩	Gnd	_•	
9.331	•	vcc	•	Gnd			12.732		•_	•	•_	Gnd	•
9.377	•	L	Gnd		1	J	12.800	٩			•	Gnd	
9.385	 	•		Gnd	Gnd	_•	13.387	٠	•	•		Gnd	J
9.433	•		Gnd			•	13.400	٤	_•		Gnd		
9.600		•	•	Gnd			13.700			Gnd			
9.826	•	-		Gnd	1	•	14.233	٠	ı	•	-	Gnd	
9.912	1	•			Gnd	•	14.500	٤	•	٩		J	Gno
10.000	•	•	Gnd				15.330			•	Gnd	_•	Gno

TABLE 1 — (Continued)

		·			,			_					
V _{trip}	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	V _{trip}	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8
15.637			•	Gnd	Gnd	j	22.673	•		v _{cc}	•	Gnd	
16.200	•		•		Gnd		23.700	L	•			Gnd	
16.256		,	•	Gnd	_•		23.807	•	•	vcc	_•	Gnd	
16.465			•	Gnd		_•	24.000			•		Gnd	
16.500		•_		•	Gnd		24.283		٠_	vcc	•		Gnd
16.532	•	_•		•	Gnd	_•	24.400		•_	•			Gnd
16.832			_ _	•	Gnd	_•	24.800	•	•	•	_•		Gnd
17.087			•		Gnd	_•	25.211	•			Gnd -	v _{cc}	
17.100				Gnd			27.333	• •	v _{cc}	v _{cc}	_•	Gnd	
17.300	•			_•	-	Gnd	27.400					Gnd	
17.900	•	_•		•	_•	Gnd	28.200	•	_•				Gnd
18.200			•		_•	Gnd	28.500			·	_•		Gnd
18.733	•	•	•	7		Gnd	30.023	•	Vcc	•		Gnd	
19.900		•	_•		Gnd		30.694	•	v _{cc}		_•		Gnd
20.232				•	Gnd	_•	31.486	•		Vcc	<u>.</u>		Gnd
20.300	•	_•	•_	_•	Gnd		31.900	7					Gnd
20.700	٠		_•			Gnd	32.233	•	Vcc	•	•		Gnd
21.000		•		_•		Gnd	33.116	•	•	vcc	•		Gnd
21.600	-			•	_•	Gnd	38.182	•	Vcc	v _{CC}	_•		Gnd
22.122	٤	Vcc		_•	Gnd		39.064	•	VCC	_•			Gnd

CROWBAR SCR CONSIDERATIONS

Referring to Figure 13, it can be seen that the crowbar SCR, when activated, is subject to a large current surge from the output capacitance, Cout. This capacitance consists of the power supply output capacitors, the load's decoupling capacitors, and in the case of Figure 13A, the supply's input filter capacitors. This surge current is illustrated in Figure 14, and can cause SCR failure or degradation by any one of three mechanisms: di/dt, absolute peak surge, or I2t. The interrelationship of these failure methods and the breadth of the applications make specification of the SCR by the semiconductor manufacturer difficult and expensive. Therefore, the designer must empirically determine the SCR and circuit elements which result in reliable and effective OVP operation. However, an understanding of the factors which influence the SCR's di/dt and surge capabilities simplifies this task.

1. di/dt

As the gate region of the SCR is driven on, its area of conduction takes a finite amount of time to grow, starting as a very small region and gradually spreading.

Since the anode current flows through this turned-on gate region, very high current densities can occur in the gate region if high anode currents appear quickly (di/dt). This can result in immediate destruction of the SCR or gradual degradation of its forward blocking voltage capabilities — depending on the severity of the occasion.

The value of di/dt that an SCR can safely handle is influenced by its construction and the characteristics of the gate drive signal. A center-gate-fire SCR has more di/dt capability than a corner-gate-fire type, and heavily overdriving (3 to 5 times IGT) the SCR gate with a fast <1.0 μs rise time signal will maximize its di/dt capability. A typical maximum number in phase control SCRs of less than 50 A(RMS) rating might be 200 A/us, assuming a gate current of five times IGT and < 1.0 μ s rise time. If having done this, a di/dt problem is seen to still exist, the designer can also decrease the di/dt of the current waveform by adding inductance in series with the SCR, as shown in Figure 15. Of course, this reduces the circuit's ability to rapidly reduce the dc bus voltage and a tradeoff must be made between speedy voltage reduction and di/dt.

FIGURE 13 — TYPICAL CROWBAR CIRCUIT CONFIGURATIONS

FIGURE 14 — CROWBAR SCR SURGE CURRENT WAVEFORM

2. Surge Current

If the peak current and/or the duration of the surge is excessive, immediate destruction due to device overheating will result. The surge capability of the SCR is directly proportional to its die area. If the surge current cannot be reduced (by adding series resistance—see Figure 15) to a safe level which is consistent with the system's requirements for speedy bus voltage reduction, the designer must use a higher current SCR. This may result in the average current capability of the SCR exceeding the steady state current requirements imposed by the dc power supply.

FIGURE 15 — CIRCUIT ELEMENTS AFFECTING SCR SURGE & di/dt

A WORD ABOUT FUSING

Before leaving the subject of the crowbar SCR, a few words about fuse protection are in order. Referring back to Figure 13A, it will be seen that a fuse is necessary if the power supply to be protected is not output current limited. This fuse is not meant to prevent SCR failure but rather to prevent a fire!

In order to protect the SCR, the fuse would have to possess an I^2 t rating less than that of the SCR and yet have a high enough continuous current rating to survive normal supply output currents. In addition, it must be capable of successfully clearing the high short circuit currents from the supply. Such a fuse as this is quite expensive, and may not even be available.

The usual design compromise then is to use a garden variety fuse (3AG or 3AB style) which cannot be relied on to blow before the thyristor does, and trust that if the SCR does fail, it will fail short circuit. In the majority of the designs, this will be the case, though this is difficult to guarantee. Of course, a sufficiently high surge will cause an open. These comments also apply to the fuse in Figure 13B.

CROWBAR SCR SELECTION GUIDE

As an aid in selecting an SCR for crowbar use, the following selection guide is presented.

DEVICE	IRMS	IFSM	PACKAGE
MCR67 Series	12 A	100 A	Metal Stud
MCR68 Series	12 A	100 A	TO-220 Plastic
2N1842 Series	16 A	125 A	Metal Stud
2N6400 Series	16 A	160 A	TO-220 Plastic
2N6504 Series	25 A	160 A	TO-220 Plastic
2N681 Series	25 A	200 A	Metal Stud
2N2573 Series	25 A	260 A	TO-3 Metal Can
MCR69 Series	25 A	300 A	TO-220 Plastic
MCR70 Series	35 A	350 A	Metal Stud
MCR71 Series	55 A	550 A	Metal Stud

For a complete and detailed treatment of SCR and fuse selection refer to Motorola Application Note AN-789.

MC34063 MC35063 MC33063

Advance Information

DC TO DC CONVERTER CONTROL CIRCUITS

The MC34063 Series is a monolithic control circuit containing the primary functions required for dc-to-dc converters. The device consists of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in Step-Down (Buck) and Step-Up (Boost) applications with a minimum number of external components.

- Operation from 2.5 V to 40 V Input
- Low Standby Current
- Current Limiting
- Output Switch Current of 1.5 A
- Output Voltage Adjustable from 1.25 to 40 V
- Frequency Operation from 100 Hz to 100 kHz

DC TO DC CONVERTER CONTROL CIRCUITS

SILICON MONOLITHIC INTEGRATED CIRCUITS

P1 SUFFIX PLASTIC PACKAGE CASE 626-04

U SUFFIX CERAMIC PACKAGE CASE 693-02

ORDERING INFORMATION						
Device	Temperature Range	Package				
MC35063U	-55 to +125°C	Ceramic DIP				
MC33063U	44. 0500	Ceramic DIP				
MC33063P1	–40 to +85°C	Plastic DIP				
MC34063U		Ceramic DIP				
MC34063P1	0 to +70°C	Plastic DIP				

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	40	Vdc
Comparator Input Voltage Range	V _{IR}	-0.3 to +40	Vdc
Switch Collector Voltage	V _{C(switch)}	40	Vdc
Switch Emitter Voltage	VE(switch)	40	Vdc
Switch Collector to Emitter Voltage	V _{CE} (switch)	40	Vdc
Driver Collector Voltage	V _{C(driver)}	40	Vdc
Switch Current	lsw	1.5	Amps
Power Dissipation and Thermal Characteristics Ceramic Package $T_{\mbox{$A$}} = +25^{\circ}\mbox{$C$}$ Derate above $T_{\mbox{$A$}} = +25^{\circ}\mbox{$C$}$ Plastic Package $T_{\mbox{$A$}} = +25^{\circ}\mbox{$C$}$ Derate above $T_{\mbox{$A$}} = +25^{\circ}\mbox{$C$}$	PD 1/θJA PD 1/θJA	1.25 10 1.0 10	W mW/°C W mW/°C
Operating Junction Temperature Ceramic Package Plastic Package	TJ	+ 150 + 125	°C
Operating Ambient Temperature Range MC35063 MC33063 MC34063	ТА	-55 to +125 -40 to +85 0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$; $T_A = T_{low}$ to T_{high} [Note 1] unless otherwise specified.)

Characteristic	Symbol	Min	Тур	Max	Unit
OSCILLATOR					
Charging Current (5.0 V \leq V _{CC} \leq 40 V, T _A = 25°C)	l _{chg}	20	35	50	μΑ
Discharge current (5.0 V \leq V _{CC} \leq 40 V; T _A = 25°C)	ldischg	150	200	250	μΑ
Voltage Swing (T _A = 25°C)	Vosc	_	0.5	_	V _{p-p}
Discharge to Charge Current Ratio (Ipk(sense) = V _{CC} , T _A = 25°C)	ldischg/lchg	_	6.0	_	_
Current Limit Sense Voltage Ichg = Idischg, TA = 25°C	V _{lpk} (sense)	250	300	350	mV
OUTPUT SWITCH (Note 2)					
Saturation Voltage, Darlington Connection ISW = 1.0 A; VC(driver) = VC(switch)	V _{CE(sat)}	_	1.0	1.3	V
Saturation Voltage $I_{SW} = 1.0 \text{ A}; I_{C(driver)} = 50 \text{ mA}, (Forced B} \approx 20)$	V _{CE(sat)}	_	0.45	0.7	٧
DC Current Gain I _{SW} = 1.0 A; V _{CE} = 5.0 V; T _A = 25°C	hFE	35	120	_	_
Collector Off-State Current (V _{CE} = 40 V; T _A = 25°C)	IC(off)	_	10		nA
COMPARATOR					
Threshold Voltage	V _{th}	1.18	1.25	1.32	, V
Threshold Voltage Line Regulation (3.0 V ≤ V _{CC} ≤ 40 V)	Regline	_	0.04	0.2	mV/V
Input Bias Current (Vin = 0 V)	IIB	_	40	400	nA
TOTAL DEVICE					
Supply Current 5.0 V \leq V _{CC} \leq 40 V, C _T $=$ 0.001 μ F pk(sense) = V _{CC} , V pin 5 $>$ V _{th} , Pin 2 $=$ Gnd, Remaining pins open	Icc	<u>-</u>	2.4	3.5	mA

NOTES:

^{-40°}C for MC33063 0°C for MC34063

^{1.} $T_{low} = -55$ °C for MC35063 $T_{high} = +125$ °C for MC35063 +85°C for MC33063 +70°C for MC34063

^{2.} Output switch tests are performed under pulsed conditions to minimize power dissipation.

FIGURE 1 — OUTPUT SWITCH ON-OFF TIME versus OSCILLATOR TIMING CAPACITOR

FIGURE 2 — STANDBY SUPPLY CURRENT versus SUPPLY VOLTAGE

FIGURE 3 — EMITTER-FOLLOWER CONFIGURATION OUTPUT SWITCH SATURATION VOLTAGE versus EMITTER CURRENT

FIGURE 4 — COMMON-EMITTER CONFIGURATION OUTPUT SWITCH SATURATION VOLTAGE Versus COLLECTOR CURRENT

FIGURE 5 --- STEP-DOWN CONVERTER

Test	Conditions	Results		
Line Regulation	V _{in} = 15 to 25 V, I _o = 500 mA	15 mV		
Load Regulation	$V_{in} = 25 \text{ V, } I_{o} = 50 \text{ to } 500 \text{ mA}$	5.0 mV		
Output Ripple	$V_{in} = 25 \text{ V, } I_{o} = 500 \text{ mA}$	40 mV _{p-p}		
Short Circuit Current	V_{in} = 25 V, R_L = 0.1 Ω	2.3 A		
Efficiency	V _{in} = 25 V, I _o = 500 mA	84.7%		

FIGURE 6 — EXTERNAL CURRENT BOOST CONNECTIONS FOR IC PEAK GREATER THAN 1.5 A

FIGURE 7 — STEP-UP CONVERTER

Test	Conditions	Results
Line Regulation	$V_{in} = 8.0 \text{ to } 16 \text{ V}, I_0 = 175 \text{ mA}$	12 mV
Load Regulation	$V_{in} = 12 \text{ V}, I_{o} = 75 \text{ to } 175 \text{ mA}$	45 mV
Output Ripple	V _{in} = 12 V, I _o = 175 mA	150 mV _{p-p}
Short Circuit Current	$V_{in} = 12 \text{ V}, R_{L} = 0.1 \Omega$	2.0 A
Efficiency	V _{in} = 12 V, I _o = 175 mA	93%

FIGURE 8 — EXTERNAL CURRENT BOOST CONNECTIONS FOR IC PEAK GREATER THAN 1.5 A

, FIGURE 9 - DESIGN FORMULA TABLE

Calculation	Step-Down	Step-Up
t _{on} t _{off}	V _{out} + V _F V _{in(max)} - V _{sat} - V _{out}	V _{out} + V _F − V _{in(min)} V _{in(min)} − V _{sat}
(t _{on} + t _{off}) _{max}	1 f _{min}	_ <u>1</u>
СТ	4 X 10 ⁻⁵ t _{on}	4 X 10 ⁻⁵ t _{on}
lpk(switch)	2l _{out(max)}	$2l_{out(max)} \left(\frac{t_{on} + t_{off}}{t_{off}} \right)$
Rsc	0.33/l _{pk(switch)}	0.33/lpk(switch)
^L (min)	$\left(\frac{V_{in(max)} - V_{sat} - V_{out}}{I_{pk(switch)}}\right)$ ton(max)	$\left(\frac{V_{\text{in(min)}} - V_{\text{sat}}}{I_{\text{pk(switch)}}}\right)^{t_{\text{on (max)}}}$
Co	lpk(switch) (ton + toff) 8 Vripple(p-p)	≈ ^l out ^t on V _{ripple}

V_{sat} = Saturation voltage of the output switch.

The following power supply characteristics must be chosen:

Vin - Nominal input voltage. If this voltage is not constant, then use Vin(max) for step-down and Vin(min) for stepup converter.

 V_{out} — Desired output voltage, $V_{out} = 1.25 \left(1 + \frac{R_2}{R_1}\right)$.

 I_{out} — Desired output current.
 f_{min} — Minimum desired output switching frequency at the selected values for V_{in} and I_o.
 V_{ripple(p-p)} — Desired peak-to-peak output ripple voltage. In practice, the calculated value will need to be increased due to the capacitor's equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly effect the line and load regulation.

VF = Forward voltage drop of the ringback rectifier.

MOTOROLA

SG1525A/SG1527A SG2525A/SG2527A SG3525A/SG3527A

PULSE WIDTH MODULATOR CONTROL CIRCUITS

The SG1525A/1527A series of pulse width modulator controlcircuits offer improved performance and lower external parts count when implemented for controlling all types of switching power supplies. The device includes a +5.1 volt ±1% reference and an error amplifier with a common-mode range including the reference voltage to eliminate external divider resistors. A sync input to the oscillator enables multiple units to be slaved together, or a single unit can be synchronized to an external system clock. A wide range of dead time is programmable with a single resistor between the CT pin and the Discharge pin. Other features included are soft-start circuitry requiring only an external timing capacitor. A shutdown pin controls both the soft-start circuitry and the output stages, allowing fast output turn-off with soft-start recycle turn-on. Undervoltage lockout keeps the outputs off when VCC is less than the required level for normal operation. The output stages are a totem-pole design capable of sinking and sourcing in excess of 200 mA. The SG1525A series output stage features NOR Logic, giving a low output for an off state. The SG1527A utilizes OR Logic which results in a high output level when off. These devices are available in Military, Industrial and Commercial temperature ranges and feature:

- 8.0 to 35 Volt Operation
- 5.1 Volt ±1% Trimmed Reference
- 100 Hz to 400 kHz Oscillator Range
- Separate Oscillator Sync Pin
- Adjustable Dead Time
- Input Undervoltage Lockout
- Latching PWM to Prevent Multiple Pulses
- Dual Source/Sink Output Current: ±400 mA Peak

PULSE WIDTH MODULATOR CONTROL CIRCUITS

SILICON MONOLITHIC INTEGRATED CIRCUITS

ORDERING INFORMATION

ORDERING INFORMATION								
Device	Junction Temperature Range	Package						
SG1525AJ	-55 to +150°C	Ceramic DIP						
SG1527AJ	-55 to +150°C	Ceramic DIP						
SG2525AJ	- 25 to + 150°C	Ceramic DIP						
SG2525AN	- 25 to + 150°C	Plastic DIP						
SG2527AJ	- 25 to + 150°C	Ceramic DIP						
SG2527AN	- 25 to + 150°C	Plastic DIP						
SG3525AJ	0 to +125°C	Ceramic DIP						
SG3525AN	0 to +125°C	Plastic DIP						
SG3527AJ	0 to +125°C	Ceramic DIP						
SG3527AN	0 to +125°C	Plastic DIP						

SG1525A, SG1527A, SG2525A, SG2527A, SG3525A, SG3527A

MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit Vdc	
Supply Voltage	Vcc	+40		
Collector Supply Voltage	Vc	+40	Vdc	
Logic Inputs	-	-0.3 to +5.5	٧	
Analog Inputs		-0.3 to V _{CC}	V	
Output Current, Source or Sink	10	±500	mA	
Reference Output Current	¹ lref	50	mA	
Oscillator Charging Current	_	5.0	mA	
Power Dissipation (Plastic & Ceramic Package) Note 2, T _A = +25°C Note 3, T _C = +25°C	PD	1000 2000	mW	
Thermal Resistance Junction to Air Plastic and Ceramic Package	$R_{ heta}$ JA	100	°C/W	
Thermal Resistance Junction to Case Plastic and Ceramic Package	R _θ JC	60	°C/W	
Operating Junction Temperature	Тј	+150	°C	
Storage Temperature Range Ceramic Package Plastic Package	T _{stg}	-65 to +150 -55 to +125	°C	
Lead Temperature (Soldering, 10 Seconds)	TSolder	+300	°C	

NOTES:

- 1. Values beyond which damage may occur
- 2. Derate at 10 mW/°C for ambient temperatures above +50°C
- 3. Derate at 16 mW/°C for case temperatures above +25°C

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min.	Max.	Unit
Supply Voltage	Vcc	+8.0	+35	Vdc
Collector Supply Voltage	V _C	+4.5	+35	Vdc
Output Sink/Source Current (Steady State) (Peak)	Io	0	±100 ±400	mA
Reference Load Current	I _{ref}	0	20	mA ·
Oscillator Frequency Range	fosc	0.1	400	kHz
Oscillator Timing Resistor	R _T	2.0	150	kΩ
Oscillator Timing Capacitor	CT	0.001	0.2	μF
Deadtime Resistor Range	R _D	0	500	Ω
Operating Junction Temperature Range SG1525A, SG1527A SG2525A, SG2527A SG3525A, SG3527A	TJ	-55 -25 0	+ 150 + 150 + 125	°C

SG1525A, SG1527A, SG2525A, SG2527A, SG3525A, SG3527A

 $\textbf{ELECTRICAL CHARACTERISTICS} \text{ (V}_{CC} = +20 \text{ Vdc, T}_{J} = T_{low} \text{ to T}_{high} \text{ [Note 4], unless otherwise specified)}$

	Symbol	SG1525A/2525A SG1527A/2527A			SG3525A SG3527A			
Characteristic		Min	Тур	Max	Min	Тур	Max	Unit
REFERENCE SECTION								
Reference Output Voltage (T _J = +25°C)	V _{ref}	5.05	5.10	5.15	5.00	5.10	5.20	. Vdc
Line Regulation (+8.0 V ≤ V _{CC} ≤ +35 V)	Regline	_	10	20		10	20	mV
Load Regulation (0 mA ≤ I _L ≤ 20 mA)	Regload		20	50	_	20	50	mV
Temperature Stability	ΔV _{ref} /ΔT	_	20	50	_	20	50	mV
Total Output Variation Includes Line and Load Regulation over Temperature	ΔV _{ref}	5.00	_	5.20	4.95		5.25	Vdc
Short Circuit Current (V _{ref} = 0 V, T _J = +25°C)	Isc	_	80	100	_	80	100	mA
Output Noise Voltage (10 Hz \leqslant f \leqslant 10.kHz, T _J = +25°C)	V _n	_	40	200	_	40	200	μV _{rms}
Long Term Stability (T _J = +125°C) (Note 5)	S	_	20	50	_	20	50	mV/kh
OSCILLATOR SECTION (Note 6, unless otherwise	specified)							
Initial Accuracy (T _J = +25°C)			±2.0	±6.0	_	±2.0	±6.0	%
Frequency Stability with Voltage (+8.0 V \leq V _{CC} \leq +35 V)	Δf _{osc}	-	±0.3	±1.0	_	±1.0	±2.0	%
Frequency Stability with Temperature	∆f _{osc}	_	±3.0	±6.0		±3.0	±6.0	%
Minimum Frequency (R _T = 150 k Ω , C _T = 0.2 μ F)	f _{min}	_	_	100	_	-	100	Hz
Maximum Frequency (R _T = 2.0 kΩ, C _T = 1.0 nF)	f _{max}	400	_	_	400	_		kHz
Current Mirror (I _{RT} = 2.0 mA)		1.7	2.0	2.2	1.7	2.0	2.2	mA
Clock Amplitude	_	3.0	3.5	_	3.0	3.5	-	V
Clock Width (T _J = +25°C)	_	0.3	0.5	1.0	0.3	0.5	1.0	μS
Sync Threshold	_	1.2	2.0	2.8	1.2	2.0	2.8	V
Sync Input Current (Sync Voltage = +3.5 V)	_	_	1.0	2.5	_	1.0	2.5	mA
ERROR AMPLIFIER SECTION (V _{CM} = +5.1 V)								
Input Offset Voltage	VIO		0.5	5.0	_	2.0	10	mV
Input Bias Current	IΒ	_	1.0	10	_	1.0	10	μΑ
Input Offset Current	10		_	1.0			1.0	μА
DC Open Loop Gain (RL \geqslant 10 M Ω)	Avol	60	75	_	60	75		dB
Low Level Output Voltage	V _{OL}	_	0.2	0.5	-	0.2	0.5	V
High Level Output Voltage	Voн	3.8	5.6	_	3.8	5.6	_	V
Common Mode Rejection Ratio $(+1.5 \text{ V} \leq \text{V}_{CM} \leq +5.2 \text{ V})$	CMRR	60	75	_	60	75		dB
Power Supply Rejection Ratio (+8.0 V \leq V _{CC} \leq +35 V)	PSRR	50	60	_	50	60		dB
PWM COMPARATOR SECTION							,	,
Minimum Duty Cycle	DC _{min}	_	_	0		.—	0	%
Maximum Duty Cycle	DC _{max}	45	49		45	49		%
Input Threshold, Zero Duty Cycle (Note 6)	V _{TH}	0.6	0.9	_	0.6	0.9	_	V
Input Threshold, Maximum Duty Cycle (Note 6)	V _{TH}		3.3	3.6		3.3	3.6	٧
Input Bias Current	I _{IB}	_	0.05	1.0	_	0.05	1.0	μΑ

ELECTRICAL CHARACTERISTICS (Continued)

		SG1525A/2525A SG1527A/2527A			SG3525A SG3527A			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
SOFT-START SECTION								•
Soft-Start Current (V _{Shutdown} = 0 V)	_	25	50	80	25	50	80	μА
Soft-Start Voltage (V _{shutdown} = 2.0 V)	_	_	0.4	0.6	_	0.4	0.6	V
Shutdown Input Current (V _{shutdown} = 2.5 V)	_	_	0.4	1.0	_	0.4	1.0	mA
OUTPUT DRIVERS (Each Output, V _{CC} = +20 V)								
Output Low Level (I _{sink} = 20 mA) (I _{sink} = 100 mA)	VOL	_	0.2 1.0	0.4 2.0	<u> </u>	0.2 1.0	0.4 2.0	V
Output High Level (I _{source} = 20 mA) (I _{source} = 100 mA)	Voн	18 17	19 18	_	18 17	19 18	<u>-</u>	V
Under Voltage Lockout (V8 and V9 = High)	VUL	6.0	7.0	8.0	6.0	7.0	8.0	V
Collector Leakage, V _C = +35 V (Note 7)	I _{C(leak)}	_		200	_	_	200	μА
Rise Time (C _L = 1.0 nF, T _J = 25°C)	t _r	_	100	600		100	600	ns
Fall Time (C _L = 1.0 nF, T _J = 25°C)	tf	_	50	300	_	50	300	ns
Shutdown Delay (V _{SD} = +3.0 V, C _S = 0, T _J = +25°C)	t _{ds}		0.2	0.5	_	0.2	0.5	μS
Supply Current, (V _{CC} = +35 V)	¹ cc		14	20	_	14	20	mA

NOTES:

- 4. $T_{low} = -55^{\circ}C$ for SG1525A/1527A
 - 25°C for SG2525A/2527A 0°C for SG3525A/3527A

Thigh = +150°C for SG1525A/1527A

- + 150°C for SG2525A/2527A + 125°C for SG3525A/3527A
- 5. Since long term stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.
- 6 Tested at $f_{\mbox{OSC}}$ = 40 kHz (RT = 3.6 k Ω , CT = 0.01 $\mu\mbox{F},$ RD = 0 $\Omega).$
- 7. Applies to SG1525A/2525A/3525A only, due to polarity of output pulses.

APPLICATION INFORMATION

Shutdown Options (see block diagram, front page)

- An external open collector comparator or transistor can be used to pull down the Compensation pin (9). This will set the PWM latch and turn off both outputs. Pulse-by-pulse protection can be accomplished if the shutdown signal is momentary, since the PWM latch will be reset with each clock pulse.
- Shutdown can also be accomplished by pulling down on the SOFT-START pin (8). When using this approach, shutdown will not affect the amplifier compensation network; however, if a SOFT-START capacitor is used, it must be discharged, possible slowing shutdown response.
- 3. Applying a positive-going signal to the Shutdown pin (10) will provide the most rapid shutdown of the outputs if a soft-start capacitor is not used at Pin 8. An external soft-start capacitor at Pin 8 will slow shutdown response due to the discharge time of the softstart capacitor. Dishcarge current is approximately twice the charging current.
- 4. The Shutdown terminal can be used to set the PWM latch on a pulse-by-pulse basis if there is no external capacitance on Pin 8. Soft-start characteristics may still be accomplished by applying an external capacitor, blocking diode and charging resistor to the Compensation pin (9).

SG1525A, SG1527A, SG2525A, SG2527A, SG3525A, SG3527A

TYPICAL CHARACTERISTICS

FIGURE 1 — SG1525A OSCILLATOR SCHEMATIC

FIGURE 2 — OSCILLATOR CHARGE TIME versus RT

FIGURE 3 — OSCILLATOR DISCHARGE TIME versus RD

FIGURE 4 — SG1525A ERROR AMPLIFIER SCHEMATIC

FIGURE 5 — ERROR AMPLIFIER OPEN-LOOP FREQUENCY RESPONSE

FIGURE 6 — SG1525A OUTPUT CIRCUIT (1/2 CIRCUIT SHOWN)

FIGURE 7 — SG1525A/2525A/3525A OUTPUT SATURATION CHARACTERISTICS

FIGURE 8 — SINGLE ENDED SUPPLY

For single-ended supplies, the driver outputs are grounded. The $V_{\mathbb{C}}$ terminal is switched to ground by the totem-pole source transistors on alternate oscillator cycles.

FIGURE 10 - DRIVING POWER FETS

The low source impedance of the output drivers provides rapid charging of power FET input capacitance while minimizing external components.

FIGURE 9 - PUSH-PULL CONFIGURATION

In conventional push-pull bipolar designs, forward base drive is controlled by R1-R3. Rapid turn-off times for the power devices are achieved with speed-up capacitors C1 and C2.

FIGURE 11 — DRIVING TRANSFORMERS IN A HALF-BRIDGE CONFIGURATION

Low power transformers can be driven directly by the SG1525A. Automatic reset occurs during deadtime, when both ends of the primary winding are switched to ground.

SG1525A, SG1527A, SG2525A, SG2527A, SG3525A, SG3527A

SG1526 SG2526 SG3526

PULSE WIDTH MODULATION CONTROL CIRCUIT

The SG1526 is a high performance pulse width modulator integrated circuit intended for fixed frequency switching regulators and other power control applications.

Functions included in this IC are a temperature compensated voltage reference, sawtooth oscillator, error amplifier, pulse width modulator, pulse metering and steering logic, and two high current totem pole outputs ideally suited for driving the capacitance of power FETs at high speeds.

Additional protective features include soft-start and undervoltage lockout, digital current limiting, double pulse inhibit, adjustable dead time and a data latch for single pulse metering. All digital control ports are TTL and B-series CMOS compatible. Active low logic design allows easy wired-OR connections for maximum flexibility. The versatility of this device enables implementation in single-ended or push-pull switching regulators that are transformerless or transformer coupled. The SG1526 is specified over the full military junction temperature range of –55°C to +150°C. The SG2526 is specified over a junction temperature range of –40°C to +150°C while the SG3526 is specified over a range of 0°C to +125°C.

- 8.0 to 35 Volt Operation
- 5.0 Volt ±1% Trimmed Reference
- 1.0 Hz to 400 kHz Oscillator Range
- Dual Source/Sink Current Outputs: ±100 mA
- Digital Current Limiting
- Programmable Dead Time
- Undervoltage Lockout
- Single Pulse Metering
- Programmable Soft-Start
- Wide Current Limit Common Mode Range
- Guaranteed 6 Unit Synchronization

PULSE WIDTH MODULATION CONTROL CIRCUITS

SILICON MONOLITHIC INTEGRATED CIRCUITS

Device	Junction Temper ature Range	Package
SG1526J	-55 to +150°C	Ceramic DIP
SG2526J SG2526N	-40 to +150°C	Ceramic DIP Plastic DIP
SG3526J SG3526N	0 to +125°C	Ceramic DIP Plastic DIP

SG1526, SG2526, SG3526

MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	+40	Vdc
Collector Supply Voltage	V _C	+40	Vdc
Logic Inputs		-0.3 to +5.5	V
Analog Inputs	_	-0.3 to V _{CC}	V
Output Current, Source or Sink	10	±200	mA
Reference Output Current	I _{ref}	50	mA
Logic Sink Current		15	mA
Power Dissipation (Plastic & Ceramic Package) Note 2, T _A = +25°C Note 3, T _C = +25°C	PD	1000 3000	mW
Thermal Resistance Junction to Air (Plastic and Ceramic Package)	$R_{ heta}$ JA	100	°C/W
Thermal Resistance Junction to Case (Plastic and Ceramic Package)	R _θ JC	42	°C/W
Operating Junction Temperature	TJ	+150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Lead Temperature (Soldering, 10 Seconds)	TSolder	±300	°C

Notes:

- 1. Values beyond which damage may occur
- 2. Derate at 10 mW/°C for ambient temperatures above +50°C
- 3. Derate at 24 mW/°C for case temperatures above +25°C

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Max	Unit
Supply Voltage	Vcc	+8.0	+35	Vdc
Collector Supply Voltage	VC	+4.5	+35	Vdc
Output Sink/Source Current (Each Output)	10	0	±100	mA
Reference Load Current	l _{ref}	0	20	mA
Oscillator Frequency Range	fosc	0.001	400	kHz
Oscillator Timing Resistor	R _T	2.0	150	kΩ
Oscillator Timing Capacitor	CT	0.001	20	μF
Available Deadtime Range (40 kHz)		3.0	50	%
Operating Junction Temperature Range SG1526 SG2526 SG3526	TJ	-55 -40 0	+ 150 + 150 + 125	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 Vdc, T_J = T_{low} to T_{high} [Note 4] unless otherwise specified)

Characteristic	Symbol	SG1526/2526		<u> </u>	SG3526	,	Unit	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Oiiit
REFERENCE SECTION (Note 5)								
Reference Output Voltage (T _J = +25°C)	V _{ref}	4.95	5.00	5.05	4.90	5.00	5.10	٧
Line Regulation (+8.0 V \leq V _{CC} \leq +35 V)	Regline	_	10	20	_	10	30	mV
Load Regulation, 0 mA ≤ I _L ≤ 20 mA	Regload	_	10	30	_	10	50	mV
Temperature Stability	ΔV _{ref} /ΔT _J		15	50		15	50	mV
Total Reference Output Voltage Variation (+8.0 V \leq V _{CC} \leq +35 V, 0 mA \leq I _L \leq 20 mA)	ΔV _{ref}	4.90	5.00	5.10	4.85	5.00	5.15	V
Short Circuit Current (V _{ref} = 0 V)	Isc	25	50	100	25	50	100	mA
UNDERVOLTAGE LOCKOUT								
Reset Output Voltage (V _{ref} = +3.8 V)	and the second	_	0.2	0.4	_	0.2	0.4	٧
Reset Output Voltage (V _{ref} = +4.8 V)	_	2.4	4.8	_	2.4	4.8	_	٧
OSCILLATOR SECTION (Note 6)						•		
Initial Accuracy (T _J = +25°C)		_	±3.0	±8.0		±3.0	±8.0	%
Frequency Stability over Power Supply Range (+8.0 V \leq V _{CC} \leq +35 V)	Δf _{OSC} ΔVCC	_	0.5	1.0		0.5	1.0	%
Frequency Stability over Temperature (\Delta T Tow to Thigh)	$\frac{\Delta f_{OSC}}{\Delta T_J}$	_	7.0	10	_	3.0	5.0	%
Minimum Frequency (R _T = 150 k Ω , C _T = 20 μ F)	fmin		_	1.0		-	1.0	Hz
Maximum Frequency (R _T = 2.0 kΩ, C _T = 0.001 μ F)	f _{max}	400	_	-	400	_	_	kHz
Sawtooth Peak Voltage (V _{CC} = +35 V)	V _{osc(P)}		3.0	3.5		3.0	3.5	٧
Sawtooth Valley Voltage (V _{CC} = +8.0 V)	V _{osc(V)}	0.5	1.0	-	0.5	1.0	_	٧
ERROR AMPLIFIER SECTION (Note 7)								
Input Offset Voltage (R _S \leq 2.0 k(1)	V _{IO}	_	2.0	5.0		2.0	10	mV
Input Bias Current	IIB	_	- 350	- 1000	_	- 350	- 2000	nA
Input Offset Current	110		35	100	_	35	200	nA
DC Open Loop Gain (R _L ≥ 10 MΩ)	A _{Vol}	64	72	-	60	72	_	dB
High Output Voltage (V _{Pin 1} -V _{Pin 2} ≥ +150 mV, I _{source} = 100 μA)	Voн	3.6	4.2	_	3.6	4.2	_	V
Low Output Voltage (V _{Pin 2} –V _{Pin 1} ≥ +150 mV, I _{Sink} = 100 μA)	V _{OL}		0.2	0.4		0.2	0.4	V
Common Mode Rejection Ratio $(R_S \leq 2.0 \text{ k}\Omega)$	CMRR	70	94	_	70	94	_	dB
Power Supply Rejection Ratio (+12 V ≤ V _{CC} ≤ +18 V)	PSRR	66	80	_	66	80	_	dB
PWM COMPARATOR SECTION (Note 6)								•
Minimum Duty Cycle (Vcompensation = +0.4 V)	DC _{min}	_	_	0	_	_	0	%
Maximum Duty Cycle (Vcompensation = +3.6 V)	DC _{max}	45	49	_	45	49	_	%

ELECTRICAL CHARACTERISTICS (Continued)

		SG1526/2526			SG3526			Unit
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Onit
DIGITAL PORTS (SYNC, SHUTDOWN, RESE	Γ)							
Output Voltage — High Logic Level (I _{Source} = 40 μA)	Voн	2.4	4.0	_	2.4	4.0	_	V
Output Voltage — Low Logic Level (I _{Sink} = 3.6 mA)	V _{OL}	_	0.2	0.4		0.2	0.4	V
Input Current — High Logic Level (V _{IH} = +2.4 V)	ин	_	-125	-200	_	-125	-200	μΑ
Input Current — Low Logic Level (V _I L = +0.4 V)	IιL		-225	-360	-	-225	-360	μА
CURRENT LIMIT COMPARATOR SECTION (N	lote 8)							
Sense Voltage (R _S \leq 50 Ω)	V _{sense}	90	100	110	80	100	120	mV
Input Bias Current	IIB		-3.0	-10		-3.0	-10	μΑ
SOFT-START SECTION								
Error Clamp Voltage (Reset = +0.4 V)	_	_	0.1	0.4	_	0.1	0.4	٧
CSoft-Start Charging Current (Reset = +2.4 V)	lcs	50	100	150	50	100	150	μΑ
OUTPUT DRIVERS (Each Output, V _C = +15 Vdc unless otherwise sp	ecified)							
Output High Level I _{source} = 20 mA I _{source} = 100 mA	V _{OH}	12.5 12	13.5 13	_	12.5 12	13.5 13	_	٧
Output Low Level I _{Sink} = 20 mA I _{Sink} = 100 mA	VOL	_	0.2 1.2	0.3 2.0		0.2 1.2	0.3 2.0	V
Collector Leakage, V _C = +40 V	^I C(leak)		50	150		50	150	μА
Rise Time (C _L = 1000 pF)	t _r		0.3	0.6	_	0.3	0.6	μS
Fall Time (C _L = 1000 pF)	tf		0.1	0.2	_	0.1	0.2	μS
Supply Current (Shutdown = +0.4 V, V_{CC} = +35 V, R_T = 4.12 k Ω)	lcc	_	18	30	_	18	30	mA

Notes:

4. T_{low} = -55°C for SG1526 -40°C for SG2526 0°C for SG3526

Thigh = +150°C for SG1526/2526 +125°C for SG3526

5. I_L = 0 mA unless otherwise noted.

6. f_{OSC} = 40 kHz (R_T = 4.12 k Ω ±1%, C_T = 0.01 μF ±1%, R_D = 0 Ω)
7. 0 V \leq V_{CM} \leq +5.2 V

8. $0 \text{ V} \leqslant \text{V}_{CM} \leqslant +12 \text{ V}$

-50

TYPICAL CHARACTERISTICS

FIGURE 1 - SG1526 REFERENCE STABILITY **OVER TEMPERATURE** 50 mV Spec Limit

FIGURE 2 - REFERENCE VOLTAGE AS A **FUNCTION SUPPLY VOLTAGE**

FIGURE 3 — ERROR AMPLIFIER OPEN LOOP FREQUENCY RESPONSE

50 25

75 T.J. JUNCTION TEMPERATURE (°C) 125

FIGURE 4 -- CURRENT LIMIT

FIGURE 5 - UNDERVOLTAGE LOCKOUT CHARACTERISTIC

FIGURE 6 — OUTPUT DRIVER SATURATION **VOLTAGE AS A FUNCTION OF SINK CURRENT**

FIGURE 7 — V_C SATURATION VOLTAGE AS A FUNCTION OF SINK CURRENT

2.5

2.0

2.0

3.0

1.5

0.5

0.5

0.7

V_C SINK CURRENT (mA)

FIGURE 10 - SG1526 ERROR AMPLIFIER

FIGURE 9 -- OUTPUT DEADTIME AS A **FUNCTION OF DEADTIME RESISTOR VALUE** 10 9.0 $f_{OSC} = 40 \text{ kHz}$ 8.0 $= 0.01 \,\mu\text{F}$ OUTPUT DEADTIME (µs) 7.0 6.0 5.0 4.0 3.0 2.0 1.0 10 12 16 18 20 2.0 4.0 R_D , DEADTIME RESISTOR (Ω)

Vref

To Reset

To Driver A

To Driver B

Reference

R2

FIGURE 11 --- SG1526 UNDERVOLTAGE LOCKOUT

The metering FLIP-FLOP is an asynchronous data latch which suppresses high frequency oscillations by allowing only one PWM pulse per oscillator cycle.

The memory FLIP-FLOP prevents double pulsing in a push-pull configuration by remembering which output produced the last pulse.

APPLICATIONS INFORMATION

FIGURE 13 — EXTENDING REFERENCE OUTPUT CURRENT CAPABILITY

of transistors

FIGURE 14 -- ERROR AMPLIFIER CONNECTIONS

FIGURE 15 - OSCILLATOR CONNECTIONS

FIGURE 16 — FOLDBACK CURRENT LIMITING

FIGURE 17 - SG1526 SOFT-START CIRCUITRY

FIGURE 18 -- DRIVING TMOS POWER FETS

The totem-pole output drivers of the SG1526 are ideally suited for driving the input capacitance of power FETs at high speeds.

FIGURE 19 — HALF-BRIDGE CONFIGURATION

FIGURE 20 — FLYBACK CONVERTER WITH CURRENT LIMITING

In the above circuit, current limiting is accomplished by using the current limit comparator output to reset the soft-start capacitor.

FIGURE 21 — SINGLE-ENDED CONFIGURATION

FIGURE 22 --- PUSH-PULL CONFIGURATION

TCA5600 TCF5600

Product Preview

UNIVERSAL MICROPROCESSOR POWER SUPPLY CONTROLLER

The TCA5600 is a versatile power supply control circuit for microprocessor based systems and mainly intended for automotive applications and battery powered instruments. To cover a wide range of applications, the device offers high circuit flexibility with minimum of external components.

Functions included in this IC are a temperature compensated voltage reference, on chip dc/dc converter, programmable and remote controlled voltage regulator, fixed 5.0 V supply voltage regulator with external PNP power device, undervoltage detection circuit, power-on RESET delay and watchdog feature for safe and hazard free microprocessor operations.

- 6.0 to 30 V Operation Range
- 2.5 V Reference Voltage Accessible for Other Tasks
- Fixed 5.0 V ± 4% Microprocessor Supply Regulator Including Current Limitation, Overvoltage Protection and Undervoltage Monitor
- Programmable 6.0 to 30 V Voltage Regulator Exhibiting High Peak Current (150 mA), Current Limiting and Thermal Protection
- Two Remote Inputs to Select the Regulator's Operation Mode: OFF, 5.0 V, 5.0 V Standby and Programmable Output Voltage
- Self Contained dc/dc Converter Fully Controlled By the Programmable Regulator to Guarantee Safe Operation Under All Working Conditions
- Programmable Power-On RESET Delay
- Watchdog Select Input
- Negative Edge Triggered Watchdog Input
- Low Current Consumption in the V_{CC1} Standby Mode
- All Digital Control Ports are TTL- and MOS-Compatible

APPLICATIONS INCLUDE

- Microprocessor Systems with E²PROMs
- High Voltage Crystal and Plasma Displays
- Decentralized Power Supplies in Computer and Telecommunication Systems

RECOMMENDED OPERATION CONDITIONS

Characteristic	Symbol	Min	Max	Unit
Power Supply Voltage	V _{CC1}	5.0	30	V
	V _{CC2}	5.5	30	
Collector Current	lc		800	mA
Output Voltage	V _{out2}	6.0	30	V
Reference Source Current	I _{ref}	0	2.0	mA

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

UNIVERSAL MICROPROCESSOR POWER SUPPLY CONTROLLER

SILICON MONOLITHIC INTEGRATED CIRCUITS

ORDERING INFORMATION

Device	Operating Junction Temperature Range	Package
TCA5600	0 to +125°C	Plastic DIP
TCF5600	-40 to +150°C	Plastic DIP

TCA5600, TCF5600

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted, Note 1)

Rating	Symbol	Value	Unit
Power Supply Voltage (Pin 3, 14)	V _{CC1} , V _{CC2}	35	Vdc
Base Drive Current (Pin 15)	IB	20	mA
Collector Current (Pin 10)	Ic	1.0	Α
Forward Rectifier Current (Pin 10-Pin 9)	lF.	1.0	Α
Logic Inputs INH1, INH2, WDS (Pin 6, 11, 18)	VINP	-0.3 V to V _{CC1}	Vdc
Logic Input Current WDI (Pin 4)	lWDI	± 0.5	mA
Output Sink Current RESET (Pin 1)	IRES	10	mA
Analog Inputs (Pin 2) (Pin 7)	_	-0.3 to 10 -0.3 to 5.0	٧
Reference Source Current (Pin 5)	l _{ref}	5.0	mA
Power Dissipation (Note 2) $T_A = +75^{\circ}C TCA5600$ $T_A = +85^{\circ}C TCF5600$	PD	500 650	mW
Thermal Resistance (Junction to Air)	$R_{\theta JA}$	100	°C/W
Operating Temperature Range TCA5600 TCF5600	TA	0 to +75 -40 to +85	°C
Operating Junction Temperature TCA5600 TCF5600	ТЈ	+ 125 + 150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

NOTES:

- 1. Values beyond which damage may occur.
- Derate at 10 mW/°C for junction temperature above +75°C (TCA5600).

 Derate at 10 mW/°C for junction temperature above +85°C (TCF5600).

FIGURE 1 — FUNCTIONAL BLOCK DIAGRAM

Characteristic		- Out	T	1		T
Characteristic	Figure	Symbol	Min	Тур	Max	Unit
REFERENCE SECTION					-	
Nominal Reference Voltage	1	V _{ref nom}	2.42	2.5	2.58	V
Reference Voltage $I_{ref} = 0.5$ mA, $T_{low} \le T_{J} \le T_{high}$ (Note 5), $6.0 \text{ V} \le V_{CC1} \le 18 \text{ V}$		V _{ref}	2.4	_	2.6	٧
Line Regulation (6.0 V \leq V _{CC2} \leq 18 V)		Regline	_	2.0	15	mV
Average Temperature Coefficient $T_{low} \le T_J \le T_{high}$ (Note 5)	2	ΔV _{ref} ΔΤυ		<u></u> -	+/-0.5	mV/°C
Ripple Rejection Ratio $f = 1.0 \text{ kHz}, V_{sin} = 1.0 V_{pp}$	3	RR	60	70		dB
Output Impedance $0 \le I_{ref} \le 2.0 \text{ mA}$		z _O	_	1.0	_	Ohm
Standby Current Consumption VCC2 = Open	4	lCC1		3.0	-	mA

NOTES:

- NOTES:

 3. The external PNP power transistor satisfies the following minimum specifications:

 hFE ≥ 60 at IC = 500 mA and VCE = 5.0 V; VCE(sat) ≤ 300 mV at IB = 10 mA and IC = 300 mA

 4. Regulator V_{out2} programmed for nominal 24 V output by means of R4, R5 (see Figure 1)

 5. T_{IOW} = 0°C for TCA5600; T_{IOW} = -40°C for TCF5600.

 Thigh = 125°C for TCA5600; Thigh = 150°C for TCF5600.

5.0 V MICROPROCESSOR VOLTAGE REGULATOR SECTION

Nominal Output Voltage		V _{out1(nom)}	4.8	5.0	5.2	V
Output Voltage 5.0 mA \leq $I_{out1} \leq$ 300 mA, $T_{low} \leq$ $T_{J} \leq$ T_{high} (Note 5) 6.0 V \leq V _{CC2} \leq 18 V	5 6	V _{out1}	4.75	_	5.25	V
Line Regulation (6.0 V \leq V _{CC2} \leq 18 V)		Regline	_	10	50	mV
Load Regulation (5.0 mA \leq I _{out1} \leq 300 mA)		Regload	_	20	100	mV
Base Current Drive (V _{CC2} = 6.0 V, V ₁₅ = 4.0 V)		IВ	10	15	_	mA
Ripple Rejection Ratio $f = 1.0 \text{ kHz}$, $V_{sin} = 1.0 \text{ Vpp}$	3	RR	50	65	_	dB
Undervoltage Detection Level (RSC $= 5.0 \Omega$)	7	V _{low}	4.5	0.93 x V _{out1}	_	V
Current Limitation Threshold (R _{SC} = 5.0Ω)		VRSC	210	250	290	mV
Average Temperature Coefficient $T_{low} \le T_J \le T_{high}$ (Note 5)		ΔV _{out1} ΔΤ _J		_	± 1.0	mV/°C

TCA5600, TCF5600

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
PROGRAMMABLE VOLTAGE REGULATOR SECTION (Note 6)						
Nominal Output Voltage		V _{out2(nom)}	23	24	25	٧
Output Voltage 1.0 mA \leq I _{out2} \leq 100 mA, T _{low} \leq T _J \leq T _{high} (Notes 5, 7)	8	V _{out2}	22.8	_	25.2	V
Load Regulation 1.0 mA ≤ I _{out2} ≤ 100 mA (Note 7)		Regload		40	200	mV
DC Output Current		lout2	100	_	_	mA
Peak Output Current (Internally Limited)		lout2 p	150	200		mA
Ripple Rejection Ratio f = 20 kHz, V = 0.4 V _{DD}		RR	45	55	_	dB
Output Voltage (Fixed 5.0 V) 1.0 mA ≤ I _{Out2} ≤ 20 mA, T _{Iow} ≤ T _J ≤ T _{high} , INH1 = "High" (Note 5)		V _{out2(5.0 V)}	4.75	_	5.25	V
OFF State Output Impedance (INH2 = "Low")		R _{out1}		10	_	kΩ
Average Temperature Coefficient $T_{low} \le T_J \le T_{high}$ (Note 5)		$\frac{\Delta V_{\text{out2}}}{\Delta T_{\text{J}} V_{\text{out2}}}$		_	± 0.25	mV/°C V

- KOLD. 6. Vg = 28 V, INH1 = "Low" for this Electrical Characteristic section unless otherwise specified. 7. Pulse tested $t_p \le 300~\mu s$

DC/DC CONVERTER SECTION

DC/DC CONVENTER SECTION						
Collector Current Detection Level "High" RC = 10 k "Low"	9	V ₁₂ (H) V ₁₂ (L)	350	400 50	450 —	mV
Collector Saturation Voltage I _C = 600 mA (Note 7)	10	V _{CE(sat)}		-	1.6	V
Rectifier Forward Voltage Drop IF = 600 mA (Note 7)	11	VF	_	_	1.4	V

WATCHDOG AND RESET CIRCUIT SECTION

Threshold Voltage "High" (static) "Low"	V _{C5(H)} V _{C5(L)}	_	2.5 1.0	_	٧
Current Source T _{Iow} ≤ T _J ≤ T _{high} (Note 5) Power-Up RESET Watchdog Time Out Watchdog RESET	I _{C5}	- 1.8 	- 2.5 5xl _{C5} - 50xl _{C5}	-3.2 - -	μΑ
Watchdog Input Voltage Swing	VWDI		·	± 5.5	V
Watchdog Input Impedance	rį	12	15	_	kΩ
Watchdog Reset Pulse Width (C8 = 1.0 nF) (Note 9)	tp	_		10	μs

DIGITAL PORTS: WDS, INH 1, INH 2, RESET (Note 8)

Input Voltage Range		VINP	_		-0.3 to VCC1	٧
Input HIGH Current 2.0 V ≤ V _I H ≤ 5.5 V 5.5 V ≤ V _I H ≤ V _{CC1}		ΊΗ	-		100 150	μΑ
Input LOW Current $-0.3 \text{ V} \leq \text{V}_{ L } \leq 0.8 \text{ V}$ for INH1, INH2, $-0.3 \text{ V} \leq \text{V}_{ L } \leq 0.4 \text{ V}$ for $\overline{\text{WDS}}$		IΙL	_	_	- 100	μΑ
Leakage Current Immunity (INH2, High "Z" State)	12	۱z	± 20	-	_	μΑ
Output LOW Voltage RESET (IOL = 6.0 mA)		V _{OL}	_	_	0.4	V
Output HIGH Current RESET (VOH = 5.5 V)		Voн		_	20	μΑ

- 8. Temperature range $T_{low} \le T_J \le T_{high}$ applies to this Electrical Characteristics section. 9. For test purposes, a negative pulse is applied to Pin 4 ($-2.5 \text{ V} > V_4 \ge -5.5 \text{ V}$).

TYPICAL CHARACTERISTICS

FIGURE 1 — REFERENCE VOLTAGE versus SUPPLY VOLTAGE

FIGURE 2 — REFERENCE STABILITY versus TEMPERATURE

FIGURE 3 — RIPPLE REJECTION versus FREQUENCY

FIGURE 4 — STAND-BY CURRENT versus SUPPLY VOLTAGE

FIGURE 5 — POWER-UP BEHAVIOR OF THE 5.0 V REGULATOR

FIGURE 6 — FOLDBACK CHARACTERISTICS OF THE 5.0 V REGULATOR

FIGURE 7 — UNDERVOLTAGE LOCKOUT CHARACTERISTICS

FIGURE 8 — OUTPUT CURRENT CAPABILITY OF THE PROGRAMMING REGULATOR

FIGURE 9 — COLLECTOR CURRENT DETECTION LEVEL

FIGURE 10 — POWER SWITCH CHARACTERISTICS

FIGURE 11 — RECTIFIER CHARACTERISTICS

FIGURE 12 — INH 2 LEAKAGE CURRENT IMMUNITY

APPLICATIONS INFORMATION (See Figure 18)

1. VOLTAGE REFERENCE V_{ref}

The voltage reference V_{ref} is based upon a highly stable bandgap voltage reference and is accessible on Pin 5 for additional tasks. This circuit part has its own supply connection on Pin 3 and is therefore able to operate in standby mode. The RC network R3, C6 improves the ripple rejection on both regulators.

2. DC/DC CONVERTER

The dc/dc converter performs according to the fly back principle and does not need a time base circuit. The maximum coil current is well defined by means of the current sensing resistor R1 under all working conditions (start-up phase, circuit overload, wide supply voltage range and extreme load current change). Figure 13 shows the simplified converter schematic:

FIGURE 13 — SIMPLIFIED CONVERTER SCHEMATIC

A simplified method on "how to calculate the coil inductance" is given below. The operation point at min. supply voltage (V_{CC2}) and max. output current (I_{out2}) for a fixed output voltage (V_{out2}) determines the coil data. Figure 14 shows the typical voltage and current wave forms on the coil L1 (coil losses neglected).

The equations (1) and (2) yield the respective coil voltage V_L- and V_L+ (see Figure 14):

$$V_{L}+ = V_{out2} + \Delta V_{(Pin 9 - Pin 8)} + V_{F} - V_{CC2}(1)$$

 $V_{L}- = V_{CC2} - V_{CE(sat)} - V_{12(H)}$ (2)

($\Delta V(Pin~9-Pin~8):$ input/output voltage drop of the regulator, 2.5 V typical)

(V_F, V_{CE(sat)}, V_{12(H)}: see electrical characteristics)

FIGURE 14 — VOLTAGE AND CURRENT WAVEFORM ON THE COIL (not to scale)

The time ratio α for the charging time to dumping time is defined by equation (3):

$$\alpha = \frac{t_1}{t_2} = \frac{V_L + V_1 - V_1 - V_2 - V_$$

The coil charging time t₁ is found using equation (4):

$$t_1 = \frac{1}{(1 + \frac{1}{\alpha}) \cdot f} \tag{4}$$

(f: min. oscillation frequency which should be chosen above the audio frequency band (e.g. 20 kHz))

Knowing the dc output current I_{out2} of the programmable regulator, the peak coil current I_{L(peak)} can now be calculated:

$$I_{L(peak)} = 2 \cdot I_{out2} \cdot (1 + \alpha) \tag{5}$$

The coil inductance L1 of the nonsaturated coil is given by equation (6):

$$L1 = \frac{t_1}{I_{L(peak)}} \cdot V_{L} - \tag{6}$$

The formula (6a) yields the current sensing resister R1 for a defined peak coil current I_{L(peak)}:

$$R1 = \frac{V_{12(H)}}{I_{L(peak)}}$$
 (6a)

TCA5600, TCF5600

In order to limit the by-pass current through capacitor C7 during the energy dumping phase the value C2>>C7 should be implemented.

For all other operation conditions, the feedback signal from the programmable voltage regulator controls the activity of the converter.

3. PROGRAMMABLE VOLTAGE REGULATOR

This series voltage regulator is programmable by the voltage divider R4, R5 for a nominal output voltage $6.0 \text{ V} \leq \text{V}_{OUT2} \leq 30 \text{ V}.$

$$R4 = \frac{(V_{out2} - V_{ref nom}) \cdot R5}{V_{ref nom}}$$

$$(R5 = 10 \text{ k, } V_{ref nom} = 2.5 \text{ V})$$
(7)

Current limitation and thermal shutdown capability are standard features of this regulator. The voltage drop $\Delta V_{(Pin 9 - Pin 8)}$ across the series pass transistor generates the feedback signal to control the dc/dc converter (see Figure 13).

4. CONTROL INPUTS INH1, INH2

The dc/dc converter and/or the regulator Vout2 are remote controllable through the TTL, MOS compatible inhibit inputs INH1 and INH2 where the latter is a 3-level detector (Logic "0", high impedance "Z", Logic "1"). Both inputs are setup to provide the following truth

FIGURE 15 - INH1, INH2 TRUTH TABLE

Mode	INH1	INH2	V _{out2}	dc/dc
1	0	0	OFF	INT
2	0	High "Z"	V _{out2}	ON
3	0	1	V _{out2}	INT
4	1	0	OFF	INT
5	1	High "Z"	5.0 V	ON
6	1	1	5.0 V	INT

Intermittent operation of the converter means that the INT: converter operates only if V_{CC2}<V_{out2}.

The converter loads the storage capacitor C2 to its full ON: charge (Vg = 33 V), allowing fast response time of the regulator $\tilde{\text{V}}_{out2}$ when addressed by the control software.

High impedance (internal resistor 10 k to ground)

Figure 16 represents a typical timing diagram for an E²PROM programming sequence in a microprocessor based system. The high "Z" state enables the dc/dc converter to ramp during t3 to the voltage V9 at Pin 9 to a high level before the write cycle takes place in the memory.

5. MICROPROCESSOR SUPLY REGULATOR

Together with an external PNP power transistor (Q1), a 5.0 V supply exhibiting low voltage drop is obtained to power microprocessor systems and auxilliary circuits. Using a power Darlington with adequate heat sink in the output stage boosts the output current lout1 above 1 amp.

FIGURE 16 — TYPICAL E²PROM PROGRAMMING SEQUENCE (not to scale)

The current limitation circuit measures the emitter current of Q1 by means of the sensing resistor RSC.

$$R_{SC} = \frac{V_{RSC}}{I_{F}}$$
 (8)

(I_F: emitter current of Q1)

(VBSC: threshold voltage (see electrical characteristics))

The voltage protection circuit performs a fold-back characteristic above a nominal operating voltage $V_{CC2} \ge 18 \text{ V}.$

6. DELAY AND WATCHDOG CIRCUIT

The under voltage monitor supervises the power supply Vout1 and releases the delay circuit RESET as soon as the regulator output reaches the microprocessor operating range (e.g. V_{LOW} ≥ 0.93 · V_{out1(nom)}). The RESET output has an open-collector and may be connected in a "wired-OR" configuration.

The watchdog circuit consists of a retriggerable monostable with a negative edge sensitive control input WDI. The watchdog feature may be disabled by means of the watchdog select input WDS driven to a "1". Figure 17 displays the typical RESET timing diagram.

The commuted current source IC5 on Pin 17, threshold voltage $V_{C5(L)}$, $V_{C5(H)}$ and an external capacitor C5 define the RESET delay and the watchdog timing. The relationship of the timing signals are indicated by the equations (9) to (11).

RESET delay:
$$t_{d} = \frac{C5 \cdot V_{C5(H)}}{|IC5|}$$
 (9)
Watchdog time-
out:
$$t_{wd} = \frac{C5 \cdot (V_{C5(H)} - V_{C5(L)})}{5 \cdot I_{C5}}$$
 (10)

5 · IC5 out: $t_r = \frac{C5 \cdot (V_{C5(H)} - V_{C5(L)})}{C5}$

(11)Watchdog RESET:

(I_{C5}, V_{C5(H)}, V_{C5(L)}: see electrical characteristics.)

FIGURE 17 — TYPICAL RESET TIMING DIAGRAM (not to scale)

- (a) Watchdog inhibited, $\overline{WDS} = "1"$
- (b) Watchdog operational, WDS = "0"

TDA4600

Specifications and Applications Information

CONTROL IC FOR LINE ISOLATED FREELY OSCILLATING FLYBACK CONVERTER

The bipolar integrated circuit TDA4600 drives, regulates and monitors the switching transistor in a power supply based on freely oscillating flyback converters.

Due to the wide regulating range and the high voltage stability during large load changes, SMPS for Hi-Fi equipment and active loudspeakers can be realized as well as applications in TV receivers and video recorders.

The TDA4600 is available in a 9-pin SIP plastic medium-power package. The ambient temperature during operation can be from $-\,15^\circ\!C$ to $+\,85^\circ\!C$.

- Wide Operational Range
- High Voltage Stability Even at High Load Changes
- Direct Control of Switching Transistor
- Low Start-Up Current
- Linear Foldback of the Overload Characteristic
- Base Drive Proportional to the Current Through the Power Switching Transistor

FLYBACK CONVERTER REGULATOR CONTROL CIRCUIT

SILICON MONOLITHIC INTEGRATED CIRCUIT

SIP 9 PLASTIC MEDIUM-POWER PACKAGE CASE 762-01

Reference 1 Zero Detection 2 Feedback 3 Sawtooth Gen. 4 Ext. Inhibit 5 Gnd 6 Sink Output 7 Source Output 8 VCC 9

ORDERING INFORMATION

Device	Temperature Range	Package
TDA4600	- 15°C to +85°C	Plastic SIP

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	Vg	20	٧
Sink Output Voltage	V ₇	0 to Vg	٧
Source Output	V ₈ V ₇ -V ₈	0 to V9 ± 6.0	٧
Reference Output	l ₁	-10 to +1.0	mA
Zero Passage	12	-3.0 to +3.0	mA
Control Amplifier	l ₃	-3.0 to 0	mA
Collector Current Balancing	14	-2.0 to +5.0	mA
Trigger Input	l ₅	-2.0 to +3.0	mA
Sink Output Current	17	- 1.5	Α
Source Output Current	18	1.5	Α
Junction Temperature	TJ	+ 150	°C
Storage Temperature	T _{stg}	-40 to +125	°C
Thermal Resistance (Junction-to-Air)	$R_{\theta JA}$	70	°C/W
Thermal Resistance (Junction-to-Case)	R _{ØJC}	15	°C/W

ELECTRICAL CHARACTERISTICS (T_A = +25°C unless otherwise noted.)

Operating Conditions	Symbol	Fig.	Min	Тур	Max	Unit
Supply Voltage	Vg		_	_	18	٧
Ambient Temperature	TA		- 15	_	85	°C
START OPERATION		-	***			
Current Consumption (V ₁ not yet switched) $ \begin{array}{c} V_9 = 3.0 \ V \\ V_9 = 5.0 \ V \\ V_9 = 10 \ V \end{array} $	lg lg lg Vg	1 1 1	 11.3	1.5 2.4 11.8	0.5 2.0 3.2 12.3	mA mA mA V
Turn-on Point for V ₁	_					

NORMAL OPERATION (Vg = 10 V; $V_{reg} = -10 \text{ V}$; $V_{pulse} = \pm 0.5 \text{ V}$; f = 20 kHz; duty cycle: ½ after the turn-on process is completed.)

lg lg	1	110	135	160	mA
lg	1	55	85	110	
V ₁	1	4.0	4.2	4.5	V
V ₁	1	4.0	4.2	4.4	
TC ₁	1	_	100	_	ppm/°C
V ₂ *	1	_	0.2		V
V ₃	1	2.3	2.6	2.9	V
					V
V ⊿ *	1	1.8	2.2	2.5	
ΔV4*	1	0.3	0.4	0.5	
V ₅	1	5.5	6.3	7.0	V
					V
V7*	1	2.7	3.3	4.0	
	1	2.7	3.4	4.0	1
ΔV8*	1	1.4	1.8	2.2	
	V1 V1 TC1 V2* V3 V4* ΔV4* V5	9 1	9 1 55 V1 1 4.0 V1 1 4.0 TC1 1	19	19

^{*}Only dc portion.

PROTECTIVE OPERATION (Vg = 10 V; $V_{reg} = -10 V$; $V_{pulse} = \pm 0.5 V$; f = 20 kHz; duty cycle: $\frac{1}{2}$)

Current Consumption (V ₅ < 1.8 V)	lg	1	14	20	26	mA
Turn-off Voltage (V ₅ < 1.8 V)	V ₇ V ₄	1 1	1.3 1.8	1.5 2.1	1.8 2.5	>
External Trigger Input Enable Voltage (V _{reg} = 0 V) Disabled Voltage (V _{req} = 0 V)	V ₅ V ₅	1 1	 1.8	2.4 2.2	2.7 —	٧
Supply Voltage Disabling V ₈ (V _{req} = 0 V)	Vg	1	6.7	7.4	7.8	٧

RANGE OF OPERATION

Turn-on Time (Secondary Voltages)	+ on	2		350	450	ms
Voltage Change When $S_3=$ Closed ($\Delta P_3=$ 19 W Audio Frequency Output						mV
Power) When S_2 = Closed (ΔP_2 = 15 W)	ΔV_2 ΔV_2	2	_	100 500	500 1000	
Standby Operation (Secondary Useable Power = 3.0 W) When S ₁ = Open	ΔV ₂	2 2	— 70	20 75	30	V kHz
	Pprim	2	_	10	12	VA

The heat sink must be optimized, taking the maximum data (TJ, R $_{ heta}$ JC, R $_{ heta}$ JA, TA) into consideration.

FIGURE 1 - MEASURING CIRCUIT

FIGURE 2 — TEST DIAGRAM: NORMAL OPERATION

CIRCUIT DESCRIPTION

The TDA4600 regulates, controls, and protects the switching transistor in flyback converter power supplies at starting, normal and overload operation.

A. Starting Behavior

At the start-up there are three consecutive operation states.

- An internal reference voltage is created. It supplies the voltage regulator and enables the supply to the coupling electrolytic capacitor and the switching transistor. For a supply voltage of Vg = 12 V, the current Ig is less than 3.2 mA.
- 2. Release of the internal reference voltage $V_1=4.0$ V. This voltage is available when $V_9=12\ V$ and

enables all parts of the IC to be supplied from the control logic with thermal and overload protection.

 Release of control logic — As soon as the reference voltage is available, the control is switched on through an additional stabilization circuit.

This start-up sequence is necessary for driving the switching transistor through the coupling electrolytic capacitor.

B. Normal Operation

Zero crossing detection is sensed on Pin 2 and linked to the control logic.

The signal picked up on the feedback winding is applied, after filtering, to Pin 3 (used for input regulation and for overload protection). The regulating section works with an input voltage of about 2.0 V for normal regulation and a current of about 1.4 mA for foldback operation. Together with the collector current simulation Pin 4, the overload recognition defines the operating region of the regulating amplifier depending on the internal reference voltage. The simulation of the collector current is generated by an external RC network at Pin 4 and an internally set voltage level.

For a constant line and for a given output power on the load (t_{On} fixed) less than the maximum output power, a decrease of C Pin 4 produces an increase of the current sent to the base of the power switching transistor. So the foldback point is reached earlier. The regulation range starts from a 2.0 Vdc level which is the bottom of a sawtooth waveform whose top is limited at 4.0 V (reference voltage).

A secondary load of 19 W produces a switching frequency of about 50 kHz at an almost constant duty cycle. Furthermore, when the switchmode power supply delivers approximately 3.0 W, the switching frequency jumps to about 70 kHz. At the same time, the collector peak current falls below 1.0 A.

The comparison of the output level of the regulating amplifier, the overload detection and the collector current simulation drives the control logic. An additional steering control and blocking possibility is offered thru Pin 5. When the voltage applied on Pin 5 falls below 2.2 V, the source output (Pin 8) is blocked.

The control logic is set according to the start-up circuit, the zero crossing detection and the trigger enable. This logic drives the base current amplifier and the base current shutdown. The base current amplifier drives the source output (Pin 8) proportionally to the sawtooth voltage (Pin 4). A current feedback is performed by an external shunt inserted between Pin 8 and the base of the switching power transistor. This shunt value determines the maximum amplitude of the base current drive.

MOTOROLA LINEAR/INTERFACE DEVICES

C. Protective Features

The base current shutdown, released by the control logic, clamps the sink output (Pin 7) at 1.6 V, turning off the switching transistor. This feature will be released if the voltage on Pin 9 is less than 7.4 V, or if the applied voltage on Pin 5 is less than 2.2 V. In case of a short circuit of the secondary windings, the TDA4600 continuously monitors the fault condition.

In standby operation the circuit is set to a high duty cycle. The total power consumption of the power supply is held below 6.0 to 10 W. Once the output is blocked (due to the supply voltage coming down to 7.4 V), a further voltage reduction to 6.0 V switches off the reference voltage.

TEST CIRCUIT AND TYPICAL APPLICATION (see Figure 7 on the next page)

This application circuit shown in Figure 7 represents a blocking converter for color TV sets with 30 W to 120 W of output power and line voltages from 160 V to 270 V.

This circuit shows the low number of external components. Inspite of regulation on the primary side, high voltage stability of the various secondary voltages is achieved even with large load changes.

For line isolation and transformation to the desired secondary voltages, a transformer with ferrite core is used

SPECIAL FEATURES OF THE FLYBACK CONVERTER POWER SUPPLY USING THE TDA4600

- Direct driving of the power switching transistor
- Low starting current, defines starting behavior even at slowly rising line voltage

- Short-circuit proof and open-loop resistant circuit. In both cases a power of only 6.0 to 10 W is consumed. Linear foldback characteristic at overload
- · Automatic restart after elimination of the overload
- Efficiency of more than 80% at an output power of 40 to 100 W
- Frequency of ocillation between 20 kHz (100 W) and 70 kHz (without load)
- Simple RF I suppression
- Good regulation of load current and line voltage variations. At a line voltage variation between 170 and 240 Vac the output voltage of 150 V will change only by about 2.0 V

FIGURE 7 — TYPICAL APPLICATION

TL431 Series

Specifications and Applications Information

PROGRAMMABLE PRECISION REFERENCES

The TL431 integrated circuits are three-terminal programmable shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient zener which is programmable from V_{ref} to 36 volts with two external resistors. These devices exhibit a wide operating current range of 1.0 to 100 mA with a typical dynamic impedance of 0.22 Ω . The characteristics of these references make them excellent replacements for zener diodes in many applications such as digital voltmeters, power supplies, and op amp circuitry. The 2.5 volt reference makes it convenient to obtain a stable reference from 5.0 volt logic supplies, and since the TL431 operates as a shunt regulator, it can be used as either a positive or negative voltage reference.

- Programmable Output Voltage to 36 Volts
- Low Dynamic Output Impedance, 0.22 Ω Typical
- Sink Current Capability of 1.0 to 100 mA
- Equivalent Full-Range Temperature Coefficient of 50 ppm/°C Typical
- Temperature Compensated for Operation over Full Rated Operating Temperature Range
- Low Output Noise Voltage

PROGRAMMABLE PRECISION REFERENCES

SILICON MONOLITHIC INTEGRATED CIRCUITS

LP SUFFIX PLASTIC PACKAGE CASE 29-02 TO-226AA (TO-92)

Pin 1. Reference

Anode
 Cathode

(Top View)

N.C. 2 7 N.C. N.C. 3 6 Anode N.C. 4 5 N.C.

P SUFFIX
PLASTIC DUAL-IN-LINE PACKAGE
CASE 626-04

(Top View)

JG SUFFIX CERAMIC DUAL-IN-LINE PACKAGE CASE 693-02

ORDERING INFORMATION

Device	Temperature Range	Package			
TL431CLP	0 to +70°C	Plastic TO-92			
TL431CP	0 to +70°C	Plastic DIP			
TL431CJG	0 to +70°C	Ceramic DIP			
TL431ILP	-40 to +85°C	Plastic TO-92			
TL431IP	-40 to +85°C	Plastic DIP			
TL431IJG	-40 to +85°C	Ceramic DIP			
TL431MJG	-55 to +125°C	Ceramic DIP			

MAXIMUM RATINGS (Full operating ambient temperature range applies unless otherwise noted.)

Rating	Symbol	Value	Unit
Cathode To Anode Voltage	VKA	37	٧
Cathode Current Range, Continuous	١ĸ	-100 to +150	mΑ
Reference Input Current Range, Continuous	I _{ref}	-0.05 to +10	mA
Operating Junction Temperature	TJ	150	°C
Operating Ambient Temperature Range TL431M TL431I TL431C	ТА	-55 to +125 -40 to +85 0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Total Power Dissipation @ T _A = 25°C Derate above 25°C Ambient Temperature LP Suffix Plastic Package P Suffix Plastic Package JG Suffix Ceramic Package	PD	0.775 1.10 1.25	W
Total Power Dissipation @ T _C = 25°C Derate above 25°C Case Temperature LP Suffix Plastic Package P Suffix Plastic Package JG Suffix Ceramic Package	PD	1.5 3.0 3.3	W

THERMAL CHARACTERISTICS

Characteristics	Symbol	LP Suffix Package	P Suffix Package	JG Suffix Package	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	178	114	100	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83	41	38	°C/W

RECOMMENDED OPERATING CONDITIONS

Condition/Value	Symbol	Min	Max	Unit
Cathode To Anode Voltage	VKA	V _{ref}	36	٧
Cathode Current	١ĸ	1.0	100	mA

ELECTRICAL CHARACTERISTICS (Ambient temperature at 25°C unless otherwise noted)

		TL431M		TL4311		TL431C					
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Reference Input Voltage (Figure 1) VKA = V _{ref} , I _K = 10 mA	V _{ref}	2.440	2.495	2.550	2.440	2.495	2.550	2.440	2.495	2.550	٧
Reference Input Voltage Deviation Over Temperature Range. (Figure 1, Note 1) $V_{KA} = V_{ref}, I_K = 10 \text{ mA}$	△V _{ref}	_	15	44	_	7.0	30		3.0	17	mV
Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage I $_{K}$ = 10 mA (Figure 2), \triangle V $_{KA}$ = 10 V to V $_{ref}$ \triangle V $_{KA}$ = 36 V to 10 V		_ _	-1.4 -1.0	-2.7 -2.0	_ _	-1.4 -1.0	-2.7 -2.0	_ _	-1.4 -1.0	-2.7 -2.0	mV/V
Reference Input Current (Figure 2) $I_K = 10 \text{ mA}, R1 = 10 \text{ k}, R2 = \infty$	I _{ref}	-	1.8	4.0	-	1.8	4.0	-	1.8	4.0	μА
Reference Input Current Deviation Over Temperature Range. (Figure 2) I _K = 10 mA, R1 = 10 k, R2 = ∞	△l _{ref}	_	1.0	3.0	_	0.8	2.5	_	0.4	1.2	μА
Minimum Cathode Current For Regulation VKA = V _{ref} (Figure 1)	l _{min}	_	0.5	1.0	_	0.5	1.0	_	0.5	1.0	mA
Off-State Cathode Current (Figure 3) V _{KA} = 36 V, V _{ref} = 0 V	loff	_	2.6	1000	_	2.6	1000	_	2.6	1000	nA
Dynamic Impedance (Figure 1, Note 2) V _{KA} = V _{ref} , △I _K = 1.0 mA to 100 mA f ≤ 1.0 kHz	Z _{ka}	_	0.22	0.5	_	0.22	0.5	_	0.22	0.5	Ω

FIGURE 1 — TEST CIRCUIT FOR $v_{KA} = v_{ref}$ FIGURE 2 — TEST CIRCUIT FOR $v_{KA} > v_{ref}$ FIGURE 3 — TEST CIRCUIT FOR l_{off}

Note 1

The deviation parameter $\triangle V_{\text{ref}}$ is defined as the differences between the maximum and minimum values obtained over the full operating ambient temperature range that applies.

The average temperature coefficient of the reference input voltage, α $V_{\text{ref}},$ is defined as:

$$_{\alpha} \ V_{ref} \ \frac{ppm}{^{\circ}C} \ = \frac{\left(\frac{\triangle V_{ref}}{\sqrt{v_{ref} \circledast 25^{\circ}C}}\right) \times 10^{6}}{\triangle T_{A}} = \frac{\triangle V_{ref} \times 10^{6}}{\triangle T_{A} \left(V_{ref} \circledast 25^{\circ}C\right)}$$

 αV_{ref} can be positive or negative depending on whether V_{ref} Min or V_{ref} Max occurs at the lower ambient temperature. (Refer to Figure 6)

Example: $\triangle V_{ref}$ = 8.0 mV and slope is positive, V_{ref} @ 25°C = 2.495 V, $\triangle T_A$ = 70°C

$$\alpha V_{ref} = \frac{0.008 \times 10^6}{70 (2.495)} = 45.8 \text{ ppm/°C}$$

Note 2

The dynamic impedance Zka is defined as:

$$|Z_{ka}| = \frac{\triangle V_{KA}}{\triangle I_{K}}$$

When the device is programmed with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is defined as:

$$|Z_{ka}'| \approx |Z_{ka}| \left(1 + \frac{R1}{R2}\right)$$

FIGURE 10 — DYNAMIC IMPEDANCE

FIGURE 11 — DYNAMIC IMPEDANCE versus AMBIENT TEMPERATURE

 $\begin{aligned} & \textbf{FIGURE 12} - \textbf{OPEN LOOP VOLTAGE GAIN} \\ & \textbf{versus FREQUENCY} \end{aligned}$

FIGURE 13 - SPECTRAL NOISE DENSITY

FIGURE 14 — PULSE RESPONSE

FIGURE 15 — STABILITY BOUNDARY CONDITIONS

FIGURE 16 — TEST CIRCUIT FOR CURVE A OF STABILITY BOUNDARY CONDITIONS

FIGURE 17 — TEST CIRCUIT FOR CURVES B, C, AND D OF STABILITY BOUNDARY CONDITIONS

TYPICAL APPLICATIONS

FIGURE 18 — SHUNT REGULATOR

FIGURE 20 — OUTPUT CONTROL OF A THREE-TERMINAL FIXED REGULATOR

FIGURE 21 — SERIES PASS REGULATOR

FIGURE 22 — CONSTANT CURRENT SOURCE

FIGURE 24 — TRIAC CROWBAR

FIGURE 26 - VOLTAGE MONITOR

L.E.D. indicator is 'on' when V+ is between the upper and lower limits.

Lower Limit =
$$\left(1 + \frac{R1}{R2}\right)V_{ref}$$

Upper Limit =
$$\left(1 + \frac{R3}{R4}\right) V_{ref}$$

FIGURE 23 - CONSTANT CURRENT SINK

FIGURE 25 - SCR CROWBAR

FIGURE 27 — SINGLE-SUPPLY COMPARATOR WITH TEMPERATURE-COMPENSATED THRESHOLD

Vin	Vout
<v<sub>ref</v<sub>	V+
>V _{ref}	≈ 2.0 V

Output Ripple

Efficiency

100 mV_{p-p} P.A.R.D.

 $V_{in} = 20 \text{ V}, I_0 = 1.0 \text{ A}$

V_{in} = 15 V, I_o = 1.0 A

TL494 TL495

Specifications and Applications Information

SWITCHMODE PULSE WIDTH MODULATION CONTROL CIRCUITS

The TL494 and TL495 are fixed frequency, pulse width modulation control circuits designed primarily for Switchmode power supply control. These devices feature:

- Complete Pulse Width Modulation Control Circuitry
- On-Chip Oscillator With Master Or Slave Operation
- On-Chip Error Amplifiers
- On-Chip 5 Volt Reference
- · Adjustable Dead-Time Control
- Uncommitted Output Transistors For 200 mA Source Or Sink
- Output Control For Push-Pull Or Single-Ended Operation
- On-Chip 39 Volt Zener (TL495 Only)
- Output Steering Control (TL495 Only)

SWITCHMODE PULSE WIDTH MODULATION CONTROL CIRCUITS

SILICON MONOLITHIC INTEGRATED CIRCUITS

The TL494C/495C are specified over the commercial operating range of 0°C to 70°C. The TL494I/495I are specified over the industrial range of -25°C to 85°C. The TL494M is specified over the full military range of -55°C to 125°C.

ORDERING INFORMATION					
Device	Temperature Range	Package			
TL494CN	0 To 70°C	Plastic DIP			
TL494CJ	0 To 70°C	Ceramic DIP			
TL494IN	− 25 To 85°C	Plastic DIP			
TL494IJ	− 25 To 85°C	Ceramic DIP			
TL494MJ	−55 To 125°C	Ceramic DIP			
TL495CN	0 To 70°C	Plastic DIP			
TL495CJ	0 To 70°C	Ceramic DIP			
TL495IN	−25 To 85°C	Plastic DIP			
TL495IJ	– 25 To 85°C	Ceramic DIP			

FIGURE 1 — BLOCK DIAGRAM

FIGURE 2 — TIMING DIAGRAM

0.39 0.50

Description

The TL494/495 are fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. (See Figure 1.) An internal-linear sawtooth oscillator is frequency-programmable by two external components, R_{T} and $C_{T}.$ The oscillator frequency is determined by:

$$f_{OSC} \approx \frac{1.1}{R_T - C_T}$$

Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor C_T to either of two control signals. The NOR gates, which drive output transistors Q1 and Q2, are enabled only when the flip-flop clock-input line is in its low state. This happens only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control-signal amplitude causes a corresponding linear decrease of output pulse width. (Refer to the timing diagram shown in Figure 2.)

The control signals are external inputs that can be fed into the dead-time control, the error amplifier inputs, or the feedback input. The dead-time control comparator has an effective 120 mV input offset which limits the minimum output dead time to approximately the first 4% of the sawtooth-cycle time. This would result in a maximum duty cycle on a given output of 96% with the output control grounded, and 48% with it connected to the reference line. Additional dead time may be imposed on the output by setting the dead time-control input to a fixed voltage, ranging between 0 to 3.3 V.

The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on-time, established by the dead time control input, down to zero, as the

voltage at the feedback pin varies from 0.5 to 3.5 V. Both error amplifiers have a common-mode input range from $-0.3\,V$ to $(V_{CC}-2\,V)$, and may be used to sense power-supply output voltage and current. The error-amplifier outputs are active high and are ORed together at the non-inverting input of the pulse-width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop.

When capacitor C_T is discharged, a positive pulse is generated on the output of the dead-time comparator, which clocks the pulse-steering flip-flop and inhibits the output transistors, Q1 and Q2. With the output-control connected to the reference line, the pulse-steering flipflop directs the modulated pulses to each of the two output transistors alternately for push-pull operation. The output frequency is equal to half that of the oscillator. Output drive can also be taken from Q1 or Q2, when single-ended operation with a maximum on-time of less than 50% is required. This is desirable when the output transformer has a ringback winding with a catch diode used for snubbing. When higher output-drive currents are required for single-ended operation, Q1 and Q2 may be connected in parallel, and the output-mode pin must be tied to ground to disable the flip-flop. The output frequency will now be equal to that of the

The TL494/495 has an internal 5.0 V reference capable of sourcing up to 10 mA of load current for external bias circuits. The reference has an accuracy of $\pm\,5\%$ with a thermal drift of less than 50 mV over an operating temperature range of 0 to 70°C.

The TL495 contains an on-chip 39 volt zener diode for high voltage applications where V_{CC} is greater than 40 volts, and an output steering control that overrides the internal control of the pulse-steering flip-flop. (Refer to the functional table shown in Figure 3.)

FIGURE 3 — FUNCTIONAL TABLE

Inputs			fout	
Output Control	Steering Control	Output Function	f _{osc} =	
Grounded	Open	Single-ended P.W.M. at Q1 and Q2	1	
At V _{ref}	Open	Push-pull operation	0.5	
At V _{ref}	V1 <0.4 V	Single-ended P.W.M. at Q1 only	1	
At V _{ref}	V1 >2.4 V	Single-ended P.W.M. at Q2 only	1	

MAXIMUM RATINGS (Full operating ambient temperature range applies unless otherwise noted.)

Rating	Symbol	TL494M	TL494I/TL495I	TL494C/TL495C	Unit
Power Supply Voltage	V _{CC}	42	42	. 42	V
Collector Output Voltage	V _{C1} , V _{C2}	42	42	42	V
Collector Output Current (each transistor)	lC1, lC1	250	250	250	mA
Amplifier Input Voltage	V _{in}	V _{CC} + .03	V _{CC} + .03	V _{CC} + .03	· V
Power Dissipation @ T _A ≤ 45°C	PD	1000	1000	1000	mW
Operating Junction Temperature	TJ	150	150	150	°C
Operating Ambient Temperature Range	TA	- 55 to 125	-25 to 85	0 to 70	°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	J Suffix Ceramic Package	N Suffix Plastic Package	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	100	80	°C/W
Power Derating Factor	1/R <i>θ</i> JA	10.0	12.5	mW/°C
Derating Ambient Temperature	TA	50	45	°C

RECOMMENDED OPERATING CONDITIONS

		TL494/TL495				
Condition/Value	Symbol	Min	Тур	Max	Unit	
Power Supply Voltage	Vcc	7.0	15	40	V	
Collector Output Voltage	V _{C1} , V _{C2}		30	40	V	
Collector Output Current (each transistor)	IC1, IC2	_	_	200	mA	
Amplifier Input Voltage	V _{in}	-0.3	_	V _{CC} - 2.0	V	
Current Into Feedback Terminal	lf.b.	_	_	0.3	mA	
Reference Output Current	l _{ref}		_	10	mA	
Timing Resistor	RT	1.8	30	500	kΩ	
Timing Capacitor	CT	0.47	1.0	10,000	nF	
Oscillator Frequency	fosc	1.0	40	200	kHz	

Characteristic		TL494M		TL494C, I/TL495C,I		95C,I		
	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
REFERENCE SECTION								
Reference Voltage (I _O = 1.0 mA)	V _{ref}	4.75	5.0	5.25	4.75	5.0	5.25	٧
Reference Voltage Change with Temperature $(\Delta T_A = Min \text{ to } Max)$	ΔV _{ref} (ΔT)	_	0.2	2.0		1.3	2.6	%
Input Regulation (V _{CC} = 7.0 V to 40 V)	Regline	_	2.0	25	-	2.0	25	mV
Output Regulation (IO = 1.0 mA to 10 mA)	Regload		3.0	15	_	3.0	15	mV
Short-Circuit Output Current (V _{ref} = 0 V, T _A = 25°C)	Isc	10	35	50		35	_	mA

TL494, TL495

ELECTRICAL CHARACTERISTICS ($V_{CC} = 15 \text{ V}$, $f_{OSC} = 10 \text{ kHz}$ unless otherwise noted.) For typical values $T_A = 25^{\circ}\text{C}$, for min/max values T_A is the operating ambient temperature range that applies unless otherwise noted.

		TI			TL49	4C, I/TL49	95C, I	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
OUTPUT SECTION								
Collector Off-State Current (V _{CC} = 40 V, V _{CE} = 40 V)	^I C(off)	_	2.0	100	_	2.0	100	μΑ
Emitter Off-State Current (V _{CC} = 40 V, V _C = 40 V, V _E = 0 V)	lE(off)	_		- 150	-		- 100	μΑ
Collector-Emitter Saturation Voltage Common-Emitter (V _F = 0 V, I _C = 200 mA)	V _{sat(C)}	_	1.1	1.5		1.1	1.3	٧
Emitter-Follower $(V_C = 15 \text{ V}, I_E = -200 \text{ mA})$	V _{sat(E)}	_	1.5	2.5	_	1.5	2.5	V
Output Control Pin Current Low State (V _{OC} ≤ 0.4 V)	locl		10			10	_	μΑ
High State (VOC = V _{ref})	Госн	_	0.2	3.5		0.2	3.5	mA
Output Voltage Rise Time (T _A = 25°C) Common-Emitter (See Figure 13)	t _r	_	100	200		100	200	ns
Emitter-Follower (See Figure 14)		_	100	200		100	200	ns
Output Voltage Fall Time (T _A = 25°C) Common-Emitter (See Figure 13)	tf	_	25	100	_	25	100	ns
Emitter-Follower (See Figure 14)			40	100		40	100	ns

			TL494/TL495		
Characteristic	Symbol	Min	Тур	Max	Unit
ERROR AMPLIFIER SECTIONS					
Input Offset Voltage (VO (Pin 3) = 2.5 V)	V _{IO}	_	2.0	10	mV
Input Offset Current (VO (Pin 3) = 2.5 V)	lio	_	5.0	250	nA
Input Bias Current (VO (Pin 3) = 2.5 V)	IB	_	0.1	1.0	μΑ
Input Common-Mode Voltage Range (V _{CC} = 7.0 V to 40 V)	VICR	-0.3		V _{CC} - 2.0	V
Open-Loop Voltage Gain $(\Delta V_O=3.0 \text{ V}, V_O=0.5 \text{ to } 3.5 \text{ V}, R_L=2.0 \text{ k}\Omega)$	Avol	70	95	_	dB
Unity-Gain Crossover Frequency $(V_O = 0.5 \text{ to } 3.5 \text{ V}, R_L = 2.0 \text{ k}\Omega)$	fc	_	350	-	kHz
Phase Margin at Unity-Gain (VO = 0.5 to 3.5 V, RL = 2.0 k Ω)	0m	_	65	_	deg.
Common-Mode Rejection Ratio (V _{CC} = 40 V)	CMRR	65	90		dB
Power Supply Rejection Ratio $(\Delta V_{CC} = 33 \text{ V}, V_{O} = 2.5 \text{ V}, R_{L} = 2.0 \text{ k}\Omega)$	PSRR	_	100	_	dB
Output Sink Current (VO (Pin 3) = 0.7 V)	10-	0.3	0.7	_	mA
Output Source Current (VO (Pin 3) = 3.5 V)	10+	-2.0	-4.0	_	mA

ELECTRICAL CHARACTERISTICS ($V_{CC} = 15 \text{ V}$, $f_{OSC} = 10 \text{ kHz}$ unless otherwise noted.) For typical values $T_A = 25^{\circ}\text{C}$, for min/max values T_A is the operating ambient temperature range that applies unless otherwise

Characteristic	Symbol	Min	Тур	Max	Unit
PWM COMPARATOR SECTION (Test Circuit Figure 12)					
Input Threshold Voltage (Zero duty cycle)	V _{TH}	_	3.5	4.5	V
Input Sink Current (V (Pin 3) = 0.7 V)	II —	0.3	0.7	_	mA
DEAD-TIME CONTROL SECTION (Test Circuit Figure 12)					
Input Bias Current (Pin 4) (V _{in} = 0 to 5.25 V)	IB (DT)		-2.0	-10	μΑ
Maximum Duty Cycle, Each Output, Push-Pull Mode $(V_{in}=0\ V,\ C_T=0.1\ \mu F,\ R_T=12\ k\Omega)$ $(V_{in}=0\ V,\ C_T=0.001\ \mu F,\ R_T=30\ k\Omega)$	DC _{max}	45 —	48 45	50 50	%
Input Threshold Voltage (Pin 4) (Zero Duty Cycle) (Maximum Duty Cycle)	V _{TH}	_ 0	2.8 —	3.3	V
OSCILLATOR SECTION					
Frequency (C _T = 0.001 μ F, R _T = 30 k Ω)	fosc	_	40	_	kHz
Standard Deviation of Frequency* $(C_T=0.001~\mu F,~R_T=30~k\Omega)$	σf _{osc}	_	3.0	_	%
Frequency Change with Voltage (V _{CC} = 7.0 V to 40 V, T _A = 25°C)	Δf _{osc} (ΔV)		0.1		%
Frequency Change with Temperature (ΔΤ _A = T _{Alow} to T _{Ahigh})	Δf _{osc} (ΔT)	_	± 1.0	± 2.0	%

Characteristic	Symbol	Min	Тур	Max	Unit
STEERING CONTROL					
Input Current Low (V(Pin 13) = 0.4 V)	¹ STL		- 25	- 200	μΑ
Input Current High (V(Pin 13) = 2.4 V) (V(Pin 13) = Vref)	^I STH	_	25 75	200 —	μΑ
ZENER CHARACTERISTICS				-	
Zener Breakdown Voltage (I _Z = 2.0 mA)	VZ	_	39		V
Sink Current (V(Pin 15) = 1.0 V)	I _{RZ}		0.3		mA
TOTAL DEVICE					
Standby Supply Current (Pin 6 at V _{ref} , All Other Inputs and Outputs Open)	lcc				mA
(V _{CC} = 15 V) (V _{CC} = 40 V)		_	5.5 7.0	10 15	,
Average Supply Current ($V_{Pin \ 4}$) = 2.0 V) (See Figure 12.) (C_{T} = 0.001, R_{T} = 12 k Ω , V_{CC} = 15 V)	_	_	7.0		mA

^{*} Standard deviation is a measure of the statistical distribution about the mean as derived from the formula, $\sigma =$

FIGURE 4 — OSCILLATOR FREQUENCY versus TIMING RESISTANCE

FIGURE 5 — OPEN LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY

FIGURE 6 — PERCENT DEAD TIME versus OSCILLATOR FREQUENCY

FIGURE 7 — PERCENT DUTY CYCLE versus

FIGURE 8 — EMITTER-FOLLOWER CONFIGURATION, **OUTPUT-SATURATION VOLTAGE** versus EMITTER CURRENT

FIGURE 9 — COMMON-EMITTER CONFIGURATION **OUTPUT-SATURATION VOLTAGE** versus COLLECTOR CURRENT

FIGURE 10 — STANDBY-SUPPLY CURRENT versus SUPPLY VOLTAGE

FIGURE 11 — ERROR AMPLIFIER CHARACTERISTICS

FIGURE 13 — COMMON-EMITTER CONFIGURATION

FIGURE 12 — DEAD-TIME AND FEEDBACK CONTROL TEST CIRCUIT

FIGURE 14 — EMITTER-FOLLOWER CONFIGURATION TEST CIRCUIT AND WAVEFORM

FIGURE 15 — ERROR-AMPLIFIER SENSING TECHNIQUES

FIGURE 16 — DEAD-TIME CONTROL CIRCUIT

FIGURE 17 — SOFT-START CIRCUIT

FIGURE 18 — OUTPUT CONNECTIONS FOR SINGLE-ENDED AND PUSH-PULL CONFIGURATIONS

FIGURE 19 — SLAVING TWO OR MORE CONTROL CIRCUITS

FIGURE 20 — OPERATION WITH VIN > 40 V USING INTERNAL ZENER (TL495 ONLY)

FIGURE 21 — PULSE-WIDTH MODULATED PUSH-PULL CONVERTER

L1 — 3.5 mH @ 0.3 A T1 — Primary: 20T C.T. #28 AWG Secondary: 120T C.T. #36 AWG Core: Ferroxcube 1408P-L00-3C8

TEST CONDITIONS		RESULTS		
Line Regulation	V _{in} = 8.0 to 20 V	3.0 mV 0.01%		
Load Regulation	V _{in} = 12.6 V, I _O = 0.2 to 200 mA	5.0 mV 0.02%		
Output Ripple	V _{in} = 12.6 V, I _O = 200 mA	40 mV P-P P.A.R.D.		
Short Circuit Current	$V_{in} = 12.6 \text{ V, R}_{L} = 0.1 \Omega$	250 mA		
Efficiency	V _{in} = 12.6 V, I _O = 200 mA	72%		

FIGURE 22 — PULSE-WIDTH MODULATED STEP-DOWN CONVERTER

TEST CONDITIONS		RESULTS	
Line Regulation	V _{in} = 10 V to 40 V	14 mV 0.28%	
Load Regulation	V _{in} = 28 V, I _O = 1.0 mA to 1.0 mA	3.0 mV 0.06%	
Output Ripple	V _{in} = 28 V, I _O = 1.0 A	65 mV P-P P.A.R.D.	
Short Circuit Current	$V_{in} = 28 \text{ V}, R_L = 0.1 \Omega$	1.6 amps	
Efficiency	V _{in} = 28 V, I _O = 1.0 A	71%	

TL780 Series

THREE-TERMINAL POSITIVE VOLTAGE REGULATORS

This family of precision fixed voltage regulators are monolithic integrated circuits capable of driving loads in excess of 1.5 amperes. Innovative design concepts, coupled with advanced thermal layout techniques has resulted in improved accuracy and excellent load, line and thermal regulation characteristics. Internal current limiting, thermal shutdown and safe-area compensation are employed, making these devices extremely rugged and virtually immune to overload.

- ± 1% Output Voltage Tolerance @ 25°C
- ±2% Output Voltage Tolerance Over Full Operating Temperature Range
- Internal Short-Circuit Current Limiting
- Internal Thermal Overload Protection
- Output Transistor Safe-Area Compensation
- No External Components Required
- Pinout Compatible with MC7800 Series

THREE-TERMINAL **POSITIVE FIXED VOLTAGE REGULATORS**

SILICON MONOLITHIC INTEGRATED CIRCUITS

KC SUFFIX PLASTIC PACKAGE CASE 221A-02 TO-220AB

2. Ground

3. Output

(Heatsink surface connected to Pin 2.)

EQUIVALENT SCHEMATIC DIAGRAM 1.0 k \$1.0 k

STANDARD APPLICATION

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

- XX = these two digits of the type number indicate voltage.
 - * = Cin is required if regulator is located an appreciable distance from power supply filter.
- = CO is not needed for stability; however, it does improve transient response.

ORDERING INFORMATION

Nominal Output Voltage	Device
5.0 V	TL780-05CKC
12 V	TL780-12CKC
15 V	TL780-15CKC

TL780 Series MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	V _{in}	35	Vdc
Power Dissipation and Thermal Characteristics $T_A = +25^{\circ}C$ Derate above $T_A = +25^{\circ}C$ Thermal Resistance, Junction to Air $T_C = +25^{\circ}C$ Derate above $T_C = +75^{\circ}C$ (See Figure 1) Thermal Resistance, Junction to Case	P _D 1/θ _J A θ _J A P _D 1/θ _J C θ _J C	2.0 16 62.5 15 200 5.0	Watts mW/°C °C/W Watts mW/°C °C/W
Operating Junction Temperature Range	TJ	0 to +150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

TL780-05C

ELECTRICAL CHARACTERISTICS ($V_{in} = 10 \text{ V}, I_{O} = 500 \text{ mA}, 0^{\circ}\text{C} \le T_{J} \le +125^{\circ}\text{C}$ unless otherwise noted [Note 1])

			TL780-05C			
Characteristic	Symbol	Min	Тур	Max	Unit	
Output Voltage 5.0 mA ≤ I _O ≤ 1.0 A, P ≤ 15 W	v _O				V	
7.0 V \leq V _{in} \leq 20 V T _J = +25°C 0°C \leq T _J \leq +125°C		4.95 4.90	5.0 —	5.05 5.10		
Line Regulation (T _J = $+25^{\circ}$ C) 7.0 V \leq Vi _n \leq 25 V 8.0 V \leq Vi _n \leq 12 V	Regline	_	0.5 0.5	5.0 5.0	mV	
Load Regulation ($T_J = +25^{\circ}\text{C}$) 5.0 mA $\leq I_O \leq 1.5$ A 250 mA $\leq I_O \leq 750$ mA	Regload	_	4.0 1.5	25 15	mV	
Ripple Rejection 8.0 V ≤ V _{in} ≤ 18 V, f = 120 Hz	RR	70	80	_	dB	
Output Resistance (f = 1.0 kHz)	ro		0.0035		Ω	
Average Temperature Coefficient of Output Voltage $I_{O} = 5.0 \text{ mA}$	TCV _O	_	0.06	_	mV/°C	
Output Noise Voltage (T _J = +25°C) 10 Hz ≤ f ≤ 100 kHz	Vn	_	75	_	μV	
Dropout Voltage (T _J = +25°C) I _O = 1.0 A	V _{in} -V _O	_	2.0	_	V	
Bias Current (T _J = +25°C)	lΒ	_	3.5	8.0	mA	
Bias Current Change 7.0 V \leq V _{in} \leq 25 V, I _O $=$ 500 mA 5.0 mA \leq I _O \leq 1.0 A, V _{in} $=$ 10 V	ΔΙΒ	_	0.7 0.03	1.3 0.5	mA	
Short-Circuit Output Current (T _J = +25°C) V _{in} = 35 V	I _{sc}	_	200		mA	
Peak Output Current (T _J = +25°C)	lp	. —	2.2		A	

Note 1: Line and load regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

TL780-12C

ELECTRICAL CHARACTERISTICS ($V_{in} = 19 \text{ V}, I_{O} = 500 \text{ mA}, 0^{\circ}\text{C} \leqslant T_{J} \leqslant +125^{\circ}\text{C}$ unless otherwise noted [Note 1])

ELECTRICAL CHARACTERISTICS (VIII)		TL780-12C			
Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage 5.0 mA \leq IO \leq 1.0 A, P \leq 15 W	Vo				V
14.5 V \leq V _{in} \leq 27 V T _J = +25°C 0°C \leq T _J \leq +125°C		11.88 11.76	12 —	12.12 12.24	
Line Regulation (T _J = $+25^{\circ}$ C) 14.5 V \leq V _{in} \leq 30 16 V \leq V _{in} \leq 22	Regline	_	1.2 1.2	12 12	mV

(continued)

TL780-12C (continued)

ELECTRICAL CHARACTERISTICS ($V_{in} = 19 \text{ V}, I_0 = 500 \text{ mA}, \underline{0^{\circ}\text{C}} \leqslant T_J \leqslant +125^{\circ}\text{C}$ unless otherwise noted [Note 1])

			TL780-12C		
Characteristic	Symbol	Min	Тур	Max	Unit
Load Regulation (T _J = $+25^{\circ}$ C) 5.0 mA \leq I _O \leq 1.5 A 250 mA \leq I _O \leq 750 mA	Regload	_	6.5 2.5	60 36	mV
Ripple Rejection 15 V ≤ V _{in} ≤ 25 V, f = 120 Hz	RR	65	77		dB
Output Resistance (f = 1.0 kHz)	ro	_	0.0035		Ω
Average Temperature Coefficient of Output Voltage IO = 5.0 mA	TCVO		0.15	_	mV/°C
Output Noise Voltage (T _J = $+25^{\circ}$ C) 10 Hz \leq f \leq 100 kHz	V _n	_	180		μV
Dropout Voltage ($T_J = +25^{\circ}C$) $I_O = 1.0 A$	V _{in} -V _O	_	2.0	-	V
Bias Current (T _J = +25°C)	IB	_	3.5	8.0	mA
Bias Current Change 14.5 V \leq V _{in} \leq 30 V, I _O = 500 mA 5.0 mA \leq I _O \leq 1.0 A, V _{in} = 19 V	ΔΙΒ	_	0.4 0.03	1.3 0.5	mA
Short-Circuit Output Current (T _J = +25°C) V _{in} = 35 V	l _{sc}		200		mA
Peak Output Current (T _J = +25°C)	I _P	_	2.2		A

Note 1: Line and load regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

TL780-15C

ELECTRICAL CHARACTERISTICS ($V_{in} = 23 \text{ V}, I_{O} = 500 \text{ mA}, 0^{\circ}\text{C} \leq T_{J} \leq +125^{\circ}\text{C}$ unless otherwise noted [Note 1])

			TL780-15C		
Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage 5.0 mA \leq IO \leq 1.0 A, P \leq 15 W 17.5 V \leq Vin \leq 30 V	v _o				V
$T_{J} = +25^{\circ}C$ $0^{\circ}C \leq T_{J} \leq +125^{\circ}C$		14.85 14.70	15	15.15 15.30	
Line Regulation (T _J = $+25^{\circ}$ C) 17.5 V \leq V _{in} \leq 30 V 20 V \leq V _{in} \leq 26 V	Regline	_	1.5 1.5	15 15	mV
Load Regulation (T _J = $+25^{\circ}$ C) 5.0 mA \leq I _O \leq 1.5 A 250 mA \leq I _O \leq 750 mA	Regload	_	7.0 2.5	75 45	mV
Ripple Rejection 18.5 V \leq V _{in} \leq 28.5 V, f = 120 Hz	RR	60	75	_	dB
Output Resistance (f = 1.0 kHz)	ro	_	0.0035		Ω
Average Temperature Coefficient of Output Voltage IO = 5.0 mA	TCVO		0.18	_	mV/°C
Output Noise Voltage (T _J = $+25$ °C) 10 Hz \leq f \leq 100 kHz	v _n	_	225		μV
Dropout Voltage (T _J = +25°C) I _O = 1.0 A	V _{in} -V _O		2.0	_	V
Bias Current (T _J = +25°C)	IВ	-	3.6	8.0	mA
Bias Current Change 17.5 V \leq V _{in} \leq 30 V, I _O = 500 mA 5.0 mA \leq I _O \leq 1.0 A, V _{in} = 23 V	ΔΙΒ		0.4 0.02	1.3 0.5	mA
Short-Circuit Output Current ($T_J = +25^{\circ}C$) $V_{in} = 35 \text{ V}$	I _{sc}	_	200		mA
Peak Output Current (T _J = +25°C)	ĺР		2.2		A

Note 1: Line and load regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

TYPICAL PERFORMANCE CHARACTERISTICS

VOLTAGE REGULATOR PERFORMANCE

The performance of a voltage regulator is specified by its immunity to changes in load, input voltage, power dissipation, and temperature. Line and load regulation are tested with a pulse of short duration (< 100 μs) and are strictly a function of electrical gain. However, pulse widths of longer duration (> 1.0 ms) are sufficient to affect temperature gradients across the die. These temperature gradients can cause a change in the output voltage, in addition to changes caused by line and load regulation. Longer pulse widths and thermal gradients make it desirable to specify thermal regulation.

Thermal regulation is defined as the change in output voltage caused by a change in dissipated power for a specified time, and is expressed as a percentage output voltage change

per watt. The change in dissipated power can be caused by a change in either the input voltage or the load current. Thermal regulation is a function of I.C. layout and die attach techniques, and usually occurs within 10 ms of a change in power dissipation. After 10 ms, additional changes in the output voltage are due to the temperature coefficient of the device.

Figure 1 shows the line and thermal regulation response of a typical TL780-05C to a 10 watt input pulse. The variation of the output voltage due to line regulation is labeled ① and the thermal regulation component is labeled ②. Figure 2 shows the load and thermal regulation response of a typical TL780-05C to a 15 watt load pulse. The output voltage variation due to load regulation is labeled ① and the thermal regulation component is labeled ②.

FIGURE 1 — LINE AND THERMAL REGULATION

FIGURE 2 — LOAD AND THERMAL REGULATION

FIGURE 3 — TEMPERATURE STABILITY

FIGURE 4 — OUTPUT IMPEDANCE

FIGURE 5 — RIPPLE REJECTION versus FREQUENCY

FIGURE 6 — RIPPLE REJECTION versus OUTPUT CURRENT

FIGURE 7 — BIAS CURRENT versus INPUT VOLTAGE

FIGURE 8 — BIAS CURRENT versus OUTPUT CURRENT

FIGURE 9 — DROPOUT VOLTAGE

FIGURE 10 - PEAK OUTPUT CURRENT

FIGURE 12 — LOAD TRANSIENT RESPONSE

FIGURE 13 — WORST CASE POWER DISSIPATION VERSUS AMBIENT TEMPERATURE

μ A78S40

Specifications and Applications Information

UNIVERSAL SWITCHING REGULATOR SUBSYSTEM

The μ A78S40 is a monolithic-switching regulator subsystem, providing all active functions necessary for a switching regulator system. The device consists of a temperature compensated voltage reference, controlled-duty cycle oscillator with an active current limit circuit, comparator, high-current and high-voltage output switch, capable of 1.5 A and 40 V, pinned-out power diode and an uncommitted operational amplifier, which can be powered up or down independent of the IC supply. The switching output can drive external NPN or PNP transistors when voltages greater than 40 V, or currents in excess of 1.5 A, are required. Some of the features are wide-supply voltage range, low standby current, high efficiency and low drift. The μ A78S40 is available in both commercial (0°C to +70°C) and military (-55°C to +125°C) temperature ranges.

Some of the applications include use in step-up, step-down, and inverting regulators, with extremely good results obtained in battery-operated systems.

- Output Adjustable from 1.25 V to 40 V
- Peak Output Current of 1.5 A Without External Transistor
- 80 dB Line and Load Regulation
- Operation from 2.5 V to 40 V Supply
- Low Standby Current Drain
- High Gain, High Output Current, Uncommitted Op Amp

BLOCK DIAGRAM Timing Non-Inv Inv Driver lpk Switch Capacitor Vcc Input Input Gnd Sense Collector Collector 9 10 11 13 14 16 Ст lpk Oscillator Comi 170 1.25 V Reference D1 Amr 8 7 6 4 3 2 1 Ref Inv Non-Inv Output Switch Diode ۷сс Diode Op Amp Output Input Input Emitter Anode Cathode (Bottom View)

UNIVERSAL SWITCHING REGULATOR SUBSYSTEM

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION					
Device	Temperature Range	Package			
μA78S40PC	0°C to +70°C	Plastic DIP			
μA78S40DC	0°C to +70°C	Ceramic DIP			
μA78S40DM	-55°C to +125°C	Ceramic DIP			

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	40	٧
Op Amp Power Supply Voltage	V _{CC} (Op Amp)	40	٧
Common Mode Input Range (Comparator and Op Amp)	VICR	-0.3 to V _{CC}	٧
Differential Input Voltage (Note 2)	V _{ID}	±30	٧
Output Short-Circuit Duration (Op Amp)	_	Continuous	_
Reference Output Current	l _{ref}	10	mA
Voltage from Switch Collectors to Gnd	_	40	V
Voltage from Switch Emitters to Gnd	_	40	٧
Voltage from Switch Collectors to Emitter		40	٧
Voltage from Power Diode to Gnd	_	40	٧
Reverse-Power Diode Voltage	V _{DR}	40	٧
Current through Power Switch	Isw	1.5	Α
Current through Power Diode	ID	1.5	Α
Power Dissipation and Thermal Characteristics			
Plastic Package — T _A = +25°C	PD	1500	mW
Derate above +25°C (Note 1)	1/R ₀ JA	14 1000	mW/°C mW
Ceramic Package — T _A = 25°C Derate above +25°C (Note 1)	P _D 1/R _θ JA	8.0	mW/°C
			°C
Storage Temperature Range	T _{stg}	-65 to +150	
Operating Temperature Range μΑ78S40M μΑ78S40C	TA	-55 to +125 0 to +70	°C

Notes:

votes: 1. $Tlow = -55^{\circ}C$ for μ A78S40DM $= 0^{\circ}C$ for μ A78S40DC and μ A78S40PC $Thigh = +125^{\circ}C$ for μ A78S40DM $= +70^{\circ}C$ for μ A78S40DM and μ A78S40PC $= +70^{\circ}C$ for μ A78S40DC and μ A78S40PC $= -70^{\circ}C$ for supply voltages less than 30 V the maximum differential input voltage (Error Amp and Op Amp) is equal to the supply voltage.

Characteristic	Symbol	Min	Тур	Max	Unit
GENERAL					
Supply Voltage	Vcc	2.5		40	V
Supply Current (Op Amp V _{CC} Disconnected) (V _{CC} = 5.0 V) (V _{CC} = 40 V)	ICC	_	1.8 2.3	3.5 5.0	mA
Supply Current (Op Amp V _{CC} Connected) (V _{CC} = 5.0 V) (V _{CC} = 40 V)	Icc	_	_	4.0 5.5	mA
REFERENCE				·	·
Reference Voltage (I _{ref} = 1.0 mA)	V _{ref}	1.180	1.245	1.310	V
Reference Voltage Line Regulation (3.0 V ≤ V _{CC} ≤ 40 V, I _{ref} = 1.0 mA, T _A = 25°C)	Regline		0.04	0.2	mV/V
Reference Voltage Load Regulation (1.0 mA ≤ I _{ref} ≤ 10 mA, T _A = 25°C)	Regload	_	0.2	0.5	mV/mA

ELECTRICAL CHARACTERISTICS (Continued)

Characteristic	Symbol	Min	Тур	Max	Unit
OSCILLATOR	1				
Charging Current (T _A = 25°C)	lchg.				μΑ
(V _{CC} = 5.0 V)		20		50	
(V _{CC} = 40 V)		20		70	
Discharge Current ($T_A = 25^{\circ}C$)	l _{dis}	450		050	μΑ
(V _{CC} = 5.0 V) (V _{CC} = 40 V)		150 150	_	250 350	
Oscillator Voltage Swing (T _A = 25°C)	- V	100	0.5	330	,
$(V_{CC} = 5.0 \text{ V})$	V _{osc}	_	0.5		V
Ratio of Charge/Discharge Time	tchg/tdis		6.0		
CURRENT LIMIT					
Current-Limit Sense Voltage (T _A = 25°C) (V _{CC} - V _{Ipk} Sense)	V _{CLS}	250	_	350	mV
OUTPUT SWITCH		<u> </u>			
Output Saturation Voltage 1	V _{sat1}	_	0.93	1.3	٧
(ISW = 1.0 A, Pin 15 tied to Pin 16)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		0.5	+ 07	.,
Output Saturation Voltage 2 (I _{SW} = 1.0 A, I ₁₅ = 50 mA)	V _{sat2}	_	0.5	0.7	V
Output Transistor Current Gain ($T_A = 25^{\circ}C$) ($I_C = 1.0 \text{ A, } V_{CE} = 5.0 \text{ V}$)	hFE	_	70	_	
Output Leakage Current (T _A = 25°C) (V _{CE} = 40 V)	IC(off)	. —	10	_	nA
POWER DIODE					
Forward Voltage Drop (I _D = 1.0 A)	V _D		1.25	1.5	V
Diode Leakage Current (T _A = 25°C) (V _{DR} = 40 V)	IDR		10		nA
COMPARATOR	יטת ן				
Input Offset Voltage (V _{CM} = V _{Ref})	V _{IO}		1.5	15	mV
Input Bias Current (V _{CM} = V _{Ref})			35	200	nA
	IB IIB				
Input Offset Current (V _{CM} = V _{Ref})	10		5.0	75	nA
Common-Mode Voltage Range (T _A = 25°C)	V _{ICR}	0		V _{CC} - 2.0	· V
Power-Supply Rejection Ratio ($T_A = 25^{\circ}C$) (3.0 $\leq V_{CC} \leq 40 \text{ V}$)	PSRR	70	96	_	dB
OUTPUT OPERATIONAL AMPLIFIER					
Input Offset Voltage (V _{CM} = 2.5 V)	V _{IO}	_	4.0	15	mV
Input Bias Current (V _{CM} = 2.5 V)	lв		30	200	nA
Input Offset Current (V _{CM} = 2.5 V)	lio		5.0	75	nA
Voltage Gain + (T _A = 25°C) (R _L = 2.0 kΩ to Gnd, 1.0 V ≤ V _O ≤ 2.5 V)	AVOL+	25	250		V/mV
Voltage Gain $-$ (T _A = 25°C) (R _L = 2.0 k Ω to V _{CC} (Op Amp), 1.0 V \leq V _O \leq 2.5 V)	AVOL -	25	250	-	V/mV
Common-Mode Voltage Range (T _A = 25°C)	VICR	0		V _{CC} - 2.0	v
Common-Mode Rejection Ratio (T _A = 25°C) (V _{CM} = 0 to 3.0 V)	CMRR	76	100	-	dB
Power-Supply Rejection Ratio ($T_A = 25^{\circ}C$) (3.0 V \leq V _{CC} (Op Amp) \leq 40 V)	PSRR	76	100	-	dB
Output Source Current (T _A = 25°C)	Source	75	150	 _ 	mA
Output Sink Current (T _A = 25°C)	T	10	35		
	Sink	10			mA
Slew Rate (T _A = 25°C)	SR		0.6	+ -	V/μs
Output Low Voltage (T _A = 25°C, I _L = -5.0 mA)	V _{OL}	_		1.0	V
Output High Voltage (T _A = 25°C, I _L = 50 mA)	Voн	VCC (Op Amp)	_	_	٧

FIGURE 1 — OUTPUT SWITCH ON/OFF TIME versus OSCILLATOR TIMING

FIGURE 2 — STANDBY SUPPLY CURRENT versus SUPPLY VOLTAGE

FIGURE 3 — EMITTER-FOLLOWER CONFIGURATION OUTPUT SWITCH SATURATION VOLTAGE VERSUS EMITTER CURRENT

FIGURE 4 — COMMON-EMITTER CONFIGURATION OUTPUT SWITCH SATURATION VOLTAGE versus COLLECTOR CURRENT

FIGURE 8 -- DESIGN FORMULA TABLE

Calculation	Step-Down	Step-Up	Inverting
ton toff	V _{out} + V _F V _{in(max)} - V _{sat} - V _{out}	V _{out} + V _F − V _{in(min)} V _{in(min)} − V _{sat}	$rac{ V_{Out} + V_{F}}{V_{in(min)} - V_{sat}}$
(t _{on} + t _{off}) max	<u>l</u> fmin	<u> </u>	l f _{min}
CT	4 x 10 ⁻⁵ t _{on}	4 x 10 ⁻⁵ t _{on}	4 x 10 ⁻⁵ t _{on}
lpk(switch)	2 l _{out(max)}	$2 l_{out(max)} \left(\frac{t_{on} + t_{off}}{t_{off}} \right)$	$2 I_{out(max)} \left(\frac{t_{on} + t_{off}}{t_{off}} \right)$
R _{SC}	0.33	0.33 pk(switch)	0.33 Ipk(switch)
L(min)	\left(\frac{V_{in(max)} - V_{sat} - V_{out}}{I_{pk(switch)}}\text{ton(max)}	$\left(\frac{V_{in(min)} - V_{sat}}{I_{pk(switch)}}\right)^{t_{on(max)}}$	$\left(\frac{V_{in(min)} - V_{sat}}{I_{pk(switch)}}\right) t_{on(max)}$
co	Ipk(switch)(ton + toff) 8 Vripple(p-p)	≈ <mark>lout ^ton</mark> ⊻ripple	≈ ^l out ^t on [∨] ripple

 $V_{\mbox{sat}}$ = Saturation voltage of the output switch. $V_{\mbox{F}}$ = Forward voltage drop of the ringback rectifier.

The following power supply characteristics must be chosen:

V_{in} — Nominal input voltage. If this voltage is not constant, then use V_{in(max)} for step-down and V_{in(min)} for stepup and inverting convertor.

 V_{out} — Desired output voltage, $V_{out} = 1.25 \left(1 + \frac{R_2}{R_1}\right)$ for step-down and step-up; $V_{out} = \frac{1.25 R2}{R1}$ for Inverting.

 I_{out} — Desired output current. f_{min} — Minimum desired output switching frequency at the selected values for V_{in} and I_{o} .

Vripple(p-p) — Desired peak-to-peak output ripple voltage. In practice, the calculated value will need to be increased due to the capacitor's equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly effect the line and load regulation.

Voltage References

-

VOLTAGE REFERENCES

Device	Function	Page
LM285	Micropower Voltage Reference Diodes	5-3
LM385	Micropower Voltage Reference Diode	5-3
MC1400,A	Precision Voltage References	5-7
MC1403,A	Precision Low-Voltage Reference	5-12
MC1404,A	Precision Low-Drift Voltage Reference	5-16
MC1500,A	Precision Voltage References	5-7
MC1503.A	Precision Low-Voltage Reference	5-12
MC1504.A	Precision Low-Drift Voltage Reference	5-16
TL431	Programmable Precision References	5-21

LM285 LM385

MICROPOWER VOLTAGE REFERENCE DIODES

The LM285/LM385 series are micropower two-terminal bandgap voltage regulator diodes. Designed to operate over a wide current range of 10 μA to 20 mA, these devices feature exceptionally low dynamic impedance, low noise and stable operation over time and temperature. Tight voltage tolerances are achieved by on-chip trimming. The large dynamic operating range enables these devices to be used in applications with widely varying supplies with excellent regulation. Extremely low operating current make these devices ideal for micropower circuitry like portable instrumentation, regulators and other analog circuitry where extended battery life is required.

The LM285/LM385 series are packaged in a low cost TO-226AA (TO-92) plastic case and are available in two voltage versions of 1.235 and 2.500 volts as denoted by the device suffix (see ordering information table). The LM285 is specified over a -40°C to $+85^{\circ}\text{C}$ temperature range while the LM385 is rated from 0°C to $+70^{\circ}\text{C}$.

- Operating Current from 10 μA to 20 mA
- 1.0%, 1.5%, 2.0% and 3.0% Initial Tolerance Grades
- Low Temperature Coefficient
- 1.0 Ω Dynamic Impedance
- Available in 1.235 and 2.500 Volt Versions

MICROPOWER VOLTAGE REFERENCE DIODES

SILICON MONOLITHIC INTEGRATED CIRCUIT

EQUIVALENT CIRCUIT SCHEMATIC 2 8.0 Ω Open for 1.235 V Open for 2.5 V 425 k 100 k

ORDE	RING INF	ORMATI	ON
Device	Temp. Range	Reverse Break- down Voltage	Tolerance
LM285Z-1.2	-40 °C to +85°C	1.235 Volts	± 1.0%
LM285Z-2.5		2.500 Volts	± 1.5%
LM385BZ-1.2	0°C to + 70°C	1.235 Volts	± 1.0%
LM385Z-1.2		1.235 Volts	± 2.0%
LM385BZ-2.5		2.500 Volts	± 1.5%
LM385Z-2.5		2.500 Volts	± 3.0%

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Reverse Current	IR	30	mA
Forward Current	1 _F	10	mA
Operating Ambient Temperature Range LM285 LM385	ТА	-40 to +85 0 to +70	°C
Operating Junction Temperature	Tj	+ 150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}$ unless otherwise noted)

		LM285-1.2			LM385			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Reverse Breakdown Voltage Rmin ≤ R ≤ 20 mA LM285-1.2/LM385B-1.2 LM385-1.2	V _{(BR)R}	1.223	1.235	1.247	1.223 1.205	1.235 1.235	1.247 1.260	V
Minimum Operating Current (TA = Tlow to Thigh Note 1)	Rmin	-	2.5	10	_	2.5	15	μА
Reverse Breakdown Voltage Change with Current $ R_{min} \le R \le 1.0 \text{ mA}$, $T_A = +25^{\circ}\text{C}$ $T_A = T_{low}$ to T_{high} (Note 1) 1.0 $mA \le R \le 20 \text{ mA}$, $T_A = +25^{\circ}\text{C}$ $T_A = T_{low}$ to T_{high} (Note 1)	ΔV(BR)/ΔIR		_ _ _	1.0 1.5 10 20			1.0 1.5 20 25	mV
Reverse Dynamic Impedance I _R = 100 μA, T _A = +25°C T _A = T _{low} to T _{high} (Note 1)	Z	_	0.2	0.6 1.5	_	0.4	1.0 1.5	Ω
Average Temperature Coefficient 10 µA ≤ I _R ≤ 20 mA, T _A = T _{low} to T _{high} (Note 1)	$\Delta V_{(BR)}/\Delta T$		20		_	20	_	ppm/°C
Wideband Noise (RMS) $I_R = 100 \mu A$, 10 Hz $\leq f \leq 10 \text{ kHz}$	n		60	_	_	60	_	μV
Long Term Stability $I_R = 100 \mu A$, $T_A = +25^{\circ}C \pm 0.1^{\circ}C$	S	_	20		_	20		ppm/kHR

ELECTRICAL CHARACTERISTICS (T_A = 25° unless otherwise noted)

		L	M285-2	.5	LM385-2.5/LM385B-2.5			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Reverse Breakdown Voltage 20 μ A \leq I _R \leq 20 mA	V _{(BR)R}							V
LM285-2.5/LM385B-2.5 LM385-2.5		2.462	2.5 —	2.538	2.462 2.425	2.5 2.5	2.538 2.575	
Minimum Operating Current TA = T _{low} to T _{high} (Note 1)	Rmin	_	5.0	20	_	5.0	20	μΑ
Reverse Breakdown Voltage Change with Current $20~\mu A \leqslant _R \leqslant 1.0~m A, T_A = +25^{\circ} C$ $T_A = T_{low}$ to T_{high} (Note 1) $1.0~m A \leqslant _R \leqslant 20~m A, T_A = +25^{\circ} C$ $T_A = T_{low}$ to T_{high} (Note 1)	ΔV(BR)/ ΔI _R			1.0 1.5 10 20	_ _ _ _		2.0 2.5 20 25	mV
Reverse Dynamic Impedance I _R = 100 µA, T _A = +25°C T _A = T _{low} to T _{high} (Note 1)	Z	=	0.2	0.6 1.5	=	0.4	1.0 1.5	Ω
Average Temperature Coefficient 20 μ A \leq I _R \leq 20 mA, T _A $=$ T _{low} to T _{high} (Note 1)	ΔV _(BR) / ΔT	_	20	_	_	20	_	ppm/°C
Wideband Noise (RMS) $I_R = 100 \ \mu A$, 10 Hz $\leq f \leq 10 \ kHz$	n	_	120	-		120	_	μV
Long Term Stability $I_R = 100 \mu A$, $T_A = +25^{\circ}C \pm 0.1^{\circ}C$	S	_	20	_	_	20	_	ppm/kHR

NOTES: |1. $T_{low} = -40^{\circ}C$ for LM285-1.2, LM285-2.5 = 0°C for LM385-1.2, LM385B-1.2, LM385B-2.5, LM385B-2.5

 $T_{high} = +85^{\circ}C$ for LM285-1.2, LM285-2.5 = +70°C for LM385-1.2, LM385B-1.2, LM385B-2.5, LM385B-2.5

TYPICAL PERFORMANCE CURVES FOR LM285-1.2/385-1.2/385B-1.2

TYPICAL PERFORMANCE CURVES FOR LM285-2.5/385-2.5/385B-2.5

FIGURE 8 — REVERSE CHARACTERISTICS

FIGURE 9 — FORWARD CHARACTERISTICS

FIGURE 10 — TEMPERATURE DRIFT

FIGURE 11 — NOISE VOLTAGE

FIGURE 12 --- RESPONSE TIME

MC1400,A MC1500,A

Specifications and Applications Information

TIGHT-TOLERANCE, LOW-DRIFT VOLTAGE REFERENCE FAMILY

The MC1400 series of ICs is a family of temperature-compensated voltage references for precision data conversion and instrumentation applications. Advances in thin-film resistors, laser trimming techniques, ion-implanted devices, and monolithic fabrication techniques make this reference both temperature and time stable in applications demanding accuracy to the 12-bit level.

These devices offer simple, no-external-component operation as three-terminal, positive-voltage references, and also simple, one-external-resistor operation as either positive or negative references. Unique circuitry permits these devices to either source or sink greater than 10 mA of load current with excellent regulation. This feature means that the buffer amplifiers and current sources normally required for precision zener references can be eliminated.

- Four Different Output Voltages: 2.5, 5.0, 6.25, 10 V
- ◆ Tight Absolute Accuracy: ±0.2% Maximum Initial Tolerance
- Single-Component Output Trimming Without Degrading Temperature Coefficient
- Wide Input Voltage Range: $(V_{out} + 1.0 \text{ V}) \leq V_{in} \leq 40 \text{ V}$
- Three-Terminal Operation:

Positive References That Can Source and Sink Current

- Two-Terminal Operation: Positive or Negative References Floating References
- Low Current Consumption: 1.0 mA Typical
- Very Low Temperature Coefficient
- Low Output Noise Voltage
- Excellent Ripple Rejection: 87 dB Typical at 120 Hz
- Excellent Long Term Stability: 25 ppm/1000 Hrs Typical

2 **FUNCTIONAL SCHEMATIC** 6 Vout 20 k V_{out} R TRIM 2.5 V 5 kΩ 5 k 5.0 V 15 kΩ [3] 6.25 V 20 kΩ 4 **VTEMP** 35 kΩ

PRECISION VOLTAGE REFERENCES

2.5, 5.0, 6.25 and 10-VOLT

LASER-TRIMMED SILICON
MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION						
Device	Temperature Range					
2.5 Volts						
MC1500G2	-55°C to +125°C					
MC1500AG2	-55°C to +125°C					
MC1400G2	0°C to +70°C					
MC1400AG2 0°C to +70°C						
5.0 Volts						
MC1500G5 -55°C to +125°C						
MC1500AG5	-55°C to +125°C					
MC1400G5	0°C to +70°C					
MC1400AG5	0°C to +70°C					
6.25 Volts						
MC1500G6	-55°C to +125°C					
MC1500AG6	- 55°C to + 125°C					
MC1400G6	0°C to +70°C					
MC1400AG6	0°C to +70°C					
10 Volts						
MC1500G10	-55°C to +125°C					
MC1500AG10	-55°C to +125°C					
MC1400G10	0°C to +70°C					

MC1400AG10

0°C to +70°C

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Applied Voltages			. V
	Vin	-0.3 to +40	
	VTRIM	-0.3 to +5.0	
Load Current			
V _{TEMP} , Pin 3	ITEMP	±50	μΑ
Output, Pin 6	lout	± 40	mA
Output Short Circuit Duration	t _{sc}		seconds
To Ground		Continuous	
To V _{in}		10	
Storage Temperature	T _{stg}	-65 to +150	°C
Junction Temperature	TJ	+ 150	°C
Operating Ambient Temperature Range	TA		°C
MC1500,A	''	-55 to +125	
MC1400,A		0 to +70	

ELECTRICAL CHARACTERISTICS (Vin = 15 Volts, TA = 25°C and Trim Terminal not connected unless otherwise noted)

		M	/IC1400,	A		MC1500,A	١	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage (I _O = 0 mA) G2, AG2 G5, AG5 G6, AG6 G10, AG10	Vo	2.495 4.990 6.240 9.980	2.500 5.000 6.250 10.000	2.505 5.010 6.260 10.020	2.495 4.990 6.240 9.980	2.500 5.000 6.250 10.000	2.505 5.010 6.260 10.020	Volts
Output Voltage Tolerance	_		0.05	0.20		0.05	0.20	%
Output Trim Range (R _p = 100 kΩ)	△VTRIM	± 6.0			± 6.0	_	_	%
Temperature Coefficient (Notes 1, 4) (T _{min} to T _{max}) MC1400/1500 MC1400A/1500A	TCVO	_	_	25 10	_	_	40 10	ppm/°C
Line Regulation (Note 2) (V _{in} = 3.5 V to 40 V) (V _{in} = 6.0 V to 40 V) (V _{in} = 7.5 V to 40 V) (V _{in} = 7.5 V to 40 V) (V _{in} = 11.5 V to 40 V) G10, AG10	Regline	_ _ _ _	1.0 1.5 1.5 2.0	3.0 4.0 4.0 4.0	_ _ _	1.0 1.5 1.5 2.0	3.0 4.0 4.0 4.0	mV
Load Regulation (Note 3) (-10≤ L≤+10 mA) G2, AG2 G5, AG5 G6, AG6 G10, AG10	Regload	_ _ _ _	6.0 8.0 8.0 8.0	10 20 20 20 20	- - -	6.0 8.0 8.0 8.0	10 20 20 20	mV
Quiescent Current (I _O = 0 mA)	l _l	_	0.77	1.5		0.77	1.5	mA
Zener Mode Regulation (Figure 1) (1.0≤I _Z ≤10 mA) G2, AG2 G5, AG5 G6, AG6 G10, AG10	VZ		3.0 6.0 8.0 12			3.0 6.0 8.0 12	_ _ _	mV
Long Term Stability	_	_	25	_	_	25	_	ppm/1000 hrs

NOTES:

1. $T_{min} = -55^{\circ}C$ for MC1500,A

= 0°C for MC1400,A

T_{max} = +125°C for MC1500,A = +70°C for MC1400,A

^{2.} Line Regulation is defined as the maximum excursion in output voltage over a given change in input voltage with zero load current and junction temperature constant.

^{3.} Load Regulation is defined as the maximum excursion in output voltage over a given change in load current with a constant input supply voltage of +15 volts and a constant junction temperature.

^{4.} Temperature Coefficient of the output voltage (TCV_O) is defined as the maximum change in output voltage over applicable temperature divided by the device operating temperature range and expressed as ppm/°C.

DYNAMIC CHARACTERISTICS (V_{in} = 15 V, T_A = 25°C all voltage ranges unless otherwise noted)

		1	MC1400,	Α	MC1500,A			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Turn-On Settling Time (Figure 2) (to $\pm 0.01\%$)	ts	_	50	_	_	50	_	μs
Output Noise Voltage — P to P (0.1≤f≤10 Hz) G2, AG2	V _n	_	8.0	_	_	8.0	_	μV
G5, AG5 G6, AG6		_	12 14	_	_	12 14	_	
G10, AG10		<u> </u>	16			16	_	
Small-Signal Output Impedance (f = 120 Hz)	z _O		0.3			0.3	_	Ω
Power Supply Rejection Ratio (f = 120 Hz)	PSRR	60	87	_	60	87		dB

TYPICAL CHARACTERISTICS

FIGURE 1 — ZENER MODE REGULATION TEST CIRCUIT

NOTE: Iz is the net current flowing into the device.

FIGURE 2 — TURN-ON SETTLING TIME TEST CIRCUIT

FIGURE 11 -- OUTPUT TRIM CONFIGURATION

The MC1400 trim terminal can be used to adjust the output voltage over a $\pm 6 \%$ range. For example, the output can be set to 10.000 V or to 10.240 V for binary applications. For trimming, Bourns type 3059, 100 k Ω or 200 k Ω trimpot is recommended.

Although the circuit of Figure 11 allows a wide trim range, trimming should be kept to $\leqslant \pm 6\%$ in applications requiring low temperature coefficents.

FIGURE 12 - FIXED REFERENCE

*For better stability, transient response, and minimum noise voltage, the device should be bypassed with a 0.1 μF ceramic capacitor from Pins 6 to 4 as shown.

FIGURE 13 — NEGATIVE REFERENCE OPERATION

FIGURE 14 — TRIMMABLE FLOATING REFERENCE OPERATION

*For better stability, transient response, and minimum noise voltage, the device should be bypassed with a 0.1 µF ceramic and a 10 µF electrolytic capacitor from Pins 6 to 4 as shown.

MC1403,A MC1503,A

LOW-VOLTAGE REFERENCE

A precision band-gap voltage reference designed for critical instrumentation and D/A converter applications. This unit is designed to work with Motorola MC1506, MC1508, and MC3510 D/A converters, and MC14433 A/D systems. Low temperature drift is a prime design consideration.

- Output Voltage = 2.5 V ±25 mV
- Input Voltage Range = 4.5 V to 40 V
- Quiescent Current = 1.2 mA typ
- Output Current = 10 mA
- Temperature Coefficient = 10 ppm/°C typ
- Guaranteed Temperature Drift Specification
- Equivalent to AD580
- Standard 8-Pin DIP Package

Typical Applications

- Voltage Reference for 8-12 Bit D/A Converters
- Low T_C Zener Replacement
- High Stability Current Reference
- Voltmeter System Reference

MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage	VI	40	V
Storage Temperature	T _{stg}	-65 to 150	°C
Junction Temperature	TJ	+175	°C
Operating Ambient Temeprature Range MC1503,A MC1403,A	ТА	-55 to +125 0 to +70	°C

PRECISION LOW-VOLTAGE REFERENCE

LASER TRIMMED SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION					
Device	Temperature Range	Package			
MC1503U	-55 to +125 °C	Ceramic DIP			
MC1503AU	-55 to +125°C	Ceramic DIP			
MC1403U	0 to +70°C	Ceramic DIP			
MC1403ALL	0 to +70°C	Coromia DIR			

FIGURE 1 - A REFERENCE FOR MOTOROLA MONOLITHIC D/A CONVERTERS

PROVIDING THE REFERENCE CURRENT FOR MOTOROLA MONOLITHIC D/A CONVERTERS

The MC1403/1503 makes an ideal reference for the Motorola monolithic D/A converters. The MC1406/1506, MC1408/1508, MC3410/3510 and MC3408 D/A converters all require a stable current reference of nominally 2.0 mA. This can be easily obtained from the MC1403/1503 with the addition of a series resistor, R1. A variable resistor, R2, is recommended to provide means for full-scale adjust on the D/A converter.

The resistor R3 improves temperature performance by matching the impedance on both inputs of the D/A reference amplifier. The capacitor decouples any noise present on the reference line. It is essential if the D/A converter is located any appreciable distance from the reference.

A single MC1403/1503 reference can provide the required current input for up to five of the monolithic D/A converters.

MC1403,A, MC1503,A

ELECTRICAL CHARACTERISTICS (V_I = 15 V, T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage (IO = 0 mA)	v _o	2.475	2.50	2.525	٧
Temperature Coefficient of Output Voltage MC1503 MC1503A	ΔV _O /ΔΤ		- - 10	55 25 40	ppm/ ^o C
MC1403 MC1403A		_	10	25	
Output Voltage Change (over specified temperature range) MC1503	ΔVO	- - - -	 	25 1 1 7.0 4.4	m∨
Line Regulation (15 $\lor \le \lor_{\parallel} \le 40 \lor$) (4.5 $\lor \le \lor_{\parallel} \le 15 \lor$)	Regline		1.2 0.6	4.5 3.0	mV
Load Regulation (0 mA < I _O < 10 mA)	Regload	_	-	10	mV
Quiescent Current (IO = 0 mA)	11	-	1.2	1.5	mA

FIGURE 2 - MC1403/1503 SCHEMATIC

FIGURE 4 -- CHANGE IN OUTPUT VOLTAGE. versus LOAD CURRENT (NORMALIZED TO $V_{out} @ V_{in} = 15 V$, $I_{out} = 0 mA$) ΔV_{out}, CHANGE IN OUTPUT VOLTAGE (mV) 9.0 125°C 7.0 -55°C 6.0 5.0 75°C 4.0 3.0 2.0 0°C 25°C 1.0 2.0

I_{out}, OUTPUT CURRENT (mA)

3-1/2-DIGIT VOLTMETER — COMMON ANODE DISPLAYS, FLASHING OVERRANGE

An example of a 3-1/2-digit voltmeter using the MC14433 is shown in the circuit diagram of Figure 8. The reference voltage for the system uses an MC1403 2.5 V reference IC. The full scale potentiometer calibrate for a full scale of 199.9 mV or 1.999 V. When switching from 2 V to 200 mV operation, R_{\parallel} is also changed, as shown on the diagram.

When using RC equal to 300 k Ω , the clock frequency for the system is about 66 kHz. The resulting conversion time is approximately 250 ms.

When the input is overrange, the display flashes on and off. The flashing rate is one-half the conversion rate.

This is done by dividing the EOC pulse rate by 2 with 1/2 MC14013B flip-flop and blanking the display using the blanking input of the MC14543B.

The display uses an LED display with common anode digit lines driven with an MC14543B decoder and an MC1413 LED driver. The MC1413 contains 7 Darlington transistor drivers and resistors to drive the segments of the display. The digit drive is provided by four MPS-A12 Darlington transistors operating in an emitter-follower configuration. The MC14543B, MC14013B and LED displays are referenced to VEE via pin 13 of the MC14433. This places the full power supply voltage across the display. The current for the display may be adjusted by the value of the segment resistors shown as 150 ohms in Figure 8.

FIGURE 8 - 3-1/2-DIGIT VOLTMETER

MC1404,A MC1504,A

VOLTAGE REFERENCE FAMILY

The MC1404 series of ICs is a family of temperature-compensated voltage references for precision data conversion applications, such as A/D, D/A, V/F, and F/V. Advances in laser-trimming and ion-implanted devices, as well as monolithic fabrication techniques, make these devices stable and accurate to 15 bits over both military and commercial temperature ranges. In addition to excellent temperature stability, these parts offer excellent long-term stability and low noise.

Output Voltages: Standard, 5.0 V, 6.25 V, 10 V

• Trimmable Output: > ±6%

• Wide Input Voltage Range: Vref + 2.5 V to 40 V

• Low Quiescent Current: 1.25 mA Typical

• Temperature Coefficient: 10 ppm/°C Typical

Low Output Noise: 12 μV p-p Typical

• Excellent Ripple Rejection: > 80 dB Typical

TYPICAL APPLICATIONS

- Voltage Reference for 8 − 12 Bit D/A Converters
- Low T_C Zener Replacement
- High Stability Current Reference
- MPU D/A and A/D Applications

FIGURE 1 - VOLTAGE OUTPUT 10-BIT DAC USING MC1404U10

PRECISION LOW-DRIFT VOLTAGE REFERENCES

5.0, 6,25, and 10-VOLT OUTPUT VOLTAGES

LASER TRIMMED SILICON
MONOLITHIC INTEGRATED CIRCUIT

Para Caracan					
ORDERING INFORMATION					
PACKAGE (ALL TYPES)					
Cer	amic DIP				
Device	Temperature Range				
5.0 Volts					
MC1504U5	-55°C to +125°C				
MC1504AU5	-55°C to +125°C				
MC1404U5	0°C to +70°C				
MC1404AU5	0°C to +70°C				
6.25 Volts					
MC1504U6	-55°C to +125°C				
MC1504AU6	-55°C to +125°C				
MC1404U6	0 ^o C to +70 ^o C				
MC1404AU6	0°C to +70°C				
10 Volts					
MC1504U10	-55°C to +125°C				
MC1504AU10	-55°C to +125°C				
MC1404U10	0°C to +70°C				
MC1404AU10	0°C to +70°C				

MC1404,A, MC1504,A

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	V _I .	40	V
Storage Temperature	T _{stg}	-65 to +150	°C
Junction Temperature	TJ	+175	°C
Operating Ambient Temperature Range MC1504,A MC1404,A	ТА	-55 to +125 0 to +70	°C °C

ELECTRICAL CHARACTERISTICS (V_{in} = 15 Volts, T_A = 25°C and Trim Terminal not connected unless otherwise noted)

		N	1C1404,	A	M	C1504,		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Output Voltage	V _o							Volt
$(I_0 = 0 \text{ mA})$	_		l					
U5, AU5		4.95	5.00	5.05	4.95	5.00	5.05	
U6, AU6		6.19	6.25	6.31	6.19	6.25	6.31	
U10, AU10		9.90	10	10.10	9.90	10	10.10	
Output Voltage Tolerance	-	_	± 0.1	± 1.0		± 0.1	± 1.0	%
Output Trim Range (Figure 10)	ΔVTRIM	±6.0	_	-	± 6.0	_	-	%
$(Rp = 100 k\Omega)$			l	İ				
Output Voltage Temperature Coefficient,	$\Delta V_{O}/\Delta T$							ppm/ ^O C
Over Full Temperature Range		ł						
MC1404, MC1504		-	10	40	-	-	55	
MC1404A, MC1504A		<u> </u>	10	25	_		25	
Maximum Output Voltage Change	ΔV _O					l		mV
Over Temperature Range								
MC1404U5, MC1504U5		-	-	14	_	-	50	
MC1404AU5, MC1504AU5		-	-	9.0	-	-	23	
MC1404U6, MC1504U6		i -	-	17.5	-	-	62	
MC1404AU6, MC1504AU6		_	_	11		-	28	l
MC1404U10, MC1504U10		_	-	28	-	_	99	
MC1404AU10, MC1504AU10				18		<u> </u>	45	
Line Regulation (1)	Regline	-	2.0	6.0	-	2.0	6.0	mV
$(V_{in} = V_{out} + 2.5 \text{ V to 40 V, } I_{out} = 0 \text{ mA})$			<u> </u>			<u> </u>		
Load Regulation (1)	Regload	-	-	10	_		10	mV
(0 ≤ I ₀ ≤ 10 mA)				1				
Quiescent Current	11	-	1.2	1.5	-	1.2	1.5	mA
$(I_0 = 0 \text{ mA})$			<u> </u>			<u> </u>		ļ
Short Circuit Current	I _{sc}	15	20	30	-	_	30	mA
Long Term Stability	-	_	25	-	-	25	_	ppm/1000 h

Note 1: Includes thermal effects.

DYNAMIC CHARACTERISTICS (V_{in} = 15 V, T_A = 25°C all voltage ranges unless otherwise noted)

		N	MC1404, A			MC1504,A		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Turn-On Settling Time (to ± 0.01%)	ts	_	50	-	-	50	_	μs
Output Noise Voltage — P to P (Bandwidth 0.1 to 10 Hz)	V _n	-	12	_	-	12	_	μV
Small-Signal Output Impedance 120 Hz 500 Hz	ro	_	0.15 0.2	_	_ _	0.15 0.2		Ω
Power Supply Rejection Ratio	PSRR	70	80	-	70	80	_	dB

TYPICAL CHARACTERISTICS

FIGURE 2 - SIMPLIFIED DEVICE DIAGRAM

FIGURE 3 - LINE REGULATION versus TEMPERATURE 2.5 AVout, LINE REGULATION (mV) 2.0 1.5 $V_{in} = V_{ref} + 2.5 V to 40 V$ 1.0 lout = 0 mA 0.5 -75 -50 -25 +25 +50 +75 +100 +125 TA, AMBIENT TEMPERATURE (°C)

FIGURE 4 — OUTPUT VOLTAGE versus TEMPERATURE MC1404U10

FIGURE 6 — POWER SUPPLY REJECTION RATIO versus FREQUENCY

FIGURE 7 — QUIESCENT CURRENT versus TEMPERATURE

FIGURE 8 - SHORT CIRCUIT CURRENT versus TEMPERATURE

FIGURE 10 - OUTPUT TRIM CONFIGURATION

The MC1404 trim terminal can be used to adjust the output voltage over a $\pm 6\%$ range. For example, the output can be set to 10.000 V or to 10.240 V for binary applications. For trimming, Bourns type 3059,100 k Ω or 200 k Ω trimpot is recommended.

Although Figure 10 illustrates a wide trim range, temperature coefficients may become unpredictable for trim $>\pm 6.0\%$.

FIGURE 9 - V_{TEMP} OUTPUT versus TEMPERATURE

FIGURE 11 - PRECISION SUPPLY USING MC1404

The addition of a power transistor, a resistor, and a capacitor converts the MC1404 into a precision supply with one ampere current capability. At V = 15 V, the MC1404 can carry in excess of 14 mA of load current with good regulation. If the power transistor current gain exceeds 75, a one ampere supply can be realized.

FIGURE 12 - ULTRA STABLE REFERENCE FOR MC1723 VOLTAGE REGULATOR

FIGURE 13 - 5.0 V, 6.0 AMP, 25 kHz SWITCHING REGULATOR WITH SEPARATE ULTRA-STABLE REFERENCE

^{*40} Turns #16 Wire, Arnold A-894075-2 Ferrite Core

FIGURE 14 - HIGH SPEED 8-BIT D/A CONVERTER USING MC1404U10

Specifications and Applications Information

PROGRAMMABLE PRECISION REFERENCES

The TL431 integrated circuits are three-terminal programmable shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient zener which is programmable from V_{ref} to 36 volts with two external resistors. These devices exhibit a wide operating current range of 1.0 to 100 mA with a typical dynamic impedance of 0.22 Ω . The characteristics of these references make them excellent replacements for zener diodes in many applications such as digital voltmeters, power supplies, and op amp circuitry. The 2.5 volt reference makes it convenient to obtain a stable reference from 5.0 volt logic supplies, and since the TL431 operates as a shunt regulator, it can be used as either a positive or negative voltage reference.

- Programmable Output Voltage to 36 Volts
- Low Dynamic Output Impedance, 0.22 Ω Typical
- Sink Current Capability of 1.0 to 100 mA
- Equivalent Full-Range Temperature Coefficient of 50 ppm/°C Typical
- Temperature Compensated for Operation over Full Rated Operating Temperature Range
- Low Output Noise Voltage

TL431 series

PROGRAMMABLE PRECISION REFERENCES

SILICON MONOLITHIC INTEGRATED CIRCUITS

LP SUFFIX PLASTIC PACKAGE CASE 29-02 TO-226AA (TO-92)

Pin 1. Reference 2. Anode

3. Cathode

(Top View)

Cathode 1 0 8 Reference

N.C. 2 7 N.C.

8 Reference
7 N.C.
6 Anode
5 N.C.

P SUFFIX
PLASTIC DUAL-IN-LINE PACKAGE
CASE 626-04

N.C. 3 N.C. 4

N.C. 4

JG SUFFIX
CERAMIC DUAL-IN-LINE PACKAGE
CASE 693-02

N C

ORDERING INFORMATION

ONDERING IN ONNATION						
Device	Temperature Range	Package				
TL431CLP	0 to +70°C	Plastic TO-92				
TL431CP	0 to +70°C	Plastic DIP				
TL431CJG	0 to +70°C	Ceramic DIP				
TL431ILP	-40 to +85°C	Plastic TO-92				
TL431IP	-40 to +85°C	Plastic DIP				
TL431IJG	-40 to +85°C	Ceramic DIP				
TL431MJG	-55 to +125°C	Ceramic DIP				

MAXIMUM RATINGS (Full operating ambient temperature range applies unless otherwise noted.)

Rating	Symbol	Value	Unit
Cathode To Anode Voltage	VKA	37	٧
Cathode Current Range, Continuous	١ĸ	-100 to +150	mA
Reference Input Current Range, Continuous	I _{ref}	-0.05 to +10	mA
Operating Junction Temperature	TJ	150	°C
Operating Ambient Temperature Range TL431M TL431I TL431C	тд	-55 to +125 -40 to +85 0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Total Power Dissipation @ T _A = 25°C Derate above 25°C Ambient Temperature LP Suffix Plastic Package P Suffix Plastic Package JG Suffix Ceramic Package	PD	0.775 1.10 1.25	W
Total Power Dissipation @ T _C = 25°C Derate above 25°C Case Temperature LP Suffix Plastic Package P Suffix Plastic Package JG Suffix Ceramic Package	P _D	1.5 3.0 3.3	W

THERMAL CHARACTERISTICS

Characteristics	Symbol	LP Suffix Package	P Suffix Package	JG Suffix Package	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta}JA$	178	114	100	°C/W
Thermal Resistance, Junction to Case	R _θ JC	83	41	38	°C/W

RECOMMENDED OPERATING CONDITIONS

Condition / Value	Symbol	Min	Max	Unit
Cathode To Anode Voltage	VKA	V _{ref}	36	V
Cathode Current	lκ	1.0	100	mA

ELECTRICAL CHARACTERISTICS (Ambient temperature at 25°C unless otherwise noted)

Characteristic		TL431M		TL431I			TL431C				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Reference Input Voltage (Figure 1) VKA = V _{ref} , I _K = 10 mA	V _{ref}	2.440	2.495	2.550	2.440	2.495	2.550	2.440	2.495	2.550	٧
Reference Input Voltage Deviation Over Temperature Range. (Figure 1, Note 1) V _{KA} = V _{ref} , I _K = 10 mA	△V _{ref}	_	15	44		7.0	30		3.0	17	mV
Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage I_K = 10 mA (Figure 2), $\triangle V_{KA}$ = 10 V to V_{ref} $\triangle V_{KA}$ = 36 V to 10 V		_	-1.4 -1.0	-2.7 -2.0	- -	-1.4 -1.0	-2.7 -2.0	_	-1.4 -1.0	-2.7 -2.0	mV/V
Reference Input Current (Figure 2) I _K = 10 mA, R1 = 10 k, R2 = ∞	Iref	-	1.8	4.0	_	1.8	4.0	_	1.8	4.0	μА
Reference Input Current Deviation Over Temperature Range. (Figure 2) I _K = 10 mA, R1 = 10 k, R2 = ∞	△l _{ref}	-	1.0	3.0		0.8	2.5	-	0.4	1.2	μА
Minimum Cathode Current For Regulation VKA = V _{ref} (Figure 1)	Imin	_	0.5	1.0	-	0.5	1.0	_	0.5	1.0	mA
Off-State Cathode Current (Figure 3) V _{KA} = 36 V, V _{ref} = 0 V	loff		2.6	1000	_	2.6	1000	_	2.6	1000	nA
Dynamic Impedance (Figure 1, Note 2) V _{KA} = V _{ref} , ΔI _K = 1.0 mA to 100 mA f ≤ 1.0 kHz	Z _{ka}	-	0.22	0.5		0.22	0.5	-	0.22	0.5	Ω

FIGURE 1 — TEST CIRCUIT FOR $v_{KA} = v_{ref}$ FIGURE 2 — TEST CIRCUIT FOR $v_{KA} > v_{ref}$ FIGURE 3 — TEST CIRCUIT FOR $v_{KA} > v_{ref}$

Note 1

The deviation parameter ΔV_{ref} is defined as the differences between the maximum and minimum values obtained over the full operating ambient temperature range that applies.

The average temperature coefficient of the reference input voltage, α $V_{\text{ref}},$ is defined as:

$$_{\alpha} \text{ V}_{\text{ref}} \quad \frac{\text{ppm}}{^{\circ}\text{C}} = \frac{\left(\frac{\triangle \text{V}_{\text{ref}}}{\sqrt{\text{ref} @ 25^{\circ}\text{C}}}\right) \times 10^{6}}{\triangle \text{T}_{\text{A}}} = \frac{\triangle \text{V}_{\text{ref}} \times 10^{6}}{\triangle \text{T}_{\text{A}} \left(\text{V}_{\text{ref}} @ 25^{\circ}\text{C}\right)}$$

. αV_{ref} can be positive or negative depending on whether V_{ref} Min or V_{ref} Max occurs at the lower ambient temperature. (Refer to Figure 6)

Example: $\triangle V_{ref}$ = 8.0 mV and slope is positive, V_{ref} @ 25°C = 2.495 V, $\triangle T_A$ = 70°C

$$\alpha V_{\text{ref}} = \frac{0.008 \times 10^6}{70 (2.495)} = 45.8 \text{ ppm/}^{\circ}\text{C}$$

Note 2

The dynamic impedance \mathbf{Z}_{ka} is defined as:

$$|\mathbf{Z_{ka}}| = \frac{\triangle \mathbf{V_{KA}}}{\triangle \mathbf{I_{K}}}$$

When the device is programmed with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is defined as:

$$|Z_{ka}'| \approx |Z_{ka}| \left(1 + \frac{R1}{R2}\right)$$

FIGURE 5 — CATHODE CURRENT versus

CATHODE VOLTAGE

FIGURE 6 — REFERENCE INPUT VOLTAGE versus

AMBIENT TEMPERATURE

FIGURE 7 — REFERENCE INPUT CURRENT versus

AMBIENT TEMPERATURE

FIGURE 8 — CHANGE IN REFERENCE INPUT VOLTAGE versus CATHODE VOLTAGE

FIGURE 9 — OFF-STATE CATHODE CURRENT Versus AMBIENT TEMPERATURE

FIGURE 10 — DYNAMIC IMPEDANCE

FIGURE 11 — DYNAMIC IMPEDANCE versus AMBIENT TEMPERATURE

FIGURE 12 — OPEN LOOP VOLTAGE GAIN versus FREQUENCY

FIGURE 13 — SPECTRAL NOISE DENSITY

FIGURE 14 — PULSE RESPONSE

FIGURE 15 — STABILITY BOUNDARY CONDITIONS

FIGURE 16 — TEST CIRCUIT FOR CURVE A OF STABILITY BOUNDARY CONDITIONS

FIGURE 17 — TEST CIRCUIT FOR CURVES B, C, AND D OF STABILITY BOUNDARY CONDITIONS

TYPICAL APPLICATIONS

FIGURE 18 — SHUNT REGULATOR

FIGURE 20 — OUTPUT CONTROL OF A THREE-TERMINAL FIXED REGULATOR

FIGURE 21 — SERIES PASS REGULATOR

E

FIGURE 22 — CONSTANT CURRENT SOURCE

FIGURE 23 — CONSTANT CURRENT SINK

FIGURE 24 — TRIAC CROWBAR

FIGURE 25 - SCR CROWBAR

FIGURE 26 — VOLTAGE MONITOR

Lower Limit =
$$\left(1 + \frac{R1}{R2}\right) V_{ref}$$

Upper Limit =
$$\left(1 + \frac{R3}{R4}\right) V_{ref}$$

FIGURE 27 — SINGLE-SUPPLY COMPARATOR WITH TEMPERATURE-COMPENSATED THRESHOLD

Vin	V _{out}
<v<sub>ref</v<sub>	V+
>V _{ref}	≈ 2.0 V

TEST	CONDITIONS	RESULTS
Line Regulation	V _{in} = 10 V to 20 V, I _o = 1.0 A	53 mV (1.1%)
Load Regulation	V _{in} = 15 V, I _o = 0A to 1.0 A	25 mV (0.5%)
Output Ripple	V _{in} = 10 V, I _o = 1.0 A	50 mV _{p-p} P.A.R.D.
Output Ripple	V _{in} = 20 V, I _o = 1.0 A	100 mV _{p-p} P.A.R.D.
Efficiency	V _{in} = 15 V, I _o = 1.0 A	82%

Data Conversion

DATA CONVERSION

Device	Function	Page
AD562	Complete High-Speed 12-Bit Multiplying D/A Converter	6-3
AD563	Complete 12-Bit High-Speed Monolithic D/A Converter	6-8
DAC-08	High-Speed 8-Bit Multiplying D-to-A Converter	6-13
MC1406L	6-Bit Multiplying Digital-to-Analog Converter	6-23
MC1408	8-Bit Multiplying Digital-to-Analog Converter	6-35
MC1506L	6-Bit Multiplying Digital-to-Analog Converter	6-23
MC1508	8-Bit Multiplying Digital-to-Analog Converter	6-35
MC3410.C	10-Bit D-to-A Converter	6-47
MC3412	High-Speed 12-Bit D/A Converter	6-58
MC3510	10-Bit D-to-A Converter	6-47
MC3512	High-Speed 12-Bit D/A Converter	6-58
MC6890	8-Bit Bus-Compatible MPU D/A Converter	6-63
MC10315L	Seven-Bit Parallel High-Speed A/D Converter	6-70
MC10317L	Seven-Bit Parallel High-Speed A/D Converter	6-70
MC10317L MC10318L.L9.CL6.CL7	and the contract of the contra	6-77

AD562

COMPLETE HIGH-SPEED 12-BIT MULTIPLYING D/A CONVERTER

The AD562 is a monolithic 12-bit resolution D/A converter. Active laser trimming of thin-film ladder network, span and bipolar offset resistors at wafer level provide linearity of better than $\pm 1/2$ LSB. An innovative bit switching scheme provides fast settling time yet enables selection of CMOS or TTL thresholds which are retained over a wide V_{CC} range from 4.5 to 16.5 volts. Internal precision span resistors allow output voltage options of 0 to 5.0 V, 0 to 10 V, ± 2.5 V, ± 5.0 V, and ± 10 V. The AD562 multiplies in two quadrants when varying the reference input voltage. 12-bit accuracy and fast settling time make this converter ideal for applications such as fast A/D converters, CRT display generation waveform synthesis, precision instruments, and data acquisition systems.

- True 12-Bit Linearity: ±1/2 LSB Max
- Fast Settling Time: ±1/2 LSB in 200 ns Typ
- Fully Monotonic Over Temperature Range
- Low Gain Drift: 3 ppm/°C Max
- True Binary Coded Inputs
- Selectable Digital Thresholds
- Internal Span Resistors for Generating Output Voltage
- Low Power Consumption: 210 mW

LASER TRIMMED HIGH-SPEED 12-BIT MULTIPLYING D/A CONVERTER

SILICON MONOLITHIC

ORDERING INFORMATION

ONDERING IN CHIMATION								
Device	Temperature Range	Accuracy @ 25°C						
AD562KD	0°C to +70°C	±1/2 LSB						
AD562AD	-25°C to +85°C	±1/2 LSB						
AD562SD	-55°C to +125°C	±1/4 LSB						

MAXIMUM RATING (TA = 25°C, Ratings are referred to Ground [Pin 12] unless otherwise noted.)

Rating		Symbol	Value	Unit
Power Supply Voltage		V _{CC} V _{EE}	+18 -18	Vdc
Digital Input Voltage (Pins 13 to 24)		VI	-5.0 to +18	Vdc
CMOS/TTL Threshold Select (Pin 2)			0 to V _{CC}	Vdc
V _{Ref} Hi In (Pin 5)		_	VEE to VCC	Vdc
V _{Ref} Lo In (Pin 3)			±1.0	Vdc
Applied Output Voltage (Pin 9)		V _O -7		Vdc
Bipolar Offset to Analog Ground (Pin 7 or 8)			V _{EE} to V _{CC}	Vdc
Ten Volt Span Resistor to Analog Ground (I	Pin 10)		V _{EE} to V _{CC} Vd	
Twenty Volt Span Resistor to Analog Groun	tor to Analog Ground (Pin 11)	_	V _{EE} to V _{CC}	Vdc
Power Dissipation		P _D	1000	- mW
Operating Temperature Range	AD562KD AD562AD AD562SD	TA	0 to +70 -25 to +85 -55 to +125	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C
Junction Temperature		TJ	+175	°C

TERMINOLOGY

Nonlinearity (Relative Accuracy) — Maximum output deviation from ideal straight line connecting zero and full-scale readings, expressed as a fraction of LSB or percent of full scale.

Differential Nonlinearity — Maximum deviation in the readings of any two adjacent input bit codes from the ideal LSB step, expressed in fractions of LSB or percentage of full scale. A differential nonlinearity value greater than 1 LSB may lead to nonmonotonic operation.

Monotonicity — For every increase in the input digital word, the output current either remains the same or increases.

The complete AD562 Series is guaranteed to be monotonic over temperature.

Settling Time — The elapsed time from the input transition until the output has settled within an error band about its final value.

The worst case switching condition occurs when all bits are switched "on", which corresponds to a low-to-high transition for all bits. This time is typically 200 ns for the output to settle to within $\pm 1/2$ LSB for 12-bit accuracy. The turn-off time is typically 120 ns. These times apply when the output swing is limited to a small (<0.5 V) swing and the external output capacitance is under 10 pF.

Gain Error — The difference between the actual full scale range (difference in output between all bits on, and all bits off) and the ideal full scale range. Based on a 0 to 10 V output configuration, the ideal FSR is $\frac{4095}{4096} \times 10 = 9.99756 \text{ V}.$

Gain error is expressed in percentage of full scale (FS).

Unipolar Offset Error — Using the configuration shown in Figure 1, with R1 = 50 ohms and with all bits off, the output voltage reading compared to zero is expressed as a percentage of the full scale range. Offset voltage of the output op amp must be nulled.

Bipolar Offset Error — Using the configuration shown in Figure 2, with R2 = 50 ohms with all bits off, the output voltage reading compared to the ideal negative full scale value is expressed as a percentage of the full scale range. Offset voltage of the output op amp must be nulled.

Bipolar Zero Error — Using the configuration shown in Figure 2, with R1 = R2 = $50~\Omega$, with the MSB on and all other bits off, the output voltage reading compared to zero is expressed as a percentage of the full-scale range. Offset voltage of the output op amp must be nulled.

Temperature Coefficients — (Unipolar Offset, Bipolar Offset, Gain and Differential Nonlinearity). The maximum deviation of the particular parameter over the specified temperature range, divided by the temperature range, expressed in parts per million of Full Scale Range per degree C.

Compliance Voltage Range — The output terminal voltage range which will provide specified output resistance and current characteristics. The compliance voltage is specified with V_{EE} =-15. The compliance voltage range follows as V_{EE} is varied.

Power Supply Sensitivity — The change in full scale current caused by a change in VEE or VCC expressed in ppm of full scale current per percent change in VEE or VCC.

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, V_{Ref} = 10 V, Pin 2 open, T_A = 25°C unless otherwise noted.)

Characteristic							
Characteristic	Symbol	Min	Тур	Max	Unit		
TTL Digital Logic Levels (All Bits) $ (4.5 \ V \leqslant V_{CC} \leqslant 16.5 \ V, T_{low} \ to \ T_{high}, see \ Note \ 1) $ Bit On, Logic "1" Bit Off, Logic "0"	V _{IH} V _{IL}	2.0 —	_ _	 0.8	V		
CMOS Digital Logic Levels (All Pins) (4.5 V \leq V _{CC} \leq 16.5 V, T _{low} to T _{high} , see Note 1, Pin 2 tied to Pin 1) Bit On, Logic "1"	V _{IH}	70% V _{CC}			٧		
Bit Off, Logic "0"	VIL			30% V _{CC}			
Digital Input Current, CMOS/TTL Levels — Bit On, Logic "1"	ΊΗ	_	+0.02	+0.1	μА		
(T _{low} to T _{high} , see Note 1) Bit On, Logic "1" Bit Off, Logic "0"	lih lit	_	 -2.0	+1.0 -75			
Programmable Output Range (See Figures 1 and 2)	<u> </u>		0 to +5.0 -2.5 to +2.5 0 to +10 -5.0 to +5.0 -10 to +10	_ _ _ _	V		
Output Current Unipolar (All Bits On) Bipolar (All Bits On or Off)	I _O	-1.6 ±0.8	-2.0 ±1.0	-2.4 ±1.2	mA		
Output Resistance (Exclusive of Span Resistors)	RO	1.0	5.0	_	MΩ		
Output Capacitance	co	-	25		pF		
Output Compliance Voltage Range (T _{low} to T _{high} ; see Note 1)	voc	-5.0		+10	V		
Nonlinearity AD562KD/AD562AD	NL	_	±1/4	±1/2	LSB		
AD562SD		_	(0.006) ±1/8	(0.012) ±1/4	% of FS LSB		
			(0.003)	(0.006)	% of FS		
Differential Nonlinearity	_	_		±1/2	LSB		
Differential Nonlinearity (T _{low} to T _{high} , see Note 1)	Monotonicity Guaranteed						
Gain Error — Figure 1, R1 = Fixed 50 Ω	_	_	±0.05	±0.15	% of FS		
Offset Error Unipolar — Figure 1 Bipolar — Figure 2, R2 = Fixed 50 \(\Omega \)	_	_	±0.01 ±0.05	±0.05 ±0.15	% of FS		
Bipolar Zero Error — Figure 2, R1 = R2 = Fixed 50 Ω	_	_	±0.05	±0.15	% of FS		
Gain Adjustment Range — Figure 1		±0.20	±0.25	_	% of FS		
Bipolar Offset Adjustment Range — Figure 2	_	±0.20	±0.25	_	% of FS		
Temperature Coefficients (T _{low} to T _{high} , see Note 1) Unipolar Zero — AD562KD/AD562AD AD562SD Bipolar Zero — All Devices Gain — All Devices		_ _ _ _	- - - -	1.0 2.0 4.0 3.0	ppm/°C		
Differential Nonlinearity — All Devices Settling Time to 1/2 LSB All Bits On-to-Off or Off-to-On	ts		0.2	1.0	μS		
Reference Input Impedance	z _{in}	15	20	25	kΩ		
Power Supply Current (V _{CC} +4.5 to +16.5 Vdc) (V _{EE} -10.8 to -16.5 Vdc)	I _{CC}	_	6.0 -8.0	10 -12	^k mA		
Power Supply Gain Sensitivity (Vcc +4.5 to 5.5 Vdc) (Vcc +13.5 to +16.5 Vdc) (VcE -10.8 to -16.5 Vdc) Note 1: T _{low} = -55°C for AD562SD Thigh = +125°C for A	PSSI _{FS+} PSSI _{FS+} PSSI _{FS-}	_ _ _		2.0 2.0 6.0	ppm of FS/%		

Note 1: $T_{low} = -55$ °C for AD562SD -25°C for AD562AD

T_{high} = +125°C for AD562SD +85°C for AD562AD +70°C for AD562KD

0°C for AD562KD

FIGURE 1 — AD562 IN TYPICAL UNIPOLAR CONNECTION SCHEME

UNIPOLAR DAC OPERATION

A typical circuit configuration for unipolar operation of AD562 is shown in Figure 1.

Step 1 — Output Range

Determine which output range is required. For +5.0 Volt full scale (FS) range, connect Pin 10 to output of external operational amplifier output and short Pin 9 to Pin 11. For +10 Volt FS range, connect Pin 10 to external operational amplifier output, Pin 11 remains unconnected.

Step 2 - Zero Adjust

Turn all bits OFF and adjust R2 until external operational amplifier output is 0 Volts.

Step 3 — Gain Adjust

Turn all bits ON. Adjust R1 until operational amplifier output reaches 4.9988 Volts for +5.0 Volt range or 9.9976 for +10 Volt range.

FIGURE 2 - AD562 IN TYPICAL BIPOLAR CONNECTION SCHEME

BIPOLAR DAC OPERATION

A typical circuit configuration for bipolar operation of AD562 is shown in Figure 2.

Step 1 — Output Range

Determine which output range is required. For ± 2.5 Volt full scale (FS) range, connect Pin 10 to output of external operational amplifier and short Pin 9 to Pin 11. For ± 5.0 Volt FS range, connect Pin 10 to output of external operational amplifier, Pin 11 remains unconnected. For ± 10 Volt FS range, connect Pin 11 to output of external operational amplifier, Pin 10 remains unconnected.

Step 2 - Offset Adjust

Turn all bits OFF and adjust R2 until operational amplifier output is:

- -2.5000 Volt for ±2.5 Volt range
- -5.0000 Volt for ±5.0 Volt range
- -10.0000 Volt for ± 10 Volt range

Step 3 — Gain Adjust (Bipolar Zero)

Turn MSB ON and all other bits OFF. Adjust R1 until operational amplifier output is 0 Volts.

NOTES:

- 1. For TTL and DTL compatibility, leave Pin 2 open.
- 2. For high voltage CMOS compatibility, short Pin 2 to Pin 1.
- 3. Supplies should be bypassed with 0.1 μ F capacitors.
- In unipolar operation, R_X should be made equal to the internal feedback resistor. In bipolar, R_X, equals the feedback resistor in parallel with 10 k.

AD563

COMPLETE 12-BIT HIGH-SPEED MONOLITHIC D/A CONVERTER

The AD563 is a monolithic 12-bit resolution D/A converter. It contains a high stability bandgap reference capable of supplying 5.0 mA trimmed to $\pm 1.0\%$ maximum error. Active laser trimming of thin-film ladder network, span, bipolar offset, and bandgap resistors at wafer level provide accuracy and linearity of better than $\pm 1/2$ LSS. An innovative bit switching scheme provides fast settling time yet enables selection of CMOS or TTL thresholds which are retained over a wide VCC range from 4.5 to 16.5 volts. Precision internal span resistors allow output voltage options of 0 to 5.0 V, 0 to 10 V, ± 2.5 V, ± 5.0 V, and ± 10 V. 12-bit accuracy and a fast settling time of typically 200 ns (to $\pm 1/2$ LSB) make this converter ideal for applications such as a fast A/D building block or display driver.

- True 12-Bit Linearity: ±1/2 LSB Max
- Fast Settling Time: ±1/2 LSB in 200 ns Tvp
- Fully Monotonic Over Temperature Range
- High-Stability Bandgap Voltage Reference On Chip
- True Binary Coded Inputs
- Selectable Digital Thresholds
- Internal Span Resistors for Generating Output Voltage
- Low Power Consumption: 210 mW
- Low Cost Monolithic Design

BLOCK DIAGRAM Reference CMOS/TTL Supply Threshold $24^{\,23} 22^{\,21} 20^{\,19} \, 18^{\,17} 16^{\,15} \, 14^{\,13}$ MSBP P P P LSBQ 8 2.49 DAC Out Reference 9 2.5 Volt Out Current Switches 4 0 Reference 10 V Span -0 10 ڏِٰٰ ڏِٰٰ 11 Reference -0 20 ∨ 60 Span 4.99 k Reference R2R Ladder Ground 5 O 5.0 k and 612 70VEE

LASER TRIMMED HIGH-SPEED 12-BIT D/A CONVERTER

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION

Device	Temperature Range	Accuracy @ 25°C	Gain TC (ppm of FS/°C)
AD563JD	0°C to +70°C	±1/2 LSB	30
AD563KD	0°C to +70°C	±1/4 LSB	20
AD563SD	-55°C to +125°C	±1/4 LSB	30
AD563TD	-55°C to +125°C	±1/4 LSB	10

MAXIMUM RATING (TA = 25°C, Ratings are referred to Ground [Pin 12] unless otherwise noted.)

Ratir	g	Symbol	Value	Unit
Power Supply Voltage		V _{CC} V _{EE}	+18 -18	Vdc
Reference Ground (Pin 5)		V _{AD}	±1.0	Vdc
Applied Output Voltage (Pin 9)		v _o	-7.0 to +12	Vdc
CMOS/TTL Threshold Select (Pin 2)		_	0 to V _{CC}	Vdc
Digital Input Voltage (Pins 13 to 24)	3 to 24) V _I -5.0 to +18			
Reference Input to Reference Ground		V _{RI}	±12	Vdc
Reference Current		lREF	Short circuit to either Gnd; momentary short circuit to VCC	
Bipolar Offset to Reference Ground		_	±12	Vdc
Ten Volt Span Resistor to Reference G	round	_	±12	Vdc
Twenty Volt Span Resistor to Reference	e Ground	_	±24	Vdc
Power Dissipation		PD	1000	mW
Operating Temperature Range	AD563JD/AD563KD AD563SD/AD563TD	TA	0 to +70 -55 to +125	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C
Junction Temperature		TJ	+175	°C

TERMINOLOGY

Nonlinearity (Relative Accuracy) — Maximum output deviation from ideal straight line connecting zero and full-scale readings, expressed as a fraction of LSB or percent of full scale.

Differential Nonlinearity — Maximum deviation in the readings of any two adjacent input bit codes from the ideal LSB step, expressed in fractions of LSB or percentage of full scale. A differential nonlinearity value greater than 1 LSB may lead to nonmonotonic operation.

Monotonicity — For every increase in the input digital word, the output current either remains the same or increases.

The AD563 is guaranteed to be monotonic over temperature.

Settling Time — The elapsed time from the input transition until the output has settled within an error band about its final value.

The worst case switching condition occurs when all bits are switched "on", which corresponds to a low-to-high transition for all bits. This time is typically 200 ns for the output to settle to within $\pm 1/2$ LSB for 12-bit accuracy. The turn-off time is typically 120 ns. These times apply when the output swing is limited to a small (<0.5 V) swing and the external output capacitance is under 10 pF.

Gain Error — The difference between the actual full scale range (difference in output between all bits on, and all bits off) and the ideal full scale range. Based on a 0 to 10 V output configuration, the ideal FSR is $\frac{4095}{1000} \times 10 = 9.99756 \text{ V}.$

Gain error is expressed in percentage of full scale (FS).

Unipolar Offset Error — Using the configuration shown in Figure 1, with R1 = 10 ohms and with all bits off, the output voltage reading compared to zero is expressed as a percentage of the full scale range. Offset voltage of the output op amp must be nulled.

Bipolar Offset Error — Using the configuration shown in Figure 2, with R2 = 10 ohms with all bits off, the output voltage reading compared to the ideal negative full scale value is expressed as a percentage of the full scale range. Offset voltage of the output op amp must be nulled.

Bipolar Zero Error — Using the configuration shown in Figure 2, with R1 = R2 = $10~\Omega$, with the MSB on and all other bits off, the output voltage reading compared to zero is expressed as a percentage of the full-scale range. Offset voltage of the output op amp must be nulled.

Temperature Coefficients — (Unipolar Offset, Bipolar Offset, Gain and Differential Nonlinearity). The maximum deviation of the particular parameter over the specified temperature range, divided by the temperature range, expressed in parts per million of Full Scale Range per degree C.

Compliance Voltage Range — The output terminal voltage range which will provide specified output resistance and current characteristics. The compliance voltage is specified with V_{EE} =-15. The compliance voltage range follows as V_{EE} is varied.

Power Supply Sensitivity — The change in full scale current caused by a change in V_{EE} or V_{CC} expressed in ppm of full scale current per percent change in V_{EE} or V_{CC} .

 $\textbf{ELECTRICAL CHARACTERISTICS} \ \, (\text{V}_{CC} = +5.0 \text{ V}, \text{V}_{EE} = -15 \text{ V}, \text{Pin 2 open, T}_{A} = 25 ^{\circ}\text{C}, \text{ all tests performed using internal reference, unless otherwise noted.})$

using internal refe					
Characteristic	Symbol	Min	Тур	Max	Unit
TTL Digital Logic Levels (All Bits)		1			V
(4.5 V ≤ V _{CC} ≤ 16.5 V, T _{low} to T _{high} , see Note 1) Bit On, Logic "1"	VIH	2.0			
Bit Off, Logic "O"	VIE		_	0.8	
CMOS Digital Logic Levels (All Pins)					V
(4.5 V \leq V _{CC} \leq 16.5 V, T _{low} to T _{high} , see Note 1, Pin 2 tied to Pin 1)	1				
Bit On, Logic "1"	VIH	70% V _{CC}	_	_	
Bit Off, Logic "O"	VIL		-	30% V _{CC}	
Digital Input Current, CMOS/TTL Levels — Bit On, Logic "1"	1 чн		+0.02	+0.1	μΑ
(T _{low} to T _{high} , see Note 1)					
Bit On, Logic "1" Bit Off, Logic "0"	liH	-	-2.0	+1.0 -75	
Programmable Output Range	l _{IL}		0 to +5.0	-/3	V
(See Figures 1 and 2)			-2.5 to +2.5		V
(555) (555) (555)		_ '	0 to +10	_	
		_	-5.0 to +5.0	-	
		_	-10 to +10		
Output Current	10	-1.6	1 ,,	,,	mA
Unipolar (All Bits On) Bipolar (All Bits On or Off)	1	-1.6 ±0.8	-2.0 ±1.0	-2.4 ±1.2	
Output Resistance	RO	1.0	5.0		ΜΩ
(Exclusive of Span Resistors)	"0	1.0	3.0	_	10177
Output Capacitance	СО	_	25	_	pF
Output Compliance Voltage Range (T _{low} to T _{high} , see Note 1)	Voc	-5.0	_	+10	V
Nonlinearity AD563KD/AD563SD/AD563TD	NL	_		±1/4	LSB
,	ŀ	_	_	(0.006)	% of FS
AD563JD		_	_	±1/2	LSB
D.W.				(0.012)	% of FS
Differential Nonlinearity				±1/2	LSB
Differential Nonlinearity (Tlow to Thigh, see Note 1)		IV	Ionotonicity Guar	anteed	
Gain Error — Figure 1, R1 = Fixed 10 Ω			±0.1	Г 1	% of FS
Offset Error			±0.1		% of FS
Unipolar — Figure 1		_	±0.01	±0.05	76 UI F3
Bipolar — Figure 2, R2 = Fixed 10 Ω		_	±0.1	_	
Bipolar Zero Error — Figure 2, R1 = R2 = Fixed 10 Ω	_		±0.1	_	% of FS
Gain Adjustment Range — Figure 1	_		±0.2		% of FS
Bipolar Offset Adjustment Range — Figure 2			±0.2	_	% of FS
Unipolar Zero Temperature Coefficient			1.0	2.0	ppm/°C
(T _{low} to T _{high} , see Note 1)					pp 5
Bipolar Zero Temperature Coefficient	. –	_	5.0	10	ppm/°C
(T _{low} to T _{high} , see Note 1)					
Gain Temperature Coefficient, Full Scale	-				ppm/°C
(T _{low} to T _{high} , see Note 1) AD563TD				. 10	
AD5631D AD563KD	1		_	20	
AD563JD/AD563SD		-	_	30	
Differential Nonlinearity Temperature Coefficient (Tlow to Thigh, see Note 1)			1.0	_	ppm/°C
Settling Time to 1/2 LSB All Bits On-to-Off or Off-to-On	t _s	-	0.2	1.2	μS
Reference Input Impedance	Z _{in}		5 k		kΩ
Reference Output Voltage	VRO	2.475	2.500	2.525	Volts
Reference Output Current		5.0	2.500	2.025	
·	IRO	5.0			mA
Power Supply Current (V _{CC} +4.5 to +16.5 Vdc)	l cc	_	6.0	10	mA
(V _{EE} -10.8 to -16.5 Vdc)	IEE	_	-8.0	-12	
Power Supply Gain Sensitivity	† <u></u> -			·	ppm of FS/%
(V _{CC} +4.5 to +5.5 Vdc)	PSSIFS+		2.0	10	pp 5. 1 6/ /6
(V _{CC} +13.5 to +16.5 Vdc)	PSSIFS+		2.0	10	
(V _{EE} -10.8 to -16.5 Vdc)	PSSIFS-		10	25	

Note 1: T_{low} = -55°C for AD563SD/AD563TD 0°C for AD563JD/AD563KD T_{high} = +125°C for AD563SD/AD563TD +70°C for AD563JD/AD563KD

+5.0 V/+15 V CMOS/TTL
Threshold 24 23 22 21 20 19 18 17 16 15 14 13 MSB 5.0 k 2.5 V 10 Logic Switches & Level Shifters Gain Adjust 5.0 k R1 20 Ω 15T 4.99 k 2.49 k + 15 V ⋛Rχ 5.0 k R2 Offset 20 k Adjust зм 12 – 15 V - 15 V

FIGURE 1 — AD563 IN TYPICAL UNIPOLAR CONNECTION SCHEME

UNIPOLAR DAC OPERATION

A typical circuit configuration for unipolar operation of AD563 is shown in Figure 1.

Step 1 — Output Range

Determine which output range is required. For +5.0 Volt full scale (FS) range, connect Pin 10 to output of external operational amplifier output and short Pin 9 to Pin 11. For +10 Volt FS range, connect Pin 10 to external operational amplifier output, Pin 11 remains unconnected.

Step 2 — Zero Adjust

. Turn all bits OFF and adjust R2 until external operational amplifier output is 0 Volts.

Step 3 — Gain Adjust

Turn all bits ON. Adjust R1 until operational amplifier output reaches 4.9988 Volts for +5.0 Volt range or 9.9976 for +10 Volt range.

FIGURE 2 - AD563 IN TYPICAL BIPOLAR CONNECTION SCHEME

BIPOLAR DAC OPERATION

A typical circuit configuration for bipolar operation of AD563 is shown in Figure 2.

Step 1 — Output Range

Determine which output range is required. For ± 2.5 Volt full scale (FS) range, connect Pin 10 to output of external operational amplifier and short Pin 9 to Pin 11. For ±5.0 Volt FS range, connect Pin 10 to output of external operational amplifier, Pin 11 remains unconnected. For ± 10 Volt FS range, connect Pin 11 to output of external operational amplifier, Pin 10 remains unconnected.

Step 2 — Offset Adjust

Turn all bits OFF and adjust R2 until operational amplifier output is:

- -2.5000 Volt for ±2.5 Volt range
- -5.0000 Volt for ± 5.0 Volt range
- -10.0000 Volt for ±10 Volt range

Step 3 — Gain Adjust (Bipolar Zero)

Turn MSB ON and all other bits OFF. Adjust R1 until operational amplifier output is 0 Volts.

NOTES:

- 1. For TTL and DTL compatibility, leave Pin 2 open.
- 2. For CMOS compatibility, short Pin 2 to Pin 1.
- 3. Supplies should be bypassed with 0.1 μ F capacitors.
- 4. In unipolar operation, R_X should be made equal to the internal feedback resistor. In bipolar, Rx, equals the feedback resistor in parallel with 2.5 k.

Specifications and Applications Information

HIGH SPEED 8-BIT MULTIPLYING D-TO-A CONVERTER

The DAC-08 series is a monolithic 8-bit high speed multiplying digital-toanalog converter, capable of settling to within 1/2 LSB (0.19%) in 85 ns. Monotonic multiplying performance is retained over a wide 40-to-1 reference current range. Full scale and reference currents are matched to within 1 LSB, therefore eliminating the need for full scale trim in most applications.

Dual complementry current outputs with high voltage compliance provide added versatility and allow differential mode of operation to effectively double the peak-to-peak output swing. In many applications, output current-to-voltage conversion can be accomplished without requiring an external op amp. Noise-immune inputs permit direct interface with TTL and DTL levels when the logic threshold control, $V_{\rm LC}$, (pin 1) is grounded. All other logic family thresholds are attainable by adjusting the voltage level of pin 1. Performance characteristics are virtually unchanged over the entire ± 4.5 V to ± 18 V power supply range. Power consumption is typically 33 mW with ± 5.0 V supplies.

The DAC-08 is available in several versions, with nonlinearity as tight as $\pm\,0.1\%$ ($\pm\,1/4$ LSB) over temperature. All versions are guaranteed monotonic over 8 bits. For an extra margin of performance, Motorola utilizes thin-film resistors permitting very accurate resistive values which are extremely stable over temperature.

High performance characteristics along with low cost, make the DAC-08 an excellent selection for applications such as CRT displays, waveform generation, high-speed modems, and high-speed analog-to-digital converters.

- Fast Settling Time 85 ns
- Full Scale Current Prematched to ±1 LSB
- Nonlinearity Over Temperature to ±0.1% Max
- · Differential Current Outputs
- High Voltage Compliance Outputs −10 V to +18 V
- Wide Range Multiplying Capability
- Inputs Compatable With TTL, DTL, CMOS, PMOS, ECL, HTL
- Low Full Scale Current Drift
- Wide Power Supply Range ± 4.5 V to ± 18 V
- Low Power Consumption
- Thin-Film Resistors
- Low Cost

DAC-08

HIGH SPEED 8-BIT MULTIPLYING D-TO-A CONVERTER

SILICON MONOLITHIC INTEGRATED CIRCUIT

Q SUFFIX CERAMIC PACKAGE CASE 620-02

P SUFFIX PLASTIC PACKAGE CASE 648-05

PINOUT DIAGRAM Threshold Compen-sation Control (VLC) 15 VREF(-) out VREF(+) V-13 V+ lout B1 5 12 B8 (LSB) B2 11 B7 10 B6 вз В4 9 B5

Device							
DAC-08AQ	±0.1%	-55°C to +125°C	Ceramic				
DAC-08Q	±0.19%	-55°C to +125°C	Ceramic				
DAC-08HQ	±0.1%	0°C to +70°C	Ceramic				
DAC-08EQ	±0.19%	0°C to +70°C	Ceramic				
DAC-08CQ	±0.39%	0°C to +70°C	Ceramic				
DAC-08HP	±0.1%	0°C to +70°C	Plastic				
DAC-08EP	±0.19%	0°C to +70°C	Plastic				
DAC-08CP	±0.39%	0°C to +70°C	Plastic				

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
V+ Supply to V-Supply		36	V
Logic Inputs	T -	V- to V- Plus 36	V
Logic Threshold Control	VLC	V- to V+	V
Analog Current Outputs	lout	See Figure 7	·mA
Reference Inputs (V14, V15)	VREF	V- to V+	V
Reference Input Differential Voltage (V14 to V15)	V _{REF(D)}	±18	٧
Reference Input Current (I14)	IREF	5.0	mA
Operating Temperature Range DAC-08AQ, Q DAC-08HQ, EQ, CQ, HP, EP, CP	TA	-55 to +125 0 to +70	°C
Storage Temperature	TA	-65 to +150	°C
Power Dissipation Derate above 100°C	P _D R _θ JA	500 10	mW mW/°C

ELECTRICAL CHARACTERISTICS (V_S = ±15 V, I_{REF} = 2.0 mA, T_A = -55°C to +125°C, unless otherwise noted.)

			DAC-08/		1	DAC-08		1
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Resolution		8	8	8	8	8	8	Bits
Monotonicity		8	8	8	8	8	8	Bits
Nonlinearity, T _A = 0°C to +70°C	NL	_	_	±0.1	_	_	±0.19	%FS
Settling Time to $\pm 1/2$ LSB, Figure 24 (All Bits Switched On or Off, $T_A = 25^{\circ}C$)	t _S	_	85	135	_	85	150	ns
Propagation Delay, T _A = 25°C Each Bit All Bits Switched	^t PLH ^t PHL	_	35 35	60 60	_	35 35	60 60	ns
Full Scale Tempco	TCIFS	_	±10	±50		±10	±80	ppm/°C
Output Voltage Compliance Full Scale Current Change < 1/2 LSB, R _{out} > 20 megohm typ.	Voc	-10	_	+18	-10	_	+18	V
Full Range Current (VREF = 10.000 V; R14, R15 = 5.000 kΩ, T _A = 25°C)	IFR4	1.984	1.992	2.000	1.94	1.99	2.04	mA
Full Range Symmetry (IFR4 - IFR2)	IFRS	_	±0.5	±4.0	_	±1.0	±8.0	μΑ
Zero Scale Current	Izs	_	0.1	1.0	_	0.2	2.0	μΑ
Output Current Range V- = -5.0 V V- = -8.0 V to -18 V	IOR1 IOR2	0	_	2.1 4.2	0	_	2.1 4.2	mA
Logic Input Levels (V _{LC} = 0 V) Logic "0" Logic "1"	V _{IL} VIH	2.0	_	0.8	 2.0		0.8	V
Logic Input Current (V _{LC} = 0 V) Logic Input "O" (V _{in} = -10 V to +0.8 V) Logic Input "1" (V _{in} = +2.0 V to +18 V)	lıL lın	_	-2.0 0.002	-10 10	_	-2.0 0.002	-10 10	μΑ
Logic Input Swing, V- = -15 V	VIS	-10	_	+18	-10	_	+18	V
Logic Threshold Range, V _S = ±15 V	VTHR	-10	_	+13.5	-10	_	+13.5	V
Reference Bias Current	¹ 15	_	-1.0	-3.0	_	-1.0	-3.0	μΑ
Reference Input Slew Rate Figure 19	di/dt	4.0	8.0		4.0	8.0	_	mA/μs
Power Supply Sensitivity (I _{REF} = 1.0 mA) V+ = 4.5 V to 18 V V- = -4.5 V to -18 V	PSSIFS+ PSSIFS-	=	±0.0003 ±0.002	±0.01 ±0.01	=	±0.0003 ±0.002	±0.01 ±0.01	%/%
Power Supply Current V _S = ±5.0 V, I _{REF} = 1.0 mA V _S = +5.0 V, -15 V, I _{RFF} = 2.0 mA	+ - +	=	2.3 -4.3 2.4	3.8 -5.8 3.8	_	2.3 -4.3 2.4	3.8 -5.8 3.8	mA
V _S = .±15 V, I _{REF} = 2.0 mA	- + -	_	-6.4 2.5 -6.5	-7.8 3.8 -7.8	<u>-</u>	-6.4 2.5 -6.5	-7.8 3.8 -7.8	
Power Dissipation $V_S = \pm 5.0 \text{ V, } I_{REF} = 1.0 \text{ mA}$ $V_S = \pm 5.0 \text{ V, } -15 \text{ V, } I_{REF} = 2.0 \text{ mA}$ $V_S = \pm 15 \text{ V, } I_{REF} = 2.0 \text{ mA}$	PD	=	33 103 135	48 136 174	_	33 108 135	48 136 174	mW

ELECTRICAL CHARACTERISTICS ($V_S = \pm 15 \text{ V}$, $I_{RFF} = 2.0 \text{ mA}$, $T_{\Delta} = 0^{\circ}\text{C}$ to 70°C , unless otherwise noted.)

