ABC algorithm in $C++$, 23	C++, 82, 106
ABC algorithm in Matlab, 20	Cat Swarm Optimization, 56
ACO, 2	caterpillar, 250
active agents, 309	chase-swarming, 85
adaptive local-decision, 178	chasing, 85
aggressive reproduction strategies,	Chebyshev distance, 60
110	chemotaxis, 33
Ant colony optimization, 2	chick, 75
Artificial Bee Colony, 18	chicken, 75
artificial hunters, 220	Chicken Swarm Optimization, 71
attacking the prey, 210	chicken swarms, 71
attractants, 33	chrysalis, 250
attraction, 294	clans, 151
attraction movements, 296	cockroach swarm optimization, 85
attraction strength, 165	collective information, 166
attractiveness, 165	collective wealth, 308
attractiveness term, 165	comfort zone, 194
awareness probability, 99	communal web, 293
	constrained engineering
BA, 121	optimization, 97
bacteria, 32	constraint-handling techniques, 172
bacterial foraging optimization, 31	convergence, 43
bat algorithm, 43	count of dimension to change, 56
bat-inspired algorithm, 121	cross county moment, 250
behavior of glowworms, 175	Crow Search Algorithm, 97
behavior of the cats, 56	crows, 97
best solution, 71	cuckoo search, 109
BFO, 31	cuckoo species, 109
bio-inspired algorithm, 98	
biologically inspired, 2	decision variables, 267
breaking or weakening, 136	dense fog, 166
brooding parasitism, 109	dispersal, 33
Brownian motion, 33	dispersing behaviour, 135
bubble-net attacking method, 324	dispersion, 85
bubble-net feeding method, 323	Dispersive Flies Optimisation, 135
butterfly adjusting operator, 252	diversification, 210
butterfly flutter, 252	dominant hierarchy levels, 208

dominant male spiders, 294	foraging motion, 234
dominant structure, 207	foraging theory, 32
double-loops, 324	formation of the swarms, 136
DVBA, 121	frequencies, 44
dynamic motion, 193	frequency, 124
Dynamic Virtual Bats Algorithm,	frequency range, 125
121	Frequency tuning, 44
dynamical system theory, 44	frequency variation, 45
dynamically changing environments,	function of evaluation, 124
135	
100	global minima, 258
E. coli, 32	global version, 72
echolocation, 44	Glowworm Swarm Optimization, 175
echolocation of microbats, 43	Grasshopper Optimization
elephant, 150	Algorithm, 193
elimination, 32	Grey wolf optimizer, 207
elimination probability, 34	grey wolves, 208
employed bees, 17	grey wolves pack, 207
encircling prey, 324	Griewank function, 37
equilibrium state, 194	group hunting, 220
escaping from light, 85	group of friends, 308
Euclidean distance, 60	group of friends, 500
exploitation, 18, 195, 325	hen, 81
exploiter bat, 121	herding, 151
exploration, 18, 195, 210	herding behaviour, 151
exploration-exploitation, 268	homing for prey, 44
explorer bat, 121	host bird, 110
exponential absorption, 165	host species, 110
onponential assorption, 100	humpback whales, 323
facing a threat, 135	hunger behavior, 86
family structure of elephants, 149	hunting, 208
feet, 150	hunting process, 209, 220
females, 294	Hunting Search, 219
FEs, 124	hunting solution vector, 227
firefly algorithm, 163	hunting strategies, 323
fitness value, 71	numing strategies, 525
flagella, 32	IDVBA, 122
flagellum, 32	inactive agents, 309
flashing behaviour, 163	increment rate, 124, 125
flashing firefly, 166	increment rate divisor, 124, 125
flight length, 99	inertia weight, 86, 268
fluctuation, 17, 18	infeasible, 252
food, 32, 150	influence probability, 297
food source, 2	intensity of bio-luminescence, 176
foraging, 17, 32	interaction, 18
foraging activity, 232	interactions, 17