ELECTRICAL CHARACTERISTICS (V			DAC-08H			DAC-08E			DAC-080	;	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Resolution	_	. 8	8	8	8	8	8	8	8	8	Bits
Monotonicity	_	8	8	8	8	8	8	8	8	8	Bits
Nonlinearity, T _A = 0°C to +70°C	NL	_	_	± 0.1			± 0.19		_	±0.39	%FS
Settling Time to ±1/2 LSB (All Bits Switched On or Off, (TA = 25°C) Figure 24	t _s	_	85	135	_	85	150		85	150	ns
Propagation Delay, T _A = 25°C Each Bit All Bits Switched	^t PLH ^t PHL	_	35 35	60 60	_	35 35	60 60	_	35 35	60 60	ns
Full Scale Tempco	TCIFS		± 10	±50	_	±10	± 50	_	±10	±80	ppm/°C
Output Voltage Compliance Full Scale Current Change < 1/2 LSB, R _{Out} > 20 megohm typ.	Voc	-10	_	+18	-10		+18	-10	-	+18	٧
Full Range Current (VREF = 10.000 V; R14, R15 = 5.000 k Ω) TA = 25°C	IFR4	1.984	1.992	2.000	1.94	1.99	2.04	1.94	1.99	2.04	mA
Full Range Symmetry (IFR4 - IFR2)	IFRS	_	±0.5	±4.0	_	±1.0	±8.0	_	± 2.0	± 16.0	μΑ
Zero Scale Current	^l zs	_	0.1	1.0	_	0.2	2.0	_	0.2	4.0	μΑ
Output Current Range V- = -5.0 V V- = -8.0 V to -18 V	IOR1	0	_	2.1 4.2	0	_	2.1 4.2	0	_	2.1 4.2	mA
Logic Input Levels (V _{LC} = 0 V) Logic "0" Logic "1"	V _{IL} VIH	 2.0	_	0.8	2.0	_	0.8	 2.0	_	0.8	V
Logic Input Current (V _{LC} = 0 V) Logic Input "0" (Vin = -10 V to +0.8 V) Logic Input "1" (Vin = +2.0 V to +18 V)	hг hн	_	-2.0 0.002	- 10 10	_	-2.0 0.002	- 10 10	_	- 2.0 0.002	- 10 10	μΑ
Logic Input Swing, V- = -15 V	V _{IS}	- 10		+ 18	- 10		+ 18	- 10	_	+ 18	V
Logic Threshold Range, V _S = ±15 V	VTHR	- 10		+ 13.5	- 10		+ 13.5	- 10	_	+ 13.5	v
Reference Bias Current	115		- 1.0	- 3.0	_	- 1.0	-3.0	_	- 1.0	- 3.0	μА
Reference Input Slew Rate Figure 19	dl/dt	4.0	8.0		4.0	8.0		4.0	8.0	-	mA/μs
Power Supply Sensitivity (IREF = 1.0 mA)	PSSI _{FS+} PSSI _{FS-}	_	± 0.0003 ± 0.002	± 0.01 ± 0.01	_	± 0.0003 ± 0.002	± 0.01 ± 0.01	_	± 0.0003 ± 0.002	±0.01 ±0.01	%/%
Power Supply Current $V_S = \pm 5.0 \text{ V, } I_{REF} = 1.0 \text{ mA}$ $V_S = +5.0 \text{ V, } -15 \text{ V, } I_{REF} = 2.0 \text{ mA}$	+ - + - -		2.3 -4.3 2.4 -6.4 2.5	3.8 -5.8 3.8 -7.8 3.8	_ _ _ _	2.3 -4.3 2.4 -6.4 2.5	3.8 - 25.8 3.8 - 7.8 3.8		2.3 -4.3 2.4 -6.4 2.5	3.8 -5.8 3.8 -7.8 3.8	mA
$\begin{array}{lll} V_{S} = \pm 15 \text{ V, } I_{REF} = 2.0 \text{ mA} \\ \\ \text{Power Dissipation} \\ V_{S} = \pm 5.0 \text{ V, } I_{REF} = 1.0 \text{ mA} \\ V_{S} = \pm 5.0 \text{ V, } -15 \text{ V, } I_{REF} = 2.0 \text{ mA} \\ V_{S} = \pm 15 \text{ V, } I_{REF} = 2.0 \text{ mA} \\ \end{array}$	I PD		-6.5 33 108 135	-7.8 48 136 174	<u> </u>	-6.5 33 108 135	-7.8 48 136 174		-6.5 33 108 135	-7.8 48 136 174	mW

TYPICAL PERFORMANCE CURVES

FIGURE 2 — REFERENCE AMP COMMON MODE RANGE

NOTE: Positive Common Mode Range is Always (V+) -1.5 V

FIGURE 3 — REFERENCE INPUT FREQUENCY RESPONSE

FIGURE 4 - LSB PROPAGATION DELAY versus IFS

Curve 1 — C_C = 15 pF, V_{in} = 2.0 V p-p Centered at +1.0 V (Large-Signal) Curve 2 — C_C = 15 pF, V_{in} = 50 mV p-p Centered at +200 mV (Small-Signal)

FIGURE 6 — V_{TH} - V_{LC} versus TEMPERATURE

TYPICAL PERFORMANCE CURVES

FIGURE 7 — OUTPUT CURRENT versus **OUTPUT VOLTAGE**

FIGURE 8 — OUTPUT VOLTAGE COMPLIANCE versus TEMPERATURE

FIGURE 9 — BIT TRANSFER CHARACTERISTICS

NOTE: B1-B8 have identical transfer characteristics. Bits are fully switched with less than 1/2 LSB error, at less than ±100 mV from actual threshold. These switching points are guaranteed to lie between 0.8 V and 2.0 V over operating temperature range (V_{LC} = 0 V).

FIGURE 11 — POWER SUPPLY CURRENT versus V-

FIGURE 12 — POWER SUPPLY CURRENT versus TEMPERATURE

BASIC CIRCUIT CONFIGURATIONS

FIGURE 13 — RECOMMENDED FULL SCALE ADJUSTMENT CIRCUIT

FIGURE 15 — NEGATIVE LOW IMPEDANCE OUTPUT OPERATION

FIGURE 17 — BASIC NEGATIVE REFERENCE OPERATION

FIGURE 14 — POSITIVE LOW IMPEDANCE OUTPUT OPERATION

FIGURE 16 — BASIC POSITIVE REFERENCE OPERATION

15 V CMOS, HTL, HNIL 10 V CMOS TTL, DTL $V_{TH} = 7.6 V$ V_{TH} = 5.0 V V_{TH} = +1.4 V Q+15 V Q +10 V ∮9.1 k DAC-08 \$ 6.2 k ⊸ v_{LC} --0 V_{LC} φ ν_{LC} 6.2 k ≷ < 0.1 μF 3.6 k ≷ 井 0.1 μF 5.0 V CMOS **PMOS** 10K ECL V_{TH} = 2.8 VV_{TH} = 0 V V_{TH} = -1.29 V DAC-08 1N4148 1.3 k V_{LC} 1N4148 2N3904 ⊸ v_{LC} 1N4148 1N4148 \$10 k -0 V_{LC} 3.9 k ≷ -5.0 V to -10 V -⊙ -5.2 V NOTE: Do not exceed negative logic input range of DAC. V_{TH} = V_{LC} + 1.4 V

FIGURE 23 - INTERFACING WITH VARIOUS LOGIC FAMILIES

FIGURE 24 — SETTLING TIME MEASUREMENT CIRCUIT

BASIC CIRCUIT CONFIGURATIONS

FIGURE 21 — BASIC BIPOLAR OUTPUT OPERATION

FIGURE 22 — OFFSET BINARY OPERATION

BASIC CIRCUIT CONFIGURATIONS

FIGURE 18 — ACCOMMODATING BIPOLAR REFERENCES

FIGURE 19 — PULSED REFERENCE OPERATION

FIGURE 20 — BASIC UNIPOLAR NEGATIVE OPERATION

MC1406L MC1506L

Specifications and Applications Information

SIX BIT. MULTIPLYING **DIGITAL-TO-ANALOG CONVERTER**

. . . designed for use where the output current is a linear product of a six-bit digital word and an analog input voltage.

- Digital Inputs are MDTL and MTTL Compatible
- Relative Accuracy ±0.78% Error maximum
- Low Power Dissipation − 85 mW typical @ ±5.0 V
- Adjustable Output Current Scaling
- Fast Settling Time 150 ns typical
- Standard Supply Voltage: +5.0 V and -5.0 V to -15 V

SIX BIT, MULTIPLYING **DIGITAL TO-ANALOG** CONVERTER

SILICON MONOLITHIC INTEGRATED CIRCUIT

TYPICAL APPLICATIONS

- Tracking A-to-D Converters
- Successive Approximation A-to-D Converters
- Digital-to-Analog Meter Readout
- Sample and Hold
- Peak Detector
- Programmable Gain and Attenuation
- Digital Varicap Tuning
- Video Systems

- · Stepping Motor Drive
- · CRT Character Generation
- Digital Addition and Subtraction
- Analog-Digital Multiplication
- Digital-Digital Multiplication
- Analog-Digital Division
- Programmable Power Supplies
- Speech Encoding

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating		Symbol	Value	Unit
Power Supply Voltage		V _{CC} V _{EE}	+5.5 -16.5	Vdc
Digital Input Voltage		V ₅ thru V ₁₀	+8.0, V _{EE}	Vdc
Applied Output Voltage		v _o	±5.0	Vdc
Reference Current		112	5.0	mA
Reference Amplifier Inputs		V ₁₂ , V ₁₃	V _{CC} , V _{EE}	Vdc
Power Dissipation (Package Limitation) Ceramic Package Derate above T _A = +25°C		P _D .	1000 6.7	mW mW/ ^O C
	MC1506L MC1406L	TA	-55 to +125 0 to +70	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 Vdc, V_{EE} = -15 Vdc, $\frac{V_{ref}}{R12}$ = 2.0 mA, all logic inputs in low logic state, T_A = T_{high} to T_{low} , unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Relative Accuracy (Error relative to full scale I _O)	10	Er	_	-	±0.78	%
Settling Time (within 1/2 LSB [includes t _d] T _A = +25°C)	9	tS	_	150	-	ns
Propagation Delay Time $T_A = +25^{\circ}C$	9	tPHL, tPLH	_	10	50	ns
Output Full Scale Current Drift		TCIO	_	80	-	PPM/OC
Digital Input Logic Levels High Level, Logic ''1'' Low Level, Logic ''0''	3,14	V _{IH} V _{IL}	2.4	_	_ 0.8	Vdc
Digital Input Current High Level, V _{IH} = 5.0 V Low Level, V _{IL} = 0.8 V	3,13	Ξ.Ξ.	_ _	0 -0.7	+0.01 -1.5	mA
Reference Input Bias Current (Pin 13)	3	113	-	-0.002	-0.01	mA
Output Current Range $V_{EE} = -5.0 \text{ V}$ $V_{EE} = -15 \text{ V}, T_{A} = +25^{\circ}\text{C}$	3	IOR	0	2.0 2.0	2.1 4,2	mA
Output Current $V_{ref} = 2.000 \text{ V}, R_{12} = 1.000 \text{ k}\Omega$	3	10	1.9	1.97	2.1	mA
Output Current (all bits high)	3	IO(min)	_	0	10	μΑ
Output Voltage Compliance ($E_r \le \pm 0.78\%$ at $T_A = +25^{\circ}C$)	3,4,5	V _{O+} V _{O-}	-	+0.25 -0.45	+0.1 -0.3	Vdc
Reference Current Slew Rate $(T_A = +25^{\circ}C)$	8,15	SR I _{ref}	_	2.0	-	mA/μs
Output Current Power Supply Sensitivity	10	PSRR(-)	_	0.002	0.010	mA/V
Power Supply Current A1 thru A6; V_{1L} = 0.8 V A1 thru A6; V_{1H} = 2.4 V	3,11,12	loc lee	_	+7.2 -9.0	+11 -11	mA
Power Dissipation (all bits high) VEE = -5.0 Vdc VEE = -15 Vdc		PD	-	85 175	120 240	mW

 $^{^*}T_{high} = +70^{O}C$ for MC1406L $T_{low} = 0^{O}C$ for MC1406L $= +125^{O}C$ for MC1506L $= -55^{O}C$ for MC1506L

MC1406L, MC1506L

The MC1506L consists of a reference current amplifier, an R-2R ladder, and six high-speed current switches. For many applications, only a reference resistor and a reference supply voltage need be added.

The switches are inverting in operation, therefore a low state at the input turns on the specified output current component. The switches use a current steering technique for high speed and a termination amplifier that consists of an active load gain stage with unity gain feedback. The termination amplifier holds the parasitic capacitance of the ladder at a constant voltage during switching and provides a low impedance termination of equal voltage for all legs of the ladder.

The R-2R ladder divides the reference amplifier current into binarily-related components which are fed to the switches. Note that there is always a remainder current that is equal to the least significant bit. This current is shunted to ground, and the maximum current is 63/64 of the reference amplifier current, or 1.969 mA for a 2.0 mA reference current if the NPN current source pair is perfectly matched.

TEST CIRCUITS AND TYPICAL CHARACTERISTICS

FIGURE 3 - NOTATION DEFINITIONS TEST CIRCUIT

FIGURE 4 - OUTPUT CURRENT versus OUTPUT VOLTAGE

FIGURE 5 - MAXIMUM OUTPUT VOLTAGE

FIGURE 6 - POSITIVE V_{ref}

FIGURE 7 - NEGATIVE V_{ref}

FIGURE 8 — REFERENCE CURRENT SLEW RATE MEASUREMENT TEST CIRCUIT

TEST CIRCUITS and TYPICAL CHARACTERISTICS (continued)

FIGURE 9 -- TRANSIENT RESPONSE

FIGURE 10 - RELATIVE ACCURACY TEST CIRCUIT

MOTOROLA LINEAR/INTERFACE DEVICES

TYPICAL CHARACTERISTICS (continued)

FIGURE 13 - LOGIC INPUT CURRENT versus INPUT VOLTAGE

FIGURE 14 - MSB TRANSFER CHARACTERISTICS versus TEMPERATURE (MSB IS "WORST CASE")

FIGURE 15 - REFERENCE INPUT FREQUENCY RESPONSE

GENERAL INFORMATION

Output Current Range

The output current maximum rating of 4.2 mA may be used only for negative supply voltages below -6.0 volts, due to the increased voltage drop across the 400-ohm resistors in the reference current amplifier.

Output Voltage Compliance

The MC1506L current switches have been designed for high-speed operation and as a result have a restricted output voltage range, as shown in Figures 4 and 5. When a current switch is turned "off", the follower emitter is near ground and a positive voltage on the output terminal can turn "on" the output diode and increase the output current level. When a current switch is turned "on", the negative output voltage range is restricted. The base of the termination circuit Darlington amplifier is one diode voltage below ground; thus a negative voltage below the specified safe level will drive the low current device of the Darlington into saturation, decreasing the output current level.

For example, at $+25^{\circ}$ C the allowable voltage compliance on Pin 4 to maintain six-bit accuracy is +0.1 to -0.3 Volts. With a full scale output current of 2.0 mA, the maximum resistor value that can be connected from Pin 4 to ground is 150 ohms.

Accuracy

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current. The relative accuracy of the MC1506L is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current.

The best temperature performance is achieved with a -6.0 V supply and a reference voltage of -3.0 volts. These conditions match the voltage across the NPN current source pair in the reference amplifier at the lowest possible voltage, matching and optimizing the output impedance of the pair.

The MC1506L/MC1406L is guaranteed accurate to within $\pm 1/2$ LSB at $\pm 25^{\circ}$ C at a full scale output current of 1.969 mA. This corresponds to a reference amplifier output current drive to the ladder of 2.0 mA, with the loss of one LSB = 31 μ A that is the ladder remainder shunted to ground. The input current to Pin 12 has a guaranteed current range value of between 1.9 to 2.1 mA, allowing

GENERAL INFORMATION (continued)

some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 10. The 12-bit converter is calibrated for a full scale output current of 1.969 mA. This is an optional step since the MC1506L accuracy is essentially the same between 1.5 to 2.5 mA. Then the MC1506L full scale current is trimmed to the same value with R12 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 6-bit D-to-A converters may not be used to construct a 12-bit accurate D-to-A converter. 12-bit accuracy implies a total error of $\pm 1/2$ of one part in 4096, or $\pm 0.012\%$, which is more accurate than the $\pm 0.78\%$ specification provided by the MC1506L.

Multiplying Accuracy

The MC1506L may be used in the multiplying mode with six-bit accuracy when the reference current is varied over a range of 64:1. The major source of error is the bias current of the termination amplifier. Under "worst case" conditions these six amplifiers can contribute a total of 6.0 μA extra current at the output terminal. If the reference current in the multiplying mode ranges from 60 μA to 4.0 mA, the 6.0 μA contributes an error of 0.1 LSB. This is well within six-bit accuracy.

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the MC1506L is monotonic for all values of reference current above 0.5 mA. The recommended range for operation with a dc reference current is 0.5 to 4.0 mA.

Settling Time

The "worst case" switching condition occurs when all bits are switched "on", which corresponds to a high-to-low transition for all bits. This time is typically 150 ns to within $\pm 1/2$ LSB, while the turn "off" is typically under 50 ns.

The slowest single switch is the least significant bit, which turns "on" and settles in 50 ns and turns "off" in 30 ns. In applications where the D-to-A converter functions in a positive-going ramp mode, the "worst case" switching condition does not occur, and a settling time of less than 150 ns may be realized.

Reference Amplifier Drive and Compensation

The reference amplifier provides a voltage at Pin 12 for converting the reference voltage to a current, and a turn-

around circuit or current mirror for feeding the ladder. The reference amplifier input current, I12, must always flow into Pin 12 regardless of the setup method or reference voltage polarity.

Connections for a positive reference voltage are shown in Figure 6. The reference voltage source supplies the full current I12. Compensation is accomplished by Miller feedback from Pin 14 to Pin 13. This compensation method yields the best slew rate, typically better than 2.0 mA/ μ s, and is independent of the value of R12. R13 must be used to establish the proper impedance for compensation at Pin 13. For bipolar reference signals, as in the multiplying mode, R13 can be tied to a negative voltage corresponding to the minimum input level. Another method is shown in Figure 22.

It is possible to eliminate R13 with only a small sacrifice in accuracy and temperature drift. For instance when high-speed operation is not needed, a capacitor is connected from pin 14 to VEE. The capacitor value must be increased when R12 is made larger to maintain a proper phase margin. For R12 values of 1.0, 2.5, and 5.0 kilohms, minimum capacitor values are 50, 125, and 250 pF.

Connections for a negative reference voltage are shown in Figure 7. A high input impedance is the advantage of this method, but Miller feedback cannot be used because it feeds the input signal around the PNP directly into the high impedance node, causing slewing problems and high frequency peaking. Compensation involves a capacitor to VEE on Pin 14, using the values of the previous paragraph. The negative reference voltage must be at least 3.0 V above VEE. Bipolar input signals may be handled by connecting R12 to a positive reference voltage equal to the peak positive input level at Pin13.

When a dc reference voltage is used, capacitive bypass to ground is recommended. The 5.0 V logic supply is not recommended as a reference voltage. If a well regulated 5.0 V supply which drives logic is to be used as the reference, R12 should be decoupled by connecting it to +5.0 V through another resistor and bypassing the junction of the two resistors with 0.1 μ F to ground. For reference voltages greater than 5.0 V, a clamp diode is recommended between Pin 12 and ground.

If Pin 12 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, thus decreasing the overall bandwidth.

APPLICATIONS INFORMATION FIGURE 16 – OUTPUT CURRENT VOLTAGE CONVERSION

Voltage outputs of a larger magnitude are obtainable with this circuit which uses an external operational amplifier as a current to voltage converter. This configuration automatically keeps the output of the MC1506L at ground potential and the operational amplifier can generate a positive voltage limited only by its positive supply voltage. Frequency response and settling time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier must be compensated for unity gain, and in some cases overcompensation may be desirable.

Note that this configuration results in a positive output voltage only, the magnitude of which is dependent on the digital input.

The following circuit shows how the MLM301AG can be used in a feedforward mode resulting in a full scale settling time on the order of 2.0 μ s.

An alternative method is to use the MC1539G and input compensation. Response of this circuit is also on the order of 2.0 μ s. See Motorola Application Note AN-459 for more details on this concept.

FIGURE 18

The positive voltage range may be extended by cascoding the output with a high beta common base transistor, Q1, as shown.

The output voltage range for this circuit is 0 volts to BVCBO of the transistor. Variations in beta must be considered for wide temperature range applications. An inverted output waveform may be obtained by using a load resistor from a positive reference voltage to the collector of the transistor. Also, high-speed operation is possible with a large output voltage swing.

APPLICATIONS INFORMATION (continued)

Combined Output Amplifier and Voltage Reference

For many of its applications the MC1506L requires a reference voltage and an operational amplifier. Normally the operational amplifier is used as a current to voltage converter and its output need only go positive. With the popular MC1723G voltage regulator both of these functions are provided in a single package with the added bonus of up to 150 mA of output current, see Figure 19. Instead of powering the MC1723G from a single positive voltage supply, it uses a negative bias as well. Although the reference voltage of the MC1723G is then developed with respect to that negative voltage it appears as a commonmode signal to the reference amplifier in the D-to-A converter. This allows use of its output amplifier as a classic current-to-voltage converter with the non-inverting input grounded.

Since ±15 V and +5.0 V are normally available in a combination digital-to-analog system, only the -5.0 V need be developed. A resistor divider is sufficiently accurate since the allowable range on pin 5 is from -2.0 to -8.0 volts. The 5.0 kilohm pulldown resistor on the amplifier output is necessary for fast negative transitions.

Full scale output may be increased to as much as 32 volts by increasing RO and raising the +15 V supply voltage to 35 V maximum. The resistor divider should be altered to comply with the maximum limit of 40 volts across the MC1723G. CO may be decreased to maintain the same ROCO product if maximum speed is desired.

Programmable Power Supply

The circuit of Figure 19 can be used as a digitally programmed power supply by the addition of thumbwheel switches and a BCD-to-binary converter. The output voltage can be scaled in several ways, including 0 to +6.3 volts in 0.1-volt increments, ±0.05 volt; or 0 to 31.5 volts in 0.5-volt increments, ±0.25 volt.

FIGURE 19 – COMBINED OUTPUT AMPLIFIER and VOLTAGE REFERENCE CIRCUIT

Bipolar or Negative Output Voltage

The circuit of Figure 20 is a variation from the standard voltage output circuit and will produce bipolar output signals. A positive current may be sourced into the summing node to offset the output voltage in the negative direction. For example, if approximately 1.0 mA is used a bipolar output signal results which may be described as a 6-bit "1's" complement offset binary. V_{ref} may be used as this auxiliary reference. Note that RO has been doubled to 10 kilohms because of the anticipated 20 V (p-p) output range.

FIGURE 20 — BIPOLAR OR NEGATIVE OUTPUT VOLTAGE CIRCUIT

Polarity Switching Circuit, 6-Bit Magnitude Plus Sign D-to-A Converter

Bipolar outputs may also be obtained by using a polarity switching circuit. The circuit of Figure 21, gives 6-bits magnitude plus a sign bit. In this configuration the operational amplifier is switched between a gain of +1.0 and -1.0. Although another operational amplifier is required, no more space is taken when a dual operational amplifier such as the MC1558G is used. The transistor should be selected for a very low saturation voltage and resistance.

FIGURE 21 - POLARITY SWITCHING CIRCUIT
(6-Bit Magnitude Plus Sign D-to-A Converter)

APPLICATIONS INFORMATION (continued)

Programmable Gain Amplifier or Digital Attenuator

When used in the multiplying mode the MC1506L can be applied as a digital attenuator. See Figure 22. One advantage of this technique is that if $R_S = 50$ ohms, no compensation capacitor is needed and a wide large signal bandwidth is achieved. The small and large signal bandwidths are now identical and are shown in Figure 15.

FIGURE 22 – PROGRAMMABLE GAIN AMPLIFIER OR DIGITAL ATTENUATOR CIRCUIT

Panel Meter Readout

The MC1506L can be used to read out the status of BCD or binary registers or counters in a digital control system. The current output can be used to drive directly an analog panel meter. External meter shunts may be necessary if a meter of less than 2.0 mA full scale is used. Full scale calibration can be done by adjusting R12 or V_{ref}.

FIGURE 23 - PANEL METER READOUT CIRCUIT

The best frequency response is obtained by not allowing I_{12} to reach zero. R_S can be set for a ± 1.0 mA variation in relation to I_{12} . I_{12} can never be negative.

The output current is always unipolar. The quiescent dc output current level changes with the digital word that makes ac coupling necessary.

FIGURE 24 – DC COUPLED DIGITAL ATTENUATOR and DIGITAL SUBTRACTION

This digital subtraction application is useful for indicating when one digital word is approaching another in value. More information is available than with a digital comparator.

Bipolar inputs can be accepted by using any of the previously described methods, or applied differentially to R12₁ and R12₂ or R13₁ and R13₂. V_O will be a bipolar signal defined by the above equation. Note that the circuit shown accepts bipolar differential signals but does not have a negative common-mode range. A very useful method is to connect R12₁ and R12₂ to a positive reference higher than the most positive input, and drive R13₁ and R13₂. This yields high input impedance, bipolar differential and common-mode range. The compensation depends on the input method used, as shown in previous sections.

6

APPLICATIONS INFORMATION (continued)

FIGURE 25 — DIGITAL SUMMING and CHARACTER GENERATION

In a character generation system one MC1506L circuit uses a fixed reference voltage and its digital input defines the starting point for a stroke. The second converter circuit has a ramp input for the reference and its digital input defines the slope of the stroke. Note that this approach does not result in a 12-bit D-to-A converter (see Accuracy Section).

FIGURE 27 - PROGRAMMABLE PULSE GENERATOR

Fast rise and fall times require the use of high speed switching transistors for the differential pair, Q4 and Q5. Linear ramps and sine waves may be generated by the appropriate reference input.

FIGURE 29 – ANALOG DIVISION BY DIGITAL WORD

This circuit yields the inverse of a digital word scaled by a constant. For minimum error over the range of operation, I $_{\rm O}$ can be set at 62 μ A so that I $_{\rm 12}$ will have a maximum value of 3.938 mA for a digital bit input configuration of 111110.

Compensation is necessary for loop stability and depends on the type of operational amplifier used. If a standard 1.0 MHz operational amplifier is employed, it should be overcompensated when possible. If this cannot be done, the reference amplifier can furnish the dominant pole with extra Miller feedback from pin 14 to 13. If the MC1723 or another wideband amplifier is used, the reference amplifier should always be overcompensated.

FIGURE 26 — PEAK DETECTING SAMPLE and HOLD (Features infinite hold time and optional digital output.)

Positive peaks may be detected by inserting a hex inverter between the counter and MC1506L, reversing the comparator inputs, and connecting the output amplifier for unipolar operation.

FIGURE 28 - PROGRAMMABLE CONSTANT CURRENT SOURCE

Current pulses, ramps, staircases, and sine waves may be generated by the appropriate digital and reference inputs. This circuit is especially useful in curve tracer applications.

FIGURE 30 – ANALOG QUOTIENT OF TWO DIGITAL WORDS

APPLICATIONS INFORMATION (continued)

FIGURE 31 — ANALOG PRODUCT OF TWO DIGITAL WORDS (High-Speed Operation)

Two Digit BCD Conversion

MC1506L parts which meet the specification for 7-bit accuracy can be used for the most significant word when building a two digit BCD D-to-A or A-to-D converter. If both outputs feed the virtual ground of an operational amplifier, 10:1 current scaling can be achieved with a resistive current divider. If current output is desired, the units may be operated at full scale current levels of 4.0 mA and 0.4 mA with the outputs connected to sum the currents. The error of the D-to-A converter handling the least significant bits will be scaled down by a factor of ten.

FIGURE 32 — DIGITAL QUOTIENT of TWO ANALOG VARIABLES or ANALOG-TO-DIGITAL CONVERSION

The circuit shown is a simple counterramp converter. An UP/DOWN counter and dual threshold comparator can be used to provide faster operation and continuous conversion.

Specifications and Applications Information

EIGHT-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

. . . designed for use where the output current is a linear product of an eight-bit digital word and an analog input voltage.

- Eight-Bit Accuracy Available in Both Temperature Ranges Relative Accuracy: ±0.19% Error maximum (MC1408L8, MC1408P8, MC1508L8)
- Seven and Six-Bit Accuracy Available with MC1408 Designated by 7 or 6 Suffix after Package Suffix
- Fast Settling Time 300 ns typical
- Noninverting Digital Inputs are MTTL and CMOS Compatible
- Output Voltage Swing +0.4 V to -5.0 V
- High-Speed Multiplying Input Slew Rate 4.0 mA/μs
- Standard Supply Voltages: +5.0 V and -5.0 V to -15 V

MC1408 MC1508

EIGHT-BIT MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

SILICON MONOLITHIC INTEGRATED CIRCUIT

TYPICAL APPLICATIONS

- Tracking A-to-D Converters
- Successive Approximation A-to-D Converters
- 2 1/2 Digit Panel Meters and DVM's
- Waveform Synthesis
- Sample and Hold
- Peak Detector
- Programmable Gain and Attenuation
- CRT Character Generation

- Audio Digitizing and Decoding
- Programmable Power Supplies
- Analog-Digital Multiplication
- Digital-Digital Multiplication
- Analog-Digital Division
- Digital Addition and Subtraction
- Speech Compression and Expansion
- Stepping Motor Drive

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating		Symbol	Value	Unit				
Power Supply Voltage		VCC +5.5 VEE -16.5				9-		
Digital Input Voltage		V ₅ thru V ₁₂	0 to +5.5	Vdc				
Applied Output Voltage		v _o	+0.5,-5.2	Vdc				
Reference Current		114	5.0	mA				
Reference Amplifier Inputs		V ₁₄ ,V ₁₅	V _{CC} ,V _{EE}	Vdc				
Operating Temperature Range	MC1508 MC1408 Series	ТА	-55 to +125 0 to +75	°С				
Storage Temperature Range		T _{stg}	-65 to +150	°C				

ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 Vdc, V_{EE} = -15 Vdc, $\frac{V_{ref}}{R14}$ = 2.0 mA, MC1508L8: T_A = -55°C to +125°C. MC1408L Series: T_A = 0 to +75°C unless otherwise noted. All digital inputs at high logic level.)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Relative Accuracy (Error relative to full scale I _O) MC1508L8, MC1408L8, MC1408P8 MC1408P7, MC1408L7, See Note 1 MC1408P6, MC1408L6, See Note 1	4	E _r	- - -	- -	±0.19 ±0.39 ±0.78	%
Settling Time to within ±1/2 LSB[includes tpLH](TA=+25°C)See Note 2	5	ts	_	300	ware	ns
Propagation Delay Time $T_A = +25^{\circ}C$	5	tPLH,tPHL		30	100	ns
Output Full Scale Current Drift		TCIO		- 20		PPM/OC
Digital Input Logic Levels (MSB) High Level, Logic "1" Low Level, Logic "0"	3	VIH VIL	2.0	_ _	_ 0.8	Vdc
Digital Input Current (MSB) High Level, $V_{ H}$ = 5.0 V Low Level, $V_{ L}$ = 0.8 V	3	IIH IIL	_	0 -0.4	0.04 -0.8	mA
Reference Input Bias Current (Pin 15)	3	l ₁₅	_	-1.0	-5.0	μА
Output Current Range V_{EE} = -5.0 V V_{EE} = -15 V, T_A = 25^{O} C	3	IOR	0 0	2.0 2.0	2.1 4.2	mA
Output Current $V_{ref} = 2.000 \text{ V, R14} = 1000 \Omega$	3	10	1.9	1.99	2.1	mA
Output Current (All bits low)	3	¹ O(min)	_	0	4.0	μΑ
Output Voltage Compliance ($E_r \le 0.19\%$ at $T_A = +25^{\circ}C$) Pin 1 grounded Pin 1 open, VEE below -10 V	3	v _o	_	_ _	-0.55, +0.4 -5.0, +0.4	Vdc
Reference Current Slew Rate	6	SR I _{ref}	-	4.0	_	mA/μs
Output Current Power Supply Sensitivity		PSRR(-)		0.5	2.7	μA/V
Power Supply Current (All bits low)	3	ICC	_	+13.5 -7.5	+22 -13	mA
Power Supply Voltage Range (T _A = +25°C)	3	V _{CCR} V _{EER}	+4.5 -4.5	+5.0 -15	+5.5 -16.5	Vdc
Power Dissipation All bits low VEE = -5.0 Vdc VEE = -15 Vdc All bits high VEE = -5.0 Vdc VEE = -15 Vdc	3	PD		105 190 90 160	170 305 —	mW

Note 1. All current switches are tested to guarantee at least 50% of rated output current.

Note 2. All bits switched.

TEST CIRCUITS

FIGURE 3 - NOTATION DEFINITIONS TEST CIRCUIT

FIGURE 4 - RELATIVE ACCURACY TEST CIRCUIT

FIGURE 5 - TRANSIENT RESPONSE and SETTLING TIME

TEST CIRCUITS (continued)

FIGURE 6 – REFERENCE CURRENT SLEW RATE MEASUREMENT

FIGURE 7 - POSITIVE V_{ref}

FIGURE 8 - NEGATIVE V_{ref}

FIGURE 9 – MC1408, MC1508 SERIES EQUIVALENT CIRCUIT SCHEMATIC

DIGITAL INPUTS

CIRCUIT DESCRIPTION

The MC1408 consists of a reference current amplifier, an R-2R ladder, and eight high-speed current switches. For many applications, only a reference resistor and reference voltage need be added.

The switches are noninverting in operation, therefore a high state on the input turns on the specified output current component. The switch uses current steering for high speed, and a termination amplifier consisting of an active load gain stage with unity gain feedback. The termination amplifier holds the parasitic capacitance of the ladder at a constant voltage during switching, and provides

a low impedance termination of equal voltage for all legs of the ladder.

The R-2R ladder divides the reference amplifier current into binarily-related components, which are fed to the switches. Note that there is always a remainder current which is equal to the least significant bit. This current is shunted to ground, and the maximum output current is 255/256 of the reference amplifier current, or 1.992 mA for a 2.0 mA reference amplifier current if the NPN current source pair is perfectly matched.

GENERAL INFORMATION

Reference Amplifier Drive and Compensation

The reference amplifier provides a voltage at pin 14 for converting the reference voltage to a current, and a turn-around circuit or current mirror for feeding the ladder. The reference amplifier input current, I14, must always flow into pin 14 regardless of the setup method or reference voltage polarity.

Connections for a positive reference voltage are shown in Figure 7. The reference voltage source supplies the full current 114. For bipolar reference signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R15 with only a small sacrifice in accuracy and temperature drift. Another method for bipolar inputs is shown in Figure 25.

The compensation capacitor value must be increased with increases in R14 to maintain proper phase margin; for R14 values of 1.0, 2.5 and 5.0 kilohms, minimum capacitor values are 15, 37, and 75 pF. The capacitor should be tied to $V_{\mbox{\footnotesize{EE}}}$ as this increases negative supply rejection.

A negative reference voltage may be used if R14 is grounded and the reference voltage is applied to R15 as shown in Figure 8. A high input impedance is the main advantage of this method. Compensation involves a capacitor to VEE on pin 16, using the values of the previous paragraph. The negative reference voltage must be at least 3.0-volts above the VEE supply. Bipolar input signals may be handled by connecting R14 to a positive reference voltage equal to the peak positive input level at pin 15.

When a dc reference voltage is used, capacitive bypass to ground is recommended. The 5.0-V logic supply is not recommended as a reference voltage. If a well regulated 5.0-V supply which drives logic is to be used as the reference, R14 should be decoupled by connecting it to +5.0 V through another resistor and bypassing the junction of the two resistors with 0.1 µF to ground. For reference voltages greater than 5.0 V, a clamp diode is recommended between pin 14 and ground.

If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

Output Voltage Range

The voltage on pin 4 is restricted to a range of -0.55 to +0.4 volts at +25°C, due to the current switching methods employed in the MC1408. When a current switch is turned "off", the positive voltage on the output terminal can turn "on" the output diode and increase the output current level. When a current switch is turned "on", the negative output voltage range is restricted. The base of the termination circuit Darlington transistor is one diode voltage below ground when pin 1 is grounded, so a negative voltage below the specified safe level will drive the low current device of the Darlington into saturation, decreasing the output current level.

The negative output voltage compliance of the MC1408 may be extended to -5.0 V volts by opening the circuit at pin 1. The negative supply voltage must be more negative than -10 volts. Using a full scale current of 1.992 mA and load resistor of 2.5 kilohms between pin 4 and ground will yield a voltage output of 256 levels between 0 and -4.980 volts. Floating pin 1 does not affect the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of R_L up to 500 ohms do not significantly affect performance, but a 2.5-kilohm load increases "worst case" settling time to 1.2 µs (when all bits are switched on).

Refer to the subsequent text section on Settling Time for more details on output loading.

If a power supply value between -5.0 V and -10 V is desired, a voltage of between 0 and -5.0 V may be applied to pin 1. The value of this voltage will be the maximum allowable negative output swing.

Output Current Range

The output current maximum rating of 4.2 mA may be used only for negative supply voltages typically more negative than -8.0 volts, due to the increased voltage drop across the 350-ohm resistors in the reference current amplifier.

Accuracy

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full scale current. The relative accuracy of the MC1408 is essentially constant with temperature due to the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the MC1408 has a very low full scale current drift with temperature.

The MC1408/MC1508 Series is guaranteed accurate to within $\pm 1/2$ LSB at $\pm 25^{\circ}$ C at a full scale output current of 1.992 m. This corresponds to a reference amplifier output current drive to the ladder network of 2.0 mA, with the loss of one LSB = 8.0 μ A which is the ladder remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9 and 2.1 mA, allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 4. The 12-bit converter is calibrated for a full scale output current of 1.992 mA. This is an optional step since the MC1408 accuracy is essentially the same between 1.5 and 2.5 mA. Then the MC1408 circuits' full scale current is trimmed to the same value with R14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a 16-bit accurate D-to-A converter. 16-bit accuracy implies a total error of $\pm 1/2$ of one part in 65, 536, or $\pm 0.00076\%$, which is much more accurate than the $\pm 0.19\%$ specification provided by the MC1408x8

Multiplying Accuracy

The MC1408 may be used in the multiplying mode with eight-bit accuracy when the reference current is varied over a range of 256:1. The major source of error is the bias current of the termination amplifier. Under "worst case" conditions, these eight amplifiers can contribute a total of 1.6 μA extra current at the output terminal. If the reference current in the multiplying mode ranges from 16 μA to 4.0 mA, the 1.6 μA contributes an error of 0.1 LSB. This is well within eight-bit accuracy referenced to 4.0 mA.

A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the MC1408 is monotonic for all values of reference current above 0.5 mA. The recommended range for operation with a dc reference current is 0.5 to 4.0 mA.

GENERAL INFORMATION (Continued)

Settling Time

The "worst case" switching condition occurs when all bits are switched "on", which corresponds to a low-to-high transition for all bits. This time is typically 300 ns for settling to within $\pm 1/2$ LSB, for 8-bit accuracy, and 200 ns to 1/2 LSB for 7 and 6-bit accuracy. The turn off is typically under 100 ns. These times apply when $R_L \leqslant 500$ ohms and $C_O \leqslant 25$ pF.

The slowest single switch is the least significant bit, which turns "on" and settles in 250 ns and turns "off" in 80 ns. In applications where the D-to-A converter functions in a positive-going ramp mode, the "worst case" switching condition does not occur, and a settling time of less than 300 ns may be realized. Bit A7 turns "on" in 200 ns and "off" in 80 ns, while bit A6 turns "on" in 150 ns and "off" in 80 ns.

The test circuit of Figure 5 requires a smaller voltage swing for the current switches due to internal voltage clamping in the MC-1408. A 1.0-kilohm load resistor from pin 4 to ground gives a typical settling time of 400 ns. Thus, it is voltage swing and not the output RC time constant that determines settling time for most applications.

Extra care must be taken in board layout since this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, 100 μF supply bypassing for low frequencies, and minimum scope lead length are all mandatory.

TYPICAL CHARACTERISTICS

 $(V_{CC} = +5.0 \text{ V}, V_{EE} = -15 \text{ V}, T_A = +25^{\circ}\text{C} \text{ unless otherwise noted.})$

FIGURE 10 - LOGIC INPUT CURRENT versus INPUT VOLTAGE

FIGURE 11 - TRANSFER CHARACTERISTIC versus TEMPERATURE

FIGURE 12 — OUTPUT CURRENT versus OUTPUT VOLTAGE (See text for pin 1 restrictions)

FIGURE 13 -- OUTPUT VOLTAGE versus TEMPERATURE (Negative range with pin 1 open is -5.0 Vdc over full temperature range)

TYPICAL CHARACTERISTICS (continued)

(V_{CC} = +5.0 V, V_{EE} = -15 V, T_A = +25°C unless otherwise noted.)

FIGURE 14 - REFERENCE INPUT FREQUENCY RESPONSE

FIGURE 15 -- TYPICAL POWER SUPPLY CURRENT versus TEMPERATURE (all bits low)

Unless otherwise specified:

 $\text{R14} = \text{R15} = 1.0\,\text{k}\Omega$ C = 15 pF, pin 16 to VEE $R_L = 50 \Omega$, pin 4 to GND

Large Signal Bandwidth

Method of Figure 7 V_{ref} = 2.0 V(p-p) offset 1.0 V above GND

Small Signal Bandwidth Curve B:

Method of Figure 7 R_L = 250 Ω Vref = 50 mV(p-p) offset 200 mV above GND

Curve C: Large and Small Signal Bandwidth

Method of Figure 25 (no op-ampl, R_L = 50Ω)

RS = 50Ω V_{ref} = 2.0 VV_S = 100 mV(p-p) centered at 0 V

VEE, NEGATIVE POWER SUPPLY (Vdc)

APPLICATIONS INFORMATION FIGURE 17 - OUTPUT CURRENT TO VOLTAGE CONVERSION

$$V_{O} = \frac{V_{ref}}{R14} (R_{O}) \left[\frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \frac{A4}{16} + \frac{A5}{32} + \frac{A6}{64} + \frac{A7}{128} + \frac{A8}{256} \right]$$

Adjust $\,V_{ref},\,$ R14 or $\,R_O$ so that $\,V_O\,$ with all digital inputs at high level is equal to 9.961 volts.

$$\begin{split} V_{Q} &= \frac{2 \text{ V}}{1 \text{ k}} \quad (6 \text{ k}) \left[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256} \right] \\ &= 10 \text{ V} \left[\frac{255}{256} \right] = 9.961 \text{ V} \end{split}$$

APPLICATIONS INFORMATION (continued)

Voltage outputs of a larger magnitude are obtainable with this circuit which uses an external operational amplifier as a current to voltage converter. This configuration automatically keeps the output of the MC1408 at ground potential and the operational amplifier can generate a positive voltage limited only by its positive supply voltage. Frequency response and settling time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier must be compensated for unity gain, and in some cases overcompensation may be desirable.

Note that this configuration results in a positive output voltage only, the magnitude of which is dependent on the digital input.

The following circuit shows how the MLM301AG can be used in a feedforward mode resulting in a full scale settling time on the order of 2.0 µs.

FIGURE 18

An alternative method is to use the MC1539G and input compensation. Response of this circuit is also on the order of $2.0\,\mu s$. See Motorola Application Note AN-459 for more details on this concept.

FIGURE 19

The positive voltage range may be extended by cascading the output with a high beta common base transistor, Q1, as shown.

FIGURE 20 – EXTENDING POSITIVE VOLTAGE RANGE

The output voltage range for this circuit is 0 volts to BVCBO of the transistor. If pin 1 is left open, the transistor base may be grounded, eliminating both the resistor and the diode. Variations in beta must be considered for wide temperature range applications. An inverted output waveform may be obtained by using a load resistor from a positive reference voltage to the collector of the transistor. Also, high-speed operation is possible with a large output voltage swing, because pin 4 is held at a constant voltage. The resistor (R) to VEE maintains the transistor emitter voltage when all bits are "off" and insures fast turn-on of the least significant bit.

Combined Output Amplifier and Voltage Reference

For many of its applications the MC1408 requires a reference voltage and an operational amplifier. Normally the operational amplifier is used as a current to voltage converter and its output need only go positive. With the popular MC1723G voltage regulator both of these functions are provided in a single package with the added bonus of up to 150 m A of output current. See Figure 21. The MC1723G uses both a positive and negative power supply. The reference voltage of the MC1723G is then developed with respect to the negative voltage and appears as a common-mode signal to the reference amplifier in the D-to-A converter. This allows use of its output amplifier as a classic current-to-voltage converter with the non-inverting input grounded.

Since ± 15 V and ± 5.0 V are normally available in a combination digital-to-analog system, only the ± 5.0 V need be developed. A resistor divider is sufficiently accurate since the allowable range on pin 5 is from ± 2.0 to ± 8.0 volts. The 5.0 kilohm pulldown resistor on the amplifier output is necessary for fast negative transitions.

Full scale output may be increased to as much as 32 volts by increasing R_{O} and raising the +15 V supply voltage to 35 V maximum. The resistor divider should be altered to comply with the maximum limit of 40 volts across the MC1723G. C_{O} may be decreased to maintain the same $R_{O}C_{O}$ product if maximum speed is desired.

APPLICATIONS INFORMATION (continued)

Programmable Power Supply

The circuit of Figure 21 can be used as a digitally programmed power supply by the addition of thumbwheel switches and a BCD-to-binary converter. The output voltage can be scaled in several ways, including 0 to ± 25.5 volts in 0.1-volt increments, ± 0.05 volt; or 0 to 5.1 volts in 20 mV increments, ± 10 mV.

FIGURE 21 – COMBINED OUTPUT AMPLIFIER and VOLTAGE REFERENCE CIRCUIT

Bipolar or Negative Output Voltage

The circuit of Figure 22 is a variation from the standard voltage output circuit and will produce bipolar output signals. A positive current may be sourced into the summing node to offset the output voltage in the negative direction. For example, if approximately 1.0~mA is used a bipolar output signal results which may be described as a 8-bit "11's" complement offset binary. V_{ref} may be used as this auxiliary reference. Note that R_{O} has been doubled to 10 kilohms because of the anticipated 20 V(p-p) output range.

FIGURE 22 – BIPOLAR OR NEGATIVE OUTPUT VOLTAGE CIRCUIT

$$V_{O} = \frac{V_{ref}}{R14} (R_{O}) \left[\frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \frac{A4}{16} + \frac{A5}{32} + \frac{A6}{64} + \frac{A7}{128} + \frac{A8}{256} \right] - \frac{V_{ref}}{R_{B}} (R_{O})$$

FIGURE 23 – BIPOLAR OR INVERTED NEGATIVE OUTPUT VOLTAGE CIRCUIT

Decrease R_O to $2.5\,k\Omega$ for a 0 to –5.0-volt output range. This application provides somewhat lower speed, as previously discussed in the Output Voltage Range section of the General Information.

6

APPLICATIONS INFORMATION (continued)

Polarity Switching Circuit, 8-Bit Magnitude Plus Sign D-to-A Converter

Bipolar outputs may also be obtained by using a polarity switching circuit. The circuit of Figure 24 gives 8-bit magnitude plus a sign bit. In this configuration the operational amplifier is switched between a gain of +1.0 and -1.0. Although another operational amplifier is required, no more space is taken when a dual operational amplifier such as the MC1558G is used. The transistor should be selected for a very low saturation voltage and resistance.

FIGURE 24 — POLARITY SWITCHING CIRCUIT (8-Bit Magnitude Plus Sign D-to-A Converter)

Programmable Gain Amplifier or Digital Attenuator

When used in the multiplying mode the MC1408 can be applied as a digital attenuator. See Figure 25. One advantage of this technique is that if $\mathrm{Rg}=50$ ohms, no compensation capacitor is needed. The small and large signal bandwidths are now identical and are shown in Figure 14.

The best frequency response is obtained by not allowing I $_{14}$ to reach zero. However, the high impedance node, pin 16, is clamped to prevent saturation and insure fast recovery when the current through R14 goes to zero. R_S can be set for a ± 1.0 mA variation in relation to I $_{14}$. I $_{14}$ can never be negative.

The output current is always unipolar. The quiescent dc output current level changes with the digital word which makes ac coupling

FIGURE 25 – PROGRAMMABLE GAIN AMPLIFIER OR DIGITAL ATTENUATOR CIRCUIT

Panel Meter Readout

The MC1408 can be used to read out the status of BCD or output can be used to drive directly an analog panel meter. External meter shunts may be necessary if a meter of less than 2.0 mA full scale is used. Full scale calibration can be done by adjusting R14 or V_{Rf} .

FIGURE 26 - PANEL METER READOUT CIRCUIT

FIGURE 27 — DC COUPLED DIGITAL ATTENUATOR and DIGITAL SUBTRACTION

APPLICATIONS INFORMATION (continued)

FIGURE 36 - TWO-DIGIT BCD CONVERSION

Two 8-bit, D-to-A converters can be used to build a two digit BCD D-to-A or A-to-D converter. If both outputs feed the virtual ground of an operational amplifier, 10:1 current scaling can be achieved with a resistive current divider. If current output is desired, the units may be operated at full scale current levels of

4.0 mA and 0.4 mA with the outputs connected to sum the currents. The error of the D-to-A converter handling the least significant bits will be scaled down by a factor of ten and thus an MC1408L6 may be used for the least significant word.

FIGURE 37 – DIGITAL QUOTIENT OF TWO ANALOG VARIABLES or ANALOG-TO-DIGITAL CONVERSION

The circuit shown is a simple counterramp converter. An UP/DOWN counter and dual threshold comparator can be used to provide faster operation and continuous conversion.

Specifications and Applications Information

TEN BIT D TO A CONVERTER

The MC3410 series devices are low-cost, high-accuracy monolithic D/A converter subsystems. Like their MC1408 series predecessors, they provide the logic controlled current switches, the R-2R resistor ladder network and output termination networks. The output buffer amplifier and reference voltage have been omitted from the circuit to allow greatest system speed, flexibility and lowest cost. This device is useful in industrial control and microprocessor based systems.

- Relative Accuracy ±0.05%; Error Maximum (MC3510 and MC3410)
- Fast Settling Time 250 ns Typical
- Noninverting Digital Inputs are MTTL and CMOS Compatible (from 5 to 15 V CMOS)
- Output Voltage Swing − +0.2 V to −2.5 V
- High Speed Multiplying Input Slew Rate 20 mA/μs
- Standard Supply Voltages +5 V and 15 V
- All Categories Guaranteed Monotonic Across Temperature
- Reference Amplifier Internally Compensated

TYPICAL APPLICATIONS

- Tracking A-to-D Converters
- Successive Approximation A-to-D Converters
- 3-Digit Panel Meters and DVM's
- Waveform Synthesis
- Sample and Hold
- Peak Detector

- Programmable Gain and Attenuation
- Programmable Power Supplies
- Analog-Digital Multiplication
- Digital-Digital MultiplicationSpeech Compression and Expansion
- Sample Data Systems

MC3410 MC3510 MC3410C

LASER TRIMMED

TEN BIT, MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

SILICON MONOLITHIC INTEGRATED CIRCUIT

MC3410, MC3510, MC3410C

MAXIMUM RATINGS ($T_A = +25^{\circ} C$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+7.0	Vdc
	VEE	-18	
Digital Input Voltage	V _I	+15	Vdc
Applied Output Voltage	v _o	+0.5, -5.0	Vdc
Reference Current	IREF(16)	2.5	mA
Reference Amplifier Inputs	V _{REF}	V _{CC} , V _{EE}	Vdc
Reference Amplifier Differential Inputs	VREF(D)	0.7	Vdc
Operating Temperature Range	TA		°c
MC3510		-55 to +125	
MC3410,C	!	0 to +70	
Junction Temperature	Tj		°C
Ceramic Package		+175	
Plastic Package	1	+150	

ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 Vdc, V_{EE} = -15 Vdc, $\frac{V_{rel}}{R16}$ = 2.0 mA, MC3510 T_A = -55°C to +125°C. MC3410 Series: T_A = 0 to +70°C unless otherwise noted. All digital inputs at high logic level.)

Characteristic	Symbol	Min	Тур	Max	Unit
Relative Accuracy (Error relative to full scale I _O) T _A = 25°C MC3510, MC3410 MC3410C	E _r	-	_	±0.05 ±0.1	%
Relative Accuracy Temperature Drift (Relative to Full Scale I _O)	TCEr	-	2.5	_	PPM/OC
Monotonicity (Full Temperature Range)		Mon	otonic to 10	Bits	_
Settling Time to within ±1/2 LSB (T _A = 25°C) (All Bits Low to High)	ts	_	250		ns
Propagation Delay Time TA = +25°C	^t PLH ^t PHL	_	35 20	_	ns
Output Full Scale Current Drift MC3410, MC3410C MC3510	TCIO	_	_	60 70	PPM/°
Digital Input Logic Levels (All Bits) High Level, Logic "1" Low Level, Logic "0"	V _{IH} V _{IL}	2.0	_	_ 0.8	Vdc
Digital Input Current (All Bits) High Level, V _{IH} = 5.5V Low Level, V _{IL} = 0.8V	liH lit	****	 0.05	0.04 0.4	mA
Reference Input Bias Current (Pin 15)	^I REF(15)	_	-1.0	5.0	μА
Output Current Range	IOR	0	4.0	5.0	mA
Output Current $V_{ref} = 2.000 \text{ V, R}_{16} = 1000 \ \Omega$	10	3.8	3.996	4.2	mA
Output Current MC3510, MC3410 (All bits low) (T _A = 25°C) MC3410C	IO(min)	-	0 0	2.0 4.0	μΑ
Output Voltage Compliance (T $_A$ 25°C) $E_r \leqslant 0.05\% \text{ relative to FS} - MC3510, MC3410} \\ E_r \leqslant 0.10\% \text{ relative to FS} - MC3410C}$	ÝΟ		_	-2.5,+0.2 -2.5,+0.2	Vdc
Reference Amplifier Slew Rate	SR I _{ref}	_	20	-	mΑ/μ
Reference Amplifier Settling Time (0 ta 4.0 mA, ±0.1%)	STIREF	_	2.0	-	μs
Output Current Power Supply Sensitivity MC3510, MC3410 MC3410C	PSRR()	_	0.003 0.003	0.01 0.02	%/%
Output Capacitance (V _O = 0)	CO		25	_	pF
Digital Input Capacitance (All Bits, Inputs High)	CI	-	4.0	-	pF
Power Supply Current (All Bits low)	ICC IEE	-	+10 -11.4	+18 -20	mA
Power Supply Voltage Range (T _A = +25°C)	V _{CCR} V _{EER}	+4.75 -14.25	+5.0 15	+5.25 15.75	Vdo
Power Consumption All Bits low All Bits high	Pc	_	220 200	380	mW

TEST CIRCUITS

TEST CIRCUITS (Continued)

CIRCUIT DESCRIPTION

The MC3410 consists of a reference current amplifier, a diffused R-2R ladder, a laser trimming network, and ten high-speed current switches. The trimming method employed makes it possible to improve the linearity attainable with modern diffusion technology by as much as a factor of ten so that a highly linear part results. The trim is performed by cutting aluminum links arranged to give incremental variations in voltage at the ladder termination amplifiers (See Figure 10). This yields a highly stable trim with no increase in fabrication complexity.

The switches are non-inverting in operation, so that a high state on an input turns on the specific component of output current. The switches use current steering for speed, and inter-

face the R-2R ladder through unity gain feedback termination amplifiers, which provide low impedance terminations of equal voltage for all legs of the ladder.

The R-2R ladder divides the reference amplifier current into binarily-related components, which are fed to the current switches. The three least-significant bit switches derive their current through emitter scaling from the last leg of the ladder. The remaining current, equal to one LSB, is shunted to V_{CC} at the LSB switch. Therefore, the maximum output current is 1023/1024 of the reference amplifier current, or nominally 3.996 mA for a 2.000 mA reference input current.

Reference Voltage

To generate the precision voltage reference input for the MC3410, either the MC1403 or the MC1404 may be used. The MC1403 produces a 2.5 V $\pm 1\%$ output voltage while the MC1404 produces a 10 V $\pm 1\%$ output. Both have excellent temperature and long term stability, in order to reduce the effect of reference amplifier offset voltage on overall accuracy, the highest possible stability reference voltage should be used. Therefore, in systems with a ± 15 V supply, the MC1404 (10 V) is recommended. Where the most positive supply is only ± 5 V, the MC1403 provides a 2.5 V reference. To set the reference current exactly, a low temperature coefficient potentiometer in series with R1 should be used.

GENERAL INFORMATION

Reference Amplifier

The reference amplifier allows the user to provide a voltage and a resistor to Pin 16 to convert the reference voltage to a current. A current mirror doubles this reference current and feeds it to the R-2R ladder. Thus for a reference voltage of 2.0 Volts and 1 $\rm k\Omega$ resistor tied to Pin 16, the full-scale current is approximately 4.0 mA. The reference input current, 116, must flow into Pin 16 regardless of the setup method or reference voltage polarity.

Connections for a positive reference voltage are shown in Figure 8. The reference voltage source supplies the full current 116. For bipolar refererence signals, as in the multiplying mode, R15 can be tied to a negative voltage corresponding to the minimum input level.

The reference amplifier is internally compensated with a 10 pF feed-forward capacitor, which gives it its high slew rate and fast settling time. Proper phase margin is maintained with all possible values of R16 and reference voltages which supply 2.0 mA reference current into Pin 16. The reference current can also be supplied by a high impedance current source of 2.0 mA. As R16 increases, the bandwidth of the amplifier decreases slightly and settling time increases. For a current source with a dynamic output impedance of $1.0~\mathrm{M}\Omega$, the bandwidth of the reference amplifier is approximately half what it is in the case of R16 = $1.0~\mathrm{k}\Omega$, and settling time is $\approx 10~\mathrm{\mu s}$. The reference amplifier phase margin decreases as the current source value decreases in the case of a current source reference, so that the minimum reference current supplied from a current source is $0.5~\mathrm{mA}$ for stability.

A negative reference voltage may be used if R16 is grounded and the reference voltage is applied to R15 as shown in Figure 9. A high input impedance is the main advantage of this method. The negative reference voltage must be at least 3 Volts above the VEE supply for proper operation. Bipolar input signals may be handled by connecting R16 to a positive voltage equal to the peak positive input level at Pin 15.

When a dc reference voltage is used, capacitive bypass to ground is recommended. The 5-V logic supply is not recommended as a reference voltage. If a well regulated 5.0-V supply, which drives logic, is to be used as the reference, R16 should be decoupled by connecting it to the +5.0 V logic supply through another resistor and bypassing the junction of the two resistors with a 0.1 μ F capacitor to ground.

Output Voltage Range

The voltage on Pin 3 is restricted to a range of -2.5 V to +0.2 V due to the current switching methods employed in the MC3410. When a current switch is turned off, the positive voltage at the output terminal can turn on the output diode and increase the output current. When a current switch is on, the negative output voltage range is restricted to the point at which the low current device of the termination amplifier Darlington begins to saturate, resulting in a decrease in output current.

The output voltage compliance is guaranteed at 25°C. Note from Figure 14 that the output compliance of the MC3410 is nearly constant over temperature.

Accuracy

Absolute accuracy is a measure of each output current level with respect to its intended value. It is dependent upon relative accuracy and full scale current drift. Relative accuracy, or linearity, is the measure of each output current with respect to its intended fraction of the full scale current. The relative accuracy of the MC3410 is fairly constant over temperature due to the excellent temperature tracking, of the diffused resistors. The full scale current from the reference amplifier may drift with temperature causing a change in the absolute accuracy. However, the MC3410 has a low full scale current drift with temperature.

The MC3510 and MC3410 are guaranteed accurate to within $\pm 1/2$ LSB at 25° C and at a full scale current of 3.996 mA. Input reference current to Pin 16 is guaranteed to be between

1.9 and 2.1 mA to produce a full scale output current of 3.996 mA. The relative accuracy test circuit is shown in Figure 4. The 14 bit D/A converter is calibrated for a full scale output of 3.996 mA. This is an optional step as the relative accuracy of the MC3410 is nearly constant between 3mA and 5 mAfull scale current. The MC3410 is calibrated at full scale with the 14-bit reference D/A by adjusting R16 until the error voltage goes to zero. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored on a peak detector.

Monotonicity

The MC3510, MC3410 and MC3410C are all guaranteed to be monotonic at temperature. This guarantees that for every increase in the input digital word, the output current either remains the same or increases, but never decreases. The MC3510 and MC3410 are monotonic over their respective temperature ranges. In the multiplying mode (when the reference current is varied), monotonicity is typically maintained for all values of input reference current above 0.5 mA.

Settling Time

The worst case switching condition occurs when all bits are switched ''on,'' which corresponds to a low-to-high transition for all bits. This time is typically 250 ns for the output to settle to within $\pm~1/2~LSB$ for 10-bit accuracy, and 200 ns for 8-bit accuracy. The turn-off time is typically 120 ns. These times apply when the output swing is limited to a small (< 0.7 Volt) swing and the external output capacitance is under 25 pF.

The major carry (MSB off-to-on, all others on-to-off) settles in approximately the same time as when all bits are switched off-to-on.

The slowest switches are bit A10 (LSB) and bit A9, which turn on and settle in typically 200 ns, and turn off in 100 ns. In the test circuit of Figure 5, the output voltage is internally clamped in the MC3410 at about 0.7 Volts above ground. The output is thus limited to a 0.7 Volt swing. If a load resistor of 625 Ohms is connected to ground, allowing the output to swing

to -2.5 Volts, the settling time increases to 1.5 μ s. Extra care must be taken in board layout as this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, 100μ F supply bypassing, and minimum scope lead length are all necessary.

MC3510 TERMINOLOGY

- RELATIVE ACCURACY Maximum output deviation from the straight line connecting zero and full scale, expressed as a percentage of full scale.
- RELATIVE ACCURACY DRIFT The average change in linearity error that will occur with a change in ambient temperature, expressed in parts per million of full scale per degree C
- MONOTONICITY For every increase in the input digital word, the output current either remains the same or increases.
- SETTLING TIME The elapsed time from the input transition until the output has settled within an error band about its final value.
- OUTPUT FULL SCALE CURRENT DRIFT The average change in full scale current between 25°C and either temperature extreme, expressed in parts per million of full scale per degree C.
- REFERENCE AMPLIFIER SLEW RATE The maximum rate of change of the full scale output current expressed in milliamperes per microsecond.
- OUTPUT VOLTAGE COMPLIANCE The maximum voltage that can be applied to the output pin so that the specified change in output current is not exceeded.
- POWER SUPPLY SENSITIVITY The change in full scale current caused by a change in VEE, expressed as a percent of full scale current per percent change in VEE.

TYPICAL CHARACTERISTICS

FIGURE 11 - LOGIC INPUT CURRENT versus INPUT VOLTAGE

FIGURE 13 - OUTPUT CURRENT versus **OUTPUT VOLTAGE (Output Compliance)**

FIGURE 14 - MAXIMUM OUTPUT

FIGURE 15 - REFERENCE AMPLIFIER FREQUENCY RESPONSE

FIGURE 16 - TYPICAL POWER SUPPLY **CURRENTS versus TEMPERATURE**

APPLICATIONS INFORMATION

Voltage outputs are obtainable with this circuit which uses an external operational amplifier as a current to voltage converter. This configuration automatically keeps the output of the MC3410 at ground potential and the operational amplifier can generate a positive voltage limited only by its positive supply voltage. Frequency response and settling time are primarily determined by the characteristics of the operational amplifier. In addition, the operational amplifier must be compensated for unity gain, and in some cases overcompensation may be desirable.

Note that this configuration results in a positive output voltage only, the magnitude of which is dependent on the digital

The following circuit shows how the LM301A can be used in a feedforward mode resulting in a full scale settling time on the order of 2.0 μ s.

FIGURE 17

An alternative method is to use the MC1539 and input compensation. Response of this circuit is also on the order of 2.0 µs.

FIGURE 19 - EXTENDING POSITIVE

VOLTAGE RANGE

The output voltage range for this circuit is 0 volts to BVCBO of the transistor. Variations in beta must be considered for wide temperature range applications. An inverted output waveform may be obtained by using a load resistor from a positive reference voltage to the collector of the transistor. Also, high-speed operation is possible with a large output voltage swing, because Pin 3 is held at a constant voltage. The resistor (R) to VEE maintains the transistor emitter voltage when all bits are "off" and insures fast turn-on of the least significant bit.

FIGURE 18

The positive voltage range may be extended by cascading the output with a high beta common base transistor, Q1, as shown.

FIGURE 20 - OUTPUT CURRENT TO **VOLTAGE CONVERSION**

$$V_{O} = \frac{2R_{0}}{R_{1}} V_{ref} \left[\frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \frac{A4}{16} + \frac{A5}{32} + \frac{A6}{64} + \frac{A7}{128} + \frac{A8}{256} + \frac{A9}{512} + \frac{A10}{1024} \right]$$

for 10 volt fullscale calibration

$$V_O = \frac{2(2.5 \text{ k})}{5.0 \text{ k}}.10 \text{ Volts} \left[\frac{1023}{1024}\right]$$
 $V_O = 10 \text{ Volts } [0.9990]$

R_O = Full Scale Adjust

MC3410, MC3510, MC3410C

APPLICATIONS INFORMATION (Continued)

Bipolar or Negative Output Voltage

The circuit in Figure 21 is a variation of the standard output voltage circuit in Figure 20. A negative or offset binary output may be obtained by sourcing current from the reference into the output through Rg. If Rg allows 2 mA (Rg = 5 k Ω from 10 Volts) then 1000000000 input will generate zero output voltage.

FIGURE 21 – OFFSET BINARY OR BIPOLAR DAC Vref 14 R1 5 R2 15 NC3410 15 NC3410 15 NC3410 15 NC3410 15 NC3410 15 NC3410 15 NC3410 15 NC3410 15 NC3410 15 NC3410 15 NC3410 15 NC3410 15 NC3410 15 NC3410 16 NC3410 17 10 11 12 13 NC3410 16 NC3410 17 18 NC3410 18 NC3410 19 NC3410 10 11 12 13 NC3410 10 11 12 13 NC3410 15 NC3410 16 NC3410 17 18 NC3410 18 NC3410 19 NC3410 10 10 11 11 12 13 NC3410 10 11 11 12 13 NC3410 14 NC3410 15 NC3410 16 NC3410 17 NC3410 18 NC3410

Successive Approximation A to D

The fastest and most efficient means of A to D conversion using D to A convertors is successive approximation (SA). Similar in appearance to staircase devices, the SA converter is capable of 100 times faster conversions for a 10-bit result. A complete 10-bit SA coverter using MC3410 and MC14559B/49B successive approximation registers is shown in Figure 22. The complexity which results in higher conversion speeds is contained in the MC14559B/49B registers. Quite simply, the register compares the DAC output resulting from activating each bit with the input voltage. This is done starting with most significant bit and after 10 comparisons generates the 10-bit binary output representing that input. The accuracy of the conversion is fixed by the accuracy of the MC3410 and is not dependent on tolerances of the other components. An EOC outout is available and can be used to latch the parallel output or to synchronize the serial output which is also available. For more details on SA converters, see AN-716.

For Offset Binary Output From +5 V to -5 V R $_{O}\cong 2.5$ k Ω R $_{B}\cong .5$ k Ω

 $= \frac{15 \text{ V}}{15 \text{ V}}$ $V_{O} = \frac{2R_{0}}{R_{1}} \text{ Vref} \left[\left(\frac{A1}{2} + \frac{A2}{4} + \frac{A3}{8} + \frac{A4}{16} + \frac{A5}{32} + \frac{A6}{64} + \frac{A7}{128} + \frac{A8}{256} + \frac{A9}{512} + \frac{A10}{1024} \right) - \frac{2R_{1}}{R_{B}} \right]$

APPLICATIONS INFORMATION (Continued)

Staircase A to D

If high conversion speed is not required, a staircase A to D convertor can be built for somewhat lower cost. A complete staircase A/D convertor is shown in Figure 23. Here the complicated SA registers are replaced with simple binary counters. With an input voltage applied, the binary counter is reset by the convert command pulse and the begin accumulating counts. The DAC output steps upward until the comparator detects that the input is equal to the DAC output. The counters are disabled and the conversion result is held at the output until the circuit is reset by the convert command input.

One advantage of staircase convertors is the ease with which BCD outputs may be obtained. Figure 24 shows a 3-digit panel meter using the staircase technique and an MC14553B 3-decade counter. The circuit function is similar to Figure 23 but Multiplexed BCD output is available from the MC14553B counters. Parallel BCD may be obtained with equal ease using the MC14518B 2-decade CMOS counters.

In both these staircase designs the system accuracy is determined by the specified accuracy of the MC3410.

FIGURE 23 - 10-BIT STAIRCASE A to D USING MC3410 AND MC1403

FIGURE 24 - 3-DIGIT DVM USING MC3410 AND MC1403

MC3410, MC3510, MC3410C

APPLICATIONS INFORMATION (Continued)

FIGURE 25 - ALTERNATE APPROACH STAIRCASE A TO D

BCD D to A Converter

BCD output A to D conversions are most easily accomplished by accumulating the digital results in two different counters, but that concept does not extend to BCD Dto A techniques. Using the circuit in Figure 26 a three-digit BCD number can be converted to a 10-bit accurate voltage. The MC14008B's perform the combinational BCD-to-Binary conversion. The accuracy of this circuit is also solely dependent on the accuracy of the MC3410.

FIGURE 26 - 3-DECADE BCD DAC

MC3412 MC3512

Advance Information

COMPLETE 12-BIT HIGH-SPEED MONOLITHIC D/A CONVERTER

The MC3412/3512 is a monolithic 12-bit resolution current output D/A converter. It contains a highly stable bandgap reference capable of supplying 1.5 mA externally, trimmed to ±0.25% maximum error. Active laser trimming of thin film ladder network, reference, span, bipolar offset, and bandgap resistors at wafer level provide high accuracy and linearity of better than $\pm \frac{1}{2}$ LSB. An innovative bit switching scheme provides fast settling time with either CMOS or TTL thresholds. Precision internal span resistors allow output voltage options of 0 to 5.0 V, 0 to 10 V, ± 2.5 V, ± 5.0 V, and ± 10 V. 12-bit accuracy and a fast settling time of typically 200 ns (to $\pm \frac{1}{2}$ LSB) make this converter ideal for applications such as a fast A/D building block and CRT displays.

- True 12-Bit Linearity: ± 1/2 LSB Max
- Fast Settling Time: ± ½ LSB in 200 ns Typ
- Fully Monotonic Over Temperature Range
- Highly Stable Bandgap Voltage Reference On Chip
- Linearity Guaranteed Over Temperature
- Low Power Consumption: 210 mW
- Pinout Compatible with AD563 and AD565
- · Selectable Digital Thresholds
- Internal Application Resistors for Generating Calibrated Output Voltages

BLOCK DIAGRAM CMOS/TTL Vcc Threshold $24^{23}22^{21}20^{19}18^{17}16^{15}14$ Offset мѕвР 9.95 DAC Out Reference Out 10 Volt Current Switches 5.0 k 4 C Reference 10 V Span 10 ξŠ 11 Reference -0 20 V Span 19.95 k Analog R2R Ladder 7 OVEE 612 Digital Com

LASER TRIMMED **HIGH-SPEED** 12-BIT D/A CONVERTER

SILICON MONOLITHIC INTEGRATED CIRCUIT

Temperature Range

Ceramic DIP

Ceramic DIP

0°C to +70°C

MC3512L -55°C to +125°C This document contains information on a new product. Specifications and information herein are subject to change without notice.

MC3412L

MC3412, MC3512

MAXIMUM RATING (TA = 25°C unless otherwise noted.)

Rating		Symbol	Value	Unit
Power Supply Voltage		V _{CC} V _{EE}	+ 18 - 18	Vdc
Analog Ground to Digital Ground		V _{AD}	± 1.0	Vdc
Applied Output Voltage (Pin 9)		Vo	-7.0 to +12	Vdc
Digital Input Voltage (Pins 13 to 24)		VI	-5.0 to +18	Vdc
Reference Input to Analog Ground		V _{RI}	± 12	Vdc
Reference Current		IREF	Short circuit to either Com (Ground) or VCC	
Bipolar Offset to Analog Ground			± 12	Vdc
Ten Volt Span Resistor to Analog Ground			± 12	Vdc
Twenty Volt Span Resistor to Analog Ground			± 24	Vdc
Power Dissipation		PD	1000	mW
Operating Temperature Range	MC3412 MC3512	TA	0 to 70 - 55 to + 125	°C
Storage Temperature Range		T _{stg}	-65 to 150	°C
Junction Temperature	Ceramic	TJ	+ 175	°C

TERMINOLOGY

Nonlinearity (Relative Accuracy) — Maximum output deviation from ideal straight line connecting zero and full-scale readings, expressed as a fraction of LSB or percent of full scale.

Differential Nonlinearity — Maximum deviation in the readings of any two adjacent input bit codes from the ideal LSB step, expressed in fractions of LSB or percentage of full scale. A differential nonlinearity value greater than 1 LSB may lead to non-monitonic operation.

Monotonicity — For every increase in the input digital word, the output current either remains the same or increases.

The MC3512 and MC3412 are all guaranteed to be monotonic over temperature.

Settling Time — The elapsed time from the input transition until the output has settled within an error band about its final value.

The worst case switching condition occurs when all bits are switched "on," which corresponds to a low-to-high transition for all bits. This time is typically 200 ns for the output to settle to within $\pm \frac{1}{2}$ LSB for 12 bit accuracy. The turn-off time is typically 120 ns. These times apply when the output swing is limited to a small (<0.5 V) swing and the external output capacitance is under 10 pF.

Gain Error — The difference between the actual full scale range (difference in output between all bits on, and all bits off) and the ideal full scale range. Based on a 0 to 10 V output configuration, the ideal FSR is $\frac{4095}{2000} \times 10 = 9.99756 \text{ V}.$

Gain error is expressed in percentage of full scale (FS).

Unipolar Offset Error — Using the configuration shown in Figure 1, with R1 = 50 ohms and with all bits off, the output voltage reading compared to zero is expressed as a percentage of the full scale range. Offset voltage of the output op amp must be nulled.

Bipolar Offset Error — Using the configuration shown in Figure 2, with R2 = 50 ohms with all bits off, the output voltage reading compared to the ideal negative full scale value is expressed as a percentage of the full scale range. Offset voltage of the output op amp must be nulled.

Bipolar Zero Error — Using the configuration shown in Figure 2, with R1 = R2 = $50~\Omega$, with the MSB on and all other bits off, the output voltage reading compared to zero is expressed as a percentage of the full-scale range. Offset voltage of the output op amp must be nulled.

Temperature Coefficients — (Unipolar offset, Bipolar offset, Gain and Differential Nonlinearity). The maximum deviation of the particular parameter over the specified temperature range, divided by the temperature range, expressed in parts per million of Full Scale Range per degree C.

Compliance Voltage Range — The output terminal voltage range which will provide specified output resistance and current characteristics. The compliance voltage is specified with $V_{\text{EE}} = -15$. The compliance voltage range follows as V_{EE} is varied.

Power Supply Sensitivity — The change in full scale current caused by a change in VEE or VCC expressed in ppm of full scale current per percent change in VEE or VCC.

ELECTRICAL CHARACTERISTICS ($V_{CC} = +15 \text{ V}$, $V_{EE} = -15 \text{ V}$, MC3512: $T_A = -55 \text{ to } 125^{\circ}\text{C}$, MC3412: $T_A = 0 \text{ to } +70^{\circ}\text{C}$ All tests performed using internal reference, unless otherwise noted.)

	rtormed us	ing interna	l reference, unl	ess otherv	vise noted.)		
Characteristic	Symbol		MC3512			Unit		
		Min	Тур	Max	Min	Тур	Max	1
TTL Digital Logic Levels (All Bits) (Pin 2 open circuit) 13.5 ≤ VCC ≤ 16.5 V Bit On, Logic "1"	VIH VIL	2.0	_		2.0	_		V
Bit Off, Logic "0"	VIL		_	0.8	_	_	0.8	
CMOS Digital Logic Levels (All Pins) (Pin 2 tied to Pin 3) 13.5 ≤ V _{CC} ≤ 16.5 V Bit On, Logic "1" Bit Off, Logic "0"	V _{IH} V _{IL}	70% V _{CC}	_	30% V _{CC}	70% V _{CC}	_		V
Digital Input Current (CMOS/TTL Laurala)	- VIL			30% VCC			30% V _{CC}	
Bit On, Logic "1" Bit Off, Logic "0"	IIH IIL	_	+0.02 -2.0	+ 1.0 - 75	_	+0.02 -2.0	+ 1.0 - 75	μΑ
Programmable Output Range See Figures 1 and 2		_ _ _ _	0 to +5.0 -2.5 to +2.5 0 to +10 -5.0 to +5.0 -10 to +10	_ _ _ _		0 to +5.0 -2.5 to +2.5 0 to +10 -5.0 to +5.0 -10 to +10	-	V
Output Current (T _A = 25°C) Unipolar (All Bits On) Bipolar (All Bits On or Off)	Ю	-1.6 ±0.8	- 2.0 ± 1.0	- 2.4 ± 1.2	- 1.6 ± 0.8	-2.0 ±1.0	-2.4 ±1.2	mA
Output Resistance (T _A = 25°C) (Exclusive of Span Resistors)	RO	1.0	5.0	_	1.0	5.0		MΩ
Output Capacitance (T _A = 25°C)	СО	_	25			25		pF
Output Compliance Voltage Range	Voc	-5.0		+ 10	-5.0		+ 10	V
Nonlinearity (T _A = 25 °C)	NL	_	± 1/4 (0.006)	± ½ (0.012)	_	± 1/4 (0.006)	± ½ (0.012)	LSB % of FS
Nonlinearity	NL	_	± ½ (0.012)	± ¾ (0.018)	=	± ½ (.012)	± 3/4 (0.018)	LSB % of FS
Differential Nonlinearity (T _A = 25°C)		_	± 1/2	± 3/4		± 1/2	± 3/4	LSB
Differential Nonlinearity			M	onotonicit	y Guarante	eed		
Gain Error — Figure 1, R1 = Fixed 50 Ω (T _A = 25°C)			± 0.1	± 0.25		± 0.1	± 0.25	% of FS
Offset Error Unipolar — Figure 1 Bipolar — Figure 2, R2 = Fixed 50 Ω (T _A = 25°C)		_	± 0.01 ± 0.05	± 0.05 ± 0.15	_	± 0.01 ± 0.05	± 0.05 ± 0.15	% of FS
Bipolar Zero Error — Figure 2, R1 = R2 = Fixed 50 Ω (T _A = 25°C)		_	± 0.05	± 0.15	_	± 0.05	± 0.15	\$ of FS
Gain Adjustment Range — Figure 1 (T _A = 25°C)		± 0.25	_	_	± 0.25	-	-	% of FS
Bipolar Offset Adjustment Range — Figure 2 (T _A = 25°C)		± 0.15	_	- 1	± 0.15	_	_	% of FS
Unipolar Zero Temperature Coefficient		_	1.0	2.0		1.0	2.0	ppm/°C
Bipolar Zero Temperature Coefficient			5.0	10	_	5.0	10	ppm/°C
Gain Temperature Coefficient, Full Scale			15	30	_	15	30	ppm/°C
Differential Nonlinearity Temperature Coefficient		_	2.0	_	_	2.0	_	ppm/°C
Settling Time to ½ LSB (T _A = 25°C) All Bits On-to-Off or Off-to-On	t _S	_	200	400	_	200	400	ns
Reference Input Impedance (TA = 25°C)	Z _{in}	15	20	25	15	20	25	kΩ
Reference Output Voltage (T _A = 25°C)	V _{RO}	9.950	10.00	10.050	9.950	10.00	10.050	Volts
Reference Output Current — Available to External Loads (T _A = 25°C)	lRO	1.5	2.5		1.5	2.5	_	mA
Power Supply Current VCC +13.5 to +16.5 Vdc VEE -10.8 to -16.5 Vdc (TA = 25°C)	ICC IEE	_	6.0 -8.0	10 - 12	_	6.0 -8.0	10 - 12	mA
Power Supply Gain Sensitivity VCC +13.5 to +16.5 Vdc VEE -10.8 to -16.5 Vdc (TA = 25°C)	PSSIFS+ PSSIFS-	=	0.5 2.0	10 25	_	2.0 3.0	10 25	ppm of FS/%

+ 15 V ・ CMOS/TTL Threshold 24 2322 21 20 19 18 17 16 15 14 13 LSB MSB 5.0 k 10 V 10 Logic Switches & Level Shifters Gain Adjust 5.0 k O Vout R1 100 Ω 15T 19.95 k 9.95 k ₹20 k + 15 V Rx 8 R2 Offset 20 k Adjust 15T зМ - 15 V - 15 V

FIGURE 1 — MC3412 IN TYPICAL UNIPOLAR CONNECTION SCHEME

UNIPOLAR DAC OPERATION

A typical circuit configuration for unipolar operation of MC3412 is shown in Figure 1.

Step 1 — Output Range

Determine which output range is required. For +5.0 Volt full scale (FS) range, connect Pin 10 to output of external operational amplifier output and short Pin 9 to Pin 11. For +10 Volt FS range, connect Pin 10 to external operational amplifier output, Pin 11 remains unconnected.

Step 2 — Zero Adjust

Turn all bits OFF and adjust R2 until external operational amplifier output is 0 Volts.

Step 3 — Gain Adjust

Turn all bits ON. Adjust R1 until operational amplifier output reaches 4.9988 Volts for +5.0 Volt range or 9.9976 for +10 Volt range.

FIGURE 2 — MC3412 IN TYPICAL BIPOLAR CONNECTION SCHEME

BIPOLAR DAC OPERATION

A typical circuit configuration for bipolar operation of MC3412 is shown in Figure 2.

Step 1 — Output Range

Determine which output range is required. For ± 2.5 Volts full scale (FS) range, connect Pin 10 to output of external operational amplifier and short Pin 9 to Pin 11. For ± 5.0 Volt FS range, connect Pin 10 to output of external operational amplifier, Pin 11 remains unconnected. For ± 10 Volt FS range, connect Pin 11 to output of external operational amplifier, Pin 10 remains unconnected.

Step 2 - Offset Adjust

Turn all bits OFF. Adjust R2 until operational amplifier output is:

- -2.5000 Volt for ± 2.5 Volt range
- $-\,5.0000$ Volt for $\pm\,5.0$ Volt range
- -10.0000 Volt for ± 10 Volt range

Step 3 — Gain Adjust (Bipolar Zero)

Turn MSB ON and all other bits OFF. Adjust R1 until operational amplifier output is 0 Volts.

NOTES:

- 1. For TTL and DTL compatibility, leave Pin 2 open.
- 2. For high voltage CMOS compatibility, short Pin 2 to Pin 3.
- 3. Supplies should be bypassed with 0.1 μ F capacitors.
- 4. In unipolar operation, $R_{\rm X}$ should be made equal to the internal feedback resistor. In bipolar, $R_{\rm X}$ equals the feedback resistor in parallel with 10 k.

MC6890

Advance Information

MPU-BUS-COMPATIBLE 8-BIT D-TO-A CONVERTER

The MC6890 is a self-contained, bus-compatible, 8 bit ($\pm 0.19\%$ accuracy) D-to-A converter system capable of interfacing directly with 8-bit microprocessors.

Available in both commercial and military temperature ranges, this monolithic converter contains master/slave registers to prevent transparency to data transitions during active enable; a laser-trimmed, low-TC, 2.5 V precision bandgap reference; and high stability, laser-trimmed, thin-film resistors for both reference input and output span and bipolar offset control.

A reset pin provides for overriding stored data and forcing $I_{\mbox{\scriptsize out}}$ to zero.

- Direct Data Bus Link with All Popular TTL Level MPU's
- Fast Settling Time: 200 ns Typ
- Internal 2.5-V Precision Laser-Trimmed Voltage Reference (May Also Be Used Externally)
- Minimum Enable Pulse Width: 70 ns
- Fast Enable: 10 ns Maximum Data Hold Time
- Reset Pin to Override Data
- \bullet Output Voltage Ranges: +5, +10, +20, or ±2.5, ±5, ±10 Volts
- Low Power: 90 mW Typ
- +5 V and -5 V to -15 V Supplies

8-BIT MPU-BUS-COMPATIBLE DAC

SILICON MONOLITHIC INTEGRATED CIRCUIT

L SUFFIX CASE 732-03

ORD	ERING	INFOR	MAT	ION
				_

Device	Temperature Range	Package
MC6890L	0° to +70°C	Ceramic DIP
MC6890AL	-55° to +125°C	Ceramic DIP

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+7.0 -18	Vdc
Digital Input Voltage, Pins 1-8, 12 Pin 9	V _{in}	-3.0 to +7.0 0 to +7.0	Vdc
Applied Output Voltage	V ₁₄	V _{EE} +2.0 to V _{EE} +24	Vdc
Reference Amplifier Input	V ₁₈	±7.5	Vdc
Operating Temperature Range MC6890L, MC6890AL	TA	0 to +70 -55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Temperature	TJ	+150	°C

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $V_{EE} = -12 \text{ V}$, Pin 18 loaded only by Pin 19 through 100 Ω . Reset high, $T_A = T_{low}$ to T_{high} ⁽¹⁾, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Digital Input Logic Levels					Vdc
High Level, Logic 1	v_{IH}	2.0		_	
Low Level, Logic 0	VIL		_	0.8	
Digital Input Current					
Data (V _{IH} = 3.0 V)	ļН	_	0.001	1.0	μA
(V _{IL} = 0.4 V) Enable (V _{IH} = 3.0 V)	l lic	_	0.5 0.001	-10	μA
(V _{IL} = 0.4 V)	IH IIL		-6.5	1.0 -100	μ Α μ Α
Reset (V _{IH} = 5.0 V)	l iii	_	0.001	1.0	μA
(V _{IL} = 0.4 V)	l iii		-1.0	-15	μA
Full Scale Output Current — Unipolar	10	-1.50	-1.992	-2.50	mA
Unipolar Zero Output — All Bits Off (T _A = 25°C)		_	0.010	0.20	μΑ
Output Voltage Temperature Coefficient	TCVO				ppm of FSR/°C
Unipolar Zero			±1.0	±2.0	70117 0
Bipolar Zero		_	±5.0	±15	
Full Scale Range		_	±20	±50	
Output Voltage, Full Scale Range (See Figure 3) (T _A = 25°C)	v _O				Vdc
(10 V Span)		9.861	9.961	10.061	
(20 V Span) (5.0 V Span)		19.722 4.930	19.922 4.980	20.122	
		4.930	4.980	5.030	
Output Voltage, Bipolar Zero (MSB on) (See Figure 4) (T _A = 25°C) (10 V Span)	v _o			+20	mV
(20 V Span)	1	_	0.	±20 ±40	
(5.0 V Span)		_	l ŏ	±10	
DAC Output Resistance — Exclusive of Span Resistors (T _A = 25°C) (See Figure 5)	ro	1.0	5.0		МΩ
Resolution	_	8.0	8.0	8.0	Bits
Nonlinearity — Relative Accuracy (See Terminology)	NL	_		±0.19 (±1/2 LSB)	%
Differential Nonlinearity		Mono	tonicity Guar		
Differential Nonlinearity (T _A = 25°C) (See Terminology)		_	-	±0.29 (±3/4 LSB)	%
Reference Input Resistor	R _{REF}	3800	4900	6800	Ω
Reference Output Voltage (TA = 25°C)	VREF	2.470	2.500	2.530	Vdc
Reference Output Impedance (T _A = 25°C) I _{load} = 0-3.0 mA	_	-	0.3	1.0	Ω
Reference Short Circuit Current (T _A = 25°C)	IREF	15	30	50	mA
Reference Output Voltage Temperature Coefficient	TCVO(REF)	_	±20	_	ppm/°C
Power Supply Range	V _{CC}	4.5 -16.5	5.0 -12	5.5 -4.5	Vdc
Power Supply Current — All Bits Low					mA
$(V_{CC} = 5.0 \text{ V})$	l cc	_	10	20	
(V _{EE} = -5.0 V)	EE	_	-10	-15	
(V _{EE} = -15 V)	IEE	_	-10	-15	
Power Supply Rejection (T _A = 25°C)	PSRR		0.010	l l	LSB
To V _{CC} (V _{CC} = 4.5 to 5.5 V)		_	0.010	±1/10	
To V _{EE} (V _{EE} = -4.5 V to -16.5 V)		. —	0.10	±1/2	
Power Dissipation — All Bits Low For V _{CC} = 4.5 V, V _{FF} = -4.5 V	P _D		90	158	mW
For V _{CC} = 5.5 V, V _{EE} = -16.5 V	{	_	220	358	
				000	

NOTE 1: T_{low} = -55°C for MC6890A, 0° for MC6890 T_{high} = +125°C for MC6890A, +70°C for MC6890

AC SPECIFICATIONS (V_{CC} = 5.0 V, V_{EE} = -12 V, T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Current Settling Time (Enable Positive Edge to ±1/2 LSB Output)	t _S	_	200	300*	ns
Data Setup Time	t _{su(D)}	70	40	_	ns
Data Hold Time	th(D)	10	0	_	ns
Pulse Widths Enable Reset	tW(<u>E</u>) tW(R)	70 100*	20 —	_	ns
Propagation Delays Enable, Low to High Reset, High to Low (I _O < 1.0 μA)	^t PLH(<u>E)</u> ^t PHL(R)	_	100 250	_	ns

*Not 100% tested, guaranteed by design

FIGURE 2 — BLOCK DIAGRAM

FIGURE 5 — TEST CONFIGURATION FOR DAC OUTPUT IMPEDANCE

TERMINOLOGY

Nonlinearity (Relative Accuracy) — Maximum output deviation from ideal straight line connecting zero and full-scale readings, expressed as a fraction of LSB or percent of full scale.

Differential Nonlinearity — Maximum deviation in the readings of any two adjacent input bit codes from the ideal LSB step, expressed in fractions of LSB or percentage of full scale. A differential nonlinearity value greater than 1 LSB may lead to non-monotonic operation.

Monotonicity — For every increase in the input digital word, the output current either remains the same or increases. The MC6890 is guaranteed to be monotonic over temperature.

Settling Time — The elapsed time from the Enable positive transition until the output has settled within an error band about its final value.

The worst case switching condition occurs when all bits are latched "on," which corresponds to a low-to-high transition for all bits. This time is typically 200 ns for the current output to settle to within $\pm 1/2$ LSB for 8 bit accuracy. These times apply when the output swing is limited to a small (<0.5 V) swing and the external output capacitance is under 10 pF.

Gain Error — The difference between the actual full scale range and the ideal full scale range. Based on a 0 to 10 V output configuration, the ideal FSR is $\frac{255}{256} \times 10 \text{ V} = 9.961 \text{ V}$.

Gain error is laser trimmed to less than $\pm 1.0\%$ with R1 = $100\,\Omega$ (Figure 3) and can be user trimmed to zero error with R1 = $200\,\Omega$ pot.

Bipolar Zero — Using the configuration shown in Figure 6 with R1 = $100\,\Omega$, R2 = $50\,\Omega$, with the MSB on and all other bits off, the output voltage reading compared to analog ground is expressed as a percentage of the full-scale range. Offset voltage of the output op amp must be nulled. Bipolar Zero error is laser trimmed to less than 0.20% and can be user trimmed to zero with R2 = $100\,\Omega$ pot.

Temperature Coefficients — (Unipolar zero, Bipolar zero, Gain and Reference Output). The maximum deviation of the particular parameter over the specified temperature range, divided by the temperature range, expressed in parts per million of Full Scale Range per degree C.

Power Supply Rejection — The change in full scale current caused by the specified change in V_{EE} or V_{CC} is expressed in LSB's.

Reset Function — The MC6890 has a Reset pin (9) that will force the DAC's registers, and therefore the DAC output current, to zero. This input is active low and should not occur simultaneously with an active Enable signal although no harm would result to the converter. The power dissipation increases slightly during Reset low. Reset should not be allowed to become more negative than ground.

FIGURE 6 — MC6890 IN TYPICAL BIPOLAR ± 2.5 V OPERATION

	D7	D6	D5	D4	D3	D2	D1	D0	V _O (V	olts)
- 1	٠.	50	53	54	53	52	"		R2 ≅ 60 Ω	R2 ≅ 50 Ω
	1	1	1	1	1	1	1	1	+ 2.490	+ 2.480
-	1	1	1	1	1	1	1	0	+ 2.470	+ 2.460
	1	0	0	0	0	0	0	0	+ 0.010	+ 0.000
	0	1	1	1	1	1	1	1	- 0.010	- 0.020
-	0	0	0	0	0	0	0	1	2.470	- 2.480
	0	0	0	0	0	0	0	0	- 2.490	- 2.500

TYPICAL PERFORMANCE CURVES

FIGURE 7 — REFERENCE VOLTAGE versus EXTERNAL LOAD CURRENT*

*External load current is in addition to Reference Input Current (Pin 18) of D/A converter.

FIGURE 8 — DIGITAL INPUT CHARACTERISTICS

FIGURE 9 — TYPICAL APPLICATION OF THE MC6890 IN A MC6800 SERIES MPU SYSTEM

MC10315L MC10317L

Advance Information

SEVEN-BIT PARALLEL HIGH SPEED A/D CONVERTER (WITH OVERRANGE)

The MC10315L/MC10317L is a 7-bit high speed parallel A/D converter which employs ECL processing. The device consists of 128 parallel latched comparators across a high quality input reference network. The 128 comparator outputs are then fed to a 128-to-7 encoder and latched to the outputs which are ECL compatible. An overrange bit is provided to allow overrange sensing, or to facilitate the connection of an MC10315L and MC10317L in parallel to produce an 8-bit A/D converter. The MC10315L and MC10317L are identical devices except for the method of overranging used, which simplifies the utilization of two 7-bit converters to produce an 8-bit conversion. (See ordering information and technical description.)

Applications include video display and radar signal processing, high speed instrumentation, and TV broadcast video encoding.

- 7-Bit Resolution/8-Bit Accuracy Plus Overrange
- Direct Interconnection for 8-Bit Conversion
- 15 MHz Sampling Rate
- Wide Range of Input Voltage: ±2.0 Volts
- Low Input Capacitance: ≤70 pF
- 1.2 Watt Power Dissipation
- No Sample and Hold Required for Video Bandwidth Signals
- Standard 24-Pin Package

MC10315L/MC10317L DEVICE/APPLICATION CONFIGURATION (10.24)Ain CLK Vcc (5) V_{RT} O O OVR (14) (3) V_RTac **O** O OVR (15) 128 128 to Output (6) V_{RM}.O Latched D6 (16) 7 Latches Comp. Encode (8) V_{RBac} O D0 (22) (7) V_{RB} O q Gnd2 Gnd1 V_{EE} (1, 13)(23)(2, 12)

HIGH SPEED 7-BIT ANALOG-TO-DIGITAL FLASH CONVERTER

SILICON MONOLITHIC INTEGRATED CIRCUIT

*VCC, VEE and Gnd2 are each available on two pins. Interconnections for the respective function are made on chip. To minimize I=R drops on chip and in the bonding wires, utilization of both pins for each function is recommended.

ORDERING INFORMATION**							
Overrange Function							
	Analog Input	Logic	Levels				
Device	Condition	OVR Bit	D0-D6 Bits				
MC10315L	Overranged	High	High				
MC10317L	Overranged	High	Low				

**For information regarding an evaluation board, contact Linear Marketing.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MC10315L, MC10317L

MAXIMUM RATINGS $(T_A = 25^{\circ}C \text{ unless otherwise noted | Note 1|})$

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	+ 7.0	Vdc
	VEE	- 8.0	Vdc
Ground 1	Gnd1	~ 0.8, + 3.0	Volts
Clock Input Voltage	VCLK	0 to VEE	Volts
Analog Inputs:			Volts
Ain, VRT, VRB		+ 2.5	
V _{RT} — V _{RB}		2.5	
Digital Output Source Current	Isource	30	mA
(per Output)			
Power Dissipation	P _{D(max)}		W
Free Air Convection	2,	2.8	
Air Flow ≥ 500 Lfpm		4.0	
Operating Temperature	TA	0 to +70	°C
Junction Temperature	TJ	165	°C
Storage Temperature Range	T _{sto}	65 to + 150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance Junction to Air	$R_{ heta JA}$		"C/W
Free Air Convection		50	
Air Flow ≥ 500 Lfpm		35	

ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 Vdc, V_{EE} = -5.2 Vdc, T_A = 25°C unless otherwise noted |Note 1|)

| MC10315L/MC10317L |

		M	C10315L/MC10317			
Characteristic	Symbol	Min	Тур	Max	Unit	
Resolution 0°C ≤T _A ≤ 70°C		_	_	7	Bits	
Non-Linearity fs ≤15 MHz, V _{RT} -V _{RB} = 2.0 V	NL	_	± 0.16	_	%	
Differential Non-Linearity fs ≤ 15 MHz, V _{RT} -V _{RB} = 2.0 V	DNL	_	± 0.10		%	
Offset Error					mV	
V _{RT} -V _{RB} = 2.0 V Top Bottom	Vosrt Vosrb		± 7.0 ± 7.0	_		
Maximum Sampling Frequency 0° C \leq T _A \leq 70° C V _{RT} -V _{RB} = 2.0 V, No Missing Codes	fs		15	_	MHz	
Aperture Delay Time	t _{ad}	_	3.0	_	ns	
Aperture Uncertainty		_	80		ps	
Data Valid Delay Time 0°C ≤ T _A ≤ +70°C	t _{vd}	_	43	_	ns	
Comparator Track Delay Time 0°C ≤ T _A ≤ +70°C	t _{cd}	_	25	_	ns	
Differential Phase		_	1.0	_	Deg.	
Differential Gain fs = 14.3 MHz Unlocked NTSC or PAL Ramp Modulated with 40 IRE Color Subcarrier			1.5	-	%	
Maximum Analog Input Slew Rate	SR	_	35	_	V/μs	
Analog Input Bias Current $V_{\text{In}} \ge V_{\text{RT}}, 0^{\circ}\text{C} \le T_{\text{A}} \le +70^{\circ}\text{C}$	IВ	_	300 ½	400	μΑ	
Equivalent Analog Input Resistance V_{RT} - V_{RB} = 2.0 V, 0°C \leq $T_A \leq$ +70°C	R _{in}	5.0	_	_	κΩ	
Analog Input Capacitance Vin ≥VRT	C _{in}	-	70		pF	
Reference Ladder Current VRT-VRB = 2.0 V	I _{ref}	24	31	47	mA	
Reference Ladder Resistance (Total Resistance)	R _{ref}	_	64		Ω	

MC10315L, MC10317L

ELECTRICAL CHARACTERISTICS (V_{CC} = +5.0 Vdc, V_{FF} = -5.2 Vdc, T_A = 25°C unless otherwise noted [Note 1]) continued

		MC			
Characteristic	Symbol	Min	Тур	Max	Unit
Reference Ladder Resistance Temperature Coefficient 0°C ≤ T _A ≤ +70°C	TCR	States	0.37	-	%/°C
Clock Input Logic Levels, 0°C ≤ T _A ≤ +70°C High Logic State Low Logic State Note 2	V _{IH} V _{IL}	-1.145	-	 -1.455	V
Clock Input Current High Logic State Low Logic State	liH lir		150 100		μΑ
Digital Output Logic Levels High Logic State Low Logic State 0°C ≤ TA ≤ +70°C Note 2	V _{OH} VoL	1.020	-	- - 1.605	.v
Power Supply Current, $0^{\circ}C \le T_{A} \le +70^{\circ}C$ $4.75 \ V \le V_{CC} \le 5.25 \ V$ $-4.94 \ V \ge V_{EE} \ge -5.46 \ V$	ICC IEE		118 -110	150 -140	mA

RECOMMENDED OPERATING CONDITIONS (Note 1)

	Symbol	N			
Characteristic		Min	NOMINAL	Max	Unit
Power Supply Voltages	V _{CC} V _{EE}	4.75 5.46	5.0 5.2	5.25 4.94	Vdc
Ground 1	Gnd1	0.3	0	+ 1.0	V
Reference Input, Top	V _{RT}	1.0	0	+ 2.0	V
Reference Input, Bottom	V _{RB}	2.0	0	+ 1.0	V
Reference Input Voltage Range (VRT VRB)	V _{RR}	1.0		2.0	V
Convert Clock Pulse Width, High Convert Clock Pulse Width, Low	^t pwH ^t pwL	44 25			ns
Digital Output Current	ЮН		10		mA
Operating Temperature Range	TA	0		70	°C

Notes:

- 1. All voltage levels referenced to Ground 2 (Gnd2) unless otherwise noted.
- 2. MECL 10K logic levels are designed to meet the dc specifications after thermal equilibrium has been established with a transverse airflow greater than 500 Linear fpm and $V_{\text{EE}} = -5.2 \text{ V} \pm 0.010 \text{ V}$. All outputs are specified driving 50Ω to -2.0 V.

*Recommended range of rise (tr) and fall (tf) times are 2.0 to 7.0 ns.

FIGURE 2 — EQUIVALENT R_{in} AND C_{in} OF THE ANALOG INPUT

$$\begin{split} R_{in} &\simeq \frac{|V_{RT} - V_{RB}|}{400~\mu\text{A}} \\ ^*C_{in} &\simeq \frac{30 \text{pF}}{|V_{RT} - V_{RB}|} \mid |V_{in} - V_{RB}| + 40~\text{pF} \\ ^*Valid for \ V_{RT} &\geqslant V_{in} \geqslant V_{RB} \end{split}$$

$R \simeq 0.5 \Omega$

 $R_{in}-\mbox{Effective}$ input resistance representing the cumulative bias currents of the 128 input comparators.

 $c_{in} - \mbox{Equivalent}$ input capacitance variable as a function of $v_{in}.$

FIGURE 4 — CLOCK INPUT IS STANDARD MECL INPUT WITH EMITTER FOLLOWER

FIGURE 3 — EQUIVALENT CIRCUIT OF REFERENCE RESISTOR LADDER NETWORK

Ceq — The lumped equivalent value of capacitance representing the distributed capacitance for each resistor (R) and the input capacitance for each comparator.

FIGURE 5 — DIGITAL OUTPUTS ARE STANDARD MECL 10K WITH EMITTER FOLLOWERS CAPABLE OF SOURCING 25 MA. EXTERNAL PULL-DOWN RESISTORS ARE REQUIRED ON ALL OUTPUTS.

*Recommended value of external pull-down resistors for all outputs.

Analog Input Range MC10315L MC10317L Overrange Overrange Comparator (15.6 mV per LSB) **Data Bits Data Bits** Rit Rit -2.0 V to 0 V 0 V to 2.0 V ± 1.0 V (D0-D6) (OVR) Step (D0-D6) (OVR) 000 2 0000 V + 0 0000 V 1.0000 V 00000000000000 - 1.9922 V 001 + 0.0078 V 0.9922 V 0000001 0000001 ٠ - 1.0234 V 063 + 0.9766 V 0.0234 V 0111111 0111111 064 1.0078 V + 0.9922 V 0.0078 V 1000000 1000000 065 0.9922 V + 1.0078 V + 0.0078 V 1000001 1000001 126 0.0391 V + 1.9609 V + 0.9609 V 1111110 1111110 127 0.0234 \/ + 1 9766 V + 0:9766 V 1111111 1111111 128 0.0078 V + 1.9922 V + 0.9922 V 1111111 0000000

FIGURE 6 - OUTPUT CODING FOR THE MC10315L/MC10317L DEVICES*

CIRCUIT DESCRIPTION

Conversion Timing

The MC10315L/MC10317L performs a conversion and outputs data within a single clock cycle. Referring to Figure 1 will indicate that the clock input is sensitive to the rising and falling clock edges. All significant operations are referenced to the edges. A rising clock edge holds the analog input by latching the (128) input comparators. The output latches are also released to toggle and update to the new digital value. The falling edge of the clock will latch the data outputs. Clock timing must be considered to ensure a valid conversion. With the rising edge of the clock, there will be an aperture delay (tad) which is the time from the threshold of the (50%) edge to the actual time the input comparators latch in the analog value of Ain. The data valid delay time (tvd) is the time interval for valid data to appear at the outputs. tvd is 43 ns from the rising clock edge. After this time, the clock can go low to latch the valid data at the outputs. The clock must remain low a minimum time before another rising edge in order for the input comparators to unlatch and begin to track. This comparator tracking delay time (tcd) is 25 ns. After this minimum time, the conversion clock cycle is repeated, latching in a new analog input value.

The minimum recommended clock pulse width high time (tpwH) is 44 ns and pulse width low time (tpwL) is 25 ns for maximum recommended sample frequency (fs).

Rise (t_f) and fall (t_f) time of the clock edges should be in the range from 2.0 to 7.0 ns to minimize the chance of clocking errors or uncertainty.

Analog Input (Ain)

The dc current drive required by the analog input (A_{in}) is a function of the input voltage (V_{in}) and is directly attributable to the accumulation of input bias currents for each of the 128 comparators. When $V_{in} \leqslant V_{RB}$, the dc current is zero and when $V_{in} \geqslant V_{RT}$ the current is a maximum of 400 μ A. Looking at this current as a function of V_{in} on a large signal basis, it will appear as a straight line approximation.

This input current loading on a driving source impedance can produce a dc gain error. Cancellation of this error is accomplished by utilizing an adjustable voltage reference at VRT. If VRT is tied to a fixed reference or grounded, the driving amplifiers offset can be adjusted. However, a zero error will now occur which can be cancelled by adjusting VRB. Another method of reducing dc gain error due to analog input current is to use a driving amplifier with sufficiently low output impedance (Z_S) . This can be determined by: $Z_S \leqslant \underbrace{\text{maximum gain error (V)}}$

i.e., with a 1.0 volt analog input range (V_{RT} - V_{RB} = 1.0 V), a 1/2 LSB of gain error = 3.9 mV

$$Z_{S} \le \frac{3.9 \text{ mV}}{400 \mu \text{ A}} \le 9.76 \Omega$$

^{*}The MC10315L and MC10317L differ only in output coding at comparator step 128 where the device is overranged

MC10315L, MC10317L

Analog Input (Ain) (Continued)

The input capacitance (C_{in}) is also a function of input voltage (V_{in}). For $V_{in} \leq V_{RB}$, $C_{in} \simeq 40$ pF; $V_{in} \geq V_{RT}$, $C_{in} \simeq 70$ pF. The input capacitance on a large signal basis over the analog input range is a linear function. C_{in} can limit the analog input bandwidth if the driving source impedance is too great. This can introduce an ac gain error if the corner frequency f_{C} is not sufficiently extended from maximum input frequency (f_{in}).

For example, to keep the ac gain error to within 1/2 LSB of 7-bits, the corner frequency (f_C) of the effective single pole, low-pass filter created by the driving source impedance (Z_S) and the input capacitance (C_{in}) should be: fc \geqslant 11.3 f_{in}

Cin - analog input capacitance.

fin - maximum input frequency of Ain

 $f_{\text{C}}^{\text{...}}$ - corner frequency determined by C_{in} and Z_{S}

n - number of bits

Zs - driving source impedance of the analog input

For single Pole Filter:
$$\frac{f_{c}}{f_{in}}\geqslant\frac{1}{\sqrt{\left(\frac{\frac{1}{2^{n+1}-1}}{2^{n+1}}\right)^{2}}^{-1}}$$

If measures have already been taken to keep dc gain error to within 3.9 mV (1/2 LSB for 1.0 V full scale) by providing a low Z_s as described earlier, the calculated $Z_s \leqslant 9.76~\Omega$ will sufficiently extend the corner frequency of the input pole to $\simeq 233~\text{MHz}$.

Figure 2 illustrates the equivalent analog input in terms of an effective variable C_{in} and R_{in} .

Reference Inputs

As shown in Figure 3, a resistive (divider) ladder comprised of 128 matched resistors with a nominal value of 0.5Ω each, provides a reference voltage to each of the 128 comparator inputs. Recommended range of reference voltage applied across the resistive ladder (VRT to VRB) is 1.0 volt to 2.0 volts. VRT must be kept more positive than VRB. VRT must not exceed +2.5 volts above Gnd2 and VRB must not become more negative than −2.5 volts below Gnd2. With 2.0 volts across the reference ladder $(V_{RT}-V_{RB}=2.0 \text{ V})$, the ladder network has a commonmode range capability about Gnd2, permitting analog input (A_{in}) ranging options such as \pm 1.0 volt, 0 to - 2.0 volts and 0 to 2.0 volts. A minimum of 1.0 volt should be maintained across the ladder network to ensure linearity to 7-bits. Less than 1.0 volt will degrade linearity due to comparator offsets becoming a significant factor.

Additional taps on the reference ladder are pinned out, providing access to the middle (VRM), 1/4 (VRBac) and 3/4

(V_{RTac}) scale points. V_{RM} can be left open, but if ladder linearity adjustment is required, an appropriate reference voltage can be applied. The V_{RBac} and V_{RTac} pins are intended for ac bypassing if ladder noise presents a problem. Reference voltages can be applied to these pins if tighter ladder linearity is desired. If the reference ladder voltage is to be varied dynamically such as in an AGC application, ac bypassing of any of the reference taps would likely yield undesirable results.

Calibration is accomplished by adjusting VRB and VRT to set the first and 127th comparator thresholds to the desired voltages. If a 0 to -1.0 V input ($A_{\rm in}$) range is desired, continuously strobe the convertor with -0.9961 V on the analog input, adjust VRB for output toggling between codes 0000000 and 0000001. Then apply $A_{\rm in}=-0.0117$ V and adjust VRT for toggling between 1111110 and 1111111 (thresholds 126th and 127th). Rather than adjusting VRT, it may be more convenient to connect VRT to Gnd2 and adjust the driving amplifier offset control. VRB can again be used as a gain adjust point to cancel the effects of using the offset control technique.

Application Information

8-bits of resolution and accuracy can be obtained by stacking two 7-bit converters and wire ORing the data outputs. Shown in Figure 7 is an MC10315L and MC10317L in an 8-bit A/D configuration. The circuit is quite straightforward with the analog input (Ain) for each converter tied together, forming a common input. The analog input range is negative unipolar with VRT of the MC10315L grounded (Gnd2) or referenced very near ground. VRB of the MC10315L is connected to $V\dot{R}T$ of the MC10317L and referenced to VREF/2 to ensure this node is midscale. Unit to unit variations in Reference Ladder Resistance of each device can shift this point if a reference is not used, causing linearity errors. Care should be taken when interconnecting VRB and VRT of the MC10315L and MC10317L respectively. Reference ladder current flowing through resistance of printed circuit board runs, sockets and even device pins and bonding wires can establish significant IR drops of several millivolts causing differential non-linearity errors at midscale. A negative reference of -2.000 V is applied to VRB of the MC10317L. The remaining pins VRTac, VRBac and VRM for both devices can be left open or be connected to additional external references if linearity improvements are required. VRTac and VRBac can also be used as ac decoupling points for the resistor ladders to reduce any transients which may exist due to current noise.

The clock (CLK) inputs are driven by a common clock. Depending on the input frequency to be encoded, it may be necessary to skew the rising clock edges to one of the devices to compensate for a slight difference in aperture delay time (t_{ad}) which may occur between the two devices.

Application Information (Continued)

The digital outputs, D0 through D6 are wire ORed. The overrange (OVR) bit of the MC10317L becomes the MSB for the 8-bit word in Binary coding.

The MC10315L and MC10317L differ only in the method of overranging (see Figure 6, output coding truth table). When the MC10317L input (Ain) is overranged, the overrange (OVR) bit goes high, all other bits (D0-D6) go low. This enables direct wire ORing of additional A/D outputs to expand to ≥8-bits. When the MC10315L is overranged, OVR goes high and the data bits (D0-D6) remain high. This device provides a true termination of a digital word when the system becomes overranged. Generally the MC10315L will be used in a 7-bit, stand-alone converter scheme, or as the upper scale A/D when stacking two or more devices to expand to ≥7-bits.

Pull-down resistors are required at the digital outputs. A recommended value of 510 Ω will provide proper output fall times in most applications and also hold down device

power dissipation. The outputs are capable of sustaining MECL levels when terminated with a $50\,\Omega$ (to $-2.0\,V$) characteristic load impedance to minimize reflections. Design rules for MECL 10K should be followed when using these devices

Care must be taken in PC board ground layout to prevent digital ground currents from flowing through the analog ground. Separate grounds are provided on the MC10315L/MC10317L to help isolate the digital noise from the analog section of a system. Gnd1 is internally connected to only the collectors of the output emitter followers as shown in Figure 5. This provides a separate path for current transients of the switched output loads. All other internal circuitry is referenced to Gnd2.

Low and high frequency power supply bypassing should be provided physically close to the device, with V_{CC} and V_{FF} bypassed to Gnd2.

FIGURE 7 — CIRCUIT CONFIGURATION UTILIZING A MC10315L AND MC10317L A/D
TO PERFORM A HIGH SPEED, 8-BIT CONVERSION

Specifications and Applications Information

HIGH SPEED 8-BIT DIGITAL-TO-ANALOG CONVERTER

The MC10318 (Series) is a high-speed D/A converter capable of data conversion rates in excess of 25 MHz. The digital inputs are compatible with MECL 10,000 Series Logic. Complementary current outputs provide up to 56 mA full scale capability. The MC10318 Series is available in 4 accuracy grades (over temperature) to meet the requirements of many applications, including: high-speed instrumentation and test equipment, storage oscilliscopes, display processing, radar systems, and digital video systems (broadcast and receiver applications).

- FAST Settling Time 10 ns (Typ to ±0.19%)
- Four Accuracy Grades
 - 9-Bit Linearity (±0.10%) MC10318L9
 - 8-Bit Linearity (±0.19%) MC10318L

 - 7-Bit Linearity (\pm 0.39%) MC10318CL7 6-Bit Linearity (\pm 0.78%) MC10318CL6
- Inputs MECL 10,000 Compatible
- Complementary Current Outputs
- Output Compliance: −1.3 V to +2.5 V
- Single MECL Supply: -5.2 V
- Standard 16-Pin Dual-In-Line Package

HIGH SPEED **8-BIT DIGITAL-TO-ANALOG** CONVERTER

SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Ratin	Symbol	Value	Unit	
Power Supply Voltage		VEE	-6.0 to +0.5	Vdc
Digital Input Voltage		VI	0 to VEE	Vdc
Applied Output Voltage		٧o	+5.0 to V _{EE}	Vdc
Reference Current		I _{ref} (12)	5.0	mA
Output Current		IFS	FS - 75	
Reference Amplifier Input Range		V _{ref}	+0.5 to VEE	Vdc
Reference Amplifier Differential Inputs		V _{ref} (D)	± 5.0	Vdc
Operating Temperature Range		TA	0 to +70	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C
Junction Temperature	Ceramic Package	TJ	+ 175	°C
Thermal Resistance, Junction to Ambient			80 50	°C/W

DC CHARACTERISTICS ($V_{EE} = -5.2 \text{ V}, \pm 5\% \text{ T}_{A} = 0^{\circ}\text{C to } +70^{\circ}\text{C}$ after thermal equilibrium is reached.)

Characteristics		Fig.	Symbol	Min	Тур	Max	Unit
Nonlinearity (Integral) (Pin 14 or 15) (@ IFS = 51 mA, 25.5 mA)	MC10318L9 MC10318L MC10318CL7 MC10318CL6			 		± 0.10 ± 0.19 ± 0.39 ± 0.78	% FS
Zero Scale Output Current (Pin 14 or 15) (Γ _A = 25°C)	10	Izs	_	5.0	50	μΑ
Zero Scale Output Current Temperature D (Pin 14 or 15) 25	rift 0 < T _A < 25°C °C < T _A < 70°C		^I ZS/ΔT		± 17 ± 2.0	_	nA/°C
Full Scale Output Current (Pin 14 or 15) (I _{ref} = 3.2 mA, D0-D7 = 1)		10	IFS	- 46.00	- 51.00	56.00	mA
Full Scale Output Current Temperature Dr (Pin 14 or 15) 25	ft 0 < T _A < 25°C °C < T _A < 70°C		ΔI _{FS} /°C		± 50 ± 10		ppm/°C
Full Scale Output Sensitivity to Power Supply Variations (Pin 14 or 15) (-4.94 V < V _{EE} < -5.46 V)	MC10318L,9 MC10318CL6,7		^I FSPSS		± 0.005 ± 0.005	± 0.02 ± 0.04	%/%
Full Scale Symmetry (IFS — IFS)		10	^I FSS		± 21	± 100	μΑ
Output Voltage Compliance (Pin 14 or 15) Full Scale Current Change ≤ ½ LSB (Specified Nonlinearity) (T _A = 25°C)			Voc	- 1.3	_	+ 2.5	V
Output Resistance (Pin 14 or 15) ($T_A = 25$	°C)	12	RO	_	69	_	kΩ
Reference Amplifier Offset Voltage (T _A =	25°C)		V _{IO}		± 3.2	_	- mV
Reference Amplifier Offset Voltage Temperature Drift $0 < T_{\mbox{$A$}} < 25^{\circ}\mbox{$C$} \\ 25^{\circ}\mbox{$C$} < T_{\mbox{$A$}} < 70^{\circ}\mbox{$C$}$			ΔV _{ΙΟ/Δ} Τ		± 10 ± 4.0		μV/°C
Reference Amplifier Bias Current (Pin 10) (I _{ref} = 3.2 mA)			lΒ	_	4.0	15	μΑ
Reference Amplifier Bias Current Temperature Drift (I $_{\text{ref}} = 3.2 \text{ mA}$) 0 < T $_{\text{A}} < 25^{\circ}\text{C}$ $25^{\circ}\text{C} < T_{\text{A}} < 70^{\circ}\text{C}$			ΔΙ _{ΙΒ/ΔΤ}		- 40 - 10	_	nA/°C
Reference Amplifier Common Mode Range ($V_{EE} = -5.2 \text{ V}$) ($T_A = 25^{\circ}\text{C}$)			VICR	_	± 1.15	_	V
Reference Amplifier Common Mode Rejection Ratio ($T_A=25^{\circ}C$) ($I_{ref}=3.2$ mA, $V_{ICR}=0$ to -2.0 V, Pins 1–8 = Logic 1)			VICMRR	_	58		dB
Reference Amplifier Input Impedance (Pin 10) (T _A = 25°C)			RIN	_	1.0	_	MΩ
Power Supply Current (Pins 1 thru 8 Open, $I_{ref} = 3.2 \text{ mA}$, Includes $I_0 + \overline{I_0}$)			IEE	_	90	130	mA

AC CHARACTERISTICS ($T_A = 25^{\circ}C$, $V_{EE} = -5.2 \text{ V}$, $\pm 5\%$)

Characteristics	Fig.	Symbol	Min	Тур	Max	Unit
Feedthrough Current — All Bits Off		^I FC				μА р-р
f=10 kHz	1 1		_	2.0		
f = 100 kHz				18		
Distortion — (@ I ₀)						%
(Sinewave applied to reference amplifier Input,						
D0-D7 = Logic 1						
$C = 0.01 \mu F, f = 20 kHz$		THD	_	1.0	_	
$C = 0.01 \mu F, f = 65 kHz$		THD	-	5.0	_	ĺ
$C = 0.001 \mu F$, $f = 340 kHz$		THD	_	1.0		
$C = 0.001 \mu F$, $f = 600 kHz$		THD	_	2.0	_	
C = 240 pF, f = 600 kHz		THD		0.8		
Reference Amplifier Slew Rate	13					mA/μs
(Step change at Pin 10, all bits on)						
$C = 0.01 \mu F$				0.5	<u> </u>	
$C = 0.001 \mu F$			-	5.0	_	
C = 240 pF				20		
Settling Time (to ±0.19% of Full Scale)	1,22	ts				ns
1 LSB Change		_	_	7.0	_	
All Bits Switched			_	10		
Propagation Delay	2	tp		5.0		ns
Output Glitch Energy (with De-Skewing Capacitors) (Input Change: 011111111 ←→ 10000000)			-	50		LSB·ns
Glitch Duration			_	5.0		ns

DIGITAL INPUT VOLTAGE LEVELS Volts (See Note)							
0°C	-0.845	- 1.151	- 1.516	- 1.868			
25°C	- 0.810	- 1.105	- 1.505	1.850			
70°C	-0.727	- 1.052	- 1.480	- 1.830			

FUNCTIONAL PIN DESCRIPTION

D0–D7 (Pins 1-8) The eight ECL digital inputs compatible with MECL 10,000 series devices. Logic "0" is nominally -1.8 V, and Logic "1" is nominally -0.9 V.

 V_{ref}_- (Pin 10) The high impendance input of the reference amplifier. This input is normally grounded, but may be used for ac applications involving modulation, digitally controlled gain, etc. Normal operating range is from ground to VEE ± 2.9 V (nominally ± 2.3 V).

V_{ref}. (Pin 12) The noninverting input of the reference amplifier. The inverted output of the reference amplifier is internally fed back to this input, thus causing it to track Pin 10. A nominal 3.2 mA is to be supplied to this pin from an external (stable and noise free) voltage source and current setting resistor.

Comp. (Pin 11) A nominal $0.01~\mu F$ capacitor is connected to this pin and to ground to stabilize the reference amplifier. Lower values of capacitor may be used if a good PC board layout is used, where frequencies higher than 10 kHz are applied to the reference amplifier.

 I_0 , $\overline{I_0}$ (Pins 14,15) The complementary current outputs. Current flow is into the DAC and varies linearily with I_{ref} and the digital input code. I_{out} increases as the digital input increases. Output compliance range is -1.3 V to +2.5 V.

VEE (**Pin 9**) The power supply pin. V_{EE} is nominal -5.2 V, $\pm 5\%$.

Gnd (Pin 16) The ground pin. This line should be as noise-free as possible in order to obtain a noise-free output.

NOTE: VEE = -5.2 V, $\pm 5\%$ Inputs are MECL 10,000 compatible within the temperature and power supply ranges listed. See MECL System Design Handbook for further details. See Fig. 19 in this data sheet.

FIGURE 1 - SETTLING TIME

FIGURE 2 — PROPAGATION DELAY

REFERENCE AMPLIFIER RESPONSE

TEST CIRCUITS

FIGURE 9 — FEEDTHROUGH MEASUREMENT

FIGURE 10 - ZERO/FULL SCALE CURRENT

FIGURE 11 — GAIN/PHASE MEASUREMENT

Reference dB Level: See Text

See Figures 6-8

FIGURE 12 -- OUTPUT RESISTANCE

FIGURE 13 — REFERENCE AMPLIFIER SLEW RATE

FIGURE 14 --- GAIN/PHASE MEASUREMENT

Reference dB Level: See Text.

See Figures 3-5

OPERATIONAL INFORMATION

Typical DAC Operation

The MC10318 is designed to be operated with an I_{ref} (Pin 12) of 3.2 mA, resulting in a full scale output current (I_0) of 51 mA when D0 through D7 are at a Logical "1" (-0.9 V). The transfer equation for I_0 is therefore:

$$I_0 = I_{ref} \times 16 \times \frac{A}{256}$$

("A" is the binary value of the digital input).

Typically $V_{ref...}$ (Pin 10) is connected to Ground, and I_{ref} is supplied to $V_{ref..}$ (Pin 12) by means of an external supply V_r (see Figure 15). A resistor inserted between Pin 10 and Ground will minimize temperature drift, and should have a value equivalent to that connected to Pin 12. Any noise or ripple present on the reference current will be present on the output current, and the stability of the reference directly affects the output current's stability. The ground connection for $V_{ref...}$ should be chosten with care so as not to pick up noise (digital or otherwise).

The complementary outputs $(I_0 \text{ and } \overline{I_0})$ are high impedance current sources having a compliance range of 3.8 V (-1.3 to +2.5 V). I_O increases with increasing digital input, while $\overline{I_0}$ decreases. Their sum is a constant equal to 15.94 x I_{ref}. Neither output can be left open - an unused output must be connected to ground or a load resistor. Typically both outputs should be loaded similarly for best speed and accuracy performance. A compensation capacitor must be connected between Pin 11 and Ground to stabilize the amplifier. A 0.01 μF ceramic is satisfactory for most applications, and should be located physically close to the device. The ground side of the capacitor should be noise-free. When operated as above, the output(s) will be controlled by the digital inputs, and the MC10318 can be used for various functions such as waveform generation, process control, ADC conversion, and others.

FIGURE 15 — TYPICAL OPERATION

Common Mode Range — AC Operation

The reference amplifier inputs (Pins 10 and 12) may be used to control the output current in conjunction with the digital inputs for applications such as digitally controlled gain of an ac signal, digitally controlled amplitude modulation, and others. Either the positive or negative input of the reference amplifier may be used, depending on the application. There are, however, differences in the manner in which an ac signal is to be applied.

1) When applying a signal to the V_{ref-} (Pin 10) input (See Figure 16), the signal must be kept within the range of 0 to -2.3 V. The input has a high impedance (typically 1 Megohm). The V_{ref+} pin (Pin 12) will track this signal, causing I_{ref} to vary, in turn causing I_{0} and $\overline{I_{0}}$ to vary. The ac component of I_{0} (and $\overline{I_{0}}$) will be in phase with the applied signal. The ac gain of the circuit shown is:

$$\frac{\Delta V_{out}}{\Delta V_{in}} = \frac{A \times R_L}{16 \times R_R}$$

Applying the above to the test circuit of Figure 14 yields a gain of 0.0966, which is the 0 dB reference level for the curves of Figures 3–5.

FIGURE 16 - AC OPERATION, NONINVERTING

If the peak values of the applied ac signal cannot be kept within the above mentioned voltage range, an alternate circuit is shown in Figure 17.

FIGURE 17 — AC OPERATION, NONINVERTING (ALTERNATE)

The compensation capacitor (Pin 11) of Figures 16 and 17 is to be nominally 0.01 μF for best overall stability. If frequencies higher than 10 kHz are to be applied to the reference input, a smaller value capacitor will be necessary as indicated by Figures 3–5. However, greater care will be necessary in the breadboarding and PC layout to prevent instabilities caused by unintended feedback paths.

2) When applying a signal to the V_{ref+} (Pin 12) input (see Figure 18), the effect is a direct modulation of the reference current supplied by V_{ref-} Pin 12 is a virtual ground, and therefore the current I_{ref-} is equal to:

$$I_{ref} = \frac{V_{ref}}{R_{ref}} + \frac{V_i}{R_i}$$

 l_0 and $\overline{l_0}$ will vary with the reference current, but the ac component will be 180° out of phase with the applied signal. The ac gain of the circuit shown is:

$$\frac{\Delta V_{OUt}}{\Delta V_{i}} = \frac{-A \times R_{L}}{16 \times R_{i}}$$

Applying the above to the test circuit of Figure 11 yields a gain of -0.3188, which is the 0 dB reference level for the curves of Figures 6–8.

The reference current I_{ref} must always flow **into** Pin 12, requiring that the values of V_{ref} , R_{ref} , R_i , and V_i be chosen so as to guarantee this.

FIGURE 18 — AC OPERATION, INVERTING

The compensation capacitor (Pin 11) of Figure 18 is to be nominally 0.01 μ F for best overall stability. If frequencies higher than 4 kHz are to be applied, a smaller value capacitor will be necessary as indicated by Figures 6–8. However, greater care will be necessary in the breadboarding and PC layout to prevent instabilities caused by unintended feedback paths.

DIGITAL INTERFACE

The digital inputs (Pins 1–8) are compatible with MECL 10,000 series devices over the temperature and V_{EE} range listed on page 3. Standard MECL 10,000 de-

sign guidelines apply, and should be implemented. Maximum speed response requires careful PC board layout and choice of components. See Motorola's MECL System Design Handbook for a complete explanation of specifications and characteristics. Figure 19 shows a typical ECL interconnection with recommended values for optimum speed performance. Other values of RT and VTT may be used, but at a slight increase in overall propagation delay. Unused inputs should not be left open, but should be connected to a Logic 0 (– 1.8 V), or a Logic 1 (– 0.9 V). Resistors RT should be connected at the receiving end of the interconnection, i.e. physically located adjacent to the MC10318 inputs, for best speed performance.

FIGURE 19 — STANDARD MECL INTERFACE

Interfacing a TTL system to the MC10318 is easily accomplished by the use of two MC10124 devices (Figure 20).

FIGURE 20 - TTL INTERFACE

OUTPUT CHARACTERISTICS

The MC10318 DAC has been designed specifically for high-speed operation by incorporating ECL structured inputs, bit switching circuits which are small in size and

simple in operation, and high-current complementary outputs (which permits current steering rather than onoff switching). In this manner, very short propagation delays and settling times are possible.

Output Glitch

All DAC's will produce a glitch at the output when various bits are switched in opposite directions, due to differences in transition times of the switching transistors. During the switching period, typically the output current will momentarily seek a value other than the desired final value, and then return to and settle at the final value. This glitch can be several LSBs in magnitude, but of a very short duration (5–6 ns). In some instances, the output current may overshoot, and then undershoot before reaching the final value, resulting in a "glitch doublet."

The glitch is most apparent when switching the higher order bits, and in the case of the MC10318, the maximum glitch generally occurs when switching bit D5 and the lower 5 bits (typically 85 LSB·ns). Switching bit D6 and the lower 6 bits produces a similar but slightly reduced glitch. Switching bit D7 and the seven lower bits (major carry transition) results in a glitch of typically 50 LSB·ns, with an amplitude of 17 LSBs. Switching of lower order bits while maintaining the higher ones constant produces glitches typically of less than 1 LSB in magnitude, and less than 10 ns in duration, and are generally not considered to be of significance.

Glitches can be removed from the output by filtering, or by using a sample-and-hold circuit on the output, or by using de-skewing capacitors on the higher order bits. See Fig. 31.

Output glitch is generally specified in terms of glitch energy, which is the area under the curve of the waveform. Most glitches appear as a triangle, and so the area is simply $\frac{1}{2} \times$ t \times ΔI , where t is the duration of the glitch, and ΔI is the amplitude normalized in terms of LSBs. In the case of a glitch doublet, having both positive and negative amplitude, the areas are summed algebraically. It is possible, therefore to have a glitch with zero energy, although having amplitudes of several LSB's.

In applications where the output glitch is of concern, steps can be taken to minimize its magnitude. The two main factors to consider are: 1) That the 8 bits of data reach the MC10318 simultaneously; and 2) that the PC board layout prevent noise from reaching the MC10318.

It is obvious that if the updated 8 bits are not received by the DAC simultaneously, even an ideal DAC will not produce an ideal waveform. Where simultaneous transmission by the sending device(s) cannot be guaranteed (such as two cascaded counters), latches should be used ahead of the MC10318. The latches should then be clocked after their inputs have settled. Suggested latches are the MC10133/MC10153/MC10168 at the ECL level, and the SN74LS273 at the TTL level.

FIGURE 21 -- PRECISION HIGH-SPEED MEASUREMENTS

Nonlinearity

Integral nonlinearity has been specified, rather than differential nonlinearity, as this is a better indicator of the maximum error to be expected. Integral nonlinearity is measured by comparing the actual output (at each digital value) with the expected ideal value. The expected values lie along a straight line between zero and the full scale output current. The MC10318 series will not differ from the ideal value by more than the specified nonlinearity.

PC Board Layout

A proper PC board layout is very important in order to obtain the full benefits of the MC10318's high-speed characteristics. Each of the current paths $(I_0, \overline{I_0}, I_{\rm EF}, I_{\rm ref},$ etc.) must be carefully considered to avoid interference, and isolation from other circuits on the board (particularly digital) is essential. By-passing of all supplies is, of course, necessary, and in some cases, by-passing to V_{EE} may be more beneficial than by-passing to Ground. Sockets should be avoided as the extra pin-to-pin capacitance can slow down the ECL edges and/or the output settling time. PC board layout should include the following guidelines:

- A dedicated ground track from the power supply to Pin 16 (Gnd);
- A single dedicated ground track from the power supply to the **two** load resistors associated with I_O and I

 — this results in a constant dc current in this track;
- A separate ground for the circuitry associated with V_{ref}, V_{ref}, and Comp (Pins 10–12). Any noise on this ground will feed through the reference amplifier and show up on the output;
- The compensation capacitor must be physically adjacent to Pin 11;
- 5) Bypass V_{EE} (Pin 9) with a 0.1 μF to the ground line feeding the load resistors;
- Provide proper terminations at the inputs the suggested values for R_T and V_{TT} will provide best speed response;

- 7) Bypass V_{TT} to V_{FF} and to Ground with 0.1 μ F capacitors;
- 8) If the power supplies are not on the same PC board with the MC10318, bypass VFF and VTT to Ground with (minimum) 10 μF and 0.1 μF where the supply voltages enter the PC board;
- 9) Use of a ground plane is mandatory in all high speed applications;
- 10) Keep all TTL circuitry tracks separate from the MC10318 by means of ground tracks and/or ground planes.

Many of the above points have to do with isolating the device from all other circuitry, since most applications involve using the MC10318 (which is 50% analog) in a (noisy) digital circuit. If the output voltage swing is typically 1 volt, then 1 LSB is approximately 4 mV. Since TTL circuitry can easily generate 50 mV noise on the ground line, the need for isolation is apparent.

The above points are not the only ones to be considered by the designer, as each application will have its own individual additional requirements.

Propagation Delay

The propagation delay is measured from the 50% point of the input transition to the 50% point of the output transition. Since the typical propagation delay is on the order of 5 ns, see Figure 21 and the information in Settling Time if this parameter is to be measured. Switching 1 LSB or all of the bits simultaneously produces no significant difference in propagation delay.

FIGURE 22 — SETTLING TIME MEASUREMENT

- 1) Pulse generator outputs -0.9 V to -1.8 V, t_r and t_f ≈ 2 ns.
- 2) Adjust v_{ref} for full scale output at $V_A = -1.3000 \text{ V}$.
- 3) Adjust R1 for -1.3075 V at input of lower comparator.
- 4) Adjust R2 for -1.2925 V at input of upper comparator.
- 5) R1, R2 are 20 turn trimpots.
- 6) Keep all wiring as short, tidy as possible isolate
- Heavily bypass all supplies at each device, and reference (-) inputs to the comparators.
- Comparators are high-speed devices, such as AM687ADL.
- 9) Account for comparator offset when setting reference values.

Settling Time

The settling time is defined as the time from the 50% point of the input transition to the point at which the output enters into and stays within $\pm\,\%\text{LSB}$ (the error band) of the final value. Minimum settling time occurs when the output enters the error band at the maximum slew rate, and then settles out within the band. In actuality, however, the output's slew rate will lessen prior to entering the error band, and then may exit and enter the band once or twice as it settles to its final value. The settling time is determined by the last time the output enters the error band. See Figure 1.

When testing for settling time, the measurement technique used will have an effect on the result. Simply connecting scope probes to an input and output is generally not satisfactory due to the capacitive loading (typically 10–20 pF) of the probes. The rise (fall) time of an ECL input can be significantly increased by such a probe, with the result that the inputs of the MC10318 may be skewed from each other, which, in turn, affects the output. However, probes with low input capacitance, on the order of 2 pF or less (such as FET probes), can be used with very little degradation of the waveforms. The overall propagation delay of the probe (from tip to scope input) must be taken into account, as this can be on the order of 10 ns.

When attempting to view the output on a scope, several factors need to be considered. If the output swing is a full scale transition (e.g., 1.0 V), 1 LSB is 3.9 mV. The scope's amplifier must then be set at a sensitive range (5 mV/cm or 10 mV/cm), with the result that the scope's amplifier will be saturated when the MC10318's output is at the initial value. When the device inputs are switched, the output approaches the final value, but the scope's amplifier will require some time to come out of saturation, and then may overshoot, causing a false indication. In order to overcome this problem, the MC10318 was tested for settling time by connecting the output to a dual high-speed comparator configured as a window detector. The window is 1 LSB wide, centered about the final value. The outputs of the comparators are then monitored on a scope, as they indicate when the MC10318 output is settled within the error band. Propagation delays of the comparators, scope probes, and cable lengths are taken into account. See Figure 22. This method of monitoring the DAC's output, although indirect, does not cause changes to the output waveform because of probe loading, characteristics of the scope, or noise which the probe (and cable) may pick up.

APPLICATIONS

Voltage Output

There are two methods of converting the current output of the MC10318 to voltage outputs, depending on the voltage swing desired. For a limited range (<3.8 V p-p) the circuit of Figure 23 can be used.

FIGURE 23 - VOLTAGE OUTPUT

Where a larger voltage swing is required, an op amp is required at the output. The choice of op amp will be based on whether accuracy or speed is of primary importance. Where repeatable and stable accuracy is required, the op amp characteristics to consider are openloop gain, offset voltage, bias current, and temperature drift. Where speed is paramount, a wideband amplifier should be used. Slew rate, propagation delay, and settling time of the op amp are the primary factors to evaluate. The PC board should be designed for high frequency operation, possibly using Microstrip or Stripline techniques. See Figure 24 for a suggested circuit.

FIGURE 24 - VOLTAGE OUTPUT

Connecting I_0 and $\overline{I_0}$ as shown in the above figures places a constant dc load (51 mA) on the V_S supply, thus facilitating its design. The Gain Adjust resistor should be a 20 turn trimpot, as this will result in one turn equaling approximately 1 LSB of adjustment (for the recommended values in the figure). All of the resistors should have similar temperature coefficients for best temperature stability.

WAVEFORM GENERATION

FIGURE 25 — SAWTOOTH GENERATOR

FIGURE 27 — SINEWAVE GENERATOR

FIGURE 29 — OUTPUT CONNECTED TO 50 Ω LINE

NOTES:

- 1) When generating waveforms at low frequencies, filtering the output is recommended to smooth out the steps.
- 2) In many applications, bipolar voltage output may be

FIGURE 26 - TRIANGLE GENERATOR

FIGURE 28 — OUTPUT CONNECTED TO 75 Ω LINE

FIGURE 30 — DIGITAL MULTIPLICATION

obtained by monitoring the differential voltage at Pins 14 and 15 (with equal load resistors).

3) When connecting the outputs to transmission lines (See Figures 28 and 29), proper transmission line theory and techniques must be used for optimum performance.

FIGURE 31 — EVALUATION CIRCUIT BOARD

EVALUATION BOARD FOR HIGH SPEED TESTING

Introduction

In order to facilitate evaluation of the MC10318 DAC, a PC board layout has been developed providing the appropriate signal levels and timing requirements. The board is designed to simultaneously evaluate the MC10315 and the MC10317 flash ADC's in conjunction with the MC10318 DAC, and the system is capable of passing video speed signals at sampling rates of up to 15 MHz. However, the MC10318 may be evaluated alone by installing only the appropriate components. The board may be purchased from Motorola (blank), or the user may make his own from the artwork shown on Figures 33 and 34.

Board Specifications

Power supply requirements: +15 V at 100 mA. - 15 V at 120 mA.

- 5.2 V (a 550 mA.

+5.0 V (a 300 mA.

Sampling clock: $V_{IH}=-0.9$ V, $V_{IL}=-1.8$ V (ECL levels) terminated with 50 ohms, 15 MHz max. Analog Input level: Selectable, see chart. Analog Input Impedance: Selectable, see chart. Output level: 0 to -1.0 V, user alterable. Digital Input levels: (When ADC converters are not included) $V_{IH}=-0.9$ V, $V_{IL}=-1.8$ V (ECL levels).

Operation

The power supplies should be connected as shown in Figure 32. The leads should be short and direct.

The CLK Input (necessary if the ADC converters and or the latches are used) uses a BNC connector, and is terminated with 50 ohms to ground.

The Analog Input level (if the ADC converters are installed) depends on the input resistors selected (see chart). The output of the buffer amplifier should produce a maximum 4 V p-p signal, or an amplitude equal to the references (user adjustable).

The Analog Output is 0 to -1.0 V, corresponding to a digital input (to the MC10318) of FF and 00 respectively. Output impedance is normally 20 ohms, but may be varied by the user (see previous text).

Options

Input Signal — The p-p voltage level of the analog input signal (when using the ADC converters) is accommodated by selection of the input resistors from the chart (see schematic).

ALT IN — The analog signal may be applied directly to the ADC converters (by-passing the on-board amplifier) by applying the input signal to this connector, and relocating the jumper adjacent to the ALT IN connector. The signal source must be capable of driving 2.5 k ohms in parallel with approx. 140 pF.

V+ OUT — A pullup voltage (max. +2.5 V) may be applied to this connector in order to increase the output voltage swing. See the APPLICATIONS section of this data sheet. The 20 ohm load resistors may then be changed to other values. The jumper adjacent to the A OUT connector must be relocated.

Evaluating the MC10318 only — Only those components within the dotted line on the schematic are required. The digital inputs (ECL level) are to be applied to a connector strip located in pins 15–22 of the MC10317 position. +15 V and -5.2 V supplies are required. The latches transfer the information on the rising edge of the clock.

Video Testing

The above described printed circuit board has been tested, with a standard video test signal, for differential phase and differential gain (40 IRE sub-carrier on a 100 IRE ramp, sampled at 14.3 MHz) with results of 1% gain error and 2° phase error. The signal was obtained from a Tektronix 147A video test generator, applied to the ALT IN connector. The output (of the MC10318) was configured into a 75 ohm output impedance, and applied to a vector scope.

Tests conducted with the Evaluation Board in a video system (video camera and a TV monitor) showed no visible degradation of picture quality (at 8 bits resolution). The board provides an easy means of testing picture quality at reduced number of bits, or for conducting any test on a digitized video signal.

FIGURE 32 — COMPONENT LOCATION AND EXTERNAL CONNECTIONS

FIGURE 33 — COMPONENT SIDE ARTWORK (TOP) (OVERALL SIZE = 6.00" × 8.00")

FIGURE 34 — SOLDER SIDE ARTWORK (BOTTOM)

Interface

INTERFACE

Device	Function	Page
AM26LS31	Quad RS-422 Line with Three-State Output	7-4
AM26LS32	Quad RS-422/3 Line Receiver with Three-State Outputs	7-7
MC8T26A	Quad Three-State Bus Transceiver	
MC8T28	Noninverting Bus Transceiver	7-15
MC8T95	Hex Three-State Buffer/Inverter	
MC8T96	Hex Three-State Buffer/Inverter	7-20
MC8T97	Hex Three-State Buffer/Inverter	7-20
MC8T98	Hex Three-State Buffer/Inverter	
MC26S10	Quad Open-Collector Bus Transceiver	7-24
MC26S11	Quad Open-Collector Bus Transceiver	7-24
MC75S110	Dual Line Driver	
MC1411	Peripheral Driver Array	7-32
MC1412	Peripheral Driver Array	
MC1413	Peripheral Driver Array	
MC1416	Peripheral Driver Array	
MC1472	Dual Peripheral Positive NAND Driver	7-36
MC1488	Quad MDTL Line Driver	7-39
MC1489,A	Quad MDTL Line Receiver	7-45
MC3242A	Memory Address Multiplexer and Refresh Address Counter	7-50
MC3437	Hex Unified Bus Receiver	7-55
MC3440A	Quad Interface Bus Transceiver	7-58
MC3441A	Quad Interface Bus Transceiver	7-58
MC3443A	Quad Interface Bus Transceiver	7-58
MC3446A	Quad Interface Bus Transceiver	7-62
MC3447	Bidirectional Instrumentation Bus Transceiver	7-65
MC3448A	Quad Three-State Bus Transceiver	7-71
MC3450	Quad Line Receiver	
MC3452	Quad Line Receiver	7-76
MC3453	Quad Line Driver	7-83
MC3467	Triple Preamplifier	7-87
MC3469P	Floppy Disk Write Controller	7-92
MC3470P,AP	Floppy Disk Read Amplifier System	7-102
MC3471	Floppy Disk Write Controller/Head Driver	7-116
MC3480	Memory Controller Circuit	7-127
MC3481	Quad Single-Ended Line Driver	
MC3482A,B	Octal Three-State Buffer/Latch	7-147
MC3485	Quad Single-Ended Line Driver	7-142
MC3486	Quad RS-422/423 Line Receiver	7-151
MC3487	Quad RS-422 Line Driver with Three-State Outputs	7-154
MC3488A,B	Dual RS-423/232C Driver	
MC3491	8-Segment Visual Display Driver	7-162
MC6875,A	M6800 Clock Generator/Driver	7-166
MC6880A	Quad Three-State Bus Transceiver	7-10
MC6882A,B	Octal Three-State Buffer/Latch	
MC6885	Hex Three-State Buffer/Inverter	
MC6886	Hex Three-State Buffer/Inverter	
MC6887	Hex Three-State Buffer/Inverter	7-20
MC6888	Hex Three-State Buffer/Inverter	7-20
MC6889	Noninverting Bus Transceiver	
MC6890	8-Bit Bus-Compatible MPU D/A Converter	
MC75107	Dual Line Receiver	
MC75108	Dual Line Receiver	7-184
MC75125	Seven-Channel Line Receivers	
MC75127	Seven-Channel Line Receivers	7-189

Device	Function	Page
MC75128	Eight-Channel Line Receivers	7-193
MC75129	Eight-Channel Line Receivers	7-193
SN75172	Quad RS-485 Line Driver with Three-State Output	7-197
SN75173	Quad RS-422A/3 Line Receiver with Three-State Output	7-199
SN75174	Quad RS-485 Line Driver with Three-State Output	
SN75175	Quad RS-422A/3 Line Receiver with Three-State Output	
ULN2001A	Peripheral Driver Array	
ULN2002A	Peripheral Driver Array	
ULN2003A	Peripheral Driver Array	
ULN2004A	Peripheral Driver Array	
ULN2068B	Quad 1.5 A Darlington Switch	
ULN2074B	Quad 1.5 A Darlington Switch	

QUAD LINE DRIVER WITH NAND ENABLED THREE-STATE OUTPUTS

The Motorola AM26LS31 is a quad differential line driver intended for digital data transmission over balanced lines. It meets all the requirements of EIA Standard RS-422 and Federal Standard 1020.

The AM26LS31 provides an enable/disable function common to all four drivers as opposed to the split enables on the MC3487 RS-422 driver.

The high impedance output state is assured during power down.

- Full RS-422 Standard Compliance
- Single +5 V Supply
- \bullet Meets Full V_O = 6.0 V, V_{CC} = 0 V, I_O < 100 μ A Requirement
- Output Short Circuit Protection
- Complementary Outputs for Balanced Line Operation
- High Output Drive Capability
- Advanced LS Processing
- PNP Inputs for MOS Compatibility

QUAD RS-422 LINE DRIVER WITH THREE STATE OUTPUTS

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION

Device	Temperature Range	Package
AM26LS31DC	0 to 70°C	Ceramic DIP
AM26LS31PC	0 to 70 ⁰ C	Plastic DIP

	TR	UTH TABLE	
Input	Control Inputs (E/E)	Non-Inverting Output	Inverting Output
Н	H/L	н	L
L	H/L	L	н
X	L/H	Z	Z

- L = Low Logic State
- H = High Logic State
- X = Irrelevant
- Z = Third-State (High Impedance)

Rating Symbol Value Unit						
Rating	Symbol	Value	Unit			
Power Supply Voltage	Vcc	8.0	Vdc			
Input Voltage	V _I	5.5	Vdc			
Operating Ambient Temperature Range	TA	0 to +70	°C			
Operating Junction Temperature Range Ceramic Package Plastic Package	ТЈ	175 150	°C			
Storage Temperature Range	T _{stq}	-65 to +150	°c			

^{*&}quot;Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The "Table of Electrical Characteristics" provides conditions for actual device operation.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply 4.75 V \leq V_{CC} \leq 5.25 V and 0°C \leq T_A \leq 70°C. Typical values measured at V_{CC} = 5.0 V, and T_A = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage - Low Logic State	VIL		_	0.8	Vdc
Input Voltage - High Logic State	VIH	2.0	_	-	Vdc
Input Current — Low Logic State (VIL = 0.4 V)	կլ	_	-	-360	μΑ
Input Current — High Logic State (V _{IH} = 2.7 V) (V _{IH} = 7.0 V)	ТІН	_ _		+20 +100	μА
Input Clamp Voltage (I _{IK} = -18 mA)	VIK	-	-	-1.5	٧
Output Voltage — Low Logic State (IOL = 20 mA)	V _{OL}	-	-	0.5	٧
Output Voltage — High Logic State (IOH = -20 mA)	Voн	2.5	-	_	٧
Output Short-Circuit Current (VIH = 2.0 V) 2	los	-30	-	-150	mA
Output Leakage Current — Hi-Z State $(V_{OL} = 0.5 \text{ V}, V_{IL}(E) = 0.8 \text{ V}, V_{IH}(E) = 2.0 \text{ V}) $ $(V_{OH} = 2.5 \text{ V}, V_{IL}(E) = 0.8 \text{ V}, V_{IH}(E) = 2.0 \text{ V})$	¹ O(Z)	-	_ _	-20 +20	μА
Output Leakage Current — Power OFF (VOH = 6.0 V, VCC = 0 V) (VOL = -0.25 V, VCC = 0 V)	IO(off)		-	+100 -100	μΑ
Output Offset Voltage Difference ¹	∨os-⊽os	-	-	±0.4	V
Output Differential Voltage 1	V _{OD}	2.0		_	V
Output Differential Voltage Difference 1	ΔVOD	_	-	±0.4	V
Power Supply Current (Output Disabled) ³	lccx	_	60	80	mA

- 1. See EIA Specification RS-422 for exact test conditions.
- Only one output may be shorted at a time.
 Circuit in three-state condition.

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Times					ns
High to Low Output	tPHL		-	20	ļ
Low to High Output	tPLH		-	20	
Output Skew		-	T -]	6.0	ns
Propagation Delay Control to Output					ns
$(C_{L} = 10 \text{ pF}, R_{L} = 75 \Omega \text{ to Gnd})$	tPHZ(E)	_	1 - 1	30	
$(C_L = 10 \text{ pF}, R_L = 180 \Omega \text{ to V}_{CC})$	tPLZ(E)	_	-	35	
$(C_L = 30 \text{ pF}, R_L = 75 \Omega \text{ to Gnd})$	tPZH(E)	_	1 - 1	40	
$(C_1 = 30 \text{ pF}, R_1 = 180 \Omega \text{ to V}_{CC})$	tPZL(E)		1 - 1	45	1

AM26LS32

QUAD RS-422/423 LINE RECEIVER

Motorola's Quad RS-422/3 Receiver features four independent receiver chains which comply with EIA Standards for the Electrical Characteristics of Balanced/Unbalanced Voltage Digital Interface Circuits. Receiver outputs are 74LS compatible, three-state structures which are forced to a high impedance state when Pin 4 is a Logic "0" and Pin 12 is a Logic "1". A PNP device buffers each output control pin to assure minimum loading for either Logic "1" or Logic "0" inputs. In addition, each receiver chain has internal hysteresis circuitry to improve noise margin and discourage output instability for slowly changing input waveforms. A summary of AM26LS32 features include:

- Four Independent Receiver Chains
- Three-State Outputs
- High Impedance Output Control Inputs (PIA Compatible)
- Internal Hysteresis 30 mV (Typ) @ Zero Volts Common Mode
- Fast Propagation Times 25 ns (Typ)
- TTL Compatible
- Single 5 V Supply Voltage
- Fail-Safe Input-Output Relationship. Output Always High When Inputs Are Open, Terminated or Shorted
- 6K Minimum Input Impedance

QUAD RS-422/3 LINE RECEIVER WITH THREE-STATE OUTPUTS

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION						
Device Temperature Packag						
AM26LS32D	0 to +70°C	Ceramic DIP				
AM26LS32P	0 to +70°C	Plastic DIP				

ABSOLUTE MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Input Common Mode Voltage	VICM	± 25	Vdc
Input Differential Voltage	V _{ID}	± 25	Vdc
Three-State Control Input Voltage	VI	7.0	Vdc
Output Sink Current	lо	50	mA
Storage Temperature	T _{stg}	- 65 to + 150	°C
Operating Junction Temperature	Tj		°C
Ceramic Package	į	+ 175	
Plastic Package		+ 150	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The "Table of Electrical Characteristics" provides conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	4.75 to 5.25	Vdc
Operating Ambient Temperature	TA	0 to +70	°C
Input Common Mode Voltage Range	VICR	- 7.0 to +7.0	Vdc
Input Differential Voltage Range	V _{IDR}	6.0	Vdc

ELECTRICAL CHARACTERISTICS (Unless otherwise noted minimum and maximum limits apply over recommended temperature and power supply voltage ranges. Typical values are for T_A = 25°C, V_{CC} = 5.0 V and V_{IC} = 0.V. See Note 1.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage — High Logic State	VIH	2.0	_	_	V
(Three-State Control)					
Input Voltage — Low Logic State	V _{iL}	-	_	0.8	V
(Three-State Control)					
Differential Input Threshold Voltage (Note 4)	V _{TH(D)}				V
$(-7.0 \text{ V} \le \text{V}_{\text{IC}} \le 7.0 \text{ V}, \text{V}_{\text{IH}} = 2.0 \text{ V})$					
$(I_O = -0.4 \text{ mA}, V_{OH} \ge 2.7 \text{ V})$			_	0.2	
$(I_O = 8.0 \text{ mA}, V_{OL} \le 0.45 \text{ V})$			_	-0.2	
Input Bias Current	I _{IB(D)}				mA
$(V_{CC} = 0 \text{ V or } 5.25) \text{ (Other Inputs at } -15 \text{ V} \leq V_{in} \leq +15 \text{ V})$					
$V_{in} = +15 V$		_	-	2.3	
$V_{in} = -15 V$		_	_	-2.8	
Input Resistance (– 15 V ≤ V _{in} ≤ + 15 V)	Rin	6.0 K	_	_	Ohms
Input Balance and Output Level					V
$(-7.0 \text{ V} \le \text{V}_{\text{IC}} \le 7.0 \text{ V}, \text{V}_{\text{IH}} = 2.0 \text{ V},$					
See Note 3)					
$(I_O = -0.4 \text{ mA}, V_{ID} = 0.4 \text{ V})$	V _{OH}	2.7		_	
$(I_O = 8.0 \text{ mA}, V_{ID} = -0.4 \text{ V})$	VOL	_	_	0.45	
Output Third State Leakage Current	loz				μΑ
$(V_{I(D)} = +3.0 \text{ V}, V_{II} = 0.8 \text{ V}, V_{O} = 0.4 \text{ V})$		-	_	-20	
$(V_{I(D)} = -3.0 \text{ V}, V_{IL} = 0.8 \text{ V}, V_{O} = 2.4 \text{ V})$		-		20	
Output Short-Circuit Current	los	- 15	_	-85	mA
$(V_{I(D)} = 3.0 \text{ V}, V_{IH} = 2.0 \text{ V}, V_{O} = 0 \text{ V})$	1			1	
See Note 2)					
Input Current — Low Logic State	IIL.	_	_	-360	μA
(Three-State Control)					
(V _{IL} = 0.4 V)	1				
Input Current — High Logic State	ΊΗ				μΑ
(Three-State Control)					
(V _I Å = 2.7 V) ₹		_	_	20	
$(V_{IH} = 5.5 V)$	1	_	_	100	1
Input Clamp Diode Voltage	VIC	_	_	-1.5	V
(Three-State Control)			1		
$(I_{IC} = -18 \text{ mA})$					
Power Supply Current	Icc	_	T =	70	mA
(V _{IL} = 0 V) (All Inputs Grounded)		l			1

SWITCHING CHARACTERISTICS (Unless otherwise noted, $V_{CC} = 5.0 \text{ V}$ and $T_A = 25^{\circ}\text{C}$)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time — Differential					ns
Inputs to Output	1 1				
(Output High to Low)	tPHL(D)	-	-	30	
(Output Low to High)	tPLH(D)	_	-	30	
Propagation Delay Time - Three-State					ns
Control to Output					
(Output Low to Third State)	tPLZ	_	-	35	1
(Output High to Third State)	tPHZ		-	35	
(Output.Third State to High)	tPZH	_	-	30	
(Output Third State to Low)	tPZL	_	-	30	

NOTES:

- All currents into device pins are shown as positive, out of device pins are negative. All voltages referenced to ground unless otherwise noted.
- 2. Only one output at a time should be shorted.

- Refer to EIA RS422/3 for exact conditions. Input balance and guaranteed output levels are done simultaneously for worst case.
- Differential input threshold voltage and guaranteed output levels are done simultaneously for worst case.

SWITCHING TEST CIRCUIT AND WAVE FOR FIGURE 1 - PROPAGATION DELAY DIFFERENTIAL INPUT TO OUTPUT

FIGURE 2 - PROPAGATION DELAY THREE-STATE CONTROL INPUT TO OUTPUT

MC8T26A MC6880A

QUAD THREE-STATE BUS TRANSCEIVER

This quad three-state bus transceiver features both excellent MOS or MPU compatibility, due to its high impedance PNP transistor input, and high-speed operation made possible by the use of Schottky diode clamping. Both the —48 mA driver and —20 mA receiver outputs are short-circuit protected and employ three-state enabling inputs.

The device is useful as a bus extender in systems employing the M6800 family or other comparable MPU devices. The maximum input current of 200 μ A at any of the device input pins assures proper operation despite the limited drive capability of the MPU chip. The inputs are also protected with Schottky-barrier diode clamps to suppress excessive undershoot voltages.

The MC8T26A is identical to the NE8T26A and it operates from a single +5 V supply.

- High Impedance Inputs
- Single Power Supply
- High Speed Schottky Technology
- Three-State Drivers and Receivers
- Compatible with M6800 Family Microprocessor

QUAD THREE-STATE BUS TRANSCEIVER

MONOLITHIC SCHOTTKY
INTEGRATED CIRCUITS

MC8T26A, MC6880A

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	8.0	Vdc
Input Voltage	VI	5.5	√dc
Junction Temperature Ceramic Package	Tj	4.75	°C
Plastic Package		175 150	
Operating Ambient Temperature Range	TA	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to+150	оС

ELECTRICAL CHARACTERISTICS (4.75 V \leq V_{CC} \leq 5.25 V and 0°C \leq T_A \leq 75°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Current - Low Logic State	1		· · · · ·	† <u></u>	—
(Receiver Enable Input, VII (RE) = 0.4 V)	UL(RE)			-200	μА
(Driver Enable Input, V _{IL} (DE) = 0.4 V)	,	_	_	-200	μ^
	IL(DE)	_	_	-200	
(Driver Input, $V_{IL}(D) = 0.4 \text{ V}$)	IL(D)	_	-	ì	
(Bus (Receiver) Input, V _{IL(B)} = 0.4 V)	IL(B)			-200	
Input Disabled Current — Low Logic State	IL(D) DIS				
(Driver Input, V _{IL(D)} = 0.4 V)	1.2,2,2.0	-	-	- 25	μΑ
Input Current-High Logic State					
(Receiver Enable Input, VIH(RE) = 5.25 V)	IH(RE)	_	_	25	μА
(Driver Enable Input, VIH(DE) = 5.25 V)	IH(DE)		_	25	,
(Driver Input, V _{IH(D)} = 5.25 V)	IH(DE)	***	_	25	
(Receiver Input, V _{IH} (B) = 5.25 V)	1		,		
	IH(B)			100	
Input Voltage — Low Logic State					
(Receiver Enable Input)	VIL(RE)	-	-	0.85	V
(Driver Enable Input	VIL(DE)	-		0.85	
(Driver Input)	VIL(D)	-	-	0.85	
(Receiver Input)	V _{IL(B)}	-	-	0.85	
Input Voltage - High Logic State					
(Receiver Enable Input)	VIH(RE)	2.0	_	_	V
(Driver Enable Input)	VIH(DE)	2.0	_	l _	•
(Driver Input)		2.0			
	VIH(D)		_		
(Receiver Input)	VIH(B)	2.0	_		
Output Voltage - Low Logic State					
(Bus Driver) Output, IOL(B) = 48 mA)	VOL(B)	_	-	0.5	V
(Receiver Output, IOL(R) = 20 mA)	VOL(R)	_	_	0.5	
Output Voltage - High Logic State	1 02				
(Bus (Driver) Output, I _{OH(B)} = -10 mA)	V _{ОН(В)}	2.4	3.1		V
(Receiver Output, I _{OH(R)} = -2.0 mA)			3.1	_	•
	V _{OH(R)}	2.4		_	
(Receiver Output, I _{OH(R)} = -100 μA, V _{CC} = 5.0 V)		3.5	_	_	
Output Disabled Leakage Current — High Logic State					
(Bus Driver) Output, V _{OH(B)} = 2.4 V)	IOHL(B)	_	-	100	μА
(Receiver Output, VOH(R) = 2.4 V)	IOHL(R)	_	-	100	
Output Disabled Leakage Current — Low Logic State			,		
(Bus Output, V _{OL(B)} = 0.5 V)	IOLL(B)	_	_	-100	μΑ
(Receiver Output, V _{OL(R)} = 0.5 V)	OLL(R)	_		-100	· · · ·
Input Clamp Voltage					
(Driver Enable Input I _{ID(DE)} = -12 mA)	VIC(DE)	_		-1.0	V
(Receiver Enable Input I _{IC} (RE) = +12 mA)				-1.0	•
	VIC(RE)	_	_		
(Driver Input I _{IC(D)} = -12 mA)	VIC(D)			-1.0	
Output Short-Circuit Current, V _{CC} = 5.25 V (1)		:			
(Bus (Driver) Output)	IOS(B)	-50	-	-150	mA
(Receiver Output)	los(R)	-30		-75	
(Neceiver Output)	(US(R)				
Power Supply Current	Icc		_	87	mA

⁽¹⁾ Only one output may be short-circuited at a time.

SWITCHING CHARACTERISTICS (Unless otherwise noted, specifications apply at T_A = 25°C and V_{CC} = 5.0 V)

Characteristic	Symbol	Figure	Min	Max	Unit
Propagation Delay Time from Receiver (Bus) Input to High Logic State Receiver Output	tPLH(R)	1		14	ns
Propagation Delay Time from Receiver (Bus) Input to Low Logic State Receiver Output	tPHL(R)	1	-	14	ns
Propagation Delay Time from Driver Input to High Logic State Driver (Bus) Output	tPLH(D)	2	-	14	ns
Propagation Delay Time from Driver Input to Low Logic State Driver (Bus) Output	tPHL(D)	2	-	14	ns
Propagation Delay Time from Receiver Enable Input to High Impedance (Open) Logic State Receiver Output	^t PLZ(RE)	3	-	15	ns
Propagation Delay Time from Receiver Enable Input to Low Logic Level Receiver Output	^t PZL(RE)	3	-	20	ns
Propagation Delay Time from Driver Enable Input to High Impedance Logic State Driver (Bus) Output	^t PLZ(DE)	4	_	20	ns
Propagation Delay Time from Driver Enable Input to Low Logic State Driver (Bus) Output	^t PZL(DE)	4	_	25	ns

FIGURE 1 – TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY FROM BUS (RECEIVER) INPUT TO RECEIVER OUTPUT, $t_{PLH(R)}$ AND $t_{PHL(R)}$

FIGURE 2 – TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER INPUT TO BUS (DRIVER) OUTPUT, tpLH(D) AND tpHL(D)

FIGURE 3 – TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER ENABLE INPUT TO RECEIVER OUTPUT, $t_{PLZ(RE)}$ AND $t_{PLL(RE)}$

FIGURE 4 – TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIMES FROM DRIVER ENABLE INPUT TO DRIVER (BUS) OUTPUT, $t_{PLZ(DE)}$ AND $t_{PZL(DE)}$

FIGURE 5 - BIDIRECTIONAL BUS APPLICATIONS

MC8T28 MC6889

NONINVERTING QUAD THREE-STATE BUS TRANSCEIVER

This quad three-state bus transceiver features both excellent MOS or MPU compatibility, due to its high impedance PNP transistor input, and high-speed operation made possible by the use of Schottky diode clamping. Both the -48 mA driver and -20 mA receiver outputs are short-circuit protected and employ three-state enabling inputs.

The device is useful as a bus extender in systems employing the M6800 family or other comparable MPU devices. The maximum input current of 200 μA at any of the device input pins assures proper operation despite the limited drive capability of the MPU chip. The inputs are also protected with Schottky-barrier diode clamps to suppress excessive undershoot voltages.

Propagation delay times for the driver portion are 17 ns maximum while the receiver portion runs 17 ns. The MC8T28 is identical to the NE8T28 and it operates from a single +5 V supply.

- · High Impedance Inputs
- Single Power Supply
- High Speed Schottky Technology
- Three-State Drivers and Receivers
- Compatible with M6800 Family Microprocessor
- Non-Inverting

NONINVERTING BUS TRANSCEIVER

MONOLITHIC SCHOTTKY INTEGRATED CIRCUITS

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	8.0	Vdc
Input Voltage	VI	5.5	Vdc
Junction Temperature Ceramic Package Plastic Package	TJ	175 150	°C
Operating Ambient Temperature Range	TA	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to+150	°C

ELECTRICAL CHARACTERISTICS (4.75 V \leq V_{CC} \leq 5.25 V and 0°C \leq T_A \leq 75°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Current — Low Logic State					
(Receiver Enable Input, VIL(RE) = 0.4 V)	IL(RE)	_	_	-200	μА
(Driver Enable Input, VIL(DE) = 0.4 V)	IL(DE)	_	_	-200	· '
(Driver Input, V _{IL(D)} = 0.4 V)	IL(D)		_	-200	
(Bus (Receiver) Input, V _{II} (B) = 0.4 V)	IL(B)			-200	
. 27.07	111/0/			-200	
Input Disabled Current – Low Logic State	IL(D) DIS				
(Driver Input, V _{IL(D)} = 0.4 V)		_	_	-25	μА
Input Current-High Logic State					
(Receiver Enable Input, VIH(RE) = 5.25 V)	IH(RE)	_	_	25	μ _Α
(Driver Enable Input, VIH(DE) = 5.25 V)	IH(DE)	_		25	
(Driver Input, $V_{\text{IH}(D)} = 5.25 \text{ V}$)		_	_	25	
	IH(D)			25	
Input Voltage — Low Logic State (Receiver Enable Input)	1 ,, ,			0.05	.,
·	VIL(RE)	_	_	0.85	V
(Driver Enable Input	VIL(DE)	-	-	0.85	
(Driver Input)	VIL(D)	-	-	0.85	
(Receiver Input)	V _{IL(B)}	-	-	0.85	
Input Voltage - High Logic State					
(Receiver Enable Input)	VIH(RE)	2.0	_	_	V
(Driver Enable Input)	VIH(DE)	2.0			ľ
(Driver Input)		2.0	_	-	
	VIH(D)		_	_	
(Receiver Input)	VIH(B)	2.0	_	_	
Output Voltage – Low Logic State					
(Bus Driver) Output, IOL(B) = 48 mA)	V _{OL(B)}	_	-	0.5	V.
(Receiver Output, IOL(R) = 20 mA)	VOL(R)	_	-	0.5	
Output Voltage - High Logic State	OE(III)				
(Bus (Driver) Output, I _{OH(B)} = -10 mA)			2.1	İ	V
(Receiver Output, IOH(B) = -2.0 mA)	VOH(B)	2.4	3.1	-	l v
3.1(11)	VOH(R)	2.4	3.1	_	
(Receiver Output, IOH(R) = -100/µA, V _{CC} = 5.0 V)		/ 3.5	-	_	
Output Disabled Leakage Current — High Logic State					
(Bus Driver) Output, V _{OH(B)} = 2.4 V)	OHL(B)	_	_	100	μА
(Receiver Output, VOH(R) = 2.4 V)	OHL(R)	_		100	
0	0772(117)		·		
Output Disabled Leakage Current — Low Logic State				1	
(Bus Output, V _{OL(B)} = 0.5 V)	OLL(B)	****	_	-100	μΑ
(Receiver Output, V _{OL(R)} = 0.5 V)	IOLL(R)		_	-100	
Input Clamp Voltage					
(Driver Enable Input I _{ID} (DE) = -12 mA)	VIC(DE)		_	~1.0	l v
(Receiver Enable Input I _{IC} (RE) = +12 mA)	VIC(RE)	_	l –	-1.0	
(Driver Input I _{IC(D)} = -12 mA)	VIC(D)		_	-1.0	
Output Short-Circuit Current, V _{CC} = 5.25 V (1)	1 10(0)			 	
(Bus (Driver) Output)		50		150	l
(Receiver Output)	OS(B)	-50	_	-150	mA
·	IOS(R)	-30		-75	
Power Supply Current	¹cc	-	_	110	mA
$(V_{CC} = 5.25 \text{ V})$			l		1

⁽¹⁾ Only one output may be short-circuited at a time.

MC8T28, MC6889

SWITCHING CHARACTERISTICS (Unless otherwise noted, V_{CC} = 5.0 V and T_A = 25°C)

Characteristic	Symbol	Min	Max	Unit
Propagation Delay Time-Receiver (C _L = 30 pF)	^t PLH(R) ^t PHL(R)	_	17 17	ns
Propagation Delay Time—Driver (C _L = 300 pF)	tPLH(D) tPHL(D)		17 17	ns
Propagation Delay Time—Enable (C _L = 30 pF) — Receiver — Driver Enable (C _L 300 pF)	tPZL(R) tPLZ(R) tPZL(D) tPLZ(D)	- - -	23 18 28 23	ns

FIGURE 1 – TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY FROM BUS (RECEIVER) INPUT TO RECEIVER OUTPUT, $t_{PLH(R)}$ AND $t_{PHL(R)}$

FIGURE 2 — TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER INPUT TO BUS (DRIVER) OUTPUT, tPLH(D) AND tPHL(D)

FIGURE 3 – TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER ENABLE INPUT TO RECEIVER OUTPUT, tplz(RE) AND tpzl(RE)

FIGURE 4 – TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIMES FROM DRIVER ENABLE INPUT TO DRIVER (BUS) OUTPUT, tplz(DE) AND tpzl(DE)

FIGURE 5 - BIDIRECTIONAL BUS APPLICATIONS

MC8T95/MC6885 MC8T96/MC6886 MC8T97/MC6887 MC8T98/MC6888

HEX THREE-STATE BUFFER INVERTERS

This series of devices combines three features usually found desirable in bus-oriented systems: 1) High impedance logic inputs insure that these devices do not seriously load the bus; 2) Three-state logic configuration allows buffers not being utilized to be effectively removed from the bus; 3) Schottky technology allows high-speed operation.

The devices differ in that the non-inverting MC8T95/MC6885 and inverting MC8T96/MC6886 provide a two-input Enable which controls all six buffers, while the non-inverting MC8T97/MC6887 and inverting MC8T98/MC6888 provide two Enable inputs - one controlling four buffers and the other controlling the remaining two buffers.

The units are well-suited for Address buffers on the M6800 or similar microprocessor application.

- High Speed 8.0 ns (Typ)
- Three-State Logic Configuration
- Single +5 V Power Supply Requirement
- Compatible with 74LS Logic or M6800 Microprocessor Systems
- High Impedance PNP Inputs Assure Minimal Loading of the Bus

MICROPROCESSOR BUS EXTENDER APPLICATION (Clock) GND +5 V Ø1 M6800 MPU MC8T95/MC6885 thru MC8T98 / MC6888 BUS EXTENDER MC8T26A/MC6880A BUS EXTENDER MC6830 ADDRESS **ROMs** AND ΠΔΤΔ CONTROL BUS BUS MC6810 B A Me MC6820 PIAs MC6850 ACIAs MC6860 MODEM

HEX THREE-STATE BUFFER/INVERTERS

ORDERING INFORMATION

(Temperature Range for the following devices =

0 to +/5°C)		
DEVICE	ALTERNATE	PACKAGE
MC8T95L	MC6885L	Ceramic DIP
MC8T96L	MC6886L	Ceramic DIP
MC8T97L	MC6887L	Ceramic DIP
MC8T98L	MC6888L	Ceramic DIP
MC8T95P	MC6885P .	Plastic DIP
MC8T96P	MC6886P	Plastic DIP
MC8T97P	MC6887P	Plastic DIP
MC8T98P	MC6888P	Plastic DIP

MC8T95-98/MC6885-88

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	8.0	Vdc
Input Voltage	V _I	5.5	Vdc
Operating Ambient Temperature Range	TA	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	Tj		°c
Plastic Package		150	
Ceramic Package		175	

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, 0° C \leq T_A \leq 75 $^{\circ}$ C and 4.75 V \leq V_{CC} \leq 5.25 V)

Characteristic	Symbol	Min	Тур	Max	Unit	
Input Voltage High Logic State (V _{CC} = 4.75 V, T _A = 25 ^o C)	VIH	2.0	****	-	\ \	
Input Voltage – Low Logic State (V _{CC} = 4.75 V, T _A = 25 ^o C)	VIL	-	_	0.8	V	
Input Current — High Logic State (V _{CC} = 5.25 V, V _{IH} = 2.4 V)	li H	_		40	μА	
Input Current — Low Logic State (VCC = 5.25 V, V _{IL} = 0.5 V, V _{IL} (E) = 0.5 V)	IIL	_	-	-400	μА	
Input Current - High Impedance State (VCC = 5.25 V, V _{1L(I)} = 0.5 V, V _{1H(E)} = 2.0 V)	¹IH(Ē)	-	-	-40	μА	
Output Voltage — High Logic State (V _{CC} = 4.75 V, I _{OH} = -5.2 mA)	Voн	2.4	Make the second	_	V	
Output Voltage - Low Logic State (IOI = 48 mA)	VOL	-	_	0.5	V	
Output Current — High Impedance State (V _{CC} = 5.25 V, V _{OH} = 2.4 V) (V _{CC} = 5.25 V, V _{OL} = 0.5 V)	loz			40 -40	μА	
Output Short-Circuit Current (V _{CC} = 5.25 V, V _O = 0) (only one output can be shorted at a time)	los	-40	-80	-115	mA	
Power Supply Current (V _{CC} = 5.25 V) MC8T95, MC8T97, MC6885, MC6887 MC8T96, MC8T98, MC6886, MC6888	Icc		6 5 59	98 89	mA	
Input Clamp Voltage (V _{CC} = 4.75 V, I _{IC} = -12 mA)	V _{IC}	-	-	-1.5	V	
Output V _{CC} Clamp Voltage (V _{CC} = 0, I _{OC} = 12 mA)	Voc	-	-	1.5	V	
Output Gnd Clamp Voltage (V _{CC} = 0, I _{OC} = -12 mA)	Voc	-	-	-1.5	V	
Input Voltage (I ₁ = 1.0 mA)	Vı	5.5	-	_	V	

SWITCHING CHARACTERISTICS (VCC = 5.0 V, TA = 25°C unless otherwise noted.)

-		MC8T95/97 MC6885/87		MC8T96/98 MC6886/88				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Propagation Delay Time — High to Low State	tPHL							ns
$(C_L = 50 pF)$		3.0	-	12	4.0		11	
(C _L = 250 pF)		-	16	-	-	15	-	
(C _L = 375 pF)		_	20	_	-	18	-	
(C _L = 500 pF)		-	23	-	-	22	_	
Propagation Delay Time - Low to High State	tPLH							ns
(C _L = 50 pF)		3.0	-	13	3.0	-	10	
(CL = 250 pF)		-	25	-	-	22	-	
(C _L = 375 pF)		_	33	-	-	28	_	
(CL = 500 pF)		-	42	-	-	35	-	
Transition Time - High to Low State	tTHL							ns
(C _L = 250 pF)		_	10	_	-	10	-	
(C _L = 375 pF)		_	11	-	-	13	-	
(C _L = 500 pF)		-	14	-	-	15	-	
Transition Time - Low to High State	tTLH							ns
(C _L = 250 pF)		-	32	-	-	28	-	1
(C _L = 375 pF)		-	42	-	_	38	-	1
(CL = 500 pF)		-	60		-	53	-	
Propagation Delay Time — High State to Third State (C _L = 5.0 pF)	^t PHZ(Ē)	-	-	10	-	-	10	ns
Propagation Delay Time — Low State to Third State (C _L = 5.0 pF)	^t PLZ(Ē)	_	_	12	-	-	16	ns
Propagation Delay Time — Third State to High State (C _L = 50 pF)	^t PZH(Ē)	-	_	25	_	_	22	ns
Propagation Delay Time — Third State to Low State (C _L = 50 pF)	tPZL(Ē)	_	-	25	-	-	24	ns

FIGURE 2 - WAVEFORMS FOR PROPAGATION DELAY FIGURE 1 - TEST CIRCUIT FOR SWITCHING CHARACTERISTICS TIMES INPUT TO OUTPUT To Scope To Scope (Input) Output 1.5 V Open for tpZH(E) Test Only 0 V Input or t_{PHL}→ -t_{PLH} Enable +5 V VOH Output 200 MC8T96, MC6886 1 5 V MC8T98 or MC6888 1N3064 ·VOL 50 Pulse - tphL or Equivalent Generato Voн Output MC8T95,,MC6885 MC8T97 or MC6887 1.0 k Open for Input Pulse Conditions C_L Includes Probe and tPZL(E) Test Only t_{THL} = t_{TLH} ≤ 10 ns f = 1.0 MHz Jig Capacitance

MOTOROLA LINEAR/INTERFACE DEVICES

MC26S10 MC26S11

QUAD OPEN-COLLECTOR BUS TRANSCEIVERS

These quad transceivers are designed to mate Schottky TTL or NMOS logic to a low impedance bus. The $\overline{\text{Enable}}$ and Driver inputs are PNP buffered to ensure low input loading. The Driver (Bus) output is open-collector and can sink up to 100 mA at 0.8 V, thus the bus can drive impedances as low as 100 $\Omega.$ The receiver output is active pull-up and can drive ten Schottky TTL loads.

An active-low Enable controls all four drivers allowing the outputs of different device drivers to be connected together for party-line operation. The line can be terminated at both ends and still give considerable noise margin at the receiver. Typical receiver threshold is 2.0 V.

Advanced Schottky processing is utilized to assure fast propagation delay times. Two ground pins are provided to improve ground current handling and allow close decoupling between VCC and ground at the package. Both ground pins should be tied to the ground bus external to the package.

- Driver Can Sink 100 mA at 0.8 V (Max)
- PNP Inputs for Low-Logic Loading
- Typical Driver Delay = 10 ns
- Typical Receiver Delay = 10 ns
- Schottky Processing for High Speed
- Inverting Driver MC26S10
 Non-Inverting MC26S11

TYPICAL APPLICATION --o 5.0 ∨ Enable C o Enable **€100 €100 €100 €100** Driver Driver -0 Inputs Inputs O-MC26S10/ MC26S10/ 11 Receiver • Receiver Outputs Outputs 0 Driver O Driver Inputs O O Inputs MC26S10/ MC26S10/ 11 Receiver O 0 Receiver Outputs Outputs **§100 §100 §100 §100** Enable o O Enable 5.0 V

QUAD OPEN-COLLECTOR BUS TRANSCEIVERS

SCHOTTKY
SILICON MONOLITHIC
INTEGRATED CIRCUIT

TRUTH TABLE							
		Driver	Receiver				
Enable	Bus	26S10	26S11	Output			
L	Н	L	н	L			
L	L	Н	L	н			
Н	Y	X	Х	Y			
L = Low Logic State H = High Logic State X = Irrelevant Y = Assumes condition controlled by oter elements on the bus							

MC26S10, MC26S11

MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	Vdc
Input Voltage	VI	-0.5 to +5.5	Vdc
Input Current	11	-3.0 to +5.0	mA
Output Voltage - High Impedance State	Vo (Hi-z)	-0.5 to V _{CC}	V
Output Current-Bus	lo(B)	200	mA
Output Current-Receiver	lo(R)	30	mA
Operating Ambient Temperature	TA	0 to +70	°C
Storage Temperature	T _{stg}	-65 to +150	°C
Junction Temperature	TJ		°C
Ceramic Package		175	
Plastic Package		150	1

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage — Low Logic State	VIL	_		0.8	V
(Driver and Enable Inputs)		ļ			
Input Voltage — High Logic State	VIH	2.0	_	_	V
(Driver and Enable Inputs)					
Input Clamp Voltage	VIK	_		-1.2	V
(Driver and Enable Inputs)					
$(I_{IK} = -18 \text{ mA})$					
Input Current — Low Logic State	IIL				mA
$(V_{IL} = 0.4 V)$					1
(Enable Input)		_	_		
(Driver Inputs)				-0.54	
Input Current - High Logic State (VIH = 2.7 V)	liн				μΑ
(Enable Input)		_	_	1	
(Driver Inputs)			_		
Input Current — Maximum Voltage	liH1	-	-	100	μΑ
(V _{IH1} = 5.5 V)					
(Enable or Driver Inputs)					
Driver Output Voltage - Low Logic State	V _{OL(D)}				V
$(I_{OL} = 40 \text{ mA})$		-	0.33		
$(I_{OL} = 70 \text{ mA})$		-	0.42	I .	
(I _{OL} = 100 mA)		_	0.51	0.8	<u> </u>
Driver (Bus) Leakage Current	IO(D)			100	μΑ
$(V_{OH} = 4.5 V)$		_	-		1
(V _{OL} = 0.8 V)		_		1	<u> </u>
Driver (Bus) Leakage Current	¹ O1(D)	-	_	100	μA
(V _{CC} = 0 V, V _{OH} = 4.5 V)					ļ
Receiver Input High Threshold	V _{TH} (R)	2.25	2.0	_	V
$(V_{IH}(\overline{E}) = 2.4 V)$					1
Receiver Input Low Threshold	V _{TL(R)}	_	2.0	1.75	V
$(V_{IH}(\overline{E}) = 2.4 V)$					
Receiver Output Voltage — Low Logic State	V _{OL} (R)	_	-	0.5	V
(I _{OL} = 20 mA)					
Receiver Output Voltage — High Logic State	Voh(R)	2.7	3.4	_	V
(I _{OH} = -1.0 mA)					
Receiver Output Short-Circuit Current (Note 1)	lOS(R)	-18	_	-60	m/
Power Supply Current — Output Low State	lcc				mA
$(V_{IL}(\overline{E}) = 0 V)$ MC26S10		-	45	70	
MC26S11		_	-	-60	

NOTE 1: One output shorted at a time. Duration not to exceed 1.0 second.

SWITCHING CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted.)

		MC26S10		MC26S11				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Propagation Delay Time								
Driver Input to Output	tPLH(D)	_	10	15	_	12	19	ns
· · · · · · · · · · · · · · · · · · ·	tPHL(D)	-	10	15	_	12	19	
Propagation Delay Time		<u> </u>						
Enable Input to Output	^t PLH(<u>E</u>)	_	14	18	_	15	20	ns
	tPHL(E)	_	13	18	-	14	20	
Propagation Delay Time								
Bus to Receiver Output	tPLH(R)	_	10	15	_	10	15	ns
	tPHL(R)	-	10	15	_	10	15	
Rise and Fall Time of Driver Output	tTLH(D)	4.0	10	_	4.0	10	_	ns
	tTHL(D)	2.0	4.0	_	2.0	4.0	_	

SWITCHING WAVEFORMS AND CIRCUITS

FIGURE 1 - DATA INPUT TO BUS OUTPUT (DRIVER)

FIGURE 2 - ENABLE INPUT TO BUS OUTPUT (DRIVER)

FIGURE 3 - BUS INPUT TO RECEIVER OUTPUT

MC75S110

MONOLITHIC DUAL LINE DRIVER

The MC75S110 dual line driver features independent channels with common voltage supply and ground terminals. Each driver circuit provides a constant output current that switches to either of two output terminals subject to the appropriate logic levels at the input terminals. Output current can be switched "off" (inhibited) by appropriate logic levels at the inhibit inputs. Output current is nominally twelve milliamperes.

The inhibit feature permits use in party-line or data-bus applications. A strobe or inhibitor, common to both drivers, is included to increase driver-logic versatility. With output current in the inhibited mode, IO(off) is specified so that minimum line loading occurs when the driver is used in a party-line system with other drivers. Output impedance of the driver in inhibited mode is very high (the output impedance of a transistor biased to cutoff).

All driver outputs have a common-mode voltage range of -3.0 volts to +10 volts, allowing common-mode voltage on the line without affecting driver performance.

- Insensitive to Supply Variations Over the Entire Operating Range
- MTTL Input Compatibility
- Current-Mode Output (12 mA Typical)
- High Output Impedance
- High Common-Mode Output Voltage Range (-3.0 V to +10 V)
- Inhibitor Available for Driver Selection

DUAL LINE DRIVERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

L SUFFIX CERAMIC PACKAGE CASE 632-02 MO-001AA

P SUFFIX PLASTIC PACKAGE CASE 646-05

TRUTH TABLE

		INHIE	BITOR		
LOGIC	INPUTS	INP	UTS	OUT	PUTS
Α	В	С	D	Υ	Z
L or H	L or H	L	L or H	н	н
LorH	L or H	L or H	L	н	н
L	L or H	н	н	L	н
L or H	L	н	н	L	н
н	H	н	н	н	L

Low output represents the "on" state. High output represents the "off" state

MAXIMUM RATINGS (T_A = 0 to +70°C unless otherwise noted.)

Ratings	Symbol	Value	Unit
Power Supply Voltages (See Note 1)	V _{CC} V _{EE}	+7.0 -7.0	Volts
Logic and Inhibitor Input Voltages (See Note 1)	V _{in}	5.5	Volts
Common-Mode Output Voltage Range (See Note 1)	Voca	-5.0 to +12	Volts
Power Dissipation (Package Limitation) Plastic and Ceramic Dual In-Line Packages Derate above T _A = +25 ⁰ C	P _D	1000 3.85	mW mW/ ^O C
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range Ceramic Dual In-Line Package Plastic Dual In-Line Package	T _{stg}	-65 to +150 -65 to +150	°C

RECOMMENDED OPERATING CONDITIONS (See Notes 1 and 2.)

Characteristic	Symbol	Min	Nom	Max	Unit
Power Supply Voltages	V _{CC} V _{EE}	+4.75 -4.75	+5.0 -5.0	+5.25 -5.25	Volts
Common-Mode Output Voltage Range	V _{OCR}	-3.0		-10	Volts

Note 1. These voltage values are in respect to the ground terminal.

Note 2. When using only one channel of the line drivers, the other channel should be inhibited and/or its outputs grounded.

DEFINITIONS OF INPUT LOGIC LEVELS*

Characteristic	Symbol	Min	Max	Unit
High-Level Input Voltage (at any input)	V _{IH}	2.0	5.5	Volts
Low-Level Input Voltage (at any input)	VIL	0	0.8	Volts

The algebraic convention, where the most positive limit is designated maximum, is used with Logic Level Input Voltage Levels only,

ELECTRICAL CHARACTERISTICS ($V_{CC}=4.75$ to 5.25 V, $V_{EE}=-4.75$ to -5.25 V, $V_{A}=0$ to $+70^{\circ}$ C unless otherwise noted.)

Characteristic # #	Symbol	Min	Тур#	Max	Unit
High-Level Input Current to 1A, 1B, 2A or 2B (VCC = Max, VEE = Max, V _{IH} _L = 2.4 V)# (VCC = Max, VEE = Max, V _{IH} _L = V _{CC} Max)	инг	_	=	40 1.0	μA mA
Low-Level Input Current to 1A, 1B, 2A or 2B (V _{CC} = Max, V _{EE} = Max, V _{ILL} = 0.4 V)	ИLL	_	_	-3.0	γ mA
High-Level Input Current into 1C or 2C (VCC = Max, VEE = Max, V _{IH1} = 2.4 V) (VCC = Max, VEE = Max, V _{IH1} = V _{CC} Max)	lнi	_	=	40 1.0	μA mA
Low-Level Input Current into 1C or 2C (V _{CC} = Max, V _{EE} = Max, V _{ILI} = 0.4 V)	կլլ	_	_	- 3.0	mA
High-Level Input Current into D (VCC = Max, VEE = Max, V _{IHI} = 2.4 V) (VCC = Max, VEE = Max, V _{IHI} = V _{CC} Max)	ині	_	_	80 2.0	μA mA
Low-Level Input Current into D (V _{CC} = Max, V _{EE} = Max, V _{IL} = 0.4 V)	IILį	_		-6.0	mA
Output Current ("on" state) (VCC = Max, VEE = Max) (VCC = Min, VEE = Min)	lO(on)	_ 6.5	12	15 —	mA
Output Current ("off" state)	IO(off)	_		100	μΑ
Supply Current from V_{CC} (with driver enabled) $(V_{IL}_{L} = 0.4 \text{ V}, V_{IH}_{I} = 2.0 \text{ V})$	ICC(on)	_	28	35	mA
Supply Current from V _{EE} (with driver enabled) $(V_{IL}_{L} = 0.4 \text{ V}, V_{IH}_{I} = 2.0 \text{ V})$	lEE(on)	_	-41	- 50	mA
Supply Current from V_{CC} (with driver inhibited) $(V_{IL}_{L} = 0.4 \text{ V}, V_{IL}_{L} = 0.4 \text{ V})$	ICC(off)	-	21	35	mA
Supply Current from V _{EE} (with driver inhibited) (V _{ILL} = 0.4 V, V _{ILI} = 0.4 V)	IEE(off)	_	- 17	50	mA

SWITCHING CHARACTERISTICS (VCC = +5.0 V, VEF = -5.0 V, TA = +25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time from Logic Input A or B to Output Y or Z (R _L = 50 ohms, C _I = 40 pF)					ns
	tPLH _L	-	9.0	15	•
	tPHL_	-	9.0	15	
Propagation Delay Time from Inhibitor Input C or D to Output Y or Z (R = 50 ohms, C = 40 pF)					ns
	tPLH ₁	_	16	25	
	tPHL;	-	13	25	İ

[#]Values are at $V_{CC} = +5.0 \text{ V}$, $V_{EE} = -5.0 \text{ V}$.

##For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions.

TEST CIRCUITS

TEST TABLE

TEST AT ANY INHIBITOR INPUT	ALL LOGIC INPUTS	INHIBITOR INPUTS NOT UNDER TEST	OUTPUT 1Y or 2Y	OUTPUT 1Z or 2Z
t _{IH1}	Gnd	Gnd	Gnd	Gnd
lili	Gnd	4.5 V	Gnd	Gnd

FIGURE 2 — IO(on) and IO(off)

TEST TABLE

TEST Ground all output pins		LOGIC	INPUTS	INHIBITOR INPUT		
	not under test.		1A or 2A 1B or 2B		D	
^I O(on)	at output 1Y or 2Y	V _{IL} V _{IL}	V _{IL} V _{IH} V _{IL}	VIH	VIH	
¹ O(on)	at output 1Z or 2Z	ViH	VIH	V _{IH} ²	VIH	
^I O(off)	at output 1Y or 2Y	VIH	VIH	VIH	VIН	
IO(off)	at output 1Z or 2Z	VIL VIL VIH	V _{IL} V _{IH} V _{IL}	VIH	VIH	
IO(off)	at output 1Y, 2Y, 1Z, or 2Z	Either state	Either state	VIL VIL VIH	VIL VIH VIL	

TEST CIRCUITS

FIGURE 3 — ICC and IEE

TEST TABLE ALL LOGIC ALL INHIBITOR INPUTS TEST ICC(on) Driver enabled VIL v_{IH} VIL VIH Driver enabled Icc(off) VIL Driver inhibited VIL Driver inhibited VIL IEE (off)

FIGURE 4 — PROPAGATION DELAY TIMES TEST CIRCUIT AND WAVEFORMS

NOTES: 1. The pulse generators have the following characteristics: $z_0 = 50 \Omega$, $t_r = t_f = 10 \pm 5$ ns, $t_{p1} = 500$ ns, PRR = 1 MHz, $t_{\rm D2}$ = 1 ms, PRR = 500 kHz. 2. C_L includes probe and jig capacitance. 3. For simplicity, only one channel and the inhibitor connections are shown.

MC1411 (ULN2001A)
MC1412 (ULN2002A)
MC1413 (ULN2003A)
MC1416 (ULN2004A)

HIGH-VOLTAGE, HIGH-CURRENT DARLINGTON TRANSISTOR ARRAYS

The seven NPN Darlington-connected transistors in these arrays are well suited for driving lamps, relays, or printer hammers in a variety of industrial and consumer applications. Their high breakdown voltage and internal suppression diodes insure freedom from problems associated with inductive loads. Peak inrush currents to 600 mA permit them to drive incandescent lamps.

The MC1411 device is a general-purpose array for use with DTL, TTL, PMOS, or CMOS Logic. The MC1412 contains a zener diode and resistor in series with the input to limit input current for use with 14 to 25 Volt PMOS Logic. The MC1413 with a 2.7 k Ω series input resistor is well suited for systems utilizing 5 Volt TTL or CMOS Logic. The MC1416 uses a series 10.5 k Ω resistor and is useful in 8–18 Volt MOS systems.

 $\mbox{MAXIMUM RATINGS}$ ($T_A = 25^{\circ}\mbox{C}$ and rating apply to any one device in the package unless otherwise noted.)

Rating	Symbol	Value	Unit
Output Voltage	V _O	50*	٧
Input Voltage (Except MC1411)	VI	30	٧
Collector Current — Continuous	lc	500	mA
Base Current — Continuous	IВ	25	mA
Operating Ambient Temperature Range	TA	0 to +85	°c
Storage Temperature Range	T _{stg}	-55 to +150	°c
Junction Temperature	TJ	150	°c

Maximum Package Power Dissipation (See Thermal Information Section) *Higher voltage selection available. See your local representative.

DEVICE CROSS-REFERENCE LISTING

9665 — SN75476* — ULN2001A — order MC1411P

9666 — SN75477 — ULN2002A — order MC1412P

9667 — SN75478 — ULN2003A — order MC1413P

9668 — ULN2004A — order MC1416P

*Similar

PERIPHERAL DRIVER ARRAYS

SILICON MONOLITHIC INTEGRATED CIRCUITS

MC1411, MC1412, MC1413, MC1416

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Output Leakage Current	All Types All Types MC1412 MC1416	ICEX	_ _ _	_ _ _	100 50 500 500	μΑ
Collector-Emitter Saturation Voltage (I _C = 350 mA, I _B = 500 μ A) (I _C = 200 mA, I _B = 350 μ A) (I _C = 100 mA, I _B = 250 μ A)	All Types All Types All Types	V _{CE(sat)}	_ _ _	1.1 0.95 0.85	1.6 1.3 1.1	V
Input Current — On Condition (V = 17 V) (V = 3.85 V) (V = 5.0 V) (V = 12 V)	MC1412 MC1413 MC1416 MC1416	ll(on)	_ _ _	0.85 0.93 0.35 1.0	1.3 1.35 0.5 1.45	mA
Input Voltage — On Condition VCE = 2.0 V, IC = 300 mA) VCE = 2.0 V, IC = 200 mA) VCE = 2.0 V, IC = 250 mA) VCE = 2.0 V, IC = 300 mA) VCE = 2.0 V, IC = 125 mA) VCE = 2.0 V, IC = 125 mA) VCE = 2.0 V, IC = 200 mA) VCE = 2.0 V, IC = 275 mA) VCE = 2.0 V, IC = 350 mA)	MC1412 MC1413 MC1413 MC1416 MC1416 MC1416 MC1416 MC1416	VI(on)		- - - - - - - - -	13 2.4 2.7 3.0 5.0 6.0 7.0 8.0	V
Input Current — Off Condition (I _C = 500 μ A, T _A = +70°C)	All Types	l(off)	50	100	_	μΑ
DC Current Gain $(V_{CE} = 2.0 \text{ V, I}_{C} = 350 \text{ mA})$	MC1411	hFE	1000			_
Input Capacitance		CI		15	30	pF
Turn-On Delay Time (50% E _I to 50% E _O)		ton	. —	0.25	1.0	μs
Turn-Off Delay Time (50% E _I to 50% E _O)		^t off	_	0.25	1.0	μs
Clamp Diode Leakage Current (V _R = 50 V)	T _A = +25°C T _A = +70°C	l _R		_	50 100	μΑ
Clamp Diode Forward Voltage (I _F 350 mA)		V _F	_	1.5	2.0	٧

^{*}Higher voltage selections available, contact your local representative.

TYPICAL PERFORMANCE CURVES - TA = 25°C

TYPICAL CHARACTERISTIC CURVES - TA = 25°C (continued)

MC1411, MC1412, MC1413, MC1416

REPRESENTATIVE CIRCUIT SCHEMATICS

MC1472

DUAL PERIPHERAL-HIGH-VOLTAGE POSITIVE "NAND" DRIVER

The dual driver consists of a pair of PNP-buffered AND gates connected to the bases of a pair of high-voltage NPN transistors. They are similar to the MC75452 drivers but with the added advantages of: 1) 70 Volt capability 2) output suppression diodes and 3) PNP buffered inputs for MOS compatibility. These features make the MC1472 ideal for mating MOS logic or microprocessors to lamps, relays, printer hammers and incandescent displays.

- 300 mA Output Capability (each transistor)
- 70 Vdc Breakdown Voltage
- Internal Output Clamp Diodes
- Low Input Loading for MOS Compatibility (PNP buffered)

CROSS REFERENCE

UDN-5712 - SN75475 - MC1472

MAXIMUM RATINGS (T_A = 25°C, Note 1).

Rating	Value	Unit
Supply Voltage	7.0	Volts
Input Voltage	5.5	Volts
Output Voltage	80	Volts
Clamp Voltage	80	Volts
Output Current (Continuous)	300	mA
Operating Junction Temperature Ceramic Package Plastic Package	+175 +150	°C
Storage Temperature Range	-65 to +150	°C

Note 1: "Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The "Table of Electrical Characteristics" provides conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Min	Max	Unit
Supply Voltage	Vcc	4.5	5.5	Volts
Operating Ambient Temperature	TA	0	70	°C
Output Voltage	v _o	Vcc	70	Volts
Clamp Voltage	٧c	٧o	70	Volts

DUAL PERIPHERAL
POSITIVE "NAND" DRIVER
SILICON MONOLITHIC
INTEGRATED CIRCUITS

U SUFFIX CERAMIC PACKAGE CASE 693-02

P1 SUFFIX PLASTIC PACKAGE CASE 626-04

Positive Logic: Y=AB*

TRUTH TABLE

Α	В	Υ
L	L	H ("OFF" STATE)
L	н	H ("OFF" STATE)
Н	L	H ("OFF" STATE)
н	н	L ("ON" STATE)

H = Logic One

L = Logic Zero

ORDERING INFORMATION

Device	Alternate	Temperature Range	Package
MC1472U	_	0 to +70°C	Ceramic DIP
MC1472P1	_	0 to +70°C	Plastic DIP

ELECTRICAL CHARACTERISTICS (Unless otherwise noted min/max limits apply across the 0°C to 70°C temperature range with 4.5 V \leq V_{CC} \leq 5.5 V. All typical values are for T_A = 25°C, V_{CC} = 5.0 Volts.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage — High Logic State	VIH	2.0		5.5	Vdc
Input Voltage — Low Logic State	VIL	0	 	0.8	Vdc
Input Current — Low Logic State (V _{IL} = 0.4 V) A Input B Input	IIL	_		-0.3 -0.15	mA
Input Current — High Logic State (VIH = 2.4 V) A Inp ut B Input (VIH = 5.5 V) A Input B Input	lін			40 20 200 100	μΑ
Input Clamp Voltage (I _{CC} = -12 mA)	VIK	_	_	-1.5	٧
Output Leakage Current — High Logic State (VO = 70 V, See Test Figure)	ІОН		_	100	μΑ
Output Voltage — Low Logic State (I _{OL} = 100 mA) (I _{OL} = 300 mA)	VOL	_	_	0.4 0.7	٧
Output Clamp Diode Leakage Current (V _C = 70 V, See Test Figure)	loc	_	_	100	٧
Output Clamp Forward Voltage (IFC = 300 mA, See Test Figure)	V _{FC}	_	_	1.7	٧
Power Supply Current (All Inputs at V _{IH}) (All Inputs at V _{IL})	lcc	_	=	70 15	mA →

NOTE: All currents into device pins are shown as positive, out of device pins as negative. All voltages referenced to ground unless otherwise noted.

SWITCHING CHARACTERISTICS V_{CC} = 5.0V, T_A = 25°C

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time Output High to Low Output Low to High	tPHL tPLH	<u>-</u>		1.0 0.75	μs
Output Transition Time Output High to Low Output Low to High	^t THL ^t TLH	- -	_	0.1 0.1	μs

MC1488

QUAD LINE DRIVER

The MC1488 is a monolithic quad line driver designed to interface data terminal equipment with data communications equipment in conformance with the specifications of EIA Standard No. RS-232C.

Features:

- Current Limited Output ±10 mA typ
- Power-Off Source Impedance 300 Ohms min
- Simple Slew Rate Control with External Capacitor
- Flexible Operating Supply Range
- Compatible with All Motorola MDTL and MTTL Logic Families

TYPICAL APPLICATION LINE DRIVER INTERCONNECTING CABLE MC1489 MOTELOGIC INPUT INTERCONNECTING CABLE MDTL LOGIC OUTPUT

QUAD MDTL LINE DRIVER RS-232C SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+15 -15	Vdc
Input Voltage Range	VIR	- 15 ≤ V _{IR} ≤ 7.0	Vdc
Output Signal Voltage	v _o	±15	Vdc
Power Derating (Package Limitation, Ceramic and Plastic Dual-In-Line Package) Derate above T _A = +25 ^o C	P _D 1/R _{θ JA}	1000 6.7	mW mW/ ^O C
Operating Ambient Temperature Range	TA	0 to +75	°C
Storage Temperature Rangè	T _{stg}	-65 to +175	°C

ELECTRICAL CHARACTERISTICS ($V_{CC} = +9.0 \pm 10\%$ Vdc, $V_{EE} = -9.0 \pm 10\%$ Vdc, $T_{A} = 0$ to 75°C unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Input Current — Low Logic State (VIL = 0)	1	HL	-	1.0	1.6	mA
Input Current - High Logic State (VIH = 5.0 V)	1	ЧН	. —	-	10	μΑ
Output Voltage – High Logic State (V_{IL} = 0.8 Vdc, R_L = 3.0 k Ω , V_{CC} = +9.0 Vdc, V_{EE} = -9.0 Vdc)	2	VOH	+6.0	+7.0		Vdc
$(V_{IL} = 0.8 \text{ Vdc}, R_L = 3.0 \text{ k}\Omega, V_{CC} = +13.2 \text{ Vdc}, V_{EE} = -13.2 \text{ Vdc})$			+9.0	+10.5		
Output Voltage – Low Logic State (V _{IH} = 1.9 Vdc, R _L = $3.0 \text{ k}\Omega$, V _{CC} = +9.0 Vdc, V _{EE} = -9.0 Vdc)	2	VOL	-6.0	-7.0	=	Vdc
$(V_{IH} = 1.9 \text{ Vdc}, R_L = 3.0 \text{ k}\Omega, V_{CC} = +13.2 \text{ Vdc}, V_{EE} = -13.2 \text{ Vdc})$			-9.0	-10.5	-	
Positive Output Short-Circuit Current (1)	3	I _{OS+}	+6.0	+10	+12	mA
Negative Output Short-Circuit Current (1)	3	los-	-6.0	-10	-12	mA
Output Resistance (VCC = VEE = 0, VO = ±2.0 V)	4	ro	300	_	-	Ohms
Positive Supply Current (R₁ = ∞) (V _{1H} = 1.9 Vdc, V _{CC} = +9.0 Vdc)	5	¹cc		+15	+20	mA
$(V_{IL} = 0.8 \text{ Vdc}, V_{CC} = +9.0 \text{ Vdc})$			-	+4.5	+6.0	İ
$(V_{IH} = 1.9 \text{ Vdc}, V_{CC} = +12 \text{ Vdc})$			_	+19	+25	
(V _{IL} = 0.8 Vdc, V _{CC} = +12 Vdc)			_	+5.5	+7.0	
(V _{IH} = 1.9 Vdc, V _{CC} = +15 Vdc) (V _{IL} = 0.8 Vdc, V _{CC} = +15 Vdc)			_	_	+34 +12	
Negative Supply Current (R _L = ∞)	5	¹EE				
(V _{IH} = 1.9 Vdc, V _{EE} = -9.0 Vdc)			-	-13	-17	mA
$(V_{IL} = 0.8 \text{ Vdc}, V_{EE} = -9.0 \text{ Vdc})$			-	-	- 500	μΑ
(V _{IH} = 1.9 Vdc, V _{EE} = -12 Vdc)				-18	-23	mA
(V _{IL} = 0.8 Vdc, V _{EE} = -12 Vdc)			_		-500	μΑ
(V _{IH} = 1.9 Vdc, V _{EE} = -15 Vdc)			_	_	-34	mA
(V _{IL} = 0.8 Vdc, V _{EE} = -15 Vdc)					-2.5	mA
Power Consumption (V _{CC} = 9.0 Vdc, V _{EE} = -9.0 Vdc) (V _{CC} = 12 Vdc, V _{EE} = -12 Vdc)		PC	_ _		333 576	mW

SWITCHING CHARACTERISTICS (V_{CC} = +9.0 \pm 1% Vdc, V_{EE} = -9.0 \pm 1% Vdc, T_A = +25°C.)

Propagation Delay Time	(z ₁ = 3.0 k and 15 pF)	6	^t PLH	_	275	350	ns
Fall Time	(z _I = 3.0 k and 15 pF)	6	^t THL	-	45	75	ns
Propagation Delay Time	(z = 3.0 k and 15 pF)	6	^t PHL	_	110	175	ns
Rise Time	(z _I = 3.0 k and 15 pF)	6	tTLH	-	55	100	ns

⁽¹⁾ Maximum Package Power Dissipation may be exceeded if all outputs are shorted simultaneously.

CHARACTERISTIC DEFINITIONS

FIGURE 1 - INPUT CURRENT

FIGURE 5 - POWER-SUPPLY CURRENTS

FIGURE 2 - OUTPUT VOLTAGE

FIGURE 4 - OUTPUT RESISTANCE (POWER-OFF)

FIGURE 6 - SWITCHING RESPONSE

TYPICAL CHARACTERISTICS

 $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$

FIGURE 7 – TRANSFER CHARACTERISTICS

Versus POWER-SUPPLY VOLTAGE

FIGURE 8 – SHORT-CIRCUIT OUTPUT CURRENT versus TEMPERATURE

FIGURE 9 - OUTPUT SLEW RATE versus LOAD CAPACITANCE

FIGURE 10 – OUTPUT VOLTAGE

FIGURE 11 – MAXIMUM OPERATING TEMPERATURE
Versus POWER-SUPPLY VOLTAGE

APPLICATIONS INFORMATION

The Electronic Industries Association (EIA) RS232C specification detail the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leads, but also the voltage levels to be used. The MC1488 quad driver and its companion circuit, the MC1488 quad receiver, provide a complete interface system between DTL or TTL logic levels and the RS232C defined levels. The RS232C requirements as applied to drivers are discussed herein.

The required driver voltages are defined as between 5 and 15-volts in magnitude and are positive for a logic "0" and negative for a logic "1". These voltages are so defined when the drivers are terminated with a 3000 to 7000-ohm resistor. The MC1488 meets this voltage requirement by converting a DTL/TTL logic level into RS232C levels with one stage of inversion.

The RS232C specification further requires that during transitions, the driver output slew rate must not exceed 30 volts per microsecond. The inherent slew rate of the MC1488 is much too

FIGURE 12 – SLEW RATE versus CAPACITANCE FOR I_{SC} = 10 mA

fast for this requirement. The current limited output of the device can be used to control this slew rate by connecting a capacitor to each driver output. The required capacitor can be easily determined by using the relationship C = $I_{\mbox{OS}} \times \Delta T/\Delta V$ from which Figure 12 is derived. Accordingly, a 330-pF capacitor on each output will quarantee a worst case slew rate of 30 volts per microsecond.

The interface driver is also required to withstand an accidental short to any other conductor in an interconnecting cable. The worst possible signal on any conductor would be another driver using a plus or minus 15-volt, 500-mA source. The MC1488 is designed to indefinitely withstand such a short to all four outputs in a package as long as the power-supply voltages are greater than 9.0 volts (i.e., $V_{CC} \! \geqslant \! 9.0 \text{ V}; V_{EE} \! \leqslant \! -9.0 \text{ V}).$ In some power-supply designs, a loss of system power causes a low impedance on the power-supply outputs. When this occurs, a low impedance to ground would exist at the power inputs to the MC1488 effectively shorting the 300-ohm output resistors to ground. If all four outputs were then shorted to plus or minus 15 volts, the power dissipation in these resistors

FIGURE 13 — POWER-SUPPLY PROTECTION TO MEET POWER-OFF FAULT CONDITIONS

would be excessive. Therefore, if the system is designed to permit low impedances to ground at the power-supplies of the drivers, a diode should be placed in each power-supply lead to prevent overheating in this fault condition. These two diodes, as shown in Figure 13, could be used to decouple all the driver packages in a system. (These same diodes will allow the MC1488 to withstand momentary shorts to the $\pm 25\text{-volt}$ limits specified in the earlier Standard RS232B.) The addition of the diodes also permits the MC1488 to withstand faults with power-supplies of less than the 9.0 volts stated above.

The maximum short-circuit current allowable under fault conditions is more than guaranteed by the previously mentioned 10 mA output current limiting.

Other Applications

The MC1488 is an extremely versatile line driver with a myriad of possible applications. Several features of the drivers enhance this versatility:

- 1. Output Current Limiting this enables the circuit designer to define the output voltage levels independent of power-supplies and can be accomplished by diode clamping of the output pins. Figure 14 shows the MC1488 used as a DTL to MOS translator where the high-level voltage output is clamped one diode above ground. The resistor divider shown is used to reduce the output voltage below the 300 mV above ground MOS input level limit.
- 2. Power-Supply Range as can be seen from the schematic drawing of the drivers, the positive and negative driving elements of the device are essentially independent and do not require matching power-supplies. In fact, the positive supply can vary from a minimum seven volts (required for driving the negative pulldown section) to the maximum specified 15 volts. The negative supply can vary from approximately –2.5 volts to the minimum specified –15 volts. The MC1488 will drive the output to within 2 volts of the positive or negative supplies as long as the current output limits are not exceeded. The combination of the current-limiting and supply-voltage features allow a wide combination of possible outputs within the same quad package. Thus if only a portion of the four drivers are used for driving RS232C lines, the remainder could be used for DTL to MOS or even DTL to DTL translation. Figure 15 shows one such combination.

FIGURE 14 - MDTL/MTTL-TO-MOS TRANSLATOR

FIGURE 15 - LOGIC TRANSLATOR APPLICATIONS

MC1489 MC1489A

QUAD LINE RECEIVERS

The MC1489 monolithic quad line receivers are designed to interface data terminal equipment with data communications equipment in conformance with the specifications of EIA Standard No. RS-232C.

- Input Resistance 3.0 k to 7.0 kilohms
- Input Signal Range ± 30 Volts
- Input Threshold Hysteresis Built In
 - Response Control
 - a) Logic Threshold Shifting
 - b) Input Noise Filtering

TYPICAL APPLICATION LINE DRIVER INTERCONNECTING CABLE MOTA LOGIC INPUT INTERCONNECTING CABLE MOTA LOGIC OUTPUT

QUAD MDTL LINE RECEIVERS RS-232C

SILICON MONOLITHIC INTEGRATED CIRCUIT

MC1489, MC1489A

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	10	Vdc
Input Voltage Range	VIR	±30	Vdc
Output Load Current	١L	20	mA
Power Dissipation (Package Limitation, Ceramic and Plastic Dual In-Line Package) Derate above $T_A = +25^{O}C$	Р _D 1/ _в ЈД	1000 6.7	mW mW/ ^O C
Operating Ambient Temperature Range	TA	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

ELECTRICAL CHARACTERISTICS (Response control pin is open.) ($V_{CC} = +5.0 \text{ Vdc} \pm 10\%$, $T_A = 0 \text{ to } +75^{\circ}\text{C}$ unless otherwise noted)

Ch	aracteristics	Symbol	Min	Тур	Max	Unit
Positive Input Current	$(V_{IH} = +25 \text{ Vdc})$ $(V_{IH} = +3.0 \text{ Vdc})$	lін	3.6 0.43	_	8.3 —	mA
Negative Input Current	$(V_{IL} = -25 \text{ Vdc})$ $(V_{IL} = -3.0 \text{ Vdc})$	IIL	-3.6 -0.43	_	-8.3 	mA
Input Turn-On Threshold Volta $(T_A = +25^{\circ}C, V_{OL} \le 0.45 \text{ V})$		VIH	1.0 1.75	 1.95	1.5 2.25	Vdc
Input Turn-Off Threshold Volta $(T_A = +25^{\circ}C, V_{OH} \ge 2.5 V,$		VIL	0.75 0.75	 0.8	1.25 1.25	Vdc
Output Voltage High	$(V_{IH}=0.75 \text{ V}, I_{L}=-0.5 \text{ mA})$ (Input Open Circuit, $I_{L}=-0.5 \text{ mA})$	VOH	2.5 2.5	4.0 4.0	5.0 5.0	Vdc
Output Voltage Low	$(V_{ L} = 3.0 \text{ V}, I_{L} = 10 \text{ mA})$	VOL		0.2	0.45	Vdc
Output Short-Circuit Current		los	_	-3.0	-4.0	mA
Power Supply Current (All Gat	es "on," l _{out} = 0 mA, V _{IH} = +5.0 Vdc)	Icc	_	16	26	mA
Power Consumption	$(V_{IH} = +5.0 \text{ Vdc})$	PC	_	80	130	mW

SWITCHING CHARACTERISTICS ($V_{CC} = 5.0 \text{ Vdc} \pm 1\%$, $T_A = +25^{\circ}\text{C}$, See Figure 1.)

Propagation Delay Time	$(R_L = 3.9 \text{ k}\Omega)$	tPLH	_	25	85	ns
Rise Time	$(R_L = 3.9 k\Omega)$	tTLH	_	120	175	ns
Propagation Delay Time	$(R_L = 390 \text{ k}\Omega)$	tPHL	_	25	50	ns
Fall Time	$(R_L = 390 \text{ k}\Omega)$	tTHL		10	20	ns

TEST CIRCUITS

FIGURE 1 — SWITCHING RESPONSE

probe and wiring capacitances

FIGURE 2 — RESPONSE CONTROL NODE

-3.0 -2.0

-1.0

+1.0

+2.0 +3.0

V_I, INPUT VOLTAGE (VOLTS)

+4 0

+120

TYPICAL CHARACTERISTICS

(V_{CC} = 5.0 Vdc, T_A = +25°C unless otherwise noted)

-60

0

+60

T, TEMPERATURE (°C)

VCC, POWER SUPPLY VOLTAGE (VOLTS)

APPLICATIONS INFORMATION

General Information

The Electronic Industries Association (EIA) has released the RS-232C specification detailing the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type of interface leads, but also the voltage levels to be used. The MC1488 quad driver and its companion circuit, the MC1489 quad receiver, provide a complete interface system between DTL or TTL logic levels and the RS-232C defined levels. The RS-232C requirements as applied to receivers are discussed herein.

The required input impedance is defined as between 3000 ohms and 7000 ohms for input voltages between 3.0 and 25 volts in magnitude; and any voltage on the receiver input in an open circuit condition must be less than 2.0 volts in magnitude. The MC1489 circuits meet these requirements with a maximum open circuit voltage of one VRF.

The receiver shall detect a voltage between -3.0 and -25 volts as a Logic "1" and inputs between +3.0 and +25 volts as a Logic "0." On some interchange leads, an open circuit of power "0FF" condition (300 ohms or more to ground) shall be decoded as an "0FF" condition or Logic "1." For this reason, the input hysteresis thresholds of the MC1489 circuits are all above ground. Thus an open or grounded input will cause the same output as a negative or Logic "1" input.

Device Characteristics

The MC1489 interface receivers have internal feedback from the second stage to the input stage providing input

hysteresis for noise rejection. The MC1489 input has typical turn-on voltage of 1.25 volts and turn-off of 1.0 volt for a typical hysteresis of 250 mV. The MC1489A has typical turn-on of 1.95 volts and turn-off of 0.8 volt for typically 1.15 volts of hysteresis.

Each receiver section has an external response control node in addition to the input and output pins, thereby allowing the designer to vary the input threshold voltage levels. A resistor can be connected between this node and an external power-supply. Figures 2, 4 and 5 illustrate the input threshold voltage shift possible through this technique.

This response node can also be used for the filtering of high-frequency, high-energy noise pulses. Figures 8 and 9 show typical noise-pulse rejection for external capacitors of various sizes.

These two operations on the response node can be combined or used individually for many combinations of interfacing applications. The MC1489 circuits are particularly useful for interfacing between MOS circuits and MDTL/MTTL logic systems. In this application, the input threshold voltages are adjusted (with the appropriate supply and resistor values) to fall in the center of the MOS voltage logic levels. (See Figure 10)

The response node may also be used as the receiver input as long as the designer realizes that he may not drive this node with a low impedance source to a voltage greater than one diode above ground or less than one diode below ground. This feature is demonstrated in Figure 11 where two receivers are slaved to the same line that must still meet the RS-232C impedance requirement.

FIGURE 8 — TYPICAL TURN-ON THRESHOLD versus CAPACITANCE FROM RESPONSE CONTROL PIN TO GND

FIGURE 9 — TYPICAL TURN-ON THRESHOLD versus CAPACITANCE FROM RESPONSE CONTROL PIN TO GND

APPLICATIONS INFORMATION (continued)

FIGURE 10 — TYPICAL TRANSLATOR APPLICATION — MOS TO DTL OR TTL

FIGURE 11 — TYPICAL PARALLELING OF TWO MC1489,A RECEIVERS TO MEET RS-232C

MC3242A

MEMORY ADDRESS MULTIPLEXER FOR 16K RAMS

The Motorola MC3242A is an address multiplexer and refresh counter for 16-pin 16K dynamic RAMs that require a 128-cycle refresh. It multiplexes fourteen system address bits to the seven address pins of the memory device. The MC3242A also contains a 7-bit refresh counter that is clocked externally to generate the 128 sequential addresses required for refresh. The high performance of the MC3242A will enhance the high speed of the N-channel RAMs such as the MCM4116.

- Simplifies 16-Pin 16K Dynamic Memory Design
- Reduces Package Count
- 7-Bit Binary Counter for 128 Refresh Address
- Multiplexing: Row Address/Column Address/Refresh Address
- High Input Impedance for Minimum Loading of Bus:
 IF = 0.25 mA Max
- Schottky TTL for High Performance Address Input to Output Delay
 - tAO = 25 ns @ CL = 250 pF
- Second Source to Intel 3242

(Detect Zero Function Not Included and Additional Chip Enable Feature Added at Pin 15)

MEMORY ADDRESS MULTIPLEXER AND REFRESH ADDRESS COUNTER

SCHOTTKY
SILICON MONOLITHIC
INTEGRATED CIRCUITS

Count 1	28	V _{CC}
Ref En 2	27	A6
Row En 3	26	A13
N.C. 4	25	A5
A1 5	24	A12
A8 6	23	A4
A2 7	22	A11
A9 8	21	A3
A0 9	20	A10
A7 10	19	<u>06</u>
O 0 11	18	<u>03</u>
O2 12	17	04
O1 13	16	<u>05</u>
Gnd 14	15	CE.

Note: A0 Through A6 Are Row Addresses
A7 Through A13 Are Column Addresses
*See Pin Definitions

TRUTH TABLE AND DEFINITIONS

Refresh Enable	Row Enable	Output
Н	X	Refresh Address (From Internal Counter)
L	Н	Row Address (A0 through A6)
L	L	Column Address (A7 through A13)
Count -	Advances Ir	iternal Refresh Counter

ORDERING INFORMATION					
Device	Temperature Range	Package			
MC3242AL	0 to 75 ⁰ C	Ceramic DIP			
MC3242AP	0 to 75°C	Plastic DIP			

ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

ABBOLUTE INFORMACION IN THICKE THE	TA 200 dimest differential			
Rating	Symbol	Value	Unit	
Power Supply Voltage	Vcc	-0.5 to +7.0	V	
Input Voltage	VI	-0.5 to +7.0	V	
Output Voltage	٧o	-0.5 to +7.0	٧	
Output Current	lo	100	mA	
Operating Ambient Temperature	TA	0 to +75	°C	
Storage Temperature	T _{stg}	-65 to +150	°C	
Junction Temperature Ceramic Package Plastic Package	TJ	+ 175 + 150	°C	

"Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, Min/Max values apply with 4.5 V \leq V_{CC} \leq 5.5 V, 0°C \leq T_A \leq 75°C; typical values apply with V_{CC} = 5.0 V, T_A = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Current, Low Logic State (V _{IL} = 0.45 V)	lIL		- 0.25	-0.40	mA
Input Current, High Logic State (V _{IH} = 5.5 V)	IH		_	10	μΑ
Input Voltage, Low Logic State	VIL	_	_	0.8	V
Input Voltage, High Logic State	. V _{IH}	2.0		_	V
Output Voltage, Low Logic State (I _{OL} = 5.0 mA)	V _{OL}	_	0.25	0.4	V
Output Voltage, High Logic State (IOH = -1.0 mA)	Voн	3.0	4.0	_	V
Input Clamp Voltage (I _K = -12 mA)	VIK	_	-0.8	- 1.5	V
Power Supply Current (V _{CC} = 5.5 V)	lcc	_	80	125	mA

SWITCHING CHARACTERISTICS (Unless otherwise noted, Min/Max values apply with 4.5 V \leq V_{CC} \leq 5.5 V, 0°C \leq T_A \leq 75°C; typical values apply with V_{CC} = 5.0 V, T_A = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Times Address Input to Output (Load = 1 TTL, C_L = 250 pF) (Load = 1 TTL, C_L = 15 pF, V_{CC} = 5.0 V, T_A = 25°C)	^t AO	_	12 6.0	25 9.0	ns
Row Enable to Output (Load = 1 TTL, C_L = 250 pF) (Load = 1 TTL, C_L = 15 pF, V_{CC} = 5.0 V, T_A = 25°C)	^t 00	12 7	27 12	41 27	ns
Refresh Enable to Output (Load = 1 TTL, C_L = 250 pF) (Load = 1 TTL, C_L = 15 pF, V_{CC} = 5.0 V, T_A = 25°C)	tEO	12 7	30 14	45 27	ns
Count Pulse Width	twc	30	_		ns
Counting Frequency	f̄c̄	5.0	10	_	MHz

FIGURE 1 - AC WAVEFORMS WITH MCM4116 NORMAL CYCLE

FIGURE 2 - REFRESH CYCLE

TYPICAL CHARACTERISTICS

MOTOROLA LINEAR/INTERFACE DEVICES

PIN DEFINITIONS

Count Input - Pin 1

Active low input increments internal 6-bit counter by one for each count pulse in.

Refresh Enable Input - Pin 2

Active high input which determines whether the MC3242A is in refresh mode (H) or address enable (L).

A0-A6 Inputs - Pins 9, 5, 7, 21, 23, 27 Row address inputs.

A7-A13 Inputs - Pins 10, 6, 8, 20, 22, 24, 26 Column address inputs.

00-06 Outputs - Pins 11, 12, 13, 18, 17, 16, 19

Address outputs to memories. Inverted with respect to address inputs.

Gnd - Pin 14

Power supply ground.

CE Input - Pin 15

Optional use, chip enable control pin. Left open, an internal 50 $k\Omega$ pullup resistor keeps this pin high and the MC3242A is a functional replacement for the Intel 3242 (without detect zero function). As an active input, when pulled low, all 3242A outputs go three-state.

V_{CC} - Pin 28

+5 V power supply input. Due to high capacitance drive capability, a 0.1 μF capacitor should be used to ground along with careful VCC and Gnd Bus layout.

TYPICAL APPLICATION 16K X 8-BIT MEMORY SYSTEM FOR M6800 MPU

Note: Numbers in parenthesis indicate part types or values for 16K x 1 RAMs

MC3437

HEX BUS RECEIVER WITH INPUT HYSTERESIS

These high-speed bus receivers are useful in bus organized data transmission systems employing terminated 120 Ω lines. The receivers feature input hysteresis to obtain improved noise immunity. The receivers low input current requirement allows up to 27 driver/receiver pairs to share a common bus. A pair of Disable Inputs are provided. These Disable Inputs along with the receiver outputs are MTTL compatible.

- Built in receiver hysteresis
- Receiver input threshold is not affected by temperature
- Propagation delay time 20 ns (Typ)
- Direct Replacement for DM8837

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	7.0	Vdc
Input Voltage	V _I	5.5	Vdc
Power Dissipation Derate above 25°C	PD	625 3.85	mW mW/ ^O C
Operating Ambient Temperature Range	TA	0 to 70	°c
Storage Temperature Range	T _{stg}	-65 to +150	°C

HEX BUS
RECEIVER
SILICON MONOLITHIC
INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, specifications apply for $0 \leqslant T_A \leqslant 70^{\circ}C$ and $4.75 \text{ V} \leqslant V_{CC} \leqslant 5.25 \text{ V.}$)

Characteristic	Symbol	Min	Тур	Max	Unit
Receiver Input Threshold Voltage — High Logic State $(V_{IL(DA)} = 0.8 \text{ V}, I_{OL} = 16 \text{ mA}, V_{OL} \leq 0.4 \text{ V})$	VILH(R)	1.80	2.25	2.50	٧
Receiver Input Threshold Voltage — Low Logic State (V _{IL(DA)} = 0.8 V, I _{OH} = -400 µA, V _{OH} ≥ 2.4 V)	V _{IHL(R)}	1.05	1.30	1.55	V
Receiver Input Current (V _I (R) = 4.0 V, V _{CC} = 5.25 V) (V _I (R) = 4.0 V, V _{CC} = 0 V)	I _{I(R)}		15 1.0	50 50	μΑ
Disable Input Voltage — High Logic State $(V_{I\{R\}} = 0.5 \text{ V, } V_{OL} \leqslant 0.4 \text{ V, } I_{OL} = 16 \text{ mA})$	V _{IH} (DA)	2.0	-	_	V
Disable Input Voltage $-$ Low Logic State (V _{I(R)} = 0.5 V, V _{OH} \geqslant 2.4 V, I _{OH} = -400 μ A)	V _{IL(DA)}	_	-	0.8	V.
Output Voltage — High Logic State (V _I (R) = 0.5 V, V _{IL} (DA) = 0.8 V, I _{OH} = -400 μA)	V _{OH}	2.4	-	-	V
Output Voltage — Low Logic State $(V_{I(R)} = 4.0 \text{ V, } V_{IL(DA)} = 0.8 \text{ V, } I_{OL} = 16 \text{ mA})$	V _{OL}	_	0.25	0.4	V
Disable Input Current — High Logic State (VIH(DA) = 2.4 V) (VIH(DA) = 5.5 V)	liH(DA)		_	80 2.0	μA mA
Disable Input Current — Low Logic State (VI(R) = 4.0 V, VIL(DA) = 0.4 V)	IL(DA)	_	-	-3.2	mA
Output Short Circuit Current $(V_{I(R)} = 0.5 \text{ V, } V_{IL(DA)} = 0 \text{ V, } V_{CC} = 5.25 \text{ V})$	los	-18	-	-55	mA
Power Supply Current $(V_{I(R)} = 0.5 \text{ V, } V_{IL(DA)} = 0 \text{ V})$	lcc	-	45	65	mA
Input Clamp Diode Voltage $(I_{1}(R) = -12 \text{ mA}, I_{1}(DA) = -12 \text{ mA},$	V _I	_	-1.0	-1.5	٧

SWITCHING CHARACTERISTICS ($T_A = 25^{\circ}C$, $V_{CC} = 5.0 \text{ V}$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time from Receiver Input to High Logic State Output	tPLH(R)	_	20	30	ns
Propagation Delay Time from Receiver Input to Low Logic State Output	tPHL(R)	_	18	30	ns
Propagation Delay Time from Disable Input to High Logic State Output	^t PLH(DA)	_	9.0	15	ns
Propagation Delay Time from Disable Input to Low Logic State Output	tPHL(DA)	_	4.0	15	ns

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT AND WAVEFORMS

MC3440A MC3441A MC3443A

QUAD GENERAL-PURPOSE INTERFACE BUS (GPIB) TRANSCEIVERS

The MC3440A, MC3441A, MC3443A are quad bus transceivers intended for usage in instruments and programmable calculators equipped for interconnection into complete measurement systems. These transceivers allow the bidirectional flow of digital data and commands between the various instruments. Each of the transceiver versions provides four open-collector drivers and four receivers featuring input hysteresis.

The MC3440A version consists of three drivers controlled by a common Enable input and a single driver without an Enable input. Terminations are provided in the device.

The MC3441A differs in that all four drivers are controlled by the common Enable input. Again, the terminations are provided.

The MC3443A is identical to the MC3441A except that the terminations have been omitted. As such it is pin compatible, and functionally equivalent to the SN75138. It does offer the advantage of receiver input hysteresis.

- Receiver Input Hysteresis Provides Excellent Noise Rejection
- Open-Collector Driver Outputs Permit Wire-OR Connection
- Tailored to Meet the Standards Set by the IEEE and IEC Committees on Instrument Interface (488-1978)
- Terminations provided (except MC3443A version)
- Provides Electrical Compatibility with General-Purpose Interface Bus

MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Input Voltage	V _I	5.5	Vdc
Driver Output Current	10(D)	150	mA
Power Dissipation (Package Limitation) Derate above 25 ^o C	PD	830 6.7	mW mW/ ^O C
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

QUAD INTERFACE BUS TRANSCEIVERS SILICON MONOLITHIC INTEGRATED CIRCUITS

MC3440A

ਡ vcc

் Bus C

Receiver

Output C

Output and

Termination -

Receiver

Output A

Gnd

Bus A

MC3440A, MC3441A, MC3443A

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, $4.5 \text{ V} \le \text{V}_{CC} \le 5.5 \text{ V}$ and $0 \le \text{T}_A \le 70^{\circ}\text{C}$, typical values are at TA = 25°C , VCC = 5.0 V)

$T_A = 25^{\circ}C, V_{CC} = 5.0 \text{ V}$				T	
Characteristic	Symbol	Min	Тур	Max	Unit
DRIVER PORTION					
Input Voltage – High Logic State	VIH(D)	2.0	_	-	V
Input Voltage – Low Logic State	VIL(D)	_	_	0.8	V
Input Current – High Logic State	(IH(D)	-	~	40	μΑ
(V _{IH} = 2.4 V)				 	
Input Current — Low Logic State MC3443A	IL(D)			-1.6	mA
$(V_{1L} = 0.4 \text{ V}, V_{CC} = 5.0 \text{ V}, T_A = 25^{\circ}\text{C})$ MC3440A, 3441A				-0.25	
Input Clamp Voltage	VIK(D)	-	_	-1.5	V
(I _{IK} = -12 mA)		0.5		+	
Output Voltage – High Logic State (1) (MC3440A, 3441A only) $(V H(E) = 2.4 \text{ V or } V L(D) = 0.8 \text{ V})$	AOH(D)	2.5	_	-	V
Output Voltage – Low Logic State	VOL(D)				V
$(V_{IH(D)} = 2.0 \text{ V}, V_{IL(E)} = 0.8 \text{ V}, I_{OL(D)} = 48 \text{ mA})$		_	_	0.5	
$(V_{IH(D)} = 2.0 \text{ V}, V_{IL(E)} = 0.8 \text{ V}, I_{OL(D)} = 100 \text{ mA})$				0.80	
Output Leakage Current — MC3443A Only	IOH(D)		_	250	μΑ
$(V_{IH(E)} = 2.0 \text{ V or } V_{IL(D)} = 0.8 \text{ V})$			L		
RECEIVER PORTION			500		
Input Hysteresis	_	400	580		mV
Input Threshold Voltage — Low to High Output Logic State	VILH(R)	0.8	0.98	_	V
(V _{CC} = 5.0 V, T _A = 25 ^o C)				1	
Input Threshold Voltage — High to Low Output Logic State	VIHL(R)	-	1.56	2.0	٧ -
(V _{CC} = 5.0 V, T _A = 25 ^o C)					
Output Voltage - High Logic State	Voh(R)	2.4	-	-	V
$(V_{IL(R)} = 0.8 \text{ V}, I_{OH(R)} = -400 \mu\text{A})$					
Output Voltage – Low Logic State	VOL(R)	_	_	0.5	٧
$(V_{IH(R)} = 2.0 \text{ V, } I_{OL(R)} = 16 \text{ mA})$					
Output Short-Circuit Current	IOS(R)	-20	-	-55	mA
(V _{IL(R)} = 0.8 V) (Only one output may be shorted at a time)	L		l	L	
BUS TERMINATION PORTION (Does not apply to MC3443A)				,	
Bus Voltage (V _{IL(D)} = 0.8 V)	V _{BUS}				V .
(I _{BUS} = -12 mA)	ĺ	_	-	-1.5	
(No Load)		2.50		3.70	
Bus Current	IBUS				mA
$(V_{IL}(D) = 0.8 \text{ V}, V_{BUS} \ge 5.0 \text{ V})$		0.7		2.5	
$(V_{IL(D)} = 0.8 \text{ V}, V_{BUS} \le 5.5 \text{ V})$		-1.3	_	-3.2	
$(V_{IL(D)} = 0.8 \text{ V}, V_{BUS} = 0.5 \text{ V})$	l	-1.3	_	+0.04	
$(V_{CC} = 0, 0 \le V_{BUS} \le 2.75 \text{ V})$ (MC3440A, 3441A only)	L	L		1 0.04	
TOTAL DEVICE POWER CONSUMPTION					
Power Supply Current	¹cc	30	56	75	mA
(V _{IH} (D) = 2.4 V, V _{IL} (E) = 0 V)	""				
111127 111127	l	L			

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, $T_A = 25^{\circ}\text{C}$)

		MC3440A,3441A		MC3443A				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
DRIVER PORTION								
Propagation Delay Time from Driver Input to Low Logic State Bus Output	tPHL(D)	-	13	30		13	25	ns
Propagation Delay Time from Driver Input to High Logic State Bus Output	tPLH(D)	-	17	30	-	17	25	ns
Propagation Delay Time from Enable Input to Low Logic State Bus Output	tPHL(E)	_	25	40		25	32	ns
Propagation Delay Time from Enable Input to High Logic State Bus Output	tPLH(E)		25	40	<u> </u>	25	32	ns
RECEIVER PORTION								,
Propagation Delay Time from Bus Input to High Logic State Receiver Output	tPLH(R)	-	15	30	<u> </u>	15	22	ns
Propagation Delay Time from Bus Input to Low Logic State Receiver Output	tPHL(R)	-	15	30	-	15	22	ns

^{(1) 12} k resistor from the bus terminal to V_{CC} required on the MC3443A version.

GENERAL PURPOSE INTERFACE BUS APPLICATION

- 8 Line Data Bus: DI01 DI08
- 5 General Interrupt Transfer Control Bus:
 - REN Remote Enable SRQ - Service Request

 - EOI End or Identify ATN Attention IFC Interface Clear

- 3 Data Byte Transfer Control Bus DAV Data Valid NRFD Not Ready for Data NDAC Not Data Accepted

- 16 Total Signal Lines

MC3440A, MC3441A, MC3443A

FIGURE 1 – TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER INPUT (BUS) TO OUTPUT

FIGURE 2 – TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER AND COMMON ENABLE INPUTS TO OUTPUT (BUS)

FIGURE 3 – TYPICAL RECEIVER HYSTERESIS CHARACTERISTICS

MC3446A

QUAD GENERAL-PURPOSE INTERFACE BUS (GPIB) TRANSCEIVER

The MC3446A is a quad bus transceiver intended for usage in instruments and programmable calculators equipped for interconnection into complete measurement systems. This transceiver allows the bidirectional flow of digital data and commands between the various instruments. The transceiver provides four open-collector drivers and four receivers featuring hysteresis.

- Tailored to Meet the IEEE Standard 488-1978 (Digital Interface for Programmable Instrumentation) and the Proposed IEC Standard on Instrument Interface
- Provides Electrical Compatibility with General-Purpose Interface Bus (GPIB)
- MOS Compatible with High Impedance Inputs
- Driver Output Guaranteed Off During Power Up/Power Down
- Low Power Average Power Supply Current = 12 mA
- Terminations Provided

QUAD INTERFACE BUS TRANSCEIVER SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 648-05

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Input Voltage	VI	5.5	Vdc
Driver Output Current	¹ O(D)	150	mA
Junction Temperature	TJ	150	°C
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS

(Unless otherwise noted, 4.5 V \leq V_{CC} \leq 5.5 V and 0 \leq T_A \leq 70°C, typical values are at T_A = 25°C, V_{CC} = 5.0 V)

	Characteristic	Symbol	Min	Тур	Max	Unit
DRIVER PORTION						
Input Voltage - High Logic	State	V _{IH(D)}	2.0	_	_	V
Input Voltage - Low Logic	State	VIL(D)	_	_	0.8	V
Input Current - High Logic	State	IH(D)	_	5.0	40	μА
$(V_{1H} = 2.4 V)$						
Input Current - Low Logic	State	IL(D)	-	-0.2	-0.25	mA
$(V_{IL} = 0.4 \text{ V}, V_{CC} = 5.$	0 V, T _A = 25 ^o C)					
Input Clamp Voltage		VIK(D)	-	-	-1.5	V
(I _{IK} = -12 mA)						
Output Voltage – High Log		VOH(D)	2.5	3.3	3.7	V
(V _{IH(S)} = 2.4 V or V _{IH}	1-/					
Output Voltage – Low Log		VOL(D)	-	-	0.5	
) = 0.8 V, I _{OL(D)} = 48 mA)					
Input Breakdown Current		IB(D)	-	_	1.0	mA
$(V_{I(D)} = 5.5 V)$		1				<u> </u>
RECEIVER PORTION						
Input Hysteresis		-	400	625		mV
Input Threshold Voltage -	Low to High Output Logic State	V _{ILH(R)}	-	1.66	2.0	V
Input Threshold Voltage -	High to Low Output Logic State	VIHL(R)	0.8	1.03	_	V
Output Voltage – High Log	pic State	Voh(R)	2.4			V
$(V_{1H(R)} = 2.0 \text{ V}, I_{OH(R)})$	$R) = -400 \ \mu A)$	1		İ		
Output Voltage – Low Log		VOL(R)	_	_	0.5	V
$(V_{IL(R)} = 0.8 \text{ V}, I_{OL(R)})$) = 8.0 mA)					
Output Short-Circuit Currer		IOS(R)	4.0	-	14	mA
(V _{IH(R)} = 2.0 V) (Only	one output may be shorted at a time)					1
BUS LOAD CHARACTERI	STICS					
Bus Voltage	(V _{IH(E)} = 2.4 V)	V _(BUS)	2.5	3.3	3.7	V
	(I _{BUS} = -12 mA)		-	-	-1.5	
Bus Current	(V _{IH} (O)= 2.4 V, V _{BUS} ≥5.0 V)	I(BUS)	0.7	_	_	mA
	$(V_{IH(D)} = 2.4 \text{ V}, V_{BUS} = 0.5 \text{ V})$		-1.3	-	-3.2	
	(V _{BUS} ≤ 5.5 V)		-	_	2.5	
	$(V_{CC} = 0, 0 \ V \le V_{BUS} \le 2.75 \ V)$				0.04	
TOTAL DEVICE POWER O	CONSUMPTION					
Power Supply Current		¹ cc				mA
(All Drivers OFF)			-	12	19	
(All Drivers ON)		1	-	32	40	1

SWITCHING CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}, T_A = 25^{\circ}\text{C}$)

Characteristic	Symbol	Min	Тур	Max	Unit
DRIVER PORTION					
Propagation Delay Time from Driver Input to Low Logic State Bus Output	tPHL(D)	_	-	50	ns
Propagation Delay Time from Driver Input to High Logic State Bus Output	tPLH(D)	-	-	40	ns
Propagation Delay Time from Enable Input to Low Logic State Bus Output	tPHL(E)	-		50	ns
Propagation Delay Time from Enable Input to High Logic State Bus Output	tPLH(E)	_		50	ns
RECEIVER PORTION					
Propagation Delay Time from Bus Input to High Logic State Receiver Output	tPLH(R)	-	_	50	ns
Propagation Delay Time from Bus Input to Low Logic State Receiver Output	tPHL(R)	-	_	40	ns

FIGURE 1 – TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM RECEIVER INPUT (BUS) TO OUTPUT

FIGURE 2 — TEST CIRCUIT AND WAVEFORMS FOR PROPAGATION DELAY TIME FROM DRIVER AND COMMON ENABLE INPUTS TO OUTPUT (BUS)

* Includes Probe and Jig Capacitance

CHARACTERISTICS

5.0

V_{CC} = 5.0 V

T_A = 25°C

1.0

0

0

0.5

1.0

1.5

2.0

V_I, INPUT VOLTAGE (VOLTS)

FIGURE 3 - TYPICAL RECEIVER HYSTERESIS

FIGURE 4 - TYPICAL BUS LOAD LINE

MC3447

BIDIRECTIONAL INSTRUMENTATION BUS (GPIB) TRANSCEIVER

This bidirectional bus transceiver is intended as the interface between TTL or MOS logic and the IEEE Standard Instrumentation Bus (488-1978, often referred to as GPIB). The required bus termination is internally provided.

Low power consumption has been achieved by trading a minimum of speed for low current drain on non-critical channels. A fast channel is provided for critical ATN and EOI paths.

Each driver/receiver pair forms the complete interface between the bus and an instrument. Either the driver or the receiver of each channel is enabled by a Send/Receive input with the disabled output of the pair forced to a high impedance state. The receivers have input hysteresis to improve noise margin, and their input loading follows the bus standard specifications.

- Low Power Average Power Supply Current = 30 mA Listening
 75 mA Talking
- Eight Driver/Receiver Pairs
- Three-State Outputs
- High Impedance Inputs
- Receiver Hysteresis − 600 mV (Typ)
- Fast Propagation Times 15-20 ns (Typ)
- TTL Compatible Receiver Outputs
- Single +5 Volt Supply
- Open Collector Driver Output with Terminations
- Power Up/Power Down Protection (No Invalid Information Transmitted to Bus)
- No Bus Loading When Power is Removed From Device
- Required Termination Characteristics Provided

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Input Voltage	VI	5.5	Vdc
Driver Output Current	IO(D)	150	mA
Junction Temperature	TJ	150	°C
Operating Ambient Temperature Range	TA	0 to +70	°С
Storage Temperature Range	T _{stg}	-65 to +150	°С

BUS TRANSCEIVER WITH TERMINATION NETWORKS

OCTAL BIDIRECTIONAL

SILICON MONOLITHIC

ELECTRICAL CHARACTERISTICS

(Unless otherwise noted 4.50 V \leq V \leq C \leq 5.50 V and 0 \leq T \leq 70 C; typical values are at T \leq 25 C, V \leq C \leq 5.0 V)

Characteristic Note 2	Symbol	Min	Тур	Max	Unit
Bus Voltage					٧
(Bus Pin Open)($V_{I(S/\overline{R})} = 0.8 \text{ V}$)	V(Bus)	2.5	_	3.7	
(I(Bus) = -12 mA)	VIC(Bus)	_	_	-1.5	
Bus Current	(Bus)				mA
$(5.0 \text{ V} \le \text{V}_{(Bus)} \le 5.5 \text{ V})$	'- '	0.7	_	2.5	
$(V_{(Bus)} = 0.5 V)$		-1.3	_	-3.2	
$(V_{CC} = 0 \text{ V}, 0 \text{ V} \le V_{(Bus)} \le 2.75 \text{ V})$		_	_	+0.04	
Receiver Input Hysteresis	_	400	600	-	mV
$(V_{I(S/\overline{R})} = 0.8 \text{ V})$					
Receiver Input Threshold					V
$(V_{I(S/\overline{R})} = 0.8 \text{ V})$ Low to High	VILH(R)	-	1.6	2.0	
High to Low	VIHL(R)	8.0	1.0		
Receiver Output Voltage — High Logic State	V _{OH(R)}	2.4	-	_	V
$(V_{I(S/\overline{R})} = 0.8 \text{ V}, I_{OH(R)} = -200 \mu\text{A}, V_{(Bus)} = 2.0 \text{ V})$				1	
Receiver Output Voltage - Low Logic State	V _{OL(R)}	-	_	0.5	V
$(V_{1(S/\overline{R})} = 0.8 \text{ V}, I_{OL(R)} = 4.0 \text{ mA}, (V_{(Bus)} = 0.8 \text{ V})$				1	
Receiver Output Short Circuit Current	los(R)	-4.0	_	-20	mA
$(V_{I(S/\overline{R})} = 0.8 \text{ V}, V_{(Bus)} = 2.0 \text{ V})$	1				
Driver Input Voltage - High Logic State	V _{IH(D)}	2.0		_	V
$(V_{I(S/\overline{R})} = 2.0 \text{ V})$	""(")				
Driver Input Voltage — Low Logic State	V _{IL(D)}	_	_	0.8	V
$(V_{I(S/\overline{R})} = 2.0 \text{ V})$,_,		ļ		
Driver Input Current — Data Pins					μΑ
$(V_{I(S/\overline{R})} = 2.0 \text{ V})$					
$(0.5 \le V_{1(D)} \le 2.7 \text{ V})$	I _{I(D)}	-100	_	40	1
$(V_{f(D)} = 5.5 V)$	IB(D)			200	
Input Current — Send/Receive					μΑ
$(0.5 \le V_{I(S/R)} \le 2.7 \text{ V})$	I(S/R)	-250	_	20	
$(V_{I(S/\overline{R})} = 5.5 \text{ V})$	¹IB(S/R)	_	_	100	
Driver Input Clamp Voltage	V _{IC(D)}	_	_	-1.5	V
$(V_{I(S/\overline{R})} = 2.0 \text{ V}, I_{IC(D)} = -18 \text{ mA})$					
Driver Output Voltage - High Logic State	V _{OH} (D)	2.5	_	_	V
$(V_{IS/\overline{R}}) = 2.0 \text{ V}, V_{IH(D)} = 2.0 \text{ V}$	3,2/				
Driver Output Voltage — Low Logic State (Note 1)	V _{OL(D)}	_	_	0.5	V
$(V_{1(S/\overline{R})} = 2.0 \text{ V}, V_{1L(D)} = 0.8 \text{ V}, I_{OL(D)} = 48 \text{ mA})$	52.57				
Power Supply Current					mA
(Listening Mode — All Receivers On)	ICCL	_	30	45	
(Talking Mode — All Drivers On)	ICCH	l _	75	95	1

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C unless otherwise noted)

Propagation Delay of Driver					ns
(Output Low to High)	tPLH(D)	-	7.0	15	
(Output High to Low)	tPHL(D)	_	16	30	
Propagation Delay of Receiver (Channels 0 to 5, 7)					ns
(Output Low to High)	tPLH(R)		28	50	
(Output High to Low)	tPHL(R)	_	15	30	
Propagation Delay of Receiver (Channel 6, Note 3)					ns
(Output Low to High)	tPLH(R)	_	17	30	
(Output High to Low)	tPHL(R)	_	12	22	

NOTES: 1. The IEEE 488-1978 Bus Standard changes VOL(D) from 0.4 to 0.5 V maximum to permit the use of Schottky technology.

- 2. Specified test conditions for $V_{I(S/\overline{R})}$ are 0.8 V (Low) and 2.0 V (High). Where $V_{I(S/\overline{R})}$ is specified as a test condition, $V_{I(\overline{S}/R)}$ uses the opposite logic levels.
- 3. In order to meet the IEEE 488-1978 standard for total system delay on the ATN and EOI channels, a fast receiver has been provided on Channel 6 (pins 9 and 16).

SWITCHING CHARACTERISTICS (continued) ($V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time - Send/Receiver to Data					ns
Logic High to Third State	tPHZ(R)	_	15	30	
Third State to Logic High	tPZH(R)	_	15	30	
Logic Low to Third State	tPLZ(R)		15	25	
Third State to Logic Low	tPZL(R)	_	10	25	
Propagation Delay Time — Şend/Receiver to Bus					ns
Logic Low to Third State	tPLZ(D)	_	13	25	
Third State to Logic Low	tPZL(D)	_	30	50	

PROPAGATION DELAY TEST CIRCUITS AND WAVEFORMS

FIGURE 2 - DATA INPUT TO BUS OUTPUT (DRIVER)

FIGURE 3 - SEND/RECEIVE INPUT TO BUS OUTPUT (DRIVER)

FIGURE 4 - SEND/RECEIVE INPUT TO DATA OUTPUT (RECEIVER)

FIGURE 5 – TYPICAL RECEIVER HYSTERESIS CHARACTERISTICS

FIGURE 6 - TYPICAL BUS LOAD LINE

FIGURE 7 - SUGGESTED PRINTED CIRCUIT BOARD LAYOUT USING MC3447s AND MC68488

IEEE 488-1978 BUS

FIGURE 8 - SIMPLE SYSTEM CONFIGURATION

FIGURE 9 - SUGGESTED PIN DESIGNATIONS FOR USE WITH MC68488

I	8488 ections	MC3447 Pin Designations			MC68488 Connections			
Α	В						Α	В
T/R 2	vcс	S/R (0)	1		24	Vcc	Vcс	Vcс
DAV	SRQ	Data 0 0	2		23	Bus 0	DAV	SRQ
IBØ	ĪB1	Data 1	3		22	Bus 1	DIO 1	DIO 2
īB2	ĪB3	Data 2	4		21	Bus 2	D103	DIO 4
ĪB4	IB5	Data 3	5		20	Bus 3	DIO 5	DIO 6
īB6	IB7	Data 4	6	Octal	19	Bus 4	DIO 7	DIO 8
DAC	RFD	Data 5	7	GPIB Transceiver	18	Bus 5	NDAC	NRFD
T/R 2	T/R 2	S/R (5)	8		17	S/R (1-4)	T/R 2	T/R 2
EOI	ATN	Data 6	9		16	Bus 6	EOI	ATN
ĪFC	REN	Data 7	10		15	Bus 7	IFC	REN
T/R 1	Gnd	S/R (6)	11		14	S/R (7)	Gnd	Gnd
Gnd	Gnd	Logic Gnd	12	!	13	Bus Gnd	Gnd	Gnd

MC3448A

BIDIRECTIONAL INSTRUMENTATION BUS (GPIB) TRANSCEIVER

This bidirectional bus transceiver is intended as the interface between TTL or MOS logic and the IEEE Standard Instrumentation Bus (488-1978, often referred to as GPIB). The required bus termination is internally provided.

Each driver/receiver pair forms the complete interface between the bus and an instrument. Either the driver or the receiver of each channel is enabled by its corresponding Send/Receive input with the disabled output of the pair forced to a high impedance state. An additional option allows the driver outputs to be operated in an open collector⁽¹⁾ or active pull-up configuration. The receivers have input hysteresis to improve noise margin, and their input loading follows the bus standard specifications.

- Four Independent Driver/Receiver Pairs
- Three-State Outputs
- High Impedance Inputs
- Receiver Hysteresis 600 mV (Typ)
- Fast Propagation Times 15-20 ns (Typ)
- TTL Compatible Receiver Outputs
- Single +5 Volt Supply
- Open Collector Driver Output Option(1)
- Power Up/Power Down Protection

(No Invalid Information Transmitted to Bus)

- No Bus Loading When Power Is Removed From Device
- Required Termination Characteristics Provided

(1) Selection of the "Open Collector" configuration, in fact, selects an open collector device with a passive pull-up load/termination which conforms to Figure 7, IEEE 488-1978 Bus Standard.

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Input Voltage	VI	5.5	Vdc
Driver Output Current	10(D)	150	mA
Junction Temperature	TJ	150	°C
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

QUAD THREE-STATE BUS TRANSCEIVER WITH TERMINATION NETWORKS

SILICON MONOLITHIC INTEGRATED CIRCUIT

Send/Rec.	Enable	Info. Flow	Comments
0	×	Bus → Data	-
1	1	Data → Bus	Active Pull-Up
1	0	Data → Bus	Open Col.

ELECTRICAL CHARACTERISTICS

(Unless otherwise noted 4.75 V \leq V_{CC} \leq 5.25 V and 0 \leq T_A \leq 70°C; typical values are at T_A = 25°C, V_{CC} = 5.0 V)

Characteristic	Symbol	Min	Тур	Max	Unit
Bus Voltage					V
(Bus Pin Open)($V_{I(S/R)} = 0.8 \text{ V}$)	V _(BUS)	2.75	-	3.7	
(I _(BUS) = -12 mA)	VIC(BUS)		-	-1.5	
Bus Current	I(BUS)				mA
(5.0 V ≤ V _(BUS) ≤ 5.5 V)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.7	-	2.5	
(V _(BUS) = 0.5 V)		-1.3 ·	-	-3.2	
$(V_{CC} = 0 \text{ V}, 0 \text{ V} \le V_{(BUS)} \le 2.75 \text{ V})$		-	-	+0.04	
Receiver Input Hysteresis	_	400	600	-	, mV
$(V_{1(S/R)} = 0.8 \text{ V})$	ļ				
Receiver Input Threshold	 				V
$(V_{1(S/R)} = 0.8 \text{ V, Low to High})$	VILH(R)		1.6	1.8	
$(V_{1(S/R)} = 0.8 \text{ V, High to Low})$	VIHL(R)	0.8	1.0		
Receiver Output Voltage — High Logic State	V _{OH(R)}	2.7			V
$(V_{1(S/R)} = 0.8 \text{ V}, I_{OH(R)} = -800 \mu\text{A}, V_{(BUS)} = 2.0 \text{ V})$	· On(h)				
Receiver Output Voltage — Low Logic State	VOL(R)			0.5	V
$(V_{1(S/R)} = 0.8 \text{ V}, I_{OL(R)} = 16 \text{ mA}, V_{(BUS)} = 0.8 \text{ V})$	VOL(R)			0.0	
Receiver Output Short Circuit Current	IOS(R)	-15		-75	mA
$(V_{1(S/R)} = 0.8 \text{ V}, V_{(BUS)} = 2.0 \text{ V})$	I IOS(R)	-13		, ,	
Driver Input Voltage – High Logic State	V _{IH} (D)	2.0			V
$(V_{I(S/R)} = 2.0 \text{ V})$	VIH(D)	2.0			•
				0.8	
Driver Input Voltage – Low Logic State	VIL(D)	_	_	0.6	V
(V _{I(S/R)} = 2.0 V)	_				
Driver Input Current — Data Pins					μΑ
$(V_{1(S/R)} = V_{1(E)} = 2.0 \text{ V})$	1 .			40	
$(0.5 \leqslant V_{I(D)} \leqslant 2.7 \; V)$	(D)	-200	_	40	
(V _{I(D)} = 5.5 V)	IB(D)	-		200	
Input Current - Send/Receive					μΑ
$(0.5 \le V_{I(S/R)} \le 2.7 V)$	I(S/R)	-100	_	20	
$(V_{I(S/R)} = 5.5 V)$	IB(S/R)		_	100	
Input Current - Enable					μΑ
$(0.5 \le V_{I(E)} \le 2.7 \text{ V})$!I(E)	-200	_	20	
$(V_{I(E)} = 5.5 V)$	IB(E)	-	-	100	
Driver Input Clamp Voltage	V _{IC(D)}	_	_	-1.5	V
$(V_{I(S/R)} = 2.0 \text{ V}, I_{IC(D)} = -18 \text{ mA})$	10.27				
Driver Output Voltage - High Logic State	V _{OH(D)}	2.5			V
$(V_{I(S/R)} = 2.0 \text{ V}, V_{IH(D)} = 2.0 \text{ V}, V_{IH(E)} = 2.0 \text{ V}, I_{OH} = -5.2 \text{ mA})$	OII(b)				
Driver Output Voltage — Low Logic State (Note 1)	V _{OL(D)}		_	0.5	V
(V _I (S/R) = 2.0 V, I _{OL} (D) = 48 mA)	· OL(D)				
Output Short Circuit Current	los(D)	-30		-120	mA
$(V_{I}(S/R) = 2.0 \text{ V}, V_{IH}(D) = 2.0 \text{ V}, V_{IH}(E) = 2.0 \text{ V})$	(08(0)	-30		120	
					mA
Power Supply Current	1	1	62	85	mA
(Listening Mode – All Receivers On)	ICCL	_	63	125	
(Talking Mode — All Drivers On)	Іссн		106	125	

Propagation Delay of Driver					ns
(Output Low to High)	tPLH(D)	-	-	15	
(Output High to Low)	tPHL(D)	_		17	
Propagation Delay of Receiver					ns
(Output Low to High)	tPLH(R)	-		25	
(Output High to Low)	tPHL(R)	_	-	23	

NOTE 1. A modification of the IEEE 488-1978 Bus Standard changes $V_{OL(D)}$ from 0.4 to 0.5 V maximum to permit the use of Schottky technology.

SWITCHING CHARACTERISTICS (continued) ($V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time - Send/Receive to Data					ns
Logic High to Third State	tPHZ(R)	_	-	30	
Third State to Logic High	tPZH(R)	_	_	30	
Logic Low to Third State	tPLZ(R)	-	_	30	
Third State to Logic Low	tPZL(R)	-	-	30	
Propagation Delay Time - Send/Receive to Bus					ns
Logic High to Third State	tPHZ(D)	_	-	30	
Third State to Logic High	tPZH(D)	_	_	30	
Logic Low to Third State	tPLZ(D)	-	_	30	
Third State to Logic Low	tPZL(D)	-	_	30	
Turn-On Time — Enable to Bus					ns
Pull-Up Enable to Open Collector	tPOFF(E)	-	-	30	
Open Collector to Pull-Up Enable	tPON(E)	_		20	

PROPAGATION DELAY TEST CIRCUITS AND WAVEFORMS

FIGURE 2 – DATA INPUT TO BUS OUTPUT (DRIVER)

FIGURE 4 - SEND/RECEIVE INPUT TO DATA OUTPUT (RECEIVER)

FIGURE 5 - ENABLE INPUT TO BUS OUTPUT (DRIVER)

FIGURE 8 - SIMPLE SYSTEM CONFIGURATION

MC3450 MC3452

Specifications and Applications Information

QUAD MTTL COMPATIBLE LINE RECEIVERS

The MC3450 features four MC75107 type active pullup line receivers with the addition of a common three-state strobe input. When the strobe input is at a logic zero, each receiver output state is determined by the differential voltage across its respective inputs. With the strobe high, the receiver outputs are in the high impedance state.

The MC3452 is the same as the MC3450 except that the outputs are open collector which permits the implied "AND" function.

The strobe input on both devices is buffered to present a strobe loading factor of only one for all four receivers and inverted to provide best compatability with standard decoder devices.

- Receiver Performance Identical to the Popular MC75107/MC75108 Series
- Four Independent Receivers with Common Strobe Input
- Implied "AND" Capability with Open Collector Outputs
- Useful as a Quad 1103 type Memory Sense Amplifier

FIGURE 1 – A TYPICAL MOS MEMORY SENSING APPLICATION FOR A 4-K WORD BY 4-BIT MEMORY ARRANGEMENT EMPLOYING 1103 TYPE MEMORY DEVICES

QUAD LINE RECEIVERS WITH COMMON THREE-STATE STROBE INPUT

SILICON MONOLITHIC INTEGRATED CIRCUITS

L SUFFIX CERAMIC PACKAGE CASE 620-02 P SUFFIX PLASTIC PACKAGE CASE 648-05

	TRUTH TABLE								
-			OUT	PUT					
1	INPUT	STROBE	MC3450	MC3452					
	V _{ID} ≥	L	Η	Off					
	+25 mV	Н	Z	Off ·					
	-25 mV ≤	L	1	_					
	V _{ID} ≤+25 mV	Н	z	Off					
	V _{ID} ≤	L	L	L					
	-25 mV	Н	z	Off					

- L = Low Logic State
- H = High Logic State
- Z = Third (High Impedance) State
- I = Indeterminate State

MC3450, MC3452

MAXIMUM RATINGS (T_A = 0 to +70°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	V _{CC} , V _{EE}	±7.0	Vdc
Differential-Mode Input Signal Voltage Range	V _{IDR}	±6.0	Vdc
Common-Mode Input Voltage Range	V _{ICR}	±5.0	Vdc
Strobe Input Voltage	V _I (S),	5.5	Vdc
Power Dissipation (Package Limitation) Ceramic Dual In-Line Package Derate above $T_A = +25^{\circ}C$ Plastic Dual In-Line Package Derate above $T_A = +25^{\circ}C$	Ро	1000 6.6 1000 6.6	mW mW/ ^o C mW mW/ ^o C
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS (T_A = 0 to +70°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages	Vcc	+4.75	+5.0	+5.25	Vdc
	VEE	-4.75	-5.0	-5.25	
Output Load Current	loL	_	_	16	mA
Differential-Mode Input Voltage Range	VIDR	-5.0	_	+5.0	Vdc
Common-Mode Input Voltage Range	VICR	-3.0	_	+3.0	Vdc
Input Voltage Range (any input to Ground)	VIR	-5.0	_	+3.0	Vdc

ELECTRICAL CHARACTERISTICS ($V_{CC} = +5.0 \text{ Vdc}$, $V_{EE} = -5.0 \text{ Vdc}$, $T_A = 0 \text{ to } +70^{\circ}\text{C}$ unless otherwise noted.)

				MC3450			MC3452		
Characteristic	Symbol	Fig.	Min	Тур	Max	Min	Тур	Max	Unit
High Level Input Current to Receiver Input	¹ 1H(1)	7	_	-	75	_	-	75	μΑ
Low Level Input Current to Receiver Input	¹ L()	8	_	_	-10	_	_	-10	μΑ
High Level Input Current to Strobe Input VIH(S) = +2.4 V VIH(S) = +5.25 V	IIH(S)	5	_	_	40 1.0	_		40 1.0	μA mA
Low Level Input Current to Strobe Input VIH(S) = +0.4 V	IL(S)	5	-		-1.6	_	-	-1.6	mA
High Level Output Voltage	Voн	3	2.4	_	-	-	-		Vdc
High Level Output Leakage Current	ICEX	3	_	_	_	_	_	250	μΑ
Low Level Output Voltage	VOL	3	_	_	0.5	_	_	0.5	Vdc
Short-Circuit Output Current	los	6	-18	_	-70		_	_	mA
Output Disable Leakage Current	loff	9	_	_	40	_	_	_	μΑ
High Logic Level Supply Current from V _{CC}	ССН	4	_	45	60	_	45	60	mA
High Logic Level Supply Current from VEE	IEEH	4	_	-17	-30	_	-17	-30	mA

SWITCHING CHARACTERISTICS (Voc = +5.0 Vdc, VEE = -5.0 Vdc, TA = +25°C unless otherwise noted.)

				MC3450			MC 3452		
Characteristic	Symbol	Fig.	Min	Тур	Max	Min	Тур	Max	Unit
High to Low Logic Level Propagation Delay Time (Differential Inputs)	tPHL(D)	10			25	_	_	25	ns
Low to High Logic Level Propagation Delay Time (Differential Inputs)	tPLH(D)	10		_	25	_	-	25	ns
Open State to High Logic Level Propagation Delay Time (Strobe)	tPZH(S)	11	_	Name .	21	_	_	-	ns
High Logic Level to Open State Propagation Delay Time (Strobe)	tPHZ(S)	11	-	-	18	_	-	-	ns
Open State to Low Logic Level Propagation Delay Time (Strobe)	tPZL(S)	11		-	27	_	_	_	ns
Low Logic Level to Open State Propagation Delay Time (Strobe)	tPLZ(S)	11	-	-	29	_	-	-	ns
High Logic to Low Logic Level Propagation Delay Time (Strobe)	tPHL(S)	12	-	-		-	-	25	ns
Low Logic to High Logic Level Propagation Delay Time (Strobe)	^t PLH(S)	12	_	-	_	_	-	25	ns

FIGURE 2 – CIRCUIT SCHEMATIC (1/4 Circuit Shown)

TEST CIRCUITS

Dashed components apply to the MC3450 circuit only.

FIGURE 3 – I_{CEX}, V_{OH}, AND V_{OL}

TEST TABLE

	V	1	\	/2	\ \	V3 V4		V4	
	MC3450	MC3452	MC3450	MC3452	MC3450	MC3452	MC3450	MC3452	11
.,	+2.975 V	-	+3.0 V	-	+3.0 V	-	GND	-	+0.4 mA
Vон	-3.0 V	-	-2.975 V	-	GND	-	-3.0 V	-	70.4 ma
	_	+2.975 V	-	+3.0 V	_	+3.0 V	-	GND	-
CEX	_	-3.0 V	-	-2.975 V	-	GND	-	-3.0 V	_
	+3.0 V	+3.0 V	+2.975 V	+2.975 V	GND	GND	+3.0 V	+3.0 V	404
VOL	-2.975 V	-2.975 V	-3.0 V	-3.0 V	-3.0 V	-3.0 V	GND	GND	-16 mA

Channel A shown under test. Other channels are tested similarly.

FIGURE 4 - ICCH AND IEEH

FIGURE 5 - IIH(S) AND IIL(S)

TEST CIRCUITS (continued)

FIGURE 6 - IOS

Channel A shown under test, other channels are tested similarly. Only one output shorted at a time.

FIGURE 7 - I_{IH}

Channel A(-) shown under test, other channels are tested similarly. Devices are tested with V1 from +3.0 V to -3.0 V.

FIGURE 8 - IIL

Channel A(-) shown under test, other channels are tested similarly. Devices are tested with V1 from ± 3.0 V to ± 3.0 V.

FIGURE 9 - Ioff

Output of Channel A shown under test, other outputs are tested similarly for V1 = 0.4 V and +2.4 V.

FIGURE 10 - RECEIVER PROPAGATION DELAY tPLH(D) AND tPHL(D)

Output of Channel B shown under test, other channels are tested similarly.

S1 at "A" for MC3452

S1 at "B" for MC3450

C_L = 15 pF total for MC3452 C_L = 50 pF total for MC3450

Ein waveform characteristics: t_{TLH} and $t_{THL} \le 10$ ns measured 10% to 90% PRR = 1.0 MHz Duty Cycle = 500 ns

TEST CIRCUITS (continued)

FIGURE 11 – STROBE PROPAGATION DELAY TIMES $\ ^{t}PLZ(S)\mid ^{t}PZL(S)\ ^{t}PHZ(S)$ and $\ ^{t}PZH(S)$

	V1	V2	S1	S2	CL
tPLZ(S)	100 mV	GND	Closed	Closed	15 pF
tPZL(S)	100 mV	GND	Closed	Open	50 pF
tPHZ(S)	GND	100 mV	Closed	Closed	15 pF
tPZH(S)	GND	100 mV	Open	Closed	50 pF

 $E_{\rm in}^{-}$ waveform characteristics: $t_{\rm TLH}$ and $t_{\rm THL} \leqslant$ 10 ns measured 10% to 90%. PRR = 1.0 MHz

Duty Cycle = 50%

FIGURE 12 – STROBE PROPAGATION DELAY tPLH(S) AND tPHL(S)

Output of Channel B shown under test, other channels are tested similarly.

 E_{In} waveform characteristics: t_{TLH} and $t_{THL} \leqslant 10$ ns measured 10% to 90% PRR = 1.0 MHz Duty Cycle = 500 ns

APPLICATIONS INFORMATION

FIGURE 13 - IMPLIED "AND" GATING

The MC3452 can be used for address decoding as illustrated above. All outputs of the MC3452 are tied together through a common resistor to +5.0 volts. In this configuration the MC3452 provides the "AND" function. All addresses have to be true before the output will go high. This scheme eliminates the need for an "AND" gate and enhances speed throughput for address

FIGURE 14 - BIDIRECTIONAL DATA TRANSMISSION

The three-state capability of the MC3450 permits bidirectional data transmission as illustrated.

FIGURE 15 - SINGLE-ENDED UNI-BUS* LINE RECEIVER APPLICATION FOR MINICOMPUTERS

The MC3450/3452 can be used for single-ended as well as differential line receiving. For single-ended line receiver applications, such as are encountered in minicomputers, the concations, such as are encountered in minicomputers, the configuration shown in Figure 15 can be used. The voltage source, which generates $V_{\rm ref}$, should be designed so that the $V_{\rm ref}$ wottage is halfway between $V_{\rm OH}$ limin and $V_{\rm QL}$ (max). The maximum input overdrive required to guarantee a given logic state is extremely small, 25 mV maximum. This low-input overdrive enhances differential noise immunity, Also the high-input impedance of the line receiver permits many receivers to be placed on a single line with minimum load effects.

FIGURE 16 - WIRED "OR" DATA SELECTION USING THREE-STATE LOGIC

APPLICATIONS INFORMATION (continued)

FIGURE 17 — PARTY-LINE DATA TRANSMISSION SYSTEM WITH MULTIPLEX DECODING

MC3453

MTTL COMPATIBLE QUAD LINE DRIVER

The MC3453 features four SN75110 type line drivers with a common inhibit input. When the inhibit input is high, a constant output current is switched between each pair of output terminals in response to the logic level at that channel's input. When the inhibit is low, all channel outputs are nonconductive (transistors biased to cut-off). This minimizes loading in party-line systems where a large number of drivers share the same line.

- Four Independent Drivers with Common Inhibit Input
- -3.0 Volts Output Common-Mode Voltage Over Entire Operating Range
- Improved Driver Design Exceeds Performance of Popular SN75110

FIGURE 1 — PARTY-LINE DATA TRANSMISSION SYSTEM WITH MULTIPLEX DECODING STROBE OATA INPUTS OATA INPUTS OATA INPUTS OATA INPUTS TAROBE OATA INPUTS OATA INPUTS TAROBE OATA INPUTS OATA INPUTS TAROBE OATA INPUTS OATA

QUAD LINE DRIVER WITH COMMON INHIBIT INPUT

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 648-05

TRUTH TABLE (positive logic) OUTPUT CURRENT LOGIC INHIRIT INPUT INPUT z н On Off н Off On Off Off

L = Low Logic Level H = High Logic Level

MAXIMUM RATINGS (T_A = 0 to +70°C unless otherwise noted.)

Ratings	Symbol	Value	Unit
Power Supply Voltage	Vcc	+7.0	Volts
	VEE	-7.0	
Logic and Inhibitor Input Voltages	V _{in}	5.5	Volts
Common-Mode Output Voltage Range	Vocr	-5.0 to +12	Volts
Power Dissipation (Package Limitation)	PD		
Plastic and Ceramic Dual In-Line Packages		1000	mW
Derate above T _A = +25 ^o C		6.6	mW/ ^O C
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Plastic and Ceramic Dual In-Line Packages			

RECOMMENDED OPERATING CONDITIONS (See Notes 1 and 2.)

Characteristic	Symbol	Min	Nom	Max	Unit
Power Supply Voltages	Vcc	+4.75	+5.0	+5.25	Volts
	VEE	-4.75	-5.0	-5.25	
Common-Mode Output Voltage Range	Vocr				Volts
Positive		0	-	+10	
Negative		0	-	-3.0	

Note 1. These voltage values are in respect to the ground terminal.

Note 2. When not using all four channels, unused outputs must be grounded.

DEFINITIONS OF INPUT LOGIC LEVELS*

Characteristic	Symbol	Min	Max	Unit
High-Level Input Voltage (at any input)	VIH	2.0	5.5	Volts
Low-Level Input Voltage (at any input)	VIL	0	0.8	Volts

^{*}The algebraic convention, where the most positive limit is designated maximum, is used with Logic Level Input Voltage Levels only.

ELECTRICAL CHARACTERISTICS ($T_A = 0$ to $\pm 70^{\circ}$ C unless otherwise noted.)

Characteristic##	Symbol	Min	Тур#	Max	Unit
High-Level Input Current (Logic Inputs) (VCC = Max, VEE = Max, VIHI = 2.4 V)	IIHL	_	_	40	μΑ
$(V_{CC} = Max, V_{EE} = Max, V_{IH} = V_{CC} Max)$		-	-	1.0	mA
Low-Level Input Current (Logic Inputs) (VCC = Max, VEE = Max, VILL = 0.4 V)	ווננ	_	-	-1.6	mA
High-Level Input Current (Inhibit Input) (VCC = Max, VEE = Max, VIH, = 2.4 V)	лні Пні	-		40	μА
(VCC = Max, VEE = Max, VIHI = VCC Max)		_	-	1.0	mA
Low-Level Input Current (Inhibit Input) (VCC = Max, VEE = Max, VILI = 0.4 V)	IILI		-	-1.6	mA
Output Current ("on" state)	I _{O(on)}				mA
$(V_{CC} = Max, V_{EE} = Max)$		-	11	15	
(V _{CC} = Min, V _{EE} = Min)		6.5	11	_	
Output Current ("off" state) (VCC = Min, VEE = Min)	IO(off)	-	5.0	100	μА
Supply Current from V_{CC} (with driver enabled) $(V_{IL_L} = 0.4 \text{ V, } V_{IH_I} = 2.0 \text{ V})$	ICC(on)	- '	35	50	mA
Supply Current from V_{EE} (with driver enabled) (V_{IL}_{L} = 0.4 V, V_{IH}_{I} = 2.0 V)	lEE(on)	_	65	90	mA
Supply Current from V_{CC} (with driver inhibited) ($V_{IL_L} = 0.4 \text{ V}, V_{IL_I} = 0.4 \text{ V}$)	^I CC(off)	-	35	50	, mA
Supply Current from V _{EE} (with driver inhibited) (V _{I LL} = 0.4 V, V _{I LI} = 0.4 V)	lEE(off)	_	25	40	·mA

#All typical values are at V_{CC} = +5.0 V, V_{EE} = -5.0 V, T_A = +25 o C.

Ground unused inputs and outputs.

^{##}For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable device type.

SWITCHING CHARACTERISTICS ($V_{CC} = +5.0 \text{ V, } V_{EE} = -5.0 \text{ V, } T_{\Delta} = +25^{\circ}\text{C.}$)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time from Logic Input to Output Y or Z (R _L = 50 ohms, C _L = 40 pF)	tPLH _L tPHL _L	_	9.0 9.0	15 15	ns
Propagation Delay Time from Inhibit Input to Output Y or Z (R _L = 50 ohms, C _L = 40 pF)	tPLH _I tPHL _I		16 20	25 25	ns

FIGURE 2 – LOGIC INPUT TO OUTPUTS PROPAGATION DELAY TIME WAVEFORMS

FIGURE 3 – INHIBIT INPUT TO OUTPUTS PROPAGATION DELAY TIME WAVEFORMS

FIGURE 4 – LOGIC INPUT TO OUTPUT PROPAGATION
DELAY TIME TEST CIRCUIT

FIGURE 5 – INHIBIT INPUT TO OUTPUT PROPAGATION
DELAY TIME TEST CIRCUIT

FIGURE 6 — CIRCUIT SCHEMATIC (1/4 Circuit Shown)

MC3467

TRIPLE WIDEBAND PREAMPLIFIER WITH ELECTRONIC GAIN CONTROL (EGC)

The MC3467 provides three independent preamplifiers with individual electronic gain control in a single 18-pin package. Each preamplifier has differential inputs and outputs allowing operation in completely balanced systems. The device is optimized for use in 9-track magnetic tape memory systems where low noise and low distortion are paramount objectives.

The electronic gain control allows each amplifier's gain to be set anywhere from essentially zero to a maximum of approximately $100\,\text{V/V}$.

- Wide Bandwidth 15 MHz (Typ)
- Individual Electronic Gain Control
- Differential Input/Output

TYPICAL APPLICATION HIGH PERFORMANCE 9-TRACK OPEN REEL TAPE SYSTEM $NRZI/\phi$ VI(EGC) Select Active Differentiator 1/3 MC3467 NRZI A P Read Preamplifier Filters Amplifier Phase Encode **Filters** LSI Formatter MC8500 MC8501 MC8502 MC8520

TRIPLE MAGNETIC TAPE MEMORY PREAMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 707-02 L SUFFIX CERAMIC PACKAGE CASE 726-01

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages Positive Supply Voltage Negative Supply Voltage	V _{CC} V _{EE}	6.0 -9.0	V
EGC Voltages (Pins 1, 6 and 13)	VI(EGC)	-5.0 to V _{CC}	V
Input Differential Voltage	V _{ID}	±5.0	V
Input Common-Mode Voltage	Vic	±5.0	V
Amplifier Output Short Circuit Duration (to Ground)	t _s	10	s
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	65 to +150	°C
Junction Temperature	TJ	+150	°c

ELECTRICAL CHARACTERISTICS $(V_{CC} = 5.0 \text{ V}, V_{EE} = -6.0 \text{ V}, f = 100 \text{ kHz}, T_A = 0 \text{ to } +70^{\circ}\text{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltage Range Positive Supply Voltage Negative Supply Voltage Operating EGC Voltage	VCCR VEER VI(EGC)	4.75 -5.5 0	5.0 6.0	5.25 -7.0 VCC	v v
Differential Voltage Gain (Balanced) (VI(EGC) = 0, e; = 25 mVp-p) (See Figure 1)	AVD	85	100	120	V/V
Differential Voltage Gain (VI(EGC) = VCC)	AVD		0.5	2.0	V/V
Maximum Input Differential Voltage (Balanced) ($T_A = 25^{\circ}C$)	VIDR	0.2	_	-	V _{pp}
Output Voltage Swing (Balanced) (Figure 1) (ei = 200 mVp-p)	VOR	6.0	8.0	-	V _{pp}
Input Common-Mode Range	VICR	±1.5	±2.0	-	V
Differential Output Offset Voltage (T _A = 25 ^o C)	VOOD	_	500		mV
Common-Mode Output Offset Voltage (T _A = 25°C)	Vooc		500	-	mV
Common Mode Rejection Ratio (Figure 2) VI(EGC) = 0, VCM = 1.0 Vpp (f = 100 kHz) (f = 1.0 MHz)	CMRR	60 40	100 100		dB
Small-Signal Bandwidth (Figure 1) (-3.0 dB, e _i = 1.0 mVp-p, T _A = 25 ^o C)	BW	10	15	. –	MHz
Input Bias Current	IIB	_	5.0	15	μА
Output Sink Current (Figure 5)	los	1.0	1.4	_	mA
Differential Noise Voltage Referred to Input (Figure 3) (VI(EGC) = 0, R _S = 50 \Omega, RW = 10 Hz to 1.0 MHz, T _A = 25°C)	en	_	3.5	_	^μ VRMS
Positive Power Supply Current (Figure 4)	¹cc	-	30	40	mA
Negative Power Supply Current (Figure 4)	IEE	-	-30	-40	mA
Input Resistance (T _A = 25°C)	ri	12	25	_	kΩ
Input Capacitance (T _A = 25 ⁰ C)	Ci	_	2.0	_	pF
Output Resistance (Unbalanced) (T _A = 25°C)	ro	-	30		Ohms

FIGURE 1 - DIFFERENTIAL VOLTAGE GAIN, BANDWIDTH AND OUTPUT VOLTAGE SWING TEST CIRCUIT

FIGURE 2 -- COMMON-MODE REJECTION RATIO (Channel A under test, other amplifiers tested similarly)

FIGURE 3 - DIFFERENTIAL NOISE VOLTAGE REFERRED TO THE INPUT

FIGURE 4 - POWER SUPPLY CURRENT TEST CIRCUIT

FIGURE 5 - OUTPUT SINK CURRENT TEST CIRCUIT

(Channel A under test, other channels tested similarly) +2.0 V MC3467 -6.0 V

FIGURE 6 - TOTAL HARMONIC DISTORTION TEST CIRCUIT (Channel A under test, other channels tested similarly)

TYPICAL CHARACTERISTICS (V_{CC} = 5.0 V, V_{EE} = -6.0 V, T_A = 25^{o} unless otherwise noted)

FIGURE 13 — DIFFERENTIAL VOLTAGE GAIN versus ELECTRONIC GAIN CONTROL VOLTAGE (VI(EGC))

FIGURE 14 — COMMON-MODE REJECTION RATIO
(CMRR) versus FREQUENCY

FIGURE 15 - PHASE SHIFT versus FREQUENCY

FIGURE 16 - TYPICAL EGC INPUT CURRENT versus EGC INPUT VOLTAGE

REPRESENTATIVE CIRCUIT SCHEMATIC

Specifications and Applications Information

FLOPPY DISK WRITE CONTROLLER

The MC3469 is a monolithic WRITE Current Controller designed to provide the entire interface between floppy disk heads and the head control and write data signals for stradle-erase heads.

Provisions are made for selecting a range of accurately controlled write currents and for head selection during both read and write operation. Additionally, provisions are included for externally adjusting degauss period and inner/outer track compensation.

- Head Selection Current Steering Through Write Head and Erase Coil in Write Mode
- Provides High Impedance (Read Data Enable) During Read Mode
- Head Current (Write) Guaranteed Using Laser Trimmed Internal Resistor (3.0 mA using R_{ext} = 10 kΩ)
- IRW Select Input Provides for Inner/Outer Track Compensation
- Degauss Period Externally Adjustable
- Specified With ±10% Logic Supply and Head Supply (VBB) from 10.8 V to 26.4 V
- Minimizes External Components

FLOPPY DISK WRITE CONTROLLER

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 648-05

R W1 R W2 7 6 Toggle Select 13 EØ 11 E1 Enable Vref | ref | HS

ABSOLUTE MAXIMUM RATINGS (Note 1) (TA = 25°C)

Rating	Symbol	Value	Unit
Power Supply Voltage (Pin 10)	Vcc	7.0	Vdc
Power Supply Voltage (Pin 15)	V _{BB}	30	Vdc
Input Voltage (Pins 4, 5, 8, 9)	VI	5.75	Vdc
Storage Temperature	T _{stg}	-55 to +150	°C
Operating Junction Temperature	TJ	150	°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Power Supply Voltage (Pin 10)	Vcc	+4.5 to +5.5	Vdc
Power Supply Voltage (Pin 15)	V _{BB}	+10.8 to +26.4	Vdc
Operating Ambient Temperature Range	TA	0 to +70	°C

ELECTRICAL CHARACTERISTICS (T_A = 0 to +70°C, V_{CC} = 4.5 to 5.5 V, V_{BB} = 10.8 to 26.4 V unless otherwise noted. Typicals given for V_{CC} = 5.0 V, V_{BB} = 12 V and T_A = 25°C unless otherwise noted.)

Characteristics	Pins	Symbol	Min	Тур	Max	Unit
DIGITAL INPUT VOLTAGES		•				
Power Supply Current — V _{CC} V _{BB}		Icc IBB	_	22 15	50 30	mA
High Level Input Voltage (V _{CC} = 4.5 V)	4, 8, 9	ViH	2.0	_		٧
Low Level Input Voltage (V _{CC} = 5.5 V)	4, 8, 9	V _{IL}	_	_	0.8	٧
Input Clamp Voltage (I _{IK} = -12 mA)	4, 5, 8, 9	VIK	_	-0.87	-1.5	٧
Positive Threshold (V _{CC} = 5.0)	5	V _{T(+)}	1.5	1.75	2.0	٧
Negative Threshold (V _{CC} = 5.0)	5	V _{T(-)}	0.7	0.98	1.3	٧
Hysteresis (V _{T(+)} - V _{T(-)}) T _A = 0°C to +70°C T _A = 25°C		Vнтs	0.2 0.4	_ 0.76	_	٧
DIGITAL INPUT CURRENTS		-	•			
High Level Input Current (V _{CC} = 5.5 V, V _{BB} = 26.4 V, V _I = 2.4 V)	4, 5, 8, 9	ΊΗ	_	0.1	40	μА
Low Level Input Current (V _{CC} = 5.5 V, V _{BB} = 26.4 V, T _A = 25°C unless noted below)	4, 5, 8, 9	IιL			1.0	mA
V _{BB} = 12 V	4		_	0.36	-1.6	
V _{BB} = 24 V	4		_	0.76		
V _{CC} = 5.0 V	5		-	0.46	-	
V _{CC} = 5.0 V	8, 9	Į.	-	0.39	_	l

ELECTRICAL CHARACTERISTICS (continued) (T_A = 0 to +70°C, V_{CC} = 4.5 to 5.5 V, V_{BB} = 10.8 to 26.4 V unless otherwise noted. Typicals given for V_{CC} = 5.0 V, V_{BB} = 12 V and T_A = 25°C unless otherwise noted.)

Characteristics	Pins	Symbol	Min	Тур	Max	Unit
CENTER-TAP and ERASE OUTPUTS				1		
Output High Voltage (See Figure 9) (I _{OH} = -100 mA, V _{CC} = 4.5 V)	14, 16	Voн		V 10		V
V _{BB} = 10.8 to 26.4 V	11.10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V _{BB} -1.5	V _{BB} -1.0	noone .	
Output Low Voltage (See Figure 9) (I _{OL} = 1.0 mA) V _{BB} = 12 V V _{BB} = 24 V	14, 16	VOL	_	70 70	150 150	mV
Output High Leakage (V _{OH} = 24 V, V _{CC} = 4.5 V, V _{BB} = 24 V)	11, 13	ЮН		0.01	100	μΑ
Output Low Voltage (See Figure 10) (IOL = 90 mA, V_{CC} = 4.5 V) V_{BB} = 12 V V_{BB} = 24 V	11, 13	VOL		0.27 0.27	0.60 0.60	V
CURRENT SOURCE						
Reference Voltage	1	V _{ref}		5.7	_	V
Degauss Voltage (See Text) (Voltage Pin 1 - Voltage Pin 2)	1	VDEG	_	1.0		٧
Bias Voltage	2	VF	_	0.7	_	V
Write Current Off Leakage (V _{OH} = 35 V)	6, 7	ЮН	_	0.03	15	μΑ
Saturation Voltage (VBB = 12 V)	6, 7	V _{sat}	_	0.85	2.7	V
Current Sink Compliance (For V ₆ , 7 = 4.0 V to 24 V, V WG = 0.8 V)	6, 7	∆I/RW2, 1	-	15	40	μΑ
Average Value Write Current $(\frac{(\text{lpin } 6 + \text{lpin } 7)}{2} \text{ for V}_{BB} = 10.8 \text{ to } 26.4 \text{ V})$	6, 7					
@ I _{R/W} = I _{LOW} , R = 10 k T _A = 25°C T _A = 0 to +70°C @ I _{R/W} = I _{LOW} , R = 5.0 k		Ī _{R/W(L)}	2.91 2.84	3.0	3.09 3.16	mA
$T_A = 25^{\circ}C$ $T_A = 0 \text{ to } +70^{\circ}C$ @ $I_{R/W} = I_{HI}$, $R = 10 \text{ k} (I_{HI} = I_{LOW} + \% I_{LOW})$ $T_A = 25^{\circ}C$		<u>∃IB∖M(H)</u>	5.64 5.51 31.3	5.89	6.14 6.28 35.5	%
T _A = 0 to +70°C Difference in Write Current	6, 7		30.3	33.3	36.6	
(Pin 6 - Pin 7 @ R/W = LOW, VBB = 10.8 V to 26.4 V) R = 10 k		lk/M7				mA
T _A = 25°C T _A = 0 to +70°C			_	0.003	0.015 0.023	
R = 5.0 k T _A = 25°C T _A = 0 to +70°C			_	_	0.030 0.046	

MC3469P

AC SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C, V_{BB} = 24 V, I_{RWS} = 0.4 and $I_{R/W}$ = 3.0 mA unless otherwise noted — refer to Figure 2 and Figure 11.)

Characteristics (Note 2)	f _{in} (Note 3)	Min	Тур	Max	Unit
Delay from Head Select going low through 0.8 V to CTO going high through 20 V.	HS, Pin 9	_	1.6	4.0	μS
Delay from Head Select going low through 0.8 V to CT1 going low through 1.0 V.	HS, Pin 9		2.1	4.0	μs
3. Delay from Head Select going high through 2.4 V to CTO going low through 1.0 V.	HS, Pin 9	_	1.7	4.0	μs
 Delay from Head Select going high through 2.4 V to CT1 going high through 20 V. 	HS, Pin 9		1.4	4.0	μs
5. Delay from \overline{WG} going low through 0.8 V to CTO going low through 1.0 V.	WG, Pin 4	-	1.3	4.0	μs
Delay from WG going low through 0.8 V to CT1 going high through 20 V.	WG, Pin 4	_	0.8	4.0	μS
7. Delay from \overline{WG} going low through 0.8 V to CTO going high through 20 V.	WG, Pin 4		0.75	4.0	μS
Delay from WG going low through 0.8 V to CT1 going low through 1.0 V.	WG, Pin 4	_	1.2	4.0	μs
After WG goes high, delay from R/W1 turning off through 10% to CTO going high through 20 V.	WG, Pin 4	20	750		ns
 After WG goes high, delay from R/W1 turning off through 10% to CT1 going low through 1.0 V. 	WG, Pin 4	20	1200	_	ns
 After WG goes high, delay from R/W2 turning off through 10% to CTO going low through 1.0 V. 	WG, Pin 4	20	1200	_	ns
 After WG goes high, delay from R/W2 turning off through 10% to CT1 going high through 20 V. 	WG, Pin 4	20	600	_	ns
13. Delay from WG going low through 0.8 V to E0 going low through 1.0 V.	WG, Pin 4	_	0.085	4.0	μs
14. Delay from WG going low through 0.8 V to E1 going low through 1.0 V.	WG, Pin 4	-	0.085	4.0	μS
15. Delay from ₩G going high through 2.0 V to EO going high through 23 V.	WG, Pin 4		0.7	4.0	μS
16. Delay from WG going high through 2.0 V to E1 going high through 23 V.	WG, Pin 4	_	0.7	4.0	μS
 After WG goes low, delay from CTO going low through 1.0 V to R/W1 turning on through 10%. 	WG, Pin 4	20	750		ns
18. After WG goes low, delay from CT1 going low through 1.0 V to R/W2 turning on through 10%.	WG, Pin 4	20	750	_	ns
19. After WG goes low, fall time (10% to 90%) of R/W1.	WG, Pin 4		5.0	200	ns
20. After WG goes low, fall time (10% to 90%) of R/W2.	WG, Pin 4		5.0	200	ns
21. Setup time, Head Select going low before WG going low.	WG, Pin 4	4.0	-	_	μs
22. Write Data low Hold Time	WD, Pin 5	200	_	_	ns
23. Write Data high Hold Time	WD, Pin 5	500	_		ns
24. Delay from WG going high through 2.0 V to R∕W 1 turning off through 10% of on value.	WG, Pin 4		3.9	_	μS

Note 2: Test numbers refer to encircled numbers in Figure 2.

Note 3: AC test waveforms applied to the designated pins as follows:

Pin	fin	Amplitude	Duty Cycle
HS, Pin 9	50 KHz	0.4 to 2.4 V	50%
WG, Pin 4	50 KHz	0.4 to 2.4 V	50%
WD, Pin 5	1.0 MHz	0.2 to 2.4 V	50%

AC SWITCHING CHARACTERISTICS (continued)

(V_{CC} = 5.0 V, T_A = 25°C, V_{BB} = 24 V, WG = 0.4 unless otherwise noted — refer to Figure 3 and Figure 11.)

Characteristics (Note 4)	Min	Тур	Max	Unit
Delay from Write Data going low through 0.9 V to R/W1 turning on through 50%.	_	85	_	ns
Delay skew, difference of R/W1 turning off and R/W2 turning on through 50% after Write Data going low through 0.9 V.	. —	1.0	±40	ns
Delay from Write Data going low through 0.9 V to R/W1 turning off through 50%.	_	80	_	ns
Delay skew, difference of R/W1 turning on and R/W2 turning off 50% after Write Data going low through 0.9 V.	_	1.0	±40	ns
5. Rise time, 10% to 90%, of R/W1	_	1.7	200	ns
6. Rise time, 10% to 90%, of R/W2	_	1.7	200	ns
7. Fall time, 90% to 10%, of R/W1		12	200	ns
8. Fall time, 90% to 10%, of R/W2	_	12	200	ns

Note 4: Test numbers refer to encircled numbers in Figure 4.

fin = 1.0 MHz, 50% Duty Cycle and Amplitude of 0.2 V to 2.4 V.

PIN DESCRIPTION TABLE

Name	Symbol	Pin	Description
Head Select	нѕ	9	Head Select input selects between the head I/O pins: center-tap, erase, and read/write. A HIGH selects Head 0 and a LOW selects Head 1.
Write Gate	WG	4	Write Gate input selects the mode of operation. HIGH selects the read mode, while LOW selects the Write Control mode and forces the write current.
Write Data	WD	5	Write Data input controls the turn on /off of the write current. The internal divide-by-two flip-flop toggles on the negative going edge of this input to direct the current alternately to the two halves of the head coils.
IRW Select	IRWS	8	IRW Select input selects the amount of write current to be used. When LOW, the current equals the value found in Figure 5, according to the external resistor. When HIGH, the current equals the low current + 33%.
V _{ref} I _{ref}	V _{ref} I _{ref}	1 2	A resistor between these pins sets the write current. Laser trimming reliably produces 3 mA of current for a 10 k resistor. A capacitor from V _{ref} to Gnd will adjust the Degauss period.
Center-tap 0	сто	14	Center-tap 0 output is connected to the center tap of Head 0. It will be pulled to Gnd or V_{BB} (+12 or +24) depending on mode and head selection.
Erase Ö	ĒŌ	13	Erase 0 will be LOW for writing on Head 0, and floating for other conditions.
Center-tap 1	CT1	16	Center-tap 1 output is connected to the center tap of Head 1. It will be pulled to Gnd or VBB (+12 or +24) depending on mode and head selection.
Erase 1	E1	11	Erase 1 will be LOW for writing on Head 1, and floating for other conditions.
R/W2	R/W2	6	R/W2 input is one of the differential inputs that sinks current during writing, being the opposite phase of R/W1. It will be connected to one side of the heads.
R/W1	R/W1	7	R/W1 input is one of the differential inputs that sinks current during writing, being the opposite phase of R/W2. It will be connected to one side of the heads.
	Vcc	10	+5 V Power
	V _{BB}	15	+12 V or + 24 V Power
	Gnd	12	Coil grounds
	Gnd	3	Reference and logic ground

FIGURE 1 — LOGIC DIAGRAM

FIGURE 2 — AC TIMING DIAGRAM

FIGURE 3 - R/W1 AND R/W2 RELATIONSHIP

APPLICATION INFORMATION

The MC3469Pserves as a complete interface between the Write Control functional signals (Head Select, Write Data, Write Gate and inner track compensation, IRWS) and the head itself. A typical configuration is shown in Figure 4. Lg s are erase coils.

WRITE CURRENT SELECTION

Although the MC3469P has been specified for 3.0 mA write current (with a 10 k Ω external resistor), a range of write current values can be chosen by varying R_{ext} using the plot in Figure 5. This current can also be derived using

the relationship
$$I_{Write}$$
 (mA) = $\frac{30}{R_{ext}(k\Omega)}$

 $I_{Ref},$ the current flowing in R_{ext} (required only for dissipation calculations) can be worst case using the fact that the differential voltage between Pins 1 and 2 (V $_{Ref}$) shown in Figure 3 never exceeds 5.0 volts. With a low value of $R_{ext}=$ 1.0 k $\Omega,\,P_D=$ 25 mW.

WRITE CURRENT DAMPING

Referring to Figure 4, resistors R_D are used to dampen any ringing that results from applying the relatively fast risetime write current pulse to the inductive head load. Values chosen will be a function of head characteristics and the desired damping. Rp serves as a common pullup resistor to the head supply V_{BB}.

DEGAUSS PERIOD

Degauss of the read/write head can be accomplished at the end of each write operation by attaching a capacitor from pin 1 to ground. The timing relationship that results is shown in Figure 7. A simplified diagram of this function is shown in Figure 6.

While \overline{WG} is low, the selected write current flows into pin 6 or pin 7 (R/W1 or R/W2) and is mirrored through the external resistor, R_{Ext} . The degauss capacitor, C_{DG} , will be charged to approximately 5.7 volts. After \overline{WG} goes high, the voltage on C_{DG} begins to decay toward 0.7 V. When the voltage reaches the comparator threshold of 1.7 V, the comparator output triggers the internal logic to completely turn off the write current. At this point, the pulse amplitude on the R/W1 and R/W2 pins has returned to 10% of its maximum value.

Figure 7, Degauss Period shows the relationship be-

tween $C_{\mbox{\footnotesize DG}}$ and Degauss Period for $R_{\mbox{\footnotesize ext}}$ = 10 k $\Omega.$ This period is equal to the exponential delay time for the voltage as mentioned plus some internal delay times.

POWER-UP WRITE CURRENT CONTROL

During power-up, under certain conditions (V_{BB} comes up first while \overline{WG} is low), there can be a write current transient on Pins 6 and 7 (R/W1 and R/W2) of sufficient magnitude to cause writing to occur if the head is loaded.

This transient can be eliminated by placing a capacitor from Pin 2 to ground. This also delays the write current when \overline{WG} goes low and this delay must be accounted for when the capacitor on Pin 2 is used. The delay is 3.0 μs for a 2700 pF capacitor, and $R_{ext}=10~k\Omega.$ Values up to 7000 pF may be used.

FIGURE 6 - SIMPLIFIED DEGAUSS CIRCUIT

FIGURE 7 — DEGAUSS PERIOD versus CAPACITANCE (CDG)

FIGURE 8 — TURN-ON WRITE PROTECTION

TEST FIGURES

FIGURE 9 — CENTER TAP OUTPUT VOLTAGE (PINS 14 AND 16)

CONDITIONS							
Measure		Set					
VT	s ₁	S ₂	S ₃	V4*	V ₉ *		
V _{OH} (P14)	On	Off	P14	0.8	2.0		
VOH (F 14)	On	OII	F14	2.0	0.8		
V _{OH} (P16)	On	Off	P16	2.0	2.0		
VOH (F10)	Oil	Oil	F 10	0.8	0.8		
V _{OL} (P14)	Off	On	P14	0.8	0.8		
VOL (F 14)	Oil	On	F 14	2.0	2.0		
V _{OL} (P16)	Off	On	P16	2.0	0.8		
VOL (1 10)	UII	Oil	FIO	0.8	2.0		

*Volts

FIGURE 10 — ERASE OUTPUT LOW VOLTAGE (PINS 11 AND 13)

CONDITIONS

Measure	Set			
V _T	s ₁	V _{8,9}		
V _{OL} (P11)	P11	0.8V		
V _{OL} (P13)	P13	2.0 V		

FIGURE 11 — TIMING TEST CIRCUIT

ERASE CURRENT

The value of Rg, the erase current set resistor, is found by referring to Figure 12 and selecting the desired erase current.

Looking at the simplified erase current path in Figure 12, when writing, CTO will be high (VOH(min) = 21 V) and EO will be low (VOL(max) = 0.6 V). If the erase coil resistance is 10 Ω and 40 mA of erase current is desired, then:

$$(R_F + 10 \Omega) \times 40 \text{ mA} = (21 - 0.6) \text{ V}$$

or

$$R_E = \frac{20.4 \text{ V}}{0.04 \text{ A}} - 10 \Omega = 500 \Omega$$

$$P_D = (0.04)(20.4) = 0.816 \text{ W or } 1.0 \text{ W}$$

This gives the minimum value R_E for worst case V_{OH}/V_{OL} conditions. It is also recommended that a diode be used as required for inductive back emf suppression.

Erase timing is provided internally and is active during Write Gate low for the selected head.

FIGURE 12 — ERASE CURRENT (RF Selection)

FIGURE 13 — TYPICAL DUAL HEAD FLOPPY DISK SYSTEM USING FET GATE READ CHANNEL SELECTION AND MC3469/MC3470

MC3470P MC3470AP

Specifications and Applications Information

FLOPPY DISK READ AMPLIFIER

The MC3470 is a monolithic READ Amplifier System for obtaining digital information from floppy disk storage. It is designed to accept the differential ac signal produced by the magnetic head and produce a digital output pulse that corresponds to each peak of the input signal. The gain stage amplifies the input waveform and applies it to an external filter network, enabling the active differentiator and time domain filter to produce the desired output.

- Combines All the Active Circuitry To Perform the Floppy Disk Read Amplifier Function in One Circuit
- Guaranteed Maximum Peak Shift of 2.0% MC3470A
- Improved (Positive) Gain T_C and Tolerance
- Improved Input Common Mode

FLOPPY DISK READ AMPLIFIER SYSTEM

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 707-02

MC3470P, MC3470AP

ABSOLUTE MAXIMUM RATINGS (Note 1) (TA = 25°C)

Rating	Symbol	Value	Unit Vdc	
Power Supply Voltage (Pin 11)	V _{CC1}	7.0		
Power Supply Voltage (Pin 18)	V _{CC2}	16	Vdc	
Input Voltage (Pins 1 and 2)	V _I	-0.2 to +7.0	Vdc	
Output Voltage (Pin 10)	v _O	-0.2 to +7.0	Vdc	
Operating Ambient Temperature	TA	0 to +70	°C	
Storage Temperature	T _{stg}	-65 to +150	°C	
Operating Junction Temperature Plastic Package	TJ	150	°C	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	V _{CC1} + 4.75 to +5.25 V _{CC2} +10 to +14	Vdc
Operating Ambient Temperature Range	TA	0 to +70	°C

ELECTRICAL CHARACTERISTICS ($T_A = 0$ to +70°C, $V_{CC1} = 4.75$ to 5.25 V, $V_{CC2} = 10$ to 14 V unless otherwise noted)

Characteristic		Figure	Symbol	Min	Тур	Max	Unit
Differential Voltage Gain (f = 200 kHz, V _{iD} = 5.0 mV(RMS)	MC3470 MC3470A	2	A _{VD}	80 100	100 110	130 130	V/V
Input Bias Current		3	Iв	_	-10	-25	μА
Input Common Mode Range Linear Operati (5% max THD)	on		ViCM	-0.1	_	1.5	V
Differential Input Voltage Linear Operation (5% max THD)			v _{iD}	_	_	25	mVp-p
Output Voltage Swing Differential		2	v _o D	3.0	4.0		Vp-p
Output Source Current, Toggled			10	_	8.0		mA
Output Sink Current, Pins 16 and 17		4	los	2.8	4.0		mA
Small Signal Input Resistance (T _A = 25°C)			rį	100	250		kΩ
Small Signal Output Resistance, Single-En (T _A = 25°C, V _{CC1} = 5.0 V, V _{CC2} = 12 V)	ded		ro	_	15		Ω
Bandwidth, -3.0 dB ($v_{iD} = 2.0 \text{ mV(RMS)}$, $T_{A} = 0.0 \text{ mV}$	λ = 25°C	2, 17	BW	10	_		MHz
Common Mode Rejection Ratio ($T_A = 25^{\circ}C$, $A_{VD} = 40$ dB, $v_{in} = 200$ mVp-p, $V_{CC1} = 5$ $V_{CC2} = 12$ V)		5	CMRR	50	_		dB
V_{CC1} Supply Rejection Ratio (T _A = 25°C, V 4.75 \leq $V_{CC1} \leq$ 5.25 V, A_{VD} = 40 dB)	CC2 = 12 V,			50			dB
V_{CC2} Supply Rejection Ratio (T _A = 25°C, V 10 V \leq V _{CC2} \leq 14 V, A _{VD} = 40 dB)	CC1 = 5.0 V,		_	60		_	dB
Differential Output Offset (TA = 25°C, viD =	v _{in} = 0 V)		V _{DO}		_	0.4	V
Common Mode Output Offset (v _{iD} = V _{in} = 0 Differential and Common Mode)	V,		Vco		3.0	_	V
Differential Noise Voltage Referred to Input (BW = 10 Hz to 1.0 MHz, T _A = 25°C)	t	22	en	_	15	_	μV(RMS)
Supply Currents (V _{CC1} = 5.25 V, S ₁ to Pin 12 or Pin 13) (V _{CC2} = 14 V)		1	ICC1 ICC2	=	40 4.8	_	mA

$\textbf{ELECTRICAL CHARACTERISTICS (continued)} \ (T_A = 0 \ \text{to} + 70^{\circ}\text{C}, \ V_{CC1} = 4.75 \ \text{to} \ 5.25 \ \text{V}, \ V_{CC2} = 10 \ \text{to} \ 14 \ \text{V} \ \text{unless otherwise noted})$

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
ACTIVE DIFFERENTIATOR SECTION						
Differentiator Output Sink Current, Pins 12 and 13 (VOD = VCC1)	6	lOD	1.0	1.4		mA
Peak Shift (f = 250 kHz, v _{iD} = 1.0 Vp-p, i _{cap} = 500 μA,	7, 8	PS				%
where PS = $1/2 \frac{^{t}PS1^{-t}PS2}{^{t}PS1 + ^{t}PS2} \times 100\%$, MC3470			_	_	5.0	
V _{CC1} = 5.0 V, V _{CC2} = 12 V) MC3470A			_	_	2.0	
Differentiator Input Resistance, Differential		riD	_	30	-	kΩ
Differentiator Output Resistance, Differential (TA = 25°C)		r _o D	_	40	_	Ω
DIGITAL SECTION						
Output Voltage High Logic Level, Pin 10 (V_{CC1} = 4.75 V, V_{CC2} = 12 V, I_{OH} = -0.4 mA)	9	∨он	2.7		_	V
Output Voltage Low Logic Level, Pin 10 (V _{CC1} = 4.75 V, V _{CC2} = 12 V, I _{OL} = 8.0 mA)	10	VOL	_		0.5	V
Output Rise Time, Pin 10	11, 12	^t TLH	_	_	20	ns
Output Fall Time, Pin 10	11, 12	tTHL	_	_	25	ns
Timing Range Mono #1 (t _{1A} and t _{1B})	13	t1A, B	500	_	4000	ns
Timing Accuracy Mono #1 (t1 = 1.0 μ s = 0.625 R1C1 + 200 ns) (R1 = 6.4 $k\Omega$, C1 = 200 pF)	12, 13	E _{t1}	85		115	%
Accuracy guaranteed for R1 in the range $1.5~k\Omega \leqslant R1 \leqslant 10~k\Omega \text{ and C1 in the range} \\ 150~pF \leqslant C1 \leqslant 680~pF.$						
Note: To minimize current transients, C1 should be kept as small as is convenient.						
Timing Range Mono #2	11, 12	t2	150	_	1000	ns
Timing Accuracy Mono #2 (t2 = 200 ns = 0.625 R2C2) (R2 = 1.6 kΩ, C2 = 200 pF)	12, 13	E _{t2}	85	_	115	%
Accuracy guaranteed for 1.5 k Ω \leqslant R2 \leqslant 10 k Ω , 100 pF \leqslant C2 \leqslant 800 pF						

MC3470P, MC3470AP

FIGURE 1 – POWER SUPPLY CURRENTS, I_{CC1} AND I_{CC2}

FIGURE 2 – VOLTAGE GAIN, BANDWIDTH, OUTPUT VOLTAGE SWING

FIGURE 3 - AMPLIFIER INPUT BIAS CURRENT, IIB

FIGURE 4 – AMPLIFIER OUTPUT SINK CURRENT, PINS 16 AND 17

FIGURE 5 – AMPLIFIER COMMON MODE REJECTION RATIO, CMRR

NOTE: Measurements may be made with vector voltmeter hp 8405A or equivalent at 1.0 MHz to guarantee 100 kHz performance.

FIGURE 6 – DIFFERENTIATOR OUTPUT SINK CURRENT, PINS 12 AND 13

FIGURE 7 — PEAK SHIFT, PS See Figure 8 for Output Waveform

18 O V_{CC2} 17 16 3 4 15 14 f = 250 kHz 13 = 1.0 V_{pp} C1 200 pF 12 C2 - 200 pF -0 v_{out} 10 R2 -∕√√ 1.6 k

5 V

-^^^ R₁ 6.4 k

FIGURE 8 - PEAK SHIFT, PS V_{in} = 1.0 V_{pp} f = 250 kHz

Test schematic on Figure 7

FIGURE 9 - DATA OUTPUT VOLTAGE HIGH, PIN 10

FIGURE 10 - DATA OUTPUT VOLTAGE LOW, PIN 10

FIGURE 11 – DATA OUTPUT RISE TIME, t_{TLH} DATA OUTPUT FALL TIME, t_{THL} TIMING ACCURACY MONO #2, E_{t2}

V_{in} is same as shown on Figure 13, test schematic on Figure 12

FIGURE 12 - TIMING ACCURACY, E $_{t1}$ AND E $_{t2}$ DATA OUTPUT RISE AND FALL TIMES, $\rm t_{TLH}$ AND $\rm t_{THL}$

V_{in} shown on Figure 13

FIGURE 13 - TIMING ACCURACY MONO #1, Et1 $t_{TLH} = t_{THL} < 10 \text{ ns}$ f = 250 kHz 50% Duty Cycle

FIGURE 14 - AMPLIFIER OFFSET DECOUPLING IMPEDANCE, PINS 3 AND 4

 R_e + r_e and A_V with R_{ext} = 500 Ω

FIGURE 16 - NORMALIZED VOLTAGE GAIN

FIGURE 19 - NORMALIZED OUTPUT PULSE WIDTH, t2/t2 25°C

H 1.04

9810 1.02

0.98

0 10 20 30 40 50 60 70 80

T_A, AMBIENT TEMPERATURE (°C)

NOTE: Assume uncorrelated noise sources e_n (differential noise at input) = $e_0\sqrt{2/100}$

MC3470P, MC3470AP

APPLICATION INFORMATION

The MC3470 is designed to accept a differential ac input from the magnetic head of a floppy disk drive and produce a digital output pulse that corresponds to each peak of the ac input. The gain stage amplifies the input waveform and applies it to a filter network (Figure 23a),

FIGURE 23a – BLOCKING CAPACITORS USED TO ISOLATE THE DIFFERENTIATOR

enabling the active differentiator and time domain filter to produce the desired output.

FILTER CONSIDERATIONS

The filter is used to reduce any high frequency noise present on the desired signal. Its characteristics are dictated by the floppy disk system parameters as well as the coupling requirements of the MC3470. The filter design parameters are affected by the read head characteristics, maximum and minimum slew rates, system transient response, system delay distortion, filter center frequency, and other system parameters. This design criteria varies between manufacturers; consequently, the filter configuration also varies. The coupling requirements of the MC3470 are a result of the output structure of the gain stage and the input structure of the differentiator, and must be adhered to regardless of the filter configuration.

The differentiator has an internal biasing network on each input. Therefore, any dc voltage applied to these inputs will perturbate the bias level. Disturbing the bias level does not affect the waveform at the differentiator inputs, but it does cause peak shifting in the digital output (Pin 10). Since the output of the gain stage has an associated dc voltage level, it, as well as any biasing introduced in the filter, must be isolated from the differentiator via series blocking capacitors. The transient response is minimized if the blocking capacitors C and C' are placed before the filter as shown in Figure 23a. The charging and discharging of C and C' is controlled by the filter termination resistor instead of the high input impedance of the differentiator.

The filter design must also include the current-sinking capacity of the amplifier output. The current source in the output structure (see circuit schematic — Pins 16 and 17) is guaranteed to sink a current of 2.8 mA. If the current requirement of the filter exceeds 2.8 mA, the current source will saturate, the output waveform will be distorted, and inaccurate peak detection will occur in the differentiator. Therefore, the total impedance of the

filter must be greater than Zmin as calculated from

$$Z_{min} = \frac{(E_pAVD) \text{ max}}{2.8 \text{ mA}}$$

where E_p is the peak differential input voltage to the MC3470.

TRANSIENT RESPONSE

The worst-case transient response of the read channel occurs when dc switching at the amplifier input causes its output to be toggled. The dc voltage changes are a consequence of diode switching that takes place when control is transferred from the write channel to the read channel.

If the diode network is balanced, the dc change is a common mode input voltage to the amplifier. The switching of an unbalanced diode network creates a differential input voltage and a corresponding amplified swing in the outputs. The output swing will charge the blocking capacitor resulting in peak shifting in the digital output until the transient has decayed. Eliminating the differential dc changes at the amplifier input by matching the diode network or by coupling the read head to the amplifier via FET switches, as shown in Figure 23b, will minimize the filter transient response.

FIGURE 23b – FET SWITCHES USED TO COUPLE THE R/W HEAD TO THE MC3470

Two of the advantages FET switches have over diode switching are:

- They isolate the read channel from dc voltage changes in the system; therefore, the transient response of the filter does not influence the system transient response.
- The low voltage drop across the FETs keeps the input signal below the amplifier's internal clamp voltage; whereas, the voltage dropped across a diode switching network adds a dc bias to the input signal which may exceed the clamp voltage.

AMPLIFIER GAIN

For some floppy systems, it may become necessary to either reduce the gain of the amplifier or reduce the

signal at the input to avoid exceeding the output swing capability of the amplifier. The voltage gain of the amplifier can be reduced by putting a resistor in series with the capacitor between Pins 3 and 4 (Figure 14). The relationship between the gain and the external resistor is given by

$$A_{VR} = A_{VO} \cdot \frac{2 (r_e + R_e)}{2 (r_e + R_e) + R_{ext}}$$

where $AV_O \stackrel{\triangle}{=} voltage$ gain with the external resistor = 0, $AV_R \stackrel{\triangle}{=} voltage$ gain with the external resistor in, $R_{ext} \stackrel{\triangle}{=} the$ external resistor, and

 $r_e + R_e \stackrel{\triangle}{=}$ the resistance looking into Pin 3 or Pin 4.

Thus,

$$R_{ext} = 2\left(\frac{AV_O}{AV_R} - 1\right)(r_e + R_e).$$

A plot of $(r_e + R_e)$ versus temperature is shown in Figure 21. Figure 20 shows the normalized voltage gain versus temperature with the external resistor equal to 500 ohms.

ACTIVE DIFFERENTIATOR

The active differentiator in the MC3470 (simplified circuit shown in Figure 24), is implemented by coupling

FIGURE 24 - ACTIVE DIFFERENTIATOR NETWORK

the emitters of a differential amplifier with a capacitor resulting in a collector current that will be the derivative of the input voltage,

$$I = Cdv/dt$$

If the output voltage is taken across a resistor through which the collector current is flowing, the resulting voltage will be the derivative of the input voltage.

$$V_0 = 2Ri_c = 2RC \frac{dvin(t)}{dt}$$

Vo is applied to a comparator which will provide zero

crossing detection of the current waveform. Since the capacitor shifts the current $90^{\rm O}$ from the input voltage, the comparator performs peak detection of the input voltage.

The following terms will be used in determining the value of C to be used in the differentiator:

 $\mathsf{E}_\mathsf{p} \stackrel{\triangle}{=} \mathsf{peak}$ differential voltage applied to MC3470 amplifier input.

 $E_p \sin \omega t \stackrel{\triangle}{=} \text{voltage}$ waveform applied to MC3470 amplifier input (for purposes of discussion, assume a sine wave).

 $A_{VD} \stackrel{\triangle}{=} differential voltage gain of input amplifier.$

 $v_{in}(t) \stackrel{\triangle}{=} differential voltage waveform applied to the differentiator inputs.$

= $E_pAv_D \sin \omega t$ (Note: The filter is assumed to be lossless.)

i_c(t) [△] current through capacitor C_D.

 $R_{O} \stackrel{\triangle}{=}$ output resistance of Q1 (Q2) at Pin 12 (13).

If $v_{in}(t)=E_pA_VD\sin\omega t,$ then the current through the capacitor C_D is given by

$$\begin{split} &i_{c}(t) = C_{D}A_{VD}E_{p}\omega\cos\omega t \\ &\text{and } V_{O}(t) = 2R_{C}C_{D}A_{VD}E_{p}\omega\cos\omega t. \end{split}$$

Accurate zero crossing detection of $V_O(t)$ [peak detection of $v_{\rm in}(t)$] occurs when the current waveform $i_C(t)$ crosses through zero in a minimum amount of time. This condition is satisfied by maximizing current slew rate. For a given value of ω , the maximum slew rate occurs for the maximum value of i_C or $\cos \omega t = 1$. Therefore,

$$i_c = C_D A_{VD} E_D \omega$$

The MC3470 current-sourcing capacity will determine the maximum value i_{C} ; therefore, CD must be chosen such that the maximum i_{C} occurs at the maximum $\text{A}_{VD}\text{E}_{p}\omega$ product.

$$C_D = \frac{i_c max}{(A_{VD} E_p \omega)_{max}} = \frac{1 \text{ mA}}{(120)(E_p \omega)_{max}}$$

If the peak value specified for i_C is exceeded, the current source (I_O in Figure 24) will saturate and distort the waveform at Pins 12 and 13. Consequently, the differentiator will not accurately locate the peaks and peak shifting will occur in the digital output.

The effective output resistance R_O of Q1 (Q2) will create a pole (as shown in Figure 25) at 1/2 R_OC_D. If this pole is ten times greater than the maximum operating frequency (ω_{max}), the phase shift approaches 84°. Locating the pole at a frequency much greater than 10 ω_{max} needlessly extends the noise bandwidth thus:

$$2R_O = \frac{1}{C_D 10 \, \omega_{\text{max}}}$$

If RO is not large enough to satisfy this condition, a series

FIGURE 25 – RESPONSE OF DIFFERENTIATOR USING ONLY C_{D}

resistor can be added so that

$$R = 2R_O + R_D = \frac{1}{C_D 10 \omega_{max}}$$

To further reduce the noise bandwidth, a second pole can be added (as shown in Figure 26) by putting an

FIGURE 26 – COMPLETE RESPONSE OF DIFFERENTIATOR

inductor in series with the resistor and the capacitor. The values of R and L are determined by choosing the center frequency (ω_0) and the damping ratio (δ) to meet the systems requirements where

$$\omega_0 = \frac{1}{\sqrt{LC_D}}$$
$$\delta = \frac{RC_D}{2\sqrt{LC_D}}$$

$$\omega_0 = 10 \ \omega_{\text{max}} = \frac{1}{\sqrt{\text{LC}_D}}$$

where C_D is chosen for maximum i_C as shown previously. Solving for L gives:

$$L = \frac{1}{100 \, C_{D}(\omega_{max})^2}$$

Using this value for L gives:

$$\delta = \frac{RC_D}{\frac{2}{10} \sqrt{\frac{C_D}{C_D(\omega_{max})^2}}}$$

Solving for R gives:

$$R = \frac{\delta}{5 C_D \omega_{\text{max}}}$$

The total resistance (R) is the effective output resistance (RO) plus the resistor added in the differentiator (RD). Values of δ from 0.3 to 1 produce satisfactory results.

PEAK SHIFT CONSIDERATIONS

Peak shift, resulting from current imbalance in the differentiator, offset voltage in the comparator, etc., can be eliminated by nulling the current in the emitters of the differentiator with a potentiometer as shown in Figure 27.

FIGURE 27 - PEAK SHIFT COMPENSATION

The potentiometer across the differentiator components is adjusted until a symmetrical digital output cycle is obtained at Pin 10 for a sinusoidal input with the minimum anticipated $E_D\omega$ product.

DESIGN EQUATIONS FOR ONE-SHOTS

As shown in Figure 28, the MC3470 input waveform may have distortion at zero crossing, which can result in false triggering of the digital output. The time domain filter in the MC3470 can be used to eliminate the distortion by properly setting the period (t₁) of the one-shot timing elements on Pins 6 and 7. The following equation will optimize immunity to this signal distortion at zero crossing of the read head signal.

The timing equation for the time domain filter's one-shot is:

$$t_1 = R_1C_1K_1 + T_0$$

where $K_1 = 0.625$, $T_0 = 200$ ns.

Actual time will be within $\pm 15\%$ of t₁ due to variations in the MC3470.

If ΔT is the maximum period of distortion (see Figure

FIGURE 28 - WAVEFORMS THROUGH THE READ CIRCUIT

28), then choose t₁ such that

$$\Delta T < t_1 < T - \frac{\Delta T}{2}$$

where
$$T = \frac{1}{4f(max)}$$
.

The width of the digital output pulse t₂ (Pin 10) is determined by

$$t_2 = R_2C_2K_2$$

where $K_2 = 0.625$.

Actual pulse width will be within $\pm 15\%$ of t_2 due to variations in the MC3470.

To preserve the specified accuracy of the MC3470, R₁, R₂, C₁, and C₂ should remain in the ranges shown in the Electrical Characteristics. Also, to minimize current transients, it is important to keep the values of C₁ and C₂ as small as is convenient. For t₁ = 1 μ s and t₂ = 200 ns, suggested good values for the capacitors are

$$C_1 = 250 \text{ pF}$$

 $C_2 = 160 \text{ pF}$

BOARD LAYOUT AND TESTING CONSIDERATIONS

An LSI package has many input/output pins in close proximity, some carrying high level signals and others low level signals. As carefully as the on-chip isolation of the devices connected to these pins is implemented by

the manufacturer, the coupling of signals or noise between external wires is under the control of the end-user who designs the integrated circuit into a piece of equipment. The designer should be familiar with the following layout procedures which will optimize the performance of the device. See Figure 29.

- Build all circuits on printed circuit boards (including breadboards). Transmission line theory for flat conductors in a plane quite convincingly proves that coupling is far less than for round conductors in three dimensions.
- Use a ground plane under the IC and over as much of the printed circuit board surface as possible without exceeding practical limits.
- 3. Avoid signal runs under the IC. Also avoid parallel runs of 1 inch or greater on the opposite or same side of board.
- 4. Use monolithic ceramic 0.1 μ F capacitors for decoupling power supply transients: one from VCC1 to ground and one from VCC2 to ground for each IC package. Keep lead lengths to 1/4 inch or less and place in close proximity to the IC.
 - 5. Keep all signal runs as short as possible.

When evaluating the device for phase jitter and frequency response, a special test jig should be designed to reduce ground loops and coupling caused by instrumentation. Instrumentation test setups must be calibrated

at each test frequency and differential equipment utilized where required. A valid evaluation of the performance of any read amplifier chain requires considerable care and thought.

FIGURE 29 – POWER AND GROUND DISTRIBUTION FOR MC3470 PRINTED CIRCUIT BOARD LAYOUT

NOTE: Dotted lines outline ground plane on back side of printed circuit board.

MOTOROLA

Specifications and Applications Information

MC3471P

FLOPPY DISK WRITE CONTROLLER/HEAD DRIVER

The MC3471 is a monolithic integrated Write Controller/Head Driver designed to provide the entire interface between the write data and head control signals and the heads (write and erase) for either Tunnel or straddle-erase floppy disk systems.

Provisions are made for selecting a range of accurately controlled write currents and for head selection during both read and write operation. Additionally, provisions are included for externally adjusting degauss period, inner/outer track compensation, and the delay from write gate to erase turn-on and turn-off.

Erase Delays are controlled by driving the delay inputs D1 and D2 with standard TTL open-collector logic (microprocessor compatible) or by using the external RC mode in which case the delay is one τ (K factor = 1.0).

In addition, an Inhibit output is provided which indicates that the heads are active during write, degauss, or erase.

- Head Selection Current Steering Through Write Head and Erase Coil in Write Mode
- Adjustable On-Chip Delay of Erase Timing Stable K Factor
- Delay Pins Logic Compatible for Direct Microprocessor Compatibility
- Inhibit Output Provided to Disable Read or Step During Head Active Time
- Provides High Impedance (Read Data Enable) During Read Mode
- Head Current (Write) Guaranteed ±3% (3.0 mA using R_{ext} = 10 kO)
- IRW Select Input Provides for Innter/Outer Track Compensation
- Degauss Period Externally Adjustable
- Specified With Head Supply (VBB) from 10.8 V to 26.4 V
- Minimizes External Components

BLOCK DIAGRAM R/W1 R/W2 Erase Toggle Select Delays Select Enable Current IRWS C Select 13 VRef **IRef** $\overline{\mathsf{WG}}$ HS

FLOPPY DISK WRITE CONTROLLER (WITH ERASE DELAY)

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 738-02

PIN CONNECTIONS Center V_{Ref} 20 Tap 1 19 V_{BB} Ref Center 18 Gnd Táp 0 Write 17 Erase 0 Gate Coil Write 16 Gnd Data Erase 1 R/W2 V_{CC} R/W1 Head Select Select 12 D1 Inhibit 10 D2 (Top View)

ABSOLUTE MAXIMUM RATINGS (Note 1) (TA = 25°C)

Rating	Symbol	Value	Unit
Power Supply Voltage (Pin 14)	VCC	7.0	Vdc
Power Supply Voltage (Pin 19)	V _{BB}	30	Vdc
Input Voltage (Pins 4, 5, 8, 13)	VI	5.75	Vdc
Output Applied Voltage (Pin 10)	V _O	7.0	Vdc
Open-Collector Sink Current (Pin 10)	10	25	mA
Storage Temperature	T _{stg}	-55 to +150	°C
Operating Junction Temperature	TJ	150	°C

Note 1 "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Power Supply Voltage (Pin 14)	VCC	+4.75 to +5.25	Vdc
Power Supply Voltage (Pin 19)	V _{BB}	+10.8 to +26.4	Vdc
Operating Ambient Temperature Range	TA	0 to +70	^C

ELECTRICAL CHARACTERISTICS ($T_A = 0$ to + 70° C, $V_{CC} = 4$. 75 to 5.25 V, $V_{BB} = 10.8$ to 26.4 V unless otherwise noted. Typicals given for $V_{CC} = 5.0$ V, $V_{BB} = 12$ V and $T_A = 25^{\circ}$ C unless otherwise noted.)

Characteristics	Pins	Symbol	Min	Тур	Max	Unit
DIGITAL INPUT VOLTAGES						
Power Supply Current — V _{CC} V _{BB}		I _{CC}	window	22 15	60 30	mA
High Level Input Voltage (V _{CC} = 4.75 V)	4, 8, 13	VIH	2.0		_	٧
Low Level Input Voltage (V _{CC} = 5.25 V)	4, 8, 13	VIL		_	0.8	V
Input Clamp Voltage (I _{IK} = -12 mA)	4, 5, 8, 13	VIK	_	-0.87	-1.5	V
Positive Threshold (V _{CC} = 5.0)	5	V _{T(+)}	1.5	1.75	2.0	V
Negative Threshold (V _{CC} = 5.0)	5	V _{T(-)}	0.7	0.98	1.3	V
Hysteresis (VT ₍₊₎ - VT ₍₋₎) T _A = 0°C to +70°C T _A = 25°C	5	VHTS	0.2 0.4	0.76		٧
DIGITAL INPUT CURRENTS						
High Level Input Current $(V_{CC} = 5.25 \text{ V}, V_{BB} = 26.4 \text{ V}, V_{I} = 2.4 \text{ V})$	4, 5, 8, 13	۱н	_	0.1	40	μΑ
Low Level Input Current (V _{CC} = 5.25 V, V _{BB} = 26.4 V, T _A = 25°C unless	4, 5, 8, 13	IJL				mA
noted below)					-1.6	
V _{BB} = 12 V	4 4		_	0.36 0.76		
V _{BB} = 24 V V _{CC} = 5.0 V	5		_	0.76	_	
VCC = 5.0 V	8, 13		_	0.39	_	

ELECTRICAL CHARACTERISTICS (continued) ($T_A = 0$ to $+70^{\circ}C$, $V_{CC} = 4.75$ to 5.25 V, $V_{BB} = 10.8$ to 26.4 V unless otherwise noted. Typicals given for $V_{CC} = 5.0$ V, $V_{BB} = 12$ V and $T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristics	Pins	Symbol	Min	Тур	Max	Unit
CENTER-TAP and ERASE OUTPUTS						
Output High Voltage (See Figure 14) (I _{OH} = -100 mA, V _{CC} = 4.75 V) V _{BB} = 10.8 to 26.4 V	18, 20	Voн	V _{BB} -1.5	V _{BB} -1.0	_	V
Output Low Voltage (See Figure 14)	18, 20	VOL				mV
(I _{OL} = 1.0 mA) V _{BB} = 12 V V _{BB} = 24 V			_ _	70 70	150 150	
Output High Leakage Current (V _{OH} = 24 V, V _{CC} = 4.75 V, V _{BB} = 24 V)	15, 17	Іон	rassyr	0.01	100	μΑ
Output Low Voltage (See Figure 15) (IOL = 90 mA, V _{CC} = 4.75 V) V _{BB} = 12 V V _{BB} = 24 V	15, 17	VOL		0.27 0.27	0.60 0.60	V
DIGITAL OUTPUT LEVEL (Inhibit)						
High Level Output Current (V _{OH} = 7.0 V, V _{CC} = 4.75 V)	10	Іон		_	100	μА
Low Level Output Voltage (I _{OL} = 4.0 mA, V _{CC} = 4.75 V)	10	V _{OL}			0.5	٧
CURRENT SOURCE						
Reference Voltage	1	'V _{Ref}		5.7		٧
Degauss Voltage (See Text) (Voltage Pin 1 - Voltage Pin 2)	1	V _{DEG}	-	1.0	-	V
Bias Voltage	2	VF	-	0.7	-	V
Write Current Off Leakage (V _{OH} = 30 V)	6, 7	Іон		0.03	15	μΑ
Saturation Voltage (V _{BB} = 12 V)	6, 7	V _{sat}	data	0.85	2.7	٧
Current Sink Compliance (For $V_{6, 7} = 4.0 \text{ V}$ to 24 V, $V_{\overline{WG}} = 0.8 \text{ V}$)	6, 7	∆I/RW2, 1		15	40	μΑ
Average Value Write Current $ \frac{(IP_{IN} 6 + IP_{IN} 7)}{2} for V_{BB} = 10.8 to 26.4 V) $ $ @ I_{R/W} = I_{LOW}, R = 10 k $	6, 7					mA
T _A = 25°C T _A = 0 to +70°C @ I _{R/W} = I _{LOW} , R = 5.0 k		IR/W(L)	2.91 2.84	3.0	3.09 3.16	IIIA
T _A = 25°C T _A = 0 to +70°C @ I _R /W = I _{HI} , R = 10 k (I _{HI} = I _{LOW} + % I _{LOW}) T _A = 25°C		ΔI _R /W(H)	5.64 5.51 31.3	5.89	6.14 6.28 35.5	%
T _A = 0 to +70°C			30.3	33.3	36.6	
Difference in Write Current (Ipin 6 − Ipin 7 @ I _R /W = I _{LOW} , V _{BB} = 10.8 V to 26.4 V) R = 10 k	6, 7	I _R /W7			-	mA
T _A = 25°C T _A = 0 to +70°C R = 5.0 k			_	0.003	0.015 0.023	
T _A = 25°C T _A = 0 to +70°C			_	_	0.030 0.046	

ERASE DELAY ACCURACY (V_{CC} = 4.75 to 5.25 V, T_A = 0 to +70°C, V_{BB} = 10.8 to 26.4 V, — refer to Figure 9.)

Characteristics	Test	Min	Тур	Max	Unit
Delay Error, Pin 11, 12 D1, D2 = RC \pm ED1, 2, 30 k Ω \leqslant R \leqslant 300 k Ω	E _{D1,2}	_	_	15	%

AC SWITCHING CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$, $V_{BB} = 24 \text{ V}$, $I_{RWS} = 0.4 \text{ and } I_{R/W} = 3.0 \text{ mA}$ unless otherwise noted.)

Characteristics (Note 2)	f _{in} (Note 3)	Min	Тур	Max	Unit
 Delay from Head Select going low through 0.8 V to CT0 going high through 20 V. 	HS, Pin 13	_	1.6	4.0	μS
Delay from Head Select going low through 0.8 V to CT1 going low through 1.0 V.	HS, Pin 13		2.1	4.0	μS
3. Delay from Head Select going high through 2.0 V to CT0 going low through 1.0 V.	HS, Pin 13	Na.	1.7	4.0	μS
 Delay from Head Select going high through 2.0 V to CT1 going high through 20 V. 	HS, Pin 13	-	1.4	4.0	μS
Delay from WG going low through 0.8 V to CTO going low through 1.0 V.	WG, Pin 4	_	1.3	4.0	μS
Delay from WG going low through 0.8 V to CT1 going high through 20 V.	WG, Pin 4	_	0.8	4.0	μS
 Delay from WG going low through 0.8 V to CTO going high through 20 V. 	WG, Pin 4		0.75	4.0	μS
Delay from WG going low through 0.8 V to CT1 going low through 1.0 V.	WG, Pin 4		1.2	4.0	μS
9. After WG goes high, delay from R/W1 turning off through 10% to CT0 going high through 20 V.	WG, Pin 4	20	750	_	ns
 After WG goes high, delay from R/W1 turning off through 10% to CT1 going low through 1.0 V. 	WG, Pin 4	20	1200		ns
11. After WG goes high, delay from R/W2 turning off through 10% to CT0 going low through 1.0 V.	WG, Pin 4	20	1200	_	ns
12. After WG goes high, delay from R/W2 turning off through 10% to CT1 going high through 20 V.	WG, Pin 4	20	600	_	ns
 After WG goes low, delay from CT0 going low through 1.0 V to R/W1 turning on through 10%. 	WG, Pin 4	20	750	_	ns
 After WG goes low, delay from CT1 going low through 1.0 V to R/W2 turning on through 10%. 	WG, Pin 4	20	750		ns
15. After WG goes low, fall time (10% to 90%) of R/W1.	WG, Pin 4	_	5.0	200	ns
16. After WG goes low, fall time (10% to 90%) of R/W2.	WG, Pin 4	_	5.0	200	ns
 Setup time, Head Select going low before WG going low. 	WG, Pin 4	4.0	_	_	μS
18. Write Data low Hold Time	WD, Pin 5	200		_	ns
19. Write Data high Hold Time	WD, Pin 5	500	_	-	ns
20. Delay from \overline{WG} going high through 2.0 V to R/W 1 turning off through 10% of on value.	WG, Pin 4	_	3.9	_	μS
21. Delay from WG going low thru 0.8 V to Inhibit going low thru 0.5 V (Note 5)	WG, Pin 4	_	0.08	4.0	μS
22. After WG goes high, delay from R/W1 turning off thru 10% to Inhibit going high thru 1.5 V (10 k pullup on Inhibit, Note 5)	WG, Pin 4	20	750	_	ns
 After WG goes high, delay from E1 going high thru V to Inhibit going high thru 1.5 V (10 k pullup on Inhibit, Note 5) 	WG	20	750		ns

Note 2: Test numbers refer to encircled numbers in Figures 3 & 16.

Note 3: AC test waveforms applied to the designated pins as follows:

Note 4: 22. or 23., whichever produces the longer delay, will control inhibit.

Pin	fin	Amplitude	Duty Cycle
HS, Pin 13	50 kHz	0.4 to 2.4 V	50%
WG, Pin 4	50 kHz	0 4 to 2 4 V	50%
WD, Pin 5	1.0 MHz	0 2 to 2 4 V	50%

AC SWITCHING CHARACTERISTICS (continued)

 $(V_{CC} = 5.0 \text{ V}, T_A = 25^{\circ}\text{C}, V_{BB} = 24 \text{ V}, \overline{\text{WG}} = 0.4 \text{ unless otherwise noted})$

Characteristics (Note 4)	Min	Тур	Max	Unit
Delay from Write Data going low through 0.9 V to R/W1 turning on through 50%.	_	85		ns
Delay skew, difference of R/W1 <u>turning off</u> and R/W2 turning on through 50% after Write Data going low through 0.9 V.	******	1.0	± 4 0	ns
Delay from Write Data going low through 0.9 V to R/W1 turning off through 50%.	_	80	_	ns
Delay skew, difference of R/W1 turning on and R/W2 turning off 50% after Write Data going low through 0.9 V.		1.0	±40	ns
5. Fall time, 10% to 90%, of R/W1	_	1.7	200	ns
6. Fall time, 10% to 90%, of R/W2	_	1.7	200	ns
7. Rise time, 90% to 10%, of R/W1		12	200	ns
8. Rise time, 90% to 10%, of R/W2		12	200	ns

Note 5: Test numbers refer to encircled numbers in Figures 2 & 15. $f_{in} \,=\, 1.0 \; \text{MHz}, \, 50\% \; \text{Duty Cycle and Amplitude of } 0.2 \; \text{V to } 2.4 \; \text{V}.$

PIN DESCRIPTION TABLE

Name	Symbol	Pin	Description
Head Select	HS	13	Head Select input selects between the head I/O pins; center-tap, erase, and read/write. A HIGH selects Head 0 and a LOW selects Head 1.
Write Gate	WG	4	Write Gate input selects the mode of operation. HIGH selects the read mode, while LOW selects the Write Control mode and forces the write current.
Write Data	WD	5	Write Data input controls the turn on/off of the write current. The internal divide-by-two flip-flop toggles on the negative going edge of this input to direct the current alternately to the two halves of the head coils.
IRW Select	IRWS	8	IRW Select input selects the amount of write current to be used. When LOW, the current equals the value found in Figure 5, according to the external resistor. When HIGH, the current equals the low current + 33%.
V _{Ref}	V _{Ref}	1 2	A resistor between these pins sets the write current. (Refer to Figure 4.) A capacitor from $V_{\mbox{Ref}}$ to Gnd will adjust the Degauss period.
Center-Tap 0	CTØ	18	Center-Tap 0 output is connected to the center tap of Head 0. It will be pulled to Gnd or VBB (+12 or +24) depending on mode and head selection.
Erase 0	ĒΟ	17	Erase 0 will be LOW for writing on Head 0, and floating for other conditions.
Center-Tap 1	CT1	20	Center-Tap 1 output is connected to the center tap of Head 1. It will be pulled to Gnd or VBB (+12 or +24) depending on mode and head selection.
Erase 1	E1	15	Erase 1 will be LOW for writing on Head 1, and floating for other conditions.
R/W2	R/W2	6	R/W2 input is one of the differential inputs that sinks current during writing, being the opposite phase of R/W1. It will be connected to one side of the heads.
R/W1	R/W1	7	R/W1 input is one of the differential inputs that sinks current during writing, being the opposite phase of R/W2. It will be connected to one side of the heads.
	Vcc	14	+5.0 V Power
	V _{BB}	19	+12 V or + 24 V Power
	Gnd	16	Coil grounds
	Gnd	3	Reference and logic ground
Delay 1	D1	12	Erase Turn-On Delay adjust (RC or Logic)
Delay 2	D2	11	Erase Turn-Off Delay adjust (RC or Logic)
Inhibit	Inhibit	10	Active low open-collector output provided to indicate heads are active in the write, degauss or erase mode. (Used for step or read inhibit.)

FIGURE 1 — LOGIC DIAGRAM

FIGURE 2 — R/W1 AND R/W2 RELATIONSHIP

APPLICATION INFORMATION

The MC3471P serves as a complete interface between the Write Control functional signals (Head Select, Write Data, Write Gate and inner track compensation, IRWS) and the head itself. A typical configuration is shown in Figure 4. Lg's are erase coils.

WRITE CURRENT SELECTION

Although the MC3471P has been specified for 3.0 mA write current (with a 10 k Ω external resistor), a range of write current values can be chosen by varying R_{ext} using the plot in Figure 5. This current can also be derived using

the relationship
$$I_{Write}$$
 (mA) = $\frac{30}{R_{ext}(k\Omega)}$

 $I_{Ref}.$ the current flowing in R_{ext} (required only for dissipation calculations) can be worst case using the fact that the differential voltage between Pins 1 and 2 (V $_{Ref}$) shown in Figure 3 never exceeds 5.0 volts. With a low value of $R_{ext}=1.0~\mathrm{k}\Omega,~P_D=25~\mathrm{mW}.$

WRITE CURRENT DAMPING

Referring to Figure 4, resistors R_D are used to dampen any ringing that results from applying the relatively fast risetime write current pulse to the inductive head load. Values chosen will be a function of head characteristics and the desired damping. Rp serves as a common pullup resistor to the head supply V_{RR}.

DEGAUSS PERIOD

Degauss of the read/write head can be accomplished at the end of each write operation by attaching a capacitor from Pin 1 to ground. The time relationship that results is shown in Figure 7. A simplified diagram of this function is shown in Figure 6.

While \overline{WG} is low, the selected write current flows into Pin 6 or Pin 7 (R/W1 or R/W2) and is mirrored through the external resistor, R_{ext} . The degauss capacitor, C_{DG} , will be charged to approximately 5.7 volts. After \overline{WG} goes high, the voltage on C_{DG} begins to decay toward 0.7 V. When the voltage reaches the comparator threshold of 1.7 V, the comparator output triggers the internal logic to completely turn off the write current. At this point, the pulse amplitude on the R/W1 and R/W2 pins has returned to 10% of its maximum value.

Figure 7, Degauss Period shows the relationship between C_{DG} and Degauss Period for R_{ext} = 10 k Ω . This period is equal to the exponential delay time for the voltage as mentioned plus internal delay times.

FIGURE 6 - SIMPLIFIED DEGAUSS CIRCUIT

FIGURE 7 — DEGAUSS PERIOD versus CAPACITANCE (CDG)

POWER-UP WRITE CURRENT CONTROL

During power-up, under certain conditions (VBB comes up first while WG is low), there can be a write current transient on Pins 6 and 7 (R/W1 and R/W2) of sufficient magnitude to cause writing to occur if the head is loaded.

This transient can be eliminated by placing a capacitor from Pin 2 to ground. This also delays the write current when \overline{WG} goes low and this delay must be accounted for when the capacitor on Pin 2 is used. The delay is 3.0 μ s for a 2700 pF capacitor, and $R_{ext}=10~k\Omega$. Values up to 7000 pF may be used.

ERASE DELAY

The MC3471P can be used with both straddle and tunnel erase heads. When using the tunnel erase heads, it is necessary to delay the erase current in time with respect to WG due to the physical placement of the erase gap behind the R/W gap on the heads. The amount of delay required depends upon the disk rotation velocity, recording density and format. Turn-on delay and turn-off delay must also be independent to guarantee erase is on for the entire block.

Nominal delays of 500 μ s turn-on; and 1.0 ms turn-off are available by adjusting the value of R1, R2 and C1, C2 shown in Figure 4. These delays are adjustable over a broad range as shown in Figure 9 to achieve any practical delay required. By using 5% capacitors and 1% resistors, total timing accuracy is better than \pm 15% over temperature and supply. Timing is shown in Figure 10.

In applications using logic or microprocessor controlled delays, the D1 and D2 inputs can be used directly to turn-on and turn-off the erase current. (Controlling outputs should be Open-collector w/10 k pullup). Figure 11 shows the relative timing involved for the microprocessor and logic controlled applications.

In straddle erase systems, the erase delays can be eliminated by pulling D1 and D2 high thru a 10 k Ω pullup resistor to +5.0 V.

ERASE CURRENT

The value of R_E, the erase current set resistor, is found by referring to Figure 12 and selecting the desired erase current.

Looking at the simplified erase current path in Figure 12, when writing, CT0 will be high (VOH(min) = 22.5 V) and E0 will be low (VOL(max) = 0.6 V). If the erase coil resistance is 10 Ω and 40 mA of erase current is desired then:

$$(R_E + 10 \Omega) \times 40 \text{ mA} = (22.5 - 0.6) \text{ V}$$

or $R_E = \frac{21.9 \text{ V}}{0.04 \text{ A}} - 10 \Omega = 537 \Omega$
 $P_D = (537) (0.04)^2 = 0.86 \text{ W}$

This gives the minimum value R_E for worst case V_{OH}/V_{OL} conditions. It is also recommended that a diode be used as indicated for inductive back emf suppression.

FIGURE 10 — DELAY INPUT FUNCTION/TIMING
WITH RC ELEMENTS

FIGURE 11 — DELAY INPUT FUNCTION/TIMING WITH LOGIC CONTROL

FIGURE 12 — ERASE CURRENT (RE Selection)

FIGURE 13 — TYPICAL DUAL HEAD FLOPPY DISK SYSTEM USING FET GATE READ CHANNEL SELECTION AND MC3471/MC3470A

Function	СТО	CT1	E0	E1
Write 0	V _{BB}	0 V	On	Off
Write 1	0 V	VBB	Off	On
Read 0	0 V	VBB	Off	Off
Read 1	V _{BB}	0 V	Off	Off

TEST FIGURES

CONDITIONS						
Measure	Set					
ν _T	S ₁ S ₂ S ₃ V ₄ * V ₁₃ *					
\/(D10)	On	Off	0.40	0.8	2.0	
V _{OH} (P18)	On	UII	Off P 18		0.8	
)/ (B20)	0-	Off	P 20	2.0	2.0	
V _{OH} (P20)	On	011	011 120	0.8	0.8	
V (D10)	0,11		0" 0	0.10	0.8	0.8
V _{OL} (P18)	Off	On	P 18	2.0	2.0	
V (D20)	04	0-	D 20	2.0	0.8	
V _{OL} (P20)	Off	Un	On P 20		2.0	
					*Volts	

FIGURE 15 — ERASE OUTPUT LOW VOLTAGE (PINS 15 AND 17)

10 k

CONDITIONS

Measure	Set		
VT	S ₁	V ₁₃	
V _{OL} (P15)	P15	0.8V	
V _{OL} (P17)	P17	2 0 V	

FIGURE 16 - TIMING TEST CIRCUIT

MOTOROLA LINEAR/INTERFACE DEVICES

S2, S3 Closed

MC3480

Specifications and Applications Information

MEMORY CONTROLLER FOR 16 PIN 4K, 16K AND 64K DYNAMIC RAMs

The memory controller chip is designed to greatly simplify the interface logic required to control the popular 16 pin multiplexed dynamic NMOS RAMs in a microprocessor system such as the M6800. The controller will generate, on command from the microprocessor, the proper timing signals required to successfully transfer data between the microprocessor and the NMOS memories. The controller, in conjunction with an oscillator, will also generate the necessary signals required to insure that the dynamic memories are refreshed for the retention of data.

- Greatly Simplify the MPU-Dynamic Memory Interface
- Reduce Package Count and System Access/Cycle Times 30%
- Chip Enable for Expansion to Larger Word Capacity
- Generate 1 of 4 RAS Signals for an Optimum 16K/64K Memory System
- High Input Impedance for Minimum Loading of MPU Bus
- Schottky TTL Technology for High Performance
- Useful with 4K and 16K and Future Expanded Dynamic RAMs

DYNAMIC MEMORY CONTROLLER

SCHOTTKY MONOLITHIC INTEGRATED CIRCUIT

3. High frequency shift registers

Delay lines
 Signals from MPU Clock

ABSOLUTE MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Input Voltage	V _I	-0.5 to +7.0	Vdc
Output Voltage	v _o	-0.5 to +7.0	Vdc
Operating Ambient Temperature	TA	0 to +70	оС
Storage Temperature	T _{stg}	-65 to +150	°C
Operating Junction Temperature	TJ		°C
Ceramic Package Plastic Package		175 150	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Power Supply Voltage	vcc	+4.50 to +5.50	Vdc
Operating Ambient Temperature Range	TA	0 to +70	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply over recommended power supply and temperature ranges.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage — Low Logic State	VIL	-	-	0.8	V
Input Voltage — High Logic State	V _{IH}	2.0	_	_	V
Input Current — Low Logic State (V _I L = 0.5 V)	IIL	_	-	-250	μΑ
Input Current – High Logic State $(V_{IH} = 2.7 \text{ V})$ $(V_{IH} = 5.5 \text{ V})$. Тін	-		40 100	μА
Input Clamp Voltages (I _{IK} = 18 mA)	VIK	_	-	-1.5	V
Output Voltage — Low Logic State (IOL = 24 mA for RAS, CAS, and R.W) (IOL = 8.0 mA for Row En, Ref En, MC, Ref Req)	VoL	_	_	0.5 0.5	V
Output Voltage — High Logic State (IOH = -1.0 mA for RAS, CAS, and R/W) (IOH = -0.4 mA for Row En, Ref En, and MC) IOH = -0.2 mA for Ref Req (Note: Ref Req output has internal 5.0 k resistive pullup to V _{CC} .)	V _{ОН}	3.0 2.4 2.4	_ _ _	- -	V
Power Supply Current — During R/W or Refresh — During Idle	lcc	-	-	65 40	mA
Output Short-Circuit Current (V _{OL} = 0 V for Row En, Ref En, and MC)	los	-10	. –	-55	mA

FIGURE 1 – TYPICAL tpT1,3,and4 (HIGH TO LOW) versus LOAD CAPACITANCE – \overline{RAS} , \overline{CAS} and R/W

SWITCHING CHARACTERISTICS (Unless otherwise noted, $V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Times (Full AC Load - All Outputs)				Ì	ns
MC to $\overline{\text{MC}}$ — Low to High	tPLH(MC)	_	7.0	14	
MC to MC — High to Low	tPHL(MC)	-	9.0	17	
t1 to RAS	tPT1	18	26	40	
t2 to Row En	tPT2	16	21	35	
t3 to CAS	tPT3	17	26	45	
t4 to R/W	tPT4	16	22	45	
t5 to CAS	tPT5C	22	30	42	
to RAS	tPT5R	19	26	40	1
to R/W	tPT5W	30	42	58	
to Row En (Refresh)	tPT5ER	30	50	65	
to Row En (R/W)	tPT5E	25	32	48	
to Refresh En	tPT5F	22	46	55	
Ref Clk to Ref Reg	tPCQ	10	17	27	
Ref Grant to Row En	tPGS	20	30	43	
to Ref En	1 ,,03				
t1 to Ref Req (Ref only) Note 2	tPTQ	22	60	75	
Setup Times (Full AC Load - All Pins)					ns
Ref Clk before Ref Grant	t _{su} (RC)	35		-	
A12, A13 before t1	t _{su(A)}	10	-	_	
R/W Input before t4	t _{su} (R/W)	33	-	-	
CE before t1	t _{su} (CE)	20	_	_	
Ref Grant before t1	t _{su} (RG)	50	-	_	
Hold Times (Full AC Load – All Pins)					ns
A12, A13 after t5	th(A)	15	_	-	
CE after t1	th(CE)	0	_	_	
R/W after t4	th(R/W)	0 .		_	
MC Rising after t1 Rising	th(MC)	30	_		
Minimum Delay Times (Note 2 - Full AC Load - All Pins)					ns
t1 Low to High to t2 Low to High	td(1-2)	30	_	-	
t1 Low to High to t4 Low to High	td(1-4)	33	-	-	
t2 Low to High to t3 Low to High	td(2-3)	30		-	
t3 Low to High to t5 Low to High	td(3-5)	30	-	_	
Minimum Pulse Widths					ns
t1 through t5 Lov	v tWL(t)	30	_	_	
High		30	_	_	
MC	tW(MC)	30		_	
Ref Grant	tW(RG)	25	_		

Note 2: Ref. Req. has an internal 5.0 kΩ pullup to V_{CC}. If faster propagation delay is required (tp_{TQ}), then an external registor can be added in parallel to the internal one to decrease the propagation delay. The value of resistance needed is a function of the capacitive loaded connection to Ref. Req. The minimum value of R that can be used is 5.0 V/8.0 mA = 625 Ω, assuming there are no other dc loads connected to that pin.

Note 3: If delays between t1-t5 are less than the minimum specified, the succeeding outputs may not switch.

AC LOADS (Note 4)

R/W and CAS Outputs	450 pF to Gnd*
RAS Outputs	150 pF to Gnd*
MC, Row En, Ref En, and Ref Req Outputs	15 pF to Gnd*

^{*}Includes probe and jig capacitance.

Note 4: All outputs can drive larger capacitive loads than those shown with a small decrease in speed. See Figure 1.

PIN DESCRIPTION TABLE

Na.	NI -	Function
Name	No.	
RAS1 *	16	Row Address Strobe pins which connect to each of the dynamic RAMs to latch in row address on memory chips.
RAS2	15	Decoded to 1 of 4 during R/W cycle. All 4 go low during refresh cycle.
RAS3	14	
RAS4	13	
CAS *	11	Column Address Strobe pin which connects to each dynamic RAM to latch in column address.
R/W Out *	10	This pin signals the dynamic RAM whether the RAM is to be read from or written into.
Row En	9	Row Enable output which goes to the MC3232A (MC3242A). It signals the Address Multiplexer that the lower half (Row Addresses) or the upper half (Column Addresses) of the address lines are to be multiplexed into the dynamic RAM address inputs. A Logic 1 on this output indicates the Row Addresses, and a Logic 0 indicates Column Addresses.
Ref En	8	Refresh Enable output. A Logic 1 signals the Address Multiplexer that a refresh cycle is to be done, and a Logic 0 indicates that address multiplexing should be done.
CE	22	Chip Enable Input. A Logic 1 on this pin disables all chip functions, except that of Refresh and the MC output. CE must be low during t1 low to high transition to initiate R/W cycle. Once t1 is initiated, the cycle is independent of CE.
R/W In	7	The Read/Write input pin receives information from the M6800 MPU as to the direction of data exchange in the dynamic RAM. It transmits a Logic 0 to the R/W output for a Write Cycle and a Logic 1 for a Read Cycle.
A13 (A15)	17	Upper Order Address lines from the M6800. These two inputs decode to four signals controlling the four RAS outputs.
A12 (A14)	18	A14 and A15 apply to 16K RAMs.
MC	23	Memory Clock input from MC6875 clock or other signal source. The rising edge of MC must occur after the rising
		edge of t1 to avoid aborting the refresh cycle. When MC rises, it resets an internal flag that will terminate refresh at the end
		of the current cycle. Failure to reset the flag forces the 3480 to refresh every cycle thereafter. MC can be connected to
		t2 or t3 in noncritical applications.
MC	1	The buffered complement output of MC. It is a buffered output which may be used to drive the circuitry creating the time delays used on inputs t1 through t5.
t1	2	These pins use external timing inputs to sequentially select the outputs to be enabled. They are positive-edge triggered
t2	3	inputs. Assuming a Read/Write cycle is to be executed, a positive edge on t1 forces a logic 0 on one of the four RAS
t3	4	outputs as determined by the A12/14, A13/15 inputs. After a delay, a positive edge on t2 causes Row En to go to a
t4	5	Logic 0, providing address-multiplexing information to the MC3232A or MC3242A. t3 enables the CAS output and it
t5	6	goes low. t4 enables the R/W output and it goes low, assuming the R/W input was low. t5 resets all the outputs to a Logic 1 (with the exception of MC, Ref En, and Ref Req). The inputs t1, t2, t3, and t5 are daisy-chained, so they must be sequentially driven to obtain the desired output signals. t4 can be driven at any time after t1.
Ref Clk	21	The 32 kHz (64 kHz) Refresh Clock signals this pin that another refresh cycle is required. It is a positive-edge triggered input, and upon triggering, the Ref Req pin goes to a Logic 0.
Ref Req	20	The Refresh Request output acts as an input to the MPU system, requesting a refresh cycle. This output has
		a 5 k Ω pullup resistor to the V _{CC} supply to allow wire-ORing if desired.
Ref Grant	19	Through the Refresh Grant input, the MC6875 initiates a refresh cycle. This input is positive-edge triggered and is enabled only after the Ref Req pin has gone low. This allows the MC3480 to discern between a Refresh Grant or a DMA Grant even though they appear on the same line. When employing both dynamic memory (refresh) and DMA in a microprocessor-based system with a combined Refresh/DMA Request control on the clock, provision must be
		made for holding off a DMA request during a refresh period (and visa versa). If this provision is not made, clock stretching (cycle stealing) will continue indefinitely and dynamic microprocessor data will be lost. The positive edge on Ref Grant causes Row En output to go low and Ref En output to go high. This signals the MC3232A (MC3242A) that a refresh address is required. The refresh cycle occurs with the succeeding pulses on t1-t5. A positive edge on t1 causes Ref Req to go high and all the RAS outputs to go low. A positive going edge on t2 causes no change in the outputs, since it controls the address multiplexing (Row En) during the Read/Write cycles. There is no output change when t3 and t4 go high because no CAS or R/W signal is needed during refresh. A positive edge on t5 resets the RAS and Row En to a Logic 1 state, and Ref En to a Logic 0 state, ready for the next Read/Write cycle.
Vcc	24	+5.0 V supply. A 0.1 μF capacitor is recommended to bypass pin 24 to ground.
Gnd	12	System Ground.

^{*}These outputs are designed to drive the highly capacitive inputs of multiple dynamic RAMs/(150 pF for \overline{RAS} outputs, and 450 pF for \overline{CAS} and R/W outputs). Consequently, these outputs have no short-circuit limit and must be handled accordingly. Good high capacitance load driving techniques usually include a 10 Ω or greater series damping resistor. It is highly recommended that this be done on \overline{RAS} , \overline{CAS} and R/W outputs of the MC3480. The effect of these series damping resistors on rise and fall times must be included in timing considerations.

NOTE: All other outputs are LS/TTL totem-pole configuration unless otherwise noted.

TIME DELAY INFORMATION

TIMING REQUIREMENT CONSTRAINTS

- Δ t1 Minimum is determined by MPU Address Delay (t_{AD}), plus RAM Row Address Set-Up Time (t_{ASR}), minus MC3480 Propagation Delay (t_{PT1}).
- At2 At1 Minimum is determined by RAM Row Address Hold Time (t_{RAH}) minus the minimum MC3232A/3242A Row Enable to Output Delay (t_{RAMIN}).
- Δt3 Δt2 Minimum is determined by RAM Column Address Set-Up Time (t_{ASC minimum}) plus maximum MC3232A/3242A Row Enable to Output Delay (t_{001MAX}).
- Δt4 Δt3 No Minimum
- Δt5 Δt3 Minimum is determined by RAM minimum CAS Pulse Width (t_{CAS}) or Access Time from CAS (t_{CAC}) plus Data Set-Up Time of MPU (t_{DSR}).
- $\Delta t5$ $\Delta t4$ Minimum is determined by the RAM minimum Write Pulse Width (t_{WP}).

Note: Also required in computing time delays are the various delays incurred by the particular delay scheme used; i.e., delays between $4 \times f_0$, $2 \times f_0$, and f_0 from the MC6875 which are used as inputs or the gate delays of the gates used in Figures 5A through 5C.

TYPICAL APPLICATION 16K X 8-BIT MEMORY SYSTEM FOR M6800 MPU

FIGURE 2 - READ/WRITE TIMING CYCLE

Don't care.

NOTE 4: Although 11 and \overline{CE} are shown as don't care after their respective minimum hold times, t1 may rise again after the initial rising edge in a R/W cycle only if \overline{CE} is low. Bringing t1 high a second time during a cycle when \overline{CE} is high will improperly terminate the cycle.

FIGURE 3 - REFRESH TIMING CYCLE

APPLICATIONS INFORMATION

GENERAL DESCRIPTION

The MC3480 uses five general timing inputs in place of a master clock with on-chip timing generation. This gives the system designer optimum flexibility in interfacing with the various microprocessor families and dynamic memories that are available. In simpler slow speed

systems, the timing signals required can be directly obtained from those available from the microprocessor. In systems requiring high speed memory/microprocessor cycle times, timing input t1-t5 can be obtained using delay lines or a range of techniques as shown in Figures 4 thru 8. It is only necessary to maintain the time delay relationships shown under time delay information.

FIGURE 4 - UNIVERSAL TIME DELAY USING MC6875

MC3480

FIGURE 5C - ALTERNATE TIME DELAYS USING MC6875

+5 V мс MC3480 RAM Controller Δt1 c_D @ t1 RAS 1 t2 t2 RAS 2 Δt2t3 · RAS 3 t3 RAS 4 t4 t1 t2 t4 Δt4 CAS -0 t5 R/W Δ t5 Row t5 · MC -0 En Ref En RAS мс t1 t2 Memory Clock Row En -From MC6875 or Suitable Clock Signal RAM A0 - A5 A6 - A11 Address / (A'0 - A6) (A7 - A13) Inputs // CAS C_D R/W NOTE: t4 can be tied to t3 and the Write 4th 1-shot can be used elsewhere.

FIGURE 6 - ONE SHOT TIME DELAY METHOD

FIGURE 7 – DELAY LINE TIME DELAY METHOD

FIGURE 8 - DELAY LINE TIME DELAY (ALTERNATE METHOD)

REFRESH CONSIDERATIONS

The MC3480/MC3232A (MC3242A) memory control system can be used with either cycle steal or transparent refresh methods. Figure 9 shows one transparent technique employing refresh during $\phi 2$ low in an M6800 microprocessor-based system. Using this technique requires that the memory be capable of completing a Read/Write Cycle and a Refresh Cycle sequentially during the M6800 cycle. The minimum cycle time at the time of printing for cycle. The minimum cycle time at the time of printing the microprocessor to 1.56 MHz operation. The D flipflops of Figure 9 produce a trigger at the beginning of both $\phi 1$ and $\phi 2$. For a 1.0 MHz system, the t1–t5 inputs should be adjusted for the following delays:

RAS falls at 150 ns (triggered by t1)
Row En falls at 250 ns (triggered by t2)
CAS, R/W falls at 300 ns (triggered by t3)
t5 rises at 500 ns.

A delay line could be used to generate t1-t5 in place of

the four monostables. For the 1.0 MHz system, it would require either two 5 tap delay lines with 50 ns per tap or a 10 tap line with 50 ns/tap. For use with a 600 kHz system, a delay line with 5 taps of 150 ns each could be used. For this case:

RAS falls at 150 ns

Row En falls at 300 ns

CAS, R/W falls at 450 ns

t5 rises at 750 ns

Figure 10 shows typical refresh oscillator configurations for both 32 kHz (fREFmin for 4K) and 64 kHz (fREFmin for 16K). In the case of transparent refresh, if the designer is not concerned with power consumption, the refresh oscillator may be eliminated and the Ref Clk input connected to the MC input yielding a refresh every $\phi 1$.

For DMA operation combined with cycle stealing refresh, care must be taken not to allow a DMA request during a Refresh Request/Grant period and to hold off a refresh during a DMA operation. See comments under pin descriptions, Pin 19.

FIGURE 9 — EXAMPLE OF φ2 LOW METHOD OF HIDDEN REFRESH USING MC3480 AND 4K RAMS

FIGURE 10 - SUGGESTED 32 kHz OSCILLATORS

MC3481 MC3485

Advance Information

QUAD SINGLE-ENDED LINE DRIVER

The MC3481 and MC3485 are quad single-ended line drivers specifically designed to meet the IBM 360/370 I/O specification (GA22-6974-3).

Output levels are guaranteed over the full range of output load and fault conditions. Compliance with the IBM requirements for fault protection, flagging, and power up/power down protection for the bus make this an ideal line driver for party line operations.

- Separate Enable and Fault Flags MC3481
- Common Enable and Fault Flag MC3485
- Power Up/Down Does Not Disturb Bus
- Schottky Circuitry for High-Speed PNP Inputs
- Internal Bootstraps for Faster Rise Times
- Driver Output Current Foldback Protection
- MC3485 has LS Totem Pole Driver Output

IBM 360/370 QUAD LINE DRIVER

SILICON MONOLITHIC INTEGRATED CIRCUIT

L SUFFIX CERAMIC PACKAGE CASE 620-02

P SUFFIX PLASTIC PACKAGE CASE 648-05

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MC3481, MC3485

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltage	Vcc	4.5	5.0	5.95	Vdc
High Level Output Current	¹ он	on comme	_	-59.3	mA
Operating Ambient Temperature Range	TA	0	_	+70	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, these specifications apply over recommended power supply and temperature ratings. Typical values measured at $T_A = 25$ °C and $V_{CC} = +5.0$ V)

			MC3481	.		MC3485	,	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
High-Level Input Voltage Note 2	ViH	2.0	_		2.0	_		V
Low-Level Input Voltage Note 2	VIL		-	0.8		_	0.8	V
High-Level Input Current (V _{CC} = 4.5 V, V _{IH} = 2.7 V) - Input Enable (V _{CC} = 4.5 V, V _{IH} = 5.5 V) - Input Enable	ΊΗ			20 40 100 200	_ _ _ _	_ _ _	20 80 100 400	μА
Low-Level Input Current (V _{CC} = 5.95 V, V _{IL} = 0.4 V) - Input Enable	IIL .	_	_	-250 -500		_	-250 -1000	μА
Input Clamp Voltage (I _{IC} = -18 mA)	VIC	_		-1.5	_	_	-1.5	V
High-Level Driver Output Voltage (V _{CC} = 4.5 V, V _{IH} = 2.0 V, I _{OH} = -59.3 mA) (V _{CC} = 5.25 V, V _{IH} = 2.0 V, I _{OH} = -41 mA)	V _{OH(D)} V _{OH(DS)}	3.11 3.9	3.6	_	3.11 3.9	3.6 —	_	V
Low-Level Driver Output Voltage $(V_{CC} = 5.5 \text{ V}, V_{IL} = 0.8 \text{ V}, I_{OL} = -240 \mu\text{A})$ $(V_{CC} = 5.95 \text{ V}, V_{IL} = 0.8 \text{ V}, I_{OL} = -1.0 \text{ mA})$	V _{OL(D)} VOL(DS)	_	_	+0.15 +0.15	_		+0.15 +0.15	V
Driver Output Short Circuit Current (V _{CC} = 5.5 V, V _{IH} = 2.0 V, V _{OS} = 0 V) (V _{CC} = 5.95 V, V _{IH} = 2.0 V, V _{OS} = 0 V)	I _{OS(D)} I _{OS(DS)}	- -	 - -	-5.0 -5.0	_	_	-5.0 -5.0	mA
Driver Output Reverse Leakage Current ($V_{CC} = 4.5 \text{ V}$, $V_{IL} = 0 \text{ V}$, $V_{O} = 3.11 \text{ V}$) ($V_{CC} = 0 \text{ V}$, $V_{IL} = 0 \text{ V}$, $V_{O} = 3.11 \text{ V}$)	I _{OR1} I _{OR2}	_ _	_	+100 +200	_	 _	+100 +200	μΑ
High-Level Driver Output Voltage $(V_{CC} = 4.5 \text{ V}, V_{IL} = 0.8 \text{ V}, I_{OH} = -400 \mu\text{A})$	VOH(<u>D</u>)				2.5	3.0	_	V
Low-Level Driver Output Voltage (V _{CC} = 4.5 V, V _{IH} = 2.0 V, I _{OL} = +8.0 mA)	V _{OL(D)}	_	_	_		_	0.5	V
Driver Output Short Circuit Current (V _{CC} = 5.5 V, V _{OS} = 0 V, only one output shorted at a time)	los(D)	_	_	_	-15	-60	-100	mA
$(V_{CC} = 5.95 \text{ V}, V_{OS} = 0 \text{ V}, \text{ only one output shorted}$ at a time)	los(ās)	_	obsestation.	_	-15		-110	
High-Level Fault Flag Output Voltage (V _{CC} = 4.5 V, I _{OH} = -400 μA)	VOH(F)	2.5	3.0		_	_	_	٧
Low-Level Fault Flag Output Voltage (V _{CC} = 4.5 V, V _{IH} = 2.0 V, I _{OL} = +8.0 mA, Driver Output shorted to Ground	VOL(F)	_	_	0.5			0.5	V
Fault Flag Output Short Circuit Current (V _{CC} = 5.5 V, V _{OS} = 0 V, only one output shorted at a time)	I _{OS(} F)	-15	_	-100	_		summ	mA
(V_{CC} = 5.95 V, V_{OS} = 0 V, only one output shorted at a time)	IOS(FS)	-15	_	-110	-	_	_	
High-Level Fault Flag Output Current (V _{CC} = 5.95 V, V _{OH} = 5.95 V)	IOH(F)	_	_		_	_	+100	μА
High-Level Power Supply Current (V_{CC} = 5.5 V, V_{IH} = 2.0 V, no output loading) (V_{CC} = 5.95 V, V_{IH} = 2.0 V, no output loading)	I _{CCH} Icchs	_	50 —	70 80	_	55 —	75 85	mA
Low-Level Power Supply Current (V _{CC} = 5.5 V, V _{IL} = 0.8 V, no output loading) (V _{CC} = 5.95 V, V _{IL} = 0.8 V, no output loading)	ICCL ICCLS	_	35 —	55 70	_	35 —	55 70	mA

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating		Symbol	Value	Unit
Power Supply Voltage		Vcc	+7.0	V
Input Voltage		V _I	10	V
Driver Output Voltage		v _o	5.5	V
Power Dissipation (Package Limitation) Derate Above T _A = 25°C	Ceramic Package Plastic Package	P _D 1/R _{θJA}	1150 962 7.7	mW mW/°C
Operating Ambient Temperature Range		T _A	0 to +70	°C
Junction Temperature	Ceramic Package Plastic Package	TJ	+175 +150	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C

SWITCHING CHARACTERISTICS (See Note 1. Unless otherwise noted, these specifications apply over recommended temperature range. I/O Driver characteristics are guaranteed for V_{CC} = 5.0 V \pm 10% and Select-Out Driver characteristics are guaranteed for V_{CC} = 5.25 to 5.95 V. Typical values measured at T_A = 25°C and V_{CC} = 5.0 V. See Tables 1 and 2, Figures 1 and 2 for load conditions.)

Characteristics	Symbol	Min	Тур	Max	Unit
Propagation Delay Time					ns
High-to-Low-Level, Driver Output					
As I/O Driver	tPHL(D)	_	18	-	
As Select-Out Driver	tPHL(DS)	-	19	-	
Low-to-High-Level, Driver Output		İ			
As I/O Driver	tPLH(D)	_	20	_	
As Select-Out Driver	tPLH(DS)	_	21	-	
High-to-Low-Level, Driver Output	1	1			
As I/O Driver	tPHL(Ū)		25		
As Select-Out Driver	tPHL(DS)	_	26	_	
Low-to-High-Level, Driver Output		1	-		
As I/O Driver	tPLH(□)		25	_	
As Select-Out Driver	tPLH(DS)		26	_	
High-to-Low-Level, Fault Flag — MC3481		i			
As I/O Driver	tPHL(F)		45	-	
As Select-Out Driver	tPHL(FS)	_	47	_	
Low-to-High-Level, Fault Flag — MC3481	, ,				
As I/O Driver	tPLH(F)	_	40	-	
As Select-Out Driver	tPLH(FS)	_	42	_	
Ratio of Propagation Delay Times	tPLH(D)	_	1.0	_	
As I/O Driver	^t PHL(D)		Į.	1	

Note 1. Reference IBM specification GA22-6974-3 for test terminology.

^{2.} The fault protection circuitty of the MC3481/85 requires relatively clean input voltage waveforms for current operation. Noise pulses which enter the threshold region (0.8 to 2.0 V) may cause the output to enter the fault protect mode. To exit the protect mode, it is necessary to gate an input of the effected driver to the low logic state.

FIGURE 1 — MC3481 AC TEST CIRCUIT AND WAVEFORMS

* Load Capacitance shown includes Fixture and Probe Capacitance

Table	Driver Application				
1	1/0	Select-Out			
Voн	3.11 V	3.9 V			
Input Frequency	5 MHz	1 MHz			
Input Pulse Width	100 ns	500 ns			
Input Amplitude	0 V to 4 V	0 V to 4 V			
Input tTLH	≤6 ns	≤ 6 ns			
Input tTHL	≤6 ns	≤6 ns			
Load Resistance (R _L)	50	90			

FIGURE 2 — MC3485 AC TEST CIRCUIT AND WAVEFORMS

Table	Driver A	pplication
2	1/0	Select-Out
Vон	3.11 V	3.9 V
Input Frequency	5 MHz	1 MHz
Input Pulse Width	100 ns	500 ns
Input Amplitude	0 V to 4 V	0 V to 4 V
Input tTLH	≤6 ns	≤6 ns
Input t _{THL}	≤6 ns	≤6 ns
Load Resistance (R _L)	50	90

[‡] See Table 2

OCTAL THREE-STATE BUFFER/LATCH

This series of devices combines four features usually found desirable in bus-oriented systems: 1) High impedance logic inputs insure that these devices do not seriously load the bus; 2) Three-state logic configuration allows buffers not being utilized to be effectively removed from the bus; 3) Schottky technology allows for high-speed operation; 4) 48 mA drive capability.

- Inverting and Non-Inverting Options of Data
- SN74S373 Function Pinouts
- Eight Transparent Latches/Buffers in a Single Package
- Full Parallel-Access for Loading and Reloading
- Buffered Control Inputs
- All Inputs Have Hysteresis to Improve Noise Rejection
- High Speed − 8.0 ns (Typ)
- Three-State Logic Configuration
- Single +5 V Power Supply Requirement
- Compatible with 74S Logic or M6800 Microprocessor Systems
- High Impedance PNP Inputs Assure Minimal Loading of the Bus

MICROPROCESSOR BUS EXTENDER APPLICATION (Clock) Gnd +5 V φ1 M6800 MPU MC3482A/MC6882A MC8T26A/MC6880A MC3482B/MC6882B Bus Extender Octal Buffer/Latch MC6830 Address **ROMs** and Data Control Bus MC6810 **RAMs** MC6820 PIAs MC6850 **ACIAs** MC6860 To DAA -Modem

MC3482A/MC6882A MC3482B/MC6882B

OCTAL THREE-STATE BUFFER/LATCH

SILICON MONOLITHIC INTEGRATED CIRCUITS

L SUFFIX CASE 732-03

ORDERING INFORMATION

(Temperature Range for the following devices = $0 \text{ to } +75^{\circ}\text{C}$.)

Device	Alternate	Package
MC3482AL	MC6882AL	Ceramic DIP
MC3482BL	MC6882BL	Ceramic DIP

MC3482A, MC3482B, MC6882A, MC6882B

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	8.0	Vdc
Input Voltage	VI	5.5	Vdc
Operating Ambient Temperature Range	TA	0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	TJ		°C
Ceramic Package		175	

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, $0^{\circ}C \le T_{A} \le 75^{\circ}C$ and $4.75 \lor \le \lor_{CC} \le 5.25 \lor$)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage — High Logic State (V _{CC} = 4.75 V, T _A = 25 ^o C)	VIH	2.0	-	-	٧
Input Voltage — Low Logic State (V _{CC} = 4.75 V, T _A = 25°C)	VIL		_	0.8	٧
Input Current — High Logic State (V _{CC} = 5.25 V, V _{IH} = 2.4 V)	Чн	_	-	40	μА
Input Current — Low Logic State (V _{CC} = 5.25 V, V _{IL} = 0.5 V, V _{IL} (OE) = 0.5 V)	IIL	_	_	-250	μА
Output Voltage High Logic State (V _{CC} = 4.75 V, I _{OH} = -20 mA)	Voн	2.4	-	-	٧
Output Voltage — Low Logic State (I _{OL} = 48 mA)	VOL	_	-	0.5	>
Output Current — High Impedance State (V _{CC} = 5.25 V, V _{OH} = 2.4 V) (V _{CC} = 5.25 V, V _{OL} = 0.5 V)	loz	-		100 –100	μΑ
Output Short-Circuit Current (V _{CC} = 5.25 V, V _O = 0) (only one output can be shorted at a time)	los	-30	-80	-130	mA
Power Supply Current MC3482A/MC6882A (V _{CC} = 5.25 V) MC3482B/MC6882B	lcc	-		130 150	mA
Input Clamp Voltage (V _{CC} = 4.75 V, I _{IK} = -12 mA)	VIK	_	_	-1.2	٧

SWITCHING CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $0^{\circ}\text{C} \leqslant T_{A} \leqslant +75^{\circ}\text{C}$, unless otherwise noted, typical @ $T_{A} = 25^{\circ}\text{C}$.)

Characteristics	Symbol	-	MC3482A/ MC6882A		MC3482B/ MC6882B			Unit
		Min	Тур	Max	Min	Тур	Max	
Propagation Delay Times								ns
Data to Output								
Low to High	tPLH(D)						1	
CL = 50 pF		4.0	9.0	16	4.0	9.0	16	
C _L = 250 pF		-	12	20		12	20	
C _L = 375 pF			14	22		14	22	
C _L = 500 pF		10	16	24	10	16	24	
High to Low	tPHL(D)							
C ₁ = 50 pF		4.0	8.0	16	4.0	8.0	16	
C _L = 250 pF		-	15	22	-	15	22	
C ₁ = 375 pF			18	25		17	24	
CL = 500 pF		16	21	28	14	18	27	
Propagation Delay Times								ns
Latch Disable (Low to High)								
to Output								
Low to High	tPLH(L)			1				
C _L = 50 pF		-	22	30	-	18	30	
High to Low	tPHL(L)							
C _L = 50 pF		-	23	30	_	14	25	
Propagation Delay Times								ns
(C _L = 20 pF)			1					
High Output Level to High Impedance	tPHZ(OE)	-	8.0	15	-	6.0	13	
Low Output to High Impedance	tPLZ(OE)	-	20	27	-	15	23	
High Impedance to High Output	tPZH(OE)	-	9.0	16	-	11	18	
High Impedance to Low Output	tPZL(OE)	-	13	20	-	9.0	16	

MC3482A, MC3482B, MC6882A, MC6882B

AC SETUP CHARACTERISTICS (V_{CC} = 5.0 V, 0°C \leq T_A \leq +75°C, unless otherwise noted, typical @ T_A = 25°C.)

Characteristic	Symbol	- 1	MC3482A MC6882A		1	MC3482B MC6882B		Unit
		Min	Тур	Max	Min	Тур	Max	1
Setup Time (Data to Negative Going Latch Enable)	t _{su(D)}	10	0	-	7.0	0	-	ns
Hold Time (Data to Negative Going Latch Enable)	t _{h(D)}	10	-	-	8.0	-	_	ns
Minimum Latch Enable Pulse Width (High or Low)	tW(L)	-	15	-	_	15	-	ns

PIN CONNECTIONS AND TRUTH TABLES

Jig Capacitance

FIGURE 2 - WAVEFORMS FOR PROPAGATION DELAY FIGURE 1 - TEST CIRCUIT FOR SWITCHING CHARACTERISTICS TIMES DATA TO OUTPUT To Scope To Scope (Input) Output 1.5 V Closed for - 0 V Input or tPLZ(OE), tPZL(OE) only Input --tpLH(D) tPHL(D)-Enable +5 V - Voh Output MC3482A/MC6882A 50 1N3064 - VOL Pulse or Equivalent tPLH(D) - tpHL(D) VOH Output MC3482B/MC6882B VOL 1.0 k Closed for C_L Includes Probe and Input Pulse Conditions tPHZ(OE), tPZH(OE) only t_{THL} · t_{TLH} ≤ 5 ns f 1.0 MHz

FIGURE 3 - WAVE FORMS FOR AC SETUP AND LATCH DISABLE TO OUTPUT DELAY

FIGURE 4 - WAVEFORMS FOR PROPAGATION DELAY TIMES - OUTPUT ENABLE TO OUTPUT

MC3486

QUAD RS-422/423 LINE RECEIVER

Motorola's Quad RS-422/3 Receiver features four independent receiver chains which comply with EIA Standards for the Electrical Characteristics of Balanced/Unbalanced Voltage Digital Interface Circuits. Receiver outputs are 74LS compatible, three-state structures which are forced to a high impedance state when the appropriate output control pin reachs a logic zero condition. A PNP device buffers each output control pin to assure minimum loading for either logic one or logic zero inputs. In addition, each receiver chain has internal hysteresis circuitry to improve noise margin and discourage output instability for slowly changing input waveforms. A summary of MC3486 features include:

- Four Independent Receiver Chains
- Three-State Outputs
- High Impedance Output Control Inputs (PIA Compatible)
- Internal Hysteresis −30 mV (Typ) @ Zero Volts Common Mode
- Fast Propagation Times -25 ns (Typ)
- TTL Compatible
- Single 5.0 V Supply Voltage
- DS 3486 Provides Second Source

QUAD RS-422/3 LINE RECEIVER WITH THREE-STATE OUTPUTS

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION					
DEVICE	TEMPERATURE RANGE	PACKAGE			
MC3486L	0 to +70°C	Ceramic DIP			
MC3486P	0 to +70°C	Plastic DIP			

ABSOLUTE MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	8.0	Vdc
Input Common Mode Voltage	VICM	±15	Vdc
Input Differential Voltage	V _{ID}	± 25	Vdc
Three-State Control Input Voltage	VI	8.0	Vdc
Output Sink Current	I _O	50	mA
Storage Temperature	T _{stg}	-65 to +150	°C
Operating Junction Temperature	TJ		°C
Ceramic Package		+175	
Plastic Package		+150	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The "Table of Electrical Characteristics" provides conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	4.75 to 5.25	Vdc
Operating Ambient Temperature	TA	0 to +70	°C
Input Common Mode Voltage Range	V _{ICR}	-7.0 to +7.0	Vdc
Input Differential Voltage Range	V _{IDR}	6.0	Vdc

ELECTRICAL CHARACTERISTICS (Unless otherwise noted minimum and maximum limits apply over recommended temperature and power supply voltage ranges. Typical values are for T_A = 25°C, V_{CC} = 5.0 V and V_{IK} = 0 V. See

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage – High Logic State	VIH	2.0	_	_	V
(Three-State Control)					
Input Voltage — Low Logic State (Three-State Control)	VIL	_	_	8,0	V
Differential Input Threshold Voltage (Note 4) $(-7.0 \text{ V} \leq \text{V}_{1\text{C}} \leq 7.0 \text{ V}, \text{V}_{1\text{H}} = 2.0 \text{ V})$	V _{TH(D)}				- v
$(I_O = -0.4 \text{ mA}, V_{OH} \ge 2.7 \text{ V})$ $(I_O = 8.0 \text{ mA}, V_{OL} \ge 0.5 \text{ V})$			_	0.2 -0.2	
Input Bias Current (V _{CC} = 0 V or 5.25) (Other Inputs at 0 V)	IB(D)				mA
$(V_1 = -10 \text{ V})$		_	-	-3.25	
$(V_1 = -3.0 \text{ V})$		-	-	-1.50	1
$(V_1 = +3.0 \text{ V})$		_	-	+1.50	
(V _I = +10 V)		_		+3.25	
Input Balance and Output Level (-7.0 V \leq V $_{IC} \leq$ 7.0 V, V $_{IH}$ = 2.0 V, See Note 3)					V
$(I_O = -0.4 \text{ mA}, V_{ID} = 0.4 \text{ V})$ $(I_O = 8.0 \text{ mA}, V_{ID} = -0.4 \text{ V})$	V _{OL}	2.7 —		- 0.5	
Output Third State Leakage Current (V (D) = +3.0 V, V L = 0.8 V, VOL = 0.5 V) (V (D) = -3.0 V, V L = 0.8 V, VOH = 2.7 V)	loz	_	_	-40 40	μА
Output Short-Circuit Current	los	-15	 	-100	mA
(V _{I(D)} = 3.0 V, V _{IH} = 2.0 V, V _O = 0 V) See Note 2)	1.05			1.55	
Input Current — Low Logic State (Three-State Control) (V _{IL} = 0.5 V)	IIL	-	-	-100	μА
Input Current — High Logic State (Three-State Control)	ЧН				μА
$(V_{IH} = 2.7 V)$		_	_	20	1
(V _{IH} = 5.25 V)			_	100	l
Input Clamp Diode Voltage (Three-State Control) (I _{IK} = -10 mA)	V _[K]	_	-	-1.5	V
Power Supply Current (VIL = 0 V)	lcc	_	-	85	mA

SWITCHING CHARACTERISTICS (Unless otherwise noted, V_{CC} = 5.0 V and T_A = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Time — Differential					ns
Inputs to Output				1	1
(Output High to Low)	tPHL(D)	_	_	35	
(Output Low to High)	tPLH(D)	-	_	30	
Propagation Delay time — Three-State					ns
Control to Output					
(Output Low to Third State)	tPLZ	_	-	35	
(Output High to Third State)	tPHZ	_	_	35	
(Output Third State to High)	tPZH	_	-	. 30	İ
(Output Third State to Low)	tPZL	-	_	30	İ

NOTES:

- All currents into device pins are shown as positive, out of device pins are negative. All voltages referenced to ground unless otherwise noted.
- 2. Only one output at a time should be shorted.