interactions between agents, 308	movement strategies, 193
inverse-square law, 165	movements, 85
	multi-agent global search, 308
krill herd, 231	multiple peaks, 180
krill in a herd, 231	mutual cooperation, 85
krill swarm, 232	
Kuhn-Tucker problem, 226	naturally self-organise, 309
T	navigation and hunting, 44
Lévy flights, 109, 110	negative feedback, 17, 18
Lévy flight, 324	neighborhood, 268
Lagrangian movements, 232	Nelder-Mead search, 294
Lagrangian multipliers, 172	Newton's motion law, 282
leader of the group, 208	noisy environments, 135
leader salp, 281	non-convex, 37
leadership, 151	non-convex function, 157
learning coefficient, 267	non-dominant spiders, 294
Levy flight, 252	non-stationary, 135
light intensity, 166	North American, 250
light intensity variation, 165	noxious, 32
limit, 20	nutrients, 32
linear time complexity, 308	Nymphalidae, 250
loudness, 44	,
low frequency sound, 150	objective function, 99, 123, 126, 273
lower bounds, 125	onlooker bees, 17
luciferin value, 190	optimisation swarm intelligence
	algorithm, 308
males, 294	optimization problems, 71
mammals, 150	organic compound, 3
Manhattan distance, 60	-
Markovian framework, 44	pairwise social interactions, 194
mating, 294	particle, 272
Matlab, 82, 106	particle swarm optimization, 265
matriarch, 149	pheromone, 3
memory, 100	physical diffusion, 234
metaheuristic, 97	population-based algorithms, 135
microbats, 44	position, 81, 100
migration behaviour, 250	position vector, 44
migration operator, 251	positive feedback, 17, 18
milkweed butterfly, 250	prey capturing, 294
minimal convergence criteria, 308	pseudo-code of the ABC, 19
minimalist update equation, 135	pulse emission rate, 44
mining game, 308	pulse emission rates, 44
Monarch butterfly, 250	- /
monarch butterfly optimisation, 250	random diffusion, 232
movement attributed to the wind,	range of mating, 297
194	rapidly congregate, 309

Rastrigin function, 157	Social spider optimization, 293
repellents, 33	solution search space, 323
reproduction, 33	source code, 82, 126
reproductivity probability, 110	source of food, 193
repulsion, 296	Sphere function, 200
repulsion movement, 296	Stochastic Diffusion Search, 308
repulsion zone, 194	superorganisms, 1, 2
residual salps, 281	swarm, 267
resting position, 56	Swarm Intelligence, 279
ring topology, 60, 269	Swarm intelligence, 17
robustness, 308	swarm intelligence, 207, 293, 307
rooster, 75	swarm of mobile robots, 176
roulette wheel selection, 13	swarm robotics applications, 176
rumbling, 150	swarm-intelligence, 231
ruthless, 85	swarming, 33, 85
,	swarming behaviour, 135
salp swarm algorithm, 280	swim, 32
scaling factor, 166	
scope width variable, 124	termination criteria, 268
scope width vector, 124	termination criterion, 217
scouts, 17	time-dependent Lagrangian model,
search for prey, 324	233
search moves, 164	tracing mode, 56
search points, 124	traveling salesman, 7, 11
search scope, 122	tropical fireflies, 163
search space, 32, 99, 157	tumble, 32
security, 152	ultrasonic pulses, 44
seeking memory pool, 56	uniform distribution, 32, 152, 252
seeking mode, 56	unit vectors, 124
seeking range of the selected	upper bounds, 125
dimension, 56	upward-spirals, 324
seismic waves, 150	
selecting sleep place, 208	velocities, 124
selective neighbor interaction, 177	velocity vector, 44, 273
self-organization, 17	vibrations, 151, 294
self-position consideration, 56	virtual food, 233
sensing distance, 234	visibility distance, 166
separation, 152	wave direction vectors, 124
slow movements, 193	wave vectors, 124, 125
social animal, 151	wavelength, 124, 125
social behavior, 265, 323	wavelength, 124, 125 wavelength range, 125
social interactions, 194	weight of each spider, 295
social members, 293	whale optimization algorithm, 323
social neighborhood, 60, 269	where opining auton argorithm, 525
social spider colony, 293	zone of attraction, 194