- Refer to EIA RS422/3 for exact conditions, Input balance and guaranteed output levels are done simultaneously for worst case.
- Differential input threshold voltage and guaranteed output levels are done simultaneously for worst case.

FIGURE 1 - SWITCHING TEST CIRCUIT AND WAVEFORMS

Propagation Delay Differential Input to Output

FIGURE 2 - PROPAGATION DELAY THREE-STATE CONTROL INPUT TO OUTPUT

QUAD LINE DRIVER WITH THREE-STATE OUTPUTS

Motorola's Quad RS-422 Driver features four independent driver chains which comply with EIA Standards for the Electrical Characteristics of Balanced Voltage Digital Interface Circuits. The outputs are three-state structures which are forced to a high impedance state when the appropriate output control pin reaches a logic zero condition. All input pins are PNP buffered to minimize input loading for either logic one or logic zero inputs. In addition, internal circuitry assures a high impedance output state during the transition between power up and power down. A summary of MC3487 features include:

- Four Independent Driver Chains
- Three-State Outputs
- PNP High Impedance Inputs (PIA Compatible)
- Fast Propagation Times (Typ 15 ns)
- TTL Compatible
- Single 5 V Supply Voltage
- Output Rise and Fall Times Less Than 20 ns
- DS 3487 Provides Second Source

QUAD RS-422 LINE DRIVER WITH THREE-STATE OUTPUTS

SILICON MONOLITHIC INTEGRATED CIRCUIT

TRUTH TABLE						
Input	Control Input	Non-Inverting Output	Inverting Output			
Н	н	н	L			
L	н	L	н			
X	L	Z	z			
L = Low Logic State H ≃ High Logic State X = Irrelevant						

Z = Third-State (High Impedance)

*ABSOLUTE MAXIMUM RATINGS						
Rating	Symbol	Value	Unit			
Power Supply Voltage	Vcc	8.0	Vdc			
Input Voltage	VI	5.5	Vdc			
Operating Ambient Temperature Range	TA	0 to +70	°c			
Operating Junction Temperature Range Ceramic Package Plastic Package	ТЈ	175 150	°C			
Storage Temperature Range	T _{stg}	-65 to +150	°C			

[&]quot;"Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The "Table of Electrical Characteristics" provides conditions for actual device operation.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply 4.75 V \leq V_{CC} \leq 5.25 V and 0°C \leq T_A \leq 70°C. Typical values measured at V_{CC} = 5.0 V, and T_A = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage - Low Logic State	VIL	_	_	0.8	Vdc
Input Voltage - High Logic State	VIH	2.0	Was .	_	Vdc
Input Current — Low Logic State (V _{IL} = 0.5 V)	HL	-	_	-400	μА
Input Current — High Logic State $(V_{IH} = 2.7 V)$ $(V_{IH} = 5.5 V)$	Чн			+50 +100	μА
Input Clamp Voltage (I _{IK} =-18 mA)	VIK	-	_	-1.5	V
Output Voltage — Low Logic State (IOL = 48 mA)	VOL	_	-	0.5	V
Output Voltage - High Logic State (I _{O,H} = -20 mA)	VOH	2.5	-		V
Output Short-Circuit Current (V _{IH} = 2.0 V) ²	los	-40	_	-140	mA
Output Leakage Current — Hi-Z State (V _I L = 0.5 V, V _I L(Z) = 0.8 V) (V _I H = 2.7 V, V _I L(Z) = 0.8 V)	lOL(Z)			± 100 ± 100	μА
Output Leakage Current — Power OFF (V _{OH} = 6.0 V, V _{CC} = 0 V) (V _{OL} = -0.25 V, V _{CC} = 0 V)	IOL(off)		_	+100 -100	μА
Output Offset Voltage Difference ¹	Vos-∇os	_	_	±0.4	V
Output Differential Voltage 1	V _{OD}	2.0	-	-	V
Output Differential Voltage Difference 1	ΔV _{OD}	_	_	±0.4	٧
Power Supply Current (Control Pins = Gnd) ³	ccx	_	_	105	mA
(Control Pins = 2.0 V)	lcc lcc	-	-	85	1

^{1.} See EIA Specification RS-422 for exact test conditions.

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Times					ns
High to Low Output	tPHL	_	-	20	
Low to High Output	tPLH		-	20	
Output Transition Times — Differential					ns
High to Low Output	tTHL	-	-	20	
Low to High Output	tTLH	_	-	20	
Propagation Delay - Control to Output					ns
$(R_L = 200 \Omega, C_L = 50 pF)$	tPHZ(E)	-	-	25	
$(R_L = 200 \Omega, C_L = 50 pF)$	tPLZ(E)	_	-	25	
$(R_{\perp} = \infty, C_{\perp} = 50 \text{ pF})$	tPZH(E)	_	-	30	
$(R_L = 200 \Omega, C_L = 50 pF)$	tPZL(E)	-	-	30	

Only one output may be shorted at a time.
 Circuit in three-state condition.

FIGURE 1 – THREE-STATE ENABLE TEST CIRCUIT AND WAVEFORMS

FIGURE 2 – PROPAGATION DELAY TIMES INPUT TO OUTPUT WAVEFORMS AND TEST CIRCUIT

FIGURE 3 - OUTPUT TRANSITION TIMES TEST CIRCUIT AND WAVEFORMS

MC3488A MC3488B

DUAL RS-423/RS-232C LINE DRIVERS

The MC3488A and MC3488B dual single-ended line drivers have been designed to satisfy the requirements of EIA standards RS-423 and RS-232C, as well as CCITT X.26, X.28 and Federal Standard FIDS1030. They are suitable for use where signal wave shaping is desired and the output load resistance is greater than 450 ohms. Output slew rates are adjustable from 1.0 μs to 100 μs by a single external resistor. Output level and slew rate are insensitive to power supply variations. Input undershoot diodes limit transients below ground and output current limiting is provided in both output states.

The MC3488A has a standard 1.5 V input logic threshold for TTL or NMOS compatibility. The MC3488B input logic threshold is set at $V_{\rm CC}/2$ for use with CMOS logic systems.

- PNP Buffered Inputs to Minimize Input Loading
- Short Circuit Protection
- · Adjustable Slew Rate Limiting
- Option of Either 1.5 V or V_{CC}/2 Input Threshold
- MC3488A Equivalent to 9636A
- Output Levels and Slew Rates are Insensitive to Power Supply Voltages
- No External Blocking Diode Required for VEE Supply
- Second Source μA9636A

DUAL RS-423/RS-232C DRIVERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

MC3488A, MC3488B

ABSOLUTE MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Power Supply Voltages	V _{CC}	+ 15 - 15	٧
Output Current Source Sink	1 ₀₊	+ 150 - 150	mA
Operating Ambient Temperature	TA	0 to +70	°C
Junction Temperature Range Ceramic Package Plastic Package	TJ	175 150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The "Table of Electrical Characteristics" provides conditions for actual device operation.

RECOMMENDED OPERATING CONDITION

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages	V _{CC}	10.8 - 13.2	12 - 12	13.2 10.8	V
Operating Temperature Range	TA	0	25	70	°C
Wave Shaping Resistor	Rws	10		1000	kΩ

TARGET ELECTRICAL CHARACTERISTICS (Unless otherwise noted specifications apply over recommended operating conditions)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Voltage — Low Logic State MC3488A MC3488B	V _{IL}	_ _	_	0.8 V _{CC} /2 - 2.0	V
Input Voltage — High Logic State MC3488A MC3488B	V _{IH}	2.0 V _{CC} /2 + 2.0			V
Input Current — Low Logic State (V _I L = 0.4 V)	ΊL	-80			μΑ
Input Current — High Logic State (VI _H = 2.4 V MC3488A; VI _H = 10V MC3488B) (VI _H = 5.5 V MC3488A; VI _H = V _{CC} MC3488B)	 		_	10 100	μΑ
Input Clamp Diode Voltage (I _{IK} = -15 mA)	VIK	- 1.5	_	_	٧
	V _{OL}	-6.0 -6.0 -6.0	_ _ _	- 5.0 - 5.0 - 4.0	V
$\begin{array}{ll} \text{Output Voltage} \leftarrow \text{High Logic State} \\ (\text{RL} = \infty) & \text{RS-423} \\ (\text{RL} = 3.0 \text{ k}\Omega) & \text{RS-232C} \\ (\text{RL} = 450 \ \Omega) & \text{RS-423} \end{array}$	VOH	5.0 5.0 4.0	_ _ _	6.0 6.0 6.0	V
Output Resistance (R _L \geq 450 Ω)	RO	_	′25	50	Ω
Output Short-Circuit Current (Note 2) (Vin = Vout = 0 V) (Vin = VIH(Min), Vout = 0 V)	OSH OSL	- 150 + 15	_	- 15 + 150	mA
Output Leakage Current (Note 3) $(V_{CC} = V_{EE} = 0 \text{ V}, -6.0 \text{ V} \leq V_0 \leq 6.0 \text{ V})$	lox	- 100	_	100	μΑ
Power Supply Currents $(R_W = 100 \text{ k}\Omega, R_L = \infty, V_{ L} \le V_{ n} \le V_{ H})$	lcc lee	 - 18	_	+ 18	mA

Note 2: One output shorted at a time.

3: No VEE diode required.

TRANSITION TIMES (Unless otherwise noted, $C_L = 30$ pF, f = 1.0 kHz, $V_{CC} = -V_{EE} = 12.0$ V \pm 10%, $T_A = 25^{\circ}$ C, $R_L = 450$ Ω . Transition times measured 10% to 90% and 90% to 10%)

Characteristic	Symbol	Min	Тур	Max	Unit
Transition Time, Low-to-High State Output	tTLH .				μs
$(R_W = 10 \text{ k}\Omega)$		0.8	_	1.4	· ·
$(R_W = 100 \text{ k}\Omega)$		8.0		14	
$(R_W = 50 \text{ k}\Omega)$		40		70	
$(R_W = 1000 \text{ k}\Omega)$		80	_	140	
Transition Time, High-to-Low State Output	tTHL			*.	μs
$(R_W = 10 \text{ k}\Omega)$	'''-	0.8	_	1.4	· I
$(R_W = 100 \text{ k}\Omega)$		8.0	_	14	
$(R_W = 500 \text{ k}\Omega)$		40	_	70	
$(R_W = 1000 \text{ k}\Omega)$		80	_	140	

FIGURE 1 — TEST CIRCUIT & WAVEFORMS FOR TRANSITION TIMES

FIGURE 3 — INPUT/OUTPUT CHARACTERISTICS versus TEMPERATURE

FIGURE 4 — MC3488A/B OUTPUT CURRENT versus OUTPUT VOLTAGE

EIGHT-SEGMENT VISUAL DISPLAY DRIVER

The MC3491 is an eight-segment cathode driver for use with gas-discharge displays, such as the Burroughs' Panaplex®, Beckman, Cherry or Diacon types. The device is directly compatible with MOS logic outputs due to its low 300 μA input current requirement.

All eight driver output currents are simultaneously programmable by selection of a single external resistor. As programmed, all eight currents match to within typically 1% of each other.

The device provides dc restoration. It is specified for a minimum breakdown voltage of 120 V.

- High Breakdown Voltage 120 V Min
- Drives Seven Cathode Segments plus Decimal Point
- All Currents Simultaneously Programmable with One Resistor
- Pin-for-Pin and Functionally Equivalent to DM8889
- Output Current/Programming Current Ratio Typically 4.25:1

SEGMENT DRIVER FOR GAS-DISCHARGE DISPLAYS

SILICON MONOLITHIC INTEGRATED CIRCUIT

L SUFFIX CERAMIC PACKAGE CASE 726-01

ORDERING INFORMATION

DEVICE	TEMPERATURE RANGE	PACKAGE
MC3491L	0 to +70°C	Ceramic
		DIP

MAXIMUM RATINGS (Unless otherwise noted, $T_A = 25^{\circ}C$)

Rating	Symbol	Value	Unit
Output OFF Voltage (Current Limited to 0.5 mA)	VO(off)	150	V
Output ON Voltage (Current Limited to 2.0 mA)	V _{O(on)}	50	V
Input Voltage	VI	20	٧
Programming Current	Iprog	400	μΑ
Junction Temperature	TJ	150	°C
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	- 65 to + 150	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, T_A = 0°C to +70°C, V_{CC} < 120 V, Typ @ 25°C, Pin 10 = Gnd. All voltages with respect to Gnd.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Current $ \begin{array}{c} \text{(V$_{IH}$ = 7.0 V)} \\ \text{(V$_{IH}$ = 3.5 V)} \end{array} $	ΊΗ	200 75	300	500 200	μΑ
Input Clamp Voltage $(I_{ K} = -1.0 \text{ mA})$	VIK			-1.0	٧
Input OFF Voltage (V _{out} = 80 V)	VIL	0.9	1.6	_	٧
Input ON Voltage	VIH	_	1.6	3.5	٧
Output OFF Current (V _{IL} = 0.9 V, V _O = 120 V)	IO(off)		0.05	1.0	μΑ
Output ON Current $(V_{IH}=3.5~V,V_{Out}=20~V)$ $(I_{prog}=100~\mu\text{A})$ $(I_{prog}=350~\mu\text{A})$	IO(on)	350 800 —	425 1490 —	550 1700 —	μΑ
Output Current Matching (All eight outputs)	ΔΙΟ		≤1	≤10	%
Output Voltage Compliance Range (Iprog = 350 μ A, V _{IH} = 3.5 V) (See Figure 3)	V _{OR(on)}	20 —	_	50 —	V

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

FIGURE 4 — TYPICAL INPUT CURRENT AND OUTPUT VOLTAGE versus INPUT VOLTAGE

FIGURE 5 — TYPICAL PROGRAMMING CURRENT versus VOLTAGE ON PROGRAMMING PIN

REPRESENTATIVE CIRCUIT SCHEMATIC

31/2-DIGIT VOLTMETER

This specific application provides a $3\frac{1}{2}$ -digit DVM utilizing the MC1505 dual ramp subsystem and CMOS MC14435 digital subsystem. Interfacing between low voltage logic ICs and the higher voltage gas discharge displays requires level translation or shifting. The method described for the $3\frac{1}{2}$ -digit DVM uses directly coupled high voltage (200 V) transistors to translate upward to the Anode Drivers. Three of the transistors comprising the MPQ7042 high voltage quad transistor are used for this function. These transistors connected in a commonbase, constant-current configuration are turned on by the negative-going digit select output pulses of the MC14435. The current of approximately 330 μ A is compatible with 200 μ A typical input current of anode drivers and the sink current capability of the MC14435.

The CMOS MC14558 BCD-to-Seven Segment Decoder has the capability of directly driving the MC3491 Segment Driver. Cathode blanking is accomplished by taking the clock signal from Pin 4 of the MC14435 (approximately 50% duty cycle) and tying it to the Enable

input of the MC14458. The display segment current is increased accordingly to 1.1 mA (manufacturers maximum specified current equals 1.25 mA) for this relatively large cathode blanking period.

The positive and negative polarity signs are direct driven by the fourth transistor of the MPQ7043 and MPS-A42 transistor, Q2, respectively. Their dc segment currents are scaled to produce the same brightness as the multiplexed digits.

The ½-digit segments are driven by transistor Q1. Its emitter is normally referenced to ground through MC14572 Inverter G2, the output inverter of the Overrange Oscillator.

When an overrange situation occurs, the oscillator is enabled, thus causing the display to flash at the oscillator rate (approximately 8.0 Hz). This is accomplished by blanking the ½ digit through Q1 and the multiplexed digits through diode D1 to the decoder enable input.

See the MC1405 and MC14435 data sheets for more details of DVM system.

± 180 V MPQ7043 + 12 V +V_{CC} Comp Anode 0.01 μF Drivers DS1 MC14435 RC Buffe MC1405 OB A/D A/D Logic Converte 3 Outputs 0.1 C Subsystem Subsystem 33 I + 180 V 00.010203 DS3 -VEE Beckman SP-355 1/2 D or SP-351 and SP-352 47 k 2.2 | 10 k 220 k Polarity 390 k Overrange Detector - 25 V J Ω2 MPS-A42 **1** MC14572 (1/6) (1/6) MPS-A42 G1 1M (7) 390 k 100 D2 VDD Outputs Prog. 1N914 MC3491 Curren Overrange Oscillator MC14558 Inputs N5267 + 12 V Segment Driver BCD To 75 V -Seament 1/2 W P10 Decoder RB1 Substrate ⊥vss

FIGURE 6 — 31/2 DIGIT DIGITAL VOLTMETER

Specifications and Applications Information

M6800 CLOCK GENERATOR

Intended to supply the non-overlapping $\phi 1$ and $\phi 2$ clock signals required by the microprocessor, this clock generator is compatible with 1.0, 1.5, and 2.0 MHz versions of the MC6800. Both the oscillator and high capacitance driver elements are included along with numerous other logic accessory functions for easy system expansion.

Schottky technology is employed for high speed and PNP-buffered inputs are employed for NMOS compatibility. A single +5 V power supply, and a crystal or RC network for frequency determination are required.

Typical MPU System with Bus Extenders

M6800 TWO-PHASE CLOCK GENERATOR/DRIVER

SCHOTTKY MONOLITHIC INTEGRATED CIRCUIT

L SUFFIX CERAMIC PACKAGE CASE 620-02

PIN CONNECTIONS

ORDERING INFORMATION				
Device .	Temperature Range	Package		
MC6875L	0 to +70°C	Ceramic		
MC6875AL	-55 to +125°C	DIP		

ABSOLUTE MAXIMUM RATINGS (Unless otherwise noted $T_A = 25^{\circ}C$.)

Rating	Symbol	Value	Unit
Power Supply Voltage	v _{cc}	+7.0	Vdc
Input Voltage	. V _I	+5.5	Vdc
Operating Ambient Temperature Range MC6875L MC6875AL	TA	0 to +70 -55 to +125	°c
Storage Temperature Range	T _{stg}	-65 to +150	°c
Operating Junction Temperature	ТЈ	175	°c

NOTE:

Operation of the MC6875AL over the full military temperature range (to maximum T_A) will result in excessive operating junction temperature.

The use of a clip on 16 pin heat sink similar to AAVID Engineering, Inc., Model 5007 (R $_{\theta}$ CA = 18°C/W) is recommended above TA \approx 95°C.

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+4.75 to +5.25	Vdc
Operating Ambient Temperature Range	TA	0 to +70	°C

Contact AAVID Engineering, Inc. 30 Cook Court Laconia, New Hampshire 03246

Laconia, New Hampshire Tel. (603) 524-4443

ELECTRICAL CHARACTERISTICS

(Unless otherwise noted specifications apply over recommended power supply and temperature ranges. Typical values measured at V_{CC} = 5.0 V and T_A = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage — High Logic State					
MPU ϕ 1 and ϕ 2 Outputs					V
$(V_{CC} = 4.75 \text{ V}, I_{OHM} = -200 \mu\text{A})$	VOHM	V _{CC} - 0.6	_	- i	
$(V_{CC} = 5.25 \text{ V}, I_{OHMK} = +5.0 \text{ mA})$	Vонмк	_	_	V _{CC} + 1.0	
Bus ϕ 2 Output					V
$(V_{CC} = 4.75 \text{ V}, I_{OHB} = -10 \text{ mA})$	Voнв	2.4	_	-	
$(V_{CC} = 5.25 \text{ V}, I_{OHBK} = +5.0 \text{ mA})$	Vонвк	-	_	V _{CC} + 1.0	
4 x fo Output					V
$(V_{CC} = 4.75 \text{ V}, V_{IH} = 2.0 \text{ V}, I_{OH4X} = -500 \mu\text{A})$	V _{OH4X}	2.4		_	
2 x fo, DMA/Refresh Grant and Memory Clock Outputs	Voн	2.4	_	_	V
(V _{CC} = 4.75 V, I _{OH} = ~500 μA)					
Reset Output	VoHR	2.4	_	_	V
$(V_{CC} = 4.75 \text{ V}, V_{IH} = 3.3 \text{ V}, I_{OHR} = -100 \mu\text{A})$				l i	
Output Voltage — Low Logic State					
MPU φ1 and φ2 Outputs					V
$(V_{CC} = 4.75 \text{ V}, I_{OLM} = +200 \mu\text{A})$	VOLM	_		0.4	
(V _{CC} = 4.75 V, I _{OLMK} = -5.0 mA)	VOLMK		_	-1.0	
Bus ϕ 2 Output	- OLIVIK	 		+ +	V
(V _{CC} = 4.75 V, I _{OLB} = +48 mA)	VOLB		_	0.5	
(V _{CC} = 4.75 V, I _{OLBK} = -5.0 mA)	VOLBK	_		-1.0	
4 x fo Output	- OLBK	1		+	V
$(V_{CC} = 4.75 \text{ V}, V_{IL} = 0.8 \text{ V}, I_{OI 4X} = 16 \text{ mA})$	V _{OL4X}	_	_	0.5	•
2 x fo, DMA/Refresh Grant and Memory Clock Outputs	VOL			0.5	V
(V _{CC} = 4.75 V, I _{CL} = 16 mA)	1 *0			0.5	•
Reset Output	VOLR	 _ 		0.5	V
$(V_{CC} = 4.75 \text{ V}, V_{IL} = 0.8 \text{ V}, I_{OLR} = 3.2 \text{ mA})$	VOLK			0.5	•
Input Voltage — High Logic State		 			
Ext. In, Memory Ready and DMA/Refresh Request Inputs	V	2.0		1	V
Ext. III, Melliory Ready and DIMA/Refresh Request Inputs	V _{IH}	2.0			
Input Voltage — Low Logic State				1	V
Ext. In, Memory Ready and DMA/Refresh Request Inputs	VIL	-	_	0.8	
Inch Theodolds Barrello Co. Co.		 		+	
Input Thresholds – Power-On Reset Input (See Figure 2)	1				V
Output Low to High	VILH	-	2.8	3.6	
Output High to Low	VIHL	0.8	1.4		
Input Clamp Voltage MC6875L	VIK	-	_	-1.0	V
(V _{CC} = 4.75 V, I _{IC} = -5.0 mA) MC6875AL	"`	_		-1.5	
Input Current — High Logic State		 		+	
Ext. In, Memory Ready and DMA/Refresh Request Inputs	1111	}	_	25	μΑ
$(V_{CC} = 4.75 \text{ V}, V_{IH} = 5.0 \text{ V})$	'IH	-	_	25	μ/\
Power-On Reset	1	_	_	50	μА
	IHR	_	_	50	μ.Α.
(V _{CC} = 5.0 V, V _{IHR} = 5.0 V)				+	
Input Current - Low Logic State	1 .				
Ext. In, Memory Ready and DMA/Refresh Request Inputs	l lit	-	_	-250	μΑ
$(V_{CC} = 5.25 \text{ V}, V_{IL} = 0.5 \text{ V})$	- 1			1	
Power-On Reset Input	ILR	-	-	-250	μΑ
$(V_{CC} = 5.25 \text{ V}, V_{IL} = 0.5 \text{ V})$	1			1	

OPERATING DYNAMIC POWER SUPPLY CURRENT

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Currents					
(V _{CC} = 5.25 V, f _{osc} = 8.0 MHz, V _{IL} = 0 V, V _{IH} = 3.0 V)					1
Normal Operation	ICCN	_	_	150	mA
(Memory Ready and DMA/Refresh Request Inputs at				1	
High Logic State)					
Memory Ready Stretch Operation	ICCMR	_	_	135	mA
(Memory Ready Input at Low Logic State;]		
DMA/Refresh Request Input at High Logic State)					
DMA/Refresh Request Stretch Operation	ICCDR	_	_	135	mA
(Memory Ready Input at High Logic State;	555				
DMA/Refresh Request Input at Low Logic State)					

SWITCHING CHARACTERISTICS

(These specifications apply whether the Internal Oscillator (see Figure 9) or an External Oscillator is used (see Figure 10). Typical values measured at $V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$, fo = 1.0 MHz (see Figure 8).

Characteristic	Symbol	Min	Тур	Max	Unit
MPU φ1-AND φ2 CHARACTERISTICS					
Output Period (Figure 3)	to	500	_	-	ns
Pulse Width (Figure 3)	tPWM				ns
(fo = 1.0 MHz)		400		_	
(fo = 1.5 MHz)		230	_	_	
(fo = 2.0 MHz)		180	-		
Total Up Time (Figure 3)	tupm				ns
(fo = 1.0 MHz)		900	-	-	
(fo = 1.5 MHz)	1	600	-	_	
(fo = 2.0 MHz)		440	-	_	
Delay Time Referenced to Output Complement (Figure 3)					
Output High to Low State (Clock Overlap at 1.0 V)	tPLHM	0	_	_	ns
Delay Times Referenced to 2 x fo (Figure 4 MPU φ2 only)					
Output Low to High Logic State	tPLHM2X	_	_	85	ns
Output High to Low Logic State	tPHLM2X		_	. 70	ns
Transition Times (Figure 3)					
Output Low to High Logic State	tTLHM		_	25	ns
Output High to Low Logic State	†THLM	-	_	25	ns
BUS ¢2 CHARACTERISTICS	1				L
Pulse Width — Low Logic State (Figure 4)	tPWLB			I	ns
(fo = 1.0 MHz)	1 1 1	430		_	
(fo = 1.5 MHz)		280	_	-	
(fo = 2.0 MHz)		210	_	-	
Pulse Width — High Logic State	tpwhB				ns
(fo = 1.0 MHz)	'	450	_	_	
(fo = 1.5 MHz)		295	_	_	
(fo = 2.0 MHz)		235	_	-	
Delay Times – (Referenced to MPU φ1) (Figure 4)					
Output Low to High Logic State	tPLHBM1				ns
(fo = 1.0 MHz)	- CIIDWI	480	_		
(fo = 1.5 MHz)		320	_	_	
(fo = 2.0 MHz)		240	-	_	
Output High to Low Logic State	^t PHLBM1				
$(C_L = 300 pF)$	111251111	_	_	25	
$(C_{L} = 100 \text{ pF})$		-	_	20	l l
Delay Times (Referenced to MPU φ2) (Figure 4)				1	
Output Low to High Logic State	tPLHBM2	-30	-	+25	ns
Output High to Low Logic State	tPHLBM2	0	_	+40	ns
Transition Times (Figure 4)			 		†
Output Low to High Logic State	tTLHB	_	-	20	ns
Output High to Low Logic State	tTHLB	_	_	20	ns

SWITCHING CHARACTERISTICS (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
MEMORY CLOCK CHARACTERISTICS			1		
Delay Times (Referenced to MPU φ2) (Figure 4)			I .		Γ
Output Low to High Logic State	†PLHCM	-50	_	+25	ns
Output High to Low Logic State	tPHLCM	0	_	+40	ns
Delay Times (Referenced to 2 x fo) (Figure 4)	111120111				
Output Low to High Logic State	tPLHC2X		_	65	ns
Output High to Low Logic State	tPHLC2X	_	_	85	ns
Transition Times (Figure 4)	1112027				
Output Low to High State	tTLHC	_	_	25	ns
Output High to Low State	tTHLC	_	-	25	ns
2 x fo CHARACTERISTICS	1 11.20			1	
Delay Times (Referenced to 4 x fo) (Figure 4)			Γ	Γ	T
Output Low to High Logic State	tPLH2X			50	ns
Output High to Low Logic State	tPHL2X	_	_	65	ns
	·rnL2X				
Delay Time (Referenced to MPU \(\phi 1 \)) (Figure 4)					ns
Output High to Low Logic State (fo = 1.0 MHz)	tPHL2XM1	365	_	_	115
(fo = 1.5 MHz)		220	_		
Transition Times (Figure 4)				 	
Output Low to High Logic State	triugy			25	ns
Output Low to High Logic State Output High to Low Logic State	tTLH2X tTHL2X	_	_	25	ns
	THLZX		1		
4 x fo CHARACTERISTICS	T		1	I	T
Delay Times (Referenced to Ext. In) (Figure 4) Output Low to High Logic State		_	_	50	ns
Output High to Low Logic State	tPLH4X	_	_	30	ns
The state of the s	†PHL4X		 		
Transition Time (Figure 4) Output Low to High Logic State	1	_	_	25	l ns
Output High to Low Logic State	tTLH4X		_	25	ns
	tTHL4X		٠	1	L
MEMORY READY CHARACTERISTICS				1	1
Set-Up Times (Figure 5)		55			
Low Input Logic State	^t SMRL	75	_	_	ns ns
High Input Logic State	t SMRH	75	 		113
Hold Time (Figure 5)		10			ns
Low Input Logic State	tHMRL	10			115
DMA/REFRESH REQUEST CHARACTERISTICS			T	т	Υ
Set-Up Times (Figure 6)		0-		1	_
Low Input Logic State	tsdrl	65	_	_	ns
High Input Logic State	tsdrh	75	_		ns
Hold Time (Figure 6)		10			ns
Low Input Logic State	tHDRL	10		1	115
DMA/REFRESH GRANT CHARACTERISTICS					
Delay Time Referenced to Memory Clock (Figure 6)					
Output Low to High Logic State	t PLHG	-15	-	+25	ns
Output High to Low Logic State	^t PHLG	-25		+15	ns
Transition Times (Figure 6)					
Output Low to High Logic State	^t TLHG	-	-	25	ns
Output High to Low Logic State	tTHLG			25	ns
RESET CHARACTERISTICS					
Delay Time Referenced to Power-On Reset (Figure 7)					
Output Low to High Logic State	tPLHR	_	-	1000	ns
Output High to Low Logic State	tPHLR		_	250	ns
Transition Times (Figure 7)					
Output Low to High Logic State	tTLHR		-	100	ns
Output High to Low Logic State	tTHLR		-	50	ns

DESCRIPTION OF PIN FUNCTIONS

- 4 x to
 5 A free running oscillator at four times the MPU clock rate useful for a system sync signal.

 5 x to
 5 A free running oscillator at two times the MPU clock rate.

 6 DMA/REF ROW Common country used to freeze the MPU clocks in the \$0.1 high, \$0.2 low state for some strength of the common country used to freeze the MPU clocks in the \$0.1 high, \$0.2 low state for some strength or cycle steel DMA (Direct Memory Access).

 6 REF GRANT

 6 MEMORY READY

 7 A synchronous output used to freeze the MPU clocks in the \$0.1 low, \$0.2 high state for slow memory refresh or cycle steel DMA (Direct Memory Access).

 8 MEMORY READY

 8 A synchronous output used to freeze the MPU clocks in the \$0.1 low, \$0.2 high state for slow memory refresh or cycle steel DMA (Direct Memory Access).

 8 MPU \$0.1 low for the MPU and \$0.2 low for the MPU some steel for slow memory refresh or cycle steel DMA (Direct Memory Access).

 8 MPU \$0.2 low for the MPU and \$0.2 low for the MPU some steel for slow for the MPU and \$0.2 low for the MPU and external TTL signal to synchronize the MPU to an external system.

 8 MPU \$0.2 low for the MPU and the MPU some steel the MPU some steel the MPU to an external system.

 9 NAMER FOR ALL TO A synchronous input used to freeze the MPU clocks in the \$0.1 low, \$0.2 low for the MPU and \$0.2 low for the MPU and \$0.2 low for the MPU and an external System.

 9 NAMER FOR ALL TO A synchronize the MPU to an external System.

FIGURE 1 - BLOCK DIAGRAM

FIGURE 4 — TIMING DIAGRAM FOR NON-STRETCHED OPERATION (Memory Ready and DMA/Refresh Request held high continuously) Ext. In Input Voltage: 0 V to 3.0 V, f = 8.0 MHz, Duty Cycle = 50%, t_{TLHEX} = t_{THLEX} = 5.0 ns

FIGURE 5 – TIMING DIAGRAM FOR MEMORY READY STRETCH OPERATION
(Minimum Stretch Shown)
Input Voltage: 3.0 to 0 V, t_{THLMR} = t_{TLHMR} = 5.0 ns

FIGURE 6 — TIMING DIAGRAM FOR $\overline{\text{DMA/REFRESH REQUEST}}$ STRETCH OPERATION (Minimum Stretch Shown)

FIGURE 7 - POWER ON RESET

Input Voltage: 0 to 5.0 V, f = 100 kHz - Pulse Width = 1.0 \(\mu_s\), t_LH = t_HL = 25 ns

FIGURE 8 - LOAD CIRCUITS

NOTE:

Operation of the MC6875AL over the full military temperature range (to maximum T_A) will result in excessive operating junction temperature.

The use of a clip on 16 pin heat sink similar to AAVID Engineering, Inc., Model 5007 (R $_{\theta CA}$ = 18°C/W) is recommended above T_A \approx 95°C.

Contact AAVID Engineering, Inc. 30 Cook Court Laconia, New Hampshire 03246 Tel. (603) 524-4443

APPLICATIONS INFORMATION

FIGURE 10 – TYPICAL RC FREQUENCY versus TEMPERATURE

FIGURE 11 – TYPICAL FREQUENCY versus RESISTANCE FOR C VARIABLE

GENERAL

The MC6875 Clock Generator/Driver should be located on the same board and within two inches of the MC6800 MPU. Series damping resistors of 10-30 ohms may be utilized between the MC6875 and the MC6800 on the ϕ 1 and ϕ 2 clocks to suppress overshoot and reflections.

The VCC pin (pin 16) of the MC6875 should be bypassed to the ground pin (pin 8) at the package with a 0.1 µF capacitor. Because of the high peak currents associated with driving highly capacitive loads, an adequately large ground strip to pin 8 should be used on the MC6875. Grounds should be carefully routed to minimize coupling of noise to the sensitive oscillator inputs. Unnecessary grounds or ground planes should be avoided near pin 2 or the frequency determining components. These components should be located as near as possible to the respective pins of the MC6875. Stray capacitance near pin 2 or the crystal, can affect the frequency. The can of the crystal should not be grounded. The ground side of the crystal or the C of the R-C oscillator should be connected as directly as possible to pin 8.

Unused inputs should be connected to VCC or ground.

Memory Ready, DMA/Refresh Request and Power-On Reset should be connected to VCC when not used.

The External Input should be connected to ground when not used.

OSCILLATOR

A tank circuit tuned to the desired crystal frequency connected between terminals X_1 and X_2 as shown in Figure 12, is recommended to prevent the oscillator from starting at other than the desired frequency. The $1k\Omega$ resistor reduces the Ω sufficiently to maintain stable crystal control. Crystal manufacturers may recommend a capacitance (CL) to be used in series with the crystal for optimum performance at series resonance.

See Figures 9 and 10 for typical oscillator temperature and $V_{\hbox{\scriptsize CC}}$ supply dependence for R-C operation.

FIGURE 12 - OSCILLATOR-CRYSTAL OPERATION

	TANK CIRCUIT PARAMETERS			XIMATE ARAMETI	RS	CTS KNIGHTS 400 REIMANN AVE. SANDWICH, IL 60548	McCOY ELECT. CO. WATTS & CHESTNUTS STS. MT. HOLLY SPRING, PA 17065	TYCO CRYSTAL PRODUCTS 3940 W. MONTECITO PHOENIX, AZ 85019
LΤ μΗ	C _T pF	R _S Ohms	Co pF	C ₁ mpF	fo MHz	(815) 786-8411	(717) 486-3411	(602) 272-7945
10	150	15-75	3-6	12	4.0	MP-04A * 390 pF	113-31	150-3260
4.7	82	8-45	4-7	23	8.0	MP-080 * 47 pF	113-32	150-3270

Inductors may be obtained from: Coilcraft, Cary, IL 60013 (312) 639-2361

To precisely time a crystal to desired frequency, a variable trimmer capacitor in the range of 7 to 40 pF would typically be used. Note it is not a recommended practice to tune the crystal with a parallel load capacitance

The table above shows typical values for C_T and L_T , typical crystal characteristics, and manufacturers' part numbers for 4.0 and 8.0 megahertz operation.

The MC6875 will function as an R-C oscillator when connected as shown in Figure 13. The desired output frequency (M ϕ 1) is approximately:

Formula
$$320$$
 4 x fo $\approx \frac{320}{\text{C (R+ .27)} + 23}$

C in picofarads R in K ohms

(See Figure 11)

R in K ohms
4 x fo in Megahertz

It would be desirable to select a capacitor greater than 15 pF to minimize the effects of stray capacitance. It is also desirable to keep the resistor in the 1 to 5 k Ω range. There is a nominal 270 Ω resistor internally at X₁ which is in series with the external R. By keeping the external R as large as possible, the effects due to process variations of the internal resistor on the frequency will be reduced. There will, however, still be some variation in frequency in a production lot both from the resistance variations, external and internal, and process variations of the input switching thresholds. Therefore, in a production system, it is recommended a potentiometer be placed in series with a fixed R between X₁ and X₂.

POWER-ON RESET

As the power to the MC6875 comes up, the Reset Output will be in a high impedance state and will not give

a solid VOL output level until VCC has reached 3.5 to 4.0 V. During this time transients may appear on the clock outputs as the oscillator begins to start. This happens at approximately VCC = 3 V. At some VCC level above that, where Reset Output goes low, all the clock outputs will begin functioning normally. This phenomenon of the start-up sequence should not cause any problems except possibly in systems with battery back-up memory. The transients on the clock lines during the time the Reset Output is high impedance could initiate the system in some unknown mode and possibly write into the backup memory system. Therefore in battery backup systems, more elaborate reset circuitry will be required.

Please note that the Power-On Reset input pin of the MC6875 is not suitable for use with a manual MPU reset switch if the DMA/Ref Req or Memory Ready inputs are going to be used. The power on reset circuitry is used to initialize the internal control logic and whenever the input is switched low, the MC6875 is irresponsive to the DMA/Ref Req or Memory Ready inputs. This may result in the loss of dynamic memory and/or possibly a byte of slow static memory. The circuit of Figure 14 is recommended for applications which do not utilize the DMA/Ref Req or Memory Ready inputs. The circuit of Figure 15 is recommended for those applications that do.

FIGURE 14 – MANUAL RESET FOR APPLICATIONS NOT USING DMA/REFRESH REQUEST OR MEMORY READY INPUTS

FIGURE 15 — MANUAL RESET FOR SYSTEMS USING DYNAMIC RAM OR SLOW STATIC RAM IN CONJUNCTION WITH MEMORY READY OR DMA/REFRESH REQUEST INPUTS

MC6890

Advance Information

MPU-BUS-COMPATIBLE 8-BIT D-TO-A CONVERTER

The MC6890 is a self-contained, bus-compatible, 8 bit ($\pm 0.19\%$ accuracy) D-to-A converter system capable of interfacing directly with 8-bit microprocessors.

Available in both commercial and military temperature ranges, this monolithic converter contains master/slave registers to prevent transparency to data transitions during active enable; a laser-trimmed, low-TC, 2.5 V precision bandgap reference; and high stability, laser-trimmed, thin-film resistors for both reference input and output span and bipolar offset control.

A reset pin provides for overriding stored data and forcing $\ensuremath{\text{I}}_{\ensuremath{\text{OU}} t}$ to zero.

- Direct Data Bus Link with All Popular TTL Level MPU's
- ±1/2 LSB Nonlinearity Over Temperature
- Fast Settling Time: 200 ns Typ
- Internal 2.5-V Precision Laser-Trimmed Voltage Reference (May Also Be Used Externally)
- Minimum Enable Pulse Width: 70 ns
- Fast Enable: 10 ns Maximum Data Hold Time
- Reset Pin to Override Data
- Output Voltage Ranges: +5, +10, +20, or ±2.5, ±5, ±10 Volts
- Low Power: 90 mW Typ
- +5 V and −5 V to −15 V Supplies

8-BIT MPU-BUS-COMPATIBLE DAC

SILICON MONOLITHIC INTEGRATED CIRCUIT

L SUFFIX CASE 732-03

This document contains information on a new product. Specifications and information herein are subject to change without notice.

PIN CONNECTIONS (LSB) DO 1 20 V_{CC} 19 REFOUT D1 2 D2 3 18 REFIN D3 4 17 Analog Gnd D4 5 16 20 V Span D5 6 15 10 V Span D6 7 14 lout (MSB) D7 13 Bipolar Offset 12 Enable Reset 9 Digital Gnd 10 11 VEE

ORDERING INFORMATION

Device	Temperature Range	Package
MC6890L	0° to +70°C	Ceramic DIP
MC6890AL	-55° to +125°C	Ceramic DIP

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} V _{EE}	+7.0 -18	Vdc
Digital Input Voltage, Pins 1-8, 12 Pin 9	V _{in}	-3.0 to +7.0 0 to +7.0	Vdc
Applied Output Voltage	V ₁₄	V _{EE} +2.0 to V _{EE} +24	Vdc
Reference Amplifier Input	V ₁₈	±7.5	Vdc
Operating Temperature Range MC6890L, MC6890AL	TA	0 to +70 -55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Temperature	TJ	+150	°C

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0 \text{ V}$, $V_{EE} = -12 \text{ V}$, Pin 18 loaded only by Pin 19 through 100 Ω . Reset high, $T_A = T_{low}$ to T_{high} ⁽¹⁾, unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Digital Input Logic Levels					Vdc
High Level, Logic 1	Уін	2.0		_	
Low Level, Logic 0	V _{IL}			0.8	
Digital Input Current			0.004	4.0	
Data (V _{IH} = 3.0 V)	liH		0.001 0.5	1.0 -10	μA
(V _{IL} = 0.4 V)	JIL III	_	0.001	1.0	μΑ μΑ
Enable (V _{IH} = 3.0 V) (V _{IL} = 0.4 V)	կн կլ	_	-6.5	-100	μA
Reset (VIH = VCC)	116		0.001	1.0	μA
(V _{IL} = 0.4 V)	ijĽ		-1.0	-15	μA
Full Scale Output Current — Unipolar	lo	-1.50	-1.992	-2.50	mA
Unipolar Zero Output — All Bits Off (T _A = 25°C)	-	_	0.010	0.20	μА
Output Voltage Temperature Coefficient	TCVO				ppm of FSR/°C
Unipolar Zero			±1.0	±2.0	
Bipolar Zero		_	±5.0	±15	
Full Scale Range			±20	±50	
Output Voltage, Full Scale Range (See Figure 3) (T _A = 25°C)	Vo				Vdc
(10 V Span)		9.861	9.961	10.061	
(20 V Span)		19.722	19.922	20.122	
(5.0 V Span)		4.930	4.980	5.030	
Output Voltage, Bipolar Zero (MSB on) (See Figure 4) (T _A = 25°C)	Vo		١ ,	±20	mV
(10 V Span) (20 V Span)		_	0	±20 ±40	
(5.0 V Span)		_	0	±10	
	RO	1.0	5.0		MΩ
DAC Output Resistance — Exclusive of Span Resistors (T _A = 25°C) (See Figure 5)	1 70	1.0	5.0	_	14177
Resolution	_	8.0	8.0	8.0	Bits
Nonlinearity — Relative Accuracy	NL		_	±0.19	%
(See Terminology)				(±1/2 LSB)	
Differential Nonlinearity		Mono	tonicity Gua	ranteed	
Differential Nonlinearity (T _A = 25°C)		_		±0.29	%
(See Terminology)				(±3/4 LSB)	
Reference Input Resistor	RREF	3800	4900	6800	Ω
Reference Output Voltage (TA = 25°C)	VREF	2.470	2.500	2.530	Vdc
Reference Output Impedance (T _A = 25°C) I _{load} = 0-3.0 mA	_	_	0.3	1.0	Ω
Reference Short Circuit Current (T _A = 25°C)	IREF	15	30	50	mA
Reference Output Voltage Temperature Coefficient	TCVO(REF)		±20	-	ppm/°C
Power Supply Range	Vcc	4.5	5.0	5.5	Vdc
,,,,	VEE	-16.5	-12	-4.5	
Power Supply Current — All Bits Low					mA
(V _{CC} = 5.0 V)	Icc	-	10	20	
$(V_{EE} = -5.0 \text{ V})$	EE	_	-10	-15	
(V _{EE} = -15 V)	IEE	_	-10	-15	
Power Supply Rejection (T _A = 25°C)	PSR	l	0010		LSB
To V_{CC} ($V_{CC} = 4.5 \text{ to } 5.5 \text{ V}$)	1	_	0.010	±1/10	l
To V _{EE} (V _{EE} = -4.5 V to -16.5 V)			0.10	±1/2	
Power Dissipation — All Bits Low	PD		1		mW
For V _{CC} = 4.5 V, V _{EE} = -4.5 V			90	158	1
For V _{CC} = 5.5 V, V _{EE} = -16.5 V			220	358	L

NOTE 1: T_{low} = -55°C for MC6890A, 0° for MC6890 T_{high} = +125°C for MC6890A, +70°C for MC6890

AC SPECIFICATIONS (V_{CC} = 5.0 V, V_{EE} = -12 V, T_A = 25°C unless otherwise noted.)

Characteristic	T 6	T 80:	-	I	
	Symbol	Min	Тур	Max	Unit
Current Settling Time (Enable Positive Edge to ±1/2 LSB Output)	ts	_	200	300*	ns
Data Setup Time	t _{su(D)}	70	40	_	ns
Data Hold Time	th(D)	10	0	_	ns
Pulse Widths Enable Reset	tW(Ē) tW(Ē)	70 100*	20 —	_	ns
Propagation Delays Enable, Low to High Reset, High to Low (IO < 1.0 µA)	tPLH(Ē) tPHL(R)	_	100 250	<u>-</u>	ns

*Not 100% tested , guaranteed by design

lout

Reset

FIGURE 1 — TIMING DIAGRAM Data 1.4 V $t_{h(D)}$ Enable $t_{W(\overline{E})}$ To $t_{h(D)}$ $t_{h(D)}$ $t_{h(D)}$ $t_{h(D)}$ $t_{h(D)}$ $t_{h(D)}$ $t_{h(D)}$ $t_{h(D)}$ $t_{h(D)}$ $t_{h(D)}$ $t_{h(D)}$ $t_{h(D)}$

FIGURE 2 — BLOCK DIAGRAM

tw(R)

TEST FIGURES

UNIPOLAR CONFIGURATIONS **BIPOLAR CONFIGURATIONS** FIGURE 4A FIGURE 3A R2 50 Ω 13 15 19 19 15 R1 R1 100 Ω ≶ MC6890 MC6890 100 Ω } V_O = 9.961 V V_O = 0 V 18 ±5.0 V Configuration +10 V Configuration Latched Input Code: 10000000 Latched Input Code: 11111111 FIGURE 3B FIGURE 4B R2 50 Ω 19 16 19 16 R1 R1 100 û } MC6890 100 Ω ≶ MC6890 V_O = 19.922 V v₀ = 0 v +20 V Configuration ±10 V Configuration Latched Input Code: 10000000 Latched Input Code: 11111111 FIGURE 3C FIGURE 4C

FIGURE 5 TEST CONFIGURATION FOR DAC OUTPUT IMPEDANCE

TERMINOLOGY

Nonlinearity (Relative Accuracy) — Maximum output deviation from ideal straight line connecting zero and full-scale readings, expressed as a fraction of LSB or percent of full scale.

Differential Nonlinearity — Maximum deviation in the readings of any two adjacent input bit codes from the ideal LSB step, expressed in fractions of LSB or percentage of full scale. A differential nonlinearity value greater than 1 LSB may lead to non-monotonic operation.

Monotonicity — For every increase in the input digital word, the output current either remains the same or increases. The MC6890 is guaranteed to be monotonic over temperature.

Settling Time — The elapsed time from the Enable positive transition until the output has settled within an error band about its final value.

The worst case switching condition occurs when all bits are latched "on," which corresponds to a low-to-high transition for all bits. This time is typically 200 ns for the current output to settle to within $\pm 1/2$ LSB for 8 bit accuracy. These times apply when the output swing is limited to a small (<0.5 V) swing and the external output capacitance is under 10 pF.

Gain Error — The difference between the actual full scale range and the ideal full scale range. Based on a 0 to 10 V output configuration, the ideal FSR is $\frac{255}{256} \times 10 \text{ V} = 9.961 \text{ V}$

Gain error is laser trimmed to less than $\pm 1.0\%$ with R1 = $100\,\Omega$ (Figure 3) and can be user trimmed to zero error with R1 = $200\,\Omega$ pot.

Bipolar Zero — Using the configuration shown in Figure 6 with R1 = $100\,\Omega$, R2 = $50\,\Omega$, with the MSB on and all other bits off, the output voltage reading compared to analog ground is expressed as a percentage of the full-scale range. Offset voltage of the output op amp must be nulled. Bipolar Zero error is laser trimmed to less than 0.20% and can be user trimmed to zero with R2 = $100\,\Omega$ pot.

Temperature Coefficients — (Unipolar zero, Bipolar zero, Gain and Reference Output). The maximum deviation of the particular parameter over the specified temperature range, divided by the temperature range, expressed in parts per million of Full Scale Range per degree C.

Power Supply Rejection — The change in full scale current caused by the specified change in V_{EE} or V_{CC} is expressed in LSB's.

Reset Function — The MC6890 has a Reset pin (9) that will force the DAC's registers, and therefore the DAC output current, to zero. This input is active low and should not occur simultaneously with an active Enable signal although no harm would result to the converter. The power dissipation increases slightly during Reset low. Reset should not be allowed to become more negative than ground.

FIGURE 6 - MC6890 IN TYPICAL BIPOLAR ±2.5 V OPERATION

1	D7	D6	25	D4	D3	D2	D1 D0	V _O (V	olts)	
-	D7	100	D5	U4	03	02	יט	DU	$R2 \cong 60 \Omega$	$R2 \cong 50 \Omega$
- 1	1	1	1	1	1	1	1	1	+ 2.490	+ 2.480
	1	1	1	1	1	1	1	0	+ 2.470	+ 2.460
1	1	0	0	0	0	0	0	0	+ 0.010	+ 0.000
	0	1	1	1	1	1	1	1	- 0.010	- 0.020
	0	0	0	0	0	0	0	1	- 2.470	- 2.480
	0	0	0	0	0	0	0	0	- 2.490	- 2.500

TYPICAL PERFORMANCE CURVES

FIGURE 7 — REFERENCE VOLTAGE versus EXTERNAL LOAD CURRENT*

*External load current is in addition to Reference Input Current (Pin 18) of D/A converter.

FIGURE 8 — DIGITAL INPUT CHARACTERISTICS

FIGURE 9 - TYPICAL APPLICATION OF THE MC6890 IN A MC6800 SERIES MPU SYSTEM

MC75107 MC75108

DUAL LINE RECEIVERS

The MC75107 and MC75108 are MTTL compatible dual line receivers featuring independent channels with common voltage supply and ground terminals. The MC75107 circuit features an active pull-up (totem-pole) output. The MC75108 circuit features an open-collector output configuration that permits the Wired-OR logic connection with similar outputs (such as the MC5401/MC7401 MTTL gate or additional MC75108 receivers). Thus a level of logic is implemented without extra delay.

The MC75107 and MC75108 circuits are designed to detect input signals of greater than 25 millivolts amplitude and convert the polarity of the signal into appropriate MTTL compatible output logic levels.

- · High Common-Mode Rejection Ratio
- High Input Impedance
- High Input Sensitivity
- Differential Input Common-Mode Voltage Range of ±3.0 V
- Differential Input Common-Mode Voltage of More Than ± 15 V Using External Attenuator
- · Strobe Inputs for Receiver Selection
- Gate Inputs for Logic Versatility
- MTTL or MDTL Drive Capability
- High DC Noise Margins
- MC55107 Available as JM38510/10401

DUAL LINE RECEIVERS

SILICON MONOLITHIC INTEGRATED CIRCUITS

CERAMIC PACKAGE CASE 632-02 MO-001AA

PLASTIC PACKAGE CASE 646-05

TRUTH TABLE								
DIFFERENTIAL INPUTS	STR	OBES	ОИТРИТ					
A-B	G	S	Y					
V _{ID} ≥ 25 mV	L or H	L or H	н					
	L or H	L	н					
-25 mV < V _{ID} < 25 mV	L	L or H	н					
	н	н	INDETERMINATE					
	L or H	L	н					
V _{ID} ≤ -25 mV	L	L or H	н					
	н	Н	L					

MC75107, MC75108

MAXIMUM RATINGS (T_A = 0°C to +70°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltages	V _{CC} VEE	+7.0 -7.0	Vdc
Differential-Mode Input Signal Voltage Range	V _{ID}	<u>+</u> 6.0	Vdc
Common-Mode Input Voltage Range	VICR	<u>+</u> 5.0	Vdc
Strobe Input Voltage	V _{I(S)}	5.5	Vdc
Power Dissipation (Package Limitation)	PD		
Plastic and Ceramic Dual-In-Line Packages Derate above $T_A = +25^{\circ}C$		625 3.85	mW mW/ ^O C
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages	Vcc	+4.75	+5.0	+5.25	Vdc
	VEE	-4.75	-5.0	-5.25	ł
Output Sink Current	los	_	_	- 16	mA
Differential-Mode Input Voltage Range	VIDR	- 5.0	_	+5.0	Vdc
Common-Mode Input Voltage Range	Vice	-3.0	-	+3.0	Vdc
Input Voltage Range, any differential input to ground	VIR	-5.0	_	+3.0	Vdc
Operating Temperature Range	TA	0	-	+70	°C

DEFINITIONS OF INPUT LOGIC LEVELS

Characteristic	Symbol	Test Fig.	Miņ	Max	Unit
High-Level Input Voltage (between differential inputs)	VIDH	1	0.025	5.0	Vdc
Low-Level Input Voltage (between differential inputs)	VIDL	1	-5.0†	-0.025	Vdc
High-Level Input Voltage (at strobe inputs)	V _{IH(S)}	3	2.0	5.5	Vdc
Low-Level Input Voltage (at strobe inputs)	V _{IL(S)}	3	0	0.8	Vdc

 $[\]dagger$ The algebraic convention, where the most positive limit is designated maximum, is used with Low-Level Input Voltage Level (V_{IDL})

ELECTRICAL CHARACTERISTICS ($T_A = 0^{\circ}C$ to +70°C unless otherwise noted)

Characteristic	Symbol	Test Fig.	Min	Тур#	Max	Unit
High-Level Input Current to 1A or 2A Input (VCC = Max, VEE = Max, VID = 0.5 V, VIC = -3.0 V to +3.0 V) \ddagger	ЧН	2	-	30	75	μА
Low-Level Input Current to 1A or 2A Input (VCC = Max, VEE = Max, VID = -2.0 V, VIC = -3.0 V to +3.0 V) \ddagger	I _I ι	2	-	-	- 10	μА
High-Level Input Current to 1G or 2G Input (V_{CC} = Max, V_{EE} = Max, $V_{IH(S)}$ = 2.4 V)‡ (V_{CC} = Max, V_{EE} = Max, $V_{IH(S)}$ = V_{CC} Max)‡	ПН	4 .	_	-	40 1.0	μA mA
Low-Level Input Current to 1G or 2G Input (V_{CC} = Max, V_{EE} = Max, $V_{IL}(S)$ = 0.4 V)‡	†IL	4	_	_	- 1.6	mA
$\label{eq:high-level Input Current to S Input} $$ (V_{CC} = Max, V_{EE} = Max, V_{IH(S)} = 2.4 \text{ V})$; $$ (V_{CC} = Max, V_{EE} = Max, V_{IH(S)} = V_{CC} Max)$; $$ $$ (V_{CC} = Max, V_{EE} = Max, V_{IH(S)} = V_{CC} Max)$; $$ (V_{CC} = Max, V_{EE} = Ma$	(iH	4	_	-	80 2.0	μA mA
Low-Level Input Current to S Input $(V_{CC} = Max, V_{EE} = Max, V_{IL(S)} = 0.4 \text{ V})$ ‡	lic	4	-	-	-3.2	mA
High-Level Output Voltage (V _{CC} = Min, V _{EE} = Min, I _{load} = $-400 \mu\text{A}$, V _{IC} = -3.0V to $+3.0 \text{V}$).‡	Voн	3	_	-	-	٧
Low-Level Output Voltage $(V_{CC} = Min, V_{EE} = Min, I_{sink} = 16 \text{ mA} V_{IC} = -3.0 \text{ V to } +3.0 \text{ V})$ ‡	VOL	3	-	-	0.4	٧
High-Level Leakage Current (V _{CC} = Min, V _{EE} = Min, V _{OH} = V _{CC} Max)‡	¹ CE X	3	_	_	250	μА
Short-Circuit Output Current # # (V _{CC} = Max, V _{EE} = Max)‡	losc	5	_	-	-	mA
High Logic Level Supply Current from V _{CC} (V _{CC} = Max, V _{EE} = Max, V _{ID} = 25 mV, T _A = +25 ^o C) ‡	ICCH+	6	_	18	30	mA ·
High Logic Level Supply Current from V_{EE} (V_{CC} = Max, V_{EE} = Max, V_{ID} = 25 mV, T_A = +25°C)‡	'cch-	6	0	8.4	-15	mA

[‡]For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions for the applicable device type. #All typical values are at $V_{CC} = +5.0 \text{ V}$, $V_{EE} = -5.0 \text{ V}$, $V_{A} = +25^{\circ}\text{ C}$. # #Not more than one output should be shorted at a time.

SWITCHING CHARACTERISTICS (V_{CC} = +5.0 V, V_{EE} = -5.0 V, T_A = +25°C)

Characteristic	Symbol	Test Fig.	Min	Тур	Max	Unit
Propagation Delay Time, low-to-high level from differential inputs A and B to output	tPLH(D)	7				ns
$(R_{\perp} = 390 \Omega, C_{\perp} = 50 pF)$ $(R_{\perp} = 390 \Omega, C_{\perp} = 15 pF)$			_	_ 19	_ 25	
Propagation Delay Time, high-to-low level from differential inputs A and B to output	tPHL(D)	7				ns
$(R_{\perp} = 390 \ \Omega, C_{\perp} = 50 \ pF)$ $(R_{\perp} = 390 \ \Omega, C_{\perp} = 15 \ pF)$			_	- 19	_ 25	
Propagation Delay Time, low-to-high level, from strobe input G or S to output	tPLH(S)	7				ns
$(R_L = 390 \ \Omega, C_L = 50 \ pF)$ $(R_L = 390 \ \Omega, C_L = 15 \ pF)$			-	- 13	_ 20	
Propagation Delay Time, high-to-low level, from strobe input G or S to output	tPHL(S)	7				ns
$(R_L = 390 \ \Omega, C_L = 50 \ pF)$ $(R_L = 390 \ \Omega, C_L = 15 \ pF)$			-	 13	- 20	

TEST CIRCUITS

FIGURE 1 - V_{IDH} and V_{IDL}

NOTE: When testing one channel, the inputs of the other channel are grounded.

FIGURE 2 - I $_{\mbox{\scriptsize IH}}$ and I $_{\mbox{\scriptsize IL}}$

NOTE: Each pair of differential inputs is tested separately. The inputs of the other pair are grounded

FIGURE 3 - VIH(S), VIL(S), VOH, VOL, and IOH

TEST TABLE

MC75107	MC75108	VID	STROBE 1G or 2G	STROBE S
TE	ST			
Voн	CEX	+25 mV	V _{IH(S)}	VIH(S)
Voн	CEX	-25 mV	V _{IL(S)}	V _{IH(S)}
Voн	CEX	-25 mV	V _{IH(S)}	V _{IL(S)}
· V _{OL}	VOL	-25 mV	V _{IH} (S)	V _{IH(S)}

NOTES: 1. V_{IC} = -3.0 V to +3.0 V.

When testing one channel, the inputs of the other channel should be grounded.

TEST CIRCUITS (continued)

FIGURE 4 $-I_{IH(G)}$, $I_{IL(G)}$, $I_{IH(S)}$, and $I_{IL(S)}$

TEST	INPUT 1A	INPUT 2A	STROBE 1G	STROBE S	STROBE 2G
I _{IH} at Strobe 1G	+25 mV	Gnd	V _{IH(S)}	Gnd	Gnd
I _{IH} at Strobe 2G	Gnd	+25 mV	Gnd	Gnd	V _{IH(S)}
I _{IH} at Strobe S	+25 mV	+25 mV	Gnd	V _{IH} (S)	Gnd
I _{IL} at Strobe 1G	-25 mV	Gnd	VIL(S)	4.5 V	Gnd
I _{IL} at Strobe 2G	Gnd	-25 mV	Gnd	4.5 V	V _{IL(S)}
III at Strobe S	-25 mV	-25 mV	4.5 V	V _{IL(S)}	4.5 V

NOTES: 1. Each channel is tested separately.

2. Not more than one output should be tested at one time.

FIGURE 6 - ICC and IEE

TEST CIRCUITS (continued)

FIGURE 7 — PROPAGATION DELAY TIME TEST CIRCUIT AND WAVEFORMS

NOTES: 1. The pulse generators have the following characteristics: $z_0 = 50 \ \Omega$, $t_r = t_f = 10 \pm 5$ ns, $t_{p1} = 500$ ns, PRR = 1 MHz $t_{p2} = 1 \ \mu s$, PRR = 500 kHz.

- Strobe input pulse is applied to Strobe 1G when Inputs 1A-1B are being tested, to Strobe S when Inputs 1A-1B or 2A-2B
 are being tested, and to Strobe 2G when inputs 2A-2B are being tested.
- 3. C_{L} includes probe and jig capacitance.
- 4. All diodes are 1N916 or equivalent.

MC75125 MC75127

SEVEN CHANNEL LINE RECEIVERS

The MC75125 and MC75127 are seven-channel line receivers designed to satisfy the requirements of the input/output interface specification for IBM 360/370.

Special low-power design and Schottky-diode-clamped transistors allow low supply-current requirements while maintaining fast switching speeds and high-current TTL outputs. The MC75125 and MC75127 are characterized for operation from 0 to 70° C.

- Meets IBM 360/370 I/O Specification
- Input Resistance 7 k Ω to 20 k Ω
- Output Compatible with DTL or TTL
- Schottky-Clamped Transistors
- Operates from a Single 5 Volt Supply
- High-Speed Low Propagation Delay
- Ratio Specification tPLH/tPHL
- Seven Channels in One 16-Pin Package
- Standard VCC and Ground Positioning on MC75127

1/4 MC3481 or 1/4 MC3485 Coaxial Cable RT

SEVEN CHANNEL LINE RECEIVERS

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+7.0	V
Input Voltage	VI	-2.0 to +7.0	V
Power Dissipation (Package Limitation) Ceramic Package Plastic Package Derate Above T _A = 25°C	P _D	1150 960 7.7	mW mW/ ^O C
Óperating Ambient Temperature Range	1/R _θ JA	0 to +70	°C
Junction Temperature Ceramic Package Plastic Package	TJ	+ 175 + 150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltage	Vcc	4.5	5.0	5.5	Vdc
High Level Output Current	Гон	_	_	-0.4	mA
Low Level Output Current	lor	_	_	16	mA
Operating Ambient Temperature Range	TA	0	_	+70	°C

ELECTRICAL CHARACTERISTICS

(Unless otherwise noted, these specifications apply over recommended power supply and temperature ratings. Typical values measured at $T_A = 25^{\circ}C$ and $V_{CC} = +5.0 \text{ V}$)

Characteristic	Symbol	Min	Тур	Max	Unit
High-Level Input Voltage	VIH	1.7	_	_	V
Low-Level Input Voltage	VIL	_	_	0.7	V
High-Level Output Voltage ($V_{CC} = 4.5 \text{ V}$, $V_{IL} = 0.7 \text{ V}$, $I_{OH} = -0.4 \text{ mA}$)	Voн	2.4	3.1	_	V
Low-Level Output Voltage (V _{CC} = 4.5 V, V _{IH} = 1.7 V, I _{OL} = 16 mA)	VOL	-	0.4	0.5	V
High-Level Input Current (V _{CC} = 5.5 V, V _I = 3.11 V)	ΉΗ	0.2	0.3	0.42	mA
Low-Level Input Current (V _{CC} = 5.5 V, V _I = 0.15 V)	1 ₁ L	_	_	-0.24	mA
Short Circuit Output Current* (V _{CC} = 5.5 V, V _O = 0)	los	-18	-	-60	mA
Input Resistance ($V_{CC} = 4.5 \text{ V}$, 0 V, or Open, $\Delta V_{I} = 0.15 \text{ V}$ to 4.15 V)	rį	7.4	_	20	kΩ
Power Supply Current Outputs High-Logic State (V_{CC} = 5.5 V, I_{OH} = -0.4 mA, all inputs at 0.7 V)	Іссн	_	15	25	mA
Power Supply Current Outputs Low-Logic State (V _{CC} = 5.5 V, I _{OL} = 16 mA, all inputs at 4.0 V)	ICCL	-	28	47	mA

SWITCHING CHARACTERISTICS (V $_{CC}$ = 5.0 V, T $_{A}$ = 25 o C, R $_{L}$ = 400 Ω , C $_{L}$ = 50 pF, unless otherwise noted. See Figure 1)

			MC75125			MC75127		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Propagation Delay Time								ns
Low-to-High-Level Output	tPLH	7.0	14	25	7.0	14	25	
High-to-Low-Level Output	tPHL	10	18	30	10	18	30	
Ratio of Propagation Delay Times	tPLH/tPHL	0.5	0.8	1.3	0.5	0.8	1.3	
Transition Time, Low-to-High-Level Output	tTLH	1.0	7.0	12	1.0	7.0	12	ns
Transition Time, High-to-Low Level Output	tTHL	1.0	3.0	12	1.0	3.0	12	ns

^{*}No more than one output should be shorted at a time.

FIGURE 1 - PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

- A. The pulse generator has the following characteristics:
 Z_{Out} ≈ 50 Ω, PRR = 5 MHz.
 B. C_L includes probe and jig capacitance.
 C. All diodes are MMD7000 or equivalent.

FIGURE 2 - SCHEMATIC (EACH RECEIVER) To Other Channels o_ vcc Input 12 kΩ \$ Nom Gnd To Other Channels Output Y Common Circuit :

TYPICAL CHARACTERISTICS

MC75128 MC75129

.

The MC75128 and MC75129 are eight-channel line receivers designed to satisfy the requirements of the input/output interface specification for IBM 360/370. Both devices feature common strobes for each group of four receivers. The MC75128 has an active-high strobe; the MC75129 has an active-low strobe.

EIGHT-CHANNEL LINE RECEIVERS

Special low-power design and Schottky-diode-clamped transistors allow low supply-current requirements while maintaining fast switching speeds and high-current TTL outputs. Both devices are characterized for operation from 0 to 70° C.

- Meets IBM 360/370 I/O Specification
- Input Resistance 7 k Ω to 20 k Ω
- Output Compatible with DTL or TTL
- Schottky-Clamped Transistors
- Operates from a Single 5 Volt Supply
- High-Speed Low Propagation Delay
- Ratio Specification tpLH/tpHL
- Common Strobe for Each Group of Four Receivers
- MC75128 Strobe Active-High MC75129 Strobe — Active-Low

1/4 MC3481 or 1/4 MC3485 Coaxial Cable RT

EIGHT-CHANNEL LINE RECEIVERS

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+7.0	V·.
A Input Voltage.	VIA	-0.15 to +7.0	V
Strobe Input Voltage	VIS	+7.0	V.
Power Dissipation (Package Limitation) Ceramic Package Plastic Package	PD	1150 960	. mW
Derate Above T _A = 25°C	1/R _{∂JA}	-7.7	mW/OC
Operating Ambient Temperature Range	TA	0 to +70	°C
Junction Temperature Ceramic Package Plastic Package	ТЈ	+175 +150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°c

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltage	Vcc	4.5	5.0	5.5	Vdc
High Level Output Current	Гон	_	-	-0.4	mA
Low Level Output Current	lor	-	_	16	· mA
Operating Ambient Temperature Range	TA	0	-	+70	°C

ELECTRICAL CHARACTERISTICS

(Unless otherwise noted, these specifications apply over recommended power supply and temperature ratings. Typical values measured at $T_A = 25^{\circ}C$ and $V_{CC} = +5.0 \text{ V}$)

Characteristic	Symbol	Min	Тур	Max	Unit
High-Level Input Voltage	VIH				V
A Inputs		1.7	_	-	
S Inputs		2.0	-		
Low-Level Input Voltage	VIL				V
A Inputs	'-	_	_	0.7	
S Inputs				0.7	
High-Level Output Voltage ($V_{CC} = 4.5 \text{ V}$, $V_{IL} = 0.7 \text{ V}$, $I_{OH} = -0.4 \text{ mA}$)	Vон	2.4	3.1	_	V
Low-Level Output Voltage (V _{CC} = 4.5 V, V _{IH} = 1.7 V, I _{OL} = 16 mA)	VOL	_	0.4	0.5	V
Input Clamp Voltage (V _{CC} = 4.5 V, I _I = -18 mA, S Inputs)	VIK	-		-1.5	V
High-Level Input Current (V _{CC} = 5.5 V, V _I = 3.11 V, A Inputs)	ПН	-	0.3	0.42	mA
$(V_{CC} = 5.5 \text{ V}, V_1 = 2.7 \text{ V}, \text{S inputs})$		-	-	20	μА
Low-Level Input Current (V _{CC} = 5.5 V, V _I = 0.15 V, A Inputs)	· 11L	_		-0.24	mA
$(V_{CC} = 5.5 \text{ V}, V_{I} = 0.4 \text{ V}, \text{S Inputs})$		-		-0.4	
Short Circuit Output Current * (V _{CC} = 5.5 V, V _O = 0)	los	-18		-60	mA
Input Resistance ($V_{CC} = 4.5 \text{ V}$, 0 V, or Open, $\Delta V_{I} = 0.15 \text{ V}$ to 4.15 V)	·ri	7.0	-	20	kΩ
Power Supply Current — Outputs High-Logic State, all inputs at 0.7 V	Іссн				mA
$(V_{CC} = 5.5 \text{ V}, \text{Strobe at } 2.4 \text{ V} - \text{MC75128})$			19	31	
$(V_{CC} = 5.5 \text{ V}, \text{Strobe at } 0.4 \text{ V} - \text{MC75129})$		_	19	31	5
Power Supply Current — Outputs Low-Logic State, all inputs at 4.0 V	ICCL				mA
$(V_{CC} = 5.5 \text{ V}, \text{Strobe at } 2.4 \text{ V} - \text{MC75128})$		-	32	53	
$(V_{CC} = 5.5 \text{ V, Strobe at } 0.4 \text{ V} - \text{MC75129})$		·	32	53	

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C, R_L = 400 Ω , C_L = 50 pF, unless otherwise noted, See Figures 1 and 2)

Characteristic	Symbol		MC75128		MC75129			Unit
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Propagation Delay Time - From A Inputs								ns.
Low-to-High-Level Output	tPLH(A)	7.0	14	25	7.0	14	25	
High-to-Low-Level Output	tPHL(A)	10	18	30	10	18	30	1
Propagation Delay Time - From S Inputs					1			ns
Low-to-High-Level Output	tPLH(S)	-	26	40	-	20	35	1
High-to-Low-Level Output	tPHL(S)	_	22	35	-	16	30	
Ratio of Propagation Delay Times - A Inputs	tPLH(A)/tPHL(A)	0.5	0.8	1.3	0.5	0.8	1.3	
Transition Time, Low-to-High-Level Output	[†] TLH	1.0	7.0	12	1.0	7.0	12	ns
Transition Time, High-to-Low-Level Output	tTHL.	1.0	3.0	12	1.0	3.0	12	ns

^{*}No more than one output should be shorted at a time.

FIGURE 1 - PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

VOLTAGE WAVEFORMS

- D. The strobe inputs of MC75129 are in-phase with the
- E. $V_{ref1} = 0.7 \text{ V}$ and $V_{ref2} = 1.7 \text{ V}$ for testing data (A) Inputs, $V_{ref1} = V_{ref2} = 1.3 V$ for strobe inputs.

FIGURE 2 - SCHEMATIC (EACH RECEIVER)

TYPICAL CHARACTERISTICS

1.0

FIGURE 4 - VOLTAGE TRANSFER CHARACTERISTIC

FIGURE 5 - INPUT CURRENT versus INPUT VOLTAGE

FIGURE 6 — LOW-LEVEL OUTPUT VOLTAGE versus OUTPUT CURRENT

1.0

V₁, INPUT VOLTAGE (V)

SN75172 SN75174

Product Preview

QUAD LINE DRIVERS WITH NAND ENABLED THREE-STATE OUTPUTS

The Motorola SN75172/174 are monolithic quad differential line drivers with three-state outputs. They are designed specifically to meet the requirements of EIA standards RS-485, RS-422A, and CCITT recommendations V.11 and X.27.

The device is optimized for balanced multipoint bus transmission at rates up to 4 megabits per second. Each driver features wide positive and negative common-mode output voltage ranges making it suitable for party-line applications in noisy environments.

The SN75172/174 provides positive- and negative-current limiting and thermal shutdown for protection from line fault conditions on the transmission bus line. Shutdown occurs at a junction temperature of approximately 150°C. These devices offer optimum performance when used with the SN75173 or SN75175 quadruple differential line receivers.

- Meets RS-485 Standard for Party-Line Operation
- Meets EIA Standard RS-422A and CCITT Recommendations V.11 and X.27
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- 3-State Outputs
- Common-Mode Output Voltage Range . . . −7.0 V to 12 V
- Active-High and Active-Low Enables
- Thermal Shutdown Protection
- Positive and Negative Current Limiting
- Operates from Single 5.0 Volt Supply
- Low Power Requirements
- Functionally Interchangeable With AM26LS31 (SN75172) MC3487 (SN75174)

QUAD RS-485 LINE DRIVERS WITH THREE-STATE OUTPUTS

SILICON MONOLITHIC INTEGRATED CIRCUIT

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

SN75172, SN75174

SN75172

TRUTH TABLE							
Input	Control Inputs (E/Ē)	Noninverting Output	Inverting Output				
Н	/ H/L	Н	L				
L	H/L	L	Н				
Х	L/H	z	Z				

L = Low Logic State

H = High Logic State
X = Irrelevant
Z = Third-State (High Impedance)

SN75174

TRUTH TABLE						
Input	Control Input	Noninverting Output	Inverting Output			
Н	Н	Н	L			
Ĺ	н	L	Н			
Х	L	z	Z			

L = Low Logic State

H = High Logic State

X = Irrelevant Z = Third-State (High Impedance)

SN75173 SN75175

Product Preview

QUAD RS-485 LINE RECEIVERS

The Motorola SN75173/175 are monolithic quad differential line receivers with three-state outputs. They are designed specifically to meet the requirements of EIA standards RS-485, RS-422A/23A and CCITT recommendations.

The devices are optimized for balanced multipoint bus transmission at rates up to 10 megabits per second. They also feature high input impedance, input hysteresis for increased noise immunity, and input sensitivity of ± 200 millivolts over a common-mode input voltage range of -12 volts to 12 volts. The SN75173/175 are designed for optimum performance when used with the SN75172 or SN75174 quadruple differential line drivers.

- Meets EIA Standard RS-485
- Meets EIA Standards RS-422A and RS-423A
- Meets CCITT Recommendations V.10, V.11, X.26, and X.27
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- 3-State Outputs
- Common-Mode Output Voltage Range . . . 12 V to 12 V
- Input Sensitivity . . . ± 200 mV
- Input Hysteresis . . . 50 mV Typ
- High Input Impedance . . . 12 kΩ Min
- Operates from Single 5.0 Volt Supply
- Low Power Requirements
- Plug-In Replacement for MC3486 (SN75175) AM26LS32 (SN75173)

QUAD RS-485 LINE RECEIVERS WITH THREE-STATE OUTPUTS

This document contains information on a product under development. Motorola reserves the

right to change or discontinue this product without notice

SN75173

FUNCTION TABLE (EACH RECEIVER)

Differential Inputs	Ena	bles	Output
A-B	G	G	, Y
V _{ID} ≥ 0.2 V	H X	X	н
-0.2 V < V _{ID} < 0.2 V	H	X	?
V _{ID} ≤ -0.2 V	H X	X L	L L
X	L	Н	Z

SN75175

FUNCTION TABLE (EACH RECEIVER)

Differential Inputs A–B	Enable	Output Y
V _{ID} ≥ 0.2 V	Н	н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	H	?
$V_{\text{ID}} \leq -0.2 \text{ V}$	I	. L
· x	L	z

H = high level

L = low level
X = irrelevant
? = indeterminate

Z = high-impedance (off)

ULN2068B

QUAD 1.5 A SINKING HIGH-CURRENT SWITCH

The ULN2068B is a high-voltage, high-current quad Darlington switch array designed for high-current loads, both resistive and reactive, up to 300 watts.

It is intended for interfacing between low level (TTL, DTL, LS and 5.0 V CMOS) logic families and peripheral loads such as relays, solenoids, dc and stepping motors, multiplexer LED and incandescent displays, heaters, or other high-voltage, high-current loads.

The Motorola ULN2068B is specified with minimum guaranteed breakdown of 50 V and is 100% tested for safe area using an inductive load. It includes integral transient suppression diodes. Use of a predriver stage reduces input current while still allowing the device to switch 1.5 Amps.

It is supplied in an improved 16-lead plastic dual-in-line package with heat sink contact tabs (Pins 4,5 and 12,13). A copper alloy lead frame allows maximum power dissipation using standard cooling techniques. The use of the contact tab lead frame facilitates attachment of a DIP heat sink while permitting the use of standard layout and mounting practices.

- TTL, DTL, LS, CMOS Compatible Inputs
- 1.5 Amp Maximum Output Current
- Low Input Current
- Internal Freewheeling Clamp Diodes
- 100% Inductive Load Tested
- Heat Tab Copper Alloy Lead Frame for Increased Dissipation

MAXIMUM RATINGS ($T_A = 25^{\circ}C$ and ratings apply to any one device in the package unless otherwise noted.)

Rating	Symbol	Value	Unit
Output Voltage	v _o	50	٧
Input Voltage — Note 2	VI	15	V
Supply Voltage	VS	10	٧
Collector Current — Note 1	lc	1.75	Α
Input Current — Note 3	lı	25	mA
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Junction Temperature	TJ	150	°C

Notes

- 1. Allowable output conditions shown in curves on Page 3.
- 2. Input voltage referenced to ground.
- 3. May be limited by max input voltage.

Bo C C K 3.0 k Partial Schematic

QUAD 1.5 A DARLINGTON SWITCH

SILICON MONOLITHIC INTEGRATED CIRCUIT

B SUFFIX
PLASTIC PACKAGE
CASE 648C-01

PIN CONNECTIONS

	ORDERING INFORMATION*					
	Device	Temperature Range	Package			
Ī	ULN2068B	0°C to +70°C	Plastic DIP			

Other options of this ULN2060/2070 series are available for volume applications. Contact your local Motorola Sales Representative.

EL COTOLO AL	OUADAOTEDICTIOS /T	25°C unless otherwise noted.)
PLPC/INICAL	CHARACIERISTICS (IA =	25°C unless otherwise noted./

Characteristic	Fig.	Symbol	Min	Тур	Max	Unit
Output Leakage Current (V _C E = 50 V) (V _C E = 50 V, T _A = 70°C)	1	CEX	_	_	100 500	μА
Collector-Emitter Saturation Voltage (I _C = 500 mA (I _C = 750 mA (I _C = 1.0 A (I _C = 1.25 A)	2	V _{CE(sat)}	_ _ _ _		1.13 1.25 1.40 1.60	V
Input Current — On Condition $(V_1 = 2.4 \text{ V})$ $(V_1 = 3.75 \text{ V})$	4	l(on)		_	0.25 1.0	mA
Input Voltage — On Condition (VCE = 2.0 V, IC = 1.5 A)	5	V _{I(on)}	_	_	2.4	V
Inductive Load Test (VS = 5.5 V, V _{CC} = 24.5 V, tpw = 4.0 \(\mu s \)	3	ΔV _{out}	_	_	100	mV
Supply Current (I _C = 500 mA, V _{in} = 2.4 V, V _S = 5.5 V)	8	IS	_	_	6.0	mA
Turn-On Delay Time (50% E _I to 50% E _O)	_	tPHL	_		1.0	μ\$
Turn-Off Delay Time (50% E _I to 50% E _O)	_	tPLH	_	_	4.0	μs
Clamp Diode Leakage Current (V _R = 50 V) (V _R = 50 V, T _A = 70°C)	6	I _R	_		50 100	μА
Clamp Diode Forward Voltage (IF = 1.0 A) (IF = 1.5 A)	7	VF		_	1.75 2.0	V

TEST FIGURES

TEST FIGURES (CONTINUED)

TYPICAL CHARACTERISTIC CURVES — $T_A = 25^{\circ}C$

IC, COLLECTOR CURRENT (A)

0.8

0.6

0.2

1.0

Versus INPUT CURRENT

VS = 5.0 V

TA = 25°C

3.0

4.0

FIGURE 10 — COLLECTOR CURRENT

FIGURE 11 - TA = 70°C w/o HEAT SINK

FIGURE 12 — T_A = 70°C w/STAVER V-8 HEAT SINK (37.5 °C/W)

IJ, INPUT CURRENT (mA)

ULN2074B

QUAD 1.5 A SINKING HIGH-CURRENT SWITCH

The ULN2074B is a high-voltage, high-current quad Darlington switch array designed for high-current loads, both resistive and reactive, up to 300 watts.

It is intended for interfacing between low level (TTL, DTL, LS and 5.0 V CMOS) logic families and peripheral loads such as relays, solenoids, dc and stepping motors, multiplexer LED and incandescent displays, heaters, or other high-voltage, high-current loads.

The Motorola ULN2074B is specified with minimum guaranteed breakdown of 50 V and is 100% tested for safe area using an inductive load.

It is supplied in an improved 16-lead plastic dual-in-line package with heat sink contact tabs (Pins 4, 5 and 12, 13). A copper alloy lead frame allows maximum power dissipation using standard cooling techniques. The use of the contact tab lead frame facilitates attachment of a DIP heat sink while permitting the use of standard layout and mounting practices.

- TTL, DTL, LS, CMOS Compatible Inputs
- 1.5 Amp maximum Output Current
- Low Input Current
- 100% Inductive Load Tested
- Heat Tab Copper Alloy Lead Frame for Increased Dissipation

MAXIMUM RATINGS (T_A = 25°C and ratings apply to any one device in the package unless otherwise noted).

Rating	Symbol	Value	Unit
Output Voltage	v _o	50	٧
Input Voltage — Note 2	VI	30	٧
Collector Current — Note 1	lс	1.75	Α
Input Current — Note 3	l _l	25	mA
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Junction Temperature	TJ	150	°C

Notes:

- Allowable output conditions shown in curves on Page 3.
- 2. Input voltage referenced to ground (substrate)
- 3. May be limited by max input voltage

350 Ω Rin 7.2 k 3.0 k Substrate

QUAD 1.5 A DARLINGTON SWITCH

SILICON MONOLITHIC INTEGRATED CIRCUIT

B SUFFIX PLASTIC PACKAGE CASE 648C-01

PIN CONNECTIONS

ORDERING INFORMATION*

Di.	Temperature	Dankana
Device	Range	Package
ULN2074B	0°C to +70°C	Plastic DIP

 Other options of this ULN2060/2070 series are available for volume applications. Contact your local Motorola Sales Representative.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Fig.	Symbol	Min	Тур	Max	Unit
Output Leakage Current (V _{CE} = 50 V) (V _{CE} = 50 V, T _A = 70°C)	1	ICEX			100 500	μΑ
Collector-Emitter Saturation Voltage (I _C = 500 mA, I _I = 625 μ A) (I _C = 750 mA, I _I = 935 μ A) (I _C = 1.0 A, I _I = 1.25 mA) (I _C = 1.25 A, I _I = 2.0 mA)	2	VCE(sat)	 	- - -	1.13 1.25 1.40 1.60	V
Input Current — On Condition (V _I = 2.4 V) (V _I = 3.75 V)	4	l(on)	2.0 4.5		4.3 9.6	mA
Input Voltage — On Condition (V _{CE} = 2.0 V, I _C = 1.0 A) (V _{CE} = 2.0 V, I _C = 1.5 A)	5	VI(on)	_		2.0 2.5	٧
Inductive Load Test (V _{CC} = 24.5·V, tp _W = 4.0 μs)	3	ΔV _{out}	_	_	100	mV
Turn-On Delay Time (50% E _I to 50% E _O)	_	tPHL	_		1.0	μs
Turn-Off Delay Time (50% E _I to 50% E _O)		tPLH		_	1.5	μs

TEST FIGURES

FIGURE 5

TYPICAL CHARACTERISTIC CURVES

FIGURE 7 — COLLECTOR CURRENT versus INPUT CURRENT

FIGURE 8 — TA = 70°C w/o HEAT SINK

FIGURE 9 - T_A = 70°C w/STAVER V-8 HEAT SINK (37.5 °C/W)

20

80

100

40

DUTY CYCLE (%)

80

60

DUTY CYCLE (%)

Comparators

COMPARATORS

Device	Function	Page
LM111	High Performance Voltage Comparator	8-3
LM139,A	Quad Single-Supply Comparators	8-9
LM193,A	Dual Comparators	8-13
LM211	High Performance Voltage Comparator	8-3
LM239,A	Quad Single-Supply Comparators	8-9
LM293,A	Dual Comparators	8-13
LM311	High Performance Voltage Comparator	8-3
LM339,A	Quad Single-Supply Comparators	8-9
LM393,A	Dual Comparators	8-13
LM2901	Quad Single-Supply Comparators	8-9
LM2903	Dual Comparators	8-13
MC1414	Dual Differential Comparator	8-18
MC1514	Dual Differential Comparator	8-18
MC1710,C	Differential Comparator	8-22
MC1711,C	Dual Differential Comparator	8-26
MC3302	Quad Single-Supply Comparators	8-9
MC3324,A	Power Supply Supervisory Circuit/Dual-Voltage Comparator	8-30
MC3424,A	Power Supply Supervisory Circuit/Dual-Voltage Comparator	8-30
MC3430	High-Speed Quad Comparator	8-46
MC3431	High-Speed Quad Comparator	8-46
MC3432	High-Speed Quad Comparator	8-46
MC3433	High-Speed Quad Comparator	8-46
MC3524,A	Power Supply Supervisory Circuit/Dual-Voltage Comparator	8-30

LM111 LM211 LM311

HIGHLY FLEXIBLE VOLTAGE COMPARATORS

The ability to operate from a single power supply of 5.0 to 30 volts or ± 15 volt split supplies, as commonly used with operational amplifiers, makes the LM111/LM211/LM311 a truly versatile comparator. Moreover, the inputs of the device can be isolated from system ground while the output can drive loads referenced either to ground, the VCC or the VEE supply. This flexibility makes it possible to drive DTL, RTL, TTL, or MOS logic. The output can also switch voltages to 50 volts at currents to 50 mA. Thus the LM111/LM211/LM311 can be used to drive relays, lamps or solenoids.

TYPICAL COMPARATOR DESIGN CONFIGURATIONS

3.0 k VCC 5.0 k RL 1nputs Output

Split Power-Supply with

Offset Balance

Single Supply

Ground-Referred Load

Input polarity is reversed when Gnd pin is used as an output.

Load Referred to Negative Supply ▼ V_{CC}

Input polarity is reversed when Gnd pin is used as an output.

Load Referred to Positive Supply

HIGH PERFORMANCE VOLTAGE COMPARATORS

SILICON MONOLITHIC INTEGRATED CIRCUIT

H SUFFIX

N SUFFIX PLASTIC PACKAGE CASE 626-04 (LM311 Only)

J-8 SUFFIX CERAMIC PACKAGE CASE 693-02

Gnd 1 8 V_{CC}
Inputs 3 6 Balance/Strobe
5 Balance
(Top View)

ORDERING INFORMATION

Device	Temperature Range	Package
LM111H LM111J-8	-55°C to +125°C	Metal Can Ceramic DIP
LM211H LM211J-8	-25°C to +85°C	Metal Can Ceramic DIP
LM311H LM311J-8 LM311N	0°C to +70°C	Metal Can Ceramic DIP Plastic DIP

LM111, LM211, LM311

MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)

		_ Va		
Rating	Symbol	LM111 LM211	LM311	Unit
Total Supply Voltage	V _{CC} + V _{EE}	36	36	Vdc
Output to Negative Supply Voltage	VO - VEE	50	40	Vdc
Ground to Negative Supply Voltage	VEE	30	30	Vdc
Input Differential Voltage	V _{ID}	±30	±30	Vdc
Input Voltage (Note 2)	V _{in}	±15	±15	Vdc
Voltage at Strobe Pin	_	V _{CC} to V _{CC} -5	V _{CC} to V _{CC} -5	Vdc
Power Dissipation and Thermal Characteristics Metal Package Derate above T _A = +25°C Plastic and Ceramic Dual In-Line Packages Derate above T _A = +25°C	P _D 1//θJA P _D 1/θJA	5	80 5.5 25 5.0	mW mW/°C mW mW/°C
Operating Ambient Temperature Range LM111 LM211 LM311	ТА	-55 to +125 -25 to +85 	 0 to +70	°C
Operating Junction Temperature	T _{J(max)}	+150	+150	°C
Storage Temperature Range	T _{stg}	-65 to +150	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = +15 V, V_{EE} = -15 V, T_A = +25°C unless otherwise noted [Note 1].)

		LM111 LM211		LM311				
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
$\begin{split} & \text{Input Offset Voltage (Note 3)} \\ & \text{R}_S \leqslant 50 \text{ k}\Omega, \text{ T}_A = +25^{\circ}\text{C} \\ & \text{R}_S \leqslant 50 \text{ k}\Omega, \text{ T}_{low} \leqslant \text{T}_A \leqslant \text{T}_{high}^* \end{split}$	VIO	_	0.7 —	3.0 4.0	_	2.0	7.5 10	mV
Input Offset Current (Note 3) $T_A = +25$ °C $T_{low} \le T_A \le T_{high}^*$	10	_	1.7 —	10 20	_	1.7 —	50 70	nA
Input Bias Current, $T_A = +25$ °C $T_{low} \le T_A \le T_{high}^*$	IB	_	45 —	100 150	_	45 —	250 300	nA
Voltage Gain	Av	40	200	_	40	200	_	V/mV
Response Time (Note 4)		_	200	_	_	200		ns
Saturation Voltage $V_{ID}\leqslant -5.0 \text{ mV, I}_{O}=50 \text{ mA} \label{eq:VID} V_{ID}\leqslant -10 \text{ mV, I}_{O}=50 \text{ mA} \label{eq:VID} \label{eq:VID} \label{eq:VID} $	VOL	_	0.75	1.5 —	_	_ 0.75	 1.5	V
$V_{CC} \ge 4.5 \text{ V, } V_{EE} = 0, T_{low} \le T_A \le T_{high}^*$ $V_{lD} \le -6.0 \text{ mV, } I_{sink} \le 8.0 \text{ mA}$ $V_{lD} \le -10 \text{ mV, } I_{sink} \le 8.0 \text{ mA}$		_	0.23	0.4	<u> </u>	_ 0.23	_ 0.4	
Strobe "On" Current (Note 5)	ls.		3.0	_	_	3.0		mA
Output Leakage Current $V_{ID} \ge 5.0 \text{ mV}, V_{O} = 35 \text{ V}$ $T_{A} = +25^{\circ}\text{C}$ $V_{ID} \ge 10 \text{ mV}, V_{O} = 35 \text{ V}$ $T_{ISTODe} = 3.0 \text{ mA}$ $T_{ID} \ge 5.0 \text{ mV}, V_{O} = 35 \text{ V}, T_{IOW} \le T_{A} \le T_{high}$		_	0.2 — 0.1	10 — 0.5	_	_ 0.2 _	 50 	nA nA μA
Input Voltage Range (T _{low} ≤ T _A ≤ T _{high} *)	VIR	-14.5	-14.7 to 13.8	13.0	-14.5	-14.7 to 13.8	13.0	V
Positive Supply Current	¹ cc	. –	+2.4	+6.0	_	+2.4	+7.5	mA
Negative Supply Current	IEE	_	-1.3	-5.0	_	-1.3	-5.0	mA

NOTES:

- $1. \ Offset \ voltage, offset \ current \ and \ bias \ current \ specifications \ apply for a \ supply \ voltage \ range \ from \ a \ single \ 5.0 \ volt \ supply \ up \ to \ \pm \ 15 \ volt \ supplies.$
 - This rating applies for ±15 volt supplies. The positive input voltage limit is 30 volts above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 volts below the positive supply, whichever is less.
- 3. The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 m A load. Thus, these parameters define an error band and take into account the "worst case" effects of voltage gain and input installed.
- The response time specified is for a 100 mV input step with 5.0 mV overdrive.
- 5. Do not short the strobe pin to ground; it should be current driven at $3.0\ \text{to}\ 5.0\ \text{mA}.$

FIGURE 1 — CIRCUIT SCHEMATIC

TYPICAL PERFORMANCE CHARACTERISTICS

MOTOROLA LINEAR/INTERFACE DEVICES

TYPICAL PERFORMANCE CHARACTERISTICS

FIGURE 7 - RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES

FIGURE 8 - RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES

t_{TLH}, RESPONSE TIME (μs)

0.1

0.4

0.5

0.6

FIGURE 9 — RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES

FIGURE 10 - OUTPUT SHORT CIRCUIT CURRENT CHARACTERISTICS AND POWER DISSIPATION

FIGURE 11 - OUTPUT SATURATION VOLTAGE versus OUTPUT CURRENT

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

FIGURE 12 — OUTPUT LEAKAGE CURRENT Versus TEMPERATURE

100

VCC = +15 V

VEE = -15 V

OUTPUT LEAKAGE CURRENT VERSUS TEMPERATURE

100

0.01

0.01

25

45

65

85

105

125

FIGURE 13 — POWER SUPPLY CURRENT versus SUPPLY VOLTAGE 3.6 TΔ = +25°C 3.0 (mA) POWER, SUPPLY CURRENT Positive Supply - Output Low 2.4 1.8 Output High Positive and Negative Power Supply 1.2 0.6 0 5.0 10 15 20 30 V_{CC}-V_{EE}, POWER SUPPLY VOLTAGE (V)

FIGURE 14 — POWER SUPPLY CURRENT versus TEMPERATURE

APPLICATIONS INFORMATION

FIGURE 15 — IMPROVED METHOD OF ADDING
HYSTERESIS WITHOUT APPLYING POSITIVE
FEEDBACK TO THE INPUTS

FIGURE 16 — CONVENTIONAL TECHNIQUE FOR ADDING HYSTERESIS

APPLICATIONS INFORMATION

Techniques for Avoiding Oscillations in Comparator Applications

When a high-speed comparator such as the LM111 is used with high-speed input signals and low source impedances, the output response will normally be fast and stable, providing the power supplies have been bypassed (with 0.1 μ F disc capacitors), and that the output signal is routed well away from the inputs (Pins 2 and 3) and also away from Pins 5 and 6.

However, when the input signal is a voltage ramp or a slow sine wave, or if the signal source impedance is high (1.0 k Ω to $100~\rm k\Omega$), the comparator may burst into oscillation near the crossing-point. This is due to the high gain and wide bandwidth of comparators like the LM111 series. To avoid oscillation or instability in such a usage, several precautions are recommended, as shown in Figure 15.

The trim pins (Pins 5 and 6) act as unwanted auxiliary inputs. If these pins are not connected to a trim-pot, they should be shorted together. If they are connected to a trim-pot, a 0.01 μ F capacitor (C1) between Pins 5 and 6 will minimize the susceptibility to ac coupling. A smaller capacitor is used if Pin 5 is used for positive feedback as in Figure 15.

Certain sources will produce a cleaner comparator output waveform if a 100 pF to 1000 pF capacitor (C2) is connected directly across the input pins. When the signal source is applied through a resistive network, R1, it is usually advantageous to choose R2 of the same value, both for dc and for dynamic (ac) considerations. Carbon, tin-oxide, and metal-film resistors have all been used with good results in comparator input circuitry, but inductive wirewound resistors should be avoided.

When comparator circuits use input resistors (e.g., summing resistors), their value and placement are particularly important. In all cases the body of the resistor should be close to the device or socket. In other words, there should be a very shortlead length or printed-circuit foil run between comparator and resistor to radiate or pick up signals. The same applies to capacitors, pots, etc. For example, if R1 = 10 kf., as little as 5 inches of lead between the resistors and the input pins can result in oscillations that are very hard to dampen. Twisting these input leads tightly is the best alternative to placing resistors close to the comparator.

Since feedback to almost any pin of a comparator can result in oscillation, the printed-circuit layout should be engineered thoughtfully. Preferably there should be a groundplane under the LM111 circuitry (e.g., one side of a double layer printed circuit board). Ground, positive supply or negative supply foil should extend between the output and the inputs, to act as a guard. The foil connections for the inputs should be as small and compact as possible, and should be essentially surrounded by ground foil on all sides, to quard against capacitive coupling from any fast highlevel signals (such as the output). If Pins 5 and 6 are not used, they should be shorted together. If they are connected to a trim-pot, the trim-pot should be located no more than a few inches away from the LM111, and a 0.01 μF capacitor should be installed across Pins 5 and 6. If this capacitor cannot be used, a shielding printed-circuit foil may be advisable between Pins 6 and 7. The power supply bypass capacitors should be located within a couple inches of the LM111.

A standard procedure is to add hysteresis to a comparator to prevent oscillation, and to avoid excessive noise on the output. In the circuit of Figure 16, the feedback resistor of $510~k\Omega$ from the output to the positive input will cause about 3.0 mV of hysteresis. However, if R2 is larger than $100~\Omega$, such as $50~k\Omega$, it would not be practical to simply increase the value of the positive feedback resistor proportionally above $510~k\Omega$ to maintain the same amount of hysteresis.

When both inputs of the LM111 are connected to active signals, or if a high-impedance signal is driving the positive input of the LM111 so that positive feedback would be disruptive, the circuit of Figure 15 is ideal. The positive feedback is applied to Pin 5 (one of the offset adjustment pins). This will be sufficient to cause 1.0 to 2.0 mV hysteresis and sharp transitions with input triangle waves from a few Hz to hundreds of kHz. The positive-feedback signal across the 82 Ω resistor swings 240 mV below the positive supply. This signal is centered around the nominal voltage at Pin 5, so this feedback does not add to the offset voltage of the comparator. As much as 8.0 mV of offset voltage can be trimmed out, using the 5.0 k Ω pot and 3.0 k Ω resistor as shown.

FIGURE 17 — ZERO-CROSSING DETECTOR DRIVING CMOS LOGIC

FIGURE 18 — RELAY DRIVER WITH STROBE CAPABILITY

MOTOROLA

LM139, A LM239, A LM2901 LM339, A MC3302

QUAD SINGLE-SUPPLY COMPARATORS

These comparators are designed for use in level detection, lowlevel sensing and memory applications in Consumer Automotive and Industrial electronic applications.

- Single of Split Supply Operation
- Low Input Bias Current 25 nA (Typ)
- Low Input Offset Current ±5.0 nA (Typ)
- Low Input Offset Voltage ±1.0 mV (Typ LM139A Series)
- Input Common-Mode Voltage Range to Gnd
- Low Output Saturation Voltage 130 mV (Typ) @ 4.0 mA
- TTL and CMOS Compatible

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage LM139, A/LM239, A/ LM339A/LM2901	Vcc	+36 or ±18	Vdc
MC3302		+30 or ±15	
Input Differential Voltage Range	VIDR		Vdc
LM139, A/LM239, A/LM339, A/LM2901 MC3302		36 30	
Input Common Mode Voltage Range	VICR	-0.3 to V _{CC}	· Vdc
Output Short-Circuit to Gnd (Note 1)	Isc	Continuous	
Input Current (Vin < -0.3 Vdc) (Note 2)	lin	50	mA
Power Dissipation @ T _A = 25°C	PD		
Ceramic Package		1.0	Watts
Derate above 25°C	İ	8.0	mW/°C
Plastic Package		1.0	Watts
Derate above 25°C		8.0	mW/°C
Operating Ambient Temperature Range	TA		
LM139, A		-55 to +125	°C
LM239, A		-25 to +85	
LM2901/MC3302		-40 to +85	
LM339, A		0 to +70	
Storage Temperature Range	T _{stg}	-65 to +150	°C

QUAD COMPARATORS

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION

ORDERING INFORMATION					
Device	Temperature Range	Package			
LM139J, AJ	-55°C to +125°C	Ceramic DIP			
LM239J, AJ LM239N, AN	-25°C to +85°C	Ceramic DIP Plastic DIP			
LM339J, AJ LM339N, AN	0°C to +70°C	Ceramic DIP Plastic DIP			
LM2901N MC3302L MC3302P	-40°C to +85°C	Plastic DIP Ceramic DIP Plastic DIP			

ELECTRICAL CHARACTERISTICS (VCC = +5.0 Vdc, TA = 25°C unless otherwise noted)

Ob	Cumb al		M139		LM2	39A/3	39A	1	M139		LM2	39/33			LM290			AC330	2	Unit
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (Note 4)	V _{IO}	-	±1.0	±2.0	-	±1.0	±2 0		±2.0	±5.0	-	±2.0	±5.0	-	±2.0	±7.0	· — ,	±3.0	±20	mVdc
Input Bias Current (Notes 4, 5) (Output in Linear Range)	IВ	-	25	100	-	25	250		25	100	-	25	250	-	25	250	1	25 -	500	nA
Input Offset Current (Note 4)	lio	T -	±3.0	±25	-	±5.0	±50	_	±3.0	±25	-	±5.0	±50	_	±5.0	±50	-	±3.0	±100	nA
Input Common-Mode Voltage Range (Note 7)	VICR	0		V _{CC} -1.5	0		V _{CC} -1.5	0	-	V _{CC} -1.5	0	-	V _{CC} -1.5	0	-	V _{CC} -1.5	0	-	V _{CC} -1.5	V
Supply Current $ \begin{array}{l} R_L = \infty \text{ (For All Comparators)} \\ R_L = \infty, V_{CC} = 30 \text{ Vdc} \end{array} $	lcc	_	0.8	2.0	_	0.8	2.0	-	0.8	2.0	_	0.8	2.0	_	0.8 1.0	2.0 2.5	_	0.8	2.0	mA
Voltage Gain R _L ≥ 15 kΩ, V _{CC} = 15 Vdc	Av	50	200	-	50	200	-	-	200	-	-	200	-	25	100	-	2	30	_	V/mV
Large Signal Response Time V _I = TTL Logic Swing, V _{ref} = 1.4 Vdc, V _{RL} = 5.0 Vdc, R _L = 5.1 kΩ		_	300	_	-	300	-	-	300	_	_	300	-	-	300	-		300		ns
Response Time (Note 6) V _{RL} = 5.0 Vdc, R _L = 5.1 kΩ	_	-	1.3	-	_	1.3	-	-	1.3			1.3	-	-	1.3	ı	-	1.3	-	μS
Output Sink Current $V_{I}(-) \geqslant +1.0 \text{ Vdc}, V_{I}(+) = 0, V_{O} \leqslant 1.5 \text{ Vdc}$	l _{sink}	.6.0	16	-	6.0	16	_	6.0	16	_	6.0	16	-	6.0	16	-	6.0	16	-	mA
Saturation Voltage $V_1(-) \ge +1.0 \text{ Vdc}, V_1(+) = 0, I_{sink} \le 4.0 \text{ mA}$	V _{sat}	-	130	400		130	400	-	130	400	_	130	400	-	130	400	_	130	500	mV
Output Leakage Current V _I (+) ≥ +1.0 Vdc, V _I (-) = 0, V _O = +5.0 Vdc	lor	-	0.1	-	-	0.1	-	_	0.1	-	-	0.1	-	-	0.1	1	-	0.1		nA

PERFORMANCE CHARACTERISTICS (V_{CC} = +5.0 Vdc, T_A = T_{low} to T_{high} [Note 3])

	T	l l	M139	Α	LM2	39A/3	339A		LM139	•	LN	1239/3	339		M290	1		VC330	2	Unit
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (Note 4)	V _{IO}	I -	_	±4.0	_	_	±4.0	_	_	±9.0	_	_	+9.0	_	_	±15	-	_	±40	mVdc
Input Bias Current (Notes 4, 5) (Output in Linear Range)	liB .	-	_	300	_	_	400	_	_	300		-	400	-	-	500	-	_	1000	nA
Input Offset Current (Note 4)	lio	I -	_	±100	-	_	±150	_		±100	-	-	±150	_	-	±200	-	_	±300	nA
Input Common-Mode Voltage Range	V _{ICR}	0	-	V _{CC} -2.0	0	_	V _{CC} -2.0	0	-	V _{CC} -2.0	0	-	V _{CC} -2.0	0	_	V _{CC} -2.0	0	-	V _{CC} -2.0	٧
Saturation Voltage $V_{I}(-) \ge +1.0 \text{ Vdc}, V_{I}(+) = 0, I_{sink} \le 4.0 \text{ mA}$	V _{sat}		-	700			700	-	-	700	_	_	700		_	700	-	_	700	mV
Output Leakage Current $V_{I}(+) \geqslant +1.0 \text{ Vdc}, V_{I}(-) = 0, V_{O} = 30 \text{ Vdc}$	lor	-	-	1.0	-	_	1.0	-	_	1.0	-	_	1.0	_	-	1.0	-	-	1.0	μА
Differential Input Voltage All Vi ≥ 0 Vdc (Note 7)	V _{ID}	_	_	Vcc	-	-	Vcc	-	-	v _{cc}		_	Vcc	****		vcc	-	-	vcc	Vdc

- 1. The maximum output current may be as high as 20 mA, independent of the magnitude of V_{CC}. Output short circuits to V_{CC} can cause excessive heating and eventual
- 2. This magnitude of input current will only occur if the leads are driven more negative than ground or the negative supply voltage. This is due to the input PNP collectorbase junction becoming forward biased, acting as an input clamp diode. There is also a lateral PNP parasitic transistor action which can cause the output voltage of the comparators to go to the V_{CC} voltage level (or ground if overdrive is large) during the time that an input is driven negative. This will not destroy the device when limited to the max rating and normal output states will recover when the inputs become ≥ ground or negative supply.
- 3. LM139/139A T_{low} = -55°C, T_{high} = +125°C 3. LM239/239A T_{low} = -25°C, T_{high} = +85°C
- LM339/339A T_{low} = 0°C, T_{high} = +70°C LM2901/MC3302 T_{low} = -40°C, T_{high} = +85°C
- 4. At the output switch point, $V_O \simeq 1.4$ Vdc, $R_S \leqslant 100 \ \Omega$, 5.0 Vdc $\leqslant V_{CC} \leqslant 30$ Vdc, with the inputs over the full common-mode range (0 Vdc to $V_{CC} = 1.5$ Vdc).
- 5. The bias current flows out of the inputs due to the PNP input stage. This current is virtually constant, independent of the output state.
- 6. The response time specified is for a 100 mV input step with 5.0 mV overdrive. For larger signals, 300 ns is typical.
- 7. Positive excursions of input voltage may exceed the power supply level. As long as one of the inputs remain within the common-mode range, the comparator will provide the proper output state. With VCC = 5.0 Vdc, VI should be limited to 25 volts max. Limiting resistors should be used on all inputs that might exceed VCC.

LM139,A, LM239,A, LM339,A, LM2901, MC3302

FIGURE 2 - INVERTING COMPARATOR WITH HYSTERESIS

$$V_{ref} \approx \frac{V_{CC} R1}{R_{ref} + R1}$$

$$V_{H} = \frac{R1//R_{ref}}{R1|//R_{ref} + R2} (V_{Omax} - V_{Omin})$$

 $R2 >> R_{ref}//R1$

FIGURE 3 — NON-INVERTING COMPARATOR WITH HYSTERESIS

R2 ≈ R1//R_{ref}

Amount of Hysteresis VH

$$V_H = \frac{R2}{R2 + R3} (V_{Omax} - V_{Omin})$$

TYPICAL CHARACTERISTICS

(V_{CC} = +15 Vdc, T_A = +25°C (each comparator) unless otherwise noted.)

FIGURE 4 — NORMALIZED INPUT OFFSET VOLTAGE

FIGURE 5 - INPUT BIAS CURRENT

FIGURE 6 — OUTPUT SINK CURRENT versus **OUTPUT SATURATION VOLTAGE**

8

FIGURE 7 — DRIVING LOGIC

 R_S = Source Resistance $R1 \cong R_S$

LOGIC	DEVICE	V _{CC} Volts	R∟ kΩ
CMOS	1/4 MC14001	+15	100
TTL	1/4 MC7400	+5	10

FIGURE 8 — SQUAREWAVE OSCILLATOR

APPLICATIONS INFORMATION

These quad comparators feature high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance. This oscillation manifests itselduring output transistions (VOL to VOH). To alleviate this situation input resistors $<10\,\mathrm{k}\Omega$ should be used. The addi-

tion of positive feedback (<10 mV) is also recommended. It is good design practice to ground all unused input pins. Differential input voltages may be larger than supply voltage without damaging the comparator's input voltages. More negative than -300 mV should not be used.

FIGURE 9 — ZERO CROSSING DETECTOR (Single Supply)

D1 prevents input from going negative by more than 0.6 V.

R1 + R2 = R3

 $R3 \le \frac{R5}{10}$ for small error in zero crossing

FIGURE 10 — ZERO CROSSING DETECTOR (Split Supplies)

 $V_{INmin} \approx 0.4 \text{ V peak for 1% phase distortion } (\Delta\Theta)$.

LM193 LM193A LM293 LM293A LM393 LM393A LM2903

SINGLE-SUPPLY, LOW-POWER, LOW-OFFSET-VOLTAGE DUAL COMPARATORS

The LM193 series are dual independent precision voltage comparators capable of single-or split-supply operation. These devices are designed to permit a common mode range-to-ground level with single-supply operation. Input offset-voltage specifications as low as 2.0 mV make this device an excellent selection for many applications in consumer automotive, and industrial electronics.

- Wide Single-Supply Range 2.0 Vdc to 36 Vdc
- Split-Supply Range ±1.0 Vdc to ±18 Vdc
- Very Low Current Drain Independent of Supply-Voltage 0.4 mA
- Low Input Bias Current 25 nA
- Low Input Offset Current 5.0 nA
- Low Input Offset Voltage 2.0 mV (max) LM193A/293A/393A
 5.0 mV (max) LM193/293/393
- Input Common Mode Range to Ground Level
- Differential Input Voltage Range Equal to Power Supply Voltage
- Output Voltage Compatible with DTL, ECL, TTL, MOS and CMOS Logic Levels

DUAL COMPARATORS

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORE	ERING INFORM	MATION
Device	Temperature Range	Package
LM193AH,H	-55 to +125°C	Metal Can
LM293AH,H	-25 to +85°C	Metal Can
LM393AH,H	0 to +70°C	Metal Can
LM393AN,N	0 to +70°C	Plastic Mini DIP
LM2903N	-40 to +85°C	Plastic Mini DIP

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+36 or ±18	Vdc
Input Differential Voltage Range	V _{IDR}	36	Vdc
Input Common Mode Voltage Range	VICR	-0.3 to +36	Vdc
Input Current (1) (V _{in} < -0.3 Vdc)	lin	50	mA
Output Short Circuit-to-Ground Output Sink Current	ISC Isink	Continuous 20	mA
Power Dissipation @ T _A = 25°C Molded DIP Derate above 25°C Metal Can Derate above 25°C	P_{D} $1/R_{\theta}JA$ P_{D} $1/R_{\theta}JA$	570 5.7 830 6.64	mW mW/°C mW mW/°C
Operating Ambient Temperature Range LM193, 193A LM293, 293A LM393, 393A LM2903	TA	-55 to +125 -25 to +85 0 to +70 -40 to +85	°C
Maximum Operating Junction Temperature LM393, 393A, 2903 LM193, 193A, 293, 293A	T _{J(max)}	125 150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 Vdc; *T_{low} ≤ T_A ≤ T_{high} unless otherwise stated.)

ELECTRICAL CHARACTERISTICS (V _{CC} = 5.0 V	T		LM193		M393A	T		
Characteristic	Symbol	Min	Тур	Max	Min	Typ	Max	Unit
Input Offset Voltage (2) $T_A = 25^{\circ}C$ $T_{low} \leqslant T_A \leqslant T_{high}$	V _{IO}		±1.0	±2.0 4.0	_	±1.0	±2.0 4.0	mV
Input Offset Current $T_A = 25^{\circ}C$ $T_{low} \leq T_A \leq T_{high}$	10	_	±3.0 —	±25 ±100		±5.0	±50 ±150	nA
Input Bias Current (3) $T_A = 25^{\circ}C$ $T_{low} \leqslant T_A \leqslant T_{high}$	IB	-	25 —	100 300	_	25	250 400	nA
Input Common Mode Voltage Range (4) T_A = 25°C $T_{low} \le T_A \le T_{high}$	VICR	0	_	V _{CC} -1.5 V _{CC} -2.0	0	_	V _{CC} -1.5 V _{CC} -2.0	Volts
Voltage Gain $R_L \geqslant 15 \ k\Omega$, V_{CC} = 15 Vdc, T_A = 25°C	AVOL	50	200	-	50	200	_	V/mV
Large Signal Response Time V_{in} = TTL Logic Swing, V_{ref} = 1.4 Vdc V_{RL} = 5.0 Vdc, R_L = 5.1 k Ω , T_A = 25°C	_	-	300	_	_	300	— .	ns
Response Time (5) $V_{RL} = 5.0 \text{ Vdc}$, $R_L = 5.1 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$	tTLH	_	1.3	_	_	1.3	- ,	μS
Input Differential Voltage (6) All V _{in} ≥ Gnd or V- Supply (if used)	V _{ID}			Vcc			V _{CC}	V
Output Sink Current $V_{in-} \ge 1.0$ Vdc, $V_{in+} = 0$ Vdc, $V_O \le 1.5$ Vdc $T_A = 25^{\circ}\text{C}$	Isink	6.0	16		6.0	16	_	mA
Output Saturation Voltage $V_{in-}\geqslant 1.0$ Vdc, V_{in+} = 0, $I_{sink}\leqslant 4.0$ mA, T_A = 25°C $T_{low}\leqslant T_A\leqslant T_{high}$	VOL		150	400 700	_	150 —	400 700	mV
Output Leakage Current $ \begin{array}{l} V_{in-}=0 \ V, \ V_{in+}\geqslant 1.0 \ \ Vdc, \ V_O=5.0 \ \ \ Vdc, \ T_A=25^{\circ}C \\ V_{in-}=0 \ V, \ V_{in+}\geqslant 1.0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	loL	_	0.1	1.0	_	0.1 —	 1.0	μΑ
Supply Current $R_L = \infty$ Both Comparators, $T_A = 25^{\circ}C$ $R_L = \infty$ Both Comparators, $V_{CC} = 30 \text{ V}$	lcc	_	0.4 1.0	1.0 2.5	_	0.4 1.0	1.0 2.5	mA

 $\begin{tabular}{ll} $^*LM193/193A - T_{low} = -55^\circ C, \ T_{high} = +125^\circ C \\ LM293/293A - T_{low} = -25^\circ C, \ T_{high} = +85^\circ C \\ LM393/393A - T_{low} = 0^\circ C, \ T_{high} = +70^\circ C \\ LM2903 - T_{low} = -40^\circ C, \ T_{high} = +85^\circ C \\ \end{tabular}$

FLECTRICAL CHARACTERISTICS	$(V_{CC} = 5.0 \text{ Vdc}: *T_{IOW} \leq T_A \leq T_{big}$	h unless otherwise stated.)

			LM19	93	LN	M293, L	.M393		LM29	03	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (2) TA = 25°C Tlow ≤ TA ≤ Thigh	V _{IO}	_	±1.0	±5.0 9.0	_	±1.0	±5.0 9.0		±2.0 9.0	±7.0 15	mV
Input Offset Current TA = 25°C Tlow \leq TA \leq Thigh	110	_	±3.0	±25 ±100	_	±5.0	±50 ±150	_	±5.0 ±50	±50 ±200	nA
Input Bias Current (3) TA = 25°C Tlow ≤ TA ≤ Thigh	Iв	_	25 —	100 300	_	25 —	250 400	1.1	25 200	250 500	nA
$ \begin{array}{l} \text{Input Common Mode Voltage} \\ \text{Range (4)} \\ \text{T}_{A} = 25^{\circ}\text{C} \\ \text{T}_{low} \leqslant \text{T}_{A} \leqslant \text{T}_{high} \\ \end{array} $	VICR	0	_	V _{CC} -1.5 V _{CC} -2.0	0	_	V _{CC} -1.5 V _{CC} -2.0	0	_	V _{CC} -1.5 V _{CC} -2.0	Volts
Voltage Gain $R_L \geqslant 15 \text{ k}\Omega$, $V_{CC} = 15 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$	AVOL	50	200		50	200		25	200	_	V/mV
Large Signal Response Time $ \begin{array}{l} V_{In} = TTL \ Logic \ Swing, \\ V_{ref} = 1.4 \ Vdc \\ V_{RL} = 5.0 \ Vdc, \ R_L = 5.1 \ k\Omega, \\ T_A = 25^{\circ}C \end{array} $	_	_	300	_		300	_		300	-	ns
Response Time (5) $V_{RL} = 5.0 \text{ Vdc}, R_L = 5.1 \text{ k}\Omega,$ $T_A = 25^{\circ}\text{C}$	^t TLH	-	1.3	_	-	1.3		_	1.5		μS
Input Differential Voltage (6) All V _{in} ≽ Gnd or V- Supply (if used)	V _{ID}	-	_	vcc	_	_	Vcc	_		Vcc	V
Output Sink Current $V_{in-} \ge 1.0 \text{ Vdc}, V_{in+} = 0 \text{ Vdc}, V_0 \le 1.5 \text{ Vdc T}_A = 25^{\circ}\text{C}$	Isink	6.0	16		6.0	16		6.0	16	_	mA
Output Saturation Voltage $V_{in-} \ge 1.0$ Vdc, $V_{in+} = 0$, $I_{sink} \le 4.0$ mA, $T_A = 25$ °C	V _{OL}		150	400	_	150	400	-	_	400	mV
$T_{low} \le T_A \le T_{high}$ Output Leakage Current $V_{in-} = 0 \text{ V, } V_{in+} \ge 1.0 \text{ Vdc,}$	lOL	_	0.1	700		0.1	700	_	0.1	700	nA
$V_O = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}$ $V_{\text{in}-} = 0 \text{ V}, V_{\text{in}+} \ge 1.0 \text{ Vdc},$ $V_O = 30 \text{ Vdc},$ $T_{\text{low}} \le T_A \le T_{\text{high}}$		-	_	1000	-	-	1000	_	_	1000	
Supply Current R _L = ∞ Both Comparators, T _A = 25°C	lcc	_	0.4	1.0		0.4	1.0	-	0.4	1.0	mA
R _L = ∞ Both Comparators, V _{CC} = 30 V		_	_	2.5	_		2.5	_	_	2.5	

^{*}LM193/193A — T_{low} = -55°C, T_{high} = +125°C LM293/293A — T_{low} = -25°C, T_{high} = +85°C LM393/393A — T_{low} = 0°C, T_{high} = +70°C

NOTES:

- (1) This magnitude of input current will only occur if the input leads are driven more negative than ground or the negative supply voltage. This is due to the input PNP collector-base junction becoming forward biased, acting as an input clamp diode. There is also a lateral PNP parasitic transistor action on the IC chip. This phenomena can cause the output voltage of the comparators to go to the V_{CC} voltage level (or ground if overdrive is large) during the time the input is driven negative. This will not destroy the device and normal output states will recover when the inputs become > -0.3 V of ground or negative supply.
- (2) At output switch point, $V_{\rm C} \simeq 1.4$ Vdc. $R_{\rm S} = 0.1$ with $V_{\rm CC}$ from 5.0 Vdc to 30 Vdc, and over the full input common-mode range (0 volts to $V_{\rm CC}$ –1.5 volts)
- (3) Due to the PNP transistor inputs, bias current will flow out of the inputs. This current is essentially constant, independent of the output state, therefore, no loading changes will exist on the input lines.
- (4) Input common mode of either input should not be permitted to go more than 0.3 V negative of ground or minus supply. The upper limit of common mode range is V_{CC} -1.5 V, but either or both inputs can be taken to as high as 30 volts without damage.
- (5) Response time is specified with a 100 mV step and 5.0 mV of overdrive. With larger magnitudes of overdrive, faster response times are obtainable.
- (6) The comparator will exhibit proper output state, if one of the inputs become greater than V_{CC}, the other input must remain within the common mode range. The low input state must not be less than -0.3 volts of ground or minus supply.
- (7) If input signals exceed V_{CC}, only the overdriven comparator is affected.
- (8) Overdriven inputs should be limited to 25 V when using a 5.0 V supply. Input current limiting resistors should be used when inputs are likely to exceed supply positive supply voltage.

TYPICAL PERFORMANCE CHARACTERISTICS

FIGURE 4 — POWER SUPPLY CURRENT versus
POWER SUPPLY VOLTAGE

LM2903

FIGURE 6 — OUTPUT SATURATION VOLTAGE versus OUTPUT SINK CURRENT

FIGURE 7 — POWER SUPPLY CURRENT versus

APPLICATIONS INFORMATION

These dual comparators feature high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance. This oscillation manifests itself during output transitions (VOL to VOH). To alleviate this situation input resistors $<10\,\mathrm{k}\Omega$ should be used. The

FIGURE 8 – ZERO CROSSING DETECTOR (Single Supply)

D1 prevents input from going negative by more than 0.6 V

 $R3 \le \frac{R5}{10}$ for small error in zero crossing

addition of positive feedback (< 10 mV) is also recommended.

It is good design practice to ground all unused pins.

Differential input voltages may be larger than supply voltage without damaging the comparator's input voltages. More negative than -0.3 V should not be used.

FIGURE 9 – ZERO CROSSING DETECTOR (Split Supplies)

 $V_{INmin} \approx 0.4 \text{ V peak for 1% phase distortion } (\triangle\Theta).$

FIGURE 10 - FREE-RUNNING SQUARE-WAVE OSCILLATOR

FIGURE 11 -- TIME DELAY GENERATOR

FIGURE 12 — COMPARATOR WITH HYSTERESIS

MC1414 MC1514

DUAL DIFFERENTIAL VOLTAGE COMPARATOR

...designed for use in level detection, low-level sensing, and memory applications.

- Two Separate Outputs
- Strobe Capability
- High Output Sink Current

2.8 mA Minimum (Each Comparator) for MC1514 1.6 mA minimum (Each Comparator) for MC1414

• Differential Input Characteristics

Input Offset Voltage = 1.0 mV for MC1514 = 1.5 mV for MC1414

Offset Voltage Drift = $3.0 \,\mu\text{V/}^{\circ}\text{C}$ for MC1514

= $5.0 \,\mu\text{V}/^{\circ}\text{C}$ for MC1414

- Short Propagation Delay Time 40 ns typical
- Output Compatible with All Saturating Logic Forms
 V_O = +3.2 V to -0.5 V typical

MAXIMUM RATINGS (TA = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltages	Vcc	+14	Vdc
	VEE	-7.0	
Differential Mode Input Voltage Range	VIDR	±5.0	Vdc
Common Mode Input Voltage Range	VICR	±7.0	Vdc
Peak Load Current	١Ľ	10	mA
Power Dissipation (Package Limitation)	PD		
Ceramic Dual In-Line Package		1000	mW
Derate above T _A = 25 ^o C		6.0	mW/ ^O C
Plastic Dual In-Line Package		625	mW
Derate above T _A = 25 ^o C		5.0	mW/ ^O C
Operating Temperature Range MC1514	TA	-55 to +125	°C
MC1414		0 to +75	
Storage Temperature Range	T _{stg}	-65 to +150	°C

 ${
m R_X}$ = Low Resistance Value, usually ${
m <}\,100\Omega$, not specified.

DUAL DIFFERENTIAL COMPARATOR

(DUAL MC1710)

SILICON MONOLITHIC INTEGRATED CIRCUIT

L SUFFIX CERAMIC PACKAGE CASE 632-02 MO-001AA

P SUFFIX PLASTIC PACKAGE CASE 646-05 (MC1414 only)

MC1414, MC1514

ELECTRICAL CHARACTERISTICS (V_{CC} = +12 Vdc, V_{FF} = -6 Vdc, T_A = 25°C unless otherwise noted.) (Each Comparator)

			MC1514			MC1414		
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	VIO							mVdc
(V _O = 1.4 Vdc, T _A = 25 ^o C)		-	1.0	2.0	_	1.5	5.0	
$(V_0 = 1.8 \text{ Vdc}, T_A = T_{low}^*)$		-	-	3.0	-	_	6.5	I
(V _O = 1.0 Vdc, T _A = T _{high} *)		-	_	3.0	_	-	6.5	
Temperature Coefficient of Input Offset Voltage	ΔV _{IO} /ΔΤ	_	3.0	-	_	5.0		μV/°C
Input Offset Current	110						1	μAdc
(V _O = 1.4 Vdc, T _A = 25 ^o C)			1.0	3.0	-	1.0	5.0	i .
$(V_0 = 1.8 \text{ Vdc}, T_A = T_{low})$		-		7.0	-	-	7.5	i
$(V_O = 1.0 \text{ Vdc}, T_A = T_{high})$		-	-	3.0	-	_	7.5	
Input Bias Current	Iв						1	μAdc
(V _O = 1.4 Vdc, T _A = 25 ^o C)		-	12	20	-	15	25	1
$(V_0 = 1.8 \text{ Vdc}, T_A = T_{low})$		-	-	45	l –	18	40	
$(V_O = 1.0 \text{ Vdc}, T_A = T_{high})$		_	_	20	_	-	40	l
Open Loop Voltage Gain	A _{vol}							V/V
(T _A = 25 ^o C)		1250	1700	_	1000	1500	-	
(T _A = T _{low} to T _{high})		1000	_		800	_		
Output Resistance	RO	_	200		_	200	_	ohms
Differential Voltage Range	VIDR	±5.0	_	-	±5.0	_	_	Vdc
High Level Output Voltage	VOH	2.5	3.2	4.0	2.5	3.2	4.0	Vdc
$(V_{1D} \geqslant 5.0 \text{ mV}, 0 \leqslant I_{O} \leqslant 5.0 \text{ mA})$					1			
Low Level Output Voltage	VOL							Vdc
$(V_{1D} \ge -5.0 \text{ mV}, I_{OS} = 2.8 \text{ mA})$		-1.0	-0.5	0	-	-	-	l
$(V_{1D} \ge -5.0 \text{ mV}, I_{OS} = 1.6 \text{ mA})$		_	_	_	-1.0	-0.5	0	
Output Sink Current	los	2.8	3.4	-	1.6	2.5	_	mAdc
$(V_{ID} \geqslant -5.0 \text{ mV}, V_{OL} \leqslant 0.4 \text{ V}, T_{A} = T_{low} \text{ to } T_{high})$					l			
Input Common Mode Voltage Range	VICR	±5.0	_	_	±5.0	_	_	Vdc
$(V_{EE} = -7.0 \text{ Vdc})$			•					
Common-Mode Rejection Ratio	CMRR	80	100	_	70	100	_	dB
$(V_{EE} = -7.0 \text{ Vdc}, R_{S} \leq 200 \Omega)$								
Strobe Low Level Current	1/L	_	_	2.5	_	_	2.5	mA
(V _{IL} = 0)	'-							
Strobe High Level Current	Чн	_	_	1.0		_	1.0	μА
(V _{IH} = 5.0 Vdc)	'''				l			
Strobe Disable Voltage	VIL			0.4		_	0.4	Vdc
(V _{OL} ≤ 0.4 Vdc)	'-				Ì			1
Strobe Enable Voltage	VIH	3.5	_	6.0	3.5	_	6.0	Vdc
(V _{OH} ≥ 2.4 Vdc)	'''						0.0	1.00
Propagation Delay Time (Figure 1)	tPLH	_	20		_	20		ns
· •	tPHL	_	40	_	_	40	_	
Strobe Response Time (Figure 2)	t _{so}		15	_		15	-	ns
	t _{sr}	_	6.0	_	_	6.0	_	
Total Power Supply Current, Both Comparators	¹cc		12.8	18	_	12.8	18	mAdc
$(V_{O} \leq 0)$	IEE	_	11	14	_	11	14	
Total Power Consumption, Both Comparators	PD		230	300		230	300	mW
T = 5500 for MO1514 000 for MO1444	ן יט		230	300		230	300	mvv

FIGURE 1 - PROPAGATION DELAY TIME

FIGURE 2 - STROBE RESPONSE TIME

^{*}T_{low} = -55^oC for MC1514, 0^oC for MC1414 T_{high} = +125^oC for MC1514, +75^oC for MC1414

TYPICAL CHARACTERISTICS

(Each Comparator)

MC1710 MC1710C

DIFFERENTIAL VOLTAGE COMPARATORS

... designed for use in level detection, low-level sensing, and memory applications.

Differential Input Characteristics —
 Input Offset Voltage = 1.0 mV — MC1710
 = 1.5 mV — MC1710C

Offset Voltage Drift = $3.0 \,\mu\text{V/}^{0}\text{C} - \text{MC1710}$ = $5.0 \,\mu\text{V/}^{0}\text{C} - \text{MC1710C}$

- Fast Response Time − 40 ns
- Output Compatible with all Saturating Logic Forms $V_O = +3.2 \text{ V to } -0.5 \text{ V (Typ)}$
- Low Output Impedance 200 Ohms

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC(max)} V _{EE(max)}	+14 -7.0	Vdc Vdc
Differential Input Signal Voltage	V _{ID}	±5.0	Volts
Common Mode Input Swing Voltage	V _{ICR}	±7.0	Volts
Peak Load Current	1L	10	mA
Power Dissipation (Package Limitations)	PD	680	mW
Metal Package Derate above T _A = +25 ^o C		4.6	mW/ ^O C
Ceramic Dual In-Line Package Derate above T _A = +25 ⁰ C		625 5.0	mW mW/ ^O C
Operating Temperature Range MC1710 MC1710C	ТА	-55 to +125 0 to +75	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

EQUIVALENT CIRCUIT

DIFFERENTIAL COMPARATORS

SILICON MONOLITHIC INTEGRATED CIRCUIT

L SUFFIX CERAMIC PACKAGE CASE 632-02 MO-001AA

P SUFFIX
PLASTIC PACKAGE
CASE 646-05
(MC1710C Only)

MC1710, MC1710C

ELECTRICAL CHARACTERISTICS (V_{CC} = +12 Vdc, V_{EE} = -6.0 Vdc, T_A = +25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
Input Offset Voltage		V _{IO}				mVdc
$(V_O = 1.4 \text{ Vdc}, T_A = +25^{\circ}\text{C})$	MC1710		-	1.0	2.0	
	MC1710C			1.0	5.0	
$(V_O = 1.8 \text{ Vdc}, T_A = -55^{\circ}\text{C})$	MC1710		_	-	3.0	
(V _O = 1.0 Vdc, T _A = +125 ^o C	MC1710	i	-	-	3.0	ł
$(V_O = 1.5 \text{ Vdc}, T_A = 0^{\circ}\text{C})$	MC1710C		_	_	6.5	į
$(V_O = 1.2 \text{ Vdc}, T_A = +75^{\circ}\text{C})$	MC1710C			_	6.5	
Temperature Coefficient of Input Offset Voltage		AN/ /AT		<u> </u>		11100
Input Offset Current		ΔV ₁₀ /ΔT		3.0	-	μV/°C
($V_O = 1.4 \text{ Vdc}, T_\Delta = +25^{\circ}\text{C}$)	1101710	110	İ			μAdc
(VO = 1.4 Vdc, 1A = +25°C)	MC1710		_	1.0	3.0	
	MC1710C		_	1.0	5.0	
$(V_O = 1.8 \text{ Vdc}, T_A = -55^{\circ}\text{C})$	MC1710		-	-	7.0	
$(V_O = 1.0 \text{ Vdc}, T_A = +125^{\circ}\text{C})$	MC1710		-	-	3.0	
$(V_0 = 1.5 \text{ Vdc}, T_A = 0^{\circ}\text{C})$	MC1710C		-	-	7.5	
$(V_O = 1.2 \text{ Vdc}, T_A = +75^{\circ}\text{C})$	MC1710C		-	-	7.5	1
Input Bias Current		I _{IB}	,			μAdc
$(V_0 = 1.4 \text{ Vdc}, T_A = +25^{\circ}\text{C})$	MC1710		-	12	20	
	MC1710C			12	25	1
$(V_O = 1.8 \text{ Vdc}, T_A = -55^{\circ}\text{C})$	MC1710		_		45	
$(V_O = 1.0 \text{ Vdc}, T_\Delta = +125^{\circ}\text{C})$	MC1710			_	20	
$(V_O = 1.5 \text{ Vdc}, T_A = 0^{\circ}\text{C})$	MC1710C		_			
$(V_0 = 1.3 \text{ Vdc}, T_A = 0.6)$ $(V_0 = 1.2 \text{ Vdc}, T_A = +75^{\circ}\text{C})$	MC1710C MC1710C		_	_	40	
	WICT/TOC				40	
Voltage Gain		A _{vol}		1	1	V/V
$(T_A = +25^{\circ}C)$	MC1710		1250	1700	_	ı
	MC1710C		1000	1700	_	1
(T _A = T _{low} to T _{high}) ⁽¹⁾	MC1710	1	1000	_	-	1
	MC1710C		800	_	-	1
Output Resistance		ro	_	200		Ohms
Differential Voltage Range		VID	±5.0	_	-	Vdc
Positive Output Voltage		Voн	2.5	3.2	4.0	Vdc
$(V_{1D} \ge 5.0 \text{ mV}, 0 \le I_{O} \le 5.0 \text{ mA})$		1011			""	""
Negative Output Voltage		VOL	-1.0	-0.5	0	Vdc
$(V_{ID} \geqslant -5.0 \text{ mV})$		"0"		1		'"
Output Sink Current		l _{Os}				mAdc
$(V_{1D} \geqslant -5.0 \text{ mV}, V_{O} \leqslant 0)$	MC1710	.0\$	2.0	2.5	l _	1117100
18	MC1710C		1.6	2.5	_	İ
$(V_{1D} \geqslant -5.0 \text{ mV}, V_{O} \geqslant 0, T_{A} = T_{1OW})$	MC1710		1.0	2.0	_	
(VID > 3.5 IIIV, VO > 6, 1A - 116W/	MC1710 MC1710C		0.5	2.0	_	
Input Common-Mode Voltage Range		V	±5.0			V-14
(V _{EE} = -7.0 Vdc)		VICR	±5.0	_	_	Volts
Common-Mode Rejection Ratio		01455				dB
$(V_{EE} = -7.0 \text{ Vdc}, R_S \leq 200 \text{ Ohms})$	MC1710	CMRR	80	100	1	a _B
(VEE -7.0 Vac, 115 @ 200 Ollills)	MC1710 MC1710C	i	70	100	_	
Propagation Delay Time for Positive and Negative Go	ing Input Pulse	tPLH	_	40	-	ns
$(V_{ID} = 5.0 \text{ mV} + V_{IO})$		tPHL	-	35		
D				l		mAdc
Power Supply Current				1		1
(V _O ≤ 0)		ID+	-	6.4	9.0	ł
Power Supply Current $(V_O \leqslant 0)$		1 _D +	_	6.4 5.5	9.0 7.0	

⁽¹⁾ $T_{low} = -55^{o}C$ for MC1710, $0^{o}C$ for MC1710C $T_{high} = +125^{o}C$ for MC1710, $+75^{o}C$ for MC1710C

TYPICAL CHARACTERISTICS

FIGURE 3 – INPUT OFFSET CURRENT versus TEMPERATURE

FIGURE 5 – GAIN VARIATION WITH POWER SUPPLY VOLTAGE

FIGURE 2 – INPUT OFFSET VOLTAGE versus TEMPERATURE

FIGURE 4 — INPUT BIAS CURRENT versus TEMPERATURE

FIGURE 6 - VOLTAGE GAIN versus TEMPERATURE

TYPICAL CHARACTERISTICS (Continued)

MC1711 MC1711C

DUAL DIFFERENTIAL VOLTAGE COMPARATOR

 \dots designed for use in level detection, low-level sensing, and memory applications.

Typical Characteristics:

- Differential Input Input Offset Voltage = 1.0 mV Offset Voltage Drift = 5.0 µV/OC
- Fast Response Time 40 ns
- Output Compatible with All Saturating Logic Forms
- V_{out} = +4.5 V to -0.5 V typical
- Low Output Impedance 200 ohms

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

Rating		Symbol	Value	Unit
Power Supply Voltage		Vcc	+14	Vdc
		VEE	-7.0	
Differential Input Signal Voltage		V _{IDR}	±5.0	Volts
Common-Mode Input Swing Voltage		VICR	±7.0	Volts
Peak Load Current		IL.	50	mA
Power Dissipation (package limitat	ion)	PD		
Metal Package			680	mW
Derate above T _A = +25 ^o C	1.	4.6	mW/ ^o C	
Ceramic and Plastic Dual In-Line	Packages	İ	625	mW
Derate above T _A = +25°C			5.0	mW/ ^o C
Operating Temperature Range	MC1711	TA	-55 to +125	°C
	MC1711C		0 to +75	
Storage Temperature Range		T _{stg}	-65 to +150	°C

DUAL DIFFERENTIAL COMPARATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

G SUFFIX METAL PACKAGE CASE 603-04 TO-100

L SUFFIX CERAMIC PACKAGE CASE 632-02 MO-001AA

P SUFFIX PLASTIC PACKAGE CASE 646-05 (MC1711C only)

*Connected to pin 4 via the substrate on some plastic units.

MC1711, MC1711C

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (\text{each comparator}) \ (\text{V}_{CC} = +12 \ \text{Vdc}, \text{V}_{EE} = -6.0 \ \text{Vdc}, \text{T}_{A} = +25 \ \text{C} \ \text{unless otherwise noted.})$

ELECTRICAL CHARACTERISTICS (each compa		MC1711			MC1			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage $ \begin{array}{l} (V_{ICR} = 0 \ Vdc, T_A = +25^{0}C) \\ (V_{ICR} \neq 0 \ Vdc, T_A = +25^{0}C) \\ (V_{ICR} \neq 0 \ Vdc, T_A = +25^{0}C) \\ (V_{ICR} = 0 \ Vdc, T_A = T_{Iow} \ to \ T_{high}^*) \\ (V_{ICR} \neq 0 \ Vdc, T_A = T_{Iow} \ to \ T_{high}) \end{array} $	V _{IO}	- - -	1.0 1.0 	3.5 5.0 4.5 6.0	- - - -	1.0 1.0 –	5.0 7.5 6.0 10	mVdc
Temperature Coefficient of Input Offset Voltage	ΔV ₁₀ /ΔΤ	-	5.0	-	_	5.0	_	μV/ ^O C
Input Offset Current $ (V_O = 1.4 \text{ Vdc}, T_A = +25^{\circ}\text{C}) $ $ (V_O = 1.8 \text{ Vdc}, T_A = -55^{\circ}\text{C}) $ $ (V_O = 1.5 \text{ Vdc}, T_A = -65^{\circ}\text{C}) $ $ (V_O = 1.5 \text{ Vdc}, T_A = -90^{\circ}\text{C}) $ $ (V_O = 1.0 \text{ Vdc}, T_A = +125^{\circ}\text{C}) $ $ (V_O = 1.2 \text{ Vdc}, T_A = +75^{\circ}\text{C}) $	110	- - - -	0.5 - - - -	10 20 - 20 -	- - - -	0.5 - - - -	15 25 25	μAdc
Input Bias Current $ (V_O = 1.4 \text{ Vdc}, T_A = +25^{\circ}\text{C}) $ $ (V_O = 1.8 \text{ Vdc}, T_A = -55^{\circ}\text{C}) $ $ (V_O = 1.5 \text{ Vdc}, T_A = 0^{\circ}\text{C}) $ $ (V_O = 1.0 \text{ Vdc}, T_A = +125^{\circ}\text{C}) $ $ (V_O = 1.2 \text{ Vdc}, T_A = +75^{\circ}\text{C}) $	IIB	- - - -	25 	75 150 - 150	- - - -	25 	100 - 150 - 150	μAdc
Voltage Gain (T _A = +25 ^o C) (T _A = T _{low} to T _{high})	A _{vol}	700 500	1500 -	-	700 500	1500 —	-	V/V
Output Resistance	RO	_	200	-	_	200	-	ohms
Differential Voltage Range	VIDR	±5.0	-	-	±5.0	1	-	Vdc
High Level Output Voltage $(V_{ID} \ge 10 \text{ mVdc}, 0 \le I_O \le 5.0 \text{ mA})$	Voн	2.5	3.2	5.0	2.5	3.2	5.0	Vdc
Low Level Output Voltage $(V_{ D} \ge -10 \text{ mVdc})$	VOL	-1.0	-0.5	0	-1.0	-0.5	0	Vdc
Strobed Output Level (V _{strobe} ≤ 0.3 Vdc)	V _{OL(st)}	-1.0		0,	~1.0	-	0	Vdc
Output Sink Current $(V_{in} \geqslant -10 \text{ mV}, V_{O} \geqslant 0)$	lOs	0.5	0.8	-	0.5	0.8	-	mAdc
Strobe Current (V _{strobe} = 100 mVdc)	l _{st}	-	1.2	2.5	-	1.2	2.5	mAdc
Input Common-Mode Range (VEE = -7.0 Vdc)	V _{ICR}	±5.0	-	-	±5.0	-	-	Volts
Response Time $(V_b = 5.0 \text{ mV} + V_{10})$	ŧR	_	40	_	-	40	-	ns
Strobe Release Time	tSR	-	12	_	_	12	_	ns
Power Supply Current $(V_0 \le 0 \text{ Vdc})$	ICC IEE	-	8.6 3.9	_	_	8.6 3.9	_	mAdc
Power Consumption		_	130	200	_	130	200	mW

^{*}T_{low} = -55°C for MC1711, 0°C for MC1711C T_{high} = +125°C for MC1711, +75°C for MC1711C

TYPICAL CHARACTERISTICS

FIGURE 7 - COMMON-MODE PULSE RESPONSE

FIGURE 9 - RECOMMENDED SERIES RESISTANCE versus MRTL LOADS

FIGURE 8 – OUTPUT PULSE STRETCHING WITH CAPACITIVE LOADING

FIGURE 10 - FAN-OUT CAPABILITY WITH MDTL OR MTTL OUTPUT SWING

Advance Information

POWER SUPPLY SUPERVISORY CIRCUIT/ DUAL-VOLTAGE COMPARATOR

The MC3424 series is a dual-channel supervisory circuit, consisting of two uncommitted input comparators, a reference, output comparators, with high current Drive and Indicator outputs for each channel. The input comparators feature programmable hysteresis, high common-mode rejection, and wide common-mode range, capable of comparing at ground potential with single-supply operation. Separate Delay pins are provided to increase noise immunity by delaying activation of the outputs. A 2.5 V bandgap voltage reference is pinned-out for referencing the input comparators, or other external functions. Independent high current Drive and Indicator outputs for each channel can source and sink up to 300 mA and 30 mA respectively. CMOS/TTL compatible digital inputs provide Remote Activation of each channel's outputs. An Input Enable pin allows control of the input comparators.

Although this device is intended for power supply supervision, the pinned-out reference, uncommitted input comparators, and many other features, enable the MC3424 series to be utilized for a wide range of applications.

- Pinned-Out 2.5 V Reference
- Wide Common-Mode Range
- Programmable Hysteresis
- Programmable Time Delays
- Two 300 mA Drive Outputs
- Remote Activation Capability
- Wide Supply Range: 4.5 V ≤ V_{CC} ≤ 40 V

APPLICATIONS

- Dual Over-Voltage "Crowbar" Protection
- Dual Under-Voltage Supervision
- Over/Under Voltage Protection
- Split-Supply Supervision
- Line-Loss Sensing
- Proportional Controller
- Programmable Frequency Switch
- Battery Charger

POWER SUPPLY SUPERVISORY CIRCUIT/DUAL VOLTAGE COMPARATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION					
Device	Temperature Range	Package			
MC3524L, AL	-55 to +125°C	Ceramic DIP			
MC3324L, AL MC3324P, AP	-40 to +85°C	Ceramic DIP Plastic DIP			
MC3424L, AL MC3424P, AP	0 to +70°C	Ceramic DIP Plastic DIP			

This document contains information on a new product. Specifications and information herein are subject to change without notice

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	40	Vdc
Comparator Input Differential Voltage Range	VIDR	±40	Vdc
Comparator Input Voltage Range	VIR	-0.3 to +40	Vdc
Input Enable Voltage Range	VIE	-0.3 to +40	Vdc
Remote Activation Input Voltage Range	V _{RA}	-0.3 to +40	Vdc
Drive Output Short-Circuit Current	IOS(DRV)	Internally Limited	mA
Indicator Output Voltage	VIND	0 to 40	Vdc
Indicator Output Sink Current	IND	30	mA
Reference Short-Circuit Current	I _{OS(ref)}	Internally Limited	mA
Power Dissipation and Thermal Characteristics Ceramic Package Maximum Power Dissipation @ T _A = 95°C Thermal Resistance Junction to Air Plastic Package Maximum Power Dissipation @ T _A = 70°C Thermal Resistance Junction to Air	P _D R _θ JA P _D R _θ JA	1000 80 1000 80	mW °C/W mW °C/W
Operating Junction Temperature Ceramic Package Plastic Package	TJ	+175 +150	°C
Operating Ambient Temperature Range MC3524, MC3524A MC3324, MC3324A MC3424, MC3424A	TA	-55 to +125 -40 to +85 0 to +70	°C
Storage Temperature Range Ceramic Package Plastic Package	T _{stg}	-65 to +175 -55 to +150	°C

ELECTRICAL CHARACTERISTICS (4.5 V \leq V_{CC} \leq 40 V; T_A = T_{low} to T_{high} [see Note 1] unless otherwise specified.)

Characteristic		MC3524A/3424A/3324A			MC3524/3424/3324			Unit
	Symbol	Min	Тур	Max	Min	Тур	Max	J 51111
REFERENCE SECTION								
Reference Output Voltage V _{CC} = 15V; I _L = 0 mA T _A = 25°C T _{low} to T _{high} (Note 1)	V _{ref}	2.475 2.45	2.5 2.5	2.525 2.55	2.4 2.33	2.5 2.5	2.6 2.63	Vdc
Line Regulation 4.5 V \leq V _{CC} \leq 40 V; I _L = 0 mA; T _J = 25°C	Regline	_	7.0	15	_	7.0	15	mV
Load Regulation $0 \text{ mA} \le I_L \le 10 \text{ mA}; V_{CC} = 15 \text{ V};$ $T_J = 25^{\circ}\text{C}$	Regload	_	4.0	12	_	4.0	12	mV
Output Short-Circuit Current (T _A = 25°C)	IOS(ref)	_	23	_	_	23		mA
Power Supply Voltage Operating Range	Vcc	4.5	_	40	4.5		40	Vdc
Power Supply Current V _{CC} = 40 V; T _A = 25°C; No Output Loads V _{C1-} , V _{C2-} = V _{CC} ; V _{C1+} , V _{C2+} = 0 V	ICC(off)	_	12	15	_	12	15	mA
V _{C1+} , V _{C2+} = V _{CC} ; V _{C1-} , V _{C2-} = 0 V	I _{CC(on)}	_	27	32	-	27	32	mA

NOTES:

(1) T_{low} = -55°C for MC3524, MC3524A = -40°C for MC3324, MC3324A

= 0°C for MC3424, MC3424A

T_{high} = +125°C for MC3524, MC3524A = +85°C for MC3324, MC3324A

= +70°C for MC3424, MC3424A

- (2) The input common-mode voltage or input signal voltage should not be allowed to go negative by more than 300 mV. The upper functional limit of the common-mode voltage range is typically V_{CC} – 1.4 volts, but either or both inputs can go to 40 volts, independent of V_{CC} , without device destruction.
- (3) The $V_{th(ES1)}$ limits are approximately 0.9 times the V_{ref} limits over the applicable temperature range.
- (4) The $V_{th(OC)}$ limits are approximately the V_{ref} limits over the applicable temperature range.

		MC3524A/3424A/3324A			MC3524/3424/3324			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
INPUT SECTION								
Input Offset Voltage	Vio							mV
T _A = 25°C T _{low} to T _{high} (Note 1)		_	±3.0 ±3.0	±8.0 ±12	_	±5.0 ±5.0	±10 ±15	
Input Offset Current	10		_0.0					nA
T _A = 25°C	10		±3.0	±25		±3.0	±25	"
T _{low} to T _{high} (Note 1)			±3.0	±250		±3.0	±250	
Input Bias Current	Iв			050				nA
T _A = 25°C T _{low} to T _{high} (Note 1)			50 500	250 1000		50 500	250 1000	
Comparator Input Functional Common	VICR	-0.1	V _{CC} -1.4	_	-0.1	V _{CC} -1.4		v
Mode Range (T _A = 25°C, Note 2)	VICH	-0.1	VCC 1.4		0.1	1 *((1.7		•
Hysteresis Activation Voltage	V _{H(act)}							٧
V _{CC} = 15 V; V _{C1+} , V _{C2+} = V _{CC} ; T _A = 25°C	` '		,,					
I _H = 10% I _H = 90%			1.2 1.4	_	_	1.2 1.4	_	
Hysteresis Current	lн	10	12.5	15	9.0	12.5	16	μА
V _{CC} = 15 V; V _{C1-} , V _{C2-} = 2.5 V;	''							,
V _{C1+} , V _{C2+} = V _{CC} ; T _A = 25°C								
Common Mode Rejection Ratio	CMRR	60	72		60	72		dB
Power Supply Rejection Ratio	PSRR		95	_	_	95	_	dB
Input Enable Threshold (Pin 16; Note 3)	V _{th(IE)}	0.9	1.4	1.9	0.9	1.4	1.9	V
Input Enable Current (Pin 16)			0.5	0.5		0.5		μА
V _{IL(IE)} = 0 V V _{IH(IE)} = 40 V	IIL(IE)	_	-0.5 0.05	-2.5 1.0		-0.5 0.05	-2.5 1.0	
Enable Select 1 Threshold Voltage (Pin 2)	V _{th} (ES1)	2.2	2.25	2.3	2.1	2.25	2.4	v
Delay Pin Voltage (IDLY = 0 mA)	*(11(E31)		2.20	2.0		2.20		v
Low State	VOL(DLY)	_	0.2	0.5	_	0.2	0.5	
High State	VOH(DLY)	V _{CC} -0.5	V _{CC} -0.15		V _{CC} -0.5	V _{CC} -0.15	_	
Delay Pin Source Current V _{CC} = 15 V; V _{DLY1} , V _{DLY2} = 0 V	IDLY(source)	150	200	250	140	200	260	μА
Delay Pin Sink Current V _{CC} = 15 V; V _{DLY1} , V _{DLY2} = 2.5 V	^I DLY(sink)	1.8	3.0	_	1.8	3.0	_	mA
OUTPUT SECTION								
Drive Output Peak Current (T _A = 25°C)	IDRV(peak)	200	300	_	200	300	_	mA
Drive Output V (IDRV = 100 mA; TA = 25°C)	V _{OH(DRV)}	V _{CC} -2.5	V _{CC} -2.0	_	V _{CC} -2.5	V _{CC} -2.0		V
Drive Output Leakage Current (VDRV = 0 V)	I _{DRV(leak)}	_	15	200	_	15	200	nA
Drive Output Current Slew Rate (T _A = 25°C)	di/dt	_	2.0		_	2.0		A/μS
Drive Output Transient Rejection (T _A = 25°C)	IDRV(trans)	_	1.0	_		1.0		mA
$V_{CC} = 0 \text{ V to } 15 \text{ V at } dV/dt = 200 \text{ V}/\mu\text{s};$ $V_{C1-}, V_{C2-} = V_{ref}; V_{C1+}, V_{C2+} = 0 \text{ V}$	Div(tialis)				,			(Peak
Indicator Output Saturation Voltage I _{IND} = 30 mA; T _A = 25°C	V _{IND(sat)}		560	800	_	560	800	mV
Indicator Output Leakage Current VOH(IND) = 40 V	IND(leak)	_	25	200	-	25	200	nA
Output Comparator Threshold V (Note 4)	V _{th(OC)}	2.45	2.5	2.55	2.33	2.5	2.63	V
Remote Activation Threshold Voltage	V _{th(RA)}	1.3	1.4	1.5	1.1	1.4	1.7	· v
Remote Activation Current								μА
V _{IL(RA)} = 0 V V _{IH(RA)} = 40 V	lIL(RA) lIH(RA)		-100 70	-250 250		-100 70	-250 250	
Propagation Delay (V _{CC} = 15 V; T _A = 25°C) Input to Drive Output 100 mV Overdrive, C _{DLY} = 0 µF	^t PLH(IN/DRV)		1.0	_	_	1.0	_	μS
Remote Activation to Drive Output 1.4 V Overdrive (2.5 V to 0 V Step)	tPLH(RA/DRV)		600		_	600		ns

FIGURE 2 — HYSTERESIS ACTIVATION VOLTAGE versus TEMPERATURE VH(act), HYSTERESIS ACTIVATION VOLTAGE (V) V_{C1+} , $V_{C2+} = V_{CC}$ $V_{H(act)} = V_{Oltage Level}$ at which Hysteresis Current (I_H) is 90% of full value. VCC = 15 V $V_{CC} = 40 \text{ V}$ 0.6 125 -55 -25 50 75 100 TA, AMBIENT TEMPERATURE (°C)

FIGURE 4 — REFERENCE VOLTAGE CHANGE versus
OUTPUT CURRENT

FIGURE 5 — REFERENCE VOLTAGE CHANGE Versus TEMPERATURE

FIGURE 6 — REFERENCE SHORT-CIRCUIT CURRENT versus TEMPERATURE

FIGURE 7 — OUTPUT DELAY TIME versus DELAY CAPACITANCE

FIGURE 8 — DELAY PIN SOURCE CURRENT versus TEMPERATURE

FIGURE 9 — DRIVE OUTPUT SATURATION VOLTAGE versus OUTPUT PEAK CURRENT

FIGURE 10 — INDICATOR OUTPUT SATURATION

FIGURE 11 — DRIVE OUTPUT SATURATION VOLTAGE versus TEMPERATURE

FIGURE 12 — POWER SUPPLY CURRENT

FIGURE 13 — THE COMPLETE VOLTAGE SENSE CAPABILITY OF THE INPUT COMPARATORS, WITH OR WITHOUT PROGRAMMABLE HYSTERESIS.

	VOLTAGE SENSE (V _S)						
	ov	ER	UNI	DER			
	WITH HYSTERESIS	WITHOUT HYSTERESIS	WITH HYSTERESIS	WITHOUT HYSTERESIS			
Vs > V _{ref}	VS VH=IHRH	Vs O Vref	$V_{H} = I_{H} \left(\frac{R_{1} R_{2}}{R_{1} + R_{2}} \right)$ R_{1} R_{2} V_{ref}	Vs o Vref			
$V_S \leqslant V_{ref}$ $V_S \geqslant 2\phi^*$	$V_{S} \circ \bigvee_{t=1}^{V_{H} = 1} \frac{\left(\frac{R_{1} R_{2}}{R_{1} + R_{2}}\right)}{V_{ref}}$ $V_{ref} \circ \bigvee_{t=1}^{V_{ref}} R_{1}$ $V_{th} > 2\phi$	V _S	VS VH=IHRH Vref Vth>24	νς ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο			
$V_S < 2\phi^*$ $V_S \geqslant 0 V$	$V_{H} = I_{H} \left(\frac{R_{1} R_{2}}{R_{1} + R_{2}} \right)$ V_{ref} R_{1} V_{S} R_{2}	V _S 0 0 V _{ref} 0 V _{ref} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$V_{H} = I_{H} \begin{pmatrix} R_{1} & R_{2} \\ R_{1} & + R_{2} \end{pmatrix}$ V_{ref} V_{S} $V_{th} > 2\phi$	V _S o			
V _S < 0 V	$V_{H} = I_{H} \left(\frac{R_{1} R_{2}}{R_{1} + R_{2}} \right)$ V_{ref} V_{S} $V_{th} > 2\phi$	V _{ref}	$V_{H} = I_{H} \begin{pmatrix} R_{1} & R_{2} \\ R_{1} & + R_{2} \end{pmatrix}$ V_{ref} R_{1} V_{S} R_{2} $V_{th} > 2\phi$	V _{ref}			

^{*} $2\phi \simeq 1.1$ Volts at T_J = 25° C

CIRCUIT DESCRIPTION

The MC3424 series is a high current output, dual channel power supply supervisory circuit. Basic circuit configuration is shown in Figure 29. Each channel features a true differential input comparator with a commonmode range from ground potential to V_{CC} - 1.4 volts, with single supply operation. The inverting inputs of each input comparator (C1-, C2-) have a feedback activated 12.5 µA current sink for programming input comparator hysteresis. Source resistance of the inverting inputs determines the amount of hysteresis for each input comparator. The hysteresis feature can be defeated by reducing the inverting input voltage of the respective input comparator to less than two diode drops (2 $\phi \approx$ 1.1 volts) above Gnd (See Hysteresis Activation Voltage specification). A complete matrix of various input comparator conditions is shown in Figure 13.

The digital Input Enable (IE) pin provides full enable/disable control of one or both of the input comparators. Input Comparator 1 enable control is allowed if the Enable Select1/Non-Inverting Input (Pin 2) is less than 90% of the internal 2.5 volts reference (0.9 $V_{\text{ref}} \cong 2.25$ V). If the Input Enable Select1/Non-Inverting Input (Pin 2) is greater than 0.9 V_{ref} , Comparator 1 is not affected by the logic state of the Input Enable pin and always remains enabled.

The voltage threshold of the Input Enable pin is TTL compatible. A logic level "1" permits normal operation of input comparators, as stated above. A logic "0" forces the respective Delay pin (DLY1, DLY2) to a low state, independent of the input comparator's state.

The selective enabling feature of Input Comparator 1 is directly applicable when the MC3424 series is used as an over- and under-voltage supervisory circuit, where channel 2 (Input Comparator 2) is monitoring under-voltage conditions, and channel 1 is utilized for over-voltage protection. The ability to keep channel 1 (Input Comparator 1) active, while disabling channel 2, provides immediate over-voltage protection during power supply turn-on, while the under-voltage channel (2) can be disabled during the power supply turn-on rise time to the regulated level, preventing false indication of an under-voltage condition. If it is desired to monitor two independent voltages for an under-voltage condition, both channels can be selectively disabled until the slowest supply reaches its regulated voltage.

Separate Delay pins (DLY1, DLY2) are provided for each channel to independently delay the Drive and Indicator Outputs, thus providing greater input noise immunity. The two Delay pins are essentially the outputs of the respective input comparators, and provide a constant current source of typically 200 μ A when the non-inverting input voltage is greater than the inverting input level ($V_{C1+} > V_{C1-}$; $V_{C2+} > V_{C2-}$).

A capacitor (C_{DLY}) tied to these Delay pins will establish a predictable delay time (t_{DLY}) of the Drive and Indicator outputs for the respective channel. The Delay pins are internally tied to the non-inverting input of Output Comparators 1 and 2, which are referenced to 2.5 volts. Therefore, delay time (t_{DLY}) is based on the constant current t_{DLY} (source) charging the external delay capacitor (C_{DLY}) to 2.5 volts or;

$$t_{DLY} = \frac{V_{ref} \ C_{DLY}}{I_{DLY}(source)} = \frac{2.5 \ C_{DLY}}{200 \ \mu A} = 12500 \ C_{DLY}.$$

Figure 7 provides $C_{\mbox{\scriptsize DLY}}$ values for a wide range of time delays.

The Delay pins are pulled low when the respective input comparator's non-inverting input is less than the inverting input (V_{C1+} < V_{C1-}; V_{C2+} < V_{C2-}), or when the Input Enable pin is at a low logic level. The sink current (\geq 1.8 mA) capability of the Delay pins is much greater than the typical 200 μA source current, thus enabling a relatively fast delay capacitor discharge time.

Each independent channel of the MC3424 series has a Drive (DRV) and Indicator output (IND) which respectively source and sink current simultaneously. The Drive outputs are current-limited emitter-followers capable of sourcing 300 mA at a turn-on slew rate of 2.0 A/µs, ideal for driving "Crowbar" SCR's. The Indicator outputs are open collector, NPN transistors, capable of sinking 30 mA to provide sufficient drive for LED's, small relays or regular shut-down circuitry. These current capabilities apply to both channels operating simultaneously, providing device power dissipation limits are not exceeded.

Separate TTL-compatible Remote Activation inputs (RA1, RA2) for each channel will activate the Drive and Indicator outputs of the respective channel, independent of the input comparator state, when a low logic level is applied. The active low for remote activation permits latching of the respective outputs by connecting the Indicator output, via a ≤ 5.0 k resistor to the Remote Activation input of the same channel, as shown in Figure 17. Latching will now occur by either of the Remote Activation inputs with a short duration low logic level, or by the input comparators. Unlatching of each channel is accomplished with a short duration, high logic level at the Remote Activation pin.

The MC3424 series has an internal 2.5 V bandgap reference capable of sourcing up to 10 mA of load current for external bias circuits. This reference has an accuracy of $\pm 4.0\%$ for the basic devices and $\pm 1.0\%$ for the A-suffix device types at 25°C. The reference has a typical temperature coefficient of 30 ppm/°C for A-suffix devices.

CROWBAR SCR CONSIDERATIONS

Referring to Figure 14, it can be seen that the crowbar SCR, when activated, is subject to a large current surge from the output capacitance, Cout. This capacitance consists of the power supply output capacitors, the load's decoupling capacitors, and in the case of Figure 14A, the supply's input filter capacitors. This surge current is illustrated in Figure 15, and can cause SCR failure or degradation by any one of three mechanisms: di/dt, absolute peak surge, or 12t. The interrelationship of these failure methods and the breadth of the applications make specification of the SCR by the semiconductor manufacturer difficult and expensive. Therefore, the designer must empirically determine the SCR and circuit elements which result in reliable and effective OVP operation. However, an understanding of the factors which influence the SCR's di/dt and surge capabilities simplifies this task.

1. di/dt

As the gate region of the SCR is driven on, its area of conduction takes a finite amount of time to grow, starting as a very small region and gradually spreading.

Since the anode current flows through this turned-on gate region, very high current densities can occur in the gate region if high anode currents appear quickly (di/dt). This can result in immediate destruction of the SCR or gradual degradation of its forward blocking voltage capabilities — depending on the severity of the occasion.

The value of di/dt that an SCR can safely handle is influenced by its construction and the characteristics of the gate drive signal. A center-gate-fire SCR has more di/dt capability than a corner-gate-fire type, and heavily overdriving (3 to 5 times IGT) the SCR gate with a fast <1.0 µs rise time signal will maximize its di/dt capability. A typical maximum number in phase control SCRs of less than 50 A(RMS) rating might be 200 A/µs, assuming a gate current of five times IGT and $< 1.0 \mu s$ rise time. If having done this, a di/dt problem is seen to still exist, the designer can also decrease the di/dt of the current waveform by adding inductance in series with the SCR, as shown in Figure 16. Of course, this reduces the circuit's ability to rapidly reduce the dc bus voltage and a tradeoff must be made between speedy voltage reduction and di/dt.

FIGURE 14 — TYPICAL CROWBAR CIRCUIT CONFIGURATIONS

FIGURE 15 — CROWBAR SCR SURGE CURRENT WAVEFORM

2. Surge Current

If the peak current and/or the duration of the surge is excessive, immediate destruction due to device overheating will result. The surge capability of the SCR is directly proportional to its die area. If the surge current cannot be reduced (by adding series resistance—see Figure 16) to a safe level which is consistent with the system's requirements for speedy bus voltage reduction, the designer must use a higher current SCR. This may result in the average current capability of the SCR exceeding the steady state current requirements imposed by the dc power supply.

FIGURE 16 — CIRCUIT ELEMENTS AFFECTING SCR SURGE & di/dt

A WORD ABOUT FUSING

Before leaving the subject of the crowbar SCR, a few words about fuse protection are in order. Referring back to Figure 14A, it will be seen that a fuse is necessary if the power supply to be protected is not output current limited. This fuse is not meant to prevent SCR failure but rather to prevent a fire!

In order to protect the SCR, the fuse would have to possess an I^2t rating less than that of the SCR and yet have a high enough continuous current rating to survive normal supply output currents. In addition, it must be capable of successfully clearing the high short circuit currents from the supply. Such a fuse as this is quite expensive, and may not even be available.

The usual design compromise then is to use a garden variety fuse (3AG or 3AB style) which cannot be relied on to blow before the thyristor does, and trust that if the SCR does fail, it will fail short circuit. In the majority of the designs, this will be the case, though this is difficult to guarantee. Of course, a sufficiently high surge will cause an open. These comments also apply to the fuse in Figure 14B.

CROWBAR SCR SELECTION GUIDE

As an aid in selecting an SCR for crowbar use, the following selection guide is presented.

DEVICE	IRMS	IFSM	PACKAGE
MCR67 Series	12 A	100 A	Metal Stud
MCR68 Series	12 A	100 A	TO-220 Plastic
2N1842 Series	16 A	125 A	Metal Stud
2N6400 Series	16 A	160 A	TO-220 Plastic
2N6504 Series	25 A	160 A	TO-220 Plastic
2N681 Series	25 A	200 A	Metal Stud
2N2573 Series	25 A	260 A	TO-3 Metal Can
MCR69 Series	25 A	300 A	TO-220 Plastic
MCR70 Series	35 A	350 A	Metal Stud
MCR71 Series	55 A	550 A	Metal Stud

For a complete and detailed treatment of SCR and fuse selection refer to Motorola Application Note AN-789.

APPLICATIONS INFORMATION

FIGURE 17 - OVERVOLTAGE PROTECTION OF SPLIT SUPPLIES WITH DELAY AND LATCHED-FAULT INDICATION.

FIGURE 18 — OVERVOLTAGE PROTECTION OF 5.0 V SUPPLY WITH LINE LOSS DETECTOR

FIGURE 19 — LATCHING OVERVOLTAGE SENSING CIRCUIT WITH INTERMITTENT AUDIO ALARM

FIGURE 20 — ADJUSTABLE D.C. PICK-UP/DROP-OUT RELAY CIRCUIT

FIGURE 21 - 9.0 V BATTERY CHARGER with ZERO SENSE LOAD CURRENT

FIGURE 22 — PROPORTIONAL CONTROL CIRCUIT

FIGURE 23 — ALTERNATING TWO TONE GENERATOR (EUROPEAN SIREN)

FIGURE 24 — TONE BURST GENERATOR

FIGURE 25 - PHOTOFLASH CONVERTER

FIGURE 26 - PROGRAMMABLE FREQUENCY SWITCH

1.0 TIP32 200 **⋛**13k 1.0 k Lamp 8.5 V IND1 Vcc **≨**33 k <u>二</u>6.0 v Ċ1 Test 277 C2+ 0 MC3524, A 120 V_{ref} ΙE **⋛** ззок Com 1.0 k 100 RA1 DRV2 4700 **≨**470 DRV1 750 **₹**8.2 k **₹**1.0 k **\$**10k Gnd AC Ind Battery 0.1 μF Chg. Ind. All diodes are 1N4001. 1. Battery charge current ≈ 0.6 A. Charger will cycle OFF at 6.6 V, ON at 6.4 V. 2. Lamp is ON with loss of ac and battery voltage \geqslant 5.7 V. As battery discharges to < 5.3 V, lamp will turn OFF.

FIGURE 27 - EMERGENCY LIGHTING SYSTEM

FIGURE 28 — REFERENCE TEMPERATURE COEFFICIENT MODIFICATIONS

FIGURE 29 — MC3524/3424/3324 BLOCK DIAGRAM

MC3430 thru MC3433

QUAD DIFFERENTIAL VOLTAGE COMPARATOR/SENSE AMPLIFIERS

The MC3430 thru MC3433 high-speed comparators are ideal for application as sense amplifiers in MOS memory systems. They are specified in a unique way which combines the effects of input offset voltage, input offset current, voltage gain, temperature variations and input common-mode range into a single functional parameter. This parameter, called Input Sensitivity, specifies a minimum differential input voltage which will guarantee a given logic state. Four variations are offered in the comparator series.

The MC3430 and MC3431 versions feature a three-state strobe input common to all four channels which can be used to place the four outputs in a high-impedance state. These two devices use active-pull-up MTTL compatible outputs. The MC3432 and MC3433 are open-collector types which permit the implied AND connection. The MC3430 and MC3432 versions are specified for a ± 7.0 mV input sensitivity over the 0 to 70°C temperature range, while the MC3431 and MC3433 are specified for ± 12 mV.

- Propagation Delay Time 40 ns
- Outputs Specified for a Fanout of 10 (MC7400 type loads)
- Specified for all conditions of $\pm 5\%$ Power Supply Variations, Operating Temperature Range, Input Common-Mode Voltage Swing from -3.0 V to 3.0 V, and R_S \leq 200 ohms.

FIGURE 1 – A TYPICAL MOS MEMORY SENSING APPLICATION FOR A 4-K WORD BY 4-BIT MEMORY ARRANGEMENT EMPLOYING 1103 TYPE MEMORY DEVICES

QUAD HIGH-SPEED VOLTAGE COMPARATORS

SILICON MONOLITHIC INTEGRATED CIRCUITS

TRUTH TABLE MC3430 and MC3432								
Input	Strobe	Output	Device					
v >20-v	L	н	MC3430					
V _{1D} ≥ 7.0 mV	н	Z	MC3430					
T _A = 0 to 70 ^o C	L	Off	MC3432					
A = 0 to 70 C	Н	Off	WC3432					
-7.0 mV ≤V _{LD}	L	- 1	MC3430					
-7.0 mV ≈ VID	Н	z	IVIC3430					
≤ 7.0 mV	L	- E	MC3432					
T _A ≈ 0 to 70 ⁰ C	н	Off	MC3432					
V _{1D} ≤ -7.0 mV	L	L	MC3430					
V1D ≪ -7.0 mV	н	Z	WC3430					
T _A = 0 to 70°C	L	On	MC3432					
1 A - 0 10 70 C	Н	Off	WIC3432					

TRUTH TABLE MC3431 and MC3433									
Input	Input Strobe Output								
V _{1D} ≥ 12 mV	L	H	MC3431						
V1D ≥ 12 mV	н	Z	WC3431						
TA = 0 to 70°C	L	Off	MC3433						
1 A = 0 to 70 C	н	Off	WC3433						
-12 mV ≤V _{1D}	L	1	MC3431						
-12 mv @ v1D	н	z	WCS431						
≤+12 mV	L	1	MC3433						
T _A = 0 to 70°C	н	Off	WC3433						
V _{ID} ≤-12 mV	L	L	MC3431						
v ID ≪ - 12 mv	Н	Z	WIC3431						
	L	On							
T _A = 0 to 70°C	н	Off	MC3433						

L = Low Logic State Z = Third (High Impedance) H = High Logic State I = Indeterminate State RS \leq 200 Ω

MC3430 thru MC3433

MAXIMUM RATINGS (T_A = 0 to +70°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC} , V _{EE}	±7.0	Vdc
Differential Mode Input Signal Voltage Range	V _{IDR}	±6.0	Vdc
Common-Mode Input Voltage Range	Vice	±5.0	Vdc
Strobe Input Voltage	V _{I(S)}	5.5	Vdc
Output Voltage (MC3432 - 33 versions)	Vo	+7.0	Vdc
Junction Temperature Ceramic Package Plastic Package	TJ	175 150	°C
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°c

RECOMMENDED OPERATING CONDITIONS ($T_A = 0$ to $+70^{\circ}$ C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Voltages	Vcc	+4.75	+5.0	+5.25	Vdc
	VEE	-4.75	-5.0	-5.25	
Output Load Current	lor	-	-	16	mA
Differential-Mode Input Voltage Range	VIDR	-5.0		+5.0	Vdc
Common-Mode Input Voltage Range	VICR	-3.0	_	+3.0	Vdc
Input Voltage Range (any input to Ground)	VIR	-5.0	_	+3.0	Vdc

$\begin{array}{l} \textbf{ELECTRICAL CHARACTERISTICS} \ \, (\text{V}_{CC} = 5.0 \ \text{Vdc}, \text{V}_{EE} = -5.0 \ \text{Vdc}, \text{T}_{A} = 0^{\text{O}}\text{C to } + 70^{\text{O}}\text{C unless otherwise noted.}) \\ \text{Typical Values are Measured at T}_{A} = 25^{\text{O}}\text{C} \end{array}$

		мсз	430, MC34	131	мсз	432, MC3	433	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Sensitivity (See Discussion on Page 3) ($R_S \le 200 \text{ Ohms}$) (Common Mode Voltage Range = -3.0 V \le V _{in} \le 3.0 V)	Vis							mV
4.75 ≤ V _{CC} ≤ 5.25 V -4.75 ≥ V _{EE} ≥ -5.25 V T _A = 25°C		-	-	±6.0 ±10	-	-	±6.0 ±10	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		-	-	±7.0 ±12	_ _	_	±7.0 ±12	
Input Offset Voltage (R _S ≤ 200 Ohms)	V _{IO}	-	2.0		-	2.0	_	m∨
Input Bias Current (V _{CC} = 5.25 V, V _{EE} = -5.25 V) MC3430, MC3432 MC3431, MC3433	IIB	_	20 20	40 40	_	20 20	40 .40	μΑ
Input Offset Current	110	-	1.0	_	Tanan.	1.0	_	μΑ
Voltage Gain	A _{vol}	_	1200	_	-	1200	_	V/V
Strobe Input Voltage (Low State)	V _{IL(S)}	_	_	0.8	_	_	0.8	V
Strobe Input Voltage (High State)	VIH(S)	2.0	-		2.0	_	_	V
Strobe Current (Low State) (V _{CC} = 5.25 V, V _{EE} = -5.25 V, V _{in} = 0.4 V)	IL(S)	Value	-	-1.6	_	_	-1.6	mA
Strobe Current (High State) (V _{CC} = 5.25 V, V _{EE} = -5.25 V, V _{in} = 2.4 V) (V _{CC} = 5.25 V, V _{FE} = -5.25 V, V _{in} = 5.25 V)	lih(S)	_	-	40 1.0	_	_ '	40 1.0	μA mA
Output Voltage (High State) (I _O = -400 μA, V _{CC} = 4.75 V, V _{EE} = -4.75 V)	Voн	2.4	-	-	-	-	-	V
Output Voltage (Low State) (IO = 16 mA, V _{CC} = 4.75 V, V _{EE} = 4.75 V)	VOL	-	_	0.4	_	Anna	0.4	٧
Output Leakage Current (V _{CC} = 4.75 V, V _{EE} = -4.75 V, V _O = 5.25 V)	ICEX	_	-	_	-	_	250	μΑ
Output Current Short Circuit (V _{CC} = 5.25 V, V _{EE} = -5.25 V)	los	-18	_	-70	-	-	_	mA
Output Disable Leakage Current (V _{CC} = 5.25 V, V _{EE} = -5.25 V)	loff	_	_	40	-	_	_	μΑ
High Logic Level Supply Currents (V _{CC} = 5.25 V, V _{EE} = -5.25 V)	ICC IEE	_	45 -17	60 -30	_	45 -17	60 -30	mA mA

A UNIQUE FUNCTIONAL PARAMETER FOR COMPARATORS

A unique approach is used in specifying the MC3430-33 quad comparators. Previously, comparators have been specified as linear devices with common operational amplifier type parameters such as voltage gain (A_{VQ1}), input offset voltage (V_{1Q}), input offset current (1 $_{1Q}$) and common-mode rejection ratio (CMRR). This is true despite the fact that most comparators are seldom operated in their linear region because it is difficult to hold a high gain comparator in this narrow region. Comparators are normally used to "detect" when an unknown voltage level exceeds a given reference voltage.

The most desirable comparator parameter is what minimum differential input voltage is required at the comparator's input terminals to guarantee a given output logic state. This new and important parameter has been called input sensitivity (V_{1S}) and is analagous to the input threshold voltage specification on a core memory sense amplifier. The input sensitivity specification includes the effects of voltage gain, input offset voltage and input offset current' and eliminates the need for specifying these three parameters.

In order to make this parameter as inclusive as possible on the MC3430-33 series quad comparators, the input sensitivity is specified within the following conditions:

Commercial Temperature Range - 0 to 70°C

Power Supply Variations $-\pm5\%$ (all conditions)

Input Source Resistance - ≤200 Ohms

Common-Mode Voltage Range - -3.0 V to +3.0 V

Note: Typical values have been included on the omitted parameters for applications where the offset voltages are externally nulled.

Voltage gain is defined as the ratio of the resulting ΔV_O to a change in the V_{IOR} using conditions at which the V_{IO} and I_{IO} are nulled. Thus, for worst case MTTL logic levels, the required output voltage change is 2.0 V $(V_{OH}$ min — V_{OI} max = 2.4 V —

0.4 V). If 2.0 mV are required at the input terminals to induce this change in logic state, the voltage gain would be 1000 V/V.

Gain however is not the only factor affecting the logic transition. Normally input offset voltages, that are not externally nulled, can add an appreciable error that drastically overshadows the comparator gain. Therefore, the 2.0 mV for example, required to cause the logic transition is often masked. An input offset voltage of up to 7.5 mV might be required to reach the linear region. A further consideration is the input offset current of up to ±10 μ A flowing through the matched 200-Ohm source resistors at the input terminals which can create an additional error of ±2.0 mV. In order to determine a worst case input sensitivity, it must be assumed that minimum specified gain and maximum specified offset voltage and current conditions exist. Also it must be assumed that these three factors are cumulative, requiring a worst case input of

Logic Transition = 2.0 mV

 $V_{10} = 7.5 \text{ mV}$

I_{IO} of ±10 µA thru 200-Ohm resistor = 2.0 mV

Therefore 2 + 7.5 + 2 = 11.5 mV.

The effects of power supply voltage variations, temperature changes and common-mode input voltage conditions have not been considered, as they are not present in the gain and offset specifications on most comparators.

Thus, the input sensitivity specification greatly reduces the effort required in determining the worst case differential voltage required by a given comparator type.

Table I compares the worst case input sensitivity of three popular comparator types at both room temperature and over the specified commercial temperature range (0 to 70°C). This sensitivity was computed from the specified voltage gain, offset voltage and offset current limits.

TABLE I - WORST CASE COMPARISONS

	T _A = 25°C					T _A = 0 to 70°C							
Type Number	V _{IO} mV Max	Avol* V/V Typ	Differential Input Voltage Required for 3.0 V Output Change	IO R _S = 200 Ω μA Max	Error Voltage Generated Into 200 Ω Source Resistors	Total Sensitivity mV	V _{IO} mV Max	A _{vol} * V/V Typ	Differential Input Voltage Required for 3.0 V Output Change	I _{IO} R _S = 200 Ω μA Max	Error Voltage Generated Into 200 Ω Source Resistors	Total Sensitivity mV	
MC3430, MC3432	-	-	-	-	-	6.0	-	-	-	-	-	7.0	
MC3431, MC3433		-	-	-	-	10		-	-	-	-	12	
MC1711C LM311	5.0 7.5	1500 200 k	2.0 mV 0.015 mV	15 6.0**	3.0 mV 0.0012 mV	10 7.516	5.0 10	1000 100 k	3.0 mV 0.030 mV	25 70**	5.0 mV 0.014 mV	13 10.04	

^{*}Typical values given, as minimum gain not always specified.

FIGURE 2 – GUARANTEED OUTPUT STATE versus
DIFFERENTIAL INPUT VOLTAGE

FIGURE 3 — GUARANTEED OUTPUT STATE versus INPUT VOLTAGE

^{**}I_{IO} measured in nA

SWITCHING CHARACTERISTICS (V $_{CC}$ = +5.0 Vdc, V $_{EE}$ = -5.0 Vdc, T $_{A}$ = +25 o C unless otherwise noted.)

			MC3430, MC3431		MC3432, MC3433				
Characteristic	Symbol	Fig.	Min	Тур	Max	Min	Тур	Max	Unit
High to Low Logic Level Propagation Delay Time (Differential Inputs) 5.0 mV + V _{IS}	tPHL(D)	6,8-11	_	20	45	-	27	50	ns
Low to High Logic Level Propagation Delay Time (Differential Inputs) 5.0 mV + V _{IS}	^t PLH(D)	6,8-11	-	33	55		40	65	ns
Open State to High Logic Level Propagation Delay Time (Strobe)	tPZH(S)	4	_	-	35	-	-	-	ns
High Logic Level to Open State Propagation Delay Time (Strobe)	tPHZ(S)	4	-	_	35	-		_	ns
Open State to Low Logic Level Propagation Delay Time (Strobe)	tPZL(S)	4	-	-	40	-	_	-	ns
Low Logic Level to Open State Propagation Delay Time (Strobe)	tPLZ(S)	4	_	_	35	_	_		ns
High Logic to Low Logic Level Propagation Delay Time (Strobe)	tPHL(S)	5	_	-	-	-	-	40	ns
Low Logic to High Logic Level Propagation Delay Time (Strobe)	tPLH(S)	5	_	_	_	_	_	35	ns

TEST CIRCUITS

 $\textbf{FIGURE 4-STROBE PROPAGATION DELAY TIMES } \textbf{tp}_{LZ(S)}, \textbf{tp}_{ZL(S)}, \textbf{tp}_{HZ(S)}, \textbf{and } \textbf{tp}_{ZH(S)} \\$

	V1	V2	S1	S2	CL
tPLZ(S)	100 mV	GND	Closed	Closed	15 pF
tPZL(S)	100 mV	GND	Closed	Open	50 pF
tPHZ(S)	GND	100 mV	Closed	Closed	15 pF
tPZH(S)	GND	100 mV	Open	Closed	50 pF

Ein waveform characteristics:

 t_{TLH} and $t_{THL} \leqslant$ 10 ns measured 10% to 90%. PRR = 1.0 MHz

Duty Cycle = 50%

^t PLZ(S) 〈	3.0 V − − − − 1.5 V E _{In} 0 V − − − − t _{PLZ} (S) ≈ 1.5 V
^t PZL(S) 〈	3.0 V Ein 0 V

FIGURE 5 - STROBE PROPAGATION DELAY tPLH(S) AND tPHL(S)

Output of Channel B shown under test, other channels are tested similarly.

 $E_{\rm in}$ waveform characteristics: t_{TLH} and $t_{THL}\leqslant 10$ ns measured 10% to 90%. PRR = 1.0 MHz Duty Cycle = 50%

FIGURE 6 - DIFFERENTIAL INPUT PROPAGATION DELAY tPLH(D) AND tPHL(D)

Output of Channel B shown under test, other channels are tested similarly

S1 at "A" for MC3430, MC3431 S1 at "B" for MC3432, MC3433 C_L = 50 pF total for MC3430, MC3431 C_L = 15 pF total for MC3432, MC3433
 Device
 V_{REF} mV

 MC3430
 11

 MC3431
 15

 MC3432
 11

 MC3433
 15

 E_{in} waveform characteristics: t_{TLH} and $t_{THL} \le 10$ ns measured 10% to 90%. PRR = 1.0 MHz Duty Cycle = 50%

FIGURE 7 - CIRCUIT SCHEMATIC

(1/4 Circuit Shown)

Dashed components apply to the MC3430 and MC3431 circuits only.

TYPICAL PERFORMANCE CURVES

RESPONSE TIME versus OVERDRIVE - MC3430, MC3431

RESPONSE TIME versus OVERDRIVE - MC3432, MC3433

APPLICATIONS INFORMATION

FIGURE 15 - LEVEL DETECTOR WITH HYSTERESIS

FIGURE 16 -- TRANSFER CHARACTERISTICS AND EQUATIONS FOR FIGURE 15

FIGURE 17 - DOUBLE ENDED LIMIT DETECTOR

FIGURE 18 – VOLTAGE TRANSFER FUNCTION

Telecommunications

TELECOMMUNICATIONS

је
3
12
12
30
15
12
12
31
31
35
93
94
95

MC3416

Specifications and Applications Information

4 x 4 x 2 CROSSPOINT SWITCH

The MC3416 consists of a pair of 4 x 4 matrices of dielectrically isolated SCR's, triggered by a common selection matrix. The device is intended for switching analog signals in communication systems. The use of dielectric isolation processing provides excellent crosstalk isolation while maintaining minimal insertion loss.

The selection array consists of PNP transistors with the input thresholds compatible with either CMOS or TTL logic families. The MC3416 is a monolithic pin-for-pin replacement for the

discontinued MCBH7601 hybrid device.

- \bullet Low Series Resistance $r_{on} = 6.0$ Ohms (Typ) @ IAK = 20 mA
- High Series Resistance $r_{off} = 100 M\Omega$ (Min)
- Pin Compatible with MCBH7601 or RC4444
- High Breakdown Voltage 30 V (Typ)
- Selection Matrix Compatible with TTL or CMOS Logic Levels
- Dielectric Isolation Insures Low Crosstalk and Low Insertion Loss

4 x 4 x 2 CROSSPOINT SWITCH

DIELECTRICALLY ISOLATED
MONOLITHIC
INTEGRATED CIRCUIT

MAXIMUM RATINGS (Unless otherwise noted, T_A = 25°C)

Rating	Symbol	Value	Unit
Anode-Cathode Current — Continuous (only one SCR at a time)	IAK	150	mA
Enable Current	l _{En}	10	mA
Operating Ambient Temperature Range	TA	0 to +70	°С
Storage Temperature Range	T _{stq}	-65 to +150	°C
Junction Temperature Range	TJ	150°C	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, $T_A = 0$ to 70° C)

Characteristic	Symbol	Min	Max	Unit
Anode Cathode Breakdown Voltage (I _{AK} = 25μA)	V(BR)AK	25	_	Vdc
Cathode-Anode Breakdown Voltage (I _K A = 25μA)	V(BR)KA	25	-	Vdc
Base-Cathode Breakdown Voltage (I _{BK} = 25μA)	V _{(BR)BK}	25		Vdc
Cathode-Base Breakdown Voltage (I _{KB} = 25μA)	V _{(BR)BE}	25	_	Vdc
Base-Emitter Breakdown Voltage (I _{BE} = 25μA)	V(BR)KB	25	_	Vdc
Emitter-Cathode Breakdown Voltage (I _{EK} = 25µA)	V _{(BR)EK}	25		Vdc
OFF State Resistance (VAK = 10 V)	roff	100	_	MΩ
Dynamic ON Resistance (Center Current = 10 mA) (See Figure 8) (Center Current = 20 mA)	^r on	4.0 2.0	12 10	Ω
Holding Current +25°C to +70°C (See Figure 10) 0°C to +24°C	lн	0.7 —	3.0 4.0	mA
Enable Current (V _B = 1.5 V) (See Figure 7)	IEn	4.0	_	mA
Anode-Cathode ON Voltage (I _{AK} = 10 mA) (I _{AK} = 20 mA)	VAK	-	1.0. 1.1	V
Gate Sharing Current Ratio @ Cathodes (Under Select Conditions with Anodes Open) (See Figure 3)	G _{Sh} .	0.8	1.25	mA/mA
Inhibit Voltage (V _B = 3.0 V) (See Figure 9)	V _{inh}	_	0.3	V
Inhibit Current (V _B = 3.0 V) (See Figure 9)	linh	_	0.1	mA
OFF State Capacitance (V _{AK} = 0 V) (See Figure 6)	C _{off}	_	2.0	pF
Turn-ON Time (See Figure 4)	ton	_	1.0	μς
Minimum Voltage Ramp (Which Could Fire the SCR Under Transient Conditions)	dv/dt	800	_	V/µs

FIGURE 3 - TEST CIRCUIT

FIGURE 4 - TEST CIRCUIT FOR dv/dt AND ton

TYPICAL CHARACTERISTICS

FIGURE 11 — ANODE-CATHODE ON VOLTAGE versus CURRENT AND TEMPERATURE

FIGURE 12 - DIFFERENCE IN ANODE-CATHODE ON VOLTAGE (Between Associate Pairs of SCR's) versus ANODE-CATHODE CURRENT

FIGURE 13 - OFF-STATE CAPACITANCE versus ANODE-

FIGURE 14 — DYNAMIC ON RESISTANCE versus ANODE-CATHODE CURRENT

FIGURE 15 - DYNAMIC ON RESISTANCE versus AMBIENT TEMPERATURE

MC3416

FIGURE 18 - TEST CIRCUIT FOR FEEDTHROUGH versus FREQUENCY

FIGURE 19 - TEST CIRCUIT FOR CROSSTALK versus FREQUENCY

FIGURE 20 - REPRESENTATIVE SCHEMATIC DIAGRAM

TELEPHONE APPLICATION OF THE CROSSPOINT SWITCH

The MC3416 crosspoint switch is designed to provide a low-loss analog switching element for telephony signals. It can be addressed and controlled from standard binary decoders and is CMOS compatible. With proper system organization the MC3416 can significantly reduce the size and cost of existing crosspoint matrices.

SIGNAL PATH CONSIDERATIONS

Instrument

All CMOS Operated From +15 V Power Supply

The MC3416 is a balanced 4 x 4 2-wire crosspoint array. It is ideal for balanced transmission systems, but may be applied effectively in a number of single ended applications. Multiple chips may be interconnected to form larger crosspoint arrays. The major design constraint in using SCR crosspoints is that a forward dc current must be main-

tained through the SCR to retain an ac signal path. This requires that each subscriber-input to the array be capable of sourcing dc current as well as its ac signal. With each subscriber acting as a dc source, each trunk output then acts as a current sink. The instrument-to-trunk connection in Figure 21 shows this configuration. However, with each subscriber acting as a dc source, some method of interconnecting them without a trunk must be provided. Such a local or intercom termination is shown in Figure 22. Here both subscribers source dc current and exchange ac signals. The central current sink accepts current from both subscribers while the high output impedance of the current sink does not disturb the system.

These configurations are system compatible. The dc

500

FIGURE 22 - TYPICAL INSTRUMENT TO INSTRUMENT CONNECTION

CMOS Outputs Base Selects

current restriction is not a restriction in the design of an efficient crosspoint array. Because of the current sink terminations, a signal path may use differing numbers or crosspoints in any connection or in two sides of the same connection further relaxing restrictions in array design.

Figure 23 demonstrates circuit operation. S1, S2, and S3 are open. The Crosspoint SCR's are off as they have no gate drive or dc current path through S1. By closing S2 and S3, gate drive is provided, but the SCR's still remain off as there is no dc current path to hold them on. Close S1 and the circuit is enabled, but with S2 and S3 off there is still no signal path. Closing S2 and S3 with S1 closed - current is injected into both gates and they switch on. DC current through R_I splits around the center-tapped winding and flows through each SCR, back through the lower winding and through S1 to ground. If S2 and S3 are opened, that current path still remains and the SCRs remain on. If an ac signal is injected at either G1 or G2, it will be transmitted to the other signal port with negligible loss in the SCR's. To disconnect the ac signal path the SCR's must be commutated off. By opening S1 the dc current path is interrupted and the SCR's switch off. The ac signal path is disconnected. With S1 closed the circuit is enabled and may be addressed again from S2 and S3. This circuit demonstrates a balanced transmission configuration. The transmission characteristics of the SCR's simulate a relay contact in that the ac signal does not incur a contact voltage drop across the crosspoint. The memory characteristics of the crosspoint are demonstrated by the selective application of S1. S2. and S3.

The selection of R_L is governed by the power supply voltage and the desired dc current. If 10 mA is to flow through each SCR then R_L must pass 20 mA. Thus, (VCC-VAK)/RL=20 mA. The selection of Rp is governed by the characteristics for crosspoint turn on. Adequate enable current must be injected into the column select and Rp should drop at least 1.5 Volts. The PNP transistor has a typical gain of one. Thus, Rp should pass at least 2 mA to provide 4 mA column select current.

FIGURE 23 - CROSSPOINT OPERATION DEMONSTRATION CIRCUIT

S1	S2	S3	LINE CONDITION				
ON	Х	OFF	Enabled, Not Connected				
ON	OFF	Х	Enabled, Not Connected				
ON	ON	ON	Addressed and Connected				
ON	Х	Х	G1 Connected to G2				
OFF	Х	Х	Disconnected.				
			C = irrelevant				
X - Illelevant							

ADDRESSING CONSIDERATIONS

The MC3416 crosspoint switch is addressed by selecting and turning on the PNP transistor that controls the SCR pair desired. The drive requirements of the MC3416 can be met with standard CMOS outputs. A particular crosspoint is addressed by putting a logical "1" on the emitter and a logical "0" on the base of the appropriate transistor. A resistor in the base circuit of the transistor is required to limit the current and must also drop 1.5 Volts to assure forward bias of the two diodes in the collector circuits.

The gate current required for SCR turn on is 1 mA typically. The CMOS one-of-n decoders listed in Table I provide both active high and active low outputs and are well suited for standard addressing organizations. The major design constraint in organizing the addressing structure is that any signal path which is to be addressed must create a dc path from a source to a sink. If that path requires two crosspoints they must be addressed simultaneously. Of course, once the path is selected, the addressing hardware is free to initiate other signal paths. To meet the dc path

APPLICATIONS INFORMATION (continued)

requirement, crosspoint arrays should be designed in blocks such that any given dc path requires only one crosspoint per block. A signal path, however, may still use two crosspoints in the same block by sequentially addressing two dc paths to the same terminator. For example, the left or right pairs of crosspoints in Figure 22 must be addressed simultaneously but the left pair may be addressed in sequence after addressing the right pair. This is not a difficult constraint to meet and it does not require unnecessary addressing hardware.

TABLE I

	Active High Outputs	Active Low Outputs		
Dual Binary to 1 of 4	MC14555	MC14556		
4-bit latch/4 to 16	MC14514	MC14515		
BCD to Decimal Decode	MC14028			

DISCONNECT TECHNIQUES

Since the crosspoint switch maintains signal paths by keeping dc currents through active SCR's, disconnects are easily accomplished by interrupting the dc current path. This can be done anywhere in the circuit, but if the disconnect is done at the terminator then all signal paths established to that terminator are broken simultaneously. In both Figures 21 and 22 this is done by turning off the current sink circuit with a CMOS buffer gate. MC14049 or MC14050 buffers will drive the transistor switch. Once a disconnect is completed, the terminator may be re-enabled and used for another call. Usage of the terminators may be easily monitored with optoelectronic couplers in the collectors of the current sinks without disturbing transmission characteristics.

MC3417, MC3517 MC3418, MC3518

Specifications and Applications Information

CONTINUOUSLY VARIABLE SLOPE DELTA MODULATOR/DEMODULATOR

Providing a simplified approach to digital speech encoding/decoding, the MC3517/18 series of CVSDs is designed for military secure communication and commercial telephone applications. A single IC provides both encoding and decoding functions.

- Encode and Decode Functions on the Same Chip with a Digital Input for Selection
- Utilization of Compatible I²L Linear Bipolar Technology
- CMOS Compatible Digital Output
- Digital Input Threshold Selectable (V_{CC}/2 reference provided on chip)
- MC3417/MC3517 has a 3-Bit Algorithm (General Communications)
- MC3418/MC3518 has a 4-Bit Algorithm (Commercial Telephone)

CVSD BLOCK DIAGRAM Encode/ Decode **1**15 14 Analog Input 2 Analog Feedback 2 Comparator 3- or 4-Bit Digital 13 Shift Register Data Input Digital 12 Threshold V_{TH} Coincidence Logic Output Digital Output Syllabic Integrator Converte Slope 3 Filter Amplifier Polarity Gain Control V_{CC}/2 V_{CC}/2 Switch Output IGC Analog Filter Output Input Input

CONTINUOUSLY VARIABLE SLOPE DELTA MODULATOR/DEMODULATOR

LASER-TRIMMED INTEGRATED CIRCUIT

L SUFFIX CERAMIC PACKAGE CASE 620-02

MAXIMUM RATINGS

(All voltages referenced to V_{EE} , $T_A = 25^{\circ}C$ unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.4 to +18	Vdc
Differential Analog Input Voltage	V _{ID}	± 5.0	Vdc
Digital Threshold Voltage	VTH	-0.4 to V _{CC}	Vdc
Logic Input Voltage (Clock, Digital Data, Encode/Decode)	V _{Logic}	-0.4 to +18	Vdc
Coincidence Output Voltage	VO(Con)	-0.4 to +18	Vdc
Syllabic Filter Input Voltage	V _I (SyI)	-0.4 to V _{CC}	Vdc
Gain Control Input Voltage	VI(GC)	-0.4 to V _{CC}	Vdc
Reference Input Voltage	V _{I(Ref)}	V _{CC} /2 – 1.0 to V _{CC}	Vdc
V _{CC} /2 Output Current	IRef	-25	mA

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 12 \text{ V}, V_{EE} = \text{Gnd}, T_A = 0^{\circ}\text{C to} + 70^{\circ}\text{C for MC3417/18}, T_A = -55^{\circ}\text{C to} + 125^{\circ}\text{C for MC3517/18 unless otherwise noted.})$

		МС	3417/MC3	517	MC3418/MC3518			
Characteristic	Symbol	Min Typ		Max	Min	Тур	Max	Unit
Power Supply Voltage Range (Figure 1)	VCCR	4.75	12	16.5	4.75	12	16.5	Vdc
Power Supply Current (Figure 1) (Idle Channel)	¹ cc							mA
$(V_{CC} = 5.0 \text{ V})$ $(V_{CC} = 15 \text{ V})$		<u>-</u>	3.7 6.0	5.0 10	-	3.7 6.0	5.0 10	
Clock Rate	SR	_	16 k		_	32 k	_	Samples/s
Gain Control Current Range (Figure 2)	IGCR	0.001	_	3.0	0.001	-	3.0	mΑ
Analog Comparator Input Range (Pins 1 and 2) $(4.75 \text{ V} \leq \text{V}_{CC} \leq 16.5 \text{ V})$	٧ı	1.3		V _{CC} - 1.3	1.3	Mary .	V _{CC} - 1.3	Vdc
Analog Output Range (Pin 7) $(4.75 \text{ V} \le \text{V}_{CC} \le 16.5 \text{ V}, \text{I}_{O} = \pm 5.0 \text{ mA})$	٧o	1.3	-	V _{CC} - 1.3	1.3	-	V _{CC} - 1.3	Vdc
Input Bias Currents (Figure 3) (Comparator in Active Region) Analog Input (I1) Analog Feedback (I2)	IВ	_	0.5 0.5	1.5 1.5	-	0.25 0.25	1.0 1.0	μА
Syllabic Filter Input (13) Reference Input (15)			0.06 -0.06	0.5 -0.5	_ _	0.06 -0.06	0.3 -0.3	
Input Offset Current (Comparator in Active Region) Analog Input/Analog Feedback 11-12 - Figure 3 Integrator Amplifier	10	-	0.15	0.6	-	0.05	0.4	μА
15-16 — Figure 4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		2.0			2.0	6.0	mV
Input Offset Voltage V/I Converter (Pins 3 and 4) — Figure 5	V _{IO}	_	2.0	6.0	_	2.0	6.0	mv
Transconductance V/I Converter, 0 to 3.0 mA Integrator Amplifier, 0 to ± 5.0 mA Load	gm	0.1 1.0	0.3 10	- -	0.1 1.0	0.3 10		mA/mV
Propagation Delay Times (Note 1) Clock Trigger to Digital Output (C _L = 25 pF to Gnd)	^t PLH ^t PHL	-	1.0 0.8	2.5 2.5	-	1.0 0.8	2.5 2.5	μς
Clock Trigger to Coincidence Output ($C_L = 25 \text{ pF to Gnd}$) ($R_L = 4 \text{ k}\Omega$ to V_{CC})	^t PLH ^t PHL	-	1.0 0.8	3.0 2.0	_	1.0 0.8	3.0 2.0	
Coincidence Output Voltage — Low Logic State (IOL(Con) = 3.0 mA)	VOL(Con)		0.12	0.25	-	0.12	0.25	Vdc
Coincidence Output Leakage Current — High Logic State (V _{OH} = 15.0 V, 0 ^O C < T _A < 70 ^O C)	^I OH(Con)	-	0.01	0.5	-	0.01	0.5	μА

NOTE 1. All propagation delay times measured 50% to 50% from the negative going (from V_{CC} to +0.4 V) edge of the clock.

ELECTRICAL CHARACTERISTICS (continued)

		MC3417/MC3517			MC3418/MC3518			
Characteristic	Symbol	Min Typ		Max	Min	Тур	Max	Unit
Applied Digital Threshold Voltage Range (Pin 12)	Vтн	+1.2	-	V _{CC} - 2.0	+1.2	_	V _{CC} - 2.0	Vdc
Digital Threshold Input Current (1.2 $V \le V_{th} \le V_{CC} - 2.0 V$)	l _{l(th)}							μΑ
(V _{IL} applied to Pins 13, 14 and 15) (V _{IH} applied to Pins 13, 14 and 15)		-	– – 10	5.0 50	_	- -10	5.0 50	
Maximum Integrator Amplifier Output Current	Io	± 5.0	-	-	± 5.0		-	mA
V _{CC} /2 Generator Maximum Output Current (Source only)	IRef	+10	-	_	+10	1	-	mA
V _{CC} /2 Generator Output Impedance (0 to +10 mA)	^z Ref	-	3.0	6.0	-	3.0	6.0	Ω
$V_{CC}/2$ Generator Tolerance (4.75 V \leq V _{CC} \leq 16.5 V)	€r	-	-	±3.5	-	-	± 3.5	%
Logic Input Voltage (Pins 13, 14 and 15)								Vdc
Low Logic State High Logic State	V _{IL} V _{IH}	Gnd V _{th} + 0.4	-	V _{th} - 0.4 18.0	Gnd V _{th} + 0.4	_	V _{th} - 0.4 18.0	
Dynamic Total Loop Offset Voltage (Note 2) — Figures 3, 4 and 5	ΣV_{offset}							mV
$I_{GC} = 12.0 \mu\text{A}, V_{CC} = 12 \text{V}$								
T _A = 25°C		-	_	-	-	± 0.5	± 1.5	
$0^{\circ}C \le T_{A} \le +70^{\circ}C$ MC3417/18 -55°C $\le T_{A} \le +125^{\circ}C$ MC3517/18		-	_	_	-	± 0.75 ± 1.5	.± 2.3 ± 4.0	
$I_{GC} = 33.0 \mu A, V_{CC} = 12 V$								
$T_A = 25^{\circ}C$ $0^{\circ}C \le T_A \le +70^{\circ}C$ MC3417/18		-	± 2.5	± 5.0	-	_	-	
$-55^{\circ}C \le T_{A} \le +125^{\circ}C \text{ MC3517/18}$		-	± 3.0 ± 4.5	± 7.5 ± 10	-	_	_	
$I_{GC} = 12.0 \mu\text{A}, V_{CC} = 5.0 \text{V}$ $T_A = 25^{\circ}\text{C}$		-	_	-	-	± 1.0	± 2.0	
$0^{\circ}C \le T_{A} \le +70^{\circ}C$ MC3417/18 -55°C $\le T_{A} \le +125^{\circ}C$ MC3517/18		-	_	_	_	± 1.3 ± 2.5	± 2.8 ± 5.0	
$I_{GC} = 33.0 \mu A, V_{CC} = 5.0 V$ $T_A = 25^{\circ}C$		-	± 4.0	± 6.0	_	_	_	
$0^{\circ}C \le T_{A} \le +70^{\circ}C$ MC3417/18 -55°C $\le T_{A} \le +125^{\circ}C$ MC3517/18		- -	± 4.5 ± 5.5	± 8.0 ± 10	-	_	-	
Digital Output Voltage								Vdc
$(I_{OL} = 3.6 \text{ mA})$	VOL	-	0.1	0.4	-	0.1	0.4	
(I _{OH} = -0.35 mA)	VOH		V _{CC} - 0.2		V _{CC} ~ 1.0	V _{CC} - 0.2		
Syllabic Filter Applied Voltage (Pin 3) (Figure 2)	V _{I(Syl)}	+3.2		Vcc	+3.2	-	v _{CC}	Vdc
Integrating Current (Figure 2)	Illnt							
(I _{GC} = 12.0 μA)		8.0	10	12	8.0 1.45	10 1.50	12 1.55	μA mA
(I _{GC} = 1.5 mA) (I _{GC} = 3.0 mA).		1.45 2.75	1.50 3.0	1.55 3.25	2.75	3.0	3.25	mA mA
Dynamic Integrating Current Match	VO(Ave)		± 100	± 250		± 100	± 250	mV
(I _{GC} = 1.5 mA) Figure 6	(Ave)	:						
Input Current — High Logic State	ЧН							μΑ
(V _{IH} = 18 V)							+5.0	
Digital Data Input Clock Input	1	_	_	+5.0 +5.0	_	_	+5.0	
Encode/Decode Input		-	_	+5.0		_	+5.0	
Input Current — Low Logic State	IIL						 	μΑ
(V _{IL} = 0 V)	''-							• • •
Digital Data Input		_	_	-10	-	_	-10	
Clock Input		-	-	-360	-	-	-360	
Encode/Decode Input		-	-	-36	-	-	-36	
Clock Input, VIL = 0.4 V	· .	I –	l –	-72	-	_	-72	

NOTE 2. Dynamic total loop offset (\$\times V_{\times offset}\$) equals \$V_{\times 10}\$ (comparator) (Figure 3) minus \$V_{\times 100}\$ (Figure 5). The input offset voltages of the analog comparator and of the integrator amplifier include the effects of input offset current through the input resistors. The slope polarity switch current mismatch appears as an average voltage across the 10 k integrator resistor. For the MC3417/MC3517, the clock frequency is 16.0 kHz. For the MC3418/MC3518, the clock frequency is 32.0 kHz. Idle channel performance is guaranteed if this dynamic total loop offset is less than one-half of the change in integrator output voltage during one clock cycle (ramp step size). Laser trimming is used to insure good idle channel performance.

DEFINITIONS AND FUNCTION OF PINS

Pin 1 - Analog Input

This is the analog comparator inverting input where the voice signal is applied. It may be ac or dc coupled depending on the application. If the voice signal is to be level shifted to the internal reference voltage, then a bias resistor between pins 1 and 10 is used. The resistor is used to establish the reference as the new dc average of the ac coupled signal. The analog comparator was designed for low hysteresis (typically less than 0.1 mV) and high gain (typically 70 dB).

Pin 2 - Analog Feedback

This is the non-inverting input to the analog signal comparator within the IC. In an encoder application it should be connected to the analog output of the encoder circuit. This may be pin 7 or a low pass filter output connected to pin 7. In a decode circuit pin 2 is not used and may be tied to $V_{\rm CC}/2$ on pin 10, ground or left open.

The analog input comparator has bias currents of 1.5 μ A max, thus the driving impedances of pins 1 and 2 should be equal to avoid disturbing the idle channel characteristics of the encoder.

Pin 3 - Syllabic Filter

This is the point at which the syllabic filter voltage is returned to the IC in order to control the integrator step size. It is an NPN input to an op amp. The syllabic filter consists of an RC network between pins 11 and 3. Typical time constant values of 6 ms to 50 ms are used in voice coders.

Pin 4 - Gain Control Input

The syllabic filter voltage appears across C_S of the syllabic filter and is the voltage between V_{CC} and pin 3. The active voltage to current (V-I) converter drives pin 4 to the same voltage at a slew rate of typically 0.5 $V/\mu s$. Thus the current injected into pin 4 (I_{GC}) is the syllabic filter voltage divided by the R_X resistance. Figure 6 shows the relationship between I_{GC} (x-axis) and the integrating current, I_{Int} (y-axis). The discrepancy, which is most significant at very low currents, is due to circuitry within the slope polarity switch which enables trimming to a low total loop offset. The R_X resistor is then varied to adjust the loop gain of the codec, but should be no larger than 5.0 k Ω to maintain stability.

Pin 5 - Reference Input

This pin is the non-inverting input of the integrator amplifier. It is used to reference the dc level of the output signal. In an encoder circuit it must reference the same voltage as pin 1 and is tied to pin 10.

Pin 6 - Filter Input

This inverting op amp input is used to connect the integrator external components. The integrating current

 (I_{Int}) flows into pin 6 when the analog input (pin 1) is high with respect to the analog feedback (pin 2) in the encode mode or when the digital data input (pin 13) is high in the decode mode. For the opposite states, I_{Int} flows out of Pin 6. Single integration systems require a capacitor and resistor between pins 6 and 7. Multipole configurations will have different circuitry. The resistance between pins 6 and 7 should always be between 8 k Ω and 13 k Ω to maintain good idle channel characteristics.

Pin 7 — Analog Output

This is the integrator op amp output. It is capable of driving a 600-ohm load referenced to $V_{CC}/2$ to +6 dBm and can otherwise be treated as an op amp output. Pins 5, 6, and 7 provide full access to the integrator op amp for designing integration filter networks. The slew rate of the internally compensated integrator op amp is typically 0.5 $V/\mu s$. Pin 7 output is current limited for both polarities of current flow at typically 30 mA.

Pin 8 - VEE

The circuit is designed to work in either single or dual power supply applications. Pin 8 is always connected to the most negative supply.

Pin 9 - Digital Output

The digital output provides the results of the delta modulator's conversion. It swings between VCC and VEE and is CMOS or TTL compatible. Pin 9 is inverting with respect to pin 1 and non-inverting with respect to pin 2. It is clocked on the falling edge of pin 14. The typical 10% to 90% rise and fall times are 250 ns and 50 ns respectively for VCC = 12 V and CL = 25 pF to ground.

Pin 10 - V_{CC}/2 Output

An internal low impedance mid-supply reference is provided for use of the MC3417/18 in single supply applications. The internal regulator is a current source and must be loaded with a resistor to insure its sinking capability. If a +6 dBmo signal is expected across a 600 ohm input bias resistor, then pin 10 must sink 2.2 V/600 Ω = 3.66 mA. This is only possible if pin 10 sources 3.66 mA into a resistor normally and will source only the difference under peak load. The reference load resistor is chosen accordingly. A 0.1 $\mu\mathrm{F}$ bypass capacitor from pin 10 to VEE is also recommended. The VCC/2 reference is capable of sourcing 10 mA and can be used as a reference elsewhere in the system circuitry.

Pin 11 - Coincidence Output

The duty cycle of this pin is proportional to the voltage across Cs. The coincidence output will be low whenever the content of the internal shift register is all 1s or all 0s. In the MC3417 the register is 3 bits long

DEFINITIONS AND FUNCTIONS OF PINS (continued)

while the MC3418 contains a 4 bit register. Pin 11 is an open collector of an NPN device and requires a pull-up resistor. If the syllabic filter is to have equal charge and discharge time constants, the value of Rp should be much less than Rs. In systems requiring different charge and discharge constants, the charging constant is RsCs while the decaying constant is (Rs + Rp)Cs. Thus longer decays are easily achievable. The NPN device should not be required to sink more than 3 mA in any configuration. The typical 10% to 90% rise and fall times are 200 ns and 100 ns respectively for RL = 4 k Ω to +12 V and CL = 25 pF to ground.

Pin 12 - Digital Threshold

This input sets the switching threshold for pins 13, 14, and 15. It is intended to aid in interfacing different logic families without external parts. Often it is connected to the $V_{CC}/2$ reference for CMOS interface or can be biased two diode drops above VFF for TTL interface.

Pin 13 - Digital Data Input

In a decode application, the digital data stream is applied to pin 13. In an encoder it may be unused or may be used to transmit signaling message under the corrol of pin 15. It is an inverting input with respect to pin 9. When pins 9 and 13 are connected, a toggle flip-flop is formed and a forced idle channel pattern

FIGURE 1 - POWER SUPPLY CURRENT

can be transmitted. The digital data input level should be maintained for 0.5 μ s before and after the clock trigger for proper clocking.

Pin 14 - Clock Input

The clock input determines the data rate of the codec circuit. A 32K bit rate requires a 32 kHz clock. The switching threshold of the clock input is set by pin 12. The shift register circuit toggles on the falling edge of the clock input. The minimum width for a positive-going pulse on the clock input is 300 ns, whereas for a negative-going pulse, it is 900 ns.

Pin 15 - Encode/Decode

This pin controls the connection of the analog input comparator and the digital input comparator to the internal shift register. If high, the result of the analog comparison will be clocked into the register on the falling edge at pin 14. If low, the digital input state will be entered. This allows use of the IC as an encoder/decoder or simplex codec without external parts. Furthermore, it allows non-voice patterns to be forced onto the transmission line through pin 13 in an encoder.

Pin 16 - VCC

The power supply range is from 4.75 to 16.5 volts between pin V_{CC} and V_{FF}.

FIGURE 2 – I_{GCR}, GAIN CONTROL RANGE and I_{Int} – INTEGRATING CURRENT

FIGURE 3 — INPUT BIAS CURRENTS, ANALOG COMPARATOR OFFSET VOLTAGE AND CURRENT

FIGURE 5 - V/I CONVERTER OFFSET VOLTAGE, V_{IO} and V_{IOX}

FIGURE 4 – INTEGRATOR AMPLIFIER OFFSET VOLTAGE AND CURRENT

FIGURE 6 - DYNAMIC INTEGRATING CURRENT MATCH

TYPICAL PERFORMANCE CURVES

FIGURE 9 - NORMALIZED DYNAMIC INTEGRATING CURRENT MATCH versus CLOCK FREQUENCY

FIGURE 12 - CVSD WAVEFORMS

FIGURE 13 - BLOCK DIAGRAM OF THE CVSD DECODER

FIGURE 14 — 16 kHz SIMPLEX VOICE CODEC (Using MC3417, Single Pole Companding and Single Integration)

CIRCUIT DESCRIPTION

The continuously variable slope delta modulator (CVSD) is a simple alternative to more complex conventional conversion techniques in systems requiring digital communication of analog signals. The human voice is analog, but digital transmission of any signal over great distance is attractive. Signal/noise ratios do not vary with distance in digital transmission and multiplexing, switching and repeating hardware is more economical and easier to design. However, instrumentation A to D converters do not meet the communications requirements of digital communications and is an economically efficient means of digitizing analog inputs for transmission.

The Delta Modulator

The innermost control loop of a CVSD converter is a simple delta modulator. A block diagram CVSD Encoder is shown in Figure 11. A delta modulator consists of a comparator in the forward path and an integrator in the feedback path of a simple control loop. The inputs to the comparator are the input analog signal and the integrator output. The comparator output reflects the

sign of the difference between the input voltage and the integrator output. That sign bit is the digital output and also controls the direction of ramp in the integrator. The comparator is normally clocked so as to produce a synchronous and band limited digital bit stream.

If the clocked serial bit stream is transmitted, received, and delivered to a similar integrator at a remote point, the remote integrator output is a copy of the transmitting control loop integrator output. To the extent that the integrator at the transmitting locations tracks the input signal, the remote receiver reproduces the input signal. Low pass filtering at the receiver output will eliminate most of the quantizing noise, if the clock rate of the bit stream is an octave or more above the bandwidth of the input signal. Voice bandwidth is 4 kHz and clock rates from 8 k and up are possible. Thus the delta modulator digitizes and transmits the analog input to a remote receiver. The serial, unframed nature of the data is ideal for communications networks. With no input at the transmitter, a continuous one zero alternation is transmitted. If the two integrators are made leaky, then during any loss of contact the receiver output decays to

CIRCUIT DESCRIPTION (continued)

zero and receive restart begins without framing when the receiver reacquires. Similarly a delta modulator is tolerant of sporadic bit errors. Figure 12 shows the delta modulator waveforms while Figure 13 shows the corresponding CVSD decoder block diagram.

The Companding Algorithm

The fundamental advantages of the delta modulator are its simplicity and the serial format of its output. Its limitations are its ability to accurately convert the input within a limited digital bit rate. The analog input must be band limited and amplitude limited. The frequency limitations are governed by the nyquist rate while the amplitude capabilities are set by the gain of the integrator.

The frequency limits are bounded on the upper end; that is, for any input bandwidth there exists a clock frequency larger than that bandwidth which will transmit the signal with a specific noise level. However, the amplitude limits are bounded on both upper and lower ends. For a signal level, one specific gain will achieve an optimum noise level. Unfortunately, the basic delta modulator has a small dynamic range over which the noise level is constant.

The continuously variable slope circuitry provides increased dynamic range by adjusting the gain of the integrator. For a given clock frequency and input bandwidth the additional circuitry increases the delta modulator's dynamic range. External to the basic delta modulator is an algorithm which monitors the past few outputs of the delta modulator in a simple shift register. The register is 3 or 4 bits long depending on the application. The accepted CVSD algorithm simply monitors the contents of the shift register and indicates

if it contains all 1s or 0s. This condition is called coincidence. When it occurs, it indicates that the gain of the integrator is too small. The coincidence output charges a single pole low pass filter. The voltage output of this syllabic filter controls the integrator gain through a pulse amplitude modulator whose other input is the sign bit or up/down control.

The simplicity of the all ones, all zeros algorithm should not be taken lightly. Many other control algorithms using the shift register have been tried. The key to the accepted algorithm is that it provides a measure of the average power or level of the input signal. Other techniques provide more instantaneous information about the shape of the input curve. The purpose of the algorithm is to control the gain of the integrator and to increase the dynamic range. Thus a measure of the average input level is what is needed.

The algorithm is repeated in the receiver and thus the level data is recovered in the receiver. Because the algorithm only operates on the past serial data, it changes the nature of the bit stream without changing the channel bit rate.

The effect of the algorithm is to compand the input signal. If a CVSD encoder is played into a basic delta modulator, the output of the delta modulator will reflect the shape of the input signal but all of the output will be at an equal level. Thus the algorithm at the output is needed to restore the level variations. The bit stream in the channel is as if it were from a standard delta modulator with a constant level input.

The delta modulator encoder with the CVSD algorithm provides an efficient method for digitizing a voice input in a manner which is especially convenient for digital communications requirements.

APPLICATIONS INFORMATION CVSD DESIGN CONSIDERATIONS

A simple CVSD encoder using the MC3417 or MC3418 is shown in Figure 14. These ICs are general purpose CVSD building blocks which allow the system designer to tailor the encoder's transmission characteristics to the application. Thus, the achievable transmission capabilities are constrained by the fundamental limitations of delta modulation and the design of encoder parameters. The performance is not dictated by the internal configuration of the MC3417 and MC3418. There are seven design considerations involved in designing these basic CVSD building blocks into a specific codec application.

These are listed below:

1. Selection of clock rate

- 2. Required number of shift register bits
- 3. Selection of loop gain
- 4. Selection of minimum step size
- 5. Design of integration filter transfer function
- 6. Design of syllabic filter transfer function
- 7. Design of low pass filter at the receiver

The circuit in Figure 14 is the most basic CVSD circuit possible. For many applications in secure radio or other intelligible voice channel requirements, it is entirely sufficient. In this circuit, items 5 and 6 are reduced to their simplest form. The syllabic and integration filters are both single pole networks. The selection of items 1 through 4 govern the codec performance.

CVSD CIRCUIT SCHEMATIC

CVSD DESIGN CONSIDERATIONS (continued)

Layout Considerations

Care should be exercised to isolate all digital signal paths (pins 9, 11, 13, and 14) from analog signal paths (pins 1–7 and 10) in order to achieve proper idle channel performance.

Clock Rate

With minor modifications the circuit in Figure 14 may be operated anywhere from 9.6 kHz to 64 kHz clock rates. Obviously the higher the clock rate the higher the S/N performance. The circuit in Figure 14 typically produces the S/N performance shown in Figure 15. The selection of clock rate is usually dictated by the bandwidth of the transmission medium. Voice bandwidth systems will require no higher than 9600 Hz. Some radio systems will allow 12 kHz. Private 4-wire telephone systems are often operated at 16 kHz and commercial telephone performance can be achieved at 32K bits and above. Other codecs may use bit rates up to 200K bits/sec.

FIGURE 15 – SIGNAL-TO-NOISE PERFORMANCE OF MC3417 WITH SINGLE INTEGRATION, SINGLE-POLE AND COMPANDING AT 16K BITS – TYPICAL

Shift Register Length (Algorithm)

The MC3417 has a three-bit algorithm and the MC3418 has a four-bit algorithm. For clock rates of 16 kHz and below, the 3-bit algorithm is well suited. For 32 kHz and higher clock rates, the 4-bit system is preferred. Since the algorithm records a fixed past history of the input signal, a longer shift register is required to obtain the same internal history. At 16 bits and below, the 4-bit algorithm will produce a slightly wider dynamic range at the expense of level change response. Basically the MC3417 is designed for low bit rate systems and the MC3418 is intended for high performance, high bit rate system. At bit rates above 64K bits either part will work well.

Selection of Loop Gain

The gain of the circuit in Figure 14 is set by resistor R_X , R_X must be selected to provide the proper integrator step size for high level signals such that the companding ratio does not exceed about 25%. The companding ratio is the active low duty cycle of the coincidence output on pin 11 of the codec circuit. Thus the system gain is dependent on:

- 1. The maximum level and frequency of the input
- 2. The transfer function of the integration filter.

For voice codecs the typical input signal is taken to be a sine wave at 1 kHz of 0 dBmo level. In practice, the useful dynamic range extends about 6 dB above the design level. In any system the companding ratio should not exceed 30%.

To calculate the required step size current, we must describe the transfer characteristics of the integration filter. In the basic circuit of Figure 14, a single pole of 160 Hz is used.

R = 10 kΩ, C = 0.1 μF
$$\frac{V_0}{I_i} = \frac{1}{C(S + 1/RC)} \equiv \frac{K}{S + \omega_0}$$

$$\omega_0 = 2\pi f$$

$$10^3 = \omega_0 = 2\pi f$$

$$f = 159.2 Hz$$

Note that the integration filter produces a single-pole response from 300 to 3 kHz. The current required to move the integrator output a specific voltage from zero is simply:

$$I_{i} = \frac{V_{o}}{R} + \frac{C_{d}V_{o}}{dt}$$

Now a 0 dBmo sine wave has a peak value of 1.0954 volts. In 1/8 of a cycle of a sine wave centered around the zero crossing, the sine wave changes by approximately its peak value. The CVSD step should trace that change. The required current for a 0 dBm 1 kHz sine wave is:

$$I_{i} = \frac{1.1 \text{ V}}{*2(10 \text{ k}\Omega)} + \frac{0.1 \,\mu\text{F}(1.1)}{0.125 \text{ ms}} = 0.935 \text{ mA}$$

*The maximum voltage across RI when maximum slew is required is:

Now the voltage range of the syllabic filter is the power supply voltage, thus:

$$R_X = 0.25(V_{CC}) \frac{1}{0.935 \text{ mA}}$$

A similar procedure can be followed to establish the proper gain for any input level and integration filter type.

9

CVSD DESIGN CONSIDERATIONS (continued)

Minimum Step Size

The final parameter to be selected for the simple codec in Figure 14 is idle channel step size. With no input signal, the digital output becomes a one-zero alternating pattern and the analog output becomes a small triangle wave. Mismatches of internal currents and offsets limit the minimum step size which will produce a perfect idle channel pattern. The MC3417 is tested to ensure that a 20 mVp-p minimum step size at 16 kHz will attain a proper idle channel. The idle channel step size must be twice the specified total loop offset if a one-zero idle pattern is desired. In some applications a much smaller minimum step size (e.g., 0.1 mV) can produce quiet performance without providing a 1-0 pattern.

To set the idle channel step size, the value of R_{min} must be selected. With no input signal, the slope control algorithm is inactive. A long series of ones or zeros never occurs. Thus, the voltage across the syllabic filter capacitor (C_S) would decay to zero. However, the voltage divider of R_S and R_{min} (see Figure 14) sets the minimum allowed voltage across the syllabic filter capacitor. That voltage must produce the desired ramps at the analog output. Again we write the filter input current equation:

$$I_i = \frac{V_o}{R} + C \frac{dV_o}{dt}$$

For values of V_O near $V_{CC}/2$ the V_O/R term is negligible; thus

$$I_i = C_S \frac{\Delta V_o}{\Delta T}$$

where ΔT is the clock period and ΔV_0 is the desired peak-to-peak value of the idle output. For a 16K-bit system using the circuit in Figure 14

$$I_i = \frac{0.1 \,\mu\text{F} \, 20 \,\text{mV}}{62.5 \,\mu\text{s}} = 33 \,\mu\text{A}$$

The voltage on C_S which produces a 33 μ A current is determined by the value of R_X.

$$I_i R_x = V_S min$$
; for 33 μ A, $V_S min = 41.6 mV$

In Figure 14 Rg is 18 k Ω . That selection is discussed with the syllabic filter considerations. The voltage divider of Rg and R_{min} must produce an output of 41.6 mV.

$$V_{CC} \frac{R_S}{R_S + R_{min}} = V_{Smin} \qquad R_{min} \simeq 2.4 \text{ M}\Omega$$

Having established these four parameters — clock rate, number of shift register bits, loop gain and minimum step size — the encoder circuit in Figure 14 will function at near optimum performance for input levels around 0 dBm.

INCREASING CVSD PERFORMANCE

Integration Filter Design

The circuit in Figure 14 uses a single-pole integration network formed with a 0.1 μF capacitor and a 10 $k\Omega$ resistor. It is possible to improve the performance of the circuit in Figure 14 by 1 or 2 dB by using a two-pole integration network. The improved circuit is shown.

The first pole is still placed below 300 Hz to provide the 1/S voice content curve and a second pole is placed somewhere above the 1 kHz frequency. For telephony circuits, the second pole can be placed above 1.8 kHz to exceed the 1633 touchtone frequency. In other communication systems, values as low as 1 kHz may be selected. In general, the lower in frequency the second pole is placed, the greater the noise improvement. Then, to ensure the encoder loop stability, a zero is added to keep the phase shift less than 180°. This zero should be placed slightly above the low-pass output filter break frequency so as not to reduce the effectiveness of the second pole. A network of 235 Hz, 2 kHz and 5.2 kHz is typical for telephone applications while 160 Hz, 1.2 kHz and 2.8 kHz might be used in voice only channels. (Voice only channels can use an output low-pass filter which breaks at about 2.5 kHz.) The two-pole network in Figure 16 has a transfer function of:

$$\frac{V_o}{I_i} = \frac{R_0 R_1 \left(S + \frac{1}{R_1 C_1}\right)}{R_2 C_2 (R_0 + R_1) \left(S + \frac{1}{(R_0 + R_1) C_1}\right) S + \left(\frac{1}{R_2 C_2}\right)}$$

FIGURE 16 - IMPROVED FILTER CONFIGURATION

These component values are for the telephone channel circuit poles described in the text. The R2, C2 product can be provided with different values of R and C. R2 should be chosen to be equal to the termination resistor on pin 1.

INCREASING CVSD PERFORMANCE (continued)

Thus the two poles and the zero can be selected arbitrarily as long as the zero is at a higher frequency than the first pole. The values in Figure 16 represent one implementation of the telephony filter requirement.

The selection of the two-pole filter network effects the selection of the loop gain value and the minimum step size resistor. The required integrator current for a given change in voltage now becomes:

$$I_{i} = \frac{V_{o}}{R_{0}} + \left(\frac{R_{2}C_{2}}{R_{0}} + \frac{R_{1}C_{1}}{R_{0}} + C_{1}\right) \frac{\Delta V_{o}}{\Delta T} +$$

$$\left(\! \mathsf{R}_2 \mathsf{C}_2 \mathsf{C}_1 + \frac{\mathsf{R}_1 \mathsf{C}_1 \mathsf{R}_2 \mathsf{C}_2}{\mathsf{R}_0} \! \right) \! \frac{\Delta \mathsf{V}_o{}^2}{\Delta \mathsf{T}^2} \; .$$

The calculation of desired gain resistor R_X then proceeds exactly as previously described.

Syllabic Filter Design

The syllabic filter in Figure 14 is a simple single-pole network of 18 $k\Omega$ and 0.33 $\mu F.$ This produces a 6.0 ms time constant for the averaging of the coincidence output signal. The voltage across the capacitor determines the integrator current which in turn establishes the step size. The integrator current and the resulting step size determine the companding ratio and the S/N performance. The companding ratio is defined as the voltage across C_S/VCC .

The S/N performance may be improved by modifying the voltage to current transformation produced by $R_{\rm X}$. If different portions of the total $R_{\rm X}$ are shunted by diodes, the integrator current can be other than $(V_{CC}-V_{\rm S})/R_{\rm X}$. These breakpoint curves must be designed experimentally for the particular system application. In general, one would wish that the current would double with input level. To design the desired curve, supply current to pin 4 of the codec from an external source. Input a signal level and adjust the current until the S/N performance

is optimum. Then record the syllabic filter voltage and the current. Repeat this for all desired signal levels. Then derive the resistor diode network which produces that curve on a curve tracer.

Once the network is designed with the curve tracer, it is then inserted in place of $R_{\rm X}$ in the circuit and the forced optimum noise performance will be achieved from the active syllabic algorithm.

Diode breakpoint networks may be very simple or moderately complex and can improve the usable dynamic range of any codec. In the past they have been used in high performance telephone codecs.

Typical resistor-diode networks are shown in Figure 17.

FIGURE 17 - RESISTOR-DIODE NETWORKS

If the performance of more complex diode networks is desired, the circuit in Figure 18 should be used. It simulates the companding characteristics of nonlinear $R_{\rm X}$ elements in a different manner.

Output Low Pass Filter

A low pass filter is required at the receiving circuit output to eliminate quantizing noise. In general, the lower the bit rate, the better the filter must be. The filter in Figure 20 provides excellent performance for 12 kHz to 40 kHz systems.

TELEPHONE CARRIER QUALITY CODEC USING MC3418

Two specifications of the integrated circuit are specifically intended to meet the performance requirements of commercial telephone systems. First, slope polarity switch current matching is laser trimmed to guarantee proper idle channel performance with 5 mV minimum step size and a typical 1% current match from 15 μ A to 3 mA. Thus a 300 to 1 range of step size variation is possible. Second, the MC3418 provides the four-bit algorithm currently used in subscriber loop telephone systems. With these specifications and the circuit of Figure 18, a telephone quality codec can be mass produced.

The circuit in Figure 18 provides a 30 dB S/Nc ratio over 50 dB of dynamic range for a 1 kHz test tone at a 37.7K bit rate. At 37.7K bits, 40 voice channels may be multiplexed on a standard 1.544 megabit T1 facility. This codec has also been tested for 10⁻⁷ error rates with asynchronous and synchronous data up to 2400 baud and for reliable performance with DTMF signaling. Thus, the design is applicable in telephone quality subscriber loop carrier systems, subscriber loop concentrators and small PABX installations.

TELEPHONE CARRIER QUALITY CODEC USING MC3418 (continued)

The Active Companding Network

The unique feature of the codec in Figure 18 is the step size control circuit which uses a companding ratio reference, the present step size, and the present syllabic filter output to establish the optimum companding ratios and step sizes for any given input level. The companding ratio of a CVSD codec is defined as the duty cycle of the coincidence output. It is the parameter measured by the syllabic filter and is the voltage across Cs divided by the voltage swing of the coincidence output. In Figure 18, the voltage swing of pin 11 is 6 volts. The operating companding ratio is analoged by the voltage between pins 10 and 4 by means of the virtual short across pins 3 and 4 of the V to I op amp within the integrated circuit. Thus, the instantaneous companding ratio of the codec is always available at the negative input of A1.

The diode D1 and the gain of A1 and A2 provide a companding ratio reference for any input level. If the output of A2 is more than 0.7 volts below $V_{CC}/2$, then the positive input of A1 is $(V_{CC}/2-0.7)$. The on diode drop at the input of A1 represents a 12% companding ratio (12% = 0.7 V/6 V).

The present step size of the operating codec is directly

related to the voltage across R_X , which established the integrator current. In Figure 18, the voltage across R_X is amplified by the differential amplifier A2 whose output is single ended with respect to pin 10 of the IC.

For large signal inputs, the step size is large and the output of A2 is lower than 0.7 volts. Thus D1 is fully on. The present step size is not a factor in the step size control. However, the difference between 12% companding ratio and the instantaneous companding ratio at pin 4 is amplified by A1. The output of A1 changes the voltage across $R_{\rm X}$ in a direction which reduces the difference between the companding reference and the operating ratio by changing the step size. The ratio of R4 and R3 determines how closely the voltage at pin 4 will be forced to 12%. The selection of R3 and R4 is initially experimental. However, the resulting companding control is dependent on $R_{\rm X}$, R3, R4, and the full diode drop D1. These values are easy to reproduce from codec to codec.

For small input levels, the companding ratio reference becomes the output of A2 rather than the diode drop. The operating companding ratio on pin 4 is then compared to a companding ratio smaller than 12% which is determined by the voltage drop across $R_{\rm X}$ and the gain of A2

FIGURE 18 — TELEPHONE QUALITY DELTAMOD CODER (Both double integration and active companding control are used to obtain improved CVSD performance. Laser trimming of the integrated circuit provides reliable idle channel and step size range characteristics.)

TELEPHONE CARRIER QUALITY CODEC USING MC3418 (continued)

FIGURE 19 – SIGNAL-TO-NOISE PERFORMANCE AND FREQUENCY RESPONSE

(Showing the improvement realized with the circuit in Figure 18.)

a. SIGNAL-TO-NOISE PERFORMANCE OF TELEPHONY QUALITY DELTAMODULATOR

b. FREQUENCY RESPONSE versus INPUT LEVEL (SLOPE OVERLOAD CHARACTERISTIC)

and A1. The gain of A2 is also experimentally determined, but once determined, the circuitry is easily repeated.

With no input signal, the companding ratio at pin 4 goes to zero and the voltage across $R_{\rm X}$ goes to zero. The voltage at the output of A2 becomes zero since there is no drop across $R_{\rm X}$. With no signal input, the actively controlled step size vanished.

The minimum step size is established by the 500 k resistor between V_{CC} and $V_{CC}/2$ and is therefore independently selectable.

The signal to noise results of the active companding network are shown in Figure 19. A smooth 2 dB drop is realized from +12 dBm to -24 under the control of A1. At -24 dBm, A2 begins to degenerate the companding reference and the resulting step size is reduced so as to extend the dynamic range of the codec by 20 dBm.

The slope overload characteristic is also shown. The active companding network produces improved performance with frequency. The 0 dBm slope overload point is raised to 4.8 kHz because of the gain available in controlling the voltage across $\rm R_{\rm X}$. The curves demonstrate that the level linearity has been maintained or improved.*

The codec in Figure 18 is designed specifically for 37.7K bit systems. However, the benefits of the active companding network are not limited to high bit rate systems. By modifying the crossover region (changing the gain of A2), the active technique may be used to improve the performance of lower bit rate systems.

The performance and repeatability of the codec in Figure 18 represents a significant step forward in the art and cost of CVSD codec designs.

^{*}A larger value for C2 is required in the decoder circuit than in the encoder to adjust the level linearity with frequency. In Figure 18, $0.050\,\mu\text{F}$ would work well.

FIGURE 21 - FULL DUPLEX/32K BIT CVSD VOICE CODEC USING MC3517/18 AND MC3503/6 OP AMP

Codec Components

R_{X1}, R_{X2}- 3.3 kΩ $\begin{array}{l} \text{R}_{\text{P1}}, \, \text{R}_{\text{P2}} = 3.3 \, \text{k}\Omega \\ \text{R}_{\text{S1}}, \, \text{R}_{\text{S2}} = 100 \, \text{k}\Omega \\ \text{R}_{\text{I1}}, \, \text{R}_{\text{I2}} = 20 \, \text{k}\Omega \\ \text{R}_{12} = 1 \, \text{k}\Omega \end{array}$

R_{M1}, R_{M2} -5 MΩ (MC3417) Minimum step size = 20 mV R_{M1} , $R_{M2} - 15 M\Omega$ (MC3418)

Minimum step size = 6 mV C_{S1} , $C_{S2} - 0.05 \mu F$

 C_{11} , $C_{12} - 0.05 \mu F$ 2 MC3417 (or MC3418)

1 MC3403 (or MC3406)

Note: All Res. 5% All Cap. 5%

Input Filter Specifications

12 dB/Octave Rolloff above 3.3 kHz 6 dB/Octave Rolloff below 50 Hz

Output Filter Specifications Break Frequency - 3.3 kHz

Stop Band - 9 kHz Stop Band Atten. - 50 dB Rolloff -> 40 dB/Octave

Filter Components

 $\text{R1}-965~\Omega$ C1 - 3.3 μ F R2 - 72 kΩ C2 - 837 pF R3 - 72 k Ω C3 - 536 pF $R4-63.46 k\Omega$ C4 - 1000 pF R5 – 127 kΩ C5 - 222 pF R6 - 365.5 kΩ C6 - 77 pF

 $R7 - 1.645 M\Omega$ C7 - 38 pF C8 - 837 pF B8 - 72 kΩ R9 – 72 kΩ C9 - 536 pF

 $\begin{array}{l} \text{R10} - 29.5 \text{ k}\Omega \\ \text{R11} - 72 \text{ k}\Omega \end{array}$

Note: All Res. 0.1% to 1%. All Cap. 1.0%

MC3417, MC3418, MC3517, MC3518

COMPARATIVE CODEC PERFORMANCE

The salient feature of CVSD codecs using the MC3517 and MC3518 family is versatility. The range of codec complexity tradeoffs and bit rate is so wide that one cannot grasp the interdependency of parameters for voice applications in a few pages.

Design of a specific codec must be tailored to the digital channel bandwidth, the analog bandwidth, the quality of signal transmission required and the cost objectives. To illustrate the choices available, the data in Figure 22 compares the signal-to-noise ratios and dynamic range of various codec design options at 32K bits. Generally, the relative merits of each design feature will remain intact in any application. Lowering the bit rate will reduce the dynamic range and noise performance of all techniques. As the bit rate is increased, the overall performance of each technique will improve and the need for more complex designs diminishes.

Non-voice applications of the MC3517 and MC3518 are also possible. In those cases, the signal bandwidth and amplitude characteristics must be defined before the specification of codec parameters can begin. However, in general, the design can proceed along the lines of the voice applications shown here, taking into account the different signal bandwidth requirements.

FIGURE 22 – COMPARATIVE CODEC PERFORMANCE – SIGNAL-TO-NOISE RATIO FOR 1 kHz TEST TONE

These curves demonstrate the improved performance obtained with several codec designs of varying complexity.

- Curve a Complex companding and double integration (Figure 18 MC3418)
- Curve b Double integration (Figure 21 using Figure 6 MC3418)
- Curve c Single integration (Figure 21 MC3418) with 6 mV step size
- Curve d Single integration (Figure 21 MC3417) with 25 mV step size

TELEPHONE LINE FEED AND 2- TO 4-WIRE CONVERSION CIRCUIT

... designed to replace the hybrid transformer circuit in Central Office, PABX and Subscriber carrier equipment, providing signal separation for two-wire differential to four-wire single-ended conversions and suppression of longitudinal signals at the two-wire input. It provides dc line current for powering the telset, operating from up to a 56 V supply

- All Key Parameters Externally Programmable
- Current Sensing Outputs Monitor Status of Both Tip and Ring Leads
- On-Hook Power Below 5.0 mW
- Digital Hook Status Output
- Power Down Input
- Ground Fault Protection
- Size and Weight Reduction Over Conventional Approaches

٧EE

The sale of this product is licensed under patent No. 4,004,109.
 All royalties related to this patent are included in the unit price.

SUBSCRIBER LOOP INTERFACE CIRCUIT (SLIC)

BIPOLAR LASER-TRIMMED INTEGRATED CIRCUIT

L SUFFIX CERAMIC PACKAGE CASE 726-01

FUNCTIONAL BLOCK DIAGRAM

O VCC

B1 Mirror 1

o م

MC3419, MC3419A, MC3419C

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Voltage (Referenced to V _{CC})	V _{EE} V _{QB}	-60 V _{EE} -1	Vdc
Sense Current Steady State Pulse - Figure 4	^I TSI, ^I RSI	100 200	mAdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature (θ JA = 100°C/W Typ)	TJ	150	°C

OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Operating Ambient Temperature Range	TA	0 to +70	°C
Loop Current	ΙL	20 to 120	mA
Voltage	V _{EE} V _{QB}	-20 to -56 -20 to V _{EE}	Vdc
Analog Ground ($I_L = 0$ to 60 mA) ($I_L = 0$ to 120 mA)	VAG	0 to -12 -2.5 to -12	Vdc
Supervisory Output Voltage	V _{RSO} , V _{TSO} , V _{HSO}	-2.0 to -20	Vdc

PIN DESCRIPTIONS

Name	Function
V _{CC}	The most positive supply voltage. This point is Earth Ground in most typical applications.
BP & BN	Are the base drive outputs for the PNP and NPN Darlington transistors.
EP & EN	Are loop current sensing inputs and are connected to the emitter of the PNP & NPN Darlington transistors.
TSI & RSI	Are the tip and ring current sensing inputs. They are low impedance inputs (approximately 600 Ω each) that translate the voltage on tip and ring to a current through Resistors R_T and R_R .
СС	Compensation capacitor input.
VEE	Is the most negative supply voltage.
V _{QB}	Is the quiet battery connection. The voltage on this pin must not go more negative than VEE.
HST	Hook Status Threshold programming resistor input pin. This pin programs the value of loop resistance which determines on-hook or off-hook status.
RSO	Ring Sense current Output. This output reflects the status of the Ring terminal. The current is sourced from this output and is one-sixth $\log_{\rm I}$
TSO	Tip Sense current Output. This output reflects the status of the Tip terminal. The current is sourced from this output and is one-sixth I _{TSI} .
HSO	Hook Status Output. This is a digital output (open collector PNP) that sources current when the loop resistance is less than the threshold resistance value set by R _H .
PDI	Power-Down Input pin. A logic level "0" powers down the MC3419.
TX	Transmit current output. This output sinks current proportional to ITSI + IRSI
RX	Receive input. This input sums the currents from the TX output and signal input. This pin has a low input impedance.
V _{AG}	Analog ground reference supply voltage input.

ELECTRICAL CHARACTERISTICS (V_{EE} = -48 V, V_{OB} = -48 V, V_{AG} = -6.0 V, R_L = 900 Ω , T_A = 25°C unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Transhybrid Gain Variation (1.0 kHz @ 0 dBm Input) Transmission/Reception	1	VTX/VL,	-0.3	0	+0.3	dB
MC3419 MC3419A MC3419C		VTX/VL, VL/VRX	-0.15 -0.4	0	+0.15	
Franshybrid Rejection (1.0 kHz @ 0 dBm Input) Fixed (1%) Resistor Balance Network	1	V _{TX} /V _{RX}	-23	_		dB
MC3419, MC3419C MC3419A Trimmed Balance Network			-33	_	-	
All Types				-55		dB
Level Linearity (-48 to +3.0 dBm, referenced to output @ 1.0 kHz @ 0 dBm) Transmission	1	V _{TX} /V _L	-0.1	0	+0.1	ав
Reception		V _L /V _{RX}	-0.1	0	+0.1	dB
Frequency Response (200–3400 Hz, referenced to output @ 1.0 kHz @ 0 dBm) Transmission	1	V _{TX} /VL V _L /V _{RX}	-0.1	0	+0.1	ub
Reception	1	V _L /V _{RX}	-0.1	-60	+0.1	dB
Total Distortion C-Message Filtered	'	VL/ VRX VTX/VL	_	-60	_	30
Idle Channel Noise	1	V _{TX}				dBrnc0
MC3419 MC3419A MC3419C			_ _ _		13 10 18	
Termination Resistance Tolerance @ 1.0 kHz MC3419A	1	ΔR _O			±3.0 ±5.0	%
MC3419, MC3419C Longitudinal Induction — 60 Hz	2	V _{TX}		5.0		dBrnc0
(I _L = 30 to 100 mA, I _{LON} = 35 mA RMS)						
Longitudinal Balance MC3419 (200-3400 Hz) MC3419A (200-1000 Hz) MC3419A (3000 Hz) MC3419C (200-3400 Hz)	2	VTX/VLON	-45 50 48 -40		_ _ _	dB
Propagation Delay	1	T _P , V _{RX} to V _L V _{RX} to I _{TX}		750 1.2	_	ns μs
Power Dissipation (R _L > 100 MΩ) MC3419, MC3419A MC3419C		PD	_	1.0 2.5		mW
Supply Current — On-Hook		lcc				μΑ
(V _{EE} = V _{QB} = -56 V, R _L > 100 MΩ) MC3419, MC3419A MC3419C			_	40 100	200 500	
Power Supply Noise Rejection (1.0 kHz @ 1.0 V RMS) MC3419, MC3419A	3	V _{TX} /v _{ee}	-40			dB
Quiet Battery Noise Rejection (1.0 kHz @ 1.0 V RMS)	3	V _{TX} /v _{qb}		-6.0	_	dB
Sense Current Tip Ring	4	ITSO/ITSI IRSO/IRSI	0.15 0.15	0.17 0.17	0.19 0.19	mA/mA
Fault Currents — On-Hook Tip to VCC Ring to VCC Tip to Ring	1	I _{Tip} IRing ILoop ITip & IRing		0 2.5 120 2.5	_ _ _	mA
Tip & Ring to V _{CC} Analog Ground Current	1	IAG	 	1.0	10	μΑ
Power Down Logic Levels		I PDI VIH	-1.2	-1.0 0	_	μA Vdc
		V _{IL}	-20		-4.0	Vdc
Hook Status Output Current (R _L < 2.5 kΩ, $\overline{\text{PDI}}$ = Logic 1) (R _L > 10 kΩ, or $\overline{\text{PDI}}$ = Logic 0)	1	Iнso	200	400 0	2.0	μΑ

FUNCTIONAL DESCRIPTION

Referring to the functional block diagram, line-sensing resistors at TSI and RSI convert voltages at the Tip and Ring terminals into currents which are fed into current mirrors* A1 and A2. The output of A1 is mirrored by A3 and summed together with an output of A2 at the TX terminal. Thus, a differential to single-ended conversion is performed from the ac line signals to the TX output.

All the dc current at the TX output is fed back through the RX terminal to the B1 mirror input. The inputs to B1 and B2 are made equal by mirroring the B1 input current to the B2 input through a low gain output (×1) of the B1 mirror. Both B1 and B2 mirrors have high gain outputs (×95) which drive the subscriber lines with balanced currents that are equal in amplitude and 180° out of phase. The feedback from the TX output, through the B-Circuit mirrors, to the subscriber line produces a dc feed resistance significantly less than the loop sensing resistors.

In most line-interface systems, the ac termination impedance is desired to be greater than the dc feed impedance. A differential ac generator on the subscriber loop would be terminated by the dc feed impedance if the total ac current at the TX output were returned to the B1 input along with the dc current. Instead, the MC3419 system diverts part of the ac current from the B-Circuit mirrors. This decreases the ac feedback current, causing the ac termination impedance at the line interface to be greater than the dc feed impedance.

The ac current that is diverted from the B1 mirror input is coupled to a current-to-voltage converter circuit that has a low input impedance. This circuit consists of an op amp and a feedback resistor external to the MC3419 which produce the transmit output at the 4-wire interface. The transhybrid transmission gain is programmed by the op amp feedback resistor.

Transhybrid reception is realized by converting the ac coupled receive input voltage to a current through an external resistor at the low impedance RX terminal. This current is summed at RX with the dc and ac feedback current from the A-Circuit mirror and drives the B1 mirror input. The B-Circuit mirror outputs drive the line with balanced ac current proportional to the receive input voltage. The transhybrid reception gain is programmed by the resistor at the RX input.

Since receive input signals are transmitted through the MC3419 to the 2-wire port, and the 2-wire port signals are returned to the 4-wire transmit output, a means of cancellation must be provided to maintain 4-wire signal separation (transhybrid rejection). Cancellation is complicated because the gain from the receive port to the transmit port depends on the impedance of the subscriber loop. A passive "balance network" is used to achieve transhybrid rejection by cancelling, at the low impedance input to the transmit op amp, the current reflected by the loop impedance to the 4-wire transmit output. For a resistive loop impedance, a single resistor provides the cancellation. For reactive loops, the balance network should be reactive.

Longitudinal (common-mode) currents that may be present on the subscriber lines are suppressed in the MC3419 by two methods. The first mode of suppression is inherent in the mirror configuration. Positive-going longitudinal currents into Tip and Ring create common-mode voltages that cause a decreasing current through the Tip Sensing resistor and an increasing current through the Ring Sensing resistor. When these equal and opposite signal currents are reflected through the A-Circuit and summed together at TX, the total current at TX remains unchanged. Therefore, the ac currents due to the common-mode signals are cancelled before reaching the transmit output.

The second longitudinal suppression method is dominant, since it limits the amplitude of common-mode voltages that appear at the Tip and Ring terminals. Through an error-detecting circuit, the input of which is a difference current between outputs of A1 and A2, the impedance at Tip and Ring to longitudinal currents is kept very low. This is accomplished with a high gain C-Circuit which produces B1 and B2 output currents that are equal and in phase to cancel the longitudinal line currents. Operation of this circuit does not affect the dc line-current or the processing of normal differential line signals.

The hook-status control circuit supplies the bias currents to activate the B-Circuit op amps and other sections of the MC3419. If the $\overline{\text{PDI}}$ pin is a logic "one", the control circuit senses two outputs from the A1 and A2 mirrors. If both of these output currents are greater than the preprogrammed current at the HST terminal, the control circuit supplies currents to power up the SLIC. At the same time it activates a digital status output, HSO.

In addition to the digital hook status output, the condition of Tip and Ring can be monitored at the TSO and RSO outputs of the MC3419. These outputs source currents proportional to the TSI and RSI input currents respectively, and operate independently of the PDI logic input.

The MC3419 has two negative battery terminals. VEE supplies the high current through the B2 mirror to drive the line. B2 has a high output impedance and battery noise will not be coupled to the line from the VEE terminal. However, VQB is quite sensitive to noise, since the line-sensing resistor is referenced to this pin through the A2 mirror, and should be bypassed with a filter network to guarantee a high rejection of battery noise.

The VAG input also plays a key role in reducing powersupply related noise that can occur when the MC3419 system is coupled to a switching system. The analog ground isolates the 4-wire receive and transmit signal paths from noise on the system power ground by establishing a common ac signal reference.

*A current mirror is a circuit which behaves as a current controlled, current source. It has a single low-impedance input terminal and one or more high impedance outputs.

1.0 μF V_{RX} 900 ₹ 18 Vcc VAG **-0** − 6.0 V 42.7 k v_{TX} EP RX 23.2 k 59 k MJE271 ВР TX 15.6 k _{1.0 μ}F Tip 17.4 k 4 TSI PDI 59 k 0.005 μF MC3419 R_{L} 5 СС HSO 12 V 900 2.0 W IHSO Ring 17.4 k 6 13 RSI TSO $0.005 \mu F$ BN RSO MJE270 8 ΕN HST 0.002 μF 2 V_{EE} VQB 261 k 43 k -48 V

FIGURE 1 - AC TEST CIRCUIT

FIGURE 2 - LONGITUDINAL BALANCE TEST CIRCUIT

Transmit and Receive Gain = 0 dB

A1 = Low Noise Type Op-Amp

AC Termination Resistance, R_0 = 900 Ω

DC Feed Resistance, Rf = 400 ()

FIGURE 4 - TSO and RSO supervisory output test circuit

APPLICATIONS INFORMATION

The Motorola Subscriber Loop Interface Circuit (SLIC) is comprised of a bipolar laser-trimmed integrated circuit, MC3419, two complimentary Darlington power transistors, MJE270 and 271, a bridge rectifier, MDA220, ten resistors, and five capacitors, as shown in Figure 7. The op amp providing the VTX output may be a separate component or may be one of the two op amps included in the MC14413 or MC14414 PCM filter packages. The circuit of Figure 7 will provide:

Adjustable resistive dc power feed Adjustable maximum loop range Adjustable ac termination impedance 2-wire balanced to 4-wire single ended conversion Adjustable transmit and receive gains Independent transhybrid null Ring-to-ground, Tip-to-ground, and Ring- and Tip-toground fault current limiting (2.5 mA) Rejection of longitudinal or common mode interference from dc to greater than 4.0 kHz 1500 volt secondary lightning transient protection Temporary power-line fault protection On-hook power-down (less than 10 mW) Floating 4-wire common input for noise rejection Hook-status output signal Power-down control for subscriber service denial Continuous Tip and Ring status monitoring outputs Wide battery range (20 V to 56 V)

In addition, the SLIC can provide the following optional features:

Constant current battery feed Current limiting battery feed Battery noise suppression Adjustable frequency response

DC Characteristics

When the telephone is on-hook, the Tip and Ring terminals of the SLIC are essentially open and the MC3419 is in a quiescent state. In this condition, current is being supplied to the line only through R_{R} and R_{T} and power dissipation in the MC3419 is limited primarily to leakage currents.

In the off-hook state, the MC3419 powers itself up and provides current to the line. The off-hook dc feed resistance with which the SLIC drives the line is given by

$$R_F = \frac{(R_R + R_T + 1200) |V_{QB}|}{98 (|V_{QB}| - 4)}$$
 (1)

The values of R_R and R_T can be derived from equation (1) to provide the desired dc feed resistance once $V_{\mbox{\scriptsize QB}}$ is known.

$$R_R = R_T = \frac{49 (|V_{QB}| - 4) R_F}{|V_{QB}|} - 600$$
 (2)

MC3419, MC3419A, MC3419C

FIGURE 7 - SLIC CIRCUIT

The line-feed current flows between ground and V_{EE} ; however, the control electronics is referenced to V_{QB} and ground. Therefore, the dc feed resistance appears to be referenced to V_{QB} and ground.

The matching of RR and RT is critical to a number of ac performance parameters as shown in Figures 8, 9 and 10. One percent tolerance or better is recommended for these resistors. In addition, these resistors must withstand any voltage transients on the line. Resistors able to withstand voltage transients of 1000 V or more are recommended.

FIGURE 8 — RETURN LOSS versus TIP/RING RESISTOR MISMATCH

FIGURE 9 — TRANSHYBRID REJECTION versus
TIP/RING RESISTOR MISMATCH

Power dissipation on short loops can be significantly reduced by either of two methods of current limiting. The dc feed resistance R_F is shown in equation (1) to be a function of V_{QB} as well as R_T and R_R . The current I_{QB} from the V_{QB} pin is proportional to loop current. Therefore, a resistor R_{QB} placed between the V_{QB} pin and V_{EE} supply will reduce the V_{QB} supply voltage as the loop current increases. This slightly increases the value of R_F while at the same time reducing the effective value of the battery voltage, thereby limiting loop current. Figure 11

FIGURE 10 — IMPEDANCE BALANCE versus TIP/RING RESISTOR MISMATCH

FIGURE 11 — LOOP CURRENT versus LOOP RESISTANCE

can be used to determine the value of $R_{\mbox{\scriptsize QB}}$ that will yield the desired maximum loop current.

Figure 20 shows how a current regulator device can be used in place of R_{OB} to provide a constant current line-feed characteristic up to the loop resistance where the constant current equals the resistive feed current. At that point, the line-feed will appear resistive. Typical current regulator values for various loop currents are shown in Figure 12. The Motorola $1\,N5\,283$ series of current regulator diodes are recommended. The current sourced to the current regulator diode in the off-hook mode is:

$$I_{QB} = 0.0285 I_L + 0.25 + \frac{|V_{QB}| - 4}{R_H}$$
 3 (a)

IL in mA, R_H in $k\Omega$

In the on-hook mode the current is:

Figure 13 is a graph of SLIC power dissipation for both 400 Ω resistive battery feed and constant current battery feed, (or current limiting) showing the power savings of constant current techniques.

FIGURE 12 - LOOP CURRENT REGULATION

FIGURE 13 - TOTAL SLIC POWER DISSIPATION

FIGURE 14 — HOOK STATUS DETECTION

MC3419, MC3419A, MC3419C

Either RQB or the current regulator diode and a capacitor to VCC provide an effective means of filtering any noise on the VEE line and prevent it from reaching the VCP nin

The loop resistances which the SLIC recognizes as onhook and off-hook are determined by RH.

$$R_{I} (On-Hook) \ge 0.17 R_{H} - (R_{R} + R_{T})$$
 4 (a)

$$R_{I}$$
 (Off-Hook) \leq 0.011 R_{H} - 0.010 (R_{R} + R_{T}) 4 (b)

The value of R $_{\rm H}$ can be selected from Figure 14. All loop resistances below the shaded area at the point where R $_{\rm H}$ was selected are recognized as off-hook. All loop resistances above the shaded area at the value of R $_{\rm H}$ are recognized as on-hook. The shaded area represented an undefined region where the hook status output may indicate either on-hook or off-hook due to element tolerances and comparator hysteresis.

FIGURE 15 — TRANSIENT VOLTAGE WAVE SHAPE

Transient Protection

The SLIC shown in Figure 7 will withstand positive or negative voltage transients on Tip and Ring up to 1500 V_{peak} having the waveshape shown in Figure 15. The resistors RpT, RpR, RT, and RR must be chosen to withstand such a voltage transient without arcing across or failing due to the resulting current surge. The values of RpT and RpR should be between 30 and 50 Ω . Tolerance of 20% is adequate. The values of RT and RR are determined per equation (2). The peak currents at RSI and TSI should not exceed 200 mA during these transients.

The circuit of Figure 7 will also withstand crosses to ac power lines of up to 700 V_{RMS} for 11 cycles of the 60 Hz line per REA Form 522a. The ability to withstand continuous power-line crosses is determined mainly by the power handling ability of R_{PT}, R_{PR}, R_T, and R_R. The circuit wiring to the MDA 220 diode bridge must be adequate to handle the large voltages and currents caused by transients, as well.

None of the pins on the MC3419 should be operated more positive than V_{CC} or more negative than V_{EE} . How-

ever, under transient conditions, EP and BP may go up to one volt more positive than V_{CC} and BN, EN, and V_{QB} may go up to one volt more negative than V_{EE} without permanent damage to the MC3419. When a capacitor is used on the V_{QB} pin in conjunction with R_{QB} , a 1N4001 or similar diode is recommended between V_{EE} and V_{QB} . The diode cathode should be connected to V_{QB} . For single short transients of less than one millisecond, EP and BP may exceed V_{CC} and EN and BN may exceed V_{EE} by up to 30 V.

Transmission Characteristics

The ac termination impedance R_0 of the SLIC is determined by $R_T,\,R_R,$ and the ratio of R_{TX2} to R_{TX1} .

$$R_0 = \frac{R_T + R_R + 1200}{1 + 97K_5} \tag{5}$$

$$K_5 = \frac{R_{TX2}}{R_{TX2} + R_{TX1}} \tag{6}$$

The required value of $K_{\overline{\bf 5}}$ is derived from equation (5) after choosing $R_{\bf 0}.$

$$K_5 = \frac{1}{97} \left[\frac{R_T + R_R + 1200}{R_0} - 1 \right] \tag{7}$$

The value of $R_{T\chi1}$ must be selected first to assure that the internal current mirrors in the MC3419 do not saturate at the minimum voltage provided at V_{QB} . The value of $R_{T\chi1}$ is determined by:

$$R_{TX1} = \frac{(R_R + R_T + 1200)(|V_{QB}|_{min} - |V_{AG}|_{max} - 6.5)}{|V_{QB}|_{min} - 5.4}$$
(8)

If current limiting or constant current-feed is used where the minimum value of $V_{\mbox{QB}}$ may not be known, $R_{\mbox{TX1}}$ is found by:

$$R_{TX1} = \frac{0.01 \, I_{L(max)} (R_R + R_T + 600) - |V_{AG}|_{(max)} - 3.9}{0.01 \, I_{L(max)}}$$
(9)

The value of RTX2 may be derived from equation (6).

$$R_{TX2} = \frac{K_5 R_{TX1}}{1 - K_5} \tag{10}$$

Transhybrid reception gain (G_{RX}) from V_{RX} to Tip and Ring is given by:

$$G_{RX} = \frac{95 R_L R_0}{(R_L + R_0) R_{RX}}$$
 (11)

The value of R_{RX} may be calculated to provide the desired G_{RX} for a given R_0 and $R_L.$

$$R_{RX} = \frac{95 R_L R_0}{(R_L + R_0) G_{RX}}$$
 (12)

Transhybrid transmission gain (G_{TX}) from Tip and Ring to V_{TX} is given by:

$$G_{TX} = \frac{1.02 R_{VTX} (1 - K_5)}{R_R + R_T + 1200}$$
 (13)

The value of $R_{\mbox{\scriptsize VTX}}$ may be calculated to provide the desired $G_{\mbox{\scriptsize TX}}.$

$$R_{VTX} = \frac{(R_R + R_T + 1200) G_{TX}}{1.02 (1 - K_5)}$$
 (14)

Transhybrid rejection is achieved with the SLIC by taking advantage of the 180° phase reversal of the current at the TX pin with respect to the V_{RX} input. A balance resistor, R_B , is placed between the V_{RX} input and the virtual ground point between C_{TX} and C_{TX} . The value of this resistor is

point between C_{TX} and R_{TX2} . The value of this resistor is selected to exactly cancel out the return current from the TX pin and is determined by:

$$R_{B} = \frac{R_{RX}(1 + 97K_{5})(R_{o} + R_{L})}{97(1 - K_{5})(R_{L})}$$
(15)

Maximum rejection will only occur at one value of R_L across Tip and Ring, as shown in Figure 16, for a given value of R_B. Figure 16 shows that more than one value of R_B may be required to provide adequate rejection over wide ranges of loop resistance.

FIGURE 16 - TRANSHYBRID REJECTION

Maximum rejection on a line that is reactive can be obtained with the circuit shown in Figure 17. This will balance any capacitive load on the line, where

$$R_{B1} = \frac{R_{RX}(R_R + R_T + 1200)}{97 R_1 (1 - K_5)}$$
 (16)

$$R_{B2} = \frac{R_{RX}(R_R + R_T + 1200)}{97 R_0 (1 - K_5)}$$
 (17)

$$c_{B} = \frac{R_{L} C_{L}}{R_{B2}} \tag{18}$$

Signaling and Supervision

The \overline{PDI} function shuts off all power to the subscriber with the exception of the small current provided by R_R and R_T. The power-down state occurs when a logic low-level, any voltage more negative than V_{CC} -4.0 V but not exceeding -20 V, is applied to the \overline{PDI} pin.

The PDI pin is designed to be TTL compatible if the logic power supplies are 0 V and –5.0 V. It is also compatible with CMOS powered from 0 V and –12 V supplies, otherwise a level-shifter is required. If the power-down feature is not desired, this pin can be tied to VCC.

Hook status is indicated by the presence or absence of current at the Hook Status Output (HSO). On-hook status is indicated by no current output at HSO. When an off-hook condition is detected by the MC3419, the HSO pin sources a dc current of at least 200 $\mu\text{A}.$ A resistor can be used to translate the current into a voltage for further

FIGURE 17 — BALANCE NETWORK FOR REACTIVE LINES

9

MC3419, MC3419A, MC3419C

processing by the digital logic. This pin also passes dial pulse information. If the \overline{PDI} pin is at a logic low level, HSO is inactive

Figures 18 (a), 18 (b), and 18 (c) show suggestions for interfacing with various digital logic levels.

The Tip Sense Output (TSO) and the Ring Sense Output (RSO) both source current that is proportional to the current that flows into and out of their respective inputs - the Tip Sense Input (TSI) and Ring Sense Input (RSI). The output currents are 1/6 that of the input currents. These outputs may be used as full time monitors of the line condition since they remain active even if the MC3419 is in the power-down state. Figure 19 shows how these outputs can be used for the ring-trip function and ring-fault indicator.

Ringing is the last function to describe on Figure 19. There are several ways of inserting the ringing signals on a line, any one of which the SLIC can be adapted to. Figure 19 shows one method.

When the ringing relay is enabled, the ring side of the SLIC is disconnected. The tip side of the line is connected to a grounded resistor (RG1) to provide a complete signal path for the ring generator signal. While the phone is onhook, the ringing signal is capacitively coupled to the tip line through the high impedance of the bell ringer and a capacitor in the phone. The dc currents are low and therefore the dc voltage drop across RG1 is low. When the subscriber goes off-hook, the impedance of the phone drops to a few hundred Ω of dc resistance and RG1 gets a large dc current along with a large ac current. The sensing resistor (RT) will sense this change and the TSO output of the MC3419 will also reflect this change by an increased voltage drop on the RTS resistor. The capacitor (CTS) will filter the ac component of the signal. A comparator can now be used to determine the hook status and disable the ring relay.

Design Example

This example will illustrate the design procedure for a SLIC to meet the following specifications:

$$V_{EE} = -48~V \pm 6.0~V \\ V_{AG} = -6.0~V \pm 1.0~V \\ 400~\Omega$$
 resistive dc feed Current limiting at 60 mA Maximum loop resistance of 2500 Ω 900 Ω ac termination resistance Transmit gain of 0 dB Receive gain of 0 dB Balanced for 600 Ω line resistance

The V_{QB} supply will be derived from the -48 V V_{EE} supply through a 1N5305 current regulator diode to provide loop current limiting at 60 mA. The voltage drop across the 1N5305 is less than 2.0 V until it reaches regulation and may be ignored in the calculation of R_T and R_R . C_{QB} is 10 μF at 60 V. From equation (2).

$$R_T = R_R = \frac{49 (48-4) 400}{48} -600$$

The closest standard value with $\pm 1.0\%$ tolerance is 17.4 k Ω . 17.4 k Ω will be used in all the rest of the equations.

The protection resistors (RpR and RpT) should be 30 Ω to 50 $\Omega.$ For this example we will use 40 Ω ±20%. C_T and C_R are stabilization capacitors whose values, including line capacity, should be a minimum of 2000 pF.

R_C and C_C are determined by (R_T + 600) C_T = R_C C_C. 18 k Ω ±5% and 2000 pF will be used for R_C and C_C.

The value of RH is determined from Figure 14. To guarantee off-hook detection at the maximum loop resistance of 2500 $\Omega,$ RH can be 261 $k\Omega$ ±1%, which is a standard value. A 270 $k\Omega$ ±5% resistor can be used if the on-hook resistance of the loop is specified larger than 14 $k\Omega$.

FIGURE 18 — INTERFACE-TO-DIGITAL LOGIC

MC3419, MC3419A, MC3419C

To obtain the desired 900 Ω ac termination resistance (R₀), K₅ is first calculated using equation (7).

$$K_5 = \frac{1}{97} \left[\frac{17400 + 17400 + 1200}{900} -1 \right]$$

The value of R_{TX1} is calculated from equation (9) since V_{OB} is supplied from a current regulator diode.

$$R_{TX1} = \frac{(0.01)(0.06)(17400 + 17400 + 600) - 7 - 3.9}{(0.01)(0.06)}$$
= 17233 0.

 $17233\,\Omega$ is the largest value of RTX1 that can be used. A 16.9 k Ω ±1% resistor is the standard value selected. From equation (10), RTX2 is now calculated.

$$R_{TX2} = \frac{(0.402)(16900)}{(1-0.402)}$$

A 11.3 k Ω ±1% resistor is selected. When selecting R_{TX2}, select the nearest standard value lower than the calculated value. This is because C_{TX} adds a small impedance to the value of R_{TX2} and the virtual ground node (negative input to the current to voltage converter) will also add a slight amount of impedance to R_{TX2}. The impedance of the virtual ground point is

$$z_{in} = \frac{R_{VTX}}{1 + A}$$

where A is the open loop gain of the op amp. At 1.0 kHz, Z_{in} will probably range from 50 Ω to 100 Ω . The CTX capacitor, 1.0 μ F (50 V) adds a reactance of 160 Ω to the value of RTX2 so the total impedance is:

$$\sqrt{(11300 + 75)^2 + (160)^2} = 11376 \Omega$$

With the nominal values selected for R_{TX1} , R_{TX2} , C_{TX} and Z_{in} , K_5 nominal value is 0.4007 and R_0 nominal value is 903.0.

Transhybrid reception gain (GR χ) is set to 0 dB (voltage gain of one) by calculating RR χ using equation (12). A nominal line resistance (RL) of 900 Ω will be assumed.

$$R_{RX} = \frac{(95) (900) (903)}{(900 + 903) (1)}$$
$$= 42821 \Omega$$

A 43.2 k Ω ±1% resistor should be used for RRX. Use a 1.0 μ F 20 V capacitor for CRX.

Transhybrid transmission gain (G_{TX}) is set for unity gain by calculating R_{VTX} , using equation (13).

$$R_{VTX} = \frac{(17400 + 17400 + 1200)(1)}{(1-0.4007)}$$
$$= 60070 \Omega$$

A 60.4 k Ω ±1% resistor should be used for RVTX.

The balance resistor (Rg) is selected to maximize transhybrid rejection with RL of 600 Ω using equation (15).

$$R_{B} = \frac{43200 [1 + 97 (0.4007)] (903 + 600)}{97 (1 - 0.4007) (600)}$$
$$= 74216 \Omega$$

A 75 k Ω ±1% resistor would be selected.

The digital Hook Status Output resistor (R_{HS}) is determined from a consideration of the type of logic with which the output must interface and the power supply voltages of that logic. Assuming CMOS at $V_{DD}\!=\!0\,V$ and $V_{SS}\!=\!12\,V$, then

$$R_{HS} = \frac{V_{SS}}{I_{HS}}$$
$$= \frac{12 \text{ V}}{200 \mu A}$$
$$= 60 \text{ k}\Omega$$

A 62 k Ω ±5% resistor is suitable.

The complete SLIC design is shown in Figure 20, along with the codec, filter, time-slot assigner/channel controller, and reference voltage needed for a complete line circuit

FIGURE 20 — LINE CIRCUIT USING SLIC, FILTER, CODEC AND TSAC

TELEPHONE LINE-FEED CIRCUIT

... designed as the heart of a circuit to provide BORSHT functions for telephone service in Central Office, PABX, and Subscriber Carrier equipment. This circuit provides dc power for the telephone (Battery), Overvoltage protection, Supervision features such as hook status and dial pulsing, two-wire differential to four-wire single-ended conversions and suppression of longitudinal signals at the two-wire input (Hybrid), and facilitates ringing insertion, Ring trip detection and Testing.

- Totally Upward Compatible with the MC3419
- All Key Parameters Externally Programmable
- Current Sensing Outputs Monitor Status of Both Tip and Ring Leads for Auxiliary Functions such as: Ground Key, Ring Trip, Message Waiting Lamp, etc.
- On-Hook Power Below 5.0 mW
- Digital Hook Status Output
- Powerdown Input
- Ground Fault Protection
- Operates from Single −20 V to −56 V Power Source
- Size and Weight Reduction Over Conventional Approaches
- The sale of this product is licensed under Patent No. 4,004,109.
 All royalties related to this patent are included in the unit price.

SUBSCRIBER LOOP INTERFACE CIRCUIT (SLIC)

BIPOLAR LASER-TRIMMED INTEGRATED CIRCUIT

L SUFFIX CERAMIC PACKAGE CASE 726-01

MAXIMUM RATINGS (Voltages Referenced to VCC.)

Rating	Symbol	Value	Unit
Voltage	V _{EE} V _{QB}	-60 V _{EE} -1.0 V	Vdc
Powerdown Input Voltage Range	V PDI	+ 15 to - 15	Vdc
Sense Current Steady State Pulse — Figure 4	^I TSI, ^I RSI	100 200	mAdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature (θJA = 100°C/W Typ)	TJ	150	°C

OPERATING CONDITIONS (Voltages Referenced to Vcc.)

Rating	Symbol	Value	Unit
Operating Ambient Temperature Range	TA	0 to +70	°C
Loop Current	lμ	10 to 120	mA
Voltage	V _{EE}	-20 to -56 -20 to V _{EE}	Vdc
Analog Ground (I _L = 0 to 60 mA) (I _L = 0 to 120 mA)	VAG	0 to -12 -2.5 to -12	Vdc
Supervisory Output Voltage Compliance Range	V _{RSO} , V _{TSO}	-2.0 to -20	Vdc
Hook Status Output	V _{HSO}	+ 15 to -20	Vdc
Loop Resistance	RL	0 to 2500	Ω

TRANSMISSION CHARACTERISTICS (R_I = 600Ω unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Transmit and Receive Gain Variation (Insertion Loss)	1	V _{TX} /V _L , V _L /V _{RX}				dB
(1.0 kHz @ 0 dBm Input) MC3419-1 MC3419A-1 MC3419C-1			-0.3 -0.15 -0.4	0 0 0	+0.3 +0.15 +0.4	
Transhybrid Rejection (Input — 1 kHz @ 0 dBm) Fixed (1%) Resistor Balance Network MC3419-1, MC3419C-1 MC3419A-1 Trimmed Balance Network All Types	1	VTX/VRX	-23 -33 -	- 35 - 40 - 55	_ _ _	dB
Level Linearity (– 48 to +3.0 dBm, referenced to 0 dBm @ 1 kHz) Transmission Reception	1	V _{TX} /V _L V _L /V _{RX}	- 0.1 - 0.1	0 0	+ 0.1 + 0.1	dB
Frequency Response (200–3400 Hz referenced to 1.0 kHz @ 0 dBm) Transmission Reception	1	V _{TX} /V _L V _L /V _{RX}	- 0.1 - 0.1	0	+ 0.1 + 0.1	dB
Total Distortion @ 1.0 kHz, 0 dBm (C-Message Filtered)	1	V _L /V _{RX} V _{TX} /V _L	_	- 60 - 60	_	dB

TRANSMISSION CHARACTERISTICS (continued) (RL = 600 Ω unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Idle Channel Noise (V _{RX} = 0 V)	1	V _{TX} , V _L				dBrnC
MC3419-1, MC3419A-1			_	3.0	10	
MC3419C-1			_	4.0	13	
Return Loss (referenced to 600 ohms) @ 1.0 kHz, 0 dBm	1	20 Log $\frac{R_0 - 600}{R_0 + 600}$				
MC3419A-1			36	_	_	dB
MC3419-1, MC3419C-1			30	_	_	dB
Longitudinal Induction (60 Hz) (I _{LON} = 35 mA RMS)	2	VTX	_	5.0	_	dBrnC
Longitudinal Balance	2	V _{TX} /V _{LON} ,				dB
MC3419-1 (200-3000 Hz)		VL/VLON	- 45	_	-	1
MC3419A-1 (200-1000 Hz)			- 50	_		
MC3419A-1 (3000 Hz)			- 48	_	-	
MC3419C-1 (200-3000 Hz)			- 40	_	_	

$\textbf{ELECTRICAL CHARACTERISTICS} \; (\text{V}_{EE} \; = \; -48 \; \text{V}, \; \text{V}_{QB} \; = \; \text{V}_{EE}, \; \text{V}_{AG} \; = \; 0 \; \text{V}, \; \text{R}_{L} \; = \; 600 \; \Omega, \; \text{T}_{A} \; = \; 25 ^{\circ}\text{C} \; \text{unless otherwise noted.})$

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Propagation Delay	1	T _P , V _{RX} to V _L V _{RX} to I _{TX}	_	750 1.2	=	ns μs
Supply Current — On-Hook (VEE = V_{QB} = 56 V, R_L > 100 M Ω) MC3419-1, MC3419A-1 MC3419C-1	3	lvcc	_	40 100	200 500	μΑ
On-Hook Power Dissipation (R _L $>$ 100 M Ω) MC3419-1, MC3419A-1 MC3419C-1	3	PD	_	1.0 2.5	_	mW
Power Supply Noise Rejection (1.0 kHz @ 1.0 V _{RMS}) MC3419-1, MC3419A-1 MC3419C-1	3	V _{TX} /V _{ee}	-40 -30			dB
Quiet Battery Noise Rejection (1.0 kHz @ 1.0 V _{RMS})	3	V _{TX} /V _{qb}	_	- 6.0	_	dB
Sense Current Tip Ring	4	TSO/ TSI RSO/ RSI	0.15 0.15	0.17 0.17	0.19 0.19	mA/mA
Fault Currents Tip to V _{CC} Ring to V _{CC} Tip to Ring Tip and Ring to V _{CC}	1	I _{Tip} IRing ILoop I _{Tip} and I _{Ring}		0 2.5 120 2.5	_ _ _	· mA
Analog Ground Current	1	lVAG	_	0.1	2.0	μΑ
Powerdown Logic Levels		I <u>PDI</u> VIH V _{IL}	 -1.2 	-1.0 	-10 -4.0	μA Vdc Vdc
$ \begin{array}{lll} \mbox{Hook Status Output Current} \\ (\mbox{R}_L < 2.5 \ k\Omega, \mbox{V}_{HSO} = +0.4 \mbox{Vdc}) \\ \mbox{V}_{HSO} = -0.4 \mbox{Vdc}) \\ (\mbox{R}_L > 10 \ k\Omega, \mbox{V}_{HSO} = +12 \mbox{Vdc}) \\ \mbox{V}_{HSO} = -12 \mbox{Vdc}) \\ \end{array} $	1	lhso	+1.0 -0.4 	+3.0 -1.5 0	 +50 -2.0	mA mA μA μA

FIGURE 1 — AC TEST CIRCUIT

FIGURE 2 — LONGITUDINAL BALANCE TEST CIRCUIT

- |(- 1.0 μF **∮** 600 18 lvcc IVAG -0 0 V MJE271 28.5 k VTXΕP RXI 90.09 k 33.2 k вР TXO 51.46 k 1.0 µF Tip PDI TSI 90.09 k R_L 600 0.005 μF CC HSO 2.0 W Ring 17.4 k RSI TSO 0.005 μF ΒN RSO 8 ΕN HST V_{qb} 0.002 μF 🕇 232 k MJE270 9 10 ٧EE $V_{\mathbf{QB}}$ -48 V 43 k IVQB VEE -51 V (Tip & Ring) AC Termination Impedance, R $_{O}$ = 600 Ω Transmit and Receive Gain = 0 dB

FIGURE 3 — SUPPLY NOISE REJECTION TEST CIRCUIT

FIGURE 4 — TSO AND RSO SUPERVISORY OUTPUT TEST CIRCUIT

A1 = MC1741N or Equivalent

DC Feed Resistance, $R_F = 400 \Omega$

PIN DESCRIPTIONS

Pin	Name	Function
1	VCC	The positive supply voltage. This point is ground in typical applications.
2, 8	EP & EN	Loop current sensing inputs. These are connected to the emitters of the PNP and NPN Darlington transistors. They are tied through 10 Ω resistors to V _{CC} and V _{EE} , respectively. The maximum continuous current through these inputs is 240 mA.
3, 7	BP & BN	Base drive outputs. These pins drive the bases of the PNP and NPN transistors and are able to sink or source, respectively, up to 5.0 mA.
4, 6	TSI & RSI	Tip and Ring voltage Sensing Inputs. They are low impedance inputs (approximately 600 Ω each i.e., 400 Ω + 3 diodes) that translate the voltages on Tip and Ring to a current through resistors R _T and R _R . TSI is referenced to V _{CC} and RSI is referenced to V _{QB} . These pins have 6.0 V zener diodes (to their respective reference) for protection against overvoltage line surges.
5	СС	Compensation Capacitor pin. This pin is used to stabilize the longitudinal or common mode circuitry.
9	VEE	Negative supply voltage. This pin ties to the chip substrate. Its operating voltage range is -20 V to -56 V. It can withstand -60 V without damage and can sustain a voltage surge to -75 V for less than 4.0 ms without significant degradation of performance. Most of the loop current and bias currents flow through this pin.
10	VQB	Quiet Battery Voltage reference. This is the voltage reference for the RSI pin. Its voltage must not go more negative than VEE. The current through this pin, while powered up, is proportional to the loop current, allowing it to be used for loop current limiting. The voltage on this pin, less 4 volts, is the "effective battery feed voltage for the 2-wire lines even though most of the power comes from the VEE supply.
11	HST	Hook Status Threshold programming resistor input. $R_{\mbox{\scriptsize H}}$ determines the value of loop resistance at which on-hook and off-hook status is switched.
12	RSO	Ring Sense current Output. This output reflects the voltage status of the Ring terminal for voltages more positive than V_{QB} . The current is sourced from this output, it is one-sixth I_{RSI} , its voltage range is 0 to -20 V and its saturation voltage is approximately -2.0 V.
13	TSO	Tip Sense current Output. This output reflects the voltage status of the Tip terminal for voltages more negative than V_{CC} . The current is sourced from this output, it is one-sixth I_{TSI} , its voltage range is 0 V to -20 V and its saturation voltage is approximately -2.0 V.
14	HSO/HSO	Hook Status Output. This is a digital output that reflects the condition of the loop resistance. If loop resistance is less than a predetermined value established by R_H , usually $R_L < 2.5~k\Omega$, the HSO pin will be active, i.e., with positive voltage logic (a resistor tied from a $+5.0~V$ or $+12~V$ supply to HSO), this pin will sink current to VCC (VHSO $\cong 0~V$); with negative voltage logic (a resistor tied from a $-12~V$ supply to HSO), this pin will source current from VCC (VHSO $\cong 0~V$). If loop resistance is greater than a predetermined value again established by the same resistor R_H , usually $R_L > 10~k\Omega$, the HSO pin is inactive, i.e., VHSO $= logic$ supply voltage.
15	PDI	Powerdown Input pin. This pin is used to deny service to the subscriber. A logic level "0" ($V_{IL} < -4.0 \text{ V}$) powers down the MC3419-1 except for HSO, TSO and RSO. The voltage range of this high impedance input pin is $\pm 15 \text{ V}$.
16	тхо	Transmit current Output. This output sinks current to V_{QB} and is proportional to $I_{TSI}+I_{RSI}$ by a ratio of K1 where: K1 = 1.02. Its saturation voltage is $V_{QB}+2.5$ V typ. (+3.5 V over the temperature range). This pin is only active during the off-hook power-up condition.
17	RXI	Receive Input. This input sums ac currents from TXO and the receive voltage input (V_{RX}) and sources all the dc current to TXO. It has a low input impedance (15 Ω) typically biased 4.5 V below the V_{AG} pin voltage during off-hook power-up conditions. During powerdown conditions, the voltages on RXI and TXO can drift up to V_{AG} .
18	VAG	Analog Ground Voltage reference input. The input impedance of this pin is much greater than 1.0 M Ω . It should be ac coupled to system ground and could be direct coupled if system ground is between 0 V and -12 V. AC coupling requires 300 k Ω to V _{CC} and 0.1 μ F to system ground. If V _{CC} and system ground are common, tie V _{AG} directly to V _{CC} . If dc loop currents are allowed to go higher than 60 mA, V _{AG} should be biased from -2.5 V to -12 V to avoid problems at high ambient temperatures.

FUNCTIONAL DESCRIPTION

Referring to the functional block diagram on page 1, line sensing resistors (R_{R} and R_{T}) at the TSI and RSI pins convert voltages at the Tip and Ring terminals into currents which are fed into current mirrors* A1 and A2. An output of A1 is mirrored by A3 and summed together with an output of A2 at the TXO terminal. Thus, a differential to single-ended conversion is performed from the ac line signals to the TXO output.

All the dc current at the TXO output is fed back through the RXI terminals to the B1 mirror input. The inputs to B1 and B2 are made equal by mirroring the B1 input current to the B2 input through a unity gain output of the B1 mirror. Both B1 and B2 mirrors have high gain outputs (x95) which drive the subscriber lines with balanced currents that are equal in amplitude and 180° out of phase. The feedback from the TXO output, through the B-Circuit mirrors, to the subscriber line produces a dc feed resistance significantly less, but proportional to the loop sensing resistors.

In most line-interface systems, the ac termination impedance is desired to be greater than the dc feed impedance. A differential ac generator on the subscriber loop would be terminated by the dc feed impedance if the total ac current at the TXO output were returned to the B1 input along with the dc current. Instead, the MC3419-1 system diverts part of the ac current from the B-Circuit mirrors. This decreases the ac feedback current, causing the ac termination impedance at the line interface to be greater than the dc feed impedance.

The ac current that is diverted from the B1 mirror input is coupled to a current-to-voltage converter circuit that has a low input impedance. This circuit consists of an op amp (external to the MC3419-1) and a feedback resistor which produces the transmit output voltage (V_{TX}) at the 4-wire interface. Transmission gain is programmed by the op amp feedback resistor (R_{VTX}).

Reception gain is realized by converting the ac coupled receive input voltage (V_{RX}) to a current through an external resistor (R_{RX}) at the low impedance RXI terminal. This current is summed at RXI with the dc and ac feedback current from the A-Circuit mirrors and drives the B1 mirror input. The B-Circuit mirror outputs drive the 2-wire port with balanced ac current proportional to the receive input voltage. Reception gain is programmed by the R_{RX} resistor.

Since receive input signals are transmitted through the MC3419-1 to the 2-wire port, and the 2-wire port signals are returned to the 4-wire transmit output, a means of cancellation must be provided to maintain 4-wire signal separation (transhybrid rejection). Cancellation is complicated because the gain from the receive port to the transmit port depends on the impedance

of the subscriber loop. A passive "balance network" is used to achieve transhybrid rejection by cancelling, at the low impedance input to the transmit op amp, the current reflected by the loop impedance to the 4-wire transmit output. For a resistive loop impedance, a single resistor provides the cancellation. For reactive loops, the balance network should be reactive.

Longitudinal (common-mode) currents that may be present on the subscriber lines are suppressed in the MC3419-1 by two methods. The first is inherent in the mirror configuration. Positive-going longitudinal currents into Tip and Ring create common-mode voltages that cause a decreasing current through the Tip Sensing resistor and an increasing current through the Ring Sensing resistor. When these equal and opposite signal currents are reflected through the A-Circuit mirrors and summed together at TXO, the total current at TXO remains unchanged. Therefore, the ac currents due to the common-mode signal are cancelled before reaching the transmit output.

The second longitudinal suppression method is more dominant, since it limits the amplitude of common-mode voltages that appear at the Tip and Ring terminals.

A common-mode suppression circuit detects common-mode inputs and drives the loop with balanced currents to reduce the input amplitude. Subtracting currents from outputs of the A1 and A2 mirrors produces a signal current at the CC terminal in response to the common-mode voltage at Tip and Ring. A transconductance amplifier (C-Circuit) generates a current proportional to the CC terminal voltage which is summed with the current from the RXI terminal at the inputs of current mirrors B1 and B2. The weighting and polarity of the summing networks produce common-mode B1 and B2 mirror output currents at the 2-wire port. The common-mode input impedance is inversely proportional to the gain of the longitudinal suppression circuit. RC and CC compensate the common-mode feedback loop. At 60 Hz with typical component values, the 2-wire common-mode impedance is less than 5 Ω .

The longitudinal suppression circuit output currents are generated by modulating dc current fed to the loop by the B1 and B2 current mirrors. This configuration avoids the increased power dissipation attributed to current mode loop drive because dc and longitudinal currents are not cumulatively sourced to the loop. However, driving common-mode currents through the B-circuit current mirrors in this manner limits the longitudinal suppression capability. The suppression circuit is unable to reverse 2-wire current polarities to maintain a low-impedance termination when longitudinal currents exceed the dc loop current. At low dc loop currents, the common-mode signal capability, known as longitudinal capacity, is limited by the loop current (Figure 6). At high-loop currents, longitudinal capacity is limited by the maximum voltage swing of the CC terminal and is therefore independent of dc loop current.

^{*}A current mirror is a circuit which behaves as a current controlled current source. It has a single low-impedance input terminal with respect to a reference point and one or more high impedance outputs.

Gnd Vcc 1 MDA220 2 VAG ΕP VAG CRX R_{RX} o V_{RX} RXI 3 **RVTX** RP R_{B} \$R_{TX1} R_{PT} Tip 16 TXO R_{TX2} • v_{TX} Стх TSI PDI TSI * Power R_{T} 5 CC RR **HSO** - RSI 6 Down RSI Hook Status TSO Ring RPR Output BN Tıp RSO Sense HST Rina ΕN Sense M IF270 10 VQB VEE ₹RΗ C_C R_{C} -48 V

FIGURE 7 — BASIC SLIC CIRCUIT

The hook status control circuit supplies the bias currents to activate the B-Circuit op amps and other sections of the MC3419-1. To activate the bias currents, the control circuit compares the current through the sense resistors, Rp and RT, and the load resistance RI with the current through the hook status threshold programming resistor, RH, by using outputs from both A1 and A2 mirrors. The A1 mirror output sources current to the RH resistor. (This reduces all internal currents to near zero during the on-hook state in order to eliminate unnecessary power consumption.) If this current is large enough the voltage on the HST pin will trip an internal comparator, then another circuit compares the current from the A1 output with that of an A2 output. These currents must match within $\pm\,15\%$. If so, HSO will be activated and the bias circuits will turn on provided the voltage on PDI is greater than -1.2 V. The HSO pin can have either a pull-up resistor or a pull-down resistor and when activated it will switch to V_{CC} (0 volts).

Once the MC3419-1 is powered up, a circuit with a gain of 20 feeds current to the R_H resistor in order to keep the bias circuitry active. (The sense resistors are paralleled with the Darlington transistors which reduces

the sense input currents.) Should the sense input currents drop below one-twentieth of the required powerup current, the bias currents will be removed, forcing a power-down condition.

Current mode analog signal processing is critically dependent on voltage to current conversion at the 2-wire and 4-wire inputs. Precise, low-noise voltage sensing through resistors R_T, R_R and R_{RX} requires quiet, low impedance terminations at terminals TSI, RSI and RXI respectively. For 2-wire signals, terminal V_{QB} isolates the loop-sensing resistors and current mirrors from noise at the high-current V_{EE} terminal. External filtering from V_{CC} to V_{QB} ("quiet battery" terminal) ensures loop voltages are sensed without interference from system supply noise. V_{EE} noise rejection at audio frequencies is typically 60 dB or greater.

Receive input terminal RXI is referenced to the VAG terminal which references the 4-wire input to the "analog ground" of the 4-wire signal source, thus isolating the input from power ground voltage transients. This isolation offers 70 dB of noise rejection at audio frequencies.

SYSTEM EQUATIONS

K1 — The current gain from ITSI + IRSI to TXO only during an off-hook power-up condition. K1 = 1.02 \pm 1%.

K2 — The current gain from RXI to the collectors of the off-chip Darlington transistors only during an off-hook power-up condition. K2 = 95 \pm 1%.

For simplicity, the following equations do not use K1 or K2. Instead the actual numerical value is used, for instance $(1 + K1K2) = 1 + 1.02 \times 95 = 97.9$ is approximately 98.

R_L — Loop resistance. This is a load resistance from Tip to Ring and can be either ac or dc depending on context.

LOOP CURRENT REGULATIONS

FIGURE 8(a)

FIGURE 8(b)

FIGURE 9(b)

SYSTEM EQUATIONS (continued)

Z_L — Loop impedance. This is used only to connote a complex impedance loading on Tip and Ring.

IL - Loop current. The dc current flow through RL.

 R_F — Dc feed resistance. The synthesized resistance from which battery (VCC and VEE) current is fed to R_L . The battery feed resistance is balanced differential feed. See Figure 7. (This assumes $V_{\mbox{\scriptsize QB}} = V_{\mbox{\scriptsize EE}}$.) The first order equation is:

$$R_{F} = \frac{R_{R} + R_{T} + 1200 \,\Omega}{98} \tag{1}$$

Because of the diode voltage drops on TSI and RSI, the actual dc feed resistance is higher. The second order equation is:

$$R_{F} = \frac{|V_{QB}|(98 R_{L} + R_{R} + R_{T} + 1200 \Omega)}{98 (|(V_{QB}| - 4.0 V))} - R_{L}$$
 (2)

ignoring the effects of RL

$$R_F = \frac{|V_{QB}|(R_R + R_T + 1200 \Omega)}{98 (|V_{QB}| - 4.0 V)}$$
(3)

So:

$$R_R = R_T = \frac{49R_F (|V_{QB}| - 4.0 \text{ V})}{|V_{QB}|} - 600$$
 (4)

The minimum value for RR and RT is 5.0 k Ω .

The first order value of RF can not be greater than the desired value of the termination impedance (usually 600 Ω or 900 Ω). To achieve dc feed resistances that are greater, a resistor can be placed between V_{QB} and V_{EE} along with a filter capacitor C_{QB} which restores the desired termination impedance and filters power supply noise. A diode should also be placed between V_{QB} and V_{EE} to prevent damage in case a catastrophic power supply failure occurs.

 I_{VOB} — This is the current that is sourced from the V_{OB} pin and is proportional to the currents into and out of RSI and TSI. When the SLIC is in the off-hook power-up mode, I_{VOB} is also proportional to I_{I} .

$$I_{VQB} = 2.15 I_{RSI} + 0.7 I_{TSI}$$
 (5)

$$I_{VOB} = 0.029 I_L \tag{6}$$

 R_{FQ} — Dc feed resistance. The synthesized resistance from which battery current is fed to R_L , see Figure 8. (This assumes V_{QB} is tied to V_{EE} through a resistor R_{QB} .) R_{QB} synthesizes additional dc feed resistance to the R_F value previously stated.

When using R $_{QB}$, the dc feed is effectively balance fed from V $_{CC}$ and V $_{QB}$ instead of V $_{EE}$. The sense resistors (R $_{R}$ and R $_{T}$) should be selected to make R $_{F}$ (first order) less than the termination impedance.

$$R_{FQ} = \frac{|V_{EE}|(98R_L + R_R + R_T + 1200 + 2.85R_{QB})}{98(|V_{EE}| - 4.0 \text{ V})} - R_L$$

Ignoring R_L, this simplifies to:

$$R_{FQ} = \frac{|V_{EE}|(R_R + R_T + 1200 + 2.85R_{QB})}{98(|V_{EE}| - 4.0 \text{ V})}$$
(8)

Therefore:

$$R_{QB} = \frac{98R_{FQ}(|V_{EE}| - 4.0 \text{ V}) - |V_{EE}|(R_R + R_T + 1200 \Omega)}{2.85|V_{EE}|}$$
(9)

COB — Power supply noise filter capacitor.

$$C_{QB} = \frac{2.85 R_{QB} + R_{R} + R_{T} + 1200 \Omega}{2\pi f R_{QB} (R_{R} + R_{T} + 1200 \Omega)}$$
(10)

Figure 9B shows R_{QB} replaced with a current regulating device such as Motorola's 1N5283 family.

 I_{CROB} — The current that is sourced to a current regulating device from the V_{OB} pin. When this current reaches the regulated value, the voltage differential between V_{EE} and V_{OB} increases causing the effective battery voltage to decrease which limits I_L to a maximum value as determined below:

$$I_{L} = 34.5 I_{CRQB} \tag{11}$$

The graph, Figure 9B, shows loop current versus loop resistance using several values of ICRQB. The closest current regulating diode part number to that value is also shown. A typical value for CQB in this case is 10 μ F, 60 Vdc.

Figure 10 shows how power can be conserved on the shorter loop lengths by utilizing current limiting techniques.

Overvoltage protection on the 2-wire port is achieved with the MDA220 diode bridge and the protection resistors RpR and RpT. Whenever the voltage on the 2-wire port exceeds the power supply rails (VCC and VEE), the MDA220 diodes will forward bias and "clamp" to the rail voltage. The current is limited by the protec-

FIGURE 10 — TOTAL SLIC POWER DISSIPATION Versus LOOP RESISTANCE

tion resistors. These resistors should be as large in value as possible. However, if they are too large, they will interfere with the performance of the SLIC under worst case conditions.

$$R_{PT} < R_{T}/196 - 15$$
 (12)

Using the voltage of V_{QB} when I_L is at its minimum offhook value (Typ. 20 mA):

$$R_{PR} < R_{R}/196 + 25|V_{EE} - V_{QB}| - 15$$
 (13)

The tolerance of these resistors is not critical due to placement inside a closed loop. Positive temperature co-efficient resistors (PTC) may be considered here. Consult resistor manufacturers for component selections that will meet the surge current and peak voltage requirements.

Because the MC3419-1 is a broadband device it requires compensation components to keep its circuits stable.

 $C_R\,\&\,C_T$ — Compensates the longitudinal gain of the A and the B circuit mirrors. Their values range from 2000 pF to 5000 pF.

 $R_{C} \& C_{C}$ — Compensates the longitudinal "C" circuitry. Their values can be ratioed according to:

$$R_C \times C_C = R_T \times C_T. \tag{14}$$

Two off-chip power Darlington transistors are used with the MC3419-1. These transistors reduce any temperature gradiant problems with the precision matched devices on-chip and they alleviate thermal stress conditions that could occur for every on-hook and off-hook transition. The power dissipation in these devices is:

$$P_{QT} = I_L^2(R_T/98 - R_{PT} - 4) + (2.0 \text{ V})I_L$$
 (15)

$$P_{QR} = I_L \left[|V_{EE}| - 2 - I_L(R_T/98 + R_L + R_{PR} + 16) \right] \quad (16)$$
 where $I_L = |V_{EE}|/R_{FQ}$ or $I_L(max)$ in current limited designs.

SYSTEM EQUATIONS (continued)

 R_H — The resistor that determines the hook status threshold values of R_L . R_H is selected from a graph of the following two equations:

$$R_{H} = 6(R_{L} + R_{R} + R_{T})$$
 (17)

On-hook threshold

$$R_{H} = 27.25 [R_{L} + 0.01(R_{R} + R_{T})]$$
 (18)

FIGURE 11 — HOOK STATUS DETECTION

Figure 11 shows such a graph using 17.4 k Ω as the values for R_R and R_T. Note the oscillatory condition to the right of the crossing point. Selection of R_H in this region is usually not a problem since the majority of telephone lines do not fall into this resistance range. R_H always ties to V_{QB} and HST and will give reliable hook status information regardless of power supply voltages and $\overline{\text{PDI}}$.

 R_{O} — Termination impedance of the 2-wire port. This impedance is greater than the dc feed resistance R_{F} because of a current splitting network in the feedback loop, R_{TX1} and R_{TX2} .

K3 — A constant, formed by R_{TX1} and R_{TX2} , between 0 and 1, which determines the ratio of the first order value of R_F to R_O .

$$R_{O} = \frac{R_{R} + R_{T} + 1200 \,\Omega}{1 + 97K3} \tag{19}$$

So:

$$K3 = \frac{R_R + R_T + 1200 \Omega - R_O}{97R_O}$$
 (20)

and

$$K3 = \frac{R_{TX2} + Z_{in}}{R_{TX1} + R_{TX2} + Z_{in}}$$
 (21)

Z_{in} — The input impedance of the current to voltage converter op amp. This impedance is usually negligible, it can be used to sway the selection of a 1% component value.

$$Z_{in} = \frac{(R_R + R_T + 1200 \Omega) G_{TX}}{1020 (1 - K3)} = \frac{R_{VTX}}{1000}$$
 (22)

 R_{TX1} — Feeds most of the TXO dc current to the RXI pin. To keep TXO from saturation the maximum value of R_{TX1} is as follows:

$$R_{TX1} < \frac{(R_R \, + \, R_T \, + \, 1200 \; \Omega) \; (|V_{QB}|min \, - \, |V_{AG}|max \, - \, 6.5 \; V)}{|V_{QB}|min \, - \, 5.4 \; V}$$

Where:

$$|V_{QB}|min = \frac{(R_R + R_T + 1200 \Omega) (|V_{EE}|min - 4)}{(R_R + R_T + 1200 \Omega + 2.8 R_{QB})}$$
(24)

or if a current regulator diode is used:

$$R_{TX1} < \frac{0.01 \ I_L(max) \ (R_R + R_T + 600 \ \Omega) - |V_{AG}|max - 3.9 \ V}{0.01 \ I_L(max)}$$
 (25)

It is beneficial to make RT $_{X1}$ as large as possible. Typical values range from 15 k to 24 k Ω .

$$R_{TX2} = \frac{K3 R_{TX1}}{1 - K3} - Z_{in}$$
 (26)

$$C_{TX} = \frac{R_R + R_T + 1200 \Omega}{7R_{TX2}}$$
 The result is in μ F. (27)

 G_{TX} — The voltage gain from the 2-wire port to V_{TX} which is adjustable by R_{VTX} .

$$G_{TX} = \frac{1.02 (1 - K3) R_{VTX}}{R_R + R_T + 1200 \Omega}$$
 (28)

$$R_{VTX} = \frac{G_{TX}(R_R + R_T + 1200 \Omega)}{1.02 (1 - K3)}$$
 (29)

 G_{RX} — The voltage gain from the V_{RX} input to the 2-wire port which is adjustable by R_{RX} .

$$G_{RX} = \frac{-95 R_L (R_R + R_T + 1200 \Omega)}{R_{RX} [(R_R + R_T + 1200 \Omega) + R_L (1 + 97K3)]}$$
(30)

$$G_{RX} = \frac{-95 R_L R_O}{R_{RX}(R_L + R_O)}$$
 (31)

$$R_{RX} = \frac{95 R_L R_O}{G_{RX}(R_L + R_O)}$$
 (32)

$$C_{RX} > \frac{R_{RX} + R_B}{2\pi f R_{RX} R_B}$$
 (33)

Where f is the minimum passband frequency, usually 200 Hz.

Transhybrid Rejection — The voltage gain from V_{RX} to V_{TX} . It is expressed in dB, the number should be negative and the larger the value the better. Transhybrid rejection is achieved by summing a current from the V_{RX} input (RB) with the TXO current that flows to the current to voltage converter. RB balances a resistive load, R1.

$$R_{B} = \frac{R_{RX}(1 + 97K3) (R_{O} + R_{L})}{97R_{L} (1 - K3)}$$
(34)

FIGURE 12 — BALANCE NETWORK FOR CAPACITIVE LINES

FIGURE 13 — BALANCE NETWORK FOR COMPLEX LOAD IMPEDANCES

When the 2-wire port has a parallel R and C load, then (see Figure 12):

$$R_{b1} = \frac{R_{RX}(R_R + R_T + 1200 \Omega)}{97R_L (1 - K3)}$$
(37)

$$R_{b2} = \frac{R_{RX}(R_{R} + R_{T} + 1200 \Omega)}{97R_{O}(1 - K3)}$$
 (38)

$$C_b = \frac{R_L C_L}{R_{b2}} \tag{39}$$

When it is desirable to balance complex load imped-

ances using component values that are equal to the load values (see Figure 13) then:

$$\begin{split} R_{b1} &= \frac{R_{RX}(1+97K3)}{194(1-K3)} \\ &+ \sqrt{\left[\frac{R_{RX}(1+97K3)}{194(1-K3)}\right]^2 - \frac{R_{O}R_{RX}(1+97K3)}{97(1-K3)}} \end{split} \quad (40) \end{split}$$

$$R_{b2} = \frac{R_{RX}(1 + 97K3)}{97(1 - K3)} - R_{b1}$$
 (41)

$$Z_{b} = Z_{l} \tag{42}$$

R_{b1} and R_{b2} values are interchangeable.

9

SYSTEM EQUATIONS (continued)

The Tip and Ring Sense Output currents are proportional to the currents out of and into TSI and RSI, respectively.

$$I_{TSO} = \frac{I_{TSI}}{6}$$
 (43)

$$I_{RSO} = \frac{I_{RSI}}{6}$$
 (44)

$$I_{TSO} = \frac{|V_{Tip} - V_{CC}| - 2.0 \text{ V}}{6 (R_T + 600 \Omega)} \text{ for } V_{Tip} < V_{CC}$$
 (45)

$$I_{RSO} = \frac{|V_{Ring} - V_{QB}| - 2.0 \text{ V}}{6(R_R + 600 \ \Omega)} \text{ for } V_{Ring} > V_{QB} \quad \ (46)$$

Digital interfacing to the MC3419-1 $\overline{\text{PDI}}$ pin and the HSO pin is shown in Figures 14a, 14b and 14c. If the $\overline{\text{PDI}}$ pin is not used it should be terminated to V_{CC} and if HSO is not used, it can be left open.

Figure 15 is an application circuit showing solid state ringing insertion using an MOC3030 zero-crossing detector optocoupled triac to replace the conventional electromechanical relay. This device inserts the ringing signal on a zero voltage crossing which eliminates noise in adjacent cable pairs and removes the signal on a zero current crossing which eliminates inductive voltage spikes that commonly destroy relay contacts. The ringing generator provides a continuous 40 V to 120 V RMS signal from 15 to 66 Hz superimposed upon –48 Vdc. Ringing cadencing is inserted with the Ring Enable Input. The 2N6558 and MPSA42 replace the MJE270 for systems that use ringing generator voltages greater than 70 V_{RMS}. The MDA220 diode bridge is replaced with a series 1N4007 on the Tip lead and a shunting 1N4004 to V_{EE} and to allow ringing voltage

FIGURE 14 — INTERFACE-TO-DIGITAL LOGIC

FIGURE 15 — PBX LINE CIRCUIT

SYSTEM EQUATIONS (continued)

on the Ring lead to exceed the power supply voltages, a 1N4007 and an MK1V-135 (Sidac) are used for protection. The forward voltage drop across the 1N4007, during normal operation, will not affect the parametric characteristics of the MC3419-1 since it is "inside" a feedback circuit. If the MJE270 is used, the MK1V-135 should be replaced with a lower voltage Sidac or MoSorb transient suppressor.

An optocoupled transistor circuit is used for ring trip detection on long lines. It samples only the ac and dc ringing signal current and uses a simple one pole filter to eliminate the low level ac signal. Under worst case conditions this circuit will ring trip in $1 \frac{1}{2}$ to 4 cycles. In systems serving only short loops (<700 Ω), if R_{G1} and R_{G2} are $620~\Omega$ or greater, the optotransistor circuit is not needed, the Hook Status Output will perform ring trip on a Zero Crossing. The Ring Enable input and the

Specifications

0----

Hook Status Output interface with standard CMOS and TTL logic.

The op amp in this circuit is an integral part of the following codecs, filters or combos:

MC3417/8 — MC145414 MC14404/6/7 — MC14413/4 MC14401/2/3/5

For further applications information such as:

- 24 volt PBX circuit
- 2-wire differential to 2-wire unbalanced SLIC
- Constant current battery feed
- Per line ringing cadencing circuit
- Message waiting lamp
- Transfer button detection
- etc.

Please contact your local Motorola sales office.

LONG LINES OFF-PREMISE LINES

Specifications				Off-Hook	$-<$ 2500 Ω	V_{Logic}	— +5.0 V
RF	— 200 Ω R _C	D — 60	Ω 00	On-Hook	$>$ 10 k Ω	VEE	— −42 to −56
Iլ(max)	60 mA Ry	χ Gain — 0	dB				Volts
		20	0-3400 Hz	Protection	— 1000 V	VRinging	— (40 V to 120
R _L (max)	1900 Ω Ty	Gain — 0	dB			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V _{RMS})+V _{EE}
_	·	20	0-3400 Hz	Ringer Equivalent	t — 5		11110
Parts List							
MPSA56	R _R —	9.09 k 1%	Matched	MOC3030	R _{TX1} —	12.1 k 1	%
2N3905	R _T —	9.09 k 1%	if desired	4N25	R _{TS2} —	5.76 k 1	%
2N6558	R _{PT} —	47 Ω 5%			R _{RX} —	28.7 k 1	%
MPSA42	R _{PR} —	75 Ω 5%			R _B —	28.0 k 1	%
MJE271	RG1 —	620 Ω 5%			RVTX -	28.6 k 1	%
1N4007	R _{G2} —	100 Ω 5%			CT	$0.004~\mu F$	
MK1V135	R _{E1} —	91 Ω 5%			c _R —	$0.004~\mu$ F	
1N4007	R _{E2} —	3.0 k 5%			C _C —	$0.001~\mu F$	
1N4007	R _{RT} —	20 k 5%			C _{RX} —	1.0 μF	/20 V
1N5303	R _C —	24 k 5%			C _{TX} —	2.0 μF	/40 V
1N4004	R _H —	127 k 1-3%			C _{RT} —	20 μF/5	.0 V
MC3419-1	R _{HSO} —	10 k 5%			C _{QB} —	10 μF/6	0 V

SHORT LINES ON-PREMISE LINES

Specifications													
RF			500 Ω			R _X Gai	in			5.0 dB			
RL(max)		_	700 Ω			Tx Gai	n		- 00	dΒ			
Ring Trip			<50 ms			V _{Logic}			- +	5.0 Volt	s		
Ringer Equivalen	ıt		2.5					— − 20 to −56 Volts					
RO			600 Ω			VRingi	ng		— (4	V to 7	0 V _{RMS})+	VEE	
Parts List													
MJE271	RR		19.6 k	1%		MOC30	030		RHSC	. –	10 k	5%	
MJE270	R _T	_	19.6 k	1%					RTX1		19.6 k	1%	
MPSA56	RG1		620 Ω	5%		Ст		0.004 μF	R _{TX2}		42.2 k	1%	
2N3905	RG2		620 Ω	5%		c _R	_	0.004 μF	RRX	_	69.8 k	1%	
1N4007	RE1	_	91 Ω	5%		c _C		0.004 μF	RB		301 k	1%	
1N4007	RE2	_	3.0 k	5%		CRX	_	0.1 μF	RVTX		127 k	1%	
MC3419C-1	RH	_	330 k	5%		CTX	_	0.5 μF	RC.		56 k	5%	

MC34010P MC34011P

Advance Information

ELECTRONIC TELEPHONE CIRCUIT

- Provides All Basic Telephone Station Apparatus Functions in a Single IC, Including DTMF Dialer, Tone Ringer, Speech Network and Line Voltage Regulator
- DTMF Generator Uses Low-Cost Ceramic Resonator with Accurate Frequency Synthesis Technique
- Tone Ringer Drives Piezoelectric Transducer and Satisfies EIA RS-470 Impedance Signature Requirements
- Speech Network Provides Two-Four Wire Conversion with Adjustable Sidetone Utilizing an Electret Transmitter
- On-Chip Regulator Insures Stable Operation Over Wide Range of Loop Lengths
- I²L Technology Provides Low 1.4 Volt Operation and High Static Discharge Immunity
- MC34010P Provides Microprocessor Interface Port for Automatic Dialing Features

ELECTRONIC TELEPHONE CIRCUIT

BIPOLAR LINEAR/I2L

PLASTIC PACKAGE CASE 711-03

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MAXIMUM RATINGS (Voltage References to V-)

Parameter	Value	Unit
V+ Terminal Voltage (Pin 34)	+20, -1.0	٧
VR Terminal Voltage (Pin 29)	+2.0, -1.0	٧
RXO Terminal Voltage (Pin 27)	+2.0, -1.0	V.
TRS Terminal Voltage (Pin 37)	+35, -1.0	V
TRO (With Tone Ringer Inactive) Terminal Voltage	+2.0, -1.0	V
R1-R4 Terminal Current (Pins 1-4) C1-C4 (Pins 5-8)	± 100	mA
CL, TO, DD, I/O, A+ (MC34010 only)	+ 12, - 1.0	V
Operating Ambient Temperature Range	-20 to +60	°C
Storage Temperature Range	-65 to +150	°C .

GENERAL CIRCUIT DESCRIPTION

Introduction

The MC34010/11 Electronic Telephone Circuits (ETC) provide all the necessary elements of a tone dialing telephone in a single IC. The functional blocks of the ETC include the DTMF dialer, speech network, tone ringer, and dc line interface circuit (Figure 1). The MC34010 also provides a microprocessor interface port that facilitates automatic dialing features.

Low voltage operation is a necessity for telephones in networks where parallel telephone connections are common. An electronic speech network operating in parallel with a conventional telephone may receive line voltages below 2.5 volts. DTMF dialers operate at similarly low-line voltages when signaling through battery powered station carrier equipment. These low voltage requirements have been addressed by realizing the MC34010/11 in a bipolar/l²L technology with appropriact circuit techniques. The resulting speech and dialer circuits maintain specified performance with instantaneous input voltage as low as 1.4 volts.

Line Voltage Regulator

The dc line interface circuit (Figure 3) determines the dc input characteristic of the telephone. At low input voltages (less than 3 volts) the ETC draws only the

FIGURE 3 — DC LINE INTERFACE BLOCK DIAGRAM

PIN CONNECTIONS

					_	
R1		1	\smile	40	Ь	TRF
R2		2		39	Ь	TRO
R3		3		38	Ь	TRI
R4		4		37	Ь	TRS
C1	d	5		36	Ь	TRC
C2	d	6		35	Þ	FB
СЗ	d	7		34	Ь	V +
C4	d	8		33	Þ	BP
*DP	d	9		32	Ь	LR
*TO	d	10		31	Þ	LC
*MS	d	11		30	Þ	V
*A+	q	12		29	Þ	VR
*I/O	d	13		28	Þ	CAL
*DD	Ц	14		27	Þ	RXO
*CL	d	15		26	Þ	RXI
CR1	d	16		25		RM
CR2		17		24	Þ	STA
MM		18		23	Þ	TXO
AGC		19	,	22	Þ	TXI
MIC		20		21	\Box	TXL

*MC34010P only

FIGURE 2 - MPU INTERFACE CODES

Key	Row	Column	Code (B3-B0)
1	1	1	1111
2	1	2	0111
3	1	3	1011
	2	1	1101
4 5	2	2	0101
6	2	3	1001
7	3	1 1	1110
8	3	2	0110
9	3	3	1010
0	4	. 2	0100
Α	1	4	0011
В	2	4	0001
С	3 .	4	0010
D	4	4	0000
*	4	1	1100
#	4	3	1000

GENERAL CIRCUIT DESCRIPTION (continued)

speech and dialer bias currents through the VR regulator. As input voltage increases, Q1 conducts the excess dc line current through resistor R4. The 1.5 volt level shift prevents saturation of Q2 with telephone line signals up to 2.0 volts peak (+5.2 dBm). A constant current (dummy load) is switched off when the DTMF dialer is activated to reduce line current transients. Figure 4 illustrates the dc voltage/current characteristic of an MC34010/11 telephone.

FIGURE 4 — DC V-I CHARACTERISTIC OF THE ETC

Speech Network

The speech network (Figure 5) provides the two-tofour wire interface between the telephone line and the instrument's transmitter and receiver. An electret microphone biased from VR drives the transmit amplifier. For very loud talkers, the peak limiter circuit reduces the transmit input level to maintain low distortion. The transmit amplifier output signal is inverted at the STA terminal and driven through an external R-C network to control the receiver sidetone level. The switched ac resistance at the RM terminal reduces receiver signal when dialing and suppresses clicks due to hook or kevpad switch transitions. When transmitting, audio signal currents (iTXO and iRXO) flow through the voltage regulator pass transistor (T1) to drive the telephone line. This feature has two consequences: 1) In the transmitting mode the receiver sidetone current iRXO contributes to the total signal on the line along with iTXO; 2) The ac impedance of the telephone is determined by the receiver impedance and the voltage gain from the line to the receiver amplifier output.

DTMF Dialer

Keypad interface comparators activate the DTMF row and column tone generators (Figure 6) when a row and column input are connected through a SPST keypad. The keypad interface is designed to function with contact resistances up to 1.0 k Ω and leakage resistances as low as 150 k Ω . Single tones may be initiated by depressing two keys in the same row or column.

FIGURE 5 — SPEECH NETWORK BLOCK DIAGRAM

depressed, thereby indicating valid data is available to the MPU. The DP output can additionally be used to initiate a data transfer sequence to the microprocessor. The MS output (when at a Logic "1") indicates the DTMF generator is enabled and the speech network is muted.

Pin A+ is to be connected to a source of 2.5 to 10 volts (generally from the microprocessor circuit) to enable the pullup circuits on the microprocessor interface outputs (DP, MS, I/O). Additionally, this voltage will

power the entire circuitry (except Tone Ringer) in the absence of voltage at V +. This permits use of the transmit and receive amplifiers, keypad interface, and DTMF generator for non-typical telephone functions.

See Figure 45 for a typical interconnection to an MC6821 PIA (Peripheral Interface Adapter). Connection to a port on any other class of microprocessor will be similar.

FIGURE 7 — TONE RINGER BLOCK DIAGRAM

FIGURE 8 — MICROPROCESSOR INTERFACE BLOCK DIAGRAM (MC34010 ONLY)

MC34010P, MC34011P

The programmable counters employ a novel design to produce non-integer frequency ratios. The various DTMF tones are synthesized with frequency division errors less than $\pm 0.16\%$ (Table 1). Consequently an inexpensive ceramic resonator can be used instead of a quartz crystal as the DTMF frequency reference. Total

frequency error less than $\pm 0.8\%$ can be achieved with $\pm 0.3\%$ ceramic resonator. The row and column D/A converters produce 16-step approximations of sinusoidal waveforms. Feedback through terminal FB reduces the DTMF output impedance to approximately 2.0 k Ω to satisfy return loss specifications.

FIGURE 6 -- DTMF DIALER BLOCK DIAGRAM

Tone Ringer

The tone ringer (Figure 7) generates a warbling square wave output drive to a piezo sound element when the ac line voltage exceeds a predetermined threshold level. The threshold detector uses a current mode comparator to prevent on/off chatter when the output current reduces the voltage available at the ringer input. When the average current into the tone ringer exceeds the threshold level, the ringer output TRO commences driving the piezo transducer. This output current sourced from TRI increases the average current measured by the threshold detector. As a result, hysteresis is produced beween the tone ringer on and off thresholds. The output frequency at TRO alternates between $f_{\rm O}/8$ and $f_{\rm O}/10$ at a warble rate of $f_{\rm O}/640$, where $f_{\rm O}$ is the ringer oscillator frequency.

Microprocessor Interface (MC34010 Only)

The MPU interface connects the keypad and DTMF sections of the ETC to a microprocessor for storing and retrieving numbers to be dialed. Figure 8 shows the major blocks of the MPU interface section and the interconnections between the keypad interface, DTMF generator and microprocessor. Each button of a 12 or 16 number keypad is represented by a four-bit code (Figure 2). This four-bit code is used to load the programmable counters to generate the appropriate row and column tones. The code is transferred serially to or from the microprocessor when the shift register is

clocked by the microprocessor. Data is transferred through the I/O terminal, and the direction of data flow is determined by the Data Direction (DD) input terminal. In the manual dialing mode, DD is a Logic "0" and the four-bit code from the keypad is fed to the DTMF generator by the digital multiplexer and also output on the I/O terminal through the four-bit shift register. The data sequence on the I/O terminal is B3, B2, B1, B0 and is transferred on the negative edge of the clock input (CL). In this mode the shift register load enable circuit cycles the register between the load and read modes such that multiple read cycles may be run for a single-key closure. Six complete clock cycles are required to output data from the ETC and reload the register for a second look.

In the automatic dialing mode, DD is a Logic "1" and the four-bit code is serially entered in the sequence B3, B2, B1, B0 into the four-bit shift register. Thus, only four clock cycles are required to transfer a number into the ETC. The keypad is disabled in this mode. A Logic "1" on the Tone Output (TO) will disable tone outputs until valid data from the microprocessor is in place. Subsequently TO is switched to a Logic "0" to enable the DTMF generator. Figures 9 and 10 show the timing waveforms for the manual and automatic dialing modes and Table 2 specifies timing limitations.

The keypad decoder's exclusive OR circuit generates the DP and MS output signals. The DP output indicates (when at a Logic "1") that one, and only one, key is

FIGURE 9 — OUTPUT DATA CYCLE FROM MC34010

NOTE: $\overline{\text{TO}}$ may be low (Tone generator enabled) if desired.

1st Digit

TABLE 1 — FREQUENCY SYNTHESIZER ERRORS

Bit 2 Bit

Bit 0

	DTMF Standard (Hz)	Tone Output Frequency with 500 kHz Oscillator	% Deviation from Standard
Row 1	697	696.4	-0.086
Row 2	770	769.2	-0.104
Row 3	852	853.2	+0.141
Row 4	941	939.8	-0.128
Column 1	1209	1207.7	-0.108
Column 2	1336	1336.9	+ 0.067
Column 3	1477	1479.3	+0.156
Column 4	1633	1634.0	+ 0.061

TABLE 2 — TIMING LIMITATIONS

2nd Digit

Symbol	Parameter	Min	Тур	Max	Unit	Ref
fCL	Clock Frequency	0	20	30	kHz	
tH	Clock High Time	15	_	-	μs	Figs. 9,10
tL	Clock Low Time	15	_	-	μs	Figs. 9,10
t _r ,t _f	Clock Rise, Fall Time	—	_	2.0	μs	
tDV	Clock Transition to Data Valid	-	_	10	μs	Fig. 9
†DPCL	Time from DP High to CL Low	20	-	-	μs	Fig. 9
tDDCL	Time from DD High to CL Low	20	_	-	μs	Fig. 10
tDS	Data Setup Time	10	-	-	μs	Fig. 10
tDH.	Data Hold Time	10	_	-	μs	Fig. 10
tCLTO	Time from CL Low to TO Low	10	-	-	μs	Fig. 10
tTODD	Time from TO High to DD High	20	_	-	μs	Fig. 10

PIN DESCRIPTION

(See Figure 45 for external component identifications.)

Pin	Designation	Function
1-4	R1-R4	Keypad inputs for Rows 1 through 4. When open, internal 8.0 k Ω resistors pull up the row inputs to a regulated (\approx 0.5 volt) supply. In normal operation, a row and a column input are connected through a SPST switch by the telephone keypad. Row inputs can also be activated by a Logic "0" (<250 mV) from a microprocessor port.
5–8	C1-C4	Keypad inputs for Columns 1 through 4. When open, internal 8.0 k Ω resistors pull down the column inputs to V – . In normal operation, connecting any column input to any row input produces the respective row and column DTMF tones. In addition to being connected to a row input, column inputs can be activated by a Logic "1" (>250 mV and <1.0 volt).
9	DP*	Depressed Pushbutton (Output) — Normally low; A Logic "1" indicates one and only one, button of the DTMF keypad is depressed.
10	TO*	Tone Output (Input) — When a Logic "1," disables the DTMF generator. Keypad is not disabled.
11	MS*	Mute/Single Tone (Output) — A Logic "1" indicates a row and/or column tone is being generated. A Logic "0" indicates tone generator is disabled.
12	A+*	MPU Power Supply (Input) — Enables pullups on the microprocessor section outputs. Additionally, this voltage will power the entire circuit (except Tone Ringer) in the absence of voltage at V + .
13	I/O*	Input/Output — Serial Input or Output data (determined by DD input) to or from the microprocessor for storing or retrieving telephone numbers. Guaranteed to be a Logic "1" on powerup if DD = Logic "0."
14	DD*	Data Direction (Input) — Determines direction of data flow through I/O pin. As a Logic "1," I/O is an input to the DTMF generator. As a Logic "0," I/O outputs keypad entries to the microprocessor.
15	CL*	Clock (Input) — Serially shifts data in or out of I/O pin. Data is transferred on negative edge typically at 20 kHz.
16,17	CR1, CR2	Ceramic Resonator oscillator input and feedback terminals, respectively. The DTMF dialer is intended to operate with a 500 kHz ceramic resonator from which row and column tones are synthesized.
28	CAL	Amplitude CAL ibration terminal for DTMF dialer. Resistor R14 from the CAL pin to V – controls the DTMF output signal level at Tip and Ring.
35	FB	FeedBack terminal for DTMF output. Capacitor C14 connected from FB to V+ provides ac feedback to reduce the output impedance to Tip and Ring when tone dialing.
29	VR	Voltage Regulator output terminal. VR is the output of a 1.1 volt voltage regulator which supplies power to the speech network amplifiers and DTMF generator during signaling. To improve regulator efficiency at low line current conditions, an external PNP pass-transistor T1 is used in the regulator circuit. Capacitor C9 frequency compensates the VR regulator to prevent oscillation.
33	BP	Base of a PNP Pass-transistor. Under long-loop conditions where low line voltages would cause VR to fall below 1.1 volts, BP drives the PNP transistor T1 into saturation, thereby minimizing the voltage drop across the pass transistor. At line voltages which maintain VR above 1.1 volts, BP biases T1 in the linear region thereby regulating the VR voltage. Transistor T1 also couples the ac speech signals from the transmit amplifier to Tip and Ring at V+.
34	V+	The more positive input to the regulator, speech, and DTMF sections connected to Tip and Ring through the polarity guard diode bridge.
30	V-	The dc common (more negative input) connected to Tip and Ring through the polarity guard bridge.
32	LR	DC Load Resistor. Resistor R4 from LR to V – determines the dc input resistance at Tip and Ring. This resistor is external not only to enable programming the dc resistance but also to avoid high on-chip power dissipation with short telephone lines. It acts as a shunt load conducting the excess dc line current. At low line voltages (<3.0 volts), no current flows through LR.
31	LC	DC Load Capacitor. Capacitor C11 from LC to $V-$ forms a low-pass filter which prevents the resistor at LR from loading ac speech and DTMF signals.
20	MIC	MICrophone negative supply terminal. The dc current from the electret microphone is returned to V – through the MIC terminal which is connected to the collector of an on-chip NPN transistor. The base of this transistor is controlled either internally by the mute signal from the DTMF generator, or externally by the logic input pin MM.

*MC34010P only.

(continued)

PIN DESCRIPTION (continued)

Pin	Designation	Function				
18	ММ	Microphone Mute. The MM pin provides a means to mute the microphone in response to a digital control signal. When this pin is connected to a Logic "1" (>2.0 V) the microphone dc return path through the MIC terminal is disabled.				
22	TXI	Transmit amplifier Input. TXI is the input to the transmit amplifier from an electret microphone. AC coupling capacitors allow the dc offset at TXI to be maintained approximately 0.6 V above V – by feedback through resistor R11 from TXO.				
21	TXL	Transmit Input Limiter. An internal variable resistance element at the TXL terminal controls the transmitter input level to prevent clipping with high signal levels. Coupling capacitors C4 and C5 prevent dc current flow through TXL. The dynamic range of the transmit peak limiter is controlled by resistors R12 and R13.				
23	тхо	Transmit Amplifier Output. The transmit amplifier output drives ac current through the voltage regulator pass-transistor T1 via resistor R10. The dc bias voltage at TXO is typically 0.6 volts above V – . The transmit amplifier gain is controlled by the R11/(R12 + R13) ratio.				
19	AGC	Automatic Gain Control low-pass filter terminal. Capacitor C3 connected between AGC and VR sets the stack and decay time of the transmit limiter circuit. This capacitor also aids in reducing clicks in the eceiver due to hook-switch transients and DTMF on/off transients. In conjunction with internal resistor C3 (1.0 µF) forms a timer which mutes the receiver amplifier for approximately 20 milliseconds after the user goes off-hook or releases a DTMF Key.				
27	RXO	Receiver Amplifier Output. This terminal is connected to the open-collector NPN output transistor of the receiver amplifier. DC bias current for the output device is sourced through the receiver from VR. The bias voltage at RXO is typically 0.6 volts above the V – . Capacitor C10 from RXO to VR provides frequency compensation for the receiver amplifier.				
26	RXI	Receiver Amplifier Input. RXI is the input terminal of the receiver amplifier which is driven by ac signals from V+ and STA. Input coupling capacitor C8 allows RXI to be biased approximately 0.6 volts above the V- via feedback resistor R6.				
25	RM	Receiver Amplifier Mute. A switched resistance at the RM terminal attenuates the receiver amplifier input signal produced by DTMF dialing tones at V+. RM also mutes clicks at the receiver which result from keypad or hook switch transitions. The ac resistance at RM is typically 540 Ω in the mute mode and 200 k Ω otherwise. Coupling capacitors C7 and C8 prevent dc current flow through RM.				
24	STA	SideTone Amplifier output. STA is the output of the sidetone inverter amplifier whose input is driven by the transmit signal at TXO. The inverted transmit signal from STA subtracts from the receiver amplifier input current from V+, thus reducing the receiver sidetone level. Since the transmitted signal at V+ is phase shifted with respect to TXO by the reactive impedance of the phone line, the signal from STA must be similarly phase-shifted in order to provide adequate sidetone reduction. This phase relationship between the transmit signal at TXO and the sidetone cancellation signal from STA is controlled by R8, R9, and C6.				
37	TRS	Tone Ringer Input Sense. TRS is the most positive input terminal of the tone ringer and the reference for the threshold detector.				
38	TRI	Tone Ringer Input terminal. TRI is the positive supply voltage terminal for tone ringer circuitry. Current is supplied to TRI through resistor R2. When the average voltage across R2 exceeds an internal reference voltage (typically 1.6 volts) the tone ringer output is enabled.				
40	TRF	Tone Ringer Input Filter capacitor terminal. Capacitor C16 connected from TRF to TRS forms a low-pass filter. This filter averages the signal across resistor R2 and presents this dc voltage to the input of the threshold detector. Line voltage transients are rejected if the duration is insufficient to charge C16 to 1.6 volts.				
36	TRC	Tone Ringer oscillator Capacitor and resistor terminal. The relaxation oscillator frequency f_0 is set by resistor R3 and capacitor C13 connected from TRC to V – . Typically, $f_0 = (R3C13 + 8.0 \ \mu s)^{-1}$.				
39	TRO	Tone Ringer Output terminal. The frequency of the square wave output signal at TRO alternates from $f_0/8$ to $f_0/10$ at a warble rate of $f_0/640$. Typical output frequencies are 1000 Hz and 800 Hz with a 12.5 Hz warble rate. TRO sources or sinks up to 20 mA to produce an output voltage swing of 18 volts peak-to-peak across the piezo transducer. Tone ringer volume control can be implemented by a variable resistor in series with the piezo transducer.				

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

KEYPAD INTERFACE CIRCUIT

Characteristic	Test Method	Symbol	Min	Тур	Max	Unit
Row Input Pullup Resistance m th Row Terminal: m = 1,2,3,4	7	R _{Rm}	4.0	8.0	11	kΩ
Column Input Pulldown Resistance nth Column Terminal: n = 1,2,3,4	8	R _{Cn}	4.0	8.0	11	kΩ
Ratio of Row-to-Column Input Resistances $K_{m,n} = \begin{array}{ccc} R_{Rm}, & m=1,2,3,4 \\ R_{Cn} & n=1,2,3,4 \end{array}$	7 & 8	K _{m,n}	0.88	1.0	1.12	_
Row Terminal Open Circuit Voltage	7a	VROC	280	380	500	mVdc
Row Threshold Voltage for m th Row Terminal: m = 1,2,3,4	9	V _{Rm}	0.70 V _{ROC}			Vdc
Column Threshold Voltage for n th Column Terminal: n = 1,2,3,4	10	V _{Cn}	_		0.39 V _{ROC}	Vdc

MICROPROCESSOR INTERFACE (MC34010P only)

Voltage Regulator Output A + Regulator	29	V _{R/A+}	0.95	1.1	1.3	V .
A+ Input Current Off-Hook	28a	I _A (off)	300	500	700	μΑ
A+ Input Current On-Hook	28b	I _A (on)	4.0	6.0	9.0	mA
Input Resistance (DD, TO, CL)	30	Rin	50	100	150	kΩ
Input Current (I/O)	31	lin	_	80	200	μА
Input High Voltage (DD, TO, CL, I/O)	_	VIH	2.0	_	A +	٧
Input Low Voltage (DD, TO, CL, I/O)	.	VIL		_	0.8	V
Output High Voltage (MS, DP, I/O)	32	VOH	2.4	4.0	_	V
Output Low Voltage (MS, DP, I/O)	33	VOL	_	0.1	0.4	V

LINE VOLTAGE REGULATOR

Voltage Regulator Output	1a	٧R	1.0	1.1	1.2	Volts
V+ Current in DTMF Mode	2a	lDT	8.0	12	14	mA
Change in IDT with Change in V + Voltage	2b	ΔI _{DT}	_	0.8	2.0	mA
$V+$ Current in Speech Mode $V+=1.7~V \ V+=5.0~V$	1b 1c	ISP	3.5 8.0	5.0 11	7.0 15	mA
Speech to DTMF Mode Current Difference	3	ΔITR	- 2.0	2.0	3.5	mA
LR Level Shift $V+=5.0 \text{ V}$, $I_{LR}=10 \text{ mA}$ $V+=18 \text{ V}$, $I_{LR}=110 \text{ mA}$	4a 4b	ΔV _{LR}	2.5 2.8	2.9 3.3	3.5 4.0	Vdc
LC Terminal Resistance	5	R _{LC}	30	50	75	kΩ
Load Regulation	6	ΔVR	-20	-6.0	20	mVdc

ELECTRICAL CHARACTERISTICS (continued)

SPEECH NETWORK

Characteristic	Test Method	Symbol	Min	Тур	Max	Unit
MIC Terminal Saturation Voltage	20	VMIC		60	125	mVdc
MIC Terminal Leakage Current	21a	IMIC		0.0	5.0	μΑ
MM Terminal Input Resistance	21b	RMM	50	100	170	kΩ
TXO Terminal Bias	22a	BTXO	0.46	0.53	0.62	_
TXI Terminal Input Bias Current	22b	ITXI	_	50	250	nA
TXO Terminal Positive Swing	22c	V _{TXO} (+)	_	25	60	mVdc
TXO Terminal Negative Swing	22d	V _{TXO} (-)	_	130	200	mVdc
Transmit Amplifier Closed-Loop Gain	23a	GTX	16.5	19	20	V/V
Sidetone Amplifier Gain	23b	GSTA	0.41	0.45	0.55	V/V
STA Terminal Output Current	24	ISTA	50	100	250	μΑ
RXO Terminal Bias	25a	B _{RXO}	0.46	0.52	0.62	_
RXI Terminal Input Bias Current	25b	IRXI		100	400	nA
RXO Terminal Positive Swing	25c	V _{RXO} (+)		1.0	20	mVdc
RXO Terminal Negative Swing	25d	V _{RXO} (-)	_	40	100	mVdc
TXL Terminal OFF Resistance	26a	R _{TXL} (OFF)	125	200	300	kΩ
TXL Terminal ON Resistance	26b	R _{TXL} (ON)	_	20	100	Ω
RM Terminal OFF Resistance	27a	R _{RM} (OFF)	125	180	300	kΩ
RM Terminal ON Resistance	27b	R _{RM} (ON)	410	570	770	Ω

DTMF GENERATOR

Row Tone Frequency Row 1 Row 2 Row 3 Row 4	11a, 11b	fRm.	692.9 765.3 848.9 935.1	696.4 769.2 853.2 939.8	699.9 773.0 857.5 944.5	Hz
Column Tone Frequency Column 1 Column 2 Column 3 Column 4	11c, 11d	fCn	1201.6 1330.2 1471.9 1625.2	1207.7 1336.9 1479.3 1633.4	1213.7 1343.6 1486.7 1641.5	Hz
Row Tone Amplitude	11e	V _{Row}	0.34	0.39	0.50	V _{rms}
Column Tone Amplitude	11f	V _{Col}	0.43	0.48	0.62	V _{rms}
Column Tone Pre-emphasis	11g	dBCR	0.5	1.8	3.0	dB
DTMF Distortion	12	% Dis	_	4.0	6.0	%
DTMF Output Resistance	13	Ro	1.0	2.5	3.0	kΩ

MC34010P, MC34011P

ELECTRICAL CHARACTERISTICS (continued)

TONE RINGER

Characteristic	Test Method	Symbol	Min	Тур	Max	Unit
TRI Terminal Voltage	14	VTRI	20	21.5	23	Vdc
TRS Terminal Input Current VTRS = 24 volts VTRS = 30 volts	15a 15b	^I TRS	70 0.4	120 0.8	170 1.5	μA mA
TRF Threshold Voltage	16a	VTRF	1.2	1.6	1.9	Vdc
TRF Threshold Hysteresis	16b	ΔVTRF	100	200	400	mVdc
TRF Filter Resistance	17	RTRF	30	50	75	kΩ
High Tone Frequency	18	fH	920	1000	1080	Hz
Low Tone Frequency	18	fL	736	800	864	Hz
Warble Frequency	18	fW	11.5	12.5	13.5	Hz
Tone Ringer Output Voltage	19	V _{o(p-p)}	18	20	22	Vp-p

FIGURE 11 — GENERAL TEST CIRCUIT

- 1. *Selected ceramic resonator: 500 kHz ±0.2 kHz.
- 2. Capacitances in μF unless noted.
- 3. All resistances in ohms.

9

FIGURE 12 — TEST ONE

- a. Measure V_R with $V_S\,=\,1.7~V$
- b. Measure ISP with $V_S\,=\,1.7~V$
- c. Measure ISP with $V_S = 5.0 \text{ V}$

FIGURE 13 — TEST TWO

- a. Measure I_{DT} with $V_S = 11.5 \text{ V}$
- b. Measure |DT| with $V_S = 26$ V. Calculate $\Delta |DT| = |DT| |DT|$ 26 V 11.5 V

FIGURE 14 — TEST THREE

With S1 open measure I_{TR} . Close S1 and again measure I_{TR} . Calculate:

$$\Delta I_{TR} = I_{TR} \begin{vmatrix} - & I_{TR} \\ S_1 & S_1 \end{vmatrix}$$
Closed Open

FIGURE 15 — TEST FOUR

- a. Set V $_{\mbox{S}}=5.0$ V and I $_{\mbox{LR}}=10$ mA. Measure V $_{\mbox{LR}}.$ Calculate $\Delta V_{\mbox{LR}}=V_{\mbox{S}}-V_{\mbox{LR}}$
- b. Repeat Test 4a with $V_S = 18 \text{ V}$ and $I_{LR} = 110 \text{ mA}$

FIGURE 16 — TEST FIVE

With S_1 open measure V_{LC} . Close S_1 and measure I_{LC} . Calculate:

$$R_{LC} = \frac{5.0 - V_{LC}}{|_{LC}}$$

FIGURE 17 — TEST SIX

Set IBP = 0.0 μ A and measure V_R.

Set IBP = 150 μ A and measure V_R. Calculate:

$$\Delta V_{R} = V_{R} \begin{vmatrix} - & V_{R} \\ 0.0 & \mu A \end{vmatrix}$$
 150 μA

FIGURE 18 — TEST SEVEN

Subscript m corresponds to row number.

- a. Set S₁ to Terminal 2 and measure voltage at Terminal 1 (V_{ROC}).
- b. Set S_1 to Terminal 1 (m = 1) and measure $I_{R1}.$ Calculate: $R_{R1} = V_{ROC} \ \div \ I_{R1}$

c,d,e. Repeat Test 7b for m = 2,3,4.

FIGURE 19 — TEST EIGHT

Subscript n corresponds to column number.

a. Set S1 to Terminal 5 (n = 1) and measure IC1. Calculate: R_{C1} = 1.0 V \div IC1

b,c,d. Repeat Test 8a for n = 2,3,4.

FIGURE 20 — TEST NINE

m corresponds to row number.

a. Set S₁ to Terminal 1 (m = 1) with V₁ = 1.0 Vdc. Verify V_{MIC} is Low (V_{MIC} < 0.3 Vdc). Decrease V₁ to 0.70 V_{ROC} and verify V_{MIC} switches high. (V_{MIC} > 0.5 Vdc). V_{ROC} is obtained from Test 7a.

b,c,d. Repeat Test 9a for rows 2,3, and 4. (m = 2,3,4)

FIGURE 21 - TEST TEN

n corresponds to column number.

a. Set S $_1$ to Terminal 5 (n = 1) with V $_1$ = 0 Vdc. Verify VMIC is low (VMIC < 0.3 Vdc). Increase V $_1$ to 0.39 VROC and verify VMIC switches high, (VMIC > 0.5 Vdc). VROC is obtained from Test 7a.

b,c,d. Repeat Test 10a for columns 2,3, and 4. (n = 2,3,4)

FIGURE 22 — TEST ELEVEN

m corresponds to row number. n corresponds to column number.

- a. With $V_1=0.0~V$ set S_1 to Terminal 1 (m = 1) and measure frequency of tone at V+.
- b. Repeat Test 11a for rows 2,3 and 4. (m = 2,3,4).
- c. With $V_1=1.0\ V$ set S_1 to Terminal 5. (n = 1) and measure frequency of tone at V+.
- d. Repeat Test for columns 2,3, and 4. (n = 2,3,4).
- e. Set S_1 to Terminal 4 and $V_1 = 0.0 \ V$. Measure row tone amplitude at $V + (V_{ROW})$.
- f. Set S_1 to Terminal 8 and $V_1 = 1.0$ V. Measure column tone amplitude at V+. (V_{COL}).
- g. Using results of Tests 11e and 11f, calculate:

$$dB_{CR} = 20 \log_{10} \frac{V_{COL}}{V_{ROW}}$$

FIGURE 23 — TEST TWELVE

Note: The notch filters must have 50 dB attenuation at their respective center frequencies.

Measure V+ and V₁ with a true rms voltmeter. Calculate:

% DIS = $\frac{V_1(rms)}{V + (rms)} \times 100$

FIGURE 24 — TEST THIRTEEN

Measure Is at $V_1 = 1.8 \text{ V}$ and $V_1 = 2.8 \text{ V}$.

Calculate:

$$R_0 = 1.0 \text{ V} \div \left[|s| - |s| \right]_{1.8 \text{ V}}$$

FIGURE 25 — TEST FOURTEEN

Set I = 1.0 mA and measure VTRI.

FIGURE 26 — TEST FIFTEEN

- a. Measure ITRS with $V_1 = 24 V$.
- b. Measure ITRS with $V_1 = 30 \text{ V}$.

FIGURE 27 --- TEST SIXTEEN

- a. Increase V1 from 21 V until VTRO switches on. Note that VTRO will be an 16 Vpp square wave. Record this value of V1. Calculate:
 - $V_{TRF} = V_1 20 V$
- b. Decrease V₁ from its setting in Test 16a until V_{TRO} ceases switching. Record this value of V₁. Calculate:

$$\Delta V_{TRF} = V_1 \begin{vmatrix} - & V_1 \\ Test & 16a & 16b \end{vmatrix}$$

FIGURE 28 — TEST SEVENTEEN

Measure ITRF. Calculate: $RTRF = 1.0 \div ITRF$.

FIGURE 29 — TEST EIGHTEEN

FIGURE 30 - TEST NINETEEN

Measure V_{TRO} peak-to-peak voltage swing. Using V_{TRI} from Test 14 Calculate: $V_{O(p-p)} = V_{TRI} - 20 \text{ V} + V_{TRO}$

FIGURE 31 — TEST TWENTY

Measure V_{MIC}

FIGURE 32 — TEST TWENTY-ONE

- a. Set $V_1 = 2.0 \text{ V}$ and measure $I_{\mbox{MIC}}$.
- b. Set $V_1 = 5.0 \text{ V}$ and measure $I_{\mbox{MM}}$. Calculate: $R_{\mbox{MM}} = 5.0 \text{ V} \div I_{\mbox{MM}}$

FIGURE 33 — TEST TWENTY-TWO

- a. With S1 open, measure VTXO. Using VR obtained in Test 1 Calculate: BTXO = VTXO \div VR
- b. With S1 open, measure VTXO and VTXI. Calculate: ITXI = (VTXO VTXI) \div 200 $k\Omega$
- c. Close S₁ and set I = $-10~\mu$ A. Measure V_{TXO}. Calculate: V_{TXO}(+) = V_R V_{TXO} where V_R is obtained from Test 1
- d. Close S₁ and set I = $+10~\mu$ A. Measure V_{TXO}. V_{TXO}(-) = V_{TXO}.

a

FIGURE 34 — TEST TWENTY-THREE

a. Set the generator for $v_i = 3.0 \text{ mV}_{rms}$. Measure ac voltage V_{TXO} . Calculate:

$$G_{TX} = \frac{V_{TXO}}{v_i}$$

b. Measure ac voltage V_{STA}. Using V_{TXO} from Test 23a calculate:

$$G_{STA} = \frac{v_{STA}}{v_{TXO}}$$

FIGURE 35 — TEST TWENTY-FOUR

Measure ISTA.

FIGURE 36 — TEST TWENTY-FIVE

- a. With S $_1$ open, measure $V_{RXO}.$ Using V_R obtained in Test 1, calculate: $B_{RXO} = V_{RXO} \div V_R.$
- b. With S₁ open, measure V_{RXO} and V_{RXI}. Calculate: I_{RXI} = (V_{RXO} V_{RX1}) \div 100 k Ω
- c. Close S₁ and set I = $-10~\mu$ A. Measure V_{RXO}. Using V_R obtained in Test 1, calculate: V_{RXO} (+) = V_R V_{RXO}.
- d. Close S₁ and set I = $+10~\mu$ A and measure V_{RXO}. V_{RXO}(-) = V_{RXO}.

FIGURE 37 --- TEST TWENTY-SIX

- a. Set S₁ to position A with S₂ open. Measure I_{TXL}. Calculate: R_{TXL} (OFF) = 0.4 V \div I_{TXL}.
- b. Set S_1 to position B and close S_2 . Measure ac voltages v_i and V_{TXL} . Calculate:

$$R_{TXL}$$
 (ON) = $\frac{V_{TXL}}{V_i - V_{TXL}} \times 5.1 \text{ k}\Omega$

FIGURE 38 — TEST TWENTY-SEVEN

- A measure IRM.
 - Calculate: RRM(OFF) = 0.4 V ÷ IRM
- b. Close S_2 and switch S_1 to position B. Measure ac voltages vi and VRM.

Calculate:

Calculate: $R_{RM}(ON) = \frac{V_{RM}}{v_i - V_{RM}} \times 10 \text{ k}\Omega$

FIGURE 39 — TEST TWENTY-EIGHT

- a. Set V + = 1.4 V. Measure $I_A(OFF)$
- b. Set V + = 0.6 V. Measure $I_A(ON)$

FIGURE 40 — TEST TWENTY-NINE

Measure VR/A+

FIGURE 41 - TEST THIRTY

Measure $I_{\mbox{in}}$ at each of three inputs. For each, calculate: $R_{in} = 5.0 \text{ V/I}_{in}$

APPLICATIONS INFORMATION

Figure 45 specifies a typical application circuit for the MC34010 and MC34011. Complete listings of external components are provided at the end of this section along with nominal component values.

The hook switch and polarity guard bridge configuration in Figure 45 is one of several options. If two bridges are used, one for the tone ringer and the other for speech and dialer circuits, then the hook switch can be simplified. Component values should be varied to optimize telephone performance parameters for each

application. The relationships between the application circuit components and certain telephone parameters are briefly described in the following:

On-Hook Input Impedance

R1, C17, and Z3 are the significant components for on-hook impedance. C17 dominates at low frequencies, R1 at high frequencies and Z3 provides the non-linearity required for 2.5 V and 10 V impedance signature tests. C17 must generally be \leq 1.0 μ F to satisfy 5.0 Hz impedance specifications.

MC34010P, MC34011P

Tone Ringer Output Frequencies

R3 and C13 control the frequency (f_0) of a relaxation oscillator. Typically $f_0=(R3C13+8.0~\mu s)^{-1}$. The output tone frequencies are $f_0/10$ and $f_0/8$. The warble rate is $f_0/640$. The tone ringer will operate with f_0 from 1.0 kHz R3 should be limited to values between 150 k and 300 k.

Tone Ringer Input Threshold

After R1, C17, and Z3 are chosen to satisfy on-hook impedance specifications, R2 is chosen for the desired ring start threshold. Increasing R2 reduces the ac input voltage required to activate the tone ringer output. R2 should be limited to values between 0.8 k and 2.0 k Ω .

Off-Hook DC Resistance

R4 conducts the dc line current in excess of the speech and dialer bias current. Increasing R4 increases the input resistance of the telephone for line currents above 10 mA. R4 should be selected between 40 Ω and 120 Ω .

Off-Hook AC Impedance

The ac input impedance is equal to the receive amplifier load impedance (at RXO) divided by the receive amplifier gain (voltage gain from V+ to RXO). Increasing the impedance of the receiver increases the impedance of the telephone. Increasing the gain of the receiver amplifier decreases the impedance of the telephone.

DTMF Output Amplitude

R14 controls the amplitude of the row and column DTMF tones. Decreasing R14 increases the level of tones generated at V+. The ratio of the row and column tone amplitudes is internally fixed. R14 should be greater than 20 Ω to avoid excessive current in the DTMF output amplifier.

Transmit Output Level

R10 controls the maximum signal amplitude produced at V+ by the transmit amplifier. Decreasing R10 increases the transmit output signal at V+. R10 should be greater than 250 Ω to limit current in the transmit amplifier output.

Transmit Gain

The gain from the microphone to the telephone line varies directly with R11. Increasing R11 increases the signal applied to R10 and the ac current driven through R10 to the telephone line. The closed loop-gain from the microphone to the TXO terminal should be greater than 10 to prevent transmit amplifier oscillations.

Note: Adjustments to transmit level and gain are complicated by the addition of receiver sidetone current to the transmit amplifier output current at V+. Normally the sidetone current from the receiver will increase the transmit signal (if the current in the receiver is in phase with that in R10). Thus the transmit gain and sidetone levels cannot be adjusted independently.

Receiver Gain

Feedback resistor R6 adjusts the gain at the receiver amplifier. Increasing R6 increases the receiver amplifier gain.

Sidetone Level

Sidetone reduction is achieved by the cancellation of receiver amplifier input signals from R9 and R5. R8, R15, and C6 determine the phase of the sidetone balance signal in R9. The ac voltage at the junction of R8 and R9 should be 180° out of phase with the voltage at V+. R9 is selected such that the signal current in R9 is slightly greater than that in R5. This insures that the sidetone current in the receiver adds to the transmit amplifier output current.

Hook-Switch Click Suppression

When the telephone is switched to the off-hook condition C3 charges from 0 volts to a 300 mV bias voltage. During this time interval, receiver clicks are suppressed by a low impedance at the RM terminal. If this click suppression mechanism is desired during a rapid succession of hook switch transitions, then C3 must be quickly discharged when the telephone is on-hook. R16 and S3 provide a rapid discharge path for C3 to reset the click suppression timer. R16 is selected to limit the discharge current in S3 to prevent damage to switch contacts.

Microprocessor Interface (MC34010 Only)

The six microprocessor interface lines (DP, TO, MS, DD, I/O, and CL) can be connected directly to a port, as shown in Figure 45. The DP line (Depressed Pushbutton) is also connected to an interrupt line to signal the microprocessor to begin a read data sequence when storing a number into memory. The MC34010 clock speed requirement is slow enough (typically 20 kHz) so that it is not necessary to divide down the processor's system clock, but rather a port output can be toggled. This facilitates synchronizing the clock and data transfer, eliminating the need for hardware to generate the clock.

The DD pin must be maintained at a Logic "0" when the microprocessor section is not in use, so as to permit normal operation of the keypad.

When the microprocessor interface section is not in use, the supply voltage at Pin 12 (A+) may be disconnected to conserve power. Normally the speech circuitry is powered by the voltage supplied at the V+ terminal (Pin 34) from the telephone lines. During this time, A+ powers only the active pullups on the three microprocessor outputs (DP, MS, and I/O). When the telephone is "on-hook," and V+ falls below 0.6 volts, power is then supplied to the telephone speech and dialer circuitry from A+. Powering the circuit from the A+ pin permits communication with a microprocessor, and/or use of the transmit and receiver amplifiers, while the telephone is "on-hook."

DTMF Pad Row-Column Switch Closure Piezo Sound Element TRF 39 TRO 5 6 TRI 37 TRS 36 TRC RING 35 C2 FΒ 34 ۷+ C3 Vcc 33 ВP C4 CA1 32 *9 DP LR *10 (C11 31 TO LC *11 MS MC34010/V-30 MC6821 Data 34011 PIA 29 *12 MC6800 VR System Receiver *13 Port CAL 300 Ω A or B 27 S1, S2, S3 controlled RXO DD by hook switch; Illustrated *15 26 Control $\overline{\mathsf{CL}}$ RXI in "on-hook" 16 25 ٧ss CR1 RM condition. R9 17 CR2 STA R8 R10 23 TXO 六06 19 22 TXI AGC 20 21 **Electret Microphone** R15 TXL MIC R13 C5 R16 S3 *RX used with 2-Terminal mike only.

FIGURE 45 — MC34010/34011 ELECTRONIC TELEPHONE APPLICATION CIRCUIT

^{*} Pins 9 through 15 are for MC34010 only; corresponding pins on MC34011 should be connected to V - .

EXTERNAL COMPONENTS

(Component Labels Referenced to Figure 45)

Capacitors	Nominal Value	Description
C1, C2	100 pF	Ceramic Resonator oscillator capacitors.
C3	1.0 μF, 3.0 V	Transmit limiter low-pass filter capacitor: controls attack and decay time of transmit peak limiter.
C4, C5	0.1 μF	Transmit amplifier input capacitors: prevent dc current flow into TXL pin and attenuates low-frequency noise on microphone lead.
C6	0.05 μF	Sidetone network capacitor: provides phase-shift in sidetone path to match that caused by telephone line reactance.
C7, C8	0.05 μF	Receiver amplifier input capacitors: prevent dc current flow into RM terminal and attenuates low frequency noise on the telephone line.
C9	2.2 μF, 3.0 V	VR regulator capacitor: frequency compensates the VR regulator to prevent oscillation.
C10	0.01 μF	Receiver amplifier output capacitor: frequency compensates the receiver amplifier to prevent oscillation.
C11	0.1 μF	DC load filter capacitor: prevents the dc load circuit from attenuating ac signals on V+.
C12	0.01 μF	Telephone line bypass capacitor: terminates telephone line for high frequency signals and prevents oscillation in the VR regulator.
C13	620 pF	Tone ringer oscillator capacitor: determines clock frequency for tone and warble frequency synthesizers.
C14	0.1 μF	DTMF output feedback capacitor: ac couples feedback around the DTMF output amplifier which reduces output impedance.
C15	4.7 μF, 25 V	Tone ringer input capacitor: filters the rectified tone ringer input signal to smooth the supply potential for oscillator and output buffer.
C16	1.0 μF, 10 V	Tone ringer filter capacitor: integrates the voltage from current sense resistor R2 at the input of the threshold detector.
C17	1.0 μF, 250 Vac Non-polarized	Tone ringer line capacitor: ac couples the tone ringer to the telephone line; partially controls the on-hook input impedance of telephone.

Resistors	Nominal Value	Description
R1	6.8 k	Tone ringer input resistor: limits current into the tone ringer from transients on the telephone line and partially controls the on-hook impedance of the telephone.
R2	1.8 k	Tone ringer current sense resistor: produces a voltage at the input of the threshold detector in proportion to the tone ringer input current.
R3	200 k	Tone ringer oscillator resistor: determines the clock frequency for tone and warble frequency synthesizers.
R4	82, 1.0 W	DC load resistor: conducts all dc line current in excess of the current required for speech or dialing circuits; controls the off-hook dc resistance of the telephone.
R5, R7	150 k, 56 k	Receiver amplifier input resistors: couple ac input signals from the telephone line to the receiver amplifier; signal in R5 subtracts from that in R9 to reduce sidetone in receiver.
R6	200 k	Receiver amplifier feedback resistor: controls the gain of the receiver amplifier.
R8, R9	1.5 k, 30 k	Sidetone network resistors: drive receiver amplifier input with the inverted output signal from the transmitter; phase of signal in R9 should be opposite that in R5.
R10	270	Transmit amplifier load resistor: converts output voltage of transmit amplifier into a current that drives the telephone line; controls the maximum transmit level.
R11	200 k	Transmit amplifier feedback resistor: controls the gain of the transmit amplifier.
R12, R13	4.7 k, 4.7 k	Transmit amplifier input resistors: couple signal from microphone to transmit amplifier; control the dynamic range of the transmit peak limiter.
R14	36	DTMF calibration resistor: controls the output amplitude of the DTMF dialer.
R15	2.0 k	Sidetone network resistor (optional): reduces phase shift in sidetone network at high frequencies.
R16	100	Hook switch click suppression current limit resistor (optional): limits current when S3 discharges C3 after switching to the on-hook condition.
RX	3.0 k	Microphone bias resistor: sources current from VR to power a 2-terminal electret microphone; R _X is not used with 3-terminal microphones.

EXTERNAL COMPONENTS (continued)

Semiconductors	Electret Mic	Receiver
B1 = MDA101A, or equivalent, or 4-1N4005 T1 = 2N4126 or equivalent Z1 = 18 V, 1.5 W, 1N5931A Z2 = 30 V, 1.5 W, 1N5936A Z3 = 4.7 V, 1/2 W, 1N750 XR — CRM 500A Toko Resonators or equivalent Piezo — PBL 5030BC Toko Buzzer or equivalent	2 Terminal, Primo EM-95 (Use R _X) or equivalent 3 Terminal, Primo 07A181P (Remove R _X) or equivalent	Primo Model DH-34 (300 Ω) or equivalent

MC34012-1 MC34012-2 MC34012-3

Advance Information

TELEPHONE TONE RINGER

- Complete Telephone Bell Replacement Circuit with Minimum External Components
- On-Chip Diode Bridge and Transient Protection
- Direct Drive for Piezoelectric Transducers
- Base Frequency Options—MC34012-1: 1.0 kHz
 MC34012-2: 2.0 kHz
 MC34012-3: 500 Hz
- Input Impedance Signature Meets Bell and EIA Standards
- Rejects Rotary Dial Transients

TELEPHONE TONE RINGER

BIPOLAR LINEAR/I²L

PLASTIC PACKAGE CASE 626

APPLICATION CIRCUIT

MC34012-1: C = 1000 pF MC34012-2: C = 500 pF MC34012-3: C = 2000 pF

This document contains information on a new product. Specifications and information herein are subject to change without notice.

APPLICATION CIRCUIT PERFORMANCE

Characteristic	Typical Value	Units
Output Tone Frequencies MC34012-1 MC34012-2 MC34012-3 Warble Frequency	832/1040 1664/2080 416/520 13	Hz
Output Voltage (V _I ≥ 60 V _{rms} , 20 Hz)	20	V _{p-p}
Output Duty Cycle	. 50	%
Ringing Start Input Voltage (20 Hz)	36	V _{rms}
Ringing Stop Input Voltage (20 Hz)	28	V _{rms}
Maximum ac Input Voltage (≤ 68 Hz)	150	V _{rms}
Impedance When Ringing VI = 40 V _{rms} , 15 Hz VI = 130 V _{rms} , 23 Hz	20 10	kΩ
Impedance When Not Ringing VI = 10 V _{rms} , 24 Hz VI = 2.5 V _{rms} , 24 Hz VI = 10 V _{rms} , 5.0 Hz VI = 10 V _{rms} , 5.0 Hz VI = 3.0 V _{rms} , 200–3200 Hz	28 >1.0 55 >1.0	kΩ ΜΩ kΩ ΜΩ
Maximum Transient Input Voltage $(T\leqslant 2.0 \text{ ms})$	1500	V

PIN DESCRIPTIONS

Name	Description		
AC ₁ , AC ₂	The input terminals to the full-wave diode bridge. The ac ringing signal from the telephone line energizes the ringer through this bridge.		
RS	The positive output of diode bridge to which an external current sense resistor is connected.		
RI	The positive supply terminal for the oscillator, frequency divider and output buffer circuits.		
RF	The terminal for the filter capacitor used in detection of ringing input signals.		
RO	The tone ringer output terminal through which the sound element is driven.		
RG	The negative output of the diode bridge and the negative supply terminal of the tone generating circuitry.		
RC	The oscillator terminal for the external resistor and capacitor which control the tone ringer frequencies.		

MC34012-1, MC34012-2, MC34012-3

ELECTRICAL CHARACTERISTICS (T_A = 25 °C)

Characteristic	Test	Symbol	Min	Тур	Max	Units
Ringing Start Voltage (VStart = V _I @ Ring Start)						Vdc
V _I > 0 V _I < 0	1a 1b	V _{Start} (+) V _{Start} (−)	31 -31	34.5 -34.5	38 -38	
Ringing Stop Voltage (VStop = VI @ Ring Stop) MC34012-1 MC34012-2 MC34012-3	1c	VStop	16 13 16	20 18 20	25 22 25	Vdc
Output Frequencies (V _I = 50 V) MC34012-1 High Tone Low Tone Warble Tone MC34012-2 High Tone Low Tone Warble Tone High Tone Low Tone Warble Tone Low Tone Warble Tone High Tone Low Tone Warble Tone	1d	fH fL fW fH fL fW fH fL	967 774 12 1934 1548 12 967 774	1040 832 13 2080 1664 13 1040 832 26	1113 890 14 2226 1780 14 1113 890 28	Hz
Output Voltage (V _I = 50 V)	6	fw Vo	19	20	23	V _{p-p}
Output Short-Circuit Current	2	10	35	50	80	mA _{p-p}
Input Diode Voltage (I _I = 1.0 mA)	3	V _D	4.6	5.1	5.6	Vdc
Input Voltage—SCR Off (I _I = 30 mA)	4a	V _{off}	37	42	47	Vdc
Input Voltage—SCR On (I _I = 100 mA)	4b	Von	3.2	4.2	6.0	Vdc
Threshold Filter Resistance R _{RF} = 2.0 V/I _{RF}	5	R _{RF}	30	50	80	kΩ

BLOCK DIAGRAM

CIRCUIT DESCRIPTION

The MC34012 Tone Ringer derives its power supply by rectifying the ac ringing signal. It uses this power to activate a tone generator and drive a piezo-ceramic transducer. The tone generation circuitry includes a relaxation oscillator and frequency dividers which produce high and low frequency tones as well as the tone warble frequency. The relaxation oscillator frequency $f_{\rm O}$ is set by resistor R2 and capacitor C2 connected to pin RC. The oscillator will operate with $f_{\rm O}$ from 1.0 kHz to 10 kHz with the proper choice of external components (See Figure 1).

The frequency of the tone ringer output signal at pin RO alternates between $f_0/4$ to $f_0/5$. The warble rate at which the frequency changes is $f_0/320$ for the MC34012-1, $f_0/640$ for the MC34012-2, or $f_0/160$ for the MC34012-1 produces 800 Hz and 1000 Hz tones with a 12.5 Hz warble rate. The MC34012-2 generates 1600 Hz and 2000 Hz tones with a similar 12.5 Hz warble frequency from an 8.0 Hz oscillator frequency. The MC34012-3 will produce 400 Hz and 500 Hz tones with a 12.5 Hz warble rate from a 2.0 kHz oscillator frequency. The MC34012-3 will produce 400 Hz and 500 Hz tones with a 12.5 Hz warble rate from a 2.0 kHz oscillator frequency. The tone ringer output circuit can source or sink 20 mA with an output voltage swing of 20 volts peak-to-peak. Volume control is readily implemented by adding a variable resistance in series with the piezo transducer.

Input signal detection circuitry activates the tone ringer output when the ac line voltage exceeds programmed threshold level. Resistor R3 determines the ringing signal amplitude at which an output signal will be generated at RO. The ac ringing signal is rectified by the internal diode bridge. The rectified input signal

FIGURE 1 — OSCILLATOR PERIOD (1/f₀) versus OSCILLATOR R2 C2 PRODUCT

produces a current through R3 which is input at terminal RI. The voltage across resistor R3 is filtered by capacitor C3 at the input to the threshold circuit. When the voltage on capacitor C3 exceeds 1.7 volts, the threshold comparator enables the tone ringer output. Line transients produced by pulse dialing telephones do not charge capacitor C3 sufficiently to activate the tone ringer output.

Capacitors C1 and C4 and resistor R1 determine the 10 volt, 24 Hz signature test impedance. C4 also provides filtering for the output stage power supply to prevent droop in the square wave output signal. Six diodes in series with the rectifying bridge provide the necessary non-linearity for the 2.5 volt, 24 Hz signature tests.

An internal shunt voltage regulator between the RI and RG terminals provides dc voltage to power output stage, oscillator, and frequency dividers. The dc voltage at RI is limited to approximately 22 volts in regulation. To protect the IC from telephone line transients, an SCR is triggered when the regulator current exceeds 50 mA. The SCR diverts current from the shunt regulator and reduces the power dissipation within the IC.

EXTERNAL COMPONENTS

R1	Line input resistor. R1 controls the tone ringer input impedance. It also influences ringing threshold voltage and limits current from line transients. (Range: $2.0~k\Omega$ to $10~k\Omega$).
C1	Line input capacitor. C1 ac couples the tone ringer to the telephone line and controls ringer input impedance at low frequencies. (Range: 0.4 µF to 2.0 µF).
R2	Oscillator resistor. (Range: 150 k Ω to 300 k Ω).
C2	Oscillator capacitor. (Range: 400 pF to 2000 pF).
R3	Input current sense resistor. R3 controls the ringing threshold voltage. Increasing R3 decreases the ring-start voltage. (Range: $0.8 \text{ k}\Omega$ to $2.0 \text{ k}\Omega$).
С3	Ringing threshold filter capacitor. C3 filters the ac voltage across R3 at the input of the ringing threshold comparator. It also provides dialer transient rejection. (Range: 0.5 µF to 5.0 µF).
C4	Ringer supply capacitor. C4 filters supply voltage for the tone generating circuits. It also provides an ac current path for the 10 V_{rms} ringer signature impedance. (Range: $1.0~\mu F$ to $10~\mu F$).

FIGURE 2 — TEST ONE

FIGURE 3 — TEST TWO

FIGURE 4 — TEST THREE

FIGURE 5 — TEST FOUR

FIGURE 6 — TEST FIVE

FIGURE 7 — TEST SIX

MC34013

Product Preview

TELEPHONE SPEECH NETWORK AND TONE DIALER

- Linear/I²L Technology Provides Low 1.4 Volt Operation in Both Speech or Dialing Modes
- Speech Network Provides 2–4 Wire Conversion with Adjustable Sidetone Utilizing an Electret Microphone
- DTMF Generator Uses Low-Cost Ceramic Resonator with Accurate Frequency Synthesis Technique
- Speech Network Operational with Loop-Currents from 6.0 mA to 120 mA
- Dialer Mutes Speech Network with Internal Delay for Click Suppression on DTMF Key Release

SPEECH NETWORK AND TONE DIALER

BIPOLAR LINEAR/I²L

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Product Preview

INTEGRATED TONE DIALER

- Low Voltage Operation
- On-Chip Filter Provides Low Distortion
- Inexpensive Ceramic Resonator Oscillator
- Direct Muting of Receiver with Internal Click Suppression Delay
- Accurate Frequency Synthesis
- Tone Disable Capability
- Industry Standard Pinout

TELEPHONE TONE DIALER

BIPOLAR LINEAR/I²L

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MC34017

Product Preview

TELEPHONE TONE RINGER

- Complete Telephone Bell Replacement Circuit with Minimum **External Components**
- On-Chip Diode Bridge and Transient Protection
- Direct Drive for Piezoelectric Transducers
- Base Frequency Options MC34017-1: 1.0 kHz MC34017-2: 2.0 kHz MC34017-3: 500 Hz
- Input Impedance Signature Meets Bell and EIA Standards
- Rejects Rotary Dial Transients
- Push-Pull Output Stage for Greater Output Power Capability

TELEPHONE TONE RINGER

BIPOLAR LINEAR/I²L

PLASTIC PACKAGE CASE 626

APPLICATION CIRCUIT

MC34017-1: C = 1000 pFMC34017-2: C = 500 pF MC34017-3: C = 2000 pF

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Consumer

CONSUMER

Device	Function	Page
CA3054	Dual Differential Amplifier	10-3
MC1309	FM Stereo Demodulator	10-5
MC1310P	FM Stereo Demodulator	10-7
MC1327	Dual Doubly Balanced Chroma Demodulator	10-15
MC1330A1P	Low-Level Video Detector	10-19
MC1330A2P	Low-Level Video Detector	10-19
MC1349P	IF Amplifier	10-25
MC1350P	IF Amplifier	10-30
MC1352	TV Video IF Amplifier	10-34
MC1355	Limiting FM IF Amplifier	10-39
MC1357	IF Amplifier and Quadrature Detector	10-43
MC1358	TV Sound IF Amplifier	10-49
MC1372	Color TV Video Modulator	10-54
MC1373	TV Video Modulator	10-62
MC1374	TV Modulator Circuit	
MC1376	FM Modulator Circuit	10-03
MC1377	Color Television RGB to PAL/NTSC Encoder	10-73
MC1391P	TV Horizontal Processor	10-70
MC1394P	TV Horizontal Processor	10-02
MC3320P	Class B Audio Drivers	10-02
MC3321P	Class B Audio Drivers	10-87
MC3325	Automotive Voltage Regulator	10-87
MC3334P	High Energy Ignition Circuit	10-91
MC3340P	Flootronio Attonuotor	10-95
MC3346	Electronic Attenuator	10-99
MC3350	General-Purpose Transistor Array	10-102
MC3356	Triple Independent Differential Amplifier	10-105
MC3357	Wideband FSK Receiver	10-107
MC3359	Low-Power FM IF	10-113
	Low-Power Narrow-Band FM IF	10-117
MC3361	Low-Voltage Narrow Band FM IF	10-123
MC3373	Remote Control Amplifier-Detector	10-125
MC3386	General-Purpose Transistor Array	10-102
MC3393P	Two-Modulus Prescaler	10-129
MC3396P	Divide By 20 Prescaler	10-131
MC3484V2	Integrated Solenoid Driver	10-133
MC3484V4	Integrated Solenoid Driver	10-133
MC13001P	Monomax Black-and-White TV Subsystem	10-139
MC13002P	Monomax Black-and-White TV Subsystem	10-139
MC13010P	TV Parallel Sound IF and AFT	10-148
MC13020P	CQUAMR AM Stereo Decoder	10-153
MCC3334	High Energy Ignition Circuit	10-95
MCCF3334	High Energy Ignition Circuit	10-95
TBA120C	FM IF Amplifier, Limiter and Detector	10-158
TCA4500A	FM Stereo Demodulator	10-163
TCA5550	Stereo Sound Control System	10-170
TDA1190P	TV Sound System	10-174
TDA3190P	TV Sound System	10-174
TDA3301	TV Color Processor	10-177
TDA3303	TV Color Processor	10-177
TDA3330	TV Color Processor	10-191
TDA3333	TV Color Difference Demodulator	10-193
μΑ758Α	Phase Lock-Loop FM Stereo Demodulator	10-201

CA3054

Advance Information

DUAL INDEPENDENT DIFFERENTIAL AMPLIFIER

The CA3054 consists of two independent differential amplifiers with associated constant-current transistors on a common monolithic substrate. The six NPN transistors which comprise the amplifiers are general purpose devices useful from dc to 120 MHz.

The monolithic construction of the CA3054 provides close electrical and thermal matching of the amplifiers which makes this device particularly useful in dual channel applications where matched performance of the two channels is required.

- Two differential amplifiers on a common substrate
- Independently accessible inputs and outputs
- Maximum input offset voltage − ±5 mV

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	Vcво	20	Vdc
Emitter-Base Voltage	VEB	5.0	Vdc
Collector-Substrate Voltage	VCIO	20	Vdc
Collector Current — Continuous	¹c	50	mAdc
Junction Temperature	TJ	150	°C
Operating Temperature Range	TA	-40 to +85	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

GENERAL PURPOSE TRANSISTOR ARRAY

SILICON MONOLITHIC INTEGRATED CIRCUIT

CASE 646-05

PIN CONNECTIONS

Pin 5 is connected to substrate.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ELECTRICAL CHARACTERISTICS (T_A = 25°C, unless otherwise noted).

Characteristic	Symbol	Min	Тур	Max	Unit
STATIC CHARACTERISTICS FOR EACH DIFFERENTIA	AL AMPLIFIER				
Input Offset Voltage (VCB = 3.0 Vdc)	V _{IO}		_	5.0	mV
Input Offset Current (VCB = 3.0 Vdc)	110	_	_	2.0	μА
Input Bias Current (V _{CB} = 3.0 Vdc)	IIB		-	24	μА
STATIC CHARACTERISTICS FOR EACH TRANSISTOR					
Base-Emitter Voltage (V _{CB} = 3.0 Vdc, I _C = 50 μA) (V _{CB} = 3.0 Vdc, I _C = 1.0 mA) (V _{CB} = 3.0 Vdc, I _C = 3.0 mA) (V _{CB} = 3.0 Vdc, I _C = 10 mA)	V _{BE} .	- - -	- - -	0.70 0.80 0.85 0.90	Vdc
Collector Cutoff Current (VCB = 10 Vdc, IE = 0)	СВО	_	_	100	nA
Collector-Emitter Breakdown Voltage (IC = 1.0 mA)	V(BR)CEO	15	-	_	Vdc
Collector-Base Breakdown Voltage (I _C = 10 μA)	V _(BR) CBO	20	_	_	Vdc
Collector-Substrate Breakdown Voltage (IC = 10 µA)	V(BR)CIO	20	_	-	Vdc
Emitter-Base Breakdown Voltage (I _E = 10 µA)	V(BR)EBO	5.0		_	Vdc

MC1309

Advance Information

PHASE-LOCK LOOP FM STEREO DEMODULATOR

 \dots a monolithic device using I²L and ION Implant technology for use in solid-state stereo receivers.

- Requires No Inductors
- Low External Part Count
- Excellent Channel Separation Without Adjustment
- Only Single Potentiometer Oscillator Frequency Adjustment Necessary
- 50 mA Lamp or LED Driving Capability With Current Limiting
- · Automatic, Transient-Free Stereo/Mono Switching
- Wide Dynamic Range: 0.25-1.7 V(p-p) Composite Input Signal
- Wide Supply Range: 4.5-16 Vdc
- Low Distortion: Typically 0.08% at 850 mV(p-p) Composite Input Signal
- · Excellent SCA Rejection
- Gain Adjustable By Changing Load Resistors

PHASE-LOCK LOOP FM STEREO DEMODULATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MAXIMUM RATINGS ($T_A = +25^{\circ}$ unless otherwise noted.)

Rating	Value	Unit	
Power Supply Voltage	16	Volts	
Lamp Current	50	mA	
Junction Temperature	150	°C	
Operating Temperature Range (Ambient)	-20 to +75	°C	
Storage Temperature Range	-65 to +150	°C	

ELECTRICAL CHARACTERISTICS Unless otherwise noted; $V_{CC} = +9 \text{ Vdc}$, $T_A = +25^{\circ}\text{C}$, 1.7 V(p-p) standard multiplex composite signal with L or R channel only modulated at 1.0 kHz and with 10% pilot level for stereo tests: 1.7 V(p-p) 1 kHz input signal for monaural tests; using circuit in Figure 1.

Characteristic	Min	Тур	Max	Unit
Current Drain	_	11	_	mAdc
Maximum Standard Composite Input Signal (0.5% THD)*	THE PARTY OF THE P			V _(p-p)
$(V_{CC} = 9.0 \text{ V})$	1.7	2.1	_	, (b-b)
$(V_{CC} = 6.0 \text{ V})$	0.85	1.7	_	
Maximum Monaural Input Signal (1.0% THD)*				V _(p-p)
$(V_{CC} = 9.0 V)$	1.7	2.2		, (b-b)
$(V_{CC} = 6.0 \text{ V})$	0.85	1.7	_	
Channel Balance	-	0	1.0	dB
Stereo THD		0.06	_	%
$(V_{in} = 0.85 \ V[p-p])$		1		1 ~
Monaural THD	_	0.08	_	%
$(V_{in} = 0.85 \ V[p-p]$		1,00		1 ~
Channel Separation				dB
(f = 100 Hz)		45	-	
(f = 1.0 kHz)	30	47	_	
(f = 10 kHz)	_	40		
Monaural Gain	0.6	0.9	_	V/V
Input Impedance	15	30	_	kΩ
Ultrasonic Frequency Rejection 19 kHz	_	35	_	dB
38 kHz	_	45	_	
SCA Rejection	_	75	_	dB
Stereo Switch Level				mV
Lamp "On"	_	9.0	12	
Lamp "Off"	2.0	4.5	_	
Mono/Stereo Switching Transient — No Lamp	_	0	_	- mV
Capture Range (Pilot = 60 mV [RMS])	_	±7.0	-	%

^{*}THD and Channel Separation are measured after a Bandpass Filter (200 Hz-10 kHz), unless otherwise specified.

ORDERING INFORMATION

Device	Temperature Range	Package
MC1310P	-40°C to +85°C	Plastic DIP

MC1310P

Specifications and Applications Information

FM STEREO DEMODULATOR

. . . a monolithic device designed for use in solid-state stereo receivers.

- Requires no Inductors
- Low External Part Count
- Only Oscillator Frequency Adjustment Necessary
- Integral Stereo/Monaural Switch 75 mA Lamp Driving Capability
- Wide Dynamic Range: 0.5—2.8 V(p-p) Composite Input Signal
- Wide Supply Range: 8-14 Vdc
- Excellent Channel Separation Maintained Over Entire Audio Frequency Range
- Low Distortion: Typically 0.3% THD at 560 mV (RMS) Composite Input Signal
- Excellent SCA Rejection

FM STEREO DEMODULATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS ($T_A = +25^{\circ}$ unless otherwise noted.)

Rating	Value	Unit
Power Supply Voltage	14	Volts
Lamp Current	75	mA
Power Dissipation (Package limitation) Derate above $T_A = +25^{\circ}C$	625 5.0	mW mW/ ^O C
Operating Temperature Range (Ambient)	-40 to +85	°C
Storage Temperature Range	-65 to +150	°С

ELECTRICAL CHARACTERISTICS Unless otherwise noted; $V_{CC} = \pm 12 \text{ Vdc}$, $T_A = \pm 25^{\circ}\text{C}$, 560 mV (RMS) (2.8 $V_{[p\cdot p]}$) standard multiplex composite signal with L or R channel only modulated at 1.0 kHz and with 100 mV (RMS) pilot level (10%), using circuit of Figure 1.

Characteristic	Min	Тур	Max	Unit
Maximum Standard Composite Input Signal (0.5% THD)	2.8	-		V _(p-p)
Maximum Monaural Input Signal (1.0% THD)	2.8		-	V _(p-p)
Input Impedance	20	50	_	kΩ
Stereo Channel Separation	30	40	_	dB
Audio Output Voltage (desired channel)	_	485	-	mV(RMS)
Monaural Channel Balance (pilot tone "off")	_	_	1.5	dB
Total Harmonic Distortion	-	0.3	_	%
Ultrasonic Frequency Rejection 19 kHz 38 kHz	_	34.4 45	_	dB
Inherent SC A Rejection (f = 67 kHz; 9.0 kHz beat note measured with 1.0 kHz modulation "off")	-	. 75	-	dB
Stereo Switch Level 19 kHz input level for lamp "on" 19 kHz input level for lamp "off"	 5.0		20 -	mV(RMS)
Capture Range (permissible tuning error of internal oscillator, reference circuit values of Figure 1)	_	±3.5	-	%
Current Drain (lamp "off")	_	13	-	mAdc

TYPICAL CHARACTERISTICS

Unless otherwise noted: V_{CC} = +12 Vdc, T_A = +25°C; 560 mV(RMS) (2.8 $V_{[p-p]}$) standard multiplex composite signal with L or R channel only modulated at 1.0 kHz and with 100 mV(RMS) pilot level (10%), using circuit of Figure 1.

FIGURE 3 - CHANNEL SEPARATION versus COMPOSITE INPUT LEVEL

FIGURE 4 - CHANNEL SEPARATION versus FREQUENCY

FIGURE 5 - CHANNEL SEPARATION versus VCO FREE-RUNNING FREQUENCY

FIGURE 6 - CHANNEL SEPARATION versus

FIGURE 7 - THD versus COMPOSITE INPUT LEVEL*

FIGURE 8 - DISTORTION versus FREQUENCY*

^{*}Measured with Low Pass Filter (BW = 15 kHz).

TYPICAL CHARACTERISTICS (continued)

FIGURE 13 - SYSTEM BLOCK DIAGRAM

^{*}Measured with Low Pass Filter (BW = 15 kHz)

APPLICATIONS INFORMATION (continued)

additional lead of 3.5° (for C5 = 0.05 μ F) giving a total lead of 5.5°.

The circuit is so designed that phase lag may be generated by adding a capacitor from pin 3 to ground. The source resistance at this point is 500 ohms. A capacitance of 820 pF compensates the 5.50 phase lead: increase above this value causes the regenerated subcarrier to lag the original. However, a 5.50 phase error if left noncompensated will not degrade separation appreciably.

Note that these phase shifts occur within the phase-locked loop and affect only the regenerated 38-kHz sub-carrier: the circuit causes no significant phase or amplitude variation in the actual stereo signal prior to decoding.

Most IF amplifiers have a frequency response that limits separation to a value significantly lower than the capability of the MC1310. For example, if the response produces a 1-dB roll-off at 38 kHz, the separation will be limited to about 32 dB. This error can be compensated by using an RC lead network as shown in Figure 14. The exact values will be determined by the IF amplifier design. However, the values shown in Figure 14 are suitable for use with the MC1357 and MC1375 IF amplifiers.

FIGURE 14 - IF COMPENSATION NETWORK

Voltage Control Oscillator Compensation

Figure 10 illustrates noncompensated Oscillator Drift versus temperature. The recommended T_C of the R4, R5, C7 combination is -300 PPM. This will hold the oscillator drift to approximately $\pm 1\%$ over a temperature range of -40 to +85°C. Allowing $\pm 2\%$ for aging of the timing components acceptable performance is still obtained.

Lamp Sensitivity

It may be desirable in some cases, to change the lamp sensitivity due to differing signal levels produced by various FM detectors. The lamp sensitivity can be changed by making use of the external circuit shown. Typical sensitivities versus potentiometer rotation are also shown in Figure 15.

FIGURE 15 — PILOT SENSITIVITY versus
POTENTIOMETER ROTATION

Alignment Procedure

The optimum alignment procedure, with no input signal applied, is to adjust R5 until 19.00 kHz is read at pin 10 on the frequency counter.

Another procedure requiring no equipment, other than the receiver itself, will result in separation of within a few dB of optimum. This latter method is merely to tune the receiver to a stereo broadcast and adjust R5 until the pilot lamp turns "on". To find the center of the lock-in range, rotate the potentiometer back and forth until the center of the lamp "on" range is found. This completes the alignment.

Alternate Timing Network

The alternate timing network shown, incorporating a trimmer capacitor rather than a potentiometer, may be used if desired. Again, to provide correct temperature compensation, the temperature coefficient of the timing network must be approximately -300 PPM.

FIGURE 16

Maximum Load Resistance

The curve shown gives absolute maximum load resistance values versus supply voltage used for full-signal handling capability. With desired load resistance choose C2, C3 capacitors to provide standard 75 μ s de-emphasis.

CIRCUIT OPERATION

Figure 13, on the previous page, shows the system block diagram. The upper line, comprising the 38-kHz regeneration loop operates as follows: the internal oscillator running at 76-kHz and feeding through two divider stages returns a 19-kHz signal to the input modulator. There the returned signal is multiplied with the incoming signal so that when a 19-kHz pilot tone is received a dc component is produced. The dc component is extracted by the low pass filter and used to control the frequency of the internal oscillator which consequently becomes phase-locked to the pilot tone. With the oscillator phase-locked to the pilot the 38-kHz output from the first divider is in the correct phase for decoding a stereo signal. The decoder is essentially another modulator in which the incoming signal is multiplied by

the regenerated 38-kHz signal. The regenerated 38-kHz signal is fed to the stereo decoder via an internal switch, which closes when a sufficiently large 19 kHz pilot tone is received

The 19-kHz signal returned to the 38-kHz regeneration loop modulator is in quadrature with the 19-kHz pilot tone when the loop is locked. With the third divider state appropriately connected, a 19-kHz signal in phase with the pilot tone is generated. This is multiplied with the incoming signal in the stereo switch modulator vielding a dc component proportional to the pilot tone amplitude. This component after filtering is applied to the trigger circuit which activates both the stereo switch and an indicator lamp.

APPLICATIONS INFORMATION

(Component numbers refer to Figure 1)

External Component Functions and Values

C1

Input coupling capacitor; 2.0 μ F is recommended but a lower value is permissible if reduced separation at low frequencies is acceptable.

R1. R2, C2, C3 See Maximum Load Resistance section.

C4

Filter capacitor for stereo switch level detector; time constant is C4 x 53 kilohms ±30%, maximum dc voltage appearing across C4 is 0.25 V (pin 8 positive) at 100 mV(RMS) pilot level. The signal voltage across C4 is negliaible.

C5

See Phase Compensation section.

R3, C6, C8

Phase-locked loop filter components; the following network is recommended:

When less performance is required a simpler network consisting of R3 = 100 ohms and C6 = $0.25 \,\mu\text{F}$ may be used (omit C8). See Figure 9.

R4, R5, C7

Oscillator timing network; recommended values:

C7 = 470 pF1% $R4 = 16 k\Omega$ 1% $R5 = 5 k\Omega$ Preset These values give ±3.5% typical capture range. Capture range may be increased by reducing C7 and increasing R4, R5 proportionally but at the cost of increasing beat-note distortion (due to oscillator-phase jitter) at high-signal levels. See Figure 12.

Stereo Lamp

Nominal rating up to 75 mA at 12 V; the circuit includes surge limiting which restricts cold-lamp current to approximately 250 mA.

19-kHz Output

A buffer output providing a 3.0-V_{pk} square wave at 19 kHz is available at pin 10. A frequency counter may be connected to this point to measure the oscillator free-running frequency for alignment. See Alignment section.

External Monaural/Stereo Switching

If it is desired to maintain the circuit in monaural mode, the following procedure must be followed. First, the stereo switch must be disabled to prevent false lamp triggering. This can be accomplished by connecting pin 8 negative or pin 9 positive by 0.3 volt. Pin 8 may be grounded directly if desired. Note that the voltage across C4 increases to approximately 2 volts with pin 9 positive when pin 8 is grounded.

Second, the 76-kHz oscillator must be killed to prevent interference when on AM. This can be accomplished by connecting pin 14 to ground via a current limiting resistor (3.3 kilohms is recommended).

Phase Compensation/IF Roll-off Compensation

Phase-shifts in the circuit cause the regenerated 38kHz sub-carrier to lead the original 38 kHz by approximately 20. The coupling capacitor C5 generates an

10

APPLICATIONS INFORMATION (continued)

Audio Output

The ratio $G = \frac{p \cdot p \text{ audio output (one-channel)}}{p \cdot p \text{ input signal}}$ fo

different types of input is as follows:

INPUT

Single-Channel Composite Signal 0.45 Monaural Signal 0.5

These figures are for 3.9-kilohm load resistors and for low-audio frequencies where de-emphasis roll-off is insignificant.

Capture Range versus Timing Components

The capture range can be changed to some extent by use of different timing components. Typical values are shown in Figure 12.

Composite Signal

Due to confusion concerning the measurement of the stereo composite signal, a curve showing both RMS and p-p composite levels versus pilot level follows, see Figure 18.

FIGURE 18 – COMPOSITE LEVEL versus PILOT (L or R Modulation Only)

ORDERING INFORMATION

Device	Temperature Range	Package	
MC1327P	−20°C to +75°C	Plastic DIP	

MC1327

Advance Information

DUAL DOUBLY BALANCED CHROMA DEMODULATOR WITH RGB MATRIX, PAL SWITCH, AND CHROMA DRIVER STAGES

 \ldots , a monolithic device designed for use in solid-state color television receivers,

- Good Chroma Sensitivity 0.28 Vp-p Input Typical for 5.0 Vp-p Output
- Low Differential Output DC Offset Voltage 0.6 V Maximum
- Differential DC Temperature Stability − 0.7 mV/°C
- High Blue Output Voltage Swing 10 Vp-p Typical
- Blanking Input Provided
- Luminance Bandwidth Greater than 5.0 MHz

DUAL DOUBLY BALANCED CHROMA DEMODULATOR for PAL or NTSC

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 646-05

This document contains information on a new product. Specifications and information herein

are subject to change without notice.

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted)

Rating	Value	Unit
Power Supply Voltage	30	Vdc
Chroma Signal Input Voltage	5.0	Vpk
Reference Signal Input Voltage	5.0	Vpk
Minimum Load Resistance	3.0	k ohms
Luminance Input Voltage	12	Vp-p
Blanking Input Voltage	7.0	Vp-p
Power Dissipation (Package Limitation) Plastic Packages Derate above T _A = +25 ^O C	625 5.0	mW mW/ ^O C
Operating Temperature Range (Ambient)	-20 to +75	°c
Storage Temperature Range	-65 to +150	°c

ELECTRICAL CHARACTERISTICS (V_{CC} = 24 Vdc, R_L = 3.3 k ohms, T_A = +25°C unless otherwise noted)

Characteristic	Pin No.	Min	Тур	Max	Unit
STATIC CHARACTERISTICS					
Quiescent Output Voltage (See Figure 2)	1,2,4	13.2	14.5	15.8	Vdc
Quiescent Input Current from Supply (Figure 2)					mA
$(R_L = \infty)$ $(R_L = 3.3 \text{ k ohms})$	ı	- 16	7.5 19	- 26	
Reference Input DC Voltage (Figure 2)	5,12,13		6.2		Vdc
Chroma Reference Input DC Voltage (Figure 2)	8,9,10	_	3.4		Vdc
Differential Output Voltage (See Note 1 and Figure 2)	1,2,4	-	0.3	0.6	Vdc
Differential Output Voltage Temperature Coefficient (See Note 1 and Figure 2) (+25°C to +65°C)	1,2,4	_	0.7	-	mV/ ^o C
Output Voltage Temperature Coefficient (See Note 1 and Figure 2) (+25°C to +65°C)	1,2,4	-	+0.5	±5.0	mV/ ^o C
DYNAMIC CHARACTERISTICS (V _{CC} = 24 Vdc, R _L = 3.3 k ohms, Reference	e Input Voltage	= 1.0 Vp-p, T	A = +25°C ur	less otherwise	e noted)
Blue Output Voltage Swing (See Note 2 and Figure 3)	4	8.0	10	-	Vp-p
Chroma Input Voltage (B Output = 5.0 Vp-p) (See Note 3 and Figure 3)	8	-	280	550	mVp-p
Luminance Input Resistance	3	100	_	_	kΩ
Luminance Gain From Pin 3 to Outputs (@ dc)	1,2,4	_	0.95	_	-
(@ 5.0 MHz, reference at 100 kHz)			-1.8		dB
Differential Luminance Gain, RGB Outputs (@ 5.0 MHz)			0.3	-	dB
Blanking Input Resistance	6		l		kΩ
(1.0 Vdc) (0 Vdc)		_	1.1 75	_	
Detected Output Voltage (Adjust B Output to 5.0 Vp-p, Luminance Voltage = 23 V)	4				Vp-p
(See Note 4) G Output	1	1.4	1.8	2.2	
R Output	2	2.5	2.9	3.3	ļ
PAL Switch Operating Voltage Range (7.8 kHz Square Wave)	11	0.3	_	3.0	Vp-p
R-Y Output dc Offset with PAL Switch Operation			-	100	mVdc
Demodulator Unbalance Voltage (no Chroma Input Voltage and normal Reference Signal Input Voltage)	1,2,4	-	200	300	mVp-p
Residual Carrier and Harmonics Output Voltage (with Input Signal Voltage, normal Reference Signal Voltage and B Output = 5.0 Vp-p)	1,2,4	-	0.6	1.0	Vp-p
Reference Input Resistance (Chroma Input = 0)	12,13	_	2.0	-	kΩ
Reference Input Capacitance (Chroma Input = 0)	12,13	_	6.0		pF
Chroma Input Resistance	8,9,10	_	2.0	_	kΩ
Chroma Input Capacitance	8,9,10		2.0		pF

NOTES:

- 1. Chroma Input Signal Voltage = 0 and normal Reference Input Signal Voltage = 1.0 Vp-p.
- 2. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage to 1.2 Vp-p.
- 3. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage until the Blue Output Voltage = 5.0 Vp-p.
- 4. With normal Reference Input Signal Voltage, adjust Chroma Input Signal Voltage until the Blue Output Voltage = 5.0 Vp-p. At this point, the Red and Green voltages will fall within the specified limits.

 $\label{eq:continuous} \textbf{TEST CIRCUITS} \\ (V_{CC} = 24 \ Vdc, \ R_L = 3.3 \ kilohms, T_A = +25^{\circ}C \ unless \ otherwise \ noted)$

CHROMA DEMODULATOR

ORDERING INFORMATION

Device	Temperature Range	Package
MC1330A1P	0°C to +75°C	Plastic DIP
MC1330A2P	0°C to +75°C	Plastic DIP

LOW-LEVEL VIDEO DETECTOR

... an integrated circuit featuring very linear video characteristics and wide bandwidth. Designed for color and monochrome television receivers, replacing the third IF, detector, video buffer and AFC buffer.

- Conversion Gain 33 dB (Typ)
- · Excellent Differential Phase and Gain
- High Rejection of IF Carrier Feedthrough
- High Video Output 8.0 V(p-p)
- Fully Balanced Detector
- Output Temperature Compensated
- Improved Versions of the MC1330P

CIRCUIT DESCRIPTION

The MC1330A video detector is a fully balanced multiplier detector circuit that has linear amplitude and phase characteristics. The signal is divided into two channels, one a linear amplifier and the other a limiting amplifier that provides the switching carrier for the detector.

The switching carrier has a buffered output for use in providing the AFT function.

The video amplifier output is an improved design that reduces the differential gain and phase distortion associated with previous video output systems. The output is wide band, $> 8.0 \, \text{MHz}$, with normal negative polarity. A separate narrow bandwidth, positive video output is also provided.

MC1330A1P MC1330A2P

LOW-LEVEL VIDEO DETECTOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

PLASTIC PACKAGE CASE 626-04

OUTPUT VOLTAGE SELECTION

The MC1330A1P is identical to the MC1330A2P with the following exception:

ZERO SIGNAL DC OUTPUT VOLTAGE

MC1330A1P MC1330A2P 7.0 to 8.2 Vdc 7.8 to 9.0 Vdc

MAXIMUM RATINGS

Rating	Value	Unit
Power Supply Voltage	24	Vdc
DC Video Output Current	5.0	mAdc
DC AFT Output Current	2.0	mAdc
Junction Temperature	150	°C
Operating Ambient Temperature Range	0 to 75	°C
Storage Temperature Range	65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = +20 Vdc, Q = 40, fc = 45.75 MHz, T_A = +25^oC unless otherwise noted)

Characteristic		Pin	Min	Тур	Max	Unit
Zero Signal dc Output Voltage	MC1330A1P MC1330A2P	4 4	7.0 7.8	_	8.2 9.0	Vdc Vdc
Supply Current		5,6	11	17.5	20	mA
Maximum Signal dc Output Voltage		4	_	0	0.5	Vdc
Conversion Gain for 1.0 Vp-p Output (30% Modulation)		7	25	36	65	mVrms
AFT Buffer Output at Carrier Frequency		1	300	475	650	mVp-p

FIGURE 2 - TEST FIXTURE CIRCUIT

FIGURE 3 - INPUT ADMITTANCE

FIGURE 4 - VIDEO DETECTOR OUTPUT RESISTANCE

MC1330A1P, MC1330A2P

DESIGN CHARACTERISTICS ($V_{CC} = +20 \text{ Vdc}$, Q = 40, $f_{c} = 45.75 \text{ MHz}$, $T_{A} = +25^{\circ}\text{C}$ unless otherwise noted)

Characteristic			Тур	Unit
Input Resistance Input Capacitance		7	4.9 1.5	kΩ pF
Internal Resistance (Across Tuned Circuit) Internal Capacitance (Across Tuned Circuit)		2, 3 2, 3	4.4 1.0	kΩ ·pF
Negative Video Output Bandwidth (Figure 10) Positive Video Output Bandwidth (Figure 10)		4 5	10,8 2.2	MHz MHz
Differential Phase @ 3.58 MHz, 100% Modulated Staircase, 3.0 Vp-p Detected Video Pin 5 Tied to Pin 6 Differential Gain @ 3.58 MHz, 100% Modulated		4	7.0	Degrees
Staircase, 3.0 Vp-p Detected Video Pin 5 Tied to Pin 6		4	4.0	%
Differential Phase @ 3.58 MHz, 100% Modulated Staircase, 3.0 Vp-p Detected Video, R Pin 5 = 4.3 kΩ Differential Gain @ 3.58 MHz. 100% Modulated		4	8.0	Degrees
Staircase, 3.0 Vp-p Detected Video, R Pin 5 = 4.3 kΩ		4	6.0	%
920 kHz Beat Output (dB Below 100% Modulated Video, See Figure 11) 45.75 MHz = Reference 42.17 MHz = - 6 dB 41.25 MHz = -20 dB		4	-38	dB
Video Output Resistance @ 1 MHz, 2 mA		4	94	Ω
Input Overload (Carrier Level at Input to Caused Detector Output, Pin 4, To Go Positive 0.1 Vdc From Ground.)	V _{CC} = 12 Vdc V _{CC} = 15 Vdc V _{CC} = 20 Vdc V _{CC} = 24 Vdc	7	2.0 2.6 3.6 4.6	Volts
Power Supply Voltage Range		5	10 to 24	Volts

FIGURE 5 - DIFFERENTIAL PHASE AND GAIN TEST SET UP

TYPICAL CHARACTERISTICS

(V_{CC} = +20 Vdc, T_A = +25°C Unless Otherwise Noted)

MC1330A1P, MC1330A2P

TV-IF Amplifier Information

A very compact high performance IF amplifier constructed as shown in Figure 14 minimizes the number of overall components and alignment adjustments. It can be readily combined with normal tuners and input tuning-trapping circuitry to provide the performance demanded of high quality receivers. This configuration will provide approximately 93 dB voltage gain and can accomodate the usual low impedance input network or, if desired, can take advantage of an impedance step-up from tuner to MC1349P input.

The burden of selectivity, formerly found between the third IF and detector, must now be placed at the interstage. The nominal 3 volt peak-to-peak output can be varied from 0 to 7.0 V with excellent linearity and freedom from spurious output products.

Alignment is most easily accomplished with an AM generator, set at a carrier frequency of 45.75 MHz, modulated with a video frequency sweep. This provides the proper realistic conditions necessary to operate to low-level detector (LLD). The detector tank is first adjusted for maximum detected dc (with a CW input), next, the video sweep modulation is applied and the interstage and input circuits aligned, step by step, as in a standard IF amplifier.

Note: A normal IF sweep generator, essentially an FM generator, will not serve properly without modification. The LLD tank attempts to "follow" the sweep input frequency, and results in variations of switching amplitude in the detector. Hence, the apparent overall response becomes modified by the response of the LLD tank, which a real signal doesn't do.

This effect can be prevented by resistively adding a 45,75 MHz CW signal to the output of the sweep generator approximately 3 dB greater than the sweep amplitude. See Figures 12 and 13 below. For a more detailed description of the MC1330AP see application note AN-545.

MC1330A General Information

The MC1330A offers the designer a new approach to an old problem. Now linear detection can be performed at

FIGURE 12 — BANDPASS DISPLAYED BY CONVENTIONAL SWEEP

much lower power signal levels than possible with a detector diode.

Offering a number of distinct advantages, its easy implementation should meet with ready acceptance for television designs. Some specific features and information on systems design with this device are given below:

- 1. The device provides excellent linearity of output versus input, as shown in Figures 6 and 7. These graphs also show that video peak-to-peak amplitude (ac) does not change with supply voltage variation. (Slopes are parallel. Visualize a given variation of input CW and use the figure as a transfer function.)
- 2. The dc output level does change linearly with supply voltage shown in Figure 8. This can be accommodated by regulating the supply or by referencing the subsequent video amplifier to the same power supply.
- 3. The choice of Ω for the tuned circuit of pins 2 and 3 is not critical. The higher the Ω , the better the rejection of 920 kHz products but the more critical the tuning accuracy required. See Figure 11. Values of Ω from 20 to 50 are recommended. (Note the internal resistance.)
- 4. A video output with positive-going sync is available at pin 5 if required. This signal has a higher output impedance than pin 4 so it must be handled with greater care. If not used, pin 5 may be connected directly to the supply voltage (pin 6). The video response will be altered somewhat. See Figure 10.
- 5. An AFT output (pin1) provides 460 mV of IF carrier output, sufficient voltage to drive an AFT ratio detector, with only one additional stage.
- 6. AGC lockout can occur if the input signal presented in the MC1330A is greater than that shown in the input overload section of the design characteristics shown on Page 3. If these values are exceeded, the turns ratio between the primary and secondary of T_1 should be increased. Another solution to the problem is to use an input clamp diode D_1 shown in Figure 14.
- 7. The total I.F. noise figure at high gain reductions can be improved by reflecting $\approx 1\,\text{k}$ source impedance to the input of the MC1330AP. This will cause some loss in overall IF voltage gain.

FIGURE 13 — BANDPASS DISPLAY WITH THE ADDITION OF CARRIER INJECTION

FIGURE 15 - PRINTED CIRCUIT BOARD PARTS LAYOUT

FIGURE 16 - PRINTED CIRCUIT BOARD LAYOUT

ORDERING INFORMATION

Device	Temperature Range	Package
MC1349P	0°C to +70°C	Plastic DIP

MC1349P

IF AMPLIFIER

 \dots an integrated circuit featuring wide range AGC for use as an IF amplifier in radio and television applications over the temperature range 0 to $\,+70^{\circ}\text{C}.$

- Power Gain 60 dB typ at 45 MHz (Pin 3 open)
 - 56 dB typ at 58 MHz (Pin 3 open)
 - 61 dB typ at 45 MHz (Pin 3 bypassed)
 - 59 dB typ at 58 MHz (Pin 3 bypassed)
- AGC Range 80 dB typ, dc to 45 MHz
- High Output Impedance
- Low Reverse Transfer Admittance
- 15-Volt Operation, Single-Polarity Power Supply
- Improved Noise Figure versus AGC

IF AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted).

Rating	Value	Unit
Power Supply Voltage (V _{CC1})	+ 18	Vdc
Output Supply Voltage (V _{CC2})	+ 18	Vdc
AGC Supply Voltage	≤ V _{CC1} (Pin 2)	Vdc
Differential Input Voltage	5.0	Vdc
Power Dissipation (Package Limitation) Plastic Package Derate above T _A = +25°C	625 5.0	mW mW/°C
Operating Temperature Range	0 to +70	°C
Storage Temperature Range	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC1} = +12 Vdc [Pin 2], V_{CC2} = +15 Vdc [Pins 1 and 8], T_A = +25°C unless otherwise noted.)

Characteristic	Min	Тур	Max	Unit
AGC Range, 45 MHz (5.0 V to 7.5 V) (Figure 3)	70	80	_	dB
Power Gain (Pin 5 grounded via 5.1 k Ω resistor, input Pin 4) f = 45 MHz, BW (3 dB) = 4.5 MHz, Tuned Input, Pin 3 open	52	60	_	dB
Untuned Input, Pin 3 bypassed	_	61	_	
f = 58 MHz, BQ (3 dB) = 4.5 MHz, Tuned Input, Pin 3 open	_	56	_	
Untuned Input, Pin 3 bypassed	_	59		
Maximum Differential Output Voltage Swing	_	6.0		Vp-p
Output Stage Current (Pins 1 and 8)	_	9.0	_	mA
Amplifier Current (Pin 2)	_	15	20	mAdc
Power Dissipation	_	315	400	mW
Noise Figure f = 45 MHz, Tuned Input, Pin 3 open, Gain Reduction = 15 dB	_	8.5		dB

DESIGN PARAMETERS ($V_{CC1} = +12 \text{ Vdc}$, [Pin 2], $V_{CC2} = +15 \text{ Vdc}$, [Pins 1 and 8], $T_A = +25^{\circ}\text{C}$ unless otherwise noted.)

		Frequ	uency	1
Parameter	Symbol	45 MHz	58 MHz	Unit
Single-Ended Input Admittance, input Pin 4, AGC min	,			mmhos
Pin 3 open	g11	0.74	0.95	1
Pin 3 open	b11	1.9	2.4	
Pin 3 bypassed	g11	4.1	5.4	
Pin 3 bypassed	b11	6.5	6.9	
Differential Output Admittance, AGC max				μmhos
	g22	5.5	8.3	
	b22	270	360	
Reverse Transfer Admittance (magnitude)		1.5	2.0	μmhos
Forward Transfer Admittance				
Magnitude, Pin 3 open		520	400	mmhos
Angle (0 dB AGC), Pin 3 open		100	130	degrees
Magnitude, Pin 3 bypassed		1020	800	mmhos
Angle (0 dB AGC), Pin 3 bypassed		120	400	degrees
Single-Ended Input Capacitance, AGC min				pF
Pin 3 open		6.8	6.7	'
Pin 3 bypassed		2.3	20	
Differential Output Capacitance (AGC max)		1.0	1.0	pF

V_{CC1} **≯**900 € 900 4 22 k OUTPUTS **-**0 1 (-) ≨ 2.72 k 70 5 **O** INPUT 2.32 k 2.8 k 600 2.8 k 2 k 100 180 180 12 k 3 **O** 100 40 40 **₹**3.74 k ₹ 6.2 k INPUTS **₹**4.2 2 k **\$** 650 650 360 6 O (+) GND

FIGURE 2 - CIRCUIT SCHEMATIC

GENERAL INFORMATION

The MC1349P is an improved version of the MC1350P. Featuring higher gain, a lower noise figure, and greater AGC range; in addition, an emitter of the input amplifier is available for bypassing. This provides a low input impedance with good gain, useful for untuned input configurations.

Both input and output IF amplifier sections are gain-controlled in the MC1349P, with the input amplifier also serving as an AGC amplifier for the output section. During the initial part of AGC gain reduction, the gain of the input amplifier decreases only a few dB while the output section decreases 15 dB; further AGC acts upon the input section. Although the gain reduction curve was taken with 5.1 kilohms at pin 5, higher series resistance can be used to reduce the voltage and temperature sensitivity of the AGC. Pin 5 currents are shown on the AGC curve, see Figure 10.

In use, it is important to bypass pin 2, both for IF frequencies

and for low frequencies, (as shown in the test circuits). This is due to the dual function of the input amplifier. If replacing MC-1350P take precaution not to ground pin 3, (not used in the MC1350P). Due to the significantly higher gain of the MC1349P, extra care in layout should be exercised.

NOTE 1: The references to bypasses at pin 3 do not give specific values (C4, see Figures 1 and 4). In all cases, measurements were taken with a bypass at a standard value as near as possible to series resonance. The values are dependent on test frequency and circuit layout. Fully bypassing pin 3 reduces the input signal handling capability before distortion from over 100 mV(RMS) to approximately 25 mV(RMS). C4 = 0.002 µF at f = 45 MHz is a typical value for printed circuit applications.

TEST CIRCUITS

FIGURE 3 – TUNED INPUT (PIN 3 OPEN)

FIGURE 4 – UNTUNED INPUT (PIN 3 BYPASSED TO GROUND)

PARTS LIST

COMPONENT	45 MHz	58 MHz
C1	8-60 pF	50-100 pF
C2	3-35 pF	3-35 pF
C3	1-7.0 pF	1-7.0 pF
C4	82-470 pF	82-470 pF
C _P	0.0015 μF	0.001 μF
L1	0.84 μH	0.33 μH
Lp	10 μH	10 μH

Primary

14 turns center-tapped 2½ turns (45 MHz tuned input Secondary pin #3 open) 11/2 turns (all

other fixtures) wound over primary

Wire: #26 AWG tinned nylon acetate wound on 1/4" diameter coil form

Core: Arnold Type TH, 1/2" long or equivalent.

TYPICAL CHARACTERISTICS

FIGURE 5 — SINGLE-ENDED INPUT ADMITTANCE (PIN 3 ÓPEN)

FIGURE 6 – SINGLE-ENDED INPUT ADMITTANCE (PIN 3 BYPASSED TO GROUND)

FIGURE 7 – SINGLE-ENDED FORWARD TRANSFER ADMITTANCE

FIGURE 8 - DIFFERENTIAL OUTPUT ADMITTANCE (MAXIMUM AGC)

FIGURE 9 - NOISE FIGURE

FIGURE 10 - GAIN REDUCTION

Device	Temperature Range	Package
MC1350P	0°C to +75°C	Plastic DIP

MONOLITHIC IF AMPLIFIER

 \dots an integrated circuit featuring wide range AGC for use as an IF amplifier in radio and TV over the temperature range 0 to +75°C. The MC1352 is similar in design but has a keyed-AGC amplifier as an integral part of the same chip.

- Power Gain 50 dB typ at 45 MHz,
 48 dB typ at 58 MHz
- AGC Range 60 dB min, dc to 45 MHz
- Nearly Constant Input and Output Admittance Over the Entire AGC Range
- y21 Constant (-3.0 dB) to 90 MHz
- Low Reverse Transfer Admittance << 1.0 μ mho typ
- 12-Volt Operation, Single-Polarity Power Supply

0:002 μF

470

IF AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

+18 Vdc

10 TURNS

L1 wound with #26 AWG tinned nylon

acetate wire tuned by distorting winding.

3.3 k **≯** AUXILIARY VIDEO 0.002 μF 0.1 μF OUTPUT 0.001 µF 68 nF PRIMARY VIDEO AND SOUND OUTPUT 45 MHz MC1330 39 k MC1350 INPUT 12 pF 20 pl 33 pF \$2 яď AFT OUTPUT 0.002 0.002 **⋛** 3.9 k AGC

FIGURE 1 — TYPICAL MC1350 VIDEO IF AMPLIFIER and MC1330 LOW-LEVEL VIDEO DETECTOR CIRCUIT

220

TURNS

TH slugs.

10

All windings #30 AWG tinned nylon

acetate wire tuned with Arnold Type

TURNS

MC1350P

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V ⁺	+18	Vdc
Output Supply Voltage	V ₁ , V ₈	+18	Vdç
AGC Supply Voltage	V _{AGC}	V ⁺	Vdc
Differential Input Voltage	V _{in}	5.0	Vdc
Power Dissipation (Package Limitation) Plastic Package Derate above 25 ^o C	PD	625 5.0	mW mW/°C
Operating Temperature Range	TA	0 to +75	°C

ELECTRICAL CHARACTERISTICS ($V^+ = +12 \text{ Vdc}$; $T_A = +25^{\circ}\text{C}$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
AGC Range, 45 MHz (5.0 V to 7.0 V	() (Figure 1)		60	68	-	dB
Power Gain (Pin 5 grounded via a 5.	1 kΩ resistor)	Ap				dB
f = 58 MHz, BW = 4.5 MHz	See Figure 5	1	-	48	-	1
f = 45 MHz, BW = 4.5 MHz	See Figure 5		46	50		
f = 10.7 MHz, BW = 350 kHz	0 5: 0		_	58	-	
f = 455 kHz, BW = 20 kHz	See Figure 6			62	_	Í
Maximum Differential Voltage Swing	3	V _o				V _{p-p}
0 dB AGC				20	-	1 p-p
-30 dB AGC	•			8.0		
Output Stage Current (Pins 1 and 8)		11 + 18	-	5.6	_	mA
Total Supply Current (Pins 1, 2 and	8)	IS	_	14	17	mAdc
Power Dissipation		PD	_	168	204	mW

DESIGN PARAMETERS, Typical Values (V+ = +12 Vdc, T_A = +25°C unless otherwise noted)

	1	Frequency				
Parameter	Symbol	455 kHz	10.7 MHz	45 MHz	58 MHz	Unit
Single-Ended Input Admittance	911 b11	0.31 0.022	0.36 0.50	0.39 2.30	0.5 2.75	mmhos
Input Admittance Variations with AGC (0 to 60 dB)	Δg11 Δb11		_	60 0	_	μmhos
Differential Output Admittance	922 b22	4.0 3.0	4.4 110	30 390	60 510	μmhos
Output Admittance Variations with AGC (0 to 60 dB)	Δg ₂₂ Δb ₂₂	_	-	4.0 90	-	μmhos
Reverse Transfer Admittance (Magnitude)	Y12	<< 1.0	<<1.0	<< 1.0	<<1.0	μmho
Forward Transfer Admittance Magnitude Angle (0 dB AGC) Angle (-30 dB AGC)	Y21 < Y21 < Y21	160 -5.0 -3.0	160 -20 -18	200 -80 -69	180 -105 -90	mmhos degrees degrees
Single-Ended Input Capacitance	C _{in}	7.2	7.2	7.4	7.6	pF
Differential Output Capacitance	Co	1.2	1.2	1.3	1.6	pF

GENERAL OPERATING INFORMATION

The input amplifiers (Q1 and Q2) operate at constant emitter currents so that input impedance remains independent of AGC action. Input signals may be applied single-ended or differentially (for ac) with identical results. Terminals 4 and 6 may be driven from a transformer, but a dc path from either terminal to ground is not permitted.

AGC action occurs as a result of an increasing voltage on the base of Q4 and Q5 causing these transistors to conduct more heavily thereby shunting signal current from the interstage amplifiers Q3 and Q6. The output amplifiers are supplied from an active current source to maintain constant quiescent bias thereby holding output admittance nearly constant. Collector voltage for the output amplifier must be supplied through a center-tapped tuning coil to Pins 1 and 8. The 12-volt supply (V⁺) at Pin 2 may be used for this purpose, but output admittance remains more nearly constant if a separate 15-volt supply (V⁺⁺) is used, because the base voltage on the output amplifier varies with AGC bias.

FIGURE 5 — POWER GAIN, AGC and NOISE FIGURE TEST CIRCUIT (45 MHz and 58 MHz)

*Connect to ground for maximum power gain test. All power-supply chokes (Lp), are self-resonate at input frequency. Lp $\geq 20~\rm ks2$ See Figure 10 for frequency response curve.

L 1 @ 45 MHz = 7 1/4 Turns on a 1/4" coil form.
@ 58 MHz = 6 Turns on a 1/4" coil form
T 1 Primary Winding = 18 Turns on a 1/4" coil form, center-tapped
Secondary Winding = 2 Turns centered over Primary Winding @ 45 MHz
= 1 Turn @ 58 MHz

Slug = Arnold TH Material 1/2" Long

	45	MHz	58	MHz
L ₁	0.4 μΗ	0 ≥ 100	0.3 μΗ	0 ≥ 100
T ₁	1.3 -3.4 μΗ	Q ≥ 100 @ 2 μH	1.2 -3.8 μH	Q ≥ 100 @ 2 μH
C ₁	50	- 160 pF	8	- 60 pF
C ₂	8 - 60 pF		3	- 35 pF

FIGURE 4 - CIRCUIT SCHEMATIC

INPUT AMPLIFIER SECTION

RIAS SLIPPI IES

OUTPUT AMPLIFIER SECTION

FIGURE 6 — POWER GAIN and AGC TEST CIRCUIT (455 kHz and 10.7 MHz)

Note 1. Primary: 120 µH (center-tapped)
Q_U = 140 at 455 kHz
Primary: Secondary turns ratio ≈13

Note 2. Primary: 6.0 µH

Primary winding = 24 turns #36 AWG (close-wound on 1/4" dia. form)

Core = Arnold Type TH or equiv.

Secondary winding = 1-1/2 turns #36 AWG, 1/4" dia.
(wound over center-tap)

	Frequency				
Component	455 kHz	10.7 MHz			
C1	-	80-450 pF			
C2	-	5.0-80 pF			
C3	0.05 μF	0.001 μF			
C4	0.05 μF	0.05 μF			
C5	0.001 µF	36 pF			
C6	0.05 μF	0.05 μF			
C7	0.05 μF	0.05 μF			
. L1	_	4.6 µH			
T1	Note 1	Note 2			

TYPICAL CHARACTERISTICS

 $(V^{+} = 12 V, T_{A} = +25^{\circ}C)$

FIGURE 9 - DIFFERENTIAL OUTPUT ADMITTANCE

FIGURE 10 — TEST CIRCUIT RESPONSE CURVE

FIGURE 11 - DIFFERENTIAL OUTPUT VOLTAGE

For additional information see "A High-Performance Monolithic IF Amplifier Incorporating Electronic Gain Control", by W. R. Davis and J. E. Solomon, IEEE Journal on Solid State Circuits, December 1968.

MC1352

ORDERING INFORMATION

Device	Temperature Range	Package
MC1352P	0°C to +70°C	Plastic DIP

TV VIDEO IF AMPLIFIER WITH AGC AND KEYER CIRCUIT

... a monolithic IF amplifier with a complete gated wide-range AGC system for use as the 1st and 2nd IF stages and AGC keyer and amplifier in color or monochrome TV receivers.

- Power Gain at 45 MHz, 52 dB typ
- \blacksquare Extremely Low Reverse-Transfer Admittance $-<<1.0~\mu$ mho typ
- Nearly Constant Input and Output Admittance Over AGC Range
- Single-Polarity Power-Supply Operation
- High-Gain Gated AGC System for Either Positive or Negative-Going Video Signals
- Control Signal Available for Delayed AGC of Tuner

TV VIDEO IF AMPLIFIER WITH AGC AND KEYER CIRCUIT

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 646-05

MAXIMUM RATINGS (Voltages referenced to Pin 4, ground; $T_A = \pm 25^{\circ}C$ unless otherwise noted)

Rating	Value	Unit	
Power Supply (Pin 11)	+18	Vdc	
Output Supply (Pins 7 and 8)	+18	Vdc	
Signal Input Voltage (Pin 1 or 2, other pin ac grounded)	10	V _{p-p}	
AGC Input Voltage (Pin 6 or 10, other pin ac grounded)	+6.0	Vdc	
Gating Voltage, Pin 5	+10, -20	Vdc	
Power Dissipation Derate above T _A = +25 ^o C	625 5.0	mW mW/ ^o C	
Operating Temperature Range	0 to +70	°C	
Storage Temperature Range	-55 to +150	°C	

Characteristic	Min	Тур	Max	Unit
AGC Range	***	75	-	dB
Power Gain				dB
f = 35 MHz or 45 MHz	_	52	_	
f = 58 MHz	179	50	_	
Maximum Differential Output Voltage Swing OdB AGC -30 dB AGC	-	16.8 8.4	_	V _{p-p}
Voltage Range for RF-AGC at Pin 12 Maximum Minimum		7.0 0.2	_	Vdc
IF Gain Change Over RF-AGC Range		10	_	dB
Output Stage Current (17 + 18)	-	5.7	_	mAdc
Total Supply Current (I7 + I8 + I11)	-	27	35	mAdc
Total Power Dissipation	_	325	370	mW

DESIGN PARAMETERS, TYPICAL VALUES (V_{CC} = 12 Vdc, T_A = +25°C unless otherwise noted.)

Parameters	Symbol	f = 35 MHz	f = 45 MHz	f = 58 MHz	Unit
Single-Ended Input Admittance	911 ^b 11	0.55 2.25	0.70 2.80	1.1 3.75	mmhos
Input Admittance Variations with AGC (0 to 60 dB)	Δg11 Δb11	50 0	60 0		μmhos
Differential Output Admittance	922 b22	.20 430	40 570	75 780	μmhos
Output Admittance Variations with AGC (0 to 60 dB)	Δg ₂₂ Δb ₂₂	3.0 80	4.0 100	_	μmhos
Reverse Transfer Admittance	V12	<<1.0	<<1.0	<< 1.0	μmho
Forward Transfer Admittance Magnitude Angle (O dB AGC) Angle (–30 dB AGC)	Y ₁₂ ∠Y21 ∠Y21	260 -73 -52	240 -100 -72	210 -135 -96	mmhos degrees
Single-Ended Input Capacitance	-	9.5	10	10.5	pF
Differential Output Capacitance	-	2.0	2.0	2.5	pF

FIGURE 2 - CIRCUIT SCHEMATIC KEYER AND AGC AMPLIFIER

FIGURE 3 - POWER GAIN, AGC AND NOISE TEST CIRCUIT

L1 © 35 or 45 MHz = 7.1/4 Turns on a 1/4" coil form © 58 MHz - 6 Turns on a 1/4" coil form 17 Primary Winding = 18 Turns on a 1/4" coil form Secondary Winding = 12 Turns Wound Eventy over Primary Winding to 55 or 45 MHz and 1 Turn for 58 MHz Stag - Amold 11 Maersal 1/2" long

GENERAL OPERATING INFORMATION

The MC1352, consists of an AGC section and an IF signal amplifier (Figure 2) subdivided into different functions as indicated by the illustration.

A gating pulse, a reference level, and a composite video signal are required for proper operation of the AGC section. Either positive or negative-going video may be used; necessary connections and signal levels are shown in Figure 1. The essential difference is that the video is fed into Pin 10 and AGC reference level is applied to Pin 6 for a video signal with positive-going sync while the input connections are reversed for negative-going sync.

The action of the gating section is such that the proper voltage, VC,

FIGURE 4 — TEST CIRCUIT RESPONSE CURVE (45 and 58 MHz)

Scale: 1 MHz/cm

IF AMPLIFIER

AGC Controlled Section

Bias Section

IF Output Section

is maintained across the external capacitor, C2, for a particular video level and dc reference setting. The voltage $V_{\rm C}$, is the result of the charge delivered through D1 and the charge drained by Q1. The charge delivered occurs during the time of the gating pulse, and its magnitude is determined by the amplitude of the video signal relative to the dc reference level. The voltage $V_{\rm C}$ is delivered via the IF-AGC amplifier and applied to the variable gain stage of the IF signal amplifier and is also applied to the RF-AGC amplifier, where it is compared to the fixed RF-AGC delay voltage reference by the differential amplifier, Q2 and Q3. The following stages amplify the output signal of Q2 and shift the dc levels causing the RF-AGC voltage to vary.

The input amplifiers (Q4 and Q5) operate at constant emitter currents so that input impedance remains independent of AGC action. Input signals may be applied single-ended or differentially (for ac). Terminals 1 and 2 may be driven from a transformer, but a dc path from either terminal to ground is not permitted.

AGC action occurs as a result of an increasing voltage on the base of Q6 and Q7 causing those transistors to conduct more heavily thereby shunting signal current from the interstage amplifiers Q8 and Q9. The output amplifiers are fed from an active current source to maintain constant quiescent bias thereby holding output admittance nearly constant.

NOTES:

- The 12-V supply must have a low ac impedance to prevent lowfrequency instability in the RF-AGC loop. This can be achieved by a 12-V zener diode and a large decoupling capacitor. (5 μF).
- 2. Choices of C1, C2 and C3 depend somewhat on the set designers' preference concerning AGC stability versus AGC recovery speed. Typical values are C1 = 0.1 μ F, C2 = 0.25 μ F, C3 = 10 μ F.
- 3. To set a fixed IF-AGC operating point (e.g., for receiver alignment) connect a 22 k Ω resistor from pin 9 to pin 11 to give minimum gain, then bias pin 14 to give the correct operating point using a 200 k Ω variable resistor to ground.
- 4. Although the unit will normally be operating with a very high power gain, the pin configuration has been carefully chosen so that shielding between input and output terminals will not normally be necessary even when a standard socket is used.

FIGURE 5 - TYPICAL AGC APPLICATION CHART

Video Polarity	Pin 6 Voltage	Pin 10 Voltage	Pin 5 R1 (Ω)
Negative- Going Sync.	2.0	Adj. 1.0—4.0 Vdc Nom 2.0 V	0
Positive- Going Sync.	Adj. 1.0-8.0 Vdc Nom 4.5 V	4.5	3.9 k

TYPICAL CHARACTERISTICS

(V_{CC} = +12 Vdc, T_A = +25 o C unless otherwise noted.)

ORDERING INFORMATION

Device	Temperature Range	Package
MC1355P	0°C to +75°C	Plastic DIP

MC1355

BALANCED FOUR-STAGE HIGH-GAIN FM/IF AMPLIFIER

... designed for use with Foster-Seeley discriminator or ratio detector in high quality FM systems.

- High AM Rejection (60 dB typ)
- Wide Range of Supply Voltages (8 to 18 Vdc)
- Low Distortion (0.5% typ)

LIMITING FM IF AMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Value	Unit
Output Voltage (Pins 7 & 8)	40	Vdc
Supply Current to Pin 11	20	mA
Input Signal Voltage (single-ended)	5.0	Vp-p
Input Signal Voltage (differential)	10	Vp-p
Power Dissipation (package limitation) Derate above T _A = +25°C	625 5.0	mW mW/ ^O C
Operating Temperature Range (Ambient)	0 to +75	°С
Storage Temperature Range	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = 15 Vdc, f = 10.7 MHz, T_A = +25°C)

Characteristic			Min	Тур	Max	Units
Power Supply Voltage Range			8.0	15	18	Vdc
Total Circuit Current		_	16	_	mAdc	
Total Output Stage Current		_	4.2	_	mA	
Device Dissipation			-	125	_	mW
Internal Zener Voltage			_	5.2	-	Vdc
Input Signal for 3 dB Limiting			-	175	250	μV(rms)
Output Current Swing			3.1	4.2	5.4	mA p-p
AM Rejection (10 mv to 1.0 v (rms) input, FM @ 100%, AM @ 80%, Foster Seeley dete	ector)		_	60	-	dB
Admittance Parameters	Y ₁₁ Y ₁₂ Y ₂₁ Y ₂₂		- - -	120 + j320 j0.6 8 + j5.9 15 + j230	- - -	μmhos μmho mhos μmhos

FIGURE 2 - CIRCUIT SCHEMATIC

TYPICAL CHARACTERISTICS

Specifications are given for a Foster-Seeley discriminator. Improved AM rejection at low signal levels can be obtained with a ratio detector.

For optimum circuit stability it is important to ground pins 2, 3, 4, 6, 9, 12, and 13.

FIGURE 4 - AM REJECTION TEST BLOCK DIAGRAM

TYPICAL CHARACTERISTICS (continued)

ORDERING INFORMATION

Device	Temperature Range	Package
MC1357P	0°C to +75°C	Plastic DIP

MC1357

TV SOUND IF OR FM IF AMPLIFIER WITH QUADRATURE DETECTOR

- A Direct Replacement for the ULN2111A
- Greatly Simplified FM Demodulator Alignment
- Excellent Performance at V_{CC} = 8.0 Vdc

IF AMPLIFIER AND QUADRATURE DETECTOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 646-05

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Value	Unit
Power Supply Voltage	16	Vdc
Input Voltage (Pin 4)	3.5	V _p
Power Dissipation (Package Limitation) Plastic Packages	625	mW
Derate above T _A = +25 ^o C	5.0	mW/ ^O C
Operating Temperature Range (Ambient)	0 to +75	°C
Storage Temperature Range	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = 12 Vdc, T_A = +25°C unless otherwise noted.)

Characteristic		Pin	Min	Тур	Max	Units
Drain Current	V _{CC} = 8 V V _{CC} = 12 V	13	10 -	12 15	19 21	mA
Amplifier Input Reference Voltage		6	_	1.45	-	Vdc
Detector Input Reference Voltage		2	_	3.65	_	Vdc
Amplifier High Level Output Voltage		10	1.25	1.45	1.65	Vdc
Amplifier Low Level Output Voltage		9		0.145	0.2	Vdc
Detector Output Voltage	V _{CC} = 8 V V _{CC} = 12 V	1	_	3.7 5.4	_	Vdc
Amplifier Input Resistance		4	_	5.0		kΩ
Amplifier Input Capacitance		4	_	11	_	pF
Detector Input Resistance		12	_	70		kΩ
Detector Input Capacitance		12	-	2.7	_	pF
Amplifier Output Resistance		10	-	60		ohms
Detector Output Resistance		1	_	200	_	ohms
De-Emphasis Resistance		14	-	8.8		kΩ

DYNAMIC CHARACTERISTICS (FM Modulation Freq. = 1.0 kHz, Source Resistance = 50 ohms, $T_A = \pm 25^{\circ}C$ for all tests.) ($V_{CC} = 12 \text{ Vdc}$, $f_0 = 4.5 \text{ MHz}$, $\Delta f = \pm 25 \text{ kHz}$, Peak Separation = 150 kHz)

Characteristics	Pin	·Min	Тур	Max	Units
Amplifier Voltage Gain (V _{in} ≤ 50 μV[rms])	10	_	60	_	dB
AM Rejection* (V _{in} = 10 mV[rms])	1		36	_	dB
Input Limiting Threshold Voltage	. 4	_	250	_	μV(rms)
Recovered Audio Output Voltage (Vin = 10 mV[rms])	1	_	0.72		V(rms)
Output Distortion (V _{in} = 10 mV[rms])	1	_	3	_	%

(V_{CC} = 12 Vdc, f_0 = 5.5 MHz, Δf = ±50 kHz, Peak Separation = 260 kHz)

Amplifier Voltage Gain (V _{in} ≤ 50 μV[rms])		10	-	60	_	dB
AM Rejection* (V _{in} = 10 mV[rms])		1	_	40	_	dB
Input Limiting Threshold Voltage		4	_	250	_	μV(rms)
Recovered Audio Output Voltage (Vin = 10 mV [rms])		1	_	1.2	<u> </u>	V(rms)
Output Distortion (V _{in} = 10 mV[rms])	.	1	_	5	_	%

(V_{CC} = 8.0 Vdc, f_0 = 10.7 MHz, $\Delta f = \pm 75$ kHz, Peak Separation = 550 kHz)

Amplifier Voltage Gain (V _{in} ≤ 50 μV[rms])	10	_	53	_	dB
AM Rejection* (Vin = 10 mV[rms])	1	_	37		dB
Input Limiting Threshold Voltage	4		600	_	μV(rms)
Recovered Audio Output Voltage (Vin = 10 mV [rms])	1	_	0.30	_	V (rms)
Output Distortion (V _{in} = 10 mV[rms])	1	_	1.4	_	%

(V_{CC} = 12 Vdc, f_0 = 10.7 MHz, Δf = ±75 kHz, Peak Separation = 550 kHz)

Amplifier Voltage Gain (V _{in} ≤ 50 µV[rms])	10	_	53	_	dB
AM Rejection* (V _{in} = 10 mV[rms])	1	_	45	_	dB
Input Limiting Threshold Voltage	4	_	600	_	μV(rms)
Recovered Audio Output Voltage (Vin = 10 mV[rms])	1	_	0.48		V(rms)
Output Distortion (Vin = 10 mV[rms])	1	_	1.4		%

^{*100%} FM, 30% AM Modulation

INPUT VOLTAGE (mV [rms])

FIGURE 5 - DETECTED AUDIO OUTPUT

0.2

0.5 1.0

0.05 0.1

INPUT VOLTAGE (mV[rms])

0.9 DETECTED AUDIO OUTPUT 0.8 0.7 0.6 ±50 kHz DEVIATION 0.5 0.4 0.3 0.02 10

INPUT VOLTAGE (mV[rms])

FIGURE 6 - DETECTOR TRANSFER CHARACTERISTIC

FIGURE 7 - DETECTOR TRANSFER CHARACTERISTIC

TYPICAL CHARACTERISTICS (continued) $(f_O = 10.7 \text{ MHz}, T_A = +25^{\circ}\text{C} \text{ unless otherwise noted.})$

(Use Test Circuit of Figure 13)

FIGURE 9 — AFC VOLTAGE DRIFT (1.0 mV INPUT CARRIER @ 10.7 MHz)

FIGURE 10 - LIMITING 1.05 1.04 NORMALIZED TO +25°C 1.03 1.02 1.01 1.00 DC LEVEL = 5.36 V @ +250C 0.99 INPUT CARRIER = 1.0 m V $V^+ = 12 \text{ Vdc}$ VOLTAGE 0.98 0.97 0.96 +110 +130 +150 +170 +70 +90 -30 -10 +10 +30 +50 AMBIENT TEMPERATURE (°C)

FIGURE 14 - FM RADIO TYPICAL APPLICATION CIRCUIT

Note 1:

Information shown in Figures 15, 16, and 17 was obtained using the circuit of Figure 14.

Note 2:

Optional input to the quadrature coil may be from either pin 9 or pin 10 in the applications shown. Pin 9 has commonly been used on this type of part to avoid overload with various tuning techniques. For this reason, pin 9 is used in tests on the preceding pages (except as noted). However, a significant improvement of limiting sensitivity can be obtained using pin 10, see Figure 17, and no overload problems have been incurred with this tuned circuit configuration.

FIGURE 18 - CIRCUIT SCHEMATIC

ORDERING INFORMATION

Device	Temperature Range	Package
MC1358P	-20°C to +75°C	Plastic DIP

MC1358

TV SOUND IF AMPLIFIER

... a versatile monolithic device incorporating IF limiting, detection, electronic attenuation, audio amplifier, and audio driver capabilities.

- Direct Replacement for the CA3065
- Differential Peak Detector Requiring a Single Tuned Circuit
- Electronic Attenuator Replaces Conventional ac Volume Control – Range > 60 dB
- Excellent AM Rejection @ 4.5 and 5.5 MHz
- High Stability
- Low Harmonic Distortion
- Audio Drive Capability 6.0 mAp-p
- Minimum Undesirable Output Signal @ Maximum Attenuation

IF AMPLIFIER, LIMITER, FM DETECTOR, AUDIO DRIVER, ELECTRONIC ATTENUATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted)

Rating	Value	Unit
Input Signal Voltage (Pins 1 and 2)	±3.0	Vdc
Power Supply Current	50	mA
Power Dissipation (Package Limitation)		
Plastic Packages	625	mW
Derate above T _A = +25°C	5.0	mW/ ^o C
Operating Temperature Range (Ambient)	-20 to +75	°С
Storage Temperature Range	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($V_{CC} = 24 \text{ Vdc}$, $T_A = \pm 25^{\circ}\text{C}$ unless otherwise noted).

Characteristic	Pin	Min	Тур	Max	Unit
Regulated Voltage	5	10.3	11	12.2	Vdc
DC Supply Current (V ⁺ = 9 Vdc, R _S = 0)	5	10	16	24	mA
Quiescent Output Voltage	12	_	5.1	-	Vdc

$\textbf{DYNAMIC CHARACTERISTICS} \ \ (\text{V}_{CC} = 24 \ \text{Vdc}, \, \text{T}_{A} = \pm 25^{\circ} \text{C unless otherwise noted}).$

Characteristic	Min	Тур	Max	Unit
IF AMPLIFIER AND DETECTOR				
$f_0 = 4.5 \text{ MHz}, \Delta f = \pm 25 \text{ kHz}$,		
AM Rejection* (Vin = 10 mV [rms])	40	51		dB
Input Limiting Threshold Voltage	_	200	400	μV(rms)
Recovered Audio Output Voltage (V _{in} = 10 mV[rms])	0.5	0.70	_	V(rms)
Output Distortion (Vin = 10 mV [rms])		0.4	2.0	%
$f_0 = 5.5 \text{ MHz}, \Delta f = \pm 50 \text{ kHz}$,	·	·	
AM Rejection* (Vin = 10 mV [rms])	40	53		dB
Input Limiting Threshold Voltage		200	400	μV(rms)
Recovered Audio Output Voltage (V _{in} = 10 mV [rms])	0.5	0.91		V (rms)
Output Distortion (V _{in} = 10 mV [rms])		0.9		%
Input Impedance Components (f = 4.5 MHz, measurement between Pins 1 and 2)				
Parallel Input Resistance Parallel Input Capacitance	_	17	-	kΩ
		4.0		pF
Output Impedance Components (f = 4.5 MHz, measurement between Pin 9 and Gnd)		1		
Parallel Output Resistance Parallel Output Capacitance	_	3.25	_	kΩ
Output Resistance, Detector		3.6		pF
Pin 7		7.5		1
Pin 8	_	250	_	kΩ Ω
ATTENUATOR		1 200	L	1 %
Volume Reduction Range (See Figure 8)	60		<u> </u>	dB
(dc Volume Control = ∞)				"
Maximum Undesirable Signal (See Note 1)	_	0.07	1.0	mV
(dc Volume Control = ∞)				1 1
AUDIO AMPLIFIER				
Voltage Gain	17.5	20	Γ _	dB
$(V_{in} = 0.1 \text{ V(rms)}, f = 400 \text{ Hz})$				1
Total Harmonic Distortion	_	2.0	_	%
$(V_0 = 2.0 \text{ V(rms)}, f = 400 \text{ Hz})$				
Output Voltage	2.0	3.0	_	V(rms)
(THD = 5%, f = 400 Hz)				
Input Resistance (f = 400 Hz)		70	-	kΩ
Output Resistance (f = 400 Hz)		270	_	Ω
				1

^{*100%} FM, 30% AM Modulation.

Note 1. Undesirable signal is measured at pin 8 when volume control is set for minimum output.

TYPICAL CHARACTERISTICS

(V_{CC} = 24 Vdc, T_A = +25°C unless otherwise noted)

INPUT VOLTAGE (mV[rms])

TYPICAL CHARACTERISTICS (continued)

FIGURE 11 – IF FREQUENCY RESPONSE TEST CIRCUIT

FIGURE 12 – AM REJECTION, DETECTED AUDIO, THD, ATTENUATION TEST CIRCUIT

FIGURE 13 – AUDIO VOLTAGE GAIN, AUDIO THD TEST CIRCUIT

SOUND IF

SOUND IF

AND ID ON A MIDLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

ELECTRONIC ATTENUATOR

3 OC VOLUME CONTROL

7 OB EMPHASIS

3 OVC

18 AUDIO AUDIO AMPLIFIER LIMITER

ELECTRONIC ATTENUATOR

3 OF VOLUME CONTROL

19 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

3 OF VOLUME CONTROL

10 DETECTOR

4 DETECTOR

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER LIMITER

AUDIO AMPLIFIER

FIGURE 14 - CIRCUIT SCHEMATIC

COLOR TV VIDEO MODULATOR

...an integrated circuit used to generate an RF TV signal from baseband color-difference and luminance signals.

The MC1372 contains a chroma subcarrier oscillator, a lead and lag network, a quasi-quadrature suppressed carrier DSB chroma modulator, an RF oscillator and modulator, and an LSTTL compatible clock driver with adjustable duty cycle.

The MC1372 is a companion part to the MC6847 Video Display Generator, providing and accepting the correct dc interconnection levels. This device may also be used as a general-purpose modulator with a variety of video signal generating devices such as video games, test equipment, video tape recorders, etc.

- Single 5.0 Vdc Supply Operation for NMOS and TTL Compatibility
- Minimal External Components
- Compatible with MC6847 Video Display Generator
- Sound Carrier Addition Capability
- Modulates Channel 3 or 4 Carrier with Encoded Video Signal
- Low Power Dissipation
- Linear Chroma Modulators for High Versatility
- Composite Video Signal Generation Capability
- Ground-Referenced Video Prevents Overmodulation

COLOR TV VIDEO MODULATOR CIRCUIT

SILICON MONOLITHIC INTEGRATED CIRCUIT

pF

5.0

4.0

MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Rating	Value	Unit
Supply Voltage	8.0	Vdc
Operating Ambient Temperature Range	0 to +70	°c
Storage Temperature Range	-65 to +150	°C
Junction Temperature	150	°C
Power Dissipation, Packaģe Derate above 25 ^o C	1.25 13	Watts mW/ ^O C

RECOMMENDED OPERATING CONDITIONS

Supply Voltage	5.0	Vdc
Luma Input Voltage — Sync Tip Peak White	1.0 0.35	Vdc
Color Reference Voltage	1.5	Vdc
Color A, B Input Voltage Range	1.0 to 2.0	Vdc

ELECTRICAL CHARACTERISTICS ($V_{CC} = +5 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$, Test Circuit 1 unless otherwise noted)

Characteristic	Min	Тур	Max	Unit
Operating Supply Voltage	4.75	5.0	5.25	Volts
Supply Current	_	25	_	mA
CHROMA OSCILLATOR/CLOCK DRIVER (Measured at Pin 1 unless ot	herwise noted)			
Output Voltage (VOL)	_	_	0.4	Vdc
(V _{OH})	2.4	_	-	
Rise Time (V1 = 0.4 to 2.4 Vdc)		_	50	ns
Fall Time (V1 = 2.4 to 0.4 Vdc)	_	_	50	ns
Duty Cycle Adjustment Range (V3 = 5.0 Vdc) (Measured at V1 = 1.4 V)	70	_	30	%
Inherent Duty Cycle (No connection to Pin 3)	_	50		%
CHROMA MODULATOR (V5 = V6 = V7 = 1.5 Vdc unless otherwise not	ed)			
Input Common Mode Voltage Range (Pins 5, 6, 7)	0.8		2.3	Vdc
Oscillator Feedthrough (Measured at Pin 8)	_	15	31	mV(p-p)
Modulation Angle [$\theta 8(V7 = 2.0 \text{ Vdc}) - \theta 8(V5 = 2.0 \text{ Vdc})$]	85	100	115	degrees
Conversion Gain [V8/(V7 - V6); V8/(V5 - V6)]	_	0.6	_	V(p-p)/Vdc
Input Current (Pins 5, 6, 7)	_	_	-20	μΑ

100

RF MODULATOR

Input Resistance (Pins 5, 6, 7)

Chroma Modulator Linearity

Input Capacitance (Pins 5, 6, 7)

(V5 = 1.0 to 2.0 V; V7 = 1.0 to 2.0 V)

Luma Input Dynamic Range (Pin 9, Test Circuit 2)	0	` _	1.5	Volts
RF Output Voltage (f = 67.25 MHz, V9 = 1.0 V)	_	15	_	mVrms
Luma Conversion Gain $(\Delta V12/\Delta V9; V9 = 0.1 \text{ to } 1.0 \text{ Vdc})$ Test Circuit 2	_	0.8	_	V/V
Chroma Conversion Gain (ΔV12/ΔV10; V10 = 1.5 Vp-p; V9 = 1.0 Vdc) Test Circuit 2	_	0.95	_	V/V
Chroma Linearity (Pin 12, V10 = 1.5 Vp-p) Test Circuit 2	_	1.0	_	%
Luma Linearity (Pin 12, V9 = 0 to 1.5 Vdc) Test Circuit 2	_	2.0	_	%
Input Current (Pin 9)	_		-20	μΑ
Input Resistance (Pin 10)	_	800	_	Ω
Input Resistance (Pin 9)	100	-	_	kΩ
Input Capacitance (Pins 9, 10)	_	_	5.0	pF
Residual 920 kHz (Measured at Pin 12) See Note 1	_	50	_	dB
Output Current (Pin 12, V9 = 0 V) Test Circuit 2	_	1.0	_	mA

TEMPERATURE CHARACTERISTICS (V_{CC} = 5 Vdc, T_A = 0 to 70°C, IC only)

Chroma Oscillator Deviation (f _O = 3.579545 MHz)	-	±50	_	Hz
RF Oscillator Deviation (fo = 67.25 MHz)	-	± 250	_	kHz
Clock Drive Duty Cycle Stability	±5.0	_	_	%

NOTE 1. V9 = 1.0 Vdc, $V_C = 300 \text{ mV (p-p)} @ 3.58 \text{ MHz}$,

 V_S = 250 mV (p-p) @ 4.5 MHz, Source Impedance = 75 Ω .

MOTOROLA LINEAR/INTERFACE DEVICES

FIGURE 4 - SCHEMATIC DIAGRAM

OPERATIONAL DESCRIPTION

Pin 1 - Clock Output

Provides a rectangular pulse output waveform with frequency equal to the chrominance subcarrier oscillator. This output is capable of driving one LS-TTL load.

Pin 2 - Oscillator Input

Color subcarrier oscillator feedback input. Signal from the clock output is externally phase shifted and ac coupled to this pin.

Pin 3 - Duty Cycle Adjust

A dc voltage applied to this pin adjusts the duty cycle of the clock output signal. If the pin is left unconnected, the duty cycle is approximately 50%.

Pin 4 - Ground

Pin 5 - Color B Input

Dc coupled input to Chroma Modulator B, whose phase leads modulator A by approximately 100°. The modulator output amplitude and polarity correspond to the voltage difference between this pin and the Color Reference Voltage at Pin 6.

Pin 6 - Color Reference Input

The dc voltage applied to this pin establishes the reference voltage to which Color A and Color B inputs are compared.

Pin 7 - Color A Input

Dc coupled input to Chroma Modulator A, whose phase lags modulator B by approximately 100°. The modulator output amplitude and polarity correspond to the voltage difference between this pin and the Color Reference Voltage at Pin 6.

Pin 8 - Chroma Modulator Output

Low impedance (emitter follower) output which provides the vectorial sum of chroma modulators A and B.

Pin 9 - Luminance Input

Input to RF modulator. This pin accepts a dc coupled luminance and sync signal. The amplitude of the RF signal output increases with positive voltage applied to the pin, and ground potential results in zero output (i.e., 100% modulation). A signal with positive-going sync should be used.

Pin 10 - Chrominance Input

Input to the RF modulator. This pin accepts ac coupled chrominance provided by the Chroma Modulator Output (pin 8). The signal is reduced by an internal resistor divider before being applied to the RF modulator. The resistor divider consists of a 300 ohm series resistor and a 500 ohm shunt resistor. Additional gain reduction may be obtained by the addition of external series resistance to pin 10.

Pin 11 - VCC

Positive supply voltage

Pin 12 - RF Modulator Output

Common collector of output modulator stage. Output impedance and stage gain may be selected by choice of resistor connected between this pin and dc supply.

Pins 13 and 14 - RF Tank

A tuned circuit connected between these pins determines the RF oscillator frequency. The tuned circuit must provide a low dc resistance shunt. Applying a dc offset voltage between these pins results in baseband composite video at the RF Modulator Output.

MC1372 CIRCUIT DESCRIPTION

The chrominance oscillator and clock driver consist of emitter follower Q4 and inverting amplifier Q5. Signal presented at clock driver output pin 1 is coupled to oscillator input pin 2 through an external RC and crystal network, which provides 1800 phase shift at the resonant frequency. The duty cycle of the output waveform is determined by the dc component at pin 1 internally coupled through R12 to the base of Q4. As pin 1 dc voltage increases, a smaller portion of the sinusoidal feedback signal at pin 2 exceeds the Q4 base voltage of two times VBE required for conduction. As the dc level is reduced, device Q4 and thus Q5 is turned on for a longer percentage of the cycle. Transistors Q0, Q1, Q2 and diode D1 provide the biasing network which determines the dc operating level of the oscillator. The transistor Q2 and resistors R5, R6, and R7 form a voltage reference of four times VBE at the collector of Q2. The dc voltage at pin 1 is determined by the values of R4, R8, and R12 and the applied duty cycle adjust voltage at pin 3. Since these resistors are nominally equal, the voltage at pin 1 will always approximate the dc voltage at pin 3.

The oscillator signal at pin 1 is internally coupled to active filter Q44. This filter reduces the frequency content above 4 MHz. The output of the filter at the emitter of Q44 is ac coupled through C3 to the input of the lead/lag network. R32 and C1 provide approximately 50° of phase lag, while C2 and R29 provide approximately 50° of phase lead. These two quasi-quadrature waveforms are used to switch chroma modulators B and A, respectively. The transistors Q22 through Q25 and Q32-Q33 form a doubly balanced modulator. The input signal applied at pin 5 is compared to the color dc reference voltage applied at pin 6 in differential amplifier Q32-Q33. The source current provided by transistor Q34 is partitioned in transistors Q32 and Q33 according to the differential input signal. The bases of transistors Q23 and Q24 are connected to the dc reference voltage at the emitter of Q30. The bases of transistors Q22 and Q25 are connected

to the phase delayed oscillator signal at the emitter of buffer transistor Q21. The differential signal currents provided by Q32 and Q33 are switched in transistors Q22 through Q25 and the resultant signal voltage is developed across R49. This signal has the phase and frequency of the oscillator signal at the emitter of Q21. The amplitude is proportional to the differential input signal applied between pins 5 and 6. Transistors Q26 through Q29 and Q38-Q39 form chroma modulator B. This modulator develops a signal voltage which is proportional to the differential voltage applied between pins 7 and 6. The phase and frequency of the output is equal to the phase advanced chroma oscillator at the emitter of buffer transistor Q20. Both chroma modulators A and B share the same output resistor, R49, so the output signal presented at the emitter of Q42 (pin 8) is the algebraic sum of modulators A and B.

The RF oscillator consists of differential amplifier Q18 and Q19 cross-coupled through emitter followers Q16 and Q17. The oscillator will operate at the parallel resonant frequency of the network connected between pins 13 and 14. The oscillator output is used to switch the doubly balanced RF modulator, Q9 through Q15. Transistors Q7 and Q8 provide level shifting and a high input impedance to the luminance input pin 9. The bases of transistors Q9 and Q10 are both biased through resistors R17 and R18, respectively, to the same dc reference voltage at Q6 emitter. The base voltage at Q10 may only be offset in a negative direction by luminance signal current source Q8. This design insures that overmodulation due to the luminance signal will never occur. The chrominance signal developed at pin 8 is externally ac coupled to pin 10 where it is reduced by resistor dividers R20 and R17, and added to the luminance signal in Q9. The resultant differential composite video currents are switched at the appropriate RF frequency in Q12 through Q15. The output signal current is presented

Transistors Q36, Q41 and resistors R44, R47 provide a highly stable voltage reference for biasing current sources Q43, Q34, Q35, and Q11.

MC1372 APPLICATION INFORMATION

Chrominance Oscillator

The oscillator is used as a clock signal for driving associated external circuitry, in addition to providing a switching signal for the chroma modulators. The IC uses an external crystal in a Colpitts configuration, as shown in Figure 5. Resistor R1 provides current limiting to reduce the signal swing. Capacitor C2 is adjusted for the exact frequency desired (3.579545 MHz).

In some applications, the duty cycle of the clock signal at pin 1 must be modified to overcome gate delays in

associated equipment. The duty cycle may be adjusted by varying the dc voltage applied to pin 3. This adjustment may be made with the use of a potentiometer (10 k Ω) between supply and ground. With no connection to pin 3, the duty cycle is approximately 50%.

Chroma Modulator

The chrominance oscillator is internally phase shifted and applied to chroma modulators A and B.*No external lead/lag networks are necessary. The phase relationship between the modulators is approximately 100°, which was chosen to provide the best rendition of colors using equal amplitude color-difference signals. The voltage applied to pin 5, 6, or 7 must always be within the Input Common Mode Voltage Range. Since the amplitude of chrominance output is proportional to the voltage difference between pins 5 and 6 or 7 and 6, it is desirable to select the Color Reference Voltage applied to pin 6 to be midway between V5_{max} and V5_{min} (which should be V7_{max} and V7_{min}). The Chroma B Modulator will be defined as a (B-Y) modulator if a burst flag signal is applied to the Color B Input (pin 5) at the appropriate time. This voltage should be negative with respect to the Color Reference Voltage, and typically has an amplitude equal to 1/2[V6-V5min]. Since the phase of burst is always defined as -(B-Y), the Chroma A Modulator approximates an (R-Y) modulator; however, the phase is offset by 100 from the nominal 900, to provide the 1000 phase shift as discussed previously.

RF Modulator and Oscillator

The coil and capacitor connected between pins 13 and 14 should be selected to have a parallel resonance at the carrier frequency of the desired TV channel. The values of 56 pF and 0.1 μ H shown in Figure 5 were chosen for a Channel 4 carrier frequency of 67.25 MHz. For Channel 3 operation, the resonant frequency should be 61.25 MHz (C = 75 pF, L = 0.1 μ H). Resistors R4 and R5 are chosen to provide an adequate amplitude of switching voltage, whereas R6 is used to lower the maximum dc level of switching voltage below V_{CC}, thus preventing saturation within the IC.

Composite Luminance and Sync should be dc coupled to Luminance Input, pin 9. This signal must be within the Luma Input Dynamic Range to insure linearity. Since an increase in dc voltage applied to pin 9 results in an increase in RF output, the input signal should have positive-going sync to generate an NTSC compatible signal. As long as the input signal is positive, overmodulation is prevented by the integrated circuit.

Chrominance information should be ac coupled to Chrominance Input, pin 10. This pin is internally connected to a resistor divider consisting of a series 300 ohms and a shunt 500 ohms resistor. The input impedance is thus 800 ohms, and a coupling capacitor should be appropriately chosen.

+5 Vdc ©lock In VSB RF Filter Output 50 pF 3.579545 MHz MC6847 Video 240 Oisplay MC1372 R4 Generator Color B Color TV 240 Video Modulator Color Ref 0.001 µF 56 Color A una and Sync R5 10 67.25 MHz 240 R2 750

FIGURE 5 - TYPICAL APPLICATION CIRCUIT

The Luminance to Chrominance ratio (L:C) may be modified with the addition of an external resistor in series with pin 10 (as shown in Figure 5). The unmodified L:C (A_0) is determined by the ratio of the respective Conversion Gain for equal amplitude signals (typically, 0.883 = -1.6 dB). The modified L:C will be governed by the equation A_0 (1 + R_{ext} /800) for equal amplitude input signals.

The internal chrominance modulators are not internally connected to the RF modulator; therefore, the user has the option of connecting an externally generated chrominance signal to the RF modulator. In addition, the RF modulator is wideband, and a 4.5 MHz FM audio signal may be added to the chrominance input at pin 10. This may be accomplished by selecting an appropriate series input resistor to provide the correct Luminance:Sound ratio.

The modulated RF signal is presented as a current at RF Modulator Output, pin 12. Since this pin represents a current source, any load impedance may be selected for matching purposes and gain selection, as long as the vol-

tage at pin 12 is high enough to prevent the output devices from reaching saturation (approximately 4.5 V with components in Figure 5). The peak current out of pin 12 is typically 2 mA. Hence, a load resistance of up to 250 ohms may be safely used with a 5 V supply.

Composite Video Signal Generation

The RF modulator may be easily used as a composite video generator by replacing the RF oscillator tank circuit with a diode as shown in Figure 3. This results in the output modulator being biased so the summation of luminance and chrominance appears unswitched at pin 12. The polarity of the output waveform is controlled by the direction of the diode. *Inverted video:* Anode to pin 14, cathode to pin 13. *Non-inverted video:* Anode to pin 13, cathode to pin 14. Note that the supply resistor must always be connected to the anode of the diode.

The amplitude of signal may be increased by increasing the load resistor on pin 12 and returning it to a higher supply voltage. Any voltage up to the Absolute Maximum Rating may be used.

Applications with MC6847 Video Display Generator

The MC1372 may be easily interfaced to the MC6847 as shown in Figure 5. The dc levels generated and required by the VDG are compatible with the MC1372, so that pins 1, 5, 6, 7, and 9 may be directly coupled to the appropriate MC6847 pins. Both integrated circuits as well as any associated NMOS MPU may be driven from a common 5 Vdc supply.

Recommended Chroma-Luma Signals

A chroma modulation angle of 100° was chosen to facilitate a desirable selection of colors with a minimum number of input signal levels. The following table demonstrates applicable signal levels for a variety of colors.

RECOMMENDED CHROMA-LUMA SIGNALS

	Pin #9 Luminance Input	Pin #7	Pin #6	Pin #5
	(Vdc)	(Vdc)	(Vdc)	(Vdc)
Sync	1.0	1.5	1.5	1.5
Blanking	0.75	1.5	1.5	1.5
Burst	0.75	1.5	1.5	1.25
Black	0.70	1.5	1.5	1.5
Green	0.50	1.0	1.5	1.0
Yellow	0.38	1.5	1.5	1.0
Blue	0.62	1.5	1.5	2.0
Red	0.62	2.0	1.5	1.5
Cyan	0.50	1.0	1.5	1.5
Magenta	0.50	2.0	1.5	2.0
Orange	0.50	2.0	1.5	1.0
Buff	0.38	1.5	1.5	1.5

Advance Information

TV VIDEO MODULATOR

... an RF oscillator and dual-input modulator to generate a TV signal from baseband video inputs.

Applications include video games, home computer display, video tape recorders, and test equipment.

The very low level of intermodulation products, compact package and small external component count make this device superior to simple discrete circuits.

- Single 5.0 Vdc Supply
- Channel 3 or 4 Operation
- Excellent Oscillator Stability to 100 MHz
- Color and Sound Compabitility
- Dual Input Modulator for Ease of Signal Handling
- Low Intermodulation (−50 dB 920 kHz Beat)
- Overmodulation Protection

TV VIDEO MODULATOR CIRCUIT

SILICON MONOLITHIC INTEGRATED CIRCUIT

PIN CONNECTIONS

8 NC

RF Tank

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Rating	Value	Unit	
Supply Voltage	8.0	Vdc	
Operating Ambient Temperature Range	0 to +70	°C	
Storage Temperature Range	-65 to +150	°C	
Junction Temperature	150	°С	
Power Dissipation, Package Derate above 25 ^o C	1.25 10	Watts mW/ ^O C	

RECOMMENDED OPERATING CONDITIONS

Supply Voltage	5.0	Vdc
Luma Input Voltage — Sync Tip	1.0	Vdc
Peak White	0.35	

ELECTRICAL CHARACTERISTICS ($V_{CC} = +5 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$, Test Circuit 1 unless otherwise noted)

Characteristic	Min	Тур	Max	Unit
Operating Supply Voltage	4.75	5.0	5.25	Volts
Supply Current	_	12	_	mA
RF MODULATOR				
Luma Input Dynamic Range (Pin 4, Test Circuit 2)	0	_	1.5	Volts
RF Output Voltage (f = 67.25 MHz, V4 = 1.0 V)	_	15	_	mVrms
Luma Conversion Gain (ΔV7/ΔV4, V4 = 0.1 to 1.0 Vdc) Test Circuit 2	_	0.8		V/V
Chroma Conversion Gain $(\Delta V7/\Delta V5; V5 = 1.5 \text{ Vp-p; V4} = 1.0 \text{ Vdc})$ Test Circuit 2	_	0.95	_	V/V
Chroma Linearity (Pin 7, V5 = 1.5 Vp-p) Test Circuit 2	_	1.0	_	%
Luma Linearity (Pin 7, V4 = 0 to 1.5 Vdc) Test Circuit 2	_	2.0	_	% *
Input Current (Pin 4)	-	_	-20	μА
Input Resistance (Pin 5)	_	800	_	Ω
Input Resistance (Pin 4)	100	_	_	kΩ
Input Capacitance (Pins 4, 5)	_	_	5.0	pF
Residual 920 kHz (Measured at Pin 7) See Note 1	_	60	_	dB
Output Current (Pin 7, V4 = 0 V) Test Circuit 2	_	1.5	_	mA
TEMPERATURE CHARACTERISTICS (V _{CC} = 5 Vdc, T _A = 0 to 70°	C, IC only)			
RF Oscillator Deviation (f _o = 67.25 MHz)	_	± 250	_	kHz

NOTE 1. RF Reference Level = 6.0 mV @ Pin 7. Load Impedance = 75 Ω .

RF + 4.5 MHz = -13 dB.

FIGURE 3 – TEST CIRCUIT 2

SCHEMATIC DESCRIPTION

The RF oscillator consists of differential amplifier Q13 and Q14 cross-coupled through emitter followers Q11 and Q12. The oscillator will operate at the parallel resonant frequency of the network connected between pins 1 and 2. The oscillator output is used to switch the doubly balanced RF modulator, Q4 through Q10. Transistors Q2 and Q3 provide level shifting and a high input impedance to the luminance input pin 4. The bases of transistors Q4 and Q5 are both biased through resistors R4 and R5, respectively, to the same dc reference voltage at Q1 emitter. The base voltage at Q5 may only be offset in a negative direction by luminance signal current source Q3. This design insures that overmodulation due to the luminance signal will never occur. The chrominance signal is externally ac coupled to pin 5 where it is reduced by resistor dividers R7 and R4, and added to the luminance signal in Q4. The resultant differential composite video currents are switched at the appropriate RF frequency in Q7 through Q10. The output signal current is presented at pin 7.

Transistors Q15, Q16 and resistors R15, R16 provide a highly stable voltage reference for biasing the current source Q6.

OPERATIONAL DESCRIPTION

Pins 1 and 2 — RF Tank. A tuned circuit connected between these pins determines the RF oscillator frequency. The tuned circuit must provide a low dc resistance shunt. Applying a dc offset voltage between these pins results in baseband composite video at the RF Modulator Output.

Pin 3 - Ground.

Pin 4 — Luminance Input. Input to RF modulator. This pin accepts a dc coupled luminance and sync signal. The amplitude of the RF signal output increases with positive voltage applied to the pin, and ground potential results in zero output (i.e., 100% modulation). A signal with positive-going sync should be used.

Pin 5 — Chrominance/Sound Input. Input to the RF modulator. This pin accepts an ac coupled chrominance signal. The signal is reduced by an internal resistor divider

before being applied to the RF modulator. The resistor divider consists of a 300 ohm series resistor and a 500 ohm shunt resistor. A 4.5 MHz FM audio signal may be added to the input by selecting an appropriate series input resistor to provide the correct Luminance:Sound

Pin 6 - Vcc. Positive supply voltage.

Pin 7 – RF Modulator Output. Common collector of output modulator stage. Output impedance and stage gain may be selected by choice of resistor connected between this pin and dc supply.

Pin 8 - No Connection.

APPLICATIONS INFORMATION (Refer to Figure 1)

RF Modulator and Oscillator

The coil and capacitor connected between pins 1 and 2 should be selected to have a parallel resonance at the carrier frequency of the desired TV channel. The values of 56 pF and 0.1 μ H shown in Figure 1 were chosen for a Channel 4 carrier frequency of 67.25 MHz. For Channel 3 operation, the resonant frequency should be 61.25 MHz (C = 75 pF, L = 0.1 μ H). Resistors R2 and R3 are chosen to provide an adequate amplitude of switching voltage, whereas R4 is used to lower the maximum dc level of switching voltage below V_{CC}, thus preventing saturation within the IC.

Composite Luminance and Sync should be dc coupled to Luminance Input, pin 4. This signal must be within the Luma Input Dynamic Range to insure linearity. Since an increase in dc voltage applied to pin 4 results in an increase in RF output, the input signal should have positive-going sync to generate an NTSC compatible signal. As long as the input signal is positive, overmodulation is prevented by the integrated circuit.

Chrominance information should be ac coupled to Chrominance Input, pin 5. This pin is internally connected to a resistor divider consisting of a series 300 ohms and a shunt 500 ohms resistor. The input impedance is thus 800 ohms, and a coupling capacitor should be appropriately chosen.

MC1374

TV MODULATOR CIRCUIT

The MC1374 includes an FM audio modulator, sound carrier oscillator, RF oscillator, and RF dual input modulator. It is designed to generate a TV signal from audio and video inputs. The MC1374's wide dynamic range and low distortion audio make it particularly well suited for applications such as video tape recorders, video disc players, T.V. games and subscription decoders.

- Single Supply, 5 V to 12 V
- Channel 3 or 4 Operation
- Variable Gain RF Modulator
- Wide Dynamic Range
- Low Intermodulation Distortion
- Positive or Negative Sync
- Low Audio Distortion
- Few External Components

TV MODULATOR CIRCUIT

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 646-05

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating	Value	Unit
Supply Voltage	14	Vdc
Operating Ambient Temperature Range	0 to +70	°C
Storage Temperature Range	-65 to +150	°C
Junction Temperature	150	°C
Power Dissipation, Package Derate above 25°C	1.25 10 mW/°C	Watts

$\label{eq:continuous} \textbf{AM OSCILLATOR/MODULATOR} \\ \textbf{ELECTRICAL CHARACTERISTICS (VCC = 12 Vdc, T_A = 25 ^{\circ}\text{C}, f_C = 67.25 MHz, Figure 4 circuit, unless noted)} \\ \textbf{AM OSCILLATOR/MODULATOR } \\ \textbf{AM OSCILLATOR/MODULATOR } \\ \textbf{AM OSCILLATOR/MODULATOR } \\ \textbf{AM OSCILLATOR/MODULATOR } \\ \textbf{AM OSCILLATOR/MODULATOR } \\ \textbf{AM OSCILLATOR } \\ \textbf{AM OSC$

Characteristic	Min	Тур	Max	Unit
Operating Supply Voltage	5.0	12	12	V
Supply Current (Figure 1)	_	13	_	· mA
Video Input Dynamic Range (Sync Amplitude)	0.25	1.0	1.0	V Pk
RF Output (Pin 9, R7 = 75 Ω, No External Load)	_	170		mV pp
Carrier Suppression	36	40	_	dB
Linearity (75% to 12.5% Carrier, 15 kHz to 3.58 MHz)	_	_	2.0	%
Differential Gain Distortion (IRE Test Signal)	5.0	7.0	10	%
Differential Phase Distortion (3.58 MHz IRE Test Signal)	_	1.5	2.0	Degrees
920 kHz Beat (3.58 MHz @ 30%, 4.5 MHz @ 25%)	_	-57		dB
Video Bandwidth (75 Ω Input Source)	30	_	_	MHz
Oscillator Frequency Range	-	105	_	MHz
Internal Resistance across Tank (Pin 6 to Pin 7) Internal Capacitance across Tank (Pin 6 to Pin 7)	_	1.8 4.0	_	kΩ pF

FM OSCILLATOR/MODULATOR ELECTRICAL CHARACTERISTICS (T_A = 25°C, V_{CC} = 12 Vdc, 4.5 MHz, Test circuit of Figure 11 unless noted)

Characteristic	Min	Тур	Max	Unit
Frequency Range of Modulator	1.4	4.5	14	MHz
Frequency Shift versus Temperature (Pin 14 open)		0.2	0.3	kHz/°C
Frequency Shift versus V _{CC} (Pin 14 open)			4.0	kHz/V
Output Amplitude (Pin 3 not loaded)	_	900	_	mVp-p
Output Harmonics, Unmodulated	-	_	-40	dB
Modulation Sensitivity 1.7 MHz	_	0.20	_	MHz/V
4.5 MHz	_	0.24	_	MHz/V
10.7 MHz	_	0.80	_	MHz/V
Audio Distortion (±25 kHz Deviation ,Optimized Bias Pin 14)	_	° 0.6	1.0	%
Audio Distortion (±25 kHz Deviation, Pin 14 self biased)	_	1.4		
Incidental AM (±25 kHz FM)	_	2.0	_	
Audio Input Resistance (Pin 14 to ground)	_	6.0	_	kΩ
Audio Input Resistance (Pin 14 to ground)	_	5.0	_	pF
Stray Tuning Capacitance (Pin 3 to ground)	_	5.0	_	pF
Effective Oscillator Source Impedance (Pin 3 to load)	_	2.0	_	kΩ

FIGURE 2 - TV MODULATOR

GENERAL DESCRIPTION

The MC1374 contains an RF oscillator, RF modulator, and a phase-shift type FM modulator, arranged to permit good printed circuit layout of a complete T.V. modulation system. The RF oscillator is similar to the one used in MC1372 and MC1373, and is coupled internally in the same way. It's frequency is controlled by an external tank on Pins 6 and 7, or by a crystal circuit, and will operate to approximately 105 MHz. The video modulator is a balanced type as used in the well known MC1496. Modulated sound carrier and composite video information can be put in separately on pins 1 and 11 to minimize unwanted crosstalk. A single resistor on Pins 12 and 13 is selected to set the modulator gain. The RF output at Pin 9 is a current source which drives a load connected from Pin 9 to VCC.

The FM system was designed specifically for the T.V. intercarrier function. For circuit economy, one phase shift circuit was built into the chip. Still, it will operate from 1.4 MHz to 14 MHz, low enough to be used in a cordless

telephone base station (1.76 MHz), and high enough to be used as an FM IF test signal source (10.7 MHz). At 4.5 MHz, a deviation of ± 25 kHz can be achieved with 0.6% distortion (typical).

In the circuit above devices Q1 through Q7 are active in the oscillator function. Differential amplifier Q3, Q4, Q5, and Q6 acts as a gain stage, sinking current from input section Q1, Q2 and the phase shift network R17, C1. Input amplifier Q1, Q2 can vary the amount of "in phase" Q4 current to be combined with phase shifter current in load resistor R16. The R16 voltage is applied to emitter follower Q7 which drives an external L-C circuit. Feedback from the center of the L-C circuit back to the base of Q6 closes the loop. As audio input is applied which would offset the stable oscillatory phase, the frequency changes to counteract. The input to Pin 14 can include a dc feedback current for AFC over a limited range.

The modulated FM signal from Pin 3 is coupled to Pin 1 of the RF modulator and is then modulated onto the AM carrier.

THE AM SECTION

The AM modulator transfer function in Figure 3 shows that the video input can be of either polarity (and can be applied at either input). When the voltages on Pin 1 and Pin 11 are equal, the RF output is theoretically zero. As the difference between Vpin 11 and Vpin 1 increases, the RF output increases linearly until all of the current from both I₁ current sources (Q8 and Q9) is flowing in one side of the modulator. This occurs when $\pm (V_{Pin} 11 - V_{Pin} 1)$ = I₁ R_G, where I₁ is typically 1.15 mA. The peak-to-peak RF output is then 211 RL. Usually the value of RL is chosen to be 75Ω to ease the design of the output filter and match into T.V. distribution systems. The theoretical range of input voltage and RG is quite wide, but noise and available sound level limit the useful video (sync tip) amplitude to between 0.25 and 1.0 Vpk. It is recommended that the value of RG be chosen so that only about half of the dynamic range will be used at sync tip level.

The operating window of Figure 5 shows a cross-hatched area where Pin 1 and Pin 11 voltages must always be in order to avoid saturation in any part of the modulator. (The letter ϕ represents one diode drop, or about 0.75 V.) The oscillator Pins 6 and 7 must be biased to alevel of VCC – ϕ – 211RL (or lower) and the input Pins 1 and 11 must always be at least 2ϕ below that. It is permissible to operate down to 1.6 V, saturating the current sources, but whenever possible, the minimum should be 3ϕ above ground.

The oscillator will operate dependably up to about 105 MHz with a broad range of tank circuit components values. It is desirable to use a small L and a large C to minimize the dependence on 1.C. internal capacitance. An operating Q between 10 and 20 is recommended. The values of $R_1,\,R_2$ and R_3 are chosen to produce the desired Q and to set the Pin 6 and 7 d.c. voltage as discussed above. Unbalanced operation; i.e., Pin 6 or 7 bypassed to ground, is not recommended. Although the oscillator will still run, and the modulator will produce a useable signal, this mode causes substantial base-band video feedthrough. Bandswitching, as Figure 1 shows, can still be accomplished economically without using the unbalanced method.

The oscillator frequency with respect to temperature in the test circuit shows less than ± 20 kHz total shift from 0°C to 50°C as shown in Figure 7. At higher temperatures the slope approaches 2.0 kHz/°C. Improvement in this region would require a temperature compensating tuning capacitor of the N75 family.

Crystal control is feasible using the circuit shown in Figure 21. The crystal is a 3rd overtone series type, used in series resonance. The L1, C2 resonance is adjusted well below the crystal frequency and is sufficiently tolerant to permit fixed values. A frequency shift versus temperature of less than 1.0 Hz/°C can be expected from this approach. The resistors Ra and Rb are to suppress parasitic resonances.

Coupling of output RF to wiring and components on Pins 1 and 11 can cause as much as 300 kHz shift in carrier (at 67 MHz) over the video input range. A careful layout can keep this shift below 10 kHz. Oscillator may also be inadvertently coupled to the RF output, with the undesired effect of preventing a good null when $V_{11} = V_1$. Reasonable care will yield carrier rejection ratios of 36 to 40 dB below sync tip level carrier.

In television, one of the most serious concerns is the prevention of the intermodulation of color (3.58 MHz) and sound (4.5 MHz) frequencies, which causes a 920 kHz signal to appear in the spectrum. Very little (3rd order) nonlinearity is needed to cause this problem. The results in Figure 6 are unsatisfactory, and demonstrate that too much of the available dynamic range of the MC1374 has been used. Figures 8 and 10 show that by either reducing standard signal level, or reducing gain, acceptable results may be obtained.

At VHF frequencies, small imbalances within the device introduce substantial amounts of 2nd harmonic in the RF output. At 67 MHz, the 2nd harmonic is only 6 to 8 dB below the maximum fundamental. For this reason a double pi low pass filter is shown in the test circuit of Figure 3 and works well for channel 3 and 4 lab work. For a fully commercial application, a vestigial sideband filter will be required. The general form and approximate values are shown in Figure 19. It must be exactly aligned to the particular channel.

FIGURE 3 — AM MODULATOR TRANSFER FUNCTION

Differential Input, V₁₁-V₁ (Volts)

FIGURE 4 - AM TEST CIRCUIT

R2 470 10.1 µH V10 1 8 0.001 R3 R1 = 470 V10 1 8 0.001 R1 = 470 V10 1 8 0.001 R1 = 470 V10 1 8 0.001 R1 = 470 V10 1 8 0.001 R1 = 470 V10 1 8 0.001 R1 = 470 V10 1 8 0.001 R1 = 470 V10 1 8 0.001 R1 = 470 V10 1 8 0.001 R1 = 470 V10 1 8 0.001 R1 = 470 V10 1 8 0.001 R1 = 470 V10 1 8 0.001 R1 = 470 V10 1 8 0.001 R1 = 470 V10 1 8 0.001 V10 1

FM SECTION

The oscillator center frequency is approximately the resonance of the inductor L2 from Pin 2 to Pin 3 and the effective capacitance C3 from Pin 3 to ground. For overall oscillator stability, it is best to keep X_L in the range of 300 Ω to 1.0 kO.

The modulator transfer characteristic at 4.5 MHz is shown in Figure 15. Transfer curves at other frequencies have a very similar shape, but differ in deviation per input volt, as shown in Figures 13 and 17.

Most applications will not require do connection to the audio input, Pin 14. However, some improvements can be achieved by the addition of biasing circuitry. The unaided device will establish its own Pin 14 bias at 4 θ , or about 3.0 V. This bias is a little too high for optimum modulation linearity. Figure 14 shows better than 2-to-1 improvement in distortion between the unaided device and pulling Pin 14 down to 2.6 to 2.7 V. This can be accomplished by a simple divider, if the supply voltage is relatively constant.

The impedance of the divider has a bearing on the frequency versus temperature stability of the FM system. A divider of 180 k Ω and 30 k Ω (for V_{CC} = 12 V) will give good temperature stabilization results. However, as Figure 18 shows, a divider is not a good method if the supply voltage varies. The designer must make the decisions here, based on considerations of economy, distortion and temperature requirements and power supply capability. If the distortion requirements are not stringent, then no bias components are needed. If, in this case, the temperature compensation needs to be improved in the high ambient area, the tuning capacitor from Pin 3 to ground can be selected from N75 or N150 temperature compensation types.

Another reason for dc input to Pin 14 is the possibility of automatic frequency control. Where high accuracy of intercarrier frequency is required, it may be desirable to feed back the dc output of an AFC or phase detector for nominal carrier frequency control. Only limited control range could be used without adversely affecting the distortion performance, but very little frequency compensation will be needed.

One added convenience in the FM section is the separate Pin "oscillator B+" which permits disabling of the sound system during alignment of the AM section. Usually it can be hard wired to the VCC source without decoupling.

Standard practice in television is to provide preemphasis of higher audio frequencies at the transmitter and a matching de-emphasis in the T.V. receiver audio amplifier. The purpose of this is to counteract the fact that less energy is usually present in the higher frequencies, and also that fewer modulation sidebands are within the deviation window. Both factors degrade signal to noise ratio. Pre-emphasis of 75 µs is standard practice. For cases where it has not been provided, a suitable preemphasis network is covered in Figure 20.

It would seem natural to take the FM system output from Pin 2, the emitter follower output, but this output is high in harmonic content. Taking the output from Pin 3 sacrifices somewhat in source impedance but results in a clean output fundamental, with all harmonics more than 40 dB down. This choice removes the need for additional filtering components. The source impedance of Pin 3 is approximately 2.0 $k\Omega$, and the open circuit amplitude is about 900 mV p-p for the test circuit shown in Figure 11.

The application circuit of Figure 1 shows the recommended approach to coupling the FM output from Pin 3 to the AM modulator input, Pin 1. The input impedance at Pin 1 is very high, so the intercarrier level is determined by the source impedance of Pin 3 driving through C4 into the video bias circuit impedance of R4 and R5, about 2.2 K. This provides an intercarrier level of 500 mV p-p, which is correct for the 1.0 V peak video level chosen in this design. Resistor R6 and the input capacitance of Pin 1 provide some decoupling of stray pickup of RF oscillator or AM output which may be coupled to the sound circuitry.

FIGURE 11 - FM TEST CIRCUIT

FIGURE 20 — AUDIO PRE-EMPHASIS CIRCUIT

MC1376

Advance Information

FM MODULATOR CIRCUIT

... a voltage-controlled oscillator/modulator ideally suited to cordless telephone and television intercarrier applications.

- Wide Supply Range (5.0–12 Vdc)
- Useful Frequency Range (1.4–14 MHz)
- Low Distortion (<1%)
- Excellent Oscillator Stability
- Output RF Driver Transistor Included
- Low Cost, Low Component Count Circuit
- Wide Deviation Capability

FM MODULATOR CIRCUIT

SILICON MONOLITHIC INTEGRATED CIRCUIT

This document contains information on a new product. Specifications and information herein

are subject to change without notice.

MAXIMUM RATINGS (TA 25°C unless otherwise noted)

Rating	Value	Unit
Modulator Supply Voltage	13	Vdc
Transistor Collector-Emitter Voltage	10	Vdc
Transistor Collector-Base Voltage	15	Vdc
Operating Ambient Temperature Range	0 to +75	°C
Storage Temperature Range	-65 to +150	°C
Junction Temperature	150	°C
Power Dissipation, Package Derate above 25°C	1.2 10	Watts mW/°C

$\textbf{MODULATOR ELECTRICAL CHARACTERISTICS} \ (T_{A} = 25^{\circ}\text{C}, \ V_{CC} = 12 \ \text{Vdc}, \ \text{Test Circuit of Figure 2 unless otherwise noted})$

Characteristic	Min	Тур	Max	Unit
Operating Supply Voltage	5.0		12	Vdc
Supply Current, V _{CC} = 12 Vdc (excluding transistor)		5.0	8.0	mAdc
Frequency Range of Modulator	_	1.4-14	_	MHz
Frequency Shift versus Temperature (R1 = ∞)	_	_	0.3	kHz/°C
Frequency Shift versus V _{CC} (R1 = ∞)	_	3.3	_	kHz/V
Output Amplitude	80	150	_	mVp-p
Output Harmonics, Unmodulated	-	-43		dB
Modulation Sensitivity 1.7 MHz	_	0.20	_	MHz/V
4.5 MHz		0.24		MHz/V
10.7 MHz	_	0.80	_	MHz/V
Audio Distortion (±25 kHz, Deviation, R1 = 27 k, f ₀ = 4.5 MHz)	_	0.55	_	%
Incidental AM (±25 kHz FM, 4.5 MHz)	_	2.0	_	%
Audio Input Resistance (Pin 5 to ground)		6.0		kΩ
Audio Input Capacitance (Pin 5 to ground)		5.0	_	pF
Stray Tuning Capacitance (Pin 7 to ground)	_	6.0		pF
Effective Oscillator Source Impedance (Pin 7)	_	2.0	_	kΩ

AUXILIARY TRANSISTOR STATIC CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage ($I_C = 10 \mu Adc$)	V _(BR) CBO	15	40	_	Vdc
Collector-Emitter Breakdown Voltage (I _C = 1.0 μAdc)	V(BR)CEO	10	_	_	Vdc -
Collector-Substrate Breakdown Voltage ($I_C = 10 \mu Adc$)	V(BR)CIO	15	40		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu Adc$)	V _{(BR)EBO}	4.0	_	-	Vdc
Collector-Base Cutoff Current (IBE = 10 Vdc, IE = 0)	СВО	_	_	200	nAdc
DC Current Gain (I _C = 10 mAdc, V _{CE} = 3.0 Vdc)	hFE	40	90		_

AUXILIARY TRANSISTOR DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product (VCE = 3.0 Vdc, IC = 3.0 mAdc)	fT	250	500	_	MHz
Collector-Base Capacitance (V _{CB} = 3.0 Vdc, I _C = 0)	C _{cb}	_	1.0	_	pF
Collector-Substrate Capacitance (V _{CS} = 3.0 Vdc, I _C = 0)	CCI	_	3.0		pF

FIGURE 2 - TEST CIRCUIT

MC1376 GENERAL INFORMATION

This device was initially designed for the base station transmitter of a cordless telephone, the 1.76 MHz FM modulator shown in Figure 1. It also contains a "separate" transistor suitable for service as an output buffer or amplifier for up to 50 mA. Though the oscillator contains internal phase shift components which are not accessible, the MC1376 still has an operating frequency range of 1.4 to 14 MHz, making it a good companion to MC1372 or MC1373 as a 4.5 or 5.5 MHz intercarrier sound modulator for television signal generation. Also, the device can be used as a low cost FM IF (10.7 MHz) signal source for the production line or lab. Although not suitable for true high fidelity distortion measurements, it can handle quite wide deviation with very modest distortion, compared to other oscillator configurations. The modulator section is identical to the FM portion of the MC1374, TV modulator.

FIGURE 3 — MODULATOR TRANSFER FUNCTION (1.76 MHz)

FIGURE 5 - MODULATOR TRANSFER FUNCTION (10.7 MHz)

FIGURE 4 -- MODULATOR TRANSFER FUNCTION (4.5 MHz)

FIGURE 6 — MODULATOR SENSITIVITY

APPLICATIONS INFORMATION

The oscillator center frequency is approximately the resonance of the inductor (Pin 6 to Pin 7) and the total capacitance from Pin 7 to ground. Include 6.0 pF (internal) and the circuit strays in the resonant frequency calculations for the higher frequency applications. For overall oscillator stability, it is best to keep the XL and XC in the range of 300 Ω to 1.0 $k\Omega$.

The modulator transfer characteristics for three test frequencies are shown in Figures 3, 4 and 5. Although the horizontal axes of these curves are labelled "dc input voltage, Pin 5", they are valid transfer functions relating instantaneous Pin 5 voltage to output frequency.

Figure 6 is a plot of the maximum deviation per input volt over the usable frequency range of the part.

Most applications will require no dc connection at the audio input, Pin 5. However, some performance improvements can be achieved by addition of biasing circuitry. The unaided device will usually establish its own Pin 5 bias at 2.9 to 3.0 V. A brief study of Figures 3, 4, and 5 shows that this bias is a little high for optimum modulation linearity. This is verified by taking distortion measurments using a high quality FM detector (see Figure 7). Note that the distortion readings can be significantly reduced by externally pulling Pin 5 bias down to 2.6 to 2.7 V. Temperature and supply voltage factors must also be considered in determining bias implementation.

Figure 8 shows frequency as a function of temperature for several biasing methods (refer to the Test Circuit in Figure 2). This shows that pulling Pin 5 down to 2.6 V through 27 k Ω greatly improves the temperature stability. If VCC is well regulated, then a simple 180 k Ω /30 k Ω resistor divider is a good choice for optimum distortion and frequency stability versus temperature. However, if VCC is not regulated, then the divider is not a good method, as shown in Figure 9. To summarize, the biasing of Pin 5 must be done with considerations of distortion, ambient temperature, and supply stability. Temperature drift can also be compensated by means of controlled temperature coefficient capacitors, which are very common and inexpensive in this range of values. An N150 type used for C1 will nearly flatten the R1 = ∞ case in Figure 8.

The FM output at Pin 7 is usually about 600 mVp-p and has low harmonic content and high (2 k Ω) output impedance. The oscillator behavior is relatively unaffected by dading above 1.0 k Ω . If lower impedance must be driven, the capacitive divider used in the test circuit is a useful technique, or the "extra" transistor can be used as a buffer.

The transistor is a large geometry device capable of operating at over 50 mA. Figure 11 provides the base-emitter voltage characteristics and Figure 12 shows the current gain versus collector current for the device. See the Electrical Characteristics for other useful parameters.

FIGURE 7 — DISTORTION Versus MODIJI ATION DEPTH V_{CC} = 12 V TA = 25°C 4.0 fo = 4.5 MHz 3.0 DISTORTION 2.0 Optimum Bias (2.6-2.7 1 N 0 n 25 50 75 100 DEVIATION (kHz)

FIGURE 10 - INTERNAL SCHEMATIC

MC1377

8581083

Advance Information

COLOR TELEVISION RGB to PAL/NTSC ENCODER

... an integrated circuit used to generate a composite TV signal from baseband red, blue, green and sync inputs. The MC1377 has color subcarrier oscillator, voltage controlled 90° phase shifter, two DSB suppressed carrier chroma modulators, RGB input matrices and blanking level clamps. It can be operated with very few external parts, but has the pinouts for a fully implemented, top quality composite signal. It is ideal for encoding signals from color cameras and graphics generators.

- Reference Oscillator Self-Contained Or Externally Driven
- Nominal 90° ±5.0° Axes Are Optionally Trimmable
- Simple PAL/NTSC Switch
- Luminance And Chroma Channels Can Accept Delay Line/Bandpass Elements Or Direct Connection
- Provides dc Reference To Permit Direct Drive To RF Modulator

COLOR TELEVISION RGB to PAL/NTSC ENCODER

SILICON MONOLITHIC INTEGRATED CIRCUIT

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V _{CC}	15	Vdc
8.2 Vdc Regulator Output Current	IREG	10	mAdc
Operating Temperature	TAMB	0 to +70	°C
Storage Temperature	T _{stg}	-65 to +150	°C
Junction Temperature	T _{J(max)}	150	°C
Power Dissipation, package Derate above 25°C	PD	1.25 10	W mW/°C

RECOMMENDED OPERATING CONDITIONS

Supply Voltage	12 ± 2	Vdc
Sync Tip Level Sync, Blanking Level	-0.5 to +1.0 +1.7 to +8.2	Vdc
Red, Green, Blue Inputs (Saturated)	1.0	V _{p-p}

ELECTRICAL CHARACTERISTICS (V_{CC} = 12 Vdc, T_A = 25°C, Circuit Of Figure 1 Unless Otherwise Noted.)

Characteristic	Pin No.	Min	Тур	Max	Unit
Supply Current	14	_	32	_	mAdc
Oscillator Amplitude	18	T	0.5	_	V _(p-p)
External Subcarrier Input (Oscillator Components Removed)	17	T -	0.25	_	VRMS
Subcarrier Input: Resistance Capacitance	17	=	5.0 2.0	=	kΩ pF
Modulation Angle (R-Y) to (B-Y)	_	85	90	95	Degrees
(R-Y) Angle Adjustment	19	_	0.25	_	Deg/μA
R, G, B Input For 100% Color Saturation	3, 4, 5	0.95	1.0	1.05	V _(p-p)
R, G, B Input: Resistance Capacitance	3, 4, 5	_	10 2.0	_	kΩ pF
Sync Threshold (See Figure 2e)	2	_	1.7	_	٧
Sync Input Resistance (Input > 1.7 V)	2	_	10	_	kΩ
Chroma Output Level At 100% Saturation	13	I -	1.0	_	V _(p-p)
Chroma Output Resistance	13	_	_	80	Ω
Chroma Input Level For 100% Saturation	10	_	0.7		V _(p-p)
Chroma Input: Resistance Capacitance	10	_	10 2.0	_	kΩ pF
Composite Output, 100% Saturation (See Figure 2d) Sync Luminance Chroma Burst	9	- - - -	0.6 1.4 1.7 0.6	_ _ _	V _(p-p)
Output Impedance (See Note 1)	9	_	_	100	Ω
Luminance Bandwidth (3 dB), Less Delay Line	9	-	8.0	_	MHz
Subcarrier Leakage In Output	9		_	40	mV _(p-p)

Note 1: Output Impedance can be reduced to less than 10Ω by using a 150Ω output load from Pin 9 to ground. Power supply current will increase to about 60 mA.

FIGURE 2 — SIGNAL VOLTAGES (CIRCUIT VALUES OF FIGURE 1)

APPLICATION NOTES

R.G.B. Inputs should be set up to be 1.0 V p-p for fully saturated levels. This is not arbitrary, since sync and burst levels are internally fixed. The large (15 μ F) input capacitors of Figure 1 are needed for the 50/60 Hz vertical component.

Subcarrier Oscillator. The internal common-collector Colpitts can be free run or it can easily be pulled in by a lightly coupled signal from a "master" into Pin 17. Also, it can be disabled entirely and a 0.25 V_{RMS} signal driven into Pin 17.

Modulator Phase Angles are quite accurately established internally. Taking (B–Y) as 0° , burst is at 180° , and the angle of (R–Y) is $90^\circ \pm 5.0^\circ$. The (R–Y) angle can be "tweaked." For example, $470~\text{k}\Omega$ from Pin 19 to ground will increase the (R–Y) to (B–Y) angle about 3.0° . Pulling Pin 19 up will decrease the angle.

Composite Output is do referenced and can be direct coupled to an RF modulator as shown in Figure 3. In this case, the 8.2 V regulator output of the MC1377 is divided down to 5.8 V to provide the zero carrier reference to Pin 1 of the MC1374.

Burst Generation is provided by a sync triggered ramp on Pin 1 and two internal level sensors. Since the early part of this ramp is used, it is quite accurate. Fixed R–C values are feasible, as shown in Figure 3.

Sync Input can be varied over a wide latitude but neverless must be applied correctly. The typical ac coupled sync signal has very little positive value and will require a pull-up resistor to 8.2 Vdc at the input. The sync input is a 10 k $\Omega/10$ k Ω divider in the base of a common emitter stage. For PAL operation, the correctly serrated vertical sync interval must be used, in order to continuously trigger the PAL flip-flop. "Block" vertical sync can be used for NTSC.

(R–Y)(B–Y)(–Y) signals are generated to NTSC values (\pm 5.0%) in the input matrices. They are dc clamped at black level by a sync driven clamp. Burst amplitude is internally fixed to correspond to sync level, allowing for 3.0 dB loss in the chroma bandpass filter. If the filter is not used, as shown in Figure 3, a resistor divider should be inserted between Pin 13 and Pin 10 to provide the proper chroma level. When the chroma bandpass is not used, the (–Y) delay line should also be removed, but the 1.0 k/1.0 k divider from Pin 6 to Pin 8 should be retained.

OPAL $9 \text{ V}_{CC} = +12 \text{ Vdc}$ NTSC RF Tank: See MC1374 470 470 Data Sheet 0.001 14 3.58/ 8.2 Vdc Reference 4.43 MHz 17 16 220 4 8 43 k RF 18 220 Output 2.2 k 0.001 6.8 Output MC1377 MC1374 Filter 8 Inputs 1.0 k G 12 ≨5.1 k 0.001 В Composite Video 13 ₹1.0 k 10 0.01 0.1 0.1 0.0 Audio O In 1.0 μF

FIGURE 3 — COUPLING THE MC1377 TO THE MC1374 RF MODULATOR

10 k

MC1391P MC1394P

ORDERING INFORMATION

Device	Temperature Range	Package
MC1391P	0°C to +75°C	Plastic DIP
MC1394P	0°C to +75°C	Plastic DIP

TV HORIZONTAL PROCESSOR

 \dots low-level horizontal sections including phase detector, oscillator and pre-driver — a device designed for use in all types of television receivers.

- Internal Shunt Regulator
- Preset Hold Control Capability
- ±300 Hz Typical Pull-In
- Linear Balanced Phase Detector
- Variable Output Duty Cycle for Driving Tube or Transistor
- · Low Thermal Frequency Drift
- Small Static Phase Error
- · Adjustable dc Loop Gain
- MC1391P Positive Flyback Inputs
- MC1394P Negative Flyback Inputs

TV HORIZONTAL PROCESSOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted.)

Rating	Value	Unit
Supply Current	40	mAdc
Output Voltage	40	Vdc
Output Current	30	mAdc
Sync Input Voltage (Pin 3)	5.0	V _(p-p)
Flyback Input Voltage (Pin 4)	5.0	V _(p-p)
Power Dissipation (Package Limitation) Plastic Package Derate above T _A = +25°C	625 5.0	mW mW/°C
Operating Temperature Range (Ambient)	0 to +75	°С
Storage Temperature Range	-65 to +150	°С

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$ unless otherwise noted.) (See Test Circuit of Figure 2, all switches in position 1.)

Characteristic	Min	Тур	Max	Unit
Regulated Voltage (Pin 6)	8.0	8.6	9.0	Vdc
Supply Current (Pin 6)	-	20		mAdc
Collector-Emitter Saturation Voltage (Output Transistor Q1 in Figure 6)				Vdc
$(I_C = 20 \text{ mA}, Pin 1) \text{ Vdc}$	_	0.15	0.25	
Voltage (Pin 4)	_	2.0	_	Vdc
Oscillator Pull-in Range (Adjust R _H in Figure 2)		±300	_	Hz
Oscillator Hold-in Range (Adjust R _H in Figure 2)	_	±900	_	Hz
Static Phase Error ($\Delta f = 300 \text{ Hz}$)	_	0.5	_	μs
Free-running Frequency Supply Dependance (S1 in position 2)	_	±3.0	_	Hz/Vdc
Phase Detector Leakage (Pin 5) (All switches in position 2)	_		±1.0	μΑ
Sync Input Voltage (Pin 3)	2.0	-	5.0 .	V(p-p)
Sawtooth Input Voltage (Pin 4)	1.0	-	3.0	V(p-p)

TYPICAL CHARACTERISTICS

 $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$

FIGURE 2 - TEST CIRCUIT

FIGURE 3 - FREQUENCY versus TEMPERATURE

FIGURE 4 - FREQUENCY DRIFT versus WARM-UP TIME

FIGURE 5 - MARK-SPACE RATIO

FIGURE 6 - CIRCUIT SCHEMATIC

CIRCUIT OPERATION

The MC1391P and MC1394P contain the oscillator, phase detector and predriver sections needed for a television horizontal APC loop.

The oscillator is an RC type with one pin (Pin 7) used to control the timing. The basic operation can be explained easily. If it is assumed that Ω 7 is initially off, then the capacitor connected from Pin 7 to ground will be charged by an external resistor (RC) connected to Pin 6. As soon as the voltage at Pin 7 exceeds the potential set at the base of Q8 by resistors R8 and R10, Q7 will turn on and Q6 will supply base current to Q5 and Q10. Transistor Q10 will set a new, lower potential at the base of Q8 determined by R8, R9 and R10. Then, transistor Q5 will discharge the capacitor through R4 until the base bias of Q7 falls below that of Q8, at which time Q7 will turn off and the cycle repeats.

The sawtooth generated at the base of Q4 will appear across R3 and turn off Q3 whenever it exceeds the bias set on Pin 8. By adjusting the potential at Pin 8, the duty cycle (MSR) at the predriver output pin (Pin 1) can be changed to accommodate either

tube or transistor horizontal output stages.

The phase detector is isolated from the remainder of the circuit by R14 and Z2. The phase detector consists of the comparator Q15, Q16 and the gated current source Q17. Negative going sync pulses at Pin 3 turn off Q12 and the current division between Q15 and Q16 will be determined by the phase relationship of the sync and the sawtooth waveform at Pin 4, which is derived from the horizontal flyback pulse. If there is no phase difference between the sync and sawtooth, equal currents will flow in the collectors of Q15 and Q16 each for half the sync pulse period. The current in Q15 is turned around by Q18 so that there is no net output current at Pin 5 for balanced conditions. When a phase offset occurs, current will flow either in or out of Pin 5. This pin is connected via an external low-pass filter to Pin 7, thus controlling the oscillator.

Shunt regulation for the circuit is obtained with a zero temperature coefficient from the series combination of D1, D2 and Z1.

APPLICATION INFORMATION

Although it is an integrated circuit, the MC1391P and MC1394P have all the flexibility of a conventional discrete component horizontal APC loop.

The internal temperature compensated voltage regulator allows a wide supply voltage variation to be tolerated, enabling operation from nonregulated power supplies. A minimum value for supply current into Pin 6 to maintain zener regulation is about 18 mA. Allowing 2mA for the external dividers

$$R_A + R_B = \frac{V_{nonreg(min)} - 8.8}{20 \times 10^{-3}}$$

Components R $_A$, R $_B$ and C $_A$ are used for ripple rejection. If the supply voltage ripple is expected to be less than 100 mV (for a 30 Volt supply) then R $_A$ and R $_B$ can be combined and C $_A$ comitted.

The output pulse width can be varied from 6 μs to 48 μs by changing the voltage at Pin 8 (see Figure 5). However, care should be taken to keep the lead lengths to Pin 8 as short as possible to prevent ringing which can result in erroneous output pulses at Pin 1. The parallel impedance of RD and RE should be close to 1 $k\Omega$ to ensure stable pulse widths.

For 15 mA drive at saturation

$$R_F = \frac{V_{nonreg} - 0.3}{15 \times 10^{-3}}$$

The oscillator free-running frequency is set by R_C and C_B connected to Pin 7. For values of R_C \geqslant R_{discharge} (R4 in Figure 6), a useful approximation for the free-running frequency is

$$f_O = \frac{1}{0.6 \, R_C C_B}$$

Proper choice of R_C and C_B will give a wide range of oscillator frequencies — operation at 31.5 kHz for count-down circuits is possible for example. As long as the product R_CC_B $\approx 10^{-4}$ many combinations of values of R_C and C_B will satisfy the free-running frequency requirement of 15.734 kHz. However, the sensitivity of the oscillator (β) to control-current from the phase de-zetor is directly dependent on the magnitude of R_C, and this provides a

convenient method of adjusting the dc loop gain (fc). For a given phase detector sensitivity (μ) = 1.60 × 10⁻⁴ A/rad

fc =
$$\mu\beta$$
 and β = 3.15 x R_C Hz/mA

Increasing RC will raise the dc loop gain and reduce the static phase error (S.P.E.) for a given frequency offset. Secondary effects are to increase the natural resonant frequency of the loop (ω_n) and give a wider pull-in range from an out-of-lock condition. The loop will also tend to be underdamped with fast pull-in times, producing good airplane flutter performance. However, as the loop becomes more underdamped impulse noise can cause shock excitation of the loop. Unlimited increase in the dc loop gain will also raise the noise bandwidth excessively causing horizontal jitter with thermal noise. Once the dc loop gain has been selected for adequate S.P.E. performance, the loop filter can be used to produce the balance between other desirable characteristics. Damping of the loop is achieved most directly by changing the resistor RX with respect to $R\gamma$ which modifies the ac/dc gain ratio (m) of the loop. Lowering this ratio will reduce the pull-in range and noise bandwidth (fnn). (Note: very large values of Ry will limit the control capability of the phase detector with a corresponding reduction in hold-in range).

Static phasing can be adjusted simply by adding a small resistor between the flyback pulse integrating capacitor and ground. The sync coupling capacitor should not be too small or it can charge during the vertical pulse and this may result in picture bends at the top of the CRT.

NOTE:

In adjusting the loop parameters, the following equations may prove useful:

$$\begin{split} f_{nn} &= \frac{1 + \chi \, 2 \, T \omega_c}{4 \, \chi \, T} & \chi = \frac{R \chi}{R \gamma} \\ \omega_n &= \sqrt{\frac{\omega_c}{(1 + \chi) \, T}} & \omega_c = 2 \, \pi \, fc \\ K &= \frac{\chi \, 2 \, T \omega_c}{4} & \text{where:} \\ K &= \text{loop damping coefficient} \end{split}$$

MC3320P MC3321P

CLASS B AUDIO DRIVERS

 \dots designed as preamplifiers and driver circuits for complementary output transistors.

- Driver for Auto Radios and up to 10-Watt Amplifiers
- High Gain 7.0 mV for 1.0 Watt, R_L = 3.2 Ohms
- High Input Impedance 500-Kilohm Capability
- Output Biasing Diodes Included
- No Special hFE Matching of Outputs Required
- Formerly MFC8020A and MFC8021A in Case 644A Package

CLASS B AUDIO DRIVERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

PLASTIC PACKAGE CASE 626-04

Rating	Symbol	MC3320P	MC3321P	Unit
Power Supply Voltage	Vcc	35	20	Vdd
Peak Output Current (Pins 4 and 1)	Ιp	15	50	mA
Operating Ambient Temperature Range	TA	-10 to	o +75	°C
Storage Temperature Range	T _{stg}	-55 to	+125	°C
Junction Temperature	T,	15	50	°C

ELECTRICAL CHARACTERISTICS $(T_A = +25^{\circ}C \text{ unless otherwise noted})$ (See Figure 2)

Characteristic		Min	Тур	Max	Unit
Drain Current (ein = 0)					mA
(V _{CC} = 30 Vdc)	MC3320P	-	10	30	i
(V _{CC} = 14 Vdc)	MC3321P	_	7.0	30	
Sensitivity (PO = 1.0 Watt, f = 1.0 kHz)					mV
$(e_0 = 8.95 \text{ V(RMS)}, R_L = 165 \Omega)$	MC3320P	_	89	112	
$(e_0 = 3.2 \text{ V(RMS)}, R_L = 65 \Omega)$	MC3321P	_	32	40	
Total Harmonic Distortion (f = 1,0 kHz)					%
$(V_{CC} = 30 \text{ V}, e_0 = 8.95 \text{ V}(RMS), R_L = 165 \Omega)$	MC3320P	_	0.7	5.0	
$(V_{CC} = 14 \text{ V}, e_0 = 3.2 \text{ V}(RMS), R_L = 65 \Omega)$	MC3321P	_	1.0	5.0	
Open-Loop Gain					dB
$(V_{CC} = 30 \text{ V}, R_{L} = 165 \Omega)$	MC3320P	_	89	_	
$(V_{CC} = 14 \text{ V}, R_{L} = 65 \Omega)$	MC3321P	_	87	_	
Ripple Rejection		_	27	_	dB
(f = 60 Hz, A _V = 100, e _{in} = 0, Power Supply Ripple = 1.0 V(RMS)		İ			
Equivalent Input Noise		_	18	_	μV
$(e_{in} = 0, R_S = 1.0 \text{ k}\Omega, BW = 100 \text{ Hz} - 10 \text{ Hz})$					
Quiescent Output Voltage (ein = 0)					Vdc
(V _{CC} = 30 V)	MC3320P	_	15	_	
(V _{CC} = 14 V)	MC3321P	_	7.0	_	

FIGURE 2 - TEST CIRCUIT

TYPICAL AUTO RADIO AUDIO APPLICATIONS and CHARACTERISTICS

(TA = +250 unless otherwise noted.)

FIGURE 3 - APPLICATION CIRCUIT FOR MC3321P*

FIGURE 5 - TOTAL HARMONIC DISTORTION

FIGURE 6 - FREQUENCY RESPONSE

APPLICATIONS INFORMATION for MC3321P (AUTO RADIO AUDIO)

The MC3321P combines all the voltage gain required for an automotive radio audio amplifier into one package reducing the circuit-board area requirement. The circuit shown in Figure 3 has an input sensitivity of approximately 7.2 millivolts for a one-watt output. Sensitivity can be adjusted by changing the value of R4. The circuit performance is a function of the output device hFE, as shown in Figure 4. Figure 4 can be used to determine the minimum hFE of the output transistors. The bandwidth of the amplifier is determined by the capacitor, C1. If C1 is increased to 390 pF the high frequency 3.0 dB point is typically 20 kHz.

Differences may be found in idle current when matching this device to various output transistor types. It is suggested that a 10k potentiometer be placed between Pins 1 and 4 in series with a 100 Ohm resistor. This will allow for a reduction in quiescent current. Care should be taken not to allow the idle current to fall below 1 mA to avoid crossover distortion.

TYPICAL 10-WATT AMPLIFIER APPLICATION AND CHARACTERISTICS

(TA = +25°C unless otherwise noted.)

FIGURE 7 - APPLICATION CIRCUIT*

FIGURE 8 - TOTAL HARMONIC DISTORTION

(Select C1 to provide desired bandwidth. C1 = 47 pF minimum)

FIGURE 9 - TOTAL HARMONIC DISTORTION

FIGURE 10 - FREQUENCY RESPONSE

APPLICATIONS INFORMATION for MC3320P (10 Watt Amplifiers)

The MC3320P is a high-voltage device capable of driving 10 Watt audio amplifiers. The gain of the circuit shown in Figure 7 changes when the value of R4 is varied and the bandwidth is determined by C1. Emitter resistors are required at the higher voltages used for 10 Watt audio amplifiers to provide thermal stability. The value of RE is a function of the heatsink thermal resistance and supply voltage. The heatsink requirements for operation at +65°C (with both devices mounted on the same heatsink) is about 14°C/W for the 10-Watt amplifier. If the maximum ambient operating temperature is reduced then the heatsink can be reduced in size as calculated by

$$\theta SA = \frac{T_J - (\theta JS) P_D - T_A}{P_D}$$

where

 θ SA = Heatsink thermal resistance

T_{.J} = Maximum junction operating temperature

 θ JS = Junction to heatsink thermal resistance (includes all surface interface components for thermal resistance such as the insulating washer)

PD = Maximum power dissipation of transistors (This occurs at about 60% of maximum output power) 6.0 W for 10 W, 7.2 W for 12 W

TA = Maximum ambient temperature

Differences may be found in idle current when matching this device to various output transistor types. It is suggested that a 10k potentiometer be placed between Pins 1 and 4 in series with a 100 Ohm resistor. This will allow for a reduction in quiescent current. Care should be taken not to allow the idle current to fall below 1 mA to avoid crossover distortion.

MC3325

Advance Information

AUTOMOTIVE VOLTAGE REGULATOR

. . . designed for use in conjunction with an NPN Darlington transistor in a floating field alternator charging system.

- Overvoltage Protection
- Shut-Down on Loss of Battery Sense
- Selectable Temperature Coefficient
- Available in Chip Form for Hybrid Assembly

AUTOMOTIVE VOLTAGE REGULATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 646-05

Device	Temperature Range	Package
MC3325P	-40 to +85 ⁰ C	Plastic DII

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Current Into Pins 5, 6, and 7	15, 6, or 7	50	mA
Current Into Pin 3	13	20	mA
Current Into Pin 4	14	20	mA
Current Into Pin 2	12	120	mA
Current Into Pin 8	18	50	mA
Current Into Pin 9	lg lg	50	mA
Current Into Pin 10	110	50	mA
Junction Temperature	TJ	150	°C
Operating Temperature Range	TA	-40 to +85	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified.)

Characteristic	Symbol	Min	Тур	Max	Unit
Diode TC Adjust: Threshold Voltage on Pin 8 (Figure 1)	V ₈	7.9	-	8.95	٧
Battery Sense: Threshold Voltage on Pin 5 (Figure 1)	V ₅	11.8		13.3	V
Battery Sense: Threshold Voltage on Pin 6 (Figure 1)	V ₆	11.1	-	12.75	V
Battery Sense: Threshold Voltage on Pin 7 (Figure 1)	V7	10.5	-	11.9	٧
Battery Sense Loss Detect: Threshold Current Into Pin 4 (Figure 2)	14	-	-	600	μА
Battery Sense Loss Detect: Threshold Voltage at Pin 4 (14 ≤ 400 μA, Figure 2)	V4	1.3	_	1.7	٧
Overvoltage Sense: Threshold Current Into Pin 3 (Figure 2)	13	-	-	600	μΑ
Overvoltage Sense: Threshold Voltage at Pin 3 (I ₃ ≤ 400 μA, Figure 2)	V ₃	6.7	-	9.0	V
Output Drive Adjust: Voltage Drop from Pin 2 to Pin 10 (I ₂ = 10 mA, Figure 3)	V ₂	1.9	-	2.4	V
Low State Output Voltage at Pin 10 (I ₃ = 12 mA, I ₂ = 120 mA, Figure 4)	V ₁₀	-	-	0.7	V

10

TEST CIRCUITS

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5 - APPLICATION CIRCUIT

*Note: The temperature coefficient of the battery voltage sense terminal is determined by the number of diodes used in the diode string (i.e., whether Pin 5, 6, or 7 is used). The approximate temperature coefficient for a diode at 1.0 mA is -2.0 mV/°C, and for a zener diode it is +3.0 mV/°C. Counting from ground (see circuit schematic) we have -2.0 mV for Q5, -2.0 mV for Q4, +3.0 mV for Z1, -8.0 mV for D5 thru D8, and an additional -2.0 mV each for D9 and D10 if used. The total temperature coefficient can be varied from approximately -9.0 mV/°C to -13 mV/°C depending on the number of the diodes in the diode string that are utilized.

APPLICATIONS CIRCUIT INFORMATION

(See Figure 5)

- R1 Determines the temperature coefficient by setting the value of current in the diode string. As the value of R1 decreases, so does the effective TC. R1 should be chosen so that the current in the diode string is between 0.5 mA and 1.0 mA.
- R5 This resistor determines the V_{reg} voltage as defined by the following equation:

$$V_{reg} = (1 + \frac{R5}{R1}) 8.4 + (n + \frac{R5}{5K}) (0.7)$$

- n = number of diodes used in diode string $(4 <math>\leq n \leq 6$)
- R4 Used as a current limiting resistor on Pin 4 in case of an open battery voltage sense lead.
- R3 Used as a current limiting resistor on Pin 3 in case of overvoltage at the diode trio. Voltage at Pin 3 will run approximately 7.5 volts. R3 should be chosen so that the current (I₃) at maximum over-

voltage is between 2.0 mA and 6.0 mA.

R2 This resistor determines the output drive current. Refer to specifications for the darlington driver and select the value for R2 that will provide enough drive to the output when the diode trio voltage is at a minimum.

C. 50 . 34

$$I_{Drive} \cong \frac{V_{min} \, - \, 2.8 \, V}{R2 \, + \, 50 \, \, \Omega}$$

R6 This resistor in conjunction with R3 is used to set the threshold of overvoltage action.

Threshold
$$\approx \frac{R3 + R6}{R6}$$
 (7.5)

- R7 Used for compensation (Approximately 3.0 kΩ)
- C1, Used for compensation
- C2 (Approximately 0.01 μ F)

MC3334P MCC3334 MCCF3334

Advance Information

HIGH ENERGY IGNITION CIRCUIT

... designed to use the signal from a reluctor type ignition pickup to produce a well controlled output from a power Darlington output transistor.

- Very Low Peripheral Component Count
- No Critical System Resistors
- Wide Supply Voltage Operating Range (4.0-24 V)
- Overvoltage Shutdown (30 V)
- Dwell Automatically Adjusts To Produce Optimum Stored Energy Without Waste
- Externally Adjustable Peak Current
- Available in Chip and Flip Chip Form
- Transient Protected Inputs and Outputs

HIGH ENERGY IGNITION CIRCUIT

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 626-04

ORDERING INFORMATION

Device	Temperature Range	Package		
MC3334P	-40 to +125	Plastic DIP		
MCC3334	-40 to +125	Chip		
MCCF3334	-40 to +125	Flip-Chip		

This document contains information on a new product. Specifications and information herein

are subject to change without notice

MC3334P, MCC3334, MCCF3334

MAXIMUM RATINGS

Rating	Symbol	Value	Unit 1
Power Supply Voltage - Steady State Transient 300 ms or less	VBATT	24 90	Volts
Output Sink Current - Steady State Transient 300 ms or less	lout	300 1.0	mA Amps
Junction Temperature	T _{J(max)}	150	°C
Operating Temperature Range	T _{amb}	-40 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Power Dissipation, Package Derate above 25°C	PD	1.25 10	Watts mW/°C

ELECTRICAL CHARACTERISTICS (Tamb = -40 to +125°C, VBATT = 13.2 Vdc, circuit of Figure 1, unless noted)

Characteristic	Symbol	Min .	Тур	Max	Unit
Internal Supply Voltage, Pin 6	Vcc				Vdc
V _{BATT} = 4.0 Vdc			3.5	_	
8.0 Vdc		-	7.2	-	
12.0		-	10.4	-	
14.0		_	11.8	_	
Ignition Coil Current Peak, Cranking RPM 2.0 - 27 Hz	I _{O(pk)}				A pk
V _{BATT} = 4.0 Vdc		3.0	3.4	-	
6.0		4.0	5.2	-	
8.0		4.6	5.3	-	
10.0		5.1	5.4		
Ignition Coil Current Peak, Normal RPM	I _{o(pk)}				A pk
Freq. = 33 Hz		5.1	5.5	-	
133 Hz		5.1	5.5	-	
200 Hz		4.2	5.4	-	
267 Hz		3.4	4.4	-	
333 Hz		2.7	3.4	_	
Ignition Coil On-Time, Normal RPM Range	ton				ms
Freq. = 33 Hz		-	7.5	14.0	
133 Hz		-	5.0	5.9	
200 Hz		_	4.0	4.6	
267 Hz		_	3.0	3.6	
333 Hz			2.3	2.8	
Shutdown Voltage	VBATT	25	30	35	Vdc
Input Threshold (Static Test)	V _{S2} -V _{S1}				mVdc
Turn-on		_	360	-	
Turn-off		-	90	_	
Input Threshold Hysteresis	V _{S2} -V _{S1}	75		_	mVdc
Input Threshold (Active Operation)	V _{S2}				Vdc
Turn-on		_	1.8	_	
Turn-off			1.5	_	
Total Circuit Lag from t _S (Figure 1) until Ignition Coil Current Falls to 10%		_	60	120	μS
Ignition Coil Current Fall Time (90%–10%)		_	4.0	_	μS
Saturation Voltage I.C. Output (Pin 7) (RDRIVF = 100Ω)	V _{CE(sat)}				mVdc
V _{BATT} = 10 Vdc	02(301)	_	120	-	
30 Vdc		_	280	_	
50 Vdc		-	540	_	
Current Limit Reference, Pin 8	V _{ref}	120	160	190	mVdc

The MC3334 high energy ignition circuit was designed to serve aftermarket Delco five terminal ignition applications. This device, driving a high voltage Darlington transistor, offers an ignition system which optimizes spark energy at minimum power dissipation. The IC is pinned out to permit thick film or printed circuit module design without any crossovers

CIRCUIT DESCRIPTION

The basic function of an ignition circuit is to permit build-up of current in the primary of a spark coil, and then to interrupt the flow at the proper firing time. The resulting flyback action in the ignition coil induces the required high secondary voltage needed for the spark. In the simplest systems, fixed dwell angle produces a fixed duty cycle, which can result in too little stored energy at high RPM, and/or wasted power at low RPM. The MC3334 uses a variable dc voltage reference, stored on CDWELL, and buffered to the bottom end of the reluctor pickup (S1) to vary the duty cycle at the spark coil. At high RPM, the MC3334 holds the output "off" for approximately 1.0 ms to permit full energy discharge from the previous spark; then it switches the output Darlington transistor into full saturation. The current ramps up at a slope dictated by VBATT and the coil L. At very high RPM the peak current may be less than desired, but it is limited by the coil itself.

As the RPM decreases, the ignition coil current builds up and would be limited only by series resistance losses. The MC3334 provides adjustable peak current regulation sensed by RS and set by RD1, in this case at 5.5 A, as shown in Figure 2. As the RPM decreases further, the coil current is held at 5.5 A for a short period. This provides a reserve for sudden acceleration, when discharge may suddenly occur earlier than expected. The peak hold period is about 20% at medium RPM, decreasing to about 10% at very low RPM. (Note: 333 Hz = 5000 RPM for an eight cylinder four stroke engine.) At lower VBATT, the "on" period automatically stretches to accommodate the slower current build-up. At very low VBATT and low RPM, a common condition during cold starting, the "on" period is nearly the full cycle to permit as much coil current as possible.

The output stage of the IC is designed with an OVP circuit which turns it on at $V_{BATT}\approx 30\,V\,(V_{CC}\approx 22\,V)$, holding the output Darlington off. This protects the IC and the Darlington from damage due to load dump or other causes of excessive V_{BATT} .

COMPONENT VALUES

COMPO	NEINT VALUES
PICKUP	 series resistance = 800 Ω ± 10% @ 25°C
	inductance = 1.35 H @ 1.0 kHz @ 15 Vrms.
COIL	leakage L = 0.6 mH
	primary R = 0.43 $\Omega \pm 5\%$ @ 25°C
	primary L = 7.5 to 8.5 mH @ 5.0 A
R_L	— load resistor for pick-up = $10 \text{ k}\Omega \pm 20\%$
RA, RB	- input buffer resistors, provide additional
	transient protection to the already clamped
	inputs = 20 k ± 20%
C1, C2	 for reduction of high frequency noise and
	spark transients induced in pick-up and
	leads; optional and non-critical
RBATT	 provides load dump protection (but small
	enough to allow operation at VBATT =
	4.0 V) = 300 $\Omega \pm 20\%$
CFILTER	 transient filter on V_{CC}, non-critical
CDWELL	 stores reference, circuit designed for 0.1
	μ F \pm 20%
RGAIN	 RGAIN/RD1 sets the dc gain of the cur-
_	rent regulator = $5.0 \text{ k} \pm 20\%$
R _{D2}	 RD2/RD1 set up voltage feedback from RS
RS	- sense resistor (PdAg in thick film tech-
_	niques) = 0.055 $\Omega \pm 50\%$
RDRIVE	 low enough to supply drive to the output
	Darlington, high enough to keep VCE(sat)
	of the IC below Darlington turn-on during
_	load dump = 100 Ω \pm 20%, 5.0 W
R _{D1}	— starting with 35 Ω assures less than 5.5 A,
	increasing as required to set 5.5 A
	$R_{D1} = \frac{I_{O(pk)} R_{S} - V_{ref}}{I_{O(pk)}} \approx 100 \Omega \text{ (nom)}$
	$\frac{V_{\text{ref}}}{1.4}$
	R _{D2} R _{GAIN}

FIGURE 2 — IGNITION COIL CURRENT versus FREQUENCY/PERIOD

FIGURE 3 - INTERNAL SCHEMATIC

The major concern in the substrate design should be to reduce ground resistance problems. The first area of concern is the metallization resistance in the power ground to module ground and the output to the RDRIVE resistor. This resistance directly adds to the VCE[sat) of the IC power device and if not minimized could cause failure in load dump. The second concern is to reference the sense ground as close to the ground end of the sense trivity of ignition coil current to ground I.R. drops.

FIGURE 4 — MCCF3334 IGNITION CIRCUIT BUMP SIDE VIEW

2.0 φ

Dwell Reference Buffer

Uρ

Charge

Down

All versions were designed to provide the same pinout order viewed from the top (component side) of the board or substrate. This was done to eliminate conductor cross-overs. The standard MC3334 plastic device is numbered in the industry convention, counter-clockwise viewed from the top. The MCC3334 chip version is made from the same die artwork, so it is also counter-clockwise viewed from the top, or bonding pad side. The MCCF3334 "flip" or "bump" chip is made from reversed artwork, so it is numbered clockwise viewed from its bump side. Since this chip is mounted face down, the resulting assembly still has the same counter-clockwise order viewed from above the component surface. All chips have the same size and bonding pad spacing. See Figure 4 for dimensions.

ORDERING INFORMATION

Device	Temperature Range	Package
MC3340P	0°C to +75°C	Plastic DIP

MC3340P

ELECTRONIC ATTENUATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

ELECTRONIC ATTENUATOR

• Designed for use in:

DC Operated Volume Control
Compression and Expansion Amplifier
Applications

- Controlled by DC Voltage or External Variable Resistor
- Economical 8-Pin Dual In-Line Package
- Formerly MFC6040 in Case 643A Package

Rating	Value	Unit
Power Supply Voltage	20	Vdc
Power Dissipation @ T _A = 25 ^o C	1.2	Watts
Derate above T _A = 25°C	10	mW/°C
Operating Ambient Temperature Range	0 to +75	°C

VIN VCC Control Gnd Rolloff NC NC PLASTIC PACKAGE

CASE 626-04

ELECTRICAL CHARACTERISTICS (ein = 100 mV (RMS), f = 1.0 kHz, V_{CC} = 16 Vdc, T_A = $+25^{\circ}C$ unless otherwise noted.)

Circuit	Characteristic	Min	Тур	Max	Unit
	Operating Power Supply Voltage	8.0	_	18	Vdc
ein Vcc 8	Control Terminal Sink Current, Pin 2 (ein = 0)	-		2.0	mAdc
= 1 µF 2 e ₀	Maximum Input Voltage	_	_	0.5	V(RMS)
+ + + + + + + + + + + + + + + + + + +	Voltage Gain	11	13	_	dB
	Attenuation Range (V2 = 6.5 Vdc)	70	80		dB
	Total Harmonic Distortion (Pin 2 Gnd) (e _{in} = 100 mV (RMS), e _O = A _V × e _{in})	_	0.6	1.0	%

TYPICAL ELECTRICAL CHARACTERISTICS

(VCC = 16 Vdc, $T_A = +25^{\circ}C$ unless otherwise noted.)

MC3346 MC3386

ORDERING INFORMATION

Device	Temperature Range	Package
MC3346P	-40°C to +85°C	Plastic DIP
MC3386P	-40°C to +85°C	Plastic DIP

ONE DIFFERENTIALLY-CONNECTED PAIR AND THREE ISOLATED TRANSISTOR ARRAY

The MC3346 and MC3386 are designed for general-purpose, low power applications for consumer and industrial designs.

- Guaranteed Base-Emitter Voltage Matching
- ullet Operating Current Range Specified 10 μA to 10 mA
- Five General-Purpose Transistors in One Package

MAXIMUM	RA	TI	NGS
---------	----	----	-----

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	15	Vdc
Collector-Base Voltage	V _{CBO}	20	Vdc
Emitter-Base Voltage	V _{EB}	5.0	Vdc
Collector-Substrate Voltage	V _{CIO}	20	Vdc
Collector Current — Continuous	lc	50	mAdc
Total Power Dissipation @ T _A = 25 ^o C Derate above 25 ^o C Derate Each Transistor @ 25 ^o C	PD	1.2 10 300	Watts mW/ ^O C mW/ ^O C
Operating Temperature Range	TA	-40 to +85	°С
Storage Temperature Range	T _{stg}	-65 to +150	°C

GENERAL PURPOSE TRANSISTOR ARRAY

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 646-05

Pin 13 is connected to substrate

MC3346, MC3386

ELECTRICAL CHARACTERISTICS

	ļļ		MC3346P			MC3386P		1
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
STATIC CHARACTERISTICS								
Collector-Base Breakdown Voltage	V(BR)CBO	20	60	-	20	60	_	Vdc
(I _C = 10 μAdc)								
Collector-Emitter Breakdown Voltage	V(BR)CEO	15	_	-	15	-		Vdc
(I _C = 1.0 mAdc)			1					1
Collector-Substrate Breakdown Voltage	V(BR)CIO	20	60	_	20	60		Vdc
$(I_C = 10 \mu\text{A})$			1					
Emitter-Base Breakdown Voltage	V(BR)EBO	5.0	7.0	_	5.0	7.0	_	Vdc
(I _E = 10 μAdc)						l i		
Collector-Base Cutoff Current	Ісво			40	_		100	nAdo
(V _{CB} = 10 Vdc, I _E = 0)								
DC Current Gain	hFE							_
$(I_C = 10 \text{ mAdc}, V_{CE} = 3.0 \text{ Vdc})$		_	140	_	-	-	_	İ
$(I_C = 1.0 \text{ mAdc}, V_{CE} = 3.0 \text{ Vdc})$	1 1	40	130	_	40	130	_	ŀ
(I _C = 10 μAdc, V _{CE} = 3.0 Vdc)		_	60	-	_	-	_	
Base-Emitter Voltage	V _{BE}							Vdc
$(V_{CE} = 3.0 \text{ Vdc}, I_{E} = 1.0 \text{ mAdc})$		_	0.72	_	-	0.72	-	1
(V _{CE} = 3.0 Vdc, I _E = 10 mAdc)			0.80	_	_	0.80		
Input Offset Current for Matched Pair Q1 and Q2	1101-	_	0.3	2.0	_	0.3	_	μAdd
$(V_{CE} = 3.0 \text{ Vdc}, I_{C} = 1.0 \text{ mAdc})$	102							1
Magnitude of Input Offset Voltage		_	0.5	5.0	_	0.5	_	mVd
$(V_{CE} = 3.0 \text{ Vdc}, I_{C} = 1.0 \text{ mAdc})$								
Temperature Coefficient of Base-Emitter Voltage	△VBE	_	-1.9	_	_	-1.9		mV/0
$(V_{CE} = 3.0 \text{ Vdc}, I_{C} = 1.0 \text{ mAdc})$	ΔT]					
Temperature Coefficient	△V10	_	1.0		_	1.0	_	μV/ ^O C
	ΔT				l			
Collector-Emitter Cutoff Current	ICEO	-	_	0.5	_	-	5.0	μAdc
$(V_{CE} = 10 \text{ Vdc}, 1_B = 0)$								'
DYNAMIC CHARACTERISTICS							***************************************	
Low Frequency Noise Figure	NF I		3.25			3.25		dB
$(V_{CE} = 3.0 \text{ Vdc}, I_{C} = 100 \mu\text{Adc}, R_{S} = 1.0 \text{ k}Ω,$	'*'		3.23		_	3.25		ub.
f = 1.0 kHz)	1 1							
Forward Current Transfer Ratio	hFE		110		_	110		
(V _{CE} = 3.0 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz)	""		'''		_	'''	_	_
Short-Circuit Input Impedance	h _{ie}		3.5			3.5		kΩ
(V _{CE} = 3.0 Vdc, I _C = 1.0 mAdc)	l "ie		3.5		_	3.5	_	K25
Open-Circuit Output Impedance	 		15.6			15.6		
(V _{CE} = 3.0 Vdc, I _C = 1.0 mAdc)	h _{oe}	_	15.6	_	_	15.6	_	μmho
Reverse Voltage Transfer Ratio			1.8			1.8		10-4
(V _{CE} = 3.0 Vdc, I _C = 1.0 mAdc)	h _{re}	_	1.8	_	_	1.8	_	×10-4
Forward Transfer Admittance			24:45			1 01 11 5		ļ
(V _{CE} = 3.0 Vdc, I _C = 1.0 mAdc, f = 1.0 MHz)	Уfе		31-j1.5	_	-	31-j1.5		-
Input Admittance			00.10.04			1		
(V _{CE} = 3.0 Vdc, I _C = 1.0 mAdc, f = 1.0 MHz)	Уie	-	0.3+j0.04	_	_	0.3+j0.04	-	-
			2 224 12 22		ļ	1		
Output Admittance	Уoe	-	0.001+j0:03	-	-	0.001+j0.03	_	_
(V _{CE} = 3.0 Vdc, I _C = 1.0 mAdc, f = 1.0 MHz)	+-,-+							
Current-Gain — Bandwidth Product	fT	300	550	-	-	550	-	MHz
(V _{CE} = 3.0 Vdc, I _C = 3.0 mAdc)	+		 			+		L
Emitter-Base Capacitance	C _{eb}	_	0.6	-	-	0.6	_	pF
(V _{EB} = 3.0 Vdc, I _E = 0)	+		 			 		
Collector-Base Capacitance	C _{cb}	-	0.58	-	_	0.58	_	pF
(V _{CB} = 3.0 Vdc, I _C = 0)			 			1		
Collector-Substrate Capacitance	CCI	_	2.8	-	_	2.8	_	pF
(V _{CS} = 3.0 Vdc, I _C = 0)	1 1		1 1		l	1 i		l

TYPICAL CHARACTERISTICS

FIGURE 1 – COLLECTOR CUTOFF CURRENT versus TEMPERATURE (Each Transistor)

FIGURE 2 – COLLECTOR CUTOFF CURRENT versus TEMPERATURE (Each Transistor)

FIGURE 3 — INPUT OFFSET CHARACTERISTICS FOR Q1 and Q2

FIGURE 4 – BASE-EMITTER AND INPUT OFFSET VOLTAGE CHARACTERISTICS

MC3350

Advance Information

TRIPLE INDEPENDENT DIFFERENTIAL AMPLIFIER

The MC3350 consists of three independent differential amplifiers on a common monolithic substrate. The construction technique provides close electrical and thermal matching of the amplifiers which makes this device particularly useful in multiple channel applications.

- Three Differential Amplifiers on a Common Substrate
- Independently Accessible Inputs and Outputs
- Useful from dc to 120 MHz
- Economical Configuration

GENERAL PURPOSE TRANSISTOR ARRAY

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 648-05

MAXIMUM RATINGS

	Value	
	Value	Unit
VCEO	35	Vdc
V _{CBO}	40	Vdc
VEB	5.0	Vdc
V _{CIO}	40	Vdc
lc	50	mAdc
TJ	150	°C
TA	-40 to +85	°C
T _{stg}	-65 to +150	°C
	VCBO VEB VCIO IC TJ TA	VCEO 35 VCBO 40 VEB 5.0 VCIO 40 IC 50 TJ 150 TA -40 to +85

ORDERING INFORMATION

Device	Temperature Range	Package
MC3350P	0 to 70°C	Plastic DIP

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$, unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
STATIC CHARACTERISTICS FOR EACH DIFFERENTIAL AMPLIFIER						
Input Offset Voltage V _{CE} = 2.0 Vdc; I _C = 1.0 mAdc	V _{IO}		_	5.0	mVdc	
STATIC CHARACTERISTICS FOR EACH TRANSISTOR						
Collector-Emitter Breakdown Voltage $I_C = 5.0 \text{ mAdc}$	V _{(BR)CEO}	30	_	_	Vdc	
Collector-Emitter Cutoff Current VCE = 25 Vdc	ICES			100	nAdc	
Emitter Cutoff Current V _{EB} = 5.0 Vdc; I _C = 0	IEBO	_	_	100	nAdc	
DC Current Gain ($V_{CE} = 2.0 \text{ Vdc}$) $I_{C} = 100 \mu \text{Adc}$ $I_{C} = 10 \text{ mAdc}$	hFE	30 75	165 140	_		

FIGURE 1 — DC CURRENT GAIN AND RATIO versus COLLECTOR CURRENT

MC3356

Advance Information

WIDEBAND FSK RECEIVER

... includes Oscillator, Mixer, Limiting IF Amplifier, Quadrature Detector, Audio Buffer, Squelch, Meter Drive, Squelch Status output, and Data Shaper comparator. The MC3356 is designed for use in digital data communications equipment.

- Data Rates up to 500 kilobaud
- Excellent Sensitivity: -3 dB Limiting Sensitivity 30 μVrms @ 100 MHz
- Highly versatile, full-function device, yet few external parts are required

WIDEBAND FSK RECEIVER

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 738-02

FIGURE 1 — FUNCTIONAL BLOCK DIAGRAM

FIGURE 2 — PIN CONNECTIONS

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Power Supply Voltage	V _{CC(max)}	15	Vdc	
Operating Power Supply Voltage Range (Pins 6, 10)	Vcc	3.0 to 9.0	Vdc	
Operating R.F. Supply Voltage Range (Pin 4)	R.F. V _{CC}	3.0 to 12.0	Vdc	
Junction Temperature	Tj	150	°C	
Operating Ambient Temperature Range	TA	-40 to +75	°C	
Storage Temperature Range	T _{stg}	-65 to +150	°C	
Power Dissipation, Package Rating	PD	1.25	w	

ELECTRICAL CHARACTERISTICS ($V_{CC}=5.0~Vdc,~f_{O}=100~MHz,~f_{OSC}=110.7~MHz,~\Delta f=\pm75~kHz,~f_{mod}=1.0~kHz,~50~\Omega$ source, $T_{A}=25^{\circ}C,$ test circuit of Figure 3, unless otherwise noted.)

Characteristics	Min	Тур	Max	Unit
Drain Current Total, RF V _{CC} and V _{CC}	_	20	25	mAdc
Input for -3 dB limiting	_	30	_	μVrms
Input for 50 dB quieting $\left(\frac{S+N}{N}\right)$		60	_	μVrms
Mixer Voltage Gain, Pin 20 to Pin 5	2.5		_	
Mixer Input Resistance, 100 MHz		260	-	Ω
Mixer Input Capacitance, 100 MHz	_	5.0	_	pF
Mixer/Oscillator Frequency Range (Note 1)	_	0.2 to 150	_	MHz
IF/Quadrature Detector Frequency Range (Note 1)	0.2	0.2 to 50		MHz
AM Rejection (30% AM, RF V _{in} = 1.0 mVrms)		50		dB
Demodulator Output, Pin 13	_	0.5	_	Vrms
Meter Drive	_	7.0		μA/dB
Squelch Threshold		0.8		Vdc

Note 1: Not taken in Test Circuit of Figure 3; new component values required.

FIGURE 3 — TEST CIRCUIT

FIGURE 4 — OUTPUT COMPONENTS OF SIGNAL, NOISE, AND DISTORTION

FIGURE 5 — METER CURRENT versus SIGNAL INPUT

General Description

This device is intended for single and double conversion VHF receiver systems, primarily for FSK data transmission up to 500 K baud (250 kHz). It contains an oscillator, mixer, limiting IF, quadrature detector, signal strength meter drive, and data shaping amplifier.

The oscillator is a common base Colpitts type which can be crystal controlled, as shown in Figure 1, or L-C controlled as shown in the other figures. At higher V_{CC}, it has been operated as high as 200 MHz. A mixer/oscillator voltage gain of 2 up to approximately 150 MHz, is readily achievable.

The mixer functions well from an input signal of 10 μ Vrms, below which the squelch is unpredictable, up to about 10 mVrms, before any evidence of overload. Operation up to 1.0 Vrms input is permitted, but nonlinearity of the meter output is incurred, and some oscillator pulling is suspected. The AM rejection above 10 mVrms is degraded.

The limiting IF is a high frequency type, capable of being operated up to 50 MHz. It is expected to be used at 10.7 MHz in most cases, due to the availability of standard ceramic resonators. The quadrature detector is internally coupled to the IF, and a 5.0 pF quadrature capacitor is internally provided. The -3dB limiting sensitivity of the IF itself is approximately 50 μV (at Pin 7), and the IF can accept signals up to 1.0 Vrms without distortion or change of detector quiescent dc level.

The IF is unusual in that each of the last 5 stages of the 6 state limiter contains a signal strength sensitive, current sinking device. These are parallel connected and buffered to produce a signal strength meter drive which is fairly linear for IF input signals of 10 μ V to 100 mVrms. (See Figure 5.)

A simple squelch arrangement is provided whereby the meter current flowing through the meter load resistance flips a comparator at about 0.8 Vdc above ground. The signal strength at which this occurs can be adjusted by changing the meter load resistor. The comparator(+) input and output are available to permit control of hysteresis. Good positive action can be obtained for IF input signals of above 30 $\mu Vrms$. The 130 k Ω resistor shown in the test circuit provides a small amount of hysteresis. Its connection between the 3.3 k resistor to ground and the 3.0 k pot, permits adjustment of squelch level without changing the amount of hysteresis.

The squelch is internally connected to both the quadrature detector and the data shaper. The quadrature detector output, when squelched, goes to a dc level approximately equal to the zero signal level, unsquelched. The squelch causes the data shaper to produce a high (VCC) output.

The data shaper is a complete "floating" comparator, with back to back diodes across its inputs. The output of the quadrature detector can be fed directly to either input of this amplifier to produce an output that is either at VCC or VEE, depending upon the received frequency. The impedance of the biasing can be varied to produce an amplifier which "follows" frequency detuning to some degree, to prevent data pulse width changes.

When the data shaper is driven directly from the demodulator output, Pin 13, there may be distortion at Pin 13 due to the diodes, but this is not important in the data application. A useful note in relating high/low input frequency to logic state: low IF frequency corresponds to low demodulator output. If the oscillator is above the incoming RF frequency, then high RF frequency will produce a logic low. (Input to (+)input of Data Shaper as shown in figures 1 and 3.)

FIGURE 6 — APPLICATION WITH FIXED BIAS ON DATA SHAPER

Application Notes

The MC3356 is a high frequency/high gain receiver that requires following certain layout techniques in designing a stable circuit configuration. The objective is to minimize or eliminate, if possible, any unwanted feedback.

Shielding, which includes the placement of input and output components, is important in minimizing electrostatic or electromagnetic coupling. The MC3356 has its pin connections such that the circuit designer can place the critical input and output circuits on opposite ends of the chip. Shielding is normally required for inductors in tuned circuits.

The MC3356 has separate V_{CC} 's and grounds for the RF and IF sections which allows good external circuit isolation by minimizing common ground paths.

Note that the circuits of figures 1 and 3 have RF, oscillator, and IF circuits predominantly referenced to the plus supply rails. Figure 6, on the other hand, shows a suitable means of ground referencing. The two methods produce identical results when carefully executed. It is important to treat Pin 19 as a ground node for either approach. The RF input should be "grounded" to

Pin 1 and then the input and the mixer/oscillator grounds (or RF V_{CC} bypasses) should be connected by a low inductance path to Pin 19. IF and detector sections should also have their bypasses returned by a *separate* path to Pin 19. V_{CC} and RF V_{CC} can be decoupled to minimize feedback, although the configuration of Figure 3 shows a successful implementation on a common 5.0 supply. Once again, the message is: define a supply onde and a ground node and return each section to those nodes by separate, low impedance paths.

The test circuit of Figure 3 has a 3 db limiting level of 30 μ V which can be lowered 6 db by a 1:2 untuned transformer at the input as shown in figures 6 and 7. For applications that require additional sensitivity, an RF amplifier can be added, but with no greater than 20 db gain. This will give a 2.0 to 2.5 μ V sensitivity and any additional gain will reduce receiver dynamic range without improving its sensitivity. Although the test circuit operates at +5.0 V, the mixer/oscillator optimum performance is at +8.0 V to 12 V. A minimum of +8.0 V is recommended in high frequency applications (above 150 MHz), or in PLL applications where the oscillator drives a prescaler.

FIGURE 7 — APPLICATION WITH SELF-ADJUSTING BIAS ON DATA SHAPER

APPLICATION NOTES, continued

Depending on the external circuit, inverted or non-inverted data is available at Pin 18. Inverted data makes the higher frequency in the FSK signal a 'one' when the local oscillator is above the incoming RF. Figure 6 schematic shows the comparator with hysteresis. In this circuit the dc reference voltage at Pin 17 is about the same as the demodulated output voltage (Pin 13) when no signal is present. This type circuit is preferred for systems where the data rates can drop to zero. Some systems have a low frequency limit on the data rate, such as systems using the MC3850 ACIA that has a start or stop bit. This defines the low frequency limit that can appear in the data stream. Figure 6 circuit can then be

changed to a circuit configuration as shown in Figure 7. In Figure 7 the reference voltage for the comparator is derived from the demodulator output through a low pass circuit where τ is much lower than the lowest frequency data rate. This and similar circuits will compensate for small tuning changes (or drift) in the quadrature detector.

Squelch status (Pin 15) goes high (squelch off) when the input signal becomes greater than some preset level set by the resistance between Pin 14 and ground. Hysteresis is added to the circuit externally by the resistance from Pin 14 to Pin 15.

10-112

FIGURE 8 — INTERNAL SCHEMATIC

MC3357

Advance Information

LOW POWER NARROW BAND FM IF

...includes Oscillator, Mixer, Limiting Amplifier, Quadrature Discriminator, Active Filter, Squelch, Scan Control, and Mute Switch. The MC3357 is designed for use in FM dual conversion communications equipment.

- Low Drain Current (3.0 mA (Typ) @ V_{CC} = 6.0 Vdc)
- Excellent Sensitivity: Input Limiting Voltage (-3.0 dB) = 5.0 μV (Typ)
- Low Number of External Parts Required

LOW POWER FM IF

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 648-05

FIGURE 1 — FUNCTIONAL BLOCK DIAGRAM

PIN CONNECTIONS 16 RF Crystal \ 1 Osc. 15 Gnd 14 Audio Mute Mixer Output 3 13 Scan Control Vcc 4 Limiter 5 Squelch Input Input 11 Filter Output Decoupling 6 Limiter Output 7 10 Filter Input Quad 8 9 Demodulator Output

This document contains information on a new product. Specifications and information herein

are subject to change without notice.

MAXIMUM RATINGS ($T_A = 25^{\circ}C$, unless otherwise noted)

Rating	Pin	Symbol	Value	Unit
Power Supply Voltage	4	V _{CC} (max)	12	Vdc
Operating Supply Voltage Range	4	Vcc	4 to 8	Vdc
Detector Input Voltage	8		1.0	Vp-p
Input Voltage (V _{CC} ≥ 6.0 Volts)	16	V16	1.0	VRMS
Mute Function	14	V14	-0.5 to 5.0	V_{pk}
Junction Temperature	-	TJ	150	°C
Operating Ambient Temperature Range	-	TA	-30 to +70	°C
Storage Temperature Range	. –	T _{stg}	-65 to +150	°C

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (V_{CC} = 6.0 \ \text{Vdc}, \ f_0 = 10.7 \ \text{MHz}, \ \Delta f = \pm \ 3.0 \ \text{kHz}, \ f_{mod} = 1.0 \ \text{kHz}, \ T_A = 25^{\circ} \text{C} \ \text{unless otherwise noted.})$

Characteristic	Pin	Min	Тур	Max	Unit
Drain Current	4				mA
Squelch Off		_	2.0	_	
Squelch On		_	3.0	5.0	
Input Limiting Voltage	16	-	5.0	10	μV
(-3 dB Limiting)					
Detector Output Voltage	9	-	3.0	tener	Vdc
Detector Output Impedance	_		400	-	Ω
Recovered Audio Output Voltage	9	200	350	-	mVrms
$(V_{in} = 10 \text{ mV})$					
Filter Gain (10 kHz)	-	40	46	_	dB
$(V_{in} = 5 \text{ mV})$					
Filter Output Voltage	11	1.8	2.0	2.5	Vdc
Trigger Hysteresis	_	_	100	-	mV
Mute Function Low	14	-	15	50	Ω
Mute Function High	. 14	1.0	10	_	MΩ
Scan Function Low (Mute Off)	13	_	0	0.5	Vdc
(V ₁₂ = 2 Vdc)					
Scan Function High (Mute On)	13	5.0	_	_	Vdc
(V ₁₂ = Gnd)					
Mixer Conversion Gain	3	-	20	-	dB
Mixer Input Resistance	16	-	3.3	_	kΩ
Mixer Input Capacitance	16	-	2.2	_	pF

CIRCUIT DESCRIPTION

The MC3357 is a low power FM IF circuit designed primarily for use in voice communication scanning receivers.

The mixer-oscillator combination converts the input frequency (e.g., 10.7 MHz) down to 455 kHz, where, after external bandpass filtering, most of the amplification is done. The audio is recovered using a conventional quadrature FM detector. The absence of an input signal is indicated by the presence of noise above the desired audio frequencies. This "noise band" is monitored by an active filter and a detector. A squelch trigger circuit indicates the presence of noise (or a tone) by an output which can be used to control scanning. At the same time, an internal switch is operated which can be used to mute the audio.

The oscillator is an internally-biased Colpitts type with the collector, base, and emitter connections at Pins 4, 1, and 2 respectively. A crystal can be used in place of the usual coil.

The mixer is doubly-balanced to reduce spurious responses. The input impedance at Pin 16 is set by a 3.0 $k\Omega$ internal biasing resistor and has low capacitance, allowing the circuit to be preceded by a crystal filter. The collector output at Pin 3 must be dc connected to B+, below which it can swing 0.5 V.

After suitable bandpass filtering (ceramic or LC) the signal goes to the input of a five-stage limiter at Pin 5. The output of the limiter at Pin 7 drives a multiplier,

both internally directly, and externally through a quadrature coil, to detect the FM. The output at Pin 7 is also used to supply dc feedback to Pin 5. The other side of the first limiter stage is decoupled at Pin 6.

The recovered audio is partially filtered, then buffered giving an impedance of around 400 Ω at Pin 9. The signal still requires de-emphasis, volume control and further amplification before driving a loudspeaker.

A simple inverting op amp is provided with an output at Pin 11 providing dc bias (externally) to the input at Pin 10 which is referred internally to 2.0 V. A filter can be made with external impedance elements to discriminate between frequencies. With an external AM detector the filtered audio signal can be checked for the presence of noise above the normal audio band, or a tone signal. This information is applied to Pin 12.

An external positive bias to Pin 12 sets up the squelch trigger circuit such that Pin 13 is low at an impedance level of around 60 kΩ, and the audio mute (Pin 14) is open circuit. If Pin 12 is pulled down to 0.7 V by the noise or tone detector, Pin 13 will rise to approximately 0.5 Vdc below supply where it can support a load current of around 500 μA and Pin 14 is internally short-circuited to ground. There is 100 mV of hysteresis at Pin 12 to prevent jitter. Audio muting is accomplished by connecting Pin 14 to a high-impedance ground-reference point in the audio path between Pin 9 and the audio amplifier.

MC3359

LOW-POWER NARROW-BAND FM IF

... includes oscillator, mixer, limiting amplifier, AFC, quadrature discriminator, op/amp, squelch, scan control, and mute switch. The MC3359 is designed to detect narrow-band FM signals using a 455 kHz ceramic filter for use in FM dual conversion communications equipment. The MC3359 is similar to the MC3357 except that the MC3359 has an additional limiting IF stage, an AFC output, and an opposite polarity Broadcast Detector. The MC3359 also requires fewer external parts.

- Low Drain Current (3.6 mA (Typ) @ V_{CC} = 6.0 Vdc)
- Excellent Sensitivity: Input Limiting Voltage (-3.0 dB) = 2.0 μV (Typ)
- Low Number of External Parts Required

HIGH-GAIN LOW-POWER FM IF

SILICON MONOLITHIC INTEGRATED CIRCUIT

FIGURE 2 — PIN CONNECTIONS AND FUNCTIONAL BLOCK DIAGRAM

MAXIMUM RATINGS $\{T_A = 25^{\circ}C, \text{ unless otherwise noted}\}$

Rating	Pin	Symbol	Value	Unit
Power Supply Voltage	4	V _{CC} (max)	12	Vdc
Operating Supply Voltage Range	4	V _{CC}	4 to 9	Vdc
Input Voltage (V _{CC} ≥ 6.0 Volts)	18	V ₁₈	1.0	V _{rms}
Mute Function	16	V ₁₆	-0.7 to 12	V_{pk}
Junction Temperature	_	TJ .	150	°C
Operating Ambient Temperature Range	_	TA	- 30 to +70	• °C
Storage Temperature Range	_	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = 6.0 Vdc, fo = 10.7 MHz, $\Delta f = \pm 3.0$ kHz, $f_{mod} = 1.0$ kHz, 50 Ω source, $T_A = 25^{\circ}$ C test circuit of Figure 3, unless otherwise noted)

Characteristi	cs	Min	Тур	Max	Units
Drain Current (pins 4 and 8)	Squelch Off Squelch On		3.6 5.4	6.0 7.0	mA
Input for 20 dB Quieting		_	8.0		μVrms
Input for -3dB Limiting			2.0	· _	μVrms
Mixer Voltage Gain (Pin 18 to P	n 3, Open)		46	_	
Mixer Third Order Intercept, 50	Ω Input		- 1.0		dBm
Mixer Input Resistance		_	3.6	_	kΩ
Mixer Input Capacitance			2.2	_	pF
Recovered Audio, Pin 10 (Input Signal 1.0 mVrms)		450	700	_	mVrms
Detector Center Frequency Slop	e, Pin 10		0.3	_	V/kHz
AFC Center Slope, Pin 11, Unloa	ided	_	12		V/kHz
Filter gain (test circuit of Fig. 3)		40	51	_	dB
Squelch Threshold, Through 10	C to Pin 14		0.62	_	Vdc
Scan Control Current, Pin 15	Pin 14 – High – Low	2.0	0.01 2.4	1.0	μA mA
Mute Switch Impedance Pin 16 to Ground	Pin 14 – High – Low		5.0 1.5	10	Ω Μ Ω

FIGURE 3 — TEST CIRCUIT

FIGURE 4 - MIXER VOLTAGE GAIN

FIGURE 5 - LIMITING I.F. FREQUENCY RESPONSE

FIGURE 6 — MIXER THIRD ORDER INTERMODULATION PERFORMANCE

FIGURE 7 — DETECTOR AND AFC RESPONSES

FIGURE 8 — RELATIVE MIXER GAIN

FIGURE 9 — OVERALL GAIN, NOISE, AND A.M. REJECTION

FIGURE 10 — OUTPUT COMPONENTS OF SIGNAL, NOISE, AND DISTORTION

FIGURE 11 — AUDIO OUTPUT AND TOTAL CURRENT DRAIN versus SUPPLY VOLTAGE

FIGURE 12 — L/C OSCILLATOR, TEMPERATURE AND POWER SUPPLY SENSITIVITY

FIGURE 13 — OP AMP GAIN AND PHASE RESPONSE

FIGURE 14 — L/C OSCILLATOR RECOMMENDED COMPONENT VALUES

FIGURE 15 — THE OP AMP AS A BANDPASS FILTER

FIGURE 16 — CIRCUIT SCHEMATIC

CIRCUIT DESCRIPTION

The MC3359 is a low-power FM IF circuit designed primarily for use in voice-communication scanning receivers. It is also finding a place in narrow-band data links.

In the typical application (Figure 1), the mixer-oscillator combination converts the input frequency (10.7 MHz) down to 455 kHz, where, after external bandpass filtering, most of the amplification is done. The audio is recovered using a conventional quadrature FM detector. The absence of an input signal is indicated by the presence of noise above the desired audio frequencies. This "noise band" is monitored by an active filter and a detector. A squelch-trigger circuit indicates the presence of noise (or a tone) by an output which can be used to control scanning. At the same time, an internal switch is operated which can be used to mute the audio.

APPLICATION

The oscillator is an internally-biased Colpitts type with the collector, base, and emitter connections at pin 4, 1, and 2, respectively. The crystal is used in fundamental mode, calibrated for parallel resonance at 32 pF load capacitance. In theory this means that the two capacitors in series should be 32 pF, but in fact much larger values do not significantly affect the oscillator frequency, and provide higher oscillator output.

The oscillator can also be used in the conventional L/C Colpitts configuration without loss of mixer conversion gain. This oscillator is, of course, much more sensitive to voltage and temperature as shown in Figure 12. Guidelines for choosing L and C values are given in Figure 14.

The mixer is doubly balanced to reduce spurious responses. The mixer measurements of Figure 4 and 6 were made using an external $50~\Omega$ source and the internal 1.8 k at pin 3. Voltage gain curves at several Vcc voltages are shown in Figure 4. The Third Order Intercept curves of Figure 6 are shown using the conventional dBm scales. Measured power gain (with the 50~ niput) is approximately 18~ dB but the useful gain is much higher because the mixer input impedance is over 3~ k Ω . Most applications will use a 330~ Ω 10.7~ MHz crystal filter ahead of the mixer. For higher frequencies, the relative mixer gain is given in Figure 8.

Following the mixer, a ceramic bandpass filter is recommended. The 455 kHz types come in bandwidths from ± 2 kHz to ± 15 kHz and have input and output impedances of 1.5 k to 2.0 k. For this reason, the pin 5 input to the 6 stage limiting IF

has an internal 1.8 k resistor. The IF has a 3 dB limiting sensitivity of approximately 100 µV at pin 5 and a useful frequency range of about 5 MHz as shown in Figure 5. The frequency limitation is due to the high resistance values in the IF, which were necessary to meet the low power requirement. The output of the limiter is internally connected to the quadrature detector, including the 10 pF quadrature capacitor. Only a parallel L/C is needed externally from pin 8 to Vcc. A shunt resistance can be added to widen the peak separation of the quadrature detector.

The detector output is amplified and buffered to the audio output, pin 10, which has an output impedance of approximately 300 Ω . Pin 9 provides a high impedance (50 k) point in the output amplifier for application of a filter or deemphasis capacitor. Pin 11 is the AFC output, with high gain and high output impedance (1 M). If not needed, it should be grounded, or it can be connected to pin 9 to double the recovered audio. The detector and AFC responses are shown in Figure 7.

Overall performance of the MC3359 from mixer input to audio output is shown in Figure 9 and 10. The MC3359 can also be operated in "single conversion" equipment; i.e., the mixer can be used as a 455 kHz amplifier. The oscillator is disabled by connecting pin 1 to pin 2. In this mode the overall performance is identical to the 10.7 MHz results of Figure 9.

A simple inverting op amp is provided with an output at pin in providing dc bias (externally) to the input at pin 12, which is referred internally to 2.0 V. A filter can be made with external impedance elements to discriminate between frequencies. With an external AM detector, the filtered audio signal can be checked for the presence of either noise above the normal audio, or a tone signal.

The open loop response of this op amp is given in Figure 13. Bandpass filter design information is provided in Figure 15.

A low bias to pin 14 sets up the squelch-trigger circuit such that pin 15 is high, a source of at least 2.0 mA, and the audio mute (pin 16) is open-circuit. If pin 14 is raised to 0.7 V by the noise or tone detector, pin 15 becomes open-circuit and pin 16 is internally short-circuited to ground. There is no hysteresis. Audio muting is accomplished by connecting pin 16 to a high-impedance ground-reference point in the audio path between pin 10 and the audio amplifier. No dc voltage is needed, in fact it is not desirable because audio "thump" would result during the muting function. Signal swing greater than 0.7 V below ground on pin 16 should be avoided.

MC3361

Advance Information

LOW POWER NARROW BAND FM IF

...includes Ocillator, Mixer, Limiting Amplifier, Quadrature Discriminator, Active Filter, Squelch, Scan Control, and Mute Switch. The MC3361 is designed for use in FM dual conversion communications equipment.

- Operates From 1.8 V to 7.0 V
- Low Drain Current 4.0 mA Typ @ V_{CC} = 4.0 Vdc
- Excellent Sensitivity: Input Limiting Voltage —
 -3.0 dB = 2.0 μV Typ
- Low Number of External Parts Required

LOW POWER

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 648-05

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MAXIMUM RATINGS (T_A = 25°C, unless otherwise noted)

Rating	Pin	Symbol	Value	Unit
Power Supply Voltage	4	V _{CC} (max)	8.0	Vdc
Operating Supply Voltage Range	4	Vcc	1.8 to 7.0	Vdc
Detector Input Voltage	8	_	1.0	Vp-p
Input Voltage (V _{CC} ≥ 4.0 Volts)	16	V ₁₆	1.0	V _{RMS}
Mute Function	14	V ₁₄	-0.5 to 5.0	V_{pk}
Junction Temperature	_	Tj	150	°C
Operating Ambient Temperature Range	_	TA	-30 to +70	°C
Storage Temperature Range	I -	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($V_{CC}=4.0~V_{dc}, f_0=10.7~MHz, \Delta f=\pm3.0~kHz, f_{mod}=1.0~kHz, T_A=25°C$ unless otherwise noted.)

Characteristic	Pin	Min	Тур	Max	Unit
Drain Current Squelch Off Squelch On	4	=	4.0 6.0	_	mA
Input Limiting Voltage (-3.0 dB Limiting)	16	_	2.0	_	μV
Detector Output Voltage	9	_	2.0	_	Vdc
Detector Output Impedance	_	_	400		Ω
Recovered Audio Output Voltage (Vin = 10 mV)	9	100	150	_	mVrms
Filter Gain (10 kHz) (V _{in} = 5.0 mV)	_	40	48	_	dB
Filter Output Voltage	11	_	1.5	_	Vdc
Trigger Hysteresis	_	_	50		mV
Mute Function Low	14	_	10	_	Ω
Mute Function High	14		10	_	MΩ
Scan Function Low (Mute Off) (V ₁₂ = 2.0 Vdc)	13	_	_	0.5	Vdc
Scan Function High (Mute On) (V ₁₂ = Gnd)	13	3.0	_	_	Vdc
Mixer Conversion Gain	3	_	24	_	dB
Mixer Input Resistance	16	_	3.3	_	kΩ
Mixer Input Capacitance	16	_	2.2		pF

MC3373

Advance Information

REMOTE CONTROL AMPLIFIER-DETECTOR

The MC3373 is intended for application in infrared remote controls. It provides the high gain and pulse shaping needed to couple the signal from an IR receiver diode to the tuning control system logic.

- High Gain Pre-Amp
- Envelope Detector for PCM Demodulation
- Simple Interface to Microcomputer Remote Control Decoder
- May Be Used with Tuned Circuit for Narrow Bandwidth, Lower Noise Operation
- Small Package Size
- Minimum External Components
- Wide Operating Supply Voltage Range
- Low Current Drain
- Improved retrofit for NEC part no. μPC1373

REMOTE CONTROL WIDEBAND AMPLIFIER WITH DETECTOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

This document contains information on a new product. Specifications and information herein

are subject to change without notice.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	15	Vdc
Operating Temperature Range	TA	0 to 75	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C
Junction Temperature	TJ	150	°C
Power Dissipation, Package Rating Derate above 25°C	P _D I/ 0 JA	1.25 10	Watts mW/°C

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Unit
Power Supply Voltage (25°C)	Vcc	4.75		15	Vdc
Power Supply Voltage (0°C)	Vcc	5.0		15	Vdc
Input Frequency	fin	30	40	80	kHz

ELECTRICAL CHARACTERISTICS (T_A = 25°C, V_{CC} = 5.0 V, f_{in} = 40 kHz, Test circuit of Figure 2)

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply Current	lcc	1.5	2.5	3.5	mAdc
Input Terminal Voltage	V(Pin 7)	2.4	2.8	3.0	Vdc
Input Voltage Threshold	V _{in}	_	50	100	μV _{P-P}
Input Amplifier Voltage Gain (V[Pin 3] = 500 mVp.p)	Av	_	60	_	dB
Input Impedance	rin	40	60	80	kΩ
Output Voltage, V _{in} = 1.0 mVp-p	VOL		_	0.5	V
Output Leakage, V _{CC} = V _{OH} = 15 Vdc	Іон	_	I –	2.0	μΑ
Output Voltage, Input Open	Voн	_		5.0	Vdc

FIGURE 2 — TEST CIRCUIT

100

60

0 1.0

INPUT AMPLIFIER VOLTAGE GAIN (dB)

FIGURE 3 - BLOCK DIAGRAM

1000

FIGURE 4 — INPUT AMPLIFIER GAIN

FIGURE 5 — DETECTOR THRESHOLD

1.0

V_{CC} = 10 Vdc

V_{CC} = 10 Vdc

V_{CC} = 8.5 Vdc

1.0

V_{CC} = 8.5 Vdc

PIN 4 RESISTOR (KILCHMS)

FIGURE 6 — TYPICAL SIGNAL WAVEFORMS

PIN 6 RESISTOR (OHMS)

APPLICATIONS INFORMATION

The MC3373 is designed to amplify and detect the signal from an infrared receiver diode in a remote control system. The signal is generally in the form of ultrasonic bursts, ranging in amplitude from 50 $\mu V p_{-P}$ to several hundred millivolts. The receiver diode may be directly connected to the MC3373 to save parts; the input is internally compensated by an ABLC (automatic bias level control). However, it is advantageous to ac couple the input, as shown in Figure 1, in order to provide attenuation of the power line frequency IR inputs, which are plentiful in most cases.

The input amplifier gain is approximately equal to the load impedance at Pin 3, divided by the resistor from Pin 6 to ground. Again, the low frequency gain can be reduced by using a small coupling capacitor in series with the Pin 6 resistor.

Peak 3 Hold R17 R1 Q13 6.8 k 56 k 0114 Q24 ΄Ω10 R18 ักวร 6.8 k R7 Input Output 6.8 7 R12 Q25 ´ı` 10 k R14 1.0 k 10 I R11 R6 300 22 k Filter L 014 R19 10 k R22 **∠**Q15 151 200 Q2 Q5 Q21 R20 029 R5 R3 \$360 Ω1 R13 Q27 1.0 k 0 R10 C1 33 k R15 R21 R24 33 pF 2.2 k Ground 6 Filter

FIGURE 7 — INTERNAL SCHEMATIC

The load may be resistive, as shown in the application circuit, or tuned, as in the test circuit. The amplifier output is limited by back-to-back clamping diodes, level shifted, buffered and fed to a negative peak detector. The detector threshold is set by the external resistor on Pin 4, and an internal $6.8~k\Omega$ resistor and diode to V_{CC} . The capacitor from V_{CC} to Pin 4 quickly charges during the negative peaks and then settles toward the set-up voltage between signal bursts at a rate roughly determined by the value of the capacitor and the 6.8~k resistor. The external capacitor at Pin 2 filters the ultrasonic carrier from the pulses.

Circuit Description (Refer to Figure 7)

Q1–Q4 set the bias on the amplifier input at approximately 2.8 V. Q6–Q10 form the input amplifier, which has a gain of about 80 dB when R(Pin 6) = 0. Q5 sinks input current from the photo diode and keeps the amplifier properly biased. Q18–Q20 level shift and buffer the signal to the negative peak detector, Q22 and Q23. Output devices Q26 and Q27 conduct during peaks and pull the output, Pin 1, low. The capacitor on Pin 2 filters out the carrier.

MC3393P

Advance Information

TWO MODULUS PRESCALER

The MC3393P can divide by 15 and 16, and can be used with Motorola CMOS frequency synthesizers MC145146, 52, 56 for commercial AM-FM radio, land mobile and marine two-way radios, avionic radios, and scanner receivers.

- 140 MHz (typ) Toggle Frequency
- ÷15/16
- TTL and CMOS Compatible Output
- Active Pullup and Pulldown
- +5.0 V Supply
- Buffered Clock Input
- 100-400 mV (typ) Input Sensitivity
- 200 Milliwatts (typ)

TWO MODULUS PRESCALER

SILICON MONOLITHIC INTEGRATED CIRCUIT

N SUFFIX PLASTIC PACKAGE CASE 626-04

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MAXIMUM RATINGS

MAXIMOMITATION			
Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	6.0	Vdc
Input Mode Control Voltage	VICR	10	Vdc
Junction Temperature	TJ	150	°C
Operating Temperature Range	TA	-40 to +85	°C
Storage Temperature Range	T _{stq}	-65 to +150	°C

PRELIMINARY ELECTRICAL CHARACTERISTICS (Unless otherwise noted V_{CC} = +5.0 Vdc, T_A = 25°C, f_{in} = 100 MHz)

Characteristics	Min	Тур	Max	Units
Power Supply Voltage	4.5	_	5.5	Vdc
Current Drain	_	40	_	mA
Input Voltage	100	_	400	mV(rms)
Input Impedance: Real Part Capacitance	=	900 6.0	_	Ohms pF
Mode Control Voltage for 15 Count	2.7	_	10	Vdc
Mode Control Voltage for 16 Count	0		0.8	Vdc
Output High at 30 µA Source	2.7	4.3	_	Vdc
Output Low at 1.6 mA Sink		0.3	0.8	Vdc
Propagation Delay Time		25		ns
Set up Time (16 to 15 Count) Measured before Rising Edge of Clock on Count 15	_	20	. –	ns
Release Time (15 to 16 Count) Measured before Falling Edge of Clock Preceding Count 15	_	15	_	ns
Thermal Resistance, Re.IC		100	_	°C/W

MC3396P

Advance Information

DIVIDE BY 20 PRESCALER

The MC3396P is a fixed $\div 20$ prescaler for use in frequency synthesizers and similar applications.

- 200 MHz (typ) Toggle Frequency
- Single 5.0 Volt Supply
- Buffered Clock Input
- 100 mV 400 mV RMS Input Sensitivity
- Open-Collector Saturating Output is Capable of Driving TTL and CMOS.

DIVIDE BY 20 PRESCALER

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 626-04

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	8.0	Vdc
Junction Temperature	, T _J	150	°C
Operating Temperature Range	TA	-40 to +85	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (\textbf{Unless otherwise noted V}_{CC} = 5 \ \text{Vdc}, \textbf{T}_{A} = 25^{\circ} \text{C}, \textbf{f}_{1n} = 125 \ \text{MHz measured in the circuit of Figure 2})$

Characteristic	Min	Тур	Max	Unit
Operating Power Supply Voltage Range	4.5		5.5	Vdc
Current Drain	-	30		mA
Operating Input Voltage Range	100	_	400	mV(rms)
Input Impedance: Real Part Capacitance	_	600 6.0		Ohms pF
Output Voltage	3.0	4.5		V _{p-p}
Thermal Resistance — θ_{JA}	_	100	_	°C/W

MC3484V2 MC3484V4

INTEGRATED SOLENOID DRIVER

The MC3484 is an integrated monolithic solenoid driver. Its typical function is to apply full battery voltage to fuel injector(s) for rapid current rise, in order to produce positive injector opening. When load currentreaches a preset level (4.0 A in MC3484V4 or 2.4 A in MC3484V2) the injector driver reduces the load current by a 4-to-1 ratio and operates as a constant current supply. This condition holds the injector open and reduces system dissipation. Other solenoid or relay applications could be served by the MC3484. Two high impedance inputs are provided which permit a variety of control options and can be driven by TTL or CMOS logic:

- Microprocessor Compatible Inputs
- On-Chip Power Device

MC3484V2 2.4 A Peak 0.6 A Sustain MC3484V4 4.0 A Peak 1.0 A Sustain

- Low Thermal Resistance to Grounded Tab $R_{ heta JC} = 2.5^{\circ} \text{C/W}$
- Internal Thermal Protection Controls die temperature to 175°C
- Load Dump Protected
- Low Saturation Voltage
 V_{CE(sat)} = 1.6 V Typ @ 4.0 A
- Uncompromised Performance −40°C to +125°C
- Fully Functional from V_{bat} = 4.0 V to 24 V
- High V_{(BR)CEO(sus)} = 42 V min @ 2.0 A

SOLENOID DRIVER 2.4 A — V2 4.0 A — V4

SILICON MONOLITHIC INTEGRATED CIRCUIT

ORDERING INFORMATION					
Device	Temperature Range	Peak Current			
MC3484V2	-40 to +125°C	2.4 A			
MC3484V4	-40 to +125°C	4.0 A			

MAXIMUM RATINGS

Rating	Value	Unit
Power Supply Voltage (V _{bat})	24	Volts
Input (Pin 1)	-6.0 to +24	V
Control (Pin 2)	-6.0 to +24	V
Internal Regulator (Pin 5)	50	mA
Junction Temperature	150	°C
Operating Temperature Range (Tab Temperature)	-40 to +125	°C
Storage Temperature Range	-65 to +150	°C
Thermal Resistance, Junction to Case	2.5	°C/W

ELECTRICAL CHARACTERISTICS (V_{bat} = 12 Vdc, T_C = 25°C, test circuit of Figure 2, unless noted)

Characteristic	Min	Тур	Max	Unit
Output Peak Current (I _{pk[sense]}) V4 V2	3.6 1.7	4.0 2.4	4.8 2.9	Α
Output Sustaining Current (I _{Sus}) V4 V2	1.0 0.5	1.1 0.6	1.3 0.7	Α
V(BR)CEO(sus) @ 2.0 A	42	50		٧
Output Voltage in Saturated Mode V2 @ 1.5 A V4 @ 3.0 A	_	1.2 1.6	1.8 1.8	٧
Internal Regulated Voltage (V _{CC} , Figure 2)	6.6	7.1	8.1	V
Input "on" Threshold Voltage		1.4	1.9	V
Input "off" Threshold Voltage	0.9	1.3		V
Input "on" Current @ V _I = 2.0 Vdc @ V _I = 5.0 Vdc		_	150 350	μΑ
Control "on" Threshold Voltage	0.9		1.9	V
Control "on" Current @ V ₂ = 2.0 Vdc (V _I High) @ V ₂ = 5.0 Vdc (V _I High)	- 2.0 —	_	2.0 500	μΑ
Control Pin Discharge Impedance (V _I Low)		10		kΩ
Input Turn On Delay (t _i)	_	1.0	2.0	μs
I _{Dk} sense to I _{Sus} delay (tp)	_	60		μs
Control Signal Delay (t _t)		15		μs
Input Turn Off from Saturated Mode Delay (t _S)	_	1.0	_	μs
Input Turn Off from Sustain Mode Delay (t _d)		0.2		μs
Output Voltage Rise Time (ty)		0.4	_	μs
Output Current Fall Time (t _f) 2.0 A 4.0 A	_	0.3 0.6	1.0 1.0	μs
Internal Thermal Regulation	_	175	_	°C

MC3484V2, MC3484V4

GENERAL INFORMATION

Inductive actuators such as automotive electronic fuel injectors, relays, solenoids and hammer drivers can be powered more efficiently by providing a high current drive until actuation (pull-in) occurs and then decreasing the drive current to a level which will sustain actuation. Pull-in and especially drop-out times of the actuators are also improved.

The fundamental output characteristic of the MC3484 provides a low impedance saturated power switch until the load current reaches a predetermined high-current level and then changes to a current source of lower magnitude until the device is turned off. This output characteristic allows the inductive load to control its actuation time during turn-on while minimizing power and stored energy during the sustain period, thereby promoting a fast turn-off time.

Automotive injectors at present come in two types. The large throttle body injectors have an impedance of about 2.0 mH and 1.2 Ω and require the MC3484 V4 driver. The smaller type, popular world-wide, has an impedance of 4.0 mH and 2.4 Ω and needs about a 2.0 A pulse for good results. Some designs are planned which employ two of the smaller types in parallel. The inductance of the injectors are much larger at low current, decreasing due to armature movement and core saturation to the values above at rated current.

Operating frequencies range from 5.0 Hz to 250 Hz depending on the injector location and engine type. Duty cycle in some designs reaches 80%.

APPLICATIONS INFORMATION

The MC3484 is provided with an input pin (Pin 1) which turns the injector driver "on" and "off". This pin has a nominal trip level of 1.4 V and an input impedance of 20 k Ω . It is internally protected against negative voltages and is compatible with TTL and most other logic.

There is also a control pin (Pin 2) which if held low or grounded, permits the device to operate in saturation to $l_{pk}(sense)$, where it will switch to l_{sus} automatically. If Pin 2 is brought high (>1.9 V), the MC3484 will switch to l_{sus} mode, whether or not $l_{pk}(sense)$ has been reached. (More on this later.)

Figure 3 shows the operating waveforms for the simplest mode; i.e., with control Pin 2 grounded. When the driver is turned on, the current ramps up to the peak current sense level, where some overshoot occurs because of internal delay. The MC3484 then reduces its output to $l_{\text{Sus}}.$ The fall time of the device is very rapid $(\leqslant 1.0~\mu\text{s}),$ but the decay of the load current takes 150 to 220 $\mu\text{s},$ while dumping the load energy into the protection zener clamp.

FIGURE 3 — OPERATING WAVEFORMS (Max Frequency 250 Hz, Pin 2 Grounded)

It is essential that the zener voltage be lower than the V(BR)CEO(sus), but not so low as to greatly stretch the load current decay time. Without the zener, the discharge of the load energy would be totally into the MC3484, which, for the high current applications, could cause the device to fail. (See SOA, Figure 12.)

Also in Figure 3 is the graphically derived instantaneous power dissipation of the MC3484. It shows that, for practical purposes, the worst case dissipation is less than (I_{SuS}) (V_{Dat}) (duty cycle).

If the combined effects of dissipation, ambient temperature and poor heat sinking causes the die temperature to reach 160°C, an internal protection circuit will reduce the output current to prevent device failure. The output pulses will remain controlled by the input, but may not operate the fuel injectors.

FIGURE 4 — SWITCHING WAVEFORMS (Expanded Time Scale)

FIGURE 5 — SWITCHING SPEED versus TEMPERATURE

Provided in Figures 3, 4, and 6 are definitions of the switching intervals specified in the Electrical Characteristics. Figure 5 shows that the critical switching parameters stay under control at elevated temperatures.

In the case where V_{bat} is too low, or the input Pin 1 "on" signal is too narrow for the output current to reach $I_{pk}(sense)$, it may still be desirable to cause the MC3484 to switch to the I_{sus} mode. This can be accomplished either by driving Pin 2 with a properly delayed pulse, or by using an R-C charging circuit on Pin 2. If a pulse source is used, only the leading edge and 2.0 volts amplitude are important. The pulse duration is not critical, because once the MC3484 has changed to I_{sus} mode, it will stay there until Pin 1 has been recycled. A minimum pulse width of 15 μ s will assure state change.

If the R-C circuit is used (circuit of Figure 2, switch S2 in middle position), the charging voltage will be toward V_{CC} , but will reach the Pin 2 threshold at $V_{CC}/4$. This main tains the timing of the I_{SUS} transition even when V_{CC} is below regulation. When Pin 1 is turned off, the capacitor on Pin 2 is discharged through an internal $10~\mathrm{k}\Omega$ resistor to about 0.1 V above ground. It is important to use a high value for R, so that the capacitor will be almost fully discharged. With a recommended R = 470 K Ω and C = 0.02 μ F, Pin 2 threshold will be reached in approximately 2.0 ms.

In another application option, Pin 2 can be enabled in paralled with Pin 1, or connected to V_{CC} , so that the MC3484 always turns on in the I_{SUS} mode. The MC3484 thus provides a logic compatible, constant current power switch.

FIGURE 6 — APPLICATION OF CONTROL (PIN 2) (Test Circuit of Figure 2)

TYPICAL CHARACTERISTICS

(Unless otherwise noted: Test circuit of Figure 2, V_{bat} = 12 Vdc, T_C = 25°C, 250 Hz square wave input)

FIGURE 9 — OUTPUT CURRENT versus

MC13001P MC13002P

Advance Information

MONOMAX BLACK-AND-WHITE TV SUBSYSTEM

The MONOMAX is a single-chip IC that will perform the electronic functions of a monochrome TV receiver, with the exception of the tuner, sound channel, and power output stages.

- Full Performance Monochrome Receiver with Noise and Video Processing — Black Level Clamp, DC Contrast, Beam Limiter
- Video IF Detection on Chip No Coils, No Pins, except Inputs
- Noise Filtering on Chip Minimum Pins and Externals
- Oscillator Components on Chip No Precision Capacitors Required
- MC13001P for 525 Line NTSC and MC13002P for 625 Line CCIR
- Low Dissipation in All Circuit Sections
- High-Performance Vertical Countdown
- 2-Loop Horizontal System with Low Power Start-Up Mode
- Noise Protected Sync and Gated AGC System
- Designed to work with TDA1190P or TDA3190P Sound IF and **Audio Output Devices**
- Reverse AGC Types are Available on Special Order. Consult Factory

MONOMAX BLACK-AND-WHITE TV SUBSYSTEM

SILICON MONOLITHIC INTEGRATED CIRCUITS

This document contains information on a new product. Specifications and information herein

are subject to change without notice.

MC13001P, MC13002P

MAXIMUM RATINGS ($T_A = 25^{\circ}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage — Pin 18	Vcc	+ 16	Vdc
Power Dissipation	PD	1.0	Watts
Horizontal Driver Current — Pin 17	IHOR	. – 20	mA
RF AGC Current — Pin 11	^I RFAGC	20	mA
Video Detector Current — Pin 24	IVID	5.0	mA
Vertical Driver Current — Pin 22	IVERT	5.0	mA
Auxiliary Regulator Current — Pin 19	IREG	35	mA
Thermal Resistance Junction-to-Case	R _e JC	60	°C/W
Maximum Junction Temperature	· Tj	150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Horizontal Output Drive Current	l _{HOR}	≤10	mA
RF AGC Current	IRFAGC	≤10	mA
Regulator Current	IREG	≤20	mA

ELECTRICAL CHARACTERISTICS ($V_{CC} = 11.3 \text{ V}, T_A = 25^{\circ}\text{C}$)

Characteristics		Symbol	Min	Тур	Max	Unit
Power Supply Current	Pins 18 & 19	^I CC	44	_	66	mA
Regulator Voltage	Pin 19	V _{REG}	7.2	8.2	8.8	Vdc

HORIZONTAL SPECIFICATIONS

Oscillator Frequency (Nominal)	Pin 12	fHOR(NOM)	13	_	19	kHz
Oscillator Sensitivity			_	230		Hz/μA
Start-Up Frequency (I ₁₈ = 4.0 mA)		fHOR	-10	_	+ 10	%
Oscillator Temperature Stability (0 ≤ TA ≤ 75°C)		fHOR		50	_	Hz
Phase Detector 1 (Charge/Discharge Current) (Non Standard Frame) (Standard Frame)		Ι _{φ1}		± 900 ± 400		μΑ
Phase Detector 1 (Output Voltage Limits)		V _{φ1}		7.5 (Max) 2.5 (Min)	_	Vdc
Phase Detector 1 (Leakage Current)			_	_	2.0	μA
Phase Detector 2 (Charge/Discharge Current)		Ι _{φ2}	_	+ 1.0 - 0.6		mA
Phase Detector 2 (Output Voltage Limits)		V _{φ2}		7.7 (Max) 1.5 (Min)		Vdc
Phase Detector 2 (Leakage Current)			_	_	3.0	μΑ
Horizontal Delay Range (Sync to Flyback)				18 (Max) 5.0 (Min)		μs
Horizontal Output Saturation Voltage (I ₁₇ = 7.0 mA)		V ₁₇ (SAT)	_	_	0.3	Vdc
Phase Detector 1 (Gain Constant) (Out-of-Lock) (In-Lock)			_	5.0 10		μ A /μs
Horizontal Pull-In Range			± 500	±750		Hz

MC13001P, MC13002P

VERTICAL SPECIFICATIONS

Characteristics		Symbol	Min	Тур	Max	Unit
Output Current	Pin 22	122	-0.6	_	_	mA
Feedback Leakage Current	Pin 21	^l 21	_	_	6.0	μА
Ramp Retrace Current	Pin 20	l ₂₀	500	_	900	μА
Ramp Leakage Current	Pin 20		_	_	0.3	μА
Feedback Maximum Voltage		V ₂₁	_	5.1	_	Vdc
IF SPECIFICATIONS						
Regulator Voltage		V ₄	_	6.2	_	Vdc
Input Bias Voltage		V _{2,6}	_	4.5	_	Vdc
Input Resistance Input Capacitance (VAGC Pin 8 = 4.0 V)		R _{IN} C _{IN}		2.2 5.0		kΩ pF
Sensitivity $(V_8 = 0 \text{ V}, 400\text{Hz} 30\% \text{ MOD}, V_{28} =$	0.8 V _{pp})			80	_	μVRMS
Bandwidth			_	75	_	MHz
VIDEO SPECIFICATIONS					•	-t
Zero Carrier Voltage (See Figure 6A)	Pin 28		_	7.0	_	Vdc
Output Voltage (See Figure 6B) White to Back Porch	Pin 24		_	1.4	_	V
Differential Gain Differential Phase (IRE Test Method)			_	6 4	_	% Degrees
Contrast Bias Current	Pin 26	l ₂₆		10	_	μА
Contrast Control Range				14:1	_	·
Beam Limiting Voltage	Pin 27	V ₂₇	_	1.0	_	Vdc
AGC & SYNC			•			
R.F. (Tuner) AGC Output Current (V ₁₁ = 5.5 V)		¹ 11	5.0	- .	_	mA
AGC Delay Bias Current		¹ 10		- 10	_	μА
AGC Feedforward Current		lg .	_	1.0	_	mA
AGC Threshold (Sync Tip at Pin 28)		V ₂₈	4.7		5.1	Vdc
Sync Separator Operating Point		V ₇	_	4.2	_	Vdc
Sync Separator Charge Current		17	_	5.0	_	mA

FIGURE 4 — DETECTOR PRODUCTS

GENERAL DESCRIPTION

The Video IF Amplifier is a four-stage design with 80 μV sensitivity. It uses a 6.2 V supply decoupled at pin 4. The first two stages are gain controlled, and to ensure optimum noise performance, the first stage control is delayed until the second stage has been gain reduced by 15 dB. To bias the amplifier, balanced dc feedback is used which is decoupled at pins 2 and 6 and then fed to the input pins 3 and 5 by external 2.0 k resistors. The nominal bias voltage at these input pins is approximately 4.2 Vdc. Input capacitance between pins 3 and 5 which varies with gain reduction is provided. The capacitance is nominally 2.0 pF at zero gain reduction, rising to a maximum value of approximately 5.5 pF at 30 dB gain reduction, Improved weak signal performance results when the capacitance change is allowed to move the center frequency of the final tuned circuit of the IF filter. The input, because of the high IF gain, should be driven from a balanced differential source. For the same reason, care must be taken with the IF decoupling.

The IF output is rectified in a full wave envelope detector and detector non linearity is compensated by using a similar nonlinear element in a feedback output buffer amplifier. The detected 1.9 V_{p-p} video at pin 28 contains the sound intercarrier signal, and pin 28 is normally used as the sound takeoff point. The video frequency response, detector to pin 28, is shown in Figure 3 and the detector intermodulation performance can be seen by reference to Figure 4. Typical pin 28 video waveforms and voltage levels are shown in Figure 6.

The video processing section of Monomax contains a contrast control, black level clamp, a beam current limiter and composite blanking. The video signal first passes through the contrast control. This has a range of 14:1 for a 0 V to 5.0 V change of voltage on pin 26, which corresponds to a change of video amplitude at pin 24 of 1.4 V to 0.1 V (black to white level). The beam current limiter operates on the contrast control, reducing the video signal when the bean current exceeds the limit set by external components. As the beam current

FIGURE 5 — DIFFERENTIAL INPUT IMPEDANCE CHARACTERISTICS versus AGC

increases, the voltage at pin 27 moves negatively from its normal value of 1.5 V, and at 1.0 V operates the contrast control, thus initiating beam limiting action. After the contrast control, the video is passed through a buffer amplifier and dc restored by the black level clamp circuit before being fed to pin 24 where it is blanked. The black level clamp, which is gated "on" during the second half of the flyback, maintains the video black level at 2.4 V \pm 0.1 V under all conditions, including changes in contrast, temperature and power supply. The loop integrating capacitor is at pin 25 and is normally at a voltage of 3.3 V. The frequency response of the video at pin 24 is shown in Figure 3 and it is blanked to within 0.5 V of ground.

The AGC loop is a gated system, and for all normal variations of the IF input signal maintains the sync tip of a noise filtered video signal at a reference voltage

MC13001P, MC13002P

(5.1 V pin 28). The strobe for the AGC error amplifier is formed by gating together the flyback pulse with the separated sync pulse. Integration of the error signal is performed by the capacitor at pin 8, which forms the dominant AGC time constant. Improved noise performance is obtained by the use of a gated AGC system, noise protected by a dc coupled noise canceling circuit. The false AGC lock conditions, which can result from this combination, are prevented by an anti lockout circuit connected to the sync separator at pin 7. AGC lockout conditions, which occur due to large rapid changes of signal level are detected at pin 7 and recovery is ensured under these conditions by changing the AGC into a mean level system. The voltage at pin 10 sets the point at which tuner AGC takeover occurs and positive going tuner control, suitable for an NPN RF transistor, is available at pin 11. The maximum output is 5.5 V at 5.0 mA. A feed-forward output is provided at pin 9. This enables the AGC control voltage to be ac coupled into the tuner takeover control at pin 10. The coupling allows additional IF gain reduction during signal transient conditions, thus compensating for variations of AGC loop gain at the tuner AGC takeover point. In this way the AGC system stability and response are not degraded.

The previously mentioned noise protection is effected by detecting negative-going noise spikes at the video detector output. A dc coupled detector is used which turns on when a noise spike exceeds the video sync tip by 1.4 V. This pulse is then stretched and used to cancel the noise present on the delayed video at the input to the sync separator. Cancellation is performed by blanking the video to ground. Complete cancellation of the noise spike results from the stretching of the blanking pulse and the delay of the noise spike at the input to the sync separator. Protection of both the horizontal PLL and the AGC stems from the fact that both circuits use the noise cancelled sync for gating.

The composite sync is stripped from a delayed and filtered video in a peak detecting type of sync separator.

The components connected to pin 7 determine the slice and tilt levels of the sync separator. For ideal horizontal sync separation and to ensure correct operation of AGC anti-lockup circuit, a relatively short time constant is required at pin 7. This time constant is less than optimum for good noise free vertical separation, giving rise to a vertical slice level near sync tip. An additional. longer, time-constant is therefore coupled to the first via a diode. With the correct choice of time constants. the diode is non conducting during the horizontal sync period, but conducts during the longer vertical period. This connects the longer time constant to the sync separator for the vertical period and stops the slice level from moving up to the sync tip. The separated composite sync is integrated internally, and the time constant is such that only the longer period vertical pulses produce a significant output pulse. The output is then fed to the vertical sync separator, which further processes the vertical pulse and provides increased noise protection. The selection of the external components connected to the vertical separator at pin 23 permits a wide range of performance options. A simple resistor divider from the 8.2 V regulated supply gives adequate performance for most conditions. The addition of an RC network will make the slice level adapt to varying sync amplitude and give improved weak signal performance. A resistor to the AGC voltage on pin 9 enables the sync slice level to be changed as a function of signal level. This further improves the low signal level separation while at the same time giving increased impulse noise protection on strong signals.

HORIZONTAL OSCILLATOR

The horizontal PLL (see Figure 7) is a 2-loop system using a 31.5 kHz oscillator which after a divider stage is locked to the sync pulse using phase detector 1. The control signal derived from this phase detector on pin 13 is fed via a high-value resistor to the frequency-

FIGURE 7 — HORIZONTAL OSCILLATOR SYSTEMS

control point on pin 12. The same divided oscillator frequency is also fed to phase detector 2, where the flyback pulse is compared with it and the resulting error used to change a variable slice level on the oscillator ramp waveform. This therefore changes the timing of the output square wave from the slicer and hence the timing of the buffered horizontal output on pin 17. (see Figure 8) The error on phase detector 2 is reduced until the phasing of the flyback pulse is correct with respect to the divided oscillator waveform, and hence with respect to the sync pulse.

To improve the pull-in and noise characteristics of the first PLL, the phase detector current is increased when the vertical lock indicator signals an unlocked condition and is decreased when locked. This increases the loop bandwidth and pull-in range when out of lock and decreases the loop bandwidth when in lock, thus improving the noise performance. In addition, the phase detector current during the vertical period is reduced in order to minimize the disturbance to the horizontal caused by the longer period vertical phase detector pulses.

The oscillator itself is a novel design using an on-chip 50 pF silicon nitride capacitor which has a temperature drift of only 70 ppm/°C and negligible long term drift. This, in conjunction with an external resistor, gives a drift of horizontal frequency of less than 1Hz/°C — i.e., less than 100 Hz over the full operating temperature range of the chip. The pull-in range of the PLL is about ± 750 Hz, so normally this would eliminate the need for any customer adjustment of the frequency.

The second significant feature of this design is the use of a virtual ground at the frequency control point which floats at a potential derived from a divider across the power supply and this is the same divider which determines the end-points of the oscillator ramp. The frequency adjustment which is necessary to take up tolerances in the on-chip capacitor is fed in as a current to this virtual ground and when this adjustment current is derived from an external potentiometer across the same supply there is no frequency variation with supply voltage. Moreover, using the voltage from a potentiometer for the adjustment instead of the simple variable resistor normally used in RC oscillators makes the frequency independent of the value of the potentiometer and hence its temperature coefficient. The frequency control current from the first phase detector is fed into this same virtual ground and as the sensitivity of the control is about 230 Hz/µA a high value resistor can be used (680 k Ω) and this can be directly connected to the phase detector filter without significant loading.

This oscillator operates with almost constant frequency to below 4.0 volts and as the total PLL system consumes less than 4.0 mA at this voltage, this gives an ideal start-up characteristic for receivers using deflection-derived power supplies.

The flyback gating input is on pin 15 which is internally clamped to 0.7 V in both directions and requires a negative input current of 0.6 mA to operate the gate circuit. This input can be a raw flyback pulse simply fed via a suitable resistor.

FIGURE 8 — HORIZONTAL WAVEFORMS

VERTICAL SYSTEM

An output switching signal is taken from the 31.5 kHz oscillator to clock the vertical counter which is used in place of a conventional vertical oscillator circuit. The counter is reset by the vertical sync pulse but the period during which it is permitted to reset is controlled by the window control. Normally, when the counter is running synchronously, the window is narrow to give some protection against spurious noise pulses in the sync signal. If the counter output is not coincident with sync however, after a short period the window opens to give reset over a much wider count range, leading to a fast picture roll towards lock. The vertical sync, gated by the counter, then resets a ramp generator on pin 20 and the 1.5 volt p-p ramp is buffered to pin 22 by the vertical preamplifier. A differential input to the preamp on pin 21 compares the signal generated across the resistor in series with the deflection coils with the generated ramp and thus controls shape and amplitude of the coil current

The basic block diagram of the countdown system is shown in Figure 9. The 31.5 kHz (2 $F_{\hbox{\scriptsize H}})$ clock from the horizontal oscillator drives a 10-stage counter circuit which is normally reset by the vertical sync pulse vithe sync gate, OR gate and D flip-flop. This D input is also used to initiate discharge of the ramp capacitor and hence causes picture flyback.

The period during which sync can reset the counter and cause flyback is determined by the window control which defines a count range during which the gate is open. One of two ranges is selected according to the condition of the signal. The normal "narrow" range is 514 to 526 counts for a 525 line system and is selected after the coincidence detector indicates that the reset is coincident, twice in succession, with the 525 count from the counter. When the detector indicates noncoincidence 8 times in succession, then the window control switches to the "wide" mode (384 to 544 counts) to achieve rapid re-synchronization. For the 625 line version the counts are 614 to 626 for narrow mode and 484 to 644 for wide mode. Note that the OR gate after the sync gate is used to terminate the count at the end of the respective window if a sync pulse has not appeared.

FIGURE 9 — MONOMAX VERTICAL COUNTDOWN

This method accepts non-standard signals almost in the same way as a conventional triggered RC oscillator and has a similar fast lock-in time. However, the use of a window control on the counter reset ensures that when locked with a normal standard broadcast signal the counter will reject most spurious noise pulses.

The blanking output is provided from a latch which is set by the counter reset pulse and terminated by count 20 from the counter chain.

FIGURE 10 — VERTICAL WAVEFORMS

POWER SUPPLY

The power supply regulator, although of simple design, provides two independent power supplies — one for the horizontal PLL section and the other for the remainder of the chip. The supplies share the same reference voltage but the design of the main regulator is such that it can be switched on independently to give minimum loading on the "bleed" voltage source during start-up phase of a deflection-derived supply system.

FIGURE 11 — POWER SUPPLY CIRCUIT

FIGURE 13 — TYPICAL APPLICATION

Advance Information

TV PARALLEL SOUND IF AND AFT

The PSIF is a single-chip IC that enhances the performance of a color TV, audio and video/chroma system. It eliminates bandpass compromises which normally tradeoff 920 kHz video beat with sound performance. The chip also includes a surface wave filter preamplifier and an AFT circuit.

- Low Noise Preamplifier for SAW filter
- Wideband IF Amplification with Mean Level AGC
- Intercarrier Detector for Sound Carrier Output
- Reduces 920 kHz Beat
- AFT Discriminator with Output Polarity Selection
- Internal Voltage Regulator 8.2 V
- 30 mA Available from 8.2 V Internal Regulator

FIGURE 1 - BLOCK DIAGRAM Adjust Video ΔFT AFT Amplifier Amplifier Detector AFT W/Switch Output Vcc AFT 0 AGC Preamplifier Mode Amplifier Control Input Sound/ Inter-Sound Regulator AGC Buffer Vcc Detector carrier Sound Output AGC Filter

This document contains information on a new product. Specifications and information herein

are subject to change without notice.

TV PARALLEL SOUND IF/AFT

SILICON MONOLITHIC INTEGRATED CIRCUIT

MC13010P

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	16	Vdc
Regulator Output Current	IREG	30	mAdc
Thermal Resistance	$R_{\theta}JA$	70	°C/W
Power Dissipation (Package Limitation)	PD	1.1	W
Maximum Junction Temperature	T _{J(max)}	150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

FLECTRICAL CHARACTERISTICS (VCC = 12 V, Ta = 25°C, Test Circuit of Figure 2, unless otherwise noted)

Static Characteristics	Symbol	Min	Тур	Max	Unit
Supply Current	lcc	35	_	50	mAdc
Regulator Voltage, Pin 12	V _{reg}	7.6	8.2	8.8	Vdc
RF Supply Voltage, Pin 18	V _{RF}	5.8	6.5	7.2	Vdc
Preamplifier Current, Pins 6, 7		4.0	6.6	7.5	mAdc
Dynamic Characteristics					•
Preamp Gain (Block A Removed)	Av	_	12		dB
IF Sensitivity, Output 1.5 V _{pp} Typ. Input 45.75 MHz, 30% AM @ 1.0 kHz, Differential Pins 2, 3		_	80		μVrms
AGC Range, Input CW for Output Change of ±0.25 Vdc		_	48		dB
Intercarrier Sound Output (Beat), Input 45.75 MHz, 2.2 mVrms; 41.25 MHz, 0.7 mVrms		40	60	100	mVrms
IF Bandwidth (3.0 db)	f _{max}		80	_	MHz
Preamplifier Input Resistance Preamplifier Input Capacitance	R _{in} C _{in}	_	1.5 11.5	_	kΩ pF
IF Input Resistance IF Input Capacitance	R _{in} ′ C _{in}	=	2.2 4.0	_	kΩ pF
Preamplifier Max Input Signal (Single Ended)	Vin	_	50	_	mVrms
IF Max Input Signal (Differential)	V _{in}	_	50	_	mVrms
Noise Figure IF, Max Gain Noise Figure Preamplifier		=	6.0 5.0	=	dB
AFT Center-Frequency Slope		0.75	4.0	_	μA/kHz
AFT Output Max, 1.0 MHz Detuning		_	± 300	_	μΑ

FIGURE 2 — TEST CIRCUIT

Description

The MC13010 T.V. Parallel Sound IF/AFT is designed to be part of a high performance color television system. Its primary function is to provide a complete separate IF amplifier for sound, leaving the normal IF to be concerned only with video. Secondary functions include an AFT detector and a SAW preamp.

In most present day color television receivers, sound and video are processed by the same IF amplifier and, in many cases, the same synchronous or pseudosynchronous detector. This imposes undesirable compromises in video and sound performance. Particularly in the U.S., the avoidance of a color/sound beat product (920 kHz) can only be achieved at the expense of sound quieting and sensitivity. Earlier solutions involved a single IF amplifier driving two detectors, with numerous interstage alignments required.

A method of solving these problems is to process the sound and video separately, directly from the tuner output. The MC13010 provides the second complete IF channel, with its own wideband detector and AGC. This permits both video IF and sound IF to be free of tuned elements, except at their inputs. (See Figure 3.)

Preamplifier

The preamp is included to compensate for the high insertion loss of a Surface Acoustic Wave filter. This SAW filter may have two outputs with different responses, or it may serve only the video signal path. The preamp is optional if an LC filter is used. In any case, the selectivity ahead of the video IF must provide deep trapping of the sound carrier, while the sound bandpass is relatively broad and flat between the picture and sound carriers.

The Sound IF

The overall gain of 80 dB and gain control range of 48 dB equals the video IF's of earlier designs. This allows the full improvement of the system architecture to be realized. The AGC in the MC13010 is a peak-detecting type, driven internally from the sound detector, and requiring only one external filter. The general characteristic of the IF

gain and gain control are given in Figure 4. The intercarrier sound output (Pin 11) is typically about 60 mV $_{rms}$, which easily overcomes a lossy intercarrier filter and meets the input needs of even the least sensitive FM sound IF ICs.

AFT

The AFT detector is a quadrature type operating at the picture IF frequency, with only one external L-C to be aligned. The polarity of the AFT output may be changed by taking the mode control (Pin 16) high or low. If the control pin is left open, the AFT is defeated.

Additional Applications

The MC13010 is an ideal part for stand-alone AFT. It contains the entire active system to provide a tuner with "self control". (See Figure 6.)

This device performs AM detection at the intercarrier sound output. Therefore, AM modulated digital data may be recovered. This function may be useful in cable systems where digital coding is employed.

FIGURE 4 — GAIN AND AGC CHARACTERISTICS

FIGURE 3 — BLOCK DIAGRAM OF T.V. APPLICATION OF MC13010

Shown above are two approaches to using the MC13010 in TV designs. The simpler circuit 5(a) offers the lowest cost, but the 12 dB of preamp gain does not nearly overcome the 20 to 25 dB of SAW filter loss. (Bearing in mind that discrete L/C approaches also incur some loss at this point, the 5(a) circuit is probably about equal in gain.) The transformer T4 in Figure 5(b) takes advantage of the high impedance current source nature of the preamp outputs, Pins 6 and 7, to pick up about another 6.0 dB of gain. Even more may be possible with more primary turns. When using the coil information given at the right, note that it is based on very limited experience and is offered only as a general guideline.

Experimental values for 45 MHz IF:

T1-Primary: TOKO E502LN-4000034

Secondary: TOKO E502LN-7000037, in shield case

T2 — Video IF Surface Acoustic Wave (SAW)
Filter: muRata, SAF 45MC02Z

T3 — Ceramic Intercarrier Output Filter: muRata SFE 4.5 MB

T4- TOKO KANAS-K7060EK

L1 — TOKO E502LN-4000034 or J. W. Miller 48A147MPC with shield case, tuned to 45.75, L \approx 0.12 μ H.

L2 — Same part as L1, except tuned to 44 MHz and loaded with 270 Ω

R1 and R2 — Adjust for nominal tuning voltage

R3 — Chosen for tuning voltage swing required. Note that Pin 15 can source or sink 300 μA (typ) at the extremes of control range

Channel 3 Component Values

T1 — Made from two coils positioned side by side, without shields, on 0.38" centers. Coils are COILCRAFT part no. T7-142 (violet - 7-1/2 turns), each with its own slug, Carbonal E, adjusted to 63 MHz (\approx 0.4 μ H). This should give a slightly overcoupled response. A shield to surround the coils may be required.

L1 - COILCRAFT UNI-7/150 (blue 6-1/2 turns) or

UNI-10/144 (green 5-1/2 turns) shielded, adjusted to 61.25 MHz (\approx 0.14 $\mu\text{H})$

R1 and R2 — Adjust for nominal tuning voltage

R3 — Chosen for tuning voltage swing required. Note that Pin 15 can source or sink 300 μ A (typ) at the extremes of control range

MC13020P

Advance Information

MOTOROLA CQUAM® AM STEREO DECODER

This circuit is a complete one-chip full-feature AM stereo decoding and pilot detection system. It employs full-wave envelope signal detection at all times for the L + R signal, and decodes L-R signals only in the presence of valid stereo transmission.

- No Adjustments, No Coils
- Few Peripheral Components
- True Full-Wave Envelope Detection for L+R
- PLL Detection for L−R
- 25 Hz Pilot Presence Required To Receive L-R
- Pilot Acquisition Time 300 ms For Strong Signals, Time Extended For Noise Conditions To Prevent "Falsing"
- Internal Level Detector Can Be Used As AGC Source

MOTOROLA CQUAM® AM STEREO DECODER

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 738-02

This document contains information on a new product. Specifications and information herein

are subject to change without notice

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	14	Vdc
Pilot Lamp Current, Pin 15		50	mAdc
Operating Temperature	TA	-40 to +85	°C
Storage Temperature	T _{stg}	-65 to +150	°C
Junction Temperature	T _{J(max)}	150	°C
Power Dissipation Derate above 25°C	PD	1.25 10	W mW/°C

ELECTRICAL CHARACTERISTICS ($V_{CC} = 8.0 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$, Circuit Of Figure 1 Unless Otherwise Noted.)

Characteristic		Min	Тур	Max	Unit
Power Supply Operating Range		6.0	8.0	12.0	Vdc
Supply Line Current Drain, Pin 6		_	30	_	mAdc
Input Signal Level, Unmodulated, Pin 3		_	200	350	mVRMS
Audio Output Level, 50% Modulation, L only or R or	nly	_	220	_	mVRMS
Audio Output Level, 50% Modulation, Monaural		_	110	_	mVRMS
Output THD Monaural Stereo		_	0.5 1.0	_	%
Channel Separation		_	30	_	dB
Pilot Acquisition Time		_	300		ms
Input Impedance	R _{in} C _{in}	20 —	27 6.0	_	kΩ pF
Output Impedance		_	100	150	Ω
Level Detector Filter Voltage, Pin 4,	0 signal 200 mVRMS Signal	_	1.7 2.5	_	Vdc
Lock Detector Filter Voltage, Pin 10	In Lock Out of Lock	_	4.3 0.8	_	Vdc
Force to Monaural, Pin 9, Pull Down for Monaural M	Mode	=	<2.5 150	_	Vdc nA
Force to Monaural, Pin 9, Pull Up for Automatic Mo	de	_	>3.5 <1.0	_	Vdc nA

FIGURE 2 — BASIC QUADRATURE AM (QUAM)

FIGURE 3 — MOTOROLA CQUAM®

The purchase of the Motorola CQUAM® AM Stereo Decoder does not carry with such purchase any license by implication, estoppel or otherwise, under any patent rights of Motorola or others covering any combination of this decoder with other elements including use in a radio receiver. Upon application by an interested party, licenses are available from Motorola on its patents applicable to AM Stereo radio receivers.

MOTOROLA CQUAM® — COMPATIBLE QUADRATURE AM STEREO

INTRODUCTION

In CQUAM®, conventional quadrature amplitude modulation has been modified by multiplying each axis by $\cos\theta$ as shown in Figures 2 and 3. The resulting carrier envelope is 1+L+R, i.e., a correct sum signal for monaural receivers and for stereo receivers operating in monaural mode. A 25 Hz pilot signal is added to the L-R information at a 4% modulation level.

THE DECODER

The MC13020P takes the output of the AM IF amplifier and performs the complete CQUAM® decoding function. In the absence of a good stereo signal, it produces an undegraded monaural output. Note in Figure 4 that the L+R information delivered to the output always comes from the envelope detector (Env DET).

The MC13020P decodes the stereo information by first converting the CQUAM® signal to QUAM, and then detecting QUAM. The conversion is accomplished by comparing the output of the Env DET and the IDET in the Err AMP. This provides the 1/cosθ correction factor, which is then multiplied by the CQUAM® incoming signal in the Var Gain block. Thus, the output of the Var Gain block is a QUAM signal, which can then be syn-

chronously detected by conventional means. The I and Q detectors are held at 0° and 90° relative demodulation angles by reference signals from the phase-locked, divided-down VCO. The output of the I DET is 1+L+R, with the added benefit (over the Env DET) of being able to produce a negative output on strong co-channel or noise interference. This is used to tell the Lock circuit to go to monaural operation. The output of the Q DET is the L-R and pilot information.

THE VCO

The VCO operates at 8 times the IF input frequency, which ensures that it is out-of-band, even when a 260 kHz IF frequency is used. Typically a 450 kHz IF frequency is used with synthesized front ends. This places the VCO at 3.6 MHz, which permits economic crystal and ceramic resonators. A crystal VCO is very stable, but cannot be pulled very far to follow front-end mistuning. Pull-in capability of \pm 100 Hz at 450 kHz is typical, and de-Q-ing with a resistor (see Figure 7) can increase the range only slightly. Therefore, the crystal approach can only be used with very accurate, stable front-ends. By comparison, ceramic and L-C VCO circuits offer pull-in range in the order of ± 2.5 kHz (at 450 kHz). Ceramic devices accurate enough to avoid trimming adjustment can be obtained with a matched capacitor for Cs (see Figures 1 and 5).

In the PLL filter circuit on Pin 19, C1 is the primary factor in setting a loop corner frequency of 8–10 Hz, in-lock. An internally controlled fast pull-in is provided. R2 is selected to slightly overdamp the control loop, and C2 prevents high frequency instability.

The Level DET block senses carrier level and provides an optional tuner AGC source. It also operates on the Q AGC block to provide a constant amplitude of 25 Hz pilot at Pin 11, and it delivers information to the pilot decoder regarding signal strength.

PILOT AND CO-CHANNEL FILTERS

The Q AGC output drives a low pass filter, made up of 400 Ω internal, and 430 Ω and 5 μ F external. From this point, an active 25 Hz band-pass filter is coupled to the Pilot Decoder, Pin 14, and another low-pass filter is connected to the Co-channel Input, Pin 12. A 2:1 reduction of 25 Hz pilot level to the Pilot Decode circuit will cause the system to go monaural, with the components shown. Refer to Figure 8 for the formulas governing the active band-pass filter. The co-channel input signal contains any low frequency intercarrier beat notes, and, at the selected level, prevents the Pilot Decode circuit from going into stereo. The co-channel input, Pin 12, gain can be adjusted by changing the external 2.7 k resistor. The values shown set the "trip" level at about 7% modulation. The 25 Hz pilot signal at the output of the active filter is opposite in phase to the pilot signal coming from the second low-pass filter. The 100 k resistor from Pin 14 to Pin 12 causes the pilot to be cancelled at the co-channel input. This allows a more sensitive setting of the co-channel trip level.

THE PILOT DECODER

The Pilot Decoder has two modes of operation. When signal conditions are good, the decoder will switch to stereo after 7 consecutive cycles of the 25 Hz pilot tone. When signal conditions are bad, the detected interference changes the pilot counter so as to require 37 consecutive cycles of pilot to go to stereo. In a frequency synthesized radio, the logic that mutes the audio when tuning can be connected to Pin 9. When this pin is held low it holds the decoder in monaural mode and switches it to the short count. This pin should be held low until the synthesizer and decoder have both locked onto a new station. A 300 ms delay should be sufficient. If the synthesizer logic does not provide sufficient delay, the circuit shown in Figure 9 may be added. Once Pin 9 goes high, the Pilot Decoder starts counting. If no pilot is detected for seven consecutive counts, it is assumed to be a good monaural station and the decoder is switched to the long count. This reduces the possibility of false stereo triggering due to signal level fluctuation or noise. If the PLL goes out of lock, or interference is detected by the co-channel protection circuit before seven cycles are counted, the decoder goes into the long count mode. Each disturbance will reset the counter to zero. The Level Detector will keep the decoder from going into stereo if the IF input level drops 10 dB, but will not change the operation of the pilot counter.

Once the decoder has gone into the stereo mode, it will go instantly back to monaural if either the lock de-

tector on Pin 10 goes low, or if the carrier level drops below the preset threshold. Seven consecutive counts of no pilot will also put the decoder in monaural. In stereo, the co-channel input is disabled, and co-channel or other noise is detected by negative excursions of the I DET, as mentioned earlier. When these excursions reach a level caused by approximately 20% modulation of co-channel, the lock detector puts the system in monaural, even though the PLL may still actually be locked. This higher level of co-channel tolerance provides the hysteresis to prevent chattering in and out of stereo on a marginal signal.

When all inputs to the Pilot Decode block are correct, and it has completed its count, it turns on the Switch, sending the L-R to the Matrix, and switches the pilot lamp pin to a low impedance to ground.

SUMMARY

It should be noted that in CQUAM®, with both channels AM modulated, the noise increase in stereo is a maximum of 3.0 dB, less on program material. Therefore, this is not the major concern in the choice of monaural to stereo switching point as it was in FM, and blend is not needed.

PIN DESCRIPTIONS

- Pin 1, 2 Detector Filters, $R_{\rm Out} = 4.3$ k, recommend 0.0033 $\mu{\rm F}$ to $V_{\rm CC}$ to filter 450 kHz components.
- Pin 3 IF Signal Input
- Pin 4 Level Detector filter pin, $R_{out} = 8.2 \text{ k}$, 10 μ F to ground sets the AGC time constant. High impedance output, needs buffer.
- Pin 5 Error Amp compensation to stabilize the Var Gain feedback loop
- Pin 6 V_{CC}, 6–12 Vdc, suitable for low V_{batt} automotive operation, but must be protected from "high line" condition.
- Pin 7, 8 Left and Right Outputs, NPN emitter followers
- Pin 9 Forced Monaural, MOS or TTL controllable
- Pin 10 Lock detector filter, $R_{out} = 27$ k, recommend 2.2 μF to ground.
- Pin 11 AGC'd Q output, NPN emitter follower with
- Pin 12 Co-channel Input, 2.0 k series in and 47 k feedback
- Pin 13 Pilot Filter Input to op amp, see Figure 8
- Pin 14 Pilot Decode Input (op amp output) emitter follower, $R_{out} = 100~\Omega$
- Pin 15 Stereo Lamp, open-collector of an NPN common emitter stage, can sink 50 mA, V_{sat} = 0.3 V at 5.0 mA
- Pin 16 Ground
- Pin 17 Oscillator input, R_{in} = 10 k, do not dc connect to Pin 18 or ground
- Pin 18 Oscillator feedback, NPN emitter, $R_{out} = 100 \Omega$
- Pin 19 Phase Detector Output, current source to filter
- Pin 20 Detector Filter, $R_{Out} = 4.3 \text{ k}$, recommend 0.0033 μF to V_{CC} to filter 450 kHz

FIGURE 8 — ACTIVE BAND-PASS FILTER

FIGURE 9 — FORCED MONAURAL OPTIONAL DELAY CIRCUIT

FM IF AMPLIFIER, LIMITER AND DETECTOR

An integrated circuit specifically designed for use in the sound section of TV receivers and the FM/IF portion of radio receivers.

The TBA120C is pin for pin and function compatible with the proelectron type TBA120S but includes an improved dc volume control, which makes "grouping" or selection unnecessary.

- Excellent 3.0 dB Limiting
- High A.M. Rejection
- Wide Supply Voltage Range
- Auxiliary Zener Diode & Transistor
- Minimum Number of External Components Required

FM IF AMPLIFIER, LIMITER, FM DETECTOR AND AUDIO PREAMPLIFIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

PLASTIC PACKAGE CASE 646-05

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Value	Unit
Power Supply Voltage	+ 18	Vdc
Power Dissipation (Package Limitation) Plastic Package Derate above T _A = +25°C	625 5.0	mW mW/°C
Operating Temperature Range	0 to +75	°C
Storage Temperature Range	-65 to +150	°C

ELECTRICAL CHARACTERISTICS $(T_A = +25^{\circ}C, V_{CC} = 12 \text{ V}, R = 20 \text{ k}, \text{ Test circuit: Figure 1})$

Characteristic	Min	Тур	Max	Unit
Supply Voltage Range	6.0	_	18	Volts
Supply Current	10	14	18	mA
Audio Output ($f_0 = 5.5 \text{ MHz}$, $\Delta f = 50 \text{ kHz}$, $Q = 45$)	_	1.0	_	Volts RMS
Audio Output ($f_0 = 10.7 \text{ MHz}$, $\Delta f = 75 \text{ kHz}$, $Q = 35$)	_	0.38	_	Volts RMS
3.0 dB Limiting ($f_0 = 5.5$ MHz, $\Delta f = 50$ kHz, $Q = 45$)	_	30	60	μVRMS
3.0 dB Limiting ($f_0 = 10.7 \text{ MHz}$, $\Delta f = 75 \text{ kHz}$, $Q = 35$)		40		μVRMS
A.M. Rejection ($f_0 = 5.5$ MHz, RF Input: 500 μ V)	45	_		dB
A.M. Rejection ($f_0 = 10.7$ MHz, RF Input: 500 μ V)	40	_		dB
Volume Control Range	65	75		dB
Output Impedance	_	2.6	_	kΩ

ELECTRICAL CHARACTERISTICS OF AUXILIARY Z DIODE AND TRANSISTOR Q45 (TA = +25°)

Characteristic	Min	Тур	Max	Unit
Z-Voltage @ 5.0 mA (Pin 12)	11.2	_	13.2	Volts
Z-Resistance (Pin 12) @ 1.0 kHz, 5.0 mA	_	15	_	Ω
Q45 Breakdown Voltage V _{CEO}	13	_	_	Volts
Q45 Current Gain @ I _C = 1.0 mA, V _{CE} = 5.0 V	40	100	 .	` <u>-</u>

FIGURE 1 — TEST CIRCUIT

COMPONENT VALUES:

	L	C ₁	Q
5.5 MHz	$0.55~\mu H$	1.5 nF	45
6.0 MHz	$0.55~\mu H$	1.2 nF	45
10.7 MHz	2.2 μΗ	100 pF	35

C2 = 0.022 μ F, together with the integrated resistor of 2.6 k Ω (Pin 8) gives the deemphasis and can be reduced if required. For stereo 470 pF should be used to provide H.F. decoupling.

FIGURE 2 — AUDIO OUTPUT AND S/N versus INPUT SIGNAL LEVEL AT 5.5 AND 6.0 MHz

FIGURE 3 — AUDIO OUTPUT AND S/N versus INPUT SIGNAL LEVEL AT 10.7 MHz

FIGURE 4 — A.M. REJECTION versus INPUT SIGNAL LEVEL AT 5.5 AND 6.0 MHz (30% A.M., 50 kHz F.M.)

FIGURE 5 — A.M. REJECTION versus INPUT SIGNAL LEVEL AT 10.7 MHz (30% A.M., 75 kHz FM)

FIGURE 12 — TYPICAL APPLICATION FOR 5.5 MHz WITH L-C INPUT FILTER

FIGURE 13 — TYPICAL APPLICATION FOR 5.5 MHz WITH CERAMIC INPUT FILTER

FIGURE 14 — TYPICAL APPLICATION FOR 10.7 MHz WITH CERAMIC FILTER

TCA4500A

Advance Information

FM STEREO DEMODULATOR DESIGNED FOR USE IN HI-FI STEREO RECEIVERS AND CAR RADIOS

- Wide Supply Range: 8 − 16 Vdc
- Excellent Channel Separation Maintained Over Entire Audio Frequency Range (Fixed or Adjustable)
- Variable Blend Control
- Low Distortion: 0.3% THD at 2.5 Vp-p Composite Input Signal
- Excellent Rejection of ARI Subcarrier (57 kHz)
- Excellent Rejection of Pilot Tone Harmonics including 114 kHz
- Wide Dynamic Range: 0.5 − 2.5 Vp-p Composite Input Signal
- Up to 6 dB Gain (Monaural)
- Low Output Impedance
- Transient-free Mono/Stereo Switching
- 50 dB Supply Ripple Rejection
- Integrated Stereo/Monaural Switch 100 mA Lamp Driving Capability
- Requires No Inductors

FM STEREO DEMODULATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

PLASTIC PACKAGE CASE 648-05

FIGURE 1 - TYPICAL APPLICATION AND TEST CIRCUIT

PIN FUNCTIONS

- 1 Input
- 2 Preamplifier output
- 3 Left amplifier input 4 - Left channel output
- 5 Right channel output
- 6 Right amplifier input
- 7 Stereo indicator Lamp
- 8 Ground
- 9 Stereo switch filter
- 10 Stereo switch filter 11 - 19 kHz output/blend
- 12 Modulator input
- 13 Loop filter
- 14 Loop filter
- 15 Oscillator RC network
- 16 V_{CC}

This document contains information on a new product. Specifications and information herein are subject to change without notice.

MAXIMUM RATINGS (TA = +25°C unless otherwise noted)

Rating	Value	Unit
Power Supply Voltage	16	Volts
Power Dissipation (Package limitation) Derate above T _A = +25°C	1800 15	mW mW/ºC
Operating Temperature Range (Ambient)	-40 to +85	°C
Storage Temperature Range	-65 to +150	°C
Lamp Drive Voltage (Max. voltage at Pin 7 with lamp "off")	30	Volts
Lamp Current	100	mA
Blend Control Input Voltage (Pin 11)	10	Volts

ELECTRICAL CHARACTERISTICS Unless otherwise noted: V_{CC} = +12 Vdc, T_A = 25°C, 2.5 Vp-p standard multiplex composite signal with L or R channel only modulated at 1.0 kHz and with 10% pilot level, using circuit of Figure 1.

Characteristic	Min.	Тур.	Max.	Unit
Stereo Channel Separation: Unadjusted	30	T -	_	dB
Optimised on other channel 1	40			
Monaural Voltage Gain ¹	0.8	1.0	1.2	
THD at 2.5 Vp-p Composite Input Signal	_	_	0.3	%
at 1.5 Vp-p Composite Input Signal	_	0.2	-	
Signal/Noise Ratio				dB
RMS 20 Hz - 15 kHz		90	-	
Ultrasonic Frequency Rejection 19 kHz	-	31	_	dB
38 kHz		50	_	
Stereo Switch Level (19 kHz input level for lamp "on")	12	16	20	mVrms
Hysteresis		6.0		dB
Quiescent Output Voltage Change with Mono/Stereo Switching	-	5.0	20	mVdc
Stereo Blend Control Voltage (Pin 11) 3 dB Separation		0.7	_	V
(see Figure 2) 30 dB Separation		1.7	-	V
Minimum Separation (Pin 11 at 0 V)	_	-	1.0	dB
Monaural Channel Imbalance (pilot tone off)	_	_	0.3	dB
ARI 57 kHz Pilot Tone Influence on THD ²	_	_	0.5	%
Sub-carrier Harmonic Rejection 76 kHz	_	45		dB
114 kHz	_	50	. –	
152 kHz		50		
Supply Ripple Rejection	_	50		dB
Input Impedance	_	50	-	ΚΩ
Output Impedance	_	100	_	Ω
Blend Control Current ¹	-	_	-300	μΑ
Capture Range	_	± 5.0	_	%
Operating Supply Voltage	8.0		16	V
Current Drain (lamp off)	_	35	_	mA

Notes: ¹ See Applications Information and Circuit Description
² ARI Test — Input signal: 1.5 Vp-p standard composite signal, 1 kHz modulation added to a CW 50 mVrms signal at 57.3 kHz.

TYPICAL CHARACTERISTICS

Unless otherwise noted V_{CC} = +12 V, T_A = +25°C, Input Signal is Modulated L or R with 10% Pilot Level. (See Fig. 16.)

- High Loop Gain Circuit

- Normal Circuit

FIGURE 2 – CHANNEL SEPARATION versus
COMPOSITE INPUT LEVEL

FIGURE 3 – V_{CO}FREE-RUNNING FREQUENCY versus TEMPERATURE

FIGURE 4 – STEREO SWITCH LEVEL versus
VCO FREE-RUNNING FREQUENCY

FIGURE 5 – SUPPLY RIPPLE REJECTION

FIGURE 6 — THD versus COMPOSITE INPUT LEVEL

FIGURE 7 — CAPTURE and HOLDING RANGE WITH 20 mV PILOT LEVEL

VCO FREE-RUNNING FREQUENCY (kHz)

FIGURE 10 - SYSTEM BLOCK DIAGRAM

CIRCUIT DESCRIPTION

INTRODUCTION

The TCA4500A is a phase-lock-loop stereo decoder which incorporates a variable separation control, and in which sensitivity to the third harmonics of both the pilot and sub-carrier frequencies has been eliminated by the use of appropriate, digitally generated, waveforms in the phase-lock-loop and decoder sections.

The variable separation control may be operated manually, or by a receiver's AGC or S meter signals, to provide smooth transitions between monaural and stereo reception. It operates only during stereo reception: the circuit switches automatically to monaural if the 19 kHz pilot tone is absent.

The elimination of sensitivity to the third harmonic (114 kHz) of the sub-carrier (38 kHz) excludes interference from the 100 kHz (European Spacing) spaced side bands of adjacent transmitters, while elimination of sensitivity to the third harmonic (57 kHz) of the pilot tone (19 kHz) excludes interference from the ARI* system employed in Europe.

*Auto Radio Information.

CIRCUIT OPERATION

The block diagram of the circuit, shown in Fig. 10, consists of three sections: the phase-lock-loop, including the digital waveform generator: the stereo switch: and the decoder, in which the composite stereo signal is demodulated and matrixed to separate L and R channels.

In the phase-lock-loop the internal RC oscillator, operating at 228 kHz, feeds a 3 stage Johnson counter, via a binary divider, to generate a series of 19 kHz square waves. By the use of suitably connected NAND and EXCLUSIVE OR gates, the waveforms shown in Fig. 11, which are used to drive the various modulators in the circuit, are developed.

The use of such drive waveforms produces the modulating functions also shown in Fig. 11. The usual square-waveforms have been replaced in the PLL and decoder sections by 3-level forms which contain no third harmonic (actually no harmonics which are multiples of 2 or 3 are present). This eliminates the frequency translation of interference from these bands into the low frequency region. Such translation may produce audible components in the decoder section from the sidebands of adjacent channel FM signals, and may produce phase jitter, and consequent intermodulation distortion, in the PLL, from the modulated 57 kHz tones of the ARI system. The TCA 4500A is inherently free from these effects.

The stereo switch section is of conventional form (e.g. MC1310).

The decoder section consists of a modulator (driven by the waveforms shown in Fig. 11) whose outputs are the inverted and non-inverted channel difference signals. These signals pass to the output amplifiers via the variable blend circuit in which they are partially combined , and hence mutually attenuated, according to the control voltage applied.

Matrixing occurs at the inputs of the output amplifiers, where the unmodified composite signal is added to the blended channel difference signals. The stereo separation may be progressively reduced from maximum to zero, dependent on the blending. The control law has been made non-linear, as the major redistribution of sound energy occurs at very low separation levels. For monaural, or very weak stereo signals, the modulator in the decoder section is disactivated by the stereo switch circuit. The variable separation control is thus, also, automatically disabled.

FIGURE 11 - DIGITAL WAVEFORM

APPLICATION INFORMATION

GAIN AND DE-EMPHASIS

The gain and de-emphasis characteristics of the circuit are defined by shunt feedback via the external RC networks (R3, C6, R4, C7 of Fig. 1) around the output amplifiers. The gain is unity when resistors of 5.1 k Ω are used. Higher gains may be obtained by using networks of the form shown in Fig. 12.

The resistors R6, R7 are added to correct the output quiescent voltage levels which are optimized for R3, R4 = 5.1 k Ω and which would, if uncorrected, become too low with higher value resistors. Suitable network values are as follows:

FIGURE 12 - OUTPUT AMPLIFIER FEEDBACK NETWORKS

APPLICATION INFORMATION (continued)

	Gain (dB)	R3, R4	C6,	C7	R6, R7
1			50 μs	75 μs	
	0	5.1kΩ	10 nF	15 nF	
	3	6.8kΩ	6.8 nF	10 nF	47k ±10%
	6	10k	4.7 nF	6.8 nF	27k ±10%

The maximum output level is 1 Vrms; consequently the max. input is limited to 1.4 Vp-p if the gain is set to 6 dB.

SEPARATION ADJUSTMENT

A separation adjustment may be added, as shown below, (Fig. 13), to compensate for the receiver's IF characteristics.

FIGURE 13 – NETWORK PROVIDING ADJUSTABLE SEPARATION

This network reduces the amplification of the channel sum signal in the decoder, to compensate the attenuation of the channel difference signal in the receiver's IF section. The network shown will compensate for up to 2 dB attenuation at 38 kHz. The decoder gain is, obviously, reduced by an amount equal to the compensation required. When used as described, the adjustment also corrects the inherent separation of the decoder, which may be optimized on one channel. Optimization of both channels is possible if separate potentiometers are used to feed each output amplifier.

FIGURE 14 - BLEND CONTROL INPUT CIRCUIT

VARIABLE SEPARATION (BLEND) CONTROL AND 19 kHz OUTPUT

To retain the 16-pin package, the blend control has been combined with the 19 kHz output on pin 11. The internal circuit providing this combination is shown in Fig.14.

If pin 11 is left open-circuit, the 19 kHz signal appears at a mean dc level of 4 V. The blend circuit is inoperative at this level and the decoder provides full separation. The 19 kHz signal can be used to tune the internal oscillator.

To reduce the separation, the voltage on pin 11 is lowered. At $3.2\ V$, T2 ceases conduction and the 19 kHz signal disappears.

At 2.3 V, the blend circuit comes into operation and the separation decreases according to the curve shown in Fig. 15.

FIGURE 15 - SEPARATION CONTROL VOLTAGE

FIGURE 16 – OSCILLATOR NETWORK FOR DIRECT

OSCILLATOR TUNING

If the variable separation facility is not required, pin 11 is left open-circuit and the 19 kHz signal which then appears may be used to indicate the oscillator frequency. If the variable separation is used, and the drive circuit prevents access to the 19 kHz signal, then the oscillator frequency must be measured directly. A test point should be obtained by modifying the oscillator RC network as shown in Fig. 16.

The output is a pulse train of approximately 1.5 Volts amplitude. Connecting frequency counters of up to 300 pF input capacitance produces less than 0.3% change of the oscillator frequency, which should be set to 228 kHz.

HIGH LOOP GAIN COMPONENTS

For applications demanding operation under low pilot level (e.g., car radio) the following component changes to Fig. 1 are recommended.

R1 = 12k	C3 = 150 pF
R2 = 1.5k	C4 = 330 nF
R8 = 330	C5 = 150 nF
P1 = 10k	

EXTERNAL MONO-STEREO SWITCHING AND OSCILLATOR KILLING

If required, the TCA 4500A can be forced into mono mode simply by grounding pin 9 (see Fig. 1). The 228 kHz oscillator will be automatically killed.

The conditions governing Mono/Stereo switching on

pin 9 are the following:

- Quiescent voltage: +2.3 Vdc
- Current required to ensure mono operaton (with 100 mVrms pilot level): 10 μA (from pin 9 to ground)
 Hysteresis: 0.7μA
- Stereo/mono switching and oscillator killing: less than +500 mV
- Maximum stray capacitance between pin 9 and ground: 100 pF

EXTERNAL COMPONENT FUNCTIONS

- P1 19 kHz frequency adjustment
- P2 channel separation adjustment and compensation for IF roll-off.
- R3, R6 gain fixing resistors. The values shown in the schematic are for unity gain.
- C6, C7— de-emphasis capacitors. Value to give: RC = $50 \mu s$.

Values shown in Fig. 1 are recommended for applications with input level higher than 1.0 Vrms.

STEREO SOUND CONTROL SYSTEM

The TCA5550 is a single chip stereo balance, volume, bass and treble control circuit designed for use in car radios, TV, and audio systems. Simple dc inputs allow the control to be effected by four inexpensive potentiometers or a remote control system. The bass and treble responses are defined by a single capacitor per control per channel.

- Four High Impedance dc Controls Vol, Bass, Treble, Balance
- A Single External Capacitor Defines Each Tone Control Characteristic
- Low Distortion, 0.1% at Nominal Input Level, 10 dB Gain with the Tone Controls Flat
- Channel Separation Better Than 45 dB
- Wide Power Supply Tolerance, 8.5 to 18 Vdc
- +14 dB of Tone Control
- More Than 75 dB of Volume Control
- Wide Dynamic Range: 100 mV to 500 mV(RMS) Input Signal
- Low Output Impedance

STEREO SOUND CONTROL SYSTEM

SILICON MONOLITHIC INTEGRATED CIRCUIT

PLASTIC PACKAGE CASE 707-02

FIGURE 1 — BLOCK DIAGRAM

10

MAXIMUM RATINGS $(T_A = +25^{\circ}C)$

Rating	Value	Unit
Power Supply Voltage	18	Volts
Power Dissipation (Package Limitation) Derate above T _A = +25°C	1250 10	mW mW/°C
Operating Temperature Range (Ambient)	-40 to +85	°C
Storage Temperature Range	-65 to +150	°C ·
Regulator Current, Pin 5	3.0	mAdc

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C, $V_{CC} = 12$ Vdc)

Characteristic	Pin	Min	Тур	Max	Unit
Supply Voltage	13	8.5	_	18	Vdc
Supply Current (@ Min Gain) (@ Max Gain)		=	30 15	=	mA
Regulated Output Voltage ¹	. 5	_	5.0	_	V
Input Levels (@ Max Gain) (With Reduced Gain) ³	12, 16	=	100 500	_	mV (RMS)
Input Impedance	12, 16	-	100		kΩ
Output Impedance	2, 8	—.	300		Ω
Tone Control Range (at 70 Hz & 10 kHz) ² With Pins 3 & 4 @ 0 V With Pins 3 & 4 @ 2.0 V With Pins 3 & 4 @ 4.0 V	. 3, 4	_ _ _	- 14 0 + 14	_	dB
Balance Control Range Min Gain (Constant Power Law) Max Gain Voltage on Pin 6 for Balanced Gain	6	_	-40 +3.0 2.5	=	dB dB V
Volume Control Range With Pin 7 @ 0 V With Pin 7 @ 2.5 V With Pin 7 @ 5.0 V	7	_ _ _	80 + 10 - 20 - 70	=	dB
Control Input Currents	3, 4, 6, 7	_	_	1.0	μА
Channel Separation		45			dB
Distortion (at 1.0 kHz) at 300 mV (RMS) Output ³		_	0.1	_	%
Signal : Noise Ratio 50 Hz to 15 kHz, 10 dB Gain, Tone Controls Flat		_	70	_	dB
Noise Level 50 Hz to 15 kHz, Min Gain		_	30	· _	μV (RMS)

- 1. The control potentiometers should be connected to this point, see Figure 5.
- The control perindinterest should be commerced to this point, see righte s.
 These figures are functions of the capacitors on Pins 1, 9, 10, 11, 17 & 18. See the application diagram, Figure 5.
 The input level may be increased to 500 mV (RMS) but the user controls must be adjusted to ensure that the output level does not exceed 300 mV (RMS), to avoid distortion.

FIGURE 2 — TONE CONTROLS MAX BOOST, CUT/CONTROL VOLTAGE

FIGURE 3 — TREBLE CONTROL LAW

FIGURE 4 — BASS CONTROL LAW

FIGURE 5 — APPLICATION CIRCUIT

TDA1190P

TV SOUND SYSTEM

The TDA3190P 4.2-watt sound system is designed for television and related applications. The TDA1190P is a low-power version. Functions performed by these devices include: IF Limiting, IF amplifier, low pass filter, FM detector, DC volume control, audio preamplifier, and audio power amplifier.

- 4.2 Watts Output Power TDA3190P
 (V_{CC} = 24 V, R_L = 16 Ω)
- 1.3 Watts Output Power TDA1190P
 (V_{CC} = 18 V, R_L = 32 Ω)
- Linear Volume Control
- High AM Rejection
- Low Harmonic Distortion
- High Sensitivity

BLOCK DIAGRAM Regulated Power Supply Low-Pass Filter DC Volume Control 3 5 12 13

TV SOUND SYSTEM

SILICON MONOLITHIC INTEGRATED CIRCUIT

PLASTIC PACKAGE CASE 648C-01

ORDERING INFORMATION

Device	Temperature Range	Package				
Both Devices	0 to +75°C	Plastic				

10

TDA1190P, TDA3190P

MAXIMUM RATINGS

Rating	Symbol	TDA3190P	TDA1190P	Unit
Supply Voltage Range	Vcc	9.0 to 28	9.0 to 22	· v
Output Peak Current (Nonrepetitive) (Repetitive)	Io	2.0 1.5	1.5 1.0	Α
Input Signal Voltage	V _I	1	V	
Operating Temperature Range	TA	0 to +75		°C
Junction Temperature	TJ	150		°C

ELECTRICAL CHARACTERISTICS ($V_{CC} = 24 \text{ V}$, $f_0 = 4.5 \text{ MHz}$, $\Delta f = \pm 25 \text{ kHz}$, $T_A = 25 ^{\circ}\text{C}$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
Quiescent Output Voltage (Pin 11)		Vo	1	T		V
$V_{CC} = 24 V$	TDA3190P		11	12	13	•
$V_{CC} = 18 V$	TDA1190P	1	8.0	9.0	10	
V _{CC} = 12 V	Both		5.1	6.0	6.9	
Quiescent Drain Current		l _D				mA
$(P1 = 22 k\Omega)$						
$V_{CC} = 24 V$	TDA3190P		11	22	35	
$V_{CC} = 18 V$	TDA1190P		11	22	35	
V _{CC} = 12 V	Both		_	19	_	
Output Power		Po				w
$(d = 10\%, f_{m} = 400 \text{ Hz})$						
$V_{CC} = 24 \text{ V}, R_L = 16 \Omega$	TDA3190P			4.2		
$V_{CC} = 12 \text{ V, R}_{L} = 8.0 \Omega$	TDA3190P			1.5	_	
$V_{CC} = 18 \text{ V}, R_L = 32 \Omega$	TDA1190P		1.0	1.3		
$V_{CC} = 12 \text{ V, R}_{L} = 16 \Omega$	TDA1190P		0.7	0.9		
$(d = 2\%, f_{m} = 400 \text{ Hz})$						
$V_{CC} = 24 \text{ V}, R_L = 16 \Omega$	TDA3190P		_	3.5	-	
$V_{CC} = 12 \text{ V, R}_{L} = 8.0 \Omega$	TDA3190P		-	1.4		
$V_{CC} = 18 \text{ V, R}_{L} = 32 \Omega$	TDA1190P			1.0	_	
$V_{CC} = 12 \text{ V, R}_{L} = 16 \Omega$	TDA1190P		_	0.7		
Input Limiting Threshold Volts (-3.0 dB) at Pin 1		l V _I				μV
$\Delta f = \pm 7.5 \text{ kHz}$, $f_m = 400 \text{ Hz}$, Set P1 for 2.0 Vrms	on Pin 11					l '
	TDA3190P			40	100	
	TDA1190P		_	60	100	
Distortion						%
$(P_0 = 50 \text{ mW}, f_m = 400 \text{ Hz}, \Delta f = \pm 7.5 \text{ kHz})$						
$V_{CC} = 24 \text{ V}, R_L = 16 \Omega$	TDA3190P	1	_	0.75	_	
$V_{CC} = 18 \text{ V}, R_L = 32 \Omega$	TDA1190P		-	1.0	_	
$V_{CC} = 12 \text{ V, R}_{L} = 16 \Omega$	Both			1.0	_	
Frequency Response of Audio Amplifier (-3.0 dB)		В				Hz
$(R_L = 16 \Omega, C_{10} = 120 pF, C_{12} = 470 pF, P_1 = 23$	2 kΩ)					
$R_f = 82 \Omega$			-	70 to 12 k	_	
$R_f = 47 \Omega$			_	70 to 7.0 k		
Recovered Audio Voltage (Pin 16)		V _o	_	120	_	mV
$(V_1 \ge 1.0 \text{ mV}, f_m = 400 \text{ Hz}, \Delta f = \pm 7.5 \text{ kHz}, P_1 = 60.00 \text{ m/s}$	0)					
Amplitude Modulation Rejection		AMR	_	55		dB
$(V_1 \ge 1.0 \text{ mV}, f_m = 400 \text{ Hz}, m = 30\%)$		/		55		ub
Signal and Noise to Noise Ratio		S + N	50	65		dB
$(V_I \ge 1.0 \text{ mV}, V_O = 4.0 \text{ V}, f_M = 400 \text{ Hz})$		N N	30	65		uв
Input Resistance (Pin 1)				30		LO.
(V _I = 1.0 mV)		ri		30	_	kΩ
Input Capacitance (Pin 1)		- c.		F.0		
$(V_l = 1.0 \text{ mV})$		Ci	_	5.0	_	рF
		_				
DC Volume Control Attenuation		-		90	-	dB
$(P1 = 12 k\Omega)$						

TEST CIRCUIT

TYPICAL CIRCUIT CONFIGURATION

TDA3301 TDA3303

TV COLOR PROCESSOR

These devices will accept a PAL or NTSC composite video signal and output the three color signals, needing only a simple driver amplifier to interface to the picture tube. The provision of high bandwidth on-screen display inputs makes them suitable for text display, TV games, cameras, etc. The TDA3301 differs from the TDA3303 in its user control laws, and also a phase shift control which operates in PAL, as well as NTSC.

- · Automatic Black Level Setup
- Beam Current Limiting
- Uses Inexpensive 4.43/3.58 MHz Crystal
- No Oscillator Adjustment Required
- Three OSD Inputs Plus Fast Blanking Input
- Four DC, High Impedance User Controls
- Interfaces with TDA3030B SECAM Adaptor
- Single 12 V Supply
- Low Dissipation, Typically 600 mW

TV COLOR PROCESSOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 711-03

FIGURE 1 — PIN ASSIGNMENT

Chroma Input	1 40	Hue Control/NTSC Switch
ACC Capacitor	2 39	P□ +12 V
Chroma DL Driver, Emitter	3 38	B ☐ Ground
Chroma DL Driver, Collector	4 37	1.0 V Composite Video Input
Saturation Control	5 36	Delayed Luma Input
Identification Capacitor	6 3!	Luma DL Drive and 3.0 Inverted Output
V Input □	7 34	Luma Emitter Load
U Input □	8 33	Luma Collector Load
90° Loop Capacitor □	9 32	Contrast Control
Oscillator Loop Filter	10 31	Black Level Clamp
Crystal Drive	11 30	Brightness Control
Crystal Feedback	12 29	Peak Beam Limit Adjust
Ground 🗆	13 28	Frame Pulse Input
Blue Output	14 27	Sandcastle Pulse Input
Blue Output Clamp Capacitor	15 26	OSD Input Green
Blue Output Feedback	16 25	OSD Input Red
Green Output 🗖	17 24	OSD Input Blue
Green Output Clamp Capacitor 🗖	18 23	OSD Input Fast Blanking
Green Output Feedback	19 22	Red Output Feedback
Red Output	20 21	Red Output Clamp Capacitor

MAXIMUM RATINGS (T_A = +25°C unless otherwise stated)

Rating	Pin	Value	Unit	
Supply Voltage	39	14	Vdc	
Operating Temperature Range		0 to +70	°C	
Storage Temperature Range		-65 to +150	°C	

ELECTRICAL CHARACTERISTICS $(T_A = 25^{\circ}C, V_{CC} = 12 \text{ V})$

Characteristic	Pin	Min	Тур	Max	Unit
Supply Voltage Supply Current	39	10.8 —	12 45	13.2 60	V mA
Composite Video Input Video Input Resistance Video Gain to Pin 35 Input Window	37	13 2.7 0.8–3	1.0 18 3.2 0.7–3.2	23 3.6 —	Vp-p kΩ Vp-p V
Chroma Input (Burst) Input Resistance ACC Effectiveness	1 1 4	10 — —	100 5.0 1.2	200 — 3.0	mVp-p kΩ dB
OSD Input OSD Drive Impedance OSD Frequency Response (-3.0 dB) OSD Max Gain Gain Difference Between Any Two	24,25,26	0.5 — 9.0 — —	0.7 — — 7.2 —	1.0 180 — — 15	V Ω MHz MHz %
Beam Current Ref. Threshold Differential Voltage Beam Current Ref. Input Current Differential Current	16,19,22	1.7 — — —	2.0 — — —	2.3 20 + 1.5/ - 0.5 1.0	V mV μA μA
Luminance Gain Between Pin 36 and Outputs (depends on R ₃₃ and R ₃₄) Luminance Bandwidth (– 3.0 dB) Output Resistance Residual Carrier (4.43 Mc/s) PAL Offset (H/2) Difference in Gain Between Y Input and any RGB o/p	14,17,20	9.0 120 — —	4.7 — 170 30 — 5.0	— 300 150 50	MHz Ω mVp-p mVp-p $\%$
U Input Sensitivity for 5.0 V Blue Output	8	_	340	_	mVp-p
Matrix Error	14,17,20	_	_	10	%
Oscillator Capture Range		350			Hz
U Ref. Phase Error			_	5.0	۰
V Ref. Phase Error			_	5.0	۰
Color Kill Attenuation	14,17,20	50	_		dB
Contrast Tracking OSD/Luma/Chroma	14,17,20				dB
OSD Contrast Tracking	14,17,20			± 2.0	dB
OSD Enable Slice Level	23	_	0.7		٧
Sandcastle Slice Level Burst Gate Line Blanking R Input V ₂₇ > 7.0 V V ₂₇ < 7.0 V	27	6.5 2.0 —	7.2 2.6 5.0 22	8.0 3.0 —	V V kΩ kΩ
Frame Slice Level R Input	28	2	2.8 15	3.6 —	V kΩ
Peak Beam Limiter Threshold (I ₂₉ Min = 250 µA)		3.4 x l ₂₉	4 x l ₂₉	4.6 x l ₂₉	
Pin 29 Input Resistance	29		5.0	_	kΩ
Pin 29 Open Circuit Voltage	29		10.6		V

INPUT/OUTPUT FUNCTIONS

The brilliance control operates by adding a pedestal to the output signals. The amplitude of the pedestal is controlled by Pin 30.

During CRT beam current sampling a standard pedestal is substituted, its value being equivalent to the value given by V_{30} Nom. Brightness at black level with V_{30} Nom is given by the sum of three gun currents at the sampling level, i.e. $3 \times 20~\mu\text{A}$ with 100 k reference resistors on Pins 16, 19, and 22.

During picture blanking the brilliance pedestal is zero; therefore the output voltage during blanking is always the minimum brilliance black level (Note: Signal channels are also gain blanked).

FIGURE 4 — CONTRAST CONTROL

3.0

V₃₂ (VOLTS)

2.0-4.0-6.0-8.0-

2.0

1.0

0

10-

12.

16· 18·

20 22 24

ATTENUATION (dB)

Pin 5 is automatically pulled to ground with a misidentified PAL signal.

Note: Nominal 100% saturation point is given by choice of R₂ which sets ACC operating point.

Note: Pin 32 is pulled down by the operation of the peak beam limiter.

FIGURE 5 — BLOCK DIAGRAM

CIRCUIT OPERATION

CHROMINANCE DECODER SECTION

The chrominance decoder section of the TDA3301 consists of the following blocks:

Phase-locked reference oscillator — Figures 7, 8 and 9 Phase-locked 90 degree servo loop — Figures 9 and 10 U and V axis decoders

ACC detector and identification detector — Figure 11 Identification circuits and PAL bistable — Figure 12 Color difference filters and matrixes with fast blanking

Color difference filters and matrixes with fast blanki circuits.

- a minimum number of factory adjustments
- a minimum number of external components
- compatibility with the SECAM adapter TDA3030B
- low dissipation
- use of a standard 4.433618 MHz Crystal rather than a 2.0 fc Crystal with divider.

REFERENCE REGENERATION

The crystal VCO is of the phase shift variety in which the frequency is controlled by varying the phase of the feedback. A great deal of care was taken to ensure that the oscillator loop gain and the crystal loading impedance were held constant in order to ensure that the circuit functions well with low grade crystal (crystals having high magnitude spurious responses can cause bad phase jitter). It is also necessary to ensure that the gain at third harmonic is low enough to ensure absence of oscillation at this frequency.

FIGURE 7 — VOLTAGE CONTROLLED OSCILLATOR (VCO)

FIGURE 8 — VECTOR DIAGRAM FOR VCO

By referring to Figures 7 and 8 it can be seen that the necessary $\pm 45^{\circ}$ phase shift is obtained by variable addition of two currents 1_1 and 1_2 which are then fed into the load resistance of the crystal tuned circuit R_1 . Feedback is taken from the crystal load capacitance which gives a voltage VF lagging the crystal current by 90°.

The RC network in T_1 collector causes I_1 to lag the collector current of T_1 by 45°.

For SECAM operation the currents I₁ and I₂ are added together in a fixed ratio giving a frequency close to nominal.

When decoding PAL there are two departures from normal chroma reference regeneration practice:

a) The loop is locked to the burst entering from the PAL delay line matrix U channel and hence there is no alternating component. A small improvement in signal noise ratio is gained but more important is that the loop filter is not compromised by the 7.8 kHz component normally required at this point for PAL identification.

b) The H/2 switching of the oscillator phase is carried out before the phase detector. This implies any error signal from the phase detector is a signal at 7.8 kHz and not dc. A commutator at the phase detector output also driven from the PAL bistable converts this ac signal to a dc prior to the loop filter. The purpose of this is that constant offsets in the phase detector are converted by the commutator to a signal at 7.8 kHz which is integrated to zero and does not give a phase error.

When used for decoding NTSC the bistable is inhibited, and slightly less accurate phasing is achieved; however, as a hue control is used on NTSC this cannot be considered to be a serious disadvantage.

FIGURE 9 --- BLOCK DIAGRAM OF REFERENCE SECTION

90° REFERENCE GENERATION

To generate the U axis reference a variable all-pass network is utilized in a servo loop. The output of the all-pass network is compared with the oscillator output with a phase detector of which the output is filtered and corrects the operating point of the variable all-pass network (see Figure 10).

As with the reference loop the oscillator signal is taken after the H/2 phase switch and a commutator inserted before the filter so that constant phase detector errors are cancelled.

For SECAM operation the loop filter is grounded causing near zero phase shift so that the two synchronous detectors work in phase and not in quadrature.

The use of a 4.4 MHz oscillator and a servo loop to generate the required 90° reference signal allows the use of a standard, high volume, low cost crystal and gives an extremely accurate 90° which may be easily switched to 0° for decoding AM SECAM generated by the TDA3030B adapter.

FIGURE 10 — VARIABLE ALL-PASS NETWORK

FIGURE 11 — ACC AND IDENTIFICATION DETECTORS

ACC AND IDENTIFICATION DETECTORS

During burst gate time the output components of the U and also the V demodulators are steered into PNP emitters. One collector current of each PNP pair is mirrored and balanced against its twin giving push-pull current sources for driving the ACC and the identification filter capacitors.

The identification detector is given an internal offset by making the NPN current mirror emitter resistors unequal. The resistors are offset by 5% such that the identification detector pulls up on its filter capacitor with zero signal.

IDENTIFICATION

See Figure 12 for definitions.

Only for correctly identified PAL signal is the capacitor voltage held low since I_2 is then greater than I_1 .

For monochrome and incorrectly identified PAL signals I₁>I₂ hence voltage V_{CC} rises with each burst gate pulse.

When V_{ref} is exceeded by 0.7 V latch 1 is made conducting which increases rate of voltage rise on C. Maximum current is limited by R₁.

When V_{ref} 2 is exceeded by 0.7 V then latch 2 is made conducting until C is completely discharged and the current drops to a value insufficient to hold on latch 2. As latch 2 turns on latch 1 must turn off.

Latch 2 turning on gives extra trigger pulse to bistable to correct identification.

The inhibit line on latch 2 restricts latch 2 conduction to alternate lines as controlled by the bistable. This function allows the SECAM switching line to inhibit the bistable operation by firing latch 2 in the correct phase for SECAM. For NTSC latch 2 is fired by current injected on Pin 6

If the voltage on C is greater than 1.4 V then the saturation is held down. Only for SECAM/NTSC with latch 2 on or correctly identified PAL can the saturation control be anywhere but minimum.

NTSC SWITCH

NTSC operation is selected when current (I₃) is injected into Pin 6.

On the TDA3301 this current must be derived externally by connecting Pin 6 to \pm 12 V via a resistor (as on TDA3300B).

On the TDA3303 \mbox{I}_3 is supplied internally when \mbox{V}_{40} falls below 8.0 $\mbox{V}_{;}$

For normal PAL operation on both versions Pin 40 should be connected to $\,+\,12$ V and Pin 6 to the filter capacitor.

FIGURE 12 — IDENTIFICATION CIRCUIT

COLOR DIFFERENCE MATRIXING, COLOR KILLING, AND CHROMA BLANKING

During picture time the two demodulators feed simple RC filters with emitter follower outputs. Color killing and blanking is performed by lifting these outputs to a voltage above the maximum value that the color difference signal could supply.

The color difference matrixing is performed by 2 differential amplifiers each with one side split to give the correct values of the -(B-Y) and -(R-Y) signals. These are added to give the (G-Y) signal.

The 3 color difference signals are then taken to the virtual earths of the video output stages together with luminance signal.

FIGURE 13 — COLOR DIFFERENCE STAGES

SANDCASTLE SELECTION

The TDA3301/3303 may be used with a two level sand-castle and a separate frame pulse to Pin 28, or with only a 3 level (super) sandcastle. In the latter case a resistor of 1 M Ω is necessary from +12 volts to Pin 28 and a 470 pF capacitor from Pin 28 to ground.

FIGURE 14 — TIMING DIAGRAM

TIMING COUNTER FOR SAMPLE CONTROL

In order to control the beam current sampling at the beginning of each frame scan two edge triggered flip-flops are used.

The output \overline{A} of the first flip-flop A is used to clock the second flip-flop B. Clocking of A by the burst gate is inhibited by a count of $A.\overline{B}$.

The count sequence can only by initiated by the trail-

ing edge of the frame pulse. In order to provide control signals for:

Luma/Chroma blanking,

Beam current sampling,

On-screen display blanking,

Brilliance control.

The appropriate flip-flop outputs are matrixed with sandcastle and frame signals by an emitter follower matrix.

ON-SCREEN DISPLAY INPUTS

Each section of the OSD stages consists of a common emitter input stage feeding a diversion gate controlled by the contrast control. During burst gate time a feedback loop is activated which clamps the signal at the

input coupling capacitor. This ensures that the current in the diversion gate is zero at black level and makes the OSD black level insensitive to contrast control, also the inputs ignore signals below black, e.g. sync, pulses.

FIGURE 16 — OSD STAGE

FIGURE 17 — VIDEO OUTPUT SECTION

Each video output stage consists of a feedback amplifier in which the input signal is a current drive to the virtual earth from the luminance, color difference and on-screen display stages.

A further drive current is used to control the dc operating point; this is derived from the sample and hold stage which samples the beam current after frame flyback.

FIGURE 18 — COMPLETE VIDEO OUTPUT SECTIONS

FIGURE 19 — TYPICAL VIDEO OUTPUT STAGE

FIGURE 20 — CLASS A VIDEO OUTPUT STAGE WITH DIRECT FEEDBACK

10-190

TDA3330

Advance Information

TV COLOR PROCESSOR

This device will accept a PAL or NTSC composite video signal and output the three color signals, needing only a simple driver amplifier to interface to the picture tube.

Its simplified approach makes it particularly suitable for low cost CTV systems.

- No Oscillator Adjustment Required
- Four dc High Impedance User Controls
- Uses Inexpensive 4.43/3.58 MHz Crystals
- Interfaces With TDA3030B SECAM Adaptor
- Uses Horizontal Flyback or Super Sandcastle Pulse
- Single 12 V Supply
- Low Dissipation

TV COLOR PROCESSOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 724-02

FIGURE 1 — PIN ASSIGNMENT

		_
Chroma DL Driver, Collector	1 ●	Chroma DL Driver, Emitter
Saturation Control	2 23	ACC Filter
Identification Capacitor	3 22	Chroma Input
V Input 🛭	4 21	Hue Control/NTSC Switch
U Input 🛭	5 20	12·V
90° Loop Capacitor 🛭	6 19	Contrast Control
Oscillator Loop Filter	7 18	Brilliance Control
Crystal Drive	8 17	Y Input
Crystal Feedback	9 16	dF/dt
Ground 🛭	10 15	Sandcastle Input
DC Ref & Blanking 🕻	11 14	Red Output
Blue Output 🕻	12 13	Green Output
		J

This document contains information on a new product. Specifications and information herein are subject to change without notice.

FIGURE 2 — BLOCK DIAGRAM AND PAL APPLICATION

FIGURE 3 - NTSC APPLICATION

TDA3333

TV COLOR DIFFERENCE DEMODULATOR

This device is designed to demodulate a typical chroma input signal and output the two color difference signals, R-Y and B-Y.

- Decodes PAL or NTSC
- Uses Inexpensive 4.43/3.58 MHz Crystal
- No Oscillator Adjustment Required
- On-Chip Hue Control for NTSC
- Interfaces with TDA3030B SECAM Adaptor
- Single 12 V Supply
- Low Dissipation

TV COLOR DIFFERENCE DEMODULATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

FIGURE 1 — PIN ASSIGNMENT

Chroma DL DRIVER, Collector	$_{\lceil} \smile$	18	Chroma DL Driver, Emitter
Saturation [2	17	ACC Filter
Identification Capacitor	3	16	Chroma Input
V Input	4	15	Hue Control/NTSC Switch
U Input [5	14] +12 V
Crystal Drive	6	13	I (R−Y) Output
Crystal Feedback	7	12	(B-Y) Output
90° Loop Capacitor	8	11	Sandcastle Input
Ground [9	10	Oscillator Loop Filter

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise stated)

Rating	Pin	Value	Unit
Supply Voltage	39	14	Vdc
Operating Temperature Range		0 to +70	°C
Storage Temperature Range		-65 to +150	°C

ELECTRICAL CHARACTERISTICS (TA = 25°C, VCC = 12 V)

Characteristic	;	Pin	Min	Тур	Max	Unit
Supply Voltage		14	10.8	12	13.2	V .
Chroma Input	•	16	10	100	200	mVp-p (burst)
ACC Effectiveness		1	_	1.2	3.0	dB
Matrix Error				_	10	%
Oscillator Capture Range			350	_	_	Hz
U Ref. Phase Error			_	_	5.0	۰
V Ref. Phase Error					5.0	۰
U Input Sensitivity for 1.0 Vp-p	(B-Y) Output	5	_	70	_	mVp-p
Max Output (Limiting)	B-Y R-Y	12 13	=	4.2 2.4	=	Vp-p Vp-p
DC Output	B-Y R-Y	12 13	=	9.2 10.1	=	V V
Output Resistance	B-Y R-Y	12 13	_	100 80	_	Ω

FIGURE 2 — BLOCK DIAGRAM

FIGURE 3 — SATURATION CONTROL VOLTAGE

FIGURE 4 — HUE CONTROL

Note: Hue control acts only during burst gating with $V_{15}{<}8$ Volts.

This condition also selects NTSC mode

CIRCUIT OPERATION

CHROMINANCE DECODER SECTION

The chrominance decoder consists of the following blocks:

Phase-locked reference oscillator — Figures 5, 6, and 7

Phase-locked 90 degree servo loop — Figures 7 and 8

U and V axis decoders

ACC detector and identification detector — Figure 9 Identification circuits and PAL bistable — Figure 10 Color difference filters and matrixes with fast blanking circuits.

The major design considerations apart from optimum performance were:

- a minimum number of factory adjustments
- a minimum number of external components
- compatibility with the SECAM adapter TDA3030B
- low dissipation
- use of a standard 4.433618 MHz Crystal rather than a 2.0 fc Crystal with divider.

FIGURE 5 — VOLTAGE CONTROLLED OSCILLATOR (VCO)

REFERENCE REGENERATION

The Crystal VCO is of the phase shift variety in which the frequency is controlled by varying the phase of the feedback. A great deal of care was taken to ensure that the oscillator loop gain and the Crystal loading impedance were held constant in order to ensure that the circuit functions well with low grade Crystals (Crystals having high magnitude spurious responses can cause bad phase jitter). It is also necessary to ensure that the gain at third harmonic is low enough to ensure absence of oscillation at this frequency.

By referring to Figures 5 and 6 it can be seen that the necessary $\pm 45^{\circ}$ phase shift is obtained by variable addition of two currents I₁ and I₂ which are then fed into the load resistance of the Crystal tuned circuit R₁. Feedback is taken from the Crystal load capacitance which gives a voltage VF lagging the Crystal current by 90°.

The RC network in T_1 collector causes I_1 to lag the collector current of T_1 by 45°.

For SECAM operation the currents I_1 and I_2 are added together in a fixed ratio giving a frequency close to nominal.

When decoding PAL there are two departures from normal chroma reference regeneration practice:

a) The loop is locked to the burst entering from the PAL delay line matrix U channel and hence there is no alternating component. A small improvement in signal/noise ratio is gained but more important

FIGURE 6 — VECTOR DIAGRAM FOR VCO

is that the loop filter is not compromised by the 7.8 kHz component normally required at this point for PAL identification.

b) The H/2 switching of the oscillator phase is carried out before the phase detector. This implies any error signal from the phase detector is a signal at 7.8 kHz and not dc. A commutator at the phase detector output also driven from the PAL bistable converts this ac signal to a dc prior to the loop filter. The purpose of this is that constant offsets in the phase detector are converted by the commutator to a signal at 7.8 kHz which is integrated to zero and does not give a phase error.

When used for decoding NTSC the bistable is inhibited, and slightly less accurate phasing is achieved; however, as a hue control is used on NTSC, this cannot be considered to be a serious disadvantage.

90° REFERENCE GENERATION

FIGURE 7 — BLOCK DIAGRAM OF REFERENCE SECTION

FIGURE 8 - VARIABLE ALL-PASS NETWORK

To generate the U axis reference a variable all-pass network is utilized in a servo loop. The output of the all-pass network is compared with the oscillator output with a phase detector of which the output is filtered and corrects the operating point of the varible all-pass network (see Figure 8).

As with the reference loop the oscillator signal is taken after the H/2 phase switch and a commutator inserted before the filter so that constant phase detector errors are cancelled.

For SECAM operation the loop filter is grounded causing near zero phase shift so that the two synchronous detectors work in phase and not in quadrature.

The use of a 4.4 MHz oscillator and a servo loop to generate the required 90° reference signal allows the use of a standard, high volume, low cost crystal and gives an extremely accurate 90° which may be easily switched to 0° for decoding AM SECAM generated by the TDA3030B Adapter.

ACC AND IDENTIFICATION DETECTORS

During burst gate time the output components of the U and also the V demodulators are steered into PNP emitters. One collector current of each PNP pair is mirrored and balanced against its twin giving push-pull

current sources for driving the ACC and the identification filter capacitors.

The identification detector is given an internal offset by making the NPN current mirror emitter resistors unequal. The resistors are offset by 5% such that the identification detector pulls up on its filter capacitor with zero signal.

IDENTIFICATION

 $\begin{array}{lll} \text{Monochrome} & I_1 > I_2 & \text{PAL ident. X} & I_1 > I_2 \\ \text{PAL ident. OK} & I_1 < I_2 & \text{NTSC} & I_3 > I_2 \end{array}$

Only for correctly identified PAL signal is the capacitor voltage held low since I₂ is then greater than I₁.

For monochrome and incorrectly identified PAL signals $I_1\!>\!I_2$ hence voltage V_C rises with each burst gate pulse.

When V_{ref} is exceeded by 0.7 V latch 1 is made conducting which increases rate of voltage rise on C. Maximum current is limited by R₁.

When V_{ref} is exceeded by 0.7 V then latch 2 is made conducting until C is completely discharged and the current drops to a value insufficient to hold on latch 2. As latch 2 turns on latch 1 must turn off.

Latch 2 turning on gives extra trigger pulse to bistable to correct identification.

The inhibit line on latch 2 restricts latch 2 conduction to alternate lines as controlled by the bistable. This function allows the SECAM switching line to inhibit the bistable operation by firing latch 2 in the correct phase for SECAM. For NTSC latch 2 is fired by current injected

externally on the filter capacitor.

If the voltage on C is greater than 1.4 V then the saturation is held down. Only for SECAM/NTSC with latch 2 on or correctly identified PAL can the saturation control be anywhere but minimum.

FIGURE 9 — ACC AND IDENTIFICATION DETECTORS

FIGURE 10 — IDENTIFICATION CIRCUIT

NTSC switch operates when $V_{15}{<}8.0\ V.$

COLOR DIFFERENCE MATRIXING, COLOR KILLING, AND CHROMA BLANKING

During picture time the two demodulators feed simple RC filters with emitter follower outputs. Color killing and blanking is performed by lifting these outputs to a voltage above the maximum value that the color difference signal could supply.

The R-Y and B-Y demodulators have equal conversion gains. The demodulated signals are therefore fed through differential amplifiers with a gain ratio G (B-Y)/G (R-Y) = 1.78 in order to give correctly proportioned B-Y and R-Y signals at the output.

FIGURE 11 — COLOR DIFFERENCE STAGES

FIGURE 12 — TYPICAL PAL APPLICATION

μ**Α758Α**

PHASE LOCK LOOP FM STEREO DEMODULATOR

The μ A758A is an improved FM stereo multiplex decoder with an extended operating supply voltage range.

It is a direct replacement for the μ A758 and LM1800.

- Requires No Inductors
- Low External Part Count
- Excellent Channel Separation Without Adjustment
- Only Single Potentiometer Oscillator Frequency Adjustment Necessary
- 100 mA Lamp or LED Driving Capability With Current Limiting
- Automatic, Transient-Free Stereo/Mono Switching
- Wide Supply Range: 8–16 Vdc
- Excellent SCA Rejection
- 50 dB Power Supply Rejection
- Low Impedance, Buffered Output

PHASE LOCK LOOP FM STEREO DEMODULATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

PLASTIC PACKAGE CASE 648-05

ABSOLUTE MAXIMUM RATINGS (TA = +25°C unless otherwise noted)

Rating	Value	Unit
Supply Voltage	18	Vdc
Supply Voltage (≤ 15 Seconds)	22	Vdc
Voltage at Lamp Driver Terminal (Lamp OFF)	22	Vdc
Junction Temperature	150	°C
Operating Temperature Range	-40 to +85	°C
Storage Temperature Range	-65 to +150	°C
Operating Voltage Range	8-16	Vdc

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$, $V_{CC} = +12$ Vdc, 19 kHz pilot level = 30 mV(RMS), Multiplex Signal (L = R, pilot OFF) = 300 mV(RMS), Modulation Frequency = 400 Hz or 1 kHz, Test Circuit 1, unless otherwise specified)

Characteristic	Min	Тур	Max	Unit
Current Drain Lamp OFF	_	21	35	mAdc
Maximum Available Lamp Current	100	150		mAdc
Voltage @ Lamp Driver Terminal I _{Lamp} = 50 mA		1.0	1.8	Vdc
DC Voltage Shift @ Either Output Terminal Stereo to Mono Operation — No Lamp	_	2.0	100	mVdc
Power Supply Ripple Rejection 200 Hz, 200 mV(RMS)	35	50	_	dB
Input Resistance	20	35	_	kΩ
Output Resistance	0.9	1.3	1.7	kΩ
Channel Separation 100 Hz 400 Hz 10 kHz		40 45 45	_ _ _	dB
Channel Balance	- Annua	0	1.0	dB
Voltage Gain 1 kHz	0.6	0.9	1.3	V/V
Pilot Input Level Lamp Turn-On Lamp Turn-Off	_ 2.0	15 7.0	20 —	mV(RMS)
Pilot Input Level Hysteresis Lamp Turn-Off to Turn-On	3.0	7.0	_	dB
Capture Range	2.0	4.0	6.0	%
Total Harmonic Distortion Multiplex Level = 600 mV(RMS) Pilot OFF		0.2	1.0	%
9 kHz Rejection	25	35		dB
38 kHz Rejection	25	45		dB
SCA Rejection (Note 2)	_	70	_	dB
VCO Tuning Resistance (Note 3)	21.0	23.3	25.5	kΩ
VCO Frequency Drift $0^{\circ}\text{C} \leqslant T_{\text{A}} \leqslant 25^{\circ}\text{C} \\ 25^{\circ}\text{C} \leqslant T_{\text{A}} \leqslant +70^{\circ}\text{C}$			± 2 ± 2	%

NOTES:

- 1. Rating applied for ambient temperatures. $R_{\theta JA} = 100^{\circ} C/W$
- 2. Measured with a stereo composite signal consistency of 80% stereo, 10% pilot and 10% SCA as defined in the FCC Rules on Broadcasting
- 3. Total resistance fom pin 15 to ground, in test circuit 1, required to set reference frequency at pin 11 to 19 kHz \pm 10 Hz

TYPICAL APPLICATION AND TEST CIRCUIT

NOTES:

- C4 may be removed for most applications
- C6 Tolerance = $\pm 1\%$ in test circuit and $\pm 5\%$ in typical applications
- R3 Tolerance = ±1%
- R4 Tolerance = ±10%
- R1 and R2 Tolerances = $\pm 1\%$ in test circuit and $\pm 5\%$ in typical application

Other Linear

OTHER LINEAR

Device	Function	Page
CA3059	Zero Voltage Switch	11-3
CA3079	Zero Voltage Switch	11-3
MC1422	Timing Circuit with Adjustable Threshold	11-8
MC1455	Timing Circuit	11-15
MC1494L	Four-Quadrant Multiplier	11-22
MC1495L	Four-Quadrant Multiplier	
MC1496	Balanced Modulator-Demodulator	
MC1555	Timing Circuit	11-15
MC1594L	Four-Quadrant Multiplier	11-22
MC1595L	Four-Quadrant Multiplier	11-36
MC1596	Balanced Modulator-Demodulator	
MC3344	Programmable Frequency Switch	11-61
MC3370P	Zero Voltage Switch	
MC3456	Dual Timing Circuit	
MC3556	Dual Timing Circuit	
NE565N	Phase-Locked Loop	
SAA1042,A	Stepper Motor Driver	
TDA1085A,B	Universal Motor Speed Controller	
TDA1185A	Triac Phase Angle Controller	
TDA1285A	Universal Motor Speed Controller	
UAA1016A.B	Zero Voltage Controller	. 11-106

CA3059 CA3079

ZERO VOLTAGE SWITCHES

 \dots designed for thyristor control in a variety of ac power switching applications for ac input voltages of 24 V, 120 V, 208/230 V, and 277 V @ 50/60 Hz.

Applications:

- Relay Control
- Heater Control
- Valve Control
- Lamp Control
- Synchronous Switching of Flashing Lights
- On-Off Motor Switching
- Differential Comparator With Self-Contained Power Supply for Industrial Applications
- Photosensitive Control
- Power One-Shot Control

ZERO VOLTAGE SWITCHES

SILICON MONOLITHIC INTEGRATED CIRCUITS

PLASTIC PACKAGE CASE 646-05

FIGURE 1 – FUNCTIONAL BLOCK DIAGRAM

NOTE: Chada

NOTE: Shaded Area Not Included With CA3079.

TABLE A

AC Input Voltage (50/60 Hz) vac	Input Series Resistor (R _S) kΩ	Dissipation Rating for R _S W
24	2.0	0.5
120	10	2.0
208/230	20	4.0
277	25	5.0

FUNCTIONAL BLOCK DESCRIPTION

- 1. Limiter-Power Supply Allows operation of the CA3059/79 directly from an ac line. Suggested dropping resistor (R_S) values are given in Table A.
- Differential On/Off Sensing Amplifier Tests for condition of external sensors or input command signals. Proportional control capability or hysteresis may be implemented using this block.
- Zero-Crossing Detector Synchronizes the output pulses to the zero voltage point of the ac cycle. This synchronization eliminates RFI when used with resistive loads.
- 4. Triac Drive Supplies high-current pulses to the external power controlling thyristor.
- 5. Protection Circuit (CA3059 only) A built-in circuit may be actuated, if the sensor opens or shorts, to remove the drive current from the external triac.
- 6. Inhibit Capability (CA3059 only) Thyristor firing may be inhibited by the action of an internal diode gate at Pin 1.
- 7. High Power DC Comparator Operation (CA3059 only) Operation in this mode is accomplished by connecting Pin 7 to Pin 12 (thus overriding the action of the zero-crossing detector). When Pin 13 is positive with respect to Pin 9, current to the thyristor is continuous.

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating		Symbol	Value	Unit
DC Supply Voltage		Vcc		Vdc
(Between Pins 2 and 7	CA3059		12	
	CA3079		10	
DC Supply Voltage		Vcc		Vdc
(Between Pins 2 and 8)	CA3059		12	
	CA3079		10	
Peak Supply Current (Pins 5 and 7)		15,7	± 50	mA
Fail-Safe Input Current (Pin 14)		¹ 14	2.0	mA
Output Pulse Current (Pin 4)		lout	150	mA
Junction Temperature		Tj	150	°C
Operating Temperature Range		TA	-40 to +85	°C
Storage Temperature Range		T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (Operation @ 120 Vrms, 50-60 Hz, T_A = 25°C)**

Characteristic	Test Circuits	Symbol	Min	Тур	Max	Unit
DC Supply Voltage	Fig. 2	٧s				Vdc
Inhibit Mode						l
$R_S = 10 \text{ k, I}_L = 0$			6.1	6.5	7.0	
$R_S = 5.0 \text{ k}, I_L = 2.0 \text{ mA}$			_	6.1	_	
Pulse Mode	- -					
$R_S = 10 \text{ k, I}_L = 0$			6.0	6.4	7.0	
$R_S = 5.0 \text{ k}, R_L = 2.0 \text{ mA}$				6.2		
Gate Trigger Current	Fig. 3	^I GT	_	160	-	mA.
(VGT = 1.0 V, Pins 3 and 2 connected)						
Peak Output Current, Pulsed	Fig. 3	IOM				mA
With Internal Power Supply, $V_{GT} = 0$						
Pin 3 Open			50	125	-	
Pins 3 and 2 Connected			90	190	_	
With External Power Supply, VCC = 12 V, VGT = 0	Fig. 4					
Pin 3 Open			-	230	_	
Pins 3 and 2 Connected				300	_	
Inhibit Input Ratio	Fig. 5	V9/V2	0.465	0.485	0.520	-
(Ratio of Voltage @ Pin 9 to Pin 2)						
Total Gate Pulse Duration (CExt = 0)	Fig. 6					μs
Positive dv/dt		tp	70	100	140	
Negative dv/dt		tn	70	100	140	
Pulse Duration After Zero Crossing	Fig. 6					μs
$(C_{Ext} = 0, R_{Ext} = \infty)$		6				İ
Positive dv/dt		tp1	-	50	· -	ľ
Negative dv/dt		tn ₁		60		
Output Leakage Current Inhibit Mode***	Fig. 3	14	-	0.001	10	μΑ
Input Bias Current CA3059	Fig. 7	IB	_	0.15	1.0	μΑ
CA3079			_	0.15	2.0	
Common Mode Input Voltage Range		VCMR	_	1.4 to 5.0	_	Vdc
(Pins 9 and 13 Connected)						
Inhibit Input Voltage CA3059 only	Fig. 8	٧1	-	1.4	1.6	Vdc
External Trigger Voltage CA3059 only	_	V6-V4	-	1.4	. –	Vdc

^{*}Care must be taken, especially when using an external power supply, that total package dissipation is not exceeded.

^{**}The values given in the Electrical Characteristics Chart at 120 V also apply for operation at input voltages of 24 V, 208/230 V, and 277 V, except for Pulse Duration test. However, the series resistor (R_S) must have the indicated value, shown in Table A for the specified input voltage.

^{***}I₄ out of Pin 4 2 V on Pin 1 S1 position 2

TEST CIRCUITS

(All resistor values are in ohms)

FIGURE 2 - DC SUPPLY VOLTAGE

FIGURE 4 – PEAK OUTPUT CURRENT (PULSED)
WITH EXTERNAL POWER SUPPLY

FIGURE 6 — GATE PULSE DURATION TEST CIRCUIT WITH ASSOCIATED WAVEFORM

FIGURE 3 — PEAK OUTPUT (PULSED) AND GATE TRIGGER CURRENT WITH INTERNAL POWER SUPPLY

FIGURE 5 - INPUT INHIBIT RATIO

FIGURE 7 - INPUT BIAS CURRENT TEST CIRCUIT

11

TYPICAL CHARACTERISTICS

FIGURE 8 - INHIBIT INPUT VOLTAGE TEST

FIGURE 10 – PEAK OUTPUT CURRENT (PULSED)
versus AMBIENT TEMPERATURE

FIGURE 12 — INTERNAL SUPPLY versus

AMBIENT TEMPERATURE

FIGURE 9 — PEAK OUTPUT CURRENT (PULSED)
versus EXTERNAL POWER SUPPLY VOLTAGE

FIGURE 11 – TOTAL PULSE WIDTH versus

AMBIENT TEMPERATURE

FIGURE 13 — INHIBIT VOLTAGE RATIO versus AMBIENT TEMPERATURE

FIGURE 14 - CIRCUIT SCHEMATIC

NOTE: Current sources are established by an internal reference Pins 1, 6, 12, and 14 are not used with CA3079.

APPLICATION INFORMATION

Power Supply

The CA3059 and CA3079 are self-powered circuits, powered from the acline through an appropriate dropping resistor (see Table A). The internal supply is designed to power the auxiliary power circuits.

In applications where more output current from the internal supply is required, an external power supply of higher voltage should be used. To use an external power supply, connect pin 5 and pin 7 together, and apply the synchronizing voltage to pin 12 and the dc supply voltage to pin 2 as shown in Figure 4.

Operation of Protection Circuit (CA3059 Only)

The protection circuit, when connected, will remove current drive from the triac if an open or shorted sensor is detected. This circuit is activated by connecting pin 13 to pin 14 (see Figure 1).

The following conditions should be observed when the protection circuit is utilized:

A. The internal supply should be used and the external load current must be limited to 2 mA with a 5 k Ω dropping resistor.

- B. Sensor Resistance (R χ) and Rp values should be between 2 k Ω and 100 k Ω .
- C. The relationship 0.33 < R_X/R_P < 3 must be met over the anticipated temperature range to prevent undesired activation of the circuit. A shunt or series resistor may have to be added.

External Inhibit Function (CA3059 Only)

A priority inihibit command applied to pin 1 will remove current drive from the thyristor. A command of at least +1.2 V @ 10 μ A is required. A DTL or T²L logic 1 applied to pin 1 will activate the inhibit function.

DC Gate Current Mode (CA3059 Only)

When comparator operation is desired or inductive loads are being switched, pins 7 and 12 should be connected. This connection disables the zero-crossing detector to permit the flow of gate current from the differential sensing amplifier on demand. Care should be exercised to avoid possible overloading of the internal power supply when operating the device in this mode. A resistor should be inserted between pin 4 and the thyristor gate in order to limit the current.

Specifications and Applications Information

MONOLITHIC TIMING CIRCUIT WITH EXTERNALLY ADJUSTABLE THRESHOLD LEVEL

The MC1422 monolithic timing circuit is a highly stable controller capable of producing accurate time delays, or oscillation. Additional terminals are provided for triggering or resetting if desired. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200 mA or drive MTTL circuits.

- Useable as a Differential Comparator Timer
- Timing From Microseconds Through Hours
- Operates in Both Astable and Monostable Modes
- Adjustable Duty Cycle
- High Current Output Can Source or Sink 200 mA
- Output Can Drive MTTL
- Temperature Stability of 0.005% per ^OC
- Normally "On" or Normally "Off" Output

TYPICAL APPLICATIONS

- Time Delay Generation
- Precision Timing Missing Pulse Detection
- Sequential Timing
 - Linear Sweep Generation Pulse Shaping
- Pulse Generation Pulse Width Modulation • Pulse Position Modulation

MAXIMUM RATINGS (TA = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+16	Vdc
Discharge Current (Pin 7)	17	200	mA
Power Dissipation (Package Limitation)	PD		
Metal Can		680	mW
Derate above T _A = +25 ^o C	1	4.6	mW/ ^O C
Plastic Dual In-Line Package		625	mW
Derate above T _A = +25 ^o C		5.0	mW/ ^O C
Operating Temperature Range (Ambient)	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Storage Temperature Hange	stg	-05 to +150	1 -0

TIMING CIRCUIT WITH ADJUSTABLE THRESHOLD

SILICON MONOLITHIC INTEGRATED CIRCUIT

P1 SUFFIX PLASTIC PACKAGE CASE 626-04

- 1. Ground 2. Trigger
- 3. Output
- 4 Reset
- 5. Variable Threshold Reference
- 6. Threshold
- 7. Discharge
- 8. V_{CC}

G SUFFIX METAL PACKAGE CASE 601-04

- 1. Ground
- 2. Trigger 3. Output
- 4. Reset
- 5. Variable Threshold Reference
- 6. Threshold
- 7. Discharge
- 8. V_{CC}

ORDERING INFORMATION

ORDERING INFORMATION					
Туре	Temperature Range	Package			
MC1422G	0 to +70°C	Metal Can			
MCC1422P1	0 to +70°C	Plastic DIP			

MC1422

ELECTRICAL CHARACTERISTICS (T_A = +25°C, V_{CC} = +5.0 V to +14 V unless otherwise noted.)

Characteristics	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	_	14	V
Supply Current	I _D				mA
V _{CC} = 5.0 V, R _L = ∞		-	3.0	6.0	
V _{CC} = 14 V, R _L = ∞		-	10	15	
Low State (Note 1)					
Timing Error (Note 2)				l	
R_A , $R_B = 1.0 \text{ k}\Omega$ to $100 \text{ k}\Omega$				Į.	
Initial Accuracy C = 0.1 µF		-	1.0	_	%
Drift with Temperature		_	50	-	PPM/ ^O C
Drift with Supply Voltage			0.01		%/Volt
Threshold Voltage (Figure 2)	V _{th}	_	2/3	_	×Vcc
Trigger Voltage	VT				V
V _{CC} = 14 V		_	5.0	_	
V _{CC} = 5.0 V		-	1.67	-	
Trigger Current	lт	_	0.5		μА
Discharge Leakage Current	Idis	-	-	250	nA
Reset Current	I _R	_	0.1	_	mA
Threshold Current (Note 3)	I _{th}	_	_	1.0	μΑ
Output Voltage Low	VOL				V
(V _{CC} = 14 V)		1			
$I_{sink} = 10 \text{ mA}$			0.1	0.35	
I _{sink} = 50 mA		_	0.4	1.0	
I _{sink} = 100 mA		-	2.0	3.5	1
I _{sink} = 200 mA		· -	2.5		
Output Voltage High	Voн				V
(I _{source} = 25 mA)					
V _{CC} = 14 V		11.75	13.3	_	
V _{CC} = 5.0 V		2.75	3.3		
Rise Time of Output	tOLH	_	100	_	ns
Fall Time of Output	tOHL	_	100		ns

NOTES:

- 2. Tested at V_{CC} = 5.0 V and V_{CC} = 14 V.
- 1. Supply current when output is high is typically 1.0 mA less. 3. This will determine the maximum value of RA + RB for 15 V operation. The maximum total R = 20 megohms.

FIGURE 2 - DC TEST CIRCUIT

FIGURE 3 - AC TEST CIRCUIT

TYPICAL CHARACTERISTICS

 $(T_A = +25^{\circ}C \text{ unless otherwise noted.})$

FIGURE 4 - TRIGGER PULSE WIDTH

FIGURE 5 - SUPPLY CURRENT

FIGURE 6 - HIGH OUTPUT VOLTAGE

FIGURE 7 – LOW OUTPUT VOLTAGE

FIGURE 8 – LOW OUTPUT VOLTAGE $@V_{CC} = 10 \text{ Vdc}$

FIGURE 9 - LOW OUTPUT VOLTAGE @ V_{CC} = 15 Vdc

FIGURE 10 - DELAY TIME versus SUPPLY VOLTAGE

FIGURE 11 – DELAY TIME versus TEMPERATURE

FIGURE 12 – PROPAGATION DELAY versus TRIGGER VOLTAGE

FIGURE 13 - CIRCUIT SCHEMATIC CONTROL VOLTAGE

GENERAL INFORMATION

The MC1422 is a monolithic timing circuit similar in performance and function to the MC1455 timer. It can be used in both the astable and monostable modes with frequency and duty cycle controlled by the capacitor and resistor values. While the timing is dependent upon the external passive components, the monolithic circuit provides the starting circuit, voltage comparison and other functions needed for a complete timing circuit. Internal to the integrated circuit are two comparators, one for the input signal and the other for capacitor voltage; also a flip-flop and digital output are offered. The reference voltage of the trigger comparator is a fixed ratio of the supply voltage while the reference voltage of the threshold comparator is completely adjustable.

The MC1422 offers a completely independent variable threshold terminal. This feature allows it to be used as a modulation terminal as well as a synchronization terminal giving an additional degree of freedom in circuit design. The reference voltage pin (pin 5), for the threshold comparator is completely adjustable.

A reset pin is provided to discharge the capacitor thus interrupting the timing cycle. As long as the reset pin is low, the capacitor discharge transistor is turned "on" and prevents the capacitor from charging. While the reset volt-

age is applied the digital output will remain low. The reset pin should be tied to the supply voltage when not in use.

Monostable Mode

In the monostable mode, a capacitor and a single resistor are used for the timing network. Both the threshold and the discharge transistor terminal are connected together in this mode, refer to circuit Figure 14. When the input voltage to the trigger comparator falls below 1/3 VCC the comparator output triggers the flip-flop so that it's output sets low. This turns the capacitor discharge transistor "off" and drives the digital output to the high state. This condition allows the capacitor to charge at an exponential rate which is set by the RC time constant. When the capacitor voltage reaches the external reference voltage the threshold comparator resets the flip-flop. This discharges the timing capacitor and returns the digital output to the low state. Once the flip-flop has been triggered by an input signal, it cannot be retriggered until the present timing period has been completed. The time that the output is high is given by the equation $t = 1.1 R_A C$. Various combinations of R and C and their associated times are shown in Figure 15. The trigger pulse width must be less than the timing period.

FIGURE 14 - MONOSTABLE CIRCUIT

APPLICATIONS INFORMATION

In general, the MC1422 can be used in any application where the MC1455/NE555 is currently being used as long as an external reference is supplied. (Refer to MC1455 data sheet for these applications.) The applications listed below are unique to the MC1422 and its design.

Zero Crossing Cycler

This circuit (see Figure 15) is most useful where it is necessary to cycle a thyristor at some frequency and duty cycle at line zero crossing only. This cycling at zero crossing only will reduce EMI, and current surges if capacitive loads are used.

Circuit Description

In order to have exact zero crossing cycling a phase shift network (R3)(C2) is used. Diodes C_{R1} and C_{R2} limit

the line voltage to V- and V+. This limited line voltage, which appears somewhat like a square wave, is used as a sync pulse when differentiated by C1 and attenuated to 1/3 by R1 and R2. Cycle time is dependent on R4 and C3. The duty cycle is set by potentiometer R4.

It should be noted that this zero crossing cycler is intended for low frequency cycling, much lower than the line frequency used.

$$T_{\text{cycle}} = 0.69 \text{ (R4)(C3) or } f_{\text{cycle}} = \frac{1.44}{\text{(R4)(C3)}}$$

FIGURE 15 - ZERO CROSSING CYCLER

FIGURE 16 - PULSE WIDTH MODULATOR

FIGURE 17 - PULSE WIDTH MODULATOR WAVEFORMS

Pulse Width Modulator

The MC1422 is used as a pulse width modulator (PWM) with the MC1455 being utilized as an astable. The MC1422 can be used as an astable in place of the MC1455 if an external reference of approximately 2/3 V_{CC} is used at Pin 5.

The transistors Q1 and Q2 are configured as a current mirror to provide a linear voltage ramp across C3. This constant current scheme attributes a relatively linear transfer characteristic for the pulse width modulator.

Several considerations must be made when using this circuit.

The minimum duty cycle out is limited to the complement of the input signal. (i.e., a 95% duty cycle astable driving the PWM will give a minimum duty cycle output of ~5%.)

The maximum duty cycle out will also be limited to the maximum duty cycle in.

2. For the astable frequency:

$$f = 1/T = \frac{1.44}{(R_1 + 2R_2)C}$$

3. Duty cycle (D.C.) for the astable:

$$DC = \frac{R_2}{R_1 + 2R_2}$$

For best results the charge time of C3 in the pulse width modulator should be equal to the period of the astable.

$$\frac{I_{Q1}}{C3\;(V_{CC}-1)} = f_{1n} = \frac{1}{T_{C3}} \quad I_{Q1} \simeq I_{Q2} = \frac{V_{CC} - V_{BE}}{R3}$$

 V_{CC} = 10 V linearity typically 3% modulation input from 2 volts to 8 volts.

44

Voltage Controlled Oscillator

The VCO circuit, which has a nonlinear transfer characteristic will operate satisfactorily up to 200 kHz. The VCO input range is effective from 1/3 VCC to VCC – 2 V, with the highest control voltage producing the lowest output frequency. The equation for the frequency is:

$$\frac{f_{out} \simeq \frac{1}{1}}{\ln (1 - \frac{V5 - 1/3 \text{ V}_{CC}}{2/3 \text{ V}_{CC}}) (\text{R1} + \text{R2}) \text{C1} + \ln (\frac{V5 - 1/3 \text{ V}_{CC}}{V5}) \text{ R2C1}}$$

It should be noted that the output

V5 = VCO input control voltage

It should be noted that, the output duty cycle will vary somewhat over the VCO input control range.

FIGURE 18 - VOLTAGE CONTROLLED OSCILLATOR

FIGURE 19

Comparator with Time Out

The MC1422 is used as a comparator with the capability of a timing output pulse when the inverting input (Pin 6) is \geqslant the non-inverting input (Pin 5). The frequency of the pulses for the values of R2 and C1 as shown in Figure 19 is approximately 2.0 Hz, and the pulse width 0.3 ms, $f_p=$ frequency of pulses while Pin 6 voltage is above voltage at Pin 5.

The function of R1 is to limit di/dt, when charging C1.

$$f_p \simeq \frac{1}{R2C1}$$
 or $T_p \simeq R2C1$

Schmitt Trigger

The MC1422 is very useful as a Schmitt Trigger as shown in Figure 20. The lower trigger point is fixed at $1/3~\rm V_{CC}$ but the upper trigger point is adjustable by means of Pin 5 from $1/3~\rm V_{CC}$ to slightly less than $\rm V_{CC}$. The Schmitt trigger will operate with input frequencies up to 50 kHz.

MC1455 MC1555

Specifications and Applications Information

TIMING CIRCUIT

The MC1555/MC1455 monolithic timing circuit is a highly stable controller capable of producing accurate time delays, or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For a stable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200 mA or drive MTTL circuits.

- Direct Replacement for NE555/SE555 Timers
- Timing From Microseconds Through Hours
- Operates in Both Astable and Monostable Modes
- Adjustable Duty Cycle
- High Current Output Can Source or Sink 200 mA
- Output Can Drive MTTL
- Temperature Stability of 0.005% per ^OC
- Normally "On" or Normally "Off" Output

FIGURE 1 - 22-SECOND SOLID-STATE TIME DELAY RELAY CIRCUIT

FIGURE 2 - BLOCK DIAGRAM

TIMING CIRCUIT

SILICON MONOLITHIC INTEGRATED CIRCUIT

- 1. Ground 2. Trigger
- 3 Output
- 4. Reset
- 5. Control Voltage
- 6 Threshold
- 7. Discharge
- 8. V_{CC}

U SUFFIX CERAMIC PACKAGE CASE 693-02

- G SUFFIX METAL PACKAGE CASE 601-04
- 1. Ground
- 2. Trigger
- 3. Output 4. Reset
- 5. Control Voltage
- 6. Threshold
- 7. Discharge 8. V_{CC}

ORDERING INFORMATION

Device	Alternate	Temperature Range	Package	
MC1455G	-	0°C to +70°C	Metal Can	
MC1455P1	NE555V	0°C to +70°C	Plastic DIP	
MC1455U	-	0°C to +70°C	Ceramic DIP	
MC1555G	-	-55°C to +125°C	Metal Can	
MC1555U		-55°C to +125°C	Ceramic DIP	

TYPICAL APPLICATIONS

- Time Delay Generation
- Precision Timing
 Missing Pulse Detection
- Sequential Timing
- Pulse Generation
 Pulse Width Modulation
- Linear Sweep Generation
 Pulse Shaping
- Pulse Position Modulation

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+18	Vdc
Discharge Current (Pin 7)	17	200	mA
Power Dissipation (Package Limitation) Metal Can Derate above T _A = +25°C Plastic Dual In-Line Package Derate above T _A = +25°C	PD	680 4.6 625 5.0	mW mW/ ^O C mW mW/ ^O C
Operating Temperature Range (Ambient) MC1555 MC1455	ТА	-55 to +125 0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

FIGURE 3 - GENERAL TEST CIRCUIT

ELECTRICAL CHARACTERISTICS (T_A = +25°C, V_{CC} = +5.0 V to +15 V unless otherwise noted.)

Observation (MC1555			l	MC1455		
Characteristics	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	_	18	4.5	_	16	V
Supply Current	¹cc						***************************************	mA
$V_{CC} = 5.0 \text{ V, R}_{L} = \infty$		-	3.0	5.0		3.0	6.0	
V _{CC} = 15 V, R _L = ∞			10	12	-	10	15	
Low State, (Note 1)					İ			
Timing Error (Note 2)								
$R = 1.0 \text{ k}\Omega \text{ to } 100 \text{ k}\Omega$					l			
Initial Accuracy C = 0.1 µF		-	0.5	2.0	-	1.0	-	%
Drift with Temperature		-	30	100	-	50		PPM/O
Drift with Supply Voltage			0.05	0.20		0.10		%/Vol
Threshold Voltage	V _{th}	-	2/3	-	_	2/3		×Vcc
Trigger Voltage	V _T							V
V _{CC} = 15 V		4.8	5.0	5.2	l –	5.0	-	
V _{CC} = 5.0 V		1.45	1.67	1.9	-	1.67	_	
Trigger Current	lΤ		0.5	_	-	0.5	-	μΑ
Reset Voltage	V _R	0.4	0.7	1.0	0.4	0.7	1.0	V
Reset Current	I _R .	_	0.1	_	_	0.1	-	mA
Threshold Current (Note 3)	l _{th}	-	0.1	0.25	-	0.1	0.25	μΑ
Discharge Leakage Current (Pin 7)	¹ dis	-	-	100	-	_	100	nA
Control Voltage Level	V _{CL}							V
V _{CC} = 15 V		9.6	10	10.4	9.0	10	11	
V _{CC} = 5.0 V	1	2.9	3.33	3.8	2.6	3.33	4.0	
Output Voltage Low	VOL							
(V _{CC} = 15 V)								V
sink = 10 mA		-	0.1	0.15		0.1	0.25	
sink = 50 mA		-	0.4	0.5	-	0.4	0.75	
I _{sink} = 100 mA		-	2.0	2.2	-	2.0	2.5	
sink = 200 mA			2.5	-	-	2.5	-	
(V _{CC} = 5.0 V)								
sink = 8.0 mA		-	0.1	0.25	-	-	-	
I _{sink} = 5.0 mA	,	_	_			0.25	0.35	
Output Voltage High	V _{OH} ·							V
(Isource = 200 mA)			l	1	1			
V _{CC} = 15 V		-	12.5	-	-	12.5		
(I _{source} = 100 mA)		1	400		40.75	400		
V _{CC} = 15 V		13	13.3	-	12.75	13.3	_	
V _{CC} = 5.0 V		3.0	3.3		2.75	3.3	_	
Rise Time of Output	tOLH.	_	100			100		· ns
Fall Time of Output	tohl.		100			100		ns

Monostable mode

^{1.} Supply current when output is high is typically 1.0 mA less.

^{2.} Tested at V_{CC} = 5.0 V and V_{CC} = 15 V.

^{3.} This will determine the maximum value of R_A + R_B for 15 V operation. The maximum total R = 20 megohms.

TYPICAL CHARACTERISTICS

(TA = +25°C unless otherwise noted.)

FIGURE 4 - TRIGGER PULSE WIDTH

FIGURE 5 - SUPPLY CURRENT

FIGURE 6 - HIGH OUTPUT VOLTAGE

FIGURE 7 - LOW OUTPUT VOLTAGE @ V_{CC} = 5.0 Vdc

FIGURE 8 - LOW OUTPUT VOLTAGE

FIGURE 9 - LOW OUTPUT VOLTAGE @ V_{CC} = 15 Vdc

FIGURE 10 - DELAY TIME

FIGURE 11 - DELAY TIME versus TEMPERATURE

FIGURE 12 - PROPAGATION DELAY versus TRIGGER VOLTAGE

5 ♀ Control Voltage TRIGGER FLIP-FLOP OUTPUT THRESHOLD Vcc 80 830 1.0 k 5.0 k \$ Threshold 6 o 3.9 k Output 5.0 k Trigger 20 220 RESET DISCH

FIGURE 13 - REPRESENTATIVE CIRCUIT SCHEMATIC

GENERAL OPERATION

100

The MC1555 is a monolithic timing circuit which uses as its timing elements an external resistor — capacitor network. It can be used in both the monostable (one-shot) and astable modes with frequency and duty cycle controlled by the capacitor and resistor values. While the timing is dependent upon the external passive components, the monolithic circuit provides the starting circuit, voltage comparison and other functions needed for a complete timing circuit. Internal to the integrated circuit are two comparators, one for the input signal and the other for capacitor voltage; also a flip-flop and digital output are included. The comparator reference voltages are always a fixed ratio of the supply voltage thus providing output timing independent of supply voltage.

Monostable Mode

In the monostable mode, a capacitor and a single resistor are used for the timing network. Both the threshold terminal and the discharge transistor terminal are connected together in this mode, refer to circuit Figure 14. When the input voltage to the trigger comparator falls below 1/3 V_{CC} the comparator output triggers the flip-flop so that it's output sets low. This turns the capacitor discharge transistor "off" and drives the digital output to the high state. This condition allows the capacitor to charge at an exponential rate which is set by the RC time constant. When the capacitor voltage reaches 2/3 \dot{V}_{CC} the threshold comparator resets the flip-flop. This action discharges the timing capacitor and returns the digital output to the low state. Once the flip-flop has been triggered by an input signal, it cannot be retriggered until the present timing period has been completed. The time that the output is high is given by the equation $t = 1.1 R_A C$. Various combinations of R and C and their associated times are shown in Figure 16. The trigger pulse width must be less than the timing period.

A reset pin is provided to discharge the capacitor thus interrupting the timing cycle. As long as the reset pin is low, the capacitor discharge transistor is turned "on" and prevents the capacitor from charging. While the reset voltage is applied the digital output will remain the same. The reset pin should be tied to the supply voltage when not in use.

FIGURE 14 - MONOSTABLE CIRCUIT

1

GENERAL OPERATION (continued)

FIGURE 15 - MONOSTABLE WAVEFORMS

t = 50
$$\mu$$
s/cm (R_A = 10 k Ω , C = 0.01 μ F, R_L = 1.0 k Ω , V_{CC} = 15 V)

Astable Mode

In the astable mode the timer is connected so that it will retrigger itself and cause the capacitor voltage to oscillate between 1/3 $\rm V_{CC}$ and 2/3 $\rm V_{CC}$. See Figure 17.

The external capacitor charges to 2/3 V_{CC} through R_A and R_B and discharges to 1/3 V_{CC} through R_B . By varying the ratio of these resistors the duty cycle can be varied. The charge and discharge times are independent of the supply voltage.

The charge time (output high) is given by: $t_1 = 0.695 (R_A + R_B) C$ The discharge time (output low) by: $t_2 = 0.695 (R_B) C$

The discharge time (output low) by: $t_2 = 0.695 (R_B) C$ Thus the total period is given by: $T = t_1 + t_2 = 0.695 (R_A + 2R_B) C$

The frequency of oscillation is then: $f = \frac{1}{T} = \frac{1.44}{(R_A + 2R_B) C}$

and may be easily found as shown in Figure 19.

The duty cycle is given by: DC = $\frac{R_B}{R_A + 2R_B}$

To obtain the maximum duty cycle R_A must be as small as possible; but it must also be large enough to limit the discharge current (pin 7 current) within the maximum rating of the discharge transist (200 mA).

The minimum value of R_A is given by: $R_A \geqslant \frac{V_{CC} \text{ (Vdc)}}{I_7 \text{ (A)}} \geqslant \frac{V_{CC} \text{ (Vdc)}}{0.2}$

FIGURE 17 - ASTABLE CIRCUIT

FIGURE 18 - ASTABLE WAVEFORMS

 $(R_A = 5.1 \text{ k}\Omega, C = 0.01 \mu\text{F}, R_L = 1.0 \text{ k}\Omega;$ $R_B = 3.9 \text{ k}\Omega, V_{CC} = 15 \text{ V})$

FIGURE 19 - FREE-RUNNING FREQUENCY

.....

APPLICATIONS INFORMATION

Linear Voltage Ramp

In the monostable mode, the resistor can be replaced by a constant current source to provide a linear ramp voltage. The capacitor still charges from 0 to 2/3 v_{CC} . The linear ramp time is given by $_{\rm 2}$ 2 $_{\rm VCC}$

by
$$t = \frac{2}{3} = \frac{V_{CC}}{I}$$

where $I = \frac{V_{CC} - V_B - V_{BE}}{R_F}$ If V_B is much larger than V_{BE} ,

then t can be made independent of VCC.

FIGURE 20 - LINEAR VOLTAGE SWEEP CIRCUIT

FIGURE 21 – LINEAR VOLTAGE RAMP WAVEFORMS (RE = 10 k Ω , R2 = 100 k Ω , R1 = 39 k Ω , C = 0.01 μ F, V_{CC} = 15 V)

Missing Pulse Detector

The timer can be used to produce an output when an input pulse fails to occur within the delay of the timer. To accomplish this, set the time delay to be slightly longer than the time between successive input pulses. The timing cycle is then continuously reset by the input pulse train until a change in frequency or a missing pulse allows completion of the timing cycle, causing a change in the output level.

FIGURE 22

FIGURE 23 – MISSING PULSE DETECTOR WAVEFORMS (RA = 2.0 k Ω , R L = 1.0 k Ω , C = 0.1 μ F, V_{CC} = 15 V)

APPLICATIONS INFORMATION (continued)

Pulse Width Modulation

If the timer is triggered with a continuous pulse train in the monostable mode of operation, the charge time of the capacitor can be varied by changing the control voltage at pin 5. In this manner, the output pulse width can be modulated by applying a modulating signal that controls the threshold voltage.

FIGURE 24

FIGURE 25 - PULSE WIDTH MODULATION WAVEFORMS (RA = 10 k Ω , C = 0.02 μF , VCC = 15 V)

Test Sequences

Several timers can be connected to drive each other for sequential timing. An example is shown in Figure 26 where the sequence is started by triggering the first timer which runs for 10 ms. The output then switches low momentarily and starts the second timer which runs for 50 ms and so forth.

FIGURE 26

MC1494L

Specifications and Applications Information

MONOLITHIC FOUR QUADRANT MULTIPLIER

designed for use where the output voltage is a linear product of two input voltages. Typical applications include: multiply, divide, square root, mean square, phase detector, frequency doubler, balanced modulator/demodulator, electronic gain control.

The MC1594/1494 is a variable transconductance multiplier with internal level-shift circuitry and voltage regulator. Scale factor, input offsets and output offset are completely adjustable with the use of four external potentiometers. Two complementary regulated voltages are provided to simplify offset adjustment and improve power-supply rejection.

- Operates With ±15 V Supplies
- Excellent Linearity Maximum Error (X or Y): ± 0.5% (MC1594)
 ± 1.0% (MC1494)
- Wide Input Voltage Range ±10 volts
- Adjustable Scale Factor, K (0.1 nominal)
- Single-Ended Output Referenced to Ground
- Simplified Offset Adjust Circuitry
 - Frequency Response (3 dB Small-Signal) 1.0 MHz
 - Power Supply Sensitivity 30 mV/V typical

LINEAR FOUR-QUADRANT MULTIPLIER INTEGRATED CIRCUIT

SILICON MONOLITHIC EPITAXIAL PASSIVATED

	CONTE	NTS	
	Specification		Specification
Subject Sequence	Page No.	Subject Sequence	Page No.
Maximum Ratings	2	AC Operation	8
Electrical Characteristics	2	DC Applications	9
Test Circuits	3	AC Applications	11
Characteristic Curves	4	Definitions	13
Circuit Description	5	General Information Index	14
Circuit Schematic	5		
DC Operation	6		

11

MAXIMUM RATINGS (TA = +25°C unless otherwise noted)

. Rating	Symbol	Value	Unit
Power Supply Voltage	V*	+18	Vdc
	v-	-18	
Differential Input Signal	V ₉ -V ₆	± 6+11 Ry < 30	Vdc
	V10-V13	± 6+11 RX < 30	
Common-Mode Input Voltage			Vdc
V _{CMY} = V ₉ = V ₆	VCMY	±11.5	
VCMX = V10 = V13	VCMX	±11.5	
Power Dissipation (Package Limitation)			
T _A = +25°C	PD	750	mW
Derate above T _A = +25°C	1/∂ JA	5.0	mW/°C
Operating Temperature Range	TA		°C
MC1594		-55 to +125	
MC1494		0 to + 70	
Storage Temperature Range	T _{stg}	-65 to +150	°C

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (\textbf{V}^{+} = +15 \ \textbf{V}, \ \textbf{V}^{-} = -15 \ \textbf{V}, \ \textbf{T}_{A} = +25^{0} \textbf{C}, \ \textbf{R1} = 16 \ \textbf{k}\Omega, \ \textbf{R}_{X} = 30 \ \textbf{k}\Omega, \ \textbf{R}_{Y} = 62 \ \textbf{k}\Omega, \ \textbf{R}_{L} = 47 \ \textbf{k}\Omega, \ \text{unless otherwise noted})$

				MC1594			MC1494		
Characteristic	Fig.	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Linearity	1	E _{RX} or E _{RY}						1	%
Output error in Percent of full scale $-10 \text{ V} < \text{V}_x < +10 \text{ V} \text{ (V}_y = \pm 10 \text{ V)}$		1	1			i	l		l
-10 V <v<sub>Y<+10 V (V_X = ±10 V)</v<sub>		i	1	1	ì	1	İ		l
TA = +25°C			_	± 0.3	± 0.5	_	± 0.5	± 1.0	:
TA = Thigh 1			i _		± 0.8	l .			1
TA = Tlow (2)		1	i	İ			1	± 1.3	l
Input					± 0.8		-	± 1.3	
Voltage Range (V _X = V _Y = V _{In})	2,3,4	Vin	±10		ĺ				
Resistance (X or Y Input)		R _{in}	110	300	-	±10		-	V _{pk}
Offset Voltage (X Input) (Note 1)	1	V _{iox}		0.1	1.6		300 0.2		MΩ
(Y Input) (Note 1)	- 1	V _{iov}	_	0.4	1.6		0.2	2.5 2.5	٧
Bias Current (X or Y Input)	1	I I I I I I I I I I I I I I I I I I I	l _	0.5	1.5	_	1.0	2.5	
Offset Current (X or Y Input)	1	Hiol	l _	28	150	1 -	50	400	μA nA
Output	3.4	- 101	 			 		100	
Voltage Swing Capability	0,	v _o	±10	_		±10	_	_	V_{pk}
Impedance		Ro	l -	850	_	-	850	_ ^	kΩ
Offset Voltage (Note 1)		Voo		0.8	1.6	-	1.2	2.5	V
Offset Current (Note 1)		llool	- 1	17	34	-	25	52	μА
Temperature Stability (Drift)			†					<u> </u>	
TA = Thigh to Tlow	1		i		l	1	Ì		Ì
Output Offset (X = 0, Y = 0) Voltage		TCV _{oo}	-	1.3	-	-	1.3	-	mV/ ^o C
Current		TCI _{oo}	-	27	-	-	27	-	nA/ ^O C
X Input Offset (Y = 0)		TCViox	-	0.3	-	-	0.3	-	mV/°C
Y Input Offset (X = 0) Scale Factor	1 1	TCVioy	-	1.5		-	1.5	-	1
Total de Accuracy Drift (X = 10, Y = 10)		TCK TCE	_	0.07	-	-	0.07	-	%/°C
Dynamic Response	5	LICEL		0.09			0.09		
Small Signal (3 dB) X	"	BW3dB(X)		0.8			0.8	_	MHz
Y	1 1	BW3dB(X)		1.0	_		1.0	_	MHZ
Power Bandwidth (47 k)		PRW	_	440	_	_	440	_	kHz
3º Relative Phase Shift	1 1	fφ	_	240	_	_	240	_	KIIZ
1% Absolute Error	1 1	fθ	_	30	_	_	30	_	
Common Mode	6		 		·				
Input Swing (X or Y)		CMV	±10.5	-	-	±10.5	-	-	Vpk
Gain (X or Y)		ACM	- 1	-65	-	-	-65	_	dB
Power Supply	7								
Current		la ⁺	-	6.0	9.0	-	6.0	12	mAdc
	1 1	ld-	-	6.5	9.0	-	6.5	12	
Quiescent Power Dissipation	1 1	Pd	-	185	260	- 1	185	350	mW
Sensitivity	1 1	s+	- 1	13	50	- 1	13	100	mV/V
		s-	-	30	100	-	30	200	
Regulated Offset Adjust Voltages	7	_							
Positive		٧ħ	+3.5	+4.3	+5.0	+3.5	+4.3	+5.0	Vdc
Negative		٧Ã	-3.5	-4.3	-5.0	-3.5	-4.3	-5.0	
Temperature Coefficient (VR or VR)		TCVR	- 1	0.03	-	-	0.03	-	mV/°C
Power Supply Sensitivity (VR or VR)		S _R , S _R		0.6	_	_	0.6	_	mV/V
n n'	11	- 0' - 0	Li				0.0		

Note 1: Offsets can be adjusted to zero with external potentiometers. ①Thigh = +126

1 Thigh = +125°C for MC1594 + 70°C for MC1494 ②T_{low} = -55°C for MC1594 0°C for MC1494

TEST CIRCUITS

TYPICAL CHARACTERISTICS

(Unless otherwise noted, $V^+ = +15 \text{ V}$, $V^- = -15 \text{ V}$, $R1 = 16 \text{ k}\Omega$, $R_X = 30 \text{ k}\Omega$, $R_Y = 62 \text{ k}\Omega$, $R_L = 47 \text{ k}\Omega$, $T_A = +25 ^{\circ}\text{C}$)

FIGURE 11 - LARGE SIGNAL VOLTAGE versus FREQUENCY

30

60

40

80

50

100

Rχ (kΩ

Rγ (kΩ

20

40

FIGURE 13 – LINEARITY versus R_X OR R_Y WITH K = 1ERX OR ERY, LINEARITY ERROR (%) R_L Adjusted for Vin = 2 Vpp 0.3 2.0 4 0 6.0 8.0 10 $R\chi$ (k Ω) 4.0 8.0 12 16 20 $Ry(k\Omega)$

GENERAL INFORMATION

1. CIRCUIT DESCRIPTION

1.1 Introduction

The MC1594 is a monolithic, four-quadrant multiplier that operates on the principle of variable transconductance. It features a single-ended current output referenced to ground and provides two complementary regulated voltages for use

with the offset adjust circuits to virtually eliminate sensitivity of the offset voltage nulls to changes in supply voltage.

As shown in Figure 15, the MC1594 consists of a multiplier proper and associated peripheral circuitry to provide these features.

FIGURE 15

MC1494L, MC1594L

1.2 Regulator (Figure 15)

The regulator biases the entire MC1594 circuit making it essentially independent of supply variation. It also provides two convenient regulated supply voltages which can be used in the offset adjust circuitry. The regulated output voltage at pin 2 is approximately +4.3 V while the regulated voltage at pin 4 is approximately -4.3 V. For optimum temperature stability of these regulated voltages, it is recommended that |2|=|1|4|=1.0 mA (equivalent load of 8.6 k.Ω). As will be shown later, there will normally be two 20 k-ohm potentiometers and one 50 k-ohm potentiometer connected between pins 2 and 4.

The regulator also establishes a constant current reference that controls all of the constant current sources in the MC1594. Note that all current sources are related to current I_1 which is determined by R1. For best temperature performance, R1 should be $16\,\mathrm{k}\,\Omega$ so that $I_1\approx0.5\,\mathrm{mA}$ for all applications.

1.3 Multiplier (Figure 15)

The multiplier section of the MC1594 (center section of Figure 15) is nearly identical to the MC1595 and is discussed in detail in Application Note AN-489, "Analysis and Basic Operation of the MC1595" The result of this analysis is that the differential output current of the multiplier is given by:

$$I_A - I_B = \Delta I \approx \frac{2V_X V_Y}{R_X R_Y I_1}$$

Therefore, the output is proportional to the product of the two input voltages.

1.4 Differential Current Converter (Figure 15)

This portion of the circuitry converts the differential output current (I_A-I_B) of the multiplier to a single-ended output current (I_A) :

or
$$I_0 = \frac{2V\chi V\chi}{R_VR_{V}I}$$

The output current can be easily converted to an output voltage by placing a load resistor $R_{\rm L}$ from the output (pin 14) to ground (Figure 17) or by using an op-ampl. as a current-to-voltage converter (Figure 16). The result in both circuits is that the output voltage is given by:

$$V_0 = \frac{2R_L V_X V_Y}{R_X R_Y I_1} = KV_X V_Y$$

where K (scale factor) =
$$\frac{2R_L}{R_X R_Y I_1}$$

2. DC OPERATION

2.1 Selection of External Components

For low frequency operation the circuit of Figure 16 is recommended. For this circuit, $R_X=30\,k\Omega,\,R_Y=62\,k\Omega,\,R1=16\,k\Omega$ and hence $I_1\approx 0.5\,\text{mA}$. Therefore, to set the scale factor, K, equal to 1/10, the value of R_L can be calculated to be:

$$K = \frac{1}{10} = \frac{2R_L}{R_X R_Y I_1}$$

or
$$R_L = \frac{R_X R_Y I_1}{(2) (10)} = \frac{(30 \text{ k}) (62 \text{ k}) (0.5 \text{ mA})}{20}$$

$$R_{L} = 46.5 \text{ k}$$

Thus, a reasonable accuracy in scale factor can be achieved by making R $_L$ a fixed 47 $\rm k\Omega$ resistor. However, if it is desired

FIGURE 16 - TYPICAL MULTIPLIER CONNECTION

that the scale factor be exact, R_L can be comprised of a fixed resistor and a potentiometer as shown in Figure 16. It should be pointed out that there is nothing magic about setting the scale factor to 1/10. This is merely a convenient factor to use if the V_X and V_Y input voltages are expected to be large, say ± 10 V. Obviously with V_X = V_Y = 10 V and a scale factor of unity, the device could not hope to provide a 100 V output, so the scale factor is set to 1/10 and provides an output scaled down by a factor of ten. For many applications it may be desirable to set K = 1/2 or K = 1 or even K = 100. This can be accomplished by adjusting R_X, R_Y appropriately.

The selection of R_L is arbitrary and can be chosen after resistors R_X and R_Y are found. Note in Figure 16 that R_Y is 62 $k\Omega$ while R_X is $30\,k\Omega$. The reason for this is that the "Y" side of the multiplier exhibits a second order nonlinearity whereas the "X" side exhibits a simple non-linearity By making the R_Y resistor approximately twice the value of the R_X resistor, the linearity on both the "X" and "Y" sides are made equal. The selection of the R_X and R_Y resistor values is dependent upon the expected amplitude of V_X and V_Y inputs. To maintain a specified linearity, resistors R_X and R_Y should be selected according to the following equations:

 $R_X \ge 3 V_X$ (max) in $k\Omega$ when V_X is in volts $R_Y \ge 6 V_Y$ (max) in $k\Omega$ when V_Y is in volts

For example, if the maximum input on the "X" side is ± 1 volt, resistor R_X can be selected to be 3 k Ω . If the maximum input on the "Y" side is also ± 1 volt, then resistor R_Y can be selected to be 6 k Ω (6.2 k Ω nominal value). If a scale factor of K = 10 is desired, the load resistor is found to be 47 k Ω . In this example, the multiplier provides a gain of 20 dB.

2.2 Operational Amplifier Selection

The operational amplifier connection in Figure 16 is a simple but extremely accurate current-to-voltage converter. The output current of the multiplier flows through the feedback resistor $R_{\rm L}$ to provide a low impedance output voltage from the op-ampl. Since the offset current and bias currents of the op-ampl, will cause errors in the output voltage, particularly with temperature, one with very low bias and offset currents is recommended. The MC1566/MC1456 or MC1741/MC1741C are excellent choices for this application.

Since the MC1594 is capable of operation at much higher frequencies than the op-ampl., the frequency characteristics of the circuit in Figure 16 will be primarily dependent upon the op-ampl.

2.3 Stability

The current-to-voltage converter mode is a most demanding application for an operational amplifier. Loop gain is at its maximum and the feedback resistor in conjunction with stray or input capacitance at the multiplier output adds additional phase shift. It may therefore be necessary to add (particularly in the case of internally compensated op-ampls.) a small feedback capacitor to reduce loop gain at the higher frequencies. A value of 10 pF in parallel with $R_{\rm L}$ should be adequate to insure stability over production and temperature variations, etc.

An externally compensated op-ampl, might be employed using slightly heavier compensation than that recommended for unity-gain operation.

2.4 Offset Adjustment

The non-inverting input of the op-ampl. provides a convenient point to adjust the output offset voltage. By connecting this point to the wiper arm of a potentiometer (P3), the output

offset voltage can be adjusted to zero (see offset and scale factor adjustment procedure).

The input offset adjustment potentiometers, P1 and P2 will be necessary for most applications where it is desirable to take advantage of the multiplier's excellent linearity characteristics. Depending upon the particular application, some of the potentiometers can be omitted (see Figures 17, 19, 22, 24 and 25).

2.5 Offset and Scale Factor Adjustment Procedure

The adjustment procedure for the circuit of Figure 16 is:

A. X Input Offse

- (a) connect oscillator (1 kHz, 5 Vpp sinewave) to the "Y" input (pin 9)
- (b) connect "X" input (pin 10) to ground
- (c) adjust X-offset potentiometer, P2 for an ac null at the output

B. Y Input Offset

- (a) connect oscillator (1 kHz, 5 Vpp sinewave) to the "X" input (pin 10)
- (b) connect "Y" input (pin 9) to ground
- (c) adjust Y-offset potentiometer, P1 for an ac null at the output

C. Output Offset

- (a) connect both "X" and "Y" inputs to ground
- (b) adjust output offset potentiometer, P3, until the output voltage $V_{\rm O}$, is zero volts dc

D. Scale Factor

- (a) apply +10 Vdc to both the "X" and "Y" inputs
- (b) adjust P4 to achieve -10.00 V at the output
- (c) apply –10 Vdc to both "X" and "Y" inputs and check for V_{0} = –10.00 V
- E. Repeat steps A through D as necessary.

The ability to accurately adjust the MC1594 is dependent on the offset adjust potentiometers. Potentiometers should be of the "infinite" resolution type rather than wirewound. Fine adjustments in balanced-modulator applications may require two potentiometers to provide "coarse" and "fine" adjustment. Potentiometers should have low temperature coefficients and be free from backlash.

2.6 Temperature Stability

While the MC1594 provides excellent performance in itself, overall performance depends to a large degree on the quality of the external components. Previous discussion shows the direct dependence on $R_X,\,R_Y,\,$ and R_L and indirect dependence on R1 (through I $_1$). Any circuit subjected to temperature variations should be evaluated with these effects in mind.

2.7 Bias Currents

The MC1594 multiplier, like most linear IC's, requires a dc bias current into its input terminals. The device cannot be capacitively coupled at the input without regard for this bias current. If inputs V_X and V_Y are able to supply the small bias current ($\approx 0.5~\mu\text{A}$) resistors, R (Figure 16) can be omitted. If the MC1594 is used in an ac mode of operation and capacitive coupling is used the value of resistor R can be any reasonable value up to 100 kΩ. For minimum noise and optimum temperature performance, the value of resistor R should be as low as practical.

2.8 Parasitic Oscillation

When long leads are used on the inputs, oscillation may occur. In this event, an RC parasitic suppression network similar to the ones shown in Figure 16 should be connected directly to each input using short leads. The purpose of the network

MC1494L, MC1594L

is to reduce the "Q" of the source-tuned circuits which cause the oscillation

Inability to adjust the circuit to within the specified accuracy may be an indication of oscillation.

3. AC OPERATION

3.1 General

For ac operation, such as balanced modulation, frequency doubler, AGC, etc., the op-ampl. will usually be omitted as well as the output offset adjust potentiometer. The output offset adjust potentiometer is omitted since the output will normally be ac-coupled and the dc voltage at the output is of no concern providing it is close enough to zero volts that it will not cause clipping in the output waveform. Figure 17

FIGURE 17 - WIDEBAND MULTIPLIER

shows a typical ac multiplier circuit with a scale factor $K \approx 1$. Again, resistor R_X and R_Y are chosen as outlined in the previous section, with R_L chosen to provide the required scale factor.

The offset voltage then existing at the output will be equal to the offset current times the load resistance. The output offset current of the MC1594 is typically 17 μ A and 35 μ A maximum. Thus, the maximum output offset would be about 160 mV.

3.2 Bandwidth

The bandwidth of the MC1594 is primarily determined by two factors. First, the dominant pole will be determined by the load resistor and the stray capacitance at the output terminal. For the circuit shown in Figure 17, assuming a total output capacitance (C_0) of 10 pF, the 3 dB bandwidth would be approximately 3.4 MHz. If the load resistor were 47 kΩ, the bandwidth would be approximately 340 kHz.

Secondly, a "zero" is present in the frequency response characteristic for both the "X" and "Y" inputs which cause the output signal to rise in amplitude at a 6 dB/loctave slope at frequencies beyond the breakpoint of the "zero". The "zero" is caused by the parasitic and substrate capacitance which is related to resistors R_X and R_Y and the transistors associated with them. The effect of these transmission

"zeros" is seen in Figures 9 and 10. The reason for this increase in gain is due to the bypassing of R_X and R_Y at high frequencies. Since the R_Y resistor is approximately twice the value of the R_X resistor, the zero associated with the "Y" input will occur at approximately one octave below the zero associated with the "X" input. For $R_X=30~k\Omega$ and $R_Y=62~k\Omega$, the zeros occur at 1.5 MHz for the "X" input and 700 kHz for the "Y" input. These two measured breakpoints correspond to a shunt capacitance of about 3.5 pF. Thus, for the circuit of Figure 17, the "X" input zero and "Y" input zero will be at approximately 15 MHz and 7 MHz respectively.

It should be noted that the MC1594 multiplies in the time domain, hence, its frequency response is found by means of complex convolution in the frequency (Laplace) domain. This means that if the "X" input does not involve a frequency, it is not necessary to consider the "X" side frequency, response in the output product. Likewise, for the "Y" side. Thus, for applications such as a wideband linear AGC amplifier which has a dc voltage as one input, the multiplier frequency response has one zero and one pole. For applications which involve an ac voltage on both the "X" and "Y" side, such as a balanced modulator, the product voltage response will have two zeros and one pole, hence, peaking may be present in the output.

From this brief discussion, it is evident that for ac applications; (1) the value of resistors $R_{\rm X},\,R_{\rm Y}$ and $R_{\rm L}$ should be kept as small as possible to achieve maximum frequency response, and (2) it is possible to select a load resistor $R_{\rm L}$ such that the dominant pole $(R_{\rm L},C_{\rm O})$ cancels the input zero $(R_{\rm X},3.5\,{\rm pF}$ or $R_{\rm Y},3.5\,{\rm pF})$ to give a flat amplitude characteristic with frequency. This is shown in Figures 9 and 10. Examination of the frequency characteristics of the "X" and "Y" inputs will demonstrate that for wideband amplifier applications, the best tradeoff with frequency response and gain is achieved by using the "Y" input for the ac signal.

For ac applications requiring bandwidths greater than those specified for the MC1594, two other devices are recommended. For modulator-demodulator applications, the MC1596 may be used up to 100 MHz. For wideband multiplier applications, the MC1595 (using small collector loads and ac coupling) can be used.

3.3 Slew-Rate

The MC1594 multiplier is not slew-rate limited in the ordinary sense that an op-ampl. is. Since all the signals in the multiplier are currents and not voltages, there is no charging and discharging of stray capacitors and thus no limitations beyond the normal device limitations. However, it should be noted that the quiescent current in the output transistors is 0.5 mA and thus the maximum rate of change of the output voltage is limited by the output load capacitance by the simple equation:

Slew-Rate
$$\frac{\Delta V_0}{\Delta T} = \frac{I_0}{C}$$

Thus, if Co is 10 pF, the maximum slew-rate would be:

$$\frac{\Delta V_0}{\Delta T} = \frac{0.5 \times 10^{-3}}{10 \times 10^{-12}} = 50 \text{ V/}\mu\text{s}$$

This can be improved if necessary by addition of an emitterfollower or other type of buffer.

3.4 Phase-Vector Error

All multipliers are subject to an error which is known as the phase-vector error. This error is a phase error only and does not contribute an amplitude error per se. The phase-vector

11

error is best explained by an example. If the "X" input is described in vector notation as

and the "Y" input is described as

then the output product would be expected to be

However, due to a relative phase shift between the "X" and "Y" channels, the output product will be given by

Notice that the magnitude is correct but the phase angle of the product is in error. The vector, V, associated with this error is the "phase-vector error". The startling fact about the phase-vector error is that it occurs and accumulates much more rapidly than the amplitude error associated with frequency response. In fact, a relative phase shift of only 0.570 will result in a 1% phase-vector error. For most applications, this error is meaningless. If phase of the output product is not important, then neither is the phase-vector error. If phase is important, such as in the case of double sideband modulation or demodulation, then a 1% phase-vector error will represent a 1% amplitude error at the phase angle of interest.

FIGURE 18 - PHASE-VECTOR ERROR

3.5 Circuit Layout

If wideband operation is desired, careful circuit layout must be observed. Stray capacitance across R_X and R_Y should be avoided to minimize peaking (caused by a zero created by the parallel RC circuit).

4. DC APPLICATIONS

4.1 Squaring Circuit

If the two inputs are connected together, the resultant function is squaring:

$$V_0 = KV^2$$

where K is the scale factor (see Figure 19).

However, a more careful look at the multiplier's defining equation will provide some useful information. The output voltage, without initial offset adjustments is given by:

$$V_0 = K(V_x + V_{iox} - V_{xoff}) (V_y + V_{ioy} - V_{yoff}) + V_{oo}$$

(See "Definitions" for an explanation of terms).

With $V_X = V_V = V$ (squaring) and defining

$$\epsilon_{x}$$
 = V_{iox} - $V_{x off}$

$$\epsilon_{V} = V_{ioy} - V_{V off}$$

The output voltage equation becomes

$$V_0 = K V_x^2 + K V_x (\epsilon_x + \epsilon_y) + K \epsilon_x \epsilon_y + V_{00}$$

This shows that all error terms can be eliminated with only three adjustment potentiometers, eliminating one of the input offset adjustments. For instance, if the "X" input offset adjustment is eliminated, $\epsilon_{\rm X}$ is determined by the internal offset, $V_{\rm IOX}$, but $\epsilon_{\rm Y}$ is adjustable to the extent that the $(\epsilon_{\rm X}+\epsilon_{\rm Y})$ term can be zeroed. Then the output offset adjustment is used to adjust the $V_{\rm OO}$ term and thus zero the remaining error terms. An ac procedure for nulling with three adjustments is:

A. AC Procedure:

- 1. Connect oscillator (1 kHz, 15 Vpp) to input
- Monitor output at 2 kHz with tuned voltmeter and adjust P4 for desired gain (Be sure to peak response of voltmeter)
- Tune voltmeter to 1 kHz and adjust P1 for a minimum output voltage
- Ground input and adjust P3 (output offset) for zero volts dc out
- 5. Repeat steps 1 through 4 as necessary.

FIGURE 19 - MC1594 SQUARING CIRCUIT

MC1494L, MC1594L

B. DC Procedure:

- 1. Set $V_X = V_Y = 0$ V and adjust P3 (output offset potentiometer) such that $V_0 = 0.0$ Vdc
- 2. Set $V_X = V_Y = 1.0 \text{ V}$ and adjust P1 (Y input offset potentiometer) such that the output voltage is -0.100 volts
- 3. Set $V_X = V_Y = 10$ Vdc and adjust P4 (load resistor) such that the output voltage is -10.00 volts
- 4. Set $V_X = V_Y = -10$ Vdc and check that $V_O = -10$ V Repeat steps 1 through 4 as necessary.

4.2 Divide

Divide circuits warrant a special discussion as a result of their special problems. Classic feedback theory teaches that if a multiplier is used as a feedback element in an operational amplifier circuit, the divide function results. Figure 20 illustrates the theoretical simplicity of such an approach and a practical realization is shown in Figure 21.

The characteristic "failure" mode of the divide circuit is latch-up. One way it can occur is if V_X is allowed to go negative or, in some cases, if V_X approaches zero.

Figure 20 illustrates why this is so. For $V_X > 0$ the transfer function through the multiplier is non-inverting. Its output is fed to the inverting input of the op-ampl. Thus, operation is in the negative feedback mode and the circuit is do stable.

FIGURE 20 - BASIC DIVIDE CIRCUIT USING MULTIPLIER

Should V_X change polarity, the transfer function through the multiplier becomes inverting, the amplifier has positive feedback and latch-up results. The problem resulting from V_X being near zero is a result of the transfer through the multiplier being near zero. The op-ampl. is then operating with a very high closed loop gain and error voltages can thus become effective in causing latch-up.

The other mode of latch-up results from the output voltage of the op-ampl. exceeding the rated common-mode input voltage of the multiplier. The input stage of the multiplier becomes saturated, phase reversal results, and the circuit is latched up. The circuit of Figure 21 protects against this happening by clamping the output swing of the op-ampl. to approximately $\pm\,10.7$ volts. Five-percent tolerance, 10-volt zeners are used to assure adequate output swing but still limit the output voltage of the op-ampl. from exceeding the common-mode input range of the MC1594.

Setting up the divide circuit for reasonably accurate operation is somewhat different from the procedure for the multiplier itself. One approach, however, is to break the feedback loop, null out the multiplier circuit, and then close the loop.

A simpler approach, since it does not involve breaking the loop (thus making it more practical on a production basis), is:

- 1. Set $V_Z=0$ volts and adjust the output offset potentiometer (P3) until the output voltage (V_O) remains at some (not necessarily zero) constant value as V_X is varied between +1.0 volt and +10 volts.
- Maintain V_Z at 0 volts, set V_X at +10 volts and adjust the Y input offset potentiometer (P1) until V₀ = 0 volts.
- With V_X = V_Z, adjust the X input offset potentiometer (P2) until the output voltage remains at some (not necessarily - 10 volts) constant value as V_Z = V_X is varied between +1.0 volt and +10 volts.
- 4. Maintain $V_X = V_Z$ and adjust the scale factor potentiometer (R_L) until the average value of V_Q is -10 volts as $V_Z = V_X$ is varied between +1.0 volt and +10 volts.
- Repeat steps 1 through 4 as necessary to achieve optimum performance.

Users of the divide circuit should be aware that the accuracy to be expected decreases in direct proportion to the denomi-

FIGURE 21 - PRACTICAL DIVIDE CIRCUIT

FIGURE 22 - BASIC SQUARE ROOT CIRCUIT

nator voltage. As a result, if V_X is set to 10 volts and 0.5% accuracy is available, then 5% accuracy can be expected when V_X is only 1 volt.

In accordance with an earlier statement, V_X may have only one polarity, positive, while V_Z may be either polarity.

4.3 Square Root

A special case of the divide circuit in which the two inputs to the multiplier are connected together results in the square root function as indicated in Figure 22. This circuit too may suffer from latch-up problems similar to those of the divide circuit. Note that only one polarity of input is allowed and diode clamping (see Figure 23) protects against accidental latch-up.

This circuit too, may be adjusted in the closed-loop mode:

- 1. Set V_Z = -0.01 Vdc and adjust P3 (output offset) for V_O = 0.316 Vdc.
- 2. Set V_Z to -0.9 Vdc and adjust P2 ("X" adjust) for V_0 = +3 Vdc.
- 3. Set V_Z to -10 Vdc and adjust P4 (gain adjust) for V₀ = +10 Vdc

Steps 1 through 3 may be repeated as necessary to achieve desired accuracy.

Note: Operation near zero volts input may prove very inaccurate, hence, it may not be possible to adjust V₀ to 0 but rather only to within 100 to 400 mV of zero.

5. AC APPLICATIONS

5.1 Wideband Amplifier With Linear AGC

If one input to the MC1594 is a dc voltage and a signal voltage is applied to the other input, the amplitude of the output signal can be controlled in a linear fashion by varying the dc voltage. Hence, the multiplier can function as a dc coupled, wideband amplifier with linear AGC control.

In addition to the advantage of Linear AGC control, the multiplier has three other distinct advantages over most other types of AGC systems. First, the AGC dynamic range is theoretically infinite. This stems from the basic fact that with zero volts dc applied to the AGC, the output will be zero regardless of the input. In practice, the dynamic range is limited by the ability to adjust the input offset adjust potentiometers. By using cermet multi-turn potentiometers, a dynamic range of 80 dB can be obtained. The second advantage of the multiplier is that variation of the AGC voltage has no effect on the signal handling capability of the signal port, nor does it alter the input impedance of the signal port. This feature is particularly important in AGC systems which are phase sensitive. A third advantage of the multiplier is that the output-voltage-swing capability and output impedance are unchanged with variations in AGC

The circuit of Figure 24 demonstrates the linear AGC amplifier. The amplifier can handle 1 V(rms) and exhibits a gain of approximately 20 dB. It is AGC'd through a 60 dB dynamic range with the application of an AGC voltage from 0 Vdc to 1 Vdc. The bandwidth of the amplifier is determined by the load resistor and output stray capacitance. For this reason, an emitter-follower buffer has been added to extend the bandwidth in excess of 1 MHz.

5.2 Balanced Modulator

When two-time variant signals are used as inputs, the result-

FIGURE 23 - SQUARE ROOT CIRCUIT

MC1494L, MC1594L

ing output is suppressed-carrier double-sideband modulation. In terms of sinusoidal inputs, this can be seen in the following equation:

$$V_0 = K(e_1 \cos \omega_m t) (e_2 \cos \omega_c t)$$

where ω_m is the modulation frequency and ω_c is the carrier frequency. This equation can be expanded to show the suppressed carrier or balanced modulation:

$$V_0 = \frac{\text{Ke1e2}}{2} \left[\cos(\omega_c + \omega_m) t + \cos(\omega_c - \omega_m) t \right]$$

Unlike many modulation schemes, which are non-linear in nature, the modulation which takes place when using the MC1594 is linear. This means that for two sinusoidal inputs, the output will contain only two frequencies, the sum and difference, as seen in the above equation. There will be no spectrum centered about the second harmonic of the carrier, or any multiple of the carrier. For this reason, the filter requirements of a modulation system are reduced to the minimum. Figure 25 shows the MC1594 configuration to perform this function.

FIGURE 24 - WIDEBAND AMPLIFIER

Notice that the resistor values for $R_X,\ R_Y,\ and\ R_L$ have been modified. This has been done primarily to increase the bandwidth by lowering the output impedance of the MC1594 and then lowering R_X and R_Y to achieve a gain of 1. The e_C can be as large as 1 volt peak and e_m as high as 2 volts peak. No output offset adjust is employed since we are interested only in the ac output components.

The input R's are used to supply bias current to the multiplier inputs as well as provide matching input impedance. The output frequency range of this configuration is determined by the 4.7 k ohm output impedance and capacitive loading. Assuming a 6 pF load, the small-signal bandwidth is 5.5 MHz.

The circuit of Figure 25 will provide a typical carrier rejection of ≥70 dB from 10 kHz to 1.5 MHz.

FIGURE 25 - BALANCED MODULATOR

The adjustment procedure for this circuit is quite simple.

- (1) Place the carrier signal at pin 10. With no signal applied to pin 9, adjust potentiometer P1 such that an ac null is obtained at the output.
- (2) Place a modulation signal at pin 9. With no signal applied to pin 10, adjust potentiometer P2 such that an ac null is obtained at the output.

Again, the ability to make careful adjustment of these offsets will be a function of the type of potentiometers used for P1 and P2. Multiple turn cermet type potentiometers are recommended.

5.3 Frequency Doubler

If for Figure 25 both inputs are identical;

Then the output is given by

$$e_0 = e_m e_c = E^2 \cos^2 \omega t$$

which reduces to

$$e_0 = \frac{E^2}{2} (1 + \cos 2\omega t)$$

This equation states that the output will consist of a dc term equal to one half the peak voltage squared and the second harmonic of the input frequency. Thus, the circuit acts as a frequency doubler. Two facts about this circuit are worthy of note. First, the second harmonic of the input frequency is the only frequency appearing at the output. The fundamental does not appear. Second, if the input is sinusoidal, the output will be sinusoidal and requires no filtering.

The circuit of Figure 25 can be used as a frequency doubler with input frequencies in excess of 2 MHz.

5.4 Amplitude Modulator

The circuit of Figure 25 is also easily used as an amplitude modulator. This is accomplished by simply varying the input offset adjust potentiometer (P1) associated with the modu-

lation input. This procedure places a dc offset on the modulation input of the multiplier such that the carrier still passes thru the multiplier when the modulating signal is zero. The result is amplitude modulation. This is easily seen by examining the basic mathematical expression for amplitude modulation given below. For the case under discussion, with K = 1.

$$e_0 = (E + E_m \cos \omega_m t) (E_c \cos \omega_c t)$$

where ${\bf E}$ is the dc input offset adjust voltage. This expression can be written as:

$$e_0 = E_0 [1 + M \cos \omega_c t] \cos \omega_c t$$

where

and

$$M = \frac{E_m}{F} = modulation index$$

This is the standard equation for amplitude modulation. From this, it is easy to see that 100% modulation can be achieved by adjusting the input offset adjust voltage to be exactly equal to the peak value of the modulation, E_m. This is done by observing the output waveform and adjusting the input offset potentiometer, P1, until the output exhibits the familiar amplitude modulation waveform.

5.5 Phase Detector

If the circuit of Figure 25 has as its inputs two signals of identical frequency but having a relative phase shift the output will be a dc signal which is directly proportional to the cosine of phase difference as well as the double frequency term.

$$\begin{aligned} \mathbf{e}_{\mathbf{C}} &= \mathbf{E}_{\mathbf{C}} \cos \omega_{\mathbf{C}} \mathbf{t} \\ &= \mathbf{e}_{\mathbf{m}} = \mathbf{E}_{\mathbf{m}} \cos(\omega_{\mathbf{C}} \mathbf{t} + \phi) \\ \\ \mathbf{e}_{\mathbf{O}} &= \mathbf{e}_{\mathbf{C}} \mathbf{e}_{\mathbf{m}} = \mathbf{E}_{\mathbf{C}} \mathbf{E}_{\mathbf{m}} \cos \omega_{\mathbf{C}} \mathbf{t} \cos(\omega_{\mathbf{C}} \mathbf{t} + \phi) \\ \\ \mathbf{e}_{\mathbf{O}} &= \frac{\mathbf{E}_{\mathbf{C}} \mathbf{E}_{\mathbf{m}}}{2} \left[\cos \phi + \cos(2\omega_{\mathbf{C}} \mathbf{t} + \phi) \right] \end{aligned}$$

The addition of a simple low pass filter to the output (which eliminates the second cosine term) and return of $R_{\rm L}$ to an offset adjustment potentiometer will result in a dc output voltage which is proportional to the cosine of the phase difference. Hence, the circuit functions as a synchronous detector.

6. DEFINITIONS OF SPECIFICATIONS

Because of the unique nature of a multiplier, i.e., two inputs and one output, operating specifications are difficult to define and interpret. Indeed the same specification may be defined in several completely different ways depending upon which manufacturer is doing the defining. In order to clear up some of this mystery, the following definitions and examples are presented.

6.1 Multiplier Transfer Function

The output of the multiplier may be expressed by this equation:

$$V_0 = K (V_x \pm V_{iox} - V_{xoff}) (V_y \pm V_{ioy} - V_{yoff}) \pm V_{oo}$$
(1)

where K = scale factor (see 6.5)

V_x = "x" input voltage

Vy = "y" input voltage

Viox = "x" input offset voltage

Vioy = "y" input offset voltage

V_{x off} = "x" input offset adjust voltage

The voltage transfer characteristic below indicates "X", "Y" and output offset voltages.

FIGURE 26

6.2 Linearity

Linearity is defined to be the maximum deviation of output voltage from a straight line transfer function. It is expressed as a percentage of full-scale output and is measured for V_X and V_Y separately either using an "X-Y" plotter land checking the deviation from a straight line) or by using the method shown in Figure 1. The latter method nulls the output signal with the input signal, resulting in distortion components proportional to the linearity.

Example: 0.35% linearity means

$$V_0 = \frac{V_X V_Y}{10} \pm (0.0035) (10 \text{ volts})$$

6.3 Input Offset Voitage

The input offset voltage is defined from Equation (1). It is measured for V_A and V_y separately and is defined to be that dc input offset adjust voltage ("x" or "y") that will result in minimum ac output when ac (5 Vpp, 1 kHz) is applied to the other input ("y" or "x" respectively). From Equation(1) we have:

$$V_{O(ac)} = K (0 \pm V_{IOX} - V_{X Off}) (sin \omega t)$$

adjust $V_{x \text{ off}}$ so that $(\pm V_{iox} - V_{x \text{ off}}) = 0$.

6.4 Output Offset Current and Voltage

Output offset current (I_{00}) is the dc current flowing in the output lead when $V_X = V_y = 0$ and "X" and "Y" offset voltages are adjusted to zero.

Output offset voltage (Voo) is:

where RL is the load resistance.

Note: Output offset voltage is defined by many manufacturers with all inputs at zero but without adjusting "X" and "Y" offset voltages to zero. Thus it includes input offset terms, an output offset term and a scale factor term.

6.5 Scale Factor

Scale factor is the K term in Equation (1). It determines the "gain" of the multiplier and is expressed approximately by the following equation

$$K = \frac{2R_L}{R_X R_y I_1}$$
 where R_X and $R_y >> \frac{kT}{qI_1}$

and I₁ is the current out of pin 1.

1

6.6 Total DC Accuracy

The total dc accuracy of a multiplier is defined as error in multiplier output with dc $(\pm 10\mbox{ Vdc})$ applied to both inputs. It is expressed as a percent of full scale. Accuracy is not specified for the MC1594 because error terms can be nulled by the user.

6.7 Temperature Stability (Drift)

Each term defined above will have a finite drift with temperature. The temperature specifications are obtained by readjusting the multiplier offsets and scale factor at each new temperature (see previous definitions and the adjustment procedure) and noting the change.

Assume inputs are grounded and initial offset voltages have been adjusted to zero. Then output voltage drift is given by:

$$\triangle V_{0} = \pm \left[K \pm K \left(TCK\right) \left(\triangle T\right)\right] \left[\left(TCV_{\hat{1}\hat{0}X}\right) \left(\triangle T\right)\right] \left[\left(TCV_{\hat{1}\hat{0}Y}\right) \left(\triangle T\right)\right] + \left(TCV_{\hat{0}\hat{0}}\right) \left(\triangle T\right)$$

6.8 Total DC Accuracy Drift

This is the temperature drift in output voltage with 10 volts applied to each input. The output is adjusted to 10 volts at $T_A = +25^{\circ}C$. Assuming initial offset voltages have been adjusted to zero at $T_A = +25^{\circ}C$, then:

$$\begin{split} &V_{0} = \text{[K\pmK$ (TCK) (\triangleT)][10$ \pm (TCV$_{iox}) ($\triangle$T)][10$ \pm (TCV$_{ioy}) ($\triangle$T)] \pm (TCV$_{oo}) (\triangleT)} \end{split}$$

6.9 Power Supply Rejection

Variation in power supply voltages will cause undesired variation of the output voltage. It is measured by superimposing a 1-volt, 100-Hz signal on each supply ($\pm 15\text{ V}$) with each input grounded. The resulting change in the output is expressed in mV/V.

6.10 Output Voltage Swing

Output voltage swing capability is the maximum output voltage swing (without clipping) into a resistive load (note-output offset is adjusted to zero).

If an op-ampl, is used, the multiplier output becomes a virtual ground — the swing is then determined by the scale factor and the op-ampl, selected.

GENERAL INFORMATION INDEX

1. CIRCUIT DESCRIPTION

- 1.1 Introduction
- 1.2 Regulator
- 1.3 Multiplier
- 1.4 Differential Current Converter

2. DC OPERATION

- 2.1 Selection of External Components
- 2.2 Operational Amplifier Selection
- 2.3 Stability
- 2.4 Offset Adjustment
- 2.5 Offset and Scale Factor Adjustment Procedure
- 2.6 Temperature Stability
- 2.7 Bias Currents
- 2.8 Parasitic Oscillation

3. AC OPERATION

- 3.1 General
- 3.2 Bandwidth
- 3.3 Slew-Rate
- 3.4 Phase-Vector Error
- 3.5 Circuit Lavout

4. DC APPLICATIONS

- 4.1 Squaring Circuit
- 4.2 Divide
- 4.3 Square Root

5. AC APPLICATIONS

- 5.1 Wideband Amplifier with Linear AGC
- 5.2 Balanced Modulator
- 5.3 Frequency Modulator
- 5.4 Amplitude Modulator
- 5.5 Phase Detector

6. DEFINITIONS OF SPECIFICATIONS

- 6.1 Multiplier Transfer Function
- 6.2 Linearity
- 6.3 Input Offset Voltage
- 6.4 Output Offset Current and Voltage
- 6.5 Scale Factor
- 6.6 Total DC Accuracy
- 6.7 Temperature Stability (Drift)
- 6.8 Total DC Accuracy Drift6.9 Power Supply Rejection
- 6.10 Output Voltage Swing

MC1495L MC1595L

ORDERING INFORMATION

Device	Temperature Range	Package
MC1495L	0°C to +70°C	Ceramic DIP
MC1595L	-55°C to +125°C	Ceramic DIP

Specifications and Applications Information

WIDEBAND MONOLITHIC FOUR-QUADRANT MULTIPLIER

. . . designed for uses where the output is a linear product of two input voltages. Maximum versatility is assured by allowing the user to select the level shift method. Typical applications include: multiply, divide*, square root*, mean square*, phase detector, frequency doubler, balanced modulator/demodulator, electronic gain control.

*When used with an operational amplifier.

- Wide Bandwidth
- Excellent Linearity 1% max Error on X-Input, 2% max Error on Y-Input — MC1595L
- Excellent Linearity 2% max Error on X-Input, 4% max Error on Y-Input — MC1495L
- · Adjustable Scale Factor, K
- Excellent Temperature Stability
- Wide Input Voltage Range − ± 10 Volts
- ± 15 Volt Operation

LINEAR FOUR-QUADRANT MULTIPLIER

SILICON MONOLITHIC INTEGRATED CIRCUIT

MC1495L, MC1595L

ELECTRICAL CHARACTERISTICS (V* = +32V, V" = -15 V, T_A = $^{+}25^{0}$ C, I_3 = I mA, R_X = RY = 15 k Ω , R_L = 11 k Ω unless otherwise noted)

Characteristic		Figure	Symbol	Min	Тур	Max	Unit
Linearity: Output Error in Percent of Full Scale: TA = +25°C		5					%
$-10 < V_X < +10 (V_Y = \pm 10 V)$	MC1495 MC1595		E _{RX}	_	± 1.0 ± 0.5	± 2.0 ± 1.0	
$-10 < V_Y < +10 (V_X = \pm 10 V)$	MC1495 MC1595		ERY	=	± 2.0 ± 1.0	± 4.0 ± 2.0	
$T_A = 0 \text{ to } +70^{\circ}\text{C}$ -10 < V_X < +10 ($V_Y = \pm 10 \text{ V}$)	MC1495		ERX	_	± 1.5	-	
$-10 < V_Y < +10 (V_X = \pm 10 V)$ T _A = -55°C to +125°C	MC1595		ERY	-	± 3.0	-	
$-10 < V_X < +10 (V_Y = \pm 10 V)$ $-10 < V_Y < +10 (V_X = \pm 10 V)$			ERX ERY	-	± 0.75 ± 1.50	-	
Squaring Mode Error: Accuracy in Percent of Full Scale After Offset and Scale Factor Adjustment		5	E _{SQ}				%
$T_A = +25^{\circ}C$	MC1495			-	± 0.75	-	
T 0 17000	MC1595 MC1495			-	± 0.5 ± 1.0	_	
$T_A = 0 \text{ to } +70^{\circ}\text{C}$ $T_A = -55^{\circ}\text{C to } +125^{\circ}\text{C}$	MC1595			_	+ 0.75	_	
Scale Factor (Adjustable)	101000	1					
$(K = \frac{2R_L}{13R_XR_Y})$		-	K	-	0.1	-	-
Input Resistance	MC1495	7	RINX	_	20	-	MΩ
(f = 20 Hz)	MC1595 MC1495	1		_	35 20	-	
	MC1595		RINY	_	35	_	
Differential Output Resistance (f = 20 Hz)		8	Ro	_	300	-	kΩ
Input Bias Current							
$I_{bx} = \frac{(19 + 112)}{2}$, $I_{by} = \frac{(14 + 18)}{2}$	MC1495	6	l	_	2.0	12	μА
l _{bx} = 2 , l _{by} = 2	MC1595	"	lbx	_	2.0	8.0	μ^
	MC1495		lbv	-	2.0	12	
	MC1595	ļ			2.0	8.0	
Input Offset Current	MC1495	6			0.4	2.0	μА
lg	MC1595	"	liox		0.4	1.0	"
I ₄ - I ₈	MC1495		liov	_	0.4	2.0	
	MC1595	ļ	<u> </u>		0.2	1.0	
Average Temperature Coefficient of Input Offset Current		6	TClio	l		1	nA/ ^O C
$(T_A = 0 \text{ to } +70^{\circ}\text{C})$	MC1495			_	2.5	-	
(T _A = -55°C to +125°C)	MC1595			-	2.5	_	
Output Offset Current		6	100				μА
114 - 12	MC1495 MC1595			_	20 10	100 50	
Average Temperature Coefficient of		6	ITCIOO				nA/°C
Output Offset Current (T _A = 0 to +70°C)	MC1495				20		
$(T_A = -55^{\circ}C \text{ to } +125^{\circ}C)$	MC1595			_	20	_	
Frequency Response		<u> </u>	<u> </u>				
3.0 dB Bandwidth, R _L = 11 k Ω		9,10	BW3dB	-	3.0	-	MHz
3.0 dB Bandwidth, R _L = 50 Ω (Transcor			TBM3 dB	_	80 750	_	MHz kHz
3º Relative Phase Shift Between V _X and 1% Absolute Error Due to Input-Output	VY Phase Shift		f_{ϕ} f_{θ}	_	30	_	kHz
Common Mode Input Swing		11	CMV				Vdc
(Either Input)	MC1495 MC1595			±10.5 ±11.5	±12 ±13	_	
Common Mode Gain		11	Асм				dB
(Either Input)	MC1495 MC1595			-40 -50	-50 -60	_	
Common Mode Quiescent		12	V _{o1}	-	21	-	Vdc
Output Voltage Differential Output Voltage Swing Capabi	litu	9	V _{o2}	-	21 ±14	<u> </u>	V _{peak}
	nty	12	V _o	- -	5.0		mV/V
Power Supply Sensitivity		⊥'′	S-		10		
Power Supply Current		12	17		6.0	7.0	mA
DC Power Dissipation		12	PD	-	135	170	mW

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Applied Voltage (V2-V1, V14-V1, V1-V9, V1-V12, V1-V4, V1-V8, V12-V7, V9-V7, V8-V7, V4-V7)	△V	30	Vdc
Differential Input Signal	V ₁₂ -V ₉ V ₄ -V ₈	±(6+1 ₁₃ R _X) ±(6+1 ₃ R _Y)	Vdc Vdc
Maximum Bias Current	3 13	10 10	mA
Power Dissipation (Package Limitation) Ceramic Package Derate above T _A = +25°C	PD	750 5.0	mW mW/ ^O C
Operating Temperature Range	TA		°c
MC1495 MC1595		0 to +70 -55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°c

TEST CIRCUITS

TEST CIRCUITS (continued)

FIGURE 6 - INPUT AND OUTPUT CURRENT

FIGURE 8 - OUTPUT RESISTANCE

FIGURE 9 – BANDWIDTH (R_L = 11 k Ω)

FIGURE 10 – BANDWIDTH (RL = 50 Ω)

TEST CIRCUITS (continued)

FIGURE 14 - OFFSET ADJUST CIRCUIT (ALTERNATE)

TYPICAL CHARACTERISTICS

11

OPERATION AND APPLICATIONS INFORMATION

1. Theory of Operation

The MC1595 (MC1495) is a monolithic, four-quadrant multiplier which operates on the principle of variable transconductance. The detailed theory of operation is covered in Application Note AN-489, Analysis and Basic Operation of the MC1595. The result of this analysis is that the differential output current of the multiplier is given by

$$I_A - I_B = \triangle I = \frac{2V_X V_Y}{R_X R_Y I_3}$$

where I $_A$ and I $_B$ are the currents into pins 14 and 2, respectively, and V $_X$ and V $_Y$ are the X and Y input voltages at the multiplier input terminals.

2. Design Considerations

2.1 General

The MC1595 (MC1495) permits the designer to tailor the multiplier to a specific application by proper selection of external components. External components may be selected to optimize a given parameter (e.g. bandwidth) which may in turn restrict another parameter (e.g. maximum output voltage swing). Each important parameter is discussed in detail in the following parameters.

2.1.1 Linearity, Output Error, ERX or ERY

Linearity error is defined as the maximum deviation of output voltage from a straight line transfer function. It is expressed as error in percent of full scale (see figure below).

For example, if the maximum deviation, $V_{E(max)}$, is ± 100 mV and the full scale output is 10 volts, then the percentage error is

$$E_R = \frac{V_{E(max)}}{V_{O(max)}} \times 100 = \frac{100 \times 10^{-3}}{10} \times 100 = \pm 1.0\%.$$

Linearity error may be measured by either of the following methods:

- Using an X Y plotter with the circuit shown in Figure 5, obtain plots for X and Y similar to the one shown above.
- Use the circuit of Figure 4. This method nulls the level shifted output of the multiplier with the original input. The peak output of the null operational amplifier will be equal to the error voltage, VE(max).

One source of linearity error can arise from large signal non-linearity in the X and Y-input differential amplifiers. To avoid introducing error from this source, the emitter degeneration resistors R_X and R_Y must be chosen large enough so that non-linear base-emitter voltage variation can be ignored. Figures 17 and 18 show the error expected from this source as a function of the values of R_X and R_Y with an operating current of 1.0 mA in each side of the differential amplifiers (i.e., $I_3 = I_{12} = 1.0$ mA).

2.1.2 3 dB-Bandwidth and Phase Shift

Bandwidth is primarily determined by the load resistors and the stray multiplier output capacitance and/or the operational amplifier used to level shift the output. If wideband operation is desired, low value load resistors and/or a wideband operational amplifier should be used. Stray output capacitance will depend to a large extent on circuit layout.

Phase shift in the multiplier circuit results from two sources: phase shift common to both X and Y channels (due to the load resistor-output capacitance pole mentioned above) and relative phase shift between X and Y channels (due to differences in transadmittance in the X and Y channels). If the input to output phase shift is only 0.6°, the output product of two sine waves will exhibit a vector error of 1%. A $3^{\rm O}$ relative phase shift between V_X and V_Y results in a vector error of 5%.

2.1.3 Maximum Input Voltage

VX(max), VY(max) maximum input voltages must be such

$$V_{X(max)} < I_{13} R_{Y}$$

 $V_{Y(max)} < I_{3} R_{Y}$.

Exceeding this value will drive one side of the input amplifier to "cutoff" and cause non-linear operation.

Currents I $_3$ and I $_1$ $_3$ are chosen at a convenient value (observing power dissipation limitation) between 0.5 mA and 2.0 mA, approximately 1.0 mA. Then R $_{\rm X}$ and R $_{\rm Y}$ can be determined by considering the input signal handling requirements.

For
$$V_{X(max)} = V_{Y(max)} = 10 \text{ volts};$$

 $R_X = R_Y > \frac{10 \text{ V}}{1.0 \text{ mA}} = 10 \text{ k}\Omega.$

The equation
$$I_A - I_B = \frac{2V_X V_Y}{R_X R_Y I_3}$$

is derived from I_A - I_B =
$$\frac{2V\chi V\gamma}{(R\chi + \frac{2kT}{qI_{13}})(R\gamma + \frac{2kT}{qI_{3}})I_{3}}$$

with the assumption
$$R_X \gg \frac{2kT}{q!_{13}}$$
 and $R_Y \gg \frac{2kT}{q!_3}$.

At
$$T_A = +25^{\circ}C$$
 and $I_{13} = I_3 = 1$ mA,

$$\frac{2kT}{g|_{13}} = \frac{2kT}{g|_{3}} = 52 \Omega$$
.

Therefore, with $R_X=R_Y=10~k\Omega$ the above assumption is valid. Reference to Figure 19 will indicate limitations of $V_{X(max)}$ or $V_{Y(max)}$ due to V_1 and V_7 . Exceeding these limits will cause saturation or "cutoff" of the input transistors. See Step 4 of Section 3 (General Design Procedure) for further details.

2.1.4 Maximum Output Voltage Swing

The maximum output voltage swing is dependent upon the factors mentioned below and upon the particular circuit being considered.

For Figure 20 the maximum output swing is dependent upon V^+ for positive swing and upon the voltage at pin 1 for negative swing. The potential at pin 1 determines the quiescent level for transistors Ω_5 , Ω_6 , Ω_7 , and Ω_8 . This potential

Ш

OPERATION AND APPLICATIONS INFORMATION (continued)

should be related so that negative swing at pins 2 or 14 does not saturate those transistors. See Section 3 for further information regarding selection of these potentials.

FIGURE 20 - BASIC MULTIPLIER

If an operational amplifier is used for level shift, as shown in Figure 21, the output swing (of the multiplier) is greatly reduced. See Section 3 for further details.

3. General Design Procedure

Selection of component values is best demonstrated by the following example: assume resistive dividers are used at the X and Y inputs to limit the maximum multiplier input to ± 5.0 volts (V_X = V_Y(max)) for a ± 10 -volt input (V_X' = V_Y'(max)). (See Figure 21). If an overall scale factor of 1/10 is desired, then

$$V_0 = \frac{V_X' V_{Y'}}{10} = \frac{(2V_X)(2V_{Y})}{10} = 4/10 V_X V_{Y}.$$

Therefore, K = 4/10 for the multiplier (excluding the divider network).

Step 1. The first step is to select current I₃ and current I₁₃. There are no restrictions on the selection of either of these current except the power dissipation of the device. I₃ and I₁₃ will normally be one or two milliamperes. Further, I₃ does not have to be equal to I₁₃, and there is normally no need to make them different. For this example, let

To set currents I_3 and I_{13} to the desired value, it is only necessary to connect a resistor between pin 13 and ground, and between pin 3 and ground. From the schematic shown in Figure 3,

11

OPERATION AND APPLICATIONS INFORMATION (continued)

it can be seen that the resistor values necessary are given by:

$$\begin{split} R_{13} + 500 & \Omega = \frac{|V^-| - 0.7 \ V}{|13} \\ R_3 + 500 & \Omega = \frac{|V^-| - 0.7 \ V}{|3} \\ \text{Let } V^- = -15 \ V \\ \text{Then } R_{13} + 500 = \frac{14.3 \ V}{1 \ \text{mA}} \text{ or } R_{13} = 13.8 \ \text{k}\Omega \\ \text{Let } R_{13} = 12 \ \text{k}\Omega \\ \text{Similarly, } R_3 = 13.8 \ \text{k}\Omega \\ \text{Let } R_3 = 15 \ \text{k}\Omega \end{split}$$

However, for applications which require an accurate scale factor, the adjustment of $R_{\rm 3}$ and consequently, $l_{\rm 3}$, offers a convenient method of making a final trim of the scale factor. For this reason, as shown in Figure 21, resistor $R_{\rm 3}$ is shown as a fixed resistor in series with a potentiometer.

For applications not requiring an exact scale factor (balanced modulator, frequency doubler, AGC amplifier, etc.), pins 3 and 13 can be connected together and a single resistor from pin 3 to ground can be used. In this case, the single resistor would have a value of one-half the above calculated value for R13.

Step 2. The next step is to select R_{X} and $R_{Y}.$ To insure that the input transistors will always be active, the following conditions should be met:

$$\frac{v_X}{R_X} < \iota_{13} \qquad \frac{v_Y}{R_Y} < \iota_3.$$

A good rule of thumb is to make $I_3R_{\Upsilon}\geqslant 1.5~V_{\Upsilon(max)}$ and $I_{13}~RX\geqslant 1.5~V_{\chi(max)}$.

The larger the I_3R_{Υ} and $I_{13}R_{\chi}$ product in relation to V_{Υ} and V_{χ} respectively, the more accurate the multiplier will be (see Figures 17 and 18).

Let
$$R_X = R_Y = 10 \text{ k}\Omega$$

Then $1_3R_Y = 10 \text{ V}$
 $1_{13}R_X = 10 \text{ V}$

since $V_{X(max)} = V_{Y(max)} = 5.0$ volts the value of $R_X = R_Y = 10 \text{ k}\Omega$ is sufficient.

Step 3. Now that $R_{X},\,R_{Y}$ and I_{3} have been chosen, R_{L} can be determined:

$$K = \frac{2R_L}{R_X R_Y I_3} = \frac{4}{10}$$
or
$$\frac{(2) (R_L)}{(10 \text{ k}) (10 \text{ k}) (1 \text{ mA})} = \frac{4}{10}$$
Thus $R_L = 20 \text{ k}\Omega$.

Step 4. To determine what power-supply voltage is necessary for this application, attention must be given to the circuit schematic shown in Figure 3. From the circuit schematic it can be seen that in order to maintain transistors \mathbf{Q}_1 , \mathbf{Q}_2 , \mathbf{Q}_3 and \mathbf{Q}_4 in an active

region when the maximum input voltages are applied $(V_X' = V_Y' = 10 \text{ V or } V_X = 5.0 \text{ V}, V_Y = 5.0 \text{ V})$, their respective collector voltage should be at least a few tenths of a volt higher than the maximum input voltage. It should also be noticed that the collector voltage of transistors Q_3 and Q_4 are at a potential which is two diode-drops below the voltage at pin 1. Thus, the voltage at pin 1 should be about two volts higher than the maximum input voltage. Therefore, to handle +5.0 volts at the inputs, the voltage at pin 1 must be at least +7.0 volts. Let $V_1 = 9.0 \text{ Vdc}$.

Since the current following into pin 1 is always equal to 213, the voltage at pin 1 can be set by placing a resistor, R₁ from pin 1 to the positive supply:

$$R_{1} = \frac{V^{+} - V_{1}}{2I_{3}}$$
Let $V^{+} = +15 \text{ V}$
Then $R_{1} = \frac{15 \text{ V} - 9 \text{ V}}{(2) (1 \text{ mA})}$

Note that the voltage at the base of transistors Q_5 , Q_6 , Q_7 and Q_8 is one diode-drop below the voltage at pin 1. Thus, in order that these transistors stay active, the voltage at pins 2 and 14 should be approximately halfway between the voltage at pins 2 and 14 should be supply voltage. For this example, the voltage at pins 2 and 14 should be approximately 11 volts.

 $R_1 = 3 k\Omega$.

Step 5. Level Shifting

For dc applications, such as the multiply, divide and squareroot functions, it is usually desirable to convert the differential output to a single-ended output voltage referenced to ground. The circuit shown in Figure 22 performs this function. It can be shown that the output voltage of this circuit is given by:

$$V_{o} = (I_{2} - I_{14}) R_{L}$$
 And since $I_{A} - I_{B} = I_{2} - I_{14} = \frac{2I_{X}I_{Y}}{I_{3}} = \frac{2V_{X}V_{Y}}{I_{3}R_{X}R_{Y}}$

Then $V_0 = \frac{2R_LV_X'V_{Y'}}{4R_XR_XI_3}$ where $V_X'V_{Y'}$ is the voltage at the input to the voltage dividers.

FIGURE 22 - LEVEL SHIFT CIRCUIT

OPERATION AND APPLICATIONS INFORMATION (continued)

The choice of an operational amplifier for this application should have low bias currents, low offset current, and a high common-mode input voltage range as well as a high common-mode rejection ratio. The MC1556, and MC1741 operational amplifiers meet these requirements.

Referring to Figure 21, the level shift components will be determined. When $V_X = V_Y = 0$, the currents I_2 and I_{14} will be equal to I13. In Step 3, R_L was found to be 20 kΩ and in Step 4, V₂ and V₁₄ were found to be approximately 11 volts. From this information, Ro can be found easily from the following equation (neglecting the operational amplifiers bias current):

$$\frac{V_2}{R_L} + I_{13} = \frac{V^+ - V_2}{R_0}$$

And for this example, $\frac{11 \text{ V}}{20 \text{ k}\Omega} + 1 \text{ mA} = \frac{15 \text{ V} - 11 \text{ V}}{R_0}$

Solving for R_0 , $R_0 = 2.6 k\Omega$

Thus, select $R_0 = 3.0 \text{ k}\Omega$

For $R_0 = 3.0 \text{ k}\Omega$, the voltage at pins 2 and 14 is calculated to be

$$V_2 = V_{14} = 10.4 \text{ volts.}$$

The linearity of this circuit (Figure 21) is likely to be as good or better than the circuit of Figure 5. Further improvements are possible as shown in Figure 23 where Ry has been increased substantially to improve the Y linearity, and R_X decreased somewhat so as not to materially affect the X linearity, this avoids increasing R_L significantly in order to maintain a K of 0.1.

The versatility of the MC1595 (MC1495) allows the user to

to optimize its performance for various input and output signal

4. Offset and Scale Factor Adjustment

4.1 Offset Voltages

Within the monolithic multiplier (Figure 3) transistor baseemitter junctions are typically matched within 1 mV and resistors are typically matched within 2%. Even with this careful matching, an output error can occur. This output error is comprised of X-input offset voltage, Y-input offset voltage, and outputoffset voltage. These errors can be adjusted to zero with the techniques shown in Figure 21. Offset terms can be shown analytically by the transfer function:

$$V_{o} = K(V_{X} \pm V_{IOX} \pm V_{X \text{ off}}) (V_{Y} \pm V_{IOY} \pm V_{Y \text{ off}}) \pm V_{oo}$$
 (1)

= scale factor

٧x = X input voltage

٧Ŷ = Y input voltage VIOX = X input offset voltage

VIOY = Y input offset voltage

VX off= X input offset adjust voltage

 $V_{Y \text{ off}} = Y$ input offset adjust voltage $V_{OO} = \text{output offset voltage}$.

FIGURE 23 - MULTIPLIER WITH IMPROVED LINEARITY

7

OPERATION AND APPLICATIONS INFORMATION (continued)

X, Y and Output Offset Voltages

For most dc applications, all three offset adjust potentiometers (P_1, P_2, P_4) will be necessary. One or more offset adjust potentiometers can be eliminated for ac applications (See Figures 28, 29, 30, 31).

If well regulated supply voltages are available, the offset adjust circuit of Figure 13 is recommended. Otherwise, the circuit of Figure 14 will greatly reduce the sensitivity to power supply changes.

4.2 Scale Factor

The scale factor, K, is set by P_3 (Figure 21). P_3 varies I_3 which inversely controls the scale factor K. It should be noted that current I_3 is one-half the current through R_1 . R_1 sets the bias level for Ω_5 . Ω_6 . Ω_7 , and Ω_8 (See Figure 3). Therefore, to be sure that these devices remain active under all conditions of input and output swing, care should be exercised in adjusting P_3 over wide voltage ranges (see Section 3, General Design Procedure).

4.3 Adjustment Procedures

The following adjustment procedure should be used to null the offsets and set the scale factor for the multiply mode of operation. (See Figure 21)

1. X Input Offset

(a) Connect oscillator (1 kHz, 5 Vpp sinewave) to the "Y" input (pin 4) $\,$

(b) Connect "X" input (pin 9) to ground

(c) Adjust X offset potentiometer, $\mathbf{P}_{2},$ for an ac null at the output

2. Y Input Offset

(a) Connect oscillator (1 kHz, 5 Vpp sinewave) to the "X" input (pin 9) $\,$

(b) Connect "Y" input (pin 4) to ground

(c) Adjust "Y" offset potentiometer, P₁, for an ac null at the output

3. Output Offset

(a) Connect both "X" and "Y" inputs to ground (b) Adjust output offset potentiometer, P4, until the output voltage Vo is zero volts do

4. Scale Factor

(a) Apply +10 Vdc to both the "X" and "Y" inputs (b) Adjust P_3 to achieve + 10.00 V at the output.

5. Repeat steps 1 through 4 as necessary.

The ability to accurately adjust the MC1595 (MC1495) depends upon the characteristics of potentiometers P1 through P4. Multi-turn, infinite resolution potentiometers with low-temperature coefficients are recommended.

5. DC Applications

5.1 Multiply

The circuit shown in Figure 21 may be used to multiply signals from dc to 100 kHz. Input levels to the actual multiplier are 5.0 V (max). With resistive voltage dividers the maximum could be very large — however, for this application two-to-one dividers have been used so that the maximum input level is 10 V. The maximum output level has also been designed for 10 V (max).

5.2 Squaring Circuit

If the two inputs are tied together, the resultant function is squaring, that is $V_0 = KV^2$ where K is the scale factor. Note that all error terms can be eliminated with only three adjustment potentiometers, thus eliminating one of the input offset adjustments. Procedures for nulling with adjustments are given as follows:

1. AC Procedure:

(a) Connect oscillator (1 kHz, 15 Vpp) to input

(b) Monitor output at 2 kHz with tuned voltmeter and adjust P₃ for desired gain (be sure to peak response of the voltmeter)

(c) Tune voltmeter to 1 kHz and adjust P_{1} for a minimum output voltage

(d) Ground input and adjust P4 (output offset) for zero volts dc output

(e) Repeat steps a through d as necessary.

2. DC Procedure:

(a) Set $V_X = V_Y = 0$ V and adjust P4 (output offset potentiometer) such that $V_0 = 0.0$ Vdc (b) Set $V_X = V_Y = 1.0$ V and adjust P1 (Y input

(b) Set $V_X = V_Y = 1.0 \text{ V}$ and adjust P_1 (Y input offset potentiometer) such that the output voltage is +0.100 volts

(c) Set V_X = V_Y = 10 Vdc and adjust P_3 such that the output voltage is +10.00 volts

(d) Set $V_X = V_Y = -10$ Vdc. Repeat steps a through d as necessary.

FIGURE 24 - BASIC DIVIDE CIRCUIT

5.3 Divide Circuit

Consider the circuit shown in Figure 24 in which the multiplier is placed in the feedback path of an operational amplifier. For this configuration, the operational amplifier will maintain a "virtual ground" at the inverting (-) input. Assuming that the bias current of the operational amplifier is negligible, then $I_1 = I_2$ and

$$\frac{KV_XV_Y}{R1} = \frac{-V_Z}{R2} \tag{1}$$

Solving for
$$V_Y$$
, $V_Y = \frac{-R1}{R2} \frac{V_Z}{V_X}$. (2)

$$V_{Y} = \frac{-V_{Z}}{KV_{Y}} \tag{3}$$

$$V_{Y} = \frac{-V_{Z}}{V_{Y}}$$
 (4)

OPERATION AND APPLICATIONS INFORMATION (continued)

Hence, the output voltage is the ratio of V_Z to V_X and provides a divide function. This analysis is, of course, the ideal condition. If the multiplier error is taken into account, the output voltage is found to be

$$V_Y = -\left[\frac{R1}{R2}K\right]\frac{V_Z}{V_X} + \frac{\triangle E}{KV_X}, \qquad (5)$$

where ΔE is the error voltage at the output of the multiplier. From this equation, it is seen that divide accuracy is strongly dependent upon the accuracy at which the multiplier can be set, particularly at small values of V_Y . For example, assume that R1=R2, and K=1/10. For these conditions the output of the divide circuit is given by:

$$V_{Y} = \frac{-10 \ V_{Z}}{V_{X}} + \frac{10 \ \triangle E}{V_{X}}$$
 (6)

From equation 6, it is seen that only when $V_{\chi}=10~V$ is the error voltage of the divide circuit as low as the error of the multiply circuit. For example, when V_{χ} is small, (0.1 volt) the error voltage of the divide circuit can be expected to be a hundred times the error of the basic multiplier circuit.

In terms of percentage error.

percentage error =
$$\frac{\text{error}}{\text{actual}} \times 100\%$$

or from equation (5),

$$P.E._{D} = \frac{\frac{\triangle E}{KVX}}{\left[\frac{R1}{R2 \text{ K}}\right] \frac{VZ}{VX}} = \left[\frac{R2}{R1}\right] \frac{\triangle E}{VZ}. \tag{7}$$

From equation 7, the percentage error is inversely related to voltage V_Z (i.e., for increasing values of V_Z , the percentage error decreases).

A circuit that performs the divide function is shown in Figure 25.

Two things should be emphasized concerning Figure 25.

- The input voltage (V'x) must be greater than zero and must be positive. This insures that the current out of pin 2 of the multiplier will always be in a direction compatible with the polarity of V₂.
- Pins 2 and 14 of the multiplier have been interchanged in respect to the operational amplifiers input terminals. In this instance, Figure 25 differs from the circuit connection shown in Figure 21; necessitated to insure negative feedback around the loop.

A Suggested Adjustment Procedure for the Divide Circuit

- Set V_Z = 0 volts and adjust the output offset potentiometer (P₄) until the output voltage (V_O) remains at some (not necessarily zero) constant value as V_X' is varied between +1.0 volt and +10 volts.
- Keep V_Z at 0 volts, set V_X' at +10 volts and adjust the Y input offset potentiometer (P₁) until V_O = 0 volts.
- 3. Let $V\chi' = V_Z$ and adjust the X input offset potentiometer (P_2) until the output voltage remains at some (not necessarily 10 volts) constant value as $V_Z = V\chi'$ is varied between +1.0 and +10 volts.
- 4. Keep $V_X' = V_Z$ and adjust the scale factor potentiometer (P₃) until the average value of V_0 is –10 volts as $V_Z = V_X'$ is varied between +1.0 volt and +10 volts.
- Repeat steps 1 through 4 as necessary to achieve optimum performance.

5.4 Square Root

A special case of the divide circuit in which the two inputs to the multiplier are connected together is the square root function

FIGURE 25 - DIVIDE CIRCUIT

11

OPERATION AND APPLICATIONS INFORMATION (continued)

FIGURE 26 - BASIC SQUARE ROOT CIRCUIT

as indicated in Figure 26. This circuit may suffer from latch-up problems similar to those of the divide circuit. Note that only one polarity of input is allowed and diode clamping (see Figure 27) protects against accidental latch-up.

This circuit also may be adjusted in the closed-loop mode as follows:

- 1. Set V_Z to -0.01 volts and adjust P_4 (output offset) for $V_0 = \pm 0.316$ volts, being careful to approach the output from the positive side to preclude the effect of the output diode clamping.
- 2. Set V_Z to -0.9 volts and adjust P_2 (X adjust) for V_0 = +3.0 volts.
- 3. Set V_Z to ~ 10 volts and adjust P_3 (scale factor adjust) for V_0 = +10 volts.
- Steps 1 through 3 may be repeated as necessary to achieve desired accuracy.

6. AC Applications

The applications that follow demonstrate the versatility of the monolithic multiplier. If a potted multiplier is used for these cases, the results generally would not be as good because the potted units have circuits that, although they optimize dc multiplication operation, can hinder ac applications.

6.1 Frequency doubling often is done with a diode where the fundamental plus a series of harmonics are generated. However, extensive filtering is required to obtain the desired harmonic, and the second harmonic obtained under this technique usually is small in magnitude and requires amplification.

When a multiplier is used to double frequency the second harmonic is obtained directly, except for a dc term, which can be removed with ac coupling.

$$e_0 = KE^2 \cos^2 \omega t$$

$$e_0 = \frac{KE^2}{2} (1 + \cos 2\omega t).$$

A potted multiplier can be used to obtain the double frequency component, but frequency would be limited by its internal level-shift amplifier. In the monolithic units, the amplifier is omitted.

In a typical doubler circuit, conventional \pm 15-volt supplies are used. An input dynamic range of 5.0 volts peak-to-peak is allowed. The circuit generates wave-forms that are double frequency; less than 1% distortion is encountered without filtering. The configuration has been successfully used in excess of 200 kHz; reducing the scale factor by decreasing the load resistors can further expand the bandwidth.

A slightly modified version of the MC1595 (MC1495) — the MC1596 (MC1496) — has been successfully used as a doubler to obtain 400 MHz. (See Figure 28.)

 $6.2\,$ Figure 29 represents an application for the monolithic multiplier as a balanced modulator. Here, the audio input signal is $1.6\,$ kHz and the carrier is $40\,$ kHz.

FIGURE 27 - SQUARE ROOT CIRCUIT

OPERATION AND APPLICATIONS INFORMATION (continued)

FIGURE 28 - FREQUENCY DOUBLER

When two equal cosine waves are applied to X and Y, the result is a wave shape of twice the input frequency. For this example the input was a 10 kHz signal, output was 20 kHz.

FIGURE 29 - BALANCED MODULATOR

The defining equation for balanced modulation is

$$K(E_m \cos \omega_m t) (E_c \cos \omega_c t) =$$

$$\frac{\text{KE}_{\text{C}}\text{E}_{\text{m}}}{2}\left[\cos\left(\omega_{\text{c}}+\omega_{\text{m}}\right)\text{t}+\cos\left(\omega_{\text{c}}-\omega_{\text{m}}\right)\text{t}\right]$$

where ω_{C} is the carrier frequency, ω_{m} is the modulator frequency and K is the multiplier gain constant.

AC coupling at the output eliminates the need for level translation or an operational amplifier; a higher operating frequency results.

A problem common to communications is to extract the intelligence from single-sideband received signal. The ssb signal is of the form

$$e_{ssh} = A \cos(\omega_c + \omega_m)t$$

and if multiplied by the appropriate carrier waveform, $\cos \omega_{c} t$,

$$e_{ssb}e_{carrier} = \frac{AK}{2} [\cos(2\omega_c + \omega_m)t + \cos(\omega_c)t].$$

If the frequency of the band-limited carrier signal, $\omega_{\rm C}$, is ascertained in advance the designer can insert a low-pass filter and obtain the (AK/2) (cos $\omega_{\rm C}$ t) term with ease. He also can use an operational amplifier for a combination level shift-active filter, as an external component. But in potted multipliers, even if the frequency range can be covered, the operational amplifier is inside and not accessible, so the user must accept the level shifting provided, and still add a low-pass filter.

6.3 Amplitude Modulation

The multiplier performs amplitude modulation, similar to balanced modulation, when a dc term is added to the modulating signal with the Y offset adjust potentiometer. (See Figure 30.)

Here, the identity is

$$\begin{split} \mathbf{E}_{\mathbf{m}} & (1+m\cos\omega_{\mathbf{m}}t)\,\mathbf{E}_{\mathbf{c}}\cos\omega_{\mathbf{c}}t = \mathbf{K}\mathbf{E}_{\mathbf{m}}\mathbf{E}_{\mathbf{c}}\cos\omega_{\mathbf{c}}t + \\ & \frac{\mathbf{K}\mathbf{E}_{\mathbf{m}}\mathbf{E}_{\mathbf{c}}m}{2}\left[\cos(\omega_{\mathbf{c}}+\omega_{\mathbf{m}})t + \cos\left(\omega_{\mathbf{c}}-\omega_{\mathbf{m}}\right)t\right] \end{split}$$

where m indicates the degree of modulation. Since m is adjustable, via potentiometer P₁, 100% modulation is possible. Without extensive tweaking, 96% modulation may be obtained where ω_{C} and ω_{m} are the same as in the balanced-modulator example.

6.4 Linear Gain Control

To obtain linear gain control, the designer can feed to one of the two MC1595 (MC1495) inputs a signal that will vary the unit's gain. The following example demonstrates the feasibility of this application. Suppose a 200 kHz sine wave, 1.0 volt peak-to-peak, is the signal to which a gain control will be added. The dynamic range of the control voltage $V_{\rm C}$ is 0 to +1.0 volt. These must be ascertained and the proper values of R x and R y can be selected for optimum performance. For the 200-kHz operating frequency, load resistors of 100 ohms were chosen to broaden the operating bandwidth of the multiplier, but gain was sacrificed. It may be made up with an amplifier operating at the appropriate frequency, (See Figure 31.)

OPERATION AND APPLICATIONS INFORMATION (continued)

FIGURE 30 - AMPLITUDE MODULATION

The signal is applied to the unit's Y input. Since the total input range is limited to 1.0 volt p-p, a 2.0-volt swing, a current source of 2.0 mA and an Ry value of 1.0 kilohm is chosen. This takes best advantage of the dynamic range and insures linear operation in the Y-channel.

Since the X input varies between 0 and +1.0 volt, the current source selected was 1.0 mA and the $\rm R_X$ value chosen was 2.0 kilohms. This also insures linear operation over the X input dynamic range.

Choosing $R_L=100$ assures wide-bandwidth operation. Hence, the scale factor for this configuration is

$$K = \frac{R_L}{R_X R_Y I_3}$$

$$= \frac{100}{(2 k)(1 k)(2 \times 10^{+3})} V^{-1}$$

$$= \frac{1}{40} V^{-1}.$$

The 2 in the numerator of the equation is missing in this scalefactor expression because the output is single-ended and ac coupled.

To recover the gain, an MC1552 video amplifier with a gain of 40 is used. An operational amplifier also could have been used with frequency compensation to allow a gain of 40 at 200 kHz. The MC1539 operational amplifier can be tailored for this use; and the MC1520 operational amplifier does it directly.

FIGURE 31 - LINEAR GAIN CONTROL

ORDERING INFORMATION

Device	Temperature Range	Package
MC1496G	0°C to +70°C	Metal Can
MC1496L	0°C to +70°C	Ceramic DIP
MC1496P	0°C to +70°C	Plastic DIP
MC1596G	-55°C to +125°C	Metal Can
MC1596L	-55°C to +125°C	Ceramic DIP

Specifications and Applications Information

BALANCED MODULATOR - DEMODULATOR

. . . designed for use where the output voltage is a product of an input voltage (signal) and a switching function (carrier). Typical applications include suppressed carrier and amplitude modulation, synchronous detection, FM detection, phase detection, and chopper applications. See Motorola Application Note AN-531 for additional design information.

- Excellent Carrier Suppression 65 dB typ @ 0.5 MHz
 50 dB typ @ 10 MHz
- · Adjustable Gain and Signal Handling
- Balanced Inputs and Outputs
- High Common-Mode Rejection 85 dB typ

FIGURE 1 — SUPPRESSED-CARRIER OUTPUT WAVEFORM

FIGURE 2 — SUPPRESSED-CARRIER SPECTRUM

FIGURE 3 – AMPLITUDE-MODULATION OUTPUT WAVEFORM

MC1496 MC1596

BALANCED MODULATOR — DEMODULATOR

SILICON MONOLITHIC INTEGRATED CIRCUIT

MAXIMUM RATINGS* (TA = +25°C unless otherwise noted)

Rating	Symbol	Value	Unit
$\begin{array}{l} \text{Applied Voltage} \\ (V_6-V_7,V_8-V_1,V_9-V_7,V_9-V_8,V_7-V_4,V_7-V_1,\\ V_8-V_4,V_6-V_8,V_2-V_5,V_3-V_5) \end{array}$	ΔV	30	Vdc
Differential Input Signal .	V ₇ - V ₈ V ₄ - V ₁	+5.0 ±(5+1 ₅ R _e)	Vdc
Maximum Bias Current	15	10	mA
Thermal Resistance, Junction to Air Ceramic Dual In-Line Package Plastic Dual In-Line Package Metal Package	R _θ ЈА	180 100 200	°C/W
Operating Temperature Range MC1496 MC1596	ТА	0 to +70 -55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS* (V_{CC} = +12 Vdc, V_{EE} = -8.0 Vdc, I_{5} = 1.0 mAdc, R_{L} = 3.9 k Ω , R_{e} = 1.0 k Ω , T_{A} = +25 o C unless otherwise noted) (All input and output characteristics are single-ended unless otherwise noted.)

MC1596 MC1496 Typ Max Unit Note Symbol Typ Max Fig Characteristic μV(rms) Carrier Feedthrough f_C = 1.0 kHz V_C = 60 mV(rms) sine wave and 40 140 f_C = 10 MHz 140 offset adjusted to zero mV(rms) V_C = 300 mVp-p square wave: f_C = 1.0 kHz f_C = 1.0 kHz 0.04 0.4 0.04 0.2 offset adjusted to zero 100 20 20 Carrier Suppression 5 2 Vcs f_S = 10 kHz, 300 mV(rms) 40 f_C = 500 kHz, 60 mV(rms) sine wave fC = 10 MHz, 60 mV(rms) sine wave 50 50 MHz Transadmittance Bandwidth (Magnitude) (R_L = 50 ohms) 8 BW_{3dB} Carrier Input Port, Vc = 60 mV(rms) sine wave 300 300 fs = 1.0 kHz, 300 mV(rms) sine wave 80 80 Signal Input Port, V_S = 300 mV(rms) sine wave $|V_C|$ = 0.5 Vdc 3 2.5 3.5 2.5 3.5 V/V 10 Avs Signal Gain $V_S = 100 \text{ mV(rms)}, f = 1.0 \text{ kHz}; |V_C| = 0.5 \text{ Vdc}$ Single-Ended Input Impedance, Signal Port, f = 5.0 MHz 6 kΩ 200 200 Parallel Input Resistance rip 2.0 рF Parallel Input Capacitance 2.0 cip Single-Ended Output Impedance, f = 10 MHz 6 kΩ Parallel Output Resistance r_{op} 5.0 5.0 рF Parallel Output Capacitance c_{op} μΑ Input Bias Current 7 $I_{bS} = \frac{I_1 + I_4}{2}$; $I_{bC} = \frac{I_7 + I_8}{2}$ I_{bS} 12 25 12 30 1_bC μΑ 7 Input Offset Current 1105 = 11 - 14; 110C = 17 - 18 lioS 0.7 5.0 0.7 7.0 lioC 7.0 0.7 5.0 0.7 2.0 2.0 Average Temperature Coefficient of Input Offset Current 7 |TC_{lio}| (T_A = -55°C to +125°C) 14 50 Output Offset Current 7 100 (16 - 19) Average Temperature Coefficient of Output Offset Current TClool 90 nA/OC 7 (T_A = -55°C to +125°C) 4 CMV 5.0 5.0 Vp-p Common-Mode Input Swing, Signal Port, fs = 1.0 kHz Common-Mode Gain, Signal Port, fS = 1.0 kHz, 9 ACM -85 -85 dB |V_C| = 0.5 Vdc Common-Mode Quiescent Output Voltage (Pin 6 or Pin 9) 10 ٧o 8.0 8.0 Vdc 8.0 Vout 8.0 ... Vp-p Differential Output Voltage Swing Capability 10 Power Supply Current 7 6 mAdc 20 2.0 3.0 4.0 lcc 16 + 19 5.0 4.0 3.0 3.0 110 IEE DC Power Dissipation 7 5 PD 33 33 mW

^{*} Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet.

ï

GENERAL OPERATING INFORMATION *

Note 1 - Carrier Feedthrough

Carrier feedthrough is defined as the output voltage at carrier frequency with only the carrier applied (signal voltage = 0).

Carrier null is achieved by balancing the currents in the differential amplifier by means of a bias trim potentiometer (R_1 of Figure 5).

Note 2 - Carrier Suppression

Carrier suppression is defined as the ratio of each sideband output to carrier output for the carrier and signal voltage levels specified.

Carrier suppression is very dependent on carrier input level, as shown in Figure 22. A low value of the carrier does not fully switch the upper switching devices, and results in lower signal gain, hence lower carrier suppression. A higher than optimum carrier level results in unnecessary device and circuit carrier feed-through, which again degenerates the suppression figure. The MC1596 has been characterized with a 60 mV(rms) sinewave carrier input signal. This level provides optimum carrier suppression at carrier frequencies in the vicinity of 500 kHz, and is generally recommended for balanced modulator applications.

Carrier feedthrough is independent of signal level, Vs. Thus carrier suppression can be maximized by operating with large signal levels. However, a linear operating mode must be maintained in the signal-input transistor pair — or harmonics of the modulating signal will be generated and appear in the device output as spurious sidebands of the suppressed carrier. This requirement places an upper limit on input-signal amplitude (see Note 3 and Figure 20). Note also that an optimum carrier level is recommended in Figure 22 for good carrier suppression and minimum spurious sideband generation.

At higher frequencies circuit layout is very important in order to minimize carrier feedthrough. Shielding may be necessary in order to prevent capacitive coupling between the carrier input leads and the output leads.

Note 3 - Signal Gain and Maximum Input Level

Signal gain (single-ended) at low frequencies is defined as the voltage gain,

$$A_{VS} = \frac{V_0}{V_S} = \frac{R_L}{R_e + 2r_e}$$
 where $r_e = \frac{26 \text{ mV}}{I_S \text{ (mA)}}$

A constant dc potential is applied to the carrier input terminals to fully switch two of the upper transistors "on" and two transistors "off" (V_C = 0.5 Vdc). This in effect forms a cascode differential amplifier.

Linear operation requires that the signal input be below a critical value determined by $R_{\hbox{\scriptsize E}}$ and the bias current $I_{\hbox{\scriptsize 5}}$

Note that in the test circuit of Figure 10, V_S corresponds to a maximum value of 1 volt peak.

Note 4 - Common-Mode Swing

The common-mode swing is the voltage which may be applied to both bases of the signal differential amplifier, without saturating the current sources or without saturating the differential amplifier itself by swinging it into the upper switching devices. This swing is variable depending on the particular circuit and biasing conditions chosen (see Note 6).

Note 5 - Power Dissipation

Power dissipation, P_D, within the integrated circuit package should be calculated as the summation of the voltage-current products at each port, i.e. assuming Vg = V6, I5 = I6 = I9 and ignoring

base current, $P_D = 2 I_5 (V_6 - V_{10}) + I_5 (V_5 - V_{10})$ where subscripts refer to pin numbers.

Note 6 - Design Equations

The following is a partial list of design equations needed to operate the circuit with other supply voltages and input conditions. See Note 3 for $R_{\rm B}$ equation.

A. Operating Current

The internal bias currents are set by the conditions at pin 5. Assume:

IB << IC for all transistors

then

$$R_5 = \frac{V^- - \phi}{l_5} - 500~\Omega \qquad \text{where:} \quad \begin{array}{l} R_5 \text{ is the resistor between pin} \\ 5 \text{ and ground} \\ \phi = 0.75~\text{V at T}_A = +25^{\circ}\text{C} \end{array}$$

The MC1596 has been characterized for the condition $I_5 = 1.0$ mA and is the generally recommended value.

B. Common-Mode Quiescent Output Voltage

$$V_6 = V_9 = V^+ - I_5 R_L$$

Note 7 — Biasing

The MC1596 requires three dc bias voltage levels which must be set externally. Guidelines for setting up these three levels include maintaining at least 2 volts collector-base bias on all transistors while not exceeding the voltages given in the absolute maximum rating table;

30 Vdc ≥
$$[(V_6, V_9) - (V_7, V_8)]$$
 ≥ 2 Vdc
30 Vdc ≥ $[(V_7, V_8) - (V_1, V_4)]$ ≥ 2.7 Vdc
30 Vdc ≥ $[(V_1, V_4) - (V_5)]$ ≥ 2.7 Vdc

The foregoing conditions are based on the following approximations:

$$V_6 = V_9$$
, $V_7 = V_8$, $V_1 = V_4$

Bias currents flowing into pins 1, 4, 7, and 8 are transistor base currents and can normally be neglected if external bias dividers are designed to carry 1.0 mA or more.

Note 8 - Transadmittance Bandwidth

Carrier transadmittance bandwidth is the 3-dB bandwidth of the device forward transadmittance as defined by:

$$y_{21C} = \frac{i_0 \text{ (each sideb and)}}{v_s \text{ (signal)}} | V_0 = 0$$

Signal transadmittance bandwidth in the 3-dB bandwidth of the device forward transadmittance as defined by:

$$v_{21S} = \frac{i_0 \text{ (signal)}}{v_s \text{ (signal)}} | v_c = 0.5 \text{ Vdc, } v_0 = 0$$

*Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet.

Note 9 - Coupling and Bypass Capacitors C₁ and C₂

Capacitors C₁ and C₂ (Figure 5) should be selected for a reactance of less than 5.0 ohms at the carrier frequency.

Note 10 - Output Signal, Vo

The output signal is taken from pins 6 and 9, either balanced or single-ended. Figure 12 shows the output levels of each of the two output sidebands resulting from variations in both the carrier and modulating signal inputs with a single-ended output connection.

Note 11 - Negative Supply, VEE

 $V_{\mbox{\scriptsize EE}}$ should be dc only. The insertion of an RF choke in series with $\overline{V}_{\mbox{\scriptsize EE}}$ can enhance the stability of the internal current sources.

Note 12 - Signal Port Stability

Under certain values of driving source impedance, oscillation may occur. In this event, an RC suppression network should be connected directly to each input using short leads. This will reduce the Q of the source-tuned circuits that cause the oscillation.

An alternate method for low-frequency applications is to insert a 1 k-ohm resistor in series with the inputs, pins 1 and 4. In this case input current drift may cause serious degradation of carrier

TEST CIRCUITS

FIGURE 5 - CARRIER REJECTION AND SUPPRESSION

FIGURE 6 - INPUT-OUTPUT IMPEDANCE

FIGURE 7 -- BIAS AND OFFSET CURRENTS

FIGURE 8 - TRANSCONDUCTANCE BANDWIDTH

NOTE: Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet.

TEST CIRCUITS (continued)

FIGURE 9 - COMMON-MODE GAIN

FIGURE 10 - SIGNAL GAIN AND OUTPUT SWING

NOTE: Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet.

TYPICAL CHARACTERISTICS (continued)

Typical characteristics were obtained with circuit shown in Figure 5, $f_C = 500 \text{ kHz}$ (sine wave), V_C = 60 mV(rms), f_S = 1 kHz, V_S = 300 mV(rms), T_A = +25°C unless otherwise noted.

FIGURE 11 - SIDEBAND OUTPUT versus CARRIER LEVELS

FIGURE 12 - SIGNAL-PORT PARALLEL-EQUIVALENT

FIGURE 13 - SIGNAL-PORT PARALLEL-EQUIVALENT

FIGURE 14 - SINGLE-ENDED OUTPUT

FIGURE 15 - SIDEBAND AND SIGNAL PORT

FIGURE 16 - CARRIER SUPPRESSION versus TEMPERATURE

1.0

f. FREQUENCY (MHz)

10

100

0.1

FIGURE 20 - SIDEBAND HARMONIC SUPPRESSION versus INPUT SIGNAL LEVEL

-30

0.01

TYPICAL CHARACTERISTICS (continued)

FIGURE 21 – SUPPRESSION OF CARRIER HARMONIC SIDEBANDS versus CARRIER FREQUENCY

OPERATIONS INFORMATION

The MC1596/MC1496, a monolithic balanced modulator circuit, is shown in Figure 23.

This circuit consists of an upper quad differential amplifier driven by a standard differential amplifier with dual current sources. The output collectors are cross-coupled so that full-wave balanced multiplication of the two input voltages occurs. That is, the output signal is a constant times the product of the two input signals.

Mathematical analysis of linear ac signal multiplication indicates that the output spectrum will consist of only the sum and difference of the two input frequencies. Thus, the device may be used as a balanced modulator, doubly balanced mixer, product detector, frequency doubler, and other applications requiring these particular output signal characteristics.

The lower differential amplifier has its emitters connected to the package pins so that an external emitter resistance may be used. Also, external load resistors are employed at the device output.

Signal Levels

The upper quad differential amplifier may be operated either in a linear or a saturated mode. The lower differential amplifier is operated in a linear mode for most applications.

For low-level operation at both input ports, the output signal will contain sum and difference frequency components and have an amplitude which is a function of the product of the input signal amplitudes.

For high-level operation at the carrier input port and linear operation at the modulating signal port, the output signal will contain sum and difference frequency components of the modulating signal frequency and the fundamental and odd harmonics of the carrier frequency. The output amplitude will be a constant times the modulating signal amplitude. Any amplitude variations in the carrier signal will not appear in the output.

NOTE: Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet.

11

OPERATIONS INFORMATION (continued)

The linear signal handling capabilities of a differential amplifier are well defined. With no emitter degeneration, the maximum input voltage for linear operation is approximately 25 mV peak. Since the upper differential amplifier has its emitters internally connected, this voltage applies to the carrier input port for all

Since the lower differential amplifier has provisions for an external emitter resistance, its linear signal handling range may be adjusted by the user. The maximum input voltage for linear operation may be approximated from the following expression:

$$V = (15) (R_E)$$
 volts peak.

This expression may be used to compute the minimum value of $\ensuremath{\mathsf{R}_{\text{E}}}$ for a given input voltage amplitude.

FIGURE 25 – TABLE 1 VOLTAGE GAIN AND OUTPUT FREQUENCIES

Carrier Input Signal (V _C)	Approximate Voltage Gain	Output Signal Frequency(s)
Low-level dc	Low-level dc $\frac{R_{L} V_{C}}{2(R_{E} + 2r_{e}) \left(\frac{KT}{q}\right)}$	
High-level dc	R _L R _E + 2r _e	fM
Low-level ac	$\frac{R_{L} V_{C}(rms)}{2\sqrt{2}\left(\frac{KT}{q}\right)(R_{E} + 2r_{e})}$	f _C ±f _M
High-level ac	0.637 R _L R _E + 2r _e	$f_C \pm f_M$, $3f_C \pm f_M$, $5f_C \pm f_M$,

The gain from the modulating signal input port to the output is the MC1596/MC1496 gain parameter which is most often of interest to the designer. This gain has significance only when the lower differential amplifier is operated in a linear mode, but this includes most applications of the device.

As previously mentioned, the upper quad differential amplifier may be operated either in a linear or a saturated mode. Approximate gain expressions have been developed for the MC1596/MC1496 for a low-level modulating signal input and the following carrier input conditions:

- 1) Low-level dc
- 2) High-level dc
- 3) Low-level ac
- 4) High-level ac

These gains are summarized in Table 1, along with the frequency components contained in the output signal.

NOTES:

- Low-level Modulating Signal, V_M, assumed in all cases.
 V_C is Carrier Input Voltage.
- When the output signal contains multiple frequencies, the gain expression given is for the output amplitude of each of the two desired outputs, f_C + f_M and f_C - f_M.
- All gain expressions are for a single-ended output. For a differential output connection, multiply each expression by two.
- 4. R_L = Load resistance.
- 5. RE = Emitter resistance between pins 2 and 3.
- 6. r_e = Transistor dynamic emitter resistance, at +25°C;

$$r_e \approx \frac{26 \text{ mV}}{15 \text{ (mA)}}$$

 K = Boltzmann's Constant, T = temperature in degrees Kelvin, q = the charge on an electron.

$$\frac{KT}{g} \approx 26 \text{ mV}$$
 at room temperature

APPLICATIONS INFORMATION

Double sideband suppressed carrier modulation is the basic application of the MC1596/MC1496. The suggested circuit for this application is shown on the front page of this data sheet.

In some applications, it may be necessary to operate the MC1596/MC1496 with a single dc supply voltage instead of dual supplies. Figure 26 shows a balanced modulator designed for operation with a single +12 Vdc supply. Performance of this circuit is similar to that of the dual supply modulator.

AM Modulator

The circuit shown in Figure 27 may be used as an amplitude modulator with a minor modification.

All that is required to shift from suppressed carrier to AM operation is to adjust the carrier null potentionmeter for the proper amount of carrier insertion in the output signal.

However, the suppressed carrier null circuitry as shown in Figure 27 does not have sufficient adjustment range. Therefore, the modulator may be modified for AM operation by changing two resistor values in the null circuit as shown in Figure 28.

Product Detector

The MC1596/MC1496 makes an excellent SSB product detector (see Figure 29).

This product detector has a sensitivity of 3.0 microvolts and a dynamic range of 90 dB when operating at an intermediate frequency of 9 MHz.

The detector is broadband for the entire high frequency range. For operation at very low intermediate frequencies down to 50 kHz the 0.1 $\mu\mathrm{F}$ capacitors on pins 7 and 8 should be increased to 1.0 $\mu\mathrm{F}$. Also, the output filter at pin 9 can be tailored to a specific intermediate frequency and audio amplifier input impedance.

As in all applications of the MC1596/MC1496, the emitter resistance between pins 2 and 3 may be increased or decreased to adjust circuit gain, sensitivity, and dynamic range.

This circuit may also be used as an AM detector by introducing carrier signal at the carrier input and an AM signal at the SSB input.

The carrier signal may be derived from the intermediate frequency signal or generated locally. The carrier signal may be introduced with or without modulation, provided its level is sufficiently high to saturate the upper quad differential amplifief. If the carrier signal is modulated, a 300 mV(rms) input level is recommended.

APPLICATIONS INFORMATION (continued)

Doubly Balanced Mixer

The MC1596/MC1496 may be used as a doubly balanced mixer with either broadband or tuned narrow band input and output networks.

The local oscillator signal is introduced at the carrier input port with a recommended amplitude of 100 mV(rms).

Figure 30 shows a mixer with a broadband input and a tuned output.

Frequency Doubler

The MC1596/MC1496 will operate as a frequency doubler by introducing the same frequency at both input ports.

Figures 31 and 32 show a broadband frequency doubler and a tuned output very high frequency (VHF) doubler, respectively.

Phase Detection and FM Detection

The MC1596/MC1496 will function as a phase detector. High-level input signals are introduced at both inputs. When both inputs are at the same frequency the MC1596/MC1496 will deliver an output which is a function of the phase difference between the two input signals.

An FM detector may be constructed by using the phase detector principle. A tuned circuit is added at one of the inputs to cause the two input signals to vary in phase as a function of frequency. The MC1596/MC1496 will then provide an output which is a function of the input signal frequency.

NOTE. Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet.

TYPICAL APPLICATIONS

FIGURE 26 – BALANCED MODULATOR (+12 Vdc SINGLE SUPPLY)

FIGURE 27 - BALANCED MODULATOR DEMODULATOR

FIGURE 28 - AM MODULATOR CIRCUIT

FIGURE 29 – PRODUCT DETECTOR (+12 Vdc SINGLE SUPPLY)

TYPICAL APPLICATIONS (continued)

FIGURE 30 - DOUBLY BALANCED MIXER (BROADBAND INPUTS, 9.0 MHz TUNED OUTPUT)

FIGURE 31 - LOW-FREQUENCY DOUBLER

FIGURE 32 - 150 to 300 MHz DOUBLER

NOTE: Pin number references pertain to this device when packaged in a metal can. To ascertain the corresponding pin numbers for plastic or ceramic packaged devices refer to the first page of this specification sheet.

ORDERING INFORMATION

Device	Temperature Range	Package
MC3344L	-40°C to +85°C	Ceramic DIP
MC3344P	-40°C to +85°C	Plastic DIP

MC3344

Advance Information

PROGRAMMABLE FREQUENCY SWITCH WITH ADJUSTABLE HYSTERESIS

The MC3344 is a general purpose programmable frequency switch designed for use in systems where a load must be switched on or off at a predetermined frequency. Switch frequency is determined by an external resistor (RR) and capacitor (CR). Hysteresis is adjustable and determined by an external resistor (RH).

- Isolated Driver Transistor
- Complementary Outputs
- Adjustable Hysteresis
- Wide Supply Operating Range (7 to 24 Volts)
- Wide Input Frequency Range (10 Hz to 100 kHz)
- Internal Regulator

V_{Reg}

R_H 0− 12

CR

0-10

Input

Current

Driven

Input Sense

Ideal for Automotive and Industrial Applications

FIGURE 1 - CIRCUIT BLOCK DIAGRAM

Voltage Regulator and Bias

V_{Ref}

Gnd 0 1

VCC Q8 CBQ13 CAQ14

2nd Integrator

1 e+

Integrator

12 k

PROGRAMMABLE FREQUENCY SWITCH

SILICON MONOLITHIC INTEGRATED CIRCUIT

P SUFFIX PLASTIC PACKAGE CASE 646-05

This document contains information on a new product. Specifications and information herein are subject to change without notice.

Output

D3 6

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply	Vcc	24	Vdc
Peak Input Current	11	10	mA
Junction Temperature	ΤJ	150	°C
Operating Ambient Temperature Range	TA	-40 to +85	°C
Storage Temperature Range	T _{stg}	-65 to +150	°С

ELECTRICAL CHARACTERISTICS (T_A = 25°C, V_{CC} = +15 Vdc unless otherwise specified)

Characteristic	Test Ckts	Symbol	Min	Тур	Max	Unit
Supply Current	2	ID	_	2.5	4.0	mA
Trigger Reset Voltage I in = 200 µA I in = 600 µA	3	V _{CR1} V _{CR2}	0.25 		_ 0.25	Vdc
Regulator Output Voltage	4	VReg	4.0	4.5	5.0	Vdc
Threshold Output Voltage VTCR = VCR/VReg	5	VTCR	0,739	0.750	0.761	V/V
Hysteresis Sink Current	6	lн	100	400	_	μA
Second Comparator Output D1 Leakage D2 Source D1 Source D2 Leakage	7	I _{D1L} I _{D2S} I _{D1S} I _{D2L}	_ 100 100 _	_ 250 200 _	100 - 100	nΑ μΑ μΑ nΑ
Output Driver Gain IC = 5.0 mA	8	hFE1	50	100	_	_
Output Driver Voltage Standoff ID = 5.0 mA	9	V(BR)CEO	25	30		Vdc
Integrator Transistor Gain $h_{FE2} = \Delta I_C/\Delta I_B,$ $I_{C1} = 0.4 \text{ mA}, I_{C2} = 0.6 \text{ mA}$	10	h _{FE2}	50	200	300	_

TEST CIRCUITS

11

APPLICATIONS INFORMATION

The voltage regulator and bias section provides the proper biasing and regulated supply voltage to the integrated circuit.

A square wave, when applied to the RC differentiator, provides input current pulses to the IC. The input circuit discharges and clamps, for a predetermined time, the voltage across capacitor C_R . This establishes the initial ramp voltage (V_{sat}) and allows initiation of a new voltage ramp after each positive transistion of the input waveform.

The voltage, $V_{\mbox{\footnotesize{CR}}},$ ramps from $V_{\mbox{\footnotesize{Sat}}}$ to the final value, $V_{\mbox{\footnotesize{Reg}}},$ charging through $R_{\mbox{\footnotesize{R}}}.$

If V_{CR} is never allowed to reach V_{Ref} due to quick reset pulses, the second integrator amplifier will not be activated, and capacitor C_{AB} is allowed to charge through the $12~\mathrm{k}\Omega$ resistor until V_{CA} is greater than V_{Ref} . At this point, D1 will switch ON and D2 will switch OFF. By connecting either D1 or D2 to the D3 drive pin, the output drive transistor may be either switched ON or OFF at the switch point.

If VCR is allowed to ramp above VRef before being reset, the second integrator amplifier is driven ON which discharges and resets capacitor C_{AB} keeping V_{CA} low with respect to V_{Ref} .

 $\rm V_{CA}$ will always be low with respect to $\rm V_{Ref}$ if the time from reset $\rm C_R$ to $\rm V_{CR}$ = $\rm V_{Ref}$ is less than the time

from reset CAB to VCA = VRef.

Resistor R_H provides hysteresis around the switch point (i.e., frequency to switch the output driver ON, when connected to the D1 terminal, is higher than the frequency required to switch the output driver OFF). If no hysteresis is desired then the R_H resistor should be omitted and pin 12 grounded.

FIGURE 11 - TYPICAL APPLICATION

Device	Temperature Range	Package
MC3370P	-10°C to +75°C	Plastic DIP

ZERO VOLTAGE SWITCH

. . . designed for use in ac power switching applications with output drive capable of triggering triacs. Other operational features include; (1) a built-in voltage regulator that allows direct ac line operation, (2) a differential input with dual sensor inputs capable of testing the condition of two external sensors and controlling the gate pulse to a triac accordingly; (hysteresis or proportional control to this section may be added if desired) (3) sensor input "open and short" protection; this insures that the triac will never be turned "on" if either of the inputs are shorted or opened (4) a zero crossing detector that synchronizes the triac gate pulses with the zero crossing of the ac line voltage. This eliminates radio frequency interference (RFI) when used with resistive loads.

- Heater Controls
- Photo Controls
- Threshold Detector

- Lamp Driver
- Valve Control
- On-Off Power Controls
- Relay Driver
- Flasher Control
- Formerly MFC8070 in Case 644A Package

ZERO VOLTAGE SWITCH

SILICON MONOLITHIC **FUNCTIONAL CIRCUIT**

P SUFFIX PLASTIC PACKAGE CASE 626-04

FIGURE 1 - CIRCUIT SCHEMATIC

FIGURE 2 - OUTPUT PULSE DEFINITION

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
DC Voltage	V ₅₋₈	15	Vdc
DC Voltage	V ₄₋₈	15	Vdc
DC Voltage	V ₇₋₈ 15		Vdc
Peak Supply Current	16	35	mA
Power Dissipation Derate above T _A = +25°C	P _D 1/R _θ JA	1.2 10	Watts mW/ ^O C
Operating Ambient Temperature Range	TA	- 10 to +75	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C

ELECTRICAL CHARACTERISTICS (T_A = +25°C unless otherwise noted.)

Characteristic Definitions	Characteristic	Symbol	Min	Тур	Max	Unit
120 V(RMS) 60 Hz 2 0 Hz	V _S with Inhibit Output (Sw.1: A or B)	V _{SIO}		9.0	11	Vdc
5 4 4 3 40	Output Leakage Current (Sw 1: A or B)	lor	-	5.0	100	μА
9.1 k SW 1 A 8 MC3370P	Input Current 1 (Sw 1: A)	11	_	5.0	15	μА
100 300 \$ 12 6 8 k	Input Current 2 (Sw 1: B)	12	_	5.0	15	μА
91k	Inhibit Threshold Voltage (Sw 1: A or B)	VTHI	V _{ref} +100 mV	V _{ref} +10 mV		Vdc
120 V(RMS) 60 Hz 5 k	V _S with Pulse Output (Sw 1: A or B)	V _{SPO}	6.0	8.5		Vdc
5,44,37,540	Peak Output Current (Sw 1: A or B)	^I O pk	50	80	-	mA
9.1 k SW1 8 7 MC3370P 6 Vret Vret Sk Sk Sk Sk Sk Sk Sk Sk Sk Sk Sk Sk Sk	Pulse Threshold Voltage(Sw 1: A or B)	VTHP	-	V _{ref} -10 mV	V _{ref} -100 mV	Vdc
	Output Pulse Width (Sw 1: A or B, See Figure 2)	<i>τ</i> Α, <i>τ</i> Β V <i>τ</i> Α, V <i>τ</i> Β	_	70 ±4.5	-	μs V
120 V(RMS) 60 Hz	Output Current With Input Short (Sw 1: B; Sw 2: A) (Sw 1: A; Sw 2: B)	ISC		5.0 5.0	100 100	μА
9.1 k						

FIGURE 3 — CIRCUIT WITH INCREASED PULSE WIDTH AND TRIAC DRIVER TO CONTROL HIGH-CURRENT SCR's

FIGURE 4 — OUTPUT PULSE WIDTH versus SOURCE RESISTANCE

FIGURE 5 — TRIAC CONTROL CIRCUIT FOR GATE CURRENT 50 mA

FIGURE 6 — TRIAC CONTROL CIRCUIT WITH CURRENT BOOST UTILIZING DC SUPPLY GATE CURRENT 0.5 A

FIGURE 7 — TRIAC CONTROL CIRCUIT GATE CURRENT 0.1 A

Recommended Motorola traics (Q1)

Maximum Continuous Current (A [RMS])				
12	2N6346A Series	Case 221 (TO-220AB)		
25	MAC223 Series	Case 221 (TO-220AB)		
40	2N5441 Series	Case 310 (TO-203)		

ORDERING INFORMATION

Device	Alternate	Temperature Range	Package
MC3456L		0°C to +70°C	Ceramic DIP
MC3456P	NE556A	0°C to +70°C	Plastic DIP
MC3556L		-55°C to +125°C	Ceramic DIP

Specifications and Applications Information

DUAL TIMING CIRCUIT

The MC3556/MC3456 dual timing circuit is a highly stable controller capable of producing accurate time delays, or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor per timer. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor per timer. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200 mA or drive MTTL circuits.

- Direct Replacement for NE556/SE556 Timers
- Timing From Microseconds Through Hours
- Operates in Both Astable and Monostable Modes
- Adjustable Duty Cycle
- High Current Output Can Source or Sink 200 mA
- Output Can Drive MTTL
- Temperature Stability of 0.005% per ^OC
- Normally "On" or Normally "Off" Output
- Dual Version of the Popular MC1555/MC1455 Timer

FIGURE 1 - 22-SECOND SOLID-STATE TIME DELAY RELAY CIRCUIT

FIGURE 2 - BLOCK DIAGRAM (1/2 SHOWN)

MC3456 MC3556

DUAL TIMING CIRCUIT

SILICON MONOLITHIC INTEGRATED CIRCUIT

TYPICAL APPLICATIONS

- Time Delay Generation
- Sequential Timing
- Linear Sweep Generation
- Precision Timing
- Pulse Generation
- Pulse Shaping
- Missing Pulse Detection
- Pulse Width Modulation
- Pulse Position Modulation

MAXIMUM RATINGS (T_A = +25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	+18	Vdc
Discharge Current	^I dis	200	mA
Power Dissipation (Package Limitation)	PD		
Ceramic Dual-In-Line Package Derate above T _A = +25 ⁰ C Plastic Dual In-Line Package		1000 6.6 625	mW mW/ ^O C mW
Derate above T _A = +25 ⁰ C Operating Ambient Temperature	TA	5.0	mW/°C
Range MC3556 MC3456		-55 to +125 0 to +70	
Storage Temperature Range	T _{stg}	-65 to +150	°C

FIGURE 3 - GENERAL TEST CIRCUIT

FLECTRICAL CHARACTERISTICS (TA = +25°C, VCC = +5.0 V to +15 V unless otherwise noted.)

Characteristics	Symbol		MC3556		MC3456			Unit	
Characteristics		Min	Тур	Max	Min	Тур	Max	Unit	
Supply Voltage	Vcc	4.5	-	18	4.5		16		
Supply Current (Per timer, double for both halfs)	1cc				- 1			mA	
V _{CC} = 5.0 V, R _L = ∞		- 1	3.0	5.0	-	3.0	6.0 15		
V _{CC} = 15 V, R _L = ∞		-	10	12	-	10	15		
Low State, (Note 1)		1							
Timing Error (Note 2)									
Monostable Mode					- 1	- 1			
R_A = 2.0 kΩ to 100 kΩ					i	- 1			
Initial Accuracy C = 0.1 µF			0.5	1.5	-	0.75	-	%	
Drift with Temperature		-	30	100		50	-	PPM/O	
Drift with Supply Voltage		-	0.15	0.2	-	0.1	-	%/Volt	
** *		V.							
Astable Mode				1					
$R_A = R_B = 2.0 \text{ k}\Omega \text{ to } 100 \text{ k}\Omega$			1	-		l			
C = 0.01 µF		_	1.5	_	_	2.25	_	%	
Initial Accuracy		'	90	_	_	150	_	PPM/°C	
Drift with Temperature		_ '	0.15	_	_	0.3		%/Volt	
Drift with Supply Voltage									
Threshold Voltage	V _{th}	- :	2/3	-		2/3		×V _{CC}	
Trigger Voltage	VT .			٠, ,		5.0	_	٧	
V _{CC} = 15 V		4.8	5.0	5.2			_		
V _{CC} = 5.0 V		1.45	1.67	1.9		1.67			
Frigger Current	<u>'T</u>	-	0.5	-	-	0.5	-	μA V	
Reset Voltage	VR	0.4	0.7	1.0	0.4、	0.7	1.0		
Reset Current	I _R	-	0.1	-	-	0.1	-	mA.	
Threshold Current (Note 3)	l _{th}	-	0.03	0.1		0.03	0.1	μA V	
Control Voltage Level	VCL .		ا ا	10.4	9.0	10	11	V	
V _{CC} = 15 V		9.6	10	10.4 3.8	2.6	3.33	4.0		
V _{CC} = 5.0 V		2.9	3.33	- 3.8	2.0	3.33	4.0		
Output Voltage Low	VOL			1.0					
(V _{CC} = 15 V)	1							V	
Isink = 10 mA		-	0.1	0.15	-	0.1	0.25		
I _{sink} = 50 mA		-	0.4	0.5	_	0.4	0.75		
I _{sink} = 100 mA		-	2.0	2.25	-	2.0	2.75		
I _{sink} = 200 mA		-	2.5	-	-	2.5	-		
(V _{CC} = 5.0 V)	l .		1						
I _{sink} = 8.0 mA			0.1	0.25	-				
I _{sink} = 5.0 mA			-			0.25	0.35		
Output Voltage High	Voн							V	
(Isource = 200 mA)		ł						1	
V _{CC} = 15 V		-	12.5			12.5	-	l .	
(I _{source} = 100 mA)									
V _{CC} = 15 V		13	13.3	-	12.75	13.3	-		
V _{CC} ≈ 5.0 V		3.0	3.3		2.75	3.3			
Toggle Rate (Figures 17, 19)		l			l				
$R_A = 3.3 \text{ k}\Omega$, $R_B = 6.8 \text{ k}\Omega$, $C = 0.003 \mu\text{F}$	= 13	_	100		-	100	_	kHz	
Discharge Leakage Current	ldis		20	100		20	100	nA	
Rise Time of Output	tOLH	_	100			100	-	ns	
Fall Time of Output	tOHL	_	100	_	_	100	_	ns	
Matching Characteristics Between Sections									
(Monostable)		1	1				l		
Initial Timing Accuracy	1	-	0.5	1.0	-	1.0	2.0	%	
Timing Drift with Temperature	1	-	± 10	-	-	± 10	-	ppm/ ^C	
Drift with Supply Voltage	1	1	0.1	0.2	1	0.2	0.5	%/V	

NOTES: 1. Supply current when output is high is typically 2.0 mA less. 2. Tested at V_{CC} = 5.0 V and V_{CC} = 15 V.

This will determine the maximum value of R_A + R_B for 15 V operation. The maximum total R = 20 megohms.

TYPICAL CHARACTERISTICS

(TA = +25°C unless otherwise noted.)

(X VCC = Vdc)

FIGURE 7 - LOW OUTPUT VOLTAGE

@ V_{CC} = 5.0 Vdc

10

ISINK, (mA)

50 100

2.0

FIGURE 13 – 1/2 REPRESENTATIVE CIRCUIT SCHEMATIC

GENERAL OPERATION

The MC3556 is a dual timing circuit which uses as its timing elements an external resistor — capacitor network. It can be used in both the monostable (one-shot) and astable modes with frequency and duty cycle controlled by the capacitor and resistor values. While the timing is dependent upon the external passive components, the monolithic circuit provides the starting circuit, voltage comparison and other functions needed for a complete timing circuit. Internal to the integrated circuit are two comparators, one for the input signal and the other for capacitor voltage; also a flip-flop and digital output are included. The comparator reference voltages are always a fixed ratio of the supply voltage thus providing output timing independent of supply voltage thus providing output timing independent of supply voltage.

Monostable Mode

In the monostable mode, a capacitor and a single resistor are used for the timing network. Both the threshold terminal and the discharge transistor terminal are connected together in this mode, refer to circuit Figure 14. When the input voltage to the trigger comparator falls below 1/3 V_{CC} the comparator output triggers the flip-flop so that it's output sets low. This turns the capacitor discharge transistor "off" and drives the digital output to the high This condition allows the capacitor to charge at an exponential rate which is set by the RC time constant. When the capacitor voltage reaches 2/3 V_{CC} the threshold comparator resets the flip-flop. This action discharges the timing capacitor and returns the digital output to the low state. Once the flip-flop has been triggered by an input signal, it cannot be retriggered until the present timing period has been completed. The time that the output is high is given by the equation t = 1.1 RA C. Various combinations of R and C and their associated times are shown in Figure 16. The trigger pulse width must be less than the timing period.

A reset pin is provided to discharge the capacitor thus interrupting the timing cycle. As long as the reset pin is low, the capacitor discharge transistor is turned "on" and prevents the capacitor from charging. While the reset voltage is applied the digital output will remain the same. The reset pin should be tied to the supply voltage when not in use

FIGURE 14 - MONOSTABLE CIRCUIT

1

GENERAL OPERATION (continued)

FIGURE 15 - MONOSTABLE WAVEFORMS

t = 50
$$\mu$$
s/cm (RA = 10 k Ω , C = 0.01 μ F, RL = 1.0 k Ω , V_{CC} = 15 V)

Astable Mode

In the astable mode the timer is connected so that it will retrigger itself and cause the capacitor voltage to oscillate between 1/3 V_{CC} and 2/3 V_{CC} . See Figure 17.

The external capacitor charges to 2/3 V_{CC} through R_A and R_B and discharges to 1/3 V_{CC} through R_B . By varying the ratio of these resistors the duty cycle can be varied. The charge and discharge times are independent of the supply voltage.

The charge time (output high) is given by: t₁ = 0.695 (R_A+R_B) C

The discharge time (output low) by: t_2 = 0.695 (R_B) C Thus the total period is given by: T = t_1 + t_2 = 0.695 (R_A+2R_B) C

The frequency of oscillation is then: $f = \frac{1}{T} = \frac{1.44}{(R_A + 2R_B) C}$

and may be easily found as shown in Figure 19.

The duty cycle is given by: DC = $\frac{R_B}{R_A + 2R_B}$

To obtain the maximum duty cycle R_A must be as small as possible; but it must also be large enough to limit the discharge current (pin 7 current) within the maximum rating of the discharge transistor (200 mA).

The minimum value of R_A is given by:
$${\rm R}_{A} \geqslant \frac{{\rm V}_{CC} \; ({\rm V}dc)}{{\rm I}_{7} \; ({\rm A})} \, \geqslant \frac{{\rm V}_{CC} \; ({\rm V}dc)}{0.2}$$

FIGURE 17 - ASTABLE CIRCUIT

FIGURE 18 - ASTABLE WAVEFORMS

 $(R_A = 5.1 \text{ k}\Omega, C = 0.01 \mu\text{F}, R_L = 1.0 \text{ k}\Omega;$ $R_B = 3.9 \text{ k}\Omega, V_{CC} = 15 \text{ V})$

FIGURE 19 - FREE-RUNNING FREQUENCY

11

APPLICATIONS INFORMATION

TONE BURST GENERATOR

For a tone burst generator the first timer is used as a monostable and determines the tone duration when triggered by a positive pulse at Pin 6. The second timer is enabled by the high output of the monostable. It is connected as an astable and determines the frequency of the tone.

DUAL ASTABLE MULTIVIBRATOR

This dual astable multivibrator provides versatility not available with single timer circuits. The duty cycle can be adjusted from 5% to 95%. The two outputs provide two phase clock signals often required in digital systems. It can also be inhibited by use of either reset terminal.

FIGURE 20 - TONE BURST GENERATOR

FIGURE 21 - DUAL ASTABLE MULTIVIBRATOR

APPLICATIONS INFORMATION (continued)

Pulse Width Modulation

If the timer is triggered with a continuous pulse train in the monostable mode of operation, the charge time of the capacitor can be varied by changing the control voltage at pin 3. In this manner, the output pulse width can be modulated by applying a modulating signal that controls the threshold voltage.

FIGURE 22

FIGURE 23 – PULSE WIDTH MODULATION WAVEFORMS (R $_{\Delta}$ = 10 k $_{\Omega}$, C = 0.02 $_{\mu}F$, V $_{CC}$ = 15 V)

Test Sequences

Several timers can be connected to drive each other for sequential timing. An example is shown in Figure 24 where the sequence is started by triggering the first timer which runs for 10 ms. The output then switches low momentarily and starts the second timer which runs for 50 ms and so forth.

FIGURE 24

PHASE-LOCKED LOOP

The NE565N is designed for general-purpose phase-locked loop applications to 500 kHz.

- Stable Center Frequency − 200 ppm/^OC (Typ)
- Flexible Power Supply Range –
 ±5 to ±12 Volts with Small Frequency Drift 100 ppm/% (Typ)
- Low Total Harmonic Distortion of Demodulator Output

 1.5% (Max)
- Linear Triangle Wave Output 0.5% (Typ)
- TTL, DTL Compatible Inputs and Outputs
- Adjustable Hold In Range − ±1% to >±60%.

PHASE-LOCKED LOOP

SILICON MONOLITHIC INTEGRATED CIRCUITS

NE565N

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	±12	Vdc
Power Dissipation (Package Limitation) Derate above 25°C	PD	8.25 6.6	mW mW/ ^O C
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (Test Circuit Figure 2, TA = 25°C, V_{CC} = ±6.0 Vdc unless otherwise noted.)

Characteristic	Min	Тур	Max	Unit
Power Supply Current	_	8.0	12.5	mA
Input Impedance (Pins 2, 3) -4.0 V < V2, V3 < 0 V		5.0	-	kΩ
Input Level Required for Tracking f _O = 10 kHz, ±10% Frequency Deviation	10	_	_	mVrms
VCO Maximum Operating Frequency C _O = 2.7 pF	-	500	_	kHz
Operating Frequency Temperature Coefficient		200	-	ppm/ ^O C
Frequency Drift with Supply Voltage	-	200	-	ppm/%
Triangle Wave Ouptut Voltage	2.0	2.4	3.0	Vp-p
Triangle Wave Output Linearity	_	0.5	_	%
Square Wave Output Level	4.7	5.4	-	Vp-p
VCO Output Impedance (Pin 4)	***	5.0	_	kΩ
Square Wave Duty Cycle	40	50	60	%
Square Wave Rise Time	=	20	_	ns
Square Wave Fall Time	=	50	-	ns
Output Current Sink (Pin 4)	0.6	1.0	_	mA
VCO Sensitivity	_	6600	_	Hz/V
Demodulated Output Voltage (Pin 7) f _O = 10 kHz, ±10% Frequency Deviation	200	300	-	mVp-p
Total Harmonic Distortion f _O = 10 kHz, ±10% Frequency Deviation	_	0.2	1.5	%
Output Impedance (Pin 7)	_	3.5	_	kΩ
DC Output Voltage Level (Pin 7)	4.0	4.5	5.0	V
Output Offset Voltage (Input = 0) /V7-V6/	-	50	200	mV
Temperature Drift of /V7-V6/	-	500	-	μV/°C
AM Rejection	-	40	-	dB
Phase Detector Sensitivity KD	_	0.68	-	V/radian

GENERAL APPLICATIONS INFORMATION

The following formulas are useful when designing with the NE565N:

 $f_0 \approx \frac{1}{3.7 \text{ ROCO}}$ 1. Center Frequency -

Where: fo is the frequency of the VCO without input signal. For RO, CO circuit location see Figure 2.

2. Loop Gain - KOKDA

Definitions:

KO - VCO Conversion Gain - the conversion factor between VCO frequency and control voltage. KO = 4.12 fo (units are in radians/sec/volt) Example: for VCO Sensitivity @ 10 kHz (in Hz/volt)

$$K_O = \frac{4.12 \times 10^4}{2 \, \pi \text{ radians}} = 6600 \text{ Hz/Volt}$$

Kp - Phase Detector Gain Factor - the conversion factor between the phase detector output voltage and the phase difference between input and VCO signals. Units are in volts/radian.

$$K_D = \frac{8.1 \bullet A}{V_{CC}}$$

Where: A = f(R6 to R7)

Hence: $K_D = \frac{8.1}{V_{CC}}$ [f(R6-R7)]

Where: VCC is total system supply voltage, f(R6-R7) is internal amplifier gain (See Figure 9). VCC - total supply voltage to the circuit.

3. Lock Range -
$$f_L = \pm \frac{8f_0}{VCC}$$

Where: fL is the range of frequencies in the area of fo over which the VCO, once locked to the input signal, will remain locked.

4. Capture Range
$$-f_{C} \approx \pm \frac{1}{2\pi} \sqrt{\frac{2\pi f_{L}}{\tau}}$$

Where: fc is that range of frequencies around fo over which the loop will acquire lock with an input signal initially starting out of lock.

(
$$\tau$$
 = Time Constant at Pin 7)

FIGURE 9 - INTERNAL AMPLIFIER GAIN CHARACTERISTICS

Specifications and Applications Information

STEPPER MOTOR DRIVER

The SAA1042 drives a two-phase stepper motor in the bipolar mode. The device contains: three input stages, a logic section and two output stages.

- Drive Stages Designed for Motors: 6.0 V and 12 V: SAA1042 24 V: SAA1042A
- 500 mA/Coil Drive Capability
- Built-In Clamp Diodes for Overvoltage Suppression
- Wide Logic Supply Voltage Range
- Accepts Commands for CW/CCW and Half/Full Step Operation
- Inputs Compatible with Popular Logic Families: MOS, TTL, DTL
- Set Input Defined Output State
- Drive Stage Bias Adaptable to Motor Power Dissipation for Optimum Efficiency

STEPPER MOTOR DRIVER

SILICON MONOLITHIC INTEGRATED CIRCUIT

PLASTIC PACKAGE CASE 721-02

FIGURE 1 --- SAA1042 BLOCK DIAGRAM

PIN ASSIGNMENT

(Top View)

Note: Case heat sink is electrically connected to ground (Pin 9) through the die substrate.

SAA1042, SAA1042A

MAXIMUM RATINGS ($\underline{T_A} = 25^{\circ}C$ unless otherwise stated)

Rating	Symbol	SAA1042	SAA1042A	Unit
Clamping Voltage (Pins 1, 3, 14 & 16)	V _{clamp}	V _{clamp} 20 30		V
Over Voltage $(V_{OV} = V_{clamp} - V_{M})$	Vov	6.0		V
Supply Voltage	Vcc	20	30	V
Switching or Motor Current/Coil	IM	500		mA
Input Voltage (Pins 7, 8 & 10)	V _{in} clock V _{in} Full/Half V _{in} CW/CCW	Vcc		V
Power Dissipation Derate above T _A = 25°C Thermal Resistance, Junction to Air Thermal Resistance, Junction to Case	PD* ^{I/} θJA θJC	2.0 20 50 8.0		W mW/°0 °C/W °C/W
Operating Junction Temperature Range	T,j	-30 to +125		°C
Storage Temperature Range	T _{stg}	-65 to +150		°C

^{*}The power dissipation, PD, of the circuit is given by the supply voltage, VM and VCC, and the motor current, IM, and can be determined from Figures 3 and 5. PD = Pdrive + Plogic.

ELECTRICAL CHARACTERISTICS $(T_A = +25^{\circ}C)$

Characteristic	Pin	Symbol	Vcc	Min	Тур	Max	Unit
Supply Current	11	lcc	5.0 V 20 V	=	=	3.5 8.5	mA
Motor Supply Current (I Pin 6 = -400μ A, Pins 1, 3, 14, 16 Open)	15	IM					mA
$V_{M} = 6.0 \text{ V}$ $V_{M} = 12 \text{ V}$ $V_{M} = 24 \text{ V}$	į		5.0 V 5.0 V 5.0 V	_	25 30 40	=	
Input Voltage — High State	7, 8, 10	VIH	5.0 V 10 V 15 V 20 V	2.0 7.0 10 14	_ _ _	=	V
Input Voltage — Low State	7, 8, 10	V _{IL}	5.0 V 10 V 15 V 20 V		_ _ _	0.8 1.5 2.5 3.5	V
Input Reverse Current — High State (Vin = VCC)	7, 8, 10	IR	5.0 V 10 V 15 V 20 V		_ _ _	2.0 2.0 3.0 5.0	μΑ
Input Forward Current — Low State $(V_{in} = Gnd)$	7, 8, 10	liF	5.0 V 10 V 15 V 20 V	- 10 - 25 - 40 - 55	_ _ _	_	μА
Output Voltage — High State $(V_M = 12 V) \mid_{Out} = -500 \text{ mA}$ $\mid_{Out} = -50 \text{ mA}$	1, 3, 14, 16	VOH	5.0 to 20 V	_	V _M - 2.0 V _M - 1.2	_	٧
Output Voltage — Low State $ _{\text{Out}} = 500 \text{ mA} $ $ _{\text{Out}} = 50 \text{ mA} $	1, 3, 14, 16	V _{OL}	5.0 to 20 V	=	0.7 0.2	_	٧
Output Leakage Current (V _M = V _D = V _{clamp max} .) Pin 6: Open	1, 3, 14, 16	IDR	5.0 to 20 V	- 100		_	μА
Clamp Diode Forward Voltage (Drop at I _M = 500 mA)	2	VF	_	-	2.5	3.5	V
Clock Frequency	7	f _C	5.0 to 20 V	0	_	50	kHz
Clock Pulse Width	7	t _w	5.0 to 20 V	10			μs
Set Pulse Width	6	t _s		10	_		μs
Set Control Voltage — High State Low State	6		_	V _M	_	— 0.5	٧

INPUT/OUTPUT FUNCTIONS

Clock - (Pin 7) This input is active on the positive edge of the clock pulse and accepts Logic '1' input levels dependant on the supply voltage and includes hysteresis for noise immunity.

CW/CCW - (Pin 10) This input determines the motor's rotational direction. When the input is held low, (OV, see the electrical characteristics) the motor's direction is nominally clockwise (CW). When the input is in the high state, Logic '1,' the motor direction will be nominally counter clockwise (CCW), depending on the motor connections.

Full/Half Step - (Pin 8) This input determines the angular rotation of the motor for each clock pulse. In the low state the motor will make a full step for each applied clock pulse, while in the high state, the motor will make half a step.

VD - (Pin 2) This pin is used to protect the outputs (1, 3, 14, 16) where large positive spikes occur due to switching the motor coils. The maximum allowable voltage on these pins is the clamp voltage (Vclamp). Motor performance is improved if a zener diode is connected between Pin 2 and Pin 15 as shown in Figure 1.

The following conditions have to be considered when selecting the zener diode:

$$V_{clamp} = V_{M} + 6.0 V$$

$$V_Z = V_{clamp} - V_M - V_F^*$$

where: V_F = clamp diodes forward voltage drop (see Figure 4)

V_{clamp}: ≤ 20 V for SAA1042

≤ 30 V for SAA1042A

Pins 2 and 15 can be linked, in this case $V_Z = 0 \text{ V}$.

Set/Bias Input — (Pin 6) This input has two functions:

The resistor RB adapts the drivers to the motor current.

A pulse via the resistor R_R sets the outputs (1, 3, 14, 16) to a defined state.

The resistor R_B can be determined from the graph of Figure 2 according to the motor current and voltage. Smaller values of RB will increase the power dissipation of the circuit and larger values of RB may increase the saturation voltage of the driver transistors.

When the "set" function is not used, terminal A of the resistor RB must be grounded. When the set function is used, terminal A has to be connected to an opencollector (buffer) circuit. Figure 7 shows this configuration. The buffer circuit (off-state) has to sustain the motor voltage V_M. When a pulse is applied via the buffer and the bias resistor Rg:

During the pulse duration, the motor driver transis-

tors are turned off.

After elapsing the pulse, the outputs will have defined

Figure 6 shows the timing diagram.

Figure 7 illustrates a typical application in which the SAA1042 drives a 12 V stepper motor with a current consumption of 200 mA/coil.

A bias resistor (R_R) of 56 k Ω is chosen according to Figure 2.

The maximum voltage permitted at the output pin is V_M + 6.0 V (see the Maximum Ratings), in this application $V_{M} = 12 V$, therefore the maximum voltage is 18 V. The outputs are protected by the internal diodes and an external zener connected between Pins 2 and 15.

From Figure 4, it can be seen that the voltage drop across the internal diodes is about 1.7 V at 200 mA. This results in a zener voltage between Pins 2 and 15 of:

$$V_Z = 6.0 V - 1.7 V = 4.3 V.$$

To allow for production tolerances and a safety margin, a 3.9 V zener has been chosen for this example.

The clock is derived from the line frequency which is phase locked by the MC14046B and the MC14024.

The voltage on the clock input, is normally low (Logic '0'). The motor steps on the positive going transition of

A Logic '0' applied to the Full/Half input, Pin 8, operates the motor in the Full Step mode. A Logic '1' at this input will result in the Half Step mode. The logic level state on the CW/CCW input, Pin 10, and the connection of the motor coils to the outputs determines the rotational direction of the motor.

These two inputs should be biased to a Logic '0' or '1' and not left floating. In the event of non-use, they should be tied to ground or the logic supply line, VCC.

The output drivers can be set to a fixed operating point by use of the Set input and a bias resistor Rg. A positive pulse to this input turns the drivers off and sets the logic state of the outputs.

After the negative going transition of the Set pulse, and until the first positive going transition of the clock, the outputs will be:

$$L1 = L3 = high and L2 = L4 = low.$$

(See Figure 6, the timing diagram).

The Set input can be driven by a MC14007B or a transistor whose collector resistor is R_B. If the input is not used, the 'bottom' of RB must be grounded.

The total power dissipation of the circuit can be determined from Figures 3 and 5.

$$P_D = 0.9 W + 0.08 W = 0.98 W.$$

This results in a junction to ambient temperature, without a heatsink of:

 $T_J - T_A = 50^{\circ}C/W \times 0.98 W = 49^{\circ}C.$ or a maximum ambient temperature of 76°C. For operation at elevated temperatures a heatsink is required.

SAA1042, SAA1042A

FIGURE 2 — BIAS RESISTOR RB versus MOTOR CURRENT

FIGURE 3 — DRIVE STAGE POWER DISSIPATION

FIGURE 4 — CLAMP DIODE FORWARD CURRENT Versus FORWARD VOLTAGE

FIGURE 5 — POWER DISSIPATION versus
LOGIC SUPPLY VOLTAGE

FIGURE 6 — TIMING DIAGRAM

FIGURE 7 — TYPICAL APPLICATION SELECTABLE STEP RATES WITH THE TIME BASE DERIVED FROM THE LINE FREQUENCY

TDA1085A TDA1085B

Specification and Applications Information

UNIVERSAL MOTOR SPEED CONTROLLER

The TDA1085A or B have all the necessary functions for the speed control of universal (ac/dc) motors in an open or closed loop configuration. Additionally they have the facility for defining the initial speed/time characteristic. The circuits provide a phase angle varied trigger pulse to the motor control triac.

- · Guaranteed Full Wave Triac Drive
- Soft Start from Powerup
- On-Chip Frequency/Voltage Convertor and Ramp Generator
- Current Limiting Incorporated
- · Direct Drive from ac Line

UNIVERSAL MOTOR SPEED CONTROLLER

SILICON MONOLITHIC INTEGRATED CIRCUIT

PLASTIC PACKAGE CASE 648

MAXIMUM RATINGS

Description 1941	Symbol	Value	Unit
Parameter	Зунион	Value	Oint
Power Supply Voltage	VPin 9-8	17	V
Power Supply Current (Pin 10 Open)	lPin 9	15	mA
Peak Power Supply Regulation Current	IPin 9 + IPin 10	35	mA
Peak ac Synchronization Input Current	^l Pin 1 ^l Pin 2	± 1.0	mĄ
Peak Output Triggering Current (Pulse Width 300 μs; Duty Cycle ≤ 3%)	^I Pin 13	200	mA ·
Current Drain per Listed Pin	15 3 12	1.0 -5.0 -3.0, +0.1	mA
Power Dissipation (T _A = 25°C) Derate above 25°C	P _D 1/R _θ JA	625 6.8	mW mW/°C
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$ unless otherwise stated)

Characteristic	Symbol	Min	Тур	Max	Unit
VOLTAGE REGULATOR					
Regulated Voltage* (lg + l ₁₀ = 10 mA)	Vcc	_	15.5		V
Monitoring Enable Level*	VME		15.1		V
Monitoring Disable Level*	V _{MD}	_	14.5	_	V
Internal Current Consumption1	lPin 9	_	4.2	_	mA
RAMP GENERATOR					
Reference Input Voltage Range ²	V _{Pin 5-8}	0.08		13.5	V
Reference Input Bias Current	lPin 5	_	_	- 20	μA
Distribute Low Level Voltage Range	V _{Pin 6}	0	_	2.0	V
Distribute — Low Level (Figure 2)	V _{DL}	_	VPin 6		V
Distribute — Upper Level* (Figure 2) (VPin 6 = 950 mV)	V _{DU}	1.9 V ₆	2.0 V ₆	2.1 V ₆	٧
Low-High Acceleration Range (Figure 2)	ΔV _{DA}	_	400		mV
High Acceleration Charging Current	I _{CH7}	l –	1.2	_	mA
Low Charging Current ³	ICL7	_	5.0	_	μΑ

NOTES

- NOIES:

 1. Pins 1, 2, 11, 12, 14 and 15 not connected; Pins 4, 5, 6 and 7 grounded to Pin 8: VCC = 15.5 V

 2. When VPin 5 is < 80 mV, the internal monitoring circuit interprets
- When VPin 5 is ≤ 80 mV, the internal monitoring circuit interprets it as a true zero, thus minimizing the effects of control amplifier offsets.
- offsets.

 3. This value should be accounted for when externally setting the distribute acceleration charging current.

ELECTRICAL CHARACTERISTICS (Continued)

Characteristic	Symbol	Min	Тур	Max	Unit
CURRENT LIMITER				•	
Stage Current Gain	<u>lDL7</u> Δl3	-	170	_	_
Output Discharge Current Swing	I _{DL7}	_	35	_	- mA
CONTROL AMPLIFIER					
Actual Speed Voltage Range	VPin 4-8	0	_	13.5	V
Actual Speed Input Bias Current	l _{Pin 4}	_	_	- 350	nA
Total Input Offset Voltage ⁴	V _{off}	- 60	_	20	mV
Transconductance $\left(\frac{\Delta l Pin \ 16}{V Pin \ 4} - V Pin \ 7\right)$	9 _m	_	300	_	μ Α /V
Output Current Swing	lPin 16	_	± 100	-	μΑ
FREQUENCY/VOLTAGE CONVERTER					
Input Signal Low Voltage ⁵	V _{L12}	-0.1		_	V
Input Signal High Voltage	V _{H12}	0.1	_	5.0	, V
Polarization Current	IPin 12	_	- 25	_	μΑ
Conversion Rate6*	КC	_	15	_	mV/Hz
Linearity* (Figure 3)	Κ _L	_	± 4.0	_	%
TRIGGER PULSE GENERATOR					
Voltage Synchronization Levels	lPin 2	_	±50	_	μΑ
Current Synchronization Levels	lPin 1	_	± 50		μΑ
Input Voltage Swing (for full angle swing)	V	_	11.7	_	٧
Trigger Pulse Width ⁷	t _p	_	55		μs
Trigger Pulse Repetition Period	t	_	215	_	μs
Trigger Pulse High Level (I _{Pin 13} = 150 mA)	VPin 13	V _{CC} -4	_	_	V
Output Leakage Current (VPin 13 = 0 V)	loPin 13	_		30	μΑ

^{4.} $V_{\mbox{off}}$ is defined as being the voltage difference between Pin 5 and 4

with no current flow on Pin 16.

5. The negative swing is clamped to -0.3 V.

^{6.} VPin 4 = k • CPin 11 • (VCC - V_a) • RPin 4 • $\left(1 + \frac{180 \times 10^3}{RPin 11}\right)^{-1}$ • freq in.

Where: 9 < K < 13 & V_a = 1.3 V.

7. The timing given is when CP_{in 14} = 47 nF.

* These figures apply for the application shown in Figure 4.

11

INPUT/OUTPUT FUNCTIONS

VOLTAGE REGULATOR — (Pins 8, 9, 10). This is a parallel type voltage regulator able to sink a large amount of current while offering good regulation characteristics.

A resistor between Pins 9 and 10 reduces the internal power dissipation. Under minimal current sink conditions (min. current from the unregulated supply, max. consumption by the circuitry), at least 1.0 mA should flow through this resistor. Under max. sink conditions (max. current from the unregulated supply, min. consumption by the circuitry), the maximum resistor value is chosen so that the voltage at Pin 10 falls towards 3.0 V, but not lower. The above, fixed dynamic range of the regulator must not be exceeded within one line cycle.

A power supply failure causes shutdown. For operation from an externally regulated voltage,

Pin 10 is not connected.

SPEED SENSING — (Pins 4, 11, 12). Speed sensing can be achieved either digitally (tachogenerator frequency) or analogically (tachogenerator amplitude).

For digital sensing, a bipolar signal with respect to ground is applied to Pin 12. During positive excursions

FIGURE 2 — RAMP GENERATOR TRANSFER CHARACTERISTIC

VPin 5

VDU = 2VDL
VPin 6 = VDL
High Acceleration
High Acceleration

The shape of the curve is determined by CRp $_{\rm in}$ 7; where Cp $_{\rm in}$ 7 defines the high acceleration slope and Rp $_{\rm in}$ 7 defines that of the low acceleration.

 $C_{Pin\ 11}$ is charged. An internal mirror delivers ten times the charge on $C_{Pin\ 11}$ via $Pin\ 4$. However, due to internal circuitry, the charge on $Pin\ 4$ can vary in the region of 9 to 13 times the charge on $C_{Pin\ 11}$. For that reason is in encessary to calibrate the Frequency/Voltage Convertor (F/VC) with a variable resistor on Pin\ 4. Thus the relationship between speed and $V_{Pin\ 4}$ is defined by $R_{Pin\ 4}$ and $C_{Pin\ 11}$.

To maintain linearity in the high speed ranges it is important that $C_{Pin\ 11}$ is fully charged across an equivalent resistor of about 180 k Ω . It should be borne in mind that the impedance on Pin 11 should be kept as low as possible as $C_{Pin\ 11}$ has a large influence on the temperature coefficient of the FV/C. The time constant on Pin 4 should also be kept as low as possible.

Pin 12 is also an impedance monitoring input; at high impedances Vpin 12 increases. Should Vpin 12 exceed 5.0 V the triac trigger pulses are inhibited and the circuit resets

A 470 $k\Omega$ resistor from Pin 11 to + V_{CC} significantly reduces the leakage current and reduces the device temperature coefficient to almost zero.

INPUT/OUTPUT FUNCTIONS (continued)

For analog sensing input 12 should be grounded and a positive signal, with respect to ground, Pin 8, applied to Pin 4.

RAMP GENERATOR — (Pins 5, 6, 7) (refer to Figure 2). A preset voltage applied to Pin 5 will initiate the generation of a ramp whose final value is determined by the voltage applied to Pin 5. The voltage applied to Pin 6 will determine how much of the full ramp, shown in Figure 2, is used. The charging current passing through Pin 7 to the ramp generator timing capacitor determines the ramp slope.

When Pin 6 is held at $-V_{CC}$ a charging current of 1.2 mA is delivered to Pin 7, regardless of the voltage of Pin 5. This represents the high acceleration period shown in Figure 2.

If the preset voltage applied to Pin 5 is equal to or less than the voltage on Pin 6 the charging current will be 1.2 mA, or high acceleration.

If the preset voltage applied to Pin 5 is between Vpin 6 and 2 Vpin 6 the charging current is 1.2 mA (high acceleration) until the voltage at the reference input of the control amplifier equals Vpin 6. At this point the charging current will switch to 5.0 μ A; i.e. low acceleration.

If the preset voltage applied to Pin 5 is greater than 2 VPin 6 the charging current will be 1.2 mA (high acceleration) until the control amplifier's reference input reaches VPin 6 when it will switch to 5.0 μA (low acceleration) until 2 VPin 6 is reached. At this point the charging current will revert to 1.2 mA, high acceleration, until the final value of VPin 5 is reached.

Should the preset voltage at Pin 5 fall below 80 mV, the triac trigger pulses are inhibited and the circuit resets. This fact should be borne in mind when switching from one preset value to another.

As long as the voltages applied at Pins 5 and 6 are derived from the internal voltage regulator, they and the voltage on Pin 4 are ratioed and thus independent of the voltage regulator spread and temperature coefficient.

CURRENT LIMITER — (Pin 3). Safe operation of the motor and triac under all conditions is ensured by reducing the motor speed if a preset current limit is exceeded.

This is achieved as follows: The motor current will set up an alternating current, consisting of positive and negative peaks through the shunt resistor (0.05 Ω in Figure 4).

The negative peaks of this current are fed through a resistor to Pin 3 where they are compared with a preset current defined by a resistor between Pin 3 and $+V_{CC}$. An excessive shunt current will try to pull Pin 3 below $-V_{CC}$, but the current limiter becomes active at this point and reduces the charge on C_{Pin} 7, consequently reducing the motor speed.

Thus the value of the shunt and the ratio of the two resistors to Pin 3 fix the level at which the limiter becomes active, while the parallel equivalent of the two resistors determines the magnitude of the discharge current and thus how rapidly the circuit responds to an overcurrent condition.

CONTROL AMPLIFIER — (Pin 16). Connected to this pin is a network which compensates electrically for the mechanical characteristics of the motor and its load to give the circuit optimum closed loop stability and transient response.

The component values are best determined empirically by connecting R and C substitution boxes and looking for the best results.

TRIGGER PULSE GENERATOR — (Pins 1, 2, 13, 14, 15). This circuit performs four functions:

- The conversion of the control amplifier's dc output level to a proportional firing angle positioned to within half a line cycle.
- 2. The calibration of the pulse width.
- The repetition of the firing pulse if the triac fails to latch, or if the current is interrupted by brush bounce.
- 4. To delay the firing pulse until the current crosses zero at wide firing angles.

Rpin 15 and Cpin 14 fix the sawtooth while Cpin 14 also determines the pulse width.

Pin 13 is the trigger pulse output. A current limiting resistor is essential on this pin. This configuration will drive two thyristors controlling a bridge if the supply for the speed controller is isolated.

TYPICAL APPLICATIONS

FIGURE 4 — CLOSED LOOP, FULLY PROGRAMMED, MULTI-SPEED SYSTEM WITH CURRENT LIMITING

- * Chosen to suit the speeds required
- ** Adjust for the highest speed
- *** Required only with 'A' suffix device

Speed Control Resistor Network Equations

R17	=	given
R18	.=	R17 (15.5 V - 1)
R19	=	R17 (<mark>14.8 V</mark> V _{spin 2} - 1)
R20	=	R17 (14.8 V - 1) - R19
R21	=	R17 $(\frac{14.8 \text{ V}}{\text{k.VW}} - 1) - \text{R19} - \text{R20}$
R15	=	R21 (<u>K.VW</u> 15.5 V (2-K)
R14	=	R15 (^{15.5 V} / _{VW} -1)
-		

The ratio distribute speed to wash speed can be chosen as:

$$\frac{V_{DIST}}{V_{WASH}} \le 2 = K$$

	S1	S2	S3	S4	V _{Pin 5}	VPin 6
Wash	sc	ос	ос	ос	٧w	0
Distribute	ос	sc	ос	ос	ΚV _W	٧w
Spin 1	ос	ос	sc	ос	>KVW	$\frac{K}{2}V_{W}$
Spin 2	ос	ос	ос	sc	>>KV _W	$\simeq \frac{K}{2}V_{W}$

sc = switch closed

oc = switch open

When changing from one speed to another VPin 5 must not be allowed to fall below 80 mV — otherwise the circuit will reset and restart from

The component values given in Figure 4 correspond to:

0.7 V ٧w ٧D 1.13 V V_{spin} 1 5.0 V 11 V

V_{spin 2}

TDA1185A

Specifications and Applications Information

TRIAC PHASE ANGLE CONTROLLER

The TDA1185A generates controlled triac triggering pulses and allows tacholess speed stabilization of universal motors by an integrated positive feedback function. Typical applications are power hand tools, vacuum cleaners, mixers and other small appliances.

- Low Cost External Components Count
- Optimum Triac Firing (2nd and 3rd Quadrants)
- Repetitive Trigger Pulses When Triac Current is Interrupted by Motor Brush Bounce
- Triac Current Sensed to Allow Inductive Loads
- Soft Start
- Power Failure Detection and General Circuit Reset
- Low Power Consumption: 1.0 mA

TRIAC PHASE ANGLE CONTROLLER

SILICON MONOLITHIC INTEGRATED CIRCUIT

PLASTIC PACKAGE CASE 646-05

MAXIMUM RATINGS (Voltages are referred to Pin 14 (ground) unless otherwise noted)

Rating	Symbol	Value	Unit
Maximum Voltage Range per Listed Pin Pins 3-5-11 (not connected) Pins 4-8-13 Pin 2 Maximum Positive Voltage (No minimum value allowed; see current ratings)	V _{Pin} V _{Pin} 12 V _{Pin} 1	-20 to +20 -V _{CC} to 0 -3.0 to +3.0 +0 +0.5	Volt
Maximum Current per Listed Pin Pin 1 Pins 6 and 7 Pin 9 Pin 10 Pin 12	I _{Pin}	±20 ±2.0 ±0.5 ±300 -500	mA mA mA μA
Maximum Power Dissipation (at T _A = 25°C)	PD	250	mW
Maximum Junction to Ambient Thermal Resistance	$R_{ heta JA}$	100	°C/W
Operating Ambient Temperature Range	ТД	0 to +70	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$) Voltages are related to Pin 14 (ground)

Characteristics	Symbol	Min	Тур	Max	Unit
Power Supply Zener Regulated Voltage, (Vp _{in 1}) lp _{in 1} = 2.0 mA Circuit Current Consumption, lp _{in 1}	-v _{cc}	- 9.6	-8.6	-7.6	Volt
$V_{Pin 1} = -6.0 \text{ V}, I_{Pin 2} = 0 \text{ V}$	-Icc	-2.0	- 1.0	_	mA
Monitoring Enable Supply Voltage (V _{EN}) Monitoring Disable Supply Voltage (V _{DIS})	V _{Pin 1EN} V _{Pin 1DIS}	V _{CC} + 0.2 V _{EN} + 0.12	_	V _{CC} + 0.5 V _{EN} + 0.3	Volt
Phase Set Control Voltage Static Offset V _{Pin 8} - V _{Pin 12} Pin 12 Input Bias Current V _{Pin 4} - V _{Pin 12} Residual Offset	V _{off} lPin 12	1.2 - 200 	 180	1.8 0 —	Volt nA mV
Soft Start Capacitor Charging Current RPin 10 = 100 $k\Omega$, VPin 13 from $-V_{CC}$ to -3.0 Volts	lPin 13	- 17	- 14	- 11	μΑ
Sawtooth Generator Sawtooth Capacitor Discharge Current R ₁₀ = 100 k Ω VPin 4 from -2.0 to -6.0 Volts Capacitor Charging Current Sawtooth "High" Voltage (VPin 4) Sawtooth Minimum "Low" Voltage (VPin 4) referred to Pin 1	IPin 4 IPin 4 VHTH VLTH	67 - 10 - 2.5	70 - 1.6 + 1.5	73 - 1.5 - 1.0	μΑ mΑ Volt Volt
Positive Feedback Pin 9 Input Bias Current, $V_{Pin} \ g = 0$ Programming Pin Voltage Related to Pin 1 Transfer Function Gain $\Delta V_{Pin} \ g/\Delta V_{Pin} \ g$ R ₁₀ = 100 k Ω , $\Delta V_{Pin} \ g = 50$ mV R ₁₀ = 270 k Ω , $\Delta V_{Pin} \ g = 50$ mV Pin 8 Output Internal Impedance	IPin 9 VPin 10 A A ZPin 8		2 × Pin 10 1.25 75 36 120	 1.5 	Volt kΩ
Trigger Pulse Generator Output Current (Sink) $V_{Pin\ 2}=0\ V$ Output Leakage Current $V_{Pin\ 2}=\pm2.0\ V$ Output Pulse Width $C_1=47\ nF$ $R_{10}=270\ k\Omega$	lPin 2	60 —	_	80 4.0	mA μA
C1 = 47 III = 170 k Ω Output Pulse Repetition Period C1 = 47 IF R ₁₀ = 270 k Ω Current Synchronization Threshold Levels Ipin 6, Ipin 7	t t ISYNC	 40	55 420 —	_ _ + 40	μs μs μA

11

CIRCUIT DESCRIPTION

The TDA1185A generates trigger pulses for triac control of power into an ac load. The firing angle is determined by generating a ramp voltage synchronized to the ac line half cycle and compared to an external set voltage representing the conduction angle.

Gate pulses are negative (sink current) and thus the triac is driven in its most effective quadrants (Q2-Q3).

If the load is a Universal motor (the speed of which is decreasing as torque increases), the TDA1185A allows to increase the firing angle proportionally to the

motor current, sensed by a low value series resistor.

Notice: Perfect motor speed compensation cannot be provided by open-loop systems, since no negative feedback is used. Due to the low cost of tacholess systems, the TDA1185A is the optimum solution for applications tolerating 5% motor speed variations.

Nevertheless by accurate circuit design, these variations can be reduced down to 2% from no load to full load conditions.

CIRCUIT FUNCTIONS

DC POWER SUPPLY — DC power is directly derived from the ac line through a 2.0 watt, 18 k Ω resistor, rectifier and filtering capacitor circuit. The latter being directly connected to the dropping resistor protects the whole IC from any ac line overvoltage. The $-V_{CC}$ voltage is internally regulated by an integrated zener. Referred to Pin 14 (ground) the power supply voltage is negative (-8.6 volts). The TDA1185A internal consumption is 1.0 mA.

TRIGGER PULSE GENERATOR — It delivers a 60 mA minimum pulse current (sink) through an internally short-circuit protected output. Pulse width is roughly proportional to R₁₀ • C₄ and is repeated every 420 μ s if triac fails to latch or is switched off by brush bounce. With inductive loads, the current lags in respect of the voltage: Pin 6 delays the triggering pulse up to the moment the triac is off, in order to prevent erratic power control (see Figure 2). The logic structure guarantees full-wave triac operation.

SAWTOOTH GENERATOR — A constant current generator discharges the capacitor C_4 , the voltage of which is the sawtooth signal synchronized with main line. Pin 4 voltage is reset to -1.6 volt at every ac line zero crossing (see Figure 3). The constant current generator is externally programmable by an external resistor connected to Pin 10:

$$I_{Pin \ 4} = I_{Pin \ 10} \ 10 \pm 5\%$$

$$I_{Pin \ 10} = \frac{-V_{CC} \pm 1.25}{R_{10}}$$

MAIN COMPARATOR — Its role is to determine the trigger pulse time which occurs as the sawtooth voltage equals set voltage. Fixed set values lead to a constant triac conduction angle unless positive current feedback is connected or soft start capacitor is not charged.

SOFT START — The TDA1185A allows the user to avoid any abrupt inrush current in the load, for various purposes: motor soft start, protection of high performance bulbs or ac line minimum disturbances.

The firing angle is established from zero to the set value according to a voltage ramp generated by a constant current delivered to capacitor C₁₃. The constant current value is:

 $I_{Pin \ 13} = 0.2 \times I_{Pin \ 10} \pm 10\%$

The voltage ramp lasts as long as $V_{Pin\ 13}$ is lower than $V_{Pin\ 12}$. $V_{Pin\ 13}$ reset voltage is $-V_{CC}$. See Figure 4.

Notice. Universal motors do not have any motion effect as long as a minimum conduction angle is not reached. The time the voltage ramp reaches this threshold value is considered as "dead" time and can be eliminated by a series resistor at Pin 13. The voltage drop developed by Ipin 13 makes the firing angle immediately reach the threshold value and have the soft start function without dead time. See Figure 5.

POSITIVE CURRENT FEEDBACK — The Universal motor speed drops as load increases. To maintain it as stable as possible, the triac firing angle must be increased. For this purpose the Pin 9 input senses the motor current as a voltage developed in a low resistor value, R_g , amplifies, rectifies and adds it to Pin 12 set voltage. The transfer function $\Delta V_{Pin~8} = f \left(\Delta V_{Pin~9} \right)$ and is represented on Figure 6.

The gain in the linear region is dependent on R₁₀. The voltage transferred to Pin 8 is proportional to the average value of the motor current and is very close to ts RMS value (as motor current is not far from a sine wave). This averaging effect is represented in Figure 7.

For large amplitude Pin 9 signals, the am function presents a saturation effect which limits the maximum firing angle increase. Figure 8 presents this aspect as well as the total Pin 8 voltage which is:

$$V_{Pin 8} = V_{Pin 12} + f(|V_{Pin 9}| R_{10}) + offset$$

The offset is the addition of two PN Junctions and is compensated with respect to V_{Pin 4} (sawtooth) by additional diodes within the main comparator (See Figure 10).

The effect of positive feedback is described per Figure

MONITORING — A central logic block performs the following functions: — ENABLE/DISABLE of the IC with respect to power supply voltage. Under DISABLE conditions, Pins 4, 8, 12, and 13 are forced to appropriate voltages to prepare for the next reset (See Figure 10).

APPLICATION CONSIDERATIONS

PINS CHARACTERISTICS — Figure 10 describes more details in the internal IC layout and defines the pin characteristics. Pin 9 has a low internal impedance and requires a maximum 100 Ω trimmer on R_{α} to adjust reaction ratio. Pin 8 must always be connected to -V_{CC} through a filtering capacitor.

TEMPERATURE EFFECTS — The TDA1185A has very efficient internal temperature compensation. If positive current feedback is not connected, the RMS power delivered to the load is stabilized within $\pm 0.2\%$ over a temperature range of +20 to +70°C. The positive feedback introduces in the same temperature range, a drift of 250 mV on VPin 8; this slight firing angle increase may be successfully used to compensate a motor ohmic resistance increase with temperature as well.

MAIN LINE VOLTAGE COMPENSATION — As the firing angle is independent of main line voltage, any change in the latter (usually ±15%) induces a very large power

variation to the load. An external compensation must be used, introducing a VPin 12 decrease as Vmains increases. An inexpensive resistor RCOMP, connected to the rectifier anode and to Pin 12 performs this role and its value depends on $V_{Pin\ 12}$, $R_{10}C_4$, R_{12} . R_{COMP} can be empirically determined without difficulty under no load conditions.

FIRING ANGLE DYNAMIC — With purely resistive loads, the effective RMS applied power to the load is an increasing function of the firing angle (per Figure 11). We notice the fact that a firing angle of 150° provides 97% of the full power corresponding to 180°.

With inductive loads, as currents lag with respect to Voltage, 100% power corresponds to a firing angle which is smaller than 180°.

These considerations will simplify positive feedback design if maximum firing angle is accepted to be within 150-160°.

The triac failed to latch at the first pulse. Successive pulses are generated up to the moment latching oocurs.

The triac turned off due to brush bounce, a new pulse is immediately delivered.

Approaching full conduction, a pulse would occur when the triac still carries current; the pulse is delayed until the triac turns off.

11

FIGURE 3 — TRIGGERING PULSE TIMING

FIGURE 4 - SOFT START

FIGURE 5 — SOFT START WITHOUT DEAD TIME

FIGURE 6 — TRANSFER FUNCTION

FIGURE 7 — AVERAGING EFFECT OF TRANSFER FUNCTION

FIGURE 8 — TRANSFER FUNCTION (Pin 8/Pin 9)

FIGURE 9 — POSITIVE FEEDBACK EFFECT offset Voltages have been neglected

FIGURE 10 — INTERNAL BLOCK DIAGRAM

Le de Se dono

FIGURE 11 — EFFECTIVE POWER AS A FUNCTION OF FIRING ANGLE

TDA1285A

MOTOR SPEED CONTROLLER

The TDA1285A has all the necessary functions for the speed control of universal motors in a closed loop configuration. Directly driven from the ac line, the circuits generate a phase angle varied trigger pulse to the control triac. In addition it provides the following features:

- Full Wave Triac Drive
- Repeated Trigger Pulse if Triac Fails to Latch
- Over 65 mA Output Pulse Current
- Automatic Adaptation to Inductive or Hall Effect Sensors
- Sensor Circuit Continuity Detection
- Motor Current Limitation
- Controlled Motor Starting Acceleration
- Typical 1–2% Motor Speed Variation Within All Temperature and Load Ranges

UNIVERSAL MOTOR SPEED CONTROLLER

SILICON MONOLITHIC INTEGRATED CIRCUIT

PLASTIC PACKAGE CASE 648-05

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Supply Current	lPin 9 RMS	20	mA
Peak Supply Current, t $<$ 250 μ s	lPin 9 PEAK	200	mA
Regulated Supply Current Drain	^l Pin 10	10	mA
Peak ac Synchronization Input Currents	Pin 1 Pin 2	± 2.0 ± 2.0	mA mA
Current Drain per Listed Pin	l3	- 1.0 + 2.0	mA
	l ₁₂	+ 500 - 4.0	μA mA
	16	-7.0 +1.0	mA
	¹ 15	+ 1.0	mA
Pin 3 Reverse Voltage	V _{Pin 3}	- 5.0	V
Power Dissipation (T _A = 25°C) Derate above 25°C	P _D 1/R _€ JA	625 6.8	mW mW/°C
Operating Temperature Range	TA	0 to 70	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Power Supply	V	19	20.5	23	V
Zener Regulated Voltage, Ip _{in} 9 = 20 mA Regulated Supply Voltage (Pin 10)	V _{Pin} 9 VCC	13.6	14.6	15.6	v
Ipin 10 = 0; Ipin 13 = 0; Ipin 15 = 0 Ipin 7 = 0; Vpin 9 = 18 V Current Consumption (Ipin 9) Ipin 6 = 0; Ipin 13 = 0; Ipin 10 = 0 Ipin 15 = 0; Ipin 7 = 0; Vpin 9 = 18 V	lcc		4.5	7.0	mA
Speed Reference					
Reference Input Voltage Range	VPin 5	0	-	12	V
Reference Input Bias Current (Vpin 5: 0 to +12 V)	lPin 5	- 2.0		0	μΑ
Frequency to Voltage Converter					
Inductive Sensor Application Range	lPin 6	- 2.5	-	0	mA
Hall-Effect Sensor Application Range	lPin 6	-8.0	_	- 3.5	mA
Maximum Input Signal Voltage	VPin 12 - VPin 6	-5.0	- 1	+ 5.0	V
Common-Mode Reference Voltage	V _{Pin 6}		5.0		V
Polarization Current ($-5.0 \text{ V} < \text{Vp}_{\text{in } 12} - \text{Vp}_{\text{in } 6} < +5.0 \text{ V}$)	lPin 12		-50		μΑ
Threshold Hysteresis Voltage (See Figure 4)	(VSensor - VPin 6)THRS		±60		mV
Floating Input Voltage (Ipin 12 = 0)	VPin 12	12			٧
Main Comparator					١
Output Voltage Range (IPin 16 = 0)	VPin 16	_	0; +12	_	V
Output Current Swing	lPin 16		± 100	-	μΑ
Transconductance (Ipin 7 = 0; Ipin 10 = 0; Vpin 16 = 5.2 V)	ΔlPin 16	140	205	265	μA/V
	ΔV _{Pin 4}				
Output Resistance	Rout Pin 16	-	106	_	Ω
Offset Voltage (Ipin 7 = 0; Ipin 16 = 0; Vpin 16 = 5.0 V)	VPin 5 - VPin 4	- 20	0	+ 20	mV

ELECTRICAL CHARACTERISTICS (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Current Limitation					
Detection Level	VPin 3 Min.	_	0.65		l v
Clamping Voltage Level	VPin 3 CLAMP		1.3	_	v
Output Discharge Current	DL7	_	0.5	_	mA
Saturation Resistance	R _{sat} Pin 7	-	1.6	_	kΩ
Start-up					
Maximum Start-up Voltage (Ipin 7 = 0)	Vpin 7	_	4.5	_	v
Start-up Current (until motor turns) (Pin 7 = 0)	l _{Pin 7}	-	- 1.0	_	mA
Soft-Start					μΑ
Acceleration Charging Current	lPin 7		-8.0		,
Trigger Pulse Generator					
Trigger Pulse Width*	. tp	_	100		μs
Trigger Pulse Repetition Period*	t	_	600	_	μs
Output Pulse Current (VPin 13 = 1.0 V)	lPin 13	- 70	_	- 65	. mA
Output Leakage Current (VPin 13 = -2.0 V)	lo Pin 13	_	_	10	μΑ
Current Synchronization Threshold Levels (Pin 1 and Pin 2)	Thrs	-	± 80	_	μA
Sawtooth Current Generator	lPin 14	-	65		μ Α
Pin 15 Voltage (IPin 15 = 0)	VPin 15		1.3	_	Volt

^{*} These figures apply for the application shown in this data sheet.

CIRCUIT DESCRIPTION

The TDA1285A generates trigger pulses for a triac controlling the power into an ac motor connected to mains. The firing angle of the triac is determined by comparison between a sawtooth signal (mains synchronized) and the main internal comparator signal. The latter is the difference between a set voltage (externally adjustable) representing the reference speed and the actual motor speed issued from an external sensor and converted by an internal frequency to voltage converter. This sensor may be inductive (tachometer) or Hall-effect. Other functions are also provided by the TDA1285A.

KEY CIRCUIT FUNCTIONS

DC POWER SUPPLY

DC Power is directly derived from the ac line by a low cost resistor-rectifier-capacitor circuit. The voltage on Pin 9 is Zener protected. The voltage on Pin 10 is fully regulated by a series ballast regulator, but is not self-limiting. Special provisions for Hall-effect sensor power are included.

TACHOMETER INPUT (Pins 6 and 12)

The maximum allowable voltage swing is -5.0 to +5.0 V. Circuit continuity is permanently checked by the monitor.

HALL-EFFECT INPUT (Pins 6 and 12)

When Ipin 6 exceeds 3.0 mA, the circuit detects the use of a Hall-effect sensor and thus sensor circuit continuity is not checked (an open circuit would provide full triac conduction angle).

FREQUENCY TO VOLTAGE CONVERTER

This circuit converts the tachometer input frequency into a proportional voltage on Pin 4 (eventually usable for any feedback). Particular care must be devoted to the conversion ratio of the F/V converter which is under the user control. In effect, it depends on the values of the C₁₁ capacitor and on tachometer frequency f(Hz).

 $V_{Pin 4} = 1.410 \times 10^{-10} \times C_{11} (pF) \times R_4 \times F(Hz) \times (1 \pm 0.15)$

VPin 4 corresponding to maximum allowed motor speed must be chosen as close as possible to 12 V in order to minimize noise disturbance down to a negligible level.

MAIN COMPARATOR

Its role is to amplify the signal error. Negative feedback from the output (Pin 16) to the input may be used to reduce the closed loop gain of the system and increase stability.

SOFT START (Pin 7)

Set speed input (Pin 5) is overruled by similar data from Pin 7 as long as VP_{in 7} is smaller than VP_{in 5} + 400 mV (Typ). An internal 8.0 μ A current source allows an external capacitor, C₇ to be charged slowly and thus lets the ac motor soft start (Figure 2). Pin 4 offset

may be set appropriately by an external resistor (R₁ = 1 M Ω). Notice that R₁ may affect F/V conversion ratio. An external 10 nF capacitor on Pin 5 reduces noise sensitivity.

START-UP CIRCUIT

From the moment power is applied to the circuit (or the circuit is enabled by Monitoring) to the moment a speed input signal is detected, C7 is charged at a high current level (typically 1.0 mA). Detection of the first tachometer input resets the Pin 7 current to its nominal value (8.0 μ A). The result of such a circuit is to start the acceleration ramp at the moment the motor starts to turn, avoiding any dead time (see Figure 2). When the motor is cycled on and off in close succession, the acceleration ramp is started immediately without waiting for the motor to stop.

MOTOR CURRENT LIMITATION (Pin 3)

The motor current is sensed as a voltage developed across a resistor (R₃) in series with the triac. The limiter acts on positive peak values of R₃ x I filtered by a 22 k and 0.1 μ F, RC network (Figure 7). The motor current is reduced, decreasing its speed reference by discharging C₇ until current limit equilibrium is reached (see Figure 3).

TRIGGER PULSE GENERATOR

It delivers a 65 mA min. current pulse to the triac gate and repeats it if the triac fails to latch or if brush bounce has switched it off (Figure 6). Current and voltage detection through the triac are performed by Pins 1 and 2, delaying the trigger pulse until the triac current collapses. The pulse time is determined by the comparison of a sawtooth signal (available at Pin 14 and synchronous with line voltage) and the error signal directly supplied by the comparator.

Sawtooth slope is determined by the external capacitor C₁₄. Under these conditions pulse width is typically 100 μ s (Figure 5).

MONITORING

- This is an internal function, disabling the circuit when
- --- V_{CC} is insufficient
- Tachometer circuit is open and Ipin 6 < | −3.0 mA|</p>

FIGURE 2 — START-UP AND SOFT-START CIRCUIT ACTIONS

FIGURE 4 — SENSOR VOLTAGE DEFINITION

2.2 k is a recommended value to balance the voltage offset caused by sensor continuity detection circuit.

FIGURE 5 — FIRING PULSE GENERATION

FIGURE 6 — MULTIPLE FIRING PULSE AND FIRING PULSE DELAY

TYPICAL APPLICATION CIRCUITS

A motor control circuit using tachometer as speed sensor. It provides speed regulation as follows:

- ± 1.0% from 20 to 70°C
- 1.0% in full load range.

It is strictly recommended to design the PC board in order to plug every connection to ground (Pin 8)

directly and individually; otherwise, violent erratic currents may induce high level noise in the circuitry.

Motor will run full speed in case of tacho open circuit if a 47 k resistor is connected permanently between Pins 6 and 12.

FIGURE 7 - MOTOR CONTROL CIRCUIT

- Frequency to Voltage converter
- Max. motor speed 30,000 rpm
- Tachogenerator 4 pairs of poles: max. frequency = $\frac{30,000}{60}$ x 4 = 2 kHz
- C11 = 680 pF. R4 adjusted to obtain $V_{Pin~4}$ = 12 V at max. speed: 68 k Ω
- Power Supply
 - with $V_{mains} = 120$ Vac, $R_1 = 4.7$ k Ω . Perfect operation will occur down to 80 Vac.

FIGURE 8 — CIRCUIT MODIFICATIONS TO CONNECT A HALL-EFFECT SENSOR

UAA1016A UAA1016B

ZERO VOLTAGE CONTROLLER

The UAA1016A and B are designed to drive triacs with the Zero Voltage technique which allows RFI free power regulation of resistive loads. They provide the following features:

- Proportional Temperature Control Over an Adjustable Band
- Adjustable Burst Frequency (to Comply with Standards)
- Sensor Fail-Safe
- No dc Current Component Through the Main Line (to Comply with Standards)
- Negative Output Current Pulses (Triacs Quadrants 2 and 3)
- Direct ac Line Operation
- Low External Components Count

ZERO VOLTAGE SWITCH PROPORTIONAL BAND TEMPERATURE CONTROLLER

SILICON MONOLITHIC INTEGRATED CIRCUITS

PLASTIC PACKAGE CASE 626-04

MAXIMUM RATINGS (Voltages referred to Pin 7)

Parameter	Symbol	Max. Rating	Unit
Supply Current (IPin 5)	Icc	15	mA
Nonrepetitive Supply Current (Ipin 5)	ICCP	200	mA
ac Synchronization Current (Pin 8)	I _{syn}	3.0	mA (RMS)
Maximum Pin Voltages	VPin 1 VPin 2 VPin 3 VPin 4 VPin 6	0; - VCC 0; - VCC 0; - VCC 0; - VCC +2.0; - VCC	Volt
Maximum Current Drain	lPin 1	1.0	mA
Power Dissipation TA = 25°C	PD	625	mW
Maximum Thermal Resistance	$R_{\theta JA}$	100	°C/W
Operating Temperature Range	TA	-20 to +100	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C, Voltages referred to Pin 7 unless otherwise noted)

Characteristics	Symbol	Min	Тур	Max	Unit
Current Consumption (Pins 6 and 8 not connected)	lcc	_	0.8	1.5	mA
Stabilized Supply Voltage (Vpin 5) ICC = 2.0 mA max	-vcc	-9.6	- 8.6	-7.6	٧.
Output Pulse Current (VPin 6 from -1.0 to +1.0 Volt)	lout	60	90	120	mA
Output Pulse Width $Rp_{in} g = 220 k\Omega, V_{mains} = 220 Vac, (Figures 4 and 5)$	t _{p1}	58 160	60 220	120 320	μs
Comparator Input Offset Voltage (VPin 3 - VPin 4)	V_{off}	-10		+10	mV
Comparator Common Mode Voltage Range	V _{СМ}	-V _{CC} +1	_	– 1.5	V
Input Bias Current (Pins 3 and 4)	lΒ		_	1.0	μΑ
Output Leakage Current (IPin 6) VPin 6 = +2.0 V	l _{outL}	_	_	10	μΑ
Fail-safe Threshold Voltage (VPin 3)	V _{FSTH}		-0.7	_	V
Capacitor Charging Current (Source)	lPin 2	- 20	- 16	- 12	μΑ
Capacitor Discharge Current (Sink)	l'Pin 2	_	6.4	_	mA
Sawtooth Pulse Length ($C_{Pin 2} = 1.0 \mu F$)	t _{saw}	_	0.85	_	S
UAA1016A: Output Threshold Sawtooth Currents (Ipin 1) (Vpin 2 = -1.0 V) Vpin 2 = -VCC + 1.25 V	ITH1 ITH2	=	15 2.1	_	μΑ
UAA1016B:					V
Output Threshold Sawtooth Levels (Vpin 2)	V _{TH1} V _{TH2}		- 1.0 - V _{CC} + 1.25	_	
Output Voltage Pin 1	VPin 1		V _{Pin 2} -0.75	· —	٧

11

CIRCUIT DESCRIPTION

The circuit delivers current pulses to the triac at zero crossings of the main line sensed by Pin 8 through $R_{\rm SYRC}.$ An internal full wave logic allows the triac to latch during full wave periods in order to avoid any dc component in the main line, in compliance with European regulations. Trigger pulses are generated when the comparator detects $V_{\rm Pin}$ 3 is above $V_{\rm Pin}$ 4 (or $V_{\rm reference})$ as sensed temperature through the NTC is then lower than the set value ($V_{\rm REF}$ corresponding to the external Wheatstone bridge equilibrium).

In order to comply with norms limiting the frequency at which a kW sized load, or above, may be connected to the main line (fluorescent tubes "flickering"), the UAA 1016 has an internal time base providing (power

is delivered by bursts to the load) a proportional temperature band control. In fact, most of the heating regulation systems require low temperature overshoot for more precision and stability which cannot be accomplished by direct on/off regulation (see Figure 2). An internal low frequency sawtooth generator whose output is available at Pin 1, allows the designer to introduce a periodic linear change of V_{Ref} . This deviation defines the temperature band allowing proportional power control (see Figure 3).

A fail-safe circuit inhibits output pulses when the sensor circuit has a fault (open or short circuit).

The IC is directly powered from the mains by a dropping resistor, a diode and a filter capacitor.

KEY CIRCUIT FUNCTIONS DESCRIPTION

POWER SUPPLY — The rectified supply current is Zener regulated to 8.6 V. Current consumption of the UAA1016A/B is typically less than 1.0 mA. The major part of the current fed by the dropping resistor is used for the sensor bridge and triac gate pulses. Any excess of supply current is excess power dissipation into the integrated Zener. Current consumption of the triac pulses may be derived from Figure 4 and 5 (Igt max. and pulse duration). Usually an 18 k Ω , 2.0 W dropping resistor is convenient to feed the UAA1016.

COMPARATOR — When $V_{Pin~3}$ is higher than $V_{Pin~4}$ (V_{Ref}), the comparator allows the triggering logic to deliver pulses to the triac (Figure 3). The offset hysteresis input voltage has been designed to be as low as possible (\pm 10 mV max) in order to minimize the uncontrollable temperature band (proportional to the hysteresis) as per Figure 6. Noise rejection is performed by a synchronous sampling of the comparator output during very short times (typ. less than 100 ns).

 $\begin{array}{l} \textbf{SAWTOOTH GENERATOR} - \textbf{A} \ \text{sawtooth voltage signal} \\ \textbf{is generated by a constant current source (typ. 7.5 μA)}, \\ \textbf{charging an external capacitor Cp}_{\text{in 2}} \ \ \text{between two} \\ \textbf{threshold levels}, \textbf{V}_{\text{TH1}} \ \ \text{and V}_{\text{TH2}}, \\ \textbf{which are respectively} : \end{array}$

 $V_{TH1} = -1.0 V$

 $V_{TH2} = -V_{CC} + 1.25 V.$

Charging and discharging currents occur only with negative halfcycles of the line.

In UAA1016A, the sawtooth signal is available at Pin 1 as a source current proportional to V_{Pin} 2, varying from 2.1 to 15 μ A as V_{Pin} 2 varies from V_{TH1} to V_{TH2} .

In UAA1016B, the sawtooth signal is available at Pin 1 as a voltage source $V_{Pin\ 1} = V_{Pin\ 2} - 0.75$ V. Maximum source current is 1.0 mA, but to keep good linearity of sawtooth signal, a maximum source current of 40 μ A is recommended (see Figure 7).

FAIL-SAFE — Output pulses are inhibited by the "fail-safe" circuit if the comparator input voltage exceeds the specified threshold voltage. This would occur if temperature sensor circuit had a fault.

SAMPLING FULL WAVE LOGIC — Two consecutive zero-crossing trigger pulses are generated at every positive mains half-cycle of the line to minimize generation of noise (as per Figure 8). Within every zero-crossing the pulses are positioned as per Figure 4. Pulse length is also adjustable by R_{SYNC} on Pin 8 to allow positive triggering of the triac at this critical moment (firing with low voltage between main terminals requires long pulses).

PULSE AMPLIFIER — The pulse amplifier circuit delivers minimum current pulses of 60 mA (sink). The triac is triggered in quadrants II and III.

SYNCHRONIZATION CIRCUIT — Through R_{sync}, the synchronization circuit detects mains zero-crossing and uses this information to drive the sampling full wave logic.

 $R_{\mbox{sync}}$ also determines the trigger pulse length (see Figure 5).

Proportional Band

P(w)

P(w)

Power

t (mn)

P(w)

t (mn)

P(w)

t (mn)

PROPORTIONAL TEMPERATURE CONTROL

Reduced Overshoot

Large Overshoot

Marginal Stability

FIGURE 2 — PROPORTIONAL TEMPERATURE CONTROL versus ON/OFF CONTROL

COMMENTS TO FIGURE 3

Referring to Figure 1, the average value of V_{Ref} is set by R_2 and R_3 . R_4 defines the amplitude of the sawtooth signal superimposed on V_{Ref} , defining the Proportional Band.

Figure 3 shows three conditions:

Stability

 During time t₁ we always have V_{Pin 3} > V_{Ref}, and as a result, the comparator is always "on" and the triac fired (100% max. power)

- During time t₂, V_{Pin 3} is in the proportional band, and the average power delivered to the load is a fraction of maximum power.
- 3) During time t_3 , $V_{Pin\ 3} < V_{Ref}$, and the triac is always "off."

FIGURE 3 — SAWTOOTH GENERATOR AND PROPORTIONAL BAND

FIGURE 4 — OUTPUT PULSE WIDTH DEFINITIONS

When the sensor temperature is above the set value and is slowly decreasing as no heating occurs, V_{Pin 3} – V_{Pin 4} must exceed half the hysteresis value before power is applied again (1). A similar effect occurs in the

opposite direction when temperature sensor is below the set value and can remain stable as position (2). This defines the "uncontrollable temperature band" which will be very small if hysteresis is also very small.

FIGURE 7 — PIN 1 INTERNAL NETWORK

FIGURE 8 — TRIGGER PULSE GENERATION

SUGGESTIONS FOR USE

The temperature sensor circuit is a Wheatstone bridge including the sensor element. Comparator inputs may be free from power line noise only if the sensor element is purely resistive (NTC resistor). Usage of any P-N junction sensor would drastically reduce noise rejection.

Fixed phase sensing of the internal comparator output eliminates parasitic signals.

Some loads, even designed to be resistive, have in fact a slight inductive component. A phase shift at Pin 8 can be achieved with external capacitor C₃ connected to Pin 8 network (see Figure 9).

Suggested maximum source current at Pin 1 (UAA1016B) is 40 μ A, in order to have acceptable sawtooth signal linearity.

APPLICATION CIRCUITS

Figure 9 shows a very simple application of UAA1016B as an electronic rheostat having 100% efficiency. C₃ is required only if load has an inductive component. Fig-

ure 10 shows a typical application as a panel heater thermostat with a proportional temperature band of 1°C at 25°C.

FIGURE 9 — APPLICATION CIRCUIT — ELECTRONIC RHEOSTAT OR ENERGY REGULATOR

FIGURE 10 — APPLICATION CIRCUIT — ELECTRIC RADIATOR WITH PROPORTIONAL BAND THERMOSTAT, PROPORTIONAL BAND 1°C AT 25°C

Packaging Information, Including Small Outline Integrated Circuits (SOIC)

The packaging availability for each device type is indicated on the individual data sheets and the Selector Guide. All of the outline dimensions for the packages are given in this section.

The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature can be found from the equation:

$$P_{D(T_A)} = \frac{T_{J(max)} - T_A}{R_{\theta JA}(Typ)}$$

where: $P_{D(T_A)} = Power Dissipation allowable at a given operating ambient temperature. This must be greater$ than the sum of the products of the supply voltages and supply currents at the worst case operating condition.

T_{J(max)} = Maximum Operating Junction Temperature as listed in the Maximum Ratings Section. See individual data sheets for T_{J(max)} information.

T_A = Maximum Desired Operating Ambient Temperature

 $R_{\theta JA(Typ)}$ = Typical Thermal Resistance Junction to Ambient

CASE 1-03 TO-204AA (TO-3) Metal Package

 $R_{\theta,JA} = 45^{\circ} C/W(Typ)$

RAIC = See Data Sheet

	MILLIN	METERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
В	-	22.23	_	0.875	
C	6.35	11.43	0.250	0.450	
D	0.97	1.09	0.038	0.043	
E	-	3.43	_	0.135	
F	30.1	5 BSC	1.187 BSC		
G	10.9	2 BSC	0.430 BSC		
Н	5.4	6 BSC		5 BSC	
J	16.8	9 BSC	0.66	5 BSC	
K	7.92	_	0.312	-	
a	3.84	4.09	0.151	0.161	
S	_	13.34	-	0.525	
· T	_	4.78	-	0.188	
٧	3.84	4.09	0.151	0.161	

CASE 29-02 TO-226AA (TO-92) Plastic Package $R_{\theta JA} = 200^{\circ} \text{ C/W}$

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.32	5.33	0.170	0.210
В	4.44	5.21	0.175	0.205
С	3.18	4.19	0.125	0.165
D	0.41	0.56	0.016	0.022
F	0.41	0.48	0.016	0.019
G	1.14	1.40	0.045	0.055
Н	_	2.54	-	0.100
J	2.41	2.67	0.095	0.105
K	12.70		0.500	-
L	6.35	_	0.250	-
N	2.03	2.67	0.080	0.105
P	2.92	-	0.115	
R	3.43		0.135	
S	0.36	0.41	0.014	0.016

CASE OUTLINE DIMENSIONS (continued)

CASE 79-02

TO-205AD (TO-39)

Metal Package

 $R_{\theta,JA} = 185^{\circ} C/W(Typ)$

	MILLIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.89	9.40	0.350	0.370
В	8.00	8.51	0.315	0.335
C	6.10	6.60	0.240	0.260
D	0.406	0.533	0.016	0.021
Ε	0.229	3.18	0.009	0.125
F	0.406	0.483	0.016	0.019
G	4.83	5.33	0.190	0.210
Н	0.711	0.864	0.028	0.034
J	0.737	1.02	0.029	0.040
К	12.70	-	0.500	_
L	6.35	-	0.250	_
M	450 NOM		450 N	IOM .
P	_	1.27	_	0.050
Q	90° NOM		90º V	IOM
R	2.54	-	0.100	_

CASE 80-02

TO-213AA (TO-66)

Metal Package

 $R_{\theta JA} = 45^{\circ}C/W(Typ)$

 $R_{\theta JC}$ = See Data Sheet

TING PLANE U	
F J T G	

MILLIMETERS INCHES					
	MILLIN	IETERS	INC		
DIM	MIN	MAX	MIN	MAX	
В	11.94	12.70	0.470	0.500	
C	6.35	8.64	0.250	0.340	
D	0.71	0.86	0.028	0.034	
E	1.27	1.91	0.050	0.075	
F	24.33	24.43	0.958	0.962	
G	4.83	5.33	0.190	0.210	
Н	2.41	2.67	0.095	0.105	
J	14.48	14.99	0.570	0.590	
K	9.14	_	0.360	-	
P	-	1.27	_	0.050	
Q	3.61	3.86	0.142	0.152	
S	-	8.89	_	0.350	
T	-	3.68*	_	0.145	
U	_	15.75	_	0.620	

CASE 221A-02

TO-220AB

Plastic Power

 $R_{\theta JA} = 65^{\circ} \text{ C/W(Typ)}$ $R_{\theta JC} = \text{See Data Sheet}$

1	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	15.11	15.75	0.595	0.620
В	9.65	10.29	0.380	0.405
C	4.06	4.82	0.160	0.190
D	0.64	0.89	0.025	0.035
F	3.61	3.73	0.142	0.147
G	2.41	2.67	0.095	0.105
Н	2.79	3.30	0.110	0.130
J	0.36	0.56	0.014	0.022
K	12.70	14.27	0.500	0.562
L	1.14	1.27	0.045	0.050
N	4.83	5.33	0.190	0.210
Q	2.54	3.04	0.100	0.120
R	2.04	2.79	0.080	0.110
S	1.14	1.39	0.045	0.055
T	5.97	6.48	0.235	0.255
U	0.76	1.27	0.030	0.050
٧	1.14	-	0.045	
Z	_	2.03	_	0.080

CASE 314B-01

Ceramic Package

 $R_{\theta JA} = 65^{\circ} \text{ C/W}$ $R_{\theta JC} = \text{See Data Sheet}$

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	15.49	15.88	0.610	0.625
В	9.91	10.41	0.390	0.410
C	4.32	4.57	0.170	0.180
D	0.71	0.81	0.028	0.032
F	20.83	21.59	0.820	0.850
G	1.45	1.96	0.057	0.077
Н	12.70	13.69	0.500	0.539
J	0.38	0.64	0.015	0.025
K	21.46	23.50	0.845	0.925
L	8.00	8.38	0.315	0.330
P	4.32	4.70	0.170	0.185
Q	3.53	3.73	0.139	0.147
R	0.89	1.40	0.035	0.055
T	9.02	9.40	0.355	0.370
٧	4.70	5.46	0.185	0.215

CASE 601-04

Metal Package

 $R_{\theta JA} = 160^{\circ} \text{ C/W(Typ)}$

	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.51	9.40	0.335	0.370
В	7.75	8.51	0.305	0.335
C	4.19	4.70	0.165	0.185
D	0.41	0.48	0.016	0.019
E	0.25	1.02	0.010	0.040
F	0.25	1.02	0.010	0.040
G	5.08	BSC	0.200 BSC	
Н	0.71	0.86	0.028	0.034
J	0.74	1.14	0.029	0.045
K	12.70	-	0.500	_
L	3.05	4.06	0.120	0.160
M	45° BSC		450	BSC
N	2.41	2.67	0.095	0.105

CASE 603-04

TO-100 Metal Can

 $R_{\theta JA} = 160^{\circ} \text{ C/W}$

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.51	9.39	0.335	0.370
В	7.75	8.51	0.305	0.335
C	4.19	4.70	0.165	0.185
D	0.407	0.533	0.016	0.021
E	_	1.02	-	0.040
F	0.406	0.483	0.016	0.019
G	5.84	BSC	0.230 BSC	
Н	0.712	0.864	0.028	0.034
J	0.737	1.14	0.029	0.045
K	12.70	_	0.500	_
L	6.35	12.70	0.250	0.500
M	360 BSC		36 ⁰	BSC
P		1.27	. –	0.050
Q	3.56	4.06	0.140	0.160
R	0.254	1.02	0.010	0.040

CASE OUTLINE DIMENSIONS (continued)

	MILLIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.51	9.39	0.335	0.370
В	7.75	8.51	0.305	0.335
C	4.19	6.73	0.165	0.265
D	0.407	0.533	0.016	0.021
E	_	1.02	-	0.040
F	0.406	0.483	0.016	0.019
G	5.84	BSC	0.230 BSC	
Н	0.712	0.864	0.028	0.034
J	0.737	1.14	0.029	0.045
K	12.70		0.500	_
L	6.35	12.70	0.250	0.500
M	360 BSC		360	BSC
Р	-	1.27	. –	0.050
Q	3.56	4.06	0.140	0.160
R	0.254	1.02	0.010	0.040

CASE 606-04

G G	10 1	L _N
Ţ ^F	В -	к —
1	L	→ H C

	MILLIN	MILLIMETERS		HES
DIM	MIN	MAX	MIN	MAX
Α	6.10	7.36	0.240	0.290
В	6.10	6.60	0.240	0.260
C	0.762	1.77	0.030	0.070
D	0.254	0.482	0.010	0.019
F	0.077	0.152	0.003	0.006
G	1.15	1.39	0.045	0.055
Н	0.127	0.889	0.005	0.035
K	1.78	-	0.070	_
R	_	0.381	_	0.015

NOTE:

- 1. ALL RULES & NOTES ASSOCIATED WITH TO 91 OUTLINE SHALL APPLY.
 - 2. LEADS WITHIN 0.25 mm (0.010) TOTAL OF TRUE POSITION AT MAXIMUM MATERIAL CONDITION (AT BODY)

CASE 607-05

TO-86 Type

	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	6.10	6.60	0.240	0.260
C	0.76	1.78	0.030	0.070
D	0.33	0.48	0.013	0.019
F	0.08	0.15	0.003	0.006
G	1.27	BSC	0.050 BSC	
Н	0.30	0.89	0.012	0.035
J		0.38		0.015
K	6.35	9.40	0,250	0.370
_	18.80	-	0.740	
N	0.25		0.010	L
R		0.38	-	0.015
S	7.62	8.38	0.300	0.330

- 1. "R" DIMENSIONS DETERMINE ZONE WITHIN WHICH ALL BODY AND LEAD IRREGULARITIES LIE.
- 2. LEADS WITHIN 0.13 mm (0.005) **TOTAL OF TRUE POSITION** RELATIVE TO "A" AT MAXIMUM MATERIAL CONDITION.

CASE 614-02

(TO-66 Type)

Metal Package

 $R_{\theta JA} = 35^{\circ} C/W(Typ)$

 $R_{\theta JC}$ = See Data Sheet

	MILLIN	METERS	ÍNC	HES
DIM	MIN	MAX	MIN	MAX
Α	_	31.80	_	1.252
В	11.94	12.70	0.470	0.500
C	6.35	8.64	0.250	0.340
D	0.71	0.81	0.028	0.032
E	1.27	1.90	0.050	0.075
F	36 ⁰	BSC	36° BSC	
G	8.26	BSC	0.325 BSC	
Н	24.33	24.43	0.958	0.962
J	12.17	12.22	0.479	0.481
K	9.14	1	0.360	-
P	1.40 BSC		0.05	5 BSC
Q	3.61	3.86	0.142	0.152
R	_	17 78	_	0.700

CASE 620-02

Ceramic Package $R_{\theta JA} = 100^{\circ} \, C/W(Typ)$ ነስስስስስስስብ ן נו נו נו נו נו נו נו

1	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	19.05	19.81	0.750	0.780
В	6.22	6.98	0.245	0.275
C	4.06	5.08	0.160	0.200
D	0.38	0.51	0.015	0.020
F	1.40	1.65	0.055	0.065
G	2.54	2.54 BSC) BSC
Н	0.51	1.14	0.020	0.045
J	0.20	0.30	0.008	0.012
K	3.18	4.06	0.125	0.160
L	7.37	7.87	0.290	0.310
M	-	15 ⁰	-	15 ⁰
N	0.51	1.02	0.020	0.040

- 1 LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION
- PKG. INDEX: NOTCH IN LEAD NOTCH IN CERAMIC OR INK DOT 3 DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL

CAS	E 6	23-	05
_		_	

Ceramic Package

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	31.24	32.77	1.230	1.290
В	12.70	15.49	0.500	0.610
C	4.06	5.59	0.160	0.220
D	0.41	0.51	0.016	0.020
F	1.27	1.52	0.050	0.060
G	2.54	BSC	0.100 BSC	
J	0.20	0.30	0.008	0.012
K	3.18	4.06	0.125	0.160
L	15.24 BSC		0.600) BSC
M	00	15 ⁰	00	15 ⁰
N	0.51	1.27	0.020	0.050

- 1. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 2. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. (WHEN FORMED PARALLEL).

CASE OUTLINE DIMENSIONS (continued)

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	9.40	10.16	0.370	0.400
В	6.10	6.60	0.240	0.260
C	3.94	4.45	0.155	0.175
D	0.38	0.51	0.015	0.020
F	1.02	1.52	0.040	0.060
G	2.54	BSC	0.100 BSC	
Н	0.76	1.27	0.030	0.050
J	0.20	0.30	0.008	0.012
K	2.92	3.43	0.115	0.135
L	7.62 BSC		0.300	BSC
M	_	10 ⁰	_	10 ⁰
N	0.51	0.76	0.020	0.030

NOTES:

- 2. 626-03 OBSOLETE NEW STD 626-04.
 3. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 4. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
- 5. DIMENSIONS A AND B ARE DATUMS.
 6. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

CASE 632-02

MO-001AA (TO-116) Ceramic Package R_{ØJA} = 100° C/W(Typ)

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	16.8	19.9	0.660	0.785
В	5.59	7.11	0.220	0.280
C	-	5.08	-	0.200
D	0.381	0.584	0.015	0.023
F	0.77	1.77	0.030	0.070
G	2.54	BSC	0.100 BSC	
J	0.203	0.381	0.008	0.015
К	2.54	_	0.100	_
L	7.62	BSC	0.300	BSC
M	-	15 ⁰	-	15 ⁰
N	0.51	0.76	0.020	0.030
Р	-	8.25	_	0.325

All JEDEC dimensions and notes apply.

NOTES:

- 1. ALL RULES AND NOTES ASSOCIATED WITH MO-001 AA OUTLINE SHALL APPLY.
- 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. LEADS WITHIN 0.25mm (0.010) DIA OF TRUE POSITION AT SEATING PLANE AND MAXIMUM MATERIAL CONDITION.

CASE 646-05

Plastic Package $R_{\theta}JA = 100^{\circ} C/W(Typ)$

- 1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
- 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.
- 4. ROUNDED CORNERS OPTIONAL.

	MILLIN	MILLIMETERS		1ES
DIM	MIN	MAX	MIN	MAX
Α	18.16	19.56	0.715	0.770
В	6.10	6.60	0.240	0.260
C	4.06	5.08	0.160	0.200
D	0.38	0.53	0.015	0.021
F	1.02	1.78	0.040	0.070
G	2.54	BSC	0.100 BSC	
Н	1.32	2.41	0.052	0.095
J	0.20	0.38	0.008	0.015
K	2.92	3.43	0.115	0.135
L	7.62 BSC		0.300	BSC
М	00	100	00	100
N	0.51	1.02	0.020	0.040

12

CASE 648-05

Plastic Package

 $R_{\theta,JA} = 100^{\circ} C/W(Typ)$

NOTES:

- 1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
- 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.
- 4. "F" DIMENSION IS FOR FULL LEADS. "HALF" LEADS ARE OPTIONAL AT LEAD POSITIONS 1, 8, 9, and 16).
- 5. ROUNDED CORNERS OPTIONAL.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	18.80	21.34	0.740	0.840
В	6.10	6.60	0.240	0.260
C	4.06	5.08	0.160	0.200
D	0.38	0.53	0.015	0.021
F	1.02	1.78	0.040	0.070
G	2.54	BSC	0.100	BSC
Н	0.38	2.41	0.015	0.095
J	0.20	0.38	0.008	0.015
K	2.92	3.43	0.115	0.135
L	7.62 BSC		0.300	BSC
M	00	100	00	100
N	0.51	1.02	0.020	0.040

CASE 648C-01

Ceramic Package

 $R_{\theta JA} = 52^{\circ} C/W$

R_{BJC} = See Data Sheet

NOTES:

- LEADS WITHIN 0.13 mm (0.005)
 RADIUS OF TRUE POSITION AT
 SEATING PLANE AT MAXIMUM
 MATERIAL CONDITION.
- 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEI
- 3. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.
- ROUNDED CORNERS OPTIONAL.
- 5. EXTERNAL LEAD CONNECTION, BETWEEN 4 AND 5, 12 AND 13 AS SHOWN.

DIM	MIN	MAX	MIN	MAX
Α	18.80	21.34	0.740	0.840
В	6.10	6.60	0.240	0.260
C	4.06	5.08	0.160	0.200
D	0.38	0.53	0.015	0.021
F	1.02	1.78	0.040	0.070
G	2.54 BSC		0.100 BSC	
Н	0.38	2.41	0.015	0.095
J	0.20	0.38	0.008	0.015
K	2.92	3.43	0.115	0.135
L	7.62 BSC		0.30	0 BSC
M	00	100	00	100
N	0.51	1.02	0.020	0.040

INCHES

MILLIMETERS

MILLIMETERS

CASE 649-03

Plastic Package

DIM	MIN	MAX	MIN	MAX
Α	31.50	32.13	1.240	1.265
В	13.21	13.72	0.520	0.540
C	4.70	5.21	0.185	0.205
D	0.38	0.51	0.015	0.020
F	1.02	1.52	0.040	0.060
G	2.54	BSC	0.100	BSC
Н	1.65	2.16	0.065	0.085
J	0.20	0.30	0.008	0.012
K	2.92	3.43	0.115	0.135
L	14.99	15.49	0.590	0.610
M	_	10 ⁰	_	10 ⁰
N	0.51	1.02	0.020	0.040
P	0.13	0.38	0.005	0.015
Q	0.51	0.76	0.020	0.030
I				

INCHES

NOTES:

1. LEADS WITHIN 0.13 mm (0.005)
RADIUS OF TRUE POSITION AT
SEATING PLANE AT MAXIMUM
MATERIAL CONDITION

MATERIAL CONDITION.
2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.

CASE OUTLINE DIMENSIONS (continued)

	MILLIN	TETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.40	10.16	0.370	0.400
В	6.22	6.60	0.245	0.260
C	1.52	2.03	0.060	0.080
D	0.38	0.48	0.015	0.019
F	0.08	0.15	0.003	0.006
G	1.27	BSC	0.050 BSC	
Н	0.64	0.89	0.025	0.035
K	6.35	9.40	0.250	0.370
Ĺ	18.92	_	0.745	_
N		0.51	_	0.020
R		0.38	-	0.015

NOTES:

- LEAD NO. 1 IDENTIFIED BY TAB
 ON LEAD OR DOT ON COVER.
- 2. LEADS WITHIN 0.13 mm (0.005) TOTAL OF TRUE POSITION AT MAXIMUM MATERIAL CONDITION.

- CASE 690-13 Ceramic Package
- $R_{\theta JA} = 100^{\circ} \text{ C/W(Typ)}$
- 1. A- AND B- ARE DATUMS.
- 2. -T- IS SEATING PLANE
- 4. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	20.07	20.57	0.790	0.810
В	7.11	7.74	0.280	0.305
C	2.67	4.19	0.105	0.165
D	0.38	0.53	0.015	0.021
F	0.76	1.52	0.030	0.060
G	2.54	BSC	0.100 BSC	
Н	0.76	1.78	0.030	0.070
J	0.20	0.30	0.008	0.012
K	3.18	5.08	0.125	0.200
L	7.62 BSC		0.300	BSC
M	-	100	_	100
N	0.38	1.52	0.015	0.060

Ceramic Package $R_{\theta JA} = 100^{\circ} \text{ C/W(Typ)}$

	MILLIN	MILLIMETERS		HES
DIM	MIN	MAX	MIN	MAX
Α	9.91	10.92	0.390	0.430
В	6.22	6.99	0.245	0.275
C	4.32	5.08	0.170	0.200
D	0.41	0.51	0.016	0.020
F	1.40	1.65	0.055	0.065
G	2.54	BSC	0.100 BSC	
Н	1.14	1.65	0.045	0.065
J	0.20	0.30	0.008	0.012
K	3.18	4.06	0.125	0.160
L	7.37	7.87	0.290	0.310
M	-	15 ⁰	_	15 ⁰
N	0.51	1.02	0.020	0.040

- 1. LEADS WITHIN 0.13 mm (0.005) RAD OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
- 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.

CASE 707-02

Plastic Package $R_{\theta,JA} = 100^{\circ} \text{C/W(Typ)}$

	MILLIN	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	22.22	23.24	0.875	0.915	
В	6.10	6.60	0.240	0.260	
C	3.56	4.57	0.140	0.180	
D	0.36	0.56	0.014	0.022	
F	1.27	1.78	0.050	0.070	
G	2.54	BSC	0.100 BSC		
Н	1.02	1.52	0.040	0.060	
J	0.20	0.30	0.008	0.012	
K	2.92	3.43	0.115	0.135	
L	7.62 BSC		0.300	BSC	
M	00	150	00	150	
N	0.51	1.02	0.020	0.040	

- 1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25mm(0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
- 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- DIMENSION B DOES NOT INCLUDE MOLD FLASH.

CASE 710-02 Ceramic Package

	MILLIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	36.45	37.21	1.435	1.465
В	13.72	14.22	0.540	0.560
С	3.94	5.08	0.155	0.200
D	0.36	0.56	0.014	0.022
F	1.02	1.52	0.040	0.060
G	2.54	BSC	0.100 BSC	
Н	1.65	2.16	0.065	0.085
J	0.20	0.38	0.008	0.015
K	2.92	3.43	0.115	0.135
L	15.24 BSC		0.600	BSC
M	00	15 ⁰	00	15 ⁰
N	0.51	1.02	0.020	0.040

- 1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25mm(0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- DIMENSION B DOES NOT INCLUDE MOLD FLASH.

CASE 711-03 Ceramic Package

INCHES MILLIMETERS MIN MAX MIN MAX DIM
 51.69
 52.45
 2.035
 2.065

 13.72
 14.22
 0.540
 0.560
 Α
 5.08
 0.155
 0.200

 0.56
 0.014
 0.022
 3.94 C 0.36 D 1.52 0.040 0.060 1.02 2.54 BSC 0.100 BSC
 2.16
 0.065
 0.085

 0.38
 0.008
 0.015

 3.43
 0.115
 0.135
 Н 1.65 0.20 2.92 K 15.24 BSC 0.600 BSC 00 150 00 150 0.51 1.02 0.020 0.040

- 1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25 mm (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
- 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

CASE 716-06 Ceramic Package R_{θJA} = 55° C/W R_{θJC} = 15° C/W(Typ)

NOTE:

- 1. LEADS TRUE POSITIONED WITHIN 0.25mm (0.010) DIA (AT SEATING PLANE) AT MAXIMUM MATERIAL CONDITION.
- 2. DIM "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	27.64	30.99	1.088	1.220
В	14.73	15.34	0.580	0.604
C	2.67	4.32	0.105	0.170
D	0.38	0.53	0.015	0.021
F	0.76	1.40	0.030	0.055
G	2.54	BSC	0.100 BSC	
Н	0.76	1.78	0.030	0.070
J	0.20	0.30	0.008	0.012
K	2.54	4.57	0.100	0.180
	14.99	15.49	0.590	0.610
M	_	10º	_	10 ⁰
N	1.02	1.52	0.040	0.060

NOTES:

- 1. LEADS, TRUE POSITIONED WITHIN 0.25 mm (0.010) DIAMETER (AT SEATING PLANE) AT MAXIMUM MATERIAL CONDITION.
- 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	35.20	35.92	1.386	1.414	
В	14.73	15.34	0.580	0.604	
C	3.05	4.19	0.120	0.165	
D	0.38	0.53	0.015	0.021	
F	0.76	1.40	0.030	0.055	
G	2.54	BSC	0.100 BSC		
Ξ	0.76	1.78	0.030	0.070	
J	0.20	0.30	0.008	0.012	
K	2.54	4.19	0.100	0.165	
L	14.99	15.49	0.590	0.610	
M	_	100	-	100	
N	0.51	1.52	0.020	0.060	

CASE 721-02

Plastic Package

 $R_{\theta JA} = 52^{\circ} C/W$

 $R_{\theta,JC}$ = See Data Sheet

_	
- A	-
F	_ c
(rrith-	
U U U	U U UN'A
н-	G

NOTES:

1. DIMENSION "S" TO CENTER OF LEADS WHEN FORMED PARALLEL.

	MILLIN	METERS	INCHES		
DIM	MIN MAX		MIN	MAX	
Α	20.70	21.34	0.815	0.840	
В	6.10	6.60	0.240	0.260	
C	4.06	4.57	0.160	0.180	
D	0.43	0.56	0.017	0.022	
F	1.02	1.52	0.040	0.060	
G	2.41	2.67	0.095	0.105	
Н	1.32	1.83	0.052	0.072	
J	0.33	0.46	0.013	0.018	
K	3.30	3.94	0.130	0.155	
L	25.15	27.94	0.990	1.100	
M	_	10°	_	10°	
N	0.51	1.02	0.020	0.040	
P	6.27	6.53	0.247	0.257	
Q	3.48	3.73	0.137	0.147	
S	7.37	7.87	0.290	0.310	
T	16.26	16.76	0.640	0.660	

SEATING

PLANE

SEATING PLANE, AT MAXIMUM MATERIAL CONDITION. DIM L TO CENTER OF LEADS

WHEN FORMED PARALLEL.

3. DIM A AND B INCLUDES MENISCUS.

CASE OUTLINE DIMENSIONS (continued)

SOIC MINIATURE IC PLASTIC PACKAGE

SO8 CASE 751 D SUFFIX

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.78	5.00	0.188	0.197
В	3.81	4.01	0.150	0.158
C	1.35	1.75	0.053	0.069
D	0.35	0.46	0.014	0.018
F	0.67	0.77	0.026	0.030
G	1.27	BSC	0.050 BSC	
J	0.19	0.22	0.007	0.009
K	0.10	0.20	0.004	0.008
L	4.82	5.21	0.189	0.205
P	5.79	6.20	0.228	0.244

SO14 CASE 751A D SUFFIX

	MILLIMETERS		METERS INC		
DIM	MIN	MAX	MIN	MAX	
A	8.54	8.74	0.336	0.344	
В	3.81	4.01	0.150	0.158	
C	1.35	1.75	0.053	0.069	
D	0.35	0.46	0.014	0.018	
F	0.67	0.77	0.026	0.030	
G	1.27	BSC	0.050 BSC		
J	0.19	0.22	0.007	0.009	
K	0.10	0.20	0.004	0.008	
L	4.82	5.21	0.189	0.205	
P	5.79	6.20	0.228	0.244	

SO16 CASE 751B D SUFFIX

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.78	10.01	0.385	0.394
В	3.81	4.01	0.150	0.158
C	1.35	1.75	0.053	0.069
D	0.35	0.46	0.014	0.018
F	0.67	0.77	0.026	0.030
G	1.2	7 BSC	0.05	0 BSC
J	0.19	0.22	0.007	0.009
K	0.10	0.20	0.004	0.008
L	4.82	5.21	0.189	0.205
P	5.79	6.20	0.228	0.244

12

12

SOIC MINIATURE IC PLASTIC PACKAGE

THERMAL INFORMATION

THE MAXIMUM POWER CONSUMPTION AN INTEGRATED CIRCUIT CAN TOLERATE AT A GIVEN OPERATING AMBIENT TEMPERATURE, CAN BE FOUND FROM THE EQUATION:

$$P_{D(T_A)} = \frac{T_{J(max)} - T_A}{R_{\partial JA}(Typ)}$$

WHERE: $P_{D(T_A)} = POWER DISSIPATION$ ALLOWABLE AT A GIVEN OPERATING AMBIENT TEMPERATURE.

 $\begin{aligned} \textbf{T}_{J(\text{max})} &= & \text{MAXIMUM OPERATING JUNCTION} \\ & & \text{TEMPERATURE AS LISTED IN THE} \\ & & \text{MAXIMUM RATINGS SECTION} \end{aligned}$

T_A = DESIRED OPERATING AMBIENT TEMPERATURE

 $R_{HJA(Typ)} \doteq TYPICAL THERMAL RESISTANCE JUNCTION TO AMBIENT$

RATING	SYMBOL	VALUE	UNIT
OPERATING AMBIENT TEMPERATURE RANGES	TA	0 TO +70 -40 TO +85	°C
OPERATING JUNCTION TEMPERATURE	ТJ	+ 150	°C
STORAGE TEMPERATURE RANGE	T _{Sta}	-55 TO +150	°C

THERMAL RESISTANCE, JUNCTION-TO-AMBIENT (°C/W)

PACKAGE TYPE

THERMAL RESISTANCE OF SOIC PACKAGES. MEASUREMENT SPECIMENS ARE SOLDER MOUNTED ON PRINTED CIRCUIT CARD 20mm X 32mm X 1.7mm IN STILL AIR. NO AUXILIARY THERMAL CONDUCTION AIDS ARE USED. AS THERMAL RESISTANCE VARIES INVERSELY WITH DIE AREA, A GIVEN PACKAGE TAKES VALUES BETWEEN THE MAX AND MIN VALUES SHOWN WHICH REPRESENT SMALLEST (2000 SQUARE MILS) AND LARGEST (8000 SQUARE MILS) EXPECTED TO BE ASSEMBLED IN THE SOIC PACKAGE.

MOTOROLA BIPOLAR INTEGRATED CIRCUITS GROUP TYPES OF LINEAR IC'S AVAILABLE IN SOIC PACKAGES

The table below lists those Linear IC devices that will form the core of our initial introduction lineup. All current and future Linear IC products are potential candidates for the SOIC packages, providing the chip size fits the die-bond area (flag) of the package and the power dissipation is within the package limits. Electrical characteristics and package pin-out configurations are as indicated in the standard device data sheet except where noted.

DEVICE	FUNCTION	PACKAGE
LM301AD	General Purpose Op Amp	SO-8
LM211D	Comparator	SO-8
LM311D	Comparator	SO-8
LM358D	Dual Op Amp	SO-8
LM393D	Dual Comparator	SO-8
LM2903D	Dual Comparator	SO-8
LM2904D	Dual Op Amp	SO-8
MC1403D*	Precision Voltage Reference	SO-8
MC1455D	Timer	SO-8
MC1458CD	Dual Op Amp	SO-8
MC1458D	Dual Op Amp	SO-8
MC1741CD	General Purpose Op Amp	SO-8
MC1776CD	Programmable Op Amp	SO-8
MC34001D	BIFET Op Amp	SO-8
MC34002D	Dual BIFET Op Amp	SO-8
MC4558CD	Wide BW Dual Op Amp	SO-8
LM324D	Quad Op Amp	SO-14
LM339D	Quad Comparator	SO-14
LM2901D	Quad Comparator	SO-14
LM2902D	Quad Op Amp	SO-14
MC1496D	Modulator/Demodulator	SO-14
MC1732CD	Precision Voltage Regulator	SO-14
MC3346D	Transistor Array	SO-14
MC3386D	Transistor Array	SO-14
MC3403D	Quad Op Amp	SO-14
MC34004D	Quad BIFET Op Amp	SO-14
MC4741CD	Quad Op Amp	SO-14
NE592D	Video Amp	SO-14
MC1408D8/D7/D6*	8-Bit Multiplying D/A Converter	SO-16
MC3357D	Low Power FM I/F	SO-16
MC3470AD	Floppy Disk Read Amplifier System	SO-18L

^{*}Electrical specifications or package pin-outs will differ slightly from the standard device data sheet for these products. Contact product marketing for further information regarding these variations.

Mounting Hardware TO-220AB

PREFERRED ARRANGEMENT

for Isolated or Non-isolated Mounting. Screw is at Semiconductor Case Potential. 6-32 Hardware is Used.

Choose from Parts Listed Below.

ALTERNATE ARRANGEMENT

for Isolated Mounting when Screw must be at Heat-Sink Potential. 4-40 Hardware is Used.

Use Parts Listed Below.

All JEDEC dimensions and notes apply

TORQUE REQUIREMENTS Insulated 0.68 N-M (6 in.-lbs.) max Noninsulated 0.9 N-M (8 in.-lbs.) max

DIMENSIONS — MILLIMETER (INCH) NYLON BUSHING

PART NO.	DIM A	DIM B	DIM C	DIM D	DIM E
B51547F005	9.40-9.65	3.84-4.09	2.16-2.41	6.10-6.35	1.02–1.27
	(0.370-0.380)	(0.151-0.161)	(0.085-0.095)	(0.240-0.250)	(0.040–0.050)
B51547F015	5.59-6.10	3.05–3.15	1.57–1.68	3.56–3.66	0.51-0.64
	(0.220-0.240)	(0.120–0.124)	(0.062–0.066)	(0.140–0.144)	(0.020-0.025)

HEX NUT

TYPE	PART NO.	DIM G	DIM H	DIM J	DIM K
4-40	B09490A005	6.12–6.35 (0.241–0.250)	6.98-7.34 (0.275-0.289)	2.21–2.49 (0.087–0.098)	2.84 NOM (0.112 NOM)
6-32	B09490A006	7.67–7.92 (0.302–0.312)	8.74–9.17 (0.344–0.361)	2.59–2.90 (0.102–0.114)	3.50 NOM (0.138 NOM)

HEX HEAD SCREW

TYPE	PART NO.	DIM M	DIM N	DIM P	DIM Q	DIM R
4-40	B09489A034	0.112-40	1.57 (0.62)	1.24-1.52 (0.049-0.060)	5.12 MIN (0.202 MIN)	4.60-4.75 (0.181-0.187)
6-32	B09489A035	0.138-32	1.57 (0.62)	2.03-2.36 (0.80-0.093)	6.91 MIN (0.272 MIN)	6.20–6.35 (0.244–0.250)

Quality and Reliability Assurance

Quality Concepts

The word quality has been used to describe many things, such as fitness for use, customer satisfaction, customer enthusiasm, etc. However, when quality is used in the manufacturing environment, it has come to mean total quality as perceived by the customer. The simplest formulation that has been devised for total quality is:

 $Q = \frac{qs}{pc}$

Where: Q = Total Quality of a Supplier

q = Product Quality (Technical)

s = Service

p = Price Competitiveness

d = On Time Delivery

Product quality (q) of a linear integrated circuit from a product line is a measure that expresses the conformance of the device to a set of specifications. Such a measure is the percent rejects out of a collection of devices (lot, population). One hundred percent inspection has to be used to determine the actual quality of the lot. One characteristic of this approach is that it is expensive, and therefore, is used only where necessary. In addition, it may not be as accurate as it first appears because of operator errors due to fatique and of course, it cannot be used where the inspection (test) is destructive. An alternative to 100% inspection is scientific acceptance sampling. Acceptance sampling is a method by which a portion (sample) of the total population is examined. On the basis of the sample quality (number of rejects that fail to conform to specifications out of a total sample is usually expressed in parts per million percent reiects) and by using the mathematics of probability and statistics, an estimate of the lot quality is made and the risk of an improper decision is specified. For example, a lot may be rejected because the sample quality was worse than that prescribed by the mathematics of sampling and our original goal (maximum percent rejects allowed in a lot). Yet, if the lot was one hundred percent inspected, we may find that the actual percent rejects in the lot was less than the maximum percent rejects established as a goal (Type I improper decision). In a similar way, the reverse may happen: a lot may be accepted on the basis of the sample quality (sample rejects are fewer than those prescribed by the mathematics of sampling and our goal) and yet, if a 100% inspection was performed, the actual percent rejects in the lot could be more than our established goal (Type II improper decision). A sampling plan is specified by the sample size and the maximum allowable defectives known as the acceptance number (ACCN).

The risks involved in sampling are described by the operating characteristic (O.C.) curve of the sampling plan. As illustrated by Figure 1, this curve shows the probability of acceptance, on the vertical axis, versus the lot quality (percent rejects), on the horizontal axis. Each particular sampling plan will have its own

Reliability Concepts

Reliability is the probability that a Linear integrated circuit will perform its specified function in a given environment for a specified period of time. In other words, reliability is quality over time and environmental conditions.

The most frequently used reliability measure for integrated circuits is the failure rate, expressed in percent per thousand hours. The number of failures observed, taken over the number of device hours accumulated at the end of the observation period and expressed as a percent, is called the point estimate failure

FIGURE 1 — TYPICAL OPERATING CHARACTERISTIC (O.C.) CURVE

O.C. curve. Two points on the curve are of interest. The AQL (Acceptable Quality Level), signifies the quality level (lot quality, in percent defective) that will be accepted most of the time (usually this is set at 95%). The risk of rejecting a lot even though the lot quality is equal to or better than the AQL is called the α Risk (5% probability shown on the curve; Type I error or Producer's Risk). The other point on the curve is the LTPD (Lot Tolerance Percent Defective) which signifies the level of rejects in a lot that is unsatisfactory and should be rejected by the plan most of the time or accepted infrequently (usually set at 10% of the time). This risk of accepting a lot when it should be rejected is known as the risk of making Type II improper decision (β Risk of Consumers Risk).

Linear integrated circuits can be produced to a variety of quality levels by combining different 100% and sample inspections and varying the criteria of acceptance and rejection. Thus, a customer can negotiate his own custom quality level if he wishes; however, this can become quite expensive in terms of time and money. That is why Motorola, in addition to the standard product level, produces Linear integrated circuits to a combination of screens which give enhanced product quality and reliability. These quality and reliability enhancement programs are the BETTER, JEDEC and JAN qualified programs and are described in this section.

rate. This, however, is a number obtained from observations from a portion (sample) of all the integrated circuits. If we are to use this number to estimate the failure rate of all integrated circuits (total population), we need to say something about the risk we are taking by using this estimate. This statement is provided by the confidence level expressed together with the failure rate. For example, a 0.1% per 1000 hours failure rate at 90% confidence level means that 90% of the integrated circuits will have a failure rate below 0.1%/1000 hours — mathemati-

cally, the failure rate at a given confidence level is obtained from the point estimate and the CHI square (X²) distribution. (The X² is a statistical distribution used to relate the observed and expected frequencies of an event.) In practice, a reliability calculator rule is used that gives the failure rate at the confidence level desired for the number of failures and device hours under auestion.

It is also important to note that, as the number of device hours increases, our confidence in the estimate increases. In integrated circuits, it is preferred to make estimates on the basis of failures per 1,000,000,000 device hours (FITS) or more. If such large numbers of device hours are not available for a particular device, then the point estimate is obtained by combining (pooling) the data from devices that are similar in process, voltage, construction, design, etc., and for which we expect to see the same failure modes in the field.

The environment is specified in terms of the temperature, electric field, relative humidity, etc., by an Eyring type of an equation of the form:

$$\lambda \, = \, Ae \, - \frac{\rlap/ M}{KT} \qquad \dots e \, - \frac{B}{RH} \qquad \dots e \, - \frac{C}{E} \ \dots$$

Where A, B, C, Ø & K are constants, T is temperature, RH is relative humidity. E is the electric field, etc.

The most familiar form of this equation deals with the first exponential which shows an Arrhenious type relationship of the failure rate versus the junction temperature of integrated circuits, while the causes of failure generally remain the same. Thus, we can test devices near their maximum junction temperatures, analyze the failures to assure that they are the types that are accelerated by temperature and then by applying known acceleration factors, estimate the failure rates for lower junction temperatures. Figure 2 shows a curve that gives estimates of typical failure rates versus temperature for integrated circuits.

Arrhenious type of equation:
$$\lambda = Ae - \frac{\emptyset}{KT}$$

Where: = Failure Rate λ

> Α = Constant

= 2.72

Activation Energy

= Botzman's Constant

= Temperature in Degrees Kelvin

$$T_J = T_A + \theta_{JA} P_D \text{ or } T_J = T_C + \theta_{JC} P_D$$

T_J = Junction Temperature

T_A = Ambient Temperature T_C = Case Temperature

 θ_{JA} = Junction to Ambient Thermal Resistance

 θ_{JC} = Junction to Case Thermal

Resistance

P_D = Power Dissipation

Failure rate curves for equipment and devices can be represented by an idealized graph called the Bathtub Curve (Figure 3).

There are three important regions identified on this curve. In Region A, the failure rate decreases with time and it is generally called infant mortality or early life failure region. In Region B, the failure rate has reached a relatively constant level and it is called constant failure rate or useful life region. In the third region, the failure rate increases again and it is called wearout region. Modern integrated circuits generally do not reach the wearout portion of the curve when operated under normal use conditions. The wearout portion of the curve can be seen under highly accelerated test conditions. As a matter of fact, even their useful life portion of the curve is characterized by so few failures com-

FIGURE 2 — TYPICAL FAILURE RATE VATELIE JUNCTION TEMPERATURE

FIGURE 3 — FAILURE RATE versus TIME (BATHTUB CURVE)

pared to the accumulating hours, that the useful life curve looks as a continuously decreasing curve (Figure 3). From this discussion, it becomes obvious that elimination of infant mortality is of importance.

Infant mortality in the short run is eliminated by a combination of various sample and 100% screens, with the most cost effective screen being burn-in at high temperature. These screening combinations form the various product enhancement programs such as the BETTER, JEDEC and JAN qualified, described in this section.

The most frequently asked question is which enhancement program do I need, if any at all, especially with the improvement of quality and reliability that has been achieved in integrated circuits over the last few years? The answer to this question is not simple and it depends on a number of factors such as the number of integrated circuits that will be used in a single piece of equipment, the maturity of this equipment, the environment in which the equipment will operate, the impact of a failure (safety versus entertainment), maintenance costs, etc. This question is

best answered during customer-vendor interfacing, because of its' complexity and proprietary nature.

In order to obtain a feel for the effectiveness of the various programs, we will look at them on the basis of the normalized failure rate between each screening level and standard product which is used as reference.

TABLE 1 - NORMALIZED FAILURE RATES

	Std Product	BETTER Level I	BETTER Level II		JEDEC Processed	JAN Qualified
5-10 Volts	1.0	0.67	0.33	0.25	0.17*	0.17*
10-25 Volts	1.0	0.67	0.20	0.15	0.1	0.1
25-40 Volts	1.0	0.67	0.1	0.07	0.05	0.05

*Note: A quality factor of 0.17 is given to JAN qualified and JEDEC processed product because of insufficient data to determine real differences between the two classes.

Determination that the quality and reliability of standard product is what is best suited for equipment and application under consideration, leads to a new question. How can one be assured that the reliability of standard product does not degrade over time? This is accomplished by periodic and strategic sampling and accelerated testing of the various integrated circuit device packaging systems known as reliability auditing. A description of this program is given later in this section.

Finally, a frequently asked question is about the reliability differences between plastic versus hermetic packaged integrated circuits. In general, for all bipolar integrated circuits including Linear, the field removal rates for plastic and hermetic ICs are the same for environments where there is not high humidity. In cases where the environment contains high humidity (such as under biased 85°C and 85% humidity), higher failure rates are to be expected from plastic encapsulated devices. The determination of the best packaging system for a given application depends on many factors, one of which is protection of the equipment from hostile environments. For example, some users have reported favorable results with plastic integrated circuits, even in relatively high humidity environments (coastal areas), by properly coating (good adherence, no contaminants) the boards containing the integrated circuits with protective materials

Linear Reliability Audit Program

The reliability of a product is a function of design and manufacturing. Inherent reliability is the reliability that a product would have if there were no imperfections in the materials, piece parts and manufacturing processes of the product. The presence of imperfections gives rise to the actual reliability of the product. The difference between inherent reliability and actual reliability is kept to a minimum by continuous monitoring and corrective action.

Continuous monitoring of the reliability of Linear integrated circuits is accomplished by the Linear Reliability Audit Program, which is designed to compare the actual reliability to that specified. This objective is accomplished by periodic and strategic sampling of the various integrated circuit device packaging systems. The samples are tested by subjecting them to accelerated environmental conditions and the results are reviewed for unfavorable trends that would indicate a degradation of the reliability or quality of a particular packaging system. This provides the trigger mechanism for initiating an investigation for cause and corrective action. Also, in order to provide a minimum of interruption of product flow and assure that the product is fit for use, a lot by lot sampling or a nondestructive type 100% screen is used to assure that a particular packaging system released for shipment does have the expected reliability. This rigorous surveillance is continued until there is sufficient proof (many consecutive lots) that the problem has been corrected.

The Bipolar Integrated Circuits Group has used reliability audits since the late sixties. Such programs have been identified

by acronyms such as CRP (Consumer Reliability Program), EPIIC (Environmental Package Indicators for Integrated Circuits), LAPP (Linear Accelerated Punishment Program), RRAP (Rapid Reliability Assessment Program), and RAP (Reliability Audit Program).

Currently, the Linear Reliability Audit Program consists of a Weekly Reliability Audit and a Quarterly Reliability Audit. The Weekly Reliability Audit consists of rapid (short time) type of tests used to monitor the production lines on a real time basis. This type of testing is performed at the assembly/test sites and at the U.S. Linear Division Center. It provides data for use as an early warning system for identifying negative trends and triggering investigations for causes and corrective actions.

The Quarterly Reliability Audit consists of long term types of tests and is performed at the U.S. Linear Division Center. The data obtained from the Quarterly Reliability Audits is used to assure that the correlation between the short term weekly tests and long term quarterly type of tests has not changed, nor a new failure mechanism has appeared.

A large data base is established by combining the results from the Weekly Reliability Audit with the results from the Quarterly Reliability Audit. Such a data base is necessary for estimating long term failure rate and evaluating potential process improvement changes. Also, after a process improvement change has been implemented, the Linear Reliability Audit Program provides the system of monitoring the change and the past history data base for evaluating the affect of the change.

Weekly Reliability Audit

The Weekly Reliability Audit is performed by the U.S. Linear Division Center, plus each assembly/test site which has the capability of assembling the Linear integrated circuits, performing final electrical testing, quality assurance electrical acceptance testing, reliability assurance testing and first level of failure analysis. The results are reviewed on a continuous basis and corrective action is taken when appropriate. The results are accumulated on a monthly basis and published.

The experimental test plan is as follows:

Electrical Measuremenns: Performed initially and after each reliability test, consists of critical parameters and functional testing at 25°C on a go-no-go basis.

High Temperature Operating Life Test: Performed to detect failure mechanisms that are accelerated by a combination of

temperature and electric fields. Procedure and conditions are per the MIL-STD-883, Method 1015 with an ambient temperature of 145°C for 40 hours or equivalent based on a 1.0eV activation energy and the Arrhenious equation.

Approximate Accelerated Factors

	<u>125°C</u>	<u>50°C</u>
145°C	4	4000
125°C	1	1000

Temperature Cycling/Thermal Shock: Performed to detect mechanisms related to thermal expansion and contraction of dissimilar materials, etc. Procedure and conditions are per MIL-STD-883, Methods 1010 or 1011, with ambient temperatures of

 -65°C to 150°C or -40°C to 125°C (JEDEC-STD-22-A104), minimum of 100 cycles.

Pressure Temperature Humidity (Autoclave): Performed to measure the moisture resistance of plastic encapsulated packages. It detects corrosion type failure mechanisms due to free ionic contaminants that may have entered the package during the manufacturing processes. Conditions are per JEDEC-STD-22, Method 102, a temperature of 121°C, steam environment and 15psig. The duration of the test is 48 hours.

Analysis Procedure: Devices failing to meet the electrical criteria after being subjected to an accelerated environmental type test are verified and characterized electrically, then submitted for failure analysis.

Quarterly Reliability Audit

The Quarterly Linear Reliability Audit Program is performed at the U.S. Linear Division Center. This testing is designed to assure that the correlation between the short term weekly tests and the longer quarterly tests has not changed and that no new failure mechanisms have appeared. It also provides additional long term information for a data base for estimating failure rates and evaluation of potential process improvement changes.

Electrical Measurements: Performed initially and at interim readouts, consist of all standard dc and functional parameters at 25°C, measured on a go-no-go basis.

High Temperature Operating Life Test: Performed to detect failure mechanisms that are accelerated by a combination of temperature and electric fields. Procedure and conditions are per MIL-STD-883, Method 1015, with an ambient temperature of 145°C for 40 and 250 hours or equivalent, based on 1.0eV activation energy and the Arrhenious equation.

Approximate Acceleration Factors

	125°C	<u>50°C</u>
145°C	4	4000
125°C	1	1000

Temperature Cycling/Thermal Shock: Performed to detect mechanisms related to thermal expansion and contraction, mismatch effects, etc. Procedure and conditions are per MIL-STD-883, Methods 1010 or 1011, with ambient temperatures of -65°C to 150°C or -40°C to 125°C (JEDEC-STD-22-A104) for 100 and 1000 cycles. Temperature Cycling and Thermal Shock are used interchangeably.

Pressure Temperature Humidity (Autoclave): Performed to measure the moisture resistance of plastic encapsulated packages. It detects corrosion type failure mechanism due to free ionic contaminants that may have entered the package during the manufacturing processes. Conditions are per JEDEC-STD-

22, Method 102, a temperature of 121°C, steam environment and 15psig. The duration of the test is for 96 hours, with a 48 hours interim readout.

Pressure Temperature Humidity Bias (Biased Autoclave):

This test measures the moisture resistance of plastic encapsulated packages. It detects corrosion type failure mechanism due to free and bounded ionic contaminants that may have entered the package during the manufacturing processes, or they may be bound in the materials of the integrated circuit packaging system and activated by the moisture and the applied electric fields. Conditions are per JEDEC-STD-22, Method 102, with bias applied. Temperature is 121°C, steam environment and 15psig. Duration is for 32 hours, with a 16 hour interim readout. This test detects the same type of failures as the Temperature Humidity Bias (85°C, 85% RH, with bias) test, only faster. The acceleration factor between PTHB and THB is between 20 and 40 times, depending on the type of corrosion mechanism, electric field and packaging system.

Temperature, Humidity & Bias (THB): This test measures the moisture resistance of plastic encapsulated packages. It detects corrosion type failure mechanisms due to free and bounded ionic contaminants that may have entered the package during the manufacturing processes, or they may be bound in the materials of the integrated circuit packaging system and activated by moisture and the applied electric fields. Conditions are per JEDEC-STD-22, Method 102 (85°C, 85% RH), with bias applied. The duration is for 1008 hours, with a 504 hour interim readout. The acceleration factor between THB (85°C, 85% RH and bias) and the 30°C, 90% RH is typically 40–50 times, depending on the type of corrosion mechanism, electric field and packaging system.

Analysis Procedure: Devices failing to meet the electrical criteria after being subjected to an accelerated environmental type test are verified and characterized electrically, then submitted for failure analysis.

Commercial Product Processing Levels

Motorola's reliability and quality-enhancement program was developed to provide improved levels of quality and reliability for standard commercial products.

The "Better" Program

THE "BETTER" program is offered on MOS, Linear ECL, TTL, LS TTL, DTL and HTL in dual-in-line ceramic and plastic packages.

Motorola standard commercial integrated circuits are manufactured under stringent in-process controls and quality inspections combined with the industry's finest outgoing quality inspections. The "BETTER" program offers three levels of extra processing, each tailored to meet different user needs at nominal costs.

The program is designed to:

- Eliminate need for independent test labs and associated extra time and costs
- Reduce field failures
- Reduce service calls
- Reduce equipment downtime
- · Reduce board and system rework
- · Reduce infant mortality
- · Save time and money
- Increase end-customer satisfaction

RETTER PROCESSING — STANDARD PRODUCT PLUS:

DETTENT THOOLOGING	OTATION TO THE STATE OF THE STA				
100% Screen	Level I "S"	Level II "D"	Level III "DS"		
Temp. Cycle, 10 Cycles -65°C to +150°C	х		х		
Burn-In — Mil-Std-883		×	Х		
Post Burn-In Electrical ^{1,2}		Х	Х		
100°C Functional	Х		Х		
DC Parameter at 25°C1,2	X	Х	Х		
Tightened, QA Sample	X	Х	Х		

- ECL and LS TTL do functional and dc 100% at T_A Max (Levels I and III, 25°C or T_A Max optional for Level II.)
- 2. NMOS does functional and dc 100% at 100°C.
- Additional standardized flows, when available, will be added as BETTER Level
 V. Letc.

"BETTER" AQL GUARANTEES

		AQL		
Test	Condition	Level I	Level II	Level III
High Temperature Functional	T _A = 100°C or T _A Max	0.061	*	0.061
DC Parametric	T _A = 25°C	0.061	0.061	0.061
DC Parametric	T _A Min, T _A Max	0.30	0.30	0.30
AC Parametric	T _A = 25°C*	0.061	0.061	0.061
Dynamic Test (Linear and NMOS)	T _A = 25°C*	0.061	0.061	0.061
External Visual and Mechnical	Major/Minor	0.061	0.061	0.061
Hermeticity (Not Applicable to Plastic Packages)	Gross/Fine	0.15	0.15	0.15

[&]quot;AQL" values shown are for reference only. "LTPD" type sampling plans that are equal to or tighter than values indicated may be used. Also, the guaranteed electrical and visual/mechanical AQL levels will be progressively tightened. Contact your nearest Motorola sales office for current

How to Order

Standard Package Suffix BETTER D

BETTER
PROCESSING
LEVEL I = SUFFIX S
LEVEL II = SUFFIX D
LEVEL III = SUFFIX DS

Part Marking

The Standard Motorola part number with the corresponding "BETTER" suffix can be ordered from your local authorized Motorola distributor or Motorola sales offices. "BETTER" pricing will be quoted as an adder to standard commercial product price.

13

^{*}Some products are also AC specified at T_A Min and T_A Max. In those instances, AQL guarantees will be per Motorola standard. The AQL guarantee for Functional on "LEVEL II" processing will also be per Motorola standard.

HERMETIC

SEALING

WAFER **FABRICATION** SEM C۷ 100% VOLTAGE STRESS & LOW LEVEL LEAKAGE DHPI DIE BOND WIRE BOND DBI WBI WPM PLASTIC **ENCAPSULATION** BAKE Ш П 111 Ш

SHIPPING

Generalized "BETTER" Product Flow for Linear

Scanning Electron Microscope Wafer Process Control Monitor. To control oxide step profiles, contact coverage, and metallization integrity. (Engineering option.)

CV Plot Wafer Process Control Monitor: To control field inversion potential, base inversion — surface channel formation, and to detect any spurious contamination problems. (Engineering option.)

Performed at final wafer probe (or, optionally, at final electrical test) to screen out potential pinhole shorts, interlayer metal shorts, N+ crossunder shorts, diffusion faults, and similar defects that cannot be detected by visual die high-power inspection.

Die High-Power Sample Gate Inspection: Performed by in-process Q.A. to a 5.5% AQL to detect any damage caused by 100% wafer probe or mechanical scribe and break operation, or any scratches, metallization smears, or glass on bonding pads.

Combined Die Bond and Wire Bond Sample Gate Inspection: Performed by in-process Q.A. to 0.40% AQL to detect any misaligned or lifted die, to assure adequate "wetting" for low thermal resistance and high die shear strength, and to detect any improper wire bonds or wire dress, and any wire bonder damage.

Wire Pull Monitor: Performed by in-process Q.A. to maintain process control of bond strength values per MIL-STD-883. Method 2011, Condition D.

Motorola Proprietary Epoxy Molding Compound: Meets or exceeds U.L. flame-retarding level UL94V-1.

Post Encapsulation Bake: Eight hours at 150°C (or six hours at 175°C). Final cure for molding compound; also stresses wire and die bonds and helps eliminate marginal devices.

100% Temperature Cycling: MIL-STD-883, Method 1010C, ten cycles — 65°C to +150°C. Exercising circuits ten times over a 215°C range stresses the die and wire bonds and generally eliminates any marginal bonds and also screens out some types of wafer defects (pinholes, interlayer metal shorts, marginal step coverage, N + crossunder shorts) and marginal seals in hermetic packages. This screening is superior to thermal shock screening because it does not introduce latent failures in ceramic packages (microcracks in seals) or in plastic packages (entrapped liquid) that can result from liquid-to-liquid thermal shock.

Hermeticity Monitor: Hermetic packages only — combination fine/gross leak test per modification MIL-STD-883, Method 104B. (5 x 10^{-8} ATM CC/SEC to 1 x 10^{-4} ATM CC/SEC). Samples to 0.15% AQL.

100% Electrical: Functional and dc parametrics at 25°C or max rated TA (optional).

100% Burn-In: MIL-STD-883, Method 1015, for 160 hours minimum at T_A of 125°C minimum (or equivalent, per Arrhenius equation with 1.0eV activation energy). Test condition depends on device type, but generally condition A or C.

100% Electrical: Level I and III Functional tests at max rated T_A Level II Functional and all DC parametrics at 25°C or max rated T_A at Motorola's option. Maximum PDA per applicable spec.

100% High-Temperature Functional Tests: Devices are tested at maximum rated operating temperatures assuring reliable operation at elevated temperatures and screening out marginally performing devices that could otherwise lower field reliability. Although epoxy molding compounds have essentially eliminated the thermal intermittent failure mode, this screen provides protection from any "maverick" intermittent device being shipped to a customer. This screening is more effective than hot rail "continuity" testing because non-functional devices can often pass a continuity test.

Q.A. Electrical and Mechanical Final Acceptance Tests: Sampled to the tightened AQL levels of Table1.

Hermeticity Monitor: Hermetic packages only. Combination fine/gross leak test per modification of MIL-STD-883, Method 1014B (5 x 10^{-8} ATM CC/SEC to 1 x 10^{-4} ATM CC/SEC). Sampled to a 0.15% AQL.

Standard HIGH REL Programs

Motorola, a pioneer in the manufacture of high-reliability integrated circuits, now offers you a two-way program for Hi Rel products.

JAN-QUALIFIED

Motorola stocks many circuits which meet JAN-QUALIFIED specifications, and is actively pursuing an expansion of this qualification listing with product in all IC categories — encompassing Bipolar Digital, Linear and MOS technologies.

JEDEC PROCESSED

An extensive program supplying JEDEC PROCESSED de-

vices approach Qualified Reliability goals without the delay and high cost of the actual qualification program.

Motorola JEDEC PROCESSED products complement JAN-QUALIFIED products by making available hi-rel versions of nearly all Motorola full-temperature range circuits, while adding the advantage of hi-rel standardization.

JEDEC BENEFITS

- 1. Standardization of environmental and electrical test procedures.
- 2. Less specification writing required.
- 3. Less time required in negotiating specifications.
- 4. Fast delivery.
- 5. Lower costs.

Standard Military Product Processing Programs

		JEDEC	JAN	Motorola 883 S	3
Screen	Method	Requirements	Qualified	Method	Requirements
Wafer Acceptance				5007	
Internal Visual (Precap)	2010 Condition B and 38510	100%	100%	2010 Condition A and 38510	100%
Stabilization Bake	1008, 24 Hrs. Test Condition C or Equivalent	100%	100%	1008 24 Hrs. min Condition C	100%
Temperature Cycling	1010 Condition C	100%	100%	1010 Condition C	100%
Constant Acceleration	2001 Condition E min in Y ₁ plane	100%	100%	2001 Condition E min in Y ₁ plane	100%
Pind Testing				2020 Ceramic Pkgs.	100%
Seal Fine & Gross	1014	100%	100%	1014	100%
Interim Electrical	As Applicable Device Note 1	As Applicable	As Applicable	JAN slash sheet elec. spec. Serialization R&R. Variable data. Note 1	As Applicable
Burn-In Test	1015 @ 125°C or Equivalent PDA = 10%	100%	100%	1015 125°C min 240 Hrs. PDA = 5%	100%
Final Electrical Tests (a) Static Tests 1. 25°C (Subgroup 1, Table 1, 5005) 2. Max and min rated operating temperature	Per Applicable Device Specification	100%	100%	JAN slash sheet elec. spec. Read and Record 25°C Note 1	100%
(Subgroups 2 and 3 Table 1, 5005) (b) Dynamic Tests and Switching		100%	100%		100%
Tests 25°C (Subgroup 4 and 9 Table 1, 5005) (c) Functional Test 25°C		100%	100%	25°C, -55°C, 125°C	100%
(Subgroup 7, Table 1, 5005)		100%	100%		100%
Quality Conformance Inspection: Group A (a) Static	5005 Class B	Sample per Applicable Specification	LTPD	5005 Class S	LTPD
1. 25°C (Subgroup 1) 2. Temperature (Subgroup		(Provision) Equal to	5%		3%
2&3)		or tighter than 883	7%		5%
(b) Switching 1. 25°C (Subgroup 9) 2. Temperature (Subgroup		triair 603	7%		5%
10&11)			10%		
(c) Functional 1. 25°C (Subgroup 7)			5%		3%
RadioGraphic				2012	100%
Group B	5005 Class B	Insp. Lot	Insp. Lot	5005 Class S	Insp. Lot
Group C	5005 Class B	52 Wks. Prod.	13 Wks. Prod.		
Group D	5005 Class B	12 Mos. Package Production	6 Mos. Package Production	5005 Class S	Generic or Insp. Lot
External Visual	2009	100%	100%	2009	100%

NOTE 1: Motorola data sheet electricals where JAN slash sheets are not available.

Ordering and Marking for Better Level Product

Ordering & Marking for JEDEC Hi-Rel Processing Program

Ordering & Marking for JAN Qualified Program

Applications Literature

The application literature listed in this section has been prepared to acquaint the circuits and systems engineer with Motorola Linear integrated circuits and their applications. To obtain copies of the notes, simply list the publication number or numbers and send your request on your company letterhead to: Technical Information Center, Motorola Semiconductor Products Inc., P.O. Box 20912, Phoenix, Arizona 85036.

Application Note Abstracts

AN-401 The MC1554 One-Watt Monolithic Integrated Circuit Power Amplifier

This application note discusses four different applications for the MC1554, along with a circuit description including dc characteristics, frequency response, and distortion. A section of the note is also devoted to package power dissipation calculations including the use of the curves on the power amplifier data sheet.

AN-471 Analog-to-Digital Conversion Techniques

The subject of analog-to-digital conversion and many of the techniques that can be used to accomplish it are discussed. The paper is written in general terms from a system point of view and is intended to assist the reader in determining which conversion technique is best suited for a given application.

AN-489 Analysis and Basic Operation of the MC1595

The MC1595 monolithic linear four-quadrant multiplier is discussed. The equations for the analysis are given along with performance that is characteristic of the device. A few basic applications are given to assist the designer in system design.

AN-491 Gated Video Amplifier Applications Using The MC1545

This application note reviews the basic operation of the MC1545 and discusses some of the more popular applications for the MC1545. Included are several modulator types, temperature compensation of the active gate, AGC, gated oscillators, FSK systems, and single supply operation.

AN-513 A High Gain Integrated Circuit RF-IF Amplifier with Wide Range AGC

This note describes the operation and application of the MC1590G, a monolithic RF-IF amplifier. Included are several applications for IF amplifiers, a mixer, video amplifiers, single and two-stage RF amplifiers.

AN-531 MC1596 Balanced Modulator

The MC1596 monolithic circuit is a highly versatile communications building block. In this note, both theoretical and practical information are given to aid the designer in the use of this part. Applications include modulators/demodulators for AM, SSB, and suppressed carrier AM; frequency doublers and HF/VHF double balanced mixers.

AN-543A Integrated Circuit IF Amplifiers for AM/FM and FM Radios

This application note discusses the design and performance of four IF amplifiers using integrated circuits. The IF amplifiers discussed include a high performance circuit, a circuit utilizing a quadrature detector, a composite AM/FM circuit, and an economy model for use with an external discriminator.

AN-545A Television Video IF Amplifier Using Integrated Circuits

This applications note considers the requirements of the video IF amplifier section of a television receiver, and gives working circuit schematics using integrated circuits which have been specifically designed for consumer oriented products. The integrated circuits used are the MC1350, MC1352, and the MC1330.

AN-547 A High-Speed Dual Differential Comparator, The MC1514

This application note discusses a few of the many uses for the MC1514 dual comparator. Many applications such as sense amplifiers, multivibrators, and peak level detectors are presented.

AN-587 Analysis and Design of the Op Amp Current Source

A voltage controlled current source utilizing an operational amplifier is discussed. Expressions for the transfer function and output impedances are developed using both the ideal and non-ideal op amp models. A section on analysis of the effects of op amp parameters and temperature variations on circuit performance is presented.

AN-599 Mounting Techniques for Metal Packaged Power Semiconductors

For cooler, more reliable operation, proper mounting procedures must be followed if the interface thermal resistance between the semiconductor package and heat sink is to be minized. Discussed are aspects of preparing the mounting surface, using thermal compounds, and fastening techniques. Typical interface thermal resistance is given for a number of packages.

AN-702 High Speed Digital-To-Analog and Analog-To-Digital Techniques

A brief overview of some of the more popular techniques for accomplishing D/A and A/D techniques. In particular those techniques which lead themselves to high speed conversion.

AN-703 Designing Digitally-Controlled Power Supplies

This application note shows two design approaches; a basic low voltage supply using an inexpensive MC1723 voltage regulator and a high current, high voltage, supply using the MC1466 floating regulator with optoelectronic isolation. Various circuit options are shown to allow the designer maximum flexibility in an application.

AN-708A Line Driver and Receiver Considerations

This report discusses many line driver and receiver design considerations such as system description, definition of terms, important parameter measurements, design procedures and application examples. An extensive line of devices is available from Motorola to provide the designer with the tools to implement the data transmission requirements necessary for almost every type of transmission system.

AN-713 Binary D/A Converters can Provide BCD-Coded Conversion

This note describes the application and use of integrated circuit D/A converters for use in providing a BCD-coded conversion. The technique is illustrated using a 2-1/2 digit digital voltmeter.

APPLICATIONS LITERATURE (continued)

AN-714 A Personalized Heart-Rate Monitor with Digital Readout

Using the micropower operational amplifier MC1776 and CMOS digital integrated circuits, entirely self-contained portable electro-medical monitoring equipment can be built. This note details the construction of a heart-rate monitor giving a digital indication, beat-by-beat.

AN-716 Successive Approximation A/D Conversion

Recent advances in integrated circuit design and technology have resulted in reduced cost of high performance successive approximation analog to digital converters. This note describes and illustrates two examples of how modern IC components have changed this well known technique.

An-719 A New Approach to Switching Regulators

This article describes a 24-Volt, 3-Ampere switching mode supply. It operates at 20 kHz from a 120 Vac line with an overall efficiency of 70%. New techniques are used to shape the load line. The control portion uses a quad comparator and an opto coupler and features short circuit protection.

AN-720 Interfacing with MECL 10,000

This article describes some of the MECL circuits used to interface with signals not meeting MECL input or output requirements. The characteristics of these circuits such as input impedance, output drive, gain and bandwidth allow the system decigner to use these parts to optimize his system. MECL interface circuits overcome a problem area of many system designs, which is the efficient coupling of non-compatible signals.

AN-727 Television Horizontal APC/AFC Loops: The Last 10 Percent

A discussion of some common problems that may be encountered with the design of Horizontal APC/AFC loops and methods to avoid or overcome them.

AN-737A Switched Mode Power Supplies — Highlighting A 5.0-V, 40-A Inverter Design

This application note identifies the features of various regulator circuits that are in use today in ac to dc power supplies. The note also illustrates how these circuits may be used as complementary building blocks in a system design. Primary emphasis is on switched mode regulators because they fill the present need for energy and space savings.

A complete 5.0-V, 40-A line operated inverter supply is described in detail including design procedures for the magnetic components. The inverter itself is a "state-of-the-art" design which features CMOS logic, high voltage power transistors, Schottky rectifiers and an optoelectronic coupler. It operates with a full load efficiency of 80% at a frequency of 20 kHz.

AN-752 An 80-Watt Switching Regulator for CATV and Industrial Applications

This application note describes a 24-Volt, 3.0-Ampere switching, regulated power supply that operates above 18 kHz from a 40-to 60-Volt, 60-Hz square wave source (CATV power line from a feroresonant transformer) or a dc standby source with input output isolation. The control circuit consists of a dual operational amplifier and a linear integrated circuit timer which are used to vary the on time of a new high-speed power transistor. The circuit provides good efficiency, good regulation, low output ripple and incorporates input and output voltage over shutdown protection.

AN-760 Application of The MC3416 Crosspoint Switch

The operation and application of the MC3416 4 \times 4 balanced crosspoint switch is described in detail. Special emphasis is given to balanced switching systems like those in space division PABX. Discussion of the total system design using the MC3416 is also included.

AN-767 A Line Operated, Regulated 5.0 V/50 A Switching Power Supply

This application note describes a regulated 220 Vac to 5.0 Vdc converter using high voltage switching transistors and Schottky barrier rectifiers. The control functions are all performed by integrated circuits.

AN-775 M6800 Systems Utilizing the MC6875 Clock Generator/Driver

This application note describes the use of the MC6875 clock generator/driver in M6800 based systems. Design examples will demonstrate the capabilities of the driver in systems using slow and/or dynamic memories. Multiprocessing and DMA methods are also covered.

AN-778 Mounting Techniques for Power Semiconductors

For reliable operation, semiconductors must be properly mounted. Discussed are aspects of preparing the mounting surface, using thermal compounds, insulation techniques, fastening techniques, handling of leads and pins, and evaluation methods for the thermal system.

AN-781A Revised Data Interface Standards

This application note provides a brief overview and comparison of communication interface standards RS-232-C, RS-422A, RS-423, RS-449 and RS-485 for the hardware designer. A listing of the standard's specifications and appropriate Motorola devices are included.

AN-787 An M6800 Clock System That Handles DMA and Memory Refresh Cycle Stealing

Dynamic memory and three-state cycle stealing for Direct Memory Access transfers require a clock generator and priority logic to maintain proper refresh times of the dynamic MPU and dynamic memory. The design presented here demonstrates use of the MC6875 clock generator with an MC6800 MPU.

AN-829 Application of the MC1374 TV Modulator

The MC1374 was designed for use in applications where separate audio and composite video signals are available, which need converting to a high quality VHF television signal. It's idealy suited as an output device for subscription TV decoders, video disk and video tape players.

AN-842 Microprocessor-Compatible DACs and the MC6890

As the range of applications and consequently the usage, of microprocessors steadily increases, the need for more efficient interfacing also increases. There has been developed a class of DACs which incorporate the commonly used circuits necessary for microprocessor interfacing, thus easing the design problems involved.

AN-844 Extending the Capabilities of the MC10315/ MC10317 Flash A/D Converters

Recent advances in manufacturing capabilities have provided

APPLICATIONS LITERATURE (continued)

the means to produce 7-bit flash converters in monolithic form. This application note will discuss some of the means whereby the user may extend the resolution and speed of the basic devices.

AN-848 An Evaluation System for High-Speed A-D and D-A Converters

The purpose of this application note is to describe the capabilities and operation of the MC10315 and MC10317 flash A-D converter, as well as their application in an Evaluation Board designed for their use at frequencies which include video rates.

AN-877 Precision Voltage References for the MC10315/MC10317 Flash A-D Converters

In order to produce a digital representation of an analog signal, all analog-to-digital converters require a reference voltage. The digital output word is the result of a comparison of that analog voltage versus the reference voltage.

While most analog-to-digital converters have a high input impedance for the reference voltage, the MC10315/10317 flash A-D converters have a reference input resistance of (typically) 64 ohms, thus requiring a significant current be supplied from a precision source. This application note describes several circuit configurations which can be used to supply the reference voltage, and current, at the stability by the A-D converters.

AN-879 Monomax—Application of the MC13001 Monochrome Television Integrated Circuit

This application note presents a complete 12" black and white line-operated television receiver, including artwork for the printed circuit board. It is intended to provide a good starting point for the first-time user. Some of the most common pitfalls are overcome, and the significance of component selections and locations are discussed.

AN-917 Reading and Writing in Floppy Disk Systems Using Motorola Integrated Circuits

The floppy disk system has become a widely used means for storing and retrieving both programs and data. A floppy disk drive requires precision controls to position and load the head as well as defined read/write signals in order to be a viable system. This application note describes the use of the MC3469 and MC3471 Write Control ICs and the MC3470 Read Amplifier which provide the necessary head and erase control, timing functions, and filtering.

Engineering Bulletin Abstracts

EB-20 Multiplier/OP Amp Circuit Detects True RMS

Two op amps and two multipliers are used in the circuit described by EB-20 to obtain the true rms of an input voltage ranging from 2 to 10 Vpk.

EB-51 Successive Approximation BCD A/D Converter

A successive approximation A/D converter in which a digital-to-analog converter in a feedback loop produces a BCD digital output from an analog input is described in EB-51.

EB-57 An Economical FM Transmitter Voice Processor from a Single IC

An MC3401 Quad Op-Amp is used as a Microphone/Modulation interface in an FM transmitter.

EB-66A A Symmetry Correcting Circuit for Use with the MC3420

EB-66 shows a method of implementing an external symmetry-correction circuit with the MC3420 Switchmode Regulator Control IC to insure balanced operation of the power transformer in push-pull inverter configurations.

EB-78 New ICs Perform Control and Ancillary Functions in High Performance Switching Supplies

This bulletin discusses the MC3420 and MC3423. The MC3420 performs a great number of functions required for the control of inverter type Switchmode power supplies. The MC3423 is for the overvoltage protection of power supplies.

EB-85A Full-Bridge Switching Power Supplies

This bulletin provides information for the preliminary selection of devices required for implementation of a full-bridge-configuration supply from 500 to 1000 watts.

EB-86 Half-Bridge Switching Power Supplies

This bulletin provides information for the preliminary selection of devices required for implementation of a half-bridge-configuration supply from 100 to 500 watts.

EB-87A Flyback Switching Power Supplies

This bulletin provides information for the preliminary selection of devices required for implementation of a flyback-configuration supply from 100 to 250 watts.

EB-88 Push-Pull Switching Power Supplies

This bulletin provides information for the preliminary selection of devices required for implementation of a push-pull-configuration supply from 100 to 500 watts.

EB-100 A Simplified Power-Supply Design Using the TL494 Control Circuit

This bulletin describes the operation and characteristics of the TL494 Switchmode Voltage Regulator and shows its application in a 400-watt off-line power supply.

TMOS Design Tip Abstracts

TDT-101B A 100 kHz FET Switcher

This note describes a circuit for a 60 W, 100 kHz FET switcher with four output voltages, operating from 120 Vac.

1	Alphanumeric Index and Cross Reference
2	Selector Guides
-	Integrated Circuits Data Sheets
3	Amplifiers
4	Power Supply
5	Voltage References
6	Data Conversion
7	Interface
8	Comparators
9	Telecommunications
10	Consumer
11	Other Linear
12	Packaging Information, Including Small Outline Integrated Circuits (SOIC)
13	Quality and Reliability Assurance

Applications Literature